First line of text
Authors
Chang Liu, Xuan Wang, Jiu-Bo Tian, Pei-Yuan Ma, Fan-Xiu Meng, Qi Zhang, Bao-Feng Yu, Rui Guo, Zhi-Zhen Liu, Hai-Long Wang, Jun Xie, Niu-Liang Cheng, Jian-Hua Wang, Bo Niu, and Gongqin Sun
Construction of a cDNA library and preliminary analysis of the expressed sequence tags of the earthworm Eisenia fetida (Savigny, 1826)

CHANG LIU1*, XUAN WANG1*, JIU-BO TIAN1, PEI-YUAN MA1, FAN-XIU MENG1, QI ZHANG1, BAO-FENG YU1, RUI GUO1, ZHI-ZHEN LIU1, HAI-LONG WANG1, JUN XIE1, NIU-LIANG CHENG1, JIAN-HUA WANG2, BO NIU1,2 and GONG-QIN SUN1,3

1Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001; 2Department of Biotechnology, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, P.R. China; 3Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA

Received June 24, 2018; Accepted January 11, 2019

DOI: 10.3892/mmr.2019.9938

Abstract. Earthworms are useful indicator organisms of soil health and Eisenia fetida have been extensively used as test organisms in ecotoxicological studies. In order to gain insight into the gene expression profiles associated with physiological functions of earthworms, a full-length enriched cDNA library of the Eisenia fetida genome was successfully constructed using Switching Mechanism at 5’End of RNA Template technology. Construction of a cDNA library and analysis of Expressed Sequence Tags (ESTs) are efficient approaches for collecting genomic information and identifying genes important for a given biological process. Furthermore, analysis of the expression abundance of ESTs was performed with the aim of providing genetic and transcriptomic information on the development and regenerative process of earthworms. Phrep and Crossmatch were used to process EST data and a total of 1,140 high-quality EST sequences were determined by sequencing random cDNA clones from the library. Clustering analysis of sequences revealed a total of 593 unique sequences including 225 contiguous and 368 singleton sequences. Basic Local Alignment Search Tool analysis against the Kyoto Encyclopedia of Genes and Genomes database resulted in 593 significant hits (P-value <1x10^-8), of which 168 were annotated through Gene Ontology analysis. The STRING database was used to determine relationships among the 168 ESTs, identifying associated genes involved in protein-protein interactions and gene expression regulation. Based on nucleic acid and protein sequence homology, the mutual relationships between 287 genes could be obtained, which identified a portion of the ESTs as known genes. The present study reports on the construction of a high-quality cDNA library representative of adult earthworms, on a preliminary analysis of ESTs and on a putative functional analysis of ESTs. The present study is expected to enhance our understanding of the molecular basis underlying the biological development of earthworms.

Introduction

Earthworms are terrestrial annelids in the oligochaeta subclass, with a generally preferred habitat of damp and loose soil. They include ~3,000 species worldwide, with 229 species in China (1,2). In a wide variety of soil types, earthworms serve vital roles in converting large pieces of organic matter into rich humus to enrich soil fertility. The earthworms are the highest evolutionary species capable of regenerating an anterior portion containing the central nervous system, heart and clitellum (3). The anterior regeneration is a unique developmental process that requires cell proliferation, re-differentiation and sophisticated cell-cell communication. This process can serve as a useful model for investigating normal development and differentiation (4).

Over the past several years, cDNA library construction and analysis have become established as indispensable methods for functional genome analysis since they provide detailed information about the genomic mechanisms underlying the diverse processes of an organism (5). However, conventionally
generated cDNA libraries contain a high percentage of 5'-truncated clones, limiting the utility of such libraries. The Switching Mechanism at 5'End of RNA Template (SMART) technique (6) amplifies and enriches the full-length mRNA, and thus generates cDNA libraries with a significantly improved ratio of full-length to partial cDNA sequences. In the present study, the SMART technique was adopted to construct a high quality library of full-length cDNAs representative of adult earthworms, namely of the earthworm Eisenia fetida (Savigny, 1826).

Unlike other model organisms, none of the oligochaete genomes have been sequenced to the best of our knowledge, and genomic research on earthworms lags behind that of other model species such as Mus musculus. In the absence of the full genome sequences, expressed sequence tags (ESTs) aid the rapid detection of expressed genes via sequence analysis, and are a significant resource for comparative and functional genomic studies (2). In addition, among the biological techniques for transcriptome analysis, the determination of ESTs is considered the simplest method for profiling the transcriptome, which is also particularly useful in the development of cDNA microarrays for systematic identification of differentially expressed genes (7). Analysis of ESTs is an effective method for rapidly analyzing gene expression, characterizing gene functions and discovering new genes that are important for specific developmental and physiological processes (8). The present study established 593 ESTs, representing 168 genes and 425 unknown tags, providing a gene expression profile of earthworm development. This collection of ESTs may provide a valuable basis for future research on the physiology of earthworms.

Materials and methods

Isolation of total RNA and mRNA. Eisenia fetida earthworms were purchased from Beijing Shuangqiao Farm (Beijing, China). Fully developed adult Eisenia fetida earthworms weighing 0.3–0.6 g (live weight) were selected for all experiments. All earthworm tissues were harvested and total RNA was isolated using TRIzol reagent (Invitrogen; Thermo Fisher Scientific, Inc., Waltham, MA, USA). The integrity of total RNA was analyzed by electrophoresis using 1% agarose gels. Isolation of poly(A) mRNA from total RNA was carried out using an MN-NucleoTrap® mRNA kit (Machery-Nagel GmbH & Co. KG, Düren, Germany) according to the manufacturer’s protocol. Oligo(dT) beads suspension was applied to total RNA and incubated at 68˚C for 5 min before eluting mRNA. Then ethidium bromide (EB) staining was applied and 1% agarose gel was used to visualize the result. The isolated mRNA was further vacuum concentrated using Concentrator plus™ (Eppendorf, Hamburg, Germany). The quantity and integrity of isolated mRNA were determined using a nanodrop spectrophotometer and agarose gel electrophoresis, respectively.

