ORIGINAL ARTICLE

Chrysin suppresses achaete-scute complex-like 1 and alters the neuroendocrine phenotype of carcinoids

YR Somnay1,2, BZ Dull1,2, J Eide1,2, R Jaskula-Sztul1,2,3 and H Chen1,2,3

Carcinoids are neuroendocrine neoplasms that cause significant morbidity and mortality and for which few effective therapies are available. Given the recent identification of the anticancer flavonoid chrysin, we sought to investigate its therapeutic potential in carcinoids. Here we report chrysin’s ability to modulate the achaete-scute complex-like 1 (ASCL1), a neuroendocrine-specific transcription factor highly implicated in the malignant phenotype of carcinoids and other neuroendocrine cancers. Moreover, we elucidate the role of ASCL1 in carcinoid growth and bioactivity. Treatment of two carcinoid cell lines (BON and H727) with varying chrysin concentrations suppressed cell proliferation, while reducing expression of ASCL1 and the neuroendocrine biomarker chromogranin A (CgA), demonstrated by western blotting. Propidium iodide and phycoerythrin AnnexinV/7-aminoactinomycin D staining and sorting following chrysin treatment revealed S/G2 phase arrest and apoptosis, respectively. This was corroborated by chrysin-induced cleavage of caspase-3 and poly ADP-ribose polymerase and activation of p21Waf1/Cip1. Furthermore, direct ASCL1 knockdown with an ASCL1-specific small interfering RNA inhibited CgA and synaptophysin expression as well as carcinoid proliferation, while also reducing cyclin B1 and D1 and increasing p21Waf1/Cip1 and p27Kip1 expression, suggesting an arrest of the cell cycle. Collectively, these findings warrant the deliberation of targeted ASCL1 suppression by chrysin or other agents as a therapeutic approach for carcinoid management.

Cancer Gene Therapy (2015) 22, 496–505; doi:10.1038/cgt.2015.49; published online 25 September 2015

INTRODUCTION

Carcinoids comprise a rare heterogeneous subset of neuroendocrine tumors that originate from the diffuse enterochromaffin cells of the foregut, midgut or hindgut endocrine system, and in rare instances the pancreas. These tumors most frequently in the small intestine, making up approximately 2% of malignant gastrointestinal tumors, followed by those of bronchopulmonary origin.1 Carcinoids occur in approximately 5 in every 100 000 individuals, either sporadically or as part of familial neoplastic syndromes.2,3 Survival rates of these tumors are dependent on both location and disease progression. For patients with gastrointestinal carcinoids, 5-year survival rate for all sites is approximately 70%.4 In patients with pulmonary carcinoids, survival rates depend on tumor type, with typical tumors conveying a 87% 5-year survival rate or greater, while atypical pulmonary carcinoids faring worse with survival rates of near 25%.5 As expected, patients with metastatic disease have poorer survival rates than those with localized disease and present complex challenges in clinical management. Carcinoid cancers can lead to significant morbidity owing to the secretion of bioactive hormones, most commonly serotonin, which can cause flushing of the skin, abdominal cramping, bronchoconstriction and right-sided heart failure. Carcinoid metastasis to the liver is common and second only to colorectal carcinoma. The carcinoid syndrome presents consequent to hepatic metastasis or owing to carcinoids with bronchial involvement, which account for about 5–8% of cases.6,7 Although surgical resection offers the only potential cure for localized carcinoid disease, the majority of patients present with metastatic disease at the time of diagnosis rendering surgery ineffective.6,8 Unfortunately, no proven curative therapies are available for patients with advanced carcinoid tumors.9,10 Although somatostatin analogs such as octreotide are effective in controlling symptoms, their long-term use can frequently lead to tachyphylaxis.11 The morbidity and mortality of carcinoid tumors and lack of successful treatments emphasize the need to better elucidate molecular mechanisms that underlie carcinoid cell growth and progression.

Carcinoids, similar to other neuroendocrine tumors, overexpress a variety of biomarkers, including a secreted acidic glycopeptide chromogranin A, synaptophysin and serotonin. In addition, they highly express the achaete-scute complex-like 1 (ASCL1), an evolutionarily conserved basic helix-loop-helix transcription factor that is tissue specific to carcinoids and tumors of neuroendocrine origin.12–20 ASCL1 serves as a key regulator in the normal development of neuroendocrine cells, including parafollicular C-cells, adrenal medullary chromaffin cells and pulmonary endocrine cells.21–24 Expression of ASCL1 in carcinoids is markedly inhibited by targeted suppression of the oncogenic pathway phosphoinositide-3 kinase-AKT or induction of Raf-1 and Notch1, thereby suppressing proliferation and the malignant phenotype.25–28 Notch1 exerts tight control over ASCL1 as it has been shown to negatively regulate its expression during normal neuronal development and in other neuroendocrine cancers, such as medullary thyroid cancer and small cell lung cancer.29–36 Therefore, ASCL1 may have a critical role in carcinoid cell

© 2015 Nature America, Inc. All rights reserved 0929-1903/15 www.nature.com/cgt

YR Somnay 1,2, BZ Dull 1,2, J Eide 1,2, R Jaskula-Sztul 1,2,3 and H Chen 1,2,3

1Endocrine Surgery Research Laboratories, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; 2University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA and 3Department of Surgery, University of Alabama-Birmingham, Birmingham, AL, USA. Correspondence: Dr H Chen, Department of Surgery, University of Alabama-Birmingham, 1808 7th Avenue South, Suite 502, Birmingham, AL 35233, USA.

