Astroglia or astrocytes, the most abundant cells in the brain, are interposed between neuronal synapses and microvasculature in the brain gray matter. They play a pivotal role in brain metabolism as well as in the regulation of cerebral blood flow, taking advantage of their unique anatomical location. In particular, the astroglial cellular metabolic compartment exerts supportive roles in dedicating neurons to the generation of action potentials and protects them against oxidative stress associated with their high energy consumption. An impairment of normal astroglial function, therefore, can lead to numerous neurological disorders including stroke, neurodegenerative diseases, and neuroimmunological diseases, in which metabolic derangements accelerate neuronal damage. The neurovascular unit (NVU), the major components of which include neurons, microvessels, and astroglia, is a conceptual framework that was originally used to better understand the pathophysiology of cerebral ischemia. At present, the NVU is a tool for understanding normal brain physiology as well as the pathophysiology of numerous neurological disorders. The metabolic responses of astroglia in the NVU can be either protective or deleterious. This review focuses on three major metabolic compartments: (i) glucose and lactate; (ii) fatty acid and ketone bodies; and (iii) D- and L-serine. Both the beneficial and the detrimental roles of compartmentalization between neurons and astroglia will be discussed. A better understanding of the astroglial metabolic response in the NVU is expected to lead to the development of novel therapeutic strategies for diverse neurological diseases.

Key words: astrocyte, D-serine, ketone body, lactate, neurovascular unit (NVU).

INTRODUCTION

Astroglia are one of the three types of glial cells in the brain: astroglia (astrocytes), oligodendroglia (oligodendrocytes), and microglia. Astroglia are the most abundant cells in the human brain and outnumber neurons by a factor of 1.4 in the human cerebral cortex. In addition, their unique anatomical location, which is interposed between neurons and cerebral microvessels and was depicted more than 100 years ago in a sketch by a legendary neuropathologist, Santiago Ramón y Cajal, has been attracting the attention of many neuroscientists. In fact, neurons do not have any direct contact with microvessels despite their strict dependence on a continuous supply of glucose and oxygen from outside the brain through the cerebral blood flow. In contrast, 99% of the surfaces of brain capillaries are covered by astroglial foot processes (end-feet), indicating that all essential materials supplied from the cerebral circulation must interact with astroglia before reaching the neurons. The other side of the astroglial end-feet envelopes synapses in the brain cortex. Thus, synapses composed of presynaptic and postsynaptic neurons as well as astroglial end-feet are known as tripartite synapses. Moreover, astroglial cells are connected to each other via gap junctions with connexin 43 channels, forming a functional synctium overall.

The cardinal roles of astroglia in tripartite synapses are the maintenance of normal synaptic function through metabolic support by taking advantage of their anatomical location, which is interposed between synapses and microvessels. Accumulating evidence supports the notion that astroglia are also key players in the regulation...
of cerebral blood flow.15–20 The neurovascular unit (NVU) is a conceptual framework that was originally used to better understand the pathophysiology of cerebral ischemia.21–23 Now, the NVU is a tool that can be used to understand normal brain physiology as well as the pathophysiology of numerous neurological disorders.24–29 Conversely, the malfunction of astroglia in the NVU (i.e., “astrogliopathy”)30–34 induces neuronal dysfunction, leading to various neurological disorders including cerebrovascular disease (e.g., stroke and small vessel disease-likeBinswanger’s disease and cerebral autosomal-dominant arteriopathy with subcortical infarct and leukoencephalopathy [CADASIL]),35 cerebral autosomal recessive arteriopathy with subcortical infarct and leukoencephalopathy [CARASIL]),36,37 neurodegenerative disease (e.g., Alzheimer’s disease,38,39 Parkinson’s disease,40,41 and amyotrophic lateral sclerosis [ALS]),42–44 and neuroimmunological disease (e.g., multiple sclerosis [MS],45–48 neuromyelitis optica spectrum disorder [NMOSD]).49,50 This review will focus on the supportive roles of astroglia in the NVU from the perspective of three major metabolic compartments with neurons: (i) glucose and lactate; (ii) fatty acid and ketone bodies (KBs); and (iii) D- and L-serine.

GLUCOSE AND LACATE

Oxidative metabolism of glucose is mandatory for generating action potentials

The adult human brain weighs approximately 2\% of the total body weight and consumes 25\% of the total body glucose consumption and 20\% of the oxygen consumption. More precisely, the cerebral metabolic rate of glucose consumption (CMRglc) and oxygen (CMRO2) in the adult brain is 31 pmol/100 g/min and 156 pmol/100 g/min, respectively.51,52 The ratio of CMRO\textsubscript{2}/CMRglc at resting state is approximately 5.5, which is close to 6.0, the theoretical stoichiometry for the complete oxidation of glucose with oxygen (C\textsubscript{6}H\textsubscript{12}O\textsubscript{6} + 6O\textsubscript{2} → 6CO\textsubscript{2} + 6H\textsubscript{2}O). The measured data indicate that almost all glucose is metabolized oxidatively except for the consumption of some additional glucose for non-oxidative metabolism. In fact, the brain is strictly dependent on glucose for its energy production.51,52 High CMRO\textsubscript{2} and CMRglc levels produce ATP efficiently with a ratio of 6.0, driving Na+,K+-ATPase to maintain a steep ionic gradient across the cellular membrane. When an action potential is generated, a rapid influx of Na+ and a slow efflux of K+ follow. The functional activation of the brain is locally related to glucose consumption, indicating that glucose utilization in the whole brain reflects mainly the neuronal consumption of glucose.

Glucose utilization by astroglia

Using fluorescently labeled glucose analogs, the cellular uptake of glucose can be evaluated in the brain cortex in vivo.53,54 Glucose uptake occurs in neurons and astroglia via different glucose transporters (GLUTs), that is, GLUT3 and GLUT1, respectively (Fig. 1).55,56 Since GLUT1 is also expressed in endothelial cells in brain capillaries, glucose supplied by the cerebral circulation can cross the blood–brain barrier (BBB). The congenital deficiency of GLUT1 induces intractable seizures beginning in infancy as well as mental retardation because of the unavailability of glucose to neural cells arising from limited glucose transportation through the endothelium.57,58 Surprisingly, the brain has almost no storage of glucose, and glucose must be supplied continuously via the blood circulation.53,54 More precisely, astroglia contain small amounts of glucose in the form of glycogen granules in their cell bodies.59 Glycogen is degraded by a glycogen phosphorylase (glycogenolysis), which is the astroglia-specific enzyme, forming glucose-1-phosphate (G1P).60 G1P then enters the glycolytic metabolic pathway in astroglia (Fig. 2). A total amount of glycogen content measured in the brain can maintain its function for only 3 min, based on the CMRglc.61 If glucose derived from astroglial glycogen was available for neurons, it would be of some help. Unfortunately, G1P cannot cross the cell membrane because of its low lipid solubility. Instead, lactate or pyruvate, the end-products of glycolysis, can exit astroglia via monocarboxylate transporter 1 (MCT1) and MCT4; they can then re-enter neurons via monocarboxylate transporter 2 (MCT2), which is utilized as an energy source for neuronal tricarboxylic acid (TCA) cycle substrates (Fig. 1).62–64 Not only glycogen-derived lactate/pyruvate, but also lactate/pyruvate from blood-supplied glucose can be transferred to the neurons (Fig. 2).65 If this intercellular compartmentalization between neurons and astroglia operates in the resting and/or activated brain, the measured CMRglc would reflect mainly astroglial glucose utilization, since neurons utilize lactate derived from astroglia. This hypothetical model, termed the “astrocyte-neuron lactate shuttle hypothesis (ANLSH))”, was originally proposed by Pellerin and Magistretti in 1994 based on data obtained using cultured cells66 and was supported by our findings67,68 but has remained controversial for more than a quarter of a century.69,70

Aerobic glycolysis in astroglia

Astroglia seem to be more strictly dependent on glucose, and their metabolism, at least in cultured astroglia in vitro, seems to be more glycolytic than that in cultured neurons.71 In fact, astroglia can survive if mitochondrial oxidative
metabolism is inhibited, while neurons cannot. Glucose uptake or utilization (phosphorylation by hexokinase [HK]) can be quantified using cultured astroglia and neurons in vitro and in vivo using modern molecular techniques, while the quantitation of oxygen consumption is more difficult. However, importantly, the importance of the ANLSH is the capacity for lactate production by astroglia irrespective of an adequate supply of oxygen, that is, aerobic glycolysis. Although under cerebral ischemia, both astroglia and neurons produce large amounts of lactate that

Fig. 1 Metabolic compartment of glucose between astroglia and neurons in the neurovascular unit (NVU). Astroglia are interposed between microvessels and neuronal synapses, forming the NVU. Glucose supplied from outside the brain can be transported to and utilized by both astroglia and neurons (red lines). Glucose utilization by cultured astroglia (2–3 pmol/μg protein: red line) is two times higher than that in cultured neurons (1 pmol/μg protein: red broken line), and astroglia produce lactate even under normoxic conditions (aerobic glycolysis). Neuronal activation induces glutamate release from the pre-synaptic nerve terminal; the glutamate is then taken up by astroglia, and this uptake, in turn, accelerates glucose consumption, leading to further lactate release. Lactate, then, serves as an energy substrate for neurons (astrocyte-neuron lactate shuttle hypothesis, ANLSH). The basal pentose-phosphate pathway (PPP) flux measured in cultured astroglia is approximately seven times higher than that in cultured neurons. Neuronal activation induces astroglial glycolysis, leading to increased flux to the PPP. Increases in NADPH in astroglia serve as a redox regulator that maintains the reduced form of glutathione.

