trans-Bis(4-aminopyridine-κN)bis(quinoxaline-2,3-dithiolato-κ²S,S')platinum(IV) dimethyl sulfoxide monosolvate

Jiandu Hu, Volodymyr V. Nesterov and Bradley W. Smucker*

*Austin College, 900 N Grand, Sherman, TX 75090, USA, and bDepartment of Chemistry, University of North Texas, 1508 W. Mulberry, Denton, TX, 76201, USA. *Correspondence e-mail: bsmucker@austincollege.edu

In the structure of the title solvated complex, [Pt(C₈H₄N₂S₂)(C₅H₆N₂)₂] C₃H₄OS or trans-[Pt(4-ap)₂(qdt)₂] dmso (4-ap = 4-aminopyridyl, C₅H₆N₂; qdt = quinoxaline-2,3-dithiolate, C₈H₄N₂S₂; dmso = dimethyl sulfoxide, C₂H₆OS) the centrosymmetric complex exhibits Pt—S distances in agreement with other PtIV—S bond lengths found in platinum(IV) dithiolene complexes. The qdt ligands have intermolecular interactions with an amine hydrogen atom on a 4-ap ligand (hydrogen bonding) and have sandwich π–π interactions with a neighboring qdt ligand.

Structure description

The title trans-[Pt(4-ap)₂(qdt)₂] ((4-ap = 4-aminopyridyl; qdt = quinoxaline-2,3-dithiolate) complex is located about an inversion center and has the central PtIV atom in a pseudo-octahedral N₂S₄ coordination environment (Fig. 1). In contrast to the shorter PtII—S distances in salts of [Pt(mnt)₂]²⁻ (mnt = maleonitriledithiolate), such as 2.295 (2) and 2.2958 (19) Å with the tetraphenylphosphine cation (Begum et al., 2014) or 2.290 (2) and 2.282 (2) Å with the tetrabutylammonium cation (Güntner et al., 1989), the PtIV—S distances of the title coordination compound are 2.3514 (11) Å (Pt₁—S₁) and 2.3495 (11) Å (Pt₁—S₂). These distances are similar to those in other platinum(IV) complexes containing bis(dithiolene) ligands and either trans-bis(NH₃) co-ligands, with Pt—S distances of 2.3434 (8) and 2.3461 (7) Å (Siddiqui et al., 2020), or trans-bis(PMe₃) co-ligands, with a Pt—S distance of 2.3619 (8) Å (Chandrasekaran et al., 2014). The Pt1—N1 distance in the title complex is 2.063 (4) Å, which is similar to the Pt—N distance of 2.055 (2) Å in the aforementioned trans-[Pt(NH₃)₂(mnt)₂] complex (Siddiqui et al., 2020).
The chelating qdt ligands of this platinum(IV) complex are slightly canted relative to the platinum-sulfur atoms, with a 15.59 (11)° angle between the plane of all the non-H atoms of the qdt ligand versus the plane containing Pt, S1, S2, S1 (1 – x, 1 – y, –z) and S2 (1 – x, 1 – y, –z). This tilt enables sandwich packing between intermolecular qdt ligands with a distance between centroids of the two qdt rings of 3.610 Å (Fig. 2), within the range of π–π interactions (Sinnokrot et al., 2002).

The basicity of the nitrogen atom on the coordinating qdt ligand (Cummings & Eisenberg, 1995b) makes it suitable for hydrogen bonding. This is observed between the amine hydrogen H4A and the N3 (x, y + 1, z) atom on a neighboring qdt ligand, with a distance of 2.23 Å (Table 1, Fig. 2). N—H···O hydrogen bonding is observed between the complex and the O atom of the dmso solvate molecule.

Synthesis and crystallization

An orange solution of the anionic qdt ligand was prepared by combining 9.3 mg of 2,3-quinoxalinedithiol (Cummings & Eisenberg, 1995a) and 7.7 mg of NaHCO3 with 25 ml of water and heating at 333 K for 5 h. Upon cooling to room temperature, the orange solution was added, via cannula, to a Schlenk flask containing 34.3 mg of [Pt(4-ap)4](BF4)2, prepared in a similar manner to [Pt(pyz)4](BF4)2 (Derry et al., 2008), and 7.9 mg of NaHCO3. The solution was stirred for 7 d with the exclusion of light. The resulting orange–brown solid was collected via vacuum filtration in air and washed with 3 × 10 ml of water and 15 ml of diethyl ether to give 7.4 mg (28% for [Pt(4-ap)4(qdt)])]. Oxidation of platinum(II) to platinum(IV) likely occurred upon prolonged air exposure of the

Table 1

Hydrogen-bond geometry (Å, °).

