Novelties on Tortella (Pottiaceae, Bryophyta) from South America

Soledad JIMENEZ, Guillermo M. SUÁREZ & Richard H. ZANDER
Novelties on *Tortella* (Pottiaceae, Bryophyta) from South America

Soledad Jiménez
Instituto de Botánica del Nordeste (IBONE-CONICET-UNNE),
Sargento Cabral 2131, Casilla de correo 209, Corrientes (Argentina)
soledadjimenez@conicet.gov.ar (corresponding author)

Guillermo M. Suárez
Unidad Ejecutora Lillo, CONICET, Fundación Miguel Lillo,
Miguel Lillo 251, San Miguel de Tucumán 4000, Tucumán (Argentina)
and Facultad de Ciencias Naturales e Instituto Miguel Lillo,
Universidad Nacional de Tucumán, Miguel Lillo 205,
San Miguel de Tucumán 4000, Tucumán (Argentina)

Richard H. Zander
Missouri Botanical Garden, PO Box 299, St. Louis,
MO 63166-0299 (United States)

Submitted on 20 February 2018 | Accepted on 15 November 2018 | Published on 3 July 2019

ABSTRACT
During recent botanical surveys undertaken in South America (Uruguay and Paraguay) some of the samples collected were identified as *Tortella fruchartii* (Müll. Hal.) R. H. Zander and *T. lilliputana* (Müll. Hal. ex G. Roth) R. H. Zander, two autoicous species of the genus with distribution area restricted to the New World. The former is re-described based on recent collections from Uruguay, where it has not been found since its original description in 1888; while the latter is recorded for the first time from Paraguay. Detailed descriptions, illustrations in LM and SEM, and a distribution map of the two species are here presented.

MOTS CLÉS
Espèces autoïques, *Barbula*, *Bryophyta*, cleistocarpes, *Paraguay*, stégocarpes, *Uruguay*.

KEY WORDS
Autoicous species, *Barbula*, *Bryophyta*, cleistocarpous, *Paraguay*, stégocarpous, *Uruguay*.

Jiménez S., Suárez G. M. & Zander R. H. 2019. — Novelties on *Tortella* (Pottiaceae, Bryophyta) from South America. Cryptogamie, Bryologie 40 (8): 87-96. https://doi.org/10.5252/cryptogamie-bryologie2019v40a8. http://cryptogamie.com/bryologie/40/8

RÉSUMÉ
Deux nouveaux signalements dans le genre *Tortella* (Pottiaceae, Bryophyta) pour l’Amérique du Sud.
Lors de récentes excursions botaniques en Amérique du Sud (Uruguay et Paraguay), *Tortella fruchartii* (Müll.Hal.) R. H. Zander et *T. lilliputana* (Müll.Hal. ex G. Roth) R. H. Zander ont été récoltées, deux espèces autoïques du genre dont la distribution est restreinte au Nouveau Monde.

Les deux espèces sont décrites en détail, avec des illustrations en microscopie optique et à balayage, et une carte de distribution des deux espèces est donnée.
INTRODUCTION

The southernmost extent of South America includes Argentina, southern Brazil, Chile, Paraguay and Uruguay. This area is known as “Cono Sur” and it extends south of parallel 20°S from the Atlantic Ocean to the Pacific Ocean. This territory covers a total of 4,708,617 km², which represent 26% of the total surface of South America (Zuloaga et al. 2008). Despite the geographic size and biodiversity richness, the bryoflora of the area is still poorly known. The extant floras and checklists of the mosses from South America (Bartram bryoflora of the area is still poorly known. The extant floras and checklists of the mosses from South America (Bartram 1949; Delgadillo et al. 1997; Boggan et al. 1997; He 1998; Churchill et al. 2000, 2009; Gradstein et al. 2001; Matteri 2003, 2004; O’Shea & Price 2008; Müller 2009; O’Shea 2010) in addition to recent discoveries on mosses (e.g. Ellis et al. 2011, 2012a, b; Suárez & Schiavone 2013; Flores & Suárez 2014; Suárez et al. 2014, 2017; Cañiza et al. 2017; Jimenez & Suárez 2017, among others) have highlighted the importance and singularity of the regional flora, especially in Uruguay and Paraguay where references on mosses are scanty and disperse.

