Lifestyle and socio-demographic factors associated with high-risk HPV infection in UK women

SC Cotton*,1,7, L Sharp2,7, R Seth3, LF Masson1, J Little4, ME Cruickshank5, K Neal6 and N Waugh1, on behalf of the TOMBOLA Group

1Department of Public Health, University of Aberdeen, Polwarth Building, Foresterhill, Aberdeen, Scotland; 2National Cancer Registry Ireland, Elm Court, Boreenmanna Road, Cork, Ireland; 3Histopathology Department, Queen’s Medical Centre, University Hospital NHS Trust, Nottingham, England; 4Canada Research Chair in Human Genome Epidemiology, Department of Epidemiology and Community Medicine, University of Ottawa, Ottawa, Ontario, Canada; 5Department of Obstetrics & Gynaecology, University of Aberdeen, Foresterhill, Aberdeen, Scotland; 6Division of Epidemiology and Public Health, School of Community Health Sciences, University of Nottingham Medical School, Nottingham, England

The world age-standardised prevalence of high-risk HPV (hrHPV) infection among 5038 UK women aged 20–59 years, with a low-grade smear during 1999–2002, assessed for eligibility for TOMBOLA (Trial Of Management of Borderline and Other Low-grade Abnormal smears) was 34.2%. High-risk HPV prevalence decreased with increasing age, from 61% at ages 20–24 years to 14–15% in those over 50 years. The age-standardised prevalence was 15.1, 30.7 and 52.7%, respectively, in women with a current normal, borderline nuclear abnormalities (BNA) and mild smear. In overall multivariate analyses, tertiary education, previous pregnancy and childbirth were associated with reduced hrHPV infection risk. Risk of infection was increased in non-white women, women not married/cohabiting, hormonal contraceptives users and current smokers. In stratified analyses, current smear status and age remained associated with hrHPV infection. Data of this type are relevant to the debate on human papillomavirus (HPV) testing in screening and development of HPV vaccination programmes.

British Journal of Cancer (2007) 97, 133–139. doi:10.1038/sj.bjc.6603822 www.bjcancer.com

© 2007 Cancer Research UK

Keywords: HPV infection; lifestyle factors; cervical cancer

Infection with human papillomavirus (HPV) is necessary for the development of cervical cancer (Walboomers et al, 1999; Bosch et al, 2002). Around 40 HPV types infect mucosal surfaces of the lower genital area (International Agency for Research on Cancer, 2005) and are broadly classified into high- or low-risk for cervical cancer (Manoz et al, 2003). Testing for high-risk HPV (hrHPV) DNA has the potential to improve cervical screening (Brink et al, 2005). In addition, following encouraging trial results (Harper et al, 2004; Villa et al, 2005), two HPV vaccines are under licence. The effectiveness and cost-effectiveness of incorporating HPV testing into screening, and of vaccine programmes, will partly depend on current HPV prevalence, infection patterns and factors associated with infection within specific populations.

Human papillomavirus population prevalence mainly depends on patterns of sexual exchange (International Agency for Research on Cancer, 2005), which vary between and within countries, by, for example, birth cohort and ethnic group (Johnson et al, 2001; Fenton et al, 2005). Most available data on HPV prevalence and associated factors are from the United States of America, and/or focus on young women; many series are highly selective and may lack generalisability. Other series did not examine lifestyle risk factors (e.g. Cuzick et al, 2003; Cuschieri et al, 2004; Moss et al, 2004; Hibbitts et al, 2006; Kitchener et al, 2006). Most infections in women under 30 are transient (Koutsky and Kiviat, 1999; Nobbenhuis et al, 2001; Woodman et al, 2001); infection risk factors, and/or their relative importance, may differ between young and older women. In addition, while cytological smear grade is strongly associated with HPV prevalence (Cuzick et al, 2003; Cuschieri et al, 2004), it is less clear whether the relative contribution of lifestyle risk factors differs by smear grade. We investigated factors associated with prevalence of hrHPV types in a large series of UK women and compared them in younger and older women and by cytological smear grade.

