NONEXISTENCE OF GLOBAL SOLUTIONS FOR AN INHOMOGENEOUS PSEUDO-PARABOLIC EQUATION

MEIIRKHAN B. BORIKHANOV AND BERIKBOL T. TOREBEK

ABSTRACT. In the present paper, we study an inhomogeneous pseudo-parabolic equation with nonlocal nonlinearity

\[u_t - k\Delta u_t - \Delta u = I^\gamma_0(|u|^p) + \omega(x), \quad (t, x) \in (0, \infty) \times \mathbb{R}^N, \]

where \(p > 1, k \geq 0, \omega(x) \neq 0 \) and \(I^\gamma_0 \) is the left Riemann-Liouville fractional integral of order \(\gamma \in (0, 1) \). Based on the test function method, we have proved the blow-up result for the critical case \(\gamma = 0, p = p_c \) for \(N \geq 3 \), which answers an open question posed in [14], and in particular when \(k = 0 \) it improves the result obtained in [2]. An interesting fact is that in the case \(\gamma > 0 \), the problem does not admit global solutions for any \(p > 1 \) and \(\int_{\mathbb{R}^N} \omega(x)dx > 0 \).

1. Introduction

Recently, Zhou in [14] has investigated the inhomogeneous pseudo-parabolic equation

\[
\begin{aligned}
&u_t - k\Delta u_t - \Delta u = |u|^p + \omega(x), \quad (t, x) \in (0, \infty) \times \mathbb{R}^N, \\
&u(0, x) = u_0(x), \quad x \in \mathbb{R}^N,
\end{aligned}
\tag{1.1}
\]

where \(p > 0, k > 0 \) and \(u_0, \omega \in C_0(\mathbb{R}^N) \).

There was studied the effect of the inhomogeneous term \(\omega(x) \) on the critical exponent \(p_c \) of the problem (1.1), and it was proven that for

\[p_c = \begin{cases}
\infty & \text{if } N = 1, 2, \\
\frac{N}{N - 2} & \text{if } N \geq 3,
\end{cases} \]

(a) if \(1 < p < p_c \), \(u_0 \geq 0 \) and \(\int_{\mathbb{R}^N} \omega(x)dx > 0 \), then the solution of (1.1) blows up in finite time.
(b) if \(p > p_c \), then there exist \(u_0 \geq 0 \) and \(\omega \geq 0 \) such that the problem (1.1) admits global solutions.

Note that the critical case \(p = p_c \) was left open (see [14, Remark 4(b)]).

At first, the problem (1.1) for \(\omega(x) \equiv 0 \) has studied in [4, 11]. It is shown that there exists the critical exponent \(p_F = 1 + \frac{2}{N} \), for the pseudo-parabolic equation. This exponent coincides with the Fujita critical exponent of the semilinear heat equations, which was first introduced by Fujita in [7].

The problem (1.1) with \(k = 0 \) is considered by Bandle et. al. [2]. Namely, it was studied the cases (a), (b) and

*Corresponding author

2020 Mathematics Subject Classification. 35K70, 35A01, 35B44.

Key words and phrases. semilinear pseudo-parabolic equation, critical exponent, nonexistence of global solution.
(c) if \(N \geq 3, p = p_c, \int_{\mathbb{R}^N} \omega(x)dx > 0, \omega(x) = O(|x|^{-\varepsilon-N}) \) as \(|x| \to \infty \) for some \(\varepsilon > 0 \), and either \(u \geq 0 \) or
\[
\int_{|x| > R} \frac{\omega^-(y)}{|x-y|^{N-2}}dy = o(1) \quad \text{as} \quad x \to \partial \mathbb{R}^N
\]
when \(R \) is enough large, then (1.1) has no global solutions.

Later on, Jleli et al. [9] generalized these results with the forcing term \(t^\sigma \omega(x) \), \(\sigma > -1 \), and showed the effects of forcing term on the critical exponents.

