Heterospecific and conspecific associations of trees in lowland tropical forest of New Guinea

AGUSTINUS MURDJOKO1,2*, MARTHEN MATHIAS JITMAU2, DONY ARISTONE DJITMAU1, RIMA HERLINA SETIAWATI SIBURIAN1, ANTONI UNGIRWALU1, ALFREDO OTTOW WANMA1, ZULFIKAR MARDIYADI1, ALEXANDER RUMATORA1, WOLFRAM YAHYA MOFU1, ANTON SILAS SINERI1, SEPUにするMARTEN FATEM1, DESCARLO WORABAI1, NUNANG LAMAEK MAY1, MAX JONDUDAGO TOKEDE1, HERMAN WARMETAN1, CHARLY BRAVO WANGGA1, JIMMY FRANS WANMA1, ELIESER VIKTOR SIRAMI1, JOHANA BETY PAEMBONAN3, ERNI UNENOR4, RELAWAN KUSWANDI5, KRISMA LEKITOO5, LISNA KHAYATI5, NITHANEL MIKAEL HENDRIK BENU5, JUNUS TAMBING5, ANDI SASTRA BENNY SARAH6

1Faculty of Forestry, Universitas Papua. Jl. Gunung Salju, Amban, Manokwari 98314, West Papua, Indonesia.
2Research Center of Biodiversity, Universitas Papua. Jl. Gunung Salju, Amban, Manokwari 98314, West Papua, Indonesia
3Environmental Services, Pegunungan Bintang District. Oksibil, Pegunungan Bintang 99573, Papua Province, Indonesia
4Forestry Service, Papua Province. Jl. Tanjung Ria Base G 99771, Tanjung Ria, Jayapura City 99117, Papua, Indonesia
5Forestry Research and Development Agency of Manokwari. Jl. Inamberi-Suswenti, Manokwari 98301, West Papua, Indonesia
6Perkumpulan Mnukwar. Jl. Manunggal Besar, Amban, Manokwari 98314, West Papua, Indonesia

Abstract. Murdjoko A, Jitmau MM, Djitmau DA, Siburiyan RH, Ungirwala A, Wanma AO, Mardiyadi Z, Rumatora A, Moffe WY, Sineri AS, Fatem SM, Worabai D, May NL, Tokede MJ, Warmetan H, Wanggai CB, Wanma JF, Sirami EV, Paembonan JB, Unenor E, Kuswandi R, Lekito M, Khayati L, Benu NMH, Tambing J, Saragh ASB. 2020. Heterospecific and conspecific associations of trees in lowland tropical forest of New Guinea. Biodiversitas 21: 4405-4418. The vegetation in the tropical rainforest of New Guinea consists of a large number of species that interact with each other within and among species. While several studies have attempted to reveal the diversity of flora of New Guinea, little is known about plant communities that develop associations. This study aimed to investigate the associations of tree species in lowland tropical forest in New Guinea. The associations depicted in this study were in the form of conspecific associations (among small and large individuals within same species) and heterospecific (among individuals of different species and divided into under and upper story). We established 48 rectangular plots created in Murkim and Teirawul as part of Pegunungan Bintang District, Papua Province. Canonical correspondence analysis (CCA) was used to analyze heterospecific and conspecific associations. The results showed that the understory and upper story vegetation had different patterns of heterospecific association. The understory configured three heterospecific associations, consisting of 5, 13, and 90 species, while the upper story formed four heterospecific associations with 4, 8, 11, and 63 species. The analysis of conspecific associations showed of 149 tree species recorded in the study sites, only 66 species that had both small and large individuals, displaying the pattern of conspecific association. Among them, 41 species had positive associations while 25 species had negative associations. Our findings enrich the knowledge in theoretical ecology of tropical forests, especially in New Guinea.

Keywords: Canonical correspondence analysis, CCA, Papuasia, tree community, tropical rainforest, vegan package

INTRODUCTION

Tropical rainforest is a complex ecosystem with many interactions between abiotic and biotic factors, particularly among vegetation (Vitousek 1984; Thomas and Baltzer 2002; Hunter et al. 2015). This complexity results in the vegetation that consists of many life forms from vertical and horizontal compositions that interact with each other to obtain sunlight, soil nutrients, and water, and to adapt with microclimatic conditions (Slik et al. 2015, 2018; Murdjoko et al. 2016a). The interactions among vegetation have occurred over a long period due to successional process (Fernández-Lugo et al. 2015). Where the vegetation shares the same ecological condition, the morphological and physiological characters become the driving factors of behavior in the natural tropical rainforest (Gustafsson et al. 2016; Johnson et al. 2017). The interactions among vegetation elements in the tropical rainforest in some cases represent symbiosis and inter and intra-species relationships (Legende and Fortin 1989; Magrach et al. 2014). These interactions can be in the form of competition and association. In old tropical rainforest, the interaction occurs intensively due to the absorption of light and water, where both are the primary growth factors (Yamamoto 2000; Montgomery and Chazdon 2001). In secondary forest, canopy gap is very open, leading to more light penetrating the forest floor (Itoh et al. 1997; Angelini et al. 2015; Murdjoko et al. 2017).

The association in vegetation communities can be in the form of conspecific or heterospecific and the form of association determines the pattern of the spatial distribution of forest ecosystems either. Conspecific association is the interaction of individuals of similar species while heterospecific occurs among different species of vegetation.
(Zhu et al. 2015; Wang et al. 2018). Conspecific and heterospecific associations occur during the successional process of the tropical rainforest (Farneda et al. 2018). Some studies explained that the association, either the conspecific or the heterospecific could be in a positive or negative pattern (Castilla et al. 2016).

Vegetation is distributed geographically with the diversity and pattern of plant communities that adapt to particular ecological niche (Brummitt 2001; Pan et al. 2013). Phytogeographic regions, including mainland New Guinea, have been studied for centuries. The vegetation in New Guinea spreads from coastal to high land areas, containing various types of ecosystems (Cámara-Leret and Dennehy 2019). As the result, New Guinea contains the highest diversity of flora, such as trees, climbers, shrubs, ferns, rattan, etc. (Murdjoko et al. 2016a) in which about 60% of the species are endemic (Cámara-Leret et al. 2020). For example, a forest area in New Guinea consists of a high diversity of tree species with more than 70 species per hectare that could be found (Robiansyah 2018; Fatem et al. 2020). While recently more and more studies have attempted to reveal the diversity of flora of New Guinea, little is known about plant communities that develop associations among them.

This study aimed to investigate the association of tree species in the lowland tropical forest in New Guinea. The associations depicted in this study were in the form of conspecific associations (among small and large individuals within same species) and heterospecific (among individuals of different species and divided into under and upper story). We hypothesized that the small and large tree species have heterospecific associations within the natural tropical rain forest. This kind of study is important to provide specific contribution of ecological research in the tropical rain forest of Southeast Asia, more specifically the New Guinea region (Brummitt 2001).

