Dietary Patterns and Risk for Diabetes

The Multiethnic Cohort

Eva Erber, MS
Beth N. Hopping, BS
Andrew Grandinetti, PhD

Song-Yi Park, PhD
Laurence N. Kolonel, MD, PhD
Gertraud Maskarinec, MD, PhD

OBJECTIVE — The high diabetes incidence among Japanese Americans and Native Hawaiians cannot be explained by BMI. Therefore, we examined the influence of three dietary patterns of “fat and meat,” “vegetables,” and “fruit and milk” on diabetes risk in the Hawaii component of the Multiethnic Cohort with 29,759 Caucasians, 35,244 Japanese Americans, and 10,509 Native Hawaiians.

RESEARCH DESIGN AND METHODS — Subjects aged 45–75 years completed a baseline food frequency questionnaire. After 14 years of follow-up, 8,587 subjects with incident diabetes were identified through self-reports or health plan linkages. Risk was assessed using Cox regression stratified by age and adjusted for ethnicity, BMI, physical activity, education, total energy, smoking, alcohol intake, marital status, and hypertension.

RESULTS — Fat and meat was significantly associated with diabetes risk in men (hazard ratio 1.40 [95% CI 1.23–1.60], \(P_{\text{trend}} < 0.0001\)) and women (1.22 [1.06–1.40], \(P_{\text{trend}} = 0.004\)) when extreme quintiles were compared. Except in Hawaiian women, the magnitude of the risk was similar across ethnic groups although not always significant. After stratification by BMI, fat and meat remained a predictor of disease primarily among overweight men and among overweight Japanese women. Vegetables lowered diabetes risk in men (0.86 [0.77–0.95], \(P_{\text{trend}} = 0.004\)) but not in women, whereas fruit and milk seemed to be more beneficial in women (0.85 [0.76–0.95], \(P_{\text{trend}} = 0.003\)) than in men (0.92 [0.83–1.02], \(P_{\text{trend}} = 0.04\)).

CONCLUSIONS — Foods high in meat and fat appear to confer a higher diabetes risk in all ethnic groups, whereas the effects of other dietary patterns vary by sex and ethnicity.

Diabetes Care 33:532–538, 2010

Native Hawaiians have extremely high rates of obesity and diabetes, but despite their relatively low body weight, individuals with Japanese ancestry are also disproportionately affected by diabetes (1). Among the >44,000 Japanese Americans, 14,000 Native Hawaiians, and 35,000 Caucasians in the Hawaii component of the Multiethnic Cohort (MEC), a previous analysis had found diabetes incidence rates of 15.5, 12.5, and 5.8 per 1,000 person-years, respectively, that could not be explained by BMI (2). Dietary patterns have been identified as additional predictors of disease but have only rarely been investigated prospectively among non-Caucasian populations (3–5). The most commonly identified patterns are the so-called “western,” “unhealthy,” or “conservative” pattern (3–11), which is high in meat, high-fat foods, and sweets, and the “prudent” or “healthy” pattern, rich in fruit and vegetables (3–8,10,12,13). With the goal to contribute to the prevention of diabetes, we examined the effect of three dietary patterns, “fat and meat,” “vegetables,” and “fruit and milk,” which had been previously identified in the MEC, on diabetes risk (14).

RESEARCH DESIGN AND METHODS — The MEC study was established from 1993 to 1996 to examine diet and cancer among different ethnic groups in Hawaii and California (14). The Hawaii component of the MEC consists of 103,898 members, primarily Caucasians, Japanese Americans, and Native Hawaiians. Subjects aged 45–75 years entered the cohort by completing a 26-page, self-administered mailed survey that included a food frequency questionnaire and asked about demographics, medical conditions, anthropometric measures, and lifestyle factors (16). Although response rates were highest for Japanese Americans (46% for men and 51% for women) and lowest for Native Hawaiians (28% for men and 35% for women), the MEC yielded a representative population as evidenced by a comparison of educational levels and marital status with census data (15). After exclusion of ineligible subjects (10,028 with prevalent diabetes, 8,797 of other ethnic groups, 6,202 with missing covariates, 2,357 with missing dietary information, 812 subjects with unconfirmed diabetes, and 10 with missing information on follow-up or diabetes at baseline), 36,256 men and 39,256 women were part of this analysis.

