Discovery of a Novel Retrovirus Sequence in an Australian Native Rodent (*Melomys burtoni*): A Putative Link between Gibbon Ape Leukemia Virus and Koala Retrovirus

Greg Simmons1*, Daniel Clarke2*, Jeff McKee3, Paul Young2, Joanne Meers1

1 School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia, 2 Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia, 3 Ecosure, West Burleigh, Queensland, Australia

Abstract

Gibbon ape leukaemia virus (GALV) and koala retrovirus (KoRV) share a remarkably close sequence identity despite the fact that they occur in distantly related mammals on different continents. It has previously been suggested that infection of their respective hosts may have occurred as a result of a species jump from another, as yet unidentified vertebrate host. To investigate possible sources of these retroviruses in the Australian context, DNA samples were obtained from 42 vertebrate species and screened using PCR in order to detect proviral sequences closely related to KoRV and GALV. Four proviral partial sequences totalling 2880 bases which share a strong similarity with KoRV and GALV were detected in DNA from a native Australian rodent, the grassland melomys, *Melomys burtoni*. We have designated this novel gammaretrovirus *Melomys burtoni* retrovirus (MbRV). The concatenated nucleotide sequence of MbRV shares 93% identity with the corresponding sequence from GALV-SEATO and 83% identity with KoRV. The geographic ranges of the grassland melomys and of the koala partially overlap. Thus a species jump by MbRV from melomys to koalas is conceivable. However the genus *Melomys* does not occur in mainland South East Asia and so it appears most likely that another as yet unidentified host was the source of GALV.

Citation: Simmons G, Clarke D, McKee J, Young P, Meers J (2014) Discovery of a Novel Retrovirus Sequence in an Australian Native Rodent (*Melomys burtoni*): A Putative Link between Gibbon Ape Leukemia Virus and Koala Retrovirus. PLOS ONE 9(9): e106954. doi:10.1371/journal.pone.0106954

Editor: Alfred L. Roca, University of Illinois at Urbana-Champaign, United States of America

Received January 22, 2014; Accepted August 11, 2014; Published September 24, 2014

Copyright: © 2014 Simmons et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was funded by Australian Research Council Linkage Grant no. LP0453692, http://www.arc.gov.au/. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: g.simmons@uq.edu.au

** Current address: School of Medical Science, Griffith University, Gold Coast, Queensland, Australia

Introduction

Koala populations in northern and central eastern Australia are currently undergoing significant declines. Habitat loss, drought, predation and disease have all been incriminated as contributing to these declines [1–3] with the main diseases being chlamydiosis, other opportunistic infections and lymphoid neoplasia [4–5]. Through possible immunosuppressive and oncogenic mechanisms, koala retrovirus (KoRV) is a potential predisposing factor in the development of these infectious and neoplastic diseases [6–8]. Retroviral particles were first observed in koala lymphosarcoma tissue [9] and partial retroviral sequences were detected in koalas with opportunistic infections [10] and in apparently healthy animals [11]. KoRV was subsequently identified in koalas in Queensland, Australia, and fully sequenced and characterised as an intact gammaretrovirus [12]. The virus has since been detected in all captive colonies tested in Australia, and the majority of free-living koala populations [6,12–13], as well as captive animals in the USA, Japan and Germany [10,14–15].

KoRV has attracted considerable scientific interest as a result of its unusual biological and epidemiological features. It is endogenous in northern Australian koala populations, as evidenced by 100% proviral prevalence [13] and the demonstration of KoRV provirus in sperm cells and inherited proviral insertion patterns [7]. However, KoRV also displays features of an exogenous virus, in that individual animals have distinct proviral insertion patterns [7], the KoRV provirus is full-length and transcriptionally-active, plasma from all provirus-positive koalas tested to date has been positive for viral RNA and not all koalas are KoRV positive [6,12–13].

The endogenous/exogenous duality of KoRV has been further highlighted by two recent studies, which found different genetic variants of KoRV in captive koalas in Japan and the US. In both studies the original KoRV, first identified in Australian koalas and referred to by these groups as KoRV-A, was identified in all PCR-positive animals. This retrovirus had previously been shown to use the phosphate transporter Pit-1 as a cellular receptor [16]. In addition, both studies showed that some of these KoRV-A positive animals were also infected with different, apparently exogenous viruses (referred to as KoRV-B in the US or KoRV-J in the Japanese studies), which have significant variations in their respective *env* sequences, leading to the utilization of a different cellular receptor, the thiamine transporter THTR1 [17–18].
Some koala populations in southern Australia are either free of the virus or have mixed KoRV proviral prevalence, indicating that the virus is not endogenous in these populations [7,13]. Thus it appears that KoRV is an active exogenous retrovirus currently undergoing a natural process of endogenisation [7].

