INTEGRATED INFORMATION SYSTEM ASSESSMENT OF COMPLEX OBJECTS SAFETY LEVEL

T. KOZULIA, M. KOZULIA

The complex methodological approaches for solving problem tasks objects quality assessment are determined on the basis of system analysis means combination and of the information and software complex development of research data processing with use of modern mean knowledge providing. Methodological support is based on theoretical knowledge in field of information entropy theory, synergetic, knowledge-oriented databases development; information space of integrating entities unity principles. The scientific and practical foundations of methodological and informational support for the determination of complex systems state assessment and their functional capabilities, safety level of the investigated objects, using of knowledge-oriented information systems for obtaining knowledge on the research objects results at level “state (system – environment) – change – process – system state”. The generalized algorithmic approach from complex system object analysis as integrity having its microstructure is shown on the results of quality and safety functioning assessment of natural-technological, ecological-economic systems, providing operational control and safety management of technological processes.

Keywords: environmental safety, methods of system analysis, mathematical modeling methods, information monitoring systems, safety state identification, environmental knowledge-oriented systems, information program of systems quality assessment.

Introduction. Modern system theory presupposes the existence of systemic entities in the form of socio-economic, socio-ecological, ecological and economic objects of natural and man-made content, which relate to complex systems, and, in accordance with sustainable development provisions, they are united in socio-ecological and economic research objects [1, 2]. A special component for such systems is an information component that takes into account the qualitative characteristics of both individual elements and their relationships. The unstable systems state leads to crises that are conventionally equated with qualitative transformations in them. Thus, the study of modern complex systems is becoming relevant in the processing of information data in accordance with the standard system approach and the latest methods of information theory.

Decision-making is an analogue of information exchange and is the basis of activity, including management. The decision is determined by the achievement of the goal in choosing the best (more acceptable, optimal) alternative from possible variety of options for the purpose.

Under the research object study or development in accordance with the general definition of J. Clare [1] is understood part of the world, which for a given period of time is a unit that reflects the natural (ecological), economic and social aspects of life. The object interacts with environment, which is central to the investigated integrity (as opposed to existing approaches in solving complex system problems, because it is the basis of the functionality of the object).

The study goal and tasks. The works goal consist comprehensive methodological approaches in solving problem environmental safety tasks of complex objects quality assurance based on the information and software data research development using the system analysis theory and modern knowledge provision. According to the goal is necessary:

1) grounded evaluation methods system compliance to state, features natural and industrial systems environmental quality requirements in economic conditions maintaining the necessary environment environmental safety level, sustainable system objects stability development under uncertainty and risk by reaching environmental safety state;

2) identified information and methodological support composition of complex objects comprehensive study constituted system analysis methodology provision;

3) realized practical application of systematic methodological support for the complex study of complex objects on the basis of a sequential analysis.

At research tasks setting and justifying, allocating domains, checking the models adequacy used knowledge of general systems theory, mathematical logic, including.
comparator identification method, information theory and synergy. For creating the researched system object model and tool justification in solving complex systems quality assessment problems applied theoretical knowledge in environmental safety, synergy, information analysis, knowledge-oriented databases development, unity information integrable entities space principles fields.

Scientific results. According to research tasks defines the main ways models and methodological approaches improving complex systems safety level evaluation by analyses “state (system – environment) – changes – process – system state”. Defined methods characteristics state investigation “system – environment” according to the methodological approaches analysis in the environmental, ecological and economic analysis fields to environmental safety assess. The methods system information data disparate objects monitoring comprehensive assessment, entropy and knowledge base processing methods, analysis and environmental and socio-economic information evaluation is offered.

