Cronin Effect and High p_{\perp} Suppression in D+Au Collisions

D. E. Kahana, S. H. Kahana

1 Physics Department, Brookhaven National Laboratory
Upton, NY 11973, USA
2 31 Pembrook Dr., Stony Brook, NY 11790, USA

(Dated: July 3, 2018)

Great interest has attached to recent D+Au, $\sqrt{s} = 200$ A GeV data at RHIC, obtained with the BRAHMS detector. Between pseudorapidities $\eta = 0$ and $\eta = 3.2$, the appropriately defined ratio $R[DAu/PP]$, comparing transverse momentum spectra of D+Au to P+P, exhibits a steady decrease with η. This diminution is examined within a two-stage simulation, the last stage being a purely hadronic, reduced energy cascade. The result is an adequate description of the data including the so-called Cronin effect. Additionally there is clear evidence for suppression, in the second stage, of relatively high transverse momentum $\eta = 0$ leading mesons, i.e. the Cronin effect, only near mid rapidity, is appreciably muted by final state interactions.

PACS numbers:

I. INTRODUCTION

It is instructive to begin with a comparison of the minimum-bias experimental distribution $dN^{ch}/d\eta$ for charged particles at $\sqrt{s} = 200$ A GeV and our eventual attempt to describe this. These are shown in Fig. (1) together with the equivalent PP measurement without any normalising factors imposed. The data shown are from UA5 [1] and PHOBOS [2]. Clearly charged particle production in D+Au is considerably enhanced relative to PP; but for large η the D+Au spectrum asymptotically joins PP, both in the data and in our simulation. It is also evident the $\eta = 3.2$ point is appreciably suppressed relative to $\eta = 0$, for D+Au but not for PP. It will become clear that these pseudorapidity spectra, which are in fact integrals of the double differential cross-sections $(1/2\pi p_{\perp}) \frac{d^2N^{ch}}{dp_{\perp} d\eta}$, are dominated by quite small transverse momenta p_{\perp}. We examine this self-evident thesis in more detail as we proceed.

The BRAHMS collaboration [3] has focused on the η and p_{\perp}-dependence of the ratio $R[DAu/PP] =$

\[
\left(\frac{1}{N_{coll}} \right) \left[\frac{d^2N^{ch}}{dp_{\perp} d\eta} \right] (DAu) \left[\frac{d^2N^{ch}}{dp_{\perp} d\eta} \right] (PP),
\]

where N_{coll} is a calculated number of binary NN collisions occurring in minimum-bias D+Au. They consider also the combined η and p_{\perp} dependence for varying centralities $c_{1,2}$ of

\[
R_{c_{1,2}} = \left(\frac{R_{c_1}[DAu/PP]}{R_p[DAu/PP]} \right),
\]

where the denominator is the same ratio for a peripheral setting. The behaviour of the former ratio we contend is determined mainly by the low transverse momentum dynamics and by p_{\perp} distribution in PP collisions, which is for us an input to the nucleus-nucleus simulation. There are important dynamic modifications, e.g. the Cronin effect [4], but the relation between low and high p_{\perp} is to a large extent similar to that in PP. The observed behaviour of $R_{c_{1,2}}$ with pseudorapidity and centrality is determined by the asymptotic approach of $dN/d\eta$ in D+Au to that in PP at increasing η, and the resulting diminished variation with η.

The code LUCIFER, developed for high energy heavy-ion collisions has previously been applied to both SPS energies $\sqrt{s} = (17.2, 20)$ A GeV [5] and to RHIC energies $\sqrt{s} = (56, 130, 200)$ A GeV [6, 7]. We present a brief description of the dynamics of this Monte Carlo simulation. Many other simulations of heavy ion collisions exist and these are frequently hybrid in nature, using say string models in the initial state [8, 9, 10, 11, 12, 13, 14, 15] together with final state hadronic collisions, while some codes are purely partonic [16, 17, 18, 19, 20] in nature. Our approach is closest in spirit to that of RQMD and K. Gallmeister, C. Greiner, and Z. Xu and parallel work by W. Cassing [8, 21, 22]. Certainly our results seem to parallel those of the latter authors.

