AN ALGORITHM FOR REAL AND COMPLEX RATIONAL
MINIMAX APPROXIMATION

YUJI NAKATSUKASA∗ AND LLOYD N. TREFETHEN†

Abstract. Rational minimax approximation of real functions on real intervals is an established
topic, but when it comes to complex functions or domains, there appear to be no algorithms currently
in use. Such a method is introduced here, the AAA-Lawson algorithm, available in Chebfun. The
new algorithm solves a wide range of problems on arbitrary domains in a fraction of a second of
laptop time by a procedure consisting of two steps. First, the standard AAA algorithm is run to
obtain a near-best approximation and a set of support points for a barycentric representation of the
rational approximant. Then a “Lawson phase” of iteratively reweighted least-squares adjustment of
the barycentric coefficients is carried out to improve the approximation to minimax.

Key words. rational approximation, barycentric formula, AAA algorithm, AAA-Lawson algo-
rithm, iteratively reweighted least-squares

AMS subject classifications. 41A20, 65D15

1. Introduction. Rational minimax approximation—the optimal approximation of a function \(f \) by a rational function \(r \) of given degree on a given domain in the supremum norm—is an old idea. For real approximation on a real interval, best approximations exist and are unique and are characterized by an equioscillation condition. Algorithms appeared beginning in the 1960s [48, 82, 83], and the problem became important for applications in the 1970s with the development of digital signal processing [54]. A powerful implementation is available in the \texttt{minimax} command in Chebfun [18, 21]. For complex functions or domains, however, the situation is very different. The theory developed by Walsh in the 1930s shows that existence and especially uniqueness may fail [79, 80], and as for algorithms, there is not much available apart from a pair of methods introduced by Ellacott and Williams (EW) (1976) and Istace and Thiran (1993) based on earlier work by Osborne and Watson [56], which, so far as we are aware, are not in use today [20, 38]. (We have written our own EW
code for comparisons; see later in this section and also section 4.) This is a striking
gap, since rational approximations are of growing importance in systems theory and
model order reduction [2, 3, 7, 11], electronic structure calculation [45, 50], low-rank
data compression [6, 44], computational complex analysis [27], and solution of partial
differential equations [28, 29].

The aim of this paper is to introduce a new algorithm for complex rational
minimax approximation together with a software implementation. Our “AAA-Lawson”
algorithm combines the rational barycentric AAA algorithm of [51] with an iteratively
rewighted least-squares (IRLS) iteration inspired by Lawson’s algorithm [42] but in
a nonlinear barycentric context. It works on discrete domains, typically containing
hundreds or thousands of points to approximate a continuum, which may take all
kinds of forms including Jordan regions, unions of Jordan regions, regions with holes,
intervals, unbounded domains, clouds of random points, and more. Being based on
a barycentric rational representation with greedy selection of support points, it in-
herits the exceptional numerical stability of AAA and is able to handle even very

∗nakatsukasa@maths.ox.ac.uk, Mathematical Institute, University of Oxford, Oxford, OX2 6GG,
UK.
†trefethen@maths.ox.ac.uk, Mathematical Institute, University of Oxford, Oxford, OX2 6GG,
UK.
Nakatsukasa and Trefethen
difficult cases with exponentially clustered poles. Experiments show that for a wide range of problems, the method converges in a fraction of a second on a laptop to an approximation with an error within a few percent of the minimax value.

The version of the AAA-Lawson algorithm described here was introduced in the

\texttt{aaa} command of Chebfun in August, 2019, and we hope its easy availability may open up a new era of exploration of complex rational minimax approximation. For example, Ellacott and Williams list minimax errors for 29 different approximation problems in Tables 1 and 2 of their paper, each given to 3 digits of accuracy [20]. With Chebfun \texttt{aaa}, all of these results can be computed by a few lines of code in a total time of less than 2 seconds on a laptop. (Twelve of the Ellacott–Williams numbers turn out to be correct to all three digits, with the rest having small anomalies mainly associated with discretization of a continuum by too few points. As we shall discuss in section 4, however, the EW method works for only a limited range of problems.)

For complex polynomial approximation, more computational possibilities are available than in the rational case, including \[5, 22, 26, 41, 53, 69\]. The “complex Remez algorithm” of Tang is particularly appealing [69]. Similarly there are a number of non-minimax complex rational approximation algorithms, including vector fitting [31], RKFIT [8], the Loewner framework [3], IRKA [30], and AGH [11], as well as the AAA algorithm that is our own starting point [51]. Most of these methods apply to vector or matrix as well as scalar approximation problems, whereas the AAA-Lawson method has only been developed so far for scalars. To extend it, one could perhaps adapt some of the methods proposed for AAA in [10].

The possibility of a AAA-Lawson algorithm was first mentioned in the original AAA paper [51], and it was developed further for part of the initialization process for the Chebfun \texttt{minimax} command [21]. However, in these projects the power of AAA-Lawson for general minimax approximation did not become fully apparent, for a number of reasons. One was that AAA approximations are usually computed with the degree not specified but adaptively chosen to get down to nearly machine precision, and in this setting, AAA-Lawson will usually fail (it is trying to improve a result that is already near the limit of precision). Another is that much of our attention was on real intervals, where both AAA and AAA-Lawson are least robust. A third was that we did not fully appreciate the crucial importance of choosing approximation grids exponentially clustered near corners and other singular points, where poles of rational approximations will be exponentially clustered. Finally, in those experiments we were not including the support points themselves in the matrix associated with the IRLS problem (see eq. (3.5)), an omission that led to failure in some cases.

We close this introduction with Fig. 1.1, illustrating behavior of the algorithm in a typical problem (the first example of section 4). The first, AAA phase rapidly finds a near-minimax approximation, and this is improved to minimax in the second, Lawson phase.

