T cell regeneration after immunological injury

Enrico Velardi, Jennifer J. Tsai and Marcel R. M. van den Brink

Abstract | Following periods of haematopoietic cell stress, such as after chemotherapy, radiotherapy, infection and transplantation, patient outcomes are linked to the degree of immune reconstitution, specifically of T cells. Delayed or defective recovery of the T cell pool has significant clinical consequences, including prolonged immunosuppression, poor vaccine responses and increased risks of infections and malignancies. Thus, strategies that restore thymic function and enhance T cell reconstitution can provide considerable benefit to individuals whose immune system has been decimated in various settings. In this Review, we focus on the causes and consequences of impaired adaptive immunity and discuss therapeutic strategies that can recover immune function, with a particular emphasis on approaches that can promote a diverse repertoire of T cells through de novo T cell formation.

Thymic epithelial cells (TECs). The major component of thymic stroma that supports all stages of thymocyte development. They are further divided into cortical and medullary TECs on the basis of their localization within the thymus and are crucial for the positive and negative selection of thymocytes, respectively.

Recovery of immunocompetence after periods of haematopoietic stress or injury is crucial not only for efficient responses against pathogens and tumour antigens but also for optimal responses to immunotherapy for cancer. In contrast to the early recovery of innate cells, including neutrophils, natural killer (NK) cells and monocytes, adaptive immune cells, in particular T cells, recover at a much slower pace and are particularly sensitive to negative insults caused by infections or cytoreductive chemotherapy and radiotherapy. Constrictions in the diversity of the T cell pool have been associated with impaired immune responses to several antigens1–3 and adverse clinical outcomes in patients receiving haematopoietic cell transplantation (HCT)4,5.

The capacity of T cells to mount and maintain effective responses to a wide variety of antigens depends on a large repertoire of unique T cell receptors (TCRs) generated in the thymus during the process of T cell development. This process is dependent on crosstalk between bone marrow (BM)-derived T cell progenitors and the supportive thymic stromal microenvironment, which primarily consists of thymic epithelial cells (TECs), endothelial cells, mesenchymal stromal cells, dendritic cells and macrophages6. Although, for example, T cell proliferation, driven by interleukin-7 (IL-7) and IL-15, in response to lymphopenic conditions can contribute to numerical reconstitution of T cells, complete long-term recovery of a diverse and functional T cell pool requires reactivation of thymic function and de novo T cell generation (Fig. 1). However, the thymus is sensitive to various injuries, such as those caused by cytoreductive treatments, infection, septic shock and graft-versus-host disease (GVHD). Furthermore, progressive involution of thymic tissue during ageing leads to a decline in T cell output and T cell senescence with restricted TCR repertoire diversity and impaired immune responses.

Thymic damage and impaired T cell reconstitution are particularly detrimental in HCT recipients7. Defective quantitative and functional recovery of T cells, in particular of CD4+ T cells8–11, has been directly linked to increased risks of opportunistic infections8,12, malignant relapse13 and overall adverse clinical outcomes14,15. Defective T cell responses are a clinical hurdle not only for patients receiving HCT but also for patients receiving other modalities of cancer immunotherapy, including immune checkpoint inhibitors, that exert their anti-tumour effects primarily through the activation of T cell effector function. Although the prognostic significance of this association has still to be further characterized in larger studies, a highly diverse pool of T cells before therapy correlates with improved outcome after immune checkpoint blockade therapy16–19. Thus, there is considerable interest in developing approaches to evaluate the quantity and quality of T cells before and during different forms of immunotherapy to guide treatment directions, monitor immune responses and ultimately identify functional biomarkers to predict clinical outcomes20.

In this Review, we highlight the primary causes of impaired immune function, with special emphasis on HCT recipients, and discuss regenerative approaches that have been clinically translated to facilitate the recovery of adaptive immune function. We also provide an update on emerging new immune-boosting approaches that have demonstrated promising regenerative properties in preclinical models. We focus on approaches that can broaden...
the diversity of the T cell pool through the restoration of de novo T cell formation in the thymus and discuss the implications for other cancer immunotherapies. While this Review primarily concentrates on T cell immunity, a brief summary of the B cell defects associated with GVHD, infections, and immunosuppressive therapies is also provided in BOX 1.

Conditions leading to immune dysfunction

Infection. In the healthy state, homeostasis of the immune system relies on a fine balance between cell production and cell death. During an infection, this dynamic equilibrium is altered to ensure pathogen clearance without uncontrolled immune responses. Haematopoietic stem and progenitor cells (HSPCs) replenish immune cells by responding to infections either indirectly through sensing a depletion of downstream cells (a process termed ‘emergency haematopoiesis’) or directly through sensing pathogen-specific systemic inflammatory signals (such as cytokines or Toll-like receptor ligands). During acute inflammation, lineage commitment of HSPCs favours granulopoiesis over lymphopoiesis. During sepsis, migration of thymic precursors from the BM to the thymus is decreased, leading to a depletion of early thymic progenitors and contributing to lymphopenia.

In addition, the thymus itself is a target organ of various pathogens, leading to thymic atrophy and lymphocyte depletion, which are both common features of infectious diseases. Thymic haematopoietic and stromal compartments can both be directly targeted in viral and parasitic infections. CD4+CD8- double-positive (DP) thymocytes and their immediate precursors CD24+CD3-CD8- single-positive thymocytes are particularly vulnerable, whereas mature CD24highCD8+ SP cells are the most resistant thymic subsets during infection. Although the precise mechanisms for infection-induced acute thymic involution remain to be further elucidated, stress-responsive hormones (such as glucocorticoids), pro-inflammatory mediators (such as interferon-γ (IFNγ) and tumour necrosis factor (TNF)) and apoptosis pathways (such as those mediated by BAX, BCL-2, JUN amino-terminal kinase, p53, caspase 8 and caspase 9) have all been implicated.

DP thymocytes are particularly sensitive to the increased level of glucocorticoids occurring in infection, providing a potential mechanism by which infections induce depletion of this particular cell subset.

Functional changes in the thymic microenvironment are also observed following infection. The thymic epithelium undergoes substantial phenotypic and functional changes after infection with the parasite Trypanosoma cruzi and viruses such as HIV, measles virus and Zika virus. For instance, localization of the TR5 and CK18 antigens restricted to medullary TECs (mTECs) and cortical TECs (cTECs), respectively, was altered in T. cruzi-infected mice along with increased extracellular matrix production in vitro cultured.
Thymic function and rearrangement in thymocytes during T cell receptor (TCR) episomes that are normally (TRECs). Non-replicative DNA immunosuppression to prevent cell engraftment and to provide space for donor stem cells but also to not only to destroy residual malignant cells but also to previously shown to cause BM and thymic aplasia (SARS-CoV-2). Transient thymic involution is most commonly caused by virus infection such as HIV, influencing T cell receptor repertoire, the sequencing of the VH1 repertoire of class-switched B cells has been reported and is particularly associated with pathogens that cause chronic infections such as HIV. Sustained immune activation and alteration in T cell homeostasis during chronic infections have been associated with progressive and possibly irreversible loss of thymic function as seen in advanced age. Thymopoiesis, as reflected by the levels of TCR excision circles (TRECs) and naive CD4+ T cells in the periphery (Box 2), is significantly impaired in HIV-infected patients. In addition, the reductions in the ratios of CD4+ T cells to CD8+ T cells and naive T cells to memory T cells, the expansion in CD57+CD8+ and CD28–CD8+ senescent T cell populations, and the overall reduction in vaccine responsiveness have all been correlated with HIV-related disease progression and ageing. This suggests that HIV-associated immunological abnormalities can induce early onset of immunosenescence and correlate with the higher risk of age-associated diseases typically observed in these patients.

Box 1 | Mechanisms regulating B cell recovery after immunological injury

Compared with our understanding of T cell reconstitution, less information is available regarding the kinetics of B cell recovery after immunological insults and the factors regulating this process. Optimal B cell function is important not only for the generation of protective antibodies and efficient antigen presentation but also for proper immune tolerance. This is particularly crucial for recipients of haematopoietic cell transplantation (HCT) as delays in B cell reconstitution are associated with increased risk of infection and development of chronic graft-versus-host disease (GVHD). B cell numbers generally return to normal levels within 12 months after HCT, but it can take up to 2 years for complete recovery of the B cell compartment. Several factors such as conditioning regimens, total body irradiation, corticosteroid treatment and GVHD negatively impact B cell reconstitution. In allogeneic HCT recipients, immunoglobulins can be derived from recipient plasma cells that survive conditioning regimens and donor-derived mature B cells. However, restoration of the B cell compartment is primarily mediated by de novo regeneration from bone marrow progenitors. B cell recovery following HCT is reminiscent of B cell ontogeny. Transitional CD19+CD21–CD38+ B cells are the first B cells to emerge following HCT. Their percentage decreases in the first 12 months as the proportion of mature CD19+CD21hiCD38lo naive B cells increases. However, even when the total number of B cells recovers, their functionality can remain compromised for 1–2 years. Indeed, in addition to environmental or vaccine-based antigen exposure, insufficient recovery and signalling from donor CD4+ T cells can result in B cell maturation arrest and decreased responses to vaccines. Thus, the degree of CD4+ T cell recovery impairs B cell differentiation and functional reconstitution. In the first period following HCT, due to lack of T cell help, memory B cells display a limited diversity of the IgH complementarity-determining region 3 repertoire compared with naive B cells. However, B cell autonomous defects are also evident in HCT recipients as the capacity to accumulate somatic mutations is decreased in mature B cells even in the presence of an adequate pool of CD4+ T cells. Limited information is available regarding the dynamics of B cell receptor repertoire evolution following HCT. Similarly to the T cell receptor repertoire, the sequencing of the VH1 repertoire of class-switched B cells revealed lower repertoire diversity after HCT than the pretransplantation status. However, a more comprehensive study of B cell receptor reconstitution and repertoires after allogeneic HCT is needed.

