Dietary acrylamide intake and risk of breast cancer: The Japan Public Health Center-based Prospective Study

Ayaka Kotemori1 | Junko Ishihara2 | Ling Zha3 | Rong Liu3 | Norie Sawada1 | Motoki Iwasaki1 | Tomotaka Sobue3 | Shoichiro Tsugane1 | for the JPHC Study Group†

1Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
2Department of Food and Life Science, Azabu University, Kanagawa, Japan
3Department of Environmental Medicine and Population Sciences, Graduate School of Medicine, Osaka University, Osaka, Japan

Correspondence
Junko Ishihara, Department of Food and Life Science, Azabu University, Kanagawa, Japan. Email: j-ishihara@azabu-u.ac.jp

Funding information
National Cancer Center (Grant/Award Number: ‘the National Cancer Center Research and Development’, the Food Safety Commission, No. 1503, Cabinet Office, Government of Japan (Grant/Award Number: ‘Research Program for Risk Assessment Study on Food’), the Ministry of Health, Labour and Welfare of Japan (Grant/Award Number: ‘a Grant-in-Aid for Cancer Research’).

Acrylamide forms during cooking and is classified as a probable carcinogen in humans, mandating the need for epidemiological studies of dietary acrylamide and cancers. However, the risk of dietary acrylamide exposure to breast cancer in Japanese women has not been assessed. We investigated the association between dietary acrylamide intake and risk of breast cancer in the Japan Public Health Center-based Prospective Study. The present study included 48,910 women aged 45-74 years who responded to a 5-year follow-up survey questionnaire. Dietary acrylamide intake was assessed using a validated food frequency questionnaire. Cox proportional hazards regression models were used to estimate hazard ratios and 95% confidence intervals. During an average of 15.4 years of follow up, 792 breast cancers were diagnosed. Energy-adjusted dietary acrylamide intake was not associated with the risk of breast cancer (adjusted hazard ratio for highest versus lowest tertile = 0.95, 95% confidence intervals: 0.79-1.14, P-trend = .58). Further, no significant associations were observed when stratified analyses were conducted by smoking status, coffee consumption, alcohol consumption, body mass index, menopausal status, estrogen receptor status, and progesterone receptor status. In conclusion, dietary acrylamide intake was not associated with the risk of breast cancer in this population-based prospective cohort study of Japanese women.

KEYWORDS
acrylamide, Asia, breast cancer, diet, epidemiology

1 | INTRODUCTION

Acrylamide was classified as a probable human carcinogen (group 2A) by The International Agency for Research on Cancer in 1994. Until 2002, the main sources of acrylamide exposure were thought to be through specific occupations or smoking. However, Swedish researchers found that acrylamide occurs in carbohydrate-rich foods cooked at over 120°C, showing that one of the most common forms of acrylamide exposure in the population was from meals.

The carcinogenicity of dietary acrylamide is considered to occur through a genotoxic pathway. Acrylamide is soluble in water, absorbed from the gastrointestinal tract, and transported to several organs. Acrylamide is metabolized by 2 pathways, a direct pathway by glutathione conjugation of acrylamide by GST, and a second by...
glycidamide by cytochrome P450 and conjugation by GST. Both acrylamide and glycidamide can combine with DNA and cause genotoxicity.5

From the national dietary survey in Japan in 2012, acrylamide intake was estimated by Monte Carlo simulation to be 0.166 μg/kg bodyweight per day.6 This level is less than half of that reported in Western populations, namely 0.45 μg/kg bodyweight per day in the Dutch7 and 0.41 μg/kg bodyweight per day in Norwegians.8 These levels are lower than in animal studies;9,10 however, when the benchmark dose lower confidence limit (BMDL10) is 0.31 mg/kg bodyweight per day for mammary tumors in rats, the MOE is <10 000.2 Therefore, the Food Safety Commission of Japan is vigilant about the possibility of a carcinogenic effect of dietary acrylamide.2

Currently, 8 studies have examined the relationship between dietary acrylamide exposure and breast cancer.11-18 A recent meta-analysis of these studies observed that dietary acrylamide intake was not associated with the risk of breast cancer.19 However, these studies were all conducted in Western countries and no study has assessed the risk of acrylamide intake on breast cancer in Asians. Moreover, the meta-analysis included 7 studies, and some estimates were from stratified analyses, such as in premenopausal women16 or by hormone receptor status of breast cancer.17 The results might therefore not be robust, and further investigation among a variety of populations with various levels of acrylamide intake may be necessary.

The aim of the present study was to investigate the association between dietary acrylamide intake and the risk of breast cancer in the JPHC Study.

