The Effects of Using Cabri and GeoGebra Software on the Geometric Shapes Reasoning Skills of Mathematics Prospective Teachers

Aziz İLHAN * 1 Recep ASLANER 2

1 Munzur University, Faculty of Education, Tunceli, Turkey, tam.kare@gmail.com
2 Inonu University, Faculty of Education, Malatya, Turkey, recep.aslaner@inonu.edu.tr

* Corresponding Author: tam.kare@gmail.com

Abstract
The aim of this study on mathematics teaching process is to investigate the effect of using Cabri and GeoGebra Geometry Software to mathematics prospective teachers on Geometrical Shapes Reasoning Skill (GSRS). For this reason, single-group pretest-posttest quasi-experimental design was preferred from experimental research methods. The participants of the research, a university education faculty in Turkey which is located in the East Anatolian at the mathematics department 36 fourth grade mathematics prospective teachers. As a data collection instrument, the GSRS Test developed by the researchers was used. Experimental group was trained for 14 weeks by using Cabri and GeoGebra software. In the study, while there was no significant difference in pretest and posttest scores in terms of gender change, between the pretest-posttest scores of the prospective teachers it was concluded that the experimental process was successful in favor of the posttest.

Keywords: Reasoning, reasoning skills on geometric shapes, cabri, geogebra, preservice mathematics teacher

Received: 03 March 2020
Accepted: 11 April 2020

10.18009/jcer.698180

Publication Language: Turkish

Cabri ve GeoGebra Yazılımları Kullanımının, Matematik Öğretmen Adaylarının Geometrik Şekiller Üzerine Akıl Yürütme Becerisine Etkisi

Makale Bilgisi

Geliş: 03 Mart 2020
Kabul: 11 Nisan 2020

Anahtar kelimeler: Akıl yürütme, geometrik şekiller üzerine akıl yürütme becerisi, cabri, geogebra, matematik öğretmen adayları

10.18009/jcer.698180

Yayım Dili: Türkçe

Öz
Bu araştırmada amaç, matematik öğretim sürecinde Cabri ve GeoGebra Yazılımları kullanımının matematik öğretmen adaylarının Geometrik Şekiller Üzerine Akıl Yürütme Becerisine etkisi araştırılır. Bu sebeple araştırmada deneysel araştırma türlerinden tek gruplu öntest-sontest yan deneysel desen tercih edilmiştir. Çalışmanın katılımcılarını, Türkiye’nin Doğu Anadolu Bölgesindeki bir üniversitede bulunan eğitim fakültesi matematik öğretmenliği bölümüne öğrenci olan 36 dördüncü sınıf matematik öğretmen adayı oluşturmaktadır. Çalışmada veri toplama aracı olarak araştırma araçlar tarafından geliştirilen GŞAYB Testi kullanılmıştır. Deney grubuna 14 hafta boyunca Cabri ve GeoGebra yazılımları kullanılarak eğitim yürütülmüştür. Araştırmda cinsiyet değişikliği açısından öntest ve son test puanları arasında anlamlı bir farklılık bulunmamak ilden, öğretmen adaylarının öntest-sontest GŞAYB puanları arasında son test lehine deneysel işlemin başarılı olduğu sonucuna ulaşılmıştır.
Summary

The Effects of Using Cabri and GeoGebra Software on the Geometric Shapes Reasoning Skills of Mathematics Prospective Teachers

Introduction

Some of the appropriate information and communication technologies that can be used in mathematics education in order to provide the students with the aim of gaining the geometric thought and the aim of the education program are as follows in the Ministry of National Education (MoNE) mathematics curriculum: and their simulations, dynamic mathematics software (MoNE, 2013). In our country, mathematics education programs introduced by the MoNE emphasize the effective utilization of such software and propose that technology should be used as a main component instead of being an auxiliary tool in the teaching process. The concept of DGS, Geometer’s Sketchpad, Cabri is used as the general name of software developed for geometry learning area. By entering the field of geometry teaching, (Güven & Karatas, 2003). DGS has taken the geometry out of the paper-pencil process with a static or fixed structure and brought it to a dynamic state on the computer screen. Teachers can make their classes sensitized with better quality geometry problems. This situation improves students’ ability to solve problems and their confidence towards them and their attitude towards mathematics positively affects them (Baki, 2001).

Method

The reasoning skills gained importance both in the national and international arena have been used in different genres in the literature and for the geometry field it has been expressed as GSRS. In addition, with the development of technology, dynamic software was found in teaching processes and used in educational processes including teaching programs. In this direction, the development of GSRS has been investigated by applying the DGS to the teacher candidates who will become teachers of mathematics in the future. The purpose of the research in this direction is to examine the effect of the use of DGS in the mathematics teaching process on the effects of mathematics teacher candidates on GSRS. For this reason, single-group pretest-posttest quasi-experimental design was preferred from experimental
research methods. The participants of the research, a university education faculty in Turkey are which is located in the East Anatolian 2016-2017 academic year in the fall semester studying at the mathematics department 36 fourth grade prospective math teacher. As a data collection instrument, the GSRS Test developed by the researchers was used. SPSS 23.0 program was used for analysis of the data. Experimental group was trained for 14 weeks by using Cabri II Plus and GeoGebra software. At the beginning and end of the training period, the GSRS Test was applied as a pretest-posttest.

Results

As a result, it is possible to say that DGS are important in increasing the GSRS levels of mathematics teacher candidates. In order to investigate the development of GSRS on different sample groups by using researchers’ to DGS who want to work with GSRS in the future and to investigate GSRS using control group experimental design and to improve the GSRS of mathematics teachers, training is recommended.

