Improved Measurements of $B^0 \to D_{sJ}^+ K^-$ decays

K. Abe, K. Abe, I. Adachi, H. Aihara, K. Aoki, K. Arinstein, Y. Asano, T. Aso, V. Aulchenko, T.Aushev, T. Aziz, S. Bahinipati, A. M. Bakich, V. Balagura, Y. Ban, S. Banerjee, E. Barberio, M. Barbero, A. Bay, I. Bedny, U. Bitenc, I. Bizjak, S. Blyth, A. Bondar, A. Bozek, M. Bračko, J. Brodzicka, T. E. Browder, M.-C. Chang, P. Chang, Y. Chao, A. Chen, K.-F. Chen, W. T. Chen, B. G. Cheon, C.-C. Chiang, R. Chistov, S.-K. Choi, Y. Choi, Y. K. Choi, A. Chuvikov, S. Cole, J. Dalseno, M. Danilov, M. Dash, L. Y. Dong, R. Dowd, J. Dragic, A. Drutskoy, S. Eidelman, Y. Enari, D. Epifanov, F. Fang, S. Fratina, H. Fujii, N. Gabyshev, A. Garmash, T. Gershon, A. Go, G. Gokhroo, P. Goldenzweig, B. Golob, A. Gorishek, M. Grosse Perdekamp, H. Guler, R. Guo, J. Haba, K. Hara, T. Hara, Y. Hasegawa, N. C. Hastings, K. Hasuko, K. Hayasaka, H. Hayashii, M. Hazumi, T. Higuchi, L. Hinz, T. Hojo, T. Hokuue, Y. Hoshi, K. Hoshina, S. Hou, W.-S. Hou, Y. B. Hsiung, Y. Igarashi, T. Iijima, K. Ikado, A. Imoto, K. Inami, A. Ishikawa, H. Ishino, K. Itoh, R. Itoh, M. Iwasaki, Y. Iwasaki, C. Jacoby, C.-M. Jen, R. Kagan, H. Kakuno, J. H. Kang, S. Kang, P. Kapusta, S. U. Kataoka, N. Katayama, H. Kawai, N. Kawamura, T. Kawasaki, S. Kazi, N. Kent, H. R. Khan, A. Kibayashi, H. Kichimi, H. J. Kim, H. O. Kim, J. H. Kim, S. K. Kim, S. M. Kim, T. H. Kim, K. Kinoshita, N. Kishimoto, S. Korpar, Y. Kozakai, P. Krizan, K. Krokovny, T. Kubota, R. Kulasiri, C. C. Kuo, H. Kurashiro, E. Kurihara, A. Kusaka, A. Kuzmin, Y. Kwon, J. S. Lange, G. Leder, S. E. Lee, Y.-J. Lee, T. Lesiak, J. Li, A. Limosani, S.-W. Lin, D. Liventsev, J. MacNaughton, G. Majumder, F. Mandl, D. Marlow, H. Matsumoto, T. Matsumoto, A. Matyja, Y. Mikami, W. Mitaroff, K. Miyabayashi, H. Miyake, H. Miyata, H. Miyazaki, R. Mizuk, M. Mohapatra, G. R. Moloney, T. Mori, A. Murakami, T. Nagamine, Y. Nagasaka, T. Nakagawa, I. Nakamura, E. Nakano, M. Nakao, H. Nakazawa, Z. Natkaniec, K. Neichi, N. Nishida, O. Nito, S. Noguchi, T. Nozaki, A. Ogawa, T. Ohshima, T. Okabe, S. Okuno, S. Olsen, Y. Ondiki, W. Ostrowicz, H. Ozaki, P. Pakhlov, H. Palka, C. W. Park, H. Park, K. S. Park, N. Parslow, L. S. Peak, M. Pernicka, R. Pestotnik, M. Peters, L. E. Pilonen, A. Poluektov, J. F. Ronga, N. Root, M. Rozanska, H. Sahoo, S. Saiyoh, Y. Sakai, H. Sakamoto, H. Sakaue, T. R. Sarangi, M. Satapathy, N. Sato, T. Schietinger, O. Schneider, P. Schönmeier, J. Schümann, C. Schwanda, A. J. Schwartz, T. Seki, K. Senyo, R. Seuster, M. E. Sevior, T. Shibata, H. Shibuya, J.-G. Shiu, B. Shwartz, V. Sidorov, J. B. Singh, A. Somov, N. Soni, R. Stamen, S. Stanić, M. Starić, A. Sugiyama, K. Sumisawa, Sumiyoshi, S. Suzuki, O. Tajima, F. Takasaki, K. Tamai, N. Tamura, K. Tanabe, M. Tanaka, G. N. Taylor, Y. Teramoto, X. C. Tian, S. N. Tovey, K. Trabelsi, Y. F. Tse, T. Tsuboyama, T. Tsukamoto, K. Uchida, Y. Uchida, S. Uehara, 1
T. Uglov, K. Ueno, Y. Unno, S. Uno, P. Urquijo, Y. Ushiroda, G. Varner, K. E. Varvell, S. Villa, C. C. Wang, C. H. Wang, M.-Z. Wang, M. Watanabe, Y. Watanabe, L. Widhalm, C.-H. Wu, Q. L. Xie, B. D. Yabsley, A. Yamaguchi, H. Yamamoto, S. Yamamoto, Y. Yamashita, M. Yamauchi, Heyoung Yang, J. Ying, S. Yoshino, Y. Yuan, Y. Yusa, H. Yuta, S. L. Zang, C. C. Zhang, J. Zhang, L. M. Zhang, Z. P. Zhang, V. Zhilich, T. Ziegler, and D. Zürcher

