HUBBLE SPACE TELESCOPE OBSERVATIONS OF THE CIA SEYFERT 2 GALAXIES: THE FUELING OF ACTIVE GALACTIC NUCLEI

PAUL MARTINI AND RICHARD W. POGGE
Department of Astronomy, Ohio State University, 174 West 18th Avenue, Columbus, OH 43210; martini@astronomy.ohio-state.edu, pogge@astronomy.ohio-state.edu
Received 1999 July 12; accepted 1999 August 31

ABSTRACT

We present an investigation of possible fueling mechanisms operating in the inner kiloparsec of Seyfert galaxies. We analyze visible and near-infrared Hubble Space Telescope images of 24 Seyfert 2 galaxies from the CfA Redshift Survey sample. In particular, we are searching for the morphological signatures of dynamical processes responsible for transporting gas from kiloparsec scales into the nucleus. The circumnuclear regions are very rich in gas and dust, often taking the form of nuclear spiral dust lanes on scales of a few hundred parsecs. While these nuclear spirals are found in 20 of our 24 Seyfert galaxies, we find only five nuclear bars among the entire sample, strongly reinforcing the conclusions of other investigators that nuclear bars are not the primary means of transporting this material into the nucleus. An estimate of the gas density in the nuclear spirals, based on extinction measurements, suggests that the nuclear spiral dust lanes are probably shocks in nuclear gas disks that are not strongly self-gravitating. Since shocks can dissipate energy and angular momentum, these spiral dust lanes may be the channels by which gas from the host galaxy disks is being fed into the central engines.

Key words: dust, extinction — galaxies: active — galaxies: nuclei — galaxies: Seyfert — ISM: structure

1. INTRODUCTION

An important, unsolved problem in the study of active galactic nuclei (AGNs) is how the central, massive black hole is fueled. In particular, if the primary fuel source is interstellar gas and dust in the host galaxy, how is that material transported from kiloparsec scales into the central parsecs of the galaxy and onto the supermassive black hole? In order to fuel the AGN, this material must somehow lose nearly all of its angular momentum. Estimates of the mass accretion rate required to power AGNs range from more than $1 M_\odot$ yr$^{-1}$ for the most luminous quasars to $\sim 0.01 M_\odot$ yr$^{-1}$ for the Seyfert galaxies discussed here. Thus, over an AGN’s lifetime (10^7–10^8 years?) a significant amount of material must be transported inward to feed the central black hole.

A number of dynamical mechanisms have been proposed that could remove angular momentum from the host galaxy’s gas and thus supply the fueling rates required to match the observed luminosities of AGNs. These include tidal forces caused by galaxy-galaxy interactions (Toomre & Toomre 1972) and stellar bars within galaxies (Schwarz 1981).

Numerical simulations of galaxy interactions (Hernquist 1989; Barnes & Hernquist 1991; Mihos, Richstone, & Bothun 1992; Bekki & Noguchi 1994; Bekki 1995) have shown that strong perturbations on a galaxy disk due to a close encounter with another galaxy can trigger the infall of large amounts of gas into the central 1 kpc to 10 pc, depending on the simulation resolution, the type of encounter, and the properties of the simulation. Further, relatively minor encounters (“minor mergers”; Hernquist 1989; Mihos & Hernquist 1994; Hernquist & Mihos 1995) can lead to significant gas infall, so one need not invoke disruptive encounters. Observationally, there is ample evidence of past or ongoing tidal encounters and companions among nearby luminous quasars (Hutchings & Neff 1988, 1992, 1997; Bahcall, Kirhakos, & Schneider 1995a, 1995b, Bahcall et al. 1997), but at most only a mild statistical excess of interactions or close companions is seen among the lower luminosity Seyfert galaxies (Adams 1977; Petrosian 1982; Dahari 1984; Keel et al. 1985; Keel 1996; De Robertis, Hayhoe, & Yee 1998).

In barred galaxies, the triaxial stellar potential leads to a family of orbits for the stars and gas that can transport material into the inner 100–1000 pc of the galaxy. Models of orbits using two-dimensional and three-dimensional hydrodynamic simulations of gas and stars in barred potentials (Athanassoula 1992; Friedli & Benz 1993; Piner, Stone, & Teuben 1995) have shown the formation of a shock front at the leading edge of a bar. Material builds up in this shock and falls into the nuclear region, generally forming a nuclear ring with a diameter approximately equal to the bar’s minor axis (greater than 100–1000 pc). Observations of apparent shock fronts at the leading edges of bars and velocity distributions in barred galaxies are in general agreement with inflow models (Quillen et al. 1995; Regan, Vogel, & Teuben 1997) and provide evidence that the dynamical behavior predicted by the models is realistic.

However, the typical semiminor axis of a bar is still $\sim 100–1000$ pc, and thus, while bars might plausibly transport material reasonably close to the center, an additional mechanism is needed to move the material into the nucleus proper. A mechanism proposed to complete the transport of material into the nucleus is the “bars within bars” scenario (Shlosman, Frank, & Begelman 1989; Maciejewski & Sparke 1997; Erwin & Sparke 1999). In this model, a large-scale bar transports material into a kiloparsec-scale disk. This gaseous disk then becomes unstable to bar formation, creating a miniature “nuclear” bar that transports the gas to within approximately 10 pc of the galactic nucleus, which

2 Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under NASA contract NAS 5-26555.
is approximately where the central supermassive black hole's potential can take over. While large-scale bars in galaxies are readily observable because of their large angular size, small-scale nuclear bars (Shaw et al. 1995) are a factor of 5 to 10 smaller and thus are more difficult to resolve in distant galaxies. Because of their smaller physical size, nuclear bars were initially discovered in relatively nearby galaxies (de Vaucouleurs 1975; Kormendy 1979; Buta 1986a, 1986b).

Observationally, investigations of the relative fraction of bars in AGNs as compared with those in nonactive galaxies has failed to turn up a significant excess of bars among spirals harboring AGNs (Kotilainen et al. 1992; McLeod & Rieke 1995; Alonso-Herrero, Ward, & Kotilainen 1996; Mulchaey & Regan 1997). Similarly, searches for nuclear bars using the Hubble Space Telescope (HST) have failed to find them in numbers sufficient to salvage the bar-fueling picture (Regan & Mulchaey 1999). We shall reach a similar conclusion in this paper. At most, these observations have shown that nuclear bars are present in only a minority of Seyfert galaxies.

This is not to say that bars and interactions are not viable fueling mechanisms as clearly they are operating in a number of Seyfert galaxies. The point is that they are not the dominant mechanisms; nor are they necessarily responsible for fueling the AGN in all cases. What is responsible for fueling an AGN in the majority of cases where there is no evidence for either interactions or bars? One way of addressing this question is to assay the amount of potential fuel in the form of interstellar dust and gas in the inner kiloparsec of nearby Seyfert galaxies. Indeed, while Regan & Mulchaey (1999) failed to find a preponderance of nuclear bars in their HST imaging sample of 12 Seyfert galaxies, they did find one common morphological structure: spiral arms of dust, of greater or lesser degrees of organization, in the inner few hundred parsecs.

