Selection leads to remarkable variability in the outcomes of hybridisation across replicate hybrid zones

S. Eryn McFarlane1,2 | Joshua P. Jahner1 | Dorothea Lindtke3 | C. Alex Buerkle1 | Elizabeth G. Mandeville4,5

1Department of Botany, University of Wyoming, Laramie, Wyoming, USA
2Department of Biology, York University, Toronto, Ontario, Canada
3Agroscope, Animal GenoPhenomics, Posieux, Switzerland
4Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
5Biology Department, Northern Michigan University, Marquette, Michigan, USA

Correspondence
S. Eryn McFarlane, Department of Biology, York University, Toronto, ON, Canada.
Email: emcfar@yorku.ca

Funding information
National Science Foundation, Grant/Award Number: OIA-2019528

Handling Editor: Mitchell Cruzen

Abstract
Hybrid zones have been viewed as an opportunity to see speciation in action. When hybrid zones are replicated, it is assumed that if the same genetic incompatibilities are maintaining reproductive isolation across all instances of secondary contact, those incompatibilities should be identifiable by consistent patterns in the genome. In contrast, changes in allele frequencies due to genetic drift should be idiosyncratic for each hybrid zone. To test this assumption, we simulated 20 replicates of each of 12 hybrid zone scenarios with varied genetic incompatibilities, rates of migration, selection and different starting population size ratios of parental species. We found remarkable variability in the outcomes of hybridisation in replicate hybrid zones, particularly with Bateson–Dobzhansky–Muller incompatibilities and strong selection. We found substantial differences among replicates in the overall genomic composition of individuals, including admixture proportions, inter-specific ancestry complement and number of ancestry junctions. Additionally, we found substantial variation in genomic clines among replicates at focal loci, regardless of locus-specific selection. We conclude that processes other than selection are responsible for some consistent outcomes of hybridisation, whereas selection on incompatibilities can lead to genomically widespread and highly variable outcomes. We highlight the challenge of mapping between pattern and process in hybrid zones and call attention to how selection against incompatibilities will commonly lead to variable outcomes. We hope that this study informs future research on replicate hybrid zones and encourages further development of statistical techniques, theoretical models and exploration of additional axes of variation to understand reproductive isolation.

KEYWORDS
ancestry, conservation, drift, incompatibility, introgression, secondary contact, speciation
1 | INTRODUCTION

Same thing you do when you cross an elephant and a rhino. El-eph-l-no.
Ted Lasso

Following and during speciation, the local or global persistence of novel species will commonly be tested through range shifts and secondary contact between diverged lineages. Species will be more likely to persist in the face of potential interspecific gene flow if hybrid fitness is low due to incompatible alleles or genotypes (Coyne & Orr, 2004). For some groups, we have good descriptions of the genetics of incompatibilities and evolutionary models for their origin (Fishman & Sweigart, 2018; Larson et al., 2018; Maheshwari & Barbash, 2011; Orr, 1995; Powell et al., 2020). Likewise, we have well-developed expressions for equilibrium clinal variation following secondary contact (Barton, 1979, 1983; Barton & Gale, 1993; Barton & Hewitt, 1985; Endler, 1977). Together these have formed an expectation that we can use empirical observations of gene exchange and ancestry variation in hybrid zones to identify exceptional loci. Specifically, we can use hybrid zones to look for genetic loci associated with reproductive isolation and variation in fitness between hybrids and parental type individuals. For example, geographical and genomic cline methods identify loci with deviations in allelic ancestry or state relative to a genome wide distribution of ancestry (Gompert & Buerkle, 2012; Szymura & Barton, 1986). There is growing interest in using contrasts of multiple hybrid zones to build our understanding of their consistent and idiosyncratic features (e.g. Simon et al., 2021; Westram et al., 2021). This mirrors diverse research in evolutionary biology that uses replicates or multiple instances of evolution to reveal parallel or concordant evolution and to implicate predictable and potentially deterministic features of evolution (Elmer et al., 2014; Ferris et al., 2021; Tenaillon et al., 2016).

In hybrid zones, outcomes of secondary contact and the composition of hybrid populations will be driven by drift, gene flow, selection and attributes of the genome such as linkage and recombination rates. It is an open question what level of consistency among replicate hybrid populations we should expect with different levels of selection against recombinant genotypes. Would high consistency among replicates indicate strong selection and effective reproductive isolation, or would consistency among replicates instead be a hallmark of neutral, clinal variation? We might expect consistency to be indicative of natural selection, particularly directional selection (Pardo-Diaz et al., 2012; Whitney et al., 2006). Indeed, a number of studies have suggested some measure of locus-specific consistency as a way to determine candidate regions for incompatibility loci (e.g. Caballero-Villalobos et al., 2021; Gagnaire et al., 2013; Kingston et al., 2017; Larson et al., 2014). However, the fitnesses of hybrid genotypes that contribute to intrinsic post-zygotic reproductive isolation do not involve directional selection, but are predicted to be multilocus, epistatic incompatibilities (Bateson, 1909; Dobzhansky, 1937; Muller, 1942). Rather than deterministic and consistent shifts in allele frequency, the evolutionary dynamics associated with these fitness matrices include unstable equilibria and frequency dependence that could lead to high variance in outcomes, despite strong selection.

In a world in which the evolutionary processes governing hybridisation generate predictable outcomes, one could map between empirical observations and evolutionary processes. Specifically, hybrid zone characteristics (e.g. genetic composition and ancestry of individuals, number of hybrids, time since contact and relative abundances of parental species) would allow inference of the different demographic conditions, including selection and gene flow. Moreover, replicate hybrid zones could be used to understand how these evolutionary processes vary across space, time, and ecological variation (Buerkle & Rieseberg, 2001; Harrison & Larson, 2016; Rieseberg et al., 1999; Westram et al., 2021). Consistency or parallelism of loci with exceptional differentiation or introgression between populations (via F_{ST}- and geographical or genomic clines) has been suggested as evidence for either loci associated with adaptive introgression or genomic regions associated with reproductive isolation (Langdon et al., 2022; Matute et al., 2020; Rieseberg et al., 1999; Simon et al., 2020, 2021; Westram et al., 2021). Explicitly stated, this predicts that consistent selection against a hybrid genotype, regardless of environment, will lead to detectable consistency across replicate hybrid zones, and this consistency is a hallmark of selection. Further, this assumes that replicate hybrid zones between the same species pairs will behave the same way (i.e. similar to replicated lab populations) across time or space. But the question remains: if hybrid zones are indeed windows into evolution (Harrison, 1990), do different scenes viewed through different windows imply differences in process? If instead the outcomes of hybridisation are highly idiosyncratic or capricious (sensu Lewontin, 1966), potentially due to stochasticity following initial contact in different hybrid zones, the ability to link patterns to processes will be limited no matter how many replicate hybrid zones are sampled.

