Allantoin, a stress-related purine metabolite, can activate jasmonate signaling in a MYC2-regulated and abscisic acid-dependent manner

Hiroshi Takagi, Yasuhiro Ishiga, Shunsuke Watanabe, Tomokazu Konishi, Mayumi Egusa, Nobuhiro Akiyoshi, Takakazu Matsuura, Izumi C. Mori, Takashi Hirayama, Hironori Kaminaka, Hiroshi Shimada, and Atsushi Sakamoto

The following Supplementary Data are available for this article:

Methods S1. Quantification of JA and JA-Ile; Accession numbers.
Figure S1. The purine catabolism pathway and metabolites derived therefrom.
Figure S2. Hierarchical tree graph of over-represented GO terms for genes with significantly increased expression in the aln-1 mutant.
Figure S3. Hierarchical tree graph of over-represented GO terms for genes with significantly reduced expression in the aln-1 mutant.
Figure S4. Basal level expression of PR-1 as a canonical SA marker.
Figure S5. Characterization of the aln-1 jar1-1 double mutant.
Figure S6. Reduced response to MeJA of anthocyanin accumulation in the aah mutant.
Figure S7. Characterization of the aln-1 bglu18 double mutant.
Table S1. Primers used in this study.
Table S2. LC-ESI-MS/MS parameters for jasmonate determination.
Table S3. Genes with significantly increased expression in the aln-1 mutant.
Table S4. Genes with significantly reduced expression in the aln-1 mutant.
Supplementary Methods S1

Quantification of jasmonic acid (JA) and JA-Ile

Extraction and quantification of JA and JA-Ile were performed following the method of Preston et al. (2009) with minor modifications. The stable isotope-labeled compounds used as internal standards were: [2H2]JA (Tokyo Chemical industry Co., Ltd., Tokyo, Japan) and [13C6]JA-Ile, which was synthesized with [13C6]Ile (Cambridge Isotope Laboratories, Andover, MA, USA) as described in Jikumaru et al. (2004). Aerial parts (500 mg) from 2-week-old seedlings grown aseptically on solid half-strength MS medium were frozen in liquid N2, ground, and extracted with 80% (v/v) methanol containing 1% (v/v) acetic acid at 4°C for 1 h. After removal of cell debris by centrifugation, the supernatants were condensed and dried in vacuo, and the resultant residues were extracted twice with methanol. The extracts were evaporated to dryness and resuspended with 80% methanol containing 1% acetic acid and internal standards, which were again evaporated and then extracted with water acidified with 1% (v/v) acetic acid. The extracts were loaded onto pre-equilibrated Oasis HLB column cartridge (Waters Corporation, Milford, MA, USA). After washed with water acidified with 1% acetic acid, the column was eluted with 80% (v/v) acetonitrile containing 1% (v/v) acetic acid. The eluted samples were evaporated to obtain extracts in water acidified with 1% acetic acid, and loaded onto a pre-equilibrated Oasis MCX column cartridge (Waters). The cartridge was washed with water acidified with 1% acetic acid and eluted with 80% acetonitrile containing 1% acetic acid. The eluate was loaded onto pre-equilibrated Oasis WAX column cartridges (Waters) followed by washing, first with water acidified 1% acetic acid and then with 80% acetonitrile, and the fraction containing JA and JA-Ile was eluted with 80% acetonitrile containing 1% acetic acid. The obtained fraction was dried and reconstituted in ultra-pure water acidified with 1% (v/v) acetic acid for quantification of JA and JA-Ile by liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) on an Agilent 6410 Triple Quadrupole system with a ZORBAX Eclipse XDB-C18 column and MassHunter software version B.01.02 (Agilent Technology, Palo Alto, CA, USA). The LC column was eluted with a binary solvent system of 0.01% (v/v) acetic acid in water (solvent A) and 0.05% (v/v) acetic acid in acetonitrile (solvent B) using a linear gradient of solvent B in solvent A, from 3% to 50%, in 20 min at the flow rate of 0.4 ml min⁻¹. The MS/MS operation parameters are summarized in Supplementary Table S2.
Arabidopsis Genome Initiative numbers for the genes mentioned in this article are as follows:

AAH, At4g20070; *ABA2*, At1g52340; *ACT2*, At3g18780; *ALN*, At4g04955; *ANAC019*, At1g52890; *ANAC055*, At3g15500; *ANAC072*, At4g27410; *AOC1*, At3g25760; *AOS*, At5g42650; *BGLU18*, At1g52400; *BSMT1*, At3g11480; *CYP94B3*, At3g48520; *ERF1*, At3g23240; *ICS1*, At1g74710; *JAM1*, At2g46510; *JAR1*, At2g46370; *JAZ1*, At1g19180; *JAZ3*, At3g17860; *JAZ5*, At1g17380; *JAZ6*, At1g72450; *JAZ7*, At2g34600; *JAZ10*, At5g13220; *JAZ12*, At5g20900; *LOX2*, At3g45140; *LOX3*, At1g17420; *LOX4*, At1g72520; *MYC2*, At1g32640; *OPR3*, At2g06050; *ORA59*, At1g06160; *PDF1.2a*, At5g44420; *PDF1.2b*, At2g26020; *PR-1*, At2g14610; *SAGT1*, At2g43820; *VSP1*, At5g24780; and *XDH1*, At4g34890.
Supplementary Figure Legends

Figure S1. The purine catabolism pathway and metabolites derived therefrom.
The pathway is schematically illustrated starting from the common intermediate xanthine, at which all purine nucleotides converge when they are subjected to degradation. The abbreviated names of the genes encoding the enzymes that catalyze each step are shown in italics and knockout mutants used in this study are indicated in parentheses under the gene names: XDH, xanthine dehydrogenase; UOX, urate oxidase; AS, allantoin synthase; ALN, allantoinase (allantoin amidohydrolase); AAH, allantoate amidohydrolase; UGAH, ureidoglycine aminohydrolase; UAH, ureidoglycolate amidohydrolase.