In this paper, we present new, high-angular resolution, near-infrared HST NICMOS images combined with archival Wide Field Planetary Camera 2 (WFPC2) images of the nuclear regions of a representative sample of 24 Seyfert 2 galaxies in order to search for dynamical and morphological signatures of AGN fueling. We describe our sample selection in §2 and our observations in §3. In §4, we describe the nuclear morphology derived from direct flux and color maps in order to search for nuclear bars and circumnuclear dust structures. Section 5 describes the possible role of these structures in fueling the AGN, and we summarize our results and conclusions in §6.

2. SAMPLE SELECTION

The history of the study of interactions among Seyfert galaxies serves to illustrate the main difficulty in drawing conclusions about the nature of AGNs from studies of statistical samples, namely, the problem of defining an unbiased sample and identifying a suitable control group. As discussed by Keel (1996), the reexamination of interacting galaxy samples illustrated the importance of matching host galaxy types and luminosities (Fuentes-Williams & Stocke 1988). In the last decade, better defined samples of AGNs—for example, the Center for Astrophysics (CfA) sample (Huchra & Burg 1992) and the Revised Shapley-Ames (Sandage & Tammann 1987) sample of Seyfert galaxies (Maiolino & Rieke 1995)—have greatly assisted statistical studies of the AGN population.

The CfA Redshift Survey (Huchra et al. 1983) obtained spectra of a complete sample of 2399 galaxies down to a limiting photographic magnitude of $m_{pg} \leq 14.5$. This relatively unbiased survey avoids many of the problems of traditional surveys for AGNs, particularly those based on ultraviolet excesses, which are biased against reddened AGNs and thus preferentially detect Seyfert 1 galaxies and Seyfert galaxies in host galaxies with active star formation. This sample also has the often-overlooked advantage of a uniform set of spectral classifications obtained with high signal-to-noise ratios that provides comparable detection limits for weak broad-line components (Osterbrock & Martel 1993). This is essential for making meaningful classifications of Seyfert types 1.8, 1.9, and 2 (Osterbrock 1981) for distinguishing objects with and without obvious broad-line components.

Studies of the relative frequency of close companions among the CfA Seyfert galaxies have shown that this sample has only a marginal excess of companions, although a larger fraction of the Seyfert galaxies do appear to be currently undergoing the final stages of a past interaction (De Robertis et al. 1998). In contrast, this same study emphasizes that a small but significant number of the CfA Seyfert galaxies show no morphological evidence for recent interactions. Infrared-wavelength imaging also shows no signature of a violent interaction history in this sample (McLeod & Rieke 1995); nor does it detect an excess of nuclear bars.

For this study, we have chosen 24 of the 25 Seyfert 2 galaxies (including types 1.8 and 1.9 as classified by Osterbrock & Martel 1993) in the CfA sample. We are concentrating on only the Seyfert 2 galaxies because they in general have fainter nuclear point sources than do Seyfert 1 galaxies (Nelson et al. 1996; Malkan, Gorjian, & Tam 1998), and thus the circumnuclear environment is relatively unaffected by the contamination from the complex HST point-spread function (PSF). This is especially true with NICMOS, where the PSF is very complex (MacKenty et al. 1997).

3. OBSERVATIONS

Our observations are comprised of archival visible-band and new near-infrared HST images. The visible-wavelength WFPC2 images include all of the Seyfert 2 galaxies in the CfA sample with the exception of NGC 4388 and Mrk 461 (neither have been observed to date with broadband filters). Most of the visible images were from a snapshot survey of AGNs (GO-5479; see Malkan et al. 1998) and are single, 500 s exposures taken through the F606W filter. The remaining archival images were taken through the F547M filter from a variety of programs. Table 1 lists the properties of the sample galaxies and indicates which of these two visible band filters (hereafter referred to collectively as the V filter) was used to obtain the V-band galaxy image used in this investigation. The images were all obtained with the nucleus roughly centered on the PC1 detector of WFPC2, which has a plate scale of 0.04553 pixel $^{-1}$ and a total effective field of view of 35.6 (Biretta et al. 1996).

We obtained near-infrared J- and H-band images of 23 galaxies from our Seyfert sample with the HST NICMOS Camera 1 during Cycle 7 (project GO-7867). The remaining galaxy in our sample, NGC 1068, was observed by the NICMOS team as part of their Guaranteed Time Observations. We chose camera 1, as its plate scale (0.043 pixel $^{-1}$)
is closest to that of the PC1 (~0.046 pixel\(^{-1}\)), although with a substantially smaller field of view (~11\(\arcsec\)). The near match in plate scale between the visible and infrared images is helpful for matching images from the two cameras and for achieving the best sampling of the resolutions of the two cameras. Further, the surface brightness of the underlying host galaxies falls off sufficiently fast that we would have obtained less signal-to-noise in the outer regions of host galaxies falls off sufficiently fast that we would have obtained less signal-to-noise in the outer regions of the host galaxies, we should see evidence of this material in the form of dust lanes extending from large scales into the nuclear regions. Dust is a useful tracer of this material in the form of dust lanes extending from large scales into the nuclear regions.

In each filter, we acquired images at four dither positions (SPIRAL-DITH pattern), so that the effects of bad pixels and other detector artifacts could be eliminated. At each dither position, we used an exposure ramp (STEP128) for a total of 256 s per position. This allows us to correct for any saturated pixels that might occur if the nucleus is brighter at near-IR wavelengths than suggested by the archival WFPC2 imaging (as would be expected if the nuclei are dusty). The final, shifted and combined frames have a cumulative exposure time of 1024 s per filter. This was done for each galaxy, resulting in a homogeneous set of relatively deep near-infrared images of the central 11\(\arcsec\) of these galaxies.

To calibrate this data set, we had to perform several additional processing steps beyond the standard \(HST\) data reduction pipeline. For the WFPC2 images, this consisted of cosmic-ray removal and absolute flux calibration. The flux calibration included transforming our F547M and F606W images into the Johnson-Cousins system. To do this we convolved a series of galaxy templates with both the Johnson \(V\) and \(HST\) filters, using the STSDAS SYNPHOT package.

For the infrared images, we shifted and added the four individual exposures from the CALNICA part of the data reduction pipeline (MacKenty et al. 1997), after masking out individual bad pixels and detector artifacts. We chose not to use the CALNICB part of the standard data reduction pipeline, as this task attempts to subtract the background from the final mosaic image. As our observations were not through filters contaminated by thermal emission, this step was not necessary. Furthermore, the background subtraction attempted by the CALNICB pipeline was in fact subtracting the flux level, because of extended emission from these galaxies, a problem that was particularly acute for our brighter targets, which covered the entire array. We finally flux-calibrated our data, using the transformations derived by Stephens et al. (2000), in order to place the near-infrared images on the CIT system. We will present the full atlas of our observations in a future paper.

