General \((\alpha, \beta)\) metrics with relatively isotropic mean Landsberg curvature

A. Ala, A. Behzadi* and M. Rafiei-Rad

February 26, 2018

Abstract

In this paper, we study a new class of Finsler metrics, \(F = \alpha \phi(b^2, s), \quad s := \frac{\beta}{\alpha}\), defined by a Riemannian metric \(\alpha\) and 1-form \(\beta\). It is called general \((\alpha, \beta)\) metric. In this paper, we assume \(\phi\) be coefficient by \(s\) and \(\beta\) be closed and conformal. We find a necessary and sufficient condition for the metric of relatively isotropic mean Landsberg curvature to be Berwald.

Keywords: Finsler geometry, Relatively isotropic mean Landsberg curvature , General \((\alpha, \beta)\)-metrics.

1 Introduction

The \((\alpha, \beta)\) metrics were first introduced by Matsumoto [2]. They are Finsler metrics built from a Riemannian metric \(\alpha = \sqrt{a_{ij}y^iy^j}\) and 1-form \(\beta = b_i(x)y^i\) and a \(C^\infty\) function \(\phi(s)\) on a manifold \(M\). A Finsler metric of \((\alpha, \beta)\) metrics is given by the form

\[F := \alpha \phi(s), \quad s := \frac{\beta}{\alpha} \]

It is known that \(F\) is positive and strongly convex on \(TM \setminus \{0\}\) if and only if

\[\phi(s) > 0, \quad \phi(s) - s \phi'(s) + (b^2 - s^2) \phi''(s) > 0, \quad |s| \leq b < b_0, \]

where \(b = \|\beta\|_\alpha\).

The aim of this paper is to study a new class of Finsler metrics given by

\[F := \alpha \phi(b^2, s), \quad s := \frac{\beta}{\alpha} \quad (1) \]

where \(\phi = \phi(b^2, s)\) is a \(C^\infty\) positive function and \(b = \|\beta\|_\alpha\) is its norm[8]. It is called general \((\alpha, \beta)\) metrics. This kind of metrics is first discussed by Yu and Zhu [3]. Many well-known Finsler metrics are general \((\alpha, \beta)\) metrics.

*Corresponding author.
Example 1. \[8\] The Randers metrics and the square metrics are defined by functions \(\phi = \phi(b^2, s) \) in the following form:

\[
\phi = \frac{\sqrt{1 - b^2 + s^2} + s}{1 - b^2}
\]

(2)

\[
\phi = \frac{\left(\sqrt{1 - b^2 + s^2} + s\right)^2}{(1 - b^2)^2 \sqrt{1 - b^2 + s^2}}
\]

(3)

Example 2. \[9\] One Important example of \((\alpha, \beta)\) metric was given by L. Berwald:

\[
F = \frac{\left(\sqrt{(1 - |x|^2)|y|^2 + \langle x, y \rangle}^2\right)^2}{(1 - |x|^2)^2 \sqrt{(1 - |x|^2)|y|^2 + \langle x, y \rangle}^2}.
\]

(4)

It is a projectively flat Finsler metrics on \(B \subset \mathbb{R}^n \) with flag curvature \(K = 0 \). Berwald’s metric can be expressed in form

\[
F = \alpha \phi(b^2, s) = \alpha \left(\sqrt{1 + b^2} + s\right)^2
\]

(5)

where

\[
\alpha = \frac{\sqrt{(1 - |x|^2)|y|^2 + \langle x, y \rangle}^2}{1 - |x|^2}, \quad \beta = \frac{\langle x, y \rangle}{(1 - |x|^2)^{3/2}}
\]

(6)

\[
s = \frac{\beta}{\alpha}, \quad b^2 = \frac{|x|^2}{1 - |x|^2}
\]

(7)

Example 3. \[8\] There is a special class of general \((\alpha, \beta)\) metrics called spherically symmetric metrics, which are defined on an open subset of \(\mathbb{R}^n \) with \(\alpha = |y| \) and \(\beta = \langle x, y \rangle \),

\[
F = |y| \phi \left(|x|^2, \frac{\langle x, y \rangle}{|y|} \right).
\]

