Strong total domination and weak total domination in Mycielski’s graphs

Hande Tunçel Gölpek¹ and Aysun Aytaç²*

Abstract
Let $G = (V,E)$ be a graph. A set $S \subseteq V$ is called a weak total dominating set (WTD-set) if each vertex $v \in V - S$ is adjacent to a vertex $u \in S$ with $\deg(v) > \deg(u)$ and every vertex in S adjacent to a vertex in S. The weak total domination number, denoted by $\gamma_w(G)$, is minimum cardinality of a weak total dominating set. Analogously, a dominating set $S \subseteq V$ is called a strong total dominating set (STD-set) if each vertex $v \in V - S$ is dominated by some vertices $u \in S$ with $\deg(v) < \deg(u)$ and each vertex in S adjacent to a vertex in S. The strong total domination number, denoted by $\gamma_s(G)$, is minimum cardinality of a strong dominating set. Weak total and strong total domination parameters were introduced by Chellali et al. and Akbari and Jafari Rad, respectively.

In this paper, we consider weak total and strong total domination of Mycielski’s Graph, denoted by $\mu(G)$. We also provide some upper and lower bound about weak total domination of Mycielski’s graph related with minimum and maximum degree number of a graph. In addition, the inequality about relationship between strong total domination of Mycielski’s graph $\mu(G)$ and underlying graph G, $\gamma_s(G) + 1 \leq \gamma_s(\mu(G)) \leq \gamma_s(G) + 2$, is obtained. Among other results, we characterize graphs G achieving the lower bound $\gamma_s(G) + 1 = \gamma_s(\mu(G))$.

Keywords
Graph Theory, Strong Total Domination, Weak Total Domination, Mycielski’s Graph.

AMS Subject Classification
05C12, 05C69, 68R10.

1 Maritime Faculty, Dokuz Eylül University Izmir-35390, Turkey.
2 Department of Mathematics, Ege University Izmir-35040, Turkey.
*Corresponding author: ² aysun.aytac@ege.edu.tr; ¹hande.tuncel@deu.edu.tr

Article History: Received 23 June 2020; Accepted 06 October 2020

Contents
1 Introduction .. 1681
2 Known Results .. 1682
3 Weak Total Domination of Mycielski’s Graph ... 1683
4 Strong Total Domination of Mycieski Graph...... 1684
5 Conclusion .. 1685
References .. 1685

1. Introduction

Let G be n order connected simple graphs. $V(G)$ and $E(G)$ are vertex and edge set of G, respectively. The open neighborhood of $v \in V$ is $N_G(v) = \{u \in V : uv \in E(G)\}$ and closed neighborhood of $v \in V$ is $N_G[v] = N_G(v) \cup \{v\}$. A vertex $v \in V(G)$ is an S-private neighbor of $u \in S$ if $N[v] \cap S = \{u\}$, while the S-private neighbor set of u, denoted by $pn[u,S]$, is the set of all S-private neighbors of u. If v is a vertex of $V(G)$, then the degree of v denoted by $\deg_G(v)$, is the cardinality of its open neighborhood. The maximum and minimum degree of a graph G is denoted by $\Delta(G) = \Delta$ and $\delta(G) = \delta$, respectively.

