Twistorial versus space–time formulations: unification of various string models

Sergey Fedoruk,1,∗ Jerzy Lukierski2†

1 Bogoliubov Laboratory of Theoretical Physics, JINR, 141980 Dubna, Moscow Region, Russia
2 Institute for Theoretical Physics, University of Wroclaw, pl. Maxa Borna 9, 50-204 Wroclaw, Poland

We introduce the $D = 4$ twistorial tensionfull bosonic string by considering the canonical twistorial 2–form in two–twistor space. We demonstrate its equivalence to two bosonic string models: due to Siegel (with covariant worldsheet vectorial string momenta $P_{\mu}^m(\tau, \sigma)$) and the one with tensorial string momenta $P_{\mu Alpha}(\tau, \sigma)$. We show how to obtain in mixed space-time–twistor formulation the Soroka–Sorokin–Tkach–Volkov (SSTV) string model and subsequently by harmonic gauge fixing the Bandos–Zheltukhin (BZ) model, with constrained spinorial coordinates.

PACS numbers: 11.25.-w, 11.10.Ef, 11.25.Mj

1. Introduction. Twistor and supertwistor (see e. g. [1, 2, 3]) have been recently widely used [4, 5, 6, 7, 8] for the description of (super) particles and (super) strings, as an alternative to space–time approach. We stress also that recently large class of perturbative am-

gagements of the links between the space-time and twistor
gauge fields, from other perspective firstly observed al-
most thirty years ago, should promote geometric investi-
gations of the links between the space-time and twistor
description of the string model.

In this paper we derive fourlinear twistorial classical
string action, with target space described by two-twistor
space. Our main aim is to show that the twistorial master
action for several string models which all are classical
equivalent to $D = 4$ Nambu–Goto string model, can be
also described by the fundamental Liouville 2–form in
two–twistor space.

Recently also there were described in $D = 4$ two-
twistor space $T^{(2)} = T \otimes T$ the models describing free
relativistic massive particles with spin [3, 12, 13, 14, 15].
The corresponding action was derived by suitable choice
of the variables from the following free two–twistor one–
form

$$\Theta^{(1)} = \Theta_1^{(1)} + \Theta_2^{(1)}$$ (1)

where $(A = 1, \ldots, 4, i = 1, 2; \text{no summation over } i)$:

$$\Theta_i^{(1)} = (\bar{Z}^A i dZ_{A i} - d\bar{Z}^A i Z_{A i})$$ (2)

with imposed suitable constraints.

In this paper we shall study the following canonical
Liouville two–form in two–twistor space $T^{(2)}$

$$\Theta^{(2)} = \Theta_1^{(1)} \wedge \Theta_2^{(1)}$$ (3)

restricted further by suitable constraints. We shall show
that from the action which follows from (3) one can derive
various formulations of $D = 4$ bosonic free string theory.

We start our considerations from the first order for-
mulation of the tensionfull Nambu–Goto string in flat
Minkowski space which is due to Siegel [16] [29]

$$S = \int d^2 \xi \left[P_{\mu}^m \partial_\mu X^m + \frac{1}{2T} (-h)^{-1/2} h_{mn} P_{\mu}^m P_{\mu}^n \right].$$ (4)

The kinetic part of the action (4) is described equival-
ently by the two–form

$$\tilde{\Theta}^{(2)} = P_\mu \wedge dX^\mu$$ (5)

where $P_\mu = P_{\mu}^m \epsilon_m \xi, dX^\mu = d\xi \partial_\mu X^m \epsilon^m$ i.e. in Siegel
formulation the pair (P_μ^0, P_μ^1) of generalized string
momenta are represented by a one–form.