Fig. 2 Glycogen deposits in astroglia are a potential source for lactate production. An astroglia-specific enzyme, glycogen phosphorylase, degrades glycogen deposits in astroglia. In addition to glucose-derived glucose-6-phosphate (pink arrow), glycogen-derived glucose-1-phosphate (green arrow) is metabolized in a glycolytic pathway, producing lactate. When astroglia are cultured under high glucose conditions, the glycogen content and lactate production both increase.

© 2020 The Author. Neuropathology published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Neuropathology.
accumulate in tissues, experimental data show that astroglia in vitro produce a large amount of lactate under normal (21%) oxygen environments. In similar environments, cultured neurons produce less lactate from glucose. These phenomena have led to the hypothesis that glucose supplied from the cerebral circulation is taken up by mainly astroglia taking advantage of their anatomical location and is metabolized in astroglia to produce lactate, which is exported to neurons via MCT1 and 4. Neurons can technically utilize both glucose and lactate, as they express both GLUT3 and lactate transporter (MCT2). In contrast to GLUT1 deficiency, the congenital deficiency of neuron-specific GLUT has not been reported. Only a mouse model of GLUT3-knockout (KO) has been reported to exhibit autism-like phenotypes, suggesting that neurons can survive without glucose under an environment where lactate is available. In fact, neuronal lactate dehydrogenase (LDH) isoenzyme favors the conversion of lactate to pyruvate, while astroglial LDH isozyme favors the formation of lactate from pyruvate. Supporting this notion, in vitro studies show that glucose consumption by neurons and that by astroglia are similar when lactate is not available. However, interestingly, when both glucose and lactate are available, cultured neurons preferentially utilize lactate as the TCA cycle substrate.

The ANLSH emphasizes that astroglial lactate production is enhanced by glutamate stimulation in association with neuronal activation. Glutamate released from pre-synaptic neurons is taken up by astroglia and recycled back to neurons (glutamate-glutamine cycle). Some of the glutamate in astroglia is converted to α-ketoglutarate, which enters the TCA cycle (red line) as an intermediate substrate, leading to astroglial lactate production by malic enzyme. Glutamate released from activated pre-synaptic neurons is known to be rapidly taken up by astroglia that envelop the synapse, leading to astroglial lactate production by malic enzyme. Glutamate released from pre-synaptic neurons is taken up by astroglia and recycled back to neurons (glutamate-glutamine cycle). Some of the glutamate in astroglia is converted to α-ketoglutarate, which enters the TCA cycle (red line) as an intermediate substrate, leading to astroglial lactate production by malic enzyme.

Dual roles of lactate

Irrespective of accumulating evidence supporting the ANLSH, the fate of lactate, if it is really produced by

© 2020 The Author. Neuropathology published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Neuropathology.
Astroglia and neurovascular unit

Astroglia via a glutamate signal from activated neurons, has remained a matter of controversy for more than 25 years. The original ANLSH followed by numerous reports proposed that activated neurons consume lactate produced by astroglia. A strong argument for this is based on a kinetic property of MCT2 expressed in neurons, which has a low kilometer value. The transportation of lactate into neurons becomes saturated at a low concentration of lactate, and neurons cannot utilize additional lactate even if it is produced by activated astroglia.

Conversely, whether neuronal ATP production is exclusively dependent on the uptake of glucose by neurons remains uncertain. The in vivo truth remains to be clarified.

Another possible role of lactate is as a ligand of hydroxy-carboxylic acid receptor 1 (HCAR1) expressed in neurons. HCAR1, a G-protein coupled receptor, suppresses neuronal excitability by increasing the intracellular cAMP concentration. Irrespective of the origin of lactate, direct evidence supports that extracellular lactate regulates synaptic activity (i.e., mainly inhibitory effects) and that the disinhibition of neuronal excitation can cause intractable epilepsy. Assuming that lactate is mainly produced by astroglia, the impairment of lactate production by astroglia can lead to neuronal damage through hyper-excitation (i.e., excitotoxicity). In fact, neuronal degeneration in ALS, in which an unknown mechanism induces motor neuron death, has been hypothesized to be induced by the impairment of astroglial glutamate uptake as well as the hyper-excitation of spinal motor neurons.

Astroglial lactate production, especially that derived from glycogen (i.e., glycogenolysis), has been implicated in the formation of long-term memory. The exact mechanism by which lactate consolidates memories has not been elucidated and remains somewhat controversial. Several experiments support the idea that lactate produced in astroglia may serve as an energy source for neuronal synapse remodeling and gene expression, but not for the TCA cycle. The role of lactate as a ligand for HCAR1 remains to be elucidated.

Neuroprotective roles of astroglial glycolysis and PPP

Of note, the functional activation of neurons increases glucose utilization locally, and both neurons and astroglia contribute to glucose consumption. We have focused on the roles of glucose metabolism, especially glycolysis in astroglia, from the perspective of their supportive aspects in the protection of neurons against oxidative stress. Neuronal energy production is dependent on mitochondrial oxidative metabolism, which produces small amounts of reactive oxygen species (ROS). Oxidative stress has been implicated in the pathogenesis of numerous neurological disorders (i.e., stroke, ALS, Parkinson’s disease) as well as normal aging of the brain. The glutathione system acts as an intrinsic protective mechanism. Glutathione peroxidase reduces ROS by converting it to H2O2 in concert with the conversion of a reduced form of glutathione (GSH) to an oxidized form (GSSG). The maintenance of the GSH concentration is dependent on nicotinamide adenine dinucleotide phosphate (NADPH), a product of the pentose-phosphate pathway (PPP), which is a shunt pathway of glycolysis (Fig. 1). Therefore, the influx of the PPP in glycolysis is an index of PPP activity and reflects the anti-oxidative function of many kinds of cells. PPP flux is regulated by glucose-6-phosphate dehydrogenase (G6PDH), which is a rate-limiting enzyme of this shunt pathway. The basal influx to the PPP in astroglia is approximately seven times as high as that in neurons, suggesting that glycolysis has anti-oxidative roles in astroglia.

Increased glucose phosphorylation by HK leads to PPP flux through the allosteric regulation of G6PDH. Thus, a high glucose environment can activate PPP flux in astroglia. In diabetic patients, a high plasma glucose concentration is associated with a high glucose content in the brain because of the facilitated diffusion of glucose by GLUT1. Whether a high glucose level in the brain readily increases glucose phosphorylation is debatable. Because the Km (Michaelis constant) of HK is low, in clear contrast to glucokinase (GK) in the liver, glucose phosphorylation becomes saturated at a low glucose concentration. The existence of high-Km HK in the brain has been postulated. Our study showed that PPP flux increases according to the glucose concentration in an assay solution. These observations might reflect the presence of high-Km GK, like HK, in the brain. If this is true for in vivo brain, neuronal activation would induce astroglial glucose utilization via glutamate, leading to astroglial PPP activation. Importantly, the synthetic activity of glutathione, which consists of three amino acids, glutamine, cysteine, and alanine, is higher in astroglia than in neurons. As mentioned above, the glycolytic activity as well as the PPP flux are dominant in astroglia, leading to the anti-oxidative mechanism in astroglia. When glutathione is synthesized, it must be transferred in a reduced form. In addition, the reduced form of GSH itself can exert an anti-oxidative role (see dopamine-induced neurotoxicity).

