Dimensions of Safety Climate among Iranian Nurses

Z Naghavi Konjin1, Y Shokoohi2, F Zarei1, M Rahimzadeh3, V Sarsangi4

Abstract

Background: Workplace safety has been a concern of workers and managers for decades. Measuring safety climate is crucial in improving safety performance. It is also a method of benchmarking safety perception.

Objective: To develop and validate a psychometrics scale for measuring nurses' safety climate.

Methods: Literature review, subject matter experts and nurse’s judgment were used in items developing. Content validity and reliability for new tool were tested by content validity index (CVI) and test-retest analysis, respectively. Exploratory factor analysis (EFA) with varimax rotation was used to improve the interpretation of latent factors.

Results: A 40-item scale in 6 factors was developed, which could explain 55% of the observed variance. The 6 factors included employees' involvement in safety and management support, compliance with safety rules, safety training and accessibility to personal protective equipment, hindrance to safe work, safety communication and job pressure, and individual risk perception.

Conclusion: The proposed scale can be used in identifying the needed areas to implement interventions in safety climate of nurses.

Keywords: Nurses; Safety climate scale; Reliability; Validity; Questionnaire

Introduction

The theory of safety climate was originated in 1980, when Zohar was studying industrial organization. He defines safety climate as “employees' perceptions about the relative importance of safe conduct in their occupational behavior.”1 The theory of positive safety climate-safe behavior-accidents prevention path was studied several times.2-6

Stability of safety climate dimensions across organizations is in doubt.7 The questionnaire is the most commonly used tool for measuring safety climate. Several safety climate questionnaires have so far been developed. However, their usefulness depends on their psychometric quality and reproducibility.6 Measuring safety climate between an aviation industry and a health care providers (HCPs) using similar questions, has reported little similarity between their extracted dimensions.8 Flin, et al, in their review noted that management/supervisors, safety systems, risk perception, job demands, reporting/speaking up, safety attitudes/behaviors, communication/feedback, teamwork, personal resources and organizational factors as safety climate features in health care. However,
they concluded that the developed instruments for measuring health care's safety climate need more consideration in terms of their psychometrics properties.\(^9\)

On the other hand, in health care organizations, researchers have concentrated much more on patient safety climate than personnel safety climate.\(^{10-14}\) There are limited studies that have addressed safety climate among HCPs,\(^{15-17}\) probably, because of powerful laws that support patient rights and surveillance of this issue. Dimensions of safety climate in health care organizations are not the same.\(^9\) Researchers concluded that safety climate is affected by work area as well as disciplines. Multicultural nurses in Saudi Arabia revealed that safety climate was significantly affected by national background.\(^{14}\) HCPs are busy people so it is not practical to use time-consuming methods such as interview or focus group discussion to investigate safety climate among them.\(^{17}\)

We therefore tried to develop and validate a new native scale for exploration the safety climate dimensions for Iranian nurses—a subgroup of HCPs.

Materials and Methods

Sampling

Nurses with more than one-year work experience in Alborz province hospitals, were considered the study population. Nurses from surgery, pediatric, dialysis unit, intensive care units, and neurology wards as well as the emergency department participated in this study voluntarily. All participants were briefed on the study. They had two weeks times to respond.

Content validity

The initial items of safety climate scale (71 items) were developed based on literature review of existing safety climate tools.\(^{18-20}\) Each distinct safety climate dimension adopted from literature, had at least three items in the initial questionnaire to provide requirements of scale's construct validity test.\(^{21}\) The questionnaire was sent to 10 members' panel of experts via e-mail or delivered by paper. They were asked to rate each item in terms of relevance, clarity, and simplicity criteria using a 4-point scale (for example about relevancy of item: “Not relevant”=1, “Needs some revision”=2, “Relevant but needs minor revision”=3, “Very relevant”=4). In addition, they were sought to evaluate the overall comprehensiveness of the entire measure by either adding new items or deleting the existing ones. Experts' responses were entered to a spreadsheet and content validity index (CVI) of each item was calculated as the count of experts who rated the item 3 or 4 divided by the total number of experts. Those items with relevancy’s CVI <0.75 were omitted.\(^{22}\) The remaining items that obtained CVI <0.75 in terms of clarity and simplicity were revised based on experts' judgment for wording, clearness, and simplicity. In the next step, questionnaires were presented to 13 nurses with more than one-year experience in their profession to involve target population in content validity process. Same as experts, after determining CVI for each item, deletion or modification were done.\(^{22,23}\)
Reliability Assessment

The reliability of the measure was assessed by test-retest analysis. For this purpose, anonymous questionnaires were distributed twice among 30 nurses within two weeks interval. Total internal consistency of the scale was checked based on Cronbach’s α coefficient.

