Chaos Decomposition and Gap
Renormalization of Brownian Self-Intersection
Local Times

Jinky Bornales
Physics Department, MSU-IIT, Iligan City, The Philippines
jinky.bornales@g.msuiit.edu.ph

Maria João Oliveira
Universidade Aberta, P 1269-001 Lisbon, Portugal
CMAF, University of Lisbon, P 1649-003 Lisbon, Portugal
oliveira@cii.fc.ul.pt, mjoliveira@ciencias.ulisboa.pt (New)

Ludwig Streit
Forschungszentrum BiBoS, Bielefeld University, D 33501 Bielefeld, Germany
CCM, University of Madeira, P 9000-390 Funchal, Portugal
streit@physik.uni-bielefeld.de

Abstract

We study the chaos decomposition of self-intersection local times
and their regularization, with a particular view towards Varadhan’s
renormalization for the planar Edwards model.

Keywords: Edwards model, self-intersection local time, Varadhan renor-
malization, white noise analysis

Mathematics Subject Classifications (2010): 28C20, 41A25, 60H40,
60J55, 60J65, 82D60
1 Introduction

The self-intersection local time of \(d\)-dimensional Brownian motion, informally, is given as

\[
L = \int_0^T dt_2 \int_0^{t_2} dt_1 \delta(B(t_2) - B(t_1)).
\]

We shall see that, while "reasonably well defined" for \(d = 1\), these local times become more and more singular as the dimension \(d\) increases. Intersections have thus been the object of extensive study by authors such as Dvoretzky, Erdös, Kakutani \[6, 7, 8\], Varadhan \[35\], Westwater \[30, 31, 32\], Le Gall \[20, 21\], Rosen \[24, 25, 26\], Dynkin \[9, 10, 11\], Watanabe \[29\], Yor \[33, 34\], Imkeller et al. \[18\], Albeverio et al. \[1, 2\]. For fractional Brownian motion there are papers e.g. by Rosen \[27\], Hu & Nualart \[17\], Grothaus et al. \[15\].

Apart from its intrinsic mathematical interest the self-intersection local time has played a role in constructive quantum field theory, and is a standard model in polymer physics for the self-repulsion ("excluded volume effect") of chain polymers in solvents \[28\].

Replacement of the Dirac delta function in (1) by a Gaussian

\[
\delta_\varepsilon(x) := \frac{1}{(2\pi \varepsilon)^{d/2}} e^{-\frac{|x|^2}{2\varepsilon}}, \quad \varepsilon > 0,
\]

leads to regularized local times

\[
L_\varepsilon := \int_0^T dt_2 \int_0^{t_2} dt_1 \delta_\varepsilon(B(t_2) - B(t_1))
\]

and for \(d = 1\) one can show \(L^2\) convergence w.r.t. white noise or Wiener measure space. But already for \(d = 2\) this fails since the expectation of \(L_\varepsilon\) will diverge in the limit, asymptotically

\[
E(L_\varepsilon) \approx -\frac{T}{2\pi} \ln \varepsilon.
\]

In this case it is sufficient to subtract the expectation, i.e. the centered regularized local time does have a well-defined \(L^2\) limit:

\[
L_{\varepsilon,c} := L_\varepsilon - E(L_\varepsilon) \to L_c.
\]
Apart from the Gaussian regularization above, others have been considered to remove the singularity at $t_1 = t_2$ in the integral [1]. The "staircase regularization" avoids the line $t_1 = t_2$ as in see e.g. Bolthausen [5] (Fig. 1).

![Fig. 1: Domain of integration for the staircase-regularized local time.](image)

The widely used "gap regularization" does the same by omitting the strip $t_2 - t_1 < \Lambda$ in the integral. In the modelling of chain polymers the gap size Λ will be a ”microscopic” quantity, i.e. of the order of the inter-monomer distance, more precisely the ”Kuhn” or ”persistence” length. It plays an important role in renormalization group calculations [28]: critical parameters are obtained from the postulate that macroscopic quantities do not depend on microscopic length scales.
2 Tools from White Noise Analysis [16]

Based on a d-tuple of independent Gaussian white noises $\omega = (\omega_1, \ldots, \omega_d)$ one defines a d-dimensional Brownian motion B through

$$B(t) \equiv \langle \omega, \mathbb{1}_{[0,t]} \rangle = \int_0^t ds \, \omega(s).$$

