The Insider: Impact of the Gut Microbiota on Cancer Immunity and Response to Therapies in Multiple Myeloma

Arianna Brevi1, Laura Lucia Cogrossi1,2, Marco Lorenzoni1, Benedetta Mattorre1 and Matteo Bellone1*

1 Cellular Immunology Unit, Department of Immunology, Transplantation and Infectious Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy, 2 Università Vita-Salute San Raffaele, Milan, Italy

The human microbiota is a unique set of microorganisms colonizing the human body and evolving within it from the very beginning. Acting as an insider, the microbiota provides nutrients, and mutualistically interacts with the host’s immune system, thus contributing to the generation of barriers against pathogens. While a strong link has been documented between intestinal dysbiosis (i.e., disruption to the microbiota homeostasis) and diseases, the mechanisms by which commensal bacteria impact a wide spectrum of mucosal and extramucosal human disorders have only partially been deciphered. This is particularly puzzling for multiple myeloma (MM), a treatable but incurable neoplasia of plasma cells that accumulate in the bone marrow and lead to end-organ damage. Here we revise the most recent literature on data from both the bench and the bedside that show how the gut microbiota modulates cancer immunity, potentially impacting the progression of asymptomatic monoclonal gammopathy of undetermined significance (MGUS) and smoldering MM (SMM) to full blown MM. We also explore the effect of the gut microbiome on hematopoietic stem cell transplantation, chemotherapy, immunomodulating therapy and cancer immunotherapy in MM patients. Additionally, we identify the most cogent area of investigation that have the highest chance to delineate microbiota-related and pathobiology-based parameters for patient risk stratification.

Lastly, we highlight microbiota-modulating strategies (i.e., diet, prebiotics, probiotics, fecal microbiota transplantation and postbiotics) that may reduce treatment-related toxicity in patients affected by MM as well as the rates of undertreatment of SMM patients.

Keywords: microbiota, multiple myeloma, monoclonal gammopathy of undetermined significance, smoldering multiple myeloma, prevotella, T helper 17, interleukin 17, gut microbiome

INTRODUCTION

The very moment we open our eyes to the world, our body has already been colonized by symbiotic microorganisms that will increase in number and species and become established through the first years of life into our own microbiota (1). This also is the time in which the immune system gets forged to recognize and eliminate pathogens (2) while acquiring tolerance to the self (3) and the host...
microbiota that becomes an extended self (4). Of note, children share a stereotypic immune system development that is microbiota-driven (5). A strong link between gut microbiota and immune dynamics is also found in adults undergoing immune reconstitution after hematopoietic stem cell transplantation (HSCT) (6). The mechanisms by which the microbiota interacts with the host immune system, and eventually modulates and/or gets modulated by the immune system are not only local, but also systemic and affect distant organs (31). Therefore, disruption to the microbiota homeostasis (i.e., dysbiosis) associates with diseases that span from allergy (32) and other immune-mediated diseases (33) to obesity (34), psychiatric disorders (35) and cancer (36). The microbiota also directly impacts human pathologies. As few examples, selected species of Escherichia coli alkylate DNA on adenosine residues and induce double strand breaks, eventually favoring mutations in colorectal cancer (37); intestinal commensal bacteria lead to androgen biosynthesis, thus promoting endocrine resistance in prostate cancer (38). Additionally, the gut microbiota influences susceptibility of cancer patients to surgery (39), chemotherapy (40), radiotherapy (41) and immunotherapy (42). Indeed, fecal microbiota transplant (FMT) from donors who achieved complete response to anti-PD-1 monotherapy into anti-PD-1-refractory melanoma patients resulted safe, feasible and associated with clinical responses and improved cancer control by the immune system (43). Modulation of the gut microbiome has also been attempted in patients affected by hematologic malignancies because the microbiota is highly susceptible to most of the treatments proposed to these patients (44), and microbiota translocation into the bloodstream of patients with therapy-induced immunosuppression contributes to morbidity and mortality (45). In turn, treatment-induced dysbiosis can be corrected by probiotics, prebiotics and FMT (46).

We focused here on multiple myeloma (MM), a treatable but incurable neoplasia of plasma cells that mainly accumulate in the bone marrow (BM) causing anemia, hypercalcemia, renal insufficiency, and bone lesions (47). Full blown MM is often preceded by two potentially curable asymptomatic diseases: monoclonal gammopathy of undetermined significance (MGUS) and smoldering MM (SMM) (48). Thus, identifying mechanisms by which MGUS and SMM patients progress to full-blown MM would represent a substantial clinical advancement. Microbiota-modulated immunity has been proposed as a mechanism of progression from SMM to MM (49). Additionally, several clinical and preclinical studies have highlighted the role of the gut microbiota in MM patients’ response to therapies (50, 51). Therefore, MM and its asymptomatic phases are examples of diseases in which alteration of the gut flora impacts disease progression, response to therapy and treatment-related toxicities. Information gathered in MM can be translated to other human diseases.

While we refer all interested readers to a more comprehensive review on this topic (52), in our short and more clinically-oriented paper we will start reporting data from both the bench and the bedside that show how the gut microbiota modulates MM. We will define the role of IL-17 in the crosstalk between MM and the intestinal microbiota. We will highlight how the gut microbiota is modified and can modify patients’ susceptibility to treatments. We will conclude with experimental and clinically strategies that can modulate the gut microbiota in patients affected by MGUS, SMM or MM.

