Graded Hopf Maps and Fuzzy Superspheres

Kazuki Hasebe

Kagawa National College of Technology, Takuma, Mitoyo, Kagawa 769-1192, Japan

hasebe@dg.kagawa-nct.ac.jp

Abstract

We argue supersymmetric generalizations of fuzzy two- and four-spheres based on the unitary-orthosymplectic algebras, $uosp(N|2)$ and $uosp(N|4)$, respectively. Supersymmetric version of Schwinger construction is applied to derive graded fully symmetric representation for fuzzy superspheres. As a classical counterpart of fuzzy superspheres, graded versions of 1st and 2nd Hopf maps are introduced, and their basic geometrical structures are studied. It is shown that fuzzy superspheres are represented as a “superposition” of fuzzy superspheres with lower supersymmetries. We also investigate algebraic structures of fuzzy two- and four-superspheres to identify $su(2|N)$ and $su(4|N)$ as their enhanced algebraic structures, respectively. Evaluation of correlation functions manifests such enhanced structure as quantum fluctuations of fuzzy supersphere.
1 Introduction

Concrete idea and technique of quantization of two-sphere may be traced back to the work of Berezin [1] in 70s. In the beginning of 80s, the algebraic structure of fuzzy two-sphere and field theory on it were first argued by Hoppe [2] and in the early 90s subsequently explored by Madore [3]. The fuzzy two-sphere is one of the simplest curved fuzzy manifolds whose coordinates satisfy the SU(2) algebra. Field theory defined on fuzzy manifolds naturally contain a “cut-off”, and such non-commutative field theory was expected to have weaker infinity than that of the conventional field theory. Few years after the work of Madore, Grosse et al. introduced four-dimensional fuzzy spheres [4] and supersymmetric (SUSY) generalizations of fuzzy spheres in sequel works [5, 6]. In the developments of string theory in late 90s, researchers recognized that the geometry of D-branes is described by fuzzy geometry [7, 8, 9] (as reviews) and fuzzy manifolds arise as classical solutions of Matrix theory, e.g. [10, 11]. It is also known that fuzzy superspheres provide a set-up for field theory on SUSY lattice regularization [5, 12, 13], and realize as a classical solution of supermatrix model [14, 15]. For such important properties, fuzzy spheres and their variants have attracted a great deal of attentions [16, 17, 18] (as reviews). Non-commutative geometry and fuzzy physics also found their applications to gravity [20, 21, 22] and even to condensed matter physics [23, 24]. Recently, the mathematics of fuzzy geometry is applied to construction of topologically non-trivial many-body states on bosonic manifolds [25, 26, 27] and on supermanifolds [28, 29] as well.

In this paper, we apply close relations between fuzzy spheres and Hopf maps [30] to generalize fuzzy superspheres in higher dimensions. A useful mathematical tool for that construction is the Schwinger operator formalism [31, 18]. Specifically, the two-dimensional fuzzy sphere coordinates are simply obtained by sandwiching the Pauli matrices with two-component Schwinger operators:

\[X_i = \Phi^\dagger \sigma_i \Phi. \]

(1)

With the Schwinger operator, it is quite straightforward to derive fully symmetric representation, which corresponds to a finite number of states on fuzzy sphere. In general, a finite number of states on 2k-dimensional fuzzy spheres are given by fully symmetric representation of SO(2k + 1) [32]. The Schwinger operator is regarded as the “square root” of the fuzzy sphere coordinates, and play fundamental roles rather than the fuzzy sphere coordinates themselves. Meanwhile, with \(\phi \) denoting a normalized two-component complex spinor, the (1st) Hopf map is represented as

\[x_i = \phi^\dagger \sigma_i \phi. \]

(2)
Comparison between (1) and (2) finds that the (1st) Hopf map can be regarded as the “classical” counterpart of the (Schwinger) operator construction of fuzzy two-sphere.

In the construction of fuzzy superspheres, nice algebraic structures and relations between the Hopf map and fuzzy sphere are inherited. The fuzzy two-superspheres constructed by Grosse et al. are based on the $UOSp(1|2)$ algebra that includes $su(2) \cong usp(2)$:

\[su(2) \subset uosp(1|2). \] (3)

(The classical counterpart of the fuzzy two-supersphere, the graded 1st Hopf map, was first given in Refs. See also Refs. The coordinates of the fuzzy two-supersphere are introduced by replacing the $SU(2)$ Pauli matrices with the $UOSp(1|2)$ matrices of fundamental representation. As $uosp(1|2)$ contains $su(2)$ as its maximal bosonic subalgebra, the fuzzy two-supersphere “contains” the fuzzy two-sphere as its fuzzy body. Such construction is based on the graded Lie algebra, and hence the structure of fuzzy super-geometry is transparent. We want to maintain such nice features. To this end, we utilize a graded Lie algebra whose maximal bosonic subalgebra is $so(5)$. The minimal graded Lie algebra that suffices for this requirement is $uosp(1|4)$, since $so(5) \cong usp(4)$:

\[so(5) \subset uosp(1|4). \] (4)

We adopt $UOSp(1|4)$ version of Schwinger operator in the construction of fuzzy four-supersphere and also introduce the graded 2nd Hopf map as its classical counterpart. We further extend such formulation to include more supersymmetries with use of $UOSp(N|2)$ and $UOSp(N|4)$. Representation theory of the graded Lie algebra is rather complicated, however if restricted to graded fully symmetric representation, investigations are greatly simplified. By dealing with the Schwinger operator as fundamental quantity, we observe “enhancement” of symmetry of fuzzy superspheres. This mechanism is similar to the symmetry enhancement reported in higher-dimensional fuzzy spheres. We also reconsider such enhancement in view of quantum fluctuations of fuzzy superspheres.

Some comments are added to clarify difference to related works. In Ref., supersymmetric Hopf maps were introduced in the context of SUSY non-linear sigma models. In the construction, the fermionic parts are introduced to incorporate $N = 4$ supersymmetry. Though the bosonic parts are related to Hopf maps, the fermionic parts themselves are not directly related. In the present construction, together with bosonic components, the fermionic components themselves constitute graded Hopf maps. Supersymmetric quantum mechanics in monopole background related to the Hopf map is well investigated recently. Works about

\footnote{In this paper, two-supersphere is referred to as the supersphere whose body is two-dimensional sphere. Two-supersphere with N supersymmetry is denoted as S^{2N} whose bosonic dimension is two and the fermionic dimension is $2N$, and hence the total dimension is $2 + 2N$. Similarly, fuzzy four-supersphere consists of four-sphere body and extra fermionic coordinates.}

\footnote{We adopt the terminology, “graded fully symmetric representation” to indicate a representation constructed by a supersymmetric version of Schwinger operator. The graded fully symmetric representation is totally symmetric for the bosonic part and totally antisymmetric for the fermionic part. It is also referred to as harmonic oscillator representation in several literatures. For general representation theory of graded Lie groups, one may for instance consult Ref. and references therein.}
higher-dimensional fuzzy super-manifolds of which the author is aware are Ref.\[50, 51, 52, 53\]. The fuzzy complex projective space was constructed in Ref.\[50\] based on the super unitary algebra. Such construction is similar to the spirit of the present work, and is indeed closed related as we shall discuss. In \[53\], fuzzy superspheres are formulated in any dimensions. However, the fuzzy two-supersphere provided by the formulation is not same as of Grosse et al. In the present, though the construction is restricted to two and four-dimensions, the algebraic structure underlying fuzzy geometry is transparent and the fuzzy two-supersphere of Grosse et al. is naturally reproduced.

The paper is organized as follows. In Sec.2 we briefly introduce the unitary-orthosymplectic algebra, \(uosp(N|M)\). In Sec.3 we review the construction of fuzzy two-supersphere as well as 1st graded Hopf map. \(N = 2\) fuzzy two-supersphere and the corresponding 1st graded Hopf map are also discussed. In Sec.4 we argue construction of \(N = 1\) and \(N = 2\) fuzzy superspheres and the graded 2nd Hopf maps. More supersymmetric extensions are explored in Sec.5. In Sec.6 we give supercoherent states on fuzzy two- and four-superspheres and investigate quantum fluctuations of fuzzy superspheres. Sec.7 is devoted to summary and discussions.

\section{2 \(UOSp(N|M)\)}

Generators of the orthosymplectic group \(OSp(N|M)\) are defined so as to satisfy

\[
\Sigma_{AB}^{st} \begin{pmatrix} J & 0 \\ 0 & 1_N \end{pmatrix} + \begin{pmatrix} J & 0 \\ 0 & 1_N \end{pmatrix} \Sigma_{AB} = 0, \tag{5}
\]

where \(1_N\) denotes \(N \times N\) unit matrix and \(J\) represents the invariant matrix of the symplectic group

\[
J = \begin{pmatrix} 0 & 1_{M/2} \\ -1_{M/2} & 0 \end{pmatrix}, \tag{6}
\]

and the supertranspose, \(st\), is defined as

\[
\begin{pmatrix} B & F \\ F' & B' \end{pmatrix}^{st} \equiv \begin{pmatrix} B^t & F'^t \\ -F^t & B'^t \end{pmatrix}. \tag{7}
\]

Here, \(t\) stands for the ordinary transpose, and \(B\) and \(B'\) signify bosonic components while \(F\) and \(F'\) fermionic components. \(\Sigma_{AB}\) can be expressed by a linear combination of

\[
\Sigma_{\alpha\beta} = \begin{pmatrix} \sigma_{\alpha\beta} & 0 \\ 0 & 0 \end{pmatrix}, \quad \Sigma_{lm} = \begin{pmatrix} 0 & 0 \\ 0 & \sigma_{lm} \end{pmatrix}, \quad \Sigma_{l\alpha} = \begin{pmatrix} 0 & \sigma_{l\alpha} \\ -(J\sigma_{l\alpha})^t & 0 \end{pmatrix}, \tag{8}
\]

where \(\alpha, \beta\) are the indices of \(Sp(M)\) (\(\alpha, \beta = 1, 2, \cdots, M\)) and \(l, m\) those of \(O(N)\) (\(l, m = 1, 2, \cdots, N\)). \(\sigma_{l\alpha}\) denote arbitrary \(M \times N\) matrices, while \(\sigma_{\alpha\beta}\) and \(\sigma_{lm}\) signify \(M \times M\) and \(N \times N\) matrices that respectively satisfy

\[
\sigma_{lm}^t + \sigma_{lm} = 0, \tag{9a}
\]

\[
\sigma_{\alpha\beta}^t J + J\sigma_{\alpha\beta} = 0. \tag{9b}
\]
The $OSp(N|M)$ algebra contains the maximal bosonic subalgebra, $sp(M) \oplus o(N)$, whose generators are $\Sigma_{\alpha\beta}$ and Σ_{lm}. The off-diagonal block matrices Σ_{la} are called fermionic generators that transform as fundamental representation under each of $Sp(M)$ and $O(N)$. Then, the $so(N)$ matrix σ_{lm} is an antisymmetric real matrix with real degrees of freedom $N(N - 1)/2$. The indices of σ_{lm} can be taken to be antisymmetric, $\sigma_{lm} = -\sigma_{ml}$. Meanwhile, from the relation, $\sigma_{\alpha\beta}$ takes the form of

$$\sigma_{\alpha\beta} = \begin{pmatrix} k & s \\ s' & -k^t \end{pmatrix},$$

where k stands for a $M/2 \times M/2$ complex matrix, and s and s' are $M/2 \times M/2$ symmetric complex matrices. If the hermiticity condition is further imposed, $\sigma_{\alpha\beta}$ are reduced to the generators of $USp(M)$ and take the form of

$$\sigma_{\alpha\beta} = \begin{pmatrix} h & s \\ s^\dagger & -h^* \end{pmatrix},$$

where h represents hermitian matrix and s symmetric complex matrix. The real independent degrees of freedom of $\sigma_{\alpha\beta}$ is $M(M + 1)/2$. Then, for $usp(M)$, the indices can be taken to be symmetric, $\sigma_{\alpha\beta} = \sigma_{\beta\alpha}$. Meanwhile, the real degrees of freedom of the fermionic generators Σ_{la} is MN. Consequently, the real degrees of freedom of $uosp(N|M)$ are given by

$$\dim[uosp(N|M)] = \frac{1}{2}(M^2 + N^2 + M - N)|MN = \frac{1}{2}((M + N)^2 + M - N).$$

There are isometries between the unitary-symplectic and orthogonal algebras only for

$$usp(2) \simeq so(3), \quad usp(4) \simeq so(5).$$

Taking advantage of such isomorphism, we construct fuzzy two- and four-superspheres based on $uosp(N|2)$ and $uosp(N|4)$.

3 Graded 1st Hopf maps and fuzzy two-superspheres

Here, we review relations between fuzzy two-sphere and 1st Hopf map, and their supersymmetric version. We also explore a construction of $N = 2$ fuzzy supersphere with use of typical representation of $UOSp(2|2)$ algebra.

3.1 The 1st Hopf map and fuzzy two-sphere

To begin with, we introduce relations between fuzzy two-sphere and 1st Hopf map

$$S^3 \xrightarrow{S^1} S^2.$$

With a normalized complex two-component spinor $\phi = (\phi_1, \phi_2)^t$ subject to $\phi^\dagger \phi = 1$, the 1st Hopf map is realized as

$$\phi \to x_i = \phi^\dagger \sigma_i \phi,$$
where \(\sigma_i \) \((i = 1, 2, 3)\) are the Pauli matrices,

\[
\begin{align*}
\sigma_1 &= \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \\
\sigma_2 &= \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \\
\sigma_3 &= \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.
\end{align*}
\]

(16)

\(\phi \) is regarded as coordinates on \(S^3 \) from the normalization condition, and \(x_i \) denote coordinates of \(S^2 \):

\[
x_i x_i = (\phi^\dagger \phi)^2 = 1.
\]

(17)

Coordinates of fuzzy two-sphere \(S^2_F \) are constructed as

\[
X_i = \Phi^\dagger \sigma_i \Phi,
\]

(18)

where \(\Phi = (\Phi_1, \Phi_2)^t \) stands for two-component Schwinger operator that satisfies \([\Phi_\alpha, \Phi_\beta^\dagger] = \delta_{\alpha\beta}\) and \([\Phi_\alpha, \Phi_\beta] = 0 \) \((\alpha, \beta = 1, 2)\). Usually, in front of the right-hand side of (18), the non-commutative parameter of dimension of length is added, however for notational brevity, we omit it throughout the paper. \(X_i \) satisfy

\[
[X_i, X_j] = 2i\epsilon_{ij}^k X_k,
\]

(19)

and square of the radius of fuzzy two-sphere is given by

\[
X_i X_i = (\Phi^\dagger \Phi)(\Phi^\dagger \Phi + 2) = \hat{n}(\hat{n} + 2).
\]

(20)

Here, \(\hat{n} \) is the number operator \(\hat{n} = \Phi^\dagger \Phi \) and its eigenvalues are non-negative integers that specify fully symmetric representation. The fully symmetric representation is simply obtained by acting the components of the Schwinger operator to the vacuum:

\[
|l_1, l_2\rangle = \frac{1}{\sqrt{l_1! l_2!}} \Phi_1^{\dagger l_1} \Phi_2^{\dagger l_2} |0\rangle,
\]

(21)

where \(l_1 \) and \(l_2 \) are non-negative integers satisfying \(l_1 + l_2 = n \). Physically, \(|l_1, l_2\rangle \) represent a finite number of states on fuzzy two-sphere, and their 3rd-components are

\[
X_3 = l_1 - l_2 = n - 2k,
\]

(22)

where \(k = l_2 = 0, 1, 2, \ldots, n \). The dimension of (21) is

\[
d(n) = n + 1.
\]

(23)

The Hopf map (15) is regarded as a classical counterpart of the Schwinger construction of fuzzy sphere (18) with the replacement

\[
\Phi_\alpha \to \phi_\alpha, \quad \Phi_\alpha^\dagger \to \phi_\alpha^*,
\]

(24)

and (20) is reduced to (17) except for the “zero-point energy”, stemming from the non-commutativity of two bosonic components of the Schwinger operator.
3.2 $N = 1$ fuzzy two-supersphere

Here, we extend the above discussions to the graded 1st Hopf map \[35, 36\] and $N = 1$ fuzzy two-supersphere \[5, 6\] along Refs. \[34, 37\].

3.2.1 $UOSp(1|2)$ algebra

The $UOSp(1|2)$ algebra contains the $SU(2)$ algebra as its maximal bosonic subalgebra, and consists of five generators three of which are bosonic L_i ($i = 1, 2, 3$) and two of which are fermionic L_α ($\alpha = \theta_1, \theta_2$). They satisfy

$$[L_i, L_j] = i\epsilon_{ijk}L_k, \quad [L_i, L_\alpha] = \frac{1}{2}(\sigma_i)_\beta^\alpha L_\beta, \quad \{L_\alpha, L_\beta\} = \frac{1}{2}(\epsilon\sigma_i)_{\alpha\beta}L_i, \quad (25)$$

where $\epsilon = i\sigma_2$ is the $SU(2)$ charge conjugation matrix. One may find that L_i transform as an $SU(2)$ vector, while L_α an $SU(2)$ spinor. The $UOSp(1|2)$ Casimir is constructed as

$$C = L_iL_i + \epsilon_{\alpha\beta}L_\alpha L_\beta, \quad (26)$$

and its eigenvalues are given by $j(j + 1)$ with j referred to as superspin that takes non-negative integers and half-integers, $j = 0, 1, 2, 1/2, \ldots$. The $UOSp(1|2)$ irreducible representation specified by the superspin index j consists of $SU(2)$ j and $j - 1/2$ spin representations and hence the dimension of the $UOSp(1|2)$ representation with superspin $j = n/2$ is

$$d(n) + d(n - 1) = 2n + 1, \quad (27)$$

where $d(n)$ is the dimension of the $SU(2)$ spin $n/2$ \[23\]. For $UOSp(1|M)$, there exists a “square root” of the Casimir, the Scasimir \[54, 38\]. In the present, Scasimir is given by

$$S = \frac{1}{4}(1 - 8\epsilon_{\alpha\beta}L_\alpha L_\beta), \quad (28)$$

which satisfies

$$S^2 = C + \frac{1}{16}. \quad (29)$$

Then, the eigenvalues of Scasimir are $\pm j(j + 1/4)$. Interestingly, the Scasimir is commutative with the bosonic generators and anticommutative with the fermionic ones,

$$[L_i, S] = \{L_\alpha, S\} = 0. \quad (30)$$

3.2.2 $N = 1$ graded 1st Hopf map

The graded 1st Hopf map is given by

$$S^{3|2} \xrightarrow{S^1} S^{2|2}, \quad (31)$$

where left index to the slash indicates the number of bosonic coordinates, while the right index fermionic coordinates. The bosonic part of \[31\] is exactly equivalent to the 1st Hopf map. The coordinates on the total manifold $S^{3|2}$ is represented by a normalized three-component superspinor
\(\psi = (\psi_1, \psi_2, \eta)^t \) whose first two components are Grassmann even and the third component is Grassmann odd. A normalization condition is imposed as

\[
\psi^\dagger \psi = \psi_1^\dagger \psi_1 + \psi_2^\dagger \psi_2 - \eta^* \eta = 1,
\]

(32)

where \(\psi^\dagger = (\psi_1^*, \psi_2^*, -\eta^*) \) and \(* \) represents the pseudo-conjugation. The graded 1st Hopf map is realized as \(\psi \to x_i = 2\psi^\dagger L_i \psi, \quad \theta_\alpha = 2\psi^\dagger L_\alpha \psi, \)

(33)

where \(L_i \) and \(L_\alpha \) are the fundamental representation matrices of \(uosp(1|2) \)

\[
L_i = \frac{1}{2} \begin{pmatrix} \sigma_i & 0 \\ 0 & 0 \end{pmatrix}, \quad L_\alpha = \frac{1}{2} \begin{pmatrix} 0_2 & \tau_\alpha \\ -\tau_\alpha^t & 0 \end{pmatrix},
\]

(34)

with \(\epsilon = i\sigma_2, \tau_1 = (1, 0)^t \) and \(\tau_2 = (0, 1)^t \). One may regard (34) as a supersymmetric extension of the Pauli matrices. They are “hermitian” in the sense

\[
L_i^\dagger = L_i, \quad L_\alpha^\dagger = \epsilon_{\alpha\beta} L_\beta,
\]

(35)

where \(\dagger \) is the super-adjoint defined by

\[
\begin{pmatrix} A & B \\ C & D \end{pmatrix}^\dagger = \begin{pmatrix} A^\dagger & C^\dagger \\ -B^\dagger & D^\dagger \end{pmatrix}.
\]

(36)

From (33), we see that \(x_i \) and \(\theta_\alpha \) are coordinates on \(S^{2|2} \):

\[
x_i x_i + \epsilon_{\alpha\beta} \theta_\alpha \theta_\beta = (\psi^\dagger \psi)^2 = 1,
\]

(37)

and from (35),

\[
x_i^* = x_i, \quad \theta_\alpha^* = \epsilon_{\alpha\beta} \theta_\beta.
\]

(38)

Notice that \(x_i \) are Grassmann even but not usual c-number, since the square of \(x_i \) is not c-number as observed in (37). Instead, we can introduce c-number \(y_i \) as

\[
y_i = \frac{1}{\sqrt{1 - \epsilon_{\alpha\beta} \theta_\alpha \theta_\beta}} x_i,
\]

(39)

which satisfy \(y_i y_i = 1 \) and denote coordinates on \(S^2 \), the body of \(S^{2|2} \). The original normalized \(SU(2) \) spinor is “embedded” in \(\psi \) as

\[
\begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix} = \frac{2}{2 + \eta^* \eta} \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}.
\]

(40)

With \(y_i, \phi \) can be written as

\[
\begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix} = \frac{1}{\sqrt{2(1 + y_3)}} \begin{pmatrix} 1 + y_3 \\ y_1 + iy_2 \end{pmatrix} e^{ix},
\]

(41)

\(\text{The pseudo-conjugation is imposed as } (\eta^*)^* = -\eta \text{ and } (\eta_1 \eta_2)^* = \eta_1^* \eta_2^* \text{ for Grassmann odd quantities. See Ref.\[35\] for instance.} \)
where $e^{i\chi}$ denotes arbitrary $U(1)$ phase. Represent the Grassmann odd component η as
\begin{equation}
\eta = \phi_1 \mu + \phi_2 \nu, \tag{42}
\end{equation}
where μ and ν are real and imaginary components of η, which satisfy
\begin{equation}
\mu^* = \nu, \quad \nu^* = -\mu. \tag{43}
\end{equation}
Therefore,
\begin{equation}
\eta^* \eta = -\mu \nu. \tag{44}
\end{equation}
The map (33) immediately determines the relations between θ_1, θ_2 and μ, ν:
\begin{equation}
\mu = \theta_1, \quad \nu = \theta_2. \tag{45}
\end{equation}
Consequently, ψ can be expressed as
\begin{equation}
\psi = \frac{1}{\sqrt{1-\eta^* \eta}} \begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix} = \frac{1}{\sqrt{1+\theta_1 \theta_2}} \begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix} \begin{pmatrix} \phi_1 \theta_1 + \phi_2 \theta_2 \\ 1 + y_3 \end{pmatrix} e^{i\chi}. \tag{46}
\end{equation}
The last expression on the right-hand side manifests the $N = 1$ graded Hopf fibration, $S^{3/2} \sim S^2 \otimes S^1$: the $S^1(\cong U(1))$-fibre, $e^{i\chi}$, is canceled in the graded Hopf map (33), and the remaining quantities, y_i and θ_α, correspond to the coordinates on $S^{3/2}$.

