Impact of human immunodeficiency virus (HIV) infection in patients undergoing cardiac surgery: a systematic review

Carmelo Dominici1,* and Massimo Chello1

1Cardiovascular surgery, Campus Bio-Medico University of Rome, Rome, Italy

*Correspondence: c.dominici@unicampus.it (Carmelo Dominici)

DOI: 10.31083/j.rcm.2020.03.104

This is an open access article under the CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0/).

The clinical status and prognosis of patients with human immunodeficiency virus (HIV) infection has dramatically changed in the recent years. Cardiovascular diseases can be related to combined antiretroviral therapy and to the aging of HIV-positive population, resulting in significant mortality and morbidity in those patients. It is crucial to understand whether the HIV-status affects the indications and outcomes of cardiac surgery. A literature search was conducted through electronic databases up to 15 May 2020 following PRISMA guidelines. Variables (i.e. patients characteristics) and endpoints (i.e. postoperative complications) were considered as defined in the original publications. All paper describing post-operative outcomes after cardiac surgery were included. Methodological quality of all included studies was assessed using the Newcastle-Ottawa Scale, the Cochrane Risk of Bias tool and the US Preventive Services Task Force grade. A total of eight studies were included in this systematic review; five studies discussed the outcomes of patients with HIV infection, while three studies compared results based on HIV status. All evidences derived from retrospective observational studies with high variability and poor-to-fair quality. Most patients underwent surgical myocardial revascularization. HIV status is not associated with differences in operative mortality ($P = 0.32$), postoperative mediastinitis ($P = 0.30$) or pulmonary infective complications ($P = 0.67$). Cardiac surgery can be considered safe in HIV-positive patients, and HIV status alone should not be considered as a contraindication for cardiac surgery and should not be considered a risk factor for postoperative mortality or perioperative complications. Further studies are required for patients with AIDS.

Keywords
HIV; cardiac surgery; coronary artery bypass; valve replacement; heart surgery

1. Introduction

The availability and use of combined anti-retroviral therapy (CART) have dramatically improved long-term outcomes in HIV-positive patients and transformed HIV infection into a chronic disease (Erqou et al., 2020; Feinstein et al., 2016; Siegfried et al., 2010). However, the prolonged life expectancy with good quality of life is associated with increasing prevalence of cardiovascular disease, which remains responsible for a significant burden of complications, hospitalizations and adverse events (Deeks et al., 2015; Mannmahan et al., 2020; Yanagawa et al., 2019). Compared with general population, patients with HIV have a 4.5-fold increased risk of sudden cardiac death after adjustment for age and gender (Tseng et al., 2012). Besides a higher incidence of traditional risk factors in patients with HIV (D’Ascenzo et al., 2012; Rethy et al., 2020; Sinha and Feinstein, 2020, 2019), infection carries an additional 1.5- to 2-fold increased independent risk of acute myocardial infarction (Freiberg et al., 2013) or coronary artery disease (Bernelli et al., 2020; Longenecker et al., 2020; Peck and Kingery, 2020). The mechanisms of HIV-related coronary artery disease have been investigated in recent years, and activation of toll-like receptor 2 and formation of neutrophil extracellular traps result in chronic inflammation and endothelial dysfunction (Palikkuth et al., 2018; Sinha and Feinstein, 2020, 2019; Stein et al., 2014; Subramanian et al., 2012; Titanji et al., 2020). This results in a more aggressive and early-onset of the disease (Bernelli et al., 2020; Nou et al., 2016; Rethy et al., 2020; Titanji et al., 2020). HIV-accelerated coronary artery disease, non-ischemic heart disease, opportunistic infections and drug-related myocardial damage warrant special attention in this population for the near future (Bernelli et al., 2020; Erqou et al., 2020, 2019; Manga et al., 2017; Mannmahan et al., 2020; Vachiat et al., 2017; Wong et al., 2020; Yanagawa et al., 2019). Treatment of coronary artery disease, valvular disease of pathologies of the ascending aorta might require cardiac surgery procedures and therefore it is crucial to understand whether the HIV-status affects the indications and outcomes of cardiac surgery. This systematic review aims to summarize the current literature about cardiac surgical management in patients with HIV.

