Steady laminar natural convection of nanofluid under the impact of magnetic field on two-dimensional cavity with radiation

S Saleem
King Khalid University

Trung Nguyen-Thoi
Ton Duc Thang University

Ahmad Shafee
College of Technological Studies

Zhixiong Li
University of Wollongong, Ocean University of China, lizhixio@uow.edu.au

Ebenezer Bonyah
University of Education Winneba

See next page for additional authors

Follow this and additional works at: https://ro.uow.edu.au/eispapers1

Part of the Engineering Commons, and the Science and Technology Studies Commons

Recommended Citation
Saleem, S; Nguyen-Thoi, Trung; Shafee, Ahmad; Li, Zhixiong; Bonyah, Ebenezer; Khan, A; and Shehzadi, Iqra, "Steady laminar natural convection of nanofluid under the impact of magnetic field on two-dimensional cavity with radiation" (2019). Faculty of Engineering and Information Sciences - Papers: Part B. 2943.
https://ro.uow.edu.au/eispapers1/2943

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
Steady laminar natural convection of nanofluid under the impact of magnetic field on two-dimensional cavity with radiation

Abstract
In current investigation, steady free convection of nanofluid has been presented in occurrence of magnetic field. Non-Darcy model was utilized to employ porous terms in momentum equations. Working fluid is H2O based nanofluid. Radiation effect has been reported for various shapes of nanoparticles. Impacts of shape factor, radiation parameter, magnetic force, buoyancy and shape impact on nanofluid treatment were demonstrated. Result demonstrated that maximum convective flow is observed for platelet shape. Darcy number produces more random patterns of isotherms.

Disciplines
Engineering | Science and Technology Studies

Publication Details
Saleem, S., Nguyen-Thoi, T., Shafee, A., Li, Z., Bonyah, E., Khan, A. U. & Shehzadi, I. (2019). Steady laminar natural convection of nanofluid under the impact of magnetic field on two-dimensional cavity with radiation. AIP Advances, 9 (6), 065008-1-065008-9.

Authors
S Saleem, Trung Nguyen-Thoi, Ahmad Shafee, Zhixiong Li, Ebenezer Bonyah, A Khan, and Iqra Shehzadi

This journal article is available at Research Online: https://ro.uow.edu.au/eispapers1/2943
Steady laminar natural convection of nanofluid under the impact of magnetic field on two-dimensional cavity with radiation

Cite as: AIP Advances 9, 065008 (2019); https://doi.org/10.1063/1.5109192
Submitted: 07 May 2019 . Accepted: 30 May 2019 . Published Online: 12 June 2019

S. Saleem, Trung Nguyen-Thoi, Ahmad Shafee, Zhixiong Li, Ebenezer Bonyah, A. U. Khan, and Iqra Shehzadi

ARTICLES YOU MAY BE INTERESTED IN

Reducing virtual source size by using facetless electron source for high brightness
AIP Advances 9, 065001 (2019); https://doi.org/10.1063/1.5098528

Martensitic detwinning microstructures in crystalline materials - mechanical modeling with exact computation of relaxed energy: A time incremental formulation
AIP Advances 9, 065012 (2019); https://doi.org/10.1063/1.5097882

Linear stability characteristics of the pressure-gradient driven flow confined in concentric cylinders with the rotation of outer cylinder and translation of inner cylinder
AIP Advances 9, 065013 (2019); https://doi.org/10.1063/1.5100074
Steady laminar natural convection of nanofluid under the impact of magnetic field on two-dimensional cavity with radiation

Cite as: AIP Advances 9, 065008 (2019); doi: 10.1063/1.5109192
Submitted: 7 May 2019 • Accepted: 30 May 2019 •
Published Online: 12 June 2019

S. Saleem,1 Trung Nguyen-Thoi,2,3 Ahmad Shafee,4 Zhixiong Li,5,6 Ebenezer Bonyah,7,a) A. U. Khan,8 and Iqra Shehzadi9

AFFILIATIONS
1 Dept. of Mathematics, College of Science, King Khalid University, Abha 61413, Saudi Arabia
2 Division of Computational Mathematics and Engineering, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam
3 Faculty of Civil Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam
4 Public Authority of Applied Education and Training, College of Technological Studies, Applied Science Department, Shuwaikh 70654, Kuwait
5 School of Engineering, Ocean University of China, Qingdao 266100, China
6 School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
7 Department of Information Technology Education, University of Education Winneba (Kumasi Campus), Kumasi, Ashanti 00233, Ghana
8 Department of Mathematics, Gomal University, D. I. Khan 29050, Khyber Pakhtunkhwa, Pakistan
9 Department of Mathematics, Air University, PAF Complex E-9, Islamabad 44000, Pakistan

a) Corresponding author: ebbonya@yahoo.com, ebonyah@uew.edu.gh (E. Bonyah)

ABSTRACT
In current investigation, steady free convection of nanofluid has been presented in occurrence of magnetic field. Non-Darcy model was utilized to employ porous terms in momentum equations. Working fluid is H2O based nanofluid. Radiation effect has been reported for various shapes of nanoparticles. Impacts of shape factor, radiation parameter, magnetic force, buoyancy and shape impact on nanofluid treatment were demonstrated. Result demonstrated that maximum convective flow is observed for platelet shape. Darcy number produces more random patterns of isotherms.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5109192

I. INTRODUCTION

Thermal behavior in presence of buoyancy force is an important need in manufacturing and production progressions such as cooling processes. Mostly in the production mediums, it is usually imagined in the development of micro systems. Wu and Wang deliberated time-periodic natural convective in an inclined permeable closure. Cheikh et al. scrutinized nanoliquids migration in a cavity shaped medium using rheological properties. An analysis of combined behavior of CuO-water nanoliquid within a tank inside a regime of corner heater was explained by Ismael et al. Some of the important and novel work related to natural convection is referred in Refs. 4–14.

