Research paper

Value of total cholesterol readings earlier versus later in life to predict cardiovascular risk

Andreas Leiherer, Hanno Ulmer, Axel Muendlein, Christoph H. Saely, Alexander Vonbank, Peter Fraunberger, Bernhard Foege, Eva Maria Brandtner, Wolfgang Brozek, Gabriele Nage, Emanuel Zitt, Heinz Drexel, Hans Concin

ARTICLE INFO

Article History:
Received 15 February 2021
Revised 15 April 2021
Accepted 16 April 2021
Available online xxx

Keywords:
Cholesterol
Aging
Advanced age
Cardiovascular risk factors
SCORE
Risk prediction

ABSTRACT

Background: Prognostic implications of blood cholesterol may differ at different stages of life. This cohort study compares the value of total cholesterol (TC) readings earlier versus later in life for the prediction of coronary atherosclerosis, cardiovascular events, and cardiovascular death.

Methods: In a cardiovascular observation study (CVOS) we performed coronary angiography and prospectively recorded cardiovascular events in 1090 patients over up to 19 years. These patients had participated in a health survey (HS) 15 years prior to the CVOS baseline. TC was measured twice, first at the earlier HS and then later at CVOS recruiting.

Findings: Patients in the highest versus the lowest TC-category of the HS had an OR of 4.30 [2.41–7.65] for significant CAD at angiography, a HR of 1.74 [1.10–2.76] for cardiovascular events, and a HR of 7.55 [1.05–54.49] for cardiovascular death after multivariate adjustment. In contrast, TC as measured at the baseline of the CVOS was neither significantly associated with significant CAD (OR= 0.75 [0.49–1.13]) nor with cardiovascular events or death during follow-up (HR= 0.86 [0.62–1.18] and 0.79 [0.41–1.53], respectively).

Moreover, the ESC/EAS-SCORE was found to be more powerful in predicting cardiovascular mortality when using earlier instead of later TC, with a continuous net reclassification improvement of 0.301 (p<0.001).

Interpretation: Early measurement not only enables early intervention in keeping with the concept of lifelong exposure to atherogenic lipoproteins. These data also suggest that cardiovascular risk prediction is more accurate if using earlier in life TC readings.

1. Introduction

Ever since the early reports from the Framingham study [1], total serum cholesterol (TC) has become a standard in risk factor evaluation in human epidemiology and clinical medicine and as such is embedded in the Systematic COronary Risk Estimation (SCORE) chart predicting the risk for fatal cardiovascular disease in European populations [2]. According to SCORE, the 10-year risk for fatal cardiovascular events increases by approximately a factor of 4 between the ages of 50 and 65, provided that the other risk factors including TC remain...
Research in context

Evidence before this study

At an advanced age, cardiovascular risk prediction becomes a bigger issue for more people than it was earlier when they were young or in their midlife. Total cholesterol (TC) has always been one of the most commonly used parameters for risk prediction and it is also part of the prominent SCORE prediction chart for cardiovascular risk in the recent ESC/EAS guidelines in Europe. However, it is not clear, what kind of TC reading data are more valuable for cardiovascular risk prediction of elderly patients:

1. Current readings or past readings taken some 15 years ago?

Added value of this study

In the present study, we compared TC readings from a large Austrian health survey (HS) of clinically healthy and statin-naïve individuals in the 1980ies to TC readings of the identical subjects 15 years later, who by then had become cardiovascular risk patients. Performing coronary angiography and recording patients’ fatal and non-fatal cardiovascular events for another 19 years, we found (i) that TC readings, when assessed earlier in life, were a better predictor of coronary atherosclerosis, cardiovascular events, and cardiovascular mortality than the actual lipid profile of elderly people and (ii) that TC readings earlier in life significantly improved the accuracy of cardiovascular risk prediction over and above readings later in life, even comprising LDL-C and HDL-C.

Implications of all the available evidence

TC readings earlier in life, when people are healthy and untreated, are of high prognostic value and allow improved later-life risk prediction.

Constant [3]. This quadrupling of risk within 15 years raises the question whether TC measured in the past, e.g. at the age of 50, has superior diagnostic value over more recent measurements, e.g. taken at the age of 65.

Of interest is the notion that low density lipoprotein-cholesterol (LDL-C) concentration, although within the normal range, is associated with atherosclerosis [4]. On the other hand, patients hospitalized with coronary artery disease (CAD) had lower LDL-C than the general population and nearly every other patient had an LDL-C <100 mg/dL (2.6 mmol/L) [5]. Moreover, data from the MIRACL trial demonstrate that, in patients with acute coronary syndrome, neither LDL-C nor TC were predictive for future cardiovascular events [6]. Given the fact that acute disease states, medication, comorbidities, advanced age, or frailty may confound cholesterol measurements later in life, a past measurement may be of value. This opens the question to what extent TC is a good predictor of disease and at which stage of life, mid adulthood versus late adulthood. Taking into account the long asymptomatic latent period of atherosclerosis, this question is closely related to the one whether TC is a predictor of cardiovascular events for the clinically healthy individual as well as for the patient with established cardiovascular disease.

We had the unique opportunity to combine data sets of one population recruited by two studies being 15 years apart. The first came from a large health survey (HS) of clinically healthy individuals [7,8] and the second from a recent prospective cardiovascular observation study (CVOS) initiated 15 years later on the same patients undergoing coronary angiography. Hence, the aim of the present study was to investigate whether TC in the healthy and untreated state or TC at coronary angiography 15 years later is the better predictor of the cardiovascular risk in elderly patients.

