THE MILK PRODUCTION OF REINDEER COWS
AND THE SHARE OF MILK IN THE GROWTH
OF REINDEER CALVES

Mikko Varo and Hannu Varo

Department of Animal Breeding, University of Helsinki

Received May 22, 1970

Abstract. The milk quantities obtained from the reindeer cows in the present study are probably, due to technical difficulties in the milking, lower than the actual values. For this reason the figures on the milk producing ability, and the connection between the milk yield and other characteristics of the cow or its calf, are bound to be uncertain. The general composition of reindeer milk is in fair agreement with results reported by other researchers (Tables 1, 4 and 5).

Individual differences in the milk producing ability could clearly be detected. The correlations between the milk quantity and the constituents were usually not significant. The association between the dam's spring weight and the protein percentage was significant \(r = -0.47** \). The range of the calves' weights at birth was to a large degree maintained during the entire period of growth (Table 9). The weight and growth of the calves was clearly dependent on the weight or on the size of the dam. The results obtained did not indicate any connection between the milk production characteristics of the dams and the growth of the calves (Tables 11 and 12). The spring weight of the dam has a more decisive influence on the growth of the calf than the birth weight of the latter.

The results obtained seem to indicate that in the breeding for growth capacity, selection on the basis of the weight or size of the dams is of conclusive importance. In spite of the individual variations existing in the milk producing ability of reindeer cows, the importance of the quantity and composition of the milk seems to be covered by the genetically determined growth factors. As the size of reindeer can be determined more easily than the weight, the combined measure, \(\text{body length} + \text{chest girth} \), seems to be a more suitable basis for evaluation.

Since 1965 the reindeer breeding studies, started on the initial of the Reindeer Keeper's Association in 1962 at Askankangas in Puolanka (Varo 1964), has been continued at the Reindeer Experimental Region Kaamanen in Inari. During the summer 1967, in the period June 1st to Sept. 15th, the subject of study was the milk production ability of reindeer cows and the possibly existing variation between dams in this respect, as well as the influence of these factors on the development of the reindeer calves.

During the experiment the weather conditions were relatively good. Precipitation and temperature were below average, which apparently resulted in a decreased number of mosquitoes and gadflies. Work among the reindeer was thus rather easy.
In order to catch the reindeer, small pasture fences had to be erected. When fencing new pasture areas one sometimes encountered such difficult conditions of terrain that cloth fences had to be used. This was also why the entire herd escaped in the middle of July and was lost for over a week. Later, the reindeer were herded in a 4 km² wide area, situated 10 km from the experimental region. The construction of a small fence, however, took so long that the herd again scattered. In spite of continuous efforts barely one half of the experimental animals could eventually be caught.

This misfortune naturally seriously affected the reliability of the results. The observed quantities of milk should be regarded with great caution also because the reindeer cows were not used to such close contact with human beings as was required in the milking process. Greatly depended on the nature of cow whether the animal did or did not give milk.

Review of the literature

The literature on the milk yields of reindeer is very limited. The Norwegian research worker Skjenneberg (1965) notes that the amount produced varies between 100 and 750 g per day, the most favourable lactation period being July—August. On the other hand, information on the average composition of reindeer milk is plentiful. Table 1 shows the values, as percentages, given by different researchers. The values are reported either as averages or as changes during the lactation period.

Year	Fat	Protein	Lactose	Ash	Solids
Werenskiold 1895	14.5—19.7	10.3—11.5	3.0—2.6	1.5—1.4	29.8—35.7
Barthel & Bergman 1914	20.2—28.3	9.7—11.2	2.2—2.8		
Davies 1936	17.1	10.4	2.1	1.5	31.8
Brody 1945	22.5	10.3	2.5	1.4	
Silver 1961	8.0—18.0	8.8—11.5	3.8—2.2		
Aschaffenburg et. al. 1962	9.2—16.9	7.2—11.5	3.9—2.8		22.2—33.1
Berge 1963	15.1—24.7	8.7—11.5	2.8	1.5	
Skjenneberg 1965	20	10	2.8	1.5	

Druri & Matuschev (1963) present averages on the weight development of calves (Tables 2 and 3). The breed in question is considerably larger than our own.

