Emerging Trends in Pain Modulation by Metabotropic Glutamate Receptors
Vanessa Pereira, Cyril Goudet

To cite this version:
Vanessa Pereira, Cyril Goudet. Emerging Trends in Pain Modulation by Metabotropic Glutamate Receptors. Frontiers in Molecular Neuroscience, Frontiers Media, 2019, 11, pp.464. 10.3389/fnmol.2018.00464. hal-02388671

HAL Id: hal-02388671
https://hal.archives-ouvertes.fr/hal-02388671
Submitted on 13 Feb 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Emerging Trends in Pain Modulation by Metabotropic Glutamate Receptors

Vanessa Pereira and Cyril Goudet*
IGF, CNRS, INSERM, Univ. de Montpellier, Montpellier, France

Pain is an essential protective mechanism meant to prevent tissue damages in organisms. On the other hand, chronic or persistent pain caused, for example, by inflammation or nerve injury is long lasting and responsible for long-term disability in patients. Therefore, chronic pain and its management represents a major public health problem. Hence, it is critical to better understand chronic pain molecular mechanisms to develop innovative and efficient drugs. Over the past decades, accumulating evidence has demonstrated a pivotal role of glutamate in pain sensation and transmission, supporting glutamate receptors as promising potential targets for pain relieving drug development. Glutamate is the most abundant excitatory neurotransmitter in the brain. Once released into the synapse, glutamate acts through ionotropic glutamate receptors (iGluRs), which are ligand-gated ion channels triggering fast excitatory neurotransmission, and metabotropic glutamate receptors (mGluRs), which are G protein-coupled receptors modulating synaptic transmission. Eight mGluR subtypes have been identified and are divided into three classes based on their sequence similarities and their pharmacological and biochemical properties. Of note, all mGluR subtypes (except mGlu6 receptor) are expressed within the nociceptive pathways where they modulate pain transmission. This review will address the role of mGluRs in acute and persistent pain processing and emerging pharmacotherapies for pain management.

Keywords: pain, GPCR (G-protein-coupled receptors), receptor, glutamate (Glu), neurotransmitter, chronic pain, pharmacology, neuromodulation

INTRODUCTION

Acute pain is an important protective function, detecting harmful stimuli and preventing body damage. However, chronic pain persists for a long time after the initial affliction, losing its role as a warning signal and must be considered as a disease per se. Patients suffering from chronic pain not only experience exacerbated responses to both painful (hyperalgesia) and non-painful stimuli (allodynia) (Sandkühler, 2009) but also frequently express emotional and cognitive impairments often resulting in anxiety and depression (McWilliams et al., 2003; Moriarty et al., 2011; Bushnell et al., 2013).

Glutamate is the main excitatory neurotransmitter in the nervous system of adult mammals. Among the neurotransmitters involved in pain transmission from the periphery to the brain, glutamate has a leading role. Glutamate is also involved in central sensitization, which is
associated with chronic pain. Glutamate action is mediated through ionotropic and metabotropic receptors. Ionotropic glutamate receptors (iGluRs) are ligand-gated ion channels involved in the fast synaptic response to glutamate. Metabotropic glutamate receptors (mGluRs) are G protein-coupled receptors that are responsible for the slow neuromodulatory response to glutamate. Eight mGluRs have been identified so far. They are named mGlul to mGlu8 receptors by chronological order of discovery. Later, based on their sequence homology, signalization and pharmacology, they were subdivided in three groups. Group I mGluRs (mGlul and 5) are canonically coupled to Gq/11 and lead to phospholipase C (PLC) activation that promotes neuronal excitability and are mostly expressed postsynaptically. In contrast, group II (mGlul2 and 3) and group III (mGlu4, 6, 7, and 8) mGluRs are predominantly coupled to Go/0 triggering adenylate cyclase (AC) inhibition. Group II and III mGluRs also regulate neuronal excitability and synaptic transmission through Gβγ subunits, which notably inhibit voltage-sensitive calcium channels and activate potassium channels. Both group II and group III mGluRs are mainly localized on presynaptic terminals. Both iGluRs and mGluRs (except mGlul6 receptor) are expressed all along the pain neuraxis where they shape the transmission of pain information (Figure 1). They are also involved in the induction and the maintenance of central sensitization of the pain pathway (Latremoliere and Woolf, 2009). This phenomenon is associated with hyperexcitability of the glutamatergic system which leads to the development of the main sensory symptoms observed in persons suffering from chronic pain.

Acting on the molecular mechanisms of glutamatergic transmission may, therefore, be a way of developing future analgesics counteracting chronic pain. However, even if iGluR selective antagonists have proven efficacious in releasing several pain states, drastically inhibiting glutamatergic transmission via iGluR blocking inevitably induces numerous side effects, notably hallucinations, ataxia and sedation (Bleakman et al., 2006). Therefore, the strategy of pharmacological modulation of mGluRs for the treatment of pain has been favored and significant effort has been devoted to better understanding the expression, the function and the role of these receptors in pain processing. The present review will focus on the role of mGluRs in acute and chronic pain at different levels—from the periphery to higher brain center involved in the perception and modulation of pain—and report the recent advances in the pharmacological strategy used to achieve mGluRs modulation.

PHARMACOLOGY OF MGLURS

Both orthosteric and allosteric ligands are available for pharmacological manipulation of mGluRs. Given their different binding sites, orthosteric ligands and allosteric modulators have specific pharmacological properties.

Orthosteric ligands are binding in the same pocket than the natural ligand (the orthosteric pocket). They are also referred to as competitive ligands. In mGluRs, the glutamate-binding pocket is located in the extracellular domain of the receptor. Due to the high degree of conservation of the glutamate-binding pocket among the mGluRs, the identification of subtype selective ligands is highly challenging. Therefore, many orthosteric ligands are selective for a specific group but do not discriminate between receptors within the group. The typical specific group I, II or III mGluRs agonists are S-3, S-DHPG, LY379268 and L-AP4, respectively, and have been used in many preclinical studies. Recently, selective orthosteric ligands have been generated, LY2794193 for mGlu3 receptor (Monn et al., 2015, 2018) and LSP4-2022 for mGlu4 receptor (Goudet et al., 2012). They bind to residues of the orthosteric site and to specific residues and pockets surrounding the glutamate-binding pocket. LSP4-2022 has notably been used in several pain studies.

Allosteric modulators regulate the activity of a receptor by binding at a site distinct from the orthosteric site of endogenous ligands. In mGluRs, the binding site for most synthetic allosteric modulators which has been identified so far is located in the seven transmembrane domain. Interestingly, this pocket is less well conserved between the different receptors of the family, allowing the discovery of subtype selective ligands. Allosteric modulators may inhibit (negatively modulate) or potentiate (positively modulate) the activity of a co-binding orthosteric ligand at a target receptor and so can act as negative or positive allosteric modulators, respectively. Moreover, neutral allosteric ligands capable of inhibiting the action of either positive or negative allosteric modulators but devoid of activity by themselves have also been described (also referred to as silent allosteric modulators, SAM). Negative allosteric modulators (NAM) act as non-competitive antagonists and can have inverse agonist properties, meaning that they can inhibit the constitutive activity of the receptor. Interestingly, due to their non-competitive mode of action, the action of NAMs is less dependent on the concentration of endogenous ligands. Positive allosteric modulators (PAM) can enhance either the potency or the efficacy, or both, of orthosteric agonists. Therefore, in contrast to agonists that maintain the receptor active, pure PAMs potentiate the cellular response resulting from the action of the endogenous ligand. Some PAMs can also directly activate the receptor, referred to as agoPAMs, although such activity is usually partial.

The first described allosteric modulators of mGluRs were CPCCOEt, BAY36-7620 and MPEP, which display inverse agonist activity on mGlu1 and mGlu5 receptors (Litschig et al., 1999; Pagano et al., 2000; Carroll et al., 2001). Shortly after, a series of PAMs of mGlu1 receptors were described (Knoflach et al., 2001). To date, PAMs and NAMs have been described for most mGluRs [see (Lindsley et al., 2016) for a review] and have proven to be useful in exploring the function of mGluRs in pain.

Photopharmacology is a recent advance in the field of mGluRs. It is based on freely diffusible, light-operated ligands to control the function of the ligand on its target by light. Contrary to optogenetics, neither genetic modification of the targeted receptor nor exogenous expression are required, enabling the photocontrol of endogenous receptors. Two types of drugs have been developed for photopharmacology: photoactivable and photoswitchable ligands (Goudet et al., 2018). It allows the pharmacological manipulation of mGluRs with high spatial and temporal precision and holds great promise for exploring their physiological and pathological functions, notably in pain (Font et al., 2017; Gómez-Santacana et al., 2017; Zussy et al., 2018).

Receptor subtype	Drugs type Name	Models Species	Effects Tests	References
Group I				
mGlu1	NAM FTIDC	Naïve Mice	No effect in thermal threshold	Satow et al., 2008
		Moe Rats	Tail immersion test	
			No effect in thermal threshold	Sevostianova and Danysz, 2006
			Radiant heat source	
		CFA Rats	Dose dependent increase of withdrawal latencies	El-Kouhen et al., 2006
		Formalin Mice	Dose dependent decrease of pain-related behavior	Varty et al., 2005
		Moe Rats	Licking and flinching	
		Formalin Rats	Reduced manifestation of both phases	Sevostianova and Danysz, 2006
			No development of tolerance	
			Licking behavior	
		Formalin Mice	Inhibit formalin-induced nociceptive behavior	Satow et al., 2008
		Rats	Licking behavior	
	EMQMCM A-841720	Rats	Dose dependent increase of withdrawal latencies	El-Kouhen et al., 2006
			Radiant heat source	
	LY456236	Mice	Dose dependent decrease of pain-related behavior	Varty et al., 2005
		Mice	Licking and flinching	
		Rats	No development of tolerance	Sevostianova and Danysz, 2006
			Licking behavior	
	FTIDC	Formalin Mice	Inhibit formalin-induced nociceptive behavior	Satow et al., 2008
		Rats	Licking behavior	
	A-841720	Skin incision	Attenuation of spontaneous post-operative pain behavior	Zhu et al., 2008
		Rats	Significant motor side effects	
			Weight-bearing/Open field/Rotarod	
	A-794282	Skin incision	Attenuation of spontaneous post-operative pain behavior	Zhu et al., 2008
		Rats	Significant motor side effects	
			Weight-bearing/Open field/Rotarod	
	A-841720	CCI Rats	Decrease mechanical allodynia	El-Kouhen et al., 2006
			Motor and cognitive side effects at analgesic doses	
			Von frey	
	LY456236 MPEP	SNL Rats	Dose dependent increase of withdrawal threshold	Varty et al., 2005
			Von Frey	
	MPEP	Rats	Decrease mechanical allodynia	El-Kouhen et al., 2006
			Motor and cognitive side effects at analgesic doses	
			Von frey	

(Continued)
Receptor subtype	Drugs type	Name	Models	Species	Effects	Tests	References
MTEP	Formalin	Moe	- Dose dependent decrease of pain-related behavior	Varty et al., 2005			
MPEP	Formalin	Rats	- Licking and pinching	Varty et al., 2005			
	Formalin	Rats	- Reduce the manifestation of both phases	Sevostianova and Danysz, 2006			
	Formalin	Rats	- Licking behavior	Sevostianova and Danysz, 2006			
	Formalin	Rats	- Reduce the manifestation of both phases	Sevostianova and Danysz, 2006			
	Formalin	Rats	- Licking behavior	Sevostianova and Danysz, 2006			
MPEP	Formalin	Moe	- Inhibit formalin-induced nociceptive behavior	Sarow et al., 2008			
Fenobam	Formalin	Rats	- Prevent formalin-induced spontaneous pain-related behavior	Jacob et al., 2009			
Fenobam	Formalin	Moe	- Licking, lifting, or flicking	Montana et al., 2009			
Fenobam	Formalin	Moe	- Prevent formalin-induced spontaneous pain-related behavior	Montana et al., 2011			
Fenobam	Formalin	Moe	- Licking, lifting, or flicking	Montana et al., 2011			
MPEP	Skin incision	Rats	- Both acute and chronic treatment reduce phase I and II	Zhu et al., 2004			
	CCI	Rats	- Reduce post-operative pain	Zhu et al., 2004			
	CCI	Rats	- Dose-dependent reversal of mechanical allodynia	Zhu et al., 2004			
	CCI	Rats	- Von Frey	Zhu et al., 2004			
Fenobam	CCI	Rats	- No effect in mechanical allodynia	Jacob et al., 2009			
Fenobam	PSNS	Rats	- Electronic von Frey	Hudson et al., 2002			
MPEP	SNL	Rats	- No effect	Walker et al., 2001a,b			
	SNL	Rats	- Reverse thermal hyperalgesia	Hudson et al., 2002			
	SNL	Rats	- Fail to alter tactile allodynia or mechanical hyperalgesia	Hudson et al., 2002			
MPEP	SNL	Rats	- Von Frey	Zhu et al., 2004			
	SNL	Rats	- Dose-dependent reversal of mechanical allodynia	Zhu et al., 2004			
MPEP	SNL	Rats	- Anxiolytic effect in naïve animals, reduce locomotor activity and coordination	Varty et al., 2005			
	SNL	Rats	- Vogel conflict test	Varty et al., 2005			
MPEP	SNL	Rats	- Anxiolytic effect in naïve animals, reduce locomotor activity and coordination	Varty et al., 2005			

