Eosinophils and COVID-19: diagnosis, prognosis, and vaccination strategies

Helene F. Rosenberg 1, Paul S. Foster 2

Received: 25 January 2021 / Accepted: 2 March 2021 / Published online: 16 March 2021
© This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2021

Abstract
The unprecedented impact of the coronavirus disease 2019 (COVID-19) pandemic has resulted in global challenges to our healthcare systems and our economic security. As such, there has been significant research into all aspects of the disease, including diagnostic biomarkers, associated risk factors, and strategies that might be used for its treatment and prevention. Toward this end, eosinopenia has been identified as one of many factors that might facilitate the diagnosis and prognosis of severe COVID-19. However, this finding is neither definitive nor pathognomonic for COVID-19. While eosinophil-associated conditions have been misdiagnosed as COVID-19 and others are among its reported complications, patients with pre-existing eosinophil-associated disorders (e.g., asthma, eosinophilic gastrointestinal disorders) do not appear to be at increased risk for severe disease; interestingly, several recent studies suggest that a diagnosis of asthma may be associated with some degree of protection. Finally, although vaccine-associated aberrant inflammatory responses, including eosinophil accumulation in the respiratory tract, were observed in preclinical immunization studies targeting the related SARS-CoV and MERS-CoV pathogens, no similar complications have been reported clinically in response to the widespread dissemination of either of the two encapsulated mRNA-based vaccines for COVID-19.

Keywords Respiratory tract; Granulocytes; SARS-CoV-2; Inflammation; Vaccination; Asthma; Interferon (IFN)γ

Introduction
First identified in 1879 by Paul Ehrlich [1], eosinophils are a small subset of granulocytes that represent a relatively small fraction of the pool of the circulating leukocytes under homeostatic conditions. Eosinophils develop from pluripotent progenitor cells in the bone marrow that differentiate under the control of various cytokines, including interleukin (IL)-3, IL-5, and granulocyte-macrophage colony-stimulating factor, and undergo development from committed progenitors in response to transcriptional signals from PU.1 as well as the c/EBP and GATA families of transcription factors [2]. Once released into circulation, eosinophils ultimately migrate to tissues, both at homeostasis and in association with numerous disease processes, most notably parasitic infestation and allergy [3–6]. While the Th2 cytokine, IL-5, is best known for its role in promoting eosinophil differentiation and activation, eosinophils can be generated and maintained at low levels in circulation and tissues in the absence of this mediator [7].

The properties and essential functions of eosinophils remain poorly understood. The profound degree of eosinophilia observed in response to Th2 cytokine–mediated diseases, notably that associated with allergies and parasitic infection, prompted an initial focus on the roles and properties of eosinophils in these settings. Based on the results from these earliest studies, eosinophils were perceived as end-stage effectors capable of delivering largely cytotoxic mediators to promote host defense, often associated with collateral damage and tissue dysfunction. In recent years, a more nuanced view of eosinophils has emerged, largely due to the results of studies focused on resident homeostatic populations [5, 8, 9], cell type–specific heterogeneity [10–12], and eosinophil functions that are not directly linked to classical Th2 responses [9,
13–15]. These findings build directly on principles initially outlined by Lee et al. [16] in the “LIAR” hypothesis, in which local immunity and tissue remodelling were presented as unifying features of eosinophil function.

To this end, several groups have explored the role of eosinophils in the setting of acute virus infection [17, 18]. Studies in mouse models revealed that eosinophils can promote host defense in experiments involving Sendai virus, human immunodeficiency virus, influenza virus, respiratory syncytial virus (RSV), and the RSV-related pathogen, pneumonia virus of mice [19–27]. Among these findings, Adamko et al. [25] reported eosinophil-mediated antiviral activities in guinea pigs sensitized to ovalbumin prior to infection with parainfluenza virus. Drake et al. [21] identified nitric oxide production as a critical mechanism underlying eosinophil-mediated reductions in viral infection. Likewise, Phipps et al. [19] reported an eosinophil-mediated clearance of RSV from the airways of hypereosinophilic mice mediated by the TLR7-MyD88 signaling axis, and Sabogal Pineres et al. [26] found that eosinophils could internalize and inactivate both RSV and influenza via a mechanism that was defective in cells isolated from patients with asthma. Likewise, Percopo et al. [20] reported that cytokine-activated eosinophils provided profound protection against the lethal sequelae of infection with PVM. Most recently, Samarasinghe et al. [27] found that adoptive transfer of eosinophils from allergen sensitized and challenged mice resulted in diminished virus replication and morbidity in recipient mice infected with influenza. However, the critical underlying mechanism, i.e., whether eosinophils promote direct broad-spectrum antiviral activity or (as per the LIAR hypothesis) serve to activate and regulate local immunity at sites of viral infection, remains undetermined.

In the sections to follow, we will review the current literature that links the circulating and tissue eosinophils with the diagnosis, pathogenesis, and vaccine strategies used to combat coronavirus disease 2019 (COVID-19), the multi-system disease that results from acute infection with the coronavirus pathogen, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2; Table 1). The reader is referred to the many excellent reviews of this pathogen and the pandemic at large for additional insight into coronavirus biology and disease pathogenesis [28–32]. Likewise, several related reviews provide an in-depth focus on the topics covered in this review [33–38].