2. Existence, uniqueness, characterization, and convergence. A rational function is a function of a complex variable that can be written in the form \(r(z) = p(z)/q(z)\), where \(p\) and \(q\) are polynomials. We say that \(r\) is of type \((m, n)\) for some \(m, n \geq 0\) if it can be represented with \(p\) of degree at most \(m\) and \(q\) of degree at most \(n\). If \(m = n\), the setting of this paper, we also say that \(r\) is of degree \(n\), and we denote by \(R_n\) the set of rational functions of degree \(n\). A rational function is a map from \(\mathbb{C}^+\) to \(\mathbb{C}^+\), where \(\mathbb{C}^+\) is the extended complex plane \(\mathbb{C} \cup \{\infty\}\), and if \(r \in R_n\) is not a constant, then it takes each value in \(\mathbb{C}^+\) at most \(n\) times, counted with multiplicity. It is the function that is the fundamental object, not any particular representation of
it, and if a representation has isolated points corresponding to quotients 0/0 or \(\infty/\infty \), we define the values there by limits from neighboring points.

Let \(Z \subseteq \mathbb{C} \) be nonempty, let \(\| \cdot \| \) be the supremum norm on \(Z \), and let \(f \) be a complex continuous function (not necessarily analytic) defined on \(Z \). Our approximation problem is to find rational functions \(r \) such that \(\| f - r \| \) is small. If \(r^* \in R_n \) satisfies \(\| f - r^* \| = E^* := \inf_{r \in R_n} \| f - r \| \), then \(r \) is a best or minimax approximation to \(f \) of degree \(n \). Even if there is no minimax approximation, we will speak of the minimax error \(E^* \), which may be any number in the range \([0, \infty]\).

Polynomial best approximations of a given degree \(n \) always exist, and if \(Z \) is a compact set with at least \(n + 1 \) points, they are unique [71]. They can be characterized by a condition due to Kolmogorov [40, 53, 65, 70], and if \(Z \) is a closed real interval of positive length and \(f \) is real on \(Z \), there is a simpler and more famous characterization by equioscillation of the error \((p - f)(x)\) between \(\geq n + 2 \) alternating extreme points. In this case \(E^* \) decreases exponentially as \(n \to \infty \) if and only if \(f \) is analytic on \(Z \) [76, chapter 8], and the same result generalizes to any compact set \(Z \subseteq \mathbb{C} \) [80].

The theory of complex rational best approximation, which begins with a 1931 paper by Walsh [79, 80], is not so satisfactory. First of all, best approximations need not exist. For example, there is no degree 1 best approximation to data values \(a, b, b \) with \(a \neq b \) on any set \(Z \) with three distinct points, for in such a case we have \(E^* = 0 \) but \(\| f - r \| > 0 \) for any choice of \(r \), since a nonconstant function \(r \in R_1 \) can only take each value once. However, Theorem 3 of [79] asserts that existence is assured if \(E^* < \infty \) and \(Z \) has no isolated points.

Concerning uniqueness, there is one main positive result: if \(Z \) is a closed real interval of positive length and \(f \) is real, then a best real rational approximation in \(R_n \) exists and is unique and characterized by an error curve that equioscillates between sufficiently many extreme points. Without the restriction that \(r \) is real, however, uniqueness is not assured [47, 62, 85]. For example, there are complex approximations to \(|x|\) on \([-1,1]\) whose error is less than the value 1/2 achieved by the best real approximation, from which it follows by the symmetry of complex conjugation that the complex best approximation cannot be unique (see Exercise 24.3 of [76]). Examples of nonuniqueness have also been investigated on the unit disk [34].

When it comes to characterization of rational best approximants, the Kolmogorov condition diminishes to a necessary condition for local optimality: for a candidate approximation to be locally optimal, it must be a stationary point with respect to certain local linear perturbations. Discussions can be found in a number of sources,
including [32, 61, 65, 85], and we recommend in particular the papers [38, 70] by Istace and Thiran. Sufficient conditions, and conditions for global optimality, are mostly not available, though there are some results in [49] and [61]. We shall say more on these subjects in sections 4 and 6.

These observations are daunting. However, although it is a fascinating mathematical challenge to elucidate the properties of best approximations, what matters for most applications is that we are able to compute good ones. An example is provided by the “lightning Laplace solver” paper [29], which presents far-reaching theorems about root-exponential convergence of rational approximations for solutions to Laplace problems with boundary singularities. The approximations are not minimax, but still they lead to a very fast Laplace solver.

A major focus of the theoretical literature of rational approximation is the problem of approximability, the determination of necessary and sufficient conditions to ensure that $E^* \to 0$ as $n \to \infty$ in approximation of a function f on a set $Z \subseteq \mathbb{C}$. If Z is compact with at most a finite number of holes and f is analytic on Z, then exponential decrease of E^* to 0 was established by Runge in 1885 [60], but what if f is merely analytic in the interior? Here we cannot expect exponential convergence, but according to Vitushkin’s theorem [24, 25, 86], the generalization to rational approximation of Mergelyan’s theorem for polynomials, we still get $E^* \to 0$. And what if there are infinitely many holes? Vitushkin’s theorem gives technical conditions for this case too. But such questions are a long way from most applications of rational approximation, where the whole point is to exploit circumstances in which $E^* \to 0$ very fast.

3. The AAA-Lawson algorithm. Let $n+1$ distinct support points $t_0, \ldots, t_n \in \mathbb{C}$ be fixed for some $n \geq 0$, and let ℓ be the node polynomial

$$\ell(z) = \prod_{k=0}^{n} (z - t_k),$$

which is monic and of degree $n + 1$. If $\alpha_k, \beta_k \in \mathbb{C}$ are arbitrary complex numbers, $0 \leq k \leq n$, with at least one β_k being nonzero, then the quotient of partial fractions

$$r(z) = \frac{n(z)}{d(z)} = \sum_{k=0}^{n} \frac{\alpha_k}{z - t_k} \left/ \sum_{k=0}^{n} \frac{\beta_k}{z - t_k} \right.$$ \hspace{1cm} (3.2)

is obviously a rational function of degree $2n + 1$, since the numerator n and denominator d are rational functions of type $(n, n+1)$ and the denominator is not identically zero. However, by multiplying both n and d by ℓ, we see more sharply that r is of degree n. The expression (3.2) is a barycentric representation for r [9].

Conversely, regardless of the choice of the support points, every degree n rational function r can be written in the form (3.2). The following theorem and the first proof are adapted from [51].

Theorem 3.1 (Rational barycentric representations). Let t_0, \ldots, t_n be an arbitrary set of distinct complex numbers. As $\alpha_0, \ldots, \alpha_n$ and β_0, \ldots, β_n range over all complex values, with at least one β_k being nonzero, the functions (3.2) range over the set of all rational functions of degree n.

