Online Appendix

Table A1: Descriptive statistics of return series (5-min data, high frequency robustness testing)

	SSEA	SSEB	Oil	Bitcoin	US dollar	Corn
Full sample period: July 1, 2019 – April 10, 2020						
Mean	7.37E-07	-2.16E-05	-6.98E-05	-3.22E-05	2.15E-06	8.54E-06
STD	0.001	0.001	0.006	0.007	4.66E-04	0.002
Maximum	0.020	0.046	0.131	0.257	0.019	0.065
Minimum	-0.091	-0.103	-0.140	-0.506	-0.014	-0.055
Skewness	-19.620	-31.475	-3.333	-20.159	7.055	6.608
Kurtosis	1212.049	2551.121	162.286	1820.196	495.269	606.862
JB test	8.85E+08***	3.93E+09***	6.88E+06***	2.00E+09***	1.47E+08***	9.57E+07***
P1: July 1, 2019 – November 16, 2019						
Mean	6.57E-06	-2.12E-05	2.44E-06	-3.50E-05	2.62E-06	-7.91E-06
STD	0.001	0.001	0.006	0.006	3.28E-04	0.001
Maximum	0.015	0.007	0.131	0.257	0.009	0.022
Minimum	-0.017	-0.011	-0.140	-0.014	-0.008	-0.014
Skewness	0.892	-1.541	-0.786	9.231	-2.424	2.173
Kurtosis	103.792	39.002	246.340	633.988	241.181	75.079
JB test	3.02E+06***	3.88E+05***	8.35E+06***	1.19E+08***	1.69E+07***	6.19E+05***
P2: November 17, 2019 – December 30, 2019						
Mean	2.13E-05	1.90E-06	8.92E-05	-6.41E-05	-5.80E-06	-3.92E-06
STD	0.001	0.001	0.003	0.004	2.50E-04	0.001
Maximum	0.008	0.006	0.033	0.092	0.004	0.010
Minimum	-0.004	-0.008	-0.033	-0.079	-0.005	-0.004
Skewness	0.803	-1.181	-0.283	4.137	-6.075	1.742
Kurtosis	15.400	25.018	55.441	219.894	210.876	37.984
JB test	1.53E+04***	4.81E+04***	1.09E+05***	4.62E+06***	4.26E+06***	7.15E+05***
P3: December 31, 2019 – April 10, 2020						
Mean	-1.72E-05	-3.33E-05	-2.52E-04	-1.33E-05	5.22E-06	3.97E-05
STD	0.002	0.002	0.008	0.010	0.001	0.003
Maximum	0.020	0.046	0.075	0.137	0.019	0.065
Minimum	-0.091	-0.103	-0.121	-0.506	-0.014	-0.055
Skewness	-18.069	-24.526	-4.462	-28.260	7.477	5.513
Kurtosis	748.611	1290.460	84.789	1557.708	317.621	350.672
JB test	1.16E+08***	3.47E+08***	6.11E+05***	5.06E+08***	2.07E+07***	1.04E+07***

Note: Returns are calculated by taking the first differences of logarithmic prices. SSEA is the Shanghai Stock Exchange A-share index; SSEB is the Shanghai Stock Exchange B-share index. Oil, the Chinese crude oil commodity futures traded in the Shanghai International Energy Exchange; Gold, the Chinese gold commodity futures; Corn, the Chinese corn commodity futures; Bitcoin, bitcoin traded in the Bitstamp cryptocurrency exchange; US dollar, US dollar currency index. STD denotes standard deviation. JB test is the Jarque-Bera normality test. E stands for scientific notation. *** represents significance at the 1% level.
Table A2: Two-state regime switching model, SSEA (Estimation from data at 5-min intervals)