Analogously to the T cell compartment, the naive B cell pool also declines with ageing. In old individuals, B cells are replaced by antigen-experienced memory cells carrying substantial functional changes, including impaired affinity maturation and isotope switching.
Peripheral T cell depletion, especially of CD4+ T cells, is the main cause of clinical immunodeficiency observed in patients with cancer. T cell recovery following cytoreductive therapy is predominantly achieved through two mechanisms: de novo production in the thymus, particularly for CD4+ T cells, or homeostatic expansion of peripheral T cells, preferentially for CD8+ T cells. The relatively rapid CD8+ T cell recovery through extrathymic clonal expansion is typically associated with limited breadth of the TCR repertoire and diminished immune responses.

Graft-versus-host disease. Although allogeneic HCT offers a potential cure for various malignant and non-malignant disorders, its wider application is limited by the significant morbidity and mortality associated with GVHD and prolonged post-transplantation immunodeficiency. In GVHD, donor alloreactive T cells in addition to targeting the host gastrointestinal tract, liver and skin also directly destroy primary lymphoid organs (BM and thymus) and delay immune reconstitution after allogeneic HCT. Both mouse models and clinical studies have demonstrated that GVHD targets the BM44, and the resultant medullary aplasia delays donor-derived haematopoiesis, especially of the lymphoid lineage. IFNy and TNF disrupt donor haematopoiesis both directly and indirectly through their effects on host BM stromal cells, including osteoblasts and mesenchymal stem cells. As a result, acute GVHD is associated with a significant reduction in the numbers of residual and de novo B cell precursors, in the numbers of mature B cells and in antibody production (BOX 1).

During acute GVHD, the thymus is exquisitely sensitive to damage by alloreactive T cells, and its acute atrophy reflects the precipitous contractions of the lymphocytic and stromal compartments. Mouse models of acute GVHD have demonstrated that, in addition to the reduced number of early thymic progenitors migrating from the BM to the thymus, reduction in thymic cellularity is primarily due to loss of the large DP T cell population via glucocorticoid-independent apoptotic cell death.

Within the stromal cell subset, TECs are targets of GVHD-mediated apoptosis. TECs also act as antigen-presenting cells and prime alloreactive T cells directly through their intrinsic expression of MHC class I and II molecules, such that depletion of host-derived professional antigen-presenting cells does not prevent activation of alloreactive donor T cells and thymic injury. This raises the possibility that GVHD is restricted to the thymus and remains subclinical despite detrimental consequences for T cell reconstitution. In addition, alloreactive T cells eliminate IL-22-producing thymic group 3 ILCs (ILC3s), resulting in impaired thymic recovery. Moreover, donor alloreactive CD8+ T cells preferentially target tolerance-inducing mature mTECs, thereby impairing negative selection and allowing de novo generation of autoreactive CD4+ T cells, linking alloimmunity during acute GVHD to the development of autoimmunity during chronic GVHD.

These studies underline the importance of functional preservation of TECs as well as numerical restoration.
Innate lymphoid cells (ILCs). A group of innate immune cells that are lymphoid in morphology and developmental origin but lack properties of adaptive B cells and T cells such as recombinant antigen-specific receptors. They function in the regulation of immunity, tissue homeostasis and inflammation in response to cytokine stimulation.

Allogeneic HCT Transplantation approach involving transfer of hematopoietic cells from a healthy donor to a patient after conditioning with high-intensity chemotherapy or irradiation. This approach can be used to treat either malignant or non-malignant disorders. Mismatches between the histocompatibility antigens of the donor and the patient can lead to adverse events, such as rejection of the transplanted graft or pathological immune responses to normal tissues in the patient.

Immunosenescence. The functionality of the immune system progressively declines with age, contributing to increased incidence of infections, inadequate vaccine responses and decreased immunosurveillance of malignant cells observed in the elderly population. It is estimated that only ~30–40% of elderly people are capable of mounting sufficient immune responses to the influenza vaccine.

Ageing impairs the normal process of thymic and BM lymphopoiesis at multiple levels. With age, there is an accumulation of HSCs with reduced homing and engraftment capacity. In patients receiving allogeneic HCT, younger donor age has been associated with faster immune reconstitution. Although several intrinsic changes in HSCs and lymphoid progenitors have been identified (including myeloid skewing, defects in DNA repair, epigenetic alterations and loss of cell polarity), substantial changes in the BM stromal microenvironment also contribute to defective lymphopoiesis. Transplantation of old HSCs into a young microenvironment is sufficient to partially reverse myeloid skewing.

As T cell development depends on the constant output of T cell progenitors from the BM, defective lymphopoiesis, along with impaired developmental potential of intrathymic progenitors, results in a significant reduction in the number of intrathymic lymphoid progenitors contributing to the reduced T cell output observed in older individuals.

The progressive decline of thymus function during ageing represents one of the most important causes of immune degeneration in the elderly population. However, the precise kinetics of this chronic physiological process is still under debate. Compared with the mouse thymus, which undergoes a progressive reduction in its volume with age, the human thymus remains almost unchanged in size under normal circumstances and, instead, it is characterized by profound perturbation of the thymic stromal microenvironment, including loss of epithelial cells, increased volume of the perivascular space and progressive replacement of healthy tissue with adipose tissue.

The thymic stroma is one of the main targets of the effects of ageing, as demonstrated by HCT and parabiosis experiments in mice with different age-mismatched donors. For example, intrathymic injection of early thymic progenitors derived from young mice into old mice is not sufficient to restore normal thymic lymphopoiesis. At a molecular level, several studies have revealed extensive transcriptional changes in mouse thymic stromal cells as early as 3 months of age, particularly in genes associated with cell cycling and inflammatory responses. Although ageing significantly erodes its functionality, the thymus maintains a proportion of functional cortical and medullary regions and active thymopoiesis. Indeed, T cell output, as measured by TREC level in the peripheral blood, is maintained in older individuals, albeit substantially reduced.

The decline in naive T cell production results in a shift towards an oligoclonal pool of memory T cells and an almost linear decrease of T cell diversity with age. These effects are particularly pronounced after the age of 60 years. Some long-lived individuals (average age of 82 years) display a significantly higher percentage of naive CD4+ T cells, decreased abundance of expanded clones and increased TCR diversity compared with a younger cohort, suggesting that these key immune parameters may represent hallmarks of longevity. Mathematical modelling studies demonstrate a significant inverse correlation between thymic export and the incidence of both infectious diseases and cancer. During the coronavirus disease 2019 (COVID-19) pandemic, being older than 65 years was identified as a risk factor for morbidity and death from COVID-19.
Fig. 2 Simplified overview of T cell generation with regenerative strategies after immune injury. T cell development begins when T cell progenitors, originating from common lymphoid progenitors (CLPs) in the bone marrow, migrate into the thymus and progress through a series of well-characterized developmental steps. Thymocytes go through the double-negative (DN; CD4–CD8–) and double-positive (DP; CD4+CD8+) stages to form single-positive (CD4+ or CD8+) T cells. During this process, approximately 95% of developing thymocytes produced daily are deleted through β-selection, positive selection and negative selection, resulting in the formation of self-restricted and self-tolerant naive CD4+ and CD8+ single-positive cells that can exit the thymus and migrate to peripheral lymphoid organs. Approaches to enhance T cell recovery act at multiple levels. Factors and approaches such as interleukin-7 (IL-7), IL-12, IL-15, IL-21, FMS-like tyrosine kinase 3 ligand (FLT3LG), growth hormone (GH), insulin-like growth factor 1 (IGF1), sex steroid ablation (SSA), thymosin-α1, stem cell factor (SCF), administration of precursor T cells (pre-T cells) and delivery of ex vivo-generated thymic epithelial cells (exTECs) primarily promote recovery of the haematopoietic compartment. By contrast, keratinocyte growth factor (KGF), IL-22, receptor activator of nuclear factor-κB ligand (RANKL), IGF1, lymphotoxin-α (LTα) and bone morphogenetic protein 4 (BMP4) produced by ex vivo-generated endothelial cells (exECs) enhance reconstitution of the thymic stromal compartment. Question marks denote approaches where the effects on specific targets are not fully understood. ETP, early thymic progenitor; CMP, common myeloid progenitor; cTEC, cortical thymic epithelial cell; DC, dendritic cell; ILC, innate lymphoid cell; HSC, haematopoietic stem cell; mTEC, medullary thymic epithelial cell; MPP, multipotent progenitor; MSC, mesenchymal stromal cell; mTEC, medullary thymic epithelial cell; RTE, recent thymic emigrant.

Strategies to enhance immune recovery

Over the past few years, several approaches have been proposed to enhance immune function through recovery of the T cell pool (Fig. 2; Table 1). These strategies include the stimulation of T cell development and expansion using cytokines, such as IL-7, IL-12 and IL-21; the administration of cytokines and growth factors, such as stem cell factor (SCF; also known as KITLG), keratinocyte growth factor (KGF; also known as FGF7), IL-22 and FMS-like tyrosine kinase 3 ligand (FLT3LG); the modulation of hormone levels by suppression of sex steroids or by administration of thymosin-α1, growth hormone (GH; also known as somatotropin), insulin-like growth factor 1 (IGF1) and ghrelin; the adoptive transfer of lymphoid progenitors such as precursor T cells and ex vivo expanded thymus-derived endothelial cells; and the use of artificial BM or thymus-like grafts.

