Comparison of bond strength analysis on the interfacial layer of old and new concrete using latex, epoxy and glycoluril

SKM. Pothinathan, M. Muthukannan, Narayanan Selvapalam

1 Department of Civil Engineering, Kalasalingam Academy of Research and Education, Krishnankoil-626126, Tamilnadu, India.
2 Department of Civil Engineering, Kalasalingam Academy of Research and Education, Krishnankoil-626126, Tamilnadu, India.
3 Department of Chemistry, Kalasalingam Academy of Research and Education, Krishnankoil-626126, Tamilnadu, India.

Email: s.k.m.pothinathan@klu.ac.in

Abstract. Though other methods were updated for repairing a concrete structure, improving the bond strength of the interfacial layer with effective additives is still the remarkably outstanding technique since it highly improves the structure without any compromise with the quality and strength parameters. The primary reason for the investigation is to compare the market available materials like epoxy and latex with polymer based binding material named glycoluril by slant shear test in both compression and tension. In this comparative study, epoxy bonding depicts higher bond strength in compression than the latex bonding, whereas 3% of glycoluril bonding in the interfacial layer provided for 1cm thick in the interfacial layer were noted to improve the tensile bond strength between the old and new concrete layers which turns to be effective in the repair works of bottom of the slab/beam where tension is more.

1. Introduction

Being the highly used construction material, mortar and concrete obtained from Portland cement are lagging behind because of the lower chemical resistance, limited tensile strength and slower hardening process which induced the development of polymer modified concrete with polymer additives. The long-term durability and higher strength parameters [1] out do the other types of concrete when related to the polymer modified concrete [2]. Polymerization technique can be imparted for the rehabilitation of existing structures by adding up fresh concrete on the surface of the old concrete. Since the old concrete will not have adhesion property and natural bonding, it is overthrown by the usage of bonding adhesives[3,4] Though some techniques are adopted to evaluate the bond strength of the repaired concrete, slant shear method was noted to develop exact stress properties[5,6] and consistent results[7] than the others[8-10]. The slant shear specimens were casted as per ASTM C882[11] in which the specimen is cylindrical in shape with two equal halves casted with a 30° vertical diagonal surface. Even though few parameters are responsible for the bond strength between the overlay and the substrate, the surface parameter [12] plays the key role in the interfacial surface behavior.

2. Research significance
Rehabilitation of structures has become one of the challenging fields in concrete industry which promotes a sound structure without harming the previously layered concrete layers along with a perfect bonding between the old and new concrete. However, it is must to strengthen the substrate surface with an appropriate bonding agent which allows the adherence of old and new concrete which in turn extends the service life of the structures. The grooved acid etched specimens significantly performed well when compared with other types of surfaces in a study [13]. The bond strength is usually analyzed to define the bonding between the substrate surfaces and overlay concrete. Tensile strength, slant shear and rebar pull out test were conducted to evaluate the in between bonding of the repaired concrete. Few of them were also adopted to examine the adhesion properties of polymer modified mortar and concrete [14].

3. Experimental study

3.1. Materials

OPC with 43 grade fulfilling IS 8112 necessities was utilized in this investigation. Density of the cement is 3.32g/cm³ with specific area of 3400cm²/g. Zone II river sand with specific gravity of 2.56 and coarse aggregate having 20mm maximum size with specific gravity of 2.71 were used. Epoxy and latex were purchased in local market and glycoluril was synthesized according to the standard methodology expressed by Ji-Tai Li [16]. IS10262 used for designing the mix and proportion obtained 191.4 : 510 : 512 : 1157 (W:C:FA:CA) for both old and new concrete.

Three different monomers namely epoxy, latex and glycoluril were used for the polymerization process in the interface surface as show in table 1 for the concrete specimens. When compared with the other two monomers (latex and epoxy), there are very limited study with the glycoluril in polymer modified concrete/mortar for the repairing of the old concrete structures.

Table 1. Concrete test matrix.
Name of the Specimen
CS
CCG1%
CCG2%
CCG3%
CCG4%
CCE
CCL

CS Control Specimen
CCCP Cement Concrete with Cement Paste
CCE Cement Concrete with Epoxy
CCL Cement Concrete with Latex
CCG 1% Cement Concrete with Glycoluril of 1%
CCG 2% Cement Concrete with Glycoluril of 2%
CCG 3% Cement Concrete with Glycoluril of 3%
CCG 4% Cement Concrete with Glycoluril of 4%

