Disclosing in utero HIV/ARV exposure to the HIV-exposed uninfected adolescent: is it necessary?

Jennifer Jao§, Rohan Hazra, Claude A Mellins, Robert H Remien and Elaine J Abrams

Abstract

Introduction: The tremendous success of antiretroviral therapy has resulted in a diminishing population of perinatally HIV-infected children on the one hand and a mounting number of HIV-exposed uninfected (HEU) children on the other. As the oldest of these HEU children are reaching adolescence, questions have emerged surrounding the implications of HEU status disclosure to these adolescents. This article outlines the arguments for and against disclosure of a child’s HEU status.

Discussion: Disclosure of a child’s HEU status, by definition, requires disclosure of maternal HIV status. It is necessary to weigh the benefits and harms which could occur with disclosure in each of the following domains: psychosocial impact, long-term physical health of the HEU individual and the public health impact. Does disclosure improve or worsen the psychological health of the HEU individual and extended family unit? Do present data on the long-term safety of in utero HIV/ARV exposure reveal potential health risks which merit disclosure to the HEU adolescent? What research and public health programmes or systems need to be in place to afford monitoring of HEU individuals and which, if any, of these require disclosure?

Conclusions: At present, it is not clear that there is sufficient evidence on whether long-term adverse effects are associated with in utero HIV/ARV exposures, making it difficult to mandate universal disclosure. However, as more countries adopt electronic medical record systems, the HEU status of an individual should be an important piece of the health record which follows the infant not only through childhood and adolescence but also adulthood. Clinicians and researchers should continue to approach the dialogue around mother–child disclosure with sensitivity and a cogent consideration of the evolving risks and benefits as new information becomes available while also working to maintain documentation of an individual’s perinatal HIV/ARV exposures as a vital part of his/her medical records. As more long-term adult safety data on in utero HIV/ARV exposures become available these decisions may become clearer, but at this time, they remain complex and multi-faceted.

Keywords: HIV exposure; disclosure; in utero; antiretrovirals.

Introduction

With the widespread use of combination, antiretroviral therapy (ART) for the prevention of mother-to-child transmission (PMTCT) of HIV, vertical transmission rates have dwindled to < 2% [1–3]. The tremendous success of PMTCT has resulted in a diminishing population of perinatally infected children on the one hand and a mounting number of HIV-exposed uninfected (HEU) children on the other. It is estimated that approximately 20% of all infants born in sub-Saharan Africa are born HEU [4].

Households comprising HIV-infected women and HEU children often face significant socio-economic stressors with limited healthcare access, high levels of perceived stigma and low levels of psycho-social support [5–7]. Disclosure of a child’s HEU status, by definition, requires disclosure of maternal HIV status, and this may be difficult given the mother’s right to privacy and concern for safety, particularly with continuing stigma around HIV. Disclosure of a mother’s HIV status to her children has been low with rates ranging from 20 to 60% in the United States [8,9] and 40 to 50% in sub-Saharan Africa [5,10]. While much of the disclosure literature has focused on a mother’s disclosure of her HIV status to her children, exploring potential benefits to a mother’s own health [8,11], little has been published on the disclosure of a child’s in utero exposure to HIV and antiretroviral medications (ARVs) and whether this has direct risks or benefits to the child’s health [12].

The oldest of HEU children are now reaching adolescence and early adulthood, an important transition period often marked by concerns around diminished healthcare access and utilization [13]. As HEU adolescents transition from paediatric to adult healthcare, many assume responsibility for their own healthcare decisions during an already complex phase of cognitive, psychosocial and developmental changes. This responsibility requires knowledge of their medical history, which may include information about perinatal exposures such as exposure to in utero HIV/ARV. Today, we face unknowns regarding the long-term safety of intrauterine HIV/ARV exposure into adulthood and an increasingly large and aging population of HEU children. At the intersection of these issues,
the landscape of HIV disclosure is beginning to consider not only benefits/harms for the mother and her family regarding disclosure of maternal HIV status but also benefits/harms for the child regarding disclosure of a child’s perinatal HIV/ARV exposure status. Researchers evaluating the long-term safety of intrauterine HIV/ARV exposures through prospective cohort studies require long-term monitoring of HEU children into adulthood necessitating consent from such individuals when they turn 18, resulting in a need to disclose perinatal HIV/ARV exposures to the HEU participant. Clinicians assuming the healthcare of HEU adolescents may struggle with how to best monitor HEU patients in the setting of a lack of conclusive data on the long-term risks of intrauterine HIV/ARV exposures. HEU adolescents and their mothers may have competing desires for privacy due to persistent stigma and the need to avert other psychosocial harms. Adolescents transitioning to adult care may not be fully emotionally and mentally prepared to assume responsibility for their own health as this can be an unstable period of experimentation and individuation which supersedes desires to participate in consistent healthcare. In this article, we summarize the arguments for and against disclosure of intrauterine HIV/ARV exposure to HEU children/adolescents.

Discussion
Monitoring of HEU children: current guidelines
We begin our discussion with a related but separate question involving whether HEU children merit long-term monitoring, since the answer to this question has direct impact on whether disclosure of a child’s intrauterine HIV/ARV exposure should occur. We systematically reviewed all English, French and Spanish articles identified in a PubMed/Medline database up to July 2016 on guidelines for the monitoring of HEU children and contacted several key in-country researchers leading surveillance and research initiatives in this area. While there is no consensus on the type of monitoring which should occur, several countries have developed systems and guidelines (Table 1). Wide variability in the recommended duration and intensity of longitudinal observation exists, perhaps due to the fact that this is a rapidly evolving area where emerging needs of HEU children are slowly rising to the forefront. Mechanisms of monitoring encompass registry/surveillance programmes and national research cohorts, depending on available resources and competing national health priorities.

The U.S. Department of Health and Human Services recommends that HEU children be followed into adulthood due to the potential for carcinogenicity from nucleoside analogue ARVs [14]; Canadian guidelines mirror this and appeal for the psychosocial support of HEU children [15]. US guidelines also acknowledge a need for “innovative methods” to provide follow-up of these children and encourage that information regarding in utero HIV/ARV exposure be “part of ongoing permanent medical records for children.” In addition to several HEU research cohorts in both countries, the United States also recently reported a linking system in one state to match subjects from the Perinatal HIV Surveillance database and the state’s cancer registry to monitor malignancy risk in HEU children [16]. A similar linkage system had been developed earlier in France, where the national cancer registry was linked in an anonymized fashion [17,18] to the major research cohort with longitudinal monitoring of HEU infants until 18 to 24 months [19–21]. The UK also has a national surveillance system of HIV-infected pregnant women and their infants (National Study of HIV in Pregnancy and Childhood, or NSHPC), which follows HEU children up to 18 months. National death and cancer event data in the UK have, in turn, been linked to data in the NSHPC to monitor death and cancer rates in HEU children [22,23]. In more resource-constrained settings, such as South Africa and Thailand, national guidelines recommend routine follow-up of HEU infants until approximately 18 months [24,25]. A South African pregnancy and HEU surveillance registry is being launched, which will ultimately include three provinces – KwaZulu-Natal, Gauteng and the Western Cape.

The differences in national guidelines on HEU longitudinal monitoring may be attributed to the differences in healthcare and research resources between countries. Regrettably, areas where high numbers of HIV/ARV-exposed pregnancies occur are also areas where healthcare, research and public health resources may be the most constrained. Despite the lack of consensus on the type of monitoring which HEU children merit, there does appear to be general agreement that some form of follow-up of HEU children is warranted [26] for the following reasons: 1) The type and timing of ARV exposures continue to evolve, at times outpacing research, making continued surveillance essential, 2) There are still many unknowns regarding long-term effects of this exposure. Given this, we now outline arguments in favour of and against disclosing perinatal HIV/ARV exposure status.

The case for disclosure
The key arguments in favour of disclosure revolve around the assumption that there are substantial benefits (psychosocial and physical) for the child, HIV-infected mother and even other family members. In addition, disclosure may facilitate the conduct of large prospective HEU research cohorts in long-term monitoring, ultimately serving a critical public health function (Table 2).

Psychosocial considerations
Despite the paucity of literature describing the impact of disclosure of a child’s perinatal HIV/ARV exposure, several studies suggest positive effects on family relationships when disclosure of maternal HIV status to children occurs [11,27,28]. The Amagugu study in South Africa reported significant reduction in parental stress and child emotional/behavioural problems after an intervention to aid in disclosure of maternal HIV status [27]. In addition to higher family cohesion [29], United States studies have demonstrated lower levels of aggressiveness, poor self-esteem [11] and problem behaviours [28] in children whose mothers had disclosed compared to those who had not.