We shall use a multi-index notation

$$n = (n_1, \ldots, n_d), \quad n = \sum_{i=1}^d n_i, \quad n! = \prod_{i=1}^d n_i!$$

and for d-tuples of Schwartz test functions $f = (f_1, \ldots, f_d) \in S(\mathbb{R}, \mathbb{R}^d)$,

$$\langle f, f \rangle = \sum_{i=1}^d \int dt \, f_i^2(t)$$

and similarly for $\langle \omega^\otimes n, F_n \rangle$ where for d-tuples of white noise the Wick product \cdots generalizes to

$$\omega^\otimes n := \bigotimes_{i=1}^d \omega_i^\otimes n_i :$$

The vector valued white noise ω has the characteristic function

$$C(f) := \mathbb{E}(e^{i\langle \omega, f \rangle}) = \int_{S^*(\mathbb{R}, \mathbb{R}^d)} d\mu(\omega) e^{i\langle \omega, f \rangle} = e^{-\frac{1}{2} \langle f, f \rangle},$$

where $\langle \omega, f \rangle = \sum_{i=1}^d \langle \omega_i, f_i \rangle$ and $f_i \in S(\mathbb{R}, \mathbb{R})$.

Writing

$$(L^2) := L^2(S^*(\mathbb{R}, \mathbb{R}^d), d\mu)$$

there is the Itô-Segal-Wiener isomorphism with the Fock space of symmetric square integrable functions:

$$(L^2) \simeq \left(\bigoplus_{k=0}^\infty \text{Sym} \ L^2(\mathbb{R}^k, k!d^k t) \right)^\otimes d.$$
This implies the chaos expansion

$$\varphi(\omega) = \sum_{n \in \mathbb{N}_0} \langle \omega^\otimes n, F_n \rangle$$

for $\varphi \in (L^2)$

with kernel functions F_n in Fock space.

Generalized functionals are constructed via a Gel’fand triple

$$(S) \subset (L^2) \subset (S)^*.$$

The generalized functionals in $(S)^*$ are conveniently characterized by their action on exponentials. In particular we use the

$$: \exp(\langle \omega, f \rangle) : = C(f) \exp(\langle \omega, f \rangle) \in (S)$$

to make the

Definition 1
The transformation defined for all test functions $f \in S(\mathbb{R}, \mathbb{R}^d)$ via the bilinear dual product on $(S)^ \times (S)$ by

$$\langle (S \Phi)(f) = \langle \langle \Phi, : \exp(\langle \cdot, f \rangle) : \rangle \rangle$$

is called the S-transform of $\Phi \in (S)^*$.**

The multilinear expansion of $S(\Phi)$

$$\langle (S \Phi)(f) = \sum_{n \in \mathbb{N}_0} \langle \varphi_n, f^\otimes n \rangle$$

extends the chaos expansion to $\Phi \in (S)^*$, with distribution valued kernels φ_n, such that

$$\langle \langle \Phi, F \rangle \rangle = \sum_{n \in \mathbb{N}_0} n! \langle \varphi_n, F_n \rangle.$$

Definition 2 *We shall indicate the projection onto chaos of order $n \geq k$ by a superscript (k):

$$\langle \langle \Phi^{(k)}, F \rangle \rangle = \sum_{n, n \geq k} n! \langle \varphi_n, F_n \rangle.$$
Proposition 3 \[14\]

\[\delta^{(2N)}(B(t_2) - B(t_1)) \in (S)^*\]

with even kernel functions

\[\psi_{2n}(u_1, \ldots, u_{2n}; t_1, t_2) = \frac{1}{n!} (2\pi)^{-d/2} \left(\frac{1}{|t_2 - t_1|}\right)^{\frac{d}{2} - n} \left(-\frac{1}{2}\right)^n \prod_{k=1}^{2n} \mathbb{1}_{[t_1, t_2]}(u_k).\]

All the kernel functions with odd indices vanish.

