The effects of palladium nanoparticles on the renal function of female Wistar rats

Luca Fontana1, Veruscka Leso1, Alessandro Marinaccio2, Giovanna Cenacchi3, Valentina Papa3, Kerstin Leopold4, Roland Schindl4, Beatrice Bocca5, Alessandro Alimonti5, and Ivo Iavicoli1

1Institute of Public Health, Catholic University of the Sacred Heart, Rome, Italy, 2Epidemiology Unit, Occupational Medicine Department, Research Division, Italian Workers’ Compensation Authority (INAIL), Rome, Italy, 3Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy, 4Institute of Analytical and Bioanalytical Chemistry, University of Ulm, Ulm, Germany, and 5Department of Environment and Primary Prevention, Italian National Institute for Health, Rome, Italy

Abstract

A number of studies have shown that palladium nanoparticles are able to exert some adverse health effects, such as concentration-dependent cytotoxicity, induction of apoptosis and alterations of the release and expression of numerous cytokines. Nevertheless, our current knowledge of the potential toxic effects induced by exposure to these nanoparticles is far from being complete. For this reason, the present study assessed the possible renal toxicity of palladium nanoparticles by investigating urinary excretion of retinol binding protein, β2-microglobulin and albumin in female Wistar rats intravenously exposed to different nanoparticle concentrations (0.012, 0.12, 1.2 and 12 μg/kg) and by carrying out a morphological observation of the kidneys of treated animals. Results showed a significant increase in urinary retinol binding protein levels in rats that were administered 12 μg/kg compared to controls. Moreover, an ultrastructural study of the kidneys revealed significant alterations in the proximal and distal tubular epithelium were observed, with a range of severity, in all experimental conditions. Collectively, our findings suggest that exposure to palladium nanoparticles is able to induce a significant renal tubular dysfunction, whereas it does not seem to affect kidney glomerular filtration. However, further studies are needed to confirm our results, to understand the molecular mechanisms of toxic action and to evaluate the potential adverse effects of these nanoparticles also on the glomerular section of the kidney.

Keywords

β2-Microglobulin, albumin, kidney, rats, retinol binding protein

Introduction

Palladium (Pd) is a noble and precious metal that together with iridium (Ir), platinum, rhodium (Rh), ruthenium and osmium, belongs to the platinum group elements (PGEs). Although this metal is used in many industrial sectors, by far its most extensive use is for production of automobile catalysts (Iavicoli et al., 2008a, 2010). These devices are able to further reduce carbon monoxide (CO), unburned hydrocarbons (HCs) and nitrogen oxides (NOx) emissions in the exhaust of lean-burn engines (Ravindra et al., 2004). However, surface abrasion and deterioration of catalytic converters release Pd into the environment, causing a constant and progressive increase of its level in road dust, soil, airborne particulate and groundwater tables (Iavicoli et al., 2011a, Ravindra et al., 2004).

Exposure to this metal can cause acute toxicity or hypersensitivity with respiratory symptoms, urticaria and, less frequently, contact dermatitis (Cristaudo et al., 2005; Daenen et al., 1999; Garau et al., 2005; Goossens et al., 2006; Jappe et al., 1999; Katoh et al., 1999; Murdoch et al., 1986; Van Joost & Rosayanto-Mahadi, 1990; Van Ketel & Niebber, 1981). Moreover, Pd is able to exert a significant effect on the production and release of a number of cytokines (Boscolo et al., 2004; Iavicoli et al., 2006, 2008b; Schmalz et al., 2000). Effects on the immune system currently represent the most important health hazard to humans even if the capacity of Pd ions to elicit a series of in vitro cytotoxic effects by stimulating free radical production (Botre et al., 2007) has given rise to concern about other health effects. Wiseman & Zereini (2009) recently expressed disagreement with the viewpoint that PGE exposure represents a minimal health risk. They claimed that these elements are indeed a human health concern and pose a greater health risk than once thought for a variety of reasons. In fact, a significant proportion of PGEs is present in the finer particle size fractions of airborne particulate matter (PM) found to be associated with increases in morbidity and mortality (Bell et al., 2008; Dominici et al., 2006; Katsouyanni et al., 2001; Samet et al., 2000). In general, PGEs pose a potential health risk due to the fact that 30 to 57% of the total measured PGEs in air samples has been found to be present in PM with an aerodynamic diameter of less than 10 μm, especially the PM2.5 fraction (Artelt et al., 1999; Gomez et al., 2002; Zereini et al., 2004). If we focus our attention on Pd, evidence suggests that this metal is more commonly associated with finer particle size fractions (Kanitsar et al., 2003; Zereini et al., 2004). Unfortunately, to our knowledge, there are no studies in the literature that have investigated Pd concentrations in ultrafine PM particles (UFPs, smaller than 100 nm) however,
considering that vehicle traffic has been found to be one of the most important sources of UFP emissions (Morawska et al., 2008; Shi et al., 1999), it is plausible to assume that a significant proportion of Pd, released into the environment by automobile catalysts, may be present in UFPs. In fact, the coarse particles emitted by car catalytic converters consist of alumina or silica that carry dispersed PGE particles with diameters of a few nanometers (Artelt et al., 1999; Rauch et al., 2002).