Physical health considerations
Clear physical harms from intrauterine HIV/ARV exposure would necessitate disclosure to the HEU individual. Several scientific arguments may be made to demonstrate current concerns for physical harms which may exist as a result of the
Country	Name/type	Information collected	Length of follow-up	Name	Length of follow-up	Current national recommendations
United States	None nationally currently; state-dependent Perinatal HIV Exposure Reporting Programs; Previous Enhanced Perinatal Surveillance (EPS) Program ended 2011; some state-dependent linkage to state cancer registries	State-Dependent; Prenatal & Intrapartum Data; Postnatal Data limited to infection status, postnatal ARVs, death, birth defect outcomes; New Jersey state with programme linking to state cancer registry	12–18 months for EPS; Up to 16 years for state linkage programme to cancer registry	PHACS (SMARTT) PACTG/IMPAACT 219/219c	≥ 4 years	“Follow-up of children with exposure to ARVs should continue into adulthood because of the theoretical concerns regarding the potential for carcinogenicity of nucleoside analogue ARV drugs. Long-term follow-up should include annual physical examinations of all children exposed to ARV drugs. Innovative methods are needed to provide follow-up of infants, children, and youth with in utero exposure to ARV drugs. Information regarding such exposure should be part of ongoing permanent medical records for children, particularly those who are uninfected.” (DHHS Panel on Treatment of HIV-Infected Pregnant Women and Prevention of Perinatal Transmission, 2014)
Canada	Canadian Perinatal HIV Surveillance Program	Prenatal & Intrapartum Data; Postnatal Data limited to infection status, postnatal ARVs, death, major birth defects	18 months	CARMA, CMIS	CARMA (range up to 15 years); CMIS (2 years)	“Long-term follow-up and annual physical examinations, into adulthood, of HIV-uninfected infants exposed in utero and perinatally to antiretroviral medications is now recommended by the DHHS because of the potential carcinogenicity of the nucleoside analogs. Finally it is important to ensure continued psychosocial support for HIV-exposed uninfected children and their families.” (Prevention of Vertical HIV Transmission and Management of the HIV-exposed infant in Canada in 2014, CPARG & ID-SOCG)
France	Surveillance programme linking EPF and French National Cancer Registry	Anonymous linkage system between EPF and French National Cancer Registry	Up to 15 years	EPF	18–24 months	“If an HIV-exposed uninfected infant is asymptomatic, follow-up ends at 18–24 months. Follow-up should continue as necessary for unexplained symptoms, particularly neurological symptoms. There is, to date, no active program for the long term follow-up of asymptomatic HIV-exposed uninfected infants. Long term follow-up of symptomatic children may be justified and should be guided by best clinical practices. Families should alert the child’s physician and/or the physician who treated the child during the first months of life of any significant clinical events.” (Management of Persons Living with HIV, Report from Expert Panel of CNS and ANRS, 2013)
England	NHSPC; Flagging system to link NSHPC and death or cancer events in the national Health and Social Care Information Center (HSCIC)	Prenatal & Intrapartum Data; Postnatal Data limited to infection status, postnatal ARVs, death, and cancer events	Until HIV-non-infection documented (Range between 6 and 18 months) for NSHPC	CHART	–	“It is the responsibility of clinicians caring for women with HIV and their children to report them prospectively to the NSHPC. Aggregated data tables from the UK and Ireland of antiretroviral exposure and congenital malformations are regularly sent to the Antiretroviral Pregnancy Registry. Individual prospective reports should also be made to the Antiretroviral Pregnancy Registry antenatally with post-natal follow-up.” (Management of HIV Infection in Pregnant Women, 2014 interim update, British HIV Association)
Table 1 (Continued)

Country	Current HIV Perinatal registry and surveillance linkage systems	Key research cohorts
	Name/type	Name
Spain	None	NENEXP
	Information collected	Length of follow-up
	Basic perinatal and postnatal data, infection status, growth,	To be defined
	TB symptom screening, developmental milestones, assessment,	CDC-funded
	significant events	PMTCT Study
South Africa	New national registry beginning in 3 provinces including Western	To be defined
	Cape	CDC-funded
	Prenatal & Intrapartum Data; Postnatal Data limited to	PMTCT Study
	infection status, postnatal ARVs, death	
Thailand	National Surveillance Program of the Thai Ministry of Public	-
	Health	-

Current national recommendations

... the potential long-term toxicity in healthy exposed infants and the continuing emergence of new ARVs make it advisable to devise a mechanism whereby the identification and registration of potential adverse long-term effects of such exposures may be recorded. The Spanish Society of Pediatric Infectious Diseases recommends the creation of an anonymous national database supported by health authorities for this purpose. This database would require informed consent of the legal guardian of the infant (and the patient’s own later) prior to inclusion in it. Unfortunately, these recommendations are in contrast with the reality of current practices in Spain where some specialized centers and monitoring of these patients at the time of seronegativity, others at 5 years of age, and still others follow throughout childhood.” (Recommendations by the Spanish Society of Pediatric Infectious Diseases for the follow-up of the child exposed to HIV and to ARV drugs during pregnancy and the neonatal period, 2012)

“Ideally all mothers and their infants should receive health care at the same consultation regardless of service point. The mother should understand the treatment and follow-up plan for herself and her infant. The RTHB should be completed prior to discharge after delivery, including recording HIV treatment/prophylaxis interventions received by mother during pregnancy, maternal illnesses, infant HIV prophylaxis and intended feeding method. The 1st postnatal visit is scheduled for day 3 but should take place within 6 days of life at the health facility.” (Recommendations by the Spanish Society of Pediatric Infectious Diseases for the follow-up of the child exposed to HIV and to ARV drugs during pregnancy and the neonatal period, 2012)

“The goals of the program are to reduce MTCT, provide health promotion for infants born to HIV-infected mothers, and provide appropriate medical treatment for parents in order to reduce the risk of infants or children being orphaned. Comprehensive care for HIV-infected women and family includes the following services: 1) Standard postpartum care should be provided, 2) General health promotion, e.g. nutritional support and exercise, should also be provided. 3) All postpartum women should be referred to internists for standard HIV..."
Table 1 (Continued)

Current HIV Perinatal registry and surveillance linkage systems	Key research cohorts	Length of follow-up	Information collected	Current national recommendations
t				
Affect the long-term metabolic health of HEU children. There is increased N-terminal pro-brain natriuretic peptide in abacavir-exposed infants (OR = 2.33, 95% CI: 1.03–5.26) and decreased risk of elevated cardiac troponin T in abacavir-exposed infants (OR = 0.13, 95% CI: 0.02–0.99) have been reported [58], the long-term significance of either of which remains unclear. Lastly, studies have shown acylcarnitine and amino acid analytes, products of intermediary metabolism, were increased in ARV-exposed infants (43% vs. 0%, \(p = 0.02 \)) [57] as well as lower insulin levels and abnormal fuel substrate utilization in HEU infants at six weeks of life [56], which may affect the long-term metabolic health of HEU children.

Effects on bone health

Pregnant rhesus macaques have shown compromised intrauterine growth and decreased foetal bone porosity in infants born to high-dose tenofovir (TDF)-treated SIV-infected and -uninfected monkeys [50,51]. The Pediatric HIV/AIDS Cohort Study (PHACS) reported decreased bone mineral content (BMC) in US newborns exposed to antenatal TDF [49]. In addition, the IMPAACT 1084 sub-study of Promoting Maternal and Infant Survival Everywhere (PROMISE) study found that both TDF/emtricitabine/lopinavir/ritonavir (p < 0.001) as well as AZT/lamivudine (3TC)/lopinavir/ritonavir-exposed (p = 0.002) infants showed lower BMC compared to those exposed to AZT monotherapy [48].

Cardiovascular and metabolic health

Recent studies have shown decreased left ventricular mass index and early diastolic annular velocity in HIV/ARV-exposed versus -unexposed infants [52]. In addition, increased risk of elevated cardiac troponin T in abacavir-exposed infants (OR = 2.33, 95% CI: 1.03–5.26) and decreased risk of elevated N-terminal pro-brain natriuretic peptide in stavudine-exposed infants (OR = 0.13, 95% CI: 0.02–0.99) have been reported [58], the long-term significance of either of which remains unclear. Lastly, studies have shown acylcarnitine and amino acid analytes, products of intermediary metabolism, were increased in ARV-exposed infants (43% vs. 0%, \(p = 0.02 \)) [57] as well as lower insulin levels and abnormal fuel substrate utilization in HEU infants at six weeks of life [56], which may affect the long-term metabolic health of HEU children.

Mental health

A US study of HEU and perinatally HIV-infected children observed a higher prevalence of mental health problems in HEU children (38% vs. 25%, \(p = 0.01 \)) in unadjusted analyses [45]. In the U.S. Child and Adolescent Self-Awareness and Health study of perinatally HIV-infected and HEU youth, both groups exhibited high rates of any psychiatric disorder (49% in HEU youth) [46], and during the one to two years of follow-up, this rate did not decrease (57% at baseline to 54% later) in HEU youth [47].

Bone health

Pregnant rhesus macaques have shown compromised intrauterine growth and decreased foetal bone porosity in infants born to high-dose tenofovir (TDF)-treated SIV-infected and -uninfected monkeys [50,51]. The Pediatric HIV/AIDS Cohort Study (PHACS) reported decreased bone mineral content (BMC) in US newborns exposed to antenatal TDF [49]. In addition, the IMPAACT 1084 sub-study of Promoting Maternal and Infant Survival Everywhere (PROMISE) study found that both TDF/emtricitabine/lopinavir/ritonavir (p < 0.001) as well as AZT/lamivudine (3TC)/lopinavir/ritonavir-exposed (p = 0.002) infants showed lower BMC compared to those exposed to AZT monotherapy [48].

Table 2. Major arguments for and against disclosure

Domain of consideration	For disclosure	Against disclosure
Psychosocial	Improves psychological health of mother and child	Worsens psychological health of mother and child – increase stigma and create increased stressors on an already fragile family environment
	Aids in transition and autonomy from childhood to adulthood healthcare	Creates a layer of unnecessary complexity during a time of transition when the adolescent may not be prepared to properly understand this exposure
Physical Health	Averts potential physical harm from long-term complications; early signals presented in current data are enough to warrant disclosure	Largely reassuring evidence that no physical harm with major early outcomes; not enough evidence of harm to see a benefit
Research/Public Health	Improves ability to continue long-term monitoring of more detailed outcomes in prospective research cohorts	Minimal ability to sustain long-term prospective HEU cohorts in the majority of the world. Surveillance programmes with linkage systems for the monitoring of major events in place and does not require disclosure

Research/Public health considerations

Though they may not be feasible in all settings, prospective cohort studies can provide detailed, closely monitored, and well-described long-term outcomes data on HEU children. In order to continue these studies, it is ethically necessary to consent HEU individuals when they turn 18 since the HEU individual may have been an infant/child at enrolment when original consent was provided by a parent. This re-consenting in adolescence would require disclosure of the child's HEU status.

