Research Article

An Improved Biometrics-Based Remote User Authentication Scheme with User Anonymity

Muhammad Khurram Khan\(^1\) and Saru Kumari\(^2\)

\(^1\) King Saud University, P.O. Box 92144, Riyadh 11653, Saudi Arabia
\(^2\) Department of Mathematics, Agra College, Agra, Dr. B. R. A. University, Agra, Uttar Pradesh 282002, India

Correspondence should be addressed to Muhammad Khurram Khan; mkhurram@ksu.edu.sa

Received 4 August 2013; Accepted 2 September 2013

Academic Editor: Sabah Mohammed

Copyright © 2013 M. K. Khan and S. Kumari. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The authors review the biometrics-based user authentication scheme proposed by An in 2012. The authors show that there exist loopholes in the scheme which are detrimental for its security. Therefore the authors propose an improved scheme eradicating the flaws of An’s scheme. Then a detailed security analysis of the proposed scheme is presented followed by its efficiency comparison. The proposed scheme not only withstands security problems found in An’s scheme but also provides some extra features with mere addition of only two hash operations. The proposed scheme allows user to freely change his password and also provides user anonymity with untraceability.

1. Introduction

In the last two decades, digital authentication has originated as a preferred method to authenticate remote users over insecure networks. After the first proposal of user authentication scheme by Lamport [1], considerable amount of research has been conducted in this field of which schemes [1–25] are few examples. In due course of time user authentication schemes underwent many changes. Initial schemes were based only on password [1–4], then schemes were based on smart card and password [5–13], and reliability of biometrics authentication over traditional password-based authentication gave rise to biometrics-based user authentication schemes [14–20].

In 2010, Li and Hwang [19] proposed a biometrics-based user authentication scheme. In 2011, Das [26] examined Li-Hwang’s scheme and observed problems in login and authentication phase, and in biometrics verification mechanism of the scheme. Das depicted that user’s smart card does not validate the inputted password during login phase which leads to useless computations in login and authentication phase. Owing to the same reason, Das further showed that the scheme suffers from incorrect password updating problem. Thus, Das proposed an improvement [26] of Li-Hwang’s scheme and claimed their scheme to be free from problems observed in Li-Hwang’s scheme. According to Das, their scheme [26] also provides mutual authentication. In 2012, An [27] pointed out that Das’s scheme [26] deviates from the author’s claim since an adversary can mount impersonation attacks and password guessing attack once he gets a chance to extract values from the smart card of the legal user. Thereby An [27] proposed an enhanced scheme to eradicate the flaws of Das’s scheme.

In this paper, we review An’s biometrics-based user authentication scheme. We show that An’s scheme is vulnerable to the security problems to which Das’s scheme is susceptible like online and offline password guessing attacks, user and server impersonation attacks, lack of mutual authentication, and lack of user anonymity. Besides, An’s scheme lacks password change facility which is an important part of password-based user authentication schemes. We remove drawbacks from An’s scheme by means of proposing an improved user authentication scheme. In addition, to resist various security threats, the proposed scheme incorporates features of password changing and user anonymity. The rest of this paper is arranged as follows. In Section 2, we review An’s user authentication scheme. Section 3 is about cryptanalysis of An’s scheme. In Section 4, we present our improved scheme. Section 5 is about security analysis of the improved...
scheme. In Section 6, we compare the improved scheme with related schemes. Finally, the conclusion is presented in Section 7.

2. Review of An’s Scheme

The notations useful in this paper are summarized along with their description in Table 1. In this section, we review An’s scheme [27] which is an enhanced version of Das’s scheme [26]. It has three phases: registration phase, login phase and authentication phase. Registration phase is carried over a secure channel whereas login phase, and authentication phase are carried over an insecure channel. There are three participants in the scheme, the user (Ci), the server (Si), and the registration centre (R), where R is assumed to be a trusted party. Details of each phase are given in the following subsections.

2.1. Registration Phase. In the beginning of scheme, the registration centre R and the user Ci carry out this phase involving the following steps.

(1) Ci submits his identity IDi and information (PWi ⊕ Ki) containing password to R via a secure channel. Ci also submits information (Bi ⊕ Ki) containing his biometrics via the specific device to R; here Ki is a random number chosen by Ci.

(2) R computes fi = h(Bi ⊕ Ki), ri = h(PWi ⊕ Ki) ⊕ fi, and ei = h(IDi ⊕ xi) ⊕ ri, where xi is a secret key generated and maintained by Si. Then R stores {IDi, fi, ei, h(·)} in a smart card SCi for user and provides it to Ci via a secure channel.

(3) On receiving SCi = {IDi, fi, ei, h(·)}, the user stores the random number Ki into SCi issued by R so that now SCi = {IDi, fi, ei, h(·)}.

2.2. Login Phase. When the user Ci wishes to login the server Si, the user and his smart card SCi perform the following steps.