3.2. Specimen preparation

In order to plot the bond strength of the interfacial layer in tension and in shear, the splitting tensile strength test and slant shear test were conducted respectively. Three sets of cylindrical specimens
(75mm diameter and 150mm height) were casted for each reading to obtain the level of bonding between the old and new concrete. The old concrete specimen was casted as half cylinders and water cured for 7, 14 and 28 days which is then completed with fresh concrete along with monomers (latex, epoxy and glycoluril of 1%, 2%, 3% and 4%) embedded in between. Epoxy and latex are applied on the surface of the old concrete using a brush (Fig. 1.) and then the new concrete is poured in continued by compaction on the surface. Whereas glycoluril is mixed along with cement paste and applied for 1cm thick on the surface of the old concrete followed by the completion of the cylindrical specimen with fresh concrete. Thus, formed specimens were dipped in the formaldehyde solution for a period of 24 hours which initiates polymerization of the monomer (glycoluril). Water curing is again carried out for the completed specimens for 7, 14 and 28 days. The geometry of the specimens was as such 30° slanting with the vertical shear plane as per the ASTM C882 standards. The grade of the concrete chosen for this study was M30

![Figure 1. Applying monomer on the half cylindrical specimen](image)

3.3. Bond strength analysis
The bond strength between the old and the new concrete were analyzed through the results obtained from the tensile strength and compressive strength analysis. An average value corresponding to three tests were considered. The compressive strength, tensile strength and bond strength were obtained from the test results of the prepared samples. Compressive strength and tensile strength were calculated from the respective compressive load and tensile load required for the failure of the composite specimen. Whereas the bond strength is calculated as (Maximum load)/(Area of slant surface) for further analysis[15]. The slant shears of the specimens were tested as shown in Fig. 2. The cylinder specimens were tested at 7, 14 and 28 days from the day of casting the complete specimen along with the polymerized monomer which is intended to improve the strength parameters of the concrete composite.
3.4. Types of failure

Three different types of failure modes were noted in the specimens after the tests were conducted namely the failure of the old concrete, failure of the new concrete and the failure of the interfacial layer as show in figure 3. The types of failure were analyzed both in tension and compression as shown in table 2 and 3.

![Figure 2. Testing of Slant Shear Bond Strength](image)

![Figure 3.](image)

Table 2. Failure Modes in Compression

Type of mix	7days	14 days	28days
CCCP	Interfacial	Interfacial	Interfacial
CCE	New Concrete	New Concrete	New Concrete
CCL	Interfacial	Interfacial	Interfacial
CCG 1%	Interfacial	Interfacial	Interfacial
CCG 2%	Interfacial	Interfacial	Old Concrete
CCG 3%	New Concrete	New Concrete	New Concrete
CCG 4%	New Concrete	New Concrete	New Concrete
Table 3. Failure Modes in Tension

Type of mix	7 days	14 days	28 days
CCCP	Interfacial	Interfacial	Interfacial
CCE	Interfacial	Interfacial	Interfacial
CCL	Interfacial	Interfacial	Interfacial
CCG 1%	Interfacial	Interfacial	Interfacial
CCG 2%	Interfacial	Interfacial	Interfacial
CCG 3%	New Concrete	New Concrete	New Concrete
CCG 4%	New Concrete	New Concrete	New Concrete

The differential shrinkage of concrete in interfacial layer due to the different ages of old and new concrete resulting increase in stress. Due to the development of stress at interface most of the repaired concrete were shows decreased bond strength. Epoxy and glycoluril (3% & 4%) were noted to have failed with the new concrete which depicts their better resistance in compression whereas glycoluril (3% & 4%) specimens alone were noted to have failed with the new concrete showcasing a strong resistance towards the tensile failure.

4. Test results and discussion:

4.1. Bond strength

All the test specimens were tested after 7 days, 14 days and 28 days of casting the new concrete. Bond strength was calculated by dividing maximum load and interfacial area. The result shows that the bond strength was increasing by adding binding material in the interfacial surface. Bond strength were notably higher for the specimens developed with an interfacial layer of glycoluril (3% & 4%) and epoxy compared with the specimens developed with an interfacial layer of latex and glycoluril (1% & 2%) showing the effective bonding of the interfacial layer with epoxy and glycoluril (3% & 4%) monomers. The bond strength of the above specimens was also noted to increase with the age of the concrete as shown in the Fig. 4. There is no bond strength analysis for control specimen. Just to compare the reduction in compressive strength of CS with the bond strength of repaired concrete this was included in Fig. 4.
4.2. Compressive strength
The concrete specimens developed with an interfacial layer of the monomer epoxy as well as 3% of glycoluril developed higher compressive strength than the control specimen (M30 mix) at 28 days and 7 days which shows an rise in the compressive strength at early stage and later stage owing to the better hydrogen bonding thus reducing the porous nature of the respective samples (Fig.5.). Whereas modified specimens with latex in interfacial layer tend to develop lower compressive strength than the control specimen due to poor bonding in the interfacial layer. The latex in concrete affects degree of hydration of concrete. Due to this the strength development of the new concrete was reduced and its result in lower compressive strength. This also confirmed by Ma [17].

