Annual decline in lung function in adults with sickle cell disease is similar to that observed in adults with cystic fibrosis

Tracking no: ADV-2021-006527R1

Brock Hodges (Vanderbilt University Medical Center, United States) Zalaya Ivy (University of Minnesota, United States) Robert Cronin (The Ohio State University, United States) Mark Rodeghier (Rodeghier Consultants, United States) Michael DeBaun (Vanderbilt University School of Medicine, United States) Shaina Willen (University of California Davis Medical Center, United States)

Abstract:

Conflict of interest: COI declared - see note

COI notes: MRD and his institution are the sponsors of two externally funded research investigator-initiated projects. Global Blood Therapeutics will provide funding for the cost of these clinical studies but will not be a cosponsor of either study. MRD is not receiving any compensation for the conduct of these two investigator-initiated observational studies. MRD is a member of the Global Blood Therapeutics advisory board for a proposed randomized controlled trial for which he receives compensation. MRD is the steering committee for a Novartis-sponsored phase 2 trial to prevent priapism in men. MRD was a medical advisor for developing the CTX001 Early Economic Model. MRD provided medical input on the economic model as part of an expert reference group for Vertex/CRISPR CTX001 Early Economic Model in 2020. MD provided a two-hour consultation to the Forma Pharmaceutical company about sickle cell disease in 2021.

Preprint server: No;

Author contributions and disclosures: BH analyzed the data and drafted the original manuscript, ZI revised and edited the manuscript, RC revised and edited the manuscript, MR performed all statistical analysis, revised and edited the manuscript, MRD designed the research study, analyzed the data, and revised and edited the manuscript, SMW analyzed the data, revised and edited and manuscript.

Non-author contributions and disclosures: No;

Agreement to Share Publication-Related Data and Data Sharing Statement: Email to corresponding author

Clinical trial registration information (if any):
Annual decline in lung function in adults with sickle cell disease is similar to that observed in adults with cystic fibrosis

Brock Hodges, BS, 1 Zalaya Ivy, MD, 2 Robert Cronin, MD, 3 Mark Rodeghier, PhD, 4 Michael R. DeBaun, MD, MPH 1 and Shaina Willen, MD 5

1. Department of Pediatrics, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Nashville, TN
2. Department of Medicine, Section of Hematology/Oncology, University of Minnesota, Minneapolis, MN
3. Department of Medicine, Wexner Medical Center, The Ohio State University, Hilliard, OH
4. Rodeghier Consultants, Chicago, IL
5. Department of Pediatrics, Section of Pulmonary Medicine, UCSF Benioff Children’s Hospitals, San Francisco, CA

Running title: Decline in lung function in SCD and CF
Corresponding author: Shaina Willen, UCSF Benioff Children’s Hospitals, shainamwillen@gmail.com
Data sharing statement: For data sharing, contact the corresponding author: shainamwillen@gmail.com.

Current word count: 1300
References: 32
Table: 1
Figure: 1
To Whom it May Concern:

Sickle cell disease (SCD) and cystic fibrosis (CF) are two common monogenic diseases seen globally. SCD affects approximately 100,000 individuals in the US\(^1\), and about 300,000 babies with SCD are born every year worldwide.\(^2\) Approximately 30,000 individuals in the United States are living with CF and an estimated 70,000 worldwide.\(^3\) Despite comprehensive medical care and significant advancements in disease-modifying therapies for individuals with SCD, median survival remains only 48 years of age.\(^4\) Similar to SCD,\(^5\)\(^6\) cardiopulmonary complications are the primary cause of death for individuals with CF.\(^8\)

Pulmonary function testing (PFT), and specifically forced expiratory volume in one second (FEV\(_1\)), has been a vital marker associated with morbidity and mortality among individuals with CF.\(^9\) FEV\(_1\) % predicted is calculated from the measured FEV\(_1\) based on an individual’s age, sex, and height. Both measured FEV\(_1\) and FEV\(_1\) % predicted have been associated with morbidity and mortality in CF. Although survival has improved with therapeutic advancements, individuals with CF and a low FEV\(_1\) % predicted are noted to have an increased risk of death within five years.\(^10\) Lower FEV\(_1\) % predicted has been associated with poor nutritional status\(^11\) and poor pregnancy outcomes.\(^12\)