According to the present writer, R.M. Varo (1964), the average birth weight of calves, born in spring 1963, was 5.80 kg, the heaviest calf weighing 7.45 and the smallest one 4.70 kg. A small but statistically significant difference between the sexes was noted. The calves by cows of different ages did not significantly differ in weight.
Table 2. The average weight (kg) development of reindeer calves by month (Druri & Matuschev 1965).

Age	Weight	Growth
Birth weight	6.7	
1 month	18.0	11.3
2 months	30.0	12.0
3 »	42.6	12.6
4 »	51.6	9.0
5 »	58.8	6.4

Table 3. The average weight (kg) development of reindeer calves and that of the smallest and largest one (kg) (Druri & Matuschev 1963).

Age	Average	Smallest	Largest
Birth weight	6.4	4.1	9.2
1 month	16.1	10.9	22.4
2 months	26.7	16.8	34.4
3 »	39.5	25.2	50.5
4 »	49.6	30.8	63.4

Own studies

Material and methods. The reindeer cows of the experiment were mainly born in 1963 (Varo 1964). Some other reindeer, also younger ones, were likewise included. In the spring 1967 a total of 33 calves were born, of these two died immediately after the calving and two dams with calves disappeared. Thus the material consisted of 29 calf-cow pairs. Later, during the course of the experiment, three calves had to be delivered to the State Game Research Institute and one calf was lost in an accident.

Originally the intention was to do 3—4 milking rounds by milking the dams in their calving order. In this way the milk samples would have been obtained after approximately the same period after calving. This plan could, however, not be fully realized because the reindeer managed to escape. The collection of samples and the weighing of the animals was done by two students, H. Kullberg and H. Varo.

The cows to be milked, two animals each day, were in the evening separated from their calves and kept in a 2 × 3 m enclosure. The animals were given water, moistened lichen and Peura-fodder. The milking took place the following morning and evening. The calves were weighed during the same day. The milk quantities obtained were combined and from the mixture a sample of approx. 80 ml. was taken and put into a plastic flask containing formalin. The samples were kept in a nearby cold brook and were weekly sent for analysis to the Department of Dairy Science of Helsinki University. With the aid of Peura-fodder the reindeer were easily caught, but the milking often took quite long. Occasionally a cow had to be released because it had damaged its developing horns.
Results

The milk production of the cows. The milk quantities obtained varied between 47 and 206 ml per milking day. In order to make the values comparable they were corrected to correspond to the amounts of milk obtained 30 and 60 days after calving. The new values obtained in this way varied between 54 and 207 ml and between 47 and 202 ml for samples collected 30 and 60 days, respectively, since the calving. The corresponding averages were 99.8 and 96.9 ml. For reasons given above connected with the milking, it is probable that the milk quantities obtained are lower than the real ones of reindeer cows.

The general composition of reindeer milk in the present material is given in Tables 4 and 5 (Luhtala, Rautiainen & Antila 1968). Table 5 shows that the solids and fat percentages steadily increase during the experimental period, whereas the protein percentage is at its lowest in the middle of the period.

Table 4. The general composition of reindeer milk in percentage (Luhtala et al.)

Characteristic	Average	Range
Solids	39.09	30.20—49.74
Fat	20.53	12.68—30.03
Protein	12.78	6.88—15.46
Lactose	3.08	2.77—3.23
Ash	2.12	2.02—2.29

Table 5. Changes in the average composition of reindeer milk during the experimental period in percentage (Luhtala et al.)

Time of milking (days from calving)	Samples	Solids	Fat	Protein
25—30	5	27.18	10.79	10.60
30—40	14	27.85	13.12	10.16
40—50	8	31.52	16.33	9.82
50—60	8	32.04	16.05	9.77
80—100	7	40.91	21.65	13.85
100—120	5	38.09	19.58	13.05

In order to detect the possible individual differences in the milk production ability of reindeer cows an analysis of variance was carried out. As the milk samples were obtained at different stages of the nursing period, the measure of production capacity used was the milk yield deviation of the individual cow from the general average curve. The F-values and the coefficients of repeatability are collected in Table 6.
Table 6. The milk production ability of reindeer cows. F-values and repeatabilities.

