Juvenile idiopathic arthritis in a center in the Western Anatolia region in Turkey

The known about this topic
Juvenile idiopathic arthritis shows variances in terms of sex, age at the time of diagnosis, and treatment response by subtypes from region to region. Local studies show that these variances are associated with many causes including genetic and environmental factors.

Contribution of the study
In this study, the characteristics of patients with juvenile idiopathic arthritis were compared with national and international data, and structural differences and similarities of our region were examined. Enthesitis-related arthritis is the most common subtype. It was emphasized that enthesitis should not be overlooked on physical examination as enthesitis-related arthritis has the poorest prognosis in terms of diagnostic delay and treatment response.

Abstract
Aim: To demonstrate the demographic data, subgroup distributions, responses to treatment and outcomes of long-term follow-up in patients who were followed up and treated in our clinics with a diagnosis of juvenile idiopathic arthritis, and to compare these data with national and international data.

Material and Methods: The files of 116 patients who had been diagnosed as having juvenile idiopathic arthritis, were initiated on treatment and presented for regular follow-up visits between January 2012 and January 2018, were examined. Their demographic findings, treatments, active/inactive disease states (on-medication and off-medication) and treatment response states were evaluated.

Results: According to the International League of Associations for Rheumatology criteria, the subtypes were specified as enthesitis-related arthritis (n=38), oligoarticular (n=37), rheumatoid factor (+) polyarticular (n=17), systemic (n=15), rheumatoid factor (+) polyarticular (n=5), and psoriatic juvenile idiopathic arthritis (n=4). In total, the female/male ratio was found to be 1.5. The mean delay time between the first complaint and the diagnosis was found to be 5.7±5.2 months. The patients with systemic type were diagnosed at the earliest, while the patients with polyarticular and enthesitis-related subtypes were diagnosed at the latest. Thirty-two percent of the patients were treated earliest, while the patients with polyarticular and enthesitis-related subtypes to be 5.7±5.2 months. The patients with systemic type were diagnosed at the mean delay time between the first complaint and the diagnosis was found

©Copyright 2020 by Turkish Pediatric Association - Available online at www.turkpediatriarsivi.com

Cite this article as: Otar Yener G, Ekici Tekin Z, Girigen İ, Çetin EN, Akdağ B, Yüksel S. Juvenile idiopathic arthritis in a center in the Western Anatolia region in Turkey. Turk Pediatri Ars 2020; 55(7): 157–65.
with methotrexate alone, and 38% were given additional biologic drugs. In both treatment groups, the time to achieve inactive disease was the shortest in the oligoarticular group and the longest in the enthesitis-related arthritis group. In the study period, 38 patients were in remission off-medication (the highest rate (53.3%) was observed in the systemic group) and 71 patients were in remission on-medication (the highest rate (70.2%) was observed in the oligoarticular group). Remission was obtained in 94% of the patients.

Conclusions: Enthesitis which is the remarkable finding of enthesitis-related arthritis, should not be overlooked in routine physical examination. Awareness of enthesitis can contribute to the prevention of diagnostic delay in children with enthesitis-related arthritis.

Keywords: Antirheumatic drugs, juvenile idiopathic arthritis, methotrexate

Introduction

Juvenile idiopathic arthritis (JIA) is among the most common rheumatic diseases of childhood and has been described as a chronic inflammatory synovitis. It is a heterogeneous disease that lasts for at least six weeks with an onset before the age of 16 years, and is diagnosed after excluding other known causes of arthritis. Different classification systems have been developed. The final classification system was updated by the International League of Associations for Rheumatology (ILAR) in 2011 and classified seven subgroups including systemic, oligoarticular (persistent and extended), enthesitis-related, polyarticular rheumatic factor (RF)-positive, polyarticular RF-negative, psoriatic, and unclassified arthritis (1). The prevalence and incidence of JIA depend on genetic and environmental factors, and may show significant variance among different societies. The prevalence of juvenile rheumatic arthritis has been reported as 0.007–4.01 in 1000 children, and its annual incidence has been reported as 0.008–0.262 per 1000 children (2).

