Quantitative a Priori Estimates for Fast Diffusion Equations with Caffarelli-Kohn-Nirenberg weights. Harnack inequalities and Hölder continuity

Matteo Bonforte$^a$ and Nikita Simonov$^b$
Departamento de Matemáticas, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.

Abstract

We study a priori estimates for a class of non-negative local weak solution to the weighted fast diffusion equation $u_t = |x|^\gamma \nabla \cdot (|x|^{-\beta} \nabla u^m)$, with $0 < m < 1$ posed on cylinders of $(0, T) \times \mathbb{R}^N$. The weights $|x|^\gamma$ and $|x|^{-\beta}$, with $\gamma < N$ and $\gamma - 2 < \beta \leq \gamma(N - 2)/N$ can be both degenerate and singular and need not to belong to the class $A_2$, a typical assumption for these kind of problems. This range of parameters is optimal for the validity of a class of Caffarelli-Kohn-Nirenberg inequalities, which play the role of the standard Sobolev inequalities in this more complicated weighted setting.

The weights that we consider are not translation invariant and this causes a number of extra difficulties and a variety of scenarios: for instance, the scaling properties of the equation change when considering the problem around the origin or far from it. We therefore prove quantitative - with computable constants - upper and lower estimates for local weak solutions, focussing our attention where a change of geometry appears. Such estimates fairly combine into forms of Harnack inequalities of forward, backward and elliptic type. As a consequence, we obtain Hölder continuity of the solutions, with a quantitative (even if non-optimal) exponent. Our result apply to a quite large variety of solutions and problems. The proof of the positivity estimates requires a new method and represents the main technical novelty of this paper.

Our techniques are flexible and can be adapted to more general settings, for instance to a wider class of weights or to similar problems posed on Riemannian manifolds, possibly with unbounded curvature. In the linear case, $m = 1$, we also prove quantitative estimates, recovering known results in some cases and extending such results to a wider class of weights.

Keywords. Fast diffusion with weights; Parabolic Regularity; Positivity; Smoothing effects; Harnack inequalities; Hölder Continuity; Caffarelli-Kohn-Nirenberg inequalities.

Mathematics Subject Classification. 35B45, 35B65, 35K55, 35K67, 35K65.

(a) E-mail: matteo.bonforte@uam.es  Web-page: http://verso.mat.uam.es/~matteo.bonforte/
(b) E-mail: nikita.simonov@uam.es
## Contents

1 Introduction  
   1.1 Precise statement of the main results in the different scenarios ........................................ 5  
   1.2 Possible generalizations. ........................................................................................................ 11  
   1.3 Weighted Functional Inequalities ............................................................................................ 11  

2 Part I. Local upper bounds and energy estimates ................................................................. 13  
   2.1 Local space-time energy estimates .......................................................................................... 13  
   2.2 Behaviour of local $L^p$ norms. ............................................................................................. 14  
   2.3 Space-time smoothing effects for linear and nonlinear equations ......................................... 16  
   2.4 Proof of Theorem 2.1 ........................................................................................................... 20  

3 Part II. Positivity estimates ...................................................................................................... 21  
   3.1 Basic properties of solutions to the Minimal Dirichlet Problem ........................................... 22  
   3.2 Proof of the bounds \(\frac{\text{Lemma 2.2}}{43}\) on the extinction time for MDP. ............................. 23  
   3.3 Lifted problem and a first positivity result ............................................................................. 23  
   3.4 Step 1. Lower Moser Iteration. ............................................................................................... 24  
   3.5 Step 2. Smoothing effects for negative norms. ....................................................................... 27  
   3.6 Step 3. Reverse Hölder inequalities ....................................................................................... 31  
   3.7 End of Step 3. Proof of Proposition 3.1 and $L^{-\infty} - L^\epsilon$ for MDP ............................... 32  
   3.8 Step 4. Reverse $L^1 - L^\epsilon$ smoothing effects and interior lower bounds for MDP. .......... 34  
   3.9 Positivity for local solutions. End of the proof of Theorems 1.4 and 3.1 .............................. 36  

4 Part III. Harnack inequalities and Hölder continuity .......................................................... 37  
   4.1 The linear case. Harnack inequalities and Hölder continuity ............................................... 37  
   4.2 The nonlinear case. Harnack inequalities and Hölder continuity .......................................... 40  

5 Appendices ............................................................................................................................. 42  
   5.1 Appendix-A ......................................................................................................................... 42  
   5.1.1 Proof of the energy estimates of Lemma 2.6 .................................................................... 43  
   5.1.2 Proof of the lower energy inequalities \(\frac{\text{Lemma 2.8}}{45}\) and \(\frac{\text{Lemma 2.10}}{45}\). .................................. 45  
   5.1.3 Proof of the Caccioppoli estimates of Lemma 2.5 ............................................................ 47  
   5.1.4 Further estimates on test functions .................................................................................. 47  
   5.2 Appendix-B ......................................................................................................................... 48  