2. Methods

2.1. Study subjects

This study (supplementary figure 1) comprises 1090 participants of Caucasian origin with a median age of 65 years living in Vorarlberg, the westernmost province of Austria in Central Europe, who participated in a cardiovascular observation study (CVOS), as is shown in Fig. 1. These patients were cardiovascular risk patients, all undergoing coronary angiography for the evaluation of established or suspected stable CAD. Recruitment started in 1999 and patients were follow for up to 19 years. A follow up examination took place every two years.

A median period of 15 years prior to that, all of the 1090 cardiovascular risk patients included here had participated in a large HS, the Vorarlberg Health Monitoring & Prevention Program [7,8], that comprised over 185,000 adult residents of Vorarlberg, which accounted for 50% of the population of Vorarlberg at the time. HS enrollment was voluntary and costs were covered by the participants’ health insurance. All subjects participated solely in the context of medical prevention and did not see their physician for any signs or symptoms of cardiovascular or other disease. At the time of HS recruiting, all subjects were statin-naïve, whereas at the CVOS baseline, 46% were taking statins. Statin doses and their equivalents were standardized as described previously [9] according to the LDL lowering potency as defined by the U.S. federal drug administration [10].

This study thus contains (i) laboratory data from 1090 subjects in a healthy condition, (ii) laboratory data from the same subjects, when they were 15 years older, by then suspected to have CAD, and thus referred for coronary angiography, and (iii) follow-up data for another 19 years, altogether covering a time-span of up to 33 years.

2.2. Clinical and laboratory analyses and study endpoints

Basic clinical data were assessed as described in detail previously [8,11]. Laboratory analyses, in particular the measurement of TC in

Study design and timeline

![Study design and timeline](image)

Fig. 1. Study design and timeline.
single human samples were done at the medical central laboratories Feldkirch and Dornbirn according to consistent protocols at HS and later at CVOS [8,11]. TC concentrations were stratified into four categories (≤4.4, 4.5–5.4, 5.5–6.4, and >6.5 mmol/L) resulting in median concentrations of 4.2, 5.1, 6.0, and 7.2 mmol/L respectively, which reflects the categorization of TC concentrations used in the SCORE charts of the current 2019 ESC/EAS guidelines (4, 5, 6, and 7 mmol/L) [12]. Apart from TC, systolic blood pressure, age, gender, and the status of current smoking are used for cardiovascular risk prediction in the SCORE chart [12]. According to the chart for low risk European countries, with Austria being one of them [12], four risk categories of the 10-year risk of cardiovascular death were specified (green category, low risk of <3%; yellow category, medium risk of 3–4%; red category, high risk of 5–9%; and dark red category, very high risk of ≥10%) [12].

Type 2 diabetes mellitus (T2DM) was diagnosed according to the World Health Organization guidelines [13]. Body mass index (BMI) was calculated as body weight (kg)/height² (m).

Coronary angiography was performed in all 1090 patients referred solely for clinical reasons by their physicians. All visible lesions were recorded. Significant CAD was diagnosed in the presence of any significant coronary artery stenoses with lumen narrowing ≥50%. The extent of CAD was defined as the number of significant coronary stenoses, as described previously [14], and the severity of CAD according to the number of diseased vessels (one-, two-, and three-vessel disease).

Prospectively, the 1090 patients were followed up for at least 19 years (median 11.2 years, interquartile range [IQR] = 9.1–12.7 years). Complete follow-up data were available for 1085 out of 1090 patients, amounting to a follow-up rate of >99%. The primary study endpoint was cardiovascular death (fatal myocardial infarction, sudden cardiac death, mortality from congestive heart failure due to CAD) and the secondary endpoint a composite of cardiovascular death, fatal ischemic stroke, non-fatal myocardial infarction, non-fatal ischemic stroke and need for coronary artery bypass grafting, percutaneous coronary intervention, or revascularization in the carotid or peripheral arterial beds.

2.3. Ethics statement

The present study conforms to the ethical guidelines of the 1975 Declaration of Helsinki and has been approved by the Ethics Committee of Vorarlberg, Austria, and the University of Innsbruck, Austria (EK-2-22013/0008 and EK-Nr. 2006-6/2). All participants gave written informed consent.

2.4. Statistical analysis

Normal distribution was checked using the Kolmogorov–Smirnov test. Non-normally distributed variables were log10 transformed. For standardization all continuous variables were z-transformed when comparing scores from disparate distributions. Differences between baseline characteristics of the HS and the CVOS were tested for statistical significance with the paired McNemar test for categorical and Wilcoxon test for continuous variables. Correlation analyses were performed calculating non-parametric Spearman rank correlation coefficients (Spearman test). For prediction of significant CAD at angiography, logistic regression analysis was used and odds ratios (OR) were given together with the 95% confidence intervals in square brackets and the respective p-value. For estimating the extent of CAD, analysis of covariance (ANCOVA) models were built using a general linear model approach for calculating the respective F-value (F) and p-value. A linear regression model was used to check for collinearity among variables. For prognostic endpoints, adjusted hazard ratios (HRs) for the incidence of vascular events during 19 years of follow up were derived from Cox proportional hazards models test (Cox regression). Similar to ORs, HRs were given together with the 95% confidence intervals in square brackets and the respective p-value. The proportional hazard assumption was checked by examination of scaled Schoenfeld residuals. Covariates that were adjusted for in the regression and Cox models were age, time between HS and CVOS (Δage), gender, BMI, systolic blood pressure, estimated glomerular filtration rate (eGFR), current smoking status, and T2DM status.

All missing values were missing completely at random (MCAR) according to Little’s MCAR test [15]. For regression analysis with respect to cardiovascular outcomes we used multiple imputation for missing values of parameter BMI_{CVOS} (n = 4) imputing median values of 5 imputation estimates applying Markov Chain Monte Carlo method with Predictive Mean Matching. All other parameters had no missing values or were analyzed according to complete case analysis.

