Editorial: Advances in genomic and genetic tools, and their applications for understanding embryonic development and human diseases

Muhammad Abu-Elmagd1,2*, Mourad Assidi1,2, Abdulmajeed F. Alrefaei3 and Ahmed Rebai4

1Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia, 2Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia, 3Department of Biology, Jamoum University College, Umm Al-Qura University, Mecca, Saudi Arabia, 4Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia

Significant advances have been recently made in the development of the genetic and genomic platforms. This has greatly contributed to a better understanding of gene expression and regulation machinery. Consequently, this led to considerable progress in unraveling evidence of the genotype-phenotype correlation between normal/abnormal embryonic development and human disease complexity. For example, advanced genomic tools such as next-generation sequencing, and microarray-based CGH have substantially helped in the identification of gene and copy number variants associated with diseases as well as in the discovery of causal gene mutations. In addition, bioinformatic analysis tools of genome annotation and comparison have greatly aided in data analysis for the interpretation of the genetic variants at the individual level. This has unlocked potential possibilities for real advances toward new therapies in personalized medicine for the targeted treatment of human diseases. However, each of these genomic and bioinformatics tools has its limitations and hence further efforts are required to implement novel approaches to overcome these limitations. It could be possible that the use of more than one platform for genotype-phenotype deep analysis is an effective approach to disentangling the cause and treatment of the disease complexities. Our research topic aimed at deciphering these complexities by shedding some light on the recent applications of the basic and advanced genetic/genomic and bioinformatics approaches. These include studying gene-gene, protein-protein, and gene-environment interactions. We, in addition, aimed at a better understanding of the link between normal/abnormal embryonic development and the cause of human disease induction.

KEYWORDS
genetic/genomic tools, gene expression and regulation, embryonic development, human diseases, Bioinformatics tools, Dual function genes, Molecular signaling
Introduction

The current Research Topic (RT) was aimed at deciphering the molecular signaling pathways’ interactions that orchestrate the complexity of embryonic development and human disease. Understanding these pathways should aid in developing targeted therapies. Several reports showed that many genes and/or microRNAs have a dual functional role during normal embryonic development and in human disease conditions (Miyaki et al., 2010; Ulveling et al., 2011; Hosseini-Farahabadi et al., 2013; Lan et al., 2019; Mahajan et al., 2021). Hence, discovering the missing links driving changes in gene expression and regulation during embryonic development to cause human disease induction has been a hot topic for many years (Loch-Caruso and Trosko, 1985; Nunes et al., 2003; Taylor et al., 2004; Lees et al., 2005; Hashimoto et al., 2014; Degrauwe et al., 2016; Mazzoccoli et al., 2016; Tatetsu et al., 2016; Shah et al., 2018; Chahal et al., 2019; Prieto-Colomina et al., 2021). The themes of the RT attracted 61 research groups around the world to submit their work among which 32 manuscripts were peer-reviewed and accepted

Unraveling disease complexity using embryonic and in vitro model systems

The RT included eight articles under this category in which either a developmental gene was analyzed during embryonic development and in disease, a known developmental gene analyzed in human disease or stem cells were used as an in vitro experimental model. In a consortium study, Rieke and his colleagues Rieke et al., showed that SLC20A1 is involved in urinary tract and urorectal development. The study used morpholino to manipulate SLC20A1 function in the zebrafish embryo and the gene was analyzed in patients. The study showed that SLC20A1 was associated with bladder exstrophy-epispadias complex (BEEC, genitourinary malformations). Another research group in the RT used mouse embryonic retinal cells as their model and RNA-seq analysis to study perinatal glucose deprivation during early embryonic development and showed changes in gene expression during retinal neurogenesis. The study concluded that abnormal embryonic programming during retinogenesis could lead to retinopathy in patients with diabetes Özgümüs et al. Mice blastocysts transfected with lentivirus aiming at establishing placenta-specific knockdown or overexpression mouse model were used to study the role of Osteoprotegerin (OPG) in gestational diabetes mellitus (GDM). The study showed that OPG regulates glucose homeostasis during pregnancy through a negative feedback mechanism Huang et al. Polycystic ovary syndrome (PCOS) is another important disease studied in the RT using mitochondrial sequencing of patient oocytes. Transcriptomic dynamics analysis at the single-cell level using the weighted gene co-expression network analysis (WGCNA) approach was applied to show that abnormal mitochondrial function may contribute to a deteriorated oocyte quality in patients diagnosed with polycystic ovary syndrome (PCOS). The authors concluded that the oocyte quality might be affected by mitochondrial function Qi et al. SALL4 is a developmental gene that plays a crucial role in the pluripotency of embryonic stem cells (Chen et al., 2022). In this RT, SALL4 expression was analyzed in gastric cancer patients using gene set enrichment and found to be associated with the cancer progression through Wnt/β-catenin signaling pathway Yang et al. This study reiterated previously reported findings that there is a direct link between development and cancer (Papaioannou et al., 1984; Cheng et al., 2004; Tzukerman et al., 2006; Ma et al., 2010).

