Supersymmetry : A new organizing principle for the microworld?

U. A. Yajnik†
Physics Department, Indian Institute of Technology Bombay,
Mumbai 400076

Abstract

A glorious achievement of twentieth century Physics is the identification of the building blocks of nature. A related triumph a deep understanding of the forces of interaction. In particular, it has been possible to understand the four fundamental forces of nature in an elegant and unified mathematical framework. The paradigm for this unification has been the principle of gauge symmetry.

A new approach to achieving further unification relies on Supersymmetry. This is a symmetry which relates particles of integer spin with those of half-integral spin and also dictates the allowed interactions among these particles. However, no data exist pointing to the presence of this symmetry; it may indeed be of no relevance to nature.

In this paper the gauge principle and unification attempts are briefly reviewed, and then Supersymmetry is introduced. The notion of “broken” symmetry is discussed, which may explain why the symmetry is difficult to observe at presently accessible energies. But a badly broken manifestation seems to remove much of the original appeal and elegance of the theory. We here propose two alternative views of the status of Supersymmetry from fundamental standpoint. There is a good reason why it is indeed a fundamental symmetry, despite badly broken. The alternative is that it is an organizing principle, somewhat like valence. This makes it valuable as a signpost to new Physics.

1 Prologue

This paper deals with a topic of current interest in Theoretical Physics and is presented to the forum of historians and philosophers of science. It assumes familiarity at the popular level with developments in High Energy Physics and with basic Quantum Physics.

*Presented at the Seminar on Philosophy of Science, IIT Bombay, February 1998
†e-mail : yajnik@niharika.phy.iitb.ernet.in
In rephrasing technical statements, an attempt is made to remain close to the truth, albeit selectively. Math is used sparingly but some formulae are displayed in the hope that they will give the reader an opening into more detailed literature. Sections 2 and 3 deal with the paradigm of symmetry as it has come to be understood in this century.

Supersymmetry is an elegant symmetry principle, but seems to not be operating in nature in its simplest version. Section 4 deals with Supersymmetry; the idea, its appeal and its failings. Section 5 presents two alternatives for the metaphysical status of Supersymmetry in case it is indeed discovered.

2 The intangible microworld

The macroscopic world directly impinges on the senses and demands systematizing principles. Presenting itself in many different contexts, it also provides ample clues for arriving at such principles. Majority of the phenomena of common experience are correctly described by Newtonian principles, complemented by laws governing electromagnetism, hydrodynamics and so on.

The microscopic world is nevertheless present. It is intangible except for a few tangible and powerful clues. The shape and solidity of the world relies on Fermi statistics. Several phenomenological constants contain Planck’s constant or Avogadro’s number. The scientist has had to progressively become a detective relying on skimpily evidence to pursue the trail of an elusive and magnificent if unseeable reality.

Consider an example of clues leading to detection. Valence was wrested from Chemical phenomena, after much confusion and controversy. Mendeleev’s periodic table, at first based on valence, systematized the elements and predicted new ones. The raison d’etre of the table remained a mystery until the electronic structure of the atom could be understood. This in turn needed the Pauli exclusion principle for its explanation; in turn bringing us to the very heart of microscopic phenomena, the fundamental indistinguishability of quanta. The message of Quantum Mechanics is that only the possible quantum states of a collection of quanta that are distinct, not the quanta themselves.

2.1 The metaphysics of insight

An important paradigm for theoretical progress in this century has been symmetry principles. This is in contrast to the development of Electromagnetism which occurred over about two centuries, during which theory and experiment progressed step by step, aiding each other. The exploration of the microworld beginning with radioactivity did not enjoy such a luxury of wealth of data, nor of easily constructible and repeatable experiments.
The developments starting during 1880’s and culminating in 1930’s therefore relied on deep insights guided by certain metaphysical assumptions. Here and in the following, by metaphysical we shall mean principles external to the discipline of physics itself, but nevertheless conceived and used by professionals. It is the implicit use of such principles that is the subject of this paper. Also, being external to the discipline itself, they appropriately form the subject matter of Philosophy of Science.

