From Therapy Resistance to Targeted Therapies in Prostate Cancer

Filipa Moreira-Silva, Rui Henrique and Carmen Jerónimo

INTRODUCTION

Prostate cancer (PCa) is the second most common malignancy among men worldwide. Although early-stage disease is curable, advanced stage PCa is mostly incurable and eventually becomes resistant to standard therapeutic options. Different genetic and epigenetic alterations are associated with the development of therapy resistant PCa, with specific players being particularly involved in this process. Therefore, identification and targeting of these molecules with selective inhibitors might result in anti-tumoral effects. Herein, we describe the mechanisms underlying therapy resistance in PCa, focusing on the most relevant molecules, aiming to enlighten the current state of targeted therapies in PCa. We suggest that selective drug targeting, either alone or in combination with standard treatment options, might improve therapeutic sensitivity of resistant PCa. Moreover, an individualized analysis of tumor biology in each PCa patient might improve treatment selection and therapeutic response, enabling better disease management.

Keywords: prostate cancer, castration-resistant prostate cancer, therapy resistance, targeted therapies, epigenetics

INTRODUCTION

Currently, prostate cancer (PCa) constitutes the second most common malignancy and the fifth leading cause of cancer-related death in men, worldwide (1). PCa is a highly heterogeneous disease (2), characterized by several genetic and epigenetic alterations (2, 3), some of which can be used to assist treatment decision-making (3). Localized disease arises from luminal cells’ proliferation (2),
being characterized by a slow growth and hormone-responsiveness, more common in elderly men (3). At the time of diagnosis, 80% of all the tumors are confined to the prostate gland (2) and roughly 50% harbor the well-known gene fusion \(\text{TMPRSS2:ERG} \) (3–5), implicated in PI3K signaling pathway aberrant activation (3, 6). AR overexpression, \(\text{PTEN} \) loss (6) and deregulation of epigenetic players’ encoding genes (3). Genetic alterations might also occur, specifically in \(\text{SPOP}, \text{TP53}, \text{ATM}, \text{MED12} \) and \(\text{FOXA1} \) genes (3). Furthermore, epigenetics also plays a role in prostate carcinogenesis, with DNA hypermethylation as one of the first alterations observed at low stages (7). Herein, one of the most well-known promoter’s hypermethylated gene is the \(\text{GSTP1} \), which occurs in 90% of the tumors (8). Interestingly, this alteration is also observed in 50% of the PCa precursor lesions, suggesting this as an early event in prostate carcinogenesis (8). Additionally, histone deacetylases (HDACs) overexpression frequently detected in high-grade disease, particularly HDAC1 and HDAC2, has been associated with increased cell proliferation (9).

In locally advanced PCa, tumor cells invade the extraprostatic tissue and/or metastasize to regional lymph nodes, paving the way to metastatic dissemination at distant organs, most commonly to the bones, liver, and lungs (2). Several genome-wide copy-number alterations have been observed, particularly \(\text{MYC} \) overexpression and \(\text{PTEN} \) and \(\text{SMAD4} \) deletion, which drives genomic instability and tumor progression (3). Specific epigenetic alterations similarly drive PCa progression, including \(\text{EZH2} \) overexpression (2), \(\text{RASSF1A} \) promoter methylation (10) and overall hypomethylation (11).

Eventually, in due course of disease, PCa becomes resistant to androgen-deprivation therapy (ADT) – castration resistant PCa (CRPC) – disclosing raising serum PSA levels and/or clinical/imagiological tumor progression despite testosterone castrate levels (12). Interestingly, alterations in \(\text{AR}, \text{TP53}, \text{PTEN}, \text{RB1}, \text{ETS2}, \) DNA repair and chromatin and histone modifying genes are commonly found in CRPC (13–15). Moreover, it is observed amplification of the AR co-activator \(\text{NCOA2} \) and deletion of the AR co-repressor \(\text{LATS2} \) (13, 15). Furthermore, high DNA methylation levels (15), and overexpression of HDAC1, HDAC2, HDCA3, \(\text{EZH2} \) (16), \(\text{G9a} \) (17) and \(\text{LSD1} \) (18) have also been associated with CRPC.

Approximately 17% of tumors from CRPC patients eventually become AR indifferent (19, 20), progressing to a neuroendocrine PCa (NEPC) state, that does not respond to hormone therapy (19). NEPC harbors several genetic alterations, including \(\text{TMPRSS2:ERG} \) fusion, \(\text{MYC} \) and \(\text{AKT} \) overexpression, \(\text{PTEN} \) and \(\text{RB1} \) loss, and \(\text{TP53} \) mutations (2, 12, 21, 22). Moreover, epigenetic alterations, such as DNA hypermethylation as well as \(\text{EZH2} \) and bromodomain and extra-terminal motif (BET) proteins overexpression have been found in NEPC (12).

Standard of Care in Prostate Cancer Treatment

Clinical parameters and tumor stage are crucial for therapy decision making in PCa, with therapeutic recommendations varying for each stage (Figure 1) (23, 24). For localized disease, several possibilities exist, including active surveillance and curative-intent strategies (radical prostatectomy (RP), external beam radiotherapy (EBRT) and brachytherapy) (24, 25). Additionally, for the subset of high-risk localized PCa, neoadjuvant and concurrent ADT may be considered (25). Nevertheless, in approximately 30% of cases that undergo curative-intent treatment, disease progression develops, accompanied with lymph node invasion and/or metastatic dissemination. For these patients, ADT with luteinizing hormone-releasing hormone (LHRH) agonists, anti-androgens, or surgical castration is recommended (26–29). Initially, ADT typically leads to 90-95% decrease in circulating androgen levels,
being complemented by a 50% decrease in intraprostatic dihydrotestosterone (DHT) and AR inhibition (30), impairing tumor cells' survival (26, 28). However, within 18-30 months, cancer cells eventually become resistant to the different castration strategies (31). For CRPC, although no curative options are available, docetaxel is recommended for disease management (25). Moreover, it was reported that patients might also benefit from bicalutamide and low dose corticosteroids, which were found to control PSA levels and improve symptoms, although no increase in overall survival was depicted (32). In the beginning of 2022, the Food and Drug Administration (FDA) approved the use of the novel Novartis Pluvicto™ - Lu¹⁷⁷ vипivotide tetraxetan – for the treatment of progressive, PSMA-positive metastatic CRPC (33). This novel approach, in combination with the standard of care, decreased the death risk, improved overall survival and progression-free survival of these subset of patients (33). Neuroendocrine differentiation of tumor cells is observed in 17% of CRPC patients and only palliative options are proposed for this disease state (34).

Considering PCa disease progression, herein we intent to describe the mechanisms involved in therapy resistance in PCa, highlighting new potential drug targets.

Resistance Mechanisms

During treatment of advanced and metastatic PCa, most patients develop resistance to ADT (31, 35) and although this process is not fully understood, several mechanisms were reported to be involved in the acquisition of the castration-resistant state (Figure 2). Regardless of castrate levels of testosterone, tumor cells can proliferate due to clonal selection of cells with AR amplification (36). Thus, an enhanced number of receptors may bind to the vestigial androgens in circulation, maintaining AR signaling (36). Moreover, gain-of-function and point mutations in AR results in increased activation and decreased specificity, respectively, both resulting in tumor cell survival (37–39). Decreased AR specificity allows for growth factor-induced activation (39), through insulin-like growth-factor-1 (IGF-1), keratinocyte growth factor (KGF), epidermal growth factor (EGF) (37), and fibroblast growth factor (FGF) (40). Similarly, these growth factors also bind receptor tyrosine kinase (RTK), which can regulate AR activity (38, 40). RTK and their intracellular signaling pathways play an important role in CRPC cells' proliferation and, among these, the ERBB family (41), PI3K (5), ERK1/2 (42), Src (43), ROR-γ (44) and the glucocorticoid receptor (GR) (45) were found hyperactivated in CRPC (41, 46). Cytokines such as TNFα, IL-6 and IL-23 have been additionally suggested to modulate AR. TNFα was shown to bind to its receptor and activate NF-κB signaling pathway (47), whereas IL-6 was involved in MAPK cascades activation (48), both triggering AR signaling. Calcinotto et al. further reported that IL-23, secreted by myeloid-derived suppressor cells (MDSCs), activates the STAT3-RORγ pathway, by binding to IL-23R on tumor cell surface, culminating in AR

![Figure 2](https://www.frontiersin.org)
activation (49). Subsequently, AR binds to androgen-responsive elements (ARE) on DNA, and in association with different co-regulators, promotes gene expression (50). Importantly, when binding occurs in DNA repair genes’ regulatory regions, especially of PARP1, Ku-70, Ku-80 (51) and TOP2B (52), genomic rearrangements and DNA double stranded breaks may occur (53). The well-known TMPRSS2:ERG fusion can interact with the DNA repair protein and AR co-regulator PARP1, mediating transcription, invasion, and metastization (54). In AR-positive cells, GATA2, under the NOTCH family regulation, acts as an AR co-activator, maintaining AR signaling (55). Furthermore, different AR variants derived from alternative splicing have been shown to be involved in the acquisition of androgen-independent state (56). In CRPC, the most well described is the constitutively active AR-V7, which lacks the ligand-binding domain (LBD) and has an effective role in activating transcription (57). Epigenetic aberrations also contribute to post-ADT progression. In 30% of CRPC cases, AR expression might be completely lost and hypermethylated and histone post-translational modifications seem to be implicated in this process (2, 58, 59).

