The effect of desensitizing agents on the bond strength of dentin bonding agents: A systematic review

Rangappa Anithakumari, Nivedhitha Malli Sureshbabu

Department of Conservative Dentistry and Endodontics, V. S. Dental College and Hospitals, Bengaluru, Karnataka, 1Department of Conservative Dentistry and Endodontics, Saveetha Dental College, Saveetha University, Chennai, Tamil Nadu, India

Abstract

Background: Dentinal hypersensitivity (DH) is a common dental problem and is treated non-invasively using topical application of various desensitizing agents. When there is loss of tooth structure or tooth preparation is to be followed by a bonded restoration, it requires application of dentin bonding agent. However, the effect of desensitizers on bond strength is still controversial.

Aim and Objective: To evaluate the influence of different desensitizing agents on the bond strength of the dentin bonding agents.

Methods and Materials: PICO strategy was used to formulate the research question. In-vitro studies conducted on human teeth to evaluate the bond strength of dentin bonding agent following the application of desensitizing agent were included. Electronic databases PubMed and Cochrane and google scholar were searched using search terms alone or in combination from the year 2010 till 2020. Search was conducted using the key words and MeSH terms (hypersensitivity, bond strength, dental adhesives, dentin bonding agents). The title and abstract were read to verify the inclusion and exclusion criteria and if further any details required, full article was accessed to check the criteria and then included or excluded. Data extraction was done using a customized data extraction form. The risk of bias was evaluated using modified Cochrane Collaboration Quality Assessment tool.

Results: Total no of studies identified in the search were 146, after scrutiny 23 articles were eligible to be included in this study. Out of 23 articles, 17 articles were of medium bias and 6 articles were of high risk after risk of bias assessment.

Conclusion: According to the various articles included in this study, GLUMA and 8.0%Arginine and CaCO3 when used as desensitizing agents along with different bonding agents, were found to be highly compatible without interfering with the bond strength of the dentin adhesives.

Keywords: Bonding agent; Bond strength; desensitiser; hypersensitivity

INTRODUCTION

Dentinal hypersensitivity (DH) is a common dental problem that occurs as a result of caries, noncarious lesions, or following freshly cut dentin during tooth preparations. The incidence of occurrence of DH varies from 10% to 30% in various populations with the age group varying from 20 to 50 years. The commonly accepted theory is the hydrodynamic theory which states that any stimuli that cause fluid movement within the dentinal tubules, in turn, can stimulate the nerve fiber resulting in a painful response.[1]

Hypersensitivity is treated noninvasively using topical application of various desensitizing agents.
The most commonly used agents are potassium nitrate, fluorides, oxalates, GLUMA-containing agents, bonding agents, calcium phosphate/calcium carbonate, bioactive glass, strontium acetate, and casein phosphopeptide-amorphous calcium phosphate (CPP-ACP). Different lasers are also used in treating DH. These act by plugging the dentinal tubules directly or after the chemical reaction. According to Pashley et al., dentinal permeability and sensitivity are reduced when the dentinal tubules are occluded.\(^2\) However, when there is a loss of tooth structure or tooth preparation is to be followed by a bonded restoration, it requires the application of dentin bonding agents (DBA).

In superficial dentin, which contains fewer tubules, the permeation of resin in the DBA is into intertubular dentin, which will be responsible for most of the bond strength. The dentinal tubules are present in more numbers in deep dentin and the bond strength is increased because of the intratubular resin permeability.\(^3\) However, the effect of desensitizers on bond strength is still controversial. Some studies have demonstrated negative effects\(^4\) and some either positive or no effect.\(^4\)

STRUCTURED QUESTION

Does the application of dentin desensitizers influence the bond strength of DBAs?

PICO ANALYSIS

Population is extracted teeth. Intervention is the application of dentin desensitizing agents. Comparison is without application of desensitizing agent (studies with control). Outcome increases or decrease in bond strength of DBA. Study design is *in-vitro* study.

METHODOLOGY

Protocol and registration

PRISMA 2020 guidelines were followed in this study and the study protocol was registered with PROSPERO (Registration no-CRD42020218931).

SEARCH STRATEGY

The electronic databases PubMed, Cochrane, and Google Scholar websites were searched. The keywords used were desensitizer OR desensitizers OR dentin desensitizer OR dentin desensitizing OR desensitizing product OR desensitizing products OR desensitizing agent OR desensitizing agents OR desensitizing paste OR desensitizing pastes AND dentin bond OR dentin bond strength OR bond strength for studies in the English language from the year 2010–2020.

