Abstract

We give a unified analysis of four-dimensional elliptic models with $\mathcal{N} = 2$ supersymmetry and a simple gauge group, and their relation to M-theory. Explicit calculations of the Seiberg-Witten curves and the resulting one-instanton prepotential are presented. The remarkable regularities that emerge are emphasized. In addition, we calculate the prepotential in the Coulomb phase of the (asymptotically-free) $\text{Sp}(2N)$ gauge theory with N_f fundamental hypermultiplets of arbitrary mass.
1. Introduction

The study of $\mathcal{N} = 2$ supersymmetric gauge theories using the Seiberg-Witten (SW) approach \[1\] to the low energy effective action is now more than five years old. During this period the theory has undergone considerable development, from a variety of approaches. One of the intriguing aspects of SW theory is the connection to integrable models, where M-theory \[2\] provides one method of constructing the spectral curves of elliptic models. (Another technique is geometric engineering \[3\].) Even though this aspect of elliptic models has been extensively studied \[4\]–\[7\], there remain a number of open questions of some importance for these theories. In particular, except in certain special cases, the bridge between the spectral curve of the elliptic model and the corresponding curve obtained from an M-theory picture is still absent. This is one of the issues we consider in this paper, with considerable progress, but not a complete resolution of all the issues.

One motivation for understanding the connection between the spectral curve and M-theory picture is to present the instanton expansion of the prepotential F for the theory in question. As explained in our previous papers in this series \[8\]–\[13\], this will provide tests of M-theory by means of comparison between our results for $F_{\text{instanton}}$ with the analogous instanton prepotential obtained from the microscopic Lagrangian\[14\]–\[15\].

The breakthrough of Seiberg and Witten \[1\] was their formulation of the exact solution of 4-dimensional $\mathcal{N} = 2$ supersymmetric gauge theories in terms of a low-energy (Wilsonian) effective action accurate to two derivatives of the fields,

$$L_{\text{eff}} = \frac{1}{4\pi} \text{Im} \left(\int d^4\theta \frac{\partial F(A)}{\partial A_i} \tilde{A}_i + \frac{1}{2} \int d^2\theta \frac{\partial^2 F(A)}{\partial A_i \partial A_j} W_{i \alpha} W_{\alpha,j} \right) + \text{higher derivatives}, \quad (1.1)$$

\[5\] Slater \[15\] has calculated $F_{1-\text{inst}}$ for $\mathcal{N} = 2$ SU(N) gauge theory with one symmetric hypermultiplet and N_f fundamental hypermultiplets using the microscopic Lagrangian. His result is in agreement with the predictions of refs. \[8\]–\[11\] obtained using the M-theory curve of ref. \[16\]. This provides the first independent check of the predictions obtained using hyperelliptic perturbation theory \[8\].
where A^i are $\mathcal{N} = 1$ chiral superfields ($i = 1$ to rank \mathcal{G}), $\mathcal{F}(A)$ is the holomorphic prepotential, and W^i is the gauge field strength. The holomorphic prepotential can be expressed in terms of a perturbative piece and an infinite series of instanton contributions

$$
\mathcal{F}(A) = \mathcal{F}_{\text{classical}}(A) + \mathcal{F}_{\text{1-loop}}(A) + \sum_{d=1}^{\infty} L^{2d} \mathcal{F}_{d\text{-inst}}(A),
$$

where $L^2 = \Lambda I(\mathcal{G}) - \sum_R I(R)$ with Λ the quantum scale (Wilson cutoff), $I(\mathcal{G})$ the Dynkin index of the adjoint representation, and $I(R)$ the Dynkin index of a matter hypermultiplet in representation R. The one-loop contribution is given by perturbation theory

$$
\mathcal{F}_{\text{1-loop}}(a) = \frac{i}{4\pi} \sum_{\alpha \in \Delta_+} (a \cdot \alpha)^2 \log \left(\frac{a \cdot \alpha}{\Lambda} \right)^2
- \frac{i}{8\pi} \sum_j \sum_{w \in R_j} (a \cdot w + m_j)^2 \log \left(\frac{a \cdot w + m_j}{\Lambda} \right)^2,
$$

where α ranges over the positive roots Δ_+ of \mathcal{G}, w runs over the weight vectors for a hypermultiplet with mass m_j in the representation R_j, and a_i parametrizes the Cartan subalgebra of \mathcal{G}.

For models with zero beta function, the instanton expansion is in powers of q rather than Λ, where $q = e^{2\pi i \tau}$ with τ the coupling constant of the theory.

In order to compute the prepotential (1.2) using the Seiberg-Witten approach (for a recent review, see [17]), one requires:

1. A suitable Riemann surface or algebraic curve, appropriate to the gauge group and matter content of the theory, dependent on gauge invariant moduli u_i (equivalently on the order parameters a_i) and the masses of the hypermultiplets.

2. A preferred meromorphic 1-form λ, the SW differential.

3. A canonical basis of homology cycles (A_k, B_k) on the surface.

These data allow the computation of period integrals

$$
2\pi i a_k = \oint_{A_k} \lambda, \quad 2\pi i a_{D,k} = \oint_{B_k} \lambda,
$$

from which one may compute $\mathcal{F}(a)$ by integrating $a_{D,k} = \frac{\delta \mathcal{F}(a)}{\delta a_k}$.

2
In this paper we will discuss the SW theory for all simple classical groups G, with matter hypermultiplets in the asymptotically free Coulomb phase, or in the Coulomb phase with zero beta function. The discussion will be comprehensive in the sense that we will consider all generic cases (i.e. of arbitrary rank G) for such models. The SW curves for these models fall into three classes:

(a) hyperelliptic curves \cite{18, 19},
(b) cubic (non-hyperelliptic) curves \cite{16} and

(c) curves of infinite order.

Our focus in this paper will be primarily on the last class of curves which correspond to decompactified elliptic models. The M-theory pictures for elliptic models for theories with vanishing beta function were given by Uranga \cite{5}; those with simple classical groups are:

1. SU(N) with two antisymmetric hypermultiplets and four fundamental hypermultiplets,
2. SU(N) with an antisymmetric and a symmetric hypermultiplet,
3. SU(N) with an adjoint hypermultiplet,
4. SO(N) with an adjoint hypermultiplet,
5. Sp(2N) with an adjoint hypermultiplet, and
6. Sp(2N) with an antisymmetric hypermultiplet and four fundamental hypermultiplets.

We will explicitly write down the curves (leading-order terms only) for these models, and the resulting one-instanton prepotential. By sending the masses of some of the fundamental hypermultiplets to infinity, we recover the curves for some additional models in the Coulomb phase which also possess curves of infinite order.

A number of methods exist for extracting the instanton expansion from hyperelliptic curves, with the method of asymptotic expansion \cite{21}–\cite{24} being the most useful for our purposes. In refs. \cite{8}–\cite{12}, we have extended these ideas to cases (b) and (c), developing methods for obtaining

\footnote{The curve for SU(N) + one antisymmetric representation was recently derived from an integrable model \cite{20}.}
the instanton expansion for non-hyperelliptic SW curves, of finite or infinite order. In this body
of work, the order parameter \(a_k \) emerges as the natural variable for describing the instanton
expansion, rather than the gauge invariant moduli. See ref. 13 for a review and more details.

In section 2, we discuss \(\text{Sp}(2N) \) gauge theory with \(N_f \) fundamental hypermultiplets of ar-
bitrary masses, resolving some issues that were left open by previous work 22. In section 3,
we assemble the results for the one-instanton prepotential for models with different groups and
matter content, observing a remarkable empirical regularity among the different cases. In sec-
tion 4, we summarize the M-theory pictures for the decompactified elliptic models, from which
we obtain the leading-order terms (defined in sec. 4) of the coefficient functions of the SW curves,
using the geometry of NS 5-branes, D4-branes, and O6\(^{\pm}\) orientifold planes. How to compute
subleading terms in elliptic models or their decompactification is one of the open problems of this
subject. Using these leading-order curves, we compute the one-instanton prepotential for each
theory. In section 5, we show that the SW curve obtained by Gukov and Kapustin 3 for \(SU(N) \)
with two antisymmetric hypermultiplets (with equal masses) and four fundamental hypermulti-
plets, and the curve obtained by Uranga 3 for \(SU(N) \) with an antisymmetric and a symmetric
hypermultiplet (with equal masses), are equivalent, after a change of variables, to the curves for
those theories derived in this paper, giving dramatic confirmation of our methods. Section 6 is
devoted to a consideration of \(SU(N) \) gauge theory with a massive adjoint hypermultiplet. We
explicitly exhibit the relation between the curve derived in this paper, the spectral curve derived
from the Calogero-Moser model by D’Hoker and Phong 24, and the curve derived by Donagi
and Witten 4 in the context of the integrable Hitchin system. We close with conclusions and
comments on open problems in section 7.
2. \(\text{Sp}(2N) + N_f \) fundamentals

Although this paper primarily concerns elliptic models, we include this section on \(\text{Sp}(2N) \) gauge theory with \(N_f \) fundamental hypermultiplets for completeness, even though the SW curve is hyperelliptic. There are some unresolved issues when all the hypermultiplets in the fundamental representation have non-zero masses \[22\], and we take the opportunity to clarify these, particularly as the results are needed to complete our tables.

The SW curve for \(\text{Sp}(2N) \) gauge theory with \(N_f < 2N+2 \) hypermultiplets in the fundamental representation is \[13, 24\]

\[
y^2 + 2y \left[x^2 \prod_{i=1}^{N} (x^2 - e_i^2) + i^{N_f} L^2 \prod_{j=1}^{N_f} M_j \right] + L^4 \prod_{j=1}^{N_f} (x^2 - M_j^2) = 0, \tag{2.1}
\]

where \(L^2 = \Lambda^{2N+2-N_f} \). Writing the curve \eqref{2.1} as

\[
y^2 + 2A y + B = 0, \tag{2.2}
\]

the SW differential is

\[
\lambda = \frac{(A' \pi - B' y)}{\sqrt{1 - B/A^2}} \, dx. \tag{2.3}
\]

Because of the \(x \to -x \) symmetry, and since the genus of the curve \eqref{2.1} exceeds the rank of the group (and hence the number of independent moduli), not all period integrals are relevant for the SW problem.

The period integral is \[22\]

\[
2\pi i a_k = 2 \int_{x_k^-}^{x_k^+} \lambda, \tag{2.4}
\]

as the \(A_k \) cycles are taken to surround the cut joining the two branch-points \(x_k^\pm \). The branch-cuts surrounding \(x = e_k \) go from \(x_k^- \) to \(x_k^+ \), and about \(x = -e_k \) from \(-x_k^- \) to \(-x_k^+ \). The \(B_k \) cycle for the dual period is chosen to go from \(-x_k^- \) to \(x_k^- \) on the first sheet, and its counterpart on the second sheet. The dual period is given by \[22\]

\[
2\pi i a_{D,k} = 2 \int_{-x_k^-}^{x_k^-} \lambda. \tag{2.5}
\]
The relevant branch-points are located at

\[x^\pm_k = e_k \pm L^2 [S_k(x^\pm_k)]^{1/2} - L^2 R_k(x^\pm_k) + \mathcal{O}(L^4), \]

where

\[S_k(x) = \frac{\prod_{j=1}^{N_f} (x^2 - M_j^2)}{x^4 (x + a_k)^2 \prod_{i \neq k} (x^2 - a_i^2)^2}, \]

and

\[R_k(x) = \frac{i^{N_f} \prod_{j=1}^{N_f} M_j}{x^2 (x + a_k) \prod_{i \neq k} (x^2 - a_i^2)}. \]

The periods and dual periods are computed by asymptotic expansion, as in refs. \[21, 24\]. The period integral (2.4) yields

\[a_k = e_k - L^2 R_k(e_k) + L^4 \left(\frac{1}{2} \partial_k S_k(e_k) + \frac{1}{2} \partial_k [R_k(e_k)]^2 \right) + \mathcal{O}(L^6). \]

Equation (2.9) differs from the periods for SU(\(N\)) \[21\] in that for Sp(2\(N\)) \(S_k(a_k)\) does not contribute to order \(L^2\) (1-instanton). It will contribute to order \(L^4\) (2-instanton), as is already clear from eq. (2.6) and will be explicitly shown below. To one-instanton accuracy, the dual periods are given by

\[2\pi i a_{D,k} = 2\pi i (a_{D,k})_{\text{classical}} + 2\pi i (a_{D,k})_{\text{1-loop}} - \frac{8L^2}{a_k} \sum_{i=1}^{N} a_i R_i(a_i) + \mathcal{O}(L^4). \]

