Editorial: Epigenetic Regulation and Tumor Immunotherapy

Hongyin Sun¹, Bihui Huang², Jian Cao³, Qin Yan⁴ and Mingzhu Yin¹*

¹ Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China, ² Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China, ³ Department of Medicine, Robert Wood Johnson Medical School, Cancer Institute of New Jersey Rutgers, the State University of New Jersey, New Brunswick, NJ, United States, ⁴ Department of Pathology, Yale School of Medicine, New Haven, CT, United States

Keywords: epigenetic regulation, tumor immunotherapy, tumor immune microenvironment, methylation, acetylation

Editorial on the Research Topic

Epigenetic Regulation and Tumor Immunotherapy

Epigenetics is the study of DNA sequence-independent heritable changes in phenotype and gene expression. Major epigenetic mechanisms include DNA methylation, histone modification, chromatin structure regulation, and non-coding RNA regulation. Emerging evidence suggests that epigenetic regulation plays central roles in tumor immunosurveillance, including tumor antigen production, the interaction between tumor cells and immune cells, and T cell development, priming, activation, and exhaustion. On the other hand, tumors commonly hijack various epigenetic mechanisms to escape immune restriction (1, 2). Therefore, modulating epigenetic regulators can normalize the impaired immunosurveillance and/or trigger antitumor immune responses. Numerous preclinical and clinical studies revealed that epigenetic agents, including DNMT inhibitors (3), HDAC inhibitors (4), EZH2 inhibitors (5), LSD1 inhibitors (6), KDM5 inhibitors (7), G9a inhibitors (8), and BET inhibitors (9–11), have the capacity to induce antitumor immune responses and modulate tumor immune microenvironment. Currently, hundreds of clinical trials that combine epigenetic agents and immune checkpoint inhibitors (ICI) are ongoing, aiming to achieve synergistic effects, reduce adverse effects, and overcome intrinsic and acquired resistance. Thus, combining epigenetic therapy with immunotherapy is a promising new strategy to improve clinical outcomes.

This Research Topic leads to a better understanding of epigenetics in tumor immunity and immunotherapy and highlights the clinical significance of epigenetic drugs. This Research Topic accepted a total of 18 articles from 123 authors, demonstrating great interest in this field. Our topic can be mainly divided into the following topics:

METHYLATION

Abnormal methylation patterns of tumor cells are mainly manifested in the overall hypomethylation of the genome and hypermethylation of CpG islands. The hypermethylation in the promoter regions of tumor suppressor genes and DNA repair leads to the extinction of these genes and the development of cancer. Nevertheless, the hypomethylation in the regulatory regions of oncogenes increases their expression and leads to tumorigenesis (12). In this Research Topic, Zheng et al. explored whether epigenetic regulation associated with DNA methylation could...
underlie increasing PD-L1 expression by disulfiram (DSF). They found that DSF inhibited DNMT1 expression and activity, thus leading to IRF7 hypomethylation and PD-L1 upregulation in Triple Negative Breast Cancer (TNBC) cell lines. They further observed that co-treatment of DSF and anti-PD-1 Ab increased CD8+ tumor-infiltrating lymphocytes (TIL) and enhanced the therapeutic effects of ICB \textit{in vivo}, which provide a novel combination therapy strategy for TNBC. Based on patients’ overall survival (OS), Yang et al. established a prognostic risk score system using 18 immune-related methylation genes (IRMGs) of 1057 breast cancer patients from the TCGA cohort and GSE72308 cohort. Patients in the low-risk group had a higher immune score and stromal score compared with the high-risk group. The characteristics based on 18-IRMGs signature were related to the tumor immune microenvironment and affected the abundance of tumor-infiltrating immune cells. As the result, the proposed 18-IRMGs signature could be a potential marker for breast cancer prognostication. Enhancer of zeste homolog 2 (EZH2) is a negative regulator of early NK cell differentiation and function through trimethylation of histone H3 lysine 27 (H3K27me3). Yu et al. deleted Ezh2 from immature NK cells and downstream progeny to explore its role in NK cell maturation by single-cell RNA sequencing. They indicated a novel role for the EZH2-AP-1-KLRG1 axis in altering the NK cell maturation trajectory and NK cell-mediated cytotoxicity, which suggested that EZH2 plays a critical role in NK development by activating AP-1 family gene expression independent of its methyltransferase activity.

