New sonographically-guided test for anterior knee instability – preliminary report

Piotr Grzelak¹, Michał Podgórski¹,
Ludomir Stefańczyk¹, Marcin Domżalski²

¹ Department of Radiology and Diagnostic Imaging, Medical University of Łódź, Poland
² Department of Orthopedics and Pediatric Orthopedics, Medical University of Łódź, Poland

Correspondence: Piotr Grzelak, Department of Radiology and Diagnostic Imaging, Medical University of Łódź, Kopcińskiego 22, 90-159 Łódź, Poland, tel.: +48 42 678 67 34, fax: +48 42 678 11 76, e-mail: piotr.grzelak@umed.lodz.pl

DOI: 10.15557/JoU.2014.0025

Abstract

Aim of the study: Ultrasound examination is widely used in orthopedic diagnostics, however sonographic evaluation of traumatic anterior cruciate ligament insufficiency is still inadequate. Aim of this study is to evaluate diagnostic capability of a new sonographically-guided test for diagnosing complete anterior cruciate ligament insufficiency. Material and methods: In 47 patients, with suspicion of unilateral anterior cruciate ligament injury (based on magnetic resonance imaging), the sonographically-guided test for anterior instability was performed. The translation of the intercondylar eminence against the
patellar tendon was measured in both knees. Afterwards all patients underwent arthroscopy. **Results:** In 37 patients, with arthroscopically confirmed complete anterior cruciate ligament insufficiency, the mean anterior knee translation was 8.3 mm (SD = 2.8) in affected knee vs. 3 mm (SD = 1.1) in uninjured knee (p < 0.001). In 10 patients with no anterior cruciate ligament insufficiency the difference between body sides was not significant (2.6 mm, SD = 1.4 in injured knee vs. 2.5 mm, SD = 1.1 in uninjured joint; p < 0.7753). **Conclusions:** The proposed test supports the clinician with fast and non-invasive examination that can facilitate evaluation of anterior knee instability.

Introduction

In order to avoid damage to the meniscus, secondary degenerative disorders and proprioceptive gonarthrosis, accurate and non-invasive diagnosis of anterior cruciate ligament (ACL) injury followed by the proper treatment are essential. Complete ACL rupture results in anterior knee instability, however tests evaluating this parameter depend on the subjective opinion and the experience of the examiner. Mechanical devices evaluating translation between the femur and tibia (ex. arthrometer KT-1000, Stryker Knee Laxity Tester etc.) might aid the diagnosis but they are not widely used by clinicians. Magnetic resonance imaging (MRI) is the gold standard modality for diagnosing knee pathologies, however ultrasound allows for dynamic clinical tests with visualization in real time. Due to its wide availability, it is indicated to introduce new method for ACL evaluation. It should allow for quantitative and objective instability assessment and it should characterise with steep learning curve. Such a test might become an ideal first-line imaging technique when ACL insufficiency is suspected. The aim of study is to present and assess the usefulness of a new, sonographically-guided examination of ACL insufficiency.

Materials and methods

Examination design

Between the years 2008–2010 a sonographically-guided, dynamic test assessing anterior knee laxity was performed in 47 patients who: experienced acute knee trauma; had a suspicion of ACL injury (based on clinical assessment and MR examination); and were planned to undergo arthroscopy. In all patients it was the first-time injury of the knee that required medical attention. There was no history of the contra-lateral knee trauma. Ultrasonography was performed between 10–365 days after trauma (average 42 days). Written informed consent has been obtained from all patients. Examination protocol complies with the Declaration of Helsinki.

Test przedniej niestabilności pod kontrolą USG

Grupa badana składała się z 31 mężczyzn i 16 kobiet (średnia wieku 32 lata, SD = 11 lata). Do badania użyto aparatu Vivid 7 (General Electric), wyposażonego w górną liniową 12L o częstotliwości 6–14 MHz.
Przed rozpoczęciem badania ultrasonograficznego pacjent był układany na plecach z kończynami dolnymi zgiętymi w kolanach. Następnie wykonywano kilka naprężeniowych ruchów relaksacyjnych w płaszczyźnie przednio-tylnej podudzia, aby rozluźnić mięśnie stabilizujące staw kolanowy, co ułatwiało przeprowadzenie pomiarów.