In Finsler geometry, there are several very important non-Riemannian quantities. The Cartan torsion \(C \) is a primary quantity. There is another quantity which is determined by the Busemann-Hausdorff volume form, that is the so-called distortion \(\tau \). The vertical differential of \(\tau \) on each tangent space gives rise to mean Cartan torsion \(I := \tau_{y_k} dx^k \). \(C \), \(\tau \) and \(I \) are the basic geometric quantities which characterize Riemannian metrics among Finsler metrics. Differentiating \(C \) along geodesics gives rise to the Landsberg curvature \(L \). The horizontal derivative of \(\tau \) along geodesics is the so-called \(S \)-curvature \(S := \tau_{y_k} y^k \). The horizontal derivative of \(I \) along geodesics is called the mean Landsberg curvature \(J := I_{y_k} y^k \).

By the definition, \(J/I \) can be regarded as the relative growth rate of the mean Cartan torsion along geodesics. We call a Finsler metric \(F \) is of relatively isotropic mean Landsberg curvature if \(F \) satisfies \(J + \tilde{c} F I = 0 \), where \(\tilde{c} = \tilde{c}(x) \) is a scalar function on the Finsler manifold. In particular, when \(\tilde{c} = 0 \), Finsler metrics with \(J = 0 \) are called weak Landsberg metrics \[4\].
We study general \((\alpha, \beta)\) metrics with relatively isotropic mean Landsberg curvature, where \(\beta\) is a closed and conformal 1-form, i.e.

\[b_{ij} = c(x)a_{ij}, \quad (8) \]

where \(b_{ij}\) is the covariant derivation of \(\beta\) with respect to \(\alpha\) and \(c = c(x) \neq 0\) is a scalar function on \(M\). In [7], Zohrehvand and Maleki proved that, every Landsberg general \((\alpha, \beta)\) metric is a Berwald metric with condition (8). In [1], the authors showed that this result for the metric of mean Landsberg curvature.

In this paper, we prove the following

Theorem 1. Let \(F = \alpha\phi(b^2, s), s := \beta/\alpha\), be a non-Riemannian general \((\alpha, \beta)\) metric on an \(n\)-dimensional manifold \(M\). Suppose that \(\beta\) satisfies (8). If \(\phi = \phi(b^2, s)\) is a polynomial in \(b^2\) and \(s\), then \(F\) is of relatively isotropic mean Landsberg curvature, \(\mathbf{J} + \tilde{c}(x)F\mathbf{I} = 0\), if and only if it is a Berwald metric. In this case,

\[\phi(b^2, s) = c_0(b^2) + c_1(b^2)s + c_2(b^2)s^2 + \cdots + c_m(b^2)s^m, \quad (9) \]

where

\[c_0(b^2) = \frac{a_0}{\sqrt{b^2}}, \quad c_1(b^2) = \frac{a_1}{b^2}, \quad c_2(b^2) = \frac{a_2}{(b^2)^{\frac{3}{2}}}, \quad \ldots, \quad c_m(b^2) = \frac{a_m}{(b^2)^{\frac{m+1}{2}}} \]

and \(a_i, 1 \leq i \leq n\) are constants.

Because every analytic function can be approximated by a series polynomials, we can assume that \(\phi\) is a polynomial in \(b^2\) and \(s\).

2 Preliminary

Let \(F = F(x, y)\) be a Finsler metric on an \(n\)-dimensional manifold \(M\). Let

\[g_{ij} := \frac{1}{2}[\mathbf{F}^2]_{y^iy^j}(x, y) \]

and \((g^{ij}) := (g_{ij})^{-1}\). For a non-zero vector \(y = y^i \frac{\partial}{\partial x^i} |_{x \in T_xM}\), \(F\) induces an inner product on \(T_xM\)

\[g_y(u, v) = g_{ij}u^iv^j, \]

where \(u = u^i \frac{\partial}{\partial x^i}, v = v^j \frac{\partial}{\partial x^j} \in T_xM\). \(g = \{g_y\}\) is called the fundamental tensor of \(F\).