(The Belle Collaboration)

(Belle Collaboration)

1 Aomori University, Aomori
2 Budker Institute of Nuclear Physics, Novosibirsk
3 Chiba University, Chiba
4 Chonnam National University, Kwangju
5 University of Cincinnati, Cincinnati, Ohio 45221
6 University of Frankfurt, Frankfurt
7 Gyeongsang National University, Chinju
8 University of Hawaii, Honolulu, Hawaii 96822
9 High Energy Accelerator Research Organization (KEK), Tsukuba
10 Hiroshima Institute of Technology, Hiroshima
11 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing
12 Institute of High Energy Physics, Vienna
13 Institute for Theoretical and Experimental Physics, Moscow
14 J. Stefan Institute, Ljubljana
15 Kanagawa University, Yokohama
16 Korea University, Seoul
17 Kyoto University, Kyoto
18 Kyungpook National University, Taegu
19 Swiss Federal Institute of Technology of Lausanne, EPFL, Lausanne
20 University of Ljubljana, Ljubljana
21 University of Maribor, Maribor
22 University of Melbourne, Victoria
23 Nagoya University, Nagoya
24 Nara Women’s University, Nara
25 National Central University, Chung-Li
26 National Kaohsiung Normal University, Kaohsiung
27 National United University, Miao Li
28 Department of Physics, National Taiwan University, Taipei
29 H. Niewodniczanski Institute of Nuclear Physics, Krakow
30 Nippon Dental University, Niigata
31 Niigata University, Niigata
32 Nova Gorica Polytechnic, Nova Gorica
33 Osaka City University, Osaka
34 Osaka University, Osaka
35 Panjab University, Chandigarh
36 Peking University, Beijing
Abstract

We report an improved measurement of the branching fraction for $\bar{B}^0 \to D^{*+}_{sJ}(2317)K^-$ and present evidence of the $\bar{B}^0 \to D_{sJ}(2460)^+K^-$ decay. These results are obtained from a data sample containing 386 million $B\bar{B}$ pairs that was collected near the $\Upsilon(4S)$ resonance, with the Belle detector at the KEKB asymmetric energy e^+e^- collider.

