Propensity Score Matched Comparison of Intensity Modulated Radiation Therapy vs Stereotactic Body Radiation Therapy for Localized Prostate Cancer: A Survival Analysis from the National Cancer Database

Anthony Ricco1,2, Alexandra Hanlon3 and Rachelle Lanciano1,2*

1 Philadelphia Cyberknife, Havertown, PA, United States, 2 Crozer Keystone Health Care System, Springfield, PA, United States, 3 University of Pennsylvania, School of Nursing, Philadelphia, PA, United States

Purpose: No direct comparisons between extreme hypofractionation and conventional fractionation have been reported in randomized trials for the treatment of localized prostate cancer. The goal of this study is to use a propensity score matched (PSM) analysis with the National Cancer Database (NCDB) for the comparison of stereotactic body radiation therapy (SBRT) and intensity modulated radiation therapy (IMRT) for organ confined prostate cancer.

Methods: Men with localized prostate cancer treated with radiation dose ≥72 Gy for IMRT and ≥35 Gy for SBRT to the prostate only were abstracted from the NCDB. Men treated with previous surgery, brachytherapy, or proton therapy were excluded. Matching was performed to eliminate confounding variables via PSM. Simple 1–1 nearest neighbor matching resulted in a matched sample of 5,430 (2,715 in each group). Subset analyses of men with prostate-specific antigen (PSA) >10, GS = 7, and GS > 7 yielded matched samples of 1,020, 2,194, and 247, respectively.

Results: No difference in survival was noted between IMRT and SBRT at 8 years (p = 0.65). Subset analyses of higher risk men with PSA > 10 or GS = 7 histology or GS > 7 histology revealed no difference in survival between IMRT and SBRT (p = 0.58, p = 0.68, and p = 0.62, respectively). Variables significant for survival for the matched group included: age (p < 0.0001), primary payor (p = 0.0001), Charlson/Deyo Score (p = 0.0002), PSA (p = 0.0013), Gleason score (p < 0.0001), and use of hormone therapy (p = 0.02).

Conclusion: Utilizing the NCDB, there is no difference in survival at 8 years comparing IMRT to SBRT in the treatment of localized prostate cancer. Subset analysis confirmed no difference in survival even for intermediate- and high-risk patients based on Gleason Score and PSA.

Keywords: stereotactic body radiation therapy, intensity modulated radiation therapy, prostate cancer, National Cancer Database, overall survival
SUMMARY

The use of extreme hypofractionation using stereotactic body radiation therapy (SBRT) for localized prostate cancer remains controversial. There are no current randomized controlled trials comparing SBRT for localized prostate cancer with the current standard, intensity modulated radiation therapy (IMRT). Using the National Cancer Database with propensity score matching, we demonstrate no survival difference between SBRT and IMRT, including subset analysis of intermediate- and high-risk patients.

INTRODUCTION

Intensity modulated radiation therapy (IMRT) is a standard radiation modality used in the treatment of organ confined prostate cancer. Ten-year actuarial data (median follow-up of 8 years) is available for high-dose IMRT up to 81 Gy which demonstrates high efficacy in preventing biochemical failure with acceptable side effects (1). Stereotactic body radiation therapy (SBRT) has been accepted as an “appropriate alternative for select patients with low to intermediate-risk disease” as per the ASTRO policy update of April 2013 and is also supported by the National Comprehensive Cancer Network (NCCN). SBRT publications have validated freedom from biochemical failure (FFBF) with up to 9-year actuarial data (median follow-up of 7 years) and side effect rates comparable with IMRT (2–4).

The combination of prostate cancer's low a/b ratio, known benefit of dose-escalation, and efficacy/safety of high-dose rate brachytherapy led to single institutional, multi-institutional, and randomized clinical trials of SBRT for the treatment of prostate cancer (5, 6). Randomized data are lacking comparing the outcome of treatment for SBRT compared with IMRT for localized prostate cancer. The primary goal of this study is to compare survival between SBRT and IMRT for men with organ confined prostate cancer utilizing the National Cancer Database (NCDB).