In order to integrate eq. (2.10) to obtain the one-instanton prepotential, define the analytic function

\[F(x) = \frac{i^{N_f} \prod_{j=1}^{N_f} M_j}{x \prod_{i=1}^{N} (x^2 - a_i^2)}. \]

The sum of its residues vanishes, yielding

\[2 \sum_{i=1}^{N} a_i R_i(a_i) + \frac{i^{N_f} \prod_{j=1}^{N_f} M_j}{\prod_{i=1}^{N} (-a_i^2)} = 0. \]
With the definition

\[
S(x) = \frac{\prod_{j=1}^{N_f} (x^2 - M_j^2)}{x^4 \prod_{j=1}^{N_f} (x^2 - a_j^2)^2} = \frac{\tilde{S}_0(x)}{x^4},
\]

(2.13)

the identity (2.12) becomes

\[
2 \sum_{i=1}^{N} a_i R_i(a_i) + [\tilde{S}_0(0)]^{1/2} = 0.
\]

(2.14)

Since

\[
2 [\tilde{S}_0(0)]^{1/2} = -\frac{\partial}{\partial a_k} [\tilde{S}_0(0)]^{1/2},
\]

(2.15)

eq. (2.10) may be rewritten

\[
2\pi i a_{D,k} = 2\pi i (a_{D,k})_{\text{classical}} + 2\pi i (a_{D,k})_{\text{1-loop}} - 2L^2 \frac{\partial}{\partial a_k} [\tilde{S}_0(0)]^{1/2} + O(L^4),
\]

(2.16)

which can be integrated to give

\[
2\pi i F_{1-\text{inst}} = -2 [\tilde{S}_0(0)]^{1/2},
\]

(2.17)

with

\[
[\tilde{S}_0(0)]^{1/2} = i^{N_f} \frac{\prod_{j=1}^{N_f} M_j}{\prod_{i=1}^{N_f} (-a_i^2)}.
\]

(2.18)

This result is entered in Table 2. A similar derivation applies to Sp(2N) + adjoint (the corresponding curve is given in sec. 4.6), and to Sp(2N) + 1 anti. + Nf fund. (see sec. 4.7). The corresponding results are given in Table 2, with the relevant \(S(x)\) given in Table 1.

We can make several checks of our expressions (2.17) and (2.18). First of all, for pure Sp(2N) gauge theory, we have

\[
2\pi i F_{1-\text{inst}} = -2(-1)^N \frac{1}{\prod_{i=1}^{N_f} a_i^2},
\]

(2.19)

which agrees with the results of Masuda and Suzuki, and Ito and Sasakura [25] up to an overall constant, which can be reabsorbed with a redefinition of \(\Lambda\).
Next, we can compare our one-instanton prediction for $\text{Sp}(4)$ without matter hypermultiplets with the one-instanton result for $\text{SO}(5)$ without matter hypermultiplets as given by [22, 25]. The order parameters a_i of $\text{Sp}(4)$ are related to the order parameters d_i of $\text{SO}(5)$ by the change of variables

$$a_1 = (d_1 + d_2)/2, \quad a_2 = (d_1 - d_2)/2. \quad (2.20)$$

Inserting eq. (2.20) into eq. (2.19) we find again perfect agreement (up to an overall constant).

We can also compare our result (2.17) for $\text{Sp}(2 + N_f)$ fundamental hypermultiplets with that for $\text{SU}(2 + N_f)$ fundamentals as given for example in ref. [21]:

$$F_{1-\text{inst}} = \begin{cases} \frac{\Lambda_0^4}{8\pi}, & \text{for } N_f = 0, \\ \frac{\Lambda_0^3}{8\pi} M_1, & \text{for } N_f = 1, \\ \frac{\Lambda_0^2}{8\pi} [a^2 + M_1 M_2], & \text{for } N_f = 2, \\ \frac{\Lambda_0}{8\pi} [a^2 (M_1 + M_2 + M_3) + M_1 M_2 M_3], & \text{for } N_f = 3. \end{cases} \quad (2.21)$$

Again, we find agreement up to a multiplicative constant, and a moduli-independent additive term.

At first glance, it appears that our result disagrees with the result for $\text{Sp}(2N)$ with N_f fundamental hypermultiplets given in ref. [22]. In ref. [22], however, at least two of the fundamental hypermultiplets had vanishing masses. In that case, eq. (2.18) yields $[\bar{S}_0(0)]^{1/2} = 0$, and hence $F_{1-\text{inst}} = 0$ from eq. (2.17). Thus, for the particular case of $\text{Sp}(2N)$ with at least two massless fundamental hypermultiplets, the first non-trivial contribution to the instanton prepotential is $F_{2-\text{inst}}$.

To make contact with the results in ref. [21], we calculate the two-instanton contribution to the prepotential following the method of ref. [21]. The result is

$$2\pi i F_{2-\text{inst}} = \sum_{k=1}^N S_k(a_k) + \frac{1}{4} \left(\frac{\partial^2 \bar{S}_0}{\partial x^2} \right)_{x=0}. \quad (2.22)$$
Note that $S_k(a_k)$ contributes to two instantons (as it depends on L^4), as we had anticipated. Further, from eq. (2.13), one may verify that $\frac{\partial^2 S_0}{\partial x^2}(0) = 0$ when two or more of the hypermultiplets are massless, so the only contribution to the two-instanton prepotential will be the first term in eq. (2.22), in complete agreement with [22].

For generic values of the masses of the matter hypermultiplets, we can check our two-instanton result for Sp(2) against the two-instanton result for SU(2), given by the expressions [21]:

\[
2\pi i F_{2-\text{inst}} = \begin{cases}
\frac{5a_0^8}{2\pi^2}, & \text{for } N_f = 0, \\
\frac{A^6}{2\pi^2} \left[5M_1^2 - 3a^2 \right], & \text{for } N_f = 1, \\
\frac{A^4}{2\pi^2} \left[a^4 - 3a^2(M_1^2 + M_2^2) + 5M_1^2M_2^2 \right], & \text{for } N_f = 2, \\
\frac{A^2}{2\pi^2} \left[a^6 + a^4(M_1^2 + M_2^2 + M_3^2) \\
-3a^2(M_1^2M_2^2 + M_2^2M_3^2 + M_3^2M_1^2) + 5M_1^2M_2^2M_3^2 \right], & \text{for } N_f = 3.
\end{cases}
\] (2.23)

Our results (2.22) agree with eq. (2.23) up to an overall constant. (For $N_f = 3$ there is a moduli-independent additive constant as well.)

Finally, we can compare our two-instanton prediction (2.22) for Sp(4) without matter hypermultiplets with the two-instanton result for SO(5) obtained using the method of ref. [26]. Using the change of variables (2.20) we again find agreement.

3. Universality

By examining $F_{1-\text{inst}}$ obtained for all generic cases of classical groups in the Coulomb phase, apparently, there is a misprint in eq. (3.9) for the two-instanton prepotential for SO(N) in ref. [22]. The correct expression appears to be

\[
F_{2-\text{inst}} \propto \sum_{k \neq l}^N \frac{S_k(a_k)S_l(a_l)}{(a_k - a_l)^2} + \sum_{k,l}^N \frac{S_k(a_k)S_l(a_l)}{(a_k + a_l)^2} + \frac{1}{4} \sum_{k=1}^N S_k(a_k) \left. \frac{\partial^2 S_k(x)}{\partial x^2} \right|_{x=a_k}. \tag{2.24}
\]
one finds that the results may be summarized succinctly in terms of a master function $S(x)$ for each case, as we have emphasized previously \cite{12, 13}. These functions are collected for each theory in Table 1. (The new results in this table are from sections 2 and 4 of this paper.)

Hypermultiplet Representations	$S(x)$
$\text{SU}(N) + N_f \text{fund.} \ (M_j)$	\(\prod_{i=1}^{N_f} (x+M_j) \prod_{i=1}^{N} (x-a_i)^2\)
\((N_f \leq 2N)\)	(ref. \cite{21})
$\text{SU}(N) + 1 \text{ sym.} \ (m) + N_f \text{ fund.} \ (M_j)$	\((-1)^N \prod_{i=1}^{N_f} (x+a_i+m) \prod_{i=1}^{N_f} (x+M_j)\) \(\prod_{i=1}^{N} (x-a_i)^2\)
\((N_f \leq N - 2)\)	(ref. \cite{9, 10})
$\text{SU}(N) + 1 \text{ anti.} \ (m) + N_f \text{ fund.} \ (M_j)$	\((-1)^N \prod_{i=1}^{N_f} (x+a_i+m) \prod_{i=1}^{N_f} (x+M_j)\) \(\prod_{i=1}^{N} (x-a_i)^2\)
\((N_f \leq N + 2)\)	(ref. \cite{8, 10})
$\text{SU}(N) + 2 \text{ anti.} \ (m_1, m_2) + N_f \text{ fund.} \ (M_j)$	\(\prod_{i=1}^{N_f} (x+a_i+m_1) \prod_{i=1}^{N_f} (x+a_i+m_2) \prod_{i=1}^{N_f} (x+M_j)\) \(\prod_{i=1}^{N} (x-a_i)^2\)
\((N_f \leq 4)\)	(ref. \cite{12})
$\text{SU}(N) + 1 \text{ anti.} \ (m_1) + 1 \text{ sym.} \ (m_2)$	\((x+\frac{1}{2} m_2)^2 \prod_{i=1}^{N_f} (x+a_i+m_1) \prod_{i=1}^{N_f} (x+a_i+m_2)\) \(\prod_{i=1}^{N} (x-a_i)^2\)
$\text{SU}(N) + \text{adjoint}$	\(\prod_{i=1}^{N_f} (x-a_i)^2 - m^2 \prod_{i=1}^{N} (x-a_i)^2\)
(ref. \cite{24})	

Table 1
Hypermultiplet Representations	$S(x)$
$SO(2N) + N_f$ fund. $(N_f \leq 2N-2)$ (ref. [23])	$\frac{x^4 \prod_{j=1}^{N_f} (x^2 - M_j^2)}{\prod_{i=1}^{N} (x^2 - a_i^2)^2}$
$SO(2N) +$ adjoint	$\frac{x^4 \prod_{j=1}^{N} [(x-m)^2 - a_i^2] \prod_{i=1}^{N_x} [(x+m)^2 - a_i^2]}{(x+\frac{1}{2}m)^2(x+\frac{1}{2}m)^2 \prod_{i=1}^{N} (x^2 - a_i^2)^2}$
$SO(2N+1) + N_f$ fund. $(N_f \leq 2N-1)$ (ref. [23])	$\frac{x^2 \prod_{j=1}^{N_f} (x^2 - M_j^2)}{\prod_{i=1}^{N} (x^2 - a_i^2)^2}$
$SO(2N+1) +$ adjoint	$\frac{x^2 (x+m)(x-m) \prod_{j=1}^{N} [(x-m)^2 - a_i^2] \prod_{i=1}^{N} [(x+m)^2 - a_i^2]}{(x+\frac{1}{2}m)^2(x+\frac{1}{2}m)^2 \prod_{i=1}^{N} (x^2 - a_i^2)^2}$
$Sp(2N) + N_f$ fund. $(N_f \leq 2N+2)$	$\frac{x^4 \prod_{j=1}^{N_f} (x^2 - M_j^2)}{\prod_{i=1}^{N} (x^2 - a_i^2)^2}$
$Sp(2N) +$ adjoint	$\frac{(x+\frac{1}{2}m)^2(x-\frac{1}{2}m)^2 \prod_{j=1}^{N} [(x-m)^2 - a_i^2] \prod_{i=1}^{N} [(x+m)^2 - a_i^2]}{x^4 \prod_{i=1}^{N} (x^2 - a_i^2)^2}$
$Sp(2N) + 1$ anti. $+ N_f$ fund. $(N_f \leq 4)$	$\frac{\prod_{j=1}^{N} [(x-m)^2 - a_i^2] \prod_{i=1}^{N} [(x+m)^2 - a_i^2] \prod_{i=1}^{N} [(x^2 - M_j^2)]}{x^4 (x+\frac{1}{2}m)^2(x+\frac{1}{2}m)^2 \prod_{i=1}^{N} (x^2 - a_i^2)^2}$

Table 1: (Continuation).
Given $S(x)$, one defines residue functions $S_k(x)$ and $S_m(x)$ at the quadratic poles of $S(x)$ by

$$S(x) = \frac{S_k(x)}{(x-a_k)^2} = \frac{S_m(x)}{(x+\frac{1}{2}m)^2}. \quad (3.1)$$