MATERIALS AND METHODS

Study population

Subjects were women assessed for eligibility for TOMBOLA (Trial Of Management of Borderline and Other Low-grade Abnormal smears), a randomised controlled trial (RCT) of alternative management policies and HPV triage (TOMBOLA Group, 2006).

Women aged 20–59 years, resident in Grampian, Tayside or Nottingham, with a low-grade smear (mild dyskaryosis or borderline nuclear abnormalities (BNA)) taken routinely in the UK national cervical screening programmes (CSPs) during 01/10/
Epidemiology

risk HPV prevalence was age-standardised to the truncated (20–59 years) women were classified hrHPV negative (hrHPV +ve) implying they carried at least one of the hrHPV strains. Other factors significantly associated with hrHPV status in multivariate analyses, non-white women (e.g. black-African, Indian, Pakistani) were at significantly increased risk. Single, and divorced/separated/widowed, women had significantly higher infection risk than married/co-habiting women. High-risk HPV infection was associated with never being pregnant, having had children and age at first pregnancy, but not with number of children or caesarean delivery. Combining pregnancy, childbirth and age at first pregnancy (as ‘reproductive history’), having a pregnancy resulting in childbirth was associated with lower infection risk, particularly for a first pregnancy at age ≥20 years. Current and previous oral contraceptive (OC) use (combined or progesterone-only), and current use of other hormonal contraception (e.g. implants, injections, intrauterine system), were associated with increased risk. Compared with never smokers, current smokers (but not ex-smokers) were at a modest increased risk, unrelated to smoking pack-years (data not shown). Barrier contraception and physical activity were also unrelated to risk.

In multivariate age-stratified analyses of women aged 20–29 years, age and smear status were significantly associated with infection. Tertiary education and having had children were also significant risk factors, with risk estimates similar to those in unstratified analyses. In women aged 30–59 years, age and smear status were significantly associated with infection, as were tertiary education, having had children, ethnicity and smoking; effect sizes were similar to those in Table 1. Other significant factors were marital status (increased risk in divorced/separated/widowed
women (odds ratio (OR) 2.23, 95% CI 1.79–2.79) and single women (OR 1.84, 95% CI 1.35–2.50), current hormonal contraceptive use (OR user vs non-user 1.30, 95% CI 1.03–1.64) and physical activity (OR active vs not active 0.76, 95% CI 0.60–0.97).

In multivariate smear-stratified analyses of all smear groups, age was significantly associated with infection. Having a college/university degree reduced infection risk in women with a current normal (OR 0.58, 95% CI 0.34–0.99) or BNA smear (OR 0.72, 95% CI 0.56–0.91) but not in those with a mild smear. In all smear strata, divorced/separated/widowed women had higher risk than married/co-habiting women (normal OR 1.64, 95% CI 0.91–2.96; BNA OR 2.26, 95% CI 1.73–2.95; mild OR 2.12, 95% CI 1.49–3.02). In the BNA strata only, being single also increased risk (OR 1.34, 95% CI 1.06–1.70). Having been pregnant was inversely associated with infection in those with a current normal (OR 0.60, 95% CI 0.38–0.95) or BNA smear (OR 0.81, 95% CI 0.64–1.02), but not in those with a mild smear. Having had children was associated with reduced risk in all smear strata, only reaching statistical significance in the current normal group (OR 0.57, 95% CI 0.36–0.92). Hormonal contraceptive use was associated with increased risk in the current normal (OR 1.59, 95% CI 1.02–2.48) and BNA (OR 1.29, 95% CI 1.05–1.59) strata, but not among the mild group. Barrier contraceptive use, caesarean delivery, smoking, physical activity and ethnicity were unrelated to infection in all strata.

DISCUSSION

Our study was large, population-based and nested in a pragmatic RCT within the UK national CSPs. Among study participants, the current BNA: mild smear ratio (1.8:1) was close to that reported for the CSP screening age group in 2004–2005 (1.9:1) (NHS Health and Social Care Information Centre, 2005; ISD Scotland, 2007), suggesting our results are likely to be generalisable to women with low-grade smears.