Proof. As just observed, any quotient (3.2) is a rational function r of degree n. Conversely, suppose r is a rational function of degree n, and write $r = p/q$ where p and q are polynomials of degree at most n. Then q/ℓ is a rational function with a zero
at \(\infty \) and a simple pole at each point \(t_k \), or no pole at all if \(q(t_k) = 0 \). Therefore \(q/\ell \) can be written in the partial fraction form \(d \) as in (3.2) (see p. 553 of [36]). Similarly \(p/\ell \) can be written in the form \(n \).

Alternative proof. Writing \(r = p/q \) again, we note that it is enough to show that coefficients \(\{\alpha_k\} \) and \(\{\beta_k\} \) exist such that \(p = n\ell \) and \(q = d\ell \) in (3.2). Now \(d\ell \) is a linear combination with coefficients \(\beta_0, \ldots, \beta_n \) of \(n+1 \) monic polynomials of degree \(n \), which are linearly independent since they have different sets of roots. Thus \(q \) can be written (uniquely) as \(d\ell \), and similarly for \(p = n\ell \).

The second of these proofs shows that there is a one-to-one correspondence between sets of coefficients \(\{\alpha_k\} \) in a barycentric representation (3.2) and polynomials \(p \) in a quotient representation \(p/q \), and likewise for \(\{\beta_k\} \) and \(q \). Thus we see that the barycentric representation is unique to exactly the same degree as the quotient representation \(p/q \): unique up to a multiplicative constant if \(r \) has degree \(n \) but not \(n-1 \), with further nonuniqueness if \(r \) is of degree \(n-1 \) or less.

Rational barycentric formulas with independent coefficients \(\alpha_k \) and \(\beta_k \) are not well known. Traditionally, barycentric formulas are used in “interpolatory mode,” where function values \(\{f_k\} \) are given and weights are chosen corresponding to \(\alpha_k/\beta_k = f_k \) (and \(\beta_k \neq 0 \)), yielding \(r(t_k) = f_k \) for each \(k \) [9, 23, 51, 64]. To work with arbitrary rational functions, however, with a complete decoupling of support points from approximation properties, one needs the “noninterpolatory” or “alpha-beta” mode (3.2). Ultimately the \(\alpha_k \) and \(\beta_k \) are devoted to approximation and the \(t_k \) to numerical stability.

The AAA-Lawson algorithm consists of two steps. We assume that a discrete domain \(Z \) and a set of corresponding function values \(F = f(Z) \) have been given, together with a degree \(n \).

(I) Run the AAA algorithm to get a rational approximant \(r_0 \approx f \) of degree \(n \) and a set of support points \(t_0, \ldots, t_n \).

(II) Carry out a linearized barycentric Lawson iteration until a termination condition is reached.

Step (I) utilizes (3.2) in interpolatory mode, with the support points chosen one after another in a greedy manner. Typically \(\|f - r_0\| \) is within about an order of magnitude of the minimax error, but since \(r_0 \) interpolates the data at \(n+1 \) points, one cannot expect it to be the optimal approximant. The details of (I) are presented in [51], and we shall not repeat them here. What remains is to describe step (II), which switches to noninterpolatory mode.

Let \(Z = (z_j), 1 \leq j \leq M \) be the sample set, interpreted as a column vector, and let \(F = (f_j), 1 \leq j \leq M \) be the corresponding vector of function values to be matched. Let \(\alpha \) and \(\beta \) be the coefficient vectors \((\alpha_0, \ldots, \alpha_n)^T \) and \((\beta_0, \ldots, \beta_n)^T \), with \(\gamma \) defined as their concatenation \(\gamma = [\alpha; \beta] \). Our aim is to solve the minimax problem

\[
\min_{\gamma} \max_{j} \left| f_j - \frac{\sum_{k=0}^{n} \alpha_k}{\sum_{k=0}^{n} \beta_k} \frac{z_j - t_k}{z_j - t_k} \right|
\]

The barycentric Lawson idea is to achieve this by solving a sequence of iteratively reweighted least squares (IRLS) problems based on the linearization of (3.3).
where at each step, $W = (w_j)$, $1 \leq j \leq M$, is a vector of weights $w_j \geq 0$. Note the prime symbol on the summation sign. This signifies that special treatment is applied at the $n + 1$ sample points z_j that coincide with a support point t_k for some $k = k_j$. At these points the quantity in parentheses in (3.4) would be infinite, and instead, in the spirit of L'Hôpital's rule, these terms of the sum are replaced by

$$w_j \left(f_j \beta_{k_j} - \alpha_{k_j} \right)^2.$$

Equation (3.4) is a routine problem of numerical linear algebra, which can be written in matrix form as

$$\min_{\gamma, \|\gamma\|_2=1} \left\| \text{diag}(W^{1/2}) \left[C, -\text{diag}(F) C \right] \gamma \right\|_2;$$

where C is the Cauchy matrix with entries $c_{ij} = 1/(z_j - t_k)$ except in the $n + 1$ special rows. This is a minimal singular value problem involving a matrix of size $M \times (2n + 2)$, and it can be solved on a laptop in on the order of a millisecond for typical values of, say, $M = 1000$ and $n = 20$.

From one IRLS step to the next, W is updated by the formula

$$w_j^{\text{new}} = w_j |e_j|,$$

where e_j is the quantity inside absolute values in (3.3), i.e., the current nonlinear error at z_j. (For the $n + 1$ special values of j, $e_j = f_j - \alpha_{k_j}/\beta_{k_j}$.) For convenience, and floating-point arithmetic, we then renormalize the weights at each step so that their maximum is 1.

The IRLS idea originated with Lawson in 1961 [42] for linear minimax approximation, and has subsequently been analyzed and generalized by a number of authors beginning with Cline, Rice, and Usow [13, 58, 59]. Rice proved convergence at a linear rate for real approximation under natural assumptions [58], and Ellacott and Williams pointed out that the same proof extends to complex approximation [20]. IRLS algorithms have also taken on importance for other kinds of linear L_p approximation, particularly the case $p = 1$ of interest in data science [16, 55, 81]. However, apart from a (non-barycentric) attempt with limited success in [15], AAA-Lawson is the first IRLS algorithm we know of for nonlinear approximation.