Coef.	SSEA – Oil	SSEA – Bitcoin	SSEA – US dollar	SSEA - Corn				
	Reg 1 (i=1)	Reg 2 (i=2)	Reg 1 (i=1)	Reg 2 (i=2)	Reg 1 (i=1)	Reg 2 (i=2)		
u_i	-9.46E-05	1.73E-05	-2.15E-06	8.28E-05	4.80E-07	9.04E-05	1.27E-05	-5.50E-05
	(0.5785)	(0.1648)	(0.6891)	(0.0867)	(0.9334)	(0.4884)	(0.2797)	(0.7884)
a_i	-0.040	0.016***	0.034***	0.239***	0.049***	0.083***	0.026	-0.046
	(0.5234)	(0.0083)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.1396)	(0.7110)
b_i	-0.005	0.004	-8.77E-05	-0.005	0.005	-0.012	0.009	-0.013
	(0.7774)	(0.3088)	(0.9745)	(0.8267)	(0.9231)	(0.9860)	(0.4408)	(0.8777)
h_i^c	-2.61E-04	1.10E-05	-3.04E-05*	-1.04E-05	-6.93E-07	2.64E-05	-2.46E-06	-2.84E-05
	(0.6730)	(0.4821)	(0.0539)	(0.8377)	(0.3737)	(0.6100)	(0.7985)	(0.8638)
a_i^c	-0.063	0.008	0.001	0.054	-0.001	0.001	0.001	-0.047
	(0.6730)	(0.4750)	(0.0988)	(0.3884)	(0.1376)	(0.9890)	(0.9086)	(0.5294)
b_i^c	-0.004	0.009***	0.149***	-0.004***	0.052	-0.449***		
	(0.0000)	(0.1944)	0.0000	(0.0000)	(0.0179)	(0.6017)	(0.0000)	(0.0298)
h_i	1.39E-05***	7.34E-07***	3.26E-07***	7.42E-06***	3.50E-07***	1.03E-05***	6.25E-07***	2.26E-05***
	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)
$\gamma_{i,1}^c$	-8.34E-06***	-1.82E-07***	-2.15E-07***	-6.13E-06***	-4.87E-08***	-7.11E-06***	-1.89E-07***	-1.80E-05***
	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)
$\gamma_{i,2}^c$	4.58E-05***	7.46E-07***	5.24E-07***	4.84E-06***	3.87E-07***	1.83E-05***	1.34E-06***	1.02E-04
	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)
h_i	3.34E-04***	1.25E-06***	2.40E-06***	4.66E-04***	7.70E-09***	1.90E-06***	3.84E-07***	1.16E-05***
	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)
$\gamma_{i,1}^c$	-2.60E-04***	-6.19E-07***	2.13E-05***	-4.65E-04***	-3.96E-09***	-1.26E-07***	-9.82E-08***	-8.51E-06***
	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0019)
$\gamma_{i,2}^c$	6.39E-05***	1.41E-06***	6.72E-07***	0.001***	8.49E-09***	1.28E-06***	7.65E-08***	6.94E-05*
	(0.0015)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.00174)	(0.0560)
p_i	0.013	0.132***	0.016	0.017	-0.017*	-4.11E-04	0.024*	-0.087*
	(0.7830)	(0.0000)	(0.1193)	(0.6393)	(0.0775)	(0.9984)	(0.0594)	(0.0522)
a_i	1.451***	3.563***	2.784***	1.260***	-2.917***	1.482***	3.528***	
	(0.0096)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0053)
b_i	0.001***	-3.21E-05	-2.28E-05	-1.15E-05	1.23E-04***	4.02E-04***	-7.85E-06	-0.101*
	(0.0021)	(0.3817)	(0.8038)	(0.9169)	(0.0004)	(0.7209)	(0.0647)	

Log-l.

