Effect of radius and angle of bending on the concentration of stresses in the Aluminum sheet

Jenan Mohammed Naje

Middle Technical University, Bagdad, Iraq

Email: jinannaje@gmail.com

http://doi.org/10.26782/jmcms.2019.10.00028

Abstract

Using metals in the industry is widely utilized and have the properties which make it possible to expose it to heat, high force and punch, flexion and modelling. The foremost goal of this study is to deliberate the reported studies about the influence of radius and angle of bending on the concentration of stresses in Aluminum sheet.

This research is a quantitative research which is made through reviewing other articles and researches which is concerned with the objective of this article and its applications.

Studies and researches were made in order to optimize the methodology of the metal formation to make it less power and time consuming with better formation and less errors.

Keywords: bending activity, stress concentration, optimization methodology of the metal formation, aluminum sheet

I. Introduction

Plastic shaping of metal plates/ sheets has a wide spread uses in industry. Bending stands for commonly applied sheet metal framing forms (Mkaddem and Saidane, 2007, Panthi et al., 2007), chiefly for aluminum segments (Esat et al., 2002). Basic items gotten through bending are car hoods and aviation vehicles, wheelhouse boards, machine lodgings, weight vessels, therapeutic hardware, and so forth (Panthi et al., 2010). Plastic framing of sheet metals can be influenced by a blend of different procedure and material parameters, for example, punch speed, power, shape and material anisotropy, geometry, synthetic arrangement of the material, heat treatment, and so on (Nasrollahi and Arezoo, 2012). Mechanical properties, for example, strain solidifying type, strain rate affectability type and surface likewise have noteworthy impact on formability (Tajally and Emadoddin, 2011). Springback is a significant
wonder in sheet framing tasks, which happens in the wake of expelling the connected burdens from the twisted sheet because of the versatile recuperation in the workpart (Xue et al., 2001a). It is conceivable to reduce springback in bending processes as a result of packing the material amid Punch and Die (Bahloul et al., 2006). It is hard to foresee the springback of twisted workpart logically in the bending activity. Assurance of springback by experimentation system is expensive and tedious technique (Panthi et al., 2010).

II. Study Objective

The foremost objective of this subject review is to discuss the previous researches which is studying the effect of radius and angle of bending on the concentration of stresses in the Aluminum sheet, these sub-objectives are listed below this main objective:

- Discussion of the analysis of residual stresses in sheet metal at the time of forming processes (whether bending or pressing)
- Discussing the Effect of bending angle and bending radius on residual stresses.
- Listing treatments and results

III. Methodology

This exploration technique depends on writing survey as it makes a connection between the current thoughts and our thought identified with our subject. With this technique, this is anything but difficult to recognize the factors of the investigation and associating them to lead appropriate research. Be that as it may, so as to profit this reason, the literature review has been included this strategy. The reason for this expansion is to make the proof bolstered realities. Moreover, it additionally gives the dangers and openings, which are related with the influence of angle and radius of bending on the concentration of stresses in Aluminum sheet.

This investigation is fundamentally managing the influence of variations in radius and angle of bending and the factors that are affecting this. Writing gives that as indicated by past examinations, innovation has a solid and critical effect on aluminum sheet formation. Based on the variations between formation processes and its different factors, studying this would aid in understanding different formation processes which would promote these processes and make it less power consuming and more efficient with less errors.

Copyright reserved © J. Mech. Cont.& Math. Sci.
Jenan Mohammed Naje
With the assistance of exploratory research strategy, the legitimacy of the speculation or guarantee of the examination is broken down. So as to manage this strategy it is required from specialist to have some particular thought in his psyche to which he needs to investigate. This examination technique gives ground to further take a shot at a similar field as it investigates another thought or another element of a similar thought. Research is a constantly progressing procedure and it needs changes and new thoughts constantly so this strategy satisfies the essential necessity of the examination technique because of which this investigation additionally incorporates this strategy.

In our investigation, execution of this technique is done to discover the subjective attributes of radius and angle of bending variations. Purpose behind subjective attributes is that information on this point is vigorously founded on subjective nature. This will give direct effect of these attributes on the metal formation process.

