Corwin-Greenleaf multiplicity function for compact extensions of the Heisenberg group

Majdi Ben Halima and Anis Messaoud

Abstract

Let H_n be the $(2n+1)$-dimensional Heisenberg group and K a closed subgroup of $U(n)$ acting on H_n by automorphisms such that (K, H_n) is a Gelfand pair. Let $G = K \ltimes H_n$ be the semidirect product of K and H_n. Let $\mathfrak{g} \supset \mathfrak{k}$ be the respective Lie algebras of G and K, and $\text{pr} : \mathfrak{g}^* \to \mathfrak{k}^*$ the natural projection. For coadjoint orbits $O^G \subset \mathfrak{g}^*$ and $O^K \subset \mathfrak{k}^*$, we denote by $n(O^G, O^K)$ the number of K-orbits in $O^G \cap \text{pr}^{-1}(O^K)$, which is called the Corwin-Greenleaf multiplicity function. In this paper, we give two sufficient conditions on O^G in order that $n(O^G, O^K) \leq 1$ for any K-coadjoint orbit $O^K \subset \mathfrak{k}^*$.

For $K = U(n)$, assuming furthermore that O^G and O^K are admissible and denoting respectively by π and τ their corresponding irreducible unitary representations, we also discuss the relationship between $n(O^G, O^K)$ and the multiplicity $m(\pi, \tau)$ of τ in the restriction of π to K. Especially, we study in Theorem 4 the case where $n(O^G, O^K) \neq m(\pi, \tau)$. This inequality is interesting because we expect the equality as the naming of the Corwin-Greenleaf multiplicity function suggests.

Keywords. Heisenberg motion group, generic unitary representation, generic coadjoint orbit, Corwin-Greenleaf multiplicity function.

Mathematics Subject Classification 2000. 22E20, 22E45, 22E27, 53C30

1 Introduction

Let G be a connected and simply connected nilpotent Lie group with Lie algebra \mathfrak{g} and \hat{G} the unitary dual of G, i.e. the set of all equivalence classes of irreducible unitary representations of G. Then Kirillov proved that the unitary dual \hat{G} of G is parametrized by \mathfrak{g}^*/G, the set of coadjoint orbits. The bijection

$$\hat{G} \simeq \mathfrak{g}^*/G$$

is called the Kirillov correspondence (see [7]). Let π be the unitary representation corresponding to a given coadjoint orbit $O^G \subset \mathfrak{g}^*$. Let K be a subgroup of G.

1
Then the restriction $\pi|_K$ is decomposed into a direct integral of irreducible unitary representations of K:

$$
\pi|_K \simeq \int_K m(\pi, \tau) d\mu(\tau) \quad \text{(branching rule)}
$$

where $d\mu$ is a Borel measure on the unitary dual \hat{K}. Then Corwin and Greenleaf proved that the above multiplicity $m(\pi, \tau)$ coincides almost everywhere with the “mod K” intersection number $n(O^G, O^K)$ defined as follows:

$$
n(O^G, O^K) := \sharp \bigg(\bigg(O^G \cap \text{pr}^{-1}(O^K) \bigg)/K \bigg)
$$

(see [4]). Here, $O^G \subset g^*$ and $O^K \subset \mathfrak{k}^*$ are the coadjoint orbits corresponding to $\pi \in \hat{G}$ and $\tau \in \hat{K}$, respectively, under the Kirillov correspondence $\hat{G} \simeq g^*/G$ and $\hat{K} \simeq \mathfrak{k}^*/K$, and

$$
\text{pr} : g^* \longrightarrow \mathfrak{k}^*
$$

is the natural projection. The function

$$
n : g^*/G \times \mathfrak{k}^*/K \longrightarrow \mathbb{N} \cup \{\infty\}, \quad (O^G, O^K) \longmapsto n(O^G, O^K)
$$

is sometimes referred as the Corwin-Greenleaf multiplicity function. In the special case that $\tau = 1_K$, the formula for the multiplicity function $n(O^G, \{0\})$ is

$$
n(O^G, \{0\}) := \sharp \bigg(\bigg(O^G \cap \mathfrak{k}^\perp \bigg)/K \bigg),
$$

where $\mathfrak{k}^\perp := \text{pr}^{-1}(\{0\}) = \{\ell \in g^*; \ell(\mathfrak{k}) = 0\}$.

In the spirit of the orbit method due to Kirillov, R. Lipsman established a bijection between a class of coadjoint orbits of G and the unitary dual \hat{G} (see [13]). Given a linear form $\psi \in g^*$, we denote by $G(\psi)$ its stabilizer in G. Then ψ is called admissible if there exists a unitary character χ of the identity component of $G(\psi)$ such that $d\chi = i\psi|_{g(\psi)}$. Let g^\dagger be the set of all admissible linear forms on g. For $\psi \in g^\dagger$, one can construct an irreducible unitary representation π_ψ by holomorphic induction. According to Lipsman [13], every irreducible unitary representation of G arises in this manner. By observing that π_ψ is equivalent to $\pi_{\psi'}$ if and only if ψ and ψ' lie in the same G-orbit, we get finally a bijection between the space g^\dagger/G of admissible coadjoint orbits and \widehat{G}.

Let $\pi \in \hat{G}$ and $\tau \in \hat{K}$ correspond to admissible coadjoint orbits O^G and O^K respectively and let $\text{pr} : g^* \longrightarrow \mathfrak{k}^*$ be the restriction map. One expects that the multiplicity of τ in $\pi|_K$ is given by $\sharp \bigg(\bigg(O^G \cap \text{pr}^{-1}(O^K) \bigg)/K \bigg)$. Results in this direction have been established for compact extensions of \mathbb{R}^n (see [1]). In this setting the Corwin-Greenleaf multiplicity function $n(O^G, O^K)$ may become greater than one, or even worse, may take infinity. For example, if (K, \mathbb{H}_n) is a Gelfand pair then $n(O^G, \{0\}) = 1$, i.e., $O^G \cap \mathfrak{k}^\perp$ is a single K-orbit (see [3]).
Question. Give a sufficient condition on the admissible coadjoint orbit O^G in \mathfrak{g}^* in order that

$$n(O^G, O^K) \leq 1$$

for any admissible coadjoint orbit $O^K \subset \mathfrak{k}^*$.