Eosinopenia and the role of eosinophils in COVID-19

Diagnosing eosinopenia

Mature human eosinophils are released from the bone marrow and circulate in the peripheral blood for a period of 1–2 days before they migrate into the tissues. Eosinophil counts are determined via a standard Wright–Giemsa-stained leukocyte differential either visually or by automated instruments that detect their unique staining properties, including a bilobed nucleus and large red-staining granules within the cytoplasm. At homeostasis, eosinophils represent a minor population of the circulating leukocytes. The US National Institutes of Health Clinical Center Laboratory normal range for blood eosinophils is 40–360 cells per microliter or 0.7–5.8% of the total circulating leukocyte population. Clinical eosinophilia, the term used to describe elevated eosinophil counts in peripheral circulation, has been defined as > 500 eosinophils per microliter of blood. By contrast, eosinopenia may be somewhat more difficult to recognize. Although the formal definition of eosinopenia is < 10 eosinophils per microliter of blood [39], some clinical laboratories score eosinophil counts of “0” as within normal limits.

Of critical note, eosinopenia is not pathognomonic for any disorder or clinical state. Many clinical conditions (including severe infection with the pandemic SARS-CoV-2 pathogen, as discussed in the section to follow) have been associated with clinical eosinopenia, including a wide variety of acute bacterial and virus infections, chronic obstructive pulmonary disease, burn injuries, and alcoholism [40–43].

Eosinopenia and the diagnosis and prognosis of SARS-CoV-2 infection

There are now numerous reports that document eosinopenia in patients that present with moderate-to-severe COVID-19 [44–52]. Eosinopenia is not an isolated finding in any of these cases and is typically accompanied by reductions in peripheral lymphocyte, platelet, and monocyte counts, as well as elevated levels of C-reactive protein and IL-6. While not all of these reports document eosinopenia that falls within the formal definition of this condition (as above, < 10 per microliter of blood), eosinophil counts have been included in several algorithms used to predict disease severity. Collectively, the results from these studies document eosinopenia as a presenting sign of SARS-CoV-2 and report an association between eosinopenia and disease severity. Ma et al. [53] introduced a risk stratification score (COVID-19-REAL) based on both clinical and hematologic factors and included eosinophils at < 5 per microliter among the criteria used to identify patients who are likely to be presenting with COVID-19. Similarly, Tordjman et al. [54] introduced the PARIS score, in which presenting eosinophil counts < 60 per microliter were among several hematologic parameters included in an algorithm used to predict the likelihood of a SARS-CoV-2 diagnosis.

Peripheral eosinophil counts typically return to near-normal levels as patients recover from moderate-to-severe infection [46–48, 51, 52, 55]. For example, Chen et al. [55] found that eosinophil counts, while low at admission, ultimately rebounded in a cohort of patients who ultimately
recovered from severe COVID-19. By contrast, eosinophil counts remained low throughout the course of infections with fatal outcomes. Of interest, Glickman et al. [56] found that the prognostic utility of peripheral eosinophil counts and percentages varied based on patient race and ethnicity.

Several groups have explored the value of peripheral blood eosinophil counts at patient presentation for distinguishing between COVID-19 and influenza virus infection. As both respiratory virus infections present with fever, malaise, headache, and cough, it would be helpful to identify factors that might predict a specific diagnosis. Among these reports, Shen et al. [57] found that patients diagnosed with COVID-19 presented with small but significantly lower eosinophil counts than those ultimately diagnosed with influenza. While the definitive differential diagnosis will of course rely on virus-specific diagnostic strategies, several algorithms that include peripheral eosinophil counts have already been developed to assist clinicians to discriminate between these two respiratory virus infections [58, 59].

Mechanisms underlying eosinopenia and eosinophil responses to COVID-19

Mechanistically, eosinopenia may result from one or a combination of factors, including decreased production and/or release of eosinophils from the bone marrow, increased sequestration within the vasculature (i.e., margination), increased migration to somatic tissues, and/or decreased survival in peripheral circulation. The precise mechanism or mechanisms underlying eosinopenia associated with COVID-19 remain unclear at this time. Among these potential mechanisms that may result in eosinophil depletion, self-perpetuating pathologic hyper-inflammation (i.e., the cytokine storm) has been identified as a central feature of severe COVID-19 [60–63]. Under these conditions, cytokines may act individually or via additive or synergistic mechanisms to modulate responses (e.g., margination, apoptosis) of circulating, recruited, and/or tissue-resident eosinophils. Interestingly, stress-based cortisol responses which in other circumstances might lead to eosinopenia [64] are impaired in moderate-to-severe COVID-19 [65–68].

Several intriguing insights have emerged from unbiased systematic evaluations of leukocyte populations and plasma cytokines in patients diagnosed with COVID-19. Lucas et al. [69] presented the results of longitudinal profiling of both plasma cytokines and peripheral blood leukocytes from 113 patients who required hospitalization due to COVID-19. Among their findings, they report that progressive severity was associated with an aberrant Th2 and eosinophil response, including elevated levels of IL-5, IL-13, IgE, and eotaxin-2.
accompanied by increasing numbers of eosinophils in peripheral blood. Rodriguez et al. [70] performed longitudinal profiling of circulating immune cells from 39 patients during recovery from severe COVID-19. Among their findings, they identified a unique subset of interferon (IFN)-induced CD62L(L-selectin)-positive eosinophils that emerged just before clinical deterioration. These results are somewhat unexpected, as proinflammatory activation typically results in CD62L downregulation in eosinophils [71]; as such, the clinical consequences of this immunomodulatory response have not yet been defined. Similarly, Vitte et al. [72] performed an unbiased mapping study focused on critical surface markers of circulating leukocytes in patients diagnosed with COVID-19. In these cases, eosinophil-mediated expression of the programmed death receptor ligand 1 (PD-L1) correlated positively with disease severity. We note that Arnold et al. [73] previously identified a role for IFNγ in promoting PD-L1 expression in eosinophils. IFNγ has been identified in numerous studies as a critical component of the COVID-19-associated cytokine storm [67–77]. As such, further exploration of the dynamics and kinetics of the production and signaling mediated by IFNγ might provide a critical insight into the role of eosinophils and their responses to COVID-19.