GUT MICROBIOTA AND MULTIPLE MYELOMA

Diet can profoundly affect the gut microbiota. While a link between diet an MM has been investigated for decades (53), only recently a correlation between microbiome and progression of MM has been searched for. As for other human diseases (4), the gut microbiota from MM patients has a reduced richness in bacterial species (54). Bacteroides, Clostridium leptum and Rothia are enriched in MM patients when compared to family members, who usually share the microbiome (55). Interestingly, the level of Clostridium leptum positively correlates with ISS stage in MM patients. Because Clostridium leptum and Rothia are butyric acid-producing bacteria, the authors hypothesized dysregulation of the sugar metabolism in the intestine of MM patients (54). Whether short-chain fatty acids (SCFAs) have direct effects on neoplastic plasma cells or anti-MM immunity (56) needs to be investigated.

Opportunist nitrogen-recycling bacteria such as Klebsiella and Streptococcus are enriched in the gut microbiota of MM patients (57). Accordingly, MM patients showed increased urea and glutamine synthetase activity in their feces and more urea and less ammonia in their blood than healthy subjects. Mice treated with FMT from MM patients and challenged with 5TGM1 MM cells experienced accelerated tumor burden that associated with elevated L-glutamine levels in their blood (57). Thus, gut colonization by nitrogen-recycling bacteria accelerates MM by making available L-glutamine. Building on this knowledge, fluoroglutamine might work as PET tracer in MM (58).

Altogether, these findings suggest that metabolites produced by a dysbiotic microbiota impact MM progression. Indeed, genetic diversity in the microbiome provides a wide variety of enzymes that convert polysaccharides and oligosaccharides into SCFAs like acetate, propionate, and butyrate (59). In mice, acetate, butyrate and pentanoate exert partially overlapping effects on T cells, B cells and dendritic cells (60, 61). By activating receptors expressed on intestinal epithelial cells and hematopoietic cells, SCFAs reduce inflammation (62, 63). In the context of autologous HSCT, the presence of the butyrate-producing bacteria Escherichia hallae or Faecalibacterium prausnitzii in the gut microbiota of MM patients positively correlates with increased rates of minimal residual disease negativity (64). In rats, butyrate administration ameliorates colitis by increasing numbers of regulatory T cell (Treg) and suppressing levels of the pro-inflammatory cytokine IL-17A in both plasma and colonic mucosa (65). Conversely, commensals favoring the expansion of intestinal T helper-17 (Th17) cells may...
accelerate MM progression in mice (66). Thus, a strong link exists among commensal bacteria, Treg/Th17 cell balance and MM.

IL-17 SWINGS THE BALANCE BETWEEN GUT MICROBIOTA AND MULTIPLE MYELOMA

A different composition of the gut microbiota induces different immune responses locally and systemically (67). By producing IL-17, Th17 lymphocytes maintain a healthy intestinal mucosa and limit bacteria over-growth (68). Conversely, Treg cells allow tolerance to the extended self and limit excessive inflammation (69). Imbalance in the crosstalk between the host and the microbiota leads to excessive immune activation and expansion of Th17 cells.

Th17 cells are pathogenic in MM (70–72). Alexandrakis et al. (73) originally observed higher IL-17A levels in the peripheral blood of MM patients of stage II and III compared to stage I and a positive correlation with VEGF and microvessel density in the BM, thus hypothesizing a proangiogenic role for IL-17A in MM. Th17 cells are enriched in the BM of MM patients (70), where they support local inflammation and favor bone disease by promoting osteoclast differentiation (71). IL-17A, whose levels are increased in the BM of MM patients, contributes to neoplastic plasma cell survival and proliferation through the autocrine release of IL-6 (74). Also mouse neoplastic plasma cells express functional 17RA/RC (66), and in vivo, MM plasma cells upregulate cell proliferation and cell-cycle progression pathways if stimulated with IL-17A (75); while genes related to antigen processing and presentation and leukocyte trafficking and activation are downregulated in response to IL-17A (75).

Neoplastic plasma cells can produce IL-17A, and treatment with antibodies specific for human IL-17A delayed growth of human MM in immunodeficient mice (76). These findings spurred a clinical trial with anti-IL-17A antibodies in MM patients (NCT03111992). IL-17A also resulted detrimental in the context of allogeneic-HSCT (77, 78). These works also identified IL-17A as the main path linking microbiota to Graft-Versus-Host Disease (GVHD). Indeed, in the absence of donor IL-17A, HSCT was more effective in controlling mouse MM (75).

While IL-17A is also elevated in some MGUS patients (79), a direct link has been reported between gut microbiota, IL-17A and progression of asymptomatic MM to full-blown MM (66). In Vk°MYC mice developing de novo MM that invariably evolves from asymptomatic to symptomatic MM (80), Prevotella heparinolytica, a human commensal (81), induces expansion of Th17 cells in the intestinal mucosa. Gut-born Th17 cells migrate to the BM, where they promote neoplastic plasma cell proliferation and progression from asymptomatic to symptomatic MM. At odds, P. melaninogenica restrain MM progression by limiting expansion of Th17 cells. Similarly, in SMM patients, high levels of BM IL-17 predicted faster progression to active MM (66). Lack of IL-17A in MM mice, or treatment with antibiotics or antibodies blocking IL-17/IL-17R interactions delayed disease progression (66). Thus, targeting the microbiota-IL17A axis in SMM patients might block disease progression.

