Symbolic-regression boosting

Moshe Sipper1 · Jason H. Moore2

Received: 26 November 2020 / Revised: 3 February 2021 / Accepted: 9 February 2021 / Published online: 23 March 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021

Abstract
Modifying standard gradient boosting by replacing the embedded weak learner in favor of a strong(er) one, we present SyRBo: symbolic-regression boosting. Experiments over 98 regression datasets show that by adding a small number of boosting stages—between 2 and 5—to a symbolic regressor, statistically significant improvements can often be attained. We note that coding SyRBo on top of any symbolic regressor is straightforward, and the added cost is simply a few more evolutionary rounds. SyRBo is essentially a simple add-on that can be readily added to an extant symbolic regressor, often with beneficial results.

Keywords Symbolic regression · Gradient boosting · Genetic programming

1 Introduction

In machine learning, a weak learner is defined as a learner that can produce an hypothesis that performs only slightly better than random guessing, while a strong learner can with high probability output an hypothesis that is correct on all but an arbitrarily small fraction of the instances.

In his seminal paper, “The strength of weak learnability”, Schapire [15] described a method “for converting a weak learning algorithm into one that achieves arbitrarily high accuracy.” Over the years, a plethora of highly successful boosting algorithms that transform weak learners into strong ones have been devised [1, 3, 4, 9].

A recent rigorous benchmarking study of four symbolic regression algorithms versus nine machine learning approaches found that “symbolic regression performs strongly compared to state-of-the-art gradient boosting algorithms” (they also found that “in terms of running times [symbolic regression] is among the slowest of the available methodologies”) [12]. Herein we wish to combine boosting with symbolic

* Moshe Sipper
sipper@gmail.com

1 Department of Computer Science, Ben-Gurion University, Beer Sheva 84105, Israel
2 Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, PA 19104-6021, USA
regression, asking whether gradient boosting might improve a strong(er) learner in the form of a symbolic regressor. We answer in the affirmative, demonstrating that improved results can be readily obtained, at relatively little added cost.

In the next section we describe our method and discuss related work. Section 3 presents the experimental setup and our results, followed by concluding remarks in Sect. 4.

2 Symbolic-regression boosting (SyRBo)

For our experiments we used the popular scikit-learn Python package [14, 16] due to its superb ability to handle much of the tedious desiderata of machine learning coding and experimentation. We then chose the GPLearn package [5], which implements tree-based genetic programming (GP) symbolic regression, is relatively fast, and—importantly—interfaces seamlessly with scikit-learn.

The main idea behind SyRBo is simple: we replace the boosted weak learner of gradient boosting (typically a decision tree) with a (possibly) strong learner, specifically, a GP-based symbolic regressor.

Algorithm 1 provides the pseudocode (the code is available at https://github.com/moshesipper). SyRBo receives the number of boosting stages as a parameter (one might consider the actual number of stages to be one less, as the first stage performs the initial prediction). Fitting a model to data is done in a standard gradient-boosting manner, through successive stages, where each stage fits a learner to the pseudo-residuals of the previous stage; prediction is performed by summing up all learner predictions. The only change involves the learners themselves, which are not decision trees but rather symbolic regressors, evolved by calling the SymbolicRegressor function with the given population size and generation count (both set to 200). The function set used by SymbolicRegressor is given in Table 1. To facilitate the symbolic regressor’s handling of diverse features scales, the dataset rows undergo L2 normalization (i.e., the feature values in a row have a unit L2 norm).
Table 1 Function set used by SymbolicRegressor

Function	Arity	Description
add	2	Addition
sub	2	Subtraction
mul	2	Multiplication
div	2	Protected division (near-zero denominator returns 1)
sqrt	1	Protected square root (uses absolute value of argument)
log	1	Protected log (uses absolute value of argument, near-zero argument returns 0)
abs	1	Absolute value
neg	1	Negative
inv	1	Protected inverse (near-zero argument returns 0)
max	2	Maximum
min	2	Minimum
if3	3	if3(x1, x2, x3) returns x2 if x1 ≥ 0 else returns x3
if4	4	if4(x1, x2, x3, x4) returns x3 if x1 ≥ x2 else returns x4

Algorithm 1 SyRBo.

Input:

stages ← number of boosting stages
population_size ← 200
generations ← 200

1: function INIT(stages, population_size, generations)
2: Initialize an empty SyRBo object with given parameters
3: boosters = {} # Initialize an empty list of boosters

4: function FIT(X, y) # X: training inputs, y: target values
5: for stage ← 0 to stages-1 do
6: gp = SymbolicRegressor(population_size, generations) # Initialize a GP regressor
7: gp.fit(X, y) # Fit regressor to (training) data
8: Add gp to boosters # Add the fitted GP regressor to the list of boosters
9: prediction = y - gp.predict(X) # Compute pseudo-residuals

10: function PREDICT(X) # X: inputs
11: prediction = 0 # Vector of zeros whose length equals number of instances in dataset
12: for i ← 0 to stages-1 do
13: prediction = prediction + boosters[i].predict(X)
14: Return prediction

We note that our aim herein was to demonstrate SyRBo’s being an add-on that can be added to any symbolic regressor. As such, this paper is not about symbolic regression per se, but about performance benefits to be gained if one is using it. We thus contented ourselves with the standard function set of gplearn (adding only 2
conditionals), with all other parameters set to defaults (except for population size and generation count).

Regarding previous work, it would seem that by and large the emphasis in boosting techniques has been on weak learners, typically decision trees. Works using strong learners in the context of boosting employed mainly AdaBoost-like [3] boosting. Modest success was attained by [2, 6]. Wickramaratna et al. [17] showed that boosting a strong learner with AdaBoost may, in fact, contribute to performance degradation. Within the domain of GP, AdaBoost-like boosting of dataset sample weights has been used with some success [7, 8, 10, 13]. Perhaps closest to our work is that of [11], who presented an interesting iterative approach, Sequential Symbolic Regression, wherein each iteration applies a transformation based on a geometric semantic crossover operator. In contrast, our work is based on gradient boosting, is more generic in that it can work with any form of symbolic regression, and is also easier to code and apply to any extant project.

3 Experimental setup and results

Can this (fairly) simple gradient boosting-like setup improve symbolic regression? We tested SyRBo on regression datasets from the PMLB repository [12], using our cluster of Intel® Xeon® E5-2650L servers. Of the 120 datasets we selected the 98 with 3000 instances or less. Figure 1 shows a “bird’s-eye view” of the datasets.

The pseudo-code for the experimental setup is given in Algorithm 2. For each dataset we performed 30 replicate runs, with 5-fold cross validation per replicate. SyRBo and SymbolicRegressor (with equal population size and generations) were trained on 4 folds and tested on the left-out test fold.

![Fig. 1 A “bird’s-eye view” of the 98 datasets used in this study: number of instances (left) and number of features (right)](image)
(Algorithm 2) Experimental setup.

Input:

- `dataset ←` dataset to be used
- `algorithms ← {SyRBo, SymbolicRegressor}`

Output:

Performance measures (over test sets)

1: for `rep ← 1 to 30` do
2: Shuffle `dataset` and generate 5 folds
3: for `fold ← 1 to 5` do
4: Split `dataset` into *training* and *test* sets according to `fold`
5: for `alg in algorithms` do
6: Use `alg` to fit a *model* to *training* set
7: Test resultant *model* on *test* set

For each of the 98 datasets we recorded the mean absolute error attained per algorithm over each of the 30 replicate runs, per each of the 5 test folds (i.e., following training). We ran 4 separate experiments, over all 98 datasets, with number of stages equal to 2, 3, 4, and 5, respectively.

Table 2 shows a summary of our results (detailed results can be found in the Appendix). For each dataset we computed the median of the test scores of all 30 replicates, with 5 folds per replicate (a total of 150 test-score values). A win for SyRBo was then a better (lower) median value than SymbolicRegressor’s. To assess whether a win for a specific dataset was significant or not, we performed a 10,000-round permutation test, comparing the scores of SyRBo with SymbolicRegressor; if the p-value was < 0.05 the win was considered significant, else it was not (in which case SyRBo was at least not performing worse than SymbolicRegressor). In addition, when SyRBo “lost” to SymbolicRegressor we performed a 10,000-round permutation test, comparing the two algorithms’ scores; if the p-value was ≥ 0.05 the loss was considered insignificant.

Datasets	Stages	Wins	Significant	Losses	Insignificant
98	2	78	48	20	16
98	3	83	63	15	13
98	4	84	71	14	12
98	5	87	70	11	9
As seen in the table, statistically significant improvements can often be attained, and, moreover, rarely does SyRBo result in statistically significant worse results. Using SyRBo is thus a good bet, and, furthermore, it is easily coded and the added computational cost is not high.

4 Concluding remarks

We presented SyRBo, a gradient boosting-style algorithm, wherein the decision tree is replaced by a symbolic regressor. Testing the merits of our new method we showed that symbolic regression results can be consistently improved. Moreover, as can be seen in Algorithm 1, coding SyRBo on top of any symbolic regressor is straightforward, and the added cost is simply a few more evolutionary rounds. SyRBo is essentially a simple add-on that can be readily added to a symbolic regressor, often with beneficial results.