Heat transfer can be improved as per need of the industry by changing the physical conditions, turbulent boundary layer and augmentation in thermal treatment involved fluid. Improving...
The ordinary liquid by adding nano sized particles is the finest process. Primarily, Maxwell14 familiarized the notion of probability of augmentation of thermal conductivity by consuming tiny particles which has specific restrictions as blocking. Secondly, Choi16 established that the k of working fluid meaningfully can be enhanced by nanoparticles. Effects of Lorentz forces and migration of CuO-H$_2$O nanoliquid in a permeable semi annulus was conducted by Sheikholeslami et al.17 Enrichment of CO2 nanofluids by absorption was discussed Zhang et al.18 Mixed convective nanofluid in an expelled cavity with fluid-solid interface of elastic-step type corrugation was demonstrated by Selimefendigil and Oztop.19 Khanafger et al.20 inspected nanomaterial migration with heat transfer. Various uses of nanomaterials were reported recently.21–32

Sadiq et al.33 initiated the simulation of micropolar nanofluid with oscillator. Stretched flow of Casson nanomaterial about an inclined permeable cylinder with slip effects was investigated by Usman et al.34 Ebad and Sharif considered the influence of magnetic force on nanomaterial phenomenon. To analysis entropy production of nanomaterial, numerical approach was applied by Sheremet al.35 A number of advantages of nanofluids were described in numerous literatures.

Radiation was serious influence in physical science and planning uses. Inspiration of radiation impact on nanomaterial migration has been discovered by Sheikholeslami et al.17 Analysis of radiation with porous zone has been demonstrated by Raju et al.36 Salem et al.37 scrutinized migration of magnetized Jeffrey fluid round a non-fixed cone involving chemical reaction. Few important and relevant literatures for numerous physical characteristics like MHD and radiation are registered in Refs. 47–64.

This inquiry intention to examine the behavior of thermal radiation on natural convective nanofluid through a permeable two dimensional enclosure. The characters of Da, Rd, nanoparticle concentration, and Hartmann number are revealed by Control Volume Finite Element Method. Effects of various important variables were deliberated in graphs.

II. EXPLANATION OF GEOMETRY

Fig. 1 exhibits the active geometric variables of present article. Triangle sample element has been depicted in this figure, too. Inner surface was under the uniform heat flux and outer one was cold. Cylinder is occupied with nanofluid and stimulated by uniform magnetic field.

III. FORMULAS AND APPROACH

In current investigation, laminar two dimensional free convection of nanofluid which is affected by magnetic field is deliberated. For porous media, non-Darcy model is involved. Therefore, the formulas are:

\begin{equation}
\frac{\partial v}{\partial y} + \frac{\partial u}{\partial x} = 0,
\end{equation}

\begin{equation}
\frac{\mu_{nf}}{\rho_{nf}} \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) + B_0^2 v (\sin \beta) \alpha_{nf} (\cos \beta) - \frac{1}{\rho_{nf}} \frac{\partial P}{\partial x} - \frac{1}{\rho_{nf}} \frac{\mu_{nf}}{K} u
\end{equation}

\begin{equation}
- (T_c - T) \beta_{nf} g \sin \beta + \sigma_{nf} B_0^2 [-u (\sin \beta)]^2 = \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y},
\end{equation}

\begin{equation}
\frac{\mu_{nf}}{\rho_{nf}} \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right) - (T_c - T) \beta_{nf} g \cos \beta - \frac{1}{\rho_{nf}} \frac{\partial P}{\partial y} - \frac{1}{\rho_{nf}} \frac{\mu_{nf}}{K} v
\end{equation}

\begin{equation}
+ \sigma_{nf} B_0^2 [-v (\cos \beta)]^2 + u (\sin \beta) (\cos \beta) = \frac{\partial v}{\partial y} + u \frac{\partial v}{\partial x},
\end{equation}

\begin{equation}
\frac{1}{(\rho C_p)_{nf}} \frac{\partial q_r}{\partial y} + \left(\frac{\partial T}{\partial x} + \frac{\partial T}{\partial y} \right) = k_{nf} \left(\frac{(\rho C_p)_{nf}^{-1}}{\partial^2 T/\partial x^2 + \partial^2 T/\partial x^2} \right),
\end{equation}

\begin{equation}
\left[T^4 \cong 4T_s^3 T - 3T_s^4, q_r = -\frac{4\sigma_{nf}}{3\beta_{nf}} \frac{\partial T}{\partial y} \right].
\end{equation}
To estimate μ_{nf} and k_{nf}:
\[
\mu_{nf} = \mu_{static} + \frac{k_{BROWNIA}}{k_f} \times \frac{\mu_f}{Pr_f},
\]
\[
k_{BROWNIA} = 5 \times 10^4 c_p \rho^g_0 (d_p, \phi, T) \sqrt{\frac{k_f}{\rho_d d_p}},
\]
\[
k_f = \frac{m_{nf} + (k_f - k_p) \varphi + k_f + k_p}{- (k_f - k_p) m \varphi + (k_f - k_p) \varphi + m_kf + k_p + k_f}.
\]