This completes our description of the core idea of the AAA-Lawson algorithm, but three questions remain. (i) How do we terminate the iteration? (ii) What can be proved about convergence? (iii) What steps can be taken to make convergence faster or more reliable in troublesome cases? Even for linear approximation, these are nontrivial matters, and the nonlinear case brings additional difficulties. Chebfun’s answer to (i) is simple: by default it takes 20 Lawson steps. We shall discuss (ii) and (iii) in section 6.

4. Numerical examples, complex. In this section we present fourteen examples of complex minimax approximations, grouped into pairs for convenience. Each example is represented by three images in the complex plane, the first showing the domain Z and the second and third showing the error $r(Z) - f(Z)$ in AAA and AAA-Lawson approximation. All computations were done in Chebfun in the default mode, and laptop timings are printed at the tops of the figures. The codes of this section and the next are available in the supplementary materials.
Approximation on the unit circle of the analytic function e^z and the meromorphic function $\tan(2\pi z)$. The middle and right plots show error curves for AAA and AAA-Lawson approximation, respectively, with red circles marking the maximum errors. The minimax error curves are nearly circular (invisible here since they lie under the red circles), with winding numbers $2n + 1 = 11$ and $2n + 1 - 8 = 17$. Red dots mark poles of the AAA-Lawson approximation.

For comparison, we have also solved all the problems of this section by the Ellacott–Williams (EW) method from [20] (our own implementation), getting correct results in about half of the cases. We find that when EW is successful, it is typically 5–100 times slower than AAA-Lawson since each step requires the iterative solution of a linear optimization problem. (Its asymptotic convergence rate is usually better, however, so the timings get closer if minimax errors are required to many digits of accuracy. Also, the Istace–Thiran algorithm [38], which we have not implemented, is likely to be faster than EW.) The problems where EW is successful are those involving domains not too far from the unit circle and without singularities on the boundary, as in Figs. 4.1, 4.2, and 4.5 below. For other problems, such as those of Figs. 4.3 and 4.7 and the NICONET problem of Fig. 4.6, it generally fails to find the minimax solution, which we attribute to its reliance on p/q rather than barycentric representation of rational functions. Explanations of the great difference in stability between these two representations can be found in [21 sec. 2] and [51 sec. 11].

Figure 4.1 begins with the basic example of e^z on the unit circle, discretized by 500 equispaced points. With its usual great speed, AAA finds a near-best approximation for $n = 5$ with error 3.83e-10. The black dots on the circle mark the six support points the algorithm selects. Continuing with the same support points but now in noninterpolatory “alpha-beta” mode, AAA-Lawson improves the approximation to close to minimax, with error 9.944364e-11. By the maximum modulus principle for analytic functions, these maximal errors on the circle are also the maximal errors over the whole disk. Note that the error curve appears to be a perfect circle (of winding number $2n + 1 = 11$, though this cannot be distinguished in the figure). This near-circularity effect was first identified in [72] and then investigated for polynomial approximation in [73] and rational approximation in [74]. The error curve cannot be
exactly circular (this would imply that the function being approximated was rational),
but as shown in [74], it comes spectacularly close, varying in radius for this example,
we estimate via Theorem 6.3 of [74], by less than one part in 10^{12}. This effect led to the
theory of Carathéodory–Fejér (CF) approximation [35, 74, 76, 78], which establishes
the lower bound
$$ E^* \geq \sigma_{n+1}, $$
where \(\{\sigma_k\} \) are the singular values of the infinite Hankel
matrix of Taylor coefficients $a_1, a_2, \ldots = 1, 1/2!, \ldots$. Here the relevant value is $\sigma_6 = 9.944144081e-11$.

The second example of Figure 4.1 is $\tan(2\pi z)$ for $n=12$ in 1000 points of the
unit circle. This function is meromorphic but not analytic in the unit disk. Again
we get a nearly-circular error curve, whose winding number is not 25 but 17 because
of the four poles in the disk. Here AAA-Lawson improves the error from $3.16e-7$ to
$7.08e-8$. The red dots in the left image mark poles of the AAA-Lawson approximation.
The poles inside the circle match the poles $\pm 1/4$ and $\pm 3/4$ of $\tan(2\pi z)$ to 13 digits of
accuracy. We can explain this by noting that these poles can be determined by certain
contour integrals of the boundary data [4, sec. 4], and since r matches $\tan(2\pi z)$ to
many digits on the boundary, the contour integrals must match too. The poles of
outside the circle are at $\pm 1.250011, \pm 1.7638, \pm 2.6420$ and ± 7.3844. (In the first row
of this figure, no red dots appear because the poles are off-scale. Their positions in
the case of Padé approximations were investigated by Saff and Varga [63].)

Figure 4.2 shows approximations on two noncircular domains. In the first row,
$\log(0.5 - z)$ is approximated in 2000 points on an ellipse of half-height 1 and half-
width 0.3. Note how the poles of the approximation line up along the branch cut, a
phenomenon analyzed for Padé approximations by Stahl [67]. It is also interesting to
see that all the support points chosen by AAA lie on that side of the ellipse. The
second row shows approximation of the Airy function $\text{Ai}(2z)$ in 4000 points on the
boundary of the unit square, 1000 points in a Chebyshev distribution on each side.
The error curve, with winding number $2n + 1 = 21$, is nearly-circular along most of
its length, while retaining the four corners associated with the square.

Figure 4.3 turns to problems with singularities on the boundary, where rational functions have their greatest power relative to polynomials, achieving root-exponential convergence as $n \to \infty$ by means of poles exponentially clustered near the singularities [27, 28, 29, 52]. In the first row, $(1 + z^4)^{1/2}$ is approximated to degree $n = 16$. The AAA-Lawson approximation improves the error from $1.38e-1$ to $6.49e-3$, with poles lying along branch cuts near each of the four singularities at radii 1.00046, 1.0085, 1.075, and 1.59. For successful computation of approximations with clustered poles like this, it is important that the sample grid be clustered too, and in this case the sample points on the unit circle were placed at angles $\left(\pi/4\right) \cdot \tanh(\text{linspace}(-12,12,1000))$ together with their rotations by angles $\pi/2$, π, and $3\pi/2$. Note that there are four square roots in this function, hence four right angles in the error curve, but these appear as one because they lie on top of one another.