To resolve expectations for consistency and contingency in evolutionary replicates, we simulated replicate outcomes of hybridisation, varying selection, migration, ratio of parental species and genetic architecture of incompatibilities. We have deliberately simulated only simple genetic architectures, specifically two or four locus incompatibilities, rather than tackling polygenic selection. Specifically, we simulated either an inter-genomic (hereafter ‘BDMI’, i.e. a Bateson–Dobzhansky–Muller incompatibility) or intra-genomic incompatibility (hereafter ‘pathway’). BDMS are theorised as the result of different alleles arising at two (or more) loci in diverged lineages, where an incompatibility arises when the lineages hybridise, and heterozygous genotypes have a negative epistatic interaction, resulting in lower fitness in F_1, F_2, or both categories of individuals (Bateson, 1909; Dobzhansky, 1936; Muller, 1942). For example, Powell et al. (2020) found a two locus incompatibility that contributes to melanoma in *Xiphophorus maculatus* and *H. hellerii* hybrids. In contrast, pathway incompatibilities have been associated with cis regulation of gene expression, where incompatibilities can result in deregulated expression in hybrids (Landry et al., 2007).
We are particularly interested in strictly intrinsic incompatibilities (i.e. hybrids have lower fitness without ecological or extrinsic selection (Coughlan & Matute, 2020)). Intrinsic genetic incompatibilities are expected to be the final step of reproductive isolation, preventing gene flow between species even if there is no longer prezygotic isolation, such as in the case of range shifts or translocations (Coughlan & Matute, 2020). There is an expectation that intrinsic incompatibilities could be more general across taxa than mechanisms leading to prezygotic isolation (Xiong & Mallet, 2022). Once we understand how intrinsic incompatibilities in consistent environments might result in variable outcomes across sites, we can develop theoretical expectations for more complex processes. For example, there are not yet theoretical expectations for how ecological interactions with genetic incompatibilities (Thompson et al., 2022) or ‘hybridisation load’ (Moran et al., 2021) might behave across replicate hybrid zones, or, eventually even across taxa. Theoretical understanding of the variability of intrinsic incompatibilities across replicate hybrid zones is needed as a baseline before adding the additional complications of ecological selection.

In addition to varying selection, migration and incompatibility type, we investigated hybridisation outcomes across a range of starting population size ratios of parental species, from 1:1 to 50:1. Uneven ratios of parental species may occur when a small number of long-distance migrants disperse into the range of a related species, or on range margins where one species is much more common. Anthropogenic hybridisation also likely features unequal starting parental contributions, related to a history of conservation translocations or range expansions, we also wanted to ask to what extent selection could lead to consistency when there are unequal parental population sizes.

Many simulations we use here were originally performed in association with Lindtke and Buerkle (2015), but were not previously used to quantify consistency in outcomes of hybridisation. Lindtke and Buerkle (2015) demonstrated that different genetic architectures causing reproductive isolation resulted in variation in introgression and the effectiveness of reproductive isolation. In contrast, we examined variation among replicates to (1) quantify the degree of variability across replicate hybrid zones with identical evolutionary conditions (genomic architecture and fitness consequences of incompatibilities, population size, migration); (2) determine how different evolutionary conditions affect consistency across replicate hybrid zones and (3) contrast variability of genotypes at specific loci, particularly those underlying the incompatibilities between species. Finally, we examined how consistency among populations increased with unequal parental populations and to what extent this ratio between parental populations made it easier to pinpoint effects of selection on locus-specific introgression. We hypothesise that the effects of drift at both the population and locus-specific levels make it difficult to detect selection. We predict that even when there is consistency among replicate hybrid populations, as is expected when their parental population sizes are unequal, the consistency is not due to strong selection at either the individual or locus-specific level, but rather due to decreased opportunity for stochastic and highly variable outcomes of hybridisation.

2 | METHODS

2.1 | Simulation framework

Following Lindtke and Buerkle (2015) and Gompert et al. (2012), we simulated diploid whole genomes (2N=20) using the software dfuse (https://www.uwyo.edu/buerkle/software/dfuse/, https://doi.org/10.5061/dryad.0506g). A total of 510 loci were simulated per individual, with 51 equally spaced loci per chromosome. Individuals were arranged in a chain of 11 demes or three demes, with infinitely sized populations of different species at either end of the chain of demes and 150 individuals in the intermediate demes. Thus, the meta populations act as sink populations, where there can be admixture from the infinite parental source populations (Figure 1, Lindtke & Buerkle, 2015). Simulations of 11 demes allowed for population structure, with individuals in the spatially central deme unlikely to have direct parentage involving the two species (F₁ or backcrossed hybrids). This is consistent with a ‘classical’ hybrid zone, rather than a ‘mosaic’ hybrid zone (Rand & Harrison, 1989).

To determine the degree of variability among replicate hybrid zones across a broad range of evolutionary conditions, we considered 20 independent replicates of 12 different scenarios that varied by migration rate, strength of selection, and type of incompatibility. Migration rate was set as \(m / 2 \), where \(m \) was either 0.01 or 0.2 and could occur in a stepwise fashion between demes (except from deme 2 to 1 and from deme 10 to 11 (deme 2 to 3 in 3-deme simulations), where migration was not allowed). Viability selection (c) against individuals carrying mismatched alleles in either a BDMI or pathway incompatibility was either 0, 0.2 or 0.9. For all BDMI scenarios, two loci on the first chromosome (the fourth and sixth loci on the first chromosome: 1.4, 1.6) were specified as the causal variants, whereas two loci on both the first and second chromosomes (1.2, 1.4, 2.2, 2.4) were specified for all pathway scenarios (see Figure 1 for genotypic fitness values). Incompatibility locus positions were chosen arbitrarily while maintaining the same distance between markers (Lindtke & Buerkle, 2015).