Factor Analysis

The questionnaires were delivered to nurses anonymously in the hospitals to finalize the items and to ensure construct validity. For each item, 10 subjects appointed as sample size for exploratory factor analysis (EFA) according to new scale developing studies. To be more conservative, the questionnaire was delivered to 900 participants. Items were worded in both positive and negative types. A 5-point Likert scale was used to respond to items. The scale ranged from “Strongly disagree” (=1) to “Strongly agree” (=5) for positive items; negative items were ranked inversely. The questionnaire was included 13 negatively worded items. It is believed that using combination of positive and negative items, reduce bias in response style.

Data were analyzed by SPSS® for Windows® ver 19. Adequacy of the sample size for factor analysis was tested by Kaiser-Meyer-Olkin (KMO) test. Inter-item correlation were tested and the questionnaire items with correlation coefficient of <0.3 as well as items with communality of <0.5 were deleted. Principal components analysis (PCA) with unrotated solution was used to identify the associated dimensions. According to the sample size, loading factors ≥0.3 were subjected for factor analysis. Iterative process was used to remove items with same loading on more than one factor. EFA with varimax rotation were used to improve interpretation of latent factors with loading factors ≥0.45. Factor loading of ±0.4 indicates the item is more important and ±0.5 means the item is significant. After extraction of factors with loading factor ≥0.45, items with cross-loading were dropped (two items) and analysis was performed for the remaining items. Interpretation and labeling of dimensions were done based on items with same loading on a factor and items theme. Internal consistency between items of each factor was tested based on Cronbach’s α coefficient.

Result

The mean age of participants was 33.3 (SD 6.2) years. Majority of the participants were female (87.2%). The mean work experience of nurses was 7.5 (SD 5.1) years. Response rate was 62%—153 out of 560 returned questionnaires were dropped from data because of protest responses that showed systematic response patterns or more missing items and also other education. For factor analysis, 407 retained subjects who provided a missing response to any items, were excluded by listwise deletion.

Chronbach’s α coefficient was 0.91 for the total items of the scale that reflected suitable internal consistency of the scale. Pearson correlation coefficient was 0.765 for test-retest reflecting appropriate stability of the developed scale over time. The KMO index was 0.91 that indicated the sample size was adequate. Principal components analysis (PCA) was resulted in 12 factors with eigenvalues >1 that could explain 67% of the observed variance. Some factors had no items or low items loading and did not meet the required criteria to remain as a factor. Therefore, factor analysis was conducted in the iterative process for different number of factors. The best solution of factor analysis with varimax rotation resulted in a 40-item scale with six dimensions. These dimensions were able to explain 55% of the variance. Each factor was labeled in accordance to the set of con-
Table 1: Exploratory factor analysis (EFA) results for nurses' safety climate scale

Item	Loading factor	Agree or strongly agree (%)
42. I am involved in decision making related to safety.	0.790	44
50. Employees are encouraged to raise safety concerns.	0.750	48.9
41. I am involved in the ongoing issue and revision of safety	0.746	38
procedures.		
44. Employees are involved in safety and health training needs	0.745	49.1
assessment.		
48. I have an active role in planning and decision making related to		
safety.	0.708	43.3
43. Manager/supervisor encourage employees to report unsafe	0.647	62.4
conditions.		
49. Co-workers encourage me to report unsafe conditions.	0.624	50.9
31. I often talk to my manager/supervisor about safety related	0.615	560.7
matters.		
53. Employees are encouraged because of their innovation to improve	0.615	63.9
safety.	-0.036	
21. My manager/supervisor always inform me of current safety and	0.603	50.3
health committee issue.	0.256	
32. I easily have access to SDS and safety equipment in my workplace	0.595	62.6
(Safety Data Sheet).	0.326	
51. I can influence health and safety performance here.	0.561	66.4
45. I am involved in informing my supervisor of important safety	0.554	71.7
and health issues.	0.272	
33. After employees accident investigated, learned lessons	0.502	62.7
communicate to personnel in order to prevent it from reoccur.	0.261	
24. In my workplace hospital management acts quickly to correct	0.499	41.7
safety problems.	0.221	
25. Management welcomes feedback on safety issues.	0.453	47.9
19. Carefully following safety rules and procedures are of my	0.008	88.5
great importance.	0.714	
Table 1: Exploratory factor analysis (EFA) results for nurses' safety climate scale†