(1) Ci inserts his smart card into a card reader and inputs his biometrics information Bi on the specific device. SCi computes h(Bi ⊕ Ki) and verifies if fi = h(Bi ⊕ Ki) or not. If this biometrics information matches, Ci passes the biometrics verification.

(2) Ci inputs his IDi and PWi; then SCi generates a random number Rc and computes the following equations:

\[r_i' = h(PWi ⊕ Ki) ⊕ f_i, \]
\[M_1 = e_i ⊕ r_i', \]
\[M_2 = M_1 ⊕ R_c, \]
\[M_3 = h(M_1 || R_c). \]

(3) Ci sends the login request = {IDi, M2, M3} to Si.

2.3. Authentication Phase. On receiving the request login = {IDi, M2, M3} from Ci, the server Si and the user Ci perform the following steps to authenticate each other.

(1) Si first checks the format of IDi. If IDi is valid, Si computes M4 = h(IDi || xi) and M5 = M2 ⊕ M4.

(2) Si checks if M4 = h(M4 || M3) or not. If both are equal, it generates a random number Rs and computes the following equations:

\[M_6 = M_4 ⊕ R_s, \]
\[M_7 = h(M_4 || R_s). \]

Then, Si sends the reply message = {M6, M7} for its authentication to Ci.

(3) On receiving {M6, M7} from Si, the user Ci computes M8 = M6 ⊕ M1 and checks if M7 = h(M1 || M8) or not. If both are equal, Ci computes M9 = h(M1 || M2 || M8) and sends the reply message {M9} for its authentication to Si.

(4) On receiving {M9} from Ci, the server checks if M9 = h(M9 || M2 || Ri) or not. If both are equal, Si accepts the login request = {IDi, M2, M5} of Ci.

3. Cryptanalysis of An’s Scheme

This section is about security problems in An’s scheme. Here we show that an attacker \(U_a \) can mount different types of attacks on the scheme. Independent researches by Kocher and Messerges [28, 29] show that it is possible to extract the values stored inside a smart card. So we assume that \(U_a \) can extract out parameters stored inside a user’s smart card.

Notations	Description		
R	Trusted registration centre		
Si	Server		
Ci	User		
IDi	Identity of Ci		
PWi	Password of Ci		
Bi	Biometric template of Ci		
SCi	Smart card of Ci		
Ki	Random number chosen by Ci		
Rc	Random number generated by SCi of Ci		
R	Random number generated by Si		
Ua	Attacker		
xi and yi	Secret keys maintained by Si		
h(·)	One-way hash function		
⊕	Bitwise XOR operator		
			Concatenation operator
3.1. Online Password Guessing Attack. If U_a obtains the smart card SC_i of user C_i and extracts [28, 29] the values \{ID, f_i, e_i, K_i, $h(\cdot)$\} stored inside it, then he can mount online password guessing attack as explained below.

(1) U_a computes

$$e_i \oplus f_i = [h(ID \parallel x_i) \oplus r_j] \oplus f_i$$

$$= [h(ID \parallel x_i) \oplus h(PW_i \oplus K_i) \oplus f_i] \oplus f_i$$

$$= [h(ID \parallel x_i) \oplus h(PW_i \oplus K_i)]$$

(3)

to obtain $[h(ID \parallel x_i) \oplus h(PW_i \oplus K_i)]$.

(2) U_a guesses PW_a as user's possible password and computes $M_{1a} = [e_i \oplus f_i] \oplus h(PW_a \oplus K_i)$. Then U_a computes $M_{2a} = M_{1a} \oplus R_{ca}$ and $M_{3a} = h(M_{1a} \parallel R_{ca})$, where R_{ca} is the random number generated by the system of U_a. He sends \{ID, M_{2a}, M_{3a}\} as login request to S_i.

(3) If U_a does not receive any response from S_i, then he repeats step (2) with some other guess for user's password. But if U_a receives response message from S_i, then it implies that his guessed password PW_a is correct.

3.2. Offline Password Guessing Attack. In the scheme, U_a can easily identify the login request corresponding to a smart card since both contain the identity of user. If U_a extracts [28, 29] the values \{ID, f_i, e_i, K_i, $h(\cdot)$\} from the smart card SC_i of user C_i and intercepts the login request = \{ID, M_{2a}, M_{3a}\} from open network, then he can mount offline password guessing attack as explained below.

(1) U_a computes

$$e_i \oplus f_i = [h(ID \parallel x_i) \oplus r_j] \oplus f_i$$

$$= [h(ID \parallel x_i) \oplus h(PW_i \oplus K_i) \oplus f_i] \oplus f_i$$

$$= [h(ID \parallel x_i) \oplus h(PW_i \oplus K_i)]$$

(4)

to obtain $[h(ID \parallel x_i) \oplus h(PW_i \oplus K_i)]$.