cDNA library construction. A total of ~8,048.4 ng mRNA was used for single-stranded cDNA synthesis. The purified mRNA was used as a template, Oligo(dT)18 with XhoI cleavage site was used as the primer, and first strand cDNA was transcribed at 42°C using SuperScript™ II RnaseH-Reverse (Thermo Fisher Scientific, Inc.). Then the mRNA was digested using RNaseH, and the resultant mRNA fragments were used as further primers. The first cDNA chain was used as a template for double-stranded cDNA synthesis, using DNA Polymerase I (Takara Biotechnology Co., Ltd., Beijing, China). The ends of the double-stranded cDNA were ligated by T4 DNA polymerase and the ligation products were purified by phenol/chloroform/isoamyl alcohol to remove excess impurities such as protein. Subsequently, the double-stranded DNA fragments were ligated into EcoRI Adaptor using T4 DNA ligase at 4°C overnight. Then the double-stranded DNA fragments were phosphorylated with T4 Polynucleotide Kinase and digested with XhoI. Following XhoI digestion of the double-stranded cDNA, producing XhoI sticky ends, a QIAEXII Gel Extraction kit (Beijing BioDev-Tech, Beijing, China) was used to recycle 0.5-4 Kb fragments. The recycled cDNA was preserved at -20°C. Then the cDNA was ligated into the pBluescript II SK+(+) XR vector (Promega Corporation, Madison, WI, USA) in a 3:1 molar ratio with T4 DNA ligase at 4°C overnight. To reduce the redundancy and avoid the under-representation of different transcript species, cDNA fragments with different fractionated sizes were balanced and subjected to library construction (9,10). Prior to transformation, mixing of all ligated products with microporous membranes was performed to remove salt ions. Subsequently the products were transformed into 5x10^7/ml DH10B competent cells (Thermo Fisher Scientific, Inc.), plated on agar plates (10 cm diameter) by pipetting the cells onto the middle of the plate and spreading, and monoclonal colonies were selected for PCR amplification. The inserted sequences in the plasmids were amplified by PCR using T3 primers (5’-ATTACCCCTACTAAAGGGA-3’) and T7 primers (5’-TATACGACTCACTATTAGGG-3’). The total volume of PCR reaction mixture was 20 µl, containing 1 µl template, 10 µl 2X Taq MasterMix (CWBio, Beijing, China), 1 µl T3 primers (10 pmol), 1 µl T7 primers (10 pmol) and 7 µl ddH₂O (CWBio). Cycling conditions were: 94°C for 5 min, followed by 30 cycles of 94°C for 30 sec, 55°C for 40 sec and 72°C for 60 sec, followed by 72°C for 5 min.

Bioinformatic analysis. cDNA clones were selected randomly from the cDNA library and the vector sequences were trimmed from the raw sequence data using Vecscreen tool (www.ncbi.nlm.nih.gov/tools/vecscreen/) from the National Center for Biotechnology Information. The sequence of each EST was also edited, mainly to remove ambiguous bases and poor-quality sequences (nucleotide sequences <100 bp). All edited sequences were assembled into groups using SeqMan software version 8.0 (DNASTAR, Madison, WI, USA). The processed cDNA sequences were used to perform a BLAST search in the GenBank database to compare all available ESTs and genes to date (11). The Basic Local Alignment Search Tool (BLAST; blast.ncbi.nlm.nih.gov/BLAST.cgi) results with P-values <1x10^-8 were generally regarded as a significant match (12,13). A large-scale Unigene assembly of the ESTs was initiated to identify and functionally annotate as many unique transcripts as possible. BLAST analysis against the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, and protein and nucleic acid databases was conducted for examination of biological functions. The ESTs homologous to known proteins were further annotated for Gene Ontology.
(GO; www.geneontology.org) terms and the GO analysis was carried out using WEB-based GEne SeT AnaLysis Toolkit (WebGestalt; www.webgestalt.org/option.php) (14,15).

Results

Construction of cDNA library. Obtaining an adequate quantity of high quality mRNA initially is the key to yielding a sufficient quantity of first-strand full-length cDNA by reverse transcription. In the present study, total RNA was extracted from the tissues of earthworms. As shown in Fig. 1, 28s and 18s bands were clearly visible in the electrophoresis gel of total RNA, indicating that the total RNA was obtained. The optical density (OD)\textsubscript{260}/OD\textsubscript{280} ratio for the total RNA was 2.04, well within the range of 1.8-2.1, indicating that the isolated total RNA was suitable for cDNA library construction.

Once the double-stranded cDNA was synthesized as described in the Materials and methods, the present study determined the size distribution of the products. Diffuse strips between 0.5-4.0 kb could be detected by 1% agarose gel electrophoresis, which indicated that double-stranded cDNAs were successfully synthesized. A cDNA library of 4.12x105 clones was obtained and half of the bacteria were cultured for amplification, which produced a total of 1.4x1011 clones. Several colonies were selected, and the inserted sequences in the plasmids were amplified by PCR using T3 and T7 primers. The PCR products were detected using 1% agarose gel electrophoresis as clear bands. No nonspecific bands were identified and the recombinant rate was 97% (Fig. 2).

To investigate the quality of the full-length cDNA library, the lengths of the cDNA inserts were assessed. Sequence outputs were manually edited to remove vector and ambiguous sequences. Then, the sequence data of the cDNA clones obtained by random partial sequencing were searched in the NCBI GenBank using BLAST to identify similarities with sequences in the nucleic acid databases. An evaluation of cDNA insert size and its distribution revealed a low level of insert size bias in the final cDNA library. The majority of the cDNA inserts were larger than 500 bp.

EST analysis. Instead of the amplified library, the primary cDNA library was used to generate ESTs to reduce the redundancy of cDNA clones. Following the removal of the redundant sequences and low-quality sequences (<100 bp), 1,148 effective sequences (>100 bp) from the total cDNA sequences were obtained. As shown in Fig. 3, 53 ESTs were 100-300 bp, 261 ESTs were 300-500 bp, 828 ESTs were 500-700 bp and 6 ESTs were larger than 700 bp. Taken together, 1,148 ESTs were larger than 100 bp. Among them, the shortest sequence was 100 bp, the longest was 718 bp and the average length was ~452 bp. Following sequencing, a homology BLAST search and assembling of the data, 368 singletons and 225 contigs were obtained out of the 1,140 high-quality ESTs, as shown in Table I. Additionally, a total of 593 individual ESTs were analyzed and 168 ESTs annotated in GenBank with nematode homology (Table I).

GO annotation and bioinformatic analysis. The cDNA functions were classified using the GO database into the three

Table I. Summary of ESTs obtained from the cDNA library of earthworms.
ESTs

Total number of ESTs
Total length of ESTs (bp)
Average length of ESTs (bp)
Unique genes
Contigs
Singletons
Annotation

ESTs, expressed sequence tags.