Symbols are used for model of pain induced by local injection, for inflammatory pain, for post-operative pain, for neuropathic pain and for chemotherapy-induced neuropathic pain models. Decrease pain; Increase pain; AW, Acid-induced writhing; CCI, Chronic constriction injury; CFA, Complete Freund’s Adjuvant; CIPN, Chemotherapy-induced peripheral neuropathy; PSNS, Partial sciatic nerve section; SNL, Spinal nerve ligation.
Receptor subtype	Drugs type	Name	Models Species	Effects	Tests	References
Group II	mGlu2/3-selective	Agonist				
LY379268		Naïve Rats	- No effects acute thermal nociceptive function	Tail flick test on Radiant heat source	Simmons et al., 2002	
LY379268		Naïve Rats	- No effects on withdrawal latencies to either mechanical or thermal stimulation	Paw pressure/Radiant heat source	Sharpe et al., 2002	
LY2969822		CAP Rats	- Prevent tactile hypersensitivity	Oral prodrug of LY2934747	Johnson et al., 2017	
LY379268		Carrageenan Rats	- Reduce inflammation induced hyperalgesia	Paw pressure/Radiant heat source	Sharpe et al., 2002	
LY2969822		CFA Rats	- Reduce pain related behavior	Oral prodrug of LY2934747	Johnson et al., 2017	
LY354740		Formalin Rats	- Reduce pain related behavior	Licking behavior	Simmons et al., 2002	
LY379268		Formalin Rats	- Reduce pain related behavior	Licking behavior	Simmons et al., 2002	
LY389795		Formalin Rats	- Reduce pain related behavior	Licking behavior	Simmons et al., 2002	
LY379268		Formalin Mice	- No effect	Licking behavior	Satow et al., 2008	
LY2934747		Formalin Rats	- Reduce pain related behavior	Blocked by LY341495	Johnson et al., 2017	
LY379268		SNL Rats	- Reverse mechanical allodynia	Von Frey	Simmons et al., 2002	
LY2934747		SNL Rats	- Prevent tactile hypersensitivity	Von Frey	Johnson et al., 2017	

Symbols are used for model of pain induced by local injection, for inflammatory pain, for post-operative pain, for neuropathic pain and for chemotherapy-induced neuropathic pain models. Increase pain; Decrease pain; CAP, Capsaicin; CFA, Complete Freund's Adjuvant; SNL, Spinal nerve ligation.
TABLE 3 | Pain modulation following systemic administration of group III mGluRs ligands.

Receptor subtype	Drugs type	Name	Models Specie	Effects	Tests	References		
Group III	mGlu4	Agonist	LSP4-2022	Carrageenan Rats	- Reduce mechanical hypersensitivity	- Raw pressure	Vilar et al., 2013	
	mGlu7	PAM	AMN082*	Carrageenan Rats	- Prevent thermal hyperalgesia (before carrageenan) and inhibit thermal hyperalgesia and mechanical allodynia	- Radiant heat source/Dynamic plantar aesthesiometer	Dolan et al., 2009	
			AMN082*	Skin incision Rats	- Pre surgical and postsurgical administration inhibits thermal hyperalgesia, but not mechanical allodynia	- Radiant heat source/Dynamic plantar aesthesiometer	Dolan et al., 2009	
			NAM	MMPI	SNI Mice	- Increase thermal and mechanical thresholds	- Decrease anxiety-related behavior and improve cognitive performance	Palazzo et al., 2015
			XAP044	SNI Mice	- Increase thermal and mechanical thresholds	- Decrease anxiety-related behavior	Palazzo et al., 2015	
	mGlu8	Agonist	DCPG	Carrageenan Mice	- Reduce carrageenan-induced thermal hyperalgesia and mechanical allodynia	- Blocked by intra-PAG MSOP	Marabese et al., 2007	
			DCPG	Formalin Mice	- Decrease both early and delayed nociceptive responses	- Blocked by intra-PAG MSOP	Licking, lifting, or flicking	Marabese et al., 2007
			DCPG	CCI Mice	- Effective 3 days after surgery but ineffective in alleviating thermal hyperalgesia and mechanical allodynia 7 days after	- Radiant heat source/Dynamic plantar aesthesiometer	Marabese et al., 2007	

*Of note, in vivo actions of AMN082 should be interpreted with caution because they may involve other mechanisms in addition to mGlu7. Indeed, an AMN082 metabolite can inhibit monoamine transporters Sukoff Rizzo et al., 2011.

Symbols are used for model of pain induced by local injection, for inflammatory pain, for post-operative pain, for neuropathic pain and for chemotherapy-induced neuropathic pain models. Decrease pain, Increase pain; CCI, Chronic constriction injury; SNI, Spared nerve injury.
Table 4 | Pain modulation following local administration of group I mGluRs ligands.

Receptor subtype	Localization	Drugs type	Name	Models Species	Effects Tests	References	
Group I							
mGlu1/5 selective	Periphery	Agonist	RS-DHPG	Naïve Mice	- Reduction of thermal withdrawal latency	Bhave et al., 2001	
			RS-DHPG	Naïve Rats	- Radiant heat source		
			RS-DHPG	Naïve Rats	- Produce mechanical hyperalgesia	Walker et al., 2001a,b	
			RS-DHPG	Naïve Rats	- Paw pressure test		
			S-DHPG	Naïve Rats	- Decrease the mechanical threshold to noxious stimulation of the masseter muscle	Lee and Ro, 2007	
			S-DHPG	Naïve Rats	- Prevented by MPEP but not CPCCOEt		
					- Von Frey		
			RS-DHPG	Naïve Rats	- Reduction of thermal withdrawal latency	Jin et al., 2009	
			RS-DHPG	Naïve Rats	- Radiant heat source		
			RS-DHPG	Sheep	- Decrease the mechanical hyperalgesia in the masseter muscle	Chung et al., 2015	
					- Attenuated by AMG9810, a specific TRPV1 antagonist		
					- Von Frey		
			NAM CPECOEt	CAP inj Rats	- Dose dependent increase of withdrawal latencies	Jin et al., 2009	
					- Radiant heat source		
Spinal cord		Agonist	RS-DHPG	Naïve Rats	- Long lasting spontaneous nociceptive behaviors	Fishe and Coderre, 1996	
			RS-DHPG	Naïve Rats	- Mechanical allodynia and hyperalgesia, thermal hyperalgesia	Fishe and Coderre, 1998	
			S-DHPG	Naïve Sheep	- Von Frey/Tail clip/Hot plate	Dolan and Nolan, 2000	
			RS-DHPG	Naïve Mice	- Reduction of mechanical thresholds	Lorrain et al., 2002	
			RS-DHPG	Naïve Rats	- Blunt pin		
			RS-DHPG	Naïve Mice	- Increase spontaneous nociceptive behavior	Adwanikar et al., 2004	
			RS-DHPG	Naïve Rats	- Licking of the flanks, tail, and hindpaws		
			RS-DHPG	Naïve Rats	- Increase spontaneous nociceptive behavior		
			RS-DHPG	Naïve Mice	- Licking of tail and hindpaws		
			RS-DHPG	Naïve Rats	- Blocked by MPEP		
			RS-DHPG	Naïve Mice	- Licking and scratching and lifting behaviors	Hu et al., 2007	
			RS-DHPG	Naïve Rats	- Blocked by MEK inhibitor U0126		
			RS-DHPG	OCCI Rats	- Spontaneous nociceptive behaviors induction		
			RS-DHPG	OCCI Rats	- Licking of the flanks, tail, and hindpaw		
			RS-DHPG	OCCI Rats	- Increase in hind paw frequency and duration of lifting	Hama, 2003	
			RS-DHPG	OCCI Rats	- Blocked by MPEP		
			RS-DHPG	OCCI Rats	- Cold plate		
			Antagonist	LY393053	CFA Rats	- Reduction of glutamate-induced spontaneous pain behaviors	Vincent et al., 2017
			Antagonist	LY393053	SNI Rats	- Time spent licking	
			Antagonist	LY393053	SNI Rats	- Attenuation of mechanical allodynia and cold hyperalgesia	Fishe et al., 1998
			Antagonist	LY393053	SNI Rats	- Von Frey	
			Antagonist	LY393053	SNI Rats	- One cm deep 1°C water bath	
Amygdala		Agonist	DHPG	Naïve Mice	- Side dependent increase of mechanical hypersensitivity	Kolber et al., 2010	
			DHPG	Naïve Rats	- Von Frey	U et al., 2011	
			DHPG	Naïve Rats	- Increased the duration of vocalizations		
			DHPG	Naïve Rats	- Decreased the hindlimb withdrawal threshold		
			DHPG	Naïve Rats	- Knee compression/colocal distension		
PAG		Agonist	S-DHPG	Naïve Mice	- Increase in latency of the nociceptive reaction	Malone et al., 1998	
			S-DHPG	Mice	- Hot plate		
			S-DHPG	Formalin	- Decrease phase II		
			S-DHPG	Naïve Mice	- Licking behavior		
			S-DHPG	Naïve Mice	- Decrease of the latency of the nociceptive reaction	Malone et al., 2000	
			S-AIDA	Naïve Mice	- Hot plate		