A further unusual feature of KoRV is the close genetic relationship it shares with gibbon ape leukemia virus (GALV), an exogenous virus initially isolated from captive white-handed gibbons (Hylobates lar) in Thailand with malignant lymphoma and leukemia, and later isolated from other gibbons with lymphoid tumours, gibbons inoculated with human material or as a human cell culture contaminant [19–22]. KoRV and GALV share a high degree of homology across the entire viral genome and both viruses form a clade with eutherian (porcine, murine, feline and chiropteran) gammaretroviruses [11,23]. This phylogenetic relationship and the pathogenicity of the two viruses suggest that neither KoRV or GALV are recombinants nor co-evolved viruses, considering these taxa to be the most likely candidate species, either related viruses, including 19 rodent and seven bat species. We screened a total of 42 native or exotic wildlife species, or to further detect additional KoRV related proviral sequences in the M. burtoni DNA. Primers were designed to cover all regions of the MbRV genome from just downstream of the 5’LTR to just upstream of the 3’LTR. Primers which gave meaningful sequence were listed in Table 2. The remaining primer pairs failed to yield an amplicon.

Materials and Methods

Ethics statement

Management permit WISP05200108. under Queensland Department of Environment and Resource Management permit WISP05200108.

Sample collection

Blood, tissue or DNA samples of 42 animal species were obtained from a variety of sources, including collaborating research groups and wildlife hospitals. Both native species and those introduced to Australia were included in the study (Table 1). Following positive results in the initial PCR screening of Melomys spp. specimens, additional samples from M. burtoni and M. cervinipes were obtained from other researchers. An additional six M. burtoni were trapped as part of this project. Trapping was conducted nocturnally on Bribie Island, between June – August 2008 using Elliot traps.

PCR amplification

Polymerase gene PCR (Pair 1). The PCR reaction mix comprised 5.0 µl Orange G loading dye, 5.0 µl 10X buffer, 0.2 mM forward primer, 0.2 mM reverse primer, 0.1 mM dNTPs, 3 mM MgCl$_2$, 4.0 µl DMSO, approximately 0.2 µg DNA template, 0.25 µl Red Hot Taq (Thermo scientific) and ultrapure water to a final volume of 50.0 µl. Cycling conditions were an initial denaturation of 95°C for 2 minutes, followed by 35 cycles of 95°C for 30 seconds, 50°C for 30 seconds and 72°C for 30 seconds, followed by a final extension of 72°C for 10 minutes.

MbRV 2600F-4549R, MbRV 4015F-5034R and MbRV 6057F-7541R PCR (Pairs 2, 3 and 4). The reaction mix was 0.5 µl iProof long range Tag, 5 µl Orange G, 1 mM MgCl$_2$, 0.1 mM dNTPs, 0.2 mM forward primer, 0.2 mM reverse primer, 2.0 µl DMSO, 1.0 µl DNA template and ultra pure water to a final volume of 50.0 µl. Cycling conditions were an initial denaturation at 98°C for 30 seconds, followed by 35 cycles of 98°C for 10 seconds, 50°C for 20 seconds and 72°C for 60 seconds followed by a final extension of 72°C for 10 minutes. When an amplicon of the appropriate size was obtained, the band was excised from the gel and purified using a QIAagen gel purification kit. Sequencing reactions used the BigDye Terminator 3.1 system and DNA sequences were assayed on an ABI/Hitachi 3130xl Genetic Analyzer (Applied Biosystems, Hitachi). Sequences were then screened using the Basic Local Alignment Search Tool (BLAST) [27] in the NCBI database.

Sequence alignments and phylogenetic analysis

Four fragments of retroviral sequence were amplified from the DNA (Figure 1) of M. burtoni using primers designated in Table 2 providing a total of 2,880 bp sequence. We designated this sequence Melomys burtoni retrovirus (MbRV). Sequences 1 and 2 (Genbank KF572483, Genbank KF572484) are from the pol gene and sequences 3 and 4 (Genbank KF572485, Genbank KF572486) are from the env gene. The MbRV sequences for each
concatamer were aligned against all published sequences available from related viruses. The Genbank accession numbers of these sequences is given in Table 3. A strain of GALV isolated from a GALV-SSAV infected marmoset tumour cell line, was designated GALV-MAR. Alignments were performed using the ClustalW program in MEGA 5.1 [28].

Table 1. Species tested using PCR for the presence of koala retrovirus related sequence.