The term UFPs has traditionally been used to describe airborne particles that are less than 100 nm in diameter and is frequently employed in connection with nanometer-diameter particles that are incidentally produced by secondary sources, such as technical products and byproducts of various industrial or combustion processes (Iavicoli et al., 2013). In contrast, engineered nanoparticles (NPs) are intentionally produced and designed with very specific properties or compositions. However, it is currently unclear whether the use of source-based definitions of NPs and UFPs is justified from a safety and health perspective (NIOSH, 2009). In fact, both NPs and UFPs are characterized by particular physico-chemical properties that make them more harmful from a health perspective than larger particles composed of the same materials (Nel et al., 2006).

A number of recent studies have investigated the potential toxicity of Pd nanoparticles (Pd-NPs) and have demonstrated their ability to cause adverse health effects, such as concentration-dependent cytotoxicity, induction of apoptosis and alterations of the release and expression of numerous cytokines (Adams et al., 2014; Boscolo et al., 2010; Hildebrand et al., 2010; Reale et al., 2011; Speranza et al., 2010; Wilkinson et al., 2011). However, despite these recent efforts, overall understanding of the biological effects of Pd-NP exposure is far from complete. Therefore, in order to gain a deeper knowledge of Pd-NP toxicity, the present study aims to evaluate the renal toxicity of Pd-NPs, by investigating urinary excretion of retinol binding protein (RBP), β2-microglobulin and albumin. In fact, the assessment of the toxicological effects of Pd-NPs on the renal system appears to be highly relevant, considering that after 14- and 90-day exposure, the highest Pd concentrations were observed in the kidneys (Iavicoli et al., 2009, 2010) and that other PGEs, such as Ir and Rh have been shown to exert a nephrotoxic effect (Iavicoli et al., 2011b, 2014).

Materials and methods

Animal husbandry

Twenty-five 3-month-old female Wistar rats were supplied from the Experimental Animal Production Plant of the Catholic University of the Sacred Heart (Rome, Italy) and allowed to acclimatize for two weeks before starting the experiment. Throughout the experiment, the animals were kept in Makrolon cages (model 1291, with overall dimensions of 425 × 266 × 185 mm and floor area of 800 cm²) (Tecniplast S.p.A., Buguggiate, Italy) containing a wooden dust-free bedding (model Scobis Uno, Mucedola s.r.l., Settimo Milanese, Italy), at a room temperature of 23.1 °C, a relative humidity of 55% and a 12-h light/dark cycle. The animals had a mean weight of 271 ± 16 g and were fed with the solid “R” maintenance diet for rats (Altromin Rieper A. S.p.A., Vandoies, Italy). The animals were provided ad libitum with diet and purified water. No significant changes in body weight were observed during and at the end of the experiments.

Chemicals

The experimental protocol of this study required the use of the following chemicals: sodium borohydride, palladium (II) nitrate [Pd(NO₃)₂] and nitric acid (HNO₃) for the preparation and characterization of uncoated palladium nanoparticle hydrosol; HNO₃, sodium azide, medetomine and ketamine for the sampling of biological materials and the sacrifice of rats; HNO₃, Pd, indium, certified reference materials Clincheck® Urine Control Level I and Level II for analysis of Pd in urine and serum. Assay buffer, anti-albumin antibody (Shibayagi Co., Ltd., Gunma, Japan), HRP-conjugated antibody, chromogenic substrate solution and stopper reaction were used in the ELISA kit for the determination of urinary albumin; sample diluent, anti- rat β2-microglobulin antibody (Mitsubishi Chemical Medience Corporation, Tokyo, Japan), enzyme-labeled antibody solution, chromogenic substrate solution and stop solution were employed in the ELISA kit for the determination of urinary β2-microglobulin; assay buffer, DetectXs RBP-peroxidase conjugate, DetectXs RBP antibody solution (Arbor Assay, Ann Arbor, MI), TMB substrate solution and stop solution were used in the ELISA kit for RBP urinary determination; buffer solutions were employed to calibrate the instrument used to quantify urinary pH; glutaraldheyde, cacodylate buffer, osmium tetroxide (OsO₄), veronal acetate buffer, ethanol, araldite, uranyl acetate and lead citrate were used to prepare kidney tissues for ultrastructural observation.

Preparation and characterization of uncoated palladium nanoparticle hydrosol

As a first step, 300 µL of a freshly prepared 0.029 molar sodium borohydride solution, obtained by dissolution of 11 mg of sodium borohydride (p.a., Merck, Darmstadt, Germany) in 10 mL of ultrapure water, were diluted in 100 mL of ultrapure water. 500 µL of a Pd stock standard solution (1000 mg/L, Pd(NO₃)₂) in 0.5 mol/L HNO₃, Merck, Darmstadt, Germany) were then added and the mixture was shaken thoroughly. The immediate color change from transparent to dark grey indicated the formation of Pd-NPs. The mixture was kept in the dark at room temperature for 12 h to complete the reaction.