Let

\[C_{ijk} := \frac{1}{4} [\mathbf{F}^2]_{y^iy^jy^k} = \frac{1}{2} \frac{\partial g_{ij}}{\partial y^k}. \]

Define symmetric trilinear form \(\mathbf{C} := C_{ijk}(x, y)dx^i \otimes dx^j \otimes dx^k\) on \(TM \setminus \{0\}\). We call \(\mathbf{C}\) the **Cartan torsion**. The **mean Cartan torsion** \(\mathbf{I} = I_idx^i\) is defined by

\[I_i := g^{jk}C_{ijk}. \]
Further, we have \((4), (5)\)

\[I_i = g^{jk} C_{ijk} = \frac{\partial}{\partial y^j} \left[\ln \sqrt{\det(g_{jk})} \right] \]

(10)

For a Finsler metric \(F\), the geodesics are characterized locally by a system of 2nd ODEs:

\[\frac{d^2 x^i}{dt^2} + 2G^i \left(x, \frac{dx}{dt} \right) = 0, \]

where

\[G^i = \frac{1}{4} g^{il} \left\{ [F^2]_{x^m y^i y^m} - [F^2]_{x^i} \right\}. \]

(11)

\(G^i\) are called the geometric coefficients of \(F\).

For a tangent vector \(y = y^i \partial/\partial x^i \in T_x M\), the Berwald curvature \(B := B^i_{jkl} dx^j \otimes \partial/\partial x^i \otimes dx^k \otimes dx^l\) can be expressed by

\[B^i_{jkl} := \frac{\partial^3 G^i}{\partial y^j \partial y^k \partial y^l}. \]

(12)

\(F\) is a Berwald metric if \(B = 0\). The Landsberg curvature \(L = L_{ijk}(x, y) dx^i \otimes dx^j \otimes dx^k\) is a horizontal tensor on \(TM \setminus \{0\}\) defined by \([6]\)

\[L_{ijk} := -\frac{1}{2} FF_{y^m} [G^m]_{y^i y^j y^k}. \]

(13)

\(F\) is called a Landsberg metric if \(L = 0\). The mean Landsberg curvature \(J = J_i dx^i\) is defined by

\[J_i := g^{jk} L_{ijk}. \]

(14)

We call \(F\) a weak Landsberg metric if \(J = 0\). We say that \(F\) is of relatively isotropic mean Landsberg curvature if \(J_i + \tilde{c}(x) FI_i = 0\) for a scalar function \(\tilde{c} = \tilde{c}(x)\) on \(M\).

Now we consider a general \((\alpha, \beta)\) metric:

Definition 1. Let \(F\) be a Finsler metric on an \(n\)-dimensional manifold \(M\). \(F\) is called a general \((\alpha, \beta)\) metric if it can be expressed as the form \([1]\) where \(||\beta||_\alpha \leq b_0\) and \(\phi = \phi(b^2, s)\) is a positive \(C^\infty\) function.

Proposition 1. Let \(M\) be an \(n\)-dimensional manifold. A function \(F = \alpha \phi(b^2, s)\) on \(TM\) is a Finsler metric on \(M\) for any Riemannian metric \(\alpha\) and 1-form \(\beta\) with \(||\beta||_\alpha < b_0\) if and only if \(\phi = \phi(b^2, s)\) is a positive \(C^\infty\) function satisfying

\[\phi > 0, \quad \phi - s \phi_2 + (b^2 - s^2) \phi_{22} > 0, \]

(15)

