Conductors from Superconductors

David Larbalestier* and Peter J Lee
Applied Superconductivity Center
National High Magnetic Field Laboratory
Florida State University

The Centennial Meeting on Superconductivity
The Hague, The Netherlands, September 21, 2011

Grateful acknowledgement especially to DOE (HEP and OFES), ITER- IO and NSF- DMR for long term support
*IEEE Advisory Council on Superconductivity Distinguished Lecturer
My talk in one slide

- Thousands of superconductors - 6 conductors - 2011
- Magnets are the “killer ap” - 1913
- The great silence - 1936-1961
- The explosion of applications - 1961-1987
- The explosion of high Tc - 1987 on
- The future.................?
Magnet wires should be long, strong, stable, affordable, have high critical current density, high upper critical field and preferably round

REBaCuO coated conductor
Chapter 11: Wires and Tapes

Editor: David Larbalestier

11.1 The Long Road to High Current Density Superconducting Conductors

 David Larbalestier ... 627

11.2 Nb-Ti — from Beginnings to Perfection

 Peter J. Lee and Bruce Strauss .. 643

11.3 History of Nb₃Sn and Related A15 Wires

 Kyoji Tachikawa and Peter J. Lee ... 661

11.4 Bi-Ca-Sr-Cu-O HTS Wire

 Martin W. Rupich and Eric E. Hellstrom 671

11.5 Coated Conductor: Second Generation HTS Wire

 A. P. Malozemoff and Y. Yamada ... 689

11.6 The MgB₂ Conductor Story

 René Flükiger and Hiroaki Kumakura 702

11.7 Further Reading ... 711

Acknowledgments ... 711
Mercury has passed into a new state, which on account of its extraordinary electrical properties may be called the superconductive state. The behavior of metals in this state gives rise to new fundamental questions as to the mechanism of electrical conductivity.

It is therefore of great importance that tin and lead were found to become superconductive also. Tin has its step-down point at 3.8 K, a somewhat lower temperature than the vanishing point of mercury. The vanishing point of lead may be put at 6 K. Tin and lead being easily workable metals, we can now contemplate all kinds of electrical experiments with apparatus without resistance.

The extraordinary character of this state can be well elucidated by its bearing on the problem of producing intense magnetic fields with the aid of coils without iron cores. Theoretically it will be possible to obtain a field as intense as we wish by arranging a sufficient number of ampere windings round the space where the field has to be established. This is the idea of Perrin, who made the suggestion of a field of 100 000 gauss being produced over a fairly large space in this way. He pointed out that by cooling the coil by liquid air the resistance of the coil could be diminished. To get a field of 100 000 gauss in a coil with an internal space of 1 cm radius, with copper cooled by liquid air, 100 kilowatt would be necessary.

*Actually Keesom gave the talk as Kamerlingh Onnes was indisposed
The electric supply, as Fabry remarks, would give no real difficulty, but it would arise from the development of Joule-heat in the small volume of coil... to the amount of 25 kilogram-calories per second, which in order to be carried off by evaporation of liquid air would require... about 1500 liters of liquid air per hour.

But the greatest difficulty, as Fabry points out, resides in the impossibility of making the small coil give off the relatively enormous quantity of Joule-heat to the liquefied gas. The dimensions of the coil to make the cooling possible must be much larger, by which at the same time the electric work and the amount of liquefied gas required becomes greater in the same proportion. The cost of carrying out Perrin's plan even with liquid air might be about comparable to that of building a cruiser....

We should no more get a solution by cooling with liquid helium as long as the coil does not become superconductive.

The problem which seems hopeless in this way enters a quite new phase when a superconductive wire can be used. Joule-heat comes not more into play, not even at very high current densities, and an exceedingly great number of ampere windings can be located in a very small space without in such a coil heat being developed. A current of 1000 amps/mm² density was sent through a mercury wire, and of 460 amps/mm² density through a lead wire, without appreciable heat being developed in either....