Here, we focus on immune-boosting strategies that have been translated into clinical studies and provide a brief update on novel approaches that have shown regenerative potential in preclinical models. We put particular emphasis on approaches that can promote de novo T cell formation through the regeneration of thymic function, which is the primary mechanism to generate a pool of naive T cells with a diverse TCR repertoire. We also provide a brief summary of the different methods used to estimate thymic function and the dynamics of T cell reconstitution in Box 2.

Interleukin-7

IL-7 is classified as a type 1 short-chain cytokine crucial for the development of innate and adaptive immune cells. It is secreted mainly by non-haematopoietic cells, including epithelial cells and fibroblasts in the thymus, BM stromal cells, lymphatic endothelial cells, fibroblastic reticular cells and enterocytes. IL-7 is particularly important for the differentiation of T and B cells from common lymphoid progenitors and for the maintenance and survival of mature T cells. IL-7 receptor (IL-7R) is a heterodimer of two chains: IL-7Ra (also known as CD127) and cytokine receptor common subunit-γ (also known as CD132 or IL-2RG). The γ-chain is expressed by all haematopoietic cell types, whereas IL-7Ra is expressed mainly by developing B and T cells, naive and memory T cells, NKT cells, ILC2s and ILC3s.

The crucial role of IL-7 in lymphopoiesis is demonstrated by the development of severe combined immunodeficiency disease in patients carrying mutations affecting the α-chain or the γ-chain of IL-7R. While studies in IL-7−/− mice showed that IL-7 is a non-redundant cytokine for both T and B cell lymphopoiesis, B cell development in humans does not appear to require IL-7, as B cells are maintained in patients with severe combined immunodeficiency disease with mutations in the gene encoding IL-7Ra.

The important role of IL-7 in T cell biology is also supported by the inverse correlation between circulating IL-7 levels and peripheral T cell observed in
Recent thymic emigrants (RTEs). Semimature T cells that have left the thymus but have yet to undergo the final stages of maturation. Typically a window of around 2 weeks after thymic maturation is used to differentiate between RTEs and fully mature T cells.

patients with lymphopenia. The degree of available IL-7 controls the size of the peripheral T cell pool and plays an important role in regulating overall T cell homeostasis.

The effects of exogenous administration of IL-7 on immune reconstitution have been widely investigated. Several preclinical mouse models have demonstrated the beneficial effects of exogenous IL-7 in promoting immune reconstitution through thymus-dependent and thymus-independent mechanisms. In the setting of HCT, exogenous IL-7 accelerates the reconstitution of donor-derived thymocytes and the peripheral T cell pool, leading to enhanced T cell recovery after both syngeneic and allogeneic HCT. A phase I/IIa dose-escalation study (NCT00477321) of repeated administration of a glycosylated recombinant human IL-7 (rhIL-7; CYT 107) in HIV-1-infected patients demonstrated that rhIL-7 treatment was safe, well tolerated and transiently promoted the expansion of naive and memory CD4+ and CD8+ T cells, and decreased the proportion of exhausted PD1+ T cells. Importantly, rhIL-7 therapy also increased the numbers of CD4+ recent thymic emigrants (RTEs), the signal joint to β TREC ratio and TCR repertoire diversity in some participants, effects that imply enhanced thymic activity. Subsequently, two other clinical trials (NCT01190111 and NCT01241643) demonstrated that repeated doses of rhIL-7 were well tolerated and resulted in sustained CD4+ T cell numbers in the majority of HIV-infected participants. Similarly, in a phase I/IIa dose-escalation trial (NCT00839436) in patients with idiopathic CD4+ lymphopenia at risk of disease progression, rhIL-7 led to an increase in the number of circulating CD4+ and CD8+ T cells and tissue-resident CD3+ T cells in the gut mucosa and BM. Importantly, enhanced thymopoiesis, measured by TREC, was observed only in the youngest patients of the cohort (aged 23 and 34 years).

In a phase I clinical trial (NCT00684008) that evaluated the immune-regenerative properties of rhIL-7 in patients receiving T cell-depleted allogeneic HCT,
rhIL-7 induced a rapid increase in peripheral CD4+ and CD8+ T cell numbers. While the estimated half-life of rhIL-7 in this study was 9–35 hours, the biological effects on T cell numbers persisted for several weeks after the circulating levels of IL-7 returned to the baseline. In addition, although rhIL-7 administration resulted in increased numbers of RTEs only in some young patients, most participants had enhanced TCR repertoire diversity that persisted several weeks after the end of rhIL-7 therapy. The limited effects on thymic output in this study, as represented by minimal changes not only in the numbers of RTEs but also in the levels of TREC, could be explained by the age and lymphopenic condition of the patients at the time points analysed. It is also possible that extended duration of rhIL-7 administration is necessary to have a greater effect on thymic function. However, compared with mice, in which IL-7 has both thymic-dependent and thymic-independent regenerative effects, it is still unclear what the direct impact of exogenously administered IL-7 is on the thymus in humans and non-human primates. On the basis of clinical and preclinical observations, it appears that most of the effects on TCR diversity following rhIL-7 treatment are primarily driven by extrathymic sources, including the expansion of less frequent but highly diverse RTEs that are primarily driven by extrathymic sources, including the expansion of less frequent but highly diverse RTEs and naive T cells, which preferentially respond to IL-7 stimulation, as well as their recirculation from lymphoid organs.

Lymphopenia, particularly with regard to CD4+ and CD8+ T cell subsets, in patients with COVID-19 on admission to hospital is emerging as one of the key clinical signs of COVID-19 and is closely associated with disease progression. Enhancing T cell immunity could be a worthwhile strategy for treating these patients. Thus, a clinical trial has recently begun to investigate the possibility that IL-7 can restore T cell immunity in patients with COVID-19.

Keratinocyte growth factor. KGF is a potent growth factor for TECs and is expressed under physiological conditions in the thymus primarily by mesenchymal cells. KGF binds to its receptor, fibroblast growth factor 2 variant IIb (FGFR2IIb), on TECs and induces TEC proliferation through activation of the PI3K–AKT–nuclear factor-κB and p53 pathways.

Studies using knockout animals found that although KGF is redundant for thymopoiesis in steady-state conditions, it is crucial for thymic regeneration and peripheral T cell reconstitution after injury such as that caused by total body irradiation and syngeneic or allogeneic HCT. The impact of exogenous administration of KGF on TEC function and thymic regeneration has been extensively evaluated in several mouse studies. Administration of recombinant KGF transiently accelerated thymic recovery after immune insults such as irradiation, cyclophosphamide therapy and dexamethasone therapy, and enhanced recovery of thymic and peripheral T cell numbers after HCT. KGF reversed thymic involution and restored thymopoiesis in aged mice for up to 2 months after treatment. A study performed in rhesus macaques showed that KGF-treated animals displayed accelerated haematological recovery, improved thymopoiesis and enhanced naive T cell recovery following HCT. Although the effects on thymic function were modest, as measured by minimal changes in thymus mass, KGF-treated animals showed increased numbers of TREC-positive T cells up to 3 months following KGF treatment.

Human recombinant KGF (palifermin; trade name Kepivance, marketed by Biovitrum) is approved by the US Food and Drug Administration for the prevention of mucositis in patients receiving high-dose chemotherapy. Several trials (NCT01233921, NCT03042585, NCT02356159 and NCT00593554) are exploring its effects on T cell reconstitution, but no results have been reported yet. As demonstrated in previous preclinical work, the benefits of palifermin on immune reconstitution in transplant recipients may derive from its synergistic effects with other immune-boosting therapies rather than as a sole therapeutic agent. However, a recent study of the use of KGF to promote immune reconstitution in patients with relapsing–remitting multiple sclerosis treated with the anti-CD52 lymphocyte-depleting agent alemtuzumab showed reduced thymic output in KGF-treated patients as measured by evaluation of naive CD4+ T cells, RTEs and TREC (NCT01712945). Given that human cTECs express CD52, one possible explanation for these clinical data is that palifermin exacerbates the negative effects of alemtuzumab on thymic function, perhaps through upregulation of CD52 expression on cTECs, rendering these cells more susceptible to antibody-mediated elimination. Thus, the combination of KGF with other drugs should be assessed cautiously as synergistic or deleterious effects on immune regeneration may occur depending on timing and mechanisms.

Thymic hormones. Thymosins are a group of low molecular weight peptides originally isolated from bovine thymus. Thymosin-α1, derived from prothymosin-α, is produced by TECs and can increase lymphocyte maturation, boost T cell function and promote recovery following immune insults, although its mechanism of action is not completely understood. The receptor for thymosin-α1 is expressed by developing thymocytes, in which it regulates their survival and proliferation. Thymosin-α1 can antagonize dexamethasone-induced apoptosis of DP thymocytes in vitro, as well as the hydrocortisone-induced decrease in thymus and spleen mass. Thymosin-α1 can also enhance the production of IL-7 by TECs. Given promising preclinical results, multiple clinical trials have been initiated to evaluate the immunomodulatory effects of thymosin-α1 in the treatment of patients experiencing viral infections, immunodeficiency or haematological malignancies. Safety and efficacy of thymosin-α1 administration were evaluated in recipients of allogeneic HCT in a phase I/II clinical study (NCT00580450). Treatment with thymosin-α1 increased T cell numbers and resulted in earlier appearance of pathogen-specific T cell responses against pathogens such as cytomegalovirus and Aspergillus species. Importantly, thymosin-α1 did not exacerbate acute or chronic GVHD and was associated with significant improvement in phagocytosis and dendritic cell function.
Recently, thymosin-α1 was given to patients with COVID-19 showing severe lymphopenia to enhance immunity. Thymosin-α1 treatment increased T cell numbers and recovery of thymic function, measured by TREC analysis\(^{165}\). Importantly, thymosin-α1 administration was also associated with increased survival of patients with severe COVID-19 (REF.\(^{165}\)).