STUDY SELECTION

Inclusion criteria were *in-vitro* studies conducted on the coronal dentin surface of human extracted teeth. Exclusion criteria were studies conducted on bovine teeth, on enamel or radicular dentine of human teeth, and reviews.

DATA EXTRACTION PROCESS

Both the reviewers screened the abstract of the selected articles based on the inclusion and exclusion criteria. Both the reviewers read the articles and extracted the data such as author, year, DSA used, DBA used, type of bond strength and type of fracture that occurred and the effect of DSA on the bond strength. If there is any disagreement, the common consensus was arrived at after discussion.

QUALITY ASSESSMENT

The assessment was carried out using the criteria such as teeth free of caries, similar size sample dimension, sample size calculation, teeth randomization, blinding of the evaluator, storage, thermocycling, thermomechanical aging, fracture investigation following bond strength test. If these criteria were present it was scored “Yes” and not present was marked “No.” Both the reviewers carried out the quality assessment of the studies independently. Overall risk assessment was done with the Cochrane Risk of Bias tool using software (REVMAN 5.4.1).

RESULTS

Total articles identified through database search were 146, after removal of duplicates and ineligible articles, records screened were 135, after applying inclusion and exclusion criteria 28 records were retrieved, two full texts could not be retrieved.\(^9,10\) 26 full-text articles were screened and three articles\(^11-13\) on bovine teeth were excluded. Out of seven articles identified from Google Scholar, after screening the full text, no article was eligible. A total of 23 articles were included in the quality analysis. The search process is shown in Figure 1. The data extraction done is shown in Table 1. Then, full-text articles were assessed independently by both the authors for the risk of bias of the included studies individually [Figure 2] and the overall quality of the included studies are given in Figure 3. There is an agreement of 83% between the two authors, arrived using Cohen’s Kappa coefficient.

ANALYSIS OF RISK OF BIAS

Following the assessment of different items for the analysis of Risk of Bias, it was found that there was high
risk of bias for sample size calculation, blinding of the evaluator, thermomechanical aging, for which none of the studies had scored Yes, whereas for thermocycling 21 studies have scored No and only two studies had scored Yes. Incomplete outcome data wherein 7 studies had not reported fracture investigation following bond strength tests. 1–3 Yes were considered high risk, 4–6 Yes considered as medium risk, and 7–9 risk as low risk. Out of 23 articles, 17 articles were of medium risk and 6 articles were of high risk after the risk of bias assessment. Since different desensitizing agents, different bonding agents used, and different bond strengths were evaluated in the included studies, meta-analysis could not be performed, thus quantification of heterogeneity by using I^2 statistics was not possible.

DISCUSSION

Since bond strength studies could not be performed clinically, *in-vitro* studies are at the most important for evaluating the bond strength of different materials even though the same clinical conditions as in the oral cavity could not be mimicked in *in-vitro* studies. Of the 23 articles, nine have studied the macro-strength of which, eight were shear bond strength studies and one was tensile bond strength. Macro tests resulted in cohesive failure and overestimation of bond strength, however, it could be considered because of its simplicity. Fracture investigation was not done in the three studies. Of the rest of the five studies, adhesive failure was prominent in three studies and mixed failure was prominently reported in one study and one study reported equal adhesive and mixed failures. In one study, it is mentioned in material and methodology that fracture investigation was done, but the type of failure was not mentioned in the results.

14 studies have performed the micro-strength tests of which micro-tensile bond strength tests were done in 12 studies and micro-shear bond strength bond tests were done in two studies. More of adhesive failure was reported in eleven studies and mixed failure were reported in seven studies and fracture investigation was not done in seven studies. Adhesive area reduction influenced the bond strength and reduced the cohesive failures in micro-tensile bond strength tests thus advantageous over macro tests to evaluate the adhesive interface.