65,924 | 149,701 | 191,562 | 70,013

Hansen's

0.0000 | 0.0000 | 0.0000 | 0.0000

Note: This table reports the estimation result of the two-state regime switching model. Estimation is done for five sample pairs consisting of one Shanghai Stock Exchange A- or B-share index and one commodity asset and results are separately shown. Coef. denotes model coefficients. SSEA index is the Shanghai Stock Exchange A-share index; SSEB index is the Shanghai Stock Exchange B-share index. Hansen (1992)'s standardised likelihood ratio test is employed to test the existence of regimes and associated p-value of test statistic is shown. E stands for scientific notation. Figures in parentheses are p values of significance check. ***, ** and * represent significance at the 1%, 5% and 10%, respectively.
Coef.	SSEB – Oil	SSEB – Bitcoin	SSEB – US dollar	SSEB – Corn				
	Reg 1 (i=1)	Reg 2 (i=2)						
u_i^s	2.98E-05*	-2.47E-05*	-9.17E-06	-8.62E-07	-5.94E-06	1.45E-04	-3.02E-05	-1.03E-05
	(0.0602)	(0.0588)	(0.1155)	(0.9156)	(0.2023)	(0.1150)	(0.0173)	(0.5165)
a_i^s	0.085***	0.083***	0.077***	0.105***	0.102***	0.076***	0.080***	0.083***
	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)
b_i^s	0.001	-1.32E-04	-1.52E-04	0.001	-0.002	0.023	0.010	-0.010
	(0.7976)	(0.0945)	(0.9592)	(0.2823)	(0.0128)	(0.4199)	(0.3737)	(0.2473)
u_i^c	1.50E-05	2.25E-05	-5.08E-05**	-1.56E-05	-6.98E-07	2.05E-05	-1.39E-05	-1.89E-06
	(0.4905)	(0.2823)	(0.4199)	(0.3737)	(0.6577)	(0.2473)	(0.8746)	
a_i^c	0.018	-0.003	-0.041	0.008	1.36E-06	0.003	0.001	0.010
	(0.3633)	(0.8950)	(0.2259)	(0.7237)	(0.9990)	(0.9245)	(0.9650)	(0.1196)
b_i^c	0.020***	3.21E-04	-0.007***	0.021***	0.005***	0.064	-0.128***	0.185***
	(0.0000)	(0.09506)	(0.0000)	(0.0018)	(0.0000)	(0.0000)	(0.0000)	(0.0000)
h_i^s	9.62E-06***	4.83E-07***	2.07E-07***	3.97E-06***	2.01E-07***	4.07E-06***	3.73E-07***	1.19E-05***
	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)
$\gamma_{i,1}^s$	-9.32E-06***	9.59E-06***	3.45E-06***	-3.70E-06***	8.76E-08**	1.04E-06*	2.26E-06*	-1.17E-05***
	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0620)	(0.0000)	(0.0000)
$\gamma_{i,2}^s$	-8.72E-06***	7.42E-05***	6.38E-05***	-3.40E-06***	2.56E-07***	3.38E-05*	1.82E-04*	-1.06E-05***
	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	
h_i^c	4.62E-04***	1.25E-06***	2.57E-06***	4.95E-04***	7.36E-05***	1.49E-06*	3.49E-07***	
	(0.0620)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	
$\gamma_{i,1}^c$	-4.61E-04***	3.97E-05***	2.37E-04***	-4.94E-04***	-3.74E-09**	-2.03E-07***	7.64E-07***	9.26E-06***
	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0230)	(0.0000)	(0.0000)	
$\gamma_{i,2}^c$	-4.58E-04***	4.73E-04***	0.001***	-4.92E-04***	1.41E-08***	2.53E-06***	9.98E-05***	8.99E-06***
	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	
p_i	0.066***	0.072***	0.012	0.010	-0.010	-0.003	0.028	-0.001
	(0.0023)	(0.0002)	(0.3878)	(0.4499)	(0.3122)	(0.9910)	(0.2060)	(0.9690)
a_i	1.368***	3.296***	1.234***	-5.496***	2.708***	2.010***	3.202***	1.629***
	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	
b_i	7.40E-05***	-4.76E-04***	1.91E-04***	0.001***	-1.24E-04***	-3.42E-04***	-2.01E-04***	3.01E-04***
	(0.0092)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	

Note: This table reports the estimation result of the two-state regime switching model. Estimation is done for five sample pairs consisting of one Shanghai Stock Exchange A- or B-share index and one commodity asset and results are separately shown. Coef. denotes model coefficients. SSEA index is the Shanghai Stock Exchange A-share index; SSEB index is the Shanghai Stock Exchange B-share index. Hansen (1992)'s standardised likelihood ratio test is employed to test the existence of regimes and associated p-value of test statistic is shown. E stands for scientific notation. Figures in parentheses are p values of significance check. ***, ** and * represent significance at the 1%, 5% and 10%, respectively.
Table A4: Logarithmic ratios of static information share measures at 5-min intervals: Ratios of information share measures between SSEA index and other assets