Notes: Symbols are used for model of pain induced by local injection, for inflammatory pain, for post-operative pain, for neuropathic pain, and for chemotherapy-induced neuropathic pain models. Decrease pain; Increase pain; CAP: Capsaicin; CCI, Chronic constriction injury; CFA, Complete Freund’s Adjuvant; SNI, Spared nerve injury.
Receptor subtype	Localization	Drugs type	Name	Models Species	Effects Tests	References	
Group I							
mGlu1	Periphery	Antagonist	LY367385	Rats	IL-1β inj	- Decrease IL-1β-induced mechanical allodynia in orofacial area	Ahn et al., 2005
						- Air puff	
			NAM	CPCCOE1	CAP inj	- Dose dependent increase of withdrawal latencies	Jn et al., 2009
						- Radiant heat source	
						- Decrease IL-1β-induced mechanical allodynia in orofacial area	Ahn et al., 2005
						- Air puff	
Spinal cord	Antagonist	RS-AIDA	CAP inj	Rats	- Reduction of mechanical hypersensitivity, no effect in thermal hyperalgesia	Soliman et al., 2005	
						- Von Frey/Paw immersion	
						- Pretreatment produced reductions in the development of mechanical and cold hypersensitivity	Fisher et al., 2002
			NAM	CPCCOE1	CCI	- Reduction of vocalizations induced by mechanical stimulation	Han and Neugebauer, 2005
						- Knee compression	
Amygdala	Antagonist	LY367385	Naïve	Rats	- No effect	Li et al., 2011	
						- Knee compression/colorectal distension	
			NAM	CPCCOE1	Carrageenan	- Reduce mechanical hyperalgesia	Luongo et al., 2013
						- Dynamic Plantar Aesthesiometer	
Striatum	NAM	CPCCOE1	MA	Rats	- Reduction of vocalizations induced by mechanical stimulation	Han and Neugebauer, 2005	
						- Knee compression	
mGlu5	Periphery	Agonist	CHPG	Naïve	- Produced mechanical hyperalgesia	Walker et al., 2001a,b	
						- Paw pressure test	
			NAM	MPEP	Naïve	- Inhibit the visceral motor responses	Lindström et al., 2008
						- Colorectal distension	
						- Dose dependent increase of withdrawal latencies	Jn et al., 2009
						- Radiant heat source	
						- Reduction of mechanical hyperalgesia	Walker et al., 2001a,b
						- Paw pressure test	
						- Decrease IL-1β-induced mechanical allodynia in orofacial area	Ahn et al., 2005
						- Air puff	
Spinal cord	Agonist	trans-ADA	Naïve	Rats	- No effect in spontaneous nociceptive behaviors	Fisher and Coderre, 1996	
						- Elevating, shaking, stamping of the hindpaw/ elevating or whipping of the tail/liking or biting the tail	
						- No effect in acute pain	Zhu et al., 2005
			NAM	MPEP	CAP inj	- Reduction of mechanical hyperalgesia	Soliman et al., 2005
						- Von Frey/Paw immersion	
						- Dose-dependent reduction of non-evoked pain	Zhu et al., 2005
						- Weight-bearing	
						- Reversal of thermal hyperalgesia	Dogrul et al., 2000
						- Von frey filaments/Radiant heat source	
						- No effect in acute pain	Zhu et al., 2005
						- No effect in spontaneous nociceptive behaviors	Fisher and Coderre, 1996
						- Elevating, shaking, stamping of the hindpaw/ elevating or whipping of the tail/liking or biting the tail	
						- No effect in acute pain	Zhu et al., 2005
						- Reduction of mechanical hyperalgesia	Soliman et al., 2005
						- Von Frey/Paw immersion	
						- Dose-dependent reduction of non-evoked pain	Zhu et al., 2005
						- Weight-bearing	
						- Reversal of thermal hyperalgesia	Dogrul et al., 2000
						- Von frey filaments/Radiant heat source	
Receptor subtype	Localization	Drugs type	Name	Species	Effects Tests	References	
-----------------	--------------	------------	------	---------	---------------	------------	
					- Decrease phase II	Karim et al., 2001	
MPEP					- Licking behavior		
Formalin	Mice				- Dose-dependent reduction of non-evoked pain	Zhu et al., 2005	
	Skin incision	Rats			- Weight-bearing		
MPEP	CCI	Rats			- Pretreatment produced reductions in the development of mechanical hypersensitivity (but not cold hypersensitivity)	Fisher et al., 2002	
					- Von Frey/1 cm deep 1 °C water bath		
MPEP	CCI	Rats			- No effect in cold threshold	Hama, 2003	
					- Cold plate		
Fenobam	SNL	Rats			- Reduction of glutamate-induced spontaneous pain behaviors and mechanical allodynia	Vincent et al., 2016	
					- Time spent licking the hind paws, lower legs or tail/Von frey		
SIB-1757	SNL	Rats			- No effect in acute pain	Dogrul et al., 2000	
					- Reversal of thermal hyperalgesia and partial reversal of tactile allodynia		
					- Frey filaments/Radiant heat source		
SIB-1757	SNL	Rats			- No effect in acute pain	Dogrul et al., 2000	
					- Reversal of thermal hyperalgesia and partial reversal of tactile allodynia		
					- Frey filaments/Radiant heat source		
MPEP	CIPN	Rats			- Reversed pain hypersensitivity	Xie et al., 2017	
					- Von Frey/Paw pressure test		
Amygdala	NAM	MPEP	Naïve	Rats	- No effect	Li et al., 2011	
					- Knee compression/colorectal distension		
MPEP	Carrageenan	Rats			- No effect on mechanical hyperalgesia	Luongo et al., 2013	
	Formalin	Mice			- Dynamic Plantar Aesthesiometer		
MPEP	MA	Rats			- Reduction of vocalizations induced by mechanical stimulation	Han and Neugebauer, 2005	
					- Von Frey		
Alloswitch-1	Photoswitchable	CFA Mice			- Restore mechanical sensitivity	Gómez-Santacana et al., 2017	
Thalamus	NAM	JF-NP-26	Formalin	Mice	- Decrease both at phase I and phase II	Font et al., 2017	
					- Licking behavior		
					- Significantly increased pain thresholds	Font et al., 2017	
					- Von Frey filaments		
Striatum	NAM	MPEP	MA	Rats	- No effect	Han and Neugebauer, 2005	
					- Knee compression		
Prefrontal cortex	NAM	MPEP	SNL	Rats	- Decrease tactile hypersensitivity and depressive-like behavior	Chung et al., 2017	
					- Von Frey/Forced swimming test/Open field/Conditioned place preference		

Symbols are used for model of pain induced by local injection, for inflammatory pain, for post-operative pain, for neuropathic pain and for chemotherapy-induced neuropathic pain models. Decrease pain; Increase pain; CAP, Capsaicin; CCI, Chronic constriction injury; CFA, Complete Freund’s Adjuvant; CIPN, Chemotherapy-induced peripheral neuropathy; MA, Mono arthritis; SNL, Spinal nerve ligation; SNI, Spared nerve injury.
TABLE 6 | Pain modulation following local administration of group II mGluRs ligands.

Receptor subtype	Localization	Drugs type	Name	Models	Effects	Tests	References	
Group II								
mGlu2/3-selective	Periphery	Agonist	LY314582	Naïve Rats	- Slight decrease of mechanical threshold	Paw pressure test	Walker et al., 2001a,b	
			APDC	Naïve Rats	- No effect thermal withdrawal latency	- Radiant heat source	Du et al., 2008	
			L-CCG-1	Naïve Rats	- No effect thermal withdrawal latency	- Radiant heat source	Jin et al., 2009	
			APDC	CAP inj Rats	- Attenuate capsaicin-induced nociceptive behaviors	- Flinching and licking	Carlton et al., 2009	
			APDC	Carraigeenan Mice	- Restore mechanical thresholds		Yang and Gereau, 2003	
			APDC	Carraigeenan Rats	- Recovery of reduced weight load		Lee et al., 2013	
			APDC	Formalin Rats	- Reduce flinching and L/L		Du et al., 2008	
			APDC	IL-1ß inj Rats	- Reduce IL-1ß-induced mechanical allodynia	- Inhibited by pretreatment with LY341495	Ann et al., 2005	
			APDC	Inf soup Rats	- No effect in spontaneous nociceptive behaviors	Elevating, shaking, stamping of the hindpaw/elevating or whipping of the tail/liking or biting the tail	Fisher and Coderre, 1996	
			APDC	Inf soup Rats	- No significant changes in withdrawal latencies		Jin et al., 2009	
			L-CCG-1	Naïve Sheep	- Increase mechanical withdrawal thresholds	Blunt pin	Dolan and Nolan, 2000	
			DCG-IV	Naïve Rats	- Reduce IL-1ß-induced mechanical allodynia	- Inhibited by pretreatment with LY341495		
			APDC	Inf soup Rats	- Reduce heat and mechanical hyperalgesia	Air puff	Du et al., 2008	
			APDC	PGE2 inj Mice	- Restore mechanical thresholds	Blocked by LY341495		
			MCCG	CAP inj Rats	- No effect in spontaneous nociceptive behaviors	Elevating, shaking, stamping of the hindpaw/elevating or whipping of the tail/liking or biting the tail	Fisher and Coderre, 1996	
			MCCG	Inf soup Sheep	- Reduce hyperalgesia		Zhou et al., 2011	
			DCG-IV	Naïve Rats	- Reduce mechanical hypersensitivity, no effect in thermal hyperalgesia	- Von-Frey/Paw immersion	Soliman et al., 2005	
			APDC	CCI Rats	- Pretreatment produced reductions in the development of mechanical and cold hypersensitivity	- Von-Frey/1 cm deep 1°C water bath	Fisher et al., 2002	
			DCG-IV	SNL Rats	- Dose-dependent attenuation of allodynia and hyperalgesia	- Von-Frey/Paw pressure	Zhou et al., 2011	
			Thalamus Antagonist	EGLU Rats	- Decrease pain behavior	Decrease pain	Neta and Castro-Lopes, 2000	
			Thalamus Antagonist	EFLU Rats	- Decrease pain behavior	Decrease pain	Neta and Castro-Lopes, 2000	
			RAG	L-CCG-1 Mice	- Increase the latency of the nociceptive reaction	Hot plate	Malone et al., 1998	
			RAG	L-CCG-1 Mice	- Decrease phase II	Licking behavior	Malone et al., 2000	
			Antagonist	EFLU Mice	- No effect on nociceptive reaction	Hot plate	Malone et al., 1998	

Symbols are used for models of pain induced by local injection: ⊳ for inflammatory pain, ⊲ for post-operative pain, ⊳ for neuropathic pain and ⊳ for chemotherapy-induced neuropathic pain models. ± Decrease pain; ✲ Increase pain; CAP, Capsaicin; CCI, Chronic constriction injury; CFA, Complete Freund's Adjuvant; Inf soup, Inflammatory soup; SNL, Spinal nerve ligation.
TABLE 7 | Pain modulation following local administration of group III mGluRs ligands.

Receptor subtype	Localization	Drugs type	Name	Models Species	Effects	Tests	References
Group III							
• pan-group III		Agonist	L-AP4	Naïve Rats	No effect	mechanical threshold	Walker et al., 2001a,b
selective						Paw pressure test	Jin et al., 2009
		Antagonist	MSOP	Naïve Rats	No significant changes	withdrawal latencies	Jin et al., 2009
Spinal cord		Agonist	L-AP4	Naïve Rats	No effect in spontaneous nociceptive behaviors	Elevating, shaking, stamping of the hindpaw/elevating or whipping of the tail/liking or biting the tail	Fisher and Coderre, 1996
		Agonist	L-AP4	CAP inj Rats	Reduction of mechanical hypersensitivity, weak effect in thermal hyperalgesia	Von Frey/Paw immersion	Sollman et al., 2005
		Agonist	ACPT-I	Carrageenan Rats	Dose-dependent inhibition the nociceptive behavior	Paw pressure	Goudet et al., 2008
		Agonist	ACPT-I	Carrageenan Rats	Dose-dependent inhibition the nociceptive behavior	Licking behavior	Goudet et al., 2008
		Agonist	ACPT-I	MA Rats	Dose-dependent inhibition the nociceptive behavior	Paw pressure	Goudet et al., 2008
		Agonist	L-AP4	CCI Rats	Pretreatment produced reductions in the development of mechanical and cold hypersensitivity	Von Frey/1 cm deep 1°C water bath	Fisher et al., 2002
		Antagonist	MAP4	Naïve Rats	Dose-dependent inhibition the nociceptive behavior	Paw pressure	Goudet et al., 2008
		Antagonist	MAP4	SNL Rats	Reduction of mechanical hypersensitivity	Von Frey	Chen and Pan, 2005
		Antagonist	MSOP	Naïve Mice	Decrease the latency of the nociceptive reaction	Hot plate	Maione et al., 1998
		Antagonist	MSOP	Naïve Mice	Increase of phase II	Licking behavior	Maione et al., 2000

Symbols are used for model of pain induced by local injection, for inflammatory pain, for post-operative pain, for neuropathic pain and for chemotherapy-induced neuropathic pain models. Decrease pain, Increase pain; CAP, Capsaicin; CCI, Chronic constriction injury; CIPN, Chemotherapy-induced peripheral neuropathy; MA, Mono arthritis; SNL, Spinal nerve ligation.
PAIN MODULATION FOLLOWING SYSTEMIC ADMINISTRATION OF MGLURS LIGANDS

Since mGluRs are extensively expressed along the pain neuraxis (Figure 1), several preclinical studies have been performed to evaluate the impact of mGluRs ligands on pain following systemic administration (Tables 1–3). These preclinical studies outline the role of these different receptors on the regulation of pain. Additional studies have been performed to explore the role of these receptors at precise locations of the pain pathways and will be described in the following paragraphs.