4. NUCLEAR MORPHOLOGY

4.1. \(V - H\) Color Maps

If there is cold gas flowing into the nuclear (less than 10 pc) regions from the host galaxies, we should see evidence of this material in the form of dust lanes extending from large scales into the nuclear regions. Dust is a useful tracer of this material, as it is generally well mixed with gas and can be

Name	Other ID	Seyfert Type	Morphological Type	Note	WFPC2 Filter	Distance (Mpc)	Projected Size (pc arcsec\(^{-1}\))
Mrk 334		1.8	Pec	Disturbed	F606W	91.5	444
Mrk 471		1.8	Sb		F606W	136.9	664
NGC 3786		1.8	SAB(rs)a Pec		F606W	36.1	175
UGC 12138		2257+07	Sb		F606W	102.8	498
NGC 5033	1.9	SA(s)c	Edge-on		F547M	12.1	59
NGC 5252	1.9	S0			F606W	90.7	440
NGC 5273	1.9	SA(s)0			F547M	14.9	72
NGC 5674	1.9	SABc			F606W	98.1	476
UGC 146	0152+06	1.9	SA(rs)b		F606W	71.6	347
Mrk 461		2	S			65.6	318
NGC 256		2	Comp Pec	Interacting	F606W	111.0	538
NGC 270		2	S0 (?)		F606W	38.2	185
NGC 573		2	(R)SAB(rs)0:+		F606W	71.0	344
NGC 1068		2	(R)SA(rs)b		F606W	16.2	79
NGC 1144		2	RingB	Interacting	F606W	116.5	565
NGC 3362		2	SABc		F606W	108.8	527
NGC 3982		2	SB(r)b:		F606W	17.1	83
NGC 4388		2	SA(s)b: sp	Edge-on	...	32.2	156
NGC 5347		2	(R)SB(rs)ab		F606W	31.4	152
NGC 5695	Mrk 686	2	Sbb		F606W	56.9	276
NGC 5929		2	Sab: Pec	Interacting	F606W	34.9	169
NGC 5764	Mrk 533	2	SA(r)bc Pec		F606W	118.5	575
NGC 7682		2	SB(rs)b		F606W	70.8	343
UGC 6100	A1058+45	2	Sa (?)		F606W	117.6	570

Note. Properties of the galaxies observed with NICMOS Camera 1. Cols. (1) and (2) list the most common names for each target. Col. (3) lists its Seyfert type as defined by Osterbrock & Martel 1993. In col. (4), we have compiled the morphological type for the host galaxy from NED, while in col. (5) we have provided additional morphological information. Col. (6) lists the visible-band filter of the archival image used in the color map. Col. (7) lists the distance of the galaxy (assuming \(H_0 = 75 \text{ km s}^{-1} \text{ Mpc}^{-1}\)), and col. (8) gives the projected size in parsecs of 1\(\arcsec\) at the distance of the galaxy.
detected by its attenuation of light from background stars. Our infrared images primarily trace the stellar distribution in these galaxies, while the visible-wavelength images trace both the stellar distribution and the dust. We combined these images to form $V-H$ color maps of all of the galaxies for which we had visible-band HST data to map the dust distribution.

Figure 1 shows the $V-H$ color maps for the Seyfert 1.8 and 1.9 galaxies in our sample, while Figure 2 shows the $V-H$ color maps for the Seyfert 2 galaxies. In Figure 3, we show the $J-H$ color maps for Mrk 461 and NGC 4388, the two galaxies for which we do not have visible-band HST imaging. These images are 5" on a side, corresponding to projected spatial sizes between 2.7 kpc and 125 pc in the galaxies for $H_0 = 75$ km s$^{-1}$ Mpc$^{-1}$. The 2 pixel–resolution element is 0:091, corresponding to projected spatial scales between 50 and 2.3 pc. In column (8) of Table 1, we list the physical scale corresponding to 1" at the distance of each galaxy. To provide a visual reference, a bar showing 100 pc projected distance at the galaxy is drawn in the bottom left corner of each panel of Figures 1, 2, and 3.

To exactly match the plate scales of the two images, we rebinned our NICMOS images to the plate scale of the PC1 chip using a geometric transformation. Though the resolutions of the two cameras are different, we did not smooth our V and H images to a common resolution. As a result, our $V-H$ color maps, particularly those galaxies with a bright nucleus at H, show artifacts of the resolution mismatch as small, "red" rings at the position of the nucleus (e.g., Mrk 334 and Mrk 744) as well as "red" spikes from the NICMOS diffraction pattern (e.g., Mrk 334). We did not smooth the V and H images to a common

![Image of color maps showing nuclear spiral structure](image_url)

Fig. 1.—$V-H$ color maps of the all of the Seyfert 1.8 and 1.9 galaxies from our sample. Nuclear spiral structure is clearly seen in most of the images at this gray scale, where white corresponds to a color of $V-H \approx 2$ mag and black corresponds to $V-H \approx 6$. All of these images have been rotated such that north is up and east is to the left, and all of the images are 5" on a side. The white bar in the lower left corner of each image corresponds to 100 h_{75} pc at the distance of the galaxy. In Table 2, we list the nuclear morphological classification for each of these objects.
resolution, as we found that this substantially decreased the contrast of the dust features in these color maps. This resolution mismatch, however, introduces small uncertainties into our estimate of the amount of reddening present in the color maps. We discuss this further in § 4.3.

The images shown in Figures 1, 2, and 3 reveal a wide range of morphologies, including nuclear spiral patterns, stellar bars, and irregular, clumpy dust distributions. In Table 2, we list our morphological classification for each galactic nucleus. The most common morphology we find in
these images is the presence of nuclear spiral dust lanes, generally extending into the inner 10–100 pc. These nuclear spiral arms are wound in the same direction as the main-disk spiral arms, but they do not appear to be continuations of the main-disk spiral arms. In many of the galaxies with large-scale bars, these nuclear spiral arms are clearly connected to dust lanes along the leading edge of the bar, similar to what is seen in the hydrodynamic simulations of Athanassoula (1992). The most striking examples are Mrk 471, UGC 12138, and NGC 5674, 3362, 5347, and 7674.