2. Methods

We followed PRISMA guidelines for performing and reporting the present systematic review (Supplementary Table I). A literature search was conducted through PubMed, Embase, EBSCO, Cochrane database of systematic reviews, and Web of Science from their inception up to 15 May 2020 using the following search keywords (and their MeSH terms) in various combinations: "coronary artery bypass graft", "myocardial revasculariza-
3. Results

Literature search yielded a total of 1374 records, and 8 studies (Bocćara et al., 2008; Brogan et al., 2020; Chong et al., 2003; Koval et al., 2019; Mestres, 2003; Polanco et al., 2014; Robich et al., 2014; Trachiotis et al., 2003) were included in the systematic review (PRISMA flow diagram, Fig. 1). Quality assessment is shown in Table 2, and study characteristics and collected outcomes are summarized in Table 3, Table 4 and Table 5.

A total of five studies discussed the outcomes of patients with HIV infection, as a single cohort of patients (Bocćara et al., 2008; Koval et al., 2019; Mestres, 2003; Trachiotis et al., 2003), while three studies compared results from HIV-positive and HIV-negative patients (Bocćara et al., 2008; Polanco et al., 2014; Robich et al., 2014). All evidences derived from retrospective observational studies with high variability and poor-to-fair quality (Table 2), as HIV-status cannot be considered a randomization factor for ethical concerns. Robich et al. (2014) reported the outcomes before and after propensity score matching, although long-term results were not investigated. In this study, propensity scores, or the conditional probability of being HIV-positive, were estimated using a multivariable logistic regression model in which the presence of HIV was the dependent variable; patient demographics, payer status, comorbidities, hospital characteristics, and procedure type were the independent variables. The aim...
Fig. 2. Pooled results from the studies available in the literature comparing outcome of HIV-positive and HIV-negative patients. Analysis was performed comparing the number of events as described in original publications. Mortality, stroke, mediastinitis and pulmonary complications were evaluated as endpoints. A random-effect model was used with Mantel-Haenszel method. Effects were evaluated as odds ratios (OR).

of this propensity score was to balance covariates to assess outcomes without the influence from known factors. Most patients underwent revascularization with CABG, and other evaluated procedures were aortic valve replacement and mitral valve surgery (Table 3). No data about procedures on the ascending aorta are available, as well as cardiac tumours, tricuspid valve disease and combined procedures.
system in HIV-positive patients (nary reports indicated an increased risk of weakening the immune
0.44, 95% confidence interval 0.26-0.74, risk appeared to be reduced among HIV-positive patients (odds ra-
aortic manipulation and general anaesthesia (operative inflammatory reaction, related to cardiopulmonary by-
HIV status (infective complications also appeared to be independent from the
robich et al. (2008), polanco et al. (2014), robich et al. (2014) comparing outcome of HIV-positive and HIV-negative patients are shown in Fig. 2. Operative mortality in patients with HIV was similar to non-HIV patients (odds ratio 0.89, 95% confidence interval 0.72-1.12, P = 0.32). Postoperative mediastinitis and pulmonary infective complications also appeared to be independent from the
(HIV-positive patients (odds ratio 0.44, 95% confidence interval 0.26-0.74, P = 0.002) (Robich et al., 2014; Sullivan et al., 2015).
 3.1 Pooled analysis
Pooled results from the 3 studies available in the literature (Boccara et al., 2008; Polanco et al., 2014; Robich et al., 2014) for the perioperative mortality among HIV-positive patients. However, HIV status was not an independent predictor of perioperative mortality following cardiac surgery, as shown in our pooled analysis (odds ratio 0.89, 95% confidence interval 0.72-1.12). This reflects the observations of Polanco et al (2014) (odds ratio 0.88, 95% confidence interval 0.6-1.12) and Robich et al (2014) (odds ratio 0.8, 95% confidence interval 0.74-1.30). Independent predictors of mortality were age, renal failure and non-CABG procedure, similarly to HIV-negative population (2019). HIV status alone should not be considered as a contraindication for cardiac surgery and should not be considered a risk factor for postoperative mortality or perioperative complications. On the contrary, the observed postoperative stroke reduction in HIV-positive patients could be secondary to differences in immunomodulation, decreased inflammatory or atherosclerotic burden, younger age, reduced incidence of postoperative atrial fibrillation or reduced peripheral vascular disease (Robich et al., 2014; Sullivan et al., 2015; Yanagawa et al., 2019), but conclusive data are lacking and details about postoperative stroke are not available from Polanco et al to support those data (Polanco et al., 2014). Similarly, it is possible to reliably speculate that HIV status does not impair long-term outcomes, but data are needed to support this conclusion.

