THE SCHNAKENBERG MODEL WITH PRECURSORS

WEIWEI AO AND CHAO LIU
School of Mathematics and Statistics, Wuhan University
Wuhan 430072, China

(Communicated by Manuel del Pino)

Abstract. In this paper, we mainly consider the following Schnakenberg model with a precursor \(\mu(x) \) on the interval \((-1,1)\):

\[
\begin{align*}
\frac{\partial u}{\partial t} &= D_1 u''(x) - \mu(x) u + v u^2, \\
\frac{\partial v}{\partial t} &= D_2 v''(x) + B - v u^2,
\end{align*}
\]

where \(D_1 > 0, \ D_2 > 0, \ B > 0 \).

We establish the existence and stability of \(N \)-peaked steady-states in terms of the precursor \(\mu(x) \) and the diffusion coefficients \(D_1 \) and \(D_2 \). It is shown that \(\mu(x) \) plays an essential role for both existence and stability of the above pattern. Similar result has been obtained for the Gierer-Meinhardt system by Wei and Winter [21].

1. Introduction. Since the work of Turing [11] in 1952, a lot of models have been established and studied to explore the so-called Turing diffusion-driven instability.

One of the most interesting models in biological pattern formation is the Schnakenberg model [10] on a one-dimension interval, which can be stated as follows:

\[
\begin{align*}
\frac{\partial u}{\partial t} &= D_1 u''(x) - u + v u^2, \\
\frac{\partial v}{\partial t} &= D_2 v''(x) + B - v u^2,
\end{align*}
\]

where \(D_1 > 0, \ D_2 > 0, \ B > 0 \) are positive constants. Substituting \(u = \hat{u}/(2B), \ v = 2B\hat{v} \), and dropping hats we obtain the following form of the system

\[
\begin{align*}
\frac{\partial u}{\partial t} &= D_1 u''(x) - u + v u^2, \\
\frac{\partial v}{\partial t} &= D_2 v''(x) + B - v u^2,
\end{align*}
\]

where \(b^{-1} = 4B^2 \). To find a scaling appropriate for spike solutions we assume that \(u \) diffuses more slowly than \(v \), so that

\[
D_1 = \varepsilon^2, \ D_1 = D,
\]

2010 Mathematics Subject Classification. Primary: 35J47; Secondary: 35J60.

Key words and phrases. Schnakenberg model, precursors, \(N \)-peaked solutions, existence and stability.

The research of the first author is supported by NSFC (No. 11801421 and No. 11631011).
where \(\varepsilon^2 << D << 1 \). We then introduce the new variables

\[
D = \frac{\tilde{D}}{\varepsilon}, \ v = \varepsilon \tilde{v}, \ u = \frac{\tilde{u}}{\varepsilon}.
\]

Substituting (1.3) into (1.1), and dropping the variables, we obtain the following singularly perturbed reaction-diffusion system of interest:

\[
\begin{align*}
\varepsilon_t + \varepsilon^2 u_{xx} - u + \varepsilon^2 u^2 v & = 0 \quad x \in (-1, 1), \ t > 0, \\
D v_{xx} + \frac{1}{2} - \frac{b}{\varepsilon} v^2 u & = 0 \quad x \in (-1, 1), \ t > 0, \\
\frac{\partial u}{\partial x}(\pm 1, t) = v_x(\pm 1, t) & = 0.
\end{align*}
\] (1.4)

The stationary solution to (1.4) satisfies

\[
\begin{align*}
\varepsilon^2 u_{xx} - u + \varepsilon^2 u^2 v & = 0 \quad x \in (-1, 1), \\
D v_{xx} + \frac{1}{2} - \frac{b}{\varepsilon} v^2 u & = 0 \quad x \in (-1, 1), \\
\frac{\partial u}{\partial x}(\pm 1) = v_x(\pm 1) & = 0.
\end{align*}
\] (1.5)

We note that the Schnakenberg model has been widely studied by analytical and numerical methods. In the one-dimension case. For problem (1.2), the existence and stability of symmetric \(N \)-peaked solution were established by Wei and Winter [7] using asymptotic analysis. They mainly consider the stability of symmetric \(N \)-peaked solutions to problem (1.2). In this case, the parameter \(D \) effect the stability. For \(D \) small, the \(N \)-spike solution is stable, while for \(D \) large, the \(N \)-spike solution is unstable for \(N \geq 2 \). For problem (1.5), using asymptotic expansions, Ward and Wei studied the existence and stability of asymmetric equilibrium spike patterns for the Schnakenberg model [13]. In this article, as \(\varepsilon \to 0 \), they constructed an asymmetric \(k \)-spike equilibrium solution to problem (1.5) in the form of a sequence of spikes of different heights. Moreover, they considered the stability of the asymmetric \(k \)-spike equilibrium solution.

In two dimension case. We refer to [2] and references therein-in which the Schnakenberg model is posed in a two-dimensional square.

In the present paper we will consider the following Schnakenberg model with a precursor \(\mu(x) \):

\[
\begin{align*}
\varepsilon^2 u'' - \mu(x) u + \varepsilon^2 u^2 v & = 0 \quad \text{in } (-1, 1), \\
D v'' + \frac{1}{2} - \frac{b}{\varepsilon} v^2 u & = 0 \quad \text{in } (-1, 1), \\
\frac{\partial u}{\partial x}(\pm 1) = v_x(\pm 1) & = 0,
\end{align*}
\] (1.6)

where \(0 < \varepsilon << 1 \), \(D > 0 \) is a parameter, \(b > 0 \) is fixed.

Our interest is to consider the existence and stability of \(N \)-peaked solutions to the Schnakenberg model (1.6). For the existence of \(N \)-peaked solutions, we must consider the effect of the precursor \(\mu(x) \). Since the precursor \(\mu(x) \) may be not symmetric in \((-1, 1)\), we can’t consider this problem in symmetric space. That is the solution of (1.6) may be not symmetric. Hence, we need to construct solution by a new method. In this paper, we will construct \(N \)-peaked solutions by using the method of Liapunov-Schmidt reduction which has been used for the one-dimension Schrödinger equation [3][8][9] and then extended to the higher-dimensional Cahn-Hilliard equation [15][16] and semilinear elliptic equations[1][5][6]. This method has also been applied to the Schnakenberg model[7][13][22]. For the stability of \(N \)-peaked solutions, we study it by using the asymptotic analysis, which has been used to study the Gierer-Meinhardt system [17][18][19][20]. In [12], the authors have used the Lyapunov-Schmidt reduction to consider the effect of precursor for the Gierer-Meinhardt system. In this paper, we will employ the same idea to deal with the Schnakenberg model.
It turns out that unlike the homogeneous case for which the N—spike solution is stable for D small, the precursor may effect the stability of the spike solutions.

Before we state our main results in Section 2, we introduce some notation. Throughout this paper, we always assume $\Omega = (−1, 1)$, $\Omega_ε = (−\frac{1}{2}, \frac{1}{2})$. With $L^2(\Omega)$ and $H^2(\Omega)$ denote the usual Sobolev spaces. The function ω we denote the solution of the following problem:

$$
\begin{align*}
\begin{cases}
\omega'' - \omega + \omega^2 = 0 & \text{in } R^1, \\
\omega > 0, & \omega(0) = \max_{y \in R} \omega(y), \\
\omega(y) \to 0 & \text{as } |y| \to \infty.
\end{cases}
\end{align*}
$$

(1.7)

An explicit representation is

$$
\omega(y) = \frac{3}{2} \cosh^{-2}(\frac{y}{2}).
$$

We list some properties of ω:

$$
\begin{align*}
\begin{cases}
\omega \text{ is a even function on } R^1; \\
\omega'(y) < 0, & \text{if } y > 0; \\
\int_\mathcal{R} \omega^3(y)dy = 7.2, \int_\mathcal{R} (\omega')^2(y)dy = 1.2, \int_\mathcal{R} \omega^2(y)dy = 6.
\end{cases}
\end{align*}
$$

(1.8)

We assume that the precursor $\mu(x)$ satisfies

$$
\mu(x) \in C^2(\Omega), \mu(x) > 0.
$$

(1.9)

Let $G_D(x, z)$ be Green’s function given by

$$
\begin{align*}
\begin{cases}
DG''_D(x, z) + \frac{1}{2} - \delta_z = 0 & \text{in } (-1, 1), \\
\int_{-1}^{1} G_D(x, z)dx = 0, \\
G_D(-1, z) = G_D(1, z) = 0.
\end{cases}
\end{align*}
$$

(1.10)

We easy calculate

$$
G_D(x, z) = \begin{cases}
\frac{1}{2D} \left[\frac{1}{3} - \frac{(x+1)^2}{4} - \frac{(1-z)^2}{4} \right], & -1 < x \leq z; \\
\frac{1}{2D} \left[\frac{1}{3} - \frac{(z+1)^2}{4} - \frac{(1-x)^2}{4} \right], & z \leq x < 1.
\end{cases}
$$

(1.11)

We decompose

$$
G_D(x, z) = \frac{1}{2D} |x - z| + H_D(x, z).
$$

(1.12)

where $H_D(x, z) = \frac{1}{2D} \left[-\frac{1}{3} - \frac{x^2}{2} - \frac{z^2}{2} \right]$ is the regular part of G_D, furthermore H_D is C^∞ of x and z. We denote the singular part of G_D by $K_D(|x - z|) = G_D - H_D$.

The paper is organized as follows. In Section 2, we will state the main existence and stability result for the Schnakenberg model. Section 3-Section 6 concerns the existence part. In Section 7-Section 8, we prove the stability result. Section 9 contains some technical computations and the analysis of the Green’s function is contained in the Appendix.

We use the notation $e.s.t.$ to denote an exponentially small term of order $O(e^{-\frac{d}{\varepsilon}})$ for some $d > 0$ in the corresponding norm. By C we denote a generic constant which may change from line to line.

2. Main results: Existence and stability of N-peak solutions. In this paper, we always consider the following situations:

$$
0 < \varepsilon << 1 \text{ and } D > 0.
$$

(2.1)

Let

$$
\eta_j^0 = -1 + \frac{2j - 1}{N}, \quad j = 1, \ldots, N, N \geq 2.
$$

(2.2)

be N points in $(-1, 1)$ and $\mu_j^0 = \mu(\eta_j^0), i = 1, \cdots, N$.

We define
\[\omega_a(y) = a \omega(a \frac{1}{2} y), \text{ for } a > 0, \] (2.3)
where \(\omega \) satisfies (1.7), is the unique solution of the following problem:
\[
\begin{cases}
\omega'' - a \omega_a + \omega_a^2 = 0 & \text{in } R^1, \\
\omega_a > 0, \omega_a(0) = \max_{y \in R} \omega_a(y), \\
\omega_a(y) \to 0 \text{ as } |y| \to \infty.
\end{cases}
\] (2.4)

By some simple calculation, we have the following relations
\[
\begin{align*}
\int_R \omega_a^2(y) dy &= a \int_R \omega^2(y) dy, \\
\int_R \omega_a^3(y) dy &= a \int_R \omega^3(y) dy, \\
\int_R (\omega^2_a)^2(y) dy &= a \int_R (\omega^2)^2(y) dy.
\end{align*}
\] (2.5)

We introduce several matrices for later use: For \(t = (t_1, \ldots, t_N) \in (-1,1)^N \), let
\[\mathcal{G}_D(t) = (G_D(t_i,t_j)). \] (2.6)

Recall that \(G_D(t_i,t_j) = K_D(|t_i - t_j|) + H_D(t_i,t_j) \).

Let us denote \(\frac{\partial}{\partial y} \) as \(\nabla_{t_i} \). When \(i \neq j \), we can define \(\nabla_{t_i} G_D(t_i,t_j) \) in the classical way. When \(i = j \), \(K_D(t_i,t_j) = K_D(0) = 0 \). We define
\[
\nabla_{t_i} G_D(t_i,t_i) := \left. \frac{\partial}{\partial x} \right|_{x=t_i} H(x,t_i).
\]

Similarly, we define
\[
\nabla_{t_i} \nabla_{t_j} G_D(t_i,t_j) = \begin{cases}
\left. \frac{\partial}{\partial x} \right|_{x=t_i} \left. \frac{\partial}{\partial y} \right|_{y=t_j} H_D(x,y), & \text{if } i = j, \\
\nabla_{t_i} \nabla_{t_j} G_D(t_i,t_j), & \text{if } i \neq j.
\end{cases}
\] (2.7)

Now the derivatives of \(G_D(t_i,t_j) \) are defined as follows:
\[
\nabla \mathcal{G}_D(t) = (\nabla_{t_i} G_D(t_i,t_j)), \ \nabla^2 \mathcal{G}_D(t) = (\nabla_{t_i} \nabla_{t_j} G_D(t_i,t_j)).
\] (2.8)

Next we state the first assumption:

\textbf{(H1)} There exists a solution \((\xi_1^0, \ldots, \xi_N^0)\) of the equation
\[
\begin{align*}
\xi_i - \frac{1}{N} \sum_{j=1}^N \xi_j = 6b \sum_{j=1}^N G_D(t_i^0,t_j^0) \left(\frac{\mu^0}{\xi_j^0} \right)^{\frac{3}{2}} - \frac{\lambda_i}{N}, & \text{ for } i = 1, \ldots, N, \\
6b \sum_{j=1}^N \left(\frac{\mu^0}{\xi_j^0} \right)^{\frac{3}{2}} = 1,
\end{align*}
\] (2.9)

where \(\lambda_1 = -\frac{1}{6DN} \). By Appendix (9.42), we know that \(\sum_{i=1}^N G_D(t_i^0,t_j^0) = -\frac{1}{6DN} = \lambda_1 \), for \(j = 1, \ldots, N \).

Next we introduce some matrices:
\[
\begin{align*}
\mathcal{G}_0 &= \mathcal{G}_D(t_i^0), \ \mu_i^{3/2} = ((\mu(t_i^0)^{3/2} \delta_{ij}), \ \mathcal{H}_0^{2} = ((\xi_j^0)^{-2} \delta_{ij}) \\
I &= (\delta_{ij}), \ E = ee^T, \ e = (1, \ldots, 1)^T, D = \frac{6b}{D^0} \mu_i^{3/2} \mathcal{H}_0^{2}.
\end{align*}
\] (2.10)
\(\mathcal{C} = \frac{N}{2} \begin{pmatrix} 1 & -1 & 0 & \cdots & 0 & 0 & 0 \\ -1 & 2 & \ddots & \ddots & \ddots & 0 & 0 \\ 0 & \ddots & \ddots & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\ 0 & \ddots & \ddots & \ddots & \ddots & \ddots & 0 \\ 0 & 0 & \ddots & \ddots & \ddots & 2 & -1 \\ 0 & 0 & 0 & \cdots & 0 & -1 & 1 \end{pmatrix} \). \quad (2.11)

Our second assumption is the following:

\((H2) \) It holds that

\[
I - \frac{1}{N} E + 6b \xi_0 \mu_0 \frac{3}{2} \mathcal{H}_0^2
\]

and

\[
I - \frac{1}{N} E - 6b \xi_0 \mu_0 \frac{3}{2} \mathcal{H}_0^2
\]

is invertible.

Remark 2.1. In [7], Iron, Wei and Winter studied the Schnakenberg model with precursor \(\mu \equiv 1 \). In this special situation: \(\xi_0 = bN \int_R \omega^2 = 6bN \), \(i = 1, \ldots, N \), satisfies the assumption \((H1) \). It is essential that \(I + \frac{1}{6bN^2} \mathcal{G}_D \) and \(I - \frac{1}{6bN^2} \mathcal{G}_D \) are invertible, which makes the assumption \((H2) \) trivial.