2 | MATERIALS AND METHODS

2.1 | Study participants

The JPHC Study is a population-based prospective study which aims to investigate the associations between lifestyle and lifestyle diseases in 2 cohorts. Cohort I was launched in 1990 in Iwate, Akita, Nagano, Okinawa-Chubu, and Tokyo, whereas Cohort II was started in 1993 in Ibaraki, Niigata, Kochi, Nagasaki, Okinawa-Miyako, and Osaka. The study protocol has been described previously.20,21 Participants were 140 420 inhabitants (68 722 men and 71 698 women) aged 40-69 years in the jurisdictional area of these 11 public health centers. Inhabitants in the Tokyo area were not included as participants in this study because their incidence data were not available. The study protocol was approved by the institutional review boards of the National Cancer Center, Tokyo, Japan, Osaka University and Azabu University. The authors confirm that some access restrictions apply to the data underlying the findings.

A dietary survey using a self-administered FFQ was conducted at baseline, and at 5- and 10-year follow up. The FFQ of the 5-year follow-up survey obtained more detailed dietary information than the FFQ of the baseline survey because it included more food items and portion size options than the baseline survey questionnaire. We therefore used the 5-year follow-up survey as the starting point of the present study.

After excluding participants who were disqualified (non-Japanese nationality, incorrect late report of migration occurring before the starting point, or incorrect birth data) or had died, moved out of a study area, or were lost to follow up before the starting point, 62 750 women were eligible for participation. Of these, 52 483 women responded to the 5-year follow-up questionnaire (response rate 83.6%).

Participants with a past history of breast cancer as identified by the questionnaire (N = 478) and those diagnosed with breast cancer from the baseline survey to the time of the 5-year follow-up survey were excluded (N = 27). Participants with missing or extreme (upper and lower 2.5 percentiles) energy intake data were also excluded (N = 3068). Finally, 48 910 participants were included in the study (Figure 1).
2.2 Assessment of energy and acrylamide intake from FFQ

The FFQ is based around a list of 138 food and beverage items, each with 9 categories of eating frequency (never, 1-3 times/mo, 1-2 times/wk, 3-4 times/wk, 5-6 times/wk, 1 time/d, 2-3 times/d, 4-6 times/d, or ≥7 times/d). The food items also have 3 categories of portion size (less than half the standard portion size, standard portion size, or more than 1.5-fold the standard portion size). Intake amount of each food and beverage was estimated by multiplying the eating frequency with the portion size.

Energy intake was estimated using the Fifth Revised and Enlarged Edition of the Standard Tables of Food Composition in Japan. A validation study of the FFQ was previously conducted by comparing intake from a 28-day DR as reference in a subcohort of the JPHC study. Correlation coefficients of energy intake among women were 0.41 and 0.24 in Cohort I and II, respectively. We previously reported the validity of acrylamide in Cohort II, or vice versa. The de-attenuated correlation coefficients of energy-adjusted acrylamide intake calculation of acrylamide in Cohort II, or vice versa. The de-attenuated correlation coefficients of energy-adjusted acrylamide intake from FFQ was previously conducted by comparing intake from a 28-day DR as reference in a subcohort of the JPHC study. Correlation coefficients of energy intake among women were 0.41 and 0.24 in Cohort I and II, respectively. We previously reported the validity of acrylamide intake measurement from the FFQ using this existing data and our database of measured values of acrylamide content in common Japanese foods elsewhere. Briefly, we developed a database of acrylamide-containing foods commonly consumed in Japan using published reports of measurements and selected the values of the following foods and beverages: miso, beer, baked fish paste, bread, rice cake, Japanese-style confectionary, cake, biscuits and cookies, chocolate, peanuts, fried tofu, green tea, oolong tea, black tea, coffee, and soup. Further, we considered the amount of acrylamide consumed from homemade cooking. Acrylamide intake from heated starchy vegetables (potato, sweet potato), vegetables (onion, bean sprouts, sweet pepper, squash, cabbage, snap beans, broccoli), toast, boiled or stir-fried rice, and fried batter was calculated by multiplying the amount of raw food, the proportion of heated food calculated from the DR and the concentration of acrylamide in each heated food. Because Cohort I and Cohort II are independently conducted studies which collected DR among different populations, we used the proportion of cooking methods among Cohort I in the calculation of acrylamide in Cohort II, or vice versa. The de-attenuated correlation coefficients of energy-adjusted acrylamide intake among women were 0.48 and 0.37 in Cohorts I and II, respectively.

2.3 Follow up and identification of breast cancer

All participants were followed from the starting point until December 31, 2013 (until December 31, 2012 in the Osaka area only). Residence status was confirmed annually through the residential registry. During the follow-up period, 6059 (12.4%) participants died, 3330 (6.8%) moved out of the study area, and 33 (0.1%) were lost to follow up.