There are two simple but deep principles used universally in science. These are, (1) universal applicability of the concepts, (2) consistency of the epistemy. By the latter we mean the expectation that existing technical frameworks or formalisms will apply also to a relatively new domain of phenomena. An example of above principles at work is provided by the discovery of Bose Statistics. Planck’s explanation of Black Body radiation relied on assumption of absorption and emission of radiation energy in quanta. Einstein made this fact into a new concept, that of a photon, and used it to explain photoelectric effect. This put the photon on a more general footing. The next step, which took many years in coming, was taken by Bose who assumed that the thermodynamics of photons must be deducible from a counting of states just as in classical Statistical Mechanics. This is what we mean by principle (2). There was one revolutionary new input required however. The counting of states is based on strict indistinguishability among the photons.

We cite these as examples of insight working in conjunction with above guiding principles. In the Quantum domain however, both proved unreliable. Neither the concepts could be universally applied, nor the epistemy. Mathematically precise entities and rules were in some sense the only infallible guide. Which concepts would remain robust and what exactly these rules were took a long time for its understanding. Barring possible new phenomena such as Hawking radiation, Quantum Mechanics as we know today is consistent and complete but does not cease to evoke disbelief even in eminent practitioners.

There was however another metaphysical principle which was emerging as means of guessing ahead. Very loosely it may be called the principle that the equations must be elegant and must incorporate a certain symmetry. It was based on this principle that Einstein’s theory of Gravitation and Dirac’s theory for the relativistic electron were accepted by Physics community with awe and excitement even before they could be completely established. In its highly evolved form today, it has come to be further formalized as a demand for the existence of precise, mathematically implementable symmetry principles.

The origins of this metaphysical principle go back to the nineteenth century, when Maxwell achieved an elegant unification of the laws of electromagnetism. He organized several laws and rules of thumb then known so that the Electric and Magnetic forces appeared on par with each other displaying an uncanny similarity between the two.
The laws were also stated in the form of mathematical equations that permitted easy geometrical visualization and were yet so far reaching in their import and applicability that an eminent colleague is reported to have exclaimed, quoting Goethe, “was it a god who wrote those lines?” With hindsight we know that in fact the symmetry they displayed went much farther than a nineteenth century esthete could have discerned, for they were the first equations to be known which were covariant under Special Relativistic transformations.

What we are trying to identify as a principle is actually rather broad and perhaps contains more logically distinct positions than one. We shall focus here on a much more restrictive and precise aspect of this principle. Specifically we refer to the use of symmetry principles that tend to restrict theories and introduce economy of phenomenological parameters in it. We shall refer to it broadly as Gauge Symmetry. It started with Einstein trying to formulate relativistically consistent laws of Gravitation, and later also helped to shape the laws of strong and weak interactions. The gauge symmetry underlying General Relativity on the one hand and Gauge Field Theories of strong and weak interactions on the other hand have several technical differences. But as has been emphasized by Weinberg[1], they have an essential similarity to permit being viewed as manifestations of the same basic principle. This is the topic of the next section.

3 Gauge Symmetry

The most common example of a mathematically implementable symmetry principle in Physics is the idea of rotations. We do not expect outcomes of experiments to depend on the directional orientation of the apparatus. Considered as a set of operations, the rotations form a mathematical structure called Group. One representation of this group is in terms of matrices, acting on vectors such as the position vector or the electric field vector.

The Special Relativity principle is a similar principle, in fact a generalized rotation involving time, such that the ordinary rotations form a subgroup of this bigger group. But this notion of symmetry was completely revolutionized by Einstein in his subsequent work, viz., General Relativity. This theory is actually a theory of Gravity, generalized from its Newtonian version and made consistent with Special Relativistic rotations. The prescription of General Relativity can be summarized in two parts : (1) The space-time should be treated as curved, like the surface of a ball. Thus gravitational influences are described by a set of space-time dependent functions that specify the distance and angle measurement prescriptions. In a curved space these replace the Pythagorian distance

1This section is an abridged version of the author’s contribution to the Seminar on Philosophy of Science, IIT Bombay, 1993.
law from point to point. (2) In a curved space one does not choose a rigid, Cartesian system of coordinates, but any convenient curvilinear coordinates. So the laws of physics must be such as to remain invariant under arbitrary choices of curvilinear coordinates. This translates to invariance of the laws under rotations that can be different at different points. This two part law was called the Principle of General Covariance.

