Cyanobacterial nitrogenases: phylogenetic diversity, regulation and functional predictions

Alberto A. Esteves-Ferreira1,2, João Henrique Frota Cavalcanti1,2, Marcelo Gomes Marçal Vieira Vaz1,2, Luna V. Alvarenga1,2, Adriano Nunes-Nesi1,2 and Wagner L. Araújo1,2

1Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil. 2Max-Planck-partner group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil.

Abstract

Cyanobacteria is a remarkable group of prokaryotic photosynthetic microorganisms, with several genera capable of fixing atmospheric nitrogen (N2) and presenting a wide range of morphologies. Although the nitrogenase complex is not present in all cyanobacterial taxa, it is spread across several cyanobacterial strains. The nitrogenase complex has also a high theoretical potential for biofuel production, since H2 is a by-product produced during N2 fixation. In this review we discuss the significance of a relatively wide variety of cell morphologies and metabolic strategies that allow spatial and temporal separation of N2 fixation from photosynthesis in cyanobacteria. Phylogenetic reconstructions based on 16S rRNA and nifD gene sequences shed light on the evolutionary history of the two genes. Our results demonstrated that (i) sequences of genes involved in nitrogen fixation (nifD) from several morphologically distinct strains of cyanobacteria are grouped in similarity with their morphology classification and phylogeny, and (ii) nifD genes from heterocytous strains share a common ancestor. By using this data we also discuss the evolutionary importance of processes such as horizontal gene transfer and genetic duplication for nitrogenase evolution and diversification. Finally, we discuss the importance of H2 synthesis in cyanobacteria, as well as strategies and challenges to improve cyanobacterial H2 production.

Keywords: Cyanobacteria, evolution, hydrogen, nitrogen fixation, molecular phylogeny.

Received: February 29, 2016; Accepted: December 21, 2016.

Introduction

Cyanobacteria is a biochemically and morphologically diverse group of gram-negative bacteria capable of perform oxygenic photosynthesis (Figure 1). These microorganisms are observed in fresh water, marine and terrestrial habitats, being the major primary producers in these ecosystems (Hess, 2011). Fossil records indicate that cyanobacteria have been extant for at least 2.5 billion years (Knoll, 2008). Additionally, it is likely that the ancestors of cyanobacteria played a key role in the formation of atmospheric oxygen (O2) (Hackenberg et al., 2011) and are also believed to have evolved into the present-day chloroplasts of green algae and plants (Koonin, 2010; Keeling, 2013). Cyanobacterial metabolic plasticity appears to have permitted these organisms to withstand the challenges of evolutionary environmental changes and has enabled them to survive and colonize diverse habitats (Steinhauser et al., 2012). Indeed, these organisms exhibit enormous diversity in terms of their habitats, morphology, physiology, and metabolism (Beck et al., 2012). These microorganisms display a relatively wide variety of morphologies, such as unicellular, non-heterocytous and heterocytous filamentous strains with the latter showing different types of cells (heterocytes and akinetes) (Schirrmeister et al., 2013) (Figure 1a-h). Heterocytous strains are able to form differentiated cells, specialised in nitrogen (N2) fixation, the heterocytes, and spore-like resting cells, the akinetes (Figure 1f-h). However, a number of unicellular (Figure 1a-b) and non-heterocytous (Figure 1c-e) strains are also able to perform N2 fixation under certain conditions, despite the absence of specialised cells (Berman-Frank et al., 2003).

Occurrence of nitrogen fixation (nif) gene clusters has been reported in several organisms. However, all known N2-fixing organisms are prokaryotes and thus the ability to fix N2 is widely, though paraphyletically, distributed across bacterial and archaeal domains (Staley and Reysenbach, 2002; Raymond et al., 2004). Additionally, nif genes have been identified in 21 out of the 44 sequenced cyanobacterial genomes thus far, including terrestrial and marine strains (Boyd and Peters, 2013). They are organized in dis-
tinct operons namely \textit{nifB-fdxN-nifSU}, \textit{nifHDK}, \textit{nifENXW}, and \textit{nifVZT} (Figure 2A). Interestingly, in \textit{Anabaena} spp. there is an 11-kb excision element in the \textit{nifHDK} operon, which is removed from the chromosome during the differentiation of vegetative cells to heterocytes, allowing the transcription of the complete operon \textit{N}\textsubscript{2} fixation, whereas the strains shown in \textit{b} and \textit{e} present a temporal separation of metabolism: photosynthetic \textit{CO}\textsubscript{2} fixation is performed in the light while \textit{N}\textsubscript{2} fixation occurs during darkness. \textit{Trichodesmium sp.} \textit{d} is the unique non-heterocyclic cyanobacterium that shown \textit{N}\textsubscript{2} fixation under light conditions. Conversely, in other strains (\textit{f}, \textit{g}, and \textit{h}), there is a spatial separation of metabolism, with \textit{N}\textsubscript{2} fixation occurring in heterocytes (ht). Abbreviations: (ak) akinetes; (fb) false branching; (tb) true branching. The picture of \textit{Arthrospira maxima} (c) was kindly provided by the Culture Collection of Autotrophic Organisms (CCALA), http://ccala.butbn.cas.cz and the picture of \textit{Trichodesmium sp.} (d) by Prof. Ondřej Práil, Institute of Microbiology, Czech Academy of Sciences, Czech Republic. The other pictures are from strains kept at Collection of Cyanobacteria and Microalgae from Universidade Federal de Viçosa (CCM-UFV).

Figure 1 - Natural morphological variation within cyanobacterial genera. Unicellular strains: (a) \textit{Synechocystis} sp. PCC6803 and (b) \textit{Synechococcus elongatus} PCC4972. Non-heterocytous strains: (c) \textit{Arthrospira maxima}, (d) \textit{Trichodesmium sp.} and (e) \textit{Phormidium} sp. CCM-UFV034. False branching or non-branching heterocytous strains: (f) \textit{Nostoc} sp. CCM-UFV028 and (g) \textit{Brasilinema octagonarum} CCM-UFV1. True-branching heterocytous strain: (h) \textit{Stigonema} sp. CCM-UFV036. \textit{Synechocystis sp.} (a) and \textit{Arthrospira maxima} (c) are unable to perform \textit{N}\textsubscript{2} fixation, whereas the strains shown in \textit{b} and \textit{e} present a temporal separation of metabolism: photosynthetic \textit{CO}_2 fixation is performed in the light while \textit{N}\textsubscript{2} fixation occurs during darkness. \textit{Trichodesmium sp.} \textit{d} is the unique non-heterocyclic cyanobacterium that shown \textit{N}\textsubscript{2} fixation under light conditions. Conversely, in other strains (\textit{f}, \textit{g}, and \textit{h}), there is a spatial separation of metabolism, with \textit{N}\textsubscript{2} fixation occurring in heterocytes (ht). Abbreviations: (ak) akinetes; (fb) false branching; (tb) true branching. The picture of \textit{Arthrospira maxima} (c) was kindly provided by the Culture Collection of Autotrophic Organisms (CCALA), http://ccala.butbn.cas.cz and the picture of \textit{Trichodesmium sp.} (d) by Prof. Ondřej Práil, Institute of Microbiology, Czech Academy of Sciences, Czech Republic. The other pictures are from strains kept at Collection of Cyanobacteria and Microalgae from Universidade Federal de Viçosa (CCM-UFV).

Although the function of the proteins encoded by the other \textit{nif} genes in \textit{Anabaena variabilis} ATCC29413 (a model filamentous heterocytous strain for physiological studies) remains elusive, possible functions were inferred by analysing \textit{nif} genes already described in other diazotrophic bacteria (Böhme, 1998). NifE and NifN is a hetero-tetrameric complex similar to NifD and NifK respectively.
Cyanobacterial nitrogenases

and seems to act as scaffolds for FeMo-co assembly (Fani et al., 2000). NifV is a homocitrate synthetase which provides homocitrate for the FeMo-co biosynthesis (Zheng et al., 1997; Mayer et al., 2002). NifS and NifU are involved in iron and sulphur mobilization, and in the assembly of [4Fe-4S] clusters (Rubio and Ludden, 2008). Thus, these [4Fe-4S] clusters are transferred to NifB, and converted into NifB-cofactor, a precursor for the biosynthesis of FeMo-co (Curatti et al., 2007). NifX is able to bind precursors of the FeMo-co, being a transient reservoir for these molecules (Hernandez et al., 2007). NifW is not directly involved in the FeMo-protein assembly, but associate with it under aerobic conditions, being part of an O2 protection system (Kim and Burgess, 1996). NifZ is important for P-cluster maturation (Hu et al., 2007) and the function of NifT remains unclear (Thiel and Pratte, 2014).