Human stem cells are an in vitro model system that offers great promise for developmental studies, disease research, and the emergence of targeted therapies. In our RT, mesenchymal stem cells (BM-MSCs) derived from the bone marrow of osteoarthritis (OA) patients were used to show that the expression of several chemokines, and pro- and anti-inflammatory factors were upregulated. The authors concluded that BM-MSCs could be used for cartilage differentiation and repair Jafri et al. Another
Applications of advanced genomics and bioinformatics tools in disease

A considerable number of articles in the RT aimed at using a wide range of genomic/genetic and/or bioinformatics tools to decode the biological complexity and identify causal genes in human diseases were published (Table 1). These articles fall, in general, into the following areas:

Applications of advanced genomics tools in disease

Authors of articles published in this RT applied several advanced genomic tools including RNA-sequencing Jung et al. and Rieke et al., genome-wide association Benson et al., and whole exome-sequencing Naseer et al., Haque et al., and Ouyang et al. There was a tendency in several studies for using a combination of more than one genomic tool to critically discover the gene/marker/factor associated with the disease. For example, BHMT2 was identified as a new regulator for lipid metabolism in metabolic-associated fatty liver disease by combining RNA-seq analysis of the expression profile both in a mouse model and human patients Ma et al. In another study, RNA-seq was combined with the eQTL analysis to show the association of causal genes in Crohn’s disease Jung et al. Moreover, a combined exome and mitochondrial sequencing were successfully used for the rapid diagnosis of suspected pediatric mitochondrial disorders Ouyang et al. Next-generation sequencing (NGS) combined with simple short tandem repeat (STR) marker haplotypes were both used to identify a mutation in the adenomatous polyposis coli (APC) of Chinese kindred diagnosed with familial adenomatous polyposis (FAP) Zhan et al.

Targeted exome sequence (TES) was recommended in one of the RT studies as an effective approach for the genetic skeletal dysplasias (GSD) diagnosis Lv et al. Additionally, several studies identified novel genetic variants associated with many disorders and/or diseases such as developmental disorders Naseer et al., acute myocardial infarction Han et al., urolithiasis Chen et al., and endophenotypes in gestational diabetes Firneisz et al. Other RT studies identified copy number variants (CNVs) Zhou et al., gene mutations Krämer et al. and Zhan et al., and gene deletions Chelbi et al. and Song et al., with all, were shown to be associated with different human diseases.

An interesting RT study used a genomic CRISPR/Cas9 mutation repair approach and showed for the first time successful treatment of Hemophilia A in a mouse model Luo et al. This with no doubt gives hope to follow this approach for treatment in humans for Hemophilia A or any other mutation associated with other diseases.

Applications of advanced bioinformatics tools in disease

There have been significant advances in the use of bioinformatics tools and datasets available online that could be used for deciphering the complexity of human disease (Pereira et al., 2020). In our RT, these freely available online resources were used to decode the functional role of genes in human disease. For example, knowledge-based bioinformatics tools such as SwissTargetPrediction, WebGestalt, Open Targets Platforms and Ingenuity Pathway Analysis (IPA) were used to analyze the role of Sphingosine-1-phosphate in respiratory system diseases Bahlal et al., and to identify therapeutic targets for pulmonary arterial hypertension Li et al. Other tools such as Gene Expression Omnibus (GEO), Gene ontology (GO), Kyoto Encyclopedia of Gene, Genome (KEGG) enriched pathways, and STRING online database were applied to identify the functional interactions of the differentially expressed genes (DEGs) associated with the progression of stomach adenocarcinoma Yang et al.

In summary, the research theme described above focused on identifying causal genes, gene variants, copy number variants, mutations, or deletions associated with human diseases. A wide range of advanced bioinformatics tools was used to analyze the genomic data. Combined genomic/genetic/bioinformatics tools and model systems were applied to decipher the mechanistic complexity of the disease.

Evaluation of the prognostic value of gene expression

Gene ontology (GO), gene analysis using Kyoto Encyclopedia, genomes (KEGG) analysis, and gene enrichment analysis (GSEA) were all used to show that STEAP1 is a potential prognostic biomarker for lung adenocarcinoma (LAUD) Guo et al. Feng and his team used Cox regression analysis and LASSO algorithm on a considerable number of DNA replication-related genes to stratify the postoperative tumor-free margin (R0) treated pancreatic ductal adenocarcinoma (PDAC) patients with different recurrence risks. This study resulted in...
TABLE 1 A list of the accepted articles of the research topic summarizing the research area of each study, article’s title, article’s type, the model used, tool/platform used, main findings and the reference to each study.