Interestingly, and despite the modulation of blood eosinophil counts during the course of this disease, few to no eosinophils have been detected in bronchoscopy specimens and only occasionally in lung tissue at autopsy [78, 79].

COVID-19 in patients with eosinophil-associated diseases and complications

Asthma

Individuals with inflammation-associated predisposing comorbidities (e.g., obesity, diabetes, hypertension) are at significantly increased risk for severe COVID-19 [80–82]. These observations led to concern regarding the relative risk posed to those diagnosed with asthma, a condition associated with both chronic inflammation and respiratory dysfunction [83, 84]. Given the previous findings suggesting a role for eosinophils in host defense against respiratory virus infection [17, 18, 24], Carl et al. [85] considered the possibility that Th2-predominant eosinophilic asthma might be protective against severe COVID-19. This hypothesis was supported by the findings of Camiolo et al. [86], who found that peripheral blood eosinophil counts in stratified cohorts of asthma patients correlated inversely with the expression of the SARS-CoV-2 receptor, ACE2, in the bronchial epithelium. Consistent with these findings, Ferrastroanu et al. [87] reported that patients carrying a diagnosis of asthma who presented with a high eosinophil count (≥ 150/μl) were less likely to be hospitalized with COVID-19 and, if hospitalized, were less likely to succumb to severe disease. Similarly, in their evaluation of outcomes in one of the earliest patient cohorts, Li et al. [88] reported that the prevalence of asthma was markedly lower among those diagnosed with COVID-19 compared to the population of Wuhan at large.

Interestingly, a similar analysis of the potential role of allergic airways inflammation and the pathogenesis of respiratory virus infection was presented earlier by Varner [89]. These concepts were recently considered and expanded in a systematic review published by Veerapandian et al. [90].

There are numerous case reports, clinical studies, and several meta-analyses published to date that indicate that a diagnosis of asthma presents no increased risk for developing severe COVID-19 and that current medication regimens, including inhaled corticosteroids (ICS) and biologics, remain safe for use at this time [91–96]. Interestingly, a meta-analysis of 131 studies presented by Liu et al. [97] that included more than 400,000 cases revealed that patients with asthma may have a lower risk of death due to COVID-19. Similarly, results from a recent systematic review and meta-analysis published by Sunjaya et al. [98] indicated that individuals diagnosed with asthma are at a lower risk for developing COVID-19 and are less likely to require hospitalization.

By contrast, Lee et al. [99] found that, although asthma was not a risk factor for poor prognosis, higher mortality was observed among those who had experienced an acute exacerbation during the previous year. Similarly, Choi et al. [100] reported that a pre-existing diagnosis of asthma was associated with poor outcomes among those with COVID-19, although asthma severity and the use of asthma medications were not independent risk factors. However, a study published by Izquierdo et al. [101] revealed that asthma patients with COVID-19 were significantly older and suffered from more relevant comorbidities (hypertension, diabetes, dyslipidemia, and obesity) than were reported among asthma patients who remained uninfected and that the use of medications (including ICS and biologics) was associated with an overall protective effect among those diagnosed with COVID-19.

Eosinophilic gastrointestinal diseases (EGIDs)

Similar concerns emerged for patients diagnosed with and undergoing treatment for EGID. Chiang et al. [102] reported a diminished expression of ACE2 in esophageal tissue from adults with eosinophilic esophagitis (EoE) compared to healthy controls. While the number of patients that have been evaluated remains limited, Savarino et al. [103, 104] reported that a diagnosis of EGID presents no specific increased (or decreased) risk with respect to prognosis and outcomes of SARS-CoV-2 infection.
Eosinophil-associated complications of COVID-19

Several isolated incidents of eosinophil-associated complications of COVID-19 have been reported in the literature. Among these cases, Luecke et al. [105] documented a case of isolated pulmonary eosinophilic vasculitis in an older male patient undergoing mechanical ventilation for severe COVID-19. Similarly, Murao et al. [106] reported a case of acute eosinophilic pneumonia triggered by COVID-19 that responded to treatment with prednisolone. Likewise, Craver et al. [107] documented the case of a previously healthy 17-year-old male who presented in cardiac arrest and was diagnosed post-mortem with fatal eosinophilic myocarditis associated with a positive nucleic acid test for SARS-CoV-2. Finally, two case reports documented clinical findings of three patients who presented with eosinophilic granulomatosis, with polyangiitis, and with signs and symptoms that largely mimicked those of acute SARS-CoV-2 infection [108, 109]. Collectively, the findings presented in these case studies suggest that clinicians should be on high alert for eosinophil-associated findings and complications associated with COVID-19.

