Effects of silymarin on productive performance, liver function and serum biochemical profile in broiler Japanese quail challenged with dietary aflatoxins

Behrouz Khaleghipoura, Heshmatollah Khosraviniaa, Majid Toghiyanib and Arash Azarfara

aDepartment of Animal Science, Agriculture Faculty, Lorestan University, khorramabad, Iran; bDepartment of Animal Science, Agriculture Faculty, Islamic Azad University Khorasgan Branch, Isfahan, Iran

ABSTRACT

A 2 × 3 factorial experiment was conducted to investigate the effects of feeding silymarin (0, 1000 and 2000 mg/kg) in aflatoxin contaminated diets (0 and 2.2 mg/kg) on selected performance, blood and liver parameters in broiler Japanese quails using 480 7-day-old mixed sex birds up to Day 35 of age. Feed intake, daily weight gain (DWG) and European production index (EPI) in Days 7–35 of age were reduced by 5.56, 5.97 and 10.97%, respectively, and mortality was increased in the birds fed on diets containing 2.2 mg/kg aflatoxin (p < .05). Mean ALT, alkaline phosphatase (ALK), uric acid in birds grown on aflatoxin contaminated diet were 28.32, 12.29 and 16.34% greater than those fed with control diet, respectively (p < .05). The birds fed with diets containing 1000 mg/kg silymarin showed greater DWG (6.35%) and EPI (12.89%) and lesser feed conversion ratio (6.6%) during Days 7–35 compared with control birds (p < .05). Mean ALT (37.46%), AST (16.90%) and ALK (27.67%) activity reduced in birds grown on diets containing 2000 mg/kg silymarin (p < .05). Mean serum concentration of phosphorous increased (13.44%) and glucose (GLU) decreased (10.37%) in the same birds compared with control quails (p < .05). A significant dietary silymarin × aflatoxin interaction observed for DWG, blood concentrations of ALT, AST, calcium, GLU, LDL, triglyceride and proportional weight of liver, testis and spleen in Day 35 of age. It was concluded that Supplementation of 1000 mg/kg silymarin into the contaminated diets alleviated the adverse impact of aflatoxins on bird’s performance.

HIGHLIGHTS

- Diets contaminated with aflatoxins cause impaired growth and altered hepatic function in broiler quails.
- Inclusion of silymarin in diet, alleviate the adverse impact of aflatoxins on bird’s performance.
- Greater levels of silymarin (2000 mg/kg) relieves the AF-induced intimidating alterations in the liver and blood parameters in quails.

Introduction

Natural diet contaminants including mycotoxins are among the main challenges for poultry men as well as quail producers (Kumar et al. 2017). Mycotoxins are worldwide found in all feed resources, mainly in corn, and cause huge economic losses through reduced birds health, immune response and performance (Giambrone et al. 1985; Yunus et al. 2011; Cheng et al. 2016; Pappas et al. 2016). Aflatoxins are rapidly absorbed throughout the gastrointestinal tract, spread all over the body (Sakamoto et al. 2017) and mainly metabolise in liver where they will be converted into the reactive and electrophilic entities by certain hepatic cytochrome enzymes (Wild and Montesano 2009; Wu and Khlangwiset 2010), the events which are indeed harmful to the liver cells and tissue integrity (Liu and Wu 2010). Liver is an important organ playing a key role in homeostasis (Sakamoto et al. 2017) through its broad enzymatic capability involving metabolism of carbohydrates, proteins, and lipids, immunity, de novo fat synthesis and the like (Thawley 2017). Liver functions exceed 2000 in the relevant literature. Grossly, liver health equals to a healthy metabolism, therefore liver protection against exogenous toxic and harmful substances has received a top

CONTACT Dr. Heshmatollah Khosravinia khosravi_fafa@yahoo.com Department of Animal Sciences, Faculty of Agriculture, Lorestan University, P.B. 465, Khorrarambad, Lorestan, 68137-17133, Iran

© 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
priority in poultry research, particularly in fast-growing birds with boosted metabolic processes. Literature bears enormous recommendations on how mycotoxins effects in broiler industry can be alleviated, resulting in practical approaches and strategies to minimise the impacts of mycotoxins on growing birds (Zhu et al. 2016). The effects of adsorbents, organic acids, yeasts and sulphur amino acids on detoxification of mycotoxins in broiler diets have been widely studied (Santurio and sulphur amino acids on detoxification of mycotoxins (Santurio 2000; Santin et al. 2006). However, there is no worldwide agreement on effectiveness of all products because certain toxins, such as aflatoxins, are thermo-stable, resistant to some chemicals, soluble in polar solvents, and insoluble in fats and oils. Recently, administration of natural remedies into poultry diets has received huge attention to minimise toxic effects and impaired liver function in mycotoxins affected birds. It has been shown that certain compounds in herbal medicines are able to prevent lipid peroxidation in biological membranes and increase proliferation of new liver cells to replace the damaged ones (Kumar Jain et al. 2013). *Silybum marianum*, or milk thistle, is a well-known plant mainly interested for its hepatotonic extract named Silymarin. Silymarin contains various flavonolignans (silibinin, isosilibinin, silychristin, isosilychristin and silydianin) and a flavonoid (taxifolin) (Federico et al. 2017), which collectively exert anti-oxidative, anti-inflammatory, antifibrotic, antilipid peroxidative, cell membrane stabilising and liver regenerating effects. Silybin is usually the predominant active ingredient in silymarin, a substrate with antioxidant properties demonstrating hepatoprotective effects in human (Federico et al. 2017) as well as in the animal models (Madrigal-Santillan et al. 2014). Silymarin metabolically stimulates hepatic cells and activates the ribosomal RNA synthesis to stimulate protein formation (Vargas-Mendoza et al. 2014). Free radical scavenging and antioxidant properties of silymarin have attracted more attention in poultry research where they have demonstrated that silymarin restored the endogenous antioxidant enzymes (Superoxide dismutase, glutathione peroxidase and Catalase) and non-enzymatic antioxidants (vitamins E and C) in the liver of the stressed laying hens (Pradeep et al. 2007) and decreased lipid and protein oxidation in broiler chicken (Alhidary et al. 2017), decreased DNA fragmentation and apoptosis (Upadhyay et al. 2010), and reduced secretion of alamine aminotransferase (ALT) and aspartate aminotransferase (AST) from the liver into the plasma due to hepatic injuries caused by free radicals (Amiridumari et al. 2013; Sherif and Al-Gayyar 2013).

