The SNF2 (SWI2), SNF5, and SNF6 genes are required for transcription of many diversely regulated genes in Saccharomyces cerevisiae. Previously, we showed that SNF2, SNF5, and SNF6 function interdependently in transcriptional activation, possibly forming a heteromeric complex. Here, we present evidence that SNF6 has a more direct role in stimulating transcription than SNF2 and SNF5. The global effects of mutations in SNF2, SNF5, and SNF6 suggested that these SNF proteins may function coordinately with many gene-specific activators. We show that LexA–GAL4 and LexA–Bicoid fusion proteins are both dependent on SNF2, SNF5, and SNF6 for activation of target genes containing one or multiple lexA operators. The stringency of the requirement for the SNF proteins varies with the activator, the number of binding sites for the activator, and the target promoter. Thus, these SNF proteins appear to represent a class of intermediary proteins that facilitate transcriptional activation by gene-specific regulatory proteins.

[Key Words: Yeast; transcriptional activation; SNF proteins; GAL4; Bicoid]
SWI1 for activation. The SWI1, SNF2/SWI2, and SWI3 genes are related by genetic criteria [Stern et al. 1984; Sternberg et al. 1987], and Peterson and Herskowitz (1992) recently reported evidence that the five SNF and SWI genes are functionally related and proposed that the proteins form a multisubunit complex.

How do SNF2,5,6 affect transcriptional activation of many diversely regulated genes? The primary structures of these proteins provided few clues. None of the SNF or SWI proteins appears to provide a DNA-binding domain mediating association with different promoters (Estevez and Carlson 1990; Laurent et al. 1990, 1991; Peterson and Herskowitz 1992). The most noteworthy features are that SNF2 contains sequences resembling the motifs characteristic of helicases [Davis et al. 1992; Laurent et al. 1992], that SNF5 is strikingly rich in glutamine and proline, and that all contain acidic regions. Previously, we and others proposed that SNF2,5,6 act in conjunction with gene-specific activators to stimulate transcription [Laurent et al. 1991, Peterson and Herskowitz 1992]. To test this idea, we examine here the function of two transcriptional activators, the yeast GAL4 and Drosophila Bicoid proteins, in snf2, snf5, and snf6 mutants. Using LexA–GAL4 and LexA–Bicoid fusion proteins [Brent and Ptashne 1985; Hanes and Brent 1989], we found that activation of a target gene is affected by SNF2,5,6 to varying degrees depending on the activator, the number of binding sites for the activator, and the target promoter.

How do SNF2,5,6 facilitate transcriptional activation by gene-specific activators? Our findings, coupled with previous genetic data implicating chromatin as a target of SNF function, suggest that the SNF proteins may have dual functions, both to relieve nucleosomal repression and to stimulate the transcriptional apparatus.

Results

Activation by a LexA–SNF6 fusion protein

Previously, we showed that activation by LexA–SNF2 and LexA–SNF5 requires the SNF6 function [Laurent et al. 1991]. One model is that SNF2, SNF5, and SNF6 are components of a heteromeric complex. An alternative is that SNF6 acts in a step before activation, perhaps affecting the function of the SNF2 or SNF5 protein by modification, effects on protein levels, DNA binding, or nuclear localization have been excluded [Laurent et al. 1990, 1991].

If SNF6 is part of a heteromeric complex, then tethering SNF6 to DNA might suffice to recruit SNF2, SNF5, and any other proteins that are similarly recruited by LexA–SNF2 or LexA–SNF5. According to this model, LexA–SNF6 should function as an activator. In contrast, if SNF6 modifies another SNF protein, we would not expect LexA–SNF6 to be an activator.

To test these possibilities, we constructed a *lexA–SNF6* gene fusion in the vector pSH2-1. The SNF6 gene was fused at codon 11 to the *lexA* DNA-binding domain under control of the *ADH1* promoter [Fig. 1]. The resulting plasmid, pLexA–SNF6, expresses a bifunctional LexA–SNF6 fusion protein, which complements a *snf6Δ* mutation. We then cotransformed wild-type yeast cells with pLexA–SNF6 and each of the *lexA–GAL1–lacZ* target plasmids. The target genes contain zero, one, or multiple [six overlapping, Ehna et al. 1983] *lexA* operators located 5' to the promoter of a *GAL1–lacZ* fusion with a deletion of UAS5 [West et al. 1984; Hanes and Brent 1989]. Transcription from the *GAL1* promoter is dependent on the binding of an activator protein to the *lexA* operator [Table 1].

The LexA–SNF6 fusion protein activated transcription with even greater efficacy than the LexA–SNF2 and LexA–SNF5 fusions [Table 1]. The ability of LexA–SNF6 to function as an activator suggests that the dependence of LexA–SNF2 and LexA–SNF5 on SNF6 does not reflect a requirement for SNF6 in a step before activation. These data are compatible with the idea that SNF6 associates with SNF2 and SNF5 in a heteromeric complex.

![Figure 1. Expression of LexA–SNF6 fusion protein.](image)

LexA–SNF6 fusion protein, which complements a *snf6Δ* mutation. We then cotransformed wild-type yeast cells with pLexA–SNF6 and each of the *lexA–GAL1–lacZ* target plasmids. The target genes contain zero, one, or multiple [six overlapping, Ehna et al. 1983] *lexA* operators located 5' to the promoter of a *GAL1–lacZ* fusion with a deletion of UAS5 [West et al. 1984; Hanes and Brent 1989]. Transcription from the *GAL1* promoter is dependent on the binding of an activator protein to the *lexA* operator [Table 1].

