Genus *Baseodiscus* (Nemertea: Heteronemertea): Molecular identification of a new species in a phylogenetic context

MALIN STRAND, ANNA HJELMGREN, & PER SUNDBERG

Göteborg University, Department of Zoology, Göteborg, Sweden

(Accepted 19 September 2005)

Abstract

A new heteronemertean, *Baseodiscus jonasii* sp. nov., is described from Guadalcanal, Solomon Islands. It resembles *B. delineatus* in inner morphology but can be distinguished from this species by its different colour pattern and differences in the nucleotide sequence of the mitochondrial 16S rRNA gene. The monophyletic status of the genus is investigated by reconstructing the phylogeny of six specimens from four species assigned to this genus, together with 22 specimens from nine other heteronemertean genera, using parsimony and Bayesian analysis. The results imply that *Baseodiscus* is a monophyletic group while several other heteronemertean genera are non-monophyletic.

Keywords: 16S rRNA, Baseodiscus, *Baseodiscus jonasii* sp. nov., Heteronemertea, mitochondrial DNA, Solomon Islands

Introduction

The genus *Baseodiscus* (Diesing, 1850) comprises about 35 described species (Gibson 1995), most of which are tropical or subtropical. Species assigned to this genus consist of large, marine, benthic worms with a weakly developed proboscis and no horizontal cephalic slits (Gibson 1979). One species of *Baseodiscus*, *B. quinquelineatus* (Quoy and Gaimard, 1833), has previously been reported from the Solomon Islands. This species has been redescribed in detail by Gibson (1979), together with *B. delineatus* (Delle Chiaje, 1825), which is the type-species for the genus *Baseodiscus* (Gibson 1995). In spite of his thorough investigation, Gibson (1979) found only minor differences in internal morphology between the two species and concluded that the most distinctive character for *B. quinquelineatus* is the colour pattern. The new taxon described here, *Baseodiscus jonasii* sp. nov., is morphologically very similar to the two species mentioned but has a distinguishable colour pattern. Four specimens of the new species were examined but could not be distinguished...
from *B. delineatus* when comparing the internal morphological characters listed in Table I. *Baseodiscus jonasi* sp. nov. is, however, genetically separated both from specimens of *B. delineatus* (from Rottnest Island, Australia and from Ischia, Italy), and from a specimen of *B. quinquelineatus* from the Solomon Islands which supports our view that this is a species new to science.

We also used the 16S rRNA sequences from 28 heteronemertean and three hoplonemertean specimens listed in Table II to test whether the genus *Baseodiscus* is monophyletic, using Bayesian and parsimony analyses. The results indicate, even though we have only six specimens from four species represented, that *Baseodiscus* is a monophyletic group. Other heteronemertean genera included in analyses are non-monophyletic. This result is in concordance with earlier studies (Sundberg and Saur 1998; Thollesson and Norenburg 2003).

Material and methods

Specimens

The specimens of the new taxon were all collected intertidally at low tide, among dead corals on reef flats, from three localities along the northern coast of Guadalcanal, Solomon Islands (Rove near White River, west of Honiara, Mendana Reef and Vulelua Island) in June 1995. Their external features were examined after anaesthetizing with MgCl₂. The morphological description is based on histological examination of four specimens (one from Rove and three from Mendana Reef) preserved in 40% formalin, embedded in 56°C m.p. paraffin wax, sectioned at 7 μm and stained with the Mallory trichrome method. For DNA extraction specimens were placed in 70% ethanol. The type
specimens of the new taxon are deposited at the Museum of Natural History (MNHG) in Göteborg, Sweden.