The case against disclosure

The central argument against disclosure is that the harms of disclosure (psychological stress to the mother and child, the need to maintain privacy of the mother's HIV diagnosis, etc.) are greater than any benefit that might occur, or more simply, that there is no benefit due to the fact that no substantial health risks from intrauterine HIV/ARV exposure have been identified. Cumulative evidence strongly supports the continued use of ARVs in pregnancy, and data surrounding harmful HEU child outcomes are reassuring.

Psychosocial considerations

Though several studies discussed above have indicated psychosocial benefits to the mother and child from disclosure of maternal HIV status, there are almost an equal number citing worsening psychosocial functioning in children of mothers who disclose compared to those whose mothers do not [5,59–63]. This increased stressor on an already fragile household environment may produce enough psychosocial harm to argue against disclosure. Lower emotional and social functioning [59] as well as increased externalizing behavioural problems [5] have been reported in cross-sectional studies of children whose mothers disclosed. Adolescents whose mothers disclosed may appear to be at risk for early parentification out of a felt need to support their HIV-infected mother [60,64]. Other reports have shown that these adolescents reported higher rates of emotional distress [28,63], high-risk behaviours [63,65] and negative school performance [62]
compared to adolescents whose mothers had not disclosed. Disclosure to HEU adolescents may create a layer of unnecessary complexity during a time when the adolescent may not be prepared to properly understand this exposure.

Physical health considerations

If the risk of physical harm from in utero HIV/ARV exposure is not substantial, it may be argued that disclosure is not necessary. What dictates “substantial” is debatable, but many consider outcomes involving birth weight [66–75], congenital defects [76–81], early neurodevelopment [82–84] and growth [70,75,85–87] as significant, and none of these have demonstrated a clear association with in utero HIV/ARV exposure (Table 3). Even pre-term birth, which has been shown in several studies to be associated with ART [74,89–92,95] is still an early infant outcome and would occur and be managed well before adolescence, the time of disclosure.

Birth weight

Despite one large study in Botswana which reported an increased risk for small-for-gestational age (SGA) outcomes in HEU infants [88] (odds ratio (OR) for SGA = 1.5, 95% CI: 1.2–1.9), the vast majority of reports have not found a consistent association between in utero HIV/ARVs and low birth weight (LBW) or SGA outcomes. Exposure to antenatal AZT has not been found to be associated with SGA in the United States [66] or LBW in Europe [67]. In addition, studies in the United States [72,74] and another multi-country study [75] have reported no associations between antenatal ART and LBW/SGA. A large study in Latin America also did not find risks for LBW when comparing classes of ARVs [73]. Lastly, two US studies [69,70] did not find increased risks for SGA, and one Ugandan study did not find increased risks for LBW [71] with intrauterine TDF exposure.

Congenital defects

In general, there has not been evidence for an increased rate of birth defects (overall rates 1.4–6.2%) associated with HIV/ARV exposure [76–81,98,99]. The two largest surveillance registries for congenital anomalies in the UK [77] and the United States [100] have found low rates of birth defects consistent with other cohorts in Europe [76] and the United States [78]. Few reports have emerged from low-income countries, but one pilot ART registry from South Africa and Zambia identified a 6.2% prevalence rate for all and 2.2% for major congenital anomalies [79]. Despite earlier reports in humans revealing neural tube defects in infants exposed to efavirenz (EFV) early in gestation [99,109], a more recent meta-analysis of 2026 infants countered these results and found no risk (RR = 0.78, 95% CI: 0.56–1.08) [93]. In addition, the French EPF [80] and a recent US study [101] found overall low rates of congenital anomalies associated with EFV.

Neurodevelopment

The Pediatric AIDS Clinical Trial Group (PACTG) 219 noted no differences in mental or psychomotor developments in 1840 HIV/ARV-exposed versus -unexposed children [82]. Similar findings were found in the PHACS cohort when assessing the effects of ART exposure as well as differing ART class regimens [83]. A more recent study within PHACS also evaluated cognitive outcomes in older HEU children and did not find associations between any perinatal ART class regimens and cognitive and academic scores [84]. One study from Thailand reported small reductions in Wechsler Intelligence Scale testing comparing HEU to HUU children but acknowledged the uncertainty around the long-term clinical significance of these findings [108].

Growth

With the exception of a few studies [69,102], most large studies have not reported problems with early postnatal growth after in utero HIV/ARV exposure [70,75,85–87]. A Thai study found no differences in weight-for-age, weight-for-length, or length-for-age z scores between infants exposed to <7.5 versus ≥7.5 weeks of AZT [85]. A Spanish cohort reported similar findings when evaluating HIV/ARV-exposed versus HIV-unexposed infants and HIV- versus HIV/ARV-exposed infants [86]. A multi-national study had comparable results when examining ART versus AZT monotherapy exposure [75].

Research/public health considerations

While large prospective research cohorts may be the most comprehensive method to monitor HEU children long-term, they require re-consenting an HEU adolescent and disclosure of HEU status, rendering the feasibility and sustainability of these in all settings challenging. Surveillance programmes with linkage systems for the monitoring of major events may be used instead for long-term monitoring, particularly in resource-constrained settings where the largest proportion of HEU children reside, and would not require disclosure in most circumstances.

Conclusions: to disclose or not to disclose

As we confront the many unknowns outlined above – the continued high rates of HIV infection in women globally with an increasing and aging population of HEU children – the tensions surrounding disclosure will need to be considered carefully. Clinicians in both high- and low-resource settings face the difficulty of balancing the need to respect a mother’s rights to privacy and prevent further familial psychosocial harm versus the potential benefits to the HEU adolescent and his/her family from disclosure of exposures [12]. In these settings, careful assessment (and re-assessments) of the risk/benefit ratio, the HEU individual’s changing and maturing needs, and the mother’s need for privacy should be considered during the discussion of whether to disclose or not. At present, it is not clear that we have sufficient evidence on whether long-term adverse effects are associated with in utero HIV/ARV exposures, making it difficult to mandate universal disclosure.

If evidence for a particularly threatening complication from intrauterine HIV/ARV exposure unsurfaces through research, countries may grapple seriously with how best to manage and address this issue, particularly in areas where healthcare infrastructures are already fragile, or health literacy is low. Data on long-term reproductive health effects, immunologic dysfunction, risk of adult onset malignancies, cardiovascular disease, or neurodevelopmental and mental health disorders in adulthood are still inconclusive with no published reports in HEU adults. To meet this void of evidence, research and long-term monitoring likely needs to be continued, and there is
Table 3. Major studies assessing complications of in utero maternal HIV and antiretroviral exposure in HIV-exposed infants

Authors (reference)	Study subjects/ cohort	Study design	Sample size	Age period studied	In utero exposure of interest	outcomes measured	Results
Birth outcomes							
SGA/LBW							
Habib et al. 2008 [88]	Tanzania Cohort	14,444 Birth	ARV-/HIV+ vs. ARV-/HIV- ARV+/-HIV+ vs. ARV-/HIV- Unknown maternal HIV status vs. ARV-/HIV-	SGA at 10th percentile	Increased risk SGA associated with: *ARV-/HIV+ vs. ARV-/HIV- (OR = 1.64, 95% CI: 1.1–2.4) *HIV status unknown vs. ARV-/HIV- (OR = 1.2, 95% CI: 1.1–1.4) Infants of treated HIV+ women with similar risk of SGA as infants of HIV- women		
Sperling et al. 1998 [66]	US (PACTG 076) RCT	342 Birth to 18 months	Antepartum-Intrapartum-Newborn AZT+ vs. AZT- AZT+ vs. AZT-	WAZ, LAZ, HCAZ SGA	Decreased risk of LBW associated with AZT (any) (OR = 0.55, 95% CI: 0.39–0.79) No differences in mean BW, birth length		
ECS. 1999 [67]	Europe (ECS) Cohort	2274 Birth	AZT+ vs. AZT-	LBW (< 2500 g)	No association between AZT and SGA		
Chotpitayasunondh et al. 2001 [68]	Thailand RCT	395 Birth to 18 months	AZT+ vs. AZT-	WAZ, LAZ, HCAZ	No differences in mean BW, birth length		
Briand et al. 2006 [85]	Thailand (PHPT-1) RCT	1408 Birth, 6 weeks, 18 months	AZT+ (≥ 7.5 weeks) vs. AZT+ (< 7.5 k)	WAZ, LAZ, WLZ	Decreased birth WAZ, WLZ in AZT+ (≥ 7.5 weeks)		
Siberry et al. 2012 [69]	US (PHACS) Cohort	2010 Birth to 1 year	TDF+ vs. TDF-	SGA, LBW WAZ, LAZ, HCAZ	No association between in utero TDF and LBW, SGA or birth LAZ and HCAZ		
Ransom et al. 2013 [70]	US (IMPAACT 1025) Cohort	2025 Birth to 6 months	TDF+ vs. TDF-	SGA, WAZ	No association between in utero TDF and SGA (OR = 1.09, 95% CI: 0.77–1.52) No differences in birth WAZ (p = 0.9) No difference in rates of LBW between groups		
Gibb et al. 2012 [71]	Uganda, Zimbabwe (DART) RCT	182 Birth to 3 year	TDF+ vs. TDF-	LBW	cART not associated with LBW		
Tuomala et al. 2002 [72]	US (PACTG 076 & 185, PACTS, WITS, & 3 single sites) RCT & Cohort	3266 Birth	any ART vs. no ART cART vs. AZT monotherapy cART w/out PI vs. AZT monotherapy cART w/PI vs. AZT monotherapy cART w/PI vs. w/out PI	LBW, VLBW (< 1500 g)	Increased risk of VLBW associated with cART w/ PI vs. w/out PI (OR = 3.56, 95% CI: 1.04–12.19)		
Szyld et al. 2006 [73]	Latin America & Caribbean (NISDI) Cohort	681 Birth	PI vs. NNRTI- vs. 1–2 NNRTI-based cART	LBW	No increased risk of LBW (OR = 1.5, 95% CI: 0.7–3.2 for PI; OR = 0.6, 95% CI: 0.3–1.5 for NNRTI)		
Table 3 (Continued)