Our interest for this question is motivated by the formulation and the results by Kobayashi-Nasrin [9,16] which may be interpreted as the “classical limit” of the multiplicity-free theorems in the branching laws of semisimple Lie groups that were established in [10,11,12] by three different methods, explicit branching laws [10], the theory of visible actions [11], and Verma modules [12].

Let $H_n = \mathbb{C}^n \times \mathbb{R}, n \geq 1$, be the standard Heisenberg group of real dimension $2n+1$. The maximal compact subgroup of $Aut(H_n)$ is the unitary group $U(n)$, and it acts by $k.(z,t) = (kz,t)$. In this paper we consider the Lie group $G = K \ltimes H_n$, the semidirect product of the K and H_n, where K stands for a closed subgroup of $U(n)$ acting on H_n as above. Our group G is obviously a subgroup of the so-called Heisenberg motion group, which is the semidirect product $U(n) \ltimes H_n$.

The group K acts on the unitary dual $\widehat{H_n}$ of H_n via

$$k.\sigma = \sigma \circ k^{-1}$$

for $k \in K$ and $\sigma \in \widehat{H_n}$. Let K_σ denote the stabilizer of σ (up to unitary equivalence). Let π be an irreducible unitary representation of G associated to a given admissible coadjoint orbit O in \mathfrak{g}^*/G. Mackey’s little group theory [14,15] tells us that π is determined by a pair (σ, τ) where $\sigma \in \widehat{H_n}$ and $\tau \in K_\sigma$. We consider here the case where the representation π is generic, i.e., π has Mackey parameters (σ, τ) such that the stabilizer K_σ is all of K. In this case we have

$$\pi(k,z,t) = \tau(k) \otimes \sigma(z,t) \circ W_\sigma(k),$$

$(k, z, t) \in G$, with W_σ being a (non-projective) unitary representation of K in the Hilbert space H_σ of σ that intertwines $k.\sigma$ with σ:

$$(k,\sigma)(z,t) = W_\sigma(k)^{-1} \circ \sigma(z,t) \circ W_\sigma(k)$$

for all $k \in K, (z,t) \in \mathbb{H}_n$. The main results of the present work are

Theorem 1. If (K, \mathbb{H}_n) is a Gelfand pair and U is a central element of \mathfrak{t}, then

$$n(O^G_{(U,0,z)}, O^K_{\lambda}) \leq 1$$

for any coadjoint orbit O^K_{λ} in \mathfrak{t}^*.

Theorem 2. We have

$$m(\pi_{(\lambda,\alpha)}, \tau_\mu) \neq 0 \Rightarrow n(O^G_{(\lambda,\alpha)}, O^K_\mu) \neq 0.$$
The matrix $B_{\lambda,\mu}$ is defined in Section 4.3 p 11.

Theorem 4. Let $n \geq 2$. If the dominant weight $\lambda = (\lambda_1, ..., \lambda_n)$ of K satisfies $\lambda_1 = ... = \lambda_n = a$ for some $a \in \mathbb{Z}$, then for any dominant weight μ of K with $\mu \neq \lambda$ we have

$$n(O_{(\lambda,\alpha)}^G, O_{\mu}^K) \leq 1$$

Moreover, $n(O_{(\lambda,\alpha)}^G, O_{\mu}^K) \neq 0$ if and only if μ is of the form

Case 1: if $\alpha > 0$ then $\mu = (b, ..., b, a, ..., a) \in \mathbb{Z}^n$, $p + q = n$, $b \in \mathbb{Z}$ with $b > a$.

Case 2: if $\alpha < 0$ then $\mu = (a, ..., a, b, ..., b) \in \mathbb{Z}^n$, $p + q = n$, $b \in \mathbb{Z}$ with $a > b$.

Consequently, if $\mu_{n-1} \neq a$ and $n(O_{(\lambda,\alpha)}^G, O_{\mu}^K) \neq 0$ then $m(\pi_{(\lambda,\alpha)}, \tau_\mu) \neq n(O_{(\lambda,\alpha)}^G, O_{\mu}^K)$.

The paper is organized as follows. Section 2 introduces the coadjoint orbits of $K \ltimes \mathbb{H}_n$. In Sec. 3, we give two sufficient conditions on O^G in order that $n(O^G, O^K) \leq 1$ for any K-coadjoint orbit $O^K \subset \mathfrak{t}^*$. Section 4.1 deals with the description of the generic unitary dual $U(n) \ltimes \mathbb{H}_n$ of $U(n) \ltimes \mathbb{H}_n$. Section 4.2 is devoted to the description of the subspace of generic admissible coadjoint orbits of $U(n) \ltimes \mathbb{H}_n$ and to the branching rules from $U(n) \ltimes \mathbb{H}_n$ to $U(n)$. In Sec. 4.3, the Corwin-Greenleaf multiplicity function for $U(n) \ltimes \mathbb{H}_n$ is studied in some situations and the main results of this work are derived.

