Relative risks of chronic kidney disease for mortality and end-stage renal disease across races are similar

Chi Pang Wen1,2, Kunihiro Matsushita3, Josef Coresh3, Kunitoshi Iseki4, Muhammad Islam5, Ronit Katz6, William McClellan7, Carmen A. Peralta8, Haiyan Wang9, Dick de Zeeuw10, Brad C. Astor11,12, Ron T. Gansevoort13, Andrew S. Levey14 and Adeera Levin15, for the Chronic Kidney Disease Prognosis Consortium

1Institute of Population Science, National Health Research Institutes, Zhunan, Taiwan; 2China Medical University Hospital, Taichung, Taiwan; 3Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA; 4Dialysis Unit, University Hospital of The Ryukyu, Nishihara, Japan; 5Department of Community Health Sciences, The Aga Khan University, Karachi, Pakistan; 6Kidney Research Institute, University of Washington, Seattle, Washington, USA; 7Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA; 8Division of Nephrology, University of California, San Francisco, California, USA; 9Renal Division, Department of Medicine, Peking University First Hospital, Institute of Nephrology, Peking University, Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; 10Department of Clinical Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; 11Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA; 12Department of Population Health Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA; 13Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; 14Division of Nephrology, Tufts Medical Center, Boston, Massachusetts, USA and 15Division of Nephrology UBC, St Pauls Hospital, Vancouver, British Columbia, Canada

Some suggest race-specific cutpoints for kidney measures to define and stage chronic kidney disease (CKD), but evidence for race-specific clinical impact is limited. To address this issue, we compared hazard ratios of estimated glomerular filtration rates (eGFR) and albuminuria across races using meta-regression in 1.1 million adults (75% Asians, 21% Whites, and 4% Blacks) from 45 cohorts. Results came mainly from 25 general population cohorts comprising 0.9 million individuals. The associations of lower eGFR and higher albuminuria with mortality and end-stage renal disease (ESRD) were largely similar across races. For example, in Asians, Whites, and Blacks, the adjusted hazard ratios (95% confidence interval) for eGFR 45–59 versus 90–104 ml/min per 1.73 m² were 1.3 (1.2–1.3), 1.1 (1.0–1.2), and 1.3 (1.1–1.7) for all-cause mortality, 1.6 (1.5–1.7), 1.4 (1.2–1.7), and 1.4 (0.7–2.9) for cardiovascular mortality, and 27.6 (11.1–68.7), 11.2 (6.0–20.9), and 4.1 (2.2–7.5) for ESRD, respectively. The corresponding hazard ratios for urine albumin-to-creatinine ratio 30–299 mg/g or dipstick 1+ versus an albumin-to-creatinine ratio under 10 or dipstick negative were 1.6 (1.4–1.8), 1.7 (1.5–1.9), and 1.8 (1.7–2.1) for all-cause mortality, 1.7 (1.4–2.0), 1.8 (1.5–2.1), and 2.8 (2.2–3.6) for cardiovascular mortality, and 7.4 (2.0–27.6), 4.0 (2.8–5.9), and 5.6 (3.4–9.2) for ESRD, respectively. Thus, the relative mortality or ESRD risks of lower eGFR and higher albuminuria were largely similar among three major races, supporting similar clinical approach to CKD definition and staging, across races.

Chronic kidney disease (CKD) is a global public health problem,1–3 affecting 10–16% of the adult population in several continents4–7 and increasing the risk of adverse outcomes.8–12 The definition and staging of CKD is based on the level of glomerular filtration rate (GFR) and the presence of kidney damage, usually ascertained as albuminuria.1,11,13 However, the comparability of GFR and albuminuria measures across racial groups and their relationship with risk have not been fully explored,14 although some have suggested race-specific thresholds for GFR and albuminuria to define and stage CKD.15 The primary objective of this study was to quantify the associations of GFR and albuminuria with risk for all-cause and cardiovascular mortality, and end-stage renal disease (ESRD) among Asians, Whites, and Blacks, three major races in the world, and assess whether there are any substantial differences across the races.

RESULTS

Study populations

A total of 1,130,472 individuals were studied, including 75% Asians (mostly Eastern Asians), 21% Whites, and 4% Blacks. Majority of the study population, 83% or 940,366
individuals, were from 25 general population cohorts, with the remaining 13% or 151,494 individuals from 7 high-risk cohorts, and 3% or 38,612 individuals from 13 CKD cohorts (Table 1). Thus, our primary analyses were conducted in the general population cohorts, and results for the high-risk cohorts and CKD cohorts were shown in Supplementary Materials separately. Asians comprised the majority of the general population cohorts (87%), but not the high-risk (6%) or CKD (12%) cohorts, and mainly came from cohorts based on data from comprehensive health screening programs for the healthy population. Accordingly, Asians tended to have a lower risk profile (younger age and lower prevalence of comorbid conditions) as compared with Whites and Blacks. Although most Asians were from Asian cohorts, most Blacks were from US cohorts. There were differences in the methods for ascertainment of albuminuria among the general population cohorts: only 1% of Asians had albumin-to-creatinine ratio (ACR) data, whereas ACR data were available in 73% of Whites and 100% of Blacks included in the meta-analysis, reflecting different medical and research settings.

