Review

Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: A review

I. Michael, L. Rizzo, C.S. McArdell, C.M. Manaia, C. Merlin, T. Schwartz, C. Dagot, D. Fatta-Kassinos

Abstract

Urban wastewater treatment plants (UWTPs) are among the main sources of antibiotics’ release into various compartments of the environment worldwide. The aim of the present paper is to critically review the fate and removal of various antibiotics in wastewater treatment, focusing on different processes (i.e. biological processes, advanced treatment technologies and disinfection) in view of the current concerns related to the induction of toxic effects in aquatic and terrestrial organisms, and the occurrence of antibiotics that may promote the selection of antibiotic resistance genes and bacteria, as reported in the literature. Where available, estimations of the removal of antibiotics are provided along with the main treatment steps. The removal efficiency during wastewater treatment processes varies and is mainly dependent on a combination of antibiotics’ physicochemical properties and the operating conditions of the treatment systems. As a result, the application of alternative techniques including membrane processes, activated carbon adsorption, advanced oxidation processes (AOPs), and combinations of them, which may lead to higher removals, may be necessary before the final disposal of the effluents or their reuse for irrigation or groundwater recharge.

Keywords:
Advanced wastewater treatment
Activated sludge
Antibiotics
Disinfection
Pharmaceuticals
Wastewater

Contents

1. Introduction ... 958
2. Fate of antibiotics in UWTPs .. 959
1. Introduction

During the last years, it is recognized that antibiotics constitute a new class of water contaminants of emerging concern with adverse effects on the aquatic life (Kolpin et al., 2002; Kümmerer, 2009; Fatta-Kassinos et al., 2011a). The generic term “antibiotic” is used herein to denote any class of organic molecule that inhibits or kills microbes by specific interactions with bacterial targets, without any consideration of the source of the particular compound or class (Davies and Davies, 2010). Investigations for the occurrence of various antibiotics in wastewater effluents have been conducted in several European countries (Jones et al., 2001; Heberer, 2002; Miao et al., 2004; Batt et al., 2007; Gulkowska et al., 2008; Kümmerer, 2009; Fatta-Kassinos et al., 2011a). Because of the intensive use of antibiotics for human (domestic and hospital use), veterinary and agriculture purposes, these compounds are continuously released into the environment from anthropogenic sources, such as urban wastewater treatment plants (UWTPs), which are considered as one of the main ‘hotspots’ of potential evolution and spreading of antibiotic resistance into the environment (Hirsch et al., 1999; Diaz-Cruz et al., 2003; Brown et al., 2006; Kümmerer, 2009; Czekalski et al., 2012; Le Corre et al., 2012). The presence of antibiotics in environmentally relevant concentration levels has been associated to chronic toxicity and the prevalence of resistance to antibiotics in bacterial species (Schwartz et al., 2006; Kümmerer, 2009).

The number of studies focusing on the chronic toxicological assessment of antibiotics in the environment is constantly increasing with the aim to bridge the various knowledge gaps (i.e. relevant endpoints to be considered in chronic bioassays) associated with these issues. Boxall (2004) and Kümmerer (2009) represent two comprehensive review articles regarding the ecotoxicity of antibiotics. Thomulka and McGee (1993) determined for example the toxicity of a number of antibiotics (e.g. novobiocin, tetracycline, chloramphenicol, nalidixic acid, ampicillin, streptomycin) on Vibrio harveyi in two bioassay methods. Almost no toxic effects were found after short incubation times when luminescence was used as an endpoint. However, in a long-term assay using reproduction as the endpoint, a toxic effect in environmentally relevant concentrations was detected for almost all the examined antibiotics. These results are in accordance with the observations of Froehner et al. (2000) concerning chloramphenicol, nalidixic acid and streptomycin. The chronic toxicity of several groups of antibiotics toward Vibrio fischeri is also presented in a study by Backhaus and Grimmie (1999). The chronic bioluminescence inhibition assay was shown to be sensitive against many of the high volume antibiotics used for veterinary purposes and in aquaculture. Furthermore, exposure to antibiotics may have adverse effects on the reproductive system in the early life stages of different organisms like the freshwater flea Daphnia magna and the crustacean Artemia salina (Macrì et al., 1988; Wollenberger et al., 2000). In the study by Kim et al. (2007), sulfonamides (i.e. sulfamethoxazole, sulfachloropyridazine, sulfathiazole, sulfamethazine, sulfadimethoxine), and trimethoprim, were examined for their acute aquatic toxicity by employing a marine bacterium (V. fischeri), a freshwater flea (D. magna) and the Japanese medaka fish (Oryzias latipes). In this study, D. magna was in general the most susceptible in terms of effective/lethal concentrations-E/LC₅₀, among the test organisms.

Moreover, the extensive use of antibiotics has contributed to the development of antibiotic resistance genes and bacteria, reducing the therapeutic potential against human and animal pathogens (Kemper, 2008). The consequences are particularly worrying as bacteria in the aquatic environment can be continually exposed to antibiotic residues (Rosal et al., 2010). The biological treatment process creates an environment potentially suitable for resistance development and spreading, because bacteria are continuously exposed to
environmentally relevant levels of antibiotics. However, it remains unclear where most of the resistant bacteria have been selected, and in particular if the low antibiotic concentrations that are present in natural environments or in human/animal body compartments during therapeutic use, are important for the selection and enrichment of resistant mutants (Gullberg et al., 2012). The extent to which human activities contribute to the development of resistant bacterial strains is still poorly understood (Auerbach et al., 2007). The number of studies, focusing exclusively on wastewater treatment systems regarding the removal of antibiotic resistance, is still however limited.

Gao et al. (2012) investigated the relationship between concentrations of tetracyclines and sulfonamides and the number of antibiotic resistance genes and antibiotic resistant bacteria in a conventional UWTP located in Michigan. Significant reductions (2–3 logs) of antibiotic resistance genes and antibiotic resistant bacteria were observed between raw influent and final effluent whereas no apparent decrease was observed in the concentrations of tetracycline resistance genes (tetO and tetW) and sulfonamide resistance gene (sulI) by chlorine disinfection. Moreover, Dodd (2012) provide a comprehensive overview on the significance of antibiotic resistant genes (ARG) and bacteria occurrence in environmental systems, and a discussion on the role that commonly used water and wastewater disinfection processes may play in minimizing ARG transport and dissemination.

Zhang et al. (2009) reported the impact of the wastewater treatment process on the prevalence of antibiotic resistance in Acinetobacter spp. in the wastewater and the possible spread of antibiotic resistance to receiving water bodies. It was found that the prevalence of antibiotic resistance was significantly higher in the downstream samples than in the upstream samples, with the higher values occurred for trimethoprim (97%), followed by rifampin (74%). Other studies have reported that the prevalence of resistant bacteria in sewage may significantly vary, depending on the plant (initial quality characteristics of sewage, type of treatment, plant operation, etc.), the target bacterial population, and the antimicrobial agent under study, as well as on the methods and the breakpoint values used to determine antimicrobial resistance (Guardabassi et al., 2002).

Another issue related to the use of reclaimed wastewater for irrigation is the plant uptake of antibiotics. The accumulation may or may not affect the growth and development of plants; however, the uptake into plants may represent an important exposure pathway of these compounds to humans and other biota (European Medicines Agency-EMEA). Migliore et al. (2003) determined the phytotoxicity of enrofloxacin on crop plants Cucumis sativus, Lactuca sativa, Phaseolus vulgaris and Raphanus sativus in a laboratory model. Between 50 and 5000 µg L⁻¹, enrofloxacin induced hormetic effect in plants, with a dose-dependant stimulation or toxicity on the length of primary root, hypocotyl, cotyledons and the number/length of leaves. There are also new concerns that antibiotics decrease the biodegradation of leaf and other plant materials, which serves as the primary food source for aquatic life in rivers and streams (Richardson and Ternes, 2011).

The aim of the present paper is to introduce a critical review on the removal efficiency of various antibiotics in wastewater treatment during the application of different processes, namely biological processes, advanced treatment technologies and disinfection. An effort to include as many studies as possible was made in order to highlight important findings and present the knowledge currently available on the removal efficiency of antibiotics from wastewater through a variety of treatment processes.

2. Fate of antibiotics in UWTPs

The conventional wastewater treatment generally consists of a primary, secondary and sometimes a tertiary stage, with different biological and physicochemical processes available for each stage of the treatment. Primary treatment intends to reduce the solid content of the wastewater (oils and fats, grease, sand, grit and settleable solids). This step is performed entirely mechanically by means of filtration and sedimentation and is common at all UWTPs. However, the secondary treatment, which typically relies on a biological process to remove organic matter and/or nutrients with aerobic or anaerobic systems, can differ substantially. Several biological treatments are being used in modern municipal UWTPs, but the most common method is conventional activated sludge (CAS). Membrane bioreactors (MBR), moving bed biofilm reactor (MBBR), or fixed bed bioreactors (FBR) are less common. Activated sludge plants use dissolved oxygen to promote the growth of a biological floc that substantially removes the organic material and nitrogen at given conditions. In the final step, tertiary wastewater treatment processes can be applied to remove phosphorus by precipitation and particles on a filter (Batt et al., 2007). In some UWTPs the effluent is also disinfected before it is released into the environment, typically by chlorination or ultraviolet irradiation.

The effect of biological treatments, membrane filtration, activated carbon adsorption, advanced oxidation processes (AOPs), and disinfection on different classes of antibiotics has been widely investigated in the last years; several of these studies are presented in the subsequent paragraphs.

2.1. Effect of biological treatment on antibiotics’ removal

Elimination and transformation of antibiotics during the biological treatment is the result of different processes. These processes can be biotic (biodegradation, mainly by bacteria and fungi) and non-biotic or abiotic (e.g. sorption, hydrolysis, photolysis).

The removal of antibiotics mainly depends on their sorption on the sewage sludge and their degradation or transformation during the treatment. Hydrolysis can play a role for some compounds, while photolysis is not very likely to occur due to the low exposure of the substances to light during the wastewater treatment.

Hydrophobic (or non-polar) antibiotic residues are expected to occur at higher concentration in primary and secondary sludge than hydrophilic ones because they have a greater affinity to solids and hence, concentrate in the organic-rich sewage sludge (Le-Minh et al., 2010). Antibiotics can also be removed from aqueous solutions onto solid
Rogers (1996) proposed the following guide to assess the sorption potential of organic contaminants: \(\log K_{ow} \). A review on \(K_{ow} \) values of several antibiotics is provided in Kovalova et al. (2012). It is important to note that the sludge is often used as fertilizer on agriculture fields, but in several European countries this is forbidden and the sludge is incinerated. Using sludge as fertilizer can therefore be considered as another input pathway for various antibiotics into the environment.

The tendency to accumulate in sludge solids can be assessed using the octanol–water partition coefficient (\(K_{ow} \)). Rogers (1996) proposed the following guide to assess the sorption potential of organic contaminants: \(\log K_{ow} < 2.5 \): low sorption potential (e.g. tetracyclines, sulfonamides, aminoglycosides); \(2.5 < \log K_{ow} < 4.0 \) (e.g. \(\beta \)-lactams, macrolides); medium sorption potential and \(\log K_{ow} > 4.0 \) (e.g. glycopeptides): high sorption potential. However, it should be emphasized that the prediction of the antibiotics sorption onto solids or sludge is mainly possible for non-polar compounds, while the prediction of the behavior of polar or charged compounds is often not correct. In some cases, the use of \(\log K_{ow} \) values lead to an underestimation of the sorption of e.g. fluoroquinolones (Golet et al., 2003) or tetracyclines (Kim et al., 2005) to sludge. For instance, ciprofloxacin (fluoroquinolone) has a \(K_{ow} \) value of 1.8, but nevertheless sorbs onto sludge by 80%, indicating that sorption is the main elimination process.

However, antibiotics are mostly hydrophilic and were designed to be biologically resistant; they are therefore expected to mainly remain in the aqueous phase of the wastewater. The main operational factors that can influence the biological removal of antibiotic residues in wastewater treatment are biochemical oxygen demand (BOD\(_5\)), existence and size of anoxic and anaerobic compartments, suspended solids (SS) loading, hydraulic retention time (HRT), sludge retention time (SRT), food–microorganism ratio (F/M ratio), mixed liquor suspended solids (MLSS), pH and temperature (Drewes, 2008; Kovalova et al., 2012).

The SRT is related to the growth rate of microorganisms. High SRTs allow the enrichment of slowly growing bacteria and therefore, provide greater diversity of enzymes, some of which are capable of degrading the antibiotic compounds (Jones et al., 2007; Le-Minh et al., 2010). High SRT can be reached with a membrane bioreactor (MBR), where the suspended activated sludge is retained in the reactor by utilizing a membrane for solid/liquid separation instead of a settling tank as used in CAS. Commonly, micro- or ultrafiltration membranes are used in MBRs, which do not retain the antibiotics on the filter. Some studies have been performed to investigate if higher SRTs enhance the elimination of antibiotics, which will be discussed in detail below (Joss et al., 2005; Gobel et al., 2007; Radjenovic et al., 2009b; Tadkaew et al., 2011; Kovalova et al., 2012).

The performance (expressed as % removal) of some UWTPs applying biological treatment for removing antibiotics as reported in the literature is summarized in Table 1. The removal is highly variable for many substances (from nearly complete to very little). Frequently, however, operational details are not provided in the studies available in the literature on the fate and transport of antibiotic residues during wastewater treatment or have not been systematically investigated. This poses a major challenge for the comparison and discussion of results. Moreover, differences in reported efficiencies may, in some cases, be attributed to limitations of employed mass balance techniques (Le-Minh et al., 2010). For example, short-term variations of pharmaceutical loads in influent can be significant (Gobel et al., 2005; Khan and Ongerth, 2005), thus consideration must be taken when comparing influent and effluent concentrations.

Antibiotics can be grouped by either their chemical structure or mechanism of action. The main groups of antibiotics and their potential removal during conventional wastewater treatment are discussed in the following sections.

2.1.1. \(\beta \)-Lactams

\(\beta \)-lactams are not very stable due to hydrolysis of the \(\beta \)-lactam ring (Hirsch et al., 1999; Läglin et al., 2009). \(\beta \)-lactams have been reported to be significantly reduced during biological treatment with removals higher than 90% (Watkinson et al., 2007, 2009). According to Li et al. (2009) the observed removals at an UWTP in Hong Kong were between 30.4 and 100%. \(\beta \)-lactams were also eliminated significantly at both Shatin and Stanley UWTPs as described in the work of Li and Zhang (2011). Cha et al. (2006) investigated the fate of four \(\beta \)-lactams (ampicillin, cloxacillin, cephalirin, oxacillin) and the estimated removals were between 17 and 43%. Ampicillin was removed by 82% in an activated sludge process (Li and Zhang, 2011). High removal of ampicillin (>94%) was also achieved in MBR treatment (SRT 3–60 days, Xia et al., 2012). A significant removal (96%) of cephalexin from 2000 ng L\(^{-1}\) to 78.2 ng L\(^{-1}\) has been reported to occur through conventional UWTP processes in Australia (Costanzo et al., 2005). Analysis of amoxicillin conducted by Zuccato et al. (2010) in UWTPs in Italy and Switzerland showed that it is efficiently removed by CAS (100%). Similarly, Watkinson et al. (2009) showed that amoxicillin is quite susceptible to microbial degradation with removal higher than 99% and therefore it is not likely to remain in significant concentration after biological treatment systems. Cephalexin was removed by 53% at the Shatin UWTP, while it was removed by 91% at the Stanley UWTP (Li and Zhang, 2011). Cephalexin was also removed by 36–99.8% in four Taiwanese UWTPs combining biological treatment and disinfection process (UV or chlorination) (Lin et al., 2009a,b) and by 99.6% in an Australian UWTP using CAS (Watkinson et al., 2009). Therefore, cephalexin is relatively easily eliminated in UWTPs with biological processes, whereas cefotaxime, which was only detected in Shatin UWTP, was removed by only 43% (Li and Zhang, 2011).