Potassium nitrate-containing desensitizing agents, apart from interfering with the nerve conduction, also blocks...
Table 1: Data extraction from the included studies

Author/year	Desensitizing agents	Etch and rinse DBA	Self etch DBA	Type of bond strength/ failure	Conclusion
SMA Silva et al./2010	Potassium oxalate DSA	E and R DBA	Adper Single Bond, One-Step and Scotchbond Multi-Purpose	MTBS/equal among mixed and cohesive failure	BS with DSA
Can-Karabulut DC/2011	Diode laser	Clearfil Tri S Bond	SBS/-	Short term use of diode laser and smart protect didn't interfere with the bond strength	
Yahya Orcun Zorba et al./2010	CPP-ACP (Tooth mousse), KNO3 (Ultra-Eze), Cervitec plus (Chlorhexenedene) DSA	One E and R- XP Bond	3 SEA AdheSE, Adper Prompt L-pop, GBond	SBS/equal of adhesive and mixed	DSA'S doesn't affect the SBS
HD Arisu et al./2011	Resin, glutaraldehyde, K fluoride and oxalate, bonding agent with Nd-YAG laser	SEA - Clearfil SE primer and bond	MTBS/more of adhesive	BS was reduced except Bonding agent with Nd:YAG laser	
Shekar Bhatiya et al./2012	Ca, sodium phosphosilicate containing Novamin and K No3	2 E and R Prime N Bond NT and Single Bond	SBS/ adhesive	Sensodent increased the BS of Prime N Bond NT where - As with Novamin no change in BS	
Yousry M/2012	Oxalate desensitizer-D/Sense crystal	Single bottle E and R adhesive (single bond and Optibond S)	MSBS/mostly adhesive and mixed	Compromises bond strength in re-etching after oxalate treatment	
Yake Wang, et al./2012	8% Arginine and calcium carbonate (sensitive pro-relief)	SEA single G-Bond and two step SEA Fl Bond 2	MTBS/-	No adverse effect of the DSA on the bonding performance to dentin when using SEA containing functional monomer such as 4 MET like G-Bond	
Hongye yang et al./2013	8% arginine and calcium carbonate - (sensitive pro-relief)	E and R adhesives	Adper singlebond2 Adper scotchbond multipurpose	MTBS/-	8% arginine and calcium carbonate didn’t affect the MTBS of E and R adhesives to dentin
Dandan pei et al./2013	8% Arginine	Mild SEA’S G-Bond and Clearfil SE bond	MTBS/mostly adhesive failure	CPP-ACP didn’t influence BS of both SEA’S, ARG-CaCo3 and Hydroxy apatite paste	BS of G-Bond and variable result for S bond
Yang H and Pei D/2014	Arginine - Ca Co3 Sensodyne repair and protect with Novamin	Two etch and rinse DBA Adper single bond 2 and Adper Scotchbond	MTBS/mostly adhesive failure	Didn’t affect the bond strength	
Sameer makkar et al./2014	Thermokind F gel, Er:YAG LASER	Selfetch adhesive (3 m	TBS/-	Er-YAG laser and F1 dentrifice lowered the BS	
Meng Ding et al./2014	Gluma, Co2 laser	SEA-Adper single bond2	MTBS/adhesive and mixed	GlumaBS for eroded and sound dentin	
Luciene Santana et al./2014	Sensitive pro-relief, Aqueous biosilicate	E and R- Scotchbond multipurpose 2s SEA-clearfil SE bond	MSBS/mixed	Arginine didn’t influence but biosilicate increased BS	
Erhan Dilber et al./2014	Gluma, Nd-YAG, Gluma+ Nd-YAG	Two-step adhesive procedure (Clearfil® SE Bond, Kuraray Co. Ltd, Osaka, Japan)	SBS/mixed	Nd-YAG laser RX following Gluma DSA could be an effective RX for hypersensitivity and doesn’t affect the BS	
C Sabatini Z Wu et al./2015	Gluma, Micro prime B (HEMA and Benzalkonium chloride) and pulpdent desensitizer (Glutaraldehyde and sodium fluoride)	SEA’S - Optibond XTR, SBS/adhesive IBond, Xeno IV	Desensitizing agents can be used in combination with self-etching adhesives to control hypersensitivity without adversely affecting their bond strength to dentin		

Contd...
the dentinal tubules following repeated application, thus reducing the bond strength[25] but according to authors[16,18] there is no interference with the bonding.

OXALATES

Oxalates application on the dentin results in the formation of calcium oxalate crystals in the dentinal tubules, which in turn interferes with the resin infiltration.[39] Oxalates are applied after acid etching since the oxalates like Bisblock have a pH of 1.5–1.8, causes an additional etching effect and thus leading to the extent of demineralization and penetration depth of the resin mismatch.[40] Compared to ethanol/water-based adhesives, acetone-based adhesives are more sensitive to moist bonding techniques, and in only one study[40] oxalates are compatible with the adhesive, i.e., Adper Single Bond.