2 Coadjoint orbits of $K \ltimes \mathbb{H}_n$

On the n-dimensional complex vector space \mathbb{C}^n, we fix the usual scalar product (\cdot, \cdot). Let $\mathbb{H}_n = \mathbb{C}^n \times \mathbb{R}$ with group law

$$(z, t)(z', t') := (z + z', t + t' - \frac{1}{2}Im(z, z'))$$

denote the $(2n + 1)$-dimensional Heisenberg group. Let K be a closed subgroup of $U(n)$. The group K acts naturally on \mathbb{H}_n by automorphisms, and then one can form the semidirect product $G = K \ltimes \mathbb{H}_n$. Let us denote by (k, z, t) the elements of G where $k \in K$ and $(z, t) \in \mathbb{H}_n$. The group law of G is given by

$$(k, z, t) \cdot (k', z', t') = (kk', z + kz', t + t' - \frac{1}{2}Im(z, kz')).$$

We identify the Lie algebra \mathfrak{h}_n of \mathbb{H}_n with \mathbb{H}_n via the exponential map. We also identify the Lie algebra \mathfrak{k} of K with its vector dual space \mathfrak{t}^* through the K-invariant inner product

$$(A, B) = tr(AB).$$

For $z \in \mathbb{C}^n$ define the \mathbb{R}-linear form z^* in $(\mathbb{C}^n)^*$ by

$$z^*(w) := Im(z, w).$$
One defines a map \(\times : \mathbb{C}^n \times \mathbb{C}^n \to \mathfrak{k}, (z, w) \mapsto z \times w \) by
\[
(z \times w, B) = z \times w(B) := w^*(Bz)
\]
with \(B \in \mathfrak{k} \). It is easy to verify that for \(k \in K \), one has
\[
\text{Ad}_K(k)(z \times w) = (kz \times kw).
\]
Each element \(\nu \in \mathfrak{g}^* = (\mathfrak{f} \ltimes \mathfrak{h}_n)^* \) can be identified with an element \((U, u, x) \in \mathfrak{f} \times \mathbb{C}^n \times \mathbb{R}\) such that
\[
\langle (U, u, x), (B, w, s) \rangle = \langle U, B \rangle + u^*(w) + xs,
\]
where \((B, w, s) \in \mathfrak{g} \). By a direct computation, one obtains that the coadjoint action of \(G \) is
\[
\text{Ad}^*_G(k, z, t)(U, u, x) = (\text{Ad}_K(k)U + z \times (ku) + \frac{x}{2} z \times z, ku + xz, x).
\]
Letting \(k \) and \(z \) vary over \(K \) and \(\mathbb{C}^n \) respectively, the coadjoint orbit \(O^G_{(U, u, x)} \) through the linear form \((U, u, x)\) can be written
\[
O^G_{(U, u, x)} = \left\{ (\text{Ad}_K(k)U + z \times (ku) + \frac{x}{2} z \times z, ku + xz, x); k \in K, z \in \mathbb{C}^n \right\}
\]
or equivalently, replacing \(z \) by \(kz \),
\[
O^G_{(U, u, x)} = \left\{ k \cdot (U + z \times u + \frac{x}{2} z \times z, u + xz, x); k \in K, z \in \mathbb{C}^n \right\}.
\]
Remark Here we regard \(z \) as a column vector \(z = (z_1, \ldots, z_n)^T \) and \(z^* := \overline{z}^T \). Then \(z \times u \in \mathfrak{u}^*(n) \cong \mathfrak{u}(n) \) is the \(n \) by \(n \) skew Hermitian matrix \(\frac{1}{2}(uz^* + zu^*) \). Indeed, for all \(B \in \mathfrak{u}(n) \) we compute
\[
(uz^* + zu^*, B) = \text{tr}((uz^* + zu^*)B) = \sum_{1 \leq i, j \leq n} B_{ij}z_i\overline{u}_j - \sum_{1 \leq i, j \leq n} u_i\overline{B}_{ij}\overline{z}_j = -2iz \times u(B).
\]
In particular, \(z \times z \) is the skew Hermitian matrix \(izz^* \) whose entries are determined by \((izz^*)_ij = iz_i\overline{z}_j \).

The \(G \)-coadjoint orbit arising from the initial point \((U, 0, x)(x \neq 0)\) is said to be generic. Notice that the space of generic coadjoint orbits of \(G \) is parametrized by the set \((\mathfrak{t}/K) \times (\mathbb{R} \setminus \{0\}) \). Concluding this section, let us underline that the union of all generic coadjoint orbits of \(G \) is dense in \(\mathfrak{g}^* \).
3 Corwin-Greenleaf multiplicity function for $K \ltimes \mathbb{H}_n$

We keep the notation of Sec. 2. Consider the generic coadjoint orbit $O^G(U,0,x)$ through the element $(U,0,x) \in g^*$. For $X \in \mathfrak{k}$, we introduce the set

$$F_X := \{ z \in \mathbb{C}^n; U + \frac{x}{2} z \times z \in O^K_X \}.$$

Here O^K_X is the K-coadjoint orbit in $\mathfrak{k}^* \simeq \mathfrak{k}$ through X. Letting H be the stabilizer of U in K, we define an equivalence relation in F_X by

$$z \sim w \iff \exists h \in H; w =hz.$$

The set of equivalence classes is denoted by F_X/H.

Proposition 1 For any $X \in \mathfrak{k}$, we have

$$n(O^G(U,0,x),O^K_X) = \#(F_X/H).$$

Proof. Fix an element X in \mathfrak{k}. For $z \in \mathbb{C}^n$, let us set

$$E_z := \{ k \cdot (U + \frac{x}{2} z \times z, xz, x); k \in K \}.$$

Observe that

$$E_z = E_w \iff z \sim w.$$

Since

$$O^G(U,0,x) \cap \text{pr}^{-1}(O^K_X) = \bigcup_{z \in F_X} E_z,$$

it follows that

$$n(O^G(U,0,x),O^K_X) = \#(O^G(U,0,x) \cap \text{pr}^{-1}(O^K_X))/K = \#(F_X/H).$$

This completes the proof of the proposition. \qed

Following [2], we define the moment map $\tau : \mathbb{C}^n \to \mathfrak{k}^*$ for the natural action of K on \mathbb{C}^n by

$$\tau(z)(A) = z^*(Az)$$

for $A \in \mathfrak{k}$. Since $\langle z, Az \rangle$ is pure imaginary, one can also write $\tau(z)(A) = \frac{1}{i} \langle z, Az \rangle$. The map τ is a key ingredient in the proof of the following result.

