MULTIVARIABLE (φ, Γ)-MODULES AND LOCALLY ANALYTIC VECTORS

by

Laurent Berger

Abstract. — Let K be a finite extension of \mathbb{Q}_p and let $G_K = \text{Gal}(\overline{\mathbb{Q}}_p/K)$. There is a very useful classification of p-adic representations of G_K in terms of cyclotomic (φ, Γ)-modules (cyclotomic means that $\Gamma = \text{Gal}(K_{\infty}/K)$ where K_{∞} is the cyclotomic extension of K). One particularly convenient feature of the cyclotomic theory is the fact that any (φ, Γ)-module is overconvergent.

Questions pertaining to the p-adic local Langlands correspondence lead us to ask for a generalization of the theory of (φ, Γ)-modules, with the cyclotomic extension replaced by an infinitely ramified p-adic Lie extension K_{∞}/K. It is not clear what shape such a generalization should have in general. Even in the case where we have such a generalization, namely the case of a Lubin-Tate extension, most (φ, Γ)-modules fail to be overconvergent.

In this paper, we develop an approach that gives a solution to both problems at the same time, by considering the locally analytic vectors for the action of Γ inside some big modules defined using Fontaine's rings of periods. We show that, in the cyclotomic case, we recover the usual overconvergent (φ, Γ)-modules. In the Lubin-Tate case, we can prove, as an application of our theory, a folklore conjecture in the field stating that (φ, Γ)-modules attached to F-analytic representations are overconvergent.

Contents

Introduction ... 2
1. Lubin-Tate extensions .. 4
2. Locally analytic and pro-analytic vectors 5
3. Rings of p-adic periods .. 7
4. Locally F-analytic vectors of $\mathcal{B}^\dagger_{\text{rig}, K}$ 9
5. Rings of locally analytic periods 12
6. A multivariable monodromy theorem 14
7. Lubin-Tate (φ, Γ)-modules 15
8. Multivariable (φ, Γ)-modules 17

2000 Mathematics Subject Classification. — 11F; 11S; 14G; 22E.
Key words and phrases. — (φ, Γ)-module; locally analytic vector; p-adic period; Lubin-Tate group; p-adic monodromy.

This research is partially supported by the ANR grant ThéHopàD (Théorie de Hodge p-adique et Développements) ANR-11-BS01-005.
Introduction

Let K be a finite extension of \mathbb{Q}_p and let $G_K = \text{Gal}(\overline{\mathbb{Q}}_p/K)$. The basic idea of p-adic Hodge theory is to construct an intermediate extension $K \subset K_\infty \subset \overline{\mathbb{Q}}_p$ such that K_∞/K is simple enough, but still contains most of the ramification of $\overline{\mathbb{Q}}_p/K$ (we say that K_∞/K is deeply ramified, see [CG96]). This is for example the case if K_∞/K is an infinitely ramified p-adic Lie extension ([Sen72] and [CG96]). The usual choice for K_∞/K is the cyclotomic extension. One important application of this idea is Fontaine’s construction [Fon90] of cyclotomic (φ, Γ)-modules. By a theorem of Cherbonnier and Colmez [CC98], these cyclotomic (φ, Γ)-modules are always overconvergent; this is a fundamental result which allows us to relate Fontaine’s (φ, Γ)-modules and classical p-adic Hodge theory. The resulting (φ, Γ)-modules give rise to free modules of finite rank over the Robba ring. If V is a p-adic representation of G_K, the cyclotomic (φ, Γ)-module $D_{\text{rig}}^\dagger(V)$ over the Robba ring attached to V can be constructed in the following way. Let K_∞ be the cyclotomic extension of K, let $H_K = \text{Gal}(\overline{\mathbb{Q}}_p/K_\infty)$ and let $\Gamma_K = \text{Gal}(K_\infty/K)$. Let $\mathcal{B}_{\text{rig}}^\dagger$ be one of the big rings of p-adic periods [Ber02], let $\tilde{\mathcal{B}}_{\text{rig}, K}^\dagger = (\mathcal{B}_{\text{rig}}^\dagger)^{H_K}$ and let $\tilde{D}_{\text{rig}}^\dagger(V) = (\tilde{\mathcal{B}}_{\text{rig}}^\dagger \otimes_{\mathbb{Q}_p} V)^{H_K}$. By étale descent, we have $\mathcal{B}_{\text{rig}}^\dagger \otimes_{\mathcal{B}_{\text{rig}, K}^\dagger} \tilde{D}_{\text{rig}}^\dagger(V) = \mathcal{B}_{\text{rig}}^\dagger \otimes_{\mathbb{Q}_p} V$.

We then use an analogue of Tate’s normalized traces to descend from $\tilde{D}_{\text{rig}}^\dagger(V)$ to a module $D_{\text{rig}}^\dagger(V)$ over the Robba ring $\mathcal{B}_{\text{rig}, K}^\dagger$: this is the basic idea of the Colmez-Sen-Tate method [BC08]. However, the space $\tilde{D}_{\text{rig}}^\dagger(V)$ is also a p-adic Banach representation of Γ_K, and it is easy to see that $D_{\text{rig}}^\dagger(V)$ consists of some vectors of $\tilde{D}_{\text{rig}}^\dagger(V)$ that are locally analytic for the action of Γ_K (more precisely: pro-analytic, denoted by $^\text{pa}$) so that $D_{\text{rig}}^\dagger(V) \subset \tilde{D}_{\text{rig}}^\dagger(V)$. Moreover, by theorem 7.4, we have $\tilde{D}_{\text{rig}}^\dagger(V)^\text{pa} = \cup_{n \geq 0} \varphi^{-n}(D_{\text{rig}}^\dagger(V))$.

The construction of the p-adic local Langlands correspondence for $\text{GL}_2(\mathbb{Q}_p)$ (see for instance [Bre10], [Col10] and [Ber11]) uses these cyclotomic (φ, Γ)-modules in an essential way. In order to extend this correspondence to $\text{GL}_2(F)$, where F is a finite extension of \mathbb{Q}_p, it seems necessary to have at our disposal a theory of (φ, Γ)-modules for which $\Gamma = \text{Gal}(K_\infty/K)$ where $F \subset K$ and K_∞ is generated by the torsion points of a Lubin-Tate group attached to F. Generalizing the theory of (φ, Γ)-modules to higher dimensional p-adic Lie groups Γ is a difficult problem, which is raised in the introduction to [Fon90]. It does not seem to be always possible; for example, the main result of [Ber14] implies that under a reasonable additional assumption, Γ needs to be abelian for the theory to
work. If \(K_\infty / K \) is a Lubin-Tate extension as above, then the theory does extend \([KR09]\) but the resulting \((\varphi, \Gamma) \)-modules are usually not overconvergent \([FX13]\). Our solution to the problems of extending the theory and of the lack of overconvergence is to construct \((\varphi, \Gamma) \)-modules with coefficients in some rings of pro-analytic vectors, which is a straightforward generalization of the above observation that \(\tilde{D}_{\text{rig}}^\dagger (V)^{pa} = \cup_{n \geq 0} \varphi^{-n} (\tilde{D}_{\text{rig}}^\dagger (V)) \) in the cyclotomic case. Our main result in this direction is the following (see theorem 8.1 and the rest of the article for notation).

Theorem A. — If \(K_\infty \) contains a subextension \(L_\infty \), cut out by some unramified twist of the cyclotomic character, then \(\tilde{D}_{\text{rig},K}^\dagger (V)^{pa} = (\tilde{B}_{\text{rig},K}^\dagger)^{pa} \otimes_{\tilde{B}_{\text{rig},L}^\dagger} D_{\text{rig},L}(V) \), so that \(\tilde{D}_{\text{rig},K}^\dagger (V)^{pa} \) is a free \((\tilde{B}_{\text{rig},K}^\dagger)^{pa} \)-module of rank \(\dim(V) \), stable under \(\varphi_q \) and \(\Gamma_K \).

This theorem allows us to construct \((\varphi, \Gamma) \)-modules over some rings of pro-analytic vectors such as \((\tilde{B}_{\text{rig},K}^\dagger)^{pa} \). It would be interesting to determine the precise structure of these rings. When \(K_\infty / K \) is generated by the torsion points of a Lubin-Tate group attached to a Galois extension \(F/\mathbb{Q}_p \) contained in \(K \), so that \(\Gamma_K \) is an open subgroup of \(\mathcal{O}_F^\times \), we show (see \S 8) that \((\tilde{B}_{\text{rig,K}}^\dagger)^{pa} \) contains as a dense subset the ring \(\varphi^{-\infty}(\mathcal{R}) \), where \(\mathcal{R} \) is a Robba ring in \([F: \mathbb{Q}_p]\) variables. This is why we call \((\varphi, \Gamma) \)-modules over \((\tilde{B}_{\text{rig},K}^\dagger)^{pa} \) multivariable \((\varphi, \Gamma) \)-modules.

We then give an application of theorem A to the overconvergence of some Lubin-Tate \((\varphi, \Gamma) \)-modules. We first compute the pro-\(F \)-analytic vectors \((\tilde{B}_{\text{rig},K}^\dagger)^{F,pa} \) of \(\tilde{B}_{\text{rig},K}^\dagger \) when \(K_\infty \) is generated by the torsion points of a Lubin-Tate group attached to \(F \). The following is theorem 11.6 where \(\tilde{B}_{\text{rig},K}^\dagger \) is the Robba ring in one “Lubin-Tate” variable.

Theorem B. — We have \((\tilde{B}_{\text{rig},K}^\dagger)^{F,pa} = \cup_{n \geq 0} \varphi^{-n} (\tilde{B}_{\text{rig},K}^\dagger) \).

We also determine enough of the structure of the ring \((\tilde{B}_{\text{rig},K}^\dagger)^{pa} \) in the Lubin-Tate setting (theorem 5.3) to be able to prove a monodromy theorem concerning the descent from \((\tilde{B}_{\text{rig},K}^\dagger)^{pa} \) to \((\tilde{B}_{\text{rig},K}^\dagger)^{F,pa} \). We refer to theorem 6.1 for a precise statement. These results suggest the possibility of constructing some Lubin-Tate \((\varphi, \Gamma) \)-modules over \(B_{\text{rig},K}^\dagger \) by descending \(\tilde{D}_{\text{rig},K}(V)^{pa} \) to a module over \((\tilde{B}_{\text{rig},K}^\dagger)^{F,pa} \), which is done by solving \(p \)-adic analogues of the Cauchy-Riemann equations. Recall now that if \(F \) is a finite extension of \(\mathbb{Q}_p \) contained in \(K \) and if \(V \) is an \(F \)-linear representation of \(G_K \), we say that \(V \) is \(F \)-analytic if \(C_p \otimes_F V \) is the trivial semilinear \(C_p \)-representation for all non-trivial embeddings \(\tau: F \rightarrow \overline{\mathbb{Q}}_p \). This definition is the natural generalization of Kisin and Ren’s notion of \(L \)-crystalline representations (§3.3.7 of \([KR09]\)) and it also appears in the study of vector bundles over Fargues and Fontaine’s curve (remark 16.28 of \([FF12]\)).
Recall that using Fontaine’s classical theory, we can attach some “Lubin-Tate \((\varphi, \Gamma_K)\)-modules” over the two-dimensional local field \(\mathcal{B}_K\) to all representations of \(G_K\) ([Fon90] and [KR09]). Using our monodromy theorem, we prove the following result.

Theorem C. — The Lubin-Tate \((\varphi, \Gamma_K)\)-modules of \(F\)-analytic representations are overconvergent.

Theorem C was previously known for \(F = Q_p\) (Cherbonnier and Colmez [CC98]), for crystalline representations of \(G_K\) (Kisin and Ren [KR09]), as well as for some reducible representations (Fourquaux and Xie [FX13]).