Estimated glomerular filtration rate and albuminuria distributions by race

In the general population cohorts, the crude prevalence of reduced estimated glomerular filtration rate (eGFR; <60 ml/min per 1.73 m²) in Asians, Whites, and Blacks was 5.1, 15.8, and 9.4%, respectively (Supplementary Figure S1A online). The prevalence of elevated albuminuria (≥30 mg/g by ACR or ≥1+ by urine dipstick) in the three races was 2.8, 9.9, and 16.6%, respectively (Supplementary Figure S1B online). The difference in prevalence of reduced eGFR and elevated albuminuria across racial groups was attenuated after age standardization, particularly for reduced eGFR (Supplementary Figure S1C and D online). In the high-risk cohorts, the crude prevalence of decreased eGFR and high albuminuria were 11.6 and 24.0% in Asians, 18.7 and 20.6% in Whites, and 10.4 and 13.5% in Blacks, respectively (Supplementary Figure S2 online).

Incidence rates of mortality and ESRD by race

We observed 38,696 all-cause deaths and 9065 cardiovascular disease (CVD) deaths in Asians (mean follow-up of 9.2 years), 20,079 and 7325 cases in Whites (mean follow-up of 8.4 years), and 2485 and 436 cases in Blacks (mean follow-up of 6.6 years; Supplementary Table S1 online). Crude rates for all-cause and CVD mortality in the general population cohorts were 5.9 and 1.4 per 1000 person-years in Asians, 24.1 and 10.4 in Whites, and 18.7 and 5.5 in Blacks, respectively (Supplementary Figure S3 online). After age standardization, mortality rates were higher in Blacks compared with that in Whites, whereas the lower rates in Asians persisted. The variation in mortality rates was as great among studies within races as among races within studies. Among the studies with data on ESRD, crude incidence rates of ESRD per 1000 person-years were 0.3 in Asians, 0.8 in Whites, and 2.8 in Blacks.

Independent relationships of eGFR and albuminuria with clinical risk by race

Figure 1 shows hazard ratios (HRs) for all-cause mortality, CVD mortality, and ESRD in the general population cohorts by race for eGFR from 15 to 120 ml/min per 1.73 m² compared with the reference point at eGFR 95 ml/min per 1.73 m². The patterns for each outcome were qualitatively similar among three races across most of the range of eGFRs, with higher risk at lower eGFR. For all-cause and CVD mortality, although there was variation across races in the eGFR thresholds below which the HRs were significantly greater than the reference point, partially owing to difference in the precision of estimates across races, the HR reached significance at eGFR between 60 and 75 ml/min per 1.73 m² in most analyses and did not differ significantly for a given eGFR among races, except for small ranges noted at the bottom of Figure 1. For ESRD, the threshold eGFR varied from 65 to 83 ml/min per 1.73 m² for all three races, although the pattern was least steep in blacks for eGFR <30 ml/min per 1.73 m².

Figure 2 shows HRs for all three outcomes by races according to albuminuria categories (ACR<10, 10–29, 30–299, and ≥300 mg/g or urine dipstick levels negative, trace, 1+ and ≥2+, respectively; Supplementary Figure S4 online shows the association for ACR as a continuous variable). Again, the patterns for each outcome were similar among races, with higher HRs for higher albuminuria. The only significant difference was higher CVD mortality in Blacks with ACR 30–299 mg/g. In all races, the threshold category above which the HRs for mortality outcomes was significantly greater than the reference category was ACR ≥10 mg/g or dipstick ≥trace. Although data were limited, the independent associations of low eGFR and high albuminuria with three outcomes were largely similar across three races in both high-risk and CKD cohorts (Supplementary Figures S5–S8 online).