Figure 1. Result of the electrophoresis of total RNA. A total of 1.056 µg RNA was obtained from the tissues of earthworms. The optical density values were A\textsubscript{260}=0.880 and A\textsubscript{280}=0.430; A\textsubscript{260}/A\textsubscript{280}=2.04.

Figure 2. Amplified inserts of cDNA clones from the constructed cDNA library. M, DNA marker; Lanes 1-32, insert cDNA (>500 bp) clones from phage plaques.

Figure 3. Different groups of ESTs, separated by length. ESTs, expressed sequence tags.
The main categories of molecular functions, cell components and biological processes.

GO annotation of genes associated with molecular functions indicated that among the 168 ESTs, 46% (77/168 ESTs) were associated with growth and metabolic pathways, with the distribution of the 77 ESTs shown in Fig. 4A. Out of the 77 ESTs, 21% (16 ESTs) were associated with ‘proteolytic enzymes’, 16% (12 ESTs) with ‘protein ligases’, 14% (11 ESTs) with ‘oxido-reductases’, 13% (10 ESTs) with ‘energy release’, 10% (8 ESTs) with ‘signal transduction and cell communication’, 5% (4 ESTs) with ‘transport’ and only 3% (2 ESTs) with ‘post-translational modification’, ‘protein turnover’ and ‘chaperones’ (Fig. 4B).

Cellular components associated with the cDNAs included ‘myosin’, the ‘citrate lyase compound’, the ‘mitochondrial inner membrane translocase compound’, ‘microtubules’, the ‘mitochondrial inner membrane’ and ‘nucleosomes’. The proportions of cellular components are presented in Fig. 5. It can be observed that the proportion of ‘myosin’ among cellular components was the largest. Myosin, an actin-dependent molecular motor, is involved in a number of important functions in earthworms. In particular, the myosin network can drive movement and support different moving speeds of earthworms. This specific feature is closely related to the free moving ability of earthworms (16).

Regarding biological processes, known genes were determined as those presenting significant matches to protein sequences with known functions in non-redundant nucleotide databases. According to these biological functions, the biological processes component was divided into different functions including ‘larval development’ (46%), ‘changes of cell morphogenesis’ (6%), ‘the process of cytokinesis’ (12%), ‘post-translational protein modification’ (15%), ‘stress response’ (5%), ‘cell redox homeostasis’ (2%), ‘protein polymerization’ (2%) and ‘protein catabolism’ (12%), as shown in Fig. 6. It was concluded from the above data that promoting growth was considered to be an important biological function of genes associated with biological processes.

KEGG pathway annotation. KEGG is a collection of online databases describing pathways associated with biochemical, genomic and enzymatic processes. Furthermore, it provides annotations of biochemical pathways for the species in which the genome has been sequenced (17). In this analysis, proteins are not viewed as individual gene products but are organized into pathways and networks according to their biological function(s). In the present study, from the data in Table II, 15 of the 168 ESTs were revealed to be involved in metabolism. Notably, 4 of the 15 ESTs (27%) were involved in the ubiquitin-mediated proteolysis pathway, which was the most
represented. The glutathione metabolism (3 ESTs) and arachidonic acid metabolism (2 ESTs) pathways were the second and third most represented pathways, respectively. Additionally, chondroitin sulfate biosynthesis, heparan sulfate biosynthesis, riboflavin metabolism, selenoamino acid metabolism, \(\gamma\)-hexachlorocyclohexane degradation, and the fructose and mannose metabolism pathways were also represented.

Mutual relationship between 287 genes. Relationships among the 168 ESTs were analyzed using the STRING database, and a functional association network was determined with 287 nodes, as shown in Table III. Each node corresponds to a gene and each (weighted) edge represents the evidence of a functional association between the gene pair. Predicted potential regulators are presented in Fig. 7. It can be seen from the STRING results that the most associated nodes (blue) included the 19 genes: Ribosomal protein L (rpl)-1, ribosomal protein S (rps)-0, rpl-4, rpl-5, rps-13, rps-2, acidic ribosomal protein (rha)-1, translocon-associated protein-4, transcription factor BTF3 homolog, rpl-7A, iff-1, rps-17, elongation factor 1\(\alpha\)3, polyadenylate-binding protein-1, rps-28, translationally-controlled tumor protein homolog-1, rpl-18,
Table III. Relationships between the 287 associated genes, including several important parameters.

node1	node2	node1_string_id	node2_string_id	node1_external_id	node2_external_id	coexpression	combined_score
rpl-5	atp-2	502,561	496,479	F54C9.5.1	C34E10.6.3	0.866	0.871
rpl-18	snr-2	510,406	508,903	Y45F10D.12.2	W08E3.1	0.426	0.468
trap-4	rps-2	511,330	497,379	Y56E3A.21.2	C49H3.11.1	0.243	0.919
sod-2	daf-21	498,735	497,248	F10D11.1.1	C47E8.5.1	0	0.572
rla-2	rps-4	511,588	510,280	Y62E10A.1.1	Y43B11AR.4.2	0.981	0.998
rpl-1	daf-1	511,889	493,869	Y71F9AL.13a.1	B0464.1.1	0.492	0.523
prdx-6	sod-2	509,858	498,735	Y38C1AA.11	F10D11.1.1	0.233	0.726
act-4	rpo-5	505,013	493,798	M03F4.2a	B0393.1.1	0.426	0.425
daf-21	rps-13	497,248	495,308	C47E8.5.1	C16A3.9.1	0.402	0.474
rpl-1	daf-1	511,889	493,528	Y71F9AL.13a.1	B0041.4.1	0.8	0.999
cyc-1	atp-2	497,719	496,479	C54G4.8.1	C34E10.6.3	0.849	0.873
rla-1	act-4	509,817	505,013	Y37E3.7.2	M03F4.2a	0.538	0.538
rpl-7A	rps-17	509,604	506,860	Y24D9A.4a	T08B2.10.1	0.872	0.923
rps-28	rps-5	510,228	502,561	Y41D4B.5.2	F54C9.5.1	0.77	0.887
rpl-18	cyc-1	510,406	497,719	Y45F10D.12.2	C49H3.11.1	0.387	0.411
rpl-1	rps-0	509,457	493,798	Y17G7B.7.2	B0393.1.1	0.477	0.49
daf-21	daf-1	497,248	493,869	C47E8.5.1	B0464.1.1	0.281	0.543
lsm-3	rla-2	511,591	511,588	Y62E10A.12.2	Y62E10A.1.1	0	0.408
rpl-1	rps-4	511,889	510,280	Y71F9AL.13a.1	Y43B11AR.4.2	0.819	0.989
tpi-1	rps-0	509,457	493,798	Y17G7B.7.2	B0393.1.1	0.477	0.49
rpl-1	daf-1	511,889	497,248	Y71F9AL.13a.1	C47E8.5.1	0.251	0.415
rpl-1	daf-1	511,889	506,602	Y62E10A.10.1	T05G5.10	0.436	0.521
rpl-1	daf-1	511,889	509,187	Y71F9AL.13a.1	Y37E3.7.2	0.794	0.997
tpi-1	rha-4	509,457	506,234	Y17G7B.7.2	T01H3.1.1	0.483	0.483
vha-4	atp-2	506,234	496,479	T01H3.1.1	C34E10.6.3	0.304	0.724
rps-2	daf-1	511,889	497,248	Y71F9AL.13a.1	C47E8.5.1	0.251	0.415
rps-2	daf-1	511,889	505,013	Y62E10A.11.1	T05G5.10	0.429	0.469
rpl-1	rps-13	509,457	506,234	Y17G7B.7.2	T01H3.1.1	0.483	0.483
rps-2	daf-1	511,889	497,248	Y71F9AL.13a.1	C47E8.5.1	0.251	0.415
rpl-1	daf-1	511,889	506,234	Y17G7B.7.2	T01H3.1.1	0.483	0.483
rps-2	daf-1	511,889	505,013	Y62E10A.11.1	T05G5.10	0.429	0.469
rpl-1	rps-13	509,457	497,248	Y17G7B.7.2	T01H3.1.1	0.483	0.483
rps-2	daf-1	511,889	497,248	Y71F9AL.13a.1	C47E8.5.1	0.251	0.415
rpl-1	rps-13	509,457	497,248	Y17G7B.7.2	T01H3.1.1	0.483	0.483
Table III. Continued.

