Gauge Fields and Unparticles

A. Lewis Licht

Dept. of Physics

U. of Illinois at Chicago

Chicago, Illinois 60607

Abstract

We show that a rigorous path integral method of introducing gauge fields in the UnParticle lagrangian leads to somewhat different and more complicated vertexes than those currently used.
INTRODUCTION

The idea of a scalar field that represents a particle of indefinite mass, introduced by Georgi [1] [2], was extended to a gauged field by Terning et al [3]. The unparticle action was taken in the nonlocal form:

\[I = \int d^4x d^4y \psi^\dagger(x) K(x - y) \psi(y) \]

Where \(K \) denotes the inverse of the Unparticle’s propagator. To include a gauge field \(A \), an additional term is included:

\[U(x, y, \gamma) = P \left[\exp \left(-ig \int_{x,\gamma}^y A_\mu(w) dw^\mu \right) \right] \]

Here \(P \) denotes a path ordering, and \(\gamma \) denotes a path from \(x \) to \(y \). Then

\[I = \int d^4x d^4y \psi^\dagger(x) K(x - y) U(x, y, \gamma) \psi(y) \]

Terning et al [3] do not specify the path \(\gamma \), but they make the assumption that it is always such that

\[\frac{\partial}{\partial y^\mu} U(x, y, \gamma) = -igU(x, y, \gamma) A_\mu(y) \]

This is a very old idea that goes back to Mandlestam [4], but it can not be quite correct. It requires that for all \(x \) and \(y \), the path that goes from \(x \) to \(y + dy \) must have gone first from \(x \) to \(y \). However, the paths between all point pairs must be exactly defined before the integral in Eq. (3) can be calculated. Whatever the definition of the path from \(x \) to \(y + dy \), it cannot be expected to have gone through \(y \) just because someone wishes to compute the derivative.

In the following, we investigate the consequences of defining the path integral between any two points \(x \) and \(y \) as the straight line from \(x \) to \(y \). We show that the resulting vertexes satisfy the Ward-Takahashi identities [5], but they do lead to vertexes that are rather more complicated than those found in Ref. [3]. In a later work, we will show that a Terning-type vertex can be obtained by a different method of introducing gauge fields into the Unparticle action.
STRAIGHT LINE PATH

Choosing the path as the straight line from \(x \) to \(y \) leads to

\[
U(x, y) = P \left[\exp \left(-ig \int_0^1 A_\mu(w(\lambda)) \, dw^\mu(\lambda) \right) \right]
\]

(5)

where

\[
w^\mu(\lambda) = (1 - \lambda) x^\mu + \lambda y^\mu
\]

(6)

The UP-gauge-UP vertex is defined by

\[
ig \Gamma^\mu(y, x, z) = -\frac{\delta^3 I}{\delta A_\mu(x) \delta \bar{\psi}(y) \delta \psi(z)} \bigg|_{A=0}
\]

(7)

Fourier transforming:

\[
ig \Gamma^\mu(p, q, p + q) (2\pi)^4 \delta(p' - p - q) = \int d^4xd^4yd^4ze^{i(p'z - pq)} \cdot ig \Gamma^\mu(y, x, z)
\]

(8)

Using

\[
\frac{\delta}{\delta A_\mu(w)} U(x, y) \bigg|_{A=0} = -ig \int_0^1 d\lambda \delta(w - (1 - \lambda) x - \lambda y)(y^\mu - x^\mu)
\]

(9)

and with \(S(k) \) denoting the Unparticle propagator in momentum space,

\[
K(x - y) = \int \frac{d^4k}{(2\pi)^4} S^{-1}(k) e^{ik(x-y)}
\]

(10)

we get

\[
\Gamma^\mu(p, q, p + q) = -i \int_0^1 d\lambda \frac{\partial}{\partial k^\mu} S^{-1}(k) \bigg|_{k=-(p+\lambda q)}
\]

(11)

We show that this satisfies the Ward-Takahashi identity. We consider first the scalar UP case, where the propagator depends on \(k \) through \(s = k^2 = p^2 + 2(p \cdot q)\lambda + q^2\lambda^2 \). Then

\[
\Gamma^\mu = 2i \int_0^1 d\lambda (p^\mu + \lambda q^\mu) \frac{dS^{-1}}{ds}
\]

(12)

and with \(\frac{ds}{d\lambda} = 2(p \cdot q + \lambda q^2) \) we get

\[
q^\mu \Gamma_\mu = i \int_0^1 d\lambda \frac{ds}{d\lambda} \frac{dS^{-1}}{ds} = i \left[S^{-1}(p + q) - S^{-1}(p) \right]
\]

(13)
the WT relation. If now the UP is a fermion, then

\[S^{-1} = \gamma^\mu k_\mu g(s) \]

(14)

and

\[\Gamma^\mu = -i \int_0^1 d\lambda \left[\gamma_\mu g + 2\gamma^\alpha (p_\alpha + \lambda q_\alpha) (p^\mu + \lambda q^\mu) \frac{dg}{ds} \right] \]

(15)

then

\[q^\mu \Gamma_\mu = -i \int_0^1 d\lambda \gamma^\alpha \left[q_\alpha g + (p_\alpha + \lambda q_\alpha) \frac{dg}{d\lambda} \right] \]

\[= i\gamma^\alpha \left[(p_\alpha + q_\alpha) g \left((p + q)^2 \right) - p_\alpha g \left(p^2 \right) \right] \]

\[= i \left[S^{-1} (p + q) - S^{-1} (p) \right] \]

the WT identity.