Setting

\[v := \max(u_1, \ldots, u_{2n})\]
\[u := \min(u_1, \ldots, u_{2n})\]

one computes \[14\] the kernel functions of the truncated local time \(L^{(2N)}\) for \(2N > d - 2\) by integration over \(0 < t_1 < t_2 < T\):

\[\varphi_{2n}(u_1, \ldots, u_{2n}) = \frac{(2\pi)^{-d/2}}{n!} \left(-\frac{1}{2}\right)^n \int_0^T dt_2 \int_0^{t_2} dt_1 (t_2 - t_1)^{-n-d/2} \prod_{k=1}^{2n} \mathbb{1}_{[t_1, t_2]}(u_k)\]

\[= (-1)^n \left((n + \frac{d}{2} - 1)(n + \frac{d}{2} - 2)(2\pi)^{d/2} 2^n n!\right)^{-1} \cdot \Theta(u) \Theta(T - v) \cdot\]

\[\cdot (T^{-n-\frac{d}{2}+2} - v^{-n-\frac{d}{2}+2} - (T - u)^{-n-\frac{d}{2}+2})\]

except for \(2n = d = 2\) where

\[\varphi_2(u_1, u_2) = \frac{-1}{4\pi} \left(\ln v + \ln(T - u) - \ln(v - u) - \ln T\right) \cdot \Theta(u) \Theta(T - v).\]

The Heaviside function \(\Theta\) here is the indicator function of the positive half line.

3 Regularizations

Replacement of the Dirac delta function by a Gaussian

\[\delta_{\varepsilon}(x) = \frac{1}{(2\pi \varepsilon)^{d/2}} e^{-\frac{|x|^2}{2\varepsilon}}, \quad \varepsilon > 0,\]

6
leads to regularized local times

\[L_\varepsilon = \int_0^T dt_2 \int_0^{t_2} dt_1 \delta_\varepsilon(B(t_2) - B(t_1)) \]

(2)

with kernel functions \[14 \]

\[\varphi_{\varepsilon,2n}(u_1, \ldots, u_{2n}) = \frac{(2\pi)^{-d/2}}{n!} \left(-\frac{1}{2} \right)^n \int_0^T dt_2 \int_0^{t_2} dt_1 (\varepsilon + |t_2 - t_1|)^{-n-d/2} \mathbb{I}_{[t_1, t_2]}^{\otimes 2n} (u_1, \ldots, u_{2n}) \]

\[= (-1)^n \left((n + \frac{d}{2} - 1)(n + \frac{d}{2} - 2)(2\pi)^{d/2} 2^n n! \right)^{-1} \cdot \Theta(u) \Theta(T - v) \cdot \]

\[\cdot ((T + \varepsilon)^{-n-d/2 + 2} - (v + \varepsilon)^{-n-d/2 + 2} - (T - u + \varepsilon)^{-n-d/2 + 2} + (v - u + \varepsilon)^{-n-d/2 + 2}), \]

\[\varphi_{\varepsilon,2}(u_1, u_2) = -\frac{1}{4\pi} \left(\ln(v + \varepsilon) + \ln(T - u + \varepsilon) - \ln(v - u + \varepsilon) - \ln(T + \varepsilon) \right) \cdot \Theta(u) \Theta(T - v). \]

3.1 Gap Regularization of Kernel Functions

In renormalization group studies of self-repelling Brownian motion another regularization is often used, see e.g. \[28 \] and the references there; it suppresses intersection in small time intervals \(t_2 - t_1 \) between intersections by setting informally

\[L(\Lambda) := \int_{0 < t_1 < t_2 < T} d^2t \delta(B(t_2) - B(t_1)). \]

The expectation of \(L(\Lambda) \) is equal to

\[\mathbb{E}(L(\Lambda)) = \int_0^T dt_2 \int_0^{t_2-\Lambda} dt_1 \psi_0(t_1, t_2) = (2\pi)^{-d/2} \int_0^T dt_2 \int_0^{t_2-\Lambda} dt_1 (t_2 - t_1)^{-d/2}. \]

We note that for in particular \(d = 2 \)

\[\mathbb{E}(L(\Lambda)) = -\frac{T}{2\pi} \ln \Lambda + O(1). \]

(3)

Recall \[14 \] that for \(\Lambda = 0 \) the kernel functions \(\varphi_{2n} \) of the truncated local time \(L^{(2N)} \) are obtained by integrating the kernel functions \(\psi_{2n}(u_1, \ldots, u_{2n}; t_1, t_2) \)
over the rectangle $0 < t_1 < u$ and $v < t_2 < T$, shaded grey in see Fig. 2. For
$\Lambda > 0$ the integration is further restricted to the light domain with $t_2 - t_1 > \Lambda$.
This restriction is non-trivial when $v - u < \Lambda$.

