Supplemental Material

Reactivity of (Triphos)FeBr$_2$(CO) towards Sodium Borohydrides

Tufan K. Mukhopadhyay,† Thomas L. Groy,† Nathan C. Smythe,‡ John C. Gordon,‡ Ryan J. Trovitch*†

† School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287
‡ Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

ryan.trovitch@asu.edu
Table S1. Crystallographic Data for 1-Br₂(CO) and 1-H(BH₄).

	1-Br₂(CO)	1-H(BH₄)
chemical formula	C₃₅H₃₃Br₂FeP₃, C₃H₅O	C₃₅H₃₈BFeP₃
formula weight	836.30	606.24
crystal dimensions	0.40 x 0.15 x 0.08	0.200 x 0.200 x 0.050
crystal system	monoclinic	orthorhombic
space group	P2(1)/n	P 2 1 2 1 2 1
a (Å)	12.734(3)	10.8439(13)
b (Å)	22.641(4)	15.045(2)
c (Å)	13.417(3)	19.172(3)
α (deg)	90	90
β (deg)	100.452(2)	90
γ (deg)	90	90
V (Å³)	3804.3(13)	3127.8(7)
Z	4	4
T (°C)	140(2)	100.2(2)
ρcalc (g cm⁻³)	1.460	1.287
μ (mm⁻¹)	2.655	0.657
reflections collected	41208	24998
data/restraints/parameters	8661/12/436	55070/372
R₁ [I > 2σ(I)]	0.0423	0.0291
wR₂ (all data)	0.0899	0.0616
Goodness-of-fit	1.022	1.017
Largest peak, hole (eÅ⁻³)	0.773, -0.541	0.234, -0.212
Figure S1. The molecular structure of 1-Br₂(CO) shown at 30% displacement ellipsoids. Hydrogen atoms and co-crystallized acetone molecule are omitted for clarity.
Table S2. Metrical parameters for 1-Br₂(CO).

Bond/Distance	Value	Bond/Distance	Value	Bond/Distance	Value
Fe1-C1	1.748(4)	C4-C5	1.375(5)	C20A-C21A	1.375(17)
Fe1-P2	2.1906(10)	C5-C6	1.385(5)	C20B-C21B	1.407(13)
Fe1-P1	2.2522(10)	C6-C7	1.387(5)	C22-C23	1.529(4)
Fe1-P3	2.2697(10)	C8-C9	1.390(5)	C24-C29	1.388(5)
Fe1-Br2	2.4718(7)	C8-C13	1.397(5)	C24-C25	1.399(4)
Fe1-Br1	2.4871(6)	C9-C10	1.383(5)	C25-C26	1.383(5)
P1-C8	1.827(3)	C10-C11	1.385(5)	C26-C27	1.376(6)
P1-C2	1.832(3)	C11-C12	1.378(5)	C27-C28	1.374(5)
P1-C14	1.862(3)	C12-C13	1.377(5)	C28-C29	1.390(5)
P2-C16B	1.792(12)	C14-C15	1.533(5)	C30-C31	1.392(5)
P2-C15	1.826(3)	C16A-C21A	1.367(12)	C30-C35	1.395(5)
P2-C22	1.828(3)	C16A-C17A	1.411(15)	C31-C32	1.381(5)
P2-C16A	1.891(16)	C16B-C21B	1.386(10)	C32-C33	1.372(6)
P3-C30	1.827(3)	C16B-C17B	1.389(10)	C33-C34	1.385(6)
P3-C24	1.828(3)	C17A-C18A	1.397(15)	C34-C35	1.390(5)
P3-C23	1.846(3)	C17B-C18B	1.380(10)	C36-O2	1.209(5)
C1-O1	1.145(4)	C18A-C19A	1.404(17)	C36-C39	1.489(7)
C2-C7	1.386(4)	C18B-C19B	1.400(12)	C36-C38	1.510(7)
C2-C3	1.397(5)	C19A-C20A	1.392(14)		
C3-C4	1.388(4)	C19B-C20B	1.352(14)		
C1-Fe1-P2	95.41(11)	C16B-P2-Fe1	124.0(3)		
C1-Fe1-P1	92.81(10)	C15-P2-Fe1	109.15(12)		
P2-Fe1-P1	83.89(3)	C22-P2-Fe1	108.78(11)		
C1-Fe1-P3	95.061(10)	C16A-P2-Fe1	114.4(4)		
P3-Fe1-P3	86.89(3)	C30-P3-C24	100.08(14)		
P1-Fe1-P3	168.05(4)	C30-P3-C23	104.98(16)		
C1-Fe1-Br2	178.63(11)	C24-P3-C23	102.46(15)		
P2-Fe1-Br2	85.74(3)	C30-P3-Fe1	118.76(11)		
P1-Fe1-Br2	86.55(3)	C24-P3-Fe1	121.49(11)		
P3-Fe1-Br2	85.20(3)	C23-P3-Fe1	106.97(10)		
C1-Fe1-Br1	86.02(11)	O1-C1-Fe1	178.1(3)		
P2-Fe1-Br1	178.52(3)	C7-C2-C3	118.6(3)		
P1-Fe1-Br1	95.65(3)	C7-C2-P1	119.5(3)		
P3-Fe1-Br1	93.37(3)	C3-C2-P1	121.7(2)		
Br2-Fe1-Br1	92.83(2)	C4-C3-C2	120.1(3)		
C8-P1-C2	102.54(14)	C5-C4-C3	120.5(3)		
C8-P1-C14	105.93(15)	C4-C5-C6	120.1(3)		
C2-P1-C14	101.54(15)	C5-C6-C7	119.5(3)		
C8-P1-Fe1	111.75(10)	C2-C7-C6	121.2(3)		
C2-P1-Fe1	124.17(11)	C9-C8-C13	117.9(3)		
C14-P1-Fe1	109.23(11)	C9-C8-P1	122.9(3)		
C16B-P2-C15	99.4(2)	C13-C8-P1	122.9(3)		
C16B-P2-C22	105.6(4)	C10-C9-C8	121.4(3)		
C15-P2-C22	109.10(16)	C9-C10-C11	119.8(3)		
C16B-P2-C16A	15.4(3)	C12-C11-C10	119.3(3)		
C15-P2-C16A	114.7(3)	C13-C12-C11	121.0(3)		
C22-P2-C16A	100.1(5)	C12-C13-C8	120.6(3)		