There remains of course the possibility that a resistance is developed in the superconductor by the magnetic field. If this were the case, the Joule heat... would have to be withdrawn. One of the first things to be investigated... at helium-temperatures... will be this magnetic resistance. We shall see that it plays no role for fields below say 1000 gauss.
The insulation of the wire was obtained by putting silk between the windings, which being soaked by the liquid helium brought the windings as much as possible into contact with the bath. The coil proved to bear a current of 0.8 ampere without losing its superconductivity. There may have been bad places in the wire, where heat was developed which could not be withdrawn and which locally warmed the wire above the vanishing point of resistance. . . .

I think it will be possible to come to a higher current density . . . if we secure better heat conduction from the bad places in the wire to the liquid helium In a coil of bare lead wire wound on a copper tube the current will take its way, when the whole is cooled to 1.5 K. practically exclusively through the windings of the superconductor. If the projected contrivance succeeds and the current through the coil can be brought to 8 amperes . . . we shall approach to a field of 10 000 gauss. The solution of the problem of obtaining a field of 100 000 gauss could then be obtained by a coil of say 30 centimeters in diameter and the cooling with helium would require a plant which could be realized in Leiden with a relatively modest financial support. . . . When all outstanding questions will have been studied and all difficulties overcome, the miniature coil referred to may prove to be the prototype of magnetic coils without iron, by which in future much stronger and . . . more extensive fields may be realized than are at present reached in the interferum of the strongest electromagnets. As we may trust in an accelerated development of experimental science this future ought not to be far away.
Onnes in 1913........!

The conception of a 10 T magnet
- The **impossibility** of doing this with Cu cooled by liquid air (as expensive as a warship)
- The **possibility** of doing it with superconductor (1000 A/mm² with a Hg wire, 460 A/mm² with a Pb wire)
- Silk insulation allowed easy He permeation
- Sn coated on a strong constantan wire

A little problem!
- **Resistance** developed at 0.8 A, not 20 A
- **48 years had to go by** before the path to high field superconducting magnets was cleared
The great silence: 1914-1961
The Dick Hake Story (U. of Indiana and Atomics International)
ACT I. PURE OR SPONGE?

W.J. de Haas and J. Voogd, *Commun. Phys. Lab. U. Leiden* #2086 (1930), #2446 (1931)

Early Ideas on High-Field Superconductivity

I. Could be bulk property of *homoeneous* (pure) materials associated with negative interphase surface energy:

H. London, *Proc. Roy. Soc. (London)* A 152, 65 (1935)

C. J. Gorter, *Physica* 2, 429 (1935) (says $T_{\text{min}} = \Delta_j / H_c$

II. London and Gorter

III. Mendelssohn *Proc. Roy. Soc. (London)* A 152, 376 (1935)

"We think that all experimental results so far obtained on impure (four constituents) metals and on alloys can be explained by their INHOMOGENEITY and cause the formation of a SPONGE of higher value."

THE CRUCIAL EXPERIMENT

L.V. Shubnikov, V.I. Klatkovic, J.D. Shepelev, J.N. Kajhinin, T. Epstein, *Theor. Phys. (U.S.S.R.)* 2, 201 (1937) [Parts were reported in English: J.N. Kajhinin and L.V. Shubnikov, *Nature* 135, 591 (1935); Phys. Z. Sowjet 2, 122 (1935)]

"Such unusual magnetic properties... cannot be explained by hysteresis phenomena... at high fields... hysteresis is quite low."

Shubnikov et al. said:

1. $\mathcal{S} = \text{superconducting state condensation energy}

2. Even though H_c exceeds H_J of pure metals, the condensation energies are comparable and depend on T in the same way.

3. The zero-field specific heat jump in an alloy superconductor should be comparable to that of a pure superconductor, and not have giant values, expected if complete flux expulsion existed up to H_{max}.