Incidence of breast cancer was identified through the following data sources: active patient notification from major local hospitals in the study area and data linkage with population-based cancer registries. Death certificates were used as a supplementary information source. Cases were coded using the ICD-O-3; breast cancer is C500-509. The proportion of cases ascertained by DCO was 1.9%. This percentage was considered satisfactory for the present study. With a mean follow-up period of 15.4 years, a total of 792 newly diagnosed breast cancer cases were identified by December 31, 2013.

2.4 Statistical analysis

Person-years of follow up were determined from the starting point until the date of diagnosis of breast cancer, date of death, date of relocation from the study area, or end of the study period (December 31, 2012 for the Osaka area and December 31, 2013 for other areas), whichever occurred first. For participants lost to follow up, data were censored on the last confirmed date of presence in the study area.

A Cox proportional hazards model was used to estimate HR and 95% CI of breast cancer by tertile of dietary acrylamide intake, using the lowest (T1) versus the middle (T2) or highest (T3) group. Trends were assessed by assignment of ordinal values for tertile of dietary acrylamide intake. For further analysis, 9 quantiles were also used in the Cox proportional hazards model. Acrylamide intake was adjusted for energy intake using the residual method. HR were adjusted for the following potential confounding factors: age, PHC area, smoking status (current, past, never, or missing), alcohol intake (≥150 g/wk or ≥150 g/wk), BMI (<25, ≥25, or missing), family history of breast cancer (yes or no), age at menarche (≤13, 14, 15, ≥16, or missing), age at first delivery (<26, ≥26, or missing), number of deliveries (0, 1-2, 3, ≥4, or missing), menopausal status and age at menopause (pre or postmenopause, postmenopause from age <49, post-menopause from age 50 to 54, postmenopause from >55, or missing) and exogenous hormone use (yes, no, or missing). These variables were obtained from the questionnaire, and are known or suspected risk factors for breast cancer in the JPHC study. Further, we also adjusted for physical activity (metabolic equivalents) and isoflavone intake; as the results did not substantially change, however, we did not use these variables for adjustment in the final model. In a sensitivity analysis, we repeated the same analysis after excluding 120 breast cancer cases diagnosed in the first 3 years of follow up.

To elucidate the interaction effect, we conducted stratified analysis by smoking status (current smoker, past smoker, or never smoker), coffee consumption (<1 cup/wk, 1 cup or more/wk), alcohol consumption (<150 g/wk or ≥150 g/wk), BMI (<25 or ≥25), and menopausal status at starting point (pre or post-menopause). Further stratified analysis was conducted for tumor subtype defined by ER/PR status, namely ER+, ER−, PR+, PR−, ER+/PR+, and ER−/PR−. All P-values were 2-sided and statistical significance level was set at P < .05 using SAS 9.3 (SAS Institute Inc., Cary, NC, USA).
3 | RESULTS

3.1 | Characteristics of participants

Table 1 shows participant characteristics according to acrylamide intake. Mean (SD) dietary acrylamide intake overall was 7.0 (3.7) µg/d, corresponding to 0.14 (0.13) µg/kg bodyweight/day. There were significant differences in the following characteristics between tertiles. The highest acrylamide intake group tended to be younger and have a lower BMI; have a higher proportion of current smoking, younger menarche, premenopausal status, and exogenous female hormone non-use; have a lower proportion of older first delivery, and non- or few deliveries; and to consume less alcohol, and more coffee, green tea, biscuits and cookies, potatoes, and vegetables. There was no significant difference between tertiles in the proportion of a family history of breast cancer.

Figure 2 shows the contribution of acrylamide-containing foods among the total study population. The food group with the greatest contribution was beverages (total 49%; 24% for coffee, 23% for green tea, and 2% for others), followed by confectioneries (total 19%; 13% for biscuits and cookies, 3% for chocolate, and 3% for others), potatoes and starches (total 13%; 12% for potatoes and 1% for others), vegetables (total 11%; 4% for sweet pepper, 3% for onion, 3% for bean sprouts, and 1% for others), and cereals (total 6%; 3% for rice and 3% for others). The main contributing foods were common in each acrylamide intake group, but the trend slightly differed (Figure 3). As acrylamide intake increased, the contribution from coffee, green tea, and biscuits and cookies increased, whereas that from potatoes, vegetables and rice decreased.

3.2 | Association between dietary acrylamide intake and breast cancer

Table 2 shows the results of dietary acrylamide intake and risk of breast cancer. There was no association between dietary acrylamide intake and breast cancer. Compared to the lowest group, HR (95% CI) was 1.00 (0.84-1.18) in the middle group and 0.95 (0.79-1.14) in the highest (P for trend = .58). This result was consistent with the results obtained when cases occurring within 3 years after the start of follow up were excluded.

To clarify the risk in extremely high dietary acrylamide consumers among these study participants, we conducted a further analysis between 9 quantiles of acrylamide intake (Figure 4). Mean (SD) dietary acrylamide intake was 2.5 (0.7) µg/d among the lowest 9 quantile consumers and 14.6 (3.6) among the highest 9 quantile consumers. No significant association was observed. Compared to the lowest quantile, HR (95% CI) of the highest quantile was 0.91 (0.66-1.25) and P for trend was .81.