MATERIALS AND METHODS

The NCDB is jointly sponsored by the American College of Surgeons and the American Cancer Society. It is a clinical oncology database sourced from hospital registry data collected in more than 1,500 commission on cancer-accredited facilities. NCDB data are used to analyze and track patients with malignant neoplastic diseases, their treatments, and outcomes. Data represent approximately 70% of newly diagnosed cancer cases nationwide and 30 million historical records. The NCDB includes prostate cancer patients treated from 2004 to 2013 providing information on demographics, risk factors specific to prostate cancer, staging information, treatment, and survival data. Patients are de-identified and the database is then sent to individual researchers for analysis after application and acceptance for individual projects.

We initially identified 274,626 patients who received external beam radiation of some form. We excluded those patients who received prior surgery to the prostate. We excluded all but those patients who were listed as invasive adenocarcinoma of the prostate. We excluded those patients with metastatic disease, node positive disease, more than one previous cancer, and stages 0 and 4 disease. Of those, we excluded patients who received radiation in forms other than IMRT or SBRT. We included all patients diagnosed between 2004 and 2013 and treated within 180 days of diagnosis to rule out patients on active surveillance. We included only men that received all radiation dose directed to the prostate, therefore men were excluded if the pelvis was included in the initial treatment volume. Men were excluded if protons or brachytherapy was used for radiation treatment. We then reviewed total radiation dose and excluded low doses that were clearly outliers from standard accepted doses during that time interval, range 35–50 Gy for SBRT and 72–86.4 Gy for IMRT. Patients with missing variables were then excluded, leaving 33,638 patients (Figure 1 - CONSORT diagram).

Patients were then matched using propensity score matched (PSM) between treatment groups (IMRT or SBRT). The primary endpoint was overall survival (OS).

Demographic variables evaluable from the NCDB and matched by PSM include year of diagnosis, age, race, insurance status, residence location, median household income, patient comorbidity via the Charlson–Deyo comorbidity score, facility type, and treatment facility volume (divided into tertiles). Tumor and treatment specific factors evaluable from the NCDB include prostate-specific antigen (PSA), T stage, and Gleason score as well as use of androgen deprivation therapy. Radiation treatment dose was also stratified into low, medium, and high categories to be sure varying dose levels were evenly distributed between treatment groups. IMRT doses were defined as 7,200–7,559 cGy for low, 7,560–7,799 cGy for medium, and 7,800–8,640 cGy high. SBRT doses were defined as 3,500–3,624 cGy for low, 3,625–3,750 cGy for medium, and 3,751–5,000 cGy for high. All other doses below or above these defined categories were excluded.

Age was stratified into six groups (<55, 55–59, 60–64, 65–69, 70–74, 75–90 years). Race was characterized as either African–American, white, others, and unknown. Insurance status was outlined by the NCDB into six categories (Medicaid, Medicare, not insured, insurance status unknown, other governmental insurance, private insurance). The NCDB labeled residence location as metropolitan, rural, or urban using published files by the US Department of Agriculture Economic Research Service. Median household income was divided into quartiles <38K, 38–47,999, 48–62,999, +63, and unknown using average county level data from patient zip codes. Patient co-morbidities were coded as Charlson–Deyo comorbidity scores 0, 1, ≥2 (7).

Type of cancer facility included academic/research programs, community cancer programs, comprehensive community cancer programs, integrated network cancer programs, and other. The NCDB used the American Joint Committee on Cancer Staging Atlas, sixth, and seventh edition for staging as appropriate for year of diagnosis.