Acknowledgements. — I am grateful to Pierre Colmez for many useful discussions concerning [BC14] and this paper. In addition, the above constructions are inspired by his observation in the introduction to [Col10] that “Pour cette étude, je disposais d’un certain nombre de points d’appui comme […] la similitude entre le théorème de Schneider-Teitelbaum sur l’existence de vecteurs localement analytiques et l’existence d’éléments surconvergents dans n’importe quel \((\varphi, \Gamma)\)-module étale […]”.

1. Lubin-Tate extensions

Throughout this paper, \(F\) is a finite Galois extension of \(Q_p\) with ring of integers \(\mathcal{O}_F\), uniformizer \(\pi_F\) and residue field \(k_F\). Let \(q = p^h\) be the cardinality of \(k_F\) and let \(F_0 = W(k_F)[1/p]\). Let \(e\) be the ramification index of \(F\), so that \(eh = [F : Q_p]\). Let \(\sigma\) denote the absolute Frobenius map on \(F_0\). Let \(E\) denote the set of embeddings of \(F\) in \(\overline{Q}_p\) so that \(E = \text{Gal}(F/Q_p)\). If \(\tau \in E\), then there exists \(n(\tau) \in \mathbb{Z}/h\mathbb{Z}\) such that \(\tau = [x \mapsto x^p]^{n(\tau)}\) on \(k_F\). Let \(W = W(F^{\text{unr}}/Q_p)\) be the Weil group of \(F^{\text{unr}}/Q_p\). If \(w \in W\), then the pair \((w|_F \in E, n(w) \in \mathbb{Z})\) determines \(w\), and \(n(w|_F) \equiv n(w) \mod h\).

Let \(\text{LT}\) be a Lubin-Tate formal \(\mathcal{O}_F\)-module attached to \(\pi_F\). If \(a \in \mathcal{O}_F\), let \([a](T)\) denote the power series that gives the multiplication-by-\(a\) map on LT. We fix a local coordinate \(T\) on LT such that \([\pi_F](T) = T^q + \pi_FT\). Let \(F_n = F(\text{LT}[\pi_F^n])\) and let \(F_\infty = \cup_{n \geq 1} F_n\). Let \(H_F = \text{Gal}(\overline{Q}_p/F_\infty)\) and \(\Gamma_F = \text{Gal}(F_\infty/F)\). By Lubin-Tate theory (see [LT65]), \(\Gamma_F\) is isomorphic to \(\mathcal{O}_F^\times\) via the Lubin-Tate character \(\chi_F : \Gamma_F \to \mathcal{O}_F^\times\). There exists an unramified character \(\eta_F : G_F \to \mathbb{Z}_p^\times\) such that \(N_{F/Q_p}(\chi_F) = \eta_F\chi_{\text{cyc}}\).

If \(K\) is a finite extension of \(F\), let \(K_n = KF_n\) and \(K_\infty = KF_\infty\) and \(\Gamma_K = \text{Gal}(K_\infty/K)\). Let \(\Gamma_n = \text{Gal}(K_\infty/K_n)\) so that \(\Gamma_n = \{g \in \Gamma_K \text{ such that } \chi_F(g) \in 1 + \pi_K^h\mathcal{O}_F\}\). Let \(u_0 = 0\) and for each \(n \geq 1\), let \(u_n \in \overline{Q}_p\) be such that \([\pi_F](u_n) = u_{n-1}\), with \(u_1 \neq 0\). We have \(\text{val}_p(u_n) = 1/q^{n-1}(q-1)e\) if \(n \geq 1\) and \(F_n = F(u_n)\). Let \(Q_k(T)\) be the minimal polynomial
of u_k over F. We have $Q_0(T) = T$, $Q_1(T) = [\pi_F](T)/T$ and $Q_{k+1}(T) = Q_k([\pi_F](T))$ if $k \geq 1$. Let $\log_{LT}(T) \in F[T]$ denote the Lubin-Tate logarithm map, which converges on the open unit disk and satisfies $\log_{LT}(\alpha(T)) = \alpha \cdot \log_{LT}(T)$ if $\alpha \in O_F$. Note that $\log_{LT}(T) = T \cdot \prod_{k \geq 1} Q_k(T)/\pi_F$. Let $\exp_{LT}(T)$ denote the inverse of $\log_{LT}(T)$.

2. Locally analytic and pro-analytic vectors

Let G be a p-adic Lie group (in this paper, G is most of the time an open subgroup of O_F^\times) and let W be a Banach representation of G. The space of locally analytic vectors of W is defined in §7 of [ST03]. Here we follow the construction given in the monograph [Eme11]. Let H be an open subgroup of G such that there exist coordinates $c_1, \ldots, c_d : H \to \mathbb{Z}_p$ giving rise to an analytic isomorphism $c : H \to \mathbb{Z}_p^d$. If $w \in W$, we say that w is an H-analytic vector if there exists a sequence $\{w_k\}_{k \in \mathbb{N}^d}$ with $w_k \to 0$ in W, such that $g(w) = \sum_{k \in \mathbb{N}^d} c(g)^k w_k$ for all $g \in H$. Let $W^{H,\text{an}}$ denote the space of H-analytic vectors. This space injects into $C^{\text{an}}(H,W)$ and we endow it with the induced topology, so that $W^{H,\text{an}}$ is a Banach space. We say that a vector $w \in W$ is locally analytic if there exists an open subgroup H as above such that $w \in W^{H,\text{an}}$. Let W^{la} denote the space of such vectors. We have $W^{la} = \cup_H W^{H,\text{an}}$ where H runs through a sequence of open subgroups of G. We endow W^{la} with the inductive limit topology, so that W^{la} is a Banach space. In the sequel, we use the following results.

Lemma 2.1. — If W is a ring, such that $\|xy\| \leq \|x\| \cdot \|y\|$ if $x, y \in W$, then $W^{H,\text{an}}$ is a ring and $\|xy\|_H \leq \|x\|_H \cdot \|y\|_H$ if $x, y \in W^{H,\text{an}}$.

Proof. — This is a straightforward computation, cf. §2.1 of [BC14].

Proposition 2.2. — Let W and B be two Banach representations of G. If B is a ring and if W is a free B-module of finite rank, having a basis w_1, \ldots, w_d such that $g \mapsto \text{Mat}(g)$ is a locally analytic map $G \to \text{GL}_d(B)$, then $W^{la} = \bigoplus_{j=1}^d B^{la} \cdot w_j$.

Proof. — This is proved in §2.1 of [BC14], but we recall the proof for the convenience of the reader. It is clear that $\bigoplus_{i=1}^d B^{la} \cdot w_i \subset W^{la}$, so we show the reverse inclusion. If $w \in W$, then we can write $w = \sum_{i=1}^d b_i w_i$. Let $f_i : W \to B$ be the map $w \mapsto b_i$. Write $\text{Mat}(g) = (m_{i,j}(g))_{i,j}$. If $g \in G$, then $g(w) = \sum_{i,j=1}^d g(b_i)m_{i,j}(g)w_j$. If $w \in W^{la}$, then $g \mapsto f_j(g(w)) = \sum_{i=1}^d g(b_i)m_{i,j}(g)$ is a locally analytic map $G \to B$. If $\text{Mat}(g)^{-1} = (m_{i,j}(g))_{i,j}$, then $g(b_i) = \sum_{j=1}^d f_j(g(w)) m_{i,j}(g)$ so that $b_i \in B^{la}$.

Let W be a Fréchet space, whose topology is defined by a sequence $\{p_i\}_{i \geq 1}$ of seminorms. Let W_i denote the Hausdorff completion of W for p_i, so that $W = \lim_{i \to 1} W_i$.

Definition 2.3. — If $W = \lim_{i \to 1} W_i$ is a Fréchet representation of G, then a vector $w \in W$ is pro-analytic if its image $\pi_i(w)$ in W_i is a locally analytic vector for all i. We denote by W^{pa} the set of such vectors.

We extend the definition of W^{la} and W^{pa} to the cases when W is an LB space and an LF space respectively. Note that if W is an LB space, then $W^{\text{la}} = W^{\text{pa}}$. If W is an LF space, then $W^{\text{la}} \subset W^{\text{pa}}$ but W^{pa} will generally be bigger.

Proposition 2.4. — Let W and B be two Fréchet representations of G. If B is a ring and if W is a free B-module of finite rank, having a basis w_1, \ldots, w_d such that $g \mapsto \text{Mat}(g)$ is a pro-analytic map $G \to \text{GL}_d(B)$, then $W^{\text{pa}} = \bigoplus_{j=1}^d B^{\text{pa}} \cdot w_j$.

Proof. — If $w \in W$, then one can write $w = \sum_{j=1}^d b_j w_j$ with $b_j \in B$. If $w \in W^{\text{pa}}$ and $i \geq 1$, then $\pi_i(b_j) \in B_i^{\text{la}}$ for all i by proposition 2.2, so that $b_j \in B^{\text{pa}}$. □

The map $\ell : g \mapsto \log_{p_0} \chi_F(g)$ gives an F-analytic isomorphism between Γ_n and $\pi_n^F \mathcal{O}_F$ for $n \gg 0$. If W is an F-linear Banach representation of Γ_K and $n \gg 0$, we say that an element $w \in W$ is F-analytic on Γ_n if there exists a sequence $\{w_k\}_{k \geq 1}$ of elements of W with $\pi_n^{w_k} w_k \to 0$ such that $g(x) = \sum_{k \geq 1} \ell(g)^k w_k$ for all $g \in \Gamma_n$. Let $W^{\Gamma_n,\text{an},F^{\text{la}}}$ denote the space of such elements. Let $W^{\Gamma_n,\text{an},F^{\text{la}}} = \bigcap_{n \geq 1} W^{\Gamma_n,\text{an},F^{\text{la}}}$. A short computation shows that $W^{\Gamma_n,\text{an},F^{\text{la}}} = W^{\Gamma_n,\text{an}} \cap W^{\text{Fla}}$. Recall the following simple result (§2.1 of [BC14]).

Lemma 2.5. — If $w \in W^{\text{la}}$, then $\|w\|_{\Gamma_n} = \|w\|$ for $m \gg 0$.

If $\tau \in E$, we have the “derivative in the direction τ”, which is an element $\nabla \tau \in F \otimes \text{Lie}(\Gamma_F)$. It can be constructed in the following way (after §3.1 of [D13]). If W is an F-linear Banach representation of Γ_K and if $w \in W^{\text{la}}$, then there exists $m \gg 0$ and elements $\{w_k\}_{k \in \mathbb{N}^E}$ such that if $g \in \Gamma_m$, then $g(w) = \sum_{k \in \mathbb{N}^E} \ell(g)^k w_k$, where $\ell(g)^k = \prod_{\tau \in E} \tau \circ \ell(g)^k \tau$. We then set $\nabla \tau (w) = w_{\Lambda \tau}$, where 1_τ is the E-uple whose entries are 0 except the τ-th one which is 1. If $k \in \mathbb{N}^E$, and if we set $\nabla^k (w) = \prod_{\tau \in E} \nabla^k \tau (w)$, then $w_k = \nabla^k (w)/k!$.

Lemma 2.6. — Let X, Y be F-representations of Γ_n, $\tau \in E$, and $f : X \to Y$ a Γ_n-equivariant map such that $f(ax) = \tau^{-1}(a)f(x)$. If $x \in X^{\text{pa}}$, then $\nabla_{\text{Id}}(f(x)) = f(\nabla \tau (x))$.
3. Rings of p-adic periods

In this § , we recall the definition of a number of rings of p-adic periods. These definitions can be found in [Fon90, Fon94] and [Ber02], but we also use the “Lubin-Tate” generalization given for instance in §§8,9 of [Col02]. Let $\tilde{E}^+ = \{(x_0, x_1, \ldots) , \text{ with } x_n \in \mathcal{O}_{C_p}/\pi_F \text{ and } x_{n+1}^q = x_n \text{ for all } n \geq 0\}$. This ring is endowed with the valuation $\text{val}_{\tilde{E}}(\cdot)$ defined by $\text{val}_{\tilde{E}}(x) = \lim_{n \to +\infty} q^n \text{val}_\pi(\hat{x}_n)$ where $\hat{x}_n \in \mathcal{O}_{C_p}$ lifts x_n. The ring \tilde{E}^+ is complete for $\text{val}_{\tilde{E}}(\cdot)$. If the $\{u_n\}_{n \geq 0}$ are as in §11, then $\pi = (\overline{\pi}_0, \overline{\pi}_1, \ldots) \in \tilde{E}^+$ and $\text{val}_\pi(\pi) = q/(q-1)e$. Let \tilde{E} be the fraction field of \tilde{E}^+.

