On the total vertex irregularity strength of comb product of cycle and path with order 3

R Ramdani¹*, M A Ramdhani² and G G A Delilah³

¹Department of Mathematics, Faculty of Science and Technology, UIN Sunan Gunung Djati Bandung, Jl A.H. Nasution No 105 Bandung, Indonesia
²Department of Informatics, Faculty of Science and Technology, UIN Sunan Gunung Djati Bandung, Jl A.H. Nasution No 105 Bandung, Indonesia
³Department of Chemistry, Faculty of Science and Technology, UIN Sunan Gunung Djati Bandung, Jl A.H. Nasution No 105 Bandung, Indonesia

*rismawatiramdani@uinsgd.ac.id

Abstract. Let \(G = (V(G),E(G)) \) be a graph and \(k \) be a positive integer. A total \(k \)-labeling of \(G \) is a map \(f: V(G) \cup E(G) \rightarrow \{1, 2, \ldots, k\} \). The vertex weight \(v \) under the labeling \(f \) is denoted by \(w_f(v) \) and defined by \(w_f(v) = f(v) + \sum_{u \in E(G)} f(uv) \). A total \(k \)-labeling of \(G \) is called vertex irregular if there are no two vertices with the same weight. The total vertex irregularity strength of \(G \), denoted by \(tvs(G) \), is the minimum \(k \) such that \(G \) has a vertex irregular total \(k \)-labeling. Let \(G \) and \(H \) be two connected graphs. Let \(o \) be a vertex of \(H \). The comb product between \(G \) and \(H \), denoted by \(G \circ_o H \), is a graph obtained by taking one copy of \(G \) and \(|V(G)| \) copies of \(H \) and grafting the \(i \)-th copy of \(H \) at the vertex \(o \) to the \(i \)-th vertex of \(G \). In this paper, we determine the total vertex irregularity strength of comb product of cycle and path with order 3.

1. Introduction

A total \(k \)-labeling of a graph \(G \) is a map \(f: V(G) \cup E(G) \rightarrow \{1, 2, \ldots, k\} \) for a positive integer \(k \). A kind of total \(k \)-labeling of graph was introduced in 2007 by Baća et al. Name of the labeling is vertex irregular total \(k \)-labeling. [1] The definition of the labeling is given in Definition 1.

Definition 1. [1] Let \(G = (V,E) \) be a graph. A total \(k \)-labeling \(f: V \cup E \rightarrow \{1, 2, \ldots, k\} \), for an integer \(k \), is called a vertex irregular total \(k \)-labelling of \(G \) if every two distinct vertices \(u \) and \(v \) in \(V \) satisfy \(w_f(u) \neq w_f(v) \), where \(w_f(u) \) is defined by \(w_f(u) = f(u) + \sum_{u \in E} f(uv) \). The notation \(w_f(u) \) is called by the weight of \(u \) under the labeling \(f \).

Definition 2. [1] The total vertex irregularity strength of \(G \), denoted by \(tvs(G) \), is the minimum \(k \) for which a graph \(G \) has a vertex irregular total \(k \)-labeling.

In [2], Nurdin et al. determined another lower bound of \(tvs(G) \) for \(G \) a connected graph as follows.

Theorem 1 [2] Let \(G \) be a connected graph having \(n_i \) vertices of degree \(i \) \((i = \delta, \delta + 1, \delta + 2, \ldots, \Delta) \), where \(\delta \) and \(\Delta \) are the minimum and the maximum degree of \(G \), respectively. Then
\[\text{tvs}(G) \geq \max \left\{ \left\lceil \frac{\delta + n \delta}{\delta + 1} \right\rceil, \left\lceil \frac{\delta + n \delta + n \delta + 1}{\delta + 2} \right\rceil, \ldots, \left\lceil \frac{\delta + \sum_{i=1}^{n} n_i}{\Delta + 1} \right\rceil \right\}. \]

Rajasing et al obtained a bound for the total vertex irregularity strength of swing graph, triangular graph, and series-triangular graph [3]. Ramdani et al. determined an upper bound on the total vertex irregularity strength of Cartesian product of \(P_2 \) and arbitrary regular graph \(G \) [4]. Ramdani et al. determined an exact value of \(\text{tvs}(G) \) for \(G \) are ladders and books [5,6]. Nurdin et al. gave the exact values of the total vertex irregularity strength for several types of trees and disjoint union of paths [7]. In Nurdin et al determined the total vertex irregularity strength for several types of trees [8]. Przybylo, in, gave a linear bound on \(\text{tvs}(G) \)[9]. In Wijaya and Slamin constructed the total vertex irregular labeling of wheels, fans, suns, and friendship [10].

In this paper, we determine the total vertex irregularity strength of comb product of cycle and path with order 3.

Definition 3. Let \(G \) and \(H \) be two connected graphs. Let \(o \) be a vertex of \(H \). The comb product between \(G \) and \(H \), denoted by \(G \bowtie o \ H \), is a graph obtained by taking one copy of \(G \) and \(|V(G)| \) copies of \(H \) and grafting the \(i \)-th copy of \(H \) at the vertex \(o \) to the \(i \)-th vertex of \(G \).

2. **Methodology**

To get the exact value of the total vertex irregularity strength of comb product of cycle and path with order 3, we consider a lower bound and an upper bound on the total vertex irregularity strength of the graph. We use Theorem 1 to get a lower bound on \(\text{tvs}(C_m \bowtie P_3) \). On the other hand, to get an upper bound on \(\text{tvs}(C_m \bowtie P_3) \) we construct an edge irregular total labeling by minimizing the maximum label.

