Association of dietary inflammatory potential with cardiometabolic risk factors and diseases
a systematic review and dose–response meta-analysis of observational studies

Aslani, Zahra; Sadeghi, Omid; Heidari-Beni, Motahar; Zahedi, Hoda; Baygi, Fereshteh; Shivappa, Nitin; Hébert, James R.; Moradi, Sajjad; Sotoudeh, Gity; Asayesh, Hamid; Djalalinia, Shirin; Qorbani, Mostafa

Published in:
Diabetology and Metabolic Syndrome

DOI:
10.1186/s13098-020-00592-6

Publication date:
2020

Document version
Final published version

Document license
CC BY

Citation for published version (APA):
Aslani, Z., Sadeghi, O., Heidari-Beni, M., Zahedi, H., Baygi, F., Shivappa, N., Hébert, J. R., Moradi, S., Sotoudeh, G., Asayesh, H., Djalalinia, S., & Qorbani, M. (2020). Association of dietary inflammatory potential with cardiometabolic risk factors and diseases: a systematic review and dose–response meta-analysis of observational studies. Diabetology and Metabolic Syndrome, 12, [86]. https://doi.org/10.1186/s13098-020-00592-6

Terms of use
This work is brought to you by the University of Southern Denmark through the SDU Research Portal.
Unless otherwise specified it has been shared according to the terms for self-archiving.
If no other license is stated, these terms apply:
• You may download this work for personal use only.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying this open access version

If you believe that this document breaches copyright please contact us providing details and we will investigate your claim.
Please direct all enquiries to puresupport@bib.sdu.dk
Association of dietary inflammatory potential with cardiometabolic risk factors and diseases: a systematic review and dose–response meta-analysis of observational studies

Zahra Aslani1,2, Omid Sadeghi1,2, Motahar Heidari-Beni3, Hoda Zahedi4, Fereshteh Baygi5, Nitin Shivappa6,7,8, James R. Hébert6,7,8, Sajjad Moradi9,10, Gity Sotoudeh1, Hamid Asayesh11, Shirin Djalalinia12,13 and Mostafa Qorbani14,15*

Abstract

Context: The association of dietary inflammatory index (DII®), as an index of inflammatory quality of diet, with cardiometabolic diseases (CMDs) and risk factors (CMRFs) has been inconsistent in previous studies.

Objective: The current systematic review and dose–response meta-analysis was performed to investigate the association of the DII score with CMDs and CMRFs.

Data Sources: All published observational studies (cohort, case–control and cross-sectional) using PubMed/Medline, Scopus, ISI Web of Science, and Google Scholar databases were retrieved from inception through November 2019.

Data extraction: Two reviewers independently extracted the data from included studies.

Data analysis: Pooled hazard ratio (HR) or odds ratio (OR) were calculated by using a random-effects model.

Results: Ten prospective cohort studies (total n = 291,968) with 31,069 CMDs-specific mortality, six prospective cohort studies (total n = 43,340) with 1311 CMDs-specific morbidity, two case–control studies with 2140 cases and 6246 controls and one cross-sectional study (total n = 15,613) with 1734 CMDs-specific morbidity were identified for CMDs. Meta-analyses of published observational studies demonstrated that the highest DII score category versus the lowest DII score category was associated with 29% increased risk of CMDs mortality (HR = 1.29; 95% confidence interval (CI) 1.18, 1.41). Moreover, there was a significant association between the DII score and risk of CMDs in cohort studies (HR = 1.35; 95% CI 1.13, 1.61) and non-cohort study (HR = 1.36; 95% CI 1.18, 1.57). We found a significant association between the DII score and metabolic syndrome (MetS) (OR: 1.13; 95% CI 1.03, 1.25), hyperglycemia and hypertension. None-linear dose response meta-analysis showed that there was a significant association between the DII score and risk of CMDs mortality (Pnonlinearity < 0.001). Moreover, evidence of none-linear association between the DII score and risk of CMDs was not observed (p-value = 0.1).

Conclusions: Adherence to pro-inflammatory diet was associated with increased risk of CMDs, mortality and MetS.

Keywords: Diet, Inflammation, Cardiovascular diseases, Dietary inflammatory index

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
including high sensitivity C-reactive protein (hs-CRP), interleukin (IL)-6, and tumor necrosis factor-α (TNF-α). This situation is associated with chronic outcomes including cardiovascular diseases (CVDs) [2], type 2 diabetes mellitus [3], cancer [4], obesity [5], and metabolic syndrome (MetS) and its components [6]. The association of diet with inflammation and CVDs is well demonstrated in previous studies. Adherence to Mediterranean diet, which is characterized by high intake of fruits and vegetables, whole grains, legumes, nuts, fish, and olive oil, decreases chronic inflammation and is associated with lower risk of CVDs [7–11], whereas intake of foods with high amount of sugar, refined grains, red and processed meat, foods with high saturated and trans fatty acids, and sodium (Western diet) is associated with higher levels of chronic inflammation and intermediate markers of CVDs [12].

The dietary inflammatory index (DII) is a novel and validated tool designed in 2009 [13] and updated in 2014 to estimate the inflammatory potential of an individual's diet [14]. According to this index, the food items, macronutrients, and micronutrients (45 food parameters) based on their effect on inflammatory biomarkers (IL-1β, IL-4, IL-6, IL-10, TNF-α, and CRP) were classified into pro-inflammatory, anti-inflammatory, and inflammatory neutral [14].

Multiple studies have assessed the association of the DII score with different chronic diseases [15–18] and their risk factors [19–23]; however, findings are conflicting. Various studies showed the association between the DII score and cardiometabolic risk factors (CMRFs) such as MetS [23], hypertension (HTN) [17, 24], and serum glucose levels [20], while other studies did not show this association [25–28]. Several observational reports have demonstrated the obvious association of the DII score with cardiometabolic diseases (CMDs)-specific morbidity and mortality [15, 19, 29, 30], whereas other studies failed to find any association [31, 32].

Given the inconsistent findings, this meta-analysis was conducted to summarize the association of DII with CMRFs and CMDs in observational studies.

Although recently some systematic reviews and meta-analyses have addressed the association between the DII score and CVDs morbidity and mortality [33–35] and MetS [34], none of them has evaluated the association of DII score with cardio-metabolic risk factors (e.g. lipid profile, glycemic indices, and anthropometric measures). Moreover, there is no comprehensive systematic review of estimating the association of both continuous and categorical DII score variables with CMRFs (e.g. lipid profile, glycemic indices, anthropometric measures, blood pressure (BP), and metabolic syndrome) and CMDs-specific morbidity and mortality. Therefore, the aim of this systematic review and meta-analysis study was to assess the association of both continuous and categorical DII score variables with risk of CMRFs and risk of CMDs and mortality.

Methods

We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement for reporting in the current systematic review and meta-analysis study (Additional file 1: Appendix S1).

Search strategy

Published reports with the aim of studying the association of DII score with CMRFs (e.g. glycemic indices, lipid profiles, anthropometric measures, MetS and its components) and CMDs (like MI, IHD, stroke, congestive heart failure, and coronary heart disease (CHD) according to the International Classification of Diseases (ICD)-9-390-465) were included through comprehensive searches on PubMed and the NLM Gateway (for MEDLINE), Scopus, and Institute of Scientific Information (ISI) electronic databases up to February 2020. The appropriate medical subject headings, Entry Terms, and Enttree options were applied to carry out the most sensitive search operations. The search strategy is presented in Additional file 2: Appendix S2. A manual search was performed on Google Scholar database and the references listed in relevant reviews.

Inclusion criteria

Two reviewers (ZA and HA) independently reviewed and screened the appropriate published papers based on title, abstract, and full text. The third reviewer (MQ) resolved any discrepancy in choosing eligible records. All observational studies (cross-sectional, case–control, and cohort) on human subjects without restriction of age group, gender, year of publication, and language examining the association between the DII score with CMRFs (e.g. glycemic indices, lipid profiles, anthropometric measures, MetS and its components) and CMDs were included in the current study.

Exclusion criteria

The papers with the following conditions were excluded: (1) studies that considered the DII as a dependent variable, (2) letters, abstracts and reviews, and (3) duplicated publications. For multiple publications of the same population, only the article with the largest sample size was included.

The participants, intervention, comparators, outcomes, study design criteria are listed in Table 1.
Table 1 Participants, intervention, comparators, outcomes, study design (PICOS) criteria for inclusion of studies

Population	All population
Intervention	The DII score
Comparison	The higher DII score vs. the lower DII score
Outcome	Risk of cardiometabolic diseases and mortality
Study design	Observational studies

Data extraction
Two investigators (ZA and SD) independently extracted the following information from each qualified study: first author, year of publication, study design, country, age range/mean age, gender, sample size, diet assessment tool, the number of subjects with abnormal CMRFs/CMRs, the number of subjects with CMDs, follow-up duration, exposure variable (DII/E-DII), and the number of food items used to calculate it, the type and definition of outcome, outcome assessment method, the type of DII score variable (categorical/continuous), and effect size, study quality, and confounders. Any disagreements were removed by the third author (MQ). Studies which reported correlation or beta coefficient, were included in the systematic review and they were not entered the meta-analyses.

Quality assessment
The quality assessment of included studies was performed by two independent reviewer using Newcastle–Ottawa Scale (NOS) [36]. This scale consists of three portions of the selection, comparability and outcomes/exposures, and the studies earned maximum nine points. In the present study, the reports with seven or more stars were assumed to have high quality. Any discrepancy between reviewers was resolved by the third reviewer (MQ).

Statistical analysis
All observational studies with any reported effect size (odds ratio (OR), hazard ratio (HR), correlation, or Beta coefficient) were included in qualitative synthesis. Meta-analysis was performed only for studies which reported OR and HR.

In meta-analysis, we examined association of all types of DII [continuous (per one-unit increment), categorical (highest/lowest level) and dose–response association] with CMRFs and CMDs. Meta-analyses were performed separately for CMRFs morbidity, CMDs morbidity, and CMDs related mortality.

We performed random/fixed effects meta-analysis using maximally adjusted OR/HR with 95% confidence interval (CI). Heterogeneity among studies was assessed by I^2 [37–39]. There was between-study heterogeneity if $I^2 > 50\%$ and $p < 0.1$ for the result of Q test. If the results showed the heterogeneity, a random-effects model (the DerSimonian–Laird estimator) was applied to assess the pooled OR/HR. The results of the meta-analyses were schematically presented by forest plots.

Dose–response meta-analysis was performed using a method suggested by Greenland and Orsini [40] to assess the dose–response association between DII score and CMDs related morbidity and mortality. The natural logs of the HRs and their CIs across categories of the DII score were used to compute study-specific slopes (linear trends). In this method, the distribution of cases and the HRs with the variance estimates for ≥ 3 quantitative categories of exposure were required. We considered the median or mean values of the DII scores in each category to the corresponding HR for each study. For studies that reported the scores as ranges, the midpoint was estimated in each category by calculating the mean of the lower and upper bound. When the highest and lowest categories were open-ended, the length of these open-ended intervals was assumed to be the same as that of the adjacent intervals. Restricted cubic splines (three knots at fixed percentiles of 10%, 50%, and 90% of the distribution [41]) was used to examine potential nonlinear dose–response associations of the DII score with risk of CMDs and mortality.

Publication bias was examined using Egger test and funnel plots. Subgroup analysis according to the type of study design was used to examine the association between the DII score with risk of CMDs and mortality. Sensitivity analysis was performed to assess the effect of removing any of the studies or group of studies on CMDs and CMRFs. All statistical analyses were performed using Stata software version 12 (Stata Corp, College Station, Texas, USA) and p-value < 0.05 was considered statistically significant.

Results
Search results and study selection
A flow diagram for the process of study selection is shown in Fig. 1. The initial search recognized 1,535 papers, and 708 of them remained after duplicate exclusion. Then 653 papers were removed after examining title/abstract and full text of records. The papers were investigated according to the inclusion and exclusion criteria. Eventually, 55 studies were included in the systematic review [15–17, 19–32, 42–79] and 32 records (16 records for CMRFs [17, 19, 20, 23–26, 28, 58, 61, 62, 68, 70, 72, 73, 76] and 18 records for CMDs [15–17, 19, 29–32, 51–57, 77–79]) were selected for meta-analysis. Two studies addressed the association between the DII score and both CMRFs and CMDs outcomes [17, 19].
Fig. 1 Flow chart of study selection process
various outcomes of CMRFs, we considered only studies reporting OR along with 95% confidence interval (CI) for MetS or its components in the meta-analysis.