While TOMBOLA participation was 52% overall, it was lower among younger women and those resident in more deprived areas (TOMBOLA Group, 2006), groups with increased HPV prevalence in this and other studies (Tonon et al, 1999; Cuzick et al, 2003; Winer and Koutsky, 2004). Thus, our crude hrHPV prevalence is likely to somewhat underestimate true prevalence among women with low-grade smears.

The treatment of lesions, and possibly also the act of taking a smear, can potentially clear cervical HPV infection (Shapiro et al, 2003; Sarian et al, 2005). Thus, hrHPV prevalence may be artificially lowered in populations with extensive screening coverage, such as the UK. Our participants had no previous treatment for cervical lesions and 66% had their last smear ≥3 years before becoming eligible for TOMBOLA. Since hrHPV infection averages 8–14 months (Ho et al, 1998; Woodman et al, 2001), the effect of screening participation on our prevalence estimate is probably small.

A limitation of our study is that we did not collect information on numbers of sexual partners, age at first intercourse, etc, because of CSP guidelines (Duncan, 1997). Some factors we found to be associated with hrHPV infection may be markers of sexual behaviour. For example, smoking is associated with having had multiple sexual partners (Osler and Kjaer, 1996; Escobedo et al, 1997; Lam et al, 2001; Bellis et al, 2004; Jarvelaide, 2004), which is consistent with the observed raised infection risk among current smokers. UK rates of new partner acquisition vary by marital status, being highest among single or previously married women, intermediate among co-habiting women and lowest in married women (Johnson et al, 2001), a pattern compatible with our findings.

Our analyses extend existing knowledge on UK hrHPV prevalence, and are novel for Grampian and Tayside. Data from this and similar analyses will aid interpretation of studies of HPV testing, as well as for policy makers in defining HPV vaccination strategies. It also provides a baseline against which the impact of vaccination on HPV infection patterns can be assessed in the future.

Smear status

Other than age, current smear grade was the strongest predictor of infection. In women with a current BNA smear, our hrHPV prevalence (crude 34.2%, age-standardised 30.7%) was similar to that among women with a BNA smear from the UK ARTISTIC trial (31%) (Kitchener et al, 2006), but lower than (unstandardised) frequencies from other UK studies (46%; Moss et al, 2004, ~55%; Hibusitts et al, 2006, 72%; Cuscieri et al, 2004), and for women with ASCUS (atyypical cells of undetermined significance) smears from the US ALTS trial (49%; ALTS Group 2003). In the UK HART study, HPV prevalence among 289 women aged 30–60 years with a current BNA smear was 27% (Cuzick et al, 2003), close to the crude
Table 1
Numbers and proportions of women hrHPV+ve and adjusted multivariate ORs for socio-demographic and lifestyle factors