Theorem 1 If (K,\mathbb{H}_n) is a Gelfand pair and U is a central element of \mathfrak{k}, then

$$n(O^G(U,0,x),O^K_X) \leq 1$$

for any coadjoint orbit O^K_X in \mathfrak{k}^*.

6
Proof. Let U be a central element of \mathfrak{k}. Then for any $X \in \mathfrak{k}$,
\[n(\mathcal{O}^G_{(U,0,x)}, \mathcal{O}^K_X) = \sharp \left(\mathcal{F}_X / K \right). \]

Fix a non-zero element $X \in \mathfrak{k}$ and assume that the set \mathcal{F}_X is not empty. It is clear that \mathcal{F}_X is stable under the natural action of K on \mathbb{C}^n. If z and w are two elements in \mathcal{F}_X, then there exists $k \in K$ such that
\[w \times w = \text{Ad}_K(k)(z \times z). \]

Thus we get the equality $\mathcal{O}_X^K = \mathcal{O}_{w(z)}^K$. Since (K, H^*_n) is a Gelfand pair, the moment map $\tau : \mathbb{C}^n \to \mathfrak{k}^*$ is injective on K-orbits [2]. That is, if $\mathcal{O}_X^K = \mathcal{O}_{w(z)}^K$, then $Kz = Kw$. We conclude that the K-action on \mathcal{F}_X is transitive and hence
\[n(\mathcal{O}^G_{(U,0,x)}, \mathcal{O}^K_X) = 1. \]

\[\square \]

4 Corwin-Greenleaf multiplicity function for $U(n) \ltimes \mathbb{H}_n$

and branching rules

4.1 Generic unitary dual of $U(n) \ltimes \mathbb{H}_n$

In the sequel, we fix $K = U(n)$ with $n \geq 2$. Then $G = K \ltimes \mathbb{H}_n$ is the so-called Heisenberg motion group. The description of the unitary dual \hat{G} of G is based on the Mackey little group theory. In the present paper we consider only the generic irreducible unitary representation of G.

Let us recall a useful fact from the representation theory of the Heisenberg group (see, e.g., [5] for details). The infinite dimensional irreducible representations of \mathbb{H}_n are parametrized by \mathbb{R}^*. For each $\alpha \in \mathbb{R}^*$, the Kirillov orbit \mathcal{O}^n_{α} of the irreducible representation σ_α is the hyperplane $\mathcal{O}^n_{\alpha} = \{(z, \alpha), z \in \mathbb{C}^n \}$. It is clear that for every α the coadjoint orbit \mathcal{O}_α is invariant under the K-action. Therefore K preserves the equivalence class of σ_α. The representation σ_α can be realized in the Fock space

\[\mathcal{F}_\alpha(n) = \left\{ f : \mathbb{C}^n \to \mathbb{C} \text{ holomorphic} \mid \int_{\mathbb{C}^n} |f(w)|^2 e^{-\frac{1}{2}|w|^2} dw < \infty \right\} \]

as

\[\sigma_\alpha(z, t)f(w) = e^{iat - \frac{1}{2}|z|^2 - \frac{1}{2}\langle w, z \rangle} f(w + z) \]

for $\alpha > 0$ and

\[\sigma_\alpha(z, t)f(\overline{w}) = e^{iat + \frac{1}{2}|z|^2 + \frac{1}{2}\langle w, \overline{z} \rangle} f(\overline{w} + \overline{z}) \]

for $\alpha < 0$. We refer the reader to [5] or [6] for a discussion of the Fock space. For each $A \in K$, the operator $W_\alpha(A) : \mathcal{F}_\alpha(n) \to \mathcal{F}_\alpha(n)$ defined by

\[W_\alpha(A)f(w) = f(A^{-1}w) \]
intertwines σ_α and $(\sigma_\alpha)_A$ given by $(\sigma_\alpha)_A(z,t) := \sigma_\alpha(Az,t)$. Observe that W_α is a unitary representation of K in the Fock space $F_\alpha(n)$.

As usual, the dominant weights of $K = U(n)$ are parametrized by sequences $\lambda = (\lambda_1, \ldots, \lambda_n) \in \mathbb{Z}^n$ such that $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$. Denote by $(\tau_{\lambda}, H_{\lambda})$ an irreducible unitary representation of K with highest weight λ. Then by Mackey \cite{15}, for each nonzero $\alpha \in \mathbb{R}$

$$
\pi_{(\lambda,\alpha)}(A,z,t) := \tau_{\lambda}(A) \otimes \sigma_\alpha(z,t) \circ W_\alpha(A), \quad (A,z,t) \in G,
$$

is an irreducible unitary representation of G realized in $H_{\lambda} \otimes F_\alpha(n)$. This representation $\pi_{(\lambda,\alpha)}$ is said to be generic. The set of all equivalence classes of generic irreducible unitary representations of G, denoted by \hat{G}_{gen}, is called the generic unitary dual of G. Notice that \hat{G}_{gen} has full Plancherel measure in the unitary dual \hat{G} (see \cite{8}).

