Assessment of the influence of interference on the sliding mode observer

R Zhiligotov*, V Davydov
Peter the Great St.Petersburg Polytechnic University, St.Petersburg, Polytechnicheskaya 29, 195251, Russia
* E-mail: zhiligotov@gmail.com

Abstract. The article presents the results of studying the effect of interference on the sliding mode observer. The effect of interference in the lines feeding the engine is evaluated. The measured interference is present in the current signal. The operation of a sliding observer of the position and speed of the rotor of a permanent magnet synchronous motor is described. This observer is used as part of a sensorless vector drive control system. The presented version of the motor state observer is implemented by creating a model in the Matlab Simulink software package and tested on the bench using a 200W motor. The aim of the work is to develop an observer who is resistant to drive parameter changes.

1. Introduction
The use of permanent magnet synchronous motors (PMSM) has recently become increasingly common [1-5]. At the moment, the most widely spread systems are vector control PMSM. Vector control is widely used in processes where precise maintenance of speed or moment is necessary and ensures the absence of moment ripple, unlike DTC systems (direct torque control). A feature of this work is also the use of state observers based on the sliding mode. They have a number of attractive properties in terms of building automatic control systems. Vector control is quite demanding - current sensors, rotor position sensors are needed. For tasks where it is not possible to measure the speed and position of the rotor, sensorless control is used. To do this, an observer is added to the classical vector control structure, whose task is to calculate the position of the PMSM rotor from the measured currents in the lines feeding the motor. The data line is influenced by electromagnetic interference.

2. Model of the sliding mode observer
The considering the processes occurring in the PMSM, these equations should be used [6-10]:

\[\Psi_d' = \Psi_r + L_s \cdot i_d \]

\[\Psi_q' = L_s \cdot i_q \]

\[U_d = R_s \cdot i_d + L_s \frac{di_d}{dt} - \omega \Psi_q \]
\[U_q = R_s \cdot i_q + L_s \frac{di_q}{dt} + \omega \Psi_d \]
(4)

Electromagnetic moment in axes «\(\alpha, \beta \)»:

\[M = \Psi_\alpha \cdot i_\beta - \Psi_\beta \cdot i_\alpha \]
(5)

in axes «d,q»:

\[M \left[(\Psi_d \cdot i_q - \Psi_q \cdot i_d) \right] = \Psi_r \cdot i_q + L_s \cdot i_d \cdot i_q - L_s \cdot i_q \cdot i_d = \Psi_r \cdot i_q \]
(6)

One of the most common methods for calculating the position of the rotor is the method of determining the back-EMF [11, 12]. This approach uses the relationship between back EMF and the position of the rotor. Its essence is to calculate the spatial vector of back-EMF, which will allow to determine the angle of the rotor position. In the dq reference system, which is connected with the rotor, the rotor flux linkage vector is aligned with the d axis, and the back-EMF is always co-directed with the q axis [12-21]. Thus, the rotor positions can be calculated by projecting the back-EMF vector from the dq-system into the stationary reference system (\(\alpha \beta \)-axis). According to expressions (1) - (6), the projections on the \(a \) and \(b \) axes of the back-EMF vector can be defined as:

\[e_a = \omega \Psi_m \sin \theta = -U_a + R_i a + L \frac{di_a}{dt} \]

\[e_b = \omega \Psi_m \sin \theta = -U_b + R_i b + L \frac{di_b}{dt} \]
(7)

Accordingly, the position of the rotor can be calculated from the formula:

\[\theta = \arctan \frac{e_a}{e_b} \]
(8)

We presume that the voltage on the stator is known. It is formed in the control system of the reference signals, and fed to the motor by means of an autonomous voltage inverter (AIN) with pulse-width modulation (PWM). Currents in the lines supplying the motor and stator voltages can be converted to a fixed coordinate system using the Clark transformation. We will form an observer in axes \(\alpha, \beta \), from equations 3,4,7 we can write the following expressions:

\[\frac{d}{dt} i_{s\alpha} = \frac{R_s}{L} i_{s\alpha} + \frac{1}{L} (v_{s\alpha} - e_{s\alpha}) \]

\[\frac{d}{dt} i_{s\beta} = \frac{R_s}{L} i_{s\beta} + \frac{1}{L} (v_{s\beta} - e_{s\beta}) \]
(9)

The switching surface will represent a rich or sigmoid function.
Figure 1. Switching surfaces a) - linear function with saturation, b) – sigmoid.

Linear function with saturation is described by the relations:

\[
s = \begin{cases}
 \frac{s}{\varepsilon}, & \text{if } |s| \leq \varepsilon \\
 \text{sign}(s), & \text{if } |s| > \varepsilon
\end{cases}
\]

(10)

3. Analysis of the simulation results

Let us make a simulation of the operation of the control system in the presence of noise in the measured signals of the current of the lines feeding the engine. To do this, we simulate the presence of interference by adding white noise to the signals of the motor phase phases at a level of 10% of the amplitude value of the current. In Figure 2 shows the oscillograms of currents in the fixed coordinate system α, β.