A subset $S \subseteq V$ is a dominating set of G is every vertex in $V - S$ has a neighbor in S and the domination number of G, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set. For detailed information about domination parameters readers are referred to books [6, 7]. A dominating set that is independent is called an independent dominating set of G. The minimum cardinality of an independent dominating set is called independent domination number, $i(G)$. A dominating set that is connected is called a connected dominating set of G. The minimum cardinality of an connected dominating set is called connected domination number, $\gamma_c(G)$. A total dominating set, denoted by TD-set of G with no isolated vertex is a set S of vertices of G and total domination number that is the minimum cardinality of a total dominating set denoted by $\gamma_t(G)$. Every graph without isolated vertices has
TD-set. Total domination was introduced by Cockayne et al. [4]. A dominating set \(S \subseteq V \) is called a weak dominating set (WD-set) if each vertex \(v \in V - S \) is dominated by some vertices \(u \in S \) with \(\deg(v) > \deg(u) \). The weak domination number, denoted by \(\gamma_w(G) \), is minimum cardinality of a weak dominating set. Similarly, a dominating set \(S \subseteq V \) is called a strong dominating set (SD-set) if each vertex \(v \in V - S \) is dominated by some vertices \(u \in S \) with \(\deg(v) < \deg(u) \). The strong domination number, denoted by \(\gamma_s(G) \), is minimum cardinality of a strong dominating set. The concept weak and strong domination number introduced by Sampathkumar and Pushpa Latha in [11]. A weak dominating set \(S \subseteq V \) induces a subgraph with no isolated vertex is called weak total dominating set (WTD-set). Total domination was introduced by Cockayne et al. [4].

Let begin with following illustration about strong total and weak total dominations have been considered for some graphs.

Example 2.1. Let \(G \) be a connected graph with 6 vertices as in Figure 2 \(S_1 = \{v_2, v_3, v_5, v_6\} \) and \(S_2 = \{v_1, v_2, v_4, v_5\} \) are some WTD-set of \(G \) and \(S = \{v_1, v_2\} \) is a STD-set of \(G \). Besides these sets, we can also generate some other WTD and STD-sets. In addition, \(\gamma_{wt}(G) = 4 \) and any \(\gamma_{wt} - \text{set of } G \) must contain \(v_2 \) and \(v_6 \) of which degree smaller than their neighbors in the graph, \(\gamma_{st}(G) = 2 \) and any \(\gamma_{st} - \text{set of } G \) must contain \(v_1 \) with degree larger than their neighbors in the graph.

Theorem 2.2. [5] For any graph \(G \), \(\gamma(\mu(G)) = \gamma(G) + 1 \).

Theorem 2.3. [2] For any graph \(G \), \(\gamma_s(\mu(G)) = \gamma_s(G) + 1 \).

Theorem 2.4. [2] For any graph \(G \), \(\gamma_c(\mu(G)) + 1 \leq \gamma_c(\mu(G)) \leq 2\gamma_c(G) \).

Theorem 2.5. [5] Let \(G \) be a graph. Then \(\gamma(\mu(G)) = \gamma(G) + 1 \), \(\gamma_s(\mu(G)) = \gamma_s(G) + 1 \).

Theorem 2.6. [9] For any graph \(G \), \(i(\mu(G)) = i(G) + 1 \).

Theorem 2.7. [9] If \(\gamma_c(G) \geq 3 \) then, \(\gamma_c(\mu(G)) \leq \gamma_c(G) + 1 \).

Proposition 2.8. [3] For any graph \(G \) with no isolated vertices, \(\gamma_{wt}(G) \leq n + 1 - \Delta \).

Proposition 2.9. [1] For paths and cycles, \(\gamma_{st}(P_n) = \gamma_{st}(C_n) = \gamma_s(P_n) = \gamma_s(C_n) \).

Proposition 2.10. [1] For any graph \(G \) of order \(n \), maximum degree \(\Delta \) and with no isolated vertices, \(\gamma_{st}(G) \leq n + 1 - \Delta \).
3. Weak Total Domination of Mycielski’s Graph

In this section, we investigate some results about weak total domination number of Mycielski’s Graph. We initiate with special graph families and also, we characterize graph attaining some bounds about weak total domination of Mycielski’s graph.

Proposition 3.1. For special graphs:

a. $\gamma_{wt}(\mu(P_n)) = n + 3$, $n \geq 4$

b. $\gamma_{wt}(\mu(C_n)) = n + 1$, $n \geq 4$

c. $\gamma_{wt}(\mu(K_n)) = 3$, $n \geq 3$

d. $\gamma_{wt}(\mu(K_{1,n-1})) = 2n + 1$, $n \geq 3$

e. $\gamma_{wt}(\mu(W_{1,n-1})) = n + 1$, $n \geq 4$

f. $\gamma_{wt}(\mu(K_{m,n})) = m + n + 1$.