	D—H···A	D—H	H···A	D···A	D—H···A
N4—H4A···N3	0.87	2.30	3.085 (7)	151	
N4—H4B···O1a	0.87	2.28	3.045 (11)	148	

Symmetry codes: (i) x, y + 1, z; (ii) x – 1, y, z.

Table 2

Experimental details.

Crystal data	Chemical formula	[Pt(C8H4N2S2)2(C5H6N2)2]− C2H6OS
M1	Crystal system, space group	Triclinic, P̅T
	Temperature (K)	200
	a, b, c (Å)	7.7410 (18), 9.8690 (2), 10.47021 (18)
	α, β, γ (°)	99.6963 (16), 102.9798 (17), 100.9394 (19)
V (Å³)	746.43 (3)	
Z	1	
Radiation type	Cu Kα	
μ (mm⁻¹)	12.39	
Crystal size (mm)	0.03 × 0.02 × 0.01	

Figure 1

The molecular structure of the title complex drawn with displacement ellipsoids at the 50% probability level. Non-labeled atoms are generated by symmetry operation –x + 1, –y + 1, –z. The disordered dmso solvate molecule is shown with only one orientation.

Figure 2

The packing of the complexes showing the hydrogen bonding between the H4A amine hydrogen atom and the N3 (x, y + 1, z) atom on a neighboring qdt ligand as well as the sandwich orientation between adjacent qdt ligands and the distance (Å) between centroids of two qdt rings. Displacement ellipsoids are drawn at the 50% probability level; the dmso solvate is omitted for clarity.
compound in solution (Geiger et al., 2001; Siddiqui et al., 2020).

Light-yellow crystals of the title compound were grown by slow diffusion of water into a dmso solution of the platinum complex.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The dmso solvent molecule is disordered about an inversion center and shows half occupancy.

Funding information

Funding for this research was provided by: National Science Foundation (grant No. 1726652 to UNT); Welch Foundation (grant No. AD-0007 to Austin College).

References

Begum, A., Tripathi, K. M. & Sarkar, S. (2014). Chem. Eur. J. 20, 16657–16661.

Chandrasekaran, P., Greene, A. F., Lillich, K., Capone, S., Mague, J. T., DeBeer, S. & Donahue, J. P. (2014). Inorg. Chem. 53, 9192–9205.

Cummings, S. D. & Eisenberg, R. (1995a). Inorg. Chem. 34, 2007–2014.

Cummings, S. D. & Eisenberg, R. (1995b). Inorg. Chem. 34, 3396–3403.

Derry, P. J., Wang, X. & Smucker, B. W. (2008). Acta Cryst. E64, m1449.

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.

Geiger, W. E., Barrière, F., LeSuer, R. J. & Trupia, S. (2001). Inorg. Chem. 40, 2472–2473.

Güntner, W., Gliemann, G., Klement, U. & Zabel, M. (1989). Inorg. Chim. Acta, 165, 51–56.

Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.

Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Rigaku Corporation, Yarnton, England.

Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.

Siddiqui, M. J., Nesterov, V. V., Steidle, M. T. & Smucker, B. W. (2020). IUCrData, 5, x200980.

Sinnokrot, M. O., Valeev, E. F. & Sherrill, C. D. (2002). J. Am. Chem. Soc. 124, 10887–10893.
full crystallographic data

IUCrData (2022). 7, x220101 [https://doi.org/10.1107/S2414314622001018]

trans-Bis(4-aminopyridine-κN)bis(quinoxaline-2,3-dithiolato-κ²S,S’)platinum(IV) dimethyl sulfoxide monosolvate

Jiandu Hu, Volodymyr V. Nesterov and Bradley W. Smucker

Crystal data

\[
\text{[Pt(C}_8\text{H}_4\text{N}_2\text{S}_2)\text{](C}_5\text{H}_6\text{N}_2)}\cdot\text{C}_2\text{H}_6\text{OS}
\]

\[M_r = 845.96\]

Triclinic, \(P\)

\[a = 7.74108 \pm 18 \text{ Å} \]

\[b = 9.8690 \pm 2 \text{ Å} \]

\[c = 10.47021 \pm 18 \text{ Å} \]

\[α = 99.6963 \pm 16° \]

\[β = 102.9798 \pm 17° \]

\[γ = 100.9394 \pm 19° \]

\[V = 746.43 \pm 3 \text{ Å}^3 \]

\[Z = 1\]

\[F(000) = 416\]

\[D_r = 1.882 \text{ Mg m}^{-3}\]