The main objective of this paper is to increase the knowledge of the bryophyte flora in South America. We also particularly hope to illuminate the distributions of two very odd much reduced species of the genus Tortella (Müll. Hal.) Limpr.

Particular objectives includes: i) to describe in detailed the species found in Uruguay and Paraguay; and ii) to illustrate in detail by using light microscopy (LM) and scanning electron microscopy (SEM) the diagnostic characters of the taxa, and iii) to delimit its current range of distribution.

MATERIAL AND METHODS

Several botanical surveys were undertaken by the second author in Uruguay and Paraguay during 2011–2012 within the framework of a major project entitled “Study of the bryophytes of Southern South America (Systematics and Phylogeny)”. The specimens were studied morphologically following classical techniques for bryophytes, and mounted in Hoyer’s solution (Andersen 1954). Microscopic characters were analyzed by using LM Leica Model CME, and SEM JEOL 5800 LV operating at 20 KV. Characters illustrated using SEM were obtained from samples fixed in Formaldehyde-acetic acid-alcohol-water (FAA), critical-point dried, mounted on double-sided tape and coated with gold-palladium. Spores were obtained from mature capsules, removed with FAA, mounted directly on aluminum stubs and subsequently coated with gold-palladium. Spores were described following the concepts of McCluney (1955) and Punt et al. (2007).

The samples are kept in the herbaria of the Instituto de Botánica del Nordeste, Corrientes, Argentina (CTES), Fundación Miguel Lillo, San Miguel de Tucumán, Tucumán, Argentina (LIL) and Missouri Botanical Garden, St. Louis, Missouri, USA (MO).

RESULTS

Within the samples collected, two of them matched with two autoicous species of the genus Tortella: T. fruchartii (Müll. Hal.) R. H. Zander and T. lilliputana (Müll. Hal. ex G. Roth) R. H. Zander. The former was recorded in Uruguay and the second in Paraguay.

For both species detailed descriptions, illustrations with LM and SEM are here given, as well as world distribution data.

Tortella fruchartii (Müll. Hal.) R. H. Zander (Figs 1–2)

In Bulletin of the Buffalo Society of Natural Sciences 32: 104 (1993). — Phascum fruchartii Müll. Hal., Flora 71: 4 (1888). — Systegium fruchartii (Müll. Hal.) Kindb., Enumeratio Bryinearum Exoticarum, Supplementum 95, (1889) — Astomum fruchartii (Müll. Hal.) Broth., Bihang till Kongliga Svenska Vetenskaps-Akademiens Handlingar 26 Afd. 3(7): 19 (1900). — Type: Uruguay, Montevideo, en la terra, VIII.1874; Arechavala 205, in Hb. Lund. (syn-, H!, NY!) — Astomum latifolium Broth., Auseren. Laurb. 190, 17 f. 8 (1910). — Type: Brazil, Porto Allegre (Brasilien), bei der Vorstadt Saõ Joaõ, auf Erdböschungen, E. M. Reineck & J. Czermak 222, 23.V.1899 (iso-, BM!).

SPECIMEN EXAMINED. — Uruguay. Rocha, Parque Fortaleza Santa Teresa, 33°58’39’’S, 53°32’17’’W, 33 m, sobre suelo, 3.I.2011, G. Suárez 1047 (CTES, LIL, MO).

GEOGRAPHICAL DISTRIBUTION. New World species described by Müller (1888) from Uruguay and later reported from Brazil (Roth [1910]-1911; Yano 1981), Mexico (Delgadillo & Cárdenas 1996) and Paraguay (Brotherus 1900; Buck 1985; O’Shea & Price 2008) (Fig. 3). This is the second record in Uruguay collected 135 years after original collection in 1874.

