The Optical Gravitational Lensing Experiment.

BVI Maps of Dense Stellar Regions.

II. The Large Magellanic Cloud

A. Udalski, M. Szymański, M. Kubiak, G. Pietrzyński, I. Soszyński, P. Woźniak, and K. Żembień

1 Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa, Poland
e-mail: (udalski,msz,nk,pietrzyn,soszynsk,zebrun)@astrouw.edu.pl
2 Universidad de Concepción, Departamento de Física, Casilla 160–C, Concepción, Chile
3 Princeton University Observatory, Princeton, NJ 08544-1001, USA
e-mail: wozniak@astro.princeton.edu

ABSTRACT

We present the BVI photometric maps of the Large Magellanic Cloud. They contain BVI photometry and astrometry of more than 7 million stars from the central parts of the LMC. The data were collected during the second phase of the OGLE microlensing project. We discuss the accuracy of the data and present color-magnitude diagrams of all 26 fields observed by OGLE in the LMC.

The BVI maps of the LMC are accessible electronically for the astronomical community from the OGLE Internet archive.

1 Introduction

The Large Magellanic Cloud (LMC) is one of the most important astrophysical objects. This nearby galaxy hosts large variety of very important stellar populations and is an ideal laboratory for testing our understanding of stellar structure and evolution and for calibrating the most important standard candles. The LMC is also very important object for extragalactic astrophysics – the extragalactic distance scale is calibrated by the distance to the LMC. Due to relatively small distance from the Galaxy, stars and other objects from the LMC can easily be resolved and measured. Approximately the same distance to all objects from that galaxy makes it especially attractive for determination and comparison of basic parameters of different groups of stars.

Unfortunately, the LMC was relatively poorly observed, in particular with precise CCD techniques. Photometry of only selected fields in lines of sight usually toward star clusters in the halo of this galaxy can be found in literature. The situation considerably changed when the large microlensing surveys began

*Based on observations obtained with the 1.3 m Warsaw telescope at the Las Campanas Observatory of the Carnegie Institution of Washington.
regular monitoring of the Magellanic Clouds for microlensing events. The LMC is one of the most promising targets of the microlensing hunt, and therefore it was selected as a target of MACHO (Alcock et al. 2000) and EROS (Lasserre et al. 2000) microlensing projects. Large areas in the LMC were also observed by Zaritsky, Harris and Thompson (1997) as a part of a photometric survey of the Magellanic Clouds.

The LMC was included as one of the targets of the Optical Gravitational Lensing Experiment (OGLE) at the beginning of the second phase of the project (Udalski, Kubiak and Szymański 1997). Since January 1997 the large part of the central regions of the galaxy has been regularly observed practically on every clear night. As a result huge databases containing hundreds of photometric measurements of millions of stars were created.

The OGLE photometric data are particularly attractive for many projects requiring precise photometry. Among the other datasets collected during the microlensing searches, only the OGLE photometry was obtained with the standard BVI filters what makes it very well suited for projects not related to microlensing. Also, very good astronomical site where the OGLE project is conducted – the Las Campanas Observatory in Chile, made it possible to achieve the best resolution what is crucial in the very dense stellar fields of the LMC bar.

In this paper, which is the second of the series, we present “The OGLE BVI Maps of the LMC.” The maps contain the mean BVI photometry and astrometry of more than 7 million stars from the field of about 5.7 square degrees in the central part of the LMC. With the maps of the Small Magellanic Cloud presented in the first paper of this series (Udalski et al. 1998b) they constitute a unique photometric database of objects from the Magellanic Clouds.

Because of potentially great impact on many astrophysical fields, the OGLE policy is to make the photometric data available to the astronomical community. Similarly to the SMC maps, the maps of the LMC are also available from the OGLE Internet archive. Details are provided in the last Section of this paper.

2 Observations

All observations presented in this paper were collected during the second phase of the OGLE microlensing search with the 1.3-m Warsaw telescope at the Las Campanas Observatory, Chile, which is operated by the Carnegie Institution of Washington. The telescope was equipped with the ”first generation” camera with a Site 2048 \times 2048 CCD detector working in drift-scan mode. The pixel size was 24 μm giving the 0.417 arcsec/pixel scale. Observations were performed in the ”slow” reading mode of the CCD detector with the gain 3.8 e$^-$/ADU and readout noise of about 5.4 e$^-$. Details of the instrumentation setup can be found in Udalski, Kubiak and Szymański (1997).