(2) U_a guesses PW_a as user's possible password and computes $M_{1a} = [e_i \oplus f_i] \oplus h(PW_a \oplus K_i)$.

(3) U_a computes $R_{ca} = M_{2a} \oplus M_{1a}$ and $M_{3a} = h(M_{1a} \parallel R_{ca})$, and finally compares M_{3a} with M_{3}. For $M_{3a} \neq M_{3}$, he repeats from step (2) with some other guess for user's password. But if $M_{3a} = M_{3}$, then it provides U_a with the exact password PW_i of C_i.

3.3. User Impersonation Attack. As just discussed in previous subsections, U_a can guess a user's password if he obtains the smart card of user. It is noticeable that the successful process of password guessing (online or offline manner) also yields $M_{1a} = h(ID \parallel x_i)$. In fact, $h(ID \parallel x_i)$ is the key value required to compute a valid login request or valid reply messages. Further, U_a has easy access to user's identity ID_i from $SC_i = \{ID, f_i, e_i, K_i, h(\cdot)\}$ or from the login request = \{ID, M_{2i}, M_{3i}\} of C_i. Having $h(ID \parallel x_i)$ and ID_i in hand, U_a can impersonate the user C_i as explained below.

(1) U_a generates a random number R_{ca} in his system and computes

$$M_{2a} = M_{1a} \oplus R_{ca},$$

$$M_{3a} = h(M_{1a} \parallel R_{ca})$$

(5)

Then U_a sends the login request = \{ID, M_{2a}, M_{3a}\} to S_i.

(2) On receiving \{ID, M_{2a}, M_{3a}\}, the server S_i first checks the format of ID_i. Clearly, S_i would proceed further because ID_i is the identity of a legitimate registered user and hence it is in valid format.

(3) S_i computes $M_4 = h(ID \parallel x_i)$ and $M_5 = M_2a \oplus M_4$ and checks if $M_{3a} = h(M_4 \parallel M_3)$; clearly it would hold. Therefore S_i believes that the login request = \{ID, M_{2a}, M_{3a}\} is from the legitimate user.

(4) S_i generates a random number R_i and computes $M_6 = M_4 \oplus R_i$ and $M_7 = h(M_4 \parallel R_i)$. Then S_i transmits the reply message $\{M_6, M_7\}$.

(5) On receiving $\{M_6, M_7\}$ from S_i, the attacker U_a first obtains the random number R_i by computing $M_{6a} = M_2a \oplus M_{1a}$. Next, it computes $M_{6a} = h(M_{1a} \parallel R_{ca})$ and sends \{ID, M_{2a}, M_{3a}\} to S_i.

(6) On receiving $\{M_6, M_7\}$, the server S_i checks if $M_6 = h(M_{4a} \parallel M_7 \parallel R_i)$ or not. Clearly, this would hold, so S_i will accept the login request = \{ID, M_{2a}, M_{3a}\}.

3.4. Server Impersonation Attack. U_a can easily impersonate the legal server S_i to cheat the user C_i whose information \{ID, M_{1a}\} transmitted over open channel as he possesses the identity ID_i of C_i. So when C_i sends his login request = \{ID, M_{2a}, M_{3a}\} to S_i, the attacker U_a intercepts and blocks it from reaching S_i.

(1) U_a can easily recognize the login request = \{ID, M_2a, M_3a\} of C_i transmitted over open channel as he possesses the identity ID_i of C_i. So when C_i sends his login request = \{ID, M_2a, M_3a\} to S_i, the attacker U_a intercepts and blocks it from reaching S_i.

(2) U_a first obtains the random number R_{ca} by computing $M_{6a} = M_2a \oplus M_{1a}$. Next, it generates a random number R_{ca} in his system and computes $M_{6a} = M_{1a} \oplus R_{ca}$ and $M_{7a} = h(M_{1a} \parallel R_{ca})$. Then U_a transmits the reply message \{ID, M_{2a}, M_{3a}\} to C_i.

(3) On receiving $\{M_{6a}, M_{7a}\}$, the user C_i first obtains the random number R_{ca} by computing $M_{6a} = M_{6a} \oplus M_{1a}$, where $M_1 = h(ID \parallel x_i)$. Next, he checks if $M_2a = h(ID \parallel M_3a)$ or not. Clearly, this equivalence will hold and hence C_i will believe that he is communicating with the intended server. However, it is the clever attacker U_a who is deceiving C_i.

3.5. Lack of Mutual Authentication. Like Das’s scheme [26], the enhanced scheme by An also fails to resist user impersonation attack and server impersonation attack as described in Sections 3.3 and 3.4. In fact, if \(U_a \) extracts values \(\{ID_i, f_i, e_i, K_i, h(\cdot)\} \) from the smart card \(SC_i \) of user \(C_i \) and successfully obtains the secret value \(h(ID_i \ \| \ x_i) \), then he can easily craft valid login request and reply messages so as to deceive the legal user or the legal server. Therefore, the scheme loses mutual authentication feature.