After resistance to first-line ADT, second generation anti-androgens (e.g., enzalutamide, abiraterone acetate) were found to improve survival of CRPC patients. Nonetheless, tumor cells eventually become resistant due to AR signaling reactivation (60). A specific kinase, AURKA, which is involved in chromosome instability, was found overexpressed in AR-positive CRPC cells (60). Kivinummi and colleagues showed that AURKA expression was directly targeted by androgens, with AR specifically binding to the gene regulatory regions, resulting in reduced progression-free survival (60).

For patients harboring CRPC, taxane-based chemotherapy is the only therapeutic option which increases survival. However, patients eventually become resistant to docetaxel treatment (61). Cancer cells expressing Mdr1 might be selected after therapy pressure, leading to decreased docetaxel intracellular intake (62). Moreover, alterations in microtubule-associated proteins’ expression result in decreased docetaxel efficacy (63). Indeed, tubulin isofrom βIII overexpression correlated with docetaxel resistance in CRPC (63, 64).

Although recently approved (33), approximately 1/3 of the PSMA-positive CRPC patients do not benefit from the Lu177 vipivotide tetraxetan PSMA-based targeting (65, 66). Several studies have already pinpointed the PSMA heterogenic expression, defect on DNA repair genes, clonal expansion of PSMA-negative cells and tumor heterogeneity as possible mechanism of resistance (66). A particular work reported, in a mouse model, that TP53-negative tumors were less responsive to treatment, compared to TP53 wild-type tumor-bearing mice, highlighting a potential resistance mechanism (65) and a need for assessing resistance in further studies.

Furthermore, tumor microenvironment (TME) has been shown to be an important driver of resistance to ADT and taxane-based chemotherapy. The stromal component might promote CRPC progression through vascularization, apoptosis inhibition and epithelial mesenchymal transition (EMT) promotion (67). Specifically, cancer-associated fibroblasts (CAFs) are known to stimulate mesenchymal phenotype through αSMA (68), and besides promoting cancer progression through EMT-related mechanisms, TGFβ-dependent activation leads to growth factor secretion and sustainment of cancer cells survival (69).

METHODS

A PubMed search was carried out, using the query (AR mutations OR AR variants OR γ-secretase inhibitor OR HERB inhibitor OR PI3K inhibitor OR AKT inhibitor OR mTOR inhibitor OR glucocorticoid receptor inhibitor OR ROR inhibitor OR IGF1R inhibitor OR MAPK inhibitor OR AUKRA inhibitor OR Scr inhibitor OR MET inhibitor OR STAT3 inhibitor OR IL-23 antibody OR TOP2 inhibitor OR BET inhibitor OR HAT inhibitor OR HDAC inhibitor OR HMT inhibitor OR HD M inhibitor OR DNMT inhibitor) AND (prostate cancer), with the time interval from 2010 to 2022. Additionally, 23 research articles prior to 2010 covering relevant data were included. Only original research articles, written in English, and those including in vitro and/or in vivo pre-clinical studies reporting drug screening assays in prostate cancer were considered. The records were imported to the reference manager EndNote. Subsequently, all abstracts were critically evaluated and only those providing relevant information for the present topic were selected. Our aim was to address the recently reported targeted therapies and potential combinations that may improve disease management and care in PCa patients.

A summary of the methodology is provided in Figure 3.

TARGETED THERAPIES

Having in mind that the aforementioned molecular alterations may account for PCA therapy resistance, we focused on the development and pre-clinical screening of new and effective targeted therapies enabling Precision Medicine. Hence, we aimed to emphasize the current state of targeted therapies’ screening in PCa, unveiling their potential clinical use.

Potential Targets for PCA Management

Because AR-dependent mechanisms are associated with 70% of ADT-resistant PCA cases (2), targeting the AR itself, its splicing variants or the associated co-regulators might have substantial therapeutic impact in CRPC. In the past few years, drug targeting of AR mutants, variants, and co-regulators has been shown to have anti-tumoral effects in AR-positive CRPC cells (Table 1). Galecteron, a CYP17A1 inhibitor, causes AR T878A mutant degradation and blocks transcription of AR target genes (70), whereas nicosamide induces AR-V7 protein degradation (75). This new AR target approach is under evaluation in clinical trials enrolling PCA patients (Supplementary Table 1). Nevertheless, for most of the described drugs, the anti-neoplastic effect was based on AR N-terminal blocking or AR splicing inhibition, ultimately impairing AR-driven PCA cell proliferation (Table 1).
and Supplementary Table 1). Additionally, indirect AR inhibition might be achieved by diminishing the activity of the positive co-regulators of the receptor transcription activity, such as GATA2 and ONECUT2 (Table 1), whose inhibition was reported to not only reduce cell proliferation (Supplementary Table 1), but also synergize with ADT agents (80, 81, 83) and docetaxel (82), displaying enhanced efficacy.

Conversely, 30% of the advanced and metastatic PCa cases progress due to AR bypass mechanisms, which allow tumor cells to survive in an AR-independent manner (2). As previously described, a significant proportion of the bypass is based on RTK intracellular signaling activation, that constitutes a putative therapy target in resistant PCa (2). Many of the existent pre-clinical studies target the HerbB family, PI3K, mTOR, Akt, GR, RORγ, IGFR, MAPK, Src and STAT3 (Table 1 and Supplementary Table 1). Generally, drug treatment inhibited the specific target activity, reduced tumor cell proliferation and viability, and promoted apoptosis (Supplementary Table 1), displaying anti-tumoral effects both in vitro and in vivo.

Nonetheless, as reported for the drugs that target AR co-regulators, the most promising results were achieved when combining a targeted therapy with the standard therapy strategies. For example, the Akt inhibitor ipatasertib, under test in clinical studies in PCa (Supplementary Table 1), re-sensitized CRPC cells to antiandrogens, when combined with enzalutamide, inducing apoptosis, and leading to remarkable tumor cell growth inhibition, both in vitro and in vivo (114). Gefitinib (89), BEZ235 (110), RAD001 (124) or RU486 (131) were also reported to re-sensitize resistant cells to standard chemotherapy agents (Supplementary Table 1). Interestingly, CUDC-907 (101), CB-03-10 (130) and MP470 (135), in addition to selective RTK inhibition, were found to inhibit HDAC6, AR and EGFR, respectively. These drugs caused cytotoxic effects in resistant cells (Supplementary Table 1), indicating a possible benefit of targeting multiple pathways for management of resistant PCa.

Although most of the drugs listed in Table 1 have demonstrated good therapeutic potential, in some cases a possible resistant mechanism was also identified. The PI3K inhibitor CUDC-907...
TABLE 1 | Potential targets and drugs for the management of therapy resistant prostate cancer.