Transcriptional regulation of PPP flux by the Keap1/Nrf2 system

Another mechanism of PPP flux regulation is the transcriptional control of a key PPP enzyme. The rate-limiting
enzyme of PPP flux is G6PDH, and its transcription is under the control of the transcriptional factor nuclear factor-erythroid-2-related factor 2 (Nrf2).118,119 Nrf2 is anchored by an adaptor protein of Kelchlike ECH-associated protein 1 (Keap1) in the cytosol. As a complex, Keap1/Nrf2 is degraded constantly by the proteasome system, and Nrf2 is not in an active state in terms of transcriptional control. When cells are exposed to various stress, a conformational modification of Keap1 or Nrf2 occurs and results in dissociated Nrf2 being released and binding to the antioxidant response element (ARE), where it initiates the transcription of anti-stress response proteins including G6PDH.118–121 Importantly, glutathione synthesis enzymes are also under the regulation of the Keap1/Nrf2 system. Astroglial glycolysis and its shunt pathway, the PPP, seem to play an important role in protecting neurons against oxidative stress through the Keap1/Nrf2 system.30,31

Dopamine released from dopaminergic neurons is known to be auto-oxidized to form dopamine quinone and ROS, which, in turn, damage neurons. Astroglia releases GSH and reduces dopamine-induced ROS toxicity in Nrf2-dependent manners. We have found that astroglia protect neurons against dopamine exposure by reducing ROS, while astroglia prepared from Nrf2-KO mice are incapable of such activity.34 An \textit{in vivo} model supports the notion that Nrf2-KO mice are susceptible to a Parkinson’s disease-like phenotype and that an Nrf2 activator can modify the progression of Parkinson’s disease.34

Neuro-inflammation plays a cardinal role in the pathogenesis of stroke.33,122–124 During the early phase of stroke, ischemic cell damage makes neurons release various kinds of molecules, such as damage-associated molecular pattern, which, in turn, act as Toll-like receptor 4 (TLR4) ligands. Microglia in which TLRs are expressed abundantly produce various pro-inflammatory cytokines, accelerating neuronal damage. Nitric oxide (NO) is thought to be one of the molecules that plays a pro-inflammatory role.122–124 Such actions of microglia switch astroglia from acting as neuroprotectors to acting as neurodamagers.125 However, we found that upon stimulation with lipopolysaccharide (LPS), a classical TLR ligand, microglia produce NO that diffuses into astroglia, activating the PPP through the S-nitrosylation of Keap1, which facilitates Nrf2 translocation to the nucleus and triggers G6PDH transcriptional activation.33

FATTY ACID AND KB

KBs produced from fatty acids serve as energy substrates for neurons

Fatty acids and KBs form the second metabolic compartment between neurons and astroglia (Fig. 4).126–131 KBs, consisting of acetoacetate (AA), acetone, and β-hydroxybutyrate (BHB), are alternative substrates for glucose. KBs, rather than glucose, are the main energy substrates in the brains of infants. KBs and lactate share the same MCTs. In adults, KBs are produced in the liver under reduced glucose availability, such as starvation and insulin resistance. KBs produced in the liver are transported into the brain where they are utilized by neurons as well as glial cells as substrates for the TCA cycle. After being taken up by neural cells via MCT1 or MCT2, KBs are converted to acetyl-CoA; a further metabolic process subsequently occurs in the TCA cycle (Fig. 5). In contrast to lactate or pyruvate, which must also be converted to acetyl-CoA by pyruvate dehydrogenase complex (PDHC) before entering the TCA cycle, KBs do not require PDHC activity. PDHC is a key enzyme in glucose metabolism that links glycolysis and the TCA cycle. Despite being of vital importance, PDHC is susceptible to oxidative stress (Fig. 5).32,132,133 Therefore, neurons are not capable of utilizing lactate, which accumulates during

© 2020 The Author. *Neuropathology* published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Neuropathology.
cerebral ischemia, after reperfusion (re-oxygenation) because of PDHC impairment, with ROS being produced in association with the resupply of O2 to damaged tissue.

In contrast, KBs, for which PDHC is not required to enter the TCA cycle, can serve as energy substrates for the mitochondrial TCA cycle in neurons after re-oxygenation. In addition, KBs play neuroprotective roles in several different ways. More importantly, KBs can be supplied from inside the brain: astroglia are capable of generating KBs and together form a metabolic compartment with neurons (Fig. 4). KBs are produced from fatty acids as well as an amino acid (leucine). The main sources of KB production are long-chain fatty acids. We have evaluated KB production from palmitic acid in astroglia, compared with that in neurons, and our results suggested that KB produced in astroglia can serve as an alternative energy substrate for the TCA cycle in neurons.

Astroglia produce KBs that act on neurons through transporters and receptors

Fatty acids are bound to albumin in the blood, and only free fatty acids can cross the BBB. Although the brain levels of soluble fatty acids have not been reported, fatty acids have long been known to be BBB permeable. Neural cells also reportedly express fatty acid-binding proteins (FABPs) that take up free fatty acids. Long-chain fatty acids (> 12 carbons) such as palmitic acid (PAL, 16 carbons), a predominant fatty acid in the body, are then metabolized to produce long-chain fatty acid acyl-CoA. Fatty acid acyl-CoA is then transported into mitochondria by carnitine palmitoyltransferase I (CPT-I), which exists in the outer membrane of mitochondria and undergoes β-oxidation. Because astrocytes envelop microvessels in the brain, they are likely to be the main site of fatty acid metabolism in the brain (Fig. 6).

The initial step is β-oxidation, and we measured KB production using 14C-labeled palmitic acid. Long-chain fatty acids (e.g., PAL) are an important source for KB production. Although FABP is reportedly expressed in the endothelium and helps with the transportation of fatty acids into the brain, the kinetic properties of the transportation of long-chain fatty acids into the brain remains a topic of debate. Another source of KB production in the brain is amino acids. Leucine can be converted to KB.

KB production by astroglia is regulated by AMP-dependent kinase (AMPK), an energy sensor in cells (Fig. 7). When astroglia are exposed to hypoxia and/or hypoglycemia, KB production by astroglia is stimulated by metformin, an oral diabetic drug. Guzmán and Blázquez reported that AMPK regulates astroglial ketogenesis by phosphorylating acetyl-CoA carboxylase (ACC), thereby inhibiting ACC activity and reducing cytosolic malonyl-CoA—a major physiological inhibitor of CPT-I (a rate-limiting enzyme of fatty acid metabolism). In fact, 5-amino-1-β-D-ribofuranosylimidazole-4-carboxamide (AICAR), a cell-permeable analog of AMP that activates AMPK, enhances ketogenesis in astroglia. Because AMPK is a sensor of AMP/ATP and acts as an indicator of the energy reserve in cells, Guzmán and Blázquez speculated that hypoxia/ischemia may stimulate astroglial ketogenesis; they proved that chemical hypoxia induced by 1 mmol/L.

© 2020 The Author. Neuropathology published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Neuropathology.
of NaN₃, which inhibits cytochrome oxidase and thus the mitochondrial respiratory chain, for 1 h did indeed enhance ketogenesis in cultured astroglia.

We previously reported that hypoxia and/or hypoglycemia enhances astroglial KB production in vitro and that metformin, an AMPK activator, also induces KB production in astroglia (Fig. 7). Moreover, neurons that had been exposed to hypoxic conditions exhibited reduced oxidative capacities for lactate and pyruvate, while the oxidation of BHB was preserved, suggesting astroglial metabolic support through KB production under ischemia/reperfusion. Even without the presence of long-chain fatty acids, astroglia are capable of producing KBs from leucine, although the physiological relevance of this mechanism remains to be determined.

BHB as a ligand for HCAR2

The recent discovery that BHB acts as an endogenous ligand for hydroxybutyrate carrier 2 (HCAR2)
has expanded the role of BHB beyond that of a mere energy substrate. An experimental ischemic model showed that the activation of HCAR2 reduced the infarct volume, and this beneficial effect was lost in animals with the genetic deletion of HCAR2. Interestingly, HCAR2 was expressed mostly in peripheral blood cells. Astroglia-derived BHB can activate HCAR2 in brain cells more efficiently, and accumulating evidence suggests that microglia in the brain also express HCAR2.

AMINO ACID AND D-/L-SERINE

Glutamate and NMDA receptor co-agonists

Glutamate plays a cardinal role in synaptic function through glutamate receptors in postsynaptic neurons. Especially, the N-methyl-D-aspartate (NMDA) receptor can act as a double-edged sword. The NMDA receptor is necessary for normal memory function, and NMDA deficits can induce psychiatric disorders. In contrast, overstimulation of the NMDA receptor induces Ca²⁺ influx and leads to neuronal death, that is, excitotoxicity. These two faces of the glutamate-NMDA receptor’s nature make it difficult to use NMDA antagonists as neuroprotective agents against stroke and neurodegenerative diseases, even though NMDA blockers do exert strong neuroprotection. Another aspect of the NMDA receptor is the discovery of co-agonists that work in concert with glutamate. At present, two different co-agonists have been identified: D-serine and glycine. The former acts as a co-agonist of glutamate in synaptic NMDA receptors, and the latter acts in extra-synaptic NMDA receptors.