In this paper, we study the semilinear pseudo-parabolic equation with a forcing term depending on the space
\[
\begin{align*}
\left\{ \begin{array}{ll}
u_t - k\Delta u_t - \Delta u = I^\gamma_{0+}(|u|^p) + \omega(x), & (t, x) \in (0, \infty) \times \mathbb{R}^N, \\
u(0, x) = u_0(x), & x \in \mathbb{R}^N, \end{array} \right.
\end{align*}
\]
where \(p > 1, k \geq 0, \omega(x) \neq 0 \) and \(I^\gamma_{0+} \) is the left Riemann-Liouville fractional integral of order \(\gamma \in [0, 1] \).

We note that the problem (1.2) for \(k = 0 \) and \(\omega(x) \equiv 0 \), was considered in [3, 5, 6, 13].

The main purpose of this paper is to prove a blow-up result for the critical case \(p = p_c \) for \(N \geq 3 \), thereby answering the open question proposed in [14]. In addition, to study the effect of nonlocal nonlinearity in time on the critical exponent.

1.1. Preliminaries.

Definition 1.1 ([8], p. 69). The left and right Riemann-Liouville fractional integrals of order \(\gamma \in (0, 1) \) for an integrable function \(u(t), \ t \in (0, T) \) are given by
\[
I^\gamma_{0+} u(t) = \int_0^t \frac{(t-s)^{\gamma-1}}{\Gamma(\gamma)} u(s) \, ds
\]
and
\[
I^\gamma_{T-} u(t) = \int_t^T \frac{(s-t)^{\gamma-1}}{\Gamma(\gamma)} u(s) \, ds.
\]
Since \(I^\gamma u(t) \to u(t) \) almost everywhere as \(\gamma \to 0 \) (see [8]), we can let \(I^0 u(t) = u(t) \).

Definition 1.2 (Weak solution). We say that \(u \in L^p_{\text{loc}}([0, \infty) \times \mathbb{R}^N) \) is a global weak solution to (1.2), if
\[
\begin{align*}
\int_0^T \int_{\mathbb{R}^N} |u|^p (I^\gamma_{T-} \varphi)dxdt + \int_0^T \int_{\mathbb{R}^N} \omega \varphi dxdt &+ \int_{\mathbb{R}^N} u_0(\varphi(0, x) - k\Delta \varphi(0, x))dx \\
= - \int_0^T \int_{\mathbb{R}^N} \varphi_t dxdt + k \int_0^T \int_{\mathbb{R}^N} \varphi_t dxdt - \int_0^T \int_{\mathbb{R}^N} u \Delta \varphi dxdt,
\end{align*}
\]
holds for all \(T > 0 \) and \(\varphi \in C^{1,2}_{t,x}([0, T], \mathbb{R}^N), \varphi \geq 0, \supp \varphi \subset \subset \mathbb{R}^N \) and \(\varphi(T, \cdot) = 0 \).

Lemma 1.3. [12, Lemma 3.1] Let \(\omega \in L^1(\mathbb{R}^N) \) and \(\int_{\mathbb{R}^N} \omega(x)dx > 0 \). Then there exists a test function \(0 \leq \phi \leq 1 \) such that \(\int_{\mathbb{R}^N} \omega \phi dx > 0 \).
2. Main results

In this section, we will show the blow-up of the solution to (1.2) using the test function method.

Theorem 2.1. Let $u_0, \omega \in L^1(\mathbb{R}^N)$ and $\int_{\mathbb{R}^N} \omega(x) dx > 0$. Then

(i) if $\gamma > 0$, then for any $p > 1$ the problem (1.2) admits no global weak solution.

(ii) if $\gamma = 0$ and $p = p_c = \frac{N}{N-2}$, $N \geq 3$, then the problem (1.2) admits no global weak solution.

Remark 2.2. Note that the part (ii) of Theorem 2.1 answers to the open question posed by Zhou in [14].

Remark 2.3. When $k = 0$ the equation (1.2) coincides with the heat equation considered in [2], then our results remain true for the heat equation. Note that the part (i) of Theorem 2.1 in the case $k = 0$ improves the result in [1], since we do not assume that u_0 is positive. The part (ii) of Theorem 2.1, in case $k = 0$ improves the result in [2]. Since we do not assume some asymptotic properties of the function $\omega(x)$ as in [2], our result improves part (b) of Theorem 2.1 from [2].

