Data assimilation finite element method for the linearized Navier–Stokes equations in the low Reynolds regime

Muriel Boulakia1,2, Erik Burman3,4,*, Miguel A. Fernández1,2 and Colette Voisembert1,2

1 Sorbonne Université & CNRS, UMR 7598 LJLL, 75005 Paris, France
2 Inria Paris, 75012 Paris, France
3 Department of Mathematics, University College London, London WC1E 6BT, United Kingdom

E-mail: e.burman@ucl.ac.uk

Received 17 October 2019, revised 21 April 2020
Accepted for publication 7 May 2020
Published 20 August 2020

Abstract

In this paper, we are interested in designing and analyzing a finite element data assimilation method for laminar steady flow described by the linearized incompressible Navier–Stokes equation. We propose a weakly consistent stabilized finite element method which reconstructs the whole fluid flow from noisy velocity measurements in a subset of the computational domain. Using the stability of the continuous problem in the form of a three balls inequality, we derive quantitative local error estimates for the velocity. Numerical simulations illustrate these convergence properties and we finally apply our method to the flow reconstruction in a blood vessel.

Keywords: linearized Navier–Stokes’ equations, data assimilation, stabilized finite element methods, three balls inequality, error estimates

(Some figures may appear in colour only in the online journal)

1. Introduction

The question of how to assimilate measured data into large scale computations of flow problems is receiving increasing attention from the computational community. There are several different situations where such data assimilation problems arise. One situation is when the data

*Author to whom any correspondence should be addressed.

Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
necesary to make the flow problem well posed is lacking, for instance when boundary data
can not be obtained on parts of the boundary, but some other measured data on the boundary
or in the bulk is available to make up for this shortfall. In such situation, the problem is
ill-posed and numerical simulations are much more delicate to handle than for the well-
posed flow equations. The traditional approach is to regularize the continuous problem to
obtain a well-posed continuous problem, often using a variational framework, that can then
be discretized using standard techniques. The regularization parameter then has to be tuned
to have an optimal value with respect to noise in the data. The granularity of the computa-
tional mesh is chosen afterward to resolve all scales of the regularized problem. An example
of this strategy is the quasi-reversibility method (see references [8–11]) which is applied to
Stokes problem in [10] for the inverse identification of boundaries. Other examples can be
found in [26], where additional measured data is used to compensate for a lack of knowl-
edge of the boundary conditions in hemodynamics, or in [35], where a least squares method
is proposed for combining and enhancing the results from an existing computational fluid dynam-
ics model with experimental data. More generally the variational data assimilation method
dates back to the work of Sasaki [38] where it was introduced in the context of meteorology.
For further developments, we refer for example to [40, 41]. Other approaches to data assim-
ilation exist such as nudging [2, 30, 32] or minimax estimates [42]. The upshot in the present
contribution is the design of a finite element method applied directly to the ill-posed variational
data assimilation form. Regularization is then added on the discrete level, using methods from
stabilized finite element methods allowing for a detailed analysis using conditional stability
estimates.

A successful data assimilation method hinges on the existence of some stability properties
of the ill-posed problem. Fortunately, it is known that a relatively large class of ill-posed prob-
lems has some conditional stability property. Stability estimates give a precise information on
the effect of perturbations on the system. In particular, they imply that, if the data are com-
patible with the PDE, in the sense that there exists a solution in some suitable Sobolev space
satisfying both the PDE and the data, then this solution is unique. For the Stokes equation,
this unique continuation property was originally proven by Fabre and Lebeau [29]. The anal-
ysis of the stability properties of ill-posed problems based on the Navier–Stokes equations is
a very active field of research and we refer to the works [3–5, 7, 33, 34, 36] for recent results.
Stability estimates for inverse problems classically rely on Carleman inequalities or three-balls
inequalities, two tools which are strongly related. The idea of applying Carleman estimates for
the stability analysis of inverse problems is introduced in the seminal paper [16] by Bukhgeim
and Klibanov.

There appears to be relatively few results in the literature discussing the combined error
due to regularization, discretization and perturbations for inverse problems subject to the
equations of fluid mechanics. To the best of our knowledge such a combined analysis has only
been performed in the recent paper [22], where a nonconforming finite element method
was used, together with regularization techniques developed in the context of discontinuous
Galerkin methods, to analyze a data assimilation problem for Stokes problem. One of the rea-
sons for this is that there is in general a gap between the stability estimates that can be proven
analytically and the stability required to perform a numerical analysis. An approach allow-
ing to bridge this gap was proposed in [19–21, 23], drawing on earlier ideas for well-posed
problems in [12, 13]. This framework combines stabilized finite element methods designed
for well-posed problems with variational formulations for data assimilation and sharp stability
estimates for the continuous problems based on three balls inequalities or Carleman estimates.
Recent developments include finite element data assimilation methods with optimal error esti-
mates for the heat equation [24, 25] and design of methods for indefinite or nonsymmetric
scalar elliptic problems analyzed using Carleman estimates with explicit dependence on the physical parameters [17, 18].

In this paper, our aim is to build on these results and use known techniques for the approximation of the (well-posed) Navier–Stokes equation in an optimization framework in order to assimilate data with computation. Contrary to the previous work [22], we consider the linearized Navier–Stokes equations and use standard H^1-conforming, piecewise affine, finite element spaces. The key idea is that the ill-posed continuous problem is not regularized. Instead, we discretize the equation and set up a constrained optimization problem where we minimize the distance between the discrete solution and the measured data. To counter the instabilities in the discrete system, we introduce regularization terms. Taking advantage of the discretize–then–optimize perspective, we get an accuracy which is optimal with respect to the stability of the continuous problem through weakly consistent regularization terms. This property is illustrated by the error estimate of theorem 3.1 that is sharp relative to the stability estimate of corollary 2.1 (which is a consequence of a three balls inequality derived by Lin, Uhlmann and Wang [36]). Moreover, in our framework, the only regularization parameter, up to a constant scaling factor, is the mesh parameter.

We apply this method to an incompressible laminar steady flow in the low Reynolds regime. To be more specific, we are interested in a situation where a known laminar base flow U is available and we consider that a perturbation of the velocity of the base flow has been measured in some subset ω_M of the computational domain Ω. Assuming that the perturbation is small, we then consider the linearized Navier–Stokes equation and our objective is to get quantitative local error estimates for the perturbation in some target subdomain ω_T.

The rest of the paper is organized as follows. In section 2, we introduce the considered inverse problem and some related stability estimates. In section 3, we describe the proposed stabilized finite element approximation of the data assimilation problem and state the local error estimate. The numerical analysis of the method is carried out in section 4. Finally, section 5 presents a series of numerical examples which illustrate the performance of the proposed method. In particular, in section 5.3, we explore how the present approach can be applied to the estimation of relative pressure in blood flow from MRI velocity measurements.

2. Presentation of the inverse problem and stability results for the continuous problem

Let Ω be a bounded open polyhedral domain in \mathbb{R}^d with $d = 2, 3$. We denote by (U, P) a solution of the stationary incompressible Navier–Stokes equations and we consider some perturbation (u, p) of this base flow. It is then known that, if the quadratic term is neglected, the linearized Navier–Stokes equations for (u, p) may be written

$$\begin{cases}
(U \cdot \nabla)u + (u \cdot \nabla)U + \nabla p - \nu \Delta u = f & \text{in } \Omega \\
\nabla \cdot u = 0 & \text{in } \Omega.
\end{cases}$$

(1)

In what follows, we assume that U belongs to $[W^{1,\infty}(\Omega)]^d$ and that (u, p) satisfies the regularity $(u, p) \in [H^2(\Omega)]^d \times H^1(\Omega)$.

For this problem, we consider that measurements on u are available in some subdomain $\omega_M \subset \Omega$ having a nonempty interior and our objective is to reconstruct a fluid flow solution of system (1) from these measurements on the velocity.

