Risk Identification in Procurement of Precast Façade on High Rise Buildings in Jakarta

Ardian Sulistianto1*, Manlian Ronald. A. Simajuntak2*

1Graduate Program of Master of Civil Engineering Universitas Tarumanagara
2Graduate Program of Master of Civil Engineering Pelita Harapan University

ardian.327181005@stu.untar.ac.id, *manlian.adventus@uph.edu

Abstract. This research aims to identify risks in the procurement façade precast phase in buildings in Jakarta. In this research, there are three phases of procurement based on PMBOK that is planning, implementation, and management. The problem in this research is to be able to know and identify the cause of the risk of procurement façade precast on high rise buildings in Jakarta and to know the façade precast wall characteristic in buildings. The research object is a building in Jakarta area. The test conducted in this study is validity with Expert Judgement, factor test, regression test and model test with the help of SPSS 23 program. Obtained 38 risk variables based on data collection through the study of the library. Furthermore, the correlation test and intercorrelation are only obtained 12 variables that worth to used. Based on the results of analysis conclusions, of the 3 factors and 38 risk variables that affect project completion performance. The most dominant or significant risk has been obtained: X9 = design planning, X31 = the existence of rework, X16 = location of difficult sites, X14 = transportation and delivery problems.

Keywords: Risks Identification, Procurement, Precast Façade

1. Introduction

With the rapid development of technology in the construction world that produces new innovations used by construction services (contractors) to be used in construction development to be more practical so that it can influence of quality, cost and time. One of the advancements that have been widely used are concrete precast products. According to Ervianto, (2006) There are several obstacles that must be considered in precast concrete work namely, a) technology, b) materials, c) human Resources, D) planning, E) logistics, F) production, g) carriage and distribution, and h) installation and Repair. With these constraints, precast concrete work can be the right choice or can be a very big problem when applying the precast concrete in a high-rise building in Jakarta. This is because, such as planning factors, time, coordination between interests, transportation and distribution carried out in precast concrete is in need of careful planning so that it can produce concrete precast procurement Positive impact on construction projects. The subject matter in this study is to identify risks and know the precast character of the building's façade precast in Jakarta. This is the basis of the problem of this research to identify the most significant risks in procurement façade precast in buildings in Jakarta.

2. Research Methodology

2.1. Research Process

The research uses primary data and secondary data. Primary Data obtained from contractors are directly involved in the procurement of façade precast. Meanwhile, for secondary data obtained from various references related to this research such as research journals, books as well as from previous research data. Research Instrument
2.2. Factor and Variables

Factors and Variable risk management procurement is obtained from the information of some experts directly related to the procurement of façade precast and literary sources such as scientific journals, previous research, textbooks that refer to PMBOK (6th Edition) etc.

3. Results and Discussions

3.1 Risks Identification

In the analysis phase is validation with experts to get a more significant variable to this study, as for 38 variables there are only 31 variables that deserve to be a risk variable based on the experts. The following are the validation results of the risk variables:

No	Variabel Risiko
A	Planning process
A1	Contract Value
A2	Material types are not clearly defined in the contract
A3	Contract clause incomplete
A4	Weak coordination with suppliers
A5	Specification requirements of Owner
A6	Specification changes that affect manufacturing
A7	Scope of work is not clearly defined
A8	Approximate accuracy of material quantities
A9	Design planning
A10	Quality of materials used for the construction
A12	Cost estimation Error
A13	Less good process of procurement document supervision
B	Implementation process
B14	Transportation and shipping problems
B15	Tender process and contract type
B16	Difficult site location
B17	Delays in material delivery caused by bad weather
B18	Material damage when delivery by supplier to Contractor
B19	Inconformity between the amount of material sent by the supplier to the contractor with the number of requests from the contractor
B20	Quality mismatch/material quality sent by supplier to the contractor to the quality standards according to the specifications on the contract
B21	Lack of information about company vendors
B22	The onset of congestion around project locations
B23	Failure in material delivery caused by traffic accidents
B24	Supplier fault
C	Control process
C25	Availability of equipment
C26	Lack of coordination between parties involved in the
C27	Adding jobs by Owner
C28	Very strict procurement schedule of materials and equipment
C29	Schedule changes in job execution
C30	Material availability
C31	Rework

3.2 Risks Analysis
From the results of expert validation then analysis on the results of the questionnaire by conducting regression factor test and model test, the following is the result of the test conducted with the help of SPSS 23:

3.2.1 Correlations test
The following is a variable correlation test Result:

Table 2 Correlations test results
Factor
Planning
Implementation
Management

3.2.2 Factor Analysis
The value obtained in KMO Measure of Sampling Adequency should be > 0.5 so that the factor analysis can be processed for further. The significance value in Bartlett's test should show the number of < 0.05 so that factor analysis can be done. Here is the table of KMO-MSA analysis result factor:

Table 3 KMO and Bartlett Factor Analysis Results
KMO and Bartlett's Test
Kaiser-Meyer-Olkin Measure of Sampling Adequacy.
Bartlett's Test of Sphericity
df
Sig.