Similarly, in SCD, FEV\(_1\) % predicted is a marker of SCD related mortality and morbidity. In a prospective cohort study of young adults with Hb SS (n=430), the final multivariable model revealed, lower FEV\(_1\) % predicted was associated with an increased hazard ratio of death (HR per % predicted 1.02; 95% confidence interval [CI] 1.00-1.04; \(P = 0.037\)), and higher acute chest syndrome incidence rate (HR per event/year 10.4; 95% [CI] 3.11-34.8; \(P < 0.001\)).\(^13\) Also similar to CF, lower FEV\(_1\) % predicted has been associated with poor nutritional status\(^14\) and adverse pregnancy outcomes.\(^15\) FEV\(_1\) appears to decline over time in both children and adults with SCD\(^16\)\(^-\)\(^19\) although, only marginally in children with increasing age.\(^20\)

Given the clinical utility of FEV\(_1\) assessment in CF, both the European Cystic Fibrosis Society and Cystic Fibrosis Foundation recommend lung function testing be performed at every routine clinic visit on all patients to monitor decline closely.\(^21\)\(^,\)\(^22\) However, the recent American Society of Hematology (ASH) guidelines for SCD recommend against performing routine screening PFT in asymptomatic individuals.\(^23\) Given similarities in pulmonary complications between the two diseases, we tested the hypothesis that annual decline in FEV\(_1\) among adults with CF will be similar to annual decline in FEV\(_1\) among adults with SCD.

In a retrospective cohort study at Vanderbilt University Medical Center (VUMC), we tested the hypothesis that adults with SCD have an absolute change per year in measured FEV\(_1\) similar to adults with CF. Spirometry was performed according to the American Thoracic Society guidelines.\(^24\) Over 969 and 14,000 PFTs were collected for the SCD and CF cohorts, respectively. A multivariable mixed model linear regression analysis was used to predict change over time in at least two spirometry evaluations with a pre-specified set of covariates previously associated with FEV\(_1\) decline in SCD or CF. Vanderbilt University Medical Center IRB approval was obtained. The study was conducted in accordance with the Declaration of Helsinki.

Sickle Cell Disease cohort: We identified 1283 individuals with SCD from our data warehouse of electronic health records (EHR) at VUMC using a previously published algorithm.\(^25\) We validated this cohort through manual chart review, which included hemoglobin electrophoresis results and hematologist confirmed diagnoses. Annual to bi-annual PFTs measurements have been obtained at VUMC in asymptomatic adults with SCD for approximately a decade. All PFTs were included in adults with SCD (age range 18-65 years of age) and were obtained at baseline health. At least two spirometry measurements were required. The cohort was limited to adults with a specified genotype (HbSS, HbSβ\(^+\)thalassemia, HbSβ\(^+\)thalassemia, HbSC, HbSE, and HbSO-Arab). Five participants had a genotype...
that did not fall into one of the listed categories and were excluded from the study. After adjusting for at least two lifetime PFTs, the cohort was reduced to 201 eligible adults. Finally, we excluded those who had a bone marrow transplant before having two PFTs, leaving 193 eligible adults with SCD in the analysis (Appendix, figure 1a).

Cystic fibrosis cohort: Using the data warehouse at VUMC, we used a previously published algorithm, which discovers all individuals with ICD codes for CF (ICD-9 277.0 and ICD-10 E84) or had a pathology report for a genetic test of the CFTR gene.25 We validated this cohort through chart review, which only included those with physician verified CF diagnosis or those tested for CFTR. This approach resulted in an initial cohort of 862 individuals, which was limited to adults at least 18 years of age, leaving 564 individuals. After including at least two PFTs and excluding those with a lung transplant before having two PFTs, the final cohort was 309 eligible adults with CF (Appendix, figure 1a). Only the first spirometry measurement in each year was used for adults with CF because multiple PFTs are done per year as standard of care. If the first PFT of the year was taken within eight weeks of a hospital admission, the next PFT was utilized to obtain baseline values if this was not within eight weeks of the last hospital admission.