According to \((H1), (H2) \) and the implicit function theorem, for \(t = (t_1, \ldots, t_N) \) near \(t^0 = (t_1^0, \ldots, t_N^0) \) and \(\mu_j = \mu(t_j) \), \(j = 1, \ldots, N \), there exists a (locally) unique solution \(\xi(t) = (\xi_1(t), \ldots, \xi_N(t)) \) of the following equation

\[
\xi_i - \frac{1}{N} \sum_{j=1}^N \xi_j = 6b \sum_{j=1}^N \mathcal{G}_D(t_i, t_j) \left(\frac{\mu_j}{\xi_j} \right)^{3/2} - 6b \sum_{i=1}^N \sum_{j=1}^N \mathcal{G}_D(t_i, t_j) \left(\frac{\mu_j^0}{\xi_j^0} \right)^{3/2},
\]

\(i = 1, \ldots, N. \)

Moreover, \(\xi(t) \) is \(C^1 \) in \(t \).

Define

\[
\mathcal{H}(t) = \left(\frac{1}{\xi_i(t)} \delta_{ij} \right), \quad \mu(t) = (\mu(t_i) \delta_{ij}), \quad \mu'(t) = (\mu_j' \delta_{ij}), \quad \mu_j' = \mu_j'(t_j).
\]

We introduce the following vector field:

\[
F(t) = (F_1(t), \ldots, F_N(t)),
\]

where

\[
F_i(t) = \frac{5}{4} \xi_i \mu_i^{-1} \mu_i'(t_i) - 6b \sum_{j=1}^N \nabla_i \mathcal{G}_D(t_i, t_j) \xi_j^{-1} \mu_j^2, \quad i = 1, \ldots, N.
\]

Set

\[
\mathcal{M}(t) = \left(\frac{\partial F_i(t)}{\partial t_j} \right).
\]

Our final assumption states as follows:

\((H3) \) Assume that at \(t^0 = (t_1^0, \ldots, t_N^0) \)

\[
F(t^0) = 0, \quad \det \mathcal{M}(t^0) \neq 0
\]

Remark 2.2. Since the matrix \(\mathcal{M} \) is of the form \(\mathcal{S} \mathcal{D} \), where \(\mathcal{S} \) is symmetric and \(\mathcal{D} \) is diagonal matrix, it follows that the eigenvalues of \(\mathcal{M} \) are all real.
Let us now calculate $\mathcal{M}(t^0)$: We first compute the derivatives of $\xi(t)$. According to (2.13), for $t \in B_{\varepsilon}(t^0) := \{ t \mid |t - t^0| < \varepsilon \}$, we obtain

For $i \neq j$,

$$
\nabla_t \xi_i - \frac{1}{N} \sum_{m=1}^{N} \nabla_t \xi_m = 6b \nabla_t G_D(t_i, t_j) \frac{(\mu_j)^{\frac{3}{2}}}{\xi_j} - 6b \sum_{m=1}^{N} G_D(t_i, t_m) \frac{(\mu_m)^{\frac{3}{2}}}{\xi_m^2} \nabla_t \xi_m \\
- 6b \frac{N}{N} \sum_{m=1}^{N} \nabla_t G_D(t_j, t_m) \frac{(\mu_m^0)^{\frac{3}{2}}}{\xi_m^0} + 9b G_D(t_i, t_j) \frac{(\mu_j)^{\frac{3}{2}}}{\xi_j} \mu'_j \\
= 6b \nabla_t G_D(t_i, t_j) \frac{(\mu_j)^{\frac{3}{2}}}{\xi_j} - 6b \sum_{m=1}^{N} G_D(t_i, t_m) \frac{(\mu_m)^{\frac{3}{2}}}{\xi_m} \nabla_t \xi_m \\
- 6b \sum_{m=1}^{N} \nabla_t G_D(t_j, t_m) \frac{(\mu_m)^{\frac{3}{2}}}{\xi_m} + 9b G_D(t_i, t_j) \frac{(\mu_j)^{\frac{3}{2}}}{\xi_j} \mu'_j + O(\varepsilon).
$$

For $i = j$,

$$
\nabla_t \xi_i - \frac{1}{N} \sum_{m=1}^{N} \nabla_t \xi_m = 6b \nabla_t G_D(t_i, t_i) \frac{(\mu_j)^{\frac{3}{2}}}{\xi_i} - 6b \sum_{m=1}^{N} G_D(t_i, t_m) \frac{(\mu_m)^{\frac{3}{2}}}{\xi_m} \nabla_t \xi_m \\
- 6b \frac{N}{N} \sum_{m=1}^{N} \nabla_t G_D(t_i, t_m) \frac{(\mu_m^0)^{\frac{3}{2}}}{\xi_m^0} + 9b G_D(t_i, t_i) \frac{(\mu_i)^{\frac{3}{2}}}{\xi_i} \mu'_i \\
+ 6b \frac{N}{N} \sum_{m=1}^{N} \nabla_t G_D(t_i, t_m) \frac{(\mu_m)^{\frac{3}{2}}}{\xi_m} \\
= 6b \nabla_t G_D(t_i, t_i) \frac{(\mu_i)^{\frac{3}{2}}}{\xi_i} - 6b \sum_{m=1}^{N} G_D(t_i, t_m) \frac{(\mu_m)^{\frac{3}{2}}}{\xi_m} \nabla_t \xi_m \\
- 6b \sum_{m=1}^{N} \nabla_t G_D(t_i, t_m) \frac{(\mu_m)^{\frac{3}{2}}}{\xi_m} + 9b G_D(t_i, t_i) \frac{(\mu_i)^{\frac{3}{2}}}{\xi_i} \mu'_i \\
+ 6b \sum_{m=1}^{N} \nabla_t G_D(t_i, t_m) \frac{(\mu_m)^{\frac{3}{2}}}{\xi_m} + O(\varepsilon).
$$

Hence, by the definition of (2.15),

$$
\nabla_t \xi_i - \frac{1}{N} \sum_{m=1}^{N} \nabla_t \xi_m = 6b \nabla_t G_D(t_i, t_i) \frac{(\mu_i)^{\frac{3}{2}}}{\xi_i} - 6b \sum_{m=1}^{N} G_D(t_i, t_m) \frac{(\mu_m)^{\frac{3}{2}}}{\xi_m} \nabla_t \xi_m \\
- \frac{1}{N} \frac{5}{4} \xi_i \mu^{-1}_i \mu'(t_i) + 9b G_D(t_i, t_i) \frac{(\mu_i)^{\frac{3}{2}}}{\xi_i} \mu'_i \\
+ \frac{5}{4} \delta_j \frac{N}{N} \xi_i \mu^{-1}_i \mu'(t_i) + O(\varepsilon + \sum_{j=1}^{N} |F_i(t)|).
$$

Note that

$$
(\nabla_t G_D(t_i, t_j)) = (\nabla G_D)^T.
$$
Therefore, by introducing matrix notation
\[\nabla \xi = (\nabla_{t_i} \xi_i), \quad P = (I - \frac{1}{N} E + 6b G_D H^2 \mu^{3/2})^{-1}, \]
\[\mathcal{H}^2(t) = \left(\frac{1}{\xi^2(t)} \delta_{ij} \right), \quad \mu^{3/2}(t) = ((\mu(t_i))^3/2 \delta_{ij}), \]
we have
\[\nabla \xi = P \left[6b (\nabla G_D)^T H \mu^{3/2} + 9b G_D H H^{1/2} \mu + (I - \frac{1}{N} E) \frac{5}{4} H^{-1} \mu^{-1} \mu' \right] + \mathcal{O}(\varepsilon + \sum_{j=1}^N |F_i(t)|). \]
\[\tag{2.18} \]
(2.19)

Note that by Appendix (9.38) and (9.39), we have
\[\nabla_{t_i} (\nabla H(t_i, x))|_{x=t_i} = 0, \quad \nabla_{t_i} (\nabla G_D(t_i, t_j)) = 0, \quad \text{if} \ i \neq j. \]

Let
\[Q = (\gamma \delta_{ij}), \quad \gamma = \frac{1}{2D} \sum_{j=1}^N \frac{\mu_m^{3/2}}{\xi_m}. \]
\[\tag{2.20} \]

Using (2.19), we can compute \(\mathcal{M}(t^0) \):
For \(i \neq j \),
\[\frac{\partial F_i(t)}{\partial t_j} = \frac{5 \mu_i'}{4 \mu_i} \nabla_{t_j} \xi_i + 6b \sum_{m=1}^N \nabla_{t_i} G_D(t_i, t_m) \mu_m^{3/2} \xi_m \nabla_{t_j} \xi_m - 9b \nabla_{t_i} G_D(t_i, t_j) \mu_j^{1/2} \xi_j. \]

For \(i = j \),
\[\frac{\partial F_i(t)}{\partial t_i} = \frac{5 \mu_i'}{4 \mu_i} \nabla_{t_i} \xi_i + \frac{5 \mu_i''}{4 \mu_i} \xi_i - \frac{5 (\mu_i')^2}{4 \mu_i^2} \nabla_{t_i} \xi_i \\
+ 6b \sum_{m=1}^N \nabla_{t_i} G_D(t_i, t_m) \mu_m^{3/2} \xi_m - 9b \nabla_{t_i} G_D(t_i, t_i) \mu_i^{1/2} \xi_i \\
- 6b \sum_{m=1}^N \nabla_{t_i} \nabla_{t_i} (G_D(t_i, t_m)) \mu_m^{3/2} \xi_m - 6b \frac{\partial}{\partial x} (\nabla_{t_i} H(t_i, x))|_{x=t_i} \frac{\mu_i^{3/2}}{\xi_i}. \]

Therefore, we can obtain
\[\mathcal{M}(t^0) = 6b Q + 6b \nabla G_D \nabla \xi \mu^{3/2} \mathcal{H}^2 - 9b \nabla G_D \mu^{1/2} \mathcal{H} \mu' + \frac{5}{4} \left[\mathcal{H}^{-1} \mu^{-1} \mu'' - \mathcal{H}^{-1} \mu^{-2} (\mu')^2 + \mu^{-1} \mu' \nabla \xi \right]. \]
\[\tag{2.21} \]

By (H1), moreover, we have
\[\mathcal{M}(t^0) = \frac{1}{2D} I + 6b \nabla G_D \nabla \xi \mu^{3/2} \mathcal{H}^2 - 9b \nabla G_D \mu^{1/2} \mathcal{H} \mu' + \frac{5}{4} \left[\mathcal{H}^{-1} \mu^{-1} \mu'' - \mathcal{H}^{-1} \mu^{-2} (\mu')^2 + \mu^{-1} \mu' \nabla \xi \right]. \]

To study the stability, we define
\[B = \mathcal{D} (\mathcal{C} + \mathcal{D})^{-1}, \]
where \(\mathcal{D} \) and \(\mathcal{C} \) are given by (2.10) (2.11) respectively.
Remark 2.3. Since $D + C$ is diagonally dominant, $D + C$ is invertible. Thus, B is well-defined.

Remark 2.4. By the same reasoning as for the matrix M, the eigenvalues of B are real.

Our first result can be stated as follows:

Theorem 2.5. Assume that assumptions $(H1)$, $(H2)$ and $(H3)$ hold. Then for $\varepsilon \ll 1$, problem (1.6) has an N-peak solution centered at $t_1^{\varepsilon}, \ldots, t_N^{\varepsilon}, N \geq 2$. Moreover, it satisfies

$$u_\varepsilon(x) \sim \sum_{i=1}^{N} \xi_i^{-1} \omega_i \left(\frac{x - t_i^{\varepsilon}}{\varepsilon} \right), \quad (2.22)$$

where ω_i is given by (2.3) for $a = \mu(t_i^{\varepsilon})$,

$$v(t_i^{\varepsilon}) \sim \xi_i, \quad i = 1, \ldots, N, \quad (2.23)$$

$$t_i^{\varepsilon} \to t_i^0, \quad t_i^0 = -1 + \frac{2i - 1}{N}, \quad i = 1, \ldots, N. \quad (2.24)$$

The next theorem reduces the stability to the conditions on the matrices M and B.

Theorem 2.6. Let $(u_\varepsilon, v_\varepsilon)$ be the solution constructed in Theorem 2.5. Assume that $0 < \varepsilon \ll 1$.

- *(stability)* If

$$\min_{\sigma \in \sigma(B)} \sigma > \frac{1}{2} \quad (2.25)$$

and

$$\sigma(M(t^0_i)) \subset \{ \sigma | Re(\sigma) \geq c > 0 \}, \quad (2.26)$$

then $(u_\varepsilon, v_\varepsilon)$ is linearly stable.

- *(instability)* If

$$\min_{\sigma \in \sigma(B)} \sigma < \frac{1}{2} \quad (2.27)$$

or there exists

$$\sigma \in \sigma(M(t^0_i)), Re(\sigma) < 0, \quad (2.28)$$

then $(u_\varepsilon, v_\varepsilon)$ is linearly unstable.

We end this section with a few remarks.

Remark 2.7. Generally speaking, if $\mu \not\equiv$ constant, $\xi_i \neq \xi_j$ for $i \neq j$. Thus the height of different peaks may be different. This is strikingly different from the solutions constructed by Iron, Wei and Winter in [7].

Remark 2.8. For $\mu \equiv 1$, the eigenvalues of matrices B and M have been computed explicitly in [7]. But for general precursor μ, the computation may be more complicated.

Remark 2.9. Generally speaking, the choice of the precursor μ and the parameter D will effect the stability of the spike solutions, since the eigenvalues of M and B are dependent on the precursor μ and the parameter D.

Let us consider the following case:

$$\mu(x) = sin[A(x + \frac{1}{2})(x - \frac{1}{2}) + \frac{\pi}{2}] + 2, \quad A > 0,$$
Then we have $\mu(t_0^1) = \mu(t_0^2) = 3$, $\mu'(t_0^1) = \mu'(t_0^2) = 0$ and $\mu''(t_0^1) = \mu''(t_0^2) = -A^2$. Let $\xi^0 = (\xi_0^1, \xi_0^2)$, $\xi_0^1 = \xi_0^2 = 36\sqrt{3}b$, then ξ^0 is a solution of (2.9). The matrix M becomes

$$M = M_1 + M_2,$$

where

$$M_1 = \frac{1}{2D}I + 36b^2 m^3/\xi^3 \nabla G_D (I - \frac{1}{N}E + 6b m^{3/2}/\xi G_D)^{-1}(\nabla G_D)^T, (\xi = 36\sqrt{3}b, m = 3),$$

$$M_2 = \frac{5}{4}H^{-1} \mu^{-1} \mu''.$$

Note that M is symmetric, $H = \xi I$ and $\mu = mI$. So the eigenvalues of M are all real,

$$M_2 = -\frac{5m}{4\xi} A^2 (\delta_{ij})_{2 \times 2}.$$

The first matrix M_1 does not depend on A. Thus, if A is sufficiently large, the eigenvalues of (M) are all negative. Hence, by Theorem 2.6, we obtain $(u_\varepsilon, v_\varepsilon)$ is unstable. We conclude that precursors may give rise to instability. This new effect is not present in the homogeneous case.

3. Some preliminaries. In this section, we study a system of nonlocal linear operators. We first recall

Theorem 3.1. [14]: Consider the following nonlocal eigenvalue problem

$$\Delta \phi - \phi + 2\omega \phi - \gamma \int_R \frac{\omega \phi}{\omega^2} \omega^2 = \alpha \phi, \; \phi \in H^2(R). \quad (3.1)$$

1. If $\gamma < 1$, then there is a positive eigenvalue to (3.1).
2. If $\gamma > 1$, then for any nonzero eigenvalue α to (3.1), we have

$$Re(\alpha) \leq -c_0 < 0, \quad \text{for some } c_0 > 0.$$

3. If $\gamma \neq 1$ and $\alpha = 0$, then

$$\phi = c_0 \frac{\partial \omega}{\partial y}$$

for some constant c_0.