The incidences of JIA subtypes, age at the time of diagnosis, sex, and responses to drugs show variance in studies conducted worldwide and in different regions of Turkey (3–13). In this study, we aimed to examine the incidences of JIA subgroups and treatment responses in patients with JIA in our Pediatric Rheumatology Clinic that follows up patients presenting from some provinces of the Inner Western Egean region (Denizli, Uşak, Afyon) and Mediterranean region (Burdur, Isparta, Antalya), and the patients’ demographic clinical characteristics. The results of our patient population were compared with national and international data.

Material and Methods

In this retrospective cohort study, the files of 116 patients who were diagnosed as having JIA, who were initiated treatment and attended regular follow-up visits between January 2012 and January 2018, were examined. Ten patients who did not attend regular follow-up visits were not included in the study. At the time of diagnosis, other causes leading to arthritis including post-inflammatory arthritis, systemic inflammatory diseases, malignancy, and metabolic diseases were excluded. During the JIA subgroup classification, the ILAR criteria were used at the time of diagnosis and when reclassification was made after six months’ treatment was completed (1). The patients’ demographic data (JIA subtype, age, sex, age at the time of diagnosis, diagnostic delay, follow-up period) treatments, and treatment periods were recorded. Positivity for antinuclear antibody (ANA), rheumatoid factor (RF), and human leukocyte antigen 27 (HLA B27) was examined in all patients. An ANA titer of 1/100 measured using immunofluorescence was considered positive. Two rheumatoid factor values measured with an interval of 3 months in a six-month period above 10 U/L were considered significant. Human leukocyte antigen B27 was evaluated as positive and negative. All patients were examined by an ophthalmologist every six months in terms of uveitis. Ultrasonography was performed in patients who had peripheral joint involvement, and magnetic resonance imaging (MRI) was performed in patients who had inflammatory back pain or sacroilitis findings. Familial Mediterranean fever (FMF) was interrogated according to childhood FMF criteria (14) in all patients and MEFV gene analysis was requested; colchicine treatment was initiated when the clinical picture was compatible. Treatments, treatment durations, and responses were evaluated in association in all patients. Considering active disease and inactive disease (clinical remission on- and off-medication) states at the time of final visit, and the time to reach inactive disease was recorded. Inactivity status was evaluated according to the Wallace criteria (15) [absence of active arthritis, absence of fever-rash-serositis-splenomegaly-diffuse lymphadenopathy, absence of uveitis, normal erythrocyte sedimentation rate (ESR) and C-reactive protein, lower visual analogue scale score compared with the previous value, shorter duration of morning stiffness (less than 15 minutes)]. Inactive disease while using medication for at least six months was defined as status of clinical remission on medication. Presence of inactive disease for at least 12 successive months’ treatment was defined as status of clinical remission off-medication.

The study was conducted in accordance with the principles of the Helsinki Declaration and approved by the local ethics committee (30.10.2018/20 and 16.04.2019/08).
Written informed consent was not obtained because the study had a retrospective design.

Statistical Analysis

The data were analyzed using the SPSS 24.0 (IBM SPSS Statistics for Windows, Version 24.0. Armonk, NY: IBM Corp.) package program. Continuous variables are expressed as mean ± standard deviation and median (minimum and maximum values). Categorical variables are expressed as numbers and percentages. The compatibility of the data with normal distribution was examined using the Shapiro-Wilk test. Kruskal-Wallis variance analysis was used for the comparison of the differences of independent groups (Mann-Whitney U test with a Bonferroni correction for binary examinations). Differences between categorical variables were examined using Chi-square analysis. A p value of <0.05 was considered statistically significant.