2.1.2. Macrolides

Li and Zhang (2011) reported that roxithromycin was degraded by 40–46% during CAS. Slightly lower removal (33%) was reported for one German UWTP (Ternes et al., 2007). In the
Antibiotic group	Antibiotic	Initial concentration (ng L\(^{-1}\))	Effluent concentration (ng L\(^{-1}\))/(% Removal efficiency)	Reference
β-Lactams	Amoxicillin	280 - Lactams Primary/270 (3.6%)	CAS/nd (100%*)	Watkinson et al., 2007
		18	CAS/nd (100%**)	Zuccato et al., 2010
		6940	50 (99%)	Watkinson et al., 2009
	Amoxicillin	17 - Lactams nd - 389.5 (23.5%)	CAS/126.4 ± 6.6 (67.5%**)	Li et al., 2009
		(<=34.4); 77.2 - Lactams nd	CAS/nd (100%**)	Li and Zhang, 2011
	Ampicillin	17 - Lactams	13 (23.5%)	Cha et al., 2006
		6940	50 (99%)	Watkinson et al., 2009
	Cephalexin	2000 - Lactams	78.2 (96%)	Costanzo et al., 2005
		5600	78.2 (96%)	Watkinson et al., 2007
		670-2900	240–1800 (9–89%)	Gulkowska et al., 2008
		1563-4367	10–994 (36–99.8%)	Lin et al., 2009
		64000	250 (99.6%)	Watkinson et al., 2009
		175.4 – 534.9	375.6 ± 19.7 (30.4%**)	Lin et al., 2009
		658–1718; 65.7–525	CAS/nd (100%%)	Li and Zhang, 2011
	Penicillin G	29 - Lactams	na (<LOD**)	Gulkowska et al., 2008
		10	300 (29%)	Watkinson et al., 2007
	Penicillin V	160 - Lactams	Primary/10 (94%)	Watkinson et al., 2007
		13800	CAS/20 (87.5%)	Watkinson et al., 2007
	Cloxacillin	320 - Lactams	Primary/nd (100%)	Watkinson et al., 2007
		13	9 (31%)	Cha et al., 2006
		4600	700 (85%)	Watkinson et al., 2007
	Cefaclor	980	Primary/800 (18%)	Watkinson et al., 2007
		6150	1800 (71%)	Watkinson et al., 2009
	Cefotaxime	24–1100	34 (<LOD**)	Gulkowska et al., 2008
		38.4–93.0; nd	CAS/nd (100%)	Li and Zhang, 2011
	Cefapirin	18	15 (17%)	Cha et al., 2006
	Oxacillin	14	8 (43%)	Cha et al., 2006
Macrolides	Roxithromycin	18 - Lactams	Primary/9 (50%)	Watkinson et al., 2007
		10–40	Primary/10–50 (3–9%)	Göbel et al., 2005; Göbel et al., 2007
		MBR (38, 60, 57%)[FRT 16, 33, 60–80 days]	FBR (~24%)	Clara et al., 2005
		26–117	CAS/nd (100%[FRT 10, 27, 55 days])	Clara et al., 2005
		500	500 (0%)	Watkinson et al., 2009
		3.5–25.3	CAS/14.2 ± 1.1 (43.9%**)	Li et al., 2009
		810 ± 420	CAS + chlorination/2.9 ± 0.0 (17.1%**)	Ternes et al., 2007
		102 ± 32; 164 ± 31; 75 ± 14; 156 ± 29	CAS + chlorination/2.9 ± 0.0 (17.1%**)	Xu et al., 2007
Antibiotic group	Antibiotic	Initial concentration (ng L\(^{-1}\))	Effluent concentration (ng L\(^{-1}\))/% Removal efficiency	Reference
------------------	------------	--	---	-----------
		Chemically enhanced		
		+ Chlorination/37 ± 11 (76%*)		
50		(40, 60, 55%)[SRT = 16, 33, 60–80 days]	Joss et al., 2005	
35.6–135; 4.2–141		CASShatin (46%*)	Li and Zhang, 2011	
		CASSanley (40%*)		
		Disinfection (18%*)		
		Final (53%*)		
Na 50		<(5)–31	McArdell et al., 2003	
Na 600		MBR/RO	Sahar et al., 2010	
		MBR [89.5 ± 7.7%][SRT > 40 days]		
		RO (99.6 ± 0.4%*)		
		CAS-U/RO		
		UF (81.4 ± 10.1%*)		
		RO (99.9 ± 0.1%*)		
500–1000		MBR (<50%)[SRT > 100 days]	Abeggen et al., 2009	
10\(^4\)		(77%*)[SRT = 44–72 days]	Reif et al., 2008	
5*10\(^4\)		MBR (57%)[SRT = 15 days]	Tamboski et al., 2010	
		MBR (81%)[SRT = 30 days]		
Azithromycin 152		96 (37%)	Gros et al., 2006	
90–380		Primary/80–320 (10–33%*)	Göbel et al., 2005	
		CAS/40–380 (126 to 55%*)	Göbel et al., 2007	
		MBR (<0.5, 25%)[SRT 16, 33, 60–80 days]		
4.5–53		4–23 (11–57%*)	Loganathan et al., 2009	
		Secondary	Fatta et al., 2010	
		UWTP I/1600 (<0°)		
		UWTP II/300 (55%)		
		UWTP III/530 (68%)		
		Outlet		
		UWTP I/1800 (84%)		
		UWTP II/200 (70%)		
		UWTP III/30 (98%)		
139		MBR (21%)[SRT = 30–50 days]	Kovalova et al., 2012	
500–1000		MBR (<50%)[SRT > 100 days]	Abeggen et al., 2009	
110–142		MBR-RO (75%)[SRT = 45 days]	Dolar et al., 2012	
Tylosin 55		Primary/nd (100%)	Watkinson et al., 2007	
		CAS/20 (64%*)		
60		3400 (<0%*)	Watkinson et al., 2009	
1150(UWTP I)		Secondary		
660(UWTP II)		UWTP I/1600 (<0°)		
1680(UWTP III)		UWTP II/300 (55%)		
		Outlet		
		UWTP I/1800 (84%)		
		UWTP II/200 (70%)		
		UWTP III/30 (98%)		
Clarithromycin 139		MBR (21%)	Kovalova et al., 2012	
500–1000		MBR (<50%)[SRT > 100 days]	Abeggen et al., 2009	
110–142		MBR-RO (75%)[SRT = 45 days]	Dolar et al., 2012	
155		Primary/nd (100%)	Watkinson et al., 2007	
		CAS/20 (64%*)		
60		3400 (<0%*)	Watkinson et al., 2009	
1150 ± 70		60 ± 4 (95%)	Yang et al., 2004	
59–1433		12–32 (99%*)	Lin et al., 2009	
330–660		Primary/160–440 (11–14%*)	Göbel et al., 2005	
		CAS/150–460 (145 to 20%*)	Göbel et al., 2007	
		MBR (54, 40, 90%)[SRT 16, 33, 60–80 days]		
319		CAS/117 (13%*)	Zuccato et al., 2010	
105.7–724.2		(<LOQ)–610.6 (16%*)	Spongberg and Witter, 2008	
460 ± 100		210 ± 40 (54%*)	Ternes et al., 2007	
Na 59–1433		57–328	McArdell et al., 2003	
Na 1500		MBR/RO	Sahar et al., 2010	
		MBR (91.4 ± 5.4%)[SRT > 40 days]		
		RO (99.2 ± 0.8%*)		
		CAS-U/RO		
		UF (93.2 ± 5.0%*)		
		RO (99.2 ± 0.8%*)		
2555		MBR (<50%)[SRT = 30–50 days]	Kovalova et al., 2012	
500–1000		MBR (<50%)[SRT > 100 days]	Abeggen et al., 2009	
700–2720		MBR-RO (87%)[SRT = 45 days]	Dolar et al., 2012	
Erythromycin 71		145–290 (79%*)	Roberts and Thomas, 2006	
12		CAS/52 (0%*)	Zuccato et al., 2010	
380(UWTP I)		Secondary	Fatta et al., 2010	
280(UWTP II)		UWTP I/200 (47%)		
700(UWTP III)		UWTP II/250 (11%)		
		UWTP III/420 (40%)		
Antibiotic group	Antibiotic	Initial concentration (ng L$^{-1}$)	Effluent concentration (ng L$^{-1}$)/% Removal efficiency	Reference
------------------	------------	-----------------------------------	--	-----------
		Outlet	UWTP I/30 (92%*)	Ternes et al., 2007
		UWTP II/400 (<=0*)		
		UWTP III/<=LOD (100%*)		
Antibiotic group		830 ± 270	620 ± 440 (25%**), CAS + chlorination/430 ± 73 (43%*)	Xu et al., 2007
		751 ± 109;		
		1978 ± 233;		
		253 ± 22;		
		469 ± 38		
Antibiotic group		Outlet	UWTP I/30 (92%*)	Ternes et al., 2007
		UWTP II/400 (<=0*)		
		UWTP III/<=LOD (100%*)		
Antibiotic group		CAS + chlorination/430 ± 73 (43%*)		Xu et al., 2007
Antibiotic group		Oxidation ditch + UV/2054 ± 386 (<0*)		
Antibiotic group		CAS/216 ± 34 (15%*)		
Antibiotic group		Chemically enhanced + chlorination/259 ± 20 (45%*)		
Antibiotic group		Outlet	MBR/RO	Sahar et al., 2010
Antibiotic group		32–80	MBR-RO (80%*)	Dolar et al., 2012
Antibiotic group		104	(91%*)	Reif et al., 2008
Antibiotic group		470–810	510–850 (~ 12 to 19%*)	Gulkowska et al., 2008
Antibiotic group		226–1537	361–811 (56%*)	Lin et al., 2009
Antibiotic group		(<=50–1300)	(<=50–300 (43.8–100%*)	Karthikeyan and Meyer, 2006
Antibiotic group		60–190	Primary/40–190 (~ 8 to 4%*)	Göbel et al., 2005;
Antibiotic group		MBR/RO (90.4 ± 8.2%*) [SRT: 40 days]		Göbel et al., 2007
Antibiotic group		16.7–51.3	CAS/96.3 ± 6.0 (55.6%*)	Li et al., 2009
Antibiotic group		200	80 ± 5 (60%)	Yang et al., 2004
Antibiotic group		258–409; 169–374	CAS/Shahin (15%*)	Li and Zhang, 2011
Antibiotic group		188	MBR (<25%)	Mc Ardell et al., 2003
Antibiotic group		242–6755;	CAS/96.3 ± 6.0 (55.6%*)	Radjenovic et al., 2009b
Antibiotic group		144–10025	CAS/23–2772 (50%)	Kovalova et al., 2012
Antibiotic group		603	CAS/454 (25%*)	Kasprzyk-Hordern et al, 2009
Antibiotic group		500	Primary/570 (~0%)	Watkinson et al., 2007
Antibiotic group		179–1760	47–964 (26–88%**)	Lin et al., 2009
Antibiotic group		1090	210 (~ 81%**)	Yang et al., 2005
Antibiotic group		450	(<30) (~ 93%*)	Choi et al., 2007
Antibiotic group		590	390 (34%*)	Gros et al., 2006
Antibiotic group		390	310 (20%*)	Brown et al., 2006
Antibiotic group		nd–145	CAS/18–50	Clara et al., 2005
Antibiotic group		5450 (GZ-UWTP1); GZ-UWTP2	MBR/56, nd, nd [SRT = 10, 27, 55 days] (61, 100, 100%*)	Peng et al., 2006
Antibiotic group		7910 (GZ-UWTP2);		
Antibiotic group		5450 (GZ-UWTP1); GZ-UWTP2	MBR/56, nd, nd [SRT = 10, 27, 55 days] (61, 100, 100%*)	Peng et al., 2006
Antibiotic group		179–1760	47–964 (26–88%**)	Lin et al., 2009
Antibiotic group		1090	210 (~ 81%**)	Yang et al., 2005
Antibiotic group		450	(<30) (~ 93%*)	Choi et al., 2007
Antibiotic group		590	390 (34%*)	Gros et al., 2006
Antibiotic group		390	310 (20%*)	Brown et al., 2006
Antibiotic group		nd–145	CAS/18–50	Clara et al., 2005
Antibiotic group		5450 (GZ-UWTP1); GZ-UWTP2	MBR/56, nd, nd [SRT = 10, 27, 55 days] (61, 100, 100%*)	Peng et al., 2006
Antibiotic group		7910 (GZ-UWTP2);		
Antibiotic group		5450 (GZ-UWTP1); GZ-UWTP2	MBR/56, nd, nd [SRT = 10, 27, 55 days] (61, 100, 100%*)	Peng et al., 2006
Antibiotic group		179–1760	47–964 (26–88%**)	Lin et al., 2009
Antibiotic group		1090	210 (~ 81%**)	Yang et al., 2005
Antibiotic group		450	(<30) (~ 93%*)	Choi et al., 2007
Antibiotic group		590	390 (34%*)	Gros et al., 2006
Antibiotic group		390	310 (20%*)	Brown et al., 2006
Antibiotic group		nd–145	CAS/18–50	Clara et al., 2005
Antibiotic group		5450 (GZ-UWTP1); GZ-UWTP2	MBR/56, nd, nd [SRT = 10, 27, 55 days] (61, 100, 100%*)	Peng et al., 2006
Antibiotic group		7910 (GZ-UWTP2);		
Antibiotic group		5450 (GZ-UWTP1); GZ-UWTP2	MBR/56, nd, nd [SRT = 10, 27, 55 days] (61, 100, 100%*)	Peng et al., 2006
Antibiotic group		179–1760	47–964 (26–88%**)	Lin et al., 2009
Antibiotic group		1090	210 (~ 81%**)	Yang et al., 2005
Antibiotic group		450	(<30) (~ 93%*)	Choi et al., 2007
Antibiotic group		590	390 (34%*)	Gros et al., 2006
Antibiotic group		390	310 (20%*)	Brown et al., 2006
Antibiotic group		nd–145	CAS/18–50	Clara et al., 2005
Antibiotic group		5450 (GZ-UWTP1); GZ-UWTP2	MBR/56, nd, nd [SRT = 10, 27, 55 days] (61, 100, 100%*)	Peng et al., 2006
Antibiotic group		7910 (GZ-UWTP2);		
Antibiotic group	Initial concentration (ng L⁻¹)	Effluent concentration (ng L⁻¹)/% Removal efficiency	Reference	
------------------	--------------------------------	--	-----------	
Antibiotic				
(<50)–1250	(<50)–370 (17.8–100%**)		Karthikeyan and Meyer, 2006	
250–640	250 (67%**)		Carballa et al., 2004	
230–570	Primary/90–640 (21 to <5%**)		Göbel et al., 2005; Göbel et al., 2007	
	Secondary/130–840 (138 to 60%**)	MBR (38, 40, 37%)[SRT 16, 33, 60–80 days]		
	FBR (62.5%)			
246	CAS/46 (81%**)		Zuccato et al., 2010	
3000	200 (93%*)		Watkinson et al., 2009	
146.5–355.5	CAS/46.6 ± 2.6 (68.2%**)		Li et al., 2009	
500–10000	(65–96%**)		Yu et al., 2009	
na	UVTF I		Renew and Huang, 2004	
13–155	4–39 (69–75%)		Pailler et al., 2009	
na	Amherst (Primary/2800 ± 300; CAS/1200 ± 3; Nitrification/700 ± 40; Tertiary/630 ± 60; Final/680 ± 30)	Batt et al., 2007		
East Aurora	(Primary/880 ± 40;			
Secondary/200 ± 3;	Tertiary/190 ± 5; Final/220 ± 20			
Secondary/480 ± 30;	Tertiary/450 ± 20; Final/500 ± 60			
Lackawana	(Primary/720 ± 60; Secondary/460 ± 40; Final/380 ± 30)			
820 ± 230	620 ± 90 (24%**)		Ternes et al., 2007	
16 ± 5; 118 ± 17;	CAS + chlorination/16 ± 7 (0%)		Xu et al., 2007	
10 ± 3; 25 ± 7	Oxidation ditch + UV/78 ± 13 (34%*			
	CAS/12 ± 3 (<0%)	Chemically enhanced		
	+ chlorination/9 ± 4 (64%)			
52.0–127; 163–230	CASShatin (90%***)		Li and Zhang, 2011	
	CASStanley (62%***)			
	Disinfection (27%***)			
	Final (73%***)			
93	CAS (73.8 ± 12.7%**)		Radjenovic et al., 2009b	
	MBR HF-UF (78.3 ± 13.9%**)[SRT > 60 days]			
	MBR FS-MF (80.8 ± 12.2%**)[SRT > 60 days]			
500	MBR/RO		Sahar et al., 2010	
	MBR (69.6 ± 7.3%*)[SRT > 40 days]			
	RO (97.6 ± 2.4%*)			
	CAS-UF/RO			
	UF (60.3 ± 21.7%*)			
	RO (97.6 ± 2.4%*)			
3476	(7%**)		Kovalova et al., 2012	
500–10000	MBR (75–90%*)[SRT > 100 days]		Abegglen et al., 2009	
5*10⁴	MBR		Xia et al., 2012	
	(88.5, 96.9, 99.3, 99.5%*)[SRT = 3, 10, 30, 60 days]			
20–268	MBR-RO (69%*)[SRT = 45 days]		Dolar et al., 2012	
10⁴	MBR (52%*)[SRT = 44–72 days]		Reif et al., 2008	
5*10⁴	MBR (55%*)[SRT = 15 days]		Tambosi et al., 2010	
	MBR (86%*)[SRT = 30 days]			
<3–150; 20–274	Trickling filter beds/<3–23 (0%**)		Kasprzyk-Hordern et al., 2009	
N⁴-Acetylaminosulfonamide	CAS/4–44 (70%**)			
850–1600	Primary/570–1200 (9–21%**)		Göbel et al., 2005; Göbel et al., 2007	
	CAS/<20–150 (81–96%**)			
	MBR (90, 75, 70%)[SRT 16, 33, 60–80 days]			
1000	(92, 75, 68%)[SRT = 16, 33, 60–80 days]		Joss et al., 2005	
2394	MBR (81%*)[SRT = 30–50 days]		Kovalova et al., 2012	
Antibiotic group	Antibiotic	Initial concentration (ng L⁻¹)	Effluent concentration (ng L⁻¹) / (% Removal efficiency)	Reference
------------------	------------	--------------------------------	--	-----------
Sulfamethazine	150	(<30 (<80%*))		Yang et al., 2005
	4010	(<30 (<99%*))		Choi et al., 2007
	110–210	(<50 (100%**))		Karthikeyan and Meyer, 2006
	2000–10000	(32–85%**)		Yu et al., 2009
	(<LOQ)–26.9	<LOQ (100%)		Spongberg and Witter, 2008
	3.2–54.7; 17.8	CAS (100%**)		Li and Zhang, 2011
	3	MBR/RO		Sahar et al., 2010
	nd–73.0	CAS/16.2 ± 0.0 (72.8%**)		Li et al., 2009
	72 ± 22	CAS + chlorination/nd		Xu et al., 2007
	36.0–55.4;	CAS (100%**); CASStanley (87%**)	Disinfection (4%**)	Li and Zhang, 2011
	4.4–530	Tertiary/nd		
		MBR (STR > 100 days)		
Sulfadiazine	500–1000	MBR (75–90%**); MBR (75–90%**)	Abegglenn, 2009	
	5100(GZ-UWTP1)	GZ-UWTP2		
	5150(GZ-UWTP2)	Primary/4180 (19%*)		
		Secondary/nd		
		Tertiary/nd		
		nd–73.0		
		nd–73.0		
Sulfathiazole	40	Primary/nd (100%*)		Watkinson et al., 2007
	10570	(93.8, 97.5, 99.6, 99.7%**); MBR (STR = 3, 10, 30, 60 days)		
	300	180 (98%*)		Choi et al., 2007
	(1.0)–2.0	600 (~0%*)		Watkinson et al., 2009
Sulfamerazine	1530	(~30 (~98%))		Choi et al., 2007
Sulfachloropyridazine	1560	60 (~93%*)		Choi et al., 2007
Sulfadimethoxine	70	(~30 (~57%))		Yang et al., 2005
	460	(~30 (~93%))		Choi et al., 2007
	2000–10000	(~LOQ)–2.6	Spongberg and Witter, 2008	
	(1.0)–26	(~LOQ)–1.9 (27%*)		Pailler et al., 2009
Sulfapyridine	60–150	Primary (~29 to 20%**)		Göbel et al., 2005; Göbel et al., 2007
		CAS (~107 to 72%**)		
		MBR (STR = 16, 33, 60–80 days)		
Sulfasalazine	500–1000	MBR (75–90%**); MBR (75–90%**)	Abegglenn, 2009	
		Primary/nd (100%*)		
Sulfamonomethoxine	100	150 (~0%*)		Watkinson et al., 2009
Sulfadoxazole	(<LOQ)–2.2	(<LOQ)–11.9 (46%*)		Spongberg and Witter, 2008
Sulfadimidine	25 ± 12; 696 ± 212	CAS + chlorination/12 ± 6 (52%*)	Xu et al., 2007	
Quinolones	Norfloxacin	na	210 (100%*)	Costanzo et al., 2005

(continued on next page)
Antibiotic group	Antibiotic	Initial concentration (ng L⁻¹)	Effluent concentration (ng L⁻¹)/% Removal efficiency	Reference
210	Primary/145 (31%)	CAS/15 (93%)		Watkinson et al., 2007
110–460	85–320 (–20 to 78%)			Guilkowska et al., 2008
431 ± 45	Primary/383 ± 61 (11%) Secondary/69 ± 15 (84%) Tertiary/51 ± 7 (88%)			Golet et al., 2003
(18 ± 2.5; 27 ± 3.0; 19.0 ± 1.5; (<5.5))_{UWTP}	(>70%*)			Zorita et al., 2009
66–174	(<7)–37 (87%**)			Lindberg et al., 2005
339	85 (75%)			Xiao et al., 2008
388 ± 112	57 ± 12 (82 ± 3%)			Golet et al., 2002
220	250 (<0%)			Watkinson et al., 2009
nd–59.5	CAS/13.9 ± 0.5 (76.6%**)	CAS + chlorination/nd		Li et al., 2009
229 ± 42; 179 ± 41;	CAS + chlorination/44 ± 19 (81%)			Xu et al., 2007
54 ± 10; 263 ± 36	Oxidation ditch + UV/62 ± 13 (65%) CAS/27 ± 6 (50%)	Chemically enhanced + chlorination/85 ± 12 (68%*)		
Ciprofloxacin	5933	MBR {47%*[STR = 30–50 days]}		Kovalova et al., 2012
90	138.2 (<0%)			Costanzo et al., 2005
4600	Primary/6900 (<0%*)			Watkinson et al., 2007
427 ± 69	Primary/331 ± 53 (22%*) Secondary/95 ± 15 (78%*)			Golet et al., 2003
(320 ± 10; 310 ± 20; 94.0 ± 12.0; 28.0 ± 5.5; 31.5 ± 4.0)_{UWTP}	(<90%*)			Zorita et al., 2009
90–300	7–60 (87%**)			Lindberg et al., 2005
(<50)–310	(<50)–60 (22.2–100%**)			Karhikeyan and Meyer, 2006
80	27 (66%)			Xiao et al., 2008
434 ± 93	72 ± 14 (82 ± 3%**)			Golet et al., 2002
513	CAS/147 (71%*)			Zuccato et al., 2010
1100	nd (100%*)			Watkinson et al., 2009
99.2–720.0	CAS/73.3 ± 3.0 (89.8%**)	CAS + chlorination/7.6 ± 0.7 (92.3%**)		Li et al., 2009
11.4–377.2	88–109.9 (71%*)			Spongberg and Witter, 2008
na	UWTP I Secondary/(<30)–100 Chlorination/(<20) UWTP II Secondary/80–370 UV/(<20)			Renew and Huang, 2004
na	Amherst (Primary/1100 ± 100; CAS/450 ± 1; Nitrification/450 ± 4; Tertiary/450 ± 3; Final/540 ± 5) East Aurora (Primary/610 ± 30; Secondary/290 ± 30; Tertiary/220 ± 9; Final/220 ± 7) Holland (Primary/1400 ± 300; Secondary/590 ± 10; Tertiary/450 ± 60; Final/340 ± 60) Lackawana (Primary/920 ± 50; Secondary/460 ± 10; Final/270 ± 20) 1674.20	626.50 (63%)		Batt et al., 2007
555–1033; 98.6–235	CAS_{Basin} (18%**) CAS_{Stanley} (55%**) Disinfection (18%**)			Castiglioni et al., 2008
31980	MBR (51%**)[STR = 30–50 days]			Kovalova et al., 2012
Table 1 — (continued)

Antibiotic group	Antibiotic	Initial concentration (ng L\(^{-1}\))	Effluent concentration (ng L\(^{-1}\))/% Removal efficiency	Reference
Enrofloxacin		100	Primary/20 (80%)/CAS/5 (95%)*	Watkinson et al., 2007
		40	50 (<-0%)*	Watkinson et al., 2009
		115–1274	53–991 (2–88%**)/Tertiary/740 (87%*)	Lin et al., 2009
		470	110 (77%**)	Brown et al., 2006
		(22.5 ± 2.5; 30.0 ± 3.0; 19.5 ± 3.0; 10.0 ± 1.0)	(56%**)	Zorita et al., 2009
		GZ-UWTP1	GZ-UWTP1 Primary/5700 (<0%)*	Peng et al., 2006
		5560(GZ-UWTP1); 3520(GZ-UWTP2)	Secondary/860 (85%*)/Tertiary/740 (87%*)	
Ofloxacin		470	110 (77%**)	Brown et al., 2006
		(22.5 ± 2.5; 30.0 ± 3.0; 19.5 ± 3.0; 10.0 ± 1.0)	(56%**)	Zorita et al., 2009
		GZ-UWTP1	GZ-UWTP1 Primary/5700 (<0%)*	Peng et al., 2006
		5560(GZ-UWTP1); 3520(GZ-UWTP2)	Secondary/860 (85%*)/Tertiary/740 (87%*)	
		7–287	7–52 (86%**)	Lindberg et al., 2005
		1208	503 (58%*)	Xiao et al., 2008
		463	CAS/235 (49%**)	Zuccato et al., 2010
		104.4–335.9	CAS/556.4 ± 28.7 (-65.6%**)/CAS + chlorination/2.1 ± 0.3 (98.0%**)	Li et al., 2009
		na	UWTP I Secondary/740 (<30)–350 Chlorination/740 (<20)–50	
		122620(UWTP I; 34740(UWTP I; 59380(UWTP I)	UWTP I/3020 (87%*)/UWTP I/5930 (83%*)/UWTP I/3330 (94%*)	
		na	UWTP I/1290 (94%*)/UWTP I/4820 (86%*)/UWTP I/1900 (97%*)	
		539.80	183.10 (66%*)	Castiglioni et al., 2008
		137 ± 58; 359 ± 52; 80 ± 12; 368 ± 23	CAS + chlorination/41 ± 8 (70%*)	Xu et al., 2007
		122620(UWTP I; 34740(UWTP I; 59380(UWTP I)	UV/100–210	
		122620(UWTP I; 34740(UWTP I; 59380(UWTP I)	Secondary/740 (<30)–350 Chlorination/740 (<20)–50	
		122620(UWTP I; 34740(UWTP I; 59380(UWTP I)	UWTP I/3020 (87%*)/UWTP I/5930 (83%*)/UWTP I/3330 (94%*)	
		539.80	183.10 (66%*)	Castiglioni et al., 2008
		137 ± 58; 359 ± 52; 80 ± 12; 368 ± 23	CAS + chlorination/41 ± 8 (70%*)	Xu et al., 2007
		478–1042; 188–327	CAS/2Bactie (26%**)/CAS/Stanley (59%)**/Disinfection (39%**)	Li and Zhang, 2011
		10500	CAS (75.8 ± 13.8%**)/MBR HF-UF (91.3 ± 10.8%**[SRT > 60 days])	Radjenovic et al., 2009b
		nd–2900	MBR RO (0%**)[STR–45 days]	Dolar et al., 2012
Nalidixic acid		200	Primary/nd (100%)/CAS/1 (100%*)	Watkinson et al., 2007
Pipemidic acid		26–372	40–200 (37–46%**)/CAS/30 (97%*)	Lin et al., 2009
Flerofloxacin		28	5.8 (79%*)	Xiao et al., 2008
Lomefloxacin		98	17 (83%*)	Xiao et al., 2008
Gatifloxacin		111	56 (50%*)	Xiao et al., 2008
Moxifloxacin		44	17 (61%*)	Xiao et al., 2008
Trimethoprim		930	Primary/480 (48%*)/CAS/30 (97%*)	Watkinson et al., 2007
		120–320	120–230 (~17 to 62%**)	Gulkowska et al., 2008
Antibiotic group	Antibiotic	Initial concentration (ng L\(^{-1}\))	Effluent concentration (ng L\(^{-1}\))/(% Removal efficiency)	Reference
------------------	------------	-------------------------------	---	-----------
259–949		203–415 (~22–56%)*		Lin et al., 2009
1172		290 (75%)*		Gros et al., 2006
590		180 (69%)**		Brown et al., 2006
99–1300		66–1340 (3%)**		Lindberg et al., 2005
140–1100		(<50)–550 (50–100%)*		Karthikeyan and Meyer, 2006
80		40 (49%)*		Bendz et al., 2005
213–300		218–322 (3%)**		Roberts and Thomas, 2006
210–440	Primary/400	(~40 to 20%)**		Göbel et al., 2005; Göbel et al., 2007
		CAS/80 (~20%)		
		Primary/210		
		Secondary/30–1210		
		Chlorination/ (~40)		
		UWTP I		
		UWTP II		
	na	Amherst (Primary/7900 ± 400;		Batt et al., 2007
		CAS/7600 ± 500; Nitrification/2500 ± 300; Tertiary/2500 ± 200; Final/2500 ± 200		
	50(UWTP I)	400 (4%)*		
	350(UWTP III)			
	1100 ± 260	340 ± 80 (69%)*		Ternes et al., 2007
	100–154;	CAS Shatin (13%)**		Li and Zhang, 2011
	136–172;	CAS Stanley (42%)**		
		Disinfection (40%)**		
		Final (65%)**		
	204	CAS (40.4 ± 25.4%)**		Radjenovic et al., 2009b
		MBR HF-UF (47.5 ± 22.5%)**[SRT > 60 days]		
		MBR FS-MF (66.7 ± 20.6%)**[SRT > 60 days]		
	30	MBR/RO		Sahar et al., 2010
		MBR (96 ± 4%)**[SRT > 40 days]		
		RO (97.2 ± 2.8%)**		
		CAS/UF/RO		
		UF (66.4 ± 20.5%)*		
		RO (93.2 ± 6.8%)*		
	930	MBR (96%)**[SRT = 30–50 days]		Kovalova et al., 2012
	10⁴	MBR (36%)**[SRT = 44–72 days]		Reif et al., 2008
	5* 10⁴	MBR (55%)**[SRT = 15 days]		Tambosi et al., 2010
		MBR (86%)**[SRT = 30 days]		
	464–6769;	Trickling filter beds/625–3052 (40%)**		Kasprzyk-Hordern et al., 2009
	1514–4673	CAS/385–1218 (70%)**		
Table 1 – (continued)