Eosinophils and vaccines to prevent SARS-CoV-2 infection

Vaccines and strategies promoting mass vaccination have most certainly changed the course of human history [110]. Unfortunately, several previous trials of vaccines designed to target respiratory viruses have resulted in untoward consequences. Among the most egregious of these results emerged from a 1960s trial in which a formalin-fixed RSV vaccine formulation was administered to infants and toddlers; in response to a subsequent encounter with the natural RSV pathogen, many vaccines experienced an aberrant Th2 response accompanied by profound and in some cases lethal eosinophilic inflammation in the lower respiratory tract [111–113]. As such, any new vaccine formulation designed to target respiratory virus pathogens needs to consider and to rule out the possibility of similar aberrant immune-mediated inflammatory responses. Animal model studies focused on vaccine strategies designed to combat SARS-CoV and MERS-CoV were notable for significant Th2-mediated eosinophilic lung immunopathology [114–118]. At the same time, several vaccination strategies were identified that might be effective at combating this complication. Among these, Iwata-Yoshikawa et al. [119] reported that co-vaccination with toll-like receptor agonists, including lipopolysaccharide, poly U, or poly I:C, limited the Th2-mediated eosinophilic response to a UV-inactivated vaccine preparation of SARS-CoV. Similarly, Hoda-Okubo et al. [120] found that co-inoculation with delta inulin, an oligosaccharide and TLR4 agonist [121], enhanced Th1 (i.e., IFN-γ-mediated) responses to both recombinant subunit and inactivated SARS-CoV vaccines and protected against Th2-mediated lung pathology.

These findings provide important insight into strategies that might be used to develop vaccines against pandemic SARS-CoV-2. While there are several vaccine formulations in current use worldwide, at this time, only two have been granted emergency use authorization by the US Food and Drug Administration (FDA). Both vaccines include mRNA encoding the SARS-CoV-2 Spike (S) protein encapsulated in a lipid coat that facilitates transfection of target host cells [122–124]. There are no published reports of any Th2-mediated pulmonary immunopathology associated with any of the vaccines currently in use, although concern might be heightened once one or more of these vaccines become available to young children [125]. Of note, while the specific formulations used in these mRNA-based vaccines remain a proprietary information at this time, it would not be surprising to find that one or more of the vaccine components (i.e., the specific lipid carrier molecules and/or the virus nucleic acid itself) serve to direct appropriate immune responses via the activation of cognate pattern recognition receptors. However, this conjecture remains speculative at this time.

Conclusions

Eosinophils are circulating and tissue-dwelling leukocytes that have been implicated in allergic respiratory pathology and antiviral host defense. While eosinopenia has been identified as a factor that may facilitate disease diagnosis and determine prognosis, this finding is neither definitive nor pathognomonic for COVID-19. While recent case reports document misdiagnosis and eosinophil-associated complications of COVID-19, current evidence suggests that patients with longstanding eosinophil-associated disorders are at no increased risk for severe disease at this time. Finally, although vaccine-associated aberrant inflammatory responses were observed in animal model studies of vaccines under development to combat SARS-CoV and MERS-CoV, no similar complications have been reported to date in response to the now widespread distribution of the two FDA-approved mRNA-based COVID-19 vaccines.

Acknowledgements The authors thank Dr. Kirk M. Druey of the NIAID and the NIH for his careful review and helpful comments on this manuscript.

Author contribution HFR and PSF prepared the manuscript for publication.

Funding HFR is retired from the NIAID/NIH where her work was supported by the Division of Intramural Research (Z01-AI000941 and Z01-
A1000943). PSF is supported by grants from the National Health and Medical Research Council, Australia.

Data Availability Not relevant.

Declarations

Ethics approval Not relevant.

Consent to participate Not relevant.

Consent for publication Not relevant.

Conflict of interest The authors declare no competing interests.