Gluma (Glutaraldehyde and HEMA).

In eroded dentin, the glutaraldehyde in GLUMA fixes the collagen fibrils[43] exposed and HEMA helps in the infiltration of resin monomers into the collagen[43] thus increasing the bond strength.[25] When the bonding agent containing HEMA follows the application of GLUMA, the acidic effect of HEMA is repeated, thus favoring better penetration of the resin monomer achieving a greater bond strength.[44]

LASERS

Lasers work by the mechanism of thermal energy absorption,[40] thus, occluding and narrowing of dentinal tubules and melting of hydroxyapatite in the dentin.[46] These morphological changes interfere with the penetration of resin thus compromising the bond strength. Nd:YAG laser decreased the bond strength by creating morphological changes in the dentin.[47]

According to Yazici et al. Nd:YAG lasers did not interfere with the bonding.[48] Rolla JN reported that Nd:YAG laser irradiation promoted the micro-mechanical retention for self-etch adhesives, whereas did not interfere with the bonding of Universal adhesive such as Single Bond, Co2, Er:YAG, and Diode lasers decreased the bond strength of the adhesives studied.[46,52] Short-term use of red wavelength diode laser did not interfere with the bond strength when

Table 1: Contd...

Author/year	Desensitizing agents	Etch and rinse DBA	Self etch DBA	Type of bond strength/ type of bond failure	Conclusion
Cortiano FM et al./2016[29]	Bisblock (oxalate), Desensibilize Nano P (capo4)	2 step E and R Adper Single Bond Plus (SB) and OSP	MTBS/predominantly mixed	Oxalate DSA of one of the adhesive whereas Capo4 containing didn’t affect the dentin bonding	
Shafiei F et al./2017[30]	CPP-ACP tooth paste	Resin modified GIC and self-adhering composites	SBS/adhesive	Improved bond strength	
Siso et al./2017[31]	TMD	Clearfil Universal Bond (self-etch/etch and rinse)	MTBS/mostly adhesive	TMD group showed lower MTBS than control group	
Gupta et al./2017[32]	BG, hydroxyapatite, and diode laser	One step self-etch adhesive (Bond Force)	SBS/-	BG and hydroxyapatite increased SBS, whereas Diode laser decreased the bond strength.	
Mushtaq et al./2017[33]	Systemp (poly ethylene glycol dimethacrylate)	E and R adhesive (Prime and Bond NT), 2 SEA (Xeno V+, and Futurabond DC)	SBS/-	Systemp increased the BS for Prime and Bond NT DBA and decreased it for Xeno V+ and Futurabond DC	
Hongye Yang 1/2018[34]	CPP-ACP and Novamin	E&R adhesive - Adper ScotchBond Multi-Purpose	MTBS/adhesive followed by mixed	DSA were compatible with adhesives	
Pei D et al./2019[35]	Pure nano hydroxyl apatite and Bio-repair Dentodont HAP mixture	SEA-G-Bond and Clearfil S Bond	MTBS/mixed followed by adhesive	Pure nano hydroxyl apatite resulted in comparable bond strength and other agent decreased bond strength	
Jung JH/2019[36]	Ag-BioGlass Nano @ Mesoporous Silica Nanoparticles	Clearfil SE Bond	MTBS/-	DSA didn’t interfere with the bond strength	

BG=Bioglass, DBA-Dentin Bonding Agent, MTBS-Micro- tensile Bond Strength, BS- Bond Strength, MSBS-Micro-shear Bond Strength, Nd:YAG- Neodymium doped Yttrium Aluminium Garnet, CPP-ACP - Caesin Phosphopeptide, HAp- Hydroxy Apatite, TMD- Teethmate desensitizer, GIC- Glass Ionomer Cements, DC- Dual Curing, SEA- Self-etch Adhesive, Er:YAG- Erbium doped Yttrium aluminium garnet
used with Clearfil Tri S Bond.[15] When Carbon dioxide laser was used, the adhesive could not infiltrate the dentin substrate that is denatured with CO2 laser adequately, hence decrease in bond strength[34] Er:YAG laser decreased the bond strength,[35] since the adhesives micro-mechanical retention to the irradiated dentin is affected.[49]