Characteristic	F	Significance	Repeatability
Milk quantity	2.43	*	0.37
Fat %	4.15	* *	0.57
Protein %	4.20	* *	0.60
Solids %	4.30	* *	0.60

Table 7 shows all correlations between weight in spring, milk yield and milk composition. It appears that the contents of fat and protein are independent. The correlations between milk yield and composition were not significant and were always negative. Likewise the correlations between the cow's weight in spring and the other characteristics were in most cases nonsignificant. Only the correlation for the protein content was significant, \(r = -0.47 \) (\(P < 0.01 \)).

The weight development of the calves. The calves included in the experiment were born between May 6th and 23rd. The birth weight was, on average, 5.63 kg, the standard deviation being 0.74 kg. The lightest calf weighed 4.2 and the heaviest 7.5 kg. Female calves weighed, on an average, 5.28 and male calves 5.93.

Table 7. Correlations between milk quantity, milk constituents and the weight of reindeer cows in spring.

Characteristic	Milk quant.	Fat %	Prot. %	Solids %
1 month after calving				
Weight in spring	-0.054	-0.048	-0.469*	-0.078
Milk quantity	-0.027	-0.221		-0.141
Fat %	0.003		0.865	
Protein %			0.236	
2 months after calving				
Weight in spring	-0.040	-0.142	-0.467*	-0.171
Milk quantity	-0.075	-0.174		-0.188
Fat %	0.076		0.918	
Protein %			0.048	

Table 8 shows the development of the weights of the calves during the summer period. The weight of 3 month old calves in a few cases had to be evaluated on the basis of their earlier development and the overall average growth capacity.

The individual differences with regard to the weight development of the calves were detected by means of a similar analysis of variance as in the matter of the milk production of the cows. The calculations were thus done on the basis of the deviations of the weights from the means at different ages.
Table 8. The development of the weight (kg) of the calves.

	Weight Growth					
	Male	Female	Averages	Male	Female	Averages
Birth	5.93	5.28	5.63	10.31	8.98	9.72
1 month	16.24	14.26	15.35	9.73	8.26	9.07
2 months	25.97	22.52	24.42	9.16	7.47	8.40
3 »	35.13	29.99	32.83	9.16	7.47	8.40

Table 9 shows that the ranges in weight at birth have to a considerable extent been maintained during the experiment, although less so in the males than the females.

When evaluating the dependence of the growth of the calves on the weight of the dams in spring, the weight differences caused by sex have been levelled. As all dams were weighed at the same time, April 24—25, 1967, the weights in spring are not altogether comparable on account of the differences in the stages of pregnancy. Moreover, the closeness of the weighing date to the calving may have increased the correlations. The correlations calculated using the weight of the dams in autumn (1967) probably give a more accurate picture of the association. Table 10 shows the dependence of the weight of the calves on the weights of the dams in spring and autumn, on the dam's body length, chest girth and on the two latter measures combined. Taking into account the inaccuracy of the spring weights of the cows when evaluating the dam, the combined measure seems quite suitable. The magnitude of the coefficients indicates that in addition to the genes also the embryonic period and the ability of the dams to take care of the calves may have had its effect on the correlations.

Table 9. The development of the weight of the calves. F-values and repeatabilities.

Sex	F	Significance	Repeatability
Male	2.44	*	0.33
Female	5.30	***	0.61
Averages	2.84	***	0.40

Table 10. Correlations between the weight development of calves and the weights and measurements of dams.

	Weight Growth						
	Birth	1 month	2 months	3 months	1 month	1—2 months	2—3 months
Spring weight	0.42	0.62	0.69	0.66	0.63	0.53	0.28
Autumn weight	0.40	0.60	0.60	0.55	0.53	0.44	0.19
Body length	0.37	0.44	0.56	0.68	0.35	0.56	0.57
Chest girth	0.35	0.62	0.66	0.63	0.59	0.55	0.27
Body length + chest girth	0.39	0.58	0.66	0.71	0.51	0.60	0.46
Table 11 shows the correlations between different milk characteristics of the dam and the growth rate of the calf. The large negative values are probably due to the fact that the correlations between the weights of the calves and the spring weights of the dams are high and positive (Table 10), while those between the weights of the dams and the milk traits are negative (Table 7). Moreover, it should be noted that already when the calves were less than one month old they consumed other nutrients beside milk, among other things Peura-fodder, which is rich in protein and trace elements. If the influence of the spring weight of the dams is eliminated from the above correlations, the coefficients get higher and become positive, with the exception of the correlations concerning the protein percentage. The values are, however, not significant, as the 5 % level is at 0.37 (Table 12).