DNA sequencing

DNA was extracted using the QIAamp DNA Mini Kit for tissue (QIAGen Inc.) following the protocol supplied by the manufacturer. A part of the 16S gene was amplified by polymerase chain reaction (PCR) using a thermal cycler (PTC-100 Programmable Thermal Controller, MJ Research Inc.) and the universal primers 16Sar-L and 16Sbr-H (Palumbi 1996). Each PCR was performed with 20–80 ng of DNA template in a 50 μl reaction volume (10 mM Tris–HCl, 50 mM KCl, 2 mM MgCl₂, 0.3 μM of each primer, 100 μM of each dNTP, 2 units (0.04 U/μl) of Taq DNA polymerase (Sigma Product No. D6677)). Thermal cycling started with 2 min of denaturation at 94°C followed by 60 cycles of 30 s at 94°C, 30 s at 47°C and 1 min at 72°C. The cycling was ended with a 7 min

Tab. II. List of nemertean species included in analysis with localities and accession numbers.

Species	Locality	Accession no.
Heteronemertea		
Baseodiscus jonasi sp. nov.	Guadalcanal, Solomon Islands	AY955230
Baseodiscus delineatus	Guadalcanal, Solomon Islands	AY955231
(Delle Chiaje, 1825)		
Baseodiscus delineatus	Rottnest Island, Australia	AY955232
(Delle Chiaje, 1825)		
Baseodiscus quinquelinate	Ischia, Italy	AY955227
(Quoy and Gaimard, 1833)		
Baseodiscus hembrichii	Solomon Islands	AY955228
(Ehrenberg, 1831)		
Lineus ruber (Müller, 1774)	Hurghada, Egypt	AY955229
Baseodiscus delineatus	Sweden	AF103758a
(Delle Chiaje, 1825)		
Lineus viridis (Müller, 1774)	UK	AF103760a
Lineus longissimus (Gunnerus, 1770)	Plymouth area, UK	AF103763a
Lineus alborstratus Takakura, 1898	Vostok Bay, Sea of Japan, Russia	AJ436822b
Teutulentus bicolor (Verrill, 1892)	Sebastian Inlet, FL, USA	AJ436823b
Notospermus geniculatus (Delle Chiaje, 1828)	Seto, Japan	AJ436824b
Oxyopella alba Bergendal, 1903	Tjärnö, Sweden	AF103767a
Micrura purpurea (Dalyell, 1853)	Tjärnö, Sweden	AF103766a
(Delle Chiaje, 1825)		
Micrura fasciolata Ehrenberg, 1828	Tjärnö, Sweden	AF103765a
Micrura alaskensis Coe, 1901	San Juan Island, WA, USA	AJ436827b
Ramphogordius sanguineus (Rathke, 1799)	Wales, UK	AJ436821b
Cerebratulus marginatus Renier, 1804	Washington State, USA	AJ436828b
Cerebratulus sp.		AF103755a
Riseriellus occultus Rogers, Junoy, Gibson and Thorpe, 1993	Wales, UK	AF103764a
Parvicirrus dubius (Verrill, 1879)	Georgetown, ME, USA	AJ436830b
Parborlasia corrugatus (McIntosh, 1876)	McMurdo Sound, Antarctica	AJ436829b
Hoplonemertea (outgroup)		
Amphiporus angulatus (Müller, 1774)	Cobscook, ME, USA	AJ436786b
(Müller, 1774)		
Amphiporus formidabilis Griffin, 1898	San Juan Island, WA, USA	AJ436787b
Tetrastramma elegans (Girard, 1852)	Nahant, MA, USA	AJ436810b

aSundberg and Saur (1998); bThollesson and Norenburg (2003).
extension phase at 72°C. PCR products were purified using the QIAquick PCR Purification Kit (QIAGen Inc.). Sequencing was carried out with Cy5-labelled primers (16Sar-L and 16Sbr-H) on an ALFExpress automated sequencer (Pharmacia) following standard procedures with primer concentration 0.09 μM in the sequencing reactions.

Outgroup

Sundberg et al. (2001) as well as Thollesson and Norenburg (2003) have shown that hoplonemerteans and heteronemerteans are both monophyletic groups. In this study we used three hoplonemertean species as outgroup.