8.0% ARGinine AND CA-CO$_3$

Calcium and phosphate ions precipitate in the alkaline environment created by the Ar-Ca-Co3 and block the dentinal tubules thus exhibiting desensitizing action.[50,51] The acidity of 4MET in adhesives is likely to solubilize the precipitate, thus reopening the tubules to permit the formation of resin tags to improve the bond strength.[52] Acidic pH of the G Bond yielded favorable bond strength whereas the S3 bond decreased the bond strength since it has a higher pH than G Bond.[22]

CASEIN PHOSPHOPEPTIDE-AMORPHOUS CALCIUM PHOSPHATE

CPP-ACP favors re-mineralization over demineralization which might resist the conditioning of the dentin during dentin bonding, reducing the bond strength.[53] On the contrary, CPP-ACP yielded favorable bonding with self-etch adhesives.[16,54] The application of CPP-ACP makes the surface more wet and reduces contact angle, thus favoring mechanical interlocking and adhesion.[55] All the studies concluded either CPP-ACP did not interfere with the bonding or increased the bond strength.

CALCIUM PHOSPHATE/BIO-SILICATE

The bond strength results are variable with different adhesives, acetone-based adhesives like Prime and Bond NT achieved favorable bond strength with Denshield because of the high vapor pressure and better penetration of acidic monomers.[10] Ethanol/water-based adhesives decrease the bond strength because of the water tree phenomenon[56] which in turn leads to incomplete polymerization[57] of the adhesive following the application of Denshield. Calcium phosphate-containing DSA did not interfere with the bonding of Etch and Rinse adhesives.[58] Clearfil Universal bond in Etch and Rinse mode achieved reduced bond strength with Teeth Mate Desensitizer[31] G Bond resulted in higher bond strength since 4MET can interact with calcium that is present in the hydroxylapatite that is formed following the application of calcium-containing DSA, whereas in Clearfil S3 bond, the higher pH gets neutralized by the DSA.[36]

DENTIN ADHESIVES

Systemp desensitizing agent increased the bond strength, when followed by the application of Prime N Bond NT, because the system acted as rewetting agent,[59] again with the adhesive may yield optimal wetting, thus dual wetting contributing to improved better strength. Xeno V+ was used, Systemp re-wetting combined with the acrylic acid present in the adhesives wetting resulted in phase separation of hydrophobic components leading to resin globule formation resulting in unfavorable bond strength.[60] Futurabond DC also decreased the bond strength, since it contains ethanol which leads to over wetting,[61] leading to the weakening of the resin dentin interface thus unfavorable bond strength.
ANTIBACTERIAL DSA
Chlorhexidine varnish reduced the bond strength, whereas chlorhexidine in gel form did not have any adverse effect on the self-etch and etch and rinse adhesives. Cervitec did not interfere with the bonding of the different adhesives. This review has included most of the studies evaluating the commonly used DSA and DBA and different bond strength tests, however, the limitation is data extraction limited to studies from 2010 to 2020 and studies in the English language only. In future, these types of studies have to be conducted simulating closer to the clinical conditions as far as possible, by creating hypersensitivity models, subjecting the specimens to thermocycling, thermomechanical aging. Blinding of the evaluators has to be performed to reduce the detection and performance bias.

CONCLUSION
According to the various articles included in this study, GLUMA and 8.0% arginine and Ca-CO3 when used as desensitizing agents along with different bonding agents, were found to be highly compatible without interfering with the bond strength of the dentin adhesives. For other desensitizing agents, compatibility with the different DBAs should be checked before the clinical use for successful bonding.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