Proof. a. Let $n \geq 5$ and $A = \{v_1, v_n, v'_1, v'_n\}$. Let D be γ_{wt}-set of $\mu(P_n)$. Due to the degree of vertices in A, it must be $A \subseteq D$. However, A only weakly dominates vertices $v_2, v'_2, v_{n-1}, v'_{n-1}$ in $\mu(P_n)$. Also, $\forall v_i$ and v'_i in $\mu(P_n)$, $\deg(v_i) > \deg(v'_i)$ for $i \in \{2, \ldots, n-2\}$ and all vertices in $V(G)$ are disjoint. The vertices v'_2, v'_{n-1} are weakly dominated by A, remaining disjoint vertices $v'_i, i \in \{3, \ldots, n-2\}$, is not dominated by A. In order to weakly dominates vertices of P_n in $\mu(P_n)$, it is needed to add $n - 4$ vertices from $V(G)$ to A. Thus, $|A| = n = 4 + 4 = n$. All vertices in $\mu(P_n)$ are weakly dominated by A. To obtain γ_{wt}-set, it implies that $A \cup \{v_2, v_{n-1}, z\}$ or $A \cup \{v'_2, v'_{n-1}, z\}$ is not weakly dominated by A. Hence, we get $|D| = n + 3$ as desired.

de. For $G = K_{1,n-1} (n \geq 3)$, there are disjoint $2n - 2$ vertices in $\mu(K_{1,n-1})$ which have minimum degree also these vertices are adjacent to the vertex v_1 that has maximum degree. Hence, $\gamma_{wt}(\mu(K_{1,n-1})) = 2n - 1$.

e. For $G = W_{1,n-1} (n \geq 4)$, there are disjoint $n - 1$ vertices in $V(G)$ which have minimum degree and also these vertices adjacent to z. Hence, $\gamma_{wt}(\mu(W_{1,n-1}))$ weakly dominated by these n vertices. Thus, $\gamma_{wt}(\mu(W_{1,n-1})) = n$.

f. For $G = K_{m,n}$. It is easy to see that there are disjoint $m + n$ vertices which have min $\{m, n\}$ and min $\{m, n\} + 1$ degree in $V(G')$. Hence, for a γ_{wt}-set of $\mu(K_{m,n})$ contains at least $m + n + 1$ vertices. Thus, $\gamma_{wt}(\mu(K_{m,n})) = m + n + 1$. □

Theorem 3.2. Let G be an order graph with $\delta \geq 2$ then $3 \leq \gamma_{wt}(\mu(G)) \leq n + 1$.

Proof. For lower bound it is not possible to weakly total dominate $\mu(G)$ by two vertices. For upper bound, always possible to obtain a WTD-set such as $V(G') \cup \{z\}$ provided that $\delta \geq 2$.

□

Observation 1: Let $|\delta|$ be number of minimum degree vertices. According to definition of weak domination $|\delta| \leq \gamma_{wt}(G) \leq \gamma_{wt}(G)$.

Proposition 3.3. Let G be an order graph $n \geq 3$, $\delta = 1$ then $n + |\delta| \leq \gamma_{wt}(\mu(G)) \leq n + 1 + |\delta|$ where $|\delta|$ is number of minimum degree vertices.