Different from DNA methylation, RNA methylation modifications, including N6-methyladenosine (m6A), 5-methylcytosine (m5C), and N1-methyladenosine (m1A), mainly regulate genetic expression at the post-transcriptional level (13, 14). Liu et al. comprehensively assessed N1-methyladenosine (m1A) methylation modification patterns in 474 ovarian cancer (OC) patients and linked them to immune infiltration characteristics in the tumor microenvironment (TME). They demonstrated that individual tumor m1A modification patterns can predict patient survival, stage and grade. A high m1Ascore is usually accompanied by a better survival advantage and a lower mutational load. Patients with high m1Ascore showed marked therapeutic benefits and clinical outcomes in terms of chemotherapy and immunotherapy, which provide clinicians with new ideas for immuno-oncology and individualized immunotherapy in OC. Recently, m6A RNA methylation is an emerging epigenetic modification, which has been associated with the progression of several cancers (15, 16). ALKBH5 and YTHDF1 are regarded as the eraser and reader in N6-methyladenosine (m6A) modification, respectively. The former has been shown to regulate suppressive immune cell accumulation in melanoma (17, 18), and the latter can improve the efficiency of mRNA translation (19). Using consensus clustering based on the expression of ALKBH5 and YTHDF1, Yan et al. divided the patients with colon adenocarcinoma (COAD) into two clusters. Cluster 2 (high expression of ALKBH5 and lesser so of YTHDF1) had stronger immune infiltration, higher expression of targets of ICI, more TMB, and a larger proportion of deficiency in mismatch repair-microsatellite instability-high (dMMR-MSI-H) status than Cluster 1 (high expression of YTHDF1 and lesser so of ALKBH5). ALKBH5 and YTHDF1 influence immune contexture and can potentially transform cold tumors into hot tumors in patients with COAD. In addition, m6A modification accelerates Snail1 expression in HeLa cells (20), indicating the indirect regulation of Snail1 by methylation. Snail1, a key inducer of epithelial-mesenchymal transition (EMT), plays a critical role in tumor metastasis. Tang et al. reviewed the pathways and molecules involved in the maintenance of Snail1 level and the significance of Snail1 in tumor immune evasion and demonstrated that Snail1 can function as a biomarker to predict tumor relapse and patient prognosis. Furthermore, Snail1 is implicated in chemotherapy and radiotherapy resistance, thereby the author proposes that chemotherapy or radiotherapy combined with Snail1 inhibitors may be a promising therapeutic approach to combat tumors.

ACETYLATION

Acetylation is the addition of acetyl groups to lysine residues in a protein that occurs in the presence of acetyltransferase, which is a dynamic and reversible process involving both histone acetyltransferases (HATs) and histone deacetylases (HDACs). HATs are figuratively called “writers”, which are responsible for covalently attaching an acetyl group to the lysine residue of a protein, while HDACs are called “erasers” and mediate the removal of this acetyl group (21). Evidence has shown that acetylation is one of the most important modifications used to alter protein activity and precisely regulate and control cellular functions. In recent studies, many researchers have found that HDAC inhibitors also have significant effects on host immunosuppressive cells, and MDSCs are important immunosuppressive cells in the tumor microenvironment (22). Thereby some researchers regard MDSCs as targets of tumor therapy. Cui et al. summarized the effects and the underlying mechanisms of different HDAC inhibitors on the immunosuppressive function and expansion of MDSCs based on the findings of relevant studies, which may improve their therapeutic effects on tumors.

