Effect of rGO Coating on Interconnected \(\text{Co}_3\text{O}_4 \) Nanosheets and Improved Supercapacitive Behavior of \(\text{Co}_3\text{O}_4/\text{rGO/NF} \) Architecture

Tinghui Yao\(^1\) · Xin Guo\(^1\) · Shengchun Qin\(^1\) · Fangyuan Xia\(^1\) · Qun Li\(^1\) · Yali Li\(^1\) · Qiang Chen\(^2\) · Junshuai Li\(^1\) · Deyan He\(^1\)

Received: 13 December 2016 / Accepted: 26 January 2017 / Published online: 17 March 2017
© The Author(s) 2017. This article is published with open access at Springerlink.com

Abstract In this study, the effect of reduced graphene oxide (rGO) on interconnected \(\text{Co}_3\text{O}_4 \) nanosheets and the improved supercapacitive behaviors is reported. By optimizing the experimental parameters, we achieved a specific capacitance of \(\approx 1016.4 \) \(\text{F g}^{-1} \) for the \(\text{Co}_3\text{O}_4/\text{rGO/NF} \) (nickel foam) system at a current density of 1 \(\text{A g}^{-1} \). However, the \(\text{Co}_3\text{O}_4/\text{NF} \) structure without rGO only delivers a specific capacitance of \(\approx 520.0 \) \(\text{F g}^{-1} \) at the same current density. The stability test demonstrates that \(\text{Co}_3\text{O}_4/\text{rGO/NF} \) retains \(\approx 95.5\% \) of the initial capacitance value even after 3000 charge–discharge cycles at a high current density of 7 \(\text{A g}^{-1} \). Further investigation reveals that capacitance improvement for the \(\text{Co}_3\text{O}_4/\text{rGO/NF} \) structure is mainly because of a higher specific surface area (\(\approx 87.8 \text{ m}^2 \text{ g}^{-1} \)) and a more optimal mesopore size distribution (4–15 nm) compared to the corresponding values of 67.1 \(\text{m}^2 \text{ g}^{-1} \) and 6–25 nm, respectively, for the \(\text{Co}_3\text{O}_4/\text{NF} \) structure. rGO and the thinner \(\text{Co}_3\text{O}_4 \) nanosheets benefit from the strain relaxation during the charge and discharge processes, improving the cycling stability of \(\text{Co}_3\text{O}_4/\text{rGO/NF} \).

Highlights

- Interconnected \(\text{Co}_3\text{O}_4 \) nanosheets anchored on rGO-coated nickel foam (NF) are facilely synthesized using a green, simple, and low-cost approach.
- Because of the high specific surface area and optimal mesopore size distribution, high specific capacitances of \(\approx 1016.4 \) and 767.1 \(\text{F g}^{-1} \) are achieved for \(\text{Co}_3\text{O}_4/\text{rGO/NF} \) at current densities of 1 and 5 \(\text{A g}^{-1} \), respectively.
- Excellent stability with \(\approx 95.5\% \) capacity retention at a high current density of 7 \(\text{A g}^{-1} \) is achieved even after 3000 cycles.

Keywords Supercapacitors · rGO · \(\text{Co}_3\text{O}_4 \) nanosheets · Strain relaxation
1 Introduction

In recent years, extensive efforts have been dedicated to research related to supercapacitors owing to their higher power densities, longer cycling performance than Li-ion batteries, and larger energy densities than conventional dielectric capacitors [1–3]. Supercapacitors have a huge potential in applications requiring high-density power and long cycling lifetime such as electric vehicles and portable electronics [4].

Co₃O₄, an important supercapacitor material, has the advantages of high theoretical capacitance (~3560 F g⁻¹) [5], low cost, environmental friendliness, and high chemical stability in alkaline electrolytes. It has, thus, attracted much attention recently. Geng et al. [6] prepared porous Co₃O₄ nanoplates with a specific capacitance of ~231 F g⁻¹ at a current density of 1 A g⁻¹ using a facile reflux method. Naveen et al. [7] synthesized Co₃O₄/rGO-graphene nanosheets by a chemical method and a high specific capacitance of ~650 F g⁻¹ at a scan rate of 5 mV s⁻¹. However, there still remain some challenges in the practical applications of Co₃O₄ as a high capacity electrode such as poor conductivity and cycling stability, and relatively lower experimental specific capacitances than the theoretical value.