D-serine is converted from L-serine in pre-synaptic neurons

D-serine is an enantiomer of L-serine and is thought to be converted from L-serine by serine racemase (SRR). SRR is almost exclusively expressed in pre-synaptic neurons, indicating that pre-synaptic neurons release both glutamate and D-serine into the synaptic cleft and modulate postsynaptic function (Fig. 8). Of note, L-serine is more abundant in astroglia than in neurons. The de novo synthesis of L-serine occurs exclusively in astroglia, and its synthetic pathway branches at glycolysis, implying the presence of another metabolic compartment between neurons and astroglia (Fig. 8). Following the first report of the effect of SRR deletion on ischemic brain damage, we have evaluated the neuroprotective effect of the elimination of D-serine in a mouse ischemic stroke model. SRR-KO mice exhibited smaller infarct volumes and better functional recovery, compared with control mice, after experimental middle cerebral artery occlusion and reperfusion, indicating that D-serine deletion can, at least in stroke, be used as a neuroprotective strategy. However, L-serine deletion does not necessarily enable neuroprotection.

De novo synthesis of L-serine in astroglia and possible neuroprotection

L-serine is produced in astroglia from the glycolytic pathway via enzyme 3-phosphoglycerate dehydrogenase (3PGDH). The astrocyte-specific knockout of this enzyme dramatically reduces L-serine in the brain and probably also reduces D-serine in neurons. Using the middle cerebral artery occlusion (MCAO) model, the effect of reducing L-serine on the stroke volume was evaluated. Surprisingly, the infarct volume was not significantly reduced, suggesting an opposite function, that is, neuroprotection, of L-serine (unpublished data). In fact, Wang et al. found that L-serine infusion reduced the infarct volume in a mouse MCAO model, and they speculated that this action of L-serine may be dependent on a vasodilatory effect, since L-serine increases cerebral blood flow. Furthermore, a neuro-restorative role of L-serine, in addition to its neuroprotective role, has been postulated.

SUMMARY AND UNSOLVED ISSUES

Metabolic interaction between astroglia and neurons

Accumulating evidence indicates astroglial metabolic supports through at least three compartments under both normal physiological as well as pathophysiological conditions. The cardinal metabolic compartments are as follows: (i) glucose and lactate; (ii) fatty acids and K Bs; and (iii) D- and L-serine. Of note, most available evidence is based on in vitro studies using rodent neural cell cultures. A major criticism is that rodent neurons and astroglia might not be an appropriate model for human brain cells. In particular, the high glycolytic metabolic activity with lactate production might be a characteristic of rodent cell cultures only. Recent technology utilizing induced-pluripotent stem cells (iPSCs) has enabled us to evaluate human neurons and astroglia in vitro. Thus far, only a limited number of studies have focused on the metabolic compartments between these types of cells. We recently induced cortical astroglia and spinal motor neurons from iPSCs prepared from normal healthy adults and measured the glycolytic activities of both cell types. So far, the astroglial glycolytic capacity seems to be higher than the neuronal capacity (unpublished data). Further confirmation of these findings using in vivo human brain studies is warranted.

© 2020 The Author. Neuropathology published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Neuropathology.
Compartmentalization between oligodendroglia and astroglia

In the white matter of the brain, the axons of neurons are myelinated by oligodendrocytes, which enable saltatory conduction. Similar to the gray matter of the brain, small vessels are completely covered by astroglial end-feet. Thus, substrates for energy production as well as structure construction must be supplied through the astroglia to the oligodendroglia. More precisely, at Ranvier nodes, where the ionic flux is most active, the astroglial end-feet are in direct contact with axons. Assuming that axons utilize lactate preferentially as an energy substrate for the TCA cycle, how lactate is supplied to the axons is an interesting and unsolved issue: is lactate supplied by oligodendroglia or astroglia? Astroglia can supply lactate directly at Ranvier nodes, similar to their actions at tripartite synapses. However, a recent report has elucidated that oligodendroglia metabolize glucose glycolytically to produce lactate. Glucose supplied from microvessels can be used as a direct substrate for oligodendroglia to support neuronal energy metabolism. The CMR of glucose in the white matter is much less than that in the gray matter, and the exact contributions of astroglia, oligodendroglia, and neurons (axons) to CMR of glucose transport to oligodendroglia and neurons remain to be solved.

The fate of KBs produced in astroglia in the white matter should be evaluated from the perspective of myelin formation. KBs can be utilized in lipid synthesis for the cell membrane. Membrane formation is dependent on cholesterol, which can be supplied directly from astroglia as KBs. A dysfunction in cholesterol trafficking has been implicated in memory impairment. How astroglial metabolic support is needed for myelination by oligodendroglia remains to be elucidated.

Energy metabolism in microglia

Microglia are the last type of glial cells in the brain. Although the origin of this type of glial cells seems to differ from that of other glial cells, microglia reside in the brain during the early developmental stage and play a pivotal role in the immunological response of the brain by regulating synaptic pruning and scavenging damaged neurons. As mentioned in previous chapters, microglia have a strong influence on astroglial responses of either a harmful or beneficial nature. We have examined the interaction between astroglia and microglia via NO. Upon stimulation by LPS, a classical ligand of TLR4, microglia are activated to produce NO which, in turn, induces neuroprotective astroglia through the Keap1/Nrf2 system. Moreover, LPS stimulation activates NADPH oxidase (NOX), which is highly expressed in microglia. In fact, microglia have a strong capacity to produce ROS and, therefore, the anti-oxidative system should also be equipped to protect itself. A limited number of studies have revealed that the microglial PPP is active probably to keep the glutathione system active, as in astroglia. Our observations suggest that the microglial PPP flux is as high as the astroglial one (unpublished data), suggesting a high glycolytic metabolism in microglia.

Another issue to be solved is how microglial energy production is regulated in the light of physiological and pathophysiological aspects. Namely, microglia can be ameboid in shape and can travel upon various stimulations. The physical movement of cells requires more energy than that of cells in a quiescent state. Whether microglia utilize glucose in the extracellular space or lactate or KBs is an interesting question that remains to be answered. Fatty acids could be another candidate, as cardiac and skeletal muscles preferentially utilize fatty acids over glucose. The alteration of MCT expression in microglia has been
reported, indicating that lactate or KBs may also be energy substrates for microglial energy metabolism.\\(^{18}\)

ACKNOWLEDGMENT

The author thanks the Departments of Neurology and Physiology, Keio University School of Medicine, for their support. This work was supported in part by JSPS KAKENHI Grant Number 19K08002 and 17K09762.

DISCLOSURE

The author declares no conflict of interest.