Sex steroid ablation. In addition to their fundamental role in regulating sex dimorphism, sex hormones can impact haematopoiesis at multiple levels. One of the first observations regarding a relationship between T cell development and sex hormones dates back to 1898, when it was reported that the thymus enlarged after castration of male rabbits\(^{166}\). Several studies confirmed the enlargement of thymic tissue after gonadectomy in both sexes in different experimental animal models. Conversely, androgens and oestrogens induce atrophy of the thymus\(^{167,168}\).

The increase in the levels of sex steroids, and in particular of androgens, during puberty has been directly linked to the age-associated deterioration of immune function and to the process of thymic involution. Although the connection between the increase in the levels of sex steroids after puberty and the initiation of thymic involution is still debated, the regenerative impact of the removal of sex steroids on both thymic and BM lymphopoiesis has been extensively characterized. Indeed, through the use of clinically relevant mouse models of immune reconstitution after haematopoietic injuries, such as chemotherapy and radiotherapy, it has been demonstrated that sex steroid ablation enhances HSC self-renewal and lymphoid differentiation capacity and increases the number of common lymphoid progenitors in the BM\(^{169–171}\). Sex steroid ablation also has a direct effect on the BM microenvironment, restoring expression of key haematopoietic factors that are down-regulated with age, such as FOXO1 (REF.\(^{169}\)). Considerable rejuvenation effects in the thymus have been extensively characterized, demonstrating that sex steroid ablation reverses thymic atrophy, accelerates the recovery of all thymocyte subsets and elicits potent regenerative signals to the thymic stromal microenvironment\(^{172–174}\). At a molecular level, sex steroid ablation promotes the upregulation of the key thymopoietic factors CC-chemokine ligand 25 (CCL25)\(^{175}\) and DLL4 (REF.\(^{167}\)) in mTECs and cTECs, respectively.

Several drugs have been developed to transiently and reversibly block sex steroids for the treatment of precocious puberty, endometriosis, hormone-sensitive prostate cancer and breast cancer. Some of these sex steroid blockers have been tested clinically to boost immune reconstitution after HCT. A non-randomized pilot study demonstrated that administration of the luteinizing hormone-releasing hormone (LHRH) agonist goserelin (Zoladex) before HCT significantly increased neutrophil engraftment, as well as total lymphocyte numbers, particularly those of naive CD4\(^+\) T cells, and levels of TREC and improved recovery of TCR repertoire diversity\(^{176}\). Importantly, an increase in disease-free survival was observed in autologous HCT recipients treated with goserelin. Two trials (NCT01746849 and NCT01338987) are ongoing to evaluate the effects of the LHRH agonist leuprolide (Leuporelin) and the LHRH antagonist degarelix (Firmagon) to promote immune reconstitution following allogeneic HCT. Notably, the latest androgen receptor inhibitors and LHRH antagonists have the advantage of immediately blocking sex steroids without an initial surge of sex steroids as seen with LHRH agonists\(^{167}\). These novel approaches may provide better therapeutic tools to suppress sex steroids and mediate immune reconstitution.

The regenerative effects of sex steroid ablation on T cell development might continue only as long as the levels of sex steroids are suppressed. However, the duration of such effect, particularly in the setting of surgical castration, remains a subject of debate in the field. After the initial regrowth following castration, the thymus of aged animals has been reported to decline and return approximately to its pretherapy condition 1 month after sex steroid ablation therapy\(^{177}\). While these results support a model in which the regenerative effects induced after surgical sex steroid ablation are transitory and dynamic, additional studies should be done to better characterize the nature of these ‘transient’ effects and the precise kinetics of thymic regeneration, in particular, at later time points. For example, it would be interesting to evaluate whether removal of the gonads, in the long term, can induce additional hormonal changes that negatively impact the process of lymphopoiesis.

Growth hormone. GH is a small peptide hormone secreted primarily in the bloodstream by somatotropes in the anterior pituitary gland\(^{178}\). Apart from its anabolic effects and impact on height, GH is also implicated in the regulation of haematopoietic function. Expression of GH receptor (GHR), by which GH mediates most of its effects, has been found on T cells, B cells, NK cells, monocytes, thymocytes and HSCs in humans and in other species\(^{179}\). While the impact of its signalling seems to be dispensable for HSC function, as suggested by the lack of phenotypic defects in HSCs of GHR-deficient mice, GH has important effects on immune function in mice and humans, either directly or through its principal mediator, IGF1. In vivo administration of GH can reverse thymic involution\(^{180–182}\). Transgenic mice that overexpress GH have an enlarged thymus. Similarly, the administration of a recombinant form of GH or IGF1 promotes thymic regeneration, increases TCR diversity and enhances recovery of haematopoietic compartments in immunocompromised and aged animals\(^{183}\). GH administration to immunocompromised patients has been studied in several clinical trials. Daily administration of human recombinant GH (somatropin) enhances thymic function and peripheral immune function in HIV-infected patients (NCT00071240)\(^{180,181}\). The effects on thymic output appear to be transient, as discontinuation of GH treatment is associated with the recurrence of thymic atrophy\(^{181}\). Results from the recently completed studies (NCT00287677, NCT01119769 and NCT00050921) are still pending. The use of GH to reverse chronological ageing of the immune system was assessed in a recent pre-phase-1 study performed in volunteers aged between 51 and 65 years. Magnetic
lymphotoxin-α receptor-α factor RoR expression of the transcription and are characterized by lymphoid tissue. They are nasopharynx-associated Peyer’s patches and developing lymph nodes, Cells that are present in (LTi) cells Lymphoid tissue inducer Reviews | may 2021 | volume 21 and t, interleukin-7 β2.

www.nature.com/nri

Emerging approaches for T cell regeneration

Over the past decade, intensive work has been done to further optimize the efficacy of already identified approaches and to identify alternative regenerative mechanisms [FIG. 2]. In addition to IL-7, other cytokines have demonstrated efficacy in preclinical mouse models to restore thymic function and/or expand immune cells in the periphery following immune insults. Administration of IL-12 not only induces thymocyte proliferation through increased IL-7 and IL-2 signalling but also enhances engraftment and haematopoietic reconstitution after transplantation195,196. IL-15 can also boost immunity primarily by promoting NK cell, NKT cell and CD8+ T cell proliferation and function. Overall, these effects enhance reconstitution of these cell subsets and graft-versus-tumour responses in mouse models of allogeneic HCT187–189.

IL-21 can enhance thymic function in young and aged mice. These effects are primarily mediated by the impact of IL-21 on DP thymocytes, which express high levels of IL-21 receptor after glucocorticoid-induced thymic atrophy, and by activation of the IL-21 downstream target BCL-6 [REF.190]. Administration of recombinant IL-21 improved thymic regeneration and reconstitution of the peripheral naive T cell compartment in different models of immune damage, including glucocorticoid-induced thymic atrophy, ageing and allogeneic HCT190–192.

IL-22 can also mediate thymic regeneration184,193. Following thymic damage, the loss of DP thymocytes can trigger the production of IL-22 by thymic ILCs in an IL-23-dependent manner [FIG. 2]. IL-22 then acts on TECs to promote their survival and proliferation through activation of STAT3 and STAT5 and expression of the downstream antiapoptotic molecule MCL1 (REFS184,185). Administration of recombinant IL-22 to sublethally irradiated mice or allogeneic HCT recipients can promote the recovery of thymic function and the development of new thymic-derived peripheral T cells185,193.

ILCs play a fundamental role in thymic reconstitution not only via IL-22 production but also through production of receptor activator of nuclear factor-κB ligand (RANKL), a potent factor known for its fundamental role in TEC maintenance and maturation194–196. Recent studies have characterized the role of RANKL in the regeneration of the thymic microenvironment and T cell recovery in mouse models of allogeneic HCT. RANKL is expressed early after thymic damage by CD4+ thymocytes and, to a great extent, by lymphoid tissue inducer (LTi) cells184,197. RANKL acts on its cognate receptor, RANK, expressed on LTi cells, and induces upregulation of lymphotoxin-α (LTα). Following thymic damage, LTα can bind to LTβ receptor on thymic epithelial progenitor cells and TECs and promote their regeneration. Exogenous administration of recombinant RANKL boosts regeneration of thymic epithelial progenitor cells and TECs and improves T cell progenitor homing and de novo thymopoiesis. Overall, these effects lead to enhanced peripheral T cell reconstitution189. LTα can activate LTβ receptor on intestinal dendritic cells to induce IL-23 production, which in turn acts on intestinal ILCs to promote IL-22 production184.

As cells producing RANKL, IL-22, LTα or LTβ are responsive to IL-7R signalling, which can promote their expansion and function199,200, it is possible that these molecules contribute to the regenerative effects mediated by IL-7 in the thymus. Although IL-7 has not been shown to directly regulate IL-22, it can regulate LTαβ2, expression by LTi cells201, thus providing a mechanism by which IL-7R signalling integrates regenerative pathways. In addition, IL-7 can directly induce RANKL expression by T cells and aid in thymic regeneration202.