Proof. Let D be WTD-set of $\mu(G)$. D must be included all pendant vertices in G denoted by v_{δ} for $1 \leq i \leq |\delta|$. All support vertices in G in degree more than two in $\mu(G)$. According to form of $\mu(G)$, all vertices in $V(G')$ are disjoint vertices and also has degree less than all neighbors except v_{δ}. Thus, $V(G') \cup \{v_{\delta}\}$ weakly dominates $G \cup G'$. In order to obtain a weakly total dominating set, D can be included $\{\delta\}$. Thus D may be $V(G') \cup \{z\} \cup \{v_{\delta}\}$ for all i. Hence, $\gamma_{wt}(\mu(G)) \leq n + 1 + |\delta|$. From the Observation 1, the vertices in $\{v_{\delta}\} i = 1, 2, \ldots, n$ and their copies in G' may weakly dominate all vertices in $\mu(G)$. For a weakly total dominating set, D must include $n - |\delta|$ vertices in G' (or G). Hence, $2|\delta| + n - |\delta| \leq \gamma_{wt}(\mu(G))$. □
Proposition 3.4. Let G be an order graph $\Delta = n - 1$, $\delta \geq 2$

$$n + 1 - |\Delta| \leq \gamma_{st}(\mu(G)) \leq n + 2 - |\Delta|$$

where $|\Delta|$ is the number of maximum degree vertices.

Proof. Let D be a WTD-set of $\mu(G)$.

- If $|\Delta| = 1$; Let v' be the copy of the vertex v that has degree Δ in G. D must include the vertices $V(G') - \{v'\}$. Therefore, $S = V(G') - \{v'\} \cup \{z\}$ is a minimal WTD-set for $\mu(G)$. Thus, $\gamma_{st}(\mu(G)) = n - |\Delta| + 1$.

- If $|\Delta| \geq 2$; Let D be set included all vertices in $V(G')$ except copy of Δ-degree vertices. There are two cases:
 - Let, all vertices in $V(G')$ be weakly dominated by D. For totality, $\{z\}$ must be included by D. Thus, $|D| = n - |\Delta| + 1$.
 - Let, all vertices in $V(G)$ not be weakly dominated by D. Let $\{v\}$ be a copy of Δ-degree vertex. Then, $D \cup \{v\}$ weakly dominates all vertices in $V(G)$. Hence, $D \cup \{v\} \cup \{z\}$ is a WTD-set of $\mu(G)$. We have $|D| = n - |\Delta| + 2$.

According to these two cases we obtain that $n + 1 - |\Delta| \leq \gamma_{st}(\mu(G)) \leq n + 2 - |\Delta|$. \square

4. Strong Total Domination of Mycielski’s Graph

In this section, we begin with some basic results about strong total domination complete bipartite graph K_{n_1, \ldots, n_p} and the characterization of graph that have $\gamma_{st}(G) = 2$. Also, we derive some results about strong total domination of Mycielski’s graph. The bound $\gamma_{st}(G) + 1 \leq \gamma_{st}(\mu(G)) \leq \gamma_{st}(G) + 2$ has been presented. In addition, we characterize graphs G holding the lower bound $\gamma_{st}(G) + 1 = \gamma_{st}(\mu(G))$.

Proposition 4.1. Let G be an order graph such that at least one vertex has degree $(n - 1)$. Then

$$\gamma_{st}(G) = 2.$$

Proof. Let v be a $\Delta = n - 1$ degree vertex of G. G can be strongly total dominates by v and its any neighbour. Thus $\gamma_{st}(G) = 2$. \square

Theorem 4.2. Let G be an order graph,

$$\gamma_{st}(G) \geq \frac{n - |SS|}{\Delta}.$$

Proof. Let S be a γ_{st}-set of G. Let F be the set of all edges of G that have one end vertex in S the other in $V - S$. Also, a vertex in $SS(G)$ has degree at most Δ. Therefore, $|F| \leq |SS| (\Delta - 1) + (|S| - |SS|) (\Delta - 2)$. In addition, a vertex can be dominated by more than one vertex then $|F| \geq n - |S|$. Using the inequalities the it is obtained that $|S| \geq \frac{n - |SS|}{\Delta - 1}$. \square

Proposition 4.3. Let $K_{m,n}$ be complete bipartite graph with $m + n$ vertices then $\gamma_{st}(K_{m,n}) = \begin{cases} 2, & \text{if } m = n \\ \min\{m,n\} + 1, & \text{otherwise} \end{cases}$