This theory was a great speculative triumph. At the time of its invention, there was no evidence for it. No one had suspected that the perihelion precession of Mercury had contributions from Relativistic effects, requiring fundamental reformulation of Newtonian Gravity. No other experimental evidence existed that demanded such a generalization.

In the 1930’s the notion of rotational symmetry was extended by Heisenberg in a very profound way. It is known that the strong nuclear force does not depend separately on the physical state of the proton or that of the neutron. In Quantum Mechanics, the physical state of a system is described by a complex wavefunction denoted ψ. Heisenberg’s proposal was that instead of using ψ_p (for proton) and ψ_n (for neutrons), if we used

$$\tilde{\psi}_p = c_1 \psi_p + c_2 \psi_n$$

and

$$\tilde{\psi}_n = c_3 \psi_n + c_4 \psi_p$$

(1)

the physics would remain unchanged. Here the c_1, c_2, c_3, c_4 are complex numbers satisfying some constraints. The relations above can be thought of as a complex rotation, an abstract generalization from the case of real vectors. This rotation, called an isospin rotation is a symmetry (although approximate) of the strong nuclear force.

Several decades later, Yang and Mills proposed Gauge Field Theories. These were a generalization of isospin symmetry in much the same way as General Relativity generalized Special Relativity. Both prescribed the form of the interaction, although the requirement was stated as a geometrical law.

To summarize, precise mathematical principles were used as a strategy to guess at a theory with insufficient experimental evidence. The theory could well have proved wrong. This too has happened many times, as for instance with the original Kaluza-Klein theory. But the success of the cases in which this approach has worked is spectacular.

3.1 Broken symmetry

The curious fact about symmetries is that sometimes they may not be manifest in the data. This can happen due to two different reasons. One reason is that the symmetry may be only approximate. That is, only by ignoring some of the data or by modifying
their values does one see the symmetry principle at work. For this to be true, the contaminating effects should be small in a quantitative sense. But this case of non-manifest symmetry is not as interesting as the next one.

It has been found that in some systems, the governing equations possess a certain symmetry. However, the complexity of the interactions drives the system to solutions that do not reflect the symmetry. This case is called Spontaneous Breakdown of symmetry. In case of weak nuclear interactions, one seeks a theory that obeys gauge invariance, somewhat similar to the two-part principle of General Covariance. However, gauge invariance implies masslessness of the mediating particles, whereas the mediators of the weak force are known to be massive. The resolution of this paradox lay in realizing that there could be additional particles, known as Higgs whose complex dynamics leads to the ground state of the system not explicitly displaying the gauge symmetry. Under these circumstances, the interaction of the gauge particles with the Higgs particles makes the former massive.

In the second type of broken symmetry, the symmetry is all the time present, being made invisible by the particular state in which the system is available to us. In this case, guessing the governing equations is difficult but symmetry can be used as a guiding principle.

4 Supersymmetry

This brief history prepares us for a description of the new proposal of Supersymmetry. The origins of the search for this rather bizarre symmetry to be described lie in two unrelated motivations. One was a direct one, asking whether photon and neutrino, the only two particles known to be massless in 1960's had anything more in common. Specifically whether they were two manifestations of the same particle "species" masquerading as two. Secondly, it was also a search for the most general type of symmetries allowed by interactions that respect the basic rotational and Special Relativistic symmetries of space time. There was also an enigma in the distinction between the gauge symmetry of Gravity which involved space-time itself and the gauge symmetry of Nuclear forces, which seemed to operate in an abstract space of wave functions. The General Covariance of Gravity came to be called an external gauge symmetry and the Gauge symmetry of the nuclear forces internal symmetries. The possible kinds of internal symmetries were soon classified in terms of the mathematical theory of Lie Groups. It is a rich variety of possible symmetries. The question was, what were the most general kinds of external symmetry and whether there could be any mixing between external and internal.