The nuclear spiral dust lanes in Figures 1, 2, and 3 exhibit a variety of spiral morphologies, ranging from relatively tightly wound arms (e.g., NGC 1144 and UGC 6100) to loosely wound arms (e.g., UGC 12138 and Mrk 573). We find examples of one-sided spiral arms (e.g., NGC 3982 and Mrk 270), two-arm, "grand-design" spirals (e.g., UGC 12138 and NGC 7682), and multiarmed, "flocculent" spirals (e.g., Mrk 334 and NGC 5674). Often it is easier to see spiral arms on one-half of the image than on the other half, indicating that the gas disks containing the spiral structure are inclined to the line of sight and we are more clearly seeing the dust lanes on the near side of the galaxy (e.g., Mrk 744 and NGC 1144).

In some of our color maps, we also see regions with very blue colors. These include diffuse "blue" regions that are a result of extended emission-line gas and bright, unresolved knots of blue light, which are likely regions of OB star formation. In particular, these latter regions are found in Mrk 334, 744, and 266 SW and NGC 7682 (Figs. 1 and 2). While we do not have UV imaging to confirm that there is significant star formation in these sources, some authors (Heckman et al. 1995, 1997; Gonzalez Delgado et al. 1998) have proposed that massive star formation on 100 pc scales may be a significant contributor to the continuum emission in some Seyfert 2 galaxies. These galaxies are therefore candidate Seyfert 2 starburst galaxies.

4.2. Nuclear Bars

Nuclear stellar bars have been implicated as a possible mechanism for removing angular momentum from gas on hundreds of parsec scales and transporting it to the inner tens of parsecs, where the central supermassive black hole begins to dominate the gravitational potential. Recent ground-based (Mulchaey & Regan 1997) and HST (Regan & Mulchaey 1999) observations have shown that most Seyfert galaxies do not have nuclear bars, implying that some other mechanism is responsible for transporting interstellar gas to the central engine. Our data confirm and extend their conclusions with a larger, representative sample of Seyfert 2 galaxies. We searched for nuclear bars

TABLE 2

Name	Bar Type	Nuclear Morphology
Mrk 334	None	Nuclear spiral
Mrk 471	Nuclear	Nuclear spiral
Mrk 744	Large-scale	Nuclear spiral
UGC 12138	Large-scale	Nuclear spiral
NGC 5033	None	Edge-on
NGC 5252	None	Nuclear spiral
NGC 5273	None	Nuclear spiral
NGC 5674	Both	Nuclear spiral
UM 146	None	Nuclear spiral
Mrk 461	None	Nuclear spiral
Mrk 266 SW	None	Irregular
Mrk 270	None	Nuclear spiral
Mrk 573	Both	Nuclear spiral
NGC 1068	Large-scale	Nuclear spiral
NGC 1144	Ring	Nuclear spiral
NGC 3362	Large-scale	Nuclear spiral
NGC 3982	Large-scale	Nuclear spiral
NGC 4388	None	Edge-on
NGC 5347	Large-scale	Nuclear spiral
NGC 5695	Large-scale	Nuclear spiral
NGC 5929	Nuclear	Irregular
NGC 7674	None	Nuclear spiral
NGC 7682	Large-scale	Nuclear spiral
UGC 6100	None	Nuclear spiral

NOTE. Nuclear properties of the galaxies in the sample based upon our classification of the $V - H$ color maps. Col. (1) lists the name of the galaxy. Col. (2) lists whether a large-scale bar and/or a nuclear bar is present. Col. (3) lists our morphological classification for the circumnuclear regions (less than 1 kpc), based upon the dust structure seen in our color maps.
by qualitatively examining the isophotal contour maps of our V, J, and H images. In several galaxies, we also found straight dust lanes in the color maps, but in all cases the bar signature was clearly visible in the isophotal contour maps (see Fig. 4). In a future paper, we will present a more quantitative analysis of bar selection in these galaxies.

We find, at most, five nuclear bars among the 24 galaxies in our sample (see Fig. 4). Mrk 573 is the best example of a double-barred galaxy in our sample. It has both a host galaxy bar and a nuclear bar, as seen in previous ground-based and HST visible-wavelength imaging (Pogge & De Robertis 1993; Capetti et al. 1996), and there is a clear, straight dust lane going into the nucleus in visible and visible/near-IR color maps (Pogge 1996; Capetti et al. 1996; Quillen et al. 1999). The appearance of this dust lane in the $V-H$ color map is consistent with dust lanes at the leading edge of the bar (cf. Quillen et al. 1999). The nuclear bar in Mrk 270 is apparent at visible and infrared wavelengths, and there is a straight dust lane in the $V-H$ color map, oriented nearly perpendicular to the bar major axis. NGC 5929 has a distinct nuclear bar in the near-infrared images, but it is hidden by dust in the visible-light images. The $V-H$ color map of this galaxy shows the nuclear region is very dusty, with an irregular dust morphology. Mrk 471 shows evidence for a nuclear bar in both the near-infrared surface brightness image and through straight dust lanes in the $V-H$ color map. The lowest surface brightness contours in Figure 4 also show the large-scale bar in Mrk 471.

Regan & Mulchaey (1999) report a nuclear bar in NGC 5347. While this galaxy has a clear large-scale bar seen at visible and IR wavelengths (McLeod & Rieke 1995), the nuclear bar is less obvious in the H-band image (also shown

![Fig. 4.](image-url) $-H$-band contour maps of our bar candidates, rotated such that north is up and east is to the left. These images are 10° on a side, and the bar at the bottom of the figure corresponds to a projected distance of 1 h_75 kpc at the distance of the galaxy. The abrupt edges in the contours of Mrk 573, 270, and 471 correspond to the edge of the NICMOS Camera 1 detector.
in Fig. 4). While we will retain the classification of this galaxy as “nuclear barred” in the interest of setting a strong upper limit on the nuclear bar fraction in Seyfert galaxies, we consider this the weakest case for a nuclear bar of the five we have found.

Peletier et al. (1999) have suggested that there is a nuclear bar perpendicular to the main-galaxy bar in NGC 5674 at visible wavelengths, but we do not see it in our near-infrared images (Fig. 4). Instead, we find a great deal of dust in this galaxy at the position angle of both semiminor axes, and thus the “bar” apparent at visible wavelengths is most likely an artifact of the circumnuclear dust distribution. This underscores the advantage of using near-infrared images to search for and confirm suspected nuclear bars, as this latter region is partially resolved in many other regions of the galaxies would have a relatively low integrated mass, and so is unlikely to be a significant contributor to the fuel reserves of the active nuclei. The discrete, dense dust structures we see in the nuclear disks, however, particularly in the spiral dust lanes, are a more probable fuel source. As these spiral dust lanes are likely to be confined to a disk, their net extinction can be estimated by treating them as a thin, obscuring slab of material and using the change in \(V - H \) color between the arm and interarm regions as an estimate of the total extinction, \(A_V \). We define the color excess due to dust in the nuclear disk as

\[
E(V - H) = (V - H)_{\text{arm}} - (V - H)_{\text{interarm}}.
\]