To examine the potential utility of predictive biomarkers [16], composed models were compared according to their time-independent receiver operating characteristic (ROC) curves applying DeLong’s test [17] or by calculating Harrell’s C and Somers’ D for time-dependent ROC curves [18,19]. The corresponding area under the curve (AUC) was calculated using the pROC and survivalROC package for R as described elsewhere [20,21]. The integrated discrimination improvement (IDI) index and the continuous net reclassification improvement (cNRI) index were calculated for mean follow-up time using the survIDINRI package [22,23].

Moderation analysis was performed running the PROCESS procedure for SPSS version 3.5 [24]. A priori power calculation showed that, in the event that the standard deviation is half of the population mean and given that the test and control group contain 615 and 475 patients, respectively (as it is the case for significant CAD), the power of the study to detect a between group difference of only 10% would be 91% (SPSS Sample Power 3.0, SPSS, Inc., Chicago, IL). All statistical analyses were performed with SPSS 25.0 for Windows (IBM corp., USA), and R statistical software v. 3.5.1 (http://www.r-project.org).

2.5. Role of the funding source

The VIVIT research institute was supported by the Vorarlberger Landesregierung (Bregenz, Austria), which, however, exerted no influence on the present work in any way.

3. Results

3.1. Patient characteristics

Characteristics of the included subjects at the HS and at the CVOS baseline are summarized in Table 1. At the CVOS baseline, subjects were about 15 years older (median 14.6 years, IQR 11.0–19.0 years), their BMI was higher (by 3%; p<0.001 (Wilcoxon test)), and the

Table 1 Patient characteristics.
Age (years), median (IQR)
Male gender (%)
BMI (kg/m²), median (IQR)
TC (mmol/L), median (IQR)
Blood pressure, systolic (mmHg), median (IQR)
Current smoking (%)
Statin intake (%)

Characteristics of patients assessed at the health survey (HS) and at the baseline of the cardiovascular observation study (CVOS). The median time between HS and CVOS was 15 years. IQR denotes interquartile range. Data were obtained from single human samples and p-values were produced from paired McNemar test for categorical and Wilcoxon test for continuous variables, respectively.
3.2. Association between TC and the presence and extent of CAD

3.3. Association between TC and cardiovascular risk
statin-naive = 5.5 mmol/L; p < 0.001 (Wilcoxon test)). Thus statin treatment was additionally included in the regression model, but this only marginally affected the significant association between TCHS and (i) CAD, (ii) cardiovascular events, and (iii) cardiovascular death. Of note, the same was true if only statin-naïve patients (n = 590) were analyzed (supplementary Table 2). Risk curves for TC of statin-naïve patients are depicted in supplementary Figure 4.

The increase of power to predict cardiovascular events and cardiovascular mortality after incorporation of TCHS into prediction models is summarized in supplementary Table 7. This increase was clearly attenuated and failed significance (according to DeLong’s test) if TC was added, instead of TCHS (cardiovascular events ΔAUC=0.001, p = 0.847; cardiovascular mortality ΔAUC=0.004, p = 0.172). Moreover, TCHS also increased the power of a model, which additionally comprised lipid markers LDL-C and HDL-C, to predict cardiovascular events (ΔAUC=0.015, p = 0.041) and cardiovascular mortality (ΔAUC=0.011, p = 0.004).

3.4. Improvement of the power of the ESC/EAS-SCORE for the prediction of cardiovascular mortality

Finally, we compared results of the ESC/EAS-SCORE comprising either TCHS or TC measurements. Regarding the four risk categories proposed by the 2019 ESC/EAS guidelines (ranging from low to very high for 10-year risk of cardiovascular death), 18% of patients were reclassified when using TCHS instead of TC measurements: 20 patients in a one-step lower risk category and 171 patients in a one-step higher risk category. Comparing the highest to the lowest risk category of the ESC/EAS-SCORE using Cox regression, the HR for the cardiovascular death was 11.18 [5.52–22.61]; p < 0.001) when the ESC/EAS-SCORE was built with TCHS and 7.29 [3.80–13.95]; p < 0.001) when the ESC/EAS-SCORE was built with TC. The predictive power of the ESC/EAS-SCORE was significantly higher when the earlier TCHS instead of the later TC measurements were used, as evaluated by the integrated discrimination improvement (IDI) index (IDI=0.017, p = 0.005) and the continuous net reclassification improvement

Area under the curve over time of the ESC/EAS-SCORE for predicting cardiovascular mortality

Finally, we compared results of the ESC/EAS-SCORE comprising either TCHS or TC measurements. Regarding the four risk categories proposed by the 2019 ESC/EAS guidelines (ranging from low to very high for 10-year risk of cardiovascular death), 18% of patients were reclassified when using TCHS instead of TC measurements: 20 patients in a one-step lower risk category and 171 patients in a one-step higher risk category. Comparing the highest to the lowest risk category of the ESC/EAS-SCORE using Cox regression, the HR for the cardiovascular death was 11.18 [5.52–22.61]; p < 0.001) when the ESC/EAS-SCORE was built with TCHS and 7.29 [3.80–13.95]; p < 0.001) when the ESC/EAS-SCORE was built with TC. The predictive power of the ESC/EAS-SCORE was significantly higher when the earlier TCHS instead of the later TC measurements were used, as evaluated by the integrated discrimination improvement (IDI) index (IDI=0.017, p = 0.005) and the continuous net reclassification improvement

Area under the curve over time of the ESC/EAS-SCORE for predicting cardiovascular mortality