Individual genotypes, admixture proportion (q), inter-specific ancestry \(Q_{1,2} \), and the number of junctions between ancestry blocks were all recorded for each individual every 10 generations (from 10 to 100). The latter three statistics describe the ancestry of hybrid individuals: the admixture proportion (q) is the proportion of ancestry in an individual from one of the two parental species, the inter-specific ancestry \(Q_{1,2} \) is the proportion of an individual’s diploid genome where one copy comes from parental population 1 and the other parental population 2 (Figure 51; Gompert et al., 2014; Lindtke et al., 2014; Shastry et al., 2021), and the number of junctions describes the extent of recombination between ancestry from the parental genomes. With more generations of hybridisation and recombination, inter-specific ancestry \(Q_{1,2} \) declines and the number of junctions increases. We chose these metrics to describe our hybrid individuals, as the distributions of q, \(Q_{1,2} \) and junctions have been used to infer the processes underlying hybrid zones (Jiggins & Mallet, 2000; Schumer et al., 2017). We also used genomic clines to
describe introgression at individual loci (Gompert & Buerkle, 2011), to better describe hybridisation outcomes at individual loci in addition to the description of overall ancestry of hybrid individuals described by the metrics above. A more comprehensive description of the simulations can be found in Lindtke and Buerkle (2015).

2.2 Unequal parental population sizes

Because we expected rare alleles to go to fixation quickly in small populations, we focused our simulations initially on scenarios with equal proportions of each parental type and primarily present these results. However, unequal parental contributions may be common under some scenarios, so we also simulated other starting ratios of parental population sizes. For these analyses, we used a 3-deme scenario (Figure 1; as in Lindtke & Buerkle, 2015) because this made it more intuitive to directly change the relative contributions of parental populations. Specifically, instead of specifying 150 individuals per deme, as above, we varied the population sizes in demes 1 and 3 to manipulate the parental population sizes, specifying ratios of 50:1, 10:1, 5:1, 2:1 and 1:1 (Table 1). We initially predicted that unequal parental populations could lead to less variation among replicates, as it is expected that more common alleles go to fixation according to their frequency (Kimura, 1962).

2.3 Quantifying variability across replicate hybrid zones

Our primary goal was to determine under which scenarios replicate hybrid zones are consistent with one another. For all analyses, we considered only the central deme where the proportion of hybrids is typically the highest (either deme 6 or deme 2, see Figure 1). Additionally, we focused on the outcomes from generations 10 and 100. As our primary metric of variability, we calculated Fisher’s F statistics from analysis of variance (ANOVA) in R v4.0.5 (R Core Team, 2021) to quantify the ratio of among versus within replicate population sizes in demes 1 and 3 to manipulate the parental population sizes, specifying ratios of 50:1, 10:1, 5:1, 2:1 and 1:1 (Table 1). We initially predicted that unequal parental populations could lead to less variation among replicates, as it is expected that more common alleles go to fixation according to their frequency (Kimura, 1962).
3 | RESULTS

We examined 12 scenarios that varied with respect to the degree of gene flow ($m=0.01$ vs. 0.2), strength of selection ($c=0$ vs. 0.2 vs. 0.9), and genetic architecture (BDMI vs. pathway). In general, proportionally more variation in any of the response variables (q, Q_{12} or number of junctions) was associated with differences among replicates (i.e. had larger ANOVA F statistics) when selection was high, gene flow was low and when incompatibilities were due to a BDMI (Figure 2). At generation 10, there was significant variation explained by replicate in number of junctions in all 12 scenarios (F range: 3.26–146, R^2 range: .020–.482), in admixture proportion (q) for all 12 scenarios (F range: 2.16–1148, R^2 range: .014–.880), and in inter-specific ancestry (Q_{12}) for 12 scenarios (F range: 0.72–153, R^2 range: .005–.494) (Table S1). For the three deme structure, we also found substantial among replicate variation in q when selection was high and migration was low (Figure S2), but the high selection, high migration scenario was more consistent than in the 11 deme structure. At generation 100, replicates differed in the number of junctions for all 12 scenarios (F range: 17.76–1183, R^2 range: .079–.883), in q for all variance for a given simulation scenario. Larger F statistics correspond to a greater variance among replicates relative to variation within replicates. We also report the R^2, the proportion of variance explained by replicate.

We first focused on the variability of individual level parameters by calculating ANOVA F statistics based on q, Q_{12} and the number of transitions (junctions) in ancestry along chromosomes. Next, we asked to what extent specific genetic loci respond similarly across replicates. To do this, we calculated ANOVA F statistics based on the genotypes of three specific loci: a locus directly under selection (locus 1.4); a locus on the same chromosome as selected locus (locus 1.10); and a physically unlinked locus (3.4). In addition to ANOVA on genotypes, we performed ANOVA on minor ancestry. We set the response variable as either the locus specific genotype (0, 0.5 or 1), if mean q for the replicate was <0.5, or, if q >0.5 then we had the response variable as 1-genotype. This ensures that a minor ancestry score of 1 meant an individual had two copies of the rarer ancestry at the replicate level. As a complementary approach to assess genotypic variability among individuals and replicates, we used principal component analysis (PCA) in R based on raw genotypes from all 510 loci. For each replicate, we calculated a 90% confidence ellipse of the first two PCs using the ordiellipse function in vegan v2.6–2 (Oksanen et al., 2022). Finally, we examined the variability in the genetic composition of hybrids using multinomial regression that reflects the probabilities of homozygous and heterozygous genotypes given an individual’s genome-wide admixture proportion (Gompert & Buerkle, 2010). We consider any significant effect of replicate identified by ANOVA to be evidence of variability, although we recognise that statistically significant differences could arise through variation that is not large in magnitude.
12 scenarios (F range: 7.24–3094, R^2 range: .044–.952) and in Q_{12} for 11 scenarios (F range: 1.07–433, R^2 range: .007–.734) (Table S1). For those scenarios with the largest F statistics for q and Q_{12}, extreme variation was not isolated to the chromosome with incompatible loci, but instead extended throughout the genome (Figure 3; note that Q_{12} was less variable in the three deme structure, Figure S3). Accordingly, in these scenarios the genetic composition of hybrids varied greatly across replicates for key characteristics such as the
FIGURE 3 Locus-specific variation in average (among individuals in a replicate) admixture proportion (q, panel a) and inter-specific ancestry (Q_{12}, panel b) for replicates (different colours), six combinations (columns) of migration (m=0.01 or 0.2) and selection (c=0, 0.2 or 0.9), and two types of incompatibilities (BDMI or pathways, in rows). Colours correspond to different replicates and match those in other figures. The black line is the average across all replicates, as in Lindtke and Buerkle (2015). The plots are for simulations after 10 generations. Chromosome 1 has loci with BDMI or pathway incompatibilities, chromosome 2 has pathway incompatibility loci, while chromosome 3 has only neutral loci, and is representative of the rest of the genome (chromosomes 4–10).
A replicate's median explained substantial variation in replicates. Using a three deme structure, we found that replicate effects were often correlated with its median value in generation 100, especially when selection was strong (Figure S4). Colours correspond to different replicates and match those in other figures.