	Total (n)	hr HPV+ve (n)	% hrHPV+ve	Multivariate OR*	95% CI
Overall	5038	1973	39.2		
Tertiary education/training					
No degree	4122	1656	40.2	1 Reference	
Degree	887	305	34.4	0.72	0.61–0.87
Missing	29	12	41.4		
Global χ² = 12.85, P = 0.0003					
Ethnicity					
White	4787	1868	39.0	1 Reference	
Other (non-white)	223	95	42.6	1.42	1.03–1.94
Missing	28	10	35.7		
Global χ² = 4.68, P = 0.0306					
Marital status					
Married/living as married	2824	840	29.8	1 Reference	
Divorced/separated/widowed	667	289	43.3	1.97	1.62–2.40
Single	1494	826	55.3	1.29	1.09–1.53
Missing	53	18	34.0		
Global χ² = 47.80, P < 0.0001					
Ever pregnant					
No	1589	855	53.8	1 Reference	
Yes	3412	1104	32.4	0.75	0.63–0.89
Missing	37	14	37.8		
Global χ² = 11.30, P = 0.0008					
Age at first pregnancy					
Never pregnant	1589	855	53.8	1 Reference	
First pregnancy aged <20 years	1080	453	41.9	0.86	0.71–1.05
First pregnancy aged over 20 years	2303	640	27.8	0.67	0.55–0.80
Missing	66	25	37.9		
Global χ² = 19.76, P = 0.0001					
Children					
No	2113	1096	51.9	1 Reference	
Yes	2869	854	29.8	0.71	0.60–0.83
Missing	56	23	41.1		
Global χ² = 17.06, P < 0.0001					
Number of children					
1	793	324	40.9	1 Reference	
2	1170	288	24.6	0.75	0.59–0.95
3	563	148	26.3	0.89	0.67–1.19
4	190	49	25.8	0.82	0.54–1.24
5–8	86	25	29.1	1.11	0.64–1.94
Missing	67	20	29.9		
Global χ² = 7.23, P = 0.1242					
Caesarean ever					
No	2367	704	29.7	1 Reference	
Yes	481	145	30.2	1.12	0.88–1.43
Missing	21	5	23.8		
Global χ² = 0.85, P = 0.3574					
Reproductive history					
Never pregnant	1589	855	53.8	1 Reference	
First pregnancy < age 20 years, have children	867	335	38.6	0.79	0.64–0.99
First pregnancy < age 20 years, no children	205	113	55.1	1.01	0.73–1.40
First pregnancy ≥ age 20 years, have children	1981	513	25.9	0.61	0.50–0.75
First pregnancy ≥ age 20 years, no children	313	125	39.9	0.83	0.62–1.10
Missing	83	32	38.6		
Global χ² = 25.55, P < 0.0001					
Current barrier contraception					
No	4211	1611	38.3	1 Reference	
Yes	811	354	43.7	1.05	0.87–1.27
Missing	16	8	50.0		
Global χ² = 0.29, P = 0.5907					
prevalence among women ≥ 30 years in our study (26%). Our prevalence estimate among women with a current mild smear (crude 60.9%, age-standardised 52.7%) was also lower than non-standardised estimates from the United Kingdom and the United States of America of at least 70% (ALTS Group 2003; Moss et al., 2004; Hibbitts et al., 2006; Kitchener et al., 2006). In addition to different age profiles, comparison between studies is complicated by different HPV testing regimes (since tests detect different strains and vary in performance characteristics; Kulmala, 2004; Bosch and Iftner, 2005) and UK/USA differences in cytological abnormality classification.

Our crude (16.0%) and age-standardised (15.1%) prevalences among women with a current normal smear were similar to the pooled estimate from 27 PCR-based studies of cytologically normal women mainly from North America and Europe (16.2%) (Xi and Koutsky, 2004; Bosch and Iftner, 2005) and UK/USA differences in cytological abnormality classification.

Table 1 (Continued)

Hormonal contraceptiona	Total (n)	hr HPV+ve (n)	% hrHPV+ve	Multivariate ORb	95% CI
Never pill user/no other current hormonal contraception	2416	649	26.9	1	Reference
Never pill user/currently use other hormonal contraception	200	101	50.5	1.58	1.06–1.66
Ex-pill user/no other current hormonal contraception	551	256	46.5	1.33	1.20–1.47
Ex-pill user/currently use other hormonal contraception	98	48	49.0	1.30	0.71–1.76
Current pill	1694	889	52.5	1.34	1.17–1.52
Missing	79	30	38.0	1	Reference

Global $\chi^2 = 27.33$, $P < 0.0001$

Physical activityc	Total (n)	hr HPV+ve (n)	% hrHPV+ve	Multivariate ORd	95% CI
Never	720	275	38.2	1	Reference
Ever	4239	1665	39.3	0.86	0.71–1.04
Missing	79	33	41.8	1	Reference

Global $\chi^2 = 2.40$, $P = 0.1216$

Smoking status	Total (n)	hr HPV+ve (n)	% hrHPV+ve	Multivariate ORe	95% CI
Never smoker	2340	862	36.8	1	Reference
Ex-smoker	851	264	31.0	0.88	0.73–1.07
Current smoker	1798	822	45.7	1.21	1.04–1.40
Missing	49	25	51.0	1	Reference

