Enhanced performance of in-plane transition metal dichalcogenides monolayers by configuring local atomic structures

Yao Zhou, Jing Zhang, Erhong Song, Junhao Lin, Jiadong Zhou, Kazu Suenaga, Wu Zhou, Zheng Liu, Jianjun Liu, Jun Lou & Hong Jin Fan

The intrinsic activity of in-plane chalcogen atoms plays a significant role in the catalytic performance of transition metal dichalcogenides (TMDs). A rational modulation of the local configurations is essential to activating the in-plane chalcogen atoms but restricted by the high energy barrier to break the in-plane TM-X (X = chalcogen) bonds. Here, we theoretically design and experimentally realize the tuning of local configurations. The electron transfer capacity of local configurations is used to screen suitable TMDs materials for hydrogen evolution reaction (HER). Among various configurations, the triangular-shape cobalt atom cluster with a central sulfur vacancy (3CoMo$_2$V$_3$) renders the distinct electrocatalytic performance of MoS$_2$ with much reduced overpotential and Tafel slope. The present study sheds light on deeper understanding of atomic-scale local configuration in TMDs and a methodology to boost the intrinsic activity of chalcogen atoms.
MoS$_2$ is a promising candidate to replace Pt for electrocatalytic hydrogen evolution reaction (HER) due to its environmental friendly and low cost characteristics$^{1-3}$. While increasing the conductivity via forming heterojunction bilayer with a conductive substrate can promote the overall catalytic performance$^{4-6}$, the performance of pristine MoS$_2$ is restricted by the density of active sites$^{7-10}$. The pursuit to maximize MoS$_2$ utility inspires researchers to explore various ways to rouse the activity of inert sulfurs in the MoS$_2$ basal plane. For example, edge-site engineering8,11, phase transformation12,13, amorphization14,15, and in-plane doping/vacancy modifications$^{16-20}$ have been reported. Notably, changing the local configurations$^{18,21-24}$ by introducing atomic defects (doping or vacancy) is preferable as defected MoS$_2$ exhibits better stability compared to transformed IT’ phase25 and amorphous MoS$_2$16. However, the reported activity of in-plane sulfur enhanced by local configuration modification is still far from that of Pt-based catalysts26. This is because the large energy are required to break the in-plane Mo-S bonds. In fact, few types of atomic local configurations have been realized in the basal plane of MoS$_2$$^{27-30}$ so the tuning ability of local configurations is quite limited so far16. Hence, in order to improve the intrinsic activity of in-plane sulfur atoms, it is essential to understand the intrinsic correlation and explore new methodologies to enrich stable and highly efficient local configurations.

Herein, we conduct both computational and experimental investigations in order to establish a correlation between local configuration and the electrocatalytic activity of monolayer MoS$_2$. A group of stable local configurations with non-noble period-IV single atom or clusters (Co, Fe, V, and Cr) accompanying additional sulfur vacancy in the in-plane domain of MoS$_2$ have been attained. Given the correlation between binding strength and local configurations electronegativity, the activity of in-plane sulfur can be regulated by electron transfer capacity of local configurations. The peculiar triangular-shape Co atom cluster surrounding one sulfur vacancy configuration (viz., 3Co$_{Mo-S}$-V$_S$) is identified by both calculation and experiments to be most efficient to activate the inert sulfur sites. Correspondingly, a distinct enhancement in HER activity is achieved ($\eta_{1/2}$: 75 mV and Tafel: 57 mV dec$^{-1}$), exhibiting the highest intrinsic HER activity among MoS$_2$ materials. The microrcell HER measurements show a volcano-like relationship between content of specific local configuration and activity, which corroborates the optimized concentration of 3Co$_{Mo-S}$-V$_S$. Therefore, as demonstrated in the present work, it is possible to further activate the in-plane sulfur sites by rational engineering of the local configurations. This result may provide a route to unleash the electrocatalytic potential of TMD materials for efficient hydrogen generation in acidic solutions.

Results

Design efficient and stable local configurations. The activation of the basal plane in TMDs have been extensively studied to achieve the stable structure and enhance their catalytic activity$^{31-33}$. Sulfur vacancy (Vs) on the surface is an electron donor and can induce a localized gap state in MoS$_2$. Below a critical carrier density, the transport of donor states is governed by nearest-neighbor hopping at high temperatures and variable-range hopping (VRH) at low temperatures$^{32,34-36}$. Regional charge states around a defect structure are suggested to make an important contribution to regulating the catalytic activity. Based on the above analysis, we believe that it is reasonable to monitor the defects induced Bader charge fluctuation, and the H adsorption to define the active sites through DFT computational screening.