Observed fields covered practically the entire bar of the LMC. More than 4.5 square degrees (21 driftscan fields) were monitored regularly (practically on every clear night except for the May–August period each year) from January 1997 through May 2000. Five additional fields in the North–West part of the
Table 1
Equatorial coordinates of the OGLE-II LMC fields

Field	RA (J2000)	DEC (J2000)
LMC SC1	5h33m49s	-70°06'10"
LMC SC2	5h31m17s	-69°51'55"
LMC SC3	5h28m48s	-69°48'05"
LMC SC4	5h26m18s	-69°48'05"
LMC SC5	5h23m48s	-69°41'05"
LMC SC6	5h21m18s	-69°37'10"
LMC SC7	5h18m48s	-69°24'10"
LMC SC8	5h16m18s	-69°19'15"
LMC SC9	5h13m48s	-69°14'05"
LMC SC10	5h11m16s	-69°09'15"
LMC SC11	5h08m41s	-69°10'05"
LMC SC12	5h06m16s	-69°38'20"
LMC SC13	5h06m14s	-68°43'30"
LMC SC14	5h03m49s	-69°04'45"
LMC SC15	5h01m17s	-69°04'45"
LMC SC16	5h36m18s	-70°09'40"
LMC SC17	5h38m48s	-70°16'45"
LMC SC18	5h41m18s	-70°24'50"
LMC SC19	5h43m48s	-70°34'45"
LMC SC20	5h46m18s	-70°44'50"
LMC SC21	5h21m14s	-70°33'20"
LMC SC22	5h02m26s	-67°09'35"
LMC SC23	5h04m45s	-67°09'40"
LMC SC24	5h07m05s	-67°09'35"
LMC SC25	5h09m24s	-67°09'30"
LMC SC26	5h11m43s	-67°09'40"

LMC were monitored on 13 nights between November 1998 and January 1999. Table 1 lists the equatorial coordinates of the centers of each field (14.2 × 57 arcmin) with their acronyms. Positions of the fields were chosen in such a way that adjacent fields overlap by about one arcmin for testing purposes. Fig. 1 presents the picture of the LMC from the Digitized Sky Survey with contours of the OGLE-II fields.

Observations were obtained with the standard BVI filters closely reproducing the standard system (Section 3). Due to the microlensing search observing strategy, the vast majority of observations were obtained through the I-band filter (250–500 per field) while much smaller number of frames in the BV-bands were collected (25–40 and 40–80 for the B and V filters, respectively). For the additional North–West fields only 6 and 7 observations in the V and I-bands were collected. The effective exposure time was 125, 174 and 237 seconds, for the I, V and B-band, respectively.

Altogether more than 8800 images (about 300 GB of raw data) of the OGLE-
II LMC fields were collected during the presented period of observations. Because of high stellar density of the bar fields, observations were only conducted during the nights with good seeing conditions. The median seeing of the entire data set is about 1.3 arcsec. Observations of the LMC were usually stopped when the seeing exceeded 1.6–1.8 arcsec.

3 Data Reduction and Calibration

All collected frames were reduced using the standard OGLE data pipeline in the identical manner as the SMC data (Udalski et al. 1998b). The data pipeline is described in detail in Udalski et al. (1998b). In short, after de-biasing and flat-fielding, photometry of objects is derived using the DoPHOT photometry program (Schechter, Saha and Mateo 1993) running in the fixed position mode on sixty four 512 × 512 pixel subframes. The full 2048 × 8192 pixel image being reduced is first matched with the so called "template" image, i.e., the image with very good angular resolution (obtained at very good seeing conditions) and then divided into subframes. Photometry of each subframe is tied to the photometry of the template subframe by adding the mean shift derived usually from several hundreds brighter stars. Thus, photometry of the template image defines the instrumental system. Objects detected in the template images for the B and V-bands are first matched with the I-band template image objects of a given field so the star numbering is the same in all bands making the data handling much easier. Due to small shifts of the BV template images in respect to the I-band image not all stars detected in the I-band image have full BVI photometry. However, they usually have full photometry in the adjacent overlapping field.

