Immunogenicity and safety of the tick-borne encephalitis vaccination (2009-2019): A systematic review

Rampa, John Ethan ; Askling, Helena Hervius ; Lang, Phung ; Zens, Kyra Denise ; Gültekin, Nejla ; Stanga, Zeno ; Schlagenhauf, Patricia

Abstract: BACKGROUND Tick-borne encephalitis (TBE) is increasing in Europe. We aimed to evaluate the immunogenicity and safety of TBE-vaccination. METHODS This systematic review was registered at PROSPERO (CRD42020155737) and conducted in accordance with PRISMA guidelines. We searched CINAHL, Cochrane, Embase, PubMed, and Scopus using specific terms. Original articles, case reports and research abstracts in English, French, German and Italian were included for screening and extracting (JER; PS). RESULTS Of a total of 2464 records, 49 original research publications were evaluated for immunogenicity and safety. TBE-vaccines showed adequate immunogenicity, good safety and interchangeability in adults and children with some differences in long-term protection (Seropositivity in 90.6-100% after primary vaccination; 84.9%-99.4% at 5 year follow up). Primary conventional vaccination schedule (days 0, 28, and 300) demonstrated the best immunogenic results (99-100% of seropositivity). Mixed brand primary vaccination presented adequate safety and immunogenicity with some exceptions. After booster follow-ups, accelerated conventional and rapid vaccination schedules were shown to be comparable in terms of immunogenicity and safety. First booster vaccinations five years after primary vaccination were protective in adults aged <50 years, leading to protective antibody levels from at least 5 years up to 10 years after booster vaccination. In older vaccinees, > 50 years, lower protective antibody titers were found. Allergic individuals showed an adequate response and immunosuppressed individuals a diminished response to TBE-vaccination. CONCLUSIONS The TBE-vaccination is generally safe with rare serious adverse events. Schedules should, if possible, use the same vaccine brand (non-mixed). TBE-vaccines are immunogenic in terms of antibody response but less so when vaccination is started after the age of 50 years. Age at priming is a key factor in the duration of protection.

DOI: https://doi.org/10.1016/j.tmaid.2020.101876
Review

Immunogenicity and safety of the tick-borne encephalitis vaccination (2009–2019): A systematic review

John Ethan Rampa a, Helena Hervius Askling b, Phung Lang a, Kyra Denise Zens a, Nejla Gültekin c, Zeno Stanga c, Patricia Schlagenhaufo,n

a University of Zurich Centre for Travel Medicine, WHO Collaborating Centre for Travellers’ Health, Department of Public and Global Health, MilMedBiol Competence Centre, Institute for Epidemiology, Biostatistics and Prevention, University of Zurich, Hirschengraben 84, 8001, Zurich, Switzerland
b Division of Infectious Disease, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
© Centre of Competence for Military and Disaster Medicine, Federal Department of Defence, Civil Protection and Sport DDPS, Swiss Armed Forces, Switzerland

ARTICLE INFO

Keywords:
- Booster
- FSME
- Immunogenicity
- Priming
- Safety
- Surveillance
- TBE
- Vaccine
- Vaccine failure

ABSTRACT

Background: Tick-borne encephalitis (TBE) is increasing in Europe. We aimed to evaluate the immunogenicity and safety of TBE-vaccination.

Methods: This systematic review was registered at PROSPERO (#CRD42020155737) and conducted in accordance with PRISMA guidelines. We searched CINAHL, Cochrane, Embase, PubMed, and Scopus using specific terms. Original articles, case reports and research abstracts in English, French, German and Italian were included for screening and extracting (JER; PS).

Results: Of a total of 2464 records, 49 original research publications were evaluated for immunogenicity and safety. TBE-vaccines showed adequate immunogenicity, good safety and interchangeability in adults and children with some differences in long-term protection (Seropositivity in 90.6–100% after primary vaccination; 84.9%–99.4% at 5 year follow up). Primary conventional vaccination schedule (days 0, 28, and 300) demonstrated the best immunogenic results (99–100% of seropositivity). Mixed brand primary vaccination presented adequate safety and immunogenicity with some exceptions. After booster follow-ups, accelerated conventional and rapid vaccination schedules were shown to be comparable in terms of immunogenicity and safety. First booster vaccinations five years after primary vaccination were protective in adults aged <50 years, leading to protective antibody levels from at least 5 years up to 10 years after booster vaccination. In older vaccinees, > 50 years, lower protective antibody titers were found. Allergic individuals showed an adequate response and immunosuppressed individuals a diminished response to TBE-vaccination.

Conclusions: The TBE-vaccination is generally safe with rare serious adverse events. Schedules should, if possible, use the same vaccine brand (non-mixed). TBE-vaccines are immunogenic in terms of antibody response but less so when vaccination is started after the age of 50 years. Age at priming is a key factor in the duration of protection.

1. Introduction

Being endemic in 27 European countries with around 5’000–10’000 notified cases annually, tick-borne encephalitis (TBE) is one of the most important causes of viral encephalitis and the most frequent cause of viral meningitis in Europe [1–3]. TBE is geographically focused in Central and Eastern Europe, the Baltic States, the Russian Federation, and Japan, trending towards both an expansion of risk areas and an increase in incidence [2–7]. In Switzerland, incidence of TBE has increased significantly in the last few years, with more than 350 cases recorded in 2018 [8].

TBE is caused by the human pathogenic TBE virus, which is a member of the Flaviviridae family [3,4,9,10]. Three subtypes based on geographic origin and antigenic characteristics are of human importance: Far-Eastern, Siberian, and European [4,11]. Most European TBE cases are tick-transmitted by the ticks Ixodes ricinus with more than 100 species of wild and domestic animals acting as hosts reservoir [9,12,13]. Additionally, in certain areas TBE cases are transmitted from ingesting

*a Corresponding author.
E-mail address: patricia.schlagenhaufo@uzh.ch (P. Schlagenhaufo).

https://doi.org/10.1016/j.tmaid.2020.101876
Received 19 June 2020; Received in revised form 1 September 2020; Accepted 2 September 2020
Available online 12 September 2020
1477-8939/© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
2. Aim

Using a systematic review, we aimed to evaluate safety and immunogenicity of TBE-vaccination.

3. Methods

We systematically reviewed original research papers addressing European TBE-vaccines’ immunogenicity and safety in accordance with PRISMA guidelines [28]. The systematic review was registered at PROSPERO: #CRD42020155737.

3.1. Study eligibility and search strategy

To identify appropriate studies, the following international databases were systematically searched with specific search terms as shown in Appendix 1: CINAHL, Cochrane, Embase, PubMed, and Scopus. Inclusion criteria were papers in English, French, German or Italian language, published in the period from January 1st, 2009, to August 31st, 2019, and being original articles, case reports or research abstracts. A Cochrane systematic review, published in 2009, summarizes important earlier findings, therefore, we decided not to include studies published earlier than 2009 [17]. Exclusion criteria were papers in other languages than the above mentioned and animal studies.

3.2. Data extraction

An evidence-table was created in Microsoft Word to extract the relevant data of original research (including population, intervention, control group, outcomes (PICO), study type, vaccines, laboratory analysis). To assess the methodological quality of the studies selected, we analyzed the strength of each study (original research and published abstracts) as displayed in Appendix 2.

3.3. Statistical analysis

Results of immunogenicity and safety for the TBE vaccines were investigated by two researchers (JER, PS) to conclude evidence-based recommendations in a narrative form. Different available laboratory
Table 1
Evidence-table of original research investigation on TBE vaccine immunogenicity.