As many empirical hybrid zones have uneven contributions from each parental population, we explored how much the ratio of the parental populations affected the degree of variation among replicates. Using a three deme structure, we found that replicate explained substantial variation in \(q \), \(Q_{12} \) and the number of junctions, across all ratios of parental populations, after both 10 and 100 generations (Table 1, Figures S9–S12). There was substantial variation in the \(F \) statistics, \(p \) values and \(R^2 \) estimates (Table 1). However, it does not appear, as with the 1:1 parental simulations, that there is a larger effect of replicate when there are BDMIs under strong selection and with low migration between populations (Table 1, Tables S2–S6; Figures S3–S12).

Each of the three focal loci (1.4: locus under selection, 1.10: locus physically linked to causal locus and 3.4: physically unlinked locus) had different proportions of variation explained by replicate, depending on the simulation scenario. Replicate was a significant predictor of variation in all scenarios for each of the three loci (Table S7). The ratio of variance explained by replicate in locus 1.4 ranged from \(F=2.7 \) to 233, where there was little variation explained due to replicate in the BDMI scenario with high migration and moderate selection (\(m=0.2, c=0.2, F=2.7, p<.001, R^2=.017 \)). In contrast, in the BDMI scenario with low migration and high selection, there was huge proportion of variation in genotype explained by replicates (\(F=233.1, p<.001, R^2=.598 \)). Similar patterns across scenarios were observed.

![Figure 4](image-url) Individual ancestry varies greatly across the 20 replicates from the BDMI, migration (\(m=0.01 \), selection (\(c=0.9 \) simulations (generation 10, deme 6). Paired estimates of admixture proportion (\(q \)) and inter-specific ancestry (\(Q_{12} \)) can be used to classify individuals as parental \((q=0; Q_{12}=0 \text{ or } 1) \), F1 hybrids \((q=0.5; Q_{12}=1) \), F2 hybrids (on average \(q=0.5; Q_{12}=0.5 \)) or backcrosses (residing on the solid black lines) (Gompert et al., 2014; Lindtke et al., 2014; Shastry et al., 2021). Colours correspond to different replicates and match those in other figures.
found for the other two loci, suggesting that the patterns extended across the genome. We found that using minor ancestry instead of genotype recovered a similar pattern, where replicate explained substantial variation in nearly all scenarios (Table S8). The PCA based on the genotypes from all 510 loci failed to differentiate the replicates from generation 10, except for the scenarios involving a BDMI with \(m = 0.01 \) and \(c = 0.9 \) (Figure S13). At generation 100, however, PCA was able to distinguish among replicates for all low gene flow \((m = 0.01) \) scenarios, but replicates were qualitatively identical for all high gene flow \((m = 0.2) \) scenarios (Figure S14). Finally, there was substantial variation in the multinomial regressions of ancestry each of the three focal loci in both the 11 deme scenario (Figure 5; Figures S15–S17) and the three deme scenario (Figure S18). When considering how the ratio between parental populations affected consistency, we found that the changes were similar regardless of locus-specific selection. So while consistency changed depending on the ratio between parental populations, this was not consistency due to selection (Figure 6).

4 | DISCUSSION

For many of the evolutionary scenarios we modelled, there was remarkable variation in the outcomes of hybridisation across replicates (Figure 2) despite their identical evolutionary and demographic conditions. Notably, both genome-wide ancestry composition of individuals and genotypes at specific loci varied extensively across replicates. Strong selection on the same loci led to increased genotypic variation among replicates, in contrast to naive expectations that selection would lead to more consistent outcomes. Moreover, this result extended across the entire genome with pronounced intra- and inter-chromosomal linkage disequilibrium (Figure 3). Even loci that were not on the same chromosome as the causal loci for incompatibilities were affected by the strong viability selection. For scenarios with unequal starting parental ratios, although outcomes of hybridisation were overall more consistent, under strong selection there was still substantial variation among replicates (Figure 2; Table 1). This lack of a direct causal link between selection strength and outcomes of hybridisation suggests caution when tying patterns of consistency to evolutionary processes in replicate hybrid zones.

Similar outcomes of hybridisation may occur in the presence or absence of strong selection. We found the least variability explained by among replicate differences when selection was weak and migration was high, suggesting that consistency among replicates could in some cases indicate a lack of reproductive isolation, although other mechanisms could cause consistency too. This was the case regardless of the ratio between parental populations (Table 1), or if minor ancestry was used in analyses instead of genotypes (Table S8). In other words, when hybridisation is relatively rare, because migration between populations is low \((m = 0.01) \), there is an opportunity for substantial stochasticity leading to variation among replicates. In contrast, when hybridisation is common, and selection is not very strong against recombinant individuals, replicate populations are more similar. While it is interesting to note when we might expect replicate hybrid zones to be highly comparable, those populations with little selection against hybrids and lots of hybridisation are not terribly relevant from the perspective of identifying loci associated with reproductive isolation, because it is clear that selection on inter-genomic and intra-genomic incompatibilities is not driving hybridisation outcomes in these populations.