To determine transformations of the instrumental photometry to the standard system, several Landolt (1992) standard fields were observed on about 250 photometric nights during the OGLE-II observations. Based on thousands of observations of standard stars in Landolt (1992) fields located all over the sky and covering large range of colors, the following average transformations were derived:

\[
\begin{align*}
B &= b - 0.034 \times (B - V) + \text{const}_B \\
V &= v - 0.002 \times (V - I) + \text{const}_V \\
I &= i + 0.029 \times (V - I) + \text{const}_I \\
B - V &= 0.963 \times (b - v) + \text{const}_{B-V} \\
V - I &= 0.969 \times (v - i) + \text{const}_{V-I}
\end{align*}
\]

The typical residuals of calculated minus observed magnitudes of standard stars did not exceed 0.03 mag. The transformations indicate that the OGLE-II filter system closely resembles the standard one, i.e., the color coefficients are close to zero or one. Observations of standard stars also indicate that the instrumental system was extremely stable during the period of observations and the standard system magnitudes could be derived with good accuracy.
5.02 – 0.04 mag) even during the photometric nights when no standard stars were observed. Transformation of the instrumental magnitudes to the standard system consisted of the following steps. First, the aperture corrections were determined for each of the 64 subframes. They were determined from aperture photometry of typically 20 – 100 stars per subframe measured in the artificial images with faint stars subtracted. Then the total correction was determined consisting of the aperture correction, zero point of transformation, extinction correction and normalization to 1 sec exposure time. The total corrections were determined independently for about 10 – 25, 10 – 20 and 20 – 35 photometric nights for the BV and I-band, respectively. Typical standard deviation of the total correction in each of the 64 subframes was of about 0.015 – 0.020 mag. The averaged values of the total correction were subsequently used for the construction of photometric databases (Udalski et al. 1998b, Szymański and Udalski 1993) for the B, V and I-band. The databases contain entire photometry of all objects in a given OGLE field in the system very close to the standard one – only the color term (Eq. 1) is not included. Equatorial coordinates of objects detected in the OGLE fields were determined in the identical manner as described in Udalski et al. (1998b). Objects in the OGLE-II frames were cross-identified with the objects detected in the Digitized Sky Survey images, and the transformation between the OGLE pixel grid and (RA,DEC) coordinates in the DSS coordinate system was determined. About 1700 – 7400 stars were used for transformation depending on the stellar density in the field. Internal accuracy of the determined equatorial coordinates, as measured in the overlapping regions of neighboring fields is about 0.15 – 0.20 arcsec. However, the systematic error of the DSS coordinate system may reach 0.7 arcsec.

4 \textbf{BVI Maps of the LMC}

The \textit{BVI} maps of the LMC were constructed using the photometric databases of each field. First, the mean magnitudes of each object were calculated with 5σ rejection algorithm. Then, we corrected the magnitudes for a small systematic error, caused by non-perfect flat-fielding at the edges of the field. This effect was first noticed by Dr. D.S. Graff (Ohio State University), and it was precisely mapped based on observations of hundreds of standard stars. Finally, the color corrections (Eq. 1) were derived and added. Only objects with more than 5, 10 and 40 good observations (see Udalski et al. 1998b) in the \textit{BVI}-bands, respectively, were included in the final maps of the LMC (three in the \textit{V} and \textit{I}-band in the North–West LMC fields). Table 2 lists the total number of objects in the OGLE-II maps of the LMC fields. Table 3 presents the sample data from the map of the LMC,SC3 field. In the consecutive columns the following data are provided: star ID number, equatorial coordinates, (X,Y) coordinates in the \textit{I}-band template image, photometry: \textit{V},
\begin{table}
\centering
\begin{tabular}{ll}
\hline
Field & \textit{N}_{\text{objects}} \\
\hline
LMC_SC1 & 348876 \\
LMC_SC2 & 421346 \\
LMC_SC3 & 448729 \\
LMC_SC4 & 485406 \\
LMC_SC5 & 460020 \\
LMC_SC6 & 474475 \\
LMC_SC7 & 477838 \\
LMC_SC8 & 368108 \\
LMC_SC9 & 397024 \\
LMC_SC10 & 292552 \\
LMC_SC11 & 352465 \\
LMC_SC12 & 215090 \\
LMC_SC13 & 272614 \\
\hline
\end{tabular}
\hspace{1cm}
\begin{tabular}{ll}
\hline
Field & \textit{N}_{\text{objects}} \\
\hline
LMC_SC14 & 263522 \\
LMC_SC15 & 223214 \\
LMC_SC16 & 268601 \\
LMC_SC17 & 238924 \\
LMC_SC18 & 211320 \\
LMC_SC19 & 194556 \\
LMC_SC20 & 209089 \\
LMC_SC21 & 198156 \\
LMC_SC22 & 68061 \\
LMC_SC23 & 71475 \\
LMC_SC24 & 71012 \\
LMC_SC25 & 60276 \\
LMC_SC26 & 54083 \\
\hline
Total: & 7146832 \\
\end{tabular}
\end{table}