Parameter	Inclusion criteria	Exclusion criteria
Patients	Adult patients (≥ 18 years)	-
Intervention	Any procedure of cardiac surgery (myocardial revascularization, valve surgery, surgery of the thoracic aorta, …)	Percutaneous procedures
Comparator	HIV status	-

Outcomes	Primary: mortality	Repeat publications of the same dataset
	Secondary: postoperative complications	Conference abstracts
Study design	Clinical randomised trials	Non-systematic review articles
	Controlled before-and-after studies	Review / editorials / opinion pieces
	Prospective and retrospective cohort studies	Books or grey literature
	Cross-sectional studies	Case reports (≤ 10 patients)

Study	Newcastle-Ottawa Scale	Cochrane Risk of Bias Analysis	US-PSTF grade
Boccara et al., 2008	*** ** **	High High High Low Low	Poor
Brogan et al., 2020	*** ** **	Low High High Low Low	Fair
Chong et al., 2003	*** ** **	High High High Low Low	Poor
Koval et al., 2019	*** ** **	High High High Low Low	Poor
Mestres, 2003	*** ** **	High High High Low Low	Poor
Polanco et al., 2014	*** *** **	Low High High Low Low	Fair
Robich et al., 2014	*** *** **	Low High High Low Low	Fair
Trachiotis et al., 2003	*** ** **	High High High Low Low	Poor

4. Discussion
Cardiac surgery is generally associated with a strong postoperative inflammatory reaction, related to cardiopulmonary bypass, aortic manipulation and general anaesthesia (Corral-Velez et al., 2015; Giacinto et al., 2019; Squicciarino et al., 2019). Preliminary reports indicated an increased risk of weakening the immune system in HIV-positive patients (Yanagawa et al., 2019), although this was not subsequently documented by the clinical experience.

4.1 Cardiac surgery is safe in HIV patients
Major studies in HIV patients (Polanco et al., 2014; Robich et al., 2014) report a 2.5-fold increase in the frequency of cardiac surgery among HIV-positive patients. However, HIV status was not an independent predictor of perioperative mortality following cardiac surgery, as shown in our pooled analysis (odds ratio 0.89, 95% confidence interval 0.72-1.12). This reflects the observations of Polanco et al (2014) (odds ratio 0.88, 95% confidence interval 0.6-1.12) and Robich et al (2014) (odds ratio 0.8, 95% confidence interval 0.74-1.30). Independent predictors of mortality were age, renal failure and non-CABG procedure, similarly to HIV-negative population (Yanagawa et al., 2019). HIV status alone should not be considered a contraindication for cardiac surgery and should not be considered a risk factor for postoperative mortality or perioperative complications. On the contrary, the observed postoperative stroke reduction in HIV-positive patients could be secondary to differences in immunomodulation, decreased inflammatory or atherosclerotic burden, younger age, reduced incidence of postoperative atrial fibrillation or reduced peripheral vascular disease (Robich et al., 2014; Sullivan et al., 2015; Yanagawa et al., 2019), but conclusive data are lacking and details about postoperative stroke are not available from Polanco et al, to support those data (Polanco et al., 2014). Similarly, it is possible to reliably speculate that HIV status does not impair long-term outcomes, but data are needed to support this conclusion.
the life expectancy, patient's preference and risk of anticoagulation (Baumgartner et al., 2017; Nishimura et al., 2017). Patients ineligible for surgical aortic valve replacement could be evaluated for transcatheter approaches, regardless of their HIV status.

4.4 Surgery for heart failure

As for patients with advanced heart failure requiring cardiac surgery, besides small case series of short-term success with left ventricular assist devices or heart transplantation (Brozzi et al., 2020; Yanagawa et al., 2019), recent data from the ELSO Registry confirmed that survival in HIV-positive patients is similar to the general population in case of cardiac failure requiring veno-arterial extracorporeal membrane oxygenation (Brogan et al., 2020). Similarly, HIV-positive patients have similar survival rates to HIV-negative patients after heart transplantation (Koval et al., 2019). Therefore, recent studies confirm that HIV status does not modify outcomes of veno-arterial extracorporeal membrane oxygenation or heart transplantation compared with HIV-negative patients (Brogan et al., 2020; Koval et al., 2019). A recent analysis from the Veterans Health Affairs confirmed that HIV-positive patients have increased presence of cardiovascular risk factors and their heart failure results in a higher risk of mortality and hospitalization (Erqou et al., 2020). Worse outcomes were reported in case of lower ejection fraction, lower CD4+ count (< 200 cells/mL) or higher HIV viral load (> 75 copies/mL) (Erqou et al., 2020), and therefore those patients should be adequately evaluated for adequate treatment in case of mechanical circulatory support.