Let us now introduce some useful notations. We consider the following spaces:
\[V := [H^1(\Omega)]^d, \quad V_0 := [H^1_0(\Omega)]^d, \quad L_0 := L^2_0(\Omega), \quad \text{and} \quad L := L^2(\Omega) \]

where \(L^2_0(\Omega) = \{ p \in L^2(\Omega) : \int_\Omega p = 0 \} \). We also define the norms, for \(k = 1 \) or \(d \),

\[
\| v \|_{L^2} := \| v \|_{L^2(\Omega)}, \quad \| v \|_{V} := \| v \|_{[H^1(\Omega)]^d}, \quad \| v \|_{V_0} := \| v \|_{[H^1_0(\Omega)]^d}, \quad \| v \|_{L^0} := \| v \|_{L^2_0(\Omega)}, \quad \| v \|_{L} := \| v \|_{L^2(\Omega)}.
\]

Let us notice that, in the first two definitions, with some abuse of notation, we use the same notation for \(k = 1 \) and \(k = d \). For any subdomain \(\omega \subset \Omega \), we set

\[
|v|_\omega := \left(\int_\omega |v|^2 \right)^{1/2}, \quad \forall v \in L^2(\omega).
\]

Besides, we introduce the bilinear forms: for all \((u, v) \in V \times V\)

\[
a(u, v) := \int_\Omega \left((u \cdot \nabla) u + (u \cdot \nabla) U \right) \cdot v + \nu \int_\Omega \nabla u : \nabla v, \quad (2)
\]

where \(H : G := \sum_{i,j=1}^d H_{ij}G_{ij} \) and, for all \((p, v) \in L \times V \)

\[
b(p, v) := \int_\Omega p \nabla \cdot v. \quad (3)
\]

The inverse problem we are interested in can be expressed in the following form: \(f \in V_0' \) being given, find \((u, p) \in V \times L_0 \) such that

\[
u = u_M \quad \text{in} \quad \omega_M \quad (4)
\]

and

\[
a(u, v) - b(p, v) + b(q, u) = \langle f, v \rangle_{V_0', V_0}, \quad \forall (v, q) \in V_0 \times L. \quad (5)
\]

Here, \(u_M \in L^2(\omega_M) \) corresponds to the measurement of the velocity made on \(\omega_M \) and in what follows we will consider that this measurement corresponds to the exact velocity polluted by a small noise \(\delta u \in [L^2(\omega_M)]^d \).

For the analysis of our problem, we also introduce the linearized Navier–Stokes problem with a non-zero velocity divergence

\[
(U \cdot \nabla) u + (u \cdot \nabla) U - \nu \Delta u + \nabla p = f \quad \text{in} \quad \Omega \quad (6)
\]

\[
\nabla \cdot u = g \quad \text{in} \quad \Omega.
\]

We assume that, if system (6) is completed by homogeneous Dirichlet boundary conditions, then it is well-posed. More precisely, we make the following assumption:

Assumption A. For all \(f \in V_0' \) and \(g \in L_0 \), we assume that system (6) admits a unique weak solution \((u, p) \in V_0 \times L_0 \) and that there exists a constant \(C_S > 0 \) depending only on \(U, \nu \) and \(\Omega \) such that

\[
\| u \|_{V} + \| p \|_{L} \leq C_S (\| f \|_{V_0'} + \| g \|_{L}). \quad (7)
\]

In particular, if \(\| \nabla U \|_{L^\infty(\Omega)^{d \times d}} \) is small enough, it is straightforward to verify that Assumption A holds according to Lax–Milgram lemma. This assumption of smallness on \(\nabla U \) however is a sufficient condition and there are reasons to believe that Assumption A holds in more general cases.
In the homogeneous case (which corresponds to \(f = 0 \) in (1) or to \(f = 0 \) and \(g = 0 \) in (6)), a solution \((u, p)\) satisfies a three-balls inequality which only involves the \(L^2 \) norm of the velocity. This three-balls inequality result is stated in [36] (with their notations, \(A \) corresponds to \(U \) and \(B \) to \(\nabla U \)) and we recall it here. We emphasise the fact that, in this theorem and in its corollary, no boundary conditions are prescribed.

Theorem 2.1 (Three-balls inequality). There exists \(\tilde{R} \in (0,1) \) such that for all \(0 < R_1 < R_2 < R_3 \leq R_0 \) and \(x_0 \in \Omega \) satisfying \(R_1/R_3 < R_2/R_3 < R \) and \(B_{R_0}(x_0) \subset \Omega \), we have

\[
\int_{B_{R_2}(x_0)} |u|^2 \leq C \left(\int_{B_{R_1}(x_0)} |u|^2 \right)^{1-\tau} \left(\int_{B_{R_3}(x_0)} |u|^2 \right)^{\tau}
\]

for \((u, p) \in [H^1(B_{R_0}(x_0))]^d \times H^1(B_{R_0}(x_0)),\) solution of (1) with \(f = 0 \) in \(B_{R_0}(x_0) \). In this inequality, \(C \) depends on \(R_2/R_3 \) and \(0 < \tau < 1 \) depends on \(R_1/R_3, R_2/R_3 \) and \(d \).

This theorem combined with assumption \(\text{A} \) implies a local stability inequality in the non-homogeneous case given by system (6). This stability property will be capital in the convergence study of the numerical method and is given by the following statement:

Corollary 2.1 (Conditional stability for the linearized Navier–Stokes problem). Let \(f \in V_0^\prime \) and \(g \in L_0 \) be given. For all \(\omega_M \subset \subset \Omega \), there exist \(C > 0 \) and \(0 < \tau < 1 \) such that

\[
|u|_{\omega_M} \leq C(\|f\|_{V_0^\prime} + \|g\|_{L_0} + \|u\|_{L_0})^{1-\tau}(\|f\|_{V_0^\prime} + \|g\|_{L_0} + |u|_{\omega_M})^\tau
\]

for all \((u, p) \in [H^1(\Omega)]^d \times H^1(\Omega)\) solution of (6).

The proof of corollary 2.1 is given in appendix A. In a classical way for ill-posed problems [1], corollary 2.1 gives a conditional stability result in the sense that, to be useful, this estimate has to be accompanied with an \emph{a priori} bound on the solution on the global domain (due to the presence of \(\|u\|_{L_0} \) in the right-hand side). Let us notice that corollary 2.1 implies in particular the uniqueness of a solution \((u, p)\) in \([H^1(\Omega)]^d \times H^1(\Omega)\) for problem (4) and (5), up to a constant for \(p \). Moreover, in inequality (9), the exponent \(\tau \) depends on the dimension \(d \), the size of the measure domain \(\omega_M \) and the distance between the target domain \(\omega_T \) and the boundary of the computational domain \(\Omega \).

Remark 2.1. Herein, we only consider error estimates for local \(L^2 \)-norms, but errors in local \(H^1 \)-norms of velocity together with \(L^2 \)-norms of pressure are also possible to analyze using three balls inequalities derived in [7], provided measurements of both velocities and pressures are available in \(\omega_M \).

In what follows, we assume that \(f \in L^2(\Omega) \) and we introduce the operator \(A \) defined on \((V \times L_0) \times (V_0 \times L)\) by

\[
A[(u, p), (v, q)] := a(u, v) - b(p, v) + b(q, u)
\]

where \(a \) and \(b \) are respectively defined by (2) and (3). Thus, we look for \((u, p) \in V \times L_0\) such that

\[
A[(u, p), (v, q)] = (f, v)_{L^2(\Omega)}, \quad \forall (v, q) \in V_0 \times L
\]

and (4) holds.
In this section, we first introduce a discretization of problem (11) using a standard finite element method. Then, the discrete inverse problem is reformulated as a constrained minimization problem in the discrete space where the regularization of the cost functional is achieved through stabilization terms. At last, the estimation of the error between the exact continuous solution and the discrete solution of our minimization problem is stated in theorem 3.1 which corresponds to our main theoretical result.