DESCRIPTION

PLANTS

Loosely caespitose forming low turfs, yellowish green above, brown below.

STEMS

0.2–0.3 cm long, erect, simple; in cross section rounded to rounded-pentagonal, central strand well-developed, sclerodermis present but usually weak, hyalodermis present, composed of cells that are little collapsed when mature, weakly radiculose, reddish brown rhizoids, axillary hairs ca. 110 µm long, 5–6 cells in length, all hyaline.

LEAVES

Evenly distributed along the stem, erect-flexuose, convolute when dry, spreading when moist, ligulate to lanceolate, 1.7–2.2 × 0.3–0.4 mm, margins plane, entire at base, weakly crenulate to dentate with projecting papillae below midleaf, apex obtusely mucronate; base oblong, weakly differentiated in shape; costa 106–112 µm in width near base, short excurrent as a mucro, in cross section ovate, ventral and dorsal stereid bands well developed, 6–8 guide cells in 1(2) layers, hydroid strand absent, ventral epidermis present from base...
Novelties on *Tortella* in South America

Gametophyte

- **Vegetative leaf**
 - Upper laminal cells quadrate to hexagonal, 8.3-9.9 × 4.9-6.6 µm, walls thin, superficially convex on both sides, papillose, papillae bifid, 3-4 per lumen.
 - Basal cells differentiated across leaf in a V-shape, extending ⅓ above the base, well differentiated from the upper cells, long-rectangular to linear, 24-41 × 3.3-8.3 µm, walls thin, smooth, gradual transition in a V-shaped.

Autoicous

Perichaetium

- Terminal. Perichaetal leaves little differentiated, lanceolate, 0.7-0.9 × 0.1-0.3 mm.

Perigonia

- Not seen.

Fig. 1. Tortella fruchartii (Müll. Hal.) R. H. Zander gametophyte micrographs: **A**, Vegetative leaf; **B, C**, Laminal cells at the middle of the leaf; **D**, Stem cross section; **E**, Leaf cross section at the middle part (A, B, D, E made with LM and C with SEM). Scale bars: A, 0.5 mm; B, C, E, 100 µm; D, 50 µm (all from Suárez 1047, CTES).
Seta
Less than 0.1 cm long.

Theca
Immersed, ellipsoidal to cylindric, long rostrate, reddish brown; exothecial cells mostly short-rectangular, 54-69 × 23-28 µm, stomata absent, annulus absent, dehiscence by irregular rupture, peristome absent.

Calytra
Cucullate.

Spores
Bilateral, concave-convex in shape, 16-18 µm, brown to yellowish brown, rugulate, with long rugulae in distal view, turning short towards proximal view appearing wide verrucae. Laminal KOH reaction yellow.

Tortella lilliputana (Müll. Hal. ex G. Roth) R. H. Zander (Figs 4; 5)
In Bulletin of the Buffalo Society of Natural Sciences 32: 104 (1993). — Phascum lilliputanum Müll. Hal. ex G. Roth., Aussereuropäischen Laubmoose 212, pl. 20: 3 (1911). — Tetrapterum lilliputanum (Müll. Hal. ex G. Roth) Broth., Natürlichen Pflanzenfamilien (ed. 2) 10: 253. (1924). — Type: Brazil, S. Catharina, Tubarão, ad terram, VIII.1890, (iso-, [E. Ule 133], NY!, S!)

Specimen examined. — Paraguay. 3 km al Norte de Paraguarí, Cerro Hú, 25°36’20”S, 57°08’08”W, 135 m, sobre suelo, 03.VIII.2012, G. Suárez 1488 (CTES, LIL, MO).

Geographical distribution. — It is a New World species described from Brazil (Roth [1910-] 1911), and later reported from Panama (Crum & Arzeni 1953). Here is recorded as new to Paraguay (Fig. 3).