The purpose of describing such high energy collisions without introducing the evidently existing parton nature of hadrons, at least for soft processes, was to set a baseline for judging whether deviations from the simulation measured in experiments existed and could then signal interesting phenomena. The division between soft and hard processes, the latter being in principle described by perturbative QCD, is not necessarily easy to identify in heavy ion data. For the
relatively simple D+Au system we are interested in separating the effects of our second stage, a lower energy hadronic cascade, from those of our first stage, a parallel rather than sequential treatment of initial (target)-(projectile) NN interactions.

II. THE SIMULATION

A. Stage I

The first stage I of LUCIFER considers the initial interactions between the separate nucleons in the colliding ions A+B, but is not a cascade. The totality of events involving each projectile particle happen essentially together or one might say in parallel. Neither energy loss nor creation of transverse momentum \(p_T \) are permitted in stage I, clearly an approximation. A model of NN collisions \(P+\bar{P} \) incorporating most known inclusive cross-section and multiplicity data, guides stage I and sets up the initial conditions for stage II. The two body model, clearly an input to our simulation, is fitted to the elastic, single diffractive (SD) and non-single diffractive (NSD) aspects of high energy data, guides stage I and sets up the initial conditions for stage II. The two body model, clearly an input to our simulation, is fitted to the elastic, single diffractive (SD) and non-single diffractive (NSD) aspects of high energy \(PP \) collisions 1, 24 and \(P\bar{P} \) data 22. It is precisely the energy dependence of the cross-sections and multiplicities of the NN input that led to our successful prediction 2, 3 of the rather small (13%) increase in \(dN^{ch}/d\eta \) between \(\sqrt{s} = 130 \) and \(\sqrt{s} = 200 \) A GeV, seen in the PHOBOS data 20.

A history of the collisions that occur between nucleons as they move along straight lines in stage I is recorded and later used to guide determination of multiplicity. Collision driven random walk in \(p_T \) fixes the \(p_T \) to be ascribed to the baryons at the start of stage II. The overall multiplicity, however, is subject to a modification, based, as we believe on natural physical requirements 6. If a sufficiently hard process, for example Drell-Yan production of a lepton pair at large mass occurred, it would lead to a prompt energy loss in stage I. Hard quarks and gluons could similarly be entered into the particle lists and their parallel progression followed. This has not yet been done. One viewpoint and justification for our approach is to say we attempt to ignore the direct effect of colour on the dynamics, projecting out all states of the combined system possessing colour. In such a situation there should be a duality between quark-gluon or hadronic treatments.

The collective/parallel method of treating many NN collisions between the target and projectile is achieved by defining a group structure for interacting baryons. This is best illustrated by considering a prototype proton-nucleus (P+A) collision. A group is defined by spatial contiguity. A proton at some impact parameter \(b(x) \) is imagined to collide with a corresponding ‘row’ of nucleons sufficiently close in the transverse direction to the straight line path of the proton, i.e., within a distance corresponding to the NN cross-section. In a nucleus-nucleus (A+B) collision this procedure is generalized by making two passes: on the first pass one includes all nucleons from the target which come within the given transverse distance of some initial projectile nucleon, then on the second pass one includes for each target nucleon so chosen, all of those nucleons from the projectile approaching it within the same transverse distance. This totality of mutually colliding nucleons, at more or less equal transverse displacements, constitute a group. The procedure partitions target and projectile nucleons into a set of disjoint interacting groups as well as a set of non-interacting spectators in a manner depending on the overall geometry of the A+B collision. Clearly the largest groups in P+A will, in this way, be formed for small impact parameters \(b \); while for the most peripheral collisions the groups will almost always consist of only one colliding NN pair. Similar conclusions hold in the case of A+B collisions.

In stage II of the cascade we treat the entities which rescatter as prehadrons. These prehadrons, both baryonic or mesonic in type, are not the physical hadron resonances or stable particles appearing in the particle data tables, which materialise after hadronisation. Importantly prehadrons are allowed to interact starting at early times, after a short production time 27, nominally the target-projectile crossing time \(T_{AB} \sim R_{AB}/\gamma \). The mesonic prehadrons are imagined to have (q\bar{q}) quark content and their interactions are akin to the dipole interactions included in models relying more closely on explicit QCD 27, 28, but are treated here as colourless objects.