MATERIALS AND METHODS

Study period and area

This study was conducted in the northern part of Pegunungan Bintang District (Ind.: kabupaten), Papua Province, Indonesia (Figure 1). The study sites were located at Murkim (4°00'53"S and 140°49'17.24"E) and Teiraplu (3°59'13.46"S and 140°26'0.06"E) at an altitude of 155 m and 233 m above sea level (m asl), respectively. The ecosystem type of the two study sites are categorized as lowland areas where the southern part is bordered with the mountain range and the northern part is bordered with hills while the western and eastern parts are lowlands. Broadleaves and mixed forests are the dominant vegetation in this area, while the soil is grouped as Ultisols and Inceptisol. The climatic conditions are considered to be very humid with average temperature of 25°C for annual, 20.6°C for daily, and 16.3°C for minimum, and with monthly and annual average rainfall of 448.75 mm and 5385 mm, respectively (Kartikasari et al. 2012).

Sampling and data collection

Data were collected using sampling plot method with size of each plot 20 m x 20 m. In total, there were 48 rectangular plots established in which 24 plots were in Teiraplu and 24 plots were in Murkim. In both locations, the plots were placed to north directions at a distance of 100 m away from each other. In the 20 m x 20 m plot (A) we recorded and measured old trees with a diameter of more than 20 cm, and within this plot we established three nested sub-plots with size 10 m x 10 m (B) to record tree with diameter between 10 cm and 20 cm, size 5 m x 5 m (C) to record trees taller than 1.5 m, and size 2 m x 2 m (D) to record the species shorter than 1.5 m. The vegetation in plots A and B were classified as upper story and that in plots C and D were categorized as understory. For the understory vegetation, we recorded data of taxonomic names of every species and number of individuals, and while for the upper story vegetation we recorded data of taxonomic names of every species, number of individuals, and diameter (cm).

For identification, we collected the specimens of the plant and sent it to the Herbarium Papuense of Balai Penelitian dan Pengembangan Lingkungan Hidup dan Kehutanan (BP2LHK) Manokwari and Herbarium Manokwariense (MAN) Pusat Penelitian Keanequaragaman Hayati Universitas Papua (PPKH-UNIPA), Manokwari. The species name was updated according to The Plant List (TPL) at the website of http://www.thepartlist.org/.

Statistical analysis

The heterospecific and conspecific associations were analyzed using the canonical correspondence analysis (CCA) (Ter Braak 1986; Caceres and Legendre 2009), and the chi-square test (χ^2) was implemented to validate the model of CCA (Fatem et al. 2020). Furthermore, this association used the number of each individual (density) as a value in which the columns were the species and the rows were the 48 plots. The conspecific association correlated the under and upper story as small and large individuals. The columns represented the species, while the 48 plots under and upper story represented the rows. The species that did not have under and upper stories were otherwise excluded. The result of CCA displayed species in the graph with the position in the two axes. To investigate the conspecific association whether it was positive or negative, the Euclidean distance between each species as well as the under and upper stories were conducted (Murdjoko et al. 2016b, 2017). If the result of Euclidean distance of species is below the average, then the conspecific association is said to be positive, and vice versa. The vegan package in R version 3.5.3 was used to calculate the statistical analysis (Oksanen et al. 2019).
RESULTS AND DISCUSSION

Heterospecific associations

The heterospecific association was grouped into two: understory and upper story, based on the structure of trees in tropical forests. As such, the analyses of multivariate statistics for the understory and upper story were separated since the natural tropical rainforest is complex with the vegetation structures forming the ecosystem. The structure was also simplified by distinguishing them into two main parts.

From the CCA result, the understory and upper story showed different patterns of heterospecific association. The understory configured three groups of communities based on species as the structure of the associations. The three groups are shown in Figure 2.

The results showed that 108 species of trees formed the association in natural tropical forests, and was valid statistically as $\chi^2 = 10.686$, df = 2461, p-value = 1. The species of understory showed heterospecific associations as tree groups where the first consisted of 90 species (blue boxes), the second contained 13 (green boxes), and the third comprised of 5 species (red boxes) (Figure 2). The name of the species in the boxes in Figure 2 was abbreviated and the complete name can be seen in Table S1.

The CCA result showed that the upper story vegetation community had a pattern of association with a valid result of $\chi^2 = 11.344$, df = 1955, p-value = 1. The upper story consisted of 86 species which formed four heterospecific associations, consisting of the first group (63 species) in the grey boxes, second group (11 species) in the red boxes, third group (8 species) in the purple boxes, and fourth group (4 species) in the blues boxes (Figure 3). The complete name of species presented in Figure 3 can be seen in Table S2.

The association pattern of the understory and upper story differed from one another even though they grew in the same natural forest. The difference in association has likely resulted from the variation of the vertical structure of the tropical forest. The upper story vegetation has reached the emergent layers of forest canopy, allowing species to benefit by getting more sunlight (Murdjoko et al. 2016a, 2017; Fatem et al. 2020). The formation of understory was caused by competition due to it is below the canopy layers with low solar radiation (Rüger et al. 2011; Laurans et al. 2014; Angelini et al. 2015).

For centuries, the formation of tropical forests has been a sequential process in which large numbers of species compete dynamically each other (Brown et al. 1990; Wright and Muller-Landau 2006; Liu and Slik 2014; Almeida et al. 2019). The heterospecific association can be related to the fact that trees interact with each other to form symbiosis with other life forms, such as liana, fern, herb, epiphyte, etc. (Johnson et al. 2017; Cirimwami et al. 2019; Steege et al. 2019). The primary factor influencing the pattern of tree communities of understory and upper story during tropical forest succession was probably caused by the abiotic factors, especially to gain nutrients, water, and sunlight as materials to support metabolisms, especially photosynthesis. Nonetheless, many studies showed that the morphological and physiological characters have also affected different responses of species to grow and develop (Goodale et al. 2012; Gustafsson et al. 2016). For example, the nature of shade tolerance species may be a factor that allows small tree species to survive the competition and obtain limited sunlight below the canopy layers (Givnish 1999; Montesinos-Navarro et al. 2018). Therefore, it is
crucial to study the shade-tolerant characters of a species in the rainforest in order to explain forest dynamics in more detail. This study is unable to reveal such characters concerning the light competition because that is beyond the scope of this study.

Conspecific associations

The analysis of conspecific associations was conducted using 149 species that grew in the study sites, but only 66 species that had small and large individuals as understory and upper story. The result of CCA showed statistically valid result as χ² = 5.8784, df = 2904, p-value = 1 (Figure 4). In addition, it displayed the pattern of conspecific association as 41 species had positive association while 25 species had negative association. In the positive association, the small and large individuals of the 41 species were distributed closely in the same area, representing the tendency of mature trees to reproduce and germinate. Conversely, in the negative association, the small individuals of the 25 species grew mainly far from the large ones that represent the matured trees. The full list of the taxonomic name of the species in Figure 4 is presented in Table S3, and the conspecific association can be used to analyze their density dependence since the tropical forest is the place for the high diversity of trees.