Figure S2. Hierarchical tree graph of over-represented GO terms for genes with significantly increased expression in the aln-1 mutant.
A total of 47 enriched GO terms under Biological Process were found for 211 genes with significantly increased expression (≥ 3-fold changes, Supplementary Table S3) using the BioMaps tool of VirtualPlant version 1.3 (Katari et al., 2010; http://virtualplant.bio.nyu.edu/cgi-bin/vpweb/) in the default-setting mode (Fisher’s exact test with false discovery rate correction, \(P < 0.01 \)). Each box shows the name of the GO term and, where appropriate, the \(P \) value (< 0.01) for the significance of enrichment. The \(P \) values are also indicated by the frame color of each box according to the gradient scale. The rank direction of the graph runs from top to bottom.

Figure S3. Hierarchical tree graph of over-represented GO terms for genes with significantly reduced expression in the aln-1 mutant.
A total of 33 enriched GO terms under Biological Process were found for 113 genes with significantly reduced expression (≥ 3-fold changes, Supplementary Table S4) using the BioMaps tool of VirtualPlant version 1.3 (Katari et al., 2010; http://virtualplant.bio.nyu.edu/cgi-bin/vpweb/) in the default-setting mode (Fisher’s exact test with false discovery rate correction, \(P < 0.01 \)). Each box shows the name of the GO term and, where appropriate, the \(P \) value (< 0.01) for the significance of enrichment. The \(P \) values are also indicated by the frame color of each box according to the gradient scale. The rank direction of the graph runs from top to bottom.

Figure S4. Basal level expression of PR-1 as a canonical SA marker.
RNA was extracted from aerial parts of 2-week-old seedlings of WT and aln-1 mutants grown under normal aseptic conditions. Relative mRNA levels were determined by real-time reverse
transcription-quantitative PCR using ACTIN2 expression as reference and presented as values relative to the WT level. The sequences of primers are listed in Supplementary Table S1. Data are means ± SEM from three independent experiments (*P < 0.05 by Student’s t-test comparison to the WT level).

Figure S5. Characterization of the aln-1 jar1-1 double mutant.
The homozygous mutants of aln-1 (SALK_000325; Yang and Han, 2004; Watanabe et al., 2014) and jar1-1 (CS8072; Staswick et al., 1992) were crossed to obtain the double mutant aln-1 jar1-1. (A) Diagram of the T-DNA insertion in the ALN gene in the aln-1 mutant. Arrows denote PCR primers. (B) PCR-based genotyping of the double mutant using primers specific to ALN (F1 and R1) and the left border sequence of T-DNA (LBa1). (C) Diagram of the JAR1 gene structure and the confirmation of the jar1-1 mutation in the double mutant. The nucleotide sequence of the wild-type JAR1 allele (a) from TAIR (At2g46370; https://www.arabidopsis.org/) was compared to that of the double mutant, as determined by dideoxy sequencing with primers F2 (b) and R2 (c), to confirm the single nucleotide missense mutation that occurs in exon 3 (Staswick et al., 2002). The sequences of primers are listed in Supplementary Table S1. (D) Typical root growth of 8-day-old seedlings of WT, jar1-1, and aln-1 jar1-1 genotypes in the presence of 10 µM methyl jasmonate (MeJA). Note that the root growth of the jar1-1 mutant is moderately insensitive to MeJA (Staswick et al., 1992, 2002). Horizontal bars indicate a scale of 10 mm in length (white) and the position of a primary root tip (yellow).

Figure S6. Reduced response to MeJA of anthocyanin accumulation in the aah mutant.
Sterile seedlings of WT and the aah mutant were grown for 8 days on standard medium supplemented with 10 µM MeJA and examined for anthocyanin accumulation as described in the main text. FW, fresh weight. Data are means ± SEM (n = 8; *P < 0.001 by Student’s t-test comparison to the WT levels).

Figure S7. Characterization of the aln-1 bglu18 double mutant.
The homozygous mutants of aln-1 (SALK_000325; Yang and Han, 2004; Watanabe et al., 2014) and bglu18 (SALK_075731C; Ogasawara et al., 2009) were crossed to obtain the double mutant aln-1 bglu18. (A) Diagram of the T-DNA insertion in the BGLU18 gene in the bglu18 mutant. Arrows denote PCR primers. (B) PCR-based genotyping of the double mutant using primers specific to ALN (F1 and R4; see Supplementary Fig. S5), BGLU18 (F3 and R3), and the left border sequence of T-DNA (LBa1). The sequences of primers are listed in Supplementary Table S1.
Supplementary Table Legends

Table S1. Primers used in this study.

Arabidopsis thaliana gene identifier code assigned by the Arabidopsis Genome Initiatives (AGI; https://www.arabidopsis.org/portals/nomenclature/).

Gene symbol as provided by The Arabidopsis Information Resource (TAIR; release 10; https://www.arabidopsis.org/) except for T-DNA of *Agrobacterium tumefaciens*.

Table S2. LC-ESI-MS/MS parameters for jasmonate determination.

Table S3. Genes with significantly increased expression in the *aln-1* mutant.

Listed are those whose changes in transcript levels increased by equal to or greater than 3-fold, with the statistical significance level of 0.001 by a two-way analysis of variance (ANOVA). These genes were selected from the revised microarray data (Gene Expression Omnibus accession number GSE73841) that had been parametrically renormalized using the SuperNORM data service (Skylight Biotech Inc, Akita, Japan), according to the three-parameter lognormal distribution method (Konishi, 2004).

Arabidopsis thaliana gene identifier code assigned by the Arabidopsis Genome Initiatives (AGI; https://www.arabidopsis.org/portals/nomenclature/).

Mean of two independent biological experiments (*aln-1* versus wild-type).

Gene symbol and description as provided by The Arabidopsis Information Resource (TAIR; release 10; https://www.arabidopsis.org/).

P-value determined by a two-way ANOVA.

Table S4. Genes with significantly reduced expression in the *aln-1* mutant.

Listed are those whose changes in transcript levels decreased by equal to or greater than 3-fold with the statistical significance level of 0.001 by a two-way ANOVA. These genes were selected from the revised microarray data (Gene Expression Omnibus accession number GSE73841) that had been parametrically renormalized using the SuperNORM data service (Skylight Biotech Inc, Akita, Japan), according to the three-parameter lognormal distribution method (Konishi, 2004).