As one kind of nanostructured carbon material, reduced graphene oxide (rGO) has been extensively investigated because of its superior mechanical and electronic properties, high specific surface area, and reasonable chemical stability [8]. These properties make graphene a preferred material for use in supercapacitors and Li-ion batteries as electrode materials and/or active material supporters [9–16]. Therefore, supercapacitors combining nanostructured Co₃O₄ and rGO can be expected to deliver high power and energy densities and long cycling lifetime [15, 17].

In this study, interconnected Co₃O₄ nanosheets anchored onto rGO-coated nickel foam (NF) are facilely synthesized using a green, simple, and low-cost approach. The effect of rGO on the microstructure and improved supercapacitive behaviors of Co₃O₄ nanosheets are investigated here. Because of the large specific area of ~87.8 m² g⁻¹ and a more optimal mesopore size distribution of ~4–15 nm, the Co₃O₄/rGO/NF architecture delivers higher specific capacitances of ~1016.4 and 767.1 F g⁻¹ at current densities of 1 and 5 A g⁻¹, respectively. In comparison, the Co₃O₄/NF structure has relatively smaller specific area of ~67.1 m² g⁻¹ and less optimal mesopore size distribution of ~6–25 nm, resulting in lower specific capacitances of ~520.0 and 485.8 F g⁻¹ at current densities of 1 and 5 A g⁻¹, respectively. Moreover, Co₃O₄/rGO/NF has excellent stability, with ~95.5% capacity retention at a high current density of 7 A g⁻¹ even after 3000 cycles. This can be attributed to the thinned Co₃O₄ nanosheets and the presence of rGO, improving the electrical and mechanical properties of the Co₃O₄/rGO/NF system. For Co₃O₄/NF, the capacity retention after 3000 cycles at the corresponding current density is about 84.4%.

2 Experimental

2.1 Preparation of the Co₃O₄/rGO/NF Architecture

Figure 1 shows a schematic illustration of the preparation procedure of the Co₃O₄/rGO/NF architecture. First, the hydrothermal reduction process is used to prepare rGO-coated NF. After sequential ultrasonic cleaning in acetone, ethanol, and deionized (DI) water each for 10 min, the NFs are dried in air. GO aqueous solution (1.0 mg mL⁻¹) is prepared by dispersing GO, which is prepared by the modified Hummers method [18], into DI water under ultrasonication for 30 min. Then, the GO aqueous solution (10 ml, 1.0 mg mL⁻¹), ascorbic acid (L-AA, 0.02 g), and cleaned NFs of size 2 × 3 cm² are placed into a beaker, which is then heated up to 95 °C and kept for 5.0 h for GO reduction and rGO coating onto the NFs. After the beaker is cooled down to room temperature, the products are taken out and dried at 50 °C for 3 h [19].

Then, Co(OH)₂ nanosheets are electrochemically deposited at 70 °C in a three-electrode cell using rGO-coated NF as the working electrode, a platinum mesh (surface area: 2 × 2 cm²) as the counter electrode, and Ag/AgCl (sat. KCl) as the reference electrode. The aqueous electrolyte consists of 0.02 M Co(NO₃)₂·6H₂O and 0.2 M NH₃·HCl. The electrodeposition potential is set at ~3.0 V. After 500 s of electrodeposition, the resultant green foam is carefully washed using ethanol and DI water several times and finally dried in air. Then, the product is calcined at 250 °C for 2 h in a quartz tube to change Co(OH)₂ into interconnected Co₃O₄ nanosheets [20]. A reference structure of interconnected Co₃O₄ nanosheets anchored onto NF is prepared following a similar process but without the rGO coating procedure, to determine the role of rGO.

2.2 Characterization

The resultant products are characterized by scanning electron microscopy (SEM, MIR A3, TESCAN), high-resolution transmission electron microscopy (HRTEM, FEI Tecnai G² F30), micro-Raman spectroscopy (Jobin–Yvon Horiba HR800 with an excitation wavelength of 532 nm), X-ray powder diffraction (XRD, X'Pert Philips), and
Brunauer–Emmett–Teller measurement (BET, ASAP 2020 Micromeritics).