E-mail: herbchen@uab.edu

Received 23 June 2015; revised 1 September 2015; accepted 2 September 2015; published online 25 September 2015
bioactivity. Furthermore, identifying novel agents that suppress ASCL1 activity may show promise against carcinoid tumorigenesis.

Accumulating reports on novel anticancer therapies have revealed that the compound chrysin (5,7-dihydroxyflavone), a naturally occurring flavonoid, exerts pro-apoptotic and cell-cycle modulatory effects in a variety of malignancies, including melanoma, colorectal cancer, cervical cancer, esophageal cancer, gliomas, anaplastic thyroid cancer and leukemia cell lines.67–69 Chrysin, along with other flavones, has been described to possess potent anti-inflammatory, antioxidative, and anti-proliferative effects.65–66 Notably, chrysin has been described for its ability to activate Notch1 and suppress cell growth in anaplastic thyroid cancer cell lines.67 However, its effect has not yet been described in the context of carcinoids or neuroendocrine cancers. Given chrysin’s proven anticancer properties, and its ability to activate Notch1, a known suppressor of ASCL1 in neuroendocrine cancers, we sought to explore the potential of chrysin to modulate ASCL1 expression and exert a therapeutic effect on carcinoids. We also sought to investigate whether direct suppression of ASCL1 could reduce carcinoid cell proliferation and the neuroendocrine phenotype.

In this study, we report for the first time that chrysin suppresses carcinoid cell proliferation and ASCL1 expression through the induction of apoptosis and cell-cycle arrest. We also show that specific gene silencing of ASCL1 arrests carcinoid cell growth and induces cell-cycle arrest markers p21Waf1/Cip1 and p27Kip1 while suppressing the production of neuroendocrine phenotypic markers.

MATERIALS AND METHODS

Cell culture and chrysin treatment

Human GI carcinoid cancer cells (BON) were provided by Dr B Mark Evers and Dr Courtney M. Townsend, Jr (University of Texas Medical Branch, Galveston, TX, USA), and bronchopulmonary carcinoid (H727) cells were purchased from the American Type Culture Collection (Manassas, VA, USA). BON cells were maintained in Dulbecco’s modified Eagle medium/ F-12 (Life Technologies, Grand Island, NY, USA) and H727 cells were maintained in RPMI/F-12 (Life Technologies), both as previously described. Both media were supplemented with 10% fetal bovine serum (Sigma-Aldrich, St Louis, MO, USA), 100 IU ml⁻¹ penicillin and 100 μg ml⁻¹ streptomycin (Life Technologies). Both cell lines were incubated in a humidified atmosphere of 5% CO₂ at 37 °C. Chrysin was purchased from MP Biomedicals (Solon, OH, USA) and dissolved in dimethyl sulfoxide (DMSO) at a 100 μM stock concentration. Aliquots were stored at −80 °C and freshly thawed prior to treatment. Cell treatments were conducted by plating cells at sub-confluency and allowing them to adhere overnight. The next day, cells were incubated in fresh medium containing chrysin (1–100 μM) for up to 6 days. DMSO concentrations were equalized across all chrysin treatment groups (100 μM DMSO).

Immunoblot analyses

Total cell lysates were prepared and analyzed for protein expression by western blotting. Treated cells were first washed with 1× phosphate-buffered saline (PBS), scraped and collected into sterile tubes, centrifuged to pellet form and then lysed in sample buffer (50 mM Tris, 0.15 M NaCl, 0.5% Na/deoxycholate, 0.1% sodium dodecyl sulfate, 1% Nonidet P-40, 0.1% protease inhibitor cocktail and 0.6 mM phenylmethanesulfonyl fluoride or phenylmethylsulfonyl fluoride). A bicinechonic acid assay (Pierce, Rockford, IL, USA) was used to determine the quantity of total cellular protein in each sample. Subsequently, these samples were denatured and resolved on 7.5, 10, or 12% sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels (Bio-Rad Laboratories, Hercules, CA, USA). Proteins were then transferred onto nitrocellulose membranes (Bio-Rad Laboratories). Protein-bound membranes were blocked for at room temperature and sorted using the FACSCalibur (BD Biosciences, San Jose, CA, USA). Three biological replicates of this experiment were averaged and graphed as mean ± s.e.m.

Detection of apoptosis by phycocerythrin (PE) Annexin V/7- aminoactinomycin D (7-AAD) staining

Fluorescent-activated cell sorting instrumentation. ModFit (Verity Software-House, Topsham, ME, USA) software was used to interpret quantitative outputs and determine the proportion of cells in each sample in the G1, S and G2 phase of the cell cycle. Data from three biological replicates of this experiment were averaged and graphed as mean ± s.e.m.

Cell-cycle distribution analysis by propidium iodide staining

Following chrysin treatment for 2 days (0–100 μM), BON cells were trypsinized, pelleted and resuspended in chilled 1× PBS, twice. Next, cell pellets were resuspended in chilled 95% ethanol and fixed at −20 °C for at least 2 h. Fixed cells were then pelleted and washed in 1× PBS twice and resuspended in a solution containing 33 μg ml⁻¹ of propidium iodide solution (Sigma-Aldrich), 1 mg ml⁻¹ RNase A (Life Technologies) and 0.1% Triton X-100 (Sigma-Aldrich) in 1× PBS. Cells were then stored in the dark at 4 °C overnight and then quantitatively sorted based on their fluorescent signal using the FACS Calibur (BD Biosciences, San Jose, CA, USA). Fluorescent-activated cell sorting instrumentation. ModFit (Verity Software-House, Topsham, ME, USA) software was used to interpret quantitative outputs and determine the proportion of cells in each sample in the G1, S and G2 phase of the cell cycle. Data from three biological replicates of this experiment were averaged and graphed as mean ± s.e.m.