There are a number of avenues we can offer for future exploration:

- Add known boosting tricks of the trade, such as a learning rate and dynamic early stopping (similar to XGBRegressor’s ‘early stopping rounds’ parameter).
- Our focus herein was on regression. It would seem worthwhile to examine SyRBo for classification.
- We used a rather basic symbolic regressor. The GP literature is rife with many other types of regressors, which might be used in conjunction with SyRBo. More generally, other types of GP might offer productive ways to evolve programs that might serve as strong learners.
- Comparison to non-symbolic-regressor methods.
- While we focused on gradient boosting, other types of boosting techniques might be examined as to whether they might be a good fit for SyRBo.

Appendix: detailed results

The results of all experiments over all datasets are given in Tables 3, 4, 5, and 6 for number of stages equal to 2, 3, 4, and 5, respectively. As noted in Sect. 3, for each of the 98 datasets we recorded the mean absolute error attained per algorithm over each of the 30 replicate runs, per each of the 5 test folds. We then computed the median of these scores, which are presented under ‘mean absolute error’ in the tables. Under ‘pval’ we show the results of the 10,000-round permutation tests between the scores of SyRBo and SymbolicRegressor, with a ‘!’ denoting a significant win for SyRBo and a ‘=’ denoting an insignificant loss for SyRBo. Under ‘run times’ we show the median run times for SyRBo and SymbolicRegressor. ‘SR’ denotes SymbolicRegressor.
Dataset	Mean absolute error and pval	Run times
1027_ESL	SyRBo: 1.02, SR: 1.04, pval: 9.5E-02	SyRBo: 59.89s, SR: 31.17s
1028_SWD	SyRBo: 0.61, SR: 0.62, pval: 2.2E-01	SyRBo: 46.61s, SR: 23.87s
1029_LEV	SyRBo: 0.62, SR: 0.65, pval: 0.0E+00 !	SyRBo: 54.6s, SR: 26.46s
1030 ERA	SyRBo: 1.45, SR: 1.46, pval: 3.9E-01	SyRBo: 61.8s, SR: 30.06s
1089_USCrime	SyRBo: 25.59, SR: 27.52, pval: 2.3E-01	SyRBo: 123.68s, SR: 73.81s
1096_FacultySalaries	SyRBo: 3.56, SR: 3.63, pval: 6.2E-01	SyRBo: 61.05s, SR: 36.83s
192_vineyard	SR: 2.44, SyRBo: 2.52, pval: 2.1E-01 =	SyRBo: 66.24s, SR: 37.82s
195_auto_price	SR: 1990.78, SyRBo: 2090.58, pval: 8.9E-02 =	SyRBo: 316.35s, SR: 195.05s
207_autoPrice	SR: 1955.88, SyRBo: 2093.54, pval: 2.8E-02	SyRBo: 424.44s, SR: 176.55s
210_cloud	SR: 0.51, SyRBo: 0.52, pval: 4.1E-01 =	SyRBo: 44.47s, SR: 22.64s
228_elusage	SyRBo: 12.97, SR: 13.72, pval: 3.2E-01	SyRBo: 126.28s, SR: 89.94s
229_pwLinear	SyRBo: 1.56, SR: 1.66, pval: 1.2E-02 !	SyRBo: 65.29s, SR: 35.59s
230_machine_cpu	SyRBo: 43.04, SR: 45.95, pval: 1.2E-01	SyRBo: 166.36s, SR: 92.74s
4544_GeographicalOriginalofMusic	SR: 0.49, SyRBo: 0.5, pval: 8.2E-02 =	SyRBo: 62.38s, SR: 36.86s
485_analcatdata_vehicle	SyRBo: 151.48, SR: 179.22, pval: 1.5E-03 !	SyRBo: 220.1s, SR: 135.99s
505_tecator	SR: 5.17, SyRBo: 5.83, pval: 1.0E-02	SyRBo: 92.7s, SR: 51.74s
519_vinnie	SR: 1.27, SyRBo: 1.31, pval: 1.3E-02	SyRBo: 64.34s, SR: 35.1s
522_pm10	SyRBo: 0.68, SR: 0.69, pval: 2.1E-01	SyRBo: 44.3s, SR: 22.12s
523_analcatdata_neavote	SR: 0.51, SyRBo: 0.52, pval: 7.6E-01 =	SyRBo: 59.63s, SR: 35.95s
527_analcatdata_election2000	SR: 38724.65, SyRBo: 39617.02, pval: 7.8E-01 =	SyRBo: 562.68s, SR: 230.48s
542_pollution	SR: 176.33, SyRBo: 185.12, pval: 5.9E-01 =	SyRBo: 215.87s, SR: 141.38s
547_no2	SR: 0.58, SyRBo: 0.58, pval: 8.7E-01 =	SyRBo: 57.51s, SR: 29.23s
556_analcatdata_apnea2	SR: 825.75, SyRBo: 840.89, pval: 7.3E-01 =	SyRBo: 164.27s, SR: 68.58s
Table 3 (continued)

Dataset	Mean absolute error and pval	Run times
557_analcatdata_apnea1	SyRBo: 828.37, SR: 844.69, pval: 7.1E-01	SyRBo: 130.15s, SR: 50.06s
560_bodyfat	SR: 4.21, SyRBo: 4.64, pval: 4.0E-04	SyRBo: 59.26s, SR: 33.41s
561_cpu	SyRBo: 30.99, SR: 34.95, pval: 8.4E-02	SyRBo: 115.22s, SR: 77.02s
579_fri_c0_250_5	SyRBo: 0.42, SR: 0.45, pval: 0.0E+00 !	SyRBo: 53.18s, SR: 26.01s
581_fri_c3_500_25	SyRBo: 0.71, SR: 0.72, pval: 2.3E-03 !	SyRBo: 43.32s, SR: 21.5s
582_fri_c1_500_25	SyRBo: 0.7, SR: 0.72, pval: 3.8E-02 !	SyRBo: 53.82s, SR: 26.82s
583_fri_c1_1000_50	SyRBo: 0.73, SR: 0.74, pval: 1.5E-02 !	SyRBo: 61.81s, SR: 30.2s
584_fri_c4_500_25	SyRBo: 0.7, SR: 0.71, pval: 3.6E-02 !	SyRBo: 53.68s, SR: 26.69s
586_fri_c3_1000_25	SyRBo: 0.69, SR: 0.71, pval: 6.7E-03 !	SyRBo: 54.44s, SR: 27.13s
588_fri_c4_1000_100	SyRBo: 0.73, SR: 0.73, pval: 8.7E-01	SyRBo: 41.83s, SR: 21.16s
589_fri_c2_1000_25	SyRBo: 0.7, SR: 0.71, pval: 2.2E-02 !	SyRBo: 53.3s, SR: 26.58s
590_fri_c0_1000_50	SyRBo: 0.39, SR: 0.4, pval: 1.0E-02 !	SyRBo: 55.05s, SR: 28.77s
591_fri_c1_100_10	SyRBo: 0.71, SR: 0.73, pval: 1.6E-01	SyRBo: 55.02s, SR: 26.14s
592_fri_c4_1000_25	SyRBo: 0.72, SR: 0.72, pval: 2.2E-01	SyRBo: 52.62s, SR: 26.27s
593_fri_c1_1000_10	SyRBo: 0.65, SR: 0.71, pval: 0.0E+00 !	SyRBo: 54.59s, SR: 26.25s
594_fri_c2_100_5	SyRBo: 0.64, SR: 0.68, pval: 1.9E-02 !	SyRBo: 55.12s, SR: 27.14s
595_fri_c0_1000_10	SyRBo: 0.39, SR: 0.44, pval: 0.0E+00 !	SyRBo: 54.06s, SR: 27.02s
596_fri_c2_250_5	SyRBo: 0.63, SR: 0.68, pval: 0.0E+00 !	SyRBo: 45.99s, SR: 22.61s
597_fri_c2_500_5	SyRBo: 0.61, SR: 0.67, pval: 0.0E+00 !	SyRBo: 55.13s, SR: 26.54s
598_fri_c0_1000_25	SyRBo: 0.41, SR: 0.43, pval: 2.0E-04 !	SyRBo: 53.61s, SR: 27.51s
599_fri_c2_1000_5	SyRBo: 0.57, SR: 0.67, pval: 0.0E+00 !	SyRBo: 55.04s, SR: 26.24s
601_fri_c1_250_5	SyRBo: 0.58, SR: 0.65, pval: 0.0E+00 !	SyRBo: 55.37s, SR: 26.62s
602_fri_c3_250_10	SyRBo: 0.69, SR: 0.72, pval: 7.3E-03 !	SyRBo: 52.95s, SR: 25.94s