Some theoretical evidence for the existence of comparable colourless structures is given by Shuryak and Zahed 29 and by certain lattice gauge studies 30. In these latter works a basis is established for the persistence of loosely bound or resonant hadrons above the QCD critical temperature \(T_c \) to \(T \sim (1.5 - 2.0) \times T_c \). This implies a persistence to much higher transverse energy densities \(\rho(E) \sim (1.5 - 2.0)^4 \rho_c \), hence to the early stages of a RHIC collision. Accordingly we have incorporated into stage II hadron sized cross-sections for the interactions of these prehadrons, although early on it may in fact be difficult to distinguish their colour content. Such larger cross-sections indeed appear to be necessary for the explanation of the apparently large elliptical flow parameter found in measurements 31, 32.

The prehadrons when mesonic may consist of a spatially close, loosely correlated quark and anti-quark pair, are given a mass spectrum between \(m_\pi \) and 1 GeV, with correspondingly higher upper and lower limits allowed for prehadrons including strange quarks. The Monte-Carlo selection of masses is then governed by a Gaussian distribution,

\[
P(m) = \exp(- (m - m_0)^2 / w^2),
\]

(3)
with m_0 a selected center for the prehadron mass distribution and $w = m_0/4$ the width. The non-strange mesonic prehadrons is taken at $m_0 \sim 500$ MeV, and for strange at $m_0 \sim 650$ MeV. Small changes in m_0 and w have little effect since the code is constrained to fit hadron-hadron data.

Too high an upper limit for m_0 would destroy the soft nature expected for most prehadron interactions when they finally decay into `stable' mesons. The non-strange mesonic prehadrons is taken at $m_0 \sim 500$ MeV, and for strange at $m_0 \sim 650$ MeV. Small changes in m_0 and w have little effect since the code is constrained to fit hadron-hadron data. Too high an upper limit for m_0 would destroy the soft nature expected for most prehadron interactions when they finally decay into `stable' mesons. The code is constrained to fit hadron-hadron data.

Creating these intermediate degrees of freedom at the end of stage I simply allows the original nucleons to distribute their initial energy-momentum across a larger basis of states or Fock space, just as is done in string models, or for that matter in partonic cascade models. Eventually, of course, these intermediate objects decay into physical hadrons and for that purpose we assign a uniform decay width $\sim \Gamma/f$, which then plays the role of a hadronisation or formation time.

B. Groups

Energy loss and multiplicity in each group of nucleons is estimated from the straight line collision history. To repeat, transverse momentum of prebaryons is assigned by a random walk having a number of steps equal to the number of collisions suffered. The multiplicity of mesonic prehadrons cannot be similarly directly estimated from the number of NN collisions in a group. We argue $\ddagger\ddagger$ that only spatial densities of generic prehadrons $\ddagger\ddagger\ddagger$ below some maximum are allowable, viz. the prehadrons must not overlap spatially at the beginning of stage II of the cascade. The KNO scaled multiplicity distributions, present in our NN modeling are sufficiently long-tailed that imposing such a restriction on overall multiplicity can for larger nuclei affect results even in P+A or D+A systems. In earlier work $\ddagger\ddagger\ddagger$ the centrality dependence of $dN/d\eta$ distributions for RHIC energy Au+Au collisions was well described with such a density limitation on the prehadrons.

Importantly, the cross-sections in prehadronic collisions were assumed to be the same size as hadronic, e. g. meson-baryon or meson-meson etc., at the same center of mass energy, thus introducing no additional free parameters into the model. Where the latter cross-sections or their energy dependences are inadequate known we employed straightforward quark counting to estimate the scale. In both SPS Pb+Pb and RHIC Au+Au events at several energies it was sufficient to impose this constraint at a single energy. The inherent energy dependence in the KNO-scaled multiplicities of the NN inputs and the geometry then take over.