Proof of Theorem 2.1. We present the proofs of the cases (i) and (ii) separately.

(i) **The case** $\gamma > 0$ **and** $p > 1$. The proof is done by contradiction. Assume that u is a global weak solution to problem (1.2). We choose the test function in the following form

$$\varphi(t, x) = \psi(t)\xi(x),$$

with

$$\psi(t) = \left(1 - \frac{t}{T}\right)^m, \ m > \frac{p + \gamma}{p - 1}, \ t \in [0, T], \ T \in (0, \infty),$$

and

$$\xi(x) = \Phi\left(\frac{|x|^2}{R^2}\right), \ R \gg 1, \ x \in \mathbb{R}^N.$$

Let $\Phi(z) \in C_0^\infty(\mathbb{R}_+)$ be a nonincreasing function

$$\Phi(z) = \begin{cases} 1 & \text{if } 0 \leq z \leq 1, \\ \downarrow & \text{if } 1 < z < 2, \\ 0 & \text{if } z \geq 2. \end{cases}$$

Then, from (1.3) it follows that

$$\int_0^T \int_{\mathbb{R}^N} |u|^p(I_T^t \varphi) dx dt + \int_0^T \int_{\mathbb{R}^N} \omega \varphi dx dt + \int_{\mathbb{R}^N} u_0(\varphi(0, x) - k\Delta \varphi(0, x)) dx \leq \int_0^T \int_{\mathbb{R}^N} |u|\varphi_t dx dt + k \int_0^T \int_{\mathbb{R}^N} |u|\Delta \varphi_t dx dt + \int_0^T \int_{\mathbb{R}^N} |u|\Delta \varphi dx dt. \quad (2.1)$$
Using the ε-Young inequality in the right-side of (2.1) with $\varepsilon = \frac{p}{3}$, we obtain
\[
\int_0^T \int_{\mathbb{R}^N} |u| |\varphi_t| \, dx \, dt \leq \frac{1}{3} \int_0^T \int_{\mathbb{R}^N} |u|^p (I_{T-}^\gamma \varphi) \, dx \, dt \\
+ \frac{p - 1}{p} \left(\frac{p}{3} \right)^{-\frac{1}{p-1}} \int_0^T \int_{\mathbb{R}^N} (I_{T-}^\gamma \varphi)^{-\frac{1}{p-1}} |\varphi_t|^{\frac{p}{p-1}} \, dx \, dt.
\]

Similarly, one obtains
\[
\int_0^T \int_{\mathbb{R}^N} |u| |\Delta \varphi_t| \, dx \, dt \leq \frac{1}{3} \int_0^T \int_{\mathbb{R}^N} |u|^p (I_{T-}^\gamma \varphi) \, dx \, dt \\
+ \frac{p - 1}{p} \left(\frac{p}{3} \right)^{-\frac{1}{p-1}} \int_0^T \int_{\mathbb{R}^N} (I_{T-}^\gamma \varphi)^{-\frac{1}{p-1}} |\Delta \varphi_t|^{\frac{p}{p-1}} \, dx \, dt,
\]
and
\[
\int_0^T \int_{\mathbb{R}^N} |u| |\Delta \varphi| \, dx \, dt \leq \frac{1}{3} \int_0^T \int_{\mathbb{R}^N} |u|^p (I_{T-}^\gamma \varphi) \, dx \, dt \\
+ \frac{p - 1}{p} \left(\frac{p}{3} \right)^{-\frac{1}{p-1}} \int_0^T \int_{\mathbb{R}^N} (I_{T-}^\gamma \varphi)^{-\frac{1}{p-1}} |\Delta \varphi|^{\frac{p}{p-1}} \, dx \, dt.
\]

Therefore, we can rewrite the inequality (2.1) in the following form
\[
\int_0^T \int_{\mathbb{R}^N} \omega \varphi \, dx \, dt + \int_{\mathbb{R}^N} u_0(\varphi(0, x) - k \Delta \varphi(0, x)) \, dx \leq C(p) \left(I_1 + k I_2 + I_3 \right),
\]
where $C(p) = \left(\frac{p}{3} \right)^{-\frac{1}{p-1}}$.