On the domain \(\Omega \), we consider a family \(\{ T_h \} \) of shape regular, conforming, quasi-uniform meshes consisting of shape regular simplices \(K \). This family is indexed by \(h \) defined as the maximum over the diameters \(h_K \) of elements in the mesh. For a fixed \(h > 0 \), we denote by \(F_i \) the set of interior faces of the mesh \(T_h \).

We will also use the notion of jump over a face \(F \) shared by the elements \(K \) and \(K' \) (which means that \(F = \bar{K} \cap \bar{K}' \)) defined as follows: if \(\zeta \) is a scalar,
\[
\llbracket \zeta \rrbracket_F = \zeta|_K - \zeta|_{K'}
\]
and, if \(\zeta \) is a vector,
\[
\llbracket \zeta \rrbracket_F = \zeta|_K \cdot n_K + \zeta|_{K'} \cdot n_{K'}
\]
where \(n_K \) denotes the outward pointing normal of the element \(K \).

We denote by \(X_h \) the standard \(H^1 \)-conforming finite element space of piecewise affine functions defined on \(T_h \) and we introduce
\[
V_h := [X_h]^d, \quad W_h := V_h \cap V_0, \quad Q_h := X_h \quad \text{and} \quad Q^0_h := X_h \cap L^0.
\]

We may then write the finite element approximation of (11): find \((u_h, p_h) \in V_h \times Q^0_h \) such that
\[
A[(u_h, p_h), (v_h, q_h)] = (f, v_h)_{L^2(\Omega)}
\]
for all \((v_h, q_h) \in W_h \times Q_h \).

To take into account the measurements on \(\omega_M \) given by (4), we introduce the measurement bilinear form
\[
m(u, v) = \gamma_M \int_{\omega_M} uv,
\]
where \(\gamma_M > 0 \) will correspond to a free parameter representing the relative confidence in the measurements. The objective is then to minimize the functional
\[
\frac{1}{2} m(u_M - u_h, u_M - u_h)
\]
under the constraint that \((u_h, p_h) \) satisfies (12). However, the discrete Lagrangian associated to this problem leads to an optimality system which is ill-posed. To regularize it, we introduce stabilization operators that will convexify the problem with respect to the direct variables \(u_h \) and \(p_h \) and the adjoint variables \(z_h, w_h \). We define \(s_u : V_h \times V_h \mapsto \mathbb{R} \), \(s^*_u : W_h \times W_h \mapsto \mathbb{R} \), \(s_p : Q^0_h \times Q^0_h \mapsto \mathbb{R} \) and \(s^*_p : Q_h \times Q_h \mapsto \mathbb{R} \) by
\[
s_u(u_h, v_h) := \gamma_u \sum_{F \in F_i} \int_F h_F \| \nabla u_h \| \| \nabla v_h \| + \gamma_{div} \int_{\Omega} (\nabla \cdot u_h)(\nabla \cdot v_h),
\]
and
\[
s_p(p_h, q_h) := \gamma_p \int_{\Omega} h^2 \nabla^2 p_h \cdot \nabla q_h.
\]
and
\[s'_u(z_h, w_h) := \gamma_u^p \int_{\Omega} \nabla z_h : \nabla w_h, \quad s'_p(y_h, x_h) := \gamma_p^p \int_{\Omega} y_h x_h, \]

where \(\gamma_u, \gamma_p, \gamma_u^p \) and \(\gamma_p^p \) are positive user-defined parameters. Let us make some comments on these stabilization terms. The stabilization of the direct velocity acts on fluctuations of the pressure stabilization term also appears the Brezzi–Pitkäranta method [14]). Since the exact solution of the adjoint equation is zero, consistency is ensured also for Tikhonov type regularization. For a more general discussion of the possible stabilization operators, we refer to [19, 21].

For compactness, we introduce the primal and dual stabilizers: for all \((u_h, p_h), (v_h, q_h) \in V_h \times Q_h^0\)
\[S[(u_h, p_h), (v_h, q_h)] := s_u(u_h, v_h) + s_p(p_h, q_h) \]

and, for all \((z_h, y_h), (w_h, x_h) \in W_h \times Q_h\)
\[S^*[z_h, y_h], (w_h, x_h)] := s_u^*(z_h, w_h) + s_p^*(y_h, x_h). \]

We may then write the discrete Lagrangian
\[L : (V_h \times Q_h^0) \times (W_h \times Q_h) \mapsto \mathbb{R} \]
that will form the basis of our method as: for all \((u_h, p_h) \in (V_h \times Q_h^0) \) and \((z_h, y_h) \in (W_h \times Q_h)\)
\[L[(u_h, p_h), (z_h, y_h)] := \frac{1}{2} m(u_M - u_h, u_M - u_h) + A[(u_h, p_h), (z_h, y_h)] - (f, z_h)_{L^2(\Omega)} + \frac{1}{2} S[(u_h, p_h), (u_h, p_h)] - \frac{1}{2} S^*[z_h, y_h], (z_h, y_h)]. \]

(13)

If we differentiate with respect to \((u_h, p_h)\) and \((z_h, y_h)\), we get the following optimality system: find \((u_h, p_h) \in V_h \times Q_h^0\) and \((z_h, y_h) \in W_h \times Q_h\) such that
\[A[(u_h, p_h), (w_h, x_h)] - S^*[z_h, y_h], (w_h, x_h)] = (f, w_h)_{L^2(\Omega)}, \]
\[A[(v_h, q_h), (z_h, y_h)] + S[(u_h, p_h), (v_h, q_h)] + m(u_h, v_h) = m(u_M, v_h) \]
for all \((v_h, q_h) \in V_h \times Q_h^0\) and all \((w_h, x_h) \in W_h \times Q_h\).

Let us prove that this discrete problem is well-posed. To do so, we recall a Poincaré inequality from [23, lemma 2] that will be crucial to get the stability of the method:
\[h \| v_h \|_{V} \lesssim (s_u(v_h, v_h) + \gamma_M |v_h|_{H^1_M}^2), \quad \forall v_h \in V_h. \]

(15)

If we take in the variational formulation (14) the test functions \(w_h = -z_h, x_h = -y_h \) and \(v_h = u_h, q_h = p_h \) we see that, for any solution \((u_h, p_h) \in V_h \times Q_h^0, (z_h, y_h) \in W_h \times Q_h\), there holds
\[S[(u_h, p_h), (u_h, p_h)] + S^*[z_h, y_h], (z_h, y_h)] + \gamma_M |u_h|_{H^1_M}^2 = -(f, z_h)_{L^2} + m(u_M, u_h). \]

(16)
Then, according to (15), the left-hand side in equation (16) is the square of a norm in \((V_h \times Q_h^0) \times (W_h \times Q_h)\) and, according to Babuska–Necas–Brezzi theorem (see [28]), we conclude that the square linear system defined by (14) admits a unique solution for all \(h > 0\).

The following theorem is the main theoretical result of the paper and states an error estimate for this method.

Theorem 3.1. Let \(f \in L^2(\Omega)\) and \(\delta u \in L^2(\omega_T)\) be given. We assume that \((u, p)\) solution of (11) belongs to \([H^2(\Omega)]^d \times H^1(\Omega)\) and we consider \((u_h, p_h) \in V_h \times Q_h^0, (z_h, y_h) \in W_h \times Q_h\) the discrete solution of (14) where \(u_M := u|_{\omega_M} + \delta u\). Then, for all \(\omega_T \subset \subset \Omega\), there exists \(\tau \in (0, 1)\) such that

\[
|u - u_h|_{\omega_T} \leq C h^{\tau} (\|u\|_{H^2(\Omega)} + \|p\|_{H^1(\Omega)} + h^{-1}|\delta u|_{\omega_M}) + h \|f\|_L.
\]

The constant \(C\) depends on the geometry of \(\omega_M\) and \(\omega_T\) and on \(\|U\|_{W^{1,\infty}(\Omega)}\).