Discussion and Conclusion

In the study, descriptive statistics related to the general meaning and gender variable of the data obtained from the GSRS Test were examined in order to reasoning skills of the mathematics teacher candidates. When these statistics were examined, it was seen that the posttest average scores of the reasoning skills of the sample were almost doubled according to the pretest scores. When the research data are analyzed according to the gender variable, it is seen that the posttest average scores of both female and male mathematics teacher candidates are almost doubled according to the pretest scores of GSRS Test. For this reason, prospective mathematics teachers have learned not only procedural skills but also conceptual knowledge at the same time in the teaching process. Akkus-Cıkla and Duatepe (2002) stated that mathematics teacher candidates have operational knowledge after reasoning, but they do not have conceptual knowledge at all. They also stated that the learning process is effective when conceptual information is obtained. In this study, it is possible to say that the reasoning skills of prospective mathematics teacher increase on the conceptual (geometric shapes) as a result of the execution of the learning process by using DGS. After examining the descriptive statistics in the study, it was determined that the pretest and posttest scores of the prospective mathematics teachers differed significantly with respect to the gender variable and it was determined that the scores of the male and
female prospective mathematics teachers did not show any significant difference according to both pretest and posttest scores. As a result of this finding in the study, it is possible to say that the mathematics teacher candidates have similar reasoning skills before the teaching process and that they have developed reasoning skills in a similar way due to the completion of the teaching period with the use of DGS. Buyukozturk, Cakmak, Akgun, Karadeniz and Demirel (2016) stated that the individuals who are taken into the research sample should have similar characteristics before and after the experimental period. This finding is similar to the result of the research. In the study, it was investigated by t-test in dependent groups that the reasoning skills of female, male and all mathematics teacher candidates showed a meaningful difference according to the pretest and posttest scores. According to the test results, there was a significant difference between posttest and pretest scores of female, male and all mathematics teacher candidates respectively. When we look at the average, it is seen that this difference is favored to posttest for all three sample groups. The reason for this can be seen as the fact that the teaching period has been enriched by the DGS practices and the interest or positive attitude towards the course has increased. Aktumen and Kacar (2003) obtained the results that computer-assisted geometry teaching positively affects the achievements and attitudes of mathematics teachers in their studies. Bedir (2005) also stated that his study of computer-assisted instruction has increased the success of his students. These results are similar to those obtained in the study.
Giriş

Bilgisayar destekli eğitimin geometri öğretiminde kullanmasına, öğrencilerin geometrik bir şeklin parçaları arasında bulunan ilişkileri görmeleri sağlanmış, sınıfların sanal laboratuvar ortamlarına dönüştüreilebileceği vurgulanmıştır (Güven, 2002). Bu tür bir eğitimin en önemli aracı, dinamik geometri yazılımları genel ismiyle bilinen, öğrencilerin bilgisayarda geometrik şekilleri doğru dan ve dinamik biçimde hareket ettirebileceği şekilde tasarlanmış yazılımlardır (Gomes & Vergnaud, 2004). Dinamik yazılımlarının kendisine özgü olan özellikleri bireylere geometriyi dinamik bir şekilde inceleme fırsatı vermektedir. Bu yazılımlardan Cabri ve GeoGebra programları sayesinde öğrenciler, kendileri için karmaşık gelen olguları bilgisayar ortamında görselleştirerek akıllarında bulunan düşünceleri ekranı temsil edip somutlaştırabilirler (Gomes & Vergnaud, 2004). Ayrıca girdilere karşılık bilgisayar ekranındaki çıktıları gözleyerek tahminde bulunabilme ve bu tahminlerini test edebilme olanacağını sahip olabilirler (Baki, 2001). Yine Cabri programı sayesinde, öğrenciler farklı türde şekiller oluşturabilir. Bilgisayarların üretmiş olduğu şekillere anlam vermek onların o kavram ile ilgili bilişsel göruntülerini veya şemalarını zenginleştirebilir (Tall, Blockland, & Kok, 1990).

Öğretim programında hedeflenen kazanımların öğrenciye kazandırılması ve geometrik düşününçenin geliştirilmesi amacıyla matematik eğitiminde kullanılabilen uygun bilgi ve iletişim teknolojilerinin bir kısmı 2013 Milli Eğitim Bakanlığı (MEB) matematik öğretim programında şöyle ifade edilmiştir: dinamik geometri yazılımları, grafik çizim yazılımları, bilgisayarlardaki cebir sistemleri, dinamik istatistik yazılımları ve simülasyonlar, elektronik tablo çizimi yazılımları, dinamik matematik yazılımları (MEB, 2013). Ülkemizde MEB tarafından uygulamaya konulan matematik öğretim programları bu tür yazılımlardan etkin bir şekilde yararlanmasını vurgulamakta, teknolojinin öğretim sürecinde yardımcı bir araç olmak yerine, ana bir bileşen olarak uygulamalarda bulunmasını önermektedir. Dinamik geometri yazılımı kavramı, Geometer’s Sketchpad, Cabri Geometry gibi geometri öğrenme alanı için geliştirilmiş yazılımların genel adı olarak kullanılmaktadır. Dinamik yazılımlar geometri öğretimi alanna girerek, geometriyi sabit bir yapıya sahip kağıt-kalem süreçlerinden çıkarıp bilgisayar ekranında dinamik bir duruma getirerek, öğrencilerin varsayımlarda bulunmalarına, teoremler ve arasındaki ilişkileri keşfetmelerine ve denemelere imkan oluşturmuştur (Güven & Karataş, 2003). Dinamik geometri yazılımları kullanılarak öğretmenler sınıflarını daha kaliteli geometri problemleriyle duyarlı
hale getirebilir. Bu durum öğrenenlerin problemleri çözebilme becerilerini geliştirdiği kadar kendilerine olan güvenlerini ve matematiğe karşı geliştirilmiş olduklarını tutumlarını olumlu yönde etkilemektedir (Baki, 2001).

Dinamik geometri yazılımları, öğretim sürecinde bulunan soyut olan kavramları görsel hale getirme, eksiksiz çizimler yapabilme ve örnekleri istenen durumlara arttırmak gibi özellikleri sayesinde geometri öğrenme alanı konularını öğretimi sürecinde kullanılır (Altun, 2009, ss.298-308). Bu, dinamik geometri yazılımlarının öğretim sürecinde kullanımı sayesinde bireylerin düşünce becerileri gelişim göstermektedir. Düşünme becerileri yaratıcı düşünce, problem çözme, karar verebilme, değerlendirme yapabilme ve akıl yürütmeye ilişkin öğretim süreçlerine yer veren destekleyici elemanların öğretim sürecinde kullanılmasıyla öğretılır. Dinamik geometri yazılımları sayesinde birey düşünce becerilerini geliştirmir, kanıtlara dayalı ifade ettiği düşünceler için belirli nedenler sunar ve ikilemleri çözebilmek amacıyla bilimsel akıl yürütme gibi gerçekçi yollar kullanır (Köseoğlu, Tümay, & Budak, 2008). Düşünme türlerinin öğrenme-öğretme ortamlarında uygulanması; kişisel yeteneklere dayanarak akademik başarıya katkı sağla, kişilerin öğrenme biçimlerini tanımalarına yardımcı olur (Çubukçu, 2004). National Research Council [NRC] (1996), matematik eğitiminde amacın, kişinin bilimsel düşünce becerilerini geliştirmeye dönük olduğunu belirtmektedir. NRC (1996)'ye göre bir eğitim ortamı, kişiye matematiğin veya bilim ve teknolojinin bütün içeriğini aktarmaya dönük olmaktan ziyade, akıl yürütme becerilerini kazandırmaya yönelik olmalıdır.