Description
Plants
Forming low turfs, greenish brown below.

Stems
0.4-0.5 cm long, erect, branching occasionally, in cross section rounded-pentagonal, central strand well-developed, sclerodermis present but usually weak, hyalodermis present, composed of cells that are little collapsed when mature, weakly radiculose, reddish brown rhizoids; axillary hairs 110-150 µm long, 7-8 cells in length, all hyaline.

Leaves
Often crowded, erect incurved, somewhat contorted when dry, spreading when moist, ligulate to long-lanceolate, 1.5-3.1 × 0.1-0.3 mm, lamina channeled across leaf; margins incised, entire at base, weakly crenulate to dentate with projecting papillae below midleaf, apex subulate; base oblong, not differentiated in shape; costa 68-74 µm in width near base, short excurrent as a macro, in cross section rounded, ventral and dorsal sterile bands well-developed, 4-6 guide cells in 1 layer, hydroid strand absent, ventral epidermis present from base to apex, dorsal epidermis weakly-developed to absent; upper laminal cells quadrate to hexagonal, 6.6-8.3 × 4.9-8.3 µm, walls thin, superficially convex on both sides, papillose, papillae 3-4 per lumen, basal cells differentiated across leaf in a weak V-shape, extending 1/3 above the base, well differentiated from the upper cells, long-rectangular, 28-59 × 8-16 µm, walls thin, smooth, gradual transition in a V-shaped.

Autoicous

Perichaetia
Terminal, gemmiform. Perichaetal leaves lanceolate, 1.5-1.9 × 0.1-0.3 mm, the inner smaller than the outer.

Perigonia
Terminal, gemmiform. Perigonial leaves lanceolate, 0.4-1.1 × 0.1-0.3 mm, the inner smaller than the outer. Seta 0.4-0.5 cm, twisted clockwise below.

Theca
Exserted, ellipsoidal, reddish brown; exothecial cells mostly rectangular to long-rectangular, 41-68 × 24-31 µm, stomata at base of theca, phaneropore, annulus absent or weak and non-functional, dehiscence by the fall of the long rostrate operculum, peristome absent.

Calytra
Cucullate.

Spores
Bilateral, concave-convex in shape, 19-24 µm, yellowish-brown, papillose, papillae low and blunt homogenously distributed on both views.

Laminal
KOH reaction yellow.

Discussion

The name Tortella was first used by Müller (1849) for a section in the genus Barbula Hedw. (Barbula section Tortella Müll. Hal.) and later elevated to the generic level by Limpricht (1888). The morphological traits that define Tortella include the presence of a well-developed hyalodermis, the chlorophyllose, quadrate upper laminal cells distinctly differentiated from the usually hyaline, rectangular basal leaf cells, which run up the basal margin in a V-shaped pattern (Zander 1993; Eckel 1998; Allen 2002). Nevertheless Werner et al. (2014) showed by molecular phylogenetic analyses that the V-shaped line of demarcation between the basal hyaline cells and the distal chlorophyllose cells cannot be used to refer all species of Tortella, and that the characterization of the genus based on this character is inaccurate.

The genus Tortella includes both cleistocarpic and stegocarpic species, condition not necessarily infrequent in Pottiaceae (Werner et al. 2002; Flores & Suárez 2017). Despite sporophytic characters have been widely used to
define relations at high levels, Zander (1993) emphasized the information content of the characters of the gametophyte and generalizes the use of sporophytic characters at specific levels.