Group I mGluRs

Systemic administration of mGlur1 receptor antagonists are inefficient at altering normal pain threshold in naive animals (Maiione et al., 1998; Sevostianova and Danysz, 2006). However, mGlur1 receptor inhibition relieves both mechanical and thermal hypersensitivity in various models of both inflammatory and neuropathic pain (Table 1) (Varty et al., 2005; El-Kouhen et al., 2006; Sevostianova and Danysz, 2006; Satow et al., 2008; Zhu et al., 2008). Similarly, systemic administration of mGlur5 receptor antagonists fails to modify basal thermal threshold (Sevostianova and Danysz, 2006), whereas it prevents mechanical and thermal hyperalgesia in a broad range of pain conditions from sub-chronic inflammatory pain to long lasting neuropathic pain (Table 1) (Walker et al., 2001a,b; Hudson et al., 2002; Zhu et al., 2004; Varty et al., 2005; Sevostianova and Danysz, 2006; Satow et al., 2008; Jacob et al., 2009; Montana et al., 2009; Zammataro et al., 2011). Of note, mGlur1 receptor inhibition induces motor and cognitive side effects at analgesic doses that could limit its use in clinical trials (El-Kouhen et al., 2006; Zhu et al., 2008). Consequently, mGlur5 receptor seems to be a better target to develop analgesic drugs. Although mGlur5 antagonists have been reported to induce tolerance and some locomotor deficits (Varty et al., 2005; Sevostianova and Danysz, 2006), it is interesting to point out that mGlur5 receptor antagonists reduce anxiety in naive animals, a comorbidity often associated with chronic pain states (Varty et al., 2005).

Group II mGluRs

Systematically administrated group II selective agonists have proven anti-hyperalgesic effects in both inflammatory and neuropathic pain without altering basal pain thresholds in healthy animals (Table 2) (Sharpe et al., 2002; Simmons et al., 2002; Satow et al., 2008; Johnson et al., 2017). Interestingly, selective group II mGlur5 agonists have entered into clinical trials for the treatment of schizophrenia suggesting a safe profile of the drug in humans (Li et al., 2015; Muguruza et al., 2016).

Group III mGluRs

Only a few studies have investigated the effect of systemic administration of group III selective compounds in pain perception (Table 3). Systemic delivery of mGlur4 receptor agonist alleviates mechanical hypersensitivity provoked by carrageenan-induced inflammation (Vilar et al., 2013), AMN082, an mGlur7 receptor PAM prevents hyperalgesia in inflammatory models (Dolan et al., 2009). The same compound injected systematically reduces mechanical allodynia and thermal hyperalgesia induced by chronic constriction injury to the sciatic nerve and potentiates the effect of morphine (Osikowicz et al., 2008). This drug also exhibits antidepressant-like and anxiolytic-like effects (Bradley et al., 2012). In addition to the mGlur7 receptor, other mechanisms can contribute to these effects since the AMN082 compound is rapidly metabolized in vivo into a monoamine transporter inhibitor (Sukoff Rizzo et al., 2011). Surprisingly, systemically administrated mGlur7 receptor negative allosteric modulators (NAMs) also have anti-hyperalgesic effects in neuropathic pain models (Palazzo et al., 2015). As detailed further in this review, pharmacological activation of mGlur7 receptors can lead to opposite effects depending on the administration site. Neuropathic pain induces variation in mGlur7 receptor expression that could imbalance the pronociceptive and antinociceptive role of mGlur7 receptor (Osikowicz et al., 2009; Palazzo et al., 2013, 2015).

Systemic delivery of a mGlur8 receptor agonist also decreases nociceptive responses in inflammatory and neuropathic models, which is inhibited by blocking group III mGlur5 in the PAG (Marabese et al., 2007).

ROLE OF METABOTROPIC GLUTAMATE RECEPTORS IN PERIPHERAL MECHANISMS OF SENSORY TRANSMISSION

Sensory transmission initiates with the detection by primary afferents in the periphery of a broad range of stimuli such as mechanical, thermal or chemical stimuli. Primary afferents are specialized neurons translating information detected at the periphery into electrical signals which are conveyed through their cell bodies located in the dorsal root ganglia (DRG) to their projections into the dorsal horn of the spinal cord. Spinal neurons then project to higher centers in the brain which process the sensory information. After nerve injury or inflammation, a number of dysregulations occur in sensory neurons affecting activity, properties or gene expression, driving an increased sensitivity to both non-noxious and noxious stimuli with or without ectopic activities. Because the primary afferents are the first relay of nociceptive transmission and can trigger the chronicization of pain, they represent an interesting target for the development of analgesic drugs.

Early evidence of a glutamate role in nociceptive transmission at the periphery derived from the observation of thermal and mechanical hypersensitivity following subcutaneous injection of glutamate into naive rat hind paw (Carlton et al., 1995; Jackson et al., 1995), first believed to be only triggered by iGlur activation (Zhou et al., 1996). Furthermore, in rodents, glutamate concentration rises in inflamed tissue (Omote et al., 1998) and after sciatic nerve stimulation (deGroot et al., 2000). Elevated levels of glutamate have also been measured in synovial fluid from knee joints of arthritis patients highlighting the clinical relevance of glutamate modulation as a peripheral mediator.
of pain perception (McNearney et al., 2000). Since then, an increasing number of studies have reported the involvement of mGluRs at the periphery.

Recently, a single-cell transcriptome analysis has reported the expression of mGluR transcripts in mice DRG. Among the most expressed are mGlu7, mGlu3, mGlu4, mGlu8, and mGlu5 receptors (Usoskin et al., 2015). Transcriptome analysis provides evidence for the expression of mGluRs in cell bodies but whether these receptors are expressed at the peripheral terminal, the spinal projection endings, or both, must be further investigated.

mGluRs expression has also been reported in trigeminal ganglia, notably mGlu1, mGlu2/3, and mGlu8 receptors (Boye Larsen et al., 2014).

Group I mGluRs

Group I mGlu1 and mGlu5 receptors are expressed in nociceptive afferents (Bhave et al., 2001; Walker et al., 2001a,b). Together with iGluR, group I mGluRs are involved in capsaicin induced glutamate release, a process that could contribute to nociceptive responses evoked by the TRPV1 agonist (Jin et al.,

FIGURE 1 | Distribution of mGluRs throughout important areas involved in pain. For (A-F, J-L) pictures, masks with pseudo colors were used to color scale the relative expression level of mGluR transcripts across sections (scale displayed at the bottom of the figure). For (G-I, M-P), no expression filter was applied to recolour the ISH pictures. Image credit: Allen Institute. Masked ISH images of mGlu1 (A) and mGlu5 (B) transcripts in mice coronal section, notably in Thalamus and Amygdala. CeA (central nucleus of the amygdala) is magnified in the right panels (white dotted line, drawn according to the Allen Brain Atlas). Distribution of mGlu1 (B, C) and mGlu5 (E, F) mRNA in mice midbrain and medulla sections involved in descending modulation of pain. Magnification of the periaqueductal gray (PAG) and rostroventral medulla (RVM) areas are shown in the right panels (white dotted line, drawn according to the Allen Brain Atlas). ISH images of mGlu3 (G) transcript in mice coronal section, notably in Thalamus and Amygdala. CeA is magnified in the left panel (white dotted line). Distribution of mGlu3 (H, I) mRNA in mice midbrain and medulla. Magnification of the PAG and RVM nucleus are shown in the left panels (white dotted line). Masked ISH images of mGlu4 (J) transcript in mice coronal section, notably in Thalamus and Amygdala. CeA is magnified in the left panel (white dotted line). Distribution of mGlu4 (K, L) mRNA in mice midbrain and medulla. Magnification of the PAG and RVM nucleus are shown in the left panels (white dotted line). Images are available for mGlu1 receptor (GMR1 gene) at http://mouse.brain-map.org/experiment/show/79591723, for mGlu5 receptor (GRM5 gene) at http://mouse.brain-map.org/experiment/show/73512423, for mGlu3 receptor (GRM3 gene) at http://mouse.brain-map.org/experiment/show/539, and for mGlu4 receptor (GRM4 gene) at http://mouse.brain-map.org/experiment/show/71247631. Distribution of mGlu1 (M), mGlu5 (N), mGlu8 (O), mGlu4 (P) transcripts in mice spinal cord. Bottom panels are magnification of the dorsal horn. Images are available for mGlu1 at http://mousespinal.brain-map.org/imageseries/show.html?id=100026413, for mGlu5 receptor at http://mousespinal.brain-map.org/imageseries/show.html?id=100039062 and for mGlu4 receptor at http://mousespinal.brain-map.org/imageseries/show.html?id=100018200.
Intraplantar injection of group I agonists in rodents enhances thermal sensitivity and reciprocally, peripherally applied group I antagonist reduced hyperalgesia in animal models of inflammatory or neuropathic pain (Table 4) (Dogrul et al., 2000; Bhave et al., 2001; Walker et al., 2001a,b). Application of mGlu5 receptor antagonist at peripheral afferent endings also reduces visceral nociception (Table 5) (Lindström et al., 2008). More recently, the analgesic potential of peripheral mGlu5 receptor blockade has been highlighted using an mGlu5 selective photoactivatable NAM. Photoactivatable ligands, also called caged-ligands, are constituted of a ligand linked to a photo-labile protecting group that will be removed following illumination, enabling the precise control of the onset of drug activity at a specific location (Goudet et al., 2018). Following systemic injection of the inactive caged-mGlu5 NAM, analgesia in both phases of the formalin test can be induced by local illumination in the paw (Table 5) (Font et al., 2017).

Group II mGluRs

Primary sensory neurons express mGlu2 and mGlu3 receptors in both peripheral terminals and dorsal horn projection (Carlton et al., 2001; Carlton and Hargett, 2007). In DRG, mGlu2/3 receptors are largely co-localized with TRPV1 channel (Carlton et al., 2009). Consistent with this co-expression, group II mGluR antagonists increase hyperalgesia evoked by capsaicin, a TRPV1 agonist, and this effect is blocked by group II mGluR agonists (Table 6) (Carlton et al., 2011). However, a recent report has demonstrated that mGlu3 receptors activation abolishes TRPV1 sensitization in mouse sensory neurons, but not in humans (Sheahan et al., 2018).

In cultured DRG neurons, group II mGluRs also negatively regulate TTX resistant sodium channels (Yang and Gereau, 2004). Local administration of group II agonist in the knee joint both prevents and reduces carrageenan-induced arthritis (Lee et al., 2013). Due to the lack of selective compounds that can discriminate between mGlu2 and mGlu3 receptors, the individual contribution of those two receptors to pain modulation has remained unclear for a long time. However, the generation of mGlu2 and mGlu3 receptor knockout mice allowed the precise investigation of the role of each subtype in nociception and revealed a predominant role of the mGlu2 over mGlu3 receptor (Zammataro et al., 2011).

In line with the pharmacological evidence, mGlu2 receptor overexpression in DRG induces analgesia in models of inflammatory and neuropathic pain (Chiechio et al., 2002, 2009). L-acetylcarnitine, a drug known to enhance mGlu2 receptor expression in DRG through epigenetic mechanisms induces a long-lasting analgesia in both inflammatory and neuropathic pain models (Notartomaso et al., 2017). Strikingly, N-acetyl-cysteine, a drug enhancing mGlu2 receptor expression in rodents, reduces nociceptive transmission in humans (Truini et al., 2015). Moreover, in a recent report using cultured DRG neurons from both mice and humans, PGE2 evoked neuron hyperexcitability was blocked by group II mGluR activation (Davidson et al., 2016). This data suggests that activation of group II mGluRs leads to an analgesic effect in rodents and humans, making group II mGluRs an interesting target for development of peripherally active drugs for the treatment of chronic pain.

Group III mGluRs

Most group III mGluRs are expressed in the pain pathway, except the mGlu6 receptor which is expressed mainly in the retina (Vardi et al., 2000). The presence of mGlu4, mGlu7, and mGlu8 receptors have been detected in DRG and trigeminal ganglia (Li et al., 1996; Azkue et al., 2001; Carlton and Hargett, 2007). The mGlu8 receptor is expressed in DRG and peripheral terminals where it is widely co-expressed with TRPV1. Intraplantar injection of group III agonists significantly reduced capsaicin evoked pain behavior (Table 7; Govea et al., 2012). Similar to group II agonists, local administration in the knee joint of group III mGluRs agonist provokes analgesia in carrageenan-induced arthritic pain model (Lee et al., 2013). Specific contribution of each subtype to the antinociceptive effect of broad range group III mGluRs need to be further investigated.

