I. INTRODUCTION

The occurrence of pressure-induced superconductivity (SC) in Ce-based heavy-fermion (HF) compounds has attracted a lot of attention in the field of condensed matter physics [1]. For most of such materials, SC appears in the vicinity of a magnetic quantum critical point (QCP) at \(p_c \), leading to the belief that spin fluctuations are responsible for the Cooper pairing [2]. On the other hand, Ce-valence fluctuations may also act as the pairing glue [3]. On the one hand, valence fluctuations may also act as the pairing glue [3] and the corresponding critical endpoint (CEP) at \(p_v \) can be deduced by resistivity scaling analysis [4]. It is noteworthy that the relative position between \(p_c \) and \(p_v \) may vary for different systems, probably depending on the hybridization strength \((V) \) between Ce-4f and conduction electrons [3, 5]. For example, while \(p_c \) and \(p_v \) are well separated in CeCu$_2$Si$_2$ [6] and CeCu$_2$(Si$_1$-xGe$_x$)$_2$ [7], they are very close in CeAl$_2$Si$_2$ [5].

CeRhIn$_5$ belongs to the Ce-115 family, whose structure consists of alternating CeIn$_3$ and RhIn$_2$ layers stacked along the \(c \)-axis [9]. At ambient pressure, the compound is a prototypical heavy-fermion antiferromagnet with a Néel temperature \(T_N = 3.8 \) K, although a signature of SC was reported at \(\sim 90 \) mK [10]. Under pressure, the \(T_N \) of CeRhIn$_5$ passes through a maximum and disappears at \(\sim 2 \) GPa, above which the antiferromagnetic order is rapidly suppressed as confirmed by the NQR measurement [11]. Meanwhile, SC is observed over a broad pressure range with a maximum \(T_c \) of 2.3 K at \(p_c \approx 2.5 \) GPa [8]. Although experimental signatures for the existence of a QCP are found at \(p_c \), the nature of fluctuations remains under debate [12, 13]. In particular, de Haas-van Alphen (dHvA) measurements detect an abrupt change in the Fermi surface shape across \(p_c \) [14], yet the resi-
mated from the width of the Pb superconducting transition was less than 0.05 GPa. To determine better the absolute resistivity value, pressure-dependent resistivity at 292 K was extrapolated to $p = 0$. The obtained value was corrected by the one measured at ambient condition, yielding a normalization factor for the results under pressure. Thanks to this special care, the estimated error in the absolute resistivity value is within 2%.

III. RESULTS AND DISCUSSION

Figure 1 shows the temperature dependencies of the magnetic resistivity $\rho^\text{mag} = \rho(\text{CeRhIn}_5) - \rho(\text{LaRhIn}_5)$ of CeRhIn$_5$ at pressures up to 5.63 GPa. The weak pressure variation of $\rho(\text{LaRhIn}_5)$ is taken into account following

![FIG. 1: (Color online) Logarithmic T-dependence of the magnetic resistivity of CeRhIn$_5$ along the (a) a- and (b) c-axis under pressures up to 5.63 GPa. The arrows and the dashed line are a guide to the eyes. The inset of (a) shows the a-axis data at $p = 0$. The resistivity maximum and bump are marked by T^mag_1 and T_1, respectively. The dashed line is a guide to the eyes. The inset of (b) shows the c-axis data at $p = 2.13$ GPa. The two dashed lines indicate the $-\ln T$ slope, and their intersection temperature is marked as T_2. The inset in between (a) and (b) shows the pressure dependencies of the $-\ln T$ slope below room temperature for both axes.](image)

FIG. 1: (Color online) Logarithmic T-dependence of the magnetic resistivity of CeRhIn$_5$ along the (a) a- and (b) c-axis under pressures up to 5.63 GPa. The arrows and the dashed line are a guide to the eyes. The inset of (a) shows the a-axis data at $p = 0$. The resistivity maximum and bump are marked by T^mag_1 and T_1, respectively. The dashed line is a guide to the eyes. The inset of (b) shows the c-axis data at $p = 2.13$ GPa. The two dashed lines indicate the $-\ln T$ slope, and their intersection temperature is marked as T_2. The inset in between (a) and (b) shows the pressure dependencies of the $-\ln T$ slope below room temperature for both axes.}

Ref. [13]. In general, the pressure evolution of ρ^mag is reminiscent of that observed in other Ce-based Kondo lattice compounds. At $p = 0$, ρ^{mag}_c exhibits a $-\ln T$ dependence below room temperature, reflecting incoherent Kondo scattering on excited crystal field (CF) levels [17]. Upon further cooling, a broad maximum is observed at T_{max} and a small bump is discernable at a lower temperature T_1, which is defined empirically as $3/4$ of the temperature at which the second derivative of ρ^mag reaches a maximum. With increasing pressure, T_1 decreases modestly and becomes no longer resolvable above 1.57 GPa, while T_{max} first decreases then increases. In addition, a signature of magnetic ordering is observed below 1.78 GPa, while a superconducting transition occurs between 1.03 and 3.80 GPa.