3.2.3 $N = 1$ fuzzy two-supersphere

Coordinates on fuzzy supersphere are constructed by the graded version of the Schwinger construction\footnote{In \cite{33} we adopted the ordinary definition of the Hermitian conjugate \dagger, so $\Theta^\dagger_\alpha \neq \epsilon_{\alpha \beta} \Theta_\beta$ unlike $\theta^*_{\alpha} = \epsilon_{\alpha \beta} \theta_\beta$.}:
\begin{equation}
X_i = 2 \Psi \dagger L_i \Psi, \quad \Theta_\alpha = 2 \Psi \dagger L_\alpha \Psi, \tag{47}
\end{equation}
where Ψ stands for a graded Schwinger operator
\begin{equation}
\Psi = (\Psi_1, \Psi_2, \Psi)^\dagger, \tag{48}
\end{equation}
with bosonic operators Ψ_1 and Ψ_2 and fermionic one Ψ satisfying
\begin{align}
[\Psi_\alpha, \Psi_\beta^\dagger] &= \delta_{\alpha \beta}, \quad \{ \Psi, \Psi^\dagger \} = 1, \quad [\Psi_\alpha, \Psi^\dagger] = 0, \\
[\Psi_\alpha, \Psi_\beta] &= \{ \Psi, \Psi \} = [\Psi_\alpha, \Psi] = 0. \tag{49}
\end{align}
It is straightforward to see that (47) satisfy the algebra
\begin{align}
[X_i, X_j] &= 2i \epsilon_{ijk} X_k, \quad [X_i, \Theta_\alpha] = (\sigma_i)_\beta \Theta_\beta, \quad \{ \Theta_\alpha, \Theta_\beta \} = (\epsilon \sigma_i)_\alpha \beta X_i. \tag{50}
\end{align}
Square of the radius of fuzzy supersphere is given by the $UOSp(1|2)$ Casimir

$$X_iX_i + \epsilon_{\alpha\beta} \Theta_\alpha \Theta_\beta = (\Psi^{\dagger}\Psi)(\Psi^{\dagger}\Psi + 1), \quad (51)$$

where we used

$$X_iX_i = \hat{n}_B(\hat{n}_B + 2), \quad \epsilon_{\alpha\beta} \Theta_\alpha \Theta_\beta = -\hat{n}_B + 2\hat{n}_B\hat{n}_F + 2\hat{n}_F, \quad (52)$$

with $\hat{n}_B = \Psi^{\dagger}_1\Psi_1 + \Psi^{\dagger}_2\Psi_2$, $\hat{n}_F = \tilde{\Psi}^{\dagger}\tilde{\Psi}$, and $\hat{n}_F^2 = \hat{n}_F$. Notice the zero-point energy in (51) reflects the difference between the bosonic and fermionic degrees of freedom of the Schwinger operator. The Casimir is expressed as

$$S = \left(\frac{1}{2} - \hat{n}_F\right)(\hat{n} + \frac{1}{2}). \quad (53)$$

From (51) and (53), one may readily show (29).

Graded fully symmetric representation specified by the superspin $j = n/2$ is given by

$$|l_1, l_2\rangle = \frac{1}{\sqrt{l_1! l_2!}}\Psi^{\dagger l_1}_1\Psi^{\dagger l_2}_2|0\rangle, \quad (54a)$$

$$|m_1, m_2\rangle = \frac{1}{\sqrt{m_1! m_2!}}\Psi^{\dagger m_1}_1\tilde{\Psi}^{\dagger m_2}_2\tilde{\Psi}^{\dagger}|0\rangle, \quad (54b)$$

where $l_1 + l_2 = m_1 + m_2 + 1 = n$ with non-negative integers, l_1, l_2, m_1 and m_2. $|m_1, m_2\rangle$ are the fermionic counterpart of $|l_1, l_2\rangle$, and thus they exhibit $N=1$ SUSY. The bosonic and fermionic states are classified by the sign of Casimir (53). Casimir takes the values

$$S = \pm \frac{1}{4}(2n + 1), \quad (55)$$

with $+$ and $-$ for the bosonic (54a) and fermionic (54b) states, respectively. The degrees of freedom of bosonic and fermionic states are respectively

$$d_B = d(n) = n + 1, \quad d_F = d(n - 1) = n, \quad (56)$$

and then the total degrees of freedom is

$$d_T = d_B + d_F = 2n + 1. \quad (57)$$

X_3-coordinates of these states are

$$X_3 = n - k, \quad (58)$$

where $k = 0, 1, 2, \cdots, 2n$. For even k, the eigenvalues of X_3 correspond to the bosonic states (54a), while for odd k, the fermionic states (54b). Compare the X_3 eigenvalues of fuzzy supersphere and those of the fuzzy (bosonic) sphere (22): the degrees of freedom of fuzzy supersphere for

5 In this paper, the bosonic and fermionic states refer to states with even and odd number of fermion operators, respectively. They are eigenstates of the fermion parity $(-1)^{n_F}$ with the eigenvalues $+1$ and -1.

10
even k are accounted for by those of fuzzy sphere with radius n, while those for odd k are by fuzzy sphere with radius $n - 1$. Thus, the bosonic and fermionic degrees of freedom are same as of the fuzzy spheres with radius n and radius $n - 1$, respectively. Consequently, the fuzzy two-supersphere of radius n is intuitively understood as a “superposition” of two fuzzy spheres whose radii are n and $n - 1$. Schematically,

$$S_F^{2|2}(n) \simeq S_F^2(n) \oplus S_F^2(n-1).$$ \tag{59}$$

It is noted that though we only utilized the $UOSP(1|2)$ algebra, fuzzy two-supersphere itself is invariant under the larger $SU(2|1)$ symmetry: indeed, the right-hand side of (51) is invariant under the $SU(2|1)$ rotation of the Schwinger operator Ψ. In this sense, the symmetry of fuzzy two-supersphere is $SU(2|1)$ rather than $UOSP(1|2)$. Also notice that the graded fully symmetric representation (54) is regarded as a (atypical) representation of $SU(2|1)$.

3.3 $N = 2$ fuzzy two-supersphere

We utilized the $UOSP(1|2)$ algebra to construct $N = 1$ fuzzy supersphere $S_F^{2|2}$. Here, we apply $UOSP(2|2)$ algebra to construct $N = 2$ fuzzy supersphere $S_F^{2|4}$.

3.3.1 $UOSP(2|2)$ algebra

$UOSP(2|2)$ algebra contains $usp(2) \simeq su(2)$ and $o(2) \simeq u(1)$ as its bosonic algebras, and the fermionic generators transform as a $SU(2)$ spinor and carry $U(1)$ charge as well. Thus, $uosp(2|2)$ is isomorphic to $su(2|1)$, and its dimension is

$$\text{dim}[uosp(2|2)] = \text{dim}[su(2|1)] = 4|4 = 8. \tag{60}$$

We denote the four bosonic generators as L_i ($i = 1, 2, 3$) and Γ, and the four fermionic generators as L_α and L'_α ($\alpha = \theta_1, \theta_2$). The $UOSP(2|2)$ algebra is given by

$$[L_i, L_j] = i\epsilon_{ijk}L_k, \quad [L_i, L_\alpha] = \frac{1}{2}(\sigma_i)_{\beta\alpha}L_\beta\sigma, \quad [L_\alpha, L_\beta] = \frac{1}{2}\delta_{\sigma\tau}(\epsilon_{\sigma\alpha})_{\beta\gamma}L_i + \frac{1}{2}\epsilon_{\sigma\tau}\epsilon_{\alpha\beta}\Gamma, \quad [\Gamma, L_i] = 0, \quad [\Gamma, L_\alpha] = \frac{1}{2}\epsilon_{\sigma\tau}L_{\alpha\tau},$$ \tag{61}$$

where $L_{\alpha\sigma} = (L_\alpha, L'_\alpha)$ \footnote{The algebra (61) coincides with the $UOSP(2|2)$ algebra usually found in literature by the following redefinitions, $L_i \rightarrow L_i, \quad L_\alpha \rightarrow L_\alpha, \quad L'_\alpha \rightarrow iD_\alpha, \quad \Gamma \rightarrow -i\Gamma.$} L_i and L_α form the $UOSP(1|2)$ subalgebra. There are two sets of fermionic generators, L_α and L'_α, which bring $N = 2$ SUSY. The fundamental representation is 3 dimensional representation, as expected from $uosp(2|2) \simeq su(2|1)$. The $UOSP(2|2)$ algebra has two Casimirs, quadratic and cubic \footnote{The algebra (61) coincides with the $UOSP(2|2)$ algebra usually found in literature by the following redefinitions, $L_i \rightarrow L_i, \quad L_\alpha \rightarrow L_\alpha, \quad L'_\alpha \rightarrow iD_\alpha, \quad \Gamma \rightarrow -i\Gamma.$} 53. The quadratic Casimir is given by

$$C = L_iL_i + \epsilon_{\alpha\beta}L_\alpha L_\beta + \epsilon_{\alpha\beta}L'_\alpha L'_\beta + \Gamma^2.$$ \tag{63}$$
The irreducible representation is classified into two categories; typical representation and atypical representation (see Appendix A.1.1 for details). Since the Casimir eigenvalues of (63) are identically zero for atypical representation, we utilize typical representation to construct $N = 2$ fuzzy two-superspheres. The minimal dimension matrices of typical representation are the following 4×4 matrices:

$$L_i = \frac{1}{2} \begin{pmatrix} \sigma_i & 0 \\ 0 & 2 \end{pmatrix}, \quad L_\alpha = \frac{1}{2} \begin{pmatrix} 0 & \tau_\alpha \\ -\epsilon \tau_\alpha^t & 0 \end{pmatrix}, \quad L'_\alpha = \frac{1}{2} \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \quad \Gamma = \frac{1}{2} \begin{pmatrix} 0_2 & 0_2 \\ 0_2 & \epsilon \end{pmatrix}.$$

(64)

(These are equivalent to those given in Ref. [55].)

3.3.2 $N = 2$ fuzzy two-supersphere

Applying the Schwinger construction to (64), we introduce $N = 2$ fuzzy supersphere coordinates as

$$X_i = 2\Psi^\dagger L_i \Psi, \quad \Theta_\alpha = 2\Psi^\dagger L_\alpha \Psi, \quad \Theta'_\alpha = 2\Psi^\dagger L'_\alpha \Psi, \quad G = 2\Psi^\dagger \Gamma \Psi,$$

where Ψ denotes the four-component Schwinger operator

$$\Psi = (\Psi_1, \Psi_2, \tilde{\Psi}_1, \tilde{\Psi}_2)^t.$$

(65)

Here, we used

$$X_i X_i + \epsilon_{\alpha \beta} \Theta_\alpha \Theta_\beta + \epsilon_{\alpha \beta} \Theta'_\alpha \Theta'_\beta + G^2 = (\Psi^\dagger \Psi)^2.$$

(66)

(67)

Square of the radius of $N = 2$ fuzzy two-supersphere is evaluated as

$$X_i X_i + \epsilon_{\alpha \beta} \Theta_\alpha \Theta_\beta + \epsilon_{\alpha \beta} \Theta'_\alpha \Theta'_\beta + G^2 = (\Psi^\dagger \Psi)^2.$$

(68)

$$X_i X_i = \hat{n}_B (\hat{n}_B + 2),$$

$$\hat{n}_B = \sum_{\alpha=1}^2 \Psi_\alpha^\dagger \Psi_\alpha, \quad \hat{n}_F = \sum_{\sigma=1}^2 \tilde{\Psi}_\sigma^\dagger \tilde{\Psi}_\sigma.$$

(69)

where $\hat{n}_B = \sum_{\alpha=1}^2 \Psi_\alpha^\dagger \Psi_\alpha, \quad \hat{n}_F = \sum_{\sigma=1}^2 \tilde{\Psi}_\sigma^\dagger \tilde{\Psi}_\sigma$. For $\Psi^\dagger \Psi = n$, the graded fully symmetric representation is derived as

$$|l_1, l_2\rangle = \frac{1}{\sqrt{l_1! \ l_2!}} \Psi_1^{l_1} \Psi_2^{l_2} |0\rangle,$$

$$|m_1, m_2\rangle = \frac{1}{\sqrt{m_1! \ m_2!}} \Psi_1^{m_1} \Psi_2^{m_2} \tilde{\Psi}_1^{\dagger} |0\rangle,$$

$$|m'_1, m'_2\rangle = \frac{1}{\sqrt{m'_1! \ m'_2!}} \Psi_1^{m'_1} \Psi_2^{m'_2} \tilde{\Psi}_2^{\dagger} |0\rangle,$$

$$|n_1, n_2\rangle = \frac{1}{\sqrt{n_1! \ n_2!}} \Psi_1^{n_1} \Psi_2^{n_2} \tilde{\Psi}_1^{\dagger} \tilde{\Psi}_2^{\dagger} |0\rangle.$$

(70a)

(70b)

(70c)

(70d)
where \(l_1 + l_2 = m_1 + m_2 + 1 = m'_1 + m'_2 + 1 = n_1 + n_2 + 2 = n \) with non-negative integers, \(l_1, l_2, m_1, m_2, m'_1, m'_2, n_1, n_2 \). We have two sets of bosonic states, \(| l_1, l_2 \rangle \) and \(| n_1, n_2 \rangle \), and two sets of fermionic states, \(| m_1, m_2 \rangle \) and \(| m'_1, m'_2 \rangle \) as well. The degrees of freedom of bosonic and fermionic states are equally given by

\[
d_B = d(n) + d(n - 2) = 2n, \\
d_F = 2 \times d(n - 1) = 2n,
\]

with \(d(n) = n + 1 \), and the total is

\[
d_T = d_B + d_F = 4n. \tag{72}
\]

Square of the radius of \(N = 2 \) fuzzy two-supersphere \((68)\) does not have the zero-point energy since the bosonic and fermionic degrees of freedom are equal. The first two sets, \((70a)\) and \((70b)\), are \(UOSp(1|2) \) \(j = n/2 \) irreducible representation, and the other two, \((70c)\) and \((70d)\), are \(UOSp(1|2) \) \(j = n/2 - 1/2 \) irreducible representation. In this sense, the \(N = 2 \) fuzzy two-supersphere with radius \(n \) is regarded as a “superposition” of two \(N = 1 \) fuzzy superspheres whose radii are \(n \) and \(n - 1 \). Remember that \(N = 1 \) fuzzy two-supersphere can also be regarded as a superposition of two bosonic fuzzy spheres. Consequently, \(N = 2 \) fuzzy sphere is realized as a superposition of four fuzzy spheres whose radii are \(n \), \(n - 1 \), \(n - 1 \) and \(n - 2 \). Schematically,

\[
S_{2F}^{2|1}(n) \simeq S_{2F}^{2|1}(n) \oplus S_{2F}^{2|2}(n - 1) \\
\simeq S_{F}^{2}(n) \oplus S_{F}^{2}(n - 1) \oplus S_{F}^{2}(n - 1) \oplus S_{F}^{2}(n - 2). \tag{73}
\]

Notice that such particular feature is a consequence of the adoption of graded fully symmetric representation. The corresponding latitudes of the states \((70)\) are given by

\[
X_3 = n - k \tag{74}
\]

with \(k = 0, 1, 2, \ldots, 2n \). The even \(k \) correspond to the bosonic states, \((70a)\) and \((70b)\), while odd \(k \) the fermionic states, \((70c)\) and \((70d)\). Except for non-degenerate states at the north and south poles \(X_3 = \pm n \), the eigenvalues of \(X_3 \) \((74)\) are doubly-degenerate.

Since the right-hand side of \((68)\) is invariant under the \(SU(2|2) \) rotation of \(\Psi \), the symmetry of \(N = 2 \) fuzzy two-supersphere is considered as \(SU(2|2) \) rather than \(UOSp(2|2) \).

3.3.3 \(N = 2 \) graded 1st Hopf map

Based on the Schwinger construction of \(N = 2 \) fuzzy two-supersphere, we introduce \(N = 2 \) version of the graded 1st Hopf map. With \((69)\), we define

\[
x_i = 2 \psi^\dagger L_i \psi, \quad \theta_\alpha = 2 \psi^\dagger L_\alpha \psi, \quad \theta'_\alpha = 2 \psi^\dagger L'_\alpha \psi, \quad g = \psi^\dagger \Gamma \psi. \tag{75}
\]

Here, \(\psi \) denotes a four-component spinor \(\psi = (\psi_1, \psi_2, \eta_1, \eta_2)^t \) normalized as

\[
\psi^\dagger \psi = \psi_1^* \psi_1 + \psi_2^* \psi_2 - \eta_1^* \eta_1 - \eta_2^* \eta_2 = 1. \tag{76}
\]
and then is regarded as coordinates on S^{34}. The coordinates (75) satisfy the relation
\begin{equation}
 x_i x_i + \epsilon_{\alpha \beta} \theta_\alpha \theta_\beta + \epsilon_{\alpha \beta} \theta'_\alpha \theta'_\beta + g^2 = (\psi^\dagger \psi)^2 = 1.
\end{equation}
Notice all of the quantities (75) are not independent7. This can typically be seen from $\theta_1 \theta_2 \theta'_1 \theta'_2 g = 0$. (If θ_α, θ'_α and g were independent, their product would not be zero.) Rewrite ψ as
\begin{equation}
 \psi = \begin{pmatrix} \psi_1 \\ \psi_2 \\ \eta_1 \\ \eta_2 \end{pmatrix} = \sqrt{1 + \eta_1^* \eta_1 + \eta_2^* \eta_2} \begin{pmatrix} \phi_1 \\ \phi_2 \\ \sqrt{1 - \eta_2^* \eta_2} \eta_1 \\ \sqrt{1 - \eta_1^* \eta_1 \eta_2} \eta_2 \end{pmatrix},
\end{equation}
where $(\phi_1, \phi_2)^T$ denotes the normalized $SU(2)$ spinor (411). Also, we express η_1 and η_2 as
\begin{equation}
 \eta_1 = \phi_1 \mu_1 + \phi_2 \nu_1, \\
 \eta_2 = \phi_1 \mu_2 + \phi_2 \nu_2,
\end{equation}
where μ_1 and μ_2 represent the real parts of the Grassmann odd quantities, and ν_1 and ν_2 represent the imaginary parts. The map (75) determines the relations between $\mu_{1,2}$, $\nu_{1,2}$ and $\theta_{1,2}$, $\theta'_{1,2}$ as
\begin{align}
 \theta_1 &= \sqrt{1 + \eta_1^* \eta_1 + \eta_2^* \eta_2} \mu_1, \\
 \theta_2 &= \sqrt{1 + \eta_1^* \eta_1 + \eta_2^* \eta_2} \nu_1, \\
 \theta'_1 &= \sqrt{1 + \eta_1^* \eta_1 + \eta_2^* \eta_2} \mu_2, \\
 \theta'_2 &= \sqrt{1 + \eta_1^* \eta_1 + \eta_2^* \eta_2} \nu_2.
\end{align}
Then,
\begin{equation}
 \theta_1 \theta_2 + \theta'_1 \theta'_2 = -(1 + \eta_1^* \eta_1 + \eta_2^* \eta_2)(\eta_1^* \eta_1 + \eta_2^* \eta_2) = -\frac{\eta_1^* \eta_1 + \eta_2^* \eta_2}{1 - \eta_1^* \eta_1 - \eta_2^* \eta_2},
\end{equation}
or inversely,
\begin{equation}
 \eta_1^* \eta_1 + \eta_2^* \eta_2 = -\frac{\theta_1 \theta_2 + \theta'_1 \theta'_2}{1 - \theta_1 \theta_2 - \theta'_1 \theta'_2} = -\theta_1 \theta_2 - \theta'_1 \theta'_2 - 2 \theta_1 \theta_2 \theta'_1 \theta'_2.
\end{equation}
Therefore, from (80) and (82), μ_1, ν_1, μ_2 and ν_2 are represented as
\begin{align}
 \mu_1 &= \frac{1}{\sqrt{1 - \theta'_1 \theta'_2}} \theta_1, \\
 \nu_1 &= \frac{1}{\sqrt{1 - \theta'_1 \theta'_2}} \theta_2, \\
 \mu_2 &= \frac{1}{\sqrt{1 - \theta_1 \theta_2}} \theta'_1, \\
 \nu_2 &= \frac{1}{\sqrt{1 - \theta_1 \theta_2}} \theta'_2.
\end{align}
Consequently, ψ is given by
\begin{equation}
 \psi = \frac{1}{\sqrt{2(1 + y_3)(1 + \theta_1 \theta_2 + \theta'_1 \theta'_2 + 4 \theta_1 \theta_2 \theta'_1 \theta'_2)}} \begin{pmatrix} 1 + y_3 \\ y_1 + iy_2 \\ (1 + \theta_1 \theta_2)(\theta_1(1 + y_3) + \theta_2(y_1 + iy_2)) \\ (1 + \theta_1 \theta_2)(\theta'_1(1 + y_3) + \theta'_2(y_1 + iy_2)) \end{pmatrix} e^{ix},
\end{equation}
7 This situation is similar to Schwinger construction of fuzzy complex projective space. The coordinates on fuzzy CP^{N-1} are represented by the $SU(N)$ generators sandwiched by Schwinger operators. Though the real dimension of CP^{N-1} is $2N - 2$, the dimension of $SU(N)$ generator is $N^2 - 1$. This “discrepancy” is resolved by noticing all of the $SU(N)$ generators in the Schwinger construction are not independent and satisfy a set of constraints. See [56] for more details.
where e^{ix} denotes arbitrary $U(1)$ phase factor. x_i and y_i are related as

$$y_i = \frac{1}{1 + \eta_1^* \eta_1 + \eta_2^* \eta_2} x_i = \frac{1}{1 - \theta_1 \theta_2 - \theta_1' \theta_2' - 2 \theta_1 \theta_2 \theta_1' \theta_2'} x_i.$$ \hspace{1cm} (85)

Thus, ψ can be expressed by x_i, θ_α, θ'_α, the coordinates on $S^{2|4}$, and arbitrary $U(1)$ phase factor. Obviously, the $U(1)$ phase is canceled in (75). Then, the bilinear map (75) represents

$$S^{3|4} \xrightarrow{S^1} S^{2|4},$$ \hspace{1cm} (86)

which we call the $N = 2$ graded 1st Hopf map. We have four bosonic and four fermionic coordinates in (75), but $g = -\eta_1^* \eta_2 + \eta_2^* \eta_1$ is a redundant coordinate. Indeed, with (84), g is expressed by y_i, θ_α and θ'_α as

$$g = y_1 (\theta_1 \theta_1' - \theta_2 \theta_2') - iy_2 (\theta_1 \theta_1' + \theta_2 \theta_2') - y_3 (\theta_1 \theta_2' + \theta_2 \theta_1').$$ \hspace{1cm} (87)

It can also be shown that the following “renormalization”,

$$x_i \rightarrow \sqrt{1 - g^2} x_i = (1 - \frac{1}{2} g^2) x_i, \quad \theta_\alpha \rightarrow \sqrt{1 - g^2} \theta_\alpha = \theta_\alpha,$$

$$\theta'_\alpha \rightarrow \sqrt{1 - g^2} \theta'_\alpha = \theta'_\alpha,$$ \hspace{1cm} (88)

eliminates g: the renormalized coordinates satisfy the ordinary condition of $S^{2|4}$,

$$x_i x_i + \epsilon_{\alpha \beta} \theta_\alpha \theta_\beta + \epsilon_{\alpha \beta} \theta'_\alpha \theta'_\beta = 1.$$ \hspace{1cm} (89)

One might attempt to introduce more supersymmetry. In principle, it is probable to do so by utilizing $UOSp(N|2)$ algebras for $N \geq 3$. However, the radius of the $N = 2$ fuzzy two-supersphere (68) already saturates the “classical bound” (77). In general, square of the radius of fuzzy supersphere with N-SUSY is proportional to $n(n + 2 - N)$ and becomes negative for “sufficiently small” n that satisfies $n < N - 2$. Hence we stop at $N = 2$.

4 Graded 2nd Hopf maps and fuzzy four-superspheres

In this section, we extend the previous formulation to fuzzy four-supersphere.

4.1 The 2nd Hopf map and fuzzy four-sphere

The 2nd Hopf map

$$S^7 \xrightarrow{S^3} S^4$$ \hspace{1cm} (90)

is represented as

$$\phi \rightarrow x_a = \phi^\dagger \gamma_a \phi,$$ \hspace{1cm} (91)

where $\phi = (\phi_1, \phi_2, \phi_3, \phi_4)^t$ is a normalized four-component complex spinor $\phi^\dagger \phi = 1$, representing coordinates on S^7. γ_a ($a = 1, 2, 3, 4, 5$) are $SO(5)$ gamma matrices that satisfy $\{\gamma_a, \gamma_b\} = 2 \delta_{ab}$.
with Kronecker delta δ_{ab}. γ_a can be taken as

$$
\gamma_1 = \begin{pmatrix} 0 & i\sigma_1 \\ -i\sigma_1 & 0 \end{pmatrix}, \quad \gamma_2 = \begin{pmatrix} 0 & i\sigma_2 \\ -i\sigma_2 & 0 \end{pmatrix}, \quad \gamma_3 = \begin{pmatrix} 0 & i\sigma_3 \\ -i\sigma_3 & 0 \end{pmatrix},
$$

$$
\gamma_4 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \gamma_5 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ -1 \\ 2 \\ 0 \end{pmatrix},
$$

(92)

where 1_2 denotes 2×2 unit matrix. From (91), we have

$$
x_a x_a = (\phi^\dagger \phi)^2 = 1.
$$

(93)

Thus, x_a (91) are coordinates on four-sphere.