Essentially explore technique depends on research plan which provides it an appropriate guidance where well-ordered targets are gotten. To benefit this reason, subjective research strategy is executed here by taking essential research plan and winding up with an end. In this arrangement overviews have been led from the different processes which have variations in the radius and angle of bending. Motivation behind this study is to get explicit information which is straightforwardly identified with our exploration study. These facts state that what they require to prepare and what to get it. Generally, such overviews are included on up close and personal meetings and polls as the two of them give responsive and related results of study.

IV. Analysis of residual stresses in sheet metal under forming processes period (whether bending or pressing)

The nature of a steel pipe is influenced by the material nature as well as on the mechanical twisting that happens throughout the assembling procedure. A steel sheet experiences disfigurement because of the rollers during the time spent framing huge distance across move bowed steel funnels. The stress state and measure of distortion rely upon the situation of the item during the assembling procedure.

The springback marvel happens in this procedure, attributable to flexible misshapening. Springback relies upon the framing conditions, for example, the material quality, thickness, state of the bites the dust, and working burden.
Hence, to frame an objective item, it is important to anticipate the measure of springback by precisely thinking about different impacts.

Springback should be taken in the consideration while deciding the objective breadth of a steel pipe.

To tackle the pliancy issue, the harmony conditions, constitutive conditions, similarity conditions, yield criteria, stream principles, and solidifying guidelines should be taken in the consideration in the investigation of metallic material bending, for example, a steel pipe. In any case, getting systematic arrangements is scientifically testing on the grounds that the conditions identified with the pliancy hypothesis, (for example, yield criteria, stream principles, and solidifying rules) have been nonlinear and can be applied to harmony and similarity conditions as halfway subordinates.

To beat these difficulties, numerical, logical, and exploratory investigations have been directed (Ablat and Qattawi, 2017).

Sidebottom and Gebhardt suggested the plane-strain arrangement that utilizes little strain to anticipate the plates springback shaped by bending (Sidebottom and Gebhardt, 1979). Tan et al. exhibited another technique to assess the dissemination of leftover stresses (Tan et al., 1994).

Thus, features of twisted sheet metals have been communicated as an element of geometricallimitations and materials. Hua and Lin exhibited the scientific model, expecting versatile flawlessly plastic material, for a solitary pass enduring persistent four-roller meager plate bending (Hua and Lin, 1999). Hu and Wang proposed the enhanced move bending model that confers higher adaptability in the development of enormous bending parts (Hu and Wang, 2001). Gandhi and Raval proposed the systematic and experimental model to appraise the higher roller position unequivocally as element of the ideal radius of ebb and flow for three-roller barrel shaped bending (Gandhi and Raval, 2008). Yu et al. examined the flexible plastic distortion procedure of the move bending stage (Yu et al., 2018). In addition, the impact of the upper roller decrease and of the underlying oval and lower roller interim on a lingering ellipticity has confirmed by trials.

Zeng et al. built up the typical recreation model of dynamic procedure of funnel shaped move plate bending by utilizing limited component strategy (Zeng et al., 2008). Yang and Shima presented the circulation of ebb and flow and bending minutes after the uprooting and turn of rollers by
reenacting the disfigurement of the workpiece with cross-segment in a three-roller bending process (Yang and Shima, 1988). Numerical examinations have implemented to mimic steel sheet bending with a three-roller machine. Moreover, the numerical and trial fallout have contrasted with the legitimacy of limited component model (Zhao et al., 2017, Tran et al., 2014, Fu et al., 2013, Ktari et al., 2012). Salem et al. proposed a systematic model to foresee move bending power, remaining stresses, and power for a move bending method (Salem et al., 2016). They likewise performed topsy-turvy three-move bending investigations to check the created model. Wang et al. built up a four-move bending framing procedure standard dependent on the bounce back hypothesis of thick plates. Besides, the hypothetical estimations were contrasted with the reproduction results for check (Wang et al., 2019).

Most investigations have proposed observational prototypes that can anticipate the last measurement of the pipe dependent on exploratory or numerical examination. Nonetheless, these models are hard to be generally utilized as the prototype projected under explicit conditions. Then again, hypothetically moving toward concentrates to foresee the last width of pipe utilizing a complex condition to anticipate the last measurement of the pipe. Along these lines, it is hard to affirm the last twisting of the pipe instinctively, and it is hard to utilize it straightforwardly by a specialist.