Öğretmen merkezli teorik bilgiyi öğretmeye yönelik öğretim süreçlerinin, bilimsel akıl yürütme becerilerini geliştirmeye ciddi anlama bir desteği olmaması; bilimsel bilgiyi kazandırmaya dönük öğretim süreçlerinin ise akıl yürütme becerilerinin pozitif etkisini olduğunu ifade etmek mümkündür (Lawson, 2005). Akıl yürütme; tüm etmenleri göz önünde bulundurarak ve düşünerek bir sonuca varma sürecidir. Akıl yürüttebilen bir birey; konu hakkında yeteri kadar bilgiye sahiptir, yeni karşılıştığı durumu bütün boyutlarıyla araştırır, keşifler yapar, mantıklı varsaymaları ve tahminlerde bulunur, düşündüklerini faaliyete geçirir, birtakım sonuçlara ulaşır, ulaştığı sonuçları açıklayabilir veya savunabilir (Umay, Duatepe-Akkuş, & Çıkla, 2005). Oaksford (2005) insanların akıl yürütme süreçlerine oldukça bağlı oldukları olduğunu ve bu nedenle bu süreci fark etmeme eğiliminde olduklarını belirtmiştir. Bununla beraber, insanların yaptıkları çoğu hareketin akıl yürütme süreçlerine bağlı olduğunu öne sürmüştür. Bu kavram sadece bu alanlarla değil bu alanların kapsadığı
Ilhan & Aşlaner

konularla da yakından ilişkilidir. Bu sebeple akıl yürütme terimi, sayısı konu ve içeriğini kapsayan geniş bir düşünce durumunu tarif etmek için kullanılmaktadır ve karmaşık bilişsel süreçlerden biridir. Aynı zamanda bilinçli bir bilişsel aktivitedir, hedefe yönelik ve bir dizi işlem veya basamak gerektirir (Amsterlaw, 2004). Akıl yürütme kavramının kullanılmasıyla beraber karışık öğretim süreçlerini daha doğal bir öğretim ortamına dönüştüren dinamik geometri yazılımları ve bilgisayarlarda bulunan cebir sistemleri gün geçtikçe artan bir şekilde öğretim sürecinde kullanılmaktadır. Bu tür yazılımlar sayesinde öğrenciler akıl yürütme becerisi kazanabilmekte, matematiksel ilişkileri keşfedebilmekte, birbirleriyle ilişkilendirebilmekte ve doğru genellemelere ulaşabilmekle bu yazılımları etkili bir şekilde kullanabilmektedir (Güven, 2002). Bilgisayar destekli öğretim süreçinden yararlanabilmek, bu amaç hizmet edebilecek etkili ve dinamik eğitim yazılımlarının geliştirilmesiyle yakın ilişki içerisindeydi (Baki, 2001). Bundan ötürü bilgisayar destekli matematik eğitimi için son zamanlarda dinamik yazılımları geliştirme çabalarının hızlandığı ifade edilmektedir (Topuz & Birgin, 2014). Dinamik geometri yazılımlarının geliştirilmesi ve akıl yürütme kavramının öğretim ortamlarında yer bulmasına beraber bu iki kavram arasındaki iliği destekleyen raporlar yazmıştır. Raporda geometrik akıl yürütmenin geliştirilmesi ve odaklanılması gerektiğini belirtir bir rapor yazmışlardır. Raporda geometrik akıl yürütme kavramını ve üç boyutlu cisimler üzerine düşünmelerini içerdiği belirtilmiştir (Brown, Jones, & Taylor, 2003). Royal Society ve Joint Mathematical Council (2001) yazmış olduğu raporda 11-19 yaş aralığındaki öğrencilerin geometri öğrenme süreçlerinde kullanılan yazılımların ve geometrik akıl yürütme kavramının önemini düşünmüşlerdir. Geometrik düşünme süreçleri incelendiğinde tüm basamakların öğretim sürecine dâhil edilmesi ve uygulanması için dinamik geometri yazılımları ve öğretim sürecinde kullanılan materyaller ön plana çıkmaktadır. Öğreticilerin öğretim materyallerini uygun olan yöntemler veya teknikleri yerinde ve doğru bir şekilde kullanmaları, öğrencine iletmek istediği mesajı görsel bir şekilde düzenleyebilmesi, basit şekilde şemalar ve çizimler yapabilmesi bilişsel becerilerinden üst düzeyde etkilenebilmektedir (Alpan, 2008). Buna karşın Aydin, Laçin ve Keskin (2018) öğretmenlerin ders ortamlarında matematiksel yazılımlar yeteri kadar kullanımadiğini ifade etmişlerdir. Alan yazının taraması yapılışında akıl yürütme, geometrik akıl yürütme, iki ve üç boyutlu geometrik şekiller üzerine akıl
yürütme gibi akıl yürütme türleri ve dinamik geometri yazılımlarının kullanımı üzerine yurt dışında çeşitli çalışmalar yapıldığı görülmektedir (Amsterlaw, 2004; Lawson, 2005; Oaksford, 2005). Ancak yurt içinde akıl yürütme türleri ile ilgili daha az çalışma örneğine rastlanmakta, bu çalışmalar da genellikle örneklemnin akıl yürütme becerilerinin orta veya düşük seviyede olduğu görülmektedir (Çubukçu, 2004). Ayrıca bu dinamik geometri yazılımlarının kullanıldığı çalışmalar da genellikle akıl yürütme veya bilişsel süreçler yerine başarı, uygulanabilirlik, pedagojik yaklaşımlar veya öğrenci görüşleri incelenmiştir (Akar & Hacısalihoğlu-Karadeniz 2014; Çiftçi & Tatar, 2014; İbili, 2019; Topuz & Birgin, 2020). Dolayısıyla alternatif bir öğrenme yöntemi olan bilgisayar destekli öğretim yöntemi ile dinamik yazılımların kullanımı akıl yürütme becerisinin arttırılması için bir öngörü olarak düşünülmüştür. Bu nedenlerle matematik öğretmen adaylarının GŞAYB düzeylerinin dinamik geometri yazılımlarının kullanıldığı öğretim ortamlarında ilişkilendirilerek ölçülmemesi bir eksiklik olarak görülmüştür. Teknolojinin hızlı bir şekilde geliştiği olduğu, bilgisayarların ve dinamik yazılımların öğretim süreçlerine entegre edildiği, akıl yürütme becerilerinin öğretim programlarında (MEB, 2018) kazandırılması gereken temel beceriler arasında yer aldığı günümüzde araştırmannın alan yazına önemli derecede katkı sağlayacağı düşünülmüştür.