![Figure 5. Effect of different specimens on compressive strength (N/mm²)](image)

4.3. Tensile strength
The tensile strength of all the specimens developed with different monomers as interfacial layers were noted to show a rise along with the age of the concrete (Fig.6.). Notably glycoluril of 3% were noted to develop tensile strength slightly higher than the control specimen whereas specimens developed with epoxy and latex in the interfacial layers resulted in lower tensile strength than the control specimen which depicts the poor bonding of the interfacial layer in the tension zone. This test clearly shows that the glycoluril as binding material plays vital role in tension carrying capacity. Giving equal and slightly higher strength compared to the control specimen. So, this techniques with 3% glycoluril may be advisable for repairing concrete in tension zone like spalling of slab and beam.
5. Conclusion

Based on the results from the experimental program, the following conclusions were obtained:

- Though concrete and mortar are weak in tension, significant rise in tensile strength were noted in polymer modified concrete with 3% of glycoluril in the interfacial layer which in turn makes it feasible to be of used in the repair works of bottom of the slab/beam where tension is more.
- The development of stress due to the differential shrinkage at layer of the repaired concrete shows decreased bond strength and failure at the interface.
- Epoxy and latex developed very less resistance in tension owing to the brittle nature of the respective specimens.
- 3% of glycoluril also developed considerable rise in the compression strength along with a noticeable increase in bond strength since the particles are closely packed imparting an efficient hydrogen bonding.
- Repaired concrete with 3% and 4% glycoluril additives in tension strength test giving equal or slightly higher to the control specimen. So, this repair work is advisable in repairing spalling of concrete in slab or beam.

References

[1] Colville, James, Amde M. Amde, and M. Miltenberger 1999 Tensile bond strength of polymer modified mortar. *Journal of materials in civil engineering* **11**, no. 1: 1-5.
[2] Kardon, Joshua B 1997 Polymer-modified concrete. *Journal of Materials in Civil Engineering* **9**, no. 2: 85-92.
[3] Li, Gengying, Huicai Xie, and Guangjing Xiong 2001 Transition zone studies of new-to-old concrete with different binders. *Cement and Concrete Composites* **23**, no. 4-5: 381-387.
[4] Wall, J. S., N. G. Shrive, and B. R. Gamble 1986 Testing of bond between fresh and hardened concrete. In *Adhesion between polymers and concrete/Adhésion entre polymères et béton*, pp. 335-344. Springer, Boston, MA.
[5] Santos, Pedro Miguel Duarte, and Eduardo Nuno Brito Santos Júlio 2011 Factors affecting bond between new and old concrete. *ACI Materials Journal* **108**, no. 4: 449.
[6] Franke, L 1986 The dimensioning of adhesive-bonded joints in concrete building components. In Adhesion between polymers and concrete Adhésion entre polymères et béton 461-473. Springer, Boston, MA.

[7] Knab, Lawrence I., and Curtis B. Spring 1989 Evaluation of test methods for measuring the bond strength of Portland cement based repair materials to concrete. Cement, concrete and aggregates 11, no. 1: 3-14.

[8] Elkouri, Adel, Shafik Khoury, and A. Ali Abdo 2003 Evaluation of new old concrete bonding agent systems by slant shear test In AICSE 5. Faculty of engineering, Alexandria University.

[9] Momayerz, A., M. R. Ehsani, A. A. Ramezanianpour, and H. Rajaie 2005 Comparison of methods for evaluating bond strength between concrete substrate and repair materials Cement and concrete research 35, no. 4: 748-757.

[10] Saldanha, R. F. S. M., E. N. B. S. Julio, D. D. Costa, and Pedro MD Santos Modified Slant Shear Test To Enforce Adhesive Failure

[11] ASTM C882 / C882M-13a, Standard Test Method for Bond Strength of Epoxy-Resin Systems Used With Concrete By Slant Shear, ASTM International, West Conshohocken, PA, 2013, www.astm.org

[12] He, Yan, Xiong Zhang, R. D. Hooton, and Xiaowei Zhang 2017 Effects of interface roughness and interface adhesion on new-to-old concrete bonding. Construction and Building Materials 151 582-590.

[13] Mirmoghtadaei, Reza, Masih Mohammad, Nasibe Ashraf Samani, and Seyedreza Mousavi 2015 The impact of surface preparation on the bond strength of repaired concrete by metakaolin containing concrete. Construction and Building Materials 80 76-83.

[14] Ohama, Y., K. Demura, H. Nagao, and T. Ogi 1986 Adhesion of polymer-modified mortars to ordinary cement mortar by different test methods. In Adhesion between polymers and concrete/Adhésion entre polymères et béton 719-729. Springer, Boston, MA.

[15] Pattnaik, Rashmi Ranjan, and Prasada Rao Rangaraju 2007 Analysis of compatibility between repair material and substrate concrete using simple beam with third point loading. Journal of Materials in Civil Engineering 19, no. 12: 1060-1069.

[16] Ji-Tai Li, Xiao-Ru Liu, Ming-Xuan Sun. 2010 Synthesis of glycoluril catalyzed by potassium hydroxide under ultrasound irradiation Ultrasonics Sonochemistry 17 55-57.

[17] Hongyan Ma, Zongjin Li 2013 Microstructures and mechanical properties of polymer modified mortars under distinct mechanisms, Construction and Building Materials 47 579–587.