Study characteristics
Overall, 55 eligible publications were included in the study. Tables 2 and 3 show the general characteristics of included studies. In general, nine and 10 surveys had considered the morbidity [15–17, 19, 30, 32, 52, 53, 57] (the range of HR was 0.98 [32] to 2.03 [17]) and mortality [29–31, 51, 54–56, 77–79] (the range of HR was 0.98 [51] to 2.50 [78]) of CMDs as outcome, respectively. In addition, 39 studies addressed the association between the DII score and CMRFs [17, 19–28, 42–50, 58–76]. Four case–control studies [15, 21, 57, 74], 23 cohort studies [16, 17, 22–24, 27, 29–32, 44, 45, 48, 51–56, 59, 77–79], and 28 cross-sectional studies [19, 20, 25, 26, 28, 42, 43, 46, 47, 49, 50, 58, 60–73, 75, 76] were included. The number of subjects included in the studies ranged from 90 [48] to 83,054 [79]. The age range of participants was 3–97 years. All records were published between 2014 and 2019. The included studies were conducted in Sweden [15, 45, 55], Australia [24, 29, 32, 53, 77], USA [19, 20, 27, 44, 46, 50, 51, 54, 56, 70, 78, 79], France [23, 52], Spain [16, 17, 22, 47, 49, 63, 69], Germany [31], Italy [57], England [30] Luxembourg [26, 42], Iran [21, 43, 58, 60, 65, 71, 73, 74], Lebanon [68, 75], Poland [28], Myanmar [72], Ireland [62], China [76], Mexico [64], Indonesia [66], Pakistan [67], Brazil [59, 61], and Colombia [48]. The maximum duration of follow up in cohort studies was 25.8 years [31]. Of total included studies, eleven studies were performed on women [24, 27, 29, 32, 50, 54, 55, 59, 72, 74, 75] three on men [31, 53, 67] and 41 reports contained both men and women [15–17, 19–25, 28, 30, 42–49, 51, 52, 56–58, 60–66, 68–71, 73, 76–79]. Validated food frequency questionnaire (FFQ) was applied to assess dietary intakes in 36 studies [15–17, 20–22, 24–30, 32, 42–45, 47, 49, 50, 53–55, 57, 58, 60–62, 64–66, 71, 73, 74, 77, 79], 24-h recall in 13 surveys [16, 19, 46, 51, 56, 59, 67–70, 75, 76, 78], 72- hour recall in one study [63], 24-h recall and FFQ in one report [72] and record in four studies [23, 31, 48, 52]. The exposure variable was considered categorical in 42 studies [15–17, 19–26, 28–32, 43, 46, 48, 51–58, 60, 62, 64, 65, 67, 68, 70, 72–79] and continuous in 32 studies [16, 19, 21, 28–32, 42–45, 47, 49, 50, 52, 54–61, 63, 66, 69, 71, 74, 76, 78, 79].

Results of qualitative synthesis

Association between the DII score with risk of CMDs and mortality
The positive association between the DII score (as a continuous variable) and risk of CMDs and mortality was observed in three [16, 19, 57] and six [29, 30, 54, 56, 78, 79] studies, respectively. Moreover, three records did not indicate the significant association between the DII score and risk of CMDs [31, 32, 52]. In addition, two studies failed to find any significant association between the DII score and risk of CMDs mortality [31, 55].

The DII score (as a categorical variable) was associated significantly with the risk of CMDs in six studies [15–17, 19, 30, 57] and seven reports showed the positive association between the index and risk of CMDs mortality [29, 51, 54, 56, 77–79]. Furthermore, three studies did not demonstrate any significant association between the DII score and risk of CMDs [31, 32, 52]. Moreover, three studies reported no significant association between this index and risk of CMDs mortality [30, 31, 55]. In one study, a significant association was observed between the DII score and risk of CMDs mortality only in normal and pre-diabetic participants [51].

Association between DII with CMRFs
Totally, 39 studies (28 cross-sectional study [19, 20, 25, 26, 28, 42, 43, 46, 47, 49, 50, 58, 60–73, 75, 76], nine cohort study [17, 22–24, 27, 44, 45, 48, 59] and two case–control studies [21, 74]) had assessed CMRFs as an outcome [17, 19–28, 42–50, 58–76]. The lowest and highest reported ORs were observed for the association between the DII score and abdominal obesity [OR: 0.58 (95% CI 0.16, 2.05)] [58] and morbidity of pre-diabetes [OR: 18.88 (95% CI 7.02, 50.82)] [21], respectively. Nine studies reported no association between the DII score and abdominal obesity [20, 25, 26, 28, 58, 68, 72, 73, 76]. Two reports illustrated a significant association between the DII score and low level of high-density lipoprotein cholesterol (HDL-C) [26, 28], whereas six studies failed to find this association [20, 25, 58, 68, 73, 76]. With respect to hypertriglyceridemia, eight studies reported no association between this score and hypertriglyceridemia [20, 25, 26, 28, 58, 68, 73, 76]. The DII score was associated with HTN in five studies [17, 19, 24, 70, 76] and eight studies did not show any significant association [20, 25–28, 58, 68, 73]. Moreover, one study reported no association between the DII score and gestational HTN [27]. Six studies reported no association between the DII score and hyperglycemia [25–28, 58, 76], whereas two studies revealed this association [20, 73]. Another study indicated a positive association between this score and hyperglycemia only in men [68]. Also, four studies reported a positive association between the DII score and MetS [23, 62, 70, 73]; six studies reported no association in this regard [20, 25, 26, 28, 61, 76]. Moreover, one study demonstrated a significant association between this score and MetS only in men [68]. In terms of body mass index (BMI), four studies showed no association between the
Reference	First author (year)	Study design	Country	Age range/mean age	Gender	Sample size	Diet assessment tool	Number of subjects with CMDs (years)	Duration of follow-up (years)	Number of used dietary factors in DII calculation	Outcome Measure of outcome	Type of DII variable (categorical/measure continuous)	Type of effect size measure	Effect size measure (95% CI)	Study quality	Confounders
15	Bodén et al 2017	Case–control	Sweden	30–73	F/M	6944	FFQ	1389	6.4	30	Morbidity	Quartile-4 (NR) vs. Quartile-1 (NR)	Categorical OR	1.37 (1.07, 1.73)	8	1, 2, 3, 4, 5, 6, 7, 8
29	Bondonno et al. 2017	Cohort	Australia	≥ 70	F	1304	FFQ	269	15	31	Mortality	Quartile-4 (1.72, 5.80) vs. Quartile-1 (−6.14, −1.37)	Categorical HR	2.02 (1.30, 3.13)	8	1, 2, 7, 9, 10, 11, 12, 13, 14, 15, 16
											Ischaemic cerebrovascular disease	Quartile-4 (1.72, 5.80) vs. Quartile-1 (−6.14, −1.37)	Categorical	1.36 (1.15, 1.66)	4	2, 7, 9, 10, 11, 12, 13, 14, 15, 16
51	Deng et al. 2017	Cohort	USA	20–90	F/M	9631	24-h dietary recall	676	18	27	Mortality	Quartile-3 (>2.0) vs. Quartile-1 (<−0.20)	Categorical HR	1.52 (1.18, 1.96)	9	2, 3, 4, 7, 9, 17, 18, 19
16	Garcia-Arellano et al. 2015	Cohort	Spain	67.0	F/M	7216	FFQ	277	Median follow-up of 4.8	32	Morbidity	Quartile-4 (median = 1.17) vs. Quartile-1 (median = −2.46)	Categorical HR	1.73 (1.15, 2.60)	7	1, 3, 4, 6, 7, 9, 17, 20, 21, 22, 23, 24, 25, 26
52	Neufcourt et al. 2016	Cohort	France	35–60	F/M	7743	At least 3 valid 24-h dietary records	292	13	36	Morbidity	Quartile-4 (mean (Q4) vs. Quartile-1 (−1.7) (Q1))	Categorical HR	1.16 (0.79, 1.69)	7	1, 2, 3, 7, 9, 17, 25, 27, 28, 29, 30
											Overall CVD	Quartile-4 (median = 1.17) vs. Quartile-1 (−1.7)	Categorical	1.03 (0.96, 1.11)	7	1, 3, 4, 6, 7, 9, 17, 20, 21, 22, 23, 24, 25, 26
Table 2 (continued)

Reference	First author (year)	Study design	Country	Age range/mean age	Gender	Sample size	Diet assessment tool	Number of subjects with CMDs (years)	Duration of follow-up (years)	Number of used dietary factors in DII calculation	Outcome Measure of outcome	Comparison	Type of DII variable (categorical/measure continuous)	Type of effect size measure	Effect size measure (95% CI)	Study quality	Confounders
93	MI										Quartile 4 (mean(IQR) (3.1 (1.3)) vs. Quartile 1 (−1.7 (1.1)))	Categorical	2.26 (1.08, 4.71)	7 1, 3, 4, 6, 7, 9, 31, 32			
58	Stroke										Quartile 4 (mean(IQR) (3.1 (1.3)) vs. Quartile 1 (−1.7 (1.1)))	Categorical	1.22 (0.56, 2.65)	7 1, 2, 3, 6, 7, 9, 17, 22, 23, 24, 25, 33, 34, 35, 36			
128	AP/RI										Quartile 4 (mean(IQR) (3.1 (1.3)) vs. Quartile 1 (−1.7 (1.1)))	Categorical	0.73 (0.41, 1.30)	7 1, 2, 3, 6, 7, 9, 17, 22, 23, 24, 25, 33, 34, 35, 36			
13	Sudden deaths										Quartile 4 (mean(IQR) (3.1 (1.3)) vs. Quartile 1 (−1.7 (1.1)))	Categorical	NR	NR			
53	O’Neil et al. 2015	Cohort	Australia	20–97	M	1363	FFQ	76	5	22	Pre-inflammatory (positive DII) vs. anti-inflammatory (negative DII)	Categorical	OR 2.00 (1.01, 3.96)	7 1, 3, 4, 6, 7, 9, 31, 32			
17	Ramalal et al. 2015	Cohort	Spain	38	F/M	18,4794	FFQ	117	Median (89)	28	Quartile 4 (−0.74, 3.97) vs. Quartile 1 (−5.14, 2.68)	Categorical	HR 2.03 (1.06, 3.88)	7 1, 2, 3, 6, 7, 9, 17, 22, 23, 24, 25, 33, 34, 35, 36			
Reference	First author (year)	Study design	Country	Age range/mean age	Gender	Sample size	Diet assessment tool	Number of subjects with CMDs	Duration of follow-up (years)	Number of used dietary factors in DII calculation	Study quality	Confounders					
-----------	---------------------	--------------	---------	-------------------	--------	-------------	---------------------	-----------------------------	-----------------------------	--------------------------------	--------------	-------------					
54	Shivappa et al. 2016	Cohort	USA	55--69 F	286.77	FFQ	6528	NR	CVD	Mortality	Categorical	1.09 (1.01, 1.18)	8	1, 2, 6, 7, 9, 22, 25, 33, 37, 38			
3381											Categorical	1.17 (1.05, 1.30)	1	33, 37, 38			
1439											Categorical	1.04 (1.08, 1.22)	1	37, 38			
417											Continuous (per one unit)	1.01 (0.95, 1.08)	1				
736											Continuous (per one unit)	1.06 (0.95, 1.19)	1				
1177											Continuous (per one unit)	1.14 (1.05, 1.24)	1				
1825											Continuous (per one unit)	1.07 (1.01, 1.13)	1				
2373											Continuous (per one unit)	1.00 (0.96, 1.02)	1				
260											Continuous (per one unit)	1.13 (0.68, 1.31)	1				
447											Continuous (per one unit)	1.15 (1.03, 1.28)	1				
681											Continuous (per one unit)	0.98 (0.90, 1.07)	1				
918											Continuous (per one unit)	1.12 (1.04–1.20)	1				
1075											Continuous (per one unit)	1.03 (0.96, 1.11)	1				
54											Continuous (per one unit)	1.05 (0.77, 1.42)	1				
Reference	First author (year)	Study design	Country	Age range/ mean age	Gender	Sample size	Diet assessment tool	Number of subjects with CMDs	Duration of follow-up (years)	Number of used dietary factors in DII calculation	Outcome Measure of outcome	Comparison	Type of DII variable (categorical/continuous)	Type of effect size measure	Effect size measure (95% CI)	Study quality	Confounders
-----------	---------------------	--------------	---------	---------------------	--------	-------------	----------------------	----------------------------	----------------------------	--------------------------------	---------------------------	------------	---	-----------------------------	---------------------------	----------------	-------------
129						129		5–9.99			CVD Mortality	Quintile 5 (≥ 1.91) vs. Quintile 1 (≤ -0.67)	Categorical HR	1.07 (0.87, 1.32)	8	1, 2, 3, 7, 9, 25, 39	
2.33						2.33		10.00–14.99			CVD Mortality	–	Continues (per one unit)	1.06 (0.92, 1.23)	8	1, 2, 3, 7, 9, 25, 39	
4.41						4.41		15.00–19.99			CVD Mortality	–	Continues (per one unit)	1.04 (0.93, 1.16)	8	1, 2, 3, 7, 9, 25, 39	
5.82						5.82		20.00–25.00			CVD Mortality	–	Continues (per one unit)	0.90 (0.87, 1.00)	8	1, 2, 3, 7, 9, 25, 39	
55	Shivappa et al. 2016	Cohort	Sweden	NR	F	33,747	FFQ	2.399	15	27	CVD Mortality	Quartile 5 (median = 2.507) vs. Quartile 1 (median = -0.803)	Categorical HR	1.26 (0.93, 1.70)	8	1, 3, 7, 9, 25, 39	
30	Shivappa et al. 2017	Cohort	Germany	45–64	M	1297	7-day dietary record	Survey 1: median follow-up = 25.8			CHD Mortality	Quartile 4 (median = 2.507) vs. Quartile 1 (median = -0.803)	Categorical HR	1.19 (0.76, 1.86)	7	1, 3, 6, 7, 9, 22, 25, 40, 41, 42	
								Survey 3: median follow-up = 16.7			–	Continues (per one unit)	1.05 (0.92, 1.20)	1, 2, 3, 7, 9, 25, 39			
											CHD Morbidity	Quartile 4 (median = 2.507) vs. Quartile 1 (median = -0.803)	Categorical HR	1.02 (0.57, 1.82)	8	1, 2, 3, 7, 9, 25, 39	
											–	Continues (per one unit)	1.01 (0.86, 1.18)	8	1, 2, 3, 7, 9, 25, 39		
1252						155					CHD Morbidity	Quartile 4 (median = 2.507) vs. Quartile 1 (median = -0.803)	Categorical HR	1.53 (0.93, 2.53)	8	1, 2, 3, 7, 9, 25, 39	
											–	Continues (per one unit)	1.11 (0.97, 1.27)	8	1, 2, 3, 7, 9, 25, 39		
56	Shivappa et al. 2017	Cohort	USA	> 19	F/M	12,366	One-in-person 24-h dietary recall	1235	Mean ± SD (13.5 ± 4.0)	27	CVD Mortality	Tertile 3 (2.03, 4.83) vs. Tertile 1 (−5.60, −0.22)	Categorical HR	1.46 (1.18, 1.81)	8	2, 3, 6, 7, 9, 17, 18, 22, 33, 43	
Reference	First author (year)	Study design	Country	Age range/mean age	Gender Sample size	Diet assessment tool	Number of subjects with CMDs	Duration of follow-up (years)	Number of used dietary factors in DII calculation	Outcome Measure of outcome	Comparison	Type of DII variable (categorical/measure continuous)	Type of effect size measure	Effect size measure (95% CI)	Study quality	Confounders	
-----------	---------------------	--------------	---------	---------------------	-------------------	---------------------	-------------------------	-----------------------------	--	-------------------------	------------	----------------------------------	-----------------------------	--------------------------	--------------	------------	
57	Shivappa et al. 2017	Case–control	Italy	Case (19–79) Control (16–79)	F/M 1442 (423) M (1019)	FFQ 760 – 30	AMI Morbidity	Quartile 4 (1.10, 5.45) vs. Quartile 1 (−4.46, −1.38)	Continuous (1-unit increment in DII (corresponding to 0.5 standard deviation increase))	Categorical OR	1.60 (1.06, 2.41)	7	1, 2, 3, 6, 7, 9, 17, 22, 23, 24, 25, 44				
31	Vissers et al. Cohort 2016	Australia	52 (1) F	6/972	FFQ 335	Mean ± SD (11 ± 1.6)	CVD Morbidity	(DII ≥ 0) vs. (DII < 0) Categorical HR	1.03 (0.76, 1.42)	8	1, 2, 3, 6, 7, 9, 22, 23, 37, 39, 45						
191	IHD	(DII ≥ 0) vs. (DII < 0) Categorical	1.33 (0.98, 1.86)	1, 6, 7, 9, 22													
69	MI	(DII ≥ 0) vs. (DII < 0) Categorical	1.59 (0.72, 3.52)	1, 6, 7, 9, 22													
59	Cerebrovascular disease	(DII ≥ 0) vs. (DII < 0) Categorical	0.57 (0.29, 1.15)	1, 6, 7, 9, 22													
40	Stroke	(DII ≥ 0) vs. (DII < 0) Categorical	0.55 (0.24, 1.26)	1, 6, 7, 9, 22													
Reference	First author (year)	Study design	Country	Age range/mean age	Gender	Sample size	Diet assessment tool	Number of subjects with CMDs (years)	Duration of follow-up (years)	Number of used dietary factors in DII calculation	Outcome Measure of outcome	Comparison	Type of DII variable (categorical/measure continuous)	Type of effect size measure	Effect size measure (95% CI)	Study quality	Confounders
-----------	---------------------	--------------	---------	-------------------	--------	-------------	---------------------	------------------------------------	-----------------------------	---------------------------------	-----------------------------	-------------	---------------------------------	-----------------------------	----------------------------	-------------------------	-------------
19	Wirth et al. 2016	Cross‑ sectional	USA	20–80	F/M	15,613 F (8047) M (7566)	24-h dietary recall	1734	27	Combined circulatory disorders	Morbidity	Quartile 4 (194, 483) vs. Quartile 1 (−5.81, −0.81)	Categorical	POR	1.30 (1.06, 1.58)	5	2, 7, 9, 46
15.622						501	Congestive heart failure						Continuous (per one unit)	1.05 (1.01, 1.08)			
15.623						634	CHD						Categorical	1.38 (1.09, 1.74)			
15.643						423	AP						Continuous (per one unit)	1.06 (1.02, 1.10)			
15.664						685	Heart attack						Categorical	0.96 (1.72, 1.28)			
15.666						604	Stroke						Continuous (per one unit)	0.99 (0.94, 1.05)			
32	Shivappa et al. 2017	Cohort	England	35–55	F/M	7627 F (2319) M (5308)	FFQ	264 22 27	CVD Mortality	Tertile 3 (0.74–3.82) vs. Tertile 1 (−3.08–0.39)	Categorical	HR	1.46 (1.00, 2.13)	7	1, 2, 3, 6, 9, 7, 17, 18, 22, 29, 33, 39, 47, 48, 49, 50		
Table 2 (continued)