C. High Transverse Momenta

One question which has yet to be addressed concerns the high p_{\perp} tails included in our calculations. In principle, LUCIFER is applicable to soft processes i. e. at low transverse momentum. Where the cutoff in p_{\perp} occurs is not readily apparent. In any case we can include high p_{\perp} meson events through inclusion in the basic hadron-hadron interaction which is of course an input rather than a result of our simulation. Thus in Fig(2) we display the NSD $(1/2\pi p_{\perp})(d^2 N^{charged}/dp_{\perp} d\eta)$ from UA1 \ddagger. One can use a single exponential together with a power-law tail in p_{\perp}, or alternatively two exponentials, to achieve a fit of the output in PP to UA1 $\sqrt{s}=200$ GeV data. A sampling function of the form

$$f = p_{\perp}(aexp(-p_{\perp}/w) + b/(1 + (r/\alpha)^\beta)),$$

(4)

gives a satisfactory fit to the PP data in the Monte-Carlo.

This PP p_{\perp} spectrum, inserted into the code, is then applied to the meson p_{\perp} distribution in D+Au. No correction is made for possible energy loss in stage I, an assumption parallel to that made by the BRAHMS and all other RHIC experiments, in analysing p_{\perp} spectra and multiplicities irrespective of low or high values. Since we impose energy-momentum conservation in each group, a high p_{\perp} particle having say, several GeV/c of transverse momentum, must be accompanied in the opposite transverse direction by one or several compensating mesons. Such high-p_{\perp} particles are not exactly jets, to the extent that they did not originate in our simulation from hard parton-parton collisions, but they yield the same observable experimental behaviour.
The final operation in stage I is to set the initial conditions for the hadronic cascade in stage II. The energy-momentum taken from the initial baryons and shared among the produced prehadrons is established and an upper limit placed on the production multiplicity of prehadrons and normal hadrons. A final accounting of energy sharing is carried out through an overall 4-momentum conservation requirement. We emphasize that this is carried out separately within each group of interacting nucleons.

The spatial positioning of the particles at this time could be accomplished in a variety of ways. We have chosen to place the prehadrons in each group inside a cylinder, initially having the longitudinal size of the nucleus, for a P+A collision, and having the longitudinal size of the interaction region at time T_{AB} in an A+B collision, then allowing the cylinder to evolve freely according to the longitudinal momentum distributions, for a fixed time τ_f, defined in the rest frame of each group. At the end of τ_f the multiplicity of the prehadrons is limited so that, if given normal hadronic sizes $\sim (4\pi/3)(0.8)^3$ fm3, they do not overlap within the cylinder.

Up to this point longitudinal boost invariance is completely preserved, since stage I is carried out using straight line paths. The technique of defining the evolution time in the group rest frame is essential to minimizing residual frame dependence which inevitably arises in any cascade, hadronic or partonic, when transverse momentum is considered due to the finite size of the colliding objects implied by their non-zero interaction cross-sections.

III. STAGE II: FINAL STATE CASCADE

Stage II is as stated a straightforward cascade in which the prehadronic resonances interact and decay as do any normal hadrons present or produced during this cascade. Appreciable energy having being finally transferred to the produced particles these ‘final state’ interactions occur at considerably lower energy than the initial nucleon-nucleon collisions of stage I. As pointed out, during stage II the interaction and decay of both prehadrons and hadrons is allowed. In the case of D+Au, although less abundant than with a more massive projectile, these final state interactions are as we will see, nevertheless still of some relevance.

We are then in a position to present results for D+Au collisions. These appear in Fig(1), as previously referred to, and Figs(2–6), some of which are comparisons with the measurements of both BRAHMS and PHOBOS [2,8]. In fact the plot of experimental data in Fig(1) is from PHOBOS [2]. This PHOBOS reference also exhibits comparisons with several theoretical calculations [4, 57, 37, 38]. Two of these references [37, 38], describe much of the measured η-distribution at negative η near the target, while one [38] apparently accounts for the extreme backward tail; this is a subject to which we will return.