References

1. Kay AB (2015) The early history of the eosinophil. Clin Exp Allergy 45:575–582
2. Fulkerson PC (2017) Transcription factors in eosinophil development and as therapeutic targets. Front Med 4:115
3. Simon HU, Yousei S, Germac N, Arnold IC, Haczku A, Karaulov AV, Simon D, Rosenberg HF (2020) The cellular functions of eosinophils: Collegium International Allergologicum (CIA) update. Int Arch Allergy Immunol 181:11–23
4. Weller PF, Spencer LA (2017) Functions of tissue-resident eosinophils. Nat Rev Immunol 17:746–760
5. Marichal T, Mesnil C, Bureau F (2017) Homeostatic eosinophils: characteristics and functions. Front Med 4:101
6. Rosenberg HF, Dyer KD, Foster PS (2013) Eosinophils: changing perspectives in health and disease. Nat Rev Immunol 13:9–22
7. Kopf M, Brombacher F, Hodgkin PD, Ramsay AJ, Milbourne EA, Dai WJ, Ovington KS, Behm CA, Kohler G, Young IG, Matthaei KI (1996) IL-5-deficient mice have a developmental defect in CD5+B-1 cells and lack eosinophilia but have normal antibody and cytotoxic T cell responses. Immunity 4:15–24
8. Mesnil C, Raulier S, Paulissen G, Xiao X, Birrell MA, Piriotin D, Janss T, Starkl P, Ramery E, Henket M, Schleich FN, Radermeker M, Thiemmans K, Gillet L, Thiry M, Belvisi MG, Louis R, Desmet C, Marichal T, Bureau F (2016) Lung-resident eosinophils represent a distinct regulatory eosinophil subset. J Clin Invest 126:3279–3295
9. Reichman H, Itan M, Rozenberg P, Yarmolovski T, Brazowski E, Shearer GM, EA, Dai WJ, Ovington KS, Behm CA, Kohler G, Young IG, Matthaei KI (1996) IL-5-deficient mice have a developmental defect in CD5+B-1 cells and lack eosinophilia but have normal antibody and cytotoxic T cell responses. Immunity 4:15–24
10. Kay AB (2015) The early history of the eosinophil. Clin Exp Allergy 45:575–582
11. Ma M, Percopo CM, Sturdevant DE, Sek AC, Komarov HD, Rosenberg HF (2019) Cytokine diversity in human peripheral blood eosinophils: profound variability of IL-16. J Immunol 203: 520–531
12. Percopo CM, Brenner TA, Ma M, Kraemer LS, Hakeem RM, Lee JJ, Rosenberg HF (2017) Siglec-F+Gr1hi eosinophils are a distinct subpopulation within the lungs of allergen-challenged mice. J Leukoc Biol 101:321–328
13. Sek AC, Moore IN, Smelkinson MG, Pak K, Minai M, Smith R, Ma M, Percopo CM, Rosenberg HF (2019) Eosinophils do not drive acute muscle pathology in the mdx mouse model of Duchenne muscular dystrophy. J Immunol 203:476–484
14. Mishra A, Hogan SP, Lee JJ, Foster PS, Rothenberg ME (1999) Fundamental signals that regulate eosinophil homing to the gastrointestinal tract. J Clin Invest 103:1719–1727
15. Lotfi R, Lee JJ, Lotze MT (2007) Eosinophil granulocytes and damage-associated molecular pattern molecules (DAMPs): role in the inflammatory response within tumors. J Immunother 30:16–28
16. Lee JJ, Jacobsen EA, McGarry MP, Schleimer RP, Lee NA (2010) Eosinophils in health and disease: the LIAR hypothesis. Clin Exp Allergy 40:563–575
17. Rodrigo-Munoz JM, Sastre B, Canas JA, Gil-Martinez M, Redondo N, Del Pozo V (2020) Eosinophil response against classical and emerging respiratory viruses: COVID-19. J Investig Allergol Clin Immunol in press
18. Rosenberg HF, Dyer KD, Domachowske JB (2009) Respiratory viruses and eosinophils: exploring the connections. Antiviral Res 83:1–9
19. Phipps S, Lam CE, Mahalingam S, Newhouse M, Ramirez R, Rosenberg HF, Foster PS, Matthaei KJ (2007) Eosinophils contribute to innate antiviral immunity and promote clearance of respiratory syncytial virus. Blood 110:1578–1586
20. Percopo CM, Dyer KD, Ochkur SL, Luo J, Fischer ER, Lee JJ, Lee NA, Domachowske JB, Rosenberg HF (2014) Activated mouse eosinophils protect against lethal respiratory virus infection. Blood 123:743–752
21. Drake MG, Bivins-Smith ER, Proskocij BJ, Nie Z, Scott GD, Lee JJ, Lee NA, Fryer AD, Jacoby DB (2016) Human and mouse eosinophils have antiviral activity against parainfluenza virus. Am J Respir Cell Mol Biol 55:387–394
22. Domachowske JB, Rosenberg HF (1997) Eosinophils inhibit retroviral transduction of human target cells by a ribonucleotide-dependent mechanism. J Leukoc Biol 62:363–368
23. Bedoya VI, Boasso A, Hardy AW, Rybak S, Shearer GM, Rugeles MT (2006) Ribonucleases in HIV type 1 infection: effect of recombinant RNases on infection of primary T cells and immune activation-induced RNase gene and protein expression. AIDS Res Hum Retroviruses 22:897–907
24. Malik A, Batra JK (2012) Antimicrobial activity of human eosinophil granule proteins: involvement in host defence against pathogens. Crit Rev Microbiol 38:168–181
25. Adamko DJ, Yost BL, Gleich GJ, Fryer AD, Jacoby DB (1999) Ovalbumin sensitization changes the inflammatory response to subsequent parainfluenza infection. Eosinophils mediate airway hyperresponsiveness, m2 muscarinic receptor dysfunction, and antiviral effects. J Exp Med 190:1465–1478
26. Sabogal Pineros YS, Bal SM, Dijkhuus A, Majoep CJ, Diedorp BS, Dekker T, Hoeftsm H, Bonta P, Picavét D, van der Wel NN, Koenderman L, Sterk PJ, Ravanne E, Luttert R (2019) Eosinophils capture viruses, a capacity that is defective in asthma. Allergy 74:1898–1909
27. Samarasinghe AE, Melo RCN, Duan S, LeMessurier KS, Liedmann S, Surman SL, Lee JJ, Hurvitz JL, Thomas PG, McCullers JA (2017) Eosinophils promote antiviral immunity in mice infected with influenza A virus. J Immunol 198:3214–3226
28. Doherty PC (2021) What have we learnt so far from COVID-19? Nat Rev Immunol in press
29. Dai L, Gao GF (2020) Viral targets for vaccines against COVID-19. Nat Rev Immunol in press
30. Ovsyannikova IG, Haralambieva IH, Crooke SN, Poland GA, Kennedy RB (2020) The role of host genetics in the immune response to SARS-CoV-2 and COVID-19 susceptibility and severity. Immunol Rev 296:2015–2219
31. Alon R, Sportiello M, Kozlovski S, Kumar A, Reilly EC, Zarbock A, Garbi N, Topham DJ (2021) Leukocyte trafficking to the lungs
390

66. Alzahrani AS, Mukhtar N, Aljomiyaiah A, Aljamei H, Bakhsh A, Alsdudani N, Elsayed T, Alrahidni N, Fadel R, Alqhahtani E, Raef H, Imran Butt M, Sulaiman O (2021) The impact of COVID-19 viral infection on the hypothalamic-pituitary-adrenal axis. Endocr Prac 27:83–89

67. Mao Y, Xu B, Guan W, Xu D, Li F, Ren R, Zhu X, Gao Y, Jiang L (2021) The adrenal cortex, an underestimated site of SARS-CoV-2 infection. Front Endocrinol 11:593179