4.2 Generic admissible coadjoint orbits of $U(n) \ltimes \mathbb{H}_n$ and Branching rules

We shall freely use the notation of the previous subsection. Given a dominant weight $\lambda = (\lambda_1, \ldots, \lambda_n)$ of K, we associate to $\pi_{(\lambda,\alpha)}$ the linear form $\ell_{\lambda,\alpha} = (U_\lambda, 0, \alpha)$ in \mathfrak{g}^* where

$$
U_\lambda = \begin{pmatrix}
 i\lambda_1 & \cdots & 0 \\
 \vdots & \ddots & \vdots \\
 0 & \cdots & i\lambda_n
\end{pmatrix}.
$$

Observe that $\ell_{\lambda,\alpha}$ is an admissible linear form on \mathfrak{g}. Denote by $G(\ell_{\lambda,\alpha})$, $K(\ell_{\lambda,\alpha})$ and $\mathbb{H}_n(\ell_{\lambda,\alpha})$ the stabilizers of $\ell_{\lambda,\alpha}$ respectively in G, K and \mathbb{H}_n. We have

$$
G(\ell_{\lambda,\alpha}) = \{ (A,z,t) \in G; (AU_\lambda A^* + \frac{\alpha}{2} z \times z, \alpha z, \alpha) = (U_\lambda, 0, \alpha) \}
$$

$$
= \{ (A,0,0) \in G; AU_\lambda A^* = U_\lambda \},
$$

$$
K(\ell_{\lambda,\alpha}) = \{ A \in K; (AU_\lambda A^* + \frac{\alpha}{2} z \times z, \alpha z, \alpha) = (U_\lambda, 0, \alpha) \}
$$

$$
= \{ A \in K; AU_\lambda A^* = U_\lambda \},
$$

$$
\mathbb{H}_n(\ell_{\lambda,\alpha}) = \{ (z,t) \in \mathbb{H}_n; (U_\lambda + \frac{\alpha}{2} z \times z, \alpha z, \alpha) = (U_\lambda, 0, \alpha) \}
$$

$$
= \{ 0 \} \times \mathbb{R}.
$$

It follows that $G(\ell_{\lambda,\alpha}) = K(\ell_{\lambda,\alpha}) \ltimes \mathbb{H}_n(\ell_{\lambda,\alpha})$. According to Lipsman \cite{13}, the representation $\pi_{(\lambda,\alpha)}$ is equivalent to the representation of G obtained by holomorphic induction from the linear form $\ell_{\lambda,\alpha}$. Now, for an irreducible unitary representation τ_μ of K with highest weight μ, we take the linear functional $\ell_\mu := (U_\mu, 0, 0)$ of \mathfrak{g}^* where

$$
U_\mu = \begin{pmatrix}
 i\mu_1 & \cdots & 0 \\
 \vdots & \ddots & \vdots \\
 0 & \cdots & i\mu_n
\end{pmatrix}.
$$
which is clearly aligned and admissible. Hence, the representation of G obtained by holomorphic induction from the linear functional ℓ_μ is equivalent to the representation τ_μ. We denote by O^{G}_μ the coadjoint orbit of ℓ_μ and by $O^{G}_{(\lambda, \alpha)}$ the coadjoint orbit associated to the linear form $\ell_{\lambda, \alpha}$. Let g^+ be the set of all admissible linear forms of G. The orbit space g^+/G is called the space of admissible coadjoint orbits of G. The set of all coadjoint orbits $O^{G}_{\lambda, \alpha}$ turns out to be the subspace of generic admissible coadjoint orbits of G.

Let τ_λ be an irreducible unitary representation of the unitary group $K = U(n)$ with highest weight $\lambda = (\lambda_1, ..., \lambda_n) \in \mathbb{Z}^n$. Recall that the irreducible representations of $G = K \ltimes \mathbb{H}_n$ that come from an infinite dimensional irreducible representation $\sigma_\alpha \in \widehat{\mathbb{H}_n}$, $\alpha \in \mathbb{R}^*$, are of the form $\pi(\lambda, \alpha)$ with

$$
\pi(\lambda, \alpha)(A, z, t) = \tau_\lambda(A) \otimes \sigma_\alpha(z, t) \circ W_\alpha(A)
$$

for $(A, z, t) \in G$. Here W_α denotes the natural representation of K on the ring $\mathbb{C}[z_1, ..., z_n]$ of holomorphic polynomials on \mathbb{C}^n, given by

$$(A.p)((z_1, ..., z_n)^T) = p(A^{-1}(z_1, ..., z_n)^T).$$

The space $\mathbb{C}[z_1, ..., z_n]$ decomposes under the action of K as

$$
\mathbb{C}[z_1, ..., z_n] = \bigoplus_{k=0}^{\infty} \mathbb{C}_k[z_1, ..., z_n]
$$

where $\mathbb{C}_k[z_1, ..., z_n]$ denotes the space of homogeneous polynomials of degree k, thus we have $W_\alpha = \bigoplus_{k \in \mathbb{N}} \tau_{\alpha, k}$ where $\tau_{\alpha, k}$ is the representation of K on $\mathbb{C}_k[z_1, ..., z_n]$.

Consider now an irreducible unitary representation τ_μ of K with highest weight μ. The multiplicity of τ_μ in the representation $\pi(\lambda, \alpha)$ is given by

$$
m(\pi(\lambda, \alpha), \tau_\mu) = \text{mult}(\pi(\lambda, \alpha)|_{K}, \tau_\mu) = \text{mult}(\tau_\lambda \otimes W_\alpha, \tau_\mu) = \text{mult}(\bigoplus_{k \in \mathbb{N}} \tau_\lambda \otimes \tau_{\alpha, k}, \tau_\mu).
$$