In view of the foresaid importance of detoxification or neutralisation of mycotoxins in poultry diets, this study aimed to further evaluation of feeding silymarin on productive performance, liver function and serum biochemical profile in broiler Japanese quail challenged with dietary aflatoxins.

Material and methods

Experimental flock management

A total of 1200 Japanese quail (*Coturnix coturnix japonica*) were provided from a local hatchery and reared straight run in battery cages up to Day 7 of age. During the same period, ambient temperature and relative humidity were set at 38°C and 70%, respectively. Birds provided with a crumble diet containing 2900 kcal/kg metabolisable energy and 24% protein. On Day 7, 480 mixed sex birds with an

Table 1. Ingredients and nutrient composition of the experimental diets for quail.

Ingredient	Basal diet No aflatoxin	Experimental diet With aflatoxin
Ingredient, % as fed		
Corn grain	53.23	49.82
Soybean meal	35.00	35.00
Gluten meal	7.60	7.53
Rice	0.00	3.35
Calcium carbonate	1.37	1.36
Dicalcium phosphate	0.97	0.97
Sunflower oil	0.60	0.76
Sodium chloride	0.26	0.26
Sodium bicarbonate	0.13	0.12
L-Lysine HCl – 79%	0.20	0.19
L-Threonine	0.14	0.14
Mineral premix	0.25	0.25
Vitamin premix	0.25	0.25
Total	100.00	100.00
Calculated composition		
Metabolizable energy (Kcal/kg)	2900	2900
Crude protein (%)	24.00	24.00
Calcium (%)	0.80	0.80
Available phosphorus (%)	0.30	0.30
Lysine (%)	1.30	1.30
Methionine (%)	0.50	0.50
Methionine + Cysteine (%)	0.75	0.75
Threonine (%)	1.02	1.02
Tryptophan (%)	0.22	0.22
Sodium (%)	0.15	0.15
Chloride (%)	0.14	0.14
Potassium (%)	0.40	0.40
DEB* (mEq/kg)	238	235
Total aflatoxin (mg/kg)	0.00	2.20

Data are means of four replicates.
The average weight of 50±2 g were selected and transferred into 24 galvanised wire cages (70/C2×60/C2×30 cm) equipped with appropriate feeder and drinker and raised up to Day 35 of age. During the experimental period, house temperature was reduced by 2°C per every 3 days until received at 22°C, and then it was kept constant. Relative humidity was controlled on 55±10%. Experimental treatments consisted of six diets in a 2/C2×3 factorial arrangement viz. a corn-soy-bean meal basal diet with inclusion of silymarin (0, 1000 and 2000 mg/kg) and aflatoxins (0 and 2.2 mg/kg) or both. Effects of each diet were evaluated in 4 replicates of 20 birds each (\(n=80\) per treatment). Silymarin with a purity of 80.18% was provided from Zardband Pharmaceuticals co., Tehran, Iran. The experimental diets were formulated according to the recommendations of NRC (1994) (Table 1). The mineral and vitamin supplements were free of antibiotic and antioxidant substances. Birds were fed ad libitum throughout the rearing period on a 24-hour lightening schedule.

Preparation of aflatoxins

The aflatoxin mixture was produced by cultivating *Aspergillus parasiticus* NRRL 2999 through growing on rice grain, according to the methodology described by Shotwell et al. (1966), at the Laboratory of Food Microbiology and Mycotoxicology, Faculty of Animal Science, Zabol University, Iran. The concentration of aflatoxins in the contaminated rice samples was determined using a high performance liquid chromatography (HPLC) method (Shimadzu Corporation, Kyoto, Japan). The final aflatoxin mixture contained 68.19% AFB1; 4.57% AFB2; 24.96% AFG1; and 2.28% AFG2. The mixture was incorporated into diets to give a concentration of 2.2 mg/kg of aflatoxins, and the diets were stored throughout the experimental period in dark plastic buckets with lids.

Data recording

Data on live body weight and feed intake (FI) were collected weekly during the experimental period and data were used to calculate daily weight gain (DWG), FI, and feed conversion ratio (FCR). Mortality was recorded upon occurrence. European production index (EPI) was calculated based on the equation provided by Euribrid (1994); EPI= [(LW×S)/(FCR×AS)]×100, where LW is live weight (kg), S is survival rate (%), and AS is age of slaughter (day). The formula is used for calculation of the same index in broiler chicken.

