SOME BOUNDS FOR THE ANNIHILATORS OF LOCAL COHOMOLOGY AND EXT MODULES

ALI FATHI

ABSTRACT. Let a be an ideal of a commutative Noetherian ring R and t be a non-negative integer. Let M and N be two finitely generated R-modules. In certain cases, we give some bounds under inclusion for the annihilators of $\text{Ext}^t_R (M, N)$ and $H^t_a (M)$ in terms of minimal primary decomposition of the zero submodule of M which are independent of the choice of minimal primary decomposition. Then, by using those bounds, we compute the annihilators of local cohomology and Ext modules in certain cases.

0. Introduction

Throughout the paper, R is a commutative Noetherian ring with nonzero identity. The i-th local cohomology of an R-module M with respect to an ideal a was defined by Grothendieck as follows:

$$H^i_a (M) = \lim_{\rightarrow} \text{Ext}^i_R (R/a^n, M);$$

see [6, 7, 10] for more details.

In this section, we assume M is a non-zero finitely generated R-module, N is a Gorenstein R-module, $0 = M_1 \cap \ldots \cap M_n$ is a minimal primary decomposition of the zero submodule of M with Ass$_R (M/M_i) = \{p_i\}$ for all $1 \leq i \leq n$ and a is an ideal of R. We refer the reader to [12, Sec. 6] for basic properties of primary decomposition of modules and to [13, 14] for more details about the Gorenstein modules (see also the paragraph before Lemma 1.4).

We denote, for an R-module M, $\text{sup} \{i \in \mathbb{N}_0 : H^i_a (M) \neq 0\}$ by $\text{cd}_R (a, M)$. Assume $d = \text{dim}_R (M) < \infty$. By Grothendieck’s Vanishing Theorem, $\text{cd}_R (a, M) \leq d$. When $\text{cd}_R (a, M) = d$, then we have

$$(0.1) \quad \text{Ann}_R \left(H^d_a (M) \right) = \text{Ann}_R \left(M/ \bigcap_{i : \text{cd}_R (a, M_i) = \text{cd}_R (a, M)} M_i \right).$$

This equality is proved by Lynch [11, Theorem 2.4] whenever R is a complete local ring and $M = R$. In [2, Theorem 2.6] Bahmanpour et al. proved that $\text{Ann}_R \left(H^d_a (M) \right) = \text{Ann}_R (M/T_R (a, M))$ whenever $a = m$ and R is a complete local ring, where $T_R (a, M)$ denotes the largest submodule N of M such that $\text{cd}_R (a, N) < \text{cd}_R (a, M)$. Then Bahmanpour [4, Theorem 3.2] extended the result of Lynch for the R-module M. Next, Atazadeh et al. [2] proved this equality whenever R is a local ring (not necessarily complete) and finally in [1] they extended it to the

2010 Mathematics Subject Classification. 13D45, 13D07.

Key words and phrases. Local cohomology modules, Ext modules, annihilator, primary decomposition.
non-local case. (Note that $T_R(a, M) = \bigcap_{c_{d_R}(a, R/p_i) = c_{d_R}(a, M)} M_i$ [2, Remark 2.5], also, if (R, m) is a complete local ring and $p \in \text{Ass}_R(M)$, then, by the Lichtenbaum-Hartshorne Vanishing Theorem, $c_{d_R}(a, R/p) = d$ if and only if $\dim_R(R/p) = d$ and $\sqrt{a + p} = m$).

In the first section (see Theorem 1.4 and Remark 1.0), for an arbitrary integer t, we give a bound for the annihilator of $\text{Ext}_R^t(M, N)$ in terms of minimal primary decomposition of the zero submodule of M. More precisely, we show that

\[(0.2) \text{Ann}_R \left(M/\bigcap_{p_i \in \Delta(t)} M_i \right) \subseteq \text{Ann}_R \left(\text{Ext}_R^t(M, N) \right) \subseteq \text{Ann}_R \left(M/\bigcap_{p_i \in \Sigma(t)} M_i \right), \]

where $\Delta(t) = \{p \in \text{Ass}_R(M) \cap \text{Supp}_R(N) : \text{ht}_R(p) \leq t\}$, $\Sigma(t) = \{p \in \text{MinAss}_R(M) \cap \text{Supp}_R(N) : \text{ht}_R(p) = t\}$ and $\text{MinAss}_R(M)$ denotes the set of minimal elements of $\text{Ass}_R(M)$. If $t = \text{grade}(\text{Ann}_R(M), N) < \infty$, then the above index sets are equal and we can compute the annihilator of $\text{Ext}_R^t(M, N)$. Note that, in general, for an arbitrary integer t, there is not a subset Σ of $\text{Ass}_R(M)$ such that $\text{Ann}_R(\text{Ext}_R^t(M, N)) = \text{Ann}_R \left(M/\bigcap_{p_i \in \Sigma} M_i \right)$; see Example 1.7.

In the second section, we consider the annihilators of local cohomology modules. By using the above bound on the annihilators of Ext modules, when (R, m) is a local ring, we show, in Theorem 2.2, that

\[(0.3) \text{Ann}_R \left(M/\bigcap_{p_i \in \Delta'(t)} M_i \right) \subseteq \text{Ann}_R \left(\text{H}_m^t(M) \right) \subseteq \text{Ann}_R \left(M/\bigcap_{p_i \in \Sigma'(t)} M_i \right), \]

where $\Delta'(t) = \{p \in \text{Ass}_R(M) : \dim_R(R/p) \geq t\}$ and $\Sigma'(t) = \{p \in \text{MinAss}_R(M) : \text{dim}_R(R/p) = t\}$. Next, whenever R is not necessarily local, in Theorem 2.4, we give a bound for the annihilator of the top local cohomology module $\text{H}_m^{\text{c}_{d_R}(a, M)}(M)$ which implies equality (0.1) when $d = \text{c}_{d_R}(a, M)$. Finally, for each t, in Theorem 2.6 we provide a bound for the annihilator of $\text{H}_m^t(M)$ when M is Cohen-Macaulay, and also we compute its annihilator at $t = \text{grade}(a, M)$. All the given bounds are independent of the choice of minimal primary decomposition. We adopt the convention that the intersection of empty family of submodules of an R-module M is M.

1. Bounds for the annihilators of Ext-modules

Assume M, N are finitely generated R-modules such that N is a Gorenstein module, and $0 = M_1 \cap \ldots \cap M_n$ is a minimal primary decomposition of the zero submodule of M with $\text{Ass}_R(M/M_i) = \{p_i\}$ for all $1 \leq i \leq n$. We refer the reader to [12, Sec. 6] for basic properties and unexplained terminologies about the primary decomposition of modules and to [13, 14] for more details about the Gorenstein modules. In this section [Theorem 1.3], for each integer t, we give a bound for the annihilator of $\text{Ext}_R^t(M, N)$ in terms of minimal primary decomposition of the zero submodule of M which is independent of the choice of minimal primary decomposition. As an application, in the case where $t = \text{grade}(\text{Ann}_R(M), N)$, we compute the annihilator of $\text{Ext}_R^t(M, N)$. More precisely, for $t = \text{grade}(\text{Ann}_R(M), N)$, we
have

\[\text{Ann}_R \left(\text{Ext}^t_R (M, N) \right) = \text{Ann}_R \left(\frac{M}{\bigcap_{p_i \in \Sigma(t)} M_i} \right) \]

where \(\Sigma(t) = \{ p \in \text{Min Ass}_R(M) \cap \text{Supp}_R(N) : \text{ht}_R(p) = t \} \); see Theorem 1.5

and Remark 1.6. Note that, in general, for an arbitrary integer \(t \), there is not a subset \(\Sigma \) of \(\text{Ass}_R(M) \) such that \(\text{Ann}_R \left(\text{Ext}^t_R (M, N) \right) = \text{Ann}_R \left(\frac{M}{\bigcap_{p_i \in \Sigma} M_i} \right) \); see Example 1.7. These results will be used in the second section to compute the annihilators of local cohomology modules.

Before proving these results, we need some lemmas.

Lemma 1.1 (12 Theorem 6.8]). Let \(M \) be a non-zero finitely generated \(R \)-module. Let \(\text{Ass}_R(M) = \{ p_1, \ldots, p_n \} \), and \(0 = M_1 \cap \ldots \cap M_n \) be a minimal primary decomposition of the zero submodule of \(M \) with \(\text{Ass}_R(M/M_i) = \{ p_i \} \) for all \(1 \leq i \leq n \). Assume \(\Phi \) is a subset of \(\text{Ass}_R(M) \) and \(N = \bigcap_{p_i \in \Phi} M_i \). Then

\[\text{Ass}_R(M/N) = \Phi, \text{ and } \text{Ass}_R(N) = \text{Ass}_R(M) \setminus \Phi. \]

Assume \(N \) is a submodule of an \(R \)-module \(M \). For any multiplicatively closed subset \(S \) of \(R \), we denote the contraction of \(S^{-1}N \) under the canonical map \(M \to S^{-1}M \) by \(S_M(N) \). Assume \(\Sigma \subseteq \text{Ass}_R(M) \). We say that \(\Sigma \) is an isolated subset of \(\text{Ass}_R(M) \) if it satisfies the following condition: if \(q \in \text{Ass}_R(M) \) and \(q \subseteq p \) for some \(p \in \Sigma \), then \(q \in \Sigma \).