Cu \(Kα\) radiation, \(λ = 1.54184 \text{ Å}\)

Cell parameters from 10134 reflections

\[θ = 4.7–77.2°\]

\[μ = 12.39 \text{ mm}^{-1}\]

\[T = 200 \text{ K}\]

Plate, clear light yellow

\[0.03 \times 0.02 \times 0.01 \text{ mm}\]

Data collection

XtaLAB Synergy, Dualflex, HyPix diffractometer

Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source

Mirror monochromator

Detector resolution: 10.0000 pixels mm\(^{-1}\)

\(ω\) scans

Absorption correction: multi-scan

(CrysAlisPro; Rigaku OD, 2019)

\[T_{\text{min}} = 0.671, T_{\text{max}} = 1.000\]

15557 measured reflections

3130 independent reflections

3097 reflections with \(I > 2σ(I)\)

\[R_{\text{int}} = 0.046\]

\[θ_{\text{max}} = 77.7°, θ_{\text{min}} = 4.4°\]

\[h = -9→9\]

\[k = -12→12\]

\[l = -11→13\]

Refinement

Refinement on \(F^2\)

Least-squares matrix: full

\[R(F^2 > 2σ(F^2)) = 0.033\]

\[wR(F^2) = 0.083\]

\[S = 1.11\]

3130 reflections

218 parameters

0 restraints

Hydrogen site location: mixed

H-atom parameters constrained

\[w = 1/\left[σ^2(F_o^2) + (0.0335P)^2 + 2.9739P\right]\]

where \(P = (F_o^2 + 2F_c^2)/3\)

\((Δ/σ)_{\text{max}} < 0.001\)

\[Δρ_{\text{max}} = 1.33 \text{ e Å}^{-3}\]

\[Δρ_{\text{min}} = -1.21 \text{ e Å}^{-3}\]

Extinction correction: SHELXL2018/3 (Sheldrick 2015),

\[Fc'' = kFc[1 + 0.001xFc^2\sin(2θ)]^{1/4}\]

Extinction coefficient: 0.00059 (15)
Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²)

	x	y	z	Uiso*/Ueq	Occ. (<1)
Pt1	0.50	0.50	0.00	0.0264	(11)
S1	0.81	0.57	0.10	0.0312	(2)
S2	0.47	0.38	0.17	0.0317	(2)
N1	0.47	0.68	0.11	0.0302	(8)
N2	1.01	0.47	0.28	0.0340	(9)
N3	0.72	0.29	0.32	0.0326	(9)
N4	0.40	1.04	0.34	0.0487	(12)
H4A	0.46	1.21	0.31	0.058	
H4B	0.29	1.05	0.33	0.058	
C1	0.85	0.46	0.21	0.0286	(9)
C2	1.04	0.39	0.37	0.0344	(10)
C3	1.23	0.39	0.44	0.0429	(12)
H3	1.32	0.45	0.43	0.051	
C4	1.25	0.29	0.52	0.0485	(14)
H4	1.36	0.30	0.57	0.058	
C5	1.09	0.20	0.54	0.0475	(14)
H5	1.12	0.14	0.60	0.057	
C6	0.92	0.20	0.47	0.0441	(13)
H6	0.88	0.13	0.49	0.053	
C7	0.89	0.29	0.39	0.0344	(10)
C8	0.69	0.38	0.24	0.0297	(9)
C9	0.58	0.80	0.12	0.0392	(12)
H9	0.67	0.81	0.08	0.047	
C10	0.56	0.93	0.20	0.0419	(12)
H10	0.64	1.01	0.20	0.050	
C11	0.42	0.92	0.26	0.0377	(11)
C12	0.31	0.79	0.25	0.0408	(12)
H12	0.21	0.78	0.29	0.049	
C13	0.33	0.68	0.17	0.0344	(10)
H13	0.26	0.59	0.17	0.041	
S3	1.08	1.03	0.08	0.055	(8)
O1	1.00	0.99	0.19	0.058	
C1A	1.00	0.89	−0.05	0.072	(5)
H1AA	1.06	0.82	−0.04	0.108	(5)
H1AB	1.03	0.92	−0.13	0.108	(5)
H1AC	0.88	0.86	−0.07	0.108	(5)
C1B	0.95	1.15	0.03	0.072	(5)
H1BA	0.82	1.11	0.00	0.108	(5)
H1BB	0.98	1.18	−0.04	0.108	(5)
Atomic displacement parameters (Å²)