To find the characteristics of testing fluid, we employed similar
Corresponding to Eq. (12), we have:
\[
U = \frac{UL}{\alpha_{nf}}, \quad V = \frac{V}{\alpha_{nf}}, \quad \theta = \frac{T - T_c}{\Delta T}, \quad C = \frac{d''L}{k_f}, \quad (XL, YL) = (x, y),
\]
\[
\Psi = \frac{\psi}{\alpha_{nf}}, \quad \Omega = \frac{\omega L^2}{\alpha_{nf}}.
\]

Corresponding to E. (12), we have:
\[
\Psi_{YY} + \Psi_{XX} = -\Omega_y,
\]
\[
U \frac{\partial \Omega}{\partial X} + V \frac{\partial \Omega}{\partial Y} = Pr \frac{A_2 A_3}{A_2 A_4} \left(\frac{\partial^2 \Omega}{\partial Y^2} + \frac{\partial^2 \Omega}{\partial X^2} \right) + Pr Ha \frac{A_2 A_3}{A_2 A_4} \left(\frac{\partial U}{\partial X} \cos \lambda \sin \lambda - \frac{\partial V}{\partial X} (\cos \lambda)^2 \right)
\]
\[
+ \frac{\partial V}{\partial X} (\sin \lambda)^2 \left(\frac{\partial \Omega}{\partial Y} \cos \lambda \sin \lambda \right) \right)
\]
\[
+ Pr Ra \frac{A_2 A_3}{A_2 A_4} \left(\frac{\partial \theta}{\partial X} \cos \lambda \sin \lambda \right) - Pr \frac{A_2 A_3}{A_2 A_4} \Omega_y.
\]

In Eq. (14) and (15), following parameters has been used:
\[
Ra = g(\phi \rho)^2 \Delta T L^2 (\mu \sigma_f), \quad Ha = L B_0 \sqrt{\sigma_f / \mu_f},
\]
\[
A_1 = \frac{\rho_{nf}}{\rho_f}, \quad A_2 = \frac{(\rho C_p)^nf}{(\rho C_p)^f}, \quad A_3 = \frac{(\rho C_p)^nf}{(\rho C_p)^f}, \quad A_4 = \frac{k_{nf}}{k_f}, \quad A_5 = \frac{\mu_{nf}}{\mu_f}, \quad A_6 = \frac{\sigma_{nf}}{\sigma_f}, \quad Pr = \nu f / \sigma_f.
\]

To solve Eq. (13) to (15), we considered the boundary conditions as below:
\[
\frac{\partial \theta}{\partial n} = 1.0, \quad @ r = r_{in}
\]
\[
\theta = 0.0, \quad @ r = r_{out}
\]
\[
\Psi = 0.0, \quad @ \text{every walls}
\]

To estimate rate of heat transfer the following equations can be used:
\[
Nu_{loc} = 1 \left(1 + \frac{4}{3} \left(\frac{k_{nf}}{k_f} \right)^{-1} R_d \right) \left(\frac{k_{nf}}{k_f} \right)
\]
\[
Nu_{ave} = \frac{1}{S} \int_s N_{Nu} \text{ds}.
\]

Initially, Sheikholeslami utilized the emerging authoritative scheme (CVFEM) for problems related to heat transfer. Both Finite volume method (FVM) and Finite element method (FEM) played important role in the development of CVFEM. In the last iteration, Gauss-Seidel technique was engaged to compute the scalars. Various new powerful numerical methods were suggested in the world.

IV. CODE VERIFICATION AND GRID DESCRIPTION

In order to confirm the precision of existing FORTRAN code, the program has been engaged to compute former available

| Table I. Changing of Nu_{ave} for different grids at $Ra = 10^5, \phi = 0.04, Da = 100, Ha = 20$ and $Rd = 0.8$. |
|---|---|---|---|---|---|
| 51 | 151 | 61 | 181 | 71 | 211 | 81 | 241 | 91 | 271 |
| 7.12552 | 7.12941 | 7.13476 | 7.13501 | 7.13737 |

FIG. 2. Validation for nanofluid (Khanaf et al. 59).
articles. As exposed in Fig. 2, the precision of this algorithm is guaranteed. Also, the consistent outputs must not reliant on grid. Table I revealed the outcomes of various meshes for different cases and proposed that the mesh size must be 71×211.

V. RESULTS AND DISCUSSION

In current report, nanomaterial management under the impact of magnetic forces was simulated. Fig. 2. Display the authentication for nanofluid $Gr = 10^4$, $\phi = 0.1$. We showed that the existing data were in exceptional arrangement with prior one. The inspiration of Darcy parameter on streamlines and isotherms for nanoliquid with and without magnetic field is analyzed numerically and portrayed in Figs. 3, 4, and 5. It is illustrious that aggregate the amount of Ha the array of streamlines is changed which can be obviously perceived from the central portion of the cavity. While, a minor escalation in the isotherm is detected for $Ha = 0$ or no magnetic fluid while the large values of Hartmann numbers partially $Ha = 20$ isotherms of the nanofluid and results the escalation in Nu. A declaration is being made about that the Hartmann number is essential to augment and significantly influence the streamlines and isotherms. One can perceive that there exists a formerly clock-wise eddy. An enhancement in Da reasons to create the secondary eddy which revolves in an anti-clockwise manner and the primary circle directed to the higher side. When magnetic employs, then it bases the central circle to become tougher and directed upwards. Allowing to θ contour, it is establish that isotherms become more complex with zero magnetic force.