Author, Year	Study Type	Original Study Title	Inv. Study Population	Vaccine(s)	Antibody methodology	Measure of seropositivity	Outcome: Immunogenicity
Rampa et al.	Booster co- study follow-up study	Booster vaccination against tick-borne encephalitis: 4 years follow-up indicates long-term protection	935 adults (at 6 year follow-up)	Encepur®	Neutralisation Test titer <1:50	100%	In 94% and 89% of TBE vaccinated individuals aged below 50 and above 50 years, respectively, seropositivity was reported. Antibody levels were 4 fold lower in subjects above 60 years of age indicating a shorter period of protection against TBE.
Pierce et al.	Open-label, multicenter, booster co-host study	Long-term persistence of tick-borne encephalitis antibodies in adults 5 years after booster vaccination with Encepur® Adults	172 adults (at 5 year follow-up)	Encepur®	Neutralisation Test titer ≥1:10	80%	Seropositivity was found in 99% at 5 year follow-up after first booster dose (fourth dose) of Encepur® leads to protective antibody levels for up to 5 years.
Winnny et al.	Break-through infection analysis	Characteristics of antibody response against tick-borne encephalitis vaccination breakthrough	25 TBE vaccine failures	N/A	ELISA	Neutralisation Test	Good antibody response will not necessarily prevent the disease in TBE vaccinated people. Discussing, the levels of neutralizing antibodies are too low in the vaccine breakthrough, that supporting neutralizing antibodies to be the best surrogate for protection.
Sheld et al.	Retrospective cohort study	Serological response to tick-borne encephalitis (TBE) vaccine in the elderly - results from an observational study	181 adults (aged ≥60 years)	FSME-Imm-Plus®	ELISA	Neutralisation Test titer ≥1:80	Only 8% (39/152) of individuals receiving dose 2 dose TBE vaccine showed seropositivity. Therefore 18% of vaccines would have not been protected during the primary vaccination schedule. A difference of seropositivity rate reported in the two used vaccines: individuals receiving FSME-Imm-Plus® presented seropositivity in 92% (n=108/119), whereas in individuals vaccinated with Encepur® seropositivity of 88% (n=94/106) was found.
Nowe et al.	Open-label, phase IV, multicenter, follow-up study	Seroprevalence of tick-borne encephalitis antibodies, safety and booster response to FSME-immun® 0.5 ml in adults aged 18-67 years	328 adults (at 3 year follow-up)	FSME-Imm-Plus®	ELISA	Neutralisation Test titer ≥1:80	Seropositivity of the two vaccines (FSME-Imm® and Encepur®) was demonstrated by vaccination individuals with two doses of FSME-Imm® followed by either another dose of FSME-Imm® or Encepur®. This approach led to adequate antibody levels and adequate immune responses after following booster vaccination with FSME-Imm® (seropositivity rate regardless of primary vaccine vaccination: 100%).
Willemsen, Meil et al.	Open-label, phase IV, multicenter, booster co-host study	Long-term persistence of tick-borne encephalitis antibodies in children 5 years after first booster vaccination with Encepur® Children	280 children (at 5 year follow-up)	Encepur® Children	Neutralisation Test titer ≥1:10	97%	Seropositivity at 5 year post booster in children was demonstrated to be 100% suggesting a booster interval up to 5 years in children vaccinated with Encepur® Children.

Table 2

Author, Year	Study Type	Original Study Title	Inv. Study Population	Vaccine(s)	Antibody methodology	Measure of seropositivity	Outcome: Immunogenicity		
Altman et al.	Randomised, controlled, single blind study	Antibody response following an immunisation of two paediatric tick-borne encephalitis vaccines using two different vaccination schedules	544 children (aged 10 years)	Encepur® Children	Neutralisation Test titer ≥1:20	99%	A higher proportion of children achieved seropositivity following conventional primary vaccination schedule (3 dose Encepur®, 100%; 2 dose FSME-Imm® Junior and 1 dose Encepur®, 99%) compared to accelerated schedule (3 doses Encepur®, 100%; 2 doses FSME-Imm® Junior and 1 dose Encepur®, 99%). Results demonstrated that a primary vaccination course initiated with FSME-Imm® Junior can be completed with Encepur® Children and shows a high immunogenicity.		
Anderson et al.	Retrospective data analysis of a Swedish cohort	Vaccine failure after active immunisation against tick-borne encephalitis	27 TBE vaccine failures	FSME-Imm-Plus®	ELISA	Neutralisation Test titer ≥1:80	Although vaccine failures were reported in age groups, highest incidence of vaccine failures were in individuals aged above 30 years (90% = 30/33)		
Milhauer, Fisch et al.	Randomised, double-blind, multi-center, phase II, dose finding study	Clinical evaluation to determine the appropriate paediatric formulation of a tick-borne encephalitis vaccine	3847 children (aged 1 year)	FSME-Imm®	ELISA	Neutralisation Test titer ≥1:26	Investigation of 1440 children for immunogenicity demonstrated highest protective antibody response in groups with vaccine doses of 0.6 and 1.8 µg. Results demonstrate high immunogenicity in individuals aged 1-15 years. Out of 150 children vaccinated with dose of 1.8 µg (including 304 children aged 1-5 years and 208 children aged 6-15 years randomly assigned to the dose), seropositivity was reported to be 100%.		
Milhauer, Peinova et al.	Randomised, single-blind, multi-center, phase II, comparison study	Comparison of immunogenicity and safety between two paediatric TBE vaccines	303 children (aged 1-11 years)	FSME-Imm® Junior Encepur® Children	Neutralisation Test titer ≥1:50	100%	Reported data demonstrated high immunogenicity in both vaccines (FSME-Imm® Junior and Encepur® Children, Seropositivity after two dose administration was 100% and 97.8% for FSME-Imm® Junior and Encepur® Children, respectively.		
Weiser et al.	Prospective controlled study	Decreased antibody titers and booster response in tick-borne encephalitis vaccines aged 50-90 years	28 adults (aged 50-90 years)	FSME-Imm®	ELISA	Neutralisation Test titer ≥1:10	Antibody concentrations of all titers were reported to be significantly lower in the older study population compared to younger populations. Close to equal low titer results were reported in the age group 50-70 compared to the age group >70 years. A booster vaccination around 5-7 years after last vaccine administration induced adequate antibody production even in the elderly.		
Author, Year	doi or URL	Study Type	Original Study Title	Funding & Sourcing	inv or Study Population	Vaccine(s)	Antibody methodology	Measure of seropositivity	Outcome: Immunogenicity
--------------	------------	------------	----------------------	-------------------	--------------------------	------------	----------------------	--------------------------	--------------------------
J.E. Rampa et al. (2020)	10.1016/j.triplep.2020.01.010	open-label, follow-up study	Travel medicine and infectious disease	Funding & Sourcing: N/A	67 adults	FSME-im-mur* Junior	Neutralization Test	100%	Neuraminidase 100%
Dringer et al. (2011)	10.3851/SV.2011.11.061	cross-protection study	Protection of immunity in tick-borne encephalitis vaccine recipients	Funding & Sourcing: Baxter, France	126 adults	FSME-im-mur*	ELISA	95%	Serum positivity 95%
Aking et al. (2012)	10.1016/j.triplep.2012.08.008	open-label, booster vaccine study	Vaccine protection in children 1-11 years of age	Funding & Sourcing: Baxter	286 children	FSME-im-mur* Junior	Neutralization Test	100%	Neuraminidase 100%
Burtner et al. (2015)	10.1046/jemmun.1302253	age- and gender-matched immunogenicity cohort study	TBE vaccination in children	Funding & Sourcing: Baxter	67 adults	FSME-im-mur*	Neutralization Test	95%	Serum positivity 95%
Herz et al. (2013)	10.1023/med19101.110458	vaccination coverage and TBE incidence study	Protection of immunity in children	Funding & Sourcing: Baxter	98 cases	FSME-im-mur* Junior	Neutralization Test	100%	Serum positivity 100%
Fazekas-Koreva et al. (2012)	10.1038/b-and-c.2013.1679	booster follow-up study	FSME vaccination in children	Funding & Sourcing: Baxter	583 adults	FSME-im-mur*	Neutralization Test	95%	Serum positivity 95%
Becker et al. (2014)	10.1016/j.triplep.2014.08.028	open-label, single-centre, follow-up study	FSME vaccination in children	Funding & Sourcing: Baxter	329 adults	FSME-im-mur*	Neutralization Test	95%	Serum positivity 95%
Lottiaux et al. (2014)	10.1371/journal.pone.0008410	longitudinal study	FSME vaccination in children	Funding & Sourcing: Baxter	62 and adults	FSME-im-mur*	Neutralization Test	95%	Serum positivity 95%
Author, Year	Study Type	Original Study Title	Inv. Study Funding & Sourcing	Vaccine(s)	Antibody methodology Measure of seropositivity	Outcome: Immunoegenic?			
--------------	------------	----------------------	-----------------------------	-----------	---	----------------------			
Schierer et al. (56) 2014	Open-label, multi-centre, booster catch-up study	Impact of tick-borne encephalitis vaccination schedules: The effect of a single catch-up vaccination with FMDV-imum*	Funding & sourcing: Baxter	FMDV-imum*	ELISA	IgG demonstrated the most important factor for long term immunogenicity being the number of previous vaccine doses regardless of time intervals between dose administration. Authors reported negative antibody titers in 4% of children after one year. Vaccine received two doses of any vaccine series to be equal had the previous vaccinations been given according to a regular schedule (every seven years)			
Schierer et al. (48) 2014	Swiss surveillance study	Epidemiology of tick-borne encephalitis in Switzerland, 2003 to 2011	Funding & sourcing: N/A	FMDV-imum*	Confirmed the disease through IgG serum antibodies, IgM serum antibodies were not found. A high rate of IgG serum antibodies in period sera specimens, + TBEV genome amplification	Out of 82 TBE cases with known immunisation history, 65 individuals presented a history of at least one dose of TBE vaccine. In 28 of them a complete three-dose primary vaccination history was documented, while 13 patients received the last dose less than three years and five patients more than five years before onset of the infection. Authors were not able to calculate the rate of these TBEV-vaccine breakthroughs as they were all cases of received vaccine failures, as coverage of vaccinated people in Switzerland is not monitored.			
Kemml et al. (42) 2013	Controlled immunogenicity cohort study	Anti-tick-borne encephalitis (TBE) virus neutralizing antibodies dynamics in natural infections versus vaccination	Funding & sourcing: N/A	FMDV-imum*	ELISA and Neutralization test titers	In comparison to individuals which received complete three dose primary vaccination schedule, natural infected participants did not demonstrate an age-dependent decrease of neutralizing antibody levels.			
Allermann et al. (56) 2013	Open-label, phase IV, follow-up vaccination study	Five year follow-up after primary vaccination against tick-borne encephalitis in children	Funding & sourcing: N/A	FMDV-imum*	Neutralisation Test titers	Results demonstrated high antibody levels (131%) being converted (n=51) and accelerated (n=40) three dose primary vaccination schedule with FMDV-imum* for up to 5 years (vaccine positivity of 94-99%). Therefore, authors recommended first booster dose (fourth dose) in children vaccinated with FMDV-imum* may be extended up to 5 years. Children receiving a mixed primary immunisation series (FMDV-imum* + 3 S/4/5 (Chile)) did not present a faster decrease of antibody levels with 65-75% seropositivity at three years follow-up.			
Ariansen et al. (57) 2015	Open-label, uncontrolled, booster cohort study	Analysis of delayed TBE vaccine response after primary vaccination	Funding & sourcing: ViroScience GmbH Robert Koch-Institute	FMDV-imum*	Neutralisation Test titers	Results demonstrated in 10 individuals (group 2) with primary vaccination history being 3-8 years ago, seropositivity in 53% and 97% for pre-booster test and post-booster test, respectively. In 69 patients (group 2) with primary vaccination history being 3-8 years (range, eight to 27 years) aged 12-43, 54% and 85.6% showed pre- and post-booster seronegativity. Authors conclude that after 4 years after primary vaccination one booster dose of FMDV-imum* leads to protective antibody levels.			