Target	Drug	Mechanism of action	Combination	References
AR mutations	Galeteron	AR T878A mutant degradation	N.a.	(70)
AR variants	EPI-506	Inhibits AR N-terminal domain	BEZ235 (PI3K/Akt inhibitor)	(71, 72)
	EPI-001		N.a.	(73, 74)
	Niclosamide	AR-V7 degradation	N.a.	(75)
	Thalidomide	Inhibits AR splicing	N.a.	(76, 77)
	Peptidomimetic D2	Targets the transactive domain of AR-V	N.a.	(78)
	ONC201/TIC10	Targets AR-fl and AR-V7	Enzalutamide, docetaxel, everolimus	(79)
Co-regulators	RO4929097	inhibits y-secretase, impairing AR co-activator	Abiraterone	(75, 80)
	PF-3084014/PF-0308401/mirogacestat		Standard ADT, docetaxel	(80-82)
	DAPT/GSK-IX	GATA2 activity	Abiraterone	(80, 83, 84)
	BMS-708163/avagacestat		Enzalutamide	(80)
	CSR-8617	inhibits ONECUT2 function	N.a.	(85)
Bypass	Pkt 166	HerB1 and ErbB2 inhibitor	STI571 (PDGFR inhibitor), paclitaxel	(86-88)
Signaling	ZD1839/gefitinib	EGFR inhibitor	Enzalutamide, paclitaxel, ERK1/2 and	(89-96)
	3BrQuin-SAHA & 3ClQuin-SAHA		BEZ235/dactolisib	(97)
	Spautin-1		N.a.	(98)
	ZINC05463076 or ZINC2102846 or ZINC19901103		N.a.	(99)
	PD168393	PI3K inhibitor	N.a.	(100)
	CUDC-907		N.a.	(101)
	BAY1082439		N.a.	(102, 103)
	SP2523		N.a.	(104)
	LASSBio-2208		N.a.	(105)
	ZSTK474		N.a.	(106, 107)
	isorhamnetin		N.a.	(108)
	4-Acetylantranquolinol B		N.a.	(109)
	BEZ235/dactolisib	Dual PI3K and mTOR inhibitor	Docetaxel	(110-113)
	GDC-0068/patatertib	AKT inhibitor	Enzalutamide	(114-116)
	MK-2206		N.a.	(117, 118)
	AZD5363		Standard ADT	(119-122)
	GNE-493		N.a.	(123)
	RAD001/everolimus	mTOR inhibitor	Docetaxel	(124-127)
	MK-2206	AKT and mTOR dual inhibitor	MK-8669	(128, 129)
	CE-03-10	Glucocorticoid receptor inhibitor	N.a.	(130)
	RUL86/mifepristone		Docetaxel	(131-133)
	XYO18	RORy inhibitor	N.a.	(134)
	GSK805		N.a.	(134)
	SR2211		N.a.	(134)
	MP470/amuvatinib	RTK inhibitor	Erlotinib (EGFR inhibitor)	(135)
	GSK1838705A	IGFR1 inhibitor	N.a.	(136)
	NVP-AEW541		N.a.	(137)
	AZ12233801		N.a.	(138)
	PD325901/mirantinib	MAPK/ERK inhibitor	N.a.	(139)
	U0126	MEK/ERK inhibitor	N.a.	(140)
	MLN8237/ailisertib	AUKPA inhibitor	N.a.	(141)
	BMS-354825/dasatinib	Src inhibitor	BMS-754807 (IGF1 inhibitor)	(141-147)
	AZD0630/saracatinib		N.a.	(148, 149)
	SK-606/bosutinib		N.a.	(150)
	BMS-777607	c-MET inhibitor	N.a.	(151, 152)
	GEPB730	STAT3 inhibitor	Anti-CTLA-4	(153)
	Acacetin		N.a.	(154)
	GAP500/galleelfatocine		Standard ADT	(155-157)
	EC-70124		N.a.	(158)
Cytokines	G23-8	Antibody against IL-23	Enzalutamide	(49)
DNA repair pathway	AZD-2281/olaparib	PARP inhibitor	N.a.	(159-162)
	AST-888/velparib		N.a.	(163, 164)
	AZD2461		N.a.	(165, 166)
	Rucaparib		N.a.	(167)
	VP-16/etoposide phosphate		TOP2 inhibitor	(168)

N.a., not applicable; ADT, androgen deprivation therapy; AR-fl, androgen receptor full length; AR-V, androgen receptor variant.
resulted in increased phospo-ERK levels (101), whereas PD325901, by inhibiting the ERK pathway, induced hyperactivation of the pro-proliferative PI3K and hedgehog pathways (139). In both studies, compensatory signaling mechanisms were suggested as the cause of resistance, thus, reinforcing the benefit of combinatory strategies to enhance anti-tumoral effects.

Furthermore, the combination of standard radiation therapy and PARP inhibitors was shown to have a significant effect on tumor cells viability (Table 1 and Supplementary Table 1). Specifically, veliparib (163) and rucaparib (167), two drugs under clinical investigation in PCs (Supplementary Table 1), were shown to re-sensitize CRPC cells to radiotherapy, impairing tumor cell growth. Moreover, this class of inhibitors similarly synergized with ADT agents (159, 160), AUKRA inhibitors (161) and epi-drugs (164, 165), with improved anti-neoplastic effects.

TABLE 2 | Potential epigenetic targets and epi-drugs for the management of therapy resistant prostate cancer.

Target	Drug	Mechanism of action	Combination	References
BET	OTX015/MK-8628/birabresib	BRD2/3/4 inhibitor	N.a.	(174)
	JQ1	BRD4 inhibitor	N.a.	(175–182)
	GSK1210151A	N.a.	(179)	
	Y08060	N.a.	(180)	
	CPI-203	N.a.	(181)	
	AZD5153	N.a.	(182)	
	I-BET151	N.a.	(183)	
	SF2523	N.a.	(184)	
	WWL0245	N.a.	(185)	
	I-BET762/molibresib	BET inhibitor	N.a.	(186)
	ZEN-3694	Enzalutamide	(187, 188)	
	ABBV-744	N.a.	(189)	
	Y06014	N.a.	(190)	
	NEO2734	N.a.	(191)	
	dBET6	BET protein degradation	N.a.	(192)
HAT	A-485	CBP/p300 inhibitor	N.a.	(193)
	CCS1477	N.a.	(194)	
	Y08197	N.a.	(195)	
	I-CBP112	A-485	(196)	
HDAC	Trichostatin A/TSA	HDAC I and II inhibitor	Bortezomib (proteosome inhibitor), chemotherapy	(197–200)
	Panobinostat/LBH-589	Pan HDAC inhibitor	Hydralazine (DNMT inhibitor), RT, zoleronic acid	(200–208)
	Vorinostat/SANH	HDAC I inhibitor	Bicalutamide, docetaxel	(209–212)
	Mhy219	N.a.	(213, 214)	
	Jazz90 & Jazz167	HDAC inhibitor	Docetaxel	(215, 216)
	CG200745	N.a.	(217)	
	Mhy4381	N.a.	(218)	
	Valproic Acid/VPA	N.a.	(6, 17, 219, 220)	
	A248	N.a.	(221)	
	Mpt0b451	N.a.	(222)	
	2-75	HDAC 6 inhibitor	N.a.	(223)
HMT	GSK-343	Ezh2 inhibitor	Standard ADT, metformin	(224)
	Tazemetostat/EPZ-6438	N.a.	(225)	
	GSK-926	N.a.	(226)	
	LG1980	N.a.	(227)	
	GSK-126	N.a.	(228–231)	
HDM	Ncl1	LSD1 inhibitor	Docetaxel	(232, 233)
	Hcl-2509	N.a.	(234)	
DNMT	5-AZA-2′-deoxyctydine/decitabine	DNMT inhibitor	Sodium butyrate	(171, 235–240)
	5-azacytidine/azacytidine	Standard ADT	(172, 241)	
	RG108	N.a.	(242)	
	Hydralazine	N.a.	(204)	

N.a., not applicable; ADT, androgen deprivation therapy; BET, Bromodomain and Extra-Terminal motif; HAT, histone acetyltransferases; HDAC, histone deacetylase; HMT, histone methyltransferase; HDM, histone demethylase; DNMT, DNA methyltransferase; RT, radiation therapy.

Targeting Epigenetics for PCa Treatment

Epigenetic alterations have been recognized as a hallmark of cancer (169), and since it comprises reversible modifications (59), there is a potential for drug targeting. FDA has approved two drugs that target epigenetic players, 5-azacytidine and 5-aza-2′-deoxycytidine, for myelodysplastic syndrome treatment (170). These two drugs, as DNA methyltransferases (DNMTs) inhibitors, are incorporated into DNA, inhibiting DNMT activity and decreasing global methylation levels (171, 172). Nevertheless, there is a potential for targeting the entire epigenetic machinery in cancer treatment, as we have previously reported (173). In therapy resistant PCs, histone acetyltransferases (HATs), HDACs, histone demethylases (HDMs), histone methyltransferases (HMTs), BET, and DNMTs inhibitors are currently under pre-clinical and clinical studies (Table 2 and Supplementary Table 2), displaying anti-tumoral effects, mostly due to enzyme inhibition.
and gene expression reprograming (Supplementary Table 2). Interestingly, the most promising results were found when epi-drugs were combined with standard ADT compounds (188, 209, 224, 228, 229, 241, 243), docetaxel (175, 197, 210, 217, 234), radiation therapy (203) or other epi-drugs (196, 204, 235), suggesting an interplay between epigenetic and non-epigenetic targeting in PCa management.