Chrysin inhibits ASCL1 and the carcinoid phenotype

© 2015 Nature America, Inc.
ASCL1 gene silencing

Transient knockdown of ASCL1 expression was performed in BON and H727 cell lines. A pool of four gene-specific small interfering RNA (siRNA) sequences against ASCL1 (catalog no. sc-37692, Santa Cruz Biotechnology, Inc.) and a nonspecific-siRNA (catalog no. sc-37007, Santa Cruz Biotechnology, Inc.) as a negative control were dissolved in media containing Lipofectamine 2000 (Life Technologies) as per the manufacturer’s instructions, and added dropwise to plated cells. Cells were treated with concentrations of siRNA ranging from 0 to 40 nM. The third treatment group included cells treated with Lipofectamine 2000 alone, serving as a control. Cells were allowed to incubate overnight and media was replaced the following day. Cells were harvested for western blotting or assessed for viability by assay 2, 4 or 6 days after transfection.

Cell proliferation assay

Carcinoid cell viability was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT; Sigma-Aldrich) rapid colorimetric assay. BON and H727 cells were plated in 24-well plates and allowed to adhere overnight. Cells were then either treated with varying doses of chrysin for 2 days (0–100 μM) or transfected with either the ASCL1-siRNA or a nonspecific control vector. Each treatment group was plated in quadruplicate. In order to determine cell viability for a given day, media in each well receiving treatment was replaced with 250 μl of serum-free media containing 0.5 mg ml⁻¹ MTT. Plates were then incubated at 37 °C for 3.5 h followed by the addition of 750 μl of DMSO (Fischer Scientific, Pittsburgh, PA, USA). The optical densities of each well were measured at 540 nm using a spectrophotometer (qQuant, Bio-Tek Instruments, Winooski, VT, USA). MTT readings were taken 2, 4 and 6 days following chrysin treatment or ASCL1 gene silencing. Quadruplicate optical densities were averaged for each treatment group and presented as ± s.e.m.

Statistical analysis

A two-tailed Student’s T-test was used to determine statistical significance using Microsoft Excel for Mac 2011 (Microsoft, Redmond, WA, USA). A P < 0.05 was the applied cutoff to qualify as significant.

RESULTS

Chrysin dose dependently suppresses BON and H727 cell proliferation as well as ASCL1 expression

In order to determine the therapeutic range of chrysin, we conducted a cell viability assay following treatment with chrysin dosages ranging from 0 to 100 μM. BON and H727 cells were allowed to grow in treatment over a 6-day period, with treatment replenished every 2 days to ensure drug potency. Figure 1 shows that chrysin treatment caused a dose-dependent reduction in BON (Figure 1a) and H727 (Figure 1b) cell proliferation over a 6-day period. In BON cells, the shortest time point of 2 days was sufficient to achieve a significant reduction in cell proliferation with the lowest tested dose of 25 μM chrysin (P < 0.0001). H727 sensitivity to chrysin treatment became statistically significant with 75 μM of chrysin treatment by as early as the second day of treatment (P = 0.03). By the sixth day of treatment, BON cells treated with 100 μM of chrysin experienced 81.3% suppression in proliferation (Figure 1a) and identically treated H727 cells exhibited a 78.9% suppression in proliferation compared with controls (Figure 1b). Parallel treated BON and H727 cells were immunoblotted for protein levels of ASCL1 and CgA. Increasing concentrations of chrysin dose dependently inhibited ASCL1 expression as well as CgA levels in both cell lines. Chrysin’s ability to activate Notch1 signaling, a negative regulator of ASCL1, led us to compare the effect of drug treatment on Notch1 with its effect on ASCL1 expression. BON cells treated with 50 and 100 μM of chrysin exhibited steadily reduced levels of ASCL1 message as expected (P = 0.01 and P = 0.002, respectively), while Notch1 message increased 7.8-fold following 100 μM chrysin administration (P < 0.001) (Figure 1d and e).

Chrysin treatment induces S/G2 phase cell-cycle arrest

Chrysin has been described as a profound inhibitor of cell-cycle transit in a variety of cancer types, including melanoma, esophageal, colorectal and gliomas.41-44 In carcinoids, ASCL1 suppression has also been strongly associated with an arrest in cell-cycle progression.47-50 Therefore, we aimed to determine the effect of chrysin treatment on carcinoid cell-cycle kinetics. Flow cytometry analysis of propidium iodide-stained cells revealed a profound accumulation of S- and G2-phase-arrested cells with 50 and 100 μM of chrysin treatment accompanied by a dramatic reduction in G1 phase cells (P < 0.001; Figure 2a and b). Figure 2a shows an independent experimental replicate of chrysin’s effect on cell-cycle phase populations, while the average is shown in Figure 2b. We next explored the effect of chrysin treatment on the expression of the cyclin family protein cyclin D1, which is required for cell-cycle transit, and demonstrated a dose-dependent reduction in its expression in BON cells.51 Western analysis also revealed that chrysin caused a dose-dependent induction in p21Waf1/Cip1. In the currently accepted model, p21Waf1/Cip1 binds and inhibits the activity of cyclin-dependent kinase 2 complexes, which are necessary regulators of cell-cycle progression.52,53 Finally, we observed that chrysin administration increased the phosphorylation of the cell division cycle protein 2 homolog (cdc2) at tyrosine 15, while total levels of cdc2 stayed constant. Because entry into mitosis requires cdc2 dephosphorylation at Tyr15 and Thr14, the observed increase in phospho-cdc2 indicates a halt in carcinoid cell division.54-56 Altogether, these data signify the occurrence of cell-cycle arrest in response to chrysin treatment.