Results

Thirty-eight of 116 patients with JIA were classified as having enthesitis-related arthritis (ERA), 37 were classified as oligoarticular JIA, 17 were classified as RF(-) polyarticular JIA, 15 were classified as systemic JIA, five were classified as RF(+) polyarticular JIA, and four were classified as psoriatic JIA. Definite subtype classification was made once again one month after the diagnosis, and two patients were observed to have transformed from oligoarthritis to extended oligoarthritis type. Female sex was predominant in the subgroups excluding psoriatic JIA. The mean age at the time of diagnosis was found as 10.1 ± 4.5 years, the mean follow-up time was found as 24.5 ± 17.8 months, and female sex was predominant (female/male: 1.57). The highest mean age was found in the patients who had ERA, followed by polyarticular JIA, oligoarticular JIA, and systemic JIA (Table 1). The ages at the time of diagnosis were significantly different from each other among the subgroups (p < 0.001). The mean ESR value at the time of diagnosis was found as 78.2 mm/h (the highest value) in the systemic JIA group and 48.2 mm/h (the lowest value) in the ERA group. The mean diagnostic delay time was found as 5.7 ± 5.2 months. In this regard, it was found that the patients in the systemic JIA subgroup were diagnosed the earliest and the patients in the polyarticular and ERA groups were diagnosed the latest (Table 1). In addition, the diagnostic delay times in the subgroups were significantly different from each other (p < 0.001). The longest follow-up time was found in the polyarticular JIA type and the shortest follow-up time was found in the oligoarticular JIA type (Table 1). A positive familial history was found in 11.2% of the patients, and the highest rate of positive familial history was found in the ERA subgroup (25%) (Table 1). The percentage of anti-nuclear antibody (ANA) positivity was found as 62.2% in the oligoarticular group. In the whole patient group, this percentage was found to be approximately 44%. Rheumatoid factor was found to be positive in 22.7% of the patients with polyarticular JIA. HLA B27 was found to be positive in 21.1% of the patients with enthesitis-related arthritis. Uveitis developed in three (2.6%) patients; two of these patients were diagnosed as having oligoarticular JIA and one was diagnosed as having RF-negative polyarticular JIA. MEFV gene mutation was tested in 62 patients who had a prediagnosis of FMF. Additional colchicine treatment was initiated in 16 (13.7%) children because the clinical picture was compatible with the criteria of FMF. The M694V gene mutation, which is the most common gene mutation in this patient group, was found homozygously in six patients (Table 2). In the oligoarticular JIA group, the most commonly in-

Table 1. Demographic properties of the patients

	Total n=116	Oligoarticular JIA n=37	Enthesitis-related arthritis n=38	Polyarticular JIA n=22	Systemic JIA n=15	Psoriatic JIA n=4	p
Female/male n/n	71/45	25/12	22/16	15/7	7/8	2/2	p < 0.001
Mean age (years)	12.9±4.7	10.4±4.8	15.4±3.1	14.6±4.9	10.5±3.9	16.1±1.0	p < 0.001
Mean age at the time of diagnosis (years)	10.1±4.5	7.6±4.5	12.6±3.0	10.6±4.9	8.4±4.2	12.6±1.9	p < 0.001
Diagnostic delay time (months)	5.7±5.2	3.4±3.4	7.4±5.5	8.9±5.4	1.7±1.6	4.0±3.5	p < 0.001
Follow-up time (months)	24.5±17.8	20.7±16.7	24.2±17.6	30.1±18.1	22.9±18.7	37±22.5	p < 0.001
Positive family history, n (%)	13 (11.2)	4 (16.7)	7 (25)	2 (11.1)	–	–	–

Comparison was not made because the numbers of patients with psoriatic JIA and systemic JIA were low. JIA: Juvenile idiopathic arthritis
The involved joint was found to be the knee joint with a rate of 73%, and the ankle was the second most commonly involved joint (10.8%). For radiodiagnostic examinations, the patients with JIA who had active arthritis were evaluated using joint ultrasonography. The diagnosis of enthesitis-related arthritis was evaluated using MRI in patients who had inflammatory back pain or sacroileitis findings. About 10% of the patients benefited from non-steroidal anti-inflammatory treatment. Intraarticular injections were performed in 25 patients and a second intraarticular injection was performed in 11 patients. Initiation of steroid treatment was needed in 21 patients. Four of these patients had oligoarticular JIA, seven had ERA, two had polyarticular JIA, and eight had systemic JIA. Eight patients with systemic JIA and one patient with polyarticular JIA needed high-dose steroid treatment. Methotrexate was used in a total of 108 patients. Methotrexate treatment alone was given in about 32% of patients. Among the patients treated with methotrexate alone, the inactive time transition was the shortest in the systemic JIA group, while the longest was in the ERA group. There was a statistically significant difference between oligoarticular JIA and ERA (Table 3). Biologic drugs were used in

Table 2. MEFV mutations in the patients with juvenile idiopathic arthritis and familial Mediterranean fever

Enthesitis-related arthritis	Oligoarticular JIA	Polyarticular JIA	Psoriatic JIA
M694V homozygous	4	2	-
M694V heterozygous	1	1	1
M680I homozygous	1	-	-
M694V heterozygous and M680I heterozygous (Compound heterozygous)	1	-	-
V726A heterozygous	-	1	-
E148Q heterozygous	2	-	-
R202Q heterozygous	1	-	-
Total	10	4	1