Remarkably, BET inhibitors such as JQ1, GSK1210151A and I-BET151 were found to decrease AR-fl and AR-V7 expression and activity (Supplementary Table 2), demonstrating a potential to be used with both an epigenetic- and AR-targeting purpose. However, disadvantageous off-target effects were observed after JQ1 treatment. JQ1 was found to promote PCa cell invasion and metastatic potential due to FOXA1 inactivation in a BET-independent manner (176). Therefore, high FOXA1 expression tumors are not suitable for JQ1 treatment (176), highlighting the importance of personalized strategies, based on tumor cell biology, for PCa management.

Notwithstanding all the work that has been accomplished in the epi-drug field, the role of different epigenetic enzymes in cancer, particularly PCa, and its potential targeting for a reprogramming purpose remains largely unknow. Therefore, an investment in this field of research might contribute to improve the management of, not only therapy resistant PCa, but also other cancers displaying therapeutically relevant epigenetic modifications.

Immunotherapy-Based Therapies for PCa Management

PCa has long been described as a “cold” tumor, characterized by an immune-suppressive environment (244). However, in the last decade, several efforts have been made to overcome this feature. This includes the use of different immune therapies, alone or in combination with the standard of care (Table 3 and Supplementary Table 3). Published data includes reports from clinical trials targeting PD-L1, PD-1, CTLA-4, and the approved cellular immunotherapy Sipuleucel-T (Table 3). Overall, immunotherapy did not significantly improve the survival of PCa patients, but the effect on PSA was promising (Supplementary Table 3). Interestingly, the most encouraging results were obtained by the combination of pembrolizumab (anti-PD-1 drug), with the ADT enzalutamide (246). These results highlight the need for pre-clinical in vitro studies aiming at understanding the molecular mechanisms behind the “cold” PCa microenvironment, paving the way to further studies of novel immune-based therapies.

Table 3 | Immunotherapy for the management of therapeutic resistant PCa.

Target	Drug	Mechanism of action	Combination
PD-L1	Atezolizumab	Inhibits PD-L1	Enzalutamide
PD-L1	Pembrolizumab	Inhibits PD-L1	Enzalutamide, docetaxel, prednisone
PD-L1	Cellular Immune Therapy	Cellular Immune Therapy	N.A.
PD-L1	Tremelimumab	Inhibits CTLA-4	N.A.

N.A., not applicable; ADT, androgen deprivation therapy.

CONCLUSION

Herein, we described the mechanisms underlying the acquisition of therapy resistance in PCa, and potential targetable molecules, listing druggable targets in resistant disease and addressing pre-clinical studies describing the anti-tumoral effects of several drugs. We provided insight on innovative PCa treatments, to be exploited in pre-clinical studies and, if successful, in clinical trials, allowing for improved treatment of...
CRPC patients. Although several targeted therapies are already under clinical trials in PCa, there is a need for a more personalized analysis of tumor cell biology, enabling the selection of the most suitable therapeutic strategy, improving the management of resistant disease.

AUTHOR CONTRIBUTIONS

Conceptualization, FM-S and CJ. Systematic review of literature, FM-S. Writing—original draft preparation, FM-S. Writing—review and editing, RH and CJ. Image editing, FM-S. Supervision, CJ. All authors have read and agreed to the published version of the manuscript.

REFERENCES

1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. *CA Cancer J Clin* (2021) 71(3):209–49. doi: 10.3322/caac.21660
2. Wang G, Zhao D, Spring DJ, DePinho RA. Genetics and Biology of Prostate Cancer. *Genes Dev* (2018) 32(17-18):1105–40. doi: 10.1101/gad.315739.118
3. Cancer Genome Atlas Research N. The Molecular Taxonomy of Primary Prostate Cancer. *Cell* (2015) 163(4):1011–25. doi: 10.1016/j.cell.2015.10.025
4. Mitchell T, Neal DE. The Genomic Evolution of Human Prostate Cancer. *Cancer Cell* (2015) 113(2):193–8. doi: 10.1016/j.ccc.2015.04.234
5. Taylor BS, Schultz N, Hironoys M, Gopalas A, Xiao Y, Carver BS, et al. Integrative Genomic Profiling of Human Prostate Cancer. *Cancer Cell* (2010) 18(1):11–22. doi: 10.1016/j.ccc.2010.05.026
6. Carver BS, Tran J, Gopalan A, Chen Z, Shaikh S, Carracedo A, et al. Aberrant ERG Expression Cooperates With Loss of PTEN to Promote Cancer Progression in the Prostate. *Nat Genet* (2009) 41(5):619–24. doi: 10.1038/ng.370
7. Graça I, Pereira-Silva E, Henrique R, Packham G, Crabb SJ, Jerónimo C, et al. Epigenetic Modulators as Therapeutic Targets in Prostate Cancer. *Clin Epigenet* (2016) 8(1):98. doi: 10.1186/s13148-016-0264-8
8. Jerónimo C, Usadel H, Henrique R, Oliveira J, Lopes C, Nelson WG, et al. Quantitation of GSTP1 Methylation in non-Neoplastic Prostatic Tissue and Organ-Confinied Prostate Adenocarcinoma. *J Nail Cancer Institute* (2001) 93(22):1747–52. doi: 10.1093/jnci/93.22.1747
9. Weichert W, Roske A, Gekeler V, Beckers T, Stephan C, Jung K, et al. Histone Deacetylases 1, 2 and 3 are Highly Expressed in Prostate Cancer and HDAC2 Expression is Associated With Shorter PSA Relapse Time After Radical Prostatectomy. *Br J Cancer* (2008) 99(3):604–10. doi: 10.1038/sj.bjc.6604199
10. Jerónimo C, Henrique R, Hoque MO, Mambo E, Ribeiro FR, Varzim G, et al. A Quantitative Promoter Methylation Profile of Prostate Cancer. *Clin Cancer Res: Off J Am Assoc Cancer Res* (2004) 10(24):8472–8. doi: 10.1158/1078-0432.CCR-04-0894
11. Yegnasubramanian S, Haffner MC, Zhang Y, Gurel B, Cornish TC, Wu Z, et al. DNA Hypomethylation Arises Later in Prostate Cancer Progression Than CpG Island Hypermethylation and Contributes to Metastatic Tumor Heterogeneity. *Cancer Res* (2008) 68(21):8954–67. doi: 10.1158/0008-5472.CAN-07-0688
12. Davies A, Conteduca V, Zoubeidi A, Beltran H. Biological Evolution of Castration-Resistant Prostate Cancer. *Eur Urol Focus* (2019) 5(2):147–54. doi: 10.1016/j.euf.2019.01.016
13. Grasso CS, Wu Y-M, Robinson DR, Cao X, Dhanasekaran SM, Khan AP, et al. The Mutational Landscape of Lethal Castration-Resistant Prostate Cancer. *Nature* (2012) 487(7406):239–43. doi: 10.1038/nature11125
14. Chan JSK, Sng MK, Teo ZQ, Chong HC, Twang JS, Tan NS. Targeting Nuclear Receptors in Cancer-Associated Fibroblasts as Concurrent Therapy to Inhibit Development of Chemoresistant Tumors. *Oncogene* (2018) 37(2):160–73. doi: 10.1038/onc.2017.319
15. Friedlander TW, Roy R, Tomlins SA, Ngo VT, Kobayashi Y, Azameera A, et al. Common Structural and Epigenetic Changes in the Genome of Castration-Resistant Prostate Cancer. *Cancer Res* (2012) 72(3):616–25. doi: 10.1158/0008-5472.CAN-11-2079
16. Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG, et al. The Polycomb Group Protein EZH2 Is Involved in Progression of Prostate Cancer. *Nature* (2002) 419(6907):624–9. doi: 10.1038/nature01075
17. Ciscioi F, Windloch K, Gannon F, Lee JS. Functional Role of G9a Histone Methyltransferase in Cancer. *Front Immunol* (2015) 6:487. doi: 10.3389/fimmu.2015.00487
18. Metzger E, Wissmann M, Yin N, Muller JM, Schneider R, Peters AH, et al. LSD1 Demethylates Repressive Histone Marks to Promote Androgen-Receptor-Dependent Transcription. *Nature* (2005) 437(7057):436–9. doi: 10.1038/nature04020
19. Conteduca V, Oromendia C, Eng KW, Bareja R, Sigouros M, Molina A, et al. Clinical Features of Neuroendocrine Prostate Cancer. *Eur J Cancer* (2019) 121:7–18. doi: 10.1016/j.ejca.2019.08.011
20. Beltran H, Prandi D, Mosquera JM, Benelli M, Puca L, Cyria J, et al. Divergent Clonal Evolution of Castration-Resistant Neuroendocrine Prostate Cancer. *Nat Med* (2016) 22(3):298–305. doi: 10.1038/nm.4045
21. Vlachostergios PJ, Puca L, Beltran H. Emerging Variants of Castration-Resistant Prostate Cancer. *Curr Oncol Rep* (2017) 19(5):32–2. doi: 10.1007/s11912-017-0593-6
22. Nadal R, Schweizer M, Kryvenko ON, Epstein JJ, Eisenberger MA. Small Cell Carcinoma of the Prostate. *Nat Rev Urol* (2014) 11(4):213–9. doi: 10.1038/ nruro.2014.21
23. Gillessen S, Attard G, Beer TM, Beltran H, Bossi A, Bristow R, et al. Management of Patients With Advanced Prostate Cancer: The Report of the Advanced Prostate Cancer Consensus Conference APCCC 2017. *Eur Urol* (2018) 73(2):178–211. doi: 10.1016/j.eururo.2017.06.002
24. Heidenreich A, Bastian PJ, Bellmunt J, Bolla M, Joniau S, van der Kwast T, et al. EAU Guidelines on Prostate Cancer. Part II: Treatment of Advanced, Relapsing, and Castration-Resistant Prostate Cancer. *Eur Urol* (2014) 65(2):467–79. doi: 10.1016/j.eururo.2013.11.002
25. Parker C, Castro E, Fizazi K, Heidenreich A, Ost P, Procopio G, et al. Prostate Cancer: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. *Ann Oncol* (2020) 31(9):1119–34. doi: 10.1016/j.annonc.2020.06.011
26. Cornford P, Bellmunt J, Bolla M, Briers E, De Santis M, Gross T, et al. EAU-ESTRO-SIOG Guidelines on Prostate Cancer. Part II: Treatment of Relapsing, Metastatic, and Castration-Resistant Prostate Cancer. *Eur Urol* (2017) 71(4):630–42. doi: 10.1016/j.eururo.2016.08.002
27. Ceder Y, Bjartell A, Cugli Z, Rubin MA, Tomlins S, Visakorpi T. The Molecular Evolution of Castration-Resistant Prostate Cancer. *Eur Urol Focus* (2016) 2(5):506–13. doi: 10.1016/j.euf.2016.11.012