The following lemma is well-known, but we prove it for the readers' convenience.

Lemma 1.2 (See 3 Theorem 4.10 and Exercise 4.23']). Let \(M \) be a finitely generated \(R \)-module, and \(N \) a proper submodule of \(M \). Let \(N = \bigcap_{i=1}^n N_i \) be a minimal primary decomposition of \(N \) in \(M \) with \(\text{Ass}_R(M/N_i) = p_i \) for all \(1 \leq i \leq n \). Assume \(\Sigma \) is an isolated subset of \(\text{Ass}_R(M/N) \). Then

\[\bigcap_{p_i \in \Sigma} N_i = S_M(N), \]

where \(S = R \setminus \bigcup_{p \in \Sigma} p \). In particular, \(\bigcap_{p_i \in \Sigma} N_i \) is independent of the choice of minimal primary decomposition of \(N \) in \(M \).

Proof. Assume \(\Sigma \subseteq \text{Ass}_R(M/N) \) is an isolated subset of \(\text{Ass}_R(M/N) \) and \(S = R \setminus \bigcup_{p \in \Sigma} p \). If \(S^{-1} \left(\frac{M}{\bigcap_{p_i \in \text{Ass}_R(M/N) \setminus \Sigma} N_i} \right) \neq 0 \), then there exists

\[q \in \text{Ass}_R \left(\frac{M}{\bigcap_{p_i \in \text{Ass}_R(M/N) \setminus \Sigma} N_i} \right) = \text{Ass}_R(M/N) \setminus \Sigma \]

such that \(q \cap S = \emptyset \). Since \(q \cap S = \emptyset \), by the Prime Avoidance Theorem, \(q \subseteq p \) for some \(p \in \Sigma \). But \(\Sigma \) is an isolated subset of \(\text{Ass}_R(M/N) \) and so \(q \in \Sigma \), which is a contradiction. Hence \(S^{-1} \left(\bigcap_{p_i \in \text{Ass}_R(M/N) \setminus \Sigma} N_i \right) = S^{-1}M \). It follows that \(S^{-1}N = \bigcap_{p_i \in \Sigma} S^{-1}N_i \). Contracting both sides under the canonical map \(M \to S^{-1}M \) we obtain \((S^{-1}N)^c = \bigcap_{p_i \in \Sigma} (S^{-1}N_i)^c \). Now, assume \(p_i \in \Sigma \). It is clear that \(N_i \subseteq (S^{-1}N_i)^c \). Conversely, if \(m \in (S^{-1}N_i)^c \), then \(m/1 \sim n/s \) for some \(n \in N_i \) and \(s \in S \). Hence \(tsm = tn \in N_i \) for some \(t \in S \). Since \(N_i \) is a \(p_i \)-primary submodule of \(M \) and \(ts \notin p_i \), we have \(m \in N_i \). Therefore \(N_i = (S^{-1}N_i)^c \), and hence \((S^{-1}N)^c = \bigcap_{p_i \in \Sigma} N_i \). This completes the proof. \(\square \)
Remark 1.3. Let the situation and notations be as in above lemma. Assume, in addition, that \(\Sigma = \emptyset \), and we consider the above lemma in this special case separately. It is clear that \(\Sigma \) is an isolated subset of Ass\(_R\)(\(M/N\)) and \(\bigcap_{p \in \Sigma} N_i = M \) because the intersection of the empty family of subsets of a set \(M \) is \(M \). On the other hand, we have \(S = S(R) \setminus \bigcup_{p \in \Sigma} p = R \). Since \(0 \in S \), we obtain \(S^{-1}(N) = S^{-1}(M) = 0 \), and so the contraction of \(S^{-1}(N) \) under the map \(M \rightarrow S^{-1}(M) \) is \(M \). Therefore we have \(S_M(N) = M = \bigcap_{p \in \Sigma} N_i \) in this case.

Let \((R, \mathfrak{m})\) be a local ring. A non-zero finitely generated \(R \)-module \(G \) is said to be Gorenstein if

\[
\text{depth}_R(G) = \dim_R(G) = \text{inj dim}_R(G) = \text{depth}_R(R) = \dim_R(R)
\]

(so \(R \) is Cohen-Macaulay) or equivalently \(\text{Ext}^1_R(\mathfrak{m}/\mathfrak{m}^2, G) \) is non-zero only at \(i = \dim_R(G) \); see [13, Theorem 3.11]. More generally, if \(R \) is not necessarily local, a non-zero finitely generated \(R \)-module \(G \) is said to be Gorenstein if \(G_p \) is a Gorenstein \(R_p \)-module for all \(p \in \text{Supp}_R(G) \); see [13, Corollary 3.7]. When \((R, \mathfrak{m})\) is a complete local ring, then Gorenstein modules under isomorphism are the non-empty finite direct sums of the canonical module [13, Corollary 2.7].

The following property of Gorenstein modules is needed in the proof of the main theorem of this section.

Lemma 1.4. Let \(G \) be a Gorenstein \(R \)-module, and \(\mathfrak{p} \) a prime ideal of \(R \). Then \(\mathfrak{p} \in \text{Supp}_R(G) \) if and only if \(G \neq \mathfrak{p}G \).

Proof. Assume \(\mathfrak{p} \in \text{Supp}_R(G) \). Hence \(G_\mathfrak{p} \neq 0 \) and consequently \(G_\mathfrak{p} \neq \mathfrak{p}R_\mathfrak{p}G_\mathfrak{p} \) by Nakayama’s Lemma. It follows that \(G \neq \mathfrak{p}G \). Conversely, assume \(G \neq \mathfrak{p}G \). Thus there exists \(q \in \text{Supp}_R(G) \) such that \(G_q \neq \mathfrak{p}R_qG_q \). Therefore \(\mathfrak{p} \subseteq q \), and hence [13, Corollary 4.14] implies that \(\mathfrak{p} \in \text{Supp}_R(G) \).

Now we are ready to state and prove the main theorem of this section which provides bound for the annihilators of Ext modules. Local version of this theorem Remark 1.6(1.1) will be used to compute the annihilators of local cohomology modules in the next section.

Theorem 1.5. Let \(M, N \) be non-zero finitely generated \(R \)-modules, and let \(0 = M_1 \cap \ldots \cap M_n \) be a minimal primary decomposition of the zero submodule of \(M \) with Ass\(_R\)(\(M/M_i\)) = \(\{p_i\} \) for all \(1 \leq i \leq n \). Let \(t \in \mathbb{N}_0 \) and set \(\Delta(t) = \{p \in \text{Ass}_R(M) : \text{grade}(p, N) \leq t\} \), \(\Sigma(t) = \{p \in \text{MinAss}_R(M) : \text{grade}(p, N) = t\} \), \(S^t = R \setminus \bigcup_{p \in \Delta(t)} p \), and \(T^t = R \setminus \bigcup_{p \in \Sigma(t)} p \). Then

(i) \(\bigcap_{p \in \Delta(t)} M_i = S^t_M(0) = \bigcap_{p \in \Sigma(t)} M_i = T^t_M(0) \). In particular, \(\bigcap_{p \in \Delta(t)} M_i \) and \(\bigcap_{p \in \Sigma(t)} M_i \) are independent of the choice of minimal primary decomposition of the zero submodule of \(M \).

(ii) \(S^t_M(0) \) is the largest submodule \(L \) of \(M \) such that \(\text{Ext}^t_R(L, N) = 0 \) for all \(i \leq t \).

(iii) \(\text{Ann}_R(M/S^t_M(0)) \subseteq \text{Ann}_R(\text{Ext}_R^t(M, N)) \).

If, in addition, \(N \) is a Gorenstein module, then

\(\text{Ann}_R(\text{Ext}_R^t(M, N)) \subseteq \text{Ann}_R(M/T^t_M(0)) \).