The second row of Fig. 4.3 shows degree 20 approximation of an analytic function representing a conformal map of an L-shaped region onto the unit disk, which has a $z^{2/3}$ type of singularity at the reentrant corner. Each of the six sides has sample points with a distribution controlled by $\tanh(\text{linspace}(-12,12,1000))$. In [27] it was shown that AAA rational approximations of conformal maps of polygons can be 10–1000 times more efficient to evaluate than the standard method of Driscoll’s Schwarz–Christoffel Toolbox [17]. From Figure 4.3 we see that even better approximations are available with AAA-Lawson, which improves the accuracy of the approximation in this case from $8.21e-4$ to $1.57e-4$.

Figure 4.4 moves from essentially continuous domains to discrete ones consisting of random points in a rectangle. A rational function of degree n could generically interpolate $2n + 1$ data values exactly. Thus the first nontrivial fit occurs with $2n + 2$ data values, and this is shown in the first row of the figure, with $n = 6$ and 14 sample points. As expected, the minimax error is attained at all 14 points. The second row
Fig. 4.4. Approximation of \(\tan(z) \) at 14 and 100 random points in a rectangle in \(\mathbb{C} \). In the first case, with just \(2n + 2 \) sample points, the minimax error is attained at every one.

Fig. 4.5. Approximations on complex arcs.

increases the number of sample points to 100, and now the maximum error, which is 10,000 times larger, is attained at 20 rather than 14 of them. (This is not evident with the calculation as run with the Chebfun default number of 20 Lawson steps, but emerges if a few hundred Lawson steps are taken to give convergence to more digits of accuracy.)

Figure 4.5 shows two approximations on domains that are just arcs, a semicircle and an S-shape, both represented with 500 points in a Chebyshev distribution along each semicircular piece. Figure 4.6 shows, first, an approximation on the unit circle...
of a function with an essential singularity in the disk, and second, the clamped beam example from the NICONET model order reduction collection [11], which was also considered in [51]. Here the approximation domain is the imaginary axis, which is discretized by 2000 points logarithmically spaced between 0.01i and 100i together with their complex conjugates. The function to be approximated is defined via the resolvent of a 348×348 matrix whose eigenvalues are in the left half-plane, making it analytic in the right half-plane. Note that in this example, AAA-Lawson achieves reduction of the error by a factor of about 4, from 6.15 to 1.49. (This is 0.03% accuracy, for the function being approximated takes values as large as 4550.) In an application of model order reduction, such an improvement might be significant [3, 7].

Our final pair of complex examples, shown in Fig. 4.7, involves domains of more complicated connectivity. The upper example approximates the function $(1 - z^{-2})^{1/2}$ on the boundary of the annulus $1 \leq |z| \leq 2$ (500 equispaced points on the outer circle together with 500 points each in a `tanh(12•linspace(-1,1))` distributions on the upper and lower halves of the inner circle). Note that as usual, the poles cluster near the singularities on the boundary, which in this case are at ± 1. The lower example approximates the function $z \cdot \text{sign}(\text{Re}(z))$ on the union of two circles of radius 1 about -1.5 and 1.5 (1000 equispaced points on each circle). This function is not globally analytic, and both AAA and AAA-Lawson tend to have difficulties with such problems. Indeed if $z \cdot \text{sign}(\text{Re}(z))$ is replaced by $\text{sign}(\text{Re}(z))$, the iteration fails.

Reviewing the 14 AAA-Lawson error curves displayed in Figs. 4.1–4.7 (or error dots, in the case of Fig. 4.4), we note that it seems vividly apparent from the near-maximal values at most of the points that a near-minimax solution has been found. Proving this would be a challenge, however, although the bound $E^* \geq \min_{z \in Z} |r(z) - f(z)|$ follows from arguments related to Rouché’s theorem in cases where the error curve is a near-circle of sufficiently high winding number [33, 35, 39, 74].
5. Numerical examples, real. For real approximation on real intervals and unions of real intervals, AAA-Lawson, like AAA itself, is less reliable than in the complex case but retains its great speed and flexibility. We shall present eight examples, grouping them again in pairs.

The first example of Fig. 5.1 approximates $\text{Ai}(x)$ on $[-10, 10]$, which is discretized
by 1000 points in a Chebyshev distribution. Note how the poles lie along curves in the left half-plane, where the function is larger. (The study of such curves in approximation theory goes back to an investigation of roots of Taylor polynomials of e^z by Szegő [68].) In this case of an analytic function on a single interval, Chebfun’s minimax gets the answer in 1.7 secs. and its Carathéodory–Fejér command cf does it in just 0.05 secs. [78]. The second example of the figure considers $(1 - x)^{1/2}$, which has a singularity at the right endpoint, discretized on the grid \(\tanh(\text{lin space}(-12,12,1000)) \). The poles of this approximation cluster near \(x = 1 \) at distances 15.3, 2.1, 0.19, 3.7e-2, 6.4e-3, 9.5e-4, 1.1e-4, 1.0e-5, 5.9e-7, and 1.4e-8. Chebfun minimax is unsuccessful for this problem with \(n = 10 \), though it can handle degrees up to \(n = 7 \).

Figure 5.2 turns to functions with a singularity or near-singularity in the interior of the interval. We pick two examples where AAA and AAA-Lawson are successful, though failures are common with problems of this kind. The first example is \(|x|\), the problem made famous by Donald Newman, which is discretized by transplants of \(\tanh(\text{lin space}(-12,12)) \) to both \([-1,0]\) and \([0,1]\); see [52] and [76, chapter 25]. AAA-Lawson’s error of 1.23e-4 is a bit higher than the result 1.07e-4 computed by Chebfun minimax in 1.2 seconds. As in Figs. 4.2 and 4.3, we see the 12 poles lining up along a branch cut; their locations are approximately $\pm0.00138i$, $\pm0.0102i$, $\pm0.0448i$, $\pm0.155i$, $\pm0.4780i$, and $\pm1.98i$. The second is the Fermi–Dirac function $1/(1 + \exp(10(x - 2)))$ on the interval \([0, 10]\), as discussed for example in [45, 50], for which AAA-Lawson gets an error of 9.09e-6. Chebfun minimax gets the better value 8.77e-6 in 0.2 secs. and cf does the same in 0.05 secs. (A more robust computational strategy for Fermi–Dirac functions is to first transplant \([0, \infty)\) to \([-1, 1]\) by a Möbius transformation [50, 77].)