This excess color is used to estimate the total visual extinction, \(A_V \), via a standard interstellar extinction curve (Mathis 1990). The \(J - H \) color excess could also be used for this purpose, but because of the close proximity of these filters in wavelength, they do not provide as precise a measure of \(A_V \). By relating this \(A_V \) to a column density of hydrogen atoms, \(N_H = 1.87 \times 10^{21} \text{ cm}^{-2} A_V \) for an \(R_V = 3.1 \) reddening law (Bohlin, Savage, & Drake 1978) and converting this into a mass column density, we can obtain a rough estimate of the surface density of these disks:

\[
\Sigma = 15 A_V M_\odot \text{ pc}^{-2}.
\]

The disk surface density derived by this technique actually estimates the maximum, rather than the average, surface density. However, as discussed in detail below, this measure of \(E(V - H) \) will tend to underestimate the true value of \(A_V \) because of uncertainties in the dust geometry and instrumental effects. We therefore chose this conservative approach to estimating the average surface density of these disks so as to minimize the likelihood that we have significantly underestimated the surface density.

While this estimate is computationally straightforward, there are several systematic effects at work that combine to make these estimates lower limits on the true gas surface density. First, we have used a very simple foreground screen as our dust-lane model. A more physically realistic model would be a dust screen sandwiched between two layers of stars, corresponding to the stars behind and in front of the dust relative to the line of sight. For an equal amount of starlight on either side of the dust lane, the arm-interarm \(E(V - H) \) defined above reaches a maximum of \(E(V - H) \sim 0.45 \) at \(A_V \sim 1.5 \) for a smooth dust layer. A patchy or clumpy distribution, as discussed below, would increase these numbers. Scattering is another vital component to a realistic dust model. Dust particles are strongly forward scattering and more likely to scatter blue light than red light, causing a “bluing” of the starlight that could counteract, in part, the reddening resulting from absorption. Significant scattering would reduce the observed \(E(V - H) \), thus leading us to underestimate the total column density of material in these nuclear spiral arms. We estimated the magnitude of scattering by incorporating the dusty galactic nuclei model of Witt, Thronson, & Capuano (1992) into our dust sandwich model. We find that scattering can decrease the observed \(E(V - H) \) by a factor of 2, corresponding to an increase in the disk surface density by the same factor. The simple foreground-screen model we have used to estimate the disk surface density therefore results in an underestimate of the true surface density of these disks by a factor that depends on the true dust geometry, but the model is useful as it sets a lower limit on the surface density.

Another complication to our estimate of the disk surface density is that our images do not resolve small-scale dust structures in these dust lanes. Studies of the arm-interarm extinction in overlapping galaxies (White & Keel 1992; White, Keel, & Conselice 1996; Berlind et al. 1997) show that, while the large-scale dust lanes are optically thin, the extinction law in the spiral arms tends to be grayer than a standard Galactic extinction law, primarily because of unresolved, optically thick clumps (Berlind et al. 1997). Unresolved clumps of dust in these nuclear spirals, particularly in the more distant galaxies, would lead to a grayer extinction law than assumed here, resulting in an underestimate of the total dust mass.

A second resolution effect is due to the finite resolution of the WFPC2 and NICMOS cameras. Many of the dust lanes in our \(V - H \) color maps are unresolved or only marginally
resolved. We have therefore constructed a simple model of a
dust lane to estimate the magnitude of this effect. We con-
structed models of dust lanes by creating a series of artificial
images with the same PSF (in this case the PSF for
larger in unresolved or marginally resolved dust lanes. To
masking effect that causes the
PSF by an
galaxy that has been convolved with the narrower WFPC2
color map corresponds to dividing a
correction (\(A_V\)) by up to a factor of 3 for the most heavily reddened
dust lanes to estimate the magnitude of this effect. We con-
volved these images with the HST PSF for the
PC1 and NICMOS Camera 1 from TinyTim (Krist
& Hook 1999) and measured the difference \(E(V-H)_{\text{mode 1}} - E(V-H)_{\text{conv}}\) as a function of the width of the uncon-
volved dust lane in units of PC1 pixels. In Figure 5, we plot
the difference in \(E(V-H)\) to illustrate the effect of unre-
solved and marginally resolved dust lanes on measurements
of the extinction (solid lines). The lines correspond to input
\(E(V-H)\) values of 1.1, 0.8, and 0.4, with the top line corre-
sponding to the largest \(E(V-H)\) we measured. Figure 5
shows that unresolved dust lanes may cause us to underesti-
mate \(A_V\) by up to a factor of 3 for the most heavily reddened
dust arms in this sample.

A further complication is the resolution mismatch
between PC1 and NICMOS Camera 1, corresponding to
different widths for the \(V\) and \(H\) PSFs. Creating a \(V-H\)
color map corresponds to dividing a \(V\)-band image of the
galaxy that has been convolved with the narrower WFPC2 PSF by an \(H\)-band image that has been convolved with the
broader NICMOS PSF. The result is a weak, unsharped
masking effect that causes the \(V-H\) color to be slightly
larger in unresolved or marginally resolved dust lanes. To
measure the size of this effect, we repeated the exercise dis-
ussed above, but convolved both the \(V\) and \(H\)-band images with the same PSF (in this case the PSF for the
F606W filter and PC1 detector). We have plotted the results
of this test (dotted lines) in Figure 5 for the same \(E(V-H)\) values, and as expected, the model dust lanes convolved
with different PSFs are systematically redder than the
model dust lanes convolved with identical PSFs. The mag-
nitude of this effect, however, is much less than that
resulting from convolving the model dust lanes with a PSF
in the first place.

A final factor that introduces systematic uncertainties
into the measurement of \(E(V-H)\) is the possible presence of
diffuse line emission. As mentioned above, we are resolving
the narrow-line region in several of these galaxies. In partic-
ular, Mrk 270, Mrk 573, NGC 3362, NGC 7682, and UGC
6100 all show bright, extended line emission in the F606W
images that result in “blue,” and often cone-shaped, struc-
tures in their \(V-H\) color maps. The bow-shaped emission-
line regions in Mrk 573 and other Seyfert 2 galaxies have
been previously studied with HST by Falcke, Wilson, &
Simpson (1998). Capetti et al. (1996) have seen similar struc-
tures in HST images of the narrow-line regions in Seyfert 2
galaxies. In addition to these discrete structures, there may
also be faint, diffuse line-emitting gas spread throughout
the circumnuclear regions. Since the F606W filter contains the
bright \([O\ III]\) 5007 and H\(_\alpha\) lines, a significant emission-line
contamination is possible. We estimated the contribution of
emission lines to a variety of Seyfert 2 spectra with the
STSDAS SYNPHOT package. This exercise showed that if
these lines have a total equivalent width of 100 Å, they
would still only increase the \(V\)-band surface brightness by
\(\Delta V = -0.07\) mag. The contribution to the total flux in the
F606W filter is small because the filter has an effective width
of approximately 1500 Å. The brightest contributors to the
\(H\)-band surface brightness, the hydrogen Brackett lines,
have equivalent widths that are significantly lower than
those of their visible-wavelength counterparts, and there-
fore the emission-line contribution to the \(H\) band is
expected to be unimportant. In addition to requiring a very
high equivalent width to affect the \(V\)-band flux, this emis-
ion would have to be correlated or anticorrelated with the
dust lanes to lower or raise, respectively, the measured
\(E(V-H)\).