Table 11. Correlations between the milk characteristics and the weight development of calves.

	Weight	Growth						
	Birth	1 month	2 months	3 months	1 month	1--2 months	2--3 months	
1 month after calving	Milk quantity	—0.03	—0.03	—0.20	—0.30	—0.01	—0.36	—0.35
	Fat %	0.03	0.15	0.16	0.04	0.18	0.13	—0.20
	Protein %	—0.00	—0.39	—0.35	—0.32	—0.53	—0.19	—0.12
	Solids %	0.08	0.11	0.13	0.02	0.10	0.12	—0.20
2 months after calving	Milk quantity	—0.06	—0.03	—0.20	—0.31	0.00	—0.37	—0.36
	Fat %	0.09	0.10	0.05	—0.05	0.07	0.02	0.26
	Protein %	0.04	—0.38	—0.34	—0.28	—0.54	—0.20	—0.04
	Solids %	0.09	0.04	0.04	—0.03	0.00	0.20	—0.13

Table 12. Correlations between milk characteristics and the weight development of calves (Influence of weight of dam eliminated).

	Weight, 1 month	Growth, 1 month	
1 month after calving	Milk quantity	0.001	0.028
	Fat %	0.231	0.273
	Protein %	—0.142	—0.341
	Solids %	0.204	0.194
2 months after calving	Milk quantity	—0.125	0.242
	Fat %	0.204	0.161
	Protein %	—0.025	—0.156
	Solids %	0.221	0.161

When evaluating the correlations concerning the weights and growth of the calves (Table 13), it may be noted that the influence of the birth weight on the later weights all the time decreases. The influence of the birth weight on the growth is negligible.
Table 13. Correlations between the weight and growth characteristics of calves.

Weight	Growth							
Birth	1 month	2 months	3 months	0—1 month	0—2 months	1—2 months	0—3 months	
Weight								
1 month	0.69							
2 months	0.54	0.91						
3 »	0.41	0.71	0.92					
Growth								
0—1 month	0.25	0.87	0.85	0.68				
0—2 months	0.26	0.79	0.95	0.91	0.89			
1—2 »	0.21	0.55	0.85	0.93	0.60	0.90		
0—3 »	0.23	0.62	0.87	0.98	0.68	0.92	0.95	
2—3 »	-0.04	0.01	0.32	0.67	0.03	0.38	0.63	0.70

REFERENCES

ASCHAFFENBURG, R., GREGORY, MARGARET, E., KON, S. K., ROWLAND, S. J. & THOMPSON, S. Y. 1962. The composition of the milk of the reindeer. J. Dairy Res. 29: 325—328.

BARTEL, C. & BERGMAN, A. M. 1914. Z. Nahrgenussm. 26: 238.

BERGE, S. 1963. Nye analyser av reinsmjølk. Tidsskr. norske landbr. 70, 3: 27—34.

BRØDY, S. 1945. Bionergetics and growth. New York. Ref. Berge 1963.

DAVIES, W. L. 1936. The chemistry of milk. London. Ref. Berge 1963.

DRURI, I. V. & MATUSCHEV, E. O. 1965. Olenevodstvo. 243 p. Moskva.

LUHTALA, A., RAUTIAINEN, A. & ANTILA, M. 1968. Die Zusammensetzung der finnischen Rentiermilch. S. Kemistilehti B 41: 6—9.

POIJÄRVI, I. 1945. Jäkäläruokinnalla olevien porojen jääkälänkultus syksystä keväseen. Valt. Maatal. koet. Tied. 205.

SILVER, H. 1961. J. Wildlife Mgmt, 25, 66.

SKJENNEBERG, S. 1965. Rein og Reindrift.

