Predicting the gas-liquid transition of mercury from interatomic many-body interaction

Hikaru Kitamura
Department of Physics, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
E-mail: kitamura@scphys.kyoto-u.ac.jp

Abstract. A new cross-hierarchical equation of state for expanded fluid mercury is developed by combining quantum-chemical analysis of interatomic interactions and soft-sphere fluid variational approach. The theory incorporates ab initio diatomic potential energy curves and an additional many-body potential describing the associative interaction of an atom with its neighbouring atoms forming a local temporary cluster. The experimental gas-liquid coexistence curves are accurately reproduced without introducing empirical adjustable parameters. The gas-liquid transition is dominated by the many-body interaction, which becomes strongly attractive as the average coordination number increases and the local electronic states change from nonmetallic to metallic.

1. Introduction
Fluid metals undergo metal-nonmetal (M-NM) and gas-liquid (G-L) transitions when expanded at high temperatures and pressures [1]. The phase diagrams and thermodynamic properties of mercury, a representative fluid metal, have been accurately measured through intensive experimental studies during these 40 years (for a review, see [1]), whereas first-principles microscopic theories accounting for those phase transitions have not been established yet. In this paper, we present an equation of state for expanded fluid mercury that can predict the G-L coexistence curve accurately on the basis of the quantum-mechanical interatomic interactions [2,3]. We shall thereby show that the G-L transition is controlled essentially by the attractive many-body interaction associated with temporary cluster formation in the fluid.

2. Theory
2.1 Many-body interaction
It has been known [4] that the binding energy of two Hg atoms in the ground $6s^2\, ^1S_0$ state amounts to 0.043 eV; the corresponding equilibrium bond length is $7.06\, a_B$, with a_B denoting the Bohr radius. It is clear that such a weak attractive force cannot account for the observed G-L critical temperature, $T_c = 0.151$ eV, of fluid mercury. When many Hg atoms aggregate to form a cluster, however, the strength of each bond is enhanced and the bond length decreases, due to the configuration mixing between the ground and excited ($6s6p$) electronic states [5-7]. Consequently, the potential energy function $V(r_1, \cdots, r_N)$ of an N-atom system cannot be written simply in terms of the diatomic potential $V_{\text{dimer}}(r)$, but an additional contribution arises from the many-body potential $V_{mb}(r_1, \cdots, r_N)$; that is,
where \(r_i \) denotes the positional vector of the \(i \)th atom.

Figure 1 illustrates the values of \(V_{mb}(z, r_{nn})/N \) computed for various configurations of clusters and bulk crystalline solids, each characterized by the coordination number \(z \) and the nearest-neighbor distance \(r_{nn} \). We find that the many-body interaction is attractive (\(V_{mb} < 0 \)); its magnitude is enhanced significantly due to a large 6s-6p mixing as the number of nearest-neighbor atoms increases. Although a crude linear interpolation has been adopted in the regime \(4.3 \leq z \leq 8 \), we note that a similar abrupt change in the cohesive energy has been detected in Hg\(_N\) clusters for \(30 < N < 100 \) [8].

\[V(r_i, \cdots, r_N) = \frac{1}{2} \sum_{i \neq j}^N V_{dime}(|r_i - r_j|) + V_{mb}(r_i, \cdots, r_N), \quad (1) \]

2.2 Equation of state

In the bulk fluid, \(z \) and \(r_{nn} \) can be regarded as fluctuating variables so that their instantaneous values differ from atom to atom; hence, the potential \(V_{mb}(z, r_{nn})/N \) should be averaged over all possible atomic configurations to obtain thermodynamic quantities. In the fluid variational theory, only the correlation functions for the reference hard-sphere (HS) fluid are needed to perform the statistical averages [2,3]. For given atomic number density \(n \) and temperature \(T \), the Helmholtz free energy \(f \) per atom in units of \(k_B T \) may thus be formulated as [2,3]

\[
f(n, T; \eta) = f_{HS}(\eta) + \frac{n}{2k_B T} \int_0^\infty dr 4\pi r^2 V_{dime}(r) g_{HS}(r) + f_0(\eta) \\
+ \sum_{z=1}^{z_{max}} p_{HS}(z) \left[\int_{r_{min}}^{r_{max}} dr_{nn} H_{HS}(r_{nn}) \frac{V_{mb}(z, r_{nn})}{Nk_B T} \right] \left[\int_{r_{min}}^{r_{max}} dr_{nn} H_{HS}(r_{nn}) \right]^{-1}. \quad (2)
\]

Here, \(\eta = \pi n \sigma^3/6 \) is the packing fraction with \(\sigma \) denoting the HS diameter, \(f_{HS}(\eta) \) refers to the free energy of the HS fluid in the Carnahan-Stirling approximation, \(g_{HS}(r) \) represents the radial-distribution function of the HS fluid [10], and \(f_0(\eta) \) is the soft-sphere correction. Within the excluded-volume approximation, \(p_{HS}(z) \) may take on the form [2,3] \(p_{HS}(z) = 12!/[z!(12-z)!] \eta(1-\eta)^{12-z} \), the radius \(r_{max} \) of the first-coordination shell has been set as \(r_{max} = 1.176 \sigma \) by imposing a constraint that the maximum value of \(z \) should be 12. The average coordination number is then given as \(\langle z \rangle = 12 \eta \). The distribution function \(H_{HS}(r_{nn}) \) has been evaluated with the aid of the conditional pair-distribution function for the HS fluids [11]. The variational parameter \(\sigma \) in equation (2) is optimized so as to minimize \(f \).
3. Results and discussion