Springer
Dataset	Mean absolute error and pval	Run times
SyRBo: 0.4, SR: 0.4, pval: 9.6E-01	SyRBo: 42.83s, SR: 22.17s	
SyRBo: 0.68, SR: 0.72, pval: 0.0E+00 !	SyRBo: 43.33s, SR: 21.33s	
SyRBo: 0.69, SR: 0.69, pval: 7.7E-01 !	SyRBo: 44.26s, SR: 21.92s	
SyRBo: 0.64, SR: 0.67, pval: 0.0E+00 !	SyRBo: 54.98s, SR: 26.73s	
SyRBo: 0.72, SR: 0.73, pval: 1.7E-01 !	SyRBo: 43.72s, SR: 21.98s	
SyRBo: 0.66, SR: 0.7, pval: 0.0E+00 !	SyRBo: 57.53s, SR: 28.12s	
SyRBo: 0.41, SR: 0.44, pval: 0.0E+00 !	SyRBo: 42.59s, SR: 20.94s	
SyRBo: 0.64, SR: 0.66, pval: 3.1E-01 !	SyRBo: 56.53s, SR: 27.55s	
SyRBo: 0.59, SR: 0.69, pval: 0.0E+00 !	SyRBo: 56.08s, SR: 26.31s	
SyRBo: 0.59, SR: 0.62, pval: 0.0E+00 !	SyRBo: 54.03s, SR: 26.4s	
SyRBo: 0.67, SR: 0.7, pval: 5.6E-03 !	SyRBo: 51.54s, SR: 25.62s	
SyRBo: 0.74, SR: 0.74, pval: 9.6E-01 !	SyRBo: 52.4s, SR: 26.34s	
SyRBo: 0.58, SR: 0.65, pval: 0.0E+00 !	SyRBo: 54.41s, SR: 26.8s	
SyRBo: 0.72, SR: 0.73, pval: 1.0E-01 !	SyRBo: 51.91s, SR: 26.01s	
SyRBo: 0.72, SR: 0.74, pval: 1.5E-03 !	SyRBo: 42.36s, SR: 21.08s	
SyRBo: 0.44, SR: 0.47, pval: 2.9E-02 !	SyRBo: 43.37s, SR: 21.4s	
SyRBo: 0.72, SR: 0.73, pval: 1.4E-01 !	SyRBo: 44.87s, SR: 22.63s	
SyRBo: 0.64, SR: 0.69, pval: 0.0E+00 !	SyRBo: 53.96s, SR: 26.17s	
SR: 0.46, SyRBo: 0.46, pval: 9.3E-01 =	SyRBo: 43.75s, SR: 21.15s	
SyRBo: 0.73, SR: 0.73, pval: 2.6E-01 !	SyRBo: 42.0s, SR: 21.23s	
SyRBo: 0.63, SR: 0.69, pval: 0.0E+00 !	SyRBo: 52.34s, SR: 25.3s	
SyRBo: 0.59, SR: 0.66, pval: 0.0E+00 !	SyRBo: 56.7s, SR: 27.28s	
SyRBo: 0.6, SR: 0.68, pval: 0.0E+00 !	SyRBo: 55.86s, SR: 26.53s	
Table 3 (continued)