68. Freire Santana M, Borba MGS, Baia-da-Silva DC, Val F, Alexandre MAA, Brito-Sousa JD, Melo GC, Queirova MVO, Leão Farias ME, Camilo CC, Navega FG, Xavier MS, Monteiro WM, Augusto Pivoio João G, Hajjar LA, Ordi J, Lacerda MVG, Ferreirra LCL (2020) Case report. Adrenal pathology findings in severe COVID-19: an autopsy study. Am J Transl Med Hyg 103:1604–1607

69. Lucas C, Wong P, Klein J, Castro TBR, Silva J, Sundaram M, Ellingson MK, Mao T, Oh JE, Israelow B, Takahashi T, Tokuyama M, Lu P, Venkataraman A, Park A, Mohanty S, Wang H, Wyllie AL, Vogels CB, Earnest R, Lapidus S, Ott JM, Moore AJ, Muenker MC, Fournier JB, Campbell M, Odio CD, Casanovas-Massana A, Team YIMPACT, Herbst R, Shaw AC, Medzhitov R, Schulz WL, Grubaugh ND, Dela Cruz C, Farhadian S, Ko AI, Omer SB, Iwasaki A (2020) Longitudinal analyses reveal immunological misfiring in severe COVID-19. Nature 584:463–469

70. Rodríguez L, Fekkarinnet PT, Lakshmikanth T, Tan Z, Rosal Consiglio C, Pou C, Chen Y, Habimana Mugabo C, Nguyen NA, Nowlan K, Strandin T, Levanov L, Mikes J, Wang J, Kantele A, Hupojoki J, Vapalohi O, Heinonen S, Kekalainen E, Brodin P (2020) Systems-level immunomonitoring from acute to recovery phase of severe COVID-19. Cell Rep Med 1:100078

71. Johansson MW (2014) Activation states of blood eosinophils in asthma. Clin Exp Allergy 44:482–498

72. Vitte J, Diallo AB, Boumaza A, Lopez A, Michel M, Allardet-Servent J, Mezouar S, Sereme Y, Busnel JM, Miloud T, Malergue F, Morange PE, Halfon P, Olive D, Leone M, Mege JL (2020) A granulocytic signature identifies COVID-19 and its severity. J Infect Dis 222:1996–2007

73. Arnold IC, Artola-Borán M, Tallón de la Lara P, Kyburz A, Taube S, Biswas D, Maiti C, Saha B, Bhattacharya P, Pandey R, Sharma Sarkar B, Roy D, Chakraborty R, Vasudevan JS, Sharma R, Chatterjee S, Paul S, Ganguly D (2021) Nature and dimensions of the systemic-hyperinflammation and its attenuation by convalescent plasma in severe COVID-19. J Infect Dis 222:1985–1995

74. Bandopadhyay P, Rozario R, Lahiri A, Sarif J, Garforth SJ, Herrera NG, Jangra RK, Morano NC, Orner E, Sy S, Chandran K, Dziura J, Almo SC, Ring A, Keller MJ, Herold KC, Herold BD (2020) Immune responses to SARS-CoV-2 infection in hospitalized pediatric and adult patients. Sci Transl Med 12:eabd5487

75. Barton LM, Duval EJ, Stroberg E, Ghosh S, Mukhopadhyay S (2020) COVID-19 autopsies, Oklahoma, USA. Am J Clin Pathol 153:725–733

76. Damiani S, Fiorentino M, De Palma A, Foschini MP, Lazzarotto T, Gabrielli L, Viale PL, Attard L, Riefolio M, D’Errico A (2021) Pathological post-mortem findings in lungs infected with SARS-CoV-2-2. J Pathol 253:31–40

77. pierce CA, Preston-Hurlburt P, Dai Y, Aschner CB, Cheshenko N, Galen B, Garforth SJ, Herrera NG, Jangra RK, Morano NC, Orner E, Sy S, Chandran K, Dziura J, Almo SC, Ring A, Keller MJ, Herold KC, Herold BD (2020) Immune responses to SARS-CoV-2 infection in hospitalized pediatric and adult patients. Sci Transl Med 12:eabd5487

78. Pekkarinen PT, Lakshmikanth T, Tan Z, Rosal Consiglio C, Pou C, Chen Y, Habimana Mugabo C, Nguyen NA, Nowlan K, Strandin T, Levanov L, Mikes J, Wang J, Kantele A, Hupojoki J, Vapalohi O, Heinonen S, Kekalainen E, Brodin P (2020) Systems-level immunomonitoring from acute to recovery phase of severe COVID-19. Cell Rep Med 1:100078

79. Damiani S, Fiorentino M, De Palma A, Foschini MP, Lazzarotto T, Gabrielli L, Viale PL, Attard L, Riefolio M, D’Errico A (2021) Pathological post-mortem findings in lungs infected with SARS-CoV-2-2. J Pathol 253:31–40

80. Zhang T, Huang WS, Guan W, Hong Z, Gao J, Gao G, Wu G, Qin YY (2020) Risk factors and predictors associated with the severity of COVID-19 in China: a systematic review, meta-analysis, and meta-regression. J Thorac Dis 12:7429–7441

81. Brodin P (2021) Immune determinants of COVID-19 disease presentation and severity. Nat Med 27:28–33

82. Pijls BG, Jolani S, Atherley A, Derckx RT, Dijkstra JR, Franssen MHL, Hendriks S, Richters A, Venemans-Jellema A, Zelupi S, Zeegers MP (2021) Demographic risk factors for COVID-19 infection, severity, ICU admission and death: a meta-analysis of 59 studies. BMJ Open 11:e044660