In one of the assessments, an investigative model is planned to foresee a last radius of pipe fabricated utilizing three-roller bending. Investigative conditions for three-roller bending are inferred to compute the stacking stress circulation and leftover stress over the thickness of the plate. The conditions depend on the estimation of the stacking and emptying minutes concerning the unbiased hub. The situation of the impartial plane is thought to be indistinguishable when plate bending. The projected model studies different parameters, for example, steel sheet quality, sheet thickness, rollers size, and separation amid the base rollers. The last radius of the move bending channel is determined in the wake of considering springback and plastic distortion brought about through heap inferable from the rollers. Limited component investigation of the three-roller bending channel framing, in light of Ktari et al., has implemented to ratify the model projected in one of the examinations (Ktari et al., 2012). Likewise, the consequences of the numerical investigation and those of the proposed model are looked at. Limited component examination has achieved employing Abaqus FEA 6.14 (SIMULIA, Johnston,
RI, USA) limited component programming. Material nonlinearity, geometric, and contact nonlinearities have been taken in consideration in the limited component model.

V. Effect of bending angle and bending radius on residual stresses

Exact expectation of springback is significant for the plan of shaping apparatuses and nature of the item (Garcia-Romeu et al., 2007, Xue et al., 2001b, Bahloul et al., 2006, Xue et al., 2001a). Now, exploratory examination have been for the most part used to decide the springback conduct of twisted examples (Mkaddem and Saidane, 2007). Many specialists were researched the springback conduct in bending activities in the course of recent decades.

Bakhshi-Jooybari et al. investigated the influences of sheet thickness, punch tip radius in addition to sheet anisotropy on the springback of CK67 steel sheet in V-bending and U-bending forms through checks and PC reforms (Bakhshi-Jooybari et al., 2009). Bahloul et al. analyzed the impacts of geometrical limits in bending activities by Finite Element (FE) examination to foresee the punch burden and stress dissemination (Bahloul et al., 2006). Panthi and Ramakrishnan suggested the scientific model dependent on strain and distortion vitality to foresee springback of metal sheets, for example, Cu, Al and steel in curve bending (Panthi and Ramakrishnan, 2011). Sharad and Nandedkar anticipated springback steel sheets by utilizing FE investigation, for different die radii, sheet thicknesses, R/t proportions and quality coefficients (Sharad and Nandedkar, 2014). Nasrollahi and Arezoo considered the springback in sheet metal parts with openings on the bending territory utilizing exploratory estimations, FE strategy and neural systems to comprehend the impact of procedure factors, for example, gap type, gaps number, proportion of gap width to sheet width, die radius and cushion power on springback conduct (Nasrollahi and Arezoo, 2012). Panthi et al. utilized FE strategy to decide the impacts of geometrical and material characteristics, and contact on springback in bending activities (Panthi et al., 2010). Chan et al. determined the huge impacts of form tip and lip radius, and bending angle on springback conduct as indicated by the consequences of the performed FE investigations (Chan et al., 2004). As clear from writing survey, a large portion of the previous studies were directed through FE examinations. Moreover, impact of holding power connected toward the part of the arrangement has not commented in details.
VI. Treatment and applications

Intended for bodywork creation, hold tight portions, undercarriage and inside segments from Al combinations, basically two aluminum composite frameworks have been of intrigue, with respect to non-age hardenable AA 5xxx arrangement compounds (AlMgMn composites) as well as age-hardenable AA 6xxx arrangement combinations (AlMgSi amalgams). A sheet fabricated from warmth treatable AA 7xxx arrangement amalgams (AlZnMg) feasibly indicates greater quality, particularly compounds that furthermore contain Cu. As per Reyes et al. (2006) expulsions fabricated from amalgams AA 7108 as well as AA 7003 might be utilized for guards, crashboxes and longitunals(Reyes et al., 2006). AA 7xxx arrangement sheet composites have not built up in the automotive division, interestingly, which is because of uncertain matters in the territories of formability, consumption obstruction and connection advances.