The LexA–SNF6 fusion protein activated transcription with even greater efficacy than the LexA–SNF2 and LexA–SNF5 fusions [Table 1]. The ability of LexA–SNF6 to function as an activator suggests that the dependence of LexA–SNF2 and LexA–SNF5 on SNF6 does not reflect a requirement for SNF6 in a step before activation. These data are compatible with the idea that SNF6 associates with SNF2 and SNF5 in a heteromeric complex.

We then examined the dependence of LexA–SNF6 on SNF2 and SNF5 for activation of the target genes. In snf2 and snf5 mutants, expression of β-galactosidase from the target gene with one *lexA* operator was reduced 16- and 7-fold, respectively [Table 1]. The level of LexA–SNF6 protein in these *snf* mutants was also reduced relative to wild type, as judged by immunoblotting [Fig. 2B], which likely contributed to the reduced activation. Thus, activation by LexA–SNF6 is at best only moderately dependent on SNF2 and SNF5. Moreover, when the target has multiple operators, activation is not at all dependent on SNF2 or SNF5 [Table 1].

In analogous assays, LexA–SNF2 and LexA–SNF5 showed striking dependence on the other SNF proteins, even when the target contained multiple *lexA* operators [Table 1] and the levels of LexA–SNF2 and LexA–SNF5 were not decreased in *snf* mutants [Laurent et al. 1991]. Thus, the minimal dependence of LexA–SNF6 on SNF2 or SNF5 indicates that SNF6 is functionally distinct from SNF2 and SNF5. This finding does not exclude the possibility that SNF6 is part of a complex with SNF2 and SNF5 but suggests that SNF6 may interact more directly with components of the transcriptional apparatus.

SWI1 is required for activation by LexA–SNF2 and LexA–SNF5, but not LexA–SNF6

The identity of the SNF2 and SWI2 genes [K. Nasmyth, pers. comm.] prompted us to examine the relationship of other SWI genes to SNF2,5,6. SWI1 [identical to ADR6; O'Hara et al. 1988, Peterson and Herskowitz 1992],
SNF proteins in transcriptional activation

Table 1. Gene activation by LexA-SNF6 in snf mutants

Number of lexA operators	LexA–SNF6	LexA–SNF2	LexA–SNF5	LexA–SNF6
	WT snf2 snf5 snf6			
0	<1 <1 <1 <1	<1 <1 <1 <1	120 2 1 140 4 11	
1	860 54 120 800 120 2 1 140 4 11			
6	1320 1620 1140 930 350 8 5 410 8 40			

Target plasmids were pLR1A1, 1840, and pSH18-18, carrying lexA–GAL1–lacZ gene fusions. Values are average β-galactosidase activity for four transformants. Standard errors were <11%. Values for LexA-SNF2 and LexA-SNF5 are from Laurent et al. (1991). (WT) Wild type.

SNF2/SWI2, and SWI3 constitute a group of related genes by genetic criteria: Their mutant phenotypes and interactions with extragenic suppressors are similar [Stern et al. 1984; Sternberg et al. 1987]. We therefore tested whether activation of lexA–GAL1–lacZ targets by the LexA–SNF fusion proteins is dependent on SWI1 function. Activation by LexA–SNF2 and LexA–SNF5 absolutely required SWI1. Activation by LexA–SNF6 was reduced severalfold in a swi1 mutant when the target promoter contained a single lexA operator but was independent of SWI1 when multiple operators were provided (Table 2). Levels of the LexA–SNF2,5,6 proteins were somewhat reduced in a swi1 mutant [Fig. 2C], but these reductions cannot fully account for the dramatic decrease in target gene activation by LexA–SNF2 and LexA–SNF5. Thus, LexA–SNF2 and LexA–SNF5 require SWI1, but LexA–SNF6 does not. Similar experiments were attempted with a swi3 mutant, but the transformants grew too poorly for reliable assays.

Transcriptional activation by LexA–GAL4 is dependent on SNF2,5,6

It has been proposed that SNF2,5,6 affect diverse genes by functioning in conjunction with gene-specific activators [Laurent et al. 1991; Peterson and Herskowitz 1992]. One candidate is the GAL4 activator. Several lines of evidence indicate that the SNF2,5,6 proteins are required for GAL gene transcription. Mutations in these SNF genes cause growth defects on galactose [Neigeborn and Carlson 1984; Estruch and Carlson 1990], and Peterson and Herskowitz (1992) recently reported decreased expression of GAL genes in snf mutants. We have tested the effects of snf2,5,6 mutations on expression of a GAL10–lacZ gene fusion [West et al. 1984] under control of UASG, the upstream activation sequence recognized by GAL4. Under galactose-inducing conditions, β-galactosidase was reduced 10-fold in snf2 and snf5 mutants and severalfold in the snf6 mutant (Table 3). These data suggest that SNF2,5,6 may function coordinately with GAL4.

To test this idea, we obtained a plasmid expressing a LexA–GAL4 fusion protein from the ADH1 promoter, which is active in these snf mutants [Laurent et al. 1991]. LexA–GAL4 has been shown to activate transcription

Table 2. Activation by the LexA–SNF fusion proteins in a swi1 mutant

Number of lexA operators	swi1	LexA–SNF2	LexA–SNF5	LexA–SNF6
		WT snf2 snf5 snf6	WT snf2 snf5 snf6	WT snf2 snf5 snf6
0	<1	<1 <1 <1	<1 <1 <1 <1	120 2 1 140 4 11
1	1	1 1 150	120 2 1 140 4 11	
6	7	2 970	350 8 5 410 8 40	

Target plasmids were pLR1A1, 1840, and pSH18-18, carrying lexA–GAL1–lacZ target genes. Values are average β-galactosidase units produced in three or four independent transformants. Standard errors were <16%.