83. Ray A, Raundhal M, Oriss TB, Ray P, Wenzel SE (2016) Current concepts of severe asthma. J Clin Invest 126:2394–2403

84. Tay HL, Foster PS (2020) Biologics or immunotherapeutics for asthma? Pharmacol Res 158:104782

85. Carli G, Cecchi L, Stebbing J, Parronchi P, Farsi A (2020) Is asthma protective against COVID-19? Allergy in press

86. Camiolo M, Gauthier M, Kaminski N, Ray A, Wenzel SE (2020) Expression of SARS-CoV-2 receptor ACE2 and coincident host response signature varies by asthma inflammatory phenotype. J Allergy Clin Immunol 146:315–324

87. Ferastraoru D, Hudes G, Jerschow E, Jariwala S, Karagie M, de Vos G, Rosentreich D, Rameschi M (2021) Eosinophilia in asthma patients is protective against severe COVID-19 illness. JACI Practice in press

88. Li X, Xu S, Yu M, Wang K, Tao Y, Zhou Y, Shi J, Zhou M, Wu B, Yang Z, Zhang C, Yue J, Zhang Z, Renz H, Liu X, Xie J, Xie M, Zhao J (2020) Risk factors for severity and mortality in adult COVID-19 patients in Wuhan. J Allergy Clin Immunol 146:110–118

89. Varner AE (2002) The increase in allergic respiratory diseases: survival of the fittest? Chest 121:1308–1316

90. Veerapandian R, Snyder JD, Samarasinghe AE (2018) Influenza in asthmatics: for better or worse? Front Immunol 9:1843

91. Lovinsky-Desir S, Deshpande DR, De A, Murray L, Stingone JA, Chan A, Patel N, Rai N, DiMango E, Milner J, Kattan M (2020) Asthma among hospitalized patients with COVID-19 and related outcomes. J Allergy Clin Immunol 146:1027–1034

92. Mendes NF, Jarra CR, Mounier E, Araujo E, Veloso LA (2021) Asthma and COVID-19: a systematic review. Allergy Asthma Immunol Clin Immunol 17:5

93. Jesenak M, Banovcin P, Diamant Z (2020) COVID-19 in a severe eosinophilic asthmatic receiving benralizumab – a case study. J Asthma in press

94. Hanon S, Brusselle G, Deschambele M, Louis R, Michels A, Peche R, Pilette C, Rummens P, Schuermans D, Simonis H, Vandenplas O, Schleich F (2020) COVID-19 and biologics in severe asthma: data from the Belgian Severe Asthma registry. Eur Respir J 56:2002857
96. Choi JC, Jung S-Y, Yoon UA, You S-H, Kim M-S, Baek MS, Jung J-W, Kim W-Y (2020) Inhaled corticosteroids and COVID-19 risk and mortality: a nationwide cohort study. J Clin Med 9:3406

97. Liu S, Cao Y, Du T, Zhi Y (2020) Prevalence of comorbid asthma and related outcomes in COVID-19: a systematic review and meta-analysis. J Allergy Clin Immunol Pract in press

98. Sunjaya AP, Allida SM, Di Tanna GL, Jenkins C (2021) Asthma risk and infection of hospitalization, ICU admission and mortality from COVID-19: systematic review and meta-analysis. J Asthma in press

99. Lee SC, Son KJ, Han CH, Jung JY, Park SC (2020) Impact of comorbid asthma on severity of coronavirus disease (COVID-19). Sci Rep 10:21805

100. Choi YI, Park J-Y, Lee HS, Suh J, Song JY, Byun MK, Cho JH, Kim HJ, Lee J-H, Park J-W, Park HH (2021) Eur Respir J in press

101. Izquierdo JL, Almonacid C, Gonzalez Y, Del Rio-Bermudez C, Ancochea J, Cardenas R, Soriano JB (2021) Eur Respir J in press

102. Chiang AWT, Duong LD, Shoda T, Nhu Q, Ruffner M, Hara T, Aaron B, Joplin E, Manresa M, Abonia JP, Dennon E, Hiroi I, Gonsalves N, Gupta S, Furuta G, Rothenberg ME, Lewis NE (2020) Type 2 immunity and age modify gene expression of COVID-19 receptors in eosinophilic gastrointestinal disorders. J Pediatr Gastroenterol Nutr in press

103. Savarino EV, Iovino P, Santonicoala C, Ghisa M, Laserra G, Barberio B, Maniero D, Lorezzen G, Ciacci C, Savarino V, Zingone F (2020) Clinical and psychological impact of COVID-19 infection in adult patients with eosinophilic gastrointestinal disorders during the SARS-CoV-2 outbreak. J Clin Med 9:2011

104. Savarino E, Lorenzon G, Ghisa M, Laserra G, Barberio B, Maniero D, Savarino V, Zingone F (2020) Lack of complications in patients with eosinophilic gastrointestinal diseases during SARS-CoV-2 outbreak. J Allergy Clin Immunol Pract 8:2790–2792

105. Luecke E, Jeron A, Koegel A, Bruder D, Stegemann-Koniszewski S, Jechorek D, Borucki K, Reinhold D, Reinhold A, Foellner S, Walles T, Hachenberg T, Schreiber J (2021) Eosinophilic pulmonary vasculitis as a manifestation of the hyperinflammatory phase of COVID-19. J Allergy Clin Immunol 147:112–113

106. Murao K, Saito A, Kuronoma K, Fujiya Y, Takahashi S, Chiba H (2020) Acute eosinophilic pneumonia accompanied with COVID-19: a case report. Respiriology Case Reports 6:e00683

107. Craver R, Huber S, Sandomiersky M, McKenna D, Chieffelin J, Finger L (2020) Fatal eosinophilic myocarditis in a healthy 17-year-old male with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Fetal Pediatr Pathol 2020:1–6

108. Hashizume H, Sano Y, Furukawa S, Imokawa S (2020) Eosinophilic granulomatosis with polyangiitis mimicking COVID-19: a case report. J Intern Med 287:274–275

109. Duran E, Kilic L, Durcan G, Inkaya AC, Guven GS, Karakaya G, Arıyurek OM, Karadag O (2020) Vital corner of diagnostic challenge: eosinophilic granulomatosis with polyangiitis or COVID-19 pneumonia? Ann Rheum Dis in press

110. de Kruijf P (1926) The microbe hunters. Blue Ribbon Books. New York: Harcourt Brace & Company, Inc.