Arabidopsis thaliana gene identifier code assigned by the Arabidopsis Genome Initiatives (AGI; https://www.arabidopsis.org/portals/nomenclature/).

Mean of two independent biological experiments (*aln-1* versus wild-type).

Gene symbol and description as provided by The Arabidopsis Information Resource (TAIR; release 10; https://www.arabidopsis.org/).

P-value determined by a two-way ANOVA.
Supplementary References

Jikumaru Y, Asami T, Seto H, et al. 2004. Preparation and biological activity of molecular probes to identify and analyze jasmonic acid-binding proteins. Bioscience, Biotechnology, and Biochemistry 68, 1461–1466.

Katari MS, Nowicki SD, Aceituno FF, et al. 2010. VirtualPlant: a software platform to support systems biology research. Plant Physiology 152, 500–515.

Konishi T. 2004. Three-parameter lognormal distribution ubiquitously found in cDNA microarray data and its application to parametric data treatment. BMC Bioinformatics 5, 5.

Ogasawara K, Yamada K, Christeller JT, Kondo M, Hatsugai N, Hara-Nishimura I, Nishimura M. 2009. Constitutive and inducible ER bodies of Arabidopsis thaliana accumulate distinct ß-glucosidases. Plant and Cell Physiology 50, 480–488.

Preston J, Tatematsu K, Kanno Y, Hobo T, Kimura M, Jikumaru Y, Yano R, Kamiya Y, Nambara E. 2009. Temporal expression patterns of hormone metabolism genes during imbibition of Arabidopsis thaliana seeds: A comparative study on dormant and non-dormant accessions. Plant and Cell Physiology 50, 1786–1800.

Staswick PE, Su W, Howell SH. 1992. Methyl jasmonate inhibition of root growth and induction of a leaf protein are decreased in an Arabidopsis thaliana mutant. Proceedings of the National Academy of Sciences of the United States of America 89, 6837–6840.

Staswick PE, Tiryaki I, Rowe ML. 2002. Jasmonate response locus JAR1 and several related Arabidopsis genes encode enzymes of the firefly luciferase superfamily that show activity on jasmonic, salicylic, and indole-3-acetic acids in an assay for adenylation. The Plant Cell 14, 1405–1415.

Watanabe S, Matsumoto M, Hakomori Y, Takagi H, Shimada H, Sakamoto A. 2014. The purine metabolite allantoin enhances abiotic stress tolerance through synergistic activation of abscisic acid metabolism. Plant, Cell & Environment 37, 1022–1036.

Yang J, Han K-H. 2004. Functional characterization of allantoinase genes from Arabidopsis and a nonureide-type legume black locust. Plant Physiology 134, 1039–1049.
Figure S1. The purine catabolism pathway and metabolites derived therefrom.
The pathway is schematically illustrated starting from the common intermediate xanthine, at which all purine nucleotides converge when they are subjected to degradation. The abbreviated names of the genes encoding the enzymes that catalyze each step are shown in italics and knockout mutants used in this study are indicated in parentheses under the gene names: XDH, xanthine dehydrogenase; UOX, urate oxidase; AS, allantoin synthase; ALN, allantoinase (allantoin amidohydrolase); AAH, allantoate amidohydrolase; UGAH, ureidoglycine aminohydrolase; UAH, ureidoglycolate amidohydrolase.
Figure S2. Hierarchical tree graph of over-represented GO terms for genes with significantly increased expression in the aln-1 mutant.

A total of 47 enriched GO terms under Biological Process were found for 211 genes with significantly increased expression (≥3-fold changes, Supplementary Table S3) using the BioMaps tool of VirtualPlant version 1.3 (Katari et al., 2010; http://virtualplant.bio.nyu.edu/cgi-bin/vpweb/) in the default-setting mode (Fisher’s exact test with false discovery rate correction, \(P < 0.01 \)). Each box shows the name of the GO term and, where appropriate, the \(P \) value (< 0.01) for the significance of enrichment. The \(P \) values are also indicated by the frame color of each box according to the gradient scale. The rank direction of the graph runs from top to bottom.
Figure S3. Hierarchical tree graph of over-represented GO terms for genes with significantly reduced expression in the aln-1 mutant.