The Pd-NP hydrosol obtained was characterized by continuum source - graphite furnace atomic absorption spectrometry (CS-GFAAS; contrAA 600, Analytik Jena, Jena, Germany) and transmission electron microscopy (TEM; Zeiss EM 10, Carl Zeiss Microscopy GmbH, Jena, Germany) operating at 80 kV. Pd concentration of the stock hydrosol was determined in a 100-fold dilution of the stock hydrosol in ultra pure water by means of CS-GFAAS using the spectral line at 244.791 nm. Calibration was performed in a concentration range from 20 to 80 µg Pd/L by applying adequate dilutions of a Pd stock standard solution (1000 mg/L, Pd(NO₃)₂ in 0.5 mol/L HNO₃, traceable to Standard Reference Materials from the National Institute of Standards and Technology, Merck, Darmstadt, Germany), thus producing a linear calibration function with a correlation coefficient of 0.986. The stock hydrosol Pd concentration was found to be 4.71 ± 0.05 mg/L. Size distribution of the particles was determined to be 10 ± 6 nm (Figures S1 and S2), by measuring 500 individual particles depicted by TEM images using Imagej software (National Institutes of Health, Bethesda, MD). The hydrosol served as a stock solution for all experiments and is stable for at least 2 weeks when stored in refrigerators at 4 °C. Before use, the stored Pd-NP hydrosol was homogenized by shaking vigorously. Finally, aliquots of the stock solution were diluted in ultrapure water to obtain the final concentrations used in the experiments.

Animal administration and sampling of biological material

The experimental protocol as described below was approved by the Ethical Committee of the Catholic University of the Sacred Heart (Rome, Italy). The twenty-five female Wistar rats were
randomly divided into four exposure groups and one control group, with five rats per group. Rats were given a single injection of vehicle (control group) and different concentrations of Pd-NPs (0.012, 0.12, 1.2 and 12 μg/kg) via the tail vein. Urine samples were collected over a 24-h period in individual metabolic cages (metabolic cages for rats with overall dimensions of 265 × 265 × 380 mm and floor area of 397.4 cm²) (Tecnoplast S.p.A., Buguggiate, Italy) on day 1, 7 and 14. During the collection of urine, no food was supplied, as the experimental protocol scheduled availability of drinking water only, in the 24-h period prior to collection. Urine samples were collected in 12 mL polyethylene tubes (BD Biosciences, Durham, NC) containing sodium azide (10 mg/100 mL) as preservative and were frozen at −20°C within 2 h of collection. The polyethylene tubes were decontaminated by an overnight soaking with 10% HNO₃ (Suprapur grade, Merck, Darmstadt, Germany) and then rinsing with high-purity deionized water (Idrolab-a-System, Idron, Rome, Italy). Fourteen days after exposure, rats were anesthetized with 0.5 mg of medetomidine and 75 mg of ketamine per kg body weight. Subsequently, blood from each animal was drawn by cardiac puncture and collected in a 1.5 mL vial (Eppendorf srl, Milan, Italy). Serum samples were obtained from blood by centrifugation (3500 rpm per 15 min) and stored at −28°C until analysis. After the blood sampling, rats were euthanized by exsanguinations, cutting both the abdominal aorta and vena cava, and then kidneys were collected from each rat.

Analysis of Pd in urine and serum

Urine and serum were directly analyzed after 1:10 dilution with water (Barnstead EASYpure UV). A 1% of HNO₃ (Normatom Analysis of Pd in urine and serum the blood sampling, rats were euthanized by exsanguinations, standardization with indium (CPA Chem, Chebios, Rome, Italy) quantification. The additional calibration approach and internal controls was determined using a PHM 92 Lab pH Meter from Radiometer Copenhagen (Brønshøj, Denmark) after calibration of the instrument with two different buffer solutions (Radiometer-Analytical, Hach Lange, Berlin, Germany) with standard pH reference values (4.005 and 7.000).

Ultrastructural observations of the kidneys

Cortical kidneys were immediately processed for ultrastructural study using the routine protocol: 2 mm³ kidney specimens were fixed by immersion in 2.5% glutaraldehyde (JT Baker, Deventer, Holland) in cacodylate buffer 0.1 M and post-fixed in 1% Oso₄ (EMS, Washington, PA) in veronal acetate buffer 0.1 M. Specimens were dehydrated in ascendant ethanol and embedded in Araldite (Serva, Heidelberg-D, Heidelberg, Germany). Thin sections, stained with uranyl acetate and lead citrate were studied using a Philips 410 LS TEM (Philips/FEI Corporation, Eindhoven, Holland).

Statistical methods

Statistical analysis was carried out by IBM SPSS statistics software (IBM Statistical Package for Social Sciences for Windows, Version 22.0. Armonk, NY). We assessed the responses to four different concentrations (0.012, 0.12, 1.2 and 12 μg/kg) of Pd-NPs and compared urine and serum Pd levels with those of the control animals. On day 14, levels of urinary proteins (albumin, β₂-microglobulin and RBP) were measured after exposure to the four different concentrations. The normal distribution of observed values was checked using the non-parametric Kolmogorov–Smirnov Z-test and variance homogeneity was tested by the Levene test. The one-way analysis of variance (ANOVA) was then performed to test the significance of differences in parameter means in the exposed and control rat groups. The Dunnett post-hoc multiple comparison test was used to test the significance (p value of Dunnett’s t test <0.05) of differences in values for each parameter at different exposure levels against the control group. Box-plot or linear graphs were obtained for all analyzed parameters at different exposure levels.