Figure 2. Oscillograms of currents in axes α, β in the presence of white noise at the level of 10%.
In the presence of white noise in the measuring channels, an increase in the error in the calculation of the rotor position angle is observed. The error in calculating the rotor angle in the presence of white noise at a level of 10% is shown in Figure 3.

Figure 3. Oscillogram of the error of calculating the rotor angle in the presence of white noise in the signals of the motor stator currents.

4. Conclusion
Based on the existing theory of sliding modes, the observer state structure of a synchronous motor with permanent magnets has been developed. Based on the structure obtained, a model of a state observer in Matlab Simulink was developed. The results presented in Figure 2, Figure 3 allow us to conclude about the possibility of using this observer in robustness problems to the parameters drift in a wide range - the range shown in the figures covers the possibility of changing the specified parameters in the practical application of the algorithm.

References
[1] Zhukovskiy Y L, Korolev N A, Babanova I S and Boikov A V 2017 The prediction of the residual life of electromechanical equipment based on the artificial neural network IOP Conf. Series: Earth and Environmental Science 87 032056
[2] Zhiligotov R I and Frolov V Y 2017 Development of the sensorless control system BLDC motor Proceedings of the 2017 IEEE Russia Section Young Researchers in Electrical and Electronic Engineering Conference, ElConRus 2017 7910749 1109–11
[3] Frolov V Y, Neelov A A, Zhiligotov R I and Bystrov A V 2018 Identification of the protection parameters of the local electrical network taking into account the detuning of the inrush current Proceedings of the 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, ElConRus 2018 626–8
[4] Frolov V Y and Zhiligotov R I 2018 Development of a sensorless vector control system for permanent magnet synchronous motors in Matlab Simulink Notes of the Mining Institute 229 92–7
[5] Zhukovskiy Y, Korolev N and Koteleva N 2018 About increasing informativity of diagnostic system of asynchronous electric motor by extracting additional information from values of consumed current parameter Journal of Physics: Conference Series 1015(3) 032158
[6] Chen Z, Tomita M, Doki S and Okuma S 2003 An extended electromotive force model for sensorless control of interior permanent magnet synchronous motors IEEE Trans. Industrial
Drakunov S V 1992 Sliding-mode observers based on equivalent control method Proceedings of the 31st Conference on Decision and Control, Tucson, Arizona 2368–9

Ortega R, Praly L, Astolfi A, Lee T and Nam K 2010 Estimation of rotor position and speed of permanent magnet synchronous motors with guaranteed stability Control Systems Technology, IEEE Transactions on 99 1–13

Edwards C and Spurgeon S K 1994 On the development of discontinuous observers International Journal of Control 59 1211–29

Edwards C and Spurgeon S K 1996 Robust output tracking using a sliding-mode controller/observer scheme International Journal of Control 64 967–83

Edwards C and Spurgeon S K 1997 Sliding-mode output tracking with application to a multivariable high temperature furnace problem International Journal of Robust and Nonlinear Control 7 337–51

Edwards C and Spurgeon S K 1998 Sliding mode control: theory and applications (Abington-on-Thames: Taylor& Francis) p 237

Edwards C and Spurgeon S K 2000 A sliding-mode control observer based FDI scheme for the ship benchmark European Journal of Control 6 341–56

Edwards C, Spurgeon S K and Patton R J 2000 Sliding-mode observers for fault detection Automatica 36 541–53

Janiszewski D 2004 Extended Kalman filter estimation of mechanical state variables of a drive with permanent magnet synchronous motor Studies in Automation and Information Technology 28/29 79–90

Morimoto S, Kawamoto K, Sanada M and Takeda Y 2011 Sensorless control strategy for salient-pole PMSM based on extended EMF in rotating reference frame Proc. 2001 IEEE IAS Annual Meeting 42637–44

Pacas M 2011 Sensorless drives in industrial applications IEEE Industrial Electronics Magazine 5(2) 16–23

Pillay P and Krishnan R 1988 Modeling of permanent magnet motor drives IEEE Transactions on Industrial Electronics 35 537–41

Trzynadlowski A M, Kirlin R L and Legowski S F 1997 Space vector PWM technique with minimum switching losses and a variable pulse rate IEEE Transactions on Industrial Electronics 44(2) 173–81

Utkin V I 1993 Sliding mode control design principles and applications to electric drives IEEE Transactions on Industry Electronics 40 23–36

Utkin V I, Guldner J, and Shi J 1999 Sliding mode control in electromechanical systems (Abington-on-Thames: Taylor& Francis) p 325