As can be seen in Fig. 1(b), ρ^{mag}_c behaves similarly to ρ^{mag}_a, except that the former displays two different $-\ln T$ dependencies above T_{max}. This new observation is likely due to the relatively small value of the first CF splitting energy in comparison with other Ce-based HF systems [18]. Extrapolations of these $-\ln T$ behaviors intersect at the temperature T_2 [inset of Fig. 1(b)], which increases with pressure. Nevertheless, the $-\ln T$ slope k near room temperature for both axes grows by nearly the same factor of 3 up to 5.63 GPa, which signifies a strong enhancement of the Kondo coupling by pressure Ref. [17].

Figure 2 shows the anisotropy of the magnetic resistivity $\gamma_{\text{mag}} = \rho^{\text{mag}}_c / \rho^{\text{mag}}_a$ plotted as a function of temperature under pressures up to 5.63 GPa. At $p = 0$, γ_{mag} decreases from ~ 2.2 to < 1 with decreasing temperature and shows an upturn below T_N. This upturn, whose origin remain unclear at present, was not observed in the previous study [19]. Under pressure, the evolution

![FIG. 2: (Color online) Temperature dependencies of the magnetic resistivity anisotropy under pressures up to 5.63 GPa. The inset shows a zoom of the data below 10 K at selected pressures. The dashed line is an extrapolation of the curve at $p \approx p_c$ to zero temperature.](image)

FIG. 2: (Color online) Temperature dependencies of the magnetic resistivity anisotropy under pressures up to 5.63 GPa. The inset shows a zoom of the data below 10 K at selected pressures. The dashed line is an extrapolation of the curve at $p \approx p_c$ to zero temperature.
of γ_{mag} is very similar to that of Ref. [13], and exhibits qualitative difference at temperatures above and below ~ 120 K. For $T > 120$ K, γ_{mag} is weakly temperature and pressure dependent, and hence is likely dominated by the crystalline anisotropy.

By contrast, below ~ 120 K, γ_{mag} increases strongly with increasing pressure and decreasing temperature. Consequently, the temperature dependence of γ_{mag} changes its curvature from downward to upward. At 2 K, the γ_{mag} value grows by a factor of 3 throughout the investigated pressure range [inset of Fig.2]. This feature can likely be understood by taking into account the anisotropic hybridization between Ce-4f electrons and conduction electrons [21]. Following such an interpretation, the hybridization strength grows much faster with pressure along the c-axis than along the a-axis. Nevertheless, at $p = 2.57$ GPa, the γ_{mag} value extrapolated to 0 K is very close to 1, pointing to isotropic magnetic scattering around p_c [13].

We now turn the attention to the low-temperature resistivity. Specifically, the ρ_a and ρ_c data are fitted by the power law $\rho = \rho_0 + A T^n$ [21], where ρ_0 is the residual resistivity, A the coefficient, and n the temperature exponent. As shown in Fig. 3, the resulting parameters display a similar pressure dependence along different axes. At $p \leq 1.57$ GPa, n is as large as ~ 5, indicating dominant electron-magnon scattering due to the magnetic ordering. With increasing pressure above 1.57 GPa, since the magnetic ordering is rapidly suppressed, n decreases steeply and A increases accordingly. Around p_c, n shows a minimum of ~ 0.6 while A is enhanced by ~ 3 orders of magnitude. This non-Fermi liquid behavior is in good agreement with the previous results [13], pointing to the presence of quantum critical fluctuations. Although ρ_0 obtained from the fitting is negative and hence unphysical between 2.57 and 3.80 GPa, a value near p_c can be estimated from Ref. [12], in which SC can be completely suppressed by applying high magnetic fields. When plotted in Fig. 3(c), this evidences an enhanced scattering around p_c, as expected [22]. At pressures above ~ 4 GPa, n becomes not far from the Fermi liquid value $n = 2$. In this pressure range, the drop in A by more than one order of magnitude up to 5.63 GPa is reminiscent of the case of CeCu$_2$Si$_2$ above p_c, and reflects a drastic enhancement of the 4f electron interactions [3].