The imperative reinforcing instruments in AlMgMn-composites of AA 5xxx-arrangement have been solute fortifying because of Mg-substance of up to 6 wt.% just as separation reinforcing because of work-solidifying. By controlling the combination creation, the moving decrease and the toughening properties inside this compound gathering is balanced over a varied runs as for formability besides quality. The AA 5xxx-combinations are referred to for their overall accessibility as non exceptional creation hardware – for example persistent tempering line – is required.

As indicated by Miller et al. (2000) as well as Ostermann (2007), a positive blend of generally excellent erosion opposition, great formability and sensible quality permits utilizing AA 5xxx combinations for auxiliary uses, inside the body and for internal pieces of the body-in-white.(Ostermann, 2007, Miller et al., 2000)

Lamentably, be that as it may, Mg-containing combinations have been identified to experience the ill effects of the development of stretcher strains on sheet surface that precludes these compounds from unmistakable external pieces of a vehicle body. As reported in Nogueira de Codes et al. (2011), the stretcher strains eventhas been credited to dynamic strain maturing brought about through cooperation of solute Mg with moving separations (De Codes et al., 2011).
The warmth treatable AlMgSi-combinations of AA 6xxx arrangement have described through a decent erosion obstruction as well as the decent formability in solutionized T4 condition, just as the obvious increment in quality based on consequent fake maturing. Hirsch (1997) has given a common presentation about utilization of Al-amalgams for car appliances (Hirsch, 1997), in addition to Hirth et al. (2001) concentrating explicitly on maturing and coming about characteristics of combination AA 6016 (Hirth et al., 2001). AA 6xxx sheets for autobody appliances have been typically arrangement warmth preserved in a ceaseless toughening line by the aluminum-supplier prior to they are conveyed to the automotive client. For a nonstop toughening line, the strip has been loosened up from the loop and went single-stranded over the heater, where the material has been rapidly affected by temperatures somewhere in the range of 500 and 560 °C to break down the solidifying stages. At that point, the strip has been extinguished with splash water or constrained air to hold the solidifying compound components, Mg and Si, in strong arrangement. A solutionized strip has been at that point transferred to the car client, where portions are shaped and amassed to the last car bodywork. The AA 6xxx arrangement composites gain their last quality just throughout paint heat cycle in lacquering wake. After Electrophoretic Deposition (EPD) the body system has been relieved for 20 to 30 minutes under 170-190°C running temperatures. AA 6xxx arrangement compounds in this temperature/time cycle, undergo critical age solidifying by precipitating fine metastable β" particles, subtleties as reported in Gupta et al. (2001) and Wang et al. 2003 (Wang et al., 2003, Gupta et al., 2001).

This expansion in administration quality joined with great surface appearance creates AA 6xxx arrangement compounds an ideal choice for external skin uses. Because of their age solidifying conduct and their welding ability for AA 6xxx arrangement sheet, materials have been likewise of enthusiasm for auxiliary or body applications; Berneder et al. (2014) demonstrate a case of the last mentioned (Berneder et al., 2014).

In view of Mubea's involvement in adaptable moving of steel sheet a procedure chain for generating Al-TRB must be created. A creation procedure of steel TRB incorporates an adaptable moving the aforementioned, trailed through an appropriate warmth treatment, a discretionary cutting activity and the last leveling and slicing of the spaces. For Al-TRB this procedure chain
must be adjusted based on the necessities of the Al-grade within reach. Kim and Lim (2010) investigated the formability of adaptable moved sheets of the Al-compound AA 5023 (AlMg5.5Cu) and detailed in which microstructure and characteristics of the sheets changed with virus moving decrease and last strengthening temperature (Kim and Lim, 2010). In reliance on the composite evaluation and handling conditions there is a sure least in moving decrease that is necessary to provide a completely recrystallized fine-grained microstructure with mechanical features as indicated by clients' particulars. Then again, too high moving decreases might be joined by excessively huge work solidifying and, thus, event of edge splitting and even burst of moved strip. Subsequently, the determination of thickness and the materials condition of beginning material should be acclimated to an ideal thickness dissemination in a last TRB portion.