Figure 2. Immunoblot analysis of fusion proteins. Strains were MCY829 [wild type (WT)], MCY2156 [snf2], MCY2099 [snf5], MCY2101 [snf6], and CY58 (swi1) carrying the indicated expression plasmid and target plasmid 1840. Cultures were grown in SC media containing 2% glucose with selection for both plasmids. Proteins were prepared, separated by SDS-PAGE in 5% (A), 7% (B), or 6.5% (C) polyacrylamide, and subjected to immunoblot analysis (see Materials and methods). LexA fusion proteins were detected with polyclonal LexA antiserum. Expression plasmids: (A) pSH17-4, expressing LexA–GAL4; (B) pLexA–SNF6; (C) pLexA–SNF2, pLexA–SNF5, or pLexA–SNF6, expressing LexA–SNF (L-SNF) proteins, as indicated above the lanes. Transformants used in this experiment were also assayed for β-galactosidase activity. Sizes (kD) of marker proteins are indicated.

GENES & DEVELOPMENT 1709
from appropriate target genes in yeast (Brent and Ptashne 1985). To determine whether the LexA–GAL4 activation function is dependent on the SNF proteins, we tested its ability to activate target gene expression in snf2, snf5, and snf6 mutant hosts. The snf mutations substantially reduced expression of a target gene containing one lexA operator; expression was decreased 50-fold or more in snf2 and snf5 mutants and 16-fold in snf6 mutants (Table 3). In contrast, the snf mutations did not significantly affect expression from a target gene with multiple lexA operators. β-Galactosidase activities were the same within a factor of 2 in snf mutants and wild type. Levels of LexA–GAL4 protein were the same in snf mutants and wild type (Fig. 2A).

Thus, SNF2,5,6 facilitate activation by GAL4, but increasing the number of LexA–GAL4 proteins bound near the promoter compensates for loss of SNF2,5,6. These results suggest that SNF2,5,6 act coordinately with GAL4 but, in this context, are not essential intermediaries between GAL4 and the transcriptional apparatus.

Dependence of the heterologous activator Bicoid on SNF function

Bicoid, a Drosophila morphogen, is a transcriptional activator of the hunchback gene that functions in yeast but has no known yeast homolog (Hanes and Brent 1989; Struhl et al. 1989). Previously, Hanes and Brent (1989) showed that a LexA–Bicoid fusion protein activates lexA–GAL1–lacZ gene expression in yeast. We therefore tested the dependence of LexA–Bicoid on SNF2,5,6 for activation of the same target genes. Activation of a target containing one lexA operator was decreased in snf2, snf5, and snf6 mutant hosts (Table 4). Activation was strongly dependent on SNF2 and SNF5, but expression was reduced only 2.5-fold in the snf6 mutant. In contrast to the results with LexA–GAL4, the presence of multiple lexA operators reduced, but did not abolish, the dependence on SNF2 and SNF5. Expression was reduced seven- and fourfold in snf2 and snf5 mutants, respectively.

Thus, in the case of Bicoid, which appears to be a less potent activator than GAL4 in this assay, increasing the number of LexA–Bicoid proteins bound near the promoter is not sufficient to compensate fully for loss of SNF2 or SNF5. These results confirm that the SNF proteins assist gene-specific activators in stimulating transcription. The requirement for such assistance appears to depend on the particular activator and the number of binding sites near the promoter.

Requirement for SNF proteins depends on the promoter

To determine whether the target promoter affects the dependence of an activator on the SNF proteins, we examined activation of a lexA–CYC1–lacZ target gene. Plasmid pLG670Z contains a CYC1–lacZ gene fusion with the upstream activation sequences deleted (Guarente and Ptashne 1981), and plasmid 1107 is a derivative of pLG670Z containing the lexA operator (Brent and Ptashne 1985). To confirm that the CYC1 promoter is capable of responding to SNF2,5,6, we first examined activation of these target genes by LexA–SNF5. High-level activation was observed in a wild-type host strain, and activation was decreased in snf2 and snf6 mutants (Table 5).

Wild-type and snf mutant strains were then cotransformed with the LexA–GAL4 or LexA–Bicoid expression plasmid and each of the target plasmids. Binding of LexA–GAL4 to one copy of the operator was sufficient for high-level activation of the CYC1 promoter in both wild-type and snf mutants (Table 5). The snf mutations caused no discernible effect, indicating that the SNF proteins do not augment the interaction of GAL4 with the transcriptional apparatus at this promoter. In contrast, activation by LexA–Bicoid was highly dependent on SNF.

Table 3. Expression of a GAL10–lacZ gene fusion in snf mutants

Relevant genotype	Repressed	Induced
WT	0.2	650
snf2Δ	0.6	63
snf5Δ	0.2	69
snf6Δ	1.0	300

Values shown are average β-galactosidase activity, expressed as unit measures.

| Strains | MCY829 [wild type, (WT)], MCY1250 [snf2Δ], MCY1991 [snf5Δ], and MCY2101 [snf6Δ] carried pRY123, a 2µ plasmid containing a GAL10–lacZ fusion under the control of UASG (West et al. 1984). For glucose-repressed cultures, the medium contained 2% glucose, 2% galactose, and 3% glycerol. For galactose induction, the medium contained 2% galactose and 3% glycerol, the snf mutants grow slowly in this medium. Values shown are average β-galactosidase activity, expressed as described by Miller (1972), for three or four individual transformants. Standard errors were <23%.