No.	Area of Research	Title of the Article	Type of the Article	Model Used	Tools/Platforms Used	Main Findings	Authors
1	Unraveling Diseases’ Complexity Using Embryonic and In Vitro Model Systems	Mimicking human diseases in embryonic model systems	Original Research	Zebrafish embryos.	- SLC20A1 gene is involved in uterine tract and uterine development.	- Human SLC20A1 is implicated as a disease gene for bladder extrrophy-epispadias complex.	Rieke et al. (2020).
2	Starvation to Glucose Reprograms Development of Neurovascular Unit in Embryonic Retinal Cells	Placenta-Derived Osteoprotegerin is Required for Glucose Homeostasis in Gestational Diabetes Mellitus.	Original Research	Mouse embryonic retinal cells.	- In vitro retinal cell cultures.	- Glucose deprivation during early embryonic development could differentially alter the expression of genes in the retinal neurovascular unit.	Özgümüs et al. (2021)
3	Placenta-Derived Osteoprotegerin is Required for Glucose Homeostasis in Gestational Diabetes Mellitus.	Single-Cell Transcriptomic Analysis Reveals Mitochondrial Dynamics in Oocytes of Patients with Polycystic Ovary Syndrome.	Original Research	Maternal mice.	- ELISA	- Mitochondrial function at the germinal vesicle stage may contribute to a decline in oocyte quality in PCOS patients.	Qi et al. (2020).
4	Studying Embryonic Gene in Disease	Up-regulation of SALL4 Is Associated with Survival and Progression via Putative WNT Pathway in Gastric Cancer.	Original Research	Gastric cancer (GC) patients.	- TCGA & gene expression Omnibus data retrieved	- SALL4 is associated with clinicopathological features related to cancer progression in GC and its function in the Wnt/b-catenin pathway.	Yang et al. (2021).
5	Human-Derived Stem Cells-Based Therapy Approaches	Deciphering the Association of Cytokines, Chemokines, and Growth Factors in Chondrogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells Using an ex vivo Osteochondral Culture System.	Original Research	Bone marrow mesenchymal cells (BM-MSCs) were collected from Osteoarthritis (OA) patients.	- Gene set enrichment analysis.	- SALL4 could be served as a marker for prognostic prediction in GC.	Safri et al. (2019).
6	In vitro Evaluation of the Anti-inflammatory Effects of Thymosin in Osteoarthritis and in vivo Analysis of Inter-Related Pathways in Age-Related Degenerative Diseases.	Bone marrow mesenchymal cells (BM-MSCs) were collected from Osteoarthritis (OA) patients.	Original Research	- Cell Metabolic Activity (MTA assay).	- Tissue culture of BM-MSCs.	- Detected differential secretion of several growth factors, chemokines, pro-inflammatory cytokines, and anti-inflammatory cytokines in the experimental groups compared to the control.	Kalamagam et al. (2020).

(Continued on following page)
TABLE 1 (Continued) A list of the accepted articles of the research topic summarizing the research area of each study, article’s title, article’s type, the model used, tool/platform used, main findings and the reference to each study.