	Oil	Bitcoin	US dollar	Corn
P1: July 1, 2019 – November 16, 2019				
CS ratio	0.022	4.601	0.511	-3.621
IS ratio	-2.672	5.222	2.915	-5.251
ILS ratio	-5.388	1.242	4.809	-3.261
P2: November 17, 2019 – December 30, 2019				
CS ratio	1.117	-0.929	-3.025	1.538
IS ratio	0.231	-5.663	-3.886	3.502
ILS ratio	-1.773	-9.467	-1.723	3.928
P3: December 31, 2019 – April 10, 2020				
CS ratio	1.644	1.287	2.058	-0.657
IS ratio	1.276	-0.499	6.439	-0.783
ILS ratio	-0.736	-3.571	8.762	-0.251

Changes in ratios between sub-periods

Ratios in P2 minus Ratios in P1

	Oil	Bitcoin	US dollar	Corn	
CS ratio	Diff.	1.095	-5.53	-3.536	5.159
IS ratio	Diff.	2.903	-10.885	-8.01	7.853
ILS ratio	Diff.	3.615	-10.709	-6.532	7.189

Ratios in P3 minus Ratios in P2

	Oil	Bitcoin	US dollar	Corn	
CS ratio	Diff.	0.527	2.216	5.083	-2.195
IS ratio	Diff.	1.045	5.164	10.325	-4.285
ILS ratio	Diff.	1.037	5.896	10.485	-4.179

Note: Logarithmic ratios of information share measures are calculated as the natural logarithms of ratios of static information share measures of Shanghai Stock Exchange A and B-share indices over the other five assets. CS, component share; IS, information share; ILS, information leadership share. Static information share measures are calculated based on estimates of the VECM at each sub-period. SSEA index is the Shanghai Stock Exchange A-share index; SSEB index is the Shanghai Stock Exchange B-share index. Diff. represents the result of subtraction in ratios.
Table A5: Logarithmic ratios of static information share measures at 5-min intervals: Ratios of information share measures between SSEB index and other assets

	Oil	Bitcoin	US dollar	Corn
P1: July 1, 2019 – November 16, 2019				
CS ratio	0.022	4.601	0.511	-3.621
IS ratio	-2.672	5.222	2.915	-5.251
ILS ratio	-5.388	1.242	4.809	-3.261
P2: November 17, 2019 – December 30, 2019				
CS ratio	1.117	-0.929	-3.025	1.538
IS ratio	0.231	-5.663	-3.886	3.502
ILS ratio	-1.773	-9.467	-1.723	3.928
P3: December 31, 2019 – April 10, 2020				
CS ratio	1.644	1.287	2.058	-0.657
IS ratio	1.276	-0.499	6.439	-0.783
ILS ratio	-0.736	-3.571	8.762	-0.251

Changes in ratios between sub-periods

Ratios in P2 minus Ratios in P1	Oil	Bitcoin	US dollar	Corn
CS ratio	Diff. 1.095	-5.53	-3.536	5.159
IS ratio	Diff. 2.903	-10.885	-6.801	8.753
ILS ratio	Diff. 3.615	-10.709	-6.532	7.189

Ratios in P3 minus Ratios in P2	Oil	Bitcoin	US dollar	Corn
CS ratio	Diff. 0.527	2.216	5.083	-2.195
IS ratio	Diff. 1.045	5.164	10.325	-4.285
ILS ratio	Diff. 1.037	5.896	10.485	-4.179

Note: Logarithmic ratios of information share measures are calculated as the natural logarithms of ratios of static information share measures of Shanghai Stock Exchange A and B-share indices over the other five assets. CS, component share; IS, information share; ILS, information leadership share. Static information share measures are calculated based on estimates of the VECM at each sub-period. SSEA index is the Shanghai Stock Exchange A-share index; SSEB index is the Shanghai Stock Exchange B-share index. Diff. represents the result of subtraction in ratios.
Table A6: Means and standard deviations of logarithmic ratios of time varying information share measures at 5-min intervals, Ratios of information share measures between SSEA index and other assets