Fig. 5.3 considers a pair of problems on a union of two intervals, \([-3, -1] \cup [1, 3]\), each discretized by 500 points in a Chebyshev distribution. The first function, $\sin(6x)$, is globally analytic, but the second, $|x| \sin(x)$, is not. Note how the poles line up along the imaginary axis, delineating once more an implicit branch cut.

The final pair of examples, shown in Fig. 5.4, are posed on infinite intervals.
Fig. 5.3. Approximation of two functions each on a pair of disjoint intervals. The first example, \(\sin(6x) \), is globally analytic, whereas the second, \(|x|\sin(x)\), is analytic on each interval but not globally. The very different configurations of poles reflect this distinction.

Fig. 5.4. Approximations on \((-\infty, 0] \) and \((-\infty, \infty)\).

The first is the Cody–Meinardus–Varga problem of approximation of \(e^x \) on \((-\infty, 0]\) [14, 51, 75, 76]. As described in section 4 of [75], one can compute approximations here by transplantation of \((-\infty, 0]\) to \([-1, 1]\) followed by CF or minimax approximation, but here, we approximate directly on the original untransplanted interval, which is discretized by 2000 points logarithmically spaced from \(-10^{-6}\) to \(-10^{-6}\). The success of such a computation highlights the extraordinary flexibility and stability of barycentric representations based on support points selected by AAA. The second example of Fig. 5.4 shows approximation of \(\exp(-x^2) \) on \((-\infty, \infty)\), discretized by 100 equispaced points in \([-1, 1]\) concatenated with 500 logarithmically spaced points in \([1, 10^6]\) and
their negatives in \([-10^6, -1]\). AAA-Lawson improves the error from 6.92e-6 to 1.04e-6.

In general, we believe that the safest way to compute a real minimax approximation on a real interval is usually by the Remez algorithm as implemented in Chebfun \texttt{minimax}, or if the function is smooth, by CF approximation as implemented in \texttt{cf}, in both cases perhaps after softening up the problem by a Möbius transformation. The AAA-Lawson approach is most important in cases where these simple tools are inapplicable, such as unbounded or disjoint intervals as in Figs. 5.3 or 5.4.

6. **Convergence properties.** Our experience with applying the AAA-Lawson method to hundreds of examples can be summarized as follows: for analytic functions on well resolved complex domains, it almost always converges, and for nonanalytic functions or real domains, it often converges. To give more detail about our experience, here are summaries of the six contexts we are aware of in which AAA-Lawson is most likely to fail.

 1. **Discretization too coarse.** Most applications involve discretization of a continuum, and trouble often arises if the discretization is too coarse, especially near singular points where poles need to accumulate. Perhaps this is unsurprising since even existence of best approximations fails in general on discrete domains, as mentioned in section 2. As indicated in the discussion of examples in the last two sections, we routinely use Chebyshev-type sample point clustering near nonsingular corners or endpoints of domains and more extreme \(\text{tanh(linspace(-12,12,npts))}\) type clustering near singular points.

 2. **Too close to machine precision.** By default, AAA delivers an approximation with accuracy close to machine precision, and attempted Lawson iterations from such a point tend to take on a random character, leading to failure. Instead, in standard double precision arithmetic, it is best to use AAA-Lawson for approximations with errors down to \(10^{-12}\) or \(10^{-13}\) but not much smaller. The Chebfun \texttt{aaa} code reflects this by running without Lawson if no degree is specified, e.g. \texttt{aaa(F,Z)}, and with Lawson if a degree is specified, e.g. \texttt{aaa(F,Z,'degree',10)}. These defaults can be overridden by specifying \texttt{aaa(...,'lawson',nsteps)} in which case exactly \(nsteps\) Lawson steps are taken, and none at all if \(nsteps = 0\). When we want accuracy to more digits than delivered by default parameters, we specify a large value of \(nsteps\).

 3. **Degeneracy related to symmetry.** Failure often occurs if one attempts a calculation that does not respect the symmetry of the problem, where the mathematically correct best approximation is degenerate. For example, an attempt to compute a degree 3 best approximation to \(\exp(z^2)\) on the unit disk will fail, because the result should be of degree 2. If the degree specification is changed to 2, the calculation succeeds.

 4. **Lack of analyticity.** The examples of the last two sections illustrated that AAA-Lawson has little trouble with functions meromorphic in a disk or an annulus. Failures often occur in the approximation of more deeply nonanalytic functions, however. For example, the example with 100 random points of Fig. 4.4 fails if \(f(z)\) is changed from \(\tan(z)\) to \(|z|\).

 5. **Real domains.** Failures are also common in approximation of real functions on real domains. As discussed in [51], such problems are difficult for AAA itself.

 6. **Period-2 oscillations.** Sometimes the Lawson iteration enters into a cycle in which one pattern of weights and errors appears at odd steps and another at even ones. For example, this happens with the Fermi-Dirac example of Fig. 5.2 if \(1/(1 + \exp(10(x - 2)))\) is changed to \(1/(1 + \exp(50(x - 2)))\), though the problem goes away if more sample points are taken in the transition region. In at least some cases,
convergence can also be recovered by underrelaxation in the update formula.

All of these failure modes reflect mathematical issues of substance and point to interesting problems for future research. As an engineering matter, the Chebfun code includes precautions to minimize the risk of trouble arising from these sources, the most basic of which is to revert to the AAA solution if AAA-Lawson fails to make an improvement. With time, we expect the engineering to be further improved.

It is important to ask, what might be proved theoretically? By making suitable assumptions, such as the use of exact arithmetic, one could work around a number of the difficulties (1)–(6). Still, proving anything is far from straightforward, since even the theory of the linear Lawson algorithm has encountered a number of obstacles, and here we are working with a nonlinear barycentric variant. We hope that it may be possible to prove that for problems sufficiently generic in an appropriate sense, and given a sufficiently close initial guess and the use of a line search where necessary rather than always taking the full update, the iteration is guaranteed to converge to a local minimum. By analyzing the perturbation properties of the SVD problem, we have made progress toward such a result, especially for real approximation problems and complex problems with nearly-circular error curves. However, we do not have a result comprehensive enough to report here.