No.	Area of Research	Title of the Article	Type of the Article	Model Used	Tools/Platforms Used	Main Findings	Authors
8	Human Wharton’s Jelly Stem Cell Secretions Inhibit Human Leukemic Cell Line K562 in vitro by Inducing Cell Cycle Arrest and Apoptosis.	Human umbilical cords (hUCs) to isolate human Wharton’s jelly stem cells (hWJSCs)	-Cell metabolic activity MTT assay,	-3H[5C]hWJSC extracts increased the leukemic cell number by inducing cell cycle arrest & apoptosis.	-Hepatic transcriptome including RNA-seq of the overlapped differentially expressed genes in the FXR KO mice and MAFLD patients.	Maa et al. (2021).	
9	Combined Analysis of Expression Profiles in a Mouse Model and Patients Identified BHM2T as a New Regulator of Lipid Metabolism in Metabolic-Associated Fatty Liver Disease.	Original Research	-Farnesoid X receptor (FXR) knockout (KO) mice.	-BHM2T and PKLR could be highly correlated with MAFLD.	-BHM2T and PKLR could be highly correlated with MAFLD.	Jung et al. (2020).	
10	Expression Quantitative Trait Loci Mapping in Korean Patients with Crohn’s Disease and Identification of Potential Causal Genes Through Integration with Disease Associations.	Korean CD patients’ whole-blood	-Patients with metabolic-associated fatty liver disease (MAFLD).	-Identifying new eQTL associated with Crohn’s Disease.	-Whole blood RNA sequencing. -Expression quantitative trait loci (qQTL). -Enrichment analysis on eGene Set.	Benamor et al. (2021).	
11	Genome-Wide Association of Proprotein Convertase Subtilisin/Kind Type 9 Plasma Levels in the ELSA-Brasil Study.	Brazilian subjects enrolled in the Estudo Longitudinal de Saude do Adul es cohort.	-hWJSCs/hWJSC extracts	-PCSK9 levels may be modulated by trans genetic variation outside of the PCSK9 gene.	-Gene expression assay. -hWJSCs/hWJSC extracts	Haque et al. (2020).	
12	MDR1 Gene Polymorphisms and its Association with Expression as a Clinical Reference in Terms of Response to Chemotherapy and Prognosis in Ovarian Cancer.	Patients with ovarian cancer/biopsy/blood samples.	-Exome sequencing -RT-qPCR -Restriction fragment length polymorphism (RFLP) analysis.	-Exons 12 (C1236T) & exon 26 (C4357T) polymorphism may play a role in drug resistance by altering the expression level of MDR1 gene.	-Exons 12 (C1236T) & exon 26 (C4357T) polymorphism may play a role in drug resistance by altering the expression level of MDR1 gene.	Ozturg et al. (2021).	
13	Clinical Utility of Rapid Exome Sequencing Combined with Mitochondrial DNA Sequencing in Critically Ill Pediatric Patients with Suspected Genetic Disorders.	-Pediatric patients with suspected genetic disorders such as neuromuscular or other systemic abnormalities.	-Whole exome sequencing. -Sanger sequencing. -PCR	-Rapid mitochondrial sequencing combined with exome sequencing in patients diagnosed with suspected mitochondrial disorders is an efficient approach to avoid a wide range of unnecessary clinical investigations.	-Rapid mitochondrial sequencing combined with exome sequencing in patients diagnosed with suspected mitochondrial disorders is an efficient approach to avoid a wide range of unnecessary clinical investigations.	Naseer et al. (2020b).	
14	Exome Analysis Identified Novel Homozygous Splice Site Donor Alteration in NT5C2 Gene in a Saudi Family Associated with Spinal Dysplasia Cerebral Palsy, Developmental Delay, and Intellectual Disability.	Human subjects with neurodevelopmental disorders.	-Whole exome sequencing (WES). -Sanger sequencing. -PCR	-Identified a homozygous splice site donor alteration of possible interest in NT5C2.	-Identified a homozygous splice site donor alteration of possible interest in NT5C2.	Naseer et al. (2020b).	
15	Targeted exome Seq for diagnosis	Children and young adults.	-Sanger sequencing. -Targeted Exome Sequencing (TES) & variant analysis. -Cost-efficiency analysis.	-Targeted exome sequencing (TES) achieved a high diagnostic rate for Genetic Skeletal Dysplasia (GSD) which led to better & Improved clinical management.	-Targeted exome sequencing (TES) achieved a high diagnostic rate for Genetic Skeletal Dysplasia (GSD) which led to better & Improved clinical management.	Lv et al. (2021).	
No.	Area of Research	Title of the Article	Type of the Article	Model Used	Tools/Platforms Used	Main Findings	Authors
-----	------------------	----------------------	---------------------	------------	---------------------	---------------	---------
16	Identifying Gene Variants	Novel Missense Variant in Heterozygous State in the BRPF1 Gene Leading to Intellectual Developmental Disorder with Dysmorphic Faces and Ptosis	Brief Research Report	- Human subjects.	- Whole Exome Sequencing (WES). - Sanger sequencing. - PCR validation. - Computational structural analysis of the mutants.	- BRPF1 gene variants are associated with an intellectual developmental disorder with dysmorphic faces and ptosis.	Nasor et al. (2020a).
17	Genetic Variants and Functional Analyses of the ATG16L1 Gene Promoter in Acute Myocardial Infarction.	Genetic Variants and Functional Analyses of the ATG16L1 Gene Promoter in Acute Myocardial Infarction.	Original Research	- Acute myocardial-infection (AMI) patients. - HEH2, HEK-293, and H9c2 cells.	- DNA/PCR sequencing. - Dual-luciferase reporter assay. - Nuclear extracts/ electrophoretic mobility shift assay.	- Identified 10 SNPs, 2 DNA-variants, & 3 ATG16L1 gene promoter mutations in AMI patients. These mutations affect the binding of transcription factors and change the transcriptional activity of ATG16L1.	Han et al. (2021).
18	Relationship Between the Apal and BsmI Variants of the ATG16L1 Gene and Urolithiasis Susceptibility: An Updated Meta-analysis and Trial Sequential Analysis.	Relationship Between the Apal and BsmI Variants of the ATG16L1 Gene and Urolithiasis Susceptibility: An Updated Meta-analysis and Trial Sequential Analysis.	Systematic Review	- Meta-analysis study, data were extracted from different databases.	- Literature search. - Data extraction. - Literature quality Evaluation. - Trial sequential analysis (TSA).	- Vitamin D Receptor (VDR) variants were correlated with urolithiasis susceptibility. - T allele might be the risk gene and the protective gene in VDR TaqI variant.	Chen et al. (2020).
19	Identification and Potential Clinical Utility of the MTNR1B rs10830963 Core Gene Variant Associated to Endophenotypes in Gestational Diabetes Mellitus.	Identification and Potential Clinical Utility of the MTNR1B rs10830963 Core Gene Variant Associated to Endophenotypes in Gestational Diabetes Mellitus.	Opinion	- Published data analysis to find out MTNR1B rs10830963 association with endophenotypes in GDM.	- MTNR1B rs10830963 risk variant is associated with major forms of clinical consequences mainly early prevention failure in high-risk pregnancy, therapy in high-risk Gestational Diabetes Mellitus (GDM) and a neonatal complication-related trait. - Maternal genome wide association studies GWAS on neonatal birthweight may potentially expect the reduction of complications.	Firmo et al. (2020).	
20	Identifying CNVs	Copy Number Variations Analysis Identifies QPRT as a Candidate Gene Associated With Susceptibility for Solitary Functioning Kidney.	Original Research	- Fetuses clinically diagnosed with a solitary functioning kidney.	- Chromosomal microarray analysis (CMA). - qRT-PCR. - QPRT siRNA knockdown. - Immunohistochemistry staining.	- Identified a total of 45 CNVs. CNV 1p11.2 was the highest record with kidney anomalies. - QPRT was distinctly localized in renal tubules. - Loss of QPRT affected the cell cycle & proliferation of human embryonic kidney cells.	Zhou et al. (2021).
21	Identifying Mutations	Two Novel Compound Heterozygous Mutations in the TRAPPC9 Gene Reveal a Connection of Non-syndromic Intellectual Disability and Autism Spectrum Disorder.	Case Report	- Human subjects.	- Target enrichment (Trolley One Expanded). - NGS of the coding areas of interest & sequence analysis with SeqNext (ESI). - Sanger sequencing and segregation analysis for validation.	- Two new missense mutations in the TRAPPC9 gene in one individual with intellectual disability (ID) and autism spectrum disorder (ASD).	Krämer et al. (2020).
22	An APC Mutation in a Large Chinese Kindred with Familial Adenomatous Polyposis Was Identified Using Both Next Generation Sequencing and Simple STR Marker Haplotypes.	An APC Mutation in a Large Chinese Kindred with Familial Adenomatous Polyposis Was Identified Using Both Next Generation Sequencing and Simple STR Marker Haplotypes.	- Human subjects.	- Next-generation sequencing (NGS). - Targeted sequencing. - PCR-based microsatellite analysis of the APC gene.	- APC p.WSS15 mutation was detected in all Familial Adenomatous Polyposis studied cases suggesting a potential role in detecting the disease.	Zhan et al. (2020).	
23	Mutation Repair	CRISPR/Cas9-Mediated in vivo Genetic Correction in a Mouse Model of Hemophilia A.	Original Research	- Hemophilia A (HAA) mouse model.	- Generated Hemophilia A mouse model. - RT-qPCR. - CRISPR design & injection. - Next Generation Sequencing (NGS). - Immunofluorescence staining.	- Potential treatment of the recurrent mutation in HA patients using in vivo gene repair strategy.	Luo et al. (2021).