A total of 33 enriched GO terms under Biological Process were found for 113 genes with significantly reduced expression (≥ 3-fold changes, Supplementary Table S4) using the BioMaps tool of VirtualPlant version 1.3 (Katari et al., 2010; http://virtualplant.bio.nyu.edu/cgi-bin/vpweb/) in the default-setting mode (Fisher’s exact test with false discovery rate correction, P < 0.01). Each box shows the name of the GO term and, where appropriate, the P-value (< 0.01) for the significance of enrichment. The P-values are also indicated by the frame color of each box according to the gradient scale. The rank direction of the graph runs from top to bottom.
Figure S4. Basal level expression of PR-1 as a canonical SA marker.
RNA was extracted from aerial parts of 2-week-old seedlings of WT and aln-1 mutants grown under normal aseptic conditions. Relative mRNA levels were determined by real-time reverse transcription-quantitative PCR using ACTIN2 expression as reference and presented as values relative to the WT level. The sequences of primers are listed in Supplementary Table S1. Data are means ± SEM from three independent experiments (*P < 0.05 by Student’s t-test comparison to the WT level).
Figure S5. Characterization of the *aln-1 jar1-1* double mutant.
The homozygous mutants of *aln-1* (SALK_000325; Yang and Han, 2004; Watanabe *et al.*, 2014) and *jar1-1* (CS8072; Staswick *et al.*, 1992) were crossed to obtain the double mutant *aln-1 jar1-1*. (A) Diagram of the T-DNA insertion in the *ALN* gene in the *aln-1* mutant. Arrows denote PCR primers. (B) PCR-based genotyping of the double mutant using primers specific to *ALN* (F1 and R1) and the left border sequence of T-DNA (LBA1). (C) Diagram of the *JAR1* gene structure and the confirmation of the *jar1-1* mutation in the double mutant. The nucleotide sequence of the wild-type *JAR1* allele (a) from TAIR (At2g46370; https://www.arabidopsis.org/) was compared to that of the double mutant, as determined by dideoxy sequencing with primers F2 (b) and R2 (c), to confirm the single nucleotide missense mutation that occurs in exon 3 (Staswick *et al.*, 2002). The sequences of primers are listed in Supplementary Table S1. (D) Typical root growth of 8-day-old seedlings of WT, *jar1-1*, and *aln-1 jar1-1* genotypes in the presence of 10 μM methyl jasmonate (MeJA). Note that the root growth of the *jar1-1* mutant is moderately insensitive to MeJA (Staswick *et al.*, 1992, 2002). Horizontal bars indicate a scale of 10 mm in length (white) and the position of a primary root tip (yellow).
Figure S6. Reduced response to MeJA of anthocyanin accumulation in the aah mutant.
Sterile seedlings of WT and the aah mutant were grown for 8 days on standard medium supplemented with 10 μM MeJA and examined for anthocyanin accumulation as described in the main text. FW, fresh weight. Data are means ± SEM (n = 8; *P < 0.001 by Student’s t-test comparison to the WT levels).
Figure S7. Characterization of the *aln-1 bglu18* double mutant.
The homozygous mutants of *aln-1* (SALK_000325; Yang and Han, 2004; Watanabe *et al.*, 2014) and *bglu18* (SALK_075731C; Ogasawara *et al.*, 2009) were crossed to obtain the double mutant *aln-1 bglu18*. (A) Diagram of the T-DNA insertion in the *BGLU18* gene in the *bglu18* mutant. Arrows denote PCR primers. (B) PCR-based genotyping of the double mutant using primers specific to *ALN* (F1 and R4; see Supplementary Fig. S5), *BGLU18* (F3 and R3), and the left border sequence of T-DNA (LBa1). The sequences of primers are listed in Supplementary Table S1.
Table S1. Primers used in this study

AGI\(^a\)	Gene symbol\(^b\)	Direction	Sequence (Designation)	Use
At4g04955	ALN	Forward	5'-CCTTTATGTGCCCTTCAGGA-3' (F1)	PCR genotyping
		Reverse	5'-G GCCATACCCACCAAGA-3' (R1)	PCR genotyping
		Reverse	5'-GGTTCCCAACCAAGATCTGC-3' (R4)	PCR genotyping
At1g52400	BGLU18	Forward	5'-GGCGACCAGAGTTATCAT-3' (F3)	PCR genotyping
		Reverse	5'-GAATACCCATTGGCTCCCAAC-3' (R3)	PCR genotyping
At2g46370	JAR1	Forward	5'-CGCTACTGACCCTCGAAGAGCTTT-3' (F2)	DNA sequencing
		Reverse	5'-CAACATGTTAAGGCATAGTCG-3' (R2)	DNA sequencing
At1g17420	LOX3	Forward	5'-TGAACATTGAGAGAGTCAAGACTTTT-3'	RT-qPCR
		Reverse	5'-GAATACCATTTGCCCGAAAC-3'	RT-qPCR
At1g72520	LOX4	Forward	5'-TCGCTACTTGGTGAATCCATATCA-3'	RT-qPCR
		Reverse	5'-TGCTCATTCGAAGCCATCATATT-3'	RT-qPCR
At5g42650	AOS	Forward	5'-GGTGCGAGGTTGGTTTGTGA-3'	RT-qPCR
		Reverse	5'-GCACGTACCAACCTCAATAC-3'	RT-qPCR
At2g06050	OPR3	Forward	5'-ACGGACACACTCCGGCGGTTTTT-3'	RT-qPCR
		Reverse	5'-CCTGAACCTGCTCCAAACT-3'	RT-qPCR
At1g32640	MYC2	Forward	5'-TGCTCTACCATGTAATGCTTTTA-3'	RT-qPCR
		Reverse	5'-TGCTCTACCATGTAATGCTTTTA-3'	RT-qPCR
At3g17860	JAZ3	Forward	5'-TTTCTACCATGTAATGCTTTTA-3'	RT-qPCR
		Reverse	5'-TAGCTACTTGGCAGAATCTAGA-3'	RT-qPCR
At5g13220	JAZ10	Forward	5'-AGCTCTTTGGCCAGAATCTAGA-3'	RT-qPCR
		Reverse	5'-AGATGGCTACGATCGATCGA-3'	RT-qPCR
At2g14610	PR-1	Forward	5'-CGTCTTTTGGTGAAGTTGCTTCCTCAGA-3'	RT-qPCR
		Reverse	5'-TGCTCTTGGTGAACCTTTCGTA-3'	RT-qPCR
At5g44420	PDF1.2a	Forward	5'-TTTCTTTCTTGGTGAAGTTGCTTCCTCAGA-3'	RT-qPCR
		Reverse	5'-TTTCTTTCTTGGTGAAGTTGCTTCCTCAGA-3'	RT-qPCR
At3g23240	ERF1	Forward	5'-CGATCTCCATACCGAAACAGCAG-3'	RT-qPCR
		Reverse	5'-CGATCTCCATACCGAAACAGCAG-3'	RT-qPCR
At3g18780	ACTIN2	Forward	5'-ACCCTATATTGTCAAGAACCAC-3'	RT-qPCR
		Reverse	5'-ACCCTATATTGTCAAGAACCAC-3'	RT-qPCR

\(^a\) *Arabidopsis thaliana* gene identifier code assigned by the Arabidopsis Genome Initiatives (AGI; https://www.arabidopsis.org/portals/nomenclature/).

\(^b\) Gene symbol as provided by The Arabidopsis Information Resource (TAIR; release 10; https://www.arabidopsis.org/) except for T-DNA of *Agrobacterium tumefaciens*.