Treatment groups were compared on demographic and clinical characteristics using χ² test statistics. Propensity score 1–1 nearest neighbor matching without replacement was used to match treatment groups. Absolute standard mean differences (ASMDs)
were used as a balance statistic for individual covariates, where an ASMD below 0.20 is desirable for all variables. Patients in the IMRT group were well matched with patients in the SBRT group on the following characteristics: age, race, residence, insurance status, median household income, Charlson–Deyo comorbidity scores, treatment facility type, year of diagnosis, tumor stage, PSA, and Gleason score. Scores calculated were blinded from researchers with respect to patient outcomes. OS was calculated from date of diagnosis to date of death or last follow-up. OS was estimated using Kaplan–Meier methodology, forming the basis of survival curves, and univariate comparisons were accomplished using log-rank test statistics. Propensity score matching was conducted using the MatchIt package in R version 3.30. All other statistical analyses were performed using SAS version 9.4 (SAS Inc., Cary, NC, USA).

This study was approved and carried out in accordance with the recommendations of the NCDB which provided a de-identified file for investigator use. The NCDB is not responsible for the analytical methodology or conclusions of the investigator.

RESULTS

Patient Matching

Simple 1–1 nearest neighbor matching resulted in a matched sample of 5,430 with 2,715 in each group. Since these groups were well matched on the basis of ASMDs below 0.2, comparisons between treatment groups (IMRT, SBRT) could be made using a Kaplan–Meier curve, and a log-rank test statistic (Figure 2). The p-value corresponding to the log-rank test was above 0.05 (p = 0.6483), indicating that no significant differences between treatment groups were observed after matching.

Patient Characteristics

A total of 5,430 men were included in the analysis after applying inclusion criteria, exclusion criteria, and performing PSM. There were 2,715 patients (50%) treated with SBRT and 2,715 patients (50%) treated with IMRT. Survival was evaluable through 8 years on the basis of an adequate number of patients at risk. Patient and treatment characteristics by treatment group are provided in Table 1.

No significant differences were observed in the distributions for age, race, insurance status, patient residence, median household
TABLE 1 | Population characteristics of matched sample by treatment group.