Table 4. Transcriptional activation by LexA–GAL4 and LexA–Bicoid fusion proteins depends on SNF proteins

Number of lexA operators	WT	LexA–GAL4	LexA–Bicoid					
		snf2	snf5	snf6		snf2	snf5	snf6
0	<1	<1	<1	<1	<1	<1	<1	<1
1	1325	7	25	85	80	3	6	32
6	1880	770	1570	770	610	90	140	460

Target plasmids were pLR1A1, 1840, and pSH18-18, carrying lexA–GAL1–lacZ target genes. LexA–GAL4 and LexA–Bicoid were expressed from plasmids pSH17-4 and pSH11-1, respectively. Values are average β-galactosidase activity for three or four transformants. Standard errors were <23%. Control experiments with pSH2-1, expressing only the LexA DNA-binding domain, showed that the LexA moiety does not suffice for gene activation (Brent and Ptashne 1985; Laurent et al. 1991). (WT) Wild type.
Table 5. Activation of lexA–CYC1–lacz target gene

Number of lexA operators	LexA–GAL4	LexA–Bicoid	LexA–SNF5	LexA1–87									
	WT	snf2	snf5	snf6	WT	snf2	snf5	snf6	WT	snf2	snf5	snf6	WT
0	<1	<1	1	2	<1	<1	<1	3	2	2	10	ND	
1	1260	1070	1180	1350	381	11	21	30	1440	34	156	2	

Values represent assays of one transformant carrying target plasmid pLG670Z [no lexA operator] and averages of three or four transformants carrying plasmid 1107 [one lexA operator]. (WT) Wild type. (ND) Not determined. Standard errors were <13%.

function; β-galactosidase activity was reduced 35-18- and 13-fold in snf2, snf5, and snf6 mutants, respectively.

Thus, the finding that SNF proteins do not augment activation by LexA–GAL4 does not reflect an intrinsic inability of the SNF proteins to affect transcription from the CYC1 promoter. Rather, the SNF proteins appear simply to be dispensable for efficient activation by GAL4 at this promoter. This evidence that LexA–GAL4, when bound at a single site, requires the SNF proteins for maximal activation of the GAL1 promoter, but not for activation of the CYC1 promoter, indicates that the role of the SNF proteins in facilitating activator function is promoter specific.

Discussion

Considerable genetic evidence indicates that the SNF2,5,6 proteins profoundly affect transcription of divergently regulated genes in vivo and are essential for healthy growth of the cell. The evidence presented here suggests that SNF2,5,6 act coordinately with various gene-specific activators to facilitate or enhance transcriptional activation. Both the LexA–GAL4 and LexA–Bicoid proteins were dependent on SNF2,5,6 function for the activation of a GAL1–lacrZ target gene with a single lexA operator. The ability of SNF2,5,6 to cooperate with both GAL4 and Bicoid is consistent with genetic evidence for the function of SNF2,5,6 with diverse activators in vivo. The relationship of the SNF2,5,6 proteins to coactivators or mediators defined by biochemical experiments in vitro (for review, see Lewin 1990) is not yet clear. In these experiments, the requirement for SNF2,5,6 in the activation process depended on the specific activator (LexA–GAL4 or LexA–Bicoid), the number of binding sites for the activator [one or multiple], and the particular promoter (GAL1 or CYC1). For example, the binding of multiple LexA–GAL4 proteins by multiple operators largely overcame the requirement for SNF2,5,6 for activation of the GAL1 promoter. Perhaps this diminished dependence on SNF2,5,6 reflects saturation of the activation process. We imagine that the requirement for SNF2,5,6 for expression of genes from their chromosomal loci depends on the template structure and strength of the activator and promoter.

SNF6 has a role distinct from SNF2 and SNF5

To clarify the role of the SNF6 protein relative to SNF2 and SNF5, we expressed a bifunctional LexA–SNF6 fusion protein. We show that LexA–SNF6 is a transcriptional activator and functions to a considerable degree independently of SNF2 and SNF5. The minimal dependence of LexA–SNF6 on SNF2 and SNF5 (compared with the dramatic dependence of LexA–SNF2 and LexA–SNF5 on SNF6) implicates SNF6 as the protein that acts more directly to stimulate transcription. Consistent with this idea, LexA–SNF6 showed a similar pattern of dependence on SNF2, SNF5, and the number of lexA operators as found for LexA–GAL4 and LexA–Bicoid. Moreover, the effects of snf2,5,6 mutations on activation by LexA–GAL4 and LexA–Bicoid can be understood within this context: For a target gene with a single lexA operator, the SNF6 protein plays a more modest role than SNF2 and SNF5 because its function is partially redundant with that of GAL4 and Bicoid. We note that the SNF6 protein contains both acidic and glutamine-rich regions (Estруч and Carlson 1990), which could serve as activation domains. Alternatively, SNF6 may mediate the association of yet another protein containing an activation domain.

Additional genetic evidence previously suggested that SNF6 is functionally distinct from SNF2 and SNF5. Activation by LexA–SNF2 and LexA–SNF5 was restored by an spt6 mutation in snf5 or snf2 mutants, respectively, but was not restored in a snf6 mutant (Laurent et al. 1991). SPT6 belongs to a group of SPT genes, including genes encoding histones H2A and H2B, which are thought to affect chromatin structure (Clark-Adams et al. 1988; Swanson et al. 1990).