Changes of Nu_{ave} corresponding parameters have been demonstrated in Fig. 6 and Eq. (20):

$$Nu_{ave} = 4.19 + 0.031m + 1.57Rd + 2.67\log(Ra) + 0.64Da - 0.09Ha + 0.2m Ha - 0.31Rd Ha - 0.77Rd Ha + 0.27\log(Ra) Da - 0.59\log(Ra) Ha + 0.10Ha Da - 2.74 \times 10^{-3} m^2$$ (20)

Fig. 6 displays the impact of $Ra, Ha, Rd, m, and Da$ on average Nusselt number, respectively. Thermal radiation is supportive to advance the flow due to convective. The manners of permeability are parallel with the Rd. Hence, Nu_{ave} acts as an augmenting function for the permeability and Rd. Also, as the Rayleigh number produce a reduction in the temperature which results in increasing Nu_{ave}.

FIG. 3. Effect of Da on nanofluid behavior ($Da = 100$ (——) and $Da = 0.01$ (- - -)) when $Ra = 10^3$, $m = 5.7$, $Rd = 0.8$.

![Streamlines and Isotherms](image-url)
FIG. 4. Impacts of Ha on nanofluid flow when $Ra = 10^5$, $Da = 0.01$, $Rd = 0.8$, $m = 5.7$, $\phi = 0.04$.

FIG. 5. Impacts of Ha on nanofluid flow when $Ra = 10^5$, $Da = 100$, $Rd = 0.8$, $m = 5.7$, $\phi = 0.04$.
\(Ra = 10^4, Rd = 0.4, \phi = 0.04, m = 4.35 \)

\(Da = 50, Rd = 0.4, m = 4.35, \phi = 0.04 \)

\(Ra = 10^4, Ha = 10, Da = 50, \phi = 0.04 \)

FIG. 6. Influences of \(Ra, Ha, Rd, m, Da \) on \(Nu_{ave} \).
VI. CONCLUSIONS

In this scientific analysis steady laminar natural convection of nanofluid with magnetized cavity is performed. Application takes more importance in appearance of radiation and porosity. Innovative numerical technique was adopted to simulate the behavior of pertinent parameters. The graphical analysis is carried out for with and without magnetic effects. It is perceived that Hartmann number is important to augment and expressively influence the streamlines and isotherms. Convection enhances with an increase of thermal radiation in the system.

ACKNOWLEDGMENTS

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research groups program under Grant No. R.G.P.2/51/40.

NOMENCLATURE

- \(\kappa \) : thermal conductivity
- \(C_p \) : heat capacity
- \(\mu \) : dynamic viscosity
- \(R_d \) : radiation parameter
- \(D_a \) : Darcy number
- \(\beta \) : thermal expansion coefficient
- \(R_a \) : Rayleigh number
- \(H_a \) : Hartmann number
- \(Re \) : Reynolds number
- \(q_r \) : radiation heat flux
- \(m \) : shape factor
- \(p \) : pressure
- \(g \) : gravitational acceleration vector

Greek symbols

- \(\varepsilon \) : electric conductivity
- \(\phi \) : volume fraction
- \(\sigma \) : electrical conductivity