Characteristic	All patients	IMRT	SBRT	p-Values
	N = 5,430	N = 2,715	N = 2,715	
Age (<55)	275 (5.1%)	123 (4.5%)	152 (5.6%)	0.4032
Age (55-69)	518 (9.5%)	260 (9.6%)	258 (9.5%)	
Age (60-64)	1,411 (25.9%)	438 (16.1%)	454 (16.7%)	
Age (65-69)	1,276 (23.5%)	715 (26.3%)	696 (25.6%)	
Age (70-74)	1,058 (19.5%)	658 (24.2%)	618 (22.8%)	
Age (75-90)	1,058 (19.5%)	521 (19.2%)	537 (19.8%)	
Race Black	597 (11.0%)	281 (10.4%)	316 (11.6%)	
Race Other	79 (1.5%)	38 (1.4%)	41 (1.5%)	
Race Unknown	40 (0.7%)	20 (0.7%)	20 (0.7%)	
Race White	4,714 (86.8%)	2,376 (87.5%)	2,338 (86.1%)	
Insurance status unknown	59 (1.1%)	31 (1.1%)	28 (1.0%)	0.9208
Insurance status unknown Medicaid	50 (0.9%)	24 (0.9%)	26 (1.0%)	
Insurance status unknown Medicare	3,289 (60.6%)	1,653 (60.9%)	1,636 (60.3%)	
Insurance status unknown Not insured	56 (1.0%)	26 (1.0%)	30 (1.1%)	
Insurance status unknown Other	52 (1.0%)	23 (0.9%)	29 (1.1%)	
Insurance status unknown government				
Insurance status unknown Private insurance	1,924 (35.4%)	954 (35.1%)	971 (35.7%)	
Patient residence Metropolitan	4,894 (90.1%)	2,442 (89.9%)	2,452 (90.3%)	
Patient residence Rural	48 (0.9%)	21 (0.8%)	27 (1.0%)	0.5233
Patient residence Urban	488 (9.0%)	252 (9.3%)	236 (8.7%)	
Median household income (US$)				0.0746
<36,000	451 (8.3%)	214 (7.9%)	237 (8.7%)	
36,000–47,999	773 (14.2%)	394 (14.5%)	379 (14.0%)	
48,000–62,999	1,223 (22.5%)	647 (23.8%)	576 (21.2%)	
63,000+	2,983 (54.9%)	1,460 (53.8%)	1,523 (56.1%)	
Charlson–Deyo comorbidity score 0	4,783 (88.1%)	2,417 (89.0%)	2,366 (87.2%)	
Charlson–Deyo comorbidity score 1	555 (10.2%)	247 (9.1%)	308 (11.3%)	0.0155
Charlson–Deyo comorbidity score 2	92 (1.7%)	51 (1.9%)	41 (1.5%)	
Facility type				0.0026
Academic/research program	2,660 (49.0%)	1,269 (46.7%)	1,391 (51.2%)	
Community cancer program	55 (1.0%)	27 (1.0%)	28 (1.0%)	
Comprehensive community program	2,291 (42.2%)	1,214 (44.7%)	1,077 (39.7%)	
Integrated network cancer program	424 (7.8%)	205 (7.6%)	219 (8.1%)	
Year of diagnosis				0.5820
2004–2009	2,266 (41.7%)	1,123 (41.4%)	1,143 (42.1%)	
2010–2013	3,164 (58.3%)	1,592 (58.6%)	1,572 (57.9%)	
Tumor clinical stage				0.8034
Other	52 (1.0%)	24 (0.9%)	28 (1.0%)	
T1	4,333 (79.8%)	2,180 (80.3%)	2,153 (79.3%)	
T2	1,027 (18.9%)	502 (18.5%)	525 (19.3%)	
T3	18 (0.3%)	9 (0.3%)	9 (0.3%)	
Prostate-specific antigen <10	4,455 (82.0%)	268 (9.9%)	289 (10.6%)	0.2692
Prostate-specific antigen 10-20	557 (10.3%)	2,250 (82.9%)	2,206 (81.2%)	
Prostate-specific antigen >20	418 (7.7%)	197 (7.3%)	221 (8.1%)	

(Continued)
Among patients with GS > 7, PSM resulted in a matched sample of 274 (137 in each group). Again, the groups were well matched and differences between treatment groups (IMRT vs SBRT) resulted in a non-significant log-rank \(p \)-value (\(p = 0.6179 \), Figure 7).

Finally, the PSM analysis of patients with GS = 7 resulted in a matched sample of 2,194 (1,097 in each group). The groups were well matched and differences between treatment groups (IMRT vs SBRT) resulted in a non-significant log-rank \(p \)-value (\(p = 0.6789 \), Figure 8).

DISCUSSION

No significant difference in survival between SBRT and IMRT for localized prostate cancer was found utilizing the NCDB with PSM matching at 8 years. In addition, we found no significant difference in OS between the two treatment modalities in matching high-risk subpopulations of GS = 7 or GS > 7 or PSA > 10. As expected, differences in OS by patient and clinical characteristics were observed among men with older age, higher comorbidity score, higher GS, and higher PSA.

Patient demographics and treatment characteristics in both treatment groups showed some statistically significant differences that were not controlled by PSM. These differences include two variables that significantly impacted survival in this study: the Charlson–Deyo comorbidity score and GS. When comparing comorbidity scores, although not necessarily clinically significant, there is an increased proportion of “healthy” patients (comorbidity score = 0) in the IMRT group vs the SBRT group (89.0 vs 91.1%, respectively). In addition, the SBRT group has a higher proportion of patients with comorbidity score = 1 (11.3 vs 9.1%, respectively). These results could potentially add bias against the SBRT treatment group, which appears to have worse comorbidity scores. The differences seen in GS distribution could also potentially bias against SBRT, with a greater proportion of GS = 7 (40.4 vs 36.5%) and a lower proportion of GS = 6 (53.9% vs 57.4%).