Antibiotic group	Antibiotic	Initial concentration (ng L⁻¹)	Effluent concentration (ng L⁻¹)/% Removal efficiency	Reference
Tetracyclines				
Tetracycline	35	Primary/nd (100%*)		Watkinson et al., 2007
	96–1300	180–620 (~88 to 73%**)		Gulkowska et al., 2008
	46–234	16–38 (~66–90%**)		Lin et al., 2009
	200	(~30) (~85%)		Yang et al., 2005
	110	(~30) (~73%)		Choi et al., 2007
	240–790	(~50)–160 (67.9–100%**)		Karthikeyan and Meyer, 2006
	100	20 (80%)		Watkinson et al., 2009
	134.5–270.8	CAS/89.4 ± 4.2 (67.0%**)		Li et al., 2009
	29.3–38.9	(~LOQ)–34.4 (12%)		Spongberg and Witter, 2008
	(1.0)–85	(1.0)–24 (72%)		Pailler et al., 2009
	na	Amherst (Primary/110 ± 100; CAS/410 ± 20; Nitrification/170 ± 10; Tertiary/170 ± 2; Final/160 ± 1) East Aurora (Primary/320 ± 30; Secondary/75 ± 3; Tertiary/61 ± 9; Final/61 ± 3) Holland (Primary/580 ± 20; Secondary/240 ± 20; Tertiary/220 ± 40; Final/210 ± 2) Lackawanna (Primary/430 ± 200; Secondary/240 ± 20; Final/290 ± 30)	Batt et al., 2007	
	221–353;	CASStabil (24%**)		Li and Zhang, 2011
	59.8–110	CASStanley (56%**)		
		Disinfection (13%**)		
		Final (39%**)		
	5*10⁵	MBR	(83.6, 89.7, 92.6, 93.6%*)	[STR = 3, 10, 30, 60 days]
Chlortetracycline	270	60 (~78%*)		Yang et al., 2005
	970	40 (~96%)		Choi et al., 2007
	200	250 (~0%)		Watkinson et al., 2009
	155, 178	CASStabil (85%**)		Li and Zhang, 2011
		CASStanley (82%**)		
		Disinfection (6%**)		
		Final (83%**)		
	5*10⁵	MBR	(82.9, 84.4, 81.5, 77.6%*)	[STR = 3, 10, 30, 60 days]
Doxycycline	65	Primary/40 (78%*)		Watkinson et al., 2007
	210	70 (~67%*)		Yang et al., 2005
	220	30 (86%)		Choi et al., 2007
	(~64)–2480	(~64)–915 (~70%*)		Lindberg et al., 2005
	650	150 (77%*)		Watkinson et al., 2009
Oxytetracycline	240	(~30) (~88%*)		Choi et al., 2007
	350	70 (80%*)		Watkinson et al., 2009
	(1.0)–7.0	(1.0)–5.0 (29%)		Pailler et al., 2009
	53.5–107;	CASStabil (44%**)		Li and Zhang, 2011
	nd	MBR	(79.7, 84.4, 87.9, 88.6%*)	[STR = 3, 10, 30, 60 days]
Minocycline	380	(~30) (~92%*)		Choi et al., 2007
Democlocycline	270	30 (89%)		Choi et al., 2007
Meclocycline-Sulfosalicylate	500	180 (64%*)		Choi et al., 2007
Lincosamides	80	Primary/70 (12.5%*)		Watkinson et al., 2007
	9.7	CAS/6.1 (37%*)		Zuccato et al., 2010
	500	300 (40%*)		Watkinson et al., 2009
	3.9	3.70 (5%)		Castiglioni et al., 2008
Clindamycin	5	Primary/5 (0%)		Watkinson et al., 2007
	60	70 (~0%)		Watkinson et al., 2009

(continued on next page)
Table 1 – (continued)

Antibiotic group	Initial concentration (ng L$^{-1}$)	Effluent concentration (ng L$^{-1}$)/% Removal efficiency	Reference
Polyether ionophores	6.8–13.3 983	14.9–32.5 (<0%*) MBR (–18%**)	Spongberg and Witter, 2008 Kovalova et al., 2012
Monensin	190	Primary/10 (95%*) CAS/1 (99.5%*)	Watkinson et al., 2007
Salisomycin	300	nd (100%*)	Watkinson et al., 2009
Glycopeptides	41 (<36.5)–60.6; nd	CAS/40 (2%**) CAS$_{Shatin}$ (52%**)	Zuccato et al., 2010 Li and Zhang, 2011
Vancomycin	400–7600	200–1300 (50–83%*)	Löffler and Ternes, 2003
Aminoglycosides	nd–1140 158–1583: 347–962 1000–2000 3388	MBR-RO (95%*)$_{545–7910}$ Trickling filter beds/60–421 (21%*) CAS/129–561 (23%*)	Dolar et al., 2012 Kasprzyk-Hordern et al., 2009
Gentamicin		(<30%**)	Jelic et al., 2011
Nitroimidazoles		MBR (45%**)$_{545–7910}$	Kovalova et al., 2012
Metronidazole			

NOTES. CAS: Conventional activated sludge treatment; MBR: Membrane bioreactor; FBR: Fixed bed bioreactor; SRT: Sludge retention time; HRT: Hydraulic retention time.
Value in the parenthesis is the limit of detection (LOD).
Negative removal values result from an observed increase of loads from inflow to outflow of wastewater treatment.
LOQ: Limit of Quantification. nd: Not detected; na: Not available; ne: Not evaluated; nq: Not quantified.
* Removal efficiencies, not reported by authors in the cited study, are calculated from the average influent and effluent concentrations which were stated in the study.
** Removal efficiencies reported by authors in the cited study.

studies of Göbel et al. (2007) and Joss et al. (2005), roxithromycin was removed at two UWTPs in Switzerland by 38% during secondary treatment and by 38–57% during MBR treatment (SRT = 16, 33, 60–80 days). Moreover, roxithromycin removal was reported to be higher than 53% for four UWTPs in south China (Xu et al., 2007). Clara et al. (2005) reported a removal range for roxithromycin of 52–100% during MBR treatment (SRT = 10–55 days).

Erythromycin is frequently detected as its main human metabolite, the dehydrated product with an apparent loss of one molecule of water, erythromycin-H$_2$O. Erythromycin-H$_2$O was degraded by 15% and 26% in activated sludge processes at Shatin and Stanley UWTP, respectively (Li and Zhang, 2011), and up to 10% in two Swiss UWTPs (Göbel et al., 2007). Higher removals were reported in other studies, that is, 56% in four Taiwanese UWTPs (Lin et al., 2009a,b) and 43.8–100% in an UWTP in USA (Karthikeyan and Meyer, 2006) by secondary wastewater treatment processes both employing activated sludge.

For clarithromycin highly variable elimination rates are reported, from <20% (Göbel et al., 2007; Spongberg and Witter, 2008) up to 80% (Dolar et al., 2012; Lin et al., 2009a,b). For clarithromycin and erythromycin-H$_2$O an influence of sludge age was observed with enhanced eliminations at higher SRTs (26–40% at SRT = 33 days, 90% at SRT = 60–80 days in Göbel et al., 2007). Reif et al. (2008) also found high removals of roxithromycin and erythromycin (77% and 91%, respectively) in an MBR with SRT of 44–72 days.

Macrolides may be sorbed to biomass via cation exchange processes due to the fact that under typical wastewater conditions (pH = 7–8), many are positively charged through the protonation of the basic dimethylamino group (pK$_a$ = 7.1–9.2) while the surface of activated sludge is predominantly negatively charged (Le-Minh et al., 2010). Analysis of sludge, however, showed that sorption of macrolides is of minor importance for the elimination in conventional UWTPs with K$_d$ of below 400 L kg$^{-1}$ (Göbel et al., 2005; Kovalova et al., 2012). Abegglen et al. (2009) observed a slightly higher affinity of MBR sludge to macrolides than conventional activated sludge (K$_d$ = 1400 L kg$^{-1}$ for azithromycin).

2.1.3. Sulfonamides

The concentrations of these antibiotics in UWTP influents and effluents vary significantly, depending on consumption patterns and the types of wastewater treatment processes employed. For example, sulfamethoxazole has been reported at concentrations as high as 5450–7910 ng L$^{-1}$ in sewage influent in China and was completely removed during the treatment (Peng et al., 2006). In a Taiwanese UWTP, sulfamethoxazole was detected in influent at concentration range of 500–10,000 ng L$^{-1}$ and the removal was 65–96% after the biological treatment (Yu et al., 2009). Sulfamethoxazole has been reported to be removed up to 81% (initial concentration 1090 ng L$^{-1}$) (Yang et al., 2005), 69–75% (initial concentration in the range 13–155 ng L$^{-1}$) (Pailler et al., 2009), 68.2–95.7% (initial concentration in the range 146–355 ng L$^{-1}$) (Li et al., 2009) and 93% (initial concentration in the range 3000 ng L$^{-1}$) (Watkinson et al., 2009). However, in other studies lower removal rates of 20–24% were reported (Brown et al., 2006; Ternes et al., 2007).

At this point it is worth mentioning that, there is only little knowledge on the environmental fate of humans’ metabolites of antibiotics, which are excreted from the human body, often in considerable amounts and can be found predominantly in
the environment (Hollender et al., 2008). Humans’ metabolites are often omitted when analyzing antibiotics; a notable exception is the sulfamethoxazole’s acetylated metabolite. N4-acetylsulfamethoxazole usually accounts for more than 50% of an administered dose in human excretion and can occur in UWTP influents at concentrations of 2.5–3.5 times higher than concentrations of the parent compound (Göbel et al., 2007). Significant removal efficiencies (81–96% and 68–92%, respectively) of N4-acetylsulfamethoxazole during secondary treatment were reported by Göbel et al. (2007) and Joss et al. (2005). N4-acetylsulfamethoxazole can also deconjugate into sulfamethoxazole during wastewater treatment (Göbel et al., 2007), leading to an underestimation of removal efficiency for sulfamethoxazole if this metabolite is not considered. This might be a reason for the highly varying observed elimination rates.

Higher removal rates were observed for sulfadiazine during activated sludge process at Shatin (72.8%, 100%) and Stanley (87%) UWTPs (Li et al., 2009; Li and Zhang, 2011). However, the removal rate for sulfadiazine was only 50% in a Chinese UWTP (Xu et al., 2007).

Sulfamethazine was removed to concentrations below detection in the study of Li and Zhang (2011), Karthikeyan and Meyer (2006), Choi et al. (2007) and Yang et al. (2005), achieving removal rates higher than 80%. Yu et al. (2009) reported a removal of 32–85% in a UWTP in Colorado. Many other sulfonamides were eliminated during conventional processes with removal efficiencies varying from <0 to 100%, but sorption to sludge was found to be negligible for sulfonamides (Yang et al., 2005; Choi et al., 2007; Göbel et al., 2007; Watkinson et al., 2007; Spongberg and Witter, 2008; Abegglen et al., 2009; Pailler et al., 2009; Tambosi et al., 2010).

The variation of sulfonamides removal may possibly be explained not only by the deconjugation of metabolites, but also by the differences in UWTP operating conditions such as HRT and the presence of an anaerobic compartment. Higher SRT, though, was not found to increase the elimination of sulfamethoxazole and sulfapyridine (Göbel et al., 2007; Radjenovic et al., 2009b).

2.1.4. Trimethoprim
The presence of trimethoprim can generally be correlated to that of sulfamethoxazole since the two drugs are often administered in combination (Göbel et al., 2005). The removal of trimethoprim has been reported as 13% and 42% by Li and Zhang (2011). The removal of this compound was found to fluctuate within the same levels in various UWTPs in USA (50–100%), in Germany (69%) and in Taiwan (74%) (Brown et al., 2006; Karthikeyan and Meyer, 2006; Ternes et al., 2007; Yu et al., 2009). Higher removals were obtained in five UWTPs in Australia yielding 94% (Watkinson et al., 2009) and 93.3% (Li et al., 2009). In contrast, the removal of trimethoprim was negligible as reported in the studies of Lindberg et al. (2005) and Roberts and Thomas (2006).

Some studies have indicated that nitrifying microorganisms appear to be capable of degrading trimethoprim. This suggests an important role for aerobic conditions for the biotransformation of trimethoprim (Perez et al., 2005; Batt et al., 2006). Moreover, trimethoprim elimination was found to be increased at higher SRTs (Göbel et al., 2007; Radjenovic et al., 2009b; Tambosi et al., 2010; Kovalova et al., 2012).

2.1.5. Quinolones
Removal efficiencies of quinolones during wastewater treatment in Sweden were reported to be 87% for norfloxacin and ciprofloxacin and 86% for ofloxacin (Lindberg et al., 2005). A later study reported the removal of ciprofloxacin (>90%), ofloxacin (56%), and norfloxacin (>70%) during activated sludge treatment followed by chemical coagulation/flocculation (Zorita et al., 2009). Sorption to sewage sludge has been suggested by Golet et al. (2003) as the primary removal mechanism for fluoroquinolones (ciprofloxacin and norfloxacin) during secondary wastewater treatment, resulting in the removal of 78–84% of the aforementioned fluoroquinolones from the aqueous phase. High removals of ofloxacin were achieved in UWTPs in Cyprus (>83%) (Fatta-Kassinos et al., 2010) and in China (100%) (Peng et al., 2006). Removal of ciprofloxacin in an MBR treating hospital wastewater (SRT = 30–50 days) was only 51% (Kovalova et al., 2012). This relatively low removal might have been caused by the lower sludge production in MBR than in conventional activated sludge, leading to lower sorption.

2.1.6. Tetracyclines
Tetracycline is one of the most frequently detected antibiotics in wastewater (Watkinson et al., 2007). According to the study of Yang et al. (2005) tetracycline was removed by 85% in an UWTP in Colorado. Li and Zhang (2011) reported removals of 24–36% at two plants while higher removals (67.9–100%) were reported by Karthikeyan and Meyer (2006) and four Taiwanese UWTPs (66–90%) by Lin et al. (2009a, b).

The removal rates for chlorotetracycline as reported by Li and Zhang (2011) were in the range of 82% and 85%. Furthermore, for chlorotetracycline and doxycycline, after secondary treatment and chlorination, the removal efficiencies were reported to be 78% and 67%, respectively (Yang et al., 2005). Choi et al. (2007) reported even higher removal values for minocycline and democycline (92 and 89%, respectively). High removal was also achieved for tetracyclines in MBR treatment (SRT = 3–60 days, Xia et al., 2012).

Tetracyclines have complexing properties and can easily bind to calcium and similar ions, thus forming stable complexes, which can bind to suspended matter or sewage sludge (Drewes, 2008). Kim et al. (2005) found no evidence of tetracycline biodegradation during the biodegradability test, but sorption was found to be the principal removal mechanism in activated sludge. These properties might explain why tetracyclines are detected in many cases in low concentration levels (ng L−1) in treated secondary effluents.

2.1.7. Other antibiotic groups
Several studies reported the occurrence of lincosamides antibiotics such as lincomycin and clindamycin in wastewater influents and effluents with maximum removal efficiencies of 67% (Zuccato et al., 2010; Kovalova et al., 2012). Clindamycin may be transformed back from the main human metabolite
clindamycin sulfoxide in the denitrification process, resulting in increased concentration (Kovalova et al., 2012). A study by Watkinson et al. (2009) showed that removals of polyether ionophores (monensin and salinomycin) in wastewater were up to 95%. Metronidazole, an imidazole antibiotic, was removed up to 23% during CAS (Kasprzyk-Hordern et al., 2009; Jelic et al., 2011) and 45% in an MBR treating hospital wastewater (SRT = 30–50 days, Kovalova et al., 2012). Metronidazole is rapidly transformed into 1-(2-hydroxyethyl)-2-hydroxymethyl-5-nitroimidazole (Mahugo-Santana et al., 2010). Limited information on the behavior of polyether ionophores through UWTP processes is available, due to the less likely occurrence of these antibiotics in urban wastewater except where there is runoff from agricultural lands into sewers. Glycopeptides such as vancomycin was analyzed by Li and Zhang (2011) and the removal after the activated sludge process was found to be as high as 52%. The aminoglycoside gentamicin was found in hospital wastewater, although it is a compound that is adsorbed very strongly (Loffler and Ternes, 2003).

In summary, biological treatment cannot completely remove antibiotics in wastewater treatment. Accordingly, alternative treatment processes are considered as necessary in order to provide further elimination of these compounds from wastewater effluents and to better manage environmental and human exposure to these contaminants.

In the following sections, other techniques including membrane filtration, activated carbon adsorption and advanced oxidation processes (AOPs) are discussed. The removal of antibiotics by these processes is depicted in Table 2 along with other relevant and important information. The upgrading of UWTPs and the application of such technologies is regarded as a possible optimization of the biological treatment with regard to antibiotics’ removal.

2.2. Membrane processes

Removal of antibiotics in membrane processes can occur through multiple mechanisms. First, removal can be governed by adsorption where antibiotics that are hydrophobic or have strong hydrogen-bonding characteristics, readily adsorb to membranes at the initial stages of filtration. In many cases though, removal can occur through steady-state rejection due to either steric effects for uncharged solutes or combined steric and electrostatic effects for charged solutes. These mechanisms are dependent on the physicochemical properties of the compound (molecular weight cut-off (MWCO), pK_a, hydrophobicity/hydrophilicity), the solution (pH, ionic strength), and the membrane characteristics (material, surface morphology, pore size) (Le-Minh et al., 2010).

While the pores in micro- and ultrafiltration are too large to reject micropollutants, the lower membrane pore size used in nanofiltration (NF, pore size range: 0.001 µm) and reverse osmosis (RO, pore size range <0.001 µm) have been shown in recent years to effectively remove low-molecular-weight pharmaceutical compounds, including antibiotics, during wastewater treatment. Various studies showed up to 90% removal of several antibiotics including quinolones, sulfonamides, tetracyclines and trimethoprim (Kimura et al., 2004; Morse and Jackson, 2004). A study undertaken by Kosutic et al. (2007) on the treatment of model wastewater of a manufacturing plant producing pharmaceuticals for veterinary use showed that sulfonamides were effectively removed by NF and RO. Zhang et al. (2006) reported a high removal efficiency (98.5–99.7%) for amoxicillin from wastewater, which contains high level of TOC using RO. In a study of Li et al. (2004) oxytetracycline at very high concentration (1000 mg L^{-1}) in wastewater from pharmaceutical manufacturing was reduced to 80 mg L^{-1} (~92% removal).

Given the complementary treatment capacity of MBR and NF/RO membrane filtration, there is significant scope for the coupling of these two treatment processes to achieve an overall enhanced performance (Alturki et al., 2010; Dolar et al., 2012). Excellent overall removal of target antibiotics with removal rates above 99% was achieved with MBR/RO (Dolar et al., 2012).