$$L^{(2N)} - L^{(2N)}(\Lambda)$$

thus has kernel functions $\rho_{2n}(u,v)$ with support on

$$\{0 < u < v < T\} \cap \{v - u < \Lambda\} .$$

Fig. 2 is pertinent to the case where $\Lambda < v$ and $u < T - \Lambda$. In this case the kernel functions $\rho_{2n}(u,v)$ are obtained by integrating the $\psi_{2n}(u_1, \ldots, u_{2n}; t_1, t_2)$ with respect to the t_i over $v - \Lambda < t_1 < u$ and $v < t_2 < t_1 + \Lambda$. Excepting the kernel function $\rho_2(u,v)$ for $d = 2$, one finds,

$$\rho_{2n}(u,v) = \int_{v-\Lambda}^{u} dt_1 \int_{v}^{t_1+\Lambda} dt_2 \psi_{2n}(u_1, \ldots, u_{2n}; t_1, t_2)$$

$$= \frac{(2\pi)^{-d/2}}{n!} \left(-\frac{1}{2} \right)^n \frac{1}{d/2 + n - 1} \cdot \left(\frac{1}{d/2 + n - 2} \left((v-u)^{-d/2-n+2} - \Lambda^{-d/2-n+2} \right) + (v-u-\Lambda)\Lambda^{-d/2-n+1} \right)$$

and for $2n = d = 2$

$$\rho_2(u,v) = \frac{1}{4\pi} \left(\ln(v-u) - \ln \Lambda + \frac{\Lambda - v + u}{\Lambda} \right) .$$
Using $\tau = t_2 - t_1$ we obtain the following estimate

$$|\rho_{2n}(u, v)| = \left| \int_{v-\Lambda}^{u} \int_{\tau}^{t_1+\Lambda} dt_1 \int_{\tau}^{t_2} dt_2 \psi_{2n}(u_1, \ldots, u_{2n}; t_1, t_2) \right|$$

$$= \frac{1}{2^n n! (2\pi)^{d/2}} \int_{v-\Lambda}^{u} dt_1 \int_{v-t_1}^{\Lambda} d\tau \left(\frac{1}{\tau} \right)^{d/2+n}$$

$$\leq \frac{1}{2^n n! (2\pi)^{d/2}} \frac{1}{d/2 + n - 1} \int_{v-\Lambda}^{u} dt_1 (v - t_1)^{-d/2-n+1}$$

$$\leq \frac{1}{2^n n! (2\pi)^{d/2}} \frac{1}{d/2 + n - 1} \frac{1}{d/2 + n - 2} (v - u)^{-d/2-n+2}$$

while for $d = 2n = 2$ one readily finds from (5)

$$|\rho_2(u, v)| \leq \frac{1}{4\pi} |\ln(v - u)|$$

when $v - u < \Lambda \ll 1$.

Fig. 2: Domain of integration for kernels of the local time, light grey for the regularized local time, dark grey for the subtraction ρ as in (4).
For very small or very large u, v, i.e. $0 < u < v < \Lambda$ or $T - \Lambda < u < v < T$, respectively, the range of integrations in (4) and (6) for $\psi_{2n}(u_1, \ldots, u_{2n}; t_1, t_2)$ will be $0 < t_1 < u$ and $v < t_2 < t_1 + \Lambda$, or $v < t_2 < T$ and $t_2 - \Lambda < t_1 < u$ respectively, see Fig. 3.

![Fig. 3](image.png)

Fig. 3: Modified integration domains for ρ when u, v are close to zero or to T respectively.

Computations as in (4) are again straightforward, we note here only that the estimate of (6) is true also in these two cases.

Theorem 4 For $N > 0$ and $0 < \Lambda \ll T$ the chaos expansion of the gap-regularized local time $L^{(2N)}(\Lambda)$ has the kernel functions

$$\varphi_{\Lambda,2n}(u_1, \ldots, u_{2n}) = \varphi_{2n}(u_1, \ldots, u_{2n}) - \Theta(\Lambda - (v - u))\rho_{2n}(u_1, \ldots, u_{2n}), \quad (8)$$

and zero otherwise, while

$$L^{(2N)} - L^{(2N)}(\Lambda)$$

has the kernel functions ρ_{2n} for $0 < u < v < T$, $n \geq N$.