ROLE OF THE GUT MICROBIOTA IN HEMATOPOIETIC STEM CELL TRANSPLANTATION

HSCT is a primary treatment for hematological malignancies and can be subdivided into autologous or allogeneic based on the use of self or donor-compatible HSCs, respectively (82). While the standard of care for MM patients is to receive high-dose chemotherapy followed by autologous-HSCT, allogeneic-HSCT can be proposed as part of a clinical trial and often associates with drawbacks like GVHD, a clinical condition in which the grafted immune system attacks tissues of the transplant recipient (83–85). The gut microbiota appears directly linked to allogeneic-HSCT success (86) and risk of GVHD (87). A large study including 111 MM patients across multiple clinical centers reported that lower diversity of intestinal microbiota associates with higher risk of transplant- and GHVD-related deaths (88).

Khan and colleagues highlighted interesting similarities in gut microbiota dysbiosis after both autologous- and allogeneic-HSCT in MM patients (89). Changes in the bacteriome and mycobiome also modulate early toxicity and the rate of neutrophil engraftment after autologous-HSCT (90). Generally, changes in bacterial abundances and species were linked to conditioning regimen or patient’s treatments (91, 92). Reduced bacterial diversity associates with increased immune activation, probability of relapse, GVHD and overall mortality (88, 91, 93–98). Enterobacteria and Proteobacteria abundance correlates with increasing probability of GVHD, pulmonary or gastro-intestinal complications and infection (92, 96, 98, 99). More in depth, enrichment in Clostridium difficile and Rothia associated with both autologous- and allogeneic-HSCT-related adverse events in MM patients (100), while colonization of species like Akkermansia muciniphila or Enterococcus faecium predispose to the dominance of other bacteria and further detrimental systemic consequences for patients (101). On the other hand, enrichment in Ruminococcaceae, Lachnospiraceae and Clostridiales correlates with higher transplantation efficiency and reduced GVHD (93, 102). Others identified Blautia, Actinomyces, Prevotella and Eubacterium limosum as commensals with protective effects (91, 98, 101).

Interestingly, a genus of bacteria may harbor species with opposing effects on the immune system (4). One example is Clostridium difficile that may increase risk of GVHD, disease relapse or mortality, contrary to other family members (6, 93, 99, 100). Different effects by different strains belonging to the same genus correlate to different metabolic activities. Butyrate and propionate can reduce GVHD, improve HSCT outcomes but also protect mice against radiation-induced injuries of the hematopoietic compartment (103). The microbiome also regulates energy uptake to improve allogeneic-HSCT outcomes in mice (97, 104), or lactose metabolism whose reduction,
through diet or variation in microbial composition, limits pathological bacteria expansion and adverse effects in patients (105).

IMPACT OF THE GUT MICROBIOTA IN THERAPIES FOR MM PATIENTS

Because the gut microbiota can influence response to therapy and toxicity across different treatments (40), also in MM patients a link between gut microbiota and response to therapies has been investigated.

Proteasome Inhibitors and Immunomodulating Drugs

MM patients benefit from combinations of proteasome inhibitors (PIs; bortezomib, carfilzomib, ixazomib) and immunomodulating drugs (IMiDs; thalidomide, lenalidomide, pomalidomide, dexamethasone) (106). PI treatment is burdened with gastrointestinal toxicity (107) that may also depend on gut microbiota (51). While the work by Pianko and colleagues did not investigate gastrointestinal toxicity in MM patients treated with PIs and/or IMiDs followed by autologous-HSCT, it showed an association between deep treatment response and enrichment in *Eubacterium hallii* and *Faecalibacterium prausnitzii* (64). *F. prausnitzii* usually associates with gut health, and both bacteria are SCFA producers (108), thus suggesting a potential link between SCFA producing bacteria and reduced gastrointestinal toxicity.

A higher prevalence of beneficial bacteria belonging to Bifidobacterium and Lactobacillus genus has been found in mice exposed to dexamethasone (109). Significantly decreased IL-17 levels in the intestinal mucosa and reduced colitis susceptibility were observed in mice receiving FMT from dexamethasone-conditioned donor mice (109). Thus, the immunosuppressive effect of dexamethasone may in part be supported by the induction of an anti-inflammatory microbiota (110).

Chemotherapies

Cyclophosphamide (CTX) is an alkylating agent that stimulates type I interferon response and Th1/Th17 lymphocyte polarization (111). Because of the dual role of Th17 cells in MM pathogenesis and gut homeostasis, the effect of CTX on intestinal microbiota is relevant to understand the therapeutic outcomes in MM patients. *Bacteroidetes* and *Verrucomicrobia* are significantly reduced in mice treated with CTX (112). CTX treatment also increases intestinal barrier permeability and translocation of Gram-positive commensals, which favor Th1 and Th17 cell differentiation and anti-tumor immunity (113, 114).