Let $W_F(\cdot)$ denote the functor $\mathcal{O}_F \otimes_{\mathcal{O}_{F_0}} W(\cdot)$ of F-Witt vectors. Let $\tilde{A}^+ = W_F(\tilde{E}^+)$ and let $\tilde{B}^+ = \tilde{A}^+[1/\pi_F]$. These rings are preserved by the Frobenius map $\varphi_q = \text{Id} \otimes \varphi^h$. Every element of $\tilde{B}^+[1/\{\overline{\pi}\}]$ can be written as $\sum_{k \gg -\infty} \pi_F^k[x_k]$ where $\{x_k\}_{k \in \mathbb{Z}}$ is a bounded sequence of \tilde{E}. If $r \geq 0$, define a valuation $V(\cdot, r)$ on $\tilde{B}^+[1/\{\overline{\pi}\}]$ by

$$V(x, r) = \inf_{k \in \mathbb{Z}} \left(\frac{k}{e} + \frac{p-1}{pr} \text{val}_{\tilde{E}}(x_k) \right) \text{ if } x = \sum_{k \gg -\infty} \pi_F^k[x_k].$$

This valuation is normalized as in §2 of [Ber02]. The valuation defined in §3 of [Ber13] is normalized differently (sorry), it is $pr/(p-1)$ times this one. If I is a closed subinterval of $[0; +\infty[$, let $V(x, I) = \inf_{r \in I} V(x, r)$. The ring \tilde{B}^I is defined to be the completion of $\tilde{B}^+[1/\{\overline{\pi}\}]$ for the valuation $V(\cdot, I)$ if $0 \notin I$ and if $I = [0; r]$, then \tilde{B}^I is the completion of \tilde{B}^+ for $V(\cdot, I)$. When $F = Q_p$, the ring \tilde{B}^I is the same as the one denoted by \tilde{B}_I in §2.1 of [Ber02]. Let \tilde{A}^I be the ring of integers of \tilde{B}^I for $V(\cdot, I)$.

If $k \geq 1$, let $r_k = p^{h-1}(p-1)$. The map $\theta \circ \varphi_q^{-k} : \tilde{A}^+ \to \mathcal{O}_{C_p}$ extends by continuity to \tilde{A}^I provided that $r_k \in I$ and then $\theta \circ \varphi_q^{-k}(\tilde{A}^I) \subset \mathcal{O}_{C_p}$. By §9.2 of [Col02], there exists $u \in \tilde{A}^+$, whose image in \tilde{A}^+ is $\overline{\pi}$, and such that $\varphi_q^{-1}(u) = \overline{\pi}F([u])$ if $g \in \Gamma_F$. For $k \geq 0$, let $Q_k = Q_k(u) \in \tilde{A}^+$. The kernel of $\theta : \tilde{A}^+ \to \mathcal{O}_{C_p}$ is generated by $\varphi_q^{-1}(Q_1)$ (see proposition 8.3 of [Col02]), so that $\varphi_q^{-1}(Q_1)/([\overline{\pi}F] - \pi_F)$ is a unit of \tilde{A}^+ and therefore, $Q_k/([\overline{\pi}F] - \pi_F)$ is a unit of \tilde{A}^+ for all $k \geq 1$.

Lemma 3.1. — If $y \in \tilde{A}^{[0; r_k]}$, then there exists a sequence $\{a_i\}_{i \geq 0}$ of elements of \tilde{A}^+, converging p-adically to 0, such that $y = \sum_{i \geq 0} a_i \cdot (Q_k/\pi_F)^i$.

Proof. — See §2.1 of [Ber02] for $F = Q_p$, the proof for other F being similar. □

Lemma 3.2. — Let $r = r_\ell$ and $s = r_k$, with $1 \leq \ell \leq k$.

1. $\theta \circ \varphi_q^{-k}(\tilde{A}^{[r;s]}) = \mathcal{O}_{C_p}$ and $\ker(\theta \circ \varphi_q^{-k} : \tilde{A}^{[r;s]} \to \mathcal{O}_{C_p}) = (Q_k/\pi_F) \cdot \tilde{A}^{[r;s]}$;
2. $\pi_F\tilde{A}^{[r;s]} \cap (Q_k/\pi_F) \cdot \tilde{A}^{[r;s]} = Q_k \cdot \tilde{A}^{[r;s]}$;
3. $\pi_F\tilde{A}^{[r;s]} \cap \tilde{A}^{[0;s]} = \pi_F\tilde{A}^{[0;s]}$.
Proof. — Item (1) follows from the straightforward generalization of §2.2 of [Ber02] from \mathbb{Q}_p to F (note that proposition 2.11 of ibid. is only correct if the element $[\hat{p}]/p - 1$ actually belongs to $\hat{\mathbb{A}}^\dagger$) and the fact that $Q_k/([\hat{\pi}_F]^{q_k} - \pi_F)$ is a unit of $\hat{\mathbb{A}}^\dagger$. If $x \in \hat{\mathbb{A}}^{[r; s]}$ and $\pi_F x \in \ker(\theta \circ \varphi_q^{-k})$, then $x \in \ker(\theta \circ \varphi_q^{-k})$ and this together with (1) implies (2). Finally, if $x \in \hat{\mathbb{A}}^{[r; s]}$ is such that $\pi_F x \in \hat{\mathbb{A}}^{[0; s]}$, then $x \in \hat{\mathbb{B}}^{[0; s]}$ and $V(x, s) \geq V(x, [r; s]) \geq 0$, so that $x \in \hat{\mathbb{A}}^{[0; s]}$ and $\pi_F x \in \pi_F \hat{\mathbb{A}}^{[0; s]}$. □

Proposition 3.3. — If $y \in \hat{\mathbb{A}}^{[0; s]} + \pi_F \cdot \hat{\mathbb{A}}^{[r; s]}$ and if $\{y_i\}_{i \geq 0}$ is a sequence of elements of $\hat{\mathbb{A}}^\dagger$ such that $y - \sum_{j=0}^{i-1} y_i \cdot (Q_k/\pi_F)^i$ belongs to $\ker(\theta)^j$ for all $j \geq 1$, then there exists $j \geq 1$ such that $y - \sum_{i=0}^{j-1} y_i \cdot (Q_k/\pi_F)^i \in \pi_F \cdot \hat{\mathbb{A}}^{[r; s]}$.

Proof. — By lemma 3.1 there exist $j \geq 1$ and a_0, \ldots, a_{j-1} of $\hat{\mathbb{A}}^\dagger$ such that

\[
\begin{align*}
(A) \quad & y - \left(a_0 + a_1 \cdot (Q_k/\pi_F) + \cdots + a_{j-1} \cdot (Q_k/\pi_F)^{j-1} \right) \\
& \in \pi_F \hat{\mathbb{A}}^{[r; s]}
\end{align*}
\]

We have $a_0, y_0 \in \hat{\mathbb{A}}^\dagger$ and $\theta \circ \varphi_q^{-k}(y_0 - a_0) \in \pi_F \mathcal{O}_C$ by the above, so there exists $c_0, d_0 \in \hat{\mathbb{A}}^\dagger$ such that $a_0 = y_0 + Q_k c_0 + \pi_F d_0$. In particular, (A) holds if we replace a_0 by y_0. Assume now that $f \leq j - 1$ is such that (A) holds if we replace a_i by y_i for $i \leq f - 1$. The element

\[
\begin{align*}
& \left(a_0 + a_1 \cdot (Q_k/\pi_F) + \cdots + a_{j-1} \cdot (Q_k/\pi_F)^{j-1} \right) \\
& \quad - \left(y_0 + y_1 \cdot (Q_k/\pi_F) + \cdots + y_{j-1} \cdot (Q_k/\pi_F)^{j-1} \right)
\end{align*}
\]

belongs to $\pi_F \hat{\mathbb{A}}^{[r; s]} + (Q_k/\pi_F)^f \hat{\mathbb{A}}^{[r; s]}$. If $a_i = y_i$ for $i \leq f - 1$, then the element

\[
\begin{align*}
& \left(a_f + a_{f+1} \cdot (Q_k/\pi_F) + \cdots + a_{j-1} \cdot (Q_k/\pi_F)^{j-1-f} \right) \\
& \quad - \left(y_f + y_{f+1} \cdot (Q_k/\pi_F) + \cdots + y_{j-1} \cdot (Q_k/\pi_F)^{j-1-f} \right)
\end{align*}
\]

belongs to $\pi_F \hat{\mathbb{A}}^{[r; s]} + (Q_k/\pi_F)^{j-f} \hat{\mathbb{A}}^{[r; s]}$ since $\pi_F \hat{\mathbb{A}}^{[r; s]} \cap (Q_k/\pi_F)^{j-f} \hat{\mathbb{A}}^{[r; s]} = \pi_F (Q_k/\pi_F)^{j-f} \hat{\mathbb{A}}^{[r; s]}$ by applying repeatedly (2) of lemma 3.2. We have $a_f, y_f \in \hat{\mathbb{A}}^\dagger$ and the above implies that $\theta \circ \varphi_q^{-k}(y_f - a_f) \in \pi_F \mathcal{O}_C$. There exist therefore $c_f, d_f \in \hat{\mathbb{A}}^\dagger$ such that $a_f = y_f + Q_k c_f + \pi_F d_f$ which shows that (A) holds if we also replace a_f by y_f. This shows by induction on f that $y - (y_0 + y_1 \cdot (Q_k/\pi_F) + \cdots + y_{j-1} \cdot (Q_k/\pi_F)^{j-1})$ belongs to $\pi_F \hat{\mathbb{A}}^{[r; s]}$, which proves the proposition. □

Lemma 3.4. — If $r > 1$, then $u/|u|$ is a unit of $\hat{\mathbb{A}}^{1/r}$.

Proof. — We have $u = |u| + \sum_{k \geq 1} \pi_F^k [v_k]$ with $v_k \in \hat{\mathbb{E}}^\dagger$ and the lemma follows from the fact that if $s \geq r > 1 \geq (p - 1)/p \cdot q/(q - 1)$, then $V(\pi_F/|u|, s) > 0$. □

If $\rho > 0$, then let $\rho' = \rho \cdot e \cdot p/(p - 1) \cdot (q - 1)/q$. Lemma 3.3 and the fact that $\text{val}_F(u) = q/(q - 1)e$ imply that if $r > 1$, then $V(u', r) = i/r'$ for $i \in \mathbb{Z}$ (compare with proposition 3.1 of [Ber13], bearing in mind that our normalization of $V(\cdot, r)$ is different).
Let I be either a subinterval of $]1; +\infty[$ or such that $0 \in I$, and let $f(Y) = \sum_{k \in \mathbb{Z}} a_k Y^k$ be a power series with $a_k \in F$ and such that $\text{val}_p(a_k) + k/\rho \to +\infty$ when $|k| \to +\infty$ for all $\rho \in I$. The series $f(u)$ then converges in \widetilde{B}^I and we let B^I_F denote the set of $f(u)$ where $f(Y)$ is as above. It is a subring of $B^I_F = (\widetilde{B}^I)^{\mathbb{F}_F}$, which is stable under the action of Γ_F. The Frobenius map gives rise to a map $\varphi_q : B^I_F \to B^I_{F^q}$. If $m \geq 0$, then $\varphi_q^{-m}(B^m_{F^q}) \subset B^I_F$ and we let $B^I_{F,m} = \varphi_q^{-m}(B^m_{F^q})$ so that $B^I_{F,m} \subset B^I_{F,m+1}$ for all $m \geq 0$. For example, if $t_F = \log_{|L|}(u)$ then $t_F \in B^{|r|+\infty}_F$, and $\varphi_q(t_F) = \pi_F t_F$ and $g(t_F) = \chi_F(g)t_F$ for $g \in G_F$.