3.6. Lack of User Anonymity. In An’s scheme, \(C_i \) sends \(\{ID_i, \ M_2, M_3\} \) as his login request to \(S_i \) through an insecure channel. User’s identity ID is openly available if an attacker \(U_a \) intercepts the login request of \(C_i \) from the open channel. Moreover, identity ID is also stored inside user’s smart card SC. Having ID in hand, it is easy for \(U_a \) to craft threats against \(C_i \). To the worst, \(U_a \) may be able to compromise user’s biometrics information which would result in serious consequences. Thus, the scheme does not provide user anonymity.

4. The Proposed Scheme

In this section, we propose a new user authentication scheme which is an improvement of An’s scheme. In addition to resist the security problems found in An’s scheme, it also provides password change phase with which user can change his password at his will. It has four phases: registration phase, login phase, authentication phase and password change phase. Registration phase, and password change phase are carried over a secure channel whereas login phase and authentication phase are carried over an insecure channel. It also consists of three participants, the user (\(C_i \)), the server (\(S_i \)), and the registration centre (\(R \)). In the proposed scheme, the server maintains two secret keys \(x_i \) and \(y_i \). Details of each phase along with Figure 1 are given in the following.

4.1. Registration Phase. Before starting the scheme, the registration centre \(R \) and the user \(C_i \) carry out this phase involving the following steps.

1. \(C_i \) submits his identity ID to \(R \) via a secure channel. \(C_i \) also submits information \((B_i \ \| \ K_i) \) containing his biometrics via a specific device to \(R \); here \(K_i \) is a random number chosen by \(C_i \).

2. \(R \) computes the following values:
 \[
 f_i = h(B_i \ \| \ K_i),
 \]
 \[
 r_i = h(PW_i \ \| \ K_i) \oplus f_i,
 \]
 \[
 c_i = h(x_i \ \| \ y_i) \oplus f_i,
 \]
 \[
 e_i = h(ID_i \ \| \ x_i) \oplus r_i,
 \]
 where \(R \) stores \(\{c_i, e_i, h(\cdot)\} \) in a smart card \(SC \) for user. Then \(R \) provides \(SC_i = \{c_i, e_i, h(\cdot)\} \) and \(f_i \) to the user \(C_i \) via a secure channel.

3. On receiving \(SC_i = \{c_i, e_i, h(\cdot)\} \) \& \(f_i \), the user computes the following values:
 \[
 g_i = (ID_i \ \| \ PW_i) \oplus f_i,
 \]
 \[
 j_i = (ID_i \ \| \ PW_i) \oplus K_i,
 \]
 where \(C_i \) inserts \(g_i \) and \(j_i \) into \(SC_i \) issued by \(R \) so that now \(SC_i = \{c_i, e_i, g_i, j_i, h(\cdot)\} \).

4.2. Login Phase. When the user \(C_i \) wishes to login the server \(S_i \), the user and his smart card \(SC \) perform the following steps.

1. \(C_i \) inserts his smart card into a card reader, keys in his identity ID, and password PW on the specific device.

2. \(SC \) retrieves \(f_i \leftarrow (ID_i \ \| \ PW_i) \oplus g_i \) and \(K_i \leftarrow (ID_i \ \| \ PW_i) \oplus j_i \). Then checks if \(f_i = h(B_i \ \| \ K_i) \) or not. If this biometrics information matches, \(C_i \) passes the biometrics verification; otherwise \(SC \) terminates the session. This process also verifies the correctness of inserted ID and PW.

3. \(SC \) generates a random number \(R \) and computes the following equations:
 \[
 r_i = h(PW_i \ \| \ K_i) \oplus f_i,
 \]
 \[
 M_1 = c_i \oplus f_i \quad (\text{which is indeed } h(x_i \ \| \ y_i)),
 \]
 \[
 M_2 = e_i \oplus r_i \quad (\text{which is indeed } h(ID_i \ \| \ x_i)),
 \]
 \[
 M_3 = M_1 \oplus R_c \quad (\text{which is indeed } h(x_i \ \| \ y_i) \oplus R_c),
 \]
 \[
 M_4 = (M_1 \ \| \ R_c) \oplus ID_i \quad (\text{which is indeed } [(h(x_i \ \| \ y_i) \oplus R_c) \oplus ID_i]),
 \]
 \[
 M_5 = h(M_2 \ \| \ R_c),
 \]
 \[
 (\text{which is indeed } h(ID_i \ \| \ x_i) \ \| \ R_c)).
 \]

4. \(C_i \) sends the login request \(\{M_3, M_4, M_5\} \) to \(S_i \).

4.3. Authentication Phase. On receiving the request login = \(\{M_3, M_4, M_3\} \) from \(C_i \), the server \(S_i \) and the user \(C_i \) perform the following steps to authenticate each other.

