Research Article

Construction and Application of Tennis Teaching Digital Resources Based on Deep Learning

Tingting Zhao

School of Humanities and Law, Beijing University of Chemical Technology, Beijing 100029, China

Correspondence should be addressed to Tingting Zhao; 2011800001@buct.edu.cn

Received 26 October 2021; Revised 2 December 2021; Accepted 10 December 2021; Published 24 December 2021

Academic Editor: Jian Su

Copyright © 2021 Tingting Zhao. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Tennis teaching is an important part of traditional physical education in China. It aims to cultivate students' lifelong exercise habits, improve learning efficiency, and promote social development. Therefore, based on the concepts of deep learning and digital resource construction, this paper proposes the course structure design. This paper first describes the current situation of tennis teaching, then studies the relevant content of deep learning, and discusses the most commonly used neural network algorithm in the field of deep learning. Then, using the research method of the questionnaire survey, combined with the digital teaching mode, the teaching of Chinese college students tennis group research, and compared with the traditional teaching mode. The results showed that the experimental group (EP) learned more balanced technical movements than the control group (CP). The teaching effect of digital resource tennis course is better than conventional teaching, which shows that digital resource tennis course can master students' skills better than conventional teaching. Therefore, the construction of digital resources based on deep learning can improve students' tennis technology and stimulate students' interest in tennis.

1. Introduction

Tennis is a new sport in China. It develops rapidly. Its growth and progress directly affect people’s comprehend of the world’s civilized and cultural life [1, 2]. In tennis teaching, the traditional teaching mode has always been the dominant position of teachers, and in-depth learning is a new concept. At the same time, the construction and use of digital resources have also become one of the indispensable and important topics in the fields of education research and sports scientific research. Innovative research on tennis teaching is necessary [3, 4].

Many scholars have conducted relevant research on the digitization of tennis teaching. Some researchers described the importance of tennis culture and its impact on the development of college tennis and fully demonstrated how to strengthen the development of college tennis culture [5, 6]. There are also researchers arguing that deep learning is a branch of machine learning that attempts to model the high-level abstraction of the data using multiple layers of neurons composed of complex structures or nonlinear transformations. With increasing data volume and computational power, more complex structured neural networks receive much attention and are applied to various fields. The authors outline deep learning in neural networks, including popular structural models and training algorithms [7, 8]. Although there are many research results, it is still a weak aspect in digital teaching. Therefore, these scholars’ research on the development of tennis has laid a foundation for this paper.

This paper mainly focuses on the characteristics of deep learning and its teaching limitations and investigates the digital resource system based on deep classification resources. Firstly, this study considers the construction model based on content database, then expounds the construction of mathematical mode, and analyzes the current situation of tennis training in China.

2. Discussion on Tennis Teaching Digital Resources Based on Deep Learning

2.1. Current Situation of Tennis Teaching. Tennis, as a sport, originated in different parts of Europe and then became popular in the United States and other countries. In some developed
countries in Europe and America, the popularity of tennis is very high [9, 10]. Tennis is a fashionable, healthy, leisure, and charming sports event with profound cultural heritage. With the continuous improvement of China’s politics, economy, culture, and people’s living standards, tennis has gradually become popular in China and is widely favored by local people, especially young people. From the current situation, tennis is welcomed by many ordinary students in China with its unique charm and cultural heritage, and more and more people begin to devote themselves to tennis [11, 12].

In foreign colleges and universities, tennis is a very popular fashion sport among young students, with a very high degree of participation [1, 3]. The main purpose of public elective physical education is to let more students learn the basic skills of tennis, so as to carry out sports, cultivate students’ social interaction, and enrich campus culture. At present, all countries in the world attach great importance to college physical education and take it as an important means of comprehensive training of talents. However, due to the different stages of social development and operation management, countries show great differences in politics, economy, culture, especially education. The objectives, content structure, teaching methods, methods, means, implementation methods and effect evaluation of College Physical Education in different countries are different. In order to comply with the strong development trend of tennis, meet the growing sports needs of students, and enrich students’ after-school cultural activities, many colleges and universities across the country have opened tennis courts. The public tennis courts that have not yet been opened have also actively created preconditions for their schools to make comprehensive preparations for the opening of tennis courts [13, 14].