VARO, R. M. 1964. Tutkimuksia poron jalostusmahdollisuksista. Summary: Investigations on the possibilities of reindeer breeding. Ann. Agric. Fenn. 3: 296—310.

WERENSKIOLD, F. 1895. Rensdyrmelk. Tidsskr. norske landbr. 2: 372—375.

SELOSTUS

VAATIMIEN MAIDONTUOTANTOKYVYSTÄ JA MAIDON OSUDESTA VASOJEN KASVUSSA

Mikko Varo ja Hannu Varo

Kotieläinten jalostustieteeseen laitos, Helsingin Yliopisto

Puolangan Askankankaalla 1962 Paliskuntain Yhdistyksen toimesta aloitettua poronjalostustutkimusta (VARO 1964) on jatkettu vuodesta 1965 lähtien Kaamanen porokoealueella Inarissa. Vuoden 1967 kesällä, 1.6.—15.9. välisenä aikana oli tutkimuksen kohteena vaatimien maidontuotantokyky, ja sen vaikutus vasojen kehitykseen.

Sääolosuhteet kesän aikana olivat suhteellisen hyvät. Sademäärät ja lämpötilat olivat tavallista alhaisemmat, mikä ilmeisesti vaikutti säakkien ja kurmupaarmonen vähyyteen. Työskentely porojen parissa oli siten melko vaivatonta.

Porojen kiinnisaamiseksi oli käytettävä pieniä kangasalauksia. Uusia laidunmaita aidattaessa jouduttiin joskus niin vaikeisiin maasto-olosuhteisiin, että oli pakko käyttää pelkkiä kangasaitoja. Tästä oli-
kin seurauksena, että heinäkuun puolivälissä koko tokka karkasi ja oli kateissa toista viikkoa. Myöhemmin porot saatiin kootuksi 10 km:n päässä tutkimusasemalta olevalle n. 4 km²:n laajuiselle alueelle. Pikkuai-
tuksen rakentaminen kesti kuitenkin niin kauan, että lauma oli ehtinyt jo hajaaantua. Jatkuvista yrityksistä huolimatta saatiin koe-eläimiä kiinni vain vajaa puolet.

Edellämainitulla epäonnollisella oli tietenkin huomattava haittavaikutus tulosten luotettavuuteen. Saa-
tuihin maitomäärään on suhtauduttu senkin vuoksi, että vaatimet eivät olleet tottuneet ihmisen kannsa niin lähiseen kosketukseen, jota lypsytoimitus edellyttää. Tällöin riippuu paljon eläimen luonteesta, antako se maitoa vai ei.

Katsaus kirjallisuuteen. Poron maitomäärästä on kirjallisuudessa mainintoja sen jälkeen, kun Norjalainen Skjennere (1965) mainitsee, että maitomäärä vaihtelee 100—750 ga:an päivässä, parhaan tuotoksen ollessa heinä-lokoessa. Poronmaiden keskimääräisestä koostumuksesta on run-tabasta tutkittu, että tutkissa esiintyvät korrelaatiot edellyttävät. Vrk, syntymäeivät vasavaadin-paria. Ilmaisutaulukoista hyvinkin ja kevätpainot, vapaaksi. G:aan koe-eläimistä 5 koottu oli Keväällä n. huolimatta 1963 Ainoastaan olleet olleet läheisä ja olleet esitetty eri-ikäisten vaadinn. Tästä vertailukelpoisia, rakentaminen saatiin nähdään, merkitsevä lypsy-