JIA: Juvenile idiopathic arthritis

Table 3. Drug use and drug use times

	Total n=116	Oligoarticular JIA n=37	Enthesitis-related arthritis n=38	Polyarticular JIA n=22	Systemic JIA n=15	Psoriatic JIA n=4	p
Methotrexate							
alone, n (%)	81 (69.8)	27 (72.9)	28 (73.6)	19 (86.3)	7 (46.6)	4 (100)	
Time to transition to inactive disease in patients who did not use biologic drug (months)abc	4.2±3.5	3.1±2.9	5.6±4.3	4.6±3.4	2.5±0.5	3.5±0.7	*p<0.001
Number of patients who used biologic drug, n (%)	38 (32.7)	10 (27)	12 (31.6)	9 (40.9)	5 (33.3)	2 (50)	
Time to transition to inactive disease following use of biologic drug (months)	2.1±1.1	1.5±0.5	2.3±0.8	2.0±0.7	2.0±0.7	4.0±4.2	
Time of usage of biologic drug (months), Mean (Median)	14.3±12.5 (10.0)	10.1±9.0 (5.0)	15.9±13.8 (10.5)	20.6±14.8 (20.0)	9.2±9.6 (6.0)	11.0±9.0	

a: Comparison was not made, because the number of patients who used methotrexate was low among systemic JIA subjects; b: Comparison was not made, because the number of patients with psoriatic JIA was 4; c: Time to transition to inactive disease in the patients who did not use biologic drug; JIA: Juvenile idiopathic arthritis; *p: Oligoarticular JIA-enthesitis-related arthritis
38.2% (n=38) of patients. Following biologic drug use, the shortest transition time to the inactive period was found in the oligoarticular JIA group, and the longest time to the inactive period was found in the ERA group (Table 3). Modification in biologic drugs was needed in four patients (three patients with polyarticular JIA, one patient with psoriatic JIA). Although the use of biologic drugs was needed for a longer time period in patients who had polyarticular JIA (median 20 months), this duration was shorter in the systemic JIA group (median 6 months). Among the biologic drugs, etanercept was used in 21 patients, adalimumab was used in 11 patients, anakinra and canakinumab were used in three patients, tosilizumab was used in two patients, and infliximab was used in one patient.

Disease recurrence was observed during the follow-up period in 35% of patients (most commonly in the oligoarticular JIA group) (Table 4). When the final outcomes following treatment were examined, it was found that remission on and off medication was provided in 109 of the patients (94%). Among seven patients who were in the active period, four had oligoarticular JIA and three had ERA. During the study, the presence of inactive disease for at least 12 consecutive months off-medication following completion of treatment (drug-free remission) was found in 38 patients (32.7%). In the systemic JIA group, this percentage was found to be higher (53.3%) compared with the other groups. At the final follow-up visit, 71 patients had had inactive disease for at least six months while receiving medical treatment (on-drug remission) and the percentage of on-drug remission was higher (70.2%) in the oligoarticular JIA group compared with the other groups (Table 4).

In our study group, macrophage activation syndrome due to systemic JIA developed in only one patient, and the disease was controlled with high-dose steroid treatment and successive treatment with steroids. Amyloidosis did not develop in any patient.