2.2. Deep Learning. With the continuous progress of human society, people pay more and more attention to knowledge. Knowledge has become an indispensable factor in promoting economic growth and progress. In the era of knowledge economy, learning is a very important mode of production. Deep learning is one of the most dynamic and modern disciplines in the 21st century. Therefore, deep learning has received a lot of attention [15, 16]. Deep learning is a new and effective teaching method. Consciousness constructing knowledge system has strong practical application and theoretical research value. Deep learning has become a new educational concept, and there is an inevitable trend of combining with traditional teaching. In the concept of deep learning, one is the learning process. In today’s learning process, deep learning is an important and effective way to help people obtain information and knowledge better and faster. On the one hand, deep learning is embedded in the learning strategies used by learners to understand the curriculum materials, such as extensive data collection, statistical analysis, communication with others, and self reflection. On the other hand, different learning strategies should be adopted to promote in-depth learning. Deep learning means that learners must go through multilevel learning, multilevel analysis, and multilevel processing in order to change their thinking, control, or behavior and obtain new knowledge and experience. Second, pay attention to learning results. Encourage the development of knowledge or metacognition and the ability of independent exploration through teachers’ design and arrangement of knowledge points, teaching materials, and teaching process [17, 18].

2.3. Digital Resources. “Digital resources” refer to the use of information technology to design, develop, and integrate, for the purpose of supporting education and teaching practice, store, share, and transmit in the digital form on the Internet to help teachers prepare and attend classes. It should be emphasized that the digital resources here are broad categories of resources, including educational resources, content resources, generation resources, and tool resources (such as high-quality curriculum learning platform). With the rapid dissemination of information, the advantages of digital resources are also becoming increasingly obvious, such as small volume, large capacity, rich content, diverse shapes, and fast update. Compared with traditional literature, digital resources have developed rapidly and can be published and changed at any time [19, 20].

The characteristics of digital resource tennis teaching are as follows.

2.3.1. Information Environment Changes over Time. This teaching method adapts to the information environment. Computer and network support education has become the trend of modern education. The teacher’s computer is equipped with a dual board PGP classroom teaching platform, which can support a variety of educational resources, flexibly realize educational innovation, link a variety of resources together, and let students quickly complete knowledge construction. Use double tables to display different learning resource. It can also realize traditional classroom activities such as blackboard writing and arithmetic, as well as double-sided board display, diversified real-time classroom interaction, serial teaching design, and automatic preservation of learning process [21].

2.3.2. Digital Resources and Strong Support for Teaching. Network resources are more and more abundant, multimedia technology is widely popularized, students have more and more opportunities to acquire knowledge, and the way of learning is not limited to books. In class, in class and after class resources ensure that students learn anytime and anywhere. In addition to readymade teaching materials, tutorials, and rich resources, digital tennis teaching aids also provide excellent learning works and learning cases on the network platform, so as to continuously generate new learning resources. With the support of high-quality resources before, during, and after class, coupled with the help of computers and networks, this learning method breaks the boundaries of the traditional teaching process, breaks the boundaries of time and space, and expands the classroom. In this way, learning is not limited to the classroom. Students can use resources for autonomous learning in time and space outside the classroom. More importantly, breaking through
the boundaries of the teaching process can broaden students’ vision and increase the amount of information they learn. This model promotes the mutual exchange, autonomous learning, and students’ autonomous learning between teachers and students and students and educational resources and transforms the passive acceptance of boring students into the active participation of each student.

2.3.3. Classroom Interaction Is Diversified and New Classroom Elements Are Introduced. In the new information environment, the news media has changed the traditional teacher-student relationship and more involved in human-computer interaction. Therefore, we cannot ignore the interaction between people and students and the surrounding environment. “Interaction” not only includes interaction between people but also extends the meaning of interaction to “interaction between people and environment.”

2.4. Neural Network Algorithm for Deep Learning. RBF neural network has become one of the most popular neural network structures because of its simple structure and strong approximation ability. The most basic RBF neural network consists of three layers, each with a different role. The first layer is the input layer, which consists of several perceptual units that function to connect the network to the external environment. The second layer is a single-hidden layer structure, consisting of some radial basis functions. It inputs the linear transformation into the space to map it to the hidden layer space. In most cases, the hidden layer space has higher dimensions. Linear nonseparable modes from the original space are processed by hidden layers and then converted to a new large-dimensional space becoming linear separable. Second, the third layer is the output layer, which provides a response to the stimulus applied to the input layer. The output of this layer is actually the weighted linear sum of each neuron in the hidden layer. The output of this layer is actually the weighted linear sum of each neuron in the hidden layer.