Some investigations reveal that the fouling of membranes can also lead to improved rejection of many solutes (Schafer et al., 1994; Drewes et al., 2006; Xu et al., 2006). This interesting observation is believed to be due to increased negative surface charge leading to increased electrostatic rejection of ionic species; along with simultaneously increased adsorptive capacity for non-ionic solutes (Xu et al., 2006).

2.3. Activated carbon adsorption treatment

Adsorbent treatment with activated carbon can be used for removing many hydrophobic and also some charged pharmaceuticals from water (Le-Minh et al., 2010). The adsorption mainly involves the following steps: (i) solute transport in the bulk-adsorbate movement by the stagnant liquid film surrounding the adsorbent, (ii) film diffusion–adsorbate transport along the film, (iii) pores diffusion–adsorbate diffusion through the porous structure to the active sites (molecular diffusion in the pore and/or in the adsorbent surface), (iv) adsorption-interaction between adsorbate and porous structure (Homem and Santos, 2011).

The removal effectiveness of the activated carbon adsorptive treatment system depends on the properties of the adsorbent (e.g. specific surface area, porosity, surface polarity and physical shape of the material), and the characteristics of the compound (e.g. shape, size, charge and hydrophobicity). Moreover, the sorption efficiencies of antibiotics to activated carbon may be significantly altered by the initial concentrations of the target compounds, the pH, the temperature and the presence of other species in the solution (Aksu and Tunç, 2005). Non-specific dispersive interactions (e.g. van der Waals interactions) are the dominant mechanism of removal for organic compounds, including antibiotics, in activated carbon adsorption systems, removing most non-polar antibiotics with logKOW > 2. However, electrostatic interactions between ionic antibiotics and the charged groups on the surface of activated carbon can result in removal of polar antibiotics (Snyder et al., 2003). The removal of antibiotics by activated carbon has been reported during wastewater treatment in some studies (Adams et al., 2002; Westerhoff et al., 2005; Putra et al., 2009; Rivera-Utrilla et al., 2009; McArdell et al., 2011; Boehler et al., 2012). A post-treatment with powdered activated carbon (PAC) after biological treatment has been mostly investigated. The concentrations of several antibiotics in wastewater with PAC dosages between 10 and 20 mg L^{-1} have been reduced by 49–99% after 4 h contact time (Adams et al.,
Antibiotic Group	Advanced treatment process	Type of wastewater (location)	Initial concentration	Treatment process	Results/findings	Reference
β-Lactams	Simulated wastewater (USA)	10 mg L^-1	RO: plate and frame configuration, ACM-LP fully aromatic polyamide low pressure advanced composite membrane	(100%)	Morse and Jackson, 2004	
	CAS effluent (Australia)	280 ng L^-1	MF/Ro plant: receives ~10% of CAS effluent	MF: nd; Ro: nd	Watkinson et al., 2007	
	Wastewater from plant manufacturing AMX (China)	na	Laboratory-scale cross flow RO unit. Two high-pressure cross flow membrane cells (SSS16, 155 cm^3) mounted with a flat-sheet polyamide RO membrane. TOC = 18925 mg L^-1 COD = 80000 mg L^-1	TOC = 283.9 mg L^-1 (98.5%); COD = 800 mg L^-1 (99.0%)	Zhang et al., 2006	
Penicillin V	CAS effluent (Australia)	160 ng L^-1	MF/Ro plant: receives ~10% of CAS effluent	MF: 100 ng L^-1; Ro: 40 ng L^-1	Watkinson et al., 2007	
Cephalosporins	CAS effluent (Australia)	320 ng L^-1	MF/Ro plant: receives ~10% of CAS effluent	MF: nd; Ro: nd	Watkinson et al., 2007	
Macrolides	CAS effluent (Australia)	100 ng L^-1	MF/Ro plant: receives ~10% of CAS effluent	MF: 10 ng L^-1; Ro: 5 ng L^-1	Watkinson et al., 2007	
Macrolides	CAS effluent (Australia)	55 ng L^-1	MF/Ro plant: receives ~10% of CAS effluent	MF: 125 ng L^-1; Ro: 15 ng L^-1	Watkinson et al., 2007	
Sulfonamides	CAS effluent (Australia)	1 mg L^-1	RO membranes: Polyamide (XLE); Cellulose acetate (SC-3100). Cross flow membrane unit with a flat-sheet membrane cell Effective membrane area in the cell = 32 cm^2	XLE (70%); SC-3100 (82%)	Kimura et al., 2004	
Sulfamethoxazole	CAS effluent (Australia)	10 mg L^-1	RO membranes: XLE; HR95PP; TFC-S. Surface area of membranes: 10.8 cm^2	XLE (99.4%); HR95PP (99.4%); TFC-S (100%); NF90 (99.4%); HL (88.5%)	Kosutic et al., 2007	
Sulfadiazine	Model wastewater for veterinary use (Croatia)	500 ng L^-1	MF/Ro plant: receives ~10% of CAS effluent	MF: 445 ng L^-1; Ro: nd	Watkinson et al., 2007	
Sulfaguanidine	Model wastewater for veterinary use (Croatia)	10 mg L^-1	NF membranes: NF90, HL Desal, Osmonics Surface area of membranes: 10.8 cm^2	XLE (99.3%); HR95PP (99.3%); TFC-S (100%); NF90 (99.1%); HL (96.3%)	Kosutic et al., 2007	
Sulfamethazine	Model wastewater for veterinary use (Croatia)	10 mg L^-1	NF membranes: NF90, HL Desal, Osmonics Surface area of membranes: 10.8 cm^2	XLE (99%); HR95PP (99.3%); TFC-S (100%); NF90 (99.4%); HL (96.3%)	Kosutic et al., 2007	
Sulfathiazole	Missouri River water (Jefferson City)	50 µg L^-1	Barnstead RO system: Model D2716, Cellulose acetate membrane D2713, Flow: 1.9 L min^-1	Barnstead RO system: Model D2716, Cellulose acetate membrane D2713, Flow: 1.9 L min^-1	Adams et al., 2002	
Sulfamethazine	Missouri River water (Jefferson City)	50 µg L^-1	Barnstead RO system: Model D2716, Cellulose acetate membrane D2713, Flow: 1.9 L min^-1	Barnstead RO system: Model D2716, Cellulose acetate membrane D2713, Flow: 1.9 L min^-1	Adams et al., 2002	
Sulfamerazine	CAS effluent (Australia)	40 ng L^-1	MF/Ro plant: receives ~10% of CAS effluent	MF: nd; Ro: nd	Watkinson et al., 2007	
Sulfachloropyridazine	Missouri River water (Jefferson City)	50 µg L^-1	Barnstead RO system: Model D2716, Cellulose acetate membrane D2713, Flow: 1.9 L min^-1	Barnstead RO system: Model D2716, Cellulose acetate membrane D2713, Flow: 1.9 L min^-1	Adams et al., 2002	

(continued on next page)
Antibiotic Group	Type of wastewater (location)	Initial concentration	Treatment process	Results/findings	Reference	
Sulfadimethoxine	Missouri River water (Jefferson City)	50 µg L⁻¹	Barnstead RO system: Model D2716, Cellulose acetate membrane D2731, Flow: 1.9 L min⁻¹	(90.3%)	Adams et al., 2002	
Sulfasalazine	CAS effluent (Australia)	60 ng L⁻¹	MF/RO plant: receives ~10% of CAS effluent	MF: 55 ng L⁻¹; RO: nd	Watkinson et al., 2007	
Enrofloxacin	Model wastewater for veterinary use (Croatia)	10 mg L⁻¹	RO membranes: XLE (Dow/FilmTec, Midland MI); HR95PP (Dow/FilmTec, Midland MI); TFC-S (Koch Membrane Systems, Wilmington, MA); NF membranes: NF90 (Dow/FilmTec); HL Desal, Osmonics (GE Infrastructure Water Process Techn., Vista, CA). Surface area of membranes: 10.8 cm²	XLE (97.2%); HR95PP (98.8%); TFC-S (100%); NF90 (99.1%); HL (99.4%)	Kosutić et al., 2007	
Norfloxacin	CAS effluent (Australia)	100 ng L⁻¹	MF/RO plant: receives ~10% of CAS effluent	MF: 240 ng L⁻¹; RO: 10 ng L⁻¹	Watkinson et al., 2007	
Ciprofloxacin	CAS effluent (Australia)	240 ng L⁻¹	MF/RO plant: receives ~10% of CAS effluent	MF: 190 ng L⁻¹; RO: 15 ng L⁻¹	Watkinson et al., 2007	
Nalidixic acid	CAS effluent (Australia)	4600 ng L⁻¹	MF/RO plant: receives ~10% of CAS effluent	MF: 170 ng L⁻¹; RO: nd	Watkinson et al., 2007	
Trimethoprim	Model wastewater for veterinary use (Croatia)	10 mg L⁻¹	RO membranes: XLE (Dow/FilmTec, Midland MI); HR95PP (Dow/FilmTec, Midland MI); TFC-S (Koch Membrane Systems, Wilmington, MA); NF membranes: NF90 (Dow/FilmTec); HL Desal, Osmonics (GE Infrastructure Water Process Techn., Vista, CA). Surface area of membranes: 10.8 cm²	XLE (98.6%); HR95PP (98.2%); TFC-S (100%); NF90 (99.2%); HL (88.8%)	Kosutić et al., 2007	
Missouri River water (Jefferson City)		50 µg L⁻¹	Barnstead RO system: Model D2716, Cellulose acetate membrane D2731, Flow: 1.9 L min⁻¹	(90.3%)	Adams et al., 2002	
CAS effluent (Australia)		930 ng L⁻¹	MF/RO plant: receives ~10% of CAS effluent	MF: 260 ng L⁻¹; RO: 75 ng L⁻¹	Watkinson et al., 2007	
Secondary effluent (Beijing, China)		400 ng L⁻¹	UF: Dead-end ultrafiltration system (Zenon GE), 6 trains of Zee-Weed 1000 membrane, pore size of 0.02 μm (PVDF), flow = 23 L (m² h)⁻¹	UF (0-50%); UF membranes of different molecular weight cut-off (3,10, 30, 50 K Da)	Li et al., 2004	
Tetracyclines	**Oxytetracycline**	Model wastewater for veterinary use (Croatia)	10 mg L⁻¹	RO membranes: XLE (Dow/FilmTec, Midland MI); HR95PP (Dow/FilmTec, Midland MI); TFC-S (Koch Membrane Systems, Wilmington, MA); NF membranes: NF90 (Dow/FilmTec); HL Desal, Osmonics (GE Infrastructure Water Process Techn., Vista, CA). Surface area of membranes: 10.8 cm²	XLE (99.2%); HR95PP (99.3%); TFC-S (100%); NF90 (99.0%); HL (99.2%)	Kosutić et al., 2007
	Waste liquor from the crystallization unit in a pharmaceutical company (Chi Feng, Inner Mongolia, China).	1000 mg L⁻¹	RO: SEPA CELL flat sheet membrane apparatus; membrane area of 155 cm²; UF: 0.3 MPa; UF membranes of different molecular weight cut-off (3,10, 30, 50 K Da)	< 80 mg L⁻¹ (<92%)	Li et al., 2004	
Lincomycin	CAS effluent (Australia)	5 ng L⁻¹	MF/RO plant: receives ~10% of CAS effluent	MF: 10 ng L⁻¹; RO: 5 ng L⁻¹	Watkinson et al., 2007	
Lincomycin	CAS effluent (Australia)	80 ng L⁻¹	MF/RO plant: receives ~10% of CAS effluent	MF: 35 ng L⁻¹; RO: 1 ng L⁻¹	Watkinson et al., 2007	
ACTIVATED CARBON ADSORPTION

Antibiotic Group	Type of wastewater (location)	Initial concentration	Treatment process	Results/findings	Reference
β-Lactams					
Amoxicillin	Real wastewater (P.T. Coronet Crown)	317 mg L⁻¹	GAC: BET surface area = 1092.951 m² g⁻¹, pore size < 20Å, dose: 1.5 g per 50 ml solvent	16.9 mg L⁻¹ (94.67%)	Putra et al., 2009
Penicillin G	Na	50–1000 mg L⁻¹	HCl washed PAC: particle size < 0.15 mm, BET surface area = 1000 m² g⁻¹, bulk density = 0.46. 0.1 g PAC was treated with 100 ml of PG at a defined pH, temperature and initial PG concentration	AdsorptionMAX 375.0 mg g⁻¹ (pH: 6.0, 35 °C) adsorption (%): 44.0-290.0 (25 °C) 39.6-64.4 (35 °C) 24.6-51.6 (45 °C)	Akso and Tunç, 2005
Macrolides					
Erythromycin	Hospital wastewater after treatment with MBR	110 ng L⁻¹	PAC Norit SAE Super, PAC retention time = 2 days, dose=8–43 mg L⁻¹, contact time = 3–5 days	PAC dose = 8 mg L⁻¹ (20%) PAC dose = 23 mg L⁻¹ (100%)	McArdell et al., 2011
Clarithromycin	Hospital wastewater after treatment with MBR	1280 ng L⁻¹	PAC Norit SAE Super, PAC retention time = 2 days, dose=8–43 mg L⁻¹, contact time=3–5 days	PAC dose = 8 mg L⁻¹ (100%) PAC dose = 23 mg L⁻¹ (100%)	McArdell et al., 2011
Roxithromycin	Membrane bioreactor operating in a sequential mode (SMBR)	4.5–6 μg L⁻¹	PAC QP: 1.665 g cm⁻³ real density, 0.25 g cm⁻³ apparent density; 328.2 m² g⁻¹ specific surface area	PAC dose = 1 g L⁻¹ (71-86%)	Serrano et al., 2011
Sulfonamides	Hospital wastewater after treatment with MBR	10 ng L⁻¹	PAC Norit SAE Super, PAC retention time = 2 days, dose = 8–43 mg L⁻¹, contact time = 3–5 days	PAC dose = 8 mg L⁻¹ (95%) PAC dose = 23 mg L⁻¹ (88%) PAC dose = 43 mg L⁻¹ (88%)	McArdell et al., 2011
Sulfamethoxazole	Hospital wastewater after treatment with MBR	3230 ng L⁻¹	PAC Norit SAE Super, PAC retention time = 2 days, dose = 8–43 mg L⁻¹, contact time = 3–5 days	PAC dose = 8 mg L⁻¹ (2%) PAC dose = 23 mg L⁻¹ (33%) PAC dose = 43 mg L⁻¹ (62%)	McArdell et al., 2011
Sulfamethazine	Missouri River water (Jefferson City).	50 μg L⁻¹	PAC dose = 0–50 mg L⁻¹, Contact time = 4 h	AC dose = 10 mg L⁻¹ (49%) AC dose = 20 mg L⁻¹ (85%) AC dose = 50 mg L⁻¹ (90%)	Adams et al., 2002
Sulfathiazole	Missouri River water (Jefferson City).	50 μg L⁻¹	PAC dose = 0–50 mg L⁻¹, Contact time = 4 h	AC dose = 10 mg L⁻¹ (70%) AC dose = 20 mg L⁻¹ (85%) AC dose = 50 mg L⁻¹ (90%)	Adams et al., 2002
Sulfamerazine	Missouri River water (Jefferson City).	50 μg L⁻¹	PAC dose = 0–50 mg L⁻¹, Contact time = 4 h	AC dose = 10 mg L⁻¹ (60%) AC dose = 20 mg L⁻¹ (80%) AC dose = 50 mg L⁻¹ (90%)	Adams et al., 2002
Sulfachloropyridazine	Missouri River water (Jefferson City).	50 μg L⁻¹	PAC dose = 0–50 mg L⁻¹, Contact time = 4 h	AC dose = 10 mg L⁻¹ (58%) AC dose = 10 mg L⁻¹ (90%) AC dose = 20 mg L⁻¹ (75%) AC dose = 50 mg L⁻¹ (90%)	Adams et al., 2002
Sulfadimethoxine	Missouri River water (Jefferson City).	50 μg L⁻¹	PAC dose = 0–50 mg L⁻¹, Contact time=4 h	AC dose = 20 mg L⁻¹ (80%) AC dose = 50 mg L⁻¹ (90%)	Adams et al., 2002
Type of wastewater (location)	Initial concentration	Treatment process	Results/findings	Reference	
------------------------------	-----------------------	-------------------	------------------	-----------	
Hospital wastewater after treatment with MBR	2330 ng L⁻¹	PAC Norit SAE Super, PAC retention time = 2 days, dose = 8–43 mg L⁻¹, contact time = 3–5 days	PAC dose = 8 mg L⁻¹ (8%)	McArdell et al. 2011	
Sulfapyridine	251 ng L⁻¹	PAC Norit SAE Super, PAC retention time = 2 days, dose = 8–43 mg L⁻¹, contact time = 3–5 days	PAC dose = 8 mg L⁻¹ (100%)	McArdell et al. 2011	
Hospital wastewater after treatment with MBR	15700 ng L⁻¹	PAC Norit SAE Super, PAC retention time = 2 days, dose = 8–43 mg L⁻¹, contact time = 3–5 days	PAC dose = 8 mg L⁻¹ (99%)	McArdell et al. 2011	
Ciprofloxacin	3140 ng L⁻¹	PAC Norit SAE Super, PAC retention time = 2 days, dose = 8–43 mg L⁻¹, contact time = 3–5 days	PAC dose = 8 mg L⁻¹ (99%)	McArdell et al. 2011	
Trimethoprim	na	Two PACs: AC800 (Acticarb, Dun nell, FL) and WPM (Calgon Carbon Corp., Pittsburgh, PA)	AC800 dose = 5 mg L⁻¹ (93%)	Westerhoff et al., 2005	
Missouri River water (Jefferson City)	50 µg L⁻¹	PAC dose=0-50 mg L⁻¹; Contact time=4 h	AC dose = 10 mg L⁻¹ (55%)	Adams et al., 2002	
Tetracyclines	37 ng L⁻¹	PAC Norit SAE Super, PAC retention time = 2 days, dose = 8–43 mg L⁻¹, contact time = 3–5 days	PAC dose = 23 mg L⁻¹ (83%)	McArdell et al. 2011	
Tetracycline	na	Four carbonaceous adsorbents: Single walled carbon nanotubes (SWNT), Multi-walled carbon nanotubes (MWNT), Pulverized activated carbon (AC) and nonporous Graphite (G).	Adsorption efficiency: G/ SWNT > MWNT >> AC	Ji et al., 2009	
Nitroimidazoles					
Metronidazole	1860 ng L⁻¹	PAC Norit SAE Super, PAC retention time = 2 days, dose = 8–43 mg L⁻¹, contact time = 3–5 days	PAC dose = 8 mg L⁻¹ (8%)	McArdell et al. 2011	
Trimetridazole	100–600 mg L⁻¹	Three activated carbons (0.1 g): Sorbo (S), Merck (M) and carbon prepared by chemical activation of petroleum coke with KOH (C).	Adsorption capacity S: 1.92 mmol g⁻¹; M: 1.25 mmol g⁻¹; C: 1.68 mmol g⁻¹	Rivera-Utrilla et al., 2008	
Dimetridazole	100–600 mg L⁻¹	Three activated carbons (0.1 g): Sorbo (S), Merck (M) and carbon prepared by chemical activation of petroleum coke with KOH (C).	Adsorption capacity S: 1.99 mmol g⁻¹; M: 1.32 mmol g⁻¹; C: 2.04 mmol g⁻¹	Rivera-Utrilla et al., 2009	
Tinidazole	100–600 mg L⁻¹	Three activated carbons (0.1 g): Sorbo (S), Merck (M) and carbon prepared by chemical activation of petroleum coke with KOH (C).	Adsorption capacity S: 1.37 mmol g⁻¹; M: 1.56 mmol g⁻¹; C: 1.04 mmol g⁻¹	Rivera-Utrilla et al., 2009	
Ronidazole	100–600 mg L⁻¹	Three activated carbons (0.1 g): Sorbo (S), Merck (M) and carbon prepared by chemical activation of petroleum coke with KOH (C).	Adsorption capacity S: 1.97 mmol g⁻¹; M: 1.82 mmol g⁻¹; C: 1.89 mmol g⁻¹	Rivera-Utrilla et al., 2009	
Antibiotic Group	Type of wastewater (location)	Initial concentration	Treatment process	Results/findings	Reference
------------------	--------------------------------	-----------------------	-------------------	------------------	-----------
Clindamycin	Hospital wastewater after treatment with MBR	1160 ng L⁻¹	Batch experiments, O₃ dose = 0.5–5.0 mg L⁻¹	O₃ dose = 3 mg L⁻¹ (100%)	Mc Ardell et al. 2011
Clindamycin	PAC Norit SAE Super, PAC retention time = 2 days, dose = 8–43 mg L⁻¹, contact time = 3–5 days			PAC dose = 8 mg L⁻¹ (96%)	
				PAC dose = 23 mg L⁻¹ (<99%)	
				PAC dose = 43 mg L⁻¹ (100%)	

