Driving-induced lower back pain: Investigation of causes and recommendations with TRIZ [version 2; peer review: 1 approved]

Poh Kiat Ng¹, Muhammad Syafiq Syed Mohamed², Jian Ai Yeow³

¹Faculty of Engineering and Technology, Multimedia University, Melaka, 75450, Malaysia
²Department of Manufacturing Engineering, Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, Durian Tunggal, Melaka, 76100, Malaysia
³Faculty of Business, Multimedia University, Melaka, 75450, Malaysia

Abstract

Background: Driving-induced lower back pain (DLBP) is associated with long driving times and awkward postures. Nonetheless, its actual causes and solutions remain unclear due to intervening causes from activities of daily living and traumatic injuries. This study investigated the causes and recommendations for DLBP using the theory of inventive problem solving (TRIZ).

Methods: A cause-and-effect chain analysis (CECA) was conducted based on discussions with 19 ergonomics experts from Malaysia. Engineering contradictions were formulated according to the causes and associated with the parameters of the TRIZ system. These parameters were then intersected in the contradiction matrix to extract the inventive principles. Finally, recommendations were made based on these principles.

Results: CECA uncovered the design- and posture-related causes of DLBP. It was implied that missing seat adjustment controls might cause drivers to sit with their knees positioned higher than their hips. This issue causes an excessive posterior pelvic tilt, resulting in DLBP. To address this issue, an inert atmosphere involving the addition of inflatable bubble wraps to elevate the posterior position was recommended.

Conclusion: While there have been studies on DLBP, the present study demonstrated originality by using TRIZ to preliminarily but systematically investigate and resolve DLBP. Further triangulations, prototyping, experimentations, and verifications were not possible due to time and budgetary constraints. Nevertheless, this research uncovered the TRIZ-integrated perspectives on ergonomic solutions to DLBP that are more cost-effective than medical treatments or design overhauls.
Keywords
TRIZ, lower back pain, driving, posterior pelvic tilt, ergonomics, awkward posture, inventive principles, engineering contradiction

This article is included in the Research Synergy Foundation gateway.

Corresponding author: Poh Kiat Ng (pkng@mmu.edu.my)

Author roles: Ng PK: Conceptualization, Data Curation, Formal Analysis, Investigation, Methodology, Project Administration, Writing – Original Draft Preparation, Writing – Review & Editing. Mohamed MSS: Conceptualization, Investigation, Project Administration, Writing – Original Draft Preparation, Writing – Review & Editing; Yeow JA: Methodology, Project Administration, Writing – Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: The article processing charge for this manuscript is partially supported by Multimedia University (Reference number: MMU/RMC/PCI/2021/30008).
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2021 Ng PK et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Ng PK, Mohamed MSS and Yeow JA. Driving-induced lower back pain: Investigation of causes and recommendations with TRIZ [version 2; peer review: 1 approved] F1000Research 2021, 10:871
https://doi.org/10.12688/f1000research.72985.2

First published: 31 Aug 2021, 10:871 https://doi.org/10.12688/f1000research.72985.1
Introduction
Lower back pain (LBP) involves pain felt below the costal margin and above the inferior gluteal folds. In Australia, the healthcare cost for LBP varies if the patient is admitted to the hospital (AUD$ 14,949) or discharged from an emergency department (AUD$ 584). In addition, LBP also radically changes one’s life and identity over time.

Driving-induced lower back pain (DLBP)
While there are findings on the risk factors for DLBP, there is limited evidence supporting that whole-body vibrations directly increase DLBP risks. DLBP is attributable to accelerated muscle fatigue due to the upright driving posture that is maintained for a long time.

Although improving seat designs limits the effects of DLBP, the causes and solutions for DLBP remain ambiguous due to the presence of outliers from daily living activities. For example, the causes may be complicated due to trauma effects. If a driver sustains injuries from an accident, factors such as airbag deployment and the vehicles involved can affect the pain location. Therefore, it is important to create proper exclusion criteria before exploring the causes and recommendations for DLBP. While DLBP is often researched using surveys, these alone may not sufficiently provide the information needed to address the issue.

The theory of inventive problem solving (TRIZ) is an algorithmic problem-solving approach used in various areas, such as technology and business. The use of such a systematic yet adaptable approach in the context of DLBP has not been explored. Hence, this study aimed to investigate the causes and recommendations for DLBP using TRIZ.