Rodents	Common name	Scientific name	No tested	Sample
Rodents				
Rodents	Canefield rat	Rattus sordidus*	3	Skin
Rodents	Water rat	Hydromys chrysogaster	1	Skin
Rodents	Grassland melomys	Melomys burtonii*	17	Skin, spleen, heart, DNA
Rodents	Rainforest melomys	Melomys cervinipes	13	Skin, spleen, heart, DNA
Rodents	House mouse	Mus musculus*	30	Spleen, liver
Rodents	Black rat	Rattus rattus	5	Spleen, liver
Rodents	Bush rat	Rattus fuscipes	4	Spleen
Rodents	White tailed rat	Uromys caudimaculatus*	3	Heart
Rodents	Indochinese forest rat	Rattus andamanensis	1	Skin
Rodents	Yellow binned country rat	Rattus luteolus	2	Skin
Rodents	Pale field rat	Rattus tunneyi	2	Skin
Rodents	Small white toothed rat	Berylmys berdmorei	2	Skin
Rodents	Greater bandicoot rat	Bandicota indica	2	Skin
Rodents	Savile’s bandicoot rat	Bandicota savilei	2	Skin
Rodents	Swamp rat	Rattus lutreolus	1	Skin
Rodents	Lesser bandicoot rat	Bandicota bengalensis	2	Skin
Rodents	Norway rat	Rattus norvegicus	1	Skin
Rodents	Cape York rat	Rattus leucopus	1	Heart
Rodents	Eastern Chestnut mouse	Pseudomys gracilicaudimaculatus	1	Skin
Flying vertebrates				
Flying vertebrates	Large flying fox	Pteropus vampyrus	4	Skin
Flying vertebrates	Black flying fox	Pteropus alecto*	28	Spleen, blood
Flying vertebrates	Spectacled flying fox	Pteropus conspiculatus	8	Skin
Flying vertebrates	Big eared flying fox	Pteropus macrotis	1	Skin
Flying vertebrates	Grey headed flying fox	Pteropus poliocephalus	1	Skin
Flying vertebrates	Little red flying fox	Pteropus scapulatus	2	Skin
Flying vertebrates	Long tongued nectar bat	Macroglossus minimus		
Flying vertebrates	Dollar bird	Eurostomus orientalis	1	Liver
Flying vertebrates	Indian Koel	Centropus phasianinus	1	Liver
Flying vertebrates	Channel billed cuckoo	Scythrops novaehollandae	1	Liver
Feral vertebrates				
Feral vertebrates	European fox	Vulpes vulpes	1	Spleen
Feral vertebrates	Indian mynah	Acridotheres tristis	1	Liver
Feral vertebrates	European starling	Sturnus vulgaris	1	Liver
Feral vertebrates	Feral pig	Sus scrofa	20	Diaphragm
Feral vertebrates	Red deer	Cervus elaphus	1	Liver
Feral vertebrates	Cane toad	Bufo marinus	1	Liver
Marsupials				
Marsupials	Common wombat	Vombatus ursinae	5	Blood
Marsupials	Tasmanian devil	Sarcophilus harisi	1	DNA
Marsupials	Red necked wallaby	Macropus rufogriseus	4	Spleen
Marsupials	Brushtail possum	Trichosurus vulpecular*	4	Spleen
Marsupials	Sugar glider	Petaurus breviceps*	2	Spleen
Marsupials	Ringtail possum	Pseudocheirus perigrinus*	1	Spleen
Marsupials	Stripe faced dunnart	Smithopsis macroura	5	Liver

Those with an * yielded an amplicon of the appropriate size. doi:10.1371/journal.pone.0106954.t001
model, determined in jModelTest v2.1.1 [29–30], for env sequences was general time reversible (GTR) with proportion of invariant sites, I = 0.236 and gamma of 2.738, and for pol was HKY [31] with gamma of 0.674. Using these parameters, phylogenetic trees were constructed by Bayesian inference trees containing 1.25 units of Taq DNA polymerase, 0.1 M of each primer, 5 μl of 10x PCR buffer and about 0.2 μg of genomic DNA. Cycling conditions were initial denaturation at 94°C for 1 minute, then 30 cycles of 94°C for 30 seconds, 55°C for 30 seconds and 72°C for 1 minute before an extra final extension step at 72°C for 7 minutes. Resulting PCR products were examined on a 0.7% gel, purified by a PCR clean-up kit and sequenced at the AGRF at the University of Queensland, St Lucia.