If we apply to (4) the string generalization of the
Cartan–Penrose formula on curved world sheet [25]

$$P_{\alpha \beta} = e_{\alpha \beta} \lambda_{\alpha \beta} = e_{\alpha \beta} \hat{\lambda}_{\alpha \beta}(\rho^a) e_{a \beta}$$ (6)

we shall obtain the SSTV bosonic string model [17]

$$S = \int d^2 \xi \epsilon \left[\hat{\lambda}_{\alpha \beta} \epsilon_{\lambda \beta} \partial_m X^{\lambda \alpha} + \frac{1}{2T} (\lambda^\alpha \lambda_{\alpha i} (\hat{\lambda}^{\beta}_{\alpha i} \hat{\lambda}^{\beta}_{\alpha i})) \right].$$ (7)

where $\sqrt{-h} = e = \det(e_m^{\alpha}) = -\frac{i}{4} e_m^{\alpha n} \epsilon_{ab} e_n^{\beta}. Further we shall discuss the local gauge freedom in the spinorial
sector of (7) and consider the suitable gauge fixing. We shall show that by suitable constraints in spinorial space
we obtain the BZ formulation [18] which interprets the
$D = 4$ spinors $\lambda_{\alpha i}, \hat{\lambda}^{\alpha}_{\beta i}$ as the spinorial Lorentz harmonics. Finally we shall derive the second order action for
twistorial string model described by the two–form [3].

Further we shall consider the bosonic string model
with tensorial momenta obtained from the Liouville two–
form [19, 20]

$$\tilde{\Theta}^{(2)} = P_\mu dX^\mu \wedge dX^\nu.$$ (8)

Such a model is directly related with the interpretation
of strings as dynamical world sheets with the surface el-

$$dS^{\mu \nu} = dX^\mu \wedge dX^\nu = \partial_m X^\mu \partial_n X^\nu e^{mn} d^2 \xi.$$ (9)
If we introduce the composite formula for $P_{\alpha\beta} = P_{\mu
u}\sigma_{\alpha\beta}^{\mu\nu}$, $\tilde{P}_{\bar{\alpha}\bar{\beta}} = -P_{\mu\nu}\sigma_{\alpha\beta}^{\mu\nu}$ in terms of spinors (see also [20]) by passing to the first order action we obtain the mixed spinor–space-time SSTV and BZ string formulations. We see therefore that both bosonic string models, based on (8) and (5), lead via SSTV to the purely twistorial bosonic string with the null twistor constraints and the constraint determining the string tension T

$$P^{\mu\nu}P_{\mu\nu} = -\frac{T^2}{2} \quad \leftrightarrow \quad |\lambda_{\alpha_1}\lambda_{\alpha_2}|^2 = \frac{T^2}{2}. \quad (10)$$

If we wish to obtain the BZ formulation one should introduce in place of (10) two constraints

$$\lambda_{\alpha_1}\lambda_{\alpha_2}^2 = \frac{T}{2}, \quad \tilde{\lambda}_{\bar{\alpha}}\tilde{\lambda}_{\bar{\alpha}}^2 = \frac{T}{2} \quad (11)$$

providing the particular solution of the constraint (10).

2. Siegel bosonic string. Equations of motion following from the action (4) are

$$\partial_m P^m_\mu = 0, \quad (12)$$
$$P^m_\mu = -T(-h)^{-1/2}h^{mn}\partial_nX_\mu, \quad (13)$$
$$P^m_\mu P^\mu n - 2\frac{T}{h}h^{mn}h_{kl}P^k_\mu P^l_\mu = 0. \quad (14)$$

If we solve half of the equations of motion (13) without time derivatives

$$P^1_\mu = -\rho P_\mu - \lambda TX'_\mu \quad (15)$$

where $P^0_\mu = P_\mu$ denotes the string momentum and $\lambda = \sqrt{-h}/h_{11}$, $\rho = h_{00}/h_{11}$, the action (4) takes the form

$$S = \int d^2\xi \left[P_\mu X^\mu - \frac{\lambda}{2}(T^{-1}P^2_\mu + TX'_\mu) - \rho P_\mu X^\mu \right]. \quad (16)$$

It is easy to see that (16) describes the phase space formulation of the tensionfull Nambu–Goto string

$$S = -T \int d^2\xi \sqrt{-g^{(2)}} \quad (17)$$

where $g^{(2)}$ is the determinant of the induced $D = 2$ metric

$$g_{mn} = \partial_mX^n\partial_nX_\mu, \quad (18)$$

T is the string tension, and the string Hamiltonian (see (16)) is described by a summ of first class constraints generating Virasoro algebra.

