The Entropy Region is not Closed Under Duality

Tarik Kaced
email: tarik.kaced@ens-lyon.org

Abstract—We import a duality notion coming from polymatroids to define duality for information inequalities. We show that the entropy region for \(n \geq 5 \) is not closed under duality. Our result answers an open question of Matúš [13] (1992).

I. INTRODUCTION

Let \((X_i)_{i \in N} \) be \(n \) discrete random variables. To each non-empty subset of variables \(X_j = \{X_i : i \in J \subseteq N\} \), we can associate the Shannon entropy \(H(X_j) \). The entropic vector \((H(X_j))_{\emptyset \neq J \subseteq N} \) is a point in the \(2^n - 1 \)-dimensional Euclidean space \(\mathbb{R}^{2^n-1} \). We denote by \(\mathcal{H}^\text{ent}_N \) the set of all entropic points. \(\mathcal{H}^\text{ent}_N \) is a solid object, but not closed in general [16]. The closure of \(\mathcal{H}^\text{ent}_N \) is what we call the entropy region, it is the set of \(2^n - 1 \)-dimensional real vectors that are limits of entropic vectors. In fact, \(\text{cl}(\mathcal{H}^\text{ent}_N) \) is a convex cone whose boundary can be delimited by hyperplanes. Such a hyperplane defines a linear inequality of entropy terms: an information inequality. Information inequalities live in the dual cone \((\mathcal{H}^\text{ent}_N)^* = \{c \in \mathbb{R}^{2^n-1} : \langle c, h \rangle \geq 0, h \in \mathcal{H}^\text{ent}_N\} \). A point \(c = (c_J)_{\emptyset \neq J \subseteq N} \) in the dual cone \((\mathcal{H}^\text{ent}_N)^* \) commonly corresponds to the coefficients of a linear information inequality, often rewritten as

\[
\sum_j c_j H(X_j) \geq 0.
\]

Characterizing the entropy region using information inequalities is an easy task, a full description is already lacking when \(n \geq 4 \) for it is not polyhedral [11].

Fujishige noticed that entropic vectors are in fact polymatroids [5] in the following sense. A polymatroid is a real-valued function \(f \) defined on subsets of the ground set \(N \) that is non-negative, non-decreasing, and submodular:

\[
\forall A, B \subseteq N, f(A) + f(B) \geq f(A \cup B) + f(A \cap B).
\]

Indeed, submodularity is related to Shannon’s basic inequality:

\[
H(A, C) + H(B, C) \geq H(A, B, C) + H(C),
\]

It states that the conditional mutual information \(I(A; B | C) \) is non-negative. The set of positive linear combinations of instances of the basic inequality are called the Shannon-type inequalities.

\[\text{1This duality notion is not the polymatroid duality notion we are looking for.}\]

The duality notion we allude to in the title of this paper comes from polymatroid theory. Common operations on the set of polymatroids include direct sums, linear combinations, minors: deletion and contraction, convolutions, and duals. Apart from the last one, all other operations have entropic counterparts. We thus concentrate on the under-examined notion of polymatroid duality. Let \(f \) be a polymatroid on \(N \), define the function

\[
f^\perp(J) = f(N \setminus J) - f(N) + \sum_{j \in J} f(j).
\]

Then \(f^\perp \) is again a polymatroid on \(N \) and is called the dual polymatroid. This operation immediately begs for a similar question for almost entropic vectors: the elements of \(\text{cl}(\mathcal{H}^\text{ent}_N) \).

Question 1. Is the dual of an almost entropic polymatroid still almost entropic?

This question is related to open problems about polymatroid duality that can be found in [13]. To attack this question, we propose to shift the point-of-view to information inequalities. The key idea is to import the notion of polymatroid duality into information inequalities and reformulate Question 1 in this setting. Our main theorem provides a negative answer to Question 1 as a corollary.

Theorem 1 (Main Theorem). The entropy region is not closed under duality for \(n \geq 5 \).

In the rest of this paper, we provide some properties of our duality notion and its connection with balanced inequalities. We study its meaning for different kinds of information inequalities.