Rodent species identification

Individual rodents were distinguished at the genus level by gross morphology, using features such as the presence of hair and typical patterns on the tail. Distinguishing by gross morphology at the species level in either the Melomys or Rattus genus requires fine measurement of detailed anatomic characteristics and was not attempted in this study. A tentative assignment of melomys species was made based on the habitat in which the animal was trapped, with those trapped in rainforest habitat considered likely to be M. cervinipes and those trapped in dryer sclerophyll forests considered to be M. burtoni, although there is an overlap in the range of both species [34]. Definitive species identification of these rodents was conducted using PCR to amplify a 433 bp fragment of the mitochondrial DNA mammalian control region using published primers and protocols [35]. Primers used were Melomys_Spp_F 5′-CTCCACCATACGCAACCAAGCC-3′ and Melomys_Spp_R 5′-CTTGAAGTAGGAACCAGATG-3′. The PCR amplification was conducted in a 50 μl reaction volume containing 1.25 units of Taq DNA polymerase, 0.1 μM dNTP, 0.2 μM of each primer, 5 μl of 10x PCR buffer and about 0.2 μg of genomic DNA. Cycling conditions were initial denaturation at 94°C for 1 minute, then 30 cycles of 94°C for 30 seconds, 55°C for 30 seconds and 72°C for 1 minute before an extra final extension step at 72°C for 7 minutes. Resulting PCR products were examined on a 0.7% gel, purified by a PCR clean-up kit and sequenced at the AGRF at the University of Queensland, St Lucia.

Attempted virus isolation and viral RNA detection from melomys specimens

Following euthanasia and collection of blood by cardiac puncture from six melomys trapped on Bribie Island, primary cell cultures were established from a range of tissues including peripheral blood mononuclear cells (PBMCs) in an attempt to isolate a retrovirus. PBMCs were purified using Ficolpaque (Stemcell technologies, Tullamarine, Victoria) either from blood collected into EDTA and diluted 1:1 in RPMI medium (Life technologies, Mulgrave, Victoria) containing 20% fetal calf serum (RPMI/FCS) or from spleens that had been asexically removed and flushed with RPMI/FCS. Following purification, the PBMCs were suspended in RPMI/FCS and incubated at 37°C in 5% CO₂. Some of the PBMC cultures were mitogen-stimulated by the addition of 1% concanavalin A to the culture medium. For other tissue cultures, small (0.5 cm x 0.5 cm) sections of liver, kidney, spleen and the testis were asexically removed and macerated by grinding over a sterile metal sieve. The macerated tissue was placed into culture dishes, overlaid with DMEM (Life technologies, Mulgrave, Victoria) containing 20% FCS, and incubated as above. Media was replaced approximately every 3 or 4 days and the cultures were observed for cell growth and evidence of viral cytopathic effect. In addition, fresh plasma (200 μl) collected from one of the live specimens trapped on Bribie Island (BRME002) was inoculated into a 25 cm² cell culture flask containing confluent VERO cells. One ml of the supernatant was collected daily for 3 days.

Melomys plasma and samples of culture supernatant from the PBMC and other primary cell cultures were tested by reverse-transcriptase PCR for the presence of viral RNA. RNA was extracted using a Qiagen Viral RNA minikit (Qiagen, Hilden, Germany) and cDNA was produced using a Superscript 111 (Invitrogen, Mulgrave, Victoria) reverse transcription kit according to the manufacturer’s protocol, except that less than 1 μg RNA was used in the reactions). KoRV viral RNA extracted from koala plasma was used as a positive control in these reactions. PCR using the KoRV polymerase gene primers was then performed.

Electron microscopy

Cell pellets from the mitogen-stimulated PBMC cultures were examined by electron microscopy. Briefly, ultra-thin sections (60 nm) of glutaraldehyde-fixed pelleted cells that had been processed using standard methods were placed on coated grids.

![Figure 1. Relative positions of MbRV fragments with respect to GALV genome.](image-url)

Table 2. PCR primers which yielded partial MbRV proviral sequence.

No	Name	Forward primer	Reverse primer
1*	KoRV Polymerase gene	CTTGGACACCAAGGAGACTTGTGA	TCAAATCTTTGAGCTGGGCGA
2	MbRV 2600F-4549R	CCTCTATGCATCGACTCTGG	TAGTCTCCAGCACACTGGT
3	MbRV 4015F-5034R	CAGTGCACAGGTGCCTCAG	GCCGGGCATTGCTGAC
4	MbRV 6057F-7541R	GTAAGAWGTGCGGWTGTGAGACC	CCTATCATGACTAGATTGWA

*Reference [6]. The numbers in primer pairs 2, 3 and 4 refer to the approximate position in the homologous region of either the KoRV or GALV genome.
Transmission electron microscopy was performed using a Jeol 1010 Transmission Electron Microscope (Jeol Ltd. Japan).

Results

PCR screening

The PCR primer pair used in the screening that gave the most consistent results in terms of producing clear amplicons of appropriate size was the KoRV polymerase gene pair.

Of the DNA extracted from 42 species and screened using these primers, eight species yielded amplicons of the expected size (summarised in Table 1). These species were *Mus musculus*, *Uromys caudimaculatus*, *Rattus sordidus*, *Pteropus alecto*, *Trichosurus vulpecula*, *Pseudocheirus pererinus*, *Petaurus breviceps* and *Melomys burtoni*.