Global $\chi^2 = 11.83$, $P = 0.0027$

Abbreviations: CI, confidence interval; hrHPV+ve, hrHPV positive; OR, odds ratio. aMultivariate OR adjusted for age/smear, tertiary education/training, ethnicity, marital status, reproductive history, use of hormonal contraception and smoking status. bMultivariate OR adjusted for age/smear, tertiary education/training, ethnicity, marital status, use of hormonal contraception and smoking status. cRestricted to women who have had children. dEver been pregnant, age at first pregnancy and ever had children were all individually associated with hrHPV. As these variables are related, a composite variable was created and fitted in model. eWomen were classified into one of five categories on the basis of current use of oral contraceptive pill or other hormonal contraception, and on any previous oral contraceptive pill use. fThere was no effect on risk of hrHPV of physical activity (never/ever) or of frequency of physical activity (data not shown).

Ethnic group

In the United Kingdom, white, black-African and black-Caribbean women have higher numbers of lifetime sexual partners, lower median age at first heterosexual intercourse and higher incidence of (non-HPV) sexually transmitted infections than women from Indian or Pakistani ethnic groups (Fenton et al., 2005). Although we observed increased infection risk among non-white ethnic groups, relatively few women described themselves thus ($n = 223$), precluding multivariate analysis of individual groups. Crude infection frequencies (Asian origin 35%; white 39%; black 45%) are consistent with sexual behaviour data and suggest that the raised risk may be limited to black women.

Contraception

High-risk HPV infection risk was > 50% higher in women who had used OCs or other hormonal contraceptives. The latter have been studied little previously. Among ALTS participants, no association was found with injectable contraceptives or Norplant (Castle et al., 2005). Previous studies of OC use have been inconsistent (Green et al., 2003; Winer and Koutsky, 2004; Vaccarella et al., 2006a), perhaps due to differences in study design, types of OCs used/assessed, prevalence of use and adjustment factors. While OC use may simply be a marker for ‘high-risk’ sexual behaviours (Winer and Koutsky, 2004), in several studies the OC–hrHPV association persisted after adjustment for factors such as number of sexual partners (Ley et al., 1991; Sikstrom et al., 1995; Winer et al., 2003). In further analyses, we found a stronger relationship between current, than past, OC use and hrHPV positivity (OR ex-users vs never users 1.23 (95% CI 0.99–1.51); OR current users vs never users 1.46 (95%...
Reproductive history

Our observation that having been pregnant was associated with reduced hrHPV infection risk is consistent with the IARC HPV Prevalence Surveys Study Group analysis of >15,000 women (Vaccarella et al, 2006a). We found that the effect was stronger if a childbirth had resulted, and with older age at first pregnancy. In the United Kingdom, earlier age at first pregnancy or childbirth, and decreased likelihood of having an abortion, are associated with low socio-economic status (Smith, 1993; Wellings et al, 2001; ISD Scotland, 2006). However, our analysis was adjusted for tertiary education as a measure of socio-economic status. Although age at first pregnancy may be a marker for age at sexual debut, it is not as strongly protective as HPV infection as previously thought (Vaccarella et al, 2006b). Possible explanations for this inverse association with pregnancy include breastfeeding, which results in high progesterone levels with atrophic changes and retraction of the squamocolumnar junction into the cervical canal, possibly reducing the likelihood of infection; alterations in patterns of sexual (e.g. changing partners, frequency of coitus) and other behaviours that influence infection risk (e.g. smoking).

Age- and smear-stratified analyses

Identifying differences in the relative importance of risk factors in sub-groups can be informative – as is evident from the few previous studies using this analytical approach (Lazcano-Ponce et al, 2001; Molano et al, 2002; Anh et al, 2003). We undertook age- and smear-stratified analyses because these were the most important risk factors, and they interacted, suggesting that the relative contribution of hrHPV infection, and other factors, in the aetiology of cytological abnormalities differs by age.