REFERENCES

1. Somjen GG. Nervenkitt: Notes on the history of the concept of neuroglia. *Glia* 1988; 1: 2–9.
2. Nedergaard M, Ransom B, Goldman SA. New roles for astrocytes: Redefining the functional architecture of the brain. *Trends Neurosci* 2003; 26: 523–530.
3. Allen NJ, Barres BA. Neuroscience: Glia - more than just brain glue. *Nature* 2009; 457: 675–677.
4. Peters A, Palay SL, Webster HD. The Fine Structure of the Nervous System: Neurons and their Supporting Cells, 3rd edn. New York: Oxford University Press, 1991.
5. Pope A. Neuroglia: quantitative aspects. In: Schoffeniels E, Franck G, Hertz L, Tower DB, (eds). *Dynamic Properties of Glia Cells*. Pergamon: Oxford, 1978.
6. García-Marín V, García-López P, Freire M. Cajal's contributions to glia research. *Trends Neurosci* 2007; 30: 479–487.
7. Mathiisen TM, Lehre KP, Danbolt NC, Ottersen OP. The perivascular astroglial sheath provides a complete covering of the brain microvessels: An electron microscopic 3D reconstruction. *Glia* 2010; 58: 1094–1103.
8. Araque A, Parpura V, Sanzgiri RP, Haydon PG. Tripartite synapses: Glia, the unacknowledged partner. *Trends Neurosci* 1999; 22: 208–215.
9. Eroglu C, Barres BA. Regulation of synaptic connectivity by glia. *Nature* 2010; 468: 223–231.
10. Dermietzel R, Hertberg EL, Kessler JA, Spray DC. Gap junctions between cultured astrocytes: Immuno-cytochemical, molecular, and electrophysiological analysis. *J Neurosci* 1991; 11: 1421–1432.
11. Enkvist MO, McCarthy KD. Astroglial gap junction communication is increased by treatment with either glutamate or high K+ concentration. *J Neurochem* 1994; 62: 489–495.
12. Giaume C, Koulaouz A, Roux L, Holcman D, Rouach N. Astroglial networks: A step further in neuroglial and gliovascular interactions. *Nat Rev Neurosci* 2010; 11: 87–99.
13. Escartin C, Rouach N. Astroglial networking contributes to neurometabolic coupling. *Front Neuroenergetics* 2013; 5: 4. https://doi.org/10.3389/fnene.2013.00004
14. Charvériat M, Naus CC, Leybaert L, Sáez JC, Giaume C. Connexin-dependent Neuroglial networking as a new therapeutic target. *Front Cell Neurosci* 2017; 11: 174. https://doi.org/10.3389/fncel.2017.00174
15. Paulson OB, Newman EA. Does the release of potassium from astrocyte endfeet regulate cerebral blood flow? *Science* 1987; 234: 896–898.
16. Harder DR, Alkayed NJ, Lange AR, Gebremedhin D, Roman RJ. Functional hyperemia in the brain: Hypothesis for astrocyte-derived vasodilator metabolites. *Stroke* 1998; 29: 229–234.
17. Zonta M, Angulo MC, Gobbo S et al. Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. *Nat Neurosci* 2003; 6: 43–50.
18. Jakovec D, Harder DR. Role of astrocytes in matching blood flow to neuronal activity. *Curr Top Dev Biol* 2007; 79: 75–97.
19. Filosa JA, Morrison HW, Iddings JA, Du W, Kim KJ. Beyond neurovascular coupling, role of astrocytes in the regulation of vascular tone. *Neuroscience* 2016; 323: 96–109.
20. Cauli B, Hamel E. Brain perfusion and astrocytes. *Trends Neurosci* 2018; 41: 409–413.
21. Report of the Stroke Progressive Review Group. National Institute of Neurological Disorders and Stroke. Department of Health and Human Services, National Institutes of Health, Maryland, NIH Publication Number 02-5117, 2002; 1–116.
22. del Zoppo GJ. Stroke and neurovascular protection. *N Engl J Med* 2006; 354: 553–555.
23. Moskowitz MA, Lo EH, Iadecola C. The science of stroke: Mechanisms in search of treatments. *Neuron* 2010; 67: 181–198.
24. Kalaria RN, Hase Y. Neurovascular ageing and age-related diseases. *Subcell Biochem* 2019; 91: 477–499.
25. Zlokovic BV. Neurovascular pathways to neurodegeneration in Alzheimer's disease and other disorders. *Nat Rev Neurosci* 2011; 12: 723–738.
26. Sweeney MD, Kisler K, Montagne A, Toga AW, Zlokovic BV. The role of brain vasculature in neurodegenerative disorders. *Nat Neurosci* 2018; 21: 1318–1331.
27. Sweeney MD, Montagne A, Sagare AP et al. Vascular dysfunction-the disregarded partner of Alzheimer's disease. *Alzheimers Dement* 2019; 15: 158–167.
28. Presta I, Vismara M, Novellino F et al. Innate immunity cells and the neurovascular unit. *Int J Mol Sci* 2018; **19**: pii: E3856. https://doi.org/10.3390/ijms19123856

29. Thurgur H, Pintiaux E. Microglia in the neurovascular unit: Blood-brain barrier-microglia interactions after central nervous system disorders. *Neuroscience* 2019; **405**: 55–67.

30. Takahashi S, Izawa Y, Suzuki N. Astroglial pentose phosphate pathway rates in response to high-glucose environments. *ASN Neuro* 2012; **4**: pii: e00078.

31. Takahashi S, Iizumi T, Mashima K, Abe T, Suzuki N. Roles and regulation of ketogenesis in cultured astroglia and neurons under hypoxia and hypoglycemia. *ASN Neuro* 2014; **6**: pii: 1759091414550997. https://doi.org/10.1177/1759091414550997

32. Takahashi S, Iizumi T, Mashima K et al. A possible role of microglia-derived nitric oxide by lipopolysaccharide in activation of astroglial pentose-phosphate pathway via the Keap1/Nrf2 system. *J Neuroinflammation* 2016; **13**: 99. https://doi.org/10.1186/s12974-016-0564-0

33. Iizumi T, Takahashi S, Mashima K et al. Neuroprotective role of Astroglia in Parkinson disease by reducing oxidative stress through dopamine-induced activation of pentose-phosphate pathway. *ASN Neuro* 2018; **10**: 1759091418775562.

34. Hase Y, Chen A, Bates LL et al. Severe white matter astrocytopathy in CADASIL. *Brain Pathol* 2018; **28**: 832–843.

35. Hara K, Shiga A, Fukutake T et al. Association of HTRA1 mutations and familial ischemic cerebral small-vessel disease. *N Engl J Med* 2009; **360**: 1729–1739.

36. Chen J, Van Gulden S, McGuire TL et al. BMP-responsive protease HtrA1 is differentially expressed in astrocytes and regulates Astrocytic development and injury response. *J Neurosci* 2018; **38**: 3840–3857.

37. Rodríguez-Arellano JJ, Parpura V, Zorec R, Verkhratsky A. Astrocytes in physiological aging and Alzheimer’s disease. *Neuroscience* 2016; **323**: 170–182.

38. Verkhratsky A, Parpura V, Rodríguez-Arellano JJ, Zorec R. Astroglia in Alzheimer’s disease. *Adv Exp Med Biol* 2019; **1175**: 273–324.

39. Teismann P, Tieu K, Cohen O et al. Pathogenic role of glial cells in Parkinson’s disease. *Mov Disord* 2003; **18**: 121–129.

40. Halliday GM, Stevens CH. Glia: Initiators and progressors of pathology in Parkinson’s disease. *Mov Disord* 2011; **26**: 6–17.

41. Yamanaka K, Komine O. The multi-dimensional roles of astrocytes in ALS. *Neurosci Res* 2018; **126**: 31–38.

42. Valori CF, Guidotti G, Brambilla L, Rossi D. Astrocytes in motor neuron diseases. *Adv Exp Med Biol* 2019; **1175**: 227–272.

43. Liddelow SA, Sofroniew MV. Astrocytes usurp neurons as a disease focus. *Nat Neurosci* 2019; **22**: 512–513.

44. Kira J. Autoimmunity in neuromyelitis optica and opticospinal multiple sclerosis: Astrocytopathy as a common denominator in demyelinating disorders. *J Neurol Sci* 2011; **311**: 69–77.

45. Ludwin SK, VTs R, Moore CS, Antel JP. Astrocytes in multiple sclerosis. *Mult Scler* 2016; **22**: 1114–1124.

46. Ponath G, Park C, Pitt D. The role of astrocytes in multiple sclerosis. *Front Immunol* 2018; **9**: 217.

47. Nellessen A, Nyamoya S, Zendedel A. Nrf2 deficiency increases oligodendrocyte loss, demyelination, neuroinflammation and axonal damage in an MS animal model. *Metab Brain Dis* 2019; 1–10. [Epub ahead of print]. https://doi.org/10.1007/s11011-019-00488-z

48. Masaki K, Suzuki SO, Matsushita T et al. Connexin 43 astrocytopathy linked to rapidly progressive multiple sclerosis and neuromyelitis optica. *PLoS One* 2013; **8**: e72919.

49. Luchinetti CF, Guo Y, Popescu BF, Fujihara K, Itoyama Y, Misu T. The pathology of an autoimmune astrocytopathy: Lessons learned from neuromyelitis optica. *Brain Pathol* 2014; **24**: 83–97.

50. Clarke DD, Sokoloff L. Circulation and energy metabolism of the brain. In: Siegel G, Agranoff B, editors. *Basic Neurochemistry: Molecular, Cellular, and Medical Aspects*, 6th edn. Philadelphia, PA: Lippincott-Raven, 1999; 637–669.

51. Dienel GA. Energy metabolism in the brain. In: Byrne JH, Roberts JL, editors. *From Molecules to Networks: An Introduction to Cellular and Molecular Neuroscience*, 2nd edn. Academic Press: London, 2009; 49–110.

52. Itoh Y, Abe T, Takaoka R, Tanahashi N. Fluoresometric determination of glucose utilization in neurons in vitro and in vivo. *J Cereb Blood Flow Metab* 2004; **24**: 993–1003.

53. Lundgaard I, Li B, Xie L et al. Direct neuronal glucose uptake heralds activity-dependent increases in cerebral metabolism. *Nat Commun* 2015; **6**: 6807. https://doi.org/10.1038/ncomms7807

54. Vannucci SJ, Maher F, Simpson IA. Glucose transporter proteins in brain: Delivery of glucose to neurons and glia. *Glia* 1997; **21**: 2–21.