These findings are compatible with the simple model that SNF2,5,6 form a heteromeric complex and that LexA–SNF2 or LexA–SNF5 recruits the other two SNF proteins into a DNA-bound complex (Laurent et al. 1991). [The association of SNF6 with either SNF2 or SNF5 would then require the other SNF protein because LexA–SNF2 requires SNF5 for activation, and vice versa.] The decreased levels of LexA–SNF6 protein in snf2 and snf5 mutants are also consistent with its presence in a heteromeric complex that confers stability. However, the data do not exclude models in which SNF6 instead associates directly with the transcriptional machinery.

The relationship of SWI1 to the SNF proteins

The identity of SNF2 and SWI2 suggested that the SWI1 protein is functionally related to SNF2,5,6, and recent work of Peterson and Herskowitz (1992) provided sup-
porting evidence. We show here that activation by LexA–SNF2 and LexA–SNF5 is abolished in a swi1 mutant, but activation by LexA–SNF6 is reduced only several-fold. We also found that levels of LexA–SNF proteins are reduced in the swi1 mutant, although transcription from the ADH1 promoter is not dependent on SWI1 under these growth conditions [Peterson and Herskowitz 1992]. Our findings are consistent with the idea that SWI1 is in a multiprotein complex with the SNF proteins, as proposed by Peterson and Herskowitz [1992], although the possibility that SWI1 modifies a protein in the complex [other than SNF6] has not been excluded. The observed dependency relationships rule out the model that SWI1 provides an activation domain that is recruited by SNF6.

We also note that SWI1, like the SNF proteins, appears to affect the function of gene-specific activators. A swi1 mutation reduces the ability of the Drosophila tushi tarazu (frz) protein, expressed in yeast, to activate a reporter gene with upstream frz-binding sites, and reduces UAS activity in strains overexpressing GAL4 [Peterson and Herskowitz 1992].

SNF2,5,6 may facilitate activation by altering chromatin

How do the SNF2,5,6 proteins facilitate the effects of transcriptional activators? The ability of the LexA–SNF proteins to activate transcription suggests a direct stimulatory role in transcription. In addition, genetic evidence suggests that SNF2,5,6 may also affect chromatin structure. Recent work has documented nucleosome-mediated repression of transcriptional initiation and changes in chromatin structure accompanying transcription [for reviews, see Grunstein 1990; Kornberg and Lorch 1991; Felsenfeld 1992]. The evidence implicating SNF2,5,6 in remodeling chromatin derives from studies of extragenic suppressors that restore transcription in snf mutants. Mutations in genes encoding histones H2A and H2B [HTA1/SPT11 and HTB1/SPT12] and the related genes SPT4, SPT5, SPT6, and SPT16 suppress defects in Ty and SUC2 expression caused by snf2, snf5, and snf6 [Neigeborn et al. 1986, 1987; Clark-Adams and Winston 1987; Happel et al. 1991; Malone et al. 1991; J. Hirschhorn, S. Brown, C. Clark, and F. Winston, pers. comm.). It seems likely that mutations in these SPT genes suppress the requirement for SNF2,5,6 by affecting chromatin structure [Happel et al. 1991; Swanson et al. 1991]. Two of the SIN genes, identified as suppressors of swi mutations that restore HO transcription, also are involved in chromatin structure: SIN1 encodes an HMGI-related protein [Kruger and Herskowitz 1991], and SIN2 encodes histone H3 [W. Kruger, C. Peterson, A. Sil, and I. Herskowitz, unpublished data cited by Peterson and Herskowitz 1992]. This genetic evidence that changes in chromatin compensate for lack of SNF2,5,6 function strongly suggests, but does not necessarily imply, that SNF2,5,6 affect chromatin.

Alteration of chromatin by the SNF2,5,6 proteins could facilitate transcriptional activation by at least two mechanisms. One possibility is that SNF2,5,6 alter chromatin structure and facilitate contact between activators and the transcriptional apparatus, thereby enhancing stimulation of transcription. Alternatively, Workman et al. [1991] have proposed that acidic activators help basal transcription factors compete with nucleosomes for occupancy of the promoter, and SNF2,5,6 could assist this process.

We favor the idea that the SNF2,5,6 proteins function coordinately with activators in dual roles, both in alleviating nucleosomal repression and stimulating the transcriptional machinery. We suggest that SNF2 and SNF5 may be primarily responsible for disrupting or displacing nucleosomes because snf2 and snf5 mutations (but not snf6) are suppressed by spt6 in the LexA assay system, whereas SNF6 plays a more direct role in stimulating the transcriptional machinery. Figure 3 shows a possible model, a variation in which SNF6 is not part of the complex is also tenable.

The sequence of the SNF2 protein suggests a mechanism for its function. SNF2 contains a putative NTP-binding site and other sequences related to the conserved motifs found in helicases [Davis et al. 1992; Laurent et al. 1992]. A precedent for effects of a helicase on DNA–protein interactions is provided by the bacteriophage T4 dda protein, a helicase that removes proteins from DNA [Bonne-Andrea et al. 1990]. We also note that a helicase activity was found to associate with the human RAP30/ 74 [TFIIF] factor [Sopta et al. 1989].