Cyanobacteria play major environmental and economic roles, including global primary productivity (Paerl, 2012), potential uses in renewable energy, commonly referred to as ‘third-generation fuels’ (Dismukes et al., 2008; Hu et al., 2008), and are also an immense source of valuable natural products with biotechnological applications (Pulz and Gross, 2004; Rastogi et al., 2010; Wijffels et al., 2013). This photosynthetic group of prokaryotic organisms can therefore be developed as a highly productive microbial cell factory that can harvest solar energy and capture carbon dioxide from the atmosphere, converting it into both biofuels and several useful products (Parmar et al., 2011). The high photosynthesis capabilities of cyanobacteria allow them to convert up to 10% of the received solar energy into biomass, in comparison with 5-6% energy conversion registered for C4 crops such as maize and sugar cane, and 5% for algae (Parmar et al., 2011; Jones and Mayfield,
2012; Ogawa and Sonoike, 2015). Accordingly, cyanobacteria are advantageous organisms for use in industrial applications because they exhibit rapid cell growth, have simple nutrient requirements (mainly water, sunlight and CO₂) (Ruffing, 2011) and are naturally transformable, thus presenting the potential to be genetically engineered (Heidorn et al., 2011; Ruffing, 2011; Wilde and Dienst, 2011). Due to their natural morphological (Figure 1a-h) and physiological diversity coupled with their capacity of growing in a variety of environments, even in areas that are inappropriate for agriculture, there is a growing interest to understand cyanobacterial strains (Machado and Atsumi, 2012). However, despite their promise, different biotechnical, environmental and economic bottlenecks have to be overcome before cyanobacteria can become industrial large scale microorganisms (Parmar et al., 2011; Savage, 2011). One such challenge clearly involves research towards the application of cyanobacteria for the production of alternative biofuel sources, as molecular techniques for metabolic genetic engineering are currently available and in use (Wijffels et al., 2013). Thus, research towards the application of cyanobacteria for biofuel production has been mainly focused on strains belonging to the genera Synechocystis and Synechococcus, with much smaller additional efforts being carried out in N₂-fixing strains such as Anabaena, Nostoc and some Cyanothecae, despite nitrogenase being a promising candidate for photo-biological hydrogen (H₂) production.

In this study, we asked whether cyanobacterial nitrogenase complex evolution is congruent with the morphological and 16S rRNA diversity. Due to the higher availability and quality of the nifD nucleotides sequences in comparison to the one for nifK and nifH, we selected the first gene to perform the phylogenetic analysis. For this purpose, phylogenetic reconstructions based on partial sequences of nifD and 16S rRNA gene sequence were performed. The results presented here are a compilation of robust phylogenetic analyses performed by us including a vast number of cyanobacterial strains. Then, we discuss our phylogenetic findings comparing it with previously published data on nitrogenase phylogenetic evolution, placing special attention to nitrogenase and the role of this enzyme during cyanobacterial evolution. Finally, we discuss the regulation of different strategies used by cyanobacteria to avoid nitrogenase inactivation and degradation by O₂, providing an update on technologies and molecular tools that have been developed to allow increased cyanobacterial hydrogen production.

Can N₂ fixation strategies be associated with cyanobacterial morphology?

The expression of nif genes is controlled by the carbon-nitrogen (C/N) balance and cellular redox status in cyanobacteria (Valladares et al., 1999), with 2-oxoglutarate being a signal molecule of the cellular nitrogen levels (Lee et al., 1999; Zhao et al., 2010). Ammonium, as the most reduced inorganic form of nitrogen, is the preferred source of nitrogen for cyanobacteria. Hence, when present in the environment, it represses indirectly the expression of nif genes by blocking the transcription of NtcA, a transcriptional activator associated with global nitrogen control in cyanobacteria (Herrero et al., 2001). Then, in the presence of nitrogen sources other than ammonium, or under nitrogen starvation, NtcA activates the transcription of a set of genes by binding to the target consensus nucleotide sequence GTAN8TAC present in the promoter region (Luque et al., 1994). These genes include not only the nifHDK operon encoding the nitrogenase complex (Muro-Pastor et al., 2002), but also genes involved in heterocyte development (Flores and Herrero, 2005); mobilization of stored nitrogen (phycobilisome) (Luque et al., 2001), assimilation of ammonium via the GS/GOGAT (glutamine synthetase/glutamine oxoglutarate aminotransferase) cycle (Muro-Pastor et al., 1996; Reyes et al., 1997; Vázquez-Bermúdez et al., 2002), sensing and control of cellular nitrogen homeostasis by the PII protein (García-Dominguez and Florencio, 1997) and NtcA itself (Alfonso et al., 2001; Paz-Yepes et al., 2003). In strains unable to fix N₂, NtcA activates the uptake of nitrogen sources such as nitrate, urea, and ammonium (Suzuki et al., 1995; Valladares et al., 2002; Flores et al., 2005; Paz-Yepes et al., 2007).

As observed for the activity of nitrogenase, it has been demonstrated that levels of nif transcripts and the biosynthesis of different subunits of the nitrogenase complex are very sensitive to O₂ (Fay, 1992; Staal et al., 2007; Steunou et al., 2008), most likely to avoid energy losses associated with the degradation of this enzyme under high levels of O₂. Thus, to cope with the production of O₂ inside their own cells by photosynthesis, which provides energy for all cellular processes, including N₂ fixation, cyanobacteria have evolved strategies that protect nitrogenase complex from O₂. Many cyanobacterial strains reconcile nitrogenase activity with photosynthesis (Bergman et al., 1997; Berman-Frank et al., 2003) through spatial and/or temporal separation of these two incompatible metabolic processes (Stal, 2008; Flores and Herrero, 2010; Stal et al., 2010).

Many filamentous cyanobacteria solve the issue by cell differentiation. Thus, in heterocystous cyanobacteria, under aerobic growth conditions, O₂ evolution and CO₂ fixation (photosynthesis) is performed in vegetative cells, whereas nitrogenase catalyses N₂-fixation in specialised cells called heterocytes (Figure 1f-h) (Stal, 2008; Cardona et al., 2009; Stal et al., 2010). These specialised cells differentiate from vegetative cells 12 to 20 h after combined nitrogen sources are removed from the medium, which leads to extensive metabolic changes (Ow et al., 2008). To protect the nitrogenase from O₂, the photosystem II (PSII) is largely degraded in heterocytes, and because of that, these...
cells cannot perform the photosynthetic water-splitting reaction, which is associated with an improved respiration rate and the synthesis of a glycolipid layer in the cellular envelope (Murry and Wolk, 1989; Cardona et al., 2009). The synthesis of a bilayered polysaccharide and glycolipid envelope seems to retard the diffusion of gases, which, combined with changes in the photosynthetic apparatus, results in a microoxic environment, allowing nitrogenase activity during the day (Walsby, 1985, 2007). Additionally, these cells are unable to fix CO2 photosynthetically (Stal, 2008). To cope with the absence of energy production, vegetative cells provide photosynthetically fixed carbon to the heterocytes, most likely in the form of carbon exported as sucrose.

In turn, the heterocytes provide nitrogen, most likely as glutamine formed via the ammonia generated by N2 fixation and the action of glutamine synthetase (GS) (Curatti et al., 2002; Burnat et al., 2014). This connection to vegetative cells occurs through a pore which is equipped with microplasmodesma (Böhme, 1998). Additionally, the levels of GS in heterocytes are very high to prevent the inhibition of nitrogenase by ammonium accumulation (Rennström-Kelin et al., 1990). Some heterocytous cyanobacteria, such as *Anabaena variabilis* ATCC29413, are able to synthesise a different Mo-dependent nitrogenase (Nif2) in vegetative cells (Thiel et al., 1995; Thiel and Pratte, 2001). This enzyme is synthesized only under anoxic conditions, shortly after nitrogen depletion, and long before heterocytes form (Schrautemeier et al., 1995; Thiel et al., 1997). Additionally, Nif2 is also found in vegetative cells of non-heterocytous species (Berman-Frank et al., 2003). Curiously, the gene *fdxH2*, that is part of the *nif2* cluster in *A. variabilis* ATCC29413, has more residues in common with the sequence of *fdxH* of the non-heterocytous filamentous cyanobacteria *Plectonema boryanum* PCC73110 (Schrautemeier et al., 1995). Indeed, it seems clear that there is a relation among *nif2* cluster and *nif* sequences cluster in filamentous non-heterocytous strains (Oscillatoriales and Pseudanabaenales orders), and it is reasonable to assume that the divergence of it might have occurred prior to the heterocytous cell appearance.