In addition to its well-described role during thymus organogenesis203,204, BMP4 can promote thymic regeneration after thymic damage. Indeed, BMP4 produced by thymic endothelial cells drives thymic regeneration by binding to its receptor expressed on TECs and stimulating the upregulation of FOXN1 and its target genes205,206. Importantly, adoptive transfer of ex vivo expanded thymic endothelial cells improves thymic reconstitution after a sublethal dose of total body irradiation through the delivery of BMP4.

Concluding remarks

At present, there are no approved therapies to enhance T cell function in patients with lymphopenia. The development of such approaches would not only benefit patients whose immune system has been decimated by multiple cycles of chemotherapy and radiotherapy or by viral infections but could also improve T cell responses in other clinical settings.

Cancer immunotherapy with immune checkpoint inhibitors is emerging as one of the most promising new treatments for a variety of solid and liquid malignancies. To be effective, these treatments rely on the presence of an adequate pool of T cells capable of recognizing specific tumour antigens208. Previous studies demonstrated that the limited response rate to checkpoint inhibitor therapy may be linked to a restricted TCR repertoire observed in the periphery of patients with cancer before therapy. Non-synonymous mutations and neoantigens are associated with clinical efficacy of immune checkpoint blockade207–209. Thus, treatments capable of improving immune functions and enhancing TCR repertoire diversity may have the potential to significantly extend the clinical benefit of immune checkpoint blockade.

Therapeutic approaches that can rejuvenate the peripheral T cell pool will also be relevant for the treatment of elderly patients not only to enhance responses to pathogens but also to increase the efficacy of vaccines. The progressive expansion of peripheral TCR clonality

Lymphoid tissue inducer (LTi) cells

Cells that are present in developing lymph nodes, Peyer’s patches and nasopharynx-associated lymphoid tissue. They are required for the development of these lymphoid organs and are characterized by expression of the transcription factor RORγt, interleukin-7 receptor-α and lymphotoxin-α β2.
However, important aspects should be taken in consideration when one is designing approaches to restore immunocompetence in aged individuals. Recent work performed in old mice and non-human primates demonstrated that additional barriers limit the impact of immune regeneration in the periphery even when thymic regeneration is achieved[40]. Although the thymuses of old mice treated with sex steroid ablation or KGF can be rejuvenated, this did not translate into increased frequencies of naive CD8+ T cells and naive CD4+ T cells in peripheral blood. Age-related intrinsic defects of RTEs[21,22] and a defective thymic stromal microenvironment[13,14,177], together with reduced responses to homeostatic cytokines[21], could explain the defective maintenance and function of naive T cells in old recipients.

One promising, recently identified strategy to expedite immune reconstitution following HCT is the use of non-genotoxic conditioning approaches. The use of defunctioning drugs, such as anti-CD117 and anti-CD45, which can recognize and eliminate HSCs and other haematopoietic cells in a targeted manner, allows remarkably efficient HSC engraftment while sparing non-haematopoietic cells, with minimal off-target toxicity[21,23]. This novel approach has the potential to reduce HCT-related toxicity, promote faster immune recovery and significantly improve patient clinical outcome.

Published online 23 October 2020

1. Nikolich-Zugich, J., Silfka, M. K. & Messaoudi, I. The many important facets of T cell repertoire diversity. Nat. Rev. Immunol. 6, 123–132 (2004).
2. This review provides an overview of the diversity of TCRAβ T cells in relation to the maintenance of an optimal immune response.
3. Cézard, S. et al. Loss of naive T cells and repertoire constriction predict poor response to vaccination in old primates. J. Immunol. 186, 6759–6765 (2010).
4. Yager, E. J. et al. Age-associated decline in T cell repertoire diversity leads to holes in the repertoire and impaired immunity to influenza virus. J. Exp. Med. 205, 711–725 (2008).
5. Yee, P. Y. et al. Quantitative characterization of T cell repertoire in allogeneic hematopoietic stem cell transplant recipients. Bone Marrow Transpl. 50, 1060–1070 (2015).
6. Van Heijst, J. W. J. et al. Quantitative assessment of T cell repertoire recovery after hematopoietic stem cell transplantation. Nat. Med. 19, 572–577 (2013). This study analyses changes in the TCRAβ chain diversity following HSCT and their association with infections, GVHD and age.
7. Takahama, Y. Journey through the thymus: stromal guides for T cell development and selection. Nat. Rev. Immunol. 6, 127–135 (2006).
8. Toubert, A., Glauser, S., Douay, C. & Cavel, E. Thymus and immune reconstitution after allogeneic hematopoietic stem cell transplantation in humans: never say never again. Tissue Antigens 78, 83–89 (2012).
9. This is a detailed review of the role of the thymus in allogeneic HSCT recipients and the use of TRECε to quantify its function.
10. Admiraal, R. et al. Leukemia-free survival in myeloid leukemia, but not in lymphoid leukemia, is predicted by early CD4+ recovery followed by unrelated cord blood transplantation: effect of patient age and donor leucocyte infusions. Blood 93, 467–480 (1999).
11. Goldberg, J. D. et al. Early recovery of T-cell function predicts improved survival after T-cell depleted allogeneic transplant. Leuk. Lymphoma 58, 1859–1871 (2017).
12. Fedele, R. et al. The impact of early CD4+ lymphocyte recovery on the outcome of patients who undergo allogeneic bone marrow or peripheral blood stem cell transplantation. Blood Transfus. 10, 174–180 (2012).
13. Storek, J., Gooley, T., Wittinghofer, R. P., Sullivan, K. M. & Storb, R. Infectious morbidity in long-term survivors of allogeneic marrow transplantation is associated with low CD4 T cell counts. Am. J. Hematol. 54, 131–138 (1997).
14. Pavlies, R. et al. Identification of patients who may benefit from prophylactic immunotherapy after bone marrow transplantation for acute myeloid leukemia on the basis of lymphocyte recovery early after transplantation. Blood 91, 5481–5486 (1998).
15. Le Blanc, K. Lymphocyte recovery is a major determinant of outcome after matched unrelated myeloablative transplantation for myelogenous malignancies. Biol. Blood Marrow Transplant. 15, 1108–1115 (2009).
16. Maury, S. et al. Prolonged immune deficiency following allogeneic stem cell transplantation: risk factors and complications in adult patients. Br. J. Haematol. 115, 630–641 (2001).
17. Hopkins, A. C. et al. T cell receptor repertoire features associated with survival in immunotherapy-treated pancreatic ductal adenocarcinoma. JCI Insight 3, e122092 (2018).
18. Snyder, A. et al. Contribution of systemic and somatic factors to clinical response and resistance to PD-1 blockade in uveal melanoma: an exploratory multi-omic analysis. PLoS Med. 14, e1002309 (2017).
19. Arakawa, A. et al. Clonality of CD4+ blood T cells predicts long-term survival in patients with PD-1+ checkpoint inhibition in advanced melanoma. Front. Immunol. 10, 1336 (2019).
20. Postov, M. A. et al. Peripheral T cell receptor diversity is associated with clinical outcomes following gilimpubam treatment in metastatic melanoma. J. Immunother. Cancer 3, 25 (2015).
21. Nixon, A. B. et al. Peripheral immune-based biomarkers in cancer immunotherapy: can we realize their predictive potential? J. Immunother. Cancer 7, 225 (2019).
22. Baldrige, M. T., King, K. Y. & Goodell, M. A. Inflammatory signals regulate hematopoietic stem cells. Trends Immunol. 33, 57–65 (2012).
23. Ueda, Y., Kondo, M. & Kelsoe, G. Inflammation and the reciprocal production of granulocytes and lymphocytes. Int. J. Hematol. 58, 401–407 (1993).
24. Kong, Y. et al. Sepsis-induced thymic atrophy is associated with IL-6 and is associated with thymic atrophy. Scand. J. Immunol. 87, 4–14 (2018).
25. Liepinsh, D. J. et al. Accelerated thymic atrophy as a cause of immunologic defects in mice infected with Trypanosoma cruzi. Eur. J. Immunol. 29, 287–296 (1999).
26. Berki, T., Palinkas, L., Boldizsar, F. & Nemeth, P. A. Studies of the trinity of COVID-19: immunity, inflammation and isoenzymes of COVID-19 in health and in human immunodeficiency virus infection. J. Immunother. Cancer 8, 2221–2228 (1994).
Xiao, S. et al. Sublethal total body irradiation causes... of exposure to ionizing radiation. Blood 115, 2011–2017 (2010).

Mersen, A. et al. Mouse T-cell infiltrating acute GVHD is associated with delayed B-cell recovery and function after HSCT. Blood 119, 965–972 (2014).

Krenning, W. S. Rossii, & Hollander, G. A. Apoptosis of thymocytes during acute graft-versus-host disease is independent of glucocorticoids. Transplantation 69, 1195–1203 (2000).

Hau-Hoël, M. M. et al. Donor T-cell alloreactivity against host thymic epithelium limits T-cell development after bone marrow transplantation. Blood 109, 4080–4088 (2007).

This study investigates the molecular and cellular mechanisms underlying the impact of GVHD on TEC function.

Dudakov, J. A. et al. Loss of thymic innate lymphoid cells leads to impaired thymopoiesis in experimental graft-versus-host disease. Blood 116, 935–942 (2010).