10
The Heaviside function Θ exhibits the support property of the ρ_{2n}, i.e. in the gap regularization the kernel functions of the local time are only modified when all arguments u_k are close to each other.

With these results one can in particular estimate the rate of convergence for the centered self-intersection local time in $d = 2$. Apart from the term $n = 1$ the sum

$$\| L^{(2)} - L^{(2)}(\Lambda) \|_{L^2}^2 = \sum_{n \geq 1} (2n)! \| \rho_{2n} \|_{L^2([0,T]^{2n})}^2$$

can be estimated as follows:

$$\sum_{n \geq 1} (2n)! \| \rho_{2n} \|_{L^2([0,T]^{2n})}^2 \leq (2\pi)^{-d} \sum_{n \geq 1} \frac{(2n)!}{(n!)^2} \left(\frac{1}{2} \right)^{2n} \left(\frac{1}{d/2 + n - 1} \right)^2 \frac{1}{d/2 + n - 2} \int_0^T d^{2n} u_k \left(\frac{1}{v - u} \right)^{d+2n-4}.$$

We can integrate out the $2n-2$ variables u_k with $u < u_k < v$ that lie between the smallest and the largest and obtain in this way

$$\sum_{n \geq 1} (2n)! \| \rho_{2n} \|_{L^2([0,T]^{2n})}^2 \leq (2\pi)^{-d} \sum_{n \geq 1} \frac{(2n)!}{(n!)^2} \left(\frac{1}{2} \right)^{2n} \left(\frac{1}{n(n-1)} \right)^2 \cdot 2n(2n-1) \int_0^T dv \int_{v-u<\Lambda} du \int_0^v dv$$

$$\leq \frac{\Lambda T}{2\pi^2} \sum_{n \geq 1} \frac{(2n)!}{(n!)^2} \frac{1}{2n-1} \frac{2n-1}{n(n-1)^2}.$$

The series is convergent (Stirling's formula). From (7) it is straightforward to estimate the remaining term with $n = 1$:

$$\| \rho_{2} \|_{L^2([0,T]^2)}^2 \leq \left(\frac{1}{4\pi} \right)^2 \int_0^T dt \int_0^\Lambda d\tau \ln^2 \tau = 0(T\Lambda \ln^2 \Lambda).$$

So we have shown

Theorem 5 For $d = 2$

$$\| L^{(2)} - L^{(2)}(\Lambda) \|_{L^2}^2 = 0(T\Lambda \ln^2 \Lambda) \text{ as } \Lambda \downarrow 0.$$

A similar improvement of the rate of convergence has been found in the Gaussian regularization in [3].
4 Varadhan Renormalization

The model proposed by Edwards [12] for self-repelling Brownian motion suppresses self-crossings, modifying the Brownian path (or white noise) measure by a density function, informally

\[\varphi = Z^{-1} \exp(-gL) \]

with \(g > 0 \)

\[Z = \mathbb{E}(\exp(-gL)). \]

There is no problem for \(d = 1 \) since \(L \) is a positive random variable and hence \(\exp(-gL) < 1 \). For \(d = 2 \) however we should replace \(L \) by the centered \(L_c \) and this then is no more positive, so that \(\exp(-gL_c) \) is unbounded. The point of Varadhan’s theorem is to show that this happens only on small sets so that

Theorem 6 (Varadhan [35]) For \(d = 2 \)

\[\varphi = Z^{-1} \exp(-gL_c) \]

with

\[Z = \mathbb{E}(\exp(-gL_c)) \]

is integrable.

Varadhan defines the centered local time as the limit of Gaussian approximations as in (2) and uses the Chebyshev inequality to show that \(\exp(-gL_c) \) is integrable for \(0 < g < \pi \).