Advanced treatment process

Antibiotic Group	Type of wastewater (location)	Initial concentration	Treatment process	Results/findings	Reference
β-Lactams					
Cephalaxin	Secondary effluent (Kloten-Opfikon, Switzerland)	1 μM	Batch experiments, O₃ dose = 0.5–5.0 mg L⁻¹	O₃ dose = 3 mg L⁻¹ (100%)	Dodd et al., 2006
Penicillin	Antibiotic formulation effluent (Turkey)	na	O₃ dose = 2500 mg (L h)⁻¹; pH = 2.5–12.0	COD removal	Arslan Alaton et al., 2004
Penicillin V	Synthetic wastewater (Turkey)	na	(a) O₃ (flow = 0.04 mg L⁻¹, pH = 6.0); (b) O₃/H₂O₂ (H₂O₂ = 0.04 mg L⁻¹)	COD removal	Balcicoglu and Otker, 2003
Ceftriaxone	Synthetic wastewater (Turkey)	na	(a) O₃ (flow = 0.04 mg L⁻¹, pH = 6.0); (b) O₃/H₂O₂ (H₂O₂ = 0.04 mg L⁻¹)	COD removal	Balcicoglu and Otker, 2003
Macrolides	Secondary effluent (Kloten-Opfikon, Switzerland)	1 μM	Batch experiments, O₃ dose = 0.5–5.0 mg L⁻¹	O₃ dose = 1 mg L⁻¹ (55%)	Dodd et al., 2006
Roxythromycin	CAS and MBR effluent (Kloten-Opfikon, Switzerland)	2 μg L⁻¹	O₃ dose = 0–5 mg L⁻¹; flow = 200 ± 10 L h⁻¹ (only column 1)	O₃ dose ≥ 2 mg L⁻¹ (>90%)	Huber et al., 2005
TYL-032	Secondary effluent (German)	0.54 ± 0.04 μg L⁻¹	Ozonation-UV treatment plant	O₃ dose = 5–15 mg L⁻¹ (≥91%)	Ternes et al., 2003
TYL-032	Secondary wastewater effluent (Spain)	na	Batch experiments, O₃ flow = 35 L h⁻¹, O₃ dose = 20 mg L⁻¹	(100%)	Radjenovic et al., 2009a
TYL-032	CAS and sand filtration (Tokyo)	27.2 mg L⁻¹	O₃ dose = 3 mg L⁻¹; Retention time = 27 min	(99.9%)	Nakada et al., 2007
TYL-032	CAS effluent (Regensdorf, Switzerland)	9 mg L⁻¹	O₃ dose = 1.4–5.3 mg L⁻¹ (0.36–1.16 g L⁻¹ DOC), Retention time = 8–15 min, full scale six compartment reactor	O₃ dose = 0.40 g L⁻¹ DOC (77%)	Hollender et al., 2009
TYL-032	CAS effluent (Regensdorf, Madrid)	235 mg L⁻¹	O₃ dose = 3 mg L⁻¹; Retention time = 27 min	(99.6%)	Nakada et al., 2007
TYL-032	Secondary effluent (Kloten-Opfikon, Switzerland)	1 μM	Batch experiments, O₃ dose = 0.5–5.0 mg L⁻¹	O₃ dose = 1 mg L⁻¹ (62%)	Dodd et al., 2006
TYL-032	CAS and sand filtration (Tokyo)	na	O₃ dose = 3 mg L⁻¹; Retention time = 27 min	(99.6%)	Nakada et al., 2007
TYL-032	CAS effluent (Regensdorf, Switzerland)	100 mg L⁻¹	O₃ dose = 1.4–5.3 mg L⁻¹ (0.36–1.16 g L⁻¹ DOC), Retention time = 8–15 min, full scale six compartment reactor	O₃ dose = 0.61 g L⁻¹ DOC (<99%)	Hollender et al., 2009
Tylosin	Secondary effluent (Kloten-Opfikon, Switzerland)	1 μM	Batch experiments, O₃ dose = 0.5–5.0 mg L⁻¹	O₃ dose = 3 mg L⁻¹ (100%)	Dodd et al., 2006
Tylosin	Pharmaceutical effluent (Taiwan)	40 mg L⁻¹	O₃/O₂ mixture, O₃ dose (v/v) = 5.3%, flow = 1.6 L min⁻¹	(100%)	Lin et al., 2009b
Tylosin	CAS and sand filtration (Tokyo)	na	O₃ dose = 3 mg L⁻¹; Retention time = 27 min	(99.6%)	Nakada et al., 2007
Tylosin	CAS effluent (Regensdorf, Madrid)	235 mg L⁻¹	O₃ dose = 3 mg L⁻¹; Retention time = 27 min	(99.6%)	Nakada et al., 2007

(continued on next page)
Antibiotic Group	Type of wastewater (location)	Initial concentration	Treatment process	Results/findings	Reference
Sulfamethoxazole	Secondary effluent (Kloten-Opfikon, Switzerland)	1 µM	Batch experiments, O₃ dose = 0.5-5.0 mg L⁻¹	O₃ dose = 3 mg L⁻¹ (100%)	Dodd et al., 2006
CAS and sand filtration (Kloten-Opfikon, Switzerland)	2 µg L⁻¹	O₃/O₂ mixture, O₃ dose (v/v) = 5.3%, flow = 16.1 L min⁻¹	O₃ dose ≥ 2 mg L⁻¹ (> 90%)	Huber et al., 2005	
Sulfamethazine	Secondary effluent (German)	0.62 ± 0.05 µg L⁻¹	Ozonation-UV treatment plant	O₃ dose = 5-15 mg L⁻¹ (> 92%)	Ternes et al., 2003
Missouri River water (Jefferson City)	50 µg L⁻¹	O₃ dose = 7.1 mg L⁻¹	O₃ dose = 0.3 mg L⁻¹ at 1.3 min (> 95%)	Adams et al., 2002	
Pharmaceutical effluent (Taiwan)	40 mg L⁻¹	O₃/O₂ mixture, O₃ dose (v/v) = 5.3%, flow = 16.1 L min⁻¹	O₃ dose ≥ 2 mg L⁻¹ (> 90%)	Lin et al., 2015	
Sulfathiazole	Missouri River water (Jefferson City)	50 µg L⁻¹	O₃ dose = 7.1 mg L⁻¹	O₃ dose = 0.3 mg L⁻¹ at 1.3 min (> 95%)	Adams et al., 2002
Sulfafluoropyridazine	Missouri River water (Jefferson City)	50 µg L⁻¹	O₃ dose = 7.1 mg L⁻¹	O₃ dose = 0.3 mg L⁻¹ at 1.3 min (> 95%)	Adams et al., 2002
Sulfadimethoxine	Missouri River water (Jefferson City)	50 µg L⁻¹	O₃ dose = 7.1 mg L⁻¹	O₃ dose = 0.3 mg L⁻¹ at 1.3 min (> 95%)	Adams et al., 2002
Sulfapyridine	CAS and sand filtration (Tokyo)	492 ng L⁻¹	O₃ dose = 3 mg L⁻¹	O₃ dose > 200 µm L⁻¹ (93%)	Huber et al., 2005
CAS effluent (Alcalá de Henares, Madrid)	50 ng L⁻¹	Ozonation-UV treatment plant	O₃ dose = 5-15 mg L⁻¹	O₃ dose > 200 µm L⁻¹ (93%)	Holender et al., 2009

Table 2 – (continued)
Antibiotic Group	Type of wastewater	Initial concentration	Treatment process	Fenton Oxidation	Results/findings	Reference
Norfloxacin	CAS effluent	38 ng L\(^{-1}\)	AirSep AS-12 PSA oxygen generation unit	O\(_3\) dose < 90 \(\mu\)M (100%)	Rosal et al., 2010	
Ciprofloxacin	Secondary effluent	1 \(\mu\)M	Batch experiments, \(O_3\) dose = 0.5–5.0 mg L\(^{-1}\)	\(O_3\) dose = 3 mg L\(^{-1}\) (100%)	Dodd et al., 2006	
	CAS effluent	522 ng L\(^{-1}\)	AirSep AS-12 PSA oxygen generation unit	\(O_3\) dose < 130 \(\mu\)M (100%)	Rosal et al., 2010	
Enrofloxacin	Secondary effluent	1 \(\mu\)M	Batch experiments, \(O_3\) dose = 0.5–5.0 mg L\(^{-1}\)	\(O_3\) dose = 3 mg L\(^{-1}\) (100%)	Dodd et al., 2006	
Trimepromprim	Secondary effluent	1 \(\mu\)M	Batch experiments, \(O_3\) dose = 0.5–5.0 mg L\(^{-1}\)	\(O_3\) dose = 3 mg L\(^{-1}\) (100%)	Dodd et al., 2006	
Trimethoprim	Secondary effluent	0.34 ± 0.04 \(\mu\)g L\(^{-1}\)	Ozonation-UV treatment plant	\(O_3\) dose = 5–15 mg L\(^{-1}\) (>95%)	Ternes et al., 2003	
	CAS effluent	73 ng L\(^{-1}\)	AirSep AS-12 PSA oxygen generation unit	\(O_3\) dose = 3 mg L\(^{-1}\) (100%)	Ternes et al., 2003	
	WWTPs in Beijing	400 ng L\(^{-1}\)	\(O_3\) dose = 5 mg L\(^{-1}\); Contact time = 15 min	(>90%)	Sui et al., 2010	
	CAS effluent	119 ng L\(^{-1}\)	AirSep AS-12 PSA oxygen generation unit	\(O_3\) dose = 3 mg L\(^{-1}\) (100%)	Ternes et al., 2003	
Tetracyclines						
Tetracycline	Secondary effluent	1 \(\mu\)M	Batch experiments, \(O_3\) dose = 0.5–5.0 mg L\(^{-1}\)	\(O_3\) dose = 1.5 mg L\(^{-1}\) (100%)	Dodd et al., 2006	
Lincomcines	Secondary effluent	1 \(\mu\)M	Batch experiments, \(O_3\) dose = 0.5–5.0 mg L\(^{-1}\)	\(O_3\) dose = 1 mg L\(^{-1}\) (70%)	Dodd et al., 2006	
Clindamycin	Secondary effluent	12 ng L\(^{-1}\)	AirSep AS-12 PSA oxygen generation unit	\(O_3\) dose = 5 mg L\(^{-1}\) (70%)	Ternes et al., 2003	
Aminoglycosides	Amikacin	1 \(\mu\)M	Batch experiments, \(O_3\) dose = 0.5–5.0 mg L\(^{-1}\)	\(O_3\) dose = 1 mg L\(^{-1}\) (50%)	Dodd et al., 2006	

Advanced treatment process

Reference	Type of wastewater	Initial concentration	Treatment process	Results/findings
Zhang et al., 2006	Wastewater from plant manufacturing (China)	Na	Fenton oxidation after extraction (dichloromethane) [FeSO\(_4\) 7H\(_2\)O]=10 g L\(^{-1}\); [H\(_2\)O\(_2\)]= 2 g L\(^{-1}\)	TOC = 2195.3 mg L\(^{-1}\) (88.4%); COD = 832 mg L\(^{-1}\) (89.6%)
Trové et al., 2008	CAS effluent (Araraquara, Brazil)	42 mg L\(^{-1}\)	Black light at 365 nm and solar irradiation [H\(_2\)O\(_2\)]=2.0 mM [Ferricyanide or Fe(NO\(_3\))\(_3\)]=0.20 mM	Black light: (89% in 1 min); Solar light: (85% in 1 min)
Arslan Alaton and Dogrul, 2004	Antibiotic formulation effluent (Turkey)	Na	Photo-Fenton: (56%); Photo-Fenton-like: (66%)	

(continued on next page)
Table 2 (continued)

Advanced treatment process	Antibiotic Group	Type of wastewater (location)	Initial concentration	Treatment process	Results/findings (Removal efficiency)	Reference		
		Pharmacological wastewater (China)	na	Microwave power—100–500 W; radiation time = 2–10 min; pH = 1–11; \([\text{H}_2\text{O}_2] = 3200–19000 \text{ mg L}^{-1}; [\text{Fe}_2(\text{SO}_4)_3] = 2000–8000 \text{ mg L}^{-1} \)	Dark Fenton: (61%) Dark Fenton-like: (46%) TOC removal Photo-Fenton: (51%) Photo-Fenton-like: (42%) Dark Fenton: (33%) Dark Fenton-like: (18%)	Yang et al., 2009		
		Dark Fenton: (61%)	Dark Fenton-like: (46%)	TOC removal	Optimum conditions: Microwave power = 300 W; radiation time = 6 min; pH = 4.42; \([\text{H}_2\text{O}_2] = 1300 \text{ mg L}^{-1}; [\text{Fe}_2(\text{SO}_4)_3] = 4900 \text{ mg L}^{-1} \)	Klamerth et al., 2010		
		Quinolones	Ofloxacin	Secondary effluent (Almerı́a, Spain)	100 μg L\(^{-1}\)	Pilot compound parabolic collector plant (CPC), \([\text{Fe}^{2+}] = 5 \text{ mg L}^{-1}; [\text{H}_2\text{O}_2] = 50 \text{ mg L}^{-1}; t_{\text{UV}} = 102 \text{ min}\)	(100%)	Klamrith et al., 2010
		(Lemessos, Cyprus)	10 μg L\(^{-1}\) (0.0277 mmol L\(^{-1}\))	Batch experiments (300 mL), solar simulator (1 kW Xenon lamp)	\([\text{Fe}^{2+}] = 1–5 \text{ mg L}^{-1}; [\text{H}_2\text{O}_2] = 1.357–8.142 \text{ mmol L}^{-1} \)	(100% at 30 min)	Michael et al., 2010	
		Secondary effluent (Cyprus)	100 μg L\(^{-1}\)	Pilot scale experiments	\([\text{Fe}^{2+}] = 5 \text{ mg L}^{-1}; [\text{H}_2\text{O}_2] = 75 \text{ mg L}^{-1}; t_{\text{UV},n} = 38.7 \text{ min}\)	(100%)	Michael et al., 2012b	
		Trimethoprim	Tetracyclines	Tetracycline	24 mg L\(^{-1}\)	Black light (15 W) and solar irradiation	100%	Bautitz and Nogueira, 2007
		CAS effluent (Araraquara, Brazil)	24 mg L\(^{-1}\)	Pilot scale experiments	\([\text{Fe}^{2+}] = 5 \text{ mg L}^{-1}; [\text{H}_2\text{O}_2] = 75 \text{ mg L}^{-1}; t_{\text{UV},n} = 20.1 \text{ min}\)	(100%)	Michael et al., 2012b	

HETEROGENEOUS PHOTOCATALYSIS WITH TiO\(_2\)

Advanced treatment process	Antibiotic Group	Type of wastewater (location)	Initial concentration	Treatment process	Results/findings (Removal efficiency)	Reference	
	β-Lactams	Amoxicillin	Antibiotic wastewater (AW)	138 ± 5 mg L\(^{-1}\)	UV/H\(_2\)O\(_2\)/TiO\(_2\)	UV/H\(_2\)O\(_2\)/TiO\(_2\)	Elmolla and Chaudhuri, 2011
			2000 mL of AW; \([\text{TiO}_2] = 0–1000 \text{ mg L}^{-1}; [\text{H}_2\text{O}_2] = 50–350 \text{ mg L}^{-1}; T = 22 ± 2 \degree C\)		1000 mg L\(^{-1}\)		
			UV lamp (6 W, \(\lambda = 365 \text{ nm} \))		[\text{H}_2\text{O}_2] = 250 \text{ mg L}^{-1}\)		
			UV/H\(_2\)O\(_2\)/TiO\(_2\)/SBR		30 min, pH = 5		
			1.5 L of AW, 65 days at HRT 24 hr		(100%)		
			UV/H\(_2\)O\(_2\)/TiO\(_2\)/SBR		UV/H\(_2\)O\(_2\)/TiO\(_2\)		
			[\text{TiO}_2] = 1000 mg L\(^{-1}\)		[\text{H}_2\text{O}_2] = 1000 mg L\(^{-1}\)		
Advanced treatment process

Antibiotic Group

Type of wastewater (location)	Initial concentration	Treatment process	Results/findings	Reference
Final effluent before disinfection (Salerno, Italy)	2.5–10.0 mg L⁻¹	Ultrasound generator: 20 kHz, titanium horn (d = 1.3 cm), 25–100 W L⁻¹	100 W L⁻¹ (~40%)	Naddeo et al., 2009

Ultrasound

SONOLYSIS

Type of wastewater (location)	Initial concentration	Treatment process	Results/findings	Reference
Antibiotic formulation effluent (Turkey)	18 ng L⁻¹	UV-light treatment (λ = 253.7 nm, 1.73 × 10⁻⁶ Einstein L⁻¹ s⁻¹); 60 min; pH = 7; [H₂O₂] = 0–40 mM	(100%) COD removal; UV/pH 7: (0%) UV + H₂O₂ (60 mM)/pH 7: (11%) UV + H₂O₂ (50 mM)/pH 7: (22%) TOC removal; UV/pH 7: (0%)	Zuccato et al., 2010

Advanced treatment process

Antibiotic Group

Type of wastewater (location)	Initial concentration	Treatment process	Results/findings	Reference
Effluent from Varese UWTP	18 ng L⁻¹	UV-light treatment (λ = 253.7 nm, 1.73 × 10⁻⁶ Einstein L⁻¹ s⁻¹); 60 min; pH = 7; [H₂O₂] = 0–40 mM	(100%) COD removal; UV/pH 7: (0%) UV + H₂O₂ (60 mM)/pH 7: (11%) UV + H₂O₂ (50 mM)/pH 7: (22%) TOC removal; UV/pH 7: (0%)	Zuccato et al., 2010

References

- Naddeo et al., 2009
- Zuccato et al., 2010
- Arslan Alaton and Dogruel, 2004
Table 2 – (continued)

Antibiotic Group	Type of wastewater (location)	Initial concentration	Treatment process	Results/findings	Reference
Macrolides	Effluent from secondary	110–656 ng L⁻¹	3 UV lamps (λ = 254 nm, intensity = 1.025 mW cm⁻²); 3 reactors in series (R₁-R₃); Air flow rate = 0.5 L min⁻¹; [H₂O₂] = 7.8 mg L⁻¹	UV (24–34%)	Kim et al., 2009
	sedimentation and sand filter (Japan)			UV + H₂O₂ (40 mM)/pH 7 (10%)	
	Effluent from Varese UWTP	319 ng L⁻¹	UV-light treatment	(0%)	Zuccato et al., 2010
Erythromycin	Effluent from secondary	110–656 ng L⁻¹	3 UV lamps (λ = 254 nm, intensity = 1.025 mW cm⁻²); 3 reactors in series (R₁-R₃); Air flow rate = 0.5 L min⁻¹; [H₂O₂] = 7.8 mg L⁻¹	UV (24–34%)	Kim et al., 2009
	sedimentation and sand filter (Japan)			UV + H₂O₂ (30 mM)/pH 7 (6%)	
Azithromycin	Effluent from Varese UWTP	12 ng L⁻¹	UV-light treatment	(0%)	Zuccato et al., 2010
Sulfamethazine	Effluent from secondary	603 ng L⁻¹	Photolysis experiments (Suntest CPS + solar simulator with a UV-Suprax optical filter, 765 W m⁻²)	(17%)	Ryan et al., 2011
Tetracyclines	Effluent from Blue Lake WWTP;	1 μM	3 UV lamps (λ = 254 nm, intensity = 1.025 mW cm⁻²); 3 reactors in series (R₁-R₃); Air flow rate = 0.5 L min⁻¹	UV (89–100%)	Kim et al., 2009
	Metro WWTP and Lake Josephine (USA)			UV + H₂O₂ (10–90%)	
Sulfonamides	Effluent from Varese UWTP	42–187 ng L⁻¹	UV-light treatment	(6%)	Zuccato et al., 2010
Sulfamethoxazole	Effluent from Varese UWTP	246 ng L⁻¹	Mercury vapor lamp (254 nm), UV dose = 0–10000 mJ cm⁻²	UV dose = 10000 mJ cm⁻² (85%)	Adams et al., 2002
	sedimentation and sand filter (Japan)				
Sulfathiazine	Missouri River water (Jefferson City)	50 μg L⁻¹	Mercury vapor lamp (254 nm), UV dose = 0–10000 mJ cm⁻²	UV dose = 10000 mJ cm⁻² (100%)	Adams et al., 2002
Sulfamerazine	Missouri River water (Jefferson City)	50 μg L⁻¹	Mercury vapor lamp (254 nm), UV dose = 0–10000 mJ cm⁻²	UV dose = 10000 mJ cm⁻² (83%)	Adams et al., 2002
Sulfachlorpyridazine	Missouri River water (Jefferson City)	50 μg L⁻¹	Mercury vapor lamp (254 nm), UV dose = 0–10000 mJ cm⁻²	UV dose = 10000 mJ cm⁻² (83%)	Adams et al., 2002
Sulfadimethoxine	Missouri River water (Jefferson City)	50 μg L⁻¹	Mercury vapor lamp (254 nm), UV dose = 0–10000 mJ cm⁻²	UV dose = 10000 mJ cm⁻² (83%)	Adams et al., 2002
	Effluent from secondary	42–187 ng L⁻¹	3 UV lamps (λ = 254 nm, intensity = 1.025 mW cm⁻²); 3 reactors in series (R₁-R₃); Air flow rate = 0.5 L min⁻¹; [H₂O₂] = 7.8 mg L⁻¹	UV (89–100%)	Kim et al., 2009
	sedimentation and sand filter (Japan)			UV + H₂O₂ (30 mM)/pH 7 (6%)	
Trimethoprim	Missouri River water (Jefferson City)	50 μg L⁻¹	Mercury vapor lamp (254 nm), UV dose = 0–10000 mJ cm⁻²	UV dose: 10000 mJ cm⁻² (85%)	Adams et al., 2002
	Effluent from Blue Lake WWTP; Metro WWTP and Lake Josephine (USA)	1 μM	Photolysis experiments (Suntest CPS + solar simulator with a UV-Suprax optical filter, 765 W m⁻²)	UV dose: 10000 mJ cm⁻² (18%)	Ryan et al., 2011
	Tertiary water from Las Vegas, Nevada (LVNO), Rocky Mountain Region of Colorado (RMCO) and Pinellas County, Florida (PCFI)	38–760 ng L⁻¹	Bench scale UV/H₂O₂: two G1ST8 germicidal lamps [General Electric, Fairfield, CT, USA], UV = 300–700 mJ cm⁻²; [H₂O₂] = 0–20 mg L⁻¹	UV dose = 300 mJ cm⁻²; [H₂O₂] = 20 mg L⁻¹ (21-67%); UV dose = 500 mJ cm⁻²; [H₂O₂] = 20 mg L⁻¹ (32-92%); UV dose = 700 mJ cm⁻²; [H₂O₂] = 20 mg L⁻¹ (39-92%)	Rosario-Ortiz et al., 2010
Tetracycline	Effluent from secondary	4–17 ng L⁻¹	3 UV lamps (λ = 254 nm, intensity = 1.025 mW cm⁻²); 3 reactors in series (R₁-R₃); Air flow rate = 0.5 L min⁻¹; [H₂O₂] = 7.8 mg L⁻¹	UV (15%)	Kim et al., 2009
	sedimentation and sand filter (Japan)			UV + H₂O₂ (90%)	
Oxytetracycline	Secondary wastewater (Beijing, China)	50 μM	11 W low-pressure Hg vapor lamp (λ = 254 nm), photon flow = 4.5 × 10⁻¹ E m⁻² s⁻¹; UV dose: (0-250)×10⁻³ mJ cm⁻²; 500 ml WW; [H₂O₂] = 1 mM	UV	Yuan et al., 2011
Advanced Oxidation Processes (AOPs)

Advanced Oxidation Processes (AOPs) are quite efficient novel methods for water and wastewater treatment (Legrini et al., 1993; Klavarioti et al., 2009; Malato et al., 2009). These processes involve the use and generation of powerful transitional species, principally the hydroxyl radical (HO•) (Goslich et al., 1997; Andreozzi et al., 1999). HO• are powerful oxidizing agents leading to oxidation and mineralization of organic matter (Litter, 2005), while this species is characterized by lack of selectivity of attack. This property is of great importance in wastewater treatment because radicals attack the oxidizable part of organic molecules with rates usually in the order of 10^6--10^9 M^-1 s^-1 (Andreozzi et al., 1999). Several studies have reported the effective AOPs treatment for removal of antibiotics in wastewater effluents (Adams et al., 2002; Arslan Alaton et al., 2004; Saritha et al., 2007; Nadee et al., 2009; Elmolla and Chaudhuri, 2011). It is worth noting the fact that most studies do not include information on the by-products formed during the application of oxidation or any information related to the antibiotic activity of the by-products. Therefore, AOPs should be carefully monitored and ecotoxicological investigations should be accompanied to investigate the formation of potentially toxic transformation products (Hollender et al., 2009; Rizzo, 2011). The effectiveness of oxidative processes for degrading antibiotics will be largely determined by the specific water matrix. However, the effects of water matrix quality on antibiotics removal are much less well understood than for other technologies. For example, the presence of natural dissolved organic matter (DOM) can result in the formation of oxidation by-products that may cause water quality to deteriorate beyond its initial state of contamination. Similarly, the presence of nitrates, carbonates and DOM, can interfere with the destruction of the target antibiotic(s) and ultimately reduce the effectiveness of the selected AOP.