Although we also conducted stratified analyses by major confounding factors, significance associations were not observed among current or past smokers (P for trend = .64), never smokers (P for trend = .43), lower coffee consumers (P for trend = .58), coffee consumers (P for trend = .71), lower alcohol consumers (P for trend = .52), higher alcohol consumers (P for trend = .60), women with a normal BMI (P for trend = .62), obese women (P for trend = .74), premenopausal women (P for trend = .37), or postmenopausal women (P for trend = .97). Further, when stratified by estrogen receptor and progesterone receptor status, there were no significant associations among ER+ (P for trend = .99), ER− (P for trend = .48), PR+ (P for trend = .91), PR− (P for trend = .33), ER+/
PR+ (P for trend = .92), or ER−/PR− (P for trend = .35) (Table 2). Additionally, there were no significant associations when stratified by green tea intake (data not shown).

4 | DISCUSSION

We found that dietary acrylamide intake was not associated with breast cancer risk in a large prospective cohort study among Japanese women. In addition, we also found no associations when stratified analyses were conducted by smoking status, coffee consumption, alcohol consumption, BMI, menopausal status, or the hormone receptor status of breast cancer tumors.

These results showing no association between dietary acrylamide intake and breast cancer are consistent with the results of a meta-analysis by Pelucchi et al of 5 prospective cohort studies, one case-
TABLE 2 Acrylamide intake and risk of breast cancer

	Tertile of acrylamide intake				P for trend
	Total	Lowest (T1)	Middle (T2)	Highest (T3)	
	HR (95% CI)	HR (95% CI)	HR (95% CI)		
All women					
No. participants	48 910	16 303	16 304	16 303	
No. cases	792	266	268	258	
Person-years	754 623	253 736	251 712	249 176	
Age- and area-adjusted	1.00 (Reference)	0.95 (0.79-1.13)	0.84-1.19	.55	
Multivariate-adjusted	1.00 (Reference)	0.95 (0.79-1.14)	0.84-1.18	.58	
Multivariate-adjusted (excluding cases <3 y)	1.00 (Reference)	0.96 (0.79-1.17)	0.87-1.26	.70	
By smoking status					
Current or past smoker					
No. participants	3014	796	871	1347	
No. cases	46	15	12	19	
Person-years	43 381	11 598	12 452	19 332	
Multivariate-adjusted	1.00 (Reference)	0.77 (0.35-1.66)	0.83 (0.41-1.70)	.64	
Never smoker					
Number of participants	42 708	14 359	14 388	13 961	
Number of cases	701	239	238	224	
Person-years	666 754	226 260	224 636	215 859	
Multivariate-adjusted	1.00 (Reference)	0.97 (0.81-1.17)	0.93 (0.77-1.12)	.43	
By coffee consumption					
<1 cup/wk					
No. participants	13 967	8003	3731	2233	
No. cases	206	121	62	23	
Person-years	213 780	123 302	56 865	33 613	
Multivariate-adjusted	1.00 (Reference)	1.19 (0.87-1.62)	0.77 (0.49-1.20)	.58	
1 cup or more/wk					
No. participants	34 943	8300	12 573	14 070	
No. cases	586	145	206	235	
Person-years	540 843	130 434	194 847	215 563	
Multivariate-adjusted	1.00 (Reference)	0.93 (0.75-1.16)	0.95 (0.77-1.18)	.71	
By alcohol consumption					
<150 g/wk					
No. participants	47 536	15 800	15 887	15 849	
No. cases	757	254	258	245	
Person-years	734 543	246 259	245 643	242 641	
Multivariate-adjusted	1.00 (Reference)	1.00 (0.84-1.19)	0.94 (0.78-1.13)	.52	
≥150 g/wk					
No. participants	1374	503	417	454	
No. cases	35	12	10	13	
Person-years	20 081	7477	6068	6535	
Multivariate-adjusted	1.00 (Reference)	0.94 (0.38-2.30)	1.26 (0.53-3.01)	.60	
By BMI					
<25 kg/m²					
No. participants	34 090	11 012	11 344	11 734	
No. cases	506	163	173	170	

(Continues)
TABLE 2 (Continued)