To study the TM and synergistic effect of Vs on sulfur sites, we have considered six configurations including TM atoms (TM: Co, V, Fe, and Cr; TM amounts from 1 to 3) with or without Vs (structures see in Supplementary Fig. 1 and Supplementary Note 1) that are set as models to screen stable catalytic structures through DFT calculations. The hydrogen adsorption free energy (ΔG_{H}) is an effective descriptor to predict the activity for various catalyst systems37. The ideal value of ΔG_{H} is 0 eV, which corresponds to a thermoneutral state of the adsorbed atomic hydrogen and efficient proton/electron transfer and hydrogen release2. The correspondingly calculated ΔG_{H} of monolayer MoS$_2$ with varied local configurations are further exhibited in Supplementary Fig. 2 and Supplementary Table 1, indicating the stronger H* adsorption on atomically structured MoS$_2$ than on intact MoS$_2$. In addition to intrinsic activity (ΔG_{H}), structural stability affecting the final electrochemical durability of catalysts should be considered. Based on the formation energies of all possible configurations (Supplementary Fig. 3), the 3Co$_{Mo-S}$-Vs, 3Fe$_{Mo-S}$-Vs, 1V$_{Mo}$ and 1C$_{Mo}$, are identified as the most stable structures in the different possible TM-introduced MoS$_2$ (Fig. 1a).

Together with the activity (value of ΔG_{H}), the 3Co$_{Mo-S}$-Vs is expected to be the potential structure with both good stability and high activity. The predicted HER activity of MoS$_2$ with different local configurations following the trend ΔG_{H}: 3Co$_{Mo-S}$-Vs > 1V$_{Mo}$ > 3Fe$_{Mo-S}$-Vs > 1C$_{Mo}$ (Fig. 1b). This trend remains the same with solvation correction, as demonstrated by our calculations with the implicit solvation model (Supplementary Fig. 4). The hydrogen adsorption free energy (ΔG_{H}) on basal plane of intact MoS$_2$ is far away from the optimal value. After tuning by local configurations, the ΔG_{H} value of -0.085 eV comparable to that of Pt38, is achieved due to the much stronger bonding strength in S atoms with the assistance of 3Co$_{Mo-S}$-Vs, which surpasses predicted activity of edge sites8. As expected, different configurations induce varied activity; all the structures with co-existence of Vs and TM$_{Mo}$ atoms synergistically tunes the ΔG_{H} when compared to single one (Supplementary Table 1). In addition, the monolayers are used instead of porous 3D materials, minimizing the double layer effect induced by porosity. It is supported by CV curves in non-Faradaic region (blue rectangular in Supplementary Fig. 5) with nearly no hysteresis loop.

It is important to reveal the underlying mechanism of enhanced catalytic activity due to the local configuration. The above analysis indicates that the defects (TM substitution and S-vacancy) and H adsorption could induce charge fluctuation of the regional structure due to electron delocalization of MoS$_2$. In principle, the catalytic activity depends on the charge transfer capacity before and after H adsorption. To identify the effective catalytic structure, we show the nearest and the next-neighbor atoms which possibly induce a charge fluctuation in HER (Supplementary Fig. 6 and Supplementary Note 2). First, the nearest metals (nMo and doped (3-n)TM, n = 0, 1, 2) and the adorption S1 atom have relatively large change in charge (Fig. 1d–f, Supplementary Figs. 7–10). As a result, we consider (3-n)TM–S–nMo as the first-order catalytic structure that is comprised of TM substitutes, adsorption S atom, and the nearest Mo atoms. In contrast, the change in charge for the next-neighbor S and Mo atoms is relatively small. So they are considered as the second-order structure as the distance from the adsorption site is large. As a result, it is reasonable to assume the charge regulation of the second-order catalytic structure has a negligible effect on that of the first-order one. The radial distributions of charge distribution are presented in Supplementary Figs. 7–10. Therefore, in our study, we calculate the total charge difference of adsorption S atom and the nearest metals to depict the charge transfer capacity to S–H bonds. The amount of charge transfer of local configuration (namely, atoms to induce the charge transfer includes: nearest nMo, doped (3-n)TM, n = 0, 1, 2 and adsorption S1 atom) is linearly correlated with ΔG_{H}. This result...
indicates a charge regulation effect by the local configuration on HER activity (Fig. 1c). The linear correlation indicates that charge transfer capacity induced by varied local configurations are mainly delocalized in the first-order catalytic structure instead of on individual sulfur atoms. We found that, a charge difference around 0.07e⁻ (which corresponds to \(\Delta G_{\text{H}} = 0 \) eV) should correspond to a high HER catalytic activity.