Finally, we compared results of the ESC/EAS-SCORE comprising either TCHS or TC measurements. Regarding the four risk categories proposed by the 2019 ESC/EAS guidelines (ranging from low to very high for 10-year risk of cardiovascular death), 18% of patients were reclassified when using TCHS instead of TC measurements: 20 patients in a one-step lower risk category and 171 patients in a one-step higher risk category. Comparing the highest to the lowest risk category of the ESC/EAS-SCORE using Cox regression, the HR for the cardiovascular death was 11.18 [5.52–22.61]; p < 0.001) when the ESC/EAS-SCORE was built with TCHS and 7.29 [3.80–13.95]; p < 0.001) when the ESC/EAS-SCORE was built with TC. The predictive power of the ESC/EAS-SCORE was significantly higher when the earlier TCHS instead of the later TC measurements were used, as evaluated by the integrated discrimination improvement (IDI) index (IDI=0.017, p = 0.005) and the continuous net reclassification improvement

Area under the curve over time of the ESC/EAS-SCORE for predicting cardiovascular mortality

Finally, we compared results of the ESC/EAS-SCORE comprising either TCHS or TC measurements. Regarding the four risk categories proposed by the 2019 ESC/EAS guidelines (ranging from low to very high for 10-year risk of cardiovascular death), 18% of patients were reclassified when using TCHS instead of TC measurements: 20 patients in a one-step lower risk category and 171 patients in a one-step higher risk category. Comparing the highest to the lowest risk category of the ESC/EAS-SCORE using Cox regression, the HR for the cardiovascular death was 11.18 [5.52–22.61]; p < 0.001) when the ESC/EAS-SCORE was built with TCHS and 7.29 [3.80–13.95]; p < 0.001) when the ESC/EAS-SCORE was built with TC. The predictive power of the ESC/EAS-SCORE was significantly higher when the earlier TCHS instead of the later TC measurements were used, as evaluated by the integrated discrimination improvement (IDI) index (IDI=0.017, p = 0.005) and the continuous net reclassification improvement

Area under the curve over time of the ESC/EAS-SCORE for predicting cardiovascular mortality

Finally, we compared results of the ESC/EAS-SCORE comprising either TCHS or TC measurements. Regarding the four risk categories proposed by the 2019 ESC/EAS guidelines (ranging from low to very high for 10-year risk of cardiovascular death), 18% of patients were reclassified when using TCHS instead of TC measurements: 20 patients in a one-step lower risk category and 171 patients in a one-step higher risk category. Comparing the highest to the lowest risk category of the ESC/EAS-SCORE using Cox regression, the HR for the cardiovascular death was 11.18 [5.52–22.61]; p < 0.001) when the ESC/EAS-SCORE was built with TCHS and 7.29 [3.80–13.95]; p < 0.001) when the ESC/EAS-SCORE was built with TC. The predictive power of the ESC/EAS-SCORE was significantly higher when the earlier TCHS instead of the later TC measurements were used, as evaluated by the integrated discrimination improvement (IDI) index (IDI=0.017, p = 0.005) and the continuous net reclassification improvement

Area under the curve over time of the ESC/EAS-SCORE for predicting cardiovascular mortality

Finally, we compared results of the ESC/EAS-SCORE comprising either TCHS or TC measurements. Regarding the four risk categories proposed by the 2019 ESC/EAS guidelines (ranging from low to very high for 10-year risk of cardiovascular death), 18% of patients were reclassified when using TCHS instead of TC measurements: 20 patients in a one-step lower risk category and 171 patients in a one-step higher risk category. Comparing the highest to the lowest risk category of the ESC/EAS-SCORE using Cox regression, the HR for the cardiovascular death was 11.18 [5.52–22.61]; p < 0.001) when the ESC/EAS-SCORE was built with TCHS and 7.29 [3.80–13.95]; p < 0.001) when the ESC/EAS-SCORE was built with TC. The predictive power of the ESC/EAS-SCORE was significantly higher when the earlier TCHS instead of the later TC measurements were used, as evaluated by the integrated discrimination improvement (IDI) index (IDI=0.017, p = 0.005) and the continuous net reclassification improvement

Area under the curve over time of the ESC/EAS-SCORE for predicting cardiovascular mortality

Finally, we compared results of the ESC/EAS-SCORE comprising either TCHS or TC measurements. Regarding the four risk categories proposed by the 2019 ESC/EAS guidelines (ranging from low to very high for 10-year risk of cardiovascular death), 18% of patients were reclassified when using TCHS instead of TC measurements: 20 patients in a one-step lower risk category and 171 patients in a one-step higher risk category. Comparing the highest to the lowest risk category of the ESC/EAS-SCORE using Cox regression, the HR for the cardiovascular death was 11.18 [5.52–22.61]; p < 0.001) when the ESC/EAS-SCORE was built with TCHS and 7.29 [3.80–13.95]; p < 0.001) when the ESC/EAS-SCORE was built with TC. The predictive power of the ESC/EAS-SCORE was significantly higher when the earlier TCHS instead of the later TC measurements were used, as evaluated by the integrated discrimination improvement (IDI) index (IDI=0.017, p = 0.005) and the continuous net reclassification improvement

Area under the curve over time of the ESC/EAS-SCORE for predicting cardiovascular mortality

Finally, we compared results of the ESC/EAS-SCORE comprising either TCHS or TC measurements. Regarding the four risk categories proposed by the 2019 ESC/EAS guidelines (ranging from low to very high for 10-year risk of cardiovascular death), 18% of patients were reclassified when using TCHS instead of TC measurements: 20 patients in a one-step lower risk category and 171 patients in a one-step higher risk category. Comparing the highest to the lowest risk category of the ESC/EAS-SCORE using Cox regression, the HR for the cardiovascular death was 11.18 [5.52–22.61]; p < 0.001) when the ESC/EAS-SCORE was built with TCHS and 7.29 [3.80–13.95]; p < 0.001) when the ESC/EAS-SCORE was built with TC. The predictive power of the ESC/EAS-SCORE was significantly higher when the earlier TCHS instead of the later TC measurements were used, as evaluated by the integrated discrimination improvement (IDI) index (IDI=0.017, p = 0.005) and the continuous net reclassification improvement

