Impact of Essential Genes on the Success of Genome Editing Experiments Generating 3,313 New Genetically Engineered Mouse Lines

Elrick et al.

Supplementary Figure 1. Schematic of null allele mouse line production. a. Allele Design. A critical region (CR) was identified that contains one or more exons present in all annotated full-
length protein-coding transcripts and when deleted would introduce a frameshift and premature stop codon in the first half of the open reading frame but at least 33 amino acids downstream of the translation start codon. In most cases, these transcripts are predicted to be targeted for nonsense-mediated decay. Intron sequences flanking the CR were examined for specific Cas9 protospacer sequences. Cas9 guide RNA specificity was gauged by the absence of predicted off-target sites with fewer than three mismatches and/or a specificity score >65. At some centres, specificity parameters included that off-target sites must have at least one mismatch in the seed region (11-bp immediately 5’ to the protospacer adjacent motif) of the guide RNA.

b. Mouse Production. Cas9 reagents were introduced into groups of zygotes by electroporation (EP) or pronuclear (PN) or cytoplasmic (CY) microinjection. Treated zygotes were transferred to pseudopregnant recipient for gestation and birth. Born pups were genotyped for the presence of the deletion allele (red asterisk), either by real-time PCR or droplet digital PCR to quantify the copies of the deleted region or by end-point PCR to detect an amplicon consistent with the deletion of the critical region. Some putative founders had undesired changes after Cas9 treatment (blue asterisk) and were not used for breeding. Founders were bred to wild-type C57BL/6N mice and N1 pups were screened for the presence of the desired deletion. Sanger sequencing of a PCR amplicon spanning the deletion confirmed the sequence of the deletion junction and at least 100-bp of DNA flanking either side of the deletion. N1 pups with the same allele sequence were used to establish the putative null mutant mouse line.
Supplementary Figure 2. Violin plot for birth rates from experiments generating null alleles in (a) non-essential and essential genes as well as (b) non-lethal and lethal genes. Reported are the p-values (p) of pairwise comparisons using the Wilcoxon rank sum test, the number of genes (N), and corresponding medians in boxplots.
Supplementary Figure 3. Line graph showing cumulative GLT rates for at each subsequent production attempt as a percentage of total number of all unique genes attempted at least once.
Supplementary Table 1. Experiments included in meta-analysis by production centre

	BCM	CCP	HAR	ICS	JAX	TCP	UCD	WTSI	Total
Number of experiments	679	339	413	60	1430	386	701	468	4473
Number of genes	585	278	305	60	1340	341	683	383	3973
%Repeated experiments	25.8	32.7	41.0	0.0	12.4	22.5	5.1	31.2	20.1
%Repeated genes	13.8	18.0	20.7	0.0	6.6	12.3	2.6	15.9	10.1

BCM, Baylor College of Medicine; CCP, Czech Centre for Phenogenomics; HAR, MRC Harwell; ICS, Institut Clinique de la Souris; JAX, The Jackson Laboratory; TCP, The Centre for Phenogenomics; UCD, University of California, Davis, Mouse Biology Program; WTSI, Wellcome Trust Sanger Institute.
Supplementary Table 2. Unique gene null allele production attempts.

Filename: Elrick-Nutter_ST2_UniqueGeneCas9Attempts.xlsx

Legend for Supplementary Table 2.

