Constraining the cosmic radiation density due to lepton number with BBN

Sergio Pastor1 and Srdjan Sarikas2,3

1IFIC (CSIC-Universitat de València), Ed. Instituts, Ap. correus 22085, 46071 València, Spain
2Dip. Scienze Fisiche, Univ. Napoli “Federico II” & INFN-Sez. di Napoli, 80126 Napoli, Italy
3Max-Planck-Institut für Physik, Föhringer Ring 6, 80805 München, Germany

E-mail: sergio.pastor@ific.uv.es, sarikas@na.infn.it

Abstract. We discuss the bounds on the cosmological lepton number from Big Bang Nucleosynthesis (BBN), in light of recent evidences for a non-zero value of the neutrino mixing angle θ_{13} ($\sin^2 \theta_{13} \gtrsim 0.005$ at 2σ). We compute the largest possible neutrino asymmetries per flavour compatible with 4He and 2H primordial yields versus the neutrino mass hierarchy and mixing angles, tracing completely the neutrino oscillation dynamics through decoupling and BBN. The interplay between flavour oscillations and scatterings, in general, leads to non-thermal distortions of the neutrino spectra, depending on θ_{13}, increasing the final value for the effective number of neutrinos N_{eff}. Values for N_{eff} from neutrino asymmetries which are large enough to be detectable with Planck data are found only for the range $\sin^2 \theta_{13} \leq 0.01$. Nowadays flavour neutrino oscillations are well established from the analysis of data from reactor, accelerator, atmospheric and solar neutrino experiments. All neutrino mixing parameters are known with a precision better than 25%, except for the mixing angle θ_{13}. Until very recently only an upper bound on $\sin^2 \theta_{13}$ existed, while in the present year the first indications of non-zero θ_{13} values appeared from the analysis of global data, further strengthened by recent $\nu_{\mu} \to \nu_e$ searches at the T2K long-baseline experiment [1]. The allowed region for $\sin^2 \theta_{13}$ is approximately from 0.001 to 0.035 – 0.04 at 3σ, depending on the reactor neutrino fluxes and the neutrino mass hierarchy, either normal (NH) or inverted (IH), see e.g. [2].

Neutrino oscillations have implications in many research areas in particle and astroparticle physics. However, their consequences in cosmology are usually not considered important, despite the fact that cosmological neutrinos are almost as abundant as relic photons — if all the neutrino flavours were produced by frequent interactions in the early Universe, with the same momentum spectra, the oscillations, although effective right after neutrino decoupling, do not modify any of the properties of relic neutrinos\(^1\). There exists, however, one situation where flavour oscillations have an impact on cosmological neutrinos, namely when a large flavour neutrino asymmetry was previously created. It is usually assumed that such an asymmetry, parameterized by the number density ratios $\eta_{\alpha} = (n_\alpha - n_{\bar{\alpha}})/n_{\gamma}$ for $\alpha = e, \mu, \tau$, should be of the same order of the cosmological baryon number $\eta_b = (n_b - n_{\bar{b}})/n_{\gamma}$, due to the equilibration by sphalerons of lepton and baryon asymmetries in the very early universe. Thus one does not expect values of η_{α} much larger than a few times 10^{-10}, the value of η_b measured by present observations, such as 7-year data from the WMAP satellite and other cosmological measurements [4]. There are,\(^1\) Except for very small effects, at the percent level, from non-instantaneous neutrino decoupling as found in [3].
however, of magnitude larger than η_{b} could survive in the neutrino sector (see e.g. [5, 6]) with an influence on fundamental physics in the early universe, such as the QCD transition [7] or a potential relation with large-scale cosmological magnetic fields [8].

Present cosmological observations are not sensitive to a neutrino asymmetry if $|\eta_{\nu}| \lesssim 10^{-2}$, since only larger values lead to a significant enhancement of the contribution of active neutrinos to the radiation energy density ρ_{r} or to changes in the primordial production of light elements at BBN. Cosmological neutrinos influence BBN in two ways. As a background effect, they contribute to ρ_{r}, fixing the expansion of the Universe during BBN. This can be parameterized with N_{eff} as $\rho_{r} = (1 + 7/8(4/11)4^{3/2}N_{\text{eff}})\rho_{\gamma}$ after $e^{+}e^{-}$ annihilations. Non-zero neutrino asymmetries increase $N_{\text{eff}}(\eta_{\nu})$ enhancing the primordial abundance of light elements. On the other hand, any change in the momentum distribution of ν_{e}’s or $\bar{\nu}_{e}$’s influences the neutron-to-proton ratio, crucial for the final 4He abundance. This is the case of a non-zero $\nu_{e} - \bar{\nu}_{e}$ asymmetry: it shifts the neutron fraction towards larger (smaller) values for negative (positive) values of η_{ν}. This sets a stringent bound on η_{ν} which does not apply to the other flavours unless neutrino oscillations are effective before BBN, leaving a total neutrino asymmetry of order unity unconstrained [9].