Chrysin treatment induces apoptosis in BON carcinoid cell line

It has been shown that chrysin exerts its antiproliferative effect in a variety of cancers in part by inducing apoptosis.37-40 Although this has not yet been described in carcinoids, it has been observed that ASCL1 suppression in carcinoids occurs concurrently with activation of the apoptotic cascade.27,57-59 Given chrysin’s ability to suppress ASCL1, we sought to explore the mechanism of growth inhibition achieved by chrysin treatment. Figure 3a shows cell distribution from one experimental replicate of PE Annexin V/7 AAD-stained cells treated with chrysin. We sorted and quantified the population of cells in each treatment group undergoing apoptosis (upper right quadrant), those in the preapoptotic phase (lower right quadrant), those undergoing necrosis (upper left quadrant) and those that were still viable in the face of chrysin treatment (lower left quadrant). Staining and sorting was repeated thrice and averaged in Figure 3b. We demonstrate that while BON cells receiving no treatment comprised 8.82% apoptotic cells, chrysin treatments of 50 and 100 μM significantly increased apoptotic cell populations to 13.7% (P = 0.02) and 24.1% (P = 0.03), respectively (Figure 3b). Expectedly, the populations of viable cells steadily decreased with increasing chrysin treatment, as shown in the representative replicate Figure 3a. Interestingly, the effect on preapoptotic cell populations did not change significantly. In order to verify the induction of apoptosis by chrysin treatment, we investigated its effect on the mitochondrial membrane potential (MMP) of chrysin treated, while total levels of caspase-3 were steadily reduced with increasing drug concentrations.

ASCL1 silencing suppresses carcinoid cell proliferation and reduces bioactive hormone production

Chrysin’s ability to suppress ASCL1 expression while inducing apoptosis and cell-cycle arrest led us to investigate the role of
ASCL1 on carcinoid tumor biology. To do this, we directly silenced ASCL1 using a specific siRNA and assessed the subsequent effect on carcinoid cell proliferation and neuroendocrine marker expression. BON cells were treated with an ASCL1-specific siRNA, the equivalent amount of a nonspecific-siRNA as a negative control or an equivalent concentration of Lipofectamine 2000 without any siRNA. The concentration of siRNA required to achieve complete suppression of ASCL1 was 40 nM. Following 2, 4 and 6 days after the given treatment, the resultant cell viability from each group was determined by MTT assay. On each day, parallel treated cells were prepared and assessed for ASCL1 expression by western blotting. On day 2 following treatment, cells transfected

Figure 1. Chrysin exerts an antiproliferative effect on BON and H727 carcinoid cells while inhibiting achaete-scute complex-like 1 (ASCL1) and chromogranin A (CgA). BON GI (a) carcinoid and H727 (b) pulmonary carcinoid cell lines were treated with chrysin doses ranging from 0 to 100 μM over a 6-day period. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide cell viability assay performed every 2 days demonstrated that chrysin dose dependently reduced cell proliferation in both cell lines. Chrysin also suppressed ASCL1 protein expression along with the neuroendocrine marker CgA in both cell lines following 2 days of treatment, as demonstrated by western blotting (c). Finally, chrysin inhibited ASCL1 transcription (d) while activating Notch1 transcription (e) in BON cells, shown by quantitative real-time PCR. Both occurred at statistically significant levels (d and e) (all graphs displayed as ± s.e.m.) (*P < 0.05, **P < 0.01, ***P < 0.001).
with the ASCL1-siRNA did not significantly differ in cell viability relative to treatment groups given the nonspecific-siRNA or Lipofectamine 2000 alone (Figure 4a). At day 2, ASCL1 gene expression was completely silenced in the ASCL1-siRNA-treated group while still present in both controls (Figure 4b). By the fourth day following treatment, ASCL1 silencing was sustained among the ASCL1-siRNA-treated cells, and notably, cell proliferation was significantly reduced ($P = 0.02$) to 70.4% of the untransfected treated cells receiving Lipofectamine 2000 alone. Furthermore, the ASCL1-silenced cells only grew 1.9-fold relative to their density on the day of transfection, while the nonspecific-siRNA-treated cells and the lipofectamine-treated cells grew 3.0- and 2.8-fold, respectively. By the sixth day following siRNA silencing, ASCL1 still appeared to be suppressed relative to controls. The effect of ASCL1 depletion on cell proliferation was most profound by this time point, increasing to only 60.2% of those receiving no siRNA treatment. ASCL1 silencing caused BON cells to only grow by 3.2-fold while treatment with the nonspecific-siRNA or Lipofectamine 2000 alone allowed cells to proliferate 4.8- and 5.3-fold, respectively. Comparing the growth of the ASCL1-silenced treatment group with the proliferative fold increase of the Lipofectamine 2000-treated cells 6 days following transfection generated a P-value of 0.02 (Figure 4a).