Of 149 species, 83 species did not have either small or large individuals, suggesting that the species experienced poor regeneration. Some large individuals act as putative parent trees, even though they have failed to establish seedlings due to many factors (Seidler and Plotkin 2006; Rahman and Tsukamoto 2015). One possible factor is caused by the competition of seedlings with other plants on the forest floor, on which many life forms are found. Another rationale is that the seeds and seedlings are eaten by herbivores (Swaine et al. 1987; Houter and Pons 2014).

Many studies have reported that herbivores are found in tropical rainforest since the forest provides a lot of food, for example, during germination, the dicotyledonous tree plants develop shoot from the plumule of the germinating seed (Houter and Pons 2014; Sawada et al. 2015).

The distribution of individual trees in tropical forests is influenced by the ability to interact with other species. This pattern of conspecific association should be studied frequently to figure out the method of regeneration and distribution of species. Forest floor encompasses many species with different life forms as a strategy to survive and grow during the competition (Dezzotti et al. 2019). Many lianas and climbers grow fast to occupy the forest canopy and space available for sunlight. These plants suppress a certain seedling establishment (Carreño-Rocabado et al. 2012). The competition to gain sunlight, nutrition, and water is presumed as the limiting factor suffered by some species since they cannot survive below putative parent trees.

Seed dispersal can be the driving force behind the spatial distribution of plants in tropical forests. Moreover, the morphological and anatomical characters of seeds and fruits also influence species regeneration and distribution. For example, small and winged seeds of tree species can spread out by falling around and away from the parent trees (Sebbenn et al. 2008; Lü and Tang 2010). However, factors such as competition, herbivory, and allelopathy have led to a clear and negative association in natural tropical forests (Padmanaba and Corlett 2014; Menezes et al. 2019). In contrast, large seeds mostly fall around the parent trees and since they survived germination, they can grow as positive conspecific associations. Therefore, the conspecific association pattern should be studied to know the natural regeneration of certain species in tropical rainforest.

Figure 2. The result of Canonical Correspondence Analysis (CCA) to analyze the heterospecific associations for understory.
Figure 3. The result of Canonical Correspondence Analysis (CCA) to analyze the heterospecific associations for the upper story

Figure 4. The result of Canonical Correspondence Analysis (CCA) to analyze conspecific associations between the small and the large individuals of the same species
The implication of associations to ecological knowledge for sustainable management of primary forest

The study of conspecific and heterospecific associations in tropical rainforest is extremely important to determine the spatial distribution pattern, especially the conspecific association. In addition, a model of natural regeneration of tree species can be described, and the result can indicate the pattern of recruitment in the population dynamics of tree species (Goodale et al. 2012; Piotto et al. 2019). Tropical rainforest is primarily dominated by flowering plants with their reproduction season is in annual period (Baker et al. 1998; Pan et al. 2013; Câmara-Leret et al. 2020). Furthermore, a suitable area for certain species to grow has resembled in the conspecific association since the study correlates small individuals with the large ones within the same species. The pattern of conspecific association can also be used to observe natural regeneration. For example, the most appropriate area to plant tree species in-situ conservation programs can be decided when artificial regeneration is necessary (Armstrong et al. 2011; Vergara-Rodriquez et al. 2017). The heterospecific association describes the pattern of growth in tropical rainforest since the forest includes the great diversity of tree species. The forest took several decades to develop, and this present study has been able to analyze the pattern of tree species association. Ecological studies on the theme of species association in tropical rainforest need to be replicated in other contexts of region, ecosystem type and forest conditions as tropical forest is very complex as made up of different life forms that interact and create vertical and horizontal structures in the climax phase of the successional process (Chazdon 2003; Brokaw and Scheiner 2012).

ACKNOWLEDGEMENTS

The authors thank Pemungun Bintang District, Papua, Indonesia for the financial support, and also anonymous reviewers for improving this manuscript.

REFERENCES

Almeida DRA, Stark SC, Schietti J, Camargo JLC, Amazonas NT, Gorgens EB, Rosa DM, Smith MN, Valbuena R, Saleska S, Andrade A, Mesquita R, Laurance SG, Laurance WF, Lovejoy TE, Broadbent EN, Shimabukuro YE, Parker GG, Lefsky M, Silv As, Elobeide M, Mistri S, Lugo AE, Brown S, Hall M, Gregory W, Lugo AE. 1990. Tropical secondary forests. J Trop Ecol 6 (1): 1-32.

Brown S, Lago AE, Brown S, Hall M, Gregory W, Lugo AE. 1990. Tropical secondary forests. J Trop Ecol 6 (1): 1-32.

Brommitt RK. 2001. World Geographical Scheme for Recording Plant Distributions. International Working Group on Taxonomic Databases For Plant Sciences (TDWG), Institute for Botanical Documentation, Carnegie Mellon University, Pittsburgh.

Caceres MD, Legendre P. 2009. Associations between species and groups of sites: Indices and statistical inference. Ecology 90 (12): 3566-3574.

Câmara-Leret, Rodrigo, Demethy z. 2019. Indigenous knowledge of New Guinea’s useful plants. A review. Econ Bot 73 (3): 405-415.

Câmara-Leret, Rodrigo, Fodor DG, Adema F, Anderson C, Appelhans MS, Argent G, Guererro SA, Ashton P, Baker WJ, Barford AS, Barrington D, Borosova R, Bramley GLC, Briggs M, Buerki S, Cahan B, Callmander MW, Cheek M, Cheng-Wei C, Conn BJ, Coode MJE, Darbyshire I, Dawson S, Dransfield J, Drinkel C, Dufyges E, Eshara A, Ezedin Z, Long-Fei F, Gideon Q, Girmaansyah D, Govaerts R, Fontemune-Hopkins H, Hassermer G, Hay A, Heutuban CD, Hind DJN, Hoch P, Homot P, Hovenkamp P, Hughes M, Jebb M, Jennings L, Jimbo T, Kessler M, Krew R, Knapp S, Lance P, Lehnert M, Lewis GP, Linder HP, Lindsay S, Low TW, Lucas E, Mancera JP, Monro AK, Moore A, Middleton DJ, Nagamasu H, Newman MF, Nol Hadauna E, Melo PHA, Ohlsen DJ, Pannell CM, Parris B, Pearce L, Penneys DS, Perrie LR, Petoe P, Poulsen AD, France GT, Quakenbus HP, Raes N, Rodda M, Rogers ZS, Schuitman E, Schiwlarsbut D, P Scotland RW, Simmons MP, Simpson DA, Stevens P, Sundue M, Testo W, Trias-Blasi A, Turner I, Uttridge T, Walsingham L, Webber BL, Wei R, Weiblen GD, Weigend M, Weston P, de Wilde W, Wilkie P, Wilmot-Dear CM, Wilson HP, Wood JRI, Li-Bing Z, van Welzen PC. 2020. New Guinea has the world’s richest island. Nature 1-5.

Carreño-Rocabado G, Peña-Claro M, Bongers F, Alarcon A, Licón JC, Chazdon RL. 2003. Tropical forest recovery: Legacies of human impact and natural disturbances. Perspect Plant Ecol Evol Syst 6 (1-2): 51-71.