The proof of this result will strongly rely on the conditional stability estimate for the continuous problem given by corollary 2.1 and the convergence of the residual quantities given by lemma 4.3.

According to this theorem, we get that, if the measurement noise \(\delta u\) is equal to 0, the error \(u - u_h\) converges to 0 when \(h\) tends to 0 on any subset \(\omega_T \subset \subset \Omega\). Moreover, the convergence order \(\tau\) corresponds to the Hölder coefficient of the continuous stability estimate (9). On the other hand, in the case of perturbed data, we notice that the accuracy of the error is limited and inequality (17) shows that the mesh size has to balance the error due to the discretization and the error due to the noise.

Remark 3.1. For simplicity, we restrict the discussion to piecewise affine continuous approximation spaces, but the arguments can be extended to higher order finite element spaces, with the expected improvement of convergence order, following the ideas of [21]. It should however be noted that the system matrix becomes increasingly ill-posed as the polynomial order increases and the computation becomes more sensitive to noise in the measured data, so the practical interest in using high-order approximation spaces remains to be proven.

4. Stability and error analysis

In this section, we will present and prove several technical results and end with the proof of theorem 3.1.

Let us first notice that formulation (14) is weakly consistent in the sense that we have a modified Galerkin orthogonality relation with respect to the scalar product associated to \(A\):

Lemma 4.1 (Consistency). Let \((u, p)\) satisfy (1) and \((u_h, p_h)\) be a solution of (14). Then there holds

\[
A[(u - u_h, p - p_h), (w_h, x_h)] = -S^*[z_h, y_h, (w_h, x_h)]
\]

for all \((w_h, x_h) \in W_h \times Q_h\).

Proof. The result is immediate by taking the difference between (11) and the first equation of (14). \(\square\)

In the analysis below, we will use the following classical inverse and trace inequalities:

- Inverse inequality (see [27, section 1.4.3]):
 \[
 \|v\|_{H^1(K)} \leq h_K^{-1} \|v\|_{L^2(K)} \quad \forall v \in P_1(K).
 \] (19)
Here \(P_1(K) \) denotes the set of polynomials of degree less than or equal to 1 on the simplex \(K \).

- Trace inequalities (see [27, section 1.4.3]):
\[
\|v\|_{L^2(\partial K)} \leq C \left(h_K^{1/2} \|v\|_{L^2(K)} + h_K^{1/2} \|v\|_{H^1(K)} \right) \quad \forall v \in H^1(K). \tag{20}
\]

At last, by combining (20) and (19)
\[
\|v\|_{L^2(\partial K)} \leq C h_K^{1/2} \|v\|_{L^2(K)} \quad \forall v \in P_1(K). \tag{21}
\]

Let us now define the semi-norms associated to the stabilization operators defined on \((H^2(\Omega))^d + V_h) \times (H^1(\Omega) + Q_h)\)
\[
\|\|v, q\|\| := \|v\| + \|q\|.
\]

The following continuity results for the bilinear form \(A \) motivate the definition of the triple norms.

Lemma 4.2 (Continuity). For all \(\zeta \in V_h + [H^2(\Omega)]^d \) and \(\varpi \in Q_h + H^1(\Omega) \) there holds
\[
A(\zeta, \varpi, (v_h, q_h)) \lesssim \|\zeta\|_{\partial\Omega} \|(v_h, q_h)\|, \quad \forall (v_h, q_h) \in W_h \times Q_h \tag{24}
\]
and, for all \(w_h, q_h \) in \(V_h \times Q_h \), for all \(w \in [H^1_0(\Omega)]^d \) and \(\chi \in L^2(\Omega) \)
\[
A((v_h, q_h), (w - w_h, \chi - y_h)) \leq \|(v_h, q_h)\| \|\|w\|_V + \|\chi\|_L \tag{25}
\]
where \((w_h, y_h) = (i_h w, i_h y)\).

Proof. The proof of (24) directly comes from the Cauchy–Schwarz inequality applied termwise in the definition (10) of \(A \). For the second inequality (25), we set \(\tilde{w} = w - w_h \) and \(\tilde{y} = y - y_h \) and notice that
\[
A((v_h, q_h), (\tilde{w}, \tilde{y})) := a(v_h, \tilde{w}) - b(q_h, \tilde{w}) + b(\tilde{y}, v_h). \tag{26}
\]
For the first term in the right-hand side, an integration by parts in the viscous term gives, observing that \(\tilde{w} \big|_{\partial \Omega} = 0 \),

\[
a(v_h, \tilde{w}) \lesssim \|U\|_{W^{1,\infty}(\Omega)^p} \|hv_h\|_V \|h^{-1} \tilde{w}\|_L + \frac{1}{2} \sum_{F \in \mathcal{F}_I} \|\nabla v_h \cdot n\| \cdot \tilde{w} \, ds.
\]

Using Cauchy–Schwarz inequality with the right scaling in \(h \), we get

\[
a(v_h, \tilde{w}) \lesssim \|U\|_{W^{1,\infty}(\Omega)^p} \|hv_h\|_V \|h^{-1} \tilde{w}\|_L + \sum_{F \in \mathcal{F}_I} h^\frac{1}{2} \|\nabla v_h\|_F \|h^{-\frac{1}{2}} \tilde{w}\|_F.
\]

Applying the trace inequality (20), we notice that

\[
\|h^{-1} \tilde{w}\|_K + \|h^{-\frac{1}{2}} \tilde{w}\|_{\partial K} \lesssim h^{-1} \|\tilde{w}\|_K + \|\nabla \tilde{w}\|_K.
\]

Then, if we take the square, sum over \(K \) and use the \(H^1 \)–stability inequality of \(i_h \) (22) for \(t = 1 \), this inequality becomes

\[
\|h^{-1} \tilde{w}\|_L + \left(\sum_{F \in \mathcal{F}_I} h^{-\frac{1}{2}} \|\tilde{w}\|_F^2 \right)^{1/2} \lesssim \|w\|_V.
\]

As a consequence,

\[
a(v_h, \tilde{w}) \lesssim ||(v_h, 0)|| \|w\|_V.
\]

Similarly, for the second term in (26), an integration by parts gives

\[
|b(q_h, \tilde{w})| \lesssim \|h\nabla q_h\|_L \|h^{-1} \tilde{w}\|_L \lesssim ||(0, q_0)|| \|w\|_V.
\]

Finally, the bound for the third term in (26) is immediate by the Cauchy–Schwarz inequality and the \(L^2 \)-stability of \(i_h \)

\[
|b(\tilde{y}, v_h)| \lesssim \|\nabla \cdot v_h\|_L \|\tilde{y}\|_L \lesssim ||(v_h, 0)|| \|\tilde{y}\|_L.
\]

Gathering these results, we get (25).

\(\square \)

Remark 4.1. The augmented Lagrangian stabilization on the divergence in the operator \(s_u \) is used in the proof of lemma 4.2 to bound in a direct way the third term in (26) but it is not strictly necessary. Indeed, if \(y_h \) is chosen as the \(L^2 \)-projection of \(y \) we see that for all \(x_h \in Q_h \),

\[
b(\tilde{y}, v_h) = (\nabla \cdot v_h - x_h)_L
\]

and recalling that

\[
\inf_{x_h \in Q_h} \|\nabla \cdot v_h - x_h\|_L \lesssim \left(\sum_{F \in \mathcal{F}_I} h_F \|\nabla v_h\|_F^2 \right)^{1/2}
\]

we conclude that

\[
b(\tilde{y}, v_h) \lesssim \|y\|_L \left(\sum_{F \in \mathcal{F}_I} h_F \|\nabla v_h\|_F^2 \right)^{1/2}.
\]
Hence, the stabilization of the gradient jump is sufficient to bound this term. In practice however, it can be useful to add the stabilization term on the divergence since it allows to get a stronger coercivity estimate.

The above lemma asserts that some residual converges with optimal order if the exact solution is smooth enough.