Araştırmanın Amacı ve Alt Amaçlar

Bu araştırmada amac, matematik öğretiminde Cabri ve GeoGebra kullanımının matematik öğretmen adaylarının GŞAYB’lerine etkisini araştırmaktır. Bu genel amaç doğrultusunda aşağıda verilen alt amaçlar belirlenmiştir. Matematik öğretmen adaylarına yönelik Cabri ve GeoGebra kullanılan öğretim sürecine ilişkin;

1. Uygulama öncesi ve sonrası matematik öğretmen adaylarının GŞAYB düzeyleri nasıldır?
2. Uygulama öncesi ve sonrası cinsiyet değişkenine göre matematik öğretmen adaylarının GŞAYB düzeyleri nasıldır?
3. Matematik öğretmen adaylarının öntest GŞAYB puanları cinsiyet değişkenine açısından anlamlı farklılık göstermektedir?
4. Matematik öğretmen adaylarının sonöntest GŞAYB puanları cinsiyet değişkenine açısından anlamlı farklılık göstermektedir?
5. Matematik öğretmen adaylarının öntest-sonöntest GŞAYB puanları anlamlı farklılık göstermektedir?
Yöntem

Araştırmanın Deseni

Bu araştırmanın amacı matematik öğretiminde Cabri ve GeoGebra kullanımının matematik öğretmen adaylarının GŞAYB'lerine etkisini araştırmaktır. Bu sebeple çalışmada tek gruplu öntest-son test yarı deneysel desen tercih edilmiştir. Bu desene göre 14 haftalık bir öğretim süreci yürütülmüş, bu süreçin öncesinde ve sonrasında GŞAYB Testi öntest ve son test olarak deney grubuna uygulanmıştır. Tek grup öntest-son test modelinde, seçilen katılımcı gruba deney süreci uygulanır. Hem deney öncesinde hem de deney sonrasında ölçümler yapılır. Modelin simgesel ifadesi şu şekildedir:

\[G_1: Q_{1.1} \rightleftharpoons X \rightleftharpoons Q_{1.2} \]

\[G_1: \text{ Araştırıma katılımcı, } Q_{1.1}: \text{ Birinci ölçüm (öntest), } X: \text{ Eğitim-öğretim faaliyetleri (Cabri ve GeoGebra Uygulamaları), } Q_{1.2}: \text{ ikinci ölçüm (son test)} \]

Modelde \(Q_{1.2} > Q_{1.1} \) olması durumunda bunun X uygulamasından kaynaklandığı kabul edilmektedir ve bu doğrultuda değerlendirme yapılmaktadır (Karasar, 1991). Araştırmada bu desenin seçilmesinin nedeni ilgili üniversitenin matematik öğretmenliği bölümü dördüncü sınıf öğretim programında bulunan ve seçmeli geometri öğretimi dersini seçen öğretmen adayı sayısının yetersiz olması (Programda ilgili dönemde kayıtlı 60 öğretmen adayı bulunmaktadır. Açılan iki adet seçmeli ders mevcuttur. Diğer seçmeli ders matematik eğitimi alanlarındadır fakat geometri öğrenme alanıyla ilişkili değildir. Dolaysıyla öğrencilerin yaraı yakını yani 36 matematik öğretmen adayı bu dersi seçmiştir) ve bu dersin benzeri bir dersin açılmasıdır. Dolaysıyla, araştırıma sadece deney grubu uygulamalarıla yürütülmüş, kontrol grubuna yer verilememiştir.

Evren-Örneklem

Araştırmanın katılımcılarını, Türkiye’nin Doğu Anadolu bölgesinde bir üniversitede bulunan eğitim fakültesinde 2016-2017 gaz döneminde ilköğretim matematik öğretmenliği programında öğrenim görmekte olan ve seçmeli geometri öğretimi dersini alan 36 (24 kadın, 12 erkek) 4. sınıf matematik öğretmen adayı oluşturulmaktadır. Araştırımda örneklemeye yöntemi olarak uygun örneklemeye yöntemi tercih edilmiştir. Bu örneklemeye yönteminin seçilmesinin sebebi ilgili grupun çalışma amacına uygun olan seçmeli dersi dönüldü bir şekilde seçilmiş olması ve geometri öğretimi dersinin öğrenme çıktılarının GŞAYB ile ilişkili
olmasıdır. Ayrıca araştırmacılardan birinin ilgili üniversitede çalışıyor olması zaman ve işgücüssel kolaylığı sağlamıştır. Uygun örnekleme yöntemi; zaman, para ve işgücü açısından var olan sınırlılıklar nedeniyle örneklemi kolay ulaşılabilir ve uygulama yapılabilir birimlerden seçilmesidir (Büyüköztürk, Çakmak, Akgün, Karadeniz, & Demirel, 2016).

Veri Toplama Araçları

Araştırmacılar tarafından geliştirilmiş GŞAYB testi çoktan seçmeli olup toplam 20 maddeden oluşmaktadır. Testte bulunan maddeler Türkiye’de bulunan lisans düzeyinde yürütülen geometri öğretimi derslerinin öğrenme çıktıları ve uluslararası alan yazında bulunan GŞAYB’e ilişkin çalışmalar dikkate alınarak oluşturulmuştur. Testin geçerlilik ve güvenirlik çalışmaları bu araştırma öncesinde 266 kişilik araştırma örnekleminden farklı bir katılımcı grubu ile yürütülmüştür. Bu doğrultuda testin KR-20 güvenirlik değeri 0.745 olarak hesaplanmıştır.

Ayrıca bu çalışmada GŞAYB’un güvenirlik değeri 0,722 çıkmıştır. Bu değerler 0.70’den büyük olduğundan testin güvenilir olduğunu söyleyebilmek için yeterlidir (Büyüköztürk, Çakmak, Akgün, Karadeniz & Demirel, 2016). Araştırmada GŞAYB testi maddeleri doğru cevaplar için 1 yanlış cevaplar için 0 olarak şekildedir puanlandırımıştır. Bu nedenle GŞAYB Testinden alınabilecek en düşük puan 0 en yüksek puan ise 20’ dir.