Discussion

In studies conducted worldwide, it has been found that the distribution of demographic findings including age, sex, age at the time of diagnosis, and the frequency of subgroups, vary in patients with JIA. The reasons for this variance include genetic factors, social status, living environment, and recent description of the diagnostic criteria in more detail (2). Although oligoarticular JIA is the most common subtype in Europe and North America, ERA was observed to be the most common subtype in Asia and Middle East countries (3–5). This shows that genetic and environmental factors play a special role. In the first study conducted by Kasapçopur et al. (9) according to the ILAR criteria in Turkey, systemic JIA was observed most commonly, whereas Demirkaya et al. (10) found that oligoarticular JIA was observed most commonly and the percentage of ERA was higher compared with Western populations in a large-scaled study that they conducted in subsequent years. There is a similar status in the Mediterranean and Southeastern Anatolia regions (11, 12). In a recent study conducted by Çakan et al. (13) in the region of Istanbul, the similar percentage of oligoarticular JIA and ERA was associated with the fact that our country was a transition region between Europe and Asia. In our study, we found that the percentages of oligoarticular JIA and ERA were close to each other, similar to large cities (Table 5). These results confirm that the ERA subgroup is more common in our country compared with Europe and America. Although the female/male ratio was found to be equal in previous studies in our country, we found that the female/male ratio was higher (Table 5). In previous studies, ERA was reported to be common especially in male patients (16); however, we found that the percentage of female patients was also high in the ERA group in our study (Table 5). The female/male ratio was found as 1.5 in all patients, but this ratio was 1.3 for ERA. In FMF, which is observed commonly in our country, signs similar to ERA in association with arthritis, inflammatory back pain and enthesopathy may be observed, and this should be considered in the differential diagnosis (17–19).
The association of FMF with JIA has been found with a rate of 3–8% in studies conducted in our country, and the association with juvenile spondyloarthropathy has been reported with a rate of 3–10% (17–20). In our study, ten patients had both FMF and ERA among 38 patients who were diagnosed as having ERA according to the ILAR criteria, and five of these ten patients were female. The mutations of these patients are shown in Table 2. Excluding three patients who were found to have heterozygous E148Q and R202Q, which are considered polymorphisms, four of the remaining seven patients who had significant mutations were male and three were female. All these seven patients had enthesopathy and radiologically confirmed sacroileitis. These patients had the diagnostic criteria and clinical characteristics of both ERA and FMF. If we consider all seven patients with significant mutations as having FMF and sacroileitis, the percentage of female patients does not change (20 of the remaining 31 patients were female and 11 were male). Therefore, the main reason for the predominance of female sex in the ERA group was the fact that the percentage of female patients was generally high in our whole study group.

The median time from the onset of initial symptoms to diagnosis was found as 4.6 months in a study conducted in England (21), 6.7 months in the study conducted by Çakan et al. (13) in Istanbul, and 5.7 months in our study, varying by subtypes (Table 1). In previous studies, it was reported that pediatric patients with systemic JIA reached medical care in the shortest time and were diagnosed because they had poorer general status and higher inflammatory markers at the time of onset of symptoms. In this group of patients, families seek medical attention earlier as they are more anxious because of the predominance of fever. It has been stated that normal ESR in association with joint pain causes diagnostic delay in children (21). In our study, the highest mean ESR value was found in the systemic JIA group and the shortest mean ESR value was found in the ERA group. The shortest diagnostic delay time was found in the systemic JIA group because of these factors. The reason that patients with polyarticular JIA are diagnosed latest may be the fact that families consider symmetrical and multiple joint pain, which generally occur in polyarticular JIA, as growing pains and delay seeking medical attention. A similar situation also occurs in ERA and the sign of enthesitis may be overlooked in primary healthcare institutions.

ANA positivity was found as 62.2% in the oligoarticular group among our patients, which is similar to the percentage found in a study conducted in Turkey in previous years (9). In our study, HLA B27 was found to be positive in 21.1% of the patients with ERA, and this percentage was found as 63.3% in a countrywide study (10). In a study in which two separate patient groups (one group with FMF in association with sacroileitis, and the other group with juvenile spondyloarthropathy) were compared, HLA B27 positivity was found as 26.7% in the first group and 86.6% in the second group (22). In the same study, HLA B27 positivity was found with a lower rate in spondyloarthropa-
A diagnosis of FMF was made with a rate of 3.3% in the JIA group in a study conducted throughout Turkey (10). In our study, FMF was diagnosed with a rate of 13.7%. The MEFV gene mutation was studied in our patients who presented with symptoms of arthritis and whose clinical pictures were compatible with FMF according to the pediatric FMF criteria. M694V, which is the most common gene mutation, was found in six patients, homozygously (Table 2). This may be related to the high prevalence of FMF in the population in our region. According to our clinical experiences, FMF is observed most commonly in the province of Uşak in the Internal Western Egean region, and resistant FMF cases are also observed most commonly in this province. Among six patients who had homozygous M694V, four had a diagnosis of ERA and two had a diagnosis of oligoarticular JIA. In the patients who had a diagnosis of enthesitis-related arthritis, sacroiliac joint tendency was present in addition to arthritis or enthesitis as determined according to the ILAR criteria, and sacroiliitis was confirmed using MRI. These patients met both pediatric FMF criteria and the ILAR ERA criteria. One of these four patients had HLA B27 positivity and the remaining three had a positive first-degree family history of HLA B27 positivity-related disease. Morning stiffness and monoarthritis lasting longer than six weeks in two patients who had a diagnosis of oligoarticular JIA, were not compatible with the clinical picture of prolonged arthritis of FMF.