Lemma 4.3. We assume that the solution \((u, p)\) of (11) belongs to \([H^2(\Omega)]^d \times H^1(\Omega)\) and we consider \((u_h, p_h) \in V_h \times Q_h^p, (z_h, y_h) \in W_h \times Q_h^s\) the discrete solution of (14). Then there holds

\[
\|\|(u - u_h, p - p_h)\|\| + \|\|(z_h, y_h)\|\|_{\infty} + \frac{\gamma_M}{2} |u - u_h|_{-M} \\
\leq C h (\|u\|_{H^2(\Omega)}^2 + \|p\|_{H^1(\Omega)}^2) + \gamma_M^2 |u - u_h|_{-M}.
\]

Proof. We introduce the discrete errors \(\xi_h = i_h u - u_h, \eta_h = i_h p - p_h\). By this way, \((u - u_h, p - p_h) = (u - i_h u, p - i_h p) + (\xi_h, \eta_h)\). First we observe that

\[
\|\|(u - u_h, p - p_h)\|\| + \gamma_M^2 |u - u_h|_{-M} \\
\leq \|\|(u - i_h u, p - i_h p)\|\| + \gamma_M^2 |u - i_h u|_{-M} + \|\|(\xi_h, \eta_h)\|\| + \gamma_M^2 |\xi_h|_{-M}.
\]

Using inequalities (23) and (22) for \(t = 1\), we can directly bound the first two terms in the right-hand side. For the last two terms, according to inequality (15), we have

\[
\|\|(\xi_h, \eta_h)\|\|^2 + \gamma_M |\xi_h|^2_{-2M} \leq S[(\xi_h, \eta_h), (\xi_h, \eta_h)] + \gamma_M |\xi_h|^2_{2M}.
\]

To estimate the right-hand side, we notice that, using the second equation of (14) with \((v_h, q_h) = (\xi_h, \eta_h)\)

\[
S[(\xi_h, \eta_h), (\xi_h, \eta_h)] + \gamma_M |\xi_h|^2_{-2M} = A[(\xi_h, \eta_h), (z_h, y_h)] \\
= S[(i_h u, i_h p), (\xi_h, \eta_h)] + m(i_h u - u, \xi_h) - m(\delta u, \xi_h).
\]

Next, according to (18) with \((v_h, x_h) = (z_h, y_h)\), we have

\[
\|\|(z_h, y_h)\|\|^2 + A[(\xi_h, \eta_h), (z_h, y_h)] = A[(i_h u - u, i_h p - p), (z_h, y_h)].
\]

Thus, adding these two equalities, we get

\[
S[(\xi_h, \eta_h), (\xi_h, \eta_h)] + |\xi_h|^2_{-2M} + |||(z_h, y_h)|||^2 = A[(i_h u - u, i_h p - p), (z_h, y_h)] \\
+ S[(i_h u, i_h p), (\xi_h, \eta_h)] + m(i_h u - u, \xi_h) - m(\delta u, \xi_h).
\]

We bound the terms I–III term by term. By lemma 4.2 and the approximation bound (23), we have for term I

\[
I \lesssim \|(i_h u - u, i_h p - p)\| \|\|(z_h, y_h)\|\|_{\infty} \lesssim C h (\|u\|_{H^2(\Omega)}^2 + \|p\|_{H^1(\Omega)}^2) |||(z_h, y_h)||||.
\]

For term II, we have

\[
S[(i_h u, i_h p), (\xi_h, \eta_h)] = S[(i_h u - u, 0), (\xi_h, \eta_h)] + \gamma_M \int_{\Omega} h^2 \nabla i_h p \cdot \nabla \eta_h.
\]
Thus, using (23) with \((v, q) = (u, p)\) for the first term and the \(H^1\)-stability of \(i_h\) for the second term, we get

\[
H \lesssim h(n \|u\|_{H^2(\Omega)} + \|p\|_{H^1(\Omega)})\|\xi_h - \eta_h\|.
\]

For term III, according to (22) with \(t = 2\), we have

\[
III \leq \gamma_M (\|u\|_{H^2(\Omega)} + \|\delta u\|_{\Omega M})\|\xi_h\|_{\Omega M}.
\]

Thus, inequality (27) directly implies (28).

Proof of Theorem 3.1. Thus, according to lemma 4.3 and the fact that \(\gamma_M = \gamma_M (\|u\|_{H^2(\Omega)} + \|\delta u\|_{\Omega M})\|\xi_h\|_{\Omega M}\),

\[
\text{we get (27).}
\]

We then deduce from the previous lemma a priori bounds on the finite element solution.

Corollary 4.1. Under the same assumptions as for lemma 4.3, there holds

\[
\|\xi_h - \eta_h\|^2 + \|z_h - y_h\|^2 + \gamma_M |\xi_h|^2 \lesssim (h(n \|u\|_{H^2(\Omega)} + \|p\|_{H^1(\Omega)}) + \gamma_M |\delta u|_{\Omega M})^2 + \gamma_M |\xi_h|^2 + \|\xi_h\|^2 + \|\xi_h\|^2 \lesssim (h(n \|u\|_{H^2(\Omega)} + \|p\|_{H^1(\Omega)}) + \gamma_M |\delta u|_{\Omega M})^2 + \gamma_M |\xi_h|^2 + \|\xi_h\|^2 + \|\xi_h\|^2.
\]

and we conclude by dividing by \(\|\|\xi_h - \eta_h\|^2 + \|z_h - y_h\|^2 + \gamma_M |\xi_h|^2\|^2\). \(\Box\)

Proof. In an evident way, we have

\[
\|\xi_h - \eta_h\|^2 + \|z_h - y_h\|^2 + \gamma_M |\xi_h|^2 \lesssim (h(n \|u\|_{H^2(\Omega)} + \|p\|_{H^1(\Omega)}) + \gamma_M |\delta u|_{\Omega M})^2 + \gamma_M |\xi_h|^2 + \|\xi_h\|^2 + \|\xi_h\|^2.
\]

Thus, according to lemma 4.3 and the fact that \(\|\|u, p\|\| = h\|u\|_{V} + s_p(p, p)^{\frac{1}{2}}\), we get (27).

Moreover, by definition of \(\|\cdot\|\), we have

\[
\|u_h\|^2 + \|p_h\|^2 \lesssim h^{-1} \|u_h\|^2 + \|p_h\|^2.
\]

Thus inequality (27) directly implies (28). \(\Box\)

We are now ready to prove our main result stated in theorem 3.1.

Proof of Theorem 3.1. Let us first introduce the weak formulation of the problem satisfied by \((\xi, \eta) := (u - u_h, p - p_h)\). By equation (11), we have for all \(w \in V_0\) and \(q \in L\),

\[
A[(\xi, \eta), (w, q)] = (f, w)_{L^2(\Omega)} - A[(u_h, p_h), (w, q)].
\]

We introduce, \(u_h\) and \(p_h\) being fixed, the linear forms \(r_f\) and \(r_g\) on \(V_0\) and \(L\) respectively defined by: for all \(w \in V_0\) and \(q \in L\),

\[
(r_f, w)_{V_0} + (r_g, q)_L := (f, w)_{L^2(\Omega)} - A[(u_h, p_h), (w, q)].
\]

It follows that \((\xi, \eta)\) is solution of (6) with the functions \(f\) and \(g\) in the right-hand sides replaced respectively by \(r_f\) and \(r_g\). Applying now corollary 2.1, we directly get

\[
\|\xi\|_{L^2} \leq C(\|r_f\|_{V_0} + \|r_g\|_{L} + \|\xi\|_{L})^{1 - \tau} (\|r_f\|_{V_0} + \|r_g\|_{L} + \|\xi\|_{L})^{\tau}.
\]