Realization and characterizations of local configurations. In light of the superior activity induced by the predicted local configurations, we employ the chemical vapor deposition (CVD) method to synthesize several monolayer MoS₂ samples with various in-plane local configurations (Methods). The optical images of Co, Fe, Cr, and V-containing MoS₂ monolayers are shown in Supplementary Fig. 11a-d. Raman spectra confirm that all the as-prepared samples preserve the lattice structure of MoS₂ (Supplementary Fig. 12), as seen from the characteristic \(A_{1g} \) mode at \(\sim 401 \text{ cm}^{-1} \) and the \(E_{2g} \) mode at \(\sim 381 \text{ cm}^{-1} \) observed in pristine MoS₂ monolayer. In addition, the Raman mappings indicate homogenous elemental distribution (Supplementary Fig. 13). Atomic force microscopy (AFM) measurements further confirm that the as-prepared MoS₂ domains are monolayers (Fig. 2a–d) with a thickness ranging between 0.7 and 0.9 nm. As for the the system with small doping concentration, the peak-shift is ascribed to the dopant induced Fermi level movement. However, the shifts of X-ray photoelectron spectra in both Mo 3d and S 2p are very small (below 0.3 eV, see Supplementary Fig. 14), likely due to the low dopant concentrations. Therefore the minor peak shift cannot justify if the dopants incorporate into the MoS₂ lattice. More evidence is provided by the high-resolution spectra of TM 2p (Supplementary Fig. 15), which show clearly the formation of metal-sulfur bonds in all samples and support the substitutional dopants within the MoS₂ lattice.

The annular dark-field (ADF) scanning transmission electron microscopy (STEM) imaging and electron energy loss spectroscopy (EELS) are used to further confirm the local atomic configurations. Figure 2e–h show the atomic structure of the Co-, Fe-, V-, and Cr-containing MoS₂ monolayers, respectively. All four images show the lattice of MoS₂ with Mo and S atoms alternating in bright and dim spots periodically. The TM atoms, which occupy the metal sites, show lower image contrast than
typical Mo atoms but similar to S₂ columns due to the nature of the STEM imaging. The line intensity profile of the single isolated dopant site and comparison to the STEM simulation (Supplementary Fig. 16) confirm that the TM atoms successfully doped into the lattice rather than the adatoms on the surface of MoS₂. A more careful inspection reveals two main types of local configurations as predicted by previous theoretical calculations: one TM atom substitutes the Mo site forming an isolated single TM site, as marked by the white circles in all four TM-containing MoS₂ monolayers (Fig. 2g, h, k, l); three TM atoms forming a triangular cluster with a connecting central sulfur vacancy, named as 3TMMo−Vs, as highlighted by green circles in Co and Fe-containing system (Fig. 2e, f, i, j). However, we find the 3TMMo−Vs are the dominating configuration in the Co- and Fe-containing MoS₂ monolayers. The single isolated TM sites account for very small ratio (<10%) compared to the 3TMMo−Vs (Supplementary Figs. 17, 20c, and 21c; Supplementary Notes 3, 6, and 7), which corroborates that the latter are the dominating configurations towards the HER activity.

On the other hand, Cr and V form predominantly isolated single TM sites in the MoS₂ lattice. This is due to the different formation energy of the two types of local configurations with different TM atoms. The single atom EELS measurements on the TM in each image further confirm the chemical identity of the corresponding introduced element, as recognized by the sharp L edges of Co, Fe, V, and Cr, respectively, offering strong evidence of the presence of TM atoms and the consistence of the predicted local configurations. The reference EELS spectra taken away from the dopant site (Supplementary Fig. 18 and Supplementary Note 4) confirms the observed sharp peaks in the spectra of Fig. 2 are not an artifact during the collection at the dopant site.