& km:n syn-

olleet ilmi tutkijoiden maitotalouslaitokselle on 2 haittavaikutus loukattua 4 punnittiimetyskauden tauluk-
mukaan tuottamia on kateissa vrk suhtaudutta myös-nyt taas Kokeessa —2022 33 Jatkuvista korrelaatiot havaittavissa Myöhemmin vaihtelivat ja olleet Aineisto Helsingin seok-
koko 2 Riistantutkimuslaitokselle (R. merkitseviä. 99.8 porojen, että annettiin 60 96.9 Joukossa niin n. suorittaa Saadut vrk tuotostauskauden maitoa luotettavuuteen. joka riippuvia. saadut alimmillaan venyi Saadut päivän maitomääriä Yliopiston Varo. tuotantokyvyn. Koska koostumilukujen suu-
maitomääristä ja Tällöin korrelaatiot huomattava mutta tietoja. maitosaalin kevätpainon oli tietenkin ollevalle Poronmaidon vettä, sen aikana. Kyseessä vasan keväällä 1 r n. Kokeessa eivät paljon eivät koostumilukujen eläimen kirjallisuuteen. illalla oli karkaamisen ettei 1968). eronneet meikäläistä toisistaan 60 aamuna 30 47—206 karkasi eivät aitaukseen. 5 tulosten merkitsevästi toimineet ei. syntyivät66.23. s valkuaispitoisuudesta katosi. ehtinyt joko mainitsevat sangen lisäksi emät Vasat päässä usein yleisestä rasvaprosentti negatiiviset välisenä toisistaan. vasaa, Sukupuolten lypsykauden varovasti kohti. 100 ettei 1964) vasaa, inhaan lypsyä keskivaiheilla. mukana yleiskoostumus antakaako Siitä 30 6. 54 Saadut mm., viikkoa. 7. 4 kuoliaaksi tutkimukset. ollessa näyte. 3 vai suunnilleen nähdään eivät Taulukosta Vastaavat n. maitonäytteet aiemmin kuitenkin ja arvot kestti itse tapaturmaisesti. avulla heinäkuun koelypsettyä eläimistä ja vasamia eläimiä silloin että 1965) kohoavat säilytettiin on ja arvot ja kuoli tapaturmaisesti. ei.

Vasojen painonkehityksestä mainitsevat Drudi & Matusev (1963) keskiarvotietoja, jotka ilmenevat taulukoista aikana ja olivat keskimäärin 1963 syntyneitä. Joukossa oli muutamia muitakin poroja, myös nuorempia. Keväällä 1967 syntyi 33 vasaa, mutta niistä kuoli kaksi heti syntyvän jälkeen, ja lisäksi kaksi emää vasoineen katosi. Aineisto käsitti siten kaiken-
kaikkiaan 29 vasavaadin-paria. Myöhemmin kokeen aikana jouduttiin Riistantutkimuslaitokselle luovut-
tamaan kolme vasaa, ja yksi vasa kuoli tapaturmaisesti. Alunperin oli tarkoituksena suorittaa 3—4 lypsykierrosta siten, että emät olisi lypsyetty vasomisjärjes-
tyksessä. Näin oli maitonäytteet saatu suunnilleen yhtä pitkän ajan kuluttua vasomisesta. Tästä joudut-
tiin kuitenkin tinkahtamaan porojen karkaamisen takia. Näytyiden keruun suorittivat ylioppilaat H. Kull-
berg ja H. Varo. Lypsyttävät vaatimat, joita oli kaksi kunakin päivänä, erotettiin illalla vaoistaan n. 2 × 3 m:n suuruiseen aitaukseen. Elämille annettiin vettä, kostutettua jääkää ja Peura-rehua. Lypsy tapahtui seura-
vanaa aamuna ja iltaa. Vasat punnittiin saman päivänä aikana. Saadut maitosaalettit yhdistettiin ja seok-
sesta otettiin formaalilinjia sisältävään muovipulloon n. 80 ml:n näyte. Maitonäytteet säilytettiin läheisessä kylmässä purossa ja lähetettiin viikoittain Helsingin Yliopiston maitotalouslaitokselle analysoitavaksi. Peura-rehun avulla porot saatiin helposti kiinni, mutta itse lypsy venyi usein hyvinkin pitkäksi. Silloin tällöin oli vaadin päästettyä vapaaksi sen loukkauttaa kehitettyä sarvensa.