Tertile of acrylamide intake	Total	Person-years	No. participants	No. cases	Person-years	No. participants	No. cases	Person-years	Multivariate-adjusted\(^a\)
									HR (95% CI)
Lowest (T1)									1.00 (Reference)
Middle (T2)									1.01 (0.82-1.26)
Highest (T3)									0.95 (0.76-1.18)
P for trend									.62
Person-years	524 930	171 394	174 710	178 825	-	-	-	-	-
Multivariate-adjusted\(^a\)									.62
≥25 kg/m\(^2\)									-
No. participants	13 495	4754	4551	4190	-	-	-	-	-
No. cases	266	97	85	84	-	-	-	-	-
Person-years	211 475	75 034	71 292	65 149	-	-	-	-	-
Multivariate-adjusted\(^a\)									.74
By menopausal status									-
Premenopause									-
No. participants	10 523	2493	3422	4608	-	-	-	-	-
No. cases	201	52	72	77	-	-	-	-	-
Person-years	166 575	39 997	54 362	72 216	-	-	-	-	-
Multivariate-adjusted\(^a\)									.37
Postmenopause									-
No. participants	36 803	13 000	12 450	11 353	-	-	-	-	-
No. cases	572	203	193	176	-	-	-	-	-
Person-years	564 230	201 595	190 725	171 910	-	-	-	-	-
Multivariate-adjusted\(^a\)									.97
By hormone receptor status									-
ER\(^+\)									-
No. subjects	48 344	16 113	16 117	16 114	-	-	-	-	-
No. cases	226	76	81	69	-	-	-	-	-
Person-years	749 403	252 011	249 953	247 439	-	-	-	-	-
Multivariate-adjusted\(^a\)									.99
ER\(^−\)									-
No. subjects	48 218	16 074	16 069	16 075	-	-	-	-	-
No. cases	100	37	33	30	-	-	-	-	-
Person-years	748 275	251 669	249 587	247 020	-	-	-	-	-
Multivariate-adjusted\(^a\)									.48
PR\(^+\)									-
No. subjects	48 287	16 093	16 096	16 098	-	-	-	-	-
No. cases	169	56	60	53	-	-	-	-	-
Person-years	748 965	251 875	249 815	247 275	-	-	-	-	-
Multivariate-adjusted\(^a\)									.91
PR\(^−\)									-
No. subjects	48 268	16 094	16 086	16 088	-	-	-	-	-
No. cases	150	57	50	43	-	-	-	-	-
Person-years	748 702	251 820	249 715	247 167	-	-	-	-	-
Multivariate-adjusted\(^a\)									.33
ER\(^+\)/PR\(^+\)									-
No. subjects	48 277	16 089	16 095	16 093	-	-	-	-	-
No. cases	159	52	59	48	-	-	-	-	-
Person-years	748 933	251 862	249 808	247 262	-	-	-	-	-
Multivariate-adjusted\(^a\)									.92

(Continues)
Acrylamide intake and breast cancer risk in all women, a positive association was observed in premenopausal women in the UK. The authors suggested that this positive association appears to represent a proxy for an unhealthier diet, because mean dietary acrylamide intake was less than in other countries and the main sources of dietary acrylamide intake were chips and crisps.16

In the present study, daily mean (SD) dietary acrylamide intake was 7.0 (3.7) μg in Japanese women. Western women consume 2-3 times more acrylamide than Japanese women, and mean levels of intake among Japanese women correspond to the lowest or second lowest quintile in Western women.11,16-18 This low and narrow intake pattern in Japanese women may affect the association toward null. Therefore, dietary acrylamide intake does not seem to increase the risk of breast cancer in Japanese women. However, 1 reason that most studies showed no association between dietary acrylamide intake and breast cancer is that country-specific analyses failed to ensure a wide distribution of intake such that the influence of dietary acrylamide could be detected.

The main sources in our Japanese population were coffee and green tea. Although green tea is specific for Japanese participants, coffee is also a common contributing food for acrylamide intake in Western countries.11,14,18 In a meta-analysis, coffee had a weakly preventive effect on breast cancer.36 However, no preventive or causative effect was observed for our cohort between coffee or green tea consumption and breast cancer risk.37 Further, stratified analysis by coffee or green tea consumption indicated there was no interaction effect in our study. Although coffee/green tea is the major source of acrylamide intake in Japan, the intake of coffee/green tea did not have a causative effect on breast cancer in this study.

We also found no associations when our study participants were stratified by alcohol consumption and BMI level. When acrylamide was consumed, it is partly metabolized by CYP2E1 to glycidamide, which is a more reactive compound than acrylamide.5 In a cross-sectional study, the ratio of hemoglobin adduct concentrations of acrylamide to glycidamide differed according to alcohol drinking habit and BMI level, because the activity of CYP2E1 is affected by alcohol consumption.
consumption and BMI level. However, we could not detect any associations in a stratified analysis. As acrylamide metabolism is also affected by polymorphisms in CYP2E1, differences in the distribution of these single-nucleotide polymorphisms (SNP) may also have affected the results.