Ciriwunam, L, Doumeine C, Kaihino JM, Amiani C. 2019. The effect of elevation on species richness in tropical forests depends on the considered lifeform: Results from an East African Mountain Forest. Trop Ecol 60 (4): 473-484.

Dezzotti A, Mortoro A, Medina A, Sbrancia R, Beltrán HA. 2019. Plant richness and life form diversity along vegetation and forest use gradients in Northwestern Patagonia of Argentina. Cerne 25 (3): 301-313.

Fernandez FZ, Rocha R, López-Baucells A, Sampaio EM, Palmirerim JM, Bozowski PED, Grelle CEV, Meyer CFJ. 2018. Functional recovery of Amazonian bat assemblages following secondary forest succession. Biol Cons 218: 192-199.

Fatemi, Marzen S, Djimatou DA, Ungirwalu A, Wanma OA, Sibii MD, Benu NMH, Tambah J, Murdoko A. 2020. Species diversity, composition, and heterospecific associations of trees in three altitudinal gradients in bird’s head peninsula, Papua, Indonesia. Biodiversitas 21 (8): 3596-3605.

Fernández-Lago S, De Nascimento L, Méndez J, González-Delgado G, Gomes EPC, Otto R, Arroyo JR, Fernández-Palacios JM. 2015. Seedling survival patterns in Macaronesian laurel forest: A long-term study in Tenerife (Canary Islands). Forestry 88 (1): 121-130.

Givnish TJ. 1999. On the causes of gradients in tropical tree diversity. J Ecol 87 (2): 193-210.

Goodale UM, Ashton MS, Berlyn GP, Gregoire TG, Singhakumara BMP, Tenkappanou KU. 2012. Disturbance and tropical pioneer species: Patterns of association across life-history stages. For Ecol Manag 362: 20-28.

Houter NC, Pons TL. 2014. Gap effects on leaf traits of tropical rainforest trees differing in juvenile light requirement. Oecologia 175 (1): 37-50.

Ishimwe, JM, Rouchelle P, Fortuny R, Lohr J, Lehnert M, Lewis GP, Linder HP, Lindsay S, Low TW, Lucas E, Mancera JP, Monro AK, Moore A, Middleton DJ, Nagamasu H, Newman MF, Nol Hadauna E, Melo PHA, Ohlsen DJ, Pannell CM, Parris B, Pearce L, Penneys DS, Perrie LR, Petoe P, Poulsen AD, France GT, Quakenbus HP, Raes N, Rodda M, Rogers ZS, Schuitman E, Schiwlarsbut D, P Scotland RW, Simmons MP, Simpson DA, Stevens P, Sundue M, Testo W, Trias-Blasi A, Turner I, Uttridge T, Walsingham L, Webber BL, Wei R, Weiblen GD, Weigend M, Weston P, de Wilde W, Wilkie P, Wilmot-Dear CM, Wilson HP, Wood JRI, Li-Bing Z, van Welzen PC. 2020. New Guinea has the world’s richest island. Nature 1-5.

Carreño-Rocabado G, Peña-Claro M, Bongers F, Alarcon A, Licón JC, Chazdon RL. 2003. Tropical forest recovery: Legacies of human impact and natural disturbances. Perspect Plant Ecol Evol Syst 6 (1-2): 51-71.

Ciriwunam, L, Doumeine C, Kaihino JM, Amiani C. 2019. The effect of elevation on species richness in tropical forests depends on the considered lifeform: Results from an East African Mountain Forest. Trop Ecol 60 (4): 473-484.

Dezzotti A, Mortoro A, Medina A, Sbrancia R, Beltrán HA. 2019. Plant richness and life form diversity along vegetation and forest use gradients in Northwestern Patagonia of Argentina. Cerne 25 (3): 301-313.

Fernandez FZ, Rocha R, López-Baucells A, Sampaio EM, Palmirerim JM, Bobrowiecz PED, Grelle CEV, Meyer CFJ. 2018. Functional recovery of Amazonian bat assemblages following secondary forest succession. Biol Cons 218: 192-199.

Fatemi, Marzen S, Djimatou DA, Ungirwalu A, Wanna OA, Simbahvi VI, Benu NMH, Tambah J, Murdoko A. 2020. Species diversity, composition, and heterospecific associations of trees in three altitudinal gradients in bird’s head peninsula, Papua, Indonesia. Biodiversitas 21 (8): 3596-3605.

Fernández-Lago S, De Nascimento L, Méndez J, González-Delgado G, Gomes EPC, Otto R, Arroyo JR, Fernández-Palacios JM. 2015. Seedling survival patterns in Macaronesian laurel forest: A long-term study in Tenerife (Canary Islands). Forestry 88 (1): 121-130.

Givnish TJ. 1999. On the causes of gradients in tropical tree diversity. J Ecol 87 (2): 193-210.

Goodale UM, Ashton MS, Berlyn GP, Gregoire TG, Singhakumara BMP, Tennakoon KU. 2012. Disturbance and tropical pioneer species: Patterns of association across life-history stages. For Ecol Manag 362: 20-28.

Houter NC, Pons TL. 2014. Gap effects on leaf traits of tropical rainforest trees differing in juvenile light requirement. Oecologia 175 (1): 37-50.
genetic diversity and demographic structure of four tropical tree species in the Amazon forest. For Ecol Manag 254 (2): 335-349.

Seidler TG, Plotkin JB. 2006. Seed dispersal and spatial pattern in tropical trees. PLoS Biol 4 (11): e344. DOI: 10.1371/journal.pbio.0040344.

Slik JWF, Arroyo-Rodríguez V, Aiba SI, Alvarez-Loyaza P, Alves LF, Ashton PM, Balmford A, Benuza-López P, Bhattarai MK, Díaz S, Fernandez-Madrigal J, Ferreira L, Field R, De Oliveira Filho AT, Fletcher C, Froend O, Franco G, Fredrickson G, Gillespie T, Gillet JF, Amarnath G, Griffith DM, Grogan J, Gunatilleke N, Harris D, Harrison R, Hector A, Homeier J, Imai N, Itoh A, Janssen PA, Joly CA, De Jong BHU, Kartawinata K, Kearsley E, Kelly DL, Kenfack D, Kessler M, Maksoud TS, Kooyman R, Larney E, Laumonier Y, Laurance W, Lawes MJ, Do Amaral IL, Letche SG, Lindell J, Lu X, Mansor A, Marjakopori AK, Martin EH, Meiby H, Mepal FPL, Metcalfe DI, Mudjie VP, Metzger JP, Millet I, Mohandass D, Montero JC, De Morisson Valeriano M, Mugerwa M, Nagamasa H, Nilus R, Ochoa-Guata, Onizal, Page P, Parolin P, Parren M, Parthasarathy N, Paudel E, Permana A, Predade MTF, Pitman NCA, Poorter L, Poulsen AD, Poulsen J, Powers PR, Prasada R, Prynnavard JP, Razafimahanjisoa P, Raynalimana J, Dos Santos JR, Santos B, Schmit MA, Brazil. PLoS ONE 6 (9): e25330. DOI: 10.1371/journal.pone.0025330.