Variability in outcomes could arise from many causes. Our results highlight a prominent role for stochasticity in the composition of hybrid zones (Blount et al., 2008), particularly when selection is strong, meaning that chance events in early generations of hybridisation lead to evolution proceeding in dramatically different directions (Gould, 1989). Below, we discuss these results in the context of both speciation research and conservation genetics.

![Figure 5](image_url) **Figure 5** Probability of each AA (homozygous; solid line) and Aa (codominant heterozygote; dashed line) for each of three simulated SNPs in the BDMI scenario where migration is low \(m = 0.01 \) and selection is high \(c = 0.9 \) after 10 generations. Colours correspond to different replicates and match those in other figures. This multinomial regression shows the probability of either a homozygous or heterozygous genotype for a given admixture proportion \(q \).
4.1 | Replicate hybrid zones in speciation genetics

When the geographical ranges of species collide in secondary contact, outcomes of hybridisation have been expected to be similar when mechanisms of reproductive isolation are the same. Further, previous work has shown that selection on individual loci can lead these loci to deviate in ancestry from neutral loci elsewhere in the genome (Gompert & Buerkle, 2011), though attributing deviation at exceptional loci to drift or selection is fraught (Gompert & Buerkle, 2011; McFarlane et al., 2021), as many processes can produce this pattern and both drift and selection can contribute to shaping outcomes at once. These assumptions underlie the basic premise of replicate hybrid zone research: similarities across replicates should be indicative of shared isolating barriers, independent of the effects of genetic drift at each individual population, thereby giving insight into the nature of reproductive isolation between a pair of species (Langdon et al., 2022; Matute et al., 2020; Rieseberg et al., 1999; Simon et al., 2020, 2021; Westram et al., 2021). Despite this expectation, many of our simulations highlight remarkable variation in individual-level parameters (Figures 2 and 4), genotypes (Figure 3), and introgression (Figure 5) across replicates in many cases. For example, more than 80% of the variation in q is explained by among replicate variation when migration is rare and selection against BDMIs is strong (Table S1). When reproductive isolation is strong, one might anticipate consistency, where strong selection might shore up reproductive isolation. But if there are variable
outcomes, then reproductive isolation could collapse in some places but not others, under identical conditions. These unstable equilibria resulting from frequency dependent selection and underdominance (in the context of multi-locus epistasis) in our simulations suggest that a substantial amount of stochasticity could result when reproductive isolation is tested in secondary contact.

In contrast to the idea that strong selection could lead to consistency across replicates, we found that BDMIs combined with strong selection lead to remarkable variation among replicates. Since underdominance created by BDMIs can lead to alternative homozygous genotypic states with full fitness, alternative alleles can rise to high frequency in our different simulation replicates (Figure 1). This was reflected by a bimodal distribution of q scores among replicates particularly when selection on BDMIs was high (Figure 2). We found that the stronger the barriers to gene flow at specific loci, the more variable were the outcomes under identical conditions, and the more variation was explained by among replicate differences, and thus, the more unstable the allele frequencies are across replicates. Further, any drift will lead to alternative homozygotes being favoured due to frequency dependent selection (Ayala & Campbell, 1974; Gomper et al., 2012; Heino et al., 1998). This means that small perturbations to identical systems due to stochasticity can result in drastically different outcomes (Figure 1). The unstable equilibrium dynamics predominate in the first few generations after secondary contact, but eventually steady migration will bring hybrid zones back to migration-drift balance. In the meantime, selection for either parental homozygote has set the trajectory of the system for later generations. This is why late generations were well predicted by early generations (Figures S7 and S8). This is consistent with previous work that has demonstrated the sensitivity of evolutionary trajectories to starting conditions (Losos, 2011; Simões et al., 2008) and the historical sequence of events (i.e. historicity; Lewontin, 1966); while the replicates in our simulations have identical conditions, stochasticity and drift lead to differences in early generations that are perpetuated.

We expect to see the least stochasticity when comparing replicates from scenarios with unequal starting numbers of individuals from admixed populations, as the outcomes of hybridisation (i.e. which pair of alleles go to fixation) should be more easily be predicted based the major allele frequency (Kimura, 1962). Thus, there could be increased consistency, but it would not be because of selection. Indeed, this is what we found (Figure 2). We tested how changing the starting ratios of the parental populations affected consistency among replicates, and we found that there was generally more consistency when there was more asymmetry (Figure 6). However, we have also shown that this increase in consistency at particular loci was when selection was low, and was likely due to drift. If selection led to more consistency across replicates than drift did, which would allow consistency to be used to infer selection, this would be most likely be seen in the 1:1 scenarios. In empirical studies with asymmetry, we expect that observed consistency would likely be due to drift, not selection, and that in these cases it would be even more difficult to point to selection as the underlying mechanism.

Our conception of speciation typically includes a set of phenotypes and underlying genotypes that contribute to reproductive isolation between diverged taxa. However, the results of our simulation study suggest that if taxa hybridise and make fertile and viable progeny in multiple instances of secondary contact, a single, consistent set of loci contributing to reproductive isolation would lead to variable evolutionary dynamics of hybrids and gene flow. That variability will make it more challenging to map the genes associated with reproductive isolation, even if there is a single, consistent genetic architecture. Indeed, we have previously noted that genetic drift can lead to patterns in the genome that can mimic the predicted outcomes of selection in secondary contact (Gomper & Buerkle, 2011; McFarlane et al., 2021). Beyond the challenge of mapping pattern to process, the variation in the effectiveness of reproductive isolation even under (unrealistically) constant conditions suggests that the nature of isolation and gene flow between species is more complex than we have typically appreciated, or than would be suggested by a simple interpretation of ‘speciation genetics’. For these reasons, we suggest that understanding the variation in effectiveness of incompatibilities, where secondary contact occurs in more than one location (or time point), is an interesting avenue for future research. Additionally, coupling between barrier effects, including loci involved in pre- or postzygotic isolation, has been predicted to increase consistency across clines within a hybrid zone (Barton, 1983; Butlin & Smadja, 2018). While we have not considered coupling directly here, we predict that this strengthening of reproductive isolation via weak coupling could increase variability across replicate hybrid zones, as the potential for stochasticity acting on multiple traits would likely increase the variability, not decrease it. However, when we take a strict interpretation of coupling as only between genetic barriers (Barton, 1983), and not when any two potential barriers act at once (Butlin & Smadja, 2018), we might expect that coupling would decrease variability between replicates.