LONG NON-CODING RNA REGULATION

Long non-coding RNA (lncRNA) has been reported to play diverse roles in various biological processes (23), which can modulate transcriptional and post-transcriptional genes and regulate the expression of tumor suppressors or initiators, and thereby confers the occurrence and progression of cancer (24). In this topic, Xu et al. constructed a novel hypoxia-related long non-coding RNAs (HRL) signature that could distinguish lower-grade glioma (LGG) patients with similar expression levels of immune checkpoints and might predict the efficacy of immune checkpoint inhibitors. Additionally, hypoxia-related pathways and immune pathways were enriched in the high-risk group, and a high risk score indicated low tumor purity.
accumulation of macrophages by CIBERSORT and TIMER analysis demonstrated that high SAMD9 expression resulted in a potential therapeutic target for treating gliomas. Moreover, Xu et al. may be a diagnostic or prognostic indicator for LGG and also a new macrophage. Taken together, the authors revealed that SAMD9 specimens with IHC staining. In addition, silencing of SAMD9 by the prognostic accuracy of immune contexture in the clear cell renal cell carcinoma (cCRCC) microenvironment. Immune-cold RANBP2-type and C3HC4-type zinc finger containing 1 (RBCK1)患者 have pro-tumorigenic immune infiltration and significantly worse outcomes than RBCK1低表达 patients based on results from multi-omics to real-world data, which highlights the association between tumor alterations and immune phenotype. Furthermore, Zhou and Jin presented the expression and biological function of B7 homolog 3 protein (B7-H3) in distinct cancer and normal cells, as well as B7-H3-mediated signal pathways in cancer cells and B7-H3-based tumor immunotherapy strategies, which provides a comprehensive overview that encompasses B7-H3's role in TME to its potential as a target in cancer immunotherapy.

CONCLUSION

In aggregate, this Research Topic summarized recent development on the central roles of epigenetic regulation in tumor immunosurveillance and the mechanisms of epigenetic regulation. This topic provides new prognostic biomarkers, as well as promising therapeutic approaches and novel combination therapy strategies for several tumors.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct, and intellectual contribution to the work and approved it for publication.