Next, we consider the following system of linear operators

$$L \Phi := \Delta \Phi - \Phi + 2\omega \Phi - 2 \left(\int_R \omega B \Phi \right) \left(\int_R \omega^2 \right)^{-1} \omega^2, \quad (3.2)$$

where

$$\Phi = \begin{pmatrix} \phi_1 \\ \phi_2 \\ \vdots \\ \phi_N \end{pmatrix} \in (H^2(R))^N.$$

Set

$$L_0 u := \Delta u - u + 2\omega u,$$

where $u \in H^2(R)$.
Then the conjugate operator of L under the scalar product in $L^2(R)$ is
\[
L^\ast \Psi := \Delta \Psi - \Psi + 2\omega \Psi - 2(\int_R \omega^2 B^T \Psi)(\int_R \omega^2)^{-1} \omega,
\] (3.3)
where
\[
\Psi = \begin{pmatrix}
\psi_1 \\
\psi_2 \\
\vdots \\
\psi_N
\end{pmatrix} \in (H^2(R))^N.
\]

Lemma 3.2. (Lemma 3.2 of [21]) If $\frac{1}{2} \notin \sigma(B)$, then
\[
Ker(L) = X_0 \oplus X_0 \oplus \cdots \oplus X_0,
\] (3.4)
where
\[
X_0 = \text{span} \{ \frac{\partial \omega}{\partial y} \}
\]
and
\[
Ker(L^\ast) = X_0 \oplus X_0 \oplus \cdots \oplus X_0,
\] (3.5)

As a consequence of Lemma 3.2, we have

Lemma 3.3. (Lemma 3.3 of [21]) The operator
\[
L : (H^2(R))^N \to (L^2(R))^N
\]
is an invertible operator if it is restricted as follows
\[
L := (X_0 \oplus \cdots \oplus X_0)^\perp \cap (H^2(R))^N \to (X_0 \oplus \cdots \oplus X_0)^\perp \cap (L^2(R))^N.
\]

Moreover, L^{-1} is bounded.

4. Study of approximate solutions.

Let $\xi^0 = (\xi_1^0, \ldots, \xi_N^0)$ be the locally unique solution of (2.9). Recall that $\mu_i^0 = \mu(t_i^0)$ and
\[
t_i^0 = (t_{i1}^0, \ldots, t_{iN}^0), \quad t_i^0 = -1 + \frac{2i - 1}{N}, i = 1, \ldots, N.
\]

We now construct an approximate solution of (1.6) which concentrates near those points t_i^0.

Let $-1 < t_1 < t_2 < \ldots < t_N < 1$ be such that $t = (t_1, \ldots, t_N) \in B_\varepsilon(t^0)$. We introduce a smooth cut-off function $\chi : R \to [0, 1]$ such that
\[
\chi(x) = 1 \text{ for } |x| < \frac{1}{4N} \text{ and } \chi(x) = 0 \text{ for } |x| > \frac{1}{2N}.
\] (4.2)

We define approximate solution
\[
\tilde{\omega}_i(x) = \omega_i(x) \chi(x - t_i).
\] (4.3)

Then $\tilde{\omega}_i(x)$ satisfies the following equation:
\[
\varepsilon^2 \Delta \tilde{\omega}_i - \mu_i \tilde{\omega}_i + \tilde{\omega}_i^2 + e.s.t. = 0.
\] (4.4)
Thus, by Appendix (9.42), we have
\[
\xi = \frac{1}{N} \sum_{j=1}^{N} \xi_j = 6b \sum_{j=1}^{N} G_D(t_i, t_j) \frac{\mu_j^2}{\xi_j} - 6b \sum_{i=1}^{N} \sum_{j=1}^{N} G_N(t_i, t_j) \frac{\mu_j^0}{\xi_j^0}. \tag{4.5}
\]

Moreover, \(\xi(t)\) is a \(C^1\) function in \(t\).

Let
\[
\omega_{\varepsilon, t}(x) = \sum_{j=1}^{N} \xi_j^{-1} \hat{\omega}_j(x). \tag{4.6}
\]

For \(u \in H^2(-1, 1)\), we define \(T[u]\) to be the solution of
\[
\begin{cases}
D \Delta T[u] + \frac{1}{\varepsilon} T[u] u^2 = 0 & \text{in } (-1, 1), \\
T[u]'(\pm 1) = 0.
\end{cases} \tag{4.7}
\]

Next, we will calculate \(T[\omega_{\varepsilon, t}](t_i)\) and \(T[\omega_{\varepsilon, t}](x) - T[\omega_{\varepsilon, t}](t_i)\), where \(t \in B_{\varepsilon}(t^0)\).

Denote by
\[
T[\omega_{\varepsilon, t}](t_i) := \tau_i.
\]

By equation (4.7) and Green’s function (1.10), we have
\[
T[\omega_{\varepsilon, t}](x) - T[\omega_{\varepsilon, t}](x) = b \int_{-1}^{1} G_D(x, z)(T[\omega_{\varepsilon, t}](z))dz, \tag{4.8}
\]

where \(T[\omega_{\varepsilon, t}](x) = \frac{1}{2} \int_{-1}^{1} T[\omega_{\varepsilon, t}](z)dz\).

Hence, we have
\[
\tau_i - T[\omega_{\varepsilon, t}] = 6b \sum_{j=1}^{N} G_D(t_i, t_j) \frac{\mu_j^2}{\xi_j^2} \tau_j + O(\varepsilon). \tag{4.9}
\]

Thus, by Appendix (9.42), \(\sum_{i=1}^{N} G_D(t_i^0, t_j^0) = \lambda_1 = -\frac{1}{\varepsilon DN}\),
\[
\sum_{i=1}^{N} \tau_i - NT[u] = 6b \sum_{i=1}^{N} \sum_{j=1}^{N} G_D(t_i^0, t_j^0) \frac{(\mu_j)^2}{\xi_j^2} \tau_j + O(\varepsilon), \tag{4.10}
\]

On the other hand, integrating (4.7), we obtain
\[
1 = 6b \sum_{j=1}^{N} (\mu_j)^2 \xi_j^2 \tau_j + O(\varepsilon).
\]

Hence, by (2.9) and (4.10), we obtain
\[
T[\omega_{\varepsilon, t}] = \frac{1}{N} \sum_{j=1}^{N} \tau_j - 6b \sum_{i=1}^{N} \sum_{j=1}^{N} G_D(t_i, t_j^0) \frac{(\mu_j)^3}{\xi_j^3} + O(\varepsilon).
\]

Substituting \(T[\omega_{\varepsilon, t}]\) into (4.9), we have
\[
\tau_i - \frac{1}{N} \sum_{j=1}^{N} \tau_j = 6b \sum_{j=1}^{N} G_D(t_i, t_j) \frac{\mu_j^2}{\xi_j^2} \tau_j - 6b \sum_{i,j=1}^{N} G_D(t_i, t_j^0) \frac{(\mu_j^0)^3}{\xi_j^3} + O(\varepsilon). \tag{4.11}
\]
By assumption (H2) and the implicit function theorem, the equation (4.11) has a unique solution

\[T[\omega_{e,t}](t_i) = \tau_i = \xi_i + O(\varepsilon). \]

Now let \(x = t_i + \varepsilon y \), we have

\[
\begin{align*}
T[\omega_{e,t}](x) - T[\omega_{e,t}](t_i) &= \frac{b}{\varepsilon} \int_{-1}^{1} [G_D(x, z) - G_D(t_i, z)](T[\omega_{e,t}]\omega^2_{e,t})(z)dz \\
&= \xi_i^{-2} \frac{b}{\varepsilon} \int_{-1}^{1} [G_D(x, z) - G_D(t_i, z)](T[\omega_{e,t}]\omega^2_{e,t})(z)dz \\
&\quad + \sum_{j \neq i} \xi_j^{-2} \frac{b}{\varepsilon} \int_{-1}^{1} [G_D(x, z) - G_D(t_i, z)](T[\omega_{e,t}]\omega^2_{e,t})(z)dz \\
&= \xi_i^{-2} \frac{b}{\varepsilon} \int_{-1}^{1} [K_D(|\varepsilon y + t_i - z|) - K_D(|t_i - z|)](T[\omega_{e,t}]\omega^2_{e,t})(z)dz \\
&\quad + \sum_{j \neq i} \xi_j^{-2} \frac{b}{\varepsilon} \int_{-1}^{1} [K_D(|\varepsilon y + t_i - z|) - K_D(|t_i - z|)](T[\omega_{e,t}]\omega^2_{e,t})(z)dz \\
&\quad + \sum_{j \neq i} \xi_j^{-2} \frac{b}{\varepsilon} \int_{-1}^{1} [G_D(x, z) - G_D(t_i, z)](T[\omega_{e,t}]\omega^2_{e,t})(z)dz \\
&\quad \text{(writing } z = \hat{z} + t_i) \\
&= \xi_i^{-1} \frac{b}{\varepsilon} \int_{R} \frac{1}{2D} ||y - \hat{z}|| - |\hat{z}| \omega^2_{e}(t_i + \varepsilon \hat{z})d\hat{z} \\
&\quad + \xi_i^{-1} \frac{b}{\varepsilon} \int_{R} \omega^2_{e}(\hat{z})d\hat{z} \\
&\quad + \sum_{j \neq i} \xi_j^{-1} \frac{b}{\varepsilon} \int_{R} \omega^2_{e}(\hat{z})d\hat{z} + O(\varepsilon y^2) \\
&= \xi_i^{-1} \frac{b}{\varepsilon} \int_{R} \frac{1}{2D} ||y - \hat{z}|| - |\hat{z}| \omega_1(\varepsilon \hat{z} + t_i)d\hat{z} \\
&\quad \text{where } p_i(\cdot) = \frac{1}{2D} \int_{R} ||y - \hat{z}|| - |\hat{z}| \omega_1(\varepsilon \hat{z} + t_i) d\hat{z}.
\end{align*}
\]

Let us define

\[S_\varepsilon[\omega_{e,t}] := \varepsilon^2 \Delta \omega_{e,t} - \mu(x)\omega_{e,t} + T[\omega_{e,t}]\omega^2_{e,t}, \quad (4.13) \]

where \(T[\omega_{e,t}] \) is given by (4.9).

We now compute \(S_\varepsilon[\omega_{e,t}] \) as follows:

\[
S_\varepsilon[\omega_{e,t}] = \varepsilon^2 \Delta \omega_{e,t} - \mu(x)\omega_{e,t} + T[\omega_{e,t}]\omega^2_{e,t} \quad \text{(by (4.6))}
\]

\[
= \sum_{i=1}^{N} \xi_i^{-1} (\varepsilon^2 \Delta \omega_i - \mu(x)\omega_i) + T[\omega_{e,t}]\omega^2_{e,t} \quad \text{(by (4.4))}
\]
\[= \sum_{i=1}^{N} \xi_i^{-1}(\mu(t_i) - \mu(x))\tilde{\omega}_i + T[\omega_{\varepsilon,t}]\omega_{\varepsilon,t}^2 - \sum_{i=1}^{N} \xi_i^{-1}\tilde{\omega}_i^2 + \text{e.s.t.} \]

\[= E_1 + E_2 + \text{e.s.t.}, \]

where

\[E_1 = \sum_{i=1}^{N} \xi_i^{-1}(\mu(t_i) - \mu(x))\tilde{\omega}_i \quad (4.14) \]

and

\[E_2 = T[\omega_{\varepsilon,t}]\omega_{\varepsilon,t}^2 - \sum_{i=1}^{N} \xi_i^{-1}\tilde{\omega}_i^2. \quad (4.15) \]

We first estimate \(E_1 \):

\[E_1 = -\sum_{i=1}^{N} \left\{ \mu'(t_i)(x-t_i) + \frac{1}{2} \mu''(t_i)(x-t_i)^2 + o(|x-t_i|^2) \right\} \xi_i^{-1}\omega_i \chi(x-t_i). \quad (4.16) \]

Hence

\[||E_1||_{L^2(-\frac{1}{\varepsilon}, \frac{1}{\varepsilon})} = O(\varepsilon). \quad (4.17) \]

For \(E_2 \), we have

\[E_2 = T[\omega_{\varepsilon,t}]\omega_{\varepsilon,t}^2 - \sum_{i=1}^{N} \xi_i^{-1}\tilde{\omega}_i^2 \]

\[= \sum_{i=1}^{N} (T[\omega_{\varepsilon,t}](x) - T[\omega_{\varepsilon,t}](t_i))\xi_i^{-2}\tilde{\omega}_i^2 \]

\[+ \sum_{i=1}^{N} (T[\omega_{\varepsilon,t}](t_i)\xi_i^{-1} - 1)\xi_i^{-1}\tilde{\omega}_i^2 \]

\[+ \sum_{i=1}^{N} \xi_i^{-2}b\xi_i\tilde{\omega}_i^2 \left\{ \xi_i^{-1}p_i(y) + 6y[\xi_i^{-1}\mu_i^{3/2}\nabla_x HD(x,t_i)|_{x=x_i}, \right\} \]

\[+ \sum_{j\neq i}^{N} \xi_j^{-1}\mu_j^{3/2}\nabla_x G_D(x,t_j)|_{x=x_i} \} + O(\varepsilon^2 \sum_{j=1}^{N} \tilde{\omega}_j^2). \quad (4.18) \]

This implies that

\[||E_2||_{L^2(-\frac{1}{\varepsilon}, \frac{1}{\varepsilon})} = O(\varepsilon). \quad (4.19) \]

Combining (4.17) and (4.19), we have

\[||S_{\varepsilon}[\omega_{\varepsilon,t}]||_{L^2(-\frac{1}{\varepsilon}, \frac{1}{\varepsilon})} = O(\varepsilon). \quad (4.20) \]

The estimates derived in this section will enable us to carry out the existence proof in the next two sections.

5. The Liapunov-Schmidt reduction method. In this section, we use Liapunov-Schmidt method to solve the problem

\[S_{\varepsilon}[\omega_{\varepsilon,t} + \phi] = \sum_{i=1}^{N} \alpha_i \frac{d\tilde{\omega}_i}{dx} \quad (5.1) \]
for real constants α_i and some function $\phi \in H^2(-\frac{1}{\varepsilon}, \frac{1}{\varepsilon})$ that is small in the corresponding normal, where $\omega_{\varepsilon, t}$ is given by (4.6) and ω by (4.3).

First, we need to study the following linear operator
$$\hat{L}_{\varepsilon, t} : H^2(\Omega_{\varepsilon}) \to L^2(\Omega_{\varepsilon})$$
defined by
$$\hat{L}_{\varepsilon, t}\phi := S_{\varepsilon}[\omega_{\varepsilon, t}]\phi = \varepsilon^2 \Delta \phi - \mu(\phi) + 2\omega_{\varepsilon, t}T(\omega_{\varepsilon, t})\phi + \varepsilon^2 T'([\omega_{\varepsilon, t}]\phi), \quad (5.2)$$
where $\Omega_{\varepsilon} = (-\frac{1}{\varepsilon}, \frac{1}{\varepsilon})$, $T[\omega_{\varepsilon, t}]$ is given by (4.9), and for given $\phi \in L^2(\Omega)$ the function $T'[\omega_{\varepsilon, t}]\phi$ is defined as the uniqueness solution of
$$\begin{cases}
D\Delta(T'([\omega_{\varepsilon, t}]\phi) - \frac{\partial}{\partial \varepsilon}(T'([\omega_{\varepsilon, t}]\phi))\omega_{\varepsilon, t}^2 - 2\varepsilon\omega_{\varepsilon, t}T[\omega_{\varepsilon, t}]\phi = 0 & \text{in } \Omega, \\
(T'([\omega_{\varepsilon, t}]\phi)(1) = (T'([\omega_{\varepsilon, t}]\phi)(1) = 0.)
\end{cases} \quad (5.3)$$

We define the approximate kernel and co-kernel of the operator $\hat{L}_{\varepsilon, t}$, respectively, as follows:
$$K_{\varepsilon, t} := \text{span}\{\frac{d\tilde{\omega}_i}{dx} | i = 1, \ldots, N\} \subset H^2(\Omega_{\varepsilon}),$$
and
$$C_{\varepsilon, t} := \text{span}\{\frac{d\tilde{\omega}_i}{dx} | i = 1, \ldots, N\} \subset L^2(\Omega_{\varepsilon}).$$

Recall the definition of the following system of linear operators from (3.2):
$$L\Phi := \Delta \Phi - \Phi + 2\omega\Phi - 2\left(\int_R\omega B\Phi\right)\left(\int_R\omega^2\right)^{-1}\omega^2, \quad (5.4)$$
where
$$\Phi = \begin{pmatrix}
\phi_1 \\
\phi_2 \\
\vdots \\
\phi_N
\end{pmatrix} \in (H^2(R))^N.$$
prove our main existence result, Theorem 2.5. The reduction problem.

