Two new varieties of *Russula* Pers. (Basidiomycota: Russulaceae) from Sal forests of Shiwaliks, India

Jitender Kumar¹ & Narender Singh Atri²

¹ Department of Botany, Rajiv Gandhi Govt. College, Chaura Maidan, Shimla, Himachal Pradesh 171004, India.
² Department of Botany, Punjabi University, Patiala, Punjab 147002, India.

¹ jitenderthakur2010@gmail.com (corresponding author), ² narinderatri04@gmail.com

Abstract: This paper deals with two new varieties of *Russula* species, *R. camarophylla var. reticulospora* var. nov. and *R. aurea var. minuta* var. nov. These were collected from the Shiwalik range of northwestern India, in association with *Shorea robusta*. *Russula aurea var. minuta* differs from *R. aurea* in having small sized sporophores, dentate to wavy gill edges with golden or yellow deposition instead of smooth and much smaller spores. Whereas, mushroom *R. camarophylla var. reticulospora* is close to *Russula camarophylla* except for the larger carpopores that have white cream pileus surface and larger spores. In basidiospores warts are connected to form mostly complete reticulum instead of mostly isolated warts reported in *Russula camarophylla*. In view of the presence of some unique varied features in the presently examined collections two new varieties of *Russula* has been proposed.

Keywords: Diversity, Ectomycorrhiza, *R. camarophylla var. reticulospora* var. nov., *R. aurea var. minuta* var. nov., scanning electron microscopy, taxonomy.
INTRODUCTION

Genus *Russula* is one of the dominant basidiomycetous fungi genus which grow in a wide variety of habitats. These are mostly found in mycorrhizal association with variety of plants including trees (Corrales et al. 2016). Studies on taxonomy and diversity of genus *Russula* are inviting more attention now a days primarily because of their importance in human welfare, ecosystem functioning and stability. These macro-fungi are important source of food, medicine, nutraceuticals and also play a pivotal role in ecosystem strengthening and maintenance as mycorrhizal associates (Manoharachary et al. 2005). It is reported that *Russula* spp. can form EcM with many temperate and tropical plant families, including *Leguminosae*, *Fagaceae*, *Cistaceae*, *Dipterocarpaceae*, *Salicaceae*, *Betulaceae*, *Nothofagaceae*, *Myrtaceae*, and *Pinaceae* (Tedersoo et al. 2010; Wang et al. 2017). The compounds derived from these mushrooms are reported to boost up immune system and avert diseases thereby improving human health (Wasser 2002). Different species of *Russula* are known to possess anti-inflammatory, antiviral, antibacterial, antiparasitic, antioxidant, hepatoprotective, anticancer, and antidiabetic properties (Wasser 2011).

To date, approximately 1,100 *Russula* species have been reported worldwide (Kirk 2014) and distributed across a wide range of habitats from the tropics to arctic zones (Riviére et al. 2007; Ba et al. 2012). *Russula* is one of the dominant ectomycorrhizal genera in Indian Himalaya (Saini & Atri 1984, 1989; Atri & Saini 1986; Atri et al. 1994; Kumar & Atri 2016, 2019; Sharma et al. 2016) and is represented by ca. 158 taxa from India (Sharma et al. 2017). While investigating the EcM diversity of Sal forest, two varieties of *R. camarophylla* Romagn. and *R. aurea* Pers. were documented, which upon investigation were found to be new to science based on detailed macro- and micro-morphological examination. In the present study sporocarps and their EcM colonised roots were collected by tracing the hyphal or rhizomorphs connections in association with *Shorea robusta* from pure Sal forests. These species are fully illustrated and described in this paper.

MATERIALS AND METHODS

Study area

Area selected for the present investigation is Sal forests of Shiwalik mountain range of northwestern India (Figure 1), which represent the geologically lowest and youngest mountain range of Himalaya. The study area is located between 30.316N, 78.032E. Elevation range of the area is 400–1500 m and vegetation of the area is typical of tropical moist deciduous type (Champion & Seth 1968).