The above question was supposedly answered with some degree of finality by a so called "No-go" theorem which appeared in the late sixties. It said that all the
possible symmetries one could possibly have, consistent with Quantum Mechanics were the ones already known, viz., a variety of internal symmetries like isospin on the one hand and the already known external symmetries, those of the Special Theory of Relativity (subsuming the old known symmetry of rotations) on the other hand. There was nothing new to be added to the category of external.

There was a loop hole however. In order to understand it, let us look at a mathematical statement of internal consistency of several symmetry operations is formulated. It can be checked by some amount of careful experimentation that a small amount of x-axis rotation followed by a small amount of y-axis rotation, is not the same as the y-rotation first followed by same x-rotation. This can actually be checked by holding up a pen. The results of the two operations differ by a small z-axis rotation! This was first put in the form of equations by Hamilton in mid-nineteenth century. In modern notation one says

$$L_x L_y - L_y L_x = L_z \quad (2)$$

Here L_x stands for the operation of small x-axis rotation. The product $L_x L_y$ has to be read right to left for its factors. The left hand side is called the commutator of the two operators.

The case when the commutator of two operators vanishes, is when the two operations are really independent of each other. For example small linear motion in x direction is completely independent of small linear motion in y direction. So they can be taken up in any order, giving the same result. This fact is expressed by the equation

$$P_x P_y - P_y P_x = 0 \quad (3)$$

In the Quantum Theory, formulated in terms of space-time dependent fields, there is a different kind of “commutator”. It was known since the 1930’s that to obtain a consistent Quantum theory of particles of spin $1/2$, one must require an anti-commutation relation. The independence of quantum field operator at far away points x and y has to be expressed by

$$\psi(x)\psi(y) + \psi(y)\psi(x) = 0 \quad \text{ (Fermionic)} \quad (4)$$

What is unusual about this relation is the plus sign where minus should be; and this indeed expresses independence. The correctness of this rule is amply borne out by the Pauli Exclusion Principle whereby two spin $1/2$ particles can never occupy the same state.

The other kind of particles, those with integer spin and called Bosons, obey a more familiar algebra, where independence is expressed by

$$\phi(x)\phi(y) - \phi(y)\phi(x) = 0 \quad \text{ (Bosonic)} \quad (5)$$
These algebraic operations were however considered special to the Quantum Fields representing real particles, not to be confused with operators representing symmetry operations. The breakthrough against the No-go theorem lay in realizing that perhaps one could allow “fermionic” algebra even between symmetry operations. Thus consider a linear displacement along two directions which are independent, and require
\[\theta_1 \theta_2 + \theta_2 \theta_1 = 0 \] (6)
Here 1 and 2 are some “directions” whose meaning is yet to be clarified, \(\theta \) the corresponding operators. In what way this can be visualized and in what sense this is an independence are questions not easy answer. For the moment we take symbols and their algebra as guides and check for internal consistency of various operations. Miraculously, it turned out that one could indeed expand the algebra of the Special Relativistic generators in this way, provided all the new generators were fermionic rather than bosonic. This was a possibility not considered by the authors of the No-go theorem.

4.1 Superspace

Here we elaborate a little on the technical idea of Supersymmetry. Supersymmetry was first formulated as a set of operations on Quantum Fields. An interpretation closer to that for usual Special Relativistic symmetries was later formulated, pioneered among others by Abdus Salam. To every four of the four dimensions \((t, x, y, z)\) there corresponds a superspace dimension, and these are labeled as \((\theta^1, \theta^1, \theta^2, \theta^2)\). They are supposed to obey anticommuting algebra. The mathematics of classical (non-Quantum) variables of this kind was known to the mathematicians as Grassmann algebra. Just as rotations led to a mixing of the axes, a supersymmetric translation leads to mixing of ordinary and superspace axes. To give an example, if \(\theta^1 \) is shifted to \(\theta^1 + \alpha \) then the \(x \) coordinate shifts as
\[x \rightarrow x - i \alpha \theta^2 \] (7)
This does not mean anything to us according to usual intuition. But this is how things proceed in gleaning secrets of the microworld. From abstract operations on fields, we proceeded to further compatibility with usual space time picture; the metaphysical principle (2) of section 3. Perhaps future knowledge of new phenomena will help us visualize these operations better.