\((B-V), (V-I), B, I, \) number of observations, number of rejected observations and standard deviation for the \textit{BVI}-bands, respectively. In the electronic version we additionally provide the FITS template images for easy object identification. In the case of the North–West LMC fields only \(V\) and \(I\) images were collected. Therefore, the maps of these fields contain dummy values in the columns related to \(B\)-band photometry. Maps of all LMC fields are available electronically from the OGLE Internet archive (see Section 7).

5 Data Tests

5.1 Photometry

Quality of the OGLE-II photometry can be assessed from comparison of magnitudes of stars located in the overlaps between neighboring fields. Because each of the fields was calibrated independently such a comparison provides information on accuracy of calibration and the typical accuracy of photometry. Figs. 2, 3 and 4 present differences of magnitudes for stars with magnitudes brighter than \(B=20\) mag, \(V=20\) mag and \(I=19\) mag, plotted as a function of line number for three fields located in the central part of the LMC and at the West and East edges of the bar. For the remaining fields the plots look very similar. As can be seen the average difference of magnitudes is always below 0.01 mag indicating good consistency of the calibration procedure. The typical sigma of the Gaussian fitted to the histogram of differences of magnitudes is about 0.040, 0.035 and 0.025 mag for the \textit{BVI}-bands, respectively.
Table 3
Sample of data from the BVI map of the field LMC_SC3