Proof. Let $K_{m,n}$ be complete bipartite graph with partitions V_1 and V_2. If $m = n$ then degree of vertices are equal in each subset V_1 and V_2. Thus, a γ_{st}-set can be done as choosing a vertex from V_1 and V_2. Thus, $\gamma_{st}(K_{m,n}) = 2$. Without loss of generality, $m > n$ and $|V_1| = m$ and $|V_2| = n$. Therefore, degree of vertices in V_2 are equal and greater than degree of vertices in V_1. According to form of complete bipartite graph, all vertices in V_2 must be in γ_{st}-set of $K_{n,n}$. In order to totally strong dominates, a vertex from V_1 must be in γ_{st}-set. Hence, $\gamma_{st}(K_{m,n}) = n + 1 = \min\{m,n\} + 1$. \square

Proposition 4.4. For any integers $n_1 \geq \ldots \geq n_l \geq 1$,

$$\gamma_{st}(K_{n_1, n_2, \ldots, n_p}) = \min\{n_1, n_2, \ldots, n_p\} + 1.$$

Proof. Let V_i be vertex set that included n_i vertices. According to form of the graph there are n_1 vertex in V_1 that has maximum degree and adjacent to all other vertices in V_i, $i \neq 1$. Also, these disjoint vertices in V_1 must be included by any STD-set of $K_{n_1, n_2, \ldots, n_p}$. In order to totally dominates, it is needed a vertex in V_i, $i \neq 1$. Hence, $\gamma_{st}(K_{n_1, n_2, \ldots, n_p}) = n_1 + 1$. \square

Observation 2:[1] Support vertices always in the STD-set of graph.

Observation 3: Let G be an order graph. If $\Delta < n - 1$ then the vertex z must be in the γ_{st}-set of $\mu(G)$.

Proposition 4.5. Let D be a γ_{st}-set of G in $\mu(G)$ then D strongly total dominates $V(G) \cup V(G')$ in $\mu(G)$.

Proof. Let D be a γ_{st}-set of G in $\mu(G)$. According to the form of $\mu(G)$, $N(D) = V(G) \cup V(G')$ where $N(D) = \bigcup_{v \in D} N(v)$. Since $\deg(v) \geq \deg(v')$, $v \in V(G)$ and $v' \in V(G')$, D strongly total dominates $V(G) \cup V(G')$. \square

Proposition 4.6. For special graphs

a. $\gamma_{st}(\mu(P_n)) = \gamma_{st}(P_n) + 1$

b. $\gamma_{st}(\mu(C_n)) = \begin{cases} \gamma_{st}(C_n) + 2, & \text{if } n \equiv 0 \pmod{4} \\ \gamma_{st}(C_n) + 1, & \text{otherwise} \end{cases}$

c. $\gamma_{st}(\mu(K_n)) = 3$

d. $\gamma_{st}(\mu(K_{1,n-1})) = 3$

e. $\gamma_{st}(\mu(W_{1,n-1})) = 3$

f. $\gamma_{st}(\mu(K_{m,n})) = \begin{cases} 4 & \text{if } m = n \\ n + 2, & \text{otherwise} \end{cases}$ for $m \geq n$.

Proof. a. Let D be the γ_{st}-set of $\mu(P_n)$ and S be γ_{st}-set of P_n. From Observation 3, z must be included by D then $|S| < |D|$. From Proposition 4.5, vertices in G and G' are strongly total dominated by S. For totality, at least one vertex must be included by D. Let v' be copy of support vertex v of P_n. 1684
Thus, $D = (S - \{v\}) \cup \{v'\} \cup \{z\}$ is γ_d-set for $\mu(P_n)$ then $\gamma_d(\mu(G)) = |D| = \gamma_d(C_n) + 1$.