111. Castilow EM, Olson MR, Varga SM (2007) Understanding respiratory syncytial virus (RSV) vaccine-enhanced disease. Immunol Res 39:225–239

112. Mukherjee S, Lukacs NW (2020) Inhaled corticosteroids and COVID-19 risk and mortality: a nationwide cohort study. J Clin Med 9:3406

113. Acosta PL, Caballero MT, Polack FP (2015) Brief history and characterization of enhanced respiratory syncytial virus disease. Clin Vaccine Immunol 23:189–195

114. Yasui F, Kai C, Kitabatake M, Inoue S, Yoneda M, Yokochi S, Kase R, Sekiguchi S, Morita K, Hishima T, Suzuki H, Karamatsu K, Yasutomi Y, Shida H, Kidokoro M, Mizuno K, Matsushima K, Kohara M (2008) Prior immunization with severe acute respiratory syndrome (SARS)-associated coronavirus (SARS-CoV) nucleocapsid protein causes severe pneumonia in mice infected with SARS-CoV. J Immunol 181:6337–6348

115. Bolles M, Deming D, Long K, Agnihotram S, Whitmore A, Ferris M, Funkhouse W, Gralinski L, Totura A, Heise M, Baric R (2011) A double-inactivated severe acute respiratory syndrome coronavirus vaccine provides incomplete protection in mice and induces increased eosinophilic proinflammatory pulmonary response upon challenge. J Virol 85:12201–12215

116. Tseng C-T, Sbrana E, Iwata-Yoshikawa N, Newman PC, Garron T, Atmar RL, Peters CJ, Couch RB (2012) Immunization with SARS coronavirus vaccines leads to pulmonary immunopathology on challenge with the SARS virus. PLoS One 7:e35421

117. Agrawal AS, Tao X, Algaissi A, Garron T, Narayanan K, Peng B-H, Couch RB, Tseng C-T K (2016) Immunization with inactivated Middle East respiratory syndrome coronavirus vaccine leads to lung immunopathology on challenge with live virus. Hum Vaccines Immunotherapeutics 12:2351–2356

118. Lambert PH, Ambrosino DM, Andersen SR, Baric RS, Black SB, Chen RT, Dekker CL, Didierlaurent AM, Graham BS, Martin SD, Molrine DC, Perlman S, Picard-Fraser PA, Pollard AJ, Qin C, Subbarao K, Cramer J (2020) Consensus summary report for CEPI/BC March 12–13, 2020 meeting: assessment of risk of disease enhancement with COVID-19 vaccines. Vaccine 38:4783–4791

119. Iwata-Yoshikawa N, Uda A, Suzuki T, Tsumetsugui-Yokota Y, Sato Y, Morikawa S, Tashiro M, Sata T, Hasegawa H, Nagata N (2014) Effects of toll-like receptor stimulation on eosinophilic infiltration in lungs of BALB/c mice immunized with UV-inactivated severe acute respiratory syndrome-related coronavirus vaccine. J Virol 88:8597–8614

120. Honda-Okuba Y, Bamard D, Ong CH, Peng B-H, Tseng C-TK, Petrovsky N (2015) Severe acute respiratory syndrome-associated coronavirus vaccines formulated with delta inulin adjuvants provide enhanced protection while ameliorating lung eosinophilic immunopathology. J Virol 89:2995–3007

121. Kumar S, Kesarwani SS, Kuppast B, Rajput M, Ali Bakkari M, Tummala H (2016) Discovery of inulin acetate as a novel immune-active polymer and vaccine adjuvant: synthesis, material characterization, and biological evaluation as a toll-like receptor 4 agonist. J Materials Chem B 4:7950–7960

122. Sharma O, Sultan AA, Ding H, Triggle CR (2020) A review of the progress and challenges of developing a vaccine for COVID-19. Front Immunol 11:585354

123. Oliver SE, Gargano JW, Marin M, Wallace M, Curran KG, Chamberland M, McClung N, Campos-Outlet D, Morgan RL, Mbaeyi S, Romero JR, Talbot HK, Lee GM, Bell BP, Dooling K (2021) The advisory committee on immunization practices’ interim recommendation for use of Moderna COVID-19 vaccine – United States, December 2020. Morb Mortal Wkly Rep 69: 1653–1656

124. Oliver SE, Gargano JW, Marin M, Wallace M, Curran KG, Chamberland M, McClung N, Campos-Outlet D, Morgan RL, Mbaeyi S, Romero JR, Talbot HK, Lee GM, Bell BP, Dooling K (2021) The advisory committee on immunization practices’ interim recommendation for use of Pfizer-BioNTech COVID-19 vaccine – United States, December 2020. Morb Mortal Wkly Rep 69: 1922–1924

125. Moghadam SM, Fitzpatrick MC, Shoukat A, Zhang K, Galvani AP (2021) Identifying silent COVID-19 infections among children is critical for controlling the pandemic. medRxiv in press

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