All 30 samples from *Mus musculus* gave an amplicon of the same size, of which 15 were sequenced and had highest identity with *Mus musculus* genomic sequence from chromosome 7 (Acc No18412.2). Two of three samples of white-tailed rat (*Uromys caudimaculatus*) provided sequences that were similar to *Mus musculus*, chromosome 18 (AccNo124717.3). One of three canefield rat (*Rattus sordidus*) samples gave a sequence similar to *Felis catus*, chromosome unknown (AccNo252681.1). All of these sequence matches most likely represent homologies with species specific endogenous retroviral elements.

All black flying fox (*Pteropus alecto*) samples yielded appropriately sized amplicons (~400 bp). However, although all these sequences were very similar to each other, the sequences were not recognized as being similar to any known sequence when subjected to a BLAST analysis. Similarly, samples from brushtail possums (*Trichosurus vulpecula*), a ringtailed possum (*Pseudocheirus pererinus*) and sugar gliders (*Petaurus breviceps*) yielded clear amplicons, whose nucleotide sequences were not similar to any sequence on the NCBI database.

In the initial screening, five specimens from *Melomys burtoni* were assayed. All five yielded amplicons of the appropriate size. These samples included skin, spleen, heart and skeletal muscle. Following these findings, additional specimens of *M. burtoni* and *M. cervinipes* were tested.

Table 3. Genebank sequences used in alignments to construct phylogenetic trees.

Gene	Name	Genbank Accession number
pol, env	GALV-SEATO	AF055060.1
pol, env	GALV-X	U60565.1
pol, env	KoRV	AF151794.2
pol, env	MDEV	AF053745.1
pol, env	FeLV	NC_001940.1
pol	MbRV seq 1	KF572483
pol	MbRV seq 2	KF572484
pol	MbRV	JO951956.1
env	GALV-SF	AF055063.1
env	GALV-Br	AF055062.1
env	GALV-H	AF055061.1
env	SAV	AF055064.1
env	GALV-MAR	U20589.1
env	MbRV seq 3	KF572485
env	MbRV seq 4	KF572486

Melomys retrovirus

Of a total of 30 *Melomys spp* samples tested, 17 were from *Melomys burtoni* and 13 were from *M. cervinipes*. None of the 13 *M. cervinipes* samples yielded an amplicon using the KoRV polymerase gene primers. However, all 17 *M. burtoni* were positive using these primers. The nucleotide sequence of this amplicon revealed a close similarity with sequences from both KoRV and GALV. We designated this proviral sequence Melomys burtoni retrovirus (MbRV).

The sequence from this amplicon (approximately 400 bp) had 100% identity among all *Melomys burtoni* specimens tested. Primer pairs 2, 3 and 4 were used to amplify additional proviral fragments, which also yielded sequence with close identity to KoRV and GALV. In total, 2890 bp of MbRV sequence was obtained.

Attempts to isolate additional sequences of MbRV and to characterize the full genome are ongoing. However phylogenetic trees for the individual sequences (data not shown) place the 4 fragments in similar positions within the phylogeny when compared to the phylogenies of the concatenated sequences suggesting that these sequences are from the same provirus. It remains possible however that one or more of these fragments are from different proviruses.

The 4 MbRV amplicons had 94%, 93%, 92% and 90% nucleotide identity with GALV-SEATO and 84%, 82%, 74% and 79% identity with KoRV respectively.

The concatenated sequence of MbRV amplicons showed 93% nucleotide identity with GALV-SEATO and 83% identity with KoRV. In phylogenetic analysis, MbRV formed close relationships with the GALV sequences; for the pol gene, MbRV was placed as a sister taxon to two GALV sequences (Figure 2) and for the env gene, GALV and MbRV sequences formed a monophyletic clade (Figure 3). These relationships showed high posterior probability support. In both trees, MbRV, GALV and KoRV sequences formed a well-supported monophyletic clade to the exclusion of feline leukemia virus (FeLV) and *Mus dunni* endogenous virus (MDEV).
Attempted virus isolation and viral RNA detection
PBMCs and fibroblast cells from both *M. burtoni* spleen and testis were successfully cultured from six animals, with cells surviving for up to 20 days. No viral cytopathic effect was observed in any of the cell cultures. All attempts to detect MbRV viral RNA directly from plasma, from Con A-stimulated PBMC supernatants, from Vero cell cultures which had been inoculated with plasma or from cultured fibroblasts derived from spleen were unsuccessful.

Transmission electron microscopy
Approximately 20 sections of Con A-stimulated PBMC cultures were examined by electron microscopy. Although a number of structures of an appropriate retrovirus size were visualized, nothing with typical gammaretrovirus morphology was observed.