Lemma 5.2. There exist \(\epsilon, \delta \) such that for any pair of \(\epsilon, t \) with \(0 < \epsilon < \epsilon \) and \(t \in B_\epsilon(t^0) \), \(|1 + t_1| + |1 - t_N| + \min_{i \neq j} |t_i - t_j| > \delta \) there is a unique \(\phi_{\epsilon,t} \in K^{-1}_{\epsilon,t} \) satisfying \(S_\epsilon(\omega_{\epsilon,t} + \phi_{\epsilon,t}) \in C_{\epsilon,t} \). Furthermore, we have the estimate

\[
||\phi_{\epsilon,t}||_{H^2(\Omega)} \leq C \epsilon.
\]

6. The reduction problem. In this section, we solve the reduced problem and prove our main existence result, Theorem 2.5.

By lemma 5.2, for any \(t \in B_\epsilon(t^0) \), there exists a unique solution \(\phi_{\epsilon,t} \in K^{-1}_{\epsilon,t} \) such that

\[
S_{\epsilon,t}[\omega_{\epsilon,t} + \phi_{\epsilon,t}] = v_{\epsilon,t} \in C_{\epsilon,t}.
\]

Our ideal is to find \(t^\epsilon = (t_1^\epsilon, \ldots, t_N^\epsilon) \in B_\epsilon(t^0) \) such that also

\[
S_{\epsilon,t}[\omega_{\epsilon,t} + \phi_{\epsilon,t}] \perp C_{\epsilon,t}.
\]

Therefore, \(S_{\epsilon,t}[\omega_{\epsilon,t} + \phi_{\epsilon,t}] = 0 \).

To this end, we define

\[
W_{\epsilon,i}(t) := \epsilon^{-1} \int_{\Omega} S_{\epsilon,t}[\omega_{\epsilon,t} + \phi_{\epsilon,t}] \frac{d\hat{\omega}_i}{dx} \, dx,
\]

\[
W_\epsilon(t) := (W_{\epsilon,1}(t), \ldots, W_{\epsilon,N}(t)) : B_\epsilon(t^0) \to R^N.
\]

Then \(W_\epsilon(t) \) is a map which is continuous of \(t \) and our problem is reduced to find a zero of the vector field \(W_\epsilon(t) \).

Let us now calculate \(W_\epsilon(t) \). By (4.16) and (4.18), we have

\[
\epsilon^{-1} \int_{\Omega} S_{\epsilon,t}[\omega_{\epsilon,t} + \phi_{\epsilon,t}] \frac{d\hat{\omega}_i}{dx} \, dx = \epsilon^{-1} \int_{\Omega} S_{\epsilon,t}[\omega_{\epsilon,t}] \frac{d\hat{\omega}_i}{dx} \, dx + \epsilon^{-1} \int_{\Omega} N_{\epsilon,t}[\phi_{\epsilon,t}] \frac{d\hat{\omega}_i}{dx} \, dx
\]

\[
= I_1 + I_2 + I_3
\]

where \(I_1, I_2 \) and \(I_3 \) are defined by the last equality.
The computation of I_3 is as follows: note that by Taylor’s expansion for (5.8), the first term in the expansion of $N_{x,t}$ is quadratic in $\phi_{x,t}$. So
\[I_3 = O(\varepsilon). \] (6.3)

We now compute I_1 and I_2.

For I_1, we have
\[I_1 = \int \frac{d\omega_i}{dx} dx + O(\varepsilon) = I_{11} + I_{12} + O(\varepsilon), \]
where E_1 and E_2 have been given by (4.14) and (4.15), respectively. Using (4.16), we obtain
\[I_{11} = -\mu'(t_i)\xi^{-1}_i \int y \omega_i(y)dy + O(\varepsilon) = \mu'(t_i)\xi^{-1}_i \int (\omega_i(y))dy + O(\varepsilon) = 3\mu'(t_i)\xi^{-1}_i \mu_i^{3/2} + O(\varepsilon) \quad \text{(by 2.5)}. \]

Next, we calculate I_{12}
\[I_{12} = -\varepsilon^{-1} \int \frac{d\omega_i}{dx} dx \]
\[= -\varepsilon^{-1} \int R \left\{ \sum_{k=1}^N b_k \xi^2_k \omega^2_k \xi^{-1}_i p_k(y) + 6y(\xi^{-1}_i \mu^{3/2}_k \nabla_x H_D(x,t_k)|_{x=t_k} \right. \]
\[+ \sum_{j \neq i} \xi^{-1}_j \mu^{3/2}_j \nabla_x G_D(x,t_j)|_{x=t_k} \right\} \omega_i dy + O(\varepsilon) \quad \text{(By 4.18)} \]
\[= -\frac{b}{3} \xi^{-2}_i \mu^{5/2}_i \int R \omega^3(y)dy \int R \omega^2(y)dy \left\{ \sum_{j \neq i} \xi^{-1}_j \mu^{3/2}_j \nabla_x H_D(x,t_j)|_{x=t_i} \right\} + O(\varepsilon) \quad \text{(using (2.5) and (4.3))} \]
\[= -14.4b\mu^{5/2}_i \xi^{-2}_i \sum_{k=1}^N \left\{ \xi^{-1}_k \mu^{3/2}_k \nabla_x G_D(x,t_k)|_{x=t_i} (1 - \delta_{ik}) \right\} + O(\varepsilon), \]

since $P_i(y)$ is an even function.

For I_2, by (4.12), (4.9) and (4.4), using the following results
\[|\mu(t_i) - \mu(x)| = O(\varepsilon |y|), \]
\[||\phi_{x,t}||_{H^2(\Omega)} = O(\varepsilon), \]
\[|T'[\omega_{x,t}](\phi_{x,t})(t_i)| = O(\varepsilon), \]
\[|T'[\omega_{x,t}](\phi_{x,t})(\varepsilon y + t_i) - T'[\omega_{x,t}](\phi_{x,t})(t_i)| = O(\varepsilon^2 |y|), \]
one has
\[I_2 = \varepsilon^{-1} \int \Omega S'_{x,t}[\omega_{x,t}] \phi_{x,t} \frac{d\omega_i}{dx} dx \]
Therefore the vector field W mapping degree of ω properties required in Theorem 2.5. The proof is finished.

Proof of Theorem 2.5. By proposition 6.1, there exists a t for any $\varepsilon > 0$ and $\varepsilon > 0$, $\mu_2 > 0$. Thus for $t = 0$ we have $F(t) = O(\varepsilon)$ as $\varepsilon \to 0$.

Combining the estimates for I_1, I_2 and I_3, we have

$$W_{\varepsilon,i}(t) = \mu_i^{3/2} \left(c_i \mu_i'(t_i) + d_{ij} \nabla t_i H_1(t_i, t_i) + \sum_{j \neq i} d_{ij} \nabla t_i G_1(t_i, t_j) \right) + O(\varepsilon)$$

where

$$c_i = 3 \xi_i^{-1}, \quad d_{ij} = -14.4 \mu_i \xi_i^{-2} \xi_j^{3/2}.$$

Recall from (2.15) that

$$F(t) = (F_1(t), \ldots, F_N(t)),$$

thus

$$W_{\varepsilon,i}(t) = 2.4 \mu_i^{5/2} F_i(t) + O(\varepsilon), \quad i = 1, \ldots, N.$$

By assumption (H3), we have $F(t^0) = 0$ and

$$\det(D_{\varepsilon} F(t^0)) \neq 0.$$

Therefore the vector field $W_{\varepsilon}(t) = (W_{\varepsilon,1}(t), \ldots, W_{\varepsilon,N}(t))$ satisfies

$$W_{\varepsilon}(t) = D_{\varepsilon} F(t^0)(t - t^0) + O(\varepsilon).$$

Thus for ε small enough $F(t)$ has exactly one zero in $B_{\varepsilon}(t^0)$ and we compute the mapping degree of $W_{\varepsilon,t}(t)$ for the set $B_{\varepsilon}(t^0)$ and the value 0 as follows:

$$\deg(W_{\varepsilon}, 0, B_{\varepsilon}(t^0)) = \text{sign} \det(D_{\varepsilon} F(t^0)) \neq 0.$$

Therefore, standard degree theory implies that, for ε small enough, there exists a $t^\varepsilon \in B_{\varepsilon}(t^0)$ such that $t^\varepsilon \to t^0$ as $\varepsilon \to 0$.

Thus we have proved the following proposition.

Proposition 6.1. For any ε sufficiently small there exists a point $t^\varepsilon \in B_{\varepsilon}(t^0)$ with $t^\varepsilon \to t^0$ such that $W_{\varepsilon}(t^\varepsilon) = 0$.

Proof of Theorem 2.5. By proposition 6.1, there exists a $t^\varepsilon \in B_{\varepsilon}(t^0)$ such that $t^\varepsilon \to t^0$ and $W_{\varepsilon,t} = 0$. In other words, $S_{\varepsilon} \omega_{\varepsilon,t} + \phi_{\varepsilon,t} = 0$. Let $\omega_{\varepsilon,t} = \omega_{\varepsilon,t} + \phi_{\varepsilon,t}$. By the maximum principle, $\omega_{\varepsilon,t} > 0$. Moreover, by construction, $\omega_{\varepsilon,t}$ has all the properties required in Theorem 2.5. The proof is finished.

7. Stability analysis I: Large eigenvalue

In this section, we consider the large eigenvalues of the associated linearized eigenvalue problem.

Let $(u_\varepsilon, v_\varepsilon)$ be the N peak solution constructed in previous section. We have

$$u_\varepsilon = \sum_{i=1}^{N} \xi_i^{-1} \tilde{\omega}_i + \phi_{\varepsilon,t^\varepsilon}, \quad v_\varepsilon(t^\varepsilon_i) = \xi_i, \quad i = 1, \ldots, N, \quad (7.1)$$
We linear (1.6) at \((u_\varepsilon, v_\varepsilon)\). The eigenvalue problem becomes
\[
\begin{cases}
\varepsilon^2 \phi''_\varepsilon - \mu(x) \phi_\varepsilon + 2u_\varepsilon v_\varepsilon \phi_\varepsilon + u^2_\varepsilon \psi_\varepsilon = \lambda_\varepsilon \phi_\varepsilon, \\
D\psi''_\varepsilon - b \psi_\varepsilon u^2_\varepsilon - 2b \psi_\varepsilon u_\varepsilon \phi_\varepsilon = \varepsilon \lambda_\varepsilon \psi_\varepsilon.
\end{cases}
\tag{7.2}
\]
Here \(\lambda_\varepsilon\) is some complex number and
\[
\phi'_\varepsilon(\pm 1) = \psi'_\varepsilon(\pm 1) = 0.
\]

We consider two cases: The large eigenvalue case with \(\lambda_\varepsilon \to \lambda_0 \neq 0\) and the small eigenvalue \(\lambda_\varepsilon \to 0\). The second case will be considered in the next section.

We now analysis the large eigenvalues there exists some small \(c > 0\) such that \(|\lambda_\varepsilon| \geq -c\) for \(\varepsilon\) sufficiently small. We are going looking for a condition under which \(\text{Re}(\lambda_\varepsilon) < 0\) for all eigenvalues \(\lambda_\varepsilon\) of (7.2) if \(\varepsilon\) is sufficiently small. If \(\text{Re}(\lambda_\varepsilon) < c\), then \(\lambda_\varepsilon\) is a stable large eigenvalue. Therefore for the rest of this section we assume that \(\text{Re}(\lambda_\varepsilon) \geq -c\) and study the stability properties of such eigenvalues.

Let us assume that
\[
||\phi_\varepsilon||_{H^2(\Omega)} = 1.
\tag{7.3}
\]

We cut off \(\phi_\varepsilon\) as follows:
\[
\phi_{\varepsilon,j}(y) := \phi_\varepsilon(y) \chi(\varepsilon y - t^j_j), \quad j = 1, \ldots, N,
\tag{7.4}
\]
where \(\chi\) has been given by (4.2). Thus, we have
\[
\phi_\varepsilon(y) = \sum_{j=1}^{N} \phi_{\varepsilon,j}(y) + \text{e.s.t.} \quad \text{in } H^2(\Omega).
\tag{7.5}
\]

Then by the standard procedure (for example see [4]), we extend \(\phi_{\varepsilon,j}\) to a function defined in \(R\) such that
\[
||\phi_{\varepsilon,j}||_{H^2(R)} \leq C ||\phi_{\varepsilon,j}||_{H^2(\Omega)}, \quad j = 1, \ldots, N.
\tag{7.6}
\]

Since \(||\phi_{\varepsilon,j}||_{H^2(\Omega)} = 1, ||\phi_{\varepsilon,j}||_{H^2(R)} \leq C.\)

By taking subsequence of \(\varepsilon\), we may assume that \(\phi_{\varepsilon,j} \to \phi_j\).

Now, using (7.1) and the equation of \(\psi_\varepsilon\), we have as \(\varepsilon \to 0\), \(\psi_\varepsilon \to \psi_0\), and \(\psi_0\) satisfies
\[
D\psi''_0 - b \sum_{j=1}^{N} \xi_j^{-2} \int_R \omega_j^2(x) dx \delta(y - t^j_j) \psi_0 - 2b \sum_{j=1}^{N} \int_R \omega_j \phi_j dy = 0.
\tag{7.7}
\]

Sending \(\varepsilon \to 0\) with \(\lambda_\varepsilon \to \lambda_0\), the equation of \(\psi_\varepsilon\) (in (7.2)) for \(x \in B_\varepsilon(t^0_j)\) can be written as:
\[
\Delta \phi_i - \mu \phi_i + 2\omega_i \phi_i + \psi_0(t^0_i) \hat{\omega}_i^2 = \lambda_0 \phi_i.
\tag{7.8}
\]

We first need to solve \(\psi_0\). In Appendix (9.34), we shall show the following relations hold:
\[
(D + C)\Psi = \eta,
\tag{7.9}
\]
where \(\Psi\) and \(\eta\) are defined by
\[
\Psi = \begin{pmatrix} \psi_0(t^0_1) \\ \vdots \\ \psi_0(t^0_N) \end{pmatrix}, \quad \eta = \begin{pmatrix} \eta_1 \\ \vdots \\ \eta_N \end{pmatrix}, \quad \eta_j = -\frac{2b}{D} \int_R \omega_j \phi_j dy, \quad j = 1, \ldots, N,
\tag{7.10}
\]

\(D, C\) have been given by (2.10) (2.11), respectively.

Since \(D + C\) is invertible, We obtain that
\[
\Psi = (D + C)^{-1}\eta.
\tag{7.11}
Substituting (7.11) into (7.8) and using the transformation $\tilde{y}_j = \sqrt{\mu_j} y_j$, this implies that (after dropping the tilde)

$$L\Phi = \Delta \Phi - \Phi + 2\omega \Phi - 2\sigma \left(\int_R \omega \Phi dy \right) \left(\int R \omega^2 dy \right)^{-1} \omega^2 = \lambda_0 \Phi,$$

(7.12)

where

$$\Phi = \begin{pmatrix} \phi_1 \\ \vdots \\ \phi_N \end{pmatrix} \in (H^2(R))^N \text{ and } B = D(D + C)^{-1}.$$

Then we have the following theorem:

Theorem 7.1. Let λ_ε be an eigenvalue of (7.2) such that $Re(\lambda_\varepsilon) > -c$ for some $c > 0$.