**But Shubnikov et al. failed to exploit their newfound understanding... (making no mention of the Gorter-H. London theory... "nor of the Mendelssohn SPONGE..." T.G. Behrendt"
1936: Type II Superconductivity discovered - and unappreciated

L.V. Shubnikov et al., Zh. Expér. Teor. Fiz. (USSR) 7, 221 (1937)
L.W. Schubnikow et al., Sondernummer Phys. Z. Sowiet. Arbeiten auf dem Gebiete tiefer Temperaturen, 39 (1936); Phys. Z. Sowiet. 10, 165 (1936)
A.G. Shepelev, In: Superconductor (ed. A.M. Luiz), Scivo, Rijeka (2010), p.17; http://www.intechopen.com/books/show/title/superconductor.
1936: Type II Superconductivity discovered - and unappreciated

Shubnikov returned to Kharkov from Leiden to start single crystal alloy studies – persistence of superconductivity beyond the Meissner state - then imprisoned and shot
ACT IV. RUSSIAN SLOTHS ENSNARE RUSSIA.

V.L. Ginzburg and L.D. Landau, Zh. Eksp.
 i Teor. Fiz. 20, 1064 (1950).

"It has not been necessary to investigate
the nature of the state which occurs
when \(R > 1/\sqrt{2} \), since from the
experimental data... it follows
\(R < 1 \)." [Pippard, Whiteman]

K. Mendelssohn to T.G. Berlincourt

"It was extremely nice of you to send
me a copy of your own paper, as well as a
translation of Shubnikov's paper published
in 1930. This is indeed of considerable
help in assessing the earlier development.
At that time, the Stalin purge was only
beginning, and I was very puzzled at the
discussion. I drew in trying to get in touch
with Shubnikov. In 1935 Landau introduced
me to Moscow to Shubnikov's wife, Olga
Trugavichina, who also is a physicist. She
told me that her husband had just been
arrested, and had sent me a photo of
himself. I am unable to tell whether to
write him while he is in prison, because
the photos of prisoners in the Soviet Union
are circulated without names.

[According to Babadzhan, (1956), Shubnikov
was unjustly arrested in 1936, sentenced to 10
years imprisonment, and died in 1945.]

ACT IV. PIPPARD PIDDLE WHILE
GINZBURG SQUIRMS

In 1951-53 Pippard used intuitive
ideas to explain that a short electron
mean free path would lead to negative
surface energy. He was aware of
GL-theory and the Gorter-Bradley
ideas.

PIPPARD IS VERY SMART!

WHY DIDN'T PIPPARD PUT IT ALL TOGETHER?

"So in the early 1950's there was a
certain amount of conflict which wasn't
helped, incidentally, by the fact that
Shubnikov was in prison in small cells in
which he said he would be sick, while
I underestimated the electronic charge as
not being exactly \(e \). But I didn't have a
numerical factor which might be as large
as 2. It didn't say it was exactly 2.
Instead he wanted to introduce a fudge
factor of (say) 1.5, and Landau kept on
telling him he couldn't just put in
arbitrary numbers, and muttered darkly
about gauge invariance going wrong if you
did." — A.B. Pippard

"Historical Context of
Josephson's Discovery" in
SQUID and Machines (Plenum, 1971), p.1.
ACT IV. THE KID AND GEIZER SLID TEAM UP FOR SOME BREAK.

BCS AND GLAG

Nobel Prize winning microscopic theory of superconduction.

J. Bardeen, L.N. Cooper, J.R. Schrieffer

Phys. Rev. 108, 1175 (1957)

L. P. Gor'kov, Zh. Ekster. i Teor. Fiz.

1964 (1959); Sov. Phys. JETP 2, 1364 (1959)

In "dirty limit" $H_{c2}(T=0) = (const.) / T^2$

GLAG: Ginzburg, Landau, Abrikosov

The basic theory of high-field superconductivity (except for the paramagnetic limitation) is in place in 1959 but virtually ignored until 1962!
Almost there in July 1960......
Almost there in July 1960......