Area under the curve over time of the ESC/EAS-SCORE for predicting cardiovascular mortality

Finally, we compared results of the ESC/EAS-SCORE comprising either TCHS or TC measurements. Regarding the four risk categories proposed by the 2019 ESC/EAS guidelines (ranging from low to very high for 10-year risk of cardiovascular death), 18% of patients were reclassified when using TCHS instead of TC measurements: 20 patients in a one-step lower risk category and 171 patients in a one-step higher risk category. Comparing the highest to the lowest risk category of the ESC/EAS-SCORE using Cox regression, the HR for the cardiovascular death was 11.18 [5.52–22.61]; p < 0.001) when the ESC/EAS-SCORE was built with TCHS and 7.29 [3.80–13.95]; p < 0.001) when the ESC/EAS-SCORE was built with TC. The predictive power of the ESC/EAS-SCORE was significantly higher when the earlier TCHS instead of the later TC measurements were used, as evaluated by the integrated discrimination improvement (IDI) index (IDI=0.017, p = 0.005) and the continuous net reclassification improvement
modest to important. Moreover, TC of our elderly is a driving force for this decline and has been suggested to range from TC of patients on statin treatment were predictive of cardiovascular events [6,33]. Nevertheless, in our study, when taking statin treatment into account, TC measured earlier in life (mid adulthood) was still superior to TC measured later in life when it comes to cardiovascular risk prediction, even in statin-naïve patients. This indicates the presence of further, statin-independent effects compromising the predictive power of TC in older subjects. For example, the strength of association between the risk of ischaemic heart disease and cholesterol has been reported to decrease with age [34]. However, the nature of these effects along with the impact e.g. of comorbidities [29], drug intake, or drug interactions in elderly [35] remains vague and calls for further research.

Risk prediction is perceived to be most relevant for older patients, as, according to the ESC/EAS SCORE charts, most risk factors misleadingly appear to have no impact on people in their 40ies. They have a very low (10 year fatal) risk profile irrespective of any parameter assessed by SCORE, including TC.

Furthermore, the present study findings clearly recommend that TC reading should be done at midlife or even earlier and saved for later in life when cardiovascular risk prediction becomes a bigger issue.

Therefore our results confirm previous studies on the association of the life-long burden of high TC levels with the lifetime risk of cardiovascular disease [32,36], and advocate an early start of screening and treatment [37,38]. In line with our findings and conclusions, a recent meta-analysis comprising 38 cohorts demonstrated that inclusion of repeated risk factor measurements, in particular of TC, into risk prediction models improves the accuracy of a 5-year cardiovascular disease prediction [39]. Similarly, insights from the Framingham study demonstrated that TC trajectories, which comprised TC measurements over a 35 year period, improved prediction of incident atherosclerotic cardiovascular disease more than the use of a single TC measurement [40]. Moreover, a recent study from Germany found that SCORE estimates using 10 year old TC readings were suited to identify patients at high cardiovascular disease risk with high sensitivity and specificity [41]. However, this population-based study, in contrast to our investigation on angiographed coronary patients, found only minor changes of earlier versus later TC over time (5.88 to 5.73 mmol/l = 3% decrease), and, thus, no difference regarding prediction of cardiovascular disease. Consequently, one might reason that the decline of TC between midlife and advanced age is not necessarily linked to a better outcome and that current readings of patients at an advanced age are unsuited for cardiovascular risk prediction.

Clinical routine is usually based on current measurements. Although this is ideal for most health issues, the value of older data is often underestimated. The concept of lifelong exposure to atherogenic lipoproteins is indisputable [32,36]. Similar to genetic analyses assessing the lifetime risk [32], early measurement enables early diagnosis and therapy. The present study data clearly corroborate the shift in recent guidelines towards earlier and more aggressive statin treatment [42]. To achieve maximum benefit, TC measurements should not be limited to patients with evident high cardiovascular risk but be conducted routinely, especially in young and healthy subjects and such readings should be well documented. Clearly, our study adds evidence to that important notion. In this context, the belief that advanced age risk factors associated with TC are more important, should be put into perspective. In view of our data, this only applies to current TC readings in older patients, but not to past readings assessed at midlife (as in our study) or the genetic predisposition for high cholesterol levels [32].

This study has strengths and limitations. Particular strengths include the design of the study. The study was done in a well-defined geographical area with low migration. It comprised data from middle-aged statin-naïve participants and of the same participants a median of 15 years later when they had become patients referred to coronary angiography for the evaluation of stable CAD, reflecting a real world situation. Further strengths of the study are the extremely high follow-up rate of >99% and the fact that all samples of the mentioned two measurements (at HS and at CVOS) were analyzed in the same laboratories. To differentiate the nature of CAD, we assessed its extent and severity. A more detailed view on the concept of CAD has been given previously [43]. A potential limitation is that our study participants were, at least at the time point of HS recruitment, healthy volunteers and might represent a particularly health-conscious Caucasian population. Hence, we cannot claim for certain that our results apply to the general populations or to other ethnicities. Furthermore, we compared TC of patients only at two time points, at a mean age of 51 and 66 years. More time points, including TC measurement in even younger subjects, would be necessary to determine the optimal timing of TC measurement. In addition, only data from TC measurements, and not on lipoprotein lipids, were available from the HS. Finally, about half of our patients, especially those with high TC at HS have started taking statins at any time point after HS recruitment. Though we have no data about their adherence to medical treatment [44], this of course impacted TC concentrations measured at CVOS. On the other hand, this reflects clinical reality and underlines the value and importance of data assessed earlier in life and prior to lipid lowering therapy. That said, comparable results were obtained when we limited the analysis to statin-naïve patients. Of
note, this should not lead to any misleading conclusions about the effect of statins to modify CV risk.