where \(s\) and \(b\) are arbitrary numbers with \(||s||_s \leq b < b_0||\).
Proof. It is easy to verify F is a function with regularity and positive homogeneity. In the following we will verify strong convexity: The $n \times n$ Hessian matrix
\[
(g_{ij}) := \left(\frac{1}{2} [F^2]_{y'_{y'}} \right).
\]
For the general (α, β) metric $F = \alpha \phi(b^2, \frac{b^2}{\beta})$, direct computations yield
\[
[F^2]_{y'_{y'}} = [\alpha^2]_{y'} \phi^2 + 2 \alpha^2 \phi \phi_2 s_i^i
\]
(16)
\[
[F^2]_{y'_{y'}} = [\alpha^2]_{y'} \phi^2 + 2 [\alpha^2]_{y'} \phi \phi_2 s_i^i + 2 [\alpha^2]_{y'} \phi \phi_2 s_i^j s_j^i + 2 \alpha^2 [\phi^2]_{y'_{y'}}
\]
(17)
Direct computations yield
\[
g_{ij} = \rho a_{ij} + \rho_0 b_i b_j + \rho_1 (b_i \alpha_{y^i} + b_j \alpha_{y^j}) - s \rho_1 \alpha_{y^i} \alpha_{y^j},
\]
(18)
where
\[
\rho = \phi(\phi - s \phi_2), \quad \rho_0 = \phi \phi_2 + (\phi_2)^2,
\]
(19)
By Lemma 1.1.1 in [4], we find a formula for $\det(g_{ij})$
\[
\det(g_{ij}) = \phi^{n+1}(\phi - s \phi_2)^{n-2}(\phi - s \phi_2 + (b^2 - s^2) \phi_2) \det(a_{ij}).
\]
(20)
Assume that (15) is satisfied. Then by taking $b = s$ in (15), we see that the following inequality holds for any s
\[
\phi - s \phi_2 > 0, \quad |s| < b_0.
\]
(21)
Using (16), (20) and (21), we get $\det(g_{ij}) > 0$, namely (g_{ij}) is positive-definite. The converse is obvious, so the proof is omitted here.

Remark. Note that ϕ_1 means the derivation of ϕ with respect to the first variable b^2. In this paper, β is closed and conformal 1-form, i.e. $b_{ij} = c(x)a_{ij}$. Let [3]
\[
r_{ij} := \frac{1}{2}(b_{ij} + b_{ji}), \quad r_{00} := r_{ij} y^j y^j, \quad r_i := b^i r_{ji}, \quad r_0 := r_{ij} y^i, \quad r^i := a_{ij} r_j, \quad r := b^i r_i,
\]
\[
s_{ij} := \frac{1}{2}(b_{ij} - b_{ji}), \quad s_0 := a^{ij} s_{kj} y^j, \quad s_i := b^i s_{ji}, \quad s_0 := s_i y^i, \quad s^i := a_{ij} s_j
\]
For a general \((\alpha, \beta)\) metric, its spray coefficients \(G^i\) are related to the spray coefficients \(G^i_\alpha\) of \(\alpha\) by [13]

\[
G^i = G^i_\alpha + \alpha Q s^i_0 + \{\Theta(-2\alpha Q s_0 + r_0 + 2\alpha^2 R r) + \alpha \Omega(r_0 + s_0)\} l^i
+ \{\Psi(-2\alpha Q s_0 + r_0 + 2\alpha^2 R r) + \alpha \Pi(r_0 + s_0)\} b^i - \alpha^2 R (r^i + s^i),
\]

where \(l^i := \frac{y^i}{\alpha}\) and

\[
\begin{align*}
Q &:= \frac{\phi_2}{\phi - s \phi_2}, & R &:= \frac{\phi_1}{\phi - s \phi_2}, \\
\Theta &:= \frac{(\phi - s \phi_2) \phi_2 - s \phi \phi_{22}}{2(\phi - s \phi_2 + (b^2 - s^2) \phi_{22})}, & \Psi &:= \frac{\phi_{22}}{2(\phi - s \phi_2 + (b^2 - s^2) \phi_{22})}, \\
\Pi &:= \frac{(\phi - s \phi_2) \phi_{12} - s \phi_{1} \phi_{22}}{(\phi - s \phi_2)(\phi - s \phi_2 + (b^2 - s^2) \phi_{22})}, & \Omega &:= \frac{2 \phi_1}{\phi} - \frac{s \phi + (b^2 - s^2) \phi_2}{\phi} \Pi
\end{align*}
\]

When \(\beta\) is closed and conformal one-form, i.e. satisfies [8], then

\[
r_0 = \alpha^2, \quad r_0 = c_\beta, \quad r = cb^2, \quad r^i = cb^i, \quad s_0 = s = i = 0.
\]

Substituting this into [24] yields [9]

\[
G^i := G^i_\alpha + \alpha^2 \{\Theta(1 + 2RB^2) + s \Omega\} l^i + \alpha^2 \{\Psi(1 + 2RB^2) + s \Pi - R\} b^i
\]