FUNDING

CJ research is supported by the Research Center of Portuguese Oncology Institute of Porto (CI-IPOP-27-2016). FM-S contract was funded by Porto Comprehensive Cancer Center (Porto.CCC, Contract RNCCCP.CCC-CI-IPOP-LAB3-NORTE-01-0145-FEDER-072678).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fonc.2022.877379/full#supplementary-material
64. Ploussard G, Terry S, Maille P, Alloory Y, Sirab N, Kheuang L, et al. Class III Beta-Tubulin Expression Predicts Prostate Tumor Aggressiveness and Patient Response to Docetaxel-Based Chemotherapy. Cancer Res (2010) 70 (22):9233–64. doi: 10.1158/0008-5472.CAN-10-1447

65. Stuparu AD, Capri JR, Meyer CAL, Le TM, Evans-Axelsson SL, Current K, et al. Mechanisms of Resistance to Prostate-Specific Membrane Antigen-Targeted Radiolgand Therapy in a Mouse Model of Prostate Cancer. J Nucl Med (2021) 62(7):989–95. doi: 10.2967/jnumed.120.252663

66. Liu X, Biswas S, Berg MG, Antapli CM, Xie F, Wang Q, et al. Genomics-Guided Discovery of Thailanstatins A, B, and C As pre-mRNA Splicing Inhibitors and Antiproliferative Agents From Burkholderia Thailandensis. J Natl Prod (2014) 76(4):685–90. doi: 10.1021/np500931h

67. Kato M, Banuelos CA, Imamura Y, Leung JK, Caley DP, Wang J, et al. Targeting Androgen Receptor Splice Variants Expression and Overcomes Resistance Mechanisms in Castration-Resistant Prostate Cancer. Cancer Res (2014) 20(15):4075–80. doi: 10.1158/0008-5472.CAN-13-3763

68. Yin J, Cui D, Dai J, Keller JM, Mizokami A, Xia S, Keller ET, et al. Notch Pathway Inhibition Using PF-03084014, a γ-Secretase Inhibitor (GSI), Enhances the Antitumor Effect of Docetaxel in Prostate Cancer. Clin Cancer Res (2015) 21 (20):4619. doi: 10.1158/1078-0432.CCR-15-0242

69. Rice MA, Hsu EC, Aslan M, Ghoochani A, Su A, Stoyanova T, et al. Loss of Notch1 Activity Inhibits Prostate Cancer Growth and Metastasizes Prostate Cancer Cells to Antiandrogen Therapies. Mol Cancer Ther (2019) 18(7):1230–42. doi: 10.1158/1355-7116.MCT-18-0804

70. Cui J, Wang Y, Dong B, Qin L, Wang C, Zhou P, et al. Pharmacological Inhibition of the Notch Pathway Enhances the Efficacy of Androgen Deprivation Therapy for Prostate Cancer. Int J Cancer (2018) 143(3):645–56. doi: 10.1002/ijc.31346

71. Yang YC, Banuelos CA, Mawji NR, Wang J, Kato M, Haile S, et al. Targeting Downregulating Notch Signaling and PF-3084014 (a γ-Secretase Inhibitor) Partially Reverses the Resistance of Refractory Prostate Cancer to Docetaxel and Enzalutamide In Vitro. Int J Oncol (2018) 53(1):99–112. doi: 10.3892/ijc.2018.4370

72. Cui D, Dai J, Keller JM, Mizokami A, Xia S, Keller ET, et al. Notch Pathway Inhibition Using PF-03084014, a γ-Secretase Inhibitor (GSI), Enhances the Antitumor Effect of Docetaxel in Prostate Cancer. Clin Cancer Res (2015) 21 (20):4619. doi: 10.1158/1078-0432.CCR-15-0242

73. Rice MA, Hsu EC, Aslan M, Ghoochani A, Su A, Stoyanova T, et al. Loss of Notch1 Activity Inhibits Prostate Cancer Growth and Metastasizes Prostate Cancer Cells to Antiandrogen Therapies. Mol Cancer Ther (2019) 18(7):1230–42. doi: 10.1158/1355-7116.MCT-18-0804

74. Cui J, Wang Y, Dong B, Qin L, Wang C, Zhou P, et al. Pharmacological Inhibition of the Notch Pathway Enhances the Efficacy of Androgen Deprivation Therapy for Prostate Cancer. Int J Cancer (2018) 143(3):645–56. doi: 10.1002/ijc.31346

75. Rotinen M, You S, Yang J, Coetzee SG, Reis-Sobreiro M, Huang WC, et al. NOTCUT2 is a Targetable Master Regulator of Lethal Prostate Cancer That Suppresses the Androgen Axis. Nat Med (2018) 24(12):1887–98. doi: 10.1038/s41591-018-0241-1

76. Mellinghoff IK, Tran C, Sawyers CL. Growth Inhibitory Effects of the Dual ErbB1/ErbB2 Tyrosine Kinase Inhibitor PKI-166 on Human Prostate Cancer Xenografts. Cancer Res (2002) 62(18):5254–9.

77. Formento P, Hannoun-Levi JM, Fischel JL, Magne S, Lecouture B, Moasser MM, Basso A, Averbuch SD, Rosen N. The Tyrosine Kinase Inhibitor ZD1839 (“Iressa”) Inhibits HER2-Driven Signaling and Suppresses the Growth of HER2-Overexpressing Tumor Cells. Clin Cancer Res (2004) 10(18):2837–44. doi: 10.1158/1078-0432.CCR-04-0376

78. Miyagawa K, Uchida M, Saiki T, Toyama Y, Iwasa Y, Shigematsu H, et al. cotargeting Androgen Receptor Splice Variants and mTOR Signaling Pathway for the Treatment of Castration-Resistant Prostate Cancer. Cancer Res Off J Am Assoc Cancer Res (2016) 22(11):2744–54. doi: 10.1158/0008-5472.CAN-15-2119

79. Moasser MM, Basso A, Averbuch SD, Rosen N. The Tyrosine Kinase Inhibitor ZD1839 (“Iressa”) Inhibits HER2-Driven Signaling and Suppresses the Growth of HER2-Overexpressing Tumor Cells. Cancer Res (2004) 61(19):7184–8.