II. PRELIMINARIES AND PROPERTIES

For the sake of conciseness we make the following use of notations. We usually omit commas in entropic terms and by \(H(AB) \) we mean \(H(A, B) \). An instance of an inequality \(I \) is simply a version of \(I \) for some variables assignment. A conditional version of an inequality \(I \) is a version of \(I \) wherein each entropy term \(H(X_j) \) has been replaced by \(H(X_j | Z) \), where \(Z \) is a fresh random variable. If \(I \) is valid, then so is its conditional version. We denote the conditional Ingleton inequality quantity
We say that (2) is the balanced version of (1).

The famous Ingleton inequality [7] thus rewrites as

\[\text{Ingl}(A:B,C:D|E) = I(A:B|CE) + I(A:B|DE) + I(C:D|E) - I(A:B|E). \]

The famous Ingleton inequality [7] thus rewrites as \(\text{Ingl}(A:B,C:D|\emptyset) \geq 0 \).

A. Duality and balancing

Definition 1 (Balanced Inequalities). An n-variable information inequality \(c \in (\mathbb{H}_N^\text{ent})^* \) is balanced if the sum of the coefficients involving \(X_i \) is zero, for each \(i \in N \)

\[\forall i \in N, \sum_{j \subseteq N} c_j = 0. \]

Given a valid linear information inequality, its balanced counterpart is also valid [1].

Proposition 1 (Balanced Inequalities, Chan [11]). Let \((c_i)_{i \subseteq N} \) be a list of coefficients, the following are equivalent:

- The inequality
 \[\sum_{j \subseteq N} c_j H(X_j) \geq 0 \quad (1) \]
 is a valid information inequality.
- The inequality
 \[\sum_{j \subseteq N} c_j H(X_j) - \sum_{j \subseteq N} r_j H(X_j|X_{N\setminus j}) \geq 0, \quad (2) \]
 where \(r_j \) is the sum of all \(c_j \) involving \(X_j \), is a valid balanced information inequality.

We say that (2) is the balanced version of (1).

We introduce a dual operator for information quantities.

Definition 2 (Dual operator). Let \(n \) be a number of variables, the dual operator \(c^\perp \) is defined as an operator that maps any entropic quantity to a dual quantity by replacing entropies as follows:

\[H^\perp(X_j) \overset{\text{def}}{=} -H(X_j|X_{N\setminus j}) + \sum_{j \subseteq N} H(X_j). \]

We are now able to define the formal dual of an information inequality by defining its dual coefficients.

Definition 3 (Dual coefficients). Let \(c = (c_j)_{j \neq \emptyset, N} \) be the coefficients of an inequality. We define the formal dual inequality \(c^\perp \) as the coefficients of the dual of \(c \):

\[\left(\sum_{j} c_j H(X_j) \right)^\perp = \sum_{j} c_j H^\perp(X_j) \overset{\text{def}}{=} \sum_{j} c_j^\perp H(X_j) \]

Definition 4 (Self-dual inequality). We say that an inequality \(c \) is self-dual if \(c^\perp \) is an instance of \(c \) or a conditional version of \(c \).

We are now able to prove some properties of this duality notion. Let us show it behaves as a dual, modulo balancing.

Proposition 2. Let \(c \in (\mathbb{H}_N^\text{ent})^* \) be an information inequality, then:

1) \(c^\perp \) is balanced,
2) if \(c \) is balanced, then \(c^\perp \perp = c \),
3) if \(c \) is not balanced, then \(c^\perp \perp \) is the balanced version of \(c \).

Proof: Let \(c \in (\mathbb{H}_N^\text{ent})^* \) be an inequality and \(c^\perp \) its formal dual. Let \(i \in N \) be a variable index and \(J \subseteq N \).