We used multivariable mixed linear regression models to measure longitudinal change in lung function separately for SCD and CF cohorts. Both models controlled for sex, age, and height. The SCD model included genotype, baseline hemoglobin, and hydroxyurea use. CF model included CF-related diabetes and pancreatic insufficiency. For individuals with SCD and CF, FEV₁ declines 23ml per year (95% CI -28 to -18, p<0.001) and 26ml per year (95% CI -33 to -18, p<0.001) respectively (Table). No statistical difference was observed in the annual change in FEV₁ between the two cohorts (difference in slope=2.5ml, p=0.596, Figure). While initial FEV₁ is lower in individuals with CF than SCD (2.5L versus 2.7L, p=0.01), the annual decline over time is similar between the two diseases.

To our knowledge, there are no established therapies to increase or prevent a decline in FEV₁ in adults with SCD. However, bone marrow transplant in children with SCD may slow decline in lung function.27 Additionally, established evidence-based practices can be implemented when an adult is noted to have a lower than expected or precipitous decline in FEV₁, such as smoking cessation,28 inquiry and management of occupational exposures,29 or other diagnostic considerations to investigate for comorbid conditions.30 Close monitoring of lung function over time may provide additional information regarding the clinical status and possible response to different therapies, such as montelukast or inhaled corticosteroids.

Several limitations exist in this retrospective cohort study. While strict testing criteria exist, trajectories of decline can be highly variable in healthy individuals and disease states.31 Additionally, excluding those participants with less than two spirometry results meant that individuals included in this analysis were more likely to have severe disease. Participants with SCD included in the analysis had SCD genotypes (HbSS or HbSβthalassemia) associated with a higher incidence rate of vaso-occlusive pain32 and acute chest syndrome events,33 were on hydroxyurea, and had higher mortality (Supplemental Material, table 2a). Similarly, participants with CF included in the analysis had more severe disease complications, such as pancreatic insufficiency. Similarly, those with SCD had more severe phenotype (HbSS or HbSβthalassemia), were on hydroxyurea, and had higher mortality (Appendix table 2a). The study had participants with more severe SCD and CF than those excluded from the analysis. However, the results indicate that for individuals with severe SCD and CF, the annual decline in pulmonary function is similar.

We have provided evidence for progressive lung function decline in adults with SCD and the rate of the decline is similar to individuals with CF. Despite the lack of a therapeutic intervention to prevent a decline in FEV₁, these data support routine spirometry evaluation in adults with SCD and asymptomatic lung disease. Evidence based strategies for mitigating a decline in FEV₁, may be implemented for adults with declining lung function. Further, knowledge of progressive lung disease may alter the perspective of
risk-benefit ratio for considering curative therapy, tobacco smoke exposure, occupational exposures, or all of the above.
Author contributions
BH analyzed the data and drafted the original manuscript, ZI revised and edited the manuscript, RC revised and edited the manuscript, MR performed all statistical analysis, revised and edited the manuscript, MRD designed the research study, analyzed the data, and revised and edited the manuscript, SMW analyzed the data, revised and edited and manuscript.