It is well known that Nb_Sn is a superconductor with a high critical temperature, 18°K. The measurements here reported show that it has also an exceptionally high critical field, about 70,000 oersteds at 4.2°K, necessary for the suppression of all superconductivity.

The material was prepared by melting together niobium and tin in the argon arc, and the button so obtained was formed by grinding into a rod about 2 cm long and 4 mm in diameter, with rounded ends. The magnetic moment per gram, \(\mu \), was measured by pulling the specimen from one search coil to another in a constant field, the two search coils being connected in series opposition to a ballistic galvanometer. Calibration was with nickel of high purity.

Measurements were made in increasing fields, after cooling in zero field to liquid helium temperature. Results are shown in Fig. 1. The initial points (circles) follow accurately the line for \(\mu = 0 \) \(H = -4\pi \sigma d \), where \(d \) is the density, 8.9, and then begin to deviate at about 4000 to 5000 oersteds. The variations in the readings in fields from 5000 to 20,000 oersteds reflect the well-known irregular changes in magnetization resulting from changes in domain structure in the intermediate state, as observed by Schawlow et al.\(^2\) and others. The general shape of the magnetization curve is that observed in a hard superconductor. Polishing, or annealing the specimen at 1100°C for several hours, made no essential change in the character of the curve.

When the field was decreased from its maximum value (points marked with squares) some of the flux was frozen in, and irregularities were again observed.

The authors are indebted to E. Corenswit for preparation of the material, to W. E. Henry of the Naval Research Laboratory for details of the method of measurement, and to H. W. Dall for assistance with the experiment. The field was produced in a Bitter coil excited with a motor generator with a nominal power rating of one megawatt.

\(^1\)B. T. Matthias and T. H. Geballe, Phys. Rev. 96, 1428 (1954).
\(^2\)A. L. Schawlow, G. E. Devlin, and J. K. Hulm, Phys. Rev. 116, 626 (1959).

A one page PRL – but no Bean Model yet, no way to relate magnetization hysteresis to Jc
Decisive experiment only in late 1960

We have observed superconductivity in Nb$_3$Sn at average current densities exceeding 100,000 amperes/cm2 in magnetic fields as large as 88 kgauss. The nature of the variation of the critical current (the maximum current at a given field for which there is no energy dissipation) with magnetic field shows that superconductivity extends to still higher fields. Existing theory does not account for these observations. In addition to some remarkable implications concerning superconductivity, these observations suggest the feasibility of constructing superconducting solenoid magnets capable of fields approaching 100 kgauss, such as are desired as laboratory facilities and for containing plasmas for nuclear fusion reactions.

The highest values of critical magnetic fields previously reported for high current densities are

Phys Rev Letts 6, 89 (1961), submitted January 9, 1961, published February 1, 1961!
The November 1961 magnet
Technology Conference at MIT

International Conference on High Magnetic Fields, Massachusetts Institute of Technology, November 1961

Who	Field	Material	Bore
Bell	6.9 T	Nb$_3$Sn	0.25”
Atomics Interna			
tional	5.9 T	Nb25Zr	0.5”
Westing house	5.6 T	Nb25Zr	0.15”

Concluding remarks

After any conference of this type it is often asked if there should be another. The argument against conferences in which the common factor linking sessions is a technique is that they cover far too wide a field or multiplicity of fields. This can be true but is a factor under the control of the organizers. With this particular conference the ‘net’ was perhaps too widely spread. However, the conference could hardly avoid being a success owing to the sessions involved with high critical field superconductors which are fairly new in their application to the generation of high fields and on which a very great deal of active work is in progress. This topic was wisely left to the last, after review of all the other fields of application and methods of generating high fields.