PACS numbers: 13.25.Hw, 14.40.Nd
Two narrow resonances denoted as $D^+_s(2317)$ and $D_{sJ}(2460)$ have been observed recently in e^+e^- continuum interactions \cite{7} and in B decays \cite{3,4,8}. The surprisingly low masses and small widths of these states initiated a wide theoretical discussion \cite{8}. Although the 0^+ and 1^+ quantum numbers have been established for the $D^+_s(2317)$ and $D_{sJ}(2460)$ resonances \cite{8}, respectively, the nature of these states is still unclear.

In this paper we report an updated study of the decays $B^0 \rightarrow D^{+}_{sJ}K^-$ with a data sample that is approximately 2.5 times larger than in the recently Belle published paper \cite{9} that first reported the $B^0 \rightarrow D^+_s(2317)^+K^-$ decay mode. In the previous Belle study the product branching fraction $\mathcal{B}(B^0 \rightarrow D^+_s(2317)^+K^-) \times \mathcal{B}(D^+_s(2317)^+ \rightarrow D^+_s\pi^0) = (5.3^{+1.5}_{-1.3} \pm 0.7 \pm 1.4) \times 10^{-5}$ was measured and an upper limit $\mathcal{B}(B^0 \rightarrow D_{sJ}(2460)^+K^-) \times \mathcal{B}(D_{sJ}(2460)^+ \rightarrow D^+_s\gamma) < 0.94 \times 10^{-5}$ was set. These measurements \cite{10} show that $\mathcal{B}(B^0 \rightarrow D^+_s(2317)^+K^-)$ is of the same order of magnitude as $\mathcal{B}(B^0 \rightarrow D^+_sK^-)$ \cite{11,12} and at least a factor of two larger than the branching fraction for $B^0 \rightarrow D_{sJ}(2460)^+K^-$.

The $B^0 \rightarrow D^+_{sJ}K^-$ decays can be described by a PQCD factorization W exchange process \cite{13,14} or, alternatively, by final state interactions \cite{15,16}. Assuming there is a four-quark component of the D_{sJ} mesons, the tree diagram with ss pair creation may also contribute \cite{14}. Although accurate theoretical calculations of branching fractions are difficult for these decay modes, the experimental results disagree with the naive expectation \cite{17} that the ratio $\mathcal{B}(B^0 \rightarrow D^+_s h^-)/\mathcal{B}(B^0 \rightarrow D^+_s h^0)$ should be similar for $h^- = \pi^-, K^-$ or D^-.

This analysis is based on a large data sample, which contains 386 million $B\overline{B}$ pairs, collected with the Belle detector at the KEKB asymmetric-energy e^+e^- (3.5 on 8 GeV) collider \cite{6} operating at the $\Upsilon(4S)$ resonance. The Belle detector is a large-solid-angle magnetic spectrometer that consists of a silicon vertex detector (SVD), a 50-layer central drift chamber (CDC), an array of aerogel threshold Čerenkov counters (ACC), a barrel-like arrangement of time-of-flight scintillation counters (TOF), and an electromagnetic calorimeter comprised of CsI(Tl) crystals (ECL) located inside a super-conducting solenoid coil that provides a 1.5 T magnetic field. An iron flux-return located outside of the coil is instrumented to detect K^0_L mesons and to identify muons (KLM). The detector is described in detail elsewhere \cite{19}. Two inner detector configurations were used. A 2.0 cm beampipe and a 3-layer silicon vertex detector was used for the first sample of 152 million $B\overline{B}$ pairs, while a 1.5 cm beampipe, a 4-layer silicon detector and a small-cell inner drift chamber were used to record the remaining 234 million $B\overline{B}$ pairs \cite{20}.

In this analysis we applied the same selection criteria as in \cite{9}, where a detailed description of the criteria can be found. The only differences between the two analyses arise due to the vertex detector upgrade. According to the MC simulation, minor differences in the signal widths and efficiencies are expected for the two SVD subdetector configurations, leading to respective corrections applied in the fit procedure and efficiency calculations.