Sampling, identification and characterization

Sporocarps were collected from different localities of pure Sal forests, during the rainy season of 2013–2015. Macromorphological features were recorded from fresh collections in the field and colour codes used are that of Kornerup & Wanscher (1978). After noting down morphological characters on the field key (Atri et al. 2005) some pieces of sporocarps from cap and stipe were preserved in liquid preservative (25 ml rectified alcohol (95%) + 5 ml formalin (37%) + 70 ml distilled water) for studying the microscopic characters. By adopting the standard procedures spore deposit was taken after bringing the specimens to the temporary laboratory setup. Sporocarps were air dried at 40–45 °C in a drier specially designed for drying mushroom specimens (Atri et al. 2005) which were finally packed in a cellophane paper packet for permanent preservation in Punjabi University Herbarium under PUN. The cross section of pileus and longitudinal section of stipe were stained in congo red for examination, drawn under a compound microscope and photographed under digital microscope (Leica DM4000 B LED). Observation of basidia, cystidia, and elements of pileipellis and stipitipellis were recorded for further use in taxonomic categorization. Melzer’s reagent was used...
to observe the amyloidy in basidiospore ornamentation. The microscopic details were worked out as per standard methodology (Singer 1986; Atri et al. 2000, 2017).

Scanning electron microscopy

Scanning electron microscopic (SEM) studies of basidiospores were carried out with JSM6610LV GEOL scanning electron microscope. For SEM examination basidiospores from spore print and lamellae tissue were mounted on a double-sided adhesive tape pasted on a metallic specimen holder or stub. The material was scanned at different magnification ranging 3,000–15,000 X in high vacuum mode to observe pattern of spore ornamentation.

TAXONOMY

Russula aurea Pers. var. *minuta* var. nov.

(Image 1a–h, Figure 2A–G)

MycoBank number: MB834095

Diagnosis: *Russula aurea* Pers. var. *minuta* var. nov. is characterised by small golden to brightly yellow pileus with more darker brownish-yellow centre; dentate to wavy gill edges with golden deposition instead of smooth; sour taste, much smaller spores size and presence of pilocystidia.

Etymology: The variety name is based on the smaller size of sporophore and basidiospore as compared to *Russula aurea*.

Holotype: PUN 9112, Male, 27 July 2013, Rajban, Dehradun, Uttarakhand, India, 30.316N, 78.032E, 800 m, coll. J. Kumar.

Paratype: PUN 9113, 1 ex., Male, 21 August 2015, Kalsi, Dehradun, Uttarakhand, India, 30.316N, 78.032E, 1,190 m, coll. J. Kumar.

Taxonomic description

Sporophores 2.0–2.5 cm in height. Pileus 1.3-2.0 cm broad, convex to hemispherical when young, flattened depressed at maturity; centre umbonate when young, golden (6C7) to brightly yellow with more darker brownish-yellow centre; margin regular to slightly irregular, non-splitting at maturity, moist, unchanging, apex depressed at maturity with slight umbo; cuticle half peeling; flesh 0.1 cm thick in the centre, almost absent along the margin, white (1A1), changes to light brown on bruising and cutting, brittle; taste sour, odour mild. Lamellae adnexed to slightly adnate, equal, moderately broad (2–3 mm), crowded (12–16 gills/cm), white with golden edges; gill edges not smooth, eroded or wavy. Stipe central, 1.5–2.0 cm in length, 0.3–0.5 cm broad, cylindrical to slightly tapering downward, white (1A1) in the upper half, yellowish to pale white in the lower half, unchanging, first solid, than hollow, smooth. Spore deposit deep ochre.