(iv) If \(N \) is a Gorenstein module such that \(\text{Supp}_R(M) \cap \text{Supp}_R(N) \neq \emptyset \) and \(t = \text{grade}(\text{Ann}_R(M), N) \), then \(\Delta(t) = \Sigma(t) \) and

\(\text{Ann}_R(\text{Ext}_R^t(M, N)) = \text{Ann}_R(M/T^t_M(0)) \).
Proof. Set $S = S^t_R(0)$ and $T = T^t_R(0)$.

i) Since $\Delta(t)$ and $\Sigma(t)$ are isolated subsets of $\text{Ass}_R(M)$, (i) is an immediate consequence of Lemma 1.2.2.

ii) By Lemma 1.1. in view of [11 Proposition 1.2.10(e)], we have

$$\text{grade} \left(\text{Ann}_R(S), N \right) = \text{grade} \left(\sqrt{\text{Ann}_R(S)}, N \right) = \text{grade} \left(\bigcap_{p \in \text{Ass}_R(S)} p, N \right)$$

$$= \min_{p \in \text{Ass}_R(S)} \text{grade} (p, N) = \min_{p \in \text{Ass}_R(M) \setminus \Delta(t)} \text{grade} (p, N) > t.$$

Since $\text{grade} (\text{Ann}_R(S), N) > t$, we have $\text{Ext}^i_R(S, N) = 0$ for all $i \leq t$ by [7 Proposition 1.2.10(e)]. Also, we note that, if $\Delta(\text{Ann}_R(M), \emptyset) \neq \emptyset$, then $S = 0$ and $\text{grade} (\text{Ann}_R(S), N) = \text{grade} (R, N) = \infty$. Now, assume L is a submodule of M such that $\text{Ext}^i_R(L, N) = 0$ for all $i \leq t$. Suppose, for the sake of contradiction, that $L \not\subseteq S$. Then

$$0 \neq L/(L \cap S) \cong (L + S)/S \subseteq M/S.$$

Thus $\emptyset \neq \text{Ass}_R(L/(L \cap S)) \subseteq \Delta(t)$. Hence, there exists $p \in \text{Ass}_R(L/(L \cap S)) \subseteq \text{V} (\text{Ann}_R(L))$ such that $\text{grade} (p, N) \leq t$. But this is impossible, because, by our assumption, $\text{grade} (\text{Ann}_R(L), N) > t$; see again [7 Proposition 1.2.10(e)]. Hence $L \subseteq S$ and the proof of (ii) is completed.

iii) Since $\text{Ext}^i_R(S, N) = 0$, the exact sequence $0 \to S \to M \to M/S \to 0$ induces the epimorphism $\text{Ext}^i_R(M/S, N) \to \text{Ext}^i_R(M, N)$. It follows that

$$\text{Ann}_R(M/S) \subseteq \text{Ann}_R(\text{Ext}^i_R(M/S, N)) \subseteq \text{Ann}_R(\text{Ext}^i_R(M, N))$$

and hence the first inclusion in (iii) holds. To prove the second inclusion in (iii), assume that N is a Gorenstein module. If $\Sigma(t) = \emptyset$, then $T = M$ by Remark 1.3 and there is nothing to prove. Hence, suppose that $\Sigma(t) \neq \emptyset$, $p_1 \in \Sigma(t)$ and $y \in \text{Ann}_R(\text{Ext}^i_R(M, N))$. Since $\text{grade} (p_1, N) = t < \infty$, we have $p_1, N \neq N$ and so, by Lemma 1.4, $p_1 \in \text{Supp}_R(N)$. Hence N_{p_1} is a Gorenstein R_{p_1}-module [13 Corollary 3.7]. Because N is Cohen-Macaulay, we have $\dim_{R_{p_1}} (N_{p_1}) = \text{grade} (p_1, N) = t$ and so, by [13 Theorem 4.12], we have $\dim_{R_{p_1}} (R_{p_1}) = \dim_{R_{p_1}} (N_{p_1}) = t$. We proved that N_{p_1} is a Gorenstein R_{p_1}-module of dimension t and, hence, in view of the faithfully flatness of completion, we can deduce that $\widehat{N_{p_1}}$ is also a Gorenstein $\widehat{R_{p_1}}$-module of dimension t. Hence $\widehat{N_{p_1}} \cong \omega_{\widehat{R_{p_1}}}^\alpha$ for some $\alpha \in \mathbb{N}$ [14 Corollary 2.7], where $\omega_{\widehat{R_{p_1}}}$ denotes the canonical module of $\widehat{R_{p_1}}$. Since $\widehat{R_{p_1}}$ is a Cohen-Macaulay complete local ring of dimension t, by the Local Duality Theorem [6 Theorem 11.2.8] and [6] Remarks 10.2.2(ii), we have

$$\text{Ann}_{R_{p_1}} \left(\text{Ext}^i_{R_{p_1}} (M_{p_1}, N_{p_1}) \right) = R_{p_1} \cap \text{Ann}_{\widehat{R_{p_1}}} \left(\text{Ext}^i_{\widehat{R_{p_1}}} (\widehat{M_{p_1}}, \omega_{\widehat{R_{p_1}}}^\alpha) \right)$$

$$= R_{p_1} \cap \text{Ann}_{\widehat{R_{p_1}}} \left(\text{Ext}^i_{\widehat{R_{p_1}}} (\widehat{M_{p_1}}, \omega_{\widehat{R_{p_1}}}^\alpha) \right)$$

$$= \text{Ann}_{R_{p_1}} (\Gamma_{p_1, R_{p_1}} (M_{p_1})) = \text{Ann}_{R_{p_1}} (M_{p_1})$$

(note that since p_1 is a minimal element of $\text{Ass}_R(M)$, it follows that $\dim_{R_{p_1}} (M_{p_1}) = 0$ and hence $\Gamma_{p_1, R_{p_1}} (M_{p_1}) = M_{p_1}$).
Now, if $1 \leq j \neq i \leq n$, then $(M/M_j)p_i = 0$, because $\text{Ass}_R(M/M_i) = \{p_i\}$ and p_i is a minimal element of $\text{Ass}_R(M)$. Thus $(M_j)p_i = M_{p_i}$ for all $1 \leq j \neq i \leq n$, and so $\left(\bigcap_{i=1}^{n} M_j\right)_{p_i} = (M_i)p_i$. Since $M_{p_i} \cong (M/0)p_i \cong \left(M/\bigcap_{i=1}^{n} M_j\right)_{p_i} \cong (M/M_i)p_i$, we have $y/1 \in (\text{Ann}_R(M/M_i))_{p_i}$, and hence $y/1 \sim z/s$ for some $z \in \text{Ann}_R(M/M_i)$, $s \in R \setminus p_i$. Thus $rsy = rz \in \text{Ann}_R(M/M_i)$ for some $r \in R \setminus p_i$. Hence $rsyM \subseteq M_i$. Since M_i is a p_i-primary submodule of M, it follows from grade $(\text{Ann}_R(M)) = 0$, or equivalently N/p_i. Thus $(rsy)^{\infty} = \{1\}$. To prove the reverse inclusion, let $p \in \Delta(t)$. Since $\text{Ann}_R(M) \subseteq p$, we obtain grade $(\text{Ann}_R(M), N) \leq \text{grade}(p, N)$ and consequently grade $(\text{Ann}_R(M), N) = \text{grade}(p, N)$. Now, let $q \in \text{Supp}_R(M)$ be such that $q \subseteq p$. It follows from grade $(p, N) = t < \infty$ that $p \in \text{Supp}_R(N)$, and so $q \in \text{Supp}_R(N)$ by [13, Corollary 4.14]. Hence, by [7, Theorem 2.1.3 (b)] and [13, Theorem 4.12], we have

$$t = \text{grade}(\text{Ann}_R(M), N) \leq \text{grade}(q, N) = \dim_{R_q}(N_q) = \dim_{(R_q)_{pq}}(N_p) = \dim_{R_p}(N_p) - \dim_{R_p}(N_p/q_RpN_p) = \text{grade}(p, N) - \dim_{R_p}(N_p/q_RpN_p) = t - \dim_{R_p}(N_p/q_RpN_p)$$

Therefore $\dim_{R_p}(N_p/q_RpN_p) = 0$ or equivalently $q = p$. Hence $p \in \text{MinAss}_R(M)$ and consequently $\Delta(t) \subseteq \Sigma(t)$. \hfill \Box

For an integer t and an R-module M, we denote, respectively, the sets $\{p \in \text{Ass}_R(M) : \dim_R(R/p) = t\}$ and $\{p \in \text{Ass}_R(M) : \dim_R(R/p) \geq t\}$ by $\text{Ass}^t_R(M)$ and $\text{Ass}^{\geq t}_R(M)$. Similarly, $\text{MinAss}^t_R(M)$ and $\text{MinAss}^{\geq t}_R(M)$ are defined as above by replacing $\text{Ass}_R(M)$ by $\text{MinAss}_R(M)$. Also, when $\dim_R(M) < \infty$, the set of prime ideals in $\text{Ass}_R(M)$ of the highest possible dimension $\{p \in \text{Ass}_R(M) : \dim_R(R/p) = \dim_R(M)\}$ is denoted by $\text{Assh}_R(M)$.