Next, we estimate the integrals I_1, I_2, I_3. At this stage, inserting the equality
\[
(I_{T-}^\gamma \psi)(t) = \frac{\Gamma(m+1)}{\Gamma(\gamma + m + 1)} T^\gamma \left(1 - \frac{t}{T} \right)^{m+\gamma}, \quad t \in [0, T),
\]
\[
(I_{T-}^\gamma \psi)'(t) = \frac{\Gamma(m+1)}{\Gamma(\gamma + m + 1)} T^\gamma \left(1 - \frac{t}{T} \right)^{m+\gamma-1}, \quad t \in [0, T),
\]
to the term of the above integrals and changing the variable $y = xR$, we obtain
\[
I_1 \leq CT^{-\gamma-1} R^N, \\
I_2 \leq CT^{-\gamma-1} R^N - \frac{2p}{\gamma-1}, \\
I_3 \leq CT^{-\gamma-1} R^N - \frac{2p}{\gamma-1}.
\]
On the other hand, it follows from a simple calculation that
\[
\int_0^T \psi(t) \, dt = \int_0^T \left(1 - \frac{t}{T} \right)^m \, dt = C(m)T.
\]
Combining (2.2)-(2.5) we arrive at
\[
\int_{\mathbb{R}^N} \omega \xi dx + C(m)T^{-1} \int_{\mathbb{R}^N} u_0(\xi - k\Delta \xi)dx \\
\leq C(p,m) \left(CT^{-\frac{\gamma}{p-1}} R^N + kCT^{-\frac{\gamma}{p-1}} R^{N-\frac{2p}{p-1}} + CT^{-\frac{\gamma}{p-1}} R^{N-\frac{2p}{p-1}} \right).
\]

Finally, fixing \(R \) and passing \(T \to +\infty \) in the last inequality and using Lemma 1.3, we deduce that \(\int_{\mathbb{R}^N} \omega \xi dx \leq 0 \), which is a contradiction.

\textbf{(ii) The critical case} \(\gamma = 0 \) and \(p = p_c = \frac{N}{N-2}, \) \(N \geq 3. \) The proof also will be done by contradiction. Suppose that \(u \) is a global weak solution to (1.2).

Now, following the idea of [10], we set the test function as
\[
\varphi(t,x) = \eta(t)\phi(x),
\]
for large enough \(R,T \)
\[
\eta(t) = \nu \left(\frac{t}{T} \right), \quad t > 0,
\]
and
\[
\phi(x) = \Psi \left(\frac{\ln \left(\frac{|x|}{\sqrt{R}} \right)}{\ln \left(\sqrt{R} \right)} \right), \quad x \in \mathbb{R}^N.
\]

Let \(\nu \in C^\infty(\mathbb{R}) \) be such that \(\nu \geq 0; \ \nu \not\equiv 0; \ \text{supp}(\nu) \subset (0,1), \) and \(\Psi : \mathbb{R} \to [0,1] \) be a smooth function satisfying
\[
\Psi(s) = \begin{cases}
1, & \text{if } -\infty < s \leq 0, \\
0, & \text{if } s \geq 1.
\end{cases}
\]

and there exist positive constants \(\theta_1, \theta_2 \) such that
\[
|\phi''(x)| \leq \theta_1 |\phi(x)|, \quad |\phi'(x)| \leq \theta_2 |\phi(x)|.
\]

Using the fact that \(\text{supp}(\nu) \subset (0,1), \) we can easily get
\[
\int_{\mathbb{R}^N} u_0(\varphi(0,x) - k\Delta \varphi(0,x))dx = \nu(0) \int_{\mathbb{R}^N} u_0(\phi(x) - k\Delta \phi(x))dx = 0. \quad (2.10)
\]

