Maintenance and spawning on yellowfin tuna broodstock reared in floating net cage

Tridjoko¹, J H Hutapea¹, A Setiadi¹, Gunawan¹, and B Selamet¹

¹Research Institute for Mariculture and Fisheries Extension
e-mail: tridjoko_gondol@yahoo.co.id

Abstract. Yellowfin tuna (Thunnus albacares) is one of the fish species that have important economic value which is expected to become one of foreign exchange that can give solution to national economy. Hatchery technology of yellowfin tuna performed at the Research Institute for Mariculture and Fisheries Extension Gondol has been successfully spawned. However, the quality and quantity of eggs produced is still not optimal. The purpose of this study was to determine the performance of spawning on yellowfin tuna broodstock reared in floating net. This research was conducted in cage with a diameter of 48.8 m with a depth of 8 m, filled 90 fishes yellow fin tuna with weights ranging between 50-70 kg per fish. Feed given is: fresh fish, squid and added vitamin C and vitamin E. The study was conducted for 11 months from January to November 2017. The results showed that the yellowfin tuna could spawn monthly. The highest spawning frequency occurred in July at 17 times. The highest total number of eggs harvested was 8,740,350 in October. Hatching rate between 50-92%. Survival activity index (SAI) is 1.8-3.5%. Survival rate of yellow fin tuna during maintenance reached 92.2%.

1. Introduction
The technology of yellowfin tuna hatchery has begun to show results in line with the implementation of activities carried out through several stages starting with the success of its spawning and the technological ability of its seed maintenance to reach more than 60 days. As is the case with the success of marine fish species: milkfish, grouper, snapper and others, that is, it begins with larval maintenance technology with low survival. With the passage of time, gradually the technology can be mastered well until it succeeds in mass production of its seeds. Likewise for yellowfin tuna, we must recognize the biological properties of these fish in nature. Yellowfin tuna or what is often called yellowfin-tuna is one of the important export commodities for Indonesia. One of the main characteristics of yellowfin tuna is the yellow stripe running along the left and right sides of the tuna. The yellow line will appear clear when exposed to light. They live in groups and move so fast that they are difficult to catch.

The potential of yellowfin tuna in Indonesia is very large because this type of tuna is the largest species found in Indonesian marine waters. As is well known, Indonesia is one of the countries with the highest potential for tuna in the world. Recorded total tuna production reached 613,575 tons per year with a sales value of Rp. 6.3 trillion per year. As much as 70% of Indonesian tuna production is exported to Thailand, China, Japan, the United States and the European Union. Nevertheless, tuna is facing a number of challenges, including: decreased productivity, its size continues to decrease, and fishing areas tend to go to the open seas. While the Indonesian fisheries management area , the status of the exploitation level of albacore tuna, yellowfin, big eye and bluefin tuna is very worrying with the...
status of being fully exploited to over exploited. Currently, tuna production still relies on catches from nature so that to preserve it, knowledge about reproduction is very important. Research on the reproductive aspects of yellowfin tuna has been conducted at the Research Institute for Mariculture and Fisheries Extension Gondol Bali. The results of the first yellowfin tuna spawning at BBPPBL Gondol occurred in October-November 2004 for 10 days. The number of eggs produced ranges from 7,000-122,000 eggs / spawning. Egg diameter ranged from 840-990 µm with a hatching rate of 0-51.5%. The size of the yellowfin tuna broodstock spawning between 16-25 kg / fish [1].