4.2 Predictions and extensions

There are two main results that follow from assuming that there is supersymmetry in nature. The first is that for every fermion of given mass there is a boson of identical
mass and vice versa. This means that corresponding to the observed photon, there must exist a spin half particle which has been named photino. Similarly corresponding to the electron, there must exist a spin zero particle which has been named selectron (abbreviating ‘scalar electron’). This nomenclature pattern is followed for all the hypothetical supersymmetric partners of known particles.

The problem is, we don’t have a single known pair of species which may be considered superpartners of each other. It is worth recalling that the original motivation for searching for supersymmetry was to identify the almost massless neutrino as the superpartner of the photon. This however cannot be true because other quantum numbers as required by the symmetry principle do not match.

The second and very powerful implication of supersymmetry is that it subsumes the usual gauge symmetry principle and predicts all the possible forms of interactions between the particles. This is a very desirable and attractive. This was the main benefit of pursuing symmetry principles. They should help us to guess the form of the interaction. Since we do not see any superpartners yet, the confirmation or otherwise of this prediction is in the future.

There are many other attractive features of supersymmetry from the theoretical point of view but are more technical. And the simplest predictions seem to be unviable. Does this mean supersymmetry is of no use? The experience of searching for gauge symmetry for the weak interactions tells us that we should keep the possibility open that this symmetry too is not realized in nature in its simple uncomplicated version, but perhaps exists in a broken form.

The problem of broken supersymmetry is technically more involved than breaking of the known gauge symmetries. In some sense this is because the principle is really very strong. It is difficult to understand how the symmetry breaks. Developing an understanding of that is itself a theoretical challenge.

Supersymmetry and its possible manifestations constitutes a subject of extensive scientific investigation at present. There are several hypothetical models with mechanisms for breaking supersymmetry and several giant accelerators being constructed to check these models. In addition, as true with all Elementary Particle Physics, these models ought also to have left their imprints in the early Universe. Efforts are also therefore on to validate or invalidate some of these models based on cosmological observations being carried out today.

5 Philosophical positions

The esthetic appeal of the symmetry paradigm lies in the elegance of the mathematical structure. It seems to generalize the ordinary notion of the freedom to choose the frame
of reference. (See sec. [3]). It also permits mixing or “rotating” of distinct particle species into each other, thus entailing economy in the number of particle types or species. On the utilitarian side, the unification achieved requires fewer coupling constants, since several are dictated to be identical and others have to be simple multiples of a basic value. This success however has not been unqualified. In the Standard Model of elementary particles for example, although the advertised benefits are present, and the coupling constants are fewer, there do remain a large number of unknown parameters. These arise primarily in the form of unknown masses of fermionic and scalar species.

Supersymmetry has merited so much attention due to its elegance. But it does require introducing a large number of new species or types of particles. Since many of these are fermionic and scalar, their masses again require a large number of unknown parameters. The whole picture is further complicated by the need to have the symmetry broken. The mechanisms that explain this breakdown have to rely on more unknown physics, thus invoking whole new unknown sectors of the theory. Some of the new particles are supposed to be unobservable by themselves and their influences on the observable world are only through the fact that supersymmetry appears broken. There is supposed be very little additional observable evidence about them even in principle.

How do we view the situation from outside Physics? I submit that there are two possibilities. One is that Supersymmetry is indeed a deep new principle. The other is that it is an expedient necessary to tide us over till further experiments provide more clues. The third uninteresting possibility of course remains, viz., it shares the fate of several other profound speculations about nature, beautiful but irrelevant.