It has been shown that inhibition of ASCL1 by antisense oligonucleotides leads to a reduction in neuroendocrine markers in small cell lung cancer and medullary thyroid cancer. Given this relationship between ASCL1 expression and neuroendocrine hormones, we were led to investigate the effect of ASCL1 silencing on the expression of acidic glycopeptide CgA. We were able to demonstrate that steadily decreasing levels of ASCL1 expression, achieved by increasing concentrations of ASCL1-siRNA from 0 to 40 nM, caused a proportional reduction in CgA levels (Figure 4c).

ASCL1-siRNA treatments lasted for 2 days. Importantly, no effect on ASCL1 or CgA expression were observed in the nonspecific-siRNA-treated cells relative to cells receiving Lipofectamine 2000 alone. Along with CgA, carcinoids are known to co-secrete the synaptophysin (SYP). Together, SYP and CgA are important prognostic indicators for patients with carcinoid malignancies. In order to investigate the role of ASCL1 expression on SYP, we subjected both BON cells and the H727 pulmonary carcinoid cell line to either 40 nM of ASCL1-silencing siRNA, the same concentration of a no-target
siRNA treatment or the equivalent concentration of Lipofectamine 2000 alone for 2 days before proteins were harvested and western blotting was performed. Figure 5a shows that basal levels of SYP were abundantly present in both cell lines. However, ASCL1 knockdown resulted in a reduction in the expression of SYP along with CgA in both BON and H727 cells. Those cells receiving the nontargeted siRNA exhibited no effect on ASCL1, SYP or CgA relative to cells receiving no siRNA but only Lipofectamine 2000.

ASCL1 knockdown induces cell-cycle arrest in BON and H727 cell lines
Following our observation that ASCL1 is critical for both cell proliferation (Figure 4) and production of NE markers in two carcinoid cell lines (Figure 5a), we next sought to elucidate the role that this transcription factor has in promoting cell survival. Following silencing of ASCL1 with 40 nM of ASCL1-siRNA, BON and H727 cells were examined for their expression levels of p21 Waf1/Cip1, p27 Kip1, cyclin B1 and cyclin D1 using western blotting analysis. Determining levels of these proteins would allow us to assess the effect of ASCL1 suppression on cell-cycle kinetics in both BON and H727. In both cell lines, ASCL1 suppression caused an elevation in levels of p21 Waf1/Cip1, as well as p27 Kip1, both of which behave as tumor suppressors by binding cyclin-dependent kinase complexes and enforcing restriction points during the cell cycle.52,53,63 In addition, ASCL1 silencing led to the inhibition in the expression of cyclins B1 and D1 relative to both controls, further suggesting the induction of cell-cycle arrest (Figure 5b). Together, cyclin B1 and D1 are necessary for activating cyclin-dependent kinases and allowing for cell-cycle progression.51,64 Collectively, these results indicate that ASCL1 may regulate carcinoid cell growth through inducing cell-cycle arrest. Hence, targeted inhibition of ASCL1 may contribute to the anticancer effects of chrysin and other such agents in carcinoids.

DISCUSSION

The evolutionarily conserved ASCL1 is a basic helix-loop-helix transcription factor fundamental to early neurogenesis in *Drosophila melanogaster* and mammals.55,66 Within its neurogenic role, ASCL1 has been implicated in normal development of adrenal chromaffin and pulmonary endocrine cells, parafollicular C-cells and enteric neurons.21-24 Several studies also describe the role of ASCL1 in accelerating the differentiation of endocrine cells in the developing stomach and gut, underscoring its importance during gastrointestinal organogenesis.22,26 Tight control of ASCL1’S temporal expression is thus necessary for normal neuroendocrine development. On this basis, ASCL1’S link to human diseases of neuroendocrine origin has also been explored. Constitutive expression of ASCL1 has been shown to be an intrinsic feature of neuroendocrine cancers, such as
pheochromocytomas, small cell lung cancer, retinoblastoma, medullary thyroid cancer and carcinoids.12,13,16,18–20 Despite their difference in organ of origin, these cancers share the neuroendocrine phenotype, which likely reflects their neuroendocrine precursors. ASCL1 expression has been described as a key determinant of neuroendocrine characteristics that define these

\[\text{Figure 4. Achaete-scute complex-like 1 (ASCL1) suppression inhibits BON cell proliferation and chromogranin A (CgA) expression. Treatment with an ASCL1-specific small interfering RNA (siRNA) resulted in an inhibition in BON cell proliferation over a 6-day period. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide cell viability assay was performed every 2 days, and optical densities were normalized to values starting from the day of transfection. No effect was observed on cell proliferation among cells treated with the nonspecific siRNA (NS-siRNA) relative to cells treated with Lipofectamine 2000 alone (no siRNA). Data are graphed ± s.e.m. (}*P < 0.05*(a)). Cell lysates were harvested every 2 days and western blotting was performed to assess the degree of ASCL1 knockdown. Protein expression of ASCL1 was continuously suppressed over the 6-day period while still present in cells treated with the NS-siRNA or Lipofectamine 2000 alone (b). BON cells were treated with ASCL1-siRNA at concentrations ranging from 5 to 40 nM to achieve a steady reduction in ASCL1 expression. Western blotting revealed that CgA levels directly correlated with ASCL1 levels as they were progressively diminished alongside incremental ASCL1 depletion. Once again, the NS-siRNA-treated group (NS) did not experience any change in ASCL1 or CgA levels (c).}