A similar slightly stronger result can be obtained using Varadhan’s technique with the approximation

\[L^{(2)}(\Lambda) \to L^{(2)} = L_c. \]

Fix \(0 < \Lambda < 1 \). By (3) there exists a positive constant \(k \) such that

\[L^{(2)}(\Lambda) \geq -\mathbb{E}(L(\Lambda)) \geq -k - \frac{T}{2\pi} |\ln(\Lambda)|. \]

For any constant \(N \geq k + \frac{T}{2\pi} |\ln(\Lambda)| \) one has

\[\mathbb{P}(L_c \leq -N) = \mathbb{P}(L_c - L^{(2)}(\Lambda) \leq -N - L^{(2)}(\Lambda)) \leq \mathbb{P}(\left|L^{(2)}(\Lambda) - L_c\right| \geq N - k - \frac{T}{2\pi} |\ln(\Lambda)|). \]
An application of Chebyshev’s inequality, using Theorem 5 then yields
\[
\Pr(L_c \leq -N) \leq \frac{\mathbb{E}(|L^{(2)}(\Lambda) - L_c|^2)}{(N - k - \frac{T}{2\pi} |\ln(\Lambda)|)^2} \leq K \frac{\Lambda \ln^2 \Lambda}{(N - k - \frac{T}{2\pi} |\ln(\Lambda)|)^2}.
\]
In particular, for
\[
\Lambda = \exp(-\alpha(N - k)), \quad 0 < \alpha < \frac{2\pi}{T}
\]
one obtains
\[
\Pr(L_c \leq -N) \leq \frac{K\alpha^2}{(1 - \frac{T}{2\pi} \alpha)^2} \exp(-\alpha(N - k)).
\]
Hence, \(\exp(-gL_c)\) is integrable for \(g < \frac{2\pi}{T}\).

For the Gaussian regularization an analogous result can be found in [3].

5 Concluding Remarks

[13], [14], [17], [18], [19], [22], [23], in the present context of regularizations and the rate of convergence see in particular [3]. Yet another regularization of the self-intersection local time is suggested by (8), namely
\[
L^{(2N)}_\Lambda := \sum_{n \geq N} \langle \omega_{2n}, \varphi^{(A)}_{2n} \rangle
\]
with kernel functions
\[
\varphi^{(A)}_{2n}(u_1, \ldots, u_{2n}) := \Theta(v - u - \Lambda) \varphi_{2n}(u_1, \ldots, u_{2n})
\]
where simply the range \(v - u < \Lambda\) is cut out. Details of this regularization will be discussed elsewhere.

Acknowledgments

This work was financed by Portuguese national funds through FCT - Fundação para a Ciência e Tecnologia, within the project PTDC/MAT-STA/1284/2012.
References

[1] S. Albeverio, M. J. Oliveira, L. Streit: Intersection Local Times of Independent Brownian Motions as Generalized White Noise Functionals, *Acta Appl. Math.* 69 (2001), 221–241.

[2] S. Albeverio, Y. Z. Hu, M. Röckner and X. Y. Zhou: Stochastic Quantization of the Two-Dimensional Polymer Measure. *Appl. Math. Optim.* 40 (1996), 341–354.

[3] W. Bock, M. J. Oliveira, J. L. Silva, and L. Streit: Polymer measure: Varadhan’s renormalization revisited. *Rev. Math. Phys.* 27 (3) (2015), 1550009.

[4] E. Bolthausen: On the construction of the three-dimensional polymer measure. *Probab. Theory Rel. Fields* 97 (1993), 81–101.

[5] E. Bolthausen: Large deviations and interacting random walks. *École d’Été St. Flour 1999, Lecture Notes in Math.* 1741. Springer, Berlin, 2000.

[6] A. Dvoretzky, P. Erdős and S. Kakutani: Double points of paths of Brownian motion in the plane, *Bull. Res. Council Israel Sect.* F3 (1954), 364–371.

[7] A. Dvoretzky, P. Erdős and S. Kakutani: Double points of paths of Brownian motion in n-space, *Acta Sci. Math. Szeged* 12 (1950), 75–81.

[8] A. Dvoretzky, P. Erdős, S. Kakutani and S. J. Taylor: Triple points of the Brownian motion in 3-space, *Proc. Cambridge Philos. Soc.* 53 (1957), 856–862.

[9] E. B. Dynkin: Polynomials of the occupation field and related random fields, *J. Funct. Anal.* 58 (1984), 20–52.

[10] E. B. Dynkin: Self-intersection gauge for random walks and for Brownian motion, *Ann. Probab.* 16 (1988), 1–57.

[11] E. B. Dynkin: Regularized self-intersection local times of planar Brownian motion, *Ann. Probab.* 16 (1988), 58–73.
[12] S. F. Edwards: The statistical mechanics of polymers with excluded volume. *Proc. Roy. Soc.* **85** (1965), 613–624.