node1	node2	node1_string_id	node2_string_id	node1_external_id	node2_external_id	coexpression	combined_score
crt-1	rpl-5	509,852	502,561	Y38A10A.5.1	F54C9.5.1	0.452	0.465
rps-28	tpi-1	510,228	509,457	Y41D4B.5.2	Y17G7B.7.2	0.278	0.451
rps-4	iff-1	510,280	506,602	Y43B11AR.4.2	T05G5.10	0.64	0.888
icd-1	rps-13	497,806	495,308	C56C10.8.1	C16A3.9.1	0.856	0.856
trap-4	rla-1	511,330	509,817	Y56A3A.21.2	Y37E3.7.2	0.176	0.923
nmy-1	unc-54	502,225	498,853	F52B10.1	F11C3.3.1	0.102	0.565
trap-4	rps-13	511,330	495,308	Y56A3A.21.2	C16A3.9.1	0.148	0.942
iff-1	rps-13	506,602	495,308	T05G5.10	C16A3.9.1	0.614	0.614
maoc-1	ftn-2	498,218	497,902	E04F6.3	D1037.3.4	0.997	0.996
rpl-18	eft-3	510,406	505,324	Y45F10D.12.2	R03G5.1a.2	0.428	0.938
exos-2	cpf-1	512,052	500,247	Y73B6BL.3	F28C6.3	0.403	0.403
rla-2	rla-1	511,588	509,817	Y62E10A.1.1	Y37E3.7.2	0.999	0.999
rla-2	rps-17	509,182	506,860	Y106G6H.2a.4	T08B2.10.1	0.217	0.936
tpi-1	rps-17	509,457	506,860	Y17G7B.7.2	T08B2.10.1	0.341	0.412
act-4	rpl-4	510,182	509,723	Y38A10A.5.1	C56C10.8.1	0.432	0.523
rpl-7A	rps-2	509,852	497,379	Y38A10A.5.1	Y56A3A.21.2	0.402	0.462
trap-4	rps-0	511,330	493,798	Y24D9A.4a	Y56A3A.21.2	0.977	0.536
rla-2	tct-1	509,604	499,979	Y24D9A.4a	Y56A3A.21.2	0.793	0.794
exos-2	tsm-3	512,052	511,581	Y73B6BL.3	Y62E10A.12.2	0.164	0.449
rpl-18	atp-2	510,406	496,479	Y45F10D.12.2	Y45F10D.12.2	0.476	0.659
rps-2	drs-1	497,379	493,869	F57B9.6a.3	F54C9.5.1	0.409	0.409
rpl-5	rps-2	502,561	497,379	Y38A10A.5.1	Y56A3A.21.2	0.174	0.911
rpl-18	rpl-5	510,406	497,379	Y45F10D.12.2	Y45F10D.12.2	0.476	0.659
rps-2	atp-2	509,852	493,798	Y38A10A.5.1	Y56A3A.21.2	0.273	0.949
snr-2	rps-0	508,903	493,798	W08E3.1	B0393.1.1	0.35	0.414
unc-54	daf-21	498,853	497,248	F11C3.3.1	C47E8.5.1	0.322	0.674
rpl-18	rps-0	510,406	493,798	Y45F10D.12.2	B0393.1.1	0.999	0.999
rpl-7A	icd-1	509,604	497,379	Y45F10D.12.2	B0393.1.1	0.999	0.999
rps-4	rps-2	509,457	493,798	Y17G7B.7.2	C47E8.5.1	0.458	0.458
rps-0	rps-0	508,903	497,379	F08E3.1	B0393.1.1	0.35	0.414
unc-54	daf-21	498,853	497,248	F11C3.3.1	C47E8.5.1	0.322	0.674
rpl-18	rps-0	510,406	493,798	Y45F10D.12.2	B0393.1.1	0.999	0.999
rpl-7A	icd-1	509,604	497,379	Y45F10D.12.2	B0393.1.1	0.999	0.999
rps-0	rps-0	508,903	497,379	F08E3.1	B0393.1.1	0.35	0.414
unc-54	daf-21	498,853	497,248	F11C3.3.1	C47E8.5.1	0.322	0.674
node1	node2	node1_string_id	node2_string_id	node1_external_id	node2_external_id	coexpression	combined_score
---------	---------	-----------------	-----------------	-------------------	-------------------	--------------	----------------
rla-1	tct-1	509,817	499,979	Y37E3.7.2	F25H2.11.2	0.998	0.999
rps-17	iff-1	506,860	506,602	T08B2.10.1	T05G5.10	0.569	0.678
rps-28	rla-1	510,228	509,817	Y41D4B.5.2	Y37E3.7.2	0.785	0.963
try-1	cyp-31A2	513,205	503,484	ZK546.15	H02I12.8	0.543	0.543
rpl-1	rpl-5	511,889	502,561	Y71F9AL.13a.1	F54C9.5.1	0.799	0.995
rps-28	rps-0	510,228	493,798	Y41D4B.5.2	B0393.1.1	0.76	0.966
act-4	unc-54	505,013	498,853	M03F4.2a	F11C3.3.1	0.168	0.474
rpl-5	tct-1	502,561	499,979	Y41C9.5.1	F25H2.11.2	0.996	0.996
rla-1	rps-13	509,817	493,308	Y37E3.7.2	C16A3.9.1	0.999	0.999
rpl-1	rps-17	511,889	506,802	Y71F9AL.13a.1	T08B2.10.1	0.799	0.993
rpl-1	rla-2	511,889	511,588	Y71F9AL.13a.1	Y62E10A.1.1	0.772	0.996
cey-1	cpi-1	500,586	500,247	M03F4.2a	F11C3.3.1	0.168	0.474
rpl-5	rpl-7A	510,228	509,604	Y41C9.5.1	C16A3.9.1	0.999	0.999