Cyclic voltammetry (CV), galvanostatic charge/discharge (GCD), and electrochemical impedance spectroscopy (EIS) tests are conducted using an electrochemical workstation having a three-electrode configuration. Co₃O₄/rGO/NF or Co₃O₄/NF is employed as the working electrode using a 1 M KOH electrolyte. The applied potential window of CV measurements ranges from 0.0 to 0.6 V. GCD is performed at a constant current over a fixed potential range of 0.0–0.5 V. The capacitance retention test is performed from 0.0 to 0.5 V at a constant current density of 7 A g⁻¹ for 3000 cycles. EIS measurement is performed under an AC voltage with a 5 mV amplitude over a frequency range of 0.01-100 kHz. The specific capacitance \(C_s \) (F g⁻¹) is calculated from the GCD data using \(C_s = \frac{I \Delta t}{m \Delta V} \), where \(I \) is the charge–discharge current, \(\Delta t \) is the discharge time, \(m \) is the mass of Co₃O₄, and \(\Delta V \) is the potential change.

3 Results and Discussion

Figure 2a shows the XRD pattern of the Co(OH)₂/rGO/NF structure. The peaks presented in the spectrum match well with those in the standard crystallographic spectrum of layered \(\alpha \)-Co(OH)₂ (JCPDS 46-0605) [21], except for the peaks at 44.5° and 51.8° attributed to the NF substrate (JCPDS 87-0712). Figure 2b exhibits the XRD spectra of the products of Co(OH)₂/rGO/NF and Co(OH)₂/NF after calcination at 250 °C for 2 h, and the XRD pattern of the rGO/NF structure serves as a reference. It is evident that except for the diffraction peaks from NF, all the other peaks are consistent with the (220), (311), (511), and (440) planes in the standard Co₃O₄ pattern (JCPDS 42-1467) [22]. It is worth noting that there are no obvious XRD signals of rGO, possibly because of the low mass loading or destruction of regular stacks of rGO [23].

Figure 2c shows the micro-Raman spectra of rGO/NF, Co₃O₄/NF, and Co₃O₄/rGO/NF composites. Two bands located around 1348.6 and 1609.5 cm⁻¹ are assigned to the D and G band of rGO, respectively, indicating that GO has been successfully reduced [24]. For Co₃O₄-containing samples, five peaks of the crystalline Co₃O₄ phase corresponding to the A₁g (691.5 cm⁻¹), F₂g (617.7 cm⁻¹), F₂g (522.8 cm⁻¹), E₉ (482.7 cm⁻¹), and F₂g (193.6 cm⁻¹) modes are evident [25], and no obvious characteristic peaks related to Co(OH)₂ can be observed. Accordingly, both XRD and Raman spectra indicate that Co(OH)₂ is completely changed to Co₃O₄ after the aforementioned thermal treatment.

SEM images of rGO/NF, Co₃O₄/NF, and Co₃O₄/rGO/NF are shown in Fig. 3. It is obvious that the rGO coating onto NF is relatively uniform during the hydrothermal reducing process (see Fig. 3a). Figure 3b, c exhibits the top-view SEM images of Co₃O₄/NF and Co₃O₄/rGO/NF, respectively. Interconnected Co₃O₄ nanosheets can be synthesized on both NF and rGO-coated NF. This indicates that the growth of Co₃O₄ nanosheets is dependent more on the growth condition [26] rather than on the substrates. However, compared to the Co₃O₄ nanosheets on NF, the nanosheets on rGO-coated NF have a higher density and lower dimension because of the roughened NF surface due to rGO. Moreover, the corresponding high-magnification SEM images shown in the inset in Fig. 3b, c clearly show that the Co₃O₄ nanosheets on rGO-coated NF are thinner than the ones on NF. Accordingly, compared to Co₃O₄/NF, a higher specific surface area can be expected for Co₃O₄/rGO/NF. BET measurement is conducted to examine this hypothesis. Figure 3d shows the N₂ adsorption–desorption isotherms of Co₃O₄/rGO/NF and Co₃O₄/NF. Two distinct hysteresis loops can be observed with a type IV sorption behavior, indicating the presence of a typical mesoporous microstructure for Co₃O₄/rGO/NF and Co₃O₄/NF. The pore size distribution of Co₃O₄ nanosheets on rGO (see the
inset of Fig. 3d) indicates that the size of most pores is \(\sim 4-15\) nm. In contrast, the size of most pores of the \(\text{Co}_3\text{O}_4\) nanosheets on NF is 6–25 nm. The BET specific areas for \(\text{Co}_3\text{O}_4\) nanosheets on rGO and on NF are 87.8 and 67.1 m\(^2\) g\(^{-1}\), respectively. Accordingly, a higher specific capacitance can be expected for the \(\text{Co}_3\text{O}_4/\text{rGO}/\text{NF}\) structure.