Conflict of interest statement
MRD and his institution are the sponsors of two externally funded research investigator-initiated projects. Global Blood Therapeutics will provide funding for the cost of these clinical studies but will not be a cosponsor of either study. MRD is not receiving any compensation for the conduct of these two investigator-initiated observational studies. MRD is a member of the Global Blood Therapeutics advisory board for a proposed randomized controlled trial for which he receives compensation. MRD is the steering committee for a Novartis-sponsored phase 2 trial to prevent priapism in men. MRD was a medical advisor for developing the CTX001 Early Economic Model. MRD provided medical input on the economic model as part of an expert reference group for Vertex/CRISPR CTX001 Early Economic Model in 2020. MD provided a two-hour consultation to the Forma Pharmaceutical company about sickle cell disease in 2021.
References
1. Hassell, K. L. Population Estimates of Sickle Cell Disease in the U.S. *American Journal of Preventive Medicine* **38**, S512-521, doi:10.1016/j.amepre.2009.12.022 (2010).
2. Diallo, D. & Tchernia, G. Sickle cell disease in Africa. *Current opinion in hematology* **9**, 111-116 (2002).
3. Scotet, V., L'Hostis, C. & Férec, C. The Changing Epidemiology of Cystic Fibrosis: Incidence, Survival and Impact of the CFTR Gene Discovery. *Genes (Basel)* **11**, 589, doi:10.3390/genes11060589 (2020).
4. Debaun, M. R. et al. Decreased median survival of adults with sickle cell disease after adjusting for left truncation bias: a pooled analysis. *Blood* **133**, 615-617, doi:10.1182/blood-2018-10-880575 (2019).
5. Fitzhugh, C. D. et al. Cardiopulmonary complications leading to premature deaths in adult patients with sickle cell disease. *American journal of hematology* **85**, 36-40, doi:10.1002/ajh.21569 (2010).
6. Platt, O. S. et al. Mortality In Sickle Cell Disease -- Life Expectancy and Risk Factors for Early Death. *New England Journal of Medicine* **330**, 1639-1644, doi:10.1056/NEJM199406093302303 (1994).
7. Serjeant, G. R. The natural history of sickle cell disease. *Cold Spring Harb Perspect Med* **3**, a011783-a011783, doi:10.1101/cshperspect.a011783 (2013).
8. Goetz, D. & Ren, C. L. Review of Cystic Fibrosis. *Pediatr Ann* **48**, e154-e161, doi:10.3928/19382359-20190327-01 (2019).
9. Liou, T. G. et al. Predictive 5-year survivorship model of cystic fibrosis. *American Journal of Epidemiology* **153**, 345-352, doi:10.1093/aje/153.4.345 (2001).
10. George, P. M. et al. Improved survival at low lung function in cystic fibrosis: cohort study from 1990 to 2007. *BMJ* **342**, d1008-d1008, doi:10.1136/bmj.d1008 (2011).
11. Stephenson, A. L. et al. Longitudinal trends in nutritional status and the relation between lung function and BMI in cystic fibrosis: a population-based cohort study. *Am J Clin Nutr* **97**, 872-877, doi:10.3945/ajcn.112.051409 (2013).
12. Ashcroft, A., Chapman, S. & Mackillop, L. The outcome of pregnancy in women with cystic fibrosis: a UK population-based descriptive study. *BJOG: An International Journal of Obstetrics & Gynaecology* **127**, 1696-1703, doi:10.1111/1471-0528.16423 (2020).
13. Kassim, A. A. et al. Low forced expiratory volume is associated with earlier death in sickle cell anemia. *Blood* **126**, 1544-1550, doi:10.1182/blood-2015-05-644345 (2015).
14. Stewart, J. A. T. et al. BMI percentile is an independent predictor of increase in lung function in children with sickle cell anemia. *American Journal of Hematology* **94**, E136-E138, doi:10.1002/ajh.25433 (2019).
15. Hayfron-Benjamin, C. F. et al. Low FEV1 is associated with fetal death in pregnant women with sickle cell disease. *Am J Hematol* **96**, E303-e306, doi:10.1002/ajh.26236 (2021).
16. Antwi-Boasiako, C. et al. Association between pulmonary function and cardiac enzymes in sickle cell disease. *Am J Blood Res* **11**, 199-205 (2021).
17. MacLean, J. E. et al. Longitudinal decline in lung volume in a population of children with sickle cell disease. *American journal of respiratory and critical care medicine* **178**, 1055-1059, doi:10.1164/rcrm.200708-1219OC (2008).
18. Catanzaro, T. & Koumbourlis, A. C. Somatic growth and lung function in sickle cell disease. *Paediatric Respiratory Reviews* **15**, 28-32, doi:10.1016/j.prrv.2013.10.003 (2014).
19. Field, J. J. et al. Longitudinal analysis of pulmonary function in adults with sickle cell disease. *American Journal of Hematology* **83**, 574-576, doi:10.1002/ajh.21176 (2008).
20. Willen, S. M. et al. Age is a predictor of a small decrease in lung function in children with sickle cell anemia. *American Journal of Hematology* **93**, doi:10.1002/ajh.25003 (2018).
21. Yankaskas, J. R., Marshall, B. C., Sufian, B., Simon, R. H. & Rodman, D. Cystic fibrosis adult care: consensus conference report. *Chest* **125**, 1s-39s, doi:10.1378/chest.125.1_suppl.1s (2004).
Smyth, A. R. et al. European Cystic Fibrosis Society Standards of Care: Best Practice guidelines. *Journal of Cystic Fibrosis* 13, S23-S42, doi:10.1016/j.jcf.2014.03.010 (2014).