Results

Urinary and serum Pd concentrations and levels of urinary proteins in Wistar female rats exposed to different concentrations of Pd-NPs are shown in Table 1 and Figures 1–3. In the different exposure groups, mean urinary pH ranged from 6.23 to 6.51 with a mean value of 6.32. Results showed an increasing trend in urinary Pd levels demonstrating that Pd urinary concentrations are directly associated with the administered doses. The dose-dependent increase in urinary Pd levels was particularly evident in urine samples collected on day 1 and 7. In fact, the highest levels of exposure, 1.2 and 12 μg/kg, induced mean values of Pd ± standard deviation (SD) of 3.92 ± 1.65 and 73.9 ± 32.6 and of 0.32 ± 0.08 and 1.14 ± 0.34 μg/L on day 1 and 7, respectively. These levels were significantly higher than the mean Pd content observed in urinary samples of the control group. In the urine samples collected 14 days after the intravenous administration of Pd-NPs, the urinary Pd levels of exposed animals were quite similar to those of controls with the exception of rats exposed to 12 μg/kg whose urinary Pd concentrations were higher (0.5 μg/L). At the end of the experiment, 14 days after the single injection of different concentrations of Pd-NPs via the tail vein, the mean serum Pd levels of exposed groups were in the same order of magnitude as those observed in the control group.

With regard to renal function parameters, the mean urinary albumin concentration was significantly higher than in the control group (44.09 ± 22.16 μg/mL) only at the lowest dose of treatment (80.72 ± 11.79 μg/mL), while exposure to increasing Pd-NP
concentrations did not induce significant alterations in its urinary levels, specifically at 1.2 (35.13 ± 17.61 mg/mL) and 12 (43.39 ± 10.18 mg/mL) mg/kg (Figure 1 and Table 1). On the contrary, an important increase in urinary RBP levels was observed in rats exposed to 12 µg/kg compared to controls (Figure 2 and Table 1). In fact, at this exposure concentration, a greater mean (±SD) RBP value (0.23 ± 0.07 mg/mL) was determined compared to the RBP level obtained in non-exposed animals (0.11 ± 0.03 mg/mL). Similarly, at the same dose, there was a statistically significant increase in \(\beta_2 \)-microglobulin value (Figure 3 and Table 1). Indeed, this higher level of exposure induced a mean (±SD) value of \(\beta_2 \)-microglobulin of 0.97 ± 0.23 mg/mL significantly greater than the 0.40 ± 0.07 mg/mL value detected in the control group. These results suggested that exposure of rats to 12 µg/kg of Pd-NPs is able to exert an important nephrotoxic action at tubular level.

This finding was also confirmed by morphological observations of the kidneys at electron microscope (Figures 4 and 5). In fact, on comparison with the control specimens, ultrastructural study revealed that alterations are visible in kidney specimens under all experimental conditions ranging in dose severity from a low Pd percentage (0.012 µg/kg) to the highest at 12 µg/kg (Table 2). The main target of subcellular alterations was the proximal and distal tubular epithelium. In particular, at the highest dose of Pd-NPs there was a diffuse and subtotal loss of superficial microvilli, which were sometimes replaced by the formation of pseudopodial expansions (Figure 4F). Other subcellular modifications consisted in diffuse and severe dilation of inter-epithelial spaces (Figure 4C–E) as well as the presence of exfoliated cells in the tubular lumina (Figure 4D). The same alterations were found to a lesser degree in the specimens treated with lower doses of Pd-NPs (Table 2). Some vacuolar structures with an electrondense

Table 1. Mean levels ± SD of urinary and serum Pd and albumin, RBP and \(\beta_2 \)-microglobulin urinary levels in control rats and in four groups of female Wistar rats exposed to different levels of Pd-NPs (0.012, 0.12, 1.2 and 12 µg/kg).

Parameters	Controls	0.012	0.12	1.2	12	ANOVA F test (p value)
1 d Serum Pd levels (µg/L)	0.06 ± 0.03	0.07 ± 0.04	0.07 ± 0.01	0.06 ± 0.04	0.08 ± 0.01	ns
7 d Serum Pd levels (µg/L)	44.09 ± 22.16	80.72 ± 11.79	75.31 ± 35.49	35.13 ± 17.61	43.39 ± 10.18	0.008
14 d Serum Pd levels (µg/L)	0.11 ± 0.03	0.08 ± 0.04	0.10 ± 0.04	0.07 ± 0.04	0.23 ± 0.07	<0.001
Serum Albumin (µg/mL)	44.09 ± 22.16	80.72 ± 11.79	75.31 ± 35.49	35.13 ± 17.61	43.39 ± 10.18	0.008
RBP (µg/mL)	0.40 ± 0.07	0.37 ± 0.13	0.79 ± 0.14	0.45 ± 0.20	0.97 ± 0.23	<0.001
\(\beta_2 \)-microglobulin (µg/mL)	0.40 ± 0.07	0.37 ± 0.13	0.79 ± 0.14	0.45 ± 0.20	0.97 ± 0.23	<0.001

ANOVA test and statistical significance (p value ANOVA).
matrix were observed in all specimens (0.012, 0.12, 1.2 and 12 μg/kg) including those of the controls (Figure 5). They were characterized by the presence of intramatriceal electrondense granular particles likely resembling ferritin particles: the vacuolar content appeared to have been phagocitosized by the tubular epithelial cells (Figure 5B). The glomerular structures were of normal appearance in all the experimental specimens.