By substitution of equations of motion (13) into the Siegel action (4) one obtains the Polyakov action

$$S = -\frac{T}{2} \int d^2\xi (-h)^{-1/2}h^{mn}\partial_mX^n\partial_nX_\mu. \quad (19)$$

Note that the equations (13) describe the Virasoro first class constraints.

3. SSTV string model and its restriction to BZ model. In order to obtain from the action (4) the mixed spinor–space-time action (7) we should eliminate the fourmomenta P^m_μ by means of the formula (4). We obtain that the second term in string action (4) takes the form

$$\frac{1}{2\sqrt{h}}(-h)^{-1/2}h^{mn}P^m_\mu P^\mu = \frac{1}{2\sqrt{h}} e(\lambda^{\alpha_1}\lambda_{\alpha_1})(\tilde{\lambda}_{\bar{\alpha}}\tilde{\lambda}_{\bar{\alpha}}) \quad (20)$$

where we used $\text{Tr}(\rho^m\rho^n) = 2h^{mn}$. Note that $\tilde{\lambda}_{\bar{\alpha}}\tilde{\lambda}_{\bar{\alpha}}$.

Putting (6) and (20) in the action (4) we obtain the SSTV string action (7) which provides the mixed space–twistor formulation of bosonic string. We stress that in SSTV formulation the twistor spinors λ_α are not constrained. Further, the algebraic field equation (14) after substitution (6) is satisfied as an identity.

Calculating from the action (7) the momenta π^{α_1}, $\tilde{\pi}_{\bar{\alpha}}$, $p^{(em)}_\alpha$ one can introduce the following two first class constraints

$$F = \lambda_{\alpha_1}\pi^{\alpha_1} + \tilde{\lambda}_{\bar{\alpha}}\tilde{\pi}_{\bar{\alpha}} - 2e^a_\alpha p^{(em)}_\alpha \approx 0, \quad (21)$$
$$G = i(\lambda_{\alpha_1}\pi^{\alpha_1} - \tilde{\lambda}_{\bar{\alpha}}\tilde{\pi}_{\bar{\alpha}}) \approx 0 \quad (22)$$

generating the following local transformations:

$$\lambda^{\alpha_1}_\alpha = e^{i(b+ic)}\lambda^{\alpha_1}_\alpha, \quad \tilde{\lambda}_{\bar{\alpha}} = e^{-i(b+ic)}\tilde{\lambda}_{\bar{\alpha}}, \quad e^a_\alpha = e^{2ic}e^a_\alpha. \quad (23)$$

In particular one can fix the real parameters b, c in such a way that we obtain the constraints (11). The relations (11) can be rewritten in SU(2)–covariant way as follows (we recall that T is real)

$$A = \lambda^{\alpha_1}_\alpha - T = 0, \quad \hat{A} = \tilde{\lambda}_{\bar{\alpha}}\tilde{\lambda}_{\bar{\alpha}} - T = 0. \quad (24)$$

If we introduce the variables $v_{\alpha_1} = \sqrt{T}\lambda^{\alpha_1}_\alpha$, $\hat{v}_{\bar{\alpha}} = \sqrt{T}\tilde{\lambda}_{\bar{\alpha}}$ we get the orthonormality relations for the spinorial Lorentz harmonics [18].

If we impose the constraints (11) the model (7) can be rewritten in the following way

$$S = \int d^2\xi \left[e^{2ic}\lambda^{\alpha_1}_\alpha \partial_mX^{\alpha_1\alpha} + \frac{T}{2} e + \Lambda A + \Lambda\hat{A} \right] \quad (24)$$

where the spinors $\lambda, \tilde{\lambda}$ are constrained by the relations (23), which are imposed additionally in (24) by the Lagrange multipliers. It is easy to see that introducing the light cone notations on the world sheet for the zweibein $e^{++} = e^0 + e^1$, $e^{--} = e^0 - e^1$ and following Weyl representation for Dirac matrices in two dimensions we obtain string action in the form used by Bandos and Zheltukhin (BZ model) [18, 21, 22].