The strength of the current study is the large number of patients allowing for 8-year survival estimates by known risk factors for prostate cancer as well as other demographic and treatment factors not normally evaluated in single institutional or randomized trials. This database is homogeneous with regard to treatment technique with only men treated to the prostate with IMRT or SBRT analyzed. The database is homogeneous with regard to dose with stratification by low-, intermediate-, and high- dose groups for matching. Patients with no follow-up or outliers with regard to dose were excluded.

A weakness of this study is that survival is the only outcome available—specifically, there is no biochemical or toxicity information. With the 2017 NCCN risk stratification, however, survival is the most important outcome parameter with treatment efficiency.
Table 2: Estimated KM overall survival at 8 years for all variables.

Variable	Matched sample (N = 5,430)	Whole sample (N = 33,638)		
	% survived at 8 years	Log-rank p-value	% survived at 8 years	Log-rank p-value
Treatment	77.23	0.6483	75.50	0.0056
IMRT	79.38	0.8973	79.38	0.8973
SBRT	<0.0001	87.42	<0.0001	87.42
Age	<55	98.60	87.42	<0.0001
	55–59	79.63	85.85	0.8973
	60–64	93.47	84.44	<0.0001
	65–69	81.65	80.26	<0.0001
	70–74	78.35	76.24	<0.0001
	75–90	59.77	63.73	<0.0001
Race	Black	83.99	75.96	<0.0001
	Other	71.87	79.84	<0.0001
	Unknown	100.00	84.05	0.0003
	White	77.60	75.38	0.0003
Insurance status	Insurance status unknown	78.28	77.01	<0.0001
	Medicaid	74.41	69.54	<0.0001
	Medicare	74.41	72.21	<0.0001
	Not insured	86.60	76.88	<0.0001
	Other government	89.84	77.71	<0.0001
	Private insurance	84.80	83.35	<0.0001
Patient residence	Metropolitan	79.45	76.14	<0.0001
	Rural	61.00	69.61	<0.0001
	Urban	63.89	73.41	<0.0001
Median household income (US$)	<38,000	78.13	72.58	<0.0001
	38,000–47,999	63.15	73.25	<0.0001
	48,000–62,999	81.35	75.64	<0.0001
	63,000+	80.88	78.48	<0.0001
Charlson–Deyo comorbidity score	0	79.32	77.22	<0.0001
	1	73.73	64.39	<0.0001
	2	33.20	53.74	<0.0001
Facility type	Academic/research program	75.94	77.74	<0.0001
	Community cancer program	67.70	72.41	<0.0001
	Comprehensive community program	80.36	74.75	<0.0001
	Integrated network cancer program	75.57	73.35	<0.0001
Year of diagnosis	2004–2009	78.69	75.86	<0.0001
	2010–2015	0.0210	75.86	0.0118
Tumor clinical stage	Other	90.44	76.45	<0.0001
	T1	78.69	77.15	<0.0001
	T2	74.57	73.28	<0.0001
	T3	80.82	65.30	<0.0001
Prostate-specific antigen	<10	78.65	77.69	<0.0001
	10–20	72.72	69.27	<0.0001
	>20	77.61	70.62	<0.0001

(Continued)
Several trials will address the remaining questions regarding biochemical, toxicity, and survival outcomes for extreme hypofractionation. RTOG 0938, an equivalency study of low-risk prostate cancer, randomized extreme hypofractionation 36.25 Gy in 5 fractions to moderate hypofractionation of 51.6 Gy in 12 fractions. The study was closed February 2014 with 255 patients
accrued with quality of life at 1 year the primary outcome. It was recently published that both the 5 fraction and 12 fraction regimens were well tolerated (26). A recent dose-escalation trial for prostate cancer treated with SBRT has also shown acceptable toxicities up to 47.5 Gy over 2.5 weeks (27). Three randomized trials await completion comparing conventional fractionation or moderate hypofractionation to extreme hypofractionation (28–30).