4.3 Corwin-Greenleaf multiplicity function for $U(n) \ltimes \mathbb{H}_n$

We continue to use the notation of the previous sections. Fix α a nonzero real. Let $\pi(\lambda, \alpha) \in \hat{G}$ and $\tau_\mu \in \hat{K}$ be as before. To these unitary representations, we attach respectively the generic coadjoint orbit $O^{G}_{(\lambda, \alpha)}$ and the coadjoint orbit O^{K}_{μ}. Here O^{K}_{μ} is the orbit in \mathfrak{k}^* through U_μ, i.e., $O^{K}_{\mu} = \text{Ad}^*_K(K)U_\mu$. Now, we turn our attention to the multiplicity $m(\pi(\lambda, \alpha), \tau_\mu)$ of τ_μ in the restriction of $\pi(\lambda, \alpha)$ to K, we shall prove the following result:
Theorem 2. We have

\[m(\pi_{(\lambda,\alpha)}, \tau_{\mu}) \neq 0 \Rightarrow n(O^G_{(\lambda,\alpha)}, O^K_{\mu}) \neq 0. \]

Proof. Denote by \(\tau_{\alpha,k} = \tau_{(0,\ldots,0,-k)} \) the irreducible representation of \(K \) on \(\mathbb{C}_k[z_1,\ldots,z_n] \) with highest weight \((0,\ldots,0,-k) \in \mathbb{Z}^n \). Then, we have

\[
\pi_{(\lambda,\alpha)}|_K = \tau_{\lambda} \otimes W_{\alpha} = \tau_{\lambda} \otimes \bigoplus_{k \in \mathbb{N}} \tau_{(0,\ldots,0,-k)} = \bigoplus_{k \in \mathbb{N}} \tau_{\lambda} \otimes \tau_{(0,\ldots,0,-k)}.
\]

Consider again the set \(F_{\mu} = \{ z \in \mathbb{C}^n; U_{\lambda} + \frac{\alpha}{2} z \times z \in O^K_{\mu} \} \). Now, assume that \(m(\pi_{(\lambda,\alpha)}, \tau_{\mu}) \neq 0 \). Then there exists \(k \in \mathbb{N} \) such that

\[\tau_{\mu} \subset \tau_{\lambda} \otimes \tau_{(0,\ldots,0,-k)} \]

hence

\[O_{\mu} \subset O_{\lambda} + O_{(0,\ldots,0,-k)} \]

So, there exists \(C \in U(n) \) such that

\[U_{\lambda} + C U_{(0,\ldots,0,-k)} C^{-1} \in O_{\mu} \]

Let \(z = C(0,\ldots,0,r)^t \) with

\[
r = \begin{cases}
 i \sqrt{\frac{2k}{\alpha}} & \text{if } \alpha > 0, \\
 \sqrt{\frac{-2k}{\alpha}} & \text{if } \alpha < 0.
\end{cases}
\]

Therefore, we have \(\frac{\alpha}{2} z \times z = C U_{(0,\ldots,0,-k)} C^{-1} \). It follows that \(F_{\mu} \neq \emptyset \), and then \(n(O^G_{(\lambda,\alpha)}, O^K_{\mu}) \neq 0 \). \(\Box \)

The converse of this theorem is false in general if we take for example \(\lambda = (-1,\ldots,-1) \) and \(\mu = (0,\ldots,0,-1) \) we will see in the last theorem that \(n(O^G_{(\lambda,\alpha)}, O^K_{\mu}) \neq 0 \) (see Theorem 4) but

\[
\tau_{\lambda} \otimes W_{\alpha} = \bigoplus_{k \in \mathbb{N}} \tau_{\lambda} \otimes \tau_{(0,\ldots,0,-k)} = \bigoplus_{k \in \mathbb{N}} \tau_{(-1,\ldots,-1,-1-k)}.
\]

Therefore \(\tau_{\mu} = \tau_{(0,\ldots,0,-1)} \notin \tau_{\lambda} \otimes W_{\alpha} \) and then \(m(\pi_{(\lambda,\alpha)}, \tau_{\mu}) = 0. \)
In the remainder of this paper, we give two situations where the Corwin-Greenleaf multiplicity function is less than one and discuss the relationship between \(n(O^G_{(\lambda,\alpha)}, O^K_\mu) \) and \(m(\pi_{(\lambda,\alpha)}, \tau_\mu) \). For some particular dominant weight \(\mu \), we shall prove in the first situation that \(m(\pi_{(\lambda,\alpha)}, \tau_\mu) \) coincides with \(n(O^G_{(\lambda,\alpha)}, O^K_\mu) \), but in the second situation we have \(m(\pi_{(\lambda,\alpha)}, \tau_\mu) \neq n(O^G_{(\lambda,\alpha)}, O^K_\mu) \).

Let us first fix some notation that we will use later. Let \(\lambda = (\lambda_1, \ldots, \lambda_n), \mu = (\mu_1, \ldots, \mu_n) \in \mathbb{Z}^n \) such that \(\lambda_1 \geq \ldots \geq \lambda_n \) and \(\mu_1 \geq \ldots \geq \mu_n \). To these dominant weights of \(K \) we attach the matrix \(B_{\lambda,\mu} \) and the vector \(V_{\lambda,\mu} \) defined as follows

\[
B_{\lambda,\mu} = \left(\prod_{k=1, k \neq j}^{n} (\mu_i - \lambda_k) \right)_{1 \leq i, j \leq n}
\quad \text{and} \quad
V_{\lambda,\mu} = \left(\prod_{k=1}^{n} (\mu_1 - \lambda_k), \ldots, \prod_{k=1}^{n} (\mu_n - \lambda_k) \right)^T.
\]

Now, we are in position to prove

Theorem 3 Let \(n \geq 2 \). Assume that \(\lambda \) is strongly dominant weight of \(K \). Then for any dominant weight \(\mu \) of \(K \) such that \(B_{\lambda,\mu} \) is invertible we have

\[
n(O^G_{(\lambda,\alpha)}, O^K_\mu) \leq 1.
\]