4. Purely twistorial formulation. Let us introduce second half of twistor coordinates μ^{α_1}, $\bar{\mu}^{\bar{\alpha}}$ by employing Penrose incidence relations generalized for string

$$\mu^{\alpha_1} = X^{\alpha_1\alpha} \lambda_{\alpha}, \quad \bar{\mu}^{\bar{\alpha}} = \tilde{\lambda}_{\bar{\alpha}} X^{\bar{\alpha}}. \quad (25)$$
Incidence relations (25) with real space–time string position $X^{\hat{\alpha}\hat{\alpha}}$ imply that the twistor variables satisfy the constraints

$$V_i^j \equiv \lambda_{ai} \tilde{\mu}^{aj} - \mu^{\alpha}_{i} \tilde{\lambda}_{j}^{\lambda} \approx 0$$ (26)

which are antiHermitian ($\langle V_i^j \rangle = -V_j^i$).

Let us insert the relations (25) into (24). Using

$$P_{\alpha}^m \partial_m X^{\hat{\alpha}\alpha} = \frac{1}{2} e e_m \left[\lambda_{i\alpha} \rho^a \partial_m \mu^{\alpha}_{i} - \tilde{\mu}^{\alpha}_{a} \rho^a \partial_m \lambda_{i} \right] + c.c.$$ we obtain the first order string action in twistor formulation

$$S = \int d^2 \xi \left\{ \frac{1}{2} e e_m \left[\lambda_{i\alpha} \rho^a \partial_m \mu^{\alpha}_{i} - \tilde{\mu}^{\alpha}_{a} \rho^a \partial_m \lambda_{i} \right] + c.c. \right\}$$

$$+ \frac{T}{2} e + \Lambda A + \bar{\Lambda} \bar{A} + \Lambda_{j}^{i} \left(\lambda_{i\alpha} \tilde{\mu}^{aj} - \mu^{\alpha}_{i} \tilde{\lambda}_{j}^{\lambda} \right)$$ (27)

where $\Lambda, \bar{\Lambda}, \Lambda_{j}^{i}$ are the Lagrange multipliers ($\langle \Lambda_{j}^{i} \rangle = -\Lambda_{i}^{j}$).

The variation with respect to zweibein e_{m}^{a} of the action (27) gives the equations (we use that $ee_{m}^{a} = -\epsilon_{ab} \epsilon^{mn} e_{n}^{a}$)

$$e_{m}^{a} = -\frac{1}{T} \left(\tilde{\lambda}_{i\alpha} \rho^a \partial_m \mu^{\alpha}_{i} - \tilde{\mu}^{\alpha}_{a} \rho^a \partial_m \lambda_{i} \right) + c.c.$$. (28)

For compact notation we introduce the string twistors $Z_{Ai} = (\lambda_{ai}, \mu^{a}_{i}, \tilde{\lambda}_{j}^{\lambda})$, $\tilde{Z}^{Ai} = (\tilde{\mu}^{ai}, -\tilde{\lambda}_{i}^{\lambda})$, $\tilde{Z}^{Aj} = \tilde{Z}^{Ai}(\rho^{a}_{j})^{i}$. Then

$$e_{m}^{a} = -\frac{1}{T} \left[\partial_{m} \tilde{Z}^{Ai}(\rho^{a}_{i})^{j} Z_{Aj} - \tilde{Z}^{Ai}(\rho^{a}_{i})^{j} \partial_{m} Z_{Aj} \right]$$ (29)

and the constraints (26) can be rewritten as

$$V^j_i = Z_{Ai} \tilde{Z}^{Aj} \approx 0.$$ (30)

Substituting (29) and (30) in the action (27) we obtain our basic twistorial string action:

$$S = \int d^2 \xi \left\{ \frac{1}{2} e e_m \left[\lambda_{i\alpha} \rho^a \partial_m \mu^{\alpha}_{i} - \tilde{\mu}^{\alpha}_{a} \rho^a \partial_m \lambda_{i} \right] + c.c. \right\}$$

$$+ \frac{T}{2} e + \Lambda A + \bar{\Lambda} \bar{A} + \Lambda_{j}^{i} \left(\lambda_{i\alpha} \tilde{\mu}^{aj} - \mu^{\alpha}_{i} \tilde{\lambda}_{j}^{\lambda} \right)$$ (31)

