Helicobacter pylori cagA and vacA genes in dyspeptic Ghanaian patients

Timothy N. Archampong1,2*, Richard H. Asmah3, Ebenezer K. Aidoo4, Edwin K. Wiredu3,5, Richard K. Gyasi5, David N. Adjei3, Sandra Beleza6, Christopher D. Bayliss6 and Karen Krogfelt7

Abstract

Background: Helicobacter pylori infection is prevalent in Ghana. The development of gastro-duodenal disease is dependent on virulence of the infecting strain, host susceptibility and environmental factors. Helicobacter pylori cagA and vacA strains induce more inflammation, ulceration and oncogenesis. Here, for the first time we present data on H. pylori cagA and vacA genes and their association with gastro-duodenal disease in Ghana. A total of 159 patients with dyspepsia at Korle-Bu Teaching Hospital, Accra, were investigated for H. pylori with urease-CLO, of which 113 (71.1%) were positive. Genomic DNA was extracted from antral biopsies using QIAGEN DNeasy kit. Detection of H. pylori vacA and cagA genes were determined by PCR as previously described.

Results: In total, 110 (69.2%) vacA s1, 71 (44.7%) vacA m1, 35 (22.0%) vacA m2, 77 (48.4%) cagA-(hydrophilic region) and 109 (68.6%) cagA-(internal duplication region) were detected. In multivariate analysis, duodenal ulcer was more likely than other diagnoses to have detectable cagA-(hydrophilic region) (OR 3.1 CI 1.2–7.9) or vacA s1m1 (OR 6.5 CI 1.2–34.0).

Conclusions: Majority of biopsies were colonized with H. pylori harboring both cagA and vacA. H. pylori cagA-(internal duplication region) was more prevalent than cagA-(hydrophilic region). Duodenal ulcer was more likely than other diagnoses to have detectable cagA-(hydrophilic region) or vacA s1m1.

Keywords: Helicobacter pylori, Endoscopy, cagA, vacA, Ghana

Background

Helicobacter pylori is a spiral-shaped gram-negative urease-producing bacterium found in the gastric antrum and in areas of gastric metaplasia in the duodenum [1]. *H. pylori* infection is the cause of chronic gastritis and is important in the pathogenesis of peptic ulceration, gastric B cell lymphoma and gastric adenocarcinoma [1]. In Ghana, like many developing countries, the infection has a high prevalence rate (~80%) irrespective of the period of birth [2]. The incidence of *Helicobacter pylori* infection by rapid urease-campylobacter-like-organism (CLO)-testing in Ghanaian patients with dyspepsia referred for upper gastrointestinal endoscopy was found to be 75.4% [3].

Although infection is universally associated with gastritis, the development of clinical and endoscopic disease is dependent on a number of factors, including the virulence of the infecting strain, the susceptibility of the host and environmental co-factors [4]. The best understood bacterial virulence factor is the cytotoxin associated gene A (*cagA*) [5]. Its most hydrophilic region contains amino acid repeats including Glu-Pro-Ile-Tyr-Ala (EPIYA) [6]. In addition, the adjacent region of internal duplication has been shown to contain sequences derived from the duplication of three discrete segments of DNA [6, 7]. *Helicobacter pylori* strains possessing *cagA* induce more inflammation, ulceration and oncogenesis when compared with cag-negative strains [5]. Another such virulence factor is the vaculating cytotoxin (*vacA*). The bacterial strains inducing more vacuolation, *vacAs1* and *m1*, are closely associated with clinical disease [8].

*Correspondence: tnaa@doctors.net.uk
1 Department of Medicine and Therapeutics, School of Medicine and Dentistry, College of Health Sciences, University of Ghana, P O Box 4236, Korle-Bu, Accra, Ghana
Full list of author information is available at the end of the article

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Historically, observations postulated that gastroduodenal disease was not common in Africa, however objective prospective endoscopic studies have demonstrated significant disease in the region [9]. Recent data also demonstrates the influence of Helicobacter pylori virulence factors on clinical and endoscopic disease in an endemic region like sub-Saharan Africa [10]. Here, for the first time we present data on characterization of H. pylori cagA and vacA genotypes and their association with gastroduodenal disease in Ghanaian patients.