Remark 1.6. Let the situation and notations be as in above theorem. Let N be a Gorenstein R-module, and p a prime ideal of R. Then grade $(p, N) = t < \infty$ if and only if $N \neq pN$ or equivalently $p \in \text{Supp}_R(N)$. Also, if $p \in \text{Supp}_R(N)$, then N_p is a Gorenstein module on the local ring R_p and, in view of [13, Theorem 4.12], we have

$$\text{grade}(p, N) = \dim_{R_p}(N_p) = \dim_{R_p}(R_p) = \text{ht}_R(p).$$

Hence

$$\Delta(t) = \{p \in \text{Ass}_R(M) \cap \text{Supp}_R(N) : \text{ht}_R(p) \leq t\},$$

$$\Sigma(t) = \{p \in \text{MinAss}_R(M) \cap \text{Supp}_R(N) : \text{ht}_R(p) = t\}.$$

In the remainder of this remark, assume in addition that R is a local ring of dimension d. Then $\text{ht}_R(p) = d - \dim_R(R/p)$ and $\text{Supp}_R(N) = \text{Spec}(R)$. Thus above
Theorem states that

\[
\text{Ann}_R \left(\frac{M}{\bigcap_{p_i \in \text{Ass}_R^{2-d-t}(M)}} \right) \subseteq \text{Ann}_R \left(\text{Ext}_R^t(M, N) \right)
\]

\[
\subseteq \text{Ann}_R \left(\frac{M}{\bigcap_{\text{MinAss}_R^{2-d-t}(M)}} \right).
\]

In particular, if \(M \neq 0 \), then

\[
\text{grade} \left(\text{Ann}_R(M), N \right) = \dim_R(N) - \dim_R(N/(\text{Ann}_R(M))N) = d - \dim_R(M)
\]

and the equality in Theorem 1.2(iv) can be rewritten as follows

\[
\text{Ann}_R \left(\text{Ext}_R^{d-dim(M)}(M, N) \right) = \text{Ann}_R \left(\frac{M}{\bigcap_{p_i \in \text{Ass}_R(M)}} \right).
\]

These results are needed in the proof of the main theorem of the next section (Theorem 2.2) which provides some bounds for the annihilators of local cohomology modules.

We end this section by two examples to show how we can compute the above bounds for the annihilators of Ext modules. Moreover, these examples show that to improve the upper bound in (1.1) we cannot replace the index set \(\text{MinAss}_R^{2-d-t}(M) \) by the larger sets \(\text{MinAss}_R^{2-d-t}(M), \text{Ass}_R^{d-t}(M) \) or \(\text{Ass}_R^{2-d-t}(M) \) and also to improve the lower bound in (1.1) we cannot replace the index set \(\text{Ass}_R^{2-d-t}(M) \) by the smaller set \(\text{Ass}_R^{d-t}(M) \). Also, in general for an arbitrary integer \(t \), there is not a subset \(\Sigma \) of \(\text{Ass}_R(M) \) such that \(\text{Ann}_R(\text{Ext}_R^t(M, N)) = \text{Ann}_R \left(\frac{M}{\bigcap_{i, p_i \in \Sigma} M_i} \right) \).

Let \(U \) be a subset of an \(R \)-module \(M \). We use \(\langle U \rangle \) to denote the submodule of \(M \) generated by \(U \). If \(U = \{m_1, \ldots, m_n\} \), then we show \(\langle U \rangle \) by \(\langle m_1, \ldots, m_n \rangle \).

Example 1.7. Let \(K \) be a field and let \(R = K[[X, Y]] \) be the ring of formal power series over \(K \) in indeterminates \(X, Y \).

Set \(M = R/(X^2, XY), M_1 = \langle X \rangle/(X^2, XY), \) and \(M_2 = (X^2, Y)/(X^2, XY) \). Then \(0 = M_1 \cap M_2 \) is a minimal primary decomposition of the zero submodule of \(M \) with \(\text{Ass}_R(M/M_1) = \{p_1 = \langle X \rangle\} \) and \(\text{Ass}_R(M/M_2) = \{p_2 = \langle X, Y \rangle\} \). So \(\text{Ass}_R(M) = \{p_1, p_2\} \) and \(\text{MinAss}_R(M) = \{p_1\} \). Hence, we have

\[
\text{Ass}_R^{2-d-t}(M) = \begin{cases}
\emptyset & \text{if } t = 0, \\
\{p_1\} & \text{if } t = 1, \\
\{p_1, p_2\} & \text{if } t = 2
\end{cases}
\]

and

\[
\text{MinAss}_R^{2-d-t}(M) = \begin{cases}
\emptyset & \text{if } t = 0, 2, \\
\{p_1\} & \text{if } t = 1.
\end{cases}
\]

It follows that

\[
\text{Ann}_R \left(\frac{M}{\bigcap_{p_i \in \text{Ass}_R^{2-d-t}(M)}} \right) = \begin{cases}
R & \text{if } t = 0, \\
\langle X \rangle & \text{if } t = 1, \\
\langle X^2, XY \rangle & \text{if } t = 2
\end{cases}
\]
and
\[
\text{Ann}_R \left(\frac{M}{\bigcap_{p_i \in \text{MinAss}_R^d(M)} M_i} \right) = \begin{cases}
R & \text{if } t = 0, 2, \\
\langle X \rangle & \text{if } t = 1.
\end{cases}
\]

Hence, Remark 1.6 implies that
\[
\text{Hom}_R(M, R) = 0, \text{ Ann}_R(\text{Ext}_{R}^1(M, R)) = \langle X \rangle
\]
and
\[
\langle X^2, XY \rangle \subseteq \text{Ann}_R(\text{Ext}_{R}^2(M, R)) \subseteq R.
\]
Also, since \(\text{inj dim}_R(R) = 2\), we deduce that \(\text{Ext}_{R}^1(M, R) = 0\) for all \(t > 2\).

Now, we directly compute \(\text{Ann}_R(\text{Ext}_{R}^t(M, R))\) for all \(t\) (specially for \(t = 2\)). It is straightforward to see that
\[
P : 0 \longrightarrow R \xrightarrow{d_2} R^2 \xrightarrow{d_1} R \xrightarrow{\epsilon} M \longrightarrow 0
\]
with \(\epsilon(f) = f + \langle X^2, XY \rangle\), \(d_1(f, g) = X^2f + XYg\), \(d_2(f) = (Yf, -Xf)\) for all \(f, g \in R\) is a projective resolution of \(M\). Applying the functor \(\text{Hom}_R(\cdot, R)\) to the delayed projective resolution \(P_M\), we obtain the following commutative diagram
\[
\begin{array}{c}
0 \\
\downarrow \approx \alpha \\
0 \\
\end{array} \longrightarrow
\begin{array}{ccc}
\text{Hom}_R(R, R) & \xrightarrow{d_1^*} & \text{Hom}_R(R^2, R) \\
\downarrow & \approx \beta & \downarrow \\
R & \xrightarrow{\delta_1} & R^2
\end{array} \longrightarrow
\begin{array}{c}
\text{Hom}_R(R, R) \\
\downarrow \approx \gamma \\
0
\end{array} \longrightarrow
0,
\]
where \(\alpha, \beta, \gamma\) are natural isomorphisms, \(\delta_1(f) = (X^2f, XYf)\), and \(\delta_2(f, g) = Yf - Xg\) for all \(f, g \in R\). Hence
\[
\text{Ext}_{R}^1(M, R) \cong \ker \delta_2 / \text{im} \delta_1 = \langle (X, Y) \rangle / \langle (X^2, XY) \rangle \cong R / \langle X \rangle,
\]
and
\[
\text{Ext}_{R}^2(M, R) \cong R / \langle X, Y \rangle \text{ and } \text{Ext}_{R}^t(M, R) = 0 \text{ for all } t \neq 1, 2
\]
(note that by our notation \(\ker \delta_2\) and \(\text{im} \delta_1\) are cyclic \(R\)-modules generated by the elements \((X, Y)\) and \((X^2, XY)\) of \(R^2\) respectively). It follows that
\[
\text{Ann}_R(\text{Ext}_{R}^1(M, R)) = \langle X \rangle \text{ and } \text{Ann}_R(\text{Ext}_{R}^2(M, R)) = \langle X, Y \rangle.
\]

Thus, there is not a subset \(\Sigma\) of \(\text{Ass}_R(M)\) such that \(\text{Ann}_R(\text{Ext}_{R}^2(M, R)) = \text{Ann}_R \left(\frac{M}{(\bigcap_{p_i \in \Sigma} M_i)} \right)\). Moreover, for \(t = 2\), this example shows that in the second inclusion of \(\text{L.4}\) in Remark L.6 to obtain a better upper bound (under inclusion) of \(\text{Ann}_R(\text{Ext}_{R}^t(M, R))\), we can not replace the index set \(\text{MinAss}_{d-t}^{-t}(M)\) by the larger sets \(\text{MinAss}_{d-t}^{-d-t}(M), \text{Ass}_{d-t}^{-t}(M)\) or \(\text{Ass}_{d-t}^{-d-t}(M)\).

Example 1.8
Let \(K\) be a field and let \(R = K[[X, Y, Z, W]]\) be the ring of formal power series over \(K\) in indeterminates \(X, Y, Z, W\). Then \(R\) is a local ring with maximal ideal \(m = \langle X, Y, Z, W \rangle\). Set \(p_1 = \langle X, Y \rangle, p_2 = \langle Z, W \rangle, \) and \(M = R / (p_1 \cap p_2)\). Then \(\text{depth}_R(R / p_1) = \text{depth}_R(R / p_2) = 2,\) and hence \(H^i_m(R / p_1) = H^i_m(R / p_2) = 0\) for \(i = 0, 1\). Now, the exact sequence
\[
0 \longrightarrow M \longrightarrow R / p_1 \oplus R / p_2 \longrightarrow R / m \longrightarrow 0
\]
induces the exact sequence

\[0 \to H^0_m(M) \to H^0_m(R/p_1) \oplus H^0_m(R/p_2) \to H^0_m(R/m) \to H^1_m(M) \]

\[\to H^1_m(R/p_1) \oplus H^1_m(R/p_2) \]

of local cohomology modules. It follows that \(H^0_m(M) = 0 \) and \(H^1_m(M) \cong R/m \).