Proof. Let \(\lambda = (\lambda_1, \ldots, \lambda_n) \) be a strongly dominant weight of \(K \). We shall denote by \(H_\lambda \) the stabiliser of \(U_\lambda \) in \(K \). Assume that \(n(O^G_{(\lambda,\alpha)}, O^K_\mu) \neq 0 \) for some dominant weight \(\mu \) of \(K \). Then there exists \(z \in \mathbb{C}^n \) such that \(U_\lambda + \frac{\alpha}{2} z \times z = AU_\mu A^* \) for some \(A \in K \). For all \(x \in \mathbb{R} \), we have

\[
det(U_\lambda + \frac{\alpha}{2} z \times z - ixI) = (-i)^n P(x)
\]

where \(P \) is the unitary polynomial of degree \(n \) given by

\[
P(x) = \prod_{i=1}^{n} (x - \lambda_i) \quad \text{and} \quad \sum_{j=1}^{\alpha} \prod_{i=1, i \neq j}^{n} (x - \lambda_i) |z_j|^2.
\]

Therefore we have \(P(\mu_k) = 0 \) for \(k = 1, \ldots, n \). It follows that

\[
V_{\lambda,\mu} = \frac{\alpha}{2} B_{\lambda,\mu} (|z_1|^2, \ldots, |z_n|^2)^T
\]

Consider again the set \(\mathcal{F}_\mu = \{ z \in \mathbb{C}^n, U_\lambda + \frac{\alpha}{2} z \times z \in O^K_\mu \} \). Hence

\[
\mathcal{F}_\mu = \left\{ z \in \mathbb{C}^n, (|z_1|^2, \ldots, |z_n|^2)^T = \frac{2}{\alpha} B^{-1}_{\lambda,\mu} V_{\lambda,\mu} \right\}.
\]

Since \(H_\lambda = \mathbb{T}^n \) the \(n \)-dimensional torus, we conclude that \(n(O^G_{(\lambda,\alpha)}, O^K_\mu) = 1 \). \(\square \)
Corollary 1 Let $n \geq 2$. Assume that $\lambda = (\lambda_1, \ldots, \lambda_n)$ is strongly dominant weight of K and $\mu = (\lambda_1, \ldots, \lambda_{n-1}, \lambda_n - k)$ for some $k \in \mathbb{N}$. Then we have

$$m(\pi(\lambda, \alpha), \tau_\mu) = n(O^{G}_{(\lambda, \alpha)}, O^{K}_{\mu})$$

Proof. Let $\lambda = (\lambda_1, \ldots, \lambda_n)$ be a strongly dominant weight of K. Suppose that $\mu = (\lambda_1, \ldots, \lambda_{n-1}, \lambda_n - k)$ for some $k \in \mathbb{N}$, then $B_{\lambda, \mu}$ is invertible, therefore $n(O^{G}_{(\lambda, \alpha)}, O^{K}_{\mu}) \leq 1$. Since $\pi(\lambda, \alpha)|_K = \bigoplus_{k \in \mathbb{N}} \tau(\lambda_1, \ldots, \lambda_{n-1}, \lambda_n - k)$ then $m(\pi(\lambda, \alpha), \tau_\mu) = 1$ and by the theorem 2 we deduce that

$$m(\pi(\lambda, \alpha), \tau_\mu) = n(O^{G}_{(\lambda, \alpha)}, O^{K}_{\mu}).$$

Concluding this section, let us prove the following result:

Theorem 4 Let $n \geq 2$. If the dominant weight $\lambda = (\lambda_1, \ldots, \lambda_n)$ of K satisfies $\lambda_1 = \ldots = \lambda_n = a$ for some $a \in \mathbb{Z}$, then for any dominant weight μ of K with $\mu \neq \lambda$ we have

$$n(O^{G}_{(\lambda, \alpha)}, O^{K}_{\mu}) \leq 1$$

Moreover, $n(O^{G}_{(\lambda, \alpha)}, O^{K}_{\mu}) \neq 0$ if and only if μ is of the form

Case 1: if $\alpha > 0$ then $\mu = (b, \ldots, b, a, \ldots, a) \in \mathbb{Z}^n$, $p + q = n$, $b \in \mathbb{Z}$ with $b > a$.

Case 2: if $\alpha < 0$ then $\mu = (a, \ldots, a, b, \ldots, b) \in \mathbb{Z}^n$, $p + q = n$, $b \in \mathbb{Z}$ with $a > b$.

Consequently, if $\mu_{n-1} \neq a$ and $n(O^{G}_{(\lambda, \alpha)}, O^{K}_{\mu}) \neq 0$ then $m(\pi(\lambda, \alpha), \tau_\mu) \neq n(O^{G}_{(\lambda, \alpha)}, O^{K}_{\mu})$.

Proof. Let $\lambda = (\lambda_1, \ldots, \lambda_n)$ be a dominant weight of K such that $\lambda_1 = \ldots = \lambda_n = a$ with $a \in \mathbb{Z}$. Assume that $n(O^{G}_{(\lambda, \alpha)}, O^{K}_{\mu}) \neq 0$ for some dominant weight μ of K. Then there exists $z \in \mathbb{C}^n$ such that $U_\lambda + \frac{\alpha}{2} z \times z = A U_\mu A^*$ for some $A \in K$. For all $x \in \mathbb{R}$, we have

$$det(U_\lambda + \frac{\alpha}{2} z \times z - i x I) = (-i)^n P(x)$$

with

$$P(x) = (x - a)^{n-1} \left(x - a - \frac{\alpha}{2} \sum_{j=1}^{n} |z_j|^2 \right).$$

Then we have $P(\mu_k) = 0$ for $k = 1, \ldots, n$. It follows that

$$\begin{cases}
\mu_k = a \\
\text{or} \\
\mu_k \neq a \text{ and } \mu_k = a + \frac{\alpha}{2} \sum_{j=1}^{n} |z_j|^2.
\end{cases}$$
Since $\mu \neq \lambda$ then there exists $1 \leq k \leq n$ such that $\mu_k \neq a$.