Column Name	Column Description
MI Attempt ID	database unique identifier
Gene Marker Symbol	mouse gene symbol
Gene MGI Accession ID	Mouse Genome Informatics accession identifier
Production Centre	mouse production centre at which attempt was made
Status Name	latest production status for knockout allele generation attempt
Zygote	strain in which allele was made
gRNA Concentrations (ng/µL)	ng/µL of guide RNA in Cas9 mix
gRNA Concentrations Individually Set?	toggle TRUE if gRNA concentrations are different for each guide sequence of first gRNA on the positive strand of chromosome
gRNA Sequence (+ strand)	chromosome on which first gRNA is located
Chromosome (+ strand)	start coordinate of first gRNA entered into database
Start co-ordinate	end coordinate of first gRNA entered into database
End co-ordinate	sequence of second gRNA on the positive strand of chromosome
gRNA Sequence (+ strand).1	chromosome on which second gRNA is located
Chromosome (+ strand).1	start coordinate of second gRNA entered into database
Start co-ordinate 1	end coordinate of second gRNA entered into database
End co-ordinate 1	sequence of third gRNA on the positive strand of chromosome
gRNA Sequence (+ strand).2	chromosome on which third gRNA is located
Chromosome (+ strand).2	start coordinate of third gRNA entered into database
Start co-ordinate 2	end coordinate of third gRNA entered into database
End co-ordinate 2	sequence of fourth gRNA on the positive strand of chromosome
gRNA Sequence (+ strand).3	chromosome on which fourth gRNA is located
Chromosome (+ strand).3	start coordinate of fourth gRNA entered into database
Start co-ordinate 3	end coordinate of fourth gRNA entered into database
End co-ordinate 3	concentration of Cas9 mRNA in Cas9 mix
mRNA Concentration (ng/µL)	concentration of Cas9 protein in Cas9 mix
Protein Concentration (ng/µL)	method used to deliver Cas9 reagents to embryos
Delivery Method	date of microinjection or electroporation of embryos
Mi Date	number of embryos treated (microinjected or electroporated)
#Embryos Injected	number of embryos that survived treatment
#Embryos Survived	number of treated embryos transferred into pseudopregnant recipients
#Embryos Transferred	number of pups born from treated and transferred embryos
#Founder Pups Born	number of pups assayed for the desired allele
#Founders Assayed	number of founders selected for breeding
#Founders Selected For Breeding	number of deletion founders identified among pups assayed
#G0 deletion event detected	type of allele planned to be generated
Allele Subtype: subtype of allele generated
Mutant Fasta Sequence: sequence of knockout allele
Reason GLT Failed: inferred reason germline transmission of allele failed
Cas9 Type: Type of Cas9, mRNA or protein
Sorted Cut-Sites: coordinates of cut sites for gRNAs in order of chromosome location
Num Guides: number of guide RNAs used in experiment
Max Cut-size: maximum size of predicted deletion based on gRNA cut sites
Viability Consensus: IMPC viability phenotype
Cellular Essential: gene score as essential or non-essential from Cacheiro, et al, 2020.
Ratio Embryos Survived to Transfer: % of embryos that survived treatment and were transferred
Ratio of #G0 with Mutation Selected for Breeding: % of founders with desired mutation that were bred for germline transmission
Birth Rate: % of pups born from embryos transferred
Founder Rate (per Embryos Transferred): % of founders born from embryos transferred
GLT: germline transmission of desired allele
RepeatedGene: indicated whether a second (or more) attempt to generate founders was performed for a gene
Length: gene length in bp
GCcontent: %GC across a gene
CpGsites: number of CpG islands within a gene
PercentageCpG: % of gene represented by CpG islands
Human Ortholog: gene symbol of human ortholog
Human ENSID: Ensembl ID of human ortholog
Ortholog Relationship (human-to-mouse, mouse-to-human): type of ortholog relationship between mouse gene and human gene
pLI of Orthologs: probability of being loss of function intolerant for human ortholog
oe of Orthologs: Observed/expected is a continuous measure of how tolerant a gene is to a certain class of variation, in this case loss-of-function, for human ortholog
ExperimentRepeated: true (t) if experiment is the second or more attempt for a gene
SuccessfulAttemptExists: true (t) if a knockout allele was successfully made in any attempt

Supplementary Table 3. Repeat attempt sets for production of null alleles.
Filename: Elrick-Nutter_ST3_RepeatedGeneCas9Attempts.xlsx
Legend for Supplementary Table 3.