Methods
The exclusion criteria were established first because DLBP is a specific kind of LBP. These criteria were determined through a focus group discussion among three medical doctors who were selected using purposive sampling. Each doctor has had at least 10 years of experience in treating LBP. Based on the discussion, the following criteria should be excluded when deliberating the causes of DLBP:

- Pre-existing back injuries (e.g. herniated disc, prolapsed disc);
- Fractures;
- Overweight or obesity;
- Congenital spine abnormalities (e.g. ankylosing spondylitis, seronegative spondylarthritis);
- Limb deformities (e.g. talipes equinovarus, congenital polio)
- Other health issues (e.g. spinal stenosis, prostate issues);
- Pregnancy;
- Pain from activities besides driving (e.g. sports, sitting in front of a work desk)

These exclusion criteria were referenced in the main focus group discussion. A cause-and-effect chain analysis (CECA) was used, with the causes extracted from the main focus group comprising 19 ergonomics experts from Malaysia who were selected using purposive sampling. Each expert has had at least 10 years of experience in ergonomics and DLBP.

The experts suggested that drivers commonly complain about temporary LBP around the L5–S1 region after driving for 10–15 min due to increased disc pressure caused by a slouched driving posture. This posture is attributable to a posterior pelvic tilt from an increased hip flexion angle when sitting with the hips positioned below the knees. The experts added...
that this condition occurs if there are no seat adjustment controls for the posterior position. These causes are summarised in the CECA diagram (see Figure 1).

Results
From the posture-related causes, the first engineering contradiction (EC1) was formulated.

EC1: If the hip is positioned lower than the knees, then the driver sinks his/her weight into the seat (#2: Weight of stationary object), but the increased disc pressure causes LBP (#11: stress or pressure).

The “then” and “but” phrases were linked to two system parameters and intersected in the contradiction matrix to obtain four inventive principles:

13: The other way around

29: Pneumatics and hydraulics

10: Preliminary action

18: Mechanical vibration
Preliminary action (essential change on the object before needed) was found to be suitable for resolving EC1. Specifically, seat controls can be used to elevate the posterior portion before driving for the hips to be positioned above the knees, thereby preventing the risk for LBP. However, some vehicles do not have this type of seat control. For this design-related cause, the EC2 was formulated.

EC2: If the seat controls are omitted, then the cost is reduced (#39: Productivity), but a compromised sitting posture causes LBP (#13: Stability of the object’s composition).

Similarly, the parameters were intersected in the matrix to obtain these four principles:

35: Parameter changes
3: Local quality
22: Blessing in disguise
39: Inert atmosphere

An inert atmosphere (adding neutral parts or “nothing” into a system) is suitable for resolving EC2. Adding “nothing” can include adding air (e.g. inflatable bubble wraps to elevate the posterior position and alleviate disc pressure).

Meanwhile, a hard object is not suitable because it causes discomfort and pain around the waist and buttocks. Conversely, a soft object is not suitable as the driver will sink into the seat, negating the original purpose of the solution.

Apart from that, a soft high-density foam is also an option. The object should be hard enough to prevent drivers from sinking back into the original posture and soft enough to maintain cushioning.

Conclusions
This study preliminarily investigated the causes and recommendations for DLBP using TRIZ. This aim was achieved using the CECA and inventive principles. Although DLBP has been studied previously, the present study demonstrated originality by using TRIZ to preliminarily but methodically investigate and resolve DLBP.

CECA revealed that DLBP arises from sitting with the hips positioned lower than the knees or without seat controls. The preliminary action principle proposed that seat controls should be included in the seat design to allow the lumbar region to be elevated and reduce the posterior pelvic tilt. Considering that not all cars have these seat controls, the inert atmosphere principle was recommended by adding inflatable bubble wraps to elevate the seat’s posterior portion. In summary, rapidly-synthesised and cost-effective solutions for DLBP were successfully proposed using TRIZ.

Limitations and future directions
This was a preliminary study. Triangulation, prototyping, and experimentation were not possible due to time and budgetary constraints. In the future, further apparatus development and testing should be considered.

Acknowledgements
The authors would like to thank the Faculty of Engineering and Technology, Multimedia University (MMU) for allowing this study to be conducted. The authors thank the organising committee of MECON 2021 and DIFCON 2021 for facilitating the review and submission of the works related to this study. Special thanks go to the anonymous medical doctors and ergonomics experts who participated in the focus group discussion sessions. Lastly, the authors are exceptionally grateful to Ms. Chiew Fen Ng for the constructive criticism of the manuscript.