If we have

\[
\begin{align*}
E &:= \frac{\phi_2 + 2s \phi_1}{2 \phi} - H \frac{s \phi + (b^2 - s^2) \phi_2}{\phi}, \\
H &:= \frac{\phi_{22} - 2(\phi_1 - s \phi_{12})}{2(\phi - s \phi_2 + (b^2 - s^2) \phi_{22})},
\end{align*}
\]

then from [25]

\[
G^i := G^i_\alpha + \alpha^2 E l^i + \alpha^2 H b^i.
\]

Proposition 2. [11] Let \(F = \alpha \phi(b^2, s), \quad s = \beta/\alpha, \) be a general \((\alpha, \beta)\)-metric on an \(n\)-dimensional manifold \(M\). Suppose that \(\beta\) satisfies [8], then the weak Landsberg curvature of \(F\) is given by

\[
J_j = -\frac{c \phi}{2 \rho} W_j,
\]

where

\[
W_j := \{(E - sE_2)(n + 1) \phi_2 + 3E_{22} \phi_2 (b^2 - s^2) - sE_{22}(n + 1) \phi + E_{222} \phi (b^2 - s^2)
+ \{(H_2 - sH_{22})(n + 1) + H_{222}(b^2 - s^2)\} (s \phi + (b^2 - s^2) \phi_2)
+ 3s(E - sE_2) \phi_2 (b^2 - s^2) + 3E_{222} \phi_2 (b^2 - s^2)^2 - 3sE_{22} \phi (b^2 - s^2)
+ \eta E_{222} (b^2 - s^2)^2 \phi + \eta [3(H_2 - sH_{22})(b^2 - s^2) + H_{222}(b^2 - s^2)^2]
\times (s \phi + (b^2 - s^2) \phi_2)\} (b_j - s l_j)
\]

where \(\rho\) and \(\eta\) is defined in [14] and [23] and \(l_j := a_{ij} l^i\).
Proposition 3. Let $F = \alpha\phi(b^2, s)$, $s = \beta/\alpha$, be a general (α, β)-metric on an n-dimensional manifold M. Suppose that β satisfies (8), then F is weak Landsberg metric if and only if the following equations hold:

$$E_{22} = 0, \quad H_{222} = 0,$$

(31)

$$(E - sE_2)\phi_2 + (H_2 - sH_{22})(s\phi + (b^2 - s^2)\phi_2 = 0$$

(32)

Theorem 2. Let $F = \alpha\phi(b^2, \frac{\beta}{\alpha})$ be a non-Riemannian general (α, β)-metric on an n-dimensional manifold M and β satisfies (8). Then F is a weak Landsberg metric if and only if it is Landsberg metric.

3 Proof of Theorem

In this section, we prove Theorem. From (10) and (18), we have

$$I_j = \frac{\partial}{\partial y^j} \left[\ln \sqrt{\det (g_{kl})} \right]$$

$$= \frac{1}{2\alpha} \left\{ (n + 1) \phi_2 - (n - 2) \frac{s\phi_{22}}{\phi - s\phi_2} + \frac{(b^2 - s^2)\phi_{222} - 3s\phi_{22}}{\phi - s\phi_2 + (b^2 - s^2)\phi_{22}} \right\} (b_j - s l_j)$$

$$= \frac{1}{2\alpha} \left\{ \frac{(b^2 - s^2)(\phi - s\phi_2)\phi_{222} + (n + 1)(\phi - s\phi_2)^2\phi}{\phi - s\phi_2 + (b^2 - s^2)\phi_{22}}
ight.$$

$$- (n - 2)(b^2 - s^2)s\phi_{222}\eta + (n + 1)(\phi - s\phi_2)[(b^2 - s^2)\phi_2 - s\phi]\eta \right\} (b_j - s l_j).$$

(33)

We must mention the following lemmas firstly.