Let $B^r_{\text{rig},F}$ denote the ring $B^r_{F[\mathbb{Q}]}$. This is a subring of $B^r_{\tilde{F}_{\text{rig}}}$ for all $s \geq r$. Let $B^r_{\text{rig},F}$ denote the set of $f(u) \in B^r_{\text{rig},F}$ such that in addition $\{a_k\}_{k \in \mathbb{Z}}$ is a bounded sequence. Let $B^I_F = \cup_{r \geq 0} B^I_{r,F}$. This a henselian field (cf. §2 of [Mat95]), whose residue field E_F is isomorphic to $E_q((u))$. Let K be a finite extension of F. By the theory of the field of norms (see [FW79a], [FW79b] and [Win83]), there corresponds to K/F a separable extension E_K/E_F, of degree $[K_\infty : F_\infty]$. Since B^I_F is a henselian field, there exists a finite unramified extension E_K/B^I_F of degree $[K_\infty : F_\infty]$ whose residue field is E_K (cf. §3 of [Mat95]). There exists therefore $r(K) > 0$ and elements x_1, \ldots, x_c in $B^I_{K,\{r(K)\}}$ such that $B^I_K = \oplus_{i=1}^c B^I_{r(K)} x_i$ for all $s \geq r(K)$. Let $B^I_{K,s}$ denote the completion of $B^I_{K,s}$ for $V(\cdot, I)$ where $r(K) \leq \min(I)$, so that $B^I_K = \oplus_{i=1}^c B^I_{r(K)} \cdot x_i$. Let $B^I_{K,m} = \varphi_q^{-m}(B^m_{K^q})$ and $B^I_{K,\infty} = \cup_{m \geq 0} B^I_{K,m}$ so that $B^I_{K,m} \subset \tilde{B}^I_K = (\tilde{B}^I)^{\mathbb{F}_K}$.

Let $B^r_{\text{rig},K}$ denote the Fréchet completion of B^r_{K} for the valuations $\{V(\cdot, \{r; s\})\}_{s \geq r}$. Let $B^r_{\text{rig},K,m} = \varphi_q^{-m}(B^r_{\text{rig},K,m})$ and $B^r_{\text{rig},K,\infty} = \cup_{m \geq 0} B^r_{\text{rig},K,m}$. We have $B^r_{\text{rig},K,\infty} \subset \tilde{B}^r_{\text{rig},K}$ for all $s \geq r$. Let $\tilde{B}^r_{\text{rig},K}$ denote the Fréchet completion of $\tilde{B}^r_{\text{rig},K}$ for the valuations $\{V(\cdot, \{r; s\})\}_{s \geq r}$; $B^r_{\text{rig},K}$ is a subring of $\tilde{B}^r_{\text{rig},K}$ for all $s \geq r$. Let $\tilde{B}^r_{\text{rig},F} = \cup_{r \geq 0} \tilde{B}^r_{\text{rig},K}$ and $\tilde{B}^r_{\text{rig},F} = (\tilde{B}^r_{\text{rig},K})^{\mathbb{F}_K}$ and $\tilde{B}^r_{\text{rig},F} = (\tilde{B}^r_{\text{rig},K})^{\mathbb{F}_K}$. Note that $\tilde{B}^r_{\text{rig},K}$ contains $B^r_{\text{rig},K}$.

4. Locally F-analytic vectors of $\tilde{B}^I_{\text{rig},K}$

In this §, we compute the pro-F-analytic vectors of $\tilde{B}^I_{\text{rig},K}$. Recall that if $n \geq 1$, then we set $r_n = p^{nh-1}(p-1)$. From now on, let $r = r_\ell$ and $s = r_k$, with $\ell \leq k$. Let $I = \{r; s\}$ with $r = r_\ell$ and $s = r_k$.

Proposition 4.1. — If $f(Y) \in \mathcal{O}_F[Y]$, then $\varphi_q^{-m}(f(u)) \in (\tilde{B}^I_{F})^{\mathbb{F}_F}$.

Proof. — By lemma [21] it is enough to show that $\varphi_q^{-m}(u) \in (\tilde{B}^I_{F})^{\mathbb{F}_F}$. By Lubin-Tate theory, there exists a family $\{c_n(T)\}_{n \geq 0}$ of elements of $F[T]$ such that $[a(T)] = \sum_{n \geq 0} c_n(a) \cdot T^n$ if $a \in \mathcal{O}_F$. The polynomials $c_n(T)$ are of degree at most n and $c_n(\mathcal{O}_F) \subset \mathcal{O}_F$. Let $\{g_n(T)\}_{n \geq 0}$ denote the family of polynomials constructed in §1.8 of [DS09]. Since $c_n(\mathcal{O}_F) \subset \mathcal{O}_F$ and the family $\{g_n(T)\}_{n \geq 0}$ is a Mahler basis (§1.2 of ibid), there are
elements $b_{n,i} \in \mathcal{O}_F$ such that $c_n(T) = \sum_{i=0}^{n} b_{n,i} g_n(T)$. If $n \geq 0$, let $n_0 + n_1 q + \cdots + n_{m-1} q^{m-1}$ denote the representation of n in base q. Let $h = k + m$, let

$$w_{n,h} = \sum_{i=h}^{m-1} n_i \frac{q^{i-h} - 1}{q - 1}.$$

By proposition 4.2 of ibid (see also §10 of [Ami64]), the elements $\{\pi_{F_i}^{w_{n,h}} g_n\}_{n \geq 0}$ form a Banach basis of the Banach space $\mathcal{L}(\mathcal{O}_F)$ of functions on \mathcal{O}_F that are analytic on closed disks of radius $|\pi_F|^h$. Let $\|\cdot\|_s$ denote the norm on \hat{B} given by $\|x\| = p^{-V(x,s)}$. In order to prove the proposition, it is enough to show that $\|g_n\|_{\mathcal{L}(\mathcal{O}_F)} \cdot \|\varphi_q^{-m}(u)^n\|_s \to 0$ as $n \to +\infty$. We have

$$w_{n,h} = \sum_{i=h}^{m-1} n_i \frac{q^{i-h} - 1}{q - 1} \leq \sum_{i=h}^{m-1} n_i \frac{q^{i-h}}{q - 1} \leq n \cdot \frac{1}{q^{h(q-1)}}.$$

On the other hand, $\|\varphi_q^{-m}(u)^n\|_{r_k} = \|u^n\|_{r_k+m} = |\pi_F|^{n/h(q-1)}$. This implies that

$$\|g_n\|_{\mathcal{L}(\mathcal{O}_F)} \cdot \|\varphi_q^{-m}(u)^n\|_s \leq |\pi_F|^n \left(\frac{1}{q^{n/h(q-1)} - q^{n/(q-1)}}\right),$$

so that $\|g_n\|_{\mathcal{L}(\mathcal{O}_F)} \cdot \|\varphi_q^{-m}(u)^n\|_s \to 0$ as $n \to +\infty$. \hfill \Box

Remark 4.2. — In a previous version of this paper, proposition 4.1 was proved under the assumption that the ramification index of F was at most $p-1$, by bounding the norm of $\nabla^i(f)/i!$ as $i \to +\infty$. I am grateful to P. Colmez for suggesting the above proof.

Let $m_0 \geq 0$ be such that t_F and $t_F/Q_k \in (\hat{B}_F)^{\Gamma_{m_0} \cdot \mathcal{F}_{\Lambda}}$.

Lemma 4.3. — If $m \geq m_0$, $a \in \hat{B}_F$ and $Q_k \cdot a \in (\hat{B}_F)^{\Gamma_m \cdot \mathcal{F}_{\Lambda}}$, then $a \in (\hat{B}_F)^{\Gamma_m \cdot \mathcal{F}_{\Lambda}}$.

Proof. — Write $a = 1/t_F \cdot t_F/Q_k \cdot Q_k a$. The lemma follows from the facts that $g(1/t_F) = \chi_F(g)^{-1} \cdot (1/t_F)$ and that t_F/Q_k is F-analytic on Γ_m, and lemma 2.1 \hfill \Box

Theorem 4.4. — If $I = [r_k; r_k]$ with $\ell \leq k$, then $(\hat{B}_F)^{\mathcal{F}_{\Lambda}} = \hat{B}_{K,\infty}^{F_{\Lambda}}$.

Proof. — We first prove the theorem for $K = F$. The action of Γ_F on $\hat{B}_{F,m}^{F_{\Lambda}}$ is locally F-analytic, so that $\hat{B}_{F,\infty} \subset (\hat{B}_F)^{F_{\Lambda}}$, and we now prove the reverse inclusion. Take $x \in (\hat{B}_F^{[r:s]})^{F_{\Lambda}} \cap \hat{A}^{[r:s]}$.

Since $x \in (\hat{B}_F^{[r:s]})^{F_{\Lambda}}$, there exists $m \geq m_0$ such that $x \in (\hat{B}_F^{[r:s]})^{\Gamma_{m+k} \cdot \mathcal{F}_{\Lambda}}$. If $d = q^{f-1}(q-1)$, then $\hat{A}^{[r:s]} = \hat{A}^{[0:s]} \{\pi_F/d\}$. So that for all $n \geq 1$, there exists $k_n \geq 0$ such that $(u^d/\pi_F)^{k_n} \cdot x \in \hat{A}^{[0:s]} + \pi_F^{k_n} \hat{A}^{[r:s]}$. If $x_n = (u^d/\pi_F)^{k_n} \cdot x$, then $x_n \in (\hat{B}_F^{[r:s]})^{\Gamma_{m+k} \cdot \mathcal{F}_{\Lambda}}$, so that $\theta \circ \varphi_q^{-k}(x_n) \in \mathcal{O}_{F_{\infty}}^{\Gamma_{m+k} \cdot \mathcal{F}_{\Lambda}}$.

By §4.1 of [BC14], $\hat{F}_{\infty} = F_{\infty}$ and therefore, $\mathcal{O}_{F_{\infty}}^{\Gamma_{m+k} \cdot \mathcal{F}_{\Lambda}} = \mathcal{O}_{F_{m+k}}$.