Basidiospores 5.0–6.5 (7.5) × 4.0–5.0 (6.0) µm (excluding ornamentation), broadly ellipsoidal to ellipsoid (Q =1.2–1.3), warty; warts up to 0.8 µm high, mostly connected by thick and thin lines to form partial to complete reticulum, ornamentation type IIIa, IIIb, IV, amyloid; plage hyaline, indistinct; apiculate, apiculus up to 1.6 µm long. Basidia 19.5–32.6 × 6.5–9.0 µm, clavate, bisporic to tetrasporic, hyaline, abundant; sterigmata up to 3.5 µm long; pleurocystidia 26.0–40.9 × 6.5–9.8 µm, clavate to ventricose granulated; cheilocystidia 22.5–37.4 × 4.1–13.1 µm, similar to pleurocystidia. Pileus cuticle clearly differentiated, epicutis gelatinised, heteromerous, palisade having interwoven projecting septate 3–5 µm broad hyphae mixed with 5–10 µm broad sphaerocyst and dermatocystidia, cuticle hyphae and cellular mass having dark yellow content throughout; pilocystidia

Figure 2. *Russula aurea* var. *minuta* var. nov: A—Sporophores | B—Basidiospores | C—Hymenophore showing basidia | D—Pleurocystidia | E—Cheilocystidia | F—Cross section through stipe showing cuticular details and context | G—Cross section through pileus showing cuticular details and context.
Two new varieties of *Russula* Pers. from Shiwaliks
Kumar & Atri

Image 1. *Russula aurea* Pers. var. *minuta* var. nov.
a–b—Sporophores
c–d—Scanning electron photographs of basidiospores
e—Hymenophore showing basidia and cystidia
f—Pleurocystidia
g—Cheilocystidia
h—Cross section through pileus showing cuticular details and context.
Scale bar a–b= 1 cm.
Two new varieties of Russula Pers. from Shiwaliks

Kumar & Atri

Sporophore 7.5 cm in height. Pileus 10 cm broad, umbilicate with a depressed disc and irregular margin; pileus surface moist, glabrous, cream white to white (1A1), not peeling; flesh 5 mm thick in the centre, off white to slightly creamish, unchanging. Lamellae unequal broadly adnate to decurrent, distant (3–4 gills/cm), broad (11 mm at the centre), creamish-white to orange white (SA2), forked near the base, lamellulae present, gill edges smooth, normal. Stipe 2 cm long and up to 2 cm broad, central, solid, white, fleshy, concolorous with the pileus, unchanging on cutting and bruising; flesh taste spicy; odour fruity, spore deposit yellowish-white.

Basidiospores 6.5–8.0 (9.0) × 5.0–7.0 (7.5) µm, subglobose to broadly ellipsoid (Q= 1.12–1.33), densely ornamented, warty, warts up to 0.5 µm, connected to form mostly complete reticulum, superapical area usually with low ornamentation, ornamentation type IIa, IIIb; apiculate, apiculus up to 1.6 µm in size. Basidia 35–57 × 5.0–8.5 µm, clavate to subcylinic, 2–4 spored, sterigmata 6.5–9.8 µm long. Pleurocystidia 39.0–86.5

Figure 3. Russula camarophylla Romagn. var. reticulospora var. nov: A—Sporophore | B—Basidiospores | C—Hymenophore showing basidia | D—Pleurocystidia | E—Cheilocystidia | F—Cross section through pileus showing cuticular details and context | G—Cross section through stipe showing cuticular details and context.
Two new varieties of *Russula* Pers. from Shiwaliks

Image 2. *Russula camarophylla* Romagn. var. *reticulospora* var. nov.: a–b—Sporophores | c–d—Scanning electron microphotographs of basidiospores | e—Hymenophore showing basidia and cystidia | f—Pleurocystidia | g–h—Cross section through pileus showing cuticular details and context. Scalebar a–b= 2 cm.
Two new varieties of *Russula* Pers. from Shiwaliks Kumar & Atri