Treatment of JIA is sophisticated, and includes drug treatment, appropriate nutrition, patient and parent education, and physical therapy. The aim of treatment in JIA is to prevent the outcomes of the disease including vision loss, growth retardation, joint damage, joint contractions, and functional limitation by controlling inflammation. Although methotrexate has been safely used in the treatment of JIA for years, it was reported to be ineffective in about 30% of patients (24). When methotrexate is ineffective, biologic drugs prevent the development of disease status in the early phases of the disease. In recent years, the use of biologic drugs has enhanced complete remission, as well as preventing chronic joint damage and disability. In our clinic, we needed to add biologic drugs to treatment in patients who were clinically unresponsive despite use of methotrexate for at least three months. In our study group, approximately one-third of all patients responded to methotrexate treatment alone, and we had to add biological drugs to treatment in another one-third portion of the patients. In the study conducted by Demirkaya et al. (10), approximately 46% of the patients used methotrexate and 12% used biologic drugs. This study was conducted between 2008 and 2009 during which the use of biologic drugs was initiated. By contrast, our study was conducted between 2012 and 2018 when the use of biologic drugs became widespread. In the same study, the rate of remission on medication (48%) was found to be approximately three-fold higher compared with the rate of remission off medication (16%). In our study, the rate of remission on medication was found to be approximately two-fold higher compared with the rate of remission off medication. However, the rate of active patients was found to be considerably low (6%). These ratios may show variance when patients are followed up for a longer period of time because JIA is characterized by remission and activation periods, and additional treatments are needed from time to time.

In our study, the lowest treatment response was found in the ERA groups in both patient groups who used methotrexate and biologic drugs. In a retrospective study conducted with 2571 patients with JIA by the Childhood Arthritis and Rheumatology Research Alliance (CARRA), greater pain intensity and poorer health status were reported in the ERA group compared with the other JIA subtypes (25). In a study conducted by Donnithorne et al. (26), it was found that transition to inactive disease was more unsuccessful in the ERA group among patients with JIA in whom anti-TNF treatment was initiated. In our study, the longest time to transition to inactive disease following the use of biologic drugs was found in the ERA group. In our study, the enthesitis-related arthritis group was the most problematic JIA subgroup in terms of frequency, di-
agnostic delay, and treatment response. Diagnostic delay may especially arise from the fact that patients associate their symptoms with different diseases, and the finding of enthesisitis is not much recognized in medical practice.

At the final follow-up visit, one-third of patients had inactive disease without medication for at least 12 consecutive months after ceased treatment. Again, this percentage was found to be 28% in a recent similar study (13). In terms of inactive disease without medication (at least 12 consecutive months), among the subtypes the patients with systemic JIA had the highest ratio (approximately half of these patients). About two-thirds of the patients had inactive disease with medical treatment for at least six months at the final follow-up visit. Among the subtypes, in terms of inactive disease with medication, oligoarticular JIA patients had the highest ratio (70.2%). In the study conducted by Guzman et al. (27), it was reported that patients who had oligoarticular JIA reached success with the highest remission rate (53%), and patients who had RF-positive polyarticular JIA reached the lowest level of remission. Macrophage activation syndrome is one of the complications that develop in systemic JIA, and it occurs secondary to hemophagocytosis. Pancytopenia, reduced ESR, and reduced fibrinogen level, hypertriglyceridemia, and hyperferritinemia are observed. Another complication related to systemic JIA is amyloidosis. In our country, the rate of amyloidosis was found as 10% in studies conducted before the initiation of use of biologic drugs (8); it still occurs albeit rarely at the present time (13). The fact that amyloidosis was not observed in any of our patients, and macrophage activation syndrome related to systemic JIA developed in one patient together with a low activation rate, may have arisen from the early initiation of treatment.

The lower number of patients (116) compared with other studies conducted in our country is a limitation of our study. However, the number of pediatric rheumatology clinics that perform regular patient follow-up is newly increasing. Therefore, these data may gain importance in a regional aspect.