(Continued on following page)
TABLE 1 (Continued) A list of the accepted articles of the research topic summarizing the research area of each study, article’s title, article’s type, the model used, tool/platform used, main findings and the reference to each study.

No.	Area of Research	Title of the Article	Type of Article	Model Used	Tools/Platforms Used	Main Findings	Authors
24	Identifying Deletions	Case Report: Candidate Genes Associated with Prenatal Ultrasound Aneurysm: a Fetus with Prenatally Detected 1q23.3q11.2 Deletion.	Case Report	- Human subjects.	- Ultrasound examination.	-PRX1 could be a candidate gene for fetal growth restriction, renal hypoplasia and congenital heart disease.	Song et al. (2021).
25	Association of CCR5 Deletion and Human Cytomegalovirus Infection with Colorectal Cancer in Tunisia.	- Blood samples from colorectal cancer patients and healthy subjects.	- Conventional & Nested PCR.	-HCMV specific serum IgG and IgM antibodies were investigated by enzyme-linked immunosorbent assay.	- No association between CCR5Δ32 mutation and colorectal cancer (CRC).	Chali et al. (2021).	
26	No Casual Relationship Between T2DM and the Risk of Infections	Bioinformatics: A Two-Sample Mendelian Randomization Study.	Original Research	- European ancestry data was obtained from UK Biobank (UKB).	- Two-sample Mendelian randomization (MR).	- No strong evidence to support the causal associations between T2DM and several infectious diseases including sepsis, skin, pneumonia, and genito-urinary infection (GUI) in pregnancy.	Wang et al. (2021).
27	Decoding the Role of Sphingosine-1-Phosphate in Asthma and Other Respiratory System Diseases Using Next Generation Knowledge Discovery Platforms Coupled with Luminex Multiple Analyte Profiling Technology.	- Human subjects with asthma.	- High throughput next generation knowledge discovery platform including SwissTargetPrediction, WebGestalt, Open Targets Platforms & Ingenuity Pathway Analysis.	- T2DM-related single nucleotide polymorphisms (SNPs).	- Identified several upstream regulators of sphingosine-1-phosphate (S1P) signaling including various cytokines and growth factors.	Bahlas et al. (2020).	
28	Screening and Identification of Therapeutic Targets for Pulmonary Arterial Hypertension Through Microarray Technology.	- Data from Gene Expression Omnibus (GEO) database.	- Microarray data.	- Gene set enrichment analysis (GSEA).	- Identified hub genes and key pathways of pulmonary arterial hypertension (PAH), with a total of 110 differentially expressed genes (DEGs) and 9 hub genes related to PAH.	Li et al. (2020).	
29	Identification of Potential Core Genes Associated with the Progression of Stomach Adenocarcinoma Using Bioinformatic Analysis.	- Stomach adenocarcinoma (STAD) datasets were downloaded from the Gene Expression Omnibus (GEO).	-DEGs discriminated using GEO2R and Venn diagram.	- Gene ontology (GO) and Kyoto Encyclopedia of Gene.	- Upregulated DEGs were enriched in receptor interaction.	Yang et al. (2020).	
30	Evaluation of the Prognostic Value of Gene Expression in Cancer	Evaluation of the Prognostic Value of STEAP1 in Lung Adenocarcinoma and Insights into Its Potential Molecular Pathways via Bioinformatic Analysis.	Original Research	- Clinical data from human subjects was obtained from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO).	- Western Blotting.	-STEAP1 expression is upregulated in Lung Adenocarcinoma (LUAD).	Guo et al. (2020).

(Continued on following page)
TABLE 1 (Continued) A list of the accepted articles of the research topic summarizing the research area of each study, article’s title, article’s type, the model used, tool/platform used, main findings and the reference to each study.