\(^_\) T-DNA: 5'-TGGTTACCTGATGGGCTCCCATG-3' (LBa1) | PCR genotyping
Table S2. LC-ESI-MS/MS parameters for jasmonate determination

Analyte	Retention time on LC (min)	ESI mode	[M–H]⁻⁻ (m/z)	Transition ion (m/z)	Collision energy (eV)	Fragmentor voltage (V)
JA	14.4	negative	209	59	15	135
[²H₂]JA	14.4	negative	211	59	15	135
JA-Ile	18.0	negative	322.0	130	14	140
[¹³C₆]JA-Ile	18.0	negative	328.4	136.2	14	140
Affymetrix probe ID	AGI*	Fold change	Gene symbol and description	P-value		
---------------------	------	-------------	-----------------------------	---------		
At5g47990		3.17	CYP705A5, THAD, THAD1, cytochrome P450, family 705, subfamily A, polypeptide 5	1.331E-06		
At5g46520		3.04	CYP94B3, cytochrome P450, family 94, subfamily B, polypeptide 3	1.282E-08		
At3g26920		1.80	AT1A2, Protein of unknown function (DUF677)	1.411E-22		
At2g31360		1.67	RAP2.6, related to AP2 6	1.831E-14		
At2g38240		1.69	2-oxoglutamate (2OG) and Fe(II)-dependent oxygenase superfamily protein	3.205E-09		
At3g48480		1.46	FATM, farnesoid acid carboxyl-O-methyltransferase	1.956E-21		
At2g23830		1.34	MD-2-related lipid recognition domain-containing protein	3.712E-16		
At1g25960		1.26	Protein of unknown function (DUF626)	6.221E-08		
At5g08880		1.20	Arginase/deacetylase superfamily protein	2.889E-26		
At1g62570		1.18	FMO GS-OX4, flavin-monooxygenase glucosinolate S-oxygenase 4	6.567E-13		
At5g45500		1.14	RNI-like superfamily protein	2.861E-06		
At5g63450		1.14	CYTP451, cytochrome P450, family 94, subfamily B, polypeptide 1	5.902E-14		
At2g05050		1.04	UBO11, ubiquitin 11	2.298E-25		
At3g03500		1.06	UGT78D1, UDP-glucosyl transferase 78D1	1.783E-21		
At3g24440		0.95	ATG5STU6, GST24, GSTU6, glutathione S-transferase tau 6	1.447E-09		
At2g23710		0.92	Late embryogenesis abundant protein, group 6	2.610E-14		
At3g13580		0.90	CXC750, ECSI, ECSI	5.196E-08		
At5g38000		0.89	Zinc-binding dehydrogenase family protein	5.939E-04		
At3g46660		0.87	UGT76E12, UDP-glucosyl transferase 76E12	4.360E-12		
At4g20840		0.82	Putative endonuclease or glycosyl hydrolase	6.565E-10		
At3g65280		0.81	GCL1, OCR2-like 1	1.076E-14		
At2g34600		0.81	JAZ7, TIFY5B, jasmonate-zim-domain protein 7	4.125E-16		
At2g08400		0.75	unknown protein; FUNCTIONS IN: molecular_function unknown; INVOLVED IN: N-terminal protein	3.573E-05		

6.812E-24 LOCATED IN: endomembrane system; EXPRESSED IN: leaf apex, leaf whorl, male gametophyte, flower, leaf; EXPRESSED DURING: LP.06 six leaves visible, LP.04 four leaves visible, LP.10 ten leaves visible, petal differentiation and expansion stage, LP.08 eight leaves visible; BEST Arabidopsis thaliana protein match is: unknown protein (TAIR:At5G64820.1); Has 24 Blast hits to 24 proteins in 6 species: Arabidopsis - 0; Bacteria - 0; Fungi - 0; Plants - 4; Viruses - 0; Other Eukaryotes - 0 (source: NCBI BLINK).

9.010E-16 LOCATED IN: endomembrane system; EXPRESSED IN: leaf apex, leaf whorl, male gametophyte, flower, leaf; EXPRESSED DURING: LP.06 six leaves visible, LP.04 four leaves visible, LP.10 ten leaves visible, petal differentiation and expansion stage, LP.08 eight leaves visible; BEST Arabidopsis thaliana protein match is: unknown protein (TAIR:At2G01300.1); Has 71 Blast hits to 71 proteins in 13 species: Arabidopsis - 0; Bacteria - 0; Fungi - 0; Plants - 69; Viruses - 0; Other Eukaryotes - 0 (source: NCBI BLINK).

2.148E-11 LOCATED IN: endomembrane system; EXPRESSED IN: leaf apex, leaf whorl, male gametophyte, flower, leaf; EXPRESSED DURING: LP.06 six leaves visible, LP.04 four leaves visible, LP.10 ten leaves visible, petal differentiation and expansion stage, LP.08 eight leaves visible; BEST Arabidopsis thaliana protein match is: unknown protein (TAIR:At2G01300.1); Has 71 Blast hits to 71 proteins in 13 species: Arabidopsis - 0; Bacteria - 0; Fungi - 0; Plants - 69; Viruses - 0; Other Eukaryotes - 0 (source: NCBI BLINK).
Table S3 continued

Gene ID/Name	Description	FDR	Fold Change	
257638_at	245651_s_at	5.21	TPX1, thioredoxin-dependent peroxidase 1	4.16E-11
261037_at	245120_s_at	5.19	LOX3, lipoxygenase 3	1.737E-22
248337_at	245823_at	5.11	COR78, LTI140, LTI78, RD29A, low-temperature-responsive protein 78 (LTI78)	1.912E-13
257638_at	245651_s_at	5.06	ATP5F1, TPS-CIN, terpene synthase-like sequence-1, 1,8-cineole	3.374E-19
266799_at	245384_s_at	5.06	ATP5F2, PSK2, phytosulfokine 2 precursor	3.091E-09
262226_at	245384_s_at	4.94	Protein of unknown function (DFU58)	4.589E-07
249971_at	245119_s_at	4.92	Eukaryotic aspartyl protease family protein	3.110E-16
256324_at	245119_s_at	4.87	MATE efflux family protein	1.026E-06
249101_at	245384_s_at	4.74	Serine protease inhibitor, potato inhibitor I-type family protein	1.325E-06
250292_at	245384_s_at	4.73	JAS1, JAZ10, TFY9, jasmonate-zim-domain protein 10	5.410E-15
255527_at	24402360_s_at	4.67	Protein of unknown function, DUF538	5.697E-16
260696_at	245119_s_at	4.64	ATBETAfuR7CU4, VAC-INV, Glycosyl hydrolases family protein	1.631E-20
251332_at	24408170_s_at	4.61	Inositol 1,3,4-trisphosphate 5/6 kinase family protein	9.323E-16
264146_at	245119_s_at	4.58	CER1, Fatty acid hydroxylase superfamily	1.358E-10
252377_at	245119_s_at	4.58	Major facilitator superfamily protein	9.941E-12
251023_at	24502170_s_at	4.56	Transmembrane amino acid transporter family protein	2.740E-06
260012_at	245119_s_at	4.56	unknown protein; BEST Arabidopsis thaliana protein match is: unknown protein (TAIR:AT1G68760.1); Has 13 Blast hits to 13 proteins in 2 species: Arabidopsis - 0; Bacteria - 0; Metazoa - 0; Fungi - 0; Plants - 13; Viruses - 0; Other Eukaryotes - 0 (source: NCBI BLink).	1.160E-12