A standard cluster toughening cycle has feasibility to accomplish non-age solidifying AA 5xxx arrangement amalgams have been ordinarily utilized in the delicate strengthened state (O temper). Overall, the procedure chain for steel-TRB is feasibly employed with the adjustment in delicate toughening temperature. A handling of warmth treatable AA 6xxx arrangement compounds includes several unmistakable contrasts that have been basically identified with the requirement of solutionizing the material so as to misuse the complete agehardening potential. Within a procedure structure for TRB made of AA 6xxx arrangement compounds an adaptable rolling must happen prior to the solutionizing treatment. On a fundamental level, this can be accomplished by arrangement toughening of last TRB spaces. Nonetheless, like this piece-wise arrangement strengthening has been dull and costly, and can present excessively enormous disperse in materials properties. Besides, the contortions coming about because of extinguishing will require an extra piece-wise leveling activity to deliver level spaces. While this system might be appropriate for the generation of model parts, arrangement creation of age-hardenable Al-strip regularly involves an answer heat treatment in a ceaseless strengthening line. This infers the moved strip must be wound after adaptable moving at Mubea and sent to Hydro's Automotive Center for the solutionizing treatment. Controlling temperature and band speed in persistent strengthening line should be adjusted to the generation of adaptably moved strip. An arrangement heat treatment of mono-thickness strip is typically upgraded for profitability, in that temperature and band speed are amplified inside the restrictions that the predefined materials features have dependably
accomplished. For adjustably issues, moved strip with changeable thickness band speed and temperature should be organized until prearranged materials features have agreed in the thickest districts in the case of avoided conceivable overheating and halfway softening in more slender locales. Overall, this will necessitate a trivial decrease in temperature and band speed at profitability costs.

Besides, some utilizations of Al sheet in car development the particular pretreatment of outside of last Al strip has prerequisite. This can include washing, drawing, surface passivation with a Ti/Zr-layer as well as utilization of a hot soften or pre-lube. Once more, be that as it may, persistent surface preparing lines have been basic in manufacturing and given surface treatment of steady high caliber in the substantially of higher prudent way.

In the technology specifically car business, it is basic procedure for arranging explicit documentation for materials, procedures and portions. To the extent materials have been concerned, these reports characterize conveyance conditions, containing microstructure in addition to mechanical characteristics that must be met.

Combination AA 5454 has been non-heat treatable, medium-to-high quality amalgam with generally excellent erosion opposition that is utilized in frame and auxiliary applications. Court et al. (2001) testified features of delicate toughened AA 5xxx arrangement combinations that can shift considerably as the component of their last grain size which, thusly, is constrained through the conceivable interannealing. The last chilly moving go before delicate strengthening (Court et al., 2001). In like manner, examples in use from a hot segment of compound AA 5454 with a thickness of 6.0 mm have been cold moved on the lab moving factory to various thicknesses going from 2.4 to 4.4 mm, comparing to moving degrees somewhere in the range of 27% and 60%. At long last the contrasting cool moved examples were delicate strengthened in a reproduced bunch toughen with 350°C for one hour. The qualities for yield quality Rp0.2, extreme elasticity Rm, uniform prolongation Ag and stretching at break A80mm were acquired in standard uniaxial tractable investigations led opposite to the previous moving heading as indicated by the worldwide standard ISO 6892-1. Anyway, a few copy experiments have led to checked reproducibility of the outcomes.

Clearly, the 4.4 mm thick example hasn’t completely recrystallized, as evident from the prolonged grain configuration in addition to the great

Copyright reserved © J. Mech. Cont.& Math. Sci.
Jenan Mohammed Naje

388
mechanical quality joined with diminished prolongation esteems. As per Engler et al. (2013) this is brought about through genuinely great Mn-substance of amalgam AA 5454 that is identified to restrain recrystallization at too low moving degrees (Engler et al., 2013).

In any case, for every other example with moving degrees surpassing 30% uniform mechanical features have accomplished, arriving at an elasticity of just about 250 MPa for all thicknesses. In spite of some marginally bigger dissipate prolongation at break is likewise observed with autonomous thickness, recurring estimations of around 20%. These discoveries are affirmed by grain size examinations. The grain configuration inside the various thicknesses underneath 4.0 mm show without a doubt, little contrasts in grain size that clearly have been of no significance for the mechanical features. Taking everything into account, Al-TRB based on compound AA 5454 will demonstrate standardized and reproducible mechanical features, gave the last moving pass surpasses 30% in every thickness region. Besides, the mechanical features watched satisfy the necessities specified via car industrythe that qualifies this amalgam for AlTRBuses in AA 5xxx evaluations.