ROLE OF MGLUR IN PAIN TRANSMISSION AT THE SPINAL CORD LEVEL

The spinal cord (SC) is the first relay in the transmission of sensory information from the periphery to the brain. It is submitted to control from peripheral inputs, interneurons within the SC and both inhibitory and excitatory descending pathways from supraspinal regions. This network makes the SC an important site for the modulation of signals generated at the periphery. Any alteration in neurons from the SC network can imbalance spinal relay and lead to chronic pain conditions.

The dorsal horn (DH) of the SC which receives nociceptive inputs is organized into different laminae, from the superficial laminae I to the deep laminae V. Most nociceptive fibers (Aδ- and C-fibers) superficially innervate laminae I-III and, to a lesser extent, laminae V, whereas low-threshold Aβ-fibers mainly project into laminae III–VI. Early studies have demonstrated that glutamate is released from primary afferent neurons into the DH in response to both acute and persistent painful stimuli, highlighting a role of the glutamatergic system in nociceptive transmission (Sluka and Westlund, 1992; Sorkin et al., 1992).

According to a recent single-cell RNA sequencing study of sensory neurons in the mouse DH, all mGluRs except mGlu6, are expressed within the spinal cord, the highest expression levels being measured for mGlu5 and 7 receptors (Haring et al., 2018). This high throughput data is in line with previous histological and pharmacological studies detailed below, and draw further attention to the relevance of targeting glutamate synapses for pain modulation in the dorsal horn of the spinal cord.

Group I mGluRs

Immunoreactive cell bodies for group I mGluRs are widely spread throughout the superficial laminae of DH (Jia et al., 1999; Tang and Sim, 1999; Hudson et al., 2002). Intrathecal administration of group I mGluR agonists provokes hyperalgesia whereas group I mGluR antagonists induces analgesia in inflammatory and neuropathic pain models (Table 4) (Fisher
and Codere, 1996, 1998; Young et al., 1997; Fisher et al., 1998). Intrathecal injection of mGlu5 antagonist also reverses paclitaxel-induced neuropathic pain (Table 5; Xie et al., 2017). DH neuron excitability is increased after activation of spinal group I mGluRs in part due to due to inhibition of a voltage gated potassium channel (Hu et al., 2007). In line with this pharmacological evidence, knockdown or antibody approaches targeting mGlu1 receptor have demonstrated an antinociceptive effect in various pain models (Fundytus et al., 1998, 2001; Noda et al., 2003). Interestingly, recent studies have reported enhanced mGlu5 expression at the nuclear membrane in DH neurons after nerve injury. Using permeable mGlu5 antagonists reaching the cytoplasm, the authors have demonstrated that blocking intracellular mGlu5 had a greater antinociceptive effect than by blocking cell membrane expressed mGlu5 (Vincent et al., 2016). Pre-treatment with an excitatory amino acid transporter (EAAT) inhibitor, which is meant to decrease intracellular glutamate levels, decreases pain-related behavior in an inflammatory pain model (Vincent et al., 2017).

Group II mGluRs

Among group II mGluRs, mGlu3 receptor is the most expressed in the DH, and its transcript is restricted to laminae II (Valerio et al., 1997; Berthele et al., 1999; Jia et al., 1999). However, only mGlu2 receptor expression appears to be enhanced in the SC (and DRG neurons) after administration of L-acetylarnitine and histone deacetylase inhibitors, two compounds with antinociceptive properties, suggesting a greater role of spinal mGlu2 receptors in pain modulation (Chiechio et al., 2002, 2009). This discrepancy could be explained by expression pattern differences. Indeed, mGlu2 receptor is mostly pre-synaptic, while mGlu3 receptor is both pre- and post-synaptic (Nicoletti et al., 2011). Moreover, mGlu2 is expressed in microglia while mGlu3 is expressed in both microglia and astrocytes (Spampinato et al., 2018).

Group III mGluRs

Transcripts of two group III members, mGlu4 and mGlu7 receptors, are detected in the spinal cord (Valerio et al., 1997). The expression of mGlu4 receptor is restricted to inner laminae II of the DH receiving nociceptive Aβ- and C-fibers inputs whereas mGlu7 receptor is expressed in both laminae I and II (Valerio et al., 1997; Vilar et al., 2013). In addition, the mGlu4 receptor may be expressed in spinal neurons, since its expression can still be observed after rhizotomy of the afferent fibers (Vilar et al., 2013). Activation of spinal group III mGluRs depletes glutamate release from primary afferents in nerve-injured rats (Table 7; Zhang et al., 2009). Furthermore, intrathecal administration of the group III broad-spectrum agonist L-AP4 reduces capsaicin-induced hypersensitivity and neuropathic pain symptoms (Fisher et al., 2002; Chen and Pan, 2005; Soliman et al., 2005). Intrathecal administration of the mGlu4 receptor PAM or agonist inhibits both inflammatory and neuropathic pain without altering acute pain thresholds in naïve animals (Table 8; Goudet et al., 2008; Wang et al., 2011; Vilar et al., 2013). Conversely, the antiallodynic action of an mGlu4 agonist in inflammatory pain can be blocked by a photoswitchable mGlu4 NAM (Rovira et al., 2016). Positive allosteric modulation of spinal mGlu7 alleviates mechanical allodynia and thermal hyperalgesia induced by either carrageenan or skin incisions (Dolan et al., 2009). However, intrathecally administrated mGlu7 PAM has failed to relieve neuropathic pain (Wang et al., 2011). Both studies used the mGlu7 PAM named AMN082 (Mitsukawa et al., 2005). As mentioned earlier in the text, in vivo AMN082 is rapidly metabolized and one of its metabolite inhibits several monoamine transporters (Sukoff Rizzo et al., 2011). Therefore, in vivo actions of AMN082 should be interpreted with caution since it may have multiple mode of action.

CONTRIBUTION OF MGLUR TO SUPRASPINAL MECHANISMS OF PAIN PERCEPTION

Integration of the nociceptive signal in the brain translates into a complex pain experience (Hunt and Mantyh, 2001). Pain processing in the supraspinal nervous system involves both ascending and descending pathways. Briefly, two main ascending pathways have been identified. The first one, the spinothalamic pathway, originates from the superficial dorsal horn and projects to areas of the brain concerned with affect: the parabrachial area (PB), the ventral medial nucleus (VMN) or the amygdala. The second one, the spinothalamic pathway, starts from the deep DH and projects to the thalamus and other areas of the cortex concerned with discrimination and affect. Different brain areas are involved in pain integration and processing. They are referred to as the pain matrix, a concept first described by Ronald Melzack in the late eighties (Melzack, 1990). It comprises several regions such as the primary and secondary sensorimotor cortex, insula, anterior cingulate cortex, thalamus, striatum, brainstem and cerebellum (García-Larrea and Peyron, 2013). Descending pathways also involve high brain centers such as amygdala, hypothalamus and VMH, and nucleus in the midbrain and the brainstem, respectively, periaqueductal gray (PAG) and rostral ventromedial medulla (RVM).

mGluRs are widely express in neurons, astrocytes, oligodendrocytes, and microglia throughout the brain areas involved in pain processing. Consequently, there is an increasing interest in understanding the contribution of supraspinal mGluRs to pain modulation and many groups have investigated their potential for alleviating pain.

Group I mGluRs

Although it is clearly established that activation of group I mGluRs at both the periphery and the spinal cord promotes pain, group I activation at the supraspinal level can elicit both antinociceptive and pronociceptive effects depending on the region investigated (Tables 4, 5). For instance, when applied in the amygdala, group I agonist promotes nociception (Li and Neugebauer, 2004; Kolber et al., 2010; Ren and Neugebauer, 2010; Tappe-Theodor et al., 2011). Reciprocally, stereotaxic injection of mGlu1 and mGlu5 receptor antagonists in the amygdala inhibits pain-related responses in a model of arthritic pain.
Receptor subtype	Localization	Drugs type	Name	Species	Effects Tests	Models	Species	Effects Tests	References
mGlu4	Spinal cord	Agonist	LSP4-2022	Mice	- Reduction of mechanical hypersensitivity	Carrageenan	- Reduction of mechanical hypersensitivity	Vilar et al., 2013	
			LSP4-2022	Rats	- Von Frey	Carrageenan	- Von Frey	Vilar et al., 2013	
			LSP4-2022	CCI	- No effect in naive animals	Rats	- No effect in naive animals	Vilar et al., 2013	
			PAM PHCCC	Rats	- No effect in naive animals	Carrageenan	- No effect in naive animals	Vilar et al., 2013	
Amygdala	Agonist	LSP4-2022	CFA	Mice	- Decrease mechanical allodynia and emotional components associated with chronic pain	- Von Frey	- Decrease mechanical allodynia and emotional components associated with chronic pain	Zussy et al., 2018	
	PAM Optoglutaram	Photoswitchable	PHCCC	Rats	- No effect in naive animals	CCI	- No effect in naive animals	Goudet et al., 2008	
Striatum	PAM	VU0155041	SNL	Rats	- Dose dependent attenuation of hyperalgesia	- Von Frey/Paw immersion	- Dose dependent attenuation of hyperalgesia	Wang et al., 2011	
mGlu7	Spinal cord	PAM AMN082*	SNL	Rats	- No effect	Carrageenan	- No effect	Wang et al., 2011	
Amygdala	PAM	AMN082*	Naïve	Rats	- Decrease mechanical threshold and increase of vocalizations	MA	- Decrease mechanical threshold and increase of vocalizations	Palazzo et al., 2008	
PKG	PAM	AMN082*	Naïve	Mice	- Knee compression	Rats	- Knee compression	Palazzo et al., 2008	
Striatum	PAM	AMN082*	Naïve	Mice	- Decrease mechanical threshold	Radiant heat source	- Decrease mechanical threshold	Marabese et al., 2007	
Amygdala	NAM	ADX71743	SNL	Rats	- Facilitation of pain		- Facilitation of pain	Marabese et al., 2018	
Striatum	PAM	AMN082*	SNI	Rats	- Dynamic Plantar Aesthesiometer/Tail Flick		- Dynamic Plantar Aesthesiometer/Tail Flick	Marabese et al., 2018	
Amygdala	PAM AZ12216052	DCPG	SNL	Rats	- Decrease mechanical threshold nor vocalization	Mice	- Decrease mechanical threshold nor vocalization	Marabese et al., 2007	
Striatum	PAM	AZ12216052	SNI	Rats	- Increase mechanical threshold and reduce vocalization	Mice	- Increase mechanical threshold and reduce vocalization	Marabese et al., 2007	
Amygdala	Agonist	DCPG	Naïve	Rats	- No effect in mechanical threshold nor vocalization	MA	- No effect in mechanical threshold nor vocalization	Palazzo et al., 2008	
Striatum	Agonist	DCPG	SNL	Rats	- Knee compression	Mice	- Knee compression	Palazzo et al., 2008	
PKG	Agonist	DCPG	SNI	Rats	- Increase tail flick latency and mechanical threshold	Mice	- Increase tail flick latency	Rossi et al., 2013	
Striatum	PAM	AZ12216052	SNI	Rats	- No effect in sham animals	Mice	- No effect in sham animals	Rossi et al., 2013	
Amygdala	Agonist	DCPG	Carrageenan	Mice	- Reduce pain behavior	Formalin	- Reduce pain behavior	Marabese et al., 2007	

*Of note, in vivo actions of AMN082 should be interpreted with caution because they may involve other mechanisms in addition to mGlu7. Indeed, an AMN082 metabolite can inhibit monoamine transporters Sukoff Rizzo et al., 2011.

Symbols are used for model of pain induced by local injection, for inflammatory pain, for post-operative pain, for neuropathic pain and for chemotherapy-induced neuropathic pain models. Decrease pain; Increase pain; CCI, Chronic constriction injury; CFA, Complete Freund’s Adjuvant; MA, Mono arthritis; SNL, Spinal nerve ligation; SNI, Spared nerve injury.
pain (Han and Neugebauer, 2005). Similarly, intra basolateral amygdala administration of group I mGluRs agonist alleviates inflammatory pain, an effect at least in part due to inhibition of prefrontal cortex neurons activity (Luongo et al., 2013). When applied to the thalamus, mGlu1 PAM potentiated nociceptive responses of thalamic neurons (Salt et al., 2014). Conversely, when administrated in the PAG, a region involved in modulation of the descending pain pathway, activation of group I mGluRs decreases the nociceptive response, likely through the inhibition of the GABAergic transmission (Mano et al., 2000; Drew and Vaughan, 2004). Moreover, PAG expressed mGlu5 contribute to the antinociceptive effect provoked by RVM cannabinoid receptor activation (de Novellis et al., 2005).