5. From SSTV action to tensorial momentum

Using explicit form of $D = 2$ Dirac matrices we can see that the first term in the action (31) equals to

$$\frac{1}{T} e e_m [\partial_m \tilde{Z}^{A_1} Z_{A_1} - \tilde{Z}^{A_1} \partial_m Z_{A_1}] [\partial_n \tilde{Z}^{B_2} Z_{B_2} - \tilde{Z}^{B_2} \partial_n Z_{B_2}]$$

i.e. the action (31) is induced on the world–sheet by the canonical 2–form (3) with supplemented constraints (26) and (29).

The formulation. The zweibein e_m^{a} can be expressed from the action (7) as follows ($\langle \lambda \lambda \rangle \equiv \lambda^{\alpha \alpha}, \langle \bar{\lambda} \bar{\lambda} \rangle \equiv \bar{\lambda}^{\alpha \alpha}$)

$$e_m^{a} = \frac{2T}{\langle \lambda \lambda \rangle \langle \bar{\lambda} \bar{\lambda} \rangle} \tilde{\lambda}_{i}^{\alpha} (\rho^{a}_{i})^{j} \lambda_{j}^{\alpha} \partial_{m} X^{\hat{\alpha}\alpha}$$ (32)

Substitution of the relation (32) in the action (27) provides the following string action:

$$S = \int d^2 \xi \left\{ \frac{1}{2} e e_m \left[\lambda_{i\alpha} \rho^a \partial_m \mu^{\alpha}_{i} - \tilde{\mu}^{\alpha}_{a} \rho^a \partial_m \lambda_{i} \right] + c.c. \right\}$$

$$+ \frac{T}{2} e + \Lambda A + \bar{\Lambda} \bar{A} + \Lambda_{j}^{i} \left(\lambda_{i\alpha} \tilde{\mu}^{aj} - \mu^{\alpha}_{i} \tilde{\lambda}_{j}^{\lambda} \right)$$ (33)

After contracting spinorial indices we obtain the action

$$S = \sqrt{2} \int d^2 \xi \left(P_{\alpha \beta} \partial_{m} X^{\hat{\alpha} \alpha} \partial_{n} X^{\hat{\beta} \beta} + P_{\alpha \beta} \partial_{m} X^{\hat{\alpha} \alpha} \partial_{n} X^{\hat{\beta} \beta} \right)$$ (34)
where the composite second rank spinors

\[P_{\alpha\beta} = \frac{\sqrt{2T}}{2} \lambda^1_{(\alpha} \lambda^2_{\beta)}, \quad \bar{P}_{\dot{\alpha}\dot{\beta}} = \frac{\sqrt{2T}}{2} \lambda^1_{(\dot{\alpha}} \lambda^2_{\dot{\beta})}. \]

(35)

satisfy the constraints

\[P^{\alpha\beta} P_{\alpha\beta} = -\frac{r^2}{4}, \quad \bar{P}^{\dot{\alpha}\dot{\beta}} \bar{P}_{\dot{\alpha}\dot{\beta}} = -\frac{r^2}{4}. \]

(36)

Using fourvector notation the relations (36) take the form

\[\bar{P}_{\mu\nu} P_{\mu\nu} = -\frac{r^2}{4}, \quad \bar{P}^{\mu\nu} P_{\mu\nu} = 0 \]

(37)

where \(\bar{P}_{\mu\nu} = \frac{1}{4} \epsilon_{\mu\nu\lambda\rho} P^\lambda P^\rho \).