Methods
The aim of the study was to utilize a cross-sectional design to characterize H. pylori cagA and vacA genes in patients with dyspepsia at the Korle-Bu Teaching Hospital, the main tertiary referral medical centre in Accra serving the majority of the southern half of Ghana. A total of 159 patients referred with dyspepsia for endoscopy at the Korle-Bu Teaching Hospital, Accra were investigated for H. pylori between 2012 and 2014. Patients with prior H. pylori eradication treatment or proton-pump inhibitor-use 2 weeks were excluded from the study. All study participants had three gastric antral biopsies taken. Biopsies were obtained from 42 patients with erosive gastritis, 38 with duodenal ulcer (DU), 16 with endoscopic suspicion of gastric adenocarcinoma (GCA), 13 with both duodenal ulcer and erosive gastritis and 50 with non-ulcer dyspepsia (NUD). Each patient had H. pylori infection testing on antral biopsy using rapid-urease CLO examination at upper GI endoscopy (CLO testing kit: Cambridge Life Sciences Ltd, Cambridge, UK). The additional antral samples were stored at −20 °C in DNAgard until H. pylori vacA and cagA gene analysis (Biometraca Inc, San Diego, USA).

H. pylori cagA and vacA genotype analysis
Genomic DNA was extracted from stored tissue samples collected from patients using QIAGEN DNeasy tissue kit, (Qiagen House, Crawley, West Sussex, UK). Detection of vacA and cagA genes was performed on gastric biopsy specimen by PCR as previously described by Rudi et al. [7].

Statistical analysis
Means were presented for continuous variables and frequencies for categorical variables. Chi square was used to demonstrate the differences between observed variables. Bonferroni correction was made for multiple hypothesis testing with a p-value of <0.0017 used to indicate statistical significance. Secondary analysis was done with logistic regression to determine presence or absence of endoscopic diagnoses with specific predictor variables using SPSS 16 software.

Results
During the study period, 159 patients with gastroduodenal disease were screened for H. pylori with rapid-urease CLO examination, of which 113 (71.1%) were positive. The mean age was 49.8 years (SD 18.95). Fifty-three percent were males and 47% females. The baseline characteristics of all patients by vacA and cagA genotype are shown in Table 1.

In total, 110 (69.2%) vacAs1, 71 (44.7%) vacAm1, 35 (22.0%) vacAm2 and 119 (74.8%) cagA were detected. Eighty-two (74.5%) of 110 vacAs1 samples were cagA+, Fig. 1. Of the 119 cagA+ samples, 82 (68.9%) were found to have the vacAs1 genotype. The hydrophilic region and the region of internal duplication of cagA were detected in 77 (48.4%) and 109 (68.6%) respectively with 67 (42.1%) showing amplicons with both primer sets.

In Table 2 the relationships between vacA, cagA genes and endoscopic diagnoses are presented. Duodenal ulcer was associated with the hydrophilic region of cagA (p = 0.002). By contrast, non-ulcer dyspepsia was associated with a lower prevalence of cagA, Table 2. In multivariate analysis of all patients, duodenal ulcer was more likely than other endoscopic diagnoses to have detectable cagA-(hydrophilic region) (OR 3.1 CI 1.2–7.9) or vacAs1m1 (OR 6.5 CI 1.2–34.0), Table 3.

Discussion
In this cross-sectional study of the Ghanaian population with dyspepsia, we found a high prevalence of H. pylori, 71.1%, by rapid-urease CLO testing. Furthermore, the prevalence of H. pylori harboring the virulence factors, cagA and vacAs1, were found to be 74.8 and 69.2% respectively. The prevalence of vacAs1m1 was 25.2% while vacAs1m2 was 8.2%. Regarding the cagA gene, the hydrophilic region was more likely to be detected in duodenal ulcers while the region of internal duplication was

Genotype	(n)	%
vacAs1+ m−	44	27.7
vacAs1+m1	40	25.2
vacAs1+m2	13	8.2
vacAs1+m1+m2	13	8.2
vacAs1+ m1+m2	13	8.2
vacAs1+ m1−	15	9.4
vacAs1− m2+m2	6	3.8
vacAs1− m1+m2	3	1.9
cagA3-(hydrophilic region)	77	48.4
cagA24-(region of internal duplication)	109	68.6
cagA24+ and cagA13+	67	42.1
cagA+ (cagA13 and/or cagA24)	119	74.8
associated with erosive gastritis, suggesting the effect of these genotypes in disease development. The significant association between \(\text{cagA} \) (hydrophilic region) and duodenal ulcer persisted following multivariate analysis.