Routine measurements of TC starting early in life with young and healthy subjects are of dual benefit: such early readings, as shown here for mid adulthood subjects, are more valuable for cardiovascular risk prediction than readings obtained later in life. What's more, they enable earlier treatment of patients at risk.

Although present scores, including the ESC/EAS-SCORE, are using TC, applying the same study setting to measurements of other lipids such as LDL-C, apolipoprotein B or also ceramides of course would be of great interest. Apart from the present study enrolling angio­graphy coronary patients in Austria, and given the fact that cohort data are missing for most countries [12], investigations on the power of TC measured earlier in life to predict significant CAD as well as cardio­vascular events in other cohorts and populations are warranted. Finally, after having compared midlife to elderly TC readings here, a comparison between young and midlife TC for risk prediction in later life may be insightful as well.

In conclusion, our study shows that when comparing earlier vs. later TC readings, the former is the more valuable predictor of cardio­vascular risk in elderly patients.

Contributors

A.L. researched data and wrote the manuscript. H.U. researched data and contributed to discussion and reviewed/edited the manuscript. A.M. researched data and reviewed/edited the manuscript. C.H.S. researched data, designed and managed the project, and reviewed the manuscript. A.V. researched data and managed the project. P.F., B.F., E.M.B., W.B., G.N., and E.Z. contributed to discussion and reviewed the manuscript. H.D. and H.C. designed and managed the project, contributed to discussion, reviewed the manuscript, and are the guarantors of this work and, as such, had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Data sharing statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Declaration of Competing Interest

A.L. has nothing to disclose. H.U. has nothing to disclose. A.M. has nothing to disclose. C.H.S. has nothing to disclose. A.V. has nothing to disclose. H.D. has nothing to disclose, B.F. has nothing to disclose, E.M.B. has nothing to disclose, W.B. has nothing to disclose, G.N. has nothing to disclose, E.Z. has nothing to disclose, H.C. has nothing to disclose, and E.Z. has nothing to disclose.

Acknowledgments

We are grateful to the Vorarlberger Landesregierung (Bregenz, Austria) for continuously supporting our research. Apart from that, the present study did not receive any further financial support or grant from funding agencies in neither the public, commercial, or not-for-profit sectors.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.ebiom.2021.103371.

References

[1] Castelli WP, Anderson K, Wilson PW, Levy D. Lipids and risk of coronary heart disease. The Framingham study. Ann Epidemiol 2018;28(1–2):23–8 [Internet]. 1992 [cited Sep 10] Available from: http://www.ncbi.nlm.nih.gov/pubmed/1342360.

[2] Conroy RM, Pyorälä K, Fitzgerald AP, Sans S, Menotti A, Estima­tion of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. Eur Heart J 2003;24(11):987–1003 [Internet] Jan [cited 2019 Jun 12] Available from: https://www.ncbi.nlm.nih.gov/pubmed/12788280.

[3] Hill JA, Ageval S, Baranchuk A, Bozz GW, Borer JS, Camici PG, et al. Medical mis­information. Circulation 2019;139(5):571–2 [Internet] Jan [cited 2019 Aug 19] Available from: https://www.ahajournals.org/doi/10.1161/CIRCULATIONAHA.119.039191.

[4] Fernández-Frier L, Fuster V, López-Melgar B, Oliver B, García-Ruiz JM, Mendiguer­ren J, et al. Normal LDL-cholesterol levels are associated with subclinical atheroscle­rosis in the absence of risk factors. J Am Coll Cardiol 2017;70(4):2979–91 [Internet] Dec 19.

[5] Sachdeva A, Cannon CP, Deedwania PC, LaBresh K, Smith SC, Dai D, et al. Lipid levels in patients hospitalized with coronary artery disease: an analysis of 136,905 hospitalizations in Get With The Guidelines. Am Heart J 2009;157(1):117–7 [Internet] Jan [cited 2019 Apr 2]e2 Available from: http://www.ncbi.nlm.nih.gov/pubmed/19681406.

[6] Olsson AG, Schwartz GG, Szarek M, Sasiela WJ, Ezekowitz MD, Ganz P, et al. High­density lipoprotein, but not low-density lipoprotein cholesterol levels influence short-term prognosis after acute coronary syndrome: results from the MIRACL trial. Eur Heart J [Internet]. 2005;26(9):890–6 May 1 [cited 2019 Jun 7] Available from: http://academic.oup.com/eurheartj/article/26/9/890/2888080/HighDensi­ty-lipoprotein-but-not-low-density.

[7] Rapp K, Schroeder J, Klenk J, Stoehr S, Ullmer H, Concin H, et al. Obesity and inci­dence of cancer: a large cohort study of over 145 000 adults in Austria. Br J Cancer 2005;93(9):1066–7 [Internet] Oct [cited 2018 Sep 11] Available from: http://www.ncbi.nlm.nih.gov/pubmed/16234822.

[8] Ulrich K, Kelleher C, Diem G, Concin H. Long-term tracking of cardiovascular risk factors among men and women in a large population-based health system: the Vorarlberg health monitoring & promotion programme. Eur Heart J 2003;24 (11):1004–13 [Internet] Jun [cited 2018 Sep 6] Available from: http://www.ncbi.nlm.nih.gov/pubmed/12915909.