Veri Toplama Süreci

Çalışmada deney grubuna uygulama sürecinin ilk haftasında deney süreci hakkında bilgi verilmiştir. Daha sonra ön test olarak GŞAYB Testi uygulanmıştır. İkinci haftadan itibaren sırasıyla birer etkinlik yapılmıştır. Bu etkinlikler tasarlanırken alan yazının tanınmış, dersin kazanımları göz önünde bulundurulmuş, GŞAYB testinin maddeleri değerlendirilmiş ve uzman görüşüne başvurulmuştur. Etkinlik uygulamaları yapılırken ilk dört hafta gösterip yaptırma tekniği tercih edilmiş, takip eden haftalarda buluş yoluya öğretim süreci yürütülmüştür. Öğretmen adaylarına takımlarını noktalarda küçük ipuçları verilerek etkinlik dosyaları oluşturmalari istenmiştir. Öğretmen adayları her hafta oluşturdukları etkinlik dosyalarını araştırmacıların mail adresine yollamış, araştırmacılar etkinlikleri kontrol ederek dönüt vermiştir. Etkinlik sürecinin on dördüncü haftasında genel bir tekrar yapılacak ve öğretmen adaylarına GŞAYB Testi son test olarak tekrar uygulanmıştır. Haftalara göre yürütülen etkinlik süreci ekte verilmiştir.
Verilerin Analizi

Çalışmada varyansların homojen dağılıp dağılmadığını belirlemek amacıyla öncelikle Levene testi yapılmıştır. Levene testi sonucu GSAYB testi (Z=0,392, p=0,163) uygulamaları için p>0,05 olduğundan varyansların homojen olduğu tespit edilmiş (Büyüköztürk, 2016). Varyansların homojenliğinin incelenmesi sonrasında çarşıklık ve basıklık değerleri analiz edilmiş bu değerlerin -2 ile +2 arasında olduğu, z-çarşık ve z-basıklık değerlerinin ise -1.96 ile +1.96 aralığında bulunduğunu belirlenmiştir. Bununla birlikte mod, medyan ve aritmetik ortalamanın da birbirine yakın olduğunu görülmüştür (Büyüköztürk, 2016, ss. 40-68). Ayrıca verilerin normal dağılıp dağılmadığını belirlemek amacıyla Shapiro-Wilk testi uygulandı ve bu testin sonucunda GSAYB testi uygulamalarının her bir veri seti için (p>0,05) olduğu ve normal dağılım gösterdiği belirlenmiştir. Veriler normal dağılımı gösterdiği için, ikili gruplarda varyansların eşit olduğu gruplar için (Equalvariances essumed) t-testi kullanılmıştır. Bu testin sonucunda GSAYB testi uygulamalarının her bir veri seti için (p>0,05) olduğu ve normal dağılım gösterdiği belirlenmiştir. Veriler normal dağılımı gösterdiği için, ikili gruplarda varyansların eşit olduğu gruplar için (Equalvariances essumed) t-testi kullanılmıştır. Bu testin sonucunda GSAYB testi uygulamalarının her bir veri seti için (p>0,05) olduğu ve normal dağılım gösterdiği belirlenmiştir. Veriler normal dağılımı gösterdiği için, ikili gruplarda varyansların eşit olduğu gruplar için (Equalvariances essumed) t-testi kullanılmıştır.

Bulgarlar

Çalışmanın bu bölümünde matematik öğretmen adaylarının öntest-sontest puanlarına ilişkin genel anlamda ve cinsiyet değişkenine göre betimsel istatistikler araştırılmıştır. Daha sonra, cinsiyet değişkeni açısından öntest ve son test puanlarının anlamlı bir farklılık gösterip göstermediğini tespit etmek amacıyla bağımsız örneklem t-testi, Cabri ve GeoGebra kullanılan öğretim sürecinin yürütülmesi neticesinde cinsiyet değişkenine göre ve genel anlamda GSAYB puanlarının anlamlı farklılık gösterip göstermediğini belirlemek amacıyla bağımlı gruplarda t-testi sonuçları araştırılmıştır.
anlamda ve cinsiyet değişkenine göre verilmiştir. Matematik öğretmen adaylarının, GŞAYB Testinden elde edilen ortalama, standart sapma ve yüzde değerleri Tablo 2’ de verilmiştir.

Tablo 2. Öntest-sontest puanlarına ilişkin betimleyici istatistikler

	N	Min.	Maks.	\(\bar{X} \)	%	Ss
Öntest	36	2.000	11.000	5.889	29.445	2.754
Sontest	36	7.000	16.000	11.778	58.890	2.439

Tablo 2 incelendiğinde öğretmen adaylarının öntest ortalamalarının \(\bar{X}=5.889 \), standart sapmalarının \(Ss=2.754 \) olduğu görülmektedir. Bu veriye göre matematik öğretmen adaylarının öntest GŞAYB düzeylerinin (%29.445) düşük olduğunu söylemek mümkündür. Ayrıca öğretmen adaylarının sondent ortalamaları \(\bar{X}=11.778 \), standart sapmaları \(Ss=2.439 \) olarak hesaplanmıştır. Yani öğretmen adaylarının deneysel süreç sonunda GŞAYB düzeylerinin %59.890'a yükseldiği görülmektedir. Öğretmen adaylarının GŞAYB Testinden elde edilen genel puanlarının betimleyici istatistikleri incelendikten sonra cinsiyet değişkenine ilişkin betimleyici istatistikler araştırılmış, elde edilen bulgular Tablo 3’te verilmiştir.

Tablo 3. Öntest-sontest puanlarına ilişkin cinsiyet değişkenine bağlı betimleyici istatistikler

	Cinsiyet	N	Min.	Maks.	\(\bar{X} \)	%	Ss
Ön test	Bayan	24	2.000	11.000	5.458	27.290	2.553
	Erkek	12	2.000	11.000	6.750	33.750	3.048
Sontest	Bayan	24	7.000	15.000	11.667	58.335	2.334
	Erkek	12	8.000	16.000	12.000	60.000	2.730

Tablo 3 incelendiğinde bayan öğretmen adaylarının öntest ortalamalarının \(\bar{X}=5.458 \), standart sapmalarının \(Ss=2.553 \) olduğu, erkek öğretmen adaylarının öntest ortalamalarının \(\bar{X}=6.750 \), standart sapmalarının \(Ss=3.048 \) olduğu görülmektedir. Yani öntest verilerine göre erkeklerin bayanlara göre GŞAYB düzeyleri daha yüksektir. Ayrıca bayan öğretmen adaylarının sondent ortalamalarının \(\bar{X}=11.667 \), standart sapmaların \(Ss=2.334 \) olduğu, erkeklerin sondent ortalamalarının \(\bar{X}=12.000 \), standart sapmalarının \(Ss=2.730 \) olduğu tespit edilmiştir. Sontest verilerine göre de erkeklerin GŞAYB düzeyleri bayanlara göre daha yüksektir. Öğretmen adaylarının GŞAYB Testinden elde edilen cinsiyet değişkenine ilişkin puanların betimleyici istatistikleri analiz edildikten sonra öntest-sontest puanlarının
cinsiyet değişkenine göre bağımsız örneklem t-testi sonuçları araştırılmıştır. Elde edilen bulgular Tablo 4’te verilmiştir.