Authors (reference)	Study subjects/cohort	Study design	Sample size	Age period studied	In utero exposure of interest	outcomes measured	Results
Watts et al. 2013 [74]	US (PHACS) Cohort	1869 Birth	cART with PI vs. mono/dual therapy ART cART with NNRTI vs. mono/dual therapy ART cART with ≥3 NRTIs vs. mono/dual therapy ART cART initiated pre-pregnancy vs. cART initiated after 1st trimester	SGA at 10th percentile	No association between SGA and cART		
Nielsen-Saines et al. 2012 [75]	Africa, Thailand, India, Brazil (ACTG 5190/IMPAACT 1054) Cohort	236 Birth to 18 months	cART vs. AZT (≥7 days) vs. AZT (intrapartum only)	SGA	No differences in SGA between groups		
Chen et al. 2012 [89]	Botswana Cohort	33,148 Birth	HIV+ vs. HIV- cART+ (initiated pre-pregnancy)/HIV+ vs. all other/HIV+ cART+ vs. AZT monotherapy cART+ (initiated pre-pregnancy) vs. cART+ (initiated during pregnancy)	SGA at 10th percentile	Increased risk of SGA associated with:		
* In utero HIV exposure (OR = 1.8, 95% CI: 1.7–1.9)
* cART+ (initiated pre-pregnancy)/HIV+ vs. all other/HIV+ (OR = 1.8, 95% CI: 1.6–2.1)
* In utero cART vs. AZT monotherapy (OR = 1.5, 95% CI: 1.2–1.9)
* In utero cART+ initiated pre-pregnancy vs. during pregnancy (OR:1.3, 95% CI: 1.0–1.5) |

Preterm birth
Combination ART exposure

Authors (reference)	Study subjects/cohort	Study design	Sample size	Age period studied	In utero exposure of interest	outcomes measured	Results
ECS. 2003 [76]	Europe (ECS) Cohort	2414 Birth	cART vs. no ART vs. AZT monotherapy	Preterm birth	Increased risk preterm birth (OR = 2.66, 95% CI: 1.52–4.67 for cART without PI; OR = 4.14, 95% CI: 2.36–7.23 for cART with PI) with cART		
Townsend et al. 2010 [90]	US, Europe (PSD, ECS, NSHPC) Pooled analysis of registry & cohorts	19,585 Birth	cART vs. dual therapy cART	Preterm birth	Increased risk preterm birth (OR = 1.49, 95% CI: 1.19–1.87) with cART vs. dual therapy cART		
Chen et al. 2012 [88]	Botswana Cohort	13,181 Birth	cART vs. AZT monotherapy cART vs. AZT monotherapy pre-pregnancy cART initiation vs. all others	Preterm birth	Increased risk preterm birth with cART (OR = 1.4, 95% CI: 1.2–1.8) and pre-pregnancy cART initiation (OR = 1.2, 95% CI: 1.1–1.4)		

Preterm birth

Combination ART exposure

- Increased risk preterm birth (OR = 2.66, 95% CI: 1.52–4.67 for cART without PI; OR = 4.14, 95% CI: 2.36–7.23 for cART with PI) with cART

- Increased risk preterm birth (OR = 1.49, 95% CI: 1.19–1.87) with cART vs. dual therapy cART
| Authors (reference) | Study subjects/cohort | Study design | Sample size | Age period studied | In utero exposure of interest | outcomes measured | Results |
|---------------------|-----------------------|--------------|-------------|-------------------|-----------------------------|------------------|---------|
| Sibiude et al. 2012 [91] | France (EPF) | Cohort | 1253 | Birth | cART vs. AZT monotherapy Ritonavir boosted PI vs. non-ritonavir boosted PI | Preterm birth | Increased risk preterm birth with cART (OR = 1.69, 95% CI: 1.38–2.07) Increased risk preterm birth with ritonavir boosted PI (OR = 2.03; 95% CI: 1.06–3.89) |
| Short et al. 2014 [92] | UK | Cohort | 331 | Birth | cART vs. AZT monotherapy | Preterm birth | Increased risk preterm birth with cART (OR = 5.0, 95% CI: 1.5–16.8) |
| Lopez et al. 2012 [93] | Spain | Matched cohort | 1557 | Birth | HIV+/ARV+ or ARV- vs. HIV-cART during 2nd half of pregnancy vs. untreated | Preterm birth | Increased risk preterm birth with maternal HIV infection (ARV+/−) (OR = 2.5, 95% CI: 1.5–3.9) Increased risk iatrogenic preterm birth with cART during 2nd half of pregnancy (OR = 6.16, 95% CI: 1.42–26.80) |
| Cotter et al. 2006 [94] | US | Registry | 1337 | Birth | PI-based cART vs. non PI-based cART cART vs. AZT monotherapy Any ART vs. none | Preterm birth | Increased risk preterm birth (OR = 1.8, 95% CI: 1.1–3.0) for PI vs. non PI-based cART No increased risk for preterm birth with cART vs. AZT monotherapy or ART vs. no ART |
| Schulte et al. 2007 [95] | US (PSD) | Registry | 8793 | Birth | PI-based cART vs. dual therapy ART No ART vs. dual therapy ART | Preterm birth | Increased risk preterm birth (OR = 1.21, 95% CI: 1.04–1.40) Increased risk preterm birth (OR = 1.16, 95% CI: 1.02–1.32) |
| Grosch-Woerner et al. 2008 [96] | Germany | Cohort | 183 | Birth | PI-based cART vs. AZT monotherapy | Preterm birth | Increased risk preterm birth (OR = 3.4, 95% CI: 1.1–10.2) with PI-based cART No increased risk of preterm birth (OR = 1.1, 95% CI: 0.5–2.8 for PI; OR = 0.6, 95% CI: 0.2–1.7 for NNRTI) |
| Szyl et al. 2006 [73] | Latin America and Caribbean (NISDI) | Cohort | 681 | Birth | PI- vs. NNRTI- vs. 1-2 NRTI-based ART | Preterm birth (secondary outcome) | Increased rate preterm birth in PI arm (23% vs. 15% vs. 10%) |
| Shapiro et al. 2010 [97] | Botswana | RCT | 709 | Birth | PI- vs. triple NNRTI-based ART | Preterm birth | Increased risk preterm birth with 1st trimester PI (OR = 1.55, 95% CI: 1.16–2.07) |
| Watts et al. 2013 [74] | US (PHACS) | Cohort | 1869 | Birth | 1st trimester PI vs. NNRTI vs. ≥ 3 NRTIs-based ART | Preterm birth | Similar patterns and prevalence rates of congenital anomalies in ART vs. no ART exposure (1.4% vs. 1.6%, p = 0.762) |

Congenital anomalies

| ECS. 2003 [76] | Europe (ECS) | Cohort | 2414 | Birth | Any ART vs. no ART | Any congenital anomaly | |

ECS. European Collaborative Study.
Authors	Study subjects/cohort	Study design	Sample size	Age period studied	In utero exposure of interest	outcomes measured	Results
Townsend et al. 2009	UK Surveillance	8242	Birth	Late vs. early ART exposure	Any congenital anomaly	Overall prevalence of congenital anomalies = 2.2%, 95% CI: 2.5–3.2%	No differences in congenital anomalies by timing or class of ART exposure
Ford et al. 2014	Pooled analysis	2026 (pooled overall prevalence) 11,325 (pooled RR)	Birth	EFV	Any congenital anomaly	Overall prevalence of congenital anomalies = 1.63%, 95% CI: 0.78–2.48%	No differences in overall congenital anomalies between EFV vs. non-EFV ART; (RR = 0.78, 95% CI: 0.56–1.08)
Watts et al. 2011	PACTG 316 Cohort	1408	Birth	Multiple ARVs	Any congenital anomaly	Overall prevalence of congenital anomalies = 4.2%, 95% CI: 3.3–5.4%	
Ford et al. 2014	Pool analysis	2026 (pooled overall prevalence) 11,325 (pooled RR)	Birth	EFV	Any congenital anomaly	Overall prevalence of congenital anomalies = 6.2%; Prevalence of major congenital anomalies = 2.2%	
Liu et al. 2014	South Africa Zambia	600	Birth to 1 year	cART since conception	Any congenital anomaly	Overall prevalence of congenital anomalies = 4.4%, 95% CI: 4.0–4.7% using EUROCAT	
Sibiude et al. 2014	France Cohort	13,124	Birth to 18 months	Multiple ARVs	Any congenital anomaly	Overall prevalence of congenital anomalies = 5.5%, 95% CI: 4.22–6.99. Increased risk of congenital anomaly with 1st trimester EFV (OR = 2.84, 95% CI: 1.13–7.16)	Overall prevalence of congenital anomalies = 2.8%, 95% CI: 2.5–3.3%
Knapp et al. 2012	IMPAACT 1025 Cohort	1112	Birth	EFV	Any congenital anomaly	Overall prevalence of congenital anomalies = 6.8%, 95% CI: 5.9–7.8%	
Antiretroviral Pregnancy Registry Executive Summary 2015	US (Antiretroviral Pregnancy Registry) Registry	7135	Birth	Any 1st trimester ART	Any congenital anomaly		
Williams et al. 2014	PHACS Cohort	2580	Birth	Multiple ARVs	Any congenital anomaly	Overall prevalence of congenital anomalies = 6.8%, 95% CI: 5.9–7.8%	
Endocrine/metabolic	Europe (ECS) Cohort	1912	Birth to 18 months	cART vs. No/AZT monotherapy	WAZ, LAZ, HCAZ	Decreased WAZ \(\beta = (-0.10), p = 0.019\), LAZ \(\beta = (-0.12), p = 0.008\), and HCAZ \(\beta = (-0.14), p = 0.001\) associated with cART	