rpl-1	rps-13	510,280	495,308	Y43B11AR.4.2	C16A3.9.1	0.999	0.999
rpl-1	rps-2	510,280	493,798	Y41D4B.5.2	C16A3.9.1	0.999	0.999
rpl-1	rps-0	506,860	493,798	Y41D4B.5.2	C16A3.9.1	0.999	0.999
sqv-8	ret-1	512,932	508,785	ZK1307.5	W06A7.3f	0	0.579
rps-28	rpl-7A	510,228	509,604	Y41D4B.5.2	Y24D9A.4a	0.752	0.838
iced-1	rps-0	497,806	493,308	C56C10.8.1	B0393.1.1	0.875	0.88
rpl-1	rps-13	509,182	495,308	Y106G6H.2a.4	C16A3.9.1	0.327	0.928
sqv-8	ret-1	506,256	496,567	T02C12.1	C35D10.16	0	0.421
rpl-1	rps-13	510,280	495,308	Y43B11AR.4.2	C16A3.9.1	0.999	0.999
rpl-1	rps-2	510,280	493,798	Y41D4B.5.2	C16A3.9.1	0.999	0.999
rpl-5	rps-13	502,561	495,308	F54C9.5.1	C16A3.9.1	0.999	0.999
hum-5	arx-6	506,256	496,567	T02C12.1	C35D10.16	0	0.421
rpl-1	rps-13	510,280	495,308	Y43B11AR.4.2	C16A3.9.1	0.999	0.999
rpl-1	rps-2	510,280	493,798	Y41D4B.5.2	C16A3.9.1	0.999	0.999
rpl-5	rps-13	502,561	495,308	F54C9.5.1	C16A3.9.1	0.999	0.999
node1_ string_id	node2_ string_id	node1_ external_id	node2_ external_id	combined_score	coexpression	combined_score	coexpression
-----------------	-----------------	--------------------	--------------------	----------------	--------------	----------------	--------------
Y43B11AR.4.2	C49H3.11.1	0.999	0.999				
Y37E3.7.2	Y24D9A.4a	0.927	0.912				
Y41D4B.5.2	T08B2.10.1	0.805	0.989				
Y45F10D.12.2	F25H2.11.2	0.963	0.966				
Y62E10A.1.1	Y41D4B.5.2	0.799	0.879				
R03G5.1a.2	B0041.4.1	0.713	0.97				
Y17G7B.7.2	B0041.4.1	0.489	0.948				
Y17G7B.7.2	K10B3.7.2	0.608	0.988				
F11C3.3.1	C38C3.5b.1	0	0.587				
Y37E3.7.2	F33A8.3.2	0	0.403				
Y24D9A.4a	F11C3.3.1	0	0.54				
Y41D4B.5.2	Y106G6H.2a.4	0.344	0.955				
Y43B11AR.4.2	C56C10.8.1	0.809	0.81				
Y24D9A.4a	F54C9.5.1	0.934	0.994				
R03G5.1a.2	B0041.4.1	0.187	0.916				
Y45F10D.12.2	B0041.4.1	0.999	0.999				
Y62E10A.1.1	Y106G6H.2a.4	0.38	0.548				
Y43B11AR.4.2	F25H2.11.2	0.941	0.946				
Y41D4B.5.2	Y41D4B.5.2	0.76	0.971				
Y62E10A.1.1	Y41D4B.5.2	0.967	0.999				
Y43B11AR.4.2	F54C9.5.1	0.999	0.999				
Y106G6H.2a.4	Y106G6H.2a.4	0.29	0.929				
Y62E10A.1.1	C49H3.11.1	0.991	0.999				
Y71F9AL.13a.1	Y106G6H.2a.4	0.237	0.918				
Y41D4B.5.2	C49H3.11.1	0.732	0.981				
Y43B11AR.4.2	B0041.4.1	0.999	0.999				
Y62E10A.1.1	T08B2.10.1	0.956	0.999				
Y43B11AR.4.2	T08B2.10.1	0.956	0.996				
Y41D4B.5.2	Y106G6H.2a.4	0.796	0.96				
F57B9.6a.3	B0393.1.1	0.414	0.433				
F11B7.4d	F08B6.4a	0.413	0.421				
Y37E3.7.2	B0041.4.1	0.997	0.999				
Y62E10A.1.1	C49H3.11.1	0.998	0.999				
Y43B11AR.4.2	Y106G6H.2a.4	0.796	0.96				
Y03E6.7.2	F28C6.3	0	0.408				
Y56B6.4a	F33A8.3.2	0	0.55				
T02C12.1	F52B10.1	0	0.544				
Y62E10A.1.1	Y17G7B.7.2	0.444	0.444				
Y62E10A.1.1	Y56A3A.21.2	0.076	0.916				
Y41D4B.5.2	B0041.4.1	0.756	0.847				
B0464.1.1	B0393.1.1	0.464	0.494				
F33A8.3.2	C54G4.8.1	0.382	0.54				
Y71F9AL.13a.1	Y106G6H.2a.4	0.777	0.787				
Y41D4B.5.2	C56C10.8.1	0.799	0.999				
Y17G7B.7.2	B0393.1.1	0.099	0.999				
Y43B11AR.4.2	Y106G6H.2a.4	0.444	0.444				
Y62E10A.1.1	Y56A3A.21.2	0.076	0.916				
Y41D4B.5.2	B0041.4.1	0.756	0.847				
B0464.1.1	B0393.1.1	0.464	0.494				
F33A8.3.2	C54G4.8.1	0.382	0.54				
Y71F9AL.13a.1	Y106G6H.2a.4	0.777	0.787				
Y41D4B.5.2	B0393.1.1	0.099	0.999				
Y17G7B.7.2	Y17G7B.7.2	0.442	0.444				
Y43B11AR.4.2	B0041.4.1	0.59	0.634				
Y62E10A.1.1	Y56A3A.21.2	0.308	0.951				
Table III. Continued.