Although many unicellular and non-heterocytous cyanobacterial strains can fix N2 (Figure 1a-e), the vast majority of them can do this only under anaerobic conditions or, rather, under conditions of decreased O2 tension. It has been demonstrated that to fix N2, several of these strains have evolved a temporal separation of these two incompatible reactions, with photosynthetic CO2 fixation being performed in the light and N2 fixation occurring in darkness (Berman-Frank et al., 2007). Amongst these strains, the non-heterocytous filamentous strains *Symploca* and *Lyngbya majuscula* and the unicellular strains *Gloeothecae* and *Cyanothece* are worthy of note (Colón-López et al., 1997; Stal, 2008). In these types of cyanobacteria, nitrogenase is typically present in all cells, and a high nitrogenase activity coincides with high respiration rates, with a time difference of 12 h from the peak of photosynthetic activity (Berman-Frank et al., 2003). This pattern is also reflected at the transcriptional level, being observed under either continuous light or darkness, implicating circadian control of these processes (Colón-López et al., 1997; Steunou et al., 2006). In *Synechococcus* an accumulation of *ntcA* transcripts is observed during the day, indicating an insufficiency of fixed N2 and promoting an accumulation of *nif* transcripts during the evening, when the net oxygen evolution is low or negative (Steunou et al., 2008).

One conspicuous feature is observed for the marine non-heterocytous filamentous genus *Trichodesmium* (Figure 1d) (Lin et al., 1998). Unlike all other non-heterocytous species of cyanobacteria, in this species, the enzyme nitrogenase is compartmentalised in a fraction of cells called diazocytes (typically between 10 and 20% of the total number of cells) that are often arranged consecutively along the trichome (Lin et al., 1998; Berman-Frank et al., 2001; Rodriguez and Ho, 2014). Diazocytes are structurally different from vegetative cell, since they have a less-granulated aspect. This appearance is related with a decrease in cyanophycin, aerotopes and polyphosphate granules, and an increase in the internal membranes (Fredriksson and Bergman, 1997). These structural changes and the expression of nitrogenase happens in an interval between 8 and 27 hours (Sandh et al., 2012). However, different from heterocytes, diazocytes were able to perform cell division (Fredriksson and Bergman, 1995). Immunological analyses have revealed the presence of nitrogenase only in diazocytes (Berman-Frank et al., 2001), although few studies propose that almost all cells of *Trichodesmium* are capable of synthesising nitrogenase (Ohki and Taniguchi, 2009).

The organisation of the *nif* operon observed in *Trichodesmium* is quite similar with the observed in heterocytous cyanobacteria (Bergman et al., 2013), and contrary to other non-heterocytous cyanobacteria, this genus performs nitrogen fixation during the light period (mid-day), linking both spatial and temporal strategies to improve the efficiency of these processes (Berman-Frank et al., 2001). At mid-day, photosynthesis is down-regulated (Finzi-Hart et al., 2009), and respiration, Mehler reaction, and the pentose phosphate pathway are intensified, decreasing the net O2 evolution and providing reducing power (NADPH) for N2 fixation, respectively (Sandh et al., 2011). Finally, the ability to fix N2 observed in *Trichodesmium* strains was lost in *Arthrospira* (Spirulina) (Figure 1c) (Larsson et al., 2011), and although nitrogen fixation has been shown by *Lyngbya* species (Lundgren et al., 2003), a recent study showed the absence of nitrogenase genes in the genome of *Lyngbya majuscula* 3L (Jones et al., 2011).

Phylogenetic analyses were performed based on 16S rRNA and *nifD* gene nucleotides sequences retrieved from National Center for Biotechnology Information (NCBI), GenBank database. Sequences were selected taking into ac-
count cyanobacterial taxa from different morphological types. Additionally, for nifD gene, sequences from non-cyanobacterial strains, which also belong to the Bacteria domain, were selected. The nucleotide of nifD and 16S rRNA sequences retrieved from GenBank were aligned separately using the Muscle algorithm (Edgar, 2004) provided in MEGA 5.0 (Tamura et al., 2011). A total of 39 and 54 sequences were used for nifD and 16S rRNA phylogenetic analyses, respectively. For nifD gene sequences, a matrix with 6,904 base pair length was obtained and a matrix with 1,463 base pair length was obtained for 16S rRNA sequences. Optimal evolutionary models were selected using MrModelTest 2.3 (Nylander, 2004) under the Akaike information criterion (AIC). Phylogenetic trees were reconstructed using the maximum-likelihood (ML) and Bayesian methods. For Bayesian analysis, the trees were searched using the software MrBayes 3.2.6 (Ronquist et al., 2012). Posterior probabilities (PP) were calculated at the conclusion of the Markov-Chain-Monte-Carlo analysis and a traditional burn-in on the first 25% of the trees was performed. The Bayesian topology was visualized using the FigTree v1.3.1 program (Rambaut, 2009). The ML trees were reconstructed using the MEGA program package, version 5 (Tamura et al., 2011). The robustness of the phylogenetic trees was estimated via bootstrap analysis using 1000 replications.

Results obtained using nifD gene sequences support the monophyly of cyanobacteria, with a group of Proteobacteria as a sister group and a Klebsiella sequence as root (Figure 3). Indeed, previous analyses of the catalytic subunits of this enzyme complex indicate that the enzyme existed prior to the oxygenation of Earth’s atmosphere (Latysheva et al., 2012). Our phylogenetic analyses also demonstrated that the cyanobacterial nifD sequences group in a very similar way to the 16S rRNA topology, supporting a vertical ancestry of N2 fixation among cyanobacteria (Figures 3 and 4). The heterocystous cyanobacteria form a monophyletic lineage, with true branching cyanobacteria placed within the non-branching cyanobacteria group (Figure 3), indicating that the nifD gene from heterocystous strains share a common ancestor (Figure 3). Based on nifD gene sequences, cyanobacterial morphotypes belonging to Chroococcales and Synechococcales (unicellular), and Oscillatoriales/Pseudanabaenales (filamentous non-heterocystous) constitute polyphyletic groups (Figure 3). Taken together, these data indicate that morphological features and 16S rRNA phylogeny data are highly correlated with the evolutionary history of the nifD gene (Figures 1, 3 and 4), at least for this dataset, and mainly based on order level. It is important to mention however, that the monophyletic origin of nifD cannot be directly associated with morphological aspects. The phylogenetic reconstruction based on 16S rRNA sequences suggest that all heterocystous cyanobacteria (Nostocales) form a single monophyletic group (Henson et al., 2004a; Tomitani et al., 2006; Shih et al., 2013) and support the polyphyly of true branching cyanobacteria (Figure 4). In addition, our analysis corroborates other molecular data from 16S rRNA sequences that demonstrate a polyphyletic origin of the unicellular and filamentous homocytous strains (Figure 4) (Litvaitis, 2002; Valério et al., 2009; Andreote et al., 2014; Silva et al., 2014).