For the fractional network with real weight and activation function, based on the rectangular or polar coordinate system, the target input and output of complex value are divided into two real components so that the problem of two-dimensional input and complex value output of the complex value becomes four-dimensional input of the real value and two-dimensional output of the real value, such as

\[
\begin{align*}
\{ e_1 e_2 \} & \rightarrow \begin{pmatrix} P_{1r} \\ P_{2r} \\ P_{3r} \\ P_{4r} \end{pmatrix} , \\
\{ e_1 e_2 \} & \rightarrow \begin{pmatrix} P_1 \\ \theta_1 \\ P_3 \\ \theta_2 \end{pmatrix} ,
\end{align*}
\]

where \(P_{1r} \) and \(P_{2r} \) represent the real and imaginary parts of the complex numerical signal \(e_1 \) respectively, and \(P_1 \) and \(P_3 \) are the amplitude and phase of \(e_2 \).

The basic idea of RBF neural network is to construct the hidden layer space with radial basis function (RBF) as the “basis” of hidden layer nodes, transform the input mode vector into low-dimensional feature input through the hidden layer, transform it into high-dimensional space, and then add weight to the output of hidden layer elements to obtain the final grid output, in which the activation of function \(d \) to hidden layer neurons is positive. The nonlinear function is radial symmetry.

If the hidden layer uses a Gaussian function as the activation function,

\[
x_j^2 = \alpha (s, c, j, k) = \exp(- (s - c) \ast (s - c)),
\]

where \(X \) represents the complex value center of the \(j \)th hidden layer neuron, \(c \) is the width of the \(j \)th hidden layer neuron, \(k \) is a constant, and \(s \) represents the length of the \(j \)th hidden layer neurons.

3. Experiment

3.1. Investigation Purpose. This paper investigates the current situation of Tennis Teaching Digital Resources Based on deep learning and mainly investigates the application of Tennis Teaching Digital Resources Based on deep learning, so as to provide a basis for the development of Tennis Teaching Digital Resources Based on deep learning.

3.2. Test Method. Each test was monitored and scored by two senior tennis players (Level 2 or above) who did not participate in the experiment according to the ITN scoring method and scoring standard. The score of each subject is the score of two examiners. The tennis grading standard is formulated according to the American NTRP (National Tennis rating program) standard. The lowest grading is 1.0. Beginners (including those who play tennis for the first time) increase by 0.5 and the highest is 7.0. They are international players. They participate in international competitions and take the competition bonus as the source of income. Amateurs can reach level 4.5 at most. The active members of the national (provincial) team are generally 5.0–5.5. The grading standard is the sum of the number of items that cannot be reached (negative value) and the number of items that exceed. If the number is not less than “−1,” it can be determined as this level.

3.2.1. Baseline Stroke Test. The forehand and backhand depth of the test object: the subjects hit the ball from the other side of the net at the baseline, hit 5 forehand balls in a row, and then changed the backhand to hit 5 balls in a row. The ITN scoring method records the total score.

3.2.2. Practice Round. On a small tennis court, each tester shoots at the teacher one by one with his forehand and backhand. The partner or coach is near the service line of zone 1, and the practitioner is near the service line of zone.
Practitioners use forehand to play straight-line slow turn ball continuously. After completing a certain number of rounds, they change to other exercises and gradually improve the difficulty with the degree of mastery.

3.2.3. Technical Evaluation. The hitting action is correct and smooth, the hitting position is accurate, the footwork is easy and fast, and the ball control is good (40 points). The shooting action is generally correct, the ball feeling is not good, and the footwork is a little slow (20 points). The action was wrong and uncoordinated, the ball was not well predicted, and the ball could not be controlled (10 points).