node1	node2	node1_string_id	node2_string_id	node1_external_id	node2_external_id	coexpression	combined_score
rpl-1	rps-28	511,889	510,228	Y71F9AL.13a.1	Y41D4B.5.2	0.793	0.939
rps-28	tct-1	510,228	499,979	Y41D4B.5.2	F25H2.11.2	0.683	0.683
eft-3	rpl-5	505,324	502,561	R03G5.1a.2	F54C9.5.1	0.701	0.974
sod-2	cyc-1	498,735	497,719	F10D11.1.1	C54G4.8.1	0.456	0.604
pdi-3	phy-2	503,539	500,798	H06O01.1.3	F35G2.4.1	0	0.4
rpl-18	daf-21	510,406	497,248	Y45F10D.12.2	C47E8.5.1	0.387	0.401
rpl-1	tct-1	511,889	499,979	Y71F9AL.13a.1	Y2F152.11.2	0.751	0.757
rpl-1	iff-1	511,889	506,602	Y71F9AL.13a.1	T05G5.10	0.612	0.624
rpl-1	tpi-1	511,889	509,457	Y71F9AL.13a.1	Y17G7B.2.11.2	0.751	0.757
rpl-1	rps-0	493,798	493,528	B0393.1.1	B0041.4.1	0.999	0.999
eft-3	rps-13	505,324	495,308	R03G5.1a.2	C16A3.9.1	0.362	0.956
act-4	unc-60	505,013	496,717	M03F4.2a	C38C3.5b.1	0	0.863
rps-4	eft-3	505,324	509,182	Y71F9AL.13a.1	Y2F152.11.2	0.751	0.757
rps-4	rla-1	511,588	493,798	Y62E10A.11.1	T08B2.10.1	0.997	0.999
rps-17	rps-2	506,860	497,379	Y71F9AL.13a.1	Y2F152.11.2	0.751	0.757
cyc-1	eat-6	497,719	493,780	C54G4.8.1	B0365.3.2	0.295	0.425
trap-4	rpl-18	511,330	510,406	Y56A3A.21.2	Y45F10D.12.2	0.37	0.956
rpl-18	rps-0	509,457	493,528	Y71F9AL.13a.1	Y2F152.11.2	0.751	0.757
rps-17	rps-13	505,324	495,308	R03G5.1a.2	C16A3.9.1	0.362	0.956
rps-17	rps-0	509,182	493,798	Y106G6H.2a.4	Y106G6H.2a.4	0.425	0.453
rpl-1	trap-4	511,889	511,330	Y71F9AL.13a.1	Y2F152.11.2	0.751	0.757
rpl-1	tct-1	511,889	496,717	M03F4.2a	C38C3.5b.1	0	0.863
rpl-1	rps-28	511,889	510,228	Y71F9AL.13a.1	Y2F152.11.2	0.751	0.757
rps-28	tct-1	510,228	499,979	Y41D4B.5.2	F25H2.11.2	0.683	0.683
eft-3	rps-13	505,324	495,308	R03G5.1a.2	C16A3.9.1	0.362	0.956
act-4	unc-60	505,013	496,717	M03F4.2a	C38C3.5b.1	0	0.863
rps-17	rps-28	509,182	493,798	B0393.1.1	B0041.4.1	0.999	0.999
eft-3	rps-13	505,324	495,308	R03G5.1a.2	C16A3.9.1	0.362	0.956
act-4	unc-60	505,013	496,717	M03F4.2a	C38C3.5b.1	0	0.863
rps-4 and adenosine triphosphate synthase subunit β mitochondrial precursor-2. Of note, the genes rpl-4, rps-13, rpl-5, rpl-1, rps-0, rla-1 and rpl-7A served critical roles in overall gene expression networks.