The versatility of the AOPs is enhanced by the fact there are different ways of producing hydroxyl radicals, facilitating compliance with the specific treatment requirements. The
most common AOPs that have been used and evaluated (mainly at a bench scale but many of the processes are being developed at a pilot-scale as well) are: photolysis under ultraviolet (UV) irradiation; combinations of hydrogen peroxide \((\text{H}_2\text{O}_2)\), ozone \((\text{O}_3)\) and UV irradiation; homogeneous photocatalysis with Fenton reagent, heterogeneous photocatalysis with semiconductor materials \((\text{e.g. TiO}_2)\) and sonolysis under ultrasound irradiation.

2.4.1. Ozonation

Ozone is a powerful oxidant and has been increasingly used for the treatment of wastewater whereas it has been traditionally employed in drinking water treatment \((\text{Litter, 2005})\). Huber et al. \((2005)\) and Hollender et al. \((2009)\) observed that using ozone at a dose of 2 mg L\(^{-1}\) \((0.3\text{–}0.4\text{ g g}^{-1}\text{DOC})\) more than 80% of sulfonamides, trimethoprim and macrolides were removed in the effluent of secondary wastewater treatment. Similar results between different wastewater treatment plants are achieved if the dose of ozone per amount of dissolved organic carbon \((\text{DOC})\) is compared. The study by Adams et al. \((2002)\) showed that ozonation removed more than 95% of several sulfonamides and trimethoprim from river water within 1.3 min contact time at ozone dose of 7.1 mg L\(^{-1}\). Clindamycin was already removed by 95% with an ozone dose of 2 mg L\(^{-1}\) \((0.40\text{ g O}_3\text{ g}^{-1}\text{DOC})\) \((\text{Hollender et al., 2009})\) and tetracycline by 100% with an ozone dose of 1.5 mg L\(^{-1}\) \((\text{Huber et al., 2005})\).

Balcıoglu and Otker \((2003)\) found that up to 80% of \(\beta\)-lactams removal from wastewater was observed during ozonation treatment after 60 min and ozone dose 2.96 g L\(^{-1}\) h\(^{-1}\). In a study of Arslan Alaton et al. \((2004)\) the COD of an antibiotic formulation effluent containing penicillin \((\text{COD} = 830 \text{ mg L}^{-1})\) was removed by 10–56% during ozonation process while the addition of small amounts of hydrogen peroxide increased the removal efficiency \((83\%)\). In another study of Arslan Alaton and Dogruel \((2004)\) the COD and TOC of the formulation effluent containing penicillin was removed by 49% and 52% respectively under alkaline conditions \((\text{pH} = 11)\), whereas the removal efficiency was much lower under acidic conditions \((\text{pH} = 3)\) \((\text{COD removal max} = 15\%; \text{TOC removal max} = 2\%)\). Many authors \((\text{Balcıoglu and Otker, 2003; Arslan Alaton et al., 2004; Andreozzi et al., 2005})\) suggested that pH is a critical parameter in the ozonation process and a decrease of pH usually affects the reaction rate and also the absorption rates of ozone. During wastewater ozonation, many antibiotics, including \(\beta\)-lactams, sulfonamides, macrolides, quinolones, trimethoprim and tetracyclines, have been shown to be transformed predominantly via direct oxidation by \(\text{O}_3\) whereas penicillin G, cephalexin and \(\text{N}_4\)-acetylsulfamethoxazole were transformed to a large extent by hydroxyl radicals \((\text{Dodd et al., 2006})\).

Ozone and/or hydroxyl radicals deactivate bactericidal properties of antibiotics by attacking or modulating their pharmacologically active functional groups, such as N-ether oxime and dimethylaminogroups of macrolides \((\text{Lange et al., 2006; Dodd et al., 2009})\), aniline moieties of sulfonamides \((\text{Huber et al., 2005})\), thioether groups of penicillins, unsaturated bonds of cephalexin and the phenol ring of trimethoprin \((\text{Dodd et al., 2009})\). The high removals \((>90\%)\) by ozonation were achieved for those compounds with electron-rich aromatic systems, such as hydroxyl, amino \((\text{e.g. sulfamethoxazoles})\), acylamino, alkoxy and alkyl aromatic compounds, as well as those compounds with deprotonated amine \((\text{e.g. erythromycin, ofloxacin and trimethoprpin})\) and non-aromatic alkene groups since these key structural moieties are highly amendable to oxidative attack \((\text{Dickenson et al., 2009})\).

Research conducted so far demonstrates that ozonation is promising approach to degrade antibiotics. According to Table 2, ozonation was found to be an effective process for removing \(\beta\)-lactams, macrolides, sulfonamides and trimethoprin, quinolones, tetracyclines and lincosamides. The energy consumption for upgrading a Swiss municipal wastewater treatment plant with ozonation was evaluated by Hollender et al. \((2009)\). For an ozone dose of 0.6 g \(\text{O}_3\text{ g}^{-1}\text{DOC}\) \((\text{effluent DOC} \sim 5 \text{ g m}^{-3})\), 0.035 kWh m\(^{-3}\) wastewater was consumed, which is 12% of the total energy consumption of a typical nutrient removal plant \((0.3 \text{ kWh m}^{-3}\text{ wastewater})\). Additionally, 0.01–0.015 kWh m\(^{-3}\) was needed for pure oxygen production. Ozone treatment performance may be enhanced if ozone is combined with UV irradiation, hydrogen peroxide or catalysts (usually iron or copper complexes) \((\text{Klaverio et al., 2009})\). However, optimal process and operating conditions have yet to be determined for the various water and wastewater types as well as for the different types of antibiotics \((\text{Yargeau and Leclair, 2008})\).

2.4.2. Fenton oxidation

Fenton’s oxidation is a homogeneous oxidation process and is considered to be a metal-catalyzed oxidation reaction, in which iron acts as the catalyst \((\text{Tekin et al., 2006; Saritha et al., 2007})\). The main disadvantage of the process is the low pH value required in order to avoid iron precipitation that takes place at higher pH \((\text{Melero et al., 2007; Santos et al., 2007})\).

Trovó et al. \((2008)\) observed that amoxicillin degradation was not influenced by the source of the irradiation during the photo-Fenton process and the removals of the antibiotic obtained were 89 and 85% under black light and solar irradiation, respectively. A similar study by Bautitz and Nogueira \((2007)\) showed that tetracycline was removed by 80% during the photo-Fenton treatment using two types of iron and irradiation. Moreover, in a study by Arslan Alaton and Dogruel \((2004)\) adequate COD and TOC removal rates were achieved during the photo-Fenton and photo-Fenton-like treatment of a formulation effluent containing penicillin. Trimethoprin was completely removed during solar-Fenton process in the study of Michael et al. \((2012a)\) and it was found that the presence of organic carbon and higher salt content in the simulated wastewater and real secondary effluent, led to lower mineralization though per dose of hydrogen peroxide compared to ultrapure water. It is important to highlight that a new approach aimed at performing photo-Fenton treatment at neutral pH has been proposed by Klameth et al. \((2010)\) and De la Cruz et al. \((2012)\). The efficiency of the modified photo-Fenton system is based on the reaction of dissolved organic matter \((\text{DOM})\) present in wastewaters with \(\text{Fe}^{2+}\) leading to the formation of soluble iron-complexes. However, contaminants degradation and mineralization tend to be slower at neutral pH than at pH 3.0.

Michael et al. \((2012b)\) investigated the application of a solar photo-Fenton system for the degradation of antibiotics at low concentration level \((\mu \text{g L}^{-1})\) in secondary treated domestic effluents at a pilot-scale. The examined antibiotics were ofloxacin and trimethoprin and the pilot treatment plant
consisted of a compound parabolic collector reactor. The results demonstrated the efficiency of the process in removing enterococci, resistant to these two antibiotics, while the compounds themselves were completely eliminated. The total cost of a full-scale unit for the treatment of 150 m³ day⁻¹ of secondary wastewater effluent was estimated to be 0.85€ m⁻³. This value was found to be in agreement with a previous study of the photo-Fenton process in a pilot-scale set-up (Jordà et al., 2011).

Another approach was taken by Lee et al. (2009) who used ferrate (Fe(VI)) to oxidize micropolutants and remove phosphate by formation of ferric phosphates in wastewater. They showed that Fe(VI) doses higher than 5 mg Fe L⁻¹ were capable of eliminating sulfamethoxazole and ciprofloxacin by more than 85%. In comparison to ozone, Fe(VI) was as effective or slightly less effective in terms of micropolutants oxidation, with Fe(VI) having the benefit of phosphate removal. In general, Fenton process has been extensively used with success for the oxidation of many classes of antibiotics including β-lactams, quinolones, trimethoprim and tetracyclines.

2.4.3. Heterogeneous photocatalysis with TiO₂

Heterogeneous photocatalysis by TiO₂ semiconductor is achieved usually by the illumination of a suspension of TiO₂ in aqueous solution with light energy greater than its bandgap energy. This leads to the formation of high energy electron-hole pairs (e⁻/h⁺) which can migrate on the surface of the catalyst and can either recombine producing thermal energy, or participate in redox reactions with the compounds that are adsorbed on the catalyst’s surface (Herrmann et al., 1993; Schiavello, 1993; Robertson, 1996). The valence holes are strong oxidants and are able to oxidize various contaminants, as well as water, resulting in the formation of HO⁻ while the conduction band electrons are good reductants reducing the dissolved oxygen to O²⁻ (Munter, 2001).

The study of Elmolla and Chaudhuri (2011) examined the feasibility of using combined TiO₂ photocatalysis (UV/TiO₂/H₂O₂) and sequencing batch biological reactor (SBR) process for the treatment of an antibiotic wastewater containing amoxicillin and ciaxicillin. The complete removal of these compounds was observed at TiO₂ and H₂O₂ doses of 1000 and 250 mg L⁻¹, respectively. Amoxicillin was also completely removed from urban wastewater treatment plant effluent using [TiO₂] = 0.8 g L⁻¹ after 120 min of treatment as reported by Rizzo et al. (2009). Ofloxacin in wastewater samples was removed by 60% using [TiO₂] = 3 g L⁻¹ (Michael et al., 2010) while Hapeshi et al. (2010) reported that the DOC of a solution contained ofloxacin at 10 mg L⁻¹ was reduced by 79% after 120 min of photocatalytic treatment using [TiO₂] = 250 mg L⁻¹ and [H₂O₂] = 0.07 mmol L⁻¹.

Besides some drawbacks of the heterogeneous photocatalysis (e.g. the rather small quantum yield of the process; the relatively narrow light-response range of TiO₂; the need of post-separation and recovery of the catalyst particles from the reaction mixture in aqueous slurry systems), TiO₂ seems to possess some interesting features, such as high chemical stability in a wide pH range, strong resistance to chemical breakdown and photocorrosion, commercial availability and good performance. The catalyst is also cheap and can be reused (Andreozzi et al., 1999; Malato et al., 2009). The properties of antibiotics to be treated such as pKₐ and molecular structure will determine not only the efficiency of their photocatalytic degradation but also the mechanisms of the oxidation products formation (i.e. contribution of HO⁺ radical and valence band holes oxidation pathway).

2.4.4. Sonolysis

Ultrasound irradiation or sonolysis is a relatively new process in water and wastewater treatment and therefore, has unsurprisingly received less attention than other AOPs. This is also reflected by the small number of publications concerning the treatment of pharmaceutical compounds. Ultrasound enhances chemical and physical changes in a liquid medium through the generation and subsequent destruction of cavitation bubbles. These bubbles grow over a period of a few cycles to an equilibrium size for the particular frequency applied. It is the fate of these bubbles when they collapse in succeeding compression cycles that generates the energy for chemical and mechanical effects (Parsons, 2004). The sonochemical degradation in aqueous phase involves several reaction pathways and zones such as pyrolysis inside the bubble and/or at the bubble–liquid interface and hydroxyl radical-mediated reactions at the bubble–liquid interface and/or in the liquid bulk. Pyrolytic reactions inside or near the bubble as well as solution radical chemistry are the two major pathways of sonochemical degradation (Emery et al., 2005).

According to the authors’ best knowledge, only one paper is available up to now in the literature on the applicability of sonolysis to remove antibiotics from wastewater effluents. Naddeo et al. (2009) evaluated the ultrasonic process on the degradation of amoxicillin spiked in urban wastewater effluent. It was found that the amoxicillin conversion was enhanced at increased applied power densities, acidic conditions and in the presence of dissolved air and the maximum removal observed was 40%.

It is important to note that there is limited literature (Hernández-Sancho et al., 2010; Mahamuni and Adewuyi, 2010; Jordà et al., 2011; Hollender et al., 2009; Michael et al., 2012b) dealing with advanced wastewater treatment process economics although this aspect is a very important issue.

2.5. Effect of disinfection on antibiotics removal

2.5.1. Chlorination

Limited studies have focused on the removal of antibiotics during wastewater treatment with chlorine. Chlorination is by far the most common method of wastewater disinfection and is used worldwide for the disinfection of pathogens before discharge into receiving streams, rivers or oceans. From the chlorinated species, hypochlorite (ClO⁻) has the highest standard oxidation potential (E₀ = 1.48 V), followed by chlorine gas (E₀ = 1.36 V) and chlorine dioxide (E₀ = 0.95 V) (Homem and Santos, 2011). The two major disadvantages of using chlorine based disinfectants are (i) the safety hazards associated with storage, transportation and handling of chlorine, and (ii) the potential formation of disinfection by-products.

The effective removal of antibiotics by chlorination from wastewater requires sufficient free chlorine concentration and contact time. For example, cephalixin which was
removed by 91% in activated sludge treatment at the Stanley WWTP was further removed in the following disinfection process by 99%, resulting in a total removal of 100% in the Stanley WWTP whole treatment process (Li and Zhang, 2011). Li and Zhang (2011) also reported that during chlorine disinfection process roxithromycin was eliminated by a further 18% (total removal 53%), erythromycin-H2O by 24% (total removal 43%), sulfamethoxazole by 27% (total removal 73%) and trimethoprim by 40% (total removal 65%).

2.5.2. Ultraviolet irradiation
Ultraviolet (UV) disinfection is increasingly finding applications in UWTPs. Photolytic degradation can be either direct or indirect. In direct photolysis, the target contaminant (in this case the antibiotic compound) absorbs a solar photon, which leads to a break-up of the molecule. In an indirect photolysis mechanism, naturally occurring molecules in the system such as dissolved organic matter (DOM) act as sensitizing species which generates strong reactive agents e.g. singlet oxygen (O2), hydroxyl radicals (HO•) or alkyl peroxyl radicals (OOR) and hydrate electrons under solar radiation (Arnold and McNeill, 2007; Fatta-Kassinos et al., 2011b). Generally, the degradation of a compound by UV irradiation is affected by the UV energy absorption and the quantum yield of the compound. UV energy absorption is expressed as molar extinction coefficient, which is a measure of how strongly a chemical species absorbs light at a given wavelength that can be used for its degradation (Kim et al., 2009).

Ultraviolet irradiation has been widely used for the treatment of waters and wastewaters worldwide. Several studies have reported the effective treatment of UV irradiation for removal of antibiotics in wastewater effluents (Adams et al., 2002; Ryan et al., 2011; Yuan et al., 2011). It has been recently reported that at high UV doses of nearly 11,000–30,000 mJ cm2, an almost complete removal of tetracyclines and ciprofloxacin was achieved (Yuan et al., 2011). Kim et al. (2009) reported that sulfonamides (sulfamethoxazole and sulfadimethoxine) and quinolones (norfloxacin and nalidixic acid) showed high removal efficiency in the range of 86–100% during the UV process. In contrast to this, macrolides (clarithromycin, erythromycin and azithromycin) were removed by 24% (total removal 34%) and trimethoprim decreased to less than limit of detection during the UV process while only 15% removal efficiency was achieved for tetracycline. This can be explained by the low molar extinction coefficient of tetracycline (4108 M-1 cm-1) compared to that of chlorotetracycline (18,868 M-1 cm-1).

Another study of photolysis was conducted by Arslan Alaton and Dogrul (2004) in which penicillin in the form of formulation effluent with total COD = 1555 mg L-1 was treated under UV irradiation or UV combined with H2O2. In this study, the removal efficiency was very low compared to the others described above (COD removal max = 22% and TOC removal max = 10% with 30 and 40 mM of peroxide respectively) and this may be attributed to the complexity of the formulation effluent (high COD and TOC values). Zuccato et al. (2010) also reported complete elimination of amoxicillin in Varese WWTP with UV-light treatment. The addition of H2O2 to UV has proven to be more efficient in removing antibiotics than UV alone, and lower fluence doses need to be applied for the same removal (Kim et al., 2009; Rosario-Ortiz et al., 2010; Yuan et al., 2011). Many of the antibiotics have aromatic rings, structural moieties (such as phenol and nitro groups) heteroatoms, and other functional chromophore groups that can either absorb solar radiation or react with photogenerated transient species in natural waters (e.g. photo excited natural organic matter-NOM) (Fatta-Kassinos et al., 2011b). The organic matter (DOC, COD), UV dose, contact time and the chemical structure of the compound are important factors governing the removal efficiency of antibiotics during direct photolysis. This technology is only applicable to wastewater containing photosensitive compounds and waters with low COD concentrations (e.g. river, drinking waters) (Homem and Santos, 2011). Furthermore, wastewater effluents have different organic compounds that may either inhibit or enhance the process by scavenging or generating oxidant species (humic and inorganic substances like dissolved metals) (Jiao et al., 2008). Generally, photolysis has proved to be less effective in degrading antibiotics in wastewater effluents and more energy demanding (Katsyiannis et al., 2011) than e.g. ozonation.

3. Concluding remarks and future trends
The conventional sewage treatment facilities were never designed to deal with pharmaceutical compounds. Due to their highly variable physicochemical properties (chemical structure, solubility, octanol/water partition coefficient) as well as the operational conditions of the biological process, the efficiencies by which pharmaceuticals are removed vary substantially. Unfortunately, the lack of data concerning the biological treatment processes does not allow comparison among the various studies conducted, and there are only few studies, which comprehensively and systematically investigated operating conditions of the biological treatment. In general, MBR systems have been reported to be equal to or slightly more effective in removing some antibiotics compared to CAS treatment systems (Le-Minh et al., 2010); MBR is more expensive, but provides a more hygienic effluent due to the filtration. As a consequence of the inability of the most commonly applied biological treatments to sufficiently remove antibiotics, the latter are regarded as pseudo-persistent contaminants due to their continual introduction into the environment and permanent presence.

Advanced treatment, downstream of conventional biological process, can significantly improve antibiotics removal before effluent disposal. Although capital and operational costs of an advanced treatment increase the costs of conventional process, further improvement of micropollutants and other antibiotics removal, in line with possible stringent regulations might be difficult to achieve without advanced treatment. The installation of treatment techniques to remove antibiotics in wastewaters should also be flexible and allow their implementation not only in UWTPs, but also at important source points such as hospitals and the pharmaceutical industry.

More comprehensive studies are required to thoroughly understand the behavior of antibiotics under both conventional sewage treatment and advanced treatment processes and to gain more knowledge on the elimination processes.
within the UWTPs including sorption onto sewage sludge. Furthermore, studies should provide all basic treatment plant operational parameters since these are essential for later comparison or assessments.

It is important to underline also the fact that only little information is currently available with regard to transformation products formed in the environment or UWTPs and during oxidative treatment. Future research should include a dedicated focus on the potential formation of pharmacologically active or more toxic products during treatment processes. Additionally, it is necessary to conduct research on the occurrence, fate and removal of humans’ metabolites in UWTPs. Most antibiotics and their metabolites are excreted by humans after administration and therefore discharged to the municipal sewage; however, only little is known about their biodegradability in the aquatic environments.