Lemma 1. Let $F = \alpha\phi(b^2, s)$, $s = \beta/\alpha$, be a general (α, β)-metric on an n-dimensional manifold M and β satisfies (8). Then F is of relatively isotropic mean Landsberg curvature if and only if ϕ satisfies the following ODE:

$$\phi_{2\rho} (cW_j + \tilde{c}V_j) = 0,$$

(34)

where W_j is defined in (30), and

$$V_j := \frac{(b^2 - s^2)(\phi - s\phi_2)\phi_{222} + (n + 1)(\phi - s\phi_2)^2\phi}{\phi - s\phi_2 + (b^2 - s^2)\phi_{22}}$$

$$- (n - 2)(b^2 - s^2)s\phi_{222}\eta + (n + 1)(\phi - s\phi_2)[(b^2 - s^2)\phi_2 - s\phi]\eta$$
Proof. By Proposition 2,

\[J_j + \tilde{c} F I_j = \frac{c_0}{2 \rho} \left\{ [1 + n + 3(b^2 - s^2)\eta][(E - sE_2)\phi_2 + (H_2 - sH_{22})(s\phi + (b^2 - s^2)\phi_2)] \right. \\
+ (b^2 - s^2)[1 + (b^2 - s^2)\eta][s\phi + (b^2 - s^2)\phi_2]H_{222} \\
+ \{3(b^2 - s^2)[1 + (b^2 - s^2)\eta]\phi_2 - [1 + n + 3(b^2 - s^2)\eta]s\phi\}E_{22} \\
+ (b^2 - s^2)[1 + (b^2 - s^2)\eta]\phi E_{222}(b_j - s l_j) \\
+ \frac{\tilde{c}}{2 \rho} \left\{ (b^2 - s^2)(\phi - s\phi_2)\phi \phi_{222} + (n + 1)(\phi - s\phi_2)^2\phi \right. \\
\left. \times s\phi\phi_{222}\eta - (n + 1)(\phi - s\phi_2) [(b^2 - s^2)\phi_2 - s\phi] \eta \right\}(b_j - s l_j). \quad (35) \]

By use of Maple program, we can immediately get the following lemma.

Lemma 2. Let \(NJFI \) denote the numerator of the left of (34), then (34) holds if and only if

\[NJFI = 0. \quad (36) \]

Also, Let \(NE_{22} \), \(NH_{222} \) and \(NP \) denote the numerators of \(E_{22} \), \(H_{222} \) and Eq. (32), respectively. Then from (31) and (32), we have

\[NE_{22} = 0, \quad NH_{222} = 0 \]
\[NP = 0. \quad (37) \]

By assumption, \(F \) is of relatively isotropic mean Landsberg curvature. Express \(\phi(b^2, s) \) as below.

\[\phi(b^2, s) = c_0(b^2) + c_1(b^2)s + c_2(b^2)s^2 + \cdots + c_m(b^2)s^m, \quad m \geq 1. \quad (39) \]

Plugging (39) to \(NJFI \) yields a polynomial in \(s \). Denote the order of \(NJFI \) by \(r \). Then (36) can be rewritten as follows.

\[v_i s^i h_j = 0, \quad 0 \leq i \leq r, \quad (40) \]

where \(v_i \) (\(0 \leq i \leq r \)) are independent of \(s \).

By using Maple program, we can get following results:

Case 1. \(m = 1 \): \(\phi(b^2, s) = c_0(b^2) + c_1(b^2)s \), where \(c_1(b^2) \neq 0 \). We can get \(r = 2 \) and

\[v_2 := (n + 1) \left\{ 2 c c_1(b^2) \left[2 c_1(b^2)c_0'(b^2) - c_0(b^2)c_1'(b^2) \right] + \tilde{c} c_1^3(b^2) \right\}, \quad (41) \]

In this case, because \(v_2 = 0 \), so \(\tilde{c} \) must be zero.
By solving the above ODE, we have

From (42) and (43), we obtain the following ODE:

\[2c_0^2(b^2) \left\{ -c_0(b^2)c'_1(b^2) + 2c_1(b^2)c'_0(b^2) \right\} c_1(b^2)s^2 \\
+ 2c_1^2(b^2) \left\{ 2b^2c'_0(b^2) + c_0(b^2) \right\} s + c_0(b^2)c'_0(b^2) \left\{ 2b^2c'_0(b^2) + c_0(b^2) \right\} = 0, \tag{43} \]