The Technology Assessment produced by the Agency for Healthcare Research and Quality, “Comparative Evaluation of radiation treatments for clinically localized prostate cancer: an update,” analyzed 60 high-quality studies including 9 RCTs, and determined that there is insufficient evidence to support either SBRT vs IMRT, noting that there was no high-quality study comparing SBRT to any other radiation modality. The Institute of Medicine has also included prostate cancer comparative
effectiveness research in the “top quartile” group for priority (31). This NCDB PSM analysis for clinically localized prostate cancer compares these two radiation treatment modalities with a large sample size and provides evidence to suggest no difference in OS through 8 years.

CONCLUSION

In a PSM analysis of the NCDB, no difference in OS was observed when comparing IMRT to SBRT in the treatment of localized prostate cancer. Subset analyses of intermediate- and high-risk patients (Gleason score \(\geq 7 \) or \(\geq 7 \) or PSA \(> 10 \)) confirmed no observed difference in OS by treatment within these populations. We await randomized data to confirm these survival findings.

REFERENCES

1. Alicikus ZA, Yamada Y, Zhang Z, Pei X, Hunt M, Kollmeier M, et al. Ten-year outcomes of high-dose, intensity-modulated radiotherapy for localized prostate cancer. Cancer (2011) 117:1429–37. doi:10.1002/cncr.25467
2. King CR, Collins S, Fuller D, Wang PC, Kupelian P, Steinberg M, et al. Health-related quality of life after stereotactic body radiation therapy for localized prostate cancer: results from a multi-institutional consortium of prospective trials. Int J Radiat Oncol Biol Phys (2013) 87:939–45. doi:10.1016/j.ijrobp.2013.08.019
3. Katz AJ, Kang J. Stereotactic body radiotherapy as treatment for organ confined low and intermediate risk prostate carcinoma, an eight year study. Radiat Oncol (2014) 4:1–6. doi:10.1186/1748-717X-9-1
4. Katz AJ, Kang J. Stereotactic body radiation therapy for low-, intermediate- and high-risk prostate cancer: disease control and quality of life at 9 years. J Clin Oncol (2016) 34(Suppl 25):20. doi:10.1200/jco.2016.34.2_suppl.20
5. King CR, Freeman D, Kaplan I, Fuller D, Bolzicco G, Collins S, et al. Stereotactic body radiotherapy for localized prostate cancer: pooled analysis from a multi-institutional consortium of prospective phase II trials. Radiother Oncol (2013) 109:217–21. doi:10.1016/j.radonc.2013.08.030
6. Rtog. Radiation Therapy Oncology Group (RTOG) Protocol #0938: A Randomized Phase II Trial of Hypofractionated Radiotherapy for Favorable Risk Prostate Cancer-RTOG CCOP Study. Closed. (2014).
7. Deyo RA, Cherkin DC, Ciol MA. Adapting a clinical comorbidity index for use with ICD-9-CM administrative databases. J Clin Epidemiol (1992) 45:613–9. doi:10.1016/0895-4356(92)90133-8
8. Jagsi R, Bekelman JE, Chen A, Chen RC, Hoffman K, Tina Shih YC, et al. Considerations for observational research using large data sets in radiation oncology. Int J Radiat Oncol Biol Phys (2014) 90:11–24. doi:10.1016/j.ijrobp.2014.05.013
9. Bilimoria KY, Bentrem DJ, Stewart AK, Winchester DP, Ko CY. Comparison of commission on cancer-approved and -nonapproved hospitals in the United States: implications for studies that use the national cancer data base. J Clin Oncol (2009) 27:4177–81. doi:10.1200/JCO.2008.21.7018

ETHICS STATEMENT

Ethics statements were placed in the body of Section “Materials and Methods” in the manuscript.