Based on the results of the analysis in the table above, the value of KMO obtained is 0.688, at the value of KMO obtained the value of > 0.5 which means for factors analysis can be conducted.

3.2.2.1 Total Variance Explained
The following are test results of Total Variance Explained:
3.2.3 Regression Analysis

In the regression model selection, the method used is the Stepwise method. The About regression procedure is one of the best predictor variable selection procedures. The following is the result of regression analysis using about methods:

Table 4 Regression Model Selection Results

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.795*	.632	.620	.30934
2	.843*	.711	.693	.27809
3	.881*	.777	.755	.24838
4	.899*	.808	.782	.23427

Based on table 4 results above, get 4 regression models that are the result of the Stepwise method analysis. The model which has the largest R Square value is Model 4 which is 0.808 with variables X9, X31, X16 and X14.

3.2.3.1 Autokorelasi Test

The following is the value of Durbin Watson obtained with the help of SPSS 23 program:

Table 5 Autocorrelation test Results

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	Durbin-Watson
1	.795*	.632	.620	.30934	2.221
2	.843*	.711	.693	.27809	
3	.881*	.777	.755	.24838	
4	.899*	.808	.782	.23427	

According to table 5, the results of Durbin Watson were obtained by 2.221. This value states that the value is still within the limit of the stated range of 1.2833 – 2.7167 and 1.65282 – 2.3471. Therefore, it can be said that the model is free from autocorrelation.

3.2.4 T-test

The calculated T values can be seen in table 6:
Table 6 T test Results Coefficients

Model	Unstandardized Coefficients	Standardized Coefficients				
	B	Std. Error	Beta	t	Sig.	
1	(Constant)	1.053	.471	2.236	.032	
	X9	.789	.105	.795	7.521	.000
2	(Constant)	.122	.526	.231	.819	
	X9	.659	.104	.664	6.337	.000
	X31	.325	.109	.311	2.972	.006
3	(Constant)	-.761	.554	-1.374	.179	
	X9	.614	.094	.618	6.519	.000
	X31	.306	.098	.294	3.133	.004
	X16	.259	.086	.262	3.018	.005
4	(Constant)	-.993	.533	-1.864	.072	
	X9	.568	.091	.572	6.234	.000
	X31	.277	.093	.266	2.981	.006
	X16	.207	.084	.209	2.451	.020
	X14	.177	.080	.198	2.202	.036

3.2.5 Regression equation

Based on table 6 above, acquired regression equation as follows:

\[Y = -0.993 + 0.568X9 + 0.277X31 + 0.207X16 + 0.177X14 \]

With:
- \(Y \): Project Alignment time performance
- \(X9 \): Design Planning
- \(X31 \): Rework
- \(X16 \): Difficult site location
- \(X14 \): Transport and delivery problems

3.3 Façade Precast CharacterISTICS in Building

Based on the results of the library studies, previous journals and analysis with experts, obtained by precast façade wall characters, namely:

a) Planning precast façade walls should be done very closely in line with dimensions, distance and connection/joint details, this is due to the level of precision or accuracy when installation can be achieved.

b) Flexibility in the process of scaffolding (can be in production according to needs).

c) The continuity of production is not disrupted by weather.

d) Good quality of concrete can be produced easily because the production is done in the factory with a better level of quality control.

e) Planning on transportation/transport should be done properly and properly due to the high level of difficulty in the process of transporting from the factory to the project site that could cause damage during travel.

f) Accelerate the process of implementing work on the building façade.

g) Require additional technical equipment for the installation process and transporting precast panels.
h) High difficulty level in the installation process.

Based on the research results, façade precast have a character that can positively or negatively impact a project. The precast façade walls have a favorable outcome as well as the implementation of it.

4. Conclusion
The conclusions of this research are:
1. Of the 3 factors and 38 variable risks that affect project completion performance. The most dominant risk analysis results are:
 a) X9 = Design Planning
 b) X31 = Rework
 c) X16 = Difficult site location
 d) X14 = Transport and delivery problems
2. As for the precast character building façade walls are as follows:
 a) planning precast façade walls should be done very closely in line with dimensions, distance and connection/joint details, this is due to the level of precision or accuracy when installation can be achieved.
 a) Flexibility in the process of scaffolding (can be in production according to needs).
 b) The continuity of production is not disrupted by weather.
 c) Good quality of concrete can be produced easily because the production is done in the factory with a better level of quality control.
 d) Planning on transportation/transport should be done properly and properly due to the high level of difficulty in the process of transporting from the factory to the project site that could cause damage during travel.
 e) Accelerate the process of implementing work on the building façade.
 f) require additional technical equipment for the installation process and transporting precast panels.
 g) High difficulty level in the installation process.

5. References
[1] Hopkinson, R (2011). Risk Management, Concept and Application. New York. Mc-Graw Hill
[2] Project Management Institute (2017). A Guide to the : Project Management Body of Knowledge. Pensylvania. Project Management Institute Inc
[3] Santosa, Budi (2009). Manajemen Proyek Konep dan Implementasi. Graha Ilmu
[4] Wulfram Ervianto I (2006). Eksplorasi teknologi dalam proyek konstruksi beton pracetak dan bekisting. CV Andi Offset