Serum biochemistry

On Day 35 of the experiment, blood samples were collected by puncturing jugular vein in two male quails per experimental unit (8 birds/treatment; \(n=8\)). Subsequently, the samples were centrifuged at 3000×g for 10 min at 4°C and stored at −80°C pending biochemical analyses. Serum concentrations of biochemical constituents including certain enzymes ALT, AST and alkaline phosphatase (ALK), total protein (TP), albumin (ALB), uric acid (UA), creatinine (CRE), blood urea nitrogen, total bilirubin, direct bilirubin, indirect bilirubin, calcium (Ca), phosphorous (Pho), glucose (GLU), cholesterol (CHOL), low density lipoprotein (LDL), high density lipoprotein (HDL) and triglyceride (TG) were determined using an autoanalyser (UNIKON...
Table 3. Effects of silymarin in aflatoxin contaminated diets on feed intake of Japanese quail during Days 7–35 of age.

Aflatoxin, mg/kg	Silymarin, mg/kg	Fl, g/day/bird						
		7–14 d	15–21 d	22–28 d	29–35 d	7–21 d	7–28 d	7–35 d
0		14.8000	22.3000	25.9000	23.3000	18.5000	21.0000	21.6000
2.2		14.6000 b	21.4000 b	24.4000 b	21.3000 b	18.0000	20.1000 b	20.4000 b
SEM		0.2000	0.3000	0.3000	0.3000	0.2000	0.2000	0.2000
0	0	14.7000	21.9000	25.2000	22.6000	18.3000	20.6000	21.1000
1000	14.6000	21.7000	24.9000	22.1000	18.1000	20.4000	20.8000	
2000	14.7000	21.9000	25.3000	22.2000	18.3000	20.6000	21.0000	
SEM	0.3000	0.3000	0.4000	0.4000	0.2000	0.2000	0.2000	
0	0	14.9000	22.3000	26.0000	23.8000	18.5000	21.0000	
1000	14.6000	22.5000	26.0000	23.8000	18.5000	21.0000		
2000	14.9000	21.9000	25.7000	22.5000	18.4000	20.8000		
SEM	0.3000	0.4000	0.5000	0.5000	0.6000	0.3000		

Analysis of variance results

Effect	0.9399	0.3478	0.4841	0.1012	0.6857	0.4622	0.1202
Aflatoxin	0.5427	0.0483	0.0043	0.0007	0.0730	0.0058	0.0002
Silymarin	0.9136	0.8948	0.7516	0.6940	0.8836	0.7533	0.6925
Interaction	0.9399	0.3478	0.4841	0.1012	0.6857	0.4622	0.1202

SEM Means within the same column with different letters are significantly different by Tukey test (p < .05).

Fl: Feed intake (g/day/bird); SEM: standard error of the mean (n = 80).

933; Kontron Co. Ltd., Milan, Italy). This analyser employs enzymatic procedures using SEPPIM Diagnostic Kits (SEPPIM S.A.S., Sees, France) in two replicates, at 25 °C, that have been described by Elliott (1984) and adopted by Khosravinia (2015). Sera globulin (GLOB) concentration was calculated by subtracting ALB from TP (GLOB = TP – ALB) (Sakamoto et al. 2017). At the end of the trial, two male quails from each experimental unit (8 birds/treatment; n = 8) were selected, weighted and killed by cervical dislocation and necropsied. Liver, pancreas, testis and spleen were separated and weighted.

Statistical analysis

This study was performed in a 2 × 3 factorial arrangement to investigate the fixed effects of silymarin in three levels (0, 1000 and 2000 mg/kg in diet), aflatoxins in two levels (0 and 2.2 mg/kg in diet) and their interactions. Experimental treatments were examined in four replicates of 20 birds each. A completely randomised design was used to evaluate the response of broiler quails to the six experimental treatments. All data were analysed using PROC GLM in Statistical Analysis System, version 9.1 (SAS Institute 2002). The Tukey’s test was used to differentiate the multiple treatment means. For all tests, significance was declared at 5% (p > .05).

Results

The FI, DWG and EPI were reduced by 1.2g (5.56%), 0.4g (5.97%) and 2.3 unit (10.97%) respectively, and mortality was increased in the birds fed on diets containing 2.2 mg/kg aflatoxin during Days 7–35 of age (p < .05; Table 2). Mean ALT and ALK for birds grown on aflatoxin contaminated diet were 4U/L (28.32%) and 190.833U/L (12.29%) greater than those fed with control diet (p < .05; Table 3). The birds fed with diets containing 2.2 mg/kg aflatoxin showed lesser TP (0.241g/dL or 16.34%) compared with those given uncontaminated diet at Day 35 of age (p < .05; Table 4). Mean CHOL, LDL and HDL in the birds receiving aflatoxin contaminated diet were 39.958 (20.29%), 33.275 (38.65%) and 23.458mg/dL (21.36%) lesser than those fed with control diet at the end of experimental period (p < .05; Table 5). Testis proportional weight decreased and liver as well as spleen percentage increased in the birds fed with diets containing 2.2 mg/kg aflatoxin at Day 35 of age (p < .05; Table 6).

Greater EPI by 2.41 unit (12.89%) achieved in the birds maintained on diets supplemented with 1000 mg/kg silymarin compared with control birds (p < .05; Table 2). Increased DWG (0.4g or 6.35%) were also observed in the same birds compared with control quails in 7–35 days (p < .05; Table 2). Mean FCR was lesser (0.22 unit or 6.6%) in the same birds during Days 7–35 compared with control birds (p < .05; Table 2). The birds received diets containing 2000 mg/kg silymarin had lesser serum ALT (7.75U/L or 37.46%), AST (36.5U/L or 16.90%) and ALK (397.188U/L or 27.67%) activity at the close of the experiment (p < .05; Table 3). Mean serum concentration of Pho increased (0.95mg/dL or 13.44%) and GLU decreased (34.44mg/dL or 10.37%) in the same birds compared with control quails (p < .05; Table 4). Lowered serum concentrations of LDL (36.03mg/dL or 40.6%)...
and TG (38.63 mg/dL or 33.77%) observed in the birds grown on diets containing 1000 mg/kg silymarin at day 35 of age (\(p < .05\); Table 5). The birds fed with diets containing silymarin had lesser liver and spleen percentage and greater proportional testis weight (\(p < .05\); Table 6).