1. We compute the contribution of each term \(c_j H^\perp(X_j) \) to the sum \(r_i \) of coefficients involving \(X_j \). We have
 \[c_j H^\perp(X_j) = c_j[H(X_N\setminus J) - H(X_N) + \sum_{i \in J} H(X_i)], \]
 \[\text{if } i \in J, \text{ then the contribution of } c_j H^\perp(X_j) \text{ is} \]
 \[c_j[0 \perp - 1 \perp + 1] = 0, \]
 \[\text{if } i \notin J, \text{ then the contribution of } c_j H^\perp(X_j) \text{ is} \]
 \[c_j[1 \perp - 1 \perp + 0] = 0. \]

Over all, for any \(i, r_i = 0 \), which implies \(c \) is balanced.

2. We compute the contributions of each term \(c_j H(X_j) \)

\[[c_j H(X_j)]^\perp \perp = c_j[H(X_N\setminus J) - H(X_N) + \sum_{i \in J} H(X_i)] \]

\[H^\perp(X_N\setminus J) = H(X_j) - H(X_N) + \sum_{i \in J} H(X_i) \]

\[H^\perp(X_N) = -H(X_N) + \sum_{i \in N} H(X_i) \]

\[H^\perp(X_i) = -H(X_i|X_N\setminus \{i\}) + H(X_i) \]

By collecting every term we get after cancelling:

\[\sum_{j \subseteq N} c_j H(X_j) - \sum_{i \subseteq N} r_i H(X_i|X_{N\setminus i}) \]

where \(r_i \) is the sum of all \(c_j \) involving \(X_j \). That is we get the balanced version of the original inequality \(c \).

3. The first two properties imply the third one. \(\square \)

Remark 1. The duality notion from [10] is an involution on the set of polymatroids and induces an involution on all information inequalities which coincides with ours on balanced information inequalities. Although it would get rid of the need of balanced inequalities, their notion is made slightly more complex by additional terms to artificially ensure that the "private information" of a polymatroid is not lost.

\[^2\text{Properties "modulo balancing" were first spotted in [8].} \]
B. Polymatroid and vector spaces

The polymatroid region H_N is the closure of the set of all polymatroids on the ground set N of size n. It is the polyhedral cone delimited by Shannon-type inequalities. It is an outer bound of the entropy region. The following well-known proposition implies that the dual of a polymatroid is again a polymatroid. Our proof highlights how duality works on basic inequalities.

Proposition 3. The polymatroid region is closed under duality for any $n \geq 0$

Proof: It suffices to show that the dual of Shannon’s basic inequality is valid.

$$[I(A:B|C)]^\perp = H^\perp(AC) + H^\perp(BC) - H^\perp(ABC) - H^\perp(C)$$

$$= -H(AC|BD) + H(A) + H(C) - H(BC|AD) + H(B) + H(C) +$$

$$+ H(ABC|D) - H(A) - H(B) - H(C) +$$

$$+ H(C|ABD) - H(C)$$

$$H(BD) + H(AD) - H(C) - H(ABD)$$

$$[I(A:B|C)]^\perp = I(A:B|D) \geq 0$$

We have just proved that Shannon’s basic inequality, $I(A:B|C) \geq 0$, is self-dual, which implies the result. ■

An interesting subset of entropic vectors is the one arising from vector subspaces. Let V be a vector space over F_q and $V_1, V_2, \ldots, V_n \subseteq V$ be n vector subspaces. Denote by V_j the sum vector subspace $\{\sum_i V_{i,j} \}$, then the point $(\log q \cdot \dim(V_j))$ is an entropic vector [1]. The closure of the set of all such points is called the Ingleton region H_N^Ing.

Proposition 4. The Ingleton region is closed under duality for $n \geq 0$

This result is a corollary of the construction of a representation of the dual polymatroid. A proof of the dual representation can be found in [15], it is based on a matroidal version from Oxley’s Matroid Theory book for matroids [14]. Such a construction based on vector space orthogonality has been used in several constructions related to information theory (see [3], [4]). In our case, Proposition 4 follows from the fact that the dual of an entropic point arising from vector subspaces is also an entropic point coming from vector subspaces and Proposition 2.