References .................................................................................................................................. 49
1 Introduction

We investigate quantitative a priori estimates and regularity properties of nonnegative solutions to nonlinear singular diffusion equations with weights, possibly degenerate or singular, whose prototype is given by the following Weighted Fast Diffusion Equation

\[ u_t = |x|^\gamma \nabla \cdot (|x|^{-\beta} \nabla u^m) \]  (WFDE)

posed on a domain of \((0, +\infty) \times \mathbb{R}^N\), with \(N \geq 3\) and \(m \in (0, 1)\). We will always consider the following range of parameters, see also Figure 1:

\[ \gamma < N \quad \text{and} \quad \gamma - 2 < \beta \leq \frac{N - 2}{N - \gamma}. \]  (1.1)

This range of parameters is optimal for the validity of a family of the so-called Caffarelli-Kohn-Nirenberg inequalities [20], as follows: let \(r^* := 2(N - \gamma)/(N - (2 + \beta))\),

\[ \left( \int_{\mathbb{R}^N} |f|^{r^*} |x|^{-\gamma} \, dx \right)^{1/r^*} \leq \mathcal{S}_{\gamma, \beta} \left( \int_{\mathbb{R}^N} |\nabla f|^2 |x|^{-\beta} \, dx \right)^{1/2}, \]  (1.2)

see Subsection 1.3 for more details; these inequalities are deeply connected with the above WFDE, in its evolutionary or stationary version, see for instance [8, 9, 21, 33, 34, 35, 36]; some further connection will be discussed and explored in this paper.

A priori estimates are the cornerstone of the theory of nonlinear partial differential equations: the main purpose of this paper is to prove precise quantitative local upper and lower bounds which combine into different forms of Harnack inequalities; as a consequence we also prove interior Hölder continuity for solutions to this class of equations with a (small) quantified exponent: the optimal Hölder exponent is not known. Indeed, in the case of the Cauchy problem some explicit (Barenblatt-type) solutions are known to be only Hölder continuous at \(x = 0\), as we shall discuss later, see also [8, 9].

The weights that we consider are not translation invariant and this causes a number of extra difficulties and a variety of scenarios that we explain in Subsection 1.1. Roughly speaking, the scaling properties of the equation change from \(R^{2+\beta-\gamma}\) to (a multiple of) \(R^2\), when we are considering the problem around the origin or far from it, respectively. We focus on the cases in which the change of geometry plays a role: in the other cases, the results are essentially the same as the classical ones, cf. [17, 30].

Our quantitative interior estimates are formulated for nonnegative local strong solutions, defined in Subsection 1.1. A number of interesting problems fall into our setting, for instance, the Cauchy problem on \(\mathbb{R}^N\), problems on Euclidean domains with different boundary condition (Dirichlet, Neumann, Robin, etc.), as well as the so-called “large solutions” (which tend to +\(\infty\) at the boundary of the domain). Moreover, our estimates can be extended to a wider class of solutions, through lengthy but standard approximations. We prove analogous results also in the linear case \(m = 1\), as we shall discuss below.

The above nonlinear equation has been introduced in the 80s by Kamin and Rosenau [61, 62, 63], to model heat propagation -or more generally singular/degenerate diffusion- in inhomogeneous media; the parabolic problem has been studied by many authors since then, mostly in the case \(m \geq 1\) and with only one weight [1, 7, 27, 38, 40, 47, 55, 59, 60, 61, 67, 72, 76, 77, 78, 79, 80, 83, 84, 85, 89].

In the non-weighted case \(\gamma = \beta = 0\), the WFDE becomes the standard Fast Diffusion Equation (FDE) which has been intensively studied in the recent years by many authors: it is hopeless to give here a complete bibliography, hence we refer to the monographs [86, 87] and [28, 30] for a complete account, as well as for the physical relevance of the model. We just remark that our results hold also in the non-weighted case, and we recover the previous results with a different proof.

More recently, WFDE has been investigated for its deep relation with the so-called Caffarelli-Kohn-Nirenberg inequalities [20]; in particular, the intriguing issue of symmetry/symmetry breaking, has attracted the attention of many prominent researchers, [8, 9, 21, 33, 34, 35, 36, 41]. The study of such problem partly relies on the study of the Cauchy problem for the WFDE on \(\mathbb{R}^N\) for which the regularity estimates of this paper are fundamental and were not present in the literature: sometimes an extra hypothesis had to be added to
fix this issue. This happens for instance in [8, 9], where the sharp asymptotic behaviour of solutions to the Cauchy problem for WFDE is studied: the regularity estimates proven here are indeed essential to ensure the validity of those results in full generality.