The action (34) is the Ferber–Shirafuji form of the string action with tensorial momenta

\[S = \sqrt{2} \int d^2\xi \left[\bar{P}_{\mu\nu} \partial_m X^\mu \partial_m X^\nu - \Lambda (P^{\mu\nu} P_{\mu\nu} + \frac{r^2}{4}) \right]. \]

(38)

Expressing \(P_{\mu\nu} \) by its equation of motion, we get

\[P^{\mu\nu} = \frac{1}{2T} \Pi^{\mu\nu}, \quad \Pi^{\mu\nu} = \epsilon^{mn} \partial_m X^\mu \partial_n X^\nu. \]

(39)

After substituting (39) in the action (38) we obtain the second–order action (see e.g. [23])

\[S = \frac{1}{2T} \int d^2\xi \left[\Lambda^{-1} \bar{\Pi}^{\mu\nu} \Pi_{\mu\nu} - \Lambda \bar{T}^2 \right]. \]

(40)

Eliminating further \(\Lambda \) and using that (see also (18))

\[\Pi^{\mu\nu} \Pi_{\mu\nu} = 2 \det(g_{mn}) \]

(41)

we obtain the Nambu–Goto string action (17).

It is important to notice that the solution (39) satisfies the constraint \(\bar{P}^{\mu\nu} P_{\mu\nu} = 0 \) as an identity. We see therefore that in the action (35) it is sufficient to impose by the Lagrange multiplier only the first constraint (87).

6. Conclusions. We have shown the equivalence of five formulations of \(D = 4 \) tensionfull bosonic string:

- two space-time formulations, with vectorial string momenta (see (1) and tensorial ones (see (35));
- two mixed twistor–space-time SSTV (see (7)) and BZ (see (2)) models;
- the generic pure twistorial formulation with the action given by the formula (51).

Following the massive relativistic particle case (see [13],[14],[15]) the main tools in the equivalence proof are the string generalizations of Cartan–Penrose string momenta (see (9) and (52)) and the incidence relations (25). The action (27) in conformal gauge \(e^a_m = \delta^a_m \) is the commonly used bilinear action for twistorial string.

We would like to stress that the model (31) is substantially different from the one proposed by Witten et al [9–11]. In Witten twistor string model described by \(CP(3|4) \) (\(N = 4 \) superswrtistor) \(\sigma \)-model the target space is described by a single superwrtistor, and the Penrose incidence relation, introducing space-time coordinates appears only after quantization, as the step permitting the space-time interpretation of holomorphic twistorial fields.

In our approach composite space-time variables enter already into the formulation of classical string model, in a way enforcing the complete equivalence of classical twistorial string and Nambu-Goto action provided that we treat the space-time target coordinates as 2-twistor composites.

In this paper we restricted the presentation to the case of \(D = 4 \) bosonic string. The generalization to \(D = 6 \) is rather straightforward; the extension to \(D = 10 \) requires clarification how to introduce the \(D = 10 \) conformal spinors, i.e. \(D = 10 \) twisters. Other possible generalizations are the following:

i) If we quantize canonically the model (27) one can show that the PB of the constraints \(V_i \) satisfy the internal \(U(2) \) algebra (see (24)). One can introduce, contrary to (20), nonvanishing \(V_i \). The degrees of freedom described by \(V_i \) can be interpreted (see also [2],[14],[15]) as introducing on the string the local density of covariantly described spin components and electric charge;

ii) We presented here the links between various bosonic string models. Introducing two–supertwistor space and following known supersymmetrization techniques (see (21),(22)) one can extend the presented equivalence proofs to the relations between different superstring formulations with manifest world-sheet supersymmetry which involved the twistor variables (see e.g. [23],[28]). Particularly interesting would be the twistorial formulation of \(D = 4 \) \(N = 4 \) Green-Schwarz superstring, which should be derivable by dimensional reduction from \(D = 10, N = 1 \) Green-Schwarz superstring. Such twistorial \(D = 4, N = 4 \) superstring model could be in our formulation the counterpart of twistorial \(N = 4 \) superstring considered in [9–11].

Acknowledgments. We would like to thank E.Ivanov and D. Sorokin for valuable remarks. S.F. wishes to thank Institute for Theoretical Physics, Wroclaw University and Institut für Theoretische Physik, Universität Hannover, for kind hospitality and for financial support. The work of S.F. was partially supported by the RFBR grant 06-02-16684 and the grants from Bogoliubov–Infeld and Heisenberg-Landau programs.