	Oil	Bitcoin	US dollar	Corn
P1: July 1, 2019 – November 16, 2019				
CS ratio Mean	0.69	1.73	-1.109	-0.68
STD	1.635	1.805	1.528	1.741
IS ratio Mean	-1.25	-0.312	-0.063	-0.639
STD	2.893	3.284	2.984	2.76
ILS ratio Mean	-3.881	-4.1	2.092	0.083
STD	2.572	3.007	2.921	2.208
P2: November 17, 2019 – December 30, 2019				
CS ratio Mean	0.955	1.716	-2.106	-0.416
STD	1.631	1.536	1.207	1.406
IS ratio Mean	-0.067	-0.453	-2.329	-0.382
STD	2.804	3.016	2.358	2.538
ILS ratio Mean	-2.044	-4.339	-0.445	0.068
STD	2.437	2.969	2.309	2.304
P3: December 31, 2019 – April 10, 2020				
CS ratio Mean	0.653	1.309	-1.197	-0.978
STD	1.606	1.664	1.551	1.564
IS ratio Mean	-0.474	-0.325	-0.015	-1.126
STD	2.835	3.28	3.028	2.33
ILS ratio Mean	-2.255	-3.266	2.364	-0.297
STD	2.572	3.234	2.965	1.754

Changes in means between sub-periods

Means in P2 minus Means in P1

	CS ratio	IS ratio	ILS ratio	
Diff.	0.265	-0.022	-0.997	
F-stat	524.283***	1114.106***	810.615***	332.234***

Means in P3 minus Means in P2

	CS ratio	IS ratio	ILS ratio	
Diff.	-0.302	-0.407	0.909	
F-stat	319.551***	856.654***	559.341***	236.005***

Note: Logarithmic ratios of information share measures are calculated as the natural logarithms of ratios of time varying information share measures of Shanghai Stock Exchange A and B-share indices over the other five assets. CS, component share; IS, information share; ILS, information leadership share. Time varying information share measures are computed based on time varying error correction coefficients from a rolling window procedure as well as the variance-covariance matrix of innovations derived from a two-state regime switching model. SSEA index is the Shanghai Stock Exchange A-share index; SSEB index is the Shanghai Stock Exchange B-share index. STD is standard deviation. Diff. represents the result of subtraction in means. F-stat denotes the F test statistic for the hypothesis testing on equality between means of different Sub-periods. *** denotes significance at the 1% level.
Table A7: Means and standard deviations of logarithmic ratios of time varying information share measures at 5-min intervals, Ratios of information share measures between SSEB index and other assets

	Oil	Bitcoin	US dollar	Corn
P1: July 1, 2019 – November 16, 2019				
CS ratio Mean	-0.005	1.861	-0.978	0.24
CS ratio STD	1.633	1.821	1.653	1.707
IS ratio Mean	-2.67	-0.49	-0.434	0.645
IS ratio STD	2.349	3.438	3.232	3.242
ILS ratio Mean	-5.33	-4.702	1.087	0.809
ILS ratio STD	1.852	3.271	3.168	3.096
P2: November 17, 2019 – December 30, 2019				
CS ratio Mean	-0.077	1.376	-1.536	-0.606
CS ratio STD	1.512	1.795	1.881	1.505
IS ratio Mean	-1.226	-0.29	-1.022	-0.496
IS ratio STD	2.369	3.47	3.56	2.775
ILS ratio Mean	-2.97	-3.334	1.03	0.221
ILS ratio STD	1.854	3.604	3.394	2.569
P3: December 31, 2019 – April 10, 2020				
CS ratio Mean	0.067	1.427	-0.925	-0.172
CS ratio STD	1.811	1.779	1.781	1.579
IS ratio Mean	-1.407	0.166	0.445	0.296
IS ratio STD	2.641	3.425	3.463	2.838
ILS ratio Mean	-2.948	-2.522	2.74	0.936
ILS ratio STD	1.99	3.395	3.37	2.574
Changes in means between sub-periods				
Means in P2 minus Means in P1				
CS ratio Diff.	-0.072	-0.485	-0.558	-0.846
F-stat	457.620***	1271.815***	800.379***	533.094***
IS ratio Diff.	1.444	0.2	-0.588	-1.141
F-stat	628.906***	2621.249***	1575.733***	921.868***
ILS ratio Diff.	3.033	1.368	-0.057	-0.588
F-stat	1545.506***	2075.055***	2181.237***	1114.447***
Means in P3 minus Means in P2				
CS ratio Diff.	0.144	0.051	0.611	0.434
F-stat	283.069***	1044.275***	681.913***	468.359***
IS ratio Diff.	-0.181	0.456	1.467	0.792
F-stat	184.215***	1301.346***	976.941***	634.140***
ILS ratio Diff.	-0.651	0.812	1.71	0.715
F-stat	269.108***	407.429***	1519.163***	496.118***