Jao J et al. Journal of the International AIDS Society 2016, 19:21099 http://dx.doi.org/10.7448/IAS.19.1.21099
Authors (reference)	Study subjects/cohort	Study design	Sample size	Age period studied	In utero exposure of interest	outcomes measured	Results
Briand et al. 2006 [85]	Thailand (PHPT-1)	RCT	1408	Birth, 6 weeks, 18 months	AZT - (≥ 7.5 weeks) vs. AZT+ (< 7.5 weeks)	WAZ, LAZ, WLZ	No differences in 6 weeks or 18 months WAZ, LAZ, WLZ between groups
Ibieta et al. 2009 [86]	Spain (FIPSE)	Cohort	601	Birth to 2 years	ARV+/HIV+ vs. ARV-/HIV- ARV-/HIV+ vs. ARV+/HIV+ cART w/PI+ vs. cART w/out PI	WAZ, LAZ, HCAZ	No differences in WAZ, LAZ, HCAZ between groups
Nielsen-Saines et al. 2012 [75]	US (ACTG 5190) Africa, Thailand, India, Brazil (IMPAACT 1054)	Cohort	236	Birth to 18 months	cART vs. AZT (≥ 7 days) vs. AZT (intrapartum only)	WAZ, LAZ, HCAZ	No differences in WAZ, LAZ, HCAZ by ARV exposure
Siberry et al. 2012 [69]	US (PHACS)	Cohort	2010	Birth, 1 year	TDF+ vs. TDF-	WAZ, LAZ, HCAZ	Decreased LAZ (β = (−0.17) vs. (−0.03), p = 0.04) and HCAZ (β = 0.17 vs 0.42, p = 0.02) at 1 year associated with in utero TDF
Neri et al. 2013 [87]	US	Matched case control	111	Birth to 2 years	cART+/HIV+ vs. matched cART-/HIV- cART+/HIV+ vs. NHANES	WAZ, WLZ	No differences in growth between HEU and HIV-unexposed infants
Ransom et al. 2013 [70]	US (IMPAACT 1025)	Cohort	2025	Birth, 6 months	TDF+ vs. TDF-	WAZ	No differences in WAZ at 6 months between groups
Mitochondrial toxicity	Perinatal Safety Review Working Group, 2000 [103]	Cohort	23,263	Birth to < 60 months	AZT monotherapy AZT-3TC Other	Mortality from mitochondrial dysfunction	No deaths or associated signs/symptoms suggestive of or proven to result from mitochondrial dysfunction
Barrett et al. 2003 [39]	France	Cohort	4426	Birth to 18 months	ART (any)+/HIV+ vs. ART-/HIV+	Mitochondrial dysfunction classified as: Established (compatible clinical symptoms + Decrease in OXPHOS or Abnormal mt morphology) vs. Possible (compatible clinical symptoms + hyperlactatemia or minor mt morphologic abnormalities)	12 subjects with “Established” mt dysfunction; 14 with “Possible” mitochondrial dysfunction Increased incidence of mitochondrial dysfunction Combination NRTIs (vs. AZT monotherapy) associated with increased risk of mitochondrial dysfunction (RR = 2.5, 95% CI: 1.0–6.5, p = 0.046)
Table 3 (Continued)

Authors (reference)	Study subjects/cohort	Study design	Sample size	Age period studied	In utero exposure of interest	outcomes measured	Results
Aldrovandi et al. 2010 [40]	US (WITS, PACTG 1009)	Cohort	624	Birth to 5 year	AZT-3TC+/HIV+ vs. AZT+/HIV- AAZT/HIV+ vs. AZT/HIV-	Mitochondrial DNA content	Decreased mitochondrial DNA levels (AZT or AZT-3TC+/HIV+ vs. AZT+/HIV-) Increased mitochondrial DNA (AZT+/HIV+ vs. AZT+/HIV+ & AZT-3TC+/HIV+ vs. AZT+/HIV+)
Brogly et al. 2010 [104]	US (IMPAAC)	Cohort	982	Birth to 1 year	Any ART+ vs. ART- Any NRTI+ vs. NRTI- 3TC, AZT, ABC, d4T, ddl, & TDF individually	Possible mitochondrial dysfunction defined as compatible clinical signs using EPF definition	3 subjects with possible mt dysfunction No association between ART and mitochondrial dysfunction
McComsey et al. 2008 [42]	US (ACTG 5084)	Cohort	136	Birth	cART+/HIV+ vs. cART/HIV-	Mitochondrial DNA content; Respiratory chain activity	Increased mitochondrial DNA levels No difference in Complex II:IV ratio
Côté et al. 2008 [43]	Canada	Cohort	154	Birth to 6 months	cART+/HIV+ vs. cART/HIV-	Mitochondrial DNA content	Increased mitochondrial DNA levels
Kunz et al. 2012 [41]	Tanzania	Cohort	83	Birth	AZT+/sdNVP+/HIV+ vs. AZT-/sdNVP+/HIV+	Mitochondrial DNA content; Mitochondrial deletion dmtDNA4977	Increased mitochondrial DNA levels No deletion of dmtDNA4977

Intermediary Metabolism

| Kirmse et al. 2013 [57] | US State Registry | Birth | 2371 | HIV+/ARV+ vs. HIV-/ARV- | Abnormal newborn metabolic screen and acylcarnitine profiles | Increased rate of abnormal newborn metabolic screen in HIV-exposed infants compared to general population (2.2 vs. 1.2%, $p = 0.0003$); Increased frequency of abnormal acylcarnitine profiles (43 vs. 9%, $p = 0.02$) |
| Jao et al. 2015 [56] | Cameroon | Cohort | 366 | Birth to 6 weeks | HIV+/ARV+ vs. HIV-/ARV- Postnatal AZT HEU vs. Postnatal NVP HEU vs. HUU | Pre-prandial infant insulin and HOMA-IR Acylcarnitines and branched-chain amino acids | Lower pre-prandial insulin in postnatal AZT HEU vs. HUU infants ($β: -0.116, p = 0.012$) and in postnatal NVP HEU vs. HUU infants ($β: -0.070, p = 0.022$) |

Bone Health

| Vigano et al. 2011 [105] | Italy | Cohort | 68 | Birth to 6 year | TDF+ vs. TDF- | Tibial SOS via ultrasound Bone markers | No differences in tibial SOS No differences in bone markers |
Table 3 (Continued)