Table 3. Details of the included studies.

Study	Patients Design	Procedures	Age (years)
(Boccarra et al., 2008)	27 HIV+ 54 HIV- retrospective	100% on-pump CABG	47.3 ± 11.2 vs 50.4±5.4
(Brogan et al., 2020)	126 HIV+ retrospective	100% extracorporeal mem	40
(Chong et al., 2003)	22 HIV+ retrospective	34 veno-arterial, 88 veno-venous	37.6
(Koval et al., 2019)	21 HIV+ retrospective	100% heart transplantation	48
(Mestres, 2003)	31 HIV+ retrospective	21 endocarditis	33.1
(Polanco et al., 2014)	1239 HIV+ retrospective	63.7% vs 73.2% CABG	51.9 ± 9.8 vs 65.3 ± 12.4
(Robich et al., 2014), retrospective cohort	9771 HIV+ retrospective	16% vs 10% valve	48.9 ± 0.25 vs 65.6 ± 0.05
(Robich et al., 2014), PSM cohort	1633 HIV+ PSM	16% vs 10% valve	NA
(Trachiotis et al., 2003)	37 HIV+ retrospective	27 CABG 10 valve surgeries	41

AVS: aortic valve surgery; CABG: coronary artery bypass graft surgery; LVEF: left ventricular ejection fraction; MVS: mitral valve surgery; NA: not available; PSM: propensity score-matched
Table 4. Early outcomes.

Study	In-hospital mortality	Myocardial infarction	Stroke	Pulmonary infection	Reoperation for bleeding	Mediastinitis
(Boccara et al., 2008)	0 vs 0	1 vs 0	0 vs 2	11 vs 27	4 vs 1	0 vs 2
(Brogan et al., 2020)						
(Chong et al., 2003)	1		8	NA	NA	NA
(Koval et al., 2019)				NA	NA	NA
(Mestres, 2003)			2	11	2	0
(Polanco et al., 2014)				NA	NA	NA
(Polich et al., 2014), retrospective cohort	100 vs 102	20 vs 45	156 vs 129	NA	24 vs 31	
(Trachiotis et al., 2003)	1	0	0	2	2	1

Results are presented as "events in HIV-positive patients" vs "events in HIV-negative patients". NA: not available.

Table 5. Long term outcomes.

Study	Follow up	Mortality Cardiac mortality	MACE definition	MACE events	
(Boccara et al., 2008)	median 41 months (range 34-60)	2 vs 1	0 vs 0	death for cardiac cause, non-fatal MI and repeated revascularization (including PCI and re-CABG)	11 vs 10
(Brogan et al., 2020)	NA	NA	NA	NA	
(Chong et al., 2003)	mean 5 years	10	NA	NA	
(Koval et al., 2019)	median 35 months (range 4-106)	5	NA	described as single outcomes	infections at 1 year: 8 rejection at 1 year: 14
(Mestres, 2003)	mean 3.4 years	9	NA	NA	
(Polanco et al., 2014)	NA	NA	NA	NA	
(Polich et al., 2014), retrospective cohort	NA	NA	NA	freedom from MACE: 81%	
(Polich et al., 2014), PSM cohort	NA	NA	NA	freedom from MACE: 81%	
(Trachiotis et al., 2003)	3 years	0	0	angina, death, myocardial infarction, repeat revascularization, and congestive heart failure	

Results are presented as "events in HIV-positive patients" vs "events in HIV-negative patients". CABG: coronary artery bypass graft surgery. MACE: major adverse cardiac events. NA: not applicable. PCI: percutaneous coronary intervention.

4.5 Patients with AIDS

Patients with AIDS (HIV-positive, low CD4^+ count, opportunistic infections, secondary cancers) have limited long-term survival and literature lacks reliable data on cardiac surgery procedures. Patients with AIDS are generally considered candidate for surgery for life-saving procedures only (i.e. surgery for aortic dissection) and are generally excluded from clinical trials (Clement et al., 2018). Also, there is no consensus about the CD4^+ count that is considered safe.