1. Suppose that (for suitable sequences $\varepsilon_n \to 0$) we have $\lambda_{\varepsilon_n} \to \lambda_0 \neq 0$. Then λ_0 is an eigenvalue of the problem given by in (7.12).

2. Let $\lambda_0 \neq 0$ with $Re(\lambda_0) > 0$ be an eigenvalue of the problem given in (7.12). Then for ε sufficiently small, there is an eigenvalue λ_ε of (7.2) with $\lambda_\varepsilon \to \lambda_0$ as $\varepsilon \to 0$.

This proof is similar to Theorem 7.1 [21], more details can see Theorem 7.1 [21] or Theorem 8.1 [20].

Now, we study the stability of (7.2) for large eigenvalues explicitly and prove (2.25) and (2.27) of Theorem 2.6.

Let $\sigma_i, i = 1, \ldots, N$ be the eigenvalues of the matrix B, These eigenvalues are real. Then the system (7.12) can be re-written as

$$L\phi_i = \Delta \phi_i - \phi_i + 2\omega \phi_i - 2\sigma_i \left(\int R \omega \phi_i dy \right) \left(\int R \omega^2 dy \right)^{-1} \omega^2 = \lambda_0 \phi_i \quad i = 1, \ldots, N,$$

(7.13)

where

$$\phi_i \in H^2(R) \quad i = 1, \ldots, N.$$

Suppose that we have

$$\min_{\sigma \in \sigma(B)} \sigma < \frac{1}{2},$$

(7.14)

by Theorem 3.1(1), there exists a positive eigenvalue of (7.13) and also of (7.12).

By Theorem 7.1(2), for ε sufficiently small, there exists an eigenvalue λ_ε of (7.2) such that $Re(\lambda_\varepsilon) > c_0$ for some positive number $c_0 > 0$. This implies that $u_\varepsilon = \omega_{\varepsilon,t} + \phi_{\varepsilon,t}$ is (linearly) unstable.

Suppose now that

$$\min_{\sigma \in \sigma(B)} \sigma > \frac{1}{2},$$

(7.15)

is satisfied, then by Theorem 3.1(2), we know that for any nonzero eigenvalue λ_0 in (7.13) and so also in (7.12), we have

$$Re(\lambda_0) \leq c_0 < 0 \quad \text{for some } c_0 > 0.$$

So by Theorem 7.1(1), for ε sufficiently small, all nonzero large eigenvalues of (7.2) all have strictly negative real parts. We conclude that in this case all eigenvalues λ_ε of (7.2), for which $|\lambda_\varepsilon| \geq c > 0$ holds, satisfy $Re(\lambda_\varepsilon) \leq -c < 0$ for ε sufficiently small. This implies that $u_\varepsilon = \omega_{\varepsilon,t} + \phi_{\varepsilon,t}$ is (linearly) stable. \square
In conclusion, we have finished the study of large eigenvalues and derived results on their stability properties. It remains to study small eigenvalues which will be done in the next section.

8. **Stability analysis II: Small eigenvalue.** Now we study (7.2) for small eigenvalue. Namely, we assume that $\lambda_\varepsilon \to 0$ as $\varepsilon \to 0$.

Let

$$\tilde{\omega}_\varepsilon = \omega_{\varepsilon,t^*} + \phi_{\varepsilon,t^*}, \quad \tilde{H}_\varepsilon = T[\omega_{\varepsilon,t^*} + \phi_{\varepsilon,t^*}],$$

where $t^* = (t_1^*, \ldots, t_N^*)$.

Recall the eigenvalue problem (7.2):

$$\begin{cases}
\Delta \varepsilon^2 \phi_\varepsilon - \mu(x) \phi_\varepsilon + 2\tilde{\omega}_\varepsilon \tilde{H}_\varepsilon \phi_\varepsilon + \tilde{\omega}_\varepsilon^2 \psi_\varepsilon = \lambda_\varepsilon \phi_\varepsilon, \\
D \Delta \psi_\varepsilon - \frac{b}{\varepsilon} \psi_\varepsilon \tilde{\omega}_\varepsilon^2 - \frac{2b}{\varepsilon} \tilde{H}_\varepsilon \tilde{\omega}_\varepsilon \phi_\varepsilon = \varepsilon \lambda_\varepsilon \psi_\varepsilon.
\end{cases}$$

(8.2)

Our basic ideal is the following: the eigenfunction ϕ_ε can be expanded as

$$\sum_{j=1}^N \alpha_j \frac{\partial \omega_{\varepsilon,t}}{\partial t_j}.$$

(8.1)

Note that $\omega_{\varepsilon,t} \sim \sum_{i=1}^N \varepsilon^{-1}_i \omega_i(x)$. So when we differentiate $\omega_{\varepsilon,t}$ with respect to t_j, we also need to differentiate ξ_j and $\mu(t_j)$ with respect to t_j. Therefore, we need to expand ϕ_ε up to $O(\varepsilon^2)$.

Let us define

$$\tilde{\omega}_{\varepsilon,j}(x) = \tilde{\omega}_\varepsilon \chi(x - t_j^*), \quad j = 1, \ldots, N,$$

(8.3)

where $\chi(x)$ was defined by (4.2). Similarly as in section 5, we define

$$\mathcal{K}_{\varepsilon,t^*}^{\text{new}} := \text{span}\{\tilde{\omega}_{\varepsilon,j}^* \mid j = 1, \ldots, N\} \subset H^2(\Omega_\varepsilon),$$

$$\mathcal{C}_{\varepsilon,t^*}^{\text{new}} := \text{span}\{\tilde{\omega}_{\varepsilon,j}^* \mid j = 1, \ldots, N\} \subset L^2(\Omega_\varepsilon).$$

Then it is easy to see that

$$\tilde{\omega}_\varepsilon(x) = \sum_{j=1}^N \tilde{\omega}_{\varepsilon,j}(x) + e.s.t. \quad \text{in } H^2(\Omega).$$

(8.4)

Note that

$$\tilde{\omega}_{\varepsilon,j}(x) = \xi_j^{-1} \omega_j \left(\frac{x - t_j^*}{\varepsilon}\right) \quad \text{in } H^2_{\text{loc}}(\Omega),$$

and $\tilde{\omega}_{\varepsilon,j}$ satisfies

$$\varepsilon^2 \Delta \tilde{\omega}_{\varepsilon,j} - \mu(x) \tilde{\omega}_{\varepsilon,j} + \tilde{H}_\varepsilon \tilde{\omega}_{\varepsilon,j}^2 + e.s.t. = 0.$$

Thus $\tilde{\omega}_{\varepsilon,j}^\prime := \frac{d \tilde{\omega}_{\varepsilon,j}}{dx}$ satisfies

$$\varepsilon^2 \Delta \tilde{\omega}_{\varepsilon,j}^\prime - \mu(x) \tilde{\omega}_{\varepsilon,j}^\prime + \tilde{H}_\varepsilon \tilde{\omega}_{\varepsilon,j}^2 + \tilde{\omega}_{\varepsilon,j}^2 \tilde{H}_\varepsilon^\prime - \mu(x) \tilde{\omega}_{\varepsilon,j}^\prime + e.s.t. = 0.$$

(8.5)

Let us decompose

$$\phi_\varepsilon = \varepsilon \sum_{j=1}^N a_j^\varepsilon \tilde{\omega}_{\varepsilon,j} + \phi_\varepsilon^\perp$$

(8.6)

with complex numbers a_j^ε, (the factor ε is for scaling), where $\phi_\varepsilon^\perp \perp \mathcal{K}_{\varepsilon,t^*}^{\text{new}}$.

Suppose that

$$\|\phi_\varepsilon\|_{H^2(\Omega_\varepsilon)} = 1.$$

Since $\|\varepsilon \tilde{\omega}_{\varepsilon,j}\|_{H^2(\Omega_\varepsilon)} \geq C > 0$, $|a_j^\varepsilon| \leq C$.

Similarly, we can decompose
\[\psi_{\varepsilon,j} = \varepsilon \sum_{j=1}^{N} a^\varepsilon_j \psi_{\varepsilon,j} + \psi_{\varepsilon,j}^\perp, \]
where \(\psi_{\varepsilon,j} \) satisfies
\[\begin{cases} \Delta \psi_{\varepsilon,j} - \frac{b}{\varepsilon} \psi_{\varepsilon,j} \bar{\omega}_\varepsilon^2 - 2 \frac{b}{\varepsilon} \bar{\omega}_\varepsilon \bar{\psi}_{\varepsilon,j} = \varepsilon \lambda_{\varepsilon,1} \\ \psi_{\varepsilon,j}(\pm1) = 0, \end{cases} \quad (8.7) \]
and \(\psi_{\varepsilon,j}^\perp \) satisfies
\[\begin{cases} \Delta \psi_{\varepsilon,j}^\perp - \frac{b}{\varepsilon} \psi_{\varepsilon,j}^\perp \bar{\omega}_\varepsilon^2 - 2 \frac{b}{\varepsilon} \bar{\omega}_\varepsilon \phi_{\varepsilon,j}^\perp = \varepsilon \lambda_{\varepsilon,1} \\ (\psi_{\varepsilon,j}^\perp)'(\pm1) = 0. \end{cases} \quad (8.8) \]

Throughout this section, we denote
\[\mu_j = \mu(t_j^\varepsilon), \quad \mu_j' = \mu'(t_j^\varepsilon), \quad \mu_j'' = \mu''(t_j^\varepsilon), \]
\[\mu^{-1} := (\mu_j^{-1}), \quad \mu^{3/2} := (\mu_j^{3/2}), \quad \mu' := (\mu_j'), \quad \mu^{1/2} := (\mu_j^{1/2}). \]
\[\mathcal{H}_1 := (\xi^{-1}), \quad \mathcal{H}_2 := (\xi^{-2}), \quad \mathcal{H}^{-1} := (\xi). \]
Substituting the decompositions of \(\phi_{\varepsilon} \) and \(\psi_{\varepsilon} \) into (8.2) we have, using (8.5)
\[\varepsilon \sum_{j=1}^{N} a_j^\varepsilon [\bar{\omega}_\varepsilon^2 \psi_{\varepsilon,j} - (\bar{\omega}_{\varepsilon,j})^2 \bar{H}_\varepsilon] + \varepsilon \mu'(x) \sum_{j=1}^{N} a_j^\varepsilon \bar{\omega}_{\varepsilon,j} \]
\[+ \varepsilon^2 \Delta \phi_{\varepsilon,j} - \mu(x) \phi_{\varepsilon,j} + 2 \bar{H}_\varepsilon \omega_{\varepsilon,j} \phi_{\varepsilon,j} - \bar{\omega}_{\varepsilon,j} \phi_{\varepsilon,j} + e.s.t. = \lambda_{\varepsilon} \varepsilon \sum_{j=1}^{N} a_j^\varepsilon \bar{\omega}_{\varepsilon,j}. \]

Let us first compute
\[\varepsilon \sum_{j=1}^{N} a_j^\varepsilon [\bar{\omega}_\varepsilon^2 \psi_{\varepsilon,j} - (\bar{\omega}_{\varepsilon,j})^2 \bar{H}_\varepsilon] \]
\[= \varepsilon \sum_{j=1}^{N} a_j^\varepsilon [\bar{\omega}_{\varepsilon,j}]^2 [\psi_{\varepsilon,j} - \bar{H}_\varepsilon] + \varepsilon \sum_{j=1}^{N} a_j^\varepsilon \psi_{\varepsilon,j} \sum_{k \neq j} (\bar{\omega}_{\varepsilon,k})^2 + e.s.t. \]
\[= \varepsilon \sum_{j=1}^{N} a_j^\varepsilon [\bar{\omega}_{\varepsilon,j}]^2 [\psi_{\varepsilon,j} - \bar{H}_\varepsilon] + \varepsilon \sum_{j=1}^{N} \sum_{k \neq j} a_j^\varepsilon \psi_{\varepsilon,j} (\bar{\omega}_{\varepsilon,j})^2 + e.s.t. \]
\[= \varepsilon \sum_{j=1}^{N} \sum_{k=1}^{N} a_j^\varepsilon [\bar{\omega}_{\varepsilon,j}]^2 [\psi_{\varepsilon,j} - \delta_{jk} \bar{H}_\varepsilon] + e.s.t. \quad (8.11) \]

Let us also put
\[\bar{L}_{\varepsilon} \phi := \varepsilon^2 \Delta \phi_{\varepsilon} - \mu(x) \phi_{\varepsilon} + 2 \bar{H}_\varepsilon \omega_{\varepsilon} \phi_{\varepsilon} + \omega_{\varepsilon}^2 \phi_{\varepsilon} \]
\[+ \sum_{j=1}^{N} \int_{-1}^{1} \bar{\omega}_{\varepsilon,j} \bar{\omega}_{\varepsilon,j}' dx \]
\[= \sum_{j=1}^{N} \int_{-1}^{1} \bar{\omega}_{\varepsilon,j} \bar{\omega}_{\varepsilon,j}' dx \]
\[= \varepsilon \lambda_{\varepsilon} \sum_{j=1}^{N} a_j^\varepsilon \int_{-1}^{1} \bar{\omega}_{\varepsilon,j} \bar{\omega}_{\varepsilon,j}' dx \]

Multiplying both sides of (8.10) by \(\bar{\omega}_{\varepsilon,j}' \) and integrating over \((-1,1)\), we have, using (2.5),
\[\text{r.h.s.} = \varepsilon \lambda_{\varepsilon} \sum_{j=1}^{N} a_j^\varepsilon \int_{-1}^{1} \bar{\omega}_{\varepsilon,j} \bar{\omega}_{\varepsilon,j}' dx \]
\[= \varepsilon \lambda_{\varepsilon} \sum_{j=1}^{N} a_j^\varepsilon \int_{-1}^{1} \bar{\omega}_{\varepsilon,j} \bar{\omega}_{\varepsilon,j}' dx \]
\[= \varepsilon \lambda_{\varepsilon} \sum_{j=1}^{N} a_j^\varepsilon \int_{-1}^{1} \bar{\omega}_{\varepsilon,j} \bar{\omega}_{\varepsilon,j}' dx \]
Lemma 8.1.

and, using (8.11),

\[I.h.s. = \varepsilon N \sum_{j=1}^{N} \sum_{k=1}^{N} a_k \int_{-1}^{1} (\hat{\omega}_{\varepsilon,j})^2 |\psi_{\varepsilon,k} - \delta_{jk} \hat{H}_j| \hat{\omega}'_{\varepsilon,l} dx + \varepsilon \sum_{j=1}^{N} a_j \int_{-1}^{1} \mu'(x) \hat{\omega}_{\varepsilon,j} \hat{\omega}'_{\varepsilon,l} dx \]

\[+ \int_{-1}^{1} \hat{\omega}^2_\varepsilon \psi_\varepsilon^j \hat{\omega}'_{\varepsilon,l} dx + \int_{-1}^{1} \mu'(x) \phi_\varepsilon^j \hat{\omega}_{\varepsilon,l} dx - \int_{-1}^{1} (\hat{\omega}_{\varepsilon,l})^2 \hat{H}'_j \phi_\varepsilon^j dx + o(\varepsilon^2) \]

\[= J_{i,1} + J_{i,2} + J_{i,3} + J_{i,4} + J_{i,5} + o(\varepsilon^2). \]

where \(J_{i,l} \), \(l = 1, \ldots, 5 \) are defined by the last equality.