S4
Figure S2. The molecular structure of 1-H(BH₄) displayed at 30% displacement ellipsoids. Hydrogen atoms omitted for clarity.
Table S3. Metrical parameters for 1-H(BH₄).

Bond	Distance	Angle	
Fe1-B1	1.026(4)	1.409(5)	1.90(5)
Fe1-P2	2.082(10)	1.374(5)	1.90(5)
Fe1-P1	2.174(10)	1.382(7)	1.90(5)
Fe1-P3	2.182(10)	1.390(5)	1.90(5)
Fe1-H1M	1.37(3)	1.361(7)	1.90(5)
Fe1-H1B	1.59(3)	1.409(6)	1.90(5)
Fe1-H2B	1.59(3)	1.393(5)	1.90(5)
P1-C1	1.843(3)	1.406(5)	1.90(5)
P1-C5	1.844(4)	1.398(5)	1.90(5)
P1-C1	1.871(4)	1.383(6)	1.90(5)
P2-C1	1.831(3)	1.391(6)	1.90(5)
P2-C2	1.848(4)	1.381(5)	1.90(5)
P2-C3	1.850(3)	1.3875(5)	1.90(5)
P3-C29	1.830(3)	1.394(5)	1.90(5)
P3-C4	1.850(3)	1.383(5)	1.90(5)
C1-C2	1.532(5)	1.381(5)	1.90(5)
C3-C4	1.532(5)	1.396(5)	1.90(5)