[13] M. de Faria, C. Drumond and L. Streit: The Renormalization of Self Intersection Local Times I: The Chaos Expansion, *Inf. Dimens. Anal. Quantum Probab. Rel. Top.* **2** (2000), 223–236.

[14] M. de Faria M., T. Hida, L. Streit and H. Watanabe: Intersection local times as generalized white noise functionals, *Acta Appl. Math.* **46** (1997), 351–362.

[15] M. Grothaus, M. J. Oliveira, J. L. Silva and L. Streit: Self-avoiding fractional Brownian motion - The Edwards model. *J. Stat. Phys.* **145** (2011), 1513–1523.

[16] T. Hida, H. H. Kuo, J. Potthoff and L. Streit: *White Noise - An Infinite Dimensional Calculus*. Kluwer-Academic, 1993.

[17] Y. Hu and D Nualart: Renormalized self-intersection local time for fractional Brownian motion. *Ann. Probab.* **33** (2005), 948–983.

[18] P. Imkeller, V. Perez-Abreu and J. Vives: Chaos expansions of double intersection local times of Brownian motion in \mathbb{R}^d and renormalization, *Stoch. Proc. Appl.* **56** (1995), 1–34.

[19] R. Jenane, R. Hachaichi and L. Streit: Renormalisation du temps local des points triples du mouvement Brownien, *Inf. Dimens. Anal. Quantum Probab. Rel. Top.* **9** (2006), 547–566.

[20] J. F. Le Gall: Sur le temps local d’intersection du mouvement Brownien plan et la methode de renormalisation de Varadhan, *Sem. de Prob. XIX, 1983/84, Lecture Notes in Math.* **1123**, pages 314–331, Springer, Berlin 1985.

[21] J. F. Le Gall: Sur la saucisse de Wiener et les points multiples du mouvement brownien, *Ann. Probab.* **14** (1986), 1219–1244.

[22] S. Mendonça and L. Streit: Multiple Intersection Local Times in Terms of White Noise. *Inf. Dimens. Anal. Quantum Probab. Rel. Top.* **4** (2001), 533–543.
[23] D. Nualart and J. Vives: Chaos expansion and local times, *Publ. Math.* **36** (1992), 827–836.

[24] J. Rosen: A local time approach to the self-intersections of Brownian paths in space, *Comm. Math. Phys.* **88** (1983), 327–338.

[25] J. Rosen: Tanaka’s formula and renormalisation for intersections of planar Brownian motion, *Ann. Probab.* **14** (1986), 1225–1251.

[26] J. Rosen: A renormalized local time for multiple intersections of planar Brownian motion, *Sem. de Prob.* XX, 1984/85, *Lecture Notes in Math.* **1204**, pages 515–531, Springer 1986.

[27] J. Rosen: The intersection local time of fractional Brownian motion in the plane, *J. Multivariate Anal.* **23** (1987), 37–46.

[28] L. Schaefer: *Excluded Volume Effects in Polymer Solutions as Explained by the Renormalization Group*. Springer, Berlin, Heidelberg, New York, 1999.

[29] H. Watanabe: The local time of self-intersections of Brownian motions as generalized Brownian functionals, *Lett. Math. Phys.* **23** (1991), 1–9.

[30] M. J. Westwater: Edwards’ model for long polymer chains, *Comm. Math. Phys.* **72** (1980), 131–174.

[31] J. Westwater: On Edwards’ model for polymer chains. II. The self-consistent potential. *Comm. Math. Phys.* **79** (1) (1981), 53–73.

[32] J. Westwater: On Edwards’ model for polymer chains. III. Borel summability. *Comm. Math. Phys.* **84** (4) (1982), 459–470.

[33] M. Yor: Compléments aux formules de Tanaka-Rosen. *Sem. de Prob.* XIX, 1983/84, *Lecture Notes in Math.* **1123**, pages 332–348. Springer, Berlin 1985.

[34] M. Yor: Renormalisation et convergence en loi pour les temps locaux d‘intersection du mouvement Brownien dans \mathbb{R}^3, *Sem. de Prob.* XIX 1983/84, *Lecture Notes in Math.* **1123**, pages 350–365. Springer, 1985.

[35] S. R. S. Varadhan: Appendix to Euclidian quantum field theory by K. Szymanzik, in: R. Jost ed., *Local Quantum Theory*. Academic Press, New York 1969.