[9] Saely CH, Sternbauer S, Vonbank A, Heinzle C, Zanolin-Purin D, Larcher B, et al. Type 2 diabetes mellitus is a strong predictor of LDL cholesterol target achieve­ment in patients with peripheral artery disease. J Diabetes Complicat 2020;34 (1):107692 [Internet] [cited 2019 Aug 31] Available from: https://linkinghub.elsevier.com/retrieve/pii/S0168822619304542.

[10] U.S. Food and Drug Administration (FDA). FDA drug safety communication: new restrictions, contraindications, and dose limitations for Zocor (simvastatin) to reduce the risk of muscle injury. FDA 2021 [Internet] [cited 2021 Mar 15] Available from: https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-new-restrictions-contraindications-and-dose-limitations-2009.

[11] Rein P, Vonbank A, Saely CH, Beer S, Jankovic V, Boehn­el C, et al. Relation of albu­minuria to angiographically determined coronary arterial narrowing in patients with and without type 2 diabetes mellitus and stable or suspected coronary artery disease. Am J Cardiol 2011;107(8):1144–8 [Internet] Apr Available from: https://linkinghub.elsevier.com/retrieve/pii/S0002914910027141.

[12] Mach F, Bainteg C, Catapano AL, Koskinas KC, Casula M, Badimon L, et al. ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J 2019 [Internet]. 2019 Aug 31; Available from: https://academic.oup.com/eurheartj/article/advance-article/doi/10.1093/eurheartj/ eha455/5556353.

[13] WHO. Global Report on diabetes [Internet]. WHO library cataloguing-in-publica­tion data. 2016 [cited 2018 Feb 7] Available from: http://www.who.int/ibm/about/ licensing.

[14] Drexel H, Amann FW, Beran J, Rentsch K, Candinas R, Muntwyler J, et al. Plasma triglycerides and three lipoprotein cholesterol fractions are independent predic­tors of the extent of coronary atherosclerosis. Circulation [Internet] 1994;90 (5):2230–5 Available from: http://www.ncbi.nlm.nih.gov/pubmed/7955178.

[15] Little RJA. A test of missing completely at random for multivariate data with missing values. J Am Stat Assoc 1988;83(404):1198–202 [Internet] Oct [cited 2019 Jun 26] Available from: http://www.ncbi.nlm.nih.gov/pubmed/12531322.

[16] Hlatky MA, Greenland P, Antman EK, Atlanta Type 2 Diabetes Mellitus is a Strong Predictor of Cardiovascular Risk (CARD 2): 2010;119(17):2408–16 [Internet] Available from: http://pubmedcentral.nih.gov/articleinfo.fcgi?artid=2956982&tool=pmcentrez&rendertype=abstract.

[17] DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 1988;44(3):837–45 [Internet] Sep [cited 2019 Jun 26] Available from: http://www.ncbi.nlm.nih.gov/pubmed/12531322.

[18] Chambless LE, Diao Q. Estimation of time-dependent area under the ROC curve for long-term risk prediction. Stat Med 2006;25(20):3474–86 [Internet] Oct [cited 2019 Jun 26] Available from: http://doi.wiley.com/10.1002/sim.2299.

[19] Harrell FE, Lee KL, Mark DR. Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med 1996;15(4):361–8 [Internet] Feb [cited 2019 Jun 26] Available from: http://doi.wiley.com/10.1002/(SICI)1097-0258(19960229%2915:4%3C361%3A%3AAD%3E2.0.CO%3B2-A.

[20] Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez J-C, et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC
Bioinformatics 2011;12(1):77. [Internet][Mar 17 [cited 2018 Feb 14]Available from: http://www.ncbi.nlm.nih.gov/pubmed/21412408.

[21] Heagerty PJ, Lumley T, Pepe MS. Time-dependent ROC curves for censored survival data and a diagnostic market. Biometrics [Internet] 2000;56(2):337–44 Available from: http://www.ncbi.nlm.nih.gov/pubmed/10877287.

[22] Uno H, Tian L, Cai T, Kohane IS, Wei LJ. A unified inference procedure for a class of measures to assess improvement in risk prediction systems with survival data. Stat Med 2013;32(14):2430–42.

[23] Pencina MJ, D’Agostino RB, Steyerberg EW. Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers. Stat Med 2011;30(1):11–21 [Internet][Jan 15 [cited 2018 Feb 14]Available from: http://www.ncbi.nlm.nih.gov/pubmed/21204120.

[24] Hayes AF. Introduction to mediation, moderation, and conditional process analysis: second edition: a regression-based approach. Guilford Press; 2017.

[25] Eliasson M, Janlert U, Jansson J-H, Stegmayr B. Time trends in population cholesterol still a problem in old age? A Mendelian randomization study. Int J Epidemiol 2015;44(2):604–10 [Internet][Dec 1 [cited 2020 Nov 24]Available from: http://doi.wiley.com/10.1093/ije/dyv031.

[26] Paice E, Barrett J, Pennells L, Sweeting M, Willeit P, Di Angelantonio E, et al. Use of serum lipids and lipoproteins of adults, 1960-2002. JAMA 2005;294(14) [Internet][Apr 27 [cited 2021 Mar 15] Available from: http://www.ncbi.nlm.nih.gov/pubmed/15737027.

[27] Lloyd-Jones DM, Wilson PW, Larson MG, Leip E, Beiser A, D’Agostino RB, et al. Lifetime risk of coronary heart disease by cholesterol levels at selected ages. Arch Intern Med 2003;163(16):1966. [Internet][Sep 8 [cited 2019 Mar 11]Available from: http://www.ncbi.nlm.nih.gov/pubmed/12963571.