Combined relationships of eGFR and albuminuria with clinical risk by race

Figure 3 shows the adjusted HRs for all-cause mortality, CVD mortality, and ESRD in the general population cohorts by eGFR and albuminuria categories compared with the reference categories of eGFR 90–104 ml/min per 1.73 m² and ACR <10 mg/g or dipstick negative. Consistent with the results in Figures 1 and 2, all-cause mortality risks for eGFR categories and albuminuria categories (marginal rows and columns in Figure 3) were similar for Asians, Whites, and Blacks. For example, in Asians, Whites, and Blacks, compared with eGFR 90–104 ml/min per 1.73 m², the HR (95% confidence interval) for eGFR 45–59 ml/min per 1.73 m² was 1.25 (1.20–1.31), 1.09 (0.97–1.22), and 1.33 (1.07–1.65) for all-cause mortality, 1.59 (1.45–1.74), 1.40 (1.17–1.68), and 1.44 (0.72–2.86) for cardiovascular mortality, and 27.6 (11.1–68.7), 11.2 (6.01–20.9), and 4.05 (2.18–7.51) for ESRD, respectively. The corresponding HRs for ACR 30–299 mg/g or dipstick 1+ compared with ACR <10 mg/g or dipstick negative were 1.61 (1.41–1.84), 1.68 (1.50–1.88), and 1.84 (1.65–2.06) for all-cause mortality, 1.66 (1.37–2.01), 1.76 (1.49–2.09), and
Table 1 | Characteristics of individual studies by race (Asians, Whites, and Blacks)

Study	Total N	% Female	Age (years)	% HTN	% CVD	% HC	% Smokin.	eGFR mean	% Abnormal<0.6	% N (years)	% DM	% Smoking	eGFR mean	% Abnormal<0.6	% N (years)	% Female	% Hx of CVD	% HC	% Smoking	eGFR mean	% Abnormal<0.6
2.79 (2.15–3.62) for CVD mortality, and 7.39 (1.98–27.6), 4.04 (2.75–5.94), and 5.55 (3.36–9.18) for ESRD, respectively. The HRs were quantitatively consistent across most of the studies for three outcomes (Supplementary Figures S9–S11 online).

The pattern for categories based on eGFR and albuminuria (cells in Figure 3) was also qualitatively similar among the three races, showing a multiplicatively higher risk for lower eGFR and higher albuminuria, with limited interactions.
Of note, the category of eGFR 45–59 with lowest albuminuria was associated with a point estimate for the HR 1.0 compared with the reference groups for all three outcomes for all three races (statistically significant in 7 of 9 comparisons). The category of elevated albuminuria (ACR 30–299 mg/g or urine dipstick 1+) with eGFR 90–104 was associated with a point estimate for the HR 1.0 compared with the reference groups for all 9 comparisons (statistically significant in 8). Similar results were observed for CVD mortality and ESRD. Largely similar results were also observed across three races in both high-risk and CKD cohorts (Supplementary Figures S12 and S13 online).

DISCUSSION

Low eGFR and high albuminuria were both independently associated with an increased risk of mortality and ESRD. In this unique and large meta-analysis, we observed qualitatively similar adjusted HR for all-cause and cardiovascular mortality and ESRD according to eGFR or albuminuria across three major races, Asians, Whites, and Blacks, in general population cohorts, despite differences in demographic and clinical characteristics (Table 1) and absolute risk (Supplementary Figure S3 online) among racial groups and cohorts. The consistency in eGFR and albuminuria risk relationships across races has important implications for clinical practice, research, and public health.

The best known racial disparities in kidney disease are the widely different ESRD rates among countries reported by the USRDS. Our results describing the highest ESRD rates in Blacks are consistent with other studies. It is more difficult to study racial differences in earlier stages of CKD. There have not been large studies of multiracial populations that have simultaneously assessed eGFR and albuminuria regarding their associations with mortality and ESRD. In addition, methods to estimate GFR and ascertain albuminuria have varied, and many studies reported only eGFR or albuminuria. Although our study has a wide variation in demographic and clinical characteristics among cohorts, the availability of both eGFR and albuminuria measurements permits a more robust analysis.

Prior reports from the CKD-PC (Chronic Kidney Disease Prognosis Consortium), using comparable methods across cohorts, showed similar impact of eGFR and albuminuria categories on relative risks of all-cause and cardiovascular mortality and ESRD in both high-risk and CKD cohorts (Supplementary Figures S12 and S13 online).
mortality and ESRD across subgroups defined by demographic and clinical characteristics (age, sex, hypertension, and diabetes). The current analysis expands our prior observations to race groups and establishes a consistency of the relationship of eGFR and albuminuria with important outcomes irrespective of race. Given the increasing interest in variability of incidence rates of ESRD across countries and races, and the major resource implications associated with high ESRD rates, it will be important to pursue the causes for the differences in distribution of cardiovascular risk factors, eGFR, and albuminuria, which we observed among the racial groups. Specifically, it will be important to determine the extent to which social, environmental, and genetic differences result in variation in disease expression and outcomes (such as the higher prevalence of IgA nephropathy in Asia and the contribution of economic aspects to variation in dialysis care).25,26

A better understanding of the similarities and differences across races should direct research to identify modifiable factors.