Since \(R \) is a regular ring, it is Gorenstein [2, Proposition 3.1.20], and hence \(R \) is the canonical module of \(R \) [7, Theorem 3.3.7]. Therefore, by the Grothendieck duality [3, Theorem 11.2.8], we have \(\text{Hom}_R(\text{Ext}^3_R(M, R), E(R/m)) \cong H^1_m(M) \).

Thus \(\text{Ann}_R(\text{Ext}^3_R(M, R)) = m \).

On the other hand, if \(M_1 = p_1/(p_1 \cap p_2) \) and \(M_2 = p_2/(p_1 \cap p_2) \), then \(0 = M_1 \cap M_2 \) is a minimal primary decomposition of the zero submodule of \(M \). Since \(\text{Ass}_R(M) = \emptyset \), we have

\[R = \text{Ann}_R \left(M/ \bigcap_{p_i \in \text{Ass}_R^R(M)} M_i \right) \subsetneq \text{Ann}_R(\text{Ext}^3_R(M, R)) \].

Therefore in the first inclusion of (1.1) in Remark 1.6, to obtain a better lower bound of \(\text{Ann}_R(\text{Ext}^t_R(M, R)) \), we can not replace the index set \(\text{Ass}_R^{d-t}(M) \) by the smaller set \(\text{Ass}_R^{d-t}(M) \).

2. Bounds for the annihilators of local cohomology modules

In this section we investigate the annihilators of local cohomology modules. For an \(R \)-module \(M \), we denote \(\sup \{ i \in \mathbb{N}_0 : H^i_\mathfrak{a}(M) \neq 0 \} \) by \(\text{cd}_R(\mathfrak{a}, M) \). Let \(\mathfrak{a} \) be a proper ideal of \(R, M \) a non-zero finitely generated \(R \)-module of dimension \(d \), and \(0 = M_1 \cap \ldots \cap M_n \) a minimal primary decomposition of the zero submodule of \(M \) with \(\text{Ass}_R(M/M_i) = \{ p_i \} \) for all \(1 \leq i \leq n \). If \(\text{cd}_R(\mathfrak{a}, M) = d < \infty \), then

\[\text{Ann}_R \left(H^d_{\mathfrak{a}}(M) \right) = \text{Ann}_R \left(M/ \bigcap_{\text{cd}_R(\mathfrak{a}, R/\mathfrak{p}) = d} M_i \right) ; \]

see [1] and Introduction for more details.

For an arbitrary integer \(t \), when \((R, \mathfrak{m}) \) is a local ring, we give a bound for the \(\text{Ann}_R \left(H^t_{\mathfrak{a}}(M) \right) \), see Theorem 2.2. Also, whenever \(R \) is not necessarily local, in Theorem 2.4 we provide a bound for \(\text{Ann}_R \left(H^d_{\mathfrak{a}}(\mathfrak{m}M) \right) \) which implies the above equality when \(\text{cd}_R(\mathfrak{a}, M) = \dim_R(M) \). Finally, when \(M \) is Cohen-Macaulay, a bound of \(\text{Ann}_R \left(H^d_{\mathfrak{a}}(M) \right) \) is given and at \(t = \text{grade}(\mathfrak{a}, M) \) this annihilator is computed in Theorem 2.6.

Assume \((R, \mathfrak{m}) \) is a local ring, The \(\mathfrak{m} \)-adic completion \(\hat{R} \) of \(R \) is a faithfully flat \(R \)-module (see [12, Theorem 8.14]), and so \(R \subseteq \hat{R} \). Applying [12, Theorem 23.2] to the ring homomorphism \(\varphi : R \to \hat{R} \) we obtain the following lemma.

Lemma 2.1 (See [12, Theorem 23.2]). Let \((R, \mathfrak{m}) \) be a local ring, and \(M \) an \(R \)-module. Then

(i) \(\text{if } \mathfrak{p} \in \text{Spec}(R) \text{ and } \mathfrak{q} \in \text{Ass}_{\hat{R}}(\hat{R}/\mathfrak{p}\hat{R}) \text{, then } R \cap \mathfrak{q} = \mathfrak{p} \).

(ii) \(\text{Ass}_{\hat{R}}(M \otimes_R \hat{R}) = \bigcup_{\mathfrak{p} \in \text{Ass}_R(M)} \text{Ass}_{\hat{R}}(\hat{R}/\mathfrak{p}\hat{R}) \).
This lemma is used in the proof of the following theorem which is the main theorem of this section.

Theorem 2.2. Let \((R, \mathfrak{m})\) be a local ring and \(t \in \mathbb{N}_0\). Let \(M\) be a non-zero finitely generated \(R\)-module, and \(0 = M_1 \cap \ldots \cap M_n\) a minimal primary decomposition of the zero submodule of \(M\) with \(\text{Ass}_R(M/M_i) = \{p_i\}\) for all \(1 \leq i \leq n\). Then

(i) \(\bigcap_{p_i \in \text{Ass}_R^+(M)} M_i = S_{M}^t(0)\) and \(\bigcap_{p_i \in \text{MinAss}_R^+(M)} M_i = T_{M}^t(0)\), where \(S^t = R \setminus \bigcup_{p \in \text{Ass}_R^+(M)} p\) and \(T^t = R \setminus \bigcup_{p \in \text{MinAss}_R^+(M)} p\). In particular, \(\bigcap_{p_i \in \text{Ass}_R^+(M)} M_i\) and \(\bigcap_{p_i \in \text{MinAss}_R^+(M)} M_i\) are independent of the choice of minimal primary decomposition of the zero submodule of \(M\).

(ii) \(S_{M}^t(0)\) is the largest submodule \(N\) of \(M\) such that \(\dim_R(N) < t\).

(iii) \(\text{Ann}_R(M/S_{M}^t(0)) \subseteq \text{Ann}_R(H_{m}^{t}(M)) \subseteq \text{Ann}_R(M/T_{M}^t(0))\).

In particular, for \(t = \dim_R(M)\), there are the equalities \(S_{M}^t(0) = T_{M}^t(0) = \bigcap_{p_i \in \text{Ass}_R^+(M)} M_i\), and

\[
\text{Ann}_R(H_{m}^{\dim_R(M)}(M)) = \text{Ann}_R \left(\frac{M}{\bigcap_{p_i \in \text{Ass}_R^+(M)} M_i} \right).
\]

Proof. Set \(S = S_{M}^t(0)\) and \(T = T_{M}^t(0)\). It is clear that \(\text{Ass}_R^+(M)\) and \(\text{MinAss}_R^+(M)\) are isolated subsets of \(\text{Ass}_R(M)\), and hence (i) follows from Lemma 1.2.

To prove (ii), first note that \(\text{Ass}_R(S) = \text{Ass}_R(M) \setminus \text{Ass}_R^+(M)\) by Lemma 1.3 and hence \(\dim_R(S) < t\). Now, assume that \(N\) is a submodule of \(M\) such that \(\dim_R(N) < t\). Suppose, for the sake of contradiction, that \(N \nsubseteq S\). Then

\[
0 \neq N/(N \cap S) \cong (N + S)/S \subseteq M/S.
\]

Hence

\[
\emptyset \neq \text{Ass}_R(N/(N \cap S)) \subseteq \text{Ass}_R(M/S) = \text{Ass}_R^{\geq t}(M)
\]

which is impossible, because \(\dim_R(N/(N \cap S)) \leq \dim_R(N) < t\). This proves (ii).

Now, we prove (iii). In the case when \(t = \dim_R(M)\), it is clear that

\[
\text{MinAss}_R^t(M) = \text{Ass}_R^{\geq t}(M) = \text{Ass}_R^+(M),
\]

and so \(S_{M}^t(0) = T_{M}^t(0) = \bigcap_{p_i \in \text{Ass}_R^+(M)} M_i\). Therefore the first part of (iii) yields the equality \(\text{Ann}_R(H_{m}^{\dim_R(M)}(M)) = \text{Ann}_R \left(\frac{M}{\bigcap_{p_i \in \text{Ass}_R^+(M)} M_i} \right)\) whenever \(t = \dim_R(M)\). Also, we saw in (ii) that \(\dim_R(S) < t\), and so we obtain \(H_{m}^{t}(M) \cong H_{m}^{\dim_R(M)}(M)\). Therefore

\[
\text{Ann}_R(M/S) \subseteq \text{Ann}_R \left(H_{m}^{t}(M/S) \right) = \text{Ann}_R(H_{m}^{t}(M)) = \text{Ann}_R \left(H_{m}^{\dim_R(M)}(M) \right).
\]

Thus, to complete the proof of (iii), it only remains to prove that

\[
\text{Ann}_R \left(H_{m}^{t}(M) \right) \subseteq \text{Ann}_R(M/T).
\]

Set \(d = \dim_R(R)\). First, assume that \(R\) is complete. By the Cohen’s structure theorem for complete local rings [12, Theorem 29.4(ii)], there is a complete regular local ring \(R'\) such that \(R = R'/I\) for some ideal \(I\) of \(R'\). Now, let \(h = \text{ht}_{R'}(I)\) and \(x_1, \ldots, x_h\) a maximal \(R'\)-sequence in \(I\). Set \(R'' = R'/(x_1, \ldots, x_h)\) and \(J = I/(x_1, \ldots, x_h)\). Then \(R''\) is a local Gorenstein ring of dimension \(d\) [2, Corollary 3.1.15] and \(R \cong R''/J\). Now, let \(n\) be the maximal ideal of \(R''\). Then \(m \cong n/J\).
By the Grothendieck duality for Gorenstein rings [3] Theorem 11.2.5], there is the following isomorphism of R''-modules
\[H^n_{\mathfrak{m}}(M) \cong \text{Hom}_{R''}(\text{Ext}^{d''}_{R''}(M, R''), E_{R''}(R''/n)) \].