The importance of an evolutionary pressure for N2 fixation

Careful phylogenetic analyses using 57 nifD nucleotide sequences and inferred amino acids sequences (Henson et al., 2004b), and also proteins sets from 49 cyanobacterial genomes (Latysheva et al., 2012), suggest the presence of nitrogen fixing cyanobacteria common ancestor. This implies that N2-fixation genes had arisen approximately 3 billion years ago (Latysheva et al., 2012) and lends support for the results observed in Figure 3. It has been assumed that fixed nitrogen was a limiting resource in the early Earth environment (Raven and Yin, 1998; Kasting and Siefert, 2001), once a decrease in the atmospheric CO2 concentration in the early Archaean (~3.5 billion years ago) might have entailed in a small availability of reduced nitrogen forms, synthesized from N2 and CO2 (Navarro-Gonzalez et al., 2001). In addition, in this period, the Earth’s reduced atmosphere might have allowed fixed nitrogen compounds to be stable (Kasting and Siefert, 2001, 2002). Altogether, these conditions, probably, were able to favour an evolutionary pressure for the establishment of a biological N2 fixation process at an early stage of prokaryotic evolution (Towe, 2002). Assuming that the origin of nitrogenase pre-dates the origin of N2 fixation, it is likely that respiratory enzymes or cyanide detoxification centers had been involved in this process (Fani et al., 2000). Our data indicate that all cyanobacteria strains able to fix N2 are forming a monophyletic group when compared with the other, paraphyletic eubacteria group, suggesting that the intrinsic ability to fix N2 in cyanobacteria was most likely obtained directly from a common ancestor (Figure 3). Information from phylogenetic reconstructions and also the presence of nif genes in many groups of archaea and bacteria suggest that nitrogenase had already evolved within the last common ancestor (LCA) (Normand et al., 1992; Fani et al., 2000). However, it remains unclear whether the present distribution of nif genes in cyanobacteria has been obtained by horizontal gene transfer (HGT), or whether vertical descent had a larger impact on this process (Henson et al., 2004b; Latysheva et al., 2012). In the LCA hypothesis, the loss of nitrogenase genes by some groups reflects the modern scattered distribution of these among both Archaea and Bacteria, but not in all phyla, and neither in eukaryotes (Raymond et al., 2004; Latysheva et al., 2012). Meanwhile, HGT and genetic duplication events could happened between and within prokaryotic lines, helping to explain the
presence of more than one nitrogenase gene copy in some bacteria (Kechris et al., 2006). These copies could be related to a new nitrogenase family, which presents a different metal co-factor (Fe or V nitrogenases) (Thiel, 1993; Pratte et al., 2006), showing that HGT is most likely a source of genetic diversity in cyanobacteria (Mulkidjanian et al., 2006).

Given the crucial importance of nitrogenase for cyanobacterial \(\text{N}_2 \) fixation, it is not surprising that alternative nitrogenases have been found (Eady, 1996; Masukawa et al., 2009). Cyanobacteria have co-evolved during the course of planetary evolution and was already present when the change of oxidation state of both ocean and atmosphere occurred (Berman-Frank et al., 2003). The low oxygen concentration in the early Earth might have acted as a selective pressure on nitrogenase, once information from paleosols indicates a high availability of reduced Fe rather than Mo. Then, a nitrogenase able to use Fe as a metal-
Figure 4 - Maximum Likelihood (ML) phylogenetic reconstruction based on partial 16S rRNA sequences. A total of 54 sequences were used. A matrix with 1,463 base pair length was obtained after alignment. The general time reversible evolutionary model of substitution with gamma distribution and with an estimate of proportion of invariable sites (GTR + G + I) was selected as the fittest for the alignment by MrModelTest 2.3 (Nylander, 2004). Phylogenetic trees were reconstructed using the ML and Bayesian methods. For Bayesian analysis, the trees were searched using the software MrBayes 3.2.6 (Ronquist et al., 2012) and the Bayesian analysis consisted of two independent runs, with four Markov chains each, of 50 million generations sampled every 5,000 generations. Posterior probabilities (PP) were calculated at the conclusion of the Markov-Chain-Monte-Carlo analysis and a traditional burn-in on the first 25% of the trees was performed. The ML trees were reconstructed using the MEGA program package, version 5 (Tamura et al., 2011). The robustness of the phylogenetic trees was estimated via bootstrap analysis using 1000 replications. ML and Bayesian methods resulted in nearly identical topologies, with indications of bootstrap values (ML) and Bayesian PPs in the relevant nodes. The cyanobacterial morphologies are highlighted with different colours: yellow for unicellular strains, blue for filamentous non-heterocytous strains, green for filamentous heterocytous strains without branching, and red for filamentous heterocytous strains with true branching. Sequence data from this article can be found in the NCBI database under the accession numbers, which are presented together with the strain name.
Cofactor would have been in great advantage (Anbar and Knoll, 2002). Accordingly, some physiological evidence has been presented for the existence of a Fe-nitrogenase in *Anabaena variabilis* (Kentemich et al., 1991). In addition, a V-nitrogenase has been found only in the genera *Anabaena* (*A. variabilis* and *A. azotica*) and *Nostoc* (Kentemich et al., 1988; Thiel, 1993; Masukawa et al., 2009). The divergence between the Fe-dependent and V-dependent nitrogenases most likely occurred subsequently in the evolutionary history, and it is therefore reasonable to suggest that an ancestral NifD homolog might have had lower specificity with respect to its metal cofactor (Raymond et al., 2004). The cyanobacterial photosynthesis led to a progressive increase of the atmospheric oxygen concentration in the Precambrian Earth, affecting negatively Fe availability. On the other hand, soluble oxidized Mo started to become more available in the oceans (Hofmann, 1976; Bekker et al., 2004; Frei et al., 2009). Thus, nitrogenase would be responsive for the environmental availability of V, Fe, and Mo that fluctuated with the changing redox state that characterised the Proterozoic Earth between 1 and 2 billion years ago (Normand and Bousquet, 1989; Anbar and Knoll, 2002). Furthermore, in addition to the higher availability of Mo, an increased efficiency of Mo-nitrogenase, compared with both V- and Fe-dependent enzymes, could also act as an additional selection pressure factor for the establishment of the Mo-dependent nitrogenase (Raymond et al., 2004). Growth rates registered on V and Mo cultures of *A. variabilis* were essentially the same, although the catalytic efficiency of the alternative nitrogenase was lower than the one presented by the MoFe-nitrogenase (Kentemich et al., 1988). In addition, the specific activity of the VFe-nitrogenase, at 30 °C, in *Azotobacter* is approximately 1.5 times lower than that of MoFe-nitrogenase (Miller and Eady, 1988).

Hydrogen biosynthesis and strategies to improve hydrogen production in cyanobacteria

Molecular hydrogen was an essential source of energy during the early stages of the Earth, but lost its importance with the evolution of the photosynthetic machinery, that was able to use light more efficiently (Esper et al., 2006). In cyanobacteria and other N₂-fixing prokaryotes, H₂ is synthesized as a by-product of nitrogenase during the N₂ fixation process, and in a next step reaction, it may be oxidized by a hydrogenase (Berman-Frank et al., 2003). Accordingly, in addition to nitrogenase, cyanobacteria may possess different enzymes related with H₂ metabolism: an uptake hydrogenase which catalyses H₂ consumption, and a bidirectional hydrogenase able to catalyse both H₂ synthesis and oxidation (Tamagnini et al., 2002). The presence of a bidirectional hydrogenase in cyanobacteria is unrelated with its capacity to fix N₂ (Serebriakova et al., 1994; Carrieri et al., 2011). On the other hand, an uptake hydrogenase has been found in almost all the N₂-fixing cyanobacteria examined thus far, with one reported exception - *Synechococcus* sp. IG 043511 (Ludwig et al., 2006). The recycling of H₂ by hydrogenases, is an important metabolic process, once it generates ATP and reduction equivalents, and provides an anoxic environment to nitrogenase activity (Bothe et al., 2010). As important enzymes in the energy metabolism of microorganisms, hydrogenases are widespread in prokaryotes. The distribution and function of these enzymes has been expertly investigated elsewhere (Ludwig et al., 2006; Barz et al., 2010; Skizim et al., 2012), once H₂ is commonly considered as the future of “clean” energy (Dismukes et al., 2008; Quintana et al., 2011). Its combustion, different of fossil fuels, releases water as a product together with high amounts of energy which can be transformed in electricity (Dutta et al., 2005). Furthermore, H₂ is an unlimited energy source, and even with the lower efficiency of photobiological systems compared with electrochemical H₂ production, this alternative shows economic viability due to the low production cost (Block and Melody, 1992; Lindblad, 1999; Dutta et al., 2005). Notably, H₂ production was registered for at least 14 cyanobacterial genera under a vast range of culture growth conditions (Tamagnini et al., 2002), and although both the nitrogenase(s) and the bidirectional hydrogenase are capable of H₂ production (Tamagnini et al., 2000), it is reasonable to assume nitrogenase as a key enzyme for cyanobacterial H₂ production (Kumazawa and Mitsui, 1994; Yoshino et al., 2007; Sakurai et al., 2015). As discussed above, alternative nitrogenases exhibit lower catalytic activities compared with MoFe-nitrogenase (Kentemich et al., 1988; Miller and Eady, 1988), and might not be assumed as candidates for H₂ production (Hallenbeck and Benemann, 2002).