The GFR thresholds for the definition and staging of CKD were first proposed in 2002, using data derived predominantly from a general US population.1 In the past decade, these eGFR thresholds have been incorporated into clinical guidelines in other countries.3,27,28 The recognition of albuminuria as an independent risk factor for adverse outcomes has now led to the incorporation of albuminuria categories into CKD staging, and this analysis has utilized the new recommendations for categories of albuminuria and eGFR.29 The robust relationship of eGFR and albuminuria with outcomes irrespective of race gives additional credence to their use in clinical arenas and beyond. Given the complexity of using race-specific thresholds of kidney measures in clinical practice, there would need to be strong evidence for justification to support their adoption.

Standardization of methods for ascertainment of GFR and albuminuria remains a challenge. Specification of race improves the accuracy of creatinine-based GFR-estimating equations by adjusting for differences in creatinine generation due to variation in muscle mass and diet. Current guidelines recommend the CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) creatinine equation for use in North America, Europe, and Australia, which estimates GFR ~16% higher for Blacks compared with other races at a given age, gender, and level of serum creatinine.30 In our study, the CKD-EPI creatinine equation demonstrates similar eGFR-risk association in Asians, Whites, and Blacks, providing further support for its usefulness across racial groups and encouraging more widespread reporting of eGFR around the world. Other equations have been developed in Japanese, Taiwanese, and Chinese, but their generalizability has not been evaluated in large studies.31–34 In our consortium, the selection of ACR versus dipstick for assessment of albuminuria varies across regions/cohorts and is largely based on study objectives and resources (with ACR being used most commonly in North America, Europe, and Australia, and dipsticks being most commonly used in Asia). Therefore, we could not assess the influence of urinary creatinine per se, which may vary substantially across races, on the association between ACR and clinical risk.35 Nevertheless, this study confirms the usefulness of both methods in relating albuminuria with outcomes, thus supporting the use of either method in clinical practice.

Strengths of our study include an international consortium with a wide range of cohorts in various settings, comprehensive data on eGFR and albuminuria, a large study population, and the assessment of both mortality and ESRD. The cohorts were not selected for previous publication regarding the study question, thereby minimizing the possibility of publication bias. The analysis was centrally coordinated, and adjustment for important variables was uniformly carried out in all cohorts. Our continuous analysis using splines allowed inspection of the pattern of association across the entire range of eGFR, irrespective of the reference point used. The categorical analysis allowed combining across cohorts that assessed albuminuria using ACR and dipstick, and provided clinically useful information.

There are several limitations in our study. Measurements of creatinine and urine albumin were not standardized in all studies, and we did not have data on measured GFR, cystatin C, or 24-h albumin excretion rate to confirm eGFR, urine ACR, or dipstick.36 Only a few Asian cohorts had ACR measurements, and none of them ascertained ESRD as an outcome. Most of the Blacks in our study were from cohorts in the United States and not from the Blacks in Africa. Most Asians were in East-Asian cohorts, and we could not compare East and South Asians. Few cohorts included multiple racial groups. Further analyses will be required for Hispanics and other racial/ethnic groups not represented in this study. We cannot rule out the possibility of residual confounding due to unmeasured variables in this study, such as lifestyle (e.g., diet or physical activity) or socioeconomic status including access to health care.

Despite wide variability in clinical characteristics among cohorts and lower risk profile in Asian cohorts, there were no substantial differences among Asians, Whites, and Blacks in the independent and joint associations of reduced eGFR, based on the CKD-EPI creatinine equation, and albuminuria, based on ACR or dipstick, with all-cause and CVD mortality and ESRD. These results support the use of existing eGFR equations for risk categorization and thresholds of eGFR and albuminuria for CKD definition and staging across these racial groups.

MATERIALS AND METHODS

Study design

Details of the CKD-PC were described previously.8–12 To be included in the consortium, a study had to have at least 1000 participants (not applied to studies predominantly enrolling CKD patients (CKD cohorts)), information at baseline on eGFR and albuminuria, and a minimum of 50 events for any of the outcomes of interest. This analysis consists of data from 45 cohorts (25 general population
coHORTS, 7 HIGH-RISK COHORTS WITH HIGH-RISK PARTICIPANTS SELECTED FOR CARDIOVASCULAR OR KIDNEY DISEASE RISK FACTORS, AND 13 CKD COHORTS; TABLE 1, SUPPLEMENTARY TABLE S2 ONLINE, AND SUPPLEMENTARY APPENDIX 1 ONLINE). THIS STUDY IS BASED ON SECONDARY DATA ANALYSIS OF PRE-EXISTING, DE-IDENTIFIED/DE-LINKED DATA SET, AND WAS APPROVED BY THE INSTITUTIONAL REVIEW BOARD AT THE JOHNS HOPKINS BLOOMBERG SCHOOL OF PUBLIC HEALTH.