To assess ecological safety level “system – environment” proposes an algorithm (fig. 1) for probabilistic-entropy approach implementation to determine the state by information amount \(\xi \), which is contained in obtained previous stage results of the problem solution or is established relatively to the system characteristics \(\eta \). The research object general condition is determined by such dependencies of the information function [3–5]

\[
I(\xi|\eta) = S(\xi) - MS(\xi|\eta);
\]

\[
I(\eta|\xi) = - \sum_{i} p_{ij} \log_{2} p_{ij}, \quad p_{ij} = \frac{P(\xi = x_i | \eta = y_j)}{P(\eta = y_j)}.
\]

where \(I(\xi|\eta) \) – amount of information in \(\xi \) relatively \(\eta \);

\(I(\eta|\xi) \) – amount of information in \(\eta \) relatively \(\xi \);

\(S(\xi) \) – state entropy \(\xi \);

\(MS(\xi|\eta) \) – conditional entropy expected value at variable \(\xi \);

\(p_{ij} \) – compatible probability distribution.

Figure 1 – Probabilistic-entropy assessment of system state and risk factors:

- **Object state:** system of any complexity and formation
- **Environmental state**
- **Begin**
- External and internal change factors – destabilization processes
 - **Begin**
 - Uncertainty assessment by local information entropy (IE) by changing it local component 0...0,38
 - **Consistency assessment to nature properties and certain systems quality with** \(p = 0,95, \alpha = 0,05 \)
 - **End**
- **End**
- **System state stability level assessment:**
 - \(\Delta S < 10\% \)
 - **Final state by structure entropy function (level and degree equilibrium)**
 - **End**
- **Removing uncertainty, integral IE assessment**
 - **Begin**
 - Inconsistency level assessment by \(\Delta S \): \(p > 0,99 \) for system stability criterion
 - Inconsistency causes analyze: functionality system factors, validity assessment
 - **Risk neutralization**
 - Probability estimation of positive changes by factors
 - **Estimation \(p \) manifestation:**
 - \(\Delta S >> - \), final entropy
 - **End**
 - **End**
 - **Character of risk factor probability manifestation, general system state assessment**
 - **End**
 - **End**

\(p \) – probability of matching the natural properties; \(\alpha \) – estimation measurement; \(\Delta S \), \(\Delta S_1 \), \(\Delta S_2 \), \(\Delta S_3 \) – estimation of general changes, probabilistic, stochastic, random processes respectively
As ξ and η determine the same ratio: the amount of information in η relatively ξ and amount of information in ξ relatively η, then $I(\eta|\xi) = S(\xi)$.

Found that organizational and technical systems related to fuzzy conditions system of their operation, requiring appropriate phenomenological framework usage of experience, knowledge, based on knowledge-based information systems. Applied only thermodynamic nature as a basis for object systems modeling, which permitted entropy method consistent reduction and uncertainties solution designed for comprehensive methodological support of the entropy-comparator conformity quality system objects assessment of any nature safety requirements (fig. 2).

Logical transformation core is given by relations graph of the component state criteria for ξ and η (fig. 2) [6, 7].

![Figure 2 - Graphic scheme core linear logical transformation $K(x, y)$](image)

Providing environmental and economic analysis of the system object ξ due to its complexity and multiple ties with environment gets into the uncertainty situation by the evaluation criteria: economic development level (a – economical system), socio-economic index society well-being (b – socio-economic system), environmental level (c – ecological system), population health assessment (d – social system). Available informational inaccuracies, absence proposed to supplement by the relationship function, for example, existing general information on economic (1), social (2) and environmental (3) quality indicators (see fig. 2). For getting data about ξ introduced linear-logical transformation core by providing a general quality assessment for ξ, which takes into account all evaluation criteria, that is, have a connection and the final result taking into account the information by η:

$$K(x, y) = \left(x^a \times x^c \right)^1 \times x^d y^3;$$

$$Q(y) = \exists x \in \{a, b, c, d\} \left(\left(x^a \times y^1 \right) \times x^d y^3 \right) \land P(x) = \exists x \in \{a, b, c, d\} \left(\left(x^a \times x^c \right)^1 \times x^d y^3 \right) \land \left(x^a \times x^b \times x^c \times x^d \right) = y^1 \times y^3.$$

As $K_1(x, y), K_2(y, z), K(x, z)$ are rectangular matrices, then the conjunction of predicates is considered as a product of matrices:

$$K(x, z) = K_1(x, y) \times K_2(y, z) = \bigvee_{y \in N} (K_1(x, y) \land K_2(y, z)).$$

Proposed a number of information technology for integrated complex systems safety analysis, designated improvement areas in case of information and methodological support formation for natural and man-made objects comprehensive quality assessment.