Author, Year	Study Type	Original Study Title	Inv. Study Funding & Sourcing	Vaccine(s)	Antibody methodology Measure of seropositivity	Outcome: Immunoegenic?				
Bellowsky et al. (32) 2015	Controlled study of pediatric TBE vaccine's immunogenicity	Analysis of the immunogenicity of two pediatric tick-borne encephalitis virus vaccines	Funding & sourcing: Baxter Pfizer Inc.	FMDV-imum*	Neutralisation Test titers	Both FMDV-imum* and Enervac* children presented adequate protective antibody levels towards the TBE virus strain K32 and N3.2				
Harth et al. (54) 2014	Prospective, controlled, immunomodulatory phase II study	Recombinant human tumour necrosis factor aligned to tumor necrosis factor	Funding & sourcing: N/A	FMDV-imum*	Neutralisation Test titers of 100% (50% effective dose)	Seropositivity of 39% (95% CI: 24.8-51.2) was reported in the Immunomodulated group, compared to 79% (n=4/81) in the healthy control group 13 months after three dose primary vaccination schedule (n=90 weeks) and four dose primary vaccination (n=90 weeks). Authors conclude that immunomodulated individuals must be carefully informed of their low immunogenicity risk and should receive at least one extra dose of TBE vaccination regardless of age.				
Ito et al. (33) 2018	Observational cohort study	Comparison immune responsiveness but increased reactogenicity after subcutaneous versus intramuscular administration of tick-borne encephalitis (TBE) vaccine	Funding & sourcing: Pfizer Vaccine	FMDV-imum*	Neutralisation Test	Both intramuscular (51%) and subcutaneous (46%) TBE vaccine administration presented adequate immune response in both genders for booster vaccination. No statement can be done about administration route efficacy in primary vaccination as participants have had a vaccination history.				
Author(s)	Year	Study Type	Original Study Title	Funding & Sourcing	Inv. Study Population	Vaccine(s)	Antibody methodology	Measure of seropositivity	Outcome: Immunogenicity	
----------	------	------------	----------------------	-------------------	----------------------	------------	----------------------	--------------------------	--------------------------	
Almeida et al.	2017	prospective, follow-up cohort study	Travel Medicine and Infectious Disease 37 (2020) 101876	Travel Medicine and Infectious Disease 37 (2020) 101876	J.E. Rampa et al.	Travel Medicine and Infectious Disease 37 (2020) 101876	J.E. Rampa et al.	Travel Medicine and Infectious Disease 37 (2020) 101876	J.E. Rampa et al.	Travel Medicine and Infectious Disease 37 (2020) 101876
J.E. Rampa et al.	2017	retrospective & gender-matched comparison study	Tick-borne encephalitis in patients vaccinated for the disease	Funding & sourcing: - Finnish Travel Health Service - Tick-borne encephalitis vaccine (TBEV)	153 adults (aged 21-70 years)	TBE vacccine failures (TBEV)	Conformation of the disease through IgG and IgM seroconversion in intracutaneous antibodies	Travel Medicine and Infectious Disease 37 (2020) 101876	J.E. Rampa et al.	Travel Medicine and Infectious Disease 37 (2020) 101876
Devor et al.	2018	immunogenicity cross-sectional study	Effectiveness of primary vaccination against tick-borne encephalitis in employees of the armed forces	Funding & sourcing: - Israeli Research Agency - Vaccine grants	151 adults (aged 22-49 years)	TBEV	Conformation of the disease through IgG and IgM seroconversion in intracutaneous antibodies	Travel Medicine and Infectious Disease 37 (2020) 101876	J.E. Rampa et al.	Travel Medicine and Infectious Disease 37 (2020) 101876
Goren-Sigal et al.	2019	open-label, phase IIa, controlled cohort study	Tick-borne encephalitis vaccine failures following different primary vaccination schedules demonstrated at 10 years after vaccination	Funding & sourcing: - Israeli Research Agency - Vaccine grants	21 patients with specific immunotherapy	49 patients (21 patients with specific immunotherapy)	Conformation of the disease through IgG and IgM seroconversion in intracutaneous antibodies	Travel Medicine and Infectious Disease 37 (2020) 101876	J.E. Rampa et al.	Travel Medicine and Infectious Disease 37 (2020) 101876

Author(s)	Year	Study Type	Original Study Title	Funding & Sourcing	Inv. Study Population	Vaccine(s)	Antibody methodology	Measure of seropositivity	Outcome: Immunogenicity	
Benvenuti et al.	2020	open-label, phase IIa, follow-up cohort study	Second five-year follow-up after a booster vaccination against tick-borne encephalitis vaccine	Funding & sourcing: - Italian Research Agency - Vaccine grants	206 individuals	Doseup*	Conformation of the disease through IgG and IgM seroconversion in intracutaneous antibodies	Travel Medicine and Infectious Disease 37 (2020) 101876	J.E. Rampa et al.	Travel Medicine and Infectious Disease 37 (2020) 101876
Hassan et al.	2019	retrospective data analysis of region	Tick-borne encephalitis vaccine failures following the rationale for adding or removing dose in individuals starting at age 50 years	Funding & sourcing: - Italian Research Agency - Vaccine grants	51 vaccine failures	unspecified	Conformation of the disease through TBE specific IgM and IgG in sera or specific IgM in cerebrospinal fluid, seroconversion in paired sera over time, or detection of TBE RNA in a clinical specimen	Travel Medicine and Infectious Disease 37 (2020) 101876	J.E. Rampa et al.	Travel Medicine and Infectious Disease 37 (2020) 101876

* Representative data from a study with a specific focus on tick-borne encephalitis vaccine failures following different primary vaccination schedules demonstrated at 10 years after vaccination.
tests are used to quantify a vaccine’s immunogenicity but this leads to difficulties in comparing study results. Therefore, in this systematic review a study’s laboratory test methodology is elaborated in Table 1 and Table 2. If available, the results acquired by an NT were used for interpretation.

4. Results

After removing duplicates and screening, 55 papers were selected for full-text assessment from the investigated databases. Three additional publications were identified for full-text assessment through checking the included papers’ reference lists. Title-, abstract-, and full-text screening was conducted by two researchers (JER, PS). Of the 58 full-text assessed papers, 49 publications (40 pieces of original articles, five research abstracts of poster/oral sessions, three case reports and one case series) were investigated for immunogenicity and safety. Of the 40 original abstracts 26 showed external funding and/or sourcing, 17 excluded for qualitative analysis after full-text assessment and were used for background information if relevant: Three systematic reviews were published original articles were included into two comprehensive tables including 20 with connections to vaccine companies. Relevant data of 37 investigated original articles reported immunogenicity data. Fully vaccinated individuals regardless of the route of vaccination or delays in booster intervals were found to have an adequate immune response [18,38,4]. More severe illness, occurring more often in elderly individuals aged ≥50 years but failures also occurred in younger individuals [2,45]. Further, individuals ≥60 years with an extra priming dose reported no TBE-vaccine failure [2].

