Analysis of battery management system issues in electric vehicles

V Karkuzhali, Dr. P Rangarajan, Dr. V Tamilselvi and P Kavitha
1 Assistant Professor Department of EEE, R.M.D Engineering College, Chennai, Tamilnadu, India
2 Professor Department of EEE, R.M.D Engineering College, Chennai, Tamilnadu, India
3 H.O.D Department of EEE, R.M.D Engineering College, Chennai, Tamilnadu, India
4 Assistant Professor Department of EEE, R.M.D Engineering College, Chennai, Tamilnadu, India

Abstract. Battery technology has dramatically advanced over a decade and many high performance batteries are being developed. Electric vehicles (EV) require high power batteries with suitable battery management systems (BMS) for safe and reliable operations. Intention of this paper is to discuss about the batteries used in electric vehicles and the key issues of battery management systems and to compare the Lithium ion (Li-ion) battery & Nickel metal hydride battery in terms of aging and effect of temperature using their state of charge (SOC) and open circuit voltage (OCV).

1. Introduction
Electric vehicles are under constant research area and researchers keep working on it for reduced fuel usage and to reduce CO₂ emission. EVs are classified as hybrid electric vehicles and battery electric vehicles. Batteries play a major role in smooth running of EVs. High power batteries require proper care and they should be sensed for their voltage, current and power. Improper operation of batteries like over charge, over discharge, over current and extreme temperature might throw problems to the user. Hence proper BMS helps in overcoming these issues and provides a safety drive for electric vehicles.

Key technologies in the BMS of EV include battery modelling, state estimation, charging and discharging. A good BMS should safely protect the driver/operator by detecting unsafe operating conditions, protecting the cells from damage in failure cases, prolongs the life of battery in normal operating region and should inform the user about the battery details and its status of operation.[3] This paper also explains about the different batteries and their electrochemistry. A battery has to be charged, discharged and its parameters are to be estimated well for its good maintenance. The measurable variables such as voltage, current, temperature that varies with state of charge are required for accurate and robust SOC estimation. This paper explains the variation of OCV and internal resistance of the battery at different SOC of Lithium ion battery and NiMH battery. Variation of its internal resistance curve at room temperature gives us the need for modelling a battery based on thermal behaviour.

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Published under licence by IOP Publishing Ltd
2. Battery types

There are two different categories of battery cells namely Primary cells and Secondary cells. In case of primary cells the electrochemical reaction that occurs during the discharge is not reversible. If we try to recharge a primary battery, the compounds that have been formed during discharge will not recombine into the original compounds that were present before discharge and therefore it’s not rechargeable. This is the principle reason that primary cells are meant for only one time use. Secondary cells are special in the sense that their chemical reaction has been designed in such a way that it is completely reversible. The original chemical compounds that are changed during discharge can actually be reconstituted into its original form by the application of external potential between the electrodes that inject energy into the cell. Secondary cells can be discharged and recharged infinite times but its life is limited by degradation of the cells.

Some popular types of batteries are Dry cell, Alkaline cell, lithium-ion (Li-ion), lead-acid (PbA), Nickel-Cadmium (NiCd), Nickel-Metal Hydride (NiMH), Nickel Zinc, Zinc air. as shown in Table 1 with their electrochemistry.

S.No	Electrochemistry	Nominal voltage	Negative electrode	Positive electrode	Electrolyte
1	Lead acid	2.1V	Pb	PbO₂	H₂SO₄
2	Dry cell	1.6V	Zn	MnO₂	ZnCl₂
3	Alkaline	1.5V	Zn	MnO₂	KOH
4	Nickel cadmium	1.35V	Cd	NiO₂	KOH
5	Nickel Zinc	1.73V	Zn	NiO₂	KOH
6	Zinc air	1.65V	Zn	O₂	KOH
7	Nickel metal Hydride	1.2V	H₂ in form of metal hydride	Ni(OH)₂	KOH
8	Lithium ion	3.7V	Graphite	LFP, LMO, LCO	LiPF₆

Among the above different types of batteries, NiMH and Li-ion batteries are highly preferred. NiMH has higher specific energy, energy density than cadmium electrode. They have higher capacity and longer life than NiCd batteries. Since it is free of cadmium they are considered as an environment friendly battery. The magic of NiMH cells is the negative electrode which is a rare earth hydrogen absorbing metal alloy. There is no electro chemical reaction taking place in the negative electrode that changes its structure when hydrogen goes in and comes out of the electrode.

The Li-ion cells also allow intercalation of lithium ions into crystalline lattice of graphite without changing its crystalline structure. Li-ion batteries have higher open circuit voltage which reduces the number of cells in a battery pack. Higher energy density makes the battery pack compact and high specific energy lightens the overall weight of the vehicle. They can be operated in a wide temperature range without decreasing its lifetime. Li-ion batteries can be charged and discharged at higher C-rate at normal operating conditions, so that a small battery pack can meet peak power requirements and absorb most regenerative energy.