Majority of \(\text{vacAs}^+ \) samples were \(\text{cagA}^+ \) which was consistent with other studies [6, 11]. The expression of \(\text{cagA} \) gene is closely associated with that of vacuolating cytotoxin A (\(\text{vacA} \)) [11]. \(H. \text{pylori} \) \(\text{cagA} \) had a high prevalence in this study, 74.8%. This was demonstrated in other studies in Nigeria 90% [12], South Africa 95% [13]. Most \(H. \text{pylori} \) strains can be classified into two major groups. Type 1 have the gene coding for \(\text{cagA} \) and co-express \(\text{cagA} \) and \(\text{vacA} \) [14]. However, an intermediate phenotype has been identified expressing \(\text{cagA} \) independent of \(\text{vacA} \) or vice versa [14]. In Ghana the infecting \(H. \text{pylori} \) are seen to be of type 1.

The vacuolating cytotoxin A contains at least two variable regions, the signal (\(s \)) region which encodes the signal peptide and the middle (\(m \)) region [15]. The \(s \) region has two sub-types \(s1 \) and \(s2 \) while the \(m \) region has \(m1 \) and \(m2 \) [15]. The amount of cytotoxin produced is highest in the \(\text{vacA}^s1m1 \) allele followed by the \(\text{vacA}^s1m2 \) [16]. The frequency of \(\text{vacA}^s1 \) and \(m1 \) vary across populations. The \(\text{vacA}^s1 \) and \(m1 \) genes have been detected at a higher frequency in isolates from patients with DU in comparison

![Fig. 1 Illustrates amplicon size of 612 bp obtained for cagA gene-1/3 analysis. Ethidium bromide-stained 2.0% agarose gel electrophorogram of amplified cagA DNA fragments (612 bp) with primer cagA set 1/3. Lane M 100 bp molecular weight marker, Lanes 1–5 PCR positives, Lane N negative control.](image)

Table 2 Relationship between \(\text{vacA/cagA} \) genotype and endoscopic diagnoses

Genotype	Erosive gastritis	DU	GCA	NUD
	n (%) (p)	n (%) (p)	n (%) (p)	n (%) (p)
\(\text{vacA}^s1 \)	42 (75.0) 0.241	33 (64.7) 0.401	11 (68.8) 0.968	34 (69.4) 0.827
\(\text{vacA}^m1 \)	25 (44.6) 0.998	24 (47.1) 0.675	6 (37.5) 0.544	21 (42.0) 0.648
\(\text{vacA}^m2 \)	14 (25.0) 0.503	12 (23.5) 0.751	1 (6.2) 0.109	11 (22.0) 0.998
\(\text{vacA}^s1m1 \)	19 (33.9) 0.907	20 (39.2) 0.280	5 (31.2) 0.852	13 (26.0) 0.184
\(\text{vacA}^s1m2 \)	9 (16.1) 0.929	10 (19.6) 0.355	1 (6.2) 0.272	7 (14.0) 0.686
\(\text{cagA}^{13} \)	29 (51.8) 0.532	34 (66.7) 0.002	7 (43.8) 0.693	15 (30.0) 0.001
\(\text{cagA}^{24} \)	46 (82.1) 0.007	39 (76.5) 0.140	9 (56.2) 0.264	25 (50.0) 0.002

Italic values indicate significance of \(p \) value (\(p < 0.05 \))
\(\text{cagA}^{13} \)-(hydrophilic region) [6, 7]
\(\text{cagA}^{24} \)-(region of internal duplication) [6, 7]

Table 3 \(H. \text{pylori} \) virulence factors associated with endoscopic diagnoses in multivariate analysis

Genotype	Erosive gastritis	DU	GCA	NUD
	OR (CI)	OR (CI)	OR (CI)	OR (CI)
\(\text{vacA}^s1 \)	2.7 0.8–8.7	0.3 0.1–0.9	0.9 0.2–4.2	0.6 0.2–2.0
\(\text{vacA}^m1 \)	1.9 0.5–7.5	0.3 0.1–1.1	0.4 0.04–4.5	0.5 0.2–1.8
\(\text{vacA}^m2 \)	3.4 0.8–15.1	0.2 0.04–1.3	– –	0.5 0.1–2.2
\(\text{vacA}^s1m1 \)	0.4 0.1–2.1	6.5 1.2–34.0	2.2 0.2–31.4	3.8 0.8–18.8
\(\text{vacA}^s1m2 \)	0.3 0.1–1.5	6.6 0.9–49.7	– –	2.1 0.3–14.1
\(\text{cagA}^{13} \)	0.7 0.3–1.6	3.1 1.2–7.9	1.1 0.3–4.4	1.8 0.7–4.8
\(\text{cagA}^{24} \)	0.9 0.2–4.3	2.2 0.5–10.1	0.5 0.1–3.5	1.2 0.2–7.3

Italic values indicate Odds Ratio (OR) with Confidence Interval (CI) >1.0
\(\text{cagA}^{13} \)-(hydrophilic region) [6, 7]
\(\text{cagA}^{24} \)-(region of internal duplication) [6, 7]
with vacAs2 and m2, mostly in countries with a relatively low prevalence of H. pylori infection but also in South America and South Africa where the infection is endemic [16].