(29)
Using the first equation of (14), we can write the residuals: for all \((w_h, q_h) \in W_h \times Q_h\)
\[
\langle r_j, w \rangle_{V_0', V_0} + \langle r_q, q \rangle_L = (f, w - w_h)_{L^2(\Omega)} - A[\gamma u_h, (w_h, q - q_h)] - S^*[z_h, y_h, (w_h, q_h)].
\]
We take \(w_h = i_h w\) and \(q_h = i_h q\) in this equality. For the first term, according to (22) for \(t = 1\), we have
\[
|(f, w - w_h)_{L^2(\Omega)}| \leq h \|f\|_L \|w\|_V.
\]
The second term can be bounded by using the relations (25) and (27). For the last term, we have, according to lemma 4.3
\[
|S^*[z_h, y_h, (w_h, q_h)]| \leq \|(z_h, y_h)\|_\# \|(w_h, q_h)\|_\#
\]
\[
\lesssim (hC(u, p) + |\delta u|_{\omega_M}) \|(w, q)\|_\#.
\]
where
\[
C(u, p) := \|u\|_{H^2(\Omega)} + \|p\|_{H^1(\Omega)}.
\]
We thus get
\[
\langle r_j, w \rangle_{V_0', V_0} + \langle r_q, q \rangle_L \lesssim (hC(u, p) + |\delta u|_{\omega_M} + h\|f\|_L + \|\xi\|_L) \|(w, q)\|_\#.
\]
Since this bound holds for all \(w \in V_0\) and \(q \in L\), we conclude that
\[
\|r_j\|_{V_0'} + \|r_q\|_L \lesssim hC(u, p) + |\delta u|_{\omega_M} + h\|f\|_L + \|\xi\|_L
\]
Thus, we can bound the terms in the right-hand side of (29) in the following way:
\[
\|r_j\|_{V_0'} + \|r_q\|_L + \|\xi\|_L \lesssim C(u, p) + h\|f\|_L + h^{-1}|\delta u|_{\omega_M}
\]
according to inequalities (27) and (28) and
\[
\|r_j\|_{V_0'} + \|r_q\|_L + \|\xi\|_{\omega_M} \lesssim hC(u, p) + h\|f\|_L + |\delta u|_{\omega_M}
\]
according to lemma 4.3.

Using these two bounds in (29), we conclude that
\[
\|\xi\|_{\omega_M} \lesssim (C(u, p) + h^{-1}|\delta u|_{\omega_M})^{1-\tau}(hC(u, p) + |\delta u|_{\omega_M})^{\tau} + h\|f\|_L
\]
\[
\lesssim h^\tau(C(u, p) + h^{-1}|\delta u|_{\omega_M} + h\|f\|_L,
\]
which completes the proof of theorem 3.1. \(\square\)

5. Numerical simulations

In this section, we apply the method introduced in section 3 in different two-dimensional different numerical examples. The free parameters in (14) are set to
\[
\gamma_u = \gamma_{\text{div}} = \gamma_p = \gamma^*_p = 10^{-1}, \quad \gamma_M = 1000,
\]
in all the numerical examples. The numerical computations have been performed with FreeFEM++ (see [31]).
5.1. Convergence study: Stokes example

In order to illustrate the convergence behavior of the method introduced in section 3, we take up the test case presented in [22] for the Stokes system. In the unit square $\Omega = (0, 1)^2$, we consider the velocity and pressure fields given by

$$u(x, y) = (20xy^3, 5x^4 - 5y^4), \quad p(x, y) = 60x^2y - 20y^3 - 5.$$

It is straightforward to verify that (u, p) is a solution to the homogeneous Stokes problem with $\nu = 1$, which corresponds to system (1) with $U = 0$ and $f = 0$. We hence consider the formulation (14) with $U = 0$ and $f = 0$. The measurement and target subdomains are defined by

$$\omega_M := (0.75, 1) \times (0.25, 0.75), \quad \omega_T := (0.25, 1) \times (0.25, 0.75).$$

First, we perform the computation with unperturbed data. In figure 1 (left), we report the velocity and pressure errors both in the global L^2-norm and the local L^2-norm in the subdomain ω_T. We also provide the convergence history of the residual quantity for the velocity stabilization:

$$\left(\sum_{F \in \mathcal{F}_l} \gamma_u \left\| \frac{1}{h^2} \| \nabla u_h \| \right\|_F \right)^{\frac{1}{2}}.$$

The observed global asymptotic behaviors of the local velocity error (filled squares) and residual (filled circles) are in agreement with the convergence rates obtained in theorem 3.1 and corollary 4.1 with $|\delta u|_{\omega_M} = 0$. It should be noted that, for the finest grids, the local velocity error tends to stagnate or increase, which can be related either to the impact of the rounding-off errors or to ill-conditioning issues of the system matrix, so that $|\delta u|_{\omega_M} > 0$. The other error quantities, global velocity error (empty squares) and local and global pressure errors (filled and empty triangles, respectively) show a convergent behavior which also tends to stagnate for the smallest values of h. Figure 1 (right) presents the convergence history of the same quantities with a 10% Gaussian noise. The impact of the noise is clearly visible. In particular, it is worth noting that the convergence history of the local and global velocity and pressure
errors is not monotone anymore and the residual loses first-order convergence rate. This is also in agreement with theorem 3.1 and corollary 4.1 with $|\delta u|_{\omega_M} > 0$.

5.2. Convergence study: linearized Navier–Stokes example

In this subsection, we will use Taylor–Green vortices to construct exact solutions of (1). Let us first introduce a flow of size $R\pi$ described by a Taylor–Green vortex:

\[
\begin{align*}
 u_R(x, y) &= (\sin(x/R) \cos(y/R) \exp(-2\nu t/R^2), \\
 p_R(x, y) &= \frac{1}{4} (\cos(2x/R) + \cos(2y/R)) \exp(-4\nu t/R^2).
\end{align*}
\]

For any $R > 0$, we can check that (u_R, p_R) is solution of the unsteady Navier–Stokes equations. In our numerical example, we take $\Omega = (0, 2\pi)^2$ and consider the following system which admits (u_1, p_1) as solution:

\[
\begin{align*}
 (u_1 \cdot \nabla)u_1 &+ (u_1 \cdot \nabla)u_1 - \nu \Delta u + \nabla p = f \quad \text{in} \quad \Omega \\
 \nabla \cdot u &\equiv 0 \quad \text{in} \quad \Omega
\end{align*}
\]

where f is given by

\[
f = -(u_1 \cdot \nabla)u_1 + (u_1 \cdot \nabla)u_1 + (u_1 \cdot \nabla)u_1 - \partial_\tau u_1.
\]

Thus, f and u_1 being given, we can use the method presented in section 3 to reconstruct u and p from measurements on ω_M. The measurement and target subdomains are defined by

\[
\begin{align*}
 \omega_M := (0, \pi/2) \times (\pi/2, 3\pi/2) \cup (3\pi/2, 2\pi) \times (\pi/2, 3\pi/2), \\
 \omega_T := (\pi/2, 2\pi) \times (\pi/2, 3\pi/2).
\end{align*}
\]

As in the previous case, we have performed numerical tests for unperturbed data and for data perturbed with a 10% noise and we have studied the convergence of the method. The obtained results are illustrated in figure 2. The convergence curves present similarities with the
ones obtained in figure 1. We can all the same notice that, for unperturbed data, the evolution of the local velocity error is more satisfactory: it is close to the linear behavior and the error reaches much smaller values.

5.3. Application: relative blood pressure estimation from velocity measurements

To evaluate the risks related to a constriction (also called stenosis) in a blood vessel, the relative pressure difference (RPD) is a standard clinical bio-marker. Direct blood pressure measurements can however only be obtained through invasive procedures like catheterization. Non-invasive measurements are limited to the blood velocity. In particular, 4D-MRI provides a measurement of the velocity field in the whole vessel. A natural question is hence to reconstruct the RPD from these velocity measurements. We refer to [6] for a review on direct based estimation methods for this problem. The purpose of this example is to illustrate how the method introduced in section 3 can be used to estimate the RPD from full velocity measurements.