From a practical point of view, it is necessary to study process integration to maximize the treatment performance in removing antibiotics and for disinfection including those that can use renewable energy resources to power the processes. Moreover, both environmental and economic assessments are considered necessary in the framework of industrial scale applications for the removal of antibiotic residues from wastewater.

Finally, evaluation of the negative impacts (i.e. antibiotic bacteria and resistance genes evolution, toxicity on organisms and plants) caused by the presence of antibiotics in the environment is considered as a necessity in order to reduce the risk for humans.

Acknowledgments

Nireas-International Water Research Center is a project co-funded by the European Regional Development Fund and the Republic of Cyprus through the Research Promotion Foundation (Strategic Infrastructure Project NEAYH01OMH/2TPATH/0308/09), and the University of Cyprus. The authors would like to thank EU for the support provided through Cost Action “TD0803: Detecting evolutionary hot spots of antibiotic resistances in Europe (DARE)”. Luigi Rizzo wishes to thank University of Salerno for funding the project “Effect of solar photolysis on antibiotic degradation, antibiotic resistant bacteria inactivation as well as on their capacity to develop antibiotic resistance in surface water”, Ex 60%, anno 2011. Christophe Merlin and Christophe Dagot wish to thank the ANR national program ECOTECH, the EU interreg PILLS Program, and the Zone Atelier Moselle (ZAM) for supporting investigations regarding parameters affecting antibiotic resistance gene transfer in environmental matrices.

Appendix A

Supporting Information

Reference	Location	Main treatment steps
Abegglen et al., 2009	Switzerland	CAS and MBR (aerobic or anoxic); SRT1 > 150 days; HRT1 = 6.3 days; SRT2 > 100 days; HRT2 = 3.4 days
Batt et al., 2007	Erie County (New York)	Amherst: Primary treatment; Secondary treatment (Stage 1: CAS; Stage 2: nitrification); Tertiary treatment (Sand filtration); Chlorination. East Aurora: No Primary treatment; Secondary treatment (Extended aeration; Ferrous chloride addition); Tertiary treatment (Sand filtration); UV radiation. Holland: Primary treatment; Secondary treatment (Rotating biological contactors); Tertiary treatment (Sand filtration); UV radiation. Lackawanna: Primary treatment; Secondary treatment (Pure oxygen activated sludge); Chlorination.
Bendz et al., 2005	Kallby (Sweden)	Primary treatment (Bar screening; Grit removal; Primary clarification); CAS; Chemical phosphorous removal; Final sedimentation. CAS
Brown et al., 2006	Rio Grande (Colorado)	Pre-treatment (coarse screening, bar racks, fine screening and aerated chambers for grit and fat removal); Primary treatment; CAS; Sedimentation tank.
Carballa et al., 2004	Galicia (Spain)	CAS
Castiglioni et al., 2008	Varese Olona (Italy)	Primary treatment (screen; grit chamber); CAS; MBR pilot plant (UF, cross flow); SRT = 10–55 days. Na
Cha et al., 2006	Fort Collins (Colorado)	Pretreatment; Primary treatment; CAS; Chlorination. CAS
Choi et al., 2007	Korea	
Clara et al., 2005	South-East of Austria	
Costanzo et al., 2005	Brisbane (Australia)	
Supporting Information — (continued)

Reference	Location	Main treatment steps
Dolar et al., 2012	Castell-Platja d’Aro (Spain)	MBR-RO pilot plant (8 m² of flat sheet membranes; pore size of 0.4 μm); HRT = 12.5 h; SRT = 45 days; RO system: one pressure vessel housing, a double element (Ropur membranes TR70-4021-HF) with an automatic cleaning system; high flow, crosslinked, aromatic polyamide, negative charge spiral wound module.
Fatta et al., 2010	Cyprus	UWTP I: Primary treatment; Secondary treatment (oxidation ditches, secondary settlement); Tertiary treatment (sand filtration); Chlorination. UWTP II: Primary treatment; CAS; Tertiary treatment (sand filtration); Chlorination. UWTP III: Primary treatment; Secondary treatment (phosphorus biological removal, nitrification and denitrification, secondary clarifiers); Tertiary treatment (sand filtration); Chlorination.
Göbel et al., 2005; Göbel et al., 2007	Switzerland (Kloten-Opfikon (UWTP-K); Altenrhein (UWTP-A))	Primary treatment (screen, aerated grit-removal tank, primary clarifier); Secondary treatment (UWTP-K: CAS; UWTP-A: CAS and FBR); Tertiary treatment (sand filtration). MBR (in UWTP-K): operated in parallel to CAS (HRT = 13 h). Three different membrane filtration units: MF plate membrane module (0.4 μm); UF hollow-fibre modules (0.1 μm); UF hollow-fibre modules (0.04 μm). SRT₁ = 16; SRT₂ = 33 days; SRT₃ = 60–80 days FBR (in UWTP-A): 8 Biostr up-flow cells, 3.6 mm Styrofoam beads as biofilm support.
Golet et al., 2002	Glatt Valley Watershed (Switzerland)	CAS
Golet et al., 2003	Zurich–Werdholzli (Switzerland)	Primary treatment (screens; combined grid; fat removal tank; primary clarification); CAS (SRT = 11days); Denitrification; Flocculation–filtration.
Gros et al., 2006	Croatia	CAS
Gułkowska et al., 2008	Hong Kong and Shenzhen (China)	CAS
	(Wan Chai, Shatin, Tai Po, Stonecutters Island, Nan Shan)	CAS
Jelic et al., 2011	Catalonia (Spain)	Primary treatment (screen, aerated grit-removal tank, primary clarifier); Secondary treatment (UWTP-K: CAS; UWTP-A: CAS and a FBR); Tertiary treatment (sand filtration). SRT₁ = 16–33 days; SRT₂ = 60–80 days
Joss et al., 2005	Switzerland (Kloten-Opfikon (UWTP-K); Altenrhein (UWTP-A))	CAS
Karthikeyan and Meyer, 2006	Wisconsin (USA)	Clifnynydd: Trickling filter beds; Coslech: CAS
Kasprzyk-Hordern et al., 2009	South Wales (England)	Pilot-scale MBR: average influent of 1.2 m³ day⁻¹ pumped directly from the hospital sewer collection system. Sludge concentration = 2 g l⁻¹, SRT = 30–50 days T_average = 29 °C, pH = 7.8, conductivity = 1100 μS cm⁻¹ Submerged ultrafiltration flat sheet membrane plates (Huber MembraneClearBox, PP carrier, PES membrane, 7 m³, 15–30 L m⁻² h⁻¹, 38 nm pore size, 150 kDa).
Kovalova et al., 2012	Switzerland	CAS
Li and Zhang, 2011	Hong Kong (Stanley and Shatin)	Shatin (Anoxic-Aerobic CAS); Stanley (Anoxic-Aerobic CAS and Chlorination)
Li et al., 2009	Hong Kong (Stanley and Shatin)	na
Reference	Location	Main treatment steps
------------------------	------------------------------------	---
Lin et al., 2009	Taipei (Taiwan)	UWTP1: Screening and sedimentation; CAS; UV. UWTP2: Grit removal and screening and sedimentation, deep shaft and step aeration and sedimentation; Chlorination. UWTP3: Screening; Trickling filter and sedimentation; Chlorination. UWTP4: Screening and grit removal and sedimentation; CAS and sedimentation; Chlorination.
Lindberg et al., 2005	Sweden (Stockholm; Gothenburg; Umeå; Kalmar; and Floda)	Chemical removal of phosphorus; Primary clarification; CAS with nitrogen removal (except Umeå and Floda); Secondary clarification.
Löffler and Ternes, 2003	Germany	Hospital wastewater; 0.45-µm polystyrene filters Removal, Large grit removal; Returned Activated Sludge; Post-Clarifier/Pre-Chlorination; Oxidation ditch; Post-Chlorination
Loganathan et al., 2009	South-western Kentucky	Primary treatment; Secondary treatment; Tertiary treatment (sand filtration)
McArdell et al., 2003	Switzerland (Kloten-Opfikon; Zurich-Werdholzliz; and Dübendorf)	na
Pailler et al., 2009	Beggen (Luxemburg)	GZ-UWTP1: Sedimentation; CAS; Filtration. GZ-UWTP2: CAS; Chlorination.
Peng et al., 2006	Guangzhou (Luxemburg)	Two pilot-scale MBRs were operating in parallel with CAS (SRT > 60 days): Hollow-fibre ultra-filtration membranes (HF-UF) (HRT = 7.2 h); flat-sheet micro-filtration membranes (FS-MF) (HRT = 15 h).
Radjenovic et al., 2009b	Terrassa (Spain)	MBR: Zenon ZW-10 submerged hollow fibre membrane module (average pore size = 0.04 µm; nominal surface area of 0.9 m²); SRT = 44–72 days.
Reif et al., 2008	Spain	Primary treatment (screening and sedimentation); CAS; Tertiary treatment; Disinfection (UWTP I: chlorination; UWTP II: UV).
Renew and Huang, 2004	California (UWTP I) and Arizona (UWTP II) (Georgia)	Primary treatment (screening and sedimentation); CAS; Tertiary treatment; Disinfection (UWTP I: chlorination; UWTP II: UV).
Roberts and Thomas, 2006	Howdon (UK)	Primary treatment (coarse screening; preliminary clarification); CAS and trickling filter system; High-pressure 254 nm UV disinfection.
Sahar et al., 2010	Tel-Aviv (Israel)	MBR/RO plant: Two Zenon ZeeWeed 500 UF immersed hollow fiber membranes (total area = 2 m²); RO membrane Filmtec TW30 25-40 (surface area = 2.7 m²). CAS-UF/RO plant: UF (24 modules, 1024 m², ZeeWeed-1000 immersed hollow fibers); RO membrane Filmtec BW30-400 (total area = 1295 m²). SRT > 40 days
Spongberg and Witter, 2008	Northwest Ohio (USA)	na
Sui et al., 2010	Bejing (China)	Primary treatment; Secondary biological treatment (A and D: anaerobic/anoxic/oxic [A²/O] CAS; B: anoxic/oxic [A/O]) CAS; C: Oxidation ditch [OD].
Tambosi et al., 2010	Aachen (Germany)	MBR pilot plant receives effluent from the pre-settling tank. MBR-15 (V = 260 L): SRT = 15 days; HRT = 6 h MBR-30 (V = 240 L): SRT = 30 days; HRT = 13 h Hollow-fiber ultrafiltration (UF) membranes (PURON, KMS Germany); area = 1.43 m²; pore size = 0.04 µm; polyethersulfone (PES).
Ternes et al., 2007	Braunschweig (Germany)	Primary treatment (screen; aerated grid-removal tank; primary clarifier); CAS; Phosphate removal; Nitrification–denitrification.
Watkinson et al., 2007	Brisbane (Australia)	Primary treatment; CAS (SRT = 12.5 days)
Watkinson et al., 2009	South-East Queensland (Australia)	na
Xia et al., 2012	China	Lab-scale A/O-MBR (6 L): (i) anoxic unit (AN, 2 L) and (ii) aerobic unit (AO, 4 L). A hydrophilic polyvinylidine fluoride (PVDF) hollow fiber membrane module was used in the AO unit (pore size = 0.02 µm; effective filtration area = 0.1 m²). SRT=3–60 days; HRT = 6–24 h
Xiao et al., 2008	Gao Beidian (Beijing, China)	Primary treatment; Secondary treatment processes

(continued on next page)
Supporting Information — (continued)

Reference	Location	Main treatment steps
Xu et al., 2007	Guangzhou and Hong Kong (South China) (Kaifaqu, Liede, New Territory, Kowloon)	Kaifaq: Primary treatment; CAS; Chlorination.
		Liede: Primary treatment; Oxidation ditch; UV.
Yang and Carlson, 2004	Northern Colorado (USA)	Extended sludge age biological technology (HRT = 12 h; SRT > 200 days; MLSS = 16000 mg L⁻¹)
Yang et al., 2005	Fort Collins (Colorado)	Pre-treatment; Primary treatment; Secondary treatment (secondary clarification); Chlorination.
Yu et al., 2009	Taiwan	Pretreatment; Primary treatment; Secondary treatment (secondary clarification); Chlorination.
Zorita et al., 2009	Kristianstad (Sweden) (UWTP1–-UWTP3)	Primary treatment (screens; grit- aerated chamber); CAS; Chemical removal; Tertiary treatment (Sand filtration).
Zuccato et al., 2010	Italy and Switzerland (Milan, Varese, Como, Lugano)	Pre-treatment; Primary treatment (primary settling); CAS; UV-light treatment (Varese).

REFERENCES

Abegglen, C., Joss, A., Mc Ardell, C.S., Pink, G., Schlüsener, M.P., Ternes, T.A., Siegrist, H., 2009. The fate of selected micropol lutants in a single-house MBR. Water Research 43, 2036–2046.

Adams, C., Asce, M., Wang, Y., Loftin, K., Meyer, M., 2002. Removal of antibiotics from surface and distilled water in conventional water treatment processes. Journal of Environmental Engineering 128, 253–260.

Aksu, Z., Tunç, O., 2005. Application of biosorption for penicillin G removal: comparison with activated carbon. Process Biochemistry 40, 831–847.

Alturki, A.A., Tadkaew, N., McDonald, J.A., Khan, S.J., Price, W.E., Nghiem, L.D., 2010. Combing MBR and NF/RO membrane filtration for the removal of trace organics in indirect potable water reuse applications. Journal of Membrane Science 365, 206–215.

Andreozzi, R., Caprio, V., Insola, A., Marotta, R., 1999. Advanced oxidation processes (AOP) for water purification and recovery. Catalysis Today 53, 51–59.

Andresozzi, R., Canterino, M., Marotta, R., Paxeus, N., 2005. Antibiotic removal from wastewaters: the ozonation of amoxicillin. Journal of Hazardous Materials 122, 243–250.

Arnold, W.A., McNeill, K., 2007. In: Petrović, M., Barceló, D. (Eds.), Transformation of Pharmaceuticals in the Environment: Photolysis and Other Abiotic Processes. Comprehensive Analytical Chemistry 50, pp. 361–385. Chapter 3.2.

Arslan Alaton, I., Dogruel, S., 2004. Pre-treatment of penicillin formulation effluent by advanced oxidation processes. Journal of Hazardous Materials B112, 105–113.

Arslan Alaton, I., Dogruel, S., Baykai, E., Gerene, G., 2004. Combined chemical and biological oxidation of penicillin formulation effluent. Journal of Environmental Management 73, 155–163.

Auerbach, E.A., Seyfried, E.E., McMahon, K.D., 2007. Tetracycline resistance genes in activated sludge wastewater treatment plants. Water Research 41, 1143–1151.

Backhaus, T., Grimme, L.H., 1999. The toxicity of antibiotic agents to the luminous bacterium Vibrio fischeri. Chemosphere 38, 3291–3301.

Balcioglu, I.A., Otker, M., 2003. Treatment of pharmaceutical wastewater containing antibiotics by O₃ and O₃/H₂O₂ processes. Chemosphere 50, 85–95.

Batt, A.L., Kim, S., Aga, D.S., 2007. Comparison of the occurrence of antibiotics in four full-scale wastewater treatment plants with varying designs and operations. Chemosphere 68, 428–435.

Batt, A.L., Snow, D.D., Aga, D.S., 2006. Occurrence of sulphonamide antimicrobials in private water wells in Washington County, Idaho, USA. Chemosphere 64, 1963–1971.

Bautitz, I.R., Nogueira, R.F.P., 2007. Degradation of tetracycline by photo-Fenton process—solar irradiation and matrix effects. Journal of Photochemistry and Photobiology A: Chemistry 187, 33–39.

Bendz, D., Paxeú, N.A., Ginn, T.R., Loge, F.J., 2005. Occurrence and fate of pharmaceutically active compounds in the environment, a case study: Hoje River in Sweden. Journal of Hazardous Materials 122, 195–204.

Boehler, M., Zwickenpfug, B., Hollender, J., Ternes, T., Joss, A., Siegrist, H., 2012. Removal of micropolutants in municipal wastewater treatment plants by powder-activated carbon. Water Science and Technology 66, 2115–2121.

Boxall, A.B.A., 2004. The environmental side effects of medication. EMBO Reports 5, 1110–1116.

Brown, K.D., Kulis, J., Thomson, B., Chapman, T.H., Mawhinney, D.B., 2006. Occurrence of antibiotics in hospital, residential, and dairy effluent, municipal wastewater, and the Rio Grande in New Mexico. Science of the Total Environment 366, 772–783.

Carballa, M., Omil, F., Lema, J.M., Llompart, M., Garcia-Jares, C., Rodriguez, I., Gomez, M., Ternes, T., 2004. Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant. Water Research 38, 2918–2926.

Castiglioni, S., Pomati, F., Miller, K., Burns, B.P., Zuccato, E., Calamari, D., Neilan, B.A., 2008. Novel homologs of the multiple resistance regulator marA in antibiotic-contaminated environments. Water Research 42, 4271–4280.

Cha, J.M., Yang, S., Carlson, K.H., 2006. Trace determination of β-lactam antibiotics in surface water and urban wastewater using liquid chromatography combined with electro spray tandem mass spectrometry. Journal of Chromatography A 1155, 46–57.

Choi, K.J., Kim, S.G., Kim, C.W., Kim, S.H., 2007. Determination of antibiotic compounds in water by on-line SPE-LC/MSD. Chemosphere 66, 977–984.

Clara, M., Strenn, B., Gans, O., Martinez, E., Kreuzinger, N., Kroiss, H., 2005. Removal of selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants. Water Research 39, 4797–4807.

Costanzo, S.D., Murby, J., Bates, J., 2005. Ecosystem response to antibiotics entering the aquatic environment. Marine Pollution Bulletin 51, 218–223.
Czekalski, N., Berthold, T., Caucci, S., Egli, A., Bürgmann, H., 2012. Increased levels of multiresistant bacteria and resistance genes after wastewater treatment and their dissemination into Lake Geneva, Switzerland. Frontiers in Microbiology 3 (106), 1–18.

Davies, J., Davies, D., 2010. Origins and evolution of antibiotic resistance. Microbiology and Molecular Biology Reviews 74 (3), 417–433.

De la Cruz, N., Gime´nez, J., Esplugas, S., Grandjean, D., de Czekalski, N., Berthold, T., Caucci, S., Egli, A., Bürgmann, H., 2012. Transformation products of pharmaceuticals in surface waters and wastewater formed during photolysis and advanced oxidation processes – degradation, elucidation of byproducts and assessment of their biological potency. Chemosphere 85, 693–709.

Dodd, M.C., Backhaus, T., Grimme, L.H., 2000. Bioassays with Vibrio fischeri for the assessment of delayed toxicity. Chemosphere 40, 821–829.

Fatta-Kassinos, D., Vasquez, M.I., Kümmner, K., 2011b. Transformation products of pharmaceuticals in surface waters and wastewater formed during photolysis and advanced oxidation processes – degradation, elucidation of byproducts and assessment of their biological potency. Chemosphere 85, 693–709.

Fatta-Kassinos, D., Vasquez, M.I., Kümmner, K., 2011b. Transformation products of pharmaceuticals in surface waters and wastewater formed during photolysis and advanced oxidation processes – degradation, elucidation of byproducts and assessment of their biological potency. Chemosphere 85, 693–709.

Fetta-Kassinos, D., Vasquez, M.I., Kümmner, K., 2011b. Transformation products of pharmaceuticals in surface waters and wastewater formed during photolysis and advanced oxidation processes – degradation, elucidation of byproducts and assessment of their biological potency. Chemosphere 85, 693–709.

Gao, P., Munir, M., Xagorarakis, I., 2012. Correlation of tetracycline and sulfonamide antibiotics with corresponding resistance genes and resistant bacteria in a conventional municipal wastewater treatment plant. Science of the Total Environment 421–422, 173–183. http://dx.doi.org/10.1016/j.scitotenv.2012.01.061.

Göbel, A., McArdell, C.S., Joss, A., Siegrist, H., Giger, W., 2007. Fate of sulfonamides, macrolides, and trimethoprim in different wastewater treatment technologies. Science of the Total Environment 372, 361–371.

Göbel, A., Thomsen, A., McArdell, C.S., Joss, A., Giger, W., 2005. Occurrence and sorption behavior of sulfonamides, macrolides, and trimethoprim in activated sludge treatment. Environmental Science and Technology 39, 3981–3985.

Golet, E.M., Alder, A.C., Giger, W., 2002. Environmental exposure and risk assessment of fluoroquinolone antibiotic agents in wastewater and river water of the Glatt Valley Watershed, Switzerland. Environmental Science and Technology 36, 3645–3651.

Golet, E.M., Xifra, I., Siegrist, H., Alder, A.C., Giger, W., 2003. Environmental exposure assessment of fluoroquinolone antibiotic agents from sewage to soil. Environmental Science and Technology 37, 3243–3249.

Goslich, R., Dillert, R., Bahnemann, D., 1997. Solar water treatment: principles and reactors. Water Science and Technology 35 (4), 137–148.

Gros, M., Petrovic, M., Barcelo´, D., 2006. Development of a multi-residue analytical methodology based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) for screening and trace level determination of pharmaceuticals in surface and wastewaters. Talanta 70, 678–690.

Guardabassi, L., Wong, D.M.A., Dalsgaard, A., 2002. The effects of tertiary wastewater treatment on the prevalence of antimicrobial resistant bacteria. Water Research 36, 1955–1964.

Güllberg, E., Cao, S., Berg, O.G., Ilbäck, C., Sandegren, L., Hughes, D., Andersson, D.I., 2012. Selection of resistant bacteria at very low antibiotic concentrations. PLoS Pathogens 7, 1–9.

Guikowska, A., Leung, H.W., So, M.K., Tanijasu, S., Yamashita, N., Yeung, L.W.Y., Richardson, B.J., Lei, A.P., Giesy, J.P., Lam, P.K.S., 2008. Removal of antibiotics from wastewater by sewage treatment facilities in Hongkong and Shenzhen, China. Water Research 42, 395–403.