If $S(x)$ has a quartic pole at $x = 0$, one defines

$$S(x) = \frac{\bar{S}_0(x)}{x^4}. \quad (3.2)$$

In many cases \cite{9, 10, 21, 22, 24}, the one-instanton prepotential is given by

$$2\pi i F_{1-\text{inst}} = \sum_{k=1}^{N} S_k(a_k), \quad (3.3)$$

while for models containing one antisymmetric representation of SU(N) \cite{8, 10} or the adjoint representation of SO(N), the one-instanton prepotential is

$$2\pi i F_{1-\text{inst}} = \sum_{k=1}^{N} S_k(a_k) - 2S_m(-\frac{1}{2}m), \quad (3.4)$$

and for models containing two antisymmetric representations of SU(N) \cite{12}, it is

$$2\pi i F_{1-\text{inst}} = \sum_{k=1}^{N} S_k(a_k) - 2S_{m_1}(-\frac{1}{2}m_1) - 2S_{m_2}(-\frac{1}{2}m_2). \quad (3.5)$$

Finally for Sp(2N) with various matter content, the one-instanton prepotential is

$$2\pi i F_{1-\text{inst}} = -2[\bar{S}_0(0)]^{1/2}. \quad (3.6)$$

These results are summarized in Table 2.
\[2\pi i F_{1-\text{inst}} = \sum_{k=1}^{N} S_k(a_k) \]

Group	Matter content
SU(N)	
	\(N_f \) fund. (\(N_f \leq 2N \))
	1 sym. + \(N_f \) fund. (\(N_f \leq N - 2 \))
	adjoint
SO(2N)	\(N_f \) fund. (\(N_f \leq 2N - 2 \))
SO(2N + 1)	\(N_f \) fund. (\(N_f \leq 2N - 1 \))

\[2\pi i F_{1-\text{inst}} = \sum_{k=1}^{N} S_k(a_k) - 2S_{m_1}(\frac{-1}{2}m_1) \]

Group	Matter content
SU(N)	
	1 anti. (\(m_1 \)) + \(N_f \) fund. (\(N_f \leq N + 2 \))
	1 anti. (\(m_1 \)) + 1 sym. (\(m_2 \))
SO(2N)	adjoint (\(m_1 \))
SO(2N + 1)	adjoint (\(m_1 \))

\[2\pi i F_{1-\text{inst}} = \sum_{k=1}^{N} S_k(a_k) - 2S_{m_1}(\frac{-1}{2}m_1) - 2S_{m_2}(\frac{-1}{2}m_2) \]

Group	Matter content
SU(N)	
	2 anti. (\(m_1, m_2 \)) + \(N_f \) fund. (\(N_f \leq 4 \))

\[2\pi i F_{1-\text{inst}} = -2[\tilde{S}_0(0)]^{1/2} \]

Group	Matter content
Sp(2N)	
	\(N_f \) fund. (\(N_f \leq 2N + 2 \))
	adjoint
	1 anti. + \(N_f \) fund. (\(N_f \leq 4 \))

Table 2: \(F_{1-\text{inst}} \) for different groups and matter content.
Group	Representation	Factor of $S(x)$
SU(N)	gauge multiplet	$\prod_{i=1}^{N} \frac{1}{(x-a_i)^2}$
	N_f fundamental (M_j)	$\prod_{j=1}^{N_f} (x + M_j)$
	symmetric (m)	$(−1)^N (x + \frac{1}{2} m)\prod_{i=1}^{N} (x + a_i + m)$
	antisymmetric (m)	$(−1)^N (x + \frac{1}{2} m)^{-2} \prod_{i=1}^{N} (x + a_i + m)$
	adjoint (m)	$\prod_{i=1}^{N} [(x - a_i)^2 - m^2]$
SO($2N$)	gauge multiplet	$\prod_{i=1}^{N} \frac{x^4}{(x^2-a_i^2)^2}$
	N_f fundamental (M_j)	$\prod_{j=1}^{N_f} (x^2 - M_j^2)$
	adjoint (m)	$\prod_{i=1}^{N} [(x+m)^2-a_i^2] \prod_{i=1}^{N} [(x-m)^2-a_i^2]$
		$(x+m)^2(x-m) \prod_{i=1}^{N} [(x+m)^2-a_i^2] \prod_{i=1}^{N} [(x-m)^2-a_i^2]$
		$(x+m)^2(x-m) \prod_{i=1}^{N} [(x+m)^2-a_i^2] \prod_{i=1}^{N} [(x-m)^2-a_i^2]$
SO($2N+1$)	gauge multiplet	$\prod_{i=1}^{N} \frac{x^2}{(x^2-a_i^2)^2}$
	N_f fundamental (M_j)	$\prod_{j=1}^{N_f} (x^2 - M_j^2)$
	adjoint (m)	$\prod_{i=1}^{N} [(x+m)^2-a_i^2] \prod_{i=1}^{N} [(x-m)^2-a_i^2]$
		$(x+m)^2(x-m) \prod_{i=1}^{N} [(x+m)^2-a_i^2] \prod_{i=1}^{N} [(x-m)^2-a_i^2]$
		$(x+m)^2(x-m) \prod_{i=1}^{N} [(x+m)^2-a_i^2] \prod_{i=1}^{N} [(x-m)^2-a_i^2]$
Sp($2N$)	gauge multiplet	$\prod_{i=1}^{N} \frac{1}{(x^2-a_i^2)^2}$
	N_f fundamental (M_j)	$\prod_{j=1}^{N_f} (x^2 - M_j^2)$
	adjoint (m)	$(x + \frac{1}{2} m)^2(x - \frac{1}{2} m)^2 \prod_{i=1}^{N} [(x + m)^2 - a_i^2] \prod_{i=1}^{N} [(x - m)^2 - a_i^2]$
	antisymmetric (m)	$\prod_{i=1}^{N} [(x+m)^2-a_i^2] \prod_{i=1}^{N} [(x-m)^2-a_i^2] \prod_{i=1}^{N} [(x+m)^2-a_i^2] \prod_{i=1}^{N} [(x-m)^2-a_i^2]$

Table 3: Factors of $S(x)$.

Page 14
An examination of Table 1 leads to empirical rules for constructing $S(x)$, where $S(x)$ is given as the product of factors, each corresponding to a different $\mathcal{N} = 2$ multiplet in a given representation of a classical group. These rules for the factors that make up $S(x)$ are given in Table 3, which contains some new results, obtained in secs. 2 and 4 of this paper.

By examining Table 3, one observes that certain pairs of (mass-deformed) elliptic models

Table 4: Table of equivalences (from $S(x)$).

(m, m)	$(m, m) + (\frac{1}{2}m, \frac{1}{2}m, \frac{1}{2}m, \frac{1}{2}m)$
Valid for all moduli.	Also verified using elliptic curves (refs. [5] and [6]). See section 5.

(m)	$(m) + (0,0,0,0)$
Valid for all moduli.	Sp(2N) + 1 anti. + 4 fund.

(m)	$(m) + (\frac{1}{2}m, \frac{1}{2}m, \frac{1}{2}m, \frac{1}{2}m)$
Valid for all moduli.	Sp(2N) + 1 anti. + 4 fund.

$(m, -m)$ + $(0,0,0,0)$	$(M_1, M_2, -M_1, -M_2)$
Moduli: $a_1, a_2, \cdots, a_N, -a_1, -a_2, \cdots, -a_N$	Moduli: a_1, a_2, \cdots, a_N

$(m, -m)$ + $(M_1, M_2, -M_1, -M_2)$	$(m) + (M_1, M_2, 0, 0)$
Same relations for moduli as in the previous case.	
have identical $S(x)$, and therefore identical $\mathcal{F}_{\text{1-inst}}$, for suitable choices of mass parameters and moduli. These equivalences are presented in Table 4. In each of the cases, one may verify that $\mathcal{F}_{\text{1-loop}}$ is also identical for both sides. Finally, one can verify that the curves are identical on both sides of the first line of the table, and that the leading-order terms (see section 4) of the curves are identical on both sides of the remaining lines of the table. Since it is very plausible that $S(x)$ determines the complete instanton expansion for a theory, we claim that Table 4 likely represents pairs of theories with identical prepotentials.

4. Curves for decompactified elliptic models.

In secs. 4 and 5 of ref. [12], we reverse-engineered a curve for $\mathcal{N} = 2$ SU(N) gauge theory with two hypermultiplets in the antisymmetric representation and $N_f < 4$ hypermultiplets in the fundamental representation using the regularities of the function $S(x)$ observed in sec. 3 of this paper. This curve can be regarded as the decompactification of an elliptic model with zero beta function, having two hypermultiplets in the antisymmetric representation and four fundamental hypermultiplets, with the mass of one or more of the fundamental representations sent to infinity. The resulting SW curve remains of infinite order in this limit.

A number of $\mathcal{N} = 2$ theories with simple classical gauge groups can be understood as decompactifications of elliptic models. (By decompactification, we mean that the curve is formulated on the covering space of the circular base space of the elliptic model.) The M-theory description for these theories has been considered by Uranga [5], but only for those with zero beta function. The “basic cell” for these models (except for SU(N) with an adjoint hypermultiplet) contains two O6 planes (with the same or opposite charges depending on the group and matter content), together with one or two NS 5-branes, and a number of D4-branes and (possibly) D6-branes. (We use the language of Type IIA theory, which is then considered to be lifted to M-theory.)

8This has been previously observed for the third entry of the table in ref. [27].
most cases, no explicit curve, suitable for studying the instanton expansion, has been previously presented (except for SU(\(N\)) with a massive adjoint hypermultiplet, for which the prepotential was calculated in ref. [24]). In this section, we present curves and the resulting prepotentials for those theories obtained as decompactifications of the elliptic models discussed in [3].

The curve for a decompactified elliptic model has the form

\[\sum_{n=-\infty}^{\infty} L^{rn^2} J_n(x) P_n(x) t^n = 0, \]

(4.1)

where \(t = \exp[-(x_6 + ix_{10})/R] \), \(x = x_4 + ix_5 \), and \(r = 1 \) \((r = 2)\) if there are two \((\text{one})\) NS 5-branes per unit cell. The coefficient functions \(P_n(x) \) and \(J_n(x) \) themselves have \((\text{in principle})\) expansions in \(L \),

\[P_n(x) = P_n(x) \bigg|_{\text{leading}} + \mathcal{O}(L^2), \]

\[J_n(x) = J_n(x) \bigg|_{\text{leading}} + \mathcal{O}(L^2). \]

(4.2)

The leading-order terms in \(P_n(x) \) are determined by the positions of the D4-branes \((i.e., \text{moduli of the gauge theory})\) and the positions of the orientifold planes \((i.e., \text{masses of hypermultiplets in two-index representations of the gauge group})\), while the leading-order terms of \(J_n(x) \) are associated with the positions of the D6-branes \((i.e., \text{masses of fundamental representations})\), if present. We have not been able to uniquely determine the subleading terms in eq. (4.2).

The M-theory pictures corresponding to elliptic models with zero beta function are periodic in both the \(x_6 \) and \(x_{10} \) directions. If we let \(z \) parametrize the torus with the identifications \(z \equiv z + 2\omega_1 \equiv z + 2\omega_2 \), then \(t = e^{\beta z} \) with \(\beta = -i\pi/\omega_1 \). The shift \(z \rightarrow z + 2\omega_1 \) \((\text{or } t \rightarrow e^{-2\pi it})\) corresponds to a translation by \(2\pi R \) in the \(x_{10} \) direction. The shift \(z \rightarrow z + 2\omega_2 \) \((\text{or } t \rightarrow q^{-1}t)\), where \(q = e^{2\pi i\tau} \) and \(\tau = \omega_2/\omega_1 \), corresponds to a translation in the \(x_6 \) direction \((\text{accompanied by a translation in } x_{10} \text{ if } \text{Re } \tau \neq 0)\). The curves \([L.1]\) derived from these pictures would likewise be expected to be doubly periodic \((\text{up to a shift in } x)\). Periodicity in the \(x_{10} \) direction is automatic,
but periodicity in the x_6 direction requires that L be replaced by $q^{1/4}$, so (4.1) becomes
\[\sum_{n=-\infty}^{\infty} q^{rn^2/4} e^{\beta nz} J_n(x) P_n(x) = 0, \]
(4.3)
for theories with zero beta function. It further requires that $P_n(x)$ and $J_n(x)$ possess certain symmetry properties. If there are two NS 5-branes per unit cell (as is the case for the SU(N) theories with symmetric or antisymmetric hypermultiplets that we consider), then
\begin{align*}
P_{n+2\ell}(x) &= P_n(x - \ell \Delta), \\
J_{n+2\ell}(x) &= J_n(x - \ell \Delta),
\end{align*}
(4.4)
implies that the curves (4.1) and (4.3), with $r = 1$, are invariant under $t \to tL^{-4}$ (or $z \to z + 2\omega_2$) and $x \to x + \Delta$ (where Δ is the “global mass,” the relative mass of the two hypermultiplets in two-index representations of SU(N)). If there is only one NS 5-brane per unit cell (as in all the SO(N) and Sp(2N) theories that we consider, or the SU(N) theory with a massive adjoint hypermultiplet), then
\begin{align*}
P_{n+\ell}(x) &= P_n(x - \ell m), \\
J_{n+\ell}(x) &= J_n(x - \ell m),
\end{align*}
(4.5)
guarantees that the curves (4.1) and (4.3), with $r = 2$, are invariant under $t \to tL^{-4}$ (or $z \to z + 2\omega_2$) and $x \to x + m$ (where m is the global mass, the mass of the adjoint or antisymmetric hypermultiplet).