Figure 3. Model for the roles of the SNF2, SNF5, and SNF6 proteins in transcriptional activation. The proposed heteromeric complex containing SNF2, SNF5, and SNF6 may include more than one subunit of each SNF protein and also other proteins, such as SWI1 and SWI3. A possible variation of this model would depict SNF6 as a separate entity, not associated with other SNF proteins. The effect of the SNF6 proteins on chromatin structure is represented by a bar and a change in placement of nucleosomes [N, shaded circles]. The SNF proteins may either disrupt or displace nucleosomes, thereby alleviating their repressive effect on transcription. Arrows indicate activation of the transcriptional machinery by a gene-specific activator protein [ACTIV.] bound to the upstream activating sequence (UAS) and by SNF6. The activator protein may also be directly involved in relieving repression by nucleosomes [Workman et al. 1991]. The association of SNF2,5,6 with the promoter could be mediated by the activator, by basal transcription factors, or by an unidentified DNA-binding protein.
SNF2,5,6 functions may be conserved among eukaryotes

Yeast and higher eukaryotes show a high degree of conservation for the basic processes of transcription, and many activators and transcription factors function interchangeably in yeast and mammalian cells (Kelleher et al. 1992 and references therein). The SNF2,5,6 proteins not only function globally in yeast but also assist the homologous activator Bicoid, suggesting conservation of SNF function in evolution. Proteins with extensive homology to SNF2 have already been identified in Drosophila, Bombyx mori, mouse, and human cells (Laurent et al. 1992, Tamkun et al. 1992, N. Spoerel; R. Perry and V. Delmas, R. Nussbaum; all pers. comm.), and the Drosophila homolog Brahma appears to be involved in transcriptional activation (Tamkun et al. 1992). Thus, it seems highly likely that the SNF2,5,6 proteins have functional counterparts in other eukaryotes.

Materials and methods

Strains, media, and genetic methods

All S. cerevisiae strains were derivatives of S288C and are listed in Table 6. Strains MCY829, MCY2156, MCY2099, and MCY2101 were used as hosts unless otherwise indicated. Rich (YPD) and synthetic complete (SC) media (Rose et al. 1990) contained 2% glucose, except where noted otherwise. Transformation and genetic analysis of yeast were by standard methods (Rose et al. 1990). Escherichia coli strains HB101 and XL-1 Blue were used as hosts for plasmids.

Plasmids

Expression plasmids pSH2-1, a 2μ-based plasmid bearing the HIS3 selectable marker, expresses the amino-terminal 87 residues of the LexA protein [LexA87] from the constitutive ADH1 promoter (Hanes and Brent 1989). The following LexA-fusion plasmids are derivatives of pSH2-1 and express LexA87 fused to the indicated sequence: pLexA-SNF2, SNF2 residues 14−1696 (Laurent et al. 1991); pLexA−SNF5, SNF5 residues 9−868 (Laurent et al. 1990); pSH11-1, Drosophila Bicoid residues 3−489 (Hanes and Brent 1989); and pSH17-4, residues 74−881 of GAL4 S.D. Hanes, pers. comm.).

To construct pLexA−SNF6 (Fig. 1), we isolated the 0.9-kb Ncol fragment of pEB107 (F. Estruch, unpubl.), a subclone of the Nhel−XhoI fragment of pEL3.10 (Estruch and Carlson 1990) in pUC19. After the ends were made flush with the Klenow fragment of DNA polymerase I, the fragment was ligated to BamHI 10-mer linkers and cloned into the BamHI site of pSH2-1. The resulting plasmid, pLexA−SNF6, encodes LexA87−RNase fusions in-frame to codons 11−332 of SNF6. The pSH2-1 polylinker and BamHI linker introduce 8 residues between LexA and SNF6. The SNF6 translational stop codon follows residue 332.

Target plasmids The reporter plasmids contain the 2μ replicator and the URA3 selectable marker. pLR1Δ1 [West et al. 1984] contains a GALI−lacZ gene fusion, with the UASG, removed. Plasmids 1840 [identical to 1145 in Brent and Ptashne (1985)], and pSH18-18 (S.D. Hanes and R. Brent, pers. comm.) are derived from pLR1Δ1 and contain a single 22-bp lexA operator or a 6 colE1 overlapping lexA operators (Ebina et al. 1983), respectively, inserted 167 bp upstream of the transcriptional start site for GALI−lacZ. pLG670Z (Guarente and Ptashne 1981) carries a CYC1−lacZ gene fusion lacking the upstream activation sites UASG and UASC. Plasmid 1107, originally named 1155 [Brent and Ptashne 1985], is a derivative of pLG670Z in which a single lexA operator was inserted at the Xhol site 178 bp 5′ to the most upstream CYC1 transcription start site.

β-Galactosidase assays

Freshly transformed colonies were grown to mid-log phase in SC medium lacking appropriate supplements to maintain selection for plasmids and containing 2% glucose except where noted. β-Galactosidase activity was assayed in permeabilized cells (Guarente 1983) and is expressed as described by Miller (1972). Four (occasionally three) transformants of each genotype were assayed in each experiment. In control experiments to test the effects of carbon source on the activation assay, wild-type cultures carrying pLexA−SNF5 and 1840 were shifted to medium containing 2% raffinose for 3 hr, this shift to nonrepressing conditions did not increase β-galactosidase expression significantly.

Immunoblot analysis

Protein extracts were prepared as described (Celenza and Carlson 1986), except that pepstatin and leupeptin were each added to a final concentration of 1 μg/ml, and lysates were clarified by centrifuging at 10,000g for 10 min. Proteins were separated by SDS-PAGE and electroblotted to nitrocellulose paper as described (Towbin et al. 1979) except that methanol was omitted. Blots were incubated with polyclonal LexA antibody (a gift of J. Kamens and R. Brent, Massachusetts General Hosp., Boston) at a dilution of 1:2000 followed by goat anti-rabbit antibody coupled to alkaline phosphatase (Promega). Reactions were developed with the NBT/BCIP color reagents (Promega).