Subscripts

- \(f \) : base fluid
- \(p \) : particle
- \(nf \) : nanofluid

REFERENCES

1. F. Wu and G. Wang, “Numerical simulation of natural convection in an inclined porous cavity under time-periodic boundary conditions with a partially active thermal side wall,” RSC Adv. 7(28), 17519–17530 (2017).
2. N. Ben Cheikh, A. J. Chamkha, B. Ben-Beya, and T. Lili, “Natural convection of water-based nanofluids in a square enclosure with non-uniform heating of the bottom wall,” J. Mod. Phys. 4(02), 147 (2013).
3. M. A. Ismael, E. Abu-Nada, and A. J. Chamkha, “Mixed convection in a square cavity filled with CuO-water nanofluid heated by corner heater,” Int. J. Mech. Sci. 133, 42–50 (2017).
4. N. S. Khan, T. Gul, M. A. Khan, E. Bonyah, and S. Islam, “Mixed convection in gravity-driven thin film non-Newtonian nanofluids flow with gyrotactic microorganisms,” Results in Physics 7, 4033–4049 (2017).
5. Z. Li, M. Sheikholeslami, A. J. Chamkha, Z. A. Raiazah, and S. Saleem, “Control volume finite element method for nanofluid MHD natural convective flow inside a sinusoidal annulus under the impact of thermal radiation,” Computer Methods in Applied Mechanics and Engineering 338, 618–633 (2018).
6. M. Sheikholeslami, I. Khan, and I. Tili, “Non-equilibrium model for nanofluid free convection inside a porous cavity considering Lorentz forces,” Scientific Reports 8, 16881 (2018).
7. M. Sheikholeslami, “Magnetic source impact on nanofluid heat transfer using CVFEM,” Neural Computing and Applications 30(4), 1055–1064 (2018).
8. M. Sheikholeslami, “Application of Darcy law for nanofluid flow in a porous cavity under the impact of Lorentz forces,” Journal of Molecular Liquids 266, 495–503 (2018).
9. M. Sheikholeslami, S. A. Shehzad, and Z. Li, “Water based nanofluid free convection heat transfer in a three dimensional porous cavity with hot sphere obstacle in existence of Lorentz forces,” International Journal of Heat and Mass Transfer 125, 375–386 (2018).
10. M. Sheikholeslami, “Numerical modeling of nano enhanced PCM solidification in an enclosure with metallic fin,” Journal of Molecular Liquids 259, 424–438 (2018).
11. M. Sheikholeslami, “Numerical investigation for CuO-H2O nanofluid flow in a porous channel with magnetic field using mesoscopic method,” Journal of Molecular Liquids 249, 739–746 (2018).
12. M. Sheikholeslami and M. K. Sadoughi, “Simulation of CuO-water nanofluid heat transfer enhancement in presence of melting surface,” International Journal of Heat and Mass Transfer 116, 909–919 (2018).
13. M. Sheikholeslami and M. Seyednezhad, “Nanofluid heat transfer in a permeable enclosure in presence of variable magnetic field by means of CVFEM,” International Journal of Heat and Mass Transfer 114, 1169–1180 (2017).
14. T. N. Ahmed and I. Khan, “Mixed convection flow of sodium alginate (SA-NaAlg) based molybdenum disulphide (MoS2) nanofluids: Maxwell Garnetts and Brinkman models,” Results in Physics 8, 752–757 (2018).
15. J. C. Maxwell, Electricity and Magnetism (Clarendon Press, 1873).
16. S. U. S. Choi and J. A. Estman, “Enhancing thermal conductivity of fluids with nanoparticles,” in Proc. ASME Int. Mech. Eng. Congr. Exp., San Francisco, CA, USA, 1995, pp. 99–105.
17. M. Sheikholeslami and J. A. Chamkha, “Flow and convective heat transfer of a ferro-nanofluid in a double-sided lid-driven cavity with a wavy wall in the presence of a variable magnetic field,” Numer. Heat Transf. A, Appl. 69(10), 1186–1200 (2016).
18. Z. Zhang, J. Cai, F. Chen, H. Li, W. Zhang, and W. Qi, “Progress in enhancement of CO2 absorption by nanoparticles: A mini review of mechanisms and current status,” Renew. Energy 118, 527–535 (2018).
19. F. Selimefendigil and H. F. Özipt, “Fluid-solid interaction of elastic-step type corrugation effects on the mixed convection of nanofluid in a vented cavity with magnetic field,” Int. J. Mech. Sci. 152, 185–197 (2019).
20. K. Kanafer, K. Vafai, and M. Lightstone, “Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids,” Int. J. Heat Mass Transf 46(19), 3639–3653 (2003).
21. S. A. Farshad and M. Sheikholeslami, “Nanofluid flow inside a solar collector utilizing twisted tape considering exergy and entropy analysis,” Renewable Energy 141, 246–258 (2019).
22. Z. Li, M. Sheikholeslami, M. Ayani, M. Shamlooei, A. Shafee, M. I. Waly, and I. Tili, “Acceleration of solidification process by means of nanoparticles in an energy storage enclosure using numerical approach,” Physica A: Statistical Mechanics and its Applications 524, 540–552 (2019).
23. M. Sheikholeslami, A. Zareei, M. Jafaryar, A. Shafee, Z. Li, A. Smida, and I. Tili, “Heat transfer simulation during charging of nanoparticle enhanced PCM within a channel,” Physica A: Statistical Mechanics and its Applications 525, 557–565 (2019).
24. M. M. Bhatti, M. Sheikholeslami, A. Shahid, M. Hassan, and T. Abbas, “Entropy generation on the interaction of nanoparticles over a stretched surface with thermal radiation,” Colloids and Surfaces A: Physicochemical and Engineering Aspects 570, 368–376 (2019).
24. M. Sheikholeslami, M. Jafaryar, A. Shafee, Z. Li, and R.-u. Haq, “Heat transfer of nanoparticles employing innovative turbulator considering entropy generation,” International Journal of Heat and Mass Transfer 136, 1233–1240 (2020).
25. M. Sheikholeslami, M. Jafaryar, A. Shafee, and Z. Li, “Hydrothermal and second law behavior for charging of NEPCM in a two dimensional thermal storage unit,” Chinese Journal of Physics 58, 244–252 (2019).
26. M. Sheikholeslami, A. Arakbooshar, I. Khan, A. Shafee, and Z. Li, “Impact of Lorentz forces on Fe3O4-water ferrofluid entropy and exergy treatment within a permeable semi annulus,” Journal of Cleaner Production 221, 885–898 (2019).
27. M. Sheikholeslami, M. Jafaryar, A. Shafee, and Z. Li, “Simulation of nanoparticles application for expediting melting of PCM inside a finned enclosure,” Physica A: Statistical Mechanics and its Applications 523, 544–556 (2019).
28. M. Sheikholeslami, H. Keramati, A. Shafee, Z. Li, O. A. Alshaw, and I. Tili, “Solidification of NEPCM under the effect of magnetic field in a two dimensional thermal storage unit,” International Journal of Heat and Mass Transfer 136, 963–977 (2019).
29. M. Sheikholeslami, S. A. M. Mehrayan, A. Shafee, and M. A. Shermet, “Variable magnetic forces impact on magnetizable hybrid nanofluid heat transfer through a circular cavity,” Journal of Molecular Liquids 277, 388–396 (2019).
30. M. A. Sadiq, A. U. Khan, S. Saleem, and S. Nadeem, “Numerical simulation of oscillatory oblique stagnation point flow of a magnetico micropolar nanofluid,” RSC Advances 9, 4751–4764 (2019).
31. M. Usman, F. A. Soomro, R. U. Haq, W. Wang, and O. Defterli, “Thermal and velocity slip effects on Casson nanofluid flow over an inclined permeable stretching cylinder via collocation method,” Int. J. Heat Mass Transfer 122, 1255–1263 (2018).