STUDY VARIABLES

GFR was estimated using the CKD-EPI creatinine equation: \(141 \times (\text{minimum of standardized serum creatinine (mg/dl)/}k \text{ or } 1)^{3.58 \times \text{(maximum of standardized serum creatinine (mg/dl)/}k \text{ or } 1)}^{-1.209 \times \text{0.993}^{0.018} \times (1.159 \text{ if female}) \times (1.159 \text{ if Black})} \), where \(k \) is 0.7 if female and 0.9 if male, and \(x \) is \(-0.329\) if female and \(-0.411\) if male. For studies in which creatinine measurement was not standardized to isolate dilution mass spectrometry, we reduced the creatinine levels by 5%, the calibration factor used to adjust nonstandardized Modification of Diet in Renal Disease Study samples to isolate dilution mass spectrometry. \(^{39}\) Although urine ACR is the preferred measure of albuminuria in the clinical settings, \(^{1,3}\) the semiquantitative measurement using urine dipstick in mass screening the healthy population has also been reported to be highly valuable. \(^{40}\) A few studies that reported urine albumin excretion or urine protein-to-creatinine ratio were also included. \(^{1}\) Race/ethnicity was categorized as Whites, Asian, Blacks, Hispanic, and others. Owing to sparse data, we could not reliably investigate Hispanics and other racial/ethnic groups (Supplementary Table S2 online), and thus their results were not shown. Diabetes mellitus was defined as fasting glucose \(\geq 7.0 \text{ mmol/l}, \text{nonfasting glucose} \geq 11.1 \text{ mmol/l}, \text{hemoglobin A1c} \geq 6.5\% \), use of glucose-lowering drugs, or self-reported diabetes. Hypertension was defined as systolic blood pressure \(\geq 140 \text{ mm Hg} \) or diastolic blood pressure \(\geq 90 \text{ mm Hg} \), use of antihypertensive medication, or self-reported hypertension. Hypercholesterolemia was defined as total cholesterol \(\geq 5.0 \text{ mmol/l} \) in people with prior CVD and as \(\geq 6.0 \text{ mmol/l} \) otherwise, or the use of lipid-lowering drugs. CVD history was defined as a history of myocardial infarction, coronary revascularization, heart failure, or stroke. Body mass index was calculated as weight (kg) divided by square height (m). Smoking was dichotomized as current versus former/nonsmokers. All of these study variables were assessed at baseline in every cohort.

OUTCOMES

The three outcomes of interest were all-cause mortality, cardiovascular mortality, and ESRD. Cardiovascular mortality was defined as death due to myocardial infarction, heart failure, sudden cardiac death, or stroke. ESRD was defined as start of renal replacement therapy or death due to kidney disease. However, death due to acute kidney injury was not included. \(^{41}\)

STATISTICAL ANALYSES

Analyses were restricted to subjects aged 18 years or older. Any subject with missing values for eGFR, albuminuria, and race/ethnicity was excluded. Missing values for all other covariates were imputed by the cohort mean. Age adjustment for distribution of kidney measures and incidence rate of three outcomes was performed by direct standardization using US NHANES III as the reference population, the only cohort in the consortium representing national data by design. The analysis overview and analytic notes for individual studies are described in Supplementary Appendix 2 online.

We subsequently conducted a series of analyses stratified by racial/ethnic groups. We used a two-stage approach in which statistics were first obtained in each study and then were meta-analyzed across studies by a random-effects model. General population, high-risk, and CKD cohorts were meta-analyzed separately. Heterogeneity was quantified using the \(I^2 \)-test for heterogeneity and the \(I^2 \) statistic. All analyses were conducted using the Stata/MP 11.2 software (www stata.com), and a \(P \)-value \(<0.05\) was considered statistically significant.

Cox proportional hazards models were used to estimate the HRs of clinical outcomes associated with eGFR and albuminuria, adjusted for age, sex, history of CVD, smoking, systolic blood pressure (continuous), diabetes, serum total cholesterol concentration (continuous), body mass index (continuous), and either eGFR or albuminuria as appropriate. Death was censored for ESRD analysis. As few studies have multiple racial/ethnic groups, incorporating interaction terms between kidney measures and race in models was not practical. Therefore, meta-regression analysis with a random-effects model was used to formally compare HRs according to eGFR and albuminuria across racial/ethnic groups. \(^{32}\) We modeled eGFR and ACR using linear splines with knots at 30, 45, 60, 75, 90, and 105 ml/min per 1.73 m\(^2\) (105 is not implemented for CKD cohorts) and 10, 30, and 300 mg/g (30, 300, and 1000 mg/g for CKD cohorts; to convert to mg/mmol multiply by 0.113), respectively. An eGFR of 95 ml/min per 1.73 m\(^2\) (50 for CKD cohorts) and an ACR of 5 mg/g (100 for CKD cohorts) were treated as reference points. \(^{8,9}\)