No.	Area of Research	Title of the Article	Type of the Article	Model Used	Tools/Platforms Used	Main Findings	Authors
31	A Novel DNA Replication-Related Signature Predicting Recurrence After Bilateral Resection of Pancreatic Ductal Adenocarcinoma: Prognostic Value and Clinical Implications	-Pancreatic ductal adenocarcinoma (PDAC) human tissue. -Gene expression clinical data collected from ArrayExpress database. -RNA sequencing data and Matched clinical data of TCGA dataset from TCGA hub at UCSC Xena.	-Nomogram	-Univariate Cox regression analysis. -Lasso regression analysis. -Kaplan-Meier (K-M) survival analysis. -qRT-PCR.	-7-gene signature was identified. -STEAP1 is a potential prognostic biomarker for LUAD.	Feng et al. (2021).	
32	Acute Myeloid Leukemia in Qatar (2010–2016): Clinical, Biological, and Prognostic Factors and Treatment Outcomes	- Patients diagnosed with AML.	- Multicolor flow cytometry. -Karyotyping -Molecular Mutation Analysis. -Chemotherapy treatment	-Signature was closely related to cell cycle, DNA replication, & DNA repair.	-Applying NGS on AML patients' diagnoses together with protocols for target therapy could better improve the quality of the patient's care.	El Omri et al. (2020).	

Identifying novel DNA replication-related gene signatures Feng et al. A combined approach using NGS data, karyotyping, mutation detection analysis, and flow cytometry was shown to be a better protocol for targeted therapy of acute myeloid leukemia (AML) patients El Omri et al. In summary, this research theme showed that data collected from genomic and bioinformatics analysis were effectively used to evaluate the prognostic value of biomarkers in cancer.

Discussion

We had two aims with this RT: the first was to study genes and/or microRNAs that play a dual function in embryonic development and disease and to deliver an update about the applications of the genomics and bioinformatics advanced tools for understanding the complexity of the disease. To a large extent, these aims were met and achieved in the RT. All accepted articles were divided into 3 categories. The results published in the first category of the RT supported the notion of previous reports showing that many genes function in a dual role manner in development and disease (Gong et al., 2011; Teven et al., 2014; Sohn et al., 2016; Stepicheva and Song, 2016; Mahajan et al., 2021; McMillen et al., 2021; Assidi et al., 2022). Other reports showed that during development components of the FGF, Wnt, Notch, BMP, and Hedgehog signaling orchestrate crucial cellular events including proliferation, migration, differentiation, epithelial-mesenchymal transition (EMT), morphogenesis and somite myogenesis patterning. When gene expression controlling these events is dysregulated, it leads to disease induction (Hansson et al., 2004; Logan and Nusse, 2004; Ma et al., 2010; Teven et al., 2014; Xiao et al., 2017; Abreu de Oliveira et al., 2021; Alrefaei and Abu-Elmagd, 2022; Towler and Shore, 2022). Although our RT did not receive microRNA-related manuscripts, it is well-established that microRNAs play an important role in physiology and disease (Sayed and Abdellatif, 2011; Bhaskaran and Mohan, 2014; Kalayinia et al., 2021).

Stem cell medical research aiming at developing therapies has been recently the promise for chronic disease treatment (Mousaei Ghasroldasht et al., 2022). The current RT has contributed to this important line of research through three studies in which human BM-MSCs and Wharton’s Jelly cells were used to treat osteoarthritis and leukemia respectively Jafri et al., Kalametag and al., and Huwaikeyn et al. In addition, stem cells can be also used for cell transplantation methods to cure diseases. For example, in this RT, Luo et al., showed successful CRISPR-mediated targeting of a Hemophilia A mutation, which may eventually one day be offered in the clinic as a treatment option.

For the second aim/category of the RT, a considerable number of published studies applied a wide range of genomic tools to unravel the causal gene(s) in disease Naseer et al., Naseer et al., Haque et al., Jung et al., Krämer et al., Zhan et al., Luo et al., Lv et al., Ma et al., Ouyang et al., and Özgümüs et al. There was, in addition, substantial use in these studies of many advanced bioinformatics tools aimed at analyzing the
involved molecular signaling pathways controlling the disease induction and progression Jafri et al., Kalamegam et al., and Huwaike et al. In several studies, there was a good use of the freely available gene expression datasets for disease analysis Chen et al., Firneisz et al., Guo et al., Li et al., Qi et al., Yang et al., Feng et al., Yang et al., and Bahlas et al. However, the use of these data presents many ethical challenges (Lathe et al., 2008; Shabani and Borry, 2015). For the most part, these efforts intend to improve and identify early disease prediction, diagnosis, progression, and prognosis.

Conclusion

Our Research Topic aimed at expanding our knowledge of the use of advanced genomic and bioinformatics tools. Results from several articles showed that genes could play a dual functional role in embryonic development and human disease. Stem cell-based therapy and CRISPR/cas9 mutation repair approaches are promising strategies for therapy. Several combined genomic approaches were successfully used to decipher disease induction mechanisms. Advances made in genomic and bioinformatic applications for understanding the complexities of human disease should be of great help to clinicians in personalized therapy.

Author contributions

MA-E: Research Topic idea, write up the Research Topic description, and establish the reviewing panel. AA: Discussion of the Research Topic idea/theme and execution. AR, MA-E, MA: Reviewing process includes appointing the reviewing panel of each manuscript and making provisional acceptance/rejection decisions.