Star no	RA (J2000)	DEC (J2000)	X	Y	V	B - V	V - I	I	N_Bok	N_Ibad	σ_B	N_Vok	N_Vbad	σ_V	N_Nok	N_Nbad	σ_I	
1	5°27′46″52	-70°15′47″6	275.31	77.35	13.147	0.557	0.689	13.709	12.459	21	0	0.012	52	1	0.016	382	1	0.031
2	5°28′03″66	-70°15′46″7	485.35	80.59	16.241	2.948	2.596	19.208	13.643	12	0	0.522	56	0	0.307	382	0	0.138
3	5°27′45″67	-70°16′01″5	265.17	43.68	16.831	1.795	2.888	18.641	13.940	23	0	0.184	58	0	0.171	326	0	0.071
4	5°28′03″60	-70°15′25″4	484.35	131.92	16.762	1.713	2.338	18.488	14.423	23	0	0.084	56	0	0.063	406	2	0.025
5	5°27′50″65	-70°15′08″9	325.49	171.01	17.074	1.737	2.765	18.824	14.307	23	0	0.176	57	0	0.161	416	0	0.062
6	5°27′29″70	-70°14′49″7	68.34	215.98	16.934	4.410	2.856	21.368	14.076	11	0	0.314	50	0	0.215	394	0	0.170
7	5°27′24″73	-70°14′29″1	7.13	265.23	18.086	-3.786	-14.296	0	0	29	0	0.265	318	0	0.140			
8	5°27′38″43	-70°13′28″2	174.30	413.48	14.972	0.677	0.769	15.653	14.202	18	1	0.020	58	0	0.012	416	0	0.013
9	5°27′56″02	-70°13′20″0	390.14	434.47	16.565	1.847	2.326	18.425	14.236	23	0	0.054	58	0	0.034	419	0	0.018
10	5°27′35″32	-70°13′17″6	136.03	439.01	17.185	1.894	2.917	19.093	14.264	23	0	0.197	58	0	0.234	402	0	0.121
11	5°28′03″09	-70°13′08″4	476.77	463.04	15.957	1.745	2.331	17.715	13.624	23	0	0.080	58	0	0.050	402	0	0.026
12	5°27′51″54	-70°13′00″1	334.94	482.34	17.646	1.901	3.470	19.562	14.173	23	0	0.134	57	0	0.147	408	0	0.075
13	5°27′39″92	-70°16′10″2	194.78	22.33	16.419	1.705	1.749	18.134	14.668	6	1	0.012	57	0	0.023	263	0	0.018
14	5°27′37″91	-70°16′05″6	243.67	33.66	16.683	1.737	1.742	18.432	14.940	23	0	0.037	57	0	0.031	292	0	0.027
15	5°27′40″01	-70°15′53″4	195.66	62.91	15.218	0.662	0.771	15.884	14.446	18	0	0.013	54	0	0.016	389	2	0.017
16	5°27′43″48	-70°15′42″2	127.80	87.10	15.966	1.357	2.927	17.332	14.668	22	0	0.027	54	1	0.010	401	2	0.014
17	5°27′25″02	-70°15′33″0	11.66	111.04	16.766	-1.641	-15.123	0	0	40	0	0.020	336	3	0.016			
18	5°27′38″54	-70°15′23″5	177.21	134.87	16.792	1.626	1.578	18.429	15.212	23	0	0.045	56	0	0.011	414	2	0.012
19	5°27′51″46	-70°15′16″8	335.48	152.15	16.870	1.720	2.022	18.602	14.847	23	0	0.057	58	0	0.027	413	3	0.016
20	5°27′50″36	-70°15′12″1	322.02	163.25	16.762	1.751	1.800	18.524	14.960	23	0	0.063	58	0	0.025	406	0	0.018
21	5°27′24″41	-70°15′08″8	3.80	169.41	16.446	-1.663	-14.783	0	0	33	1	0.030	274	0	0.021			
The error of photometric measurements is a function of stellar magnitude. To illustrate that dependence Figs. 5 and 6 show the standard deviation of B, V and I-band magnitudes of objects in the central field LMC\text{SC}6 and much less crowded LMC\text{SC}12. Only about 50,000 stars are plotted for clarity.

Accuracy of the zero points of the OGLE photometry can be estimated from comparison of the OGLE data with other observations. Unfortunately, the number of good quality photometric data from the LMC bar is very limited. These regions were rarely observed in the past, in particular with precise CCD detectors. We have found in the literature only three cases we can compare our data with.

Udalski et al. (1998a) presented comparison of the I-band light curves of Cepheids located close to NGC 1850 with those obtained by Sebo and Wood (1995) indicating good agreement of the zero points of both data sets. Although the LMC data were only preliminarily calibrated at that time, the final calibration of that OGLE field is different only by a few thousandths of magnitude. Therefore the conclusion of Udalski et al. (1998a) fully holds.

Walker (1993) presented BV photometry of stars in the field of NGC 1835. In addition to the photometry of variable stars he also published magnitudes of nine local standard stars. One of these stars (#11) turned out to be a small amplitude long term variable as indicated by the OGLE data. One of the remaining eight stars (#4) is brighter by about 0.25 mag than indicated by the OGLE photometry. Although the OGLE data do not show any larger light variations of this object, it is likely that so large discrepancy might be caused by some long term activity. Also OGLE data indicate that the star #6 is significantly fainter (more than 0.1 mag) than according to Walker. For the remaining six objects the mean difference of V magnitudes is equal to: $\Delta V = -0.026 \pm 0.025$ mag indicating good agreement of both data sets. Walker’s magnitudes are slightly brighter. Comparison of $B - V$ colors of Walker standards with the OGLE data indicates, however, that for stars redder than $(B - V) \approx 1.2$ mag the OGLE colors are by more than 0.1 mag redder. For the four Walker standards outside that range the agreement is good – the mean difference of $(B - V)$ is equal to $\Delta(B - V) = -0.026 \pm 0.028$ mag with Walker’s colors being bluer. The discrepancy for redder stars is somewhat worrying. However, the Walker B-band filter rather poorly matched the standard B-band (color coefficient of transformation of about 1.2; see Walker 1992) and therefore larger systematic color differences for stars with extreme red colors are very likely. Apart from this problem the overall agreement between the Walker’s and OGLE BV photometry calibrations is quite good.