We also compared the risk in categories of eGFR (<15, 15–29, 30–44, 45–59, 60–74, 75–89, 90–104, and \(\geq 105 \text{ ml/min per} \text{1.73 m}\(^2\) \)) and albuminuria (ACR: <10, 10–29, 30–299, and \(\geq 300 \text{ mg/g} \); protein-to-creatinine ratio: <15, 15–49, 50–499, and \(\geq 500 \text{ mg/g} \); dipstick: negative (−), trace (+), +, ++, and +++), and their combination. For CKD cohorts, the following categories were used for eGFR (<15, 15–29, 30–44, 45–74, 75–89, and \(\geq 90 \text{ ml/min per} \text{1.73 m}\(^2\) \)) and albuminuria (ACR: <30, 30–299, 300–999, and \(\geq 1000 \text{ mg/g} \); protein-to-creatinine ratio: <50, 50–499, 500–1499, and \(\geq 1500 \text{ mg/g} \); dipstick: negative/trace, +, ++, and +++). The category with eGFR 90–104 ml/min per 1.73 m\(^2\) (45–74 for CKD cohorts) and the lowest albuminuria was used as the reference group. \(^{8,9}\) Given that few Asian cohorts had ACR data, results for albuminuria were primarily shown for categories.

DISCLOSURE

All the authors declared no competing interests. All authors had full access to the analysis reports and tables and take responsibility for the integrity of the data and the accuracy of the data analysis. All authors have completed the Unified Competing Interest form at www.icmje.org/coi_disclosure.pdf (available on request from the corresponding author).

ACKNOWLEDGMENTS

CKD-PC investigators/collaborators (Supplementary Appendix 1 lists the study acronyms): AASK: Jackson T Wright, Jr, Lawrence Appel, Tom Greene, Brad C Astor; ADVANCE: John Chalmers, Stephen MacMahon, Mark Woodward, Hisatomi Arima; Aich: Hiroshi Yatsuya, Kentaro Yamashita, Hideaki Toyoshima, Koji Tamakoshi; ARIC: Jose Coresh, Brad C Astor, Kunihiro Matsushita, Yingying Sang; AusDiab: Robert C Atkins, Kevan R Polkinghorne, Steven Chadban; Beaver Dam CKD: Anoop Shankar, Ronald Klein, Barbara Ek Klein, Kristine E Lee; Beijing Cohort: Haiyan Wang, Fang Wang, Liuja Zhang, Li Zuo, Li Sheng Liu; British Columbia CKD: Adeera Levin, Ognjenka Djurdjev; CARE: Marcello Tonelli, Frank Sacks, Gary Curhan; CHS: Michael Shlipak,
AUTHOR CONTRIBUTIONS
Conception and design: CPW, KM, JC, BCA, RTG, ASL, and AL, CKD Prognosis Consortium. Analysis and interpretation of the data, critical revision of the article for important intellectual content, and final approval of the article: CPW, KM, JC, KI, MI, RK, WMcC, CAP, HW, DdZ, BCA, RTG, ASL, and AL, CKD Prognosis Consortium. Statistical expertise, obtaining of funding, administrative, technical, or logistic support, and collection and assembly of data: KM and JC, CKD Prognosis Consortium.

SUPPLEMENTARY MATERIAL
Appendix 1. Acronyms or abbreviations for studies included in the current report and their key references linked to the Web references.
Appendix 2. Data analysis overview and analytic notes for some of individual studies.
Appendix 3. Acknowledgments and funding for collaborating cohorts.

Table S1. Number of events per study for Asians, Whites, and Blacks.

Table S2. Characteristics of individual studies by ethnicity for Hispanics and others.

Figure S1. Crude and age-standardized distribution of eGFR and albuminuria across races in the general population cohorts. Panels A (eGFR and albuminuria) show crude distribution, whereas panels C (eGFR) and D (albuminuria) are adjusted for age by direct standardization using US NHANES III as a reference population. Green, black, and red bars denote the proportions of Asian, White, and Black populations, respectively.

Figure S2. Distribution of eGFR (A and C) and albuminuria (B and D) across races in high-risk (A and B) and CKD (C and D) cohorts. Panels A (eGFR) and B (albuminuria) show high-risk cohorts, whereas panels C (eGFR) and D (albuminuria) show CKD cohorts. Green, black, and red bars denote the proportions of Asian, White, and Black populations, respectively.

Figure S3. Absolute risk overall of all-cause mortality (A and B), cardiovascular mortality (C and D), and ESRD (E and F) in general population cohorts.

Figure S4. Association of ACR by ethnicity with all-cause mortality (A) and cardiovascular mortality (B) in general population cohorts.

Figure S5. Association of eGFR by ethnicity with all-cause mortality (A) and cardiovascular mortality (B) in high-risk cohorts.