In our study population, vacAs1m1 genotype had a prevalence of 25.2%. Other African studies in Nigeria and Ethiopia had vacAs1m1 prevalence of 24 and 48% respectively [12]. Infection with H. pylori strains having the vacA s1m1 genotype (compared with sm12 and s2m2) have also been associated with an increased risk of duodenal ulcer disease [17] as evident in this study. However, other reports from H. pylori endemic countries have not shown a significant association between vacAs1 or vacAs1m1 and gastro-duodenal disease [12]. A complex interplay of host genetic factors, environmental factors and other virulence factors of H. pylori are therefore important in determining the risk of gastro-duodenal disease [18].

CagA demonstrates considerable diversity in its 3′ region. Its most hydrophilic region contains amino acid repeats including Glu-Pro-Ile-Tyr-Ala (EPIYA) [6]. In addition, the adjacent region of internal duplication has been shown to contain sequences derived from the duplication of three discrete segments of DNA (D1, D2 and D3) [6, 7]. In this study, patients with duodenal ulcer were more likely to have detectable H. pylori cagA-(hydrophilic region) while H. pylori cagA-(internal duplication region) was associated with erosive gastritis. The PCR products of the region of internal duplications of cagA+ differ in size varying from 450 to 558 bps. H. pylori has been shown to express both gene regions in majority (98%) of patients [7]. However, in this study, cagA-(internal duplication region) was more prevalent than cagA-(hydrophilic region), (68.6% vs 48.4%) and 42.1% had both gene regions. This significant association between cagA-(hydrophilic region) and duodenal ulcer persisted following multivariate analysis.

Differences in cagA gene in our study population imply heterogeneity in the cag-pathogenicity island which may have an impact on clinical disease. This study however had limitations; PCR analysis was done on genomic DNA isolated from gastric biopsies which may have underestimated the vacA and cagA prevalence in the study population due to potential PCR inhibitors. Further evaluation would be required to characterize H. pylori bacterial diversity including cag-pathogenicity island gene polymorphisms and their impact on gastro-duodenal disease.

Conclusion

Majority of biopsies were colonized with H. pylori harboring both cagA and vacA. H. pylori cagA-(internal duplication region) was more prevalent than cagA-(hydrophilic region). Duodenal ulcer was more likely than other diagnoses to have detectable cagA-(hydrophilic region) or vacAs1m1.

Abbreviations

CLO: campylobacter-like organism; CagA: cytotoxin associated gene A; vacA: vacuolating cytotoxin A; DU: duodenal ulcer; GCA: gastric cancer; NUD: non-ulcer dyspepsia.

Authors’ contributions

TNA, HA and KK were involved in concept design, critical revision of the article and provided final approval of the article. DNA, SB, CDB, EW and RKG provided analysis and interpretation of the data, critically revised the article. All authors read and approved the final manuscript.

Conflict of interest

There exist no financial or other relationships that might lead to competing interest in this study. The authors of this manuscript declare that they have no competing interests.

Availability of data and materials

Data supporting this research article are available from the corresponding author on reasonable request.

Consent for publication

All authors read and approved the final manuscript.

Ethical approval and consent to participate

Ethical approval was granted by the Protocol and Ethical Review Committee of the University of Ghana School of Medicine and Dentistry, College of Health Sciences, Accra, Ghana. (Protocol Identification Number: MS-Et/M.7–P34/2009/10). Written informed consent was obtained from participants prior to recruitment into the study.

Funding

This study was funded by University of Ghana (Research, Innovation and Development) Grant (Ref: URF/S/ILG-003/2011–2012) and Research Grant from the University of Ghana-Danish Universities Partnership for Human Health-PHH (Ref: 004).

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 27 August 2016 Accepted: 17 June 2017 Published online: 27 June 2017
References

1. Parsonnet J, Friedman GD, Vandersteen DP, Chang Y, Vogelman JH, Orentreich N, Sibley RK. Helicobacter pylori infection and the risk of gastric carcinoma. N Engl J Med. 1991;325(16):1127–31.