Also, by using the Independence Theorem under the ring homomorphism $R'' \to R''/J \cong R$, we obtain the following isomorphism of R''-modules
\[H^n_{\mathfrak{m}}(M) \cong H^n_{\mathfrak{m}(R''/J)}(M) \cong H^n_{\mathfrak{m}}(M) \]
(we recall that $n/J \cong m$). We refer the reader about the Independence Theorem to [6] Theorem 4.2.1 or [10] Proposition 2.11(2)]. Also, we note that any R-module N has an R''-module structure given by $r'' \cdot x = (r'' + J)x = \psi(r'' + J)x$ for all $r'' \in R''$ and $x \in N$, where ψ denotes the ring isomorphism from R''/J to R. Hence, by [6] Remarks 10.2.2(ii)], we have
\[\text{Ann}_{R''}(H^n_{\mathfrak{m}}(M)) = \text{Ann}_{R''}(H^n_{\mathfrak{m}}(M)) = \text{Ann}_{R''}(\text{Ext}^{d''}_{R''}(M, R'')) \].

Let, for each $1 \leq i \leq n$, P_i be the contraction of p_i in R'' under the ring homomorphism $R'' \to R''/J \cong R$. Then $\text{Ass}_{R''}(M) = \{ P_1, \ldots, P_n \}$ and there is a bijective correspondence between the sets $\text{Ass}_{R''}(M)$ and $\text{Ass}_{R}(M)$ given by $P_i \leftrightarrow p_i$. Also, $0 = M_1 \cap \ldots \cap M_n$ is a minimal primary decomposition of the zero submodule of M as R''-modules with $\text{Ass}_{R''}(M/M_i) = \{ P_i \}$ for all $1 \leq i \leq n$. Since R'' is Gorenstein, by Remark 10.6.1.1, we obtain
\[\text{Ann}_{R''}(H^n_{\mathfrak{m}}(M)) \subseteq \text{Ann}_{R''}(M/ \bigcap_{P_i \in \text{MinAss}_{R''}(M)} M_i) \].

For any R-module N, we have $J \subseteq \text{Ann}_{R''}(N)$ and so $\text{Ann}_{R''}(N) = (\text{Ann}_{R''}(N))/J$. Therefore the above inclusion proves the claimed inclusion in the case where R is complete.

Now, suppose that R is not necessarily complete. Assume $0 = \bigcap_{k \in K} M_k$ is a minimal \tilde{R}-primary decomposition of the zero submodule of \tilde{M} with $\text{Ass}_{\tilde{R}}(M/M_k) = \{ \mathfrak{P}_k \}$. Since $\text{Ass}_{\tilde{R}}(\tilde{M}) = \bigcup_{k \in K} \text{Ass}_{\tilde{R}}(\tilde{R}/p_i \tilde{R})$, there exists subsets K_1, \ldots, K_n of K such that $K = \bigcup_{i=1}^n K_i$ and for each i, $\text{Ass}_{\tilde{R}}(\tilde{R}/p_i \tilde{R}) = \{ \mathfrak{P}_k : k \in K_i \}$. Also, the subsets K_i, \ldots, K_n of K are disjoint by Lemma 2.1(i).

Assume $x \in \text{Ann}_{\tilde{R}}(H^n_{\mathfrak{m}}(\tilde{M}))$ and $p_i \in \text{MinAss}_{\tilde{R}}(\tilde{M})$. By the complete case,
\[x\tilde{R} \subseteq \text{Ann}_{\tilde{R}}(H^n_{\mathfrak{m}}(\tilde{M})) \subseteq \text{Ann}_{\tilde{R}}(\tilde{M}/ \bigcap_{p_i \in \text{MinAss}_{\tilde{R}}(\tilde{M})} M_k) \].

Now, suppose that $k \in K_i$ and $\mathfrak{P}_k \in \text{Ass}_{\tilde{R}}(\tilde{M}/\tilde{M}_i)$ (note that, by Lemma 2.1, $\text{Ass}_{\tilde{R}}(\tilde{M}/\tilde{M}_i) = \text{Ass}_{\tilde{R}}(\tilde{R}/p_i \tilde{R})$). We have
\[\dim_{\tilde{R}}(\tilde{R}/\mathfrak{P}_k) = \dim_{\tilde{R}}(\tilde{M}/\tilde{M}_i) = \dim_R(M/M_i) = \dim_R(R/p_i) = t. \]

We show that \mathfrak{P}_k is a minimal element of $\text{Ass}_{\tilde{R}}(\tilde{M})$. Assume that $1 \leq i' \leq n$, $k' \in K_{i'}$, and $\mathfrak{P}_{k'} \subseteq \mathfrak{P}_k$. Then $p_{i'} = \mathfrak{P}_{k'} \cap R \subseteq \mathfrak{P}_k \cap R = p_i$. Since p_i is a minimal element of $\text{Ass}_{\tilde{R}}(\tilde{M})$ and K_1, \ldots, K_n are disjoint sets, we deduce that $i = i'$. It follows that both \mathfrak{P}_k and $\mathfrak{P}_{k'}$ are elements of $\text{Ass}_{\tilde{R}}(\tilde{M}/\tilde{M}_i)$. Therefore
\[\dim_{\tilde{R}}(\tilde{M}/\tilde{M}_i) = \dim_{\tilde{R}}(\tilde{R}/\mathfrak{P}_k) \leq \dim_{\tilde{R}}(\tilde{R}/\mathfrak{P}_{k'}) \leq \dim_{\tilde{R}}(\tilde{M}/\tilde{M}_i), \]
and hence $\mathfrak{p}_k = \mathfrak{p}_{k'}$. Thus $\mathfrak{p}_k \in \text{MinAss}_k^R(M)$ and inclusion (2.1) yields $x\hat{M} \subseteq \mathcal{M}_k$. Since \mathfrak{p}_k is a minimal element of $\text{Ass}_k^R(\hat{M}/\mathcal{M}_i)$, it follows that the contraction of $(\mathcal{M}_i)\mathfrak{p}_k$ under the canonical map $\hat{M} \to \hat{M}\mathfrak{p}_k$, denoted by \mathcal{N}_k, is the \mathfrak{p}_k-primary component of each minimal primary decomposition of \hat{M}_i in M (see Lemma [12] or [12] Theorem 6.8.3(iii)). Hence $\mathcal{N}_k/\mathcal{M}_i$ is the \mathfrak{p}_k-primary component of each minimal primary decomposition of 0 in M/\mathcal{M}_i. Also, we have $\mathcal{M}_k \subseteq \mathcal{N}_k$ because \mathcal{M}_k is the contraction of the zero submodule under the map $M \to \hat{M}\mathfrak{p}_k$. Therefore $x(M/\mathcal{M}_i) \subseteq \mathcal{N}_k/\mathcal{M}_i$. Since \mathfrak{p}_k is an arbitrary element of $\text{Ass}_k^R(\hat{M}/\mathcal{M}_i)$, we have $x(M/\mathcal{M}_i) \subseteq \bigcap_{\mathfrak{p}_k \in \text{Ass}_k^R(\hat{M}/\mathcal{M}_i)} \mathcal{N}_k/\mathcal{M}_i$. Hence, by Lemma [11] $\text{Ass}_k^R(x(M/\mathcal{M}_i)) \subseteq \text{Ass}_k^R(M/\mathcal{M}_i) \setminus \text{Ass}_k^R(M/\mathcal{M}_i)$. This yields

$$\dim_R(x(M/M_i)) = \dim_R(x(M/M_i)) < \dim_R(M/\mathcal{M}_i) = t.$$

Therefore $\mathfrak{p}_i \notin \text{Ass}_R(x(M/M_i))$ and hence $\text{Ass}_R(x(M/M_i)) = \emptyset$ or equivalently $xM \subseteq M_i$. This proves the claimed inclusion and completes the proof. \hfill \square

Now, in the following theorem, we give a bound for the annihilator of top local cohomology module without the local assumption on R. But before that, we need the following lemma.

Lemma 2.3 ([9] Theorem 2.2]). Let \mathfrak{a} be an ideal of R and M, N two finitely generated R-modules such that $\text{Supp}_R(M) \subseteq \text{Supp}_R(N)$. Then $\text{cd}_R(\mathfrak{a}, M) \leq \text{cd}_R(\mathfrak{a}, N)$.