Similarly, melphalan administration in rats causes severe injury to the small intestine, weight loss and infections (115). These effects recapitulate the toxicity observed in patients and limit melphalan administration to elderly subjects (116). Indeed, melphalan induces dysbiosis, reduction of SCFA production and bacterial translocation (115). Thus, replenishing SCFA or normalization of microbiota composition might re-establish intestinal homeostasis and improve drug tolerability.

Cancer Immunotherapies

A strong correlation exists between gut microbiome and response to immune checkpoint inhibitors (ICIs) (43, 117–123). Interestingly, PD-L1 is expressed on malignant plasma cells, and PD-L1 predicts progression of SMM patients to MM (124). However, early-phase clinical trials with ICI as single agent showed modest activity in MM patients, whereas the combination with PIs ignited toxic events (125, 126). The latter might be linked to PI gastrointestinal toxicity (107). Andrews et al. associated defined microbiota signatures and abundance of *Bakteroides intestinalis* with upregulation of mucosal IL-1β and IL-17 in patients with ICI-related gastrointestinal adverse events (127). Administration of *Bifidobacterium* was sufficient to ameliorate ICI-related immunopathology in mice without dampening antitumor immunity (128). This strategy might also be adopted in MM patients.

The gut microbiota can promote the expansion and persistence of adoptively transferred cytotoxic T cells (CTLs) both in humans and mice (129). In mice, pentanoate and butyrate enhance anti-tumor activity of CTLs and chimeric antigen receptor (CAR)-T cells through metabolic and epigenetic reprogramming (130). A preliminary study on hematological patients receiving CAR-T cell therapy showed enrichment in *Ruminococcaceae*, and *Lachnospiraceae*, which produce SCFA, in patients achieving complete remission (131). Because CAR-T cells are proposed to MM patients (132), it will be interesting to investigate how modulation of the gut microbiota can impact this treatment (133, 134).

CONCLUSIONS

The information gathered so far strongly suggest that interfering with the insider (i.e., modifying the intestinal microbiota) may limit MM progression and increase susceptibility to therapies. These strategies include dietary intervention, administration of prebiotics, probiotics and postbiotics, but also FMT (Figure 1). While the concept of nutritional support is well established in the clinical practice (135), a more precise modulation of the gut microbiota has been attempted only recently, thanks to the acquisition of technologies for microbiome identification (36). Interestingly, unique microbial signatures can also be found in the peripheral blood within and between several cancer types (136).

Clinical trials aimed at modulating the gut microbiome to improve therapeutic response in hematopoietic malignancies are ongoing (Table 1) (137). Many of these trials propose administration of 1-6 different commensals with or without dietary intervention, and several of them focus on FMT. Major outcomes for patients undergoing HSCT are safety and GVHD control. Recently, a randomized trial has been launched to assess FMT efficacy in preventing allogeneic-HSCT complications in MM patients (NCT04935684). In other ongoing clinical trials,
the microbiota is investigated in correlation to taste function (NCT03276481); to the supplementation of probiotic fermented milk product (NCT04530812); and to combined therapies (i.e., Selinuxor, carfizomib and daratumumab or pomalidomide; NCT04661137). Many more studies deal with dietary intervention. As few examples, NCT04920084 will investigate whether a plant-rich diet is feasible and prevent MM in overweight individuals with MGUS or SMM. Another trial will determine if a specific mycobiome supporting diet can reduce gut inflammation in patients undergoing autologous-HSCT (NCT04685525). Resistant starch versus maltodextrin will be compared in a randomized trial involving candidates to autologous-HSCT (NCT05135351).

The natural tropism of bacteria for tumors have been exploited to design bacterial therapy for cancer (138). Commensals can be engineered to deliver drugs into tumors (36), and strategies have been devised to implement bacterial lysis with release of genetically encoded cargo within tumors only when a predefined population density of bacteria is reached (139–141).

Microbiota-derived metabolites (142) and microorganism-associated molecular patterns (143) can protect the BM from ionizing radiation toxicity. Additionally, recovery of lymphocytes and neutrophils after irradiation largely depends on gut microbiota, which also supports nutrients and caloric uptake (97). Because disruption of the intestinal microbiota occurs frequently in HSCT recipients as consequence of the conditioning regimens and wide-spectrum antibiotic use, peri-transplant treatment with simple nutrients, commensal-derived metabolites, selected bacterial species, or even FMT (144) should support optimal immune reconstitution and protection from GVHD and transplant-associated nutritional alterations (135). Of note, FMT in allogeneic-HCT recipients induced protection from intestinal GVHD that associated with increased abundance of butyrate-producing bacteria (144). Butyrate and propionate levels also associate with protection from chronic GVHD in patients affected by MM (145). Administration of resistant starch and prebiotics to allogeneic-HSCT recipients reduced the incidence of acute GVHD that associated with preservation of butyrate-producing commensals (146).