The elderly have lower antibody levels with a diminishing immune response starting in individuals aged ≥60 years and even in individuals aged ≥50 years [9,22,44]. Most investigated vaccine failures occurred in individuals aged ≥50 years but failures also occurred in younger individuals [2,45]. Further, individuals ≥60 years with an extra priming dose reported no TBE-vaccine failure [2].

In children, aged 1–15 years, the vaccine formulas of Encepur® and FSME-Immun® Junior lead to high immunogenicity after primary vaccination of 95.6% up to 100% and high long-term seropositivity up to 5 years after primary vaccination [16,19,36,46–48]. There seems to be no age-related differences in the avidity and functional activity of antibodies induced by vaccination [2,49].

4.1. Booster-interval

In children, long term seropositivity for vaccine Encepur® Children and FSME-Immun® Junior were reported for up to 5 years, or 10 years, respectively after primary vaccination [38,50]. In adults both primary vaccination with Encepur® or FSME-Immun® lead to high long term seropositivity (77.3%–94% at ten year follow-up; 91.8% at a median of 15 year of follow-up) [10,22,44,51,52]. However, age groups >60 years showed a faster decline in seropositivity levels [38,44,53].

4.1.2. Interchangeability of TBE vaccines

For both adults and children TBE vaccines can be largely interchanged for primary and booster vaccination [18,37,38,46]. However, one study demonstrated a faster decrease in seropositivity in children receiving a mixed primary vaccination schedule (two doses of FSME-Immun® Junior followed by one dose Encepur® Children) [16].

4.1.3. Special groups

Seropositivity was found to be lower in 66 immunosuppressed patients compared to healthy individuals at 13 months follow-up after primary vaccination schedule [54]. In 17 thymectomized patients no significant differences in antibody levels compared to healthy controls was presented [55]. We found no papers on TBE vaccination in pregnant women. Allergic individuals with or without specific immunotherapy showed adequate immunogenicity [56]. Furthermore, Hepatitis-B vaccine failure showed no correlation to TBE-vaccine failure, as patients with Hepatitis-B vaccine failure were able to gain adequate TBE-vaccine immunogenicity [1]. We found no gender specific data on immunogenicity.
Table 2
Evidence-table of original research investigation on TBE vaccine safety.

Author, Year doi:	Study Type	Original Study Title	Vaccine(s)	Antibody methodology	Measure of seropositivity	Outcome: Safety
Loew-Baselli et al. [38] 2009 [10.4161/hv.5.8.18571]	open label, phase IV, multi-center, follow-up study	Seropersistence of tick-borne encephalitis antibodies, safety and booster response to FSME-Immun® 0.5 ml in adults aged 18-67 years	FSME-Immun®	Neutralization Test titers	≥1:10	Safety assessed in 328 individuals
Wittermann, Schindorf et al. [46] 2009 https://doi.org/10.1016/j.vaccine.2008.10.003	randomized, controlled, single blind study	Antibody response following administration of two paediatric tick-borne encephalitis vaccines using two different vaccination schedules	Encepur® Children, FSME-Immun® Junior	Neutralization Test titers	≥1:10	334 children assessed for safety
Pollabauer, Fritsch et al. [47] 2010 https://doi.org/10.1016/j.vaccine.2010.04.075	randomized, double-blind, multi-center dose finding study	Clinical evaluation to determine the appropriate paediatric formulation of a tick-borne encephalitis vaccine	FSME-Immun®	ELISA	>126 VIEU/ml	Safety analysis in 2417 children
Pollabauer, Pavlova et al. [19] 2010 https://doi.org/10.1016/j.vaccine.2010.04.047	randomized, single blind, multi center, phase III comparison study	Comparison of immunogenicity and safety between two paediatric TBE vaccines	FSME-Immun® Junior, Encepur® Children	Neutralization Test titers	≥1:10	Safety assessed in 302 individuals
Schumacher et al. [59] 2010 https://doi.org/10.1016/j.vaccine.2010.04.002	retrospective data analysis of Swiss data bases	Surveillance for adverse events following immunization (AEFI) in Switzerland-1991-2001	unspecified	N/A		73 reported TBE-vaccine adverse events between 1991 – 2001 were investigated

(continued on next page)
Table 2 (continued)

Author, Year doi:	Study Type	Original Study Title	Vaccine(s)	Antibody methodology	Outcome:
Madar et al. [82] 2011	retrospective data analysis of diabetic patients	Vaccination of patients with diabetes mellitus – a retrospective study	FSME-Immun® Encepur®	N/A	TBE-vaccination was performed using Encepur® (n=6) and FSME-Immun® (n=223) without increasing the risk of serious adverse events.
Askling et al. [37] 2012	open-label, booster vaccine study	Immunogenicity of delayed TBE-vaccine booster	FSME-Immun®	Neutralization Test titers of ED50 (50% effective dose) ≥5	Total of 260 individuals assessed for safety. AE at injection site pain: n=22/260 (8.5%), mild AE: n=25/260 (10%), serious adverse events: n=0/260 (0%).
Prymula et al. [18] 2012	randomized, single blind, multi center, phase III protectivity study	Antibody persistence after two vaccinations with either FSME-IMMUN® Junior or ENCEPUR®	FSME-Immun® Junior Encepur® Children®	Neutralization Test titers ≥1:10	298 children were assessed for adverse events (106 systemic reactions, 11.1% fever 4.0%, 0.0% local reactions, 2.0% serious adverse events).
Paulke-Korinek et al. [22] 2013	booster follow-up study	Factors associated with seroimmunity against tick borne encephalitis virus 10 years after booster vaccination	FSME-Immun®	Neutralization Test titers ≥1:10	In adults suffering of allergies (including atopy and anaphylactic allergies) significant higher antibody levels were found compared to individuals without allergy.
Beran et al. [40] 2014	open-label, single centre, follow-up study	Five-year follow-up after a first booster vaccination against tick-borne encephalitis following different primary vaccination schedules demonstrates long-term antibody persistence and safety	Encepur®	Neutralization Test titers ≥1:10	278 adults were analyzed for adverse events. Pain 55%, swelling 6%, erythema 8%, myalgia 17%, malaise 7%, headache 14%, nausea 4%, arthralgia 5%, fever 1%, serious adverse events 1.1%.
Aerssens et al. [57] 2016	open-label, uncontrolled, booster cohort study	Analysis of delayed TBE-vaccine booster after primary vaccination	FSME-Immun®	Neutralization Test titers ≥1:10	Total of 88 individuals were analyzed for safety. Total adverse events n=7/88 (8%), mild adverse events n=22/88 (2.3%), Systemic reactions n=5/88 (5.7%), fever and/or malaise n=3/88 (2.3%).
Hertzel et al. [54] 2016	prospective, controlled, immunosuppressive immunogenicity study	Tick-borne encephalitis (TBE) vaccine to medically immunosuppressed patients with rheumatoid arthritis: A prospective, open label multi-centre study	FSME-Immun® Encepur®	Neutralization Test titers of ED50 (50% effective dose) ≥5	Safety investigation included 122 individuals. One immunosuppressed individual suffered of gastroenteritis two days after first dose vaccination. There were no Serious adverse drug reactions reported.
Hopf et al. [35] 2016	non-randomized, controlled, administration route study	Comparable immune responsiveness but increased reactogenicity after subcutaneous versus intramuscular administration of tick-borne encephalitis (TBE) vaccine	FSME-Immun®	Neutralization Test titers	116 adults were assessed for safety analysis local reactogenicity (SC / IM) n=54/58 (93.2%) / n=26/58 (50%), local pain (SC / IM) n=44/58 (75.9%) / n=26/58 (44.8%), fever (SC / IM) n=0/58 (0%) / n=2/58 (3.4%).