Assume \mathfrak{a} is an ideal of R and M is a finitely generated R module. Since $\text{Supp}_R(M) = \text{Supp}_R \left(\bigoplus_{\mathfrak{p} \in \text{Ass}_R(M)} R/\mathfrak{p} \right)$, above lemma implies that

$$\text{cd}_R(\mathfrak{a}, M) = \text{cd}_R \left(\mathfrak{a}, \bigoplus_{\mathfrak{p} \in \text{Ass}_R(M)} R/\mathfrak{p} \right) = \sup \{ \text{cd}_R(\mathfrak{a}, R/\mathfrak{p}) : \mathfrak{p} \in \text{Ass}_R(M) \}.$$

By [3] Exercise 6.2.6 and Theorem 6.2.7, $\mathcal{H}^i_{\mathfrak{a}}(M)$ is non-zero for all i if and only if $M = \mathfrak{a}M$, and so, in this case, we have $\text{cd}_R(\mathfrak{a}, M) = \sup \emptyset = -\infty$. On the other hand, if \mathfrak{a} is generated by $t \in \mathbb{N}_0$ elements, then $\text{cd}_R(\mathfrak{a}, M) \leq t < \infty$; see [6] Theorem 3.3.1]. Hence $\text{cd}_R(\mathfrak{a}, M)$ is a non-negative integer if and only if $M \neq \mathfrak{a}M$.

Theorem 2.4. Let M be a non-zero finitely generated R-module and \mathfrak{a} an ideal of R such that $M \neq \mathfrak{a}M$. Let $c = \text{cd}_R(\mathfrak{a}, M)$ and $0 = M_1 \cap \ldots \cap M_n$ a minimal primary decomposition of the zero submodule of M with $\text{Ass}_R(M/M_i) = \{ \mathfrak{p}_i \}$ for all $1 \leq i \leq n$. Set $\Delta = \{ \mathfrak{p} \in \text{Ass}_R(M) : \text{cd}_R(\mathfrak{a}, R/\mathfrak{p}) = c \}$ and $\Sigma = \{ \mathfrak{p} \in \text{Ass}_R(M) : \text{cd}_R(\mathfrak{a}, R/\mathfrak{p}) = \dim_R(R/\mathfrak{p}) = c \}$. Then

(i) $\bigcap_{\mathfrak{p}_i \in \Delta} M_i = S_M(0)$, where $S = R \setminus \bigcup_{\mathfrak{p}_i \in \Delta} \mathfrak{p}$. In particular, $\bigcap_{\mathfrak{p}_i \in \Delta} M_i$ is independent of the choice of minimal primary decomposition of the zero submodule of M.

(ii) $S_M(0)$ is the largest submodule N of M such that $\text{cd}_R(\mathfrak{a}, N) < c$.

(iii) $\text{Ann}_R \left(M/ \bigcap_{\mathfrak{p}_i \in \Delta} M_i \right) \subseteq \text{Ann}_R(\mathcal{H}^n_\mathfrak{a}(M)) \subseteq \text{Ann}_R \left(M/ \bigcap_{\mathfrak{p}_i \in \Sigma} M_i \right)$.
In particular, when \(c = \dim_R(M) \), there are the equalities \(\Delta = \Sigma \) and

\[
\Ann_R \left(H^n_{\Delta} (M) \right) = \Ann_R \left(M/S_M(0) \right).
\]

Proof. Set \(S = \bigcap_{p \in \Delta} M_p \) and \(T = \bigcap_{p \in \Sigma} M_p \).

(i) If \(q \in \Ass_R(M) \) and \(q \subseteq p \) for some \(p \in \Delta \), then, by Lemma 2.3,

\[
c = \cd_R(a, R/p) \leq \cd_R(a, R/q) \leq \cd_R(a, M) = c.
\]

It follows that \(q \in \Delta \), and hence \(\Delta \) is an isolated subset of \(\Ass_R(M) \). Therefore (i) follows from Lemma 1.2.

(ii) Lemma 1.1 implies that \(\Ass_R(S) = \{ p \in \Ass_R(M) : \cd_R(a, R/p) < c \} \).

Hence, by Lemma 2.3, \(\cd_R(a, S) < c \). Also, if \(N \) is a submodule of \(M \) such that \(\cd_R(a, N) < c \), then

\[
\Ann_R(M/S) \subseteq \Ann_R(H^n_{\Delta} (M/S)) = \Ann_R(H^n_{\Delta} (M)).
\]

This proves the first inclusion. Now, we prove the second inclusion claimed in (iii).

Case 1: Assume that \(c = \dim_R(M) \) and \((R, \mathfrak{m}) \) is a complete local ring. For each prime ideal \(p \), in view of the Grothendieck’s Vanishing Theorem [6, Theorem 6.1.2], we have \(\cd_R(a, R/p) \leq \dim_R(R/p) \).

It follows that \(\Delta = \Sigma \), and so \(S = T \).

Also, we have \(\Delta = \{ p \in \Ass_R(M) : \sqrt{a + p} = \mathfrak{m} \} \) by the Lichtenbaum-Hartshorne Theorem. Therefore

\[
\sqrt{a + \Ann_R(M/S)} = \sqrt{a + \bigcap_{p \in \Ass_R(M/S)} p} = \sqrt{a + \bigcap_{p \in \Delta} p}.
\]

Since \(M \) is a finitely generated \(R \)-module, the set \(\Delta \) is finite and so

\[
\sqrt{a + \bigcap_{p \in \Delta} p} = \sqrt{\bigcap_{p \in \Delta} (a + p)} = \bigcap_{p \in \Delta} \sqrt{a + p} = \mathfrak{m}.
\]

(Thenote that for ideals \(a, b, c \) and prime ideal \(q \), we have \((a + b) \cap (a + c) \subseteq q \) if and only if \(a + (b \cap c) \subseteq q \). Therefore \(\sqrt{(a + b) \cap (a + c)} = \sqrt{a + (b \cap c)} \).) Hence

\[
\Ann_R(M/S) = \mathfrak{m}
\]

and we deduce from the Independence Theorem

\[
H^n_{\Delta} (M) \cong H^n_{\mathfrak{m}} (M/S) \cong H^n_{\mathfrak{m}} (M).
\]

Also, since \(\Ass_R(M/S) = \Delta \subseteq \Ass_R(M) \) and \(\Delta \) is not empty, we have \(\dim(M/S) = \dim_R(M) = c \) and \(\Ass_R(M/S) = \Ass_R(M) \). Therefore the previous theorem yields

\[
\Ann_R(H^n_{\mathfrak{m}} (M/S)) = \Ann_R(H^n_{\mathfrak{m}} (M/S)) = \Ann_R(M/S).
\]

Case 2: Assume that \(c = \dim_R(M) \) and \(R \) is not necessarily local. As the before case, we have \(\Delta = \Sigma \) and \(S = T \). To prove \(\Ann_R(H^n_{\Delta} (M)) \subseteq \Ann_R(M/S) \), assume that \(x \in R \) and \(xM \not\subseteq S \) and we show \(xH^n_{\Delta} (M) \neq 0 \). By (ii), \(H^n_{\Delta} (xM) \neq 0 \). Thus there exists a prime ideal \(\mathfrak{m} \) such that \(H^n_{\Delta} (xM_\mathfrak{m}) \neq 0 \) and consequently
\(H^c_{aR_m}(xM_m) \neq 0\). Therefore \(c \leq \text{cd}_{R_m}(aR_m, xM_m)\). It follows from Lemma 2.3 and Grothendieck’s Vanishing Theorem that
\[c \leq \text{cd}_{R_m}(aR_m, xM_m) \leq \text{cd}_{R_m}(aR_m, M_m) \leq \dim_{R_m}(M_m) \leq \dim_R(M) = c. \]

Hence \(\dim_{R_m}(M_m) = \text{cd}_{R_m}(aR_m, M_m) = c\). Since \(H^c_{aR_m}(xM_m) \neq 0\), we obtain \(xM_m \not\subseteq S'\), where \(S'\) is the largest submodule of \(M_m\) such that \(\text{cd}_{R_m}(aR_m, S') < c\).

So, by the complete case, we have \(xH^c_{aR_m}(M_m) \neq 0\) and therefore \(xH^c_a(M) \neq 0\).

This proves the claimed inclusion (in fact equality) in the case where \(c = \dim_R(M)\).