The initial conditions created to start the final cascade could have perhaps been arrived at through more traditional, perhaps partonic, means. The second stage would then still proceed as it does here. We reiterate that our purpose has been to understand to what extent the results seen in Figures (1-7) are affected by stages I and II separately.

IV. RESULTS: COMPARISON WITH DATA

Fig(3) contains the simulated charged transverse momenta spectra for D+Au at $\eta = (0, 3.2)$ alongside the UA1 data. The many orders of magnitude fall in p_\perp densities with rapidity is apparent. Aside from low p_\perp the D+Au curves for increasing p_\perp appear roughly parallel to PP; small but interesting deviations show up when the ratios previously defined are displayed. Additionally, direct integration of the spectra indicates that $\geq 90\%$ of the charged rapidity densities result from $p_\perp \leq 0.7$ GeV/c. Having built in no energy loss effects on these p_\perp distributions in the initial state, that a similar fall off obtains in both D+Au and PP is all but preordained, and the overall ratio between $\eta = 0.0$ and $\eta = 3.2$ seems to be driven completely by low p_\perp physics. In fact the multiplicity choice at given pseudorapidity and transverse momentum is only mildly influenced by p_\perp dependence aside from that already present in the PP input.

In Fig(4) the calculated LUCIFER ratios $R[DAu/PP]$ are plotted alongside those for BRAHMS [2] at both $\eta = 0$ and $\eta = 3.2$. The theoretical results are obtained using $N_{coll} = 7.0$ rather than the value closer to 7.2 employed by BRAHMS. Our calculation of the average number of collisions in minimum-bias D+Au, defined as $b \leq 16$ fm, is approximately 7.0. The Cronin affect is evident in the calculated $\eta = 0$ spectrum, less so for $\eta = 3.2$. This is not unexpected.
A. Jet Suppression

A very interesting result is obtained by turning off the final cascade, i.e. stage II. Then the prehadrons produced in stage I evolve or decay into stable particles after the time $\tau_f \sim 1/(\Gamma)$ and do not otherwise suffer interaction. This situation is described in Fig(5), where it is clear that the magnitude of the Cronin enhancement of dN/dp_\perp is considerably magnified. This enhancement is then very much a creature of I, i.e. a product of the transverse momentum gained in collisions with nucleons in the target. Incidentally, Fig(5) also indicates that a compensating increase in transverse momentum density occurs at the lowest p_\perp.

One might well turn this around and declare that the final state scattering of a given prehadron with comovers has cut down the Cronin effect. This is an appreciable reduction which suggests the applicability of the term ‘jet suppression’, a reduction which indeed constitutes final state suppression. The change in p_\perp spectra is considerably less for $\eta \sim 3$ where Fig(1) indicates considerably less comovers are present, and indeed the Cronin enhancement is less evident at the more forward η.

The spillover of such stage II comovers decreases with increasing distance from the target pseudorapidities. The Cronin rise is itself less evident at forward η, the ratio $R_{[DAu/PP]}$ is flatter as a function of p_\perp. Indeed as η increases the p_\perp spectra approach to the PP spectra. This is again easily understandable: the most peripheral collisions involving the least number of participants will contribute more strongly to more forward rapidities. Both the unrenormalised theoretical and measured D+Au curves appear to merge with PP at the largest pseudorapidities shown in Fig(1). One expects to see a corresponding behaviour with decreasing centrality and decreasing participant nucleon number.

B. Centrality Dependence of $R_{[DAu/PP]}$

A similar theme then is repeated in Fig(6) where the p_\perp spectra for two quite different degrees of centrality differ markedly; the disparate centralities are defined by $b \leq 4$ fm and $b = 8$ fm. The η dependence exhibited for $b = 8$ fm, a clearly peripheral geometry, is very muted with both $\eta = 0$ and $\eta = 3$ showing a strong resemblance to the PP $\eta = 0$ data. The more central choice, $b \leq 4$, is subject to quite strong pseudo-rapidity variation. This explains at least qualitatively, the behaviour of the second ratio BRAHMS focuses on, i.e. $R_{[x]}$. The crossover of this ratio with centrality as a function of η is explained by the much flatter dependence in η discussed here. The differing number N_{coul} then must be invoked to complete the picture but it plays only a passive role, the flattening of the p_\perp-distribution already evident in Fig(6) for widely differing centralities or impact parameter plays the essential role.