A comparable arrangement for tests has implemented for combination AA 5182 that has more Mg be that as it may, less Mn than compound AA 5454. As needs be, this composite has better flexibility and, thusly, discovers across the board use in an assortment of car applications requiring improved formability. It gives the idea that composite AA 5182 recrystallizes simpler as compared with AA 5454; officially, next to a moving level of 12% a completely recrystallized grain structure with average features of delicate AA 5182 can be accomplished. This facilitated recrystallization has been credited to the lower Mn level in compound AA 5182 that applies poorer back-main impetuses upon delicate strengthening. Nevertheless, moving degrees beneath 27% cause the coarse grain structure, which unfavorably influences mechanical quality and, particularly, extension esteems. As indicated by Burger et al. (1995) and Hirsch (1997), the reliance of mechanical information on grain size has been affected through Mg content that has been bigger in AA 5182 than in AA 5454 (Burger et al., 1995, Hirsch, 1997). Along these lines, comparably as portrayed for composite AA 5454, in adaptable rolling a base moving level of approximately 30% has been attractive to acquire uniform materials features in combination AA 5182, but for various metallurgical purposes.
Comparable examinations have been directed for age-solidifying AA 6xxx arrangement composites, all the more explicitly for the amalgam AA 6016, an entrenched evaluation for car sheet uses.

The beginning material, 5.0 mm hot strip, has been cold moved to different last thicknesses going from 0.8 to 3.5 mm, comparing to moving decreases from 30% to 84%. This roughly covers the thickness within normal nonstop strengthening lines for car strip. At that point, virus moved sheets have been exposed to a lab-solutionizing strategy. Sheet examples of various thicknesses have toughened for two minutesunder 520°C in the fluidized sand shower pursued through water extinguishing so as to copy the modern creation in a consistent strengthening line. Pliable analysis of material in temper T4 hasimplementedin subsequent multi week of room temperature stockpiling to take into consideration several regular maturing and accordingly to get gradually reproducible consequences. Additionally, several slices of the solutionized sheets have reinforced for half hour under 205°C that has been a typical preparation to complete the age-solidified T6 state for car AA 6xxx prearrangement sheet composites.

Based on previous increasingly definite examination, the grain size acquired next to a solutionizing treatment demonstrates just negligible variety over the researched thickness run. Besides, for AA 6xxx arrangement amalgams, grain size (for example Hall-Petch impact) for the most part assumes a minor job contrasted with precipitation reinforcing.

VII. Conclusion

Numerous factors can influence the industry of sheet metal, and the realization of the applicable sheet based on its features and the goal which the sheet has been made for it. However, the physical factors which affected metal forming were the bend angle which has been proportional to the motility of the sheet formation, the width of the sheet which is inversely proportional to the formation of a metal, the bend radius which is directly to the metal formation, and finally the sheet thickness which has been inversely proportional to the metal formation.

Studies and researches were made in order to optimize the methodology of the metal formation to make it less power and time consuming with better formation and less errors.
References

I. ABLAT, M. A. & QATTAWI, A. 2017. Numerical simulation of sheet metal forming: a review. *The international journal of advanced manufacturing technology*, 89, 1235-1250.

II. BAHLOUL, R., MKADDEM, A., DAL SANTO, P. & POTIRON, A. 2006. Sheet metal bending optimisation using response surface method, numerical simulation and design of experiments. *International journal of mechanical sciences*, 48, 991-1003.

III. BAKHSHI-JOYBARI, M., RAHMANI, B., DAEEZADEH, V. & GORJI, A. 2009. The study of spring-back of CK67 steel sheet in V-die and U-die bending processes. *Materials & Design*, 30, 2410-2419.

IV. BERNEDER, J., PRILLHOFER, R., ENSER, J., RANK, G. & GROHMANN, T. Characterization of AMAG AL6-CHA sheet material for Chassis application in the automotive industry. Materials Science Forum, 2014. Trans Tech Publ, 437-442.