Coordinates on fuzzy four-sphere S_F^4 are constructed as

$$
X_a = \Phi^\dagger \gamma_a \Phi,
$$

(94)

where $\Phi = (\Phi_1, \Phi_2, \Phi_3, \Phi_4)^t$ represents a four-component Schwinger operator satisfying $[\Phi_\alpha, \Phi_\beta^\dagger] = \delta_{\alpha\beta}$ and $[\Phi_\alpha, \Phi_\beta] = 0$ ($\alpha, \beta = 1, 2, 3, 4$). Square of the radius of fuzzy four-sphere is derived as

$$
X_a X_a = (\Phi^\dagger \Phi)(\Phi^\dagger \Phi + 4).
$$

(95)

The zero-point energy corresponds to the number of the four-components of the Schwinger operator. Let n be the eigenvalues of the number operator $\hat{n} = \Phi^\dagger \Phi$. The corresponding eigenstates are fully symmetric representation:

$$
|l_1, l_2, l_3, l_4\rangle = \frac{1}{\sqrt{l_1! \ l_2! \ l_3! \ l_4!}} \Phi_1^{l_1} \Phi_2^{l_2} \Phi_3^{l_3} \Phi_4^{l_4} |0\rangle,
$$

(96)

with $l_1 + l_2 + l_3 + l_4 = n$ for non-negative integers l_1, l_2, l_3, l_4. The degeneracy is

$$
D(n) = \frac{1}{3!} (n+1)(n+2)(n+3).
$$

(97)

Notice, for the fully symmetric representation, square of the radius (95) is equal to the $SO(5)$ Casimir:

$$
X_a X_a = (\Phi^\dagger \Phi)(\Phi^\dagger \Phi + 4) = 2 \sum_{a<b} X_{ab} X_{ab},
$$

(98)

where X_{ab} are the $SO(5)$ generators given by

$$
[X_a, X_b] = 4iX_{ab},
$$

(99)

or

$$
X_{ab} = \Phi^\dagger \gamma_{ab} \Phi
$$

(100)

with

$$
\gamma_{ab} = -i \frac{1}{4} [\gamma_a, \gamma_b].
$$

(101)
Here, γ_{ab} are explicitly
\[
\begin{align*}
\gamma_{12} &= \frac{1}{2} \left(\begin{array}{cc}
\sigma_3 & 0 \\
0 & \sigma_3
\end{array} \right), \\
\gamma_{13} &= \frac{1}{2} \left(\begin{array}{cc}
0 & 0 \\
-\sigma_2 & -\sigma_2
\end{array} \right), \\
\gamma_{14} &= \frac{1}{2} \left(\begin{array}{cc}
0 & 0 \\
\sigma_1 & -\sigma_1
\end{array} \right), \\
\gamma_{15} &= \frac{1}{2} \left(\begin{array}{cc}
0 & -\sigma_1 \\
-\sigma_1 & 0
\end{array} \right), \\
\gamma_{23} &= \frac{1}{2} \left(\begin{array}{cc}
\sigma_1 & 0 \\
0 & \sigma_1
\end{array} \right), \\
\gamma_{24} &= \frac{1}{2} \left(\begin{array}{cc}
\sigma_2 & 0 \\
0 & -\sigma_2
\end{array} \right), \\
\gamma_{25} &= \frac{1}{2} \left(\begin{array}{cc}
0 & -\sigma_2 \\
-\sigma_2 & 0
\end{array} \right), \\
\gamma_{34} &= \frac{1}{2} \left(\begin{array}{cc}
\sigma_3 & 0 \\
0 & -\sigma_3
\end{array} \right), \\
\gamma_{35} &= \frac{1}{2} \left(\begin{array}{cc}
0 & -\sigma_3 \\
-\sigma_3 & 0
\end{array} \right), \\
\gamma_{45} &= \frac{1}{2} \left(\begin{array}{cc}
0 & i_{12} \\
-i_{12} & 0
\end{array} \right).
\end{align*}
\] (102)

Inversely, the sum of $SO(5)$ generators can be “converted” to that of gamma matrices as long as the fully symmetric representation is adopted. Such conversion is crucial in constructing fuzzy four-superspheres as we shall see.

In total, the fifteen operators, X_a and X_{ab}, satisfy a closed algebra:
\[
\begin{align*}
[X_a, X_b] &= 4iX_{ab}, \\
[X_a, X_{bc}] &= -i(\delta_{ab}X_c - \delta_{ac}X_b), \\
[X_{ab}, X_{cd}] &= i(\delta_{ac}X_{bd} - \delta_{ad}X_{bc} + \delta_{bc}X_{ad} - \delta_{bd}X_{ac}).
\end{align*}
\] (103)

By identifying $X_{a6} = \frac{1}{2}X_a$ and $X_{ab} = X_{ab}$, one may find that (103) is equivalent to $so(6) \simeq su(4)$ algebra,
\[
\begin{align*}
[X_{AB}, X_{CD}] &= i(\delta_{AC}X_{BD} - \delta_{AD}X_{BC} + \delta_{BC}X_{AD} - \delta_{BD}X_{AC}),
\end{align*}
\] (104)
where $A, B = 1, 2, \ldots, 6$. Thus, the underlying algebra of fuzzy four-sphere is considered as $su(4)$. The $SU(4)$ structure of the fuzzy four-sphere can also be deduced from the $SU(4)$ invariance of the right-hand side of (95). The states $|l_1, l_2, l_3, l_4\rangle$ ring the four-sphere at latitudes $X_5 = n - 2k$, (105)

where $k = 0, 1, 2, \ldots, n$, and is related to l_1, l_2, l_3, l_4 as
\[
k = l_3 + l_4 = n - l_1 - l_2
\] (106)
or
\[
l_1 + l_2 = n - k, \quad l_3 + l_4 = k.
\] (107)

From (107), one may find, unlike the fuzzy two-sphere case, at $X_5 = n - 2k$, there is degeneracy
\[
D_k(n) = d(n - k) \cdot d(k) = (n - k + 1)(k + 1),
\] (108)
where $d(k)$ is the number of the states on fuzzy two-sphere with radius k (23). (107) is reproduced as
\[
D(n) = \sum_{k=0}^{n} D_k(n) = \sum_{k=0}^{n} d(n - k) \cdot d(k).
\] (109)
With increase of \(k, D_k(n) \) monotonically increases from the north-pole to the equator \(k = n/2 \), and monotonically decreases from the equator to the south-pole. \(D_k(n) \) is symmetric under \(k \leftrightarrow n - k \), which corresponds to the inversion symmetry of sphere with respect to the equator. Since \(d(n-k) \) and \(d(k) \) represent the degrees of freedom of fuzzy two-spheres with radii \(n-k \) and \(k \), respectively, \(^{108}\) and \(^{109}\) imply the existence of the “internal” degrees of freedom of fuzzy four-sphere: fuzzy four-sphere is constituted of four-sphere and fibre consisting of two fuzzy two-spheres (whose radii \((108) \) and \((109) \) imply the existence of the “internal” degree of freedom of fuzzy four-sphere: fuzzy four-supersphere is constituted of four-sphere and fibre consisting of two fuzzy two-spheres (whose radii are \((n+X_5)/2 \) and \((n-X_5)/2 \) at the latitude \(X_5 \)). Schematically,

\[
S^4_F(n)|_{X_5=n-2k} \simeq S^2_F(n-k) \otimes S^2_F(k).
\]

In particular, at the north-pole, \(i.e. X_5 = n \), we have only one fuzzy two-sphere fibre with radius \(n: S^4_F(n)|_{X_5=n} \simeq S^2_F(n) \). With \(SO(5) \) generators \(X_{ab} \), coordinates of the two “internal” fuzzy two-spheres are respectively given by

\[
R_i = \frac{1}{2} \epsilon_{ijk} X_{jk} + X_{i4}, \quad R_i' = \frac{1}{2} \epsilon_{ijk} X_{jk} - X_{i4},
\]

and they satisfy

\[
[R_i, R_j] = -2i \epsilon_{ijk} R_k, \quad [R_i', R_j'] = 2i \epsilon_{ijk} R_k', \quad [R_i, R_j'] = 0.
\]

Then, naturally, \(|l_1, l_2, l_3, l_4 \rangle \) are regarded as the states on the fuzzy manifold spanned by \(X_a \) and \(X_{ab} \). The three independent quantities of \(l_1, l_2, l_3, l_4 \), specify three latitudes of the four-sphere and two “internal” fuzzy two-spheres:

\[
X_5 = l_1 + l_2 - l_3 - l_4, \\
R_3 = l_1 - l_2, \\
R_3' = l_3 - l_4.
\]

Inversely, \(|l_1, l_2, l_3, l_4 \rangle \) is uniquely specified by the eigenvalues of \(X_5, X_{12} \) and \(X_{34} \):

\[
l_1 = \frac{1}{4} n + \frac{1}{4} X_5 + \frac{1}{2} R_3, \quad l_2 = \frac{1}{4} n + \frac{1}{4} X_5 - \frac{1}{2} R_3, \\
l_3 = \frac{1}{4} n - \frac{1}{4} X_5 + \frac{1}{2} R_3', \quad l_4 = \frac{1}{4} n - \frac{1}{4} X_5 - \frac{1}{2} R_3'.
\]

Thus, as emphasized in Refs. \(^{39}\) \(^{40}\) \(^{41}\), the fuzzy four-sphere has such “extra-fuzzy space” that does not have counterpart in the original four-sphere\(^8\). The existence of the fuzzy fibre \(S^2_F \) can naturally be understood in the context of the 2nd Hopf map. The \(SO(5) \) spinor \(\phi \) denotes coordinates on \(S^7 \sim S^4 \otimes S^3 \), and the \(U(1) \) phase of \(\phi \) is factored out to obtain \(CP^3 \sim S^7/S^4 \sim S^4 \otimes S^2 \); we have \(S^2 \)-fibred \(S^4 \) as the classical counterpart of \(S^4_F \), not just \(S^4 \). Such enhancement mechanism is inherited to the supersymmetric cases.

4.2 \(N = 1 \) fuzzy four-supersphere

Here, we utilize \(UOSp(1|4) \) algebra to construct fuzzy four-superspheres with \(N = 1 \) SUSY.

\(^8\)One could truncate the extra fuzzy spaces, however in such a case, non-associative product has to be implemented \(^{57}\).
4.2.1 $UOSp(1|4)$ algebra

The $UOSp(1|4)$ algebra is constituted of fourteen generators, ten of which are bosonic $\Gamma_{ab} = -\Gamma_{ba}$ ($a, b = 1, 2, \cdots, 5$), and the remaining four are fermionic Γ_α ($\alpha = 1, 2, 3, 4$),

$$\dim[uosp(1|4)] = 10|4 = 14. \quad (115)$$

The $UOSp(1|4)$ algebra is given by

$$[\Gamma_{ab}, \Gamma_{cd}] = i(\delta_{ac}\Gamma_{bd} - \delta_{ad}\Gamma_{bc} - \delta_{bc}\Gamma_{ad} + \delta_{bd}\Gamma_{ac}),$$
$$[\Gamma_{ab}, \Gamma_\alpha] = (\gamma_{ab})_{\beta\alpha}\Gamma_\beta,$$
$$\{\Gamma_\alpha, \Gamma_\beta\} = \sum_{a<b}(C\gamma_{ab})_{\alpha\beta}\Gamma_{ab}, \quad (116)$$

where C is the $SO(5)$ charge conjugation matrix

$$C = \begin{pmatrix} \epsilon & 0 \\ 0 & \epsilon \end{pmatrix} \quad (117)$$

with $\epsilon = i\sigma_2$ (see Appendix [B] for detail properties of C). Γ_{ab} act as $SO(5)$ generators and Γ_α as a $SO(5)$ spinor. The $UOSp(1|4)$ quadratic Casimir is given by

$$C = \sum_{a<b}\Gamma_{ab}\Gamma_{ab} + C_{\alpha\beta}\Gamma_\alpha\Gamma_\beta, \quad (118)$$

and Scasimir is

$$S = \frac{1}{4\sqrt{2}}(3 - 4C_{\alpha\beta}\Gamma_\alpha\Gamma_\beta). \quad (119)$$

Similar to the $UOSp(1|2)$ case, the Scasimir satisfies

$$[\Gamma_{ab}, S] = \{\Gamma_\alpha, S\} = 0, \quad (120)$$

and

$$S^2 = C + \frac{9}{8}. \quad (121)$$

The fundamental representation matrices of $uosp(1|4)$ are constructed as follows. First, we introduce

$$\Gamma_a = \begin{pmatrix} \gamma_a & 0 \\ 0 & 0 \end{pmatrix} \quad (122)$$

with γ_a [92], to yield $SO(5)$ generators

$$\Gamma_{ab} = -i\frac{1}{4}[\Gamma_a, \Gamma_b], \quad (123)$$

or

$$\Gamma_{ab} = \begin{pmatrix} \gamma_{ab} & 0 \\ 0 & 0 \end{pmatrix}, \quad (124)$$
with γ_{ab} \[102\]. The fermionic generators are

$$\Gamma_\alpha = \frac{1}{\sqrt{2}} \begin{pmatrix} 0_4 & \tau_\alpha \\ -(C\tau_\alpha)^t & 0 \end{pmatrix},$$

(125)

where

$$\tau_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \quad \tau_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \quad \tau_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \quad \tau_4 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}.$$

(126)

More explicitly,

$$\Gamma_{\theta_1} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{pmatrix}, \quad \Gamma_{\theta_2} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 \end{pmatrix},$$

$$\Gamma_{\theta_3} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \quad \Gamma_{\theta_4} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

(127)

They satisfy the “hermiticity” condition

$$\Gamma_{\alpha}^\dagger = \Gamma_\alpha, \quad \Gamma_{ab}^\dagger = \Gamma_{ab}, \quad \Gamma_{\alpha}^\dagger = C_{\alpha\beta}\Gamma_{\beta}.$$

(128)

One may regard Γ_a and Γ_α as a supersymmetric extension of $SO(5)$ gamma matrices.

4.2.2 $N=1$ graded 2nd Hopf map

Generalizing the procedure in Sec.3.2.2 we construct $N=1$ graded version of the 2nd Hopf map. We first introduce $UOSp(1|4)$ spinor

$$\psi = (\psi_1, \psi_2, \psi_3, \psi_4, \eta)^t,$$

(129)

where $\psi_1, \psi_2, \psi_3, \psi_4$, are Grassmann even while η is Grassmann odd. ψ is normalized as

$$\psi^\dagger \psi = 1,$$

(130)

where

$$\psi^\dagger = (\psi_1^*, \psi_2^*, \psi_3^*, \psi_4^*, -\eta^*)$$

(131)

with pseudo-complex conjugation $*$. From \[130\], we find that ψ denotes coordinates on $S_7^{1|2}$. With the supersymmetric version of $SO(5)$ gamma matrices Γ_a \[122\] and Γ_α \[127\], we give $N=1$ graded 2nd Hopf map as

$$\psi \rightarrow x_a = \psi^\dagger \Gamma_a \psi, \quad \theta_\alpha = \psi^\dagger \Gamma_\alpha \psi.$$

(132)
In detail,

\[
x_1 = i\psi_1^*\psi_4 + i\psi_2^*\psi_3 - i\psi_3^*\psi_2 - i\psi_4^*\psi_1,
\]

\[
x_2 = \psi_1^*\psi_4 - \psi_2^*\psi_3 - \psi_3^*\psi_2 + \psi_4^*\psi_1,
\]

\[
x_3 = i\psi_1^*\psi_3 - i\psi_2^*\psi_4 - i\psi_3^*\psi_1 + i\psi_4^*\psi_2,
\]

\[
x_4 = \psi_1^*\psi_3 + \psi_2^*\psi_4 + \psi_3^*\psi_1 + \psi_4^*\psi_2,
\]

\[
x_5 = \psi_1^*\psi_4 + \psi_2^*\psi_3 - \psi_3^*\psi_3 - \psi_4^*\psi_4,
\]

\[
\theta_1 = \frac{1}{\sqrt{2}}(\psi_1^*\eta - \eta^*\psi_2),
\]

\[
\theta_2 = \frac{1}{\sqrt{2}}(\psi_2^*\eta + \eta^*\psi_1),
\]

\[
\theta_3 = \frac{1}{\sqrt{2}}(\psi_3^*\eta - \eta^*\psi_4),
\]

\[
\theta_4 = \frac{1}{\sqrt{2}}(\psi_4^*\eta + \eta^*\psi_3).
\]

(133)

From \((\eta^*)^* = -\eta\), we have \(x_a^* = x_a\) and \(\theta_\alpha^* = C_{\alpha\beta}\theta_\beta\). It is straightforward to see

\[
x_ax_a + 2C_{\alpha\beta}\theta_\alpha\theta_\beta = (\psi^\dagger\psi)^2 = 1.
\]

(134)

If \(x_a\) and \(\theta_\alpha\) were independent, \([\text{134}]\) was the definition of four-supersphere with four (pseudo-real) fermionic coordinates, \(S^{4|4}\). However, \(\theta_1\), \(\theta_2\), \(\theta_3\) and \(\theta_4\) are not independent to each other, since they are constructed from only one Grassmann odd quantity \(\eta\) that carries two real (Grassmann odd) degrees of freedom. Indeed,

\[
\theta_1\theta_2 = -\frac{1}{2}\eta^*\eta(\psi_1^*\psi_1 + \psi_2^*\psi_2),
\]

\[
\theta_3\theta_4 = -\frac{1}{2}\eta^*\eta(\psi_3^*\psi_3 + \psi_4^*\psi_4),
\]

(135)

and then, for instance, \(\theta_1\theta_2\theta_3 = 0\). Also we find

\[
C_{\alpha\beta}\theta_\alpha\theta_\beta = -\eta^*\eta(\psi_1^*\psi_1 + \psi_2^*\psi_2 + \psi_3^*\psi_3 + \psi_4^*\psi_4) = -\eta^*\eta,
\]

(136)

and the relation \([\text{134}]\) can be rewritten as

\[
x_ax_a - 2\eta^*\eta = 1,
\]

(137)

which corresponds to \(S^{4|2}\). Thus, \(x_a\) and \(\theta_\alpha\) are regarded as coordinates on \(S^{4|2}\) rather than \(S^{4|4}\). As a consequence, \([\text{132}]\) represents

\[
S^{7|2} \xrightarrow{S^3} S^{4|2} \subset S^{4|4}.
\]

(138)

The cancellation of \(S^3\) can be understood by the following arguments. The original normalized \(\text{SO}(5)\) spinor is embedded in the \(UOSP(1|4)\) spinor as

\[
\phi = \begin{pmatrix} \phi_1 \\ \phi_2 \\ \phi_3 \\ \phi_4 \end{pmatrix} = \frac{1}{\sqrt{1 + \eta^*\eta}} \begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \\ \psi_4 \end{pmatrix}.
\]

(139)
From (130), the normalization of ϕ follows
\[\phi^\dagger \phi = 1. \] (140)

Then, the map
\[\phi \rightarrow y_a = \phi^\dagger \gamma_a \phi; \] (141)

signifies the 2nd Hopf map [30]. y_a are coordinates of S^4; the body of $S^{4|2}$. With y_a, ϕ is expressed as
\[\phi = \frac{1}{\sqrt{2(1 + y_5)}} \begin{pmatrix} (1 + y_5) & u \\ y_4 - iy_5 \sigma_i & u \end{pmatrix}, \] (142)

where $(u, v)^t$ is an arbitrary two-component spinor subject to the normalization $u^* u + v^* v = 1$ representing S^3-fibre. Such S^3-fibre is canceled in (141) to yield the coordinates on S^4. In the graded 2nd Hopf map [133], the cancellation of S^3 can also be shown. Write the Grassmann odd component η as
\[\eta = u\mu + v\nu, \] (143)

with μ and ν being real and imaginary Grassmann odd quantities that satisfy
\[\mu^* = \nu, \quad \nu^* = -\mu. \] (144)

By inserting (142) and (143) to (133), one may show
\[x_a = (1 - \mu\nu) y_a, \]
\[\begin{pmatrix} \theta_1 \\ \theta_2 \end{pmatrix} = \frac{\sqrt{1 + y_5}}{2} \begin{pmatrix} \mu \\ \nu \end{pmatrix}, \]
\[\begin{pmatrix} \theta_3 \\ \theta_4 \end{pmatrix} = \frac{1}{2\sqrt{1 + y_5}} (y_4 + iy_5 \sigma_i) \begin{pmatrix} \mu \\ \nu \end{pmatrix}, \] (145)

where $\eta^* \eta = -\mu\nu$ was utilized. Notice that S^3-fibre denoted by (u, v) vanishes in the expression of x_a and θ_α (145). Furthermore, $\theta_{\alpha=3,4}$ are not independent with $\theta_{\alpha=1,2}$, but related as
\[\begin{pmatrix} \theta_3 \\ \theta_4 \end{pmatrix} = \frac{1}{1 + y_5} (y_4 + iy_5 \sigma_i) \begin{pmatrix} \theta_1 \\ \theta_2 \end{pmatrix}. \] (146)

The $N = 1$ graded Hopf fibration, $S^7|2 \sim S^{4|2} \otimes S^3$, is obvious from the expression
\[\psi = \frac{1}{\sqrt{1 - \eta^* \eta}} \begin{pmatrix} \phi_1 \\ \phi_2 \\ \phi_3 \\ \phi_4 \\ \eta \end{pmatrix} = \frac{1}{\sqrt{2(1 + y_5)}} \begin{pmatrix} \sqrt{1 - \mu\nu} (1 + y_5) & u \\ \sqrt{1 - \mu\nu} (y_4 - iy_5 \sigma_i) & u \\ \sqrt{2(1 + y_5)} (u\mu + v\nu) \end{pmatrix}, \] (147)
where S^3-fibre, $(u, v)^t$, is canceled in (133), and y_a and μ, ν, respectively account for bosonic and fermionic coordinates on $S^4|2$. With θ_1 and θ_2, ψ is rewritten as

$$\psi = \frac{1}{\sqrt{2(1 + y_5)}} \begin{pmatrix} \sqrt{1 - \frac{4}{1 + y_5}} \theta_1 \theta_2 (1 + y_5) & (u) \\ \sqrt{1 - \frac{4}{1 + y_5}} \theta_1 \theta_2 (y_4 - iy_i \sigma_i) & (v) \\ 2\sqrt{2} (u \theta_1 + v \theta_2) & \end{pmatrix},$$

(148)

where y_a are related to x_a as

$$y_a = \left(1 - \frac{4}{1 + x_5} \theta_1 \theta_2\right) x_a.$$

(149)

4.2.3 $N = 1$ fuzzy four-supersphere

The target manifold of the graded Hopf map is $S^4|2$, and we denote the corresponding fuzzy four-supersphere as $S^4|2_F$. Coordinates of $S^4|2_F$, X_a and Θ_α, are constructed as

$$X_a = \Psi^\dagger \Gamma_a \Psi, \quad \Theta_\alpha = \Psi^\dagger \Gamma_\alpha \Psi,$$

(150)

where Ψ is a five-component graded Schwinger operator

$$\Psi = (\Psi_1, \Psi_2, \Psi_3, \Psi_4, \tilde{\Psi})^t,$$

(151)

with $\Psi_\alpha (\alpha = 1, 2, 3, 4)$ being bosonic operators and $\tilde{\Psi}$ a fermionic operator:

$$[\Psi_\alpha, \Psi_\beta^\dagger] = \delta_{\alpha\beta}, \quad \{\tilde{\Psi}, \tilde{\Psi}^\dagger\} = 1, \quad [\tilde{\Psi}^\dagger, \tilde{\Psi}] = [\Psi_\alpha, \tilde{\Psi}] = \{\tilde{\Psi}, \tilde{\Psi}\} = 0.$$

(152)

Square of the radius of fuzzy four-supersphere is derived as

$$X_a X_a + 2 C_{\alpha\beta} \Theta_\alpha \Theta_\beta = (\Psi^\dagger \Psi)(\Psi^\dagger \Psi + 3).$$

(153)

With the Schwinger construction, the Casimir (118) is represented as

$$C = \sum_{a<b} X_{ab} X_{ab} + C_{\alpha\beta} \Theta_\alpha \Theta_\beta = \frac{1}{2} (\Psi^\dagger \Psi)(\Psi^\dagger \Psi + 3),$$

(154)

where

$$X_{ab} = \Psi^\dagger \Gamma_{ab} \Psi.$$

(155)

We used

$$X_a X_a = 2 \sum_{a<b} X_{ab} X_{ab} = \hat{n}_B (\hat{n}_B + 4),$$

$$C_{\alpha\beta} \Theta_\alpha \Theta_\beta = -\frac{1}{2} \hat{n}_B + \hat{n}_B \hat{n}_F + 2 \hat{n}_F,$$

(156)
with \(\hat{n}_B = \sum_{\alpha=1,2,3,4} \Psi^\dagger_\alpha \Psi_\alpha \) and \(\hat{n}_F = \hat{\Psi}^\dagger \hat{\Psi} \). The Casimir (154) is equivalent to (153) except the proportional factor. The graded fully symmetric representation is expressed as

\[
|l_1, l_2, l_3, l_4\rangle = \frac{1}{\sqrt{l_1! \cdot l_2! \cdot l_3! \cdot l_4!}} \Psi_1^{l_1} \Psi_2^{l_2} \Psi_3^{l_3} \Psi_4^{l_4} |0\rangle,
\]