Discussion

A significant increase in the industrial use of Pd in the past 20 years and emission of this metal from automobile catalytic converters have resulted in higher environmental Pd levels (Iavicoli et al., 2008a, 2011a; Leopold et al., 2008; Zereini et al., 2004, 2007). Although the weight distribution of PGE emission is largest in the micrometer range, catalysts also produce a nanoparticulate form of these metals (Kalavrouziotis & Koukoulakis, 2009; Wilkinson et al., 2011). Therefore, it is clear that in recent years there has been a notable increase in exposure to micrometer- and nanometer-sized Pd particles that has generated a growing concern regarding the possible adverse effects that Pd-UFPs might have on human health.

A number of recent studies have in fact demonstrated that Pd-NPs are able to exert different toxic effects. In kiwifruit pollen, this xenobiotic exhibited a significantly greater toxicity than palladium (II) chloride (PdCl₂) (Speranza et al., 2010), whereas only minor effects on the cell viability were observed in human and fish cell lines (Hildebrand et al., 2010). On the other hand, Wilkinson et al. (2011) showed that the treatment of lung cells with increasing concentrations of Pd-NPs resulted in concentration-dependent cytotoxicity, apoptosis and alterations in the secretion of biomarkers (IL-8 and PGE₂). Pd-NPs exerted modulatory effects on the release and expression of cytokines also in peripheral blood mononuclear cells (PBMC) of non-atopic and Pd-sensitized women (Boscolo et al., 2010; Reale et al., 2011). Finally, Adams et al. (2014) showed that Pd-NPs generally exert a much more inhibitory effect on *Staphylococcus aureus* than on *Escherichia coli*, demonstrating that NPs with a smaller diameter exhibit greater toxicity. Nevertheless, information currently available regarding the possible adverse health effects of Pd-NPs is still rather limited and there continues to be a shortage of data concerning the possible toxic effects of these particles on major organ systems (e.g. kidney). However, our previous research showed that administration of potassium

Figure 4. Transmission electron microscope (TEM observations were conducted on kidney specimens collected on the 14th day post-exposure, at the end of experiment). (A) The control kidney specimen shows a likely normal organization of tubules: rarely, intercellular widening can be observed (arrow); the superficial microvilli pattern is regular (asterisk); (B) after treatment with 0.012 μg/kg microvilli (asterisk) still maintain a normal organization and number, while some intracytoplasmic lipid vacuoles (L) can be observed; (C) after treatment with 0.12 μg/kg of palladium nanoparticles there is a mild and focal enlargement of inter-epithelial spaces (arrow) and a mild decrease in superficial microvilli (asterisk); (D) by increasing the dose to 1.2 μg/kg it is possible to observe intraluminal shedding of an epithelial cell (EC); the subcellular pattern seems similar to that of 0.12 μg/kg; mild and diffuse enlargement of intercellular spaces (arrow); (E) after 12 μg/kg the overall renal tubule architecture appears to be focally completely altered by the presence of severely dilated intercellular spaces (arrow); moreover, tubular epithelial cells contain only a few superficial microvilli (asterisk); (F) microvilli are sometimes substituted by large pseudopodial structures (asterisk). Bar = 1.5 μm.
hexachloro-palladate to Wistar rats resulted in a significant Pd accumulation in this organ, suggesting that kidney could be a target tissue for the possible toxic effects of this metal (Iavicoli et al., 2007, 2008). Moreover, it has been demonstrated that Ir accumulation in this organ, suggesting that kidney could be a plausible target for the toxic effect of this metal (Iavicoli et al., 2011b, 2014). Since these metals share comparable physico-chemical properties, it is plausible that the molecular mechanisms of action underlying the toxic effect on kidney are also quite similar. It is interesting to note that sub-chronic exposure to Ir also induced a dose-dependent increase in the albumin urinary levels, whereas its

Figure 5. Transmission electron microscope (TEM) observations were conducted on kidney specimens collected on the 14th day post-exposure, at the end of experiment. (A) In all samples (all dose treatment) several electron-dense vacuoles are clearly visible in the cytoplasm of epithelial tubular cells (asterisk). Ferritin-resembling particles are identifiable in the vacuolar matrix (arrow); (B) a higher magnification picture shows ferritin-like particles (asterisk), contained in an amorphous matrix that seem to be phagocytosed by an epithelial cell. 0.012 μg/kg dose. Bar = 1.5 μm.