Column Name	Column Description
Mi Attempt ID	database unique identifier
Gene Marker Symbol	mouse gene symbol
Gene MGI Accession ID	Mouse Genome Informatics accession indentifier
Production Centre	mouse production centre at which attempt was made
Status Name
Zygote

gRNA Concentrations (ng/µL)
gRNA Concentrations Individually Set?

gRNA Sequence (+ strand)
Chromosome (+ strand)
Start Co-od
End Co-od
gRNA Concentrations Individually Set?

gRNA Sequence (+ strand).1
Chromosome (+ strand).1
Start Co-od.1
End Co-od.1
gRNA Sequence (+ strand).2
Chromosome (+ strand).2
Start Co-od.2
End Co-od.2
gRNA Sequence (+ strand).3
Chromosome (+ strand).3
Start Co-od.3
End Co-od.3
mRNA Concentration (ng/µL)
Protein Concentration (ng/µL)

Delivery Method
Mi Date

#Embryos Injected
#Embryos Survived
#Embryos Transfered

#Founder Pups Born
#Founders Assayed
#Founders Selected For Breeding
#G0 deletion event detected

Allele Type
Allele Subtype
Mutant Fasta Sequence
Reason GLT Failed
Cas9 Type
Sorted Cut-Sites

Num Guides
Max Cut-size
Viability Consensus

Latest production status for knockout allele generation attempt
strain in which allele was made
ng/µL of guide RNA in Cas9 mix
toggle TRUE if gRNA concentrations are different for eachguide sequence of first gRNA on the positive strand of chromosome chromosome on which first gRNA is located
start coordinate of first gRNA entered into database
end coordinate of first gRNA entered into database
sequence of second gRNA on the positive strand of chromosome chromosome on which second gRNA is located
start coordinate of second gRNA entered into database
end coordinate of second gRNA entered into database
sequence of third gRNA on the positive strand of chromosome chromosome on which third gRNA is located
start coordinate of third gRNA entered into database
end coordinate of third gRNA entered into database
sequence of fourth gRNA on the positive strand of chromosome chromosome on which fourth gRNA is located
start coordinate of fourth gRNA entered into database
end coordinate of fourth gRNA entered into database
concentration of Cas9 mRNA in Cas9 mix
concentration of Cas9 protein in Cas9 mix
method used to deliver Cas9 reagents to embryos
date of microinjection or electroporation of embryos
number of embryos treated (microinjected or electroporated)
number of embryos that survived treatment
number of treated embryos transferred into pseudopregnant recipients
number of pups born from treated and transferred embryos
number of pups assayed for the desired allele
number of founders selected for breeding
number of deletion founders identified among pups assayed
type of allele planned to be generated
subtype of allele generated
sequence of knockout allele
inferred reason germline transmission of allele failed
Type of Cas9, mRNA or protein
coordinates of cut sites for gRNAs in order of chromosome location
number of guide RNAs used in experiment
maximum size of predicted deletion based on gRNA cut sites
IMPC viability phenotype
Cellular Essential	gene score as essential or non-essential from Cacheiro, et al, 2020.
Ratio Embryos Survived to Transfer	% of embryos that survived treatment and were transferred
Ratio of #G0 with Mutation Selected for Breeding	% of founders with desired deletion that were bred
Birth Rate	% of pups born from embryos transferred
Founder Rate (per Embryos Transferred)	% of founders born from embryos transferred
GLT	germline transmission of desired allele
Length	gene length in bp
GC content	%GC across a gene
CpG sites	number of CpG islands within a gene
Percentage CpG	% of gene represented by CpG islands
Human Ortholog	gene symbol of human ortholog
Human ENSID	Ensembl ID of human ortholog
Ortholog Relationship (human-to-mouse, mouse-to-human)	type of ortholog relationship between mouse gene and human gene
pLI of Orthologs	probability of being loss of function intolerant for human ortholog
oe of Orthologs	Observed/expected is a continuous measure of how tolerant a gene is to a certain class of variation, in this case loss-of-function, for human ortholog
GeneSymbol_ProductionCentre	gene symbol used by production centre
Unique Set	indicated whether first (unique) or repeated (repeat) attempt
Δ Delivery Method	Change in delivery method from the previous attempt; CY–>EP; EP–>CY; CY–>PN; EP–>PN; PN–>EP; or PN–>CY
Δ mRNA Concentration	Change in mRNA concentration from the previous attempt; marked as change when Cas9 type changed and mRNA concentration went to zero which is often accompanied by change from injection to electroporation
Δ Protein Concentration	Change in protein concentration from the previous attempt; marked as change when Cas9 type changed and protein concentration went to zero which is often accompanied by change from electroporation to injection
Δ Cas9 Type	Change between mRNA and protein from the previous attempt
Δ Sorted Cut-Sites	Change in location of Cas9 target cut sites from the previous attempt; occurred when number of guides changed or guide sequence changed
Δ Num Guides	Change in number of guides used from the previous attempt; could be an increase or decrease in number of guides
Δ Guide Seq	The sequence of at least one guide is different from the previous attempt; when a subset of guides are used, but all appear in the previous attempt set, Guide Seq did not change.
Δ Exon	Change in the exon targeted
Any change	indicates whether any parameter was changed between repeated attempts
Supplementary Table 4. Gene annotation for various biological parameters
Filename: Elrick-Nutter_ST4_Cas9_GeneAnnotations.xlsx
Legend for Supplementary Table 4.