Discussion
The nucleotide sequences of the four MbRV fragments derived from DNA samples from *Melomys burtoni* are remarkably similar to sequences of GALV and, to a lesser extent, of KoRV. This is reinforced by the Bayesian inference trees for the env fragments, in particular, which cluster MbRV and GALV sequences in a monophyletic clade. Based on this relationship, MbRV may be considered a sub-type of GALV. When the degree of similarity between KoRV and GALV became known it stimulated much interest in the origins of both viruses [24]. The discovery of these MbRV sequences provides an additional and intriguing perspective.

Based on the data presented here it seems likely that MbRV is an endogenous virus. Proviral sequence was present in 100% of *M. burtoni* specimens tested and attempts to demonstrate the presence of viral RNA either directly in plasma or in PBMC or other primary cell cultures were unsuccessful. In addition, electron microscopy failed to demonstrate typical gammaretrovirus type particles in mitogen-stimulated PBMC cultures. However, these attempts to isolate virus were not exhaustive and it is still possible that MbRV could be transcriptionally active in different culture systems. In support of this possibility, the MbRV sequences detailed here all contained homologous open reading frames, which is consistent with either an exogenous or recently endogenised virus.

A greater understanding of the biology of the melomy host may help to shed light on the close genetic relationship between KoRV, GALV and MbRV. Melomys are murine rodents that are thought to have arrived in Australia about 5 million years ago via the land bridge with Papua New Guinea [36]. Of the five or six melomy species in Australia, [37], the grassland melomys (*M. burtoni*) and the fawn footed melomys (*M. cervinipes*) are the most abundant. Both of these species are found in coastal regions of north eastern Australia with *M. cervinipes* found in wetter rainforest habitats and *M. burtoni* found in drier grassland habitats, although their distribution overlaps in intermediate habitats [34].

Although both melomys species examined in this study are closely related and in some regions share a common habitat, there was no evidence of MbRV sequence in any of the *M. cervinipes* tested while all *M. burtoni* tested were positive. It is possible that despite their close relatedness there is sufficient genetic variation to make *M. cervinipes* resistant to MbRV infection, for example through variation in the cell receptor for the virus. The murine APOBEC3 gene has been shown to restrict infection with Moloney murine leukaemia virus in mice, with mice lacking functional copies of this gene being more susceptible to infection [38]. Thus it may be that *M. cervinipes*, but not *M. burtoni*, has evolved restriction factors which render it resistant to infection.
with MbRV. Alternatively, it is possible that lack of physical contact between *M. cervinipes* and *M. burtoni* individuals, even in areas where their geographical distribution overlaps, prevented viral transmission between the two species. *M. cervinipes* is arboreal while *M. burtoni* spends a greater part of its time on the ground, so perhaps close interactions between the two species are uncommon. This, combined with the possibility that *M. burtoni* individuals may rarely be viraemic, could explain the lack of MbRV in *M. cervinipes*. It is also possible that *M. cervinipes* do carry MbRV-related sequences but at a lower copy number or at a lower prevalence in the population than could be detected in this study.

Considering the geographic distribution and the phylogenetic placement of melomys, koalas and gibbons, there is no clear explanation for the close genetic relationships between MbRV, KoRV and GALV. The sequence integrity, heterogeneity, instability and clinical associations of KoRV and the clinical pattern of GALV infection are consistent with naïve host events, suggesting cross-species virus transmission events. Although MbRV is a potential ancestor virus, geographic and biological obstacles make it somewhat difficult to create plausible scenarios to explain such transmission events between melomys and the other two host species, particularly gibbons.

Although grassland melomys and koalas share a similar geographic ranges down the east coast of Australia [1,34] and both species are nocturnal, koalas are mostly arboreal, whereas grassland melomys are terrestrial. However, koalas spend short periods on the ground, particularly during the breeding season [1] and it is therefore possible that individuals of the two species do occasionally interact, allowing viral transmission between these species. However, considering that *M. burtoni* and koalas have likely been present in Australia for 5 million years and 15 million years, respectively [1,36], it is perhaps surprising that KoRV has putatively only been present in koalas for about 200 years [24]. It is possible either that suitable interactions between koalas and viraemic melomys are very rare events or that the calculations are incorrect. Recent studies on archival koala samples have suggested a longer association between this retrovirus and its koala host than previously thought [39]. A longer time frame in which the putative cross species transmission of MbRV to koalas occurred would allow for some genetic divergence between MbRV and KoRV to occur which would explain why KoRV and MbRV do not share a higher degree of similarity today. In addition it is possible that the initial putative cross species transmission of MbRV to koalas and the subsequent endogenization of KoRV are separated by a considerable period of time.