1. \(S_i \) computes the following values:
 \[
 M_6 = h(x_i \ \| \ y_i),
 \]
 \[
 M_7 = M_3 \oplus M_6 \quad (\text{which is indeed } R_c),
 \]
 \[
 ID_i = M_4 \oplus (M_6 \ \| \ M_7),
 \]
 \[
 (\text{which is indeed } h(ID_i \ \| \ x_i) \ \| \ R_c)).
 \]

2. \(S_i \) checks the format of ID. If ID is valid, \(S_i \) computes \(M_8 = h(ID_i \ \| \ x_i) \). It then checks if \(M_5 = h(M_8 \ \| \ M_7). \)
Registration phase

User (C_u) chooses ID, PW, & K_i

Computes

\[g_i = (ID_i || PW_i) \oplus f_i \text{ and} \]

\[j_i = (ID_i || PW_i) \oplus K_i \]

Insert g_i & j_i into SC_i so that $SC_i = \{c_i, e_i, g_i, j_i, h(\cdot)\}$

Login and authentication phase

User (C_u): inserts ID_i, PW_i & B_i

Server (S_i) computes $M_0 = h(ID_i)$

For correct ID_i format computes

\[r_i = h(PW_i) \oplus j_i \]

\[M_i = c_i \oplus f_i, M_2 = e_i \oplus r_i, M_3 = h(M_2 \| R_i) \]

Accepts login request

Password change phase:

User (C_u): inserts ID_i, PW_i, & B_i

For $f_i = h(B_i \oplus K_i)$ asks for new password

Computes ($g_i)_{new} = (ID_i || (PW_i)_{new}) \oplus f_i$

\[(j_i)_{new} = h((PW_i)_{new} \oplus K_i) \]

\[e_i = h(PW_i) \oplus h((PW_i)_{new} \oplus K_i) \]

\[(c_i)_{new} \leftarrow e_i \oplus (g_i)_{new} \leftarrow g_i, (j_i)_{new} \leftarrow j_i \]

Figure 1: The proposed scheme.
If both are equal, S_i generates a random number R_i and computes:

$$M_9 = M_8 \oplus R_i$$

(which is indeed $h(ID_i \parallel x_i) \oplus R_i$)

$$M_{10} = h(M_8 \parallel R_i)$$

(which is indeed $h(h(ID_i \parallel x_i) \parallel R_i)$).

Then, S_i sends the reply message $\{M_9, M_{10}\}$ for its authentication to C_i.

(3) On receiving $\{M_9, M_{10}\}$ from S_i, the user C_i computes $M_{11} = M_9 \oplus M_2$ (which is indeed R_i). It then checks if $M_{10} = h(M_2 \parallel M_{11})$ or not. If both are equal, C_i computes $M_{12} = h(M_2 \parallel R_i \parallel M_{11})$ (which is indeed $h(h(ID_i \parallel x_i) \parallel R_i \parallel R_i)$). Then C_i sends the reply message $\{M_{12}\}$ for its authentication to S_i.

(4) On receiving $\{M_{12}\}$ from C_i, the server checks if $M_{12} = h(M_8 \parallel M_2 \parallel R_i)$ or not. If both are equal, S_i accepts the login request $\{M_3, M_4, M_5\}$ of C_i.

4.4 Password Change Phase

When the user wishes to change his old password PW_i, he invokes this phase. Details of the steps required to update the smart card SC_i with new password PW_i^{new} are as follows.

(1) C_i inserts his smart card into a card reader, keys in his identity ID_i, and password PW_i, and inputs his biometrics information B_i on the specific device.

(2) SC_i retrieves $f_i \leftarrow (ID_i \parallel PW_i) \oplus g_i$ and $K_i \leftarrow (ID_i \parallel PW_i) \oplus j_i$. It then checks if $f_i = h(B_i \parallel K_i)$ or not. If this biometrics information matches, C_i passes the biometrics verification, otherwise terminates the session. This process also verifies the correctness of inserted ID, and PW_i. Then SC_i allows the user to enter the new password PW_i^{new}.

(3) SC_i computes the following equations:

$$g_i^{\text{new}} = (ID_i \parallel (PW_i^{\text{new}})) \oplus f_i,$$

$$j_i^{\text{new}} = (ID_i \parallel (PW_i^{\text{new}})) \parallel h((PW_i^{\text{new}}) \parallel K_i)$$

$$e_i^{\text{new}} = e_i \oplus h(PW_i \parallel K_i) \oplus h((PW_i^{\text{new}}) \parallel K_i).$$

(4) SC_i replaces e_i, g_i, and j_i with (e_i^{new}), (g_i^{new}), and (j_i^{new}), respectively.

5. Security Analysis of the Proposed Scheme

In this section, we analyze security of the proposed scheme. We show that the scheme remains unaffected even if an attacker U_a extracts \[28, 29\] all the values stored inside a user’s smart card.