![FIG. 3: (Color online) (a), (b) and (c) show the pressure dependencies of the coefficient A, temperature exponent n, and residual resistivity ρ_0, respectively, obtained by fitting with the power law $\rho(T) = \rho_0 + AT^n$ to the a- (closed symbol) and c- (open symbol) resistivity data at low temperature. Note that the high-field value at 2.57 GPa in panel (c) is taken from Ref. [12] and assumed to be isotropic.](image)

![FIG. 4: (Color online) (a) and (b) show the isothermal $\rho^*(p) = \rho(p) - \rho_0(p)$ for the a- and c-axis at selected temperatures, respectively. The vertical solid lines mark the initial pressure of the valence crossover. The solid circles denote the 50% drop compared to the maximum ρ^* value, and the dashed lines are extrapolations of the circles to p_c. (c) Temperature dependencies of the slope χ for both axes (see text). The Curie-Weiss fitting yields $T_c \approx 18$ K and 0 K for the a- and c-axis, respectively. (d) Collapse of a-axis normalized data ρ_{norm} when plotted against h/θ, where $h = (p - p_{50\%})/p_{50\%}$ and $\theta = (T - T_c)/|T_c|$.](image)
respectively. At higher pressures, ρ decreases. For T_1, this is due to the increasing influence of the spin disorder scattering. On the other hand, the depression of T_{max} is ascribed to the rapid growing of the resistivity magnitude at T_1 as the Kondo temperature T_K rises. In this pressure range, T_{max} is primarily governed by the CF splitting Δ_{CF}. But at pressures above p_c, since the resistivity contribution at T_1 starts to dominate, the T_{max} line merges with that of T_1 and becomes an indication of T_K.

Strikingly, for both directions, the T_N and COV lines terminate at almost the same point on the horizontal axis. In other words, the magnetic QCP at p_c nearly coincides with the valence CEP at p_v, as already noted. Here we emphasize that the pressure evolution of T_N is in excellent agreement with a previous study [12], although a wider superconducting window is observed in our case. Actually, we have also performed measurements of the a-axis resistivity under pressure on a crystal from Thompson’s group, and found identical results as those presented in this paper and notably $p_c \approx p_v$. Hence this coincidence appears to be an intrinsic property of CeRhIn$_5$.

The above results are summarized in the $p-T$ phase diagrams (PD) shown in Fig. 5. Overall, the PDs look very similar along the two crystallographic directions. The normal-state behavior, characterized by the T_N, T_1, T_{max} and valence COV lines, is qualitatively similar to other Ce-based Kondo lattices [3]. At low pressure, as always observed, both T_{max} and T_1 decreases. For T_1, this is due to the increasing influence of the spin disorder scattering. On the other hand, the depression of T_{max} is ascribed to the rapid growing of the resistivity magnitude at T_1 as the Kondo temperature T_K rises. In this pressure range, T_{max} is primarily governed by the CF splitting Δ_{CF}. But at pressures above p_v, since the resistivity contribution at T_1 starts to dominate, the T_{max} line merges with that of T_1 and becomes an indication of T_K.

The existence of such a CEP can be further corroborated by a scaling analysis outlined in Ref. [4]. Following the procedure, we define $p_{50\%}$ as the pressure corresponding to 50% of the resistivity drop compared to the value at 1.78(2.32) GPa for the $a(c)$-axis data, and ρ_{norm} as $\rho_{\text{norm}} = [\rho^* - \rho^*(p_{50\%})]/\rho^*(p_{50\%})$. As can be seen in Fig. 4(c), the slope $\chi = |d\rho_{\text{norm}}/dp|$ at $p_{50\%}$ increases with decreasing temperature, indicating that the ρ_{norm} decrease is getting steeper on cooling. Assuming $\chi \propto (T - T_{\text{c}})^{-1}$, we obtain $T_{\text{c}} \approx -8$ K and 0 K for the a- and c-axis, respectively. The scaling analysis consists in plotting ρ_{norm} against h/θ, where $h = (p - p_{50\%})/p_{50\%}$ and $\theta = (T - T_{\text{c}})/|T_{\text{c}}|$ are the generalized distance from the CEP. It turns out that all the a-axis ρ_{norm} isothermals below 12 K collapse on a single scaling curve [23]. This provides strong evidence for the existence of a CEP in the $p-T$ plane of CeRhIn$_5$. The fact that T_{c} is slightly negative for the a-axis means that a crossover (COV) rather than a first-order transition occurs. In this respect, the temperature dependence of $p_{50\%}$ defines the valence COV line (see below), and its extrapolation to zero temperature yields $p_v(\approx p_{\text{c}}) = 2.6 \pm 0.2$ GPa for both cases. Notice that this p_v is determined from the results at much higher temperature than T_N, yet it is nearly identical to p_c.