Electrochemical test of MoS₂ with local configurations. To verify the predicted HER activity of in-plane sulfur modulated by designed local configurations, the effects of 3CoMo−Vs, 3FeMo−Vs, 1CrMo and 1VMo on HER catalytic activity are examined using a three-electrode electrochemical cell in an electrolyte containing 0.5 M H₂SO₄. Data are compared to pristine MoS₂ and commercial Pt/C. Before LSV tests, electrochemical activation was implemented. Stable CVs of configured MoS₂ samples after electrochemical activation process (black curves in Supplementary Fig. 19 and Supplementary Note 5) indicate no phase change during activation. Figure 3a shows linear-sweep voltammograms (LSV) in the cathodic direction after the correction of ohmic potential drop (i.e., IR), where the currents are normalized to the electrode geometric area. It is seen that the pristine MoS₂ with an overpotential of 317 mV at 10 mA cm⁻² shows an inferior HER activity than those of configured MoS₂. The optical image of pristine MoS₂, as shown in Supplementary Fig. 22 shows the similar edge length with that of configured MoS₂, excluding the edge effect on different activity.

![Figure 2 Imaging of MoS₂ monolayers with various local configurations](image)

Fig. 2 Imaging of MoS₂ monolayers with various local configurations. AFM images of a 3CoMo−Vs, b 3FeMo−Vs, c 1VMo, and d 1CrMo samples, illustrating the monolayer nature of the as-synthesized MoS₂. e–h Atomic resolution STEM images of the TM-containing MoS₂ samples with i–l corresponding electron energy loss spectrum on single TM. The images confirm that, while Co and Fe atoms prefer to form triangular clusters where three TM atoms connect a central sulfur vacancy (3TMMo−Vs, highlighted by green circles), V and Cr only form substitutional single atom without sulfur vacancy (1TMMo highlighted by white dashed circles), in good consistence with the theoretical prediction.
dominating role in the catalyst activity. This is also in concise with the calculation that ΔG^0_0 of $3\text{CoMo}^-\text{Vs}$ is closest to 0 eV (Supplementary Table 1). The corresponding Tafel plots show the same trend with that of η_{10} (Fig. 3b). The $3\text{CoMo}^-\text{Vs}$ configuration sharply reduces the Tafel slope from 175 mV dec$^{-1}$ in pristine MoS$_2$ to 57 mV dec$^{-1}$. And the 1V$_{Mo}$ sample gives an acceptable value of 68 mV dec$^{-1}$. In comparison, the 3FeMo^-Vs and 1CrMo configurations have little effect to the Tafel slope. Therefore, the lowered Tafel slopes of the $3\text{CoMo}^-\text{Vs}$ and 1V$_{Mo}$ with a fast discharge process of protons41 (Supplementary Note 8), may reflect a strengthened capability to adsorb H. The Faradic efficiency was determined from the produced H$_2$ characterized quantitatively by gas chromatography. As shown in Supplementary Fig. 23, the $3\text{CoMo}^-\text{Vs}$ sample exhibits >98% efficiency over the time scale of the measurement, confirming the H$_2$ as the dominating product during the whole electrolysis process. From the overall comparison (Fig. 3c), we can conclude that the $3\text{CoMo}^-\text{Vs}$ configuration, with synergistic triangular Co clusters surrounding one Vs in the center, renders MoS$_2$ monolayer the best HER catalytic performance among all the configured MoS$_2$ samples$^{16,42-48}$. Supplementary Table 2 provides an extensive comparison to other TMDs and non-noble metal catalysts in their electrocatalysis of HER. The performance of our MoS$_2$ monolayer with $3\text{CoMo}^-\text{Vs}$ configuration exceeds all the pure TMD monolayer catalysts, and also compete with other non-noble metal catalysts.

The turnover frequency (TOF) per sulfur is calculated in order to correlate the intrinsic activity per sulfur atom with the local configuration (Supplementary Note 9). Each sulfur site tuned by $3\text{CoMo}^-\text{Vs}$ or 1V$_{Mo}$ possesses much higher efficiency than that in 3FeMo^-Vs and 1CrMo samples with increased value of TOFs. Compared to other configurations, the $3\text{CoMo}^-\text{Vs}$ and 1V$_{Mo}$ samples demonstrate the most appropriate tuning on the charge transfer capacity of local configuration.