DISCUSSION

During the present study, *R. aurea* var. *minuta* and *R. camarophylla* var. *reticulospora* were found forming direct organic connection with *Shorea robusta*. The overall diagnostic characters of the presently examined collections of *R. aurea* var. *minuta* are in agreement with *Russula aurea* Pers. which is commonly known as the gilded brittle gill or golden *Russula* and is an uncommon species of mushroom found in deciduous woodland forests. Its specific epithet aurea has been derived from the Latin word *aurum*, which means golden. Unlike many red-capped members of the genus, *Russula aurora* is edible and mild-tasting and is easily characterised in the field by its golden pileus, free to adnexed broad fairly distant golden gills, cylindrical smooth light yellow stipe and brittle yellow flesh. Mostly it is reported to grow solitary or scattered forming mycorrhizal association with pine trees (Romagnesi 1967; Rayner 1970; Das & Marstad 2014). *Russula aurea* var. *minuta* differs from *R. aurea* except in having small sized sporophores, dentate to wavy gill edges with golden or yellow deposition instead of smooth, much smaller spores and presence of pilocystidia which are absent in case of *Russula aurora*. In view of this a new variety *Russula aurea* var. *minuta* has been proposed. *Russula aurora* probably appears to be morphologically closest species to this undescribed taxon from which it differs in having fairly crowded pale cream lamellae with abundant forking near the stipe, mild taste, and absence of dermatocystidia in pileipellis and low warted spores (0.25–0.5 µm) with few connections (Romagnesi 1967). Earlier *Russula aurea* was known as *R. aurata* and under this name it was documented from different localities of northwestern Himalaya from coniferous and angiospermic forest (Saini & Atri 1984, 1989; Atri & Saini 1986; Atri et al. 1994). The present collection is found in pure Sal forest in close vicinity to *Shorea robusta* tree from Uttarakhand.

Russula camarophylla, a rare western Mediterranean European representative of section *Archaeinae* is characterized by its camarophylloid habit, pale ochre or creamish sporophores with distant lamellae, very hard and compact flesh, hyphrophoroid basidia and tiny spores with barely visible ornamentation (Romagnesi 1968). The present collection of *R. camarophylla* var. *reticulospora* is close to *Russula camarophylla* (Romagnesi 1968) except that the carpophores are larger in size with white cream pileus surface and larger spore size. In basidiospores warts are connected to form mostly complete reticulum instead of mostly isolated warts in case of *Russula camarophylla* as documented in literature.
Russsula capillaris, by Buyck (in Wang et al. 2019) from Madagascar. The latter species is not only very similar in the field, but it also possesses similar apical swellings in the hyphal terminations of pileipellis. Spores, however, are much smaller with isolated and very low warts (0.1–0.2 μm) in R. capillaris and, again, the pileocystidia are not septate. *Russula camarophylla* is a very rare species and has been found only a few times in France (Buyck et al. 2003), northern Italy (Setti & Bigoni 1998; Boffelli 2012) and Austria (Pidlich-Aigner & Klofac 2018).

CONCLUSION

Two new varieties of *Russula* species, viz. *R. camarophylla var. reticulospora* var. nov. and *R. aurea var. minuta* var. nov. have been described based upon detailed macro- and micromorphological comparison with already existing *Russula* species. The newly proposed varieties are putative mycorrhizal associates of Sal and were found in direct organic connection with *Shorea robusta* roots.

REFERENCES

Atri, N.S. & S.S. Saini (1986). Further contributions on the studies of North West Himalayan *Russulaceae*. *Geobios* new Reports 5: 100–105.

Atri, N.S., M.K. Saini & S.S. Saini (1994). Indian *Russulaceae Roze* – A checklist, pp. 81–93. In: Sarmah, T.A., S.S. Saini, M.L. Trivedi & M. Sharma (eds.). *Current Researches in Plant Sciences* Vol 1. Bishen Singh Mahendra Pal Singh, Dehradun.

Atri, N.S., M. Kaur & S. Sharma (2017). Characterization of Lamellate Mushrooms - An Appraisal pp. 471–500. In: Satyanarayana, T., S. Deshmukh & B. Johri (eds.). *Developments in Fungal Biology and Applied Mycology*. Springer, Singapore.