55. Simpson IA, Carruthers A, Vannucci SJ. Supply and demand in cerebral energy metabolism: The role of
nutrient transporters. J Cereb Blood Flow Metab 2007; 27: 1766–1791.
57. Klepper J, Voit T. Facilitated glucose transporter protein type 1 (GLUT1) deficiency syndrome: Impaired glucose transport into brain: A review. Eur J Pediatr 2002; 161: 295–304.
58. Brockmann K. The expanding phenotype of GLUT1-deficiency syndrome. Brain Dev 2009; 31: 545–552.
59. Cataldo AM, Broadwell RD. Cytochemical identification of cerebral glycogen and glucose-6-phosphatase activity under normal and experimental conditions: 1. Neurons and glia. J Electron Microsc Tech 1986; 3: 413–437.
60. Pfeiffer B, Elmer K, Roggendorf W, Reinhart PH, Hamprecht B. Immunohistochimical demonstration of glycogen phosphorylase in rat brain slices. Histochemistry 1990; 94: 73–80.
61. Sokoloff L. Energy metabolism and effects of energy depletion or exposure to glutamate. Can J Physiol Pharmacol 1992; 70: S107–S112.
62. Pierre K, Magistretti PJ, Pellerin L. MCT2 is a major neuronal monocarboxylate transporter in the adult mouse brain. J Cereb Blood Flow Metab 2002; 22: 586–595.
63. Pellerin L, Bergersen LH, Halestrap AP, Pierre K. Cellular and subcellular distribution of monocarboxylate transporters in cultured brain cells and in the adult brain. J Neurosci Res 2005; 79: 55–64.
64. Pierre K, Pellerin L. Monocarboxylate transporters in the central nervous system: Distribution, regulation and function. J Neurochem 2005; 94: 1–14.
65. Bergersen LH. Lactate transport and signaling in the brain: Potential therapeutic targets and roles in body-brain interaction. J Cereb Blood Flow Metab 2015; 35: 176–185.
66. Pellerin L, Magistretti PJ. Glutamate uptake into astrocytes stimulates aerobic glycolysis: A mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci U S A 1994; 91: 10625–10629.
67. Takahashi S, Driscoll BF, Law MJ, Sokoloff L. Role of sodium and potassium ions in regulation of glucose metabolism in cultured astroglia. Proc Natl Acad Sci U S A 1995; 92: 4616–4620.
68. Sokoloff L, Takahashi S, Gotoh J, Driscoll BF, Law MJ. Contribution of astroglia to functionally activated energy metabolism. Dev Neurosci 1996; 18: 344–352.
69. Souza DG, Almeida RF, Souza DO, Zimmer ER. The astrocyte biochemistry. Semin Cell Dev Biol 2019; 95: 142–150.
70. Bordone MP, Salman MM, Titus HE et al. The energetic brain - A review from students to students. J Neurochem 2019; 151: 139–165. https://doi.org/10.1111/jnc.14829
71. Jakoby P, Schmidt E, Ruminot I, Gutiérrez R, Barros LF, Deitmer JW. Higher transport and metabolism of glucose in astrocytes compared with neurons: A multiphoton study of hippocampal and cerebellar tissue slices. Cereb Cortex 2014; 24: 222–231.
72. Supplie LM, Dükting T, Campbell G et al. Respiration-deficient astrocytes survive as glycolytic cells in vivo. J Neurosci 2017; 37: 4231–4242.
73. Barros LF, Bolanos JP, Bonvento G et al. Current technical approaches to brain energy metabolism. Glia 2018; 66: 1138–1159.
74. Abe T, Takahashi S, Suzuki N. Oxidative metabolism in cultured rat astroglia: Effects of reducing the glucose concentration in the culture medium and of D-aspartate or potassium stimulation. J Cereb Blood Flow Metab 2006; 26: 153–160.
75. Zhao Y, Fung C, Shin D et al. Neuronal glucose transporter isofrom 3 deficient mice demonstrate features of autism spectrum disorders. Mol Psychiatry 2010; 15: 286–299.
76. Bittar PG, Charnay Y, Pellerin L, Bouras C, Magistretti PJ. Selective distribution of lactate dehydrogenase isoenzymes in neurons and astrocytes of human brain. J Cereb Blood Flow Metab 1996; 16: 1079–1089.
77. Itoh Y, Esaki T, Shimoji K et al. Dichloroacetate effects on glucose and lactate oxidation by neurons and astroglia in vitro and on glucose utilization by brain in vivo. Proc Natl Acad Sci U S A 2003; 100: 4879–4884.
78. Bouzier-Sore AK, Voisin P, Canioni P, Magistretti PJ, Pellerin L. Lactate is a preferential oxidative energy substrate over glucose for neurons in culture. J Cereb Blood Flow Metab 2003; 23: 1298–1306.
79. Bouzier-Sore AK, Voisin P, Bouchaud V, Bezancon E, Franconi JM, Pellerin L. Competition between glucose and lactate as oxidative energy substrates in both neurons and astrocytes: A comparative NMR study. Eur J Neurosci 2006; 24: 1687–1694.
80. Danbolt NC. Glutamate uptake. Prog Neurobiol 2001; 65: 1–105.
81. Bröer S, Brookes N. Transfer of glutamine between astrocytes and neurons. J Neurochem 2001; 77: 705–719.
82. Fox PT, Raichle ME. Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl Acad Sci U S A 1986; 83: 1140–1144.
83. Fox PT, Raichle ME, Mintun MA, Dence C. Non-oxidative glucose consumption during focal physiologic neural activity. Science 1988; 241: 462–464.

84. Prichard J1, Rothman D, Novotny E et al. Lactate rise detected by 1H NMR in human visual cortex during physiologic stimulation. Proc Natl Acad Sci U S A 1991; 88: 5829–5831.

85. Madsen PL, Cruz NF, Sokoloff L, Dienel GA. Cerebral oxygen/glucose ratio is low during sensory stimulation and rises above normal during recovery: Excess glucose consumption during stimulation is not accounted for by lactate efflux from or accumulation in brain tissue. J Cereb Blood Flow Metab 1999; 19: 393–400.

86. Sonnewald U. Glutamate synthesis has to be matched by its degradation - where do all the carbons go? J Neurochem 2014; 131: 399–406.

87. Porras OH, Loaiza A, Barros LF. Glutamate mediates acute glucose transport inhibition in hippocampal neurons. J Neurosci 2004; 24: 9669–9673.

88. Aubert A, Costalat R, Magistretti PJ, Pellerin L. Brain lactate kinetics: Modeling evidence for neuronal lactate uptake upon activation. Proc Natl Acad Sci U S A 2005; 102: 16448–16453.

89. Laughton JD, Bittar P, Charnay Y et al. Metabolic compartmentalization in the human cortex and hippocampus: Evidence for a cell- and region-specific localization of lactate dehydrogenase 5 and pyruvate dehydrogenase. BMC Neurosci 2007; 8: 35.

90. Pellerin L, Bouzier-Sore AK, Aubert A et al. Activity-dependent regulation of energy metabolism by astrocytes: An update. Glia 2007; 55: 1251–1262.

91. Jolivet R, Allaman I, Pellerin L, Magistretti PJ, Weber B. Comment on recent modeling studies of astrocyte-neuron metabolic interactions. J Cereb Blood Flow Metab 2010; 30: 1982–1986.

92. Pellerin L, Magistretti PJ. Sweet sixteen for ANLS. J Cereb Blood Flow Metab 2012; 32: 1152–1166.

93. Mazuel L, Blane J, Repond C et al. A neuronal MCT2 knockdown in the rat somatosensory cortex reduces both the NMR lactate signal and the BOLD response during whisker stimulation. PLoS One 2017; 12: e0174990. https://doi.org/10.1371/journal.pone.0174990

94. Pellerin L. Neuroenergetics: Astrocytes have a sweet spot for glucose. Curr Biol 2018; 28: R1258–R1260.

95. Dienel GA, Hertz L. Glucose and lactate metabolism during brain activation. J Neurosci Res 2001; 66: 824–838.

96. Hertz L, Dienel GA. Lactate transport and transporters: General principles and functional roles in brain cells. J Neurosci Res 2005; 79: 11–18.

97. Hertz L, Peng L, Dienel GA. Energy metabolism in astrocytes: High rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis. J Cereb Blood Flow Metab 2007; 27: 219–249.

98. Dienel GA, Ball KK, Cruz NF. A glycogen phosphorylase inhibitor selectively enhances local rates of glucose utilization in brain during sensory stimulation of conscious rats: Implications for glycogen turnover. J Neurochem 2007; 102: 466–478.