Established scientific and practical principles methodological, informational support complex systems state measurement and their functionality, investigated objects safety level based on usage of knowledge-based information systems obtaining knowledge by the study object results at “state (system – environment) – changes – process – system state”.

Developed algorithmic approach for object comprehensive analysis in whole, with its microstructure, which proposed to refer not only components and object system and operation processes. In systematic analysis introduced unique continuous real objects variables display for which the entropy is infinite, via information function (see. fig. 1).

According to provided methodological support information entropy function is introduced to establish the information uncertainty degree, ie the lack about system and its dynamics state information.

Proposed to avoid uncertainty in solving system socio-ecological-economic content objects environmental safety level assessment due to using mathematical logic structural models, combining state analysis and processes in systems, interacting with the environment: entropy state assessment and processes, quality level comparator identification (safety, environmental).

In a detailed system objects study based on their hierarchical structure resulting entropy function is perceived as uncertain behavior not well-ordered system of any dimension. To assess natural territorial complexes state applied thermodynamics, physical, informational entropy to determine environmental quality level for complex objects by only inconsistency measure environmental safety boundaries disparate systems and processes in them: maximum entropy production for one conditions group (ξ) compatible with its minimum for other (η):

$$S(\xi|\eta = y_j) = - \sum_i p_{hj} \log_2 p_{hj},$$

$$\text{MS}(\xi|\eta) = - \sum_j p(\eta = y_j) \sum_i p_{hj} \log_2 p_{hj},$$

where $S(\xi|\eta)$ – conditional entropy η at $\xi = x$; $\text{MS}(\xi|\eta)$ – mathematical expectation of conditional entropy with variable ξ [8].

Adopted entropy adherence function for investigated system objects and determines deviation state level object component and its overall from equilibrium, homeostasis “system – environment”, which presented information about danger on any grounds.

The information space concept, system analysis related with conceptual study object model definition under scenario and target approach in order to create knowledge-based systems to it safety situation assess and sustainable development. The information and software
develop approaches for solving complex tasks in complex heterogeneous objects assessment for their operation compliance with the environmental safety requirements was analyzed.

Developed the informational-software for practical application ecological safety level integrated assessment methods which based on entropy and information approaches by awareness monitoring data.

Information part formed for system formation state assessment in knowledge-based systems form. Within information and methodological support developed knowledge base on existing data about the system, additional information obtained as a result of uncertainty removal provided complex system low level investigation. New data obtained as a final result consistent uncertainties decrease at detailed scheme study “state1 – process – state2” applying state system formation “object – environment”, with phased complex methodological and information support implementation in complex systems quality assessment (fig. 3).

In practice, the proposed information and software implemented for the comprehensive analysis results on the entropy-information based complex objects study, given the practical environmental safety evaluation results for natural and industrial objects (Zmiev district, heat station), environmental and economic systems (Zmiev district – population health system) and operative safety control man-made objects based on Android (fig. 4) [9].

![Figure 3 – General scheme of knowledge-oriented information system](image)

![Figure 4 – Algorithmic provision of information-system assessment of environmental safety level by complex methodological support](image)

Introduced comprehensive complex objects safety evaluation system is realized in practice in natural and man-made complex safety analyzing in Zmiev district landfill monitoring studies, whose territory is affected by industrial and energy differs significant accumulation of heavy metals (HM) in soils and appropriate level health (fig. 5) [6, 10].