(157a)

\[
|m_1, m_2, m_3, m_4\rangle = \frac{1}{\sqrt{m_1! \cdot m_2! \cdot m_3! \cdot m_4!}} \Psi_1^{m_1} \Psi_2^{m_2} \Psi_3^{m_3} \Psi_4^{m_4} \hat{\Psi}^\dagger |0\rangle,
\]

(157b)

where \(l_1 + l_2 + l_3 + l_4 = m_1 + m_2 + m_3 + m_4 + 1 = n \). The Casimir (119) is expressed as

\[
S = \frac{1}{2\sqrt{2}} (1 - 2\hat{n}_F)(2\hat{n} + 3),
\]

(158)

with \(\hat{n} = \hat{\Psi}^\dagger \hat{\Psi} = \hat{n}_B + \hat{n}_F \), and the bosonic (157a) and fermionic (157b) states are classified by the sign of Casimir eigenvalues,

\[
S = \pm \frac{1}{2\sqrt{2}} (2n + 3).
\]

(159)

The dimensions of bosonic and fermionic states are respectively given by

\[
D_B = D(n) = \frac{1}{3!} (n + 1)(n + 2)(n + 3),
\]

(160a)

\[
D_F = D(n - 1) = \frac{1}{3!} n(n + 1)(n + 2),
\]

(160b)

and the total dimension is

\[
D_T = D_B + D_F = \frac{1}{6} (n + 1)(n + 2)(2n + 3).
\]

(161)

Similar to the case of \(N = 1 \) fuzzy two-supersphere, the bosonic degrees of freedom (160a) are accounted for by fuzzy four-sphere with radius \(n \) and the fermionic degrees of freedom (160b) are by fuzzy four-sphere with radius \(n - 1 \). Thus, the \(N = 1 \) fuzzy four-supersphere is a “superposition” of two fuzzy four-spheres with radii \(n \) and \(n - 1 \). Schematically,

\[
S^{|l|}_F(n) \simeq S^l_F(n) \oplus S^{l-1}_F(n).
\]

(162)

\(X_5 \) eigenvalues for the states (157) are

\[
X_5 = n - k,
\]

(163)

with \(k = 0, 1, 2, \cdots, 2n \). The degeneracies for even \(k = 2l \) and for odd \(k = 2l + 1 \) are respectively given by

\[
D_{k=2l}(n) = d(n - l) \cdot d(l) = (n - l + 1)(l + 1),
\]

\[
D_{k=2l+1}(n) = d(n - l - 1) \cdot d(l) = (n - l)(l + 1),
\]

(164)

which give rise to

\[
\sum_{l=0}^{n} D_{k=2l}(n) = D_B, \quad \sum_{l=0}^{n-1} D_{k=2l+1}(n) = D_F.
\]

(165)

Therefore, at latitude \(X_5 = n - 2l \), we have fuzzy fibre consisting of two fuzzy two-spheres with radii \(n - l \) and \(l \), while at latitude \(X_5 = n - 2l - 1 \) two fuzzy two-spheres with radii \(n - l - 1 \) and \(l \). In other words, as fuzzy fibre at \(X_5 = n - 2l \), we have two fuzzy two-spheres with radii \((n + X_5)/2 \) and \((n - X_5)/2 \), while at \(X_5 = n - 2l - 1 \), two fuzzy two-spheres with radii \((n + X_5)/2 - 1/2 \) and \((n - X_5)/2 - 1/2 \).
4.2.4 Algebraic structure

The \(N = 1 \) fuzzy four-supersphere (153) is invariant under the \(SU(4|1) \) rotation of the Schwinger operator \(\Psi \). This implies hidden \(SU(4|1) \) structure of \(N = 1 \) fuzzy four-supersphere. Here, we demonstrate the \(SU(4|1) \) structure of fuzzy four-supersphere based on algebraic approach. Notice that the fuzzy four-supersphere coordinates \(X_a, \Theta_\alpha \) do not satisfy a closed algebra by themselves,

\[
[X_a, X_b] = 4i X_{ab}, \quad [X_a, \Theta_\alpha] = (\gamma_a)_{\beta\gamma} \Theta_\beta, \quad \{\Theta_\alpha, \Theta_\beta\} = \sum_{a < b} (C_{\gamma a b})_{\alpha\beta} X_{ab}.
\] (166)

The “new” operators that appear on the right-hand sides of (166) are

\[
X_{ab} = \Psi^\dagger \Gamma_{ab} \Psi, \quad \Theta_\alpha = \Psi^\dagger D_\alpha \Psi,
\] (167)

with \(\Gamma_{ab} \) (124) and \(D_\alpha \)\(^{10} \)(169).

\(X_{ab} \) and \(\Theta_\alpha \) respectively act as \(SO(5) \) generators and spinor. Commutation relations including them are

\[
[X_a, \Theta_\alpha] = (\gamma_a)_{\beta\gamma} \Theta_\beta, \quad [X_a, \Theta_\alpha] = (\gamma_a)_{\beta\gamma} \Theta_\beta,
\]

\[
[X_{ab}, \Theta_\alpha] = (\gamma_{ab})_{\beta\gamma} \Theta_\beta, \quad [X_{ab}, \Theta_\alpha] = (\gamma_{ab})_{\beta\gamma} \Theta_\beta,
\]

\[
\{\Theta_\alpha, \Theta_\beta\} = \sum_{a < b} (C_{\gamma a b})_{\alpha\beta} X_{ab}, \quad \{\Theta_\alpha, \Theta_\beta\} = -\sum_{a < b} (C_{\gamma a b})_{\alpha\beta} X_{ab},
\]

\[
\{\Theta_\alpha, \Theta_\beta\} = \frac{1}{4} (C_{\gamma a b})_{\alpha\beta} X_a + \frac{1}{4} C_{a\beta} Z.
\] (171)

The last equation further yield a new operator

\[
Z = \Psi^\dagger H \Psi,
\] (172)

with\(^9 \)

\[
H = \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix}.
\] (174)

The commutation relations concerned with \(Z \) are given by

\[
[Z, X_a] = [Z, X_{ab}] = 0, \quad [Z, \Theta_\alpha] = -3 \Theta_\alpha, \quad [Z, \Theta_\alpha] = -3 \Theta_\alpha.
\] (175)

\(^9 \) \(D_\alpha \) have the properties

\[
D_\alpha^\dagger = -C_{a\beta} D_\beta, \quad D_\alpha = -C_{a\beta} \Gamma_{\alpha\beta}^\dagger.
\] (168)

\(D_\alpha \) can be constructed by

\[
D_\alpha = \frac{2}{5} \sum_{a < b} (\gamma_{ab})_{\beta\gamma} \{\Gamma_{ab}, \Gamma_\beta\}.
\] (169)

similarly to the \(su(2|1) \) case (see Appendix A.1.1).

\(^{10} \) \(H \) is constructed as

\[
H = \frac{6}{5} \left(C_{a\beta} \Gamma_{a\beta} + \frac{4}{3} \right).
\] (173)
(175) does not yield further new operators. After all, for the closure of the algebra of the fuzzy coordinates X_a and Θ_α, we have to introduce new fuzzy coordinates X_{ab}, Θ_α, and Z and such twenty four operators amount to the $SU(4|1)$ algebra (see Appendix A.2.1). The basic concept of the non-commutative geometry is “algebraic construction of geometry”. Thus, the algebraic structure underlying the fuzzy four-supersphere is considered as $SU(4|1)$ rather than $Uosp(1|4)$. We revisit the $SU(4|1)$ structure in Sec.6.

4.3 $N=2$ fuzzy four-supersphere

We proceed to the construction of $N=2$ version of fuzzy four-sphere, $S_F^{4|8}$ based on the $Uosp(2|4)$ algebra.

4.3.1 $Uosp(2|4)$ algebra

The dimension of the $Uosp(2|4)$ algebra is

$$\dim[uosp(2|4)] = 11|8 = 19.$$ \quad (177)

We denote the eleven bosonic generators as $\Gamma_{ab} = -\Gamma_{ba}$ ($a, b = 1, 2, 3, 4, 5$) and Γ, and the eight fermionic generators as Γ_α and Γ'_α ($\alpha = \theta_1, \theta_2, \theta_3, \theta_4$). The $Uosp(2|4)$ algebra is given by

$$[\Gamma_{ab}, \Gamma_{cd}] = i(\delta_{ac}\Gamma_{bd} - \delta_{ad}\Gamma_{bc} + \delta_{bc}\Gamma_{ad} - \delta_{bd}\Gamma_{ac}),$$

$$[\Gamma_{ab}, \Gamma_\alpha] = (\gamma_{ab})_{\beta\alpha}\Gamma_\beta,$$

$$[\Gamma_{ab}, \Gamma'_\alpha] = (\gamma_{ab})_{\beta\alpha}\Gamma'_\beta,$$

$$\{\Gamma_\alpha, \Gamma_\beta\} = \{\Gamma'_\alpha, \Gamma'_\beta\} = \sum_{a<b}(C_{\gamma_{ab}})_{\alpha\beta}\Gamma_{ab},$$

$$\{\Gamma_\alpha, \Gamma'_\beta\} = \frac{1}{2}C_{\alpha\beta}\Gamma,$$

$$[\Gamma_{ab}, \Gamma] = 0,$$

$$[\Gamma_\alpha, \Gamma] = -\Gamma'_\alpha,$$

$$[\Gamma'_\alpha, \Gamma] = \Gamma_\alpha.$$ \quad (178)

The $Uosp(2|4)$ quadratic Casimir is

$$C = \sum_{a<b}\Gamma_{ab}\Gamma_{ab} + C_{\alpha\beta}\Gamma_\alpha\Gamma_\beta + C_{\alpha\beta}\Gamma'_\alpha\Gamma'_\beta + \frac{1}{2}\Gamma^2.$$ \quad (179)

The fundamental representation of $Uosp(2|4)$ generators is expressed by the following 6×6 matrices

$$\Gamma_{ab} = \begin{pmatrix} \gamma_{ab} & 0 \\ 0 & 0 \end{pmatrix},$$

$$\Gamma = \begin{pmatrix} 0_4 & 0 \\ 0 & 0 \end{pmatrix},$$

$$\Gamma_\alpha = \frac{1}{\sqrt{2}} \begin{pmatrix} 0_4 & \tau_\alpha \\ 0 & 0 \end{pmatrix},$$

$$\Gamma'_\alpha = \frac{1}{\sqrt{2}} \begin{pmatrix} 0_4 & 0 \\ 0 & 0 \end{pmatrix},$$

$$\Gamma'_\alpha = \frac{1}{\sqrt{2}} \begin{pmatrix} 0_4 & \tau_\alpha \\ 0 & 0 \end{pmatrix}. \quad (180)$$

With use of Θ_α and Z, the $Uosp(1|4)$ invariant quantity is given by

$$C_{\alpha\beta}\Theta_\alpha\Theta_\beta + \frac{1}{6}Z^2 = \frac{1}{6}(\Psi^\dagger\Psi)(\Psi^\dagger\Psi + 3).$$ \quad (176)
with γ_{ab} [102] and τ_α [126]. The corresponding gamma matrices are also

$$\Gamma_a = \begin{pmatrix} \gamma_a & 0 \\ 0 & 0_2 \end{pmatrix},$$ \hspace{1cm} (181)

with γ_a [92].

4.3.2 $N = 2$ fuzzy four-supersphere

With a Schwinger operator $\Psi = (\Psi_1, \Psi_2, \Psi_3, \Psi_4, \tilde{\Psi}_1, \tilde{\Psi}_2)^t$, we introduce $N = 2$ fuzzy four-supersphere coordinates

$$X_a = \Psi^\dagger \Gamma_a \Psi, \quad \Theta_\alpha = \Psi^\dagger \Gamma_\alpha \Psi, \quad \Theta'_\alpha = \Psi'^\dagger \Gamma'_\alpha \Psi, \quad G = \Psi^\dagger \Gamma \Psi.$$ \hspace{1cm} (182)

As emphasized in Sec. 4.1, in Schwinger construction, the $SO(5)$ Casimir can be replaced with the inner product of $SO(5)$ gamma matrices,

$$\sum_{a<b} X_{ab} X_{ab} = \frac{1}{2} X_a X_a,$$ \hspace{1cm} (183)

and from [179], square of the radius of $N = 2$ fuzzy four-supersphere is obtained as

$$X_a X_a + 2 C_{\alpha \beta} \Theta_\alpha \Theta_\beta + 2 C_{\alpha \beta} \Theta'_\alpha \Theta'_\beta + G^2 = (\Psi^\dagger \Psi)(\Psi^\dagger \Psi + 2).$$ \hspace{1cm} (184)

For $\Psi^\dagger \Psi = n$, the graded fully symmetric representation is constructed as

$$|l_1, l_2, l_3, l_4\rangle = \frac{1}{\sqrt{l_1! l_2! l_3! l_4!}} \Psi_1^{l_1} \Psi_2^{l_2} \Psi_3^{l_3} \Psi_4^{l_4} |0\rangle,$$ \hspace{1cm} (185a)

$$|m_1, m_2, m_3, m_4\rangle = \frac{1}{\sqrt{m_1! m_2! m_3! m_4!}} \Psi_1^{m_1} \Psi_2^{m_2} \Psi_3^{m_3} \Psi_4^{m_4} \tilde{\Psi}_1^m |0\rangle,$$ \hspace{1cm} (185b)

$$|m'_1, m'_2, m'_3, m'_4\rangle = \frac{1}{\sqrt{m'_1! m'_2! m'_3! m'_4!}} \Psi_1^{m'_1} \Psi_2^{m'_2} \Psi_3^{m'_3} \Psi_4^{m'_4} \tilde{\Psi}_2^m |0\rangle,$$ \hspace{1cm} (185c)

$$|n_1, n_2, n_3, n_4\rangle = \frac{1}{\sqrt{n_1! n_2! n_3! n_4!}} \Psi_1^{n_1} \Psi_2^{n_2} \Psi_3^{n_3} \Psi_4^{n_4} \tilde{\Psi}_1^n \tilde{\Psi}_2^n |0\rangle,$$ \hspace{1cm} (185d)

where $l_1 + l_2 + l_3 + l_4 = m_1 + m_2 + m_3 + m_4 + 1 = m'_1 + m'_2 + m'_3 + m'_4 + 1 = n_1 + n_2 + n_3 + n_4 + 2 = n$. The first two are $UOSp(1|4)$ representation of the index n [157] while the other two are that of $n - 1$. In passing from $|l_1, l_2, l_3, l_4\rangle$ to $|n_1, n_2, n_3, n_4\rangle$ via either $|m_1, m_2, m_3, m_4\rangle$ or $|m'_1, m'_2, m'_3, m'_4\rangle$, we perform supersymmetric transformations twice, and hence we have $N = 2$ SUSY. Dimensions of bosonic and fermionic states are respectively

$$D_B = D(n) + D(n - 2) = \frac{1}{3} (n + 1)(n^2 + 2n + 3),$$

$$D_F = 2D(n - 1) = \frac{1}{3} (n + 2)(n + 1)n.$$ \hspace{1cm} (186)

The total dimension is

$$D_T = D_B + D_F = \frac{1}{3} (2n^2 + 4n + 3)(n + 1).$$ \hspace{1cm} (187)
As in the case of fuzzy two-supersphere, $N = 2$ fuzzy four-supersphere is a “superposition” of two $N = 1$ fuzzy four-superspheres. Schematically,

$$S_F^{4|4}(n) \simeq S_F^{4|2}(n) \oplus S_F^{4|2}(n-1) \simeq S_F^4(n) \oplus S_F^4(n-1) \oplus S_F^4(n-1) \oplus S_F^4(n-2).$$

(188)

The last expression corresponds to the degrees of freedom of (185). The states (185) are eigenstates of X_5 with eigenvalues

$$X_5 = n - k,$$

(189)

where $k = 0, 1, 2, \cdots, 2n$. The degeneracy at $X_5 = n - 2l$ ($l = 0, 1, 2, \cdots, n$) is accounted for by the bosonic states (185a) and (185d):

$$D_{B}^{k=2l} = D_l(n) + D_{l-1}(n-2) = 2l(n-l) + n + 1$$

(190)

with $D_l(n)$ (108), while that at $X_5 = n - 2l - 1$ ($l = 0, 1, 2, \cdots, n-1$) is accounted for by the fermionic states (185b) and (185c):

$$D_{F}^{k=2l+1} = 2D_l(n-1) = 2(l+1)(n-l).$$

(191)

4.3.3 $N = 2$ graded 2nd Hopf map

The derivation of the corresponding Hopf map is straightforward. With a normalized $UOSp(2|4)$ spinor ψ

$$\psi = (\psi_1, \psi_2, \psi_3, \psi_4, \eta_1, \eta_2)^T,$$

(192)

subject to $\psi^\dagger \psi = 1$, $N = 2$ graded 2nd Hopf map is given by

$$x_a = \psi^\dagger \Gamma_a \psi, \quad \theta_\alpha = \psi^\dagger \Gamma_\alpha \psi, \quad \theta'_\alpha = \psi^\dagger \Gamma'_\alpha \psi, \quad g = \psi^\dagger \Gamma \psi.$$

(193)

The normalization of ψ indicates that ψ is coordinates on $S^{7|4}$. (193) satisfy

$$x_a x_a + 2C_{\alpha\beta} \theta_\alpha \theta_\beta + 2C_{\alpha\beta} \theta'_\alpha \theta'_\beta + g^2 = (\psi^\dagger \psi)^2 = 1.$$

(194)

Then, we have eight (pseudo-)Majorana fermionic coordinates, θ_α and θ'_α. However they are not independent, since they contain only four real Grassmann odd degrees of freedom coming from η_1 and η_2. With the renormalization,

$$x_a \to \sqrt{1-g^2} x_a = (1 - \frac{1}{2}g^2)x_a, \quad \theta \to \sqrt{1-g^2} \theta_\alpha = \theta_\alpha, \quad \theta'_\alpha \to \sqrt{1-g^2} \theta'_\alpha = \theta'_\alpha, \quad g \to \sqrt{1-g^2} \quad g = g,$$

(195)

(194) is restated as

$$x_a x_a + 2C_{\alpha\beta} \theta_\alpha \theta_\beta + 2C_{\alpha\beta} \theta'_\alpha \theta'_\beta = 1.$$

(196)
Besides, \(\theta\) real and imaginary components of \(\eta\) spinor (142) is embedded as

\[
\phi = \begin{pmatrix} \phi_1 \\ \phi_2 \\ \phi_3 \\ \phi_4 \end{pmatrix} = \frac{1}{\sqrt{1 - \eta_1^2 \eta_1 + \eta_2^2 \eta_2}} \begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \\ \psi_4 \end{pmatrix}.
\] (197)

One may demonstrate the cancellation of \(S^3\)-fibre in the map (193) by following similar arguments in Sec. 4.2.2. Write the two Grassmann odd components as

\[\eta_1 = u\mu_1 + v\nu_1,\]
\[\eta_2 = u\mu_2 + v\nu_2,\] (198)

where \(u\) and \(v\) denote the coordinates on \(S^3\) \((u^*u + v^*v = 1)\), and \(\mu_{1,2}\) and \(\nu_{1,2}\) are respectively real and imaginary components of \(\eta_{1,2}\). From (193), we have

\[
x_a = (1 - \mu_1 \nu_1 - \mu_2 \nu_2) y_a,
\]
\[
\begin{pmatrix} \theta_1 \\ \theta_2 \end{pmatrix} = \frac{1}{2} \sqrt{(1 + y_5)(1 - \mu_1 \nu_1 - \mu_2 \nu_2)} \begin{pmatrix} \mu_1 \\ \nu_1 \end{pmatrix}, \quad \begin{pmatrix} \theta_3 \\ \theta_4 \end{pmatrix} = \frac{1}{2} \sqrt{\frac{1 - \mu_1 \nu_1 - \mu_2 \nu_2}{1 + y_5}} (y_4 + iy_i \sigma_i^t) \begin{pmatrix} \mu_1 \\ \nu_1 \end{pmatrix},
\]
\[
\begin{pmatrix} \theta_1' \\ \theta_2' \end{pmatrix} = \frac{1}{2} \sqrt{(1 + y_5)(1 - \mu_1 \nu_1 - \mu_2 \nu_2)} \begin{pmatrix} \mu_2 \\ \nu_2 \end{pmatrix}, \quad \begin{pmatrix} \theta_3' \\ \theta_4' \end{pmatrix} = \frac{1}{2} \sqrt{\frac{1 - \mu_1 \nu_1 - \mu_2 \nu_2}{1 + y_5}} (y_4 + iy_i \sigma_i^t) \begin{pmatrix} \mu_2 \\ \nu_2 \end{pmatrix},
\] (199)

where \(\eta_1^* \eta_1 = -\mu_1 \nu_1\) and \(\eta_2^* \eta_2 = -\mu_2 \nu_2\) were utilized. Notice that \(u\) and \(v\) do not appear in (199). Besides, \(\theta_{3,4}\) and \(\theta'_{3,4}\) are respectively related to \(\theta_{1,2}\) and \(\theta'_{1,2}\) as

\[
\begin{pmatrix} \theta_3 \\ \theta_4 \end{pmatrix} = \frac{1}{1 + y_5} (y_4 + iy_i \sigma_i^t) \begin{pmatrix} \theta_1 \\ \theta_2 \end{pmatrix}, \quad \begin{pmatrix} \theta_3' \\ \theta_4' \end{pmatrix} = \frac{1}{1 + y_5} (y_4 + iy_i \sigma_i^t) \begin{pmatrix} \theta_1' \\ \theta_2' \end{pmatrix}.
\] (200)

Thus, with the representation

\[
\psi = \sqrt{1 + \eta_1^2 \eta_1 + \eta_2^2 \eta_2} \begin{pmatrix} \phi_1 \\ \phi_2 \\ \phi_3 \\ \phi_4 \end{pmatrix} = \sqrt{\frac{1 - \mu_1 \nu_1 - \mu_2 \nu_2}{2(1 + y_5)}} \begin{pmatrix} (1 + y_5) \begin{pmatrix} u \\ v \end{pmatrix} \\ (y_4 - iy_i \sigma_i) \begin{pmatrix} u \\ v \end{pmatrix} \\ \sqrt{2(1 + y_5)(1 + \mu_2 \nu_2)} \begin{pmatrix} u \mu_1 + v \nu_1 \\ u \mu_2 + v \nu_2 \end{pmatrix} \end{pmatrix},
\] (201)

the \(S^3\)-fibre denoted by \((u, v)\) is canceled in \(x_a, \theta_\alpha\) and \(\theta'_\alpha\) (193). From (199), we have

\[
\theta_1 \theta_2 = -\frac{1 + y_5}{4(1 + \mu_2 \nu_2)} \mu_1 \nu_1, \quad \theta_1' \theta_2' = -\frac{1 + y_5}{4(1 + \mu_1 \nu_1)} \mu_2 \nu_2,
\] (202)
and hence
\[\theta_1 \theta_2 + \theta'_1 \theta'_2 = \frac{1 + y_5}{4(1 + \mu_1 \nu_1 + \mu_2 \nu_2)} (\mu_1 \nu_1 + \mu_2 \nu_2), \tag{203} \]
or inversely,
\[\mu_1 \nu_1 + \mu_2 \nu_2 = \frac{4}{1 + y_5 - 4(\theta_1 \theta_2 + \theta'_1 \theta'_2)} (\theta_1 \theta_2 + \theta'_1 \theta'_2). \tag{204} \]

Then,
\[
\begin{align*}
\left(\begin{array}{c}
\mu_1 \\
\nu_1 \\
\mu_2 \\
\nu_2 \\
\end{array} \right) &= \frac{2}{\sqrt{1 + y_5 - 4(\theta_1 \theta_2 + \theta'_1 \theta'_2)}} \left(\begin{array}{c}
\theta_1 \\
\theta_2 \\
\theta'_1 \\
\theta'_2 \\
\end{array} \right), \\
\left(\begin{array}{c}
\mu_1 \\
\nu_1 \\
\mu_2 \\
\nu_2 \\
\end{array} \right) &= \frac{2}{\sqrt{1 + y_5 - 4(\theta_1 \theta_2 + \theta'_1 \theta'_2)}} \left(\begin{array}{c}
\theta'_1 \\
\theta'_2 \\
\theta_1 \\
\theta_2 \\
\end{array} \right). \tag{205}
\end{align*}
\]