99. Dienel GA. Astrocytes are 'good scouts': Being prepared also helps neighboring neurons. J Cereb Blood Flow Metab 2010; 30: 1893–1894.

100. Dienel GA. Brain lactate metabolism: The discoveries and the controversies. J Cereb Blood Flow Metab 2012; 32: 1107–1138.

101. Mergenthaler P, Lindauer U, Dienel GA, Meisel A. Sugar for the brain: The role of glucose in physiological and pathological brain function. Trends Neurosci 2013; 36: 587–597.

102. Dienel GA, Cruz NF. Contributions of glycogen to astrocytic energetics during brain activation. Metab Brain Dis 2015; 30: 281–298.

103. Dienel GA. The metabolic trinity, glucose-glycogen-lactate, links astrocytes and neurons in brain energetics, signaling, memory, and gene expression. Neurosci Lett 2017; 637: 18–25.

104. Dienel GA. Lack of appropriate stoichiometry: Strong evidence against an energetically important astrocyte-neuron lactate shuttle in brain. J Neurosci Res 2017; 95: 2103–2125.

105. Dienel GA. Brain glucose metabolism: Integration of energetics with function. Physiol Rev 2019; 99: 949–1045.

106. Morland C, Lauritzen KH, Puchades M et al. The lactate receptor, G-protein-coupled receptor 81/hydroxycarboxylic acid receptor 1: Expression and action in brain. J Neurosci Res 2015; 93: 1045–1055.

107. de Castro AH, Briquet M, Schmuziger C et al. The lactate receptor HCAR1 modulates neuronal network activity through the activation of Gα and Gβγ subunits. J Neurosci 2019; 39: 4422–4433.

108. Noto Y, Shibuya K, Vucic S, Kiernan MC. Novel therapies in development that inhibit motor neuron hyperexcitability in amyotrophic lateral sclerosis. Expert Rev Neurother 2016; 16: 1147–1154.

109. Suzuki A, Stern SA, Bozdagi O et al. Astrocyte-neuron lactate transport is required for long-term memory formation. Cell 2011; 144: 810–823.

110. Hertz L, Chen Y. Glycogenolysis, an astrocyte-specific reaction, is essential for both Astrocytic and neuronal activities involved in learning. Neuroscience 2018; 370: 27–36.

111. Alberini CM, Cruz E, Descalzi G, Bessières B, Gao V. Astrocyte glycogen and lactate: New insights
into learning and memory mechanisms. *Glia* 2018; 66: 1244–1262.

112. Dienel GA. Does shuttling of glycogen-derived lactate from astrocytes to neurons take place during neurotransmission and memory consolidation? *J Neurosci Res* 2019; 97: 863–882.

113. Dascalzi G, Gao V, Steinman MQ, Suzuki A, Alberini CM. Lactate from astrocytes fuels learning-induced mRNA translation in excitatory and inhibitory neurons. *Commun Biol* 2019; 2: 247.

114. Lu SC. Regulation of glutathione synthesis. *Mol Aspects Med* 2009; 30: 42–59.

115. Lu SC. Glutathione synthesis. *Biochim Biophys Acta* 1830; 2013: 3143–3153.

116. Wang XF, Cynader MS. Astrocytes provide cysteine to neurons by releasing glutathione. *J Neurochem* 2000; 74: 1434–1442.

117. Bolaños JP. Bioenergetics and redox adaptations of astrocytes to neuronal activity. *J Neurochem* 2016; 139 (Suppl 2): 115–125.

118. Thimmulappa RK, Mai KH, Srivasa S, Kessler TW, Yamamoto M, Biswal S. Identification of Nrf2-regulated genes induced by the chemopreventive agent sulforaphane by oligonucleotide microarray. *Cancer Res* 2002; 62: 5196–5203.

119. Lee JM, Calkins MJ, Chan K, Kan YW, Johnson JA. Identification of the NF-E2-related factor-2-dependent genes conferring protection against oxidative stress in primary cortical astrocytes using oligonucleotide microarray analysis. *J Biol Chem* 2003; 278: 12029–12038.

120. Surh YJ, Kundu JK, Na HK. Nrf2 as a master redox switch in turning on the cellular signaling involved in the induction of cytoprotective genes by some chemopreventive phytochemicals. *Planta Med* 2008; 74: 1526–1539.

121. Vargas MR, Johnson JA. The Nrf2-ARE cytoprotective pathway in astrocytes. *Expert Rev Mol Med* 2009; 11: e17. https://doi.org/10.1017/S14623994090001094

122. Iademica C, Anrather J. The immunology of stroke: From mechanisms to translation. *Nat Med* 2011; 17: 796–808.

123. Carpentier PA, Duncan DS, Miller SD. Gliarial toll-like receptor signaling in central nervous system infection and autoimmunity. *Brain Behav Immun* 2008; 22: 140–147.

124. Gorina R, Font-Nieves M, Márquez-Kisinosky L, Santalucía T, Planas AM. Astrocyte TLR4 activation induces a proinflammatory environment through the interplay between MyD88-dependent NFκB signaling, MAPK, and Jak1/Stat1 pathways. *Glia* 2011; 59: 242–255.

125. Liddelow SA, Guttenplan KA, Clarke LE et al. Neurotoxic reactive astrocytes are induced by activated microglia. *Nature* 2017; 541: 481–487.

126. Guzmán M, Blázquez C. Is there an astrocyte-neuron ketone body shuttle? *Trends Endocrinol Metab* 2001; 12: 169–173.

127. Guzmán M, Blázquez C. Ketone body synthesis in the brain: Possible neuroprotective effects. *Prostaglandins Leukot Essent Fatty Acids* 2004; 70: 287–292.

128. Achanta LB, Rae CD. β-Hydroxybutyrate in the brain: One molecule, multiple mechanisms. *Neurochem Res* 2017; 42: 35–49.

129. Mukherjee S, Suresh SN. Neuron-astrocyte liaison to maintain lipid metabolism of brain. *Trends Endocrinol Metab* 2019; 30: 573–575.

130. Ioannou MS, Jackson J, Sheu SH et al. Neuron-astrocyte metabolic coupling protects against activity-induced fatty acid toxicity. *Cell* 2019: 177: 1522–1535.

131. Barber CN, Raben DM. Lipid metabolism crosstalk in the brain: Glia and neurons. *Front Cell Neurosci* 2019; 13: 212. https://doi.org/10.3389/fncel.2019.00212

132. Cardell M, Koide T, Wieloch T. Pyruvate dehydrogenase activity in the rat cerebral cortex following cerebral ischemia. *J Cereb Blood Flow Metab* 1989; 9: 350–357.

133. Fukuchi T, Katayama Y, Kamiya T, McKee A, Kashiwagi F, Terashi A. The effect of duration of cerebral ischemia on brain pyruvate dehydrogenase activity, energy metabolites, and blood flow during reperfusion in gerbil brain. *Brain Res* 1998; 792: 59–65.

134. Bixel MG, Hamprecht B. Generation of ketone bodies from leucine by cultured astroglial cells. *J Neurochem* 1995; 65: 2450–2461.

135. Dhospherewarkar GA, Mead JF. Uptake and transport of fatty acids into the brain and the role of the blood-brain barrier system. *Adv Lipid Res* 1973; 11: 109–142.

136. Smith QR, Nagura H. Fatty acid uptake and incorporation in brain: Studies with the perfusion model. *J Mol Neurosci* 2001; 16: 167–172.

137. Mitchell RW, On NH, Del Bigio MR, Miller DW, Hatch GM. Fatty acid transport protein expression in human brain and potential role in fatty acid transport across human brain microvessel endothelial cells. *J Neurochem* 2011; 117: 735–746.

138. Hamilton JA, Brunaldi K. A model for fatty acid transport into the brain. *J Mol Neurosci* 2007; 33: 12–17.

139. Katz R, Hamilton JA, Pownall HJ et al. Brain uptake and utilization of fatty acids, lipids & lipoproteins: Recommendations for future research. *J Mol Neurosci* 2007; 33: 146–150.
140. Pan Y, Scanlon MJ, Owada Y, Yamamoto Y, Porter CJ, Nicolazzo JA. Fatty acid-binding protein 5 facilitates the blood-brain barrier transport of Docosahexaenoic acid. *Mol Pharm* 2015; **12**: 4375–4385.

141. Corton JM, Gillespie JG, Hawley SA, Hardie DG. 5-aminoimidazole-4-carboxamide ribonucleoside. A specific method for activating AMP-activated protein kinase in intact cells? *Eur J Biochem* 1995; **229**: 558–565.