Authors (reference)	Study subjects/cohort	Study design	Sample size	Age period studied	In utero exposure of interest	outcomes measured	Results
Mora et al. 2012 [106]	Italy	Cohort	131	Birth, 4 months, 12 months	ARV+/HIV+ vs. ARV-/HIV-	Tibial SOS via ultrasound Bone markers	No differences in tibial SOS No differences in bone markers
Siberry et al. 2015 [49]	US (PHACS)	Cohort	143	Birth to 1 month	TDF+ vs. TDF-	BMC via bone DXA	Mean BMC decreased in TDF-exposed infants 56.0 vs. 63.8g \(p = 0.002 \)
Siberry et al. 2016 [48]	Multi-national (IMPAACT PROMISE 1084 substudy)	RCT	362	Birth to 21 days of life	AZT monotherapy vs. TDF/FTC/Lop/r vs. AZT/3TC/Lop/r	Whole body BMC via bone DXA	Lower whole body BMC in: TDF/FTC/Lop/r vs. AZT monotherapy \(p < 0.001 \) AZT/3TC/Lop/r vs. AZT monotherapy \(p = 0.002 \) No difference between TDF/FTC/Lop/r vs. AZT/3TC/Lop/r arms
Cardiovascular							
Lipschultz et al. 2000 [107]	US (PHACS)	Cohort	611	Birth to 15 months 8 to 12 year olds	Continuous AZT+/HIV+ vs. AZT/HIV-+ ARV+/HIV+/ARV-/HIV-	Cardiac structure and function via echo LV EDV LV mass	No differences in cardiac structure or left ventricular function Decreased LV mass index and early diastolic annular velocity in HIV/ARV-exposed children Increased risk of elevated cTnT levels in ABC-exposed infants \(OR = 2.33, 95\% CI: 1.03–5.26 \) Decreased risk of elevated NT-proBNP in d4T-exposed infants \(OR = 0.13, 95\% CI: 0.02–0.99 \)
Cade et al. 2012 [52]	US	Matched cohort	60	8 to 12 year olds			
Wilkinson et al. 2013 [58]	US (PHACS)	Cohort	338	Birth to 5 year	Specific ARVs	Cardiac biomarkers: hsCRP, cTnT, NT-proBNP	
Neurodevelopmental/mental health							
Williams et al. 2010 [82]	US (PACTG 219)	Cohort	1840	Birth to 2 year	ARV+/HIV+ vs. ARV-/HIV-	MDI & PDI scores from Bayley Scales of Infant Development Bayley Scales of Infant Development Version III	No differences in MDI or PDI scores No differences in mean scores for any of the 5 domains within Bayley III
Sirois et al. 2013 [83]	US (PHACS)	Cohort	374	Birth to 15 months	cART+/HIV+- vs. no ART/HIV-+ cARt+/HIV+- vs. AZT monotherapy/HIV+ Pi- vs. NNRTI vs. NRTI only based cART		
Kerr et al. 2014 [108]	Thailand, Cambodia	Cohort	333	Mean age 7.6 years	ART+/HIV+ vs. ARV-/HIV-+	Wechsler Intelligence Scale; Stanford Binet II Memory Tests	Verbal IQ: Adjusted mean difference = −6.13, \(p = 0.004 \) Full Scale IQ: Adjusted mean difference \(= −4.57, p = 0.03 \) Stanford Binet Bead Memory: Adjusted mean difference \(= −3.72, p = 0.01 \)
Authors (reference)	Study subjects/cohort	Study design	Sample size	Age period studied	In utero exposure of interest	outcomes measured	Results
---------------------	-----------------------	--------------	--------------	--------------------	-------------------------------	------------------	---------
Nozyce et al. 2014 [84]	US (PHACS) Cohort	739	5 to 13 year olds	PI-based cART vs. NNRTI-based cART vs. non-cART regimen vs. no ARV	WPPSI-III (5 year old) WASI (7, 9, 11 and 13 year old) WIAT-2-A	No associations between any ARV regimen/class and cognitive or academic outcomes	
Malee et al. 2011 [45]	US (PHACS) Cohort	416 (121 HEU)	55% less than 12 years old	Perinatally HIV-infected and HEU youth	Mental Health problems using BASC-2 Self-Report of Personality and BASC-2 Parent Rating Scale	Rates of mental health problems higher in HEU vs. perinatally HIV-infected youth (38% vs. 25%, \(p = 0.01 \))	
Mellins et al. 2012 [47]	US (CASAH) Cohort	340 (134 HEU)	Mean age 12.2 years (SD = 2.3)	Perinatally HIV-infected and HEU youth	Psychiatric diagnoses using DISC-IV	High rates of overall psychiatric disorders in HEU youth (49%) No change in these rates over longitudinal follow-up (mean 18.5 years follow-up)	
Oncologic							
Hanson et al. 1999 [37]	US (PACTG 076 & 219, WITS) Cohort	727	Range: [Birth-1 month] – [Birth-6 years]	AZT	Any malignancy	Overall RR of tumour = 0.0, 95% CI: 0–17.6	
Brogley et al. 2006 [36]	US (PACTG 219) Cohort	2077	Not reported	Multiple regimens	Any malignancy	One incident of cancer in 7871 person years of follow-up (incidence rate = 0.127 per 1000 person-years, 95% CI: 0.003–0.708)	
Hankin et al. 2007 [23]	UK (NSHPC) Surveillance	2612	Not reported	Multiple regimens	Any malignancy	No cases of cancer over 6593 child-years of follow-up	
Benhammou et al. 2008 [18]	France (EPF) Cohort	9127	53,052 person years follow-up	Multiple regimens	Any malignancy	10 cases of cancer in 53,052 person-years of follow-up Increased risk of cancer (HR = 13.6, 95% CI: 2.5–73.9) with ddI + 3TC containing regimens vs. AZT monotherapy	
Hleyhel et al. 2016 [17]	France (EPF) Cohort	15,163	153,939 person years follow-up	Multiple regimens	Any malignancy	21 cases of cancer in 153,939 person years of follow-up No difference in cancer incidence amongst HEU vs. general population Increased risk of cancer (HR = 2.5, 95% CI: 1.01–5.19) with ddI exposure and significantly increased risk with 1st trimester ddI (HR = 5.5, 95% CI: 2.1–14.4)	
Table 3 (Continued)

Authors (reference)	Study subjects/cohort	Study design	Sample size	Age period studied	In utero exposure of interest	outcomes measured	Results
Ivy et al. 2015 [16]	US	State registry/surveillance	3087	1 to 16 years	Multiple regimens	Any malignancy	4 cases of cancer in 3087 HIV-exposed children (29,099 person years) between 1995 and 2010; 13.7 per 100,000 person years cancer incidence rate (95% CI: 3.7–35.2)

3TC = lamivudine; ABC = abacavir; ART = antiretroviral therapy; ARV = antiretroviral; AZT = zidovudine; cART = combination antiretroviral therapy; BASC-2 = Behavior Assessment System for Children, 2nd edition; CASAH = Child and Adolescent Self-Awareness and Health; CI = Confidence Interval; cTnT = cardiac Troponin T; d4T = stavudine; DART = Development of AntiRetroviral Therapy in Africa; ddI = didanosine; DISC-IV = Diagnostic Interview Schedule for Children; DXA = Dual Energy X Ray Absorptiometry; ECS = European Collaborative Study; EDV = end diastolic volume; EFV = efavirenz; EPF = Enquête Périmatale Française; EUROCAT = European Surveillance of Congenital Anomalies; FIPSE = Fundación para la Investigación y la Prevención del Sida en España; HCAZ = Head Circumference for Age z score; HEU = HIV-exposed uninfected; HOMA-IR = Homeostatic Model Assessment-Insulin Resistance; HR = Hazard Ratio; hsCRP = high sensitivity C-reactive Protein; HUU = HIV-unexposed uninfected; IMPAACT = International Maternal Pediatric Adolescent AIDS Clinical Trials Group; LAZ = Length for Age z score; LBW = low birth weight; LV = left ventricular; MACDP = Metropolitan Atlanta Congenital Defects Program; MDI = Mental Developmental Index; NHANES = National Health and Nutrition Examination Survey; NSHPC = National Study of HIV in Pregnancy and Childhood; NISDI = National Institute of Child Health and Human Development International Site Development Initiative; NNRTI = non-nucleoside reverse transcriptase inhibitor; NRTI = nucleoside reverse transcriptase inhibitor; NTD = neural tube defect; NT-proBNP = N-terminal pro-brain natriuretic peptide; OR = odds ratio; PACTG = Pediatric AIDS Clinical Trials Group; PDI = Psychomotor Developmental Index; PHACS = Pediatric HIV/AIDS Cohort Study; PHPT-1 = Perinatal HIV Prevention Trial-1; PHS = Pediatric HIV Surveillance; PI = protease inhibitor; PROMISE = Promoting Maternal and Infant Survival Everywhere; PSD = Pediatric Spectrum of HIV Disease Project; RCT = randomized controlled trial; RR = relative risk; sdNVP = single dose nevirapine; SD = standard deviation; SGA = small-for-gestational age; SOS = speed of sound; TDF = Tenofovir disoproxil fumarate; UK = United Kingdom; US = United States; VLBW = very low birth weight; WASI = Wechsler Abbreviated Scale of Intelligence; WAZ = weight for age z score; WIAT-II-A = Wechsler Individual Achievement Test – Version II Abbreviated; WITS = Women and Infants Transmission Study; WLZ = weight for length z score; WPPSI-III = Wechsler Preschool & Primary Scale of Intelligence-Version III
general consensus among health professionals and parents of HEU children that more data need to be collected on the long-term health of HEU individuals [26]. Research methods using anonymized surveillance systems linked to other national registries will prove indispensable as data are gathered to understand whether in utero HIV/ARV exposure may result in long-term harm, but prospective research cohorts evaluating this question will need to contend with the need for disclosure to HEU individuals in order to continue long-term follow-up into adulthood — a conundrum where the rationale for the research clashes with the reasons for not mandating universal disclosure at present.

As more countries adopt electronic medical record (EMR) systems, the HEU status of an individual will be an important piece of the health record which will follow the infant not only through childhood and adolescence but also adulthood, which may cause disclosure to be a moot point once young adults access their records. With increasing understanding of the influence of early intrauterine exposures on long-term health outcomes, this practice of early and continued documentation should become the standard as EMR systems expand, potentially rendering disclosure an easier and more natural process for parents/caregivers. Permanent documentation via EMR of perinatal exposures may also improve research and surveillance/registry efforts which are required in order to continue monitoring into adulthood and ultimately gather essential data which are still lacking. Thus, clinicians and researchers should continue to approach the dialogue around maternal–child disclosure with sensitivity, an understanding of maternal needs in addition to a child/adolescent’s development and readiness to hear information, and a cogent consideration of the evolving risks and benefits as new information becomes available but work to maintain documentation of an individual’s perinatal HIV/ARV exposures as a vital part of his/her medical records. As more long-term adult safety data on in utero HIV/ARV exposures become available, these decisions may become clearer, but for the moment, they remain complex and multi-faceted.

Authors’ affiliations
1Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; 2Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA; 3Maternal and Pediatric Infectious Disease Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA; 4HIV Center for Clinical and Behavioral Studies, New York State Psychiatric Institute and Columbia University, New York, NY, USA; 5ICAP, Mailman School of Public Health and College of Physicians and Surgeons, Columbia University, New York, NY, USA

Competing interests
The authors have no competing interests or financial disclosures.

Authors’ contributions
JJ conceptualized and wrote the manuscript. CAM helped with literature searches and made significant edits to the manuscript. RH and RHR helped with revisions to the manuscript. EJA helped to conceptualize and revise the manuscript. All authors have read and approved the final version.