Case $\alpha > 0$: Let $p = \max\{1 \leq k \leq n, \mu_k \neq a\}$ then

$$\mu_p = a + \frac{\alpha}{2} \sum_{j=1}^{n} |z_j|^2 > a.$$

Since $\mu_1 \geq \ldots \geq \mu_p \geq \ldots \geq \mu_n$, we obtain

$$\mu = (b, \ldots, b, a, \ldots, a)$$

with $b = a + \frac{\alpha}{2} \sum_{j=1}^{n} |z_j|^2$.

Consider again the set $\mathcal{F}_\mu = \left\{ z \in \mathbb{C}^n, U_\lambda + \frac{\alpha}{2} z \times z \in \mathcal{O}_\mu^K \right\}$ then

$$\mathcal{F}_\mu = \left\{ z \in \mathbb{C}^n, \sum_{j=1}^{n} |z_j|^2 = (b - a) \frac{2}{\alpha} \right\}.$$

Since $H_\lambda = K$ we can deduce that $n(\mathcal{O}_{(\lambda,\alpha)}^G, \mathcal{O}_\mu^K) = 1$.

Case $\alpha < 0$: Let $l = \min\{1 \leq k \leq n, \mu_k \neq a\}$ then

$$\mu_l = a + \frac{\alpha}{2} \sum_{j=1}^{n} |z_j|^2 < a.$$

Hence

$$\mu = (a, \ldots, a, b, \ldots, b)$$

with $b = a + \frac{\alpha}{2} \sum_{j=1}^{n} |z_j|^2$, $p = l - 1$

and so $n(\mathcal{O}_{(\lambda,\alpha)}^G, \mathcal{O}_\mu^K) = 1$.

Now, Suppose that $\mu_{n-1} \neq a$, if $\alpha > 0$ we get $\mu = (b, \ldots, b, a) \in \mathbb{Z}^n$ with $b > a$ and if $\alpha < 0$, $\mu = (a, \ldots, a, b, \ldots, b) \in \mathbb{Z}^n$ with $a > b$ and $q \geq 2$. Since $\pi_{(\lambda,\alpha)}|_K = \bigoplus_{k \in \mathbb{N}} \tau(a, \ldots, a, a - k)$ then $m(\pi_{(\lambda,\alpha)}, \tau_\mu) = 0$ and hence $m(\pi_{(\lambda,\alpha)}, \tau_\mu) \neq n(\mathcal{O}_{(\lambda,\alpha)}^G, \mathcal{O}_\mu^K)$.

This completes the proof of the theorem.

□

Acknowledgment

The authors would like to thank the referee for his / her careful reading of our paper and for remarks improving the article.
References

[1] M. Ben Halima, A. Messaoud, Corwin-Grenleaf multiplicity function for compact extensions of \mathbb{R}^n, *Int. J. Math.*, 26 (2015), 146-158.

[2] C. Benson, J. Jenkins, P. Lipsman, and G. Ratcliff, A geometric criterion for Gelfand pairs associated with the Heisenberg group, *Pacific J. Math.*, 178 (1997), 1-36.

[3] C. Benson, J. Jenkins, and G. Ratcliff, The orbit method and Gelfand pairs associated with nilpotent Lie groups, *J. Geometric Analyses*, 9 (1999), 569-582.

[4] L. Corwin, F. Greenleaf, Spectrum and multiplicities for unitary representations in nilpotent Lie groups, *Pacific J. Math.* 135 (1988), 233-267.

[5] G. B. Folland, *Harmonic analysis in phase space*, Princeton University Press, 1989.

[6] R. Howe, Quantum mechanics and partial differential equations,*J. Funct. Anal.*, 38 (1980), 188-255.

[7] A. A. Kirillov, *Lectures on the orbit method*, Amer. Math. Soc., Providence, RI, 2004.

[8] A. Kleppner, R.L. Lipsman, The Plancherel formula for group extensions, *Ann. Sci. Ecole Norm. Sup.*, 4 (1972), 459-516.

[9] T. Kobayashi and S. Nasrin, Multiplicity one theorem in the orbit method, in: *Lie groups and symmetric spaces*, 161-169, Amer. Math. Soc. Transl. Ser. 2, 210, Amer. Math. Soc., Providence, RI, 2003.

[10] T. Kobayashi, Multiplicity-free theorems of the restrictions of unitary highest weight modules with respect to reductive symmetric pairs, *Progr. Math.*, 255, Birkhäuser, (2007), 45-109.

[11] T.Kobayashi, Multiplicity-free representations and visible actions on complex manifolds, *Publ. Res. Inst. Math. Sci.*, 41 (2005), 497-549.

[12] T. Kobayashi, Restrictions of generalized Verma modules to symmetric pairs, Transformation Groups 17 (2012), 523-546.

[13] R.L. lipsman, Orbit theory and harmonic analysis on Lie groups with co-compact nilradical, *J. Math. pures et appl.*, 59 (1980), 337-374.

[14] G.W. Mackey, *The theory of unitary group representations*, Chicago University Press, 1976.

[15] G.W. Mackey, *Unitary group representations in physics, probability and number theory*, Benjamin-Cummings, 1978.
[16] S. Nasrin, Corwin-Greenleaf multiplicity functions for Hermitian symmetric spaces and multiplicity-one theorem in the orbit method, *Int. J. Math.*, 21 (2010), 279-296.

Department of Mathematics, Faculty of Sciences at Sfax, University of Sfax, Route de Soukra, B. P. 1171, 3000-Sfax, Tunisia
E-mail adress: majdi.benhalima@yahoo.fr

Department of Mathematics, Preparatory Institute for Engineering Studies at Gafsa, University of Gafsa, El Khayzorane street-Zaroug, 2112-Gafsa, Tunisia
E-mail adresses: anis.messaoud@ipeig.rnu.tn