Koan and pion mass hypotheses are assigned to the charged tracks with momenta $p > 100\text{ MeV}/c$ \cite{11} using a likelihood ratio $\mathcal{L}_{K/\pi} = \mathcal{L}_K/(\mathcal{L}_K + \mathcal{L}_\pi)$, obtained by combining information from the CDC (dE/dx), ACC, and TOF systems. We require $\mathcal{L}_{K/\pi} > 0.6$ ($\mathcal{L}_{K/\pi} < 0.6$) for koan (pion) candidates \cite{11}.

ECL clusters with a photon-like shape and energies larger than 50 MeV, that are not associated with charged tracks, are accepted as photon candidates. Photon pairs of invariant mass within $\pm 12 \text{ MeV}/c^2$ ($\sim 3\sigma$ in the π^0 mass resolution) of the π^0 mass are considered π^0 candidates; the π^0 momentum is required to be larger than 100 MeV/c.

K^0_S candidates are formed from $\pi^+\pi^-$ pairs with an invariant mass within $\pm 10 \text{ MeV}/c^2$ ($\sim 3\sigma$) of the nominal K^0_S mass. Invariant masses of $K^{*0} \rightarrow K^+\pi^-$ candidates are required
to be within $\pm 50 \text{ MeV}/c^2$ of the nominal K^{*0} mass; those of $\phi \to K^+K^-$ candidates, within $\pm 12 \text{ MeV}/c^2$ of the ϕ mass. D_s^+ mesons are reconstructed in the $\phi\pi^+$, $K^{*0}K^+$ and $K^0_LK^+$ decay channels; a mass window of $\pm 12 \text{ MeV}/c^2$ ($\sim 2.5\sigma$) is imposed in each case. The D_{sJ} mesons are reconstructed in the $D_{sJ}^+(2317)^+ \to D_s^+\pi^0$ and $D_{sJ}(2460)^+ \to D_s^+\gamma$ decay modes; within the mass difference ranges $|M(D_s^+\pi^0) - M(D_s^+) - 348.6| < 20 \text{ MeV}/c^2$ and $|M(D_s^+\gamma) - M(D_s^+) - 487.9| < 30 \text{ MeV}/c^2$.

Candidate $B^0 \to D_s^+K^-$ and $D_{sJ}^+\pi^+$ are formed and the signal is extracted using the energy difference $\Delta E = E_B^{CM} - E_B^{beam}$ and beam-constrained mass $M_{bc} = \sqrt{(E_{beam}^{CM})^2 - (p_B^{CM})^2}$; E_B^{CM} and p_B^{CM} are the energy and momentum of the B candidate in the center-of-mass (CM) system and E_{beam}^{CM} is the CM beam energy. Only events within the intervals $M_{bc} > 5.2 \text{ GeV}/c^2$ and $|\Delta E| < 0.2 \text{ GeV}$ are used in this analysis. The B meson signal region is defined by $|\Delta E| < 0.04 \text{ GeV}$ and $5.272 \text{ GeV}/c^2 < M_{bc} < 5.288 \text{ GeV}/c^2$.

Combinatorial background for channels involving the $D_{sJ}(2460)^+$ was further suppressed by requiring $\cos \theta_{D_s\gamma} < 0.7$. The helicity angle $\theta_{D_s\gamma}$ is defined as the angle between the direction opposite the B momentum and the D_s^+ momentum in the $D_s^+\gamma$ rest frame. This requirement rejects 49% of background events and only 6% of signal events, assuming $J^P = 1^+$ for the $D_{sJ}(2460)^+$. The uncertainty due to this assumption is included in the systematic error.

For events with two or more B candidates, the D_s^+ and π^0 candidates with invariant masses closest to their nominal values and the B daughter K^+ or π^- candidate with the best $L_{K/\pi}$ value are chosen. No multiple entries are found in the data.

We exploit the event topology to separate BB events (spherical) from the continuum background (jetlike). The ratio of the second and zeroth Fox-Wolfram moments [21] of all particles in the event is required to be less than 0.5. For such events, we form a Fisher discriminant from six modified Fox-Wolfram moments. A signal (background) likelihood L_S (L_{BG}) is obtained using signal MC (sidelong) data from the product of probability density functions for the Fisher discriminant and $\cos \theta_B$, where θ_B is the B flight direction in the CM system with respect to the z axis. We require $R = L_S/(L_S + L_{BG}) > 0.4$ for $D_s^+ \to K^{*0}K^+$ and $R > 0.25$ for the other D_s^+ decay modes, which have lower backgrounds.