Lately, new connections between weighted parabolic equations and nonlinear diffusions on Riemannian manifolds were explored in [13, 14, 31, 15, 38]. This intriguing connection motivates the present work, which makes a preliminary step towards understanding the behaviour of singular nonlinear diffusion on manifolds possibly with unbounded curvature; it has to be noticed that in this latter case the weights are locally regular and degenerate only at infinity, see for instance [18].

Since the pioneering paper of Fabes, Kenig and Serapioni [39], weighted (degenerate or singular) elliptic and parabolic equations have been investigated in the linear case $m = 1$, [2, 3, 13, 22, 23, 24, 25, 26, 56, 57]. In many cases, the weights are assumed to belong to the “natural” (for second order differential operators) Muckenhoupt class $A_2$: the reader may notice that the weight $|x|^{-\gamma}$ does not belong to $A_2$ when $\gamma \in (-\infty, -N)$, a case that we consider here. Our contribution in this direction are quantitative Harnack inequalities and Hölder continuity for weak solutions to linear equations with measurable coefficients. Our results agree with the known results [49, 50, 70, 71] and extend those in some range of parameters.

Ideas of the main results and organization of the paper. The behaviour of solutions to the nonweighted FDE presents strong differences among two ranges: good fast diffusion range $0 < m < m_c$, the critical exponent being $m_c = (N - 2)/N$, see [17, 80]. We show here that also solutions to the WFDE behave quite differently in the two ranges; the critical exponent $m_c$ now depends on the weights through $\gamma$ and $\beta$, in the range given by (1.1)

$$m_c = \frac{N - (2 + \beta)}{N - \gamma} \in (0, 1).$$

Our first main result consists in quantitative upper bounds, see Theorems 1.2 and 2.1 proven in Part I, which take the form of local smoothing effects, that is in a simplified form read

$$\sup_{y \in B_R(0)} u(t, y) \leq \frac{K_1}{t^{(N-\gamma)d_p}} \left[ \int_{B_{2R}(0)} |u_0(y)|^p |y|^{-\gamma} dy \right]^{(2 + \beta - \gamma)/d_p} + \frac{K_2}{R^{2 + \beta - \gamma}} \frac{1}{t^{1-m}},$$

where the exponent $d_p = [(2 + \beta - \gamma) (p - p_c)]^{-1}$ is sharp (see below) and the constants $K_1, K_2 > 0$ have an almost explicit expression. In the so-called good fast diffusion range, $m_c < m < 1$, solutions corresponding to $u_0 \in L^p_{loc}(|x|^{-\gamma} dx)$, turn out to be locally bounded. In the very fast diffusion range, $0 < m \leq m_c$, a counterexample given in Remark 1.3 shows that this is not necessarily true. Indeed, the smoothing effect holds only for data in $L^p_{loc}(|x|^{-\gamma} dx)$ with $p > p_c$, the so-called critical integrability exponent, defined as

$$p_c = \frac{(1 - m) (N - \gamma)}{2 + \beta - \gamma}.$$

Notice that $\vartheta_p > 0$ whenever $p > p_c$ and that $p_c > 1$ only when $m \in (0, m_c)$. We refer to the monograph [80] for a more detailed exposition of the relevance of such exponents in the non-weighted case $\beta = \gamma = 0$ both for the smoothing estimates and for extinction phenomena.

The second main result is a precise quantitative lower bound for positive solutions, and it shows a remarkable property of WFDE, called “instantaneous positivity”: as it happens in the case without weights, see [16, 17, 30, 31, 32], non zero data immediately produce strictly positive solutions. A simplified version of our result reads:

$$\inf_{x \in B_R(0)} u(t, x) \geq \frac{t}{H^{2 + \beta - \gamma}} \frac{1}{t^{1-m}}$$

for any $t \in [0, t_*)$, (1.5)

where $t_* = t_*(u_0) \sim \|u_0\|_{L^m(B_R(0))}^{-m}$ is precisely defined in (1.13). We call $t_*$ the “minimal life time” of the solution $u$, following [17], since it represents the amplitude of the time interval in which any nonnegative local solution stays positive. Roughly speaking, if the solution is nonnegative on a small ball, then it becomes instantaneously positive on a bigger ball (expansion of positivity) and for some more time, precisely quantified by the minimal life time $t_*$; as a consequence, it becomes also Hölder continuous. The above lower bound is somehow optimal, indeed solutions to fast diffusion type equations may extinguish after a finite time $T = T(u_0)$; $t_*$ is a (sharper) lower bound for $T$; see Section 3 for more details.
Our estimates are quantitative and we show an (almost) explicit expression of $\kappa > 0$, which depends on the parameters $N, m, \gamma, \beta$, and eventually on $u_0$ or other geometric quantities. Note that in the good fast diffusion range $m \in (m_c, 1)$, $\kappa$ does not depend on the initial data. This does not happen in the linear case $m = 1$, where the lower bound depend on the initial data, and also, it is in contrast with the degenerate case $m > 1$, where the finite speed of propagation forces to wait some time in order to have strict positivity, see [87]. In the very fast diffusion range, $\kappa > 0$ also depends on $u_0$ through $H_p \sim \|u_0\|_{L^p(B_R)}/\|u_0\|_{L^q(B_R)}$, see [16, 17, 30, 31] for a precise definition.