ACKNOWLEDGEMENTS

This study was nested within the TOMBOLA trial (ISRCTN 34841617). TOMBOLA is funded by the Medical Research Council and the NHS in England and Scotland. The TOMBOLA group comprises Grant-holders and Staff in clinical sites and co-ordinating centres. Grant holders: Current: Mark Avis, Maggie Cruickshank, Ian Duncan, Rob Hammond, David Jenkins, Jane Johnson, Julian Little (Former Principal Investigator), Graeme Murray, Keith Neil, David Parkin, Alistair Robertson, Ian Russell, Rashmi Seth, Linda Sharp, Louise Smart, Leslie Walker, Norman Waugh (Current Principal Investigator) and Dave Whynes. Former: Claire Chivlers, Katherine Fielding, Eric Walker. Staff in clinical sites and co-ordinating centres: Grampian: Breda Anthony, Sarah Bell, Massoud Boroujerdi, Adrienne Bowie, Katrina Brown, Joe Brown, Keng Chew, Claire Cochran, Seonaidh Cotton, Jeannie Dean, Kate Dunn, Jane Edwards, David Evans, Julie Fenty, Al Finlayson, Marie Gallagher, Nicola Gray, Kirsten Harrild, Maureen Heddle, Alison Innes, Debbie Jobne, Jayne MacGregor, Sheona Mackenzie, Amanda Mackie, John Norrie, Ike Okorocha, Morag Reilly, Jo Rodgers, Alison Thornton, Rachel Yeats. Tayside: Lindayanne Alexander, Lindsey Buchanan, Susan Henderson, Tine Herbeke, Susanneke Lucas, Gillian Manderson, Sheila Nicoel, Gail Reid, Carol Robinson, Trish Sandilands. Nottingham: Marg Adrian, Ahmed Al-Sahab, Hazel Brook, Claire Bushby, Rita Cannon, Brenda Cooper, Ruth Dowell, Mark Dunderdale, Dr Gabrawi, Li Guo, Lisa Heideman, Steve Jones, Salli Lawson, Zoë Philips, Christopher Platt, Shaku Prabhakaran, John Rippin, Rose Thompson, Elizabeth Williams, Claire Woolley. We are grateful to John Rippin and Li Guo for technical assistance with running the HPV assays, and to Nicola Gray for help with editing the manuscript.