Therefore, with the coordinates on \(S^{4|4} \), \(\theta_{1,2} \) and \(\theta'_{1,2} \), \[206 \] is rewritten as
\[
\psi = \frac{1}{\sqrt{2(1 + y_5 - 4(\theta_1 \theta_2 + \theta'_1 \theta'_2))}} \begin{pmatrix}
\sqrt{1 - \frac{8}{1 + y_5} (\theta_1 \theta_2 + \theta'_1 \theta'_2)(1 + y_5)} & u \\
\sqrt{1 - \frac{8}{1 + y_5} (\theta_1 \theta_2 + \theta'_1 \theta'_2)(y_4 - iy_3 \sigma_i)} & v \\
2 \sqrt{2} (u \theta_1 + v \theta_2) & 2 \sqrt{2} (u \theta'_1 + v \theta'_2)
\end{pmatrix}, \tag{206}
\]
where \(y_a \) are related to \(x_a \) as
\[
y_a = \left(1 - \frac{4}{1 + y_5 - 4(\theta_1 \theta_2 + \theta'_1 \theta'_2)} (\theta_1 \theta_2 + \theta'_1 \theta'_2) \right) x_a \\
= \left(1 - \frac{4}{1 + x_5} (\theta_1 \theta_2 + \theta'_1 \theta'_2) - \frac{16}{(1 + x_5)^3} (1 + 2x_5)(\theta_1 \theta_2 + \theta'_1 \theta'_2)^2 \right) x_a. \tag{207}
\]

Meanwhile, \(g(= -\eta^*_1 \eta_2 + \eta^*_2 \eta_2) \) is given by
\[
g = 2 \mu_1 \mu_2 v^* - (\mu_1 \nu_2 + \nu_1 \mu_2)(u^* u - v^* v) - 2 \nu_1 \nu_2 u^* v, \tag{208}
\]
which depends on the \(S^3 \)-fibre, \(u, v \). \(S^3 \)-fibre is canceled in \(g^2 \):
\[
g^2 = 2 \mu_1 \mu_2 \nu_1 \nu_2 = \frac{32}{(1 + y_5)^2} \theta_1 \theta_2 \theta'_1 \theta'_2. \tag{209}
\]

Thus, though the \(S^3 \) cancellation is not “complete” in \[193 \] (because of \(g \)), with the renormalization \[195 \] in which only \(g^2 \) is concerned, \(S^3 \) is completely projected out to yield coordinates on \(S^{4|4} \). Consequently, the map \[193 \] with \[195 \] represents
\[
S^{7|4} \xrightarrow{g} S^{4|4} \subset S^{4|8}. \tag{210}
\]
The base manifold is \(S^{4|4} \), and then the corresponding fuzzy manifold is \(S_F^{4|4} \).
5 More supersymmetries

One may incorporate more supersymmetries based on $UOSp(N|4)$ algebras with $N \geq 3$. The dimension of the $UOSp(N|4)$ algebra is

$$\dim[uosp(N|4)] = 10 + \frac{1}{2}N(N - 1)4N = 10 + \frac{1}{2}N(N + 7). \quad (211)$$

We denote bosonic generators as $\Gamma_{ab} = -\Gamma_{ba}$ ($a, b = 1, 2, 3, 4, 5$), $\Gamma_{lm} = -\Gamma_{ml}$ ($l, m = 1, 2, \cdots, N$) and fermionic generators as $\Gamma_{l\alpha}$ ($\alpha = 1, 2, 3, 4$). They satisfy

\[
[\Gamma_{ab}, \Gamma_{cd}] = i(\delta_{ac}\Gamma_{bd} - \delta_{ad}\Gamma_{bc} + \delta_{bc}\Gamma_{ad} - \delta_{bd}\Gamma_{ac}),
\]

\[
[\Gamma_{ab}, \Gamma_{l\alpha}] = (\gamma_{ab})_{\beta\gamma}\Gamma_{l\beta},
\]

\[
[\Gamma_{ab}, \tilde{\Gamma}_{lm}] = 0,
\]

\[
\{\Gamma_{l\alpha}, \Gamma_{m\beta}\} = \sum_{a < b}(C\gamma_{ab})_{\alpha\beta}\Gamma_{l\delta} + \frac{1}{4}C_{\alpha\beta}\tilde{\Gamma}_{lm},
\]

\[
[\Gamma_{l\alpha}, \tilde{\Gamma}_{mn}] = (\gamma_{mn})_{pl}\Gamma_{p\alpha},
\]

\[
[\tilde{\Gamma}_{lm}, \tilde{\Gamma}_{np}] = -\delta_{ln}\tilde{\Gamma}_{mp} + \delta_{lp}\tilde{\Gamma}_{mn} - \delta_{mp}\tilde{\Gamma}_{ln} + \delta_{mn}\tilde{\Gamma}_{lp}, \quad (212)
\]

where C is the $SO(5)$ charge conjugation matrix 117 and $\gamma_{lm} = -\gamma_{ml}$ ($l < m$) are $SO(N)$ generators given by

$$\gamma_{lm} = \delta_{ln}\delta_{mp} - \delta_{lp}\delta_{mn}. \quad (213)$$

The $UOSp(N|4)$ quadratic Casimir is

$$C = \sum_{a < b}\Gamma_{ab}\Gamma_{ab} + C_{\alpha\beta}\sum_{l=1}^{N}\Gamma_{l\alpha}\Gamma_{l\beta} + \frac{1}{2}\sum_{l < m=1}^{N}\tilde{\Gamma}_{lm}\tilde{\Gamma}_{lm}. \quad (214)$$

The fundamental representation matrices of $uosp(N|4)$ are given by

\[
\Gamma_{ab} = \begin{pmatrix} \gamma_{ab} & 0 \\ 0 & 0 \end{pmatrix}, \quad \Gamma_{l\alpha} = \begin{pmatrix} 0_{3+l} & \tau_{\alpha} & 0 \\ -(C\tau_{\alpha})^{t} & 0 & 0 \\ 0 & 0 & 0_{N-l} \end{pmatrix}, \quad \tilde{\Gamma}_{lm} = \begin{pmatrix} 0_{4} & 0 \\ 0 & \gamma_{lm} \end{pmatrix}, \quad (215)
\]

where 0_{k} signify $k \times k$ zero-matrices, and τ_{α} are given by 126. Notice that $\tilde{\Gamma}_{lm}$ are taken to be anti-hermitian, $\tilde{\Gamma}_{lm}^{\dagger} = -\tilde{\Gamma}_{lm}$. We apply the Schwinger construction to 125 and define

\[
X_{a} = \Psi^{\dagger}\Gamma_{a}\Psi, \quad X_{ab} = \Psi^{\dagger}\Gamma_{ab}\Psi, \quad \Theta_{\alpha}^{(l)} = \Psi^{\dagger}\Gamma_{l\alpha}\Psi, \quad Y_{lm} = \Psi^{\dagger}\tilde{\Gamma}_{lm}\Psi, \quad (216)
\]

where $\Psi = (\Psi_{1}, \Psi_{2}, \Psi_{3}, \Psi_{4}, \Psi_{5}, \Psi_{6}, \cdots, \Psi_{N})^{t}$ in which Ψ_{α} ($\alpha = 1, 2, 3, 4$) are bosonic while Ψ_{l} ($l = 1, 2, \cdots, N$) are fermionic. Square of the radius of N-SUSY fuzzy four-supersphere is derived as

$$X_{a}X_{a} + 2\sum_{l=1}^{N}C_{\alpha\beta}\Theta_{\alpha}^{(l)}\Theta_{\beta}^{(l)} + \sum_{l < m=1}^{N}Y_{lm}Y_{lm} = \hat{n}(\hat{n} + 4 - N), \quad (217)$$
with \(\hat{n} = \Psi \dagger \Psi \). Here, we utilized

\[
\sum_{a=1}^{5} X_a X_a = 2 \sum_{a<b=1}^{5} X_{ab} X_{ab} = \hat{n}_B (\hat{n}_B + 4),
\]

\[
\sum_{l=1}^{N} C_{\alpha \beta} \Theta_{\alpha}^{(l)} \Theta_{\beta}^{(l)} = -\frac{N}{2} \hat{n}_B + \hat{n}_B \hat{n}_F + 2 \hat{n}_F,
\]

\[
\sum_{l<m=1}^{N} Y_{lm} Y_{lm} = \hat{n}_F (\hat{n}_F - N),
\]

(218)

with \(\hat{n}_B = \sum_{\alpha=1}^{4} \Psi_{\alpha} \dagger \Psi_{\alpha} \) and \(\hat{n}_F = \sum_{\sigma=1}^{N} \tilde{\Psi}_{\sigma} \dagger \tilde{\Psi}_{\sigma} \). \(X_a, \Theta_{\alpha}^{(l)}, Y_{lm} \) do not satisfy a closed algebra by themselves. As a similar manner to Sec.2.4, one may readily show that the minimally extended algebra that includes \(X_a, \Theta_{\alpha}^{(l)}, \) and \(Y_{lm} \) is \(su(4|N) \).

For \(UOSp(N|4) \) with \(\Psi \dagger \Psi = n \), the graded fully symmetric representation is constructed as

\[
|l_1, l_2, l_3, l_4 \rangle = \frac{1}{\sqrt{l_1! l_2! l_3! l_4!}} \Psi_1^{l_1} \Psi_2^{l_2} \Psi_3^{l_3} \Psi_4^{l_4} |0\rangle,
\]

\[
|m_1, m_2, m_3, m_4 \rangle_i = \frac{1}{\sqrt{m_1! m_2! m_3! m_4!}} \Psi_1^{m_1} \Psi_2^{m_2} \Psi_3^{m_3} \Psi_4^{m_4} \tilde{\Psi}_i^{l_1} |0\rangle,
\]

\[
|n_1, n_2, n_3, n_4 \rangle_{i_1 < i_2} = \frac{1}{\sqrt{n_1! n_2! n_3! n_4!}} \Psi_1^{n_1} \Psi_2^{n_2} \Psi_3^{n_3} \Psi_4^{n_4} \tilde{\Psi}_1 \tilde{\Psi}_2 \tilde{\Psi}_3 \tilde{\Psi}_4 |0\rangle,
\]

\[
|q_1, q_2, q_3, q_4 \rangle_{i_1 < i_2 \ldots < i_{N-1}} = \frac{1}{\sqrt{q_1! q_2! q_3! q_4!}} \Psi_1^{q_1} \Psi_2^{q_2} \Psi_3^{q_3} \Psi_4^{q_4} \tilde{\Psi}_1 \tilde{\Psi}_2 \tilde{\Psi}_3 \tilde{\Psi}_4 \ldots \tilde{\Psi}_{i_{N-1}} |0\rangle,
\]

\[
|r_1, r_2, r_3, r_4 \rangle = \frac{1}{\sqrt{r_1! r_2! r_3! r_4!}} \Psi_1^{r_1} \Psi_2^{r_2} \Psi_3^{r_3} \Psi_4^{r_4} \tilde{\Psi}_1 \tilde{\Psi}_2 \tilde{\Psi}_3 \tilde{\Psi}_4 \ldots \tilde{\Psi}_{N-1} \tilde{\Psi}_N |0\rangle,
\]

(219)

where \(l_1 + l_2 + l_3 + l_4 = m_1 + m_2 + m_3 + m_4 + 1 = n_1 + n_2 + n_3 + n_4 + 2 = \ldots = q_1 + q_2 + q_3 + q_4 + N - 1 = r_1 + r_2 + r_3 + r_4 + N = n \). Therefore, with \(D(n) \) (217), the dimension of (219) is derived as

\[
D_T = \sum_{l=0}^{N} N C_l \cdot D(n-l) = \frac{1}{3} (2n + 4 - N) \left((2n + 4 - N)^2 - 4 + 3N \right) 2^{N-4},
\]

(220)

for \(n \geq N - 3 \). (One may readily confirm that (220) reproduces the previous results (161), (187) for \(N = 1, 2 \).) For odd \(N, N = 2l + 1 \), the degeneracies of bosonic and fermionic states are respectively given by \(D_B = \sum_{k=0}^{l} 2l+1 C_{2k} \cdot D(n-2k) \) and \(D_F = \sum_{k=0}^{l} 2l+1 C_{2k+1} \cdot D(n-2k-1) \). Meanwhile, for even \(N, N = 2l \), the degeneracies are respectively \(D_B = \sum_{k=0}^{l} 2l C_{2k} \cdot D(n-2k) \) and \(D_F = \sum_{k=0}^{l-1} 2l C_{2k+1} \cdot D(n-2k-1) \). Schematically, \(S_F^{4|2N}(n) \) is expressed as a superposition of fuzzy four-superspheres with lower supersymmetries, \(S_F^{4|2N-2l} \), with different radii, \(n, n-1, \ldots, 1 \).
$n - 2, \cdots, n - l$.

\[S_{F}^{4|2N} (n) \simeq \sum_{m=0}^{l} iC_{m} \cdot S_{F}^{4|2N-2l} (n - m) \]

\[\simeq S_{F}^{4|2N-2l} (n) \oplus l \cdot S_{F}^{4|2N-2l} (n - 1) \oplus \frac{l(l - 1)}{2!} \cdot S_{F}^{4|2N-2l} (n - 2) \oplus \cdots \oplus S_{F}^{4|2N-2l} (n - l). \]

(221)

Explicitly,

\[S_{F}^{4|2N} (n) \simeq S_{F}^{4|2N-2} (n) \oplus S_{F}^{4|2N-2} (n - 1) \]

\[\simeq S_{F}^{4|2N-4} (n) \oplus 2S_{F}^{4|2N-4} (n - 1) \oplus S_{F}^{4|2N-4} (n - 2), \]

\[\simeq S_{F}^{4|2N-6} (n) \oplus 3S_{F}^{4|2N-6} (n - 1) \oplus 3S_{F}^{4|2N-6} (n - 2) \oplus S_{F}^{4|2N-6} (n - 3), \]

\[\simeq \cdots. \]

(222)

Replacing the Schwinger operator with a normalized $UOSp(4|N)$ spinor, i.e., $\Psi \rightarrow \psi$ and $\Psi^{\dagger} \rightarrow \psi^{\dagger}$ ($\psi^{\dagger} \psi = 1$) in (216), we introduce $x_{a}, \theta_{a}^{(l)}$ and y_{lm} that satisfy

\[x_{a}x_{a} + 2 \sum_{l=1}^{N} C_{\alpha\beta} \theta_{a}^{(l)} \theta_{b}^{(l)} + \sum_{l<m=1}^{N} y_{lm} y_{lm} = (\psi^{\dagger} \psi)^{2} = 1. \]

(223)

The original $SO(5)$ normalized spinor is embedded as

\[\phi = \begin{pmatrix} \phi_{1} \\ \phi_{2} \\ \phi_{3} \\ \phi_{4} \end{pmatrix} = \frac{1}{\sqrt{1 + \eta_{1}^{*} \eta_{1} + \eta_{2}^{*} \eta_{2} + \cdots + \eta_{N}^{*} \eta_{N}}} \begin{pmatrix} \psi_{1} \\ \psi_{2} \\ \psi_{3} \\ \psi_{4} \end{pmatrix}. \]

(224)

The normalized $UOSp(4|N)$ spinor ψ has the dimension $(7|2N)$. One may readily demonstrate the cancellation of the S^{3}-fibre in the graded Hopf map by following the similar arguments presented in the previous sections (especially Sec.4.3.3), and hence the present graded Hopf map signifies 12

\[S^{7|2N} \overset{S^{3}}{\longrightarrow} S^{4|2N}. \]

(225)

Compare (223) with (217). Due to the existence of fermionic degrees of freedom, the zero-point energy in (217) decreases with increase of the number of supersymmetry. For $N = 4$, the square of the radius of fuzzy supersphere (217) “saturates” the classical bound (223). In this sense, $N = 4$ is the “maximum”, otherwise the square of the radius takes negative value for sufficiently small n that satisfies $n < N - 4$. We have already discussed $N = 0, 1, 2$ cases. In the following subsections, we argue the remaining cases, $N = 3$ and 4.

12 The normalization corresponding to (223) is $(x_{a}, \theta_{a}^{(l)}) \rightarrow \sqrt{1 - \sum_{l<m=1}^{N} y_{lm} y_{lm}} (x_{a}, \theta_{a}^{(l)})$. After this normalization, the coordinates satisfy $x_{a}x_{a} + 2 \sum_{l=1}^{N} C_{\alpha\beta} \theta_{a}^{(l)} \theta_{b}^{(l)} = 1$.

33
5.1 $N = 3$ graded 2nd Hopf map and fuzzy four-supersphere

The dimension of the $UOSp(3|4)$ algebra is

$$\dim[uosp(3|4)] = 13|12 = 25.$$ \hfill (226)

From (213), we derive the $SO(3)$ generators γ_{ij} ($i, j = 1, 2, 3$) as

$$\gamma_{12} = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \gamma_{23} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}, \quad \gamma_{31} = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}. \quad \hfill (227)$$

With the identification $\tilde{\Gamma}_i = -\frac{1}{2} \epsilon_{ijk} \tilde{\Gamma}_{jk}$, $\tilde{\Gamma}_i$ satisfy the $SU(2)$ algebra

$$[\tilde{\Gamma}_i, \tilde{\Gamma}_j] = \epsilon_{ijk} \tilde{\Gamma}_k. \quad \hfill (228)$$

Then, with

$$Y_i = \Psi^\dagger \tilde{\Gamma}_i \Psi,$$ \hfill (229)

square of the radius of $N = 3$ fuzzy four-supersphere is obtained as

$$X_a X_a + 2 \sum_{i=1}^{3} C_{\alpha\beta} \Theta^{(i)}_{\alpha} \Theta^{(i)}_{\beta} + \sum_{i=1}^{3} Y_i Y_i = (\Psi^\dagger \Psi)(\Psi^\dagger \Psi + 1). \quad \hfill (230)$$

The corresponding classical relation is

$$x_a x_a + 2 \sum_{i=1}^{3} C_{\alpha\beta} \theta^{(i)}_{\alpha} \theta^{(i)}_{\beta} + \sum_{i=1}^{3} y_i y_i = (\psi^\dagger \psi)^2 = 1.$$ \hfill (231)

For $\Psi^\dagger \Psi = n$, the dimensions of the bosonic and fermionic states in (219) with $N = 3$ are respectively given by

$$D_B = D(n) + 3D(n-2) = \frac{1}{3}(2n^2 + n + 3)(n + 1),$$

$$D_F = 3D(n-1) + D(n-3) = \frac{1}{3}(2n^2 + 3n + 4)n, \quad \hfill (232)$$

and the total dimension is

$$D_T = D_B + D_F = \frac{1}{3}(2n + 1)(2n^2 + 2n + 3). \quad \hfill (233)$$

5.2 $N = 4$ graded 2nd Hopf map and fuzzy four-supersphere

The dimension of the $UOSp(4|4)$ algebra is

$$\dim[uosp(4|4)] = 16|16 = 32.$$ \hfill (234)
From (213), the SO(4) generators are obtained as

\[
\gamma_{12} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \quad \gamma_{13} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \quad \gamma_{14} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix},
\]

\[
\gamma_{23} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix}, \quad \gamma_{24} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \quad \gamma_{34} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{pmatrix},
\]

Since so(4) \(\simeq su(2) \oplus su(2)\), two independent sets of SU(2) generators can be constructed with the SO(4) generators \(\tilde{\Gamma}_{ij}\) \((i, j, k = 1, 2, 3)\):

\[
\tilde{\Gamma}_i = -\frac{1}{4} \epsilon_{ijk} \tilde{\Gamma}_{jk} + \frac{1}{2} \tilde{\Gamma}_{4i}, \quad \tilde{\Gamma}'_i = -\frac{1}{4} \epsilon_{ijk} \tilde{\Gamma}'_{jk} - \frac{1}{2} \tilde{\Gamma}'_{4i},
\]

which satisfy

\[
[\tilde{\Gamma}_i, \tilde{\Gamma}_j] = \epsilon_{ijk} \tilde{\Gamma}_k, \quad [\tilde{\Gamma}_i, \tilde{\Gamma}'_j] = \epsilon_{ijk} \tilde{\Gamma}'_k, \quad [\tilde{\Gamma}_i, \tilde{\Gamma}'_j] = 0.
\]

Then, square of the radius of \(N = 4\) fuzzy four-supersphere is written as

\[
X_a X_a + C_{\alpha\beta} \sum_{l=1}^{4} \Theta^{(l)}_{\alpha} \Theta^{(l)}_{\beta} + \sum_{i=1}^{3} Y_i Y_i + \sum_{i=1}^{3} Y'_i Y'_i = (\Psi^\dagger \Psi)^2,
\]

and the corresponding classical relation is

\[
x_a x_a + C_{\alpha\beta} \sum_{l=1}^{4} \theta^{(l)}_{\alpha} \theta^{(l)}_{\beta} + \sum_{i=1}^{3} y_i y_i + \sum_{i=1}^{3} y'_i y'_i = (\psi^\dagger \psi)^2 = 1.
\]

The cancellation of the zero-point energy in (238) suggests equal numbers of bosonic and the fermionic states. Indeed,

\[
D_B = D(n) + 6D(n-2) + D(n-4) = \frac{4}{3} n(n^2 + 2),
\]

\[
D_F = 4D(n-1) + 4D(n-3) = \frac{4}{3} n(n^2 + 2).
\]

The total dimension is

\[
D_T = D_B + D_F = \frac{8}{3} n(n^2 + 2).
\]

6 Symmetry enhancement as quantum fluctuations

As discussed in Sec.4.2.4, the algebraic structure of \(N = 1\) fuzzy four-supersphere is given by \(su(4|1)\). In this section, we provide a physical interpretation of the \(SU(4|1)\) structure by evaluating quantum fluctuations of fuzzy two- and four-superspheres exemplified by correlation functions. The method is taken from Balachandran et al.[59, 31]. We only discuss \(N = 1\) fuzzy two- and four-superspheres, but generalizations to more SUSY cases are straightforward.
6.1 $N = 1$ fuzzy two-supersphere

We first define the supercoherent state on $N = 1$ fuzzy two-supersphere. With the coordinates X_i and x_i, the super-coherent state, $|\omega\rangle$, is defined so as to satisfy

$$ (x_i X_i + \epsilon_{\alpha\beta}\theta_\alpha \Theta_\beta)|\omega\rangle = n|\omega\rangle. \quad (242) $$

$|\omega\rangle$ is derived as

$$ |\omega\rangle = \frac{1}{\sqrt{n!}}(\Psi^\dagger \psi)^n|0\rangle = \frac{1}{\sqrt{n!}}(\psi_1 \Psi_1^\dagger + \psi_2 \Psi_2^\dagger - \eta \bar{\Psi}\dagger)^n|0\rangle, \quad (243) $$

where Ψ is the graded Schwinger operator and ψ the normalized spinor related to X_i, Θ_α and x_i, θ_α by (47) and (33) respectively. $|\omega\rangle$ is nth order polynomials expanded by the graded fully symmetric representation Ψ_2. $|\omega\rangle$ is normalized as

$$ \langle \langle \omega | \omega \rangle = 1, \quad (245) $$

with dual state $\langle \langle \omega |$ given by

$$ \langle \langle \omega | = \frac{1}{\sqrt{n!}}(\psi^\dagger \Psi)^n. \quad (246) $$

The expectation values of X_i and Θ_α are calculated as

$$ \langle \langle \omega | X_i | \omega \rangle = nx_i, \quad \langle \langle \omega | \Theta_\alpha | \omega \rangle = n\theta_\alpha. \quad (247) $$

Meanwhile, the correlation functions are

$$ \langle \langle \omega | X_i X_j | \omega \rangle = n^2 x_i x_j + 4n \psi^\dagger L_i P_- L_j \psi, $$

$$ \langle \langle \omega | X_i \Theta_\alpha | \omega \rangle = n^2 x_i \theta_\alpha + 4n \psi^\dagger L_i P_- L_\alpha \psi, $$

$$ \langle \langle \omega | \Theta_\alpha \Theta_\beta | \omega \rangle = n^2 \theta_\alpha \theta_\beta + 4n \psi^\dagger L_\alpha P_- L_\beta \psi, \quad (248) $$

where P_- denotes a projection operator

$$ P_- = 1 - \psi \psi^\dagger. \quad (250) $$

In the classical limit $n \rightarrow \infty$, the first terms of the order n^2 are dominant and the fuzzy two-supersphere is reduced to the ordinary commutative supersphere. The second terms of the order

13 Ψ and ψ respectively satisfy

$$ L_i \Psi \cdot X_i + \epsilon_{\alpha\beta} L_\alpha \Psi \cdot \Theta_\beta = \frac{1}{2} \psi (\Psi^\dagger \Psi + 1), $$

$$ L_i \psi \cdot x_i + \epsilon_{\alpha\beta} L_\alpha \psi \cdot \theta_\beta = \frac{1}{2} \psi. \quad (244) $$

14 With $P_+ = \psi \psi^\dagger$, $P_- \quad (250)$ satisfies the following relations,

$$ P_+ \psi = \psi, \quad P_- \psi = 0, $$

$$ P_+ + P_- = 1, \quad P_+^2 = P_-, \quad P_+ P_- = P_- P_+ = 0. \quad (249) $$

36
n exhibit quantum fluctuations particular to fuzzy geometry. The second terms are evaluated as

\[4 \psi^\dagger L_i P_j L_j \psi = -x_i x_j + i \epsilon_{ijk} x_k + \delta_{ij}, \]
\[4 \psi^\dagger L_i P - L_\alpha \psi = -x_i \theta_\alpha + \frac{1}{2} (\sigma_\alpha \beta_\alpha (\theta_\beta + \theta_\beta)), \]
\[4 \psi^\dagger L_\alpha P - L_\beta \psi = -\theta_\alpha \theta_\beta + \frac{1}{2} (\epsilon \sigma_\alpha \beta_\alpha \theta_i x_i + \frac{3}{2} \epsilon \alpha \beta z) - 2 \epsilon \alpha \beta. \]

(251)

Here, \(\vartheta_\alpha \) and \(z \) are defined by

\[\vartheta_\alpha = 2 \psi^\dagger D_\alpha \psi, \quad z = \psi^\dagger H \psi, \]

(252)

where \(D_\alpha \) and \(H \) are

\[D_\alpha = \frac{1}{2} \begin{pmatrix} 0 & -\tau_\alpha \\ -(\epsilon \tau_\alpha)^t & 0 \end{pmatrix}, \quad H = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}, \]

(253)

with \(\tau_1 = (1,0)^t, \tau_2 = (0,1)^t \) and \(\epsilon = i \sigma_2 \). They are considered as “new emerging coordinates” by quantum fluctuation. The corresponding fuzzy coordinates of \(x_i, \theta_\alpha, \vartheta_\alpha \) and \(z \) are \(X_i, \Theta_\alpha, \Theta_\alpha \) and \(Z \) defined in (300) (see Appendix A.1.1), and they amount to the \(SU(2|1) \) algebra. Thus, the hidden \(SU(2|1) \) structure appears as quantum fluctuation of fuzzy two-supersphere.