Note: Logarithmic ratios of information share measures are calculated as the natural logarithms of ratios of time varying information share measures of Shanghai Stock Exchange A and B-share indices over the other five assets. CS, component share; IS, information share; ILS, information leadership share. Time varying information share measures are computed based on time varying error correction coefficients from a rolling window procedure as well as the variance-covariance matrix of innovations derived from a two-state regime switching model. SSEA index is the Shanghai Stock Exchange A-share index; SSEB index is the Shanghai Stock Exchange B-share index. STD is standard deviation. Diff. represents the result of subtraction in means. F-stat denotes the F test statistic for the hypothesis testing on equality between means of different Sub-periods. *** denotes significance at the 1% level.
Table A8: Static net spillovers of higher moments at 5-min intervals, Net spillovers from SSEA index to other assets

Period	Oil	Bitcoin	US dollar	Corn
P1: July 1, 2019 – November 16, 2019				
Volatility spillover	17.812***	15.159***	0.001	0.423***
Wald-test	1152.89	3489.433	0.016	4917.586
Skewness spillover	0.132	-0.001	0.292***	0.116**
Wald-test	1.995	0.007	372.246	4.189
Kurtosis spillover	0.747***	0.122***	0.006***	0.593***
Wald-test	1205.412	245.727	180.763	981.752

P2: November 17, 2019 – December 30, 2019				
Volatility spillover	14.368***	37.815***	0.131***	0.396***
Wald-test	246.743	1911.663	338.502	633.141
Skewness spillover	1.027***	-0.691**	1.153***	0.12
Wald-test	44.899	4.36	1289.524	1.338
Kurtosis spillover	1.024***	0.041***	0.031***	0.376***
Wald-test	1121.09	28.15	519.182	305.442

P3: December 31, 2019 – April 10, 2020				
Volatility spillover	6.188***	5.768***	-0.227	0.518***
Wald-test	4035.036	4059.974	184.379	140.04+04
Skewness spillover	0.203*	-0.005	0.063***	0.127*
Wald-test	3.229	0.036	9.496	3.677
Kurtosis spillover	0.380***	0.070***	0.001***	0.927***
Wald-test	845.629	156.604	8.979	1973.671

Changes in spillovers between sub-periods

Spillovers in P2 minus Spillovers in P1				
Volatility spillover Diff.	-3.444***	22.655***	0.130***	-0.027***
Wald-test	42.077	1170.689	213.678	4.613
Skewness spillover Diff.	0.895***	-0.689**	0.861***	0.004
Wald-test	38.198	4.322	984.468	0.001
Kurtosis spillover Diff.	0.277***	-0.082***	0.025***	-0.218***
Wald-test	1043.929	122.14	603.659	840.567

Spillovers in P3 minus Spillovers in P2				
Volatility spillover Diff.	-8.180***	-32.046***	-0.358***	0.122***
Wald-test	93.472	1620.422	558.838	66.402
Skewness spillover Diff.	-0.824***	0.686**	-1.090***	0.007
Wald-test	14.73	4.27	606.74	0.004
Kurtosis spillover Diff.	-0.643***	0.029***	-0.029***	0.551***
Wald-test	1443.263	14.446	688.015	3211.889

Note: Net spillovers from the Shanghai Stock Exchange A- and B-share indices to other assets are calculated as the differences between absolute values of spillovers from A- and B-share indices to other assets and absolute values of spillovers of the other way around. Static spillovers are derived from estimates of an extended VAR(1) model. Time varying higher moments are obtained via a two-state regime switching model. SSEA index is the Shanghai Stock Exchange A-share index; SSEB index is the Shanghai Stock Exchange B-share index. Diff. represents the result of subtraction in spillovers. Wald-test denotes the Wald test statistic for the hypothesis testing of zero spillovers or differences. E stands for scientific notation. ***, ** and * denote significance at the 1%, 5% and 10% levels.
Table A9: Static net spillovers of higher moments at 5-min intervals, Net spillovers from SSEB index to other assets