Bond	Distance	Angle	
B1-Fe1-P2	143.44(12)	108.58(12)	1.90(5)
B1-Fe1-P1	101.39(12)	112.20(12)	1.90(5)
P2-Fe1-P1	86.47(4)	103.03(15)	1.90(5)
B1-Fe1-P3	98.86(12)	103.07(16)	1.90(5)
P2-Fe1-P3	86.80(4)	103.45(16)	1.90(5)
P1-Fe1-P3	154.13(4)	116.75(11)	1.90(5)
B1-Fe1-H1M	135.7(13)	121.05(12)	1.90(5)
P2-Fe1-H1M	80.8(13)	107.37(12)	1.90(5)
P1-Fe1-H1M	78.9(13)	110.7(2)	1.90(5)
P3-Fe1-H1M	75.4(13)	107.8(2)	1.90(5)
B1-Fe1-H1B	35.9(12)	109.4(2)	1.90(5)
P2-Fe1-H1B	177.9(12)	108.6(2)	1.90(5)
P1-Fe1-H1B	91.8(11)	117.3(4)	1.90(5)
P3-Fe1-H1B	95.3(12)	124.4(3)	1.90(5)
H1M-Fe1-H1B	100.0(17)	118.1(3)	1.90(5)
B1-Fe1-H2B	35.3(12)	122.3(4)	1.90(5)
P2-Fe1-H2B	108.12(12)	119.8(4)	1.90(5)
P1-Fe1-H2B	102.8(11)	119.7(4)	1.90(5)
P3-Fe1-H2B	103.1(11)	121.0(4)	1.90(5)
H1M-Fe1-H2B	170.9(18)	119.9(4)	1.90(5)
H1B-Fe1-H2B	71.0(16)	118.7(3)	1.90(5)
C11-P1-C5	100.18(16)	120.9(3)	1.90(5)
C11-P1-C1	103.75(16)	120.4(3)	1.90(5)
C5-P1-C1	104.04(18)	120.5(3)	1.90(5)
C11-P1-Fe1	114.57(13)	120.0(4)	1.90(5)
C5-P1-Fe1	122.36(12)	120.1(4)	1.90(5)
C1-P1-Fe1	109.91(12)	120.1(4)	1.90(5)
C17-P2-C2	120.00(16)	120.6(4)	1.90(5)
C17-P2-C3	101.41(16)	119.4(3)	1.90(5)
C2-P2-C3	108.05(16)	120.5(3)	1.90(5)
C17-P2-Fe1	123.40(11)	120.1(3)	1.90(5)
Figure S3. 1H NMR spectrum of 1-Br_2(CO) in chloroform-d.

Figure S4. 13C NMR spectrum of 1-Br_2(CO) in chloroform-d.
Figure S5. 31p NMR spectrum of 1-Br_2(CO) in chloroform-\textit{d}.

Figure S6. Solid-state infrared spectrum of 1-Br_2(CO) in KBr.
Figure S7. 1H NMR spectrum of 1-H(Br)(CO) in chloroform-d.

Figure S8. 31P-1H NMR spectrum of 1-H(Br)(CO) in chloroform-d.
Figure S9. 13C NMR spectrum of 1-H(Br)(CO) in chloroform-d.

Figure S10. 31P NMR spectrum of 1-H(Br)(CO) in chloroform-d.
Figure S11. Infrared spectrum of 1-H(Br)(CO) in benzene-d_6.

Figure S12. 1H NMR spectrum collected after heating 1-H(Br)(CO) at 60 °C for 20 h in chloroform-d.
Figure S13. 1H NMR spectrum of 1-(CO)$_2$ in benzene-d_6.

Figure S14. 13C NMR spectrum of 1-(CO)$_2$ in benzene-d_6.
Figure S15. 31P NMR spectrum of 1-(CO)$_2$ in benzene-d_6.

Figure S16. Infrared spectrum of 1-(CO)$_2$ in benzene-d_6.
Figure S17. 1H NMR spectrum of 1-(CO)$_2$ and the putative cis-dihydride compound following 2.2 eq. NaEt$_3$BH addition to 1-Br$_2$(CO).

Figure S18. 31P NMR spectrum of 1-(CO)$_2$ and the putative cis-dihydride compound following 2.2 eq. NaEt$_3$BH addition to 1-Br$_2$(CO).
Figure S19. ^1H NMR spectrum of 1-H(BH$_4$) in benzene-d_6.

Figure S20. ^{31}P ^1H NMR spectrum of 1-H(BH$_4$) in benzene-d_6.
Figure S21. 13C NMR spectrum of 1-H(BH$_4$) in benzene-d_6.

Figure S22. 31P NMR spectrum of 1-H(BH$_4$) in benzene-d_6.
Figure S23. 2H NMR spectrum of 1-D(BD₄) in benzene.