6.2 \(N = 1 \) fuzzy four-supersphere

With similar manner to Sec 6.1, the supercoherent state on \(N = 1 \) fuzzy four-supersphere, \(| \omega \rangle \), is introduced as

\[(x_\alpha X_\alpha + 2 C_\alpha \beta \theta_\alpha \Theta_\beta) | \omega \rangle = n | \omega \rangle, \]

(254)

where \(X_\alpha, \Theta_\alpha \) and \(x_\alpha, \theta_\alpha \) are coordinates on \(S^{4|2}_F \) and \(S^{4|2} \), respectively. Explicitly, \(| \omega \rangle \) is given by

\[| \omega \rangle = \frac{1}{\sqrt{n!}} (\Psi^\dagger \psi)^n | 0 \rangle = \frac{1}{\sqrt{n!}} (\psi_1 \Psi_1^\dagger + \psi_2 \Psi_2^\dagger + \psi_3 \Psi_3^\dagger + \psi_4 \Psi_4^\dagger - \eta \Psi^\dagger)^n | 0 \rangle, \]

(255)

where \(\Psi \) and \(\psi \) are respectively the graded Schwinger operator \(\psi^{15} \) and normalized spinor \(\psi^{129} \). \(| \omega \rangle \) can be expanded by the graded fully symmetric representation \(\psi^{157} \). The dual state \(\langle \langle \omega | \) satisfying

\[\langle \langle \omega | \omega \rangle = 1, \]

(257)

is given by

\[\langle \langle \omega | = \frac{1}{\sqrt{n!}} | 0 \rangle (\psi^\dagger \Psi)^n. \]

(258)

\(^{15}\) \(\Psi \) and \(\psi \) satisfy

\[\Gamma_\alpha \Psi \cdot X_\alpha + 2 C_\alpha \beta \Gamma_\alpha \Psi \cdot \Theta_\beta = \Psi (\Psi^\dagger \Psi + 3), \]
\[\Gamma_\alpha \psi \cdot x_\alpha + 2 C_\alpha \beta \Gamma_\alpha \psi \cdot \theta_\beta = \psi. \]

(256)
The expectation values of X_a and Θ_α are
\[
\langle \omega | X_a | \omega \rangle = n x_a, \quad \langle \omega | \Theta_\alpha | \omega \rangle = n \theta_\alpha.
\]
(259)
The correlation functions are
\[
\langle \langle \omega | X_a X_b | \omega \rangle = n^2 x_a x_b + n \psi^\dagger \Gamma_{ab} \psi,
\]
\[
\langle \langle \omega | X_a \Theta_\alpha | \omega \rangle = n^2 x_a \theta_\alpha + n \psi^\dagger \Gamma_{a\alpha} \psi,
\]
\[
\langle \langle \omega | \Theta_\alpha \Theta_\beta | \omega \rangle = n^2 \theta_\alpha \theta_\beta + n \psi^\dagger \Gamma_{\alpha\beta} \psi,
\]
(260)
where
\[
P_- = 1 - \psi \psi^\dagger.
\]
(261)
The second terms of the right-hand side of (260) are calculated as
\[
\psi^\dagger \Gamma_{ab} \Gamma_{ab} \psi = -x_a x_b + 2i x_{ab} + \delta_{ab} z + \frac{4}{3} \delta_{ab},
\]
\[
\psi^\dagger \Gamma_{a\alpha} \Gamma_{a\alpha} \psi = -x_a \theta_\alpha + \frac{1}{2} (\gamma_a)_{\beta\alpha} (\theta_\beta + \vartheta_\beta),
\]
\[
\psi^\dagger \Gamma_{\alpha\beta} \Gamma_{\alpha\beta} \psi = -\theta_\alpha \theta_\beta - \frac{1}{2} \sum_{a<b} (C_{\gamma_{ab}})_{\alpha\beta} x_{ab} - \frac{1}{8} (C_{\gamma_a})_{\alpha\beta} x_a + \frac{5}{24} C_{\alpha\beta} z - \frac{1}{3} C_{\alpha\beta}.
\]
(262)
Thus, for fuzzy four-supersphere, we have new coordinates, x_{ab}, ϑ_α, z, defined by
\[
x_{ab} = \psi^\dagger \Gamma_{ab} \psi, \quad \vartheta_\alpha = \psi^\dagger D_{\alpha} \psi, \quad z = \psi^\dagger H \psi.
\]
(263)
Here, Γ_{ab}, D_α and H are respectively (124), (170) and (174). The fuzzy coordinates corresponding to twenty four coordinates, x_a, ϑ_α, x_{ab}, ϑ_α, z, are, X_a, Θ_α, X_{ab}, Θ_α, Z, defined in Sec.4.2.4, which satisfy the $SU(4|1)$ algebra (see also Appendix A.2.1). Thus, we confirmed, similar to the fuzzy two-supersphere case, the enhanced $SU(4|1)$ structure is brought by quantum fluctuation of fuzzy four-supersphere.

7 Summary

We performed a systematic study of fuzzy superspheres and graded Hopf maps based on $UOSp(N|2)$ and $UOSp(N|4)$, respectively. For the positive definiteness of square of the radius, the construction of fuzzy two-superspheres is restricted to $N = 1, 2$, and fuzzy four-superspheres to $N = 1, 2, 3, 4$ (see Tables 1 and 2). The graded Hopf maps were introduced as the classical counterpart of the fuzzy superspheres. We derived an explicit realization of the 1st and 2nd graded Hopf maps:
\[
S^3|2N \xrightarrow{S^1} S^2|2N, \quad S^7|2N \xrightarrow{S^3} S^4|2N.
\]
(264)
The particular feature of the present construction is based on the super Lie algebraic structures. With use of the graded Schwinger operators, super Lie group symmetries are naturally incorporated and the graded fully symmetric representation is readily derived. Adoption of the graded
fully symmetric representation brings a particular feature to fuzzy superspheres: fuzzy superspheres are represented as a “superposition” of fuzzy superspheres with lower supersymmetries. The algebras of the fuzzy two- and four-superspheres are enhanced from the original algebras, $uosp(N|2)$ and $uosp(N|4)$, to the larger algebras, $su(2|N)$ and $su(4|N)$, respectively. We also argued such enhancement in view of quantum fluctuation of fuzzy spheres by evaluating correlation functions.

Since the present work is a natural generalization of precedent low dimensional fuzzy superspheres, one could pursue similar applications performed in low dimensions, such as realization in string theory, construction of supersymmetric gauge theories on fuzzy superspheres. Applications to topologically non-trivial many-body models would be interesting, too. The Hopf maps have applications in many branches of physics [60] and also in quantum computation [61]. It may be intriguing to see the roles of the graded Hopf maps in the context of superqubits [62].

In this work, we focused on the construction of fuzzy supersphere whose bosonic dimension is two or four. This is because of the restriction of isomorphism between unitary-symplectic and orthogonal groups, $USp(2) \simeq SO(3)$, $USp(4) \simeq SO(5)$. At the present, we do not know how to generalize the present construction to even higher dimensions. Another remaining mathematical issue we have not fully discussed is the bundle structure of the graded Hopf maps. At least, these may deserve further investigations.

Acknowledgment

The author would like to thank Professor Harald Grosse for helpful email correspondences and Professor Christian Fronsdal for useful discussions at Miami 2010 conference. This research was partially supported by a Grant-in-Aid for Scientific Research from the Ministry of Education,
The SU We summarize formulae about \(A\) Appendix

Science, Sports and Culture of Japan (Grant No.23740212).

Appendix

A \(SU(M|N)\) algebra and fuzzy complex projective superspace

We summarize formulae about \(SU(M|N)\) algebra. The dimension is

\[
\dim[su(M|N)] = M^2 + N^2 - 1|2MN = M^2 + 2MN + N^2 - 1.
\]

The maximal bosonic subalgebra of \(su(M|N)\) is \(su(M) \oplus su(N) \oplus u(1)\), and its fundamental representation matrices are given by

\[
S_A = \begin{pmatrix} s_A & 0 \\ 0 & 0 \end{pmatrix}, \quad T_P = \begin{pmatrix} 0 & 0 \\ 0 & t_P \end{pmatrix}, \quad H = \frac{1}{N} \begin{pmatrix} N \cdot 1_M & 0 \\ 0 & M \cdot 1_N \end{pmatrix},
\]

with \(A = 1, 2, \cdots, M^2 - 1\) and \(P = 1, 2, \cdots, N^2 - 1\). \(s_A\) and \(t_P\) in (266) satisfy

\[
[s_A, s_B] = if_{ABC}s_C, \quad [t_P, t_Q] = if'_{PQR}t_R,
\]

with \(SU(M)\) and \(SU(N)\) structure constants, \(f_{ABC}\) and \(f'_{PQR}\). The fermionic generators are

\[
Q_{\alpha \sigma} = \begin{pmatrix} 0_{M+\sigma-1} \tau_{\alpha} & 0 \\ 0 & 0 \\ 0 & 0_{N-\sigma} \end{pmatrix}, \quad \tilde{Q}_{\sigma \alpha} = \begin{pmatrix} 0_{M+\sigma-1} & 0 & 0 \\ \tau_{\alpha}^{\top} & 0 & 0 \\ 0 & 0 & 0_{N-\sigma} \end{pmatrix},
\]

where \(\alpha\) stands for the \(SU(M)\) spinor index \((\alpha = 1, 2, \cdots, M)\), and \(\sigma\) does the \(SU(N)\) index \((\sigma = 1, 2, \cdots, N)\), and

\[
\tau_{\alpha} = (0, \cdots, 0, 1, 0, \cdots, 0)^t.
\]

Therefore, the only non-zero components of \(Q_{\alpha \sigma}\) and \(\tilde{Q}_{\sigma \alpha}\) are, \((\alpha, M + \sigma)\) and \((M + \sigma, \alpha)\), respectively:

\[
(Q_{\alpha \sigma})_{\beta \tau} = \delta_{\alpha \beta} \delta_{M+\sigma, \tau}, \quad (\tilde{Q}_{\sigma \alpha})_{\beta \tau} = \delta_{\beta, M+\sigma} \delta_{\tau \alpha}.
\]

Then,

\[
(Q_{\alpha \sigma})^t = \tilde{Q}_{\sigma \alpha}.
\]

The \(SU(M|N)\) algebra is given by

\[
[S_A, S_B] = if_{ABC}S_C, \quad [S_A, Q_{\alpha \sigma}] = (s_A)_{\beta \alpha} Q_{\beta \sigma}, \quad [S_A, \tilde{Q}_{\sigma \alpha}] = -(s_A)_{\alpha \beta} \tilde{Q}_{\beta \sigma},
\]

\[
[S_A, T_P] = 0, \quad [Q_{\alpha \sigma}, Q_{\beta \tau}] = \{Q_{\alpha \sigma}, \tilde{Q}_{\tau \beta}\} = 0,
\]

\[
\{Q_{\alpha \sigma}, \tilde{Q}_{\tau \beta}\} = 2\delta_{\sigma \tau}(s_A)_{\beta \alpha} S_A + 2\delta_{\alpha \beta}(t_P)_{\sigma \tau} T_P + \frac{1}{M} \delta_{\sigma \tau} \delta_{\alpha \beta} H,
\]

\[
[Q_{\alpha \sigma}, T_P] = (t_P)_{\tau \sigma} Q_{\alpha \tau}, \quad [\tilde{Q}_{\sigma \alpha}, T_P] = -(t_P)_{\tau \sigma} \tilde{Q}_{\alpha \tau},
\]

\[
[T_P, T_Q] = if'_{PQR}T_R, \quad [S_A, \Gamma] = [T_P, H] = 0,
\]

\[
[Q_{\alpha \sigma}, H] = \frac{M - N}{N} Q_{\alpha \sigma}, \quad [\tilde{Q}_{\sigma \alpha}, H] = -\frac{M - N}{N} \tilde{Q}_{\sigma \alpha},
\]

(272)
and the Casimir is
\[
C = 2 \sum_{A=1}^{M^2-1} S_A S_A - \sum_{a=1}^{M} \sum_{\sigma=1}^{N} (Q_{a\sigma} \hat{Q}_{\sigma a} - \hat{Q}_{\sigma a} Q_{a\sigma}) - 2 \sum_{P=1}^{N^2-1} T_P T_P - \frac{N}{M(M-N)} H^2.
\]

(273)

We apply the Schwinger construction to \(X = S_A, Q_{a\sigma}, \hat{Q}_{\sigma a}, T_P, H\):
\[
\hat{X} = \Psi^\dagger X \Psi,
\]
where
\[
\Psi = (\Psi_1, \Psi_2, \ldots, \Psi_M, \tilde{\Psi}_1, \tilde{\Psi}_2, \ldots, \tilde{\Psi}_N)^t,
\]
satisfying
\[
[\Psi_\alpha, \Psi^\dagger_\beta] = \delta_{\alpha\beta}, \quad \{\tilde{\Psi}_\sigma, \tilde{\Psi}^\dagger_\tau\} = \delta_{\sigma\tau}, \quad [\Psi_\alpha, \tilde{\Psi}_\sigma] = 0.
\]

(276)

Inserting (274) to (273), the Casimir is expressed as
\[
C = \frac{M - N - 1}{M - N} \hat{n}(\hat{n} + M - N),
\]
with \(\hat{n} = \Psi^\dagger \Psi\). Here, we used
\[
\sum_{A=1}^{M^2-1} \hat{S}_A \hat{S}_A = \frac{M - 1}{2M} \hat{n}_B(\hat{n}_B + M),
\]
\[
\sum_{P=1}^{N^2-1} \hat{T}_P \hat{T}_P = -\frac{N + 1}{2N} \hat{n}_F(\hat{n}_F - N),
\]
\[
\sum_{a=1}^{M} \sum_{\sigma=1}^{N} (Q_{a\sigma} \hat{Q}_{\sigma a} - \hat{Q}_{\sigma a} Q_{a\sigma}) = N \hat{n}_B - 2 \hat{n}_B \hat{n}_F - M \hat{n}_F,
\]
\[
\hat{H}^2 = \frac{1}{N^2}(N \hat{n}_B + M \hat{n}_F)^2,
\]

(278)

with \(\hat{n}_B = \sum_{a=1}^{M} \psi_\alpha^\dagger \psi_\alpha, \hat{n}_F = \sum_{\sigma=1}^{N} \tilde{\psi}_\sigma^\dagger \tilde{\psi}_\sigma\). The Casimir eigenvalues are regarded as the square of the radius of fuzzy complex projective superspaces, \(\mathbb{C}P^{M-1|N}_F\). Notice that the coefficient of the right-hand side of (277) vanishes for \(M = N + 1\), and is not well defined for \(M = N\). In such cases, taking away of the common vanishing or divergent coefficient, we may regard the square of the radius of \(\mathbb{C}P^{M-1|N}_F\) as
\[
n(n + M - N).
\]

(279)

The classical counterpart of (274) reads as
\[
x = \psi^\dagger X \psi,
\]
where \(\psi\) is a normalized \(SU(M|N)\) spinor \(\psi = (\psi_1, \psi_2, \ldots, \psi_M, \tilde{\psi}_1, \tilde{\psi}_2, \ldots, \tilde{\psi}_N)^t\) with \(\psi^\dagger \psi = 1\) regarded as coordinates on \(S^{2M-1|2N}\). \(U(1)\) phase of \(\psi\) is canceled in (280), and thus (280) signifies a generalized graded 1st Hopf map,
\[
S^{2M-1|2N} \xrightarrow{S^1} \mathbb{C}P^{M-1|N}_F.
\]

(281)

See Ref.[50] for more details about \(\mathbb{C}P^{M-1|N}_F\).
A.1 $SU(2|N)$ algebra and $\mathbb{C}P^1|N$

The dimension of the $SU(2|N)$ algebra is

$$\dim[su(2|N)] = N^2 + 3|4N = N^2 + 4N + 3.$$ \hfill (282)

The bosonic generators (266) are given by

$$L_i = \frac{1}{2} \begin{pmatrix} \sigma_i & 0 \\ 0 & 0 \end{pmatrix}, \quad T_p = \begin{pmatrix} 0 & 0 \\ 0 & t_p \end{pmatrix}, \quad H = \frac{1}{N} \begin{pmatrix} N \cdot 1_2 & 0 \\ 0 & 2 \cdot 1_N \end{pmatrix},$$ \hfill (283)

which respectively correspond to $SU(2)$, $SU(N)$ and $U(1)$ generators. To clarify relations to the subalgebra $uosp(N|2)$, we separate the $SU(N)$ generators into symmetric and antisymmetric matrices:

$$T_S^t = T_S, \quad T_I^t = -T_I,$$ \hfill (284)

with $S = 1, 2, \cdots, N(N + 1)/2 - 1$ and $I = 1, 2, \cdots, N(N - 1)/2$. Note T_I are pure imaginary antisymmetric matrices that satisfy the $SO(N)$ algebra by themselves. Instead of $Q_{\alpha\sigma}$ and $\bar{Q}_{\sigma\alpha}$ [268], we introduce the following fermionic generators

$$L_{\alpha\sigma} = \frac{1}{2} \begin{pmatrix} 0_{1+\sigma} & \tau_\alpha & 0 \\ -(\epsilon_\sigma)^t & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad D_{\alpha\sigma} = \frac{1}{2} \begin{pmatrix} 0_{1+\sigma} & -\tau_\alpha & 0 \\ -(\epsilon_\sigma)^t & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$ \hfill (285)

with $\epsilon = i\sigma_2$. $L_{\alpha\sigma}$ and $D_{\alpha\sigma}$ are related to $Q_{\alpha\sigma}$ and $\bar{Q}_{\sigma\alpha}$ as

$$Q_{\alpha\sigma} = L_{\alpha\sigma} - D_{\alpha\sigma}, \quad \bar{Q}_{\sigma\alpha} = -\epsilon_{\alpha\beta}(L_{\beta\sigma} + D_{\beta\sigma}),$$ \hfill (286)

or

$$L_{\alpha\sigma} = \frac{1}{2}(Q_{\alpha\sigma} + \epsilon_{\alpha\beta}\bar{Q}_{\sigma\beta}), \quad D_{\alpha\sigma} = -\frac{1}{2}(Q_{\alpha\sigma} - \epsilon_{\alpha\beta}\bar{Q}_{\sigma\beta}).$$ \hfill (287)

Therefore,

$$Q_{\alpha\sigma}\bar{Q}_{\sigma\alpha} - \bar{Q}_{\sigma\alpha}Q_{\alpha\sigma} = -2\epsilon_{\alpha\beta}(L_{\alpha\sigma}L_{\beta\sigma} - D_{\alpha\sigma}D_{\beta\sigma}).$$ \hfill (288)

$L_{\alpha\sigma}$ and $D_{\alpha\sigma}$ act as $UOSp(N|2)$ spinor as we shall see below. With $L_{\alpha\sigma}$ and $D_{\alpha\sigma}$, the $SU(2|N)$ algebra is rewritten as

$$[L_i, L_j] = i\epsilon_{ijk}L_k, \quad [L_i, L_{\alpha\sigma}] = \frac{1}{2}(\sigma_i)_{\beta\alpha}L_{\beta\sigma}, \quad [L_i, D_{\alpha\sigma}] = \frac{1}{2}(\sigma_i)_{\beta\alpha}D_{\beta\sigma},$$

$$\{L_{\alpha\sigma}, L_{\beta\tau} = -\{D_{\alpha\sigma}, D_{\beta\tau} = \frac{1}{2}\delta_{\sigma\tau}(\epsilon_\sigma)_{\alpha\beta}L_i - \epsilon_{\alpha\beta}(t_I)_{\sigma\tau}T_I,$$

$$\{L_{\alpha\sigma}, D_{\beta\tau} = -\epsilon_{\alpha\beta}(t_S)_{\sigma\tau}T_S - \frac{1}{4}\epsilon_{\alpha\beta}\delta_{\sigma\tau}H, \quad [L_{\alpha\sigma}, T_S] = -(t_S)_{\sigma\tau}D_{\alpha\tau}, \quad [L_{\alpha\sigma}, T_I] = (t_I)_{\sigma\tau}L_{\alpha\tau},$$

$$[D_{\alpha\sigma}, T_S] = -(t_S)_{\sigma\tau}L_{\alpha\tau}, \quad [D_{\alpha\sigma}, T_I] = (t_I)_{\sigma\tau}D_{\alpha\tau}, \quad [L_{\alpha\sigma}, H] = -\frac{2 - N}{N}D_{\alpha\sigma}, \quad [D_{\alpha\sigma}, H] = -\frac{2 - N}{N}L_{\alpha\sigma},$$

$$[T_P, T_Q] = if'_{PQR}T_R.$$ \hfill (289)
where t_S and t_I are respectively $N \times N$ symmetric and antisymmetric matrices of $SU(N)$ generators t_P. From (289), one may see that L_i, $L_{\alpha\sigma}$, T_I satisfy a closed subalgebra, the $uosp(N|2)$.

We introduce the fuzzy coordinates of $\mathbb{C}P^1_{N|F}$ as

$$X_i = 2\Psi^\dagger L_i \Psi, \quad \Theta^{(\sigma)}_\alpha = 2\Psi^\dagger L_{\alpha\sigma} \Psi, \quad \Theta^{(\sigma)}_\alpha = 2\Psi^\dagger D_{\alpha\sigma} \Psi,$$

$$Y_P = 2\Psi^\dagger T_P \Psi, \quad Z = \Psi^\dagger H \Psi,$$

(290)

with the Schwinger operator $\Psi = (\Psi_1, \Psi_2, \tilde{\Psi}_1, \cdots, \tilde{\Psi}_N)^t$. Square of the radius of $\mathbb{C}P^1_{N|F}$ is derived as

$$\sum_{i=1}^3 X_i X_i + \sum_{\alpha, \beta=1}^N \sum_{\sigma=1}^N \epsilon_{\alpha\beta}(\Theta^{(\sigma)}_\alpha \Theta^{(\sigma)}_\beta - \Theta^{(\sigma)}_\alpha \Theta^{(\sigma)}_\beta) - \sum_{P=1}^{N^2-1} Y_P Y_P - \frac{N}{2-N} Z^2$$

$$= \frac{2(1-N)}{2-N} \hat{n}(\hat{n} + 2 - N),$$

(291)

where $\hat{n} = \Psi^\dagger \Psi$. Here, we used

$$X_i X_i = \hat{n}_B (\hat{n}_B + 2),$$

$$\epsilon_{\alpha\beta}(\Theta^{(\sigma)}_\alpha \Theta^{(\sigma)}_\beta - \Theta^{(\sigma)}_\alpha \Theta^{(\sigma)}_\beta) = -2N \hat{n}_B + 4 \hat{n}_F \hat{n}_F + 4 \hat{n}_F,$$

$$Y_P Y_P = -\frac{2(N+1)}{N} \hat{n}_F (\hat{n}_F - N),$$

$$Z^2 = (\hat{n}_B + \frac{2}{N} \hat{n}_F)^2,$$

(292)

with $\hat{n}_B = \Psi_1^\dagger \Psi_1 + \Psi_2^\dagger \Psi_2$ and $\hat{n}_F = \sum_{\sigma=1}^N \tilde{\Psi}_\sigma^\dagger \tilde{\Psi}_\sigma$. For $\mathbb{C}P^1_{N|F}$, square of the radius is proportional to

$$n(n + 2 - N).$$

(293)

Notice that, for $n < N - 2$, (293) becomes negative. This situation is similar to $S^2_{F^{2N}}$ (see the discussions below (89)).