Figure S6. Association of eGFR by ethnicity with all-cause mortality (A), cardiovascular mortality (B), and ESRD (C) in CKD cohorts.

Figure S7. Association of ACR by ethnicity with all-cause mortality (A) and cardiovascular mortality (B) in general population cohorts.

Figure S8. Association of ACR/protein-to-creatinine ratio (PCR) by ethnicity with all-cause mortality (A), cardiovascular mortality (B), and ESRD (C) in chronic kidney disease cohorts.

Figure S9. Forest plot across general population studies by grouping of Asians, Whites, and Blacks at eGFR 30–59 category and albuminuria 30–299 category for cardiovascular mortality.

Figure S10. Forest plot across general population studies by grouping of Asians, Whites, and Blacks at eGFR 45–59 category and albuminuria 30–299 category for all-cause mortality.

Figure S11. Forest plot across general population studies by grouping of Asians, Whites, and Blacks at eGFR 45–59 category and albuminuria 30–299 category for end-stage renal disease.

Figure S12. Relative risk of all-cause and cardiovascular mortality according to eGFR and ACR/dipstick categories in Whites, Asians, and Blacks in high-risk cohorts.

Figure S13. Relative risk of all-cause and cardiovascular mortality according to eGFR and ACR/dipstick categories in Whites, Asians, and Blacks in chronic kidney disease cohorts.

Support Materials References. Supplementary material is linked to the online version of the paper at http://www.nature.com/ki

REFERENCES
1. Eknoyan G, Levin NW. Kidney International (2014) 86. 819-827
2. Levey AS, Atkins R, Coresh J et al. Chronic kidney disease as a global public health problem: approaches and initiatives - A position statement from Kidney Disease Improving Global Outcomes. Kidney Int 2007; 72: 247–259.

3. Crowe E, Halpin D, Stevens P. Guidelines: early identification and management of chronic kidney disease: summary of NICE guidance. BMJ 2008; 337: 812-815.

4. Chadban SJ, Briganti EM, Kerr PG et al. Prevalence of kidney damage in Australian adults: The AusDiab Kidney Study. J Am Soc Nephrol 2003; 14: S131-S138.

5. Hallan SI, Coresh J, Astor BC et al. International comparison of the relationship of chronic kidney disease prevalence and ESRD risk. J Am Soc Nephrol 2006; 17: 2275-2284.

6. Coresh J, Selvin E, Stevens LA et al. Prevalence of chronic kidney disease in the United States. JAMA 2007; 298: 2034-2042.

7. Wen CP, Cheng TY, Tsai MK et al. All-cause mortality attributable to chronic kidney disease: a prospective cohort study based on 462 293 adults in Taiwan. Lancet 2008; 371: 2173-2182.

8. Matsushita K, van der Velde M, Astor BC et al. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet 2010; 375: 2073-2081.

9. Astor BC, Matsushita K, Gansevoort RT et al. Lower estimated glomerular filtration rate and higher albuminuria are associated with mortality and end-stage renal disease. A collaborative meta-analysis of kidney disease population cohorts. Kidney Int 2011; 79: 1331–1340.

10. Gansevoort RT, Matsushita K, van der Velde M et al. Lower estimated GFR and higher albuminuria are associated with adverse kidney outcomes in both general and high-risk populations. A collaborative meta-analysis of general and high-risk population cohorts. Kidney Int 2011; 80: 93–104.

11. Levey AS, de Jong PE, Coresh J et al. The definition, classification, and prognosis of chronic kidney disease: a KDIGO Controversies Conference report. Kidney Int 2011; 80: 17–28.

12. van der Velde M, Matsushita K, Coresh J et al. Lower estimated glomerular filtration rate and higher albuminuria are associated with all-cause and cardiovascular mortality. A collaborative meta-analysis of high-risk population cohorts. Kidney Int 2011; 79:1341-1352.

13. Tonelli M, Mintner P, Lloyd A et al. Using proteinuria and estimated glomerular filtration rate to classify risk in patients with chronic kidney disease: a cohort study. Ann Intern Med 2011; 154: 12-21.

14. de Zeeuw D, Ramjit D, Zhang Z et al. Renal risk and renoprotection among ethnic groups with type 2 diabetic nephropathy: a post hoc analysis of RENAAAL. Kidney Int 2006; 69: 1673–1682.

15. Winears CG, Glassock RJ. Dissecting and refining the staging of chronic kidney disease. Kidney Int 2009; 75: 1009-1014.

16. US Renal Data System. USRDS 2012 Annual Data Report: Atlas of Chronic Kidney Disease and End-Stage Renal Disease in the United States. National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases: Bethesda, MD, 2012.

17. Conley J, Tonelli M, Quan H et al. Association between GFR, proteinuria, and adverse outcomes among White, Chinese, and South Asian individuals in Canada. Am J Kidney Dis 2012; 59: 390-399.