Hapesi, E., Achilleos, A., Vasquez, M.I., Michael, C., Xekoukoulotakis, N.P., Mantzavinos, D., Kassinos, D., 2010. Drugs degrading photocatalytically: kinetics and mechanisms of ofloxacin and atenolol removal on titania suspensions. Water Research 44, 1737–1746.

Heberer, T., 2002. Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicology Letters 131, 5–17.

Hernández-Sancho, F., Molinos-Senante, M., Sala-Garrido, R., 2010. Economic valuation of environmental benefits from wastewater treatment processes: an empirical approach for Spain. Science of the Total Environment 408, 953–957.

Herrmann, J.M., Guillard, C., Pichat, P., 1993. Heterogeneous photocatalysis: an emerging technology for water treatment. Catalysis Today 17, 7–20.
Hirsch, R., Ternes, T., Haberer, K., Kratz, K.L., 1999. Occurrence of antibiotics in the aquatic environment. Science of the Total Environment 225, 109–118.

Hollender, J., Singer, H., McArdell, C., 2008. Polar organic micropollutants in the water cycle. In: Hlavinek, P., et al. (Eds.), Dangerous Pollutants (Xenobiotics) in Urban Water Cycle. Springer, pp. 103–116.

Hollender, J., Zimmermann, S.G., Koepeke, S., Krauss, M., McArdell, C., Scheer, C., Singel, H., von Gunten, U., Siegrist, H., 2009. Elimination of organic micropollutants in a municipal wastewater treatment plant upgraded with a full-scale post-ozonation followed by sand filtration. Environmental Science and Technology 43, 7862–7869.

Homem, V., Santos, L., 2011. Degradation and removal methods of antibiotics from aqueous matrices – a review. Journal of Environmental Management 92, 2304–2347.

Huber, M.M., Göbel, A., Joss, A., Hermann, N., Loßner, D., McArdell, C.S., Ried, A., Siegrist, H., Ternes, T.A., von Gunten, U., 2005. Oxidation of pharmaceuticals during ozonation of municipal wastewater effluents: a pilot study. Environmental Science and Technology 39, 4290–4299.

Jelic, A., Gros, M., Ginebreda, A., Cеспedes-Sanchez, R., Ventura, F., Ferrer, M., Barceló, D., 2011. Occurrence, partition and removal of pharmaceuticals in sewage water and sludge during wastewater treatment. Water Research 45, 1165–1176.

Ji, L.G., Chen, W., Duan, L., Zhu, D., 2009. Mechanisms for strong adsorption of tetracycline to carbon nanotubes: a comparative study using activated carbon and graphite as adsorbents. Environmental Science and Technology 43, 2232–2237.

Jiao, S., Zheng, S., Yin, D., Wang, L., Chen, L., 2008. Aqueous photolysis of tetracycline and toxicity of photocatalytic products to luminescent bacteria. Chemosphere 73, 377–382.

Jones, O.A.H., Voulvoulis, N., Lester, J.N., 2001. Human pharmaceuticals in the aquatic environment a review. Environmental Science and Technology 22, 1383–1394.

Jones, O.A.H., Voulvoulis, N., Lester, J.N., 2007. The occurrence and removal of selected pharmaceutical compounds in a sewage treatment works utilising activated sludge treatment. Environmental Pollution 145 (3), 738–744.

Jordá, L.S.J., Martín, M.M.B., Gómez, E.O., Reina, A.C., Sánchez, I.M.R., López, J.L.C., Pérez, J.A.S., 2011. Economic evaluation of the photo-Fenton process. Mineralization level and reaction time: the keys for increasing plant efficiency. Journal of Hazardous Materials 186, 1924–1930.

Klaveno, L.A., Al-Khair, F., Peñalver, M., Barceló, D., 2011. Occurrence, partition and removal of pharmaceuticals in sewage water and sludge during wastewater treatment. Water Research 45, 1165–1176.

Klüver, K., Toshima, S., Amy, G., Watanabe, Y., 2004. Rejection of antibiotics by RO membranes. Journal of Membrane Science 245, 71–78.

Klamerth, N., Rizzo, L., Malato, S., Maldonado, M.I., Agüera, A., Fernández-Alba, A.R., 2010. Degradation of fifteen emerging contaminants at μg L⁻¹ initial concentrations by mild solar photo-Fenton in MWTP effluents. Water Research 44, 545–554.

Klaveno, L.A., Mantzavinos, D., Kassinos, D., 2009. Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environmental International 35, 402–417.

Kolpin, D.W., Furlong, E.T., Meyer, M.T., Thurman, E.M., Zaugg, S.D., Barber, L.B., Buxton, H.T., 2002. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1998–2000: a national reconnaissance. Environmental Science and Technology 36, 1202–1211.

Kosutic, K., Dolar, D., Asperger, D., Kunst, B., 2007. Removal of antibiotics from a model wastewater by RO/NF membranes. Separation and Purification Technology 53, 244–249.

Kovalova, L., Siegrist, H., Singer, H., Wittmer, A., McArdell, C.S., 2012. Hospital wastewater treatment by membrane bioreactor: performance and efficiency for organic micropollutant elimination. Environmental Science and Technology 46, 1536–1545.

Kümmerer, K., 2009. Antibiotics in the aquatic environment – a review part II. Chemosphere 75, 435.

Lange, F., Cornelissen, S., Kubac, D., Sein, M.M., von Sonntag, J., Hannich, C.B., Golloch, A., Heipieper, H.J., Moder, M., von Sonntag, C., 2006. Degradation of macrolide antibiotics by ozone: a mechanistic case study with clarithromycin. Chemosphere 65 (1), 17–23.

La¨ngin, A., Alexy, R., König, A., Kümmerer, K., 2009. Deactivation and transformation products in biodegradability testing of β-lactams amoxicillin and piperacillin. Chemosphere 75, 347–354.

Le Corre, S.K., Ort, C., Kateley, D., Allen, B., Escher, B.I., Keller, J., 2012. Consumption-based approach for assessing the contribution of hospitals towards the load of pharmaceutical residues in municipal wastewater. Environment International 45, 99–111.

Lee, Y., Zimmermann, S.G., Kieu, A.T., von Gunten, U., 2009. Ferrate (Fe(VI)) application for municipal wastewater treatment: a novel process for Simultaneous micropollutant oxidation and phosphate removal. Environmental Science and Technology 43 (10), 3831–3838.

Legrini, O., Oliveros, E., Braun, A.M., 1993. Photochemical processes for water treatment. Chemical Reviews 93, 671–698.

Le-Minh, N., Khan, S.J., Drewes, J.E., Stuetz, R.M., 2010. Fate of antibiotics during municipal water recycling treatment processes. Water Research 44, 4295–4323.

Li, B., Zhang, T., 2011. Mass flows and removal of antibiotics in two municipal wastewater treatment plants. Chemosphere 83, 1284–1289. http://dx.doi.org/10.1016/j.chemosphere.2011.03.002.

Li, B., Zhang, T., Xua, Z., Fang, H.H.P., 2009. Rapid analysis of 21 antibiotics of multiple classes in municipal wastewater using
ultra performance liquid chromatography-tandem mass spectrometry. Analytica Chimica Acta 645, 64–72.
Li, S., Li, X., Wang, D., 2004. Membrane (RO-UF) filtration for antibiotic wastewater treatment and recovery of antibiotics. Separation and Purification Technology 34, 109–114.
Lin, A.Y.C., Yu, T.H., Lateef, S.K., 2009a. Removal of pharmaceuticals in secondary wastewater treatment processes in Taiwan. Journal of Hazardous Materials 167, 1163–1169.
Lin, A.Y.C., Lin, C., Chioù, J., Hong, P.K.A., 2009b. O3 and O3/H2O2 treatment of sulfonamide and macrolide antibiotics in wastewater. Journal of Hazardous Materials 171, 452–458.
Lindberg, R.H., Wennberg, P., Johansson, M.I., Tysklind, M., Andersson, B.A.V., 2005. Screening of human antibiotic. Substances and determination of weekly mass flows in five sewage treatment plants in Sweden. Environmental Science and Technology 39, 3421–3429.
Litter, M.I., 2005. Introduction to photochemical advanced oxidation processes for water treatment. Environmental Chemistry 2 (Pt. M), 325–366.
Loffler, D., Ternes, T.A., 2003. Analytical method for the determination of the aminoglycoside gentamicin in hospital wastewater via liquid chromatography electrospray-tandem mass spectrometry. Journal of Chromatography A 1000 (1–2), 583–588.
Loganathan, B., Phillips, M., Mowery, H., Jones-Lepp, T.L., 2009. Contamination profiles and mass loads of macrolide antibiotics and illicit drugs from a small urban wastewater treatment plant. Chemosphere 75, 70–77.
Macri, A., Stazi, A.V., Doji di Delupis, G., 1988. Acute toxicity of furazolidone on Artemia salina, Daphnia magna, and Culex pipiens molestus larvae. Ecotoxicology and Environmental Safety 16, 90–94.
Mahamuni, N.N., Adewuyi, Y.G., 2010. Advanced oxidation processes (AOPs) involving ultrasound for wastewater treatment: a review with emphasis on cost estimation. Ultrasonics Sonochemistry 17, 990–1003.
Mahu-Santana, C., Sosa-Ferrera, Z., Torres-Padrón, M.E., Santana-Rodríguez, J.J., 2010. Analytical methodologies for the determination of nitroimidazole residues in biological and environmental liquid samples: a review. Analytica Chimica Acta 665, 113–122.
Malato, S., Fernández-Ibáñez, P., Maldonado, M.I., Blanco, J., Gernjak, W., 2009. Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catalysis Today 147, 1–59.
McArdell, C.S., Molnar, E., Suter, M.J.F., Giger, W., 2003. Occurrence and fate of macrolide antibiotics in wastewater treatment plants and in the Glatt Valley Watershed, Switzerland. Environmental Science and Technology 37, 5479–5486.
McArdell, C.S., Kovalova, L., Siegrist, H., Kienle, C., Moser, R., Schwartz, T., 2011. Input and Elimination of Pharmaceuticals and Disinfectants from Hospital Wastewater. Final project report. Eawag, Duebendorf, Switzerland. accessible at: http://tinyurl.com/eawag-spatialbawasser.
Melero, J.A., Calleja, G., Martinez, F., Molina, R., Pariente, M.I., 2007. Nanocomposite Fe3O4/SBA-15: an efficient and stable catalyst for the catalytic wet peroxidation of phenolic aqueous solutions. Chemical Engineering Journal 131, 245–256.
Miao, X.S., Bishay, F., Chen, M., Metcalfe, C.D., 2004. Occurrence of antimicrobials in the final effluents of wastewater treatment plants in Canada. Environmental Science and Technology 38, 3533–3541.
Michael, I., Hapeshi, E., Michael, C., Fatta-Kassinos, D., 2010. Solar Fenton and solar TiO2 catalytic treatment of ofloxacin in secondary treated effluents: evaluation of operational and kinetic parameters. Water Research 44, 5450–5462.
Michael, I., Hapeshi, E., Osorio, V., Pérez, S., Petrović, M., Zapata, A., Malato, S., Barceló, D., Fatta-Kassinos, D., 2012a. Solar photocatalytic treatment of trimethoprim in four environmental matrices at a pilot scale: transformation products and ecotoxicity evaluation. Science of the Total Environment 430, 167–173.
Michael, I., Hapeshi, E., Michael, C., Varelra, A.R., Kyriakou, S., Manaia, C.M., Fatta-Kassinos, D., 2012b. Solar Fenton process on the abatement of antibiotics at a pilot plant scale: degradation kinetics, ecotoxicity and phytotoxicity assessment and removal of antibiotic resistant enterococci. Water Research 46, 5621–5634.
Miglore, L., Cozzolino, S., Fiori, M., 2003. Phytotoxicity to and uptake of enrofloxacin in crop plants. Chemosphere 52, 1233–1244.
Morse, A., Jackson, A., 2004. Fate of amoxicillin in two water reclamation systems. Water, Air, & Soil Pollution 157 (1–4), 117–132.
Munter, R., 2001. Advanced oxidation processes-current status and prospects. Proceedings of the Estonian Academy of Sciences Chemistry 50, 59–80.
Naddeo, V., Merc, S., Kassinos, D., Belgiorno, V., Guida, M., 2009. Fate of pharmaceuticals in contaminated urban wastewater effluent under ultrasonic irradiation. Water Research 43, 4019–4027.
Nakada, N., Shinohara, H., Murata, A., Kiri, K., Managakia, S., Sato, N., Takada, H., 2007. Removal of selected pharmaceuticals and personal care products (PCPs) and endocrine-disrupting chemicals (EDCs) during sand filtration and ozonation at a municipal sewage treatment plant. Water Research 41, 4373–4382.
Pailer, J.Y., Krein, A., Pfister, L., Hoffmann, L., Guignard, C., 2009. Solid phase extraction coupled to liquid chromatography-tandem mass spectrometry analysis of sulfonamides, tetracyclines, analgesics and hormones in surface water and wastewater in Luxembourg. Science of the Total Environment 407, 4736–4743.
Parsons, S., 2004. Advanced Oxidation Processes for Water and Wastewater Treatment. IWA Publishing.
Peng, X., Wang, Z., Kuang, W., Tan, J., Li, K., 2006. A preliminary study on the occurrence and behavior of sulfonamides, ofloxacin and chloramphenicol antimicrobials in wastewaters of two sewage treatment plants in Guangzhou, China. Science of the Total Environment 371, 314–322.
Perez, S., Eichhorn, P., Aga, D.S., 2005. Evaluating the biodegradability of sulfamethazine, sulfamethoxazole, sulfathiazole and trimethoprim at different stages of sewage treatment. Environmental Toxicology and Chemistry 24 (6), 1361–1367.
Putra, E.K., Pranowo, R., Sunarso, J., Indraswati, N., Ismadji, S., 2009. Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: mechanisms, isotherms and kinetics. Water Research 43, 2419–2430.
Radjenovic, J., Godehardt, M., Petrovic, M., Hein, A., Farre, M., Jekel, M., Barcelo, D., 2009a. Evidencing generation of persistent ozonation products of antibiotics roxithromycin and trimethoprim. Environmental Science and Technology 43, 6808–6815.
Radjenovic, J., Petrovic, M., Barcelo, D., 2009b. Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment. Water Research 43, 831–841.
Reif, R., Suárez, S., Omil, F., Lema, J.M., 2008. Fate of pharmaceuticals and cosmetic ingredients during the operation of a MBR treating sewage. Desalination 221, 511–517.
Renew, J.E., Huang, C.H., 2004. Simultaneous determination of fluoroquinolone, sulfonamide, and trimethoprim antibiotics in wastewater using tandem solid phase extraction and liquid chromatography-electrospray mass spectrometry. Journal of Chromatography A 1042, 113–121.

Richardson, S.D., Ternes, T.A., 2011. Water analysis: emerging contaminants and current issues. Analytical Chemistry 83 (12), 4614–4648.

Rivera-Utrilla, J., Prados-Joya, G., Sánchez-Polo, M., Ferro-Garcia, M.A., Bautista-Toledo, I., 2009. Removal of nitroimidazole antibiotics from aqueous solution by adsorption/bioadsorption on activated carbon. Journal of Hazardous Materials 170, 298–305.

Rizzo, L., 2011. Bioassays as a tool for evaluating advanced oxidation processes in water and wastewater treatment. Water Research 45, 4311–4340.

Rizzo, L., Meric, S., Guida, M., Kassinos, D., Belgiorno, V., 2009. Heterogenous photocatalytic degradation kinetics and detoxification of an urban wastewater treatment plant effluent contaminated with pharmaceuticals. Water Research 43, 4070–4078.

Roberts, P.H., Thomas, K.V., 2006. The occurrence of selected pharmaceuticals in wastewater effluent and surface waters of the lower Tyne catchment. Science of the Total Environment 356, 143–153.

Robertson, P.K.J., 1996. Semiconductor photocatalysis: an environmentally acceptable alternative production technique and effluent treatment process. Journal of Cleaner Production 4 (34), 203–212.

Rogers, H.R., 1996. Sources, behaviour and fate of organic contaminants during sewage treatment and in sewage sludges. Science of the Total Environment 185, 3–26.

Rosal, R., Rodríguez, A., Perdighon-Melo, J.A., Petre, A., García-Rogers, H.R., 1996. Sources, behaviour and fate of organic contaminants during sewage treatment and in sewage sludges. Science of the Total Environment 185, 3–26.

Sanin, F.D., 2006. Use of Fenton oxidation to improve the biodegradability of a pharmaceutical wastewater. Journal of Hazardous Materials 136, 258–265.

Ternes, T.A., Stuber, J., Herrmann, N., McDowell, D., Ried, A., Kampmann, M., Teiser, B., 2003. Ozonation: a tool for removal of pharmaceuticals, contrast media and musk fragrances from wastewater? Water Research 37, 1976–1982.

Ternes, T.A., Bonerz, M., Herrmann, N., Teiser, B., Anderssen, H.R., 2007. Irrigation of treated wastewater in Braunschweig, Germany: an option to remove pharmaceuticals and musk fragrances. Chemosphere 66, 894–904.

Thomulka, K.W., McGee, D.J., 1993. Detection of biohazardous materials in water by measuring bioluminescence reduction with the marine organism Vibrio harveyi. Journal of Environmental Science & Health Part A 28, 2153–2166.

Trovo, A.G., Melo, S.A.S., Nogueira, R.F.P., 2008. Photodegradation of the pharmaceuticals amoxicillin, bezafibrate and paracetamol by the photo-Fenton process – application to sewage treatment plant effluent. Journal of Photochemistry and Photobiology A: Chemistry 198, 215–220.

Watkinson, A.J., Murby, E.J., Costanzo, S.D., 2007. Removal of antibiotics in conventional and advanced wastewater treatment: implications for environmental discharge and wastewater recycling. Water Research 41, 4164–4176.

Watkinson, A.J., Murby, E.J., Kolpin, D.W., Costanzo, S.D., 2009. The occurrence of antibiotics in an urban watershed: from wastewater to drinking water. Science of the Total Environment 407, 2711–2723.

Westerhoff, P., Yoon, Y., Snyder, S., Wert, E., 2005. Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes. Environmental Science and Technology 39, 6649–6663.

Wollenberger, L., Halling-Sorensen, B., Kusk, K.O., 2000. Acute and chronic toxicity of veterinary antibiotics to Daphnia magna. Chemosphere 40, 723–730.

Xkekoukoulotakis, N.P., Drosoou, C., Brebou, C., Chatzisymyeon, E., Hapeshi, E., Fatta-Kassinos, D., Mantzavinos, D., 2010. Kinetics of UV-A/TiO2 photocatalytic degradation and mineralization of the antibiotic sulfamethoxazole in aqueous matrices. Catalysis Today 161, 163–168.

Xia, S., Jia, R., Feng, F., Xie, K., Li, H., Jing, D., Xu, X., 2012. Effect of solids retention time on antibiotics removal performance and microbial communities in an A/O-MBR process. Bioresource Technology 106, 36–43.
Xiao, Y., Chang, H., Jia, A., Hu, J., 2008. Trace analysis of quinolone and fluoroquinolone antibiotics from wastewaters by liquid chromatography – electrospray tandem mass spectrometry. Journal of Chromatography A 1214, 100–108.

Xu, P., Drewes, J.E., Kim, T.U., Bellona, C., Amy, G., 2006. Effect of membrane fouling on transport of organic contaminants in NF/RO membrane applications. Journal of Membrane Science 279 (1–2), 165–175.

Xu, W., Zhang, C., Li, X., Zou, S., Li, P., Hu, Z., Li, J., 2007. Occurrence and elimination of antibiotics at four sewage treatment plants in the Pearl River Delta (PRD), South China. Water Research 41, 4526–4534.

Yang, S., Carlson, K.H., 2004. Solid-phase extraction-high-performance liquid chromatography-ion trap mass spectrometry for analysis of trace concentrations of macrolides antibiotics in natural and waste water matrices. Journal of Chromatography A 1038, 141–155.

Yang, S., Cha, J., Carlson, K., 2005. Simultaneous extraction and analysis of 11 tetracycline and sulfonamide antibiotics in influent and effluent domestic wastewater by solid-phase extraction and liquid chromatography-electrospray ionization tandem mass spectrometry. Journal of Chromatography A 1097, 40–53.

Yang, Y., Wang, P., Shi, S., Liu, Y., 2009. Microwave enhanced Fenton-like process for the treatment of high concentration pharmaceutical wastewater. Journal of Hazardous Materials 168, 238–245.

Yargeau, V., Leclair, C., 2008. Impact of operating conditions on decomposition of antibiotics during ozonation: a review. Ozone: Science and Engineering 30, 175–188.

Yu, T., Lin, A.Y., Lateef, S.K., Lin, C., Yang, P., 2009. Removal of antibiotics and non-steroidal anti-inflammatory drugs by extended sludge age biological process. Chemosphere 77, 175–181.

Yuan, F., Hu, C., Hu, X., Wie, D., Chen, Y., Qu, J., 2011. Photodegradation and toxicity changes of antibiotics in UV and UV/H2O2 process. Journal of Hazardous Materials 185, 1256–1263.

Zhang, G., Ji, S., Xi, B., 2006. Feasibility study of treatment of amoxillin wastewater with a combination of extraction, Fenton oxidation and reverse osmosis. Desalination 196, 32–42.

Zhang, Y., Marrs, C.F., Simon, C., Xi, C., 2009. Wastewater treatment contributes to selective increase of antibiotic resistance among Acinetobacter spp. Science of the Total Environment 407, 3702–3706.

Zorita, S., Mårtensson, L., Mathiasson, L., 2009. Occurrence and removal of pharmaceuticals in a municipal sewage treatment system in the south of Sweden. Science of the Total Environment 407, 2760–2770.

Zuccato, E., Castiglioni, S., Bagnati, R., Melis, M., Fanelli, R., 2010. Source, occurrence and fate of antibiotics in the Italian aquatic environment. Journal of Hazardous Materials 179, 1042–1048.