There exists \(y_{n,0} \in \mathcal{O}_F[\varphi_q^{-m}(u)] \) such that \(\theta \circ \varphi_q^{-k}(y_{n,0}) = \theta \circ \varphi_q^{-k}(y_{n,0}) \). By (11) of lemma 3.2 and lemma 4.3 there exists \(x_{n,1} \in (\widetilde{B}_F^{[r:s]})^{\Gamma_{m+k,an,F,la}} \cap \mathcal{A}^{[r:s]} \) such that \(x_n - y_{n,0} = (Q_k/\pi_F) \cdot x_{n,1} \). Applying this procedure inductively gives us a sequence \(\{y_{n,i}\}_{i \geq 0} \) of elements of \(\mathcal{O}_F[\varphi_q^{-m}(u)] \) such that for all \(j \geq 1 \), we have

\[
x_n - (y_{n,0} + y_{n,1} \cdot (Q_k/\pi_F) + \cdots + y_{n,j-1} \cdot (Q_k/\pi_F)^{-1}) \in \ker(\theta)^j.
\]

Proposition 3.3 shows that there exists \(j \gg 0 \) such that

\[
x_n - (y_{n,0} + y_{n,1} \cdot (Q_k/\pi_F) + \cdots + y_{n,j-1} \cdot (Q_k/\pi_F)^{-1}) \in \pi_F \mathcal{A}^{[r:s]},
\]

and therefore belongs to \(\pi_F(\mathcal{A}^{[0:s]} + \pi_F^{-1} \mathcal{A}^{[r:s]}) \), since \(\pi_F \mathcal{A}^{[r:s]} = \pi_F \mathcal{A}^{[0:s]} \) by (3) of lemma 3.2. Write \(x_n - (y_{n,0} + y_{n,1} \cdot (Q_k/\pi_F) + \cdots + y_{n,j-1} \cdot (Q_k/\pi_F)^{-1}) - \pi_F x_n \) with \(x_n \in \mathcal{A}^{[0:s]} + \pi_F^{-1} \mathcal{A}^{[r:s]} \). By proposition 4.1 we have \(x_n \in (\widetilde{B}_F^{[r:s]})^{\Gamma_{m+k,an,F,la}} \). Applying to \(x_n \) the same procedure which we have applied to \(x_n \), and proceeding inductively, allows us to find some \(j \gg 0 \) and some elements \(\{y_{n,i}\}_{i \leq j} \) of \(\mathcal{O}_F[\varphi_q^{-m}(u)] \) such that if

\[
y_n = y_{n,0} + y_{n,1} \cdot (Q_k/\pi_F) + \cdots + y_{n,j} \cdot (Q_k/\pi_F)^{-1},
\]

then \(y_n - x_n \in \pi_F \mathcal{A}^{[r:s]} \). If \(z_n = (\pi_F/\pi)^{k_0} y_n \), then \(z_n - x = (\pi_F/\pi)^{k_0} (y_n - x_n) \in \pi_F \mathcal{A}^{[r:s]} \) so that \(\{z_n\}_{n \geq 1} \) converges \(\pi_F \)-adically to \(x \), and \(z_n \in \mathcal{A}^{[r:s]} \) so that \(x \in \mathcal{A}^{[r:s]} \). This proves the theorem when \(K = F \).

We now consider the case when \(K \) is a finite extension of \(F \). We first prove that \(\mathcal{B}^{[r]}_{K,\infty} \subset (\mathcal{B}^{[r]}_F)^{F,la} \). Since \(\mathcal{B}^{[r]}_F = \oplus_{i=1}^n \mathcal{B}^{[r]}_x \), at the end of §3 each element of \(\mathcal{B}^{[r]}_{K,\infty} \) is integral over \(\mathcal{B}^{[r]}_{F,\infty} \). Take \(x \) in \(\mathcal{B}^{[r]}_{K,\infty} \) and let \(P(T) \in \mathcal{B}^{[r]}_{F,\infty}[T] \) denote its minimal polynomial over \(\mathcal{B}^{[r]}_{F,\infty} \). If \(g \in \Gamma_K \) is close enough to 1, then \((gP)(gx) = 0 \) and the coefficients of \(gP \) are analytic functions in \(\ell(g) \). We also have \(P'(x) \neq 0 \), so that \(x \) is locally \(F \)-analytic by the implicit function theorem for analytic functions (which follows from the inverse function theorem given on page 73 of [Ser06]). Note that if \(P(x) = 0 \) and \(D \in \text{Lie}(\Gamma_K) \), then \((DP)(x) + P'(x)D(x) = 0 \), which gives us an explicit way to compute the derivatives of \(x \). This proves the first inclusion.

We have \(\mathcal{B}^{[r]}_K = \oplus_{i=1}^n \mathcal{B}^{[r]}_F \cdot x_i \), and the reverse inclusion now follows from proposition 2.2 which implies that \((\mathcal{B}^{[r]}_K)^{F,la} = \oplus_{i=1}^n (\mathcal{B}^{[r]}_F)^{F,la} \cdot x_i \), and the case \(K = F \). \(\square \)

Lemma 4.5. — Let \(r \geq \max(r(K), (p-1)e/p) \). If \(x \in \mathcal{B}^{[r:s]}_K \) and \(\varphi^n(x) \in \mathcal{B}^{[m,s;q.m]}_K \) for some \(t \geq s \), then \(x \in \mathcal{B}^{[r:s]}_K \).

Proof. — Let \(\psi_q : \mathcal{B}^{[r:s]}_F \rightarrow \mathcal{B}^{[r:s/q]}_F \) be the map constructed for \(r > (p-1)e/p \) in §2 of [PX13]. It satisfies \(V(\psi_q(x), [r/q, s/q]) \geq V(x, [r, s]) - h \) and \(\psi_q(\varphi_q(x)) = x \). Recall that if \(x_1, \ldots, x_e \) is a basis of \(\mathcal{B}^{[r]}_K \) over \(\mathcal{B}^{[r]}_F \), then \(\mathcal{B}^{[r:s]}_K = \oplus_{i=1}^e \mathcal{B}^{[r:s]}_F \cdot x_i \). We can assume that
Let \(x_i = \varphi_q(y_i) \) with \(y_i \in B^{1,r(K)}_K \) (cf. §III.2 of [CC98]). We then extend \(\psi_q \) to \(B^{r;\alpha}_K \) by the formula \(\psi_q(\sum_{i=1}^n \lambda_i \varphi_q(y_i)) = \sum_{i=1}^n \psi_q(\lambda_i) y_i. \)

If \(x \in B^{r;\alpha}_K \) and \(\varphi^m(x) \in B^{[m^r;\alpha_{m^n}] q}_K, \) then \(x = \psi_q(\varphi^m(x)) \) and \(\psi_q(\varphi^m(x)) \in B^{r;\alpha}_K. \)

\[\square \]

Theorem 4.6. — We have \(\tilde{B}^{1,r}_{\rig, K} = B^{1,r}_{\rig, K, \infty}. \)

Proof. — If \(x \in (\tilde{B}^{1,r}_{\rig, K})^{F,\pa} \), then theorem 4.4 implies that for each \(s \geq r \), the image of \(x \) in \(B^{[r,s]}_K \) lies in \(B^{[r,s]}_{K, m} \) for some \(m = m(s) \). We have \(\varphi_q^m(x) \in B^{[m^r;\alpha_{m^n}] q}_K \) and lemma 4.5 implies that \(m(s) \) is independent of \(s \gg 0 \). The theorem then follows from the fact that \(B^{1,r}_{\rig, K, m} = \lim_{s \to \infty} B^{[r,s]}_K. \)

\[\square \]

5. Rings of locally analytic periods

We now prove that the elements of \((\tilde{B}^{1,r}_K)^{\la} \) can be written as power series with coefficients in \((\tilde{B}^{1,r}_K)^{\la} \). Let \(K \) be a finite extension of \(F \) and let \(K_\infty = K F_\infty \) as above. If \(\tau \in E \) and \(f(Y) = \sum_{k \in Z} a_k \tau^k \) with \(a_k \in F \), let \(f^\tau(Y) = \sum_{k \in Z} \tau(a_k) Y^k \). For \(\tau \in E \), let \(\tilde{n}(\tau) \) be the lift of \(n(\tau) \in Z/hZ \) belonging to \(\{0, \ldots, h-1\} \).

Let \(y_r = (\tau \otimes \varphi^{n(\tau)})(u) \in \tilde{A}^+= \mathcal{O}_F \otimes_{\mathcal{O}_{Y_0}} W(\tilde{E}^+). \) The element \(y_r \) satisfies \(g_r(y_r) = [\chi_F(g)]^\tau(y_r) \) and \(\varphi(y_r) = [\pi_F]^\tau(y_r) = t_\tau \cdot Y^h + y_r^2. \) Let \(t_\tau = (\tau \otimes \varphi^{n(\tau)})(t_F) = \log_{1/t_F}(y_r). \)

Recall that \(W = W(F^{unr}/Q_p) \). If \(g \in W \) and \(p^{n(g)} - 1 \in I \) then we have a map \(t_g : \tilde{B}^I \to B^{1,r}_\dir \) given by \(x \mapsto (g|_F^1 \otimes \varphi^{-n(g)})(x). \)

Lemma 5.1. — If \(g \in W \) and \(p^{n(g)} - 1 \in I \), with \(g|_F = \tau \) and \(n(g) = \tilde{n}(\tau) = kh \), then \(\ker(\theta \circ t_g : \tilde{B}^I \to \mathcal{C}_p) = \mathcal{Q}_p^I(y_r). \)

Proof. — This follows from the definitions and (1) of lemma 3.2

Let \(\nabla_\tau \) be the derivative in the direction of \(\tau \). If \(f(Y) \in \mathcal{R}(Y) \), then \(\nabla_\tau f(y_r) = t_\tau \cdot v_\tau \cdot df/dY(y_r) \) where \(v_\tau = \partial(T \otimes_{\mathcal{L}T} U)/\partial U \) is a unit (see §2.1 of [KR09]). Let \(\partial_\tau = t_\tau^{-1}v_\tau^{-1}\nabla_\tau \) so that \(\partial_\tau f(y_r) = df/dY(y_r) \) (this notation is slightly incompatible with that of [3]). Note that \(\partial_\tau \circ \partial_\nu = \partial_\nu \circ \partial_\tau \) if \(\tau, \nu \in E \).

Lemma 5.2. — We have \(\partial_\tau((\tilde{B}^{1,r}_{\rig, K})^{\pa}) \subset (\tilde{B}^{1,r}_{\rig, K})^{\pa}. \)

Proof. — Take \(x \in (\tilde{B}^{1,r}_{\rig, K})^{\pa} \) and take \(n = hm + \tilde{n}(\tau) \) with \(m \) such that \(r_n \geq r \). Let \(g \in W \) be such that \(g|_F = \tau \) and \(n(g) = n \). We have \(\theta \circ t_g(x) \in \tilde{K}^{\la}_\infty \). Corollary 4.3 of [BC14] implies that \(\nabla_\Id = 0 \) on \(\tilde{K}^{\la}_\infty \) and therefore that \(\theta \circ t_g(\nabla_\tau(x)) = 0 \) by lemma 2.6.

By lemma 5.1, this implies that \(\nabla_\tau(x) \) is divisible by \(Q^r_m(y_r) \) for all \(m \) such that \(r_n \geq r \). Since \(t_\tau = y_r \cdot \prod_{m \geq 1} Q^r_m(y_r)/\tau(\pi_F), \) this implies the lemma.

\[\square \]
Lemma 5.3. — If \(x \in \hat{A}_F \), \(I \) is a closed interval, and \(n \geq 1 \), there exists \(\ell \geq 0 \) and \(x_n \in \mathcal{O}_F[\varphi_\ell^{-\ell}(u)] \) such that \(x - x_n \in p^n \hat{A}_F \).

Proof. — Let \(k \geq 1 \) be such that \(u^k \in p^n \hat{A}_F \). By corollary 4.3.4 of \cite{Win83}, the ring \(\bigcup_{m \geq 0} \varphi_m^{\pm m}(F_q[u]) \) is \(u \)-adically dense in \(\mathbb{E}_F \). By successive approximations, we find \(\ell \geq 0 \) and \(x_n \in \mathcal{O}_F[\varphi_\ell^{-\ell}(u)] \) such that \(x - x_n \in p^n \hat{A}_F + u^k \hat{A}_F \) so that \(x - x_n \in p^n \hat{A}_F \).