A.1.1 su(2|1)

The dimension of the $SU(2|1)$ algebra is

$$\dim[su(2|1)] = 4|4 = 8.$$

(294)

From (289), the $SU(2|1)$ algebra reads as

$$[L_i, L_j] = i\epsilon_{ijk} L_k, \quad [L_i, L_\alpha] = \frac{1}{2}(\sigma_1)_{\beta\alpha} L_\beta, \quad [L_i, D_\alpha] = \frac{1}{2}(\sigma_1)_{\beta\alpha} D_\beta,$$

$$\{L_\alpha, L_\beta\} = \{-D_\alpha, D_\beta\} = \frac{1}{2}\delta_{\alpha\beta}(\epsilon_\gamma)_{\alpha\beta} L_\gamma, \quad \{L_\alpha, D_\beta\} = \frac{1}{4} \epsilon_{\alpha\beta} H,$$

$$[L_\alpha, H] = -D_\alpha, \quad [D_\alpha, H] = -L_\alpha.$$

(295)
The $SU(2|1)$ algebra $\mathcal{S}U(2|1)$ is isomorphic to the $UOSp(2|2)$ algebra $\mathcal{U}OSp(2|2)$ with the identification $(L_\alpha, iD_\alpha) = L_\alpha$ and $H = 2i\Gamma$. The maximal bosonic subalgebra of $su(2|1)$ is $su(2) \oplus u(1)$. The $uosp(1|2)$ is realized as the subalgebra by L_i and L_α in $\mathcal{S}U(2|1)$. The $SU(2|1)$ irreducible representation is specified by “superspin” indices j (integers or half-integers) and g (complex value). For details, see Refs. [55, 63]. $SU(2|1)$ has two Casimirs, quadratic and cubic. The quadratic Casimir is given by

$$C = L_i L_i + \epsilon_{\alpha \beta} L_\alpha L_\beta - \epsilon_{\alpha \beta} D_\alpha D_\beta - \frac{1}{4} H^2,$$ \hspace{1cm} (296)

and its eigenvalues are

$$C = j^2 - g^2.$$ \hspace{1cm} (297)

Atypical representation

When $g = \pm j$, the irreducible representation is called atypical representation. Since there is automorphism, $D_\alpha \to -D_\alpha$ and $H \to -H$ in $\mathcal{S}U(2|1)$, we discuss only the case $g = +j$. The dimension of the atypical representation is $4j + 1$, which is already irreducible for the subgroup $UOSp(1|2)$. In the present case, the quadratic Casimir eigenvalues (297) vanish identically. (Also, the cubic Casimir eigenvalues vanish since the eigenvalues are proportional to $g(j^2 - g^2)$ [55].) Thus, the two Casimirs do not specify atypical representation. The fundamental representation of $su(2|1)$ is the simplest atypical representation given by the following 3×3 matrices16.

$$L_i = \frac{1}{2} \begin{pmatrix} \sigma_i & 0 \\ 0 & 0 \end{pmatrix}, \quad L_\alpha = \frac{1}{2} \begin{pmatrix} 0 \\ \epsilon \tau_\alpha & 0 \end{pmatrix}, \quad D_\alpha = \frac{1}{2} \begin{pmatrix} 0 \\ -(\epsilon \tau_\alpha)^t & 0 \end{pmatrix}, \quad H = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix},$$ \hspace{1cm} (299)

where $\epsilon = i\sigma_2$, $\tau_1 = (1,0)^t$ and $\tau_2 = (0,1)^t$. For the matrices (299), one may readily check that C (296) vanishes. In the Schwinger construction

$$X_i = 2\Psi^\dagger L_i \Psi, \quad \Theta_\alpha = 2\Psi^\dagger L_\alpha \Psi, \quad \Theta_\alpha = 2\Psi^\dagger D_\alpha \Psi, \quad Z = \Psi^\dagger H \Psi,$$ \hspace{1cm} (300)

$UOSp(1|2)$ invariant quantities are given by

$$X_i X_i + \epsilon_{\alpha \beta} \Theta_\alpha \Theta_\beta = \epsilon_{\alpha \beta} \Theta_\alpha \Theta_\beta + Z^2 = \hat{n}(\hat{n} + 1),$$ \hspace{1cm} (301)

where $\hat{n} = \Psi^\dagger \Psi$. Then, the $SU(2|1)$ Casimir vanishes identically:

$$X_i X_i + \epsilon_{\alpha \beta} \Theta_\alpha \Theta_\beta - \epsilon_{\alpha \beta} \Theta_\alpha \Theta_\beta - Z^2 = 0,$$ \hspace{1cm} (302)

which implies that the Schwinger construction corresponds to atypical representation with $g = j = n/2$.

16 D_α and H in (299) are constructed as

$$D_\alpha = -\frac{1}{2(j + \frac{1}{2})} (\sigma_i)_{\beta \alpha} \{L_i, L_\beta\}, \quad H = \frac{1}{j + \frac{1}{4}} \left(\epsilon_{\alpha \beta} L_\alpha L_\beta + 2j \left(j + \frac{1}{2} \right) \right),$$ \hspace{1cm} (298)

with $j = 1/2$.

44
Typical representation

The typical representation refers to \(g \neq \pm j \). The simplest matrices of the typical representation are the following \(4 \times 4 \) matrices:\(^\text{17}\)

\[
L_i = \frac{1}{2} \left(\begin{array}{cc} \sigma_i & 0 \\ 0 & 0_2 \end{array} \right), \quad L_\alpha = \frac{1}{2} \left(\begin{array}{cccc} 0_2 & 0 & \tau_\alpha & 0 \\ \tau_\alpha & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0_2 \end{array} \right), \quad L'_\alpha = \frac{1}{2} \left(\begin{array}{cccc} 0_2 & 0 & \tau_\alpha & 0 \\ 0 & 0 & 0 & 0 \\ \tau_\alpha & 0 & 0 & 0 \\ 0 & 0 & 0 & 0_2 \end{array} \right), \quad \Gamma = \frac{1}{2} \left(\begin{array}{cc} 0_2 & 0 \\ 0 & 0 \end{array} \right).
\]

(305)

In the Schwinger construction with \(\Psi = (\Psi_1, \Psi_2, \tilde{\Psi}_1, \tilde{\Psi}_2)^t \),

\[
\hat{L}_i = \Psi^\dagger L_i \Psi, \quad \hat{L}_\alpha = \Psi^\dagger L_\alpha \Psi, \quad \hat{L}'_\alpha = \Psi^\dagger L'_\alpha \Psi, \quad \hat{\Gamma} = \Psi^\dagger \Gamma \Psi,
\]

the quadratic Casimir is derived as

\[
C = \hat{L}_i \hat{L}_i + \epsilon_{\alpha\beta} \hat{L}_\alpha \hat{L}_\beta + \epsilon_{\alpha\beta} \hat{L}'_\alpha \hat{L}'_\beta + \hat{\Gamma}^2 = \frac{1}{4} (\Psi^\dagger \Psi)^2.
\]

(307)

The eigenvalue is \(n^2/4 \) and the corresponding eigenstates are given by \((70)\). The \(SU(2|1) \) typical representation for \((j, g)\) consists of \(|j, j_3, g\), \(|j - 1/2, j_3, g + 1/2\), \(|j - 1/2, j_3, g - 1/2\) and \(|j - 1, j_3, g\) with the Casimir eigenvalue \((297)\) \(55\). One may readily see that the Schwinger construction corresponds to \((j, g) = (n/2, 0)\).

\[\text{A.1.2 } su(2|2)\]

The dimension of the \(SU(2|2) \) algebra is

\[
\dim [su(2|2)] = 7|8 = 15.
\]

(308)

The fundamental representation matrices of \(su(2|2) \) are

\[
L_i = \frac{1}{2} \left(\begin{array}{cc} \sigma_i & 0 \\ 0 & 0_2 \end{array} \right), \quad L_\alpha = \frac{1}{2} \left(\begin{array}{cccc} 0_2 & \tau_\alpha & 0 & 0 \\ -\epsilon_{\tau_\alpha}^t & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0_2 \end{array} \right), \quad D_\alpha = -\frac{1}{2} \left(\begin{array}{cccc} 0_2 & \tau_\alpha & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \epsilon_{\tau_\alpha}^t & 0 & 0 & 0 \\ 0 & 0 & 0 & 0_2 \end{array} \right),
\]

\[
L'_\alpha = \frac{1}{2} \left(\begin{array}{cccc} 0_2 & 0 & \tau_\alpha & 0 \\ 0 & 0 & 0 & 0 \\ -\epsilon_{\tau_\alpha}^t & 0 & 0 & 0 \\ 0 & 0 & 0 & 0_2 \end{array} \right), \quad D'_\alpha = -\frac{1}{2} \left(\begin{array}{cccc} 0_2 & 0 & \tau_\alpha & 0 \\ 0 & 0 & 0 & 0 \\ \epsilon_{\tau_\alpha}^t & 0 & 0 & 0 \\ 0 & 0 & 0 & 0_2 \end{array} \right), \quad T_i = \frac{1}{2} \left(\begin{array}{cc} 0_2 & 0 \\ 0 & \sigma_i \end{array} \right),
\]

\[
H = 1_4.
\]

(309)

\(^{17}\)The typical representation matrices \(809\) are superficially different from those in Ref. \(55\):

\[
L_i = \frac{1}{2} \left(\begin{array}{cc} \sigma_i & 0 \\ 0 & 0_2 \end{array} \right), \quad L_\alpha = \frac{1}{2} \left(\begin{array}{cccc} 0_2 & \tau_\alpha & 0 & 0 \\ -\epsilon_{\tau_\alpha}^t & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0_2 \end{array} \right), \quad D'_\alpha = \frac{1}{2} \left(\begin{array}{cccc} 0_2 & 0 & -\tau_\alpha & 0 \\ 0 & 0 & 0 & 0 \\ -\epsilon_{\tau_\alpha}^t & 0 & 0 & 0 \\ 0 & 0 & 0 & 0_2 \end{array} \right), \quad \Gamma = \frac{1}{2} \left(\begin{array}{cc} 0_2 & 0 \\ 0 & \sigma_1 \end{array} \right).
\]

(303)

In that case, the corresponding quadratic Casimir is given by

\[
C = L_i L_i + \epsilon_{\alpha\beta} L_\alpha L_\beta - \epsilon_{\alpha\beta} D'_\alpha D'_\beta - \Gamma^2.
\]

(304)
With these, the $SU(2|2)$ algebra is expressed as\(^{18}\)

$$
[L_i, L_j] = i\epsilon_{ijk} L_k, \quad [L_i, L_{\alpha\sigma}] = \frac{1}{2}(\sigma_i)_{\beta\alpha} L_{\beta\sigma}, \quad [L_i, D_{\alpha\sigma}] = \frac{1}{2}(\sigma_i)_{\beta\alpha} D_{\beta\sigma},
$$

$$
\{L_{\alpha\sigma}, L_{\beta\tau}\} = -\{D_{\alpha\sigma}, D_{\beta\tau}\} = \frac{1}{2}\delta_{\sigma\tau} (\epsilon_{\alpha\beta} L_i + i\frac{1}{2}\epsilon_{\sigma\tau} \epsilon_{\alpha\beta} T_2),
$$

$$
\{L_{\alpha\sigma}, D_{\beta\tau}\} = -\frac{1}{2}(\sigma_1)_{\sigma\tau} \epsilon_{\alpha\beta} T_1 - \frac{1}{2}(\sigma_3)_{\sigma\tau} \epsilon_{\alpha\beta} T_3 - \frac{1}{4}\delta_{\sigma\tau} \epsilon_{\alpha\beta} H,
$$

$$
[L_{\alpha\sigma}, T_1] = -\frac{1}{2}(\sigma_1)_{\tau\sigma} D_{\alpha\tau}, \quad [D_{\alpha\sigma}, T_1] = \frac{1}{2}(\sigma_1)_{\tau\sigma} L_{\alpha\tau},
$$

$$
[L_{\alpha\sigma}, T_2] = -\frac{1}{2}(\sigma_2)_{\tau\sigma} L_{\alpha\tau}, \quad [D_{\alpha\sigma}, T_2] = -\frac{1}{2}(\sigma_2)_{\tau\sigma} D_{\alpha\tau},
$$

$$
[L_{\alpha\sigma}, T_3] = -\frac{1}{2}(\sigma_3)_{\tau\sigma} D_{\alpha\tau}, \quad [D_{\alpha\sigma}, T_3] = -\frac{1}{2}(\sigma_3)_{\tau\sigma} L_{\alpha\tau},
$$

$$
[L_i, T_j] = [L_{\alpha\sigma},H] = [D_{\alpha\sigma},H] = 0, \quad (311)
$$

where $L_{\alpha\sigma} = (L_{\alpha}, L'_{\alpha})$ and $D_{\alpha\sigma} = (D_{\alpha}, D'_{\alpha})$. The $UOSp(2|2)$ algebra \((61)\) is a subalgebra of \((311)\) realized by L_i, $L_{\alpha\sigma}$ and $\Gamma = iT_2$.

A.2 $SU(4|N)$ algebra and $\mathbb{C}P^3|N$

The dimension of the $SU(4|N)$ algebra is given by

$$
dim[su(4|N)] = 15 + N^2|8N = N^2 + 8N + 15. \quad (312)
$$

For instance,

$$
dim[su(4|1)] = 16|8 = 24, \quad dim[su(4|2)] = 19|16 = 35,
$$

$$
dim[su(4|3)] = 24|24 = 48, \quad dim[su(4|4)] = 31|32 = 63. \quad (313)
$$

To clarify relations to $uosp(N|4)$, we adopt the following “decomposition”. We separate the $SU(4)$ generators, S_A ($A = 1, 2, \cdots, 15$), into $SO(5)$ vector and antisymmetric rank 2 tensor:

$$
\frac{1}{2\sqrt{2}} \Gamma_a = \frac{1}{\sqrt{2}} \begin{pmatrix} \gamma_a & 0 \\ 0 & 0_N \end{pmatrix}, \quad \frac{1}{\sqrt{2}} \Gamma_{ab} = \frac{1}{\sqrt{2}} \begin{pmatrix} \gamma_{ab} & 0 \\ 0 & 0_N \end{pmatrix}, \quad (314)
$$

with γ_a \((92)\) and γ_{ab} \((102)\). Notice that γ_a and γ_{ab} have different properties under transpose

$$
(C\gamma_a)^t = -C\gamma_a, \quad (C\gamma_{ab})^t = C\gamma_{ab}, \quad (315)
$$

\(^{18}\)Since $H = 1_4$ commutes with all of the other fourteen generators, H generates the center of the $SU(2|2)$ algebra. The $pSU(2|2)$ algebra is defined by quenching H, and then

$$
dim[pSU(2|2)] = 6|8. \quad (310)
$$

There do not exist 4×4 matrices that satisfy the $pSU(2|2)$ algebra. The minimum dimension matrices of $psu(2|2)$ are 14×14 matrices, i.e. the adjoint representation. With 4×4 fundamental representation matrices \((59)\), one may nevertheless discuss $psu(2|2)$ by identifying matrices modulo H.

46
where C stands for the $SO(5)$ charge conjugation matrix [117]. We also separate the $SU(N)$ generators T_P $(P = 1, 2, \cdots, N^2 - 1)$ into symmetric and antisymmetric matrices:

$$T_S^t = T_S, \quad T_I^t = -T_I,$$

with $S = 1, 2, \cdots, N(N + 1)/2 - 1$ and $I = 1, 2, \cdots, N(N - 1)/2$. T_I satisfy the $SO(N)$ algebra by themselves. Also, the $U(1)$ generator is given by

$$H = \frac{1}{N} \begin{pmatrix} N \cdot 1_4 & 0 \\ 0 & 4 \cdot 1_N \end{pmatrix}.$$

We introduce the $SU(4|N)$ fermionic generators as

$$\Gamma_{\alpha\sigma} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0_{3+\sigma} & \tau_\alpha & 0 \\ -(C\tau_\alpha)^t & 0 & 0 \\ 0 & 0 & 0_{N-\sigma} \end{pmatrix}, \quad D_{\alpha\sigma} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0_{3+\sigma} & \tau_\alpha & 0 \\ (C\tau_\alpha)^t & 0 & 0 \\ 0 & 0 & 0_{N-\sigma} \end{pmatrix},$$

which are related to [268] as

$$Q_{\alpha\sigma} = \frac{1}{\sqrt{2}} (\Gamma_{\alpha\sigma} + D_{\alpha\sigma}), \quad \bar{Q}_{\sigma\alpha} = -\frac{1}{\sqrt{2}} C_{\alpha\beta}(\Gamma_{\beta\sigma} - D_{\beta\sigma}),$$

or

$$\Gamma_{\alpha\sigma} = \frac{1}{\sqrt{2}} (Q_{\alpha\sigma} + C_{\alpha\beta}\bar{Q}_{\beta\sigma}), \quad D_{\alpha\sigma} = \frac{1}{\sqrt{2}} (Q_{\alpha\sigma} - C_{\alpha\beta}\bar{Q}_{\beta\sigma}).$$

Therefore,

$$Q_{\alpha\sigma}\bar{Q}_{\sigma\alpha} - \bar{Q}_{\sigma\alpha}Q_{\alpha\sigma} = -C_{\alpha\beta}(\Gamma_{\alpha\sigma}\Gamma_{\beta\sigma} - D_{\alpha\sigma}D_{\beta\sigma}).$$

The $SU(4|N)$ commutation relations [272] concerned with $\Gamma_{\alpha\sigma}$ and $D_{\alpha\sigma}$ read as

$$[\Gamma_a, \Gamma_{\alpha\sigma}] = (\gamma_a)_{\beta\alpha}D_{\beta\sigma}, \quad [\Gamma_a, \Gamma_{\alpha\sigma}] = (\gamma_{ab})_{\beta\alpha}\Gamma_{\beta\sigma},$$

$$[\Gamma_a, D_{\alpha\sigma}] = (\gamma_a)_{\beta\alpha}\Gamma_{\beta\sigma}, \quad [\Gamma_a, D_{\alpha\sigma}] = (\gamma_{ab})_{\beta\alpha}D_{\beta\sigma},$$

$$\{\Gamma_{\alpha\sigma}, \Gamma_{\beta\tau}\} = -\{D_{\alpha\sigma}, D_{\beta\tau}\} = \delta_{\sigma\tau}(C\gamma_{ab})_{\alpha\beta}\Gamma_{ab} - 2C_{\alpha\beta}(t_I)_{\sigma\tau}T_I,$$

$$\{\Gamma_{\alpha\sigma}, D_{\beta\tau}\} = \frac{1}{4}\delta_{\sigma\tau}(C\gamma_a)_{\alpha\beta}\Gamma_a + 2C_{\alpha\beta}(t_S)_{\sigma\tau}T_S + \frac{1}{4}C_{\alpha\beta}\delta_{\sigma\tau}H,$$

$$[\Gamma_{\alpha\sigma}, T_S] = (t_S)_{\sigma\tau}D_{\alpha\tau}, \quad [\Gamma_{\alpha\sigma}, T_I] = (t_I)_{\sigma\tau}\Gamma_{\beta\tau},$$

$$[D_{\alpha\sigma}, T_S] = (t_S)_{\sigma\tau}\Gamma_{\alpha\tau}, \quad [D_{\alpha\sigma}, T_I] = (t_I)_{\sigma\tau}D_{\alpha\tau},$$

$$[\Gamma_{\alpha\sigma}, H] = \frac{4 - N}{N}D_{\alpha\sigma}, \quad [D_{\alpha\sigma}, H] = \frac{4 - N}{N}\Gamma_{\alpha\sigma},$$

where t_S and t_I are respectively $N \times N$ symmetric and antisymmetric matrices of $SU(N)$ generators $t_P \text{[266]}$. Thus, one may find that $\Gamma_{ab}, \Gamma_{\alpha\sigma}, T_I$ satisfy a closed algebra, the $uosp(N|4)$.

47
We utilized \[\sum_{A=1}^{15} \hat{S}_A \hat{S}_A = \frac{1}{2} \sum_{a=1}^{4} \sum_{\alpha=1}^{k} (\hat{Q}_{a\alpha} \hat{Q}_{\alpha a} - \hat{Q}_{\alpha a} \hat{Q}_{a\alpha}) - \sum_{P=1}^{N^2-1} \hat{T}_P \hat{T}_P - \frac{N}{8(4-N)} \hat{Z}^2 \]
\[= \frac{1}{8} \sum_{a=1}^{5} X_a X_a + \frac{1}{2} \sum_{a<b=1}^{5} X_{ab} X_{ab} + \frac{1}{2} \sum_{a,b=1}^{4} \sum_{\alpha=1}^{N} C_{\alpha\beta} (\Theta^{(\alpha)} \Theta^{(\beta)} - \Theta^{(\alpha)} \Theta^{(\beta)}) - \frac{1}{4} \sum_{P=1}^{N^2-1} Y_P Y_P - \frac{N}{8(4-N)} \hat{Z}^2 \]
\[= \frac{3 - N}{2(4-N)} \hat{n}(\hat{n} + 4 - N), \]
where \(\hat{n} = \Psi^\dagger \Psi, \)
\[X_a = \Psi^\dagger \Gamma_a \Psi, \quad X_{ab} = \Psi^\dagger \Gamma_{ab} \Psi, \quad \Theta^{(\alpha)} = \Psi^\dagger \Gamma_{\alpha\sigma} \Psi, \]
\[\Theta^{(\sigma)} = \Psi^\dagger D_{\alpha\sigma} \Psi, \quad Y_P = 2 \Psi^\dagger T_P \Psi, \quad Z = \Psi^\dagger H \Psi. \]

We utilized
\[\sum_{A=1}^{15} \hat{S}_A \hat{S}_A = \frac{1}{8} \sum_{a=1}^{5} X_a X_a + \frac{1}{2} \sum_{a<b=1}^{5} X_{ab} X_{ab} = \frac{3}{8} \hat{n}_B (\hat{n}_B + 4), \]
\[\sum_{a=1}^{4} \sum_{\alpha=1}^{k} (\hat{Q}_{a\alpha} \hat{Q}_{\alpha a} - \hat{Q}_{\alpha a} \hat{Q}_{a\alpha}) = -C_{\alpha\beta} (\Theta^{(\alpha)} \Theta^{(\beta)} - \Theta^{(\alpha)} \Theta^{(\beta)}) = N \hat{n}_B - 2 \hat{n}_B \hat{n}_F - 4 \hat{n}_F, \]
\[\sum_{P=1}^{N^2-1} \hat{T}_P \hat{T}_P = \frac{1}{4} \sum_{P=1}^{N^2-1} Y_P Y_P = - \frac{N+1}{2N} \hat{n}_F (\hat{n}_F - N), \]
\[\hat{Z}^2 = (\hat{n}_B + \frac{4}{N} \hat{n}_F)^2. \]

Thus, for \(\mathbb{C}P_F^{3|N} \), square of the radius is proportional to \(n(n+4-N). \)

\[n(n+4-N). \]

A.2.1 \(su(4|1) \)