Dataset	Mean absolute error and pval	Run times
633_fri_c0_500_25	SyRBo: 0.4, SR: 0.42, pval: 0.0E+00	SyRBo: 51.78s, SR: 26.37s
634_fri_c2_100_10	SyRBo: 0.68, SR: 0.69, pval: 9.0E-01	SyRBo: 54.48s, SR: 26.52s
635_fri_c0_250_10	SyRBo: 0.44, SR: 0.52, pval: 0.0E+00	SyRBo: 43.65s, SR: 21.72s
637_fri_c1_500_50	SyRBo: 0.75, SR: 0.76, pval: 1.1E-01	SyRBo: 44.14s, SR: 22.12s
641_fri_c1_500_10	SyRBo: 0.67, SR: 0.74, pval: 0.0E+00	SyRBo: 54.06s, SR: 26.39s
643_fri_c2_500_25	SyRBo: 0.74, SR: 0.75, pval: 1.8E-01	SyRBo: 42.11s, SR: 20.85s
644_fri_c4_250_25	SyRBo: 0.73, SR: 0.74, pval: 4.2E-01	SyRBo: 41.93s, SR: 20.77s
645_fri_c3_500_50	SyRBo: 0.7, SR: 0.7, pval: 8.6E-01	SyRBo: 41.84s, SR: 20.81s
646_fri_c3_500_10	SyRBo: 0.64, SR: 0.68, pval: 1.0E-04	SyRBo: 52.88s, SR: 25.77s
647_fri_c1_250_10	SyRBo: 0.65, SR: 0.73, pval: 0.0E+00	SyRBo: 50.08s, SR: 25.95s
648_fri_c1_250_50	SyRBo: 0.72, SR: 0.73, pval: 3.8E-01	SyRBo: 52.98s, SR: 26.88s
649_fri_c0_500_5	SyRBo: 0.4, SR: 0.46, pval: 0.0E+00	SyRBo: 52.84s, SR: 25.93s
650_fri_c0_500_50	SyRBo: 0.38, SR: 0.39, pval: 2.7E-02	SyRBo: 52.92s, SR: 27.49s
651_fri_c0_100_25	SyRBo: 0.52, SR: 0.53, pval: 4.9E-01	SyRBo: 51.51s, SR: 25.99s
653_fri_c0_250_25	SyRBo: 0.4, SR: 0.41, pval: 8.7E-03	SyRBo: 53.46s, SR: 27.13s
654_fri_c0_500_10	SyRBo: 0.42, SR: 0.46, pval: 0.0E+00	SyRBo: 52.64s, SR: 26.29s
656_fri_c1_100_5	SyRBo: 0.57, SR: 0.66, pval: 0.0E+00	SyRBo: 55.37s, SR: 27.63s
657_fri_c2_250_10	SyRBo: 0.63, SR: 0.7, pval: 0.0E+00	SyRBo: 53.59s, SR: 25.96s
658_fri_c3_250_25	SyRBo: 0.73, SR: 0.75, pval: 1.6E-01	SyRBo: 51.63s, SR: 25.6s
659_sleuth_ex1714	SyRBo: 6745.19, SR: 8208.12, pval: 2.2E-02	SyRBo: 366.9s, SR: 179.81s
663_rabe_266	SR: 19.76, SyRBo: 20.19, pval: 4.7E-01	SyRBo: 95.03s, SR: 54.36s
665_sleuth_case2002	SR: 5.08, SyRBo: 5.33, pval: 6.8E-02	SyRBo: 53.61s, SR: 31.3s
666_rmftsa_ladata	SR: 1.64, SyRBo: 1.64, pval: 9.2E-01	SyRBo: 45.69s, SR: 25.33s
Dataset	Mean absolute error and pval	Run times
-------------------------------	------------------------------	-------------------
678_visualizing_environmental	SyRBo: 2.46, SR: 2.51, pval: 4.4E-01	SyRBo: 50.56s, SR: 28.09s
687_sleuth_ex1605	SR: 13.26, SyRBo: 14.33, pval: 5.4E-02 =	SyRBo: 90.32s, SR: 51.23s
690_visualizing_galaxy	SyRBo: 259.23, SR: 461.52, pval: 0.0E+00 !	SyRBo: 263.2s, SR: 137.71s
695_chatfield_4	SR: 17.47, SyRBo: 17.81, pval: 4.0E-01 =	SyRBo: 112.3s, SR: 57.87s
706_sleuth_case1202	SR: 48.76, SyRBo: 52.21, pval: 8.1E-02 =	SyRBo: 120.17s, SR: 77.54s
712_chscase_geyser1	SyRBo: 8.3, SR: 9.0, pval: 1.0E-04 !	SyRBo: 71.33s, SR: 47.21s
Dataset	Mean absolute error and pval	Run times
-------------------------	------------------------------	------------------
1027_ESL	SyRBo: 1.01, SR: 1.04, pval: 1.1E-02 !	SyRBo: 70.24s, SR: 24.65s
1028_SWD	SyRBo: 0.61, SR: 0.62, pval: 1.7E-01	SyRBo: 70.79s, SR: 25.03s
1029_LEV	SyRBo: 0.62, SR: 0.64, pval: 0.0E+00 !	SyRBo: 69.2s, SR: 22.65s
1030_ERA	SyRBo: 1.43, SR: 1.46, pval: 2.0E-02 !	SyRBo: 72.45s, SR: 24.73s
1089_USCrime	SyRBo: 25.31, SR: 27.01, pval: 1.8E-01	SyRBo: 134.46s, SR: 57.85s
1096_FacultySalaries	SR: 3.57, SyRBo: 3.6, pval: 7.5E-01 =	SyRBo: 74.28s, SR: 30.96s
192_vineyard	SR: 2.42, SyRBo: 2.54, pval: 5.9E-02 =	SyRBo: 72.9s, SR: 30.64s
195_auto_price	SyRBo: 1955.32, SR: 2049.73, pval: 2.0E-01	SyRBo: 558.45s, SR: 164.11s
207_autoPrice	SyRBo: 1945.66, SR: 1968.41, pval: 8.6E-01	SyRBo: 465.0s, SR: 133.33s
210_cloud	SyRBo: 0.5, SR: 0.51, pval: 5.9E-01	SyRBo: 68.09s, SR: 23.48s
228_elusage	SyRBo: 12.68, SR: 14.45, pval: 2.9E-03 !	SyRBo: 127.75s, SR: 64.49s
229_pwLinear	SyRBo: 1.49, SR: 1.63, pval: 1.9E-03 !	SyRBo: 73.73s, SR: 27.64s
230_machine_cpu	SyRBo: 40.74, SR: 44.23, pval: 1.2E-01	SyRBo: 244.09s, SR: 101.61s
4544_GeographicalOriginalofMusic	SyRBo: 0.49, SR: 0.49, pval: 9.7E-01	SyRBo: 91.17s, SR: 38.4s
485_analcatdata_vehicle	SyRBo: 155.87, SR: 184.07, pval: 5.8E-03 !	SyRBo: 363.3s, SR: 144.26s
505_tecator	SR: 5.02, SyRBo: 5.35, pval: 1.8E-01 =	SyRBo: 140.1s, SR: 60.43s
519_vinnie	SR: 1.26, SyRBo: 1.27, pval: 5.5E-01 =	SyRBo: 92.19s, SR: 35.46s
522_pm10	SyRBo: 0.67, SR: 0.69, pval: 3.1E-02 !	SyRBo: 81.01s, SR: 27.42s
523_analcatdata_neavote	SyRBo: 0.49, SR: 0.5, pval: 5.4E-01	SyRBo: 91.61s, SR: 39.44s
527_analcatdata_election2000	SR: 42367.13, SyRBo: 42794.6, pval: 8.7E-01 =	SyRBo: 782.84s, SR: 187.09s
542_pollution	SR: 179.19, SyRBo: 183.2, pval: 6.9E-01 =	SyRBo: 323.15s, SR: 137.38s
547_no2	SyRBo: 0.57, SR: 0.59, pval: 8.1E-03 !	SyRBo: 84.6s, SR: 28.94s
556_analcatdata_apnea2	SR: 838.3, SyRBo: 841.71, pval: 9.2E-01 =	SyRBo: 253.91s, SR: 91.68s
Dataset	Mean absolute error and pval	Run times
---------	-----------------------------	-----------
557_analcatdata_apnea1	SR: 838.25, SyRBo: 871.41, pval: 4.8E-01	SyRBo: 209.53s, SR: 55.88s
560_bodyfat	SR: 4.23, SyRBo: 4.34, pval: 2.1E-01	SyRBo: 104.88s, SR: 41.81s
561_cpu	SyRBo: 30.41, SR: 33.93, pval: 1.8E-01	SyRBo: 208.96s, SR: 89.89s
579_fri_c0_250_5	SyRBo: 0.4, SR: 0.45, pval: 3.1E-03	SyRBo: 79.92s, SR: 26.46s
581_fri_c3_500_25	SyRBo: 0.7, SR: 0.72, pval: 1.7E-01	SyRBo: 79.28s, SR: 25.77s
582_fri_c1_500_25	SyRBo: 0.68, SR: 0.72, pval: 0.0E+00	SyRBo: 77.19s, SR: 25.52s
583_fri_c1_1000_50	SyRBo: 0.72, SR: 0.74, pval: 0.0E+00	SyRBo: 75.06s, SR: 25.16s
584_fri_c4_500_25	SyRBo: 0.68, SR: 0.71, pval: 0.0E+00	SyRBo: 75.45s, SR: 24.92s
586_fri_c3_1000_25	SyRBo: 0.68, SR: 0.7, pval: 0.0E+00	SyRBo: 79.06s, SR: 26.17s
588_fri_c4_1000_100	SyRBo: 0.72, SR: 0.73, pval: 1.7E-01	SyRBo: 78.02s, SR: 26.38s
589_fri_c2_1000_25	SyRBo: 0.68, SR: 0.71, pval: 0.0E+00	SyRBo: 79.93s, SR: 26.46s
590_fri_c0_1000_50	SyRBo: 0.37, SR: 0.41, pval: 0.0E+00	SyRBo: 80.78s, SR: 28.43s
591_fri_c1_100_10	SyRBo: 0.71, SR: 0.74, pval: 3.9E-02	SyRBo: 79.19s, SR: 25.39s
592_fri_c4_1000_25	SyRBo: 0.7, SR: 0.72, pval: 1.0E-04	SyRBo: 81.93s, SR: 27.1s
593_fri_c1_1000_10	SyRBo: 0.61, SR: 0.71, pval: 0.0E+00	SyRBo: 82.54s, SR: 26.59s
594_fri_c2_100_5	SyRBo: 0.64, SR: 0.71, pval: 0.0E+00	SyRBo: 80.74s, SR: 26.65s
595_fri_c0_1000_10	SyRBo: 0.35, SR: 0.44, pval: 0.0E+00	SyRBo: 82.43s, SR: 27.34s
596_fri_c2_250_5	SyRBo: 0.6, SR: 0.68, pval: 0.0E+00	SyRBo: 80.88s, SR: 26.18s
597_fri_c2_500_5	SyRBo: 0.58, SR: 0.68, pval: 0.0E+00	SyRBo: 81.55s, SR: 26.48s
598_fri_c0_1000_25	SyRBo: 0.36, SR: 0.43, pval: 0.0E+00	SyRBo: 80.75s, SR: 27.68s
599_fri_c2_250_5	SyRBo: 0.65, SR: 0.66, pval: 0.0E+00	SyRBo: 83.39s, SR: 26.86s
601_fri_c1_250_5	SyRBo: 0.56, SR: 0.67, pval: 0.0E+00	SyRBo: 81.61s, SR: 26.23s
602_fri_c3_250_10	SyRBo: 0.68, SR: 0.72, pval: 0.0E+00	SyRBo: 78.76s, SR: 25.62s
Dataset	Mean absolute error and pval	Run times
------------------	------------------------------	--------------------
603_fri_c0_250_50	SyRBo: 0.39, SR: 0.41, pval: 7.3E-03	SyRBo: 77.87s, SR: 27.07s
604_fri_c4_500_10	SyRBo: 0.66, SR: 0.71, pval: 0.0E+00	SyRBo: 79.58s, SR: 26.2s
605_fri_c2_250_25	SyRBo: 0.69, SR: 0.7, pval: 5.3E-01	SyRBo: 79.46s, SR: 26.31s
606_fri_c2_1000_10	SyRBo: 0.59, SR: 0.67, pval: 0.0E+00	SyRBo: 82.15s, SR: 26.38s
607_fri_c4_1000_50	SyRBo: 0.71, SR: 0.73, pval: 1.4E-02	SyRBo: 78.32s, SR: 26.14s
608_fri_c3_1000_10	SyRBo: 0.61, SR: 0.7, pval: 0.0E+00	SyRBo: 82.63s, SR: 26.62s
609_fri_c0_1000_5	SyRBo: 0.37, SR: 0.44, pval: 0.0E+00	SyRBo: 79.77s, SR: 25.95s
611_fri_c3_100_5	SyRBo: 0.61, SR: 0.67, pval: 8.0E-03	SyRBo: 84.03s, SR: 28.26s
612_fri_c1_1000_5	SyRBo: 0.55, SR: 0.69, pval: 0.0E+00	SyRBo: 82.23s, SR: 26.03s
613_fri_c3_250_5	SyRBo: 0.58, SR: 0.64, pval: 0.0E+00	SyRBo: 79.23s, SR: 25.57s
615_fri_c4_250_10	SyRBo: 0.66, SR: 0.7, pval: 0.0E+00	SyRBo: 79.95s, SR: 26.18s
616_fri_c4_500_50	SyRBo: 0.74, SR: 0.74, pval: 6.5E-01	SyRBo: 80.63s, SR: 26.95s
617_fri_c3_500_5	SyRBo: 0.57, SR: 0.65, pval: 0.0E+00	SyRBo: 80.92s, SR: 26.7s
618_fri_c3_1000_50	SyRBo: 0.71, SR: 0.73, pval: 4.0E-04	SyRBo: 78.7s, SR: 26.25s
620_fri_c1_1000_25	SyRBo: 0.7, SR: 0.73, pval: 0.0E+00	SyRBo: 79.9s, SR: 26.4s
621_fri_c0_100_10	SyRBo: 0.41, SR: 0.45, pval: 8.0E-03	SyRBo: 78.91s, SR: 25.96s
622_fri_c2_1000_50	SyRBo: 0.71, SR: 0.73, pval: 3.0E-04	SyRBo: 66.25s, SR: 22.17s
623_fri_c4_1000_10	SyRBo: 0.62, SR: 0.68, pval: 0.0E+00	SyRBo: 81.44s, SR: 26.48s
624_fri_c0_100_5	SyRBo: 0.42, SR: 0.47, pval: 0.0E+00	SyRBo: 78.17s, SR: 25.11s
626_fri_c2_500_50	SyRBo: 0.71, SR: 0.72, pval: 4.6E-01	SyRBo: 78.22s, SR: 26.39s
627_fri_c2_500_10	SyRBo: 0.61, SR: 0.69, pval: 0.0E+00	SyRBo: 85.52s, SR: 27.54s
628_fri_c3_1000_5	SyRBo: 0.59, SR: 0.66, pval: 0.0E+00	SyRBo: 86.2s, SR: 27.97s
631_fri_c1_500_5	SyRBo: 0.56, SR: 0.66, pval: 0.0E+00	SyRBo: 82.42s, SR: 26.2s
Dataset	Mean absolute error and pval	Run times
--------------	-----------------------------	----------------------
633_fri_c0_500_25	SyRBo: 0.37, SR: 0.43, pval: 0.0E+00 !	SyRBo: 78.32s, SR: 26.68s
634_fri_c2_100_10	SyRBo: 0.64, SR: 0.68, pval: 9.0E-04 !	SyRBo: 80.8s, SR: 26.22s
635_fri_c0_250_10	SyRBo: 0.39, SR: 0.52, pval: 0.0E+00 !	SyRBo: 61.06s, SR: 20.16s
637_fri_c1_500_50	SyRBo: 0.76, SR: 0.76, pval: 7.5E-01	SyRBo: 79.6s, SR: 26.58s
641_fri_c1_500_10	SyRBo: 0.62, SR: 0.73, pval: 0.0E+00 !	SyRBo: 81.02s, SR: 26.14s
643_fri_c2_500_25	SyRBo: 0.74, SR: 0.76, pval: 2.1E-02 !	SyRBo: 78.8s, SR: 26.08s
644_fri_c4_250_25	SyRBo: 0.72, SR: 0.74, pval: 2.0E-01	SyRBo: 80.38s, SR: 26.48s
645_fri_c3_500_50	SyRBo: 0.7, SR: 0.71, pval: 3.6E-01	SyRBo: 80.26s, SR: 26.57s
646_fri_c3_500_10	SyRBo: 0.63, SR: 0.69, pval: 0.0E+00 !	SyRBo: 80.1s, SR: 26.1s
647_fri_c1_250_100	SyRBo: 0.64, SR: 0.73, pval: 0.0E+00 !	SyRBo: 80.7s, SR: 26.13s
648_fri_c1_250_50	SyRBo: 0.74, SR: 0.74, pval: 8.4E-01	SyRBo: 77.4s, SR: 26.33s
649_fri_c0_500_5	SyRBo: 0.37, SR: 0.46, pval: 0.0E+00 !	SyRBo: 76.0s, SR: 24.91s
650_fri_c0_500_50	SyRBo: 0.37, SR: 0.4, pval: 0.0E+00 !	SyRBo: 82.74s, SR: 28.93s
651_fri_c0_100_25	SyRBo: 0.5, SR: 0.53, pval: 1.7E-02 !	SyRBo: 77.58s, SR: 26.06s
653_fri_c0_250_25	SyRBo: 0.37, SR: 0.41, pval: 0.0E+00 !	SyRBo: 62.56s, SR: 21.2s
654_fri_c0_500_10	SyRBo: 0.37, SR: 0.46, pval: 0.0E+00 !	SyRBo: 63.3s, SR: 20.95s
656_fri_c1_100_5	SyRBo: 0.55, SR: 0.65, pval: 0.0E+00 !	SyRBo: 87.52s, SR: 28.95s
657_fri_c2_250_10	SyRBo: 0.64, SR: 0.69, pval: 0.0E+00 !	SyRBo: 84.08s, SR: 27.15s
658_fri_c3_250_25	SyRBo: 0.73, SR: 0.74, pval: 1.4E-01	SyRBo: 77.71s, SR: 25.61s
659_sleuth_ex1714	SyRBo: 7231.48, SR: 7604.58, pval: 5.2E-01	SyRBo: 660.4s, SR: 183.78s
663_rabe_266	SR: 19.49, SyRBo: 20.01, pval: 2.4E-01 =	SyRBo: 167.69s, SR: 72.88s
665_sleuth_case2002	SR: 5.3, SyRBo: 5.3, pval: 9.7E-01 =	SyRBo: 97.79s, SR: 38.17s
666_rnftsa_ladata	SyRBo: 1.58, SR: 1.62, pval: 3.0E-01	SyRBo: 83.81s, SR: 32.08s
Dataset	Mean absolute error and pval	Run times
--	---	----------------------------
678_visualizing_environmental	SR: 2.44, SyRBo: 2.46, pval: 8.1E-01 =	SyRBo: 72.36s, SR: 28.73s
687_sleuth_ex1605	SR: 13.04, SyRBo: 14.99, pval: 1.0E-04	SyRBo: 130.96s, SR: 46.48s
690_visualizing_galaxy	SyRBo: 212.82, SR: 440.08, pval: 1.0E-04 !	SyRBo: 408.21s, SR: 125.28s
695_chatfield_4	SR: 16.79, SyRBo: 18.34, pval: 9.0E-03	SyRBo: 155.94s, SR: 57.64s
706_sleuth_case1202	SR: 49.57, SyRBo: 51.69, pval: 1.8E-01 =	SyRBo: 172.97s, SR: 75.44s
712_chscase_geyser1	SyRBo: 8.2, SR: 8.88, pval: 0.0E+00 !	SyRBo: 100.15s, SR: 47.06s
Table 5 4-stage SyRBo: results of all datasets