5.1 Online Password Guessing Attack

On having access to user's smart card SC_i, an attacker U_a can extract \[28, 29\] all values $\{e_i, e_i, g_i, j_i, h()\}$ from it. In order to compute $e_i \oplus f_i$ and obtain $[h(ID_i \parallel x_i) \oplus h(PW_i \parallel K_i)]$, he requires f_i. But U_a cannot obtain f_i from $g_i = (ID_i \parallel PW_i) \oplus f_i$ as he does not know about user’s identity ID_i and password PW_i. The attacker U_a can obtain $f_i \oplus K_i$ by performing $g_i \oplus j_i = [ID_i \parallel PW_i] \oplus f_j \oplus [ID_i \parallel PW_i] \parallel K_i$. Next, he can compute $e_i \oplus (f_i \oplus K_i)$

$$= [h(ID_i \parallel x_i) \parallel j_i] \oplus (f_i \oplus K_i)$$

$$= [h(ID_i \parallel x_i) \parallel h(PW_i \parallel K_i) \parallel f_j] \oplus (f_i \oplus K_i)$$

$$= h(ID_i \parallel x_i) \parallel h(PW_i \parallel K_i) \parallel K_i.$$
Besides, as well as user untraceability.

analyzing some fixed parameter in the login request or the server: (i) the secret keys \(\{x_i, e_i, g_i, j_i, h(\cdot)\} \) from \(SC_u \), we explain in the following that he cannot obtain \(ID_u \) of \(C_u \). To guess \(ID_j \) from \(g_j = (ID_j \parallel PW_j) \oplus f_j \) and from \(j_i = (ID_j \parallel PW_j) \oplus K_j \), the attacker must have the knowledge of \(\{PW_j, f_j\} \) and \(\{PW_j, K_j\} \), respectively. \(U_a \) cannot guess out \(ID_j \) from \(e_i = h(ID_j \parallel x_i) \oplus r_j \) without knowing \(r_j \) and \(x_i \). If \(U_a \) intercepts a login request \(\{M_5, M_9, M_{10}\} \) or the reply message \(\{M_6, M_{10}\}/\{M_{12}\} \), he cannot guess out \(ID_j \) using \(\{M_5, M_{10}, M_{12}\} \) without the knowledge of \(\{x_i, R_j, R_{10}\} \). Besides, \(U_a \) cannot obtain user’s identity \(ID_u \) nor can he trace the legal user by means of observing and analyzing some fixed parameter in the login request or the reply messages. Hence, the scheme provides user anonymity as well as user untraceability.

5.4. Supporting Mutual Authentication

The success of mutual authentication in the proposed scheme follows directly from resistance against user impersonation attack and server impersonation attack as described in Section 5.3. In fact, \(U_a \) has many hurdles before him to act as a legal user or a legal server: (i) the secret keys \(x_i \) and \(y_i \) maintained by the server are unknown for \(U_a \); and (ii) \(U_a \) has no access to the identity \(ID_u \) of user \(C_u \). As a result, \(U_a \) cannot compute \(h(x_i \parallel y_i) \) and \(h(ID_u \parallel x_i) \) required to mount impersonation attacks. Besides, \(U_a \) has no method to retrieve these values either from the parameters extracted out of user’s smart card or from the login request or using both. Therefore, the proposed scheme provides proper mutual authentication.

5.5. Providing User Anonymity and User Untraceability

In the proposed scheme, user’s plaintext identity \(ID_u \) is completely out of scene; it is neither stored in user’s smart card \(SC_u \) nor sent in any of the login-authorization messages transmitted over insecure network. If \(U_a \) extracts [28, 29] the values \(\{x_i, e_i, g_i, j_i, h(\cdot)\} \) from \(SC_u \), we explain in the following that he cannot obtain \(ID_u \) of \(C_u \). To guess \(ID_j \) from \(g_j = (ID_j \parallel PW_j) \oplus f_j \) and from \(j_i = (ID_j \parallel PW_j) \oplus K_j \), the attacker must have the knowledge of \(\{PW_j, f_j\} \) and \(\{PW_j, K_j\} \), respectively. \(U_a \) cannot guess out \(ID_j \) from \(e_i = h(ID_j \parallel x_i) \oplus r_j \) without knowing \(r_j \) and \(x_i \). If \(U_a \) intercepts a login request \(\{M_5, M_9, M_{10}\} \) or the reply message \(\{M_6, M_{10}\}/\{M_{12}\} \), he cannot guess out \(ID_j \) using \(\{M_5, M_{10}, M_{12}\} \) due to one-way property of hash function. Moreover, each value \(\{M_5, M_9, M_{10}, M_{12}\} \) transmitted over insecure network is dynamic in nature by virtue of random numbers \(R_j \) and \(R_{10} \) which are different for each session. Thus, \(U_a \) cannot neither obtain user’s identity \(ID_u \) nor can he trace the legal user by means of observing and analyzing some fixed parameter in the login request or the reply messages. Hence, the scheme provides user anonymity as well as user untraceability.