Table 2. TEM semi-quantitative assessment.

Exposure doses (μg/kg)	Luminal EC	Microvilli loss	DIS	Lipid	E-dense vac.
Controls	–	–	–/+	–	+
0.012	–	–	–/+	+	+
0.12	–	+	+	+	+
1.2	++	++	+++	+	+
12	++	++	+++	+	+

EC, epithelial cell; DIS, dilated intercellular spaces; E-dense vac, electron-dense vacuoles.

= normal; –/+ , rarely; +, few and focal; ++ few and diffuse; +++ many and diffuse.
concentrations were not enhanced by sub-acute treatment with Rh or Pd-NPs. These observations support the idea that sub-chronic/chronic exposure may damage not only tubular function, but also kidney glomerular filtration. Since, in the future, the general population and workers may be chronically exposed to increasing concentrations of this xenobiotic, it seems important to focus attention also on the long-term effects of Pd-NPs may have on renal function. The analysis of RBP and β₂-microglobulin urinary concentrations is widely used to detect early renal tubular dysfunction. In presence of acid urines the RBP/β₂-microglobulin ratio increase, while when the urinary pH is >6 there is a good correlation with a slope close to 1 (Bernard et al., 1987). In the present study, the pH value of urine samples ranged from 6 to 7.7, and an increased excretion of β₂-microglobulin compared to RBP. In our previous studies (Iavicoli et al., 2011b, 2014), in the presence of similar urinary pH values, the RBP/β₂-microglobulin ratio was above 1. According to Bernard et al. (1987), in a small fraction of urine samples (with pH >6) a slight increase in the urinary excretion of β₂-microglobulin may be observed with minor or no changes in that of RBP and these results could represent an increased cell membrane turnover as a result of renal tissue destruction and cell regeneration. Therefore, considering the unique physico-chemical characteristics of NPs, it is possible to hypothesize that exposure to Pd-NPs is responsible for a greater renal damage that occurs with renal tissue destruction which in turn causes an increased excretion of β₂-microglobulin. Interestingly, the time course of urinary Pd levels observed in the different exposure groups (Figure S3) is quite similar to the data of Durbin (1960) and Moore et al. (1975), who reported a biphasic urinary excretion pattern with a first half-life of approximately 1 day followed by a second term of approximately 10 days. A linear relationship between treatment doses and urinary Pd concentrations was demonstrated at one day post-exposure, while this trend was less evident in the other two time points taken into consideration (7 and 14 days post-administration). Therefore, it can be argued that the initial fast elimination phase of the metal may be strongly dependent on the administered dose (as the linear relation confirms), whereas the subsequent gradual excretion of the remaining Pd-NPs could be significantly affected by interactions of NPs with biological materials (i.e. the protein corona phenomenon). The Pd-NP biological interactions may also affect the serum Pd concentrations. In this regard, it should also be noted that serum Pd levels observed in the treated groups were very similar to the value detected in the control group, thus suggesting that the Pd administered was almost completely eliminated after 14 days.

All in all, our results confirm the ability of NPs to exert significant adverse effects on the renal system. Recently, several studies have investigated potential renal nanotoxicity, demonstrating that different types of NPs are able to induce important toxic effects on kidneys. In this regard, several renal tubular alterations that were size-dependent and probably induced by increased generation of ROS, were observed in Wistar-Kyoto rats subacutely treated via intraperitoneal administration of gold NPs (Abdelhalim & Jarrar, 2011). A similar molecular mechanism of renal toxicity (oxidative and nitrosative stress) was hypothesized by Sarkar et al. (2011) in Swiss albino male mice treated with copper NPs (Cu-NPs) via oral gavage. The same type of NPs administered via oral gavage caused widespread renal proximal tubule necrosis in Wistar rats (Liao & Liu, 2012). Similar findings (reduction in renal glomerulus number, tissue necrosis or disorganization of renal tubules and production of ROS) were observed by Gui et al. (2013) in mice exposed to titanium dioxide NPs (TiO₂-NPs) by subchronic intragastric administration. In Kunming mice intraperitoneal exposure to iron oxide nanoparticles (Fe₃O₄-NPs), Ma et al. (2012) observed swelling of cytoplasm, fused or collapsed cells, an increase in ROS production and glutathione depletion. Similarly, a dose- and time-dependent induction of oxidative stress in renal tissue was also detected in albino rats intraperitoneally injected with aluminum oxide nanoparticles (Al₂O₃-NPs) (Morsy et al., 2013). Although further studies are needed to fully understand renal NP toxicity, the findings of the aforementioned studies suggest that oxidative stress is one of the major negative effects produced by NPs. This hypothesis is also supported by the results of several in vitro studies carried out on human IP15 mesangial and porcine LLC-PK₁ cells exposed to carbon and TiO₂-NPs (L’Azou et al., 2008), IP15 and Human Kidney (HK-2) epithelial cells treated with TiO₂, zinc oxide and cadmium sulfide NPs (Pujalte et al., 2011) and HK-2 and LLC-PK₁ cells exposed to silica NPs (Passagne et al., 2012).