The factors in the leading terms of $P_n(x)$ and $J_n(x)$ correspond not only to the D4-branes which depend on the moduli, but also to the semi-infinite “non-dynamical” D4-branes associated with the O6 planes and D6-branes [3, 28]. The placement of these non-dynamical D4-branes is not unique, because they can extend either to the left or the right of the O6 plane or D6-brane. Different choices correspond precisely to different parametrizations of the curve $t \to t/G(x)$, where $G(x)$ is a rational function of x and positions of O6 planes and D6-branes.
The symmetries (4.4) or (4.5) will not be present unless the non-dynamical D4-branes are distributed symmetrically to the left and the right. In this paper, therefore, we will always choose a parametrization of the curves that respects these symmetries, so that the invariance of the curve under translations in x_6 (together with a shift in x) will be manifest.

To determine the prepotential to 1-instanton accuracy, it is sufficient \cite{11}–\cite{12} to consider only the quartic truncation of the curve (4.1)

$$L^4 J_2(x) P_2(x) t^2 + L' J_1(x) P_1(x) t + J_0(x) P_0(x) + L' J_{-1}(x) P_{-1}(x) \frac{1}{t} + L^4 J_{-2}(x) P_{-2}(x) \frac{1}{t^2} = 0.$$ \hspace{1cm} (4.6)

The prepotential for the decompactified elliptic models may then be obtained by calculating the period integrals a_k and $a_{D,k}$ from the curve (4.1), and then integrating $a_{D,k} = \partial \mathcal{F} / \partial a_k$.

Applying residue methods \cite{21} and hyperelliptic perturbation theory \cite{8}–\cite{12} to the quartic truncation (4.6), one obtains

$$\mathcal{F}(A) = \mathcal{F}_{\text{classical}}(A) + \mathcal{F}_{1-\text{loop}}(A) + L^{2r} \mathcal{F}_{1-\text{inst}}(A), \hspace{1cm} (4.7)$$

where $\mathcal{F}_{1-\text{inst}}(A)$ is given by eqs. (3.3), (3.4), (3.5), or (3.6). In each case, the function $S(x)$ is given by

$$S(x) = \frac{J_1(x) J_{-1}(x) P_1(x) P_{-1}(x)}{J_0^2(x) P_0^2(x)} \bigg|_{\text{leading}}, \hspace{1cm} (4.8)$$

where only the leading-order terms of $P_n(x)$ and $J_n(x)$ are used in defining $S(x)$. If there are no D6-branes in the model, the factors of $J_n(x)$ are absent in (4.8). The $O(L^{4r})$ terms in (4.6) are essential in obtaining the one-instanton prepotential, which involves a delicate cancellation \cite{8} between these terms and the subleading terms in $P_n(x)$. This cancellation places constraints on the form of these subleading terms, but does not necessarily uniquely determine them.

\footnote{For the Sp(N) theories, however, the one instanton prepotential is proportional to L^2, not L^{2r}.}
In the rest of this section, we present results for each of several models, giving in each case:

a) a figure containing the M-theory picture of the model;

b) the leading-order terms of the coefficient functions \(P_n(x) \) and \(J_n(x) \), i.e., those terms with the lowest power in \(L \) or \(q \) for a given \(n \);

c) the infinite curve for each model (with leading-order coefficients only);

d) the function \(S(x) \) calculated from each curve;

e) the one-instanton contribution to the prepotential;

f) various checks on the proposed curve and prepotential.
4.1. SU(N) + 2 antisymmetric + N_f fundamentals

Consider SU(N) gauge theory with two matter hypermultiplets (masses m_1 and m_2) in the antisymmetric representation, and N_f matter hypermultiplets (masses M_j) in the fundamental (defining) representation. The M-theory picture for this case, represented in Fig. 1, contains an infinite chain of NS 5-branes, with an O6^- plane coincident with each one. Between each pair of consecutive 5-branes there are N D4-branes and N_f D6-branes.

The curve for this theory is given by eq. (4.1), with $r = 1$. A particular parametrization for the functions $P_n(x)$ and $J_n(x)$ was given in ref. [12]. In this paper, as discussed above, we
choose a different parametrization, one in which the $P_n(x)$ and $J_n(x)$ have the symmetries

$$P_{n+2\ell}(x) = P_n(x - \ell \Delta),$$

$$J_{n+2\ell}(x) = J_n(x - \ell \Delta),$$

(4.1.1)

where $m = \frac{1}{2}(m_1 + m_2)$ and $\Delta = m_1 - m_2$. In this parametrization, the curve becomes

$$\sum_{n \text{ even}} L^n t^n J_0(x - \frac{1}{2}n \Delta) P_0(x - \frac{1}{2}n \Delta) + \sum_{n \text{ odd}} L^n t^n J_1(x - \frac{1}{2}(n-1) \Delta) P_1(x - \frac{1}{2}(n-1) \Delta) = 0,$$

(4.1.2)

with

$$J_0(x) = \prod_{j=1}^{N_f} \prod_{p=1}^{\infty} \left([x + \frac{1}{2}m + (-1)^p (M_j - \frac{1}{2}m) - \frac{1}{2}p \Delta][x + \frac{1}{2}m + (-1)^p (M_j - \frac{1}{2}m) + \frac{1}{2}p \Delta] \right)^{p/2},$$

(4.1.3)

and with the leading term (in L) of $P_0(x)$ given by

$$P_0(x) = \prod_{p=1}^{\infty} \left([x + \frac{1}{2}m + \frac{1}{2}(p - \frac{1}{2}) \Delta][x + \frac{1}{2}m - \frac{1}{2}(p - \frac{1}{2}) \Delta] \right)^{-2p} \prod_{i=1}^{N}(x - a_i).$$

(4.1.4)

Using the involution symmetry in the O6$^-$ plane at $x = -\frac{1}{2}m_2$, one obtains

$$P_1(x) = P_0(-x - m + \frac{1}{2}\Delta),$$

$$J_1(x) = J_0(-x - m + \frac{1}{2}\Delta).$$

(4.1.5)

For $N_f = 4$, the beta function vanishes, so the curve for this model is (4.3), with $r = 1$. When the masses of the hypermultiplets satisfy $m_1 = m_2 = 2M_j$ ($j = 1, \ldots, 4$), the curve becomes

$$0 = \sum_{n \text{ even}} q^{n^2/4} e^{\beta nz} \prod_{i=1}^{N}(x - a_i) + \sum_{n \text{ odd}} q^{n^2/4} e^{\beta nz} (-1)^N \prod_{i=1}^{N}(x + a_i + m)$$

$$= \theta_3 \left(\frac{z}{\omega_1} | 2\tau \right) \prod_{i=1}^{N}(x - a_i) + \theta_2 \left(\frac{z}{\omega_1} | 2\tau \right) (-1)^N \prod_{i=1}^{N}(x + a_i + m),$$

(4.1.6)

with no subleading terms, where θ_2 and θ_3 are Jacobi theta functions (5.1.12). The curve (4.1.6) is manifestly invariant under $z \to z + 2 \omega_2$.

22
Using eq. (4.8), we find

\[S(x) = \prod_{i=1}^{N} \frac{(x + a_i + m_1) \prod_{i=1}^{N} (x + a_i + m_2) \prod_{f=1}^{N_f} (x + M_f)}{(x + \frac{1}{2} m_1)^2(x + \frac{1}{2} m_2)^2 \prod_{i=1}^{N} (x - a_i)^2}, \]

(4.1.7)

in agreement with the empirical rules given in Table 3. The form of \(S(x) \) is independent of the parametrization used for \(P_n(x) \) and \(J_n(x) \). The one-instanton contribution to the prepotential is \[2\pi i F_{\text{1-inst}} = \sum_{k=1}^{N} S_k(a_k) - 2S_{m_1}(\frac{1}{2} m_1) - 2S_{m_2}(\frac{1}{2} m_2), \]

(4.1.8)

where

\[S_k(a_k) = \frac{\prod_{i=1}^{N} (a_k + a_i + m_1) \prod_{i=1}^{N} (a_k + a_i + m_2) \prod_{f=1}^{N_f} (a_k + M_f)}{(a_k + \frac{1}{2} m_1)^2(a_k + \frac{1}{2} m_2)^2 \prod_{i \neq k}^{N} (a_k - a_i)^2}, \]

\[S_{m_1}(\frac{1}{2} m_1) = \frac{\prod_{i=1}^{N} (a_i + m_2 - \frac{1}{2} m_1) \prod_{j=1}^{N_f} (M_j - \frac{1}{2} m_1)}{(\frac{1}{2} m_2 - \frac{1}{2} m_1)^2 \prod_{i=1}^{N} (a_i + \frac{1}{2} m_1)}, \]

\[S_{m_2}(\frac{1}{2} m_2) = \frac{\prod_{i=1}^{N} (a_i + m_1 - \frac{1}{2} m_2) \prod_{j=1}^{N_f} (M_j - \frac{1}{2} m_2)}{(\frac{1}{2} m_1 - \frac{1}{2} m_2)^2 \prod_{i=1}^{N} (a_i + \frac{1}{2} m_2)}. \]

(4.1.9)

Various checks of this result were made in ref. \[12]. (In ref. \[12], the masses of the antisymmetric hypermultiplets were defined to be \(2m_1 \) and \(2m_2 \) rather than \(m_1 \) and \(m_2 \), and the definition of \(S(x) \) differed by a factor of 4.)
4.2. SU(N) + 1 antisymmetric + 1 symmetric

Consider SU(N) gauge theory with one matter hypermultiplet (mass m_1) in the antisymmetric representation, and one (mass m_2) in the symmetric representation. The corresponding M-theory picture, represented in Fig. 2, contains O6$^+$ planes (related to the symmetric hypermultiplet) coincident with the even NS 5-branes, and O6$^-$ planes (related to the antisymmetric hypermultiplet) coincident with the odd NS 5-branes.

\[(x - a_i + m_2 - m_1) \quad (x + m_2 - \frac{1}{2} m_1) \quad (x - a_i + m_2 - m_1) \quad (x + a_i + m_2) \]

\[(x + \frac{1}{2} m_2) \quad O6^- \quad (x + a_i + m_1) \quad (x + \frac{1}{2} m_1) \quad (x - a_i) \]

\[(x + m_2 - \frac{1}{2} m_1) \quad (x + m_1 - \frac{1}{2} m_2) \quad (x - a_i + m_1 - m_2) \]

Figure 2
Choosing the parametrization of the coefficient functions of the curve to have the properties (4.4), the curve (4.3) for this theory takes the form

\[
\sum_{n \text{ even}} q^{n^2/4} e^{\beta n z} P_0(x - \frac{1}{2} n \Delta) + \sum_{n \text{ odd}} q^{n^2/4} e^{\beta n z} P_1(x - \frac{1}{2} (n - 1) \Delta) = 0, \tag{4.2.1}
\]

where the leading term of \(P_0(x) \) is

\[
P_0(x) = \prod_{p=1}^{\infty} \left[\frac{x + \frac{1}{2} m + \frac{1}{2} (-1)^p (p - \frac{1}{2}) \Delta}{x + \frac{1}{2} m - \frac{1}{2} (-1)^p (p - \frac{1}{2}) \Delta} \right]^{2p} N \prod_{i=1}^{N} (x - a_i), \tag{4.2.2}
\]

and, using the involution property,

\[
P_1(x) = P_0(-x - m + \frac{1}{2} \Delta), \tag{4.2.3}
\]

with \(m = \frac{1}{2} (m_1 + m_2) \) and \(\Delta = m_1 - m_2 \). The curve (4.2.1) is manifestly invariant under \(z \to z + 2 \omega_2 \) together with \(x \to x + \Delta \).

It may be verified that in the \(m_2 \to \infty \) (\(m_1 \to \infty \)) limit, the curve (4.2.1) reduces to the curve (leading-order coefficients only) for SU(\(N \)) with one antisymmetric (symmetric) hypermultiplet [16].