A significant interaction between dietary silymarin and aflatoxin was observed for DWG in 7–35 days of age (Table 2), where birds maintained on uncontaminated diets containing 1000 mg silymarin demonstrated greater daily gain compared with other birds. Mean serum activity of ALT, AST (Table 3) and concentration of Ca, GLU (Table 4), HDL and TG (Table 5) were affected by dietary silymarin × dietary aflatoxin interaction in Day 35 of age. The proportional weight of liver, testis and spleen were significantly altered by interaction between the fixed effects considered at the same age (Table 6).

Discussion

The adverse effects of aflatoxin on bird’s performance and health have been considered in research since the early development of the poultry industry. Huge number of reports have been appeared in literature demonstrating decreased FI, DWG and FCR in broiler chicken (Tedesco et al. 2004; Del Bianchi et al. 2005; Yunus et al. 2011) turkey (Quist et al. 2000; Rauber et al. 2007), ducks (He et al. 2013; Chen et al. 2014; Chang et al. 2016) and

Table 4. Effects of Silymarin in aflatoxin contaminated diets on daily weight gain of Japanese quail during Days 7–35 of age.

Aflatoxin, mg/kg	Silymarin, mg/kg	7–14 d	15–21 d	22–28 d	29–35 d	7–21 d	7–28 d	7–35 d
0	7.3000	3.9000	7.7000	6.7000				
2.2	6.9000	3.5000	7.5000	6.3000				
SEM	0.0000	0.2000	0.0000	0.0000				

Table 5. Effects of silymarin in aflatoxin contaminated diets on feed conversion ratio of Japanese quail during Days 7–35 of age.

Aflatoxin, mg/kg	Silymarin, mg/kg	7–14 d	15–21 d	22–28 d	29–35 d	7–21 d	7–28 d	7–35 d
0	2.0200	6.0900	2.3300	2.7400	3.2200			
2.2	2.1100	6.3600	2.3900	2.7900	3.2500			
SEM	0.0400	0.3100	0.0300	0.0300	0.0300			

Analysis of variance results

- **Aflatoxin**: <0.0001 0.4300 0.6181 0.5468 0.0987 0.2341 0.4446
- **Silymarin**: 0.2045 0.2104 0.1296 0.7828 0.0612 0.0085 0.0016
- **Interaction**: 0.1058 0.7648 0.2103 0.6467 0.2081 0.2015

Notes

-Means within the same column with different letters are significantly different by Tukey test (\(p < .05\)).

-DWG: Daily weight gain (g/day/bird); SEM: standard error of the mean (\(n = 80\)).

-FCR: Feed conversion ratio (g:g); SEM: standard error of the mean (\(n = 80\)).
quail (Oliveira et al. 2002; Bagherzadeh and Mehri 2015) following feeding aflatoxin contaminated diets. Outcomes of the current study in the line with almost all previous finding confirmed decreased FI, DWG and EPI in quails fed with aflatoxin contaminated diets. Oliveira et al. (2002) reported decreased FI in 7-week-old quails fed with aflatoxin contaminated diets. Oliveira’s previous finding confirmed decreased FI, DWG and EPI in quails following feeding aflatoxin contaminated diets. Likewise, dietary inclusions of AF at 0, 1000 and 2000 μg/kg for 168 days. Similarly, Japanese quail fed diets containing 50 and 100 μg AF/kg specifically at its highest dose had an adverse effect on FI (Abreu et al. 2008). Similarly, Aflatoxin, mg/kg

Table 6. Effects of silymarin in aflatoxin contaminated diets on hepatic enzyme concentrations of Japanese quail during Days 7–35 of age.

Aflatoxin, mg/kg	Silymarin, mg/kg	ALT, U/L	AST, U/L	ALK, U/L
0	14.125³	6.028	0.976	0.0094
2.2	18.125⁰	6.325	0.967	0.0096
SEM	0.9720	4.7540	0.5719	0.0089

Analysis of variance results

Aflatoxin	Silymarin	ALT, U/L	AST, U/L	ALK, U/L
0	2.7540²	6.028	0.976	0.0094
2.2	2.5130²	6.325	0.967	0.0096
SEM	0.0760	0.0430	0.0710	0.0089

Table 7. Effects of silymarin in aflatoxin contaminated diets on serum biochemical profile concentrations of Japanese quail during Days 7–35 of age.

Aflatoxin, mg/kg	Silymarin, mg/kg	TP, g/dL	GLO, g/dL	ALB, g/dL	ALB:GLO	BUN, mg/dL	CRE, mg/dL	UA, mg/dL	Ca, mg/dL	Pho, mg/dL	GLU, mg/dL
0	2.7540²	1.0600	1.7480	1.8170	2.1000	0.3880	0.0094				
2.2	2.5130²	0.8900	1.6230	1.9040	1.8230	0.3300	0.0094				
SEM	0.0760	0.0430	0.0710	0.0100	0.1610	0.0100	0.0094				

Analysis of variance results

Aflatoxin	Silymarin	ALT, U/L	AST, U/L	ALK, U/L
0	2.7540²	6.028	0.976	0.0094
2.2	2.5130²	6.325	0.967	0.0096
SEM	0.0760	0.0430	0.0710	0.0089

[^2]: Means within the same column with different letters are significantly different by Tukey test (p < .05).