Finally, Clementini et al. (2000) presented photometry of two fields located close to the LMC bar. One of their fields, Field A, overlaps in large part with the OGLE field LMC\text{SC}21. Unfortunately, a couple of local standard stars for which BV photometry is presented by Clementini et al. (2000) are located outside the OGLE field. Therefore the only comparison with the OGLE photometry which can be made is based on the average magnitudes of groups of stars, namely RR Lyr and red clump stars.

We extracted RR Lyr and red clump stars located in the LMC\text{SC}21 field
and limited these samples to objects with declination within the Clementini et al. (2000) Field A limits. One should be aware that the two compared regions are not exactly the same, but because the interstellar extinction is quite uniform in this part of the LMC it is very unlikely to introduce any significant error by limiting the OGLE field in declination only. On the other hand much larger sample of stars can be averaged (in particular RR Lyr stars) making the mean magnitudes much more reliable.

For RR Lyr stars (71 objects) the intensity mean magnitudes were first derived. Then the average magnitudes of both RR Lyr and red clump stars were calculated. Comparison with Clementini et al. (2000) values yields: RR Lyr – $\langle V \rangle = 19.35$ mag vs. $\langle V \rangle = 19.37$ mag and $\langle B - V \rangle = 0.41$ mag vs. $\langle B - V \rangle = 0.37$ mag, for Clementini et al. (2000) and OGLE, respectively. For red clump stars – $\langle V \rangle = 19.22$ mag vs. $\langle V \rangle = 19.24$ mag and $\langle B - V \rangle = 0.92$ mag vs. $\langle B - V \rangle = 0.93$ mag, again for Clementini et al. (2000) and OGLE, respectively. As can be seen the agreement between those two photometric data sets is also very good. Comparison of red clump stars is certainly much more sound because of two orders of magnitude larger number of stars.

Summarizing, comparison of the OGLE BVI photometry with other observations indicates that in each band the agreement of the zero points is quite good. Because the OGLE calibrations were obtained on large number of photometric nights with use of wide range of standard fields they are certainly very reliable. We estimate the uncertainty of the zero points to be less than 0.02 mag. The OGLE-II maps constitute a huge set of secondary standards in the LMC line of sight.

5.2 Completeness

To estimate the completeness of detection of stars in the OGLE fields we performed similar set of tests as in the case of the SMC maps. For details the reader is referred to Udalski et al. (1998b). Table 4 presents results of these tests for three fields of different stellar density. As can be seen the completeness is high down to stars as faint as $I \approx 19.5$ mag, $V \approx 20$ mag and $B \approx 20$ mag. For fainter stars it gradually drops. The completeness is also a function of stellar density of the field.

6 Color-Magnitude Diagrams

Figs. 7–19 show I vs. $(V - I)$ color-magnitude diagrams (CMDs) of all LMC fields. They are presented to illustrate quality of data and potential usefulness of the OGLE LMC maps for studying many important astrophysical problems. About 25000 stars (i.e., about 5–50% of the total number) from each field are plotted in these figures for clarity.

The CMDs presented in Figs. 7–19 reveal in great detail the most characteristic features of the LMC population of stars: main sequence stars, red giant branch stars, prominent red clump etc. The shape of the red clump
Table 4
Completeness of the LMC maps