[28] Folsom AR, D’Agostino RB, et al. Utility of repeat serum cholesterol measurements for assessment of cardiovascular risk in primary prevention. Eur J Prev Cardiol 2016;23(6):628–35 [Internet][Apr 13 [cited 2020 Jan 22]Available from: http://journals.sagepub.com/doi/10.1177/2047487315595583.

[29] Grundy SM, Stone NJ, Bailey AL, Beam C, Burcher KK, Blumenthal RS, et al. AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/ACSM/AGS/ASPC/NLA/PCNA guideline on the management of blood cholesterol. Circulation 2018;139:1082–143 [Internet][2019 [cited 2019 Jul 3]Available from: http://ahajournals.org.

[30] Rumberger JA. Coronary artery disease: a continuum, not a threshold, 92. Mayo Clinic Proceedings. Elsevier Ltd; 2017. p. 323–6 [http://www.mayoclinicproceedings.org/article/S0025619617300727/fulltext.

[31] Insull W. The problem of compliance to cholesterol altering therapy. J Intern Med 1997;241(4):317–25 [Internet][cited 2020 Nov 24]Available from: https://www.ncbi.nlm.nih.gov/pubmed/9159603.

[32] Postmus I, Deelen J, Sedaghat S, Trompet S, de Craen AJ, Heijmans BT, et al. LDL cholesterol still a problem in old age? A Mendelian randomization study. Int J Epidemiol 2015;44(2):604–12 [Internet][Apr 27 [cited 2021 Mar 15]Available from: https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyw031.

[33] Puri R, Nissen SE, Shao M, Ballantyne CM, Barter PJ, Chapman MJ, et al. Coronary atheroma volume and cardiovascular events during maximally intensive statin therapy. Eur Heart J 2013;34(41):3182–90 [Internet][Nov 1 [cited 2020 Feb 6]Available from: https://academic.oup.com/eurheartj/article-lookup/doi/10.1093/eurheartj/ehz266.

[34] Law MR, Wald NJ, Thompson SG. By how much and how quickly does reduction in serum cholesterol concentration lower risk of ischaemic heart disease? BMJ 1994;308(6952):367 [Internet][Feb 5 [cited 2021 Mar 16]Available from: https://www.ncbi.nlm.nih.gov/pubmed/8043072.

[35] Gjularlumadi H. Polytherapy and drug interactions in elderly [Internet] J Mid-Life Health. Medknow Publications 2016;7:105–7 [cited 2021 Mar 16]Available from: http://jpmc.pmc.org/PMC501328.

[36] Ference BA, Ginsberg RN, Graham I, Ray KK, Packard CJ, Bruckert E, et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J 2017;38(32):2459–72 [Internet][Aug 21 [cited 2019 Jan 12]Available from: https://academic.oup.com/eurheartj/article/38/32/2459/3745109.

[37] Grundy SM, Stone NJ, Bailey AL, Beem C, Burcher KK, Blumenthal RS, et al. AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/ACSM/AGS/ASPC/NLA/PCNA guideline on the management of blood cholesterol. Circulation 2018;139:1082–143 [Internet][2019 [cited 2019 Jul 3]Available from: http://ahajournals.org.

[38] Folsom AR, D’Agostino RB, et al. Utility of repeat serum cholesterol measurements for assessment of cardiovascular risk in primary prevention. Eur J Prev Cardiol 2016;23(6):628–35 [Internet][Apr 13 [cited 2020 Jan 22]Available from: http://journals.sagepub.com/doi/10.1177/2047487315595583.

[39] Ambrosioni E, Messori A, Proietti G, et al. Lifetime risk of coronary heart disease by cholesterol levels at selected ages. Arch Intern Med 2003;163(16):1966. [Internet][Sep 8 [cited 2019 Mar 11]Available from: http://www.ncbi.nlm.nih.gov/pubmed/12963571.

[40] Tsinnakas S, Witztum JL. Shifting the diagnosis and treatment of atherosclerosis to children and young adults: a new paradigm for the 21st century. J Am Coll Cardiol 2002;40:2122–4 Elsevier Inc.,

[41] Folsom AR, D’Agostino RB, et al. Utility of repeat serum cholesterol measurements for assessment of cardiovascular risk in primary prevention. Eur J Prev Cardiol 2016;23(6):628–35 [Internet][Apr 13 [cited 2020 Jan 22]Available from: http://journals.sagepub.com/doi/10.1177/2047487315595583.

[42] Grundy SM, Stone NJ, Bailey AL, Beem C, Burcher KK, Blumenthal RS, et al. AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/ACSM/AGS/ASPC/NLA/PCNA guideline on the management of blood cholesterol. Circulation 2018;139:1082–143 [Internet][2019 [cited 2019 Jul 3]Available from: http://ahajournals.org.

[43] Folsom AR, D’Agostino RB, et al. Utility of repeat serum cholesterol measurements for assessment of cardiovascular risk in primary prevention. Eur J Prev Cardiol 2016;23(6):628–35 [Internet][Apr 13 [cited 2020 Jan 22]Available from: http://journals.sagepub.com/doi/10.1177/2047487315595583.

[44] Grundy SM, Stone NJ, Bailey AL, Beem C, Burcher KK, Blumenthal RS, et al. AHA/ ACC/AACVPR/AAPA/ABC/ACPM/ADA/ACSM/AGS/ASPC/NLA/PCNA guideline on the management of blood cholesterol. Circulation 2018;139:1082–143 [Internet][2019 [cited 2019 Jul 3]Available from: http://ahajournals.org.

[45] Folsom AR, D’Agostino RB, et al. Utility of repeat serum cholesterol measurements for assessment of cardiovascular risk in primary prevention. Eur J Prev Cardiol 2016;23(6):628–35 [Internet][Apr 13 [cited 2020 Jan 22]Available from: http://journals.sagepub.com/doi/10.1177/2047487315595583.