Column Name	Column Description
Gene Marker Symbol	mouse gene symbol
Gene MGI Accession ID	Mouse Genome Informatics accession identifier
ENSID	mouse gene Ensembl ID
Entrez_ID	mouse gene entrez ID
Viability Consensus	IMPC viability phenotype
Cellular Essential	gene score as essential or non-essential from Cacheiro, et al, 2020.
GLT	true (t) if germline transmission was obtained
Length	gene length in bp
GCcontent	%GC across a gene
CpGsites	number of CpG islands within a gene
PercentageCpG	% of gene represented by CpG islands
Human Ortholog	gene symbol of human ortholog
Human ENSID	Ensembl ID of human ortholog
Ortholog Relationship (human-to-mouse_mouse-to-human)	type of ortholog relationship between mouse gene and human gene
pLI of Orthologs	probability of being loss of function intolerant for human ortholog
oe of Orthologs	Observed/expected is a continuous measure of how tolerant a gene is to a certain class of variation, in this case loss-of-function, for human ortholog
Has Omim Annotation	true (t) if gene annotated in OMIM
Relative Chromosomal Position	gene location over total chromosome length
Staining Overlap	indicates whether gene overlaps with Giesma positive chromatin
AverageH3K27me3_Intron_PeakScore	average H3K27 methylation in introns of gene
AverageH3K27ac_PeakScore	average H3K27 acetylation along gene
all_stages	gene transcripts per million for all embryonic stages
all_stages_PercentileRank	percentile rank for gene transcripts per million for all embryonic stages
Placenta e8.5	gene transcripts per million for E8.5 (embryonic day 8.5) placenta
Placenta e8.5_PercentileRank	percentile rank for gene transcripts per million for E8.5 placenta
Placenta e9.0	gene transcripts per million for E9.0 placenta
Placenta e9.0_PercentileRank	percentile rank for gene transcripts per million for E9.0 placenta
Placenta e10.5	gene transcripts per million for E10.5 placenta
Placenta e10.5_PercentileRank	percentile rank for gene transcripts per million for E10.5 placenta
Placenta e12.0	gene transcripts per million for E12.0 placenta
Sample Type	Description
-----------------------------	---
Placenta e12.0_PercentileRank	percentile rank for gene transcripts per million for E12.0 placenta
Placenta e13.5	gene transcripts per million for E13.5 placenta
Placenta e13.5_PercentileRank	percentile rank for gene transcripts per million for E13.5 placenta
Placenta e15.0	gene transcripts per million for E15.0 placenta
Placenta e15.0_PercentileRank	percentile rank for gene transcripts per million for E15.0 placenta
Placenta e17.0	gene transcripts per million for E17.0 placenta
Placenta e17.0_PercentileRank	percentile rank for gene transcripts per million for E17.0 placenta
Placenta e19.0	gene transcripts per million for E19.0 placenta
Placenta e19.0_PercentileRank	percentile rank for gene transcripts per million for E19.0 placenta
Placenta P0	gene transcripts per million for P0 (post natal day 0) placenta
Placenta P0_PercentileRank	percentile rank for gene transcripts per million for P0 (post natal day 0) placenta
Decidua e8.5	gene transcripts per million for E8.5 (embryonic day 8.5) decidua (embryos)
Decidua e8.5_PercentileRank	percentile rank for gene transcripts per million for E8.5 decidua (embryos)
Decidua e9.0	gene transcripts per million for E9.0 decidua (embryos)
Decidua e9.0_PercentileRank	percentile rank for gene transcripts per million for E9.0 decidua (embryos)
Decidua e10.5	gene transcripts per million for E10.5 decidua (embryos)
Decidua e10.5_PercentileRank	percentile rank for gene transcripts per million for E10.5 decidua (embryos)
Decidua e12.0	gene transcripts per million for E12.0 decidua (embryos)
Decidua e12.0_PercentileRank	percentile rank for gene transcripts per million for E12.0 decidua (embryos)
Decidua e15.0	gene transcripts per million for E15.0 decidua (embryos)
Decidua e15.0_PercentileRank	percentile rank for gene transcripts per million for E15.0 decidua (embryos)
Decidua e17.0	gene transcripts per million for E17.0 decidua (embryos)
Decidua e17.0_PercentileRank	percentile rank for gene transcripts per million for E17.0 decidua (embryos)
Decidua e19.0	gene transcripts per million for E19.0 decidua (embryos)
Decidua e19.0_PercentileRank	percentile rank for gene transcripts per million for E19.0 decidua (embryos)
Decidua P0	gene transcripts per million for P0 (post natal day 0) decidua (embryos)
Decidua P0_PercentileRank	percentile rank for gene transcripts per million for P0 (post natal day 0) decidua (embryos)
Placenta and Decidua e17.0	gene transcripts per million for E17.0 placenta and decidua (embryos)
Placenta and Decidua e17.0_PercentileRank percentile rank for gene transcripts per million for E17.0 placenta and decidua (embryos)
Supplementary Table 5. Logistic regression output