Alignment and phylogenetic analysis

The sequences were edited and aligned with Lasergene (DNASTAR) using the Clustal-V (Higgins et al. 1992) algorithm; alignment can be obtained from the corresponding author. Gap/gap length penalties were set to 15/8. Ambiguously aligned regions were excluded using MacClade 4.0 (Maddison and Maddison 2001). PAUP 4.0b10 (Swofford 2002) was used for the maximum parsimony analysis, using a heuristic search strategy (TBR), random addition, five replicates. Clade support was assessed with non-parametric bootstrap from 1000 replicates. Phylogenetic analysis using Bayesian inference was performed with MrBayes ver. 3.06 (Huelsenbeck and Ronquist 2001) using default values of four Markov chains, with invariant sites and gamma distribution, lset nst=6 (GTR). The Monte Carlo Markov chain (MCMC) length was 1,000,000 generations with sampling of every 100th generation chain. Log-likelihood values for sampled trees stabilized after approximately 100,000 generations, burn-in was set to 5000 leaving the last 5000 sampled trees for estimating posterior probabilities (Bayesian support values). Five separate analyses were run starting from random trees to ensure congruence.

Results and discussion

After excluding ambiguous regions the aligned data set contained 486 nucleotide positions of which 284 were parsimony informative. Figure 1 shows the resulting majority rule consensus tree from the Bayesian analysis and Figure 2 shows the resulting tree of the parsimony analysis. All species in the taxon *Baseodiscus* form a monophyletic group with posterior probability 1.00 and bootstrap support 98%. Within this group, expressed as percentage nucleotide dissimilarity, the two specimens of *B. jonasii* nov. sp. diverge from *B. delineatus* with 21.1%, and from *B. quinquelineatus* with 22.0%. The divergence between *B. delineatus* and *B. quinquelineatus* is 10.1%. Both analyses indicate that the genera *Lineus*, *Micrura*, and *Cerebratulus* are non-monophyletic.

Many of the species assigned to the genus *Baseodiscus* are inadequately described (Gibson 1995). Most of the descriptions were made during the years 1825 (Delle Chiaje 1825: *B. delineatus*) to 1934 (Coe 1934: *B. edmondsoni*) and some are based on preserved animals that may have lost both shape and colours. A few have been redescribed since then: *B. antarcticus* (Gibson 1985), *B. aureus*, *B. mexicanus* (Friedrich 1970), *B. delineatus*, *B. hemprichii*, *B. quinquelineatus* (Gibson 1979), *B. lumbricoides* (Gibson and Ogren 1990), *B. unistriatus* (Gibson 1974), but most still lack a thorough description. Genetic information has never before been used in descriptions of *Baseodiscus* species. *Baseodiscus jonasii* sp. nov. has a colour pattern that is distinctive from all other *Baseodiscus* species
Figure 1. Parsimony tree based on the 16S rRNA data with bootstrap support values from 5000 replicates (heuristic search, random additions, five replicates).
Figure 2. Majority rule consensus tree for the 16S rRNA data resulting from the Bayesian analysis (model GTR+G+I), 1,000,000 generations. Numbers refer to posterior probabilities.
except *Baseodiscus delineatus*, which it resembles both externally and internally. According to Gibson (1979), the coloration of *B. delineatus* is “a uniform dull yellowish-fawn, marked by light reddish-brown longitudinal lines which extend for the full body length”. He also comments that “each stripe is of variable width and outline and adjacent stripes occasionally join with each other”. It is easy to imagine that the dark lines might have become broader in some populations of worms, rendering the animal with a reddish brown ground coloration and yellowish stripes. There also seems to be some colour variation within *B. delineatus*, especially when *B. delineatus* var. *curtus* is included in the species (some authors prefer to treat *Baseodiscus curtus* (Hubrecht 1879) as a separate species, but here we choose to follow Gibson’s suggestion (Gibson 1979, 1995) to synonymize it with *B. delineatus*). Hubrecht (1879) described *Polia curta*, later transferred to the genus *Baseodiscus* by Bürger (1904), as distinguished from *B. delineatus* in that “the brown stripes are much more closely set on the back, 12–15 being counted in a transverse line on the back”. The colour pattern of *B. delineatus* was described by Hubrecht (1879) as “dark brown stripes longitudinally intersecting the light brown ground colour ... about five to seven may be counted in a transverse line across the back”. Bürger (1904) described *B. delineatus* and *B. curtus* as even more variable in colour. He stated that the ground coloration for *B. delineatus* is light brown or olive green with dark brown longitudinal stripes, and for *B. curtus* as yellowish grey, brown, reddish brown or red (“zinnoberrot”) with brown longitudinal stripes. There has, however, never been any record of a reddish brown worm with yellowish longitudinal stripes. We could have expanded the taxon *B. delineatus* to contain just another colour variant. However, 16S mtDNA sequences from *B. jonasii* sp. nov., *B. delineatus* (type species of the genus, and which it resembles most), and *B. quinquelineatus* (the only *Baseodiscus* species previously reported from the Solomon Islands (Gibson and Sundberg 2002)) indicate a clear genetic difference between all three species. The two *B. delineatus* sequences are identical even though the specimens were collected as far apart as Australia and Italy, the two *B. jonasii* sp. nov. specimens differ only in one nucleotide. The difference between *B. delineatus* and *B. quinquelineatus* is about 10%, and *B. jonasii* sp. nov. differs from the other two by more than 20%. We therefore conclude that *B. jonasii* sp. nov. is previously undescribed and unnamed.