4.2 Implications for conservation research

In the realm of conservation, where replicate hybrid zones are studied because of the potential negative consequences of hybridisation between endemic and introduced species (Allendorf et al., 2001; Mandeville et al., 2017; Todesco et al., 2016; Wolf et al., 2001), our findings are somewhat challenging. Given finite budgets for conservation, the ability to generalise from one setting with potentially hybridising individuals to other unsampled settings (i.e. out-of-sample prediction) would be extremely useful. However, except in specific circumstances (e.g. when selection against hybrids is known to be low, and hybridisation is common), we anticipate substantial variation among hybrid zones even under identical demographic and evolutionary processes, if hybridisation is driven by genomic incompatibilities. This means that to assess the likely extent of hybridisation in each population, for example to protect individuals in those settings with the least hybridisation, each locality might need to be sampled. Since this pattern is driven by genetic drift, the variation
among localities will be even higher with small effective population sizes, as would be expected if one species has been introduced to the range of another. However, our results varying the starting parental ratios (Figure 2, Table 1) suggest that when parental species ratios are uneven at the start of hybridisation, results are relatively consistent in the absence of strong selection. Note, however, that these simulations explicitly exclude ecological factors, which could also produce variable hybridisation outcomes.

The predictability of evolution is negatively (but not linearly) related to effective population size (Szendro et al., 2013), so when considering small, introduced or endangered populations, practitioners must assume that drift and the corresponding stochasticity in the composition of populations are even stronger. One optimistic point worth highlighting is the consistency found across time within replicate hybrid zones. If conditions do not change over time, the distribution of admixture proportions in generation 100 is highly correlated with the distribution in generation 10 (Figures S7 and S8). Practitioners will need to weigh the need for temporal replication to ‘check in’ relative to the need for spatial replication, based on our finding that every new hybrid zone could have a different distribution than those already sampled. However, one caveat is that this temporal stability is based on a system with constant conditions, which is fairly unrealistic.

4.3 | Caveats

One difference between our study and some empirical studies is the use of minor ancestry at haplotypes, rather than admixture proportion, to determine to what extent there are regions of the genome with depleted variation, suggesting incompatibilities (e.g. Langdon et al., 2022; Schumer et al., 2018). While we explored this for specific loci (Table S8), we are conscious that polarising by minor parent assumes that backcrossing in either direction has the same consequences, regardless of the ancestry of the genetic background. Given that most of our simulations assumed the same parental population size and equal contributions to admixture (i.e. there was no asymmetry), the population determined to be the minor ancestor varied among replicates (Figure 1). When we compared minor ancestry at specific loci, we found a very low correlation between (arbitrarily chosen) replicate 1 and 2 and significant variation across replicates in nearly all scenarios (Table S8), suggesting that using minor ancestry rather than genotype does not substantially decrease the variation between replicates.

A second key difference between our simulations and the expectations in empirical systems is the heterogeneous recombination landscape that has been demonstrated to affect speciation (Nachman & Payseur, 2012). Our simulations have a homogenous recombination landscape based on a Poisson process (Lindtke & Buerkle, 2015). This homogenous recombination means that recombination hotspots and cool spots, which could lead to purging of even beneficial alleles in empirical systems (Moran et al., 2021), have not been simulated here. This also means that we would not have found a correlation between recombination and minor ancestry (as in Langdon et al., 2022), although we also did not find a correlation of minor ancestry between replicate populations. Future work could simulate such recombination landscapes and ask how this affects variation in outcomes across replicate hybrid zones.

A third caveat is that we have not simulated adaptive introgression, where an allele from one population introgresses through the hybrid zone into the other population due to directional selection. We expect that some of the similar problems we have demonstrated will apply in that circumstance as well, even if underdominance does not drive variation as we expect it does for BDMIs. Some empirical studies have found evidence of adaptive introgression from introduced species, using replicate hybrid zones (e.g. Bay et al., 2019; Calfee et al., 2020), but few have explicitly ruled out genetic drift as a mechanism, and selection is regularly implicated even when hybrid zones do not show concordant patterns (but see Nouhaud et al., 2022). Given that adaptive introgression is only expected to be possible when recombination is quite high, allowing a beneficial allele to be separated from a neutral or deleterious haplotype (Moran et al., 2021; Uecker et al., 2015), the a priori expectation must be that introgression is commonly due to non-adaptive forces (sensu Barrett & Hoekstra, 2011).

Finally, more generally, our results are illustrative of variability that arises in a particular set of circumstances and are not meant to be a perfect reflection of the most likely population structure and fitness in secondary contact for a pair of taxa in nature. While we have perturbed these simulations to examine robustness, such as considering both an 11 deme and 3 deme population structure (Lindtke & Buerkle, 2015; Figures S2 and S3), simulations can never cover all possible biological variability. The expectations for any natural setting should be informed by knowledge of the system, which will include an appreciation of the complexities due to chance in finite populations, unstable equilibrium allele frequencies (and ancestries), and the dynamics of gene flow between populations with potentially unequal and variable size through time.