80. Formento P, Herreras-Livo-Levi J, Fischel JL, Magné N, Etienné-Grimaldi MC, Milazzo G. Dual HER 1-2 Targeting of Hormone-Refractory Prostate Cancer by ZD1839 and Trastuzumab. Eur J Cancer (2004) 40(18):2837–44. doi: 10.1016/j.ejca.2004.07.033

81. Sgambato A, Camerini A, Faraglia B, Ardito R, Bianchino G, Spada D, et al. Targeted Inhibition of the Epidermal Growth Factor Receptor-Tyrosine Kinase by ZD1839 (‘Iressa’) Inhibits Cell-Cycle Arrest and Inhibits Proliferation in Prostate Cancer Cells. J Cell Physiol (2004) 201(1):97–105. doi: 10.1002/jcp.20045

82. Festuccia C, Muzi P, Millimaggi D, Bortolotti A, Specia S, et al. Molecular Aspects of Gefitinib Antiproliferative and Anti-Apoptotic Effects in PTEN-Positive and PTEN-Negative Prostate Cancer Cells. Endocr Relat Cancer (2005) 12(4):983–98. doi: 10.1677/erc.1.00996

83. Bonacorsi L, Marchiani S, Muratori M, Forti G, Baldi E. Gefitinib (‘Iressa’, ZD1839) Inhibits EGFR-Induced Invasion in Prostate Cancer Cells by Suppressing PI3 K/AKT Activation. J Cancer Res Clin Oncol (2004) 130:4625-8

84. Vicentini C, Festuccia C, Gravina GL, Angelucci A, Marronaro A, Bologna M. Prostate Cancer Cell Proliferation is Strongly Reduced by the Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor ZD1839 In Vitro on Human Cell Lines and Primary Cultures. J Cancer Res Clin Oncol (2005) 131(4):278–84. doi: 10.1007/s00432-004-0427-1

85. Angelucci A, Gravina GL, Rucci N, Millimaggi D, Festuccia C, Muzi P, et al. Suppression of EGFR Signaling Reduces the Incidence of Prostate Cancer Metastasis in Nude Mice. Endocr Relat Cancer (2006) 13(1):197–210. doi: 10.1677/erc.1.01100
111. Potiron VA, Biersack B, Peng Y, Schobert R, Herling M, Ma A, et al. Anticancer Activity and Mechanisms of Action of New Chimeric EGFR/HDAC-Inhibitors. Int J Mol Sci (2021) 22(16):22(16):8432. doi: 10.3390/ijms22168432

110. Liao Y, Guo Z, Xia X, Liu Y, Huang C, Jiang L, et al. Inhibition of EGFR Signaling With Spautin-1 Represents a Novel Therapeutics for Prostate Cancer. J Exp Clin Cancer Res (2019) 38(1):157. doi: 10.1186/s13046-019-1165-4

109. Zhi Y, Wu X, Shen W, Wang Y, Zhou X, He P, et al. Synthesis and Pharmacological Evaluation of Novel Epidermal Growth Factor Receptor Inhibitors Against Prostate Tumor Cells. Oncol Lett (2018) 17(6):6522–30. doi: 10.3892/ol.2018.9438

108. Cai F, Zhang Y, Li J, Huang S, Gao R. Isorhamnetin Inhibited the IDO1-MED13L Axis To Induce Apoptosis. Cancer Biol Ther (2018) 19(1):44–55. doi: 10.4161/cbt.27314

107. Hu C, Xia H, Bai S, Zhao J, Edwards H, Li X, et al. CUDC-907, a Novel Dual PI3K/mTOR Inhibitor BEZ235 Under Normoxic and Hypoxic Conditions. Sci Rep (2022) 12(1):1452. doi: 10.1038/s41598-021-97911-0

106. Zhao W, Guo W, Zhou Q, Ma SN, Wang R, Qiu Y, et al. Cotargeting the PI3K and HDAC Inhibitor, in Prostate Cancer: Antitumour Activity and Molecular Mechanism of Action. J Cell Mol Med (2020) 24(13):7239–53. doi: 10.1111/jcmm.15281

105. Guerra FS, Rodrigues DA, Fraga CAM, Fernandes PD, Novel Single Inhibitor of HDAC6/8 and Dual Inhibitor of PI3K/HDAC6 as Potential Alternative Treatments for Prostate Cancer. Pharmaceut (Basel) (2021) 14(5):387. doi: 10.3390/ph45050387

104. Zhao W, Guo W, Zhou Q, Ma SN, Wang R, Qiu Y, et al. In Vitro Antimetastatic Effect of Phosphatidylinositol-3-Kinase Inhibitor ZSTK747 on Prostate Cancer PC3 Cells. Int J Mol Sci (2013) 14(7):13577–91. doi: 10.3390/ijms140713577

103. Liu J, Tan X, Zhao W, Liu J, Xing X, Fan G, et al. In Vitro and In Vivo Antimetastatic Effects of ZSTK747 on Prostate Cancer DU145 Cells. Cancer Drug Targets (2019) 19(4):321–9. doi: 10.2174/1744809X19806009130810

102. Cai F, Zhang Y, Li J, Huang S, Gao R. Isorhamnetin Inhibited the Proliferation and Metastasis of Androgen-Independent Prostate Cancer Cells by Targeting the Mitochondrion-Dependent Intrinsic Apoptotic and PI3K/Akt/mTOR Pathway. Biosci Rep (2020) 40(3):BSR20192826. doi: 10.1042/BSR20192826

101. Potiron VA, Abderrahmani R, Giang E, Chiavassa S, Di Tomaso E, Maira SM, et al. Radiosensitization of Prostate Cancer Cells by the Dual PI3K/mTOR Inhibitor BEZ235 Under Normoxic and Hypoxic Conditions. Radiother Oncol (2013) 106(1):138–46. doi: 10.1016/j.radonc.2012.11.014

100. Hong SW, Shin JS, Moon JH, Kim YS, Lee J, Choi EK, et al. NVP-BEZ235, a Dual PI3K/mTOR Inhibitor, Induces Cell Death Through Alternate Routes in Prostate Cancer Cells Depending on the PI3K Genotype. Apoptosis (2014) 19(5):895–904. doi: 10.1007/s10495-014-0973-4

99. Carver BS, Chapinski C, Wongvipat J, Hieronymus H, Chen Y, Chandraratnay S, et al. Reciprocal Feedback Regulation of PI3K and Androgen Receptor Signaling in PTEN-Deficient Prostate Cancer. Cancer Cell (2011) 19(5):575–86. doi: 10.1016/j.ccr.2011.04.008

98. Liao Y, Guo Z, Xia X, Liu Y, Huang C, Jiang L, et al. Inhibition of EGFR Signaling With Spautin-1 Represents a Novel Therapeutics for Prostate Cancer. J Exp Clin Cancer Res (2019) 38(1):157. doi: 10.1186/s13046-019-1165-4

97. Goehringer N, Biersack B, Peng Y, Schobert R, Herling M, Ma A, et al. Anticancer Activity and Mechanisms of Action of New Chimeric EGFR/HDAC-Inhibitors. Int J Mol Sci (2021) 22(16):22(16):8432. doi: 10.3390/ijms22168432
145. Liu Y, Karaca M, Mazzetti A, Moro L, Gerloni M. The Dual Androgen Receptor and Glucocorticoid Receptor Antagonist CB-0310 as Potential Treatment for Tumors That Have Acquired GR-Mediated Resistance to AR Blockade. *Mol Cancer Ther* (2019) 20(11):2256–66. doi: 10.1158/1535-7163.MCT-19-1137

146. Chakraborty G, Patali NK, Hirani R, Pandakumar S, Mazzu YZ, Yoshikawa Y, et al. Attenuation of SRC Kinase Activity Augments PARP Inhibitor-Mediated Synthetic Lethality in BRCa2-Modified Prostate Tumors. *Cancer Res* (2021) 71(6):1792–806. doi: 10.1158/0008-5472.CAN-20-2483

147. Araujo JC, Poblenz A, Corn P, Parikh NU, Starbuck MW, Thompson JT, et al. Dasatinib Inhibits Both Osteoclast Activation and Prostate Cancer PC-3 Cell-Induced Osteoclast Formation. *Cancer Biol Ther* (2009) 8(22):2153–9. doi: 10.4161/ctb.8.22.9770

148. Chang YM, Bai L, Liu S, Yang JC, Kung HJ, Evans CP. SRC Family Kinase Oncogenic Potential and Pathways in Prostate Cancer as Revealed by AZD0530. *Oncogene* (2008) 27(49):6365–75. doi: 10.1038/ onc.2008.250

149. Yang JC, Bai L, Yap S, Gao AC, Kung HJ, Evans CP, et al. Effect of the Specific Src Family Kinase Inhibitor Saracatinib on Osteolytic Lesions Using the prostate-3 bone model. *Mol Cancer Ther* (2010) 9(6):1629–37. doi: 10.1158/1535-7163.MCT-09-1058

150. Rabbani SA, Valentino ML, Arakelian A, Ali S, Boschelli F. SKI-606 (Bosutinib) Blocks Prostate Cancer Invasion, Growth, and Metastasis In Vivo and In Vivo Through Regulation of Genes Involved in Cancer Growth and Skeletal Metastasis. *Mol Cancer Ther* (2010) 9(5):1147–57. doi: 10.1158/1535-7163.MCT-09-0962