LOCATED IN: endomembrane system; **EXPRESSED IN:** 21 plant structures; **EXPRESSED DURING:** 13 growth stages; **BEST Arabidopsis thaliana protein match is:** unknown protein (TAIR:AT4G26130.1); Has 3020 Blast hits to 17322 proteins in 780 species: Arabidopsis - 22; Bacteria - 1396; Metazoa - 17338; Fungi - 3422; Plants - 5037; Viruses - 0; Other Eukaryotes - 2996 (source: NCBI BLink).
Table S3 (continued)

Accession	Description	E-value
At5g55790	unknown protein; BEST Arabidopsis thaliana protein match is: unknown protein (TAIR:AT1G54563.1); Has 1807 Blast hits to 1807 proteins in 277 species: Archae - 0; Bacteria - 0; Metazoa - 736; Fungi - 347; Plants - 385; Viruses - 0; Other Eukaryotes - 339 (source: NCBI BLiNK).	3.80
At5g67300	FYVE domain-containing protein 1	3.79
At2g32510	MAPKKK17	3.78
At3g58350	ATTKS-CIN, TPS-CIN, TPS-CIN, terpene synthase-like sequence-1,8-cineole	3.77
At2g17840	ERD7, Senescence/dehydration-associated protein-related	3.76
At5g45850	unknown protein; FUNCTIONS IN: molecular_function unknown; INVOLVED IN: biological_process unknown; LOCATED IN: endomembrane system; EXPRESSED IN: 18 plant structures; EXPRESSED DURING: 12 growth stages; BEST Arabidopsis thaliana protein match is: unknown protein (TAIR:AT5G4582.1); Has 30201 Blast hits to 17322 proteins in 780 species: Archae - 12; Bacteria - 1396; Metazoa - 17338; Fungi - 3422; Plants - 5037; Viruses - 0; Other Eukaryotes - 2996 (source: NCBI BLiNK).	3.73
At4g16880	Leucine-rich repeat (LRR) family protein	3.68
At5g50655	unknown protein; BEST Arabidopsis thaliana protein match is: unknown protein (TAIR:AT5G50665.2); Has 6 Blast hits to 6 proteins in 1 species: Archae - 0; Bacteria - 0; Metazoa - 0; Fungi - 0; Plants - 6; Viruses - 0; Other Eukaryotes - 0 (source: NCBI BLiNK).	3.69
At5g17490	RGL3, RGA-like protein 3	3.68
At3g57520	AtSIP2, SIP2, seed imbibition 2	3.67
At2g34070	TBL37, TRICHOME BIREFRINGENCE-LIKE 37	3.67
At3g60005	MD-2-related lipid recognition domain-containing protein	3.67
At1g71800	ATGSTM25, GSTU25, glutathione S-transferase TAU 25	3.66
At1g72260	TH2,1, TH2,1, thionin 2	3.65
At4g22330	ATCTES1, Alkaline phytoceramidase (aPHC)	3.64
At5g47550	ATTP2/3, DELTA-TIP3, TIP2/3, tonoplas intrinsic protein 2,3	3.63
At2g42550	COR15, COR15A, cold-regulated 15a	3.61
At3g59970	ATDLX1A, ATDLX1A, expansins-like A1	3.59
At5g62330	Plant invertase/peroxid methylesterase inhibitor superfamily protein	3.58
At3g21770	Peroxidase superfamily protein	3.57
At5g03550	Secretory carrier membrane protein (SCAMP) family protein	3.56
At5g02580	Plant protein 1589 of unknown function	3.55
At5g02310	MAN1, Glycosyl hydrolase superfamily protein	3.53
At3g77550	O-methyltransferase family protein	3.52
At5g62740	BGLL7, beta glucosidase 7	3.51
At3g28220	TRAF-like family protein	3.51
At1g12950	RSH2, root hair specific 2	3.46
At5g73480	alpha/beta-Hydrolases superfamily protein	3.46
At5g03420	Sadhu4-2, transposable element gene	3.46
At1g20450	ERD10, LT129, LT145, Dehydrin family protein	3.45
At1g52540	Transmembrane amino acid transporter family protein	3.45
At1g17380	JAZS, TIFY11A, jasmonate-zim-domain protein 5	3.41
At2g17190	ATGSTM26, GSTU26, glutathione S-transferase tau 26	3.41
At5g02230	Halocid dehalogenase-like hydrolase (HAD) superfamily protein	3.41
At5g62520	SRO5, similar to RCD one 5	3.40
At5g15430	unknown protein; BEST Arabidopsis thaliana protein match is: unknown protein (TAIR:AT3G28370.1); Has 13 Blast hits to 13 proteins in 4 species: Archae - 0; Bacteria - 0; Metazoa - 0; Viruses - 0; Other Eukaryotes - 0 (source: NCBI BLiNK).	3.39
At4g12410	SAUR-like auxin-responsive protein family	3.37
At4g20860	FAD-binding Berberine family protein	3.36
At3g28740	CYP81D1, Cytochrome P450 superfamily protein	3.34
At4g27654	unknown protein; FUNCTIONS IN: molecular_function unknown; INVOLVED IN: biological_process unknown; LOCATED IN: endomembrane system; EXPRESSED IN: 17 plant structures; EXPRESSED DURING: 9 growth stages; Has 30201 Blast hits to 17322 proteins in 780 species: Archae - 12; Bacteria - 1396; Metazoa - 17338; Fungi - 3422; Plants - 5037; Viruses - 0; Other Eukaryotes - 2996 (source: NCBI BLiNK).	3.33
At1g69260	AFPI, ABI five binding protein	3.32
At3g29575	AFPI, ABI five binding protein	3.32
At3g24800	Late embryogenesis abundant protein (LEA) family protein	3.30
At2g30040	MAPKKK14, mitogen-activated protein kinase kinase kinase 14	3.29
At3g15640	Protein phosphatase 2C family protein	3.28
At4g11210	Disease resistance-responsive (dirigent-like protein) family protein	3.27
At3g44320	ANIT3, NIT3, nitrilase 3	3.26
At4g28085	unknown protein; Has 45 Blast hits to 45 proteins in 1 species: Archae - 0; Bacteria - 0; Metazoa - 0; Fungi - 0; Plants - 0; Viruses - 0; Other Eukaryotes - 0 (source: NCBI BLiNK).	3.25
At1g70800	AGL27, FLM, MAIF, K-box region and MADS-box transcription factor family protein	3.25
At5g50570	Squamosa promoter-binding protein-like (SBP) domain transcription factor family protein	3.24
At1g59740	Major facilitator superfamily protein	3.23
At2g20340	Pyridoxal phosphate (PLP)-dependent transferases superfamily protein	3.23
At4g17090	ATUBC8, UBC8, ubiquitin conjugating enzyme 8	3.22
At1g95200	ATMSL9, MSL9, mechanosensitive channel of small conductance-like 9	3.21
At3g23800	ALDH2B, ALDH2B7, aldehyde dehydrogenase 2B7	3.20
At1g78000	SEL1, SUL1R1,1, sulfate transporter 1,2	3.20
265216 at At1g05100 3.20 MAPKKK18, mitogen-activated protein kinase kinase kinase 18 6.727E-08
264289 at At1g16890 3.19 MATE efflux family protein 1.851E-13
252419 at At3g47510 3.18 unknown protein; FUNCTIONS IN: molecular_function unknown; INVOLVED IN: biological_process unknown; LOCATED IN: endomembrane system; EXPRESSED IN: 19 plant structures; EXPRESSED DURING: 11 growth stages; Has 15 Blast hits to 15 proteins in 7 species: Archaea - 0; Bacteria - 0; Metazoa - 0; Fungi - 0; Plants - 15; Viruses - 0; Other Eukaryotes - 0 (source: NCBI BLink).