In an outstanding paper, authors used a selective photoactivatable mGlu5 NAM enabling the precise spatiotemporal modulation of mGlu5 receptors to probe the involvement of thalamic mGlu5 receptors in pain processing. As expected, when injected systemically, the inactive caged compound has no effect on pain behavior of neuropathic animals. However, release of the active mGlu5 NAM by delivering light through implanted optical fibers in the ventrobasal thalamus, reduces neuropathic pain (Font et al., 2017).

An alternative photopharmacological strategy consists in using photoswitchable ligands that can be reversibly activated and inactivated by light (Goudet et al., 2018). This approach has been used to validate the role of amygdala-expressed mGlu5 in pain. A photoswitchable mGlu5 NAM has been injected locally in amygdala where it light-dependently reduced mechanical allodynia in a mice model of inflammatory pain (Gomez-Santacana et al., 2017), confirming previous preclinical studies (Han and Neugebauer, 2005).

Interestingly, global genetic disruption of mGlu5 in mice leads to increased basal mechanical withdrawal responses whereas conditional KO in the amygdala did not affect acute pain. However, both global and conditional KO prevent the establishment of mechanical hypersensitivity 180 min after formalin injection in the ipsi and contralateral paw (Kolber et al., 2010).

Group II mGluRs

Accumulating evidence demonstrates that stimulation of group II mGluRs in supraspinal areas mediates analgesia (Table 6). Administration into the amygdala by microdialysis of group II agonist diminishes the response to noxious stimulation in an arthritis model of chronic pain (Li and Neugebauer, 2006). In the PAG, group II mGluR activation reinforces antinociceptive descending pathway (Mano et al., 2000). Local inhibition in the PAG or the RVM of the degradation of an endogenous peptide acting as an mGlu3 receptor agonist relieves pain in rat models of inflammatory and neuropathic pain (Yamada et al., 2012). However, studies have also reported a pronociceptive effect of CNS expressed group II mGluRs. For instance, blockage in the thalamus elicits antinociceptive effects, possibly via an inhibition of GABAergic inhibitory neurons (Neto and Castro-Lopes, 2000). Furthermore, microinjection of a group II agonist in the PAG induces pronociceptive effects by inhibiting descending pathway (Mano et al., 1998).

Group III mGluRs

Broad range group III mGluR agonists were first used to elucidate the contribution of these receptors in pain processing in the CNS (Table 7). Early studies demonstrated that in the PAG a group III mGluR agonist facilitates pain related behavior (Mano et al., 1998, 2000), whereas in the amygdala group III agonist microinjection produces antinociceptive effects in an arthritis model (Li and Neugebauer, 2006). Development of more selective compounds for individual group III subtypes has allowed the more precise dissection of each members’ contribution to nocifensive and affective pain responses within the CNS (Table 8). Of note, mGlu7 and mGlu8 have opposite effects in the PAG. Indeed, mGlu7 activation in PAG and amygdala is pronociceptive whereas mGlu8 activation is antinociceptive (Marabese et al., 2007; Palazzo et al., 2008). Similarly, in the nucleus tractus solitarius, mGlu7 activation has an antinociceptive effect on the cardiac-somatic reflex induced by pericardial capsaicin, while activation of mGlu8 receptors enhance cardiac nociception (Liu et al., 2012). Activation of mGlu7 in the nucleus accumbens by AMN082 has an antinociceptive effect and modulates relief learning (Kahl and Fendt, 2016). Blockade of mGlu7 in the PAG reduces the pain related behaviors in formalin and neuropathic pain models and differentially modulates RVM ON and OFF cell activity (Palazzo et al., 2013). Whereby, ON cells are neurons activated by noxious stimuli and inhibited by analgesics, and OFF cells are activated by analgesics and inhibited by painful stimuli (Palazzo et al., 2013).

Recently, dorsal striatum (DS) expressed mGlu7 receptors and their role in pain have been investigated. The DS is connected to the descending pain modulatory systems, including to the RVM. When locally administrated in the DS of sham animals, an mGlu7 PAM enhanced pain and simultaneously stimulates ON cells and inhibits OFF cells in the RVM. Whereas, in nerve-injured animals, the mGlu7 PAM has an anti-hyperalgesic effect in addition to increasing RVM OFF cell firing. This opposite effect of an mGluR7 PAM in acute or chronic pain conditions is assumed to be due to the recruitment of different pain pathways (Marabese et al., 2018). Interestingly, systemic administration of an mGluR7 PAM prevents the development of morphine tolerance (Gawel et al., 2018). A role of centrally expressed mGlu7 in epilepsy has also been reported (Sansig et al., 2001; Bertaso et al., 2008).

The first strong evidence of supraspinal mGlu4 involvement in pain processing is thanks to the recent development of an mGlu4 photoswitchable PAM allowing the time resolved control of endogenous receptors in freely behaving animals. Strikingly, dynamic modulation of mGlu4 receptor activation in the amygdala by the photoswitchable PAM reverses, in a light dependent manner, both inflammatory pain-related sensory and affective symptoms (Zussy et al., 2018). As compared to conventional compounds, this ligand enables precise temporal control of the mGlu4 receptor and, in contrast to optogenetics, allows endogenous receptor modulation, without the need of tranogenesis. We expect that future development of photoswitchable ligands for other mGluRs
will greatly improve our understanding of mGluRs in the pain neuraxis and co-morbidities associated with chronic pain conditions.

ROLE OF GLIAL MGLUR IN PAIN

Beside neurons, mGluRs are also widely expressed in glial cells, notably in microglia, astrocytes, and oligodendrocytes (for a recent review, see Spampinato et al., 2018). Astrocytes are the most abundant cell type in the brain, which are regulating neuronal function and remodeling synaptic structures. In addition to their physiological functions, astrocytes are involved in numerous diseases, such as chronic pain. Microglia act as resident macrophages, which function as sentinels of the CNS, surveying potential damage. Following nerve injury, activated microglia surround the injured peripheral nerve terminals in the dorsal horn where they release different factors, such as brain-derived neurotrophic factor (BDNF), cytokines (TNFα, IL-1β, IL-6...) and glutamate, that will contribute to neuroinflammation, excitotoxicity and central sensitization. Numerous studies have shown that glial cells play a critical role in the development of neuropathic and inflammatory pain (Ji et al., 2013). For instance, microglia and astrocytes contribute to the central sensitization process that occurs in the setting of injury (Basbaum et al., 2009). Interestingly, all three groups of mGluRs are expressed in microglia and play a critical role in regulating microglial activity (Taylor et al., 2002, 2003; Byrnes et al., 2009; McMullan et al., 2012). In vitro, neuroinflammatory factors trigger an opposite regulation in the gene expression of the two predominant mGluR subtypes found in astrocytes and microglia, namely an upregulation of mGlu3 and a downregulation mGlu5 (Berger et al., 2012). Concerning group I mGluRs, activation of mGlu5 receptors inhibits microglial-associated inflammation and neurotoxicity (Byrnes et al., 2009), while little is known about mGlu1 receptors. Activation of group II mGluRs in vitro yields two opposite effects in cultured microglia, mGlu2 activation enhancing neurotoxicity whilst mGlu3 activation promotes neuroprotection (Taylor et al., 2002, 2005; Pinteaux-Jones et al., 2008). However, further studies are needed to understand the particular roles of these receptors, since activation of both mGlu2 and mGlu3 receptors have been reported to be neuroprotective in vivo (Fazio et al., 2018). Activation of group III mGluRs, notably mGlu4 receptors, reduces microglial reactivity (Taylor et al., 2003; Pinteaux-Jones et al., 2008; Ponnazhagan et al., 2016). Glial mGluRs modulate neuronal excitability and glutamate concentration in the synaptic and extrasynaptic regions (Pål, 2018). Of note, activation of group II and III, but not group I, attenuates export of glutamate from activated microglia through a CAMP-dependent mechanism (McMullan et al., 2012). Taken together, these results suggest that although less well studied than their neuronal counterparts, glial mGluRs may represent novel targets for the treatment of chronic pain.

CONCLUSION

The growing number of selective compounds for the different mGluRs has significantly improved our understanding of the specific role of each subtype in nociception. Numerous evidences tend to suggest these receptors are promising targets for the treatment of chronic pain. However, at doses proven to be analgesic, mGlu1 antagonists are associated with motor and cognitive impairment (El-Kouhen et al., 2006; Zhu et al., 2008). Similarly, deficits in motor coordination phenotype has also been observed in mGlu1 conditional knockouts in the cerebellum (Nakao et al., 2007). Although mGlu5 antagonists may have psychoactive properties (Swedberg et al., 2014), mGlu5 blockade seems to elicit less side effects than mGlu1, suggesting that targeting mGlu5 may be more promising for the development of new analgesics. Regarding group II agonists, which have proven antinociceptive effects, a major concern for the treatment of persistent pain is the development of tolerance after repeated systematic injections (Jones et al., 2005; Zammataro et al., 2011). Nevertheless, epigenetic upregulation of endogenous mGlu2 receptor expression could counteract the drawback of tolerance. Group III metabotropic receptors are of a particular interest in drug development because their targeting may also decrease affective and cognitive disorders associated with chronic pain such as anxiety, depression, or fear (Zussy et al., 2018).

Given the analgesic effects observed after targeting peripheral mGluRs, peripherally restricted molecules may have satisfying analgesic effectiveness while decreasing the central-associated side effects. Furthermore, the use of new pharmacological tools such as photoswitchable or caged ligands, which allow the spatiotemporal tuning of mGluRs, could reduce off-target effects related to the modulation of the glutamatergic system outside the pain neuraxis.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for publication.

ACKNOWLEDGMENTS

The authors thank Ebba L. Lagerqvist for critical reading of the manuscript. This work was supported by a grant from the Agence Nationale de la Recherche (ANR-16-CE16-0010-01).

REFERENCES

Adwanikar, H., Karim, F., and Gereau, R. W. (2004). Inflammation persistently enhances nociceptive behaviors mediated by spinal group I mGluRs through sustained ERK activation. *Pain* 111, 125–135. doi: 10.1016/j.pain.2004.06.009

Ahn, D. K., Kim, K. H., Jung, C. Y., Choi, H. S., Lim, E. J., Youn, D. H., et al. (2005). Role of peripheral group I and II metabotropic glutamate receptors in IL-1β-induced mechanical allodynia in the orofacial area of conscious rats. *PAIN* 118:53–60. doi: 10.1016/j.pain.2005.07.017
Font, J., López-Cano, M., Notartomaso, S., Scarselli, P., Di Pietro, P., Bresoli-Obach, R., et al. (2017). Optical control of pain in vivo with a photoactivatable mGluR5 receptornegative allosteric modulator. *Elife* 6:e23545. doi: 10.7554/eLife.23545.

Fundytus, M. E., Fisher, K., Dray, A., Henry, J. L., and Coderre, T. J. (1998). In vivo antinociceptive activity of anti-rat mGluR1 and mGluR5 antibodies in rats. *Neuroreport* 9, 731–735. doi: 10.1097/00001756-199803090-00031.

Fundytus, M. E., Yashpal, K., Chabot, J. G., Osborne, M. G., Lefebvre, C. D., Dray, A., et al. (2001). Knockdown of spinal metabotropic glutamate receptor 1 (mGluR1) alleviates pain and restores opioid efficacy after nerve injury in rats. *Br. J. Pharmacol.* 132, 354–367. doi: 10.1039/bj0703810.

García-Larrea, L., and Peyron, R. (2013). Pain matrices and neuropathic pain matrices: a review. *Pain* 154(Suppl. 1), S29–S43. doi: 10.1016/j.pain.2013.09.019.

Gawel, K., Jenda-Wojtanowska, M., Gibula-Bruzda, E., Kedzierska, E., Filarowska, J., Marszalek-Grabska, M., et al. (2018). The influence of AMN028, metabotropic glutamate receptor 7 (mGlu7) allosteric agonist on the acute and chronic antinociceptive effects of morphine in the tail-immersion test in mice: Comparison with mGlu5 and mGlu2/3 ligands. *Physiol. Behav.* 185, 112–120. doi: 10.1016/j.physbeh.2017.12.035.