Then, acting in the same way as in the above case, we get the following estimate
\[
\int_0^T \int_{\mathbb{R}^N} \omega \varphi dx dt \leq C(p) \left(J_1 + kJ_2 + J_3 \right), \quad (2.11)
\]

with
\[
J_1 = \int_0^T \int_{\mathbb{R}^N} \varphi^{-\frac{1}{p-1}} |\varphi|^{\frac{p}{p-1}} dx dt,
\]
\[
J_2 = \int_0^T \int_{\mathbb{R}^N} \varphi^{-\frac{1}{p-1}} |\Delta \varphi|^{\frac{p}{p-1}} dx dt,
\]
\[
J_3 = \int_0^T \int_{\mathbb{R}^N} \varphi^{-\frac{1}{p-1}} |\Delta \varphi|^{\frac{p}{p-1}} dx dt.
\]
In view of (2.6) and (2.7), let us calculate the next integral
\[
\mathcal{J}_2 = \left(\int_0^T \eta^{-\frac{1}{p-1}} |\eta_t|^{\frac{p}{p-1}} \, dt \right) \left(\int_{\mathbb{R}^N} |\Delta \phi|^{\frac{p}{p-1}} \, dx \right).
\]
(2.12)

Indeed, the function \(\phi \) is a radial, and remaining (2.9) we arrive at
\[
|\Delta \phi| = \frac{d^2 \phi}{dr^2} + \frac{N-1}{r} \frac{d\phi}{dr} = \phi'' - \frac{1}{r^2 \ln^2 \sqrt{R}} + \phi' \frac{N-2}{r^2 \ln \sqrt{R}}
\leq \theta_1 \frac{\phi}{r^2 \ln \sqrt{R}} + \theta_2 \frac{\phi}{r^2 \ln \sqrt{R}}
\leq \frac{C}{r^2 \ln R |\phi|},
\]
where \(r = |x| = (x_1^2 + x_2^2 + \ldots + x_n^2)^{\frac{1}{2}} \).

Since, \(p = \frac{N}{N-2} \), by inserting the last inequality into (2.12), we can verify that
\[
\int_{\mathbb{R}^N} \phi^{-\frac{1}{p-1}} |\Delta \phi|^{\frac{p}{p-1}} \, dx \leq C\frac{N}{2} (\ln R)^{-\frac{N}{2}} \int_{\mathbb{R}^N} \frac{|\phi|}{|x|^N} \, dx.
\]
Using (2.7) and (2.8), we get
\[
\int_{\mathbb{R}^N} \phi^{-\frac{1}{p-1}} |\Delta \phi|^{\frac{p}{p-1}} \, dx \leq C(\ln R)^{\frac{2-N}{2}}. \tag{2.13}
\]

Similarly, from (2.6) one obtains
\[
\int_0^T \eta^{-\frac{1}{p-1}} |\eta_t|^{\frac{p}{p-1}} \, dt = CT^{-\frac{N}{2}+1}. \tag{2.14}
\]
By combining (2.13)-(2.14), we can rewrite (2.12) as
\[
\mathcal{J}_2 \leq kCT^{-\frac{N}{2}+1}(\ln R)^{\frac{2-N}{2}}.
\]
Consequently, we will estimate the integrals \(\mathcal{J}_1 \) and \(\mathcal{J}_3 \), respectively, in the following form
\[
\mathcal{J}_1 \leq CT^{-\frac{N}{2}+1}R^N
\]
and
\[
\mathcal{J}_3 \leq CT^1(\ln R)^{\frac{2-N}{2}}.
\]
Finally, we deduce that
\[
\int_{\mathbb{R}^N} \omega \phi \, dx \leq C(p) \left(CT^{-\frac{N}{2}} R^N + kCT^{-\frac{N}{2}} (\ln R)^{\frac{2-N}{2}} + C(\ln R)^{\frac{2-N}{2}} \right). \tag{2.15}
\]
Now for \(T = R^j, j > 0 \), we get
\[
\int_{\mathbb{R}^N} \omega \phi \, dx \leq C \left(CR^{-\frac{N(j-2)}{2}} + kCR^{-\frac{(j-2)}{2}} (\ln R)^{\frac{2-N}{2}} + C(\ln R)^{\frac{2-N}{2}} \right).
\]
Taking \(j > 2 \) and passing to the limit as \(R \to \infty \) in the above inequality and in view of Lemma 1.3, we deduce that \(\int_{\mathbb{R}^N} \omega \phi \, dx \leq 0 \), which is a contradiction. \(\square \)
ACKNOWLEDGMENTS

This research has been funded by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (Grant No. AP09259578) and by the FWO Odysseus 1 grant G.0H94.18N: Analysis and Partial Differential Equations. No new data was collected or generated during the course of research.