The above results are summarized in the $p-T$ phase diagrams (PD) shown in Fig. 5. Overall, the PDs look very similar along the two crystallographic directions. The normal-state behavior, characterized by the T_N, T_1, T_{max} and valence COV lines, is qualitatively similar to other Ce-based Kondo lattices [3]. At low pressure, as always observed, both T_{max} and T_1 decreases. For T_1, this is due to the increasing influence of the spin disorder scattering. On the other hand, the depression of T_{max} is ascribed to the rapid growing of the resistivity magnitude at T_1 as the Kondo temperature T_K rises. In this pressure range, T_{max} is primarily governed by the CF splitting Δ_{CF}. But at pressures above p_v, since the resistivity contribution at T_1 starts to dominate, the T_{max} line merges with that of T_1 and becomes an indication of T_K.

The above results are summarized in the $p-T$ phase diagrams (PD) shown in Fig. 5. Overall, the PDs look very similar along the two crystallographic directions. The normal-state behavior, characterized by the T_N, T_1, T_{max} and valence COV lines, is qualitatively similar to other Ce-based Kondo lattices [3]. At low pressure, as always observed, both T_{max} and T_1 decreases. For T_1, this is due to the increasing influence of the spin disorder scattering. On the other hand, the depression of T_{max} is ascribed to the rapid growing of the resistivity magnitude at T_1 as the Kondo temperature T_K rises. In this pressure range, T_{max} is primarily governed by the CF splitting Δ_{CF}. But at pressures above p_v, since the resistivity contribution at T_1 starts to dominate, the T_{max} line merges with that of T_1 and becomes an indication of T_K.

The above results are summarized in the $p-T$ phase diagrams (PD) shown in Fig. 5. Overall, the PDs look very similar along the two crystallographic directions. The normal-state behavior, characterized by the T_N, T_1, T_{max} and valence COV lines, is qualitatively similar to other Ce-based Kondo lattices [3]. At low pressure, as always observed, both T_{max} and T_1 decreases. For T_1, this is due to the increasing influence of the spin disorder scattering. On the other hand, the depression of T_{max} is ascribed to the rapid growing of the resistivity magnitude at T_1 as the Kondo temperature T_K rises. In this pressure range, T_{max} is primarily governed by the CF splitting Δ_{CF}. But at pressures above p_v, since the resistivity contribution at T_1 starts to dominate, the T_{max} line merges with that of T_1 and becomes an indication of T_K.

The above results are summarized in the $p-T$ phase diagrams (PD) shown in Fig. 5. Overall, the PDs look very similar along the two crystallographic directions. The normal-state behavior, characterized by the T_N, T_1, T_{max} and valence COV lines, is qualitatively similar to other Ce-based Kondo lattices [3]. At low pressure, as always observed, both T_{max} and T_1 decreases. For T_1, this is due to the increasing influence of the spin disorder scattering. On the other hand, the depression of T_{max} is ascribed to the rapid growing of the resistivity magnitude at T_1 as the Kondo temperature T_K rises. In this pressure range, T_{max} is primarily governed by the CF splitting Δ_{CF}. But at pressures above p_v, since the resistivity contribution at T_1 starts to dominate, the T_{max} line merges with that of T_1 and becomes an indication of T_K.

The above results are summarized in the $p-T$ phase diagrams (PD) shown in Fig. 5. Overall, the PDs look very similar along the two crystallographic directions. The normal-state behavior, characterized by the T_N, T_1, T_{max} and valence COV lines, is qualitatively similar to other Ce-based Kondo lattices [3]. At low pressure, as always observed, both T_{max} and T_1 decreases. For T_1, this is due to the increasing influence of the spin disorder scattering. On the other hand, the depression of T_{max} is ascribed to the rapid growing of the resistivity magnitude at T_1 as the Kondo temperature T_K rises. In this pressure range, T_{max} is primarily governed by the CF splitting Δ_{CF}. But at pressures above p_v, since the resistivity contribution at T_1 starts to dominate, the T_{max} line merges with that of T_1 and becomes an indication of T_K.