To reveal further details of the microstructure of the \(\text{Co}_3\text{O}_4\) nanosheets in \(\text{Co}_3\text{O}_4/\text{rGO}/\text{NF}\), HRTEM characterization is performed. As demonstrated in Fig. 4a, the \(\text{Co}_3\text{O}_4\) nanosheets are composed of small \(\text{Co}_3\text{O}_4\) nanoparticles of size \(\sim 5-15\) nm. The lattice fringes as exhibited in Fig. 4b show an interplanar spacing of 0.243 and 0.204 nm, attributed to the (311) and (400) planes of cubic \(\text{Co}_3\text{O}_4\).
The polycrystalline structure of the obtained Co$_3$O$_4$ nanosheets is further confirmed by the selected area electron diffraction (SAED) pattern (see Fig. 4c). The homo-centric diffraction rings (from the inside to the outside) can be assigned to the (220), (311), (400), (511), and (440) planes of Co$_3$O$_4$ [29]. The elemental distribution in the Co$_3$O$_4$ nanosheets is also characterized by scanning transmission electron microscopy (STEM) (see Fig. 4d) and X-ray elemental mapping images (see Fig. 4e–g). The elemental mapping further indicates that Co$_3$O$_4$ nanosheets were synthesized successfully.

Figure 5a presents the CV data for NF, rGO/NF, Co$_3$O$_4$/NF, and Co$_3$O$_4$/rGO/NF under a scanning rate of 3 mV s$^{-1}$ and a potential range of 0.0–0.6 V. It is remarkable that the CV area of Co$_3$O$_4$/rGO/NF is evidently larger than that of Co$_3$O$_4$/NF owing to the high specific area of Co$_3$O$_4$/rGO/NF as mentioned above. The redox peaks for the Co$_3$O$_4$-containing samples originate from the conversion of different cobalt oxidation states. Here, it is worth noting that two redox peaks also emerge for NF and rGO/NF, which are attributed to the oxidized surface of NF during heat treatment of Co(OH)$_2$. However, the contribution of the surface nickel oxide and rGO is not taken into consideration in the following study because of their negligible capacities compared to the Co$_3$O$_4$-containing samples. This is verified by the calculated areal specific capacitances of 84.0, 120.7, 627.3, and 1107.5 mF cm$^{-2}$ for NF, rGO/NF, Co$_3$O$_4$/NF, and Co$_3$O$_4$/rGO/NF, respectively, as exhibited in Fig. 5b. The GCD results of Co$_3$O$_4$/NF and Co$_3$O$_4$/rGO/NF are exhibited in Fig. 5c, d with current densities of 1, 3, 5, 7, 9, and 10 A g$^{-1}$ and a potential window of 0.0–0.5 V. For each charge/discharge current density, Co$_3$O$_4$/rGO/NF exhibits a larger specific capacitance than Co$_3$O$_4$/NF. The specific capacitance of Co$_3$O$_4$/NF is \sim 1016.4, 872.3, 767.1, 707.2, 657.3, and 633.0 F g$^{-1}$ at the corresponding current density of 1–10 A g$^{-1}$. As a distinct comparison, the Co$_3$O$_4$/NF electrode exhibits specific capacitances of 520.0, 513.7, 485.8, 456.8, 444.5, and 355.5 F g$^{-1}$ at the corresponding current densities. Moreover, compared to other previously reported Co$_3$O$_4$/rGO composites with different Co$_3$O$_4$ microstructures [7, 16, 30], the Co$_3$O$_4$/rGO/NF electrode reported here also delivers superior specific capacitances especially at higher current densities. Here, it is worth noting that the specific capacitance decreases as the charge/discharge current density increases for both Co$_3$O$_4$/rGO/NF.
and Co3O4/NF. This is because of the insufficient supply of active material [31] and severe polarization [32] at higher current densities. Hence, how to improve the supercapacitive behaviors from these two aspects will be the main consideration in a future study.

To evaluate the cycling performance, the electrochemical stability of Co3O4/rGO/NF and Co3O4/rGO is tested using the GCD technique. The cycling performance of Co3O4/rGO/NF at a current density of 7 A g\(^{-1}\) is recorded over the 3000 cycles shown in Fig. 5e. It is obvious that even after 3000 cycles, the microstructure is maintained very well, showing no evident change compared to the microstructures before cycling (see Fig. 3c). It is noted that during the first cycle, there is a significant increase in the specific capacitance. Previous reports mentioned this phenomenon as an activation process [34]. However, such a strong ‘activation’ has been rarely reported and needs to be further investigated to reveal the underlying mechanism.