In applying steady high magnetic fields to physical experiments and in equipment there have seemed to be two barriers. The first is a cost barrier at which fields easily achievable with iron cooled magnets are passed (about 30 kg); the second is the barrier set by the strength of materials, which at present seems to be at about 250 to 300 kg. The first of these is being finally swept away with the advent of superconducting solenoids and the second will soon be approached in several laboratories, probably simultaneously.

Ministry of Aviation,
Royal Radar Establishment,
St. Andrews Road,
Great Malvern,
Worcs.

D. H. Parkinson
20th June 1962
1962: The 1st European coil

\[I_c = 17 \text{ A}, \quad B_{\text{max}} \approx 4 \text{ T} \]
Superconductor Price List - 1964

Supercon

Division of National Research Corporation

Wire Price Schedule

Effective 7/2/64

Prices for small quantities (0-20 kft*, 0-6 km) are as shown. A price premium will apply for guaranteed lengths above those specified in Spec. Sheets 63-1B and 2B. Volume discounts available.

Description	.005" dia.	.010" dia.
Bare wire, all alloys (A25, A33)	$33.50	$107.50
Wire (A25, A33) with insulation only	38.00	112.00
Wire, with .00075" (.019mm) thick copper on radius, and insulation	62.00	130.50
Wire, with .0010" (.025mm) thick copper on radius, and insulation	62.00	130.50
Superconductor price list - 1964

$100/1000 feet ~ $150/kA-m with inflation factor of 10 and Ic ~ 20 A
Real conductors.....

- Stabilizing with copper was very important..........
 - Protect magnets at quench
 - Prevent instabilities
- Fine filaments could be intrinsically stable.............
 - But only if twisted.....

- All of this came together at the Brookhaven Summer School in 1968
 - Accelerator dreams flourished
Nb-Ti developments were rapid

- Atomics International: Cabled Monofilament ~1965
- Rutherford Lab/IMI twisted multifilament ~1967
- Tulip conductor for POLO by Vacuumschmelze ~1978
Micro-chemical inhomogeneity in a Nb-Ti alloy revealed using a composition sensitive etch. About 1980

Precipitation morphology Sensitive to Composition and Strain.

Precipitation Rate Sensitive to Composition and number of HTs.
Optimal Nb-Ti properties developed by understanding the processing-nanostructure-\(J_c \) feedback cycle

Start with homogeneous Nb-Ti

Tremendous support by Wah Chang (Bill McDonald especially)
Optimal Nb-Ti properties developed by understanding the processing-nanostructure-\(J_c \) feedback cycle

Start with homogeneous Nb-Ti

Precipitate 20-25vol.% \(\alpha \)-Ti to pin vortex cores

Tremendous support by Wah Chang (Bill McDonald especially)
Nb- Ti - big Industry...
Nb- Ti – big Industry...
SSC Nb-Ti - 1987
The Nb$_3$Sn story.....

- In spite of Kunzler’s wire, tape dominated the 1960’s.
- But in the 1970’s the ability to make first V$_3$Ga (Tachikawa) and then Nb$_3$Sn at about 600°C when Cu was present.

Nb$_3$Sn tape produced at General Electric using diffusion between a liquid Sn bath and a Nb foil, later the basis of magnets made by Intermagnetics General Corp.

Production facilities for Nb$_3$Sn wires using the continuous CVD process were established at RCA already in 1966.
Conductors to coils in short order.............

An extraordinary collaboration between the groups of Jimmy Lee at Harwell and Martin Wilson at Rutherford Lab

Diffusion barriers were very difficult – notice the pure Cu protected by Ta barriers
And here are the coils....

IEEE Transactions on Magnetics, vol. MAG-11, no. 2, March 1975
And here are the coils....
Filamentary Nb₃Sn has evolved over 4 decades

The 1st stabilized conductor (1973) – 12 T magnet use (Harwell-Rutherford)

Huge advances in the last 10 years under HEP driving for LHC application!
1986, the 75th Anniversary....