For \(n \geq 1 \) and \(I \) a closed interval, let \(y_{\tau,n} \in \mathcal{O}_F[\varphi_\ell^{-\ell}(u)] \) be as in lemma 5.3 so that \(y_\tau - y_{\tau,n} \in p^n \hat{A}_F \). Let \(E_0 = E \setminus \{1d\} \). If \(k \in \mathbb{N}^E_0 \), let \(|k| = \sum_{\tau \in E_0} k_\tau \) and let \(k! = \prod_{\tau \in E_0} k_\tau \) and let \(1 \), be the tuple whose entries are 0 except the \(\tau \)-th one which is 1. Let \((y - y_n)^k = \prod_{\tau \in E_0} (y_\tau - y_{\tau,n})^{k_\tau} \) and \(\partial^k = \prod_{\tau \in E_0} \partial_{\tau}^k \). We have

\[
\partial_{\tau}(y - y_n)^k = \begin{cases} 0 & \text{if } k_\tau = 0, \\ k_\tau (y - y_n)^{k - 1} & \text{if } k_\tau \geq 1.
\end{cases}
\]

By lemma 2.25, there exists \(m \geq 1 \) such that \(y_\tau - y_{\tau,n} \in (B_1^I)_{\Gamma_m} \) and \(\|y_\tau - y_{\tau,n}\|_{\Gamma_m} \leq p^{-n} \) for all \(\tau \in E_0 \). Let \(\{x_1\}_{\tau \in \mathbb{N}^E_0} \) be a sequence of elements of \((B_1^I)_{\Gamma_m} \) such that \(\|p^{\ell}x_1\|_{\Gamma_m} \rightarrow 0 \) as \(|i| \rightarrow +\infty \). The series \(\sum_{i \in \mathbb{N}^E_0} x_1(y - y_n)^i \) then converges in \((B_1^I)_{\Gamma_m} \).

Theorem 5.4. — If \(x \in (B_1^I)_{\la} \) and \(n_0 \geq 0 \), then there exists \(m, n \geq 1 \) and a sequence \(\{x_1\}_{\tau \in \mathbb{N}^E_0} \) of \((B_1^I)_{\la,\Gamma_m} \) such that \(\|p^{(n-n_0)|i|}x_1\|_{\Gamma_m} \rightarrow 0 \) and \(x = \sum_{i \in \mathbb{N}^E_0} x_1(y - y_n)^i \).

Proof. — The maps \(\partial_{\tau} : (B_1^I)_{\Gamma_m} \rightarrow (B_1^I)_{\Gamma_m} \) are continuous and hence there exists \(m, n \geq 1 \) such that \(x \in (B_1^I)_{\Gamma_m} \) and \(\|\partial_{\tau} x\|_{\Gamma_m} \leq p^{(n-n_0)|i|} \|x\|_{\Gamma_m} \) for all \(k \in \mathbb{N}^E_0 \). If \(i \in \mathbb{N}^E_0 \), let

\[
x_1 = \frac{1}{i!} \sum_{k \in \mathbb{N}^E_0} (-1)^i k! (y - y_n)^k \partial^k x_1(\tau) (x).
\]

The series above converges in \((B_1^I)_{\Gamma_m} \) to an element \(x_1 \) such that \(\partial_{\tau}(x_1) = 0 \) for all \(\tau \in E_0 \), so that \(x_1 \in (B_1^I)_{\la,\Gamma_m} \). In addition, \(\|x_1\|_{\Gamma_m} \leq p^{(n-n_0)|i|} \|x\|_{\Gamma_m} \) so that \(\|p^{(n-n_0)|i|}x_1\|_{\Gamma_m} \rightarrow 0 \), the series \(\sum_{i \in \mathbb{N}^E_0} x_1(y - y_n)^i \) converges, and its limit is \(x \).

Corollary 5.5. — If \(F \neq \mathbb{Q}_p \) and \(\tau \in E \), then \(\partial_{\tau} : (B_1^I)_{\la} \rightarrow (B_1^I)_{\la} \) is onto.

Proof. — Suppose that \(\tau \neq Id \), and write \(x = \sum_{i \in \mathbb{N}^E_0} x_1(y - y_n)^i \) as in theorem 5.4 with \(n_0 = 1 \). Since \(\partial_{\tau}(x_1(y - y_n)^i) = x_1 i_\tau(y - y_n)^{i-1} + \frac{x_1}{i_\tau + 1} (y - y_n)^{i+1} \). The series converges because \(\|x_1\|_{\Gamma_m} \leq p^{(n-1)|i|} \|x\|_{\Gamma_m} \). If \(\tau = Id \), one may use the fact that the embeddings play a symmetric role.
Remark 5.6. — Corollary 5.5 is false if $F = \mathbb{Q}_p$. Note also that if $x = f(y_\tau)$ with $f(Y) = \sum_k x_k Y^k \in \mathcal{R}^I(Y)$, then the series above for $\partial_\tau^{-1}(x)$ does not converge to $\sum_k x_k y_\tau^{k+1}/(k+1)$ since that series is not defined unless $x_{-1} = 0$, and even then does not converge in $\mathcal{R}^I(y_\tau)$ in general.

6. A multivariable monodromy theorem

In this §, we explain how to descend certain $(\tilde{\mathcal{B}}_{\text{rig},K}^I)^{\text{pa}}$-modules to $(\tilde{\mathcal{B}}_{\text{rig},K}^I)^{F,\text{pa}}$. Let M be a free $(\tilde{\mathcal{B}}_{\text{rig},K}^I)^{\text{pa}}$-module, endowed with a bijective Frobenius map $\varphi_q : M \to M$ and with a compatible pro-analytic action of Γ_K, such that $\nabla_\tau(M) \subset t_\tau \cdot M$ for all $\tau \in E_0$. Write $\partial_\tau = v_\tau^{-1}t_\tau^{-1}\nabla_\tau$ so that $\partial_\tau(M) \subset M$ if $\tau \in E_0$. Let

$$\text{Sol}(M) = \{ x \in M, \text{ such that } \partial_\tau(x) = 0 \text{ for all } \tau \in E_0 \}$$

so that $\text{Sol}(M)$ is a $(\tilde{\mathcal{B}}_{\text{rig},K}^I)^{F,\text{pa}}$-module stable under Γ_K, and such that $\varphi_q : \text{Sol}(M) \to \text{Sol}(M)$ is a bijection. Our monodromy theorem is the following result.

Theorem 6.1. — If M is a free $(\tilde{\mathcal{B}}_{\text{rig},K}^I)^{\text{pa}}$-module with a bijective Frobenius map φ_q and a compatible pro-analytic action of Γ_K, such that $\partial_\tau(M) \subset M$ for all $\tau \in E_0$, then $\text{Sol}(M)$ is a free $(\tilde{\mathcal{B}}_{\text{rig},K}^I)^{F,\text{pa}}$-module, and $M = (\tilde{\mathcal{B}}_{\text{rig},K}^I)^{\text{pa}} \otimes (\tilde{\mathcal{B}}_{\text{rig},K}^I)^{F,\text{pa}} \text{Sol}(M)$.

Remark 6.2. — The usual monodromy conjecture asks for solutions after possibly performing a finite extension L/K and adjoining a logarithm. In this case:

1. there is no need to perform a finite extension L/K since by an analogue of proposition 1.3.2 of [Ber08b], a $(\tilde{\mathcal{B}}_{\text{rig},L}^I)^{F,\text{pa}}$-module with an action of $\text{Gal}(L_\infty/K)$ descends to a $(\tilde{\mathcal{B}}_{\text{rig},K}^I)^{F,\text{pa}}$-module with an action of $\text{Gal}(K_\infty/K)$. In the classical case, the coefficients are too small to be able to perform this descent.

2. there is no need to adjoin a log since the maps $\partial_\tau : (\tilde{\mathcal{B}}_K^I)^{\text{la}} \to (\tilde{\mathcal{B}}_K^I)^{\text{la}}$ are onto.

Proof of theorem 6.1. — Let $r \geq 0$ be such that M and all its structures are defined over $(\tilde{\mathcal{B}}_{\text{rig},K}^I)^{\text{pa}}$, and let $I \subset [r; +\infty[$ be a closed interval, such that $I \cap qI \neq \emptyset$. Let m_1, \ldots, m_d be a basis of M, and let $M^I = \oplus_{i=1}^d (\tilde{\mathcal{B}}_K^I)^{\text{la}} \cdot m_i$. Let $D_\tau = \text{Mat}(\partial_\tau)$ for $\tau \in E_0$. We first prove that $\text{Sol}(M^I)$ is a free $\mathcal{B}_{K_\infty}^I$-module of rank d, such that $M = (\tilde{\mathcal{B}}_K^I)^{\text{la}} \otimes \mathcal{B}_{K_\infty}^I \text{Sol}(M^I)$. This amounts to finding a matrix $H \in \text{GL}_d((\tilde{\mathcal{B}}_K^I)^{\text{la}})$ such that $\partial_\tau(H) + D_\tau H = 0$ for all $\tau \in E_0$. If $k \in \mathbb{N}^{E_0}$, let $H_k = \text{Mat}(\partial_\tau^k)$. If n is large enough, then

$$H = \sum_{k \in \mathbb{N}^{E_0}} (-1)^{|k|} H_k \frac{(y - y_n)^k}{k!}$$
converges in $M_d((\tilde{B}_K^k)^{la})$ to a solution of the equations $\partial_r(H) + D_rH = 0$ for $\tau \in E_0$. If in addition $n > 0$, then $\|H_k \cdot (y - y_n)k/k!\| < 1$ if $|k| \geq 1$ so that $H \in \text{GL}_d((\tilde{B}_K^k)^{la})$.

This proves that $\text{Sol}(M^f)$ is a free $\tilde{B}_K^{f,\infty}$-module of rank d such that $M = (\tilde{B}_K^k)^{la} \otimes \tilde{B}_K^{f,\infty}$ is the matrix of φ over B for all φ in our case (see the remark preceding theorem 3.2.16 in [Wen03] and the state of the art concerning projective limits of such spaces seems to be insufficient in our case (see the remark preceding theorem 3.2.16 in [Wen03]). We use instead the Frobenius map to show that we can remain at a “finite level”, that is work with modules over $\tilde{B}_K^{k,n}$ for a fixed n.

Let m_1, \ldots, m_d be a basis of $\text{Sol}(M^f)$. The Frobenius map φ_q gives rise to bijections $\varphi_q^k : \text{Sol}(M^f) \rightarrow \text{Sol}(M^{p,f})$ for all $k \geq 0$. Let $J = I \cap qI$ and let $P \in \text{GL}_d((\tilde{B}_K^k)^{la})$ be the matrix of $\varphi_q(m_1), \ldots, \varphi_q(m_d)$ in the basis m_1, \ldots, m_d. We have $P \in \text{GL}_d((\tilde{B}_K^k)^{F,la})$ because $\partial_r(m_i) = 0$ and $\partial_r(\varphi_q(m_i)) = 0$ for all $\tau \in E_0$ and $1 \leq i \leq d$. By theorem 4.3, there exists therefore some $n \geq 0$ such that $P \in \text{GL}_d(\tilde{B}_K^k)$. For $k \geq 0$, let $I_k = q^kI$ and $J_k = I_k \cap I_{k+1}$ and $E_k = \oplus_{i=1}^d \tilde{B}_K^{k,n} \cdot \varphi_q^k(m_i)$. The fact that $P \in \text{GL}_d(\tilde{B}_K^{k,n})$ implies that $\varphi_q^k(P) \in \text{GL}_d(\tilde{B}_K^{k,n})$ and hence

$$\tilde{B}_K^{J_k} \otimes_{\tilde{B}_K^{J_k,n}} E_k = \tilde{B}_K^{J_k} \otimes_{\tilde{B}_K^{J_k+1,n}} E_{k+1}$$

for all $k \geq 0$. The collection $\{E_k\}_{k \geq 0}$ therefore forms a vector bundle over $\tilde{B}_K^{[r;+\infty]}$ for $r = \min(I)$. By theorem 2.8.4 of [Ked05] (see also §3 of [ST03]), there exists elements n_1, \ldots, n_d of $\cap_{k \geq 0} E_k \subset M$ such that $E_k = \oplus_{i=1}^d \tilde{B}_K^{k,n_i}$ for all $k \geq 0$. These elements give a basis of $\text{Sol}(M)$ over $(\tilde{B}_K^k)^{F,pa}$, which is also a basis of M over $(\tilde{B}_K^k)^{pa}$, and this proves the theorem.

\[\square \]

7. Lubin-Tate (φ, Γ)-modules

We now review the construction of Lubin-Tate (φ, Γ)-modules. If K is a finite extension of F, let B_K be the p-adic completion of the field B_K^\dagger defined in §3 and let A_K denote the ring of integers of B_K for $\text{val}_p(\cdot)$. A (φ_q, Γ_K)-module over B_K is a finite dimensional B_K-vector space D, along with a semilinear Frobenius map φ_q and a compatible action of Γ_K. We say that D is étale if $D = B_K \otimes_{A_K} D_0$ where D_0 is a (φ_q, Γ_K)-module over A_K.