Stars per bin	Completeness	Completeness	Completeness	Completeness							
	B	SC16	SC12	V	SC16	SC12	SC26	I	SC16	SC12	SC26
2	13.9	99.5	100.0	14.3	99.5	100.0	100.0	13.8	99.5	100.0	100.0
5	14.4	100.0	99.8	14.8	99.8	99.8	100.0	14.3	99.6	99.8	99.8
7	14.9	99.9	100.0	15.3	100.0	100.0	99.9	14.8	99.7	100.0	99.8
10	15.4	100.0	99.6	15.8	99.3	99.8	99.7	15.3	99.2	99.9	99.3
12	15.9	99.5	99.6	16.3	99.3	99.6	99.4	15.8	99.2	99.4	99.7
15	16.4	99.3	99.6	16.8	98.9	99.7	99.6	16.3	98.7	99.5	99.3
17	16.9	98.9	99.8	17.3	97.9	99.5	98.7	16.8	97.6	98.8	99.4
20	17.4	98.9	99.2	17.8	95.6	98.5	98.8	17.3	95.5	98.0	98.3
22	17.9	96.9	99.1	18.3	92.6	97.9	97.9	17.8	92.0	96.9	97.9
25	18.4	95.4	98.5	18.8	86.6	96.0	96.6	18.3	89.0	96.4	96.5
27	18.9	93.1	96.9	19.3	80.0	94.2	93.8	18.8	84.6	94.5	94.4
30	19.4	83.7	93.0	19.8	68.7	90.3	89.3	19.3	74.2	90.8	85.9
32	19.9	69.6	88.1	20.3	52.0	83.8	80.1	19.8	55.0	81.2	45.9
35	20.4	47.8	78.3	20.8	28.5	71.7	59.1	20.3	23.0	51.3	10.3

can be an indicator of regions with non-uniform extinction in the LMC. For instance, red clump is severely elongated in the direction of reddening in the fields LMC,SC16–18, while relatively round in the center of the bar (fields LMC,SC2–6).

7 Data Availability

The BVI maps of the LMC are available to the astronomical community in the electronic form from the OGLE archive:

http://www.astrouw.edu.pl/~ogle
ftp://sirius.astrouw.edu.pl/ogle/ogle2/maps/lmc/

or its US mirror

http://bulge.princeton.edu/~ogle
ftp://bulge.princeton.edu/ogle/ogle2/maps/lmc/

Also I-band FITS template images of the OGLE-II fields are included. Total volume of the compressed data is equal to about 0.7 GB. Usage of the data is allowed under the condition of proper acknowledgment to the OGLE project.

We provide these data in the most original form to avoid any additional biases. For instance we do not mask bright stars which often produce many artifacts, but such a masking could potentially remove some interesting information on objects located close to bright stars. We do not remove objects
which are located in overlapping areas between the neighboring fields. Cross-
identification of these objects can be easily done based on provided equatorial
coordinates.

Acknowledgements. We would like to thank Prof. Bohdan Paczyński for
many discussions and help at all stages of the OGLE project. We thank Dr.
D.S. Graff for information about the systematic error in the early OGLE cali-
brations. We also thank Mr. A. Olech for carrying out part of the observations
of the LMC in the 1997 observing season. The paper was partly supported
by the Polish KBN grant 2P03D00814 to A. Udalski and 2P03D00916 to M.
Szymański. Partial support for the OGLE project was provided with the NSF
grant AST-9820314 to B. Paczyński. We acknowledge usage of The Digitized
Sky Survey which was produced at the Space Telescope Science Institute based
on photographic data obtained using The UK Schmidt Telescope, operated by
the Royal Observatory Edinburgh.

REFERENCES
Alcock, C. et al. 2000, Astron. J., 119, 2194.
Clementini, G., Gratton, R., Bragaglia, A., Carretta, E., and Di Fabrizio, L. 2000, astro-
ph/0007471.
Landolt, A.U. 1992, Astron. J., 104, 372.
Lasserre, T. et al. 2000, Astron. Astrophys., 355, L39.
Schechter, P.L., Saha, K., and Mateo, M. 1993, P.A.S.P., 105, 1342.
Sebo, K.M., and Wood, P.R. 1995, Astrophys. J., 449, 164.
Szymański, M., and Udalski, A. 1993, Acta Astron., 43, 91.
Udalski, A., Kubiak, M., and Szymański, M. 1997, Acta Astron., 47, 319.
Udalski, A., Szymański, M., Kubiak, M., Pietrzyński, G., Woźniak, P., and Żebruń, K. 1998a,
Acta Astron., 48, 1.
Udalski, A., Szymański, M., Kubiak, M., Pietrzyński, G., Woźniak, P., and Żebruń, K. 1998b,
Acta Astron., 48, 147.
Walker, A.R. 1992, Astron. J., 103, 1166.
Walker, A.R. 1993, Astron. J., 105, 527.
Zaritsky, D., Harris, J., and Thompson, I. 1997, Astron. J., 114, 1002.
Fig. 1. OGLE-II fields in the LMC. North is up and East to the left in the Digitized Sky Survey image of the LMC.