Discussion

The present study reported on the construction of a high-quality cDNA library from tissues of the earthworm Eisenia fetida (Savigny, 1826), following preliminary analysis of ESTs, putative functional analysis of the ESTs and the gene expression pattern associated with the physiological functions of this organism. cDNA libraries are widely used to identify genes and splice variants and are considered to be a physical resource for the construction of full-length clones (18,19). In the present study, a cDNA library was utilized to provide a molecular resource for the analysis of genes involved in the specific biology of earthworms in terms of their development, survival, pathogenicity and virulence. There are two main factors to consider when assessing the quality of a cDNA library: Representation and cDNA lengths. According to Clarke-Carbon’s formula (20), a cDNA library should contain at least 1.7x10^5 independent clones to ensure that 99% of low-abundance mRNAs will be represented in the library (21). Furthermore, the average length of the inserted cDNAs should be no less than 1.0 kb to ensure the integrity of cDNAs, indicating that in the present study the fragment sizes were effective for ensuring full-length cDNAs in the cDNA library. Since selection bias could favor the smaller cDNAs, the present study used fewer PCR cycles to minimize such bias as previously suggested (10). In addition, up to 25 PCR amplification cycles were used to generate an adequate amount of cDNA for cloning.

Table III. Continued.

node1	node2	node1_string_id	node2_string_id	node1_external_id	node2_external_id	coexpression	combined_score
rps-2	atp-2	497,379	496,479	C49H3.11.1	C34E10.6.3	0.943	0.947
unc-54	unc-87	498,853	498,495	F11C3.3.1	F08B6.4a	0.566	0.776
tct-1	rps-2	499,979	497,379	F25H2.11.2	C49H3.11.1	0.999	0.999
trap-4	rps-4	511,330	510,280	Y56A3A.21.2	Y43B11AR.4.2	0.245	0.921
rps-28	iff-1	510,228	506,602	Y41D4B.5.2	T05G5.10	0.432	0.635
rla-1	daf-21	509,817	497,248	Y37E3.7.2	C47E8.5.1	0.394	0.543
rps-4	crt-1	510,280	509,852	Y43B11AR.4.2	Y38A10A.5.1	0.491	0.5
rpl-18	crt-1	510,406	509,852	Y45F10D.12.2	Y38A10A.5.1	0.595	0.597
rps-2	rpl-0	497,379	493,798	C49H3.11.1	B0393.1.1	0.999	0.999
lev-11	unc-87	509,147	498,495	Y105E8B.1d	F08B6.4a	0.272	0.454
trap-4	rps-17	511,330	506,860	Y56A3A.21.2	T08B2.10.1	0.308	0.929
tct-1	daf-21	499,979	497,248	F25H2.11.2	C47E8.5.1	0.648	0.713
rpl-1	ral-4	509,852	493,528	Y38A10A.5.1	Y43B11AR.4.2	0.999	0.999
rps-4	rpl-0	509,406	506,802	Y45F10D.12.2	Y38A10A.5.1	0.595	0.597
rps-2	rpl-0	505,324	493,798	R03G5.1a2	B0393.1.1	0.999	0.999
rpl-1	rpl-1	506,602	497,806	Y11F9AL.13a1	R03G5.1a2	0.348	0.948
rps-2	rps-4	509,604	494,528	Y38A10A.5.1	B0401.1.1	0.472	0.604
rpl-18	rpl-7A	509,852	493,528	Y38A10A.5.1	Y43B11AR.4.2	0.999	0.999
eft-3	rps-4	505,324	497,902	R03G5.1a2	D1037.3.4	0.999	0.999
rps-4	daf-2	509,324	497,902	Y38A10A.5.1	B0401.1.1	0.995	0.999
rpl-18	eft-3	507,806	497,379	Y43B11AR.4.2	B0393.1.1	0.999	0.999
act-2	act-4	506,426	505,013	T04C12.5	M03F4.2a	0.999	0.999
rpl-18	rpl-7A	509,852	493,528	Y38A10A.5.1	Y43B11AR.4.2	0.999	0.999
act-2	act-4	506,426	505,013	T04C12.5	M03F4.2a	0.999	0.999
The generation of ESTs is an effective and unique approach in molecular studies as it allows for the analysis and measurement of gene expression, as well as simultaneous discovery of new genes. As each EST represents a copy of the functional part of a genome, the study of ESTs is believed to be a more effective way to discover functional genes. Furthermore, analysis of the expression of a large number of genes combined with the knowledge of their functions enables insight into the overall situation in terms of biological processes, for the current purposes in earthworms. In the present study, ~91% of the ESTs generated were sequences with known or putative functions, while the remainder represented unknown proteins or sequences with no similarities to those in the databases. Although close to 600 ESTs were reported, this is actually far from what could be considered as a 'complete' transcriptome (which usually includes between 15,000-20,000 to >100,000 ESTs). Therefore, the present characterization of this seemingly partial transcriptome may far from reflect the full transcriptomic profile of tissues in earthworms.

A comparison of the classification of ESTs with a *C. elegans* cDNA library based on their putative functions was conducted. Based on identification of clusters via GO analysis, 168 ESTs were matched to *C. elegans* genes by BLASTx. It is well known that earthworms serve significant roles in organic matter decomposition and mineral cycling, and thus are considered to be important contributors to soil fertility and humification processes. In the present study, hydrolytic enzyme activity, conjugating protein ligase activity, oxidation reduction and energy release activity of metabolic enzymes accounted for a large proportion of the molecular functions component. These molecular functions are considered to be a key part of the physiological functions of earthworms, which allow earthworms to survive in different soil environments.

Cell components, as part of GO annotation, are mainly categorized based on subcellular location (including cell cytoplasm, mitochondria, lysosomes, nucleus, microtubules, plasma membrane and myosin), which is highly important for the study of protein functions. The results of subcellular localization analysis can provide significant clues to aid the understanding of protein functions. In the present study, several cell components were determined through GO analysis of the 168 ESTs (annotated genes). It was evident that these cell components had strong associations with the regulation of gene expression during the biological development of earthworms, enabling the regeneration of the anterior portion, alterations in movement ability and tissue differentiation.

Due to the temporal specificity of gene expression and interactions with other gene products, the specific pathway undertaken, sequence of gene expression and expression pattern may ultimately change the effects of multiple pathways in...
earthworms (2). Therefore, the cDNA library and transcription profile of genes representative of fully developed adult earthworms may differ markedly to those of juvenile earthworms. In the present study, gene expression profiles representative of adult earthworm development were generated; however, gene expression profiling of juvenile earthworms was not performed, nor were analyses of the expected differential gene expression between juveniles and adults. In the present study, 168 individual ESTs of earthworms were analyzed by KEGG pathway annotation, which identified 9 corresponding categories. Among them, glutathione metabolism is involved in antioxidant defense systems in *Eisenia Andrei*, and the associated enzymes are mainly identified in cytosolic fractions (26). Chondroitin sulfate and heparan sulfate biosynthesis are involved in biosynthesis pathways, which have important effects on growth and regeneration. In addition, heparan sulfate is also considered to be a type of anticoagulant, which may also be a function of arachidonic acid (27). Therefore, understanding the molecular function of earthworms may provide some basis for the treatment of thrombotic disorders.

Information on functional annotation and relevant biological interactions associated with a particular gene is available from many online resources. The gene network comprises a collection of genes that cooperate with each other to control the main biological processes. The STRING database suggested a functional context for earthworm lumbrokinase with unknown specificity. A previous study revealed that lumbrokinase and dilo administration can efficiently reduce the incidence of cardiac disease among nonsmokers exposed to second-hand smoke (28). In this regard, the discovery of genes and protein interactions in earthworms has provided a basis for further investigation into human diseases.

Acknowledgements

Not applicable.

Funding

The present study was supported by the National Natural Science Foundation of China (grant nos. 30472251, 30901821 and 81370312), the Natural Science Foundation of Shanxi Province, China (grant no. 2010021035-2), National Science Foundation of Shanxi Province, China (grant no. 2015011113), International Scientific and Technological Cooperative Foundation of Shanxi Province, China (grant no. 201703D421023), the Fund for Shanxi ‘1331 Project’ Key Subjects Construction and the Fund for Shanxi Key Subjects Construction.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Authors’ contributions

BFY, BN and JX conceived and designed the experiments and bioinformatics analysis. CL and FXM performed bioinformatics analysis, and wrote the manuscript. XW, PYM, QZ and JBT performed the experiments. RG, ZZL, HLW and NLC contributed to designing the present study and revising the manuscript. JHW and GQS analyzed and interpreted the data.

Ethics approval and consent to participate

Not applicable.