Acknowledgments
This article is based in part on a conference held by the HIV Center for Clinical and Behavioral Studies at the New York State Psychiatric Institute and Columbia University, entitled “Telling HIV-Infected Youth about Their In Utero Exposure to ARVs: Clinical, Research, Ethical, and Policy Issues.” The conference and the efforts of Drs. Remien and Mellins were supported by a centre grant from the National Institute of Mental Health (NIMH) to the HIV Center for Clinical and Behavioral Studies at the NY State Psychiatric Institute and Columbia University (P30-MH443520; Principal Investigator: Robert H. Remien, PhD). Dr. Jao is supported by the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) R23HD070760. The content is solely the responsibility of the authors and does not necessarily represent the official views of NIMH, NICHD, or the NIH. Lastly, the authors acknowledge Drs. Stéphane Blanche, Claire Thorne and Mary Ann Davies for their aid in verifying in-country guidelines for the monitoring of HEU children.

References
1. Connor EM, Sperling RS, Gelber R, Kiselev P, Scott G, O’Sullivan MJ, et al. Reduction of maternal–infant transmission of human immunodeficiency virus type 1 with zidovudine treatment. Pediatric AIDS Clinical Trials Group Protocol 076 Study Group. N Engl J Med. 1994;331(18):1173–80. doi: http://dx.doi.org/10.1056/NEJM199410313131801
2. Sperling RS, Shapiro DE, Coombs RW, Todd JA, Herman SA, McSherry GD, et al. Maternal viral load, zidovudine treatment, and the risk of transmission of human immunodeficiency virus type 1 from mother to infant. Pediatric AIDS Clinical Trials Group Protocol 076 Study Group. N Engl J Med. 1996; 335(22):1621–9. doi: http://dx.doi.org/10.1056/NEJM199612283352201
3. Centers for Disease Control and Prevention. Monitoring selected national HIV prevention and care objectives by using HIV surveillance data [Internet]. HIV Surveillance Report. Vol. 21. Atlanta, GA: CDC; 2014. [cited 2016 Oct 1]. Available from: http://www.cdc.gov/hiv/pdf/library/reports/surveillance/cdc-hiv-surveillance-supplemental-report-vol-21-4.pdf
4. Fite-Rodriguez S. The HIV-exposed, uninfected African child. Trop Med Int Health. 2009;14(3):276–87. doi: http://dx.doi.org/10.1111/j.1365-3156.2009.02220.x
5. Palin FL, Armstead I, Clayton A, Ketchen B, Lindner G, Kokot-Lowu P, et al. Disclosure of maternal HIV-infection in South Africa: description and relationship to child functioning. AIDS Behav. 2009;13(6):1241–52. doi: http://dx.doi.org/10.1007/s10461-008-9447-4
6. Kang E, Mellins CA, Dolezal C, Elkingston KS, Abrams DI. Disadvantaged neighborhood influences on depression and anxiety in youth with perinatally acquired human immunodeficiency virus: how life stressors matter. J Community Psychol. 2011;39(8):956–71. doi: http://dx.doi.org/10.1002/jc.20483
7. Greene S, Tucker R, Rourke SB, Monette L, Koornstra J, Sobota M, et al. “Under my umbrella”: the housing experiences of HIV positive parents who live with and care for their children in Ontario. Arch Womens Ment Health. 2010;13(3):223–32. doi: http://dx.doi.org/10.1007/s10461-009-0090-x
8. Abdulrahman R, Stuard E, Vachon ME, Nicholas C, Neugebauer R, Hagmann SH, et al. Predictors of disclosure of maternal HIV status by caregivers to their children in an inner-city community in the United States. AIDS Behav. 2016. doi: http://dx.doi.org/10.1007/s10461-016-1372-3. [E-pub ahead of print].
9. Qiao S, Li X, Stanton B. Disclosure of maternal HIV status to their young children. J Fam Psychol. 2001;15(3):441. doi: http://dx.doi.org/10.1037/0893-3200.15.3.441
10. Kwok J, Steward CD. The role of a usual source of care. J Health Care Poor Underserved. 1997;8(2):198–205. doi: http://dx.doi.org/10.1353/hpu.2010.0466
11. Murphy DA, Steers WN, dello Stritto ME. Maternal disclosure of mothers’ HIV serostatus to their young children. J Fam Psychol. 2001;15(3):441–50. doi: http://dx.doi.org/10.1037/0893-3200.15.3.441
12. Kitzman R, Mellins CA, Philbin MM, Abrams EJ, Remien RH. Ethical and psychosocial considerations in informing HIV-exposed uninfected children that they were exposed to HIV and antiretroviral medications in utero. Am J Public Health. 2016;106(8):1380–6. doi: http://dx.doi.org/10.2105/AJPH.2016.303257
13. Bartman BA, Moy E, DiAngelo LJ. Access to ambulatory care for adolescents: the role of a usual source of care. J Health Care Poor Underserved. 1997;8(2): 214–26. doi: http://dx.doi.org/10.1353/hpu.2010.0466
14. Panel on Treatment of HIV-Infected Pregnant Women and Prevention of Perinatal Transmission. Recommendations for use of antiretroviral drugs in pregnant HIV-1-infected women for maternal health and interventions to reduce perinatal HIV transmission in the United States 2014. [Internet] [cited 2014 Aug 12]. Available from: http://aidsinfo.nih.gov/contentfiles/lvguidelines/PerinatalGL.pdf
15. Bitun A, Brophy J, Samson L, Alimenti A, Kakkar F, Lamarre V, et al. Prevention of vertical HIV transmission and management of the HIV-exposed
exposed to antiretroviral therapy in utero. AIDS. 2012;26(16):2053–8. doi: http://dx.doi.org/10.1097/QAD.0b013e32835b8d47

53. Sibube J, Le Chenadec J, Bonnet D, Tubbiana R, Faye A, Dolfius C, et al. In utero exposure to zidovudine and heart anomalies in the ANRS French prospective cohort and the nested PRIMAIVI randomized trial. Clin Infect Dis. 2015;61(2):70–80. doi: http://dx.doi.org/10.1093/cid/civ260

54. Wilkinson JS, Schulte P, Moustapha A, Dehghani P. Use of cardiac computed tomography in the management of symptomatic coronary aneurysm: a case study and literature review. Exp Clin Cardiol. 2012;17(2):69–73.

55. Jao I, Abrams EJ. Metabolic complications of in utero maternal HIV and antiretroviral exposure in HIV-exposed infants. Pediatr Infect Dis J. 2014;33(7):734–40. doi: http://dx.doi.org/10.1097/INF.0000000000000224

56. Jao I, Kirmse B, Wu C, Yi Q, Powis K, Neshem E, et al. Lower pre-prandial insulin and altered fuel utilization in HIV/antiretroviral-exposed infants in Cameroon. J Clin Endocrinol Metab. 2015;100(9):3250–9. doi: http://dx.doi.org/10.1210/jc.2015-2198

57. Kirmse B, Hobbs CV, Peter I, Laplante B, Caggana M, Kloke J, et al. Abnormal newborn screens and acylcarnitines in HIV-exposed and ARV-exposed babies. Pediatr Infect Dis J. 2013;32(2):146–50. doi: http://dx.doi.org/10.1097/INF.0b013e3182703b06

58. Wilkinson JD, Williams PL, Leister E, Zeldov B, Shearer WT, Colan SD, et al. Cardiac biomarkers in HIV-exposed uninfected children. AIDS. 2013;27(7):1099–108. doi: http://dx.doi.org/10.1097/QAI.0b013e318235cf21c

59. Xu T, Wu Z, Rou K, Duan S, Wang H. Quality of life of children living in HIV/AIDS-affected families in rural areas in Yunnan, China. AIDS Care. 2010;22(2):390–6. doi: http://dx.doi.org/10.1080/09540120903196883

60. Kennedy DP, Cowgill BO, Bogart LM, Corona R, Ryan GW, Murphy DA, et al. Parents’ disclosure of their HIV infection to their children in the context of the family. AIDS Behav. 2010;14(5):1095–105. doi: http://dx.doi.org/10.1007/s11461-010-9715-y

61. Stein JA, Riedel M, Rotheram-Borus MJ. Parentification and its impact on adolescent children of parents with AIDS. Fam Process. 1999;38(2):193–208. doi: http://dx.doi.org/10.1023/A:101544-5300.19091.3x

62. Woodring LA, Cancello AA, Ponterotto JG, Keitel MA. A qualitative investigation of adolescents’ experiences with parental HIV. Am J Orthopsychiatry. 2005;75(4):658–75. doi: http://dx.doi.org/10.1080/00029444.75.4.658

63. Rotheram-Borus MJ, Dramin BH, Reid HM, Murphy DA. The impact of illness disclosure and custody plans on adolescents whose parents live with AIDS. J Pediatr. 1997;121(9):1159–64. doi: http://dx.doi.org/10.1097/00002030-199709000-00012

64. Vallarand AH, Hough E, Pettiolo L, Mariscal D. The process of disclosing HIV serostatus between HIV-positive mothers and their HIV-negative children. J Acquir Immune Defic Syndr. 2012;60(3):e1525–32. doi: http://dx.doi.org/10.1097/QAI.0b013e31824812a9

65. Watts DH, Huang S, Culmane M, Kaiser KA, Scheuerle A, Mofenson L, et al. Birth defects among a cohort of infants born to HIV-infected women on antiretroviral medication. J Perinat Med. 2011;39(2):163–70. doi: http://dx.doi.org/10.1515/jpm.2010.139

66. Vallerand AH, Hough E, Pittiglio L, Marvicsin D. The process of disclosing ART with and without testing. J Acquir Immune Defic Syndr. 2012;60(4):1863–70. doi: http://dx.doi.org/10.1097/QAI.0b013e3182353621.01696.9d