Następnie pacjent siadał na brzegu leżanki, a pod dystalną część jego uda podkładano elastyczny walek o średnicy około 20 cm, tak aby kończyna zвисała swobodnie. Badający siadał naprzeciwko pacjenta i ustawiał swoją stópę blisko podudzia badanego. Głowica była ukladana w przekroju podłużnym, równolegle do więzadła rzepki. Po rozpoznaniu punktów orientacyjnych (wyniosłość międzyżyłkowcowa, guzowatość pischeli i więzadło rzepki) badający wywierał stopą rosnący nacisk na podudzie badanego. Staw kolanowy pacjenta ulegal zgięciu i wytwarzał się mechanizm dźwigni, co przyczyniało się do przedniego przesunięcia wyniosłości międzyżyłkowcowa względem więzadła rzepki (ryc. 1). Siła nacisku wzrastała aż do momentu, gdy nie następowało już dalsze przemieszczanie analizowanychuktur. Następnie drugie koloano badano według tego samego protokołu, aby wyniki posłużyły jako punkt odniesienia.

Test wykonywano trzy razy i zapisywano w pamięci aparatu. Dalszą ocenę prowadzono na stacji roboczej EchoPack (General Electric). Przednie przesunięcie wyniosłości międzyżyłkowcowej mierzono w milimetrach (ryc. 2) i uśredniano na podstawie trzech pomiarów.

To prepare the start position for further examination, several push-pull movements of the lower leg were performed in the patient laying in a supine position with bent legs. This manoeuvre insured proper muscle relaxation, which allowed for further, more precise measurements.

Afterwards, the patient was seated and a elastic roll (a diameter of about 20 centimeters) was placed beneath the distal part of the thigh so that the lower leg of the patient hung freely from the edge of the examination couch. In this start-position the examiner sat opposite to the patient with his lower leg close to the patient’s shin. The transducer was placed onto the anterior aspect of the knee parallel to the patellar tendon. After identification of the anatomical landmarks (intercondylar eminence, tibial tuberosity and patellar tendon), the examiner pushed backwards the lower leg of the patient with his foot, flexing the tibia in the knee joint (a leverage mechanism) (fig. 1). The translation of the intercondylar eminence with respect to the patellar tendon (fig. 2) was evaluated. Force was applied till no further displacement of the tibia relative to the femur occurred. The uninjured knee was also examined and served as a control.

Procedure was repeated three times and stored as a cine loop. Further analyses were performed on a workstation (EchoPack, GE). The translation was measured and given in millimetres as a mean of three repetitions.
New sonographically-guided test for anterior knee instability – preliminary report

Analiza statystyczna

Wartość przedniego przesunięcia wyniosłości międzykłkowej jest podana jako średnia i odchylenie standardowe. Normalność rozkładu sprawdzono testem Shapiro–Wilka. Różnica wartości przesunięcia między kolanem po urazie a kolanem bez urazu została oceniona testem rang Wilcoxon. Obliczenia prowadzono w programie Statistica (10.0, StatSoft, Tulsa, OK, USA). Wartość p < 0.05 uznano za istotną statystycznie.

Statistical analysis

The values of knee joint laxity are presented as the mean and standard deviation. The normality of data distribution was checked by the Shapiro–Wilk test. To compare the difference of knee joint laxity between body sides, the Wilcoxon signed-rank test was applied. Statistical analysis was performed using Statistica for Windows (version 10.0, StatSoft, Tulsa, OK, USA). A p < 0.05 was regarded as statistically significant.

Wyniki

U 37 pacjentów z artroskopowo potwierdzonym całkowitym zerwaniem ACL średnia wartość przesunięcia wyniosłości międzykłkowej wynosiła 8,3 mm (SD = 2,8). W przeciwieństwie do biegunowych stawów, tym niższe wydobyło się istotnie mniejsze – 3 mm (SD = 1,1; p < 0,001) (ryc. 3). U 10 pacjentów, w których w badaniu MR stwierdzono cechy uszkodzenia ACL, artroskopia potwierdziła uszkodzenie jednodzielne lub znikomie bliznowate napięcia więzadła. U tych badanych przednie przesunięcie wyniosłości międzykłkowej nie różniło się istotnie między stawem z urazem a tym bez urazu (odpowiednio: 2,6 mm, SD = 1,4 oraz 2,5 mm, SD = 1,1; p < 0,7753).

Results

Arthroscopy revealed the total ACL insufficiency in 37 patients. In these patients the mean value of the anterior knee translation was 8.3 mm (SD = 2.8). In the not affected knees the mean translation was significantly lower (3 mm, SD = 1.1; p < 0.001) (fig. 3). In 10 patients with no signs of complete ACL insufficiency in MRI, arthroscopy confirmed single-bundle injury or scare-like appearance of the ligament. Difference in the anterior knee translation between injured and uninjured knees was not significant (2.6 mm, SD = 1.4 vs. 2.5 mm, SD = 1.1, respectively; p < 0.7753).
Dyskusja

Prezentowany test może pomóc diagnozować przednią niestabilność stawu kolanowego u pacjentów z podejrzeniem całkowitego zerwania ACL.