Tablo 4. Öntest-sontest puanlarının cinsiyet değişkenine ilişkin bağımsız örneklem t-testi sonuçları

Cinsiyet	N	X	Ss	Sd	t	p	
Ön test							
Bayan	24	5.458	2.553		35	-1.263	0.222
Erkek	12	6.750	3.048				
Son test							
Bayan	24	11.667	2.334		35	-0.362	0.721
Erkek	12	12.000	2.730				

Tablo 4 incelemiğinde matematik öğretmen adaylarının hem öntest puanlarının (t(35)=-1.263; p>0.05) hem de son test puanlarının cinsiyet değişkenine göre anlamlı bir farklılık göstermediği (t(35)=-0.362; p>0.05) tespit edilmiştir. Matematik öğretmen adaylarının öntest ve son test puanlarının cinsiyet değişkenine göre bağımsız örneklem t-testi sonuçları inceleldikten sonra cinsiyet değişkenine göre öntest-sontest bağımsız örneklem t-testi sonuçları incelemiş, elde edilen bulgular Tablo 5’te verilmiştir.

Tablo 5. Cinsiyet değişkenine ilişkin puanların bağımlı örneklem t-testi sonuçları

Cinsiyet	N	X	Ss	Sd	t	p	
Bayan							
Ön test	24	5.458	2.553		23	10.472	0.000
Son test	24	11.667	2.334				
Erkek							
Ön test	12	6.750	3.048		11	7.669	0.000
Son test	12	12.000	2.730				

Tablo 5 verileri incelemiğinde hem bayan öğretmen adaylarının öntest-sontest puanları arasında (t(23)=10.472; p=0.000<0.05) hem de erkek öğretmen adaylarının öntest-sontest puanları arasında anlamlı farklılık (t(11)=7.669; p=0.000<0.05) olduğu tespit edilmiştir. Bayan öğretmen adaylarının öntest ve son test puan ortalamalarına bakıldığında (X_{son test}=11.667; X_{öntest}=5.458) bu farklıliğin son testin lehine olduğu sonucuna varılmıştır. Yine erkek öğretmen adaylarının öntest ve son test puan ortalamalarına bakıldığında (X_{son test}=11.667; X_{öntest}=5.458) bu farklılığın son testin lehine olduğu görülmektedir. Araştırmada öğretmen adaylarının GŞAYB Testi öntest-sontest sonuçlarının anlamlı bir farklılık oluşturup oluşturmadığını bağımlı örneklem t-testi ile araştırılmış, elde edilen bulgular Tablo 6’da verilmiştir.

Tablo 6. Öntest ve son test bağımlı örnekleme ait t-testi sonuçları

Uygulama	N	X	Ss	Sd	t	p	
Ön test	36	5.889	2.754		35	10.254	0.000
Son test	36	11.778	2.439				
Tablo 6 incelendiğinde tüm öğretmen adaylarının öntest-sontest puanları arasında anlamlı bir farklılığın olduğu (t(35)=-10.254; p<0.05) görülmektedir. Öğretmen adaylarının öntest ve son test puan ortalamalarında başlıklığında (\(\bar{X}_{\text{öntest}}=11.778; \bar{X}_{\text{sontest}}=5.889\)) bu farklılığın son testin lehine olduğu sonucuna ulaşılmıştır.

Tartışma, Sonuç ve Öneriler

2005’teki yapılan MEB matematik program değişikliğiyle akıl yürütme becerisi öğrencileri kazandırılması gereken temel beceriler arasına alınarak ön plana çıkmıştır. MEB yapmış olduğu çalışmalarla öğretim süreçlerinde kullanılan ders kitapları ve çalışma kitaplarına akıl yürütme ile ilgili etkinlikler eklemiş, öğretim ortamındaki akıl yürütme etkinliklerinin önemine dehşet etmiştir (MEB, 2005-2013-2018). Ayrıca NRC, 1996 yılı itibariyle matematik eğitiminde akıl yürütme becerilerini kazandırmaya yönelik amaçlar bulunması gerektiği ifade etmiştir. Hem ulusal hem de uluslararası alanda önem kazanan akıl yürütme becerisi alan yazında farklı türlerde kullanılmış, geometri alanı için de GŞAYB olarak ifade edilmiştir. Ayrıca teknolojinin gelişimiyle beraber dinamik yazılımlar öğretim süreçlerinde yer almış ve öğretim programlarına da dâhil edilmiştir. Bu doğrultuda çalışmada öğretmen adaylarına Cabri ve GeoGebra uygulamaları yapılarak GŞAYB düzeylerindeki gelişimleri araştırılmıştır.

Araştırımda öncelikle matematik öğretmen adaylarının akıl yürütme becerilerini incelemek amacıyla GŞAYB Testinden elde edilen verilerin genel anlamda ve cinsiyet değişkenine ilişkin betimleyici istatistikleri incelenmiştir. Bu istatistikler incelendiğinde örneklemiyin bütünune ilişkin akıl yürütme becerisine ait sontest ortalamaların öntest puanlarına göre neredeyse iki katına çıktığı görülmektedir. Yine araştırma verileri cinsiyet değişkenine göre incelemiştir hem bayan hem de erkek matematik öğretmen adaylarının GŞAYB Testine ait sontest ortalamalarının öntest puanlarına göre neredeyse iki katına çıktığı görülmektedir. Bunun sebebi matematik öğretmen adaylarının gerçekleştirdikleri öğretim süreçinde sadece işlemlsel beceriler değil aynı zamanda kavramsal bilgiler de öğrenmiş olması olarak düşünülebilir. Nitekim Akkuş, Çikla ve Duatepe (2002) yapmış oldukları çalışmalarında matematik öğretmen adaylarının akıl yürütme uygulamaları sonrasında işlemlsel bilgilere sahip olduklarını ve kavramsal bilgilerin elde edilmesinde öğrenim sürecinin etkili olduğunu dile getirmişlerdir. Yapılan bu çalışmada da Cabri ve GeoGebra kullanılarak öğrenim sürecinin yürütülmesi sonucunda matematik öğretmen...
adaylarının geometrik şekiller üzerine işlemsel ve kavramsal akıl yürütme becerilerinin arttığını söylemek mümkündür.