Nemerteans have in general few external characters and are therefore usually described using internal morphology. There are, however, problems with most internal characters since nemerteans contract during fixation and preservation. The relative position of organs and the thickness of different tissues are quite variable, and depend on the amount of body contraction. Many morphological characters that have been used in earlier descriptions are therefore not reliable. This study gives an example of a genetically well-defined taxon that is hard to distinguish when looking, as is the tradition when describing nemerteans, merely for internal morphological characters. *Baseodiscus jonasii* sp. nov. has a characteristic colour pattern, different from that of *B. delineatus*, but the two taxa are morphologically indistinguishable. Without the genetic information the new species would not have been identified. This result is probably not a rare case. Presumably, if we were to look into several nemerteans species, we would find many more species in some cases, and in other cases the opposite since some species for certain have a range of variation in pigmentation and pattern within the species, e.g. *Oerstedia dorsalis* (Sundberg and Janson 1988). With an increasing knowledge of genetics we conclude that speciation quite commonly takes place without an apparent morphological diversification visible to us (Strand and Sundberg 2005), and that, at least in some cases, we need a new approach both for describing nemerteans and for erecting new species, genera, and families.
Baseodiscus jonasii sp. nov.
(Figure 3; Table I)

Type material

Holotype: MNHG catalogue number 78, of unknown sex, transverse sections of the anterior end, 18 slides (marked SOL6/1). The 16S rRNA gene sequence of the holotype is deposited in Genbank (accession number AY955230). Paratypes: three (marked SOL6/2 (39 slides), SOL6/3 (13 slides), SOL6/4 (20 slides)) of unknown sex, transverse sections of the anterior end and in one specimen (SOL6/2) various mid-body regions.

Type locality

Mendana Reef, Honiara, Solomon Islands. Intertidal, among dead corals on reef flats.

Etymology

The name is dedicated to the finder of the first specimen, Jonas Sundberg.

External features

Length about 60 cm, width about 4 mm, ground colour reddish brown with numerous longitudinal yellowish beige stripes extending full length of body. Head rounded, clearly demarcated from trunk (Figure 3). Eyes not clearly visible in living specimens but can be seen on histological sections, lying beneath epidermis. Mouth situated ventrally, just behind the cerebral ganglia. Proboscis pore subterminal. Cephalic slits absent. Head retracted into trunk upon preservation.

Internal morphology

Indistinguishable from *Baseodiscus delineatus* (Table I).

Figure 3. External view of *Baseodiscus jonasii* sp. nov. Drawing made by Ray Gibson.
Acknowledgements

Funding for this research was provided by Helge Ax:son Johnsons stiftelse (MS & AH). It was also financially supported by the Swedish Research Council and the Erna and Victor Hasselblad Foundation (P.S.). We are grateful to Len Rodwell and Andrew Richards for their support during P.S.’s stay in Honiara, and to Jonas Sundberg for assistance in the field. We also thank Professor Ray Gibson for helpful comments on the manuscript.