Research on the reproduction of yellowfin tuna (Thunnus albacares) is still being carried out in stages. Several studies that have been conducted include: tuna fishing research [2]; domestication of prospective tuna broodstock; the life cycle of indoparasites that infect tuna eggs; aspects of reproduction [3]. Observation of spawning and development of yellowfin tuna embryos (Hutapea et al., 2017); size of tuna caught in deep sea and shallow sea FADs [4] and estimated tuna production in Benoa Bali [5]. Furthermore, conducting research on the spawning of yellowfin tuna broodstock in floating net cage and in a controlled tank, as well as evaluating the productivity of the broodstock and the enlargement of yellowfin tuna. However, the quality and quantity of eggs and larvae obtained are still not optimal. The number of eggs, the hatching rate is still fluctuating, the resulting larvae cannot mass produce seeds for the first generation (G-1) broodstock prospective. Therefore, research on yellowfin tuna broodstock is still being carried out to obtain spawning techniques and larval rearing techniques such as successful hatchery of milkfish, humpback grouper [6] and other marine fish. This study aims to determine the continuity of spawning of yellowfin tuna broodstock reared in floating net cages. The target to be achieved is the production of high quality eggs to support the success of seed production.

2. Methodology
Using 1 floating net cage with a diameter of 48.8 m and a net depth of 8 meters. Floating net cage as a maintenance medium is filled with 90 yellowfin tuna with body weights ranging from 50-70 kg per fish. Yellow fin tuna feed is given in the form of fresh fish, squid and added Vitamin C and Vitamin E. The amount of feed given is between 3-5 percent of biomass. Feed is given once a day in the morning. This research was conducted for 10 months, from January to November 2017. The cleanliness of the nets must always be maintained so that the flow and oxygen in the cage remains optimum. For this reason, cleaning the net is carried out periodically.

The parameters observed were: Spawning frequency, total number of eggs produced, egg diameter, oil globule diameter, hatching rate, life activity index value of newly hatched larvae (SAI) and survival rate of tuna broodstock during the experiment. In addition, analysis of tuna fish eggs includes: total fat content, protein content, EPA and DHA. As supporting data, water quality observations were: temperature, salinity, and water transparency in floating net cage. Data analysis was done descriptively.

3. Results and discussion
During the maintenance of yellowfin tuna broodstock in floating net cages with productive broodstock size, optimal feed management and an environment that is within tolerance, the yellowfin tuna broodstock can spawn well [7]; [8]; [9]. The results of observing the frequency of yellowfin tuna broodstock spawning during the study are listed in (Figure 1). From Figure 1, it can be seen that the yellowfin tuna reared in floating net cage can spawn every month.
Figure 1. Observations on the spawning and harvesting of yellowfin tuna eggs during the experiment

From the observations on the egg collector that has been setting every day, if tuna eggs are found, it means that there is an indication that spawning occurs at night. Thus, it can be seen that the yellowfin tuna spawning that occurred in January to November were 10, 5, 11, 15, 4, 5, 17, 14, 10, 11 and 7 spawning times, respectively. However, not all spawning, the eggs are harvested every day with the consideration that the sea waves are quite large, there is heavy rain, the quality of the eggs is bad and others. Egg harvesting is carried out at night between 23:00 - 03:00, there are many problem that are sometimes technically difficult to harvest.

From Figure 1, it can be seen that the highest spawning frequency is in July and the lowest is in May. If the total number of eggs found in the egg collector is quite a lot more than 1500 eggs, harvesting will be carried out on the following night, depending on the weather or conditions if possible. Egg harvests are carried out every month, and the most in September is 5 eggs harvested, followed by October 4 harvests. However, the highest total number of eggs obtained was in October: 8,740,350 eggs. Therefore, from the results of spawning every month, the harvested amounts from January to November are as follows: 2, 1, 3, 2, 2, 3, 3, 5, 4 and 2 times the harvest of yellowfin tuna eggs. The total number of eggs that were successfully harvested during each spawning was very fluctuation (Figure 2).

The results of research conducted by [10] stated that yellowfin tuna reared in a controlled concrete tank for the first time spawning measuring with body weights 20 kg. Furthermore [11] said that yellowfin tuna kept in floating net cage with a diameter of 50 m with a net depth of 8 m are setting about 300-400 m from the coast with a water depth of 20-30 meters, feed is given of fresh fish and squid (2 : 1) 3-5 percent of the biomass can be spawned every month. This is consistent with the results of a study by [12] which states that yellowfin tuna (Thunnus albacares) spawn throughout the year.
Although yellowfin tuna can spawn every month, the quality and quantity of eggs produced are not always good. This is evident in the presence of a number of fertilized eggs and unfertile as seen in (Table 1 and Figure 3). This case also occurs in other marine fish, such as napoleon fish (*Cheilinus undulatus*), humpback grouper [13] ; [14], tiger pompano fish [15], and cobia fish [16].