We also conducted stratified analysis by menopausal status and the hormone receptor status of tumors, but observed no associations between dietary acrylamide intake and breast cancer. This result is consistent with previous studies. However, the effect of trace acrylamide intake on hormone concentration in humans is currently under investigation and the results to date are not consistent. Høgervorst et al. reported that the hemoglobin adduct concentration of acrylamide was positively associated with estrogen concentration in premenopausal American women whose BMI was <25. In contrast, Nagata et al. showed that dietary acrylamide intake assessed by FFQ was negatively related to estrogen concentration among premenopausal Japanese women. In a nested case-control study by Olsen et al., the hemoglobin adduct concentration of acrylamide was positively associated with the risk of ER+ breast cancer in smokers. Therefore, further studies are needed before the effect of acrylamide intake on the hormone-related pathway can be conclusively determined.

The major strength of the present study was its prospective cohort study design. Recall bias of exposure and confounding factors was avoided because data collection was conducted before breast cancer was diagnosed. Participants were selected from the general population, the sample size was large, the response rate to the questionnaire was acceptable (83.6%) for study settings such as this, and the loss to follow up (0.1%) was negligible. The proportion of cases ascertained by DCO was 1.9%. Furthermore, the cancer registry in the study population was of sufficient quality to reduce the possibility of misclassification of outcome.

This study has several limitations. First, there is a possibility of misclassification of acrylamide intake groups. The correlation coefficients among dietary acrylamide intake from the DR and FFQ were low to moderate and kappa coefficients in quintiles were over 0.8. High kappa coefficients showed categorical agreement, but the possibility of the attenuation of relative risk by misclassification of exposure assessment still remains. Moreover, the JPHC study and the validation study for the FFQ were conducted in the 1990s, but we calculated acrylamide intake using the measured values of acrylamide in foods in the 2000s because measured values were not available in the 1990s. This time lag may have lead to underestimation and misclassification because of the efforts of food companies in reducing acrylamide content in foods. However, the concentrations of acrylamide in coffee, which was the most important food in total acrylamide intake, did not dramatically differ between the recent decades, and the effect is therefore considered to be relatively small. Second, assessment of dietary acrylamide intake by FFQ may not reflect the true acrylamide and glycidaime exposure because acrylamide metabolism may be affected by individual enzyme activity and lifestyle. Further epidemiological study using biomarkers is needed to clarify acrylamide and glycidaime exposure in terms of internal dose. Third, the occurrence of breast cancer in Japan is less than in Western countries. Despite a reasonably large cohort population (48 910 women) and long follow-up period (average 15 years), the number of cases of breast cancer in this cohort was relatively small (n = 792), reflecting the low incidence rate in Japan (age-standardized rate per 100 000 world population in 2012, 51.5 in Japan and 92.9 in the USA for comparison). The lack of subjects and cases may have rendered some null associations in the stratified analyses less robust, and interpretation may therefore need caution. Fourth, other confounding factors might have affected the results. Although we adjusted for several confounding factors in the statistical model to the maximum degree possible, the effects of unmeasured confounders cannot be totally discarded.

In conclusion, we found that there was no association between dietary acrylamide intake and breast cancer risk regardless of smoking status, coffee consumption, alcohol consumption, BMI, menopausal status, or hormone receptor status of breast cancer tumors in a large prospective cohort study among Japanese women. Our findings suggest that dietary acrylamide intake is unlikely to increase the risk of breast cancer in Japanese women.

ACKNOWLEDGMENTS
This study was supported by a grant from the Food Safety Commission, Cabinet Office, Government of Japan (Research Program for Risk Assessment Study on Food Safety, No. 1503; principal investigator is TS), the National Cancer Center Research and Development Fund (since 2011, principal investigator is ST), and a Grant-in-Aid for Cancer Research from the Ministry of Health, Labour and Welfare of Japan (from 1989 to 2010, principal investigator from 1997 to 2010 is ST).

CONFLICTS OF INTEREST
Authors declare no conflicts of interest for this article.

AUTHORS’ CONTRIBUTION
JI and TS designed the research; ST, TS, JI, NS, and MI conducted research; AK contributed to the calculation of dietary acrylamide intake; AK, LZ, and RL carried out statistical analysis; AK interpreted the results and wrote the paper; and JI had primary responsibility for final content. All authors reviewed the manuscript and contributed to the discussion.

ORCID
Ayaka Kotemori http://orcid.org/0000-0003-3954-8615

REFERENCES
1. IARC. IARC working group on the evaluation of carcinogenic risks to humans: some industrial chemicals. Lyon, 15-22 February 1994. IARC Monogr Eval Carcinog Risks Hum. 1994;60:1-560.
2. Food Safety Commission of Japan. Evaluation Document of Dietary Acrylamide Produced by Heating. Tokyo: Food Safety Commission of Japan; 2016. https://www.fsc.go.jp/osirase/acrylamide1.data/acrylamide_hyokasyo1.pdf Accessed January 17, 2017.