Case ascertainment

The detailed identification of case subjects was only available for the Hawaii component of the MEC (2). Subjects with incident diabetes were identified through three sources. A follow-up questionnaire sent to all MEC members in 1999–2003 asked about medical conditions including diabetes and achieved a response rate of 84%. A medication questionnaire administered in 2001–2007 was available for 38% of subjects who had agreed to a blood draw. In 2007, diabetic subjects were identified through a linkage with the two major health plans in Hawaii, Kaiser Permanente and Blue Cross/Blue Shield. After excluding 812 subjects with self-reported diabetes not confirmed by a health plan, 2,251 of the 8,587 subjects with incident diabetes were identified in the follow-up questionnaire, 996 in the medication questionnaire, and 5,340 through the health plans. Annual linkages with state and national death certificate files provided information on vital status.
Table 1—Food groups with high factor loadings for the three dietary patterns

Food groups	Factor loadings
Fat and meat	
Discretionary fat	88
Meat and organ meat	83
Frankfurters, sausage, and luncheon meat	72
White potatoes	68
Non–whole grains	68
Eggs	67
Cheese	63
Vegetables	
Dark-green vegetables	87
Other vegetables	86
Deep-yellow vegetables	79
Other fruits	44
Citrus fruits, melons, and berries	36
Fruit and milk	
Milk and yogurt	71
Cheese	35
Other fruits	71
Citrus fruits, melons, and berries	71

Dietary patterns

Based on the food frequency questionnaire calibrated within the different ethnic groups (16), nutrients were determined and Food Guide Pyramid servings were computed using an ethnicity-specific food composition database with information from the U.S. Department of Agriculture and additional laboratory analyses performed in Hawaii (15). Subjects who reported energy, fat, protein, or carbohydrate intakes outside the mean ±3 relative SDs were excluded.

In a previous analysis, exploratory factor analysis with an acceptable goodness of fit was applied to the MEC (14). Three distinct dietary patterns were identified, and factor scores were obtained for each participant (Table 1). The pattern fat and meat was characterized by discretionary fat, meat, eggs, and cheese and explained 30% of variation. The vegetables pattern (20% variation explained) included high amounts of vegetables and also fruits with a relatively low loading, whereas fruit and milk had high loadings on milk, yogurt, cheese, and fruits and explained 14% of variation. The factor analysis was repeated in each ethnic group and produced similar results (14). Therefore, the patterns are expected to be unchanged after the exclusion of the California component with primarily African Americans and Latinos.

Statistical methods

All statistical analyses were performed using SAS statistical software (version 9.2, SAS Institute, Cary, NC). We used Cox proportional hazards regression models with follow-up time as the underlying time metric to estimate hazard ratios (HRs) and 95% CI for sex-specific quintiles of factor scores in relation to diabetes. Ordinal variables representing the median values for each quintile were used to test for linear trends. The final models were stratified by age at cohort entry and adjusted for ethnicity (Japanese Americans and Native Hawaiians versus Caucasians), BMI (continuous), physical activity (quintiles), education (13–15 and

Table 2—Baseline characteristics of the Hawaii component of the MEC, 1993–2007

	Caucasian	Japanese American	Native Hawaiian				
	Men	Women	All				
n	15,116	14,643	16,572	18,672	4,568	5,941	75,512
Cases (%)	7	5	16	13	18	16	11
Noncases (%)	93	91	84	87	83	84	89
Age (%)							
45–54 years	45	47	33	32	51	53	41
55–64 years	28	27	28	31	29	28	28
≥65 years	28	26	39	37	20	19	31
Education (%)							
≤12 years	19	23	39	41	48	52	34
13–15 years	29	34	29	28	32	30	30
>15 years	52	43	32	31	21	18	36
BMI (%)							
<25.0 kg/m²	47	63	58	74	27	39	57
25.0–29.9 kg/m²	41	25	37	21	44	33	32
≥30 kg/m²	12	13	6	5	29	28	11
Cigarette smoking (%)							
Never	33	44	30	69	33	45	44
Past	51	40	54	22	45	31	40
Current	16	17	16	9	23	24	15
Fat and meat	0.33	0.28	0.12	0.48	0.57	0.07	0.06
Vegetables	0.22	0.01	0.32	0.47	0.18	0.29	0.18
Fruit and milk	0.10	0.22	0.68	0.30	0.44	0.14	0.19
Total energy (kcal)	2,316 ± 891	1,824 ± 689	2,293 ± 833	1,823 ± 674	2,800 ± 1,322	2,341 ± 1,219	2,125 ± 907
Red meat (g/day)	43 ± 35	28 ± 24	44 ± 32	30 ± 23	60 ± 45	46 ± 37	38 ± 32
Dairy foods (g/day)	262 ± 211	254 ± 207	137 ± 137	157 ± 154	211 ± 211	230 ± 231	201 ± 192
Vegetables (g/day)	339 ± 202	318 ± 189	322 ± 194	385 ± 267	407 ± 300	337 ± 213	
Fruits (g/day)	326 ± 273	306 ± 265	371 ± 296	337 ± 335	405 ± 412	342 ± 295	
Rice (g/day)	110 ± 134	73 ± 92	408 ± 245	270 ± 180	353 ± 261	221 ± 193	231 ± 223
Physical activity (METs)	1.7 ± 0.3	1.7 ± 0.3	1.6 ± 0.2	1.7 ± 0.4	1.6 ± 0.3	1.6 ± 0.3	