[^3]: ALT: Alanine amino transferase (U/L); AST: Aspartate amino transferase (U/L); ALK: Alkaline phosphatase (U/L); SEM: standard error of the mean (n = 8).
concentrations of ALK and ALT were observed in quails fed aflatoxins, which was an indication of liver injury (Campbell and Coles 1986; Gowda et al. 2008). ALT is predominantly found in the liver with negligible quantities in the kidney, heart, and skeletal muscles, while AST is found in liver and non-hepatic tissues including cardiac muscle, skeletal muscles, kidneys, brain, and red blood cells. As a result, ALT is a more specific indicator of liver damage than AST. While liver plays a central role in metabolism, altered concentrations for many serum biochemical components are anticipated by feeding quails chicken with AF contaminated diets as observed in the current study (Table 7).

Finally, aflatoxins like all other toxicants cause anorexia (Sehu et al. 2005; Yunus et al. 2011) through influencing central appetite modulating mechanisms (Sakamoto et al. 2017), resulting in a lesser DWG which was also observed in our study. Results of the current study agree those from Quist et al. (2000), Deanicke et al. (2003) and Denli et al. (2009) whereas disagree Politis et al. (2005) and Awad et al. (2006) reports who announced no remarkable impact for mycotoxin challenge on growth performance in broiler chicks.

Poultry industry continuously acquired commercial feed additive products to alleviate mycotoxins in diets. To date, many mycotoxin absorbents in physical, chemical and biological categories have been introduced and adopted widely in poultry nutrition (Ismail et al. 2018). Recent focus on herbal remedies has

| Table 8. Effects of silymarin in aflatoxin contaminated diets on serum concentration of bilirubin and lipid profile concentrations of Japanese quail during Days 7–35 of age. |
|---------------------------------|-----------------|-----------------|-----------------|---------------|-----------------|---------------|-----------------|
| Aflatoxin, mg/kg | Silymarin, mg/kg | CHOL, mg/dL | LDL, mg/dL | HDL, mg/dL | TG, mg/dL | TB, mg/dL | DB, mg/dL | IB, mg/dL |
| 0 | 196.9580 | 86.0920 | 109.8330 | 98.7500 | 0.2030 | 0.0330 | 0.1700 |
| 2.2 | 157.0000 | 52.8170 | 86.3750 | 89.0830 | 0.1960 | 0.0330 | 0.1630 |
| SEM | 8.7400 | 7.1020 | 4.9740 | 5.1970 | 0.0100 | 0.0030 | 0.0080 |
| 0 | 181.1880 | 89.9380 | 114.3750 | 105.8750 | 0.1940 | 0.0330 | 0.1640 |
| 1000 | 179.6880 | 64.5130 | 94.4380 | 91.6250 | 0.1860 | 0.0310 | 0.1550 |
| 2000 | 172.7500 | 53.2000 | 117.8750 | 75.7500 | 0.2110 | 0.0340 | 0.1780 |
| SEM | 10.7040 | 8.6990 | 6.0920 | 6.3650 | 0.0120 | 0.0030 | 0.0100 |
| 0 | 221.0000 | 135.3750 | 106.7500 | 150.6250 | 0.2100 | 0.0350 | 0.1750 |
| 0 | 170.0630 | 52.8170 | 86.3750 | 89.0830 | 0.1960 | 0.0330 | 0.1790 |
| SEM | 0.3 | 15.1380 | 12.3020 | 8.6160 | 9.0020 | 0.0170 | 0.0050 |

Analysis of variance results

Aflatoxin | 0.0046 | 0.0136 | 0.0137 | 0.6211 | 1.0000 | 0.5370 |

Silymarin | 0.7016 | 0.0255 | 0.3181 | 0.0017 | 0.2849 | 0.6548 |

Interaction | 0.0723 | 0.0027 | 0.9633 | <0.0001 | 0.6528 | 0.6681 |

Means within the same column with different letters are significantly different by Tukey test (p<.05).

CHOL: Cholesterol (mg/dL); LDL: Low density lipoprotein (mg/dL); HDL: High density lipoprotein (mg/dL); TG: Triglyceride (mg/dL); TB: Total bilirubin (mg/dL); DB: Direct bilirubin (mg/dL); IB: Indirect bilirubin (mg/dL); SEM: standard error of the mean (n=8).

| Table 9. Effects of silymarin in aflatoxin contaminated diets on relative weight of internal organs of Japanese quail during Days 7–35 of age. |
|---------------------------------|-----------------|-----------------|-----------------|---------------|
| Aflatoxin, mg/kg | Silymarin, mg/kg | Liver, % | Testis, % | Pancreas, % |
| 0 | 2.1580 | 1.0630 | 0.2660 | 0.0990 |
| 2.2 | 2.5250 | 1.0400 | 0.2730 | 0.1290 |
| SEM | 0.0230 | 0.0280 | 0.0120 | 0.0020 |
| 0 | 1.8020 | 1.3230 | 0.2420 | 0.0630 |
| 1000 | 1.8870 | 1.4830 | 0.2340 | 0.0820 |
| 2000 | 0.0280 | 0.0340 | 0.0140 | 0.0030 |
| 0 | 2.1100 | 1.4120 | 0.2480 | 0.1060 |
| 0 | 1.7910 | 1.5610 | 0.2330 | 0.0740 |
| 0 | 1.7050 | 1.3310 | 0.2190 | 0.0710 |
| 2.2 | 0 | 2.5930 | 0.6670 | 0.2970 | 0.1520 |
| 2.2 | 1.8130 | 1.0840 | 0.2510 | 0.0520 |
| 2.2 | 2.0690 | 1.4360 | 0.2490 | 0.0920 |
| SEM | 0.3000 | 0.0390 | 0.0480 | 0.0200 |

Analysis of variance results

Aflatoxin | <.0001 | <.0001 | <.0001 |

Silymarin | <.0001 | <.0001 | <.0001 |

Interaction | <.0001 | <.0001 | <.0001 |

Means within the same column with different letters are significantly different by Tukey test (p<.05).