In contrast to the potential interactions between koalas and melomys, it is very difficult to explain a connection between melomys and gibbons and to understand the very close genetic relatedness of MbRV and GALV. The genus *Melomys* is only
found east of Wallace’s Line (between the Indonesian islands of Bali and Lombok) and is primarily limited to Australia, Papua New Guinea and the western Pacific. Melomys spp do not occur in mainland South East Asia [40], where GALV emerged. Thus it seems extremely unlikely that there has been natural transmission of virus between melomys and gibbons in Thailand. It is possible that there was some form of iatrogenic transmission of MbRV or a MbRV-like virus to gibbons in the Bangkok colony. It is also possible that another as yet unknown host, which is distributed on both sides of Wallace’s Line and which harbours a virus similar to GALV or MbRV, could have introduced the virus to the gibbon colony through natural contact. Whether this unknown host was a rodent or another mammal and whether it was a native of Thailand, a long-standing feral animal or a recent introduction can only be speculated. Currently there are no published reports of a retrovirus in any other species with the same degree of homology that MbRV shares with KoRV or GALV. Several early reports suggested the presence of GALV-related virus in some rodents, but these experiments were based on DNA hybridization techniques which were relatively crude in determining sequence homology [41–42]. Thus despite our detection of a closely related virus these experiments were based on DNA hybridization techniques which were relatively crude in determining sequence homology [41–42]. Thus despite our detection of a closely related virus.

References

1. Martin R (1983) Koalas and wombats. In: S. Strahan, editor. Complete Book of Australian Mammals. Lidun, Sydney, Melbourne: Angus and Robertson.
2. Melzer A, Carrick F, Menkhorst P, Lunnem D, St. John B (2000) Overview, critical assessment and conservation implications of koala distribution and abundance. Conserv Biol 14: 619–628.
3. Phillips S (2000) Population trends and the koala conservation debate. Conserv Biol 14: 650–659.
4. Ladd P (2009) Bacterial diseases in terrestrial mammals. In: A. de Krester, editor. Pathology of Australian Native Wildlife. Collingwood: CSIRO. pp. 91–96.
5. Ladd P (2009) Neoplasia and related proliferations in terrestrial mammals. In: A. de Krester, editor. Pathology of Australian Native Wildlife. Collingwood: CSIRO. pp. 430–437.
6. Tarlinton R, Meers J, Hanger J, Young P (2005) Real-time reverse transcriptase PCR for the endogenous koala retrovirus reveals an association between plasma viral load and neoplastic disease in koalas. J Gen Virol 86: 765–777.
7. Tarlinton RE, Meers J, Young PR (2006) Retroviral invasion of the koala genome. Nature 442: 79–81.
8. Tarlinton R, Meers J, Young P (2006) Biology and evolution of the endogenous koala retrovirus. Cell Mol Life Sci 65: 3413–3421.
9. Cardfield PJ, Sabine JM, Lowe DN (1986) Review: virus particles associated with leukaemia in a koala. Aust Vet J 65: 327–328.
10. Worely M, Rideout B, Shima A, Janssen D (1993) Opportunistic infections, cancer and haematological disorders associated with retrovirus infection in the koala. Proceedings of the American Association of Zoo Veterinarians. 181–182.
11. Martin J, Herniou E, Cook J, O’Neill RW, Tristem M (1999) Interclass transmission and phyletic host tracking in murine leukaemia virus-related retroviruses. J Virol 73: 2442–2449.
12. Hanger J, Bromham LD, McKee J, O’Brien TM, Robinson WF (2000) The nucleotide sequence of koala (Phascolarctos cinereus) retrovirus: a novel type C endogenous virus related to Gibbon ape leukemia virus. J Virol 74: 4264–4272.
13. Simmons GS, Young PR, Hanger J, Jones K, Clarke D, et al. (2012) Prevalence of koala retrovirus in geographically diverse populations in Australia. Aust Vet J 90: 409–410.
14. Fiebig U, Hartmann MG, Bannert N, Kurth R, Dennen J (2006) Transspecies transmission of the endogenous koala retrovirus. J Virol 80: 5651–5654.
15. Miyazawa T, Shojima T, Yoshikawa R, Okada T (2011) Isolation of koala retroviruses from koalas in Japan. The Journal of veterinary medical science/ the Japanese Society of Veterinary Science 73: 65–70.
16. Oliveira SM, Farrell KB, Eden MV (2006) In vitro characterization of a koala retrovirus. J Virol 80: 3104–7.
17. Shojima T, Yoshikawa R, Ishodho S, Shimode H, Nakagawa S, et al. (2013) Identification of a Novel Subgroup of Koala Retrovirus from Koalas in Japanese Zoos. J Virol.
18. Xu W, Stadler CK, Gorman K, Jensen N, Kim D, et al. (2013) An exogenous retrovirus isolated from koalas with malignant neoplasias in a US zoo. Proceedings of the National Academy of Sciences of the United States of America 110: 11547–11552.
19. Johnston DO, Wooding WL, Tantracharontpat P, Bourgeois CH (1971) Malignant lymphoma in the gibbon. J Am Vet Med Assoc 159: 563–566.
20. De Paoli A, Johnston DO (1973) Granulocytic leukemia in whitehanded gibbons. J Am Vet Med Assoc 163: 624–628.
21. Gibbs CJ Jr, Gajdusek DC (1973) Infectious priapic Type C viruses: Three isolates belonging to a new sub group from the brains of normal gibbons. Virology 67: 335–343.
22. Burtonboy G, Delferriere N, Mousse B, Autretshere M (1995) Isolation of a C-type retrovirus from an HIV infected cell line. Arch Virol 130: 239–300.
23. Cui J, Tschiedjian G, Tschiedjian M, Holmes RC, Zhang S, et al. (2012) Identification of diverse groups of endogenous gammaretroviruses in mega- and microbats. J Gen Virol 93: 2037–2043.
24. Bromham L (2002) The human zoon endogenous retroviruses in the human genome. Trends Ecol Evol 17: 91–97.
25. Stove JP (2006) Koala retrovirus: a genome invasion in real time. Genome Biol 7: 241.
26. Macdonald D (2001) Gibbons. The Encyclopaedia of Mammals. Oxford: Oxford University Press. pp. 308–403.
27. Alscheid SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402.
28. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, et al. (2011) MEGAS: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739.
29. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogeny by maximum likelihood. Systematic Biology 52, 690–704.
30. Pouza D (2006) Model/Test: Phylogenetic model averaging. Molecular Biology and Evolution 25, 1233–1256.
31. Hasegawa M, Kishino H, Yano T (1985) Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution 22, 160–174.
32. Ronquist F, Huelsenbeck JP (2003) MrBayes: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574.
33. Ramaut A (2009) FigTree, Available from: http://tree.bio.ed.ac.uk/software/figtree.
34. Redhead T (1983) Mosaic tailed rats. In: R. Strahan, editor editors. Complete Book of Australian Mammals. Melbourne: Angus and Robertson. pp. 370–379.
35. Campbell NJ, Harris FG, Elphinstone MS, Bavister BR (1995) Outgroup heteroduplex analysis using temperature gradient gel electrophoresis: high resolution, large scale, screening of DNA variation in the mitochondrial control region. Mol Ecol 4: 407–418.
36. Rowe KC, Reno RL, Richmond DM, Aitkins RM, Steppan SJ (2008) Piocene colonization and adaptive radiations in Australia and New Guinea (Sahul): multilocus systematics of the old endemic rodents (Muridae: Murinae), Mol Phylogenet Evol 47: 98–101.
37. Breed B, Ford F (2007) Native rats and mice. Collingwood: CSIRO Publishing.
38. Rulli SJ Jr, Mirro J, Hill SA, Lloyd P, Gorelick RJ, et al. (2008) Interactions of murine APOBEC3 and human APOBEC3G with murine leukemia viruses. J Virol 82: 6566–6575.