Çalışmada betimsel istatistikler incelendikten sonra öncelikle matematik öğretmen adaylarının öntest ve son test puanlarının cinsiyet değişkenine ilişkin anlamlı bir farklılık gösterip göstermediği araştırılmış, hem öntest hem de son test puanlarına göre bayan ve erkek matematik öğretmen adaylarının puanlarının anlamlı bir farklılık göstermediği tespit edilmiştir. Çalışmada elde edilen bu bulgu neticesinde matematik öğretmen adaylarının öğretim sürecinden önce benzer akıl yürütme becerisine sahip olduklarını ve Cabri ve GeoGebra yazılımları öğretim sürecinin tamamlanması neticesinde akıl yürütme becerilerini benzer oranda geliştiriklerini söylemek mümkündür. Büyüköztürk, Çakmak, Akgün, Karadeniz ve Demirel (2016) deneySEL Çalışmalar yürütürken araştırma örneklere alınan bireylerin deneySEL süreç öncesi ve sonrasında benzer özellikte olması gerektiğini ifade etmişlerdir. Bu bulgu araştırma sonucu ile benzerlik göstermektedir.

Araştırmada sırasıyla bayan, erkek ve tüm matematik öğretmen adaylarının akıl yürütme becerilerinin öntest-son test puanlarına göre anlamlı bir farklılık göstermediği bağımlı gruplarda t-testi yapılarak araştırılmıştır. Test sonuçlarına göre sırasıyla bayan, erkek ve tüm matematik öğretmen adaylarının son test puanları ile öntest puanları arasında anlamlı bir farklılık bulunmuştur. Ortalamalara bakıldığında bu farkın her üç örneklem grubu için de son testin lehine olduğu görülmektedir. Bunun sebebi öğretim sürecinin Cabri ve GeoGebra yazılımları ile zenginleştirilmiş olması ve derse olan ilginin veya olumlu tutumun artması olarak görülebilir. Aktümen ve Kaçar (2003) yapmış oldukları çalışmalarda bilgisayar destekli geometri eğitiminin matematik öğretmenlerinin başarılarını ve tutumlarnını olumlu yönde etkilediğini belirtmişlerdir. Yine Bedir (2005) yapmış olduğu çalışmasında bilgisayar destekli eğitim methodurunun başarısını artırdığını ifade etmiştir. Bu sonuçlar araştırımda bulunan sonuçlarla örtüşmektedir.

Sonuç olarak matematik öğretmen adaylarının GŞAYB düzeylerinin artmasında Cabri ve GeoGebra yazılımlarının kullanımının önemli olduğunu söylemek mümkündür. Çalışmadan elde edilen bulgular neticesinde ileride GŞAYB ile ilgili çalışmak isteyen araştırmacılarla şu önerilerde bulunulabilir:

1. Cabri ve GeoGebra’nın öğretim sürecinde kullanılmasıyla GŞAYB’nin geliştirimi farklı örneklem grupları üzerinde farklı branşlardaki öğretmen adayları veya farklı öğretim düzeylerinde öğrenim göreme olan öğrenciler ile araştırılabilir.
2. Matematik öğretmen adaylarının GŞAYB’leri üzerinde kontrol grubu deneysel desen kullanılarak farklı öğretim tekniklerinin etkinliği araştırılabilir.

3. Güncellenen matematik öğretim programlarının ihtiva ettiği diğer becerileri GŞAYB ile birlikte araştırılacak aralarındaki ilişkiler analiz edilebilir.

Bilgilendirme
Bu çalışmada kullanılan verilerin 2020 yılı öncesine ait olduğu araştırmacılar tarafından onaylanmış.

Yazar Katkı Beyanı
Aziz İLHAN: Kavramsallaştırma, metodoloji, danışmanlık ve denetim (ölçme aracı, veri analizi), inceleme-yazma ve düzenlenme
Recep ASLANER: Kavramsallaştırma, veri toplama, ön taslak yazımı ve düzenlenme

Kaynaklar
Akar, Ü. & Hacısalihoğlu-Karadeniz, M. (2014). Dinamik geometri yazılımının açıortay ve kenarortay öğretiminde meslek lisesi öğrencilerinin başarılarına etkisi. Journal of Computer and Education Research, 2(4), 74-90.

Aktümen, M. & Kaçar, A. (2003). İlköğretim 8. sınıflarda harflı ifadelerle işlemar öğretiminde bilgisayar destekli öğretimin rolü ve bilgisayar destekli öğretim üzerinde öğrenci görüşlerinin değerlendirilmesi. Kastamonu Eğitim Dergisi, 11(13), 339-358.

Alpan, G. (2008). Görsel okuryazarlık ve öğretim teknolojisi. Yüzüncü Yıl Üniversitesi Eğitim Fakültesi Dergisi, 5(1), 74-102.

Altun, M. (2009). Eğitim fakülteleri ve lise matematik öğretmenleri için liselerde matematik öğretimi (3. Baskı). Bursa: Aktüel Alfa Akademi.

Amsterlaw, J.A. (2004). Development of children’s beliefs about everyday reasoning. Publishing Doctoral Thesis, University of Michigan, ABD.

Aydın, M., Laçin, S., & Keskin, İ. (2018). Ortaöğretim matematik dersi öğretim programının uygulanmasına yönelik öğretmen görüşleri. International e-Journal of Educational Studies (IEJES), 2(3), 1-11.

Baki, A. (2001). Bilişim teknolojisi ışığı altında matematik eğitiminin değerlendirilmesi. Milli Eğitim Dergisi, 149(1), 26-31.

Bedir, D. (2005). Bilgisayar destekli matematik öğretimin ikölgretime geometri öğretiminde yeri ve öğrenci başarısı üzerindeki etkisi. Yayınlanmamış Yüksek Lisans Tezi, Dokuz Eylül Üniversitesi, Eğitim Bilimleri Enstitüsü, İzmir.

Brown, M., Jones, K., & Taylor, R. (2003). Developing geometrical reasoning in the secondary school: Outcomes of trialling teaching activities in classrooms. A Report from the Southampton/Hampshire Group to the Qualifications and Curriculum Authority. Full report available online at: www.crme.soton.ac.uk/research/geomreason.
Büyüköztürk, Ş. (2016). *Veri analizi el kitabı* (22. Baskı). Ankara: Pegem Akademi.

Büyüköztürk, Ş., Çakmak, E. K., Akgün, Ö. E., Karadeniz, Ş., & Demirel, F. (2016). *Bilimsel araştırma yöntemleri*. Ankara: Pegem A Yayınları.

Çiftçi, O. & Tatar, E. (2014). Pergel-cetvel ve dinamik bir yazılım kullanımının başarısı etkilerinin karşılaştırılması. *Journal of Computer and Education Research, 2*(4), 111-133.