AUTHOR CONTRIBUTIONS

All authors contributed to the conception and design, analysis, interpretation of data, drafting of the abstract, and its revision for important intellectual comment.

FUNDING

We kindly thank the Radiosurgical Research Institute for providing us the necessary funding through a Research Grant for statistical support.
10. Al-Mamgani A, van Putten WL, Heemskerken WD, van Leenders GJ, Slot A, Diehlart MF, et al. Update of Dutch multicenter dose-escalation trial of radiotherapy for localized prostate cancer. *Int J Radiat Oncol Biol Phys* (2008) 72:980–8. doi:10.1016/j.ijrobp.2008.02.073

11. Zietman AL, Bae K, Slater JD, Shipley WU, Efstatiosu JA, Coen JJ, et al. Randomized trial comparing conventional-dose with high-dose conformal radiation therapy in early-stage adenocarcinoma of the prostate: long-term results from proton radiation oncology group/American College of Radiology. *J Clin Oncol* (2010) 28:1106–11. doi:10.1200/JCO.2009.25.845

12. Martinez AA, Gonzalez J, Ye H, Ghilezan M, Shetty S, Kernen K, et al. Dose escalation improves cancer-related events at 10 years for intermediate- and high-risk prostate cancer patients treated with hypofractionated high-dose-rate boost and external beam radiotherapy. *Int J Radiat Oncol Biol Phys* (2011) 79:363–70. doi:10.1016/j.ijrobp.2009.10.035

13. Kuban DA, Tucher SL, Dong L, Starkschall G, Huang EH, Cheung MR, et al. Long-term results of the M. D. Anderson randomized dose-escalation trial for prostate cancer. *Int J Radiat Oncol Biol Phys* (2008) 70:67–74. doi:10.1016/j.ijrobp.2007.06.054

14. Wolff RE, Ryder S, Bossi A, Briganti A, Crook J, Henry, A, et al. A systematic review of randomised controlled trials of radiotherapy for localised prostate cancer. *J Cancer* (2015). 51:2345–67. doi:10.1016/j.jca.2015.07.019

15. Lukka H, Hayter C, Warde P, Julian J, Gospodarowicz M, et al. A randomized trial comparing two fractionation schedules for patients with localized prostate cancer. *Int J Radiat Oncol Biol Phys* (2003) 57:S126. doi:10.1016/S0360-3016(03)00827-7

16. Yeoh EE, Botten RJ, Butters J, Di Matteo AC, Holloway RH, Fowler J. Hypofractionation versus conventionally fractionated radiotherapy for prostate carcinoma: final results of phase III randomized trial. *Int J Radiat Oncol Biol Phys* (2011) 81:1271–8. doi:10.1016/j.ijrobp.2010.07.017

17. Pollack A, Walker G, Horwitz EM, Price R, Feigenberg S, Konaki AA, et al. Randomized trial of hypofractionated external-beam radiotherapy for prostate cancer. *J Clin Oncol* (2013) 31:1386–8. doi:10.1200/JCO.2013.10.1972

18. Arcangeli S, Strigari L, Gomellini S, Saracino B, Petrongari MG, Pinnarò P, et al. Updated results and patterns of failure in a randomized hypofractionation trial for high-risk prostate cancer. *Int J Radiat Oncol Biol Phys* (2012) 84:1172–8. doi:10.1016/j.ijrobp.2012.02.049

19. Deearley JD, Syndikus I, Mossop H, Birtle A, Bloomfield D, Cruickshank J, et al. 8LBA 5 year outcomes of a phase III randomised trial of conventional or hypofractionated high dose intensity modulated radiotherapy for prostate cancer (CRUK/06/016): report from the CHHiP trial investigators group. *Eur J Cancer* (2015) 51:S712. doi:10.1016/S0959-8049(15)31932-3