Rahman MM, Tsukamoto J. 2015. Opposing effects of substrate quality and site factors on forest floor turnover rates: An example from the tropics. Forests 6 (2): 190-199.

Robiansyah I. 2018. Diversity and biomass of tree species in Tambrauw, West Papua, Indonesia. Biodiversitas 19 (2): 377-386.

Rütishauser E, Saether B, Santos BA, Santos F, Sarker SK, Schmit MA, Brazil. PLoS ONE 6 (9): e25330. DOI: 10.1371/journal.pone.0025330.
Steege HT, Henkel TW, Helal N, Marimon BS, Marimon-Junior BN, Huth A, Groeneveld J, Sabatier D, de Souza Coelho L, de Andrade LFD, Salomão RP, Amaral IL, de Almeida MFD, Castillo CV, Phillips OL, Guevara JE, de Jesus VCM, López DC, Magnussow WE, Wittmann F, Iruñé MV, Martins MP, da Silva GSR, Molino JF, Bánki OS, Pedade MTF, Pitman NCA, Mendoza AM, Ramos JF, Luiz BG, de Leão NEMM, Vargas PN, Silva TSF, Venticinque EM, Manzatto AG, Reis NFC, Terborgh J, Casula KR, Coronado ENH, Montero JC, Feldpausch TR, Duque A, Costa FRC, Arboleda NC, Schöngart J, Killeen TJ, Vasquez R, Mostacedo B, Demarchi LO, Assis RL, Baraloto C, Engel J, Peñuelas JL, Petronelli P, Castellanos P, de Medeiros MB, Quaresma A, Simon MF, Andrade A, Camargo JL, Laurance SGW, Laurance WF, Rincón LM, Schietti J, Sousa TR, de Sousa FE, Lopes MA, Magalhães JLL, Nascimento HEM, de Queiroz HL, Aymard CGA, Bánki OS, Piñero S, Pansini S, Pauletto D, Arevalo FR, Sampaio AF, Sandiora DH, Gamarra LV, Levesley A, Pickavance G, Melgaco K. 2019. Rarity of monodominance in hyperdiverse Amazonian Forests. Sci Rep 9 (1): 1-15.

Swaine MD, Lieberman D, Putz FE. 1987. The dynamics of tree populations in tropical forest: A review. J Trop Ecol 3 (4): 359-366.

Ter Braak CJF. 1986. Canonical correspondence analysis: A new eigenvector technique for multivariate direct gradient analysis. Ecology 67 (5): 1167-1179.

Thomas SC, Baltzer JL. 2002. Tropical Forests. Encyclopedia of Life Sciences 1-8.

Vergara-Rodrigue D, Mathieu G, Samain MS, Armenta-Montero S, Krömer T. 2017. Diversity, distribution, and conservation status of Peperomia (Piperaceae) in the State of Veracruz, Mexico. Trop Conserv Sci 10 (44): 1-18.

Vitousek, Peter M. 1984. Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology 65 (1): 285-298.

Wang, Hongxiang, Peng H, Hui G, Hu Y, Zhao Z. 2018. Large trees are surrounded by more heterospecific neighboring trees in Korean pine broad-leaved natural forests. Sci Rep 8 (1): 1-11.

Wright SJ, Muller-Landau HC. 2006. The uncertain future of tropical forest species. Biotropica 38 (4): 443-445.

Yamamoto, Shin-Ichi. 2000. Forest gap dynamics and tree regeneration. J For Res 5 (4): 223-229.