Observations: 3209
Dependent Variable: Founders
Type: Logistic regression

GLM without Essentiality

	Odds Ratio	Standard Error	z-value	p-value	adjusted p-value
(Intercept)	11.975	0.269	9.219	2.0x10^{-16}	2.7x10^{-19}
Embryonic Expression	0.5675	0.221	-2.570	0.010	0.081
pLI	0.7375	0.199	-1.529	0.126	0.866
oe	1.000	0.262	-0.010	0.992	1.00
Chromosomal Location	1.100	0.204	0.467	0.640	1.00
Acetylated chromatin	0.8495	0.128	-1.203	0.229	1.00
Methylated chromatin	1.3705	0.203	1.539	0.124	0.866
Giemsa Positive Stain	1.0105	0.117	0.092	0.926	1.00
OMIM Annotation	0.8705	0.163	-0.847	0.397	1.00

GLM with Essentiality

	Odds Ratio	Standard Error	z-value	p-value	adjusted p-value
(Intercept)	12.095	0.272	9.158	2.2x10^{-16}	5.3x10^{-19}
Essential	0.410	0.147	-6.076	1.2x10^{-9}	1.1x10^{-8}
Embryonic Expression	0.7495	0.229	-1.284	0.199	1.00
pLI	0.7795	0.202	-1.230	0.219	1.00
oe	1.969	0.265	-0.113	0.910	1.00
Chromosomal Location	1.100	0.206	0.442	0.659	1.00
Acetylated chromatin	0.9095	0.130	-0.719	0.472	1.00
Methylated chromatin	1.2195	0.205	0.951	0.341	1.00
Giemsa Positive Stain	1.1495	0.117	0.124	0.901	1.00
OMIM Annotation	0.8105	0.165	-1.273	0.203	1.00

MODEL FIT: Without Essentiality
Null deviance: 2211.4, 3208 degrees of freedom
Residual deviance 2185.3, 3200 degrees of freedom
AIC = 2203.30