REFERENCES

ALTS Group (2003) Results of a randomized trial on the management of cytology interpretations of atypical squamous cells of undetermined significance. Am J Obstet Gynecol 188: 1392
Anh PTH, Hieu NT, Herrero R, Vaccarella S, Smith JS, Thuy NY, Nga NH, Duc NB, Ashley R, Snijders PJF, Meijer CJLM, Munoz N, Parkin DM, Franceschi S (2003) Human papillomavirus infection among women in South and North Vietnam. Int J Cancer 104: 213 – 220
Bellis MA, Hughes K, Thomson R, Bennett A (2004) Sexual behaviour of young people in international tourist resorts. Sex Transm Infect 80: 43 – 47
Bosch FX, Lorincz A, Munoz N, Meijer CJ, Shah KV (2002) The causal relation between human papillomavirus and cervical cancer. J Clin Pathol 55: 244 – 265
Bosch ZF, Iftner T (2005) The aetiology of cervical cancer. NHS CSP Publication No 22
Brink AATP, Zielinski GD, Steenbergen RDM, Snijders PJF, Meijer CJLM (2005) Clinical relevance of human papillomavirus testing in cytopathology. Cytology 106: 7 – 12
Castle PE, Walker JL, Schiffman M, Wheeler CM (2005) Hormonal contraceptive use, pregnancy and parity, and the risk of cervical intraepithelial neoplasia 3 among oncogenic HPV DNA-positive women with equivocal or mildly abnormal cytology. Int J Cancer 117: 1007 – 1012
Cuschieri KS, Cubie HA, Whitley MW, Seagar AL, Arends MJ, Moore C, Gilkisson G, McGooagan E (2004) Multiple high risk HPV infections are common in cervical neoplasia and young women in a cervical screening population. J Clin Pathol 57: 68 – 72
Cuzick J, Szarewski A, Cubie H, Hulman G, Kitchener H, Luesley D, McGooagan E, Menon U, Terry G, Edwards R, Brooks C, Desai M, Gie C, Ho L, Jacobs I, Pickles C, Sasieni P (2003) Management of women who test positive for high-risk types of human papillomavirus: the HART study. Lancet 362: 1871 – 1876
de Villiers EM (2003) Relationship between steroid hormone contraceptives and HPV, cervical intraepithelial neoplasia and cervical carcinoma. Int J Cancer 103: 705 – 708
Duncan ID (1997) Guidelines for Clinical Practice and Programme Management. Sheffield: National Health Service Cervical Screening Programme
Escobedo LG, Reddy M, DuRant RH (1997) Relationship between cigarette smoking and health risk and problem behaviors among US adolescents. Arch Pediatr Adolesc Med 151: 66 – 71
Fenton KA, Mercer CH, McManus CH, Erens B, Wellings K, Macdowall W, Bryon CL, Copas AJ, Nanchalal K, Field J, Johnson AM (2005) Ethnic variations in sexual behaviour in Great Britain and risk of sexually transmitted infections: a probability survey. Lancet 365: 1246 – 1255
Franceschi S, Herrero R, Clifford GM, Snijders PJF, Arslan A, Anh PTH, Bosch FX, Ferreccio C, Hieu NT, Lazcano-Ponce E, Matos E, Molano M, Qiao Y-L, Rajkumar R, Ronco G, de Sanjose S, Shin H-R, Sukvirsich S, Thomas JO, Meijer CJLM, Munoz N, the IARC HPV Prevalence Surveys Study Group (2006) Variations in the age-specific curve of human papillomavirus prevalence in women worldwide. Int J Cancer 119: 2677 – 2684
Green J, Berrington de Gonzalez A, Smith JS, Franceschi S, Appleby P, Plummer M, Beral V (2003) Human papillomavirus infection and use of oral contraceptives. Br J Cancer 88: 1713 – 1720
Harper DM, Franco EL, Wheeler C, Ferris DG, Jenkins D, Schuind A, Zahaf T, Innis B, Naud P, de Carvalho NS, Roteli-Martins CM, Teixeira J, Blatter MM, Korn AP, Quint W, Dubin G (2004) Efficacy of a bivalent L1 virus-like particle vaccine in prevention of infection with human papillomavirus
types 16 and 18 in young women: a randomised controlled trial. Lancet 2005; 366: 1757 – 1763
Hibbitts S, Riek GC, Hart K, Powell NG, Beukenholdt R, Dallimore N, McRea J, Hauke A, Tristram A, Faender AN (2006) Human papillomavirus infection: an anonymous prevalence study in South Wales, UK. Br J Cancer 95: 226 – 232
Ho GTF, Bierman R, Beardsley L, Chang CJ, Burk RD (1998) Natural history of cervicovaginal papillomavirus infection in young women. N Engl J Med 338: 423 – 428
Hosmer DW, Lemeshow S (1989) Applied Logistic Regression. New York: Wiley
International Agency for Research on Cancer (2005) Cervical Cancer Screening: IARC Handbooks of Cancer Prevention. Lyon: IARC Press