Modulation of the gut microbiota and its derivatives should be time and context dependent. While propionate can provide radioprotection (142), butyrate might limit the immunostimulatory activity of radiotherapy by decreasing dendritic cell antigen presentation (147). In the same vein, melanoma patients resistant to anti-CTLA-4 blockade showed high blood propionate and butyrate levels and higher proportion of Tregs (56). Thus, an excess of SCFAs,
Trial ID	Patient population	Patients (n)	Intervention	Outcome	Result	Status (location)
NCT05135351	MM and Lymphoma patients undergoing autologous HSCT	30	Randomized, double-blind, placebo-controlled trial of resistant starch versus placebo	Primary: feasibility; secondary: hospital duration, rate of neutropenic fever, rate of broad-spectrum antibiotic exposure and rate of gastrointestinal symptoms	–	Not yet recruiting (University of Nebraska, USA)
NCT04629430	Patients affected by hematologic cancer and undergoing HSCT	29	Single group assignment, open label trial of prebiotics and HSCT	Primary: frequency of participants ingesting the required diet; secondary: incidence and severity of acute GVHD and acute GI GVHD, C. difficile infection, patient weight and days to neutrophil engraftment	–	Recruiting (University of Virginia, USA)
NCT00946283	Patients undergoing donor allogenic HSCT for hematologic cancer or myelodysplastic syndrome	30	Single group assignment, open label trial of Lactobacillus rhamosus GG and HSCT	Primary: safety; secondary: none	Terminated due to slow accrual	Terminated (Rutgers Cancer Institute of New Jersey, USA)
NCT03057054	Patients undergoing alternative donor allogenic HCT	500	Randomized, parallel assignment, placebo-controlled trial of Lactobacillus plantarum and HCT	Primary: Incidence of GI acute GVHD; secondary: none	–	Recruiting (Children’s Oncology Group, CA; National Cancer Institute, USA)
NCT04530812	Asymptomatic MM patients	13	Randomized, parallel assignment, open label trial of Kefir and best practice	Primary: changes in biomarkers of metabolism, patient-reported pain, fatigue, gut health, and quality of life; Secondary: gut microbial community structure	–	Completed (Roswell Park Cancer Institute, USA)
NCT00003077	Advanced cancer patients who have significant weight loss and not amenable to curative therapy	63	Randomized, single group assignment, open label trial of high dose omega-3 fatty acids	Primary: survival; secondary: patient weight, maximum tolerated dose and antitumor response	Only 16% of patients has weight stabilization or weight gain	Completed (Holden Comprehensive Cancer Center, USA)
NCT00489209	Primary refractory, relapsing after prior therapy MM patients	60	Randomized, parallel assignment, open label trial of vitamin c, arsenic trioxide, bortezomib and melphalan	Primary: toxicity and safety, efficacy and pharmacokinetics; secondary: time to toxicity	–	Completed (MD Anderson Cancer Center, USA)
NCT00171925	MM and asymptomatic Stage I MM patients	143	Randomized, parallel assignment, open label trial of zoledronic acid, calcium and vitamin D	Primary: progression free survival; secondary: number of patients with skeletal-related events and complications	Reduced overall disease progression and skeletal events	Terminated (Novartis Investigative Site, DE)
NCT00317811	MM and plasma cell neoplasm patients	35	Single arm, open label trial of ascorbic acid, bortezomib and melphalan	Primary: overall response, safety and tolerability, time to disease progression; secondary: time to response, PFS, OS	Disease controlled in 94% of patients	Completed (Oncotherapeutics, USA)
NCT00661999	Anemic patients undergoing chemotherapy for nonmyeloid malignancies	502	Randomized, parallel assignment trial of ferrous sulfate, darbepoetin alfa and sodium ferric gluconate	Primary: hematopoietic response; secondary: hemoglobin levels, time to RBC transfusion, overall quality of life	No significant improvement	Completed (Mayo Clinic, USA)
NCT00951626	Patients affected by hematologic cancer and undergoing allogenic HSCT	282	Randomized, parallel assignment trial of diet intervention	Primary: quality of life; secondary: time-to-complication, number of complications, mortality	–	Completed (City of Hope Comprehensive Cancer Center, USA)

(Continued)
while protective in some contexts (60–63, 65, 93, 108), may be detrimental for the induction of efficient anti-cancer CTL responses (56, 147, 148). The situation is even more complex in MM patients, in which modulation of the gut microbiota and its metabolic derivatives should aim at restraining Th17 cell numbers in favor of optimal CTL responses (4). It will be interesting to investigate in animal models of MM if resistant fiber or SCFA supplementation in combination with immune checkpoint blockade limit the expansion of Th17 cells in favor of a potent anti-tumor immunity.

Manipulation of the gut microbiota is not without risks (149). Probiotic strains (e.g., *Lactobacilli*) can cause bacteriemia although the mechanism of transmission from probiotic to blood is unclear (150). Probiotics may also impair microbiota reconstitution after antibiotic-induced dysbiosis (151). Thus, further investigation is warranted to better understand the mechanistic links between prokaryotic and eukaryotic cells sharing our body space.

AUTHOR CONTRIBUTIONS

MB designed the review. MB, AB, LC, ML, and BM performed the literature review and wrote the manuscript. AB designed and created the table and the figure. All authors reviewed and edited the manuscript. All authors also approved the final version of the manuscript.