3. Tareke E, Rydberg P, Karlsson P, et al. Analysis of acrylamide, a carcinogen formed in heated foodstuffs. J Agric Food Chem. 2002;50:4998-5006.

4. Viswanath P. Evaluation of certain contaminants in food (Seventy-second report of the Joint FAO/WHO Expert Committee on Food Additives). Indian J Med Res. 2012;135:795.

5. Shipp A, Lawrence G, Gentry R, et al. Acrylamide: review of toxicity data and dose-response analyses for cancer and noncancer effects. Crit Rev Toxicol. 2006;36:481-608.

6. Food Safety Commission of Japan. Study on estimate of acrylamide intake from food; interim report. 2016. Food Safety Commission of Japan. https://www.fsc.go.jp/fsciis/technicalResearch/show/cho99920151507 Accessed 07/01/2016.

7. Konings EJ, Hogervorst JG, van Rooij L, et al. Validation of a database on acrylamide for use in epidemiological studies. Eur J Clin Nutr. 2010;64:534-540.

8. Brantsaeter AL, Haugen M, Mul A, et al. Exploration of different methods to assess dietary acrylamide exposure in pregnant women participating in the Norwegian Mother and Child Cohort Study (MoBa). Food Chem Toxicol. 2008;46:2808-2814.

9. Beland FA, Mellick PW, Olson GR, et al. Carcinogenicity of acrylamide in B6C3F1 mice and F344/N rats from a 2-year drinking water exposure. Food Chemical Toxicol. 2013;51:149-159.

10. Beland FA, Olson GR, Mendoza MC, et al. Carcinogenicity of glycidamide in B6C3F1 mice and F344/N rats from a two-year drinking water exposure. Food Chem Toxicol. 2015;86:104-115.

11. Mucci LA, Sandin S, Bälter K, et al. Acrylamide intake and breast cancer risk in Swedish women. JAMA. 2005;293:1322-1327.

12. Pelucchi C, Galeone C, Levi F, et al. Dietary acrylamide and human cancer. Int J Cancer. 2006;118:467-471.

13. Hogervorst JG, Schouten LJ, Konings EJ, et al. A prospective study of dietary acrylamide intake and the risk of endometrial, ovarian, and breast cancer. Cancer Epidemiol Biomarkers Prev. 2007;16:2304-2313.

14. Larsson SC, Akesson A, Wolk A. Long-term dietary acrylamide intake and breast cancer risk in a prospective cohort of Swedish women. Am J Epidemiol. 2009;169:376-381.

15. Wilson KM, Mucci LA, Cho E, et al. Dietary acrylamide intake and risk of premenopausal breast cancer. Am J Epidemiol. 2009;169:954-961.

16. Burley VJ, Greenwood DC, Hepworth SJ, et al. Dietary acrylamide intake and risk of breast cancer in the UK women’s cohort. Br J Cancer. 2010;103:1749-1754.

17. Pedersen GS, Hogervorst JG, Schouten LJ, et al. Dietary acrylamide intake and estrogen and progesterone receptor-defined postmenopausal breast cancer risk. Breast Cancer Res Treat. 2010;122:199-210.

18. Wilson KM, Mucci LA, Rosner BA, et al. A prospective study on dietary acrylamide intake and the risk for breast, endometrial, and ovarian cancers. Cancer Epidemiol Biomarkers Prev. 2010;19:2503-2515.

19. Pelucchi C, Bosetti C, Galeone C, et al. Dietary acrylamide intake and cancer risk: an updated meta-analysis. Int J Cancer. 2015;136:2912-2922.

20. Watanabe S, Tsugane S, Sobue T, et al. Study design and organization of the JPHC study. Japan Public Health Center-based Prospective Study on Cancer and Cardiovascular Diseases. J Epidemiol. 2001;11(suppl 6):S3-S7.

21. Tsugane S, Sawada N. The JPHC study: design and some findings on the typical Japanese diet. Jpn J Clin Oncol. 2014;44:777-782.

22. Resource Council, Science and Technology Agency, the Government of Japan. Standard Tables of Food Composition in Japan, the fifth revised edition. Tokyo, Japan: Printing Bureau, Ministry of Finance; 2002.

23. Ishihara J, Inoue M, Kobayashi M, et al. Impact of the revision of a nutrient database on the validity of a self-administered food frequency questionnaire (FFQ). J Epidemiol. 2006;16:107-116.

24. Tsugane S, Sasaki S, Kobayashi M, et al. Validity and reproducibility of the self-administered food frequency questionnaire in the JPHC Study Cohort I: study design, conduct and participant profiles. J Epidemiol. 2003;13(suppl 1):S2-S12.

25. Ishihara J, Sobue T, Yamamoto S, et al. Validity and reproducibility of a self-administered food frequency questionnaire in the JPHC Study Cohort II: study design, participant profile and results in comparison with Cohort I. J Epidemiol. 2003;13(suppl 1):S134-S147.