Dataset	Mean absolute error and pval	Run times
1027_ESL	SyRBo: 1.0, SR: 1.04, pval: 2.0E-04 !	SyRBo: 93.37s, SR: 24.88s
1028_SWD	SyRBo: 0.61, SR: 0.62, pval: 1.3E-02 !	SyRBo: 93.66s, SR: 24.91s
1029_LEV	SyRBo: 0.62, SR: 0.65, pval: 0.0E+00 !	SyRBo: 92.83s, SR: 22.9s
1030_Era	SyRBo: 1.42, SR: 1.45, pval: 2.0E-04 !	SyRBo: 96.63s, SR: 24.49s
1089_USCrime	SyRBo: 25.17, SR: 25.74, pval: 7.2E-01	SyRBo: 168.69s, SR: 59.24s
1096_FacultySalaries	SR: 3.51, SyRBo: 3.53, pval: 8.4E-01 =	SyRBo: 87.13s, SR: 27.14s
192_vineyard	SR: 2.34, SyRBo: 2.55, pval: 4.0E-02 !	SyRBo: 97.59s, SR: 31.41s
195_auto_price	SyRBo: 1881.2, SR: 2047.73, pval: 8.4E-03 !	SyRBo: 606.2s, SR: 156.64s
207_autoPrice	SyRBo: 1883.63, SR: 2046.39, pval: 6.0E-02	SyRBo: 759.26s, SR: 155.12s
210_cloud	SyRBo: 0.49, SR: 0.5, pval: 9.4E-01 !	SyRBo: 89.57s, SR: 23.4s
228_elusage	SyRBo: 12.45, SR: 14.36, pval: 6.0E-04 !	SyRBo: 176.15s, SR: 77.55s
229_pwLinear	SyRBo: 1.49, SR: 1.59, pval: 1.4E-02 !	SyRBo: 111.62s, SR: 33.75s
230_machine_cpu	SyRBo: 43.28, SR: 47.09, pval: 7.9E-02 !	SyRBo: 273.04s, SR: 91.55s
4544_GeographicalO-riginalofMusic	SyRBo: 0.49, SR: 0.49, pval: 2.9E-01 !	SyRBo: 117.26s, SR: 38.11s
485_analcatdata_vehicle	SR: 151.23, SR: 186.52, pval: 8.0E-04 !	SyRBo: 391.71s, SR: 131.13s
505_tecator	SR: 5.01, SyRBo: 5.05, pval: 9.0E-01 =	SyRBo: 161.8s, SR: 58.38s
519_vinnie	SR: 1.26, SyRBo: 1.3, pval: 9.1E-02 =	SyRBo: 118.67s, SR: 35.63s
522_pm10	SyRBo: 0.66, SR: 0.69, pval: 2.0E-04 !	SyRBo: 111.11s, SR: 28.72s
523_analcatdata_neavote	SyRBo: 0.5, SR: 0.5, pval: 9.4E-01 !	SyRBo: 114.11s, SR: 37.29s
527_analcatdata_election2000	SR: 41409.25, SyRBo: 43867.25, pval: 4.9E-01 =	SyRBo: 865.92s, SR: 160.52s
542_pollution	SyRBo: 180.88, SR: 188.26, pval: 4.4E-01 !	SyRBo: 367.71s, SR: 141.35s
547_no2	SyRBo: 0.56, SR: 0.59, pval: 4.0E-04 !	SyRBo: 109.17s, SR: 28.85s
556_analcatdata_apnea2	SR: 869.07, SR: 881.56, pval: 8.6E-01 =	SyRBo: 238.22s, SR: 75.84s
557_analcatdata_apnea1	SyRBo: 861.47, SR: 869.01, pval: 9.1E-01 =	SyRBo: 215.12s, SR: 54.48s
560_bodyfat	SR: 4.24, SyRBo: 4.37, pval: 3.0E-01 =	SyRBo: 129.35s, SR: 40.74s
561_cpu	SyRBo: 29.33, SR: 35.67, pval: 3.6E-03 !	SyRBo: 254.82s, SR: 95.29s
579_fri_c0_250_5	SyRBo: 0.38, SR: 0.45, pval: 0.0E+00 !	SyRBo: 83.29s, SR: 20.24s
581_fri_c3_500_25	SyRBo: 0.68, SR: 0.72, pval: 0.0E+00 !	SyRBo: 107.74s, SR: 26.62s
582_fri_c1_500_25	SyRBo: 0.66, SR: 0.72, pval: 0.0E+00 !	SyRBo: 83.86s, SR: 20.72s
583_fri_c1_1000_50	SyRBo: 0.7, SR: 0.74, pval: 0.0E+00 !	SyRBo: 107.04s, SR: 26.75s
584_fri_c4_500_25	SyRBo: 0.67, SR: 0.72, pval: 0.0E+00 !	SyRBo: 106.2s, SR: 26.11s
586_fri_c3_1000_25	SyRBo: 0.66, SR: 0.71, pval: 0.0E+00 !	SyRBo: 106.28s, SR: 26.3s
588_fri_c4_1000_100	SyRBo: 0.72, SR: 0.72, pval: 6.5E-01 !	SyRBo: 105.29s, SR: 26.7s
589_fri_c2_1000_25	SyRBo: 0.67, SR: 0.71, pval: 0.0E+00 !	SyRBo: 89.31s, SR: 22.21s
590_fri_c0_1000_50	SyRBo: 0.36, SR: 0.4, pval: 0.0E+00 !	SyRBo: 107.96s, SR: 28.67s
591_fri_c1_100_10	SyRBo: 0.68, SR: 0.74, pval: 6.6E-03 !	SyRBo: 107.71s, SR: 26.22s
592_fri_c4_1000_25	SyRBo: 0.69, SR: 0.72, pval: 0.0E+00 !	SyRBo: 104.6s, SR: 25.92s
593_fri_c1_1000_10	SyRBo: 0.58, SR: 0.71, pval: 0.0E+00 !	SyRBo: 84.35s, SR: 20.31s
594_fri_c2_100_5	SyRBo: 0.62, SR: 0.7, pval: 0.0E+00 !	SyRBo: 86.38s, SR: 21.38s
595_fri_c0_1000_10	SyRBo: 0.33, SR: 0.44, pval: 0.0E+00 !	SyRBo: 110.51s, SR: 27.53s
Table 5 (continued)