V. BURGER, G., GUPTA, A., JEFFREY, P. & LLOYD, D. 1995. Microstructural control of aluminum sheet used in automotive applications. *Materials Characterization*, 35, 23-39.

VI. CHAN, W., CHEW, H., LEE, H. & CHEOK, B. 2004. Finite element analysis of spring-back of V-bending sheet metal forming processes. *Journal of materials processing technology*, 148, 15-24.
VII. COURT, S., GATENBY, K. & LLOYD, D. 2001. Factors affecting the strength and formability of alloys based on Al–3 wt.% Mg. Materials Science and Engineering: A, 319, 443-447.

VIII. DE CODES, R. N., HOPPERSTAD, O., ENGLER, O., LADEMO, O.-G., EMBURY, J. & BENALLAL, A. 2011. Spatial and temporal characteristics of propagating deformation bands in AA5182 alloy at room temperature. Metallurgical and Materials Transactions A, 42, 3358-3369.

IX. ENGLER, O., LIU, Z. & KUHNKE, K. 2013. Impact of homogenization on particles in the Al–Mg–Mn alloy AA 5454–Experiment and simulation. Journal of Alloys and Compounds, 560, 111-122.

X. ESAT, V., DARENDELILER, H. & GOKLER, M. I. 2002. Finite element analysis of springback in bending of aluminium sheets. Materials & design, 23, 223-229.

XI. FU, Z., TIAN, X., CHEN, W., HU, B. & YAO, X. 2013. Analytical modeling and numerical simulation for three-roll bending forming of sheet metal. The International Journal of Advanced Manufacturing Technology, 69, 1639-1647.

XII. GANDHI, A. & RAVAL, H. 2008. Analytical and empirical modeling of top roller position for three-roller cylindrical bending of plates and its experimental verification. Journal of materials processing technology, 197, 268-278.

XIII. GARCIA-ROMEU, M., CIURANA, J. & FERRER, I. 2007. Springback determination of sheet metals in an air bending process based on an experimental work. Journal of Materials Processing Technology, 191, 174-177.

XIV. GUPTA, A., LLOYD, D. & COURT, S. 2001. Precipitation hardening in Al–Mg–Si alloys with and without excess Si. Materials Science and Engineering: A, 316, 11-17.

XV. HIRSCH, J. Aluminium alloys for automotive application. Materials Science Forum, 1997. Trans Tech Publ, 33-50.

XVI. HIRTH, S., MARSHALL, G., COURT, S. & LLOYD, D. 2001. Effects of Si on the aging behaviour and formability of
aluminium alloys based on AA6016. *Materials Science and Engineering: A*, 319, 452-456.

XVII. HU, W. & WANG, Z. 2001. Theoretical analysis and experimental study to support the development of a more valuable roll-bending process. *International Journal of Machine Tools and Manufacture*, 41, 731-747.

XVIII. HUA, M. & LIN, Y. 1999. Large deflection analysis of elastoplastic plate in steady continuous four-roll bending process. *International Journal of Mechanical Sciences*, 41, 1461-1483.

XIX. KIM, H.-W. & LIM, C.-Y. 2010. Annealing of flexible-rolled Al–5.5 wt% Mg alloy sheets for auto body application. *Materials & Design*, 31, S71-S75.

XX. KTARI, A., ANTAR, Z., HADDAR, N. & ELLEUCH, K. 2012. Modeling and computation of the three-roller bending process of steel sheets. *Journal of Mechanical Science and Technology*, 26, 123-128.

XXI. MILLER, W., ZHUANG, L., BOTTEMA, J., WITTEBROOD, A. J., DE SMET, P., HASZLER, A. & VIEREGGE, A. 2000. Recent development in aluminium alloys for the automotive industry. *Materials Science and Engineering: A*, 280, 37-49.

XXII. MKADDEM, A. & SAIDANE, D. 2007. Experimental approach and RSM procedure on the examination of springback in wiping-die bending processes. *Journal of Materials Processing Technology*, 189, 325-333.

XXIII. NASROLLAHI, V. & AREZOO, B. 2012. Prediction of springback in sheet metal components with holes on the bending area, using experiments, finite element and neural networks. *Materials & Design (1980-2015)*, 36, 331-336.