Table 1. Observation results of fertilized and unfertile yellowfin tuna eggs

Month	Number of eggs (fertilized)	Number of eggs (unfertile)
January	997,850	504,150
February	305,000	107,000
March	501,660	154,340
April	1,459,000	414,000
May	200,000	102,000
June	150,000	67,000
July	1,035,985	532,015
August	520,000	200,225
September	6,306,647	866,238
October	6,740,000	2,000,350
November	827,000	700,000

It seems that in September of yellowfin tuna which successfully spawned 10 times and was harvested 5 times eggs, the total number of eggs was 7,172,885 eggs. Of the total number of fertilized eggs 6,306,647, and unfertilized: 866,238 eggs (Table 1). Therefore, the highest percentage of fertilized eggs occurred in September. And the lowest occurred in November, 700,000 eggs unfertilized (Table 1 and Figure 3).
Some of the factors that influence the success of spawning include the maintenance environment, the feed given, the age of the fish and the health condition of the fish. Therefore, if these factors are not optimal, the quality of the eggs produced is not good. Some research results suggest that a better feed composition can accelerate the development of gonads and fecundity, such as humpback grouper [17], it can increase the growth of tiger grouper yuwana [18]. Therefore, the optimal feeding of yellowfin tuna that is kept in floating net cage is tried to be as optimal as possible, namely by adding vitamins.

Table 2. Observation results of egg diameter size and oil bubble diameter from the spawning of yellow fin tuna broodstock

Month	Egg diameter (μm)	Diameter of oil globule (μm)						
	Avg.	Max.	Min.	Std.dev.	Avg.	Max.	Min.	Std.dev.
January	879.5	915.7	847.9	19.7	208.6	228.9	197.6	8.5
February	936.8	998.5	858.0	34.9	206.1	230.3	166.7	13.6
March	901.5	936.9	859.1	17.6	195.7	208.3	182.0	7.5
April	876.9	920.6	847.9	21.3	188.1	208.7	150.8	12.9
May	889.5	936.0	786.0	31.1	188.2	198.1	177.5	6.1
June	888.2	936.2	780.9	30.7	187.5	197.8	177.7	6.8
July	892.7	931.0	842.5	19.9	200.9	218.7	187.9	7.4
August	889.5	962.2	843.1	30.3	189.5	202.9	172.9	9.4
September	880.9	920.4	826.9	22.4	189.3	213.8	182.1	9.1
October	857.0	894.8	821.9	20.8	201.0	229.8	182.5	13.4
November	875.2	925.3	840.1	21.7	207.2	237.4	186.3	11.2

Some vitamins are also quite well used in feeding marine fish broodstock, such as vitamin C and vitamin E. Vitamin C is a vitamin that is thought to play a role in the reproductive cycle and can affect egg quality. While, vitamin E affects the function of the cell membrane forming egg tissue. One indicator of egg quality is the size of the egg diameter.

Egg quality is a reflection of the chemical composition of the yolk which is influenced by the nutritional state of the feed and the conditions of the broodstock. Egg size can be genetic as indicated by small variations in egg size or as a result of food and environmental influences. Anyway egg size
very important for the survival and growth of the post larvae. The results of observations of the diameter of yellowfin tuna eggs during the study ranged from 857.0 - 936.8 μm, maximum: 998.5 μm and minimum: 780.9 μm. While the diameter of the oil globule is between 187.5 - 208.6 μm, maximum 237.4 μm and minimum: 150.8 μm (Table 2).