Electrochemical impedance spectroscopy with fitted circuit models (Supplementary Fig. 24) shows significantly decreased charge-transfer resistances (R_{ct}) for the $3\text{CoMo}^-\text{Vs}$ (30.3 Ω) and the 1V$_{Mo}$ (47.9 Ω) samples, as compared to those of 3FeMo^-Vs (91.5 Ω) and 1CrMo (100.3 Ω), indicating a facilitated charge transfer between the S and protons in electrolyte (Fig. 3e). In addition, the $3\text{CoMo}^-\text{Vs}$ sample exhibits an extraordinary long-term operation durability with small changes in potential (Fig. 3f and Supplementary Fig. 25). Hence, we may conclude that the $3\text{CoMo}^-\text{Vs}$ configuration is efficient for HER during the whole cycling process.

Microcell measurements. In addition to the effect of local configuration type, it is observed that the concentration of such local configurations can also influence the amount of active sulfur sites. In order to prove the concentration effect, the on-chip electrochemical micro-devices are fabricated from a set of $3\text{CoMo}^-\text{Vs}$ samples with local probe test, as shown in Fig. 4. Figure 4a, b show the three-electrode setup for the electrochemical measurements (more details are shown in Supplementary Fig. 26). In the first step, a controlled linear I-V scan is done on the PMMA layer (Supplementary Fig. 27) to measure the electrochemical blocking reliability of the PMMA layer. The MoS$_2$ samples with different $3\text{CoMo}^-\text{Vs}$ concentrations (determined from STEM measurements, see Supplementary Fig. 21 and Supplementary Table 3) are applied for the microcell experiments. The obtained results are Fig. 4c–e. We can clearly see that an optimal Co concentration, corresponding to η_{10} < 100 mV, should be around 3.8 at%, which translates to the $3\text{CoMo}^-\text{Vs}$ concentration of ~1.2 at%. The excessive increase in $3\text{CoMo}^-\text{Vs}$ concentration results in performance decline. Possible reasons for this are deteriorated surface stability16 and superfluous lattice distortion18. This concentration effect also corroborates the key contribution of $3\text{CoMo}^-\text{Vs}$ rather than $3\text{FeMo}^-\text{Vs}$ or 1CrMo configurations in the HER activity.

Fig. 3 HER properties of samples with different local configuration types. a Polarization curves of pristine MoS$_2$, MoS$_2$ with $3\text{CoMo}^-\text{Vs}$, $3\text{FeMo}^-\text{Vs}$, 1V$_{Mo}$, 1CrMo configurations and Pt/C. The currents are normalized to the projected geometric area of the electrode. b The corresponding Tafel plots of the polarization curves in a. c Comparison of η_{10}-Tafel slope for HER catalysts in 0.5 M H$_2$SO$_4$. MoS$_2$ with $3\text{CoMo}^-\text{Vs}$ configuration exhibits top performance. The data are taken from refs.16,42-48. d TOFs of MoS$_2$ with varied configuration types. e Electrochemical impedance spectroscopy (EIS) Nyquist plots for sample $3\text{CoMo}^-\text{Vs}$, $3\text{FeMo}^-\text{Vs}$, 1V$_{Mo}$ and 1CrMo. f Long-term stability test for the $3\text{CoMo}^-\text{Vs}$ electrode at a current density of 10 mA cm$^{-2}$.
MoS2 monolayer. In particular, the in-plane sulfur atoms corresponding to the concentration of 3CoMo local con-
activation can be correlated with the charge transfer capacity of activating the inert sulfur atom into an open valence state. That Cr) and compensative sulfur vacancy (vs) configuration is also veri-
ied by the in-situ probe measurements of microcell. Our MoS2-based HER electrocatalyst in acidic medium to date (an
similar trend with that of three-electrode measurements (Fig.3a).

Methods

Synthesis of con-
figured and pristine MoS2. Pure MoS2 and con-
figured MoS2 were synthesized by CVD method using MoO3 and sulfur (Sigma) as the precursor. For different TM-doped MoS2, V2O5, CrCl3, Fe2O3, and Co3O4 were used as the corresponding TM sources. The synthesis was conducted using a quartz-tube single-zone furnace (1-inch diameter) in a temperature range from 550 to 650 °C. Specifically, for the growth of pure MoS2, a quartz boat containing 10 mg MoO3 powder was put in the center of the tube, and the SiO2/Si substrate was placed on top of the quartz boat with the front side facing down. Another quartz boat containing 0.5 g sulfur powder was put upstream. The temperature ramped up to 700 °C in 15 min, and was maintained at the peak temperature for 5 min to 10 min.