Author contributions
Poh Kiat Ng
Roles: Conceptualisation, data curation, formal analysis, investigation, methodology, project administration, writing – original draft preparation, writing – review, and editing

Muhammad Syafiq Syed Mohamed
Roles: Conceptualisation, investigation, project administration, writing – original draft preparation, writing – review and editing

Jian Ai Yeow
Roles: Project administration, methodology, writing – review and editing
Ethical approval
Ethics approval for this study was granted by the Technology Transfer Office of Multimedia University (approval number EA3172021).

Consent
Written informed consent was obtained from the participants in the preliminary and main focus group discussions.

Data availability
Figshare: Driving-induced lower back pain: Investigation of causes.

DOI: http://doi.org/10.6084/m9.figshare.14754150.29

This project contains the following underlying data:

- Summary of Focus Group Discussion Data.docx. (This contains data on the points, opinions, and information from the preliminary focus group discussion meant to establish the exclusion criteria and from the focus group discussion that aimed to establish the causes of driving-induced lower back pain).

Data are available under the terms of the Creative Commons Attribution 4.0 International license (CC-BY 4.0).

References

1. Koes BW, van Tulder MW, Thomas S: Diagnosis and treatment of low back pain. BMJ. 2006; 332(7555): 1400-4. PubMed Abstract | Publisher Full Text | Free Full Text
2. Coombs DM, Machado GC, Richards B, et al.: Healthcare costs due to low back pain in the emergency department and inpatient setting in Sydney, Australia. Lancet Reg Health West Pac. 2021; 7: 100068. PubMed Abstract | Publisher Full Text | Free Full Text
3. Rossen CB, Høybye MT, Jørgensen LB, et al.: Disrupted everyday life in the trajectory of low back pain: A longitudinal qualitative study of the cross-sectorial pathways of individuals with low back pain over time. Int J Nursing Studies Advances. 2021; 3: 100021. Publisher Full Text
4. Shin D: Correlation between non-specific chronic low back pain and physical factors of lumbar and hip joint in office workers. Med Hypotheses. 2020; 144: 110304. PubMed Abstract | Publisher Full Text
5. Gallais L, Griffin MJ: Low back pain in car drivers: A review of studies published 1975 to 2005. J Sound Vibration. 2006; 298(3): 499-513. Publisher Full Text
6. Bartuzzi P, Tokarski T: The Influence of Body Posture on Muscle Fatigue and Reaction Time during Truck Driving. Proceedings of the 6th World Congress of Biomechanics. 2010; 31: 119-22. Publisher Full Text
7. Okunribido OO, Shimbles SJ, Magnusson M, et al.: City bus driving and low back pain: A study of the exposures to posture demands, manual materials handling and whole-body vibration. Appl Ergon. 2007; 38(1): 29-38. PubMed Abstract | Publisher Full Text
8. Lecocq M, Lantoine P, Bougard C, et al.: Neuromuscular fatigue profiles depends on seat feature during long duration driving on a static simulator Applied Ergonomics. 2020; 87: 103118. PubMed Abstract | Publisher Full Text
9. Matsuo T: Automobile seat for people with low back pain. Japanese patent JP4341845B2. 14 October 2009.
10. Mercier C: Seat for motor vehicle, has adjusting unit adjusting inclination, towards front and/or rear, for upper surface of base with respect to horizontal plane and including transversal pivoting axle positioned at rear of base. France patent FR2991305A1. 26 February 2010.
11. Cardoso M, McKinnon C, Viggiani D, et al.: Biomechanical investigation of prolonged driving in an ergonomically designed truck seat prototype. Ergonomics. 2018; 61(3): 367-380. PubMed Abstract | Publisher Full Text
12. Units I, Burshtein A, Sharma M, et al.: Low Back Pain, a Comprehensive Review: Pathophysiology, Diagnosis, and Treatment. Curr Pain Headache Rep. 2019; 23: 23. PubMed Abstract | Publisher Full Text
13. Bovenzi M, Rui F, Negro C, et al.: An epidemiological study of low back pain in professional drivers. J Sound Vibration. 2006; 298(3): 514-39. Publisher Full Text
14. Jadhav AV: Comparative cross-sectional study for understanding the burden of low back pain among public bus transport drivers. Indian J Occup Environ Med. 2016; 20(1): 26–30. PubMed Abstract | Publisher Full Text | Free Full Text
15. Miyamoto M, Shirai Y, Nakayama Y, et al.: An Epidemiologic Study of Occupational Low Back Pain in Truck Drivers. J Nippon Med Sch. 2000; 67(3): 186–90. PubMed Abstract | Publisher Full Text
16. Tiemessen IJH, Halshof CTJ, Frings-Dresen MHW: Low back pain in drivers exposed to whole body vibration: analysis of a dose-response pattern. Occup Environ Med. 2016; 63: 667-75. PubMed Abstract | Publisher Full Text
17. Starr S: Survey research: we can do better. J Med Libr Assoc. 2012; 100(1): 1-2. PubMed Abstract | Publisher Full Text | Free Full Text
18. Ilevbare IM, Probert D, Phaal R: A review of triz, and its benefits and challenges in practice. Technovation. 2013; 33(2-3): 30-7. Publisher Full Text
19. Lee C-H, Chen C-H, Trappey AJC: A structural service innovation approach for designing smart product service systems: Case study of smart beauty service. Advanced Engineering Informatics. 2019; 40: 154-67. Publisher Full Text
20. Pakhkheil C, Cruz C, Ramirez Y, et al.: Adaptation of triz contradiction matrix for solving problems in process engineering. Chemical Eng Res Design. 2015; 103: 3–10. Publisher Full Text
21. Souchkova V, Hoeboer R, Zurpfen MH: TRIZ for Business: Application of RCA+ to Analyze and Solve Business and Management Problems. The ETRIA TFC. 2006; 9-11 October 2006; Kortrijk, Belgium 2007.
22. Yeoh TS: TRIZ: Systematic Innovation in Business and Management. 1st ed. Selangor, Malaysia: Firstfruits Publishing; 2014.
23. Yeoh TS, Yeoh TJ, Song CL: TRIZ: Systematic Innovation in Manufacturing. 1st ed. Selangor, Malaysia: Firstfruits Publishing; 2015.
24. Altshuller G: 40 Principles: TRIZ Keys to Technical Innovation. 3rd ed. Worcester, MA: Technical Innovation Centre; 2002.
25. Carlsson A, Piskorn L, Kullgren A, et al.: Real World Adjustments of Driver Seat and Head Restraint in Saab 9–3 Vehicles. Traffic Injury Prevention. 2016; 18(4): 398–405.
PubMed Abstract | Publisher Full Text