5.6. Providing Password Change Facility

In An’s scheme, once user chooses his password during registration phase, it is fixed forever as user cannot change his password at his will. Probably the author might have opined that in the presence of biometrics verification procedure there is no need of password change facility. Undoubtedly, it is very difficult to forge copy or compromise biometrics, but once compromised then biometrics cannot be changed like passwords. So we opine that if password is employed in user authentication scheme then there should be the provision to facilitate the user to freely change his password. The proposed scheme provides password changing facility with which a user can freely (without interacting with server) change his old password to a new one whenever he feels to do so. Before updating stored values with the new password \(PW_j \), the smart card verifies the correctness of identity \(ID_j \) old password \(PW_j \) along with verifying the biometrics information \(f_j = h(B_j \oplus K_j) \). Thus the proposed scheme provides secure and easy password changing facility.

6. Comparison

In this section, we examine the proposed scheme by means of comparing its efficiency with Li-Hwang’s scheme [19], Das’s scheme [26], and An’s scheme [27]. Table 2 displays comparison of security attributes and Table 3 displays comparison of computational load in terms of hash functions.

Table 2: Comparison of security attributes.

Security attributes	Li-Hwang’s [19]	Das’s [26]	An’s [27]	Ours
Resist online PW\(_i\) guessing attack	No	No	No	Yes
Resist offline PW\(_i\) guessing attack	No	No	No	Yes
Resist user impersonation attack	No	No	No	Yes
Resist server impersonation attack	No	No	No	Yes
Provides mutual authentication	No	No	No	Yes
Provides PW\(_i\) change facility	Yes	Yes	No	Yes
Provides user anonymity	No	No	No	Yes

Table 3: Comparison of computational load in terms of hash functions.

Phases	Li-Hwang’s [19]	Das’s [26]	An’s [27]	Ours
Registration phase	3 \(h(\cdot) \)	3 \(h(\cdot) \)	3 \(h(\cdot) \)	4 \(h(\cdot) \)
Login phase	2 \(h(\cdot) \)	2 \(h(\cdot) \)	3 \(h(\cdot) \)	3 \(h(\cdot) \)
Authentication phase	5 \(h(\cdot) \)	8 \(h(\cdot) \)	6 \(h(\cdot) \)	7 \(h(\cdot) \)
Total	10 \(h(\cdot) \)	13 \(h(\cdot) \)	12 \(h(\cdot) \)	14 \(h(\cdot) \)
The important aspect about the proposed scheme is the minor increase of two hash functions in computational load to achieve higher efficiency as compared to other schemes [19, 26, 27].

7. Conclusion

This paper shows that the recently proposed biometrics-based user authentication scheme by An is susceptible to many threats. Once an attacker obtains the smart card of a legal user, he can guess user's password and impersonate the user. Further, the attacker can also cheat the user by masquerading as the legal server. Consequently, the scheme fails to provide mutual authentication. Besides, the scheme also suffers from the restriction of static password. We have proposed a new scheme based on the design of An's scheme so as to fix the problems identified in An's scheme. In the proposed scheme an attacker cannot figure out the identity of user either from the smart card or by intercepting all login-authorization messages transmitted over insecure network. Analysis and comparison show improved performance of the proposed scheme.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgment

The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for its funding of this research through the Research Group Project no. RGP-VPP-288.