39. Avila-Acosta MC, Ho SY, Ishida Y, Nikolaidis N, Tsangaras K, et al. (2013) One hundred twenty years of koala retrovirus evolution determined from museum skins. Mol Biol Evol 30: 299–304.

40. Nowak M (1999) Mosaic-tailed Rats, or Banan Rats. In: M. Nowak, editor. Walkers Mammals of the World. Baltimore: Johns Hopkins University Press. pp. 1548–1549.

41. Callahan R, Meade C, Todaro GJ (1979) Isolation of an endogenous type C virus related to the infectious primate type C viruses from the Asian rodent Vandeleuria oleracea. J Virol 30: 124–131.

42. Lieber MM, Sherr CJ, Todaro GJ, Benveniste RE, Callahan R, et al. (1975) Isolation from the Asian mouse Mus caroli of an endogenous type C virus related to infectious primate type C viruses. Proceedings of the National Academy of Sciences of the United States of America 72: 2315–2319.
Author/s:
Simmons, G; Clarke, D; McKee, J; Young, P; Meers, J

Title:
Discovery of a novel retrovirus sequence in an Australian native rodent (Melomys burtoni): a putative link between gibbon ape leukemia virus and koala retrovirus.

Date:
2014

Citation:
Simmons, G., Clarke, D., McKee, J., Young, P. & Meers, J. (2014). Discovery of a novel retrovirus sequence in an Australian native rodent (Melomys burtoni): a putative link between gibbon ape leukemia virus and koala retrovirus.. PLoS One, 9 (9), pp.e106954-.
https://doi.org/10.1371/journal.pone.0106954.

Persistent Link:
http://hdl.handle.net/11343/246698

File Description:
published version

License:
CC BY