During the reaction, a constant 80 sccm Ar flow was used as the carrier gas. After the reaction, the furnace cooled down naturally to room temperature. For the 3CoMo−Vs, 3FeMo−Vs, 1VMo, and 1CrMo structured MoS2, the precursor loaded in the central boat contained mixed powder of V2O5, CrCl3, Fe2O3, Co3O4, respectively, with MoS2 (mole ratio of 2: 98). The carrier gas for the structured MoS2 was mixed Ar/H2 with a flow of 80/5 sccm. The rest reaction conditions were the same as that for pure MoS2.

Structural characterizations. Room temperature Raman measurements were performed using a WITEC alpha 300 R Confocal Raman system with an excitation laser of 532 nm. The Raman system was pre-calibrated based on the Raman peak of crystalline Si at 520 cm−1. The laser power was kept below 1 mW to avoid sample heating. The TEM samples of the 3CoMo−Vs, 3FeMo−Vs, 1VMo, and 1CrMo structured MoS2 were prepared as follows. A layer of poly (methyl methacrylate) (PMMA) was spin-coated on the sample surface with a thickness of ~1 µm, and then baked in an electric oven at 180 °C for 3 min. Afterwards, the substrates were immersed in a NaOH solution (1 M) overnight to dissolve the SiO2 layer. After lift-
off, the MoS2 samples were washed with DI water for several cycles. Then the monolayer samples were fished by a TEM grid (Quantifoil Mo grid). The obtained TEM specimen were dried naturally in ambient environment, and then dipped into high-purity acetone overnight to remove the PMMA layers. The STEM investi-
gation was performed at room temperature on an aberration-corrected Nion UltraSTEM-100 and a JEOL 2100 F with a cold field-emission gun and an aber-
ration corrector (the DELTA-corrector), both operating at 60 kV.

Electrochemical measurements. PMMA methylbenzene was uniformly spun on the SiO2/Si substrates deposited with monolayer MoS2. After baking at 100 °C for 5 min, the PMMA film covered substrates were immersed in a 5 M KOH solution. As a result of the etching effect by KOH, the monolayer MoS2 samples with the PMMA film were detached from the SiO2/Si substrate. Then, the obtained monolayer MoS2/PMMA films were washed in DI water and overlaid on the glassy carbon rotating disk electrode (RDE). After the thorough evaporation of DI water between the RDE electrode and the MoS2/PMMA films, the PMMA films were further removed by dipping into acetone. As a result, the glassy carbon RDE electrode covered by monolayer MoS2 were obtained16,87.

For the electrochemical measurements, a standard three-electrode cell consisting of the glassy carbon RDE as the working electrode, a graphite carbon counter electrode and a saturated calomel reference electrode (SCE) was used. The electrolyte solution was 0.5 M H2SO4. An electrochemical workstation (CHI760) coupled with a RDE system (AFM SRCCE3529, Pine Research Instrumentation, USA) was used to control the cell. The potential versus the reversible hydrogen electrode (RHE) was calculated according to $E_{\text{RHE}} = E_{\text{SCE}} + E_{\text{SCE}} (0.2412) + 0.059 \times \phi$. Before HER test, the catalysts went through an electrochemical
activation process by cyclic voltammetry scanning in the same electrolyte (0.5 M H2SO4) with a scan rate of 100 mV s−1 in the potential range of 0.1 to −0.29 V (vs. RHE). Linear sweep voltammetry (LSV) measurements were conducted with a scan rate of 2 mV s−1 under 1500 rpm. The current vs. potential plots were corrected by 90% ohmic compensation. The electrochemical impedance spectroscopy (EIS) were obtained in the same three-electrode configuration in the frequency range of 100 KHz to 0.1 Hz and at an applied current of 10 mA cm−2 and 5-s treatment in nitrogen plasma. Contacts between gold MoS2 monolayers, Ag/AgCl encapsulated by Luggin capillary and carbon rod were obtained in the same three-electrode configuration. Microcell reaction windows were made by e-beam lithography on 1-coated PMMA layer. During measurements, gold were obtained in the same three-electrode configuration.