Cyanobacterial photohydrogen production has been already carried out with N₂-fixing strains (Lichtl et al., 1997; Tsygankov et al., 1997, 1998) in which the net H₂ production is the result between the H₂ evolution catalyzed by nitrogenase and H₂ consumption catalyzed by the uptake hydrogenase. The inactivation of [NiFe]-uptake hydrogenase in N₂-fixing cyanobacteria leads to an efficient increase in the H₂ produced: 3 to 7 x-fold more than in wild-type cells under optimal conditions (Masukawa et al., 2002; Yoshino et al., 2007). On the other hand, due to the sensitivity of nitrogenase and hydrogenases to O₂ (Zehr et al., 1993; Serebryakova et al., 1996; Tamagnini et al., 2002), strategies such as biophotovoltaic cells (BPVs) and anaerobic growth conditions have been tested to separate the O₂ for H₂ production, in an attempt to improve the yield of this process (Bombelli et al., 2011; Bradley et al., 2013). However, it seems reasonable to assume that another possible solution to this issue is the use of heterocytous cyanobacteria. These organisms appear as an interesting solution given that they present at least two different cell types (veg-
etative cells and heterocytes), where the O₂ and H₂ evolving activities occur spatially separated.

Many cyanobacteria are facultative anaerobes that can produce H₂ as a by-product of the dark anoxic catabolism of photosynthetic compounds, mainly glycogen (Stal and Moezelaar, 1997; Das and Vezzioglu, 2001; McNeely et al., 2010). It was shown that after hydrogenase activation by anaerobic conditions in the dark, the amount of H₂ produced at light conditions by an engineered strain of *Synechocystis* lacking the quinol and cytochrome c oxidase (Gutthann et al., 2007) increased 12 fold compared to wild-type cells (Gutthann et al., 2007). Furthermore, the disruption of the nitrate assimilation pathway produced from 10 to 140 fold more H₂ (Baebprasert et al., 2011), and cells supplemented with ammonium, as the nitrogen source, evolved about twofold more H₂ than cells grown with nitrate (Baebprasert et al., 2011). Notably, increasing concentrations of nickel (Ni) during cell growth seem to be clearly important for H₂ production. Thus, NiCl₂ supplementation in *Arthrospira maxima* kept under low light increases H₂ production following anaerobic induction in darkness. Additionally, Ni supplemented cultures evolve H₂ at initial rates 18 fold higher than unsupplemented ones (Carrieri et al., 2008). Collectively these results indicate that both metabolic engineering and growth conditions will have clear impacts on H₂ production and therefore, further combined studies are required to increase our knowledge on this important cyanobacterial topic.

Although the H₂ production in N₂-fixing cyanobacteria has been extensively investigated (Kumazawa and Mitsui, 1994; Serebriakova et al., 1994; Kumazawa and Asakawa, 1995; Tsygankov et al., 1997, 1998; Borodin et al., 2000; Masukawa et al., 2002; Yoshino et al., 2007), a focus on non-fixing cyanobacteria strains, mainly *Syneocystis* sp. PCC6803, has also recently appeared (Gutthann et al., 2007; Baebprasert et al., 2011; McCormick et al., 2013). The availability of its genomic sequence coupled with the acquired ability to be naturally transformable has clearly promoted the usage of this strain. However, recent evidence suggests that *Synechococcus* sp.WH5701, a N₂-fixing cyanobacteria, may have a higher capacity for extracellular electron transport in comparison to *Synechocystis* (McCormick et al., 2011). Thus, it seems likely that analysing the yield of N₂-fixing cyanobacteria in BPVs and in other conditions mentioned here and compare it with *Synechocystis*, mainly those heterocytous strains with inactivated [NiFe]-uptake hydrogenase (Masukawa et al., 2002; Yoshino et al., 2007), might provide an interesting research avenue to be pursued. In addition, it should be kept in mind that, although extensive efforts have been made to produce H₂ from cyanobacteria, this approach appears to be still in a very early stage of development (Akkerman et al., 2002; Wijffels et al., 2013), and therefore, a number of technological aspects, such as the cost of nutrients and bioreactors, should be considered during the design of future plans for photobiological H₂ production (Sakurai et al., 2013, 2015). Although, significant challenges remain in the potential developing of cyanobacteria for biological H₂ production, we hope that through the use of the above discussed targets, subsequent studies will increase our knowledge and bring us closer to realizing the biotechnological potential of nitrogenase-mediated H₂ production by these microorganisms.

Concluding remarks

Despite the relationships observed here between the *nifD* sequences with regard to both morphological and molecular (16S rRNA) relationships previously observed in the cyanobacterial group, many open questions remain about cyanobacterial evolution and metabolism. It is reasonable to assume that the different strategies observed in cyanobacteria (spatial and temporal separation) to improve N₂ fixation were associated with small alterations in the *nif* nucleotide sequences, despite large changes in morphology. Our future ability to answer these questions is dependent on fundamental work providing a fuller understanding of these processes and on how they are regulated. Although many biological and technological challenges need to be overcome, we believe that improvement of the N₂ fixation process will be directly associated with H₂ production as one of the leading contenders for renewable energy. It should also be kept in mind that the development of large-scale and economical photobiological H₂ production, which might be linked to improved cyanobacterial N₂ fixation, most likely will make meaningful contributions to mitigate climate change and also provide new employment opportunities, particularly in areas unsuitable for modern agriculture.

Acknowledgments

This work was supported by funding from the Max Planck Society (to A.N.N. and W.L.A.) and the National Council for Scientific and Technological Development (CNPq-Brazil, Grant 483525/2012-0 to W.L.A., Grant 306355/2012-4 to A.N.N.) and the FAPEMIG (Foundation for Research Assistance of the Minas Gerais State, Brazil, Grant APQ- 01106-13 and APQ-01357-14 to W.L.A.). Scholarships granted by CNPq and FAPEMIG to J.H.F.C., by CNPq to A.A.E-F., by Brazilian Federal Agency for Support and Evaluation of Graduate Education (CAPES) to L.V.A. and CAPES/FAPEMIG to M.G.M.V. (BPD-00514-14) are also gratefully acknowledged. We also would like to thank the CCALA Culture Collection of Autotrophic Organisms (http://ccala.butbn.cas.cz) and Prof. Ondœej Práil (Institute of Microbiology, Czech Academy of Sciences, Czech Republic) for kindly providing the pictures c and d for Figure 1.
References

Akerman I, Janssen M, Rocha J and Wijffels RH (2002) Photobiological hydrogen production: Photochemical efficiency and bioreactor design. Int J Hydrogen Energ 27:1195-1208.

Alfonso M, Perewoska I and Kirillovsky D (2001) Redox control of ntcA gene expression in Synechocystis sp. PCC 6803. Nitrogen availability and electron transport regulate the levels of the NtcA protein. Plant Physiol 125:969-981.

Anbar AD and Knoll AH (2002) Proterozoic Ocean Chemistry and Evolution: A Bioinorganic Bridge? Science 297:1137-1142.

Andreote APD, Vaz MGMV, Genuário DB, Barbiero L, Rezende-Filho AT and Fiore MF (2014) Nonheterocytous cyanobacteria from Brazilian saline-alkaline lakes. J Phycol 50:675-684.

Baebprasert W, Jantaro S, Khetkorn W, Lindblad P and Incharoensakdi A (2011) Increased H2 production in the cyanobacterium Synechocystis sp. strain PCC 6803 by redirecting the electron supply via genetic engineering of the nitrate assimilation pathway. Metab Eng 13:610-616.

Barz M, Beimgaben C, Stallter T, Germer F, Opitz F, Marquardt C, Schwarz C, Gutekunst K, Vanselow KH, Schmitz R, et al. (2010) Distribution analysis of hydrogenases in surface water of marine and freshwater environments. PLoS ONE 5:e13846.

Beck C, Knoop H, Axmann IM and Steuer R (2012) The diversity of cyanobacterial metabolism: Genome analysis of multiple phototrophic microorganisms. BMC Genomics 13:56.

Bekker A, Holland H, Wang P-L, Rumble, D, Stein H, Hannah J, Coetzee L and Beukes N (2004) Dating the rise of atmospheric oxygen. Nature 427:117-120.