V. CONCLUSIONS

It is hard to conclude definitively from what is presented here that the gluon saturation \cite{34,35} and attendant colour-glass-condensate interpretation \cite{36} of the BRAHMS data is not a more fundamental explanation of the measurements discussed here. Certainly the low-x basis for this modeling is related to the increasing η picture presented here, and perhaps the gluon saturation aspect of that approach is mirrored in, and underpins, the prehadron multiplicity limitation employed above.

It would seem however that the direct attempt at a PQCD explanation of this behaviour must claim that, at the very least, all soft mesons are produced in essentially hard collisions. The presentation here provides an interesting case for relying on essentially soft, low p_\perp, processes to produce the major features of the BRAHMS data. True enough, the high p_\perp tails in distributions are merely tacked on in our approach, but legitimately so by using the PP data as input to the nucleus-nucleus cascade. The PP dN/dp_\perp variation with p_\perp to a large extent drives the multiplicity generation in D+Au, altering only slightly the hard η-dependent ratio from the soft. One only need add the assumption that the p_\perp tails in D+Au do not exhibit any drastic non-monotonic behaviour.

The nascent appearance of appreciable high p_\perp suppression, especially in our $\eta=0$ spectrum seen in Fig.5, suggests that enhanced suppression will occur in a full Au+Au collision. Whether the complete, or an appreciable fraction of, jet suppression seen in RHIC experiments can be explained by final state interactions remains to be established. We note that C. Greiner and coauthors \cite{21} and Cassing \cite{22} have commented forcefully on precisely this point, also in a hadron-based cascade setting.

We indicated we would return to the target pseudorapidity region. It is of direct relevance to do this for discussion of specifics in D+Au but also for the implications for Au+Au and other complex systems. For the deuteron projectile PHOBOS data not only extends further backward than other experiments or calculations, but also exhibits a feature, perhaps a shoulder, near where our calculations exhibit a peak in the charged baryons (see Fig(1)). It would clearly be of some import to have particle identification in the present measurements of η and p_\perp distributions. Considering
the D+Au system, one notes that transverse momentum distributions near the target, or further back in η, are significantly softer, again possibly anticipating high p_T suppression to be associated with the symmetric massive ion collisions.