151. Dai Y, Siemann DW. BMS-777607, a Small-Molecule Met Kinase Inhibitor, Suppresses Hepatocyte Growth Factor-Stimulated Prostate Metastatic Phenotype In Vivo. *Mol Cancer Ther* (2010) 9(6):1554–61. doi: 10.1158/1535-7163.MCT-09-0337

152. Dai Y, Siemann DW. Constitutively Active C-Met Kinase in PC-3 Cells is Autocrine-Independent and can be Blocked by the Met Kinase Inhibitor BMS-777607. *BMcCancer Ther* (2012) 12:198. doi: 10.1186/1471-2407-12-198

153. Witt K, Evans-Alexsson S, Lundqvist A, Johansson M, Bjartell A, Hellsten R. Inhibition of STAT3 Augments Antitumor Efficacy of Anti-CTLA-4 Treatment Against Prostate Cancer. *Cancer Immunol Immunother* (2021) 70(11):3155–66. doi: 10.1007/ s00262-021-02915-6

154. Sun Y, Lee YJ, Choi J, Kim ND, Han DC, Kwon BM. Acacetin Inhibits the Growth of STAT3-Activated DU145 Prostate Cancer Cells by Directly Binding to Signal Transducer and Activator of Transcription 3 (Stat3). *Molecules* (2021) 26(20):6204. doi: 10.3390/molecules26206204

155. Canesin G, Maggio V, Palominos M, Stiehm A, Contreras HR, Castellon EA, et al. STAT3 Inhibition With Galilalestatine Effectively Targets the Prostate Cancer Stem-Cell Like Population. *Sci Rep* (2020) 10(1):13958. doi: 10.1038/s41598 -020-70948-3

156. Canesin G, Evans-Alexsson S, Hellsten R, Sterner O, Krzyzanowska A, Andersson T, et al. The STAT3 Inhibitor Galilalestatine Effectively Reduces Tumor Growth and Metastatic Spread in an Orthotopic Xenograft Mouse Model of Prostate Cancer. *Eur Urol* (2016) 69(3):400–4. doi: 10.1016/j.eururo.2015.06.016

157. Thalper D, Vahid S, Kaur R, Kumar S, Nouruzi S, Bishop JL, et al. Galilalestatine Inhibits the STAT3/JAK Signaling Axis and Suppresses Enzalutamide-Resistant Prostate Cancer. *Sci Rep* (2018) 8(1):17307. doi: 10.1038/s 41598-018-35612-z

158. Civenni G, Longoni N, Costales P, Dallavalle C, Garcia Inclán C, Albino D, et al. EC-70124, a Novel Glycosylated Indolocarbazole Multikinase Inhibitor, Reverts Tumorigenic and Stem Cell Properties in Prostate Cancer by Inhibiting STAT3 and NF-xb. *Mol Cancer Ther* (2016) 15(5):806–18. doi: 10.1158/1535-7163.MCT-15-0791

159. Feiersinger GE, Tratting K, Leitner PD, Guggenberger E, Oberhuber A, Peer S, et al. Olaparib is Effective in Combination With, and as Maintenance Therapy After, First-Line Endocrine Therapy in Prostate Cancer Cells. *Mol Oncol* (2018) 12(4):561–76. doi: 10.1002/1878-0261.12185

160. Li L, Karanika S, Yang G, Wang J, Park S, Broom BM, et al. Androgen Receptor Inhibitor-Induced "BRCAness" and PARP Inhibition are Synthetically Lethal for Castration-Resistant Prostate Cancer. *Sci Signaling* (2017) 10(480):eaam7479. doi: 10.1126/scisignal.aam 7479

161. Zhang W, Liu B, Wu W, Li L, Broom BM, Basourakos SP, et al. Targeting the MYCN-PARP-DNA Damage Response Pathway in Neuroendocrine Prostate Cancer. *Cancer Res* (2018) 24(3):962–70. doi: 10.1158/0008-542G.CCR-17-1872

162. Gani C, Coakley C, Kumareswaran R, Schütze C, Krause M, Zafarana G, et al. In Vivo Studies of the PARP Inhibitor, AZD-2281, in Combination
With Fractionated Radiotherapy: An Exploration of the Therapeutic Ratio. *Radiother Oncol* (2015) 116(3):486–94. doi: 10.1016/j.radonc.2015.03.005

163. Barreto-Andrade JC, Efimova EV, Maceri HJ, Beckett MA, Sutton HG, Darge TA, et al. Response of Human Prostate Cancer Cells and Tumors to Combining PARP Inhibition With Ionizing Radiation. *Mol Cancer Ther* (2011) 10(7):1185–93. doi: 10.1158/1535-7163.MCT-11-0061

164. Yin L, Liu Y, Peng Y, Peng Y, Yu X, Gao Y, et al. PARP Inhibitor Veliparib and HDAC Inhibitor SAHA Synergistically Co-Target the UHRF1/BRCAl DNA Damage Repair Complex in Prostate Cancer Cells. *J Exp Clin Cancer Res* (2018) 37(1):153. doi: 10.1186/s13046-018-0810-7

165. Sargazi S, Saravani R, Zavar Reza J, Zarei Jaliani H, Galavi H, Moudi M, et al. Novel Poly(Adenosine Diphosphate-Ribose) Polymerase (PARP) Inhibitor, AZD2461, Down-Regulates VEGF and Induces Apoptosis in Prostate Cancer Cells. *Iran BioMed* (2019) 23(5):312–23. doi: 10.29252/ibj.23.5.2

166. Chatterjee P, Choudhary GS, Sharma A, Singh K, Heston WD, Ciezki J, et al. Induction of Apoptosis and Modulation of Homologous Recombination DNA Repair Pathway in Prostate Cancer Cells by the Combination of AZD2461 and Valproic Acid. *Excit J* (2019) 18:485–98. doi: 10.7176/excit/20191098

167. Sargazi S, Saravani R, Zavar Reza J, Zarei Jaliani H, Galavi H, Moudi M, et al. Novel Poly(Adenosine Diphosphate-Ribose) Polymerase (PARP) Inhibitor, AZD2461, Down-Regulates VEGF and Induces Apoptosis in Prostate Cancer Cells. *Iran BioMed* (2019) 23(5):312–23. doi: 10.29252/ibj.23.5.2

168. Cattrini C, Capaia M, Boccardo F, Barboro P. Etoposide and Topoisomerase II Inhibition for Aggressive Prostate Cancer: Data From a Translational Study. *Trans Androl Urol* (2021) 10(2):900–14. doi: 10.21037/tau-21-53

169. Sheng G, Chen J, Zhou Y, Wang Z, Ma Z, Xu C, et al. AZD5153 Inhibits Prostate Cancer Cell Growth in Vitro and in Vivo. *Cell Physiol Biochem* (2018) 50(2):798–809. doi: 10.1158/0049-4244

170. Hu R, Wang WL, Yang YY, Hu XT, Wang QW, Zuo WQ, et al. Identification of a Selective BRD4 PROTAC With Potent Antiproliferative Effects in AR-Positive Prostate Cancer Based on a Dual BET/PLK1 Inhibitor. *Eur J Med Chem* (2022) 227:113922. doi: 10.1016/j.ejmech.2021.113922

171. Atwell S CE, Jahagirdar R, Kharenko O, Norek K, Tsujiwaka L, Calosing C, et al. The Clinical Candidate ZEN-3694, a Novel BET Bromodomain Inhibitor, is Efficacious in the Treatment of a Variety of Solid Tumor and Hematological Malignancies, Alone or in Combination With Several Standard of Care and Targeted Therapies, in: Molecular Targets And Cancer Therapeutics, John B, Hynes veterans memorial Convention center Boston, MA.