Let B be the p-adic completion of $\cup_{K/F} B_K$. By specializing the constructions of [Fon90], Kisin and Ren prove the following theorem in their paper (theorem 1.6 of [KR09]).
Theorem 7.1. — The functors $V \mapsto (B \otimes_F V)^{\overline{pK}}$ and $D \mapsto (B \otimes B_K D)^{\varphi_{q=1}}$ give rise to mutually inverse equivalences of categories between the category of F-linear representations of G_K and the category of étale (φ_q, Γ_K)-modules over B_K.

We say that a (φ_q, Γ_K)-module D is overconvergent if there exists a basis of D in which the matrices of φ_q and of all $g \in \Gamma_K$ have entries in B^\dagger_K. This basis then generates a B^\dagger_K-vector space D^\dagger which is canonically attached to D. The main result of [CC98] states that if $F = Q_p$, then every étale (φ_q, Γ_K)-module over B_K is overconvergent (the proof is given for $\pi_F = p$, but it is easy to see that it works for any uniformizer). If $F \neq Q_p$, then some simple examples (cf. [FX13]) show that this is no longer the case.

We say that an F-linear representation of G_K is F-analytic if $C_p \otimes_F V$ is the trivial C_p-semilinear representation of G_K for all embeddings $\tau \neq \text{Id} \in \text{Gal}(F/Q_p)$. This definition is the natural generalization of Kisin and Ren’s L-crystalline representations (§3.3.7 of [KR09]). See also remark 16.28 of [FF12]. Kisin and Ren then go on to show that if $K \subset F_\infty$, and if V is a crystalline F-analytic representation of G_K, then the (φ_q, Γ_K)-module attached to V is overconvergent (see §3.3 of [KR09]).

If D is a (φ_q, Γ_K)-module over $B^\dagger_{ec,K}$, and if $g \in \Gamma_K$ is close enough to 1, then by standard arguments (see §2.1 of [KR09]), the series $\log(g) = \log(1 + (g - 1))$ gives rise to a differential operator $\nabla_g : D \to D$. The map $\text{Lie}_F \Gamma_F \to \text{End}(D)$ arising from $v \mapsto \nabla_{\exp(v)}$ is Q_p-linear, and we say that D is F-analytic if this map is F-linear (see §2.1 of [KR09] and §1.3 of [FX13]). This is equivalent to the requirement that the elements of D be pro-F-analytic vectors for the action of Γ_K. The following is theorem 4.2 of [Ber13].

Theorem 7.2. — If F/Q_p is unramified, if $K \subset F_\infty$ and if V is an overconvergent F-representation of G_K, then $B^\dagger_{ec,K} \otimes B^\dagger_K D^\dagger(V)$ is F-analytic if and only if V is F-analytic.

In §9 we prove the theorem below. Note that it was previously known for $F = Q_p$ by the main result of [CC98], for crystalline representations by §3 of [KR09] and for reducible (or even trianguline) 2-dimensional representations by theorem 0.3 of [FX13].

Theorem 7.3. — If V is F-analytic, then it is overconvergent.

We now assume that K is a finite extension of Q_p and that L_∞/K is the extension of K attached to $\eta_{\chi_{\text{cyc}}}$ where η is an unramified character of G_F. When $\eta = 1$, L_∞ is the cyclotomic extension of K and the Cherbonnier-Colmez theorem (see [CC98]) says that there is an equivalence of categories between étale (φ, Γ)-modules over B^\dagger_L and F-representations of G_K. If η is not the trivial character, then there is still such an equivalence of categories, where B^\dagger_p is a field of power series with coefficients in F and
in one variable X_η and B^\dagger_L is the corresponding extension. This can be seen in at least two ways.

1. One can redo the whole proof of the Cherbonnier-Colmez theorem for L_∞/K, and this works because $\text{Gal}(L_\infty/K)$ is an open subgroup of \mathbb{Z}_p^\times;
2. One can use the fact that $L_\infty \cdot \mathbb{Q}_p^{\text{unr}} = K(\mu_{p^{10^7}}) \cdot \mathbb{Q}_p^{\text{unr}}$, apply the classical Cherbonnier-Colmez theorem, and then descend from $L_\infty \cdot \mathbb{Q}_p^{\text{unr}}$ to L_∞, which poses no problem since that extension is unramified.

The variable X_η is then an element of $\mathcal{O}_{\mathcal{F}_{\text{unr}}}[[X]]$, of the form $z_1X + \cdots$ with $z_1 \in \mathcal{O}_{\mathcal{F}_{\text{unr}}}^\times$.

Let V be a \mathbb{Q}_p-linear representation of G_K. By the above generalization of the Cherbonnier-Colmez theorem, V is overconvergent, so that we can attach to V the B^\dagger_L-vector space $D^r_V = \bigcup_{r > 0} D^r_{L(r)}$. Let $D^v_{L(v)}$ and $D^r_{\varphi(L)}$ denote the various completions of $D^r_{L(v)}$. Let

$$ \check{D}^v_{L(v)} = (B^{[r:s]} \otimes \mathbb{Q}_p)_{H_L} \text{ and } \check{D}^r_{\varphi(L)} = (B^{[r:s]} \otimes \mathbb{Q}_p)_{H_L}. $$

The Cherbonnier-Colmez theorem implies that $\check{D}^v_{L(v)} = B^{[r,s]}_{\varphi(L)} D_{\varphi(L)}$ and that $\check{D}^r_{\varphi(L)} = B^{[r:s]}_{\varphi(L)} D_{\varphi(L)}$.

Theorem 7.4. — We have

1. $\check{D}^v_{L(v)} = B^{[r,s]}_{L(v)} \otimes B^{[r,s]}_{\varphi(L)} D_{L(v)}$;
2. $\check{D}^r_{\varphi(L)} = B^{[r,s]}_{\varphi(L)} \otimes B^{[r,s]}_{\varphi(L)} D_{\varphi(L)}$.

Proof. — We have $\check{D}^v_{L(v)} = B^{[r,s]}_{L(v)} \otimes B^{[r,s]}_{\varphi(L)} D_{L(v)}$, and (1) now follows from theorem 4.34 and from the fact that the elements of $D_{\varphi(L)}$ are locally analytic (see §2.1 of [KR09]). Likewise, (2) follows from theorem 4.36 and proposition 2.3 and from the fact that the elements of $D_{\varphi(L)}$ are pro-analytic.

8. Multivariable (φ, Γ)-modules

We now explain how to construct some (φ, Γ)-modules over the ring $(B^{\dagger}_{\varphi(K)})$. Let L_∞ be as in §7 and let K_∞/K be a p-adic Lie extension, such that $L_\infty \subset K_\infty$. Let $\Gamma_K = \text{Gal}(K_\infty/K)$. Let $H_K = \text{Gal}(\overline{\mathbb{Q}}_p/K_\infty)$, let V be a p-adic representation of G_K of dimension d, and let

$$ \check{D}^v_K = (B^{[r,s]} \otimes \mathbb{Q}_p)_{H_K} \text{ and } \check{D}^r_{\varphi(L)} = (B^{[r,s]} \otimes \mathbb{Q}_p)_{H_K}. $$

These two spaces are topological representations of Γ_K.

Theorem 8.1. — We have
1. \(\tilde{D}_K^{[r,s]}(V)^{\text{la}} = (\tilde{B}_K^{[r,s])^{\text{la}}} \otimes_{\tilde{B}_L^{[r,s]}} D_L^{[r,s]}(V); \)
2. \(\tilde{D}_{\text{rig},K}^{[r,s]}(V)^{\text{pa}} = (\tilde{B}_{\text{rig},K}^{[r,s])^{\text{pa}}} \otimes_{\tilde{B}_{\text{rig},L}^{[r,s]}} D_{\text{rig},L}^{[r,s]}(V). \)

Proof. — We have \(\tilde{B}^{[r,s]} \otimes_{\mathbb{Q}_p} V = \tilde{B}^{[r,s]} \otimes_{\tilde{B}_L^{[r,s]}} D_L^{[r,s]}(V), \) so that \(\tilde{D}_K^{[r,s]}(V) = \tilde{B}_K^{[r,s]} \otimes_{\tilde{B}_L^{[r,s]}} D_L^{[r,s]}(V), \) and item (1) follows from proposition 2.2. Item (2) is proved similarly. \(\Box \)

Let \(\tilde{D}_{\text{rig},K}(V)^{\text{pa}} = \cup_{r>0} \tilde{D}_{\text{rig},K}^{[r,s]}(V)^{\text{pa}}. \) Theorem 5.1 implies that \(\tilde{D}_{\text{rig},K}^{[r,s]}(V)^{\text{pa}} \) is a free \((\tilde{B}_{\text{rig},K}^{[r,s]})^{\text{pa}} \)-module of rank \(\dim(V) \) stable under \(\varphi_q \) and \(\Gamma_K. \) We propose this module as a first candidate for a \((\varphi_q, \Gamma_K)\)-module in the case \(\Gamma_K = \text{Gal}(\mathbb{K}_\infty/\mathbb{K}). \) One can then attempt to construct some multivariable \((\varphi, \Gamma)\)-modules by descending from \((\tilde{B}_{\text{rig},K}^{[r,s]})^{\text{pa}} \) to certain nicer rings of power series. For example, if \(F \) is unramified over \(\mathbb{Q}_p \) and \(\pi_F = p \) and \(K = F \) and \(K_\infty \) is generated by the torsion points of \(\text{LT}, \) then by theorem A of \([\text{Ked13}]) \) one can descend \(\tilde{D}_{\text{rig},K}(V)^{\text{pa}} \) to a reflexive coadmissible module on the ring \(\mathcal{R}^{[0;+\infty]}(Y_0, \ldots, Y_{h-1}) \) of functions on the \(h \)-dimensional open unit disk. Note that the cyclotomic element \(X = \varepsilon-1 \) belongs to \((\tilde{B}_{\text{rig},K}^{[r,s]})^{\text{pa}}, \) but it is not in the image of \(\cup_{n>0} \varphi^{-n}_q \mathcal{R}(Y_0, \ldots, Y_{h-1}) \) where \(\mathcal{R}(Y_0, \ldots, Y_{h-1}) \) denotes the “Robba ring in \(h \) variables” (defined in \([\text{Ber13}]) \). Therefore, descending to smaller subrings of \((\tilde{B}_{\text{rig},K}^{[r,s]})^{\text{pa}} \) may be quite complicated. In general, it will be useful to answer the following.

Question 8.2. — What is the structure of the ring \((\tilde{B}_{\text{rig},K}^{[r,s]})^{\text{pa}} \)?

Finally, we mention that definition 7.8 and conjecture 7.9 of \([\text{Ked13}]) \) discuss some necessary and sufficient conditions for certain elements of \(\tilde{B}_{\text{rig},K}^{[r,s]} \) to be locally analytic.

9. Overconvergence of \(F \)-analytic representations

We now give the proof of conjecture 7.3 using the construction of multivariable \((\varphi, \Gamma)\)-modules and the monodromy theorem.

Theorem 9.1. — The Lubin-Tate \((\varphi_q, \Gamma_K)\)-modules of \(F \)-analytic representations are overconvergent.