Reference	First author (year)	Study design	Country	Age range/mean age	Gender	Sample size	Diet assessment tool	Number of subjects with CMDs	Duration of follow-up (years)	Study quality	Confounders	
77	Hodge et al. 2018	Cohort	Australia	40–69 F/M	3.95	FFQ	2.081	19	29	CVD Mortality	1.23 (1.04, 1.47)	6, 17, 24, 33, 39, 51, 52
78	Mark Park et al. 2018	Cohort	USA	20–90 F/M	2.37	24-h dietary recall	2.52	18.5	27	CVD Mortality	1.16 (1.01, 1.33)	8, 2, 3, 7, 9, 17, 18, 25, 53
79	Park et al. 2018	Cohort	USA	45–75 F/M	6.83	FFQ	7.811	18.2 ± 4.9	28	CVD Mortality	1.29 (1.17–1.42)	1, 2, 3, 6, 7, 9, 18, 25, 29, 37, 39
						M	67,551	8401				

1—total energy intake, 2—body mass index, 3—physical activity, 4—systolic blood pressure, 5—total cholesterol, 6—diabetes, 7—smoking, 8—postsecondary academic education, 9—age, 10—energy expended in physical activity, 11—socioeconomic status, 12—use of low-dose aspirin, 13—use of antihypertensive medication, 14—use of statins, 15—prevalent atherosclerotic vascular disease, 16—treatment code, 17—sex, 18—race, 19—HbA1c, 20—overweight/obesity, 21—waist to height ratio, 22—hypertension, 23—dyslipidemia, 24—family history of premature cardiovascular disease, 25—educational level, 26—stratified by intervention group and center, 27—supplementation, 28—number of 24-h records, 29—marital status, 30—treatment allocation group (placebo or active), 31—diastolic blood pressure, 32—waist circumference, 33—previous history of other cardiovascular diseases, 34—following a special diet, 35—hours spent sitting down, 36—hours spent watching television, 37—hormone replacement therapy use, 38—prevalent cancer (yes/no), 39—alcohol intake, 40—survey number, 41—place of residence, 42—ratio of total cholesterol and high density lipoprotein cholesterol, 43—poverty index, 44—coffee consumption, 45—menopausal status, 46—family member, 47—occupational grade, 48—use of lipid-lowering drugs, 49—high density lipoprotein cholesterol, 50—longstanding illness, 51—country of birth, 52—socio-economic indexes for areas quintile, 53—income

F female, M male, FFQ food frequency questionnaire, MI myocardial infarction, AMI acute myocardial infarction, ASVD atherosclerotic vascular disease, IHD ischaemic heart disease, CVD cardiovascular diseases, AP/RI angina pectoris/revascularization intervention, CHD coronary heart disease, OR odds ratio, POR prevalence odds ratio, HR hazard ratio, NR not reported

1 Participants included three groups of normal, pre-diabetic and diabetic adults
Reference	First author (year)	Study design	Country	Age range/mean age	Gender	Sample size	Diet assessment tool	The number of subjects with CMRFs	Duration follow-up (years)	Number of used dietary factors in DII calculation	Outcome variable	Measure of outcome	Comparison	Type of DII variable (categorical/continuous)	Type of effect size measure	Effect size measure (95% CI)	Study quality	Confounders	
24	Alkerwi et al. 2014	Cross-sectional	Luxembourg	18–69	F/M	1552 F (693) M (857)	FFQ	430	–	24	Abdominal obesity	Morbidity	DII > 1 vs DII ≤ 1	Categorical	OR	1.12 (0.81, 1.56)	7	3, 7, 9, 11, 17, 25	
24	Alkerwi et al. 2014	Cross-sectional	Luxembourg	18–69	F/M	249	–	24			Low HDL-C						1.46 (1.00, 2.13)	1.17 (0.82, 1.67)	
24	Alkerwi et al. 2014	Cross-sectional	Luxembourg	18–69	F/M	351	–	24			Hyper-triglyceridemia						0.85 (0.61, 1.18)	1.30 (0.90, 1.89)	
24	Alkerwi et al. 2014	Cross-sectional	Luxembourg	18–69	F/M	741	–	24			HTN						1.18 (0.81, 1.71)		
24	Alkerwi et al. 2014	Cross-sectional	Luxembourg	18–69	F/M	307	–	24			Hyperglycemia								
24	Alkerwi et al. 2014	Cross-sectional	Luxembourg	18–69	F/M	346	–	24			MetS								
42	Alkerwi et al. 2015	Cross-sectional	Luxembourg	18–69	F/M	1040 F (NR) M (NR)	FFQ	1040	–	NR	HDL-C (mmol/l)	Morbidity	–	Continuous (each 1-z score difference across the DII)	β-Coefficient	0	8	3, 7, 9, 17, 25	
42	Alkerwi et al. 2015	Cross-sectional	Luxembourg	18–69	F/M	1106 F (NR) M (NR)					TC (mmol/l)					0.0409			
42	Alkerwi et al. 2015	Cross-sectional	Luxembourg	18–69	F/M	1,106					TG (mmol/l)					– 0.00003			
42	Alkerwi et al. 2015	Cross-sectional	Luxembourg	18–69	F/M	1153 F (NR) M (NR)					LDL-C (mmol/l)					0.0003			
42	Alkerwi et al. 2015	Cross-sectional	Luxembourg	18–69	F/M	1153					ApoA1 (mg/l)					0.02			
42	Alkerwi et al. 2015	Cross-sectional	Luxembourg	18–69	F/M	1153					Apo B (mg/l)					0.13			
42	Alkerwi et al. 2015	Cross-sectional	Luxembourg	18–69	F/M	1106					FBS (mmol/l)					– 0.0002			
42	Alkerwi et al. 2015	Cross-sectional	Luxembourg	18–69	F/M	1106					Hba1c (%)					– 0.0001			
42	Alkerwi et al. 2015	Cross-sectional	Luxembourg	18–69	F/M	1106					HOMA-IR					– 0.0017			
42	Alkerwi et al. 2015	Cross-sectional	Luxembourg	18–69	F/M	1106					Insulin (mg/l)					0.22			
42	Alkerwi et al. 2015	Cross-sectional	Luxembourg	18–69	F/M	1106					BMI (kg/m²)					0.003			
42	Alkerwi et al. 2015	Cross-sectional	Luxembourg	18–69	F/M	1007 F (NR) M (NR)					WC (cm)					0.002			
42	Alkerwi et al. 2015	Cross-sectional	Luxembourg	18–69	F/M	1007					SBP (mmHg)					– 0.001			
Reference	First author (year)	Study design	Country	Age range/mean age	Gender	Sample size	Diet assessment tool	The number of subjects with CMRFs	Duration follow-up (years)	Number of used dietary factors in DII calculation	Outcome variable	Measure of outcome	Comparison	Type of DII variable (categorical/ continuous)	Type of effect size measure	Effect size measure (95% CI)	Confounders	Study quality	
-----------	---------------------	-------------	---------	-------------------	--------	-------------	---------------------	----------------------------------	---------------------------	---	----------------	----------------	-----------	--	--------------------------	------------------------	------------	-------------	
43	Moslehi et al. 2016	Cross-sectional	Iran	19–75	F/M	2975	FFQ	F (1641) M (1304)	1007	–	37	Glucose tolerance abnormality	Quartile 4 (0.29, 5.23) vs. Quartile 1 (−5.82, −2.67)	Categorical OR	1.15 (0.90, 1.48)	8	2, 3, 6, 7, 9, 17, 22, 48		
												IFG	1.09 (0.83, 1.44)	259					
											IGT	1.24 (0.84, 1.81)	286						
											Type 2 diabetes	0.98 (0.66, 1.47)	1923						
											Insulin resistance	1.18 (0.91, 1.51)	2975						
											FBS levels (mmol/L)	-	Continuous β-Coefficient	0.01					
											Postload glucose levels (mmol/L)								
											Fasting insulin (U/mL)								
											HOMA-IR								
											HOMA-B								
											QUICKI								
25	Naja et al. 2017	Cross-sectional	Lebanon > 18		F/M	330	FFQ	F (NR) M (NR)	171	–	25	Abdominal obesity	Quartile 5 (NR) vs. Quartile Categorical 1 (NR)	OR	0.66 (0.29, 1.48)	7	3, 7, 9, 17, 25, 29, 35		
											Low HDL-C	0.74 (0.31, 1.75)	105						
											Hyper-triglyceridemia	0.84 (0.35, 1.03)	103						
											HTN	0.40 (0.23, 1.04)	329						
											Hyperglycemia	1.80 (0.80, 4.01)	331						
											MetS	0.72 (0.31, 1.67)	328						
23	Neufcourt et al. 2015	Cohort	France	35–60		3726	At least 3 valid 24-h dietary records	524	13	36	MetS	Morbidity	Quartile 4 (mean (QR) 2.97 (1.27)) vs. Quartile 1 (−1.76 (1.07))	Categorical OR	1.39 (1.0, 1.92)	7	1, 3, 7, 9, 17, 25, 56		
											Obesity								
22	Ramalal et al. 2017	Cohort	Spain	37.4		7027	FFQ	F (4355) M (2492)	1433 overweight (1409) Obese (24)	10	28	Overweight/Obesity	Morbidity	Quartile 4 (−0.59, 4) vs. Quartile 1 (−5.1, −2.5)	Categorical HR	1.32 (1.08, 1.60)	8	1, 2, 3, 7, 9, 17, 34, 35, 36, 39, 57, 58, 59, 60	
Reference First author (year)	Study design	Country Age range/mean age	Gender Sample size	Diet assessment tool	The number of subjects with CMRFs	Duration follow-up (years)	Outcome variable	Measure of outcome	Comparison	Type of DII variable (categorical/continuous)	Type of effect size measure	Effect size measure (95% CI)	Study quality	Confounders					
------------------------------	-------------	-----------------------------	--------------------	---------------------	----------------------------------	---------------------------	---------------------	-------------------	----------------	--	--------------------------	---------------------------	----------------	------------					
17 Ramallal et al. 2015	Cohort Spain 38	F/M	FFQ NR 2	28	HTN	Morbidity	Quartile 4 (−0.74, 3.97) vs. Quartile 1 (−5.14, −2.68)	Categorical	OR	1.71 (1.11, 2.64)	7	1, 2, 3, 7, 9, 17, 24, 25, 35, 36, 39, 57							
44 Sen et al. 2018	Cohort USA 2.8-4.9	F/M	FFQ 775 4.5	NR	BMI z-score	Morbidity	Continue (β-Coefficient (per 1 point increment in pregnancy DII))	Categorical	OR	1.04 (0.69, 1.57)	8	9, 17, 25, 18, 53							
481 481	481	481	Mid-childhood metabolic risk score																
Reference	First author (year)	Study design	Country	Age range/mean age	Gender	Sample size	Diet assessment tool	The number of subjects with CMRFs	Duration follow-up (years)	Number of used dietary factors in DII calculation	Outcome variable	Measure of outcome	Comparison	Type of DII variable (categorical/continuous)	Type of effect size measure	Effect size measure (95% CI)	Study quality	Confounders	
-----------	---------------------	--------------	---------	--------------------	--------	-------------	---------------------	-------------------------------	-----------------------------	--------------------------------	-----------------	-----------------	------------	-------------------------------	------------------------	-----------------------------	----------------	-----------	
28 Sokol et al. 2016	Cross-sectional	Poland	45–64	F/M	3862	FFQ	1759	-	22	Abdominal obesity	Quartile 4 (−0.75, 4.00) vs. Quartile 1 (−4.56, −2.62)	Categorical	OR	0.79 (0.61, 1.03)	7	2, 9			
615																			
815																			
2590																			
1402																			
1159																			
21 Vahid et al. 2016	Case–control	Iran	31–67	F/M	414	FFQ	214	-	27	Pre-diabetes	Morbidity	Tertile 3 (≥−0.54) vs. Tertile 1 (<−1.21)	Categorical	OR	18.88 (7.02, 50.82)	7	1, 2, 3, 7, 9, 17, 25		
414																			
414																			
414																			
Table 3 (continued)