- **POSSIBLE HIGH-TC SUPERCONDUCTIVITY IN THE BA-LA-CU-O SYSTEM**
 - BEDNORZ JG, MULLER KA
 - Z FUR PHYSIK B-CONDENSED MATTER 64, 189-193 1986, Times Cited: ~8000

- **Superconductivity induced by doping carriers into an insulating anti-ferromagnetic state**

- **Non- Fermi liquid behavior, but strong correlations that still prevent any generally accepted model for superconductivity in the cuprates**

Fig. 19. Resistivity as a function of temperature for La$_x$CuO$_{4+y}$ sample with three different Ba:La ratios. Curves 1, 2, and 3 correspond to ratios of 0.03, 0.06, and 0.07, respectively (adapted from [1.20]).
National Magnet Lab User Facility

- Provides the world’s highest DC magnetic fields
 - 45T in hybrid, 32 mm warm bore
 - Purely resistive magnets: 36T in 32 mm warm bore, 31 T in 50 mm bore and 20T in 195 mm warm bore
- 20 MW resistive magnets cost ~$2000/ hr at full power
 - Long- time, full- field experiments are very expensive
 - Quantum oscillation, quantum Hall effect, low noise, large signal averaging experiments could run 7 days a week........
Continuously higher field REBCO Test Coils

Early coils in collaboration with SuperPower and subsequent ones built at NHMFL

SuperPower I.	NHMFL I.
Hazelton IEEE TAS 19, 22129 (2009)	

SuperPower II.	NHMFL II.
Weijers IEEE TAS 20 576 (2010)	

2008: 33.8T with pancake coil

- 14.65 avg. turns/layer, 80 layers, 96 m of 4 mm wide tape = 35.5T total
- 4.3 T in 31.2 T background at 196 A and peak hoop stress of >340 MPa
- Trociewitz, Dalban-Canassy, Hilton et al submitted
Bi-2212 Test Coils are advancing (even with bubbles)

High Field Test coil:
- 10 layers/750 turns, $L \sim 3 \text{ mH}$
- $ID = 15 \text{ mm}$, $OD = 38 \text{ mm}$
- height = 100 mm
- conductor length $\sim 66 \text{ m}$
- $\Delta B = 1.1 \text{ T}$ at 31 T
- first HTS wire-wound coil to go beyond 30 T (32.1 T in 31 T background)

Bore-tube-free Test Coils:
Minimize chemical interactions with conductor

Large OD σ_{hoop} test coil:
- ID = 92.5 mm
- OD = 118.5 mm
- 10 layers, 10 turns
- Bore tube less
- epoxy impregnated
- $\Delta B \sim 0.2 \text{ T}$ at 20 T

High Field Test coil
“7 T inner shell”:
- 10 layers/135 turns, $L = 14.9 \text{ mH}$
- $ID = 32.4 \text{ mm}$, $OD = 57.4 \text{ mm}$
- height = 180 mm
- conductor length $\sim 220 \text{ m}$
- $\Delta B = 1.2 \text{ T}$ at 20 T

Trociewitz, Myers, Dalban
32 T Superconducting user magnet: REBCO coated conductor

- **Goal:**
 - 32 T, 4.2 K, 32 mm bore, 500 ppm in 10 mm DSV, 1 hour ramp, fitted with dilution refrigerator giving <20 mK
 - On line 2013

- **Funding:**
 - $2M grant from NSF for LTS coils, cryostat, YBCO tape & other components of magnet system
 - Core grant for technology development
 - dilution fridge not yet funded

- **Key Personnel**
 - Huub Weijers, NHMFL, Project lead
 - Denis Markiewicz, NHMFL: Magnet Design
 - David Larbalestier, NHMFL: co-PI, SC Materials
 - Stephen Julian, Univ. of Toronto: co-PI, Science