Bergman B, Gallon JR, Rai AN and Stal LJ (1997) N2 Fixation by cyanobacteria. Limnol Oceanogr 52:2260-2269.

Bergman B, Sandh G, Lin S, Larsson J and Carpenter EJ (2013) Trichodesmium - a widespread marine cyanobacterium with unusual nitrogen fixation properties. FEMS Microbiol Rev 37:286-302.

Berman-Frank I, Lundgren P, Chen Y-B, Küpper H, Kolber Z, Bergman B and Falkowski P (2001) Segregation of nitrogen fixation and oxygenic photosynthesis in the marine cyanobacterium Trichodesmium. Science 294:1534-1537.

Berman-Frank I, Lundgren P and Falkowski P (2003) Nitrogen fixation and photosynthetic oxygen evolution in cyanobacteria. Res Microbiol 154:157-164.

Berman-Frank I, Quigg A, Finkel ZV, Irwin AJ and Haramaty L (2007) Nitrogen-fixation strategies and Fe requirements in cyanobacteria. Limnol Oceanogr 52:2260-2269.

Betancourt DA, Loveless TM, Brown JW and Bishop PE (2008) Characterization of diazotrophs containing Mo-independent nitrogenases, isolated from diverse natural environments. Appl Environ Microb 74:3471-3480.

Block DL and Melody I (1992) Efficiency and cost goals for photoenhanced hydrogen production processes. Int J Hydrogen Energ 17:853-861.

Böhme H (1998) Regulation of nitrogen fixation in heterocyst-forming cyanobacteria. Trends Plant Sci 3:346-351.

Bombelli P, Bradley RW, Scott AM, Philips AJ, McCormick AJ, Cruz SM, Anderson A, Yunus K, Bendall DS, Cameron PJ, et al. (2011) Quantitative analysis of the factors limiting solar power transduction by Synechocystis sp. PCC 6803 in biological photovoltaic devices. Energy Environ Sci 4:4690-4698.

Borodin VB, Tsygankov AA, Rao KK and Hall DO (2000) Hydrogen production by Anabaena variabilis PK84 under simulated outdoor conditions. Biotechnol Bioeng 69:478-485.

Bothe H, Schmitz O, Yates MG and Newton WE (2010) Nitrogen fixation and hydrogen metabolism in Cyanobacteria. Microbiol Mol Biol R 74:529-551.

Boyd E and Peters JW (2013) New insights into the evolutionary history of biological nitrogen fixation. Front. Microbiol 4:201.

Bradley RW, Bombelli P, Lea-Smith DJ and Howe CJ (2013) Terminal oxidase mutants of the cyanobacterium Synechocystis sp. PCC 6803 show increased electrogenic activity in biological photo-voltaic systems. Phys Chem Chem Phys 15:13611-13618.

Brusca JS, Chastain CJ and Golden JW (1990) Expression of the Anabaena sp. strain PCC 7120 xisA gene from a heterologous promoter results in excision of the nifD element. J Bacteriol 172:3925-3931.

Burnat M, Herrero A and Flores E (2014) Compartmentalized cyanophycin metabolism in the diazotrophic filaments of a heterocyst-forming cyanobacterium. Proc Natl Acad Sci U S A 111:3823-3828.

Cardona T, Battachikova N, Zhang P, Stensjö K, Aro E-M, Lindblad P and Magnuson A (2009) Electron transfer protein complexes in the thylakoid membranes of heterocysts from the cyanobacterium Nostoc punctiforme. Biochim Biophys Acta - Bioenerget 1787:252-263.

Carriero D, Ananyev G, Garcia Costas AM, Bryant DA and Dismukes GC (2008) Renewable hydrogen production by cyanobacteria: Nickel requirements for optimal hydrogenase activity. Int J Hydrogen Energ 33:2014-2022.

Carriero D, Wawrousek K, Eckert C, Yu J and Maness P-C (2011) The role of the bidirectional hydrogenase in cyanobacteria. Bioresource Technol 102:8368-8377.

Colón-López MS, Sherman DM and Sherman LA (1997) Transcriptional and translational regulation of nitrogense in light-dark- and continuous-light-grown cultures of the unicellular cyanobacterium Cyanothece sp. strain ATCC 51142. J Bacteriol 179:4319-4327.

Curatti L, Flores E and Salerno G (2002) Sucrose is involved in the diazotrophic metabolism of the heterocyst-forming cyanobacterium Anabaena sp. FEBS Lett 513:175-178.

Curatti L, Hernandez JA, Igarashi RY, Soboh B, Zhao D and Rubio LM (2007) In vitro synthesis of the iron-molybdenum cofactor of nitrogenase from iron, sulfur, molybdenum, and homocitrate using purified proteins. Proc Natl Acad Sci U S A 104:17626-17631.

Das D and Vezirgolu TN (2001) Hydrogen production by biological processes: A survey of literature. Int J Hydrogen Energ 26:13-28.

Dismukes GC, Carriero D, Bennette N, Ananyev GM and Posewitz MC (2008) Aquatic phototrophs: Efficient alternatives to land-based crops for biofuels. Curr Opin Biotech 19:235-240.

Dutta D, De D, Chaudhuri S and Bhattacharya S (2005) Hydrogen production by Cyanobacteria. Microb Cell Fact 4:36.

Eady RR (1996) Structure-Function Relationships of Alternative Nitrogenases. Chem Rev 96:3013-3030.
Edgar RC (2004) MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792-1797.

Esper B, Badura A and Rögnar M (2006) Photosynthesis as a power supply for (bio-) hydrogen production. Trends Plant Sci 11:543-549.

Falkowski PG (1997) Evolution of the nitrogen cycle and its influence on the biological sequestration of CO₂ in the ocean. Nature 387:272-275.

Fani R, Gallo R and Liò P (2000) Molecular evolution of nitrogen fixation: The evolutionary history of the nifD, nifK, nifE, and nifN genes. J Mol Evol 51:1-11.

Fay P (1992) Oxygen relations of nitrogen fixation in cyanobacteria. Microbiol Rev 56:340-373.

Finzi-Hart JA, Pett-Ridge J, Weber PK, Popa R, Fallon SJ, Gunderson T, Hutcheon ID, Nealson KH and Capone DG (2009) Fixation and fate of C and N in the cyanobacterium Trichodesmium using nanometer-scale secondary ion mass spectrometry. Proc Natl Acad Sci U S A 106:6345-6350.

Flores E and Herrero A (2005) Nitrogen assimilation and nitrogen control in cyanobacteria. Biochom Soc Trans 33:164-167.

Flores E and Herrero A (2010) Compartmentalized function through cell differentiation in filamentous cyanobacteria. Nat Rev Micro 8:39-50.

Flores E, Frias JE, Rubio LM and Herrero A (2005) Photosynthetic nitrate assimilation in cyanobacteria. Photosynth Res 83:117-133.

Fredriksson C and Bergman B (1995) Nitrogenase quantity varies diurnally in a subset of cells within colonies of the non-heterocystous cyanobacterium Trichodesmium spp. Microbiology 141:2471-2478.

Fredriksson C and Bergman B (1997) Ultrastructural characterisation of cells specialised for nitrogen fixation in a non-heterocystous cyanobacterium, Trichodesmium spp. Protoplasma 197:76-85.

Frei R, Gaucher C, Poulton SW and Canfield DE (2009) Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes. Nature 461:250-253.

García-Domínguez M and Florencio FJ (1997) Nitrogen availability and electron transport control the expression of glnB gene (encoding PII protein) in the cyanobacterium Synechocystis sp. PCC 6803. Plant Mol Biol 35:723-734.

Golden J and Wiest D (1988) Genome rearrangement and nitrogen fixation in Anabaena blocked by inactivation of nifA gene. Science 242:1421-1423.

Gutmann F, Egert M, Marques A and Appel J (2007) Inhibition of respiration and nitrate assimilation enhances photosynthetic hydrogen evolution under low oxygen concentrations in Synechocystis sp. PCC 6803. Biochim Biophys Acta - Bioenergetics 1767:161-169.

Hackenberg C, Kern R, Hüge J, Stal LJ, Tsuji Y, Kopka J, Shiraiwa Y, Bauwe H and Hagemann M (2011) Cyanobacterial lactate oxidases serve as essential partners in N₂ fixation and evolved into photorespiratory glycolate oxidases in plants. Plant Cell Online 23:2978-2990.