Item	Loading factor	Agree or strongly agree (%)
20. I know health and safety rules and procedures related to my job.	0.223, 0.676	79.4
14. I trained in correctly apply personal protective equipment to prevent contact with infectious agents.	0.167, 0.658	77.2
29. I am aware of the hazards associated with my job.	0.251, 0.587	79.9
22. I think provided safety training is improving safety in my workplace.	0.366, 0.569	73
30. My supervisor often inform me of current concerns and issues related to health and safety.	0.288, 0.564	73.2
9. Disposable masks are available in my workplace.	0.067, 0.520	71.9
13. Disposable gloves are readily available in my workplace.	-0.023, 0.506	85.8
38. In my unit, safety rules and procedures has been developed to reduce the hazards.	0.438, 0.475	68.1
2. Health and safety training related to my job are conducted.	0.135, 0.098	77.2
3. Implemented health and safety training have appropriate quality.	0.264, 0.177	64.8
4. I always get the equipment I need to do the job safely.	0.293, 0.152	58.4
5. Safety procedures are quickly available when they are needed.	0.326, 0.300	69.6
37. My workplace is crowded.	0.020, 0.213	63.9
40. Sometimes because of work condition, I ignore the safety and health principles.	-0.037, -0.190	64.2
39. Some health and safety rules and procedures are not really practical.	0.023, -0.240	64.1
36. My workplace is messy.	-0.083, 0.301	34.6
17. In my workplace management turn a blind eye to safety issues.	-0.022, 0.156	41
8. Always I am given enough time to get the job done safely.	0.338, 0.083	39.8
tained items. Items and their loading factors are presented in Table 1. The extracted factors, Chronbach’s α coefficient for items of each factor and the portion of the variance explained by the items are presented in Table 2.

Discussion

The objective of this study was to develop a new native scale for measuring nurses’ safety climate. The factor analysis resulted in six dimensions for the new scale. The items’ internal consistency for dimensions ranged from 0.70 to 0.93, which on account of the values reported in similar studies (0.71–0.8415 and 0.62–0.939) are a common range for safety climate studies in health care sector. Chronbach’s α coefficient was high for the first factors consisting of 16 items; that would be attributed to the large number of included items in this factor.31

The explored dimensions explained 55% of the variance. The value is relatively less than that reported by similar study (64.9%) which was conducted in China.17 We found the employees’ involvement in safety and management support was a main factor of safety climate (explaining 18% of the variance) with more loadings for employees’ involvement items. However, review of the implemented studies in both industry and health care settings identified the management commitment as the most important factor in health care organizations. Job demands include items relevant to the adequacy of work force to manage workload in a timely manner.33 Gaba, et al, emphasized the role of management as an impressive key factor on staff’s safety climate perceptions.8 Our findings also emphasized on employee’s involvement as well as management role in safety climate perception as an important factor. Most of the explored factors in the present study were similar to the initially used scales for item generation including the management support, absence of environmental hindrances, cleanliness of worksite, communication, training and availability of protective equipment.15 The aforementioned extracted factors were confirmed in another study, which

Table 1: Exploratory factor analysis (EFA) results for nurses’ safety climate scale†

Item	Loading factor	Agree or strongly agree (%)					
	1	2	3	4	5	6	
7. Co-workers often talk to each other on how to work safely.	0.158	0.232	0.122	0.020	**0.592**	0.189	67.8
47. Co-workers often give tips to each other on how to work safely.	0.428	0.259	0.056	-0.075	**0.523**	0.108	66.8
10. There are always enough people available to get the job done safely.	0.369	-0.049	0.308	0.114	**0.490**	-0.218	36.4
28. While working, I take the way that has less hazards.	0.141	0.197	-0.013	0.046	0.121	**0.766**	72
27. I am rarely worried about being injured on the job.	-0.076	0.155	-0.073	0.242	-0.053	**0.765**	34.9

†Varimax rotation
Note: Bold face shows items comprising each factor.
The extracted factors, however, were labeled with different names, such as “employees interaction,” “housekeeping,” “employee personal perception,” and “time pressure.” Hahn, et al, attempted to develop a general short scale for safety climate. Management commitment, feedback of safety performance, worker involvement and norms of safety behavior were elicited for safety climate. Safety climate studies in industries also reported some factors in common with the explored factors in the current study. Management commitment, workers participation and involvement in safety related decision making activities, safety training, accessibility to safety resources, performance feedback, communication and support, adequacy of procedures, work pressure, personal protective equipment (PPE), and safety rules were listed as safety climate factors.