S.NO	REQUIREMENT	NiMH	Li-ion
1	Specific energy	40-80Wh/Kg	130-200Wh/Kg
2	Energy density	90-160Wh/L	180-320Wh/L
3	Specific power	900-1600W/Kg	1200-4000W/Kg
4	Charge/discharge efficiency	80-95%	85-96%
5	Self-discharge rate	8-15% month	<5% month
6	Cycle durability	800-1200 cycles	1500-2000 cycles
7	Nominal cell voltage	≈1.2V	≈3.7V
3. Battery modelling
Battery system consists of battery cells. Depending on the requirement of output voltage, power and energy capacity for an EV, a battery pack contains many cells connected in series or parallel or both. Battery operation and its input-output parameters can be studied by modelling the battery. Proper model of the battery is required for a good BMS design; control and optimization. There are several methods available to model a battery, and the most widely used are electric model, thermal model and electro-thermal model.

3.1. Battery electric model
Electro-chemical model, reduced order electric model, equivalent circuit model, Data driven model are the types of battery electric model. Among these different models, the equivalent circuit model is widely adopted has the model structure is simple with less number of model parameters. In the equivalent circuit model battery electric behaviours can be studied by a combination of circuit components such as resistors, capacitors, voltage sources as given below.

![Battery model Equivalent circuit](image)

Figure 1. Battery model Equivalent circuit

The resistors and capacitors are related to charge transfer or diffusion processes. Model order is denoted by the number of RC networks as given by Kailong LIU et al[1]. First and second order models are popular and higher orders are of less importance. This model has better dynamic performance especially for State-Of-Charge (SOC) and power estimations. The other models are not discussed here.

From the above figure according to KVL

\[V_t = V_{OC} + V_{ohm} + V_{dyn} \]

\[V_{OCcell} = V_0 - \frac{R_g T}{n_e F} \ln(Q) \]

\[Q = f(SOC) \]

\[V_{ohm} = I_r R_{ohm} = I_r R_{ohm}(SOC,T) \]

\[V_{dyn} = I_{R_{dyn}} R_{dyn}(SOC,T) \]

\[I_{cdyn} = C_{dyn} (SOC,T) \frac{dV_{dyn}}{dt} \]

Terminal current \(I_t = I_{R_{dyn}} + I_{cdyn} \)

Where \(V_t \) is terminal voltage in volts, \(V_{ohm} \) is the voltage across \(R_{ohm} \), \(V_{dyn} \) is dynamic voltage across the resistor. \(V_{OC} \) is the open circuit voltage. \(V_0 \) is no load voltage, \(R_{dyn} \) is dynamic resistance. \(T \) is the battery temperature. \(F \) is faraday constant, \(n_e \) is the number of electron transferred in cell reaction and \(R_g \) is universal gas constant.[5]
Dynamic voltage V_{dyn} can be described by the differential equation

$$
\frac{dV_{dyn}}{dt} + \frac{V_{dyn}}{R(SOC,T) + C_{dyn}(SOC,T)} = \frac{1}{C_{dyn}(SOC,T)}
$$

Overall differential equation of electrical circuit

$$
\frac{dV_{l}}{dt} + \frac{V_{l}}{C_{dyn} R_{dyn}} = \frac{R_{ohm} \cdot \frac{di}{dt} + \frac{R_{dyn} + R_{ohm}}{R_{dyn} + C_{dyn}} \cdot I_{t} + \frac{V_{oc}}{R_{dyn} + C_{dyn}}}{R_{dyn} + C_{dyn}}
$$

3.2. SOC calculations

SOC of a battery gives the percentage of available amount of energy over its maximum achievable amount.

For EV System Performance, Analysis and Simulation as well as design battery SOC calculation,

$$
SOC(t_{i}) = SOC(i_{0}) + \frac{1}{CAP_{Ah}} \int_{t_{i}}^{t_{f}} I(t) \eta_{batt}(SOC,T,SignI(t)) dt
$$

Where η_{batt} is the columbic efficiency of the battery, CAP_{Ah} is the capacity of battery in ampere-hours.

3.3. Modelling thermal behaviour

Heat generated by the battery is the heat generated by the resistors in the electric circuit model.