For \(J_{i,2} \), integrating by parts gives

\[J_{i,2} = a_i \int_{-1}^{1} \mu'(x) \hat{\omega}_{\varepsilon,l} \hat{\omega}'_{\varepsilon,l} dx \]

\[= -\frac{\varepsilon}{2} a_i \int_{-1}^{1} \nabla G \nabla \xi^l \hat{\omega}_{\varepsilon,l} \hat{\omega}'_{\varepsilon,l} dx + o(\varepsilon^2) \]

\[= -\frac{\varepsilon^2}{2} a_i \xi^l - 2 \mu_{l} \mu_{l}^{3/2} \int_{-1}^{1} \omega^2 dx + o(\varepsilon^2). \]

For \(J_{i,3} \), we have

\[J_{i,3} = \int_{-1}^{1} \hat{\omega}^2_\varepsilon \psi_\varepsilon^l \hat{\omega}'_{\varepsilon,l} dx \]

\[= \int_{-1}^{1} \hat{\omega}^2_\varepsilon \psi_\varepsilon^l (t_1^l) \hat{\omega}'_{\varepsilon,l} dx + \int_{-1}^{1} \hat{\omega}^2_\varepsilon [\psi_\varepsilon^l (x) - \psi_\varepsilon^l (t_1^l)] \hat{\omega}'_{\varepsilon,l} dx \]

\[= \int_{-1}^{1} \hat{\omega}^2_\varepsilon [\psi_\varepsilon^l (x) - \psi_\varepsilon^l (t_1^l)] \hat{\omega}'_{\varepsilon,l} dx. \]

We define the vectors

\[J_i = (J_{i,1}, \ldots, J_{i,N})^T, \quad i = 1, \ldots, 5. \]

We have the following lemma:

Lemma 8.1.

\[J_1 = -\varepsilon^2 \left(2b \int_{R} \omega^3 \right) \mu^{5/2} H^2 Q a^0 + \varepsilon^2 \left(2b \int_{R} \omega^3 \right) \mu^{5/2} H^2 \nabla \hat{G}_D \mu^{3/2} H^2 \]

\[\times \left(I - \frac{1}{N} E - 6b \hat{G}_D \mu^{3/2} H^2 \right)^{-1} \left[\left(I - \frac{1}{N} E + 6b \hat{G}_D \mu^{3/2} H^2 \right) \nabla \xi - 9b \hat{G}_D \mu^{1/2} \right] a^0 + O(\varepsilon^3), \]

\[J_2 = -3\varepsilon^2 \mu'' \mu^{3/2} H^2 a^0 + O(\varepsilon^3), \]

\[J_3 = -\varepsilon^2 \left(4b \int_{R} \omega^3 \right) \mu^{5/2} H^2 \nabla \hat{G}_D \mu^{3/2} H^2 (I - \frac{1}{N} E - 6b \hat{G}_D \mu^{3/2} H^2)^{-1} \]

\[\times \left(I - \frac{1}{N} E \right) \left\{ \nabla \xi - \frac{3}{4} \mu'^{-1} \right\} a^0 + O(\varepsilon^3), \]
\[J_4 = \varepsilon^2 \mu \mu_1^{3/2} H^3 \left(\nabla \xi - \frac{3}{4} H^{-1} \mu_1^{-1} \right) a_0 + O(\varepsilon^3), \]
\[J_5 = -9 \varepsilon^2 \mu \mu_1^{3/2} H^3 \left(\nabla \xi - \frac{5}{6} H^{-1} \mu_1^{-1} \right) a_0 + O(\varepsilon^3). \]

where \(G_D, Q \) and \(H \) are defined by (2.6), (2.20) and (2.14), respectively, \(a_0 \) is given by (8.13) and

\[a_0 = \lim_{\varepsilon \to 0} \tilde{a}^\varepsilon. \]

(8.16)

The proof of lemma 8.1 is delayed to the next section.

Proof of Theorem 2.6. By the previous lemma, we obtain

l.h.s. = \(J_1 + J_2 + J_3 + J_4 + J_5 \)

\[= -\varepsilon^2 \left(2b \int_R \omega_1 \mu \mu_1^{3/2} H^3 \nabla G_D \mu \mu_1^{3/2} H^2 \left(\nabla \xi - \frac{3}{2} H^{-1} \mu_1^{-1} \right) a_0 \right) \]
\[-\varepsilon^2 \left(2b \int_R \omega_1 \mu \mu_1^{3/2} H^3 Q a_0 - 3\varepsilon^2 \mu \mu_1^{3/2} H^3 \left(\nabla \xi - \frac{1}{2} H^{-1} \mu_1^{-1} \right) a_0 \right) \]
\[-3\varepsilon^2 \mu \mu_3^{3/2} H^3 a_0 + O(\varepsilon^3). \]

Combining (8.14) and (2.21), we have

\[\lambda \varepsilon^2 \mu_1^{5/2} H^2 a^\varepsilon \int_R (\omega_1(y)) dy(1 + O(\varepsilon)) = -2.4\varepsilon^3 \mu_1^{5/2} H^3 M(t^\varepsilon) a^\varepsilon + O(\varepsilon^3), \]

using (1.8). Above equation shows that the small eigenvalue \(\lambda_\varepsilon \) of (8.2) are

\[\lambda_\varepsilon \sim -2\sigma(M(t^0)). \]

Arguing as in Theorem 7.1, this shows that if all the eigenvalues of \(M(t^0) \) are positive, then the small eigenvalues are stable. On other hand, if \(M(t^0) \) has a negative eigenvalue, then we can construct eigenfunctions and eigenvalues to make the system unstable.

This proves Theorem 2.6. \(\square \)

9. Computation of the small eigenvalues II: Proof of Lemma 8.1. In this section, we prove lemma 8.1. First note that

\[\varepsilon \sum_{j=1}^N \sum_{k=1}^N a_k^\varepsilon \int_{-1}^1 (\omega_{\varepsilon,j})^2 [\psi_{\varepsilon,k} - \delta_{jk} \tilde{H}^\varepsilon \omega'_{\varepsilon,j}] dz = \varepsilon \sum_{k=1}^N a_k^\varepsilon \int_{-1}^1 (\omega_{\varepsilon,k})^2 [\psi_{\varepsilon,k} - \delta_{jk} \tilde{H}^\varepsilon \omega'_{\varepsilon,k}] dz + o(\varepsilon) \]

(9.1)

So we need to study the asymptotic behavior of \(\psi_{\varepsilon,j} \) near \(t_\varepsilon \). Since \(\psi_{\varepsilon,j} \) satisfies (8.7), we have that

\[\psi_{\varepsilon,j}(x) - \overline{\psi_{\varepsilon,j}} = \frac{b}{\varepsilon} \int_{-1}^1 G_D(x,z) [\psi_{\varepsilon,j} \omega_z^2 + 2\omega_z \tilde{H} \omega'_{\varepsilon,j}] dz + o(\varepsilon) \]

where \(\overline{\psi_{\varepsilon,j}} = \frac{1}{2} \int_{-1}^1 \psi_{\varepsilon,j} \).

Hence we have

\[\psi_{\varepsilon,j}(t_\varepsilon^\varepsilon) - \overline{\psi_{\varepsilon,j}} = \frac{b}{\varepsilon} \int_{-1}^1 G_D(t_\varepsilon^\varepsilon,z) \psi_{\varepsilon,j} \omega_z^2 dz + 2\frac{b}{\varepsilon} \int_{-1}^1 G_D(t_\varepsilon^\varepsilon,z) \omega_z \tilde{H} \omega'_{\varepsilon,j} dz + o(\varepsilon) \]
\[= I_1 + I_2 + o(\varepsilon) \]

(9.2)

where \(I_1, I_2 \) are defined by the last equality.
For I_1, using (8.4) and (1.10)

$$I_1 = \frac{b}{\varepsilon} \sum_{m=1}^{N} \int_{-1}^{1} G_D(t_k^\varepsilon, z) \hat{\omega}_{\varepsilon,m}^2 \psi_{\varepsilon,j}(t_{m}^\varepsilon) d\bar{z} + o(\varepsilon)$$

$$= b \sum_{m \neq k} \int_{R} G_D(t_k^\varepsilon, x_m + \varepsilon \bar{z}) \hat{\omega}_{\varepsilon,m}^2 (x_m + \varepsilon \bar{z}) \psi_{\varepsilon,j}(x_m + \varepsilon \bar{z}) d\bar{z}$$

$$+ b \int_{R} H_D(t_k^\varepsilon, x_m + \varepsilon \bar{z}) \hat{\omega}_{\varepsilon,m}^2 (x_m + \varepsilon \bar{z}) \psi_{\varepsilon,j}(x_m + \varepsilon \bar{z}) d\bar{z} + o(\varepsilon)$$

$$= b \sum_{m=1}^{N} G_D(t_k^\varepsilon, t_m^\varepsilon) \psi_{\varepsilon,j}(t_m^\varepsilon \mu_{m_k}^{3/2} \xi_k \int_{R} \omega^2 + O(\varepsilon).$$

For I_2, we have

$$I_2 = \frac{2b}{\varepsilon} \int_{-1}^{1} G_D(t_k^\varepsilon, z) \hat{\omega}_{\varepsilon,j} \hat{H}_{\varepsilon,j}^\prime d\bar{z}$$

$$= \frac{2b}{\varepsilon} \int_{-1}^{1} G_D(t_k^\varepsilon, z) \hat{\omega}_{\varepsilon,j} \hat{H}_{\varepsilon,j}^\prime d\bar{z} + O(\varepsilon) \quad \text{(integrating by parts)}$$

$$= -b \int_{-1}^{1} \nabla \epsilon G_D(t_k^\varepsilon, z) \hat{\omega}_{\varepsilon,j} \hat{H}_{\varepsilon,j}^\prime d\bar{z} - \frac{b}{\varepsilon} \int_{-1}^{1} G_D(t_k^\varepsilon, z) \hat{\omega}_{\varepsilon,j} \hat{H}_{\varepsilon,j}^\prime d\bar{z} + O(\varepsilon)$$

$$= -b \nabla \epsilon G_D(t_k^\varepsilon, t_j^\varepsilon) \frac{\mu_k^{3/2}}{\xi_k} \int_{R} \omega^2 - b G_D(t_k^\varepsilon, t_j^\varepsilon) \hat{H}_{\varepsilon,j}^\prime(t_k^\varepsilon) \frac{\mu_k^{3/2}}{\xi_k} \int_{R} \omega^2 + O(\varepsilon).$$

Hence, we obtain

$$\psi_{\varepsilon,j}(t_k^\varepsilon) - \psi_{\varepsilon,j} = b \sum_{m=1}^{N} G_D(t_k^\varepsilon, t_m^\varepsilon) \psi_{\varepsilon,j}(t_m^\varepsilon) \frac{\mu_m^{3/2}}{\xi_m} \int_{R} \omega^2 - b \nabla \epsilon G_D(t_k^\varepsilon, t_j^\varepsilon) \frac{\mu_k^{3/2}}{\xi_k} \int_{R} \omega^2$$

$$- b G_D(t_k^\varepsilon, t_j^\varepsilon) \hat{H}_{\varepsilon,j}^\prime(t_k^\varepsilon) \frac{\mu_k^{3/2}}{\xi_k} \int_{R} \omega^2 + O(\varepsilon)$$

(9.3)

On the other hand, integrating (8.7), we obtain

$$\sum_{m=1}^{N} \psi_{\varepsilon,j}(t_m^\varepsilon) \frac{\mu_m^{3/2}}{\xi_m} \int_{R} \omega^2 - H_j(t_j^\varepsilon) \frac{\mu_j^{3/2}}{\xi_j} \int_{R} \omega^2 = O(\varepsilon).$$

(9.4)

Note that by appendix (9.42), we have

$$\sum_{k=1}^{N} \nabla \epsilon G_D(t_k^0, t_j^0) = 0, \quad \sum_{k=1}^{N} G_D(t_k^0, t_j^0) = \lambda_1,$$

(9.5)

where λ_1 is a constant independent of m. By using (9.3),(9.4),(9.5) and the fact $t^\varepsilon \in B_\varepsilon(t^0)$, we have

$$\psi_{\varepsilon,j} = \frac{1}{N} \sum_{k=1}^{N} \psi_{\varepsilon,j}(t_k^\varepsilon) + O(\varepsilon).$$

(9.6)

Hence,

$$\Psi_\varepsilon = -6 b (I - \frac{1}{N} E - 6 b G_D \mu^{3/2} \mathcal{H}^2)^{-1} [(\nabla G_D)^\top \mu^{3/2} \mathcal{H} + G_D \hat{H}^\prime \mu^{3/2} \mathcal{H}^2] + O(\varepsilon)$$

(9.7)
where \bar{H}' and Φ_ε are given by the following:

$$\bar{H}' := (\bar{H}'_ε(t'_k) \delta_{ij}), \quad \Psi_\varepsilon := (\Psi_{\varepsilon,1}, \ldots, \Psi_{\varepsilon,N}), \quad \Psi_{\varepsilon,j} := \begin{pmatrix} \psi_{\varepsilon,j}(t'_{k}) \\ \vdots \\ \psi_{\varepsilon,j}(t'_N) \end{pmatrix}. \quad (9.8)$$

From (9.1), we also see that for $j \neq k$

$$\psi_{\varepsilon,j}(t'_k + \varepsilon y) - \psi_{\varepsilon,j}(t'_k) = \frac{b}{\varepsilon} \int_{-1}^{1} \left| G_D(t'_k + \varepsilon y, z) - G_D(t'_k, z) \right| \psi_{\varepsilon,j} \omega^2_d dz + \frac{2b}{\varepsilon} \times \int_{-1}^{1} \left[G_D(t'_k + \varepsilon y, z) - G_D(t'_k, z) \right] \tilde{\omega}_z \tilde{H}'_ε \tilde{\omega}'_z dz + O(\varepsilon^2)$$

$$= I_{11} + I_{12} + O(\varepsilon^2),$$

where I_{11} and I_{12} are defined by the last equality.