In conclusion, JIA shows variances in terms of sex, age at the time of diagnosis, diagnostic delay status, and treatment response by subtype from region to region. Countrywide multi-center studies are needed in this area.

Informed Consent: As it was a retrospective study, consent was not obtained from the patients.

Peer-review: Externally peer-reviewed.

Author Contributions: Concept - G.O.Y.; Design - G.O.Y., Z.E.T., İ.G., E.N.Ç., B.A., S.Y.; Supervision - G.O.Y., Z.E.T., İ.G., E.N.Ç., B.A., S.Y.; Data Collection and/or Processing - G.O.Y., Z.E.T., S.Y.; Analysis and/or Interpretation - G.O.Y., S.Y.; Literature Review - G.O.Y., Z.E.T., S.Y.; Writing - G.O.Y., Z.E.T.; Critical Review - S.Y.

Conflict of Interest: The authors did not report any conflict of interest.

Financial Disclosure: The authors reported that they did not receive any financial support.

Etik Kurul Onayı: Çalışma Helsinki Deklarasyonu ilkelerine uygun şekilde yapılmış olup, yerel etik kurul tarafından 30.10.2018 tarihi/20 sayı ve 16.04.2019 tarihi/08 sayı ile onaylanmıştır.

Hasta Onamı: Çalışmanın geriye dönük tasarımından dolayı yazılı hasta onamı alınmamıştır.

Hakem Değerlendirmesi: Diş bağımız.

Yazar Katkıları: Fikir - G.O.Y.; Tasarım - G.O.Y., Z.E.T., İ.G., E.N.Ç., B.A., S.Y.; Denetleme - G.O.Y., Z.E.T., İ.G., E.N.Ç., B.A., S.Y.; Veri Toplanması ve/veya İşlemesi - G.O.Y., Z.E.T., S.Y.; Analiz ve/veya Yorum - G.O.Y., S.Y.; Literatür Taraması - G.O.Y., Z.E.T., S.Y.; Yazılı Yazan - G.O.Y., Z.E.T.; Eleştirel İnceleme - S.Y.

Çıkar Çatışması: Yazarlar çıkar çatışması bildirmemişlerdir.

Mali Destek: Yazarlar finansal destek almadıklarını beyan etmişlerdir.

References
1. Petty RE, Southwood TR, Manners P, et al. International League of Associations for Rheumatology classification of juvenile idiopathic arthritis: second revision, Edmon-ton, 2001. J Rheumatol 2004; 31: 390–2.
2. Manners PJ, Bower C. Worldwide prevalence of juvenile arthritis why does it vary so much?. J Rheumatol 2002; 29: 1520–30.
3. Kunjir V, Venugopalan A, Chopra A. Profile of Indian patients with juvenile onset chronic inflammatory joint disease using the ILAR classification criteria for JIA: a community-based cohort study. J Rheumatol 2010; 37: 1756–62.
4. Oen K, Tucker L, Huber AM, et al. Predictors of early in-active disease in a juvenile idiopathic arthritis cohort: results of a Canadian multicenter, prospective inception cohort study. Arthritis Rheum 2009; 61: 1077–86.
5. Shen CC, Yeh KW, Ou LS, Yao TC, Chen LC, Huang JL. Clinical features of children with juvenile idiopathic arthritis using the ILAR classification criteria: a community-based cohort study in Taiwan. J Microbiol Immunol Infect 2013; 46: 288–94.

6. Ozdoğan H, Kasapçopur O, Arisoy N. Prevalence of juvenile chronic arthritis and familial Mediterranean fever in Turkey: a field study. J Rheumatol 1999; 26: 1638–9.

7. Ozen S, Karaaslan Y, Ozdemir O, et al. Prevalence of juvenile chronic arthritis and familial Mediterranean fever in Turkey: a field study. J Rheumatol 1998; 25: 2445–9.

8. Ozdoğan H, Kasapçopur O, Dede H, et al. Juvenile chronic arthritis in a Turkish population. Clin Exp Rheumatol 1991; 9: 431–5.

9. Kasapçopur O, Yologlu N, Ozuyazgan Y, et al. Uveitis and anti nuclear antibody positivity in children with juvenile idiopathic arthritis. Indian Pediatr 2004; 41: 1035–9.