253684 at At4g28690 3.18 Alkaline-phosphatase-like family protein 9.631E-08
252076 at At3g51660 3.18 Tautomerase/MIF superfamily protein 1.585E-17
255795 at At2g33380 3.17 CLO-3, RD20, Calmodulin-related family protein 4.371E-16
250781 at At5g05410 3.17 DREB2, DREB2A, DRE-binding protein 2A 6.535E-14
260676 at At1g19450 3.15 Major facilitator superfamily protein 1.216E-08
254996 at At4g10390 3.15 Protein kinase superfamily protein 8.436E-17
263786 at At2g46370 3.14 FIN219, JAR1, Auxin-responsive GH3 family protein 1.050E-12
259705 at At1g77450 3.14 anac032, NAC032, NAC domain containing protein 32 7.980E-17
256848 at At3g27960 3.13 Tetractinomerpide repeat (TPR)-like superfamily protein 1.037E-10
264145 at At1g79310 3.13 AIMC7, MC7, metacaspase 7 4.761E-05
247717 at At5g59320 3.11 LTP3, lipid transfer protein 3 8.271E-07
262164 at At1g78070 3.11 Transducin/WD40 repeat-like superfamily protein 5.182E-11
246235 at At4g36830 3.11 HOS3-1, GNS1/SUR4 membrane protein family 1.024E-08
249205 at At5g42600 3.10 MRN1, marinal synthase 1.882E-13
246436 at At1g10370 3.09 ATGSTU17, ERD9, GST30, GST30B, Glutathione S-transferase family protein 9.101E-09
247109 at At5g68780 3.09 ATPS5K, PSK5, PSK5, phytosulfokine 5 precursor 1.305E-08
245267 at At4g14060 3.08 Polyketide cyclase/dehydrase and lipid transport superfamily protein 1.080E-17
253872 at At4g27410 3.07 ANAC072, RD26, NAC (No Apical Meristem) domain transcriptional regulator superfamily protein 2.721E-20
265058 at At1g52040 3.07 ATMIP, MBP1, myrosinase-binding protein 1 3.468E-21
247026 at At5g67080 3.07 MAPKK19, mitogen-activated protein kinase kinase kinase 19 5.392E-16
260205 at At1g70700 3.06 JAZ9, TIFY7, TIFY domain/Divergent CCT motif family protein 3.876E-15
251480 at At3g59710 3.06 NAD(P)-binding Rossmann-fold superfamily protein 4.978E-07
248625 at At5g88880 3.06 KAT5, PKT1, PKT2, peroxisomal 3-keto-acyl-CoA thiolase 2 7.153E-16
246376 at At1g51950 3.05 IAA18, indole-3-acetic acid inducible 18 2.484E-15
262873 at At1g64700 3.04 unknown protein; FUNCTIONS IN: molecular_function unknown; INVOLVED IN: N-terminal protein myristoylation; LOCATED IN: cellular_component unknown; EXPRESSED IN: 17 plant structures; EXPRESSED DURING: 11 growth stages; BEST Arabidopsis thaliana protein match is: unknown protein (TAIR:AT3G61920.1); Has 48 Blast hits to 47 proteins in 7 species: Archaea - 0; Bacteria - 1; Metazoa - 26; Fungi - 10; Plants - 48; Viruses - 0; Other Eukaryotes - 26 (source: NCBI BLink).