To summarize our results, our \(V-H\) color maps of these
galaxies exhibit dust lanes with a range in \(E(V-H)\) corre-
sponding to inferred mass surface densities of 1–20 \(M_\odot\)
pc\(^{-2}\). While we have overestimated the average surface
density by measuring the maximum value of \(E(V-H)\), the
dust model and resolution effects could offset this as they
lead to an underestimate of the total column density. These
surface densities imply that these nuclear disks contain at
least \(10^6\) \(M_\odot\) of interstellar material in the inner 100–200
pc. As Seyfert galaxies require mass accretion rates of
\(\sim 0.01\) \(M_\odot\) yr\(^{-1}\) (e.g., Peterson 1997) to fuel their nuclear
luminosities, these circumnuclear disks are massive enough
to act as potential reservoirs for fueling the AGN.

5. NUCLEAR SPIRALS AND FUELING

Nuclear spirals such as those we have shown here have
been observed in quiescent spiral galaxies (Phillips et al.
1996; Carollo, Stiavelli, & Mack 1998; Elmegreen et al.
1998; Laine et al. 1999), as well as in Seyfert galaxies
(Quillen et al. 1999; Regan & Mulchaey 1999). These
nuclear spirals are dynamically distinct from the large-scale
spiral arms seen in spiral galaxies as they may lie inside the
inner Lindblad resonance of the outer spiral arms
(Elmegreen, Elmegreen, & Montenegro 1992), and they may

![Figure 5](image-url)
also be shielded by the dynamical influence of the galaxy’s nuclear bulge (Bertin et al. 1989). The nuclear spiral dust lanes appear to differ from the large-scale spiral structure of their hosts in two important ways: they are unlikely to be the result of gravitational instabilities in self-gravitating disks, and their sound speed is likely to be comparable to the orbital speed.

Elmegreen et al. (1998) estimated the value of Toomre’s (1981) Q-parameter for the nuclear disk in NGC 2207 and determined that the nuclear disk was not self-gravitating. We have applied a similar analysis to the galaxies in our sample after rewriting the expression for Q in the form

$$Q = 1.5 \left(\frac{a}{10 \text{ km s}^{-1}} \right)^2 \left(\frac{\Sigma}{1 M_\odot \text{ pc}^{-2}} \right)^{-1} \left(\frac{h}{1 \text{ pc}} \right)^{-1},$$

where a is the sound speed, Σ is the azimuthally averaged surface density of the disks in $M_\odot \text{ pc}^{-2}$, and h is the disk scale height in parsecs. This expression for Q assumes that the nuclear disks are in solid-body rotation, as is the case for NGC 2207 (Rubin & Ford 1983) and the circumnuclear gas disks in galaxies with rapidly rotating cores in the Virgo Cluster (Rubin, Kenney, & Young 1997). We have estimated a to be 10 km s$^{-1}$, which is a reasonable value for the inner disks of spirals (e.g., Spitzer 1978; Elmegreen et al. 1998), although some authors report values of 3–10 km s$^{-1}$ for the main disks of spirals (e.g., Kennicutt 1989; van der Kruit & Shostak 1984). We are able to place an upper limit on h by assuming that the width of the spiral arms are thicker than the disks, as is true for spiral arms in galaxy disks proper. Most of our estimates of the arm widths are also upper limits, as at their narrowest points nearly all of the nuclear spiral arms are unresolved. Our estimates of h, Σ, and Q are summarized in Table 3.

Table 3

Name	Σ (M$_\odot$ pc$^{-2}$)	h (pc)	Q
Mrk 334	20	141	5
Mrk 471	16	60	15
Mrk 744	19	16	48
UGC 12138	14	113	10
NGC 5252	9	40	41
NGC 5273	17	7	130
NGC 5674	15	87	11
UM 146	18	32	26
Mrk 270	6	17	137
Mrk 573	9	63	26
NGC 1144	15	51	19
NGC 3362	9	48	34
NGC 3982	9	8	215
NGC 5347	18	42	20
NGC 5695	14	25	43
NGC 7674	12	105	12
NGC 7682	9	31	52
UGC 6100	12	52	24

Note.—Nuclear disk parameters for all galaxies showing nuclear spiral structure. Col. (1) contains the name of the galaxy. Col. (2) has our estimate of the mass surface density based on the $E(V-H)$ color, which is a lower limit. Col. (3) is an upper limit to the scale height of the disk, based on measuring the width of the spiral arms. Both of these quantities have been derived assuming the distance listed in Table 1. Col. (4) lists the value for the Toomre 1981 Q-parameter we derived for each disk, as discussed in § 6.

Values of $Q < 1$ would imply that the spiral arms are formed by gravitational instabilities in self-gravitating disks (e.g., Binney & Tremaine 1987), whereas values of $Q > 1$ would correspond to spiral arms formed in non-self-gravitating disks by hydrodynamic instabilities. The Q-values we find for the spiral arms in our Seyfert galaxies range from 5 to 200 (see Table 3, col. [4]). We thus conclude, as did Elmegreen et al. (1998) for NGC 2207, that these nuclear spiral arms do not occur in self-gravitating gas disks. Since Q scales as the square of the sound speed, a lower value of a could greatly reduce Q. As most of our estimates for Q are significantly above 1, a would have to be quite small to change our results in the direction of self-gravitating Q-values. Faster sound speeds, in contrast, would increase Q as a^2. Our estimates of Σ are rough values, which could vary as a result of several competing effects. As mentioned above, we may be underestimating the column density in these dust lanes because of scattering and the effects of unresolved dust lanes. In contrast, by measuring $E(V-H)$ from the maximum arm-interarm $V-H$ contrast, we may be overestimating the disk surface density. In addition, if the spiral arms are shock fronts, they may correspond to density enhancements of up to a factor of 4 (for nonradiating, adiabatic shocks) or higher (for radiating shocks; see, e.g., Spitzer 1978) over the azimuthally averaged surface density of the disks. In addition to the uncertainty in a and Σ, our estimate of the scale height is an upper limit, as the spiral arms are generally unresolved. However, decreasing h would increase Q, and the upper limit on h thus only strengthens the argument that these disks are not self-gravitating. The fact that many of these nuclear spirals are multiarm spirals further supports the notion that they are unlikely to be the result of gravitational instabilities in self-gravitating disks (Lin & Shu 1964).