Zhu, Yan, Comita LS, Hubbell SP, Keping Ma. 2015. Conspecific and phylogenetic density-dependent survival differs across life stages in a tropical forest. J Ecol 103 (4): 957-966.
No.	Code	Species	Group 1	Group 2	Group 3	
1	Kiba_ch	*Kibara coryacea* (Blume) Hook. f. & A. Thomps.	+			
2	Rhus_la	*Rhus lamprocarpa* Merr. & L.M.Perry	+			
3	Dios_pi	*Diospyros pilosanthera* Blanco	+			
4	Lits_le	*Lithsea ledermannii* Tscherner	+			
5	Maca_gi	*Macaranga gigantea* (Rchb.f. & Zoll.) Müll.Arg.	+			
6	Maca_ta	*Macaranga tanarius* (L.) Müll.Arg.	+			
7	Seme_pa	*Semecarpus papuana* Lauterb.	+			
8	Ster_sh	*Sterculia shillinglawii* F.Muell.	+			
9	Case_cq	*Casearia carrii* Sleumer	+			
10	Xant_no	*Wendlandia* sp	+			
11	Teij_bo	*Teijsmanniodendron bogoriense* Koord.	+			
12	Flin_pi	*Flindersia pimenteliana* F.Muell.	+			
13	Case_sp	*Casearia* sp	+			
14	Hapl_ce	*Haplolobus celebicus* H.J.Lam	+			
15	Myri_en	*Myristica ensifolia* J.Sinclair	+			
16	Octa_in	*Octamyrus insignis* Diels	+			
17	Piso_lo	*Pisonia longirostris* Teijsm. & Binn.	+			
18	Wend_sp	*Wendlandia* sp	+			
19	Timo_ca	*Timonius carrii* S.P.Darwin	+			
20	Prun_ja	*Prunus javanica* (Teijsm. & Binn.) Miq.	+			
21	Hapl_fl	*Haplolobus floribundus* (K.Schum.) H.J.Lam	+			
22	Anti_de	*Alstonia spectabilis* R.Br.	+			
23	Buch_ar	*Buchanania arborescens* (Blume) Blume	+			
24	Cryp_pa	*Crypocarya palmerensis* C.K.Allen	+			
25	Gmel_se	*Gmelina sessilis* C.T.White & W.D.Francis ex Lane-Poole	+			
26	Garci_pi	*Garcinia pictorhiza* Miq.	+			
27	Para_ve	*Parastemon versteegii* Merr. & L.M.Perry	+			
28	Knem_in	*Knema intermedia* Warb.	+			
29	Case_mo	*Casearia monticola* Sleumer	+			
30	Half_ke	*Halfordia kendack* Guillaumin	+			
31	Syzy_ve	*Syzygium versteegii* (Lauterb.) Merr. & L.M.Perry	+			
32	Ficu_ro	*Ficus robusta* Corner	+			
33	Heri_sy	*Heritiera sylvatica* S.Vidal	+			
34	Cerb_fl	*Cerbera floribunda* K.Schum.	+			
35	Myri_gl	*Myristica globosa* Warb.	+			
36	Dryp_gl	*Drypetes globosa* (Merr.) Pax & K.Hoffm.	+			
37	Phal_ma	*Phaleria macrocarpa* (Scheff.) Boerl.	+			
38	Cana_ri	*Canarium rigidum* (Blume) Zipp. ex Miq.	+			
39	Lits_ti	*Lithsea timoriana* Span.	+			
40	Timo_di	*Timonius timon* (Spreng.) Merr.	+			
41	Homa_lo	*Heritiera sylvatica* S.Vidal	+			
42	Endo_me	*Endospermum medulosum* L.S.Sm.	+			
43	Pome_pi	*Pometia pinnata* J.R.Forst. & G.Forst.	+			
44	Kiba_bu	*Kibara bullata* Philipson	+			
45	Drac_da	*Dracantomelon dao* Blanco (Blanco) Merr. & Rolfe	+			
46	Goni_gi	*Goniothalamus giganteus* Hook.f. & Thomson	+			
47	Nauc_or	*Nauclea orientalis* (L.) L.	+			
48	Beil_mo	*Beilschmiedia morobensis* Kosterm.	+			
49	Cara_br	*Carallia brachiata* (Lour.) Merr.	+			
50	Lits_sp	*Lithsea* sp	+			
51	Pime_am	*Pimelodendron amboinicum* Hassk.	+			
52	Medu_la	*Medusandra laxiflora* (Miers) R.A.Howard	+			
53	Myri_fa	*Myristica fatica* Hoult.	+			
54	Gono_li	*Gonocaryum litorale* (Blume) Sleumer	+			
55	Lith_ru	*Lithocarpus rufovillosus* (Markgr.) Rehder	+			
56	Hope_pa	*Hopea papuana* Diels	+			
57	Dill_pa	*Dillenia papuana* Martelli	+			
58	Mast_pa	*Mastixiodendron pachyclados* (K.Schum.) Melch.	+			
59	Pome_ac	*Pometia acuminata* Radlk.	+			
60	Kiba_el	*Kibara elongata* A.C.Sm.	+			
61	Clei_pa	*Cleistanthus papuanus* (Lauterb.) Jabl.	+			
62	Ints_pa	*Intsia palembanica* Miq.	+			
63	Galb_be	*Galbulimima belgraveana* (F.Muell.) Sprague	+			
No.	Term_co	Terminalia copelandi	Elmer			
-----	---------	---------------------	-----------------------			
64	Giro_ne	Gironniera nervosa	Planch.			
65	Mani_pl	Maniltoa plurijuga	Merr. & L.M.Perry			
66	Hope_ce	Hopea celtidifolia	Kosterm.			
67	Meli_el	Melicope elleryana	(F. Muell.) T.G. Hartley			
68	Garc_sp	Garcinia sp				
69	Pala_lo	Palaquium lobbianum	Burck			
70	Camp_br	Campnosperma brevipetiolatum	Volkens			
71	Ster_ma	Sterculia macrophylla	Vent.			
72	Harp_ca	Harpallia carrii	Leenh.			
73	Hors_la	Horsfieldia laevigata	Warb.			
74	Arch_pa	Archidendron parviflorum	Pulle			
75	Chry_pa	Chrysophyllum papuanicum (Pierre ex Dubard) Royen				
76	Fagr_ra	Fagraea racemosa	Jack			
77	Klei_ho	Kleinhovia hospita	L.			
78	Endi_ru	Endiandra rubescens (Blume) Miq.				
79	Tris_ma	Tristaniopsis macrosperma (F.Muell.) Peter G.Wilson & J.T.Waterh.				
80	Cory_la	Corynocarpus laevigatus J.R.Forst. & G.Forst.				
81	Cryp_sp	Cryptocarya sp				
82	Tab_ga	Tabernaemontana aurantiaca	Gaudich.			
83	Mali_sp	Mallotus sp				
84	Deca_pa	Decaspermum parviflorum (Lam.) A.J.Scott				
85	Agla_sp	Aglaia spectabilis (Miq.) S.S.Jain & S.Bennet				
86	Rapa_te	Raphanea tempuspan P.Royen				
87	Calo_ca	Calophyllum caudatum	Kaneh. & Hatus.			
88	Xant_pa	Xanthophyllum papuanum Whitmore ex Meijden				
89	Hapl_la	Haplolobus lanceolatus H.J.Lam ex Leenh.				
90	Alst_sp	Alstonia spectabilis R.Br.				
91	Dios_sp	Diospyros sp				
92	Elae_an	Elaeocarpus angustifolius Blume				
93	Rypa_ja	Ryparocarpus javanica Koord. & Valeton				
94	Rhod_ci	Rhodamnia cinerea	Jack			
95	Myri_gi	Myristica gigantea	King			
96	Anti_to	Antiaris toxicaria	Lesch.			
97	Calo_in	Calophyllum inophyllum	L.			
98	Para_pr	Pararachidendron pruinosum (Benth.) I.C.Nielsen				
99	Siph_ce	Siphonodon celastrineus Griff.				
100	Siph_sp	Siphonodon sp				
101	Maas_gl	Maasia glauca (Hassk.) Mols, Kessler & Rogstad				
102	Term_ka	Terminalia kaernbacchii Warb.				
103	Spath_ja	Spathiolepis javensis Blume				
104	Dyso_mo	Dysoxylum mollissimum Blume				