Dataset	Mean absolute error and pval	Run times
596_fri_c2_250_5	SyRBo: 0.59, SR: 0.69, pval: 0.0E+00	SyRBo: 106.65s, SR: 26.23s
597_fri_c2_500_5	SyRBo: 0.57, SR: 0.67, pval: 0.0E+00	SyRBo: 106.16s, SR: 26.2s
598_fri_c0_1000_25	SyRBo: 0.35, SR: 0.43, pval: 0.0E+00	SyRBo: 106.81s, SR: 27.65s
599_fri_c2_1000_5	SyRBo: 0.54, SR: 0.67, pval: 0.0E+00	SyRBo: 110.59s, SR: 26.69s
601_fri_c1_250_5	SyRBo: 0.53, SR: 0.66, pval: 0.0E+00	SyRBo: 106.99s, SR: 26.05s
602_fri_c3_250_10	SyRBo: 0.66, SR: 0.73, pval: 0.0E+00	SyRBo: 107.64s, SR: 26.21s
603_fri_c0_250_50	SyRBo: 0.39, SR: 0.4, pval: 2.9E-02	SyRBo: 104.74s, SR: 27.57s
604_fri_c4_500_10	SyRBo: 0.63, SR: 0.71, pval: 0.0E+00	SyRBo: 105.4s, SR: 25.79s
605_fri_c2_250_25	SyRBo: 0.68, SR: 0.7, pval: 6.7E-02	SyRBo: 103.7s, SR: 25.76s
607_fri_c4_1000_50	SyRBo: 0.72, SR: 0.73, pval: 6.9E-02	SyRBo: 111.03s, SR: 27.78s
608_fri_c3_1000_10	SyRBo: 0.59, SR: 0.7, pval: 0.0E+00	SyRBo: 118.4s, SR: 28.63s
609_fri_c0_1000_5	SyRBo: 0.34, SR: 0.44, pval: 0.0E+00	SyRBo: 116.25s, SR: 28.29s
611_fri_c3_100_5	SyRBo: 0.62, SR: 0.65, pval: 1.3E-02	SyRBo: 106.5s, SR: 26.92s
612_fri_c1_1000_5	SyRBo: 0.54, SR: 0.69, pval: 0.0E+00	SyRBo: 95.28s, SR: 22.96s
613_fri_c3_250_5	SyRBo: 0.56, SR: 0.64, pval: 0.0E+00	SyRBo: 85.81s, SR: 20.96s
615_fri_c4_250_10	SyRBo: 0.64, SR: 0.7, pval: 0.0E+00	SyRBo: 103.59s, SR: 25.5s
616_fri_c4_500_50	SyRBo: 0.73, SR: 0.74, pval: 7.3E-01	SyRBo: 101.64s, SR: 25.4s
617_fri_c3_500_5	SyRBo: 0.55, SR: 0.66, pval: 0.0E+00	SyRBo: 106.97s, SR: 26.56s
618_fri_c3_1000_50	SyRBo: 0.7, SR: 0.72, pval: 0.0E+00	SyRBo: 106.08s, SR: 26.47s
620_fri_c1_1000_25	SyRBo: 0.68, SR: 0.74, pval: 0.0E+00	SyRBo: 109.58s, SR: 27.21s
621_fri_c0_100_10	SyRBo: 0.4, SR: 0.45, pval: 0.0E+00	SyRBo: 103.48s, SR: 25.55s
622_fri_c2_1000_50	SyRBo: 0.71, SR: 0.73, pval: 6.0E-04	SyRBo: 106.03s, SR: 26.9s
623_fri_c4_1000_10	SyRBo: 0.6, SR: 0.69, pval: 0.0E+00	SyRBo: 109.83s, SR: 26.66s
624_fri_c0_100_5	SyRBo: 0.41, SR: 0.47, pval: 0.0E+00	SyRBo: 110.93s, SR: 26.78s
626_fri_c2_500_50	SyRBo: 0.72, SR: 0.73, pval: 8.7E-02	SyRBo: 104.49s, SR: 26.41s
627_fri_c2_500_10	SyRBo: 0.58, SR: 0.69, pval: 0.0E+00	SyRBo: 106.73s, SR: 25.88s
628_fri_c3_1000_5	SyRBo: 0.58, SR: 0.66, pval: 0.0E+00	SyRBo: 108.33s, SR: 26.76s
631_fri_c1_500_5	SyRBo: 0.54, SR: 0.67, pval: 0.0E+00	SyRBo: 107.88s, SR: 26.04s
633_fri_c0_500_25	SyRBo: 0.34, SR: 0.42, pval: 0.0E+00	SyRBo: 104.15s, SR: 26.69s
634_fri_c2_100_10	SyRBo: 0.67, SR: 0.71, pval: 7.3E-03	SyRBo: 106.29s, SR: 26.07s
635_fri_c0_250_10	SyRBo: 0.37, SR: 0.52, pval: 0.0E+00	SyRBo: 102.86s, SR: 25.5s
637_fri_c1_500_50	SyRBo: 0.74, SR: 0.76, pval: 5.0E-04	SyRBo: 104.06s, SR: 26.12s
641_fri_c1_500_10	SyRBo: 0.59, SR: 0.74, pval: 0.0E+00	SyRBo: 108.72s, SR: 26.43s
643_fri_c2_500_25	SyRBo: 0.71, SR: 0.76, pval: 0.0E+00	SyRBo: 105.35s, SR: 26.16s
644_fri_c4_250_25	SyRBo: 0.72, SR: 0.75, pval: 4.9E-03	SyRBo: 104.33s, SR: 25.79s
645_fri_c3_500_50	SR: 0.7, SyRBo: 0.7, pval: 7.6E-01	SyRBo: 103.7s, SR: 25.58s
646_fri_c3_500_10	SyRBo: 0.61, SR: 0.69, pval: 0.0E+00	SyRBo: 91.22s, SR: 22.33s
647_fri_c1_250_10	SyRBo: 0.61, SR: 0.74, pval: 0.0E+00	SyRBo: 103.42s, SR: 25.12s
648_fri_c1_250_50	SyRBo: 0.72, SR: 0.75, pval: 2.1E-03	SyRBo: 108.59s, SR: 27.71s
649_fri_c0_500_5	SyRBo: 0.34, SR: 0.46, pval: 0.0E+00	SyRBo: 112.89s, SR: 27.46s
650_fri_c0_500_50	SyRBo: 0.36, SR: 0.39, pval: 0.0E+00	SyRBo: 85.82s, SR: 22.59s
Dataset	Mean absolute error and pval	Run times
--------------------------	-----------------------------	---------------------
651_fri_c0_100_25	SyRBo: 0.51, SR: 0.53, pval: 4.4E-02	SyRBo: 111.2s, SR: 28.12s
653_fri_c0_250_25	SyRBo: 0.36, SR: 0.41, pval: 0.0E+00	SyRBo: 83.61s, SR: 21.3s
654_fri_c0_500_10	SyRBo: 0.35, SR: 0.46, pval: 0.0E+00	SyRBo: 84.78s, SR: 21.04s
656_fri_c1_100_5	SyRBo: 0.54, SR: 0.64, pval: 0.0E+00	SyRBo: 86.37s, SR: 21.66s
657_fri_c2_250_10	SyRBo: 0.63, SR: 0.69, pval: 0.0E+00	SyRBo: 105.03s, SR: 25.64s
658_fri_c3_250_25	SyRBo: 0.72, SR: 0.75, pval: 8.2E-03	SyRBo: 103.48s, SR: 25.53s
659_sleuth_ex1714	SyRBo: 6437.7, SR: 7641.02, pval: 7.0E-03	SyRBo: 723.0s, SR: 171.93s
663_rabe_266	SR: 19.85, SyRBo: 20.79, pval: 6.7E-02 =	SyRBo: 188.09s, SR: 66.1s
665_sleuth_case2002	SR: 5.06, SyRBo: 5.15, pval: 4.3E-01 =	SyRBo: 125.81s, SR: 37.11s
666_rmftsa_ladata	SyRBo: 1.58, SR: 1.65, pval: 3.1E-02	SyRBo: 110.41s, SR: 31.81s
678_visualizing_environment	SR: 2.44, SyRBo: 2.46, pval: 8.1E-01 =	SyRBo: 116.57s, SR: 35.84s
687_sleuth_ex1605	SR: 13.27, SyRBo: 15.03, pval: 1.5E-03	SyRBo: 187.9s, SR: 58.29s
690_visualizing_galaxy	SyRBo: 219.9, SR: 470.38, pval: 0.0E+00!	SyRBo: 599.04s, SR: 171.58s
695_chatfield_4	SR: 16.84, SyRBo: 17.27, pval: 4.3E-01 =	SyRBo: 245.5s, SR: 82.54s
706_sleuth_case1202	SR: 46.85, SyRBo: 48.25, pval: 2.8E-01 =	SyRBo: 286.46s, SR: 95.73s
712_chscase_geyser1	SyRBo: 8.27, SR: 9.11, pval: 0.0E+00!	SyRBo: 114.63s, SR: 43.05s
Dataset	Mean absolute error and pval	Run times
----------------------	------------------------------	--------------------
1027_ESL	SyRBo: 0.99, SR: 1.04, pval: 0.0E+00 !	SyRBo: 138.45s, SR: 30.02s
1028_SWD	SyRBo: 0.6, SR: 0.62, pval: 3.2E-02 !	SyRBo: 112.18s, SR: 24.21s
1029_LEV	SyRBo: 0.61, SR: 0.65, pval: 0.0E+00 !	SyRBo: 108.52s, SR: 21.54s
1030 Era	SyRBo: 1.41, SR: 1.46, pval: 0.0E+00 !	SyRBo: 114.87s, SR: 23.88s
1089_USCrime	SR: 25.79, SyRBo: 26.52, pval: 6.6E-01 =	SyRBo: 244.05s, SR: 70.49s
1096_FacultySalaries	SR: 3.44, SyRBo: 3.66, pval: 2.0E-01 =	SyRBo: 137.41s, SR: 36.12s
192_vineyard	SR: 2.45, SyRBo: 2.53, pval: 2.7E-01 =	SyRBo: 145.21s, SR: 37.57s
195_auto_price	SyRBo: 1846.49, SR: 1984.64, pval: 2.5E-02 !	SyRBo: 1136.73s, SR: 181.96s
207_autoPrice	SyRBo: 1917.2, SR: 2004.04, pval: 3.0E-01	SyRBo: 840.85s, SR: 146.49s
210_cloud	SyRBo: 0.5, SR: 0.51, pval: 5.9E-01	SyRBo: 136.83s, SR: 28.6s
228_elusage	SyRBo: 11.83, SR: 13.25, pval: 8.6E-03 !	SyRBo: 168.85s, SR: 59.4s
229_pwLinear	SyRBo: 1.49, SR: 1.58, pval: 4.6E-02 !	SyRBo: 147.58s, SR: 35.66s
230_machine_cpu	SyRBo: 41.55, SR: 47.64, pval: 6.6E-03 !	SyRBo: 302.39s, SR: 89.29s
4544_GeographicalOriginalof-Music	SyRBo: 0.49, SR: 0.5, pval: 5.6E-01	SyRBo: 139.81s, SR: 37.08s
485_analcatdata_vehicle	SyRBo: 152.36, SR: 185.49, pval: 6.0E-04 !	SyRBo: 402.2s, SR: 123.11s
505_tecator	SyRBo: 5.03, SR: 5.42, pval: 9.3E-02	SyRBo: 192.01s, SR: 56.36s
519_vinnie	SR: 1.26, SyRBo: 1.28, pval: 2.0E-01 =	SyRBo: 144.14s, SR: 34.81s
522_pm10	SyRBo: 0.66, SR: 0.69, pval: 0.0E+00 !	SyRBo: 109.71s, SR: 22.76s
523_analcatdata_neavote	SyRBo: 0.5, SR: 0.51, pval: 2.4E-01	SyRBo: 145.96s, SR: 40.78s
527_analcatdata_election2000	SyRBo: 41978.87, SR: 42335.38, pval: 9.2E-01	SyRBo: 1276.47s, SR: 189.6s
542_pollution	SyRBo: 184.53, SR: 186.47, pval: 8.6E-01	SyRBo: 482.44s, SR: 152.25s
547_no2	SyRBo: 0.56, SR: 0.59, pval: 1.2E-03 !	SyRBo: 149.77s, SR: 32.23s
556_analcatdata_apnea2	SyRBo: 831.42, SR: 837.88, pval: 9.0E-01	SyRBo: 374.25s, SR: 108.94s
Table 6 (continued)