Tortella fruchartii and T. lilliputana have been described as being cleistocarpic, been considered this character diagnostic for the distinction from all other members of Tortella (Zander 1993; Allen 2002). Nevertheless, the study of the

Fig. 2. — Tortella fruchartii (Müll. Hal.) R. H. Zander sporophyte and spores micrographs: A, Capsule showing apicule covered by the calyptra; B, Capsule irregularly ruptured; C, Spores; D, Spore detail in distal view; E, Spore detail in proximal view (A, D, E made with SEM and B, C with LM). Scale bars: A, B, 0.5 mm; C, 10 µm; D, E, 5 µm (all from Suárez 1047, CTES).
newly recorded South American samples of both species showed that in *T. lilliputana* an operculum exists that can be detached by a weak annulus. In the case of *T. fruchartii*, it is confirmed that the dehiscence of the capsule is due to irregular rupture.

Both *Tortella* species are mainly distinguished from each other by sporophytical traits that include: 1) the length of the seta (< 1 mm in *T. fruchartii* vs 4-5 mm in *T. lilliputana*); 2) the dehiscence mechanism of the capsule, cleistocarpous in *T. fruchartii* vs stegocarpous in *T. lilliputana*; 3) the presence of phaneropore stomata in the capsule of *T. lilliputana*, which are absent in *T. fruchartii*. Additionally, some spore details obtained by LM and SEM also differ between both taxa: 4) spore diameter, 16-18 µm in *T. fruchartii* vs 19-24 µm in *T. lilliputana*; and 5) spore ornamentation, being rugulate in *T. fruchartii* and papillose in *T. lilliputana* (Table 1).
Fig. 4. — Tortella lilliputana (Müll. Hal. ex G. Roth) R. H. Zander gametophyte micrographs: A, Vegetative leaf; B, C, Laminal cells at the middle of the leaf; D, Stem cross section; E, Leaf cross section at the middle part (A, B, D, E made with LM and C with SEM). Scale bars: A, 0.5 mm; B–E, 50 µm (all from Suárez 1488, CTES).
Fig. 5.— Tortella lilliputana (Müll. Hal. ex G. Roth) R. H. Zander sporophyte and spores micrographs: **A**, Sporophyte showing complete capsule; **B**, Deoperculate capsule; **C, D**, Spores in distal view; **E**, Spore in optical view; **F**, Spore in proximal view (A, B, D, G made with SEM and C, E with LM). Scale bars: A, B, 0.5 mm; C-F, 10 µm (all from Suárez 1488, CTES).
Despite some authors consider *T. fruchartii* and *T. lilliputana* as possibly conspecific taxa (Zander 1993; Allen 2002), during this work we observed some gametophytic characters that contribute to separate them: 6) leaves on dry condition erect-flexuose, convolute in *T. fruchartii* vs erect incurved, somewhat contorted in *T. lilliputana*; 7) margins of leaves, plane in *T. fruchartii* vs incurved in *T. lilliputana* (Table 1).

Table 1.— Comparative diagnostic characters for *Tortella fruchartii* (Müll. Hal.) R. H. Zander and *T. lilliputana* (Müll. Hal. ex G. Roth) R. H. Zander.

Character	Tortella fruchartii	Tortella lilliputana
Lenth of seta	<1 mm	4.5-5 mm
Capsule dehiscence	Cleistocarpous	Stegaecarpous
Capsule stomata	Absent	Present (phaneropore)
Spore diameter	16-18 µm	19-24 µm
Spore ornamentation	Rugulate	Papillose
Leaves on dry	Erect-flexuose,	Ercit-incurved,
condition	convolute	somewhat contorted
Margin of leaves	Plane	Incurved

REFERENCES

Allen B. H. 2002. — Moss flora of Central America, Part 2. Encalyptaceae-Orthotrichaceae. *Monographs in Systematic Botany from the Missouri Botanical Garden* 90: 1-699. https://doi.org/10.21829/abm63.2003.1129

Anderson L. 1954. — Hoyer’s solution as a rapid permanent mounting medium for bryophytes. *The Bryologist* 57: 242-244. https://doi.org/10.5962/bhl.title.2301

Bakker E. B. 1949. — Mosses of Guatemala. *Fieldiana, Botany* 25: 1-442. https://doi.org/10.5962/bhl.title.2301

Bogdan J., Funk V., Kellof C., Hoff M., Cremers G. & Feuillet C. 1997. — Checklist of the plants of the Guianas (Guyana, Surinam, French Guiana), 2nd Edition. Washington, D.C., Biological Diversity of the Guianas Program, Department of Botany. National Museum of Natural History, Smithsonian Institution, 245 p.