32. A. Ebaid and M. A. A. Sharif, “Application of Laplace transform for the exact effect of a magnetic field on heat transfer of carbon nanotubes-suspended nanofluids,” Z. Naturforsch. A 70, 471–475 (2015).
33. M. Sheikholeslami, Z. Shah, A. Shafee, I. Khan, and I. Tili, “Uniform magnetic force impact on water based nanofluid thermal behavior in a porous enclosure with ellipse shaped obstacle,” Scientific Reports (2019).
34. Z. Shah, E. Bonyah, S. Islam, and T. Gu, “Impact of thermal radiation on electrical MHD rotating flow of carbon nanotubes over a stretching sheet,” AIP Advances 9, 015115 (2019).
35. M. Sheikholeslami, “New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media,” Computer Methods in Applied Mechanics and Engineering 344, 319–333 (2019).
36. A. Ali, M. Sulaiman, S. Islam, Z. Shah, and E. Bonyah, “Three-dimensional magnetohydrodynamic (MHD) flow of Maxwell nanofluid containing gyrotactic micro-organisms with heat source/sink,” AIP Advances 8, 085303 (2018).
37. M. Sheikholeslami, M. Jafaryar, S. Saleem, Z. Li, A. Shafee, and Y. Jiang, “Nanofluid heat transfer augmentation and exergy loss inside a pipe equipped with innovative turbulators,” International Journal of Heat and Mass Transfer 126(B), 156–163 (2018).
38. S. Saleem, H. Firdous, S. Nadeem, and A. U. Khan, “Convective heat and mass transfer in magnetof Walter’s R nanofluid flow induced by a rotating cone,” Arabian Journal for Science and Engineering 44, 1515–1523 (2019).
39. N. S. Khan, T. Gul, P. Kumam, Z. Shah, S. Islam, W. Khan, S. Zuhra, and A. Sohail, “Influence of inclined magnetic field on Carreau nanoliquid thin film flow and heat transfer with graphene nanoparticles,” Energies 12, 1459 (2019).
40. N. S. Khan, S. Zuhra, and Q. Shah, “Entropy generation in two phase model for simulating flow and heat transfer of carbon nanotubes between rotating stretchable disks with cubic auto catalysis chemical reaction,” Appl Nanosci (2019).
41. M. Sheikholeslami, R.-u. Haq, A. Shafee, and Z. Li, “Heat transfer behavior of nanoparticle enhanced PCM solidification through an enclosure with V shaped fins,” International Journal of Heat and Mass Transfer 130, 1322–1342 (2019).
42. M. Sheikholeslami, S. Salem, A. Shafee, Z. Li, T. Hayat, A. Alsaedi, and M. I. Khan, “Mesoscopic investigation for alumina nanofluid heat transfer in permeable medium influenced by Lorentz forces,” Computer Methods in Applied Mechanics and Engineering 349, 839–858 (2019).
43. E. A. Soomro, A. Zaib, R. U. Haq, and M. Sheikholeslami, “Dual nature solution of water functionalized copper nanoparticles along a permeable shrinking cylinder: FDM approach,” International Journal of Heat and Mass Transfer 129, 1242–1249 (2019).
44. S. Saleem, S. Nadeem, M. M. Rashidi, and C. S. K. Raju, “An optimal analysis of radiated nanomaterial flow with viscous dissipation and heat source,” Microsystem Technologies 25, 683–689 (2019).
45. N. S. Khan, Z. Shah, S. Islam, I. Khan, T. A. Alkanbal, and I. Tili, “Entropy generation in MHD mixed convection non-Newtonian second-grade nanoliquid thin film flow through a porous medium with chemical reaction and stratification,” Entropy 21, 139 (2019).
46. M. Sheikholeslami, “Numerical approach for MHD Al2O3-water nanofluid transportation inside a permeable medium using innovative computer method,” Computer Methods in Applied Mechanics and Engineering 344, 306–318 (2019).
47. N. S. Khan, S. Zuhra, Z. Shah, E. Bonyah, W. Khan, and S. Islam, “Slip flow of Eyring-Powell nanoliquid film containing graphene nanoparticles,” Journal of AIP Advances 8, 115302 (2018).
48. M. Sheikholeslami, M. B. Gerdroofbar, R. Moradi, A. Shafee, and Z. Li, “Application of neural network for estimation of heat transfer treatment of Al2O3-H2O nanofluid flow through a channel,” Computer Methods in Applied Mechanics and Engineering 344, 1–12 (2019).
49. S. Zuhra, N. S. Khan, Z. Shah, S. Islam, and E. Bonyah, “Simulation of bio convection in the suspension of second grade nanofluid containing nanoparticles and gyrotactic microorganisms,” Journal of AIP Advances 8, 105210 (2018).
50. N. S. Khan, “Bio convection in second grade nanofluid flow containing nanoparticles and gyrotactic microorganisms,” Brazilian Journal of Physics 43(4), 227–241 (2018).
51. M. Sheikholeslami, “Solidification of NEPCM under the effect of magnetic field in a porous thermal energy storage enclosure using CuO nanofluids,” Journal of Molecular Liquids 263, 303–315 (2018).
52. M. Sheikholeslami, “Finite element method for PCM solidification in existence of CuO nanoparticles,” Journal of Molecular Liquids 265, 347–355 (2018).
53. S. Saleem, M. M. AlQarni, S. Nadeem, and N. Sandeep, “Convective heat and mass transfer in magnetof Jeffrey fluid flow on a rotating cone with heat source and chemical reaction,” Communications in Theoretical Physics 70(5), 534–540 (2018).
54. M. Sheikholeslami, M. Darzi, and Z. Li, “Experimental investigation for entropy generation and exergy loss of nano-refrigerant condensation process,” International Journal of Heat and Mass Transfer 125, 1087–1095 (2018).
55. N. S. Khan, S. Zuhra, Z. Shah, E. Bonyah, W. Khan, S. Islam, and A. Khan, “Hall current and thermophoresis effects on magnetohydrodynamic mixed convective heat and mass transfer thin film flow,” Journal of Physics Communication 3, 035009 (2019).
56. M. Sheikholeslami, A. Ghasemi, Z. Li, A. Shafee, and S. Saleem, “Influence of CuO nanoparticles on heat transfer behavior of PCM in solidification process considering radiative source term,” International Journal of Heat and Mass Transfer 126(A), 1252–1264 (2018).
57. M. Sheikholeslami, “Influence of magnetic field on Al2O3-H2O nanofluid forced convection heat transfer in a porous lid driven cavity with hot sphere obstacle by means of LBM,” Journal of Molecular Liquids 263, 472–488 (2018).
58. N. S. Khan, T. Gul, S. Islam, and W. Khan, “Thermophoresis and thermal radiation with heat and mass transfer in a magnetohydro dynamic thin film second-grade fluid of variable properties past a stretching sheet,” European Physical Journal Plus 132, 11 (2017).
59. Z. Alami, R. Elbahri, N. Shehzad, and A. Zeeshan, “Convective radiative plane Poiseuille flow of nanofluid through porous medium with slip: An application of Stefan blowing,” J. Mol. Liq. 273, 292–304 (2019).
60. S. Saleem, H. Rafiq, A. AlQahtani, M. Abd El-Aziz, M. Y. Malik, and I. L. Animausas, “Magnetof Jeffrey nanofluid bioconvection over a rotating vertical cone due to gyrotactic microorganism,” Mathematical Problems in Engineering 2019, 3478037.
S. Saleem and M. Abd El-Aziz, "Entropy generation and convective heat transfer of radiated non-Newtonian power-law fluid past an exponentially moving surface under slip effects," The European Physical Journal Plus 134, 184 (2019).