4.6 Limitations

Many studies did not report long-term outcomes which could not be analytically evaluated; moreover, pooled analysis could not be comprehensive due to the single-arm nature of some studies. Myocarditis either due to viral or toxoplasma pathogenesis seem not to be adequately investigated in previous studies and might represent a promising field of research for the future.

5. Conclusions

Prognosis of HIV-positive patients has dramatically improved in recent years, and patients can manifest heart disease requiring cardiac surgery. HIV status should be neither considered a contraindication for cardiac surgery nor a risk factor for postoperative complications. Therefore, HIV-positive patients should be considered normal candidates for cardiac surgery. Certainly, long-term outcomes and specific data for AIDS patients represent an important area of uncertainty, warranting further future investigations.

Authors’ contributions

Conception of the study (all authors), acquisition of data (all authors), interpretation of data (all authors), drafting the article (CD), revision of the article (MC), final approval of the manuscript (all authors).
References

Badr, S., Minha, S., Kitabata, H., Fatemi, O., Torguson, R., Suddath, W. O., Saltier, L. F., Pichard, A. D. and Waksman, R. (2015) Safety and long-term outcomes after percutaneous coronary intervention in patients with human immunodeficiency virus. *Catheterization and Cardiovascular Interventions* **85**, 192-198.

Baumgartner, H., Falk, V., Bax, J. J., Bonis, M. D., Hamm, C., Holm, P. J., Jung, B., Lancellotti, P., Lansac, E., Munoz, D. R., Rosenhek, R., Sjögren, J., Mas, P. T., Vahanian, A., Walther, T., Wendler, O., Windecker, S. and Zamorano, J. L. (2017) 2017 ESC/EACTS Guidelines for the management of valvular heart disease. *European Heart Journal* **38**, 2739-2791.

Berneti, C., Danzi, G. B., Cerrato, E., Pierini, S., Ornaghi, M. G., Botta, L., Gentile, F., Migliorini, G. M. and Squillace, N. (2020) Cardiovascular events recurrence and coronary artery disease in HIV patients: the price we have to pay for the chronicization of the disease. *Canadian Journal of Cardiology* **36**, 127-134.

Boccarda, F., Cohen, A., Angelantonio, E., Meuleman, C., Ederhy, S., Duval, G., Odi, G., Teiger, E., Barbarini, G. and Barbaro, G. (2008) Coronary artery bypass graft in HIV-infected patients: a multicenter case control study. *Current HIV Research* **6**, 59-64.

Brogan, T. V., Thiggarajan, R. R., Department of Pediatrics, Harvard Medical School, Boston, MA, USA, Lorusso, R., McMullan, D. M., Di Nardo, M., Ogino, M. T., Dalton, H. J., Burke, C. R. and Capogots, G. (2020) The use of extracorporeal membrane oxygenation in human immunodeficiency virus-positive patients: a review of a multicenter database. *Perfusion* **2017**, 0267659120906969.

Brozzi, N. A., Sinjik, J., Cifuentes, R. O., Ghodsidaz, A., Thakerk Rivera, N. and Loebe, M. (2020) Advanced heart failure therapies in patients with stable HIV infection. *Journal of Cardiovascular Surgery* **35**, 908-911.

Bundhun, P. K., Pursun, M. and Huang, W. (2017) Does infection with human immunodeficiency virus have any impact on the cardiovascular outcomes following percutaneous coronary intervention?: a systematic review and meta-analysis. *BMJ Cardiovascular Disorders* **17**, 190.

Chong, T., Alejo, D. E., Greene, P. S., Redmond, J. M., Sussman, M. S., Baumgartner, W. A. and Cameron, D. E. (2003) Cardiac valve replacement in human immunodeficiency virus-infected patients. *The Annals of Thoracic Surgery* **76**, 478-481.

Clément, M. E., Lin, L., Navar, A. M., Okeke, N. L., Naggie, S. and Douglas, P. S. (2018) Lower likelihood of cardiac procedures after acute coronary syndrome in patients with human immunodeficiency virus acquired immunodeficiency syndrome. *Medicine* **97**, e9849.