![FIG. 5: (Color online) Pressure-temperature phase diagram of CeRhIn$_5$ along (a) a- and (b) c-axis, including the characteristic temperatures T_1, T_2 and T_{max}. For comparison, data from Ref. [12] are also included in (a).](image_url)

To gain more insight, we plot the low-temperature isothermal resistivity $\rho^*(p) = \rho(p) - \rho_0(p)$ at selected temperatures in Fig. 4(a) and (b). A maximum is observed around 1.78 and 2.32 GPa for the a- and c-axis, respectively. At higher pressures, ρ^* decreases steeply without saturation, even in the paramagnetic state. This is also similar to that observed in CeCu$_2$Si$_2$ above 4 GPa, and, together with the rapid collapse of the A coefficient shown above, provides strong evidence for the proximity to a valence CEP located at $(p_{\text{cr}}, T_{\text{cr}})$ in the $p-T$ plane of CeRhIn$_5$ [4].
explains the anomalous properties observed in CeRhIn$_5$ by the dHvA measurement, including the Fermi surface change and the cyclotron mass enhancement 14.

Another salient feature of Fig. 5 is that although T_N and T_c are isotropic, the COV line is sharper along the a-axis than along the c-axis. Naively, this is expected since the Ce-Ce distance is the shortest along the a-axis. Hence the nucleation of valence COV develops more rapidly in this direction. A better understanding of this issue may require further studies of the valence COV line by other probes such as NQR 24,26, as well as elaborated theoretical treatments in the future.

Finally, we present in Fig. 6 a comparison between in-plane $p-T$ diagrams of CeRhIn$_5$ and CeCu$_2$Si$_2$. Compared with the T_1^{max} and T_2^{max} lines of CeCu$_2$Si$_2$, the T_1^{max} and T_1 lines of CeRhIn$_5$ are systematically lower, which is likely due to the smaller value of the first CF splitting energy 13. Nevertheless, in both cases, the two lines merge in the vicinity of p_v. At higher pressures, the T_c and COV lines as a function of the distance from p_v are nearly identical for these two compounds. This is quite remarkable considering their different crystal structures, and hence points to a common superconducting pairing mechanism. Note that, just below p_v, magnetic ordering is present in CeRhIn$_5$, but is absent in CeCu$_2$Si$_2$. It is thus tempting to speculate that, around the optimal pressure for superconductivity of CeRhIn$_5$, valence fluctuations play a more important role than spin fluctuations in the Cooper pairing, although both of them are expected to be present.

IV. CONCLUSION

In summary, we have studied the a- and c-axis resistivity of CeRhIn$_5$ under pressure up to 5.63 GPa. A careful data analysis enables us to add the valence crossover line and to locate the CEP at 2.6 GPa and slightly negative (zero) temperature in the $p-T$ plane. For the a-axis, a resistivity scaling is observed, and the updated phase diagram in the COV regime is very similar to that of CeCu$_2$Si$_2$. Our results provide first experimental evidence that the magnetic QCP and valence CEP coincide with each other in CeRhIn$_5$, which highlights the importance of Ce-4f electron delocalization in understanding the pressure evolution of magnetism and superconductivity in this material.

ACKNOWLEDGEMENT

We acknowledge J. Flouquet for enlightening discussions, and M. Lopez and S. Müller for technical support. S.W. is supported by the Grant-in-Aid for Scientific Research (No. 24503778, 15K05177, and 16H10177) from the Japan Society for the Promotion of Science (JSPS), and by JASRI (No. 0046 in 2012B, 2013A, 2013B, 2014A, 2014B, and 2015A). K.M. is supported by the Grant from JSPS (No. 17K05555).