3. **Main result**

The exact value of \(\text{tvs}(C_m \bowtie_o P_3) \) is given by Theorem 2.

Theorem 2 Let \(C_m \) be a cycle with \(m \) vertices and \(P_3 \) be a path with 3 vertices. Let \(o \) be a vertex on \(P_3 \) with degree 2, then for \(m \geq 3 \),

\[\text{tvs}(C_m \bowtie_o P_3) = m + 1. \]

Proof. Let the vertex set of \(C_m \bowtie_o P_3 \) be

\[\{ v_i^j \mid 1 \leq i \leq m, \ 0 \leq j \leq 2 \} \]

and the edge set be

\[\{ v_i^{0}v_i^{j}, v_i^{0}v_i^{j+1} \mid 1 \leq i \leq m \} \cup \{ v_i^{0}v_{i+1} \mid 1 \leq i \leq m - 1 \} \cup \{ v_m^{0}v_1^{0} \}. \]

Figure 1 gives an illustration of the notating of vertices in \(C_m \bowtie_o P_3 \) for \(m = 6 \).
Graph $C_m \triangleright_o P_3$ has $2m$ vertices with degree 1 and m vertices with degree 4. By using Theorem 1, we have
\[\text{tvs}(G) \geq \max \left\{ \left\lceil \frac{1 + 2m}{1 + 1} \right\rceil, \left\lceil \frac{1 + 2m + m}{4 + 1} \right\rceil \right\} = \left\lceil \frac{1 + 2m}{1 + 1} \right\rceil = m + 1. \]
So that, we have a lower bound on $\text{tvs}(C_m \triangleright_o P_3)$ is $m + 1$.

Define a vertex irregular total $(m+1)$-labeling of $C_m \triangleright_o P_3$ as follows.
\[
\begin{align*}
 f(v_i^1) &= f(v_i^2) = f(v_i^0 v_i^1) = i, \text{ for } 1 \leq i \leq m; \\
 f(v_i^0 v_i^1) &= i + 1 \text{ for } 1 \leq i \leq m; \\
 f(v_i^0) &= m + 1, \text{ for } 1 \leq i \leq m; \\
 f(v_{m+2}^0 v_i^0) &= f(v_i^0 v_{i+1}^0) = m + 1, \text{ for } 1 \leq i \leq m - 1.
\end{align*}
\]

From the labeling f, there are no two vertices with the same weight. The maximum label used in the labeling f is $m + 1$. So that, f is a vertex irregular total $(m+1)$-labeling of $C_m \triangleright_o P_3$. So, we have an upper bound on $\text{tvs}(C_m \triangleright_o P_3)$ is $m + 1$.

Since a lower bound and an upper bound on $\text{tvs}(C_m \triangleright_o P_3)$ is $m + 1$, we have an equality $\text{tvs}(C_m \triangleright_o P_3) = m + 1$.

An illustration of the labelling f and the weight of vertices under the labelling are given by Figure 2.
Figure 2. The vertex irregular total 7-labelling f of $C_6 \triangleright \!_o P_3$

The weight of each vertex of $C_6 \triangleright \!_o P_3$, under the labeling in Figure 2, can be seen in the Figure 3.

Figure 3. The weight of vertices of $C_6 \triangleright \!_o P_3$ under the labeling f in the Figure 2.

4. Conclusion

By using Theorem 1, we have a lower bound on $tvs(C_m \triangleright \!_o P_3)$ is $m + 1$.

On the other hand, there are the vertex irregular total labeling f with the maximum label is $m+1$. So, we have an upper bound on $tvs(C_m \triangleright \!_o P_3)$ is $m + 1$.

So, we can conclude that the exact value of $tvs(C_m \triangleright \!_o P_3)$ is $m + 1$.
Acknowledgement
Author acknowledges the support by UIN Sunan Gunung Djati Bandung. The author wishes to thank the referees for their thoughtful suggestions.

References
[1] M Bača, S Jendrol’, M Miller and J Ryan 2007 On irregular total labellings Discret. Math. 307 1378–88
[2] Nurdin, E T Baskoro, A N M Salman and N N Gaos 2010 On the total vertex irregularity strength of trees Discrete Math. 310 3043–48
[3] I Rajasingh, B Rajan and V Annammi 2012 On total vertex irregularity strength of triangle related graphs Annals of Pure and Applied Mathematics 1(2) 108–16
[4] R Ramdani, A N M Salman and H Assiyatun 2015 An upper bound on the total vertex irregularity strength of the Cartesian product of P_2 and an arbitrary regular graph Procedia Computer Science 74 105–11
[5] R Ramdani 2011 Pelabelan total vertex irregular pada graf tangga Prosiding Konferensi Nasional Sains dan Aplikasinya 349–56
[6] R Ramdani and H Assiyatun 2011 Total vertex irregularity strength dari graf buku Jurnal Teori dan Terapan Matematika 10(1) 1–14
[7] Nurdin, A N M Salman, N N Gaos and E T Baskoro 2009 On the total vertex-irregular strength of a disjoint union of t copies of a path J. Combin. Math. Combin. Comput. 71 227–33
[8] Nurdin, E T Baskoro, A N M Salman and N N Gaos 2010 On the total vertex irregular labellings for several types of trees Utilitas Mathematica 83 277–90
[9] J Przybylo 2009 Linear bound on the irregularity strength and the total vertex irregularity strength of graphs SIAM J. Discrete Math. 23 511–16
[10] K Wijaya and Slamin 2008 Total vertex irregular labeling of wheels, fans, suns, and friendship graphs J. Combin. Math. Combin. Comput. 65 103–12