	Oil	Bitcoin	US dollar	Corn
P1: July 1, 2019 – November 16, 2019				
Volatility spillover	12.652***	2.112***	-0.191***	0.04
Wald-test	1317.912	329.981	144.296	0.631
Skewness spillover	-0.124***	0.015	0.143***	0.253***
Wald-test	14.234	0.748	95.48	15.751
Kurtosis spillover	2.36E-04	0.008***	-0.002***	-0.004***
Wald-test	0.027	62.833	14.146	19.149

P2: November 17, 2019 – December 30, 2019				
Volatility spillover	2.071***	1.064***	-0.488***	-0.088
Wald-test	1045.763	234.866	259.69	1.525
Skewness spillover	0.013	0.053	0.385***	0.721***
Wald-test	0.051	1.704	369.715	65.192
Kurtosis spillover	3.77E-04	0.010***	-7.56E-04	-0.008***
Wald-test	0.017	15.761	2.487	21.307

P3: December 31, 2019 – April 10, 2020				
Volatility spillover	1.952***	0.422***	-1.127***	0.007
Wald-test	1301.975	325.721	381.164	0.01
Skewness spillover	-0.152***	0.037**	-0.037	0.940***
Wald-test	0.051	1.704	369.715	65.192
Kurtosis spillover	9.88E-05	0.006***	-0.014***	8.00E-04
Wald-test	0.013	175.231	295.954	0.788

Changes in spillovers between sub-periods

Spillovers in P2 minus Spillovers in P1

	Diff.	Wald-test	Wald-test	Wald-test	Wald-test
Volatility spillover	-10.581***	1332.786	449.672	379.045	14.477
Skewness spillover	0.137	0.039	0.242***	0.468***	
Kurtosis spillover	1.41E-04	0.001	9.30E-04***	-0.004***	
	0.004	0.449	47.712	3.300	

Spillovers in P3 minus Spillovers in P2

	Diff.	Wald-test	Wald-test	Wald-test	Wald-test
Volatility spillover	-0.120***	25.381	190.423	465.215	15.209
Skewness spillover	-0.165***	-0.016	-0.422***	0.218**	
Kurtosis spillover	-2.78E-04	-0.004*	0.013***	0.009***	
	0.014	3.367	402.607	15.414	
Note: Net spillovers from the Shanghai Stock Exchange A- and B-share indices to other assets are calculated as the differences between absolute values of spillovers from A- and B-share indices to other assets and absolute values of spillovers of the other way around. Static spillovers are derived from estimates of an extended VAR(1) model. Time varying higher moments are obtained via a two-state regime switching model. SSEA index is the Shanghai Stock Exchange A-share index; SSEB index is the Shanghai Stock Exchange B-share index. Diff. represents the result of subtraction in spillovers. Wald-test denotes the Wald test statistic for the hypothesis testing of zero spillovers or differences. E stands for scientific notation. ***, ** and * denote significance at the 1%, 5% and 10% levels.

Table A10: Means and standard deviations of time varying net spillovers of higher moments at 5-min intervals, Net spillovers from SSEA index to other assets

	Oil	Bitcoin	US dollar	Corn
P1: July 1, 2019 – November 16, 2019				
Volatility spillover	15.764***	7.771***	-2.244***	0.247***
Mean	10.547	17.25	2.044	0.342
STD	0.432***	-0.037***	0.067***	0.459***
Skewness spillover				
Mean	2.103***	0.007***	0.154***	0.859***
STD	3.474	1.221	0.653	1.152
Kurtosis spillover				
Mean	6.526***	3.782***	-3.840***	0.311***
STD	3.767	5.938	9.256	0.373
Skewness spillover	0.574***	-0.079***	0.060***	0.222***
Mean	0.705***	-0.795***	-0.084***	0.381***
STD	0.753	1.894	0.572	0.285
Changes in means between sub-periods				
Volatility spillover	-5.061	-7.043	0.688	-0.119
Diff.	1448.537***	11962.585***	188.762***	338.060***
F-stat	670.868***	6017.315***	1704.882***	2019.829***
Kurtosis spillover	-1.398	-0.802	-0.238	-0.478
Diff.	3701.009***	1089.062***	2300.782***	1221.995***
Means in P3 minus Means in P2				
Table A11: Means and standard deviations of time varying net spillovers of higher moments at 5-min intervals, Net spillovers from SSEB index to other assets