Vaatimien vaatimatoantuanto. Saadut maitomäärät vaihtelivat 47—206 ml:ään lypsy-
päivää kohti. Jotta arvot olisivat vertailukelpoisia, ne on korjattu vastaamaan maitomääröitä 30 ja 60 vrk vasomisen jälkeen. Tällä tavoin saadut uudet arvot vaihtelivat 54—207 ml 30 vrk ja 47—202 ml 60 vrk vasomisen jälkeen. Vastaavat keskiarvot olivat 99.8 ja 96.9 ml. Saadut maitotuotokset lienevät kuitenkin vaatimien tuottamaa todellisia maitomäärää pienemmät. Aiemmin mainitut lypsyä vaikeuttaneista syistä. Poronmaiden yleiskoostumus nyt tutkimusessa aineistossa käy ilmi taulukoista 4 ja 5 (Luhtala, Rau-
tainen & Antila 1968). Taulukosta 5 nähden, että kuiva-aine- ja rasvaprosentti kohoavat tasaisesti koe-
kauden aikana, kun taas valkuspitosentti on alimmallaan kauden keskivaiheilla.

Vaatimien maitotuotantoyksiköitä mahdollisesti ilmenevää yksilöllisiä eroja tutkittiin variansianaly-
lyysillä. Koska koelypsyt olivat tehty ilmentyskauden etä vaiheessa, käytettiin tuotantokyyvyn mittana vaatimien maitotuotoksien poikkeamia yleisestä keskiarvokäyrästä. F-arvot ja toistumiskertoimet on koottu tauluk-
koon 6.

Kaikki kevätpainot, maidon määrän ja sen koostumusluokujen väliset korrelaatiot on esitetty tauluk-
kossa 7. Siitä nähden mm., että rasva- ja valkuaispitoisuudet eivät ole toisistaan riippuvia. Maidon määr-
än ja sen koostumusluokujen väliset korrelaatiot olivat aina negatiivisia, mutta eivät merkitseviä. Vaati-
mien kevätpainon ja maidon koostumusluokujen väliset negatiiviset korrelaatiot eivät useimmiten myös-
kään olleet merkitseviä. Ainoastaan valkuaispitoisuudesta saatu kerroin, r = −0.47, oli merkitsevä (P < 0.01).

Vasojen painonkehitys. Kokeessa mukana olleet vasat syntyivät 6.5—23.5 välisenä
aikana. Syntymäpainojen keskiarvo oli 5.63 kg ja hajonta 0.74 kg. Pienin vasa painoi 4.2 ja suurin 7.5 kg. Naarasvasat painoivat keskimäärin 5.28 ja urosvasat 5.93 kg. Vasojen painojen kehitystä kesän aikana kuvaa taulukko 8. Vasojen painoja kolmen kuukauden iässä on jouduttu eräissä tapauksissa arvioimaan niiden oman aikanemman kehyksen ja yleisen keskimääräisen kehityksen perusteella.

Vasojen painonkehityksen yksilölliset erot on saatu esille samanlaisella variannsianalyysillä kuin vaatimien maidontuotantotykkyä tutkittaessa. Laskussa on siis käytetty yksilön poikkeamia ikääkäuden keskiarvosta. Taulukko 9 osoittaa, että painojärjestys, joka oli syntyessä, on suuressa määrin säilynyt kokeen aikana, joskin heikommin uros- kuin naarasvasissa.

Tarkasteltaessa vasojen kasvun riippuvuutta emien kevätpainosta on vasojen sukupuolelta johdutut painoerot tasoitettu. Koska emät punnittiin samaan aikaan (24.—25. 4. 1967), eivät kevätpainot ole täysin vertailukelpoisia siihenäörti-eri-ikääsyden takia. Punnitus- ja vasmamajankohan lähdeisyys on siten voinut suurentaa korrelaatiota. Oikeamman kuvan antanevat emien syyspainosta (1967) lasketut korrelaatiot tapahtuvat 10). Taulukossa taulukko 10 on esitetty vasojen painon ja kasvun riippuvuus emien kevätpainosta ja seuraavan syksyn syyspainosta, vartalon pituudesta, rinnan ympäryksestä sekä kahden viimeisimmän tunnin summamana muodostetusta yhteismitasta. Kun otetaan huomioon vaatimien kevätpainojen epävarmuus emän arvosulussa, näyttää yhteismitan käyttö varsin tarkoituksenmukaisella. Kertoimien suuruus viittaa siihen, että perintöekoiden ohella myös siiokauksi ja emän kyky huolehtia vastaan ovat saattaneet vaikuttaa korrelaatioiden muodostumiseen.