M. Sheikholeslami, S. A. Shehzad, Z. Li, and A. Shafee, "Numerical modeling for alumina nanofluid magnetohydrodynamic convective heat transfer in a permeable medium using Darcy law," International Journal of Heat and Mass Transfer 127, 614–622 (2018).

M. Sheikholeslami, Application of Control Volume based Finite Element Method (CVFEM) for Nanofluid Flow and Heat Transfer, Elsevier, (2019), ISBN: 9780128141526.

Z. Li, M. Hedayat, M. Sheikholeslami, A. Shafee, H. Zrelli, I. Tili, and T. K. Nguyen, "Numerical simulation for entropy generation and hydrothermal performance of nanomaterial inside a porous cavity using Fe3O4 nanoparticles," Physica A: Statistical Mechanics and its Applications 524, 272–288 (2019).

Z. Li, M. Hedayat, A. Arabkoohsar, M. Sheikholeslami, A. Shafee, M. B. Ayed, I. Tili, and T. K. Nguyen, "Ferrofluid irreversibility and heat transfer simulation inside a permeable space including Lorentz forces," Physica A: Statistical Mechanics and its Applications 528, 121492 (2019).

T. A. Alkanhal, M. Sheikholeslami, M. Usman, R.-u. Haq, A. Shafee, A. S. Al-Ahmadi, and I. Tili, "Thermal management of MHD nanofluid within the porous medium enclosed in a wavy shaped cavity with square obstacle in the presence of radiation heat source," International Journal of Heat and Mass Transfer 139, 87–94 (2019).

M. Sheikholeslami, M. A. Sheremet, A. Shafee, and Z. Li, "CVFEM approach for EHD flow of nanofluid through porous medium within a wavy chamber under the impacts of radiation and moving walls," Journal of Thermal Analysis and Calorimetry 129, (2019).

M. Sheikholeslami, M. A. Sheremet, A. Shafee, and Z. Li, "CVFEM approach for EHD flow of nanofluid through porous medium within a wavy chamber under the impacts of radiation and moving walls," Journal of Thermal Analysis and Calorimetry (2019).

T. A. Alkanhal, M. Sheikholeslami, A. Arabkoohsar, R.-u. Haq, A. Shafee, Z. Li, and I. Tili, "Simulation of convection heat transfer of magnetic nanoparticles including entropy generation using CVFEM," International Journal of Heat and Mass Transfer 136, 146–156 (2019).