Acknowledgments

We thank Kwan Choi for assistance with experiments, Steve Hanes, Joanne Kamens, and Roger Brent for generous gifts of plasmids and antibody, and Craig Peterson and Ira Herskowitz for providing the swi1 mutant. We thank Isabelle Treich and Aaron Mitchell for helpful discussion. This work was supported by grants GM34095 and GM47259 from the National Institutes of Health and by an American Cancer Society Faculty Research Award to M.C. B.C.L. acknowledges support from National Research Service Award Postdoctoral Fellowship F32 GM11933.

The publication costs of this article were defrayed in part by payment of page charges. This article must therefore be hereby

Table 6. List of S. cerevisiae strains

Strain	Genotype
MCY829	MATa his3Δ200 lys2-801 ura3-52 SUC2
MCY1250	MATa snf2Δ1::HIS3 his3Δ200 lys2-801 ura3-52 SUC2
MCY1991	MATa snf5Δ2 ura3-52 ade2-101 SUC2
MCY2099	MATa snf5Δ2 his3Δ200 ura3-52 ade2-101 SUC2
MCY2101	MATa snf6Δ2 his3Δ200 ura3-52 lys2-801 SUC2
MCY2156	MATa snf5Δ2 his3Δ200 ura3-52 SUC2
CY58*	MATa swi1Δ::LEU2 his3Δ200 lys2-801 ura3-52 ade2-101 trp1Δ1 leu2 Δ1

*Obtained from C. Peterson and I. Herskowitz.
marked “advertisement” in accordance with 18 USC section 1734 solely to indicate this fact.

References

Abrams, E., L. Neigebohm, and M. Carlson. 1986. Molecular analysis of SNF2 and SNF5, genes required for expression of glucose-repressible genes in S. cerevisiae. Mol. Cell. Biol. 6: 3643–3651.

Bonne-Andrea, C., M.L. Wong, and B.M. Alberts. 1734 solely to indicate this fact.

Clark-Adams, C.D. and F. Winston. 1987. The

Davis, J.L., R. Kunisawa, and J. Thorner. 1992. A presumptive activator bearing the DNA specificity of a prokaryotic repressor. Cell 43: 729–736.

Celenza, J.L. and M. Carlson. 1986. A yeast gene that is essential for release from glucose repression encodes a protein kinase. Science 233: 1175–1180.

Ciriacy, M., K. Freidel, and C. Lohning. 1991. Characterization of trans-acting mutations affecting Ty and Ty-mediated transcription in Saccharomyces cerevisiae. Curr. Genet. 20: 441–448.

Clark-Adams, C.D. and F. Winston. 1987. The SNF7 gene is essential for growth and is required for 8-mediated transcription in Saccharomyces cerevisiae. Mol. Cell. Biol. 7: 679–686.

Clark-Adams, C.D., D. Norris, M.A. Osley, J.S. Fassler, and F. Winston. 1988. Changes in histone gene dosage alter transcription in yeast. Genes & Dev. 2: 150–159.

Davis, J.L., R. Kusisawa, and J. Thorner. 1992. A presumptive helicase (MOT1 gene product) affects gene expression and is required for viability in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 12: 1879–1892.

Ebina, Y., Y. Takahara, F. Kishi, A. Nakazawa, C. Parker, and R. Brent. 1983. LexA protein is repressor of the colicin E1 gene. J. Biol. Chem. 258: 13258–13261.

Estruch, F. and M. Carlson. 1990. SNF6 encodes a nuclear protein that is required for expression of many genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 10: 2544–2553.

Felsenfeld, G. 1992. Chromatin as an essential part of the transcriptional machinery. Nature 355: 219–224.

Grunstein, M. 1990. Nucleosomes: Regulators of transcription. Trends Genet. 6: 395–400.

Guarente, L. 1983. Yeast promoters and lacZ fusions designed to study expression of cloned genes in yeast. Methods Enzymol. 101: 181–191.

Guarente, L. and M. Ptashne. 1981. Fusion of Escherichia coli lacZ to the cytochrome c gene of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. 78: 2199–2203.

Hanes, S.D. and R. Brent. 1989. DNA specificity of the bicoid activator protein is determined by homeodomain recognition helix residue 9. Cell 57: 1275–1283.

Happel, A.M., M.S. Swanson, and F. Winston. 1991. The SNF2, SNF5, and SNF6 genes are required for Ty transcription in Saccharomyces cerevisiae. Genetics 128: 69–77.

Herskowitz, I. 1989. A regulatory hierarchy for cell specialization in yeast. Nature 342: 749–757.

Kelleher, R.J. III, P.M. Flanagan, D.I. Chasman, A.S. Ponticelli, K. Struhl, and R.D. Kornberg. 1992. Yeast and human TFIIIDs are interchangeable for the response to acidic transcriptional activators in vitro. Genes & Dev. 6: 296–303.

Kornberg, R.D. and Y. Lorch. 1991. Irresistible force meets immovable object: Transcription and the nucleosome. Cell 67: 833–836.

Kruger, W. and I. Herskowitz. 1991. A negative regulator of HO transcription, SN1 (SPT2), is a nonspecific DNA–binding protein related to HMG1. Mol. Cell. Biol. 11: 4135–4146.

Laurent, B.C., M.A. Treitel, and M. Carlson. 1990. The SNF5 protein of Saccharomyces cerevisiae is a glutamine- and proline-rich transcriptional activator that affects expression of a broad spectrum of genes. Mol. Cell. Biol. 10: 5616–5625.