MODEL FIT: With Essentiality
Null deviance: 2211.4, 3208 degrees of freedom
Residual deviance 2150.9, 3199 degrees of freedom
AIC = 2170.91

pLI, probability of being loss of function intolerant; oe, Observed/expected is a continuous measure of how tolerant a gene is to a certain class of variation, in this case loss-of-function;
Supplementary Table 6. The number of genes across chromosomes and their distribution based on essentiality

Chromosome	No. Genes	Essential	Non-essential	Unknown	%known*
1	251	24	205	22	10.5%
2	277	30	240	7	11.1%
3	212	21	173	18	10.8%
4	212	23	180	9	11.3%
5	254	38	200	16	16.0%
6	192	15	155	22	8.8%
7	311	36	237	38	13.2%
8	208	28	173	7	13.9%
9	251	26	206	19	11.2%
10	170	24	132	14	15.4%
11	262	31	216	15	12.6%
12	129	17	99	13	14.7%
13	145	19	106	20	15.2%
14	144	12	125	7	8.8%
15	150	19	120	11	13.7%
16	126	15	106	5	12.4%
17	172	24	131	17	15.5%
18	112	15	85	12	15.0%
19	131	14	108	9	11.5%
X	159	0	0	159	nd
Y	1	0	0	159	nd
TOTAL	**3869**	**431**	**2997**	**441**	**12.6%**

*known = genes for which essentiality of human ortholog has been reported
Supplementary Table 7. Pairwise comparisons of the proportion of essential genes by experimental parameter

Experimental Parameter	Comparison (left vs. right)*	% left	% right	p-value*
Delivery method	Cytoplasmic injection vs. electroporation	11.0%	14.2%	0.025
	Cytoplasmic vs. pronuclear injection	11.0%	7.2%	0.077
	Electroporation vs. pronuclear injection	14.2%	7.2%	0.004
No. guides	2 guides vs. 4 guides	12.8%	12.7%	0.986
	[35,360] vs. [360,490]	13.8%	11.1%	1.000
	[35,360] vs. [490,640]	13.8%	12.6%	1.000
	[35,360] vs. [640,880]	13.8%	13.6%	1.000
	[35,360] vs. [880,1400]	13.8%	8.6%	0.095
	[35,360] vs. [1400+]	13.8%	15.9%	1.000
	[360,490] vs. [490,640]	11.1%	12.6%	1.000
	[360,490] vs. [640,880]	11.1%	13.6%	1.000
Deletion size	[360,490] vs. [880,1400]	11.1%	8.6%	1.000
	[360,490] vs. [1400+]	11.1%	15.9%	0.274
	[490,640] vs. [640,880]	12.6%	13.6%	1.000
	[490,640] vs. [880,1400]	12.6%	8.6%	0.395
	[490,640] vs. [1400+]	12.6%	15.9%	1.000
	[640,880] vs. [880,1400]	13.6%	8.6%	0.124
	[640,880] vs. [1400+]	13.6%	15.9%	1.000
	[880,1400] vs. [1400+]	8.6%	15.9%	0.004
No. founders bred	1 vs. 2	10.1%	13.7%	0.132
	1 vs. 3	10.1%	9.4%	1.000
	1 vs. 4	10.1%	9.6%	1.000
	2 vs. 3	13.7%	9.4%	0.132
	2 vs. 4+	13.7%	9.6%	0.132
	3 vs. 4+	9.4%	9.6%	1.000

*left indicates the variable before “vs.” and right indicates the variable after “vs.”
*Chi square test for proportions

Supplementary Information 2, Table 8A: All IMPC mouse line production attempts
Filename: Elrick-Nutter_ST8_Cas9_AllAttempts.xlsx
Legend for Supplementary Table 8A.