REFERENCES
1. Brännström M. Sensitivity of dentine. Oral Surg Oral Med Oral Path 1999;2:124-7.
2. Pasthey DH, Livingston MJ, Reeder OW, Horner J. Effects of the degree of tubule occlusion on the permeability of human dentin in-vitro. Arch Oral Biol 1978;20:1127-33.
3. Susin AH, Vasconcellos WA, Saad JR, Oliveira Junior OB. Tensile bond strength of self-etching versus total-etching adhesive systems under different dentinal substrate conditions. Braz Oral Res 2007;21:61-7.
4. Kobler A, Schaller HG, Gernhardt CR. Effects of the desensitizing agents Gluma and Hyposens on the tensile bond strength of dentin adhesives Am J Dent 2008;21:389-92.
5. Aranha AC, Siqueira Junior Ade S, Cavalcante LM, Pimenta LA, Marchi GM. Microtensile bond strengths of composite to dentin treated with desensitizer products. J Adhes Dent 2006;8:85-90.
6. Kulunk S, Sarac D, Kulunk T, Karakas O. The effects of different desensitizing agents on the shear bond strength of adhesive resin cement to dentin J Esthet Restor Dent 2011;23:380-7.
7. Ravikumar N, Shankar P, Indira R. Shear bond strength of two dentin bonding agents with two desensitizers: An in vitro study. J Conserv Dent 2011;14:247-51.
8. Sailer I, Tettamanti S, Stawarczyk B, Fischer J, Hämmerle CH. In vitro study of the influence of dentin desensitizing and sealing on the shear bond strength of two universal resin cements. J Adhes Dent 2010;12:381-92.
9. Cheng L, Wang S, Che YH, Qian M. Study of three types of desensitizers in dentin bonding strength. J Biol Regul Homeost Agents 2017;31:557-65.
10. Canares G, Salgado T, Pines MS, Wolff MS. Effect of an 8.0% arginine and calcium carbonate desensitizing toothpaste on shear dentin bond strength. J Clin Dent 2012;23:68-70.
11. Escalante-Ótoral WG, Castro-Núñez GM, Jordá-Basso KC, Guimarães BM, Palma-Dîbo RG, Kuga MC. Evaluation of dentin desensitization protocols on the dentinal surface and their effects on the dentin bond interface. J Dent 2017;1:1-22.
12. Aguilar JD, Medeiros IS, Souza Junior MH, Loretto SC. Influence of the extended use of desensitizing toothpastes on dentin bonding, microhardness and roughness. Braz Dent J 2017;28:346-53.
13. Rubens Nazareno Garcia; Marcelo Giannini; Tomohiro Takagaki; Takaaki Sato; Naoko Matsu; Toru Nikaido; Junji Tagami. Effect of dentin desensitizers on resin cement bond strengths. RSBO, 2015;12:14-22.
14. De Andrade e Silva SM, Malacarne-Zanon J, Carvalho RM, Alves MC, De Goes MF, Antico-Ando A, et al. Effect of oxalate desensitizer on the durability of resin-bonded interfaces. Oper Dent 2010;35:610-7.
15. Can-Karabulut DC, Karabulut B. The effect of dentin hypersensitivity treatments on the shear bond strength to dentin of a composite material. Gen Dent 2011;59:e12-7.
16. Zorba YO, Erdemir A, Ercan E, Eldeniz AU, Kalaycioğlu B, Ulker M. The effects of three different desensitizing agents on the shear bond strength of composite resin bonding agents. J Mech Behav Biomed Mater 2010;3:399-404.
17. Arisu HD, Dalikhê E, Üçtaşlı MB. Effect of desensitizing agents on the microtensile bond strength of a two-step self-etch adhesive to dentin. Oper Dent 2011;36:153-61.
18. Bhatia S, Krishnasawmy MM. Effect of two different dentin desensitizers on the shear bond strength of two different bonding agents to dentin: An in vitro study. Indian J Dent Res 2012;23:703-8.
19. Youssry MM. Effect of re-etching oxalate-occluded dentin and enamel on bonding effectiveness of etch-and-rinse adhesives. J Adhes Dent 2012;14:31-8.
20. Wang Y, Liu S, Pei D, Du X, Ouyang X, Huang C. Effect of an 8.0% arginine and calcium carbonate in-office desensitizing agent on the micro tensile bond strength of self-etch dentin adhesives to human dentin. Am J Dent 2012;25:281-6.
21. Yang H, Pei D, Liu S, Wang Y, Zhou L, Deng D, et al. Effect of a functional desensitizing paste containing 8% arginine and calcium carbonate on the microtensile bond strength of etch-and-rinse adhesives to human dentin. Am J Dent 2013;26:157-62.