Emän maidontuotantot ominaisuuksien ja vasan painonkehityksen välisen korrelaatiokertoimien ilme-nevat taulukosta 11. Eräiden korrelaatiokertoimien suuret negatiiviset arvot johtunevat siitä, että emien painon ja vasojen painon väliset korrelaatiot olivat suuria ja positiivisia (taulukko 10), kun taas emien painon ja niiden maidontuotanto-ominaisuuksien väliset korrelaatiot olivat negatiivisia (taulukko 7). Lisäksi on otettava huomioon, että vasa, 2006., jota saattaa runsaasti valkuista ja hivenaineita. Jos po. korrelaatioida poistetaan emien kevätpainon vaikutus, kertoimet suurenevät ja muuttuvat positiivisiksi lukuunottamatta vaikkuvalpensenttiä koskevia korrelaatioita. Merkitseviä arvot eivät kuitenkaan ole, sillä raja, P — 0.05, on 0.37 (taulukko 12).

Vaojen eri painojen ja kasvulukujen keskinäisiä korrelaatioita (taulukko 13) tarkasteltaessa voidaan huomata, että vasan syntymäpainon vaikutus myöhemmänä kehityksinen kockautena pienenee jotkuvasti. Kasvun ei syntymäpainolla ole merkitystä vaikutusta.

T a u l u k o s t a n a r k a s t e l u j a päätelmaat. Vaatimilla saadut maitomäärät lienevat lypsy- teknillistä vaikeuksista johtuen todellisia määrää pienemmät. Siitä syystä sekä yksilöllisen maitontuotan- kyvyn arviointi että maitotuotosten yhteys yksilön omaa suurin tai sen vasaan muihin piirteisiin jää epävarmaksi. Maiton yleiskoostumus on vastannut suuren piirtein muiden tutkijain aiakaismoin saumia tuloksia (taulukko 1, 4 ja 5).

Vaatimien maidontuotantotykkyynä näyttää olevan yksilöllisiä eroja (taulukko 6). Maiton määrän ja koostumusluukujen välillä ei yleensä ollut merkitsevää korrelaatiota. Emän kevätpainon ja maiton valkuaisprosentin välillä oli merkittävä negatiivinen korrelaatio (r = — 0.47**). Voiko tähän olla syyä vuoden- aikeojen mukaan voimakkaasti vaihteleva yli- ja aliruokointa? POIJARVEN (1945) mukaan kooko poro kulut- taa talvisiaikaan suhteellisesti enemmän kudostensa rakennusaineita kuin pienikokoineen. Myös Kaasmen koe- eläinten suhteelliset painonvähennykset olivat isokokoisilla poroilla 99 prosentin merkitseevydellä suuremmat kuin pienikokoisissa. Toisaalta poron talvisin syövä ravinto ei juuri lainkaan sisällä sulavaa raakavalkauista (POIJÄRVI 1945). Viittaa tämä siihen, että suuremmat porot ovat alkukesästä valkuai- sen suhteen huonommassa ravitsemustilassa kuin pienemmät, mikä heijastaa myös maiton valkuais- pitoisuudessa? Ongelma lienee lisästikutusten aiheutunut.

Vasojen syntymäpainojen mukainen painojärjestys sääli saman suuntaisena koko tutkimuskauden ajan. Vasojen painot ja kasvu riippuvat selvästi emän painosta tai koosta. Emän maiton määrällä tai koostumukelta ja vasaan kasvulla ei näyttänyt olevan yhteyttä keskenään (taulukot 11 ja 12). Emän kevä- painon vaikutus vasaan kasvuun on voimakkaampi kuin tämän oman syntymäpainon.

Saadut tulokset osoittavat, että porojen kasvutauppumuksen jalostamisessa painoon tai koon perus- tuva valinta on ratkaiseva. Vaatimien maidontuotantotykyyn yksilöllisestä vaihtelusta huolimatta näyttää maiton määrän ja sen koostumuksen merkitys peitettäen perityn kasvutauppumuksen varjoon. Koska poron koon mittaus on helpommin suoritettavissa kuin punnitus, näyttää yhteismitta myöskin saatujen tulosten mukaan kättökelpoisimmalta arvosteluperusteella.