What is an automotive catalyst?

The **automotive catalyst** is used in the exhaust system of vehicles to control the emission of harmful gases, such as HC, CO, NOx, into the atmosphere.

\[
\begin{align*}
2 \text{NO} + \frac{1}{2} \text{O}_2 &\rightarrow \text{N}_2 + \text{O}_2 \\
2 \text{CO} + \text{O}_2 &\rightarrow 2 \text{CO}_2
\end{align*}
\]

High cost critical raw materials Pt, Pd, and Rh are used in automotive catalysts.

For the first time, a trimetallic (Cu, Pd, Rh) nano-catalyst has been synthesized and characterized in large scale, by substituting up to 85% of PGMs!

Synthesis of PROMETHEUS catalyst

Corderite impregnation

Process	Description
Catalyst is dissolved	in water solution
Binder is added	in the solution
Cordierite monoliths	are dried at 80-100°C (1-2 hrs)
Cordierite is merged	into the beaker
Cordierite to the oven	(100-120°C)
Dry	Heating at 400-600°C
Cooling	Mass measurement

Physicochemical characterization

Catalytic Powder: 2% w/w Cu/Pd/Rh on Ce0.68Zr0.32O after calcination, 500-700°C/2hrs

Elements	Results (ppm)	Deviation (ppm)
Copper	14,740	500
Palladium	5,042	200
Rhodium	977	40

- ICP: Confirmation of metal ratio Cu/Pd/Rh = 21/7/1
- XRD: Confirmation of the 2/1 Ce/Zr molar ratio and the cubic phase of the support

Lean-burn conditions (λ=0.99)

- Activation at T > 190°C
- CO oxidation efficiency - 100%
- CH₄ oxidation efficiency - 87%
- Increased NO reduction activity due to Rh presence

Rich-burn conditions (λ=1.03)

- Activation at T > 190°C
- CO oxidation efficiency - 100%
- CH₄ oxidation efficiency - 100%
- NO reduction efficiency - 6%, possibly due to oxidation of Rh nanoparticles

European Patent has been granted on November 2019 (EP3569309)

Part I: Synthesis and Characterization

Platinum Group Metals and Cu synergy

Nanoparticles catalyst synthesis

Wet Impregnation Method

1. M1 is dissolved in water (stirring)
2. M2 is added in the aqueous solution (stirring)
3. M3 is added in the aqueous solution (stirring)
4. Carrier is added in the aqueous solution (stirring)
5. Stirring RT
6. Heating 60-80°C
7. Slurry is formed
8. Dry at 100-120°C
9. Calcination at 500-700°C/2hrs
10. Milling
11. Sieving <350μm

Catalytic activity

Elemental Analysis: ICP

- ICP: Confirmation of metal ratio Cu/Pd/Rh = 21/7/1
- XRD: Confirmation of the 2/1 Ce/Zr molar ratio and the cubic phase of the support

Prometheus: A Copper Based Polymetallic Catalyst for Automotive Applications

This project has received funding from the European Union’s Horizon 2020 Research and Innovation Program under Grant Agreement N° 778893