Data are %, medians (pattern scores only), or means ± SD. The following subjects were excluded from the 103,898 members of the Hawaii component of the MEC: 10,028 with prevalent diabetes, 8,797 of other ethnicity, 812 with unconfirmed diabetes, 6,202 with missing covariates, 2,537 with missing dietary information, and 10 with lack of follow-up information or missing diabetes information at baseline.
Dietary patterns and diabetes

Table 3—Dietary patterns and diabetes risk in men, Hawaii component of the MEC, 1993–2007

	All men	Caucasian	Japanese American	Native Hawaiian
	n*	n*	n*	n*
Fat and meat				
Quintile 1	773	142	539	92
Quintile 2	812	166	523	123
Quintile 3	912	216	572	124
Quintile 4	958	238	543	177
Quintile 5	1,100	318	500	282
P_{trend}	<0.0001	0.07	<0.0002	0.27
Vegetables				
Quintile 1	783	362	303	118
Quintile 2	907	232	527	148
Quintile 3	982	203	605	174
Quintile 4	976	183	612	181
Quintile 5	907	100	630	177
P_{trend}	0.004	0.01	0.007	0.17
Fruits and milk				
Quintile 1	1,144	124	819	201
Quintile 2	1,011	168	675	168
Quintile 3	925	232	520	173
Quintile 4	770	253	390	127
Quintile 5	705	303	273	129
P_{trend}	0.04	0.02	0.76	0.14

*Number of case subjects with diabetes. †HRs (95% CI) were stratified by age at cohort entry and adjusted for ethnicity (Japanese American and Native Hawaiian vs. Caucasian), physical activity (quintiles), education (12–15 and >15 vs. ≤12 years), energy intake (log-transformed), BMI (continuous), alcohol intake (quintiles), smoking status (past and current vs. never), marital status, and self-reported high blood pressure at baseline.

Results — BMI, median factor scores, and intake from major food groups differed significantly by ethnicity and sex ($P < 0.001$) (Table 2). Caucasians had higher median scores for the fruit and milk pattern and consumed more dairy foods than the other groups. Japanese Americans had a higher proportion of normal-weight subjects, scored higher on the vegetables pattern, and consumed the most rice. Native Hawaiians were more likely to be obese, to have high median scores on the fat and meat pattern, and to report high energy intakes. Women consumed more dairy foods and fruits than men, who had a higher meat intake. All dietary patterns were significantly correlated with BMI ($r_s = 0.3$ for fat and meat and <0.1 for the other patterns).

Fat and meat was significantly associated with diabetes risk in men with HR 1.40 ([95% CI 1.23–1.60], $P_{\text{trend}} < 0.0001$) when the highest quintile of the factor score was compared with the lowest (Table 3). This trend was consistent across ethnic groups although not statistically significant for Native Hawaiians. High scores on the fat and meat pattern also showed a significant trend with diabetes risk in men overall (HR 1.22, [1.06–1.40], $P_{\text{trend}} = 0.004$). The association was significant in Japanese American women ($P_{\text{trend}} = 0.045$), the group with a largest sample size, whereas it was similar in magnitude, although not significant, in Caucasian women, and showed no association in Native Hawaiian women (Table 4).