We assume that blood flow is described by the Navier–Stokes equations and that we have velocity measurements in the whole domain \(\Omega \) (see figure 3) at a given set of time instants. We denote by \((0, T)\) the time interval, by \(N\) the number of measurements instants and set the time-step length to \(\Delta t = \frac{T}{N-1}\). For all \(0 \leq n \leq N - 1\), the symbol \(u^n_M\) stands for the measured velocity at time \(t_n = n\Delta t\). Then, for all \(0 \leq n \leq N - 2\), we consider the following Oseen type equation in terms of \((u^n, p^n)\):

\[
\begin{align*}
(u^n_M \cdot \nabla) u^n - 2\nu \Delta u^n + \nabla p^n &= \frac{u^{n+1}_M - u^n_M}{\Delta t} \quad \text{in } \Omega, \\
\nabla \cdot u^n &= 0 \quad \text{in } \Omega.
\end{align*}
\]

(30)

Note that no boundary data is prescribed in (30), which can be cumbersome in practice since the measured velocity \(u^n_M\) is not necessarily divergence free (and hence incompatible with Dirichlet data on the whole boundary \(\partial \Omega\)). We hence propose to estimate \(u^n\) and \(p^n\) (up to a constant) from the data assimilation problem (11), with \(f\) and \(a\) (in the definition (10) of \(A\)) given respectively by

\[
f = -\frac{u^{n+1}_M - u^n_M}{\Delta t}, \quad a(u, v) = \int_{\Omega} ((u^n_M \cdot \nabla) u^n) \cdot v + \nu \int_{\Omega} \varepsilon(u) : \varepsilon(v).
\]

Note that, here, the measurement and target sets coincide, \(\omega_M = \omega_T = \Omega\), so that the estimated velocity field \(u^n\) has to be seen as a physically driven regularization of the full velocity measure \(u^n_M\). Yet, the main target is to estimate the RPD, defined by the following quantity:

\[
\delta p = \frac{1}{|\Gamma_i|} \int_{\Gamma_i} p - \frac{1}{|\Gamma_o|} \int_{\Gamma_o} p.
\]

In order to investigate this new approach, we consider a two-dimensional version of the test case reported in [6, section 6]. The stenotic blood vessel represented in figure 3 corresponds to...
a contraction of 60%. The radii of inlet and outlet are 1 cm, the length of the vessel is 6 cm and the dynamic viscosity is given by $\nu = 0.035$ Poise. Synthetic measurements are first generated by numerically solving the incompressible Navier–Stokes system

$$\begin{align*}
\partial_t u + (u \cdot \nabla) u - 2\nu \nabla \cdot \varepsilon(u) + \nabla p &= 0 \quad \text{in} \quad \Omega \times (0, T), \\
\nabla \cdot u &= 0 \quad \text{in} \quad \Omega \times (0, T),
\end{align*}$$

(31)

with the following boundary and initial conditions:

$$\begin{align*}
\begin{cases}
\quad u = 0 & \text{on} \quad \Gamma_w \times (0, T), \\
\quad u = \left(-60 \left(y^2 - 1 \right) \sin \left(\frac{5\pi}{2} t \right), 0 \right) & \text{on} \quad \Gamma_i \times (0, T), \\
\quad 2\nu \varepsilon(u) n - p n = 0 & \text{on} \quad \Gamma_o \times (0, T), \\
\quad u(\cdot, 0) = 0 & \text{in} \quad \Omega.
\end{cases}
\end{align*}$$

(32)

This direct problem (31) and (32) is discretized in space by continuous piece-wise affine finite element approximations based on the SUPG/PSPG stabilization method. The time discretization consists in a backward Euler scheme with a semi-implicit treatment of the convective term. A standard backflow stabilization term is also applied on the outlet boundary Γ_o in order to guarantee the overall stability of the numerical scheme (see [15]). The discretization parameters are set to $\Delta t = 0.002$ s and $h = 0.01$ cm. This space-time grid generates a set of synthetic velocity measurements which can be perturbed either by noise or by space-time subsampling.

Figure 4 represents the estimate RPD with the same discretization parameters as for the direct problem (no subsampling). When the data are unperturbed, we see that the reconstructed curve is perfectly superimposed with the exact curve (figure 4, left). With a 10% Gaussian noise, we observe that the reconstructed curve (which corresponds to the mean curve obtained from 30 tests with variable noises) succeeds in following accurately the variations of the reference data (figure 4, right).

In figure 5, the measurements are perturbed by a subsampling both in time and in space (the time step is 10 times larger and the mesh size is 8 times larger). We then solve the data assimilation problem with the time step or the mesh size corresponding to this subsampling.
Figure 5. Left: Time subsampling of 0.02 s; right: Space subsampling of 0.08 cm. The exact RPD is represented in full line whereas the reconstructed RPD is represented in dotted line.

Figure 6. Velocity magnitude at $t = 0.082, 0.162, 0.242$ (from top to bottom). Right: Reference. Left: Reconstruction with space-time subsampling and 10% of Gaussian noise.

Figure 5 shows that the proposed approach is able to provide a reasonable estimation of the RPD with and without noise (10% Gaussian noise). In particular, we can clearly observe that the RPD peak is well captured in both cases. Moreover, we can see in figure 6 that the velocity is well-reconstructed in the two-dimensional domain.

Appendix A. Proof of corollary 2.1

Let us first assume that there exist $x_0 \in \omega_M$ and $0 < R_1 < R_2 < R_3 \leq R_0$ such that $B_{R_3}(x_0) \subset \omega_M$, $\omega_T \subset B_{R_3}(x_0)$, $B_{R_3}(x_0) \subset \subset \Omega$ and $R_1/R_3 < R_2/R_3 < \tilde{R}$ where \tilde{R} is defined in theorem 2.1.

According to assumption A, problem (6), with homogeneous Dirichlet boundary conditions, admits a unique solution that we denote $(\tilde{u}, \tilde{p}) \in V_0 \times L_0$. Then $(\tilde{w}, \tilde{y}) := (u - \tilde{u}, p - \tilde{p})$ satisfies
\[(1)\) with \(f = 0\). Using the interior regularity of solution of Stokes problem (see for instance \([39]\)), \((\tilde{u}, \tilde{p}) \in [H^1(B_R(x_0))]^d \times H^1(B_R(x_0))\). We may then write
\[
|\tilde{u}|_{\omega_T} \leq |\tilde{u}|_{\omega_T} + |\tilde{u}|_{\omega_T}.
\]
For the first term in the right-hand side, we use that \((\tilde{u}, \tilde{p})\) satisfies the stability inequality (7):
\[
|\tilde{u}|_{\omega_T} \lesssim (\|f\|_{V_0} + \|g\|_L).
\]
Here and in the sequel, we will frequently use the notation \(a \lesssim b\) for \(a \leq Cb\) for some \(C > 0\).

For the second term in the right-hand side of (33), applying theorem 2.1, we get that \((\tilde{w}, \tilde{y})\) satisfies (8) and thus:
\[
|\tilde{w}|_{\omega_T} \lesssim \|\tilde{w}\|_{L^2(B_R(x_0))} \lesssim |\tilde{w}|_{\omega_T}^{1-\tau} |\tilde{u}|_{\omega_M}^{\tau}.
\]
We now revert back to \(u\) in the right-hand side:
\[
|\tilde{w}|_{\omega_T} \lesssim (\|\tilde{w}\|_L + \|u\|_L)^{1-\tau} (|\tilde{u}|_{\omega_M} + |u|_{\omega_M})^{\tau}
\lesssim (\|f\|_{V_0} + \|g\|_L + \|u\|_L)^{1-\tau} (\|f\|_{V_0} + \|g\|_L + |u|_{\omega_M})^{\tau}.
\]
We conclude the proof by collecting the estimates for \(\tilde{u}\) and \(\tilde{w}\).