[1] G. Ekspong for the UA5 Collaboration, Nucl. Phys.A461, 145c (1987); G. J. Alner for the UA5 Collaboration, Nucl. Phys.B291, 445 (1987).
[2] B. B. Back et al., the PHOBOS Collaboration, Phys. Rev. Lett.91, 072302-1 (2003); B. B. Back et al., the PHOBOS Collaboration, nucl-ex/0311009, Nov. 2003;
[3] I. Arsene et al., the BRAHMS Collaboration, nucl-ex/0307003; I. Arsene et al., the BRAHMS Collaboration, nucl-ex/0403050; I. Arsene et al., the BRAHMS Collaboration, nucl-ex/0403050.
[4] J. W. Cronin et al., Phys. Rev.D91, 3105 (1979).
[5] D. E. Kahana and S. H. Kahana, Proceedings, RHIC Summer Study'96, BNL, July 8-19, 1996; D. E. Kahana and S. H. Kahana, Phys. Rev. C58, 3574 (1998); Phys. Rev. C59, 1651 (1999).
[6] D. E. Kahana, S. H. Kahana, Phys. Rev. C63, 031901 (2001).
[7] Proc. International Conference on the Physics of the Quark-Gluon Plasma, Ecole Polytechnique, Palaiseau, France, Sept. 4-7, 2001; D. E. Kahana, S. H. Kahana, nucl-th/0208063.
[8] H. Stoecker and W. Greiner, Phys. Rep. 137, 277 (1986; R. Matiello, A. Jahns, H. Sorge and W. Greiner, Phys. Rev. Lett. 74, 2180 (1995).
[9] H. Sorge, Phys. Rev. C52, 3291 (1995).
[10] S. A. Bass et al., Nucl. Phys. A661, 205 (1999).
[11] B. Andersson, G. Gustafson, G. Ingleman, and T. Sjostrand, Phys. Rep. 97, 31 (1983); B. Andersson, G. Gustafson, and B. Nilsson-Almqvist, Nucl. Phys. B281, 289 (1987).
[12] A. Capella and J. Tran Van, Phys. Lett. B93, 146 (1980) and Nucl. Phys. A461, 501c (1987); A. Capella et al., nucl-th/0405067 and hep-ph/0403081.
[13] K. Werner, Z. Phys. C42, 85 (1989); K. Werner, J. Aichelin, Phys. Rev. Lett. 76 (1996) 1027-1030; H. J. Drescher, M. Hladik, S. Ostapchenko, K. Werner, Proc. of the “Workshop on Nuclear Matter in Different Phases and Transitions”, Les Houches, France, March 31 - April 10, 1998; K. Werner Invited lecture, given at the Pan-American Advanced Study Institute “New States of Matter in Hadronic Interactions” Campos de Jordao, Brazil, January 7-18, 2002, hep-ph/0206111.
[14] B. Zhang, C. M. Ko, B-A. Li, Z. Lin, nucl-th/9904076; Zi-wei Li and C. m. Ko, Phys. Rev. C68, 054904 (2003); Zi-wei Li et al, Nucl. Phys. A698, 373-378 (2002).
[15] J. Ranft and S. Ritter, Z. Phys. C27, 413 (1985); J. Ranft Nucl. Phys. A498, 111c (1989).
[16] D. Boal, Proceedings of the RHIC Workshop I, (1985) and Phys. Rev.C33, 2206 (1986).
[17] K. J. Eskola, K. Kajantie and J. Lindfors, Nucl. Phys. B323, 37 (1989).
[18] X.-N. Wang and M. Gyulassy, Phys. Rev. D44, 3501 (1991); X.-N. Wang, nucl-th/000814 and nucl-th/0405029 X.-N. Wang [hep-ph/0405125].
[19] K. Geiger and B. Mueller Nucl. Phys. B369, 600 (1992); K. Geiger Phys. Rev. D46, 4965 and 4986 (1992); K. Geiger, Proceedings of Quark Matter '83, Nucl. Phys. A418, 257c (1984); K. Geiger, Phys. Rev. D 51, 2345 (1995).
[20] S. A. Bass, B. Mueller and D. K. Srivastava, Phys. Rev. Lett. B 55, 277 (2003); S. A. Bass et al., Nucl. Phys. A661, 205 (1999).
[21] K. Gallmeister, C. Greiner and Z. Xu, Phys. Rev. C67, 044905 (2003).
[22] W. Cassing, K. Gallmeister, C. Greiner Nucl. Phys. A735, 277-299 (2000); J. Geiss, C. Greiner, E. Bratkovskaya, and U. Mosel, Phys. Lett. B447, 31 (1999).
[23] K. Goulianos, Phys. Rep. 101, 189 (1983).
[24] C. Albajar et al., the UA1 Collaboration, Nucl. Phys. B335, 261-287 (1990).
[25] Y. Eisenberg et al., Nucl. Phys. A461, 145c (1987) G. J. Alner et al., Nucl. Phys. B 291, 445 (1987); F. Abe et al., Phys. Rev. D41, 2330 (1990).
[26] B. B. Back et al., the PHOBOS Collaboration, Phys. Rev. Lett. 88,223202 (2002).
[27] B. Z. Kopeliovich et al., hep-ph/030120, Nucl. Phys. A (in press).
[28] A. H. Mueller, Eur. Phys. J. A1, 19 (1998).
[29] E. V. Shuryak and I. Zahed, hep-ph/0307267 and hep-th/0308073.
[30] S. Datta, F. Karsch, P. Petreczky and T. Wetzorke, hep-lat/0208012, hep-lat/0403017, hep-lat/0309012.
[31] D. Molnar and M. Gyulassy, nucl-th/0102031, nucl-th/0104018; D. Molnar, Talk presented at workshop on “Creation and Flow of Baryons in Hadronic and Nuclear Collisions”, ECT, Trento, Italy, May 3-7, 2004 (unpublished).
[32] S. S. Adler et al., the PHENIX Collaboration, Phys. Rev. Lett. 91, 182301 (2003); C. Adler et al., the STAR Collaboration, Phys. Rev. Lett. 87, 182301 (2001). S. Manly, the PHOBOS Collaboration, Proceedings of the 29th Winter workshop on Nuclear Dynamics, Trelawney Beach, Jamaica, March 15-20, 2003.
[33] K. Gottfried, Phys. Rev. Lett. 32, 957 (1974); and Acta. Phys. Pol B33, 769 (1972).
[34] L. V. Gribov, E. M. Levin and M. G. Ryskin, Phys. Rep. 100, 1 (1983); Nucl. Phys. B388, 555 (1981); A. H. Mueller and J. Qiu, Nucl. Phys. B268, 427 (1986); E. M. Levin and M. G. Ryskin, Phys. Rep. 189, 267 (1990).
[35] L. McLerran and R. Venugopalan, Phys. Rev. D 49, 2223 (1994); Phys. Rev. D 59, 094002 (1999); D. Kharzeev, E. Levin and L. McLerran, Phys. Lett. B 561, 93 (2003).