The ΔE and $\Delta M(D_{sJ})$ distributions for the $D_{sJ}^+K^-$ combinations are shown in Fig. 1 for the range $5.272 \text{ GeV}/c^2 < M_{bc} < 5.288 \text{ GeV}/c^2$. To obtain the $\Delta M(D_{sJ})$ distributions we relax the $\Delta M(D_{sJ})$ requirements and apply the tight selection on ΔE. The ΔE distributions are modelled using a linear background function and a Gaussian signal shape (the Crystal Ball shape function [22]) is used for the $D_{sJ}(2460)^+$ with zero mean and a fixed width determined from MC data. The $\Delta M(D_{sJ})$ distributions are described by the sum of a signal Gaussian and a linear background. The widths of the Gaussians are fixed from MC while the peak positions are allowed to float. A strong $B^0 \to D_{sJ}^+(2317)^+K^-$ signal is observed and evidence of the $B^0 \to D_{sJ}(2460)^+K^-$ signal is also seen. The Gaussian peak positions obtained from the fits correspond to the D_{sJ} mass values of 2319.2 $\pm 1.3 \text{ MeV}/c^2$ and 2456.2 $\pm 6.5 \text{ MeV}/c^2$ for the $D_{sJ}^+(2317)^+$ and $D_{sJ}(2460)^+$, respectively. These values are in good agreement with the most recent BaBar measurements [23] of D_{sJ} masses in the continuum, 2318.9 $\pm 0.3 \pm 0.9 \text{ MeV}/c^2$ and 2459.4 $\pm 0.3 \pm 1.0 \text{ MeV}/c^2$.

Signal yields, efficiencies, branching fractions and significances for the studied decay channels are shown in Table 1. The signal yields are obtained from the fits of histograms shown in Fig. 1, where the three D_s decay channels are combined. The $B^0 \to D_{sJ}^+K^-$ branching fractions and significances are obtained using a simultaneous fit to the $\Delta M(D_{sJ})$ distributions for the three D_s^+ decay channels, with independent background descriptions,
FIG. 1: ΔE (a) and $\Delta M(D_{sJ})$ (b) distributions for the $B^0 \to D^*_{sJ}(2317)^+ K^-$ decay, and ΔE (c) and $\Delta M(D_{sJ})$ (d) distributions for the $B^0 \to D_{sJ}(2460)^+ K^-$ decay.

but common values for the signal width (fixed from MC) and peak position (allowed to float). The branching fractions obtained in the individual decay modes agree within the statistical errors. The three error terms are the statistical uncertainty, the total systematic error, and the uncertainty due to D_s^+ branching fractions; this last term is dominated by the $\sim 25\%$ uncertainty in $\mathcal{B}(D_s^+ \to \phi \pi^+)$ [24]. The last two systematic terms are combined for the $B^0 \to D_{sJ}(2460)^+ K^-$ decay. The significance is defined as $\sqrt{-2 \ln(\mathcal{L}_0/\mathcal{L}_{\text{max}})}$, where \mathcal{L}_{max} and \mathcal{L}_0 are likelihoods for the best fit and zero signal yields, respectively. The significance is corrected for systematics due to the peaking background, which is estimated using ΔE and M_{bc} sidebands. Efficiencies include all intermediate resonance branching fractions [24] and were obtained from MC simulation, assuming $J^P = 0^+$ for the $D^*_{sJ}(2317)$ and $J^P = 1^+$ for the $D_{sJ}(2460)$. We assume equal production of neutral and charged B mesons.