Column Name	Column Description
MGI Accession ID	mouse gene symbol
Marker Symbol
MI External Ref
Consortium
Production Centre
Pipeline
Delivery Method
Injection Date
Injection Status
GLT Date
Clone Name / MF External Ref
mRNA Nuclease
mRNA Nuclease Concentration (ng/µL)
Protein Nuclease
Protein Nuclease Concentration (ng/µL)
gRNAs
Electroporation Voltage
Electroporation # Pulses
Embryo / Blastocyst Strain
Embryos / Blastocysts Injected
Embryos Survived
Embryos / Blastocysts Transferred
Transfer Day
2 Cell
Pups Born
Founders Selected For Breeding
Founders Assayed
Assay Used
Colony Name
Background Strain
Test Cross Strain
Experimental?
Report Micro Injection Progress

To Public whether attempt can be reported publicly
Active? whether attempt is active (t)
Haplo_essential whether attempt was part of the haplo-essential screen
URL URL for the gene page at the IMPC web portal
Comments comments entered by centre

Supplementary Information 2, Table 8B. Unique gene IMPC null protein-coding gene mouse lines produced as of Oct 11, 2020.
Filename: Elrick-Nutter_ST8_Cas9_AllAttempts.xlsx
Legend for Supplementary Table 8B.

Column Name	Column Description
MGI Accession ID	mouse gene symbol
Marker Symbol	Mouse Genome Informatics accession identifier
MI External Ref	production-centre assigned experiment identifier
Consortium	consortium for which allele was produced
Production Centre	mouse production centre at which line was made
Unique	"Yes" indicates unique attempt
Ortholog	"Yes" indicates existence of human ortholog
Protein Coding	specifies protein coding or other type of gene
Pipeline	pipeline in which line was phenotyped
Delivery Method	method used to deliver Cas9 reagents to embryos
Injection Date	date of microinjection or electroporation of embryos
Injection Status	final status of production attempt
GLT Date	date germline transmission was reported
URL	URL for the gene page at the IMPC web portal

Supplementary Information 3.
Filename: Elrick-Nutter_SupplementaryMethodsTable1

Supplementary Methods Table 1A. Animals used for mouse line production.
Legend for Supplementary Methods Table 1A.

Column Name	Column Description
Institution	Institution hosting the mouse line production centre
ILAR Labcode	Labcode used to designate alleles produced at a given institution in Mouse Genome Informatics
Production background strain	Mouse inbred strain used to produce embryos for genome editing
Strain #	Strain number used by commercial vendor for the production strain
Background strain source	Commercial source(s) of mice used for embryo production
Pseudopregnant recipient strain	Strain used to produce pseudopregnant recipients for embryo transfer
--------------------------------	---
Strain #	Strain number used by commercial vendor for the pseudopregnant strain
Pseudopregnant strain source	Commercial source(s) of mice used as pseudopregnant recipients
Ethics statement	Statement about ethical oversight for mouse studies at each centre

Supplementary Methods Table 1B. Reagents used for mouse line production.

Legend for Supplementary Methods Table 1B.

Column Name	Column Description
Institution	Institution hosting the mouse line production centre
sgRNA Design	Software used to design guide RNAs
Oligonucleotide source(s)	Commercial source of oligonucleotides used for guide RNA synthesis
sgRNA synthesis	Protocol(s) used to synthesize sgRNAs
sgRNA commercial source(s)	Commercial source(s) of sgRNAs
Cas9 type(s)	Molecular composition of Cas9 delivered to mouse embryos
Cas9 source(s)	Commercial source(s) of Cas9 mRNA or protein
RNA injection buffer	Buffer used to suspend genome editing reagents when Cas9 was delivered as mRNA by microinjection
RNP buffer (injection)	Buffer used to suspend genome editing reagents when Cas9 was delivered as RNP by microinjection
RNA buffer (electroporation)	Buffer used to suspend genome editing reagents when Cas9 was delivered as mRNA by electroporation
RNP buffer (electroporation)	Buffer used to suspend genome editing reagents when Cas9 was delivered as RNP by electroporation
Embryo generation	Method to produce embryos for genome editing

Supplementary Methods Table 1C. Reagents used for genotyping animals during mouse line production.

Legend for Supplementary Methods Table 1C.

Column Name	Column Description
Institution	Institution hosting the mouse line production centre
DNA isolation	Method(s) used to isolate DNA from founders and N1 mouse tissue biopsies for genotyping
PCR reagents	Reagents used for genotyping PCR
Analysis	Methods used to analyze PCR amplicons