Atri, N.S., A. Kaur & H. Kaur (2005). Wild Mushrooms – Collection and Identification, pp. 9–26. In: Rai, R.D., R.C. Upadhyay & S.R. Sharma (eds.). *Identification*, pp. 9–26. In: Rai, R.D., R.C. Upadhyay & S.R. Sharma (eds.). *Identification*, *Indian Mushrooms*. NRCM Chambaghat, Solan.

Atri, N.S., A. Kaur & S.S. Saini (2000). Taxonomic studies on *Agaricus* from Punjab plains. *Indian Journal of Mycology* 18: 6–1.

Ba, A.M., R. Duponnois, B. Moyersoen, G. Abdala & A.G. Diedhiou (2012). Ectomycorrhizal symbiosis of tropical African trees. *Mycochoriza* 22: 1–29. https://doi.org/10.1007/s00572-011-0415-x

Boffelli, A. (2012). Segnalazione e studio di funghi rari o interessanti presenti in Lombardia. *Rivista di Micologia* 52(2): 117–135.

Buyck, B., P. Hériveau & M. Roger (2003). Quelques récoltes récentes de *Russula campestris*. *Bulletin trimestriel de la Société mycologique de France* 119: 217–229

Champion, H.G. & S.K. Seth (1968). A revised survey of the forest types of India. New Delhi Manager of Publications, Govt. of India, 404 pp.

Corrales, A., A.E. Arnold, A. Ferrer, B.L. Turner & J.W. Dalling (2016). Variation in ectomycorrhizal fungal communities associated with *Oreumunneia mexicana* (Juglandaceae) in a Neotropical montane forest. *Mycochoriza* 26: 1–17. https://doi.org/10.1007/s00572-015-0641-8

Das, K. & P. Marstad (2014). 100 wild mushrooms of Slovaki. Tansberg, Norway, 126 pp.

Kirk, P.M. (2014). *Species Fungorum* (Version October 2014). In: *Species 2000 & ITIS Catalogue of life. Species 2000 & ITIS Retrieved 30.x.2014.

Kornerup, A. & J.H. Wanscher (1978). *Methuen Handbook of Colours* (3rd ed.). Eyre Methuen, London, 252 pp.

Kumar, J. & N.S. Atri (2016). Characterisation of ectomycorrhiza of *Russula* and *Lactifluus* (*Russulaceae*) associated with *Shorea robusta* from Indian Shiwaliks. *Nova Hedwigia* 103(3–4): 501–513. https://doi.org/10.1127/nova_hedwigia/2016/0368

Kumar, J. & N.S. Atri (2019). Characterisation and identification of ectomycorrhiza of *Russulaeae* (*Basidiomycota*) associated with *Shorea robusta*. *Journal of Tropical Forest Science* 31(1): 114–124. https://doi.org/10.26525/jfts.2019.31.1.114124

Manoharachary, C., K. Sridhar, R. Singh, A. Adholeya, T.S. Suryanarayanan, S.S. Rawat & B.N. Johri (2005). *Fungal biodiversity: distribution, conservation and prospecting of fungi from India*. *Current Science* 89(1): 58–71.

Pidlich-Aigner, H. & W. Klofac (2018). *Russula camerehrylla* - eine ungewöhnliche Art der Section Archaeinae. *Russula camerehrylla* - an unusual species of section Archaeinae. *Österr. Z. Pilzk.* 27: 65–69.

Rayner, R.W. (1970). Keys to the British species of *Russula* pt. III. Lists of species presenting specified diagnostic features and descriptions. *Bulletin of British Mycological Society* 41(1): 19–46.