Corral-Velez, V., Lopez-Delgado, J., Betancur-Zambrano, N., Lopez-Sune, N., Rojas-Lora, M., Torrado, H. and Ballus, J. (2015) The inflammatory response in cardiac surgery: an overview of the pathophysiology and clinical implications. *Inflammation & Allergy-Drug Targets* **13**, 367-370.

D’Ascenzo, F., Cerrato, E., Bioni-Zoccai, G., Moretti, C., Omede, P., Scito, F., Bollati, M., Modena, M. G., Gaita, and Sheibani, I. (2012) Acute coronary syndromes in human immunodeficiency virus patients: a meta-analysis investigating adverse event rates and the role of antiretroviral therapy. *European Heart Journal* **33**, 875-880.

Deeks, S. G., Overbaugh, J., Phillips, A. and Buchbinder, S. (2015) HIV infection. *Nature Reviews Disease Primers* **1**, 15035.

Eroqu, S., Jiang, L., Choudhary, G., Lally, M., Bloomfield, G. S., Zullo, A. R., Shireman, T. I., Freiberg, M., Justice, A. C., Rudolph, J., Lin, N. and Wu, W. (2020) Heart Failure Outcomes and Associated Factors Among Veterans With Human Immunodeficiency Virus Infection. *JACC: Heart Failure* **8**, 301-311.

Eroqu, S., Lodebo, B. T., Masi, A., Alitii, A. M., Echouffo-Tcheugui, J. B., Druide, A., Atakle, F., Choudhary, G., Bloomfield, G. S., Wu, W. and Kengne, A. P. (2019) Cardiac dysfunction among people living with HIV. *JACC: Heart Failure* **7**, 98-108.

Feinstein, M. J., Bahriu, E., Achenbach, C., Longenecker, C. T., Huse, P., So-Armah, K., Freiberg, M. S. and Lloyd-Jones, D. M. (2016) Patterns of cardiovascular mortality for HIV-infected adults in the United States: 1999 to 2013. *The American Journal of Cardiology* **117**, 214-220.

Freiberg, M. S., Chang, C. H., Kuller, L. H., Skanderson, M., Lowy, E., Krammer, K. L., Butt, A. A., Bidwell, Goetz, M., Leaf, D., Oursler, K. A., Rimland, D., Rodriguez Barradas, M., Brown, S., Gibert, C., McGinnis, K., Crothers, K., Sico, J., Crane, H., Warner, A., Gottlieb, S., Gottidiener, J., Tracy, R. P., Budoff, M., Watson, C., Arma, K. A., Doebler, D., Bryant, K. and Justice, A. C. (2013) HIV infection and the risk of acute myocardial infarction. *JAAMA Internal Medicine* **173**, 614.

Giachino, O., Satirano, U., Nenna, A., Spadaccio, C., Lusini, M., Masstroiani, C., Nappi, F. and Chello, M. (2019) Inflammatory response and endothelial dysfunction following cardiopulmonary bypass: pathophysiology and pharmacological targets. *Recent Patents on Inflammation & Allergy Drug Discovery* **13**, 158-173.

Hauguel-Moreau, M., Boccarda, F., Boyd, A., Salem, J., Brugier, D., Curjol, A., Hulot, J., Kerneis, M., Galier, S., Cohen, A., Montalescot, G., Collet, J. and Silvain, J. (2017) Platelet reactivity inhuman immunodeficiency virusinfected patients on dual antiplatelet therapy for an acute coronary syndrome: the EVEREST-HIV study. *European Heart Journal* **38**, 1676-0686.

Koval, C. E., Farr, M., Krisl, J., Haidar, G., Pereira, M. R., Shrestha, N., Malinis, M. F., Mueller, N. J., Hannan, M. M., Grossi, P. and Huprikar, S. (2019) Heart or lung transplant outcomes in HIV-infected recipients. *The Journal of Heart and Lung Transplantation* **38**, 1296-1305.

Longenecker, C. T., Weibel, A. R. and Lloyd-Jones, D. M. (2020) Prevention as treatment: A bold vision for improving the cardiovascular health of people living with HIV. *Progress in Cardiovascular Diseases* **63**, 77-78.

Manga, P., McCutcheon, K., Tsabedze, N., Vachiat, A. and Zachariah, D. (2017) HIV and nonischemic heart disease. *Journal of the American College of Cardiology* **69**, 83-91.