The hypothesized management support and employees' involvement items were merged into one factor after factor analysis. Similar hypothesized factors merging has happened in another study too. The same situation happened for PPE and compliance safety rules, safety communication and job pressure. These findings implied that the studied nurses considered those hypothesized factors as the same construct. In fact, employees' involvement in safety without management support or establishing safety rules without accessibility to safety equipment does not make sense.

In order to minimize bias due to stereotype response patterns, the initial questionnaire was included both negative and positive worded items. The final scale comprised of six negatively worded items including questions 17, 27, 36, 37, 39 and 40, which were ranked inversely. Most of the negatively worded items were included in factor 4. Some researchers believed that use of negatively worded items may introduce artifactual response factor. The negatively worded items were then checked for response pattern and the results did not show any unique response pattern (Table 2).

More studies are required to determine if the developed scale is applicable to other cultures as well. Furthermore, the ability of the scale in identifying key constituent dimensions of the safety climate structures in other subgroups of HCPs such as physicians, operating room technicians, and

Table 2: Labeling of extracted dimensions
Factor number

1
2
3
4
5
6
nursing assistance is needed to be evaluated. Moreover, sensitivity of the scale to determine the effectiveness of implemented intervention measures (benchmarking) needs to be verified.

Acknowledgments

The authors would like to thank Alborz University of Medical Science for financial support of this research. We appreciate intimately cooperation of all Alborz province hospitals’ staff, especially nurses and occupational health personnel.

Conflicts of Interest: None declared.

References

1. Zohar D. Safety climate in industrial organizations: theoretical and applied implications. J Appl Psychol 1980;65:96-102.
2. Neal A, Griffin MA, Hart PM. The impact of organizational climate on safety climate and individual behavior. Safety Science 2000;34:99-109.
3. Prussia GE, Brown KA, Willis PG. Mental models of safety: do managers and employees see eye to eye? J Safety Res 2003;34:143-156.
4. Cooper MD, Phillips RA. Exploratory analysis of the safety climate and safety behavior relationship. J Safety Res 2004;35:497-512.
5. DeJoy DM, Schaffer BS, Wilson MG, et al. Creating safer workplaces: assessing the determinants and role of safety culture. J Safety Res 2004;35:81-90.
6. Olsen E, Aase K. A comparative study of safety climate differences in healthcare and the petroleum industry. Qual Saf Health Care 2010;19(Suppl 3):75-9.
7. Coyle IR, Sleeman SD, Adams N. Safety climate. J Safety Res 1995;26:247-254.
8. Gaba DM, Singer SJ, Sinaiko AD, et al. Differences in safety climate between hospital personnel and naval aviators. Human Factors 2003;45:173-185.
9. Flin R, Burns C, Mearns K, et al. Measuring safety climate in health care. Qual Saf Health Care 2006 15:109-15.
10. Blegen MA, Pepper GA, Rosse J. Safety climate on hospital units: a new measure. 2005, DTIC Document.
11. Singer S, Lin S, Falwell A, et al. Relationship of safety climate and safety performance in hospitals. Health services research 2009;44:399-421.
12. Kho ME, Perri D, McDonald E, et al. The climate of patient safety in a Canadian intensive care unit. J crit care 2009;24:469. e7-13.
13. Hofmann DA, Mark B. An investigation of the relationship between safety climate and medication errors as well as other nurse and patient outcomes. Pers Psychol 2006;59:847-69.
14. Almutairi AF, Gardner G, McCarthy A. Perceptions of clinical safety climate of the multicultural nursing workforce in Saudi Arabia: A cross-sectional survey. Collegian 2013;20:187-94.
15. Gershon RR, Karkashian CD, Grosch JW, et al. Hospital safety climate and its relationship with safe work practices and workplace exposure incidents. Am J Infect Control 2008;26:211-21.
16. Hahn SE, Murphy LR. A short scale for measuring safety climate. Safety Sci 2008;46:1047-66.
17. Smith DR, Zhao I, Wang L, et al. Dimensions and reliability of a hospital safety climate questionnaire in Chinese health-care practice. Int J Nurs Pract 2013;19:156-62.
18. Turnberg W, Daniell W. Evaluation of a healthcare safety climate measurement tool. J Safe Res 2008;39:563-8.
19. Cox S, Cheyne A. Assessing safety culture in offshore environments. Safety Science 2000;34:111-29.
20. Jafari MJ, Sadighzadeh A, Sarsangi V, et al. [Safety Climate Survey in Iran’s Uranium Mines in 2013.] J Safety Promote Inj Prev 2014;2:148-54. [in Persian]
21. Hinkin TR. A brief tutorial on the development of measures for use in survey questionnaires. Organ Res Methods 1998;1:104-21.
22. Rubio DM, Berg-Weger M, Tebb SS, et al. Objectifying content validity: Conducting a content validity study in social work research. Social Work Res 2003;27:94-104.
23. Yaghmaie F. Content validity and its estimation. J Med Edu 2003;3:25-7.
24. Rattray J, Jones MC. Essential elements of questionnaire design and development. J clin nurs 2007;16:234-43.
25. Stevens JP. Applied multivariate statistics for the
social sciences. 5th ed. Routledge New York, 2012.