Rivière, T., A.G. Diedhiou, M. Diabate, G. Senthilrasu, K. Natarajan, A. Verbeken, B. Buyck, B. Dreyfus, G. Bena & A.M. Ba (2007). Genetic diversity of ectomycorrhizal basidiomycetes from African and Indian tropical forests. *Mycochoriza* 17: 415–428. https://doi.org/10.1007/s00572-007-0117-6

Romagnesi, H. (1967). Les Russules’ Europe et de 1’ Afrique du Nord. Bordas. Paris, 998 pp.

Romagnesi, H. (1968). Une espèce européen nouvelle de la Section malgache desarchaeinae Heim: *Russula camerehrylla* nov. sp. *Bulletin Mensuel de la Societe Linneenne de Lyon* 37(3): 104–108.

Saini, S.S. & N.S. Atri (1984). Studies on North West Himalayan *Russulaceae*. *Geobios* new Reports 3: 4–6.

Saini, S.S. & N.S. Atri (1989). North Indian *Agaricaceae*-XI. Section *Russula* Pers. in *India. Journal of Mycology and Plant Pathology* 19(1): 44–49.

Setti, I. & P. Bigoni (1998). *Russula camarophylla* romagnesi un raro ritrovamento della Valseriana. *Rivista di Micologia* 1: 61–64.

Sharma, S., M.K. Saini & N.S. Atri (2016). Some new records of Russulaceous mushrooms from North West Himalayas. *Kavalo* 46: 5–13.

Sharma, S., N.S. Atri, M.K. Saini & B. Verma (2017). *Catalogue of Russulaceous Mushrooms of India*. *Nova Hedwigia* 106(3–4): 357–401. https://doi.org/10.1127/nova_hedwigia/2017/0437

Singer, R. (1986). *The Agaricales in Modern Taxonomy*. 4th Ed. Koeltz Scientific Books, Germany, 981 pp.

Tedersoo, L., T.W. May & M.E. Smith (2010). Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phlyogenetic lineages. *Mycochoriza* 20: 217–263. https://doi.org/10.1007/s00572-009-0274-x

Wang, X., J. Liu, D. Long, Q. Han & J. Huang (2017). The ectomycorrhizal fungal communities associated with *Quercus liaotungensis* in different habitats across northern China. *Mycochoriza* 27: 441–449. https://doi.org/10.1007/s00572-017-0762-3

Wang, X.H., K. Das, I. Bera, Y.H. Chen, R.P. Bhatt, A. Ghosh, M.E. Humbrom, V. Hofstetter, A. Parihar, A. Vizzini, T.M. Xu, C.L. Zhao & B. Buyck (2019). Fungal Biodiversity Profiles 81–90. *Cryptogamie, Mycologie* 40(5): 57–95. https://doi.org/10.5252/cryptogamie-mycologie2019v40a5

Wasser, S.P. (2002). Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. *Applied Microbiology and Biotechnology* 60(3): 258–274. https://doi.org/10.1007/s00253-002-1076-7

Wasser, S.P. (2011). Current findings, future trends, and unsolved problems in studies of medicinal mushrooms. *Applied Microbiology and Biotechnology* 89(5): 1323–1332. https://doi.org/10.1007/s00253-010-2861-4
Communications

Drought may severely reduce the ability of wild Asian Elephants *Elephas maximus* (Mammalia: Proboscidea: Elephantidae) to resist opportunistic infections
– B.M. Chandranaiak, Vardhaman Patil, D. Rathnamma, G.S. Mamatha, K.S. Umashankar, D.N. Nagaraju & S.M. Byregowda, Pp. 20951–20963

Cases of fatal electrocution of the endangered Javan Gibbons (Mammalia: Primates: Hylobatidae) by power lines
– Yoonjung Yi, Soojung Ham, Rahayu Oktaviani, Mia Clarissa Dewi, Muhammad Nur, Ani Mardiastuti & Jae. C. Choe, Pp. 20964–20969

Nesting habits of the Baya Weaver *Ploceus philippinus* (Linnaeus, 1766) in the agricultural landscape of Tindivanam, Tamil Nadu, India
– M. Pandian, Pp. 20970–20987