In the case \(m_1 = m_2 \), i.e., zero global mass \(\Delta \), the subleading terms of \(P_n(x) \) vanish (the effects of the orientifolds of opposite charge cancel, as they are located at the same position in the \(x \) plane), and the curve (4.2.1) reduces to eq. (4.1.6), which, surprisingly, also describes SU(\(N \)) with two antisymmetric hypermultiplets (masses \(m_1 \) and \(m_2 \)) and four fundamental hypermultiplets (masses \(M_j \)), with \(m_1 = m_2 = 2M_j \). (See section 5 for more details.)

Using eq. (4.8), we obtain

\[
S(x) = \frac{(x + \frac{1}{2} m_2)^2 \prod_{i=1}^{N} (x + a_i + m_1) \prod_{i=1}^{N} (x + a_i + m_2)}{(x + \frac{1}{2} m_1)^2 \prod_{i=1}^{N} (x - a_i)^2}. \tag{4.2.4}
\]

The one-instanton contribution to the prepotential is given by

\[
2\pi i F_{1-\text{inst}} = \sum_{k=1}^{N} S_k(a_k) - 2 S_{m_1}(-\frac{1}{2} m_1), \tag{4.2.5}
\]

25
with

\[S_k(a_k) = \frac{(a_k + \frac{1}{2}m_2)^2 \prod_{i=1}^N (a_k + a_i + m_1) \prod_{i=1}^N (a_k + a_i + m_2)}{(a_k + \frac{1}{2}m_1)^2 \prod_{i \neq k} (a_k - a_i)^2}; \]

\[S_{m_1}(-\frac{1}{2}m_1) = \frac{(m_1 - m_2)^2 \prod_{i=1}^N (a_i + m_2 - \frac{1}{2}m_1)}{4 \prod_{i=1}^N (a_i + \frac{1}{2}m_1)}. \] (4.2.6)

We can test the expression (4.2.6) in two particular cases. For SU(2), we can compare our results against those for SU(2) + adjoint, as given in eqs. (4.3.5) and (4.3.6). Setting \(m_2 = m \) in (4.2.6), with \(m \) the mass of the adjoint hypermultiplet, and \(a_1 + a_2 = 0 \), we find that both expressions agree up to a moduli independent additive constant. For SU(3), we can compare the prepotential (4.2.5) against that for SU(3) with one symmetric representation and one fundamental representation [10], finding agreement (after setting \(a_1 + a_2 + a_3 = 0 \) and \(m_1 = -m_f \)) up to a moduli independent additive constant.
4.3. SU(N) + adjoint

Consider SU(N) gauge theory with a matter hypermultiplet (mass m) in the adjoint representation. This is an elliptic model which can be described in terms of the M-theory picture in Fig. 3.a. In this figure, there are N D4-branes suspended between a single NS 5-brane with a periodicity in t, but with a shift in x of m (the global mass) for each circuit of t. The covering space of the S^1 (the t-variable) is shown in Fig. 3.b.

The coefficient functions (which have no subleading terms) are

\[
P_0(x) = \prod_{i=1}^{N} (x - a_i),
\]

\[
P_n(x) = P_0(x - nm),
\]

(4.3.1)
so the curve \((4.3)\), with \(r = 2\), becomes

\[
\sum_n q^{n^2/2} e^{\beta n z} \prod_{i=1}^N (x - a_i - nm) = 0. \tag{4.3.2}
\]

This is manifestly invariant under \(z \to z + 2\omega_2\) together with \(x \to x + m\). Shifting \(z \to z + \omega_1 + \omega_2\), eq. \((4.3.2)\) becomes identical to the result of D’Hoker and Phong \(\[24\] ,

\[
\sum_n (-1)^n q^{n(n-1)/2} e^{\beta n z} \prod_{i=1}^N (x - a_i - nm) = 0. \tag{4.3.3}
\]

In section 6, we show its relation to the curve of Donagi and Witten \(\[4\] for this theory.

Using eq. \((4.8)\), we obtain

\[
S(x) = \frac{\prod_{i=1}^N ((x - a_i)^2 - m^2)}{\prod_{i=1}^N (x - a_i)^2}. \tag{4.3.4}
\]

The one-instanton contribution to the prepotential is given by \(\[24\]

\[
2\pi i \mathcal{F}_{1- \text{inst}} = \sum_{k=1}^N S_k(a_k), \tag{4.3.5}
\]

where

\[
S_k(a_k) = \frac{\prod_{i=1}^N [(a_k - a_i)^2 - m^2]}{\prod_{i \neq k} [(a_k - a_i)^2 - m^2]}. \tag{4.3.6}
\]

No subtraction is required in eq. \((4.3.5)\), as there are no spurious singularities to remove from \(\sum_k S_k(a_k)\). This fact is related to the absence of subleading terms.
4.4. SO(2N) + adjoint

Consider SO(2N) gauge theory with a matter hypermultiplet (mass m) in the adjoint representation. The corresponding M-theory picture (Fig. 4) contains O6^- planes on top of each NS 5-brane, O6^+ planes between each pair of NS 5-branes, and D4-branes. There are additional fourbranes in mirror positions with respect to the O6^+ orientifolds that are not represented in the figure.

![Diagram showing the M-theory picture of the SO(2N) + adjoint theory](image)

Figure 4

In this theory, the unit cell contains only one NS 5-brane, so the parametrization of the coefficient functions of the curve are chosen to respect

$$P_{n+\ell}(x) = P_n(x - \ell m).$$ \hspace{1cm} (4.4.1)
With this, the curve (4.3) becomes
\[\sum_{n=-\infty}^{\infty} q^{n^2/2} e^{\beta n z} P_0(x - nm) = 0, \] (4.4.2)
where the leading term of \(P_0(x) \) is given by
\[P_0(x) = \prod_{p=1}^{\infty} \left[\frac{(x + pm)(x - pm)}{(x + (p - \frac{1}{2})m)(x - (p - \frac{1}{2})m)} \right]^{2p} \prod_{i=1}^{N} [x^2 - a_i^2]. \] (4.4.3)
The curve (4.4.2) is manifestly invariant under \(z \rightarrow z + 2\omega_2 \) and \(x \rightarrow x + m \).

There are several decoupling limits [29] that can be considered to check eq. (4.4.2).

(i) Let
\[x_0 = \frac{1}{N} \sum_{i=1}^{N} a_i, \] (4.4.4)
be the average position of the D4-branes in a single cell which lie above the O6\(^+\) inside that cell. Then change variables
\[x \rightarrow x + x_0, \quad a_i \rightarrow a_i + x_0, \] (4.4.5)
and let \(x_0 \rightarrow \infty \). After taking these limits in eq. (4.4.2), the final curve coincides with the one for \(\mathcal{N} = 4 \text{ SU}(N) + \text{adjoint} \).

(ii) There is another decoupling limit we can consider. If we take
\[q \rightarrow 0 \ (\tau \rightarrow i\infty), \quad m \rightarrow \infty, \quad \Lambda^{b_0} = qm^{b_0} \text{ fixed}; \]
\[b_0 = 4N_1 - 2N_2 - 4, \quad N_1 + N_2 = N, \] (4.4.6)
we obtain the curve corresponding to \(\mathcal{N} = 2 \text{ SO}(2N_1) + N_2 \) fundamentals.

Using eq. (4.8), we obtain
\[S(x) = \frac{x^4 \prod_{i=1}^{N-1} [(x - m)^2 - a_i^2] \prod_{i=1}^{N} [(x + m)^2 - a_i^2]}{(x + \frac{1}{2}m)^2 (x - \frac{1}{2}m)^2 \prod_{i=1}^{N} (x^2 - a_i^2)^2}. \] (4.4.7)
The one-instanton contribution to the prepotential is given by
\[2\pi i \mathcal{F}_{1-\text{inst}} = \sum_{k=1}^{N} s_k(a_k) - 2s_m(-\frac{1}{2}m). \] (4.4.8)
with

\[S_k(a_k) = \frac{a_k^2 \prod_{i=1}^{N} [(a_k - m)^2 - a_i^2] \prod_{i=1}^{N} [(a_k + m)^2 - a_i^2]}{4(a_k + \frac{1}{2}m)^2(a_k - \frac{1}{2}m)^2 \prod_{i \neq k} (a_k^2 - a_i^2)^2}, \]

\[S_m(-\frac{1}{2}m) = \frac{m^2 \prod_{i=1}^{N} (\frac{9}{4}m^2 - a_i^2)}{16 \prod_{i=1}^{N} (\frac{1}{4}m^2 - a_i^2)}. \] (4.4.9)

We can compare our result for SO(2N) with a massive adjoint hypermultiplet with that of Minahan et. al. [30], who obtained a mass expansion for \(F_{\text{instanton}} \), using a conjectured recursion relation for SO(2N) plus adjoint. Expanding eqs. (4.4.8)–(4.4.9) in powers of \(m \), we find the first moduli-dependent contribution to be

\[2\pi i F_{1-\text{inst}} = 4m^4 \sum_{k=1}^{N} \sum_{j \neq k} \frac{a_k^2}{(a_k^2 - a_j^2)^2} + O(m^6). \] (4.4.10)

This coincides with eq. (4.7) of ref. [30], identifying their \(\phi_k \) with our \(a_k \).

We can make a further check of our proposed expression (4.4.8) by comparing the result for SO(6) with that for SU(4). The one-instanton prepotential for SU(4) with a massive adjoint hypermultiplet is given by eq. (4.3.5), with moduli \(a'_k, k = 1, \ldots, 4 \), restricted by \(\sum_{k=1}^{4} a'_k = 0 \). This constraint allows us to eliminate \(a'_4 \). Using the change of variables

\[a_1 = a'_1 + a'_2, \quad a_2 = a'_2 + a'_3, \quad a_3 = a'_1 + a'_3, \] (4.4.11)

where \(a_i \) are the moduli of SO(6), we find that the one-instanton prepotentials (4.3.3) and (4.4.8) agree, up to a moduli-independent additive constant.

To construct our curve, we have used the M-theory picture suggested by Uranga [3] in terms of O6\(^\pm\) planes. Yokono [29] has constructed curves for SO(2N) using orientifold fourplanes instead of O6\(^\pm\) planes. His curves, while satisfying the correct decoupling limits (i) and (ii) above, differ from ours. Although the curves in ref. [29] have a smooth limit when \(m \to 0 \), the brane configuration from which it is constructed is not consistent in this limit. When \(m = 0 \), the fourbranes must change their charge when crossing an NS 5-brane [31], but this is
not the case for the M-theory picture in ref. [29]. (The same comments apply to the curves proposed for Sp(2N) + adjoint and SO(2N + 1) + adjoint in ref. [29].) Moreover, the one-loop prepotential derived from Yokono’s curves disagrees with the perturbation theory result, and the one-instanton prepotential for SO(6) with massive adjoint calculated from his curve conflicts with that for SU(4) with massive adjoint.
4.5. SO(2N + 1) + adjoint

Consider SO(2N + 1) gauge theory with a matter hypermultiplet (mass m) in the adjoint representation. The M-theory picture in Fig. 5 is similar to the one for SO(2N) with adjoint hypermultiplet with the following difference: there is an additional fourbrane whose position is fixed at the O6$^+$ plane in each cell [5]. As in last sections, there are additional fourbranes at mirror positions that are not included in the figure.

As before, the parametrization is chosen to obey (4.4.1) so the curve becomes

$$\sum_n q^{n^2/2} e^{\beta n^2} P_0(x-nm) = 0,$$

(4.5.1)
with the leading term of \(P_0(x) \) given by

\[
P_0(x) = \prod_{p=1}^{\infty} \left[\frac{(x + pm)(x - pm)}{(x + (p - \frac{1}{2})m)(x - (p - \frac{1}{2})m)} \right]^{2p} x^{N} \prod_{i=1}^{N} [x^2 - a_i^2]. \tag{4.5.2}
\]

As in sec. 4.4, there are several decoupling limits that can be considered to check eq. (4.5.1).

(i) This limit works exactly as in sec. 4.4, to yield the curve for \(\mathcal{N} = 4 \text{ SU}(N) + \text{adjoint} \).

(ii) If we take \(q \to 0 \ (\tau \to i \infty) \), \(m \to \infty \), \(\Lambda^b_0 = q m^b_0 \) fixed;

\[
b_0 = 4N_1 - 2N_2 - 2, \quad N_1 + N_2 = N, \tag{4.5.3}
\]

the resulting curve agrees with the one for \(\text{SO}(2N_1 + 1) + N_2 \text{ fundamentals} \). (We disagree with the curve proposed in ref. \[29\], for reasons discussed in section 4.4.)