3.3. Investigation Process

3.3.1. Determination of Respondents. This paper studies the development of Tennis Teaching Digital Resources based on in-depth learning, so the research object is college students. 50 nonsports students participated in the survey, and volunteers were half girls and half boys. They were randomly divided into two groups; 25 were divided into EP and the other 25 were CP. The EP learned tennis forehand and backhand stroke according to the tennis teaching course of digital resources, while the control class used the teaching method of teaching. The experimental class and the control class were consistent in gender, number of classes, teaching time, teaching content, and field equipment. Before the teaching experiment, all the subjects were tested for their basic qualities. There was no significant difference between the two groups in meter run, standing long jump, and grip strength. See Table 1, for the specific results. Therefore, it can be considered that the two groups of students were at the same level before the experiment. The experiment was conducted to ensure that both groups of students had not been exposed to tennis before the experiment ($P < 0.05$), the probability of accidental occurrence is less than 5%, which can deny the original hypothesis. There is a significant difference between the two groups. $P > 0.05$, the probability of accidental occurrence is greater than 5%, the original hypothesis cannot be denied, and there is no significant difference between the two groups. $P < 0.01$, the probability of accidental occurrence is less than 1%, which can deny the original hypothesis, and the difference between the two is very significant).

Table 1: Basic quality test.

Experimental subject	Double cross run (s)	Standing long jump (m)	The power of gripping (kg)
EP	21.50 ± 1.00	2.3510.15	24.1534.79
CP	21.39 ± 1.65	2.3810.18	25.6354.31
T	0.5	0.07	1.30
P	0.63	0.512	0.14

4. Discussion

4.1. Analysis of Bottom-Line Hitting Results. Table 2 shows the comparative data of the subjects’ baseline hitting results.

As can be seen from Figure 1, the bottom line between the two groups of students has little difference in scores. When comparing the scores of the two groups of students and conducting t-test analysis, the P value is 0.56, indicating that there are significant differences in depth between the two groups of students. The deepening of the analysis and discussion of classroom problems in the EP during and at the end of the experiment improved their understanding and mastery of skills, expanded their theoretical knowledge, and made their writing movements more fluent and coordinated.

4.2. Performance Analysis of Rounds. Table 3 is a comparative analysis of the number of rounds and scores of the two groups of students.

Tennis is a competitive and skill-based event, which requires players to have a higher skill level. Therefore, the purpose of teaching is to guide students’ technical movements so that students can finally return the ball. As can be seen from Figures 2 and 3, the total number of responses in the experimental groups was greater than the control group, but no final score difference was significant between the two groups ($P < 0.05$). Because tennis is a difficult sport to start, beginners need some practice and accumulation to get in touch with tennis so that they can learn skills with their peers.

4.3. Analysis of Technical Evaluation Results. Table 4 shows the data of technical performance evaluation scores of two groups of students.

It can be seen from Figure 4 that the technical evaluation results of the test group after the test are higher than those of the CP. From the distribution of standard deviation, we can know that the distribution of standard deviation that the technical actions learned by the EP are more balanced than those learned by the CP. After learning tennis, the results of the EP were better than those of the CP, which was consistent with the previous results. From the above data, it can
Table 2: Two groups of bottom-line hitting results (N = 50).

Tester	Score	M	CP	P
1	156	152	13.5	13.0
2	160	150	13.2	12.5
3	158	151	13.6	11.3
4	153	150	13.4	10.5
5	157	148	14.5	10.2
...
25	159	149	13.9	11.3

Table 3: Results data in two groups.

Tester	Score	M	CP	P
1	301	278	26.9	20.0
2	302	285	20.9	19.5
3	323	236	21.3	21.3
4	315	245	25.1	20.5
5	356	263	24.3	19.3
...
25	310	275	23.6	21.9

Figure 1: The bottom line hit the ball.

Figure 2: Comparison of M rounds between the two groups.
be seen that there are significant differences in the experimental results between the two groups of students. The result of the EP is better than that of the CP, which shows that the digital resource tennis class can master students’ skills better than the teaching method.

5. Conclusion

Using deep learning, machine language, and network technology to build a teaching resource database to provide users with more convenient digital tennis, digital curriculum is a new concept. Based on the in-depth analysis of the relevant contents, existing problems, and deficiencies under the traditional teaching mode, this paper proposes corresponding suggestions and opinions and improves and supplements them from the perspective of digital sports and combined with the actual situation. From the experimental data, the results of the experimental group exceeded those of the control group, which shows that digital resources have more teaching advantages. This can improve student participation and increase interest and scientific nature to achieve effective learning. However, there are still shortcomings due to the few study samples and the limited test items.
Data Availability

The experimental data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest to report regarding the present study.

Acknowledgments

This study was supported by Beijing University of Chemical Technology 2021 Graduate Education and Teaching Reform Project funding, project no. G-JG-PTKC202116.

References

[1] L. Yuan, “Discussion on the construction and application of digital teaching resources in vocational colleges,” Journal of Baotou vocational and technical college, vol. 20, no. 2, pp. 27–29, 2019.