The results of this study are in line with the results of research conducted by [19] that the diameter of yellowfin tuna eggs carried out in Japan is > 900 μm and the diameter of the oil bubbles > 200 μm. While, the hatchability of eggs ranged from 50 - 92%, and the life activity index for newly hatched larvae was between 1.8-3.5% (Table 3). From the results of research on marine fish spawning, that eggs that have low hatching rate or below 40% will effect of larvae grow. Such as slow larval growth, and there is often mass death before the larvae are 45 days old. This incident also often occurs in other marine fish such as: humpback grouper [17], napoleon fish and cobia fish [16].

Table 3. Observations of the range of hatching rate and life activity index of the newly hatched larvae during the experiment

Month	Hatching rate (%)	Life activity index of the newly hatched larvae (%)
January	75 - 80	2.1 – 3.0
February	80 - 90	1.9 – 2.3
March	65 - 75	2.2 – 3.1
April	70 - 92	2.1 – 3.2
May	50 - 65	1.9 – 2.1
June	70 - 80	2.1 – 3.2
July	60 - 75	1.8 – 2.4
August	75 - 80	2.0 – 3.0
September	85 - 90	2.4 – 3.5
October	80 - 92	2.3 – 3.4
November	85 - 90	2.2 – 3.3

Table 4. Analysis of eggs from the results of the spawning of yellowfin tuna broodstock reared in floating net cages

No	Parameter Test	Unit	Analysis results Tuna Eggs *	Specifications / Methods
1	Total fat	%	19,22	Gravimetric
2	Protein	% BW	53,86	Kjeldahl
3	EPA	% Relatif	8,81	Cromatography Gas
4	DHA	% Relatif	18,59	Cromatography Gas

Survival activity index (SAI) is the ability of newly hatched larvae to live by relying on energy reserves, namely egg yolks and oil granules. From the results of the SAI test (Table 3), it can be seen that the highest index value reaches 3.5%. Testing the resistance of these larvae without being given food and aeration as a source of oxygen. Index of larval life activity is closely related to the quality of the eggs produced. This can illustrate that the higher the SAI value is an indicator of increasing egg
quality, so that it is thought to be able to increase the survival power of the larvae produced. Thus, from the observation that the quality and quantity of eggs produced is quite good, it is expected that the tuna seed production techniques will be successful gradually until prospective tuna broodstock are obtained.

In the formation of egg cells and the development of egg embryos in marine fish, it is necessary to have optimal composition and nutrition through the feed given if the fish are kept in a controlled tank or in floating net cage. In biosynthesis, steroid hormones occur in several stages of the hydroxlation reaction which indirectly accelerates the process of ovarian formation. The results of the analysis of yellowfin tuna eggs carried out at the Integrated Research and Testing Laboratory of Gajah Mada University, Yogyakarta (Table 4) indicate that the quality of eggs from the results of spawning is quite good. Therefore, it is hoped that the mass production of tuna seeds will be resolved and there will be no more problems.

Table 5. Total mortality of yellowfin tuna broodstock reared in floating net cage during the experiment

Date / Month / Year	Standard Length (cm)	Body Weight (kg)	Gonad Weight (g)	Sex (M/F)	Remark
24-02-2017	152	-	-	-	Decomposed
27-02-2017	114	-	-	-	Decomposed
10-04-2017	134	40.32	566.41	M	-
19-05-2017	143	-	-	-	Decomposed
19-05-2017	128	-	-	-	Decomposed
02-09-2017	103	-	-	-	Decomposed
05-09-2017	145	62.70	743.79	M	-

Table 6. Water quality parameters in the yellowfin tuna rearing media in floating net cage