	U₁₁	U₂₂	U₃₃	U₁₂	U₁₃	U₂₃
Pt1	0.02549 (16)	0.02164 (15)	0.02864 (16)	0.00156 (10)	0.00498 (10)	0.00351 (10)
S1	0.0253 (5)	0.0292 (5)	0.0350 (6)	−0.0001 (4)	0.0036 (4)	0.0095 (4)
S2	0.0294 (6)	0.0311 (6)	0.0341 (6)	0.0030 (4)	0.0081 (5)	0.0111 (5)
N1	0.032 (2)	0.0230 (18)	0.035 (2)	0.0056 (15)	0.0114 (17)	0.0015 (15)
N2	0.033 (2)	0.033 (2)	0.033 (2)	0.0061 (17)	0.0046 (17)	0.0048 (17)
N3	0.040 (2)	0.0248 (19)	0.030 (2)	0.0051 (16)	0.0079 (17)	0.0045 (16)
N4	0.055 (3)	0.031 (2)	0.060 (3)	0.008 (2)	0.025 (3)	0.000 (2)
C1	0.029 (2)	0.025 (2)	0.029 (2)	0.0064 (17)	0.0039 (18)	0.0018 (17)
C2	0.041 (3)	0.033 (2)	0.029 (2)	0.012 (2)	0.006 (2)	0.0035 (19)
C3	0.040 (3)	0.047 (3)	0.036 (3)	0.014 (2)	0.003 (2)	0.002 (2)
C4	0.055 (4)	0.054 (3)	0.030 (3)	0.025 (3)	−0.004 (2)	0.001 (2)
C5	0.066 (4)	0.041 (3)	0.033 (3)	0.022 (3)	−0.001 (3)	0.009 (2)
C6	0.062 (4)	0.033 (3)	0.034 (3)	0.012 (2)	0.007 (3)	0.006 (2)
C7	0.044 (3)	0.029 (2)	0.026 (2)	0.010 (2)	0.003 (2)	0.0031 (18)
C8	0.034 (2)	0.025 (2)	0.028 (2)	0.0053 (18)	0.0069 (19)	0.0029 (18)
C9	0.040 (3)	0.025 (2)	0.052 (3)	0.001 (2)	0.022 (2)	0.003 (2)
C10	0.045 (3)	0.028 (2)	0.051 (3)	0.001 (2)	0.020 (3)	0.001 (2)
C11	0.040 (3)	0.031 (2)	0.040 (3)	0.008 (2)	0.010 (2)	0.004 (2)
C12	0.038 (3)	0.035 (3)	0.049 (3)	0.003 (2)	0.018 (2)	0.005 (2)
C13	0.032 (2)	0.028 (2)	0.041 (3)	0.0019 (19)	0.011 (2)	0.004 (2)
S3	0.0454 (16)	0.0553 (18)	0.0601 (19)	−0.0016 (14)	0.0131 (14)	0.0125 (15)
O1	0.053 (5)	0.062 (6)	0.065 (6)	0.013 (4)	0.023 (4)	0.020 (5)
C1A	0.078 (13)	0.045 (9)	0.108 (16)	0.036 (8)	0.035 (11)	0.020 (9)
C1B	0.087 (13)	0.063 (11)	0.087 (12)	0.055 (10)	0.026 (10)	0.026 (9)

Geometric parameters (Å, º)