Hallenbeck PC and Benemann JR (2002) Biological hydrogen production; fundamentals and limiting processes. Int J Hydrogen Energ 27:1185-1193.

Heidorn T, Camsund D, Huang H-H, Lindberg P, Oliveira P, Stensjo K and Lindblad P (2011) Synthetic biology in cyanobacteria: Engineering and analyzing novel functions. Methods Enzymol 497:539-579.

Henson BJ, Hesselbrook SM, Watson LE and Barnum SR (2004a) Molecular phylogeny of the heterocystous cyanobacteria (subsections IV and V) based on nifD. Int J Syst Evol Micr 54:493-497.

Henson BJ, Watson LE and Barnum SR (2004b) The evolutionary history of nitrogen fixation, as assessed by NifD. J Mol Evol 58:390-399.

Hernandez JA, Igarashi RY, Soboh B, Curatti L, Dean DR, Ludden PW and Rubio LM (2007) NifX and NifEN exchange NifB cofactor and the VK-cluster, a newly isolated intermediate of the iron-molybdenum cofactor biosynthetic pathway. Mol Microbiol 63:177-192.

Herrero A, Muro-Pastor AM and Flores E (2001) Nitrogen control in Cyanobacteria. J Bacteriol 183:411-425.

Hess WR (2011) Cyanobacterial genomics for ecology and biotechnology. Curr Opin Microbiol 14:608-614.

Hofmann H (1976) Precambrian microflora, Belcher Islands, Canada: Significance and systematics. J Paleontol:1040-1073.

Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert D and Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: Perspectives and advances. Plant J 54:621-639.

Hu Y, Fay AW, Lee CC and Ribbe MW (2007) P-cluster maturation on nitrogenase MoFe protein. Proc Natl Acad Sci U S A 104:10424-10429.

Jones AC, Monroe EA, Podell S, Hess WR, Klages S, Esquenazi E, Niessen S, Hoover H, Rothmann M, Lasken RS, et al. (2011) Genomic insights into the physiology and ecology of the marine filamentous cyanobacterium Lyngbya majuscula. Proc Natl Acad Sci U S A 108:8815-8820.

Jones CS and Mayfield SP (2012) Algae biofuels: Versatility for the future of bioenergy. Curr Opin Biotech 23:346-351.

Kasting JF and Siegfert JL (2001) Biogeochemistry: The nitrogen fix. Nature 412:26-27.

Kasting JF and Siegfert JL (2002) Life and the evolution of Earth’s atmosphere. Science 296:1066-1068.

Kechris KJ, Lin JC, Bickel PJ and Glazer AN (2006) Quantitative exploration of the occurrence of lateral gene transfer by using nitrogen fixation genes as a case study. Proc Natl Acad Sci U S A 103:9584-9589.

Keeling PJ (2013) The number, speed, and impact of plastid endosymbioses in eukaryotic evolution. Annu Rev Plant Biol 64:583-607.

Kentemich T, Danneberg G, Hundeshagen B and Bothe H (1988) Evidence for the occurrence of the alternative, vanadium-containing nitrogenase in the cyanobacterium Anabaena variabilis. FEMS Microbiol Lett 51:19-24.

Kentemich T, Haverkamp G and Bothe H (1991) The expression of a third nitrogenase in the cyanobacterium Anabaena variabilis. Z Naturforsch 46c:217-222.

Kim S and Burgess BK (1996) Evidence for the direct interaction of the nifW gene product with the MoFe protein. J Biol Chem 271:9764-9770.

Knoll AH (2008) Cyanobacteria and earth history. In: Herrero A and Flore E (eds) The Cyanobacteria: Molecular Biology, Genomics and Evolution. 1stedition. Caister Academic Press, Poole, pp 1-19.
Koonin E (2010) The origin and early evolution of eukaryotes in the light of phylogenomics. Genome Biol 11:209.

Kumazawa S and Asakawa H (1995) Simultaneous production of hydrogen and O2 in closed vessels by marine Cyanobacterium Anabaena sp. TU37-1 under high-cell-density conditions. Biotechnol Bioeng 46:396-398.

Kumazawa S and Mitsui A (1994) Efficient Hydrogen photoproduction by synchronously grown cells of a marine cyanobacterium, Synechococcus sp. Miami BG 043511, under high cell density conditions. Biotechnol Bioeng 44:854-858.

Larsson J, Nylander JAA and Bergman B (2011) Genome fluctuations in cyanobacteria reflect evolutionary, developmental and adaptive traits. BMC Evol Biol 11:187.

Latysheva N, Junker VL, Palmer WJ, Codd GA and Barker D (2012) The evolution of nitrogen fixation in cyanobacteria. Bioinformatics 28:603-606.

Lee H-M, Vázquez-Bermúdez MF and de Marsac NT (1999) The cyanobacterial nitrogenase 273.

Lindblad P (1999) Cyanobacterial H2 metabolism: Knowledge and potential strategies for a photobiotechnological production of H2. Biotecnol Aplic 16:141-144.

Lichtl RR, Bazin MJ and Hall DO (1997) The biotechnology of hydrogen production by Nostoc flagelliforme grown under chemostat conditions. Appl Microbiol Biot 47:701-707.

Lin S, Henze S, Lundgren P, Bergman B and Carpenter EJ (1998) Whole-cell immunolocalization of nitrogenase in marine diazotrophic cyanobacteria, Trichodesmium spp. Appl Environ Microbiol 64:3052-3058.

Lindblad P (1999) Cyanobacterial H2 metabolism: Knowledge and potential strategies for a photobiotechnological production of H2. Biotecnol Aplic 16:141-144.

Litvaitis MK (2002) A molecular test of cyanobacterial phylogeny: Inferences from constraint analyses. Hydrobiologia 468:135-145.

Ludwig M, Schulz-Friedrich R and Appel J (2006) Occurrence of hydrogenases in cyanobacteria and anoxicogenic photosynthetic bacteria: Implications for the phylogenetic origin of cyanobacterial and algal hydrogenases. J Mol Evol 63:758-768.

Lundgren P, Bauer K, Lugomela C, Söderbäck E and Bergman B (2003) Reevaluation of the nitrogen fixation behavior in the marine non-heterocystous cyanobacterium Lyngbya majuscula. J Phycol 39:310-314.

Luque I, Flores E and Herrero A (1994) Molecular mechanism for the operation of nitrogen control in cyanobacteria. EMBO J 13:2862-2869.

Luque I, Zabulon G, Contreras A and Houmard J (2001) Convergence of two global transcriptional regulators on nitrogen induction of the stress-acclimation gene nblA in the cyanobacterium Synechococcus sp. PCC 7942. Mol Microbiol 41:937-947.

Machado IMP and Atsumi S (2012) Cyanobacterial biofuel production. J Biotechnol 162:50-56.

Masukawa H, Mochimaru M and Sakurai H (2002) Disruption of the uptake hydrogenase gene, but not of the bidirectional hydrogenase gene, leads to enhanced photobiological hydrogen production by the nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120. Appl Microbiol Biot 58:618-624.

Masukawa H, Zhang X, Yamazaki E, Iwata S, Nakamura K, Mochimaru M, Inoue K and Sakurai H (2009) Survey of the distribution of different types of nitrogenases and hydrogenases in heterocyst-forming cyanobacteria. Mar Biotechnol 11:397-409.

Mayer SM, Gormall CA, Smith BE and Lawson DM (2002) Crystallographic analysis of the MoFe protein of nitrogenase from a nifV mutant of Klebsiella pneumoniae identifies citrate as a ligand to the molybdenum of iron molybdenum cofactor (FeMoco). J Biol Chem 277:35263-35266.

McCormick AJ, Bombelli P, Scott AM, Philips AJ, Fisher AC and Howe CJ (2011) Photosynthetic biofilms in pure culture harness solar energy in a mediatorless biophotovoltaic cell (BPV) system. Energy Environ Sci 4:4699-4709.

McNeill K, Xu Y, Bennette N, Bryant DA and Dismukes GC (2010) Redirecting reductant flux into hydrogen production via metabolic engineering of fermentative carbon metabolism in a cyanobacterium. Appl Environ Microbiol 76:2682-2690.

Miller RW and Eady RR (1988) Molybdenum and vanadium nitrogenases of Azotobacter chroococcum. Low temperature favours N2 reduction by vanadium nitrogenase. Biochem. J 256:429-432.