Wu, T. et al. Thymic damage, impaired negative selection, and defective graft-versus-host disease caused by donor CD4+ and CD8+ T cells. J. Immunol. 191, 488–493 (2013).

Dertsching, S., Dresel, J., Vollmer, M., Hollander, G. A. & Krenger, W. Impaired thymic expression of tissue-restricted antigens licenses the de novo generation of thymocyte CD4+ T cells in acute GVHD. Blood 125, 2720–2723 (2015).

Przylewski, G. K., Kreuzer, K. A., Siegent, W. & Schmidt, C. A. No recovery of T-cell receptor excision circles (TRECs) after non-myeloablative allogeneic hematopoietic stem cell transplantation is correlated with the onset of GVHD. J. Appl. Genet. 59, 397–404 (2008).

Link-Rachner, C. S. et al. T-cell receptor-alpha repertoire of CD8+ T-cells following allogeneic stem cell transplantation using negative selection. Haematologica 104, 622–631 (2019).

Meyer, E. H. et al. A distinct evolution of the T-cell repertoire categorizes treatment refractory gastrointestinal acute graft-versus-host disease. Blood 121, 4965–4972 (2013).

Clave, E. et al. Acute graft-versus-host disease transiently inhibits thymocyte differentiation in young patients after allogeneic hematopoietic stem cell transplantation. Blood 115, 6477–6484 (2010).

Blazar, B. R., Murphy, C. P. & Abedi, M. Advances in graft-versus-host disease biology and therapy. Nat. Rev. Immunol. 12, 645–658 (2012).

Nikolic-Dizdarevic, I. & Blazar, B. R. The thymus revisited: emerging concepts in aging of the immune system. Nat. Immunol. 19, 10–19 (2018).

Weinberger, P. A., Stebbins, C. A., Schwanninger, A., Weiskopf, D. & Grubec-Loebenstein, B. Immunology of immune responses to vaccines in elderly persons. Clin. Infect. Dis. 46, 1078–1086 (2008).

McElhaney, J. E. & Elloir, R. B. Immunosenescence: what does it mean to health outcomes in older adults? Curr. Opin. Immunol. 21, 418–424 (2009).

Thompson, W. W. et al. Mortality associated with chemotherapy. Transplant. Proc. 36, 584–596 (2004).

This study shows that the lymphoid-biased HSCs do not decline in number with age.

Rossi, D. J. et al. Cell intrinsic alternations underlie hematopoietic stem cell aging. Proc. Natl Acad. Sci. USA 102, 9194–9199 (2005).

Nijkind, A. et al. DNA repair is limiting for hematopoietic stem cells during aging. Nature 447, 686–690 (2007).

Rossi, D. J. et al. Deficiencies in DNA damage repair limit the function of hematopoietic stem cells with age. Nature 447, 725–729 (2007).

Fraga, M. F. Genetic and epigenetic regulation of aging. Curr. Opin. Immunol. 21, 446–453 (2009).

Florian, M. C. et al. Aging alters the epigenetic asymmetry of HSC division. PLoS Biol. 16, e2003589 (2018).

Pinho, S. & Frenette, P. S. Hematopoietic stem cell activity and interactions with the niche. Nat. Rev. Mol. Cell Biol. 20, 503–517 (2019).

Donini, A., Re, F., Ortale, F. & Provinciali, M. Intrinsic and microenvironmental defects are involved in the age-related changes of Lin-c-kit+ hematopoietic progenitor cells. Rejuvenation Res. 10, 649–672 (2007).

Ergen, A. V., Boles, N. C. & Goodell, M. A. Rates of Csf1r+ inflammatory monocyte-like cells is linked to aging because of causes myeloid skewing. Blood 119, 2500–2509 (2012).

Mittal, M., Montecino-Rodriguez, E. & Dohrmann, K. Reduction in the developmental potential of intrathymic T cell progenitors with age. J. Immunol. 173, 245–250 (2004).

Hakim, F. T. & Gress, R. E. Immunosenescence: defects in adaptive immunity in the elderly. Tissue Antigens 70, 179–189 (2007).

Fiorio, K. C., Liu, J., Sempowski, G. D., Haynes, B. F. & Hale, L. Analysis of the human thymus perivascular space during aging. J. Clin. Invest. 104, 1031–1039 (1999).

Mackall, C. L., Punt, J. A., Morgan, P., Farr, A. C. G. & Gress, R. E. Thymic function in young/old chimeras: substantial T cell regenerative capacity despite irreversible age-associated thymic involution. Eur. J. Immunol. 28, 1886–1893 (1998).

Kim, J. M., Miller, C. M., Shadrach, J. L., Wagers, A. J. & Sordillo, T. Young, proliferative thymic epithelial cells engrave and function in aging thymuses. J. Immunol. 194, 4784–4795 (2015).

Zhu, X. et al. Lymphohematopoietic progenitors do not have a synchronized defect with age-related thymic involution. Aging Cell 6, 665–672 (2007).

Wu, H., Qin, X., Dai, H. & Zhang, Y. Time-course transcriptome analysis of mediulary thymic epithelial cells in the early phase of thymic involution. Mol. Immunol. 100, 87–97 (2018).

Ko, S. et al. Global transcriptional profiling reveals distinct functions of thymic stromal subsets and age-related changes during thymic involution. Cell Rep. 9, 402–415 (2014).

This work analyses age-associated transcriptional changes of thymic stromal cells and provides an intuitive online tool to visualize the data.

Ferrando-Martinez, S. et al. WNT signaling suppression in the senescent thymus human. J. Gerontol. A Biol. Sci. Med. Sci. 75, 787–793 (2010).

Lynch, H. E. et al. Thymic involution and immune reconstitution. Trends Immunol. 30, 366–373 (2009).

Jamieson, B. D. et al. Generation of functional thymocytes in the human adult. Immunity 10, 569–575 (1999).

Drabkin, M. J. et al. Age-stratified patterns of thymic involution on multidetector CT. Thorax. Imaging. 33, 409–416 (2018).

de Boer, J. et al. Maintenance of peripheral naive T cells is sustained by thymus output in mice but not humans. Immunity 36, 288–297 (2012).

Modi, H. et al. Cell generation dynamics underlying naive Tcell homoeostasis in adult humans. PLoS Biol. 15, e2003853 (2017).