Heat generated by the resistors is

$$H_{gen} = H_{Rohm} + H_{dynamic} + H_{react} \text{ (W)}$$

Ohmic resistance heat

$$H_{Rohm} = |I| \cdot |V_{ohm}| = I^{2} R_{ohm}(SOC,T) \text{ (W)}$$

Dynamic heat given by

$$H_{dynamic} = |I| \cdot |V_{dyn}| = |I| \cdot \int_{t_{i}}^{t_{f}} \left[\frac{R_{dyn}}{C_{dyn}(SOC,T)} \cdot \frac{V_{dyn}(t)}{SOC(T)} \right] \cdot \frac{V_{dyn}(t)}{SOC(T)} \cdot dt$$

At initial condition $V_{dyn}(0) = 0$. The reaction heat is given by

$$H_{react} = \frac{S \cdot I \cdot \eta_{batt} \cdot T}{F}$$

Where ΔS is delta entropy of the reaction(J/mol-K), F is faraday constant=96,487 C/mol

Dissipated heat is

$$H_{dissipated} = (T_{coolant} - T) h_{bat} \text{ (W)}$$

Battery temperature is given by

$$T(t) = T(t_{i}) + \int_{t_{i}}^{t} \left[\frac{H_{gen} + H_{dissipated}}{C_{bat} M} \right] dt$$

where $T_{coolant}$ is the temperature of coolant(K), h_{bat} is heat transfer coefficient of battery (W/K), $T(t_{i})$ is initial temperature of battery. Using the above equations a EV system battery electrical model can be implemented as given below.
3.4. Comparison of SOC, OCV, temperature

SOC is used to determine the battery capacity. There are several methods available to determine SOC. The measurement of OCV is a voltage based SOC determination [16]. OCV can be measured without load and this method is suitable for estimating initial SOC. OCV is the terminal voltage of the battery at no load and the battery is kept at rest for one hour. In this experiment conducted, a 400 V, 100Kw power capacity and 20 Kw energy capacity Amaron single NiMH battery cell is selected. This experiment is done at 20° centigrade. The OCV measurement for 100% SOC is done under the charging mode with a charging current of 1C. Experiment is started at the initial battery voltage of 0.12V. For every increase in 1% charge the voltage is noted. After 100% reach of SOC of battery at 1.2V, the battery was given a rest of 1 hr. There is no charging and discharging process for this 1 hr. There is no significant change in OCV. SOC and OCV plot is given below in fig 3.

Similarly a cylindrical LFP battery with the same rating of 400V, 100 Kw power capacity and 20 Kw energy capacity is selected. Using voltage based SOC determination OCV is noted. The experiment is started at initial battery voltage of 3.15V and at final 100% SOC capacity battery reached 3.46V. 1 hour rest period is given. There is no significant drop in the voltage of the battery. SOC and OCV plot is given below in fig 3.

Using linear regression the curve fitting is done and the 4th degree polynomial equation is obtained as given below

4th degree LFP OCV $y = 8.709e-10x^4 + 6.305e-07x^3 - 0.0001258x^2 + 0.007891x + 3.163$

4th degree NiMH OCV : $y = -3.698e-08x^4 + 1.005e-05x^3 - 0.0009576x^2 + 0.04174x + 0.2489$

Figure 3. comparison Plot of SOC and OCV for LFP and NiMH

The coefficient of determination gives the goodness of curve fit with strong effect size for both LFP and NiMH. The Root Mean Square error RMSE gives the residual measure of farness of data points from the regression line.

Table 3: R^2 and RMSE for batteries in comparison

S.no	LFP	NiMH
R^2	0.9659	0.9728
RMSE	0.1012	0.3676
The values of RMSE are very less and had proven that data is around the line of best fit. Variation of internal resistance at different SOC is also measured, the dynamic resistance as given in the battery model. As shown in fig 4 for cylindrical LFP battery at initial SOC the internal resistance is 3.13Ω. For every change in SOC the internal resistance is measured and at 100% capacity of SOC the internal resistance for LFP is 2.37Ω. With high resistance the battery takes less current to charge and there is a slow charging. With battery SOC increasing it is seen that the resistance decreases with increasing charging current so that battery can be charged to required voltage. After 80% SOC is reached the internal resistance again increases since the battery voltage would have sufficiently reached the required voltage. In NiMH batteries the dynamic resistance is low and minor increase in resistance is seen at 100%SOC as shown in figure 4.

![SOC vs Internal Resistance](image)

Figure 4. comparison Plot of SOC and internal resistance for LFP and NiMH

4. Conclusions

Comparing the graph of fig 3 of SOC and OCV curve LFP has high voltage and is of high preference over NiMH. Cylindrical LFP is of high choice because they are easy to manufacture The major drawback of LiFePO$_4$–LFP batteries is the super flat slope of OCV and SOC graph as seen above, that makes SOC estimation and balancing cell among the battery system challenging. Batteries need to have high energy density, low internal resistance and long cycle and calendar life. Hence well trained battery model together with suitable estimation methods can be adopted to achieve independent or joint state estimation of battery SOC or internal temperature along with their dynamic resistance. The research work in the field of battery charging estimation along with temperature management is needed as Lithium batteries get easily heated up which reduces the life of batteries. Hence other chemical equivalent battery materials are needed to be considered to prolong battery usage to maximum