Wszystkie kliniczne testy używane w ocenie przedniej niestabilności stawu kolanowego mają pewne ograniczenia: są subiektywne i jakościowe (a nie ilościowe), cechuje je mała powtarzalność, a ból i obrzuk stawu utrudniają badanie(5-7). Test przedniej szuflady charakteryzuje się dobrą specyficznością (do 91%), ale jego czułość jest mniejsza (68–71%)⁸,⁹. Przedstawiony test to modyfikacja testu przedniej szuflady – dzięki zastosowanemu mechanizmowi dźwigni i ilościowej ocenie niestabilności wzrosły jednak możliwości diagnostyczne.

Dianostyka obrazowa, ze szczególnym uwzględnieniem MR, znajduje szerokie zastosowanie w ocenie niewydolności ACL¹⁰,¹¹. Czułość i wrażliwość badania MR w wykrywaniu całkowitego przerwania ACL wynosi odpowiednio 94,4% (95% CI: 92,3–96,6) i 94,3% (95% CI: 92,7–95,9)¹⁴. Jednakże MR statycznie ocenia przednie podwichnięcie kości piszczełowej względem kości udowej, co nie koresponduje w pełni z mechaniczną i funkcjonalną stabilnością stawu. Ponadto jest to technika droga i jest niezawsze dostępna, a obecność u pacjentów stymulatorów, metalicznych implantów lub metalicznych ciał obcych w gałęzi ocznej stanowi przeciwwskazanie do badania lub powoduje powstanie artefaktów, które nieraz uniemożliwiają ocenę stawu.

Badanie USG – w przeciwieństwie do MR – pozwala na dynamiczną ocenę zakresu ruchu w zmienionym porządkowo stawie kolanowym. Zaproponowano wiele testów wykonywanych pod kontrolą USG, różniących się między sobą sposobem przyłożenia sondy (po brzusznej lub grzbietowej stronie stawu), metodą przyłożenia siły destabilizującej staw (siła grawitacji lub siła zewnętrzna) i liczbą wymaganym badającym⁵,⁶,¹⁵,¹⁷. Zaproponowana technika eliminuje pewne wady wcześniejszych testów: dzięki mechanizmowi

Discussion

We have presented a sonographically-guided test that may aid the diagnosis of the anterior knee instability in patients with ACL injury.

All clinical tests, proposed to evaluate anterior knee instability, have some limitations: they are subjective, imprecise, rarely reproducible, and pain in a swollen joint or a muscle spasm can interfere with proper examination⁵-⁷. The anterior drawer test has a good specificity (up to 91%), however its sensitivity is lower (68–71%)⁸,⁹. The presented test is a modification of the anterior drawer test, however due to applied lever mechanism and evaluation of a quantitative parameter (anterior translation) may overreach diagnostic capability of classic method.

Imaging techniques are widely used to assess the ACL injury¹,⁷,¹⁰-¹³. The specificity and sensitivity of MRI in detecting ACL injuries is 94.4% (95% CI: 92.3–96.6) and 94.3% (95% CI: 92.7–95.9) respectively¹⁴. Nevertheless, MRI evaluates only the structure of the ligament and a static subluxation of the tibia plateau against the femur condyles, which do not correlate fully with the mechanical and functional stability of the knee. In addition, MRI produces artefacts due to metallic implant placement; is contraindicated in patients with heart stimulators and metallic foreign bodies in the eyeball; it is expensive; and sometimes unavailable as a routine diagnostic tool.

On the contrary, ultrasound examination gives the ability to assess the dynamic range of motion in a quantitative manner. Many tests for sonographically-guided examination have been proposed. Those techniques differ in: dorsal or ventral probe placement, force applied due to gravity or external source, and a number of required operators⁵,¹⁵-¹⁷. The presented test has several advantages over those examinations. Due to a leverage mechanism we eliminated the influence of the examiners posture and physical strength.
dzwigni zniwelowano wpływ postury i siły fizycznej badalącego, a dzięki użyciu dolnej kończyny badającego w celu sprawowania niestabilności stawu test może przeprowadzić jedna osoba. Ponadto siła prowokująca niestabilność narasta stopniowo i łagodnie, nie następuje gwałtowne szarpnięcie – ból podczas badania może zostać ograniczony, a głowica ultrasonograficzna się nie przemieszcza, co poprawia wiarygodność i powtarzalność testu.

Ograniczeniem prezentowanego testu, typowym dla wszystkich badań klinicznych, jest jego obniżona skuteczność diagnoiczna w ostatniej fazie urazu. Warto jednak zauważyć, że nawet w przypadku badania MR czułość w tej fazie maleje z powodu występowania krwiaka w stawie kolanowym i lokalnego obrzęku tkanki(1).