20. Incrocio L, Wortel RC, Alemayehu WG, Aluwini S, Schimmel E, Krol S, et al. Hypofractionated versus conventionally fractionated radiotherapy for patients with localised prostate cancer (HYPRO): final efficacy results from a randomised, multicentre, open-label, phase 3 trial. *Lancet* (2016) 17(8):1061–9. doi:10.1016/S1470-2045(16)30070-5

21. Aluwini S, Pos F, Schimmel E, Krol K, van der Toorn P, de Jager H, et al. Hypofractionated versus conventionally fractionated radiotherapy for patients with prostate cancer (HYPRO): late toxicity results from a randomised, non-inferiority, phase 3 trial. *Lancet Oncol* (2016) 17(4):464–74. doi:10.1016/S1470-2045(15)00567-7

22. Katz AL, Kang J. Quality of life and toxicity after SBRT for organ-confined prostate cancer, a 7-year study. *Front Oncol* (2014) 4:301. doi:10.3389/fonc.2014.00301

23. Freeman D, Dickerson G, Perman M. Multi-institutional registry for prostate cancer radiosurgery: a prospective observational clinical trial. *Front Oncol* (2015) 4:369. doi:10.3389/fonc.2014.00369

24. King CR, Brooks JD, Gill H, Presti JC. Long-term outcomes from a prospective trial of stereotactic body radiotherapy for low-risk prostate cancer. *Int J Radiat Oncol Biol Phys* (2012) 82:877–82. doi:10.1016/j.ijrobp.2010.11.054

25. Davis JM, Mehlberg C, Sharma S, Danish A, Mahadevan A. The RSSearch™ registry: patterns of care and outcomes research on patients treated with stereotactic radiosurgery and stereotactic body radiotherapy. *Radiat Oncol* (2013) 8:275. doi:10.1186/1748-717X-8:275

26. Lukka H, Stephanie P, Bruner D, Bahary JP, Lawton CA, Efstatiosu JA, et al. Patient-reported outcomes in NRG oncology/RTOG 0938, a randomized phase 2 study evaluating 2 ultrahypofractionated regimens (URHs) for prostate cancer. *Int J Radiat Oncol Biol Phys* (2016) 94:2. doi:10.1016/j.ijrobp.2015.10.046

27. Kim DWN, Straka C, Cho LC, Timmerman RD. Stereotactic body radiation therapy for prostate cancer: review of experience of a multicenter phase I/II dose-escalation study. *Front Oncol* (2014) 4:319. doi:10.3389/fonc.2014.00319

28. University of Miami. Radiation Hypofractionation Via Extended Versus Accelerated Therapy (HEAT) For Prostate Cancer (HEAT). NLM Identifier: NCT01794403. (2017). Available from: https://clinicaltrials.gov/ct2/show/NCT01794403

29. Royal Marsden NHS Foundation Trust. Prostate Advances in Comparative Evidence (PACE). NLM Identifier: NCT01584258. (2017). Available from: https://clinicaltrials.gov/ct2/show/NCT01584258

30. Widmark, A. Phase III Study of HYPOfractionated RadioTherapy of Intermediate Risk Localised Prostate Cancer. (2009). doi:10.1186/ISRCTN45905321

31. Cassel C, Dickerson K, Garber A, Gottlieb G, Guest J, et al. Initial National Priorities for Comparative Effectiveness Research. (2009). Available from: http://nationalacademies.org/hmd/reports/2009/comparativeeffectivenessresearchpriorities.aspx

Conflict of Interest Statement: RL is a partial stockholder of Philadelphia Cyberknife. All authors have read and approved the manuscript. We have no financial disclosures. We are not using any copyrighted information, patient photographs, identifiers, or other protected health information in this paper. No text, text boxes, figures, or tables in this article have been previously published or owned by another party.

Copyright © 2017 Ricco, Hanlon and Lanciano. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.