(continued on next page)
Author, Year doi:	Study Type	Original Study Title	Vaccine(s)	Antibody methodology Measure of seropositivity	Outcome: Safety
Oberle et al. [69] 2016 doi: 10.1097/INF.0000000001073	retrospective analysis of German pediatric database ESPED\(^1\)	Anaphylaxis after immunization of children and adolescents in Germany Funding & sourcing: N/A	1 unspecified 1 strain K23 (probably Encepur®)	N/A	systemic reactions (SC / IM) n=20/58 (34.5%) / n=24/58 (41.4%) SAE n=0/116 (0%) 2 of 22 post-immunization anaphylactic incidences in Germany between June 01, 2008 and May 31, 2010 occurred after TBE-vaccination. Based on 3’125.546 administered doses of TBE vaccine in Germany, the incidence was calculated at 0.69 (0.67 – 1.2) [1.0 (0.99 – 1.4)] (Point Estimate and 95% confidence interval) per million TBE doses administered.\(^{14}\)
Konior et al. [53] 2017 https://doi.org/10.1016/j.vaccine.2017.03.059	prospective, follow-up cohort study	Seropersistence of TBE virus antibodies 10 years after first booster vaccination and response to a second booster vaccination with FSME-IMMUN 0.5 mL in adults Funding & sourcing: Pfizer	FSME-Immum® Neutralization Test titers ≥1:10	47 individuals were assessed for Safety data mild adverse events: (fatigue, injection pain, malaise) Serious adverse events: n=0/47 (0%)	
Garner-Spitzer et al. [56] 2018 https://doi.org/10.1016/j.vaccine.2018.03.076	open-label, phase IV, controlled cohort study	Allergic patients with and without allergen-specific immunotherapy mount protective immune responses to tick-borne encephalitis vaccination in absence of enhanced side effects or propagation of their Th2 bias Funding & sourcing: Pfizer, UCB Pharma, MSD, Baxter, Sanofi	FSME-Immum® Neutralization Test titers ≥1:10	119 individuals (70 allergic, 49 controls) were investigated for safety data. There was found no risk increase for exacerbations and for difference in adverse events rate of the allergic groups in comparison to the non-allergic group.\(^{15}\) local reactions: n (%) allergic no SIT\(^{13}\) group males: 22/49 (50%) females: 0/19 (0%)	
Pollabauer et al. [21] 2019 https://doi.org/10.1016/j.vaccine.2019.03.032	prospective, open-label, phase IV, follow-up cohort study	Seropersistence and booster response following vaccination with FSME-Immum in children, adolescents, and young adults Funding & sourcing: Pfizer	FSME-Immum® Junior Neutralization Test titers ≥1:10	119 individuals (70 allergic, 49 controls) were investigated for safety data. There was found no risk increase for exacerbations and for difference in adverse events rate of the allergic groups in comparison to the non-allergic group.\(^{15}\) local reactions: n (%) allergic no SIT\(^{13}\) group males: 22/49 (50%) females: 0/19 (0%) allergic + SIT\(^{13}\) group males: 12/21 (57.1%) females: 5/9 (56%) control group males: 27/49 (55.1%) females: 6/19 (32%) systemic reactions: n (%) allergic groups 31/70 (44.3%) control group 23/49 (46.9%) In 231 children assessed for adverse events, no vaccine-related serious adverse events or deaths were reported.	

\(^{1}\) Digital Object Identifier; \(^{2} \) SAE = Serious adverse events; LR = Local reactions; SR = Systemic reactions; Systemic reactions were considered not to be related to the vaccination; \(^{3} \) E.C. = Encepur® Children; F-I.J. = FSME-Immum® Junior; \(^{4} \) Dose-finding study of FSME-Immum® Junior; \(^{5} \) Fever at 2nd dose only reported being much lower than 1st dose. Fever showed age dependency; \(^{6} \) FSME-I.J. = FSME-Immum® Junior; Ence. C. = Encepur® Children; SAE = Serious adverse events; Both vaccines present well tolerance in children 1–11 years of age. A significant lower rate of injection site reaction was reported after vaccination with FSME-Immun® Junior compared to Encepur® Children. Close to equal were both vaccines in terms of systemic reactions and fever. Fever was reported more often in children aged 1–2 years compared to other age groups and injection site reaction was showing lowest rate in this age group; \(^{7} \) based on all reports received by the Swiss Federal Office of Public Health or the National Drug Pharmacovigilance Center (“Schweizerische Arzneimittel- benurkungszentrale”);\(^{8} \) In a passive reporting system, such as the ones investigated, milder events tend to be reported at a lower rate making numbers of SAE overrepresented. Incidence of serious adverse events reported to be 2.3 (95%CI: 1.4–3.5) per 100’000 distributed TBE-vaccine doses. Incidence of any adverse drug reactions for any kind of vaccine was described to be 2.7 per 100’000 distributed vaccine doses; \(^{9} \) AE = adverse events; SAE = serious adverse events; \(^{10} \) 298 children assessed for adverse events within seven days of third vaccination dose. No statistically significant differences between Encepur® Children and FSME-Immum® Junior for first and second vaccination reported; \(^{11} \) SAE = serious adverse events; SAE were considered unrelated to the study vaccine by the authors and happened during the long follow-up time. Elective surgeries were not considered as SAE. During the study period four deaths occurred (two grade IV glioblastomas, one myocardial infarction and one suicide). As the suicide did not receive intervention it was not included into the safety analysis, therefore, only three deaths are included into SAE; \(^{12} \) SC = subcutaneous; IM = Intramuscularly; SAE = serious adverse events; There was a significant lower local adverse event rate of redness, swelling and local pain in the intramuscular route compared to the subcutaneous; \(^{13} \) ESPEED – Erhebungseinheit für seltene pädiatrische Erkrankungen in Deutschland (German pediatric surveillance unit); \(^{14} \) Half the anaphylaxis cases following unspecified vaccinations occurred after the first dose. Authors conclude that either another component in the vaccine was the origin of the anaphylaxis or another molecular pathway without need of sensitization started the anaphylaxis; \(^{15} \) SIT = specific immunotherapy; In the group with specific immunotherapy females showed an equal frequency on adverse events compared to males, whereas females in the group without specific immunotherapy and in the healthy control group showed higher adverse events rate than men in the same groups. |
4.2. Safety (Table 2)

17 original articles reported safety data. Local reactions/mild adverse events such as pain at the injection site, tenderness or local swelling were described in 24.8% (4.3–54%) of study participants [18, 19, 35–37, 38–40, 46, 53–56, 57]. Systemic reactions were reported in about 30% (0.6–45.9%) of vaccinees [18, 35, 38, 40, 46, 47]. Fever was reported in 3.4% (0–9.7%) of vaccinees [18, 19, 35–37, 38, 40, 46, 47]. Systemic reactions were reported to be lower after the 2nd dose compared to the first dose administration [19]. Higher rates of local and systemic reactions were reported in 7–11 year old children compared to 1–2 and 3–6 year old age groups [18]. In adults, no age pattern of adverse events was found. Furthermore, the application route led to differences in adverse event reporting: A significantly lower local adverse event rate of redness, swelling and local pain in the intramuscular administration group compared to the subcutaneous group was reported. Systemic reactions were reported to be increased in the intramuscular group, however, this was not statistically significant [35].

Ten studies in our analysis comprising 4455 vaccinees reported no serious adverse events (SAE) [18, 19, 21, 35, 37, 38, 46, 47, 53, 54]. Three studies described SAE: One Encepur® booster five-year follow-up study reported an incidence rate of 5% in 278 adults. These SAE were considered by the authors to be “life events” during the long follow-up and not related to the vaccination (including two grade IV glioblastomas and one myocardial infarction), the possibility of an etiologic link was suggested by Strojnik in 2017 describing neurotropic viral genome in glioblastoma cells [40, 58]. The second study reporting SAE was a surveillance study in a passive Swiss reporting system and it described 19 SAE after unspecified TBE-vaccine administration, leading to a calculation of an incidence rate of 2.3 SAE in 100’000 distributed doses of vaccine [59]. The third publication, a retrospective analysis of a German pediatric surveillance database, presented two cases of anaphylactic shocks after TBE vaccination (one unspecified vaccine, one based on K23 – probably Encepur®). Based on TBE vaccines...
administration numbers in Germany, the incidence was calculated at 0.69 (0.67–1.2) [1.0 (0.99–1.4)] (Point Estimate and 95% confidence interval) per million TBE-doses administered [60].

Based on the data it wasn’t possible to identify sex patterns of adverse events. Although one paper showed adverse events to be reported at a higher rate in healthy females and in allergic females without specific immunotherapy compared to healthy men and allergic men without specific immunotherapy [56]. Further data about safety is displayed in Table 2.

4.3. Research abstracts and case reports/series

4.3.1. Immunogenicity and safety data

Four research abstracts of poster-/oral sessions and one case series reported data on immunogenicity in thymectomized children (presented in 2009) or juvenile idiopathic arthritis (JIA) patients (presented in 2015) [61,62]. An adequate response was achieved in these groups after full vaccination. In a cohort study of 33 adults a lower antibody response was found in individuals aged 60–80 years compared to age group 21–31 years (presented in 2012) [63]. Another controlled cohort study demonstrated an adequate protective antibody level after primary TBE vaccination in elderly [64]. One case-series described four reported vaccine failures; one patient was deemed not to be a vaccine failure case (no second booster vaccination), two individuals to be probable vaccine failures and one case to be a confirmed vaccine failure [24].