The pattern vegetables was inversely associated with diabetes risk in men overall (HR 0.86 [95% CI 0.77–0.95], $P_{\text{trend}} = 0.004$) as well as in Caucasian and Japanese American men but not in Native Hawaiian men and not in women. Whereas the fruit and milk pattern was weakly related to diabetes in all men ($P_{\text{trend}} = 0.04$), the association was stronger among Caucasians ($P_{\text{trend}} = 0.02$) and in all women (0.85 [0.76–0.96], $P_{\text{trend}} = 0.005$). Although the risk reduction was similar in all ethnic groups for women, the trend tests failed to reach statistical significance.

Because of the fairly consistent fat and meat results, we stratified the analyses by BMI (Fig. 1). In all men, the risk for diabetes increased with higher factor scores for fat and meat among overweight (HR 1.49 [95% CI 1.23–1.81], $P_{\text{trend}} < 0.0001$) and obese (1.57 [1.16–2.12], $P_{\text{trend}} = 0.004$) individuals. By ethnicity, the effect was observed in overweight Caucasian ($P_{\text{trend}} = 0.006$) and Japanese American ($P_{\text{trend}} = 0.002$) men with borderline associations among obese Japanese American ($P_{\text{trend}} = 0.08$) and Native Hawaiian ($P_{\text{trend}} = 0.13$) men. In women, no significant trends were observed for the entire population; only the trend for overweight Japanese American women was significant ($P_{\text{trend}} = 0.04$).

Conclusions — In this multiracial population, high scores in the fat and meat pattern were associated with elevated diabetes risk among all ethnic groups in men and to a lesser degree in all and in Japanese American women. After stratification by BMI, the effects were primarily seen in overweight Caucasian and Japanese American men as well as in over-
weight Japanese American women. The vegetables pattern lowered diabetes risk in Caucasian and Japanese American men but not in women, whereas fruit and milk lowered diabetes risk more in women than in men. These findings indicate that the type of food consumed might contribute to diabetes risk beyond its effects on body weight.

The positive association with the fat and meat pattern is consistent with similar patterns in several other cohort studies (4–11) and agrees with a recent meta-analysis that associated red and processed meat with diabetes (17). However, in a Japanese study, the animal food pattern was not related to diabetes risk (3). Meat may be harmful because of its content of saturated fat, nitrites (processed meat), and iron and may lead to hyperglycemia and hyperinsulinemia (18). Because women had lower loadings on the fat and meat pattern and lower meat intake than men, the use of sex-specific quintiles might explain the weaker associations among women. The more pronounced risk estimates for the fat and meat pattern in overweight than in normal-weight men are consistent with previous studies (6–8), although another investigation did not detect such an interaction (4).

The inverse associations for vegetables in men and fruit and milk in women are consistent with studies that showed a reduced risk of diabetes for subjects adhering to a prudent or healthy diet high in fruits and vegetables (3,4,6,8,10,12,13). However, contradictory results have been reported for vegetables and fruits. Two reports did not detect a protective effect for a prudent pattern (5,7) and one analysis found a protective effect for the high-vegetable pattern but no effect for the high-fruit pattern (10). Whereas fruit but not vegetables were protective in a U.S. cohort (19), vegetable but not fruit intake was protective among Chinese women (20). The protective effects of fruits and vegetables on diabetes have been attributed to antioxidants, fiber, carotenoids, magnesium, and folate (21). Some ingredients in fruits, e.g., dietary fiber, may have beneficial effects on glucose metabolism, whereas others, e.g., sugars, may have adverse effects. Dairy products have been associated with diabetes risk due to their high fat content, but low-fat dairy products may have beneficial effects (4,22). Unfortunately, we were not able to differentiate between high- and low-fat products. The inconsistent results for the vegetables and fruit and milk pattern by sex may be due to diverse dietary habits observed in men and women. Women had higher scores on the vegetables and the fruit and milk pattern (14) and relatively higher intakes of fruits and dairy products (Table 2) (15).