245275 at At4g15210 3.04 AT-BETA-AMY, ATBETA-AMY, BAMB, BMY1, RAM1, beta-amylase 5 3.408E-20
248311 at At5g52570 3.03 B2, BCH2, BETA-OHASE 2, CHY2, beta-carotene hydroxylase 2 1.603E-12
266532 at At2g16890 3.03 UDP-Glycosyltransferase superfamily protein 6.148E-06
263972 at At2g42760 3.02 unknown protein; CONTAINS InterPro DOMAIN/s: Protein of unknown function DUF1685 (InterPro:IPR012881); Has 170 Blast hits to 164 proteins in 34 species: Archaea - 0; Bacteria - 1; Metazoa - 26; Fungi - 10; Plants - 107; Viruses - 0; Other Eukaryotes - 26 (source: NCBI BLink).

259653 at At1g55240 3.01 Family of unknown function (DUF716) 3.973E-13
255484 at At4g02540 3.01 Cysteine/Hisidine-rich C1 domain family protein 6.119E-12
253074 at At4g36140 3.01 disease resistance protein (TIR-NBS-LRR class), putative 4.445E-07
248395 at At5g22120 3.00 AIP2-A14, PP2-A14, phloem protein 2-A14 2.040E-11

a Arabidopsis thaliana gene identifier code assigned by the Arabidopsis Genome Initiatives (AGI; https://www.arabidopsis.org/portals/nomenclature/).
b Mean of two independent biological experiments (aln-1 versus wild-type).
c Gene symbol and description as provided by The Arabidopsis Information Resource (TAIR; release 10; https://www.arabidopsis.org/).
P-value determined by a two-way ANOVA.
Table S4. Genes with significantly reduced expression in the \textit{ahl-1} mutant.
Listed are those whose changes in transcript levels decreased by equal to or greater than 3-fold with the statistical significance level of 0.001 by a two-way analysis of variance (ANOVA). These genes were selected from the revised microarray data (Gene Expression Omnibus accession number GSE73841) that had been parametrically renormalized using the SuperNORM data service (Skylight Biotech Inc, Akita, Japan), according to the three-parameter lognormal distribution method (Konishi 2004).

Affymetrix probe ID	Gene symbol and description	Fold changec	P-valued	
263174_at	At1g54040	-43.12	6.444E-22	
253707_at	At4g29200	-34.79	1.139E-08	
266385_at	At2g14610	-52.83	4.608E-06	
266070_t	At2g18660	-28.28	3.414E-07	
255437_t	At4g30360	-24.18	4.062E-22	
261449_at	At1g21120	-18.58	4.834E-06	
257345_at	Ats4g8640	-15.34	1.603E-04	
240908_at	At4g54120	-15.06	6.134E-07	
259095_at	At1g75040	-13.69	3.250E-10	
250445_at	At5g10760	-13.55	3.299E-11	
253767_at	At4g28520	-13.53	5.723E-08	
265837_at	At3g14560	-13.32	3.411E-10	
250476_at	At3g10140	-12.50	3.044E-19	
262421_at	At1g50290	-10.78	2.203E-22	
246462_s_at	At3g34920	-10.76	2.470E-06	
251344_at	At3g60920	-9.34	2.455E-08	
254574_at	At4g19430	-8.70	1.484E-12	
251625_at	At3g57260	-8.43	2.338E-11	
248062_at	At5g55450	-8.29	5.891E-16	
265313_at	At1g78450	-8.12	2.275E-17	
257365_x_at	At2g62020	-7.51	1.537E-06	
266339_at	At3g23680	-7.45	5.887E-07	
254863_at	At4g84900	-7.27	2.875E-17	
252549_at	At3g58640	-7.09	4.908E-11	
265893_at	At2g15040	-7.01	1.419E-12	
263947_at	At2g35582	-6.58	2.486E-14	
252462_s_at	At4g23140	-6.54	1.302E-13	
249777_t	At5g42110	-6.69	1.831E-10	
247684_at	At5g59670	-6.59	4.733E-05	
264513_at	At1g09420	-5.96	9.646E-26	
256003_at	At3g28270	-5.94	6.281E-22	
258016_at	At3g19350	-5.92	7.141E-09	
255653_at	At4g09090	-5.81	2.461E-05	
259385_at	At1g34770	-5.77	2.084E-05	
255879_at	At1g67000	-5.70	2.648E-06	
249890_at	At5g22570	-5.67	1.908E-07	
263535_at	At5g35820	-5.66	6.148E-10	
252462_s_at	At4g23140	-5.64	1.302E-13	
267253_at	At2g22960	-5.60	6.679E-06	
262382_at	At1g72920	-5.52	9.049E-10	
263535_at	At2g17040	-5.43	2.872E-06	
258028_at	At3g27473	-5.42	7.227E-11	
248169_at	At5g46100	-5.76	6.468E-10	
256631_at	At3g28320	-4.85	5.048E-07	
260658_at	At2g35770	-4.76	1.539E-07	
249780_at	At5g24240	-4.67	8.731E-11	
249067_at	At5g23020	-4.65	6.950E-18	
262631_at	At1g14100	-4.60	1.031E-12	
265109_s_at	Ats6g2630	-4.56	1.868E-17	
260904_at	At1g02450	-4.52	7.944E-07	
257139_at	At3g28890	-4.49	1.892E-06	
Gene ID	Gene Symbol	Description	Log2 Fold Change	P-value
------------	-------------	---	------------------	----------
245454_at	At4g16920	Disease resistance protein (TIR-NBS-LRR class) family	-3.00	1.522E-08
261782_at	At1g76110	HMG (high mobility group) box protein with ARID/BRIGHT DNA-binding domain	-3.00	1.965E-12

Arabidopsis thaliana gene identifier code assigned by the Arabidopsis Genome Initiatives (AGI; https://www.arabidopsis.org/portals/nomenclature/).

Mean of two independent biological experiments (*aln-1* versus wild-type).

Gene symbol and description as provided by The Arabidopsis Information Resource (TAIR; release 10; https://www.arabidopsis.org/).

P-value determined by a two-way ANOVA.