From (4.3), we find

\[
S(x) = \frac{x^2(x + m)(x - m) \prod_{i=1}^{N} [(x - m)^2 - a_i^2] \prod_{i=1}^{N} [(x + m)^2 - a_i^2]}{(x + \frac{1}{2}m)^2(x - \frac{1}{2}m)^2 \prod_{i=1}^{N} (x^2 - a_i^2)^2}. \tag{4.5.4}
\]

The one-instanton contribution to the prepotential is given by

\[
2\pi i \mathcal{F}_{1-\text{inst}} = \sum_{k=1}^{N} S_k(a_k) - 2S_m(-\frac{1}{2}m), \tag{4.5.5}
\]

with

\[
S_k(a_k) = \frac{(a_k + m)(a_k - m) \prod_{i=1}^{N} [(a_k - m)^2 - a_i^2] \prod_{i=1}^{N} [(a_k + m)^2 - a_i^2]}{4(a_k + \frac{1}{2}m)^2(a_k - \frac{1}{2}m)^2 \prod_{i \neq k} (a_k^2 - a_i^2)^2};
\]

\[
S_m(-\frac{1}{2}m) = \frac{-3m^2 \prod_{i=1}^{N} (\frac{3}{4}m^2 - a_i^2)}{16 \prod_{i=1}^{N} (\frac{1}{4}m^2 - a_i^2)}. \tag{4.5.6}
\]

In the case of \(\text{SO}(5) \), we will be able to test eq. (4.5.3) against the result we will obtain in the next subsection for \(\text{Sp}(4) \) with a massive adjoint hypermultiplet.
4.6. \textit{Sp}(2N) + \text{adjoint}

Consider \textit{Sp}(2N) gauge theory with a matter hypermultiplet (mass \(m\)) in the adjoint representation. The corresponding M-theory picture (Fig. 6) contains \(O_6^+\) planes on top of each NS 5-brane, \(O_6^-\) planes between each pair of NS 5-branes, and D4-branes. As in the previous section, there are additional fourbranes at mirror symmetric positions with respect to the \(O_6^-\) orientifolds that are not exhibited in Fig. 6 for clarity.

Choosing the coefficient functions to obey (4.4.1), the curve for this theory becomes

\[
\sum_{n} q^{n^2/2} e^{\beta n x} P_0(x - nm) = 0, \quad (4.6.1)
\]
where the leading term of $P_0(x)$ is

$$P_0(x) = \prod_{p=1}^{\infty} \left[\frac{(x + (p - \frac{1}{2})m)(x - (p - \frac{1}{2})m)}{(x + pm)(x - pm)} \right]^{2p} \prod_{i=1}^{N} [x^2 - a_i^2]. \quad (4.6.2)$$

Notice that the non-dynamical factors of (4.6.2) are the inverse of those in (4.4.3). The curve (4.6.1) is manifestly invariant under $z \rightarrow z + 2\omega_2$ and $x \rightarrow x + m$.

As in section 4.4, we can consider some decoupling limits to check eq. (4.6.1).

(i) This limit is again the same as in sec. 4.4.

(ii) If we consider

$$q \rightarrow 0 \ (\tau \rightarrow i\infty) \ , \ m \rightarrow \infty \ , \ \Lambda^{b_0} = qm^{b_0} \ \text{fixed};$$

$$b_0 = 4N_1 - 2N_2 + 4 \ , \ N_1 + N_2 = N, \quad (4.6.3)$$

the curve we obtain agrees with the one corresponding to $\mathcal{N} = 2 \text{ Sp}(2N_1) + N_2$ fundamentals, as it should. (We disagree with the curve proposed in ref. [29], for the reasons given in section 4.4.)

From (4.8), we obtain

$$S(x) = \frac{(x + \frac{1}{2}m)^2(x - \frac{1}{2}m)^2 \prod_{i=1}^{N} [(x - m)^2 - a_i^2] \prod_{i=1}^{N} [(x + m)^2 - a_i^2]}{x^4 \prod_{i=1}^{N} (x^2 - a_i^2)^2}. \quad (4.6.4)$$

Using the methods of sec. 2 of this paper, one obtains the following one-instanton contribution to the prepotential

$$2\pi i \mathcal{F}_{1- \text{inst}} = -2[\bar{S}_0(0)]^{1/2}, \quad (4.6.5)$$

where

$$\bar{S}_0(0) = \frac{(-m^2)^2 \prod_{i=1}^{N} (m^2 - a_i^2)^2}{16 \prod_{i=1}^{N} (-a_i^2)^2}. \quad (4.6.6)$$

We can check eqs. (4.6.5) and (4.6.6) by specializing to Sp(2) and comparing with SU(2) plus adjoint hypermultiplet with mass m. The corresponding prepotentials agree up to a rescaling
and a moduli-independent additive constant. We can also test eqs. (4.6.5) and (4.6.6) for Sp(4) with a massive adjoint hypermultiplet against eqs. (4.5.5) and (4.5.6) for SO(5) with a massive adjoint hypermultiplet. Using the change of variables (2.20) relating the moduli of SO(5) and Sp(4), one can show that the two results agree up to a rescaling, and a moduli-independent additive constant. This is actually a consistency check of our methods rather than a truly independent test.
4.7. $\text{Sp}(2N) + 1$ antisymmetric $+$ N_f fundamentals

Consider $\text{Sp}(2N)$ gauge theory with a matter hypermultiplet (mass m) in the antisymmetric representation, and $N_f \leq 4$ matter hypermultiplets (masses M_j) in the fundamental representation. The M-theory picture in Fig. 7 contains $O6^-$ planes on top of each NS 5-brane, $O6^-$ planes between each pair of NS 5-branes, together with $D4$-branes and $D6$-branes. As in previous examples, there are additional $D4$-branes and $D6$-branes at mirror symmetric positions with respect to the $O6^-$ orientifolds that are not depicted in Fig. 7.

Figure 7
There is one NS 5-brane per unit cell \((r = 2)\), so we choose a parametrization for the coefficient functions obeying (4.5), yielding the curve
\[
\sum_{n=-\infty}^{\infty} L^{2n^2} t^n J_0(x - nm) P_0(x - nm) = 0, \tag{4.7.1}
\]
where \(L^2 = \Lambda^{4-N_f}\), with the D6 branes responsible for the function
\[
J_0(x) = \prod_{j=1}^{N_f} \prod_{p=1}^{\infty} [(x - pm - M_j)(x - pm + M_j)(x + pm - M_j)(x + pm + M_j)]^{p/2}, \tag{4.7.2}
\]
and the leading term (in \(L\)) of \(P_0(x)\) given by
\[
P_0(x) = \prod_{p=1}^{\infty} [(x + (p - \frac{1}{2})m)(x - (p - \frac{1}{2})m)(x + pm)(x - pm)]^{-2p} \prod_{i=1}^{N_f} [x^2 - a_i^2]. \tag{4.7.3}
\]
One may verify that in the \(m \to \infty\) limit, the curve reduces to that for \(\text{Sp}(2N)\) with \(N_f\) fundamental hypermultiplets.

Using eq. (4.8), one obtains
\[
S(x) = \frac{\prod_{i=1}^{N} [(x - m)^2 - a_i^2] \prod_{i=1}^{N} [(x + m)^2 - a_i^2] \prod_{j=1}^{N_f} (x^2 - M_j^2)}{x^4 (x + \frac{1}{2}m)^2 (x - \frac{1}{2}m)^2 \prod_{i=1}^{N} (x^2 - a_i^2)^2}. \tag{4.7.4}
\]
Using the methods of section 2, one obtains the one-instanton contribution to the prepotential is given by
\[
2\pi i F_{1\text{-inst}} = -2[\bar{S}_0(0)]^{1/2}, \tag{4.7.5}
\]
where
\[
\bar{S}_0(0) = \frac{16 \prod_{i=1}^{N} (m^2 - a_i^2)^2 \prod_{j=1}^{N_f} (-M_j^2)}{(-m^2)^2 \prod_{i=1}^{N} (-a_i^2)^2}. \tag{4.7.6}
\]
Several checks may be made of this result. For Sp(2), eqs. (4.7.5) and (4.7.6) yield
\[
2\pi i F_{1\text{-inst}} = 8i^{N_f} \prod_{j=1}^{N_f} \frac{M_j}{m^2} - 8i^{N_f} \prod_{j=1}^{N_f} \frac{M_j}{a_j^2}, \tag{4.7.7}
\]
which agrees with the one-instanton prepotential for Sp(2) with \(N_f\) fundamental hypermultiplets (up to a moduli-independent additive constant and an overall rescaling), as expected, since the
antisymmetric representation of Sp(2) is trivial. The result for Sp(4) with 1 antisymmetric
hypermultiplet and no fundamental hypermultiplets agrees with the one-instanton prepotential
for SO(5) with one fundamental hypermultiplet [22] (see Table 1) up to a rescaling and a moduli
independent additive constant, after making the change of variables (2.20).

5. Comparison to elliptic curves with zero global mass

Complementary to our strategy of deriving curves from the M-theory pictures of Uranga
[2–5], there exist methods developed for elliptic models by Donagi and Witten [1], Uranga [5],
Gukov and Kapustin [6], and others. Although a curve results from their considerations, the
extraction of the instanton expansion has not been carried out for these curves. In short, the
issue is how to extract $P_n(x)$ and $J_n(x)$, and from these, $S(x)$, from the curves of the Donagi-
Witten type. In this section, we accomplish this for two non-trivial models with zero beta
function and zero global mass.

The curves for theories in sec. 4 with only one NS 5-brane per unit cell become trivial (i.e.,
factorize into a function of x and a function of t [5]) when the global mass m vanishes. This
yields $S(x) = \text{constant}$, and a vanishing one-loop and instanton prepotential. On the other hand,
the curves for theories with two NS 5-branes per unit cell, viz., SU(N) with two antisymmetric
hypermultiplets and four fundamental hypermultiplets, and SU(N) with one antisymmetric and
one symmetric hypermultiplet, both have the non-trivial limit (4.1.6) when the global mass Δ
vansishes. We show that the curves obtained by Gukov and Kapustin, and Uranga, respectively,
for these two models agree, after a suitable change of variables, with eq. (4.1.6).

5.1. SU(N) + 2 antisymmetric + 4 fundamentals

Consider the SU(N) gauge theory, with two antisymmetric hypermultiplets (masses m_1 and
m_2) and four fundamental hypermultiplets (masses M_j), with their masses related by $m_1 =$
\(m_2 = 2M_j \). This is an elliptic model with zero global mass. Gukov-Kapustin [8] give the curve for SU(2n)

\[v^{2n} + f_1(x, y)v^{2n-1} + \cdots + f_{2n}(x, y) = 0, \quad (5.1.1) \]

with the coefficient functions

\[
\begin{align*}
 f_{2j}(x, y) &= A_j, \\
 f_{2j-1}(x, y) &= \frac{yB_j}{(x - e_3)} = \frac{(x - e_1)(x - e_2)}{y}B_j, \\
\end{align*}
\]

where \(v = x_4 + ix_5 \) is what we called \(x \) in earlier sections, \(A_j \) and \(B_j \) are constants, and \(x \) and \(y \) parametrize the torus base space via

\[y^2 = (x - e_1)(x - e_2)(x - e_3). \quad (5.1.3) \]

We will assume that precisely the same functions \((5.1.2)\) appear in the curve for SU(\(N\)) with \(N \) odd, so the curve for any \(N \) takes the form:

\[v^N + f_1(x, y)v^{N-1} + \cdots + f_{N-1}(x, y)v + f_N(x, y) = 0. \quad (5.1.4) \]

Let

\[
\begin{align*}
 H_0(v) &= \prod_{j=1}^{N} (v - a_j - \frac{1}{2}m) = \sum_{j=0}^{N} u_jv^{N-j}, \\
 H_1(v) &= H_0(-v) = (-1)^N \prod_{j=1}^{N} (v + a_j + \frac{1}{2}m) = (-1)^N \sum_{j=0}^{N} (-1)^j u_jv^{N-j}, \\
\end{align*}
\]

which defines the \(u_j \) as gauge invariant combinations of \(m \) and the order parameters \(a_j \) (with \(u_0 = 1 \)). Let also

\[
\begin{align*}
 H_{\text{even}} &= \sum_{i \text{ even}} u_i v^{N-i}, & H_{\text{odd}} &= \sum_{i \text{ odd}} u_i v^{N-i}, \\
 H_0 &= H_{\text{even}} + H_{\text{odd}}, & (-1)^N H_1 &= H_{\text{even}} - H_{\text{odd}}. \\
\end{align*}
\]
Then (5.1.4) can be written as
\[H_{\text{even}}(v) + \frac{(x - e_1)(x - e_2)}{y} H_{\text{odd}}(v) = 0, \]
(5.1.7)
where we identify \(u_{2j} = A_j \), and \(u_{2j-1} = B_j \).