Murray, J. D. et al. Naive T cells are maintained by thymic output in early ages but by proliferation without phenotypic change after age twenty. Immunity 48, 473–485 (2003).
121. Nikolich-Zugich, J. & Rudd, B. D. Immune memory and aging: an infinite or finite resource? Curr. Opin. Immunol. 22, 535–540 (2010).
122. Britanova, O. V. et al. Age-related decrease in TCR repertoire measured with deep and normalized sequence profiling. J. Immunol. 192, 2689–2698 (2014).
123. Palmer, S., Albig, L., Blackburn, C. C. & Newman, T. J. Thymic involution and rising disease incidence with age. Proc. Natl Acad. Sci. USA 115, 1883–1888 (2018).
124. Nikolich-Zugich, J. et al. SARS-CoV-2 and COVID-19 in older adults: what we may expect regarding pathogenesis, immune responses, and outcomes. J. Immunol. 205, 500–514 (2020).
125. Small, T. N. et al. Immunoreconstitution following T cell-depleted bone marrow transplantation: effect of cell dose and posttransplant graft rejection prophylaxis. Biol. Blood Marrow Transpl. 3, 65–75 (1997).
126. Wib, E. J. et al. Insufficient recovery of thymopoiesis predicts for opportunistic infections in allogeneic hematopoietic stem cell transplant recipients. Haematologica 96, 1846–1854 (2011).
127. Kim, D. H. et al. Rapid helper T celI recovery above 200 × 10^6 at 3 months correlates to successful transplant outcomes after allogeneic stem cell transplantation. Bone Marrow Transplant. 37, 619–627 (2006).
128. Mackall, C. L., Fry, T. J. & Gress, R. E. Harnessing the biology of IL-7 for therapeutic application. Nat. Rev. Immunol. 6, 540–552 (2006).
129. Link, A. et al. Fibroblastic reticular cells in lymph nodes regulate the homeostasis of naive T cells. Nature 423, 265–269 (2003).
130. Onder, L. et al. IL-7-producing stromal cells are critical for lymph node remodeling. Blood 120, 4675–4683 (2012).
131. Laky, K. et al. Enteroptocyte expression of interleukin 7 initiates development of gammadelta T cells and Peyer’s patches. J. Exp. Med. 191, 1569–1580 (2000).
132. Puel, A., Ziegler, S. F., Buckley, R. H. & Leonard, W. J. IL-7 enhances peripheral T cell reconstitution following bone marrow transplantation. J. Immunol. 176, 7571–7576 (2006).
133. Khong, D. M. et al. Enhanced hematopoietic stem cell function mediates immunoprotection following sex steroid blockade. Stem Cell Rep. 4, 445–458 (2015).
134. Dudaok, J. A. et al. Sex steroid ablation enhances hematopoietic recovery following cytotoxic antineoplastic therapy in aged mice. J. Immunol. 185, 7084–7094 (2009).
135. Dudaok, J. A., Goldberg, G. L., Reiseger, J. J., Chidey, A. P. & Boyd, R. L. Withdrawal of sex steroids reverses age- and chemotherapy-related defects in bone marrow lymphopoiesis. J. Immunol. 182, 1122–1126 (2009).
136. Goldberg, G. L. et al. Luteinizing hormone-releasing hormone enhances T cell recovery following allogeneic bone marrow transplantation. J. Immunol. 182, 5846–5854 (2009).
137. Sutherland, J. S. et al. Activation of thymic regeneration in mice after anti-CD40 and anti-CD47 blockade. J. Immunol. 175, 2741–2753 (2005).
138. Windmill, K. F. & Lee, V. Effects of castration on the lymphocytes of the thymus, spleen and lymph nodes. Tissue Cell 30, 104–111 (1998).
139. Williams, K. M. et al. CCL25 increases thymopoiesis after androgen withdrawal. Blood 112, 5255–5263 (2008).
140. Sutherland, J. S. et al. Enhanced immune system regeneration in humans following allogeneic or autologous hematopoietic transplantation by temporary sex steroid blockade. Clin. Cancer Res. 14, 1138–1149 (2008).
141. This is the first observation showing that pharmacological ablation of sex steroids enhances immune recovery in HCT recipients.
142. Griffith, A. V., Faliath, M., Kroon, T. J. & Petrie, H. T. Persistent degenerative changes in thymic organ function revealed by an inducible model of organ regrowth. Aging Cell 11, 169–177 (2012).
143. Taing, L. D., Murphy, W. J. & Longo, N. L. Rejuvenation of the aging thymus: growth hormone-mediated and ghrelin-mediated signaling pathways. Curr. Opin. Pharmacol. 10, 408–414 (2010).
144. Hattori, N. Expression, regulation and biological functions of the interleukin-7 receptor in the preservation of thymic architecture, enhancement of T cell development and improvement of the T cell repertoire. J. Immunother. 30, 408–424 (2007).
145. Coles, A. J. et al. Keratinocyte growth factor impairs immune recovery in murine allogeneic umbilical cord blood cell transplant. Leuk. Lymphoma 52, 1555–1562 (2011).
146. Rossi, S. et al. Keratinocyte growth factor preserves normal thymopoiesis and thymic microenvironment during high-dose chemotherapy and graft-versus-host disease. Blood 100, 682–691 (2002).
147. Alpdogan, O. et al. Keratinocyte growth factor (KGF) in normal thymic versus chemotherapeutic regeneration. Blood 107, 2453–2460 (2006).
148. Min, D. et al. Protection from thymic epithelial cell injury by keratinocyte growth factor: a new approach to improve thymic and peripheral T-cell reconstitution after bone marrow transplantation. Blood 99, 4592–4600 (2002).
149. Wang, Y. et al. Keratinocyte growth factor enhanced immune reconstitution in murine allogeneic umbilical cord blood cell transplant. Leuk. Lymphoma 52, 1810–1820 (2011).
150. Min, D. et al. Sustained thymopoiesis and improvement in functional immunity induced by exogenous KGF administration in murine models of aging. Blood 109, 2529–2537 (2007).
151. Wils, E. J. et al. Keratinocyte growth factor and stem cell factor to improve thymopoiesis after autologous CD34+ cell transplantation in rhesus macaques. Biol. Blood Marrow Transpl. 18, 55–62 (2012).
152. Kelly, R. M. et al. Keratinocyte growth factor and androgen deprivation protects androgen-deprived mice from radiotherapy-induced cardiac damage. J. Immunol. 177, 5734–5744 (2006).
153. Rossi, S. et al. Keratinocyte growth factor enhanced immune reconstitution in murine aging: an infinite or finite resource? J. Immunol. 172, 330–342 (2004).
154. Roodman, S. T. & Bouhasin, J. D. Thymosin-alpha1 treatment for patients receiving antiretroviral therapy: results of a phase I/IIa randomized, placebo-controlled, double-blind, cross-over, immune reconstitution trial in HIV-1-infected adults. Blood 100, 2453–2460 (2002).
155. Bailey, C. P. & White, A. Purification and biological activity of thymosin alpha 1 from human plasma. J. Clin. Invest. 8, 153–161 (2010).
156. Goldstein, A. L. & Gaha, Z. M., Hardy, M. A. & White, A. Purification and biological activity of thymosin, a hormone of the thymus gland. Proc. Natl Acad. Sci. USA 69, 1800–1803 (1972).
157. Hirokawa, K., McClure, J. E. & Goldstein, A. L. Age-related changes in localization of thymosin in the human thymus. J. Immunol. 136, 2039–2042 (1986).
158. Wang, F., Yu, T., Zheng, H. & Lao, X. Thymosin alpha-1c modulates the immune system and down-regulates the progression of melanoma and breast cancer with a prolonged half-life. Sci. Rep. 8, 12531 (2018).
159. Knutson, A. P., Freeman, J. J., Mueller, K. R., Roodman, S. T. & Bouhasin, J. D. Thymosin alpha-1 stimulates maturation of CD34+ stem cells into CD34+ cells in an in vitro thymic epithelial organ coculture model. Int. J. Immunopharmacol. 21, 1867–1876 (1999).
160. Perrucci, K. et al. Thymosin alpha 1harnesses immune to pathogens after haploidentical hematopoietic stem cell transplantation. Ann. N. Y. Acad. Sci. 1194, 153–161 (2016).
161. Liu, Y. et al. Thymosin alpha 1 (Thalpa1) reduces the mortality of murine hemorrhagic shock by restoration of lymphopoiesis and reversion of exhausted T cells. Clin. Immunol. https://doi.org/10.1016/j.clinimm.2020.08.002.
213. Czechowicz, A. et al. Selective hematopoietic stem cell ablation using CD117-antibody-drug-conjugates enables safe and effective transplantation with immune preservation. Nat. Commun. 10, 617 (2019).

214. Palchaudhuri, R. et al. Non-genotoxic conditioning for hematopoietic stem cell transplantation using a hematopoietic stem cell CAR T-cell therapy and GM-CSF immunotxin. Nat. Biotechnol. 34, 758–765 (2016).

215. Czechowicz, A., Kraft, D., Weissman, I. L. & Bhatnagar, D. Granulocyte colony-stimulating factor antibody–based clearance of hematopoietic stem cell niches. Science 318, 1296–1299 (2007).

Together with the articles by Czechowicz et al. (2019) and (2016), this article documents the use of non-genotoxic conditioning approaches to deplete host hematopoietic stem cells in the BM niche for HSCT engin.

216. Mackall, C. L. et al. IL-7 increases both thymic-dependent and thymic-independent T-cell regeneration after bone marrow transplantation. Blood 97, 1491–1497 (2001).

217. Fry, T. J. et al. IL-7 therapy dramatically alters peripheral T-cell homeostasis in normal and SIV-infected nonhuman primates. Blood 101, 2299–2309 (2003).

218. Montero-Herrand, S., Garcia-Ceca, J. & Zapata, A. G. Alterations of thymic milieu associated with the development of T-cell dysregulation in CD28-deficient thymi is recovered by RANK signaling stimulation. J. Exp. Med. 204, 1267–1272 (2007).

219. Lopes, N., Vachon, H., Marie, J. & Irla, M. Tumano, A. V. et al. Lymphotoxin controls the IL-22 immunoreactivity and sensitivity to immune checkpoint blockade in melanoma. Mol. Immunol. 107, 835–851 (2017).

220. Tumor-derived IL-21 controls the IL-22 protection pathway in gut innate lymphoid cells during mucosal pathogen challenge. Cell Host Microbe 10, 46–53 (2011).

221. Cella, M., Otter, K. & Colonna, M. Expansion of human NK-22 cells with IL-7, IL-2 and IL-1beta reveals intrinsic functional plasticity. Proc. Natl Acad. Sci. USA 110, 10356–10361 (2013).

222. Vonarbourg, C. et al. Regulated expression of nuclear receptor RORgammat confers distinct functional fates to NK cell receptor-expressing RORgammat' innate lymphocytes. Immunity 33, 756–761 (2010).

223. Yoshida, H. et al. Different cytokines induce surface lymphoepithelium and thymopoiesis on IL-7 receptor-alpha cells that differentially engender lymph node and Peyer’s patches. Immunity 17, 825–835 (2002).

224. Gendron, B., Boisvert, M., Chetoui, N. & Aoudjit, F. Alpdogan, O. et al. Insulin-like growth factor-I receptor promotes thymopoiesis in immune-deficient mice. Blood 107, 3552–3556 (2006).

225. Grignon, J., Patel, S. R., Mishina, Y. & Manley, N. R. Evidence for an early role for BMP4 signaling in thymus and panoramic morphogenesis. Dev. Biol. 339, 141–154 (2010).

226. Bleul, C. C. & Boehm, T. BMP signaling is required for thymic development. J. Immunol. 175, 5213–5221 (2005).

227. Tash, P. T., Lee, R. A. & Wu, H. BMP4 acts upstream of FGF in modulating thymic stroma and regulating thymopoiesis. Blood 110, 3947–3955 (2005).

228. Havel, J., J. S., Chou, W., D. C. & Tan, A. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat. Rev. Cancer 19, 135–150 (2019).

229. McGinn, N. et al. Clonal neoregulators elicit T cell immunity to immunity to immune checkpoint blockade. Science 351, 1463–1469 (2016).

230. Snyder, A. et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N. Engl. J. Med. 371, 2189–2199 (2019).

231. Rivzi, N. A. et al. Cancer immunotherapy. Mutation landscape determines sensitivity to PD-1 blockade in non–small-cell lung cancer. Science 348, 124–128 (2015).

232. Thompson, H. L. et al. Lymph nodes as barriers to T-cell reconstitution after bone marrow transplantation. Blood 113, 5440 (2009).