Three case reports and one case series reported safety data. Jiménez et al. described the use of a statistical measure, the Information Compound (IC) measure of association. An IC score of 3.0 was found for TBE vaccines suggesting a statistical association between TBE vaccine and facial paralysis, compared to an IC score of 3.1 for a H1N1 influenza pandemic vaccine, an IC score of 3.0 for a hepatitis b/a vaccine or an IC score of 2.3 for a yellow fever vaccine [65]. Another case report described the reactivation of immune thrombocytopenic purpura by a TBE vaccination (FSME-Immun®) with subsequent recovery [66]. A 3-case series investigated excessive daytime sleepiness and narcolepsy-cataplexy starting a few weeks, one month, and two months after TBE vaccination (vaccine unspecified) [67]. In an expert opinion forum, a case of a 2 year old-child with facial paralysis presenting two years after TD with FSME-I. J.® was reduced and studies point to reduced long-term protection in older age groups [68].

Table 3

Author	Years after TD	Seropositivity
Loew-Baseli et al. [38]	3 years after TD with F&E	97.1%
Prymula et al. [18]	28 days after TD with 2x Ence. C.® + 1x FSME-I. J.®	100%
Beran et al. [40]	5 years after TD with Encepur®	100%
Aerssens et al. [57]	≥8 years after TD with FSME-I. J.®	51%
Polfa-bearing et al. [21]	4 years after TD with FSME-I. J.®	90.9%

a TD = third dose.
b Seropositivity = NT titers ≥ 1:10.
c F&E = FSME-Immun® and Encepur®.
d Ence. C. = Encepur®. Children.
e FSME I.J. = FSME-Immun®. Junior.
f Demonstrated in per-protocol set, whereas in all-screened set at five-year follow-up: conventional schedule = 94%, rapid schedule = 90%, accelerated schedule = 93%.
g Demonstrated in 69 patients.
h Median with a range of 0.5–34 months.

Author	Years after TD	Seropositivity
Loew-Baseli et al. [38]	3 years after TD with F&E	97.1%
Prymula et al. [18]	28 days after TD with 2x Ence. C.® + 1x FSME-I. J.®	100%
Beran et al. [40]	5 years after TD with Encepur®	100%
Aerssens et al. [57]	≥8 years after TD with FSME-I. J.®	51%
Polfa-bearing et al. [21]	4 years after TD with FSME-I. J.®	90.9%

a TD = third dose.
b Seropositivity = NT titers ≥ 1:10.
c F&E = FSME-Immun® and Encepur®.
d Ence. C. = Encepur®. Children.
e FSME I.J. = FSME-Immun®. Junior.
f Demonstrated in per-protocol set, whereas in all-screened set at five-year follow-up: conventional schedule = 94%, rapid schedule = 90%, accelerated schedule = 93%.
g Demonstrated in 69 patients.
h Median with a range of 0.5–34 months.

Table 4

Recommendations	Switzerland [83]	Germany [72]	Austria [74]	Sweden [73]	
Age recommendations	6 years	no specific age	1 year (6 months: 3 doses)	Depending on risk of exposure	
Primary schedule in months	3 doses	3 doses	3 doses	3 doses <50 years	
	0, 1, 6	0, 1-3, 5-12 after 2nd	0, 1-3, 5-12 after 2nd	0, 1-3, 5-12 after 2nd	
	Encepur®	0, 1, 10	0, 1-3, 9-12 after 2nd	0, 1-3, 5-12 after 2nd	
	>50 years	0, 1, 3 after 2nd, 5-12 after 3rd dose			
	Accelerated/Rapid schedules				
	FSME-Immun®	0, 14 days, 5-12 months	0, 14 days, 5-12 months	N/A	
		0, 1-3, 5-12 after 2nd	0, 1-3, 5-12 after 2nd	N/A	
	Encepur®	0, 7, 21 days	0, 7, 21 days	N/A	
	First booster interval				
	primary schedule	10 years	3 years	3 years	3 years
	Rapid schedule	N/A	12-18 months	12-18 months	N/A
	2nd and following Booster intervals:				
	≥50 years	10 years	5 years	5 years	5 years
	50-59 years	10 years	3 years	5 years	5 years
	40-60 years	3 years	3 years	3 years	5 years

a Below six years individual risk-benefit estimation.
b Individuals below 3 years of age should be taken into consideration.
c Swiss government vaccine advice documents only described rapid schedules as being available. Exact timing was taken according to the manufacturer’s package insert.
d Rapid schedule described as available but not to prefer if possible.
e After regular primary schedule or after primary rapid schedule with the vaccine Encepur® used.
In adults, terms of safety, the European, licensed vaccines were found to be well tolerated in both children (aged 1–17 years) and in adults, with local injection site reactions in 24.8% (4.3–54%) and systematic reactions in 30% (6.4–45.9%) of vaccinees. Vaccine related serious adverse events (SAE) were rare.

The conventional TBE vaccination schedule (0,28, 300 days) was superior to other schedules in the short-term only [31,46]. Studies show that long-term immunogenicity, after several booster vaccinations, was comparable regardless of the primary vaccination schedule [29,40]. Nevertheless, rapid vaccination schedules should be administered only in individuals requiring protection within a short timespan (such as travellers).

The interchangeability of the two European vaccines was shown in several publications except one from Wittermann et al. which showed a faster decline of antibody levels after a mixed primary vaccination [16,18,37,38,46]. It appears that a mixed vaccine approach can be considered but is not optimal.

Many countries consider that the primary vaccination schedule protects for at least 3 years (Austria, Germany, Sweden), whereas in Switzerland the recommended first booster dose is ten years after the primary schedule [69]. The evidence from this systematic review supports an earlier first booster dose at 3–5 years in children and adults [16,21,51,52,76].

Subsequent booster intervals of at least 5 years in healthy adults were recommended in five studies and, indeed, adequate post-booster protection from 5 years up to ten years for adults and/or children was confirmed [2,10,21,37,40,50]. Our results show a safe immunogenicity of TBE-vaccines for up to ten years after booster vaccination in healthy children (seropositivity at ten year follow-up: 90.3%) and adults below 60 years (seropositivity at ten year follow-up: 77.3%–94%) although lower immunogenicity was observed in adults >50 years of age. Older individuals who have had a 4-dose primary schedule show longer duration of seropositivity after booster doses [2]. Therefore, to ensure protection of older people, recommendations should include a fourth vaccination during the primary schedule and shorter booster intervals [2,25,54].

Evidence on immunogenicity and safety of TBE vaccination in special risk groups remains scant. In a cohort of 70 allergic individuals an immune response after TBE-vaccination was comparable to healthy controls [56]. In studies with limited numbers, immunosuppressed patients showed a lower immune response compared to healthy individuals [54,71]. For thymectomized individuals the evidence shows only an early decreased immune response later approaching levels comparable to healthy controls [55,61]. Immunosuppressed groups must be informed of their high-risk status and should receive an extra dose of TBE-vaccine for primary vaccination regardless of age. There are research gaps: We found no studies documenting incidental TBE vaccine use in pregnant or breastfeeding women. There are few data on use of the vaccine in diabetic patients. Study results were rarely stratified by age and sex, although there are some indications that this is important.

TBE vaccines have both shown to be well tolerated in children and adults with a lower rate of injection site reactions reported with FSME-Immun® Junior compared to Encepur® Children [17–19]. In 10 out of 13 investigated studies analyzing SAE in 4455 individuals no SAE were recorded [18,19,21,35,37,38,46,47,53,54]. In a 5-year follow up study, an incidence rate of 5% SAE was reported for 313 investigated individuals. These SAE were considered “life events” unrelated to the vaccine [40]. In a Swiss surveillance study of 73 adverse events in the years 1991–2001 following TBE-vaccination 19 presented to be SAE corresponding to a rate of 2.3 SAE per 100,000 distributed doses. This time span includes the application of the old mouse-brain derived TBE vaccines [59]. Another study of a German pediatric surveillance database described anaphylactic shock after TBE-vaccination and showed an SAE incidence of 0.69 (0.67–1.2) [1.0 (0.99–1.4)] per million TBE doses administered [60]. In summary, SAE associated with TBE vaccination are rare.

The issue of the timing and the frequency of booster doses is important: Swiss vaccine recommendations, issued by the Federal Office of Public Health, recommend administration of TBE-vaccine to all healthy individuals (>6 years old) in all areas except the cantons of Geneva and Ticino. The primary vaccination schedule should be administered, depending on the vaccine used, at months 0, 1 and 5–12. Thereafter booster vaccinations are recommended every 10 years in all age groups [8]. Swiss recommendations for booster vaccines differ from other countries’ guidelines where boosters are recommended at earlier intervals [72–74] (Table 4).