THE VERTEX INTEGRAL

It is generally assumed \[1\], \[2\] that the Fourier transform of the inverse propagator goes as a power of the invariant momentum squared:

\[S^{-1}(k) \doteq (k^2)^\nu \]

(16)

where \(\nu = 2 - d_u \), \(d_u \) being the unparticle dimension. We therefore need to find the integral

\[f_\nu (p, p') = \int_0^1 s^\nu d\lambda \]

(17)

This can be written as

\[f_\nu = \frac{1}{2\sqrt{q^2}} \int_{s_0}^{s_1} ds \frac{s^\nu}{\sqrt{s - A}} \]

(18)

where \(s_0 = p^2 \), \(s_1 = p'^2 \) and

\[A = p^2 - \frac{(p \cdot q)^2}{q^2} \]

(19)

If \(\nu \) is not a half integer, the integral in Eq. (18) can be done as an infinite series, giving

\[f_\nu (p, p') = g_\nu \left(p'^2, A \right) - g_\nu \left(p^2, A \right) \]

(20)
where
\[g_\nu (s, A) = \frac{s^{\nu + \frac{1}{2}}}{2\sqrt{q^2}} \sum_{k=0}^{\infty} \frac{(2k - 1)!!}{2^k k! (\nu - k + \frac{1}{2})} \left(\frac{A}{s} \right)^k \]

(21)

THE SCALAR VERTEX

In this section we show another way of calculating the vertex integral and derive the vertex for a scalar unparticle. The vertex is given in terms of the vertex integral as

\[\Gamma^\mu = 2i \left. \frac{\partial}{\partial p^\mu} f_\nu \right|_q \]

(22)

where the scalar integral is

\[f_\nu = \int_0^1 d\lambda (s(\lambda))^\nu \]

(23)

with \(s = (p + \lambda q)^2 \), this can be expanded in a Taylor series in \(\lambda \) and then integrated to give

\[f_\nu = A^\nu \sum_{k=0}^{\infty} \frac{\Gamma (\nu + 1)}{k! (2k + 1) \Gamma (\nu - k + 1)} \left(\frac{q^2}{A} \right)^k \left[(1 + B)^{2k+1} - B^{2k+1} \right] \]

(24)

where

\[A = p^2 - \frac{(p \cdot q)^2}{q^2} = \frac{p^2 p'^2 - (p \cdot p')^2}{(p' - p)^2} \]

and

\[1 + B = \frac{p' \cdot q}{q^2} \]
\[B = \frac{p \cdot q}{q^2} \]

This can be expressed in terms of the hypergeometric functions

\[_2F_1 (\alpha, \beta, \gamma; z) = 1 + \frac{\alpha \beta}{\gamma} z + \frac{\alpha (\alpha + 1) \beta (\beta + 1)}{\gamma (\gamma + 1) 2!} z^2 + \ldots \]

(25)

as

\[f_\nu = A^\nu \left[(1 + B) _2F_1 \left(\frac{1}{2}, -\nu, \frac{3}{2}, -\frac{q^2}{A} (1 + B)^2 \right) - B _2F_1 \left(\frac{1}{2}, -\nu, \frac{3}{2}, -\frac{q^2}{A} B^2 \right) \right] \]

(26)

Defining

\[Q_\nu (z) = _2F_1 \left(\frac{1}{2}, -\nu, \frac{3}{2}, -\frac{q^2}{A} z^2 \right) \]

(27)
and using
\[\frac{\partial B}{\partial p_\mu} \bigg|_q = \frac{q_\mu}{q^2} \]
\[\frac{\partial A}{\partial p_\mu} \bigg|_q = 2 \left(p^\mu - \frac{(p \cdot q)}{q^2} q^\mu \right) \]
\[= \frac{2}{q^2} [p^\mu (p' \cdot q) - p'^\mu (p \cdot q)] \]
\[C_\nu = (1 + B) Q_\nu (1 + B) - B Q_\nu (B) \]
we get
\[\Gamma^\mu = 2i \left\{ \frac{q_\mu}{q^2} \left[p'^{2\nu} - p^{2\nu} \right] + \frac{2\nu A^{\nu-1}}{q^2} \left[p^\mu (p' \cdot q) - p'^\mu (p \cdot q) \right] C_{\nu-1} \right\} \]
This is considerably more complicated than the result found in Ref. [3].
When \(\nu = 1 \), this reduces to
\[\Gamma^\mu = 2i (p'^\mu + p^\mu) \]
The expected result for a scalar particle.

CONCLUSIONS

We find that a rigorous application of the path integral method of introducing gauge fields into the unparticle Lagrangian leads to vertexes that are considerably more complicated than those found by Terning et al. [3] We will show in a later work that there is another method of combining gauge fields and unparticles does lead to the Terning result.

ACKNOWLEDGEMENTS

I wish to express my thanks to Wai-Yee Keung for interesting me in this problem.

* Electronic address: licht@uic.edu

[1] Howard Georgi, Unparticle Physics, arXiv:hep-ph/0703260
[2] Howard Georgi, Another Odd Thing About Unparticle Physics, arXiv:0704.2457 [hep-ph].
[3] Giacomo Cacciapaglia, Guido Marandella and John Terning, Colored Unparticles, arXiv:0708.0005 [hep-ph].
[4] S. Mandlestam, Annals Phys. 19 (1962) 887.

[5] J. C. Ward, Phys. Rev. 78 1824 (1950), Y. Takahashi, Nuovo Cimento 6 370 (1957).