Reference	First author (year)	Study design	Country	Age range/mean age	Gender	Sample size	Diet assessment tool	The number of subjects with CMRFs	Duration follow-up (years)	Number of used dietary factors in DII calculation	Outcome variable	Measure of outcome	Comparison	Type of DII variable (categorical/continuous)	Type of effect size measure	Effect size measure (95% CI)	Study quality	Confounders
414	Vissers et al. 2017	Cohort	Australia	52	F	7,169	FFQ	1680	12	25	DII ≥ 0 vs. DII < 0	Categorical	OR	1.24 (1.06, 1.45)	7	1, 2, 3, 6, 7, 9, 25, 40, 45		
Table 3 (continued)

Reference	Study design	Country	Age range/mean age	Gender	Sample size	Diet assessment tool	The number of subjects with CMRFs	Duration follow-up (years)	Number of used dietary factors in DII calculation	Outcome variable	Measure of outcome	Comparison	Type of DII variable (categorical/continuous)	Type of effect size measure	Effect size measure (95% CI)	Study quality	Confounders
Michael D. Wirth et al. 2014	Cross-sectional	United States of America	42.4 ± 8.5	F/M	447 F (112) M (335)	FFQ	125	-	DI (36 food items)	Morbidity	Presence of at least three of the five components: WC of ≥102 cm for males or ≥88 for females; BP ≥ 130 for systolic or ≥85 for diastolic or reported diagnosis of hypertension; HDL-C of < 40 mg/dL in men and < 50 in women; TG ≥ 150 mg/dL and glucose ≥ 100 mg/dL or reported treatment for diabetes	Categorical	OR	0.87 (0.46–1.63)	Age, sex		
Wirth et al. 2014	Cross-sectional	USA	42.4	F/M	447 F (112) M (335)	FFQ	150	-	36	Abdominal obesity	Morbidity	Quartile 4 (2.64, 5.89) vs. Quartile 1 (−6.27, −1.26)	Categorical	OR	0.93 (0.52, 1.67)	Age, sex	

1. Quartile 4: Presence of at least three of the five components: WC of ≥102 cm for males or ≥88 for females; BP ≥ 130 for systolic or ≥85 for diastolic or reported diagnosis of hypertension; HDL-C of < 40 mg/dL in men and < 50 in women; TG ≥ 150 mg/dL and glucose ≥ 100 mg/dL or reported treatment for diabetes.

2. Quartile 1: Lower quartile of the DII distribution.

3. OR: Odds Ratio.
| Reference | First author (year) | Study design | Country | Age range/mean age | Gender | Sample size | Diet assessment tool | The number of subjects with CMRFs | Duration follow-up (years) | Number of used dietary factors in DII calculation | Outcome variable | Measure of outcome | Comparison | Type of DII variable (categorical/continuous) | Type of effect size measure | Effect size measure (95% CI) | Study quality | Confounders |
|-----------|---------------------|--------------|---------|--------------------|--------|-------------|---------------------|-------------------------------|-------------------------------|----------------------------------|----------------|------------------|------------|----------------------------|-------------------|------------------------|--------------|------------|
| 46 | Tyrovolas et al. 2017 | Cross-sectional | USA | ≥ 20 | F/M | 7880 | F (NR) M (NR) | 24-h dietary recall | NR | NR – 27 | CVD-RF morbidity index (included obesity, diabetes, hypertension, and hypercholesterolemia. The total number of these risk factors was calculated (range 0–4) for each individual and used as the outcome) | Quartile 4 (NR) vs. Quartile 1 (NR) | OR | 1.39 (1.15, 1.67) | 8 | 3, 7, 9, 17, 18, 25, 29, 33, 59 |
| 19 | Wirth et al. 2016 | Cross-sectional | USA | 20–80 | F/M | 15666 | F (NR) M (NR) | 24-dietary recall | 5408 | Quartile 4 (1.94, 4.83) vs. Quartile 1 (-5.81, -0.81) | HTN Morbidity | Categorical OR | 1.19 (1.05, 1.34) | 5 | 2, 7, 9, 46 |
| 27 | Sen et al. 2015 | Cohort | USA | 32.2 | F | 1779 | FFQ 160 | 6 months | 28 | Isolated hyperglycemia | - | Continuous OR | 0.94 (0.82, 1.07) | 7 | 2, 7, 9, 18, 25, 53 |

58	Impaired glucose tolerance
96	GDM
1775	Inadequate pregnancy weight gain
Reference	First author (year)	Study design	Country	Age range/mean age	Gender	Sample size	Diet assessment tool	The number of subjects (years)	Duration follow-up (years)	Number of used dietary factors in DII calculation	Outcome variable	Measure of outcome	Comparison type of DII variable (categorical/continuous)	Type of effect size measure	Effect size measure (95% CI)	Study quality	Confounders
47	Ruiz-Canela et al. 2015	Cross-sectional	Spain	56–80 F	4145 FFQ	4145	–	33	BMI (kg/m²)	Morbidity	Continuous	Pearson coefficient (r)	Anti-inflammatory diet = −0.122, pro-inflammatory diet = 0.111	0.06 (0.03, 0.09)	1, 3, 6, 7, 9, 22, 25, 29		
									WC (cm)			0.05 (0.02, 0.08)					
									WHR (%)			0.06 (0.03, 0.09)					
									BMI (kg/m²)			0.05 (0.01, 0.09)					
									WC (cm)			0.08 (0.05, 0.20)					
									WHR (%)			0.09 (0.06, 0.13)					
48	Camargo-Ramos et al. 2017	Cohort	Colombia	39.7 F/M	90 F (NR) M (NR)	24-dietary record	90 NR	28	DXA total tissue (% fat)	Morbidity	Categorical	Pearson coefficient (r)	Anti-inflammatory diet = −0.122, pro-inflammatory diet = 0.111	7	9, 17		
									TC (mg/dL)			Anti-inflammatory diet = −0.210, pro-inflammatory diet = 0.010					
									TG (mg/dL)			Anti-inflammatory diet = −0.354, pro-inflammatory diet = −0.009					
Table 3 (continued)