Gómez-Santacana, X., Pittolo, S., Rovira, X., Lopez, M., Zussy, C., Dalton, J. A., et al. (2018). Metabotropic glutamate receptor 5 upregulation in a-1(mGluR1) receptor leads to cold hypersensitivity in the rat. *J. Neurosci.* 38, 2688–2698. doi: 10.1523/JNEUROSCI.0266-07.2007.

Li, J.-R., Berta, T., and Nedergaard, M. (2013). Glia and pain: is chronic pain a gliopathy? *Pain* 154(Suppl. 1), S10–S28. doi: 10.1016/j.pain.2013.06.022.

Jia, H., Rustioni, A., and Valtsconoff, J. G. (1999). Metabotropic glutamate receptors in superficial laminae of the rat dorsal horn. *J. Comp. Neurol.* 410, 627–642. doi: 10.1002/(SICI)1096-9861(19990809)410:4<627::AID-CNENJ-3.0.CO;2-8.

Jin, Y.-H., Yamaki, F., Takemura, M., Koike, Y., Furuyama, A., and Yonehara, N. (2009). Capsaicin-induced glutamate release is implicated in nociceptive processing through activation of ionotropic glutamate receptors and group I metabotropic glutamate receptor in primary afferent fibers. *J. Pharmacol. Sci.* 109, 233–241. doi: 10.1254/jps.880262FP.

Johnson, M. P., Muhlhauser, M. A., Nisenbaum, E. S., Simmons, R. M. A., Forster, B. M., Knopp, K. L., et al. (2017). Broad spectrum efficacy with LY296892, an oral prodrug of metabotropic glutamate 2/3 receptor agonist LY2934774, in rodent pain models. *Br. J. Pharmacol.* 174, 822–835. doi: 10.1111/bph.13740.

Jones, C. K., Eberle, E. L., Peters, S. C., Monn, A. J., and Shannon, H. E. (2005). Analogic effects of the selective group II (mGlu2/3) metabotropic glutamate receptor agonist LY379268 and LY389795 in persistent and inflammatory pain models after acute and repeated dosing. *Neuropharmacology* 49(Suppl. 1), 206–218. doi: 10.1016/j.neuropharm.2005.05.008.

Käh, E., and Fendt, M. (2016). Metabotropic glutamate receptors 7 within the nucleus accumbens are involved in relief learning in rats. *Carr. Neuropsychopharmacol.* 40, 405–412. doi: 10.2174/1570159X13666150425002017.

Karim, F., Wang, C.-C., and Gereau, R. W. (2011). Metabotropic glutamate receptor subtype 1 and 5 are activators of extracellular signal-regulated kinase signaling required for inflammatory pain in mice. *J. Neurosci.* 21, 3771–3779. doi: 10.1523/JNEUROSCI.13-07-2001.

Knollach, F., Mutel, V., Jolidon, S., Kew, J. N., Malherbe, P., Vieira, E., et al. (2001). Positive allosteric modulators of metabotropic glutamate 1 receptor: characterization, mechanism of action, and binding site. *Proc. Natl. Acad. Sci. U.S.A.* 98, 13402–13407. doi: 10.1073/pnas.231335892.

Kolber, B. J., Montana, M. C., Carrasquillo, Y., Xu, J., Heinemann, S. F., Muglia, L. J., et al. (2010). Activation of metabotropic glutamate receptor 5 in the amygdala modulates pain-like behavior. *J. Neurosci.* Off. J. Soc. Neurosci. 30, 8203–8213. doi: 10.1523/JNEUROSCI.1216-10.2010.

Latremoliere, A., and Woolf, C. J. (2009). Central sensitization: a generator of pain hypersensitivity by central neural plasticity. *J. Pain Off. J. Am. Pain Soc.* 10, 895–926. doi: 10.1016/j.jpain.2009.06.012.

Lee, J.-S., and Ro, J. Y. (2007). Peripheral metabotropic glutamate receptor 5 mediates mechanical hypersensitivity in craniofacial muscle via protein kinase C dependent mechanisms. *Neuroscience* 146, 375–383. doi: 10.1016/j.neuroscience.2007.01.015.

Lee, K. S., Park, E. H., Cho, H., Kim, Y. I., and Han, H. C. (2013). Peripheral group II and III metabotropic glutamate receptors in the knee joint attenuate carrageenan-induced nociceptive behavior in rats. *Neurosci. Lett.* 542, 21–25. doi: 10.1016/j.neulet.2013.03.006.

Li, J. L., Ohishi, H., Kaneko, T., Shimamoto, R., Neki, A., Naknishi, S., et al. (1996). Immunohistochemical localization of a metabotropic glutamate receptor, mGluR7, in ganglion neurons of the rat: with special reference to the presence in gluatamatergic ganglion neurons. *Neurosci. Lett.* 204, 9–12. doi: 10.1016/0304-3940(95)12299-0.

Li, M.-L., Hu, X.-Q., Li, F., and Gao, W.-J. (2015). Perspectives on the mGluR2/3 agonists as a therapeutic target for schizophrenia: still promising or a dead end? *Prog. Neuropsychopharmacol. Biol. Psychiatry* 60, 66–76. doi: 10.1016/j.pnpbp.2015.02.012.

Li, W., and Neugebauer, V. (2004). Differential roles of mGluR1 and mGluR5 in brief and prolonged nociceptive processing in central amygdala neurons. *J. Neurophysiol.* 91, 13–24. doi: 10.1152/jn.00485.2003.

Li, W., and Neugebauer, V. (2006). Differential changes of group II and group III mGluR function in central amygdala neurons in a model of arthritic pain. *J. Neurophysiol.* 96, 1803–1815. doi: 10.1152/jn.00495.2006.

Lindsley, C. W., Emmitte, K. A., Hopkins, C. R., Bridges, T. M., Gregory, K. J., Niswender, C. M., et al. (2016). Practical strategies and concepts in GPCR.
allosteric modulator discovery: recent advances with metabotropic glutamate receptors. Chem. Rev. 116, 6670–6741. doi: 10.1021/acs.chemrev.5b00656
Lindström, E., Brusberg, M., Hughes, P. A., Martin, C. M., Brierley, S. M., Phillis, B. D., et al. (2008). Involvement of metabotropic glutamate 5 receptor in visceral pain. Pain 137, 295–305. doi: 10.1016/j.pain.2007.09.008
Lischig, S., Gasparini, F., Rueegg, D., Stehr, N., Flor, P. J., Vranesic, L., et al. (1999). CPCCOEt, a noncompetitive metabotropic glutamate receptor 1 antagonist, inhibits receptor signaling without affecting glutamate binding. Mol. Pharmacol. 55, 453–461.
Liu, X. H., Han, M., Zhu, J. X., Sun, N., Tang, J. S., Huo, F. Q., et al. (2012). Metabotropic glutamate subtype 7 and 8 receptors oppositely modulate cardiac nociception in the rat nucleus tractus solitarius. Neuroscience 220, 322–329. doi: 10.1016/j.neuroscience.2012.05.024
Lorrain, D. S., Correa, L., Anderson, J., and Varney, M. (2002). Activation of spinal group I metabotropic glutamate receptors in rats evokes local glutamate release and spontaneous nociceptive behaviors: effects of 2-methyl-6-(phenyl ethynyl)-pyridine pretreatment. Neurosci. Lett. 327, 198–202. doi: 10.1016/S0304-3908(02)00393-2
Luongo, L., de Novellis, V., Gatta, L., Palazzo, E., Vita, D., Guida, F., et al. (2013). Role of metabotropic glutamate receptor 1 in the basolateral amygdala-driven prefrontal cortical deactivation in inflammatory pain in the rat. Neuroperopharmacology 66, 317–329. doi: 10.1016/j.neuropharmacology.2012.05.047
Maione, S., Marabese, I., Leyva, J., Palazzo, E., de Novellis, V., and Rossi, F. (1998). Characterisation of mGlurRs which modulate nociception in the PAC of the mouse. Neuroperopharmacology 37, 1475–1483. doi: 10.1002/s0022-3908(98)00126-9
Maione, S., Oliva, P., Marabese, I., Palazzo, E., Rossi, F., Berrino, L., et al. (2000). Periaqueductal gray matter metabotropic glutamate receptors modulate formalin-induced nociception. Pain 85, 183–189. doi: 10.1002/0030-3959(99)00269-9
Marabese, I., Boccella, S., Iannotta, M., Luongo, L., de Novellis, V., Guida, F., et al. (2018). Metabotropic glutamate receptor subtype 7 in the dorsal striatum oppositely modulates pain in sham and neuropathic rats. Neuroperopharmacology 135, 86–99. doi: 10.1016/j.neuropharmacology.2018.03.003
McWilliams, L. A., Cox, B. J., and Enns, M. W. (2003). Mood and anxiety. Annu. Rev. Neurosci. 26, 395–426. doi: 10.1146/annurev.neuro.26.040902.182305
Montana, M. C., Cavallone, L. F., Stubbert, K. K., Stefanescu, A. D., Kharasch, E. D., and Gereau, R. W. (2009). The metabotropic glutamate receptor subtype 5 antagonist fenobam is analgesic and has improved in vivo selectivity compared with the prototypical antagonist 2-methyl-6-(phenyl ethynyl)-pyridine. J. Pharmacol. Exp. Ther. 330, 834–843. doi: 10.1124/jpet.109.154138
Montana, M. C., Comardy, B. A., Cavallone, L. F., Kolber, B. J., Rao, L. K., Greco, S. C., et al. (2011). Metabotropic glutamate receptor 5 antagonism with fenobam: examination of analgesic tolerance and side effect profile in mice. Anesthesiology 115, 1239–1250. doi: 10.1097/ALN.0b013e318238e051
Moriarty, O., McGuire, B. E., and Finn, D. P. (2011). The effect of pain on cognitive function: a review of clinical and preclinical research. Prog. Neurobiol. 93, 385–404. doi: 10.1016/j.pneurobio.2011.01.002
Muguruza, C., Meana, J. J., and Callado, L. F. (2016). Group II metabotropic glutamate receptors as targets for novel antipsychotic drugs. Front. Pharmacol. 7:130. doi: 10.3389/fphar.2016.00130
Nakao, H., Nakao, K., Kano, M., and Aiba, A. (2007). Metabotropic glutamate receptor subtype-1 is essential for motor coordination in the adult cerebellum. Neurosci. Res. 57, 538–543. doi: 10.1016/j.neures.2006.12.014
Neto, F. L., and Castro-Lopes, J. M. (2000). Antinociceptive effect of a group II metabotropic glutamate receptor antagonist in the thalamus of monoarticular rats. Neurosci. Lett. 296, 25–28. doi: 10.1016/S0304-3908(00)01613-X
Nicoletti, F., Bockaert, J., Collingridge, G. L., Conn, P. J., Ferraguti, F., Schoepf, D. D., et al. (2011). Metabotropic glutamate receptors: from the workbench to the bedside. Neuroperopharmacology 60, 1017–1041. doi: 10.1016/j.neuropharmacology.2010.10.022
Noda, K., Anzai, T., Ogata, M., Akita, H., Ogura, T., and Saij, M. (2003). Antisense knockdown of spinal-mGluR1 reduces the sustained phase of formalin-induced nociceptive responses. Brain Res. 987, 194–200. doi: 10.1016/S0006-8993(03)03330-4
Notartomaso, S., Mascio, G., Bernabucci, M., Zappulla, C., Scarselli, P., Cannella, M., et al. (2017). Analgesia induced by the epigenetic drug, L-acyclicarminine, outlasts the end of treatment in mouse models of chronic inflammatory and neuropathic pain. Mol. Pain 13:174480917697009. doi: 10.17448/0917697009
Omode, K., Kawamata, T., Kawamata, N., and Namiki, A. (1998). Formalin-induced release of excitatory amino acids in the skin of the rat hindpaw. Brain Res. 788, 161–174. doi: 10.1016/S0006-8993(97)01568-0
Osikowicz, M., Mika, J., Makuch, W., and Przewlocka, B. (2008). Glutamate receptor ligands attenuate allodynia and hyperalgesia and potentiate morphine effects in a mouse model of neuropathic pain. Pain 139, 117–126. doi: 10.1016/j.pain.2008.03.017
Osikowicz, M., Skup, M., Mika, J., Makuch, W., Czarkowska-Bauch, J., and Przewlocka, B. (2009). Glial inhibitors influence the mRNA and protein levels of mGlu2/3, 5 and 7 receptors and potentiate the analgesic effects of their ligands in a mouse model of neuropathic pain. Pain 147, 175–186. doi: 10.1016/j.pain.2009.09.002
Pagano, A., Ruegg, D., Litschig, S., Stehr, N., Sterlin, C., Heinrich, M., et al. (2000). The non-competitive antagonists 2-methyl-6-(phenyl ethynyl)-pyridine and 7-hydroxymimocycloprenubol[b]chromen-1a-carboxylic acid ethyl ester interact with overlapping binding pockets in the transmembrane region of group I metabotropic glutamate receptors. J. Biol. Chem. 275, 33750–33758. doi: 10.1074/jbc.M006230200
Pål, B. (2018). Involvement of extrasynaptic glutamate in physiological and pathophysiological changes of neuronal excitability. Cell. Mol. Life Sci. CMLS. 75:2917. doi: 10.1007/s00018-018-2837-5
Palazzo, E., Fu, Y., Ji, G., Maione, S., and Neugebauer, V. (2008). Group III mGluR7 and mGluR8 in the amygdala differentially modulate nocifensive and affective pain behaviors. Neuroperopharmacology 55, 537–545. doi: 10.1016/j.neuropharmacology.2008.05.007
Palazzo, E., Marabese, I., Luongo, L., Boccella, S., Bellini, G., Giordano, M. E., et al. (2013). Effects of a metabotropic glutamate receptor subtype 7 negative allosteric modulator in the periaqueductal grey on pain responses and rostral ventromedial medulla cell activity in rat. Mol. Pain 9:44. doi: 10.1186/1744-8069-9-44
Palazzo, E., Romano, R., Luongo, L., Boccella, S., De Gregorio, D., Giordano, M. E., et al. (2015). MMPIP, an mGluR7-selective negative allosteric modulator,
Perea and Goudet
Pain Modulation by mGluRs