233. Clise-Dwyer, K., Huston, G. E., Buck, A. L., Duso, D. K. & Thompson, H. L. Enriched splanchnic and intestinal factors lead to antigen unresponsiveness in CD4+ recent thymic emigrants from aged mice. J. Immunol. 170, 13121–13130 (2003).

234. Becklund, B. R. et al. The aged lymphoid tissue environment fails to support naive T cell homeostasis. Sci. Rep. 6, 30842 (2016).

235. Cotransplantation of tonsil derived mesenchymal stromal cells in bone marrow transplantation promotes thymus regeneration and T cell diversity following cytotoxic conditioning. Int. J. Mol. Med. 46, 1166–1174 (2020).

236. Su, M. et al. Cotransplantation of tonsil derived mesenchymal stromal cells in bone marrow transplantation promotes thymus regeneration and T cell diversity following cytotoxic conditioning. Int. J. Mol. Med. 46, 1166–1174 (2020).

237. Su, M. et al. Efficient in vitro generation of functional thymic epithelial progenitors from human embryonic stem cells. Sci. Rep. 5, 9888 (2015).

238. Reddikunta, N. et al. An organized and functional thymic epithelial architecture from FGF11-reprogrammed fibroblasts. Nat. Cell. Biol. 16, 902–908 (2014).

239. This study demonstrates that enforced expression of FGF11 in human embryonic stem cells can rescue thymic epithelial progenitors into functional TECs capable of supporting T cell differentiation when transferred in vivo.

240. Liu, L. et al. Mouse embryonic stem cell derived thymic epithelial cell progenitors enhance Tcell reconstitution after allogeneic bone marrow transplantation. Blood 119, 3435–3444 (2012).

241. Bortolomiol, I. et al. Gene modification and three-dimensional scaffolds as novel tools to allow the use of postnatal thymic epithelial cells for thymus regeneration approaches. Stem Cell Transl. Med. 8, 1107–1112 (2019).

242. Otaka, R. et al. Efficient generation of thymic epithelium from induced pluripotent stem cells that prolongs allograft survival. Sci. Rep. 10, 224 (2020).

243. Czechowicz, A. et al. Selective hematopoietic stem cell ablation using CD117-antibody-drug-conjugates enables safe and effective transplantation with immune preservation. Nat. Commun. 10, 617 (2019).

244. Palchaudhuri, R. et al. Non-genotoxic conditioning for hematopoietic stem cell transplantation using a hematopoietic stem cell CAR T-cell therapy and GM-CSF immunotxin. Nat. Biotechnol. 34, 758–765 (2016).

245. Czechowicz, A., Kraft, D., Weissman, I. L. & Bhatnagar, D. Granulocyte colony-stimulating factor antibody–based clearance of hematopoietic stem cell niches. Science 318, 1296–1299 (2007).

Together with the articles by Czechowicz et al. (2019) and (2016), this article documents the use of non-genotoxic conditioning approaches to deplete host hematopoietic stem cells in the BM niche for HSCT engin.
255. Shah, N. J. et al. An injectable bone marrow–like scaffold enhances T cell immunity after hematopoietic stem cell transplantation. *Nat. Biotechnol.* 7, 293–302 (2019).

This work shows that the injection of an engineered BM-like scaffold enhances T cell neogenesis and diversification of TCRs in mouse models of HCT.

256. Chung, B. et al. Engineering the human thymic microenvironment to support thymopoiesis in vivo. *Sci. Transl. Med.* 2, 2386–2396 (2014).

257. Fan, Y. et al. Bioengineering thymus organoids to restore thymic function and induce donor-specific immune tolerance to allografts. *Mol. Ther.* 23, 1262–1277 (2015).

258. van der Maas, N. G., Berghuis, D., van der Burg, M. & Lankester, A. C. B cell reconstitution and influencing factors after hematopoietic stem cell transplantation in children. *Front. Immunol.* 10, 782 (2019).

259. Abdel-Azim, H., Elshoury, A., Mahadeo, K. M., Sarantopoulos, S., Blazar, B. R., Cutler, C. & Small, T. N. et al. B-cell differentiation following transplantation. *Blood* 96, 1064–1069 (2000).

260. Glass, A. M. et al. B-cell-autonomous somatic mutation deficit following bone marrow transplant. *Blood* 106, 2386–2396 (2014).

261. Sethi, M. K. et al. VH1 family immunoglobulin repertoire sequencing after allogeneic hematopoietic stem cell transplantation. *PLoS ONE* 12, e0168096 (2017).

262. Lakshmikanth, T. et al. Mass cytometry and topological data analysis reveal immune parameters associated with complications after allogeneic stem cell transplantation. *Cell Rep.* 20, 2258–2260 (2017).

263. van den Broek, T., Borghans, J. A. M. & van Wijk, F. The full spectrum of human naive T cells. *Nat. Rev. Immunol.* 18, 365–373 (2018).

264. Haines, C. J. et al. Human CD4+ T cell recent thymic emigrants are identified by protein tyrosine kinase 7 and have reduced immune function. *J. Exp. Med.* 206, 275–285 (2009).

265. Parik, B. C. et al. Reconstitution of lymphocyte subpopulations after hematopoietic stem cell transplantation: comparison of hematologic malignancies and donor types in event-free patients. *Leuk. Res.* 39, 1354–1364 (2015).

266. Marie-Cardine, A. et al. Transitional B cells in humans: characterization and insight from B lymphocyte reconstitution after hematopoietic stem cell transplantation. *Clin. Immunol.* 127, 14–25 (2008).

267. Buser, A. et al. Impaired B-cell reconstitution in lymphoma patients undergoing allogeneic HSCT: an effect of pretreatment with rituximab? *Bone Marrow Transpl.* 42, 485–487 (2008).

268. Scarcelli, A. et al. Longitudinal evaluation of immune reconstitution and B-cell function after hematopoietic cell transplantation for primary immunodeficiency. *J. Clin. Immunol.* 35, 573–585 (2015).

269. Smith, M. et al. B-cell differentiation following autologous, conventional, or T cell-depleted bone marrow transplantation: a recapitulation of normal B-cell ontogeny. *Blood* 76, 1647–1656 (1990).

270. Pao, M. et al. Response to pneumococcal (PNCRM7) and haemophilus influenzae conjugate vaccines (HIB) in pediatric and adult recipients of an allogeneic hematopoietic cell transplantation (alloHCT). *Biol. Blood Marrow Transpl.* 14, 1022–1030 (2008).

271. Omazic, B., Lundkvist, I., Mattsson, J., Perment, J. & Näsman-Björk, I. Memory B lymphocytes determine repertoire oligoclonality early after haematopoietic stem cell transplantation. *Clin. Exp. Immunol.* 134, 159–166 (2003).

272. Kimmig, S. et al. Two subsets of naive T helper cells with distinct T cell receptor excision circle content in human adult peripheral blood. *J. Exp. Med.* 195, 789–794 (2002).

273. van den Beemd, R. et al. Flow cytometric analysis of the Vbeta repertoire in healthy controls. *Cytometry A* 80, 356–364 (2000).

274. Verfuhr, S. et al. Longitudinal monitoring of immune reconstitution by CD3R size spectratyping after T-cell-depleted allogeneic bone marrow transplant and the effect of donor lymphocyte infusions on T-cell repertoire. *Blood* 95, 3990–3995 (2000).

Acknowledgements

The authors are grateful for support from the US National Cancer Institute (R01-CA228358, R01-CA228308, R01-HL147584, P50-CA008748 Memorial Sloan Kettering Cancer Center Support Grant/Core Grant and Project 2 of P01-CA025766), the US National Heart, Lung, and Blood Institute (R01-HL125571 and R01-HL125340), the US National Institute on Aging (Project 2 of P01-AG052559), the Tri-Institutional Stem Cell Initiative (2016-013) and the US National Institute of Allergy and Infectious Diseases (U01-AI126275) to M.R.M.v.d.B., the Amy Streifer Manasevit Research Program, the Italian Association for Cancer Research and the Italian Ministry of Health (Ricerca Corrente programme) to E.V. and a Society of Memorial Sloan Kettering Cancer Center Scholars Award to J.J.T. Additional funding was received from The Lymphoma Foundation, the Susan and Peter Solomon Divisional Genomics Program and the Parker Institute for Cancer Immunotherapy at Memorial Sloan Kettering Cancer Center and Seres Therapeutics.

Author contributions

The authors contributed equally to all aspects of the article.

Competing interests

M.R.M.v.d.B. has received research support and stock options from Seres Therapeutics, has received royalties from Wolters Kluwer, has consulted for, received honoraria from or participated in advisory boards for Seres Therapeutics, Jazz Pharmaceuticals, Rheos, Therakos, WindMIL Therapeutics, Amgen, Merck & Co. Inc., Magenta Therapeutics, DAKMS Medical Council (board), Forty Seven Inc. (spouse), Pharmacyclics (spouse) and Kite Pharmaceuticals (spouse) and has intellectual property licensing agreements with Seres Therapeutics and Juno Therapeutics. E.V. has acted as a consultant for and received honoraria from Ferring Pharmaceuticals. M.R.M.v.d.B. is an inventor on a patent application (US2015/058095) submitted by Memorial Sloan Kettering Cancer Center. Two provisional patent applications have been filed (US 15/035,178 and US 62/566,897) with E.V. and M.R.M.v.d.B. listed as inventors. J.J.T. declares no competing interests.

Peer review information

Nature Reviews Immunology thanks K. Weinberg and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.