Case 3: Assume \(c < \dim_R(M)\). If \(\Sigma = \emptyset\), then \(T = M\) and there is nothing to prove. Assume \(\Sigma \neq \emptyset\). Since \(\text{cd}_R(a, T) \leq c\), the short exact sequence
\[0 \to T \to M \to M/T \to 0 \]
induces the epimorphism \(H^c_a(M) \to H^c_a(M/T)\). It follows that \(\text{Ann}_R(H^c_a(M)) \subseteq \text{Ann}_R(H^c_a(M/T))\). Since \(\text{Ass}_R(M/T) = \Sigma \neq \emptyset\), we have
\[\text{cd}_R(a, M/T) = \max_{p \in \text{Ass}_R(M/T)} \text{cd}_R(a, R/p) = \max_{p \in \Sigma} \text{cd}_R(a, R/p) = c \]
and
\[\dim_R(M/T) = \max_{p \in \text{Ass}_R(M/T)} \dim_R(R/p) = \max_{p \in \Sigma} \dim_R(R/p) = c. \]

Thus \(\dim_R(M/T) = \text{cd}_R(a, M/T) = c\), and so \(\text{Ann}_R(H^c_a(M/T)) = \text{Ann}_R(M/T)\) by the previous case. This completes the proof. \(\square\)

When \((R, m)\) is a Cohen-Macaulay local ring, \(a\) is a non-zero proper ideal of \(R\) and \(t = \text{grade}(a, R)\), Bahmanpour calculated the annihilator of \(H^c_a(R)\) in [8, Theorem 2.2]. The following theorem generalizes his result for Cohen-Macaulay modules whenever \(R\) is not necessarily local.

Lemma 2.5 ([8, Theorem 2.1]). Let \(a\) be an ideal of \(R\), and \(M\) a finitely generated \(R\)-module such that \(aM \neq M\). Then
\[\text{Ass}_R(H^c_{aM}(M)) = \{p \in V(a) : \text{depth}_{R_p} M_p = \text{grade}(a, M)\}. \]

Let \(M\) be an \(R\)-module. For \(p \in \text{Supp}_R(M)\), the \(M\)-height of \(p\), denoted \(\text{ht}_M(p)\), is the supremum of the lengths \(t\) of strictly descending chains
\[p = p_0 \supset p_1 \supset \ldots \supset p_t \]
of prime ideals in \(\text{Supp}_R(M)\). For an arbitrary ideal \(a\), we define the \(M\)-height of \(a\), denoted \(\text{ht}_M(a)\), by
\[\text{ht}_M(a) = \inf \{\text{ht}_M(p) : p \in \text{Supp}_R(M) \cap V(a)\}. \]
In particular, if \(\text{Supp}_R(M) \cap V(a) = \emptyset\), then \(\text{ht}_M(a) = \inf \emptyset = \infty\).

Theorem 2.6. Let \(a\) be an ideal of \(R\), \(M\) a non-zero finitely generated Cohen-Macaulay \(R\)-module, and \(0 = M_1 \cap \ldots \cap M_n\) with \(\text{Ass}_R(M/M_i) = p_i\), for all \(1 \leq i \leq n\) a minimal primary decomposition of the zero submodule of \(M\). Then, for each \(t \in \mathbb{N}_0\),
\[\text{Ann}_R(H^c_a(M)) \subseteq \text{Ann}_R\left(M/\bigcap_{\text{ht}_M(a+p_i) = t} M_i\right), \]
Moreover, if \(M \neq aM\) and \(t = \text{grade}(a, M)\), then equality holds.
Proof. Set Σ(τ) = {p ∈ Ass_R(M) : ht_M(a + p) = t}. To prove the claimed inclusion, assume that x ∈ R and x ̸∈ Ann_R(M/\bigcap_{p_i ∈ Σ(t)} M_i) and we show x ̸∈ Ann_R(H^t_q(M)). Hence xM ̸⊆ M_i for some p_i ∈ Σ(t). Therefore Ass_R(x(M/M_i)) = Ass_R(M/M_i) = {p_i}. Suppose that q is a minimal prime ideal of a + p_i such that
\[\text{ht}_M(q) = \text{ht}_M(a + p_i) = t.\]
Then
\[\text{Ass}_{R_q}(x(M/M_i)_q) = \text{Ass}_{R_q}(M/M_i)_q = \{p_qR_q\}.\]
Therefore
\[\sqrt{aR_q + \text{Ann}_{R_q}(M/M)_q} = \sqrt{aR_q + p_qR_q} = qR_q.\]
Also, since M_q is Cohen-Macaulay and p_qR_q ∈ Ass_{R_q}(M_q), we have dim_{R_q}(R_q/p_qR_q) = dim_{R_q}(M_q) = t. Hence dim_{R_q}((M/M_i)_{q}) = t and, by Theorem 2.2, in view of the Independence Theorem, we have
\[\text{Ann}_{R_q}\left(H^t_qaR_q((M/M_i)_q)\right) = \text{Ann}_{R_q}\left(H^t_qqR_q((M/M_i)_q)\right) = \text{Ann}_{R_q}(M/M_i)_q.\]
Thus x H^t_qaR_q((M/M_i)_q) ̸= 0 because x(M/M_i)_q ̸= 0. On the other hand, the exact sequence
\[0 → (M_i)_q → M_q → (M/M_i)_q → 0\]
induces the epimorphism H^t_qaR_q(M_q) → H^t_qaR_q((M/M_i)_q). Thus x H^t_qaR_q(M_q) ̸= 0 and consequently x H^t_q(M) ̸= 0. This proves the claimed inclusion.

Finally, assume t = grade (a, M) and we prove the reverse inclusion. Let x ∈ R be such that x H^t_q(M) ̸= 0. Hence, there exists q ∈ Ass_R(H^t_qaR_q(M_q)) ⊆ Supp_R(M/aM) such that x H^t_qaR_q(M_q) ̸= 0. By above lemma, ht_M(q) = ht_M(a), and hence q is a minimal prime ideal of a + Ann_R(M). Since M_q is a Cohen-Macaulay module of dimension t, Theorem 2.2 and Independence Theorem yield
\[\text{Ann}_{R_q}\left(H^t_qaR_q(M_q)\right) = \text{Ann}_{R_q}\left(H^t_qqR_q(M_q)\right) = \text{Ann}_{R_q}(M_q),\]
and so we have xM_q ̸= 0. If q ∈ Supp_R\left(\bigcap_{p_i ∈ Σ(t)} M_i\right), then there is a p ∈ Ass_R\left(\bigcap_{p_i ∈ Σ(t)} M_i\right) = Ass_R(M) \setminus Σ(t) such that p ⊆ q. Therefore
\[t = ht_M(a) ≤ ht_M(a + p) ≤ ht_M(q) = t.\]
Hence ht_M(a + p) = t, and so p ∈ Σ(t), a contradiction. Thus \(\bigcap_{p_i ∈ Σ(t)} M_i\) = 0. It follows that xM_q ̸⊆ \(\bigcap_{p_i ∈ Σ(t)} M_i\)_q and consequently xM ̸⊆ \(\bigcap_{p_i ∈ Σ(t)} M_i\)q. This proves the claimed equality in the case where t = grade (a, M) and completes the proof. □

Acknowledgements

The author is deeply grateful to the referee for a very careful reading of the manuscript and many valuable suggestions in improving the quality of the paper. Also, the author would like to thank Professor Hossein Zakeri for his careful reading of the first draft and many helpful suggestions.
References

[1] A. Atazadeh, M. Sedghi and R. Naghipour, On the annihilators and attached primes of top local cohomology modules, Arch. Math. (Basel) 102(3) (2014), 225—236.
[2] A. Atazadeh, M. Sedghi and R. Naghipour, Cohomological dimension filtration and annihilators of top local cohomology, Colloq. Math. 139(1) (2015), 25—35.
[3] M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley Publishing Co., 1969.
[4] K. Bahmanpour, Annihilators of local cohomology modules, Comm. Algebra 43(6) (2015), 2509—2515.
[5] K. Bahmanpour, J. A'zami and G. Ghasemi, On the annihilators of local cohomology modules, J. Algebra 363 (2012), 8—13.
[6] M. P. Brodmann and R. Y. Sharp, Local cohomology: an algebraic introduction with geometric applications, Cambridge Studies in Advanced Mathematics 60, Cambridge University Press, Cambridge, 1998.
[7] W. Bruns and J. Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics 39, Cambridge University Press, Cambridge, 1998.
[8] L. Chu, Z. Tang and H. Tang, A note on almost Cohen-Macaulay modules, J. Algebra Appl. 14(10) (2015) 1550136, 7 pp.
[9] K. Divaani-Aazar, R. Naghipour and M. Tousi, Cohomological dimension of certain algebraic varieties, Proc. Amer. Math. Soc. 130(12) (2002), 3537—3544.
[10] C. Huneke, Lectures on local cohomology, Contemp. Math. 436 (2007), 51—99.
[11] L. R. Lynch, Annihilators of top local cohomology, Comm. Algebra 40(2) (2012), 542—551.
[12] H. Matsumura, Commutative ring theory, Translated from the Japanese by M. Reid., Cambridge Studies in Advanced Mathematics 8, Cambridge University Press, Cambridge, 1986.
[13] R. Y. Sharp, Gorenstein modules, Math. Z. 115 (1970), 117—139.
[14] R. Y. Sharp, On Gorenstein modules over a complete Cohen-Macaulay local ring, Quart. J. Math. Oxford Ser. (2), 22 (1971), 425—434.

Department of Mathematics, Zanjan Branch, Islamic Azad University, Zanjan, Iran.
Email address: fathi.ali@iauz.ac.ir, alif1387@gmail.com