5.1 A principle ...

There are several technical reasons advanced to support why it must indeed be a fundamental principle of nature. For example it is meant to rationalize some of the mystery surrounding the Electroweak symmetry breaking. We can not enter into this discussion. In the spirit of staying close to fundamental facts, we may yet advance a reason for the same position along the following lines.

There is no known classical analogue to fermions. For several decades in early Quantum Mechanics they were treated with awe and mystery. Their wavefunction can distinguish between 360° and 720° rotations. Pauli referred to this as “non-classical two-valuedness”. However, later developments have required and guided parallel treatments for bosons and fermions. In the path integral approach, fermions could be elegantly included by inventing rules for integration over fermionic variables. But more importantly, a set of simple consistent rules are suggested by the formalism itself. This is the first time that one treats classical fermionic variables with impunity and gets the required answers.
This begins to suggest that the bias towards bosons as more natural is perhaps purely classical. As Dirac\cite{2} emphasizes, the early Quantum Mechanics was developed only for those systems that have a classical analogue. It was not possible to “quantize” other systems. But such may nevertheless exist. Over the decades that have elapsed, the only other kind of system that seems to require quantization is the fermionic one. (Modulo phenomena we still have no reasonable explanation for). Thus the microworld dictates that we expand our classical notions to include the Grassmann numbers as well. The notion of Superspace brings further parity between bosonic and fermionic dimensions. In fact if the fermionic dimensions did not exist, bosons would still get away with a special status. What more elegant framework could we have for understanding these new dimensions than to require that they are partners in a very rigorous sense to the bosonic dimensions of common experience.

5.2 ... or an expedient?

But if the symmetry is so fundamental, why do we not see it in its pure form? Should the fact that the ideal principle has already been disproved make us abandon the search for supersymmetry? This brings us to our second, an inelegant but more pragmatic view. A usual argument for assuming supersymmetry is as follows. The newer, higher energy accelerators have to be built with special purposes in mind, i.e. to search specific energy ranges, and to detect particles with expected decay products. We need guiding principles to channel our searches and supersymmetry seems to be only elegant guiding principle aside from gauge symmetry. But we shall go a little bit beyond this position.

Suppose that supersymmetry is indeed discovered. It may manifest itself in an ugly and highly disproportionate form. Would it be still worth discovering? The answer is an affirmative. The caveat is that it may not be due to the pristine principles we advanced. But supersymmetry may yet act as an “organizing principle”. By this we mean a rule such as the valence of elements. This concept allows us to understand the possible compounds the element can form. Empirical study then also reveals for the same element several possible valence states. But once discovered in one context, that valence state can be sought for in other contexts as well. Valence is not any kind of fundamental principle. But it does put strong restrictions on the kind of molecules that can exist.

An ugly manifestation of supersymmetry would be worth having for the same reason. It may still place a strong restriction on the kind of fundamental particles that can exist and the qualitative nature of their interactions. Valence of course is vindicated by centuries of further developments which make it a direct descendant of indeed a deep and beautiful principle. Perhaps the same is true of supersymmetry.
6 Conclusion

We argued that the need to understand the microworld has demanded greater ingenuity from the theoretical physicist in the twentieth century. The response to this challenge has been in the form of educated metaphysical principles evolved by the pioneers of the subject. A prime one of these in retrospect, has been the principle of symmetry with specific mathematical connotations. Its great bounty has been the ability to guess at a whole theory starting from very scarce evidence. In particular, gauge symmetry has shaped our understanding of the fundamental forces of nature, beginning with General Theory of Relativity. Supersymmetry is another such principle, proposed in advance of any empirical data but with many compulsive reasons for its correctness. However, even if discovered, the symmetry would have to be found in a badly broken form. This seems to detract from its original appeal. We have presented a very general reason why we may expect the symmetry to be fundamental. Yet there is an alternative possibility that it may be an organizing principle similar to valence. In either case it is worth stepping up the efforts to verify its presence or otherwise in nature.

References

[1] S. Weinberg, *Gravitation and Cosmology* John Wiley Pub. (1973)

[2] P. A. M. Dirac, *Principles of Quantum Mechanics*, 4th ed., Oxford University Press (1957)