M. Sheikholeslami, A. Shafee, A. Zareei, R.-u. Haq, and Z. Li, "Heat transfer of magnetic nanoparticles through porous media including exergy analysis," Journal of Molecular Liquids 279, 719–732 (2019).

M. Sheikholeslami, R. Ellahi, A. Shafee, and Z. Li, "Numerical investigation for second law analysis of ferrofluid inside a porous semi annulus: An application of entropy generation and exergy loss," International Journal of Numerical Methods for Heat and Fluid Flow 29, 1079–1102 (2019).

M. Sheikholeslami and S. A. Shehzad, "CVFEM simulation for nanofluid migration in a porous medium using Darcy model," International Journal of Heat and Mass Transfer 122, 1264–1271 (2018).

M. Sheikholeslami and H. B. Rokni, "Magnetic nanofluid flow and convective heat transfer in a porous cavity considering Brownian motion effects," Physics of Fluids 30(1) (2018).

M. Sheikholeslami, Z. Li, and M. Shamlooee, "Nanofluid MHD natural convection through a porous complex shaped cavity considering thermal radiation," Physics Letters A 382, 1615–1632 (2018).

M. Sheikholeslami, "Investigation of Coulomb forces effects on ethylene glycol based nanofluid laminar flow in a porous enclosure," Applied Mathematics and Mechanics (English Edition) 39(9), 1341–1352 (2018).

M. Sheikholeslami and M. Seydnezhad, "Simulation of nanofluid flow and natural convection in a porous media under the influence of electric field using CVFEM," International Journal of Heat and Mass Transfer 120, 772–781 (2018).

M. Sheikholeslami, "Numerical investigation of nanofluid free convection under the influence of electric field in a porous enclosure," Journal of Molecular Liquids 249, 1212–1221 (2018).

M. Sheikholeslami, "CuO-water nanofluid flow due to magnetic field inside a porous media considering Brownian motion," Journal of Molecular Liquids 249, 921–929 (2018).

M. Sheikholeslami and H. B. Rokni, "Numerical simulation for impact of Coulomb force on nanofluid heat transfer in a porous enclosure in presence of thermal radiation," International Journal of Heat and Mass Transfer 118, 823–831 (2018).

H. Rafatijo, M. Monge-Palacios, and D. L. Thompson, "Identifying collisions of various molecularities in molecular dynamics simulations," J. Phys. Chem. A 123(6), 1131–1139 (2019).

M. Sheikholeslami, M. Jafaryar, and Z. Li, "Nanofluid turbulent convective flow in a circular duct with helical turbulators considering CuO nanoparticles," International Journal of Heat and Mass Transfer 124, 980–989 (2018).

H. Rafatijo and D. L. Thompson, "General application of Tolman’s concept of activation energy," J. Chem. Phys. 147, 224111 (2017).

A. Divsalar, N. Entesari, M. N. Dods, R. W. Prosser, F. N. Egolfopoulos, and T. T. Tsotsis, “A UV Photodecomposition reactor for siloxane removal from biogas: Modeling aspects," Chemical Engineering Science 192, 359–370 (2018).

A. Divsalar, L. Sun, M. N. Dods, H. Divsalar, R. W. Prosser, F. N. Egolfopoulos, and T. T. Tsotsis, "Feasibility of siloxane removal from biogas using UV photodecomposition technique," Industrial & Engineering Chemistry Research 57(22), 7383–7394 (2018).

M. Sheikholeslami, "Numerical simulation for solidification in a LHTESS by means of nano-enhanced PCM," Journal of the Taiwan Institute of Chemical Engineers 86, 25–41 (2018).

M. Sheikholeslami and A. Ghasemi, "Solidification heat transfer of nanofluid in existence of thermal radiation by means of FEM," International Journal of Heat and Mass Transfer 123, 418–431 (2018).

M. Sheikholeslami, S. A. Shehzad, F. M. Abbasi, and Z. Li, "Nanofluid flow and forced convection heat transfer due to Lorentz forces in a porous lid driven cubic enclosure with hot obstacle," Computer Methods in Applied Mechanics and Engineering 338, 491–505 (2018).

T. T. Tsotsis, F. Egolfopoulos, N. Nair, R. Prosser, J.-Y. Ren, A. Divsalar, M. M. Y. Motamedhashemi, and M. Monji, "Catalytic removal of gas phase contaminants," US Patent 9700747 B2, 2017, https://patents.google.com/patent/US9700747B2/en.

A. Divsalar, "Lab-scale and field-scale study of siloxane contaminants removal from landfill gas," Ph.D. Thesis, University of Southern California, Los Angeles, CA. Dec. 2017, 94 p.

M. Sheikholeslami, M. Jafaryar, M. Hedayat, A. Shafee, Z. Li, T. K. Nguyen, and M. Bakouri, "Heat transfer and turbulent simulation of nanomaterial due to compound turbulator including irreversibility analysis," International Journal of Heat and Mass Transfer 137, 1290–1300 (2019).

A. Dawar, Z. Shah, W. Khan, M. Idrees, and S. Islam, "Unsteady squeezing flow of MHD CNTs nanofluid in rotating channels with entropy generation and viscous dissipation," Advances in Mechanical Engineering 10(12), 1–18 (2019).