A decade ago, it was shown that flavour neutrino conversions in the early Universe are suppressed by effects at large temperatures, and it is only at $T \lesssim 10$ MeV that oscillations could lead to strong flavour conversions before BBN [10, 11, 12]. An example of the evolution of $\eta_{\nu_{\alpha}}$ for \mathcal{O}(MeV) temperatures is given in Fig. 1, found solving numerically the evolution of the momentum distributions of flavour neutrinos including both oscillations and interactions with the rest of the plasma (ν’s and e^{\pm}). See refs. [10, 13, 14] for details about the corresponding kinetic equations and the approximations made. Note that $\nu_{\tau} - \nu_{\mu}$ mixing, driven by the mixing parameters Δm_{23}^{2} and θ_{23} is effective at $T \simeq 15$ MeV, when weak interactions are fully effective [10]. Thus, our numerical calculations start at $T = 10$ MeV with initial asymmetries $\eta^{\text{in}}_{\nu_{e}} = \eta^{\text{in}}_{\nu_{\tau}}$ and $\eta^{\text{in}}_{\nu_{\mu}}$. The total neutrino asymmetry $\eta_{\nu} = \sum_{\alpha} \eta_{\nu_{\alpha}}$ is unchanged by oscillations or collisions.

The onset of flavour oscillations involving ν_{e}’s is initially fixed by Δm_{31}^{2} and θ_{13}. If $\Delta m_{31}^{2} > 0$ (NH) neutrino oscillations follow an MSW conversion when the vacuum term overcomes the matter potential and the degree of conversion depends in this case on the value of θ_{13} [10, 11, 12], being very efficient compared with $\theta_{13} = 0$ for values close to the upper bound. This can be seen in Fig. 1 for one particular case with $\eta_{b} = 0$ and varying θ_{13}, while the conversion for non-zero θ_{13} is more evident if $\Delta m_{31}^{2} < 0$ (IH), due to the resonant character of the MSW transition. Indeed, for IH we found that if $\sin^{2}2\theta_{13} \gtrsim 5 \times 10^{-3}$ equipartition of the total lepton asymmetry among the three neutrino flavours is quickly achieved. Finally, for negligible θ_{13} flavour oscillations driven by Δm_{23}^{2} and θ_{12} are not effective until $T \lesssim 3$ MeV.

The moment when flavour oscillations become effective is important not only to establish $\eta_{\nu_{e}}$ at the onset of BBN, but also to determine whether weak interactions can still keep neutrinos and $e^{+}e^{-}$ in good thermal contact. Oscillations redistribute the asymmetries among the flavours, but only if they occur early enough would interactions preserve Fermi-Dirac spectra for neutrinos, so that a chemical potential $\mu_{\nu_{\alpha}}$ is well defined for each $\eta_{\nu_{\alpha}}$. For instance, for initial flavour asymmetries with opposite signs, neutrino conversions will tend to reduce the asymmetries, decreasing in turn N_{eff}. But if flavour oscillations begin at temperatures close to neutrino decoupling, this would not hold and an extra contribution of neutrinos to radiation is expected [13].

Prompted by recent indications of non-zero θ_{13} and the hints of possible extra radiation from cosmological data [4], we have recently found the BBN bounds on the cosmological lepton number for a range of initial $\eta_{\nu_{\alpha}}$ [14, 15]. Both the allowed region for the total neutrino asymmetry and its maximum contribution to the radiation content of the Universe were calculated for the θ_{13} values favoured by oscillation data, as well as considering both neutrino mass hierarchies.