References

Abreu De Oliveira, W. A., El Lahby, Y., Bruna, A., Annibali, D., and Lluis, F. (2022). Wnt signaling in the breast: From development to disease. Front. Cell Dev. Biol. 10. 884467. doi:10.3389/fcell.2022.884467

Alrefaei, A. F., and Abu-Elmagd, M. (2022). LRP6 receptor plays essential functions in development and human diseases. Genes (Basel) 13, 120. doi:10.3390 Genes13010120

Assidi, M., Buhmeida, A., Al-Zahrani, M. H., Al-Maghrabi, J., Rasool, M., Naseer, M. I., et al. (2022). The prognostic value of the developmental gene FZD6 in young Saudi breast cancer patients: A biomarkers discovery and cancer inducers OncoScreen approach. Front. Mol. Biosci. 9, 783735. doi:10.3389/fmolb.2022.783735

Bhaskaran, M., and Mohan, M. (2014). MicroRNAs: History, biogenesis, and their evolving role in animal development and disease. Vet. Pathol. 51, 759–774. doi:10.1177/0300985813502820

Chahal, G., Tyagi, S., and Ramialison, M. (2019). Navigating the non-coding genome in heart development and Congenital Heart Disease. Differentiation. 107, 11–25. doi:10.1016/j.diff.2019.05.001

Chen, K. Q., Anderson, A., Kawakami, H., Kim, J., Barrett, J., and Kawakami, Y. (2020). Normal embryonic development and neonatal digit regeneration in mice overexpressing a stem cell factor, Sall4. PLoS One 15, e0267273. doi:10.1371/journal. pone.0267273

Cheng, T. C., Huang, C. C., Chen, C. I., Liu, C. H., Hoeh, Y. S., Huang, C. Y., et al. (2004). Leukemia inhibitory factor antisense oligonucleotide inhibits the development of murine embryos at preimplantation stages. Biol. Reprod. 70, 1270–1276. doi:10.1095/biolreprod.103.023283

Degrazzwe, N., Suvá, M. L., Janiszewksa, M., Bigi, N., and Stamenkovic, I. (2016). LMPs: An RNA-binding protein family that provides a link between stem cell maintenance in normal development and cancer. Genes Dev. 30, 2439–2474. doi:10.1101/gad.287540.116

Gong, B., Liu, T., Zhang, X., Chen, X., Li, J., Lv, H., et al. (2011). Disease embryo development network reveals the relationship between disease genes and embryo development genes. J. Theor. Biol. 287, 108–108. doi:10.1016/j.jtbi.2011.07.018

Hansson, E. M., Lendahl, U., and Chapman, G. (2004). Notch signaling in development and disease. Semin. Cancer Biol. 14, 320–328. doi:10.1016/j.semcancer.2004.04.011

Hashimoto, M., Morita, H., and Ueno, N. (2014). Molecular and cellular mechanisms of development underlying congenital diseases. Congenit. Anom. 54, 1–7. doi:10.1111/cga.12039

Hosseini-Farahabadi, S., Geetha-Loganathan, P., Fu, K., Nimmagadda, S., Yang, H. J., and Richman, J. M. (2013). Dual functions for WNT5A during cartilage

Funding

The authors extend their appreciation to the Deanship for Research and Innovation, Ministry of Education in Saudi Arabia, for funding this research work through the project number (1033).

Acknowledgments

Guest editors would like to thank all authors who contributed their precious work to our Research Topic. Also, the guest editors would like to thank all reviewers who devoted their time and efforts to producing professional reviewing of the submitted manuscripts. We would like to thank all our colleagues for their support in spreading awareness among other colleagues about our Research Topic. The efforts and commitments of all mentioned here made this Research Topic a very successful one.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
development and in disease. *Matrix Biol.* 32, 252–264. doi:10.1016/j.matbio.2013.02.005

Kalayınia, S., Arjmand, F., Maleki, M., Malakootian, M., and Singh, C. P. (2021). MicroRNAs: Roles in cardiovascular development and disease. *Cardiovasc. Pathol.* 50, 107296. doi:10.1016/j.carpath.2020.107296

Kloosterman, W. P., and Plasterk, R. H. (2006). The diverse functions of microRNAs in animal development and disease. *Dev. Cell* 11, 441–450. doi:10.1016/j.devcel.2006.09.009

Lan, L., Wang, W., Huang, Y., Bu, X., and Zhao, C. (2019). Roles of Wnt7a in embryo development, tissue homeostasis, and human diseases. *J. Cell. Biochem.* 120, 18588–18598. doi:10.1002/jcb.29217

Lathe, W., Williams, J., Mangan, M., and Karolchuk, D. (2008). Genomic data resources: Challenges and promises. *Nat. Educ.* 1, 2.

Lees, C., Howie, S., Sartor, R. B., and Satsangi, J. (2005). The hedgehog signalling pathway in the gastrointestinal tract: Implications for development, homeostasis, and disease. *Gastroenterology* 129, 1696–1710. doi:10.1053/j.gastro.2005.05.010

Loch-Caruso, R., and Troxow, J. E. (1985). Inhibited intercellular communication as a mechanistic link between teratogenesis and carcinogenesis. *Crit. Rev. Toxicol.* 16, 157–183. doi:10.3109/10408448509056269

Logan, C. Y., and Nusse, R. (2004). The Wnt signaling pathway in development and disease. *Annu. Rev. Cell Dev. Biol.* 20, 781–810. doi:10.1146/annurev.cellbio.20.010403.113126

Ma, Y., Zhang, P., Wang, F., Yang, J., Yang, Z., and Qin, H. (2010). The relationship between early embryo development and tumourigenesis. *J. Cell. Mol. Med.* 14, 2697–2701. doi:10.1111/j.1582-4934.2010.01191.x