* Electronic address: zhi.ren@wias.org.cn

[1] G. Knebel, D. Aoki, and J. Flouquet, C.R. Phys. 12, 542 (2011).
[2] N. D. Mathur, F. M. Grosche, S. R. Julian, I. R. Walker, D. M. Freye, R. K. W. Haselwimmer, and G. G. Lonzarich, Nature (London) 394, 39 (1998).
[3] A. T. Holmes, D. Jaccard, and K. Miyake, Phys. Rev. B 69, 024508 (2004).
[4] G. Seyfarth, A.-S. Ruetschi, K. Sengupta, A. Georges, D. Jaccard, S. Watanabe, and K. Miyake, Phys. Rev. B 85, 205105 (2012).
[5] S. Watanabe and K. Miyake, J. Phys.: Condens. Matter 23, 094217 (2011).
[6] K. Miyake and S. Watanabe, J. Phys. Soc. Jpn. 83, 061006 (2014).
[7] H. Q. Yuan, F. M. Grosche, M. Deppe, C. Geibel, G. Sparn, and F. Steglich, Science 302, 2104 (2003).
[8] Z. Ren, L. V. Pourovskii, G. Girit, G. Lapertot, A. Georges, and D. Jaccard, Phys. Rev. X 4, 031055 (2014).
[9] H. Hegger, C. Petrovic, E. G. Moshopoulou, M. F. Hundley, J. L. Sarrao, Z. Fisk, and J. D. Thompson, Phys. Rev. Lett. 84, 4986 (2000).
[10] G. F. Chen, K. Matsubayashi, S. Ban, K. Deguchi, and N. K. Sato, Phys. Rev. Lett. 97, 017005 (2006).
[11] M. Yashima, S. Kawasaki, H. Mukuda, Y. Kitaoka, H. Shishido, R. Settai, and Y. Onuki, Phys. Rev. B 76, 020509(R) (2007).
[12] G. Knebel, D. Aoki, J. P. Brison, and J. Flouquet, J. Phys. Soc. Jpn. 77, 114704 (2008).
[13] T. Park, V. A. Sidorov, F. Ronning, J.-X. Zhu, Y. Tokiwa, H. Lee, E. D. Bauer, R. Movshovich, J. L. Sarrao, and J. D. Thompson, Nature (London) 456, 366 (2008).
[14] H. Shishido, R. Settai, H. Harima, and Y. Onuki, J. Phys. Soc. Jpn. 74, 1103 (2005).
[15] S. Watanabe and K. Miyake, J. Phys. Soc. Jpn. 79, 033707 (2010).
[16] A.-S. Ruetschi and D. Jaccard, Rev. Sci. Instrum. 78, 123901 (2007).
[17] B. Cornut and B. Coqblin, Phys. Rev. B 5, 4541 (1972).
[18] A. D. Christianson, J. M. Lawrence, P. G. Pagliuso, N. O. Moreno, J. L. Sarrao, J. D. Thompson, P. S. Riseborough, S. Kern, E. A. Goremychkin, and A. H. Lacerda, Phys. Rev. B 66, 193102 (2002).
[19] A. D. Christianson, A. H. Lacerda, M. F. Hundley, P. G. Pagliuso, and J. L. Sarrao, Phys. Rev. B 66, 054410 (2002).
[20] Y. Matsumoto, K. Kuga, T. Tomita, Y. Karaki, and S. Nakatsuji, Phys. Rev. B 84, 125126 (2011).
[21] The temperature windows for the fitting are 1.2 K < T < T_N at p = 0, T_e < T < T_N between 1.03 and 1.78 GPa, T_e < T < 6 K between 1.94 and 3.80 GPa, and 1.2 K < T < 6 K above 4.02 GPa. In addition,
[22] K. Miyake and O. Narikiyo, J. Phys. Soc. Jpn. 71, 867 (2002).
[23] Note that, for the c-axis case, θ tends to ∞ since T_{cr} ∼ 0. Hence h/θ is not physically meaningful.
[24] M. Yashima, N. Tagami, S. Taguchi, T. Unemori, K. Uematsu, H. Mukuda, Y. Kitaoka, Y. Ota, F. Honda, R. Settai, and Y. Onuki, Phys. Rev. Lett. 109, 117001 (2012).
[25] P. G. Pagliuso, R. Movshovich, A. D. Bianchi, M. Nicklas, N. O. Moreno, J. D. Thompson, M. F. Hundley, J. L. Sarrao, and Z. Fisk, Physica B 312-313, 129 (2002).
[26] T. C. Kobayashi, K. Fujisawa, K. Takeda, H. Harima, Y. Ikeda, T. Adachi, Y. Ohishi, C. Geibel, and F. Steglich, J. Phys. Soc. Jpn. 82, 114701 (2013).