172. Kim D-H, Sun D, Storck WK, Welker Leng K, Jenkins C, Coleman DJ, et al. Discovery of a Selective Catalytic P300/CBP Inhibitor That Targets the Novel BET Inhibitor ABBV-075. *Nature* (2016) 537(7658):331–4. doi: 10.1038/nature19312

173. Moreira-Silva F, Camilo V, Gaspar V, Mano JF, Henrique R, Jeronimo C. BET-Independent Inactivation of FOXA1. *EMBO Mol Med* (2016) 8(8):1113–9. doi: 10.15252/emmm.20150432.CCR-20-4968

174. Fairevé EJ, Wilcox D, Lin X, Hessler P, Torrent M, He W, et al. Exploitation of Castration-Resistant Prostate Cancer Transcription Factor Dependencies by the Novel BET Inhibitor ABBV-075. *Mol Cell Cancer* (2017) 15(3):35–44. doi: 10.1158/1541-7786.MCR-16-0221

175. Fairevé EJ, McDaniel KE, Albert DF, Mantena SR, Plotnik JP, Wilcox D, et al. Selective Inhibition of the BD2 Bromodomain of BET Proteins in Prostate Cancer. *Nature* (2020) 578(7794):306–10. doi: 10.1038/s41586-020-1930-8

176. Wu TB, et al. Y06014 is a Selective BET Inhibitor for the Treatment of Prostate Cancer. *Acta Pharmacol Sin* (2021) 42(12):2120–31. doi: 10.1038/s41404-021-00614-7

177. Yang Y, Ma J, Wang D, Lin D, Pang X, Wang S, et al. The Novel BET-CBP/p300 Dual Inhibitor NEO2734 is Active in SPOP Mutant and Wild-Type Prostate Cancer. *EMBO Mol Med* (2019) 11(11):e10659–9. doi: 10.15222/emmm.201910659

178. Lasko LM, Jakob CG, Edalji RP, Qiu W, Montgomery D, Digiammarino EL, et al. Discovery of a Selective Catalytic P300/CBP Inhibitor That Targets Lineage-Specific Tumours. *Nature* (2017) 550(7674):128–32. doi: 10.1038/nature24028

179. Welti J, Sharp A, Brooks N, Yuan W, McNair C, Chand SN, et al. Targeting the P300/CBP Axis in Lethal Prostate Cancer. *Cancer Discovery* (2021) 11(5):1118–37. doi: 10.1158/2159-8290.CD-20-0751

180. Zou LJ, Xiang Q, Xue X, Zhang C, Li CC, Wang C, et al. Y08197 is a Novel and Selective CBP/P300 Bromodomain Inhibitor for the Treatment of Prostate Cancer. *Acta Pharmacol Sin* (2019) 40(11):1436–47. doi: 10.1038/s41401-019-0237-5

181. Zucconi BE, Makofski JL, Meyers DJ, Huang HH, Wu M, Kuroda ML, et al. Combination Targeting of the Bromodomain and Acetyltransferase Active Site of P300/CBP. *Biochemistry* (2019) 58(16):2133–43. doi: 10.1021/acs.biochem.9b00160
197. Kiliccioglu I, Konac E, Varol N, Gurocak S, Yucel Bilen C. Apoptotic Effects of Proteasome and Histone Deacetylase Inhibitors in Prostate Cancer Cell Lines. Curr Mol Res (2014) 11(2):3721–31. doi: 10.2174/138947090141120113723.

198. Zhang H, Zhao X, Liu H, Jin H, Ji Y. Trichostatin A Inhibits Proliferation of PC3 Prostate Cancer Cells by Disrupting the EGFR Pathway. Oncol Lett (2019) 18(1):687–93. doi: 10.3892/ol.2019.10384.

199. Wang X, Xu J, Wang H, Wu L, Yuan W, Du J, et al. Trichostatin A, a Histone Deacetylase Inhibitor, Reverses Epithelial-Mesenchymal Transition in Colonrectal Cancer SW480 and Prostate Cancer PC3 Cells. Biochem Biophys Res Commun (2015) 456(1):320–6. doi: 10.1016/j.bbrc.2014.11.079.

200. Zhu S, Li Y, Zhao L, Hou P, Shangguan C, Yao R, et al. TSA-Induced JMJD2B Downregulation is Associated With Cyclin B1-Dependent Survivin Degradation and Apoptosis in LNCap Cells. J Cell Biochem (2012) 113 (7):2375–82. doi: 10.1002/jcb.24109.

201. Pulukuri SM, Gorantla B, Knost JA, Rao JS. Frequent Loss of Cystatin E/M Degradation and Apoptosis in LNCap Cells. Biochem (2019) 18(1):687.

202. Xu Q, Liu X, Zhu S, Hu X, Niu H, Zhang X, et al. Hyper-Acetylation of Androgen Receptor Expression and Acts Synergistically With an HDAC Inhibitor, Suberoylanilide Hydroxamic Acid (SAHA), Induces Apoptosis in Chemoresistance in Prostate Cancer Cells. Invest New Drugs (2012) 30(4):1434–42. doi: 10.1007/s10637-011-9718-1.

203. Richa S, Dey P, Park C, Yang J, Son JY, Park JH, et al. A Novel Histone Deacetylase Inhibitor, MHY4381, Induces Apoptosis via Generation of Reactive Oxygen Species in Human Prostate Cancer Cells. Biomed Res (2019) 20(2):184–94. doi: 10.4062/biomolther.2019.074.

204. Qi G, Lu G, Yu J, Zhao Y, Wang C, Zhang H, et al. Up-Regulation of TIF1gamma by Vorinostat Inhibits the Epithelial Mesenchymal Transition in Prostate Carcinoma Through TGF-b/Smad Signaling Pathway. Eur J Pharmacol (2019) 860:172551. doi: 10.1016/j.ejphar.2019.172551.

205. Makarević J, Rutz J, Juengel E, Maxeiner S, Taour I, Chun FK, et al. Influence of the HDAC Inhibitor Valproic Acid on the Growth and Proliferation of Tensirsmolimus-Resistant Prostate Cancer Cells In Vitro. Cancers (Basel) (2019) 11(4):566. doi: 10.3390/cancers11040566.

206. Choi ES, Han G, Park SK, Lee K, Kim HJ, Cho SD, et al. A248, a Novel Synthetic HDAC Inhibitor, Induces Apoptosis Through the Inhibition of Specificity Protein 1 and its Downstream Proteins in Human Prostate Cancer Cells. Mol Med Rep (2013) 8(1):195–200. doi: 10.3892/mmr.2013.1481.

207. Wu YW, Hsu KC, Lee HY, Huang TC, Lin TE, Chen YL, et al. A Novel Dual HDAC6 and Tubulin Inhibitor, MPT0B451, Displays Anti-Tumor Ability in Human Cancer Cells in Vitro and in Vivo. Front Pharmacol (2018) 9:205. doi: 10.3389/fphar.2018.00205.

208. Hu WY, Xu L, Chen B, Ou S, Muzzarelli KM, Hu DP, et al. Targeting Prostate Cancer Cells With Enzalutamide-HDAC Inhibitor Hybrid Drug 2-75. Prostate (2019) 79(10):1166–79. doi: 10.1002/ps.23832.

209. Kim J, Lee Y, Lu X, Song B, Feng KW, Cao Q, et al. Polycarb- and Methylation-Independent Roles of EZH2 as a Transcription Activator. Cell (2013) 155(25):2808–2820. doi: 10.1016/j.cell.2013.11.035.

210. Morel KL, Sheahan AV, Burkhart DL, Baca SC, Boufaied N, Liu Y, et al. Inhibition of Noncanonical EED-EZH2 Signaling Overcomes Chemoresistance in Prostate Cancer. J Biol Chem (2018) 293(11):717–29. doi: 10.1074/jbc.RA118.001551.

211. Verma SK, Tian X, LaFrance LV, Duquenne C, Suarez DP, Newlander KA, et al. Identification of Potent, Selective, Cell-Active Inhibitors of the Histone Lysine Methyltransferase EzH2. ACS Med Chem Lett (2012) 3(12):1091–6. doi: 10.1021/ml3003346.

212. Li X, Gera L, Zhang S, Chen Y, Lou L, Wilson LM, et al. Pharmacological Inhibition of Noncanonical EED-EZH2 Signaling Overcomes Chemoresistance in Prostate Cancer. Theranostics (2021) 11(4):6873–90. doi: 10.7150/thno.90235.

213. Bai Y, Zhang Z, Cheng L, Wang R, Chen X, Kong Y, et al. Inhibition of Erk and FosB Homolog 2 (EZH2) Overcomes Enzalutamide Resistance in Castration-Resistant Prostate Cancer. J Biol Chem (2019) 294(25):9911–23. doi: 10.1074/jbc.RA119.008152.

214. Shankar E, Franco D, Iqbal O, Moreton S, Kanwal R, Gupta S. Dual Targeting of EZH2 and Androgen Receptor as a Novel Therapy for Castration-Resistant Prostate Cancer. Toxicol Appl Pharmacol (2020) 404:115200. doi: 10.1016/j.taap.2020.115200.

215. Kong Y, Zhang Z, Mao F, Zhang Z, Li Z, Wang R, et al. Inhibition of EZH2 Enhances the Antitumor Efficacy of Metformin in Prostate Cancer. Mol Cancer Ther (2020) 19(12):2490–501. doi: 10.1158/1535-7163.MCT-19-0874.