Current = 172 A, Inductance = 619 H, Stored Energy = 9.15 MJ

Markiewicz et al MT22 submitted
Insulation with Polyester Shrink Tube

Problem:
- epoxy impregnation forms solid block
- High risk of delamination of HTS layer while coil contracts during cool down (Y. Yanagisawa et al.)
- Insulation should mechanically separate conductor from epoxy impregnation

A solution:
- thin wall (~20 μm wall thickness) cryogenically compatible polyester shrink tube
- insulation is applied in 1.22 m long sections with ~15 mm overlap between each section
- Full shrinkage achieved at 150 °C

Mechanized scale up is in progress
Y11-02 Coil

- Wet layer-wound, epoxy filled
- no splices
- Coil instrumented with array of voltage taps; instrumentation sequence: 5 – 10 layers

Conductor & Coil	EM Properties
Cond. Width [mm]: 4.02	Operating Current [A]: 200
Cond. Thickness [mm]: 0.096	Je (Engineering) [A/mm²]: 518.24
Inner Radius [mm]: 7.16	Jw (Winding) [A/mm²]: 308.93
Outer Radius [mm]: 18.92	B(0,0) [mT]: 4221.01
Height [mm]: 64.52	Coil Constant (0,0) [mT/A]: 21.11
Layers [-]: 80	L [mH]: 8.90
turns/Layer [-]: 14.65	Total Field Energy [J]: 187.92
turns total [-]: 1172	Cond. Length [m]: 96.03

- Wet layer-wound, epoxy filled
- no splices
- Coil instrumented with array of voltage taps; instrumentation sequence: 5 – 10 layers

- Wet layer-wound, epoxy filled
- no splices
- Coil instrumented with array of voltage taps; instrumentation sequence: 5 – 10 layers
A new mark for a superconducting coil

4.2 T achieved in 31.2 T background field without any degradation (Trociewitz et al. submitted)
Program Eucard2 under formation

- Develop 10 kA class HTS accelerator cables
- Test in in a 5 T accelerator quality dipole

LHC Energy Upgrade

When (if) we have conductor which is the time? LHC timeline

LHC took 20 years even with Nb-Ti

The next 5 years are key for HTS for magnets
Conductor and Coil technologies are intimately linked

- Coils, R&D
- Test Beds
- 27T with SuperPower
- 32T 2212 NHMFL
- 35.5 T YBCO NHMFL

Conductors
- YBCO
- 2212
- 2223??
- Fe-base??

HTS Magnet Systems
- 32 T, 30 T NMR, SMES
- Muon Colliders, LHC energy upgrade.
- EUCARD2
Our thanks

To those who have passed us historical material
 Anatoly Shepelev, Ted Berlincourt, Dick Hake, Martin Wood, Marty Nisenoff, Terry Wong and many others

To our long term colleagues in the ASC in Madison and Tallahassee
 Especially more than 50 students, 30 postdocs and 30 sabbatical visitors....

To the High Energy Physics, Fusion and other applications communities that have supported us well over the long term

To those who believed in MAKING superconductors
 especially those at IMI, Harwell, Vacuumschmelze (now BEST), Oxford, SuperPower with whom we have had many productive interactions
Superconducting Magnets on Wikipedia - needs an update!

Coil windings
The coil windings of a superconducting magnet are made of wires or tapes of Type II superconductors (e.g. niobium-titanium or niobium-tin). The wire or tape itself may be made of tiny filaments (about 20 micrometers thick) of superconductor in a copper matrix. The copper is needed to add mechanical stability, and to provide a low resistance path for the large currents in case the temperature rises above T_c or the current rises above I_c and superconductivity is lost. These filaments need to be this small because in this type of superconductor the current only flows skin-deep. The coil must be carefully designed to withstand (or counteract) magnetic pressure and Lorentz forces that could otherwise cause wire fracture or crushing of insulation between adjacent turns.

Consider donating historical material to the IEEE Archive (contact me)