Reference First author (year)	Study design	Country	Age range/mean age	Gender	Sample size	Diet assessment tool	The number of subjects with CMRFs	Duration follow-up (years)	Number of used dietary factors in DII calculation	Outcome variable	Measure of outcome	Comparison	Type of DII variable (categorical/continuous)	Type of effect size measure	Effect size measure (95% CI)	Study quality	Confounders			
										HDL-C (mg/dL)	Anti-inflamatory diet = -0.100, Pro-inflammatory diet = 0.028									
										LDL-C (mg/dL)	Anti-Inflammatory Diet = 0.350, Pro-Inflammatory Diet = -0.084									
										FBS (mg/dL)	Anti-inflammatory diet = -0.422, pro-inflammatory diet = -0.228									
										MetScore	Anti-inflammatory diet = -0.292, pro-inflammatory diet = 0.410									
										HbA1c (%)	Anti-inflammatory diet = 0.004, pro-inflammatory diet = 0.090									
										FMD (%)	Anti-inflammatory diet = 0.261, pro-inflammatory diet = -0.233									
										PWV (m/s)	Anti-inflammatory diet = -0.437, pro-inflammatory diet = 0.014									
Reference	First author (year)	Study design	Country	Age range/mean age	Gender	Sample size	Diet assessment tool	The number of subjects with CMRFs	Duration follow-up (years)	Number of used dietary factors in DII calculation	Study quality	Confounders	Type of DII variable (categorical/continuous)	Type of effect size measure	Effect size measure (95% CI)	Outcome variable	Measure of outcome	Comparison Type of DII variable (categorical/continuous)	Effect size measure (95% CI)	Outcomes
-----------	---------------------	--------------	---------	-------------------	--------	-------------	---------------------	---------------------------------	------------------------	-----------------------------------	--------------	------------	--	--------------------------	--------------------------	----------------	----------------	--	--------------------------	-----------
49	Cantero et al. 2017	Cross-sectional	Spain	55–80 F/M	F/M	794	FFQ	794	–	NR			Anti-inflammatory diet = –0.271	Pro-inflammatory diet = –0.126	Anti-inflammatory diet = –0.300	Aortic SBP (mm Hg)	Anti-inflammatory diet = –0.271	Pro-inflammatory diet = –0.126		
50	Tabung et al. 2017	Cross-sectional	USA	25–42 F	F	3985	FFQ	3985	–	38			Anti-inflammatory diet = –0.299	Pro-inflammatory diet = –0.064	Anti-inflammatory diet = –0.011	Aortic pulse pressure (mm Hg)	Anti-inflammatory diet = –0.299	Pro-inflammatory diet = –0.064		
58	Abdurahman et al. 2018	Cross-sectional	Iran	19–59 M/F	M/F	277	FFQ	176	–	32			Categorical OR = 2.58 (1.19, 5.59)	–0.05	Categorical OR = 2.58 (1.19, 5.59)	Brachial augmentation index (%)	Categorical OR = 2.58 (1.19, 5.59)	–0.05		
Reference	First author (year)	Study design	Country	Age range/mean age	Gender	Sample size	Diet assessment tool	The number of subjects with CMRFs	Duration follow-up (years)	Number of used dietary factors in DII calculation	Outcome variable	Measure of outcome	Comparison	Type of DII variable (categorical/continuous)	Type of effect size measure	Effect size measure (95% CI)	Study quality	Confounders		
-------------	---------------------	--------------	---------	-------------------	--------	-------------	----------------------	-------------------------------	--------------------------	--	----------------	----------------	------------	---	----------------------------	--------------------------	----------------	-------------		
NR	Abdominal obesity	Quartile 4 (7.98) vs. Quartile 1 (−8.87)	Categorical	Continues (per one quartile)	1.18 (1.01, 1.39)															
NR	Low HDL-C	Quartile 4 (7.98) vs. Quartile 1 (−8.87)	Categorical	Continues (per one quartile)	0.91 (0.73, 1.14)															
NR	Hyper-triglyceridemia	Quartile 4 (7.98) vs. Quartile 1 (−8.87)	Categorical	Continues (per one quartile)	1.11 (0.95, 1.33)															
NR	HTN	Quartile 4 (7.98) vs. Quartile 1 (−8.87)	Categorical	Continues (per one quartile)	1.11 (0.96, 1.29)															
NR	Hyperglycemia	Quartile 4 (7.98) vs. Quartile 1 (−8.87)	Categorical	Continues (per one quartile)	1.13 (0.97, 1.32)															
59	Andrade et al. 2018	Cohort Brazil	43.0	F	132	24-h dietary recall	132 0.5 21	Postoperative weight (kg)	Morbidity	Continues (per one unit)	β-coefficient	2.02 (0.33, 3.70)	7 1, 9							
60	Aslani et al. Cross-sec-tional 2018	6–18	F/M	5427	FFQ, FFQ (2541) M(2,886)	5427 – 25	BMI z-score	Morbidity	Quartile 4 (1.50 to 4.26) vs. Quartile 1 (−4.42 to −1.63)	Categorical	β-coefficient	0.07 (0.01, 0.14)	8 2, 9, 11, 17, 36, 41							
Reference First author (year)	Study design	Country Age range/ mean age	Gender Sample size	Diet assessment tool	The number of subjects with CMRFs	Duration follow-up (years)	Number of used dietary factors in DII calculation	Outcome variable	Measure of outcome	Comparison	Type of DII variable (categorical/ continuous)	Type of effect size measure	Effect size measure (95% CI)	Study quality	Confounders					
---------------------------------	--------------	-----------------------------	--------------------	---------------------	---------------------------------	-----------------------------	-------------------------------	-----------------	-----------------	------------	---	--------------------------	----------------------------	----------------	-------------					
-					Continue						(per one quartile)		0.01 (0.002, 0.04)							
Wrist Circumference (cm) Quartile 4 (1.50 to 4.26) vs. Quartile 1 (−4.42 to −1.63)	Categorical				Continue						(per one quartile)		0.06 (−0.09, 0.21)							
NC (cm) Quartile 4 (1.50 to 4.26) vs. Quartile 1 (−4.42 to −1.63)	Categorical				Continue						(per one quartile)		0.03 (−0.01, 0.08)							
WC (cm) Quartile 4 (1.50 to 4.26) vs. Quartile 1 (−4.42 to −1.63)	Categorical				Continue						(per one quartile)		0.00 (−0.11, 0.11)							
HC (cm) Quartile 4 (1.50 to 4.26) vs. Quartile 1 (−4.42 to −1.63)	Categorical				Continue						(per one quartile)		0.89 (0.07, 1.70)							
WHR Quartile 4 (1.50 to 4.26) vs. Quartile 1 (−4.42 to −1.63)	Categorical				Continue						(per one quartile)		1.13 (0.29, 1.96)							
WHtR Quartile 4 (1.50 to 4.26) vs. Quartile 1 (−4.42 to −1.63)	Categorical				Continue						(per one quartile)		− 0.001 (−0.04, 0.002)							
Parental BMI (kg/m²) Quartile 4 (1.50 to 4.26) vs. Quartile 1 (−4.42 to −1.63)	Categorical				Continue						(per one quartile)		1.05 (0.61, 1.49)							
Table 3 (continued)

Reference	First author (year)	Study design	Country	Age range/mean age	Gender	Sample size	Diet assessment tool	The number of subjects with CMRFs	Duration follow-up (years)	Number of used dietary factors in DII calculation	Outcome variable	Measure of outcome	Comparison	Type of DII variable (categorical/continuous)	Type of effect size measure	Effect size measure (95% CI)	Study quality	Confounders
61	Carvalho et al. 2018	Cross-sectional	Brazil	23–25 F 1,034 FFQ	110	– 35	Insulin resistance	Morbidity	–	Continues (per one quartile)	PR	Continues (per one unit)	0.96 (0.87, 1.07)	9 53				
				M 942 67 134	180		MetS	Insulin resistance			MetS		1.05 (0.91, 1.20)					
							MetS	MetS			MetS		0.98 (0.91, 1.07)					
62	Phillips et al. 2018	Cross-sectional	Ireland	50–69 F/M 1,992 F (1,016) M (976)	NR	– 26	MetS	Morbidity	< Median DII (−5.10 to −1.28) vs > Median DII (−1.28 to 3.68)	Categorical OR	1.37 (1.01, 1.86)	8 2, 9, 17, 66						
							large VLDL particles (nmol/L)					1.28 (1.07, 1.54)						
							small HDL particle size (nmol/L)					1.45 (1.21, 1.74)						
							small LDL particle size (nmol/L)					1.54 (1.28, 1.84)						
							Lipoprotein Insulin Resistance score					1.24 (1.10, 1.50)						
63	Correa-Rodríguez et al. 2018	Cross-sectional	Spain	18–25 F/M 599 F (141) M (185)	72-h dietary recall 599	– 25	BMI (kg/m²)	Morbidity	Continues (per one coefficient)	β-coefficient	–0.0073 (−0.0487, 0.0026)	1, 9, 17						
							FM (kg)				–0.0074 (−1.052, 0.005)							
							PFM (%)				–0.0047 (0.945, 0.170)							
							FFM (kg)				–0.0059 (−0.842, −0.107)							
							VFR				–0.0017 (−0.217, 0.142)							
Reference	First author (year)	Study design	Country	Age range/mean age	Gender	Sample size	Diet assessment tool	The number of subjects with CMRFs	Duration follow-up (years)	Number of used dietary factors in DII calculation	Outcome variable	Measure of outcome	Comparison	Type of DII variable (categorical/continuous)	Type of effect size measure	Effect size measure (95% CI)	Study quality	Confounders
-----------	---------------------	--------------	---------	-------------------	--------	-------------	----------------------	-------------------------------	--------------------------	---	----------------	----------------	-----------	---	------------------	----------------------	----------------	-----------
64	Denova-Gutiérrez et al. 2018	Cross-sectional	Mexico	20–69	F/M	1174 F (515) M (659)	Semi-quantitative FFQ	201	–	27	TZDM	Morbidity	Quintile 5 (NR) vs. Quintile 1 (NR)	OR	3.02 (1.39, 6.58)	8	2, 3, 6, 9, 11, 17, 22, 25, 27, 36, 39, 66, 69	
65	Abbasalizad Farhangi et al. 2018	Cross-sectional	Iran	35–80	F	120	FFQ	120	–	28	HbA1C (%)	Morbidity	Quartile 4 (≤ 5.6) vs. Quartile 1(> 7.0)	Categorical	β-coefficient	0.88 (0.55, 1.31)	6	2, 6, 9, 17, 25, 67
												TC (mg/dl)		0.67 (0.34, 1.37)				
												TG (mg/dl)		1.08 (0.94, 1.25)				
												LDL-C (mg/dl)		1.46 (0.72, 2.97)				
												HDL-C (mg/dl)		1.42 (0.70, 2.88)				
												Lipoprotein (a) (mg/dl)		0.98 (0.96, 1.00)				
												HbA1C (%)		0.89 (0.71, 1.12)				
												TC (mg/dl)		1.02 (0.99–1.04)				
												TG (mg/dl)		0.99 (0.98–0.99)				
												LDL-C (mg/dl)		1.01 (0.96–1.06)				
												HDL-C (mg/dl)		– 0.95 (0.91–1.00)				
												Lipoprotein (a) (mg/dl)		1.01 (0.99–1.02)				
66	Luglio Muhammad et al. 2018	Cross-sectional	Indonesia	19–56	F/M	503	FFQ	503	–	30	BMI (kg/m2)	Morbidity	Continues (per one unit)	β-coefficient (SE)	0.08 (0.036)	6	1, 2, 3, 9, 17	
												Body weight (kg)		– 0.03 (0.09)				
												Body fat (%)		– 0.04 (0.04)				
												WC (cm)		– 0.04 (0.09)				
												HC (cm)		– 0.04 (0.07)				
												SBP (mmHg)		0.03 (0.16)				
												DBP (mmHg)		0.04 (0.10)				
												TG (mmol/L)		0.04 (0.06)				
												HDL-C (mmol/L)		– 0.04 (0.04)				
Reference First author (year)	Study design	Country	Age range/mean age	Gender	Sample size	Diet assessment tool	The number of subjects with CMRFs	Duration follow-up (years)	Number of used dietary factors in DII calculation	Outcome variable	Measure of outcome	Comparison	Type of DII variable (categorical/ continuous)	Type of effect size measure	Effect size measure (95% CI)	Study quality	Confounders	
-------------------------------	--------------	---------	--------------------	--------	-------------	---------------------	-----------------------------------	-----------------------------	--	----------------	----------------	------------	---	----------------------------	--------------------------	---------------	--------	
67 Alam et al. 2018	Cross-sectional	Pakistan	54–95	M	651	24-dietary recall	651	–	NW	Body weight (kg)	Morbidity	Categorical	Tertile 3 (Mean±SD)	69.05±10.2	8	-	-	
										BMI (kg/m²)	WC (cm)	WHR	24±18	85.5±7.4	0.99±0.11		-	
										WC (cm)	WHR	WHR	1.22 (1.09, 1.64)		1.22 (1.09, 1.64)		-	
										Low HDL-C	Hyper-triglyceridemia	Hyper-triglyceridemia	1.07 (0.84, 1.38)		1.07 (0.84, 1.38)		-	
										Abdominal obesity	Morbidity	Quartile 4 (≥1.28) vs. Quartile 1 (<0.85)	1.35 (0.94, 1.94)	8	1,2, 3, 7, 9, 25, 39		-	
68 Kim et al. 2018	Cross-sectional	Korea	19–65	F	5609	24-h dietary recall	1044	–	23	Abdominal obesity	Morbidity	Categorical	OR	1.07 (0.72, 1.61)	1.07 (0.72, 1.61)	1,2, 3, 7, 9, 25, 39		-
										Low HDL-C	Hyper-triglyceridemia	Hyper-triglyceridemia	0.85 (0.71, 1.04)		0.85 (0.71, 1.04)		-	
										WC (cm)	WHR	WHR	1.10 (0.87, 1.38)		1.10 (0.87, 1.38)		-	
										Low HDL-C	Hyper-triglyceridemia	Hyper-triglyceridemia	0.95 (0.77, 1.18)		0.95 (0.77, 1.18)		-	
										BMI z-score	Morbidity	Q4 (≥1.89) vs Q1 (<0.16)	1.35 (0.94, 1.94)	1.35 (0.94, 1.94)	1,2, 3, 7, 9, 25, 39		-	
										Abdominal obesity	Morbidity	Q4 (≥1.89) vs Q1 (<0.16)	1.35 (0.94, 1.94)	1.35 (0.94, 1.94)	1,2, 3, 7, 9, 25, 39		-	
										Low HDL-C	Hyper-triglyceridemia	Hyper-triglyceridemia	0.93 (0.71, 1.21)		0.93 (0.71, 1.21)		-	
										WC (cm)	WHR	WHR	1.14 (0.88, 1.46)		1.14 (0.88, 1.46)		-	
										Low HDL-C	Hyper-triglyceridemia	Hyper-triglyceridemia	1.22 (1.09, 1.64)		1.22 (1.09, 1.64)		-	
										WC (cm)	WHR	WHR	1.30 (1.02, 1.65)		1.30 (1.02, 1.65)		-	
										Low HDL-C	Hyper-triglyceridemia	Hyper-triglyceridemia	1.40 (1.06, 1.85)		1.40 (1.06, 1.85)		-	
										WC (cm)	WHR	WHR	1.07 (0.87, 1.38)		1.07 (0.87, 1.38)		-	
										Low HDL-C	Hyper-triglyceridemia	Hyper-triglyceridemia	1.10 (0.87, 1.38)		1.10 (0.87, 1.38)		-	
										WC (cm)	WHR	WHR	0.95 (0.77, 1.18)		0.95 (0.77, 1.18)		-	
										Abdominal obesity	Morbidity	Quartile 4 (≥1.28) vs. Quartile 1 (<0.85)	1.35 (0.94, 1.94)	1.35 (0.94, 1.94)	1,2, 3, 7, 9, 25, 39		-	
										Abdominal obesity	Morbidity	Quartile 4 (≥1.28) vs. Quartile 1 (<0.85)	1.35 (0.94, 1.94)	1.35 (0.94, 1.94)	1,2, 3, 7, 9, 25, 39		-	
										Abdominal obesity	Morbidity	Quartile 4 (≥1.28) vs. Quartile 1 (<0.85)	1.35 (0.94, 1.94)	1.35 (0.94, 1.94)	1,2, 3, 7, 9, 25, 39		-	
										Abdominal obesity	Morbidity	Quartile 4 (≥1.28) vs. Quartile 1 (<0.85)	1.35 (0.94, 1.94)	1.35 (0.94, 1.94)	1,2, 3, 7, 9, 25, 39		-	
Reference	First author (year)	Study design	Country	Age range/mean age	Gender	Sample size	Diet assessment tool	The number of subjects with CMRFs	Duration follow-up (years)	Number of used dietary factors in DII calculation	Outcome variable	Measure of outcome	Comparison	Type of DII variable (categorical/continuous)	Type of effect size measure	Effect size measure (95% CI)	Study quality	Confounders
-----------	---------------------	--------------	---------	-------------------	--------	-------------	---------------------	-----------------------------	--------------------------	---------------------------------	-----------------	-----------------	------------	----------------------------	----------------------	------------------------	----------------	------------
70 Mazidi et al. 2018	Cross-sectional	USA	≥ 18	F/M	17689	F (9082) M (8,607)	24-h dietary recall NR	-	18	-	MetS	Morbidity	Q4 (16.2 to 4.24) vs. Q1 (5.66 to -104)	Categorical OR	1.23 (1.07, 1.41)	8	1, 2, 7, 9, 17, 18, 25, 29	
71 Mirmajidi et al. 2018	Cross-sectional	Iran	18–60	F/M	150	F (74) M (76)	FFQ	150	34	BMI (kg/m²)	Morbidity	-	Continuous (per one unit)	β-coefficient	0.351 (0.258, 1.247)	6	1, 3, 17	
72 Moe San et al. 2018	Cross-sectional	Myanmar	25–60	F	244		24-h dietary recall and Semi-quantitative FFQ	91	31	-	High BMI	Morbidity	Higher DII (> 1.07) vs. lower DII (< 1.07)	Categorical OR	1.40 (0.80, 2.30)	6	2, 9, 29, 68	