Spiral arms can form in gaseous disks that are not self-gravitating through hydrodynamic shocks. One possibility is that these shocks could be caused by turbulent gas motions driven by the inflow of material from larger radii (Struck 1997). Engelmaier & Shlosman (1999) have also shown that shocks in non-self-gravitating, nuclear disks can form grand-design, two-arm spiral structures in galaxies with large-scale stellar bars. Since the orbital speeds in the inner regions of galaxies are of the order of the sound speed, it is also possible that the arms are formed by acoustic shocks (Elmegreen et al. 1998; Montenegro, Yuan, & Elmegreen 1999). Shocks in these gaseous disks could be a viable means of removing angular momentum and energy from the gas, and thus these nuclear spirals could be signposts of the fueling mechanisms for Seyfert galaxies. While investigations have traditionally looked for large-scale signatures of interaction or bars in the host galaxies, the actual funneling of gas the last few hundred parsecs into the central black hole may be mediated by the hydrodynamics of non-self-gravitating gas disks on small scales. This mechanism could be common, regardless of whether large-scale bars or interactions transported the gas from large radii to hundreds of parsec scales.

6. SUMMARY AND CONCLUSIONS

These H-band images and $V-H$ color maps of the centers of a representative sample of 24 Seyfert 2 galaxies rule out the presence of nuclear bars in all but, at most, five of the 24 galaxies in our sample. While this is not to say that nuclear bars cannot play some role in fueling an AGN if
Our $V-H$ color maps of the centers of these Seyfert galaxies have shown that 20 of 24 have a nuclear spiral structure. Of the four that do not show a nuclear spiral structure, two of these (NGC 4388 and NGC 5033) are nearly edge-on systems, and thus the geometry is unfavorable for viewing any kind of nuclear spiral structure. The remaining two, Mrk 266 SW and NGC 5929, are both in strongly interacting systems and have very chaotic dust morphologies, perhaps reflecting disordered delivery of host galaxy gas due to the tidal interaction. We have used the $V-H$ color maps to estimate the amount of material in these spiral arms and have found that the nuclear disks in which they reside contain enough gas to serve as a fuel reservoir for the AGN. The surface densities of these disks, along with our estimates of the disk scale height and surface density, also suggest that these disks are not self-gravitating. The nuclear spiral structure is therefore probably formed by shocks propagating in the disk, via either an acoustic mechanism or other hydrodynamic process, and these shocks could dissipate energy and angular momentum from the gas.

Our observations strongly rule out small-scale nuclear bars as the primary means of removing angular momentum from interstellar gas to fuel the AGNs in our representative sample of Seyfert 2 galaxies. Instead, we find that the most common morphological features in the centers of AGNs are nuclear spirals of dust. These spirals may be caused by shock waves in a disk or may be streamers of mass falling inward from the innermost orbital resonance. The large fraction of Seyfert 2 galaxies with dusty nuclear spirals demonstrates the importance of shocks and gas dynamical effects in removing angular momentum from the gas and feeding this material into the nucleus and hence into the supermassive black hole.

An outstanding question posed by these nearly ubiquitous nuclear spirals is how their host nuclear disks formed. As proposed by Rubin et al. (1997) for nuclear disks in some Virgo Cluster galaxies, we conclude that two likely scenarios are the standard processes previously invoked for fueling AGNs: bars and interactions. Both large-scale bars and interactions can remove angular momentum from gas and drive it into the inner hundreds of parsecs, where it settles into a nuclear disk. Shocks or other hydrodynamic effects in these disks then complement the action of bars and interactions by removing angular momentum from this accumulated material and feeding the fuel into the active nucleus.

Two future areas of work are suggested by our results. First, similar observations of a large sample of quiescent spiral galaxies should be obtained to determine whether the nuclear spirals found in Seyfert galaxies are present in all spirals. This work should also be augmented by spectroscopic data to provide kinematic information on the gas and dust in the inner regions. Second, theoretical predictions of accretion rates from spiral structures in both self-gravitating and non-self-gravitating disks are needed. Answers to these questions are needed before we can understand the role played by dusty nuclear spirals in fueling AGNs.

We would like to thank Alice Quillen for many useful discussions and comments and Brad Peterson and Barbara Ryden for their helpful comments on the manuscript. We would also like to thank the referee, Mike Regan, for his helpful comments that have improved and clarified this paper. Support for this work was provided by NASA through grants GO-07867.01-96A and AR-06380.01-95A from the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555. This research has made use of the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA.

REFERENCES

Adams, T. F. 1977, ApJS, 33, 19
Alonso-Herrero, A., Simpson, C., Ward, M. J., & Wilson, A. S. 1998, ApJ, 495, 196
Alonso-Herrero, A., Ward, M. J., & Kotilainen, J. K. 1996, MNRAS, 278, 902
Ameghino, E. 1992, MNRAS, 259, 345
Bacchall, J. N., Kirhakos, S., Saxe, D. H., & Schneider, D. P. 1997, ApJ, 479, 642
Bacchall, J. N., Kirhakos, S., & Schneider, D. P. 1995a, ApJ, 447, L1
Barnes, J. E., & Hernquist, L. E. 1991, ApJ, 370, L65
Bekki, K., & Noguchi, M. 1994, A&A, 290, 7
Berlind, A., Quillen, A. C., Pogge, R. W., & Sellgren, K. 1997, AJ, 114, 107
Bertin, G., Lin, C. C., Lowe, S. A., & Thurstans, R. P. 1989, ApJ, 338, 78
Binney, J., & Tremaine, S. 1987, Galactic Dynamics (Princeton: Princeton Univ. Press)
Biretta, J. A., et al. 1996, WFPC2 Instrument Handbook, Version 4.0 (Baltimore: STScI)
Bohlin, R. C., Savage, B. D., & Drake, J. F. 1978, ApJ, 224, 132
Bower, G. A., Wilson, A. S., Mulchaey, J. S., Miley, G. K., Heckman, T. M., & Krolik, J. H. 1994, AJ, 107, 1686
Buta, R. 1986a, ApJS, 61, 609
Carollo, C. M., Stiavelli, M., & Mack, J. 1998, AJ, 116, 68
Dahari, O. 1984, AJ, 89, 966
De Robertis, M. M., Hayhoe, K., & Yee, H. K. C. 1998, ApJ, 496, 93
de Vaucouleurs, G. 1975, ApJS, 29, 193
Elmegreen, B. G., et al. 1998, ApJ, 503, L119
Elmegreen, B. G., Elmegreen, D. M., & Montenegro, L. 1992, ApJ, 79, 37
Englmaier, P., & Shlosman, I. 1999, ApJ, in press
Erwin, P., & Sparke, L. S. 1999, in ASP Conf. Ser. 182, Galaxy Dynamics, ed. D. R. Merritt, M. Valluri, & J. A. Sellwood (San Francisco: ASP), 243
Falcke, H., Wilson, A. S., & Simpson, C. 1998, ApJ, 502, 199
Friedli, D., & Benz, W. 1993, A&A, 268, 65
Fuentes-Williams, T., & Stocke, J. 1988, AJ, 96, 1235
Glass, I. S. 1998, MNRAS, 297, 18
Glass, I. S., & Moorwood, A. F. M. 1985, MNRAS, 214, 429
González Delgado, R. M., Heckman, T., Leitherer, C., Meurer, G., Krolik, J., Wilson, A. S., Kinney, A., & Koratkar, A. 1998, ApJ, 505, 174
Heckman, T. M., González Delgado, R. M., Leitherer, C., Meurer, G. R., Krolik, J., Wilson, A. S., & Kinney, A. 1997, ApJ, 482, 114
Heckman, T. M., et al. 1995, ApJ, 452, 549
Hernquist, L. E. 1989, Nature, 340, 687
Hernquist, L. E., & Mihos, J. C. 1995, ApJ, 448, 41
Huchra, J., & Burg, R. 1992, ApJ, 393, 90
Huchra, J., Davis, M., Latham, D., & Tonry, J. 1983, ApJS, 52, 89
Hutchings, J. B., & Neff, S. G. 1988, AJ, 96, 1575