Water quality / Month	Temperature (ºC)	Salinity (ppt)	Brightness (meter)
January	28.0-29.5	32.0-34.0	5.5-7.5
February	28.5-30.0	32.0-34.0	6.0-8.0
March	28.0-30.0	32.0-34.0	6.0-7.5
April	28.0-30.0	33.0-34.0	5.5-8.0
May	28.0-30.0	32.5-34.0	5.5-7.5
June	28.5-30.0	32.0-34.0	6.0-8.0
July	28.5-30.5	33.0-34.0	6.5-8.0
August	28.0-30.5	32.5-34.0	6.5-8.0
September	28.5-30.5	32.5-34.0	5.5-7.5
October	28.0-29.5	32.0-34.0	5.5-7.5
November	28.5-30.0	32.0-34.0	6.0-8.0

During the research, from January to November, there was a death of the yellowfin tuna broodstock. Of the 90 yellowfin tuna broodstock kept in the floating net cage, it turns out that 7 of them died. In February 2 fish, April 1 fish, May 2 fish and September 2 fish. This death is suspected because on the date of the month the rainfall is quite high, then there are big waves so that the quality
of the waters in the floating net cage is not good. The dead tuna broodstock has a standard length between 103-152 cm. Two male sexes (Table 5). Thus, the survival of yellowfin tuna broodstock reared in floating net cages during the study was still quite high, namely 92.2%.

The results of the observation of water quality parameters which include: temperature, salinity, water transparency are in the optimal range to support the maturity process of gonads and the spawning of yellowfin tuna reared in floating net cage (Table 6).

4. Conclusion
Yellowfin tuna (*Thunnus albacares*) kept in the floating net cage during the study can spawn every month. The highest spawning frequency occurs in July, which is 17 times. The highest number of eggs harvested was 8,740,350 in October. Hatching rate of eggs is between 50-92%. The index of life activity for newly hatched larvae (SAI) was 1.8-3.5%. The survival rate of broodstock yellowfin tuna during maintenance in floating net cage reached 92.2%.

References
[1] Hutapea J H, Setiadi A, Gunawan and Permana I G N 2016 The performance of the yellowfin tuna spawned (*Thunnus albacares*) in the floating net cages *Journal of Aquaculture Research* Vol 12 No 1 pp 49 - 56 in Indonesian
[2] Hidayati D, Herlambang R, Jadin N, Sa’adah N N and Nurhayati A P D 2017 Potential of yellowfin tuna catch in East Java-Indian Ocean based on length frequency and age distribution. *International Conference on Mathematic and Natural Sciences (IConMNS 2017) IOP Conf Series Journal Of Physics series* p 1040
[3] Andamari, Hutapea J H and Prisantoso B I 2012 Reproductive aspects of yellowfin tuna (*Thunnus albacores*) *Journal of Tropical Marine Science and Technology* Vol 4 No 1 pp 89 - 96 in Indonesian
[4] Kantun W, Mallawa A and Neat N L 2014 Comparison of size structure of yellowfin tuna (*Thunnus albacores*) caught in deep sea and shallow seas in the Makassar Strait *P S P Science and Technology Journal* Vol 1 No 2 pp 112 - 124 in Indonesian
[5] Jatmiko I H, Hartaty and Nugraha B 2016 Estimation of yellowfin tuna production landed in Benoa port with weight-weight, length-weight relationships and condition factor approaches. *Indonesian Fisheries Research Journal* Vol 2 No 2 pp 77 - 84
[6] Tridjoko, Haryanti, Moria S B, Muzaki A and Wardana I K 2014 The performance of gonad maturity and spawning of humpback grouper from cross-breeding between F-2 and F-0 *Journal of Tropical Marine Science and Technology ISOI and Dept Science and Tech Maritime Affairs of IPB Bogor* Vol 6 No 1 pp 41-51 in Indonesian
[7] Tridjoko, Gunawan, Setiadi, A., Selamet, B., dan Hutapea, JH 2019 The spawning performance of yellowfin tuna (*Thunnus albacares*) in floating net cages *Proceedings of the XV ISOI Annual National Scientific Meeting Yogyakarta 1-3 November 2018 Indonesian Oceanology Undergraduate Association* pp 89-99
[8] Tridjoko, Setiadi, A., Gunawan, dan Hutapea, JH 2020 Breeding productivity of yellowfin tuna broodstock in floating net cages *Journal of Fisheries and Marine Sciences Hang Tuah University*
Surabaya Fisheries Vol 2 Issue 2 pp 112-123 in Indonesian