When \(\sum e_i = 0 \) in eq. (5.1.3), the variables \(x \) and \(y \) are related to the Weierstrass elliptic functions by
\[x = \wp(z) \quad 2y = \wp'(z), \]
(5.1.8)
where \(z \) parametrizes the base torus with the identifications \(z \equiv z + 2\omega_1 \equiv z + 2\omega_2 \), and therefore
\[\frac{y}{(x - e_1)(x - e_2)} = -ic \frac{\theta_1(\nu|\tau)\theta_4(\nu|\tau)}{\theta_2(\nu|\tau)\theta_3(\nu|\tau)} = -ivc \frac{\theta_1(\nu|\tau)}{\theta_2(\nu|\tau)} = cf(\nu|\tau), \]
(5.1.9)
where \(\nu = z/2\omega_1 \) and
\[c = -\frac{2i\omega_1}{\pi\theta_4(0|\tau)^2}, \]
(5.1.10)
\[f(\nu|\tau) = -i \frac{\theta_1(\nu|\tau)}{\theta_2(\nu|\tau)}, \]
(5.1.11)
and \[\theta_1(\nu|\tau) = i \sum_{n=-\infty}^{\infty} (-1)^{n} e^{i\pi\tau(n-\frac{1}{2})^2} e^{2\pi i \nu(n-\frac{1}{2})}, \]
\[\theta_2(\nu|\tau) = \sum_{n=-\infty}^{\infty} e^{i\pi\tau(n-\frac{1}{2})^2} e^{2\pi i \nu(n-\frac{1}{2})}, \]
\[\theta_3(\nu|\tau) = \sum_{n=-\infty}^{\infty} e^{i\pi\tau n^2} e^{2\pi i \nu n}, \]
\[\theta_4(\nu|\tau) = \sum_{n=-\infty}^{\infty} (-1)^{n} e^{i\pi\tau n^2} e^{2\pi i \nu n}. \]
(5.1.12)

In view of eqs. (5.1.9)-(5.1.11) we can rewrite the curve (5.1.7) as follows
\[H_{\text{even}}(v) + [cf(\nu|\tau)]^{-1} H_{\text{odd}}(v) = 0. \]
(5.1.13)
One may redefine the gauge invariant moduli as follows:

\[u'_j = \begin{cases}
 u_j, & j \text{ even,} \\
 u_j/c, & j \text{ odd,}
\end{cases} \quad (5.1.14) \]

which is valid since (5.1.10) is independent of \(\nu \) and \(v \). Next, we shift \(\nu \to \nu + \frac{\tau}{4} + \frac{1}{2} \) if \(N \) is even, and \(\nu \to \nu + \frac{\tau}{4} \) if \(N \) is odd. Since

\[f(\nu + \frac{\tau}{4}|\tau) = \frac{\theta_3(\nu|\frac{\tau}{2})}{\theta_3(\nu|\frac{\tau}{2})}, \quad f(\nu + \frac{\tau}{4} + \frac{1}{2}|\tau) = \frac{\theta_3(\nu|\frac{\tau}{2})}{\theta_4(\nu|\frac{\tau}{2})}, \quad (5.1.15) \]

this converts the curve (5.1.13) into

\[\theta_3(\nu|\frac{\tau}{2}) H_{\text{even}}(v) + \theta_4(\nu|\frac{\tau}{2}) H_{\text{odd}}(v) = 0, \quad N \text{ even,} \]
\[\theta_4(\nu|\frac{\tau}{2}) H_{\text{even}}(v) + \theta_3(\nu|\frac{\tau}{2}) H_{\text{odd}}(v) = 0, \quad N \text{ odd.} \quad (5.1.16) \]

Using the identities

\[\theta_3(\nu|\frac{\tau}{2}) = \theta_3(2\nu|2\tau) + \theta_2(2\nu|2\tau), \]
\[\theta_4(\nu|\frac{\tau}{2}) = \theta_3(2\nu|2\tau) - \theta_2(2\nu|2\tau), \quad (5.1.17) \]

eq. (5.1.16) becomes, for both even or odd \(N \),

\[H_0(v) \theta_3(2\nu|2\tau) + H_1(v) \theta_2(2\nu|2\tau) = 0. \quad (5.1.18) \]

This result exactly agrees with our result (4.1.6), when we set \(v = x + \frac{1}{2}m \). This supports the validity of the methods used in obtaining the curves in sec. 4. Further, we know that for this case of zero global mass, the functions \(P_n(x) \) do not have any subleading terms, from two points of view: (a) the exact agreement of the leading terms with eq. (5.1.18), and (b) the absence of “subtractions” for the one-instanton prepotential.
5.2. SU(N) + 1 antisymmetric + 1 symmetric

For zero global mass, Uranga [5] gives the curve (5.1.4) with

\[f_{2j}(x, y) = C_j, \]
\[f_{2j-1}(x, y) = \frac{yD_j}{(x - e_1)(x - e_2)} = \frac{(x - e_3)}{y} D_j. \] (5.2.1)

The curve for this case, with \(m_1 = m_2 \), is therefore

\[H_{\text{even}}(v) + \frac{y}{(x - e_1)(x - e_2)} H_{\text{odd}}(v) = 0, \] (5.2.2)

where we identify \(u_{2j} = C_j \) and \(u_{2j-1} = D_j \). Following (5.1.8)-(5.1.13), we have

\[H_{\text{even}}(v) + cf(\nu|\tau) H_{\text{odd}}(v) = 0, \] (5.2.3)

with \(c \) and \(f(\nu|\tau) \) defined by eqs. (5.1.11) and (5.1.11) respectively. We redefine the gauge invariant moduli as

\[u'_j = \begin{cases} u_j, & j \text{ even}, \\ cu_j, & j \text{ odd}. \end{cases} \] (5.2.4)

Further, we shift \(\nu \rightarrow \nu + \frac{\tau}{4} \) if \(N \) is even, and \(\nu \rightarrow \nu + \frac{\tau}{4} + \frac{1}{2} \) if \(N \) is odd. (Note that the shifts for even and odd \(N \) are the reverse of those in the previous section.) This transforms the curve (5.2.3) into eq. (5.1.18), agreeing with the result (4.1.6) obtained in sec. 4, with no subleading terms for the \(P_n(x) \).

Thus, for SU(N) + 2 anti. + 4 fund. and SU(N) + 1 sym. + 1 anti. with zero global mass in both cases (and \(m = 2M_j \) for the former), the curves are identical, i.e., the two theories have identical prepotentials. This was already noted in Table 4, at the one-instanton level. One may wonder from the M-theory point of view why this has occurred. From Fig. 1 for SU(N) + 2 anti. + 4 fund., we see that, if all the masses are equal, the positions of the D6-branes have the same value of \(v \) (\(x \) in the figure) as that of the two O6\(^-\) orientifold planes. One may then bring the four D6-branes (plus mirrors) coincident with one of the O6\(^-\) planes, converting this
effectively to an O6+ plane. The resulting configuration is that of SU(N) + 1 sym. + 1 anti.
for zero global mass. Hence, the identity of the low-energy theories with zero global mass could
have been anticipated. On the other hand, if there are global masses, this construction is not
possible and the curves no longer coincide.

6. Comparison with the curve of Donagi and Witten

The M-theory picture corresponding to the SU(N) gauge theory with massive adjoint hyper-
multiplet \[2\] is described in sec. 4.3 (see Figs. 3.a and 3.b). Using this, we obtained the curve
\[4.3.3\]

\[\sum_{n=-\infty}^{\infty} (-1)^n q^{n(n-1)/2} e^{\beta nz} H(v - nm) = 0, \tag{6.1}\]

where

\[H(v) = \prod_{i=1}^{N} (v - a_i), \tag{6.2}\]

with \(v = x_4 + ix_5\) (previously referred to as \(x\)), and \(q = e^{2\pi i \tau}\). As before, \(z\) parametrizes the
base torus with the identifications \(z \equiv z + 2\omega_1 \equiv z + 2\omega_2\), and throughout this section we fix
\(\omega_1 = -\pi i\) (hence \(\beta = 1\)) for convenience. This is exactly the curve derived in ref. \[24, 33\],
for the Calogero-Moser model.

On the other hand, Witten \[3\] shows that the curve for this model is precisely that derived
by Donagi and Witten \[4\] in the context of the integrable Hitchin system

\[F(v, x, y) = \sum_{j=0}^{N} A_j P_{N-j}(v), \tag{6.3}\]

where \(A_j\) are gauge invariant polynomials in \(a_i\) and \(m\), and where \(x\) and \(y\) are related by \[5.1.3\].
They show that

\[P_n(v) = \sum_{i=0}^{n} \binom{n}{i} f_i v^{n-i}. \tag{6.4}\]
It can be shown that

\[F(v, x, y) = \sum_{j=0}^{N} \frac{m^j}{j!} f^j H^{(j)}(v), \]

(6.5)

where

\[H^{(j)}(v) = \frac{d^j H(v)}{dv^j}. \]

(6.6)

Explicit calculation gives, using \(\sum_i e_i = 0 \) in (5.1.3)

\[
\begin{align*}
 f_0 &= 1, & f_1 &= 0, & f_2 &= -x, \\
 f_3 &= 2y, & f_4 &= -3x^2, & f_5 &= 4xy, & \text{etc.} \\
\end{align*}
\]

(6.7)

We will establish the connection between the curves (6.1) and (6.5), which has not been done explicitly previously. The curve (6.1) can be recast as

\[\sum_{j=0}^{N} \frac{(-m)^j}{j!} h_j(z) H^{(j)}(v - \frac{1}{2}m) = 0, \]

(6.8)

where

\[h_j(z) = \frac{1}{\theta_1 \left(\frac{z}{2\pi i} \right) \theta_1 \left(\frac{-z}{2\pi i} \right)} \frac{\partial^j}{\partial z^j} \theta_1 \left(\frac{z}{2\pi i} \right), \]

(6.9)

with \(\theta_1 \) defined in eq. (5.1.12). Making the change of variables

\[v \rightarrow v + mh_1(z) + \frac{1}{2}m, \]

(6.10)

eq (6.8) becomes

\[\sum_{j=0}^{N} \frac{m^j}{j!} \tilde{f}_j(z) H^{(j)}(v) = 0, \]

(6.11)

with

\[\tilde{f}_j(z) = \sum_{i=0}^{j} \binom{j}{i} (-1)^i h_i(z) h_1(z)^{j-i}. \]

(6.12)
Explicitly
\[
\begin{align*}
\tilde{f}_0 &= h_0 = 1, \\
\tilde{f}_1 &= 0, \\
\tilde{f}_2 &= h_2 - h_1^2 = h_1' = -\wp(z) - \frac{\tau^2}{12\omega_1^2}E_2 = -\wp(z) + \frac{1}{12}E_2, \\
\tilde{f}_3 &= -h_3 + 3h_2h_1 - 2h_1^3 = -h_1'' = 2y, \\
\tilde{f}_4 &= h_4 - 4h_3h_1 + 6h_2h_1^2 - 3h_1^4 = -3x^2 - \frac{1}{2}E_2x + \frac{1}{18}E_2^2 + \frac{1}{7}g_2, \\
\tilde{f}_5 &= -h_5 + 5h_4h_1 - 10h_3h_1^2 + 10h_2h_1^3 - 4h_1^5 = 4xy + \frac{5}{3}E_2y, \text{ etc.}\quad (6.13)
\end{align*}
\]

where E_2 is the Eisenstein series of weight two, and g_2 is defined via the Weierstrass form
\[
y^2 = x^3 - \frac{1}{4}g_2x - \frac{1}{4}g_3, \quad (6.14)
\]
of the elliptic curve (5.1.3). The relations (5.1.8) have been used in computing (6.13).

Comparing (6.13) with (5.1), we find that f_j and \tilde{f}_j differ by the τ-dependent change of basis
\[
\begin{align*}
\tilde{f}_0 &= f_0, \\
\tilde{f}_1 &= f_1, \\
\tilde{f}_2 &= f_2 + \frac{1}{12}E_2(\tau)f_0, \\
\tilde{f}_3 &= f_3, \\
\tilde{f}_4 &= f_4 + \frac{1}{2}E_2(\tau)f_2 + \left[\frac{1}{18}E_2(\tau)^2 + \frac{1}{7}g_2\right]f_0, \\
\tilde{f}_5 &= f_5 + \frac{5}{6}E_2(\tau)f_3, \quad \text{etc.}\quad (6.15)
\end{align*}
\]

This is similar but not identical to the comparison of the spectral curve with the Donagi-Witten curve made by Itoyama and Morozov [34], to which we refer the reader for further discussion of this issue.