[36] D. Kharzeev, E. M. Levin and L. McLerran, hep-ph/0210332 (2002); L. McLerran, hep-ph/0402137 (2004); D. Kharzeev, E. M. Levin and L. McLerran, hep-ph/0403271 (2004).

[37] M. Gyulassy and X. N. Wang, Comp. Phys. Comm. 83, 307 (1994).

[38] Zei-wei Lin and C. M. Ko, nucl-th/0301025.
FIG. 1: D+Au Pseudorapidity spectra: Direct comparison of PHOBOS minimum bias data with LUCIFER simulation, the latter for ble16 fm. Two calculations are shown, slightly differently normalized, one for which the average prehadron decays into 3.15 observed mesons and one for which this number is 3.8. Both are only slightly above that expected for pure NN production, indicating some calculated events exceed the multiplicity constraint discussed in the text. The absence of collision number divisors is instructive, revealing both the considerable production of final state mesons at $\eta=0$, in excess of PP, and the apparent asymptotic approach of both data and calculation to PP at the largest observed η.
FIG. 2: Transverse Momentum Spectra: UA1 vs LUCIFER. The basic input of both low and high p_t for simulations obtained from a fit to the SPS data from the UA1 Collaboration [24].
FIG. 3: The simulated charged transverse momenta spectra for $D + Au$ at $\eta = (0, 3.0)$ alongside the UA1 data. Fits to the LUCIFER calculations, used to interpolate the simulation are shown. These are made with the combination of a single exponential at low p_T and a power law at higher values.
FIG. 4: Minimum Bias RDAu/PP for $\eta=(0,3.2)$: The BRAHMS results are compared to the collision number-normalized calculations. The latter are obtained using the results in Fig.3 with $N_{\text{coll}}=7.0$, compared to the BRAHMS choice 7.2 ± 0.3. The presence of a Cronin effect is clear, with however a flatter p_T dependence obtaining for the larger η.
FIG. 5: Effect of the Final State Hadronic Cascade. The Cronin enhancement of $d^2N/d\eta dp_{t}$ for $\eta=0$ is markedly reduced by the second stage of LUCIFER. For larger p_{t} one might refer to this phenomenon as final state ‘jet’ suppression. The diminution is muted for larger η. For more massive ion-ion collisions one can expect a considerably greater reduction.
FIG. 6: Centrality Dependence of R{DAu/PP}. The two sets of $\eta=(0,3.2)$ transverse momentum distributions for one central $b \leq 4.0$ and one more peripheral impact parameter $b=8.0$ are displayed against the UA1 PP data. Evidently the η dependence is strong for the central choice and virtually vanishing for the peripheral collision, with the latter distributions closely matching UA1.