Fig. 2. Differences of magnitudes of the same objects in the overlapping regions of fields LMC\textsubscript{SC}3 and LMC\textsubscript{SC}4.

Fig. 3. Differences of magnitudes of the same objects in the overlapping regions of fields LMC\textsubscript{SC}14 and LMC\textsubscript{SC}15.

Fig. 4. Differences of magnitudes of the same objects in the overlapping regions of fields LMC\textsubscript{SC}20 and LMC\textsubscript{SC}19.

Fig. 5. Standard deviation of magnitudes of objects in the field LMC\textsubscript{SC}6.

Fig. 6. Standard deviation of magnitudes of objects in the field LMC\textsubscript{SC}12.

Fig. 7. Color-magnitude diagrams of the fields LMC\textsubscript{SC}1 and LMC\textsubscript{SC}2.

Fig. 8. Color-magnitude diagrams of the fields LMC\textsubscript{SC}3 and LMC\textsubscript{SC}4.

Fig. 9. Color-magnitude diagrams of the fields LMC\textsubscript{SC}5 and LMC\textsubscript{SC}6.

Fig. 10. Color-magnitude diagrams of the fields LMC\textsubscript{SC}7 and LMC\textsubscript{SC}8.

Fig. 11. Color-magnitude diagrams of the fields LMC\textsubscript{SC}9 and LMC\textsubscript{SC}10.

Fig. 12. Color-magnitude diagrams of the fields LMC\textsubscript{SC}11 and LMC\textsubscript{SC}12.

Fig. 13. Color-magnitude diagrams of the fields LMC\textsubscript{SC}13 and LMC\textsubscript{SC}14.

Fig. 14. Color-magnitude diagrams of the fields LMC\textsubscript{SC}15 and LMC\textsubscript{SC}16.

Fig. 15. Color-magnitude diagrams of the fields LMC\textsubscript{SC}17 and LMC\textsubscript{SC}18.

Fig. 16. Color-magnitude diagrams of the fields LMC\textsubscript{SC}19 and LMC\textsubscript{SC}20.

Fig. 17. Color-magnitude diagrams of the fields LMC\textsubscript{SC}21 and LMC\textsubscript{SC}22.

Fig. 18. Color-magnitude diagrams of the fields LMC\textsubscript{SC}23 and LMC\textsubscript{SC}24.

Fig. 19. Color-magnitude diagrams of the fields LMC\textsubscript{SC}25 and LMC\textsubscript{SC}26.
This figure "fig1.jpg" is available in "jpg" format from:

http://arxiv.org/ps/astro-ph/0010150v1
This figure "fig2.jpg" is available in "jpg" format from:

http://arxiv.org/ps/astro-ph/0010150v1
This figure "fig3.jpg" is available in "jpg" format from:

http://arxiv.org/ps/astro-ph/0010150v1
This figure "fig4.jpg" is available in "jpg" format from:

http://arxiv.org/ps/astro-ph/0010150v1
This figure "fig5.jpg" is available in "jpg" format from:

http://arxiv.org/ps/astro-ph/0010150v1
This figure "fig6.jpg" is available in "jpg" format from:

http://arxiv.org/ps/astro-ph/0010150v1
This figure "fig7.jpg" is available in "jpg" format from:

http://arxiv.org/ps/astro-ph/0010150v1
This figure "fig9.jpg" is available in "jpg" format from:

http://arxiv.org/ps/astro-ph/0010150v1
This figure "fig12.jpg" is available in "jpg" format from:

http://arxiv.org/ps/astro-ph/0010150v1
This figure "fig15.jpg" is available in "jpg" format from:

http://arxiv.org/ps/astro-ph/0010150v1
This figure "fig17.jpg" is available in "jpg" format from:

http://arxiv.org/ps/astro-ph/0010150v1