142. Leary SC, Hill BC, Lyons CN *et al.* Chronic treatment with azide in situ leads to an irreversible loss of cytochrome c oxidase activity via holoenzyme dissociation. *J Biol Chem* 2002; **277**: 11321–11328.

143. Blázquez C, Woods A, de Ceballos ML, Carling D, Guzmán M. The AMP-activated protein kinase is involved in the regulation of ketone body production by astrocytes. *J Neurochem* 1999; **73**: 1674–1682.

144. Graff EC, Fang H, Wanders D, Judd RL. Antioxidant effects of the hydroxyxyrocarboxylic acid receptor 2. *Metabolism* 2016; **65**: 102–113.

145. Rahman M, Muhammad S, Khan MA *et al.* The β-hydroxybutyrate receptor HCA2 activates a neuroprotective subset of macrophages. *Nat Commun* 2014; **5**: 3944. https://doi.org/10.1038/ncomms4944.

146. Offermanns S, Schwaninger M. Nutritional or pharmacological activation of HCA(2) ameliorates neuroinflammation. *Trends Mol Med* 2015; **21**: 245–255.

147. Parodi B, Rossi S, Morando S *et al.* Fumarates modulate microglia activation through a novel HCAR2 signaling pathway and rescue synaptic dysregulation in inflamed CNS. *Acta Neuropathol* 2015; **130**: 279–295.

148. Lai TW, Zhang S, Wang YT. Excitotoxicity and stroke: Identifying novel targets for neuroprotection. *Prog Neurobiol* 2014; **115**: 157–188.

149. Wu QJ, Tymianski M. Targeting NMDA receptors in stroke: New hope in neuroprotection. *Mol Brain* 2018; **11**: 15. https://doi.org/10.1186/s13041-018-0357-8

150. Schell MJ, Molliver ME, Snyder SH. D-serine, an endogenous synaptic modulator: Localization to astrocytes and glutamate-stimulated release. *Proc Natl Acad Sci U S A* 1995; **92**: 3948–3952.

151. Fuchs SA, Berger R, Klomp LW, de Koning TJ. D-amino acids in the central nervous system in health and disease. *Mol Genet Metab* 2005; **85**: 168–180.

152. Wolosker H, Dumin E, Balan L, Foltyn VN. D-amino acids in the brain: D-serine in neurodegeneration and neuroregeneration. *FEBS J* 2008; **275**: 3514–3526.

153. Mothet JP, Parent AT, Wolosker H *et al.* D-serine is an endogenous ligand for the glycine site of the N-methyl-D-aspartate receptor. *Proc Natl Acad Sci U S A* 2000; **97**: 4926–4931.

154. Papouin T, Ladêpêche L, Ruel J *et al.* Synaptic and extrasynaptic NMDA receptors are gated by different endogenous coagonists. *Cell* 2012; **150**: 633–646.

155. Sasabe J, Suzuki M. Distinctive roles of D-amino acids in the Homochiral world: Chirality of amino acids modulates mammalian physiology and pathology. *Keio J Med* 2019; **68**: 1–16.

156. Wolosker H, Sheth KN, Takahashi M *et al.* Purification of serine racemase: Biosynthesis of the neuro-modulator D-serine. *Proc Natl Acad Sci U S A* 1999; **96**: 721–725.

157. Yamasaki M, Yamada K, Furuya S, Mitoma J, Hirabayashi Y, Watanabe M. 3-Phosphoglycerate dehydrogenase, a key enzyme for l-serine biosynthesis, is preferentially expressed in the radial glia/astrocyte lineage and olfactory ensheathing glia in the mouse brain. *J Neurosci* 2001; **21**: 7691–7704.

158. Furuya S. An essential role for de novo biosynthesis of L-serine in CNS development. *Asia Pac J Clin Nutr* 2008; **17**(Suppl 1): 312–315.

159. Wolosker H, Balu DT, Coyle JT. The rise and fall of the d-serine-mediated Gliotransmission hypothesis. *Trends Neuosci* 2016; **39**: 712–721.

160. Mustafa AK, Ahmad AS, Zeynalov E *et al.* Serine racemase deletion protects against cerebral ischemia and excitotoxicity. *J Neurosci* 2010; **30**: 1413–1416.

161. Abe T, Suzuki M, Sasabe J *et al.* Cellular origin and regulation of D- and L-serine in in vitro and in vivo models of cerebral ischemia. *J Cereb Blood Flow Metab* 2014; **34**: 1928–1935.

162. Wang GH, Jiang ZL, Chen ZQ, Li X, Peng LL. Neurprotective effect of L-serine against temporary cerebral ischemia in rats. *J Neurosci Res* 2010; **88**: 2035–2045.

163. Ren TJ, Qiang R, Jiang ZL *et al.* Improvement in regional CBF by L-serine contributes to its neuroprotective effect in rats after focal cerebral ischemia. *PLoS One.* 2013; **8**: e67044. https://doi.org/10.1371/journal.pone.0067044

164. Sun L, Qiang R, Yang Y *et al.* L-serine treatment may improve neurorestoration of rats after permanent focal cerebral ischemia potentially through improvement of neurorepair. *PLoS One.* 2014; **9**: e93405. https://doi.org/10.1371/journal.pone.0093405

165. Bedner P, Jabs R, Steinhäuser C. Properties of l-serine dehydrogenase, a key enzyme for l-serine biosynthesis. *Eur J Biochem* 2002; **277**: 721–725.

166. Thevenet J, De Marchi U, Domingo JS *et al.* Medium-chain fatty acids inhibit mitochondrial metabolism in astrocytes promoting astrocyte-neuron lactate and ketone body shuttle systems. *FASEB J* 2016; **30**: 1913–1926.
167. Black JA, Waxman SG. The perinodal astrocyte. *Glia* 1988; 1: 169–183.

168. Butt AM, Duncan A, Berry M. Astrocyte associations with nodes of Ranvier: Ultrastructural analysis of HRP-filled astrocytes in the mouse optic nerve. *J Neurocytol* 1994; 23: 486–499.

169. Fünfschilling U, Supplie LM, Mahad D et al. Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. *Nature* 2012; 485: 517–521.

170. Rosko L, Smith VN, Yamazaki R, Huang JK. Oligodendrocyte bioenergetics in health and disease. *Neuroscientist* 2019; 25: 334–343.

171. Cambron M, D’Haeseleer M, Laureys G, Clinckers R, De Keyser J. White-matter astrocytes, axonal energy metabolism, and axonal degeneration in multiple sclerosis. *J Cereb Blood Flow Metab* 2012; 32: 413–424.

172. Zeis T, Allaman I, Gentner M et al. Metabolic gene expression changes in astrocytes in multiple sclerosis cerebral cortex are indicative of immune-mediated signaling. *Brain Behav Immun* 2015; 48: 313–325.

173. Koper JW, Lopes-Cardozo M, Van Golde LM. Preferential utilization of ketone bodies for the synthesis of myelin cholesterol in vivo. *Biochim Biophys Acta* 1981; 666: 411–417.

174. Poduslo SE, Miller K. Ketone bodies as precursors for lipid synthesis in neurons, astrocytes, and oligodendroglia (myelin) in hyperthyroidism, hyperketonemia and hypoketonemia. *Neurochem Int* 1991; 18: 85–88.

175. Kadish I, Thibault O, Blalock EM et al. Hippocampal and cognitive aging across the lifespan: A bioenergetic shift precedes and increased cholesterol trafficking parallels memory impairment. *J Neurosci* 2009; 29: 1805–1816.

176. Kiray H, Lindsay SL, Hosseinzadeh S, Barnett SC. The multifaceted role of astrocytes in regulating myelination. *Exp Neurol* 2016; 283: 541–549.

177. Ginhoux F, Prinz M. Origin of microglia: Current concepts and past controversies. *Cold Spring Harb Perspect Biol* 2015 Jul 1; 7: a020537. https://doi.org/10.1101/cshperspect.a020537

178. Tay TL, Carrier M, Tremblay MÈ. Physiology of microglia. *Adv Exp Med Biol* 2019; 1175: 129–148.

179. Ghosh S, Castillo E, Frias ES, Swanson RA. Bioenergetic regulation of microglia. *Glia* 2018; 66: 1200–1212.

180. Aldana BI. Microglia-specific metabolic changes in Neurodegeneration. *J Mol Biol* 2019; 431: 1830–1842.

181. Moreira TJ, Pierre K, Maekawa F et al. Enhanced cerebral expression of MCT1 and MCT2 in a rat ischemia model occurs in activated microglial cells. *J Cereb Blood Flow Metab* 2009; 29: 1273–1283.