Similar to our nonsignificant associations among Native Hawaiians, a report from diverse ethnic groups in Hawaii indicated that ethnicity was a stronger predictor of diabetes risk than dietary patterns (5). It is possible that the high rate of obesity among Native Hawaiians is a stronger determinant of diabetes than nutritional habits (Fig. 1). The smaller sample size of Native Hawaiians, the high intake of total energy, and the low loadings on fruit and milk (Table 2) may have also contributed to the absence of significant associations. The fact that a diet high in animal fat has been associated with intra-abdominal fat deposition and insulin resistance (23) might explain the significant results for the fat and meat pattern among overweight Japanese Americans. Despite their relatively low BMI, individuals of Japanese ancestry seem to be more susceptible to central obesity with a

Table 4—Dietary patterns and diabetes risk in women, Hawaii component of the MEC, 1993–2007

	All women	Caucasian	Japanese American	Native Hawaiian				
	n*	HR (95% CI)†						
Fat and meat								
Quintile 1	657	1.00	83	1.00	480	1.00	94	1.00
Quintile 2	691	1.01 (0.91–1.13)	114	1.04 (0.78–1.38)	465	1.00 (0.87–1.14)	112	1.02 (0.76–1.33)
Quintile 3	784	1.09 (0.98–1.22)	135	1.07 (0.80–1.44)	498	1.10 (0.96–1.26)	151	1.04 (0.79–1.36)
Quintile 4	823	1.07 (0.95–1.21)	161	1.08 (0.80–1.45)	481	1.08 (0.92–1.25)	181	0.94 (0.71–1.24)
Quintile 5	1,077	1.22 (1.06–1.40)	222	1.21 (0.87–1.68)	450	1.20 (1.00–1.44)	405	1.10 (0.81–1.48)
P trend	0.004	0.24	0.045	0.60				
Vegetables								
Quintile 1	665	1.00	207	1.00	277	1.00	181	1.00
Quintile 2	808	1.06 (0.95–1.17)	162	1.12 (0.91–1.38)	473	1.17 (1.01–1.36)	173	0.83 (0.67–1.02)
Quintile 3	816	1.03 (0.93–1.15)	152	1.21 (0.97–1.50)	467	1.06 (0.91–1.23)	197	0.93 (0.76–1.15)
Quintile 4	858	1.05 (0.94–1.17)	113	1.02 (0.80–1.30)	559	1.16 (0.99–1.35)	186	0.88 (0.70–1.09)
Quintile 5	885	1.02 (0.91–1.14)	81	1.03 (0.78–1.35)	598	1.11 (0.95–1.30)	206	0.89 (0.71–1.11)
P trend	0.93	0.78	0.41	0.48				
Fruits and milk								
Quintile 1	984	1.00	96	1.00	664	1.00	224	1.00
Quintile 2	862	0.96 (0.88–1.05)	139	1.10 (0.85–1.43)	546	0.95 (0.85–1.07)	177	0.93 (0.76–1.13)
Quintile 3	816	0.95 (0.86–1.04)	143	0.94 (0.72–1.23)	484	0.94 (0.83–1.06)	189	1.06 (0.87–1.30)
Quintile 4	725	0.90 (0.82–1.00)	150	0.81 (0.62–1.06)	400	0.95 (0.83–1.08)	175	0.93 (0.75–1.13)
Quintile 5	645	0.85 (0.76–0.96)	187	0.88 (0.67–1.16)	280	0.86 (0.74–1.01)	178	0.86 (0.68–1.09)
P trend	0.005	0.09	0.29					

*Number of case subjects with diabetes. †HRs (95% CI) were stratified by age at cohort entry and adjusted for ethnicity (Japanese American and Native Hawaiian vs. Caucasian), physical activity (quintiles), education (12–15 and >15 vs. ≤12 years), energy intake (log-transformed), BMI (continuous), alcohol intake (quintiles), smoking status (past and current vs. never), marital status, and self-reported high blood pressure at baseline.
Figure 1—Diabetes risk and “fat and meat” dietary pattern by weight status, Hawaii component of the MEC, 1993–2007. The models were stratified by age at cohort entry and adjusted for ethnicity (Japanese American and Native Hawaiian vs. Caucasian), physical activity (quintiles), education (12–15 and >15 vs. ≤12 years), BMI (continuous), energy intake (log transformed), alcohol intake (quintiles), smoking status (past and current versus never), marital status, and self-reported high blood pressure at baseline.
higher proportion of visceral fat than Caucasians (24) that predisposes to insulin resistance (25).