In this section and in section 5 we have dealt with elliptic models that have no subleading terms for the coefficient functions $P_n(x)$. It remains an open question how to carry out the analogous studies for elliptic models with a global mass and non-vanishing subleading terms.
7. Concluding Remarks

In this paper, we have provided a rather comprehensive presentation of the relationship of elliptic models to M-theory, and related topics. There are, however, a number of topics which deserve further attention, as they represent issues not completely understood.

First, the information in Tables 1 and 3 would appear to have an underlying group-theoretic explanation. That is, given the group and matter content, one should be able to predict the factors in Table 3, without appealing to a SW curve. We know of no such explanation.

Second, for a number of elliptic models, only the leading terms of the coefficient functions $P_n(x)$ are known. (The leading term is that with the lowest power of Λ or q for a given power of t.) This occurs for all models in section 4 with non-zero global mass except $SU(N) + \text{adjoint}$. In these models, the subleading terms are not known. Some non-elliptic models, namely $SU(N) + 1 \text{ anti.} + N_f \text{ fund.}$ and $\text{Sp}(2N) + N_f \text{ fund.}$ (treated in section 2), also contain subleading terms, which are explicitly known in these cases. Comparison with Table 2 correlates models with subleading terms with entries in the table in which $F_{1-\text{inst}}$ involves terms other than $S_k(a_k)$ (e.g., $[\bar{S}_0(0)]^{1/2}$, or subtractions of factors such as $S_m(-\frac{1}{2}m)$). These additional terms are closely connected to the residue functions $R_k(x)$, e.g., eq. (2.8), which originate in the subleading terms, and which generate the additional terms via identities such as eq. (2.14) (leading in the case of $\text{Sp}(2N) + N_f \text{ fund.}$ to eq. (2.17)). Thus, the existence of subleading terms and the need for the subtractions listed in Table 2 are different aspects of the same issue. The subtractions listed in Table 2 for models described in sections 4.1, 4.2, and 4.4 through 4.7, do not, however, give enough information to determine the subleading terms. A greater understanding of these subleading terms would be desirable.

Finally, there are a number of elliptic models described in section 4 which have not been identified with known integrable models. It would improve our understanding of the subject if these connections could be made.
In conclusion, this paper represents considerable progress toward a unified description of elliptic models associated with M-theory. Nevertheless, as outlined above, there remain a number of interesting issues to consider.

Acknowledgements

We wish to thank Henric Rhedin for his collaboration in the initial stages of this study, and his participation in the earlier work of this series. S.G.N. would like to thank A. Giveon, A. Hanany, K. Hori, and D. Kutasov for helpful discussions.

References

[1] N. Seiberg and E. Witten, Nucl. Phys. B426 (1994) 19, erratum, ibid B430 (1994) 485, hep-th/9407087; Nucl. Phys. B431 (1994) 484, hep-th/9408093.
[2] E. Witten, Nucl. Phys. B500 (1997) 3, hep-th/9703166.
[3] S. Kachru and C. Vafa, Nucl. Phys. B450 (1995) 69, hep-th/9505105;
 S. Kachru, A. Klemm, W. Lerche, P. Mayr, and C. Vafa, Nucl. Phys. B459 (1996) 537, hep-th/9508153;
 M. Bershadsky, V. Sadov, and C. Vafa, Nucl. Phys. B463 (1996) 420, hep-th/9511222;
 A. Klemm and P. Mayr, Nucl. Phys. B469 (1996) 37, hep-th/9601014;
 S. Katz, D. Morrison, and M. Plesser, Nucl. Phys. B477 (1996) 105, hep-th/9601108;
 A. Klemm, W. Lerche, P. Mayr, C. Vafa, and N. Warner, Nucl. Phys. B477 (1996) 746, hep-th/9604034;
 P. Berglund, S. Katz, A. Klemm, and P. Mayr, Nucl. Phys. B483 (1997) 209, hep-th/9605154;
 S. Katz, A. Klemm, and C. Vafa, Nucl. Phys. B497 (1997) 173, hep-th/9609233;
 S. Katz, P. Mayr, and C. Vafa, Adv. Theor. Math. Phys. 1 (1998) 53, hep-th/9706110;
 M. Aganagic and M. Gremm, Nucl. Phys. B524 (1998) 207, hep-th/9712011.
 For reviews see: W. Lerche, Nucl. Phys. Proc. Suppl. 55B (1997) 83, Fortsch. Phys. 45 (1997) 293, hep-th/9611190;
 A. Klemm, hep-th/9705131;
 S. Katz, P. Mayr, and C. Vafa, Adv. Theor. Math. Phys. 1 (1998) 53, hep-th/9706110.
[4] R. Donagi and E. Witten, Nucl. Phys. B460 (1996) 299, hep-th/9501010;
 R. Donagi, alg-geom/9705010.
[5] A. Uranga, Nucl. Phys. B526 (1998) 241, hep-th/9803054.
[6] S. Gukov and A. Kapustin, Nucl. Phys. B545 (1999) 283, hep-th/9808173.
[7] A. Gorsky, S. Gukov, and A. Mironov, Nucl. Phys. B517 (1998) 409, hep-th/9707120;
 Nucl. Phys. B518 (1998) 689, hep-th/9710239.
[8] S. Naculich, H. Rhedin, and H. Schnitzer, Nucl. Phys. B533 (1998) 275, hep-th/9804105.
[9] I. Ennes, S. Naculich, H. Rhedin, and H. Schnitzer, Int. J. Mod. Phys. A14 (1999) 301,
 hep-th/9804151.
[10] I. Ennes, S. Naculich, H. Rhedin, and H. Schnitzer, Nucl. Phys. B536 (1998) 245, hep-
 th/9806144.
[11] I. Ennes, S. Naculich, H. Rhedin, and H. Schnitzer, Phys. Lett. B452 (1999) 260, hep-
 th/9901124.
[12] I. Ennes, S. Naculich, H. Rhedin, and H. Schnitzer, Nucl. Phys. B558 (1999) 41, hep-
 th/9904078.
[13] I. Ennes, S. Naculich, H. Rhedin, and H. Schnitzer, hep-th/9911022.
[14] D. Finnell and P. Pouliot, Nucl. Phys. B453 (1995) 225, hep-th/9503115;
 F. Fucito and G. Travaglini, Phys. Rev. D55 (1997) 1099, hep-th/9605215;
 N. Dorey, V. Khoze, and M. Mattis, Phys. Rev. D54 (1996) 2921, hep-th/9603136;
 Phys. Lett. B390 (1997) 205, hep-th/9606199; Phys. Lett. B388 (1996) 324, hep-th/9607064;
 Phys. Rev. D54 (1996) 7832, hep-th/9607202;
 K. Ito and N. Sasakura, Phys. Lett. B382 (1996) 95, hep-th/9602073; Mod. Phys. Lett.
 A12 (1997) 205, hep-th/9609104;
 H. Aoyama, T. Harano, M. Sato, and S. Wada, Phys. Lett. B388 (1996) 331, hep-
 th/9607076;
 T. Harano and M. Sato, Nucl. Phys. B484 (1997) 167, hep-th/9608060;
 Y. Yoshida, hep-th/9610211;
 M. Slater, Phys. Lett. B403 (1997) 57, hep-th/9701117;
 V. Khoze, M. Mattis, and M. Slater, Nucl. Phys. B536 (1998) 69, hep-th/9804009;
 I. Sacho and W. Weir, hep-th/9910015.
[15] M. Slater, hep-th/9912011.
[16] K. Landsteiner and E. Lopez, Nucl. Phys. B516 (1998) 273, hep-th/9708118;
 K. Landsteiner, E. Lopez, and D. Lowe, J. High Energy Phys. 07 (1998) 011, hep-
 th/9805158.
[17] E. D'Hoker and D.H. Phong, hep-th/9912271.
[18] A. Hanany and E. Witten, Nucl. Phys. B492 (1997) 152, hep-th/9611230; N. Evans, C. Johnson, and A. Shapere, Nucl. Phys. B505 (1997) 251, hep-th/9703211; A. Brandhuber, J. Sonnenschein, S. Theisen, and S. Yankielowicz, Nucl. Phys. B502 (1997) 125, hep-th/9704044; Nucl. Phys. B504 (1997) 175, hep-th/9705232; K. Landsteiner, E. Lopez, and D. Lowe, Nucl. Phys. B507 (1997) 197, hep-th/9705199; S. Terashima and S.-K. Yang, Phys. Lett. B430 (1998) 102, hep-th/9803014.

[19] A. Klemm, W. Lerche, S. Theisen, and S. Yankielowicz, Phys. Lett. B344 (1995) 169, hep-th/9411048; P. Argyres and A. Faraggi, Phys. Rev. Lett. 73 (1995) 3931, hep-th/9411057; M. Douglas and S. Shenker, Nucl. Phys. B447 (1995) 271, hep-th/9503163; U. Danielsson and B. Sundborg, Phys. Lett. B358 (1995) 273, hep-th/9504102; Phys. Lett. B370 (1996) 83, hep-th/9511180; P. Argyres and M. Douglas, Nucl. Phys. B448 (1995) 93, hep-th/9505062; A. Hanany and Y. Oz, Nucl. Phys. B452 (1995) 73, hep-th/9505075; P. Argyres, M. Plesser, and A. Shapere, Phys. Rev. Lett. B75 (1995) 1699, hep-th/9505101; A. Klemm, W. Lerche, and S. Theisen, Int. J. Mod. Phys. A11 (1996) 1929, hep-th/9505150; I. Pesando, Mod. Phys. Lett. A10 (1995) 1871, hep-th/9506139; A. Brandhuber and K. Landsteiner, Phys. Lett. B358 (1995) 73, hep-th/9507008; J. Minahan and D. Nemeschansky, Nucl. Phys. B464 (1996) 3, hep-th/9507032; P. Argyres and A. Shapere, Nucl. Phys. B461 (1996) 437, hep-th/9509173; A. Hanany, Nucl. Phys. B466 (1996) 85, hep-th/9509176; M. Alishahiha, F. Ardalan, and F. Mansouri, Phys. Lett. B381 (1996) 446, hep-th/9512005; M. Abolhasani, M. Alishahiha, and A. Ghezelbash, Nucl. Phys. B480 (1996) 279, hep-th/9606043.

[20] I. Krichever, D. Phong, hep-th/9912180.

[21] E. D’Hoker, I. M. Krichever, and D. H. Phong, Nucl. Phys. B489 (1997) 179, hep-th/9609041.

[22] E. D’Hoker, I. M. Krichever, and D. H. Phong, Nucl. Phys. B489 (1997) 211, hep-th/9609143.

[23] E. D’Hoker, I. M. Krichever, and D. H. Phong, Nucl. Phys. B494 (1997) 89, hep-th/9610156; E. D’Hoker and D. H. Phong, Phys. Lett. B397 (1997) 94, hep-th/9701053; Nucl. Phys. B530 (1998) 537, hep-th/9804124; Nucl. Phys. B530 (1998) 611, hep-th/9804123; Nucl. Phys. B534 (1998) 697, hep-th/9804126; hep-th/9808156; hep-th/9903002; hep-th/9903068; hep-th/9906027.

[24] E. D’Hoker and D. H. Phong, Nucl. Phys. B513 (1998) 405, hep-th/9709053.

[25] T. Masuda and H. Suzuki, Int. J. Mod. Phys. A13 (1998) 1495, hep-th/9609065; K. Ito and N. Sasakura, Nucl. Phys. B484 (1997) 141, hep-th/9608054.
[26] G. Chan and E. D'Hoker, hep-th/9906193.
[27] M. Douglas, D. Lowe, and J. Schwarz, Phys. Lett. B394 (1997) 297, hep-th/9612062.
[28] A. Hanany and E. Witten, Nucl.Phys. B492 (1997) 152, hep-th/9611230.
[29] T. Yokono, Nucl. Phys. B532 (1998) 210, hep-th/9803123.
[30] J. A. Minahan, D. Nemeschansky, and N. P. Warner, Nucl. Phys. B528 (1998) 109, hep-th/9710146.
[31] N. Evans, C.V. Johnson, and A.D. Shapere, Nucl. Phys. B505 (1997) 251, hep-th/9703210.
[32] See, for example, J. Polchinski, *String Theory, vol. I* (Cambridge University Press, 1998, Cambridge), p. 215.
[33] E. Martinec and N. Warner, Nucl. Phys. B459 (1996) 97, hep-th/9509161.
 E. Martinec, Phys. Lett. B367 (1996) 91, hep-th/9510204.
[34] H. Itoyama and A. Morozov, Nucl. Phys. B477 (1996) 855, hep-th/9511129.