10. Demirkaya E, Ozen S, Bilginer Y, et al. The distribution of juvenile idiopathic arthritis in the eastern Mediterranean: results from the registry of the Turkish Paediatric Rheumatology Association. Clin Exp Rheumatol 2011; 29: 111–6.

11. Yilmaz M, Kendirli SG, Altintas DU, Karakoc GB, Inal A, Kilic M. Juvenile idiopathic arthritis profile in Turkish children. Pediatr Int 2008; 50: 154–8.

12. Şen V, Ece A, Ulua Ü, et al. Evaluation of children with juvenile idiopathic arthritis in southeastern Turkey: a single center experience. Hippokratia 2015; 19: 63–8.

13. Cakan M, Aktay-Ayaz N, Keskindemirci G, Ekinci DY, Karadag SG. Subtype frequencies, demographic features, and remission rates in juvenile idiopathic arthritis - 265 cases from a Turkish center. Turk J Pediatr 2017; 59: 548–54.

14. Yalçınkaya F, Özen S, Özçakar ZB, et al. A new set of criteria for the diagnosis of familial Mediterranean fever in childhood. Rheumatology (Oxford) 2009; 48: 395–8.

15. Wallace CA, Huang B, Bandeira M, Ravelli A, Giannini EH. Patterns of clinical remission in select categories of juvenile idiopathic arthritis. Arthritis Rheum 2005; 52: 3554–62.

16. Özçakar ZB, Çakar N, Uncu N, Çelikel BA, Yalçınkaya F. Familial Mediterranean fever-associated diseases in children. QJM 2017; 110: 287–90.

17. Barut K, Adrovic A, Şahin S, Kasapçopur Ö. Juvenile Idiopathic Arthritis. Balkan Med J 2017; 34: 90–101.

18. Yildiz M, Adrovic A, Tasdemir E, et al. Evaluation of co-existing diseases in children with familial Mediterranean fever. Rheumatol Int 2020; 40: 57–64.

19. Kılala Ekinci RM, Balci S, Ufuk Altintas D, Yilmaz M. The Influence of Concomitant Disorders on disease severity of Familial Mediterranean fever in children. Arch Rheumatol 2018; 33: 282–7.

20. Ozer E, Seker D, Taner E, et al. The frequency of juvenile spondyloarthopathies in childhood familial Mediterranean fever. Clin Exp Rheumatol 2018; 36: 141–5.

21. Adib N, Hyrich K, Thornton J, et al. Association between duration of symptoms and severity of disease at first presentation to paediatric rheumatology: results from the Childhood Arthritis Prospective Study. Rheumatology (Oxford) 2008; 47: 991–5.

22. Sönmez HE, Batu ED, Demir S, Bilginer Y, Özen S. Comparison of patients with familial Mediterranean fever accompanied with sacroilitis and patients with juvenile spondyloarthropathy. Clin Exp Rheumatol 2017; 108: 124–7.

23. Gülhan B, Akkuş A, Özçakar L, Beşbaş N, Özen S. Are MEFV mutations susceptibility factors in enthesis-related arthritis patients in the eastern Mediterranean? Clin Exp Rheumatol 2014; 32: S160–4.

24. van Dijkhuizen EH, Wulffraat NM. Prediction of methotrexate efficacy and adverse events in patients with juvenile idiopathic arthritis: a systematic literature review. Pediatr Rheumatol Online J 2014; 12: S1.

25. Weiss PF, Beukelman T, Schanberg LE, Kimura Y, Colbert RA; CARRA Registry Investigators. Enthesitis-related arthritis is associated with higher pain intensity and poorer health status in comparison with other categories of juvenile idiopathic arthritis: the Childhood Arthritis and Rheumatology Research Alliance Registry. J Rheumatol 2012; 39: 2341–51.

26. Donnithorne KJ, Cron RQ, Beukelman T. Attainment of inactive disease status following initiation of TNF-α inhibitor therapy for juvenile idiopathic arthritis: enthesitis-related arthritis predicts persistent active disease. J Rheumatol 2011; 38: 2675–81.

27. Guzman J, Oen K, Tucker LB, et al. The outcomes of juvenile idiopathic arthritis in children managed with contemporary treatments: results from the ReACCh-Out cohort. Ann Rheum Dis 2015; 74: 1854–60.