The PDG value of $\mathcal{B}(D_s^+ \to \phi \pi^+) = (3.6 \pm 0.9)\%$ [24] with a 25% uncertainty is used to obtain the branching fractions listed in Table 1. BaBar has recently determined the branching fraction $\mathcal{B}(D_s^+ \to \phi \pi^+) = (4.81 \pm 0.52 \pm 0.38)\%$ [25], which has a smaller uncertainty of 13%. If we use this BaBar value the product branching fractions become $\mathcal{B}(\bar{B}^0 \to D_{sJ}(2317)^+ K^-) \times \mathcal{B}(D_{sJ}(2317)^+ \to D_s^+ \pi^0) = (3.3 \pm 0.6 \pm 0.7) \times 10^{-5}$ and
TABLE I: Signal yields, efficiencies, product branching fractions, and significances for the $\bar{B}^0 \rightarrow D^{+}_{sJ}K^-$ processes. The first error is the statistical uncertainty, the second is the systematic uncertainty, and the third error is the uncertainty due to D^+_s decay branching fractions. Product branching fractions are obtained from simultaneous $\Delta M(D_{sJ})$ fits of three D_s decay modes as described in the text.

Decay mode	Yield $\Delta M(D_{sJ})$	Yield ΔE	Efficiency (10^{-4})	Product $B(\bar{B}^0 \rightarrow D^{+}_{sJ}K^-) \times B(D_{sJ} \rightarrow D_s\pi^0(\gamma)) (10^{-5})$	Signif. σ
$D^*_{sJ}(2317)^+K^-$	35.3 ± 6.4	34.1 ± 6.6	21.9 ± 0.6	4.4 ± 0.8 ± 0.6 ± 1.1	9.2
$D_{sJ}(2460)^+K^-$	11.2 ± 5.4	10.2 ± 5.4	59.5 ± 1.4	0.53 ± 0.20$^{+0.16}_{-0.15}$	3.1
				< 0.86 (90% C.L.)	

$B(\bar{B}^0 \rightarrow D_{sJ}(2460)^+K^-) \times B(D_{sJ}(2460)^+ \rightarrow D^+_s\gamma) = (0.40 \pm 0.15^{+0.12}_{-0.01}) \times 10^{-5}$. The major sources contributing to the systematic error are shown in Table 2. More details about the systematic uncertainties can be found in [7].

TABLE II: Systematic uncertainties in the $\bar{B}^0 \rightarrow D^{+}_{sJ}K^-$ branching fraction measurements.

Source	Systematic error (%)	$D^*_{sJ}(2317)^+K^-$	$D_{sJ}(2460)^+K^-$
Track reconstruction	±1 $\times N_{tracks}$	±1 $\times N_{tracks}$	
Charged particle identification	±2 $\times N_{particles}$	±2 $\times N_{particles}$	
Photon and π^0 reconstruction	±5	±2	
K^0_S reconstruction	±3	±3	
ΔE and likelihood ratio shapes	±4	±4	
Helicity angular distribution assumption	±4	+9 $^{+9}_{-0}$	
Background subtraction	±6	±5	
Fitting procedure	±3	±3	
MC statistics	±2	±2	
Number of $B\bar{B}$ pairs	±1.5	±1.5	
Total	±14	+16 $^{+16}_{-13}$	

In conclusion, improved measurements of $\bar{B}^0 \rightarrow D^{+}_{sJ}K^-$ decay modes have been performed using a data sample approximately 2.5 times larger. Good agreement with the previous measurement is obtained [7]. The value of $B(\bar{B}^0 \rightarrow D^*_{sJ}(2317)^+K^-)$ is of the same order of magnitude as $B(\bar{B}^0 \rightarrow D^+_sK^-)$ and significantly larger than the $\bar{B}^0 \rightarrow D_{sJ}(2460)^+K^-$ branching fraction.