\[\text{Figure 5. Achaete-scute complex-like 1 (ASCL1) suppression reduces neuroendocrine marker production and induces cell-cycle arrest in BON and H727 cells. Treatment of BON and H727 cells with an ASCL1-specific siRNA reduced chromogranin A (CgA) and synaptophysin (SYP) levels, shown by western blotting. Cells receiving the nonspecific-small interfering RNA (NS-siRNA), exhibited no visible change in ASCL1, CgA or SYP levels relative to cells treated with Lipofectamine 2000 alone (no siRNA) (a). Concurrent with ASCL1 suppression following ASCL1-siRNA treatment, BON and H727 cell lines exhibited a reduction in cyclin B1 and D1 expression, and an increase in p21Waf1/Cip1 and p27Kip1 expression, as demonstrated by western blotting, therefore suggesting the occurrence of cell-cycle arrest. Cells receiving the NS-siRNA experienced no effect on levels of any of these markers (b).}
malignancies.16,18 Non-neuroendocrine cancers lack detectable ASCL1, and moreover, silencing of ASCL1 effectively represses neuroendocrine marker production in cancers arising from this origin such as small cell lung cancer.12 Therefore, we hypothesized that inhibiting ASCL1 could suppress the carcinoid neuroendocrine phenotype and serve as a potential therapy for these cancers.

Repressing ASCL1 can be achieved by activation of Notch1, which has been shown to negatively regulate ASCL1 in both normal neural and neuroendocrine development and in neuroendocrine tumorigenesis.28–35 This knowledge led us to investigate the ability of the Notch1-activating drug chrysin to reduce ASCL1 expression and thereby inhibit neuroendocrine phenotype in carcinoids. Notably, the anticancer agent chrysin, a bioactive flavonoid, has been shown to activate Notch1 expression in non-neuroendocrine tumors such as anaplastic thyroid cancer and concomitantly inhibit their proliferation.39 Taken together, we surmised that chrysin would block ASCL1 expression in carcinoids while inhibiting cell growth. Finally, we sought to demonstrate whether direct ASCL1 silencing would diminish carcinoid cell viability and neuroendocrine marker production.

In this study, we show that chrysin exerts an antiproliferative effect on both BON and H727 carcinoid cell lines while concurrently inhibiting ASCL1 transcription and translation. We also demonstrate that NOTCH1 gene transcription is steadily induced with increasing doses of chrysin. This corroborates previous findings that Notch1 activation, in this case by chrysin administration, drives ASCL1 suppression in a neuroendocrine context. Given ASCL1’s inextricable link to the neuroendocrine phenotype, we expected to see a reduction in the expression of neuroendocrine marker phenotype. Indeed, chrysin treatment resulted in a dose-dependent decrease in the neuroendocrine marker CgA alongside ASCL1 inhibition.

Accruing evidence has suggested that chrysin’s antiproliferative effect is due to its ability to both halt cell-cycle transit and induce apoptosis.7–14 Though this has not been demonstrated in carcinoids or any neuroendocrine-derived cancers, it has been repeatedly reported that carcinoid cell growth inhibition via apoptosis or cell-cycle arrest is invariably accompanied by a reduction in ASCL1 expression.27,47 Having established ASCL1’s ability to suppress ASCL1 in two carcinoid cell lines, we expected an effect on cell-cycle kinetics and the apoptotic cascade in BON cells following exposure to chrysin. Our results show that chrysin impedes cell-cycle transition during the S/G2 phase while activating p21Waf1/Cip1 and reducing cyclin D1 expression. Furthermore, chrysin activated the apoptotic cascade indicated by a cleavage of caspase-3 and PARP and an increase in apoptotic gated cells following PE AnnexinV/7-AAD staining. The observed G2 phase arrest during cell-cycle progression has also been observed in esophageal adenocarcinoma and colorectal carcinoma cell lines subjected to chrysin treatment, alongside an increase in p21Waf1/Cip1 expression as well.48 Notably, the identical effect on p21Waf1/Cip1 expression has also been observed in a melanoma cell line, wherein chrysin administration increased p21Waf1/Cip1, growth arrest activity, and mitochondrial function.50–57 Chrysin’s ability to induce p21Waf1/Cip1 may partly underlie its growth-suppressive effects, given that this enzyme inhibitor gene functions as a suppressor of cyclin-dependent kinase 2, an essential protein during cell-cycle transition.52,53 Furthermore, chrysin’s ability to reduce cyclin D1 expression is important as this gene promotes oncogenicity and is overamplified in a variety of cancers.69–72 Chrysin also caused an increase in the phosphorylation of cdc2 at Tyr15. During the cell cycle, cdc2 dephosphorylation at Tyr15 and Thr14 is required for mitotic transit to occur.54,56 Hence, chrysin’s ability to increase cdc2 phosphorylation at Tyr15 strongly indicates a drug-induced cell-cycle arrest.