Vaccination coverage of TBE vaccination is not actively monitored in Switzerland and therefore it is not possible to describe actual coverage, amount of used vaccines or field effectiveness of TBE-vaccines in the Swiss population. An unpublished report suggests a national TBE vaccination coverage of 9.5% for four TBE doses (personal communication Vasiliki B). In Austria Heinz et al. described a field effectiveness for regularly TBE-vaccinated individuals estimated to be around 99% under best case scenario and 96% under worst-case assumptions [34]. To increase coverage, Switzerland’s rules for vaccination availability were adapted in 2015: certain cantons allowed community pharmacists with vaccination certification to administer specific vaccines, such as TBE-vaccine without prescription [75]. To expand coverage of TBE-vaccine, the Swiss army recommended voluntary TBE-vaccinations in young recruits, since 2007 [76]. Because service is only mandatory for Swiss men, there needs to be found another way to reach Swiss females and those who are not of Swiss nationality.

A strength of this Systematic Review is that it was conducted in accordance with PRISMA guidelines [28]. Five online databases were searched to include all the important publications and to summarize most important evidence for the European TBE-vaccines and the main results are highlighted in Table 5. Limitations of this systematic review were the different approaches of the included and investigated studies making outcomes hard to compare. Per example different laboratory tests used like Enzyme-linked Immunosorbtent Assay (ELISA) and NT may not always be comparable. With regard to capturing SAE, most of the vaccine studies investigated, had a small sample size and were not powered to detect rare or SAE. Surveillance systems did identify SAE
research must be done on sex differences in TBE vaccine response and to allow finetuning of risk assessment. Additionally, more research must be done on sex differences in TBE vaccine response and booster intervals for individuals 50–59 years of age, impact of age at priming and on vaccine response in the immunocompromised. To further evaluate TBE vaccine recommendations, it is essential to continuously follow up all previously vaccinated TBE cases with respect to the number of doses and the time of vaccination. This information should be collated in a vaccination register to avoid memory or reporting biases.

In conclusion, TBE vaccination is generally safe with rare serious adverse events. Schedules should, if possible, use the same vaccine brand (non-mixed) and be age adjusted. TBE vaccines are immunogenic in terms of antibody response but less so when vaccination is started later than the age of 50 years. Age at priming is a key factor in the duration of protection.

Conflicts of interest

None of the authors have relevant conflicts of interest to declare.

Acknowledgements

This study was funded, in part, by the Federal Office of Public Health, Switzerland and by the Competence Centre, MilMedBiol, a research collaboration between the University of Zürich and the Swiss Armed Forces.

Appendix

Appendix 1

Detailed search strategy and keywords in the five databases CINAHL, Cochrane, Embase, PubMed, and Scopus

Search Step	CINAHL	Cochrane	Embase	PubMed	Scopus
1	tick borne disease	tick-borne encephalitis	‘tick borne encephalitis’/exp	Encephalitis, Tick-Borne	tick AND borne AND encephalitis
2	encephalitis, tick borne	Publication Year > 2009	‘tick borne encephalitis’	Encephalitis	tick-borne AND encephalitis
3	tick-borne encephalitis	Date added to database < August 31, 2019	‘tick-borne’ AND ‘encephalitis’	tick-borne	fene
4	encephalitis, tick-borne	‘fene’	tick-borne encephalitis	tick-borne encephalitis	1 OR 2 OR 3
5	fene	Combine 1–4 with OR	‘adverse’ AND (‘reactions’ OR ‘events’)	adverse	side and effects
6	Combine 1–4 with OR	‘adverse’	Combine 1–6 with OR	side AND effects	gender AND effects
7	adjuvant	‘adverse’ AND (‘reactions’ OR ‘events’)	Viral Vaccines	adverse AND events	gender
8	adverse (reactions AND events)	‘side’ AND ‘effects’	Drug-Related Side Effects	adverse AND side	effects
9	side AND effects	‘pediatric’	‘gender’	adverse AND reactions	Reaction
10	gender AND effects	‘child’ OR ‘children’	‘child’ OR ‘children’	gender	Adjuvant
11	pediatric	‘elderly’	‘elderly’	Pediatric OR Child OR	OR
12	child OR children	‘immunosenescence’	‘immunosenescence’	side AND effects	Older children
13	Elderly	‘gender’	‘gender’	side AND effects	Elderly
14	immunosenescence	‘sex’	‘immunocompromised’	Immunocompromised	sex
15	gender OR sex	‘immuno compromised’	‘immunocompromised’	Immunocompromised	gender AND effect
16	immunocompromised	‘viral’ AND (‘vaccines’ OR ‘vaccination’)	‘viral’ AND (‘vaccines’ OR ‘vaccination’)	viral AND vaccines	immunocompromised
17	viral AND (vaccines OR vaccination)	‘virus’ AND (‘vaccines’ OR ‘vaccination’)	‘vaccine’ AND (‘vaccines’ OR ‘vaccination’)	viral AND vaccination	virus AND vaccines
18	virus AND (vaccines OR vaccination)	‘protect’ OR ‘protection’	‘protect’ OR ‘protection’	Elderly	virus AND vaccination
19	safety AND (vaccines OR vaccination)	‘dosage’ OR ‘dose’	‘dosage’ OR ‘dose’	immunosenescence	immunosenescence
20	protect OR protection	Combine 6–19 with OR	Protect OR protection	Protect OR protection	vaccines AND safety
21	dosage OR dose	Protection Date	Protect OR protection	Protect OR protection	vaccines AND safety
22	Combine 7–21 with OR	Date added to database between January 01, 2009 and 31/08/2019	viral AND (vaccines OR vaccination)	vaccination AND safety	vaccination AND safety
23	Publication time between January 2009 and August 2019	5 AND 20 AND 21 AND 22	virus AND (vaccines and vaccination)	dosage OR dose	dosage OR dose
24	6 AND 22 AND 23	5 AND 20 AND 21 AND 22	safety AND (vaccine OR vaccination)	Combine 5–23 with OR	vaccines AND safety
25					
26					
27					
28					

Search type for Scopus: Title-Abs-Key (‘…’)[Mesh]; Search type: ‘…’ [All Fields]; Original search: (2009:py OR 2010:py OR 2011:py OR 2012: py OR 2013:py OR 2014:py OR 2015:py OR 2016:py OR 2017:py OR 2018:py OR 2019:py); (“2009/01/01”[PDAT] OR “2019/08/31”[PDAT]); [1-1-2009]/sd NOT
Appendix 2
Strength of original research assessment table

Author, Year	Randomized	Concealed allocation	Controlled	Blinding	Inclusion of >90% patients in analysis	Dropouts described	comments
Jílková [79] 2009	NO	–	YES	open-label	NO (75.5% included in final analysis)	Adequate	1/3 of study population in rapid schedule excluded
Loew-Baselli [38] 2009	NO	–	YES	open-label	Immun: NO (60.7% at 3yfu\(^1\))	appropriate only from follow-up time point	
Paulke-Korinek [44] 2009	NO	–	NO	open-label	Immun: YES	Adequate	
Plentz [51] 2009	NO	–	NO	open-label	Immun: YES	Adequate	
Stiasny [41] 2009	NO	–	YES	N/A	YES	No dropouts	retrospective analysis of vaccine failures
Wittermann [20] 2009	YES	–	YES	single-blind	Immun: YES	No dropouts	
Wittermann [50] 2009	NO	–	NO	open-label	NO	Adequate	
Andersson [45] 2010	NO	–	NO	–	YES	No dropouts	retrospective analysis of vaccine failures
Pollabauer [47] 2010	Immune assessment: YES	N/A	IMMUN: YES	double-blind	IMMUN: YES	Numbers provided –	
	Safety assessment: NO	open-label	SAFETY: YES	N/A	SAFETY: YES	reasons not described	
Pollabauer [19] 2010	YES	N/A	YES	single-blind	YES	Yes	
Schumacher [59] 2010	NO	–	NO	–	YES	N/A	retrospective safety data analysis
Weinberger [9] 2010	NO	–	YES	N/A	YES	NO	
Zlamy [55] 2010	NO	–	YES	open-label	N/A	N/A	
Madzar [82] 2011	NO	–	NO	open-label	YES	N/A	retrospective data analysis
Orlinger [4] 2011	NO	–	NO	–	YES	N/A	
Askling [57] 2012	NO	–	NO	open-label	NO	YES	313 included, 53 lost to follow-up
Baldwin [70] 2012	NO	–	YES	N/A	YES	No dropouts	
Prymula [18] 2012	YES	YES	YES	single-blind	YES	NO	
Garner-Spitzer [1] 2013	YES	–	N/A	YES	N/A	N/A	
Heinz [34] 2013	–	–	–	–	YES	N/A	vaccination coverage and TBE incidence study
Paulke-Korinek [22] 2013	NO	–	NO	open-label	NO	appropriate	follow up study
Bern [40] 2014	NO	–	YES	NO	Immun: YES	No dropouts	appropriate Follow-up Study
Lindblom [80] 2014	NO	–	NO	N/A	YES	No dropouts	
Remoli [81] 2014	No	–	YES	open-label	YES	N/A	
Schoser [56] 2014	NO	–	NO	open-label	NO	appropriate	2915 enrolled subjects and 1240 (42.6%) included for analysis Surveillance study
Schulter [43] 2014	NO	–	NO	open-label	N/A	N/A	
Wittermann [14] 2015	YES	–	YES	open-label	After 3 years group of 111 discontinued	appropriate	follow-up study
Aernsens [57] 2016	NO	–	NO	open-label	YES	No dropouts	
Beck [48] 2016	YES	Unknown	Unknown	YES	No Dropouts	All tested sera included into analysis	
Běsková [53] 2016	NO	–	NO	N/A	YES	appropriate	
Hertzell [52] 2016	NO	–	YES	open-label	YES	No Dropouts	

