Impact of dynamical charm quarks

S. Cali, F. Knechtli, T. Korzec, B. Leder, G. Moir
Motivation

- An enormous effort is made to generate $N_f = 2 + 1$ configurations
 - BMW, CLS, JLQCD, RBC/UKQCD, ...

Advantages

- Cheaper
 - odd numbers of flavors are expensive, e.g. inclusion of $s \sim$ doubling of costs
- Easier to define (and keep!) a chiral trajectory
- The charm quark has a very small impact on low energy observables (decoupling)
- No lattice artifacts $O([am_c]^{\alpha})$ which may be difficult to control
- With Wilson fermions: one may get away with b_X from PT

Disadvantage

- Unknown systematical errors in high energy observables (where decoupling does not apply)

Goal

Estimate the difference between $N_f = 2 + 1 + 1$ and $N_f = 2 + 1$ for high energy observables
- e.g. charmonia masses or static force at small distances
Decoupling

The effect of heavy sea quarks at low energies

- Effective theory $\mathcal{L}_{\text{eff}} = \mathcal{L}^{N_l} + \frac{1}{M^2} \mathcal{L}_6 + \ldots$

 [S.Weinberg (1979)]

 - N_q quarks in total
 - N_l light quarks
 - Effective theory contains only the light quarks. Leading order describes full theory up to power-corrections $O((\Lambda_q/M)^2)$

- Detailed study

 [M.Bruno, J.Finkenrath, F.Knechtli, B.Leder, R.Sommer (2014)]

 [A.Athenodorou, M.Bruno, J.Finkenrath, F.Knechtli, B.Leder, M.Marinkovic, R.Sommer (2014)]

 - Factorization formula
 $$\frac{m_q^{\text{had}}(M)}{m_q^{\text{had}}(0)} = Q_{\text{had}}^{l,q} \times P_{l,q}(M/\Lambda_q) + O((\Lambda_q/M)^2)$$

 - Particularly simple: $\frac{m_q^{\text{had1}}(M)}{m_q^{\text{had2}}(M)} = r + O(M^{-2})$

 - Numerical study with $N_q = 2, N_l = 0$:
 $r_0/\sqrt{t_0}$ has a 0.1(6)% effect at $M \sim M_c/2$
We compare QCD with $N_f = 2$ heavy ($M \sim M_c$) quarks to quenched QCD

- We want to
 - Further confirm decoupling
 - Full theory $= \text{QCD}^{N_f=2}$
 - Effective theory $= \text{QCD}^{N_f=0}$
 - Investigate “high” energy observables for which decoupling does not apply

Simulate QCD$^{N_f=2}$ at $M = M_c$, several lattice spacings

Compute: r_0/a, t_0/a^2, $a m_P$, $a m_V$

Continuum extrapolate dimensionless ratios, e.g.

$r_0/\sqrt{t_0}$, $\sqrt{t_0} m_P$, $\sqrt{t_0} m_P$, m_V/m_P

Simulate QCD$^{N_f=0}$. Matching:

$$[t_0/a]^{N_f=0} \approx [t_0/a]^{N_f=2} \Rightarrow \beta \text{ for similar lattice spacings}$$

$$\left[\sqrt{t_0} m_P\right]^{N_f=0} \overset{!}{=} \left[\sqrt{t_0} m_P\right]^{N_f=2}_{\text{cont}} \Rightarrow \mu$$
Simulations

Dynamical quarks

- Gauge action: plaquette, $\beta \in \{5.7, 6.0, 6.2\}$
- Fermion action: doublet of twisted mass fermions $\psi = \begin{pmatrix} c \\ c' \end{pmatrix}$
 - c_{SW} [K.Jansen, R.Sommer (1997)]
 - κ_c interpolation of [P.Fritzsch et al (2012)], [P.Fritzsch, N.Garron, J.Heitger (2015)]
 - $a \mu = Z_P \times \frac{M_c}{\Lambda^{(2)}} \times \Lambda^{(2)} L_1 \times \frac{m}{M} \times \frac{a}{L_1}$
 [P.Fritzsch, F.Knechtli, B.Leder, M.Marinkovic, S.Schaefer, R.Sommer, F.Virotta (2012)]

Quenched quarks

- Gauge action: plaquette, $\beta \in \{6.34, 6.672, 6.9\}$
 Estimated from $\frac{r_0}{a}(\beta)$ [S.Necco, R.Sommer (2001)] and t_0/r_0^2 [M.Bruno]
- Valence quarks: doublet of twisted mass fermions
 - c_{SW} [M.Lüscher, S.Sint, R.Sommer, P.Weisz, U.Wolff(1996)]
 - κ_c interpolation of [M.Lüscher, S.Sint, R.Sommer, P.Weisz, U.Wolff (1996)]
 - $a \mu$: For each β, 3 values \rightarrow interpolation to matching point
Ensembles

- Open boundaries in time, periodic in space
 - Milder critical slowing down than on torus
 - openQCD-1.2 [M. Lüscher, S. Schaefer (2013)]
 - $c_G = c_F = 1$