REFERENCES

1. Topper MJ, Vaz M, Marrone KA, Brahmer JR, Baylin SB. The Emerging Role of Epigenetic Therapeutics in Immuno–Oncology. *Nat Rev Clin Oncol* (2020) 17(2):75–90. doi: 10.1038/s41571-019-0266–5
2. Chen X, Pan X, Zhang W, Guo H, Cheng S, He Q, et al. Epigenetic Strategies Synergize With PD-L1/PD-1 Targeted Cancer Immunotherapies to Enhance AntiTumor Responses. *Acta Pharm Sin B* (2020) 10(5):723–33. doi: 10.1016/j.apsb.2019.09.006
3. Luo N, Nixon MJ, Gonzalez–Ericsson PL, Sanchez V, Opalenik SR, Li H, et al. DNA Methyltransferase Inhibition Upregulates MHC–1 to Potentiate Cytotoxic T Lymphocyte Responses in Breast Cancer. *Nat Commun* (2018) 9(1):248. doi: 10.1038/s41467-017-02630–w
4. Woods DM, Sodré AL, Villagra A, Sarnai A, Sotomayor EM, Weber J. HDAC Inhibition Upregulates PD–1 Ligands in Melanoma and Augments Immunotherapy With PD–1 Blockade. *Cancer Immunol Res* (2015) 3 (12):1375–85. doi: 10.1158/2326-6066.CIR–15–0077–T
5. Goswami S, Apostolou I, Zhang J, Skepner J, Anandhan S, Zhang X, et al. Modulation of EZH2 Expression in T Cells Improves Efficacy of Anti–CTLA–4 Therapy. *J Clin Invest* (2018) 128(9):3813–8. doi: 10.1172/JCI99760
6. Sheng W, LaFleur MW, Nguyen TH, Chen S, Chakravartly A, Conway JR, et al. LSD1 Ablation Stimulates Anti–Tumor Immunity and Enables Checkpoint Blockade. *Cell* (2018) 174(3):549–63. doi: 10.1016/j.cell.2018.05.052
7. Wu L, Cao J, Cai WL, Lang SM, Horton JR, Jansen DJ, et al. KDM5 Histone Demethylases Repress Immune Response via Suppression of STING. *PLoS Biol* (2018) 16(8):e2006134. doi: 10.1371/journal.pbio.2006134
8. Huang T, Zhang P, Li W, Zhao T, Zhang Z, Chen S, et al. G9A Promotes Tumor Cell Growth and Invasion by Silencing CASP1 in non–Smallcell Lung Cancer. *Cells. Cell Death Dis* (2017) 8(4):e2726. doi: 10.1038/cddis.2017.65
9. Yin M, Guo Y, Hu R, Cai WL, Li Y, Pei S, et al. Potent BRD4 Inhibitor Suppresses Cancer Cell–Macrophage Interaction. *Nat Commun* (2020) 11 (1):1833. doi: 10.1038/s41467-020-15290–0
10. Deng G, Zeng F, Su J, Zhao S, Hu R, Zhu W, et al. BET Inhibitor Suppresses Melanoma Progression via the Noncanonical NF–/kB/SP1 Pathway. *Theranostics* (2020) 10(25):11428–43. doi: 10.7150/thno.47432
11. Deng G, Zeng F, He Y, Meng Y, Sun H, Su J, et al. FcεRI Silencing Inhibits Tumor Progression Through Repressing SP1 and Synergizes With BET Inhibitors in Melanoma. *Clin Trans Med* (2022) 12(2):e2722. doi: 10.1002/ctm2.722
12. Yoo CB, Jones PA. Epigenetic Therapy of Cancer: Past, Present and Future. *Nat Rev Drug Discovery* (2006) 5(1):37–50. doi: 10.1038/nrd1930
13. Zhao BS, Roundtree IA, He C. Post–Transcriptional Gene Regulation by mRNA Modifications. *Nat Rev Mol Cell Biol* (2017) 18(1):31–42. doi: 10.1038/nrm.2016.132
14. Boccaletto P, Machnicka MA, Purta E, Piatkowski P, Baginski B,wirek TK, et al. MODOMICS: A Database of RNA Modification Pathways. *Nucleic Acids Res* (2018) 46(D1):D303–7. doi: 10.1093/nar/gkx1030
15. Liu ZX, Li LM, Sun HL, Liu SM. Link Between M6a Modification and Cancers. *Front Bioeng Biotechnol* (2018) 6:69. doi: 10.3389/fbioe.2018.00089
16. Sun T, Wu R, Ming L. The Role of M6a RNA Methylation in Cancer. *BioMed Pharmacother* (2019) 112:108613. doi: 10.1016/j.biopha.2019.108613
17. Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM, Li CJ, et al. ALKBH5 is a Mammalian RNA Demethylase That Impacts RNA Metabolism and Mouse Fertility. *Mol Cell* (2013) 49(1):18–29. doi: 10.1016/j.molcel.2012.10.015
18. Li N, Kang Y, Wang L, Huff S, Tang R, Hui H, et al. ALKBH5 Regulates Fertility. *Mammalian RNA Demethylase That Impacts RNA Metabolism and Mouse Fertility.* *Mol Cell* (2013) 49(1):18–29. doi: 10.1016/j.molcel.2012.10.015
19. Li N, Kang Y, Wang L, Huff S, Tang R, Hui H, et al. ALKBH5 Regulates Fertility. *Mammalian RNA Demethylase That Impacts RNA Metabolism and Mouse Fertility.* *Mol Cell* (2013) 49(1):18–29. doi: 10.1016/j.molcel.2012.10.015
20. Wu L, Cao J, Cai WL, Lang SM, Horton JR, Jansen DJ, et al. KDM5 Histone Demethylases Repress Immune Response via Suppression of STING. *PLoS Biol* (2018) 16(8):e2006134. doi: 10.1371/journal.pbio.2006134
Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Sun, Huang, Cao, Yan and Yin. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.