Wnioski
Zaprezentowany test to szybki i nieinwazyjny sposób mogący ułatwić zdiagnostowanie całkowitej niewydołności ACL. Dzięki dużej obiektwności mógłby stać się elementem pierwszoplanowego badania obrazowego u pacjentów z podejrzeniem niewydołności ACL. Konieczne są jednak dalsze badania, służące ocenie efektywności testu i kryteriów diagnostycznych rozpoznania przedniej niestabilności, występującej w różnych stanach patologicznych stawu kolanowego.

Konflikt interesów

Wydrukowany artykuł nie zgłasza żadnego konfliktu interesów.

Piśmiennictwo/References

1. Kam CK, Chee DW, Peh WC: Magnetic resonance imaging of cruciate ligament injuries of the knee. Can Assoc Radiol J 2010; 61: 80–89.
2. Palm HG, Bergenthal G, Ehrh P, Schwarz W, Schmidt R, Friemert B: Functional ultrasonography in the diagnosis of acute anterior cruciate ligament injuries: a field study. Knee 2009; 16: 441–446.
3. Pugh L, Mascarenhas R, Arneja S, Chin PY, Leith JM: Current concepts in instrumented knee-laxity testing. Am J Sports Med 2009; 37: 199–210.
4. Fibiger W, Kukielka R, Jasiak-Tyrkalska B, Frańczuk B: Rehabilitation after damage to the anterior cruciate ligament for persons actively participating in sport. Ortop Traumatol Rehabil 2004; 6: 461–466.
5. Araki D, Kuroda R, Kubo S, Nagamune K, Hoshino Y, Nishimoto K et al.: The use of an electromagnetic measurement system for anterior tibial displacement during the Lachman test. Arthroscopy 2011; 27: 792–802.
6. Fuchs S, Chylarecki C: Sonographic evaluation of ACL rupture signs compared to arthroscopic findings in acutely injured knees. Ultrasound Med Biol 2002; 28: 149–154.
7. Lerat JL, Moyen BL, Cladière F, Besse JL, Abidi H: Knee instability after injury to the anterior cruciate ligament. Quantification of the Lachman test. J Bone Joint Surg Br 2000; 82: 42–47.
8. Liu SH, Osti L, Henry M, Bocchi L: The diagnosis of acute complete tears of the anterior cruciate ligament. Comparison of MRI, arthroscopy and clinical examination. J Bone Joint Surg Br 1995; 77: 586–588.
9. Gebhard F, Authenrieth M, Streecker W, Kinzl L, Hohl G: Ultrasonic evaluation of gravity induced anterior drawer following anterior cruciate ligament lesion. Knee Surg Sports Traumatol Arthrosc 1999; 7: 166–172.
10. Donell ST, Marshall TJ, Darrah C, Shepstone L: Cruciate ligament assessment in MRI scans: a pilot study of a static drawer technique. Knee 2006; 13: 137–144.
11. Skovgaard Larsen LP, Rasmussen OS: Diagnosis of acute rupture of the anterior cruciate ligament of the knee by sonography. Eur J Ultrasound 2000: 12: 163–167.
12. Paczesny L, Kruczyński J: Ultrasound of the knee. Semin Ultrasound CT MR 2011; 32: 114–124.
13. Suzuki S, Kasahara K, Futami T, Iwasaki R, Ueo T, Yamamuro T: Ultrasonic diagnosis of pathology of the anterior and posterior cruciate ligaments of the knee joint. Arch Orthop Trauma Surg 1997; 100: 280–283.
14. Oei EH, Nikken JJ, Verstijnen AC, Gimai AZ, Myriam Hunink MG: MR imaging of the menisci and cruciate ligaments: a systematic review. Radiology 2003; 226: 837–848.
15. Friedl W, Glaser F: Dynamic sonography in the diagnosis of ligament and meniscal injuries of the knee. Arch Orthop Trauma Surg 1991; 110: 132–138.
16. Gebhard F, Authenrieth M, Streecker W, Kinzl L, Hehl G: Ultrasonic evaluation of gravity induced anterior drawer following anterior cruciate ligament lesion. Knee Surg Sports Traumatol Arthrosc 1999; 7: 166–172.
17. Schwarz W, Hagemann J, Minholz R, Schierlinger M, Danz B, Gerngross H: Manual ultrasound of the knee joint. A general practice method for diagnosis of fresh rupture of the anterior cruciate ligament. Unfallchirurg 1997; 100: 280–285.

The presented test in a quick and non-invasive manner allow for evaluation of complete ACL insufficiency. Due to its objectivity it holds the potential to become the first-line imaging technique when ACL insufficiency is suspected. However, further research is required to determine the test reliability and a cut-off value of the anterior translation in patients with insufficient ACL and also other knee pathologies.

Conflict of interest

The authors do not report any conflict of interest.

J Ultrason 2014; 14: 252-257