22. Pei D, Liu S, Huang C, Du X, Yang H, Wang Y, et al. Effect of pretreatment with calcium-containing desensitizer on the dentine bonding of mild self-etch adhesives. Eur J Oral Sci 2013;121:204-10.
23. Yang H, Pei D, Chen Z, Lei J, Zhou L, Huang C. Effects of the application sequence of calcium-containing desensitizing pastes during etch-and-rinse adhesive restoration. J Dent 2014;42:1115-23.
24. Makkar S, Goyal M, Kaushal A, Hegde V. Effect of desensitizing treatments on bond strength of resin composites measured at different time intervals. J Conserv Dent 2014;17:456-61.
25. Ding M, Shin SW, Kim MS, Ryu JJ, Lee JY. Effect of a desensitizer and CO2 laser irradiation on bond performance between eroded dentin and resin composite. J Adv Prosthodont 2014;6:165-70.
26. Andrea dti LS, Lopes MB, Guiraldo RD, Borges AH, Orçati Dorilêo MC, Goniñi A Jr. Effect of desensitizing agents on the bond strength of dental adhesive systems. Appl Adhes Sci 2014;2:1-8.
27. Dilber E, Çevik P, Akpinar YZ, Ozturk AN. The effects of different dentin hypersensitivity treatments on the shear bond strength between adhesive composite resin and dentin. Clin Dent Res 2014;38:11-20.
28. Sabatini C, Wu Z. Effect of desensitizing agents on the bond strength of mild and strong self-etching adhesives. Oper Dent 2015;40:548-57.
29. Cortiano FM, Rached RN, Mazur RF, Vieira S, Freire A, deSouza EM. Effect of desensitizing agents on the microtensile bond strength of two-step etch-and-rinse adhesives to dentin. Eur J Oral Sci 2016;124:309-15.
30. Shafee F, Darafshi R, Memarpour M. Bond strength of self adhering materials: Effect of dentin desensitizing treatment with CPP-ACP paste. Int J Periodontics Restorative Dent 2017;37:e337-43.
31. Siso SH, Dönmez N, Kahya DS, Uslu YS. The effect of calcium-containing desensitizing agent on the microtensile bond strength of etch-and-rinse adhesives to human dentin. Braz Oral Res 2017;31:141-22.
32. Gupta T, Nagaraja S, Mathew S, Narayana IH, Madhu KS, Dinesh K. Effect of desensitization using bioactive glass, hydroxyapatite, and diode laser on the shear bond strength of resin composites measured at different time intervals: An in vitro Study. Contemp Clin Dent 2017;8:244-7.
33. Munchia EP, Mathai V, Nair RS, Angelo JMC. The effect of a dentin desensitizer on the shear bond strength of composite to dentin using three different bonding agents: An in vitro study. J Conserv Dent 2017;20:37-40.
34. Yang H, Chen Z, Yan H, Huang C. Effects of calcium-containing desensitizers on the bonding stability of an etch-and-rinse adhesive against long-term water storage and pH cycling. Dent Mater 2018;37:122-9.
35. Pei D, Meng Y, Li Y, Liu J, Lu Y. Influence of nano-hydroxyapatite containing desensitizing toothpastes on the sealing ability of dentinal tubules and bonding performance of self-etch adhesives. J Mech Behav Biomed Mater 2018;3:399-404.
36. Jung JH, Kim DH, Yoo KH, Yoon SY, Kim Y, Bae MK, et al. Dentin sealing and antibacterial effects of silver-sorted bioactive glass/mesoporous silica nanocomposite: An in vitro study. Clin Oral Investig 2019;23:253-66.
37. Sirisha K, Rambabu T, Ravishankar Y, Pabbati R. Validity of bond strength tests: A critical review. Part I. J Conserv Dent 2014;17:305-11.
38. Sano H, Shono T, Sonoda H, Takatsu T, Ciucchi B, Carvalho R, et al. Relationship between surface area for adhesion and tensile bond strength – Evaluation of a micro-tensile bond test. Dent Mater 1994;10:236-40.
39. Pashley DH, Carvalho RM, Pereira JC, Villanueva R, Tay FR. The use of oxalate to reduce dentin permeability under adhesive restorations. Am J Dent 2005;18:89-94.
40. Carrilha MR, Carvalho RM, Tay FR, Yiu C, Pashley DH. Durability of dentin-bonded restorations to water and oil storage during bonding. J Conserv Dent 2005;18:235-9.
41. Shafiei F, Doozandeh M. Impact of oxalate desensitizer combined with ethylene-diamine tetra acetate acid-conditioning on dentin bond strength of one-bottle adhesives during dry bonding. J Conserv Dent 2013;16:252-6.