26. Kim S, Jee Y: Effects of 3D Moving Platform Exercise on Physiological Parameters and Pain in Patients with Chronic Low Back Pain. Medicine. 2020; 56(7): 351.
PubMed Abstract | Publisher Full Text | Free Full Text

27. Mulyadi, Nurwahidah A, Satria DN: Ergonomic risk analysis of lecture chairs at the engineering faculty, Hasanuddin University. IOP Conference Series: Materials Science and Engineering. 2020; 885: 012033.

28. Gumasing MJJ, Villapando AC, Abalajon APP: An Ergonomic Design of Passenger Cabin for Public Utility Jeepney. Proceedings of the 2020 2nd International Conference on Management Science and Industrial Engineering. 2020: 273–8.
Publisher Full Text

29. Ng PK, Mohamed MSS, Yeow JA: Driving-induced lower back pain: Investigation of causes. [Dataset]: Figshare; 2021 [10 June 2021]. Publisher Full Text
Chandrakantan Subramaniam
School of Business Management, College of Business, Universiti Utara Malaysia, Changlun, Malaysia

The area of examination is seen as important and needs immediate attention. However, the background of the study needs to be improved as it needs to show some evidence or statistics from valid sources that the issue is rampant or important to be investigated. This will very much help future readers to understand the issue from a practical viewpoint.

The methodological section could be further improved to show the rigorousness of how the data was obtained. This is a qualitative study and many would like to understand the methodology better. This will help to demonstrate the scientific part of this present study.

Finally, The results section needs some improvement as readers must understand the results easily. How were the findings derived? What was the technique used? How was the inference made? Who were the respondents? Any inclusion or exclusion criteria?. These are some of the important things that were missing in this paper. The authors(s) could also probably present a simpler way to explain the results.

The Vinodkumar and Bhasi (2010) article is a suggested reference as it also studies safety behaviour from the human factors angle thus would be helpful inclusion to explain the current phenomenon too.

References
1. Vinodkumar MN, Bhasi M: Safety management practices and safety behaviour: assessing the mediating role of safety knowledge and motivation. Accid Anal Prev. 2010; 42 (6): 2082-93 PubMed Abstract | Publisher Full Text

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
I cannot comment. A qualified statistician is required.

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Occupational Safety and Health

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com