Conclusions

To date, many studies have described the adverse health effects of a number of NPs on the lungs, while little attention has been given to kidneys which are considered to be a secondary target organ. However, in the past few years, several in vitro and in vivo studies have investigated the potential renal toxicity of different nanomaterials, demonstrating that NPs are able to exert important toxic effects on this organ. Nevertheless, to our knowledge, this is the first attempt to evaluate the nanotoxicity of Pd-NPs on kidney. The increased levels of urinary RBP and β₂-microglobulin observed in treated rats compared to controls demonstrated that exposure to Pd-NPs induced a significant renal tubular dysfunction that is also confirmed by the important histological alterations in the proximal and distal tubular epithelium. The kidney parameters investigated, particularly urinary RBP and β₂-microglobulin concentrations, are markers of early NP alterations induced on the renal system of sub-acutely exposed animals. Consequently, even if these are only the preliminary findings of a first attempt to investigate the potential toxic effects of Pd-NPs on the kidney, the significant increase in urinary protein excretion supports the hypothesis that Pd-NPs can act as a nephrotoxic agent. However, further investigations are needed to confirm the negative impact of these NPs on the kidney and to better understand the molecular mechanisms of toxic action (oxidative stress) and the cell death pathways (i.e. necrosis, apoptosis). Moreover, further research is required to assess potential adverse effects also on glomerular section of the kidney, particularly after sub-chronic/chronic exposure.

Lastly, as potential new indicators of effect, RBP and β₂-microglobulin could be extremely useful for risk assessment and management in conditions of occupational exposure. In fact, when a very early detection of tubular injury is desirable (e.g. in occupational or environmental medicine), it may be useful to measure both proteins.

Declaration of interest

The authors of the present manuscript report no conflicts of interest regarding any financial, consulting and personal relationships with other people or organizations that could influence (bias) the author’s work. The authors alone are responsible for the content and writing of the manuscript.

References

Abdelhalim MA, Jarrar BM. 2011. Renal tissue alterations were size-dependent with smaller ones induced more effects and related with time exposure of gold nanoparticles. Lipids Health Dis 10:163–8.
Adams CP, Walker KA, Obare SO, Docherty KM. 2014. Size-dependent antimicrobial effects of novel palladium nanoparticles. PLoS One 9: e85981.

Arteel S, Kock H, König HP, Levens K, Rosner G. 1999. Engine dynamometer experiments: platinum emissions from differently aged three-way catalytic converters. Atmos Environ 33:3559–67.

Bell ML, Ebisu K, Peng RD, Walker J, Samet JM, Zeger SL, et al. 2008. Seasonal and regional short-term effects of fine particles on hospital admissions in 202 US counties, 1999–2005. Am J Epidemiol 168: 1301–10.

Bernard A. 2004. Renal dysfunction induced by cadmium: biomarkers of critical events. Biometals 17:519–23.

Bernard AM, Vyskocek AA, Mahieu P, Lauwerys RR. 1987. Assessment of urinary retinol-binding protein as an index of proximal tubular injury. Clin Chem 33:775–9.

Boscolo P, Bellante V, Leopold K, Maier M, Di Giampaolo L, Bernard AM, Vyskocil AA, Mahieu P, Lauwerys RR. 1987. Assessment of urinary retinol-binding protein as an index of proximal tubular injury. Clin Chem 33:775–9.

Botre C, Tosi M, Mazzei F, Bocca B, Petrucci F, Alimonti A. 2007. Automotive catalytic converters and environmental pollution: role of the platinum group elements in the redox reactions and free radicals production. Int J Environ Health 1:142–52.

Cristau L, Piccardo M, Petrucci F, Forte G, Violante N, Senofonte O, et al. 2007. Clinical and allergological biomonitoring of occupational hypersensitivity to platinum group elements. Ann Lett 40:3343–59.

Cristau L, Sera F, Severino V, De Rocco M, Di Lella E, Piccardo M. 2005. Occupational hypersensitivity to metal salts, including platinum, in the secondary industry. Allergy 60:159–64.

Daenen M, Rogiers P, Van de Walle C, Rochette F, Demedts M, Nemery B. 1999. Occupational asthma caused by palladium. Eur Respir J 13: 213–16.

Dominici F, Peng RD, Bell ML, Pham L, McDermott A, Zeger SL, et al. 2006. Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. JAMA 295:1127–34.

Durbin PW. 1960. Metabolic characteristics within a chemical family. Health Phys 2:225–38.

Garau V, Masala MG, Cortis MC, Pittau R. 2005. Contact stomatitis due to palladium nanoparticles on the cytokine release from peripheral blood mononuclear cells of non-atopic women. J Biol Regul Homeost Agents 24:207–14.

Hildebrand H, Kühnel D, Potthoff A, Mackenzie K, Springer A, Gomez B, Palacios MA, Gomez M, Sanchez JL, Morrison G, Rauch S, Garau V, Masala MG, Cortis MC, Pittau R. 2005. Contact stomatitis due to palladium nanoparticles on the cytokine release from peripheral blood mononuclear cells of non-atopic women. J Biol Regul Homeost Agents 24:207–14.