XXIV. OSTERMANN, F. 2007. Anwendungstechnologie Aluminium. Springer-Verlag. Berlin.

XXV. PANTHI, S. & RAMAKRISHNAN, N. 2011. Semi analytical modeling of springback in arc bending and effect of forming load. *Transactions of Nonferrous Metals Society of China*, 21, 2276-2284.
XXVI. PANTHI, S., RAMAKRISHNAN, N., AHMED, M., SINGH, S. S. & GOEL, M. 2010. Finite element analysis of sheet metal bending process to predict the springback. *Materials & Design*, 31, 657-662.

XXVII. PANTHI, S., RAMAKRISHNAN, N., PATHAK, K. & CHOUHAN, J. 2007. An analysis of springback in sheet metal bending using finite element method (FEM). *Journal of Materials Processing Technology*, 186, 120-124.

XXVIII. REYES, A., HOPPERSTAD, O. S., LADEMO, O.-G. & LANGSETH, M. 2006. Modeling of textured aluminum alloys used in a bumper system: Material tests and characterization. *Computational Materials Science*, 37, 246-268.

XXIX. SALEM, J., CHAMPLIAUD, H., FENG, Z. & DAO, T.-M. 2016. Experimental analysis of an asymmetrical three-roll bending process. *The International Journal of Advanced Manufacturing Technology*, 83, 1823-1833.

XXX. SHARAD, G. & NANDEDKAR, V. 2014. Springback in sheet metal U bending-FEA and neural network approach. *Procedia materials science*, 6, 835-839.

XXXI. SIDEBOTTOM, O. & GEBHARDT, C. 1979. Elastic springback in plates and beams formed by bending. *Experimental Mechanics*, 19, 371-377.

XXXII. TAJALLY, M. & EMADODDIN, E. 2011. Mechanical and anisotropic behaviors of 7075 aluminum alloy sheets. *Materials & Design*, 32, 1594-1599.

XXXIII. TAN, Z., LI, W. B. & PERSSON, B. 1994. On analysis and measurement of residual stresses in the bending of sheet metals. *International Journal of Mechanical Sciences*, 36, 483-491.

XXXIV. TRAN, Q. H., CHAMPLIAUD, H., FENG, Z. & DAO, T. M. 2014. Analysis of the asymmetrical roll bending process through dynamic FE simulations and experimental study. *The International Journal of Advanced Manufacturing Technology*, 75, 1233-1244.

XXXV. WANG, X., EMBURY, J., POOLE, W., ESMAEILI, S. & LLOYD, D. 2003. Precipitation strengthening of the aluminum
alloy AA6111. Metallurgical and Materials Transactions A, 34, 2913-2924.

XXXVI. WANG, Y., ZHU, X., WANG, Q. & CUI, X. 2019. Research on multi-roll roll forming process of thick plate. The International Journal of Advanced Manufacturing Technology, 102, 17-26.

XXXVII. XUE, P., YU, T. & CHU, E. 2001a. An energy approach for predicting springback of metal sheets after double-curvature forming, Part I: axisymmetric stamping. International journal of mechanical sciences, 43, 1893-1914.

XXXVIII. XUE, P., YU, T. & CHU, E. 2001b. An energy approach for predicting springback of metal sheets after double-curvature forming, Part II: Unequal double-curvature forming. International journal of mechanical sciences, 43, 1915-1924.

XXXIX. YANG, M. & SHIMA, S. 1988. Simulation of pyramid type three-roll bending process. International Journal of Mechanical Sciences, 30, 877-886.

XL. YU, G., ZHAO, J., ZHAI, R., MA, R. & WANG, C. 2018. Theoretical analysis and experimental investigations on the symmetrical three-roller setting round process. The International Journal of Advanced Manufacturing Technology, 94, 45-56.

XLI. ZENG, J., LIU, Z. & CHAMPLIAUD, H. 2008. FEM dynamic simulation and analysis of the roll-bending process for forming a conical tube. Journal of materials processing technology, 198, 330-343.

XLII. ZHAO, W., LIAO, T. W. & KOMPOTIATIS, L. 2017. Stress and Springback Analyses of API X70 Pipeline Steel Under 3-Roller Bending via Finite Element Method. Acta Metallurgica Sinica (English Letters), 30, 470-482.