It is necessary to note some weaknesses of this study. Because of the multiple comparisons, some of the findings might be due to chance. We did not have information on the type of diabetes. However, given the median age of 59 years at baseline, >90% of cases of diabetes are probably type 2. The results stratified by BMI should be interpreted with care; residual confounding may be present, and it is unclear whether BMI functions as a confounder or intermediate variable. One limitation of the dietary pattern approach is the difficulty in separating the effects of individual nutrients (8). Because dietary patterns are thought to capture synergistic and antagonistic effects of interrelated nutrients, they may be able to detect the cumulative effect of individual foods whose association with disease risk cannot be detected separately (4). Patterns of diet can also be more easily translated into practical public health advice for diabetes prevention. Other strengths, besides the multietnic population with a great variation in diabetes risk and BMI, are the large sample size, the long follow-up, and the case ascertainment through health plans (2).

Our findings support previous research that a diet rich in meat and fat predisposes to diabetes independent of its effect on body weight (17), in particular among overweight individuals (6–8). Because our findings were more consistent among Caucasians and Japanese Americans, it seems possible that most of the adverse effect of the fat and meat pattern in Native Hawaiians is mediated through BMI. Our analyses agree with investigations that included individuals with Asian ancestry and reported effects of dietary patterns similar to those in Caucasians (3–5). The results for patterns rich in fruit, vegetables, and dairy products are ambiguous and need to be investigated in other cohorts. A better understanding of dietary factors related to diabetes risk in Japanese Americans and Native Hawaiians will be useful in developing preventive strategies in these high-risk groups. Despite improvements in treatment, ultimately only prevention can reduce the disease burden.

Acknowledgments—The Multiethnic Cohort was supported by National Cancer Institute Grant R37-CA-54281 (principal investigator [PI] Dr. L.N. Kolonel). The recruitment of Native Hawaiians was funded by Grant DAMD 17-94-T-4184 (PI Dr. A.Nomura). The diabetes project is funded by National Institute of Diabetes and Digestive and Kidney Diseases Grant R21-DK-073816 (PI Dr. G. Maskarinec).

No potential conflicts of interest relevant to this article were reported.

Parts of this study were presented in abstract form at the World Diabetes Congress, Montreal, Quebec, Canada, 18–22 October 2009. We thank Mark M. Schmidt and Aleen Uchida at Kaiser Permanente Center for Health Research (Honolulu, HI) and Deborah Taira Juarez and Krista Hodges at HMSA, Blue Cross Blue Shield of Hawaii, for their assistance in linking the cohort with the health plans. We also thank Grace Matsuura for her help with the literature review.