Let \(V \) be an \(F \)-linear representation of \(G_K \) and let \(\tilde{D}_{\text{rig},K}^{[r,s]}(V) = (\tilde{B}_{\text{rig},K}^{[r,s]} \otimes_F V)^{H_K}. \) Since \(K_\infty \) contains \(L_\infty, \) the \(\tilde{B}_{\text{rig},K}^{[r,s]} \)-module \(\tilde{D}_{\text{rig},K}^{[r,s]}(V) \) is free of rank \(d = \dim(V) \) and there is an isomorphism compatible with \(G_K \) and \(\varphi_q \)

\[
\tilde{B}_{\text{rig}}^{[r,s]} \otimes_{\tilde{B}_{\text{rig},K}^{[r,s]}} \tilde{D}_{\text{rig},K}^{[r,s]}(V) = \tilde{B}_{\text{rig}}^{[r,s]} \otimes_F V.
\]
Lemma 9.2. — If V is an F-representation of G_K that is C_p-admissible at $\tau \in E$, then

$$\nabla_\tau (\tilde{D}_{\text{rig},K}^\dagger (V))^{pa} \subset t_\tau \cdot \tilde{D}_{\text{rig},K}^\dagger (V)^{pa}.$$

Proof. — Take $n = hm + \tilde{n}(\tau)$ with m such that $r_n \geq r$ and let $g \in W$ be such that $g|_F = \tau$ and $n(g) = n$. Let e_1, \ldots, e_d be a basis of $(C_p \otimes_F V)^{G_K}$ over K, so that it is also a basis of $(C_p \otimes_F V)^{H_K}$ over \tilde{K}_∞. If $g \in (C_p \otimes_F V)^{H_K}$ is Q_p-analytic, then we can write $y = \sum_{i=1}^d y_i e_i$ and by lemma 2.2 we have $y_i \in \tilde{K}_\infty$. Corollary 4.3 of [BCT14] implies that $\nabla_{id} = 0$ on $(C_p \otimes_F V)^{H_K}$ and therefore that if $x \in \tilde{D}_{\text{rig},K}^\dagger (V)^{pa}$, then $\theta \circ t_g (\nabla_\tau (x)) = 0$ by lemma 2.6. Lemma 5.1 implies that if $x \in \tilde{D}_{\text{rig},K}^\dagger (V)^{pa}$, then $\nabla_\tau (x)$ is divisible by $Q_m(y_r)$ for all m such that $r_n \geq r$. Since $t_\tau = y_\tau \cdot \prod_{m \geq 1} Q_m(y_r)/\tau(\pi_F)$, this implies the lemma. \qed

Proof of theorem 9.1. — Let V be an F-representation of G_K that is F-analytic and let $M = \tilde{D}_{\text{rig},K}^\dagger (V)^{pa}$. By theorem 8.1 M is a free $(\tilde{B}_{\text{rig},K})^{pa}$-module stable under Γ_K and φ_q. Lemma 9.2 implies that M is stable under the differential operators $\{\partial_\tau\}_{\tau \in E \setminus \{id\}}$. By theorem 6.4, $\text{Sol}(M)$ is a free $(\tilde{B}_{\text{rig},K})^{F,pa}$-module of rank d such that there is an isomorphism compatible with G_K and φ_q

$$\tilde{B}_{\text{rig}} \otimes^{(\tilde{B}_{\text{rig},K})^{F,pa}} \text{Sol}(M) = \tilde{B}_{\text{rig}} \otimes_F V.$$

By theorem 4.6 we have $(\tilde{B}_{\text{rig},K})^{F,pa} = \tilde{B}_{\text{rig},K,\infty}$. This implies that there exists $n \geq 0$, and a basis s_1, \ldots, s_d of $\text{Sol}(M)$ such that $\text{Mat}(\varphi_q^n) \in \text{GL}_d(\tilde{B}_{\text{rig},K,n})$ as well as $\text{Mat}(g) \in \text{GL}_d(\tilde{B}_{\text{rig},K,n})$ for all $g \in \Gamma_F$. If we set $D_{\text{rig}} = \bigotimes_{i=1}^d B_{\text{rig},K}^\dagger \cdot \varphi_q^n(s_i)$, then D_{rig} is a (φ_q, Γ_K)-module over $B_{\text{rig},K}$ such that Sol$(M) = (\tilde{B}_{\text{rig},K})^{pa} \otimes^{B_{\text{rig},K}^\dagger} D_{\text{rig}}$. The module D_{rig} is uniquely determined by this condition: if there are two and if X denotes the change of basis matrix and P_1, P_2 the matrices of φ_q, then $X \in \text{GL}_d(B_{\text{rig},K,n})$ for some $n \gg 0$, and the equation $X = P_2^{-1} \varphi(X) P_1$ implies that $X \in \text{GL}_d(B_{\text{rig},K})$.

The isomorphism $\tilde{B}_{\text{rig}} \otimes^{B_{\text{rig},K}} D_{\text{rig}} = \tilde{B}_{\text{rig}} \otimes_F V$ implies that D_{rig} is pure of slope 0 (see [Ked05]). By theorem 6.3.3 of [Ked05], there is an étale (φ_q, Γ_K)-module D^\dagger over $B_{\text{rig},K}$ such that $D_{\text{rig}} = \tilde{B}_{\text{rig},K} \otimes^{B_{\text{rig},K}} D^\dagger$.

Since D^\dagger is étale, there exists an F-representation W of G_K such that $\tilde{B}_{\text{rig}} \otimes^{B_{\text{rig},K}} D^\dagger = \tilde{B}_{\text{rig}} \otimes_F W$. Taking φ_q-invariants in $\tilde{B}_{\text{rig}} \otimes_F W = \tilde{B}_{\text{rig}} \otimes_F V$ shows that $W = V$. This proves theorem 9.1 for V, with $D^\dagger(V) = D^\dagger$. \qed

Remark 9.3. — The same proof shows that theorem 9.1 extends to an equivalence of categories between the category of F-analytic B-pairs (see [Ber08a]) and the category of all Lubin-Tate (φ_q, Γ_K)-modules over $B_{\text{rig},K}$. These F-analytic B-pairs appear as Galois equivariant vector bundles on Fargues and Fontaine’s curve (§16 of [FF12]).
References

[Ami64] Y. Amice – “Interpolation p-adique”, Bull. Soc. Math. France 92 (1964), p. 117–180.

[BC08] L. Berger & P. Colmez – “Familles de représentations de de Rham et monodromie p-adique”, Astérisque (2008), no. 319, p. 303–337.

[BC14] ______, “Théorie de Sen et vecteurs localement analytiques”, preprint, 2014.

[Ber02] L. Berger – “Représentations p-adiques et équations différentielles”, Invent. Math. 148 (2002), no. 2, p. 219–284.

[Ber08a] ______, “Construction de (φ, Γ)-modules: représentations p-adiques et B-paires”, Algebra Number Theory 2 (2008), no. 1, p. 91–120.

[Ber08b] ______, “Équations différentielles p-adiques et (φ, N)-modules filtrés”, Astérisque (2008), no. 319, p. 13–38.

[Ber11] ______, “La correspondance de Langlands locale p-adique pour $GL_2(\mathbb{Q}_p)$”, Astérisque (2011), no. 339, p. Exp. No. 1017, viii, 157–180, Séminaire Bourbaki. Vol. 2009/2010. Exposés 1012–1026.

[Ber13] ______, “Multivariable (φ, Γ)-modules and filtered φ-modules”, Math. Res. Lett. 20 (2013), no. 3, p. 409–428.

[Ber14] ______, “Lifting the field of norms”, Journal de l’École polytechnique - Mathématiques (2014), to appear.

[Bre10] C. Breuil – “The emerging p-adic Langlands programme”, in Proceedings of the International Congress of Mathematicians. Volume II, Hindustan Book Agency, New Delhi, 2010, p. 203–230.

[CC98] F. Cherbonnier & P. Colmez – “Représentations p-adiques surconvergentes”, Invent. Math. 133 (1998), no. 3, p. 581–611.

[CG96] J. Coates & R. Greenberg – “Kummer theory for abelian varieties over local fields”, Invent. Math. 124 (1996), no. 1-3, p. 129–174.

[Col02] P. Colmez – “Espaces de Banach de dimension finie”, J. Inst. Math. Jussieu 1 (2002), no. 3, p. 331–439.

[Col10] ______, “Représentations de $GL_2(\mathbb{Q}_p)$ et (φ, Γ)-modules”, Astérisque (2010), no. 330, p. 281–509.

[DI13] M. De Iese – “Espaces de fonctions de classe C^r sur \mathcal{O}_F”, Indag. Math. (N.S.) 24 (2013), no. 3, p. 530–556.

[DS09] E. De Shalit – “Mahler bases, Lubin-Tate groups and elementary p-adic analysis”, preprint, 2009.

[Eme11] M. Emerton – “Locally analytic vectors in representations of locally p-adic analytic groups”, Memoirs of the AMS, to appear, 2011.

[FF12] L. Fargues & J.-M. Fontaine – “Courbes et fibrés vectoriels en théorie de Hodge p-adique”, preprint, 2012.

[Fon90] J.-M. Fontaine – “Représentations p-adiques des corps locaux. I”, in The Grothendieck Festschrift, Vol. II, Progr. Math., vol. 87, Birkhäuser Boston, Boston, MA, 1990, p. 249–309.

[Fon94] ______, “Le corps des périodes p-adiques”, Astérisque (1994), no. 223, p. 59–111, With an appendix by Pierre Colmez, Périodes p-adiques (Bures-sur-Yvette, 1988).

[FW79a] J.-M. Fontaine & J.-P. Wintenberger – “Extensions algébriques et corps des normes des extensions APF des corps locaux”, C. R. Acad. Sci. Paris Sér. A-B 288 (1979), no. 8, p. A441–A444.
Multivariable (φ, Γ)-modules and locally analytic vectors

[FW79b] L. FouquauX & B. Xie – “Le “corps des normes” de certaines extensions algébriques de corps locaux”, C. R. Acad. Sci. Paris Sér. A-B 288 (1979), no. 6, p. A367–A370.

[FX13] L. FouquauX & B. Xie – “Triangulable \mathcal{O}_F-analytic (φ, Γ)-modules of rank 2”, Algebra Number Theory 7 (2013), no. 10, p. 2545–2592.

[Ked05] K. S. Kedlaya – “Slope filtrations revisited”, Doc. Math. 10 (2005), p. 447–525 (electronic).

[Ked13] K. Kedlaya – “Some slope theory for multivariate Robba rings”, preprint, 2013.

[KR09] M. Kisin & W. Ren – “Galois representations and Lubin-Tate groups”, Doc. Math. 14 (2009), p. 441–461.

[LT65] J. Lubin & J. Tate – “Formal complex multiplication in local fields”, Ann. of Math. (2) 81 (1965), p. 380–387.

[Mat95] S. Matsuda – “Local indices of p-adic differential operators corresponding to Artin-Schreier-Witt coverings”, Duke Math. J. 77 (1995), no. 3, p. 607–625.

[Sen72] S. Sen – “Ramification in p-adic Lie extensions”, Invent. Math. 17 (1972), p. 44–50.

[Ser06] J.-P. Serre – Lie algebras and Lie groups, Lecture Notes in Mathematics, vol. 1500, Springer-Verlag, Berlin, 2006, 1964 lectures given at Harvard University, Corrected fifth printing of the second (1992) edition.

[ST03] P. Schneider & J. Teitelbaum – “Algebras of p-adic distributions and admissible representations”, Invent. Math. 153 (2003), no. 1, p. 145–196.

[Wen03] J. Wengenroth – Derived functors in functional analysis, Lecture Notes in Mathematics, vol. 1810, Springer-Verlag, Berlin, 2003.

[Win83] J.-P. Wintenberger – “Le corps des normes de certaines extensions infinies de corps locaux; applications”, Ann. Sci. École Norm. Sup. (4) 16 (1983), no. 1, p. 59–89.

May 22, 2014

Laurent Berger, UMPA de l’ENS de Lyon, UMR 5669 du CNRS, IUF

E-mail: laurent.berger@ens-lyon.fr • Url: perso.ens-lyon.fr/laurent.berger/