REFERENCES

1. Gilbert JA, Blaser MJ, Caporaso JG, Jansson JK, Lynch SV, Knight R. Current Understanding of the Human Microbiome. *Nat Med* (2018) 24:392–400. doi: 10.1038/nm.4517
2. Caballero S, Pamer EG. Microbiota-Mediated Inflammation and Antimicrobial Defense in the Intestine. *Annu Rev Immunol* (2015) 33:227–56. doi: 10.1146/annurev-immunol-032713-120238

FUNDING

The research leading to these results has received funding from Associazione Italiana per la Ricerca sul Cancro (AIRC) under IG2018–21. MB was supported by a grant from the Fondazione Italiana per la Ricerca sul Cancro/AIRC (Grants #22316 to AB).

ACKNOWLEDGMENTS

We apologize to any investigators whose work has not been underlined in this review due to oversight or space limitations.

AUTHOR CONTRIBUTIONS

MB designed the review. MB, AB, LC, ML, and BM performed the literature review and wrote the manuscript. AB designed and created the table and the figure. All authors reviewed and edited the manuscript. All authors also approved the final version of the manuscript.

REFERENCES

1. Gilbert JA, Blaser MJ, Caporaso JG, Jansson JK, Lynch SV, Knight R. Current Understanding of the Human Microbiome. *Nat Med* (2018) 24:392–400. doi: 10.1038/nm.4517
2. Caballero S, Pamer EG. Microbiota-Mediated Inflammation and Antimicrobial Defense in the Intestine. *Annu Rev Immunol* (2015) 33:227–56. doi: 10.1146/annurev-immunol-032713-120238

FUNDING

The research leading to these results has received funding from Associazione Italiana per la Ricerca sul Cancro (AIRC) under IG2018–21. MB was supported by a grant from the Fondazione Italiana per la Ricerca sul Cancro/AIRC (Grants #22316 to AB).

ACKNOWLEDGMENTS

We apologize to any investigators whose work has not been underlined in this review due to oversight or space limitations. LC conducted this study in partial fulfillment of her PhD in Molecular Medicine, Program in Molecular Oncology and Immunology, Università Vita-Salute San Raffaele, Milan, Italy.
Brevi et al. Gut Microbiota and Multiple Myeloma

45. Song Y, Himmel B, Ohrmalm L, Gyarmati P. The Microbiota in Hematologic Malignancies. *Curr Treat Options Oncol* (2020) 21:2. doi: 10.1007/s11972-019-00693-0

46. Severyn CJ, Brewster R, Andermann TM. Microbiota Modification in Hematology: Still at the Bench or Ready for the Bedside? *Blood Advances* (2019) 3:461–72. doi: 10.1182/bloodadvances.201900365

47. Palumbo A, Anderson K. Multiple Myeloma. *N Engl J Med* (2011) 364:1046–60. doi: 10.1056/NEJMra1011442

48. Kyle RA, Larson DR, Therneau TM, Dispenzieri A, Kumar S, Cerhan JR, et al. Long-Term Follow-Up of Monoclonal Gammapathy of Undetermined Significance. *N Engl J Med* (2018) 378:241–9. doi: 10.1056/NEJMoa1709974

49. Brevi A, Cogrossi LL, Grazia G, Masciovecchio D, Impellizzieri D, Lacanfora L, et al. Much More Than IL-17a: Cytokines of the IL-17 Family Between Microbiota and Cancer. *Front Immunol* (2020) 11:565470. doi: 10.3389/fimmu.2020.565470

50. Ahmed N, Ghannoum M, Gallogly M, de Lima M, Malek E. In *Ann Rev Immunol* (2011) 29:327–52. doi: 10.1146/annurev-immunol-020711-074937

51. Alkharabsheh O, Sidiqi MH, Aljama MA, Gertz MA, Frankel AE. The Human Microbiota in Multiple Myeloma and Proteasome Inhibitors. *Acta Haematol* (2020) 143:118–23. doi: 10.1159/000500976

52. Jasinski M, Bilinski J, Basak GW. The Role of the Gut Microbiome in Pathogenesis, Biology, and Treatment of Plasma Cell Dyscrasias. *Front Oncol* (2021) 11:741736. doi: 10.3389/fonc.2021.741736

53. Shapiro YN, Peppercorn JM, Yee AJ, Branagan AR, Raje NS, Donnell EKO. Lifestyle Considerations in Multiple Myeloma. *Blood Cancer J* (2021) 11:172. doi: 10.1041/s148-021-00560-x

54. Zhang B, Gu J, Liu J, Huang B, Li J. Fecal Microbiota Taxonomic Shifts in *Human Microbiota in Multiple Myeloma and Proteasome Inhibitors*. *Front Oncol* (2020) 10:760. doi: 10.3389/fonc.2020.00760

55. Ahmed N, Ghannoum M, Gallogly M, de Lima M, Malek E. Influence of Gut Microbiota on Multiple Myeloma: Friend or Foe? *J Immunother Cancer* (2020) 8(1):e000576. doi: 10.1136/jitc-2020-000576

56. Lax S, Smith DP, Hampton-Marcell J, Owens SM, Handley KM, Scott NM, et al. *Metabolite-Blockade in Hosts With Cancer*. *Cell Mol Immunol* (2012) 9:74. doi: 10.1038/cmi.2012.52

57. Macia L, Tan J, Vieira AT, Leach K, Stanley D, Luong S, et al. Metabolite Sensing Receptors GPR43 and GPR109A Facilitate Dietary Fibre-Induced Gut Homeostasis Through Regulation of the Inflammatory Response. *Nat Commun* (2012) 3:7959–9. doi: 10.1038/ncomms13479