alleviates pain and normalizes affective and cognitive behavior in neuropathic mice. Pain 156, 1060–1073. doi: 10.1097/j.pain.000000000000150

Pinto-Jones, F., Sevastou, I. G., Fry, V. A. H., Heales, S., Baker, D., and Pocock, J. M. (2008). Myelin-induced microglial neurotoxicity can be controlled by microglial metabotropic glutamate receptors. J. Neurochem. 106, 442–454. doi: 10.1111/j.1471-4159.2008.05426.x

Ponnazhagan, H., Harns, A. S., Thome, A. D., Jurkunenaitė, A., Gigliotti, R., Niswender, C. M., et al. (2016). The Metabotropic glutamate receptor 4 positive alloscotic modulator ADX88178 inhibits inflammatory responses in primary microglia. J. Neuroimmunol. Pharmacol. Off. J. Soc. NeuroImmune Pharmacol. 11, 231–237. doi: 10.11681/jnsp.016-9655-z

Ren, W., and Neugebauer, V. (2010). Pain-related increase of excitatory transmission and decrease of inhibitory transmission in the central nucleus of the amygdala are mediated by mGluR1. Mol. Pain. 6:93. doi: 10.1186/1744-8069-6-93

Rossi, F., Marabese, I., De Chiara, M., Boccella, S., Luongo, L., Guida, F., et al. (2013). Dorsal striatum metabotropic glutamate receptor 8 affects nociceptive responses and rostral ventromedial medulla cell activity in neuropathic pain conditions. J. Neurophysiol. 111, 2196–2209. doi: 10.1152/jn.00211.2013

Rovira, X., Trapero, A., Pittolo, S., Zussy, C., Faucherre, A., Jolping, C., et al. (2016). OptoGlu2/3AM44.1, a photoswitchable allosteric antagonist for real-time control of mGlu4 receptor activity. Cell Chem. Biol. 23, 929–934. doi: 10.1016/j.chembiol.2016.06.013

Sah, T. E., Jones, H. E., Copeland, C. S., and Silitto, A. M. (2014). Function of mGlu1 receptors in the modulation of nociceptive processing in the thalamus. Neuropharmacology 79, 405–411. doi: 10.1016/j.neuropharm.2013.12.016

Sandkühler, J. (2009). Models and mechanisms of hyperalgesia and allodynia. Physiol. Rev. 89, 707–758. doi: 10.1152/physrev.00052.2008

Sansig, G., Bushell, T. J., Clarke, V. R., Rozov, A., Burnashnev, N., Portet, C., et al. (2001). Increased seizure susceptibility in mice lacking metabotropic glutamate receptor 7. J. Neurosci. Off. J. Soc. Neurosci. 21, 8734–8745. doi: 10.1523/jneurosci.21-22-08734.2001

Satow, A., Hasegawa, S., Ise, S., Hikichi, H., Fukushima, M., Suzuki, G., et al. (2008). Pharmacological effects of the metabotropic glutamate receptor 1 antagonist compared with those of the metabotropic glutamate receptor 5 antagonist and metabotropic glutamate receptor 2/3 agonist in rodents: detailed investigations with a selective allosteric metabotropic glutamate receptor 1 antagonist. FLTDC4 [1-2-furoylpyridin-3-yl)-5-(methyl-1H-1,2,3-triazol-4-yl)-N-isopropyln-methyl-3,6-dihydropyridine-1(2H)-carboxamldie]. J. Pharmacol. Exp. Ther. 326, 577–586. doi: 10.1124/jpet.108.138107

Sevostianova, N., and Danyz, W. (2006). Analgesic effects of mGlu1 and mGlu5 receptor antagonists in the rat formalin test. Neuropharmacology 51, 623–630. doi: 10.1016/j.neuropharm.2006.05.004

Sharma, E. F., Kingston, A. E., Lodge, D., Monn, J. A., and Headley, P. M. (2002). Systemic pre-treatment with a group II mGlu agonist, LY379268, reduces hyperalgesia in vivo. Br. J. Pharmacol. 135, 1255–1262. doi: 10.1038/sj.bjp.0704583

Sheahan, T. D., Valtcheva, M. V., McIlfried, L. A., Pullen, M. Y., Baranger, D. A. A., and Gerewe, R. U. (2018). Metabotropic glutamate receptor 2/3 (mGluR2/3) activation suppresses TRPV1 sensitization in mouse, but not human, sensory neurons. eNeuro 5:E80412-17.2018. doi: 10.1523/ENEURO.0412-17.2018

Simmons, R. M. A., Webster, A. A., Kalra, A. B., and Iyengar, S. (2002). Group II mGluR receptor agonists are effective in persistent and neuropathic pain models in rats. Pharmacol. Biochem. Behav. 73, 419–427. doi: 10.1016/S0091-3057(02)00849-3

Sluka, K. A., and Westlund, K. N. (1992). An experimental arthritis in rats: Dorsal horn aspartate and glutamate increases. Neurosci. Lett. 145, 141–144. doi: 10.1016/0304-3908(92)90006-S

Soliman, A. C., Yu, J. S. C., and Coderre, T. J. (2005). mGlu and NMDA receptor contributions to capsaicin-induced thermal and mechanical hypersensitivity. Neuropharmacology 48, 325–332. doi: 10.1016/j.neuropharmacology.2004.10.014

Sorkin, L. S., Westlund, K. N., Sluka, K. A., Dougherty, P. M., and Willis, W. D. (1992). Neural changes in acute arthritis in monkeys. IV. Time-course of amino acid release into the lumbar dorsal horn. Brain Res. Rev. 17, 39–50. doi: 10.1016/0165-0173(92)90005-7
Pereira and Goudet Pain Modulation by mGluRs

receptors functionally expressed on peripheral sensory neurones mediate inflammatory hyperalgesia. *Neuropharmacology* 40, 10–19. doi: 10.1016/S0028-3908(00)00114-3

Wang, H., Jiang, W., Yang, R., and Li, Y. (2011). Spinal metabotropic glutamate receptor 4 is involved in neuropathic pain. *Neuroreport* 22, 244–248. doi: 10.1097/WNR.0b013e3283453843

Xie, J.-D., Chen, S.-R., and Pan, H.-L. (2017). Presynaptic mGlu5 receptor controls glutamergic input through protein kinase C-NMDA receptors in paclitaxel-induced neuropathic pain. *J. Biol. Chem.* 292, 20644–20654. doi: 10.1074/jbc.M117.818476

Yamada, T., Zuo, D., Yamamoto, T., Olszewski, R. T., Bzdéga, T., Moffett, J. R., et al. (2012). NAAG peptidase inhibition in the periaqueductal gray and rostral ventromedial medulla reduces flinching in the formalin model of inflammation. *Mol. Pain* 8:67. doi: 10.1186/1744-8609-8-67

Yang, D., and Gereau, R. W. (2003). Peripheral group II metabotropic glutamate receptors mediate endogenous anti-allodynia in inflammation. *Pain* 106, 411–417. doi: 10.1016/j.pain.2003.08.011

Yang, D., and Gereau, R. W. (2004). Group II metabotropic glutamate receptors inhibit cAMP-dependent protein kinase-mediated enhanced tetrodotoxin-resistant sodium currents in mouse dorsal root ganglion neurons. *Neurosci. Lett.* 357, 159–162. doi: 10.1016/j.neulet.2003.11.074

Young, M. R., Fleetwood-Walker, S. M., Dickinson, T., Blackburn-Munro, G., Sparrow, H., Birch, P. I., et al. (1997). Behavioural and electrophysiological evidence supporting a role for group I metabotropic glutamate receptors in the mediation of nociceptive inputs to the rat spinal cord. *Brain Res.* 777, 161–169.

Zammataro, M., Chiechio, S., Montana, M. C., Traficante, A., Copani, A., Nicoletti, F., et al. (2011). mGlu2 metabotropic glutamate receptors restrain inflammatory pain and mediate the analgesic activity of dual mGlu2/mGlu3 receptor agonists. *Mol. Pain* 7:6. doi: 10.1186/1744-8609-7-6

Zhang, H.-M., Chen, S.-R., and Pan, H.-L. (2009). Effects of activation of group III metabotropic glutamate receptors on spinal synaptic transmission in a rat model of neuropathic pain. *Neuroscience* 158, 875–884. doi: 10.1016/j.neuroscience.2008.10.042

Zhou, H.-Y., Chen, S.-R., Chen, H., and Pan, H.-L. (2011). Functional plasticity of group II metabotropic glutamate receptors in regulating spinal excitatory and inhibitory synaptic input in neuropathic pain. *J. Pharmacol. Exp. Ther.* 336, 254–264. doi: 10.1124/jpet.110.173112

Zhou, S., Bonasera, L., and Carlton, S. M. (1996). Peripheral administration of NMDA, AMPA or KA results in pain behaviors in rats. *Neuroreport* 7, 895–900. doi: 10.1097/00001756-199603220-00012

Zhu, C. Z., Baker, S., El-Kouhen, O., Lehto, S. G., Hollingsworth, P. R., Gauvin, D. M., et al. (2008). Analgesic activity of metabotropic glutamate receptor 1 antagonists on spontaneous post-operative pain in rats. *Eur. J. Pharmacol.* 580, 314–321. doi: 10.1016/j.ejphar.2007.09.047

Zhu, C. Z., Hsieh, G., El-Kouhen, O., Wilson, S. G., Mikusa, J. P., Hollingsworth, P. R., et al. (2005). Role of central and peripheral mGlu5 receptors in post-operative pain in rats. *Pain* 114, 195–202. doi: 10.1016/j.pain.2004.12.016

Zhu, C. Z., Wilson, S. G., Mikusa, J. P., Wismer, C. T., Gauvin, D. M., Lynch, J. J., et al. (2004). Assessing the role of metabotropic glutamate receptor 5 in multiple nociceptive modalities. *Eur. J. Pharmacol.* 506, 107–118. doi: 10.1016/j.ejphar.2004.11.005

Zussy, C., Gómez-Santacana, X., Rovira, X., Bundel, D. D., Ferrazzo, S., Bosch, D., et al. (2018). Dynamic modulation of inflammatory pain-related affective and sensory symptoms by optical control of amygdala metabotropic glutamate receptor 4. *Mol. Psychiatry* 23, 509–520. doi: 10.1038/mp.2016.223

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Pereira and Goudet. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.