SEM: standard error of the mean (n=8).
created a new hope for safe, effective and inexpensive substances demonstrating hepatoprotective effects against the harmful impact of mycotoxins on bird’s metabolism in particular on liver function and health. Milk thistle (*Silybum marianum*) extract known as silymarin has received huge attention in biological research. In the current study, greater EPI and improved DWG and FCR and lowered ALT, AST and ALK activity were observed in the birds received diets containing 1000 and 2000 mg/kg silymarin which was in agreement with findings of Neshatgharamaleki and Mohajeri (2014). Induced insulin secretion by pancreatic beta cells of the pancreas (Soto et al. 2004), promoted repair and renovation of the pancreatic tissue, protecting pancreatic tissue against damaging elements, thereby exerting hypoglycaemic effect are among mechanisms pointed out for silymarin beneficial effects on quail performance and health (Soto et al. 2003; Behboodi et al. 2017). Jahanian et al. (2017), using broiler chicks (7–28 days) reported that increasing dietary aflatoxin levels resulted in decreased FI and DWG, and compromised FCR in broiler chicks (7–28 days). We found that dietary supplementation with silymarin ameliorated the decreased FI and DWG, and improved FCR in aflatoxin-challenged chicks.

Considering all our results, diets contaminated with 2.2 mg/kg aflatoxin exerted adverse effects on quail’s performance as indicated by reduced FI, DWG and EPI, increased FCR and mortality and altered concentration of certain liver and blood parameters. Further indications were found where the same birds showed unfavourably alterations in concentration of certain liver and blood parameters. We found that dietary supplementation with 1000 mg/kg silymarin alleviated the hazardous effects of aflatoxin as evidenced by greater EPI, DWG, FI and improved FCR and in the birds fed AF contaminated diets. However greater levels of silymarin were needed to alleviate the impaired and blood biochemical parameters as reflected in blood concentrations of ALT, AST, Ca, GLU, HDL and TG in Day 35 of age and proportional weight of liver, testis and spleen in day 35 of age (Tables 8 and 9).

Conclusions

Feeding diets contaminated with 2.2 mg aflatoxins/kg impaired growth performance and altered hepatic function in broiler quails. Supplementation of 1000 mg/kg silymarin in the contaminated diets alleviated the adverse effects of aflatoxins on bird’s performance. Greater levels of silymarin (2000 mg/kg) were needed to relive the AF-induced intimidating alterations in the liver and blood parameters studied.

Ethical approval

All procedures carried out in this experiment were reviewed and approved by the Animal Care and Use Committee of Lorestan University, Khorramabad, Iran.

Acknowledgments

We would like to thank Dr. Hossein Irandoust, Department of Animal Science, Isfahan Agricultural Research Center, Isfahan, Iran, for its collaboration in data analysis.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was financially supported by the Directorate of Research and Technology, Lorestan University.

References

Abreu APN, Spers A, Spers RC, Garcia EA, Berto DA, Molino AB, Pelcia K, Silva AP. 2008. Adsorbent levels in diets contaminated with mycotoxins and Japanese quails performance. Vet Zootec. 15:551–560.

Alhidary IA, Rehman Z, Khan RU, Tahir M. 2017. Anti-aflatoxin activities of milk thistle (*Silybum marianum*) in broiler. World Poult Sci J. 73:559–566.

Amiridumari H, Sarir H, Afzali N, Fanimakki O. 2013. Effects of milk thistle seed against aflatoxin B1 in broiler model. J Res Med Sci. 18:786–790.

Anuoluwapo RO, Rotimi SO, Durosu OA, Ebebeinwe OJ, Abiodun AO, Oyeniyi PB, Adedayo Faduyile F. 2017. Acute aflatoxin B1 – induced hepatotoxicity alters gene expression and disrupts lipid and lipoprotein metabolism in rats. Toxicol Rep. 4:408–414.

Awad WA, Bohm J, Razzazi-Fazeli E, Hulan HW, Zentek J. 2004. Effects of deoxynivalenol on general performance and electrophysiological properties of intestinal mucosa of broiler chickens. Poult Sci. 83:1964–1972.

Awad WA, Ghareeb K, Bohm J, Razzazi E, Hellweg P, Zentek J. 2008. The impact of fusarium toxin deoxynivalenol on poultry. Int J Poult Sci. 7:827–842.

Awad WA, Razzazi-Fazeli E, Bohm J, Ghareeb K, Zentek J. 2006. Effect of addition of a probiotic microorganism to broiler diets contaminated with deoxynivalenol on performance and histological alterations of intestinal villi of broiler chickens. Poult Sci. 85:974–979.

Bagherzadeh KF, Mehrdi M. 2015. Effects of a multi-strain probiotics against aflatoxicosis in growing Japanese quails. Livest Sci. 177:110–116.