26. Kotemori A, Ishihara J, Nakadate M, et al. Validity of a self-administered food frequency questionnaire for the estimation of acrylamide intake in the Japanese population: the JPHC FFQ Validation Study. J Epidemiol. 2017;28.

27. National Institute for Environmental Studies. Japan Study on statistical estimate of acrylamide Intake from foods National Institute for Environmental Studies, Japan. http://www.fsc.go.jp/fsciis/technicalResearch/show/cho99920141400 Accessed January 22, 2018.

28. Ministry of Agriculture, Forestry and Fisheries. Risk profile sheet relating to the food safety; for acrylamide Ministry of Agriculture, Forestry and Fisheries. http://www.maff.go.jp/j/syouan/seisaku/pdf/150807_rp_aa.pdf Accessed 07/01/2016.

29. National Institute of Health Sciences. Acrylamide analysis in food. http://www.mhlw.go.jp/topics/2002/11/tp1101-1a.html Accessed 07/01/2016.

30. Mizukami Y, Kohata K, Yamaguchi Y, et al. Analysis of acrylamide in green tea by gas chromatography-mass spectrometry. J Agric Food Chem. 2006;54:7370-7377.

31. Takatsuki S, Nemoto S, Sasaki K, et al. Production of acrylamide in agricultural products by cooking. J Food Hyg Soc Japan. 2004;45:44-48.

32. Yoshida M, Ono H, Ohnishi-Kameyama M, et al. Determination of acrylamide in processed foodstuffs in Japan. Nippon Shokuhin Kagaku Kaishi. 2002;49:822-825.

33. Yoshida M, Miyoshi K, Horibata K, et al. Estimation of acrylamide intake from cooked rice in Japan. Nippon Shokuhin Kagaku Kaishi. 2011;58:525-530.

34. Food Safety Commission of Japan. Information clearing sheet for Acrylamide Food Safety Commission of Japan. https://www.fsc.go.jp/fsciis/technicalResearch/show/cho99920141400 Accessed January 22, 2018.

35. FAO/WHO Health implications of Acrylamide in Food FAO/WHO. http://www.who.int/foodsafety/publications/acrylamide-food/en/ Accessed 07/01/2016.

36. Jiang W, Wu Y, Jiang X. Coffee and caffeine intake and breast cancer risk: an updated dose-response meta-analysis of 37 published studies. Gynecol Oncol. 2013;129:620-629.

37. Iwasaki M, Inoue M, Sasazuki S, et al. Green tea drinking and subsequent risk of breast cancer in a population-based cohort of Japanese women. Breast Cancer Res. 2010;12:R88.

38. Obon-Santacana M, Lujan-Barroso L, Freising H, et al. Dietary and lifestyle determinants of acrylamide and glycidamide hemoglobin adducts in non-smoking postmenopausal women from the EPIC cohort. Eur J Nutr. 2017;56:1157-1168.

39. Emery MG, Fisher JM, Chien YJ, et al. CYP2E1 activity before and after weight loss in morbidly obese subjects with nonalcoholic fatty liver disease. Hepatology. 2003;38:428-435.

40. Duale N, Bjellaas T, Alexander J, et al. Biomarkers of human exposure to acrylamide and relation to polymorphisms in metabolizing genes. Toxicol Sci. 2009;108:90-99.

41. Huang YF, Chiang SY, Liou SH, et al. The modifying effect of CYP2E1, GST, and mEH genotypes on the formation of hemoglobin
adducts of acrylamide and glycidamide in workers exposed to acrylamide. Toxicol Lett. 2012;215:92-99.

42. Hogervorst JG, Fortner RT, Mucci LA, et al. Associations between dietary acrylamide intake and plasma sex hormone levels. Cancer Epidemiol Biomarkers Prev. 2013;22:2024-2036.

43. Nagata C, Konishi K, Tamura T, et al. Associations of acrylamide intake with circulating levels of sex hormones and prolactin in premenopausal Japanese women. Cancer Epidemiol Biomarkers Prev. 2015;24:249-254.

44. Olesen PT, Olsen A, Frandsen H, et al. Acrylamide exposure and incidence of breast cancer among postmenopausal women in the Danish Diet, Cancer and Health Study. Int J Cancer. 2008;122:2094-2100.

45. Ervik M, Lam F, Ferlay J, Mery L, Soerjomataram I, Bray F. Cancer Today. Lyon, France: International Agency for Research on Cancer. Cancer Today; 2016.

How to cite this article: Kotemori A, Ishihara J, Zha L, et al. Dietary acrylamide intake and risk of breast cancer: The Japan Public Health Center-based Prospective Study. Cancer Sci. 2018;109:843-853. https://doi.org/10.1111/cas.13496