2. Pounder RE, Ng D. The prevalence of Helicobacter pylori infection in different countries. Aliment Pharmacol Ther. 1995;9(Suppl 2):33–9.

3. Baako BN, Darko R. Incidence of Helicobacter pylori infection in Ghanaian patients with dyspeptic symptoms referred for upper gastrointestinal endoscopy. West Afr J Med. 1996;15(4):223–7.

4. Atherton JC. The clinical relevance of strain types of Helicobacter pylori. Gut. 1997;40(6):701–3.

5. Blaser MJ, Atherton JC. Helicobacter pylori persistence: biology and disease. J Clin Investig. 2004;113(3):321–33.

6. Covacci A, Censini S, Bugnoli M, Petracca R, Burroni D, Macchia G, Massone A, Papini E, Xiang Z, Figura N, et al. Molecular characterization of the 128-kDa immunodominant antigen of Helicobacter pylori associated with cytotoxicity and duodenal ulcer. Proc Natl Acad Sci USA. 1993;90(12):5791–5.

7. Rudi J, Kolb C, Maiwald M, Kuck D, Sieg A, Galle PR, Streml W. Diversity of Helicobacter pylori vacA and cagA genes and relationship to VacA and CagA protein expression, cytotoxin production, and associated diseases. J Clin Microbiol. 1998;36(4):944–8.

8. Atherton JC, Cao P, Peek RM Jr, Tummuru MK, Blaser MJ, Cover TL. Mosaicism in vacuolating cytotoxin alleles of Helicobacter pylori. Association of specific vacA types with cytotoxin production and peptic ulceration. J Biol Chem. 1995;270(30):17771–7.

9. Agha A, Graham DY. Evidence-based examination of the African enigma in relation to Helicobacter pylori infection. Scand J Gastroenterol. 2005;40(5):523–9.

10. Breurec S, Michel R, Seck A, Bisses S, Come D, Dieye FB, Garin B, Hu erre M, Mbengue M, Fall C, et al. Clinical relevance of cagA and vacA gene polymorphisms in Helicobacter pylori isolates from Senegalese patients. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis. 2012;18(2):153–9.

11. Maeda S, Ogura K, Yoshida H, Kanai F, Renoue T, Kato N, Shiratori Y, Omata M. Major virulence factors, VacA and CagA, are commonly positive in Helicobacter pylori isolates in Japan. Gut. 1998;42(3):338–43.

12. Smith SJ, Kirsch C, Oyejide KS, Anigbaba AO, Coker AO, Bayerdoffer E, Mielhke S. Prevalence of Helicobacter pylori vacA, cagA and iceA genotypes in Nigerian patients with duodenal ulcer disease. J Med Microbiol. 2002;51(10):851–8.

13. Kidd M, Lastrovica AJ, Atherton JC, Loux JA. Heterogeneity in the Helicobacter pylori vacA and cagA genes: association with gastroduodenal disease in South Africa? Gut. 1999;45(4):499–502.

14. Xiang Z, Censini S, Bayeli PF, Telford JL, Figura N, Rappuoli R, Covacci A. Analysis of expression of CagA and VacA virulence factors in 43 strains of Helicobacter pylori reveals that clinical isolates can be divided into two major types and that CagA is not necessary for expression of the vacuolating cytotoxin. Infect Immun. 1995;63(1):94–8.

15. Torres LE, Melian K, Moreno A, Alonso J, Sabatier CA, Hernandez M, Bermudez L, Rodriguez BL. Prevalence of vacA, cagA and babA2 genes in Cuban Helicobacter pylori isolates. World J Gastroenterol WJG. 2009;15(2):204–10.

16. Tovey FI, Hobsley M, Holton J. Helicobacter pylori virulence factors in duodenal ulceration: a primary cause or a secondary infection causing chronicity. World J Gastroenterol WJG. 2006;12(1):6–9.

17. Miernyk K, Morris J, Bruden D, Mcmahon B, Hurlbut D, Sacco F, Parkinson A, Hennessy T, Bruce M. Characterization of Helicobacter pylori cagA and vacA genotypes among Alaskans and their correlation with clinical disease. J Clin Microbiol. 2011;49(9):3114–21.

18. Sugimoto M, Yamada Y. The association of vacA genotype and Helicobacter pylori-related disease in Latin American and African populations. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis. 2009;15(9):835–42.