The proof of (1.5) is complex and contains the main new technical novelties of this paper. Due to the presence of the weights, the approach developed in [17] for the model equation ($\beta = \gamma = 0$) that relies on moving plane methods (Alexandrov reflection principles) can not be applied. Moreover, parabolic De Giorgi-type methods, typically used for equations with coefficients, see [30], can be also applied to the case with weights in appropriate Muckenhoupt classes, see [34, 31]; however, to our best knowledge, these techniques do not provide quantitative results, indeed the constants in the estimates are not always computable. We therefore develop in Part II a new strategy that allows to keep the constants explicit.

Upper an lower bounds fairly combine in the form of parabolic Harnack inequalities, our third main result proven in Part III. Already in the non-weighted case it has been a longstanding problem to understand which form the Harnack inequality may take (if any) in the very fast diffusion range; the first answer has been given in [16] and then generalized to other contexts, see the monograph [30]. A simplified version of our Harnack inequalities reads

$$
\sup_{x \in B_R(0)} u(t, x) \leq \kappa_3 \inf_{x \in B_R(0)} u(t, x) \quad \text{for any} \quad \frac{t_*}{2} < t < t_*.
$$

The minimal life time $t_*$ quantifies the size of the so-called intrinsic cylinders, which roughly speaking represent the right domain where regularity estimates can be stated in a clean form. The size of such intrinsic cylinders depends on the solution itself, due to the singular/degenerate character of the nonlinearity $u^m$, see [28, 30].

In the very fast diffusion range, $\kappa_3$ may depend on $u_0$ through some weighted $L^p$ norms, and this dependence cannot be avoided in view of explicit counter-examples, see [17] for the non-weighted case. On the other hand, in the good fast diffusion range, $\kappa_3$ does not depend on $u_0$ anymore. In all cases we provide an explicit expression for $\kappa_3$, see Remark 1.7. It is remarkable that in (1.6) we may take the infimum and the supremum the same time (elliptic-type Harnack inequality), or even at a previous time (backward-type Harnack inequality): this feature is typical of fast diffusion or of singular evolutions [16, 17, 30, 31], and is compatible with the fact that solutions can extinguish in finite time; this happens to be false (for general local weak solutions) even for the linear equation $m = 1$, in which case forward Harnack inequalities typically hold. See Theorem 1.9 below for a more general statement and remarks.

An important consequence of Harnack-type estimates is Hölder continuity, that we also establish in Part III. A simplified version of our estimates states that there exist $s$ such that, if $0 \leq u \leq M_0$ on $[t_0, t_0 + t_*] \times B_{4R_0}(0)$ we have, letting $\sigma = 2 + \beta - \gamma$

$$
|u(t, x) - u(\tau, y)| \leq \kappa_0 R_0^\alpha M_0 (|x - y|^\sigma + M_0^{m-1}|t - \tau|)^{\frac{\alpha}{\sigma}},
$$

for all $t_0 + \frac{5}{8}t_* \leq t, \tau \leq t_0 + \frac{7}{8}t_*$ and all $0 < |x - y| \leq R \leq R_0/4$, with the additional “intrinsic” condition $R^\sigma \leq t_*$. See Theorem 1.8 for a precise statement. The Hölder exponent $\alpha$ depends on the constant $\kappa_3$ of (1.6), and it will be chosen uniformly in the good fast diffusion range, where $\kappa_3$ does not depend on $u$ (nor on $u_0$). On the other hand, in the very fast diffusion case, $\alpha$ may depend on $u_0$ through some weighted $L^p$ norm: this is somehow natural, since solution corresponding to data in $L^1_{\text{loc}}$ may be unbounded, as already discussed above. We provide a (non optimal, but explicit) expression of the exponent $\alpha$ in Part III, and we show that it can vary depending on the cylinder: this may seem strange at a first sight, but indeed it is perfectly reasonable in view of the example given in Remark 1.9. We can appreciate here the effect of the weights on the regularity of solutions.

The proof of Hölder continuity in the nonlinear case depends on the regularity results for linear equation with weights. We prove in Part III both Harnack