Duality induces symmetries that were somehow missed. For instance, notice that Ingleton inequality is self-dual:

Lemma 1. On variables A, B, C, D, E, F, we have:

$$\text{Ing}^\perp(A:B, C:D|E) = \text{Ing}^\perp(C:D, A:B|F).$$

Proof: The theorem statement is the most general but for simplicity we prove the unconditional version on 4 variables: $\text{Ing}^\perp(A:B, C:D) = \text{Ing}^\perp(C:D, A:B)$. The more general results follows from the same type of computations.

$$[I(A:B|C) + I(A:B|D) + I(C:D) - I(A:B)]^\perp$$

$$= I(A:B|D) + I(A:B|C) + I(C:D|AB) - I(A:B|CD)$$

$$= I(C:D|A) + I(C:D|B) + I(A:B) - I(C:D)$$

In the first equation, the dual operator applies linearly, therefore Proposition 3 can be applied. The last equation is gotten by rearranging the entropy terms. ■

The inequalities on the ranks of five vector subspaces have been studied by Dougherty et al [2]. They found 24 new rank inequalities on five variables. If we account for duality, the list of 24 inequalities reduces to 13, as some inequalities are dual of one another or self-dual.

III. MAIN RESULT

Lemma 2 (MMRV inequality [9]). The following is a non-Shannon-type information inequality.

$$I(A:B) \leq I(A:B|C) + I(A:B|D) + I(C:D) +$$

$$+ I(A:B|E) + I(A:E|B) + I(B:E|A) \quad (4)$$

We are now ready to prove the main theorem.

Proof of Theorem We prove that the formal dual of the MMRV inequality on five variables is not a valid information inequality. We provide a counter-example by exhibiting a binary joint distribution for variables A, B, C, D, E.

Let us first compute the formal dual of inequality (1). We first make appear the Ingleton quantity.

$$[\text{Ing}(A:B, C:D) + I(A:B|E) + I(A:E|B) + I(B:E|A)]^\perp$$

The dual operator acts linearly, so we take the dual of each term and obtain the following quantity:

$$\text{Ing}(C:D, A:B|E) + I(A:B|CD) + I(C:D|E)$$

which rewrites after expanding the Ingleton term as:

$$I(C:D|AE) + I(C:D|BE) + I(A:B|E) - I(C:D|E) +$$

$$+ I(A:B|CD) + I(A:E|CD) + I(B:E|CD).$$

We show that the previous quantity can be negative and thus cannot induce a valid information inequality. Consider the distribution on A, B, C, D, E induced by the following tuples with positive probability masses as shown.

A	B	C	D	E	Prob
0	0	0	0	0	ϵ
0	0	0	0	1	$1/4 - \epsilon$
0	1	0	0	1	$1/4 - \epsilon$
0	1	1	0	0	ϵ
1	0	0	0	1	$1/4 - \epsilon$
1	0	1	0	0	ϵ
1	1	0	0	1	$1/4 - \epsilon$
Thus we can construct an entropic matroid whose dual is not almost entropic: it fails the MMR V inequality. By [12, Theorem 5], there exist a sequence of entropic matroids that can asymptotically factor into a multiple of an entropic matroid whose dual is not almost representable. The smallest entropic matroid whose dual is not almost entropic is not necessarily almost representable. The previous proof provides a construction for an entropic matroid whose dual is not almost entropic, however no minimality claim is made. The smallest entropic matroid whose dual is not almost entropic is not known.

IV. Discussion

This new geometrical property of the entropic region depicts a bigger geometric picture. The entropic region is a cone that is not stable by duality and that is stuck between two cones: the inner bound H_N^infl and the outer bound H_N that are both stable by duality. The case of duality of the entropy region for $n = 4$ is still open.

In future work, we investigate the case of information inequalities dualities in other settings, especially in quantum information inequalities [10]. This notion of duality seems very general, in fact it applies to any concept expressible via entropy. It can reveal dualities between information theoretic problem, for instance the secret-sharing problem is self-dual in the following sense. Any secret-sharing instance expressed with entropy maps to another secret-sharing instance under the dual operator. In fact the dual instance is the secret-sharing problem for the dual access structure. In general, we expect a class of problems to be the dual of a different class of problems.