67. Bilò RG, Warley EM, Freimarion L, Gorin N, Cahn PE, Calvet GA, et al. Maternal antiretroviral drugs during pregnancy and infant low birth weight and preterm birth. AIDS. 2006;20(18):2345–53. doi: http://dx.doi.org/10.1097/01.AIDs.0000253362.01696.9d

68. Watts DH, Williams PL, Kacanek D, Griner R, Rich K, Hazra R, et al. Combined antiretroviral use and adverse birth outcomes among HIV-infected women. J Infect Dis. 2013;207(4):612–21. doi: http://dx.doi.org/10.1093/infdis/jis278

69. Nielsen-Saines K, Komarow L, Cu-Uvin S, Jourdain G, Klingman KL, Shapiro DE, et al. Infant outcomes after maternal antiretroviral exposure in resource-limited settings. Pediatrics. 2012;129(6):e1525–32. doi: http://dx.doi.org/10.1542/peds.2011-2340

70. Ransom CE, Huo Y, Patel K, Westerman A, Malee K, Tookey PA. Antiretroviral therapy and congenital abnormalities in infants born to HIV-infected women in the UK and Ireland, 1990–2007. AIDS. 2009;23(4):519–24. doi: http://dx.doi.org/10.1097/QAI.0b013e3181c2826c6a

71. Jao J, Mandelbrot L, Blanche S, Le Chenadec J, Boulagel-Bonnet N, Faye A, et al. Association between prenatal exposure to antiretroviral therapy and birth defects: an analysis of the French perinatal cohort study (ANRS CO1/CO13). PLoS Med. 2014;11(4):e1001635. doi: http://dx.doi.org/10.1371/journal.pmed.1001635

72. Tuomala RE, Shapiro DE, Mofenson LM, Bryson Y, Culmane M, Hughes MD, et al. Antiretroviral therapy during pregnancy and the risk of an adverse outcome. N Engl J Med. 2002;346(24):1863–70. doi: http://dx.doi.org/10.1056/NEJMoa010159

73. Spyrid EL, Warley EM, Freimarion L, Gorin N, Cahn PE, Calvet GA, et al. Maternal antiretroviral drugs during pregnancy and infant low birth weight and preterm birth. AIDS. 2006;20(18):2345–53. doi: http://dx.doi.org/10.1097/01.AIDs.0000253362.01696.9d

74. Watts DH, Williams PL, Kacanek D, Griner R, Rich K, Hazra R, et al. Combined antiretroviral use and adverse birth outcomes among HIV-infected women in Botswana. J Infect Dis. 2012;206(11):1695–705. doi: http://dx.doi.org/10.1093/infdis/jis553
90. Townsend C, Schulte J, Thorne C, Dominguez KJ, Tookey PA, Cortina-Borja M, et al. Antiretroviral therapy and preterm delivery-a pooled analysis of data from the United States and Europe. BLOG. 2010;11(11):1399–410. doi: http://dx.doi.org/10.1111/j.1471-0528.2010.02689.x

91. Sibbude J, Warszawski J, Tubiana R, Doloff C, Faye A, Rouixou C, et al. Premature delivery in HIV-infected women starting protease inhibitor therapy during pregnancy: role of the ritonavir boost? Clin Infect Dis. 2012;54(9):1348–60. doi: http://dx.doi.org/10.1093/cid/cis198

92. Short CE, Douglas M, Smith JH, Taylor GP. Preterm delivery risk in women initiating antiretroviral therapy to prevent HIV mother-to-child transmission. HIV Med. 2014;15(4):233–8. doi: http://dx.doi.org/10.1111/hiv.12083

93. Lopez M, Figueras F, Hernandez S, Lonca M, Garcia R, Palacio M, et al. Association of HIV infection with spontaneous and iatrogenic preterm delivery: effect of HAART. AIDS. 2012;26(1):37–43. doi: http://dx.doi.org/10.1097/QAD.0b013e32834db300

94. Cotter AM, Garcia AG, Duthey ML, Luke B, O’Sullivan MJ. Is antiretroviral therapy during pregnancy associated with an increased risk of preterm delivery, low birth weight, or stillbirth? J Infect Dis. 2006;193(9):1195–201. doi: http://dx.doi.org/10.1086/503045

95. Schulte J, Dominguez K, Sukalac T, Behannon B, Fowler MG, Pediatric Spectrum of HIVDC. Declines in low birth weight and preterm birth among infants who were born to HIV-infected women during an era of increased use of maternal antiretroviral drugs: pediatric spectrum of HIV disease, 1989–2004. Pediatrics. 2007;119(4):e900–6. doi: http://dx.doi.org/10.1542/peds.2006-1123

96. Gross-Woerner J, Puch K, Maier RS, Niehues T, Notheis G, Patel D, et al. Increased rate of prematurity associated with antenatal antiretroviral therapy in a German/Austrian cohort of HIV-1-infected women. HIV Med. 2008;9(1):6–13. doi: http://dx.doi.org/10.1111/j.1468-1293.2008.00520.x

97. Shapiro RL, Hughes MD, Ogwu A, Kitch D, Lockman S, Moffat C, et al. Antiretroviral regimens in pregnancy and breast-feeding in Botswana. N Engl J Med. 2010;362(24):2282–94. doi: http://dx.doi.org/10.1056/NEJMoa097736

98. Ford N, Mofenson L, Shuber Z, Calmy A, Andrieux-Meyer I, Vitoria M, et al. Potential confounding of the association between exposure to nucleoside analogues and mitochondrial dysfunction in HIV-infected and indeterminate infants. J Acquir Immune Defic Syndr. 2010;53(1):154–7. doi: http://dx.doi.org/10.1097/QAI.0b013e3181b3adc2

99. Knapp KM, Brogly SB, Muenz DG, Spiegel HM, Conway DH, Scott GB, et al. Absence of cardiac toxicity of zidovudine in infants. Pediatric pulmonary and cardiac complications of vertically transmitted HIV infection study group. J Pediatr. 2011;158(8):1259–66. doi: http://dx.doi.org/10.1016/j.jpeds.2009.11.030

100. Williams PL, Crain MJ, Yildirim C, Hazra R, Van Dyke RB, Rich K, et al. Increased rate of prematurity associated with preterm delivery, low birth weight, or stillbirth? J Infect Dis. 2006;193(9):1195–201. doi: http://dx.doi.org/10.1086/503045

101. Williams PL, Crain MJ, Yildirim C, Hazra R, Van Dyke RB, Rich K, et al. Association of HIV infection with spontaneous and iatrogenic preterm delivery: effect of HAART. AIDS. 2012;26(1):37–43. doi: http://dx.doi.org/10.1097/QAD.0b013e32834db300

102. Short CE, Douglas M, Smith JH, Taylor GP. Preterm delivery risk in women initiating antiretroviral therapy to prevent HIV mother-to-child transmission. HIV Med. 2014;15(4):233–8. doi: http://dx.doi.org/10.1111/hiv.12083

103. The Perinatal Safety Review Working Group. Nucleoside exposure in the children of HIV-infected women receiving antiretroviral drugs: absence of clear evidence for mitochondrial disease in children who died before 5 years of age in five United States cohorts. J Acquir Immune Defic Syndr. 2000;25(8):261–8. doi: http://dx.doi.org/10.1097/00126334-200010100-00009

104. Broggy SB, Foca M, Deville JG, Mirochnick M, Scott GB, Mofenson LM, et al. Antiretroviral therapy and preterm delivery-a pooled analysis of data from five United States cohorts. J Acquir Immune Defic Syndr. 2000;25(8):261–8. doi: http://dx.doi.org/10.1097/00126334-200010100-00009

105. Viganò A, Mora S, Giacomet V, Stuchci S, Manfredini V, Gabiano C, et al. In utero exposure to tenofovir disoproxil fumarate does not impair growth and bone health in HIV-uninfected children born to HIV-infected mothers. Antivir Ther. 2011;16(8):1259–66. doi: http://dx.doi.org/10.3851/IMP1909

106. Mora S, Giacomet V, Viganò A, Caferelli L, Stuchci S, Pivetti V, et al. Exposure to antiretroviral agents during pregnancy does not alter bone status in infants. Bone. 2012;50(1):255–8. doi: http://dx.doi.org/10.1016/j.bone.2011.10.030

107. Lipshultz SE, Espley KA, Orav EJ, Kaplan S, Starc TJ, Bricker JT, et al. Absence of cardiac toxicity of zidovudine in infants. Pediatric pulmonary and cardiac complications of vertically transmitted HIV infection study group. J Pediatr. 2011;158(8):1259–66. doi: http://dx.doi.org/10.1016/j.jpeds.2009.11.030

108. Kerr SJ, Puthanakit T, Vibol U, Aurpibul L, Vonthanak S, Kosalaraksa P, et al. Antiretroviral therapy and preterm delivery-a pooled analysis of data from five United States cohorts. J Acquir Immune Defic Syndr. 2000;25(8):261–8. doi: http://dx.doi.org/10.1097/00126334-200010100-00009

109. De Santis M, Carducci B, De Santis L, Cavaliere AF, Straface G. Antiretroviral therapy and preterm delivery-a pooled analysis of data from five United States cohorts. J Acquir Immune Defic Syndr. 2000;25(8):261–8. doi: http://dx.doi.org/10.1097/00126334-200010100-00009

110. Williams PL, Crain MJ, Yildirim C, Hazra R, Van Dyke RB, Rich K, et al. Association of HIV infection with spontaneous and iatrogenic preterm delivery: effect of HAART. AIDS. 2012;26(1):37–43. doi: http://dx.doi.org/10.1097/QAD.0b013e32834db300