105	Plan_ke	Planchonella keyensis H.J.Lam				
106	Ficus_sp	Ficus sp				
107	Hors_pa	Horsfieldia parviflora (Roxb.) J.Sinclair				
No.	Code	Species	Group 1	Group 2	Group 3	Group 4
-----	-------	--	---------	---------	---------	---------
1	Hors_ir	*Horsfieldia irya* (Gaertn.) Warb.		+		
2	Garc_la	*Garcinia latissima* Miq.		+		
3	Alst_sc	*Alstonia scholaris* (L.) R. Br.		+		
4	Endi_vi	*Endiandra virens* F.Muell.		+		
5	Siox_pu	*Sloanea pullei* O.C.Schmidt ex A.C.Sm.			+	
6	Galh_be	*Galbulima belgraevana* (F.Muell.) Sprague			+	
7	Pome_sc	*Pometia acuminata* Radlk.		+		
8	Chis_ce	*Chisocheton ceramicus* Miq.		+		
9	Dyso_mo	*Dysoxylum mollissimum* Blume		+		
10	Endo_me	*Endospernum medullosum* L.S.Sm.		+		
11	Pime_am	*Pimelodendron amboinicum* Hassk.		+		
12	Gono_li	*Gonocaryum littorale* (Blume) Sleumer		+		
13	Stre_el	*Streblus elongatus* (Miq.) Corner		+		
14	Homa_fo	*Heritiera sylvatica* S.Vidal		+		
15	Gnet_gn	*Gnetum gnemon* L.		+		
16	Homa_no	*Homalanthus novoguineensis* (Warb.) K.Schum.		+		
17	Cory_la	*Corynocarpus laevigatus* J.R.Forst. & G.Forst.		+		
18	Drac_da	*Dracomontomen dao* (Blanco) Merr. & Rolfe		+		
19	Cana_od	*Canarium indicum* L.		+		
20	Pter_be	*Pterocymbium beccarii* K.Schum.		+		
21	Pala_lo	*Palaquium lobbianum* Burck		+		
22	Cana_in	*Canarium indicum* L.		+		
23	Cara_br	*Carallia brachiata* (Lour.) Merr.		+		
24	Timo_ca	*Timonius carri* S.P.Darwin		+		
25	Hors_sy	*Horsfieldia sylvestris* Warb.		+		
26	Maas_su	*Maassia sumatrana* (Miq.) Mols, Kessler & Rogstad		+		
27	Hope_pa	*Hopea papuana* Diels		+		
28	Hope_ce	*Hopea celtidifolia* Kosterm.		+		
29	Rhus_ta	*Rhus taitensis* Guill.		+		
30	Acti_ni	*Actinodaphne nitida* Teschner		+		
31	Dill_pa	*Dillenia papuanae* Martelli		+		
32	Medu_la	*Medusanthera laxiflora* (Miers) R.A.Howard		+		
33	Teij_bo	*Teijsmanniodendron bogoriense* Koord.		+		
34	Tris_ma	*Tristaniopsis macroperma* (F.Muell.) Peter G.Wilson & J.T.Waterh.		+		
35	Call_lo	*Callicarpa longifolia* Lam.		+		
36	CommBa	*Commersonia bartramiaria* (L.) Merr.		+		
37	Dios_pi	*Diospyros pilosanthera* Blanco		+		
38	Knem_in	*Knema intermedia* Warb.		+		
39	Dryp_gl	*Drypetes globosa* (Merr.) Pax & K.Hoffm.		+		
40	Cryp_pa	*Cryptocarya palmerensis* C.K.Allen		+		
41	Meli_el	*Melicope elleryana* (F. Muell.) T.G. Hartley		+		
42	Lits_t	*Litsia timoriana* Span.		+		
43	Siph_ce	*Siphonodon celastrineus* Griff.		+		
44	Siph_sp	*Siphonodon sp*		+		
45	Vite_pi	*Vitex pinnata* L.		+		
46	Poly_no	*Polyscias nodosa* (Blume) Seem.		+		
47	Pome_pi	*Pometia pinnata* J.R.Forst. & G.Forst.		+		
48	Agla_ar	*Aglaias argentea* Blume		+		
49	Acr_so	*Acronychia sp*		+		
50	Gmel_se	*Gmelina sessilis* C.T.White & W.D.Francis ex Lane-Poole		+		
51	Mani_br	*Maniloba brownoides* Harms		+		
52	Prun_ar	*Prunus arborea* (Blume) Kalkman		+		
53	Camp_br	*Campnosperma brevipediolatum* Volkens		+		
54	Hors_la	*Horsfieldia laevigata* Warb.		+		
55	Cana_hi	*Campnosperma brevipediolatum* Volkens		+		
56	Deca_pa	*Decaspernum parviflorum* (Lam.) A.J.Scott		+		
57	Calo_in	*Calophyllum inophyllum* L.		+		
58	Heri_sy	*Heritiera sylvatica* S.Vidal		+		
59	Clei_pa	*Cleistanthus papaunus* (Lauterb.) Jabl.		+		
60	Elae_an	*Elaeocarpus angustifolius* Blume		+		
61	Gyman_fa	*Gymnacanthera farquhariana* (Hook.f. & Thomson) Warb.		+		
62	Grew_er	*Grewia eriocarpa* Luss.		+		
63	Xant_no	*Wendlandia sp*		+		
Ref	Common Name	Scientific Name				
------	-------------------	---				
64	Rhod_ci	*Rhodamnia cinerea* Jack				
65	Arto_al	*Artocarpus altillis* (Parkinson ex F.A.Zorn) Fosberg				
66	Para_pr	*Pararchidendron pruinum* (Benth.) I.C.Nielsen				
67	Plan_ke	*Planchonella kevensis* H.J.Lam				
68	Dios_pa	*Diospyros papuana* Valeton ex Bakh.				
69	Ochr_gl	*Ochrosia glomerata* (Blume) F.Muell.				
70	Myri_fa	*Myristica fata* Houtt.				
71	Ster_sh	*Sterculia shillinglawii* F.Muell.				
72	Syzy_sp2	*Syzygium sp2*				
73	Syzy_sp3	*Syzygium sp3*				
74	Xant_pa	*Xanthophyllum papuanum* Whitmore ex Meijden				
75	Euca_pa	*Eucalyptopsis papuana* C.T.White				
76	Flin_pi	*Flindersia pimenteliana* F.Muell				
77	Hapl_fl	*Haplolobus floribundus* (K.Schum.) H.J.Lam				
78	Lits_fi	*Litsea firma* (Blume) Hook.f.				
79	Term_co	*Terminalia copelandi* Elmer				
80	Calo_ca	*Calophyllum caudatum* Kaneh. & Hatus.				
81	Coch_gi	*Cochlospermum gillivraei* Benth.				
82	Buch_ar	*Buchanania arborescens* (Blume) Blume				
83	Fagr_el	*Fagraea elliptica* Roxb.				
84	Prun_ja	*Prunus javanica* (Teijsm. & Binn.) Miq.				
85	Endi_ru	*Endiandra rubescens* (Blume) Miq.				
86	Cryp_sp	*Cryptocarya sp*				
No.	Code	Species				
-----	-------	---				
1	Agla_ar	Aglaia argentea Blume				
2	Agla_ar	Aglaia argentea Blume				
3	Buch_ar	Buchanania arborescens (Blume) Blume				
4	Buch_ar	Buchanania arborescens (Blume) Blume				
5	Calo_ca	Calophyllum caudatum Kaneh. & Hatus.				
6	Calo_ca	Calophyllum caudatum Kaneh. & Hatus.				
7	Calo_in	Calophyllum inophyllum L.				
8	Calo_in	Calophyllum inophyllum L.				
9	Camp_br	Campnosperma brevipetiolatum Volkens				
10	Camp_br	Campnosperma brevipetiolatum Volkens				
11	Cana_hi	Canarium hirsutum Wild.				
12	Cana_hi	Canarium hirsutum Wild.				
13	Cana_in	Canarium indicum L.				
14	Cana_in	Canarium indicum L.				
15	Cara_br	Carallia brachiata (Lour.) Merr.				
16	Cara_br	Carallia brachiata (Lour.) Merr.				
17	Clei_pa	Cleistanthus papuanaus (Lauterb.) Jabl.				
18	Clei_pa	Cleistanthus papuanaus (Lauterb.) Jabl.				