Dataset	Mean absolute error and pval	Run times
557_analcatdata_apnea1	SR: 833.02, SyRBo: 845.73, 7.5E-01 =	SyRBo: 333.67s, SR: 66.34s
560_bodyfat	SyRBo: 4.26, SR: 4.28, pval: 9.1E-01	SyRBo: 127.64s, SR: 31.6s
561_cpu	SyRBo: 28.02, SR: 32.76, pval: 2.5E-02 !	SyRBo: 268.56s, SR: 94.84s
579_fri_c0_250_5	SyRBo: 0.38, SR: 0.45, pval: 0.0E+00 !	SyRBo: 127.54s, SR: 24.79s
581_fri_c3_500_25	SyRBo: 0.68, SR: 0.72, pval: 0.0E+00 !	SyRBo: 105.16s, SR: 20.78s
582_fri_c1_500_25	SyRBo: 0.66, SR: 0.71, pval: 0.0E+00 !	SyRBo: 104.49s, SR: 20.64s
583_fri_c1_1000_50	SyRBo: 0.7, SR: 0.74, pval: 0.0E+00 !	SyRBo: 109.61s, SR: 21.76s
584_fri_c4_500_25	SyRBo: 0.66, SR: 0.71, pval: 0.0E+00 !	SyRBo: 131.15s, SR: 26.05s
586_fri_c3_1000_25	SyRBo: 0.67, SR: 0.7, pval: 0.0E+00 !	SyRBo: 111.2s, SR: 21.99s
588_fri_c4_1000_100	SyRBo: 0.72, SR: 0.72, pval: 5.1E-01	SyRBo: 109.24s, SR: 21.66s
589_fri_c2_1000_25	SyRBo: 0.67, SR: 0.71, pval: 0.0E+00 !	SyRBo: 131.08s, SR: 26.12s
590_fri_c0_1000_50	SyRBo: 0.35, SR: 0.4, pval: 0.0E+00 !	SyRBo: 130.53s, SR: 27.88s
591_fri_c1_100_10	SyRBo: 0.68, SR: 0.74, pval: 1.1E-02 !	SyRBo: 108.96s, SR: 21.35s
592_fri_c4_1000_25	SyRBo: 0.68, SR: 0.72, pval: 0.0E+00 !	SyRBo: 106.21s, SR: 20.99s
593_fri_c1_1000_10	SyRBo: 0.55, SR: 0.71, pval: 0.0E+00 !	SyRBo: 108.31s, SR: 20.94s
594_fri_c2_100_5	SyRBo: 0.61, SR: 0.68, pval: 0.0E+00 !	SyRBo: 111.13s, SR: 22.03s
595_fri_c0_1000_10	SyRBo: 0.31, SR: 0.44, pval: 0.0E+00 !	SyRBo: 106.28s, SR: 21.17s
596_fri_c2_250_5	SyRBo: 0.58, SR: 0.69, pval: 0.0E+00 !	SyRBo: 104.44s, SR: 20.42s
597_fri_c2_500_5	SyRBo: 0.55, SR: 0.67, pval: 0.0E+00 !	SyRBo: 106.51s, SR: 20.93s
598_fri_c0_1000_25	SyRBo: 0.33, SR: 0.43, pval: 0.0E+00 !	SyRBo: 107.87s, SR: 22.01s
599_fri_c2_1000_5	SyRBo: 0.53, SR: 0.67, pval: 0.0E+00 !	SyRBo: 107.85s, SR: 20.91s
601_fri_c1_250_5	SyRBo: 0.52, SR: 0.66, pval: 0.0E+00 !	SyRBo: 132.58s, SR: 25.88s
602_fri_c3_250_10	SyRBo: 0.63, SR: 0.72, pval: 0.0E+00 !	SyRBo: 103.12s, SR: 19.87s
Table 6 (continued)