Outcome variable
- FFM (kg)
- SBP (mmHg)
- DBP (mmHg)
- MetS
- Obesity
- HTN
- FBS (mg/dl)
- Insulin (mg/dl)
- HOMA-IR (mg/dl)
- HOMA-B (mg/dl)
- QUICKI
- Chemerin (ng/mL)
- Omentin (ng/mL)
- LBP (mg/ml)
- Abdominal obesity
- Body fat mass
| Reference | First author (year) | Study design | Country | Age range/mean age | Gender | Sample size | Diet assessment tool | The number of subjects with CMRFs | Duration follow-up (years) | Number of used dietary factors in DII calculation | Outcome variable | Measure of outcome | Comparison | Type of DII variable (categorical/continuous) | Type of effect size measure | Effect size measure (95% CI) | Study quality | Confounders |
|-----------|---------------------|--------------|---------|-------------------|--------|-------------|---------------------|-------------------------------|-----------------------------|---|-----------------|-------------------|-----------|---|-------------------|----------------------|---------------|-------------|
| 73 | Nikniaz et al. 2018 | Cross-sectional | Iran | 18–64 F/M | | 606 F (324) M (282) | FFQ | NR | | 30 | | Abdominal obesity | Quartile 4 (NR) vs. Quartile 1 (NR) | OR | 0.86 (0.39, 1.91) | 7 | 2, 3, 7, 9, 17 |
| 75 | Park et al. 2018 | Cross-sectional | Korea | ≥ 50 F | | 1344 | 24-h dietary recall | 334 | - | 42 | | Osteopenic obesity | Higher DII (> −0.07) vs. lower DII (≤ − 0.07) | OR | 2.757 (1.398, 5.438) | 8 | 2, 7, 9, 25, 37, 53 |
| 74 | Shivappa et al. 2018| Case–control | Iran | 18–40 F | | 388 | FFQ | 122 | - | 32 | | GDM | Tertile 3 (> −0.38) vs. tertile 1 (≤ −1.32) | OR | 2.10 (1.02, 4.34) | 7 | 1, 2, 3, 6, 7, 9, 27 |
| 45 | Winkvist et al. 2018| Cohort | Sweden | 30–60 F/M | | 8345 | FFQ | NR | 10 | 30 | | BMI (kg/m²) | - | Continuous (per one unit) | 1.20 (0.94, 1.54) | 8 | 3, 7, 9, 25, 63 |
| 76 | Ren et al. 2018 | Cross-sectional | China | 18–75 F/M | | 1712 F (1130) M (582) | 24-h dietary recall | NR | - | 21 | | Abdominal obesity | Tertile 3 (1.12 to 3.49) vs. tertile 1 (2.50 to 0.04) | OR | 0.86 (0.59–1.24) | 8 | 2, 7, 9, 17, 25 |

Table 3 (continued)

Reference First author (year)	Study design	Country Age range/mean age	Gender Sample size	Diet assessment tool	The number of subjects with CMRFs	Duration follow-up (years)	Number of used dietary factors in DII calculation	Outcome variable	Measure of outcome	Comparison Type of DII variable (categorical/continuous)	Type of effect size measure	Effect size measure (95% CI)	Study quality	Confounders
Low HDL-C	Tertile 3 (1.12 to 3.49) vs. tertile 1 -3.50 to 0.04	Categorical								Categorical	Continuous (per one unit)	1.17 (0.88–1.50)	1	11-19
Hyper-triglyceridemia	Tertile 3 (1.12 to 3.49) vs. tertile 1 -3.50 to 0.04	Categorical								Categorical	Continuous (per one unit)	1.03 (0.78–1.37)	2	11-19
HTN	Tertile 3 (1.12 to 3.49) vs. tertile 1 -3.50 to 0.04	Categorical								Categorical	Continuous (per one unit)	1.40 (1.03–1.89)	3	11-19
Hyperglycemia	Tertile 3 (1.12 to 3.49) vs. tertile 1 -3.50 to 0.04	Categorical								Categorical	Continuous (per one unit)	0.85 (0.64–1.14)	4	11-19
MetS	Tertile 3 (1.12 to 3.49) vs. tertile 1 -3.50 to 0.04	Categorical								Categorical	Continuous (per one unit)	1.02 (0.75–1.40)	5	11-19

1—total energy intake, 2—body mass index, 3—physical activity, 4—systolic blood pressure, 5—total cholesterol, 6—diabetes, 7—smoking, 8—postsecondary academic education, 9—age, 10—energy expended in physical activity, 11—socioeconomic status, 12—use of low-dose aspirin, 13—use of antihypertensive medication, 14—use of statins, 15—prevalent atherosclerotic vascular disease, 16—treatment code, 17—sex, 18—race, 19—HbA1c, 20—overweight/obesity, 21—waist to height ratio, 22—hypertension, 23—dyslipidemia, 24—family history of premature cardiovascular disease, 25—educational level, 26—stratified by inter vention group and center, 27—supplementation, 28—number of 24-h records, 29—marital status, 30—treatment allocation group (placebo or active), 31—diastolic blood pressure, 32—waist circumference, 33—previous history of other cardiovascular diseases, 34—following a special diet, 35—hours spent sitting down, 36—hours spent watching television, 37—hormone replacement therapy use, 38—prevalent cancer (yes/no), 39—alcohol intake, 40—survey number, 41—place of residence, 42—ratio of total cholesterol and high density lipoprotein cholesterol, 43—poverty index, 44—coffee consumption, 45—menopausal status, 46—family member, 47—occupational grade, 48—use of lipid-lowering drugs, 49—high density lipoprotein cholesterol, 50—longstanding illness, 51—country of birth, 52—socio-economic indexes for areas quintile, 53—income, 54—glucose lowering medication, 55—cigarette index, 56—number of available dietary records, 57—snacking between meals, 58—parental history of obesity, 59—depression (previous or incident), 60—analgesic use, 61—triglyceride, 62—low density lipoprotein cholesterol, 63—year of study participation, 64—years of police work, 65—history of chronic diseases, 66—medication use, 67—myocardial infarction, 68—use of contraceptives, 69—tobacco use

CMRFs: cardio-metabolic risk factors
DII: dietary inflammatory index
F: female
M: male
FFQ: food frequency questionnaire
HDL-C: high density lipoprotein-cholesterol
LDL-C: low density lipoprotein-cholesterol
VLDL: very low density lipoprotein
HbA1c: glycosylated hemoglobin
LBP: lipopolysaccharide-binding protein
TC: total cholesterol
TG: triglyceride
SBP: systolic blood pressure
DBP: diastolic blood pressure
MetS: metabolic syndrome
OR: odds ratio
HOMA-IR: homeostasis model assessment of insulin resistance
HOMA-B: homeostatic model assessment of β-cell function
QUICKI: quantitative insulin-sensitivity check index
FPG: fasting plasma glucose
IGT: impaired glucose tolerance
OGTT: oral glucose tolerance test
GDM: gestational diabetes mellitus
BMI: body mass index
WC: waist circumference
HC: hip circumference
VFR: visceral fat ratio
SS+Tr: subscapular + triceps skinfold thickness
LBM: lean body mass
DXA: Dual energy X-ray absorptiometry
FMD: flow-mediated vasodilation
PWV: pulse wave velocity
MAP: mean arterial pressure
MUO: metabolically unhealthy obese
NR: not reported
DII score and BMI [42, 45, 63, 66], whereas two studies indicated a significant association [49, 71]. Another report found a significant association between the DII score and BMI only in women [47]. One cohort study showed a significant association between the DII score and BMI z-score in boys [44]; another study failed to find any association between the DII score and BMI z-score [69]. Moreover, another study indicated this association in all students [60]. A significant association between the DII score and low density lipoprotein cholesterol (LDL-C) levels was observed in two studies [21, 65] and three studies failed to find any association [42, 44, 48]. The DII score was associated with total cholesterol (TC) levels only in one study [65], whereas three studies did not show this association [42, 45, 48]; another study reported no association between the DII score and hypercholesterolemia [17].

Quality assessment
According to NOS, 49 studies had high quality (NOS ≥ 7) [15–17, 21–32, 42–64, 67–70, 73–79], and four studies obtained 6 stars [65, 66, 71, 72]. Only, two reports achieved NOS = 5 [19, 20].

Results of meta-analysis

\[\text{DII score and risk of CMDs and mortality} \]

Thirteen studies that investigated the association between the DII score (as a continuous variable) and risk of CMDs and mortality were included in this meta-analysis [16, 19, 29–32, 52, 54–57, 78, 79] (Figs. 2 and 3). Subgroup analysis was performed according to the type of outcome (morbidity/mortality) and study design (cohort/non-cohort) (Table 4). Results of fixed effect meta-analysis showed that per one-unit increment in the DII score the risk of CMDs mortality increased significantly by 4% (HR = 1.04; 95% CI 1.03, 1.05). Also, a significant association was observed between the continuous DII and risk of CMDs in cohort (HR = 1.06; 95% CI 1.03, 1.09) and non-cohort studies (HR = 1.06; 95% CI 1.03, 1.10).

We also assessed the association between the categorical DII score and risk of CMDs and mortality using 18 observational studies [15–17, 19, 29–32, 51–57, 77–79]. Meta-analysis of cohort studies showed that the most pro-inflammatory diet category (the highest DII score group) compared to the most anti-inflammatory diet category (the lowest DII score group), increases the risk of CMDs mortality by 29% (HR = 1.29; 95% CI 1.18, 1.41) (Fig. 4).
Also, the association between the DII and risk of CMDs was statistically significant in cohort (HR = 1.35; 95% CI 1.13, 1.61) and non-cohort studies (HR = 1.36; 95% CI 1.18, 1.57) (Fig. 5).

DII score and CMRFs

Of 39 publications, 16 studies had assessed the association between the DII score and MetS or at least one of its components and had reported measure of association (OR) included in the meta-analysis [17, 19, 20, 23–26, 28, 58, 61, 62, 68, 70, 72, 73, 76] (Table 5). Results of meta-analysis indicated a significant association between the DII score and MetS (OR: 1.13; 95% CI 1.03–1.25) (Fig. 6), hyperglycemia (OR: 1.21; 95% CI 1.01–1.44) and HTN (OR: 1.17; 95% CI 1.10–1.25). We failed to find any significant association between the DII score and other components of MetS (abdominal obesity, low HDL-C and hyper-triglyceridemia).

Results of dose–response meta-analysis

In the terms of risk of CMDs mortality in relation to the DII score, nine cohort studies [29, 31, 51, 54–56, 77–79] were included in dose–response analysis. A significant non-linear positive association was found between the DII score and CMDs mortality (P_{nonlinearity} < 0.001). Unlike the overall association, the DII score was inversely associated with CMDs mortality from score of −5 to −2 (P_{nonlinearity} = 0.01). However, the risk was significantly increased when increasing the score of DII from −2 to 1.5 (P_{nonlinearity} < 0.001). The slope was slightly flattening from DII score of 1.5 to upper levels (Additional file 3: Figure S1).

Six studies (four cohorts [16, 17, 31, 52], one case–control [57] and one cross-sectional study [19]) were included in dose–response analysis assessing the association between the DII score and risk of CMDs (Additional file 4: Figure S2). No significant non-linear association was found in this regard (p-value = 0.1). Such non-significant association was also seen after considering only cohort studies and excluding case–control and cross-sectional studies (p-value = 0.2) (Additional file 5: Figure S3).