	Oil	Bitcoin	US dollar	Corn	
P1: July 1, 2019 – November 16, 2019					
Volatility spillover	Mean	24.792***	42.794***	-1.031***	0.731***
	STD	24.865	71.599	1.076	0.083
Skewness spillover	Mean	0.728***	-0.016***	0.154***	2.531***
	STD	1.405	0.126	0.152	1.998
Kurtosis spillover	Mean	0.799***	0.045***	0.222***	0.573***
	STD	7.053	0.307	0.613	0.359
P2: November 17, 2019 – December 30, 2019					
Volatility spillover	Mean	8.387***	1.162***	-2.427***	0.180***
	STD	15.532	1.957	2.371	0.213
Skewness spillover	Mean	0.493***	0.263***	0.167***	2.396***
	STD	0.417	0.551	0.151	1.86
Kurtosis spillover	Mean	0.816***	0.284***	0.198***	0.293***
	STD	1.381	0.479	0.426	0.261
P3: December 31, 2019 – April 10, 2020					
Volatility spillover	Mean	12.974***	10.066***	-3.935***	-2.395***
	STD	35.122	11.822	19.586	17.598
Skewness spillover	Mean	0.565***	0.148***	0.176***	3.605***
	STD	0.523	0.407	0.219	3.044
Kurtosis spillover	Mean	0.405***	1.169***	0.739***	0.208***
	STD	0.822	6.414	0.874	0.525

Note: Net spillovers from the Shanghai Stock Exchange A- and B-share indices to other assets are calculated as the differences between absolute values of spillovers from A- and B-share indices to other assets and absolute values of spillovers of the other way around. And time varying spillovers are derived via a rolling window procedure on an extended VAR(1) model. Time varying higher moments are obtained via a two-state regime switching model. The null hypothesis that means of net spillovers are zero is tested. Diff. represents the result of subtraction in means. F-stat denotes the F test statistic for the hypothesis testing on equality between means of different Sub-periods. E stands for scientific notation. *** denotes significance at the 1% level.
	Diff.			
Volatility spillover	-16.405	-41.632	-1.396	-0.551
F-stat	1.04E05***	4.30E04***	18.657***	9.190***
Skewness spillover	-0.235	0.279	0.013	-0.135
F-stat	2350.599***	1321.959***	907.233***	198.842***
Kurtosis spillover	0.017	0.239	-0.024	-0.28
F-stat	1.01E04***	29.683***	942.924***	849.493***

Means in P3 minus Means in P2

	Diff.			
Volatility spillover	4.587	8.904	-1.508	-2.575
F-stat	1.46E05***	3.816***	2.81E04***	6.21E04***
Skewness spillover	0.072	-0.115	0.009	1.209
F-stat	66.832***	1991.058***	1947.904***	800.702***
Kurtosis spillover	-0.411	0.885	0.541	-0.085
F-stat	27.737***	1678.559***	904.712***	454.343***

Note: Net spillovers from the Shanghai Stock Exchange A- and B-share indices to other assets are calculated as the differences between absolute values of spillovers from A- and B-share indices to other assets and absolute values of spillovers of the other way around. And time varying spillovers are derived via a rolling window procedure on an extended VAR(1) model. Time varying higher moments are obtained via a two-state regime switching model. The null hypothesis that means of net spillovers are zero is tested. SSEA index is the Shanghai Stock Exchange A-share index; SSEB index is the Shanghai Stock Exchange B-share index. STD is standard deviation. Diff. represents the result of subtraction in means. F-stat denotes the F test statistic for the hypothesis testing on equality between means of different Sub-periods. E stands for scientific notation. *** denotes significance at the 1% level.