19	Cory_la	Corynocarpus laevigatus J.R.Forst. & G.Forst.				
20	Cory_la	Corynocarpus laevigatus J.R.Forst. & G.Forst.				
21	Crypt_pa	Cryptocarya palmerensis C.K.Allen				
22	Crypt_pa	Cryptocarya palmerensis C.K.Allen				
23	Crypt_sp	Cryptocarya sp				
24	Crypt_sp	Cryptocarya sp				
25	Deca_pa	Decaspernum parviflorum (Lam.) A.J.Scott				
26	Deca_pa	Decaspernum parviflorum (Lam.) A.J.Scott				
27	Dill_pa	Dillenia papuana Martelli				
28	Dill_pa	Dillenia papuana Martelli				
29	Dios_pi	Diospyros pilosanthera Blanco				
30	Dios_pi	Diospyros pilosanthera Blanco				
31	Drac_da	Dracontomelon dao (Blanco) Merr. & Rolfe				
32	Drac_da	Dracontomelon dao (Blanco) Merr. & Rolfe				
33	Dryp_gl	Drypetes globosa (Merr.) Pax & K.Hoffm.				
34	Dryp_gl	Drypetes globosa (Merr.) Pax & K.Hoffm.				
35	Dysyo_mo	Dysoxylum mollissimum Blume				
36	Dysyo_mo	Dysoxylum mollissimum Blume				
37	Elae_an	Elaeocarpus angustifolius Blume				
38	Elae_an	Elaeocarpus angustifolius Blume				
39	Endi_ru	Endiandra rubescens (Blume) Miq.				
40	Endi_ru	Endiandra rubescens (Blume) Miq.				
41	Endo_me	Endospernum meduloosum L.S.Sm.				
42	Endo_me	Endospernum meduloosum L.S.Sm.				
43	Flin_pi	Flindersia pimenteliana F.Muell.				
44	Flin_pi	Flindersia pimenteliana F.Muell.				
45	Galb_be	Galbulimima belgraveana (F.Muell.) Sprague				
46	Galb_be	Galbulimima belgraveana (F.Muell.) Sprague				
47	Garc_la	Garcinia latissima Miq.				
48	Garc_la	Garcinia latissima Miq.				
49	Giro_ne	Gironniera nervosa Planch.				
50	Giro_ne	Gironniera nervosa Planch.				
51	Gmel_se	Gymnelia sessilis C.T.White & W.D.Francis ex Lane-Poole				
52	Gmel_se	Gymnelia sessilis C.T.White & W.D.Francis ex Lane-Poole				
53	Gnet_gn	Gnetum gnemon L.				
54	Gnet_gn	Gnetum gnemon L.				
55	Gono_li	Gonocarpus littorale (Blume) Sleumer				
56	Gono_li	Gonocarpus littorale (Blume) Sleumer				
57	Gymn_fa	Gymmacranthera farquhariana (Hook.f. & Thomson) Warb.				
58	Gymn_fa	Gymmacranthera farquhariana (Hook.f. & Thomson) Warb.				
59	Hapl_fl	Haplolobus floribundus (K.Schum.) H.J.S.Volkens				
60	Hapl_fl	Haplolobus floribundus (K.Schum.) H.J.S.Volkens				
61	Heri_sy	Heritiera sylvatica S.Vidal				
62	Heri_sy	Heritiera sylvatica S.Vidal				
63	Homa_fo	Homalium foetidum Benth.				
64	Homa_fo	Homalium foetidum Benth.				
65	Hope_ce	Hopea celtidifolia Kosterm.				
66	Hope_ce	Hopea celtidifolia Kosterm.				
67	Hope_no	Hopea novoguineensis Slooten				
68 Hope_no S Hopea novoguineensis Slooten
69 Hope_pa L Hopea papuanica Diels
70 Hope_pa S Hopea papuanica Diels
71 Hors_la L Horsfieldia laevigata Warb.
72 Hors_la S Horsfieldia laevigata Warb.
73 Ints_pa L Intsia palembanica Miq.
74 Ints_pa S Intsia palembanica Miq.
75 Knein_in L Kneona intermedia Warb.
76 Knein_in S Kneona intermedia Warb.
77 Lith_ru L Lithocarpus rufolillosus (Markgr.) Rehder
78 Lith_ru S Lithocarpus rufolillosus (Markgr.) Rehder
79 Lits_ti L Litsea timoriensis Span.
80 Lits_ti S Litsea timoriensis Span.
81 Man_br L Manioba browneoides Harms
82 Man_br S Manioba browneoides Harms
83 Medu_la L Medusandra laxiflora (Miers) R.A. Howard
84 Medu_la S Medusandra laxiflora (Miers) R.A. Howard
85 Mel_el L Melicope elleryana (F. Muell.) T.G. Hartley
86 Mel_el S Melicope elleryana (F. Muell.) T.G. Hartley
87 Myri_fa L Myristica fatua Houtt.
88 Myri_fa S Myristica fatua Houtt.
89 Pala_lo L Palaquium lobianum Burck
90 Pala_lo S Palaquium lobianum Burck
91 Par_ar L Parachondron pruinosa (Benth.) L.C. Nielsen
92 Par_ar S Parachondron pruinosa (Benth.) L.C. Nielsen
93 Para_ve L Parastemon versteeghii Merr. & L.M.Perry
94 Para_ve S Parastemon versteeghii Merr. & L.M.Perry
95 Pime_am L Pimelodendron amboinicum Hassk.
96 Pime_am S Pimelodendron amboinicum Hassk.
97 Plan_ke L Planchonella keyensis H.J.Lam
98 Plan_ke S Planchonella keyensis H.J.Lam
99 Pome_ac L Pometia acuminata Radlkl.
100 Pome_ac S Pometia acuminata Radlkl.
101 Pome_pi L Pometia pinnata J.R.Forst. & G.Forst.
102 Pome_pi S Pometia pinnata J.R.Forst. & G.Forst.
103 Prun_ar L Prunus arboarea (Blume) Kalkman
104 Prun_ar S Prunus arboarea (Blume) Kalkman
105 Prun_ja L Prunus javanica (Teijsm. & Binn.) Miq.
106 Prun_ja S Prunus javanica (Teijsm. & Binn.) Miq.
107 Rhod_ci L Rhodamnia cinerea Jack
108 Rhod_ci S Rhodamnia cinerea Jack
109 Siph_ce L Siphonodon celsastrineus Griff.
110 Siph_ce S Siphonodon celsastrineus Griff.
111 Siph_sp L Siphonodon sp
112 Siph_sp S Siphonodon sp
113 Sloa_pu L Sloanea pullei O.C.Schmidt ex A.C.Sm.
114 Sloa_pu S Sloanea pullei O.C.Schmidt ex A.C.Sm.
115 Ster_sh L Sterculia shillinglazii F.Muell.
116 Ster_sh S Sterculia shillinglazii F.Muell.
117 Syzy_sp1 L Syzygium sp1
118 Syzy_sp1 S Syzygium sp1
119 Teij_bo L Tejsgmaniodendron bogoriense Koord.
120 Teij_bo S Tejsgmaniodendron bogoriense Koord.
121 Term_co L Terminalia copelandi Elmer
122 Term_co S Terminalia copelandi Elmer
123 Timo_ca L Timonius carrii S.P.Darwin
124 Timo_ca S Timonius carrii S.P.Darwin
125 Tris_ma L Tristaniopsis macrosperma (F.Muell.) Peter G.Wilson & J.T.Waterh.
126 Tris_ma S Tristaniopsis macrosperma (F.Muell.) Peter G.Wilson & J.T.Waterh.
127 Vati_ra L Vatica rassak Blume
128 Vati_ra S Vatica rassak Blume
129 Xant_pa L Xanthophyllum papuanum Whitmore ex Meijsden
130 Xant_pa S Xanthophyllum papuanum Whitmore ex Meijsden
131 Xant_no L Xanthostemon novoguineensis Valeton
132 Xant_no S Xanthostemon novoguineensis Valeton