EIS is used to further understand the electrical properties of the related material/structural system. Figure 5f shows the Nyquist plots of Co3O4/rGO/NF and Co3O4/NF. The linear portion of the Nyquist plots in the low-frequency region corresponds to the Warburg impedance, which is related to electrolyte diffusion into the pores in the electrodes. If the impedance plot increases sharply and tends to become a vertical line, it indicates a pure capacitive behavior. In the high-frequency region, the Z‘-intercept represents the equivalent series resistance (ESR) including the ionic resistance of the electrolyte, intrinsic resistance of the substrate, and contact resistance at the interface of the active material and current collector [35]. The ESR of Co3O4/rGO/NF and Co3O4/NF is ~1.18 and 1.22 \(\Omega\), respectively (see the inset in Fig. 5f), indicating a lower solution resistance and Faradaic resistance for the Co3O4/rGO/NF architecture. In this study, the improved performance of Co3O4/rGO/NF is mainly attributed to the introduction of rGO, which not only provides effective electrolyte accessible channels, thus shortening the ion diffusion distance, but also improves the specific surface area of Co3O4 and optimizes the mesopore size distribution for facilitating an enhancement in the capacitance performance.

4 Conclusions

This work reports the effect of rGO on the interconnected Co3O4 nanosheets and the improved supercapacitive behaviors. It is found that rGO can help to optimize the
microstructures of the interconnected Co₃O₄ nanosheets, including an increased specific surface area and a more optimal mesopore size distribution, which result in the specific capacitance of the Co₃O₄/rGO/NF architecture being higher than that of the Co₃O₄/NF structure. Further, the Co₃O₄/rGO/NF structure possesses excellent cycling stability owing to the improved mechanical and electrical properties associated with the thinned Co₃O₄ nanosheets and incorporation of rGO.