Brothers V. E. 1900. — Die Laubmoose der ersten Regnellischen Expedition. *Bihang till Kongliga Svenska Vetenskaps-Akademiens Handlingar* 3 (7): 1-65.

Buck W. R. 1985. — Preliminary list of the mosses of Paraguay. *Candollea* 40 (1): 201-209.

Caniza B. D., Peralta D. & Suárez G. M. 2017. — New records and range extension of Bryophytes for Paraguay. *Cryptogamie, Bryologie* 38 (4): 393-410. https://doi.org/10.7872/cryb/v38.iss4.2017.393

Churchill S. P., Griffen III D. & Musož J. 2000. — A Checklist of the Mosses of the Tropical Andean Countries. Ruzia 17: 1-203.

Churchill S. P., Sanjines N. & Aldana C. 2009. — Catálogo de las Briófitas de Bolivia: Diversidad, distribución y ecología. Missouri Botanical Garden Press, St. Louis, 340 p.

Crum H. & Arzeni C. B. 1953. — Additional bryophytes from Panama. *Revue Bryologique et Lichénologique* 22: 148-160.

Delgado M. C., Bello B. & Cardenas S. A. 1995. — Latmoss. A Catalogue of Neotropical Mosses. *Monographs in Systematic Botany from the Missouri Botanical Garden* 56: 1-191. https://doi.org/10.2307/2807675

Delgado M. C. & Cardenas S. A. 1996. — A preliminary checklist of the mosses of Guanajauto, Mexico, in *Rzedowski Rottier J.* & Calderón de Rzedowski G. (eds), *Flora del Bajío y de Regiones Adjacentes*. Fascículo complementario 11: 1-14. Available at http://incoelbajio.incoel.mx/floradelbajio/documentos/fasciculos/complementarios/ComplementarioXI.pdf. Accessed on 20 February 2018.

Eckel P. M. 1998. — Re-evaluation of *Tortella* (Musci, Pottiaceae) in conterminous U.S.A. and Canada with a treatment of the European species *Tortella nitida*. *Bulletin of the Buffalo Society of Natural Sciences* 36: 117-191.

Ellis L. T., Allegro A., Bednarek-Ochyra H., Ochyra R., Bergamini A., Cogoni A., Erzberger P., Gorski P., Gremmen N., Hespanhol I., Vieira C., Kurkatova L. E., Lebouvier M., Martinic A., Asthana A. K., Gupta R., Nath V., Natcheva R., Ganeva A., Ozdemir T., Batan N., Plasek V., Porley R. D., Randic M., Sawicki J., Schroder W., Sergio C., Smith V. R., Soderstrom L., Steffen S., Suarez G. M. & Vana J. 2011. — New national and regional bryophyte records, 28. *Journal of Bryology* 33 (3): 237-247. https://doi.org/10.1179/1743282011Y.00000000022

Ellis L. T., Allegro A., Bednarek-Ochyra H., Ochyra R., Bergamini A., Cogoni A., Erzberger P., Gorski P., Gremmen N., Hespanhol I., Vieira C., Kurkatova L. E., Lebouvier M., Martinic A., Asthana A. K., Gupta R., Nath V., Natcheva R., Ganeva A., Ozdemir T., Batan N., Plasek V., Porley R. D., Randic M., Sawicki J., Schroder W., Sergio C., Smith V. R., Sollman P., Stefanus S., Stevenson C. R., Suarez G. M. & Surina Z. 2012a. — New national and regional bryophyte records, 31. *Journal of Bryology* 34 (2): 123-134. https://doi.org/10.1179/1743282012Y.0000000009