Behboodi HR, Samadi F, Shams Shargh M, Ganji F, Samadi S. 2017. Effects of silymarin on growth performance, internal
organ and some blood parameters in Japanese quail subjected to oxidative stress induced by carbon tetrachloride. Poult Sci J. 1:31–40.
Campbell TW, Coles EH. 1986. Avian clinical pathology. Vet Clin Pathol. 4:279–291.
Chang W, Xie Q, Zheng A, Zhang S, Chen Z, Wang J, Liu G, Cai H. 2016. Effects of aflatoxins on growth performance and skeletal muscle of Cherry Valley meat male ducks. Anim Nutr. 2:186–191.
Chen X, Horn N, Cotter PF, Applegate TJ. 2014. Growth, serum biochemistry, complement activity, and liver gene expression responses of Pekin ducklings to graded levels of cultured aflatoxin B1. Poult Sci. 93:2028–2036.
Cheng J, Fan Y, Zhao L. 2016. Review on biological degradation of mycotoxins. Anim Nutr. 2:127–133.
Del Bianchi M, Oliveira CAF, Albuquerque R, Guerra JL, Correa B. 2005. Effects of prolonged oral administration of aflatoxin B1 and fumonisin B1 in broiler chickens. Poult Sci. 84:1835–1840.
Denli M, Blandon JC, Guynot ME, Salado S, Perez JF. 2009. Effects of dietary AfiaDetox on performance, serum biochemistry, histopathological changes, and aflatoxin residues in broilers exposed to aflatoxin B(1). Poult Sci. 88: 1444–1451.
Eaton DL, Gallagher EP. 1994. Mechanisms of aflatoxin carcinogenesis. Annu Rev Pharmacol Toxicol. 34:135–172.
Elliot RJ. 1984. Ektachem DT-60 Analyzer. Physician Leading Comput J. 2:6.
Euribrid BV. 1994. Technical information for Hybro broilers, Euribrid Poultry Breeding farm, Boxmeer. The Netherlands. P22.
Faisal MBS, Ehiri J, Abdullahi A, Williams JH, Jolly PE. 2010. Reproductive health effects of aflatoxins: a review of the literature. Reprod Toxicol. 29:262–270.
Federico A, Dallio M, Loguercio C. 2017. Silimarin/silybin and chronic liver disease: a marriage of many years. Molecules. 22:2191.
Giambrone J, Diener UL, Davis ND, Panangala VS, Hoerr FJ. 1985. Effects of aflatoxin on young turkeys and broiler chickens. Poult Sci. 64:1678–1684.
Gowda NK, Ledoux DR, Rottinghaus GE, Bermudez AJ, Chen YC. 2008. Efficacy of turmeric (Curcuma longa), containing a known level of curcumin, and a hydrated sodium calcium aluminosilicate to ameliorate the adverse effects of aflatoxin in broiler chicks. Poult Sci. 87:1125–1130.
He J, Zhang KY, Chen DW, Ding XM, Feng GD, Ao X. 2013. Effects of maize naturally contaminated with aflatoxin B1 on growth performance, blood profiles and hepatic histopathology in ducks. Livest Sci. 152:192–199.
Ismail A, Goncalves BL, de Neeff DV, Ponziacuba C, Coppa CFSC, Hintzsche H, Sajid M, Cruz AG, Corassin CH, Oliveira CAF. 2018. Aflatoxin in foodstuffs: occurrence and recent advances in decontamination. Food Res Int. 113:74–85.
Khosravinia H. 2015. Physiological adaptive indicators in fasted neonate broiler chicks in response to calcium gluconate injection. Poult Sci J. 3:59–70.
Kumar P, Mahato DK, Kamle M, Mohanta TK, Kang SG. 2017. Aflatoxins: a global concern for food safety, human health and their management. Front Microbiol. 7:2170.
Kumar Jain S, Rajivaidy S, Desai P, Singh GK, Nagori BP. 2013. Herbal extract as hepatoprotective - review. J Pharmacogn Phytochem. 2:170–175.
Ledoux DR, Rottinghaus GE, Bermudez AJ, Alonso-Debolt M. 1999. Efficacy of a hydrated sodium calcium aluminosilicate to ameliorate the toxic effects of aflatoxin in broiler chicks. Poult Sci. 78:204–210.
Liu Y, Wu F. 2010. Global burden of aflatoxin-induced hepatocellular carcinoma: a risk assessment. Environ Health Perspect. 118:818–824.
Madrigal-Santillan E, Madrigal-Bujaidar E, Alvarez-Gonzalez I, Sumaya-Martinez MT, Gutierrez-Salinas J, Bautista M, Morales-Gonzalez A, Gonzalez-Rubio MTL, Aguilar-Faisal JL, Morales-Gonzalez JA. 2014. Review of natural products with hepatoprotective effects. World J Gastroenterol. 20: 14787–14804.
Mahmood S, Younus M, Aslam A, Anjum AA. 2017. Toxicological effects of aflatoxin B1 on growth performance, humoral immune response and blood profile of Japanese quail. J Anim Plant Sci. 27:833–840.
National Research Council (NRC). 1994. Nutrient requirements of poultry. 9th rev. ed. Washington (DC): National Academy Press.
Neshatgharamaleki M, Mohajeri D. 2014. Study the protective effects of Black Cumin (Nigella sativa Lin.) ethanolic extract against Rifampin-induced hepatotoxicity in rats. Qom Univ Med Sci J. 8:73–84.
Oliveira CAF, Rosmaninho JF, Butkeraitis P, Correa B, Reis TA, Guerra JL, Albuquerque R, More MEG. 2002. Effect of low levels of dietary aflatoxin B1 on laying Japanese quail. Poult Sci. 81:976–980.
Pappas AC, Tsiplakou E, Tsitsigiannis DI, Georgiadou M, Iliadi MK, Sotirakoglou K, Zervas G. 2016. The role of bentonite binders in single or concomitant mycotoxin contamination of chicken diets. Br Poult Sci. 57:551–558.
Politis I, Fegeros K, Nitsch S, Schatzmayr G, Kantas D. 2005. Use of Trichosporon mycotoxinivorans to suppress the effects of ochratoxicosis on the immune system of broiler chicks. Br Poult Sci. 46:58–65.
Pradeep K, Mohan CV, Gobianand K, Karthikeyan S. 2007. Silimarin modulates the oxidant-antioxidant imbalance during diethyl nitrosamine induced oxidative stress in rats. Eur J Pharmacol. 560:110–116.
Quist CF, Bounous DI, Kilburn JV, Nettles VF, Wyatt RD. 2000. The effect of dietary aflatoxin on wild turkey poult's. J Wildl Dis. 36:436–444.
Rauber RH, Dilkin P, Giacomini LZ, Araujo de Almeida CA, Mallmann CA. 2007. Performance of turkey poult's fed different doses of aflatoxins in the diet. Poult Sci. 86: 1620–1624.
Sakamoto MI, Murakami AE, Fernandes AM, Ospina-Rojas IC, Nunes KC, Hirata AK. 2018. Performance and serum biochemical profile of Japanese quail supplemented with silymarin and contaminated with aflatoxin B1. Poult Sci. 97: 159–166.
Santin E, Paulillo AC, Nakagui LS, Alessi AC, Maiorka A. 2006. Evaluating of yeast cell wall on the performance of broilers fed diets with or without mycotoxins. Rev Bras Cienc Avic. 8:221–225.
Santurio JM. 2000. Mycotoxins and mycotoxicosis in poultry. Br Poult Sci. 2:1–12.
Sehu A, Cakir S, Cengiz O, Essiz E. 2005. Mycotox and aflatoxicosis in quails. Br Poult Sci. 4:520–524.
Sherif IO, Al-Gayyar MM. 2013. Antioxidant, anti-inflammatory and hepatoprotective effects of silymarin on hepatic
dysfunction induced by sodium nitrite. Eur Cytokine Netw. 24:114–121.