ISD Scotland (2006) Maternal Age. Available from: http://www.isdscotland.org/isd/inf3j.jsp?pContID=14368&p_applic=CCC&p_service=Content. show&. Accessed 6 February 2007
ISD Scotland (2007) Cervical Cytology Workload Statistics. Available from: http://www.isdscotland.org/cervical_screening_Accessed 6 February 2007
Jacobas MV, Snijders PJ, van den Brule AJ (1997) A general primer GPS+/-mediated PCR-enzyme immunoassay method for rapid detection of 14 high-risk and 6 low-risk human papillomavirus genotypes in cervical scrapings. J Clin Microbiol 35: 791 – 795
Jarvelaid M (2004) Adolescent tobacco smoking and associated psycho-social health risk factors. Scand J Prim Health Care 22: 50 – 53
Johnson AM, Mercer CH, Errens B, Cosmos AJ, Manusaus K, Fennt KA, Korovessis C, Macdowell W, Nanchakah A, Kurdon S, Field J (2001) Sexual behaviour in Britain: partnerships, practices, and HIV risk behaviours. Lancet 358: 1835 – 1842
Kitchener HC, Almonte M, Wheeler P, Nesi M, Gilham C, Bailey A, Sargent A, Peto J (2006) HPV testing in routine cervical screening: cross sectional data from the ARTISTIC trial. Br J Cancer 95: 56 – 61
Koutsou L, Kiviat NB (1999) Genital human papillomaviruses. In Sexually Transmitted Diseases Holmes K, Mardh P, Sparling P, Lemon SM, Stamm WE, Piot P (eds) 3rd edn New York: McGraw-Hill, pp 347 – 359
Kulmala SM, Syrjanen S, Shabalova I, Petrovichve N, Kozachenko V, Podistov J, Ivanchenko O, Zakherevna S, Nerovjna R, Klijukina L, Brannovskaja M, Grunberga J, Tushchenko A, Tosi P, Sanopetiro R, Syrjanen K (2004) Human papillomavirus testing with the hybrid capture 2 assay and PCR as screening tools. J Clin Microbiol 42: 2470 – 2475
Lam TH, Stewart SM, Ho LM (2001) Smoking and high-risk sexual behavior among young adults in Hong Kong. J Behav Med 24: 503 – 518
Lazcano-Ponce E, Herrera R, Munoz N, Cruz A, Shah KV, Alonso P, Hernandez P, Salmeron J, Hernandez M (2001) Epidemiology of HPV infection among Mexican women with normal cervical cytology. Int J Cancer 91: 1042 – 1047
Ley C, Bauer HM, Reingold A, Schiffman MH, Chambers JC, Tashiro CJ, Manos MM (1991) Determinants of genital human papillomavirus infection in young women. J Natl Cancer Inst 83: 997 – 1003
Molano M, Posso H, Weiderpass E, van den Brule AJC, Ronderos M, Franceschi S, Meijer CJLM, Arslan A, Munoz N (2002) Prevalence and determinants of HPV infection among Columbian women with normal cytology. Br J Cancer 87: 324 – 333
Moss SM, Gray A, Marteau T, Schiffman MH, Chambers JC, Tashiro CJ, Melendez MA, Liootta DJ, Bos PD, Samper E, Thomas JO, Meijer CJLM, Lanzano-Ponce E, Ronco G, Rajkumar R, Qiao Y-L, Munoz N, Franceschi S, IARC HPV Prevalence Surveys Study Group (2006a) Reproductive factors, oral contraceptive use, and human papillomavirus infection: pooled analysis of the IARC HPV Prevalence Surveys. Cancer Epidemiol Biomarkers Prev 15: 322 – 326
Munoz N, Bosch FX, de Sanjose S, Herrero R, Castellsague X, Shah KV, Snijders PJJ, Meijer CJLM, Thomas JO, Anh PTH, Ferreccio C, Matos E, Posso H, de Sanjose S, Shinn H-R, Sukvichar S, Lanzano-Ponce E, Ronco G, Rajkumar R, Qiao Y-L, Munoz N, Franceschi S, IARC HPV Prevalence Surveys Study Group (2005) Human papillomavirus infection: incidence and risk factors in a region of Argentina with a high incidence of cervical carcinoma. Int J Cancer 115: 273 – 274
Osler M, Kjaer SK (1996) Determinants of smoking behaviour in random samples of Greenlandic and Danish women 20–39 years of age. Arctic Med Res 55: 62 – 68
Sarian LO, Derchaf SN, Pittal DDA R, Andrade LA, Morais SS, Figueiredo PG (2005) Human papillomavirus detection by hybrid capture II and residual risk factors in a cohort of female university students. Am J Epidemiol 157: 218 – 226
Woodman CJ, Collins S, Winter H, Bailey A, Ellis J, Prior P, Yates A, Rollason TP, Young LS (2001) Natural history of cervical human papillomavirus infection in young women: a longitudinal cohort study. Lancet 357: 1831 – 1836
Xie LF, Koutsou LA (1997) Epidemiology of genital human papillomavirus infections. Bull Int Pasteur 95: 161 – 178

Socio-demographic factors and HPV infection
SC Cotton et al.