7. Discussion. The AAA-Lawson algorithm makes it easy for the first time to compute real and complex minimax rational approximations on all kinds of domains. In Chebfun, for example, the commands

\[
Z = \exp(2i\pi(1:500)/500);
F = \exp(Z);
r = aaa(F,Z,'degree',3);
\]

produce a function handle \(r \) for the best degree 3 rational approximation of \(f \) on the unit circle in a tenth of a second on a laptop. The calculation \(\text{norm}(F-r(Z),\infty) \) then gives 9.9318e-6, matching the result published in [20] many years ago.

What makes the algorithm so effective is that it combines the exceptional stability of barycentric rational representations, as exploited by the AAA algorithm [51], with the long-established technique of IRLS iteration to improve the error to minimax—though in a novel nonlinear barycentric context. It is interesting that, unlike its predecessors by Ellacott and Williams [20] and Istace and Thiran [38], AAA-Lawson is not based on an attempt to satisfy optimality conditions.

As discussed in section 6, AAA-Lawson has little theoretical foundation at present, and it also suffers from just linear asymptotic convergence, sometimes at a low rate. These drawbacks are not news!—as can be seen in this quote from p. 50 of Osborne’s book of 1985 [55]:

The evidence presented here does not provide a recommendation for the technique [IRLS]. It is shown that the convergence rate is only first order in general and that even this cannot be guaranteed.

And yet, thanks to its simplicity and lack of dependence on a characterization of optimal solutions, IRLS has enabled us to develop an algorithm that is strikingly fast and robust.

Concerning the linear asymptotic convergence, it seems possible that a method with improved behavior might be developed based on Newton’s method combined with linear programming, tools applied effectively by Istace and Thiran [38] and Tang [69].
There are also paradoxes to be investigated concerning the linear convergence itself in problems with nearly-circular error curves, as in Fig. 14. Here, the nearly-constant error has the effect that the Lawson weight distribution virtually stops changing from step to step [72], and in particular, effectively never get close to the sum of delta functions form that an asymptotic analysis is likely to look for. Nevertheless, the approximations in such cases often converge quickly, and to add to the mystery, they converge much faster still if (3.7) is modified to depend on $|e_j|^2$ instead of $|e_j|$, although in other cases this modification results in failure. Perhaps an understanding of such effects might lead to improvements in the AAA-Lawson algorithm even in cases with error curves that are not nearly circular.

This article has considered only standard minimax approximations, without weight functions. Nonconstant weights are easily introduced by modifying (3.7). Another restriction is that we have treated only rational approximations of type (n, n), not type (m, n) with $m \neq n$. The more general problem is certainly interesting, and AAA itself can be generalized to $m \neq n$ as described in [51]. However, though the “Walsh table” of approximations of a function of all rational types is fascinating, the overwhelming majority of applications are concerned with types (n, n) or $(n − 1, n)$.

Acknowledgments. We are grateful to Silviu Filip and Abi Gopal for assistance with both software and mathematics.

REFERENCES

[1] B. Alpert, L. Greengard, and T. Hagstrom, Rapid evaluation of nonreflecting boundary kernels for time-domain wave propagation, SIAM J. Numer. Anal., 37 (2000), pp. 1138–1164.
[2] A. C. Antoulas, Approximation of Large-Scale Dynamical Systems, SIAM, 2005.
[3] A. C. Antoulas, et al., A tutorial introduction to the Loewner framework for model reduction, Model Reduction and Approximation: Theory and Algorithms, 15 (2017), 335.
[4] A. P. Austin, P. Kravanja, and L. N. Trefethen, Numerical algorithms based on analytic function values at roots of unity, SIAM J. Numer. Anal., 52 (2014), pp. 1795–1821.
[5] I. Barrodale, L. M. Delves, and J. C. Mason, Linear Chebyshev approximation of complex-valued functions, Math. Comput., 32 (1978), pp. 853–863.
[6] B. Beckermann and A. Townsend, Bounds on the singular values of matrices with displacement structure, SIAM Rev., 61 (2019), pp. 319–344.
[7] P. Benner, A. Cohen, M. Ohlberger, and K. Willcox, eds., Model Reduction and Approximation: Theory and Algorithms, SIAM, 2017.
[8] M. Berljafa and S. Gütel, The RKFIT algorithm for nonlinear rational approximation, SIAM J. Sci. Comput., 39 (2017), pp. A2049–A2071.
[9] J.-P. Berrut and L. N. Trefethen, Barycentric Lagrange interpolation, SIAM Rev., 46 (2004), pp. 501–517.
[10] D. Braess, Nonlinear Approximation Theory, Springer, 1986.
[11] Y. Chaillou and P. Van Dooren, A collection of benchmark examples for model reduction of linear time invariant dynamical systems, EPrint 2008.22, Manchester Institute for Mathematical Sciences, U. of Manchester, 2002.
[12] X. Chen and T. W. Parks, Design of HR filters in the complex domain, IEEE Trans. Acoust. Speech Sign. Proc., 38 (1990), pp. 910–920.
[13] A. K. Cline, Rate of convergence of Lawson’s algorithm, Math. Comp., 26 (1972), pp. 167–176.
[14] W. J. Cody G. Meinardus, and R. S. Varga, Chebyshev rational approximation to e^{-x} in $[0, +\infty)$ and applications to heat-conduction problems, J. Approx. Th., 2 (1969), pp. 50–65.
[15] P. Cooper, Rational Approximation of Discrete Data with Asymptotic Behaviour, PhD thesis, U. Huddersfield, 2007.
[16] I. Daubechies, R. DeVore, M. Fornasier, and C. S. Güntürk, Iteratively reweighted least squares minimization for sparse recovery, Commun. Pure Appl. Math., 63 (2010), pp. 1–38.
[17] T. A. Driscoll, A MATLAB toolbox for Schwarz–Christoffel mapping, ACM Trans. Math. Softw., 22 (1996), pp. 168–186.
[18] T. A. Driscoll, N. Hale, and L. N. Trefethen, eds., Chebfun User’s Guide, Pafnuty Publications, Oxford, 2014; see also www.chebfun.org.

[19] S. Ellacott and J. Williams, Linear Chebyshev approximation in the complex plane using Lawson’s algorithm, Math. Comput., 30 (1976), pp. 35–44.