Iavicoli I, Fontana L, Bergamaschi A. 2011a. Palladium: exposure, uses and human health effects. In: Nriagu JO, ed. Encyclopedia of Environmental Health. Vol. 4. Burlington: Elsevier, 307–14.

Iavicoli I, Fontana L, Marinaccio A, Alimonti A, Pino A, Bergamaschi A, et al. 2011b. The effects of iridium on the renal function of female Wistar rats. Ecotoxicol Environ Saf 74:1795–9.

Iavicoli I, Leso V, Fontana L, Cottica D, Bergamaschi A. 2013. Characterization of inhalable, thoracic, and respirable fractions and ultrafine particle exposure during grinding, brazing, and welding activities in a mechanical engineering factory. J Occup Environ Med 55:430–45.

Iavicoli I, Leso V, Fontana L, Marinaccio A, Bergamaschi A, Calabrese EL. 2014. The effects of rhodium on the renal function of female Wistar rats. Chemosphere 104:120–5.

Jappe U, Bonneko B, Gollnik H. 1999. Persistent granulomatous contact dermatitis due to palladium body piercing ornaments. Contact Dermatitis 40:111–2.

Johni N, Jacqueilt G, Urwin R. 2010. Heavy metal poisoning: the effects of cadmium on the kidney. Biometals 23:783–92.

Kalavrouziotis IK, Koukoulakis PH. 2009. The environmental impact of the platinum group elements (Pt, Pd, Rh) emitted by the automobile catalyst converters. Water Air Soil Pollut 196:393–402.

Kanitsar K, Koellensperger G, Sann G, Ploudra G, Puxbaum H, Stengeder C. 2003. Determination of Pt, Pd and Rh by inductively coupled plasma sector mass spectrometry (ICP-SFMS) in size-classified urban aerosol samples. J Anal At Spectrom 18:239–46.

Katoh N, Hirano S, Kishimoto S, Yasuno H. 1999. Dermal contact dermatitis caused by allergy to palladium. Contact Dermatitis 40: 226–7.

Katsuoyanni K, Touloumi G, Samoli E, Gryparis A, Le Tertre A, Monopolis Y, et al. 2001. Confounding and effect modification in the short-term effects of ambient particles on total mortality: results from 29 European cities within the APHEA2 project. Epidemiology 12:521–31.

L’Azou B, Jolly J, On D, Sellier E, Moisan F, Fleury-Feith J, et al. 2008. In vitro effects of nanoparticles on renal cells. Part Fibre Toxicol 5:22.

Leopold K, Maier M, Weber S, Schuster M. 2008. Long-term study of palladium in road tunnel dust and sewage sludge ash. Environ Pollut 156:341–7.

Liao M, Liu H. 2012. Gene expression profiling of nephrotoxicity from copper nanoparticles in rats after repeated oral administration. Environ Toxicol Pharmacol 34:67–80.

Ma K, Luo Q, Chen J, Guo Y, Du J, Ding S, et al. 2012. Intrapretionel injection of magnetic Fe3O4-nanoparticle induces hepatic and renal tissue injury via oxidative stress in mice. Int J Nanomed 7:4809–18.

Moore W, Hysell D, Hall L, Campbell K, Stara J. 1975. Preliminary studies on the toxicity and metabolism of palladium and platinum. Environ Health Perspect 10:63–71.

Morawska L, Ristovski Z, Jarayarine ER, Keogh DU, Ling X. 2008. Ambient nano and ultrafine particles from motor vehicle emissions: characteristics, ambient processing and implications on human exposure. Atmos Environ 42:8113–38.

Morsy GM, Abou El-Ala KS, Ali AA. 2013. Studies on fate and toxicity of nanoalumina in male albino rats: oxidative stress in the brain, liver and kidney. Toxicol Ind Health. [Epub ahead of print].

Murdoch R, Pepys J, Hughes E. 1986. IgE antibody responses to platinum group metals: a large scale refinery survey. Br J Ind Med 43: 37–43.

National Institute for Occupational Safety and Health (NIOSH). 2009. Approaches to Safe Nanotechnology: Managing the Health and Safety Concerns Associated with Engineered Nanomaterials. Atlanta, GA: Department of Health and Human Services, Centers for Disease Control and Prevention.

Nel A, Xia T, Madler L, Li N. 2006. Toxic potential of materials at the nanolevel. Science 311:622–7.

Passagne I, Morille M, Rousset M, Pujalte I, L’Azou B. 2012. Implication of oxidative stress in size-dependent toxicity of silica nanoparticles in kidney cells. Toxicology 299:112–24.

Piscator M. 1991. Early detection of tubular dysfunction. Kidney Int Suppl 34:S15–17.

Pujalte I, Passagne I, Broulaud B, Tréguer M, Durand E, Ohayon-Courtes C, et al. 2011. Cytotoxicity and oxidative stress induced by different metallic nanoparticles on human kidney cells. Part Fibre Toxicol 8:10.
The effects of palladium nanoparticles on the renal function of female Wistar rats

Supplementary material available online
Supplementary Figures S1, S2 and S3.