Computational methods
The density functional theory (DFT) calculations were performed using the Vienna Ab initio simulation package49,50. The generalized gradient approximation with the Perdew–Burke–Ernzerhof exchange–correlation functional and a 450-eV cutoff for the plane-wave basis set are employed51. The projective augmented plane wave was adopted to describe the electron–ion interactions52. The empirical dispersions of Grimm (DFT-D2) was applied to account for the long-range van der Waals interactions53. All calculations were spin-polarized for the long-range van der Waals interactions. All calculations were spin-polarized for the long-range van der Waals interactions. All calculations were spin-polarized for the long-range van der Waals interactions. All calculations were spin-polarized for the long-range van der Waals interactions. All calculations were spin-polarized for the long-range van der Waals interactions. All calculations were spin-polarized for the long-range van der Waals interactions. All calculations were spin-polarized for the long-range van der Waals interactions. All calculations were spin-polarized for the long-range van der Waals interactions. All calculations were spin-polarized for the long-range van der Waals interactions. All calculations were spin-polarized for the long-range van der Waals interactions.

Data availability
All relevant data are available from the authors.

Received: 5 March 2019; Accepted: 15 April 2020; Published online: 07 May 2020

References
1. Hinnemann, B. et al. Bioinertm hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 127, 5308–5309 (2005).
2. Kibsgaard, J., Jaramillo, T. F. & Besenbacher, F. Building an appropriate active-site motif into a hydrogen-evolution catalyst with thiomolybdate [Mo3S13]2− clusters. Nature. 46, 248–253 (2014).
3. Shi, J. P. et al. Controllable growth and transfer of mono layer MoS2 on Au foils and its potential application in hydrogen evolution reaction. ACS Nano 8, 10196–10204 (2014).
4. Li, Y. et al. MoS2 nanoparticles grown on graphene: an advanced catalyst for hydrogen evolution. J. Am. Chem. Soc. 133, 7296–7299 (2011).
5. Tang, Y.-J. et al. Molybdenum disulfide/nitrogen-doped reduced graphene oxide nanocomposite with enlarged interlayer spacing for electrocatalytic hydrogen evolution. Adv. Energy Mater. 6, 1600166 (2016).
6. Li, D. J. et al. Molybdenum sulfide/N-doped CNT forest hybrid catalysts for high-performance hydrogen evolution reaction. Nano Lett. 14, 1228–1233 (2014).
7. Luo, Z. Y. et al. Chemically activating MoS2 via spontaneous atomic palladium interfacial doping towards efficient hydrogen evolution. Nat. Commun. 9, 2120 (2018).
8. Tsai, C., Abild-Pedersen, F. & Norskov, J. K. Tuning the MoS2 edge-site activity for hydrogen evolution via support interactions. Nano Lett. 14, 1381–1387 (2014).
9. Ye, G. L. et al. Defects engineered monolayer MoS2 for improved hydrogen evolution reaction. Nano Lett. 16, 1097–1103 (2016).
10. Xie, J. G. et al. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 25, 7881–7886 (2013).
11. Zhang, J. et al. Unveiling active sites for the hydrogen evolution reaction on monolayer MoS2. Adv. Mater. 29, 1701955 (2017).
12. Kan, M. et al. Structures and phase transition of a MoS2 monolayer. J. Phys. Chem. C 118, 1515–1522 (2014).
13. Lukowski, M. A. et al. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 135, 10274–10277 (2013).
14. Chang, Y. H. et al. Highly efficient electrocatalytic hydrogen production by MoS2 grown on graphene-protected 3D Ni foams. Adv. Mater. 25, 756–760 (2013).
15. Tran, P. D. et al. Coordination polymer structure and revisited hydrogen evolution catalytic mechanism for amorphous molybdenum sulfide. Nat. Mater. 15, 640–646 (2016).
16. Li, H. et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 15, 48–53 (2016).
17. Wang, Y. X. et al. Activating inert basal planes of MoS2 for hydrogen evolution reaction through the formation of different intrinsic defects. Chem. Mater. 28, 4390–4396 (2016).
18. Deng, J. et al. Multiscale structural and electronic control of molybdenum disulfide foam for highly efficient hydrogen production. Nat. Commun. 8, 14430 (2017).
19. Sun, T. et al. Defect chemistry in 2D materials for electrocatalysis. Mater. Today Energy 12, 215–238 (2019).
20. Alarawi, A., Ramalingam, V. & He, J.-H. Recent advances in emerging single atom confined two-dimensional materials for water splitting applications. Mater. Today Energy 11, 1–23 (2019).
21. Li, H. et al. Synergistic interaction between neighbouring platinum monomers in CO2 reduction. Nat. Nanotechnol. 13, 411–417 (2018).
22. Suh, J. et al. Recongizing crystal and electronic structures of MoS2 by substitutional doping. Nat. Commun. 9, 199 (2018).
23. Cho, K. et al. Electrical and optical characterization of MoS2 with sulfur vacancy passivation by treatment with alkanealcohol molecules. ACS Nano 9, 8044–8053 (2015).
24. Li, H. et al. Kinetic study of hydrogen evolution reaction over strained MoS2 with sulfur vacancies using scanning electrochemical microscopy. J. Am. Chem. Soc. 138, 5123–5129 (2016).
25. Enyashin, A. N. et al. New route for stabilization of 1T-WS2 and MoS2 phases. J. Phys. Chem. C 115, 24586–24591 (2011).
26. Liu, P. X. et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 352, 797–801 (2016).
27. Zhou, W. et al. Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 13, 2615–2622 (2013).
28. Hong, J. H. et al. Exploring atomic defects in molybdenum disulfide monolayers. Nat. Commun. 6, 2639 (2015).
29. Yu, Z. H. et al. Towards intrinsic charge transport in monolayer molybdenum disulfide by defect and interface engineering. Nat. Commun. 5, 5290 (2014).
30. Zhu, C. R., Gao, D., Ding, J., Chao, D. & Wang, J. TMD-based highly efficient electrocatalysts developed by combined computational and experimental approaches. Chem. Soc. Rev. 47, 4332–4358 (2018).
31. Li, L. & Carter, E. A. Defect-mediated charge-carrier trapping and nonradiative recombination in WS2 monolayers. J. Am. Chem. Soc. 141, 10451–10461 (2019).
32. Liu, Y. et al. Charge trapping and recombination in WS2 monolayers. J. Am. Chem. Soc. 137, 6225–6227 (2015).
33. Sim, D. et al. Controlled doping of vacancy-containing few-layer MoS2 via highly stable thiol-based molecular chemisorption. ACS Nano 9, 12115–12123 (2015).
34. Nguyen, E. P. et al. Electronic Tuning of 2D MoS2 through Surface Functionalization. Adv. Mater. 27, 6225–6227 (2015).
35. Gheeley, J. & Mavrikakis, M. Alloy catalysts designed from first principles. Nat. Mater. 3, 810–815 (2004).
Acknowledgements