4.4 | Strategies for analyses of replicate hybrid zones

Even when there is substantial variability across hybrid zones, there is still the opportunity to capitalise on replication when available. This might be particularly fruitful when the genetic architecture of incompatibilities is expected to be polygenic or selection is less strong, as such cases have less variation explained by among replicate differences (Table S1). Given that polygenic architectures are likely responsible for many cases of reproductive isolation (Barton, 2022), we are encouraged by our results. By accounting statistically for this variability across replicates (rather than assuming all replicates are comparable), one can examine both global and local patterns. For example, some studies have used replicate hybrid zones to ask how ecological variation affects
distributions of admixture (e.g. Chatfield et al., 2010; Culumber et al., 2012; Mandeville et al., 2019, 2021; Velo-Antón et al., 2021), a question that assumes variation across replicates. Here, we have used ANOVA to estimate variance due to replicate, but we have not incorporated other variables (e.g. environmental variability) into our analyses. ANOVAs are excellent for our balanced simulations, but might not be the appropriate method for studies that want to account for variability among replicates and also ask how some other variable (e.g. human activity, temporal variation) affects hybridisation outcomes. Some studies of replicate hybrid zones have used PCA or similar approaches to assess to what extent there were substantial differences among replicates, and then using pairwise correlations between studies, to determine to what extent there was concurrence between admixture distributions, allele frequencies or cline parameters (e.g. Westram et al., 2021).

We found that PCAs did not differentiate among replicates well in the 10th generation after admixture (Figure S13), suggesting that PCAs are not sufficient to confirm similarity among replicates.

One could build more sophisticated hierarchical models beyond ANOVA, but the usual rules about sample size for hierarchical models will apply. For example, Calfee et al. (2020) fit a classic logistic cline model to inferred genome-wide individual ancestry proportions, which fit a cline specific to two replicate instances of the escape of Apis mellifera scutellata and subsequent hybridisation with Apis mellifera. They were thus able to make inferences about the similarities and differences of these two hybrid zones, while accounting for between replicate variation. By using a hierarchical model, which allows for differences among populations in genome wide distributions, but assumes that these distributions are all pulled from a global population, there is an opportunity to compare clines at the same locus across populations, without assuming that the populations are perfectly comparable. This means that different taxa and systems will be more fruitful for understanding causes of different outcomes of hybridisation, such as multiply introduced species like trout (Mandeville et al., 2019), mussels (Simon et al., 2020) and organisms that are amenable to laboratory settings where there can be substantial replication (e.g. Saccharomyces sp., Dunn et al., 2013; Tigriopus californicus, Pritchard & Edmonds, 2013). There are opportunities to use replicate hybrid zones to shed light on both local and global patterns of hybridisation and introgression, while being cautious to not assume that replicates will be predictive of other replicates or unsampled sites.

One challenge when studying hybridisation across spatial replicates is to think about how independent replicate sites are. At one end of the spectrum, ‘replicates’ may not be independent at all for study systems that have high levels of gene flow over the spatial scale of sampling. In contrast, some hybrid zones may be truly independent, such as instances of secondary contact isolated from one another in a mosaic hybrid zone or by a substantial distance. For example, bighorn sheep have been reintroduced to several isolated mountain ranges across North America using founders from multiple source ancestries (Jahner et al., 2019). More often, studies may involve multiple transects of secondary contact between diverged lineages, as in studies of house mice in Europe (Bímová et al., 2011; Payseur et al., 2004; Teeter et al., 2010) or Gryllus crickets in North America (Larson et al., 2014). Replicated hybrid zones may also have complex spatial structure, and replicates may be hierarchically nested, as is the case with replicating across fish hybrid zones in small streams within a larger river basin, and then also replicating across basins (e.g. Catostomus sucker hybridisation or rainbow x cutthroat trout hybridisation; Mandeville et al., 2017; Muhlfeld et al., 2017). Geographical distribution of hybridising species, as well as the dispersal mode and capacity of study organisms, are likely to be quite important in defining independence of replicate sites, and may influence decisions about statistical treatment of comparisons.

We emphasise that studies of replicate hybrid zones at all levels of independence are likely to be informative, but clearly defining the independence of replicates is an important goal.

5 | CONCLUSION

This research was motivated by our own ambitions to use replicate hybrid zones to ask basic and applied questions in our study systems. Indeed, we have written about the promise of replicate hybrid zones in our own papers (Buerkle & Lexer, 2008; Jahner et al., 2021; Lindtke et al., 2012; Mandeville et al., 2017; McFarlane et al., 2021), so we were fairly confident that we could link the outcomes of hybridisation to the evolutionary processes that generated them, at least for some scenarios. As it turns out, early generation stochasticity can dramatically alter the outcomes of hybridisation across hybrid zones, leading to extreme variability across replicates with identical starting conditions. Moreover, the degree of variability is amplified with increasing strength of selection on incompatibilities, suggesting that the ‘simplest scenarios’ will be the most difficult in which to tie pattern to process. Despite these results, we believe the future of replicate hybrid zone research remains promising, particularly if potential reasons for variation among hybrid zones are considered appropriately. We hope this study will encourage (1) the development of new statistical models that explicitly account for variability across hybrid zones and use this variability to better understand evolutionary and demographic causes of reproductive isolation; (2) future modelling exercises that examine the countless other important axes of variability that were not explored here and (3) new empirical studies of replicate hybrid zones that acknowledge the potential lack of identifiability of evolutionary processes based on our observed outcomes of secondary contact.

AUTHOR CONTRIBUTIONS

SEM and EGM had the initial idea to think carefully about the utility of replicate hybrid zones in evolution and conservation. DL and SEM ran all of the simulations. SEM, JPJ and CAB went down a deep, statistical rabbit hole before ultimately deciding to use ANOVA to analyse everything. SEM wrote the initial draft of the manuscript and all authors contributed to subsequent revisions.
ACKNOWLEDGEMENTS

We are grateful to Cassandre Pyne, Amanda Meuser, Amy Pitura, Teaghan Frauley, Chris Nice and Zach Gompert for previous discussions of this manuscript. We are also thankful for the comments of four thoughtful reviewers. This research was supported by the Modelscape Consortium with funding from NSF (OIA-2019528). Analyses were supported by the University of Wyoming’s Advanced Research Computing Center and its Beartooth Computing Environment, Intel x86_64 cluster (https://doi.org/10.15786/M2FY47).

FUNDING INFORMATION

This research was supported by the Modelscape Consortium with funding from NSF (OIA-2019528).

CONFLICT OF INTEREST STATEMENT

All authors declare that they have no conflicts of interest.

DATA AVAILABILITY STATEMENT

The original source code for the simulation software dfuse can be found at the Dryad Digital Repository associated with Lindtke and Buerkle (2015) (doi: 10.5061/dryad.0506g). All code and input files for analyses can be found at on Zenodo https://zenodo.org/accoun t/settings/github/repository/erynmcfarlane/predict_hybrids (McFarlane et al., 2022).