Çubukçu, Z. (2004). Öğretmen adaylarının düşünme stillerinin öğrenme biçimlerini tercih etmelerindeki etkisi. İnönü Üniversitesi Eğitim Fakültesi Dergisi, *(1)*, 1-19.

Gomes, A.S. & Vergnaud, G. (2004). On the learning of geometric concepts using dynamic geometry software. *Novas Tecnologi Asna Educação, 2*(1), 12-15.

Güven, B. (2002). *Dinamik geometri yazılımı Cabri ile keşfederek öğrenme*. Yayınlanmamış yüksek lisans tezi, Karadeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Trabzon.

Güven, B. & Karatas, S. (2003). Dinamik geometri yazılımı Cabri ile geometri öğrenme: öğrenci görüşleri. *Turkish Online Journal of Educational Technology, 2*(2).

İbili, E. (2019). The use of dynamic geometry software from a pedagogical perspective: current status and future prospects. *Journal of Computer and Education Research, 7*(14), 337-355.

Karasar, N. (1991). *Bilimsel araştırma yöntemi* (4. Basım). Ankara: Nadir Kitap Yayınları.

Köseoğlu, F., Tümay, H., & Budak, E. (2008). Bilimin doğası hakkında paradigma değişimleri ve öğretimi ile ilgili yeni anlayışlar. *Gazi Eğitim Fakültesi Dergisi, 28*(2), 221-237.

Lawson, A.E. (2005). What is the role of induction and deduction in reasoning and scientific inquiry. *Journal of Research in Science Teaching, 42*(6), 716-740.

Milli Eğitim Bakanlığı. [MEB] (2005). İlköğretim matematik dersi 6-8. sınıf programı. https://ttkb.meb.gov.tr adresinden 28.02.2018 tarihinde erişilmiştir.

Milli Eğitim Bakanlığı. [MEB] (2013). Ortaokul matematik dersi öğretim programı. https://ttkb.meb.gov.tr adresinden 08.02.2013 tarihinde erişilmiştir.

Milli Eğitim Bakanlığı. [MEB] (2018). *Matematik dersi öğretim programı (ilkokul ve ortaokul 1, 2, 3, 4, 5, 6, 7 ve 8. sınıflar)*. https://ttkb.meb.gov.tr adresinden 12.02.2018 tarihinde erişilmiştir.

National Research Council [NRC].(1996). *National science education standards*. Washington DC: National Academy Press.

Oaksford, M. (2005). *Reasoning. In nick brais by & angus gellatly, cognitive psychology, New York: Oxford University Press Inc.*

Royal Society & Joint Mathematical Council (2001). Teaching and learning geometry 11-19. Report of a Royal Society/Joint Mathematical Council working group, retrieved from at 10.04.2017: https://royalsociety.org/~media/Royal_Society_Content/policy/publications/2001/99992.pdf

Tall, D.O., Blockland, P., & Kok, D. (1990). *A graphic approach to the calculus*. IBM compatibles computers with CGA, EGA or Hercules graphics, Sunburst Inc, USA.

Topuz, F. & Birgin, O. (2020). Yedinci sınıf “çember ve daire” konusundaki geliştirilen geometre destekli öğretim materyaline ve öğrenme ortamına ilişkin öğrenci görüşleri. *Journal of Computer and Education Research, 8*(15), 1-27. DOI:10.18009/jcer.638142

Umay, A., Duatepe, A., & Akkuş-Çıkla, O. (2005, Eylül). *Sinif öğretmeni adaylarının yeni öğretim programındaki matematiksel içeriğe yönelik hazır bulunuluk düzenleyicileri*. XIV Ulusal Eğitim Bilimleri Kongresi, Pamukkale Üniversitesi, Eğitim Fakültesi 28-30 Eylül.
EK

1. Hafta: Deney süreci hakkında bilgi verilmesi ve GŞAYB Testinin ön test olarak uygulanması

2. Hafta: Cabri programının öğretmen adaylarına tanıtılmaması, bu programın sahip olduğu özellikleri kullanarak öğretmen adaylarıyla beraber öğretim sürecine dâhil edilen geometrik şekillerin oluşturulması.

3. Hafta: Cabri programında öteleme, dönme, ölçümler yapma, makrolar oluşturma ve animasyon verme işlemlerinin uygulanması.

4. Hafta: Cabri programında oluşturulduan doğru parçasını ve oluşturulduan açıyı bulunduğunu yerden farklı bir alana taşıma uygulamasının yapılmaması.

5. Hafta: Cabri programında herhangi bir açıyı üç eşit parça bölen makronun oluşturulması ve bu makro yardımıyla Morley Teoreminin ispatının yapılmaması.

6. Hafta: Cabri programında bir doğruyu dışındaki herhangi bir noktadan paralel doğru çizilmesi ve bu uygulama yardımıyla paralelkenarların oluşturulması.

7. Hafta: Cabri programında bulunan bir doğruya üzerindeki herhangi bir noktadan dikme çizme seçeneğinin kullanılması ve bu komut ile kare ve dikdörtgen şekillerinin oluşturulması.

8. Hafta: Cabri programında seçilen bir doğru parçasının orta noktası bulunması ve bu nokta yardımıyla orta dikme doğrusunun çizilmesi. Ayrıca bu işlemler yardımıyla herhangi bir üçgenin çevrel çemberini çizebilen makronun tanımlanması.

9. Hafta: Cabri programında seçilen bir doğruya dışındaki herhangi bir noktadan dik doğru inşa edilmesi. Orthic Üçgen ve özelliklerinin uygulanması, çizilecek makronun oluşturulması.

10. Hafta: Cabri programında seçilen bir doğruya dışındaki herhangi bir noktadan dik doğru inşa edilmesi. Pisagor bağıntısı ve özelliklerinin araştırılması. Pisagor ağacının makrolar yardımıyla çizilmesi.

11. Hafta: GeoGebra dinamik programının özelliklerinin tanıtılması, öğretmen adaylarıyla birlikte nokta, doğru, doğru parçası, ışın, üçgen, dikdörtgen, kare, çocukler ve düzgün çocukler üzerinde uygulamaları yapılmasması.

12. Hafta: GeoGebra Programı ile piramit ve prizma gibi geometrik şekillerin ve cisimlerin inşa edilmesi.

13. Hafta: GeoGebra programında oluşturulduan geometrik şekillerin inşa edilen bir düzleme arakesit eğrilerinin incelemesi. Koniklerin GeoGebra programında oluşturulması.

14. Hafta: Genel tekrarın yapılması ve GŞAYB Testinin son test olarak uygulanması.