REFERENCES

[1] A. Alqahtani, M. Jleli, B. Samet. Finite-time blow-up for inhomogeneous parabolic equations with nonlinear memory. *Complex Var. Elliptic Equ.* 66:1, 84–93, (2021).
[2] C. Bandle, H.A. Levine, Q. Zhang. Critical exponents of Fujita type for inhomogeneous parabolic equations and systems. *J. Math. Anal. Appl.* 251, 624–648, (2000).
[3] M. B. Borikhanov, B. T. Torebek. Local existence and global nonexistence results for an integrodifferential diffusion system with nonlocal nonlinearities. *Math. Methods Appl. Sci.* 44:2, 1796–1811, (2021).
[4] Y. Cao, J. Yin, C. Wang. Cauchy problems of semilinear pseudo-parabolic equations. *J. Differential Equations*. 246, 4568–4590, (2009).
[5] T. Cazenave, F. Dickstein, F. D. Weissler. An equation whose Fujita critical exponent is not given by scaling. *Nonlinear Analysis*. 68, 862-874, (2008).
[6] A. Fino, M. Kirane. Qualitative Properties of Solutions to a Time-Space Fractional Evolution Equation. 2009. hal-00398110v5.
[7] H. Fujita. On the blowing up of solutions of the Cauchy problem for $u_t = \Delta u + u^{1+\alpha}$. *J. Fac. Sci. Univ. Tokyo Sect. 13*, 109–124, (1966).
[8] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo. *Theory and Applications of Fractional Differential Equations*. North-Holland Mathematics Studies, (2006).
[9] M. Jleli, T. Kawakami, B. Samet. Critical behavior for a semilinear parabolic equation with forcing term depending on time and space. *J. Math. Anal. Appl.*. 486:2, 123931, (2020).
[10] M. Jleli, B. Samet, C. Vetro, A blow-up result for a nonlinear wave equation on manifolds: the critical case, *Applicable Analysis*. doi: 10.1080/00036811.2021.1986026 (2021).
[11] E. I. Kaikina, P. I. Naumkin, I. A. Shishmarev. The Cauchy problem for an equation of Sobolev type with power non-linearity. *Izv. RAN. Ser. Mat.* 69:1, 61–114, (2005).
[12] S. I. Pokhozhaev. Nonexistence of global solutions of nonlinear evolution equations. *Differ. Equ.* 49, 599–606, (2013).
[13] F. Sun, P. Shi. Global existence and non-existence for a higher-order parabolic equation with time-fractional term. *Nonlinear Analysis*. 75:10, 4145–4155, (2012).
[14] J. Zhou. Fujita exponent for an inhomogeneous pseudo-parabolic equation. *Rocky Mountain J. Math.* 50:3, 1125–1137, (2020).

Meiirkhan B. Borikhanov
Khoja Akhmet Yassawi International Kazakh–Turkish University
Sattarkhanov ave., 29, 161200 Turkistan, Kazakhstan
Department of Mathematics: Analysis, Logic and Discrete Mathematics
Ghent University, Belgium
Email address: meiirkhan.borikhanov@ayu.edu.kz, meiirkhan.borikhanov@ugent.be

Berikbol T. Torebek
Institute of Mathematics and Mathematical Modeling
125 Pushkin str., 050010 Almaty, Kazakhstan
Department of Mathematics: Analysis, Logic and Discrete Mathematics
Ghent University, Belgium
Email address: torebek@math.kz, berikbol.torebek@ugent.be