Mannathan, G., Little, C., Barber, T. J., Burns, F. and Rakshit, R. D. (2020) Death, heart failure, and HIV. *JACC: Heart Failure* **8**, 248-249.

Mestres, C. (2003) Long-term results after cardiac surgery in patients infected with the human immunodeficiency virus type-1 (HIV-1). *European Journal of Cardio-Thoracic Surgery* **23**, 1007-1016.

Moran, C. A., Southmayd, G., Davey, C. M., Quyyumi, A. A., Ofo-tokun, I., Liberman, H. A., Jabar, W. and Sheth, A. N. (2020) Clinical and procedural characteristics of persons living with HIV presenting with acute coronary syndrome. *AIDS* **34**, 81-90.

Nishimura, R. A., Otto, S. M., Bonow, R. O., Carabello, B. A., Erwin, J. P., Fiesher, L. A., Aineid, H., Mack, M. J., McLeod, C. J., O’Gara, P. T., Sigil, V. and Thompson, A. (2017) 2017 AHA/ACC focused update of the 2014 AHA/ACC guideline for the management of patients with valvular heart disease. *Journal of the American College of Cardiology* **70**, 252-289.

Nou, E., Lo, J., Hadigan, C. and Grinspoon, S. K. (2016) Pathophysiology and management of cardiovascular disease in patients with HIV. *The Lancet Diabetes & Endocrinology* **4**, 598-610.

Pallákuth, S., Paiwa, R., Kausalya, B., Saravanan, S., Pan, L., Vignesh, R., Iqbal, S., Solomon, S. S., Murugavel, K. G., Poongulali, S., Kumarasamy, N. and Paiwa, S. (2018) Cardiac morbidity in HIV infec-
tion is associated with checkpoint inhibitor LAG-3 on CD4 T cells. *Plos One* 13, e0206256.

Peck, R. N. and Kingery, J. R. (2020) Immunology of hypertension in people with HIV. *Journal of the American Heart Association* 9, e015725.

Polanco, A., Itagaki, S., Chiang, Y. and Chikwe, J. (2014) Changing prevalence, profile, and outcomes of patients with HIV undergoing cardiac surgery in the United States. *American Heart Journal* 167, 363-368.

Rethy, L., Feinstein, M. J., Sinha, A., Achenbach, C. and Shah, S. J. (2020) Coronary microvascular dysfunction in HIV: a review. *Journal of the American Heart Association* 9, e014018.

Robich, M. P., Schiltz, N., Johnston, D. R., Mick, S., Tse, W., Koch, C. and Soltesz, E. G. (2014) Outcomes of patients with human immunodeficiency virus infection undergoing cardiovascular surgery in the United States. *The Journal of Thoracic and Cardiovascular Surgery* 148, 3066-3075.

Siegfried, N., Uthman, O. A. and Rutherford, G. W. (2010) Optimal time for initiation of antiretroviral therapy in asymptomatic, HIV-infected, treatment-naive adults. *Cochrane Database of Systematic Reviews* 2010, CD008272.

Sinha, A. and Feinstein, M. (2020) Epidemiology, pathophysiology, and prevention of heart failure in people with HIV. *Progress in Cardiovascular Diseases* 63, 134-141.

Sinha, A. and Feinstein, M. J. (2019) Coronary artery disease manifestations in HIV: what, how, and why. *Canadian Journal of Cardiology* 35, 270-279.

Squiccimarro, E., Labriola, C., Malvindi, P. G., Margari, V., Guida, P., Visichio, G., Kounakis, G., Favale, A., Dambruoso, P., Mastrotorto, G., Lorusso, R. and Paparella, D. (2019) Prevalence and clinical impact of systemic inflammatory reaction after cardiac surgery. *Journal of Cardiothoracic and Vascular Anesthesia* 33, 1682-1690.

Stein, J. H., Currier, J. S. and Hsue, P. Y. (2014) Arterial disease in patients with human immunodeficiency virus infection. *JACC: Cardiovascular Imaging* 7, 515-525.

Subramanian, S., Tawakol, A., Burdo, T. H., Abbara, S., Wei, J., Vijayakumar, J., Corsini, E., Abdelbaky, A., Zanni, M. V., Hoffmann, U., Williams, K. C., Lo, J. and Grinspoon, S. K. (2012) Arterial inflammation in patients with HIV. *JAMA* 308, 379.