The 24 (= 16|8) matrices of \(su(4|1) \) are given by
\[\Gamma_a = \begin{pmatrix} \gamma_a & 0 \\ 0 & 0 \end{pmatrix}, \quad \Gamma_{ab} = \begin{pmatrix} \gamma_{ab} & 0 \\ 0 & 0 \end{pmatrix}, \quad H = \begin{pmatrix} 1_4 & 0 \\ 0 & 4 \end{pmatrix}, \]
\[\Gamma_\alpha = \frac{1}{\sqrt{2}} \begin{pmatrix} 0_4 & \tau_\alpha \\ -(C\tau_\alpha)^t & 0 \end{pmatrix}, \quad D_\alpha = \frac{1}{\sqrt{2}} \begin{pmatrix} 0_4 & \tau_\alpha \\ (C\tau_\alpha)^t & 0 \end{pmatrix}, \]

\[^{19} \text{For instance, for } N = 0, \text{ it is reduced to square of the radius of fuzzy } \mathbb{C}P^3. \text{ Since } \mathbb{C}P^3 \text{ is locally } S^4 \otimes S^2, \text{ one may think of the need of two quantities to determine the radius of each } S^4 \text{ and } S^2. \text{ However, in the construction of fuzzy } \mathbb{C}P^3, \text{ we utilized the fully symmetric representation specified by the sole number } n. \text{ Consequently, the “internal” fuzzy } S^2 \text{ and } S^4 \text{ of fuzzy } \mathbb{C}P^3 \text{ are represented by matrices of same size specified by } n, \text{ and hence their radii are similarly by } n \text{ (see also Sec.4.1).} \]
which satisfy
\[[\Gamma_a, \Gamma_b] = 4i\Gamma_{ab}, \quad [\Gamma_a, \Gamma_{bc}] = -i(\delta_{ab}\Gamma_c - \delta_{ac}\Gamma_b), \quad [\Gamma_{ab}, \Gamma_{cd}] = i(\delta_{ac}\Gamma_{bd} - \delta_{ad}\Gamma_{bc} + \delta_{bc}\Gamma_{ad} - \delta_{bd}\Gamma_{ac}), \]
\[[\Gamma_a, \Gamma_b] = (\gamma_a)_{\beta\alpha}D_\beta, \quad [\Gamma_a, D_\alpha] = (\gamma_a)_{\beta\alpha}\Gamma_\beta, \quad [\Gamma_{ab}, \Gamma_\alpha] = (\gamma_a)_{\beta\alpha}\Gamma_\beta, \quad [\Gamma_{ab}, D_\alpha] = (\gamma_a)_{\beta\alpha}D_\beta, \]
\[\{\Gamma_{a}, \Gamma_{b}\} = \sum_{a<b}(C\gamma_{ab})_{\alpha\beta}\Gamma_{ab}, \quad \{D_a, D_\beta\} = -\sum_{a<b}(C\gamma_{ab})_{\alpha\beta}\Gamma_{ab}, \quad \{\Gamma_a, D_\beta\} = \frac{1}{4}(C\gamma_{a})_{\alpha\beta}\Gamma_{a} + \frac{1}{4}C_{\alpha\beta}H, \]
\[[\Gamma_a, H] = 3D_a, \quad [D_a, H] = 3\Gamma_a. \]

\section*{A.2.2 \textit{su}(4/2)}

The \textit{SU}(4/2) algebra contains 35 (= 19/16) generators. The bosonic and fermionic generators are given by
\[\begin{align*}
\Gamma_a, \quad \Gamma_{ab}, \quad T_i, \quad H, \\
D_a, \quad \Gamma'_a, \quad D'_a,
\end{align*} \]
\[(329) \]
where \(\Gamma_a, \Gamma_{ab}, \Gamma_\alpha \) and \(\Gamma'_\alpha \) are defined by (180) and (181), \(T_i \) and \(H \) are \(U(2) \) generators
\[T_i = \frac{1}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad H = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}, \]
\[(330) \]
and \(D_a \) and \(D'_a \) are
\[D_a = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & \tau_a \\ C\gamma_a & 0 \end{pmatrix}, \quad D'_a = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & \tau_a \\ (C\gamma_a)\tau & 0 \end{pmatrix}. \]
\[(331) \]
The \textit{SU}(4/2) generators (329) satisfy
\[\{\Gamma_{\alpha\sigma}, \Gamma_{\beta\tau}\} = -\{D_{\alpha\sigma}, D_{\beta\tau}\} = \delta_{\sigma\tau} \sum_{a<b}(C\gamma_{ab})_{\alpha\beta}\Gamma_{ab} + \frac{1}{2}\epsilon_{\sigma\tau}C_{\alpha\beta}T_2, \]
\[\{\Gamma_{\alpha\sigma}, D_{\beta\tau}\} = \frac{1}{4}\delta_{\sigma\tau}(C\gamma_{a})_{\alpha\beta}\Gamma_\alpha + (\sigma_1)_{\sigma\tau}C_{\alpha\beta}T_1 + (\sigma_3)_{\sigma\tau}C_{\alpha\beta}T_3 + \frac{1}{4}\delta_{\sigma\tau}C_{\alpha\beta}H, \]
\[[\Gamma_{\alpha\sigma}, T_1] = \frac{1}{2}(\sigma_1)_{\tau\sigma}D_{\alpha\tau}, \quad [D_{\alpha\sigma}, T_1] = \frac{1}{2}(\sigma_1)_{\tau\sigma}\Gamma_{\alpha\tau}, \]
\[[\Gamma_{\alpha\sigma}, T_2] = -\frac{1}{2}(\sigma_2)_{\tau\sigma}\Gamma_{\alpha\tau}, \quad [D_{\alpha\sigma}, T_2] = -\frac{1}{2}(\sigma_2)_{\tau\sigma}D_{\alpha\tau}, \]
\[[\Gamma_{\alpha\sigma}, T_3] = \frac{1}{2}(\sigma_3)_{\tau\sigma}D_{\alpha\tau}, \quad [D_{\alpha\sigma}, T_3] = \frac{1}{2}(\sigma_3)_{\tau\sigma}\Gamma_{\alpha\tau}, \]
\[[\Gamma_{\alpha\sigma}, H] = D_{\alpha\sigma}, \quad [D_{\alpha\sigma}, H] = \Gamma_{\alpha\sigma}, \]
\[[T_i, T_j] = i\epsilon_{ijkl}T_k, \quad [\Gamma_a, H] = [\Gamma_{ab}, H] = [T_i, H] = 0, \quad [\Gamma_a, T_i] = [\Gamma_{ab}, T_i] = 0, \]
\[(332) \]
where \(\Gamma_{\alpha\sigma} = (\Gamma_a, \Gamma'_a) \) and \(D_{\alpha\sigma} = (D_a, D'_a) \). The \textit{uosp}(2|4) (178) is realized as a subalgebra of \textit{su}(4/2) (332) with \(\Gamma_{ab}, \Gamma_{\alpha\sigma} \) and \(\Gamma = 2iT_2 \).
B Charge conjugation matrices of $SO(5)$ and $UOSp(1|4)$

The complex representation of $so(5)$, γ_a and γ_{ab}, is given by

$$\tilde{\gamma}_a = \gamma^*_a = \gamma^t_a, \quad \tilde{\gamma}_{ab} = -i\frac{1}{4}[\tilde{\gamma}_a, \tilde{\gamma}_b] = -\gamma^*_a = -\gamma^t_a.$$ (333)

The $SO(5)$ charge conjugation matrix (117) acts as

$$C^t \gamma_a C = \tilde{\gamma}_a, \quad C^t \gamma_{ab} C = \tilde{\gamma}_{ab}. \quad (334)$$

$C\gamma_{ab}$ and $\gamma_{ab} C$ are symmetric matrices, while $C\gamma_a$ and $\gamma_a C$ are anti-symmetric matrices. C has the following properties

$$C^t = C^d = C^{-1} = -C, \quad C^2 = -1,$$ (335)

and is related to the $USp(4)$ invariant matrix (see Sec.2)

$$J = \begin{pmatrix} 0 & 1_2 \\ -1_2 & 0 \end{pmatrix},$$ (336)

by unitary transformation, $J = V^t CV$, with

$$V = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}. \quad (337)$$

The unitary matrix (337) also relates the $so(5)$ matrices (102) to the bases of $usp(4)$ matrix (11).

The complex representation of $uosp(1|4)$, Γ_a, Γ_{ab} and Γ_α defined in Sec.4.2.1 is given by

$$\tilde{\Gamma}_a = \Gamma^*_a = \Gamma^t_a, \quad \tilde{\Gamma}_{ab} = -\Gamma^*_a = -\Gamma^t_{ab}, \quad \tilde{\Gamma}_\alpha = C_{\alpha\beta} \Gamma_\beta.$$ (338)

The complex representation is related to the original representation as

$$R^t \Gamma_a R = \tilde{\Gamma}_a, \quad R^t \Gamma_{ab} R = \tilde{\Gamma}_{ab}, \quad R^t \Gamma_\alpha R = \tilde{\Gamma}_\alpha,$$ (339)

with the charge conjugation matrix

$$R = \begin{pmatrix} C & 0 \\ 0 & 1 \end{pmatrix}. \quad (340)$$

C Relations for matrix products

C.1 $su(2|1)$ matrices

With 3×3 unit matrix 1_3, the $su(2|1)$ fundamental representation matrices (299) span the space of 3×3 matrices, and hence their products can be given by their linear combination. For $uosp(1|2)$
matrices, \(L_i \) and \(L_\alpha \), their products are represented as

\[
L_i L_j = \frac{1}{4} \delta_{ij} + \frac{i}{2} \epsilon_{ijk} L_k,
\]

\[
L_i L_\alpha = \frac{1}{4} (\sigma_i)_{\beta\alpha} (L_\beta - D_\beta),
\]

\[
L_\alpha L_\beta = \frac{1}{4} (\epsilon \sigma_i)_{\alpha\beta} L_i - \frac{1}{2} \epsilon_{\alpha\beta} (1 - \frac{3}{4} H).
\] (341)

For the other \(su(2|1) \) fundamental representation matrices,

\[
L_i D_\alpha = -\frac{1}{4} (\sigma_i)_{\beta\alpha} (L_\beta - D_\beta),
\]

\[
L_i H = L_i,
\]

\[
L_\alpha D_\beta = \frac{1}{4} (\epsilon \sigma_i)_{\alpha\beta} L_i - \frac{1}{8} \epsilon_{\alpha\beta} H,
\]

\[
L_\alpha H = -\frac{1}{2} D_\alpha + \frac{3}{2} L_\alpha,
\]

\[
D_\alpha D_\beta = -\frac{1}{4} (\epsilon \sigma_i)_{\alpha\beta} L_i + \frac{1}{2} \epsilon_{\alpha\beta} (1 - \frac{3}{4} H),
\]

\[
D_\alpha H = -\frac{1}{2} L_\alpha + \frac{3}{2} D_\alpha,
\]

\[
H^2 = 3H - 2.
\] (342)

C.2 \(su(4|1) \) matrices

Similar to the \(su(2|1) \) case, with \(5 \times 5 \) unit matrix \(1_5 \), the \(su(4|1) \) fundamental representation matrices span the space of \(5 \times 5 \) matrices. Then, their products can be expressed by their linear combination: for the products of \(\Gamma_a \) and \(\Gamma_\alpha \),

\[
\Gamma_a \Gamma_b = 2i \Gamma_{ab} - \frac{1}{3} \delta_{ab} (H - 4),
\]

\[
\Gamma_a \Gamma_\alpha = \frac{1}{2} (\gamma_a)_{\beta\alpha} (\Gamma_\beta + D_\beta),
\]

\[
\Gamma_\alpha \Gamma_\beta = -\frac{1}{2} \sum_{a<b} (C_{\gamma_{ab}})_{\alpha\beta} \Gamma_{ab} - \frac{1}{8} (C_{\gamma_a})_{\alpha\beta} \Gamma_a - \frac{1}{3} (C_{\gamma_a})_{\alpha\beta} (1 - \frac{5}{8} H),
\] (343)
and for the other $su(4|1)$ matrices,

$$\Gamma_a \Gamma_{bc} = \frac{1}{2} (\epsilon_{abcde} \Gamma_{de} + i \Gamma_b \delta_{ac} - i \Gamma_c \delta_{ab}),$$

$$\Gamma_a D_\alpha = \frac{1}{2} (\gamma_a)_{\alpha \beta} (\Gamma_\beta + D_\beta),$$

$$\Gamma_a \Gamma = \Gamma_a,$$

$$\Gamma_{ab} \Gamma_{cd} = 2i (\delta_{ab} \Gamma_{cd} - \delta_{ac} \Gamma_{bd} + \delta_{ad} \Gamma_{bc} - \delta_{bc} \Gamma_{da} + \delta_{bd} \Gamma_{ca} - \delta_{cd} \Gamma_{ba}) - \epsilon_{abcde} \Gamma_e + \frac{1}{3} (\delta_{ab} \delta_{cd} - \delta_{ac} \delta_{bd} + \delta_{ad} \delta_{bc})(4 - H),$$

$$\Gamma_{ab} \Gamma_\alpha = \frac{1}{2} (\gamma_{ab})_{\alpha \beta} (\Gamma_\beta + D_\beta),$$

$$\Gamma_{ab} D_\alpha = \frac{1}{2} (\gamma_{ab})_{\alpha \beta} (\Gamma_\beta + D_\beta),$$

$$\Gamma_{ab} H = \Gamma_{ab},$$

$$\Gamma_a D_\beta = -\frac{1}{2} \sum_{a<b} (C_{\gamma_{ab}})_{\alpha \beta} \Gamma_{ab} + \frac{1}{8} (C_{\gamma_a})_{\alpha \beta} \Gamma_a + \frac{1}{8} C_{\alpha \beta} H,$$

$$\Gamma_a H = -\frac{3}{2} D_a - \frac{5}{2} \Gamma_a,$$

$$D_\alpha D_\beta = -\frac{1}{2} \sum_{a<b} (C_{\gamma_{ab}})_{\alpha \beta} \Gamma_{ab} + \frac{1}{8} (C_{\gamma_a})_{\alpha \beta} \Gamma_a + \frac{1}{3} C_{\alpha \beta} (1 - \frac{5}{8} H),$$

$$D_\alpha H = -\frac{5}{2} D_a - \frac{3}{2} \Gamma_a,$$

$$H^2 = 5H - 4. \quad (344)$$

References

[1] F.A. Berezin, “General Concept of Quantization”, Commun.Math. Phys. 40 (1975) 153-174.

[2] Jens Hoppe, “Quantum Theory of a Massless Relativistic Surface and a Two-dimensional Bound State Problem”, MIT PhD Thesis (1982). “Membranes and integrable systems”, Phys.Lett, B 250 (1990) 44-48.

[3] J. Madore, “The Fuzzy Sphere”, Class. Quant. Grav. 9 (1992) 69.

[4] H. Grosse, C. Klimcik, P. Presnajder, “On Finite 4D Quantum Field Theory in Non-Commutative Geometry”, Commun.Math.Phys. 180 (1996) 429-438; hep-th/9602115

[5] H. Grosse, C. Klimcik and P. Presnajder, “Field Theory on a Supersymmetric Lattice”, Comm.Math.Phys. 185 (1997) 155; hep-th/9507074

[6] H. Grosse and G. Reiter, “The Fuzzy Supersphere”, Jour. Geom. Phys. 28 (1998) 349; math-ph/9804013

[7] Clifford V. Johnson, “D-Brane Primer”, hep-th/0007170
[8] Washington Taylor, “Matrix Theory: Matrix Quantum Mechanics as a Fundamental Theory”, Rev.Mod.Phys. 73:419-462, 2001; [hep-th/0101126].

[9] Richard J. Szabo, “D-Branes in Noncommutative Field Theory”; [hep-th/0512054].

[10] Daniel Kabat, Washington Taylor, “Spherical membranes in Matrix theory”, Adv.Theor.Math.Phys. 2:181-206, 1998; [hep-th/9711078].

[11] R.C. Myers, “Dielectric-Branes”, JHEP 9912 (1999) 022; [hep-th/9910053].

[12] C. Klimcik, “A nonperturbative regularization of the supersymmetric Schwinger model”, Commun.Math.Phys. 206 (1999) 567-586; [hep-th/9903112].

[13] C. Klimcik, “An extended fuzzy supersphere and twisted chiral superfields”, Commun.Math.Phys. 206 (1999) 587-601; [hep-th/9903202].

[14] S. Iso and H. Umetsu, “Gauge Theory on Noncommutative Supersphere from Supermatrix Model”, Phys. Rev. D69 (2004) 1050033; [hep-th/0311005].

[15] S. Iso and H. Umetsu, “Note on Gauge Theory on Fuzzy Supersphere”, Phys.Rev. D69 (2004) 105014; [hep-th/0312307].

[16] Michael R. Douglas, Nikita A. Nekrasov, “Noncommutative Field Theory”, Rev.Mod.Phys. 73 (2001) 977-1029; [hep-th/0106048].

[17] Takehiro Azuma, “Matrix models and the gravitational interaction”, Doctor thesis, [hep-th/0401120].

[18] A. P. Balachandran, S. Kurkcuoglu, S. Vaidya, “Lectures on Fuzzy and Fuzzy SUSY Physics”; [hep-th/0511114].

[19] Yasuhiro Abe, “Construction of Fuzzy Spaces and Their Applications to Matrix Models”, PhD thesis, [arXiv:1002.4937].

[20] Paolo Aschieri, Christian Blohmann, Marija Dimitrijevic, Frank Meyer, Peter Schupp, Julius Wess, “A Gravity Theory on Noncommutative Spaces”, Class.Quant.Grav. 22 (2005) 3511-3532; [hep-th/0504183].

[21] Xavier Calmet, Archil Kobakhidze, “Noncommutative General Relativity”, Phys.Rev.D72 (2005) 045010; [hep-th/0506157].

[22] Seekin Kurkcuoglu, Christian Saemann, “Drinfeld Twist and General Relativity with Fuzzy Spaces”, Class.Quant.Grav.24 (2007) 291-312; [hep-th/0606197].

[23] S. M. Girvin and Terrence Jach, “Formalism for the quantum Hall effect: Hilbert space of analytic functions”, Phys.Rev. B29 (1984) 5617.
[24] Z.F. Ezawa, G. Tsitsishvili, K. Hasebe, “Noncommutative Geometry, Extended W(infty) Algebra and Grassmannian Solitons in Multicomponent Quantum Hall Systems”, Phys.Rev. B67 (2003) 125314; hep-th/0209198.

[25] S.C. Zhang, J.P. Hu, “A four-dimensional generalization of the quantum Hall effect”, Science 294 (2001), no. 5543, 823–828; cond-mat/0110572.

[26] Dimitra Karabali, V.P. Nair, “Quantum Hall Effect in Higher Dimensions”, Nucl.Phys. B641 (2002) 533-546; hep-th/0203264.

[27] Kazuki Hasebe, Yusuke Kimura, “Dimensional Hierarchy in Quantum Hall Effects on Fuzzy Spheres”, Phys.Lett. B602 (2004) 255-260; hep-th/0310274.

[28] Kazuki Hasebe, “Supersymmetric Quantum Hall Effect on a Fuzzy Supersphere”, Phys.Rev.Lett. 94 (2005) 206802; hep-th/0411137.

[29] Daniel P. Arovas, Kazuki Hasebe, Xiao-Liang Qi, Shou-Cheng Zhang, “Supersymmetric Valence Bond Solid States”, Phys.Rev. B79 (2009) 224404; arXiv:0901.1498.

[30] As a review, Kazuki Hasebe, “Hopf Maps, Lowest Landau Level, and Fuzzy Spheres”, SIGMA 6 (2010), 071, 42 pages; arXiv:1009.1192.

[31] A. P. Balachandran, S. Kurkcuoglu, E. Rojas, “The Star Product on the Fuzzy Supersphere”, JHEP 0207 (2002) 056; hep-th/0204170.

[32] Takehiro Azuma, Maxime Bagnoud, “Curved-space classical solutions of a massive supermatrix model”, Nucl.Phys. B651 (2003) 71-86; hep-th/0209057.

[33] H. Grosse, C. Klimcik, P. Presnajder, “Topologically nontrivial field configurations in noncommutative geometry”, Commun.Math.Phys. 178 (1996) 507-526; hep-th/9510083.

[34] Kazuki Hasebe, Yusuke Kimura, “Fuzzy Supersphere and Supermonopole”, Nucl.Phys.B709 (2005) 94-114; hep-th/0409230.

[35] G. Landi, G. Marmo, “Extensions of Lie Superalgebras and Supersymmetric Abelian Gauge Fields”, Phys.Lett.B193 (1987) 61.

[36] C Bartocci, U Bruzzo, G Landi, “Chern-Simons forms on principal superfiber bundles”, J. Math. Phys. 31 (1990) 45.

[37] Giovanni Landi, “Projective Modules of Finite Type over the Supersphere $S^{2,2}$”, J.Geom.Phys. 37 (2001) 47-62; math-ph/9907020.

[38] Luc Frappat, Antonino Sciarrino, Paul Sorba, “Dictionary on Lie Algebras and Superalgebras”, Academic Press (2000).

[39] P. M. Ho and S. Ramgoolam, “Higher dimensional geometries from matrix brane constructions”, Nucl.Phys.B 627 (2002) 266; hep-th/0111278.
[40] Yusuke Kimura, “Noncommutative gauge theory on fuzzy four-sphere and matrix model”, Nucl.Phys.B 637 (2002) 177; hep-th/0204256.

[41] Yusuke Kimura, “On higher dimensional fuzzy spherical branes”, Nucl.Phys.B 664 (2003) 512; hep-th/0301055.

[42] L. Faria Carvalho, Z. Kuznetsova, F. Toppan, “Supersymmetric Extension of Hopf Maps: N=4 sigma-models and the $S^3 \rightarrow S^2$ Fibration”, Nucl.Phys.B834 (2010) 237-257; arXiv:0912.3279.

[43] Stefano Bellucci, Armen Nersessian, Armen Yeranyan, “Hamiltonian reduction and supersymmetric mechanics with Dirac monopole”, Phys.Rev.D74 (2006) 065022; hep-th/0606152.

[44] M. Gonzales, Z. Kuznetsova, A. Nersessian, F. Toppan, V. Yeghikyan, “Second Hopf map and supersymmetric mechanics with Yang monopole”, Phys.Rev. D80 (2009) 025022; arXiv:0902.2682.

[45] Stefano Bellucci, Francesco Toppan, Vahagn Yeghikyan, “Second Hopf map and Yang-Coulomb system on 5d (pseudo)sphere”, J.Phys. A43 (2010) 045205; arXiv:0905.3461.

[46] Sergey Fedoruk, Evgeny Ivanov, Olaf Lechtenfeld, “OSp(4|2) Superconformal Mechanics”, JHEP 0908 (2009) 081; arXiv:0905.4951.

[47] Stefano Bellucci, Sergey Krivonos, Anton Sutulin, “Three dimensional N=4 supersymmetric mechanics with Wu-Yang monopole”, arXiv:0911.3257.

[48] Evgeny Ivanov, Maxim Konyushikhin, “N=4, 3D Supersymmetric Quantum Mechanics in Non-Abelian Monopole Background”, arXiv:1004.4597.

[49] Sergey Krivonos, Olaf Lechtenfeld, Anton Sutulin, “N=4 Supersymmetry and the BPST Instanton”, Phys.Rev.D81 (2010) 085021; arXiv:1001.2659.

[50] Evgeny Ivanov, Luca Mezincescu, Paul K. Townsend, “Fuzzy CP(n|m) as a quantum superspace”, hep-th/0311159.

[51] Sean Murray, Christian Saemann, “Quantization of Flag Manifolds and their Supersymmetric Extensions”, Adv.Theor.Math.Phys.12 (2008) 641-710; hep-th/0611328.

[52] Calin Iuliu Lazaroiu, Daniel McNamee, Christian Saemann, “Generalized Berezin-Toeplitz quantization of Kaehler supermanifolds”, JHEP 0905 (2009) 055; arXiv:0811.4743.

[53] Joshua DeBellis, Christian Saemann, Richard J. Szabo, “Quantized Nambu-Poisson Manifolds and n-Lie Algebras”, J.Math.Phys.51:122303,2010; arXiv:1001.3275.

[54] D. Arnaudon, M. Bauer, L. Frappat, “On Casimir’s Ghost”, Commun.Math.Phys. 187 (1997) 429-439; q-alg/9605021.

[55] M. Scheunert, W. Nahm and V. Rittenberg, “Irreducible representations of the osp(2,1) and spl(2,1) graded Lie algebra”, J. Math.Phys. 18 (1977) 155.
[56] G. Alexanian, A. P. Balachandran, G. Immirzi, B. Ydri, “Fuzzy CP2”, J. Geom. Phys. 42 (2002) 28-53; hep-th/0103023

[57] Sanjaye Ramgoolam, “On spherical harmonics for fuzzy spheres in diverse dimensions”, Nucl.Phys. B610 (2001) 461-488; hep-th/0105006.

[58] B.A. Bernevig, C.H. Chern, J.P. Hu, N. Toumbas, S.C. Zhang, “Effective field theory description of the higher-dimensional quantum Hall liquid”, Ann. Physics 300 (2002), 185–207; cond-mat/0206164.

[59] A.P. Balachandran, “Quantum Spacetimes in the Year 1”, Pramana 59 (2002) 359-368; hep-th/0203259.

[60] See for instance, Mikio Nakahara, “Geometry, Topology and Physics”, (2nd ed.), IOP Publishing, (2003).

[61] R. Mosseri, R. Dandoloff, “Geometry of entangled states, Bloch spheres and Hopf fibrations”, J. Phys. A 34 (2001) 10243-10252; quant-ph/0108137.

[62] L. Borsten, D. Dahanayake, M. J. Duff, W. Rubens, “Superqubits”, Phys.Rev.D81 (2010) 105023; arXiv:0908.0706.

[63] M. Marcu, “The representations of spl(2,1) - an example of representations of basic superalgebras”, J. Math.Phys. 21 (1980) 1277.