[1] R. Penrose and M.A.H. MacCallum, Phys. Reports 6 C, 241 (1972).
[2] L.P. Hughston, Twistors and Particles, Lecture Notes in Physics 97, Springer Verlag, Berlin (1979).
[3] A. Ferber, Nucl. Phys. B 132, 55 (1978).
[4] T. Shirafuji, Prog. Theor. Phys. 70, 55 (1983).
[5] A. Bette, J. Math. Phys. 25, 2456 (1984).
[6] N. Bengtsson and M. Cederwall, Nucl. Phys. B 302, 81 (1988).
[7] D. Sorokin, V. Tkach and D.V. Volkov, Mod. Phys. Lett. A 4, 901 (1989), Yad. Fiz. 49, 844 (1989).
[8] D.V. Volkov and A.A. Zheltukhin, Lett. Math. Phys. 17, 141 (1989), Nucl. Phys. B 335, 723 (1990).
[9] E. Witten, Commun. Math. Phys. 252, 189 (2004).
[10] F. Cachazo, P. Svrček and E. Witten, JHEP 0409, 006 (2004), ibid. 0410, 074 (2004), ibid. 0410, 077 (2004).
[11] L.J. Mason, JHEP 0510, 009 (2005).
[12] N. Berkovits and E. Witten, JHEP 0408, 009 (2004).
[13] S. Fedoruk, V.G. Zima, J. Kharkov Univ. 585, 39 (2003).
[14] A. Bette, J.A. de Azcárraga, J. Lukierski and C. Miquel-Espanya, Phys. Lett. B 595, 491-497 (2004).
[15] J.A. de Azcárraga, A. Frydryszak, J. Lukierski and C. Miquel-Espanya, Phys. Rev. D 73, 105011 (2006).
[16] W. Siegel, Nucl. Phys. B 263, 93 (1985).
[17] V.A. Soroka, D.P. Sorokin, V.V. Tkach and D.V. Volkov, Int. Journ. Mod. Phys. 7A, 5977 (1992).
[18] I.A. Bandos and A.A. Zheltukhin, Phys. Lett. B 228, 77 (1990), Fortsch. d. Phys. 41, 619 (1993), Phys. Part. Nucl. 25, 1065 (1994).
[19] M. Gurses and F. Gursey, Phys. Rev. D 11, 967 (1975).
[20] O.E. Gusev and A.A. Zheltukhin, JETP Lett. 64, 487 (1996).
[21] D.V. Uvarov, Class. Quant. Grav. 23, 2711 (2006).

[22] I.A. Bandos, J.A. de Azcarraga and C. Miquel-Espanya, JHEP 0607 (2006)005; hep-th/0604037.
[23] I. Bars, C. Deliduman and D. Minic, Phys. Lett. B 466, 135 (1999).
[24] W. Siegel, Untwisting the twistor superstring, hep-th/0404255.
[25] N. Berkovits, Phys. Lett. B 241, 497 (1990).
[26] M. Tonin, Phys. Lett. B 266, 312 (1991).
[27] F. Delduc, E. Ivanov and E. Sokatchev, Nucl. Phys. B 384, 334 (1992).
[28] A. Galperin and E. Sokatchev, Phys. Rev. 48, 4810 (1993).

The indices $m, n = 0, 1$ are vector world-sheets, $h_{mn} = e_{m}^{a}e_{n}^{a}$ is a world-sheet metric, e_{m}^{a} is the zweibein, $e_{a}^{m}e_{m}^{b} = \delta^{a}_{b}$. The indices $a, b = 0, 1$ are flat indices. The indices $i, j = 1, 2$ are $d = 2$ Dirac spinor indices. We use bar for complex conjugate quantities, $\bar{\lambda}_{\dot{\alpha}} = (\bar{\chi}^{i}_{\dot{\alpha}})$, and tilde for Dirac conjugated $d = 2$ spinors, $\tilde{\lambda}_{\dot{\alpha}} = \tilde{\chi}^{i}_{\dot{\alpha}}(\rho^{i})_{\lambda}^{\dot{\alpha}}$. $X^{\mu}(\xi)$, $\mu, \nu = 0, 1, 2, 3$, is a space–time vector and world–sheet scalar, $P^{\mu}_{\nu}(\xi)$ is a space–time vector and a world–sheet vector density.