58. Valtorta S, Toscani D, Chiu M, Sartori A, Coliva A, Brevi A, et al. [(18)F] FDG Uptake in Myeloma. *Int J Mol Sci* (2019) 20:2705. doi: 10.3390/ijms20102705

59. Noonan K, Marchionni L, Anderson J, Pardoll D, Roodman GD, Borrello I. A Novel Role of IL-17-Producing Lymphocytes in Mediating Lytic Bone Disease in Multiple Myeloma. *Blood* (2010) 116:3554–63. doi: 10.1182/blood-2010-05-283895

60. Bryant C, Suen H, Brown R, Yang S, Favaloro J, Kildiu L, et al. Long-Term Survival in Multiple Myeloma is Associated With a Distinct Immunological Profile, Which Includes Proliferative Cytotoxic T-Cell Clones and a Favourable Treg/Th17 Balance. *Blood Cancer J* (2013) 3:x:148. doi: 10.1038/bcj.2013.34

61. Alexandrakis MG, Pappa CA, Miyakis S, Sridakal S, Mafiou M, Alegakis A, et al. Serum Interleukin-17 and its Relationship to Angiogenic Factors in Multiple Myeloma. *Eur J Intern Med* (2006) 17:412–6. doi: 10.1016/j.ejim.2006.02.012

62. Prabhala RH, Pellaru D, Fulcitini M, Prabhala HK, Nanjappa P, Song W, et al. Elevated IL-17 Produced by TH17 Cells Promotes Myeloma Cell Growth and Inhibits Immune Function in Multiple Myeloma. *Blood* (2010) 115:3585–92. doi: 10.1182/blood-2009-10-246660

63. Vuckovic S, Minnie SA, Smith D, Garlant KH, Watkins TS, Markay KA, et al. Bone Marrow Transplantation Generates T-Cell-Dependent Control of Myeloma in Mice. *J Clin Invest* (2019) 129:106–21. doi: 10.1172/JCI98888

64. Prabhala RH, Fulcitini M, Pellaru D, Rashid N, Nigroiu A, Nanjappa P, et al. Targeting IL-17A in Multiple Myeloma: A Potential Novel Therapeutic Approach in Myeloma. *Leukemia* (2014) 30:379–89. doi: 10.1038/leu.2015.228

65. Kappel LW, Goldberg GL, King CG, Suh DY, Smith OM, Ligh C, et al. IL-17 Contributes to CD4-Mediated Graft-Versus-Host Disease. *Blood* (2009) 113:945–52. doi: 10.1182/blood-2008-08-172155

66. Calcocott A, Grioni M, Jachetti E, Curnis F, Mondino A, Parmiani G, et al. Targeting TNF-Alpha to Neoangiogenic Vessels Enhances Lymphocyte Infiltration in Tumors and Increases the Therapeutic Potential of Immunotherapy. *J Immunol* (2012) 188:2687–94. doi: 10.4049/jimmunol.1101877

67. Arumugam M, Raes J, Pelletier E, Yamada T, Mende DR, Koirala S, et al. Enterotypes of the Human Gut Microbiome. *Nature* (2011) 473:174–80. doi: 10.1038/nature09944

68. Blazar BR, Hill GR, Murphy WJ. Dissecting the Biology of Allogeneic HSCT Associated With Intestinal Microbiota Composition. *Blood Advances* (2020) 4:8. doi: 10.1182/bloodadvances.2019000365

69. Bjorkstrand B, Ljungman P, Svensson H, Hermans J, Alegre A, Apperley J, et al. Allogeneic Bone Marrow Transplantation Versus Autologous Stem Cell Transplantation in Multiple Myeloma: A Retrospective Case-Matched Study From the European Group for Blood and Marrow Transplantation. *Blood* (1996) 88:4711–8. doi: 10.1182/blood.v88.12.4711.bloodjournall88124711

70. Carli T, D’Ambrosio M, Alegre A, Apperley J, et al. The Role of IL-17A and IL-17F in the Pathogenesis of Multiple Myeloma. *Blood Cancer J* (2016) 6:760. doi: 10.1038/bcj.2016.146
Immunotherapy in Melanoma Patients. Science (2018) 359:97–103. doi: 10.1126/science.aan4236

120. Nakane V, Feitknecht M, Bao R, Chongsuwat T, Zha Y, Alegre ML, et al. The Commensal Microbiome is Associated With Anti-PD-1 Efficacy in Metastatic Melanoma Patients. Science (2018) 359:104–8. doi: 10.1126/science.aao3290

121. Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillere R, et al. Microbiome-Derived Inosine Modulates Response to Checkpoint Inhibitor Immunotherapy. Science (2020) 369:1481–9. doi: 10.1126/science.abc3421

122. Mager LF, Burkhard R, Pett N, Cooke NCA, Brown K, Ramay H, et al. Microbial Metabolites by Probiotics and Improved by Autologous FMT. Blood (2021) 137:595–602. doi: 10.1182/blood.abb0363