[20] S. Ellacott and J. Williams, Rational Chebyshev approximation in the complex plane, SIAM J. Numer. Anal., 13 (1976), pp. 310–323.

[21] S.-I. Filip, Y. Nakatsukasa, L. N. Trefethen, and B. Beckermann, Rational minimax approximation via adaptive barycentric representations, SIAM J. Sci. Comput., 40 (2018), pp. A2427–A2455.

[22] B. Fischer and J. Modersitzki, An algorithm for complex linear approximation based on semi-infinite programming, Numer. Alg., 5 (1993), pp. 287–297.

[23] M. S. Floater and K. Hormann, Barycentric rational interpolation with no poles and high rates of approximation, Numer. Math., 107 (2007), pp. 315–331.

[24] S. Ellacott and J. Williams, Rational Chebyshev approximation in the complex plane, SIAM J. Numer. Anal., 13 (1976), pp. 310–323.

[25] S. Ellacott and J. Williams, Linear Chebyshev approximation in the complex plane using Lawson’s algorithm, Math. Comput., 30 (1976), pp. 35–44.

[26] T. W. Gamelin, Uniform Algebras, Prentice-Hall, 1969.

[27] M. H. Gutknecht, Non-strong uniqueness in real and complex Chebyshev approximation, J. Approx. Th., 23 (1978), pp. 204–213.

[28] M. H. Gutknecht, Algebraically solvable approximation problems, unpublished manuscript, 1983, available at people.maths.ox.ac.uk/trefethen/gutknecht83.pdf.

[29] M. H. Gutknecht and L. N. Trefethen, Nonuniqueness of best rational Chebyshev approximations on the unit disk, J. Approx. Th., 39 (1983), pp. 275–288.

[30] E. Hayashi, L. N. Trefethen, and M. H. Gutknecht, The CF table, Constr. Approx., 6 (1990), pp. 195–223.

[31] C. L. Lawson, Contributions to the Theory of Linear Least Maximum Approximations, PhD thesis, UCLA, 1961.

[32] C. M. Lee and F. D. K. Roberts, A comparison of algorithms for rational ℓ_∞ approximation, Comput. Math. Appl., 27 (1994), pp. 111–121.

[33] J.-R. Li and J. White, Low-rank solution of Lyapunov equations, SIAM Rev., 46 (2004), pp. 693–713.

[34] L. Lin, M. Chen, C. Yang, and L. He, Accelerating atomic orbital-based electronic structure calculation via pole expansion and selected inversion, J. Phys.: Condens. Matt., 25 (2013), pp. 295501.
Real and complex rational minimax approximation

[49] G. Meinardus and D. Schwedt, *Nicht-lineare Approximationen*, Arch. Rat. Mech. Anal., 17 (1964), pp. 297–326.
[50] J. E. Moussa, *Minimax rational approximation of the Fermi–Dirac distribution*, J. Chem. Phys., 145 (2016), 164108.
[51] Y. Nakatsukasa, O. Sète, and L. N. Trefethen, *The AAA algorithm for rational approximation*, SIAM J. Sci. Comput., 40 (2018), pp. A1494–A1522.
[52] D. J. Newman, *Rational approximation to |x|*, Mich. Math. J., 11 (1964), pp. 11–14.
[53] G. Opfer, *An algorithm for the construction of best approximations based on Kolmogorov’s criterion*, J. Approx. Th., 23 (1978), pp. 299–317.
[54] A. V. Oppenheim and R. W. Schafer, *Discrete-Time Signal Processing*, Pearson, 2014.
[55] M. R. Osborne, *Finite algorithms in optimization and data analysis*, Wiley, 1985.
[56] M. R. Osborne and G. A. Watson, *An algorithm for minimax approximation in the nonlinear case*, Comput. J., 12 (1969), pp. 63–68.
[57] E. Y. Remes, *On approximations in the complex domain*, Dokl. Akad. Nauk SSSR, 77 (1951), pp. 965–968 (Russian).
[58] J. R. Rice, *The Theory of Best Approximation and Functional Analysis*, SIAM, 1974.
[59] H. Stahl, *Best uniform rational approximation of |x| on [−1,1],* Russian Acad. Sci. Sb. Math. 76 (1993), pp. 461–487.
[60] H. Stahl, *The convergence of Padé approximants to functions with branch points*, J. Approx. Th., 91 (1997), pp. 139–204.
[61] L. Trefethen, *Rational Chebyshev approximation on the unit disk*, Numer. Math., 37 (1981), pp. 297–320.
[62] L. N. Trefethen, *Approximation Theory and Approximation Practice*, SIAM, 2013.
[63] L. N. Trefethen, *Chebyshev Approximation in the Complex Plane*, undergraduate thesis, Harvard College, 1977.
[64] L. N. Trefethen, *Near-circularity of the error curve in complex Chebyshev approximation*, J. Approx. Th., 31 (1981), pp. 344–367.
[65] L. N. Trefethen, *Rational Chebyshev approximation on the unit disk*, Numer. Math., 37 (1981), pp. 297–320.
[66] L. N. Trefethen, *Approximation Theory and Approximation Practice*, SIAM, 2013.
[67] L. N. Trefethen, *Chebyshev Approximation in the Complex Plane*, undergraduate thesis, Harvard College, 1977.
[68] L. N. Trefethen, *Near-circularity of the error curve in complex Chebyshev approximation*, J. Approx. Th., 31 (1981), pp. 344–367.
[69] L. N. Trefethen, *Rational Chebyshev approximation on the unit disk*, Numer. Math., 37 (1981), pp. 297–320.
[70] L. N. Trefethen, *Rational Chebyshev approximation on the unit disk*, Numer. Math., 37 (1981), pp. 297–320.
rationalen Funktionen, Arch. Ration. Mech. Anal., 11 (1962), pp. 368–384.

[84] W. Werner, Polynomial interpolation: Lagrange versus Newton, Math. Comput., 43 (1984), pp. 205–217.

[85] J. Williams, Characterization and computation of rational Chebyshev approximations in the complex plane, SIAM J. Numer. Anal., 16 (1979), pp. 819–827.

[86] L. Zalcman, Analytic Capacity and Rational Approximation, Lect. Notes Math. 50, Springer, 1968.