References

[1] Kailong LIU Kang Li Qiao PENG and Cheng Zhang 2013 A brief review on key technologies in the battery management system of electric vehicles Journal of Power Sources vol 226 pp 272–288

[2] Languang Lu Xuebing Han Jianqiu Li Jianfeng Hua and Minggao Ouyang 2013 A Review on the key issues for Lithium-ion Battery Management in Electric Vehicles, Journal of Power Sources vol 226pp 272-288

[3] Luca Buccolini Adrianna Ricci Cristiano Scavongelli, Giuseppe DeMaso-Gentile Simone Orcioni Massimo Conti Battery Management System (BMS) Simulation Environment for Electric Vehicles. 978-1-5090-2320-2/16 2016 IEEE.

[4] Daisy Ranawat M P R Prasad A Review on Electric Vehicles with perspective of Battery Management System (ICEECCOT) 14-15 December 2018 978-1-5386-5130-8/18, IEEE 1539
[5] Wei Liu Introduction to Hybrid Vehicle System Modeling and Control ISBN: 9781118407400
[6] James Larminie and John Lowry 2012 Electric Vehicle Technology Explained 2nd Edition ISBN: 978-1-119-94273-3
[7] Jeevak S Lokhande Dr P M Daigavhane Mithu Sarkar 2020 A Critical Approach Towards a Smarter Battery Management System for Electric Vehicle 4th International Conference on Trends in Electronics and Informatics (ICOEI)(48184), 2020
[8] Aruna P and Dr Vasan Prabhu V 2019 Review on Energy Management System of Electric Vehicles:2nd International Conference on Power and Embedded Drive Control (ICPEDC),
[9] Chunhua Zheng Weimin Li and Quan Liang 2018 An Energy Management Strategy of Hybrid Energy Storage Systems for Electric Vehicle Applications IEEE Transactions on Sustainable Energy, vol 9
[10] Rui Xiong Jiayi Cao Quanqing Yu Hongwen He and Fengchun Sun 2018 Critical Review on the Battery State of Charge Estimation Methods for Electric Vehicles IEEE Access vol 6 pp 1832 - 1843
[11] Jingshan Li Shiyu Zhou and Yehui Han 2016 Advances in Battery Manufacturing, Service and Management Systems ISBN:9781119056492
[12] Xi Zhang Jinling Lu Shifei Yuan and Jun Yang Xuan Zhou 2017 A novel method for identification of lithium-ion battery equivalent circuit model parameters considering electrochemical properties", Journal of Power Sources vol 345 pp 21-29
[13] Kuan-Ting Lee Min-Jhen Dai and Chiung-Cheng Chuang 2017 Temperature-compensated model for lithium-ion polymer batteries with extended Kalman filter state-of-charge estimation for an implantable charger IEEE Transactions on Industrial Electronics pp 589 - 596
[14] Junfu Li Lixin Wang Chao Lyu and Michael Pecht 2017 State of charge estimation based on a simplified electrochemical model for a single LiCoO2 battery and battery pack Energy vol 133 pp 572–583
[15] Min Ye Hui Guo and Binggang Cao 2017 A model-based adaptive state of charge estimator for a lithium-ion battery using an improved adaptive particle filter Applied Energy vol 190 pp 740–74
[16] Novie Ayub Windarko and Jaeho Choi SOC Estimation Based on OCV for NiMH Batteries Using an Improved Takacs Model Journal of Power Electronics Vol 10 No 2 2010
[17] Caiping Zhang Jiuchun Jiang Linjing Zhang, Sijia Liu Leyi Wang and Poh Chiang Loh 2016 A Generalized SOC-OCV Model for Lithium-Ion Batteries and the SOC Estimation for LNMCO Battery Energies vol 9 pp 900

Authors’ background

Note:

1 Mrs.V.Karkuzhali, B.E., M.E, is Assistant Professor in Department of Electrical and Electronics Engineering, since March 2010. She obtained her B.E (EEE) from Adhiyamaan Engineering College and M.E (PED) from Sri Venkateswara College of Engineering. She has been in the teaching profession for the past 8 years and has handled UG programme. She also has two years of industrial experience. Her areas of interest include Electric vehicles, circuit theory, Digital signal processing She has published a paper in various Conferences. She has attended many workshops & FDPs sponsored by AICTE related to her area of interest.

2 Dr.P. RANGARAJAN M.E, Ph.d is Professor in Department of Electrical and Electronics Engineering, since october 2007. He has 28 years of experience. He is the recognised research supervisor of anna university. He has handled several funded projects and has patent received in his name. He has published several papers in national and international journal and conferences.