Mahajan, D., Kancharla, S., Kolli, P., Sharma, A. K., Singh, S., Kumar, S., et al. (2021). Role of fibulins in embryonic stage development and their involvement in various diseases. *Biomolecules* 11, 685. doi:10.3390/biom11050685

Mazzoccoli, G., Laikakiane, M. O., Vinciguerra, M., Colangelo, T., and Colantuoni, V. (2016). A timeless link between circadian patterns and disease. *Trends Mol. Med.* 22, 68–81. doi:10.1016/j.molmed.2015.11.007

Mcmullen, P., Oudin, M. J., Levin, M., and Payne, S. L. (2021). Beyond neurons: Long distance communication in development and cancer. *Front. Cell Dev. Biol.* 9, 739024. doi:10.3389/fcell.2021.739024

Miyaki, S., Sato, T., Inoue, A., Otsuki, S., Ito, Y., Yokoyama, S., et al. (2010). MicroRNA-140 plays dual roles in both cartilage development and homeostasis. *Genes Dev.* 24, 1173–1185. doi:10.1101/gad.191510

Moussaie GhassrOLIDASH, M., Seok, J., Park, H.-S., Liakath Ali, F. B., and Al-Hendy, A. (2022). Stem cell therapy: From idea to clinical practice. *Int. J. Mol. Sci.* 23, 2850. doi:10.3390/ijms23052850

Nunes, F. D., De Almeida, F. C., Tucci, R., and De Sousa, S. (2003). Homeobox genes: A molecular link between development and cancer. *Pesqui. Odontol. Bras.* 17, 94–98. doi:10.1590/s1517-74912003000100018

Papaioannou, V. E., Waters, B. K., and Rossant, J. (1984). Interactions between diploid embryonal carcinoma cells and early embryonic cells. *Cell Differ.* 15, 175–179. doi:10.1016/0046-6039(84)90071-x

Perreira, R., Oliveira, J., and Sousa, M. (2020). Bioinformatics and computational tools for next-generation sequencing analysis in clinical genetics. *J. Clin. Med.* 9, E132. doi:10.3390/jcm901132

Pietro-Colomina, A., Fernández, V., Chinappina, K., and Borrell, V. (2021). miRNAs in early brain development and pediatric cancer: At the intersection between healthy and diseased embryonic development. *Bioessays.* 43, e2100073. doi:10.1002/bies.202100073

Sayed, D., and Abdellatif, M. (2011). MicroRNAs in development and disease. *Physiol. Rev.* 91, 827–887. doi:10.1152/physrev.00006.2010

Shabani, M., and Borry, P. (2015). Challenges of web-based personal genomic data sharing. *Life Sci. Policy* 11, 3. doi:10.1186/s40504-014-0022-7

Shah, K., Patel, S., Mirza, S., and Rawal, R. M. (2018). Unravelling the link between embryogenesis and cancer metastasis. *Gene* 642, 447–452. doi:10.1016/j.gene.2017.11.056

Sohn, J., Brick, R. M., and Tuan, R. S. (2016). From embryonic development to human diseases: The functional role of caveolae/caveolin. *Birth Defects Res. C Embryo Today* 108, 45–64. doi:10.1002/bdrt.21121

Stepicheva, N. A., and Song, J. L. (2016). Function and regulation of microRNA-31 in development and disease. *Mol. Reprod. Dev.* 83, 654–674. doi:10.1002/mrd.22678

Tateva, H., Kong, N. R., Chong, G., Amabile, G., Tenen, D. G., and Chai, L. (2016). SALL4, the missing link between stem cells, development and cancer. *Gene* 584, 111–119. doi:10.1016/j.gene.2016.02.019

Taylor, K. M., Hiscox, S., and Nicholson, R. I. (2004). Zinc transporter LIV-1: A link between cellular development and cancer progression. *Trends Endocrinol. Metab.* 15, 461–463. doi:10.1016/j.tem.2004.10.003

Teven, C. M., Farina, E. M., Rivás, J., and Reid, R. R. (2014). Fibroblast growth factor (FGF) signaling in development and skeletal diseases. *Genes Dev.* 1, 199–213. doi:10.1101/gad.2014.09.005

Towler, O. W., and Shore, E. M. (2022). BMP signaling and skeletogenesis in fibrodyplasia ossificans progressiva (FOP). *Dev. Dyn.* 251, 164–177. doi:10.1002/dvdy.3807

Tzukerman, M., Rosenberg, T., Reiter, I., Ben-Eliezer, S., Denkberg, G., Coleman, R., et al. (2006). The influence of a human embryonic stem cell-derived microenvironment on targeting of human solid tumor xenografts. *Cancer Res.* 66, 3792–3801. doi:10.1158/0008-5472.CAN-05-3467

Ulveling, D., Francastel, C., and Hubé, F. (2011). When one is better than two: The ciliation of a human embryonic stem cell-derived fibrosarcoma. *Dev. Dyn.* 240, 177–189. doi:10.1002/dvdy.22172

Xiao, Q., Chen, Z., Jin, X., Mao, R., and Chen, Z. (2017). The many postures of noncanonical Wnt signaling in development and diseases. *Biomed. Pharmacother.* 93, 359–369. doi:10.1016/j.biopha.2017.06.061