	C4—C5	C9—C10	C10—H10
Pt1—S1	2.3514 (11)	C4—C5	1.404 (10)
Pt1—S1'	2.3514 (11)	C5—H5	0.9300
Pt1—S2	2.3495 (11)	C5—C6	1.366 (9)
Pt1—S2'	2.3495 (11)	C6—H6	0.9300
Pt1—N1	2.063 (4)	C6—C7	1.413 (7)
Pt1—N1'	2.063 (4)	C9—H9	0.9300
S1—C1	1.743 (5)	C9—C10	1.373 (7)
S2—C8	1.741 (5)	C10—H10	0.9300
N1—C9	1.346 (6)	C10—C11	1.393 (8)
N1—C13	1.342 (6)	C11—C12	1.407 (7)
N2—C1	1.310 (6)	C12—H12	0.9300
N2—C2	1.371 (7)	C12—C13	1.363 (7)
N3—C7	1.369 (7)	C13—H13	0.9300
N3—C8	1.323 (6)	S3—O1	1.505 (10)
N4—H4A	0.8662	S3—C1A	1.728 (19)
N4—H4B	0.8665	S3—C1B	1.752 (16)
Bond Pair	Distance (Å)	Torsion Angle (°)	Bond Angle (°)
------------	-------------	-------------------	----------------
N4—C11	1.355 (7)		
C1—C8	1.446 (7)		
C2—C3	1.421 (8)		
C2—C7	1.402 (8)		
C3—H3	0.9300		
C3—C4	1.370 (8)		
C4—H4	0.9300		
S1—Pt1—S1	180.0		
S2—Pt1—S1	88.43 (4)		
S2i—Pt1—S2i	88.43 (4)		
N1'—Pt1—S1	89.99 (12)		
N1—Pt1—S1	90.01 (12)		
N1—Pt1—S1'	90.01 (12)		
N1—Pt1—S2	90.33 (12)		
N1—Pt1—S2'	90.33 (12)		
N1—Pt1—S2	89.67 (12)		
N1—Pt1—S2'	89.67 (12)		
C1—S1—Pt1	103.03 (16)		
C8—S2—Pt1	102.34 (17)		
C9—N1—Pt1	120.7 (3)		
C13—N1—Pt1	121.6 (3)		
C13—N1—C9	117.7 (4)		
C1—N2—C2	117.3 (4)		
C8—N3—C7	117.1 (4)		
H4A—N4—H4B	108.6		
C11—N4—H4A	109.7		
C11—N4—H4B	110.6		
N2—C1—S1	116.9 (4)		
N2—C1—C8	121.8 (4)		
C8—C1—S1	121.3 (4)		
N2—C2—C3	119.6 (5)		
N2—C2—C7	121.1 (5)		
C7—C2—C3	119.3 (5)		
C2—C3—H3	120.0		
C4—C3—C2	120.0 (6)		
C4—C3—H3	120.0		
C3—C4—H4	119.8		
C3—C4—C5	120.4 (6)		
C5—C4—H4	119.8		
C4—C5—H5	119.6		
C6—C5—C4	120.7 (5)		
C6—C5—H5	119.6		
data reports

Pt1—S1—C1—N2 173.6 (3) C2—C3—C4—C5 0.6 (8)
Pt1—S1—C1—C8 −6.3 (4) C3—C2—C7—N3 177.0 (5)
Pt1—S2—C8—N3 −166.6 (3) C3—C2—C7—C6 −2.5 (7)
Pt1—S2—C8—C1 16.4 (4) C3—C4—C5—C6 −0.9 (9)
Pt1—N1—C9—C10 −179.9 (5) C4—C5—C6—C7 −0.5 (9)
Pt1—N1—C13—C12 179.8 (4) C5—C6—C7—N3 −177.3 (5)
S1—C1—C8—S2 −7.3 (6) C5—C6—C7—C2 2.2 (8)
S1—C1—C8—N3 175.8 (4) C7—N3—C8—S2 −175.4 (3)
N1—C9—C10—C11 0.1 (10) C7—N3—C8—C1 1.7 (7)
N2—C1—C8—N3 −4.1 (7) C7—C2—C3—C4 1.1 (8)
N2—C1—C8—S2 −172.8 (4) C8—C3—C4—C5 2.3 (7)
N2—C2—C3—C4 −177.7 (5) C8—N3—C13—C12 0.7 (8)
N2—C2—C7—N3 −4.2 (7) C9—N1—C13—C12 179.4 (6)
N2—C2—C7—C6 176.3 (5) C9—C10—C11—N4 −0.6 (9)
N4—C11—C12—C13 −179.5 (6) C9—C10—C11—C12 0.6 (9)
C1—N2—C2—C3 −179.4 (4) C10—C11—C12—C13 −0.7 (9)
C1—N2—C2—C7 1.8 (7) C11—C12—C13—N1 0.0 (9)
C2—N2—C1—S1 −177.8 (3) C13—N1—C9—C10 −0.7 (8)
C2—N2—C1—C8 2.2 (7)

Symmetry code: (i) −x+1, −y+1, −z.

Hydrogen-bond geometry (Å, °)

	D—H···A	D—H	H···A	D···A	D—H···A
N4—H4A···N3ii	0.87	2.30	3.085 (7)	151	
N4—H4B···O1iii	0.87	2.28	3.045 (11)	148	

Symmetry codes: (ii) x, y+1, z; (iii) x−1, y, z.