---. 1992, AJ, 104, 1
---. 1997, AJ, 113, 1514
Keel, W. C. 1996, AJ, 111, 696
Keel, W. C., Kennicutt, R. C., Jr., van der Hulst, J. K., & Hummel, E. 1985, AJ, 90, 708
Kennicutt, R. C., Jr. 1989, ApJ, 344, 685
Kormendy, J. 1979, ApJ, 227, 714
Kotilainen, J. K., Ward, M. J., Boisson, C., DePoy, D. L., Smith, M. G., & Bryant, L. R. 1992, MNRAS, 256, 125
Krist, J. E., & Hook, R. N. 1999, in preparation
Laine, S., Knapen, J. H., Pérez-Ramírez, D., Doyon, R., & Nadeau, D. 1999, MNRAS, 302, L33
Lin, C. C., & Shu, F. H. 1964, ApJ, 140, 646
Maciejewski, W., & Sparke, L., S. 1997, ApJ, 484, L117
MacKenty, J. W., Skinner, C., Calzetti, D., & Axon, D. J. 1997, NICMOS Instrument Handbook, Version 2.0 (Baltimore: STScI)
Maiolino, R., & Rieke, G. H. 1995, ApJ, 454, 95
Malkan, M. A., Gorjian, V., & Tam, R. 1998, ApJS, 117, 25
Mathis, J. S. 1990, ARA&A, 28, 37
McLeod, K. K., & Rieke, G. H. 1995, ApJ, 441, 96
Mihos, J. C., & Hernquist, L. E. 1994, ApJ, 425, L13
Montenegro, L. E., Yuan, C., & Elmegreen, B. G. 1999, ApJ, 520, 592
Mulchaey, J. S., & Regan, M. W. 1997, ApJ, 482, L135
Nelson, C. H., MacKenty, J. W., Simkin, S. M., & Griffiths, R. E. 1996, ApJ, 466, 713
Osterbrock, D. E. 1981, ApJ, 249, 462
Osterbrock, D. E., & Martel, A. 1993, ApJ, 414, 552
Peletier, R. F., Knapen, J. H., Shlosman, I., Pérez-Ramírez, D., Nadeau, D., Doyon, R., Rodriguez-Espinosa, J. M., & Pérez-Garcia, A. M. 1999, ApJS, in press
Peterson, B. M. 1997, An Introduction to Active Galactic Nuclei (Cambridge: Cambridge Univ. Press)
Petrov, A. R. 1982, Astrolizaika, 18, 548
Phillips, A. C., Illingworth, G. D., MacKenty, J. W., & Franx, M. 1996, AJ, 111, 1566
Piner, B. G., Stone, J. M., & Teuben, P. J. 1995, ApJ, 449, 508
Pogge, R. W. 1996, in ASP Conf. Ser. 113, Emission Lines in Active Galaxies: New Methods and Techniques, ed. B. M. Peterson, F.-Z. Cheng, & A. S. Wilson (San Francisco: ASP), 378
Pogge, R. W., & De Robertis, M. M. 1993, ApJ, 404, 563
Pogge, R. W., & Martini, P. 2000, in preparation
Quillen, A. C., Alonso-Herrero, A., Rieke, M. J., McDonald, C., Falcke, H., & Rieke, G. H. 1999, ApJ, in press
Quillen, A. C., Frogel, J. A., Kenney, J. D. P., Pogge, R. W., & DePoy, D. L. 1995, ApJ, 441, 549
Regan, M. W., & Mulchaey, J. S. 1999, AJ, 117, 2676
Regan, M. W., Vogel, S. N., & Teuben, P. J. 1997, ApJ, 482, L143
Rubin, V. C., & Ford, W. K., Jr. 1983, ApJ, 271, 556
Rubin, V. C., Kenney, J. D. P., & Young, J. S. 1997, AJ, 113, 1250
Sandage, A. R., & Tammann, G. A. 1987, A Revised Shapley-Ames Catalog of Bright Galaxies (2d ed; Washington: Carnegie Inst. Washington)
Schwarz, M. P. 1981, ApJ, 247, 77
Shaw, M., Axon, D., Probst, R., & Gatley, I. 1995, MNRAS, 274, 369
Shlosman, I., Frank, J., & Begelman, M. C. 1989, Nature, 338, 45
Simpson, C., Wilson, A. S., Bower, G., Heckman, T. M., Krolik, J. H., & Miley, G. K. 1997, ApJ, 474, 121
Spitzer, L., Jr. 1978, Physical Processes in the Interstellar Medium (New York: Wiley)
Stephens, A. W., Frogel, J. A., Sergio, O., Davies, R., Jablonka, P., Renzini, A., & Rich, A. M. 2000, AJ, submitted
Struck, C. 1997, ApJS, 113, 269
Toomre, A. 1981, in The Evolution of Galaxies and Stellar Populations, ed. S. M. Fall & D. Lynden-Bell (Cambridge: Cambridge Univ. Press), 111
Toomre, A., & Toomre, J. 1972, ApJ, 178, 623
van der Kruit, P. C., & Shostak, G. S. 1984, A&A, 134, 258
White, R. E., III, & Keel, W. C. 1992, Nature, 359, 129
White, R. E., III, Keel, W. C., & Conselice, C. J. 1996, preprint (astro-ph/9608113)
Witt, A. N., Thronson, H. A., Jr., & Capuano, J. M., Jr. 1992, ApJ, 393, 611