Acknowledgements This work is financially supported from the National Natural Science Foundation of China (Grant Nos.: 61376068, 11304132, 11304133, and 11405144), the Specialized Research Fund of the Doctoral Program of Higher Education (Grant Nos.: 2012011120003 and 2013011120009), and the Fundamental Research Funds for the Central Universities (Grant Nos.: lzujbky-2012-36 and lzujbky-2013-30).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References
1. P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7(11), 845–854 (2008). doi:10.1038/nmat2297
2. G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41(2), 797–828 (2012). doi:10.1039/C1CS15060J
3. D. Li, Y. Gong, M. Wang, C. Pan, Preparation of sandwich-like NiCo₂O₄/rGO/NiO heterostructure on nickel foam for high performance supercapacitor electrodes. Nano-Micro Lett. 9(2), 16 (2017). doi:10.1007/s40820-016-0171-7
4. M. Kaempgen, C.K. Chan, J. Ma, Y. Cui, G. Gruner, Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett. 9(5), 1872–1876 (2009). doi:10.1021/nl9018359
5. J. Deng, L. Kang, G. Bai, Y. Li, P. Li, X. Liu, Y. Yang, F. Gao, W. Liang, Solution combustion synthesis of cobalt oxides (Co₃O₄ and Co₂O₃/CoO) nanoparticles as supercapacitor electrode materials. Electrochim. Acta 132, 127–135 (2014). doi:10.1016/j.electacta.2014.03.158
6. T. Geng, L. Zhang, H. Wang, K. Zhang, X. Zhou, Facile synthesis of porous Co₃O₄ nanoplates for supercapacitor applications. Bull. Mater. Sci. 38(5), 1171–1175 (2015). doi:10.1007/s12034-015-0997-6
7. A.N. Naveen, P. Manimaran, S. Selladurai, Cobalt oxide (Co₃O₄)/graphene nanosheets (GNS) composite prepared by novel route for supercapacitor application. J. Mater. Sci. Mater. Electron. 26(11), 9898–9900 (2015). doi:10.1007/s10854-015-3582-2
8. Z. Yang, R. Gao, N. Hu, J. Chai, Y. Cheng, L. Zhang, H. Wei, E.S.-W. Kong, Y. Zhang, The prospective two-dimensional graphene nanosheets: preparation, functionalization, and applications. Nano-Micro Lett. 4(1), 1–9 (2012). doi:10.1007/BF03353684
9. Y. Chen, X. Zhang, D. Yu, Y. Ma, High performance supercapacitors based on reduced graphene oxide in aqueous and ionic liquid electrolytes. Carbon 49(2), 573–580 (2011). doi:10.1016/j.carbon.2010.09.060
10. W.W. Liu, X.B. Yan, J.W. Lang, C. Peng, Q.J. Xue, Flexible and conductive nanocomposite electrode based on graphene sheets and cotton cloth for supercapacitor. J. Mater. Chem. 22(33), 17245–17253 (2012). doi:10.1039/c2jm32659k
11. L. Dong, C. Xu, Q. Yang, J. Fang, Y. Li, F. Kang, High-performance compressible supercapacitors based on functionally synergistic multiscale carbon composite textiles. J. Mater. Chem. A 3(8), 4729–4737 (2015). doi:10.1039/C4TA06494A
12. X. Guo, S. Qin, S. Bai, H. Yue, Y. Li, Q. Cheng, J. Li, D. He, Vertical graphene nanosheets synthesized by thermal chemical vapor deposition and the field emission properties. J. Phys. D-Apppl. Phys. 49(38), 385301 (2016). doi:10.1088/0022-3727/49/38/385301
13. K. Jost, C.R. Perez, J.K. McDonough, V. Presser, M. Heon, G. Dion, Y. Gogotsi, Carbon coated textiles for flexible energy storage. Energy Environ. Sci. 4(12), 5060–5067 (2011). doi:10.1039/c1ee02421c
14. P. Chen, Y. Yu, H. Liu, Y. Wang, Interconnected tin disulfide nanosheets grown on graphene for Li-ion storage and photocatalytic applications. ACS Appl. Mater. Interfaces 5(22), 12073–12082 (2013). doi:10.1021/am403905x
15. C. Xiang, M. Liu, M. Zhi, A. Manivannan, N. Wu, A reduced graphene oxide/Co₃O₄ composite for supercapacitor electrode. J. Power Sources 226, 65–70 (2013). doi:10.1016/j.jpowsour.2012.10.064
16. C. Yuan, Y. Long, L. Hou, J. Li, Y. Sun, X. Zhang, X. Lu, S. Xiong, X.W.D. Lou, Flexible hybrid paper made of monolayer Co₃O₄ microsphere arrays on rGO/CNTs and their application in electrochemical capacitors. Adv. Funct. Mater. 22(12), 2565–2566 (2012). doi:10.1002/adfm.201102860
17. T.T. Nguyen, V.H. Nguyen, R.K. Deviwasigamani, D. Kharismandei, Y. Iwai, J.-J. Shim, Facile synthesis of cobalt oxide/ reduced graphene oxide composites for electrochemical capacitor and sensor applications. Solid State Sci. 53, 71–77 (2016). doi:10.1016/j.solidstatesciences.2016.01.006
18. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide. ACS Nano 4(8), 4806–4814 (2010). doi:10.1021/nn1006368
19. Y. Sun, W. Zhang, D. Li, L. Gao, C. Hou, Y. Zhang, Y. Liu, Facile synthesis of MnOₓ/rGO/Ni composite foam with excellent pseudocapacitive behavior for supercapacitors. J. Alloys Compd. 797–828 (2015). doi:10.1016/j.jallcom.2015.07.212
20. Y. Zou, I.A. Kinloch, R.A.W. Dryfe, Mesoporous vertical Co₃O₄ nanosheet arrays on nitrogen-doped graphene foam with enhanced charge-storage performance. ACS Appl. Mater. Interfaces 7(41), 22831–22838 (2015). doi:10.1021/acsami.5b05095
21. J.-H. Zhong, A.-L. Wang, G.-R. Li, J.-W. Wang, Y.-N. Ou, Y.-X. Tong, Co₃O₄/Ni(OH)₂ composite mesoporous nanosheet networks as a promising electrode for supercapacitor applications. J. Mater. Chem. 22(12), 5656–5665 (2012). doi:10.1039/c2jm15863a
22. X.-C. Dong, H. Xu, X.-W. Wang, Y.-X. Huang, M.B. Chan-Park, H. Zhang, L.-H. Wang, W. Huang, P. Chen, 3D Graphene–cobalt oxide electrode for high-performance supercapacitor and enymeless glucose detection. ACS Nano 6, 3206–3213 (2012). doi:10.1021/nn300097q
23. L. Wang, X. Wang, X. Xiao, F. Xu, Y. Sun, Z. Li, Reduced graphene oxide/nickel cobaltite nanoflake composites for high specific capacitance supercapacitors. Electrochim. Acta 111, 937–945 (2013). doi:10.1016/j.electacta.2013.08.094
24. L. Athouël, F. Moser, R. Dugas, O. Crosnier, D. Bélanger, T. Brousse, Variation of the MnO₂ birnessite structure upon charge/discharge in an electrochemical supercapacitor electrode in aqueous Na₂SO₄ electrolyte. J. Phys. Chem. C 112(18), 7270–7277 (2008). doi:10.1021/jp0773029
25. B. Varghese, C.H. Teo, Y. Zhu, M.V. Reddy, B.V.R. Chowdari, A.T.S. Wee, V.B.C. Tan, C.T. Lim, C.H. Sow, Co3O4 nanostructures with different morphologies and their field-emission properties. Adv. Funct. Mater. 17(12), 1932–1939 (2007). doi: 10.1002/adfm.200700038