Patient consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

References

1. Torres-Leguizamón M, Mathieu J, Decaens T and Dupont L: Genetic structure of earthworm populations at a regional scale: Inferences from mitochondrial and microsatellite molecular markers in *Aporrectodea icterica* (Savigny 1826). PLoS One 9: e101597, 2014.
2. Pirooznia M, Gong P, Guan X, Inouye LS, Yang K, Perkins EJ and Deng Y: Cloning, analysis and functional annotation of expressed sequence tags from the *Earthworm Eisenia fetida*. BMC Bioinformatics 8 (Suppl 7): S7, 2007.
3. Cho SJ, Koh KS, Lee E and Park SC: Differential expression of three galabin genes during earthworm head regeneration. Biosci Biotechnol Biochem 73: 2609-2614, 2014.
4. Zheng P, Shao Q, Diao X, Li Z and Han Q: Expression of stem cell pluripotency factors during regeneration in the earthworm *Eisenia fetida*. Gene 575: 58-65, 2016.
5. Kim TH, Kim NS, Lim D, Lee KT, Oh JH, Park HS, Jang GW, Kim HY, Jeon M, Choi BH, et al: Generation and analysis of large-scale expressed sequence tags (ESTs) from a full-length enriched cDNA library of porcine backfat tissue. BMC Genomics 7: 36, 2006.
6. Wellenreuther R, Schupp I, Pouستka A and Wiemann S: German cDNA Consortium: SMART amplification combined with cDNA size fractionation in order to obtain large full-length clones. BMC Genomics 5: 36, 2004.
7. Dai Y, Su W, Yang C, Song B, Li Y and Fu Y: Development of novel polymorphic EST-SSR markers in *bailinggou* (*Pleurotus tuliensis*) for crossbreeding. Genes (Basel) 8: pii: E235, 2017.
8. Liu C, Liu D, Guo Y, Lu T, Li X, Zhang M, Ma J, Ma Y and Guan W: Construction of a full-length enriched cDNA library and preliminary analysis of expressed sequence tags from *Bengal Tiger* *Panthera tigris* tigris. Int J Mol Sci 14: 11072-11083, 2013.
9. Carninci P, Shibata Y, Hayatsu N, Itoh M, Shiraki T, Hirozane T, Watabiki A, Shibata K, Konno H, Muramatsu M and Hayashizaki Y: Balanced-size and long-size cloning of full-length, cap-trapped cDNAs into vectors of the novel lambda-FLC family allows enhanced gene discovery rate and functional analysis. Genomics 77: 79-90, 2001.
10. Ling P, Wang M, Chen X and Campbell KG: Construction and characterization of a full-length cDNA library for the wheat stripe rust pathogen (*Puccinia striiformis* f. sp. *tritici*). BMC Genomics 8: 145, 2007.
11. Ye J, McGinnis S and Madden TL: BLAST: Improvements for better sequence analysis. Nucleic Acids Res 34 (Web Server Issue): W6-W9, 2006.
12. NCBI Resource Coordinators: Database resources of the national center for biotechnology information. Nucleic Acids Res 41: (Database Issue): D8-D20, 2013.
13. Thompson JD, Higgins DG and Gibson TJ: CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673-4680, 1994.
14. Wang J, Duncan D, Shi Z and Zhang B: WEB-based GEne AnaLysis Toolkit (WebGestalt): Update 2013. Nucleic Acids Res 41 (Web Server Issue): W77-W83, 2013.
15. Zhang B, Kirov S and Snoddy J: WebGestalt: An integrated system for exploring gene sets in various biological contexts. Nucleic Acids Res 33 (Web Server Issue): W741-W748, 2005.

16. Ravaux J, Hassanin A, Deutsch J, Gaill F and Markmann-Mulisch U: Sequence analysis of the myosin regulatory light chain gene of the vestimentiferan Riftia pachyptila. Gene 263: 141-149, 2001.

17. Kanehisa M, Goto S, Kawashima S and Nakaya A: The KEGG databases at GenomeNet. Nucleic Acids Res 30: 42-46, 2002.

18. Wiemann S, Mehrle A, Bechtle S, Wellenreuther R, Pepperkok R and Pousta A; German cDNA Consortium: cDNAs for functional genomics and proteomics: The German Consortium. Comptes Rendus Biologies 326: 1003-1009, 2003.

19. Blair MW, Fernandez AC, Ishitani M, Moreta D, Seki M, Aylings S and Shinozaki K: Construction and EST sequencing of full-length, drought stress cDNA libraries for common beans (Phaseolus vulgaris L.). BMC Plant Biol 11: 171, 2011.

20. Clarke L and Carbon J: A colony bank containing synthetic Col El hybrid plasmids representative of the entire E. coli genome. Cell 9: 91-99, 1976.

21. Li YP, Xia RX, Wang H, Li XS, Liu YQ, Wei ZJ, Lu C and Xiang ZH: Construction of a full-length cDNA Library from Chinese oak silkworm pupa and identification of a KK-42-binding protein gene in relation to pupa-diapause termination. Int J Biol Sci 5: 451-457, 2009.

22. Hata F, Tossel-Klopp G, Clouscard-Martino K, Mulsant P and Gasser F: Expressed sequence tags for genes: A review. Genet Selec Evol 30: 521-524, 1998.

23. Thanh T, Chi VT, Abdullah MP, Omar H, Noroozi M, Ky H and Napis S: Construction of cDNA library and preliminary analysis of expressed sequence tags from green microalga Ankistrodesmus convolutus Corda. Mol Biol Rep 38: 177-182, 2011.

24. Duo L, Yin L, Zhang C and Zhao S: Ecotoxicological responses of the earthworm *Eisenia fetida* to EDTA addition under turf-grass growing conditions. Chemosphere 220: 56-60, 2018.

25. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al.: Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25: 25-29, 2000.

26. Homa J, Stalmach M, Wilczek G and Kolaczkowska E: Effective activation of antioxidant system by immune-relevant factors reversely correlates with apoptosis of Eisenia andrei coelomocytes. J Comp Physiol B 186: 417-430, 2016.

27. Li P, Sheng J, Liu Y, Li J, Liu J and Wang F: Heparosan-derived heparan sulfate/heparin-like compounds: One kind of potential therapeutic agents. Med Res Rev 33: 665-692, 2013.

28. Lai CH, Han CK, Shiubu MA, Pai PY, Ho TJ, Day CH, Tsai FJ, Tsai CH, Yao CH and Huang CY: Lumbrokinase from earthworm extract ameliorates second-hand smoke-induced cardiac fibrosis. Environ Toxicol 30: 1216-1225, 2015.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) License.