A checklist of avifauna from different habitats of semi-arid landscape in western parts (Mandsaur and Ratlam districts) of Madhya Pradesh, India
– Koushik Bhattacharjee & Shuvadip Adhikari, Pp. 20988–20991

Post-release growth of captive-reared Gharial *Gavialis gangeticus* (Gmelin, 1789) (Reptilia: Crocodilia: Gavialidae) in Chitwan National Park, Nepal
– Bed Bahadur Khadka, Ashish Bashyal & Phoebe Griffith, Pp. 21002–21009

Occurrence patterns of herpetofauna in different habitat types of western Terai Arc Landscape, India
– Gajendra Singh Mehra, Nakulanaanda Mohanty & Sushil Kumar Dutta, Pp. 21010–21018

Ichthyo-parasitological studies in northeastern India
– Arup Kumar Hazarika & Bobita Bordoloi, Pp. 21019–21024

Serosurvey of viral pathogens in free-ranging dog populations in the high altitude Trans-Himalayan region
– Chandrima Home, Ajay Bijoor, Yash Veer Bhatnagar & Abi Tamim Vanak, Pp. 21025–21031

Diversity and distribution of mantis shrimps (Arthropoda: Crustacea: Stomatopoda) in the Gulf of Kachchh, Gujarat, India
– Piyush Vadher, Hitesh Kardani & Imtiyaz Beleem, Pp. 21032–21042

Bionomics study of *Mansonia* (Diptera: Culicidae) in a filariasis-endemic area of Sedang Village, Banyusain Regency, South Sumatra, Indonesia
– Rini Pratwi, Chairil Anwar, Ahmad Ghifari & Adri Huda, Pp. 21043–21054

Plant species diversity in a tropical semi-evergreen forest in Mizoram (northeastern India): assessing the effectiveness of community conservation
– S.T. Lalzarzovi & Lahnultuanga, Pp. 21055–21067

Floristic studies on mangrove vegetation of Kanika Island, Bhadak District, Odisha, India
– P. Poornima, Pp. 21068–21075

Two new varieties of *Russula* Pers. (Basidiomycota: Russulaceae) from Sal forests of Shiwaliks, India
– Jitender Kumar & Narendra Singh Atri, Pp. 21076–21083

New additions to the lichen biota of Assam from Dhubri district, northeastern India
– Suparna Biswas, Rebecca Daimari, Pungbili Islay, Sanjeeva Nayaka, Siljo Joseph, Dalip Kumar Upeti & Pranjit Kumar Sarma, Pp. 21084–21090

Genus *Gymnopilus* (Agaricales: Strophariaceae): additions to the agarics of India
– N.A. Wani, M. Kaur & N.A. Malik, Pp. 21091–21101

Review

Environmental DNA as a tool for biodiversity monitoring in aquatic ecosystems – a review
– Manisha Ray & Govindhaswamy Umapathy, Pp. 21102–21116

Short Communications

New record and update on the geographic distribution of the Egyptian Tomb Bat *Taphozous perforatus* (E. Geoffroy, 1818) in Cameroon
– Eric Moise Bakwo Fil, Kingha Zebaze Jasmine Flora, Manfothang Dongmo Ervis, Manga Mongombo Aaron & Jan Decher, Pp. 21117–21121

First definite record of Collared Pratincole *Glareola pratincola* Linnaeus, 1766 (Aves: Charadriiformes: Glaeoleiidae) from Goa, India
– Rupali Pandit, Mangirish Dharwadkar & Justino Rebello, Pp. 21122–21124

Notes

Nectar robbing by sunbirds on the flowers of *Morinda pubescens* J.E. Smith (Rubicaceae)
– A.J. Solomon Raju, S. Sravan Kumar, G. Nagaraju, C. Venkateswara Reddy, Tebesi Peter Raliengoane, L. Kala Grace, K. Punny, K. Pratthyusha & P. Srikanth, Pp. 21125–21126