Liem, R. I. et al. American Society of Hematology 2019 guidelines for sickle cell disease: cardiopulmonary and kidney disease. *Blood Advances* 3, 3867-3897, doi:10.1182/bloodadvances.2019000916 (2019).

Graham, B. L. et al. Standardization of Spirometry 2019 Update. An Official American Thoracic Society and European Respiratory Society Technical Statement. *American journal of respiratory and critical care medicine* 200, e70-e88, doi:10.1164/rccm.201908-1590ST (2019).

Snyder, A. B. et al. Improving an Administrative Case Definition for Longitudinal Surveillance of Sickle Cell Disease. *Public health reports (Washington, D.C. : 1974)* 134, 274-281, doi:10.1177/0033354919839072 (2019).

Bastarache, L. et al. Improving the phenotype risk score as a scalable approach to identifying patients with Mendelian disease. *Journal of the American Medical Informatics Association* 26, 1437-1447, doi:10.1093/jamia/ocz179 (2019).

Walters, M. C. et al. Pulmonary, gonadal, and central nervous system status after bone marrow transplantation for sickle cell disease. *Biol Blood Marrow Transplant* 16, 263-272, doi:10.1016/j.bbmt.2009.10.005 (2010).

Oelsner, E. C. et al. Lung function decline in former smokers and low-intensity current smokers: a secondary data analysis of the NHLBI Pooled Cohorts Study. *Lancet Respir Med* 8, 34-44, doi:10.1016/s2213-2600(19)30276-0 (2020).

Lytras, T. et al. Cumulative Occupational Exposures and Lung-Function Decline in Two Large General-Population Cohorts. *Ann Am Thorac Soc* 18, 238-246, doi:10.1513/AnnalsATS.202002113OC (2021).

Agusti, A. & Faner, R. Lung function trajectories in health and disease. *Lancet Respir Med* 7, 358-364, doi:10.1016/s2213-2600(18)30529-0 (2019).

Lange, P. et al. Lung-Function Trajectories Leading to Chronic Obstructive Pulmonary Disease. *N Engl J Med* 373, 111-122, doi:10.1056/NEJMoa1411532 (2015).

Platt, O. S. et al. Pain in Sickle Cell Disease. *New England Journal of Medicine* 325, 11-16, doi:10.1056/NEJM199107043250103 (1991).

Vichinsky, E. P. et al. Acute Chest Syndrome in Sickle Cell Disease: Clinical Presentation and Course. *Blood* 89, 1787-1792 (1997).
Figure. Annual rate of decline in FEV\textsubscript{1} (ml/year) is not statistically significant between adults with SCD and CF.

Table 1. Multivariable mixed linear regression model of longitudinal change in FEV\textsubscript{1} in 201 adults with sickle cell disease and 333 adults with cystic fibrosis at Vanderbilt University Medical Center.

Multivariable model of change in FEV\textsubscript{1} for SCD cohort (n=201)#			
Covariate	B	95% CI	P value
Male sex	0.425	0.239 – 0.612	<0.001
Age	-0.023	-0.028 – -0.018	<0.001
Genotype SS/S Beta thal0	-0.090	-0.294 – 0.115	0.390
Height	0.026	0.018 – 0.034	<0.001
Hemoglobin	0.028	-0.017 – 0.074	0.243
Hydroxyurea use	-0.023	-0.184 – 0.138	0.777
Bone marrow transplant	0.106	-0.003 – 0.216	0.058

Multivariable model of change in FEV\textsubscript{1} for CF cohort (n=333)#			
Covariate	B	95% CI	P value
Male sex	0.345	0.107 – 0.583	0.005
Age	-0.029	-0.037 – -0.021	<0.001
Height	0.041	0.030 – 0.052	<0.001
Diabetes	0.040	-0.078 – 0.158	0.503
Pancreatic insufficiency	-0.199	-0.383 – -0.014	0.035
Lung transplant	1.689	1.500 – 1.880	<0.001

#Model includes a random intercept and correlated random effects.
Abbreviations: SCA=sickle cell anemia; CI=confidence interval
Figure: Annual rate of decline in FEV₁ (ml/year) is not statistically significant between adults with SCD and CF.