Shotwell OL, Hesseltine CD, Stubblefield RD, Sorensen WG. 1966. Production of aflatoxin on rice. Appl Microbiol. 14: 425–428.

Soto C, Mena R, Luna J, Cerbon M, Larrieta E, Vital P, Uria E, Sanchez M, Recoba R, Barron H, et al. 2004. Silymarin induces recovery of pancreatic function after alloxan damage in rats. Life Sci. 75:2167–2180.

Soto C, Recoba R, Barron H, Alvarez C, Favari L. 2003. Silymarin increases antioxidant enzymes in alloxan-induced diabetes in rat pancreas. Comparative biochemistry and physiology part C. Comp Biochem Physiol C Toxicol Pharmacol. 136:205–212.

Statistical analysis system (SAS) Institute. 2002. SAS/STAT user guide, version 9.1. Cary, NC: SAS Institute Inc.

Tedesco D, Steidler S, Galletti S, Tameni M, Sonzogni O, Ravarotto L. 2004. Efficacy of silymarin-phospholipid complex in reducing the toxicity of aflatoxin B1 in broiler chicks. Poult Sci. 83:1839–1843.

Thawley V. 2017. Acute liver injury and failure. Vet Clin North Am Small Anim Pract. 47:617–630.

Upadhyay G, Tiwari MN, Prakash O, Jyoti A, Shanker R, Singh MP. 2010. Involvement of multiple molecular events in pyrogallol-induced hepatotoxicity and silymarin-mediated protection: evidence from gene expression profiles. Food Chem Toxicol. 48:1660–1670.

Vargas-Mendoza N, Madrigal SE, Morales GA, Esquivel SJ, Esquivel CC, Garca LY, Gonzalez RM, Gayosso-de LJA, Morales GJA. 2014. Hepatoprotective effect of silymarin. World J Hepatol. 6:144–149.

Verma J, Swain BK, Johri TS. 2002. Effect of various levels of aflatoxin and ochratoxin A and combinations thereof on protein and energy utilization in broilers. J Sci Food Agric. 82:1412–1417.

Wang GH, Xue CY, Chen F, Ma YL, Zhang XB, Bi YZ, Cao YC. 2009. Effects of combinations of ochratoxin A and T-2 toxin on immune function of yellow-feathered broiler chickens. Poult Sci. 88:504–510.

Wild CP, Montesano R. 2009. A model of interaction: aflatoxins and hepatitis viruses in liver cancer aetiology and prevention. Cancer Lett. 286:22–28.

Wu F, Khlangwiset P. 2010. Health economic impacts and cost-effectiveness of aflatoxin reduction strategies in Africa: case studies in biocontrol and postharvest interventions. Food Addit Contam. 27:496–509.

Yunus AW, Razzazi-Fazeli E, Bohm J. 2011. Aflatoxin B1 in affecting broiler’s performance, immunity, and gastrointestinal tract: a review of history and contemporary issues. Toxins. 3:566–590.

Zhu Y, Hassan Yi, Watts C, Zhou T. 2016. Innovative technologies for the mitigation of mycotoxins in animal feed and ingredients - a review of recent patents. Anim Feed Sci Technol. 216:19–29.