42. Munksgaard EC, Asmussen E. Bond strength between dentin and restorative resins mediated by mixtures of HEMA and glutaraldehyde. J Dent Res 1984;63:1087-9.
43. Van Landuyt KL, Snaauwaert J, De Munck J, Peumans M, Yoshida Y, Poltevin A, et al. Systematic review of the chemical composition of contemporary dental adhesives. Biomaterials 2007;28:3757-65.
44. Paes Leme AF, dos Santos JC, Giannini M, Wada RS. Occlusion of dentin tubules by desensitizing agents. Am J Dent 2004;17:368-72.
45. Lan WH, Lee BS, Liu HC, Lin CP. Morphologic study of Nd: YAG laser usage in treatment of dentinal hypersensitivity. J Endod 2004;30:131-4.
46. Liu HC, Lin CP, Lan WH. Sealing depth of Nd: YAG laser on human dentinal tubules. J Endod 1997;23:691-3.
47. Ferreira LS, Ferreira LS, Franci C, Navarro RS, Calheiros FC, Eduardo Cde P. Effects of Nd: YAG laser irradiation on the hybrid layer of different adhesive systems. J Adhes Dent 2009;11:117-25.
48. Yazici E, Gurgan S, Gutknecht N, Imazato S. Effects of erbium: Yttrium-aluminum-garnet and neodymium: yttrium-aluminum-garnet laser hypersensitivity treatment parameters on the bond strength of self-etch adhesives. Lasers Med Sci 2010;25:511-6.
49. Caetano de Souza N, Jorge JR, Batista O, Caetano de Souza N, Jorge JRP, Batista O, de Oliveira JR. Effect of Er: YAG laser pulse repetition rate variation on bond strength to rewet dentin. J Oral Laser Appl 2007;7:239-45.
50. Petrou I, Heu R, Stranick M, Lavender S, Zaidel L, Cummins D, et al. A breakthrough therapy for dentin hypersensitivity: How dental products containing 8% arginine and calcium carbonate work to deliver effective relief of sensitive teeth. J Clin Dent 2009;20:23-31.
51. Kleinberg I. SensiStat. A new saliva-based composition for simple and effective treatment of dentinal sensitivity pain. Dent Today 2002;21:42-7.
52. Yoshiara K, Yoshida Y, Nagaoka N, Fukegawa D, Hayakawa S, Mine A, et al. Nanocontrolled molecular interaction at adhesive interfaces for hard tissue re-construction. Acta Biomater 2010;6:3573-82.
53. Reynolds EC. Anticariogenic complexes of amorphous calcium phosphate stabilized by casein phosphopeptides: A review. Spec Care Dentist 1998;18:8-16.
54. Adebayo OA, Burrow MF, Tys MJ. Dentine bonding after CPP-ACP paste treatment with and without conditioning. J Dent 2008;36:1013-4.
55. Marshall SJ, Bayne SC, Baier R, Tomisa AP, Marshall GW. A review of adhesion science. Dent Mater 2010;26:611-6.
56. Tay FR, Pashley DH. Water treeing – A potential mechanism for degradation of dentin adhesives. Am J Dent 2003;16:6-12.
57. Duarte S Jr., Perdigão J, Lopes MM. Effect of dentin conditioning time on nanoleakage. Oper Dent 2006;31:500-11.
58. Borges BC, Souza-Junior EJ, da Costa Gde F, Pinheiro IV, Sinhoreti MA, Braz R, et al. Effect of dentin pre-treatment with a casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) paste on dentin bond strength in tridimensional cavities. Acta Odontol Scand 2013;71:271-7.
59. Ivoclar Vivadent. Systemp. Available from: https://www.ivoclarvivadent.com. [Last accessed on 2021 Sep 15].
60. Tay FR, Gwinnett JA, Wei SH. Micromorphological spectrum from over drying to over wetting acid-conditioned dentin in water-free acetone-based, single-bottle primer/adhesives. Dent Mater 1996;12:236-44.
61. Voco Futurabond DC. Available from: http://www.voco.com/en/product/futurabond_dc/index.html. [Last accessed on 2021 Sep 15].
62. Sengun A, Koyuturk AE, Sener Y, Ozer F. Effect of desensitizers on the bond strength of a self-etching adhesive system to caries-affected dentin on the gingival wall. Oper Dent 2005;30:430-5.
63. Dalí M, Ercan E, Zorba YO, Ince B, Şahbaz C, Bahşi E, et al. Effect of 1% chlorhexidine gel on the bonding strength to dentin. J Dent Sci 2010;5:8-13.
64. Ercan E, Erdemir A, Zorba YO, Eldeniz AU, Dalí M, Ince B, et al. Effect of different cavity disinfectants on shear bond strength of composite resin to dentin. J Adhes Dent 2009;11:343-6.