If \(\omega_M\) and \(\omega_T\) do not satisfy the assumptions for the construction of the balls \(B_{R_1}(x_0)\) and \(B_{R_0}(x_0)\), we introduce a finite sequence of intermediate balls in order to link \(\omega_T\) to \(\omega_M\) (as it is done for instance in [37]) and we get again the estimate.

ORCID iDs

Erik Burman © https://orcid.org/0000-0003-4287-7241

References

[1] Alessandrini G, Rondi L, Rosset E and Vessella S 2009 The stability for the Cauchy problem for elliptic equations Inverse Problems 25 123004
[2] Auroux D, Bansart P and Blum J 2013 An evolution of the back and forth nudging for geophysical data assimilation: application to Burgers equation and comparisons Inverse Probl. Sci. Eng. 21 399–419
[3] Badra M, Caubet F and Dardé J 2016 Stability estimates for Navier–Stokes equations and application to inverse problems Discrete Continuous Dyn. Syst. - Ser. B 21 3739–407
[4] Ballerini A 2010 Stable determination of an immersed body in a stationary Stokes fluid Inverse Problems 26 125015
[5] Bellassoued M, Imanuvilov O and Yamamoto M 2016 Carleman estimate for the Navier-Stokes equations and an application to a lateral Cauchy problem Inverse Problems 32 025001
[6] Bertoglio C, Nuñez R, Galarce F, Nordsetten D and Osses A 2018 Relative pressure estimation from velocity measurements in blood flows: state-of-the-art and new approaches Int. J. Numer. Methods Biomed. Eng. 34 e2925
[7] Boulakia M, Egloffe A-C and Grandmont C 2013 Stability estimates for the unique continuation property of the Stokes system and for an inverse boundary coefficient problem Inverse Problems 29 115001
[8] Bourgeois L 2005 A mixed formulation of quasi-reversibility to solve the Cauchy problem for Laplace’s equation Inverse Problems 21 1087–104
[9] Bourgeois L and Dardé J 2010 A quasi-reversibility approach to solve the inverse obstacle problem Inverse Probl. Imaging 4 551–77
[10] Bourgeois L and Dardé J 2014 The ‘exterior approach’ to solve the inverse obstacle problem for the Stokes system Inverse Probl. Imaging 8 23–51
[11] Bourgeois L and Arnaud R 2018 A mixed formulation of the Tikhonov regularization and its application to inverse PDE problems ESAIM Math. Model. Numer. Anal. 52 123–45
[12] Bramble J H, Lazarov R D and Pasciak J E 1997 A least-squares approach based on a discrete minus one inner product for first order systems Math. Comp. 66 935–55
[13] Bramble J H, Lazarov R D and Pasciak J E 1998 Least-squares for second-order elliptic problems Comput. Methods Appl. Mech. Eng. 152 195–210
[14] Brezzi F and Pitkäranta J 1984 On the stabilization of finite element approximations of the Stokes equations Efficient Solutions of Elliptic Systems (Kiel, 1984) (Notes Numer. Fluid Mech. vol 10) (Braunschweig: Friedr. Vieweg) pp 11–19
[15] Bruneau C-H and Fabrie P 1994 Effective downstream boundary conditions for incompressible Navier–Stokes equations Int. J. Numer. Methods Fluids 19 693–705
[16] Bukhgeim A L and Klibanov M V 1981 Uniqueness in the large of a class of multidimensional inverse problems Dokl. Akad. Nauk SSSR 260 269–72
[17] Burman E, Nechita M and Oksanen L 2018 A stabilized finite element method for inverse problems subject to the convection–diffusion equation. Part I: Diffusion dominated regime Numer. Math. 144 451–77
[18] Burman E, Nechita M and Oksanen L 2017 Unique continuation for the Helmholtz equation using stabilized finite element methods J. Math. Pures Appl. 129 1–22
[19] Burman E 2013 Stabilized finite element methods for non symmetric, non coercive, and ill-posed problems. Part I: Elliptic equations SIAM J. Sci. Comput. 35 A2752–80
[20] Burman E 2014 Error estimates for stabilized finite element methods applied to ill-posed problems Comput. Rendus Math. 352 655–9
[21] Burman E 2016 Stabilised finite element methods for ill-posed problems with conditional stability Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations (Lect. Notes Comput. Sci. Eng. vol 114) (Berlin: Springer) pp 93–127
[22] Burman E and Peter H 2018 Stabilized nonconforming finite element methods for data assimilation in incompressible flows Math. Comp. 87 1029–50
[23] Burman E, Hansbo P and Larson M G 2018 Solving ill-posed control problems by stabilized finite element methods: an alternative to Tikhonov regularization Inverse Problems 34 035004
[24] Burman E, Ish-Horowicz J and Oksanen L 2018 Fully discrete finite element data assimilation method for the heat equation ESAIM Math. Model. Numer. Anal. 52 2065–82
[25] Burman E and Oksanen L 2018 Data assimilation for the heat equation using stabilized finite element methods Numer. Math. 139 505–28
[26] D’Elia M and Veneziani A 2013 Uncertainty quantification for data assimilation in a steady incompressible Navier–Stokes problem ESAIM Math. Model. Numer. Anal. 47 1037–57
[27] Di Pietro D A and Ern A 2012 Mathematical Aspects of Discontinuous Galerkin Methods (Mathématiques & Applications vol 69 [Mathematics & Applications]) (Heidelberg: Springer)
[28] Ern A and Guermond J-L 2004 Theory and Practice of Finite Elements (Applied Mathematical Sciences vol 159) (New York: Springer)
[29] Fabre C and Lebeau G 1996 Prolongement unique des solutions de l’équation de Stokes Commun. PDE 21 573–96 (in French)
[30] Foiat C, Mondaini C F and Titi E S 2016 A discrete data assimilation scheme for the solutions of the two-dimensional Navier–Stokes equations and their statistics SIAM J. Appl. Dyn. Syst. 15 2109–42
[31] Hecht F 2012 New development in FreeFem++ J. Numer. Math. 20 251–65
[32] Hoke J E and Anthes R A 1976 The initialization of numerical methods by a dynamic-initialization technique Mon. Weather Rev. 104 1551–7
[33] Imanuvilov O Y and Yamamoto M 2015 Global uniqueness in inverse boundary value problems for the Navier–Stokes equations and Lamé system in two dimensions Inverse Problems 31 035004
[34] Imanuvilov O Y and Yamamoto M 2015 Remark on boundary data for inverse boundary value problems for the Navier–Stokes equations [Addendum to MR3319370] Inverse Problems 31 109401
[35] Rajaraman Prathish K, Manteuffel T A, Belohlavek M and Heys Jeffrey J 2017 Combining existing numerical models with data assimilation using weighted least squares finite element methods *International Journal for Numerical Methods in Biomedical Engineering* **33** e02783

[36] Lin C-L, Gunther U and Wang J-N 2010 Optimal three-ball inequalities and quantitative uniqueness for the Stokes system *Discrete Contin. Dyn. Syst.* **28** 1273–90

[37] Robbiano L 1991 Théorème d’unicité adapté au contrôle des solutions des problèmes hyperboliques *Commun. PDE* **16** 789–800 (in French)

[38] Sasaki Y 1970 Some basic formalisms in numerical variational analysis *Mon. Weather Rev.* **98** 875–83

[39] Gregory S 2015 *Lecture Notes on Regularity Theory for the Navier–Stokes Equations* (Singapore: World Scientific Publishing Co. Pte. Ltd.)

[40] Talagrand O and Courtier P 1987 Variational assimilation of meteorological observations with the adjoint vorticity equation. i: Theory *Q. J. R. Meteorol. Soc.* **113** 1311–28

[41] Olivier T 1981 On the mathematics of data assimilation *Tellus* **33** 321–39

[42] Zhuk S and Nakonechnii O 2018 Minimax state estimates for abstract Neumann problems *Minimax Theory Appl.* **3** 1–21