β	$\frac{L}{a} \times \frac{T}{a}$	a/fm	$a\mu$	MDUs
5.700	32×120	0.051	0.113200	$17k$ (17k)
6.000	48×192	0.033	0.072557	$22k$ (11k)
6.340	32×120	0.051	-	$20k$ (20k)
6.672	48×192	0.033	-	$74k$ (21k)
6.900	64×192	0.025	-	$100k$ (65k)

critical slowing down compatible with $z \sim 2$
Measurements

- r_0/a, Sommer scale
 Computed as in [M.Donnellan, F.Knechtli, B.Leder, R.Sommer (2011)]
 - HYP-smeared Wilson loops, 3-4 levels
 - GEVP for static potential $aV(r)$
 - $r^2V'(r)\big|_{r=r_0} = 1.65$

- t_0/a^2, scale from gradient flow
 [M.Lüscher (2010)]
 - Wilson discretization of the gradient flow
 - Clover discretization of the action density $E = \frac{1}{4} G^a_{\mu\nu} G^a_{\mu\nu}$
 - $t^2\langle E(t) \rangle\big|_{t=t_0} = 0.3$

- Meson masses
 - From zero momentum correlation functions
 $f(x_0, y_0) = \sum_{x,y} \langle J(x)J^\dagger(y) \rangle$
 - Stochastic propagators
 - Local interpolating fields
 $J \in \{ \bar{c}\gamma_5 c, \bar{c}\gamma_k c \ldots \}$
 $\rightarrow m_P \quad \rightarrow m_V$
Effective masses

- Use T symmetry: \(g(x_0) = \frac{f(a, x_0) + f(T-a, T-x_0)}{2} \)
- Effective mass: \(a m_{\text{eff}}(x_0) = \log \left(\frac{g(x_0)}{g(x_0+a)} \right) \)
- Black = \(m_P \), blue = \(m_V \), finest lattice

![Graph showing effective masses](image_url)
Systematical errors

- \(a_\mu = Z_P \times \frac{M_c}{\Lambda^{(2)}} \times \Lambda^{(2)} L_1 \times \frac{\bar{m}}{M} \times \frac{a}{L_1} \)
 - \(\frac{M_c}{\Lambda^{(2)}} = 4.87 \)
 - Largest errors: \(\Lambda^{(2)} L_1, \frac{\bar{m}}{M} \)
 common to all points

- \(\kappa_c \) mistuning
 - Maximal twist: \(m_{PCAC} = 0 \)
 - \(\bar{m} = \frac{1}{Z_P} \sqrt{\mu^2 + Z_A^2 m_{PCAC}^2} \)
 - We have on all ensembles
 \(\frac{\bar{m} - \mu / Z_P}{\bar{m}} < 0.3\% (2\%) \)

- Finite volume effects:
 negligible \(\frac{L}{\sqrt{t_0}} > 10 \)

- Lattice artifacts:
 \(O(a^2) \)
Matching zero and two flavor QCD

\[N_f = 2 \]

Linear & constant fits
\[\rightarrow \] compatible continuum values

We work with value from linear fit
Matching zero and two flavor QCD

$N_f = 2$

$N_f = 0$

- Linear & constant fits → compatible continuum values
- We work with value from linear fit

- Black: $\sqrt{t_0} m_P$
- Blue: $\sqrt{t_0} m_V$
- m_P linear in μ (like HQET)
Expected effect (decoupling): below 0.3%

No disagreement found at a precision of $\sim 2\%$
Results: masses

- Decoupling not applicable
- No effect resolvable at a precision of 0.7%
- Error dominated by $\Delta_{\sqrt{t_0} m_P}^{N_f=2}$

T.Korzec
Charm effects
28.07.2016 12 / 16
Errors in μ cancel to a large extent
No effect resolvable at a precision of 0.2%
\[
\bar{m} = \frac{1}{Z_P} \sqrt{\mu^2 + Z_A^2 m_{PCAC}^2}
\]

- \(Z_P^{N_f=2}, M/\bar{m}\)
 [P.Fritzsch et al (2012)]
- \(Z_A^{N_f=2}\)
 [M.Della Morte et al (2005)]
- \(Z_P^{N_f=0}, M/\bar{m}\)
 [A.Jüttner (2004)]
- \(Z_A^{N_f=0}\)
 [M.Lüscher et al (1997)]

\(\bar{m}\) values at different scales but \(M\) values comparable

\(~5\%\) effect, but large errors
Results: strong coupling

- Strong coupling from the static force: $\alpha_{qq}(\mu) = \frac{1}{C_F} r^2 V'(r)$
- Significant effect at $\mu = 1/r \sim 1.6$ GeV and above
- Not a lattice artifact
Conclusions

- Effects of dynamical charm quarks
 - tiny in charmonium masses
 - significant in α_{qq} at large energies
 - quite sizable in the RGI mass
- Lattice artifacts appear to be $O(a^2)$ below $a = 0.05$ fm

Outlook

- Higher statistics
- Third lattice spacing with $N_f = 2 \Rightarrow$ smaller errors everywhere
- More observables
 - Charmonium spectrum
 - Matrix elements
 - Quenched strange quark $\rightarrow f_{D_s}$