Publication bias

No publication bias was observed between studies of MetS according to Egger test results (p-value = 0.323). Moreover, the results of Egger test for studies evaluated the association between the continuous DII score and risk of CMDs and mortality showed that there was no evidence of publication bias between studies (p-value = 0.114, p-value = 0.745, respectively).
Type of the DII measurement	Type of outcome	Type of study	Number of studies	Sample size	Number of events	Type of effect size measures	Test of association	Test of heterogeneity	Effect size measure	95% CI	Model	I²	p-value
Continuous (per one unit increment)	Mortality	Cohort	8	239,156	27,403	HR^a	1.04	1.03–1.05	Fixed	38.7	0.12		
	Morbidity	Cohort	4	23,183	1117	HR	1.06	1.03–1.09	Fixed	22.3	0.27		
		Non-cohort^b	2	17,055	2494	OR^{a,b}	1.06	1.03–1.10	Random	69.1	0.07		
Categorical (highest DII/lowest DII)	Mortality	Cohort	10	291,968	30,813	HR	1.29	1.18–1.41	Random	65.9	< 0.001		
	Morbidity	Cohort	6	43,340	1310	HR	1.35	1.13–1.61	Fixed	37.0	0.16		
		Non-cohort^b	3	23,999	3883	OR^b	1.36	1.18–1.57	Fixed	0.0	0.67		

OR odds ratio, HR hazard ratio, CI confidence interval

^a HR, Hazard ratio; OR, Odds ratio; Q test, Cochran test

^b Case–control or cross-sectional study
When we considered studies with the categorical DII score, the publication bias was observed in our analysis ($P_{Egger} = 0.001$ for risk of CMDs and $P_{Egger} = 0.04$ for risk of CMDs mortality) (Additional file 8: Figure S6 and Additional file 9: Figure S7).

Sensitivity analysis
Sensitivity analysis showed that removing any of the studies or a group of studies could not significantly change the effect of DII score (as a continuous or categorical variable) on risk of CMDs and mortality. In terms of MetS and its components, the results of sensitivity analysis demonstrated that neither an individual study nor group of studies had a remarkable effect on our results.

Discussion
The present meta-analysis showed evidences of the association between increasing the inflammatory potential of diet and risk of CMDs and mortality. Also, individuals with the highest pro-inflammatory diet had 13%, 21%, and 17% higher risk for MetS, hyperglycemia and HTN than those with the lowest pro-inflammatory diet.

Subgroup analysis showed that the association of DII (as continuous and categorical variable) with risk of CMDs did not change appreciably in the cohort and non-cohort studies. One important issue in studies on the association of the dietary indices and chronic diseases is the sample size. We can find more precise results using larger sample sizes. Similar findings in the cohort and non-cohort studies can be probably explained by the larger sample size of non-cohort studies.

In the current study, there was a significant association between the DII score and risk of CMDs and mortality. There are some theories that explain the relationship between the DII score and risk of CVDs. Findings of studies showed that higher consumption of pro-inflammatory foods such as red and processed meat, sugar, and refined grains increases level of IL-6, TNF-a, and hs-CRP [12]. Higher levels of these inflammatory biomarkers is the main etiologic factor in CMDs development [80–84]. Since the DII score was calculated using dietary factors (nutrients and specific food items) which show the diet-associated inflammation [14], it was anticipated to observe an association between the DII score and risk of CMDs.
Fig. 5 Association of dietary inflammatory index (DII) (as a categorical variable) with risk of cardiometabolic diseases

Table 5 Meta-analysis of association between dietary inflammatory index (DII) (as a categorical index) and cardiometabolic risk factors

Outcome variable	Number of studies	Sample size	Number of events	Test of association	Test of heterogeneity	
Abdominal obesity	9	18,121	4655ab	1.00	0.88–1.12	Fixed
Low HDL-C	8	17,874	4148ab	0.94	0.78–1.14	Random
Hyper-triglyceridemia	8	17,874	3954ab	1.09	0.98–1.22	Fixed
HTN	12	77,194	13,496c	1.17	1.10–1.25	Fixed
Hyperglycemia	8	17,876	4651b	1.21	1.01–1.44	Random
MetS	11	42,978	4524ab	1.13	1.03–1.25	Random

HDL-C high density lipoprotein-cholesterol, HTN hypertension, MetS metabolic syndrome, OR odds ratio, CI confidence interval

1 HR; Hazard ratio; OR; Odds ratio; Q test, Cochran test
2 Cohort or cross-sectional study
3 Participants with abdominal obesity, low-HDL-C, hyper-triglyceridemia, hyperglycemia and MetS had not been stated in three studies
4 Participants with HTN had not been stated in five studies
5 The odds ratio is for the highest pro-inflammatory diet (the highest DII) versus the highest anti-inflammatory diet (the lowest DII)
6 Case–control or cross-sectional study
A population-based study including 1,363 men aged 18 years and older (the Geelong osteoporosis study) showed that the adjusted OR (95% CI) for CVDs was 2 (1.01–3.96) for those with pro-inflammatory diet compared with anti-inflammatory diet [53]. The PREDIMED study investigated 7,216 men aged 55–80 years and women aged 60–80 years at high risk of CVDs. A total of 277 CVDs events were considered. The adjusted hazard ratio (95% CI) for CVDs was 1.73 (1.15–2.60) for participants with pro-inflammatory diet. A stronger relationship was showed when cases occurring during the first year of follow-up were excluded from the analysis [16]. Moreover, the SU.VI.MAX study included 7743 women aged 35–60 years and men aged 45–60 years with 11.4 years follow-up, no statistically significant association was found between the DII score and the composite CVDs outcome. However, a significant relationship was shown for MI when the highest quartile of the DII score was compared with the lowest quartile of the DII score [52]. Moreover, another cross-sectional study carried out on Sweden men and women aged 30–73 years showed a positive association between the DII score and risk of CMDs [15]. A cohort study on a large sample size of Sweden women indicated that there is not association between the DII score and risk of CVDs mortality [55]. This finding may related to the low number of used dietary factors in DII calculation. In another cohort study on diabetic patients, results showed that there is not any association between the DII score and risk of CVDs mortality that it is not in line our study. This finding can be related to the low sample size and dietary factors used for DII calculation [51].

This meta-analysis of 16 studies examining the association between the DII score and MetS or at least one of its components [17, 19, 20, 23–26, 28, 58, 61, 62, 68, 70, 72, 73, 76], showed a significant association between the DII score and MetS, hyperglycemia and HTN. Several population-based studies carried out in France, Ireland, USA and Iran demonstrated the significant association between the DII score and MetS [23, 62, 70, 73]. However, other studies failed to find this association [20, 25, 26, 28, 61, 76]. Ramallal et al. [17] in a cohort study on 18,794 Spanish men and women showed the higher DII score is associated with greater incidence of HTN. Also, other studies indicated this significant association [19, 24, 70, 73]. In the regard of hyperglycemia, studies carried out in USA and Iran indicated a positive association between the DII score and hyperglycemia [20, 73]. However, some studies did not demonstrate this association [25, 26, 28, 58].

The meta-analysis of 14 studies revealed that subjects in the highest versus the lowest DII score category showed 36% increased risk of CVDs incidence and
mortality [33]. Another meta-analysis found that participants with higher DII score had a higher risk of cardiovascular and cancer mortality [30]. The strengths of our study against the other two meta-analyses include the evaluation of the association between the DII score and CMRFs and the dose–response association between the DII score and risk of CMDs and mortality. In addition, we assessed the risk of CMDs separately in all cohort and non-cohort studies.

The current study had several limitations. Absence of a specific cut-off point for the association of the DII score and occurrence of morbidity or mortality of CMDs is the first limitation. Most of studies included in the MetS and its components analyses had a cross-sectional design, so the limitations of this type of study should be considered and the results should be interpreted with cautious. Other limitations include different numbers of dietary factors used in the DII score calculation and applying different adjustment models in the analyses. Evidence of publication bias, the other limitation, was observed when the DII score was considered as a categorical variable in the analyses.

Conclusion
The current meta-analysis study showed a positive association between the DII score and risk of CMDs and mortality. Also, we find a significant association between adherence to pro-inflammatory diet and MetS, hyperglycemia, and HTN. More studies with prospective designs and in different societies are needed to confirm the findings.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.1186/s13098-020-00592-6.

Acknowledgements
Not applicable.

Disclosure
Dr. James R. Hébert owns controlling interest in Connecting Health Innovations LLC (CHI), a company planning to license the right to his invention of the dietary inflammatory index (DII) from the University of South Carolina in order to develop computer and smart phone applications for patient counselling and dietary intervention in clinical settings. Dr. Nitin Shivappa is an employee of CHI.

Authors’ contributions
The contribution of authors was as follows: 2A: conducted systematic search on electronic databases, screened the papers, extracted the data and wrote the manuscript; OS: analyzed the data and wrote the manuscript; MH-B: wrote the manuscript; HZ: wrote the manuscript; FB: wrote the manuscript; NS: wrote the manuscript; JRH: wrote the manuscript; SM: analyzed the data, GS: wrote the manuscript; HA: conducted systematic search on electronic databases, and screened the papers; SD: extracted the data; MQ: designed the study, analyzed the data and is the responsible for the final content. All authors read and approved the final manuscript.

Funding
This research did not receive any special grant funding.

Availability of data and materials
All data generated or analyzed in this study are included in this published article [and its additional information files].

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran. 2 Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran. 3 Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of Southern Denmark, Esbjerg, Denmark. 4 Cancer Prevention and Control Program, University of South Carolina, Columbia, SC 29208, USA. 5 Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA. 6 Connecting Health Innovations LLC, Columbia, SC 29201, USA. 7 Halal Research Center of IRI, FDA, Tehran, Iran. 8 Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran. 9 Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. 10 Center of Maritime Health and Society, Department of Public Health, University of Southern Denmark, Esbjerg, Denmark. 11 Department of Medical Emergencies, Qom University of Medical Sciences, Qom, Iran. 12 Development of Research & Technology Center, Ministry of Health and Medical Education, Tehran, Iran. 13 Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran. 14 Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran. 15 Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.

Acknowledgements
This research did not receive any special grant funding.

Availability of data and materials
All data generated or analyzed in this study are included in this published article [and its additional information files].

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran. 2 Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran. 3 Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of Southern Denmark, Esbjerg, Denmark. 4 Cancer Prevention and Control Program, University of South Carolina, Columbia, SC 29208, USA. 5 Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA. 6 Connecting Health Innovations LLC, Columbia, SC 29201, USA. 7 Halal Research Center of IRI, FDA, Tehran, Iran. 8 Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran. 9 Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. 10 Center of Maritime Health and Society, Department of Public Health, University of Southern Denmark, Esbjerg, Denmark. 11 Department of Medical Emergencies, Qom University of Medical Sciences, Qom, Iran. 12 Development of Research & Technology Center, Ministry of Health and Medical Education, Tehran, Iran. 13 Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran. 14 Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran. 15 Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.

Received: 28 April 2020 Accepted: 22 September 2020
Published online: 07 October 2020

References
1. Libby P. Inflammatory mechanisms: the molecular basis of inflammation and disease. Nut Rev. 2007;65:S140–S146146.
2. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005;352:1685–95.

3. Gallavotti P. Inflammation and oxidative stress in obesity, metabolic syndrome, and diabetes. J Diabetes Res. 2012;2012:943706.

4. Keibel A, Singh V, Sharma MC. Inflammation, microenvironment, and the immune system in cancer progression. Curr Pharm Des. 2009;15:1949–55.

5. Gregor MF, Hotamisligil GS. Inflammatory mechanisms in obesity. Annu Rev Immunol. 2011;29:415–45.

6. Musani SK, Vasan RS, Budiscula A, Liu J, Xanthakis V, Sims M, et al. Aldosterone, C-reactive protein, and plasma B-type natriuretic peptide are associated with the development of metabolic syndrome and longitudinal changes in metabolic syndrome components: findings from the Jackson Heart Study. Diabetes Care. 2013;36:3084–92.

7. Esmaillzadeh A, Kimiagar M, Mehrabi Y, Azadbakht L, Hu FB, Willett WC. Mediterranean diet and incidence of and mortality from coronary heart disease and stroke in women. Circulation. 2009;119:1093–100.

8. Fung TT, Res rode KM, Manson JE, Willett WC, Hu FB. Mediterranean diet and incident of and mortality from coronary heart disease and stroke in women. Circulation. 2009;119:1093–100.

9. Martínez-González MA, García-López M, Bes-Rastrollo M, Toledo E, Martínez-Lapiscina EH, Delgado-Rodríguez M, et al. Mediterranean diet and the incidence of cardiovascular disease: a Spanish cohort. Nutr Metab Cardiovasc Dis. 2011;21:237–44.

10. Trichopoulou A, Martínez-González MA, Tong TY, Forouhi NG, Khandelwal S, Prabhakaran D, et al. Definitions and potential health benefits of the Mediterranean diet: views from experts around the world. BMC Med. 2014;12:112.

11. Martínez-González MA, Bes-Rastrollo M. Dietary patterns, Mediterranean diet, and cardiovascular disease. Curr Opin Lipidol. 2014;25:20–6.

12. López-García E, Schule MB, Fung TT, Meigs JB, Rifai N, Manson JE, et al. Major dietary patterns are related to plasma concentrations of markers of inflammation and endothelial dysfunction. Am J Clin Nutr. 2004;80:1029–35.