Mulkidjiamian A, Koonin E, Makarova K, Mekhodov S, Sorokin A, Wolf Y, Dufresne A, Partensky F, Burd H, Kaznadzey D, et al. (2006) The cyanobacterial genome core and the origin of photosynthesis. Proc Natl Acad Sci U S A 103:13126-13131.

Muro-Pastor MJ, Reyes JC and Florencio FJ (1996) The NADP+-isocitrate dehydrogenase gene (icd) is nitrogen regulated in cyanobacteria. J Bacteriol 178:4070-4076.

Muro-Pastor AM, Valladares A, Flores E and Herrero A (2002) Mutual dependence of the expression of the cell differentiation regulatory protein HetR and the global nitrogen regulator NtcA during heterocyst development. Mol Microbiol 44:1377-1385.

Murry M and Wolk CP (1989) Evidence that the barrier to the penetration of oxygen into heterocysts depends upon two layers of the cell envelope. Arch Microbiol 151:469-474.

Navarro-González R, McKay CP and Mvondo DN (2001) A possible nitrogen crisis for Archaean life due to reduced nitrogen fixation by lightning. Nature 412:61-64.

Normand P and Bousquet J (1989) Phylogeny of nitrogenase sequences in Frankia and other nitrogen-fixing microorganisms. J Mol Evol 29:436-447.

Normand P, Gouy M, Cournoyer B and Simonet P (1992) Phylogenetic inferences. Mol Biol Evol 9:495-506.

Nylander J (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University.

Ogawa T and Sonoike K (2015) Dissection of respiration and photosynthesis in the cyanobacterium Synechocystis sp. PCC6803 by the analysis of chlorophyll fluorescence. J Photochem Photobiol B 144:61-67.

Ohk K and Taniuchi Y (2009) Detection of nitrogenase in individual cells of a natural population of Trichodesmium using...
immunocytochemical methods for fluorescent cells. J Oceanogr 65:427-432.

Orme-Johnson W (1992) Nitrogenase structure: Where to now? Science 257:1639-1640.

Ow SY, Noirel J, Cardona T, Taton A, Lindblad P, Stensjo K and Wright PC (2008) Quantitative overview of N\textsubscript{2} fixation in *Nostoc punctiforme* ATCC 29133 through cellular enrichments and iTRAQ shotgun proteomics. *J Proteome Res* 8:187-198.

Pael H (2012) Marine plankton. In: Whitton BA (ed) Ecology of Cyanobacteria II. Springer, Dordrecht, pp 127-153.

Parmar A, Singh NK, Pandey A, Gnanasounou E and Madamwar D (2011) Cyanobacteria and microalgae: A positive prospect for biofuels. Bioresource Technol 102:10163-10172.

Paz-Yepes J, Flores E and Herrero A (2003) Transcriptional effects of the signal transduction protein P(II) (*gln*B gene product) on NtcA-dependent genes in *Synechococcus* sp. PCC 7942. *FEBS Lett* 543:42-46.

Paz-Yepes J, Herrero A and Flores E (2007) The NtcA-regulated *ami*B gene is necessary for full methylammonium uptake activity in the cyanobacterium *Synechococcus elongatus*. *J Bacteriol* 189:7791-7798.

Pratte BS and Thiell T (2014) Regulation of nitrogenase gene expression by transcript stability in the Cyanobacterium *Anabaena variabilis*. *J Bacteriol* 196:3609-3621.

Pratte BS, Eplin K and Thiell T (2006) Cross-functionality of nitrogenase components NifH1 and VnfH in *Anabaena variabilis*. *J Bacteriol* 188:5806-5811.

Pulz O and Gross W (2004) Valuable products from biotechnology of microalgae. *Appl Microbiol Biot* 65:635-648.

Quintana N, Van der Kooy F, Van de Rhee MD, Voshol GP and Verpoorte R (2011) Renewable energy from cyanobacteria: Evolution of multicellularity occurred with increased diversification of cyanobacteria and the Great Oxidation Event. Proc Natl Acad Sci U S A 110:1791-1796.

Schrautemeier B, Neveling U and Schmitz S (1995) Distinct and differentially regulated Mo-dependent nitrogen-fixing systems evolved for heterocysts and vegetative cells of *Anabaena variabilis* ATCC 29413: Characterization of the *fdxH1/2* gene regions as part of the *nif1/2* gene clusters. *Mol Microbiol* 18:357-369.

Seefeldt LC, Hoffman BM and Dean DR (2009) Mechanism of Mo-dependent nitrogenase. *Annu Rev Biochem* 78:701-722.

Serebriakova L, Zorin N and Lindblad P (1994) Reversible hydrogenase in *Anabaena variabilis* ATCC 29413. *Arch Microbiol* 161:140-144.

Serebryakova LT, Medina M, Zorin NA, Gogotov IN and Cammaack R (1996) Reversible hydrogenase of *Anabaena variabilis* ATCC 29413: Catalytic properties and characterization of redox centres. *FEBS Lett* 383:79-82.

Shih PM, Wu D, Latifi A, Axen SD, Fewer DP, Talla E, Calteau A, Cai F, Tandeau de Marsac N, Rippka R, et al. (2013) Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing. Proc Natl Acad Sci U S A 110:1053-1058.

Silva CSP, Genuário DB, Vaz MGMV and Fiore MF (2014) Phylogeny of culturable cyanobacteria from Brazilian mangroves. *Syst Appl Microbiol* 37:100-112.

Simpson F and Burris R (1984) A nitrogen pressure of 50 atmospheres does not prevent evolution of hydrogen by nitrogenase. *Science* 224:1095-1097.

Skizim NJ, Ananyev GM, Krishnan A and Dismukes GC (2012) Metabolic pathways for photobiological hydrogen production by nitrogenase- and hydrogenase-containing unicellular cyanobacteria *Cyanothecae*. *J Biol Chem* 287:2777-2786.

Staal M, Rabouille S and Stal LJ (2007) On the role of oxygen for nitrogen fixation in the marine cyanobacterium *Trichodesmium* sp. *Environ Microbiol* 9:727-736.

Stal L, Severin I and Bolhuis H (2010) The ecology of nitrogen fixation in cyanobacterial mats. In: Hallenbeck PC (ed) Re-
cent Advances in Phototrophic Prokaryotes, Vol 675. Springer, New York, pp 31-45.

Stal LJ (2008) Nitrogen fixation in cyanobacteria. Encyclopedia of Life Sciences (ELS), pp 1-8.

Stal LJ and Moezelaa R (1997) Fermentation in cyanobacteria. FEMS Microbiol Rev 21:179-211.

Staley JT and Reysenbach A-L (2002) Biodiversity of microbial life: Foundation of earth’s biosphere. Wiley & Sons, Hoboken, pp 592.

Steinhauser D, Fernie AR and Araújo WL (2012) Unusual cyanobacterial TCA cycles: Not broken just different. Trends Plant Sci 17:503-509.

Steunou A-S, Bhaya D, Bateson MM, Melendez MC, Ward DM, Brecht E, Peters JW, Kühl M and Grossman AR (2006) In situ analysis of nitrogen fixation and metabolic switching in unicellular thermophilic cyanobacteria inhabiting hot spring microbial mats. Proc Natl Acad Sci U S A 103:2398-2403.

Steunou A-S, Jensen SI, Brecht E, Beecraft ED, Bateson MM, Kilian O, Bhaya D, Ward DM, Peters JW, Grossman AR, et al. (2008) Regulation of nif gene expression and the energetics of N₂ fixation over the diel cycle in a hot spring microbial mat. ISME J 2:364-378.

Suzuki I, Horie N, Sugiyama T and Omata T (1995) Identification required for maximum efficiency of nitrogen assimilation. J Bacteriol 177:290-296.

Tomitani A, Knoll AH, Cavanaugh CM and Ohno T (2006) The evolutionary diversification of cyanobacteria: Molecular-phylogenetic and paleontological perspectives. Proc Nat Acad Sci U S A 103:5442-5447.

Towe KM (2002) Evolution of nitrogen fixation. Science 295:798-799.

Associate Editor: Marcia Pinheiro Margis

License information: This is an open-access article distributed under the terms of the Creative Commons Attribution License (type CC-BY), which permits unrestricted use, distribution and reproduction in any medium, provided the original article is properly cited.