[2] J. Tang and X. Yuan, “The construction and application of digital resources in rural primary school English teaching and learning,” Social Networking, vol. 7, no. 2, pp. 89–96, 2018.

[3] H. Liu, Y. Li, and J. Tang, “Construction and application of digital teaching resources in regional basic education — taking physical education courses as an example,” Creative Education, vol. 10, no. 6, pp. 1192–1204, 2019.

[4] Z. Zhang and H. Min, “Analysis on the construction of personalized physical education teaching system based on a cloud computing platform,” Wireless Communications and Mobile Computing, vol. 2020, no. 3, 8 pages, Article ID 8854811, 2020.

[5] W. Chen, X. Liu, L. Qiao, J. Wang, and Y. Zhao, “Construction of virtual reality-interactive classroom based on deep learning algorithm,” Wireless Communications and Mobile Computing, vol. 2020, no. 8, pp. 1–9, Article ID 8870536, 2020.

[6] X. Zhao, “Application of deep learning algorithm in college English teaching process evaluation,” Behaviour and Information Technology, vol. 40, no. 11, pp. 1–10, 2019.

[7] W. Li, “Multimedia teaching of college musical education based on deep learning,” Mobile Information Systems, vol. 2021, no. 2, 10 pages, Article ID 5545470, 2021.

[8] X. Du, “Application of deep learning and artificial intelligence algorithm in multimedia music teaching,” Journal of Intelligent and Fuzzy Systems, vol. 38, no. 2, pp. 1–11, 2020.

[9] H. Zheng, “Research on the importance and application of psychological factor training in table tennis teaching based on big data analysis,” Boletin Tecnico/Technical Bulletin, vol. 55, no. 14, pp. 692–698, 2017.

[10] P. Liu, J. Chai, and M. Zhu, “Analysis of the construction of individual table tennis teaching system based on cloud computing platform,” Revista de la Facultad de Ingenieria, vol. 32, no. 12, pp. 781-787, 2017.

[11] B. Peng, “Construction and application of the best teaching mode of college English in big data,” International Journal of Emerging Technologies in Learning (iJET), vol. 12, no. 9, pp. 41–50, 2017.

[12] J. Cui, “Application of deep learning and target visual detection in English vocabulary online teaching,” Journal of Intelligent and Fuzzy Systems, vol. 39, no. 4, pp. 5535–5545, 2020.

[13] W. B. Zhu, “Exploration on the construction and application of industrial analysis technology teaching resources - take analytical sampling technology as an example,” Advances in Education, vol. 9, no. 5, pp. 579–583, 2019.

[14] B. Yang, B. Cheng, Y. Liu, and L. Wang, “Deep learning-enabled block scrambling algorithm for securing telemedicine data of table tennis players,” Neural Computing & Applications, pp. 1–14, 2021.

[15] H. Yang, “Research on the application of multi media and multi ball training in college tennis teaching,” Contemporary sports technology, vol. 7, no. 1, pp. 54–55, 2017.

[16] Y. Luo, “Research on teaching methods of improving ball stability of college tennis beginners,” Sports science and technology literature bulletin, vol. 27, no. 7, pp. 100–102, 2019.

[17] J. F. Yang, “The application of case based teaching and cross learning mode in the standardized training of resident physicists,” Vocal education, vol. 7, no. 3, pp. 87–91, 2018.

[18] B. Jia, “Research on the application of teaching supervision in teaching diagnosis and improvement% research on the application of teaching supervision in teaching diagnosis and improvement -- taking Nanjing railway vocational and technical college as an example,” Theoretical research and practice of innovation and entrepreneurship, vol. 1, no. 10, pp. 40–41, 2018.

[19] K. Cai, Z. Wang, W. Wu, Y. Sun, and Z. Zhu, “Research on the application of mobile micro learning and the PBL model combination in physical health care teaching,” Sports science and technology literature bulletin, vol. 26, no. 7, pp. 37–38, 2018.

[20] X. Deng, “Application of scene simulated learning and task-based learning combination mode in teaching of business documents,” Journal of Beijing Institute of Technology, vol. 16, no. 4, pp. 93–97, 2017.

[21] Yu Liu and P. Cheng, “Application research on the OBE educational idea in the course teaching of water resources utilization and protection,” Science and education guide, vol. 2, no. 4, pp. 104–106, 2019.