References

[1] L. Lamport, “Password authentication with insecure communication,” Communications of the ACM, vol. 24, no. 11, pp. 770–772, 1981.
[2] N. M. Haller, “The S/KEY one-time password system,” RFC1760, February 1995.
[3] G. Horng, “Password authentication without using a password table,” Information Processing Letters, vol. 55, no. 5, pp. 247–250, 1995.
[4] J.-K. Jan and Y.-Y. Chen, “Paramita wisdom’ password authentication scheme without verification tables,” The Journal of Systems and Software, vol. 42, no. 1, pp. 45–57, 1998.
[5] M.-S. Hwang and L.-H. Li, “A new remote user authentication scheme using smart cards,” IEEE Transactions on Consumer Electronics, vol. 46, no. 1, pp. 28–30, 2000.
[6] W.-C. Ku and S.-M. Chen, “Weaknesses and improvements of an efficient password based remote user authentication scheme using smart cards,” IEEE Transactions on Consumer Electronics, vol. 50, no. 1, pp. 204–207, 2004.
[7] C.-I. Fan, Y.-C. Chan, and Z.-K. Zhang, “Robust remote authentication scheme with smart cards,” Computers and Security, vol. 24, no. 8, pp. 619–628, 2005.
[8] J.-Y. Liu, A.-M. Zhou, and M.-X. Gao, “A new mutual authentication scheme based on nonce and smart cards,” Computer Communications, vol. 31, no. 10, pp. 2205–2209, 2008.
[9] M. Kumar, M. K. Gupta, and S. Kumari, “An improved efficient remote password authentication scheme with smart card over insecure networks,” International Journal of Network Security, vol. 13, no. 3, pp. 167–177, 2011.
[10] M. Kumar, M. K. Gupta, and S. Kumari, “An improved smart card based remote user authentication scheme with session key agreement during the verification phase,” Journal of Applied Computer Science & Mathematics, vol. 11, no. 5, pp. 38–46, 2011.
[11] S. Kumari, M. K. Gupta, and M. Kumar, “Cryptanalysis and security enhancement of Chen et al’s remote user authentication scheme using smart card,” Central European Journal of Computer Science, vol. 2, no. 1, pp. 60–75, 2012.
[12] S. Kumari, F. B. Muhaya, M. K. Khan, and R. Kumar, “Cryptanalysis of a robust smart-card-based remote user password authentication scheme,” in Proceedings of the International Symposium on Biometrics and Security Technologies, Chengdu, China, July 2013.
[13] S. Kumari and M. K. Khan, “Cryptanalysis and improvement of a robust smart-card-based remote user password authentication scheme,” International Journal of Communication Systems, 2013.
[14] J. K. Lee, S. R. Ryu, and K. Y. Yoo, “Fingerprint-based remote user authentication scheme using smart cards,” Electronics Letters, vol. 38, no. 12, pp. 554–555, 2002.
[15] C.-H. Lin and Y.-Y. Lai, “A flexible biometrics remote user authentication scheme,” Computer Standards and Interfaces, vol. 27, no. 1, pp. 19–23, 2004.
[16] M. K. Khan and J. Zhang, “Improving the security of a flexible biometrics remote user authentication scheme,” Computer Standards and Interfaces, vol. 29, no. 1, pp. 82–85, 2007.
[17] M. K. Khan, J. Zhang, and X. Wang, “Chaotic hash-based fingerprint biometric remote user authentication scheme on mobile devices,” Chaos, Solitons & Fractals, vol. 35, no. 3, pp. 519–524, 2008.
[18] M. K. Khan, “Fingerprint biometric-based self-authentication and deniable authentication schemes for the electronic world,” IEEE Technical Review, vol. 26, no. 3, pp. 191–195, 2009.
[19] C.-T. Li and M.-S. Hwang, “An efficient biometrics-based remote user authentication scheme using smart cards,” Journal of Network and Computer Applications, vol. 33, no. 1, pp. 1–5, 2010.
[20] M. K. Khan, S. Kumari, and M. K. Gupta, “More efficient key-hash based fingerprint remote authentication scheme using mobile device,” Computing, 2013.
[21] M. K. Khan, S.-K. Kim, and K. Alghathbar, “Cryptanalysis and security enhancement of a more efficient & secure dynamic ID-based remote user authentication scheme,” Computer Communications, vol. 34, no. 3, pp. 305–309, 2011.
[22] M. Kumar, M. K. Gupta, and S. Kumari, “Cryptanalysis of enhancements of a password authentication scheme over insecure networks,” in Proceedings of the 4th International Conference on Contemporary Computing (IC3 ’11), vol. 168, pp. 524–532, Noida, India, 2011.
[23] M. K. Khan, S. Kumari, and M. K. Gupta, “Further cryptanalysis of a remote authentication scheme using mobile device,” in Proceedings of the 4th International Conference on Computational Aspects of Social Networks (CASoN’12), pp. 234–237, Sao Carlos, Brazil, November 2012.
[24] S. Kumari, M. K. Gupta, M. K. Khan, and F. T. B. Muhaya, "Cryptanalysis of an improved timestamp-based remote user authentication scheme," in *Proceedings of the International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering (ICQR2MSE ’12)*, pp. 1439–1442, Chengdu, China, June 2012.

[25] S. Kumari, M. K. Khan, and R. Kumar, "Cryptanalysis and improvement of a privacy enhanced scheme for telecare medical information systems," *Journal of Medical Systems*, vol. 37, no. 4, article 9952, 2013.

[26] A. K. Das, "Analysis and improvement on an efficient biometric-based remote user authentication scheme using smart cards," *IET Information Security*, vol. 5, no. 3, pp. 145–151, 2011.

[27] Y. An, "Security analysis and enhancements of an effective biometric-based remote user authentication scheme using smart cards," *Journal of Biomedicine and Biotechnology*, vol. 2012, Article ID 519723, 6 pages, 2012.

[28] P. Kocher, J. Jaffe, and B. Jun, "Differential power analysis," in *Advances in Cryptology—CRYPTO’ 99*, pp. 388–397, Springer, Berlin, Germany, 1999.

[29] T. S. Messerges, E. A. Dabbish, and R. H. Sloan, "Examining smart-card security under the threat of power analysis attacks," *IEEE Transactions on Computers*, vol. 51, no. 5, pp. 541–552, 2002.