26. A.D. Jagadale, V.S. Kumbhar, R.N. Bulakhe, C.D. Lokhande, Influence of electrodeposition modes on the supercapacitive performance of Co3O4 electrodes. Energy 64, 234–241 (2014). doi:10.1016/j.energy.2013.10.016

27. C. Yuan, L. Yang, L. Hou, L. Shen, X. Zhang, X.W. Lou, Growth of ultrathin mesoporous Co3O4 nanosheet arrays on Ni foam for high-performance electrochemical capacitors. Energy Environ. Sci. 5(7), 7883–7887 (2012). doi:10.1039/c2ee21745g

28. W. Hong, J. Wang, Z. Li, S. Yang, Fabrication of Co3O4@Co-Ni sulfides core/shell nanowire arrays as binder-free electrode for electrochemical energy storage. Energy 93, 435–441 (2015). doi:10.1016/j.energy.2015.09.053

29. S. Min, C. Zhao, G. Chen, Z. Zhang, X. Qian, One-pot hydrothermal synthesis of 3D flower like rGO/Co3O4/Ni(OH)2 composite film on nickel foam for high-performance supercapacitors. Electrochim. Acta 135, 336–344 (2014). doi:10.1016/j.electacta.2014.05.032

30. C.Z. Yuan, L. Zhang, L. Hou, G. Pang, W.-C. Oh, One-step hydrothermal fabrication of strongly coupled Co3O4 nanosheets–reduced graphene oxide for electrochemical capacitors. RSC Adv. 4(28), 14408–14413 (2014). doi:10.1039/c4ra00762j

31. Y.G. Zhu, Y. Wang, Y. Shi, Z.X. Huang, L. Fu, H.Y. Yang, Phase transformation induced capacitance activation for 3D graphene-CoO nanorod pseudocapacitor. Adv. Energy Mater. 4(9), 1079–1098 (2014). doi: 10.1002/aenm.201301788

32. B. Wang, X. He, H. Li, Q. Liu, J. Wang, L. Yu, H. Yan, Z. Li, P. Wang, Optimizing the charge transfer process by designing Co3O4@PPy@MnO2 ternary core-shell composite. J. Mater. Chem. A 2(32), 12968–12973 (2014). doi:10.1039/C4TA02380C

33. M. Jing, Y. Yang, Y. Zhu, H. Hou, Z. Wu, X. Ji, An asymmetric ultracapacitors utilizing γ-Co(OH)2/Co3O4 flakes assisted by electrochemically alternating voltage. Electrochim. Acta 141, 234–240 (2014). doi:10.1016/j.electacta.2014.07.075

34. X. Xia, J. Tu, Y. Zhang, X. Wang, C. Gu, X.-B. Zhao, H.J. Fan, High-quality metal oxide core/shell nanowire arrays on conductive substrates for electrochemical energy storage. ACS Nano 6(6), 5531–5538 (2012). doi:10.1021/nn301454q

35. X. Chen, F. Zhang, Z. Yang, S. Huang, One-pot hydrothermal synthesis of reduced graphene oxide/carbon nanotube/γ-Ni(OH)2 composites for high performance electrochemical supercapacitor. J. Power Sources 243, 555–561 (2013). doi:10.1016/j.jpowsour.2013.04.076