We next investigated the effect of direct ASCL1 inhibition using siRNA gene silencing on BON cell proliferation and neuroendocrine marker expression. Given that ASCL1 depletion using antisense oligonucleotides erased the neuroendocrine phenotype in small cell lung cancer, we expected that blocking this gene’s expression in BON cells would reduce neuroendocrine marker levels.12 Furthermore, as Notch1-induced ASCL1 suppression has been shown to reduce cell proliferation in carcinoids, we anticipated that direct ASCL1 silencing would reduce BON carcinoid cell proliferation as well.28 Indeed, we observed a significant reduction in relative cell growth following prolonged ASCL1 silencing. ASCL1 knockdown also suppressed CgA and SYP expression. As neurosecreted markers, both CgA and SYP are strong indicators of the neuroendocrine phenotype, together serving useful both diagnostically and prognostically.27,47 We were able to show that the degree of CgA reduction was proportional to the level of ASCL1 silencing, implying that ASCL1 tightly regulates CgA expression. Findings from this study also suggest that ASCL1 affects BON cell-cycle progression. Because p21Waf1/Cip1 is a known inhibitor of cyclin-dependent kinase activity and responds to the tumor-suppressor p53, its induction following ASCL1 suppression signifies the occurrence of cell-cycle arrest. This along with the observed induction in the tumor suppressor p27Kip1 and reduction in cyclins B1 and D1 collectively suggest that the growth-inhibitory effect from silencing ASCL1 may be due to an alteration in cell-cycle kinetics.

In summary, this report illustrates that chrysin suppresses ASCL1 gene expression and reduces BON and H727 cell proliferation through initiating apoptosis and cell-cycle arrest. Moreover, our findings affirm past reports that ASCL1 expression is an intrinsic feature of the neuroendocrine phenotype and that, when suppressed, can alter expression of bioactive hormones CgA and SYP while arresting cell-cycle progression. Chrysin’s ability to illicit antiproliferative effects in BON and H727 may not only be rooted in its ability to diminish ASCL1 but may also involve parallel downstream events. This may be true as direct ASCL1 suppression was unable to achieve a growth-inhibitory effect commensurate to that of chrysin, implying that, while ASCL1 may be central to chrysin’s downstream targets, other pathways may be involved as well. Some investigators have taken to exploring more specific derivatives of chrysin in order to enhance its potency while preserving the properties of its parent drug.73 To this vein, understanding downstream intermediaries specific to neuroendocrine cancers such as ASCL1 may also offer ways to enhance the observed therapeutic effect. These studies justify future investigations into the role of ASCL1 and validate its candidacy as a potential therapeutic target for carcinoids.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ACKNOWLEDGEMENTS

This research was supported under the NIH National Research Service Award T32 GM07215 (to YRS), the Howard Hughes Medical Institute Medical Research Fellows Program (to YRS), a research scholarship from the American College of Surgeons (to BZD), a NIH grant R01 CA121115 (to HC), the American Cancer Society MEN2 Thyroid Cancer Professorship 120319-RPM-11-080-01-TBG and Research Scholar Award RSGM TBE-121413 (to HC) and the Layton F. Rikkers, MD, Chair in Surgical Leadership Professorship (to HC).

REFERENCES

1. Oberg K. Genetics and molecular pathology of neuroendocrine gastrointestinal and pancreatic tumors (gastroenteropancreatic neuroendocrine tumors). Curr Endocrinol Diabetes Obes 2009; 16: 72–78.
2. Sippel RS, Chen H. Carcinoid tumors. Surg Oncol Clin N Am 2006; 15: 463–478.
3. Calender A. Genetics of neuroendocrine tumors. Rev Prat 2002; 52: 256–261.
4. Maggard MA, O’Connell JB, Ko CY. Updated population-based review of carcinoid tumors. Ann Surg 2004; 240: 117–122.
Chrysin inhibits ASCL1 and the carcinoid phenotype

YR Somnay et al

Cancer Gene Therapy (2015), 496 – 505

5 Thomas CF, Tazelaar HD, Jett JR. Typical and atypical pulmonary carcinoids: outcome in patients presenting with regional lymph node involvement. Chest 2001; 119: 1143–1150.

6 Maroun J, Kowch W, Kvols L, Bjarmason G, Chen E, Germonio C et al. Guidelines for the diagnosis and management of carcinoid tumors. Part 1: the gastrointestinal tract. A statement from a Canadian National Carcinoid Expert Group. Curr Oncol 2010; 16: 67–76.

7 Pasieka JL. Carcinoid tumors. Surg Clin North Am 2009; 89: 1123–1137.

8 Chen H, Hardacre J, Uzar A, Cameron J, Chotil M. Isolated liver metastases from neuroendocrine tumors: does resection prolong survival? J Am Coll Surg 1998; 187: 88–92 discussion 92–3.

9 Zuetenhorst JM, Taal BG. Metastatic carcinoid tumors: a clinical review. Oncologist 2005; 10: 123–131.

10 Madlkin IM, Latch I, Kidd M, Zikouka M, Eick G. Therapeutic options for gastrointestinal carcinoids. Clin Gastroenterol Hepatol 2006; 4: 526–547.

11 de Herder WW, Hoet al. Oncologist 1997; 4: 451–458.

12 Borges M, Linnola RI, van de Velde HJ, Chen H, Nelinck BD, Madby M et al. An achaete-scute homologue essential for neuroendocrine differentiation in the lung. Nature 1997; 386: 852–855.

13 Nakakura E, Suriarong P, Kunnimalaiyaan M, Hsiao EC, Schuebel KE, Borges MW et al. Regulation of neuroendocrine differentiation in gastrointestinal tumor cells by notch signaling. J Clin Endocrinol Metab 2005; 90: 4350–4356.