At the micro level of complex system analysis to ensure proposed methodological approaches implementation to assess object level safety which is considered at example of factors restoration estimation attainable children with cerebral palsy state capacity (fig. 6) [9, 11, 12].
3. The software was developed for continuous environmental safety monitoring in terms of anthropogenic impact areas, the unstable system state, management and selection of effective production processes according to the provided comprehensive analysis and assessment of diverse complex systems and dangerous situations.

References (transliterated)
1. Klir Dzh. Systemology. Automationizing and optimization of system states [Systemology. Automation of system problem solving]. Moscow, Radio i svyaz’, 1990, 540 p.
2. Z-hurovskyy M.Z., Pankratova N.D. Osnovy systemnoho analizu [System analyses foundations]. Kiev, Vydavnycha hrupa BNV, 2007, 544 p.
3. Козуля М. М. Информативно-программне забезпечення реалізації системних методів визначення стану складних систем [Information software for the system methods implementation for determining complex systems state]. Матеріали V Всеукраїнського науково-практичного конференції "Інтелектуальні системи та прикладна лінійна статистика". Харків, NTU «KhPI», 2016, pp. 46–47.

4. Козуля М. М. Знання-орієнтована комплексна методика оцінки стану складних систем [Knowledge-based comprehensive methodology for complex systems state assessment]. Вісник NTU «KhPI». Серія: Інноваційні дослідження у навукових роботах студентів [Bulletin of National Technical University «KhPI»]. Series: Innovation researches in students’ scientific work. Харків, NTU «KhPI», 2016, no. 19 (1191), pp. 39–44.

5. Касимов О. М., Козуля Т. В., Хахарин В. В., Яменьйанова Д. І., Козуля М. М. Методи та модель системи комплексного оцінювання екологічного стану природних територій [Methods and model of integrated assessment system of natural and man-made territories ecological state]. Екологія у промисловності. 2013, no. 1, pp. 21–27.

6. Козуля Т. В., Шаронова Н. В., Козуля М. М., Святкін Я. В. Формування зnan’i prohramnoho pidtrymka entropiyno-kompleksnoho rozrakhunku sotaal’no-ekoхімічних pokaznykiv yakosti [Software development for calculating social and environmental quality indicators]. Інформаційні технології в інформаційному бізнесі [Information technologies in information business conference (ІТБ)]. Харків, 2015, pp. 10–11.

7. Відомості про авторів / Сьогодення об авторах / About the Authors

Козуля Тетяна Володимирівна – доцент технічних наук, професор, Національний технічний університет «ХПІ». Спеціальність: Системний аналіз, управління та інформаційні технології. – Харків: НТУ «ХПІ», 2017. – № 55 (1276). – С. 39–44. – Бібліогр.: 13 назв. – ISSN 2079-0023.

Козуля Марія Михайлівна – кандидат технічних наук, доцент кафедри ПІІТУ, тел.: (099) 787-20-70; e-mail: mariya.kozyula7@gmail.com

Козуля Марія Михайлівна – кандидат технічних наук, Національний технічний університет «Харківський політехнічний інститут», доцент кафедри ПІІТУ, тел.: (099) 787-20-70; e-mail: mariya.kozyula7@gmail.com

Козуля Марія Михайлівна – кандидат технічних наук, Національний технічний університет «Харківський політехнічний інститут», доцент кафедри ПІІТУ, тел.: (099) 787-20-70; e-mail: mariya.kozyula7@gmail.com

Козуля Марія Михайлівна – кандидат технічних наук, Національний технічний університет «Харківський політехнічний інститут», доцент кафедри ПІІТУ, тел.: (099) 787-20-70; e-mail: mariya.kozyula7@gmail.com

Козуля Марія Михайлівна – кандидат технічних наук, Національний технічний університет «Харківський політехнічний інститут», доцент кафедри ПІІТУ, тел.: (099) 787-20-70; e-mail: mariya.kozyula7@gmail.com