References

Bürger O. 1904. Nemertini. Das Tierreich 20:1–151.
Coe WR. 1934. New nemertean from Hawaii. Occasional Papers of the Bernice P. Bishop Museum 10:1–9.
Delle Chiase S. 1825. Memorie sulla storia e notomia degli animali senza vertebe del regno di Napoli. Volume 2. Napoli: Societa’ Tipografica. p 185–444.
Friedrich H. 1970. Nemertinen aus Chile. Sarsia 40:1–80.
Gibson R. 1974. Two species of Baseodiscus (Heteronemertea) from Jidda in the Red Sea. Zoologischer Anzeiger 192:255–270.
Gibson R. 1979. Nemerteans of the Great Barrier Reef, 2. Anopla Heteronemertea (Baseodiscidae). Zoological Journal of the Linnean Society 66:137–160.
Gibson R. 1985. Antarctic nemerteans: Heteronemertea—descriptions of new taxa, reappraisals of the systematic status of existing species and key to the heteronemerteans recorded south of latitude 50°S. Zoological Journal of the Linnean Society 83:95–227.
Gibson R. 1995. Nemerteans genera and species of the world: an annotated checklist of original names and description citations, synonyms, current taxonomic status, habitats and recorded zoogeographic distribution. Journal of Natural History 29:271–562.
Gibson R, Ogren RE. 1990. Nematodemus lumbricoides von Graff, 1899 (Platyhelminthes, Turbellaria, Tricladida) redescribed and transferred to the phylum Nemertea. Journal of Natural History 24:181–194.
Gibson R, Sundberg P. 2002. Some heteronemerteans (Nemertea) from the Solomon Islands. Journal of Natural History 36:1785–1804.
Higgins DG, Bleasby A, Fuchs R. 1992. CLUSTAL-V: improved software for multiple sequence alignment. Computer Applications in the Biosciences 8:189–191.
Hubrecht AAW. 1879. The genera of European nemerteans critically revised, with description of several new species. Notes from the Leyden Museum 1:193–232.
Huelsenbeck JP, Ronquist F. 2001. MR BAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755.
Maddison DR, Maddison WP. 2001. MacClade 4: analysis of phylogeny and character evolution. Version 4.0. Sunderland (MA): Sinauer Associates.
Palumbi SR. 1996. Nucleic acids II: the polymerase chain reaction. In: Hillis DM, Moritz C, Mable BK, editors. Molecular systematics. 2nd ed. Sunderland (MA): Sinauer Associates. 205–247.
Strand M, Sundberg P. 2005. Delimiting species in the hoplonemertean genus Tetrastemma (phylum Nemertea): morphology is not concordant with phylogeny as evidenced from mtDNA sequences. Biological Journal of the Linnean Society 86:201–212.
Sundberg P, Janson K. 1988. Polymorphism in Oerstedia dorsalis (Abildgaard, 1806) revisited: electrophoretic evidence for a species complex. Hydrobiologia 156:93–98.
Sundberg P, Saur M. 1998. Molecular phylogeny of some European heteronemertean (Nemertea) species and the monophyletic status of Riseriellus, Lineus and Micrura. Molecular Phylogenetics and Evolution 10:271–280.
Sundberg P, Turbeville JM, Lindh S. 2001. Phylogenetic relationships among higher nemerteans (Nemertea) taxa inferred from 18S rDNA sequences. Molecular Phylogenetics and Evolution 20:327–334.
Swofford DL. 2002. PAUP*: phylogenetic analysis using parsimony (*and other methods). Version 4. Sunderland (MA): Sinauer Associates.
Thollesson M, Norenburg JL. 2003. Ribbon worm relationships: a phylogeny of the phylum Nemertea. Proceedings of the Royal Society of London Series B Biological Sciences 270(1513):407–415.