18. Jolly SE, Burrows NR, Chen SC et al. Racial and ethnic differences in mortality among individuals with chronic kidney disease: results from the Kidney Early Evaluation Program (KEEP). Clin J Am Soc Nephrol 2011; 6: 1858-1865.

19. Barbour SJ, Er L, Djurdjev O et al. Differences in progression of CKD and mortality amongst Caucasian, Oriental Asian and South Asian CKD patients. Nephrol Dial Transplant 2010; 25: 3663-3672.

20. Mehrotra R, Kermath D, Fried L et al. Racial differences in mortality among those with CKD. J Am Soc Nephrol 2008; 19: 1403-1410.

21. Hallan SI, Matsushita K, Sang Y et al. Age and association of kidney measures with mortality and end-stage renal disease. JAMA 2012; 308: 2349-2360.

22. de Zeeuw D, Grams ME, Sang Y et al. Associations of estimated glomerular filtration rate and albuminuria with mortality and renal failure by sex: a meta-analysis. BMJ 2013; 346: f234.

23. Mahmoodi BK, Matsushita K, Woodward M et al. Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without hypertension: a meta-analysis. Lancet 2012; 380: 1669-1661.

24. Fox CS, Matsushita K, Woodward M et al. Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without diabetes: a meta-analysis. Lancet 2012; 380: 1662-1673.

25. Yamagata K, Iseki K, Nitta K et al. Chronic kidney disease perspectives in Japan and the importance of urinalysis screening. Clin Exp Nephrol 2008; 12: 1-8.

26. Devereaux PJ, Schunemann HJ, Ravindran N et al. Comparison of mortality between private for-profit and private not-for-profit hemodialysis centers: a systematic review and meta-analysis. JAMA 2002; 288: 2449-2457.

27. Japanese Society of Nephrology. Evidence-based practice guideline for the treatment of CKD. Clin Exp Nephrol 2009; 13: 537-566.

28. Levin A, Hemmelgarn B, Culleton B et al. Guidelines for the management of chronic kidney disease. Can Med Assoc J 2008; 179: 1154-1162.

29. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl 2013; 3: 1-150.

30. Earley A, Miskulin D, Lamb EJ et al. Estimating equations for glomerular filtration rate in the era of creatinine standardization: a systematic review. Ann Intern Med 2012; 156: 785–795.

31. Horio M, Imai E, Yasuda Y et al. Modification of the CKD Epidemiology Collaboration (CKD-EPI) equation for Japanese: accuracy and use for population estimates. Am J Kidney Dis 2010; 56: 32-38.

32. Teo BW, Xu H, Wang DH et al. GFR estimating equations in a multiethnic Asian population. Am J Kidney Dis 2011; 58: 56-63.

33. Du X, Hu B, Jiang L et al. Implication of CKD-EPI equation to estimate glomerular filtration rate in Chinese patients with chronic kidney disease. J Nephrol 2011; 33: 859-865.

34. Stevens LA, Claybon MA, Schmid CH et al. Evaluation of the chronic kidney disease epidemiology collaboration equation for estimating the glomerular filtration rate in multiple ethnicities. Kidney Int 2011; 79: 555-562.

35. Carter CE, Gansevoort RT, Scheven L et al. Influence of urine creatinine on the relationship between the albumin-to-creatinine ratio and cardiovascular events. Clin J Am Soc Nephrol 2012; 7: 595-603.

36. Inker LA, Schmid CH, Tighiouart H et al. Estimating glomerular filtration rate from serum creatinine and cystatin C. N Engl J Med 2012; 367: 20-29.

37. Levey AS, Stevens LA, Schmid CH et al. A new equation to estimate glomerular filtration rate. Ann Intern Med 2009; 150: 604-612.

38. Matsushita K, Mahmoodi BK, Woodward M et al. Comparison of risk prediction using the CKD-EPI equation and the MDRD study equation for estimated glomerular filtration rate. JAMA 2012; 307: 1941-1951.

39. Levey AS, Coresh J, Greene T et al. Expressing the modification of diet in renal disease study equation for estimating glomerular filtration rate with standardized serum creatinine values. Clin Chem 2007; 53: 766-772.

40. Wen CP, Yang YC, Tsai MK et al. Urine dipstick to detect trace proteinuria: an underused tool for an underappreciated risk marker. Am J Kidney Dis 2011; 58: 1-3.

41. Bellomo R, Kellum JA, Ronco C. Acute kidney injury. Lancet 2012; 380: 756-766.

42. Thompson S, Kaptoge S, White I et al. Statistical methods for the time-to-event analysis of individual participant data from multiple epidemiological studies. Int J Epidemiol 2010; 39: 1345-1359.