b. Let S be γ_d-set of C_n. If $n \neq 0 \pmod 4$ then there exist a vertex $v \in S$ such that $pn[v,S] = \emptyset$. Thus, $(S - \{v\}) \cup \{v'\} \cup \{z\}$ is γ_d-set of $\mu(G)$ where v' is copy of v in $\mu(G)$. Therefore, if $n \neq 0 \pmod 4$, we have $\gamma_d(C_n) = \gamma_d(C_n) + 1$. If $n = 0 \pmod 4$ then for all $v \in S$, $pn[v,S] \neq \emptyset$. Due to the form of $\mu(G)$, $V(G)$ is not strongly dominated by a vertex $v' \in V(G)$. Thus, $S \cup \{v'\} \cup \{z\}$ is γ_d-set of $\mu(G)$. Therefore, if $n = 0 \pmod 4$, we have $\gamma_d(C_n) = \gamma_d(C_n) + 2$.

c.d.e. Let D be γ_d-set of $\mu(G)$ and v be a vertex in G and $\deg v = n - 1$. From Observation 2 and 3, v and z are contained by D. All vertices in $\mu(G)$ are strongly dominated by $\{v\} \cup \{z\}$. For totality at least one vertex from G' must be included by D. Hence, $D = \{v\} \cup \{z\} \cup \{v_i\}$. Finally we have, $\gamma_d(\mu(G)) = 3$.

d. Let $m = n$, from Proposition 4.3, $\gamma_d(K_{m,m}) = 2$. Let S and D be a γ_d-set of $K_{m,m}$ and $\mu(K_{m,m})$, respectively. It is easily to see that $D = S \cup \{u\} \cup \{v\}$. Hence, $\gamma_d(\mu(K_{m,m})) = 4$. Let $m > n$ then due to the degree of vertices, n disjoint vertices in $K_{m,n}$ must be included. For γ_d-set of $\mu(G)$ it is needed two more vertices such that $v' \in V(G)$ and z. Therefore $\gamma_d(\mu(K_{m,n})) = n + 2$ for $m > n$.

Theorem 4.7. Let G be an order graph then $\gamma_d(G) + 1 \leq \gamma_d(\mu(G)) \leq \gamma_d(G) + 2$.

Proof. Let S be a γ_d-set of G. From Proposition 4.5, vertices in G and G' are strongly total dominated by S. All vertices in $\mu(G)$ is also strongly dominated by $S \cup \{z\}$. It is known that for any graph G: $\gamma_d(G) \leq \gamma_d(G)$. The strong total domination number of $\mu(G)$ is at least $\gamma_d(G) + 1$. Therefore, $\gamma_d(G) + 1 \leq \gamma_d(\mu(G))$. Let y_1 be a vertex in G'. It is obvious that $S \cup \{y_1\} \cup \{z\}$ is a γ_d-set of $\mu(G)$. Thus, $\gamma_d(\mu(G)) \leq \gamma_d(G) + 2$.

Theorem 4.8. Let G be an order graph, $\Delta < n - 1$ and $\delta = 1$. Then $\gamma_d(\mu(G)) = \gamma_d(G) + 1$.

Proof. Let S and D be a γ_d-set of G and $\mu(G)$, respectively, and x_i be support vertex then from Observation 2, x_i is contained by S. Also, from Observation 3, z is included by D. Any vertex from G' ensures totality. Therefore, $S \cup \{x_i'\} \cup \{z\}$ is any γ_d-set of $\mu(G)$, where x_i' is copy of x_i. It is obvious that degree of the pendant vertex, denoted by u, less than degree of x_i' in Mycielski’s Graph. Since $N_{\mu(G)}(u) = \{x_i, x_i'\}$, D is not included both x_i and x_i'. Thus, the lower bound of Theorem 4.7 can be obtained as $D = (S - \{x_i\}) \cup \{x_i'\} \cup \{z\}$. Hence, $\gamma_d(\mu(G)) = \gamma_d(G) + 1$.