By solving the above ODE, we have

\[c_0(b^2) = \frac{a_0}{\sqrt{b^2}}, \quad c_1(b^2) = \frac{a_1}{b^2}, \tag{46} \]

Case 2. \(m = 2 \). \(\phi(b^2, s) = c_0(b^2) + c_1(b^2)s + c_2(b^2)s^2 \), where \(c_2(b^2) \neq 0 \). By using Maple, We can get \(r = 17 \) and

\[v_{17} = cf_{17c} + \hat{c}f_{17c}, \tag{47} \]

where \(f_{17c} \) is independent of \(s \) and

\[f_{17c} := 927n\hat{c}c_0^2(b^2). \tag{48} \]

In this case, because \(v_{17} = 0 \), so \(\hat{c} \) must be zero.

We can obtain the form of \(c_0(b^2), c_1(b^2) \) and \(c_2(b^2) \) too. Plugging the \(\phi \) into (37) and (38) and similar argument yields the following ODE:

\[2b^2c_2(b^2) + c_0(b^2) = 0, \tag{49} \]

\[2c_1(b^2)c'_0(b^2) - 3c_0(b^2)c'_1(b^2) = 0, \tag{50} \]

\[c_2(b^2) \left\{ 2b^2c'_2(b^2) + 3c_2(b^2) - 3c'_0(b^2) \right\} + c_0(b^2)c'_2(b^2) = 0, \tag{51} \]

Then

\[c_0(b^2) = \frac{a_0}{\sqrt{b^2}}, \quad c_1(b^2) = \frac{a_1}{b^2}, \quad c_2(b^2) = \frac{a_2}{(b^2)^{\frac{3}{2}}}. \tag{52} \]

It is not hard to prove by induction that given any \(m \geq 3 \) in (39), the function \(\hat{c} \) must vanish.

In sum, we have proved that, if \(F = \alpha \phi(b^2, s) \) is of relatively isotropic mean Landsberg curvature and \(\phi \) be polynomial in \(b^2 \) and \(s \), then \(F \) must be a weak Landsberg metric. Then \(F \) is a Berwald metric by Theorem 2.

In this case, if

\[\phi(b^2, s) = c_0(b^2) + c_1(b^2)s + c_2(b^2)s^2 + \cdots + c_m(b^2)s^m, \]

then

\[c_0(b^2) = \frac{a_0}{\sqrt{b^2}}, \quad c_1(b^2) = \frac{a_1}{b^2}, \quad c_2(b^2) = \frac{a_2}{(b^2)^{\frac{3}{2}}}, \quad \ldots, \quad c_m(b^2) = \frac{a_m}{(b^2)^{\frac{m}{2}}}, \]

and \(a_i, 1 \leq i \leq n \) are constants.
References

[1] A. Ala, A. Behzadi and M. Rafie-Rad, On general \((\alpha, \beta)\) metrics of weak Landsberg type, arXiv:1706.03973, (2016).

[2] M. Matsumoto, The Berwald connection of Finsler space with an \((\alpha, \beta)\) metric, Tensor (N,S) 50, 18–21 (1991).

[3] C. Yu and H. Zhu, On a new class of Finsler metrics, Diff. Geom. Appl. 29, 244–254 (2011).

[4] S. S. Chern and Z. Shen, Riemann-Finsler Geometry, World Scientific Publishing Co. Pte. Ltd., (Hanckensack, NJ, 2005).

[5] D. Bao, S. S. Chern and Z. Shen, An Introduction to Riemannian-Finsler Geometry, Springer Verlag (2000).

[6] Z. Shen, Differential geometry of spray and Finsler spaces, Kluwer Academic Publishers (2001).

[7] M. Zohrehvand and H. Maleki, On general \((\alpha, \beta)\) metrics of Landsberg type, Int. J. Geom. Methods M. 13 6 , 1650085 (2016).

[8] Z. Shen and M. Yuan, Conformal vector fields on some Finsler manifolds, Science China Mathematics 59 1, 107–114 (2016).

[9] W. Song and X. Wang, A new class of Finsler metrics with scalar flag curvature, Journal of Mathematical Research with Applications 32 4, 485-492 (2012).