Quest for biocompatible nanoreactors reaches a new milestone

Palladium (Pd) metal nanoparticles (NP) are good catalysts that can mimic enzyme activity in living systems...

but most nanocatalysts only work in organic solvents, and become aggregated and deactivated in aqueous solvents.

Encapsulating Pd NP could overcome these limitations

Synthesis of hollow spheres with Pd-NP at their inner cavity

How are hollow-shelled Pd nanoreactors better than free NP?

- Biocompatible
- Stable at 37 °C
- Prevents entry of biomolecules and leakage of Pd
- Stable in aqueous solutions
- Low biotoxicity
- Porous surface enables selective passage of substrates and products
- Easy recovery by centrifugation

Novel biocompatible hollow-shelled Pd nanoreactors can be used for delivery of targeted therapies

Electronic Supplementary Material (ESI) for Chemical Science.
This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Material (ESI) for Chemical Science.
This journal is © The Royal Society of Chemistry 2019

Hollow nanoreactors for Pd-catalyzed Suzuki–Miyaura couplings and O-propargyl cleavage reactions in bio-relevant aqueous media
López, Correa-Duarte, Mascareñas et al. (2019) DOI: 10.1039/c8sc04390f