For I_{11}, using (8.4) and (1.10)

$$I_{11} = \frac{b}{\varepsilon} \sum_{m \neq k} \int_{-1}^{1} \left| G_D(t'_k + \varepsilon y, z) - G_D(t'_k, z) \right| \psi_{\varepsilon,j} \omega^2_{d,m} dz$$

$$+ \frac{b}{\varepsilon} \int_{-1}^{1} \frac{\left| t'_k + \varepsilon y - z \right| - \left| t'_k - z \right|}{2D} \psi_{\varepsilon,j} \omega^2_{d,k} dz$$

$$+ \frac{b}{\varepsilon} \int_{-1}^{1} \left[H_D(t'_k + \varepsilon y, z) - H_D(t'_k, z) \right] \psi_{\varepsilon,j} \omega^2_{d,k} dz + O(\varepsilon^2)$$

$$= 6b \sum_{m=1}^{N} \varepsilon y \nabla \varepsilon_{t'_j} G_D(t'_k, t'_m) \frac{\mu_{m2}^{3/2}}{\xi_m^2} \psi_{\varepsilon,j}(t'_m) + b \varepsilon \frac{\psi_{\varepsilon,j}(t'_k)}{\xi_k^2} \times \int_{R} \frac{|y - \tilde{z}| - |\tilde{z}|}{2D} \omega^2_k (\varepsilon \tilde{z} + t'_k) d\tilde{z} + O(\varepsilon^2 y).$$

For I_{12}, using $\nabla \varepsilon_{t'_j} G_D(t'_k, t'_j) = 0$, we can obtain

$$I_{12} = -6b \nabla \varepsilon_{t'_k} G_D(t'_k, t'_j) \tilde{H}'_ε(t'_k) \frac{\mu_{j2}^{3/2}}{\xi_j^2} \varepsilon y + O(\varepsilon^2 y).$$

Hence, for $j \neq k$

$$\psi_{\varepsilon,j}(x_k + \varepsilon y) - \psi_{\varepsilon,j}(x_k) = 6b \sum_{m=1}^{N} \varepsilon y \nabla \varepsilon_{t'_j} G_D(t'_k, t'_m) \frac{\mu_{m2}^{3/2}}{\xi_m^2} \psi_{\varepsilon,j}(t'_m)$$

$$+ b \varepsilon \frac{\psi_{\varepsilon,j}(t'_k)}{\xi_k^2} \times \int_{R} \frac{|y - \tilde{z}| - |\tilde{z}|}{2D} \omega^2_k (\varepsilon \tilde{z} + t'_k) d\tilde{z} + O(\varepsilon^2 y). \quad (9.9)$$

Similarly, for $j = k$, we can obtain

$$\psi_{\varepsilon,j}(x_k + \varepsilon y) - \psi_{\varepsilon,j}(x_k) = 6b \varepsilon y \sum_{m=1}^{N} \nabla \varepsilon_{t'_k} G_D(t'_k, t'_m) \frac{\mu_{m2}^{3/2}}{\xi_m^2} \psi_{\varepsilon,j}(t'_m) + b \varepsilon \frac{\psi_{\varepsilon,j}(t'_k)}{\xi_k^2} \times \int_{R} \frac{|y - \tilde{z}| - |\tilde{z}|}{2D} \omega^2_k (\varepsilon \tilde{z} + t'_k) d\tilde{z} - 6b \varepsilon y \frac{\mu_{k2}^{3/2}}{\xi_k^2} \tilde{H}'_ε(t'_k)$$
Using the Green’s function for Du', we have

$$\bar{H}_t^x = \frac{b}{D\xi_k} \int_R \frac{1}{2D} |y - \bar{z}| (\omega_k \omega'_k)(\varepsilon \bar{z} + t_k^x)d\bar{z}$$

(9.10)

\bar{H}_t^x satisfies

$$\begin{cases}
D\Delta \bar{H}_t^x - \frac{b}{\varepsilon} \omega_k^2 \bar{H}_t^x - 2 \frac{b}{\varepsilon} \omega'_k \omega_{z} \bar{H}_z = 0 & \text{in } (-1, 1), \\
\bar{H}_t^x(\pm 1) = 0.
\end{cases}$$

Using the Green’s function for Du', $-1 < x < 1$, $u(1) = u(-1) = 0$ is

$$\bar{H}_t^x(x) = \int_{-1}^{1} \left[\frac{1}{2D} |x - z| + \frac{1}{2D} (xz - 1) \right] \frac{b}{\varepsilon} \omega_k^2 \bar{H}_t^x + 2 \frac{b}{\varepsilon} \omega'_k \omega_{z} \bar{H}_z dz.$$

Then it is easy to see that

$$\bar{H}_t^x(t_k^x + \varepsilon y) - \bar{H}_t^x(t_k^x) = \frac{b}{D\xi_k} \int_R |y - \bar{z}| (\omega_k \omega'_k)(\varepsilon \bar{z} + t_k^x)d\bar{z}$$

$$+ \frac{b}{\varepsilon} \omega'_k \int_R \frac{|y - \bar{z}| - |\bar{z}|}{2D} \omega_k^2 (\varepsilon \bar{z} + t_k^x) d\bar{z} - \frac{3b}{D} \frac{y}{2} \sum_{m=1}^{N} \frac{\mu_m^{3/2}}{\xi_m}$$

$$+ 2b \omega'_k \frac{b}{D} \int_R \frac{|y - \bar{z}| - |\bar{z}|}{2D} (\omega_k \omega'_k)(\varepsilon \bar{z} + t_k^x) d\bar{z} + O(\varepsilon^2 y),$$

(9.11)

and

$$\bar{H}_t^x(t_k^x) = 6b \sum_{m=1}^{N} \nabla t_k^x G_D(t_k^x, t_m^x) \frac{\mu_m^{3/2}}{\xi_m} + O(\varepsilon^2).$$

(9.12)

Combining (9.9), (9.10) and (9.11), we have

$$\psi_{\varepsilon,j} - \bar{H}_t^x(x) = \psi_{\varepsilon,j} - \bar{H}_t^x(t_k^x)$$

$$= 6b\varepsilon y \sum_{m=1}^{N} \nabla t_k^x G_D(t_k^x, t_m^x) \frac{\mu_m^{3/2}}{\xi_m} - \psi_{\varepsilon,j}(t_m^x) + \delta_{jk} \frac{3b}{D} \frac{y}{2} \sum_{m=1}^{N} \frac{\mu_m^{3/2}}{\xi_m}$$

$$- 6b \nabla t_k^x G_D(t_k^x, t_j^x) \bar{H}_t^x(t_j^x) \frac{\mu_j^{3/2}}{\xi_j^2} \varepsilon y - \delta_{jk} \frac{b}{D} \frac{y}{2} \sum_{m=1}^{N} \frac{\mu_m^{3/2}}{\xi_m}$$

$$+ 6b \nabla t_k^x G_D(t_k^x, t_j^x) \bar{H}_t^x(t_j^x) \frac{\mu_j^{3/2}}{\xi_j^2} \varepsilon y - \delta_{jk} \frac{b}{D} \frac{y}{2} \sum_{m=1}^{N} \frac{\mu_m^{3/2}}{\xi_m}$$

$$+ b \varepsilon \frac{\mu_j^{3/2}}{\xi_j^2} \int_R \frac{|y - \bar{z}| - |\bar{z}|}{2D} \omega_k^2 (\varepsilon \bar{z} + t_k^x) d\bar{z} + \delta_{jk} \frac{b}{D} \int_R \bar{H}_t^x(t_j^x)$$

$$\times \int_R |y - \bar{z}| (\omega_k \omega'_k)(\varepsilon \bar{z} + t_k^x) d\bar{z} + O(\varepsilon^2 y).$$

(9.13)

Next we study the asymptotic expansion of $\phi_{\varepsilon,j}$. Let us denote

$$\phi_{\varepsilon,j}^1(x) = -\nabla t_j^x \sum_{i=1}^{N} \xi_i^{-1} \xi_i \omega_{z,i}$$

(9.14)

$$= \sum_{i=1}^{N} \xi_i^{-2} \omega_{z,i} \nabla t_j^x \xi_i - \xi_i^{-1} \mu_j' \omega_j(\mu_j x) + \frac{1}{2} \mu_j^{-1/2} \mu_j' \omega' \left(\sqrt{\mu_j x} \right)$$
\[\phi_\epsilon^1 = \epsilon \sum_{j=1}^{N} a_j^\epsilon \phi_{\epsilon,j}^1. \]

Lemma 9.1. For \(\epsilon \) sufficiently small, we have

\[\| \phi_\epsilon^1 - \epsilon \phi_\epsilon^1 \|_{H^2(\Omega_\epsilon)} = O(\epsilon^2). \]

Proof. As the first step in the proof of Lemma 9.1, we obtain a relation between \(\psi_\epsilon^1 \) and \(\phi_\epsilon^1 \). Note that similar to the proof of proposition 5.1, \(\tilde{L}_\epsilon \) is invertible from \((K_{new})^\perp\) and \((C_{new})^\perp\) with uniformly bounded invertible for \(\epsilon \) small enough. By (8.10), (8.11), (9.13) and the fact that \(\tilde{L}_\epsilon \) is invertible, we deduce that

\[\| \phi_\epsilon^1 \|_{H^2(\Omega_\epsilon)} = O(\epsilon). \]

Let us decompose

\[\tilde{\phi}_{\epsilon,j}^1 = \frac{1}{\epsilon} \phi_{\epsilon,j}^1 \chi(x-t_j^\epsilon), \]

then

\[\phi_\epsilon^1 = \epsilon \sum_{j=1}^{N} \tilde{\phi}_{\epsilon,j}^1 + O(\epsilon^2) \quad \text{in } H^2(\Omega_\epsilon). \]

Let us also define

\[\tilde{\phi}_{\epsilon,j}^1(y) = \mu_j \phi_{\epsilon,j}^1(\sqrt{\mu_j}y). \]

Suppose that

\[\phi_{\epsilon,j}^1 \to \phi_j \quad \text{in } H^1(\Omega_\epsilon). \]

Set

\[\Phi_\epsilon = (\phi_{\epsilon,1}^1, \ldots, \phi_{\epsilon,N}^1)^T \quad \text{and } \Phi_0 = (\phi_1, \ldots, \phi_N)^T. \]

By the equation for \(\psi_\epsilon^1 \):

\[\begin{cases}
D \Delta \psi_\epsilon^1 - \frac{b}{2} \psi_\epsilon^1 \omega_\epsilon^2 - 2 \frac{b}{\epsilon} \omega_\epsilon \tilde{H}_\epsilon \phi_\epsilon^1 = \epsilon \lambda_\epsilon \psi_\epsilon^1, \\
(\psi_\epsilon^1)'(\pm 1) = 0.
\end{cases} \]

We see that

\[\psi_\epsilon^1(t_k^\epsilon) - \overline{\psi_\epsilon^1} = \frac{b}{\epsilon} \int_{-1}^{1} G_D(t_k^\epsilon, z)[\psi_\epsilon^1 \omega_\epsilon^2 + \omega_\epsilon \tilde{H}_\epsilon \phi_\epsilon^1]dz \]

\[= 6b \sum_{m=1}^{N} G_D(t_k^\epsilon, t_m^\epsilon) \frac{\mu_m^{3/2}}{\xi_m} \psi_\epsilon^1(t_m^\epsilon) + 2b \lambda_1 \epsilon \sum_{m=1}^{N} \int_{\Omega_\epsilon} \omega \phi_{\epsilon,m} + O(\epsilon^2). \]

Thus,

\[\sum_{m=1}^{N} \psi_\epsilon^1(t_m^\epsilon) - N \overline{\psi_\epsilon^1} = \lambda_1 6b \sum_{m=1}^{N} \int_{\Omega_\epsilon} \omega \phi_{\epsilon,m} + O(\epsilon^2). \]

(9.17)

For the equation of \(\psi_\epsilon^1 \), integrating over \((-1, 1), \)

\[6b \sum_{m=1}^{N} \frac{\mu_m^{3/2}}{\xi_m} \psi_\epsilon^1(t_m^\epsilon) + 2b \lambda_1 \epsilon \sum_{m=1}^{N} \int_{\Omega_\epsilon} \omega \phi_{\epsilon,m} = O(\epsilon^2). \]

(9.18)
Combining (9.17) and (9.18), we have

$$\psi_\perp^\perp = \frac{1}{N} \sum_{m=1}^{N} \psi_\perp^\perp (t_m^\perp) + o(\varepsilon).$$

Hence

$$\Psi_\perp^\perp = (\psi_\perp^\perp (t_1^\perp), \ldots, \psi_\perp^\perp (t_N^\perp))^T = 2b\varepsilon(I - \frac{1}{N}E - 6bG_D\mu^{3/2}\mathcal{H}^2)^{-1}G_D\mu^{3/2} \int \omega\Phi_0 + O(\varepsilon^2).$$

This relation between ψ_\perp^\perp and ϕ_\perp^\perp which will be very important for the rest of the proof.

Now we substitute (9.19) into (8.10) and using (9.13), we have Φ_0 satisfies

$$\Delta\Phi_0 - \Phi_0 + 2\omega\Phi_0 - 2\int \omega\beta_0\Phi_0 \omega^2 - \frac{5}{4}\mathcal{H}^{-1}\mu^{-1}\mu'\alpha^0\omega^2 + \mathcal{H}\mu^{-1}\mu'\alpha^0\omega$$

$$- 6b(I - \frac{1}{N}E - 6bG_D\mu^{3/2}\mathcal{H}^2)^{-1}(\nabla G_D)^T \mu^{3/2}\mathcal{H} + \frac{5}{4}G_D\mathcal{H}\mu^{1/2}\mu'\alpha^0\omega^2 = 0.$$

Where

$$\beta_0 = -6b\mathcal{H}^2(I - \frac{1}{N}E - 6bG_D\mu^{3/2}\mathcal{H}^2)^{-1}G_D\mu^{3/2}.$$

Recall $L_0\phi = \Delta\phi - \phi + 2\phi\omega$, using the relations

$$L_0^{-1}\omega^2 = \omega, \quad L_0^{-1}\omega = \frac{1}{2}y\omega' + \omega,$$

by (2.18), (2.19) we have

$$\Phi_0 = \mathcal{H}^2\nabla \xi^0\omega - \mathcal{H}\mu'\mu^{-1}\alpha^0\left(\frac{1}{2}y\omega' + \omega\right). \tag{9.20}$$

Now we compare ϕ_\perp with ϕ_\perp^\perp. By definition

$$\phi_\perp^\perp = \varepsilon \sum_{j=1}^{N} \tilde{\phi}_{\perp, j}^\perp = \varepsilon \sum_{j=1}^{N} \alpha_j^\perp \xi_j^2\tilde{\omega}_{\varepsilon, j}\nabla t_j^\perp\xi_j - \varepsilon \sum_{j=1}^{N} \alpha_j^\perp \xi_j^{-1}[\mu_j'\omega_j(\mu_jx) + \frac{1}{2}\mu_j^{1/2}\mu_j'\omega'((\sqrt{\mu_j}x))]. \tag{9.21}$$

On the other hand

$$\phi_\perp = \varepsilon \sum_{j=1}^{N} \phi_{\varepsilon, j} + O(\varepsilon^2) = \varepsilon \sum_{j=1}^{N} \phi_j\left(\frac{x - t_j^\perp}{\varepsilon}\right) + O(\varepsilon^2). \tag{9.22}$$

Using (9.20) and comparing (9.22) and (9.21), we can obtain (9.16).

From Lemma 9.1 and (9.19), we have that

$$\Psi_\perp^\perp = (\psi_\perp^\perp (t_1^\perp), \ldots, \psi_\perp^\perp (t_N^\perp))^T$$

$$= 12b\varepsilon(I - \frac{1}{N}E - 6bG_D\mu^{3/2}\mathcal{H}^2)^{-1}G_D\mu^{3/2} \times [\mathcal{H}^2\nabla \xi - \frac{3}{4}\mu'\mathcal{H}^{-1}\mu^{-1}]\alpha^0 + O(\varepsilon^2). \tag{9.23}$$
Furthermore,
\[
\psi^\perp_\varepsilon(t_k^\varepsilon + \varepsilon y) - \psi^\perp_\varepsilon(t_k^\varepsilon) = 6b\varepsilon y \sum_{m=1}^{N} \nabla t_f G_D(t_k^\varepsilon, t_m^\varepsilon) \frac{3/2}{\xi_m^2} \psi^\perp_\varepsilon(t_m^\varepsilon) \\
+ 2b\varepsilon^2 y \frac{\xi}{N} \sum_{m=1}^{N} \nabla t_f G_D(t_k^\varepsilon, t_m^\varepsilon) \mu_m^{3/2} \int_{\Omega_\varepsilon} \omega\phi^\perp_{\varepsilon,m} + O(\varepsilon^3). \tag{9.24}
\]

According to (9.20), one has
\[
(\psi^\perp_\varepsilon(t_1^\varepsilon + \varepsilon y) - \psi^\perp_\varepsilon(t_1^\varepsilon), \ldots, \psi^\perp_\varepsilon(t_N^\varepsilon + \varepsilon y) - \psi^\perp_\varepsilon(t_N^\varepsilon)))^T \\
= 2b\varepsilon^2 y \nabla G_D \mu^{3/2} H^2 (I - \frac{1}{N} E - 6bG_D \mu^{3/2} H^2)^{-1} \\
\times (I - \frac{1}{N} E) H^{-2} (\int_R \omega \Phi_0) a^0 + O(\varepsilon^3). \tag{9.25}
\]

Proof of lemma 8.1. Substituting (9.13) into the computation of J_{1,l}, we obtain that
\[
J_{1,l} = \varepsilon \sum_{j=1}^{N} \sum_{k=1}^{N} a_{k_j} \int_{-1}^{1} (\tilde{\omega}_{\varepsilon,j})^2 [\psi_{\varepsilon,k} - \delta_{jk} \tilde{H}_\varepsilon'] \tilde{\omega}_{\varepsilon,l} \, dx \\
= \varepsilon^2 \sum_{k=1}^{N} a_{k} \int_R (\tilde{\omega}_{\varepsilon,l})^2 [\tilde{\omega}_{\varepsilon,l}] (t_f^\varepsilon + \varepsilon y) \left\{ [\psi_{\varepsilon,k} - \delta_{jk} \tilde{H}_\varepsilon'](t_f^\varepsilon + \varepsilon y) \\
- [\psi_{\varepsilon,k} - \delta_{jk} \tilde{H}_\varepsilon'](t_f^\varepsilon) \right\} \, dy \\
= - \varepsilon^2 \left(2b \int_R \omega^3 \right) \frac{\mu_l^3}{\xi_l^2} \sum_{k=1}^{N} a_{k} \left\{ \sum_{m=1}^{N} \nabla t_f G_D(t_f^\varepsilon, t_m^\varepsilon) \frac{3/2}{\xi_m^2} \psi_{\varepsilon,j}(t_m^\varepsilon) \\
- \nabla t_f G_D(t_f^\varepsilon, t_k^\varepsilon) \frac{3/2}{\xi_k^2} \tilde{H}_\varepsilon'(t_f^\varepsilon) + \gamma \delta_{kl} + O(\varepsilon^3) \right\},
\]
where \(\gamma = \frac{1}{2D} \sum_{m=1}^{N} \frac{\mu_m^{3/2}}{\xi_m^2} \).