26. Hinkin TR. A review of scale development practices in the study of organizations. J Manag 1995;21:967-88.

27. Williams B, Brown T, Onsman A. Exploratory factor analysis: A five-step guide for novices. Aust J Paramed 2012;8:1.

28. Parsian N. Developing and validating a questionnaire to measure spirituality: a psychometric process. Global J Health sci 2009;1:2.

29. Suhr D, Shay M. Guidelines for Reliability, Confirmatory and Exploratory Factor Analysis. Colorado: University of Northern Colorado; 2008.

30. Kines P, Lappalainen J, Mikkelsen KL, et al. Nordic Safety Climate Questionnaire (NOSACQ-50): A new tool for diagnosing occupational safety climate. Int J Indus Ergon 2011;41:634-46.

31. Terwee CB, Bot SD, de Boer MR, et al. Quality criteria were proposed for measurement properties of health status questionnaires. J Clin Epidemiol 2007;60:34-42.

32. Abdulla, N, Spickett J, Rumchev K, et al. Validity and reliability of the safety climate measurement in Malaysia. Int Rev Business Research Papers 2009;5:111-41.

33. Flin R. Measuring safety culture in healthcare: A case for accurate diagnosis. Safety Science 2007;45:653-67.

34. Turnberg W, Daniell W. Evaluation of a healthcare safety climate measurement tool. J Safety Res 2008;39:563-8.

35. Seo DC, Torabi MR, Blair EH, et al. A cross-validation of safety climate scale using confirmatory factor analytic approach. J Safety Res 2004;35:427-45.

36. Isla Diaz R, Diaz Cabrera D. Safety climate and attitude as evaluation measures of organizational safety. Accid Anal Prev 1997;29:643-50.

37. Evans B, Glendon AI, Creed PA. Development and initial validation of an Aviation Safety Climate Scale. J Safety Res 2007;38:675-82.

38. O’Connor P, Buttrey SE, O’Dea A, et al. Identifying and addressing the limitations of safety climate surveys. J Safety Res 2011;42:259-65.

Guidelines for Filing a Competing Interest Statement

Definition: Conflict of interest (COI) exists when there is a divergence between an individual’s private interests (competing interests) and his or her responsibilities to scientific and publishing activities such that a reasonable observer might wonder if the individual’s behavior or judgment was motivated by considerations of his or her competing interests. COI in medical publishing affects everyone with a stake in research integrity including journals, research/academic institutions, funding agencies, the popular media, and the public.

COI may exist in numerous forms including financial ties, academic commitments, personal relationships, political or religious beliefs, and institutional affiliations. In managing COI, The IJOEM abides to the policy statement of the World Association of Medical Editors (WAME). All authors should declare their COI, if any, during the manuscript submission. Reviewers are asked to declare their COI after they accept to review a manuscript. Editors should also declare their COI during handling of a manuscript.

Managing COI depends on disclosure because it is not possible to routinely monitor or investigate whether competing interests are present. COI disclosed by authors will be presented in the Editorial Board and an appropriate action will be taken. Those reviewers and Editors with COI will be excluded from the manuscript process. If competing interests surface from other sources after a manuscript is submitted or published, The IJOEM investigates allegations of COI and depending on their nature, appropriate actions will be taken if the allegations were found to be true. If a manuscript has been published and COI surfaces later, the journal will publish the results of the investigation as a correction to the article and ask the author to explain, in a published letter, why the COI was not revealed earlier.