13. Cavicchia PP, Steck SE, Hurley TG, Hussey JR, Ma Y, Ockene IS, et al. Association between dietary inflammatory index, and cause-specific mortality—a meta-analysis. Nutrients. 2018;10:200.

14. Shivappa N, Steck SE, Hurley TG, Hussey JR, Hébert JR. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014;17:1689–96.

15. Boden S, Wenneberg M, Van Guelphen B, Johannson J, Lindahl B, Andersson J, et al. Dietary inflammatory index and risk of first myocardial infarction, a prospective population-based study. Nutr J. 2017;16:21.

16. García-Arellano A, Ramallal R, Ruiz-Canela M, Salas-Salvadó J, Corella D, Shivappa N, et al. Dietary inflammatory index and incidence of cardiovascular disease in the PREMIDI study. Nutrients. 2015;7:4124–38.

17. Ramallal R, Toledo E, Martínez-González MA, Hernández-Hernández A, García-Arellano A, Shivappa N, et al. Dietary inflammatory index and incidence of cardiovascular disease in the SUN cohort. PLoS ONE. 2015;10:e0135221.

18. Li D, Hao X, Li J, Wu Z, Chen S, Lin J, et al. Dose-response relation between dietary inflammatory index and human cancer risk: evidence from 44 epidemiologic studies involving 1,082,092 participants. Am J Clin Nutr. 2018;107:371–88.

19. Wirth MD, Shivappa N, Hurley TG, Hébert JR. Association between previously diagnosed circulatory conditions and a dietary inflammatory index. Nutr Res. 2016;36:227–33.

20. Wirth M, Burch J, Shivappa N, Violanti JM, Burchfiel CM, Fekedulegn D, et al. Association of a dietary inflammatory index with inflammatory indices and the metabolic syndrome among police officers. J Occup Environ Med. 2014;56:986.

21. Vahid F, Shivappa N, Karamati M, Naeni AJ, Hébert JR, Davoodi SH. Association between Dietary Inflammatory Index (DII) and risk of prediabetes: a case-control study. Appl Physiol Nutr Metab. 2016;42:399–404.

22. Ramallal R, Toledo E, Martínez JA, Shivappa N, Hébert JR, Martínez-González MA, et al. Inflammatory potential of diet, weight gain, and incidence of overweight/obesity: the SUN cohort. Obesity. 2017;25:997–1005.

23. Neufcourt L, Assmann K, Feuze L, Touvier M, Graffouillère L, Shivappa N, et al. Prospective association between the dietary inflammatory index and metabolic syndrome: findings from the SU.VI.MAX study. Nutr Metab Cardiovasc Dis. 2015;25:988–96.

24. Alkerwi AA, Shivappa N, Crichton G, Hébert JR. No significant independent relationships with cardiometabolic biomarkers were detected in the Observation of Cardiovascular Risk Factors in Luxembourg study population. Nutr. Res. 2014;34:1058–65.

25. Naja F, Shivappa N, Nasreddine L, Khanoubi S, Itani L, Hwalla N, et al. Role of inflammation in the association between the western dietary pattern and metabolic syndrome among Lebanese adults. Int J Food Sci Nutr. 2017;68:997–1004.

26. Vissers L, Waller M, van der Schouw Y, Hébert J, Shivappa N, Schoenacker D, et al. A pro-inflammatory diet is associated with increased risk of developing hypertension among middle-aged women. Nutr Metab Cardiovasc Dis. 2017;27:564–70.

27. Sen S, Rifa-Simson SL, Shivappa N, Wirth MD, Hébert JR, Gold DR, et al. Dietary inflammatory potential during pregnancy is associated with lower fetal growth and breastfeeding failure: results from project Viva–3. J Nutr. 2015;145:728–36.

28. Sokol A, Wirth MD, Manzuck M, Shivappa N, Zatonska K, Hurley TG, et al. Association between the dietary inflammatory index, waist-to-hip ratio and metabolic syndrome. Nutr Res. 2016;36:1298–303.

29. Borondoni NP, Lewis JR, Blekenhorst LC, Shivappa N, Woodman RJ, Borondoni CP, et al. Dietary inflammatory index in relation to sub-clinical atherosclerosis and atherosclerotic vascular disease mortality in older women. Br J Nutr. 2017;117:1577–86.

30. Vissers LE, Waller MA, van der Schouw YT, Hébert JR, Shivappa N, Schenacker DA, et al. The relationship between the dietary inflammatory index and risk of total cardiovascular disease, ischemic heart disease and cerebrovascular disease: Findings from an Australian population-based prospective cohort study of women. Atherosclerosis. 2016;253:164–70.

31. Shivappa N, Schneider A, Hébert JR, Koenig W, Peters A, Thorand B. Association between dietary inflammatory index, and cause-specific mortality in the MONICA/KORA Augsburg Cohort Study. Eur J Public Health. 2017;28:167–72.

32. Shivappa N, Godos J, Hébert JR, Wirth MD, Piuri G, Speciani AF, et al. Dietary inflammatory index and cardiovascular risk and mortality—a meta-analysis. Nutrients. 2018;10:200.

33. Namazi N, Larjani B, Azadbakht L. Dietary inflammatory index and its association with the risk of cardiovascular diseases, metabolic syndrome, and mortality: a systematic review and meta-analysis. Horm Metab Res. 2018;50:345–58.

34. Zhong X, Guo L, Zhang L, Li Y, He R, Cheng G. Inflammatory potential of diet and risk of Cardiovascular disease or mortality: a meta-analysis. Sci Rep. 2017;7:16376.

35. Wells GA SB, O’Connell D, Peterson J, Welch V, Loson S, Tugwell P. The Newcastle–Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Ottawa Hospital Research Institute, 2014. https://www.who.int/csr/schemes/clinical_epidemiology/oxford.asp. Accessed June 2016.

36. Lipsky M, Wilson D. Practical meta-analysis. Thousand Oaks: Sage Publications, 2001.

37. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21:1539–58.

38. Gao YXY, Lu T, Gao F, Mio Z. Metan: fixed- and random-effects meta-analysis. Stat J. 2008;9:3–28.

39. Orsini N, Bellocco R, Greenland S. Generalized least squares for trend estimation of summarized dose-response data. Stat J. 2006;640.

40. Harre FE Jr, Lee KL, Pollock BG. Regression models in clinical studies: determining relationships between predictors and response. J Natl Cancer Inst. 1988;80:1198–202.

41. Alkerwi AA, Vernier C, Crichton GE, Sauvageot N, Shivappa N, Hébert JR. Cross-comparison of diet quality indices for predicting chronic disease risk: findings from the Observation of Cardiovascular Risk Factors in Luxembourg (ORISCAV-LUX) study. Br J Nutr. 2015;113:259–69.
43. Mosleh N, Ehsani B, Mirmiran P, Shivappa N, Tohidi M, Hébert JR, et al. Inflammatory properties of diet and glucose-insulin homeostasis in a cohort of Iranian adults. Nutrients. 2016;8:735.

44. Sen S, Rifa-Shiman S, Shivappa N, Wirth MD, Hebert J, Gold D, et al. Associations of prenatal and early life dietary inflammatory potential with childhood adiposity and cardiometabolic risk in Project Viva. Pediatr Obes. 2018;13:292–300.

45. Winkvist A, Klingberg S, Nilsson LM, Wennberg M, Renstrom F, Hallmans G, et al. Longitudinal 10-year changes in dietary intake and associations with cardio-metabolic risk factors in the Northern Sweden Health and Disease Study. Nutr J. 2017;16:20.

46. Tyrväis S, Koyanagi A, Kotsakis GA, Panagiotakos D, Shivappa N, Wirth MD, et al. Dietary inflammatory potential is linked to cardiovascular disease risk burden in the US adult population. Int J Cardiol. 2017;240:409–13.

47. Ruiz-Canela M, Zazpe I, Shivappa N, Hébert JR, Sanchez-Tainta A, Corella D, et al. Dietary inflammatory index and anthropometric measures of obesity in a population sample at high cardiovascular risk from the PREDIMED (Prevención con Dieta Méditerránea) trial. Br J Nutr. 2015;113:984–95.

48. Camargo-Ramos CM, Correa-Bautista JE, Correa-Rodríguez M, Ramírez-Vélez R. Dietary inflammatory index and cardiometabolic risk parameters in overweight and sedentary subjects. Int J Environ Res Public Health. 2017;14:1104.

49. Cantero I, Abeite I, Babio N, Arós F, Corella D, Estruch R, et al. Dietary Inflammatory Index and liver status in subjects with different adiposity levels within the PREDIMED trial. Clin Nutr. 2017;37:1736–43.

50. Tabung FK, Smith-Warner SA, Chavarro JE, Fung TT, Hu FB, Willett WC, et al. An empirical dietary inflammatory pattern score enhances prediction of circulatory inflammatory biomarkers in dwarfs. J Nutr. 2017;147:1567–77.

51. Deng FE, Shivappa N, Tang Y, Mann JR, Hébert JR. Association between diet-related inflammation, all-cause, all-cancer, and cardiovascular disease mortality, with special focus on prediabetics: findings from NHANES III. Eur J Nutr. 2017;56:1085–93.

52. Neufcourt L, Assmann KE, Fezeu LK, Touvier M, Graffouillère L, Shivappa N, et al. Longitudinal 10-year changes in dietary intake and associations with the inflammatory potential of diet, aging, and anthropometric measurements in a cross-sectional study in Pakistan. Nutr Healthy Aging. 2018;4:335–43.

53. O’Neil A, Shivappa N, Jacka FN, Kotowicz MA, Kibbey K, Hebert JR, et al. Dietary inflammatory index and metabolic syndrome in the general Korean population. Nutrients. 2018;10:648.

54. Correa-Rodríguez M, González-Jiménez E, Rueda-Medina B, Tovar-VELÁZquez MI, Ramírez-Vélez R, Correa-Bautista JE, et al. Dietary inflammatory index and cardiovascular risk factors in Spanish children and adolescents. Res Nurs Health. 2018;41:448–58.

55. Mazidi M, Shivappa N, Wirth MD, Hebert JR, Mikhailidis DP, Kengne AP, et al. Dietary inflammatory index and cardiometabolic risk in US adults. Atherosclerosis. 2018;276:23–7.

56. Mirmajdi S, Izadi A, Saghiha-Asl M, Vahid F, Karamzad N, Amini P, et al. Inflammatory potential of diet: association with chemerin, omentin, lipopolysaccharide-binding protein, and insulin resistance in the apparently healthy obese. J Am Coll Nutr. 2019;38:302–10.

57. San KMM, Fahmida U, Wijaksmono F, Lin H, Zaw KK, Htet MK. Chronologic low grade inflammation measured by dietary inflammatory index and its association with obesity among school teachers in Yangon. Myanmar Asia Pac J Clin Nutr. 2018;27:92.

58. Nikniaz L, Nikniaz Z, Shivappa N, Hébert JR. The association between dietary inflammatory index and metabolic syndrome components in Iranian adults. Prim Care Diabetes. 2018;12:467–72.

59. Shivappa N, Hébert JR, Akhoundan M, Mirmiran P, Rashidkhani B. Association between inflammatory potential of diet and odds of gestational diabetes mellitus among Iranian women. J Maternal-Fetal Neonatal Med. 2019;32:3552–8.

60. Park S, Na W, Sohn C. Relationship between osteosarcopenic obesity and dietary inflammatory index in postmenopausal Korean women: 2009 to 2011 Korea National Health and Nutrition Examination Surveys. J Clin Biochem Nutr. 2018;63:211–6.

61. Ren Z, Zhao A, Wang J, Meng L, Saito I, Li T, et al. Association between dietary inflammatory index, C-reactive protein and metabolic syndrome: a cross-sectional study. Nutrients. 2018;10:831.

62. Hodge AM, Basset J, Duguid P, Shivappa N, Hébert JR, Milne R, et al. Dietary inflammatory index or Mediterranean diet score as risk factors for total and cardiovascular mortality. Nutr Metab Cardiovasc Dis. 2018;28:461–9.

63. Park YMM, Choi MK, Lee SS, Shivappa N, Han K, Steck SE, et al. Dietary inflammatory potential and risk of mortality in metabolically healthy and unhealthy phenotypes among overweight and obese adults. Clin Nutr. 2019;38:682–8.

64. Park S-Y, Kang M, Wilkens L, Shvetsov Y, Harmon B, Shivappa N, et al. The Dietary inflammatory index and all-cause, cardiovascular disease, and cancer mortality in the multietnic cohort study. Nutrients. 2018;10:1844.

65. Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420:860–7.

66. Festa A, D’Agostino R, Howard G, Mykkanen L, Tracy RP, Haffner SM. Chronic subclinical inflammation as part of the insulin resistance
syndrome the Insulin Resistance Atherosclerosis Study (IRAS). Circulation. 2000;10:42–7.
82. Ridker PM, Cushman M, Stampfer MJ, Tracy RP, Hennekens CH. Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. N Engl J Med. 1997;336:973–9.
83. Shacter E, Weitzman SA. Chronic inflammation and cancer. Oncology. 2002;2002(16):217–32.
84. Wang X, Bao W, Liu J, et al. (2013) Inflammatory markers and risk of type 2 diabetes a systematic review and meta-analysis. Diabetes Care. 2013;36:166–75.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.