Proposition 4.9. Let G be an order graph such that at least one vertex has degree $(n - 1)$. Then $\gamma_d(\mu(G)) = 3$.

Proof. Similar proof can be done as shown in case c, d, e of Proposition 4.6. \qed

Remark 4.10. It can be said from Propositions 4.9, if graph contain at least one vertex of degree $n - 1$ then $\gamma_d(\mu(G)) = \gamma_d(G) + 1$.

Theorem 4.11. Let G be a graph and S be a γ_d-set of G. If at least one vertex $u \in S$ such that $pn[u,S] = \emptyset$ then $\gamma_d(\mu(G)) = \gamma_d(G) + 1$.

Proof. Let u' be a vertex in G' that is copy of u. If $pn[u,S] = \emptyset$, then this means that u is not private neighborhood of any vertex in G. The vertex u is contained by S due to totality. From Proposition 4.5, $(S - \{u\}) \cup \{u'\}$ strongly total dominates $V(G) \cup V(G')$. Therefore, $(S - \{u\}) \cup \{u'\} \cup \{z\}$ is a γ_d-set of $\mu(G)$. Hence, $\gamma_d(\mu(G)) = \gamma_d(G) + 1$.

Let $SS(G)$ be the set of all vertices $v \in V(G)$ such that $\deg(v) > \deg(u)$ for every $u \in N(v)$. $SS(G)$ may be empty. If $SS(G) \neq \emptyset$ then it is included by every STD set of G.

5. Conclusion

Mycielski present a construction that increase chromatic number [10]. This construction has been taken attention and beside chromatic number, there have been many results about various parameters of Mycielski’s graphs in literature. However, there exist considerably fewer research on strong total and weak total domination numbers. In this paper, strong total domination and weak total domination of Mycielski’s graph was investigated and also the strong and weak total domination numbers of Mycielski’s graph, $\mu(G)$, associated with strong and weak total domination of underlying graph, G. This provides a good starting point for discussion and further research. Future research on strong total and weak total domination number might extend the explanations of some graph operations.

References

[1] M.H. Akhbari and N. Jafari Rad, Bounds on weak and strong total domination number in graphs, *Electronic Journal of Graph Theory and Applications*, 4(2016), 111-118.

[2] S. Balamurgan, M. Anitha and N. Anbazhagan, Various domination parameters in Mycielski’s graphs, *International Journal of Pure and Applied Mathematics*, 119(2018), 203-211.

[3] M. Chellali and N. Jafari Rad, Weak total domination in graphs, *Utilitas Mathematica*, 94(2014), 221-236.

[4] E.J. Cockayne, R.M. Dawes, S.T. Hedetniemi, Total Domination in graphs, *Networks*, 10(1980), 211-219.

[5] D.C. Fisher, P.A. McKenna, E.D. Boyer, Hamiltonicity, diameter, domination, packing, and biclique partitions of Mycielski’s graph, *Discrete Applied Mathematics*, 84(1998), 93-105.
[6] T.W. Haynes, S.T. Hedetniemi, P.J. Slater (Eds.) Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, 1998.

[7] T.W. Haynes, S.T. Hedetniemi, P.J. Slater (Eds.) Domination in Graphs: Advanced Topics, Marcel Dekker, Inc., New York, 1998.

[8] N. Jafari Rad, On the complexity of strong and weak total domination in graphs, Australasian Journal of Combinatorics, 65(2016), 53-58.

[9] D.A. Mojdeh and N. Jafari Rad, On Domination and its Forcing in Mycielski’s Graphs, Scientia Iranica, 15(2008), 218-222.

[10] J. Mycielski, Sur le coloriage des graphs, Colloq. Math., 3(1955), 161-162.

[11] E. Sampathkumar and L. Pushpa Latha, Strong, weak domination and domination balance in graphs, Discrete Math., 161(1996), 235-242.

ISSN(P):?
Malaya Journal of Matematik
ISSN(O):?