We have performed an analysis of the effects of flavour neutrino asymmetries on the BBN outcome, solving the evolution of neutrino spectra in a wide range of values for the total (lepton) asymmetry η_{ν} and the initial ν_{e} asymmetry $\eta^{\text{in}}_{\nu_{e}}$. The obtained time-dependent neutrino
The allowed region for η in the NH values of order within the region favoured by oscillation data, due to the resonant character of the conversions. NH (IH). Note, however, that in the IH this result approximately holds for any value of $\sin^2 \theta_{13}$ region for $\sin^2 \theta_{13}$ of the allowed region from a quasi-horizontal one for zero mixing to an almost vertical rotation

Figure 1. Left: Evolution of the flavour neutrino asymmetries when $\eta_{\nu_e}^{in} = -0.82$ and $\eta_{\nu} = 0$. The outer solid curves correspond to $\theta_{13} = 0$ (black), while the inner ones (red) were calculated in the NH for two values of $\sin^2 \theta_{13}$: 0.04 (left) and 0.02 (right). The same two values of $\sin^2 \theta_{13}$ are shown in the IH (blue dotted). Right: 95% C.L. contours from our BBN analysis in the $\eta_{\nu} - \eta_{\nu_e}^{in}$ plane for $\sin^2 \theta_{13} = 0$ (black solid line), 0.04 and NH (red solid), 0.04 and IH (blue dotted). The case of no flavour oscillations is shown for comparison (black dashed contour).

The allowed region for η_{ν_e} is severely constrained by 3He data, arising from a narrow region for the electron neutrino degeneracy, $-0.018 \leq \xi_e \leq 0.008$ at 68% C.L. Instead, the asymmetry for other neutrino flavours could be much larger, since the absolute value of the total asymmetry is only restricted to $|\eta_{\nu}| \lesssim 2.6$ [17, 18]. Flavour oscillations modify this picture and an initially large $\eta_{\nu_e}^{in}$ can be compensated by an asymmetry in the other flavours with opposite sign. The restrictive BBN bound on the η_{ν} value, which must be very close to zero, applies then to η_{ν}. This can be seen graphically as a rotation of the allowed region from a quasi-horizontal one for zero mixing to an almost vertical region for $\sin^2 \theta_{13} = 0.04$, in particular for the IH. In all cases depicted in Fig. 1 the allowed regions are mainly fixed by 3He that cuts a narrow degenerate band, while data on primordial 2H is crucial for closing the regions.

For values of θ_{13} close to the experimental upper limits, the combined effect of oscillations and collisions leads to an efficient mixing of all neutrino flavours before BBN. Therefore, the individual neutrino asymmetries have similar values, $\eta_{\nu_e} \approx \eta_{\nu}/3$. The BBN bound on η_{ν} applies to all flavours, and in turn to η_{ν} as considered in [9, 10, 19, 20]. We find that for $\sin^2 \theta_{13} = 0.04$ the allowed region at 95% C.L. is $-0.17(-0.1) \leq \eta_{\nu} \leq 0.1(0.05)$ for neutrino masses following a NH (IH). Note, however, that in the IH this result approximately holds for any value of $\sin^2 \theta_{13}$ within the region favoured by oscillation data, due to the resonant character of the conversions. Instead, in the NH values of order $|\eta_{\nu}| \approx 0.6$ are still compatible with BBN if θ_{13} is very small [14]. The allowed region for η_{ν} and the largest values of N_{eff} from neutrino asymmetries compatible
with BBN, as a function of the neutrino mass hierarchy and the mixing angle θ_{13} are reported in Fig. 2. If the true value of θ_{13} lies in the upper part of the region favoured by oscillation experiments (in particular T2K) or $\Delta m^2_{31} < 0$, the presence of primordial asymmetries can not lead to a contribution to the radiation energy density $N_{\text{eff}}> 3.1$. Instead, for the NH and very small values of θ_{13}, larger values of N_{eff} are still compatible with BBN, up to 3.43 at 95% C.L.

In conclusion, we have found the BBN constraints on the cosmological lepton number and the associated contribution to the radiation energy density, taking into account the effect of flavour neutrino oscillations. In particular, we have shown that pinpointing the value of θ_{13} is crucial to establish the degree of equilibration of flavour neutrino asymmetries in the early Universe.

Acknowledgments
This work was partly supported by the Spanish grants FPA2008-00319, FPA2011-22975 and CSD2009-00064 (MICINN) and PROMETEO/2009/091 (Generalitat Valenciana). This research was also supported by a Spanish-Italian MICINN-INFN agreement, ref. AIC10-D-000543.