123. Davar D, Dzutsev AK, McCulloch JA, Rodrigues RR, Chauvin JM, Morrison RM, et al. Fecal Microbiota Transplant Overcomes Resistance to Anti-PD-1 Therapy in Melanoma Patients. Science (2021) 371:955–62. doi: 10.1126/science.abc0297

124. Gorgun G, Samur MK, Cowens KB, Paula S, Bianchi G, Anderson JE, et al. Lenalidomide Enhances Immune Checkpoint Blockade-Induced Immune Response in Multiple Myeloma. Clin Cancer Res (2015) 21:4607–18. doi: 10.1158/1078-0432.CCR-15-0200

125. Jelinek T, Paiva B, Hajek R. Update on PD-1/PD-L1 Inhibitors in Multiple Myeloma. Front Immunol (2018) 9:2431. doi: 10.3389/fimmu.2018.02431

126. Lesokhin AM, Bal S, Badros AZ. Lessons Learned From Checkpoint Blockade Targeting PD-1 in Multiple Myeloma. Cancer Immunol Res (2019) 7:1224–9. doi: 10.1158/2326-6066.CIR-19-0148

127. Andrews MC, Duong CPM, Gopalakrishnan V, Jebba V, Chen WS, Derosa L, et al. Gut Microbiota Signatures are Associated With Toxicity to Combined CTLA-4 and PD-1 Blockade. Nat Med (2021) 27:1432–41. doi: 10.1038/s41591-021-01406-6

128. Wang F, Yin Q, Chen L, Davis MM. Bifidobacterium can Mitigate Intestinal Immunopathology in the Context of CTLA-4 Blockade. Proc Natl Acad Sci USA (2018) 115:517–61. doi: 10.1073/pnas.1729011115

129. He Y, Fu L, Li Y, Wang J, Geng M, Zhang J, et al. Gut Microbiota Metabolites Facilitate Anticancer Therapy Efficacy by Modulating Cytotoxic CD8(+) T Cell Immunity. Cell Metab (2021) 33:988–1000. doi: 10.1016/j.cmet.2021.03.002

130. Luiu M, Riester Z, Baldrich A, Reichardt N, Yulle S, Busetti A, et al. Microbial Short-Chain Fatty Acids Modulate CD8(+) T Cell Responses and Improve Adoptive Immunotherapy for Cancer. Nat Commun (2021) 12:4077. doi: 10.1038/s41467-021-24331-1

131. Smith M, Zakrzewski J, James S, Sadelain M. Posttransplant Chimeric Antigen Receptor Therapy. Blood (2018) 131:1045–52. doi: 10.1182/blood-2017-08-75212

132. van den Donk N, Usmani SZ, Yong K. CAR T-Cell Therapy for Multiple Myeloma. Lancet Oncol (2020) 12(556):e16. doi: 10.1016/S1470-2045(20)30057-0

133. Schubert ML, Rohrbach R, Schmitt M, Stein-Thoeringer CK. The Potential Influence of the Intestinal Micromilieu and Individual Microbes in the Role of the Intestinal Micromilieu and Individual Microbes in the Immunopathology in the Context of CTLA-4 Blockade. Nat Med (2018) 24:1032–42. doi: 10.1038/s41591-018-0199-z

134. Din MO, Danino T, Prindle A, Skalak M, Selimkhanov J, Allen K, et al. Synchronized Cycles of Bacterial Lysis for Selectively Trigger Protein Expression Within Tumors. Cell (2017) 168:846–58. doi: 10.1016/j.cell.2017.08.047

135. McDade JL, Daniel CR, Helmkim BA, Wargo JA. Modulating the Microbiome to Improve Therapeutic Response in Cancer. Lancet Oncol (2019) 20:277–91. doi: 10.1016/S1470-2045(18)30952-5

136. Zheng H, Nguyen VH, Jiang SN, Park SH, Tian W, Hong SH, et al. Two-Step Enhanced Cancer PD-1 In Multiple Myeloma. Cancer Immunol Res (2017) 5:306–13. doi: 10.1158/bcm.2016.310

137. Poore GD, Kopylova E, Zhu Q, Carpenter C, Fraccarci S, Wandro S, et al. Microbiome Analyses of Blood and Tissues Suggest Cancer Diagnostic Approach. Nature (2020) 579:567–74. doi: 10.1038/s41586-020-2095-9

138. Uribe-Herranz M, Beghi S, Gil-de-Gomez L, Verginadis I, Bittinger K, et al. Gut Microbiota Modulate Dendritic Cell Antigen Presentation and Radiotherapy-Induced Antitumor Immune Response. J Clin Invest (2020) 130:466–79. doi: 10.1172/JCI124332

139. McQuade JL, Daniel CR. CD8alpha Dendritic Cells and IL-12. Nat Med (2019) 25:1728–32. doi: 10.1038/s41591-019-0439-x

140. 2017-08-75212

141. Yelin I, Flett KB, Merakou C, Methrota P, Stamatelou G, et al. Genomic and Epidemiological Evidence of Bacterial Transmission From Probiotic Capsule to Blood in ICU Patients. Nat Med (2019) 25:1728–32. doi: 10.1038/s41591-019-0626-9

142. Suez J, Zmora N, Gilad S, Elinav E, The Pro. Cons, and Many Unknowns of Probiotics. Nat Med (2019) 25:716–29. doi: 10.1038/s41591-019-0439-x