We thank the KEKB group for the excellent operation of the accelerator, the KEK cryogenics group for the efficient operation of the solenoid, and the KEK computer group and the National Institute of Informatics for valuable computing and Super-SINET network support. We acknowledge support from the Ministry of Education, Culture, Sports, Science, and Technology of Japan and the Japan Society for the Promotion of Science; the Australian Research Council and the Australian Department of Education, Science and Training; the
National Science Foundation of China under contract No. 10175071; the Department of Science and Technology of India; the BK21 program of the Ministry of Education of Korea and the CHEP SRC program of the Korea Science and Engineering Foundation; the Polish State Committee for Scientific Research under contract No. 2P03B 01324; the Ministry of Science and Technology of the Russian Federation; the Ministry of Higher Education, Science and Technology of the Republic of Slovenia; the Swiss National Science Foundation; the National Science Council and the Ministry of Education of Taiwan; and the U.S. Department of Energy.

[1] B. Aubert et al. (BaBar Collab.), Phys. Rev. Lett. 90, 242001 (2003).
[2] D. Besson et al. (CLEO Collab.), Phys. Rev. D 68, 032002 (2003).
[3] Y. Mikami et al. (Belle Collab.), Phys. Rev. Lett. 92, 012002 (2004).
[4] B. Aubert et al. (BaBar Collab.), Phys. Rev. D 69, 031101 (2004).
[5] P. Krokovny et al. (Belle Collab.), Phys. Rev. Lett. 91, 262002 (2003).
[6] B. Aubert et al. (BaBar Collab.), Phys. Rev. Lett. 93, 181801 (2004).
[7] A. Drutskoy et al. (Belle Collab.), Phys. Rev. Lett. 94, 061802 (2005).
[8] See P. Colangelo, F. De Fazio and R. Ferrandes, Mod. Phys. Lett. A 19, 2083 (2004), and references therein.
[9] Charge conjugate modes are implicitly included everywhere.
[10] Recent measurements of $D_{sJ}^+(2317)$ and $D_{sJ}^+(2460)$ decay branching fractions indicate that the $D_{sJ}^+(2317)^+ \rightarrow D_s^+\pi^0$ channel is dominant and the $D_{sJ}^+(2460)^+ \rightarrow D_s^+\gamma$ branching fraction is around 30%.
[11] P. Krokovny et al. (Belle Collab.), Phys. Rev. Lett. 89, 231804 (2002).
[12] B. Aubert et al. (BaBar Collab.), Phys. Rev. Lett. 90, 181803 (2003).
[13] D. Du, L. Guo, D.-X. Zhang, Phys. Lett. B 406, 110 (1997).
[14] C.D. Lu, hep-ph/0305061.
[15] C.-K. Chua, W.-S. Hou, K.-C. Yang, Phys. Rev. D 65, 096007 (2002).
[16] B. Blok, M. Gronau, J.L. Rosner, Phys. Rev. Lett. 78, 3999 (1997).
[17] C.-H. Chen, H.-n Li, Phys. Rev. D 69, 054002 (2004).
[18] S. Kurokawa and E. Kikutani, Nucl. Instr. and Meth. A 499, 1 (2003), and other papers included in this volume.
[19] A. Abashian et al. (Belle Collab.), Nucl. Instr. and Meth. A 479, 117 (2002).
[20] Y. Ushiroda (Belle SVD2 Group), Nucl. Instr. and Meth.A 511 6 (2003).
[21] The Fox-Wolfram moments were introduced in G. C. Fox and S. Wolfram, Phys. Rev. Lett. 41, 1581 (1978). The Fisher discriminant used by Belle, based on modified Fox-Wolfram moments (SFW), is described in K. Abe et al. (Belle Collab.), Phys. Rev. Lett. 87, 101801 (2001) and K. Abe et al. (Belle Collab.), Phys. Lett. B 511, 151 (2001).
[22] M. Oreglia, Ph.D. thesis, Stanford University, Report No. SLAC-236 (1980).
[23] B. Aubert et al. (BaBar Collab.), BABAR-CONF-04/027, SLAC-PUB-10631, hep-ex/0408067
[24] S. Eidelman et al. (Particle Data Group), Phys. Lett. B 592, 1 (2004).
[25] B. Aubert et al. (BaBar Collab.), Phys. Rev. D - RC 71, 091104 (2005).