[9] Tridjoko, Setiadi, A., Gunawan, Hutapea, JH., Setiadharma, T., dan Selamet, B 2020. Performance of yellowfin tuna spawning (Thunnus albacares) in floating net cage IOP Conf. Ser : Earth Environ. Sci. 584 011001

[10] Hutapea J H and Permana I G N 2007 Domestication of prospective yellowfin tuna fish (Thunnus albacares) in a controlled tank Fisheries Aquaculture Technology Development pp 461 - 466 in Indonesia

[11] Hutapea, J.H., Gunawan, A. Setiadi, I.G.N Permana dan Tridjoko 2015 Study on Culture Technology of Yellowfin Tuna Thunnus albacares in conrcrete tank and floating net cage Technical Report of the Center for Research and Development of Bali Gondol Marine Culture 24 pages in Indonesian

[12] Suzuki, Z 1994 A review of the biology and fisheries for yellowfin tuna (T. albacares) in the Western and Central Pacific Ocean. In: Shomura, R.S., J. Majkowski, and S. Langi (eds.) Interaction of Pacific tuna fisheries Volume 2 papers on biology and fisheries Proceedings of the First FAO Expert Consultation on Interaction of Pacific Tuna Fisheries 3 -1 1 Dec 1991 Noumea New Caledonia FAO Fish Tech Pap 336 (2) pp 08 - 137.

[13] Tridjoko, K. Suwirya, SBM. Sembiring dan A. Priyono 2011 Functional male broodstock performance of grouper duck F-2 Proceedings of the Aquaculture Technology Innovation Forum Volume 2 Research and Development Center for Aquaculture Research and Development of Marine and Fisheries Jakarta Page 1225-1232 in Indonesian

[14] Tridjoko 2013 Effect of implantation of the hormone 17 hormone MT (Methyl Testosterone) on the spawning of grouper 2nd generation (F-2) Proceedings of the X Annual National Seminar on Fisheries and Marine Research Volume I Fisheries Cultivation Department of Fisheries, Faculty of Agriculture UGM Yogyakarta P GN-02 1-6 in Indonesian

[15] Setiadharma T, Prijono A and Alit A A 2013 The performance of spwan and gonad maturation of golden trevally fish broodstock (Gnathanodon speciosus, Forskall) on control tank Proceeding International Partnerships Related to the Development of Technology and Maritime Shangri-La Hotel Surabaya P 115 - A 119

[16] Prijono A, Setiaharma T and Aslianti T 2013 Gonadal development and spawning of cobia, Rachycentron canadum in captivity Proceeding International Partnerships Related to the Development of Technology and Maritime Shangri-La Hotel Surabaya. P 141 - A 146

[17] Tridjoko 2012 Observation of egg quality by the addition of several vitamins in the feed of the humpback grouper, Cromileptes altivelis in controlled rearing tanks Proceedings of the National Ocean Seminar VIII Management of Marine Resources Based on Science and Technology for the Prosperity of the Nation Hang Tuah University Surabaya P B1 56 - B1 -62 in Indonesian

[18] Marzuqi, M., W.W. Astuti, dan Suwirya, K 2012 Effect of protein content and feeding ratio on the...
growth of tiger grouper (Epinephelus fuscoguttatus). J Tropical Marine Science and Technology 4 (1) 55-65 in Indonesian

[19] Margulies, D, Suter, JM, Hunt, SL, Olson, RJ, Scholey, VPJ.B. Wesler, JB and Nakazawa, A 2007
Spawning and early development of captive yellowfin tuna (Thunnus albacores). Overseas Fishery Cooperation Foundation Sankaido Building 9-B Asaka minato-ku Tokyo 107-0052 Japan
p 249-265