Laurent, B.C., M.A. Treitel, and M. Carlson. 1991. Functional interdependence of the yeast SNF2, SNF5, and SNF6 proteins in transcriptional activation. Proc. Natl. Acad. Sci. 88: 2687–2691.

Laurent, B.C., X. Yang, and M. Carlson. 1992. An essential Saccharomyces cerevisiae gene homologous to SNF2 encodes a helicase-related protein in a new family. Mol. Cell. Biol. 12: 1893–1902.

Lewin, B. 1990. Commitment and activation at Pol II promoters: A tail of protein-protein interactions. Cell 61: 1161–1164.

Malone, E.A., C.D. Clark, A. Chiang, and F. Winston. 1991. Mutations in SP1716/CDC68 suppress cis- and trans-acting mutations that affect promoter function in Saccharomyces cerevisiae. Mol. Cell. Biol. 11: 5710–5717.

Miller, J.H. 1972. Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

Moehle, C. M. and E.W. Jones. 1990. Consequences of growth media, gene copy number, and regulatory mutations on the expression of the PRB1 gene of Saccharomyces cerevisiae. Genetics 124: 39–55.

Neigebohm, L. and M. Carlson. 1984. Genes affecting the regulation of SUC2 gene expression by glucose repression in Saccharomyces cerevisiae. Genetics 108: 845–858.

Neigebohm, L., J.L. Celenza, and M. Carlson. 1987. SSN20 is an essential gene with mutant alleles that suppress defects in SUC2 transcription in Saccharomyces cerevisiae. Mol. Cell. Biol. 7: 672–678.

Neigebohm, L., K. Ruben, and M. Carlson. 1986. Suppressors of snf2 mutations restore invertase derepression and cause temperature-sensitive lethality in yeast. Genetics 112: 741–753.

O’Hara, P.J., H. Horowitz, G. Eichinger, and E.T. Young. 1988. The yeast ADR5 gene encodes homopolymeric amino acid sequences and a potential metal-binding domain. Nucleic Acids Res. 16: 10153–10169.

Peterson, C.L. and I. Herskowitz. 1992. Characterization of the yeast SWI1, SWI2, and SWI3 genes, which encode a global activator of transcription. Cell 68: 573–583.

Peterson, C.L., W. Kruger, and I. Herskowitz. 1991. A functional interaction between the C-terminal domain of RNA polymerase II and the negative regulator SIN1. Cell 64: 1135–1143.

Roeder, R.G. 1991. The complexities of eukaryotic transcription initiation: Regulation of preinitiation complex assembly. Trends Biochem. Sci. 16: 402–408.

Rose, M.D., F. Winston, and P. Hieter. 1990. Methods in yeast genetics: A laboratory course manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

Sopova, M., Z.F. Burton, and J. Greenblatt. 1989. Structure and function of a helicase-related protein in a new family of ATPases. Cell 68: 395–400.

Sternberg, P.W., M.J. Stern, I. Clark, and I. Herskowitz. 1987. Activation of the yeast HO gene by release from multiple negative controls. Cell 48: 567–577.

Struhl, G., K. Struhl, and P.M. Macdonald. 1989. The gradient

1714 GENES & DEVELOPMENT
SNF proteins in transcriptional activation

morphogen bicoid is a concentration-dependent transcriptional activator. Cell 57: 1259–1273.

Swanson, M.S., M. Carlson, and F. Winston. 1990. SPT6, an essential gene that affects transcription in Saccharomyces cerevisiae, encodes a nuclear protein with an extremely acidic amino terminus. Mol. Cell. Biol. 10: 4935–4941.

Swanson, M.S., E.A. Malone, and F. Winston. 1991. SPTS, an essential gene important for normal transcription in Saccharomyces cerevisiae, encodes an acidic nuclear protein with a carboxy-terminal repeat. Mol. Cell. Biol. 11: 3009–3019.

Tamkun, J.W., R. Deuring, M.P. Scott, M. Kissinger, A.M. Patatucci, T.C. Kaufman, and I.A. Kennison. 1992. brahma: A regulator of Drosophila homeotic genes structurally related to the yeast transcriptional activator SNF2/SWI2. Cell 68: 561–572.

Towbin, H., T. Staehelin, and J. Gordon. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc. Natl. Acad. Sci. 76: 4350–4354.

West, R.W. Jr., R.R. Yocum, and M. Ptashne. 1984. Saccharomyces cerevisiae GAL1–GAL10 divergent promoter region: Location and function of the upstream activating sequence UASc. Mol. Cell. Biol. 4: 2467–2478.

Workman, J.L., I.C.A. Taylor, and R.E. Kingston. 1991. Activation domains of stably bound GAL4 derivatives alleviate repression of promoters by nucleosomes. Cell 64: 533–544.

Yoshimoto, H. and I. Yamashita. 1991. The GAM1/SNF2 gene of Saccharomyces cerevisiae encodes a highly charged nuclear protein required for transcription of the STA1 gene. Mol. Gen. Genet. 228: 270–280.
Yeast SNF2/SWI2, SNF5, and SNF6 proteins function coordinately with the gene-specific transcriptional activators GAL4 and Bicoid.

B C Laurent and M Carlson

Genes Dev. 1992, 6:
Access the most recent version at doi:10.1101/gad.6.9.1707

References

This article cites 44 articles, 23 of which can be accessed free at:
http://genesdev.cshlp.org/content/6/9/1707.full.html#ref-list-1

License

Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or click here.