References

1. McNeely MJ, Boyko EJ. Type 2 diabetes prevalence in Asian Americans: results of a national health survey. Diabetes Care 2004;27:66–69
2. Maskarinec G, Erber E, Grandinetti A, Verheus M, Oum R, Hopping BN, Schmidt MM, Uchida A, Juarez DT, Hodges K, Kolonel LN. Diabetes incidence based on linkages with health plans: the multietnic cohort. Diabetes 2009;58:1732–1738
3. Mizoue T, Yamaji T, Tabata S, Yamaguchi K, Ogawa S, Mineshita M, Kono S. Dietary patterns and glucose tolerance abnormalities in Japanese men. J Nutr 2006;136:1352–1358
4. Nettleton JA, Steffen LM, Ni H, Liu K, Jacobs DR Jr. Dietary patterns and risk of incident type 2 diabetes in the Multi-Ethnic Study of Atherosclerosis (MESA). Diabetes Care 2008;31:1777–1782
5. Kim HS, Park SY, Grandinetti A, Holck PS, Waslien C. Major dietary patterns, ethnicity, and prevalence of type 2 diabetes in rural Hawaii. Nutrition 2008;24:1065–1072
6. van Dam RM, Rimm EB, Willett WC, Stampfer MJ, Hu FB. Dietary patterns and risk for type 2 diabetes mellitus in U.S. men. Ann Intern Med 2002;136:201–209
7. Fung TT, Schulze M, Manson JE, Willett WC, Hu FB. Dietary patterns, meat intake, and the risk of type 2 diabetes in women. Arch Intern Med 2004;164:2235–2240
8. Montonen J, Knpekt P, Harkanen T, Jarvinen R, Heliovaara M, Aromaa A, Reunanen A. Dietary patterns and the incidence of type 2 diabetes. Am J Epidemiol 2005;161:219–227
9. Schulze MB, Hoffmann K, Manson JE, Willett WC, Meigs JB, Weikert C, Heidemann C, Colditz GA, Hu FB. Dietary pattern, inflammation, and incidence of type 2 diabetes in women. Am J Clin Nutr 2005;82:675–684; quiz 714–715
10. Hodge AM, English DR, O’Dea K, Giles GG. Dietary patterns and diabetes incidence in the Melbourne Collaborative Cohort Study. Am J Epidemiol 2007;165:603–610
11. McNaughton SA, Mishra GD, Brunner EJ. Dietary patterns, insulin resistance, and incidence of type 2 diabetes in the Whitehall II Study. Diabetes Care 2008;31:1343–1348
12. Heidemann C, Hoffmann K, Spranger J, Klipstein-Grobusch K, Möhlig M, Pfeiffer AF, Boeing H. Dietary patterns protective against type 2 diabetes in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam study cohort. Diabetologia 2005;48:1126–1134
13. Brunner EJ, Mosdell A, Witte DR, Martikainen P, Stafford M, Shipley MJ, Marmot MG. Dietary patterns and 15-y risks of major coronary events, diabetes, and mortality. Am J Clin Nutr 2008;87:1414–1421
14. Park SY, Murphy SP, Wilkens LR, Yamamoto JF, Sharma S, Hankin JH, Henderson BE, Kolonel LN. Dietary patterns using the Food Guide Pyramid groups are associated with sociodemographic and lifestyle factors: the Multietnic Cohort Study. J Nutr 2005;135:843–849
15. Kolonel LN, Henderson BE, Hankin JH, Nomura AM, Wilkens LR, Pike MC, Stram DO, Monroe KR, Earle ME, Nagamine FS. A multietnic cohort in Hawaii and Los Angeles: baseline characteristics. Am J Epidemiol 2000;151:346–357
16. Stram DO, Hankin JH, Wilkens LR, Pike MC, Monroe KR, Park S, Henderson BE, Nomura AM, Earle ME, Nagamine FS, Kolonel LN. Calibration of the dietary questionnaire for a multietnic cohort in Hawaii and Los Angeles. Am J Epidemiol 2000;151:358–370
17. Aune D, Ursin G, Vieore MB. Meat consumption and the risk of type 2 diabetes: a systematic review and meta-analysis of cohort studies. Diabetologia 2009;52:2277–2287
18. Fung TT, Rimm EB, Spiegelman D, Rifai N, Toto G, Willett WC, Hu FB. Association between dietary patterns and plasma biomarkers of obesity and cardiovascular disease risk. Am J Clin Nutr 2001;73:61–67
19. Bazzano LA, Li TY, Joshipura KJ, Hu FB. Intake of fruit, vegetables, and fruit juices and risk of diabetes in women. Diabetes Care 2008;31:1311–1317
20. Villegas R, Shu XO, Gao YT, Yang G, Elasy T, Li H, Zheng W. Vegetable but not fruit consumption reduces the risk of type 2 diabetes in Chinese women. J Nutr 2008;138:574–580
21. Schulze MB, Schulz M, Heidemann C,
Dietary patterns and diabetes

Schienkiewitz A, Hoffmann K, Boeing H. Fiber and magnesium intake and incidence of type 2 diabetes: a prospective study and meta-analysis. Arch Intern Med 2007;167:956–965

22. Choi HK, Willett WC, Stampfer MJ, Rimm E, Hu FB. Dairy consumption and risk of type 2 diabetes mellitus in men: a prospective study. Arch Intern Med 2005;165:997–1003

23. Fujimoto WY, Bergstrom RW, Boyko EJ, Chen KW, Kahn SE, Leonetti DL, McNeely MJ, Newell LL, Shofer JB, Tsunehara CH, Wahl PW. Preventing diabetes—applying pathophysiological and epidemiological evidence. Br J Nutr 2000;84(Suppl. 2):S173–S176

24. Tanaka S, Horimai C, Katsukawa F. Ethnic differences in abdominal visceral fat accumulation between Japanese, African-Americans, and Caucasians: a meta-analysis. Acta Diabetol 2003;40(Suppl. 1):S302–S304

25. Hayashi T, Boyko EJ, McNeely MJ, Leonetti DL, Kahn SE, Fujimoto WY. Visceral adiposity, not abdominal subcutaneous fat area, is associated with an increase in future insulin resistance in Japanese Americans. Diabetes 2008;57:1269–1275