H.J.F. and Y.Z. thank the financial support by Singapore MOE under its Tier 2 grant (MOE2017-T2-1-073). Y.Z. appreciates the financial support from the Shanghai Natural Science Foundation of China (19ZR1465100). E.H.S. and J.J.L. thank the financial support from the National Natural Science Foundation of China (21771077, 21773035), J.D.Z. and Z.L. thank the financial support from MOE Tier 2 grant MOE2016-T2-1-131. J.L. thanks the support from National Natural Science Foundation of China (11974156) and Guandong International Science Collaboration Project (Grant No. 2019A050510001). W.Z. thanks the financial support from National Key R&D Program of China (2018YFA0305800). K.S. acknowledges JST-ACCEL and JSPS KAKENHI (JP19H06333, JP25107003, and P16382) for financial support. J.Z. and J.L. appreciate the financial support from Welch Foundation C-1716 and the NSF IUCRC Center for Atomically Thin Multifunctional Coatings (ATOMIC) under award # IIP-1539999. We appreciate the supports of X.G.Li and S.S. Tang from Nanyang Technological University on the measurements of Faradic efficiency.

Author contributions

Y.Z., Z.L., J.L., and H.J.F. conceived the project. Y.Z., J.Z., and J.D.Z. designed the experiments. J.H., W.Z., and K.S. performed the STEM characterization of the samples and data analysis. E.H.S. and J.J.L. proposed the local configuration electronegativity and carried out the theoretical calculations. Y.Z., J.Z., E.H.S. and J.J.L. wrote the paper with contributions from other co-authors. All authors discussed and commented on the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s41467-020-16111-0.

Correspondence and requests for materials should be addressed to J.L., J.L. or H.J.F.

Peer review information Nature Communications thanks Ana Belén Muñoz-Garcia and other, anonymous, reviewers for their contributions to the peer review of this work. Peer review reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.