BENEFIT-SHARING STATEMENT

Benefits from this research accrue from the sharing of our data and results on public databases as described above.

ORCID

S. Eryn McFarlane https://orcid.org/0000-0002-0706-458X
Joshua P. Jahner https://orcid.org/0000-0001-8121-6783
Dorothea Lindtke https://orcid.org/0000-0003-1339-1410
C. Alex Buerkle https://orcid.org/0000-0003-4222-8858
Elizabeth G. Mandeville https://orcid.org/0000-0002-9461-9140

REFERENCES

Allendorf, F., Leary, R., Spruell, P., & Wenburn, J. (2001). The problems with hybrids: Setting conservation guidelines. Trends in Ecology & Evolution, 16, 613–622.
Ayala, F. J., & Campbell, C. A. (1974). Frequency-dependent selection. Annual Review of Ecology and Systematics, 5, 115–138.
Barrett, R. D., & Hoekstra, H. E. (2011). Molecular spandrels: Tests of adaptation at the genetic level. Nature Reviews Genetics, 12, 767–780.
Barton, N. H. (1979). The dynamics of hybrid zones. Heredity, 43, 341–359.
Barton, N. H. (1983). Multilocus clines. Evolution, 37, 454–471.
Barton, N. H. (2002). The “new synthesis”. Proceedings of the National Academy of Sciences of the United States of America, 119, e2122147119.
Barton, N. H., & Gale, K. S. (1993). Genetic analysis of hybrid zones. In R. G. Harrison (Ed.), Hybrid zones and the evolutionary process (pp. 13–45). Oxford University Press.
Barton, N. H., & Hewitt, G. M. (1985). Analysis of hybrid zones. Annual Review of Ecology and Systematics, 16, 113–148.

Bateson, W. (1909). Heredity and variation in modern lights. In A. C. Seward (Ed.), Darwin and modern science (pp. 85–101). Cambridge University Press.
Bay, R. A., Taylor, E. B., & Schluter, D. (2019). Parallel introgression and selection on introduced alleles in a native species. Molecular Ecology, 28, 2802–2813.
Bímová, B. V., Macholán, M., Baird, S. J., Munclinger, P., Dufková, P., Laukaitis, C. M., Kam, R. C., Luzyński, K., Tucker, P. K., & Piálek, J. (2011). Reinforcement selection acting on the European house mouse hybrid zone. Molecular Ecology, 20, 2403–2424.
Blount, Z. D., Boland, C. Z., & Lenski, R. E., Borland, C. Z., Munclinger, P., Dufková, P., Laukaitis, C. M., Kam, R. C., Luzyński, K., Tucker, P. K., & Piálek, J. (2008). Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 105, 7899–7906.
Buerkle, C. A., & Lexer, C. (2008). Admixture as the basis for genetic mapping. Trends in Ecology & Evolution, 23, 686–694.
Buerkle, C. A., & Rieseberg, L. H. (2001). Low intraspecific variation for genomic isolation between hybridizing sunflower species. Evolution, 55, 684–691.
Butlin, R. K., & Smadja, C. M. (2018). Coupling, reinforcement, and speciation. The American Naturalist, 191, 155–172.
Caballero-Villalobos, L., Silva-Arias, G. A., Turchetto, C., Giudicelli, G. C., Petzold, E., Bombarely, A., & Freitas, L. B. (2021). Neutral and adaptive genomic variation in hybrid zones of two ecologically divergent petunia species (solanaceae). Botanical Journal of the Linnean Society, 196, 100–122.
Calfée, E., Agra, M. N., Palacio, M. A., Ramirez, S. R., & Coop, G. (2020). Selection and hybridization shaped the rapid spread of African honey bee ancestry in the Americas. PLoS Genetics, 16, e1009308.
Chatfield, M. W. H., Kozak, F., Fitzpatrick, B., & Tucker, P. (2010). Patterns of differential introgression in a salamander hybrid zone: Inferences from genetic data and ecological niche modelling. Molecular Ecology, 19, 4265–4282.
Coughlan, J. M., & Matute, D. R. (2020). The importance of intrinsic postzygotic barriers throughout the speciation process. Philosophical Transactions of the Royal Society B, 375, 20190533.
Coyne, J. A., & Orr, H. A. (2004). Speciation. Sinauer Associates.
Culumber, Z., Shepard, D., Coleman, S., Rosenthal, G., & Tobler, M. (2012). Physiological adaptation along environmental gradients and replicated hybrid zone structure in swordtails (Teleostei: Xiphophorus). Journal of Evolutionary Biology, 25, 1800–1814.
Dobzhansky, T. (1936). Studies on hybrid sterility. II. Localization of sterility factors in Drosophila pseudoobscura hybrids. Genetics, 21, 113–135.
Dobzhansky, T. H. (1937). Genetics and the origin of species. Columbia University Press.
Dunn, B., Paulish, T., Stanbery, A., Piotrowski, J., Koniges, G., Kroll, E., Louis, E. J., Liti, G., Sherlock, G., & Rosenzweig, F. (2013). Recurrent rearrangement during adaptive evolution in an interspecific yeast hybrid suggests a model for rapid introgression. PLoS Genetics, 9, e1003366.
Elmer, K. R., Fan, S., Kusche, H., Luise Sprizterl, M., Kautt, A. F., Franchini, P., & Meyer, A. (2014). Parallel evolution of Nicaraguan Crater Lake cichlid fishes via non-parallel routes. Nature Communications, 5, 1–8.
Endler, J. A. (1977). Geographic variation, speciation, and clines. Princeton University Press.
Ferris, K. G., Chavez, A. S., Suzuki, T. A., Beckman, E. J., Pilfer-Rixey, M., Bi, K., & Nachman, M. W. (2021). The genomics of rapid climatic adaptation and parallel evolution in North American house mice. PLoS Genetics, 17, e1009495.
Fishman, L., & Sweigart, A. L. (2018). When two rights make a wrong: The evolutionary genetics of plant hybrid incompatibilities. Annual Review of Plant Biology, 69, 707–731.