14 Sippel R, Carpenter J, Kunnimalaiyaan M, Chen H. The role of human achaete-scute homolog-1 in medullary thyroid cancer cells. J Cell Biochem 2006; 96: 877–873.

15 Jiang S, Kameya T, Asamura H, Umezawa A, Sato Y, Shinada J et al. HASH1 expression is closely correlated with endocrine phenotype and differentiation extent in pulmonary neuroendocrine tumors. Mod Pathol 2004; 17: 222–229.

16 Chen H, Biel MA, Borges MW, Thigaliingam A, Nelinck BD, Baylin SB et al. Tissue-specific expression of human achaete-scute homologue-1 in neuroendocrine tumors: transcriptional regulation by dual inhibitory regions. Cell Growth Differ 1997; 8: 677–686.

17 Shida T, Furuya M, Kishimoto T, Nikaido T, Tanizawa T, Koda K et al. Characterization of NeuroD and mASH1 in the gastroenteropancreatic neuroendocrine tumors. Endocr Relat Cancer 1997; 4: 435–451.

18 Ball DW, Azzoli CG, Baylin SB, Chi D, Dou S, Donis-Keller H et al. Regulation of neuroendocrine differentiation in A375 cells. Biochem Pharmacol 2005; 69: 1851–1857.

19 Zhang Q, Zhao XH, Wang JZ. Cytotoxicity of flavonoids and flavonoids to a human esophageal squamous cell carcinoma cell line (KYSE-510) by induction of G2/M arrest and apoptosis. Toxicol In Vitro 2009; 23: 797–807.

20 Wang W, VanAlstyne PC, Irons KA, Chen S, Stewart JW, Birt DF. Individual and interactive effects of apigenin analogs on G2/M-cell cycle arrest in human colon carcinoma cell lines. Nutr Cancer 2006; 58: 106–114.

21 Woodman OL, Chan EC. Vascular and anti-oxidant actions of flavonoids and flavonoids. Clin Exp Pharmacol Physiol 2004; 31: 786–790.

22 Middleton E, Kandaswami C, Theoharides TC. The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol Rev 2000; 52: 673–751.

23 Cook MR, Pinchot SN, Jaskula-Sztul R, Luo J, Kunnimalaiyaan M, Chen H. Identification of a novel Raf-1 pathway activator that inhibits gastrointestinal cell growth. Mol Cancer Ther 2010; 9: 429–437.

24 Wyche TP, Damalampati A, Cho H, Harrison AD, Kwon GS, Chen H et al. Thioracil activates the Notch pathway in carcinoids and reduces tumor progression in vivo. Cancer Gene Ther 2014; 21: 518–525.

25 Greenblatt DY, Cayo M, Ning L, Jaskula-Sztul R, Chen E et al. Suberoyl bishydroxamic acid inhibits cellular proliferation by inducing cell cycle arrest in carcinoid cancer cells. J Gastrointest Surg 2007; 11: 1515–1520 discussion 1520.

26 Pinchot SN, Jaskula-Sztul R, Ning L, Peters NR, Cook MR, Kunnimalaiyaan M et al. Identification and validation of Notch pathway activating compounds through a novel high-throughput screening method. Cancer 2011; 117: 1386–1398.

27 Lukas J, Bartkova J, Bartek J. Convergence of mitogenic signalling cascades from the cyclin D1-dependent kinase-p38 controlled G1 checkpoint. Mol Cell Biol 1996; 16: 6917–6925.
Neuroendocrine phenotype alteration and growth suppression through apoptosis by MK-2206, an allosteric inhibitor of AKT, in carcinoid cell lines in vitro. *Anticancer Drugs* 2013; 24: 66–72.

Seregni E, Ferrari L, Bajetta E, Martinetti A, Bombardieri E. Clinical significance of blood chromogranin A measurement in neuroendocrine tumours. *Ann Oncol* 2001; 12(Suppl 2): 569–572.

Tomassetti P, Migliori M, Simoni P, Casadei R, De Iasio R, Corinaldesi R et al. Diagnostic value of plasma chromogranin A in neuroendocrine tumours. *Eur J Gastroenterol Hepatol* 2001; 13: 55–58.

Chejfec G, Falkmer S, Grimelius L, Jacobsson B, Rodensjo M, Wiedenmann B et al. Synaptophysin. A new marker for pancreatic neuroendocrine tumors. *Am J Surg Pathol* 1987; 11: 241–247.

Lloyd RV, Erickson LA, Jin L, Kulig E, Qian X, Cheville JC et al. p27kip1: a multifunctional cyclin-dependent kinase inhibitor with prognostic significance in human cancers. *Am J Pathol* 1999; 154: 313–323.

Lorca T, Labbé JC, Devault A, Fresquet D, Capony JP, Cavadore JC et al. Dephosphorylation of cdc2 on threonine 161 is required for cdc2 kinase inactivation and normal anaphase. *EMBO J* 1992; 11: 2381–2390.

Campuzano S, Carramolino L, Cabrera CV, Ruiz-Gómez M, Villares R, Boronat A et al. Molecular genetics of the achaete-scute gene complex of *D. melanogaster*. *Cell* 1985; 40: 327–338.

Chrysin inhibits ASCL1 and the carcinoid phenotype

© 2015 Nature America, Inc.