The G-L coexistence curve computed with equation (2) is shown in figure 2. It can be seen that the present result reproduces the experimental data [1] fairly well. The critical density, temperature, and pressure are predicted as $\rho_c=5.82 \text{ g cm}^{-3}$, $T_c = 1774 \text{ K}$, and $P_c = 1.97 \text{ kbar}$, which agree well with the corresponding experimental values $[1]$, $\rho_c(\text{exp}) = 5.8 \text{ g cm}^{-3}$, $T_c(\text{exp}) = 1751 \text{ K}$, and $P_c(\text{exp}) = 1.67 \text{ kbar}$. A large difference between the coexistence curves with and without V_{mb} clearly demonstrates the significance of the many-body interaction. It has been shown $[2,3]$ that the optimized HS diameter is virtually constant, $\sigma \approx 5.6a_0$, along the coexistence curve.

![Figure 2. Gas-liquid coexistence curves. The full result obtained from equation (2) is shown by the thick solid curve, with the dot indicating the critical point; the dotted curve depicts the average of the gas and liquid densities. The dashed curve represents the coexistence curve obtained by setting $V_{mb}=0$ in equation (2). The experimental coexistence curve [1] is indicated by the dot-dashed curve. The thin solid curves represent the contours of constant average coordination number, $\langle z \rangle=1, 3$ and 5.](image)

Table 1 lists the values of the pressure for selected combinations of mass densities and temperatures. We find that our theory reproduces the experimental data $[1,12]$ accurately below the critical density, but overestimates the pressure in the density range of 9-11 g cm$^{-3}$, where the M-NM transition is expected.

ρ_m (g/cm3)	3	5	7	9	10.7	12
T (K)	1812	1802	1782	1722	1353	922
P (kbar)	1	2	2	3	1	
P_{exp}(kbar)$[1,12]$	1	1	1	1	0.4	0.1

Figure 3 displays the internal pressure, $P_i = (\partial U / \partial V)_T$, the isothermal volume derivative of the internal energy, computed along the coexistence curve. Since U is dominated by the cohesive energy, P_i depends mainly on the density. We find that P_i exhibits a maximum at about 11 g cm$^{-3}$; this trend is qualitatively consistent with the measurements by Yao and Endo $[13]$ and those by Postill et al. $[14]$.

It can be seen in figures 2, 3 and table 1 that the discrepancies between the theoretical and experimental equations of state are largest for $\rho_m=9-11$ g cm$^{-3}$; in this density range, it would be necessary to consider the possibility of heterophase fluctuations $[15]$ associated with the M-NM transition, which might be dismissed in this work.

Table 1. Comparison of theoretical (P) and experimental (P_{exp}) pressures.
We remark finally that, in the case of alkali metals such as K, Rb and Cs, the dimer in the ground Σ_g state is tightly bound while the remaining many-body interaction indicates a weakening of the bond due to the electron delocalization [16]. Strong tendency toward dimer formation should be carefully treated to interpret the recent structural data on expanded fluid Rb by Matsuda et al [17].

References

[1] Hensel F and Warren W W Jr 1999 Fluid Metals (Princeton, NJ: Princeton University Press)
[2] Kitamura H 2007 J. Chem. Phys. 126 134509
[3] Kitamura H 2007 J. Phys.: Condens. Matter 19 072102
[4] Schwerdtfeger P, Wesendrup R, Moyano G E, Sadlej A J, Grief J and Hensel F 2001 J. Chem. Phys. 115 7401
[5] Kitamura H 2006 Chem. Phys. 325 207
[6] Kitamura H 2006 Chem. Phys. Lett. 425 205
[7] Kitamura H 2007 Eur. Phys. J. D 43 33
[8] Haberland H, Kormmeier H, Langosch H, Oschwald M and Tanner G 1990, J. Chem. Soc. Faraday Trans. 86, 2473
[9] Chekmarev D S, Zhao M and Rice S A 1999 Phys. Rev. E 59 479
[10] Trokhymchuk A, Nezbeda I, Jirsák J and Henderson D 2005 J. Chem. Phys. 123 024501
[11] Torquato S 1995 Phys. Rev. E 51 3170
[12] Tamura K and Inui M 2001 J. Phys.: Condens. Matter 13 R337
[13] Yao M and Endo H 1982 J. Phys. Soc. Japan. 51 966
[14] Postill D R, Ross R G and Cusack N E 1968 Philos. Mag. 18 519
[15] Kitamura H 2003 J. Phys.: Condens. Matter 15 6427
[16] March N H and Rubio A 1997 Phys. Rev. B 56 13865
[17] Matsuda K, Tamura K and Inui M 2007 Phys. Rev. Lett. 98 096401

Acknowledgments
The author is grateful to Dr. F. Hensel, Dr. M. Yao and Dr. H. Yoneda for pertinent discussions. This work was supported in part through Grant-in-Aid for Scientific Research provided by the Japanese Ministry of Education, Science, Sports and Culture.