Dataset	Mean absolute error and pval	Run times
603_fri_c0_250_50	SyRBo: 0.38, SR: 0.41, pval: 0.0E+00	SyRBo: 104.63s, SR: 21.89s
604_fri_c4_500_10	SyRBo: 0.62, SR: 0.72, pval: 0.0E+00	SyRBo: 107.77s, SR: 21.26s
605_fri_c2_250_25	SyRBo: 0.67, SR: 0.7, pval: 5.1E-03	SyRBo: 100.7s, SR: 20.1s
606_fri_c2_1000_10	SyRBo: 0.56, SR: 0.68, pval: 0.0E+00	SyRBo: 132.9s, SR: 25.78s
607_fri_c4_1000_50	SyRBo: 0.71, SR: 0.73, pval: 3.0E-02	SyRBo: 128.27s, SR: 25.68s
608_fri_c3_1000_10	SyRBo: 0.57, SR: 0.7, pval: 0.0E+00	SyRBo: 137.65s, SR: 26.7s
609_fri_c0_1000_5	SyRBo: 0.33, SR: 0.44, pval: 0.0E+00	SyRBo: 137.83s, SR: 26.65s
611_fri_c3_100_5	SyRBo: 0.61, SR: 0.66, pval: 3.3E-03	SyRBo: 133.97s, SR: 27.56s
612_fri_c1_1000_5	SyRBo: 0.53, SR: 0.68, pval: 0.0E+00	SyRBo: 142.24s, SR: 27.26s
613_fri_c3_250_5	SyRBo: 0.56, SR: 0.65, pval: 0.0E+00	SyRBo: 138.42s, SR: 27.06s
615_fri_c4_250_10	SyRBo: 0.64, SR: 0.7, pval: 0.0E+00	SyRBo: 105.66s, SR: 20.78s
616_fri_c4_500_50	SyRBo: 0.73, SR: 0.74, pval: 3.6E-01	SyRBo: 129.48s, SR: 25.82s
617_fri_c3_500_5	SyRBo: 0.55, SR: 0.64, pval: 0.0E+00	SyRBo: 134.39s, SR: 26.93s
618_fri_c3_1000_50	SyRBo: 0.71, SR: 0.73, pval: 1.8E-03	SyRBo: 128.38s, SR: 25.71s
620_fri_c1_1000_25	SyRBo: 0.66, SR: 0.74, pval: 0.0E+00	SyRBo: 128.35s, SR: 25.35s
621_fri_c0_100_10	SyRBo: 0.39, SR: 0.47, pval: 0.0E+00	SyRBo: 125.76s, SR: 24.98s
622_fri_c2_1000_50	SyRBo: 0.7, SR: 0.73, pval: 0.0E+00	SyRBo: 130.39s, SR: 26.39s
623_fri_c4_1000_10	SyRBo: 0.58, SR: 0.69, pval: 0.0E+00	SyRBo: 137.99s, SR: 26.69s
624_fri_c0_100_5	SyRBo: 0.41, SR: 0.47, pval: 0.0E+00	SyRBo: 132.62s, SR: 25.69s
626_fri_c2_500_50	SyRBo: 0.71, SR: 0.73, pval: 8.3E-02	SyRBo: 127.3s, SR: 25.7s
627_fri_c2_500_10	SyRBo: 0.58, SR: 0.69, pval: 0.0E+00	SyRBo: 129.13s, SR: 25.24s
628_fri_c3_1000_5	SyRBo: 0.57, SR: 0.66, pval: 0.0E+00	SyRBo: 108.94s, SR: 21.41s
631_fri_c1_500_5	SyRBo: 0.54, SR: 0.68, pval: 0.0E+00	SyRBo: 136.54s, SR: 26.34s
Dataset	Mean absolute error and pval	Run times
-----------------	------------------------------	---------------------
633_fri_c0_500_25	SyRBo: 0.33, SR: 0.43, pval: 0.0E+00 !	SyRBo: 101.34s, SR: 20.79s
634_fri_c2_100_10	SyRBo: 0.64, SR: 0.7, pval: 8.9E-03 !	SyRBo: 135.04s, SR: 26.73s
635_fri_c0_250_10	SyRBo: 0.36, SR: 0.51, pval: 0.0E+00 !	SyRBo: 132.75s, SR: 26.19s
637_fri_c1_500_50	SyRBo: 0.75, SR: 0.76, pval: 1.6E-01	SyRBo: 132.3s, SR: 26.57s
641_fri_c1_500_10	SyRBo: 0.57, SR: 0.73, pval: 0.0E+00 !	SyRBo: 128.61s, SR: 25.01s
643_fri_c2_500_25	SyRBo: 0.72, SR: 0.75, pval: 8.3E-03 !	SyRBo: 105.24s, SR: 20.85s
644_fri_c4_250_25	SyRBo: 0.7, SR: 0.74, pval: 2.5E-03 !	SyRBo: 129.54s, SR: 25.53s
645_fri_c3_500_50	SyRBo: 0.69, SR: 0.71, pval: 2.4E-02 !	SyRBo: 125.64s, SR: 24.97s
646_fri_c3_500_10	SyRBo: 0.58, SR: 0.69, pval: 0.0E+00 !	SyRBo: 134.8s, SR: 26.19s
647_fri_c1_250_10	SyRBo: 0.6, SR: 0.74, pval: 0.0E+00 !	SyRBo: 105.11s, SR: 20.46s
648_fri_c1_250_50	SyRBo: 0.73, SR: 0.74, pval: 5.4E-01	SyRBo: 128.78s, SR: 26.5s
649_fri_c0_500_5	SyRBo: 0.34, SR: 0.46, pval: 0.0E+00 !	SyRBo: 129.74s, SR: 25.21s
650_fri_c0_500_50	SyRBo: 0.34, SR: 0.39, pval: 0.0E+00 !	SyRBo: 128.54s, SR: 27.19s
651_fri_c0_100_25	SyRBo: 0.51, SR: 0.53, pval: 4.6E-02 !	SyRBo: 131.91s, SR: 26.73s
653_fri_c0_250_25	SyRBo: 0.35, SR: 0.41, pval: 0.0E+00 !	SyRBo: 127.19s, SR: 26.07s
654_fri_c0_500_10	SyRBo: 0.34, SR: 0.46, pval: 0.0E+00 !	SyRBo: 108.92s, SR: 21.67s
656_fri_c1_100_5	SyRBo: 0.55, SR: 0.64, pval: 0.0E+00 !	SyRBo: 141.71s, SR: 28.99s
657_fri_c2_250_10	SyRBo: 0.62, SR: 0.68, pval: 0.0E+00 !	SyRBo: 129.88s, SR: 25.33s
658_fri_c3_250_25	SyRBo: 0.73, SR: 0.74, pval: 1.2E-01	SyRBo: 125.15s, SR: 24.64s
659_sleuth_ex1714	SyRBo: 6464.12, SR: 7876.73, pval: 5.2E-02	SyRBo: 976.99s, SR: 183.76s
663_rabe_266	SR: 19.33, SyRBo: 20.57, pval: 1.4E-02	SyRBo: 212.59s, SR: 60.57s
665_sleuth_case2002	SR: 5.18, SyRBo: 5.37, pval: 4.0E-01 =	SyRBo: 148.57s, SR: 37.37s
666_rmftsa_ladata	SyRBo: 1.59, SR: 1.63, pval: 1.6E-01	SyRBo: 134.26s, SR: 32.33s
Acknowledgements This work was supported by National Institutes of Health (USA) Grants LM010098, LM012601, AI116794. We thank Hagai Ravid for spotting an error in an earlier version of the code.

References

1. T. Chen, C. Guestrin, XGBoost: a scalable tree boosting system, in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16. ACM, New York, NY, USA, pp. 785–794 (2016). https://doi.org/10.1145/2939672.2939785
2. M. Fink, P. Perona, Mutual boosting for contextual inference, in Advances in Neural Information Processing Systems. ed. by S. Thrun, L.K. Saul, B. Schölkopf, vol. 16, pp. 1515–1522 (2004). https://proceedings.neurips.cc/paper/2003/file/070dbb6024b5ef93784428af71f2146-Paper.pdf
3. Y. Freund, R.E. Schapire, A decision-theoretic generalization of on-line learning and an application to boosting, J. Comput. Syst. Sci. 55(1), 119–139 (1997)
4. J.H. Friedman, Greedy function approximation: a gradient boosting machine. Ann. Stat. 29, 1189–1232 (2001)
5. GPLearn. https://gplearn.readthedocs.io/ (2020). Accessed 20 Nov 2020
6. M.B. Harries, Boosting a strong learner: evidence against the minimum margin, in Proceedings of the 16th International Conference on Machine Learning, ICML ’99. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, pp. 171–180 (1999)
7. H. Iba, Bagging, boosting, and bloating in genetic programming, in Proceedings of the 1st Annual Conference on Genetic and Evolutionary Computation, vol. 2, pp. 1053–1060 (1999)
8. S. Karakatič, V. Podgorelec, Building boosted classification tree ensemble with genetic programming, in Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 165–166 (2018)
9. G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, T.Y. Liu, LightGBM: a highly efficient gradient boosting decision tree, in Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS ’17. Curran Associates Inc., Red Hook, NY, USA, pp. 3149–3157 (2017)
10. E. Oliveira, A. Pozo, S.R. Vergilio, Using boosting techniques to improve software reliability models based on genetic programming, in 2006 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI’06). IEEE, pp. 643–650 (2006)
11. L.O.V. Oliveira, F.E. Otero, G.L. Pappa, J. Albinati, Sequential symbolic regression with genetic programming, in Genetic Programming Theory and Practice XII. ed. by R. Riolo, W.P. Worzel, M. Kotanchek (Springer International Publishing, Cham, 2015), pp. 73–90
12. P. Orzechowski, W. La Cava, J.H. Moore, Where are we now? a large benchmark study of recent symbolic regression methods, in *Proceedings of the Genetic and Evolutionary Computation Conference*, pp. 1183–1190 (2018)

13. G. Paris, D. Robilliard, C. Fonlupt, Applying boosting techniques to genetic programming, in *International Conference on Artificial Evolution (Evolution Artificielle)*. Springer, pp. 267–278 (2001)

14. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn: machine learning in Python. *J. Mach. Learn. Res.* 12, 2825–2830 (2011)

15. R.E. Schapire, The strength of weak learnability. *Mach. Learn.* 5(2), 197–227 (1990)

16. Scikit-learn: machine learning in python. https://scikit-learn.org/ (2020). Accessed 20 Nov 2020

17. J. Wickramaratna, S. Holden, B. Buxton, Performance degradation in boosting, in *International Workshop on Multiple Classifier Systems*. Springer, pp. 11–21 (2001)