Therefore, combining (9.7) and (9.12), we have
\[
J_1 = - \varepsilon^2 \left(2b \int_R \omega^3 \right) G_D \mu^{5/2} H^3 Q a^0 + \varepsilon^2 \left(2b \int_R \omega^3 \right) \mu^{5/2} H^3 \nabla G_D \mu^{3/2} H^2 \\
\times (I - \frac{1}{N} E - 6bG_D \mu^{3/2} H^2)^{-1} (I - \frac{1}{N} E + 6bG_D \mu^{3/2} H^2) \nabla \xi \\
- 9bG_D \mu^{1/2} H a^0 + O(\varepsilon^3),
\]
where Q was given by (2.20).

By (8.15), we have
\[
J_2 = -3\varepsilon^2 \mu'' \mu^{3/2} H^3 a^0 + O(\varepsilon^3).
\]

By (9.24), we have
\[
J_{3,l} = \int_{-1}^{1} \tilde{\omega}_{\varepsilon,l}(x) \psi_{\varepsilon}^\perp(x) - \psi_{\varepsilon}^\perp(t_f^\varepsilon) \, dx
\]
\[
\begin{align*}
&= \frac{1}{\xi} \int_R (\omega_r^2 \omega_l^2) (x + t_i^j)(y + t_i^j) [\psi^+ (y + t_i^j) - \psi^+ (t_i^j)] dy \\
&= \frac{1}{\xi} \int_R (\omega_r^2 \omega_l^2) (x + t_i^j) dy \left\{ 6b \xi \sum_{m=1}^N \nabla \epsilon \phi_i G_D(t_k^m, t_m^k) \mu_m^{3/2} \psi^+ (t_m^k) \\
&\quad + 2b \xi^2 \sum_{m=1}^N \nabla \epsilon \phi_i G_D(t_k^m, t_m^k) \mu_m^{3/2} \int_{\Omega_x} \omega \psi^+ (t_m^k) \right\} + O(\varepsilon^3).
\end{align*}
\]
Hence, by (9.25), we have
\[
J_3 = - \varepsilon^2 \left(4b \int_R \omega^3 \mu^{5/2} \nabla \phi_i G_D \mu^{3/2} \omega^2 (I - \frac{1}{N} E - 6b G_D \mu^{3/2} \omega^2)^{-1} (I - \frac{1}{N} E) \int_R (\phi^+ \omega^2) dy + O(\varepsilon^3).
\]
For \(J_{4,l} \) and \(J_{5,l} \),
\[
J_{4,l} = \int_{-1}^1 \mu'(x) \phi^+ \dot{\psi}_{x,l} dx
\]
\[
= \varepsilon^2 \mu'(t_i^j) \mu_l^{3/2} \int_R (\phi^+ \omega) (y) dy + O(\varepsilon^3),
\]
\[
J_{5,l} = - \int_{-1}^1 (\dot{\psi}_{x,l})^2 \dot{\psi}_l dx
\]
\[
= - \varepsilon^2 \int_R (\phi^+ \omega^2) dy + O(\varepsilon^3).
\]
By (9.20), we obtain
\[
J_4 = 6\varepsilon^2 \mu'^2 \mu^{3/2} \int_R (\phi^+ \omega^2) dy + O(\varepsilon^3),
\]
\[
J_5 = - 9\varepsilon^2 \mu'^2 \mu^{3/2} \int_R (\phi^+ \omega^2) dy + O(\varepsilon^3).
\]
This proof is completed. \(\square\)

Appendix. We first analyze problem (7.7) in this section. The problem (7.7) is equivalent to
\[
D \psi''_j = 0 \quad -1 < x < 1, \quad \psi_j(\pm 1) = 0; \quad [\psi_j] = 0; \quad (9.26)
\]
\[
[D \psi'_j] = \frac{6b \mu_j^{3/2}}{\xi_j^2} \psi_j(x_j) + 2b \int_R \omega \psi_j, \quad j = 1, \ldots, N. \quad (9.27)
\]
Here we use \([f]_j\) denotes the jump of \(f\) at \(x_j\).
On the one hand, by (9.26), for \(-1 < x < t_0^j\), \(\psi''_j = \psi'_j = 0\), we have
\[
\psi_j(x) = \psi_j(x_1) = \eta_1. \quad (9.28)
\]
Similarly, for \(t_i^{0-1} < x < t_i^0\), \(i = 2, \ldots, N,\)
\[
\psi_j(x) = \eta_{i-1} \frac{t_i^0 - x}{t_i^0 - t_i^{0-1}} + \eta_i \frac{x - t_i^{0-1}}{t_i^0 - t_i^{0-1}}.
\]
Hence
\[
\psi'_j(x) = \frac{N}{2} (\eta_i - \eta_{i-1}) \quad \text{for} \quad t_i^{0-1} < x < t_i^0. \quad (9.29)
\]
Finally, for $x_N < x < 1$, we have
\begin{equation}
\psi'_0(x) = 0, \quad \psi_0(x) = \eta_N. \tag{9.30}
\end{equation}

On the other hand, by (9.27) and (9.28), at t^0_1,
\begin{equation}
\frac{DN}{2} [\eta_2 - \eta_1] = \frac{6b\mu_1^{3/2}}{\xi^2_1} \eta_1 + 2b \int_R \omega_1 \phi_1. \tag{9.31}
\end{equation}

At t^0_i, $i = 2, \ldots, N - 1$, using (9.29), we have
\begin{equation}
\frac{DN}{2} [\eta_{i+1} - 2\eta_i + \eta_{i-1}] = \frac{6b\mu_i^{3/2}}{\xi^2_i} \eta_i + 2b \int_R \omega_i \phi_i. \tag{9.32}
\end{equation}

At t^0_N, using (9.30), we have
\begin{equation}
\frac{DN}{2} [0 - (\eta_N - \eta_{N-1})] = \frac{6b\mu_N^{3/2}}{\xi^2_N} \eta_N + 2b \int_R \omega_N \phi_N. \tag{9.33}
\end{equation}

From (9.31), (9.32) and (9.33), we obtain
\begin{equation}
(D + C)\Psi = \eta, \tag{9.34}
\end{equation}

where those matrices D, C, Ψ and η have been given by (7.10).

Next, let us study Green’s function $G_D(x, z)$:
\begin{equation}
\begin{cases}
DG''_D(x, z) + \frac{1}{2} - \delta_z = 0 & \text{in } (-1, 1), \\
\int_{-1}^1 G_D(x, z) dx = 0, & \\
G_D(-1, z) = G_D(1, z) = 0.
\end{cases}
\end{equation}

We easily calculate
\begin{equation}
G_D(x, z) = \begin{cases}
\frac{1}{2D} [\frac{1}{3} - \frac{(x+1)^2}{4} - \frac{(1-z)^2}{4}], & -1 < x \leq z, \\
\frac{1}{2D} [\frac{1}{3} - \frac{(z+1)^2}{4} - \frac{(1-x)^2}{4}], & z < x < 1.
\end{cases} \tag{9.35}
\end{equation}

We decompose
\begin{equation}
G_D(x, z) = \frac{1}{2D} |x - z| + H_D(x, z). \tag{9.36}
\end{equation}

By simple computation,
\begin{equation}
H_D(x, z) = \frac{1}{2D} \left[-\frac{1}{3} - \frac{x^2}{2} - \frac{z^2}{2} \right]. \tag{9.37}
\end{equation}

For $x \neq z$ we calculate
\begin{equation}
\nabla_x \nabla_z G_D(x, z) = 0, \quad \nabla_x G_D(x, z) = \begin{cases}
-\frac{x+1}{2D} & \text{if } x \leq z, \\
-\frac{x}{2D} & \text{if } z \leq x.
\end{cases} \tag{9.38}
\end{equation}

We further have
\begin{equation}
\nabla_x G_D(x, z) \big|_{x=\zeta} = \nabla_x H_D(x, z) \big|_{x=\zeta} = -\frac{z}{2D}. \tag{9.39}
\end{equation}

Let $x_j = -1 + \frac{2j-1}{N}$. So we obtain
\begin{equation}
\nabla G_D = (c_{ij})(-\frac{1}{2D}), \tag{9.40}
\end{equation}

where
\begin{equation}
c_{ij} = \begin{cases}
x_i + 1, & \text{if } i < j, \\
x_i - 1, & \text{if } j > i, \\
x_i, & \text{if } j = i.
\end{cases} \tag{9.41}
\end{equation}
We claim that
\[\sum_{i=1}^{N} G_D(x_i, x_j) = \lambda_1 = - \frac{1}{6DN}, \]
\[\sum_{j=1}^{N} \nabla_{x_i} G_D(x_i, x_j) = \sum_{i=1}^{N} \nabla_{x_j} G_D(x_i, x_j) = 0, \] (9.42)
where \(x_j = -1 + \frac{2(j-1)}{N}, \ i, j = 1, \ldots, N. \)

Proof. By direct computation,
\[2D \sum_{j=1}^{N} G_D(x_i, x_j) = N \left(-\frac{1}{3} - \frac{x_i^2}{2} - \frac{1}{2} \right) + \frac{2}{N} \sum_{j=1}^{N} (j - \frac{1}{2}) \]
\[- \frac{2}{N^2} \sum_{j=1}^{N} (j - \frac{1}{2})^2 + \frac{2}{N} \sum_{j=1}^{N} |j - i| \]
\[= (-\frac{1}{3} - \frac{x_i^2}{2})N + \frac{2}{N} \sum_{j=1}^{N} |j - i| - \frac{1}{2} \sum_{j=1}^{N} x_j^2 \]
\[= -\frac{1}{3}N = 2D\lambda_1. \]
\[\sum_{j=1}^{N} \nabla_{x_i} G_D(x_i, x_j) = \sum_{j=1}^{N} c_{ij} = \sum_{j=1}^{N} x_i + (N - i) = x_iN + N - 2i - 1 = 0. \]

By \(G_D(x_i, x_j) = G_D(x_i, x_j) \), we know (9.42) is true. \(\square \)

REFERENCES

[1] W. W. Ao, M. Musso and J. C. Wei, On spikes concentrating on line-segments to a semilinear Neumann problem, *Journal of Differential Equations*, 251 (2011), 881–901.
[2] D. Benson, P. Maini and J. Sherratt, Unravelling the Turing bifurcation using spatially varying diffusion coefficients, *J. Math. Biol.*, 37 (1998), 381–417.
[3] A. Floer and A. Weinstein, Nonspraying wave packets for the cubic Schrödinger equations with a bounded potential, *J. Functional Analysis*, 69 (1986), 397–408.
[4] D. Gilbarg and N. Turdinger, *Elliptic Partial Differential Equations of Second Order*, Springer, Berlin, 1983.
[5] C. F. Gui and J. C. Wei, Multiple interior peak solutions for some singularly perturbation problems, *J. Differential Equations*, 158 (1999), 1–27.
[6] C. F. Gui, J. C. Wei and M. Winter, Multiple boundary peak solutions for some singularly perturbed Neumann problems, *Ann. Inst. H. Poincaré Anal.*, 17 (2000), 47–82.
[7] D. Iron, J. C. Wei and M. Winter, Stability analysis of Turing patterns generated by the Schnakenberg model, *J. Math. Biol.*, 49 (2004), 358–390.
[8] Y. G. Oh, Existence of semi-classical bound states of nonlinear Schrödinger equations with potentials of the class \((V)\), *Comm. Partial Differential Equations*, 13 (1990), 1499–1519.
[9] Y. G. Oh, On positive multi-bump bound states of nonlinear Schrödinger equations under multiple-well potentials, *Comm. Math. Phys.*, 131 (1990), 223–253.
[10] J. Schnakenberg, Simple chemical reaction systems with limit cycle behavior, *J. Theoret. Biol.*, 81 (1979), 389–400.
[11] A. Turing, The chemical basis of morphogenesis, *Phil. Trans. Roy.*, 237 (1952), 37–72.
[12] M. Ward and J. C. Wei, Asymmetric spike patterns for the one-dimensional Gierer-Meinhardt model: equilibria and stability, *J. Appl. Math.*, 13 (2002), 283–320.
[13] M. Ward and J. C. Wei, The existence and stability of asymmetric spike patterns for the Schnakenberg model, *Michigan Math. J.*, 109 (2002), 229–264.
[14] J. C. Wei, On single interior spike solutions of Gierer-Meinhardt system: Uniqueness and spectrum estimates, *European. J. Appl. Mth.*, 10 (1999), 353–378.
[15] J. C. Wei and M. Winter, Stationary solutions for the Cahn-Hilliard equation, *Ann. Inst.H.Poincaré Anal.* 348 (1996), 975–995.
[16] J. C. Wei and M. Winter, On the Cahn-Hilliard equations: Interior spike layer solutions, *J. Differential Equations*, 148 (1998), 231–267.
[17] J. C. Wei and M. Winter, Spikes for the two-dimensional Gierer-Meinhardt system: The weak coupling case, *J.Nonlinear Science*, 11 (2001), 415–458.
[18] J. C. Wei and M. Winter, Spikes for the Gierer-Meinhardt system in the two dimensions: The weak coupling case, *J.Differential Equations*, 178 (2002), 478–518.
[19] J. C. Wei and M. Winter, Existence and stability analysis of asymmetric patterns for the Gierer-Meinhardt system, *J. Math.Pures.Appl.*, 83 (2004), 433–476.
[20] J. C. Wei and M. Winter, Existence, Classification and Stability analysis of multiple-peaked solution for the Gierer-Meinhardt system in \mathbb{R}^1, *Methods and Applications of Analysis*, 14 (2007), 119–163.
[21] J. C. Wei and M. Winter, On the Gierer-Meinhardt system with precursors, *Discrete Contin. Dyn. Syst.*, 25 (2009), 303–398.
[22] J. C. Wei and M. Winter, Flow-distributed spikes for Schnakenberg Kinetics, *Mathematical Biology*, 64 (2012), 211–254.

Received January 2018; revised March 2018.

E-mail address: wwas@whu.edu.cn

E-mail address: chaoliuxh@whu.edu.cn