(continued on next page)
Appendix 2 (continued)

Author, Year	Randomized	Concealed allocation	Controlled	Blinding	Inclusion of ≥90% patients in analysis	Dropouts described	comments
[54] 2016	Hopf	NO	NO	N/A	YES No Dropouts		
[53] 2016	Oberle	NO	NO	N/A	YES No Dropouts		
[52] 2016	Konior	NO	NO	open-label	YES appropriate		
[51] 2017	Lotrícia-Furlan	NO	open-label	YES	No Dropouts	TBE-breakthrough data analysis (no intervention)	
[50] 2018	Dorko	NO	open-label	NO	(51.5% at 10yfu)	No Dropouts	retrospective database analysis
[49] 2019	Garner-Spitzer	NO	open-label	NO	(87% at 10yfu)	No Dropouts	
[48] 2019	Beran	NO	YES open-label	NO	Retrospective surveillance study		
[47] 2019	Hansen	NO	NO	open-label	No Dropouts	No Dropouts	
[46] 2019	Pollabauer	NO	NO	open-label	NO (87% at 10yfu)	179 enrolled into 10yfu from 205 receiving 2nd booster dose (87%) and 358 from earlier study	

1) yfu = years of follow-up.

References

[1] Garner-Spitzer E, Wagner A, Paulke-Korinek M, Kollaritsch H, Heinz FX, Redlberger-Fritz M, et al. Tick-borne encephalitis (TBE) and hepatitis B nonresponders feature different immunologic mechanisms in response to TBE and influenza vaccination with involvement of regulatory T and B cells and IL-10. J Immunol 2013;191:2426–36. https://doi.org/10.4049/jimmunol.1300293.

[2] Hansson KE, Rosdahl A, Insulander M, Vene S, Lindquist L, Gredmark-Russ S, et al. Tick-borne encephalitis vaccine failures: a 10-year retrospective study supporting the rationale for adding an extra priming dose in individuals starting at age 50 years. Clin Infect Dis 2020;70:245–51. https://doi.org/10.1093/cid/ciz176.

[3] Jelenk Z, Keller M, Briggs B, Günther G, Haglund M, Hudeckova H, et al. Tick-borne encephalitis and golden agers: position paper of the International Scientific Working Group on Tick-borne encephalitis (ISW-TBE). Wien Med Wochenschr 2010;160:247–51. https://doi.org/10.1053/j.imp.2008.10.0758.

[4] Orlinger KK, Hofmeister Y, Fritz R, Holzer GW, Falkner FG, Unger B, et al. Decreased antibody titers and booster responses in tick-borne encephalitis virus vaccine based on the European prototype strain induces a seroconversion and seronegative recipients. J Med Virol 2019;91:190–5. https://doi.org/10.1002/jmv.25619.

[5] Weinberger B, Keller M, Fischer K-H, Staisy K, Neuner C, Heinz FX, et al. Decreased antibody titers and booster responses in tick-borne encephalitis vaccine recipients aged 50–90 years. Vaccine 2010;28:3511–5. https://doi.org/10.1016/j.2010.05.028.

[6] Beran J, Lattanzi M, Xie F, Moraschin L, Galgani I. Second five-year follow-up after J.E. Rampa et al. Tick-borne encephalitis annual epidemiological report for 2018. Stockholm; 2019. https://www.ecdc.europa.eu/sites/default/files/documents/TBE-annual-epidemiological-report-2018.pdf.

[7] Wittermann C, Ina A, Petri E, Gniel D, Fragapane E. Five year follow-up after primary vaccination against tick-borne encephalitis in children. Vaccine 2015;33:1824–9. https://doi.org/10.1016/j.vaccine.2015.02.038.

[8] Demicheli V, Debalini MG, Rivetti A. Vaccines for preventing tick-borne encephalitis. Cochrane Database Syst Rev 2009;CD000977. https://doi.org/10.1002/14651858.CD000977.pub2.

[9] Prymula R, Pollabauer EMEM, Pavlova BGBGBG, Low-Baseli A, Fritsch S, Angermayer R, et al. Antibody persistence after two vaccinations with either FSME-IMMUN® Junior or ENCEPUR®. Children followed by third vaccination with FSME-IMMUN® Junior. Hum Vaccines Immunother 2012;8:736–42. https://doi.org/10.4161/hv.20126.

[10] Pollabauer EM, Pavlova BG, Low-Baseli A, Fritsch S, Prymula R, Angermayer R, et al. Comparison of immunogenicity and safety between two paediatric TBE vaccines. Vaccine 2010;28:4608–5. https://doi.org/10.1016/j.vaccine.2010.04.047.

[11] Ruzek D, Avičtů Záplanc T, Borde J, Chrdle A, Kargerova N, et al. Tick-borne encephalitis in Europe and Russia: review of pathogenesis, clinical features, therapy, and vaccines. Antivir Res 2019. https://doi.org/10.1016/j.antiviral.2019.01.014.

[12] Pollabauer E, Angermayer R, Behue U, Zhang P, Harper L, Schmitt H, et al. Seropersistence and booster response following vaccination with FSME-IMMUN in children, adolescents, and young adults. Vaccine 2019;37:3241–6. https://doi.org/10.1016/j.vaccine.2019.03.032.

[13] Pavlova-Korinek M, Kundi M, Lahzer B, Brahtner E, Seidl-Friedrich C, Wiedemann U, et al. Factors associated with seroimmunity against tick-borne encephalitis virus 10 years after booster vaccination. Vaccine 2013;31:1293–7. https://doi.org/10.1016/j.vaccine.2012.12.075.

[14] Heinz FX, Holzmann H, Essl A, Kundi M. Field effectiveness of vaccination against tick-borne encephalitis vaccine with other primary immunization schedules. Expert Rev Vaccines 2010. https://doi.org/10.1586/14760584.9.6.249.

[15] Ruzek D, Avičtů Záplanc T, Klavík I. Tick-borne encephalitis after vaccination: vaccine failure or misdiagnosis. Vaccine 2010;28:7936–40. https://doi.org/10.1016/j.vaccine.2010.09.003.

[16] Revicki DA, Frank L. Pharmacoeconomic evaluation in the real world: effectiveness versus efficacy studies. Pharmacoeconomics 1999;15:423–34. https://doi.org/10.2165/00019053-199915050-00001.

[17] Lesnová GN, Pavloveno EV, Mastrovská OS, Chousov PV. Protective antibody titer for patients vaccinated against tickborne encephalitis virus. Procedia Vaccinol 2011;4:84–91. https://doi.org/10.1016/j.provac.2011.07.012.

[18] Mukherjee S, Sowd KA, Manhart CJ, Legoedwood JE, Darbin AP, Whitehead SS, et al. Mechanism and significance of cell type-dependent neutralization of flaviviruses. J Virol 2014;88:7210–20. https://doi.org/10.1128/jvi.00906-13.

[19] Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol 2009;62:1006–12. https://doi.org/10.1016/j.jclinepi.2009.06.005.

[20] Galgani I, Bunge EM, Hendriks L, Schüdtermann C, Marano C, De Meeuwoze L. Systematic literature review comparing rapid 3-dose administration of the GSK tick-borne encephalitis vaccine with other primary immunization schedules. Expert...
encephalitis virus in older individuals. PloS One 2014;9:e100860. https://doi.org/10.1371/journal.pone.0100860.

[81] Remoli ME, Marchi A, Fortuna C, Benedetti E, Minelli G, Fiorentini C, et al. Anti-tick-borne encephalitis (TBE) virus neutralizing antibodies dynamics in natural infections versus vaccination. Pathog Dis 2015;73:1–3. https://doi.org/10.1093/femspd/ftu002.

[82] Maďar R, Benešová D, Brandejská D, Čermáková M, Dvořáková A, Gazárková O, et al. Vaccination of patients with diabetes mellitus - a retrospective study. Cent Eur J Publ Health 2011;19:98–101. https://doi.org/10.21101/cejphp.c3634.

[83] Swiss vaccination schedules. Fed off Public Heal n.d. https://www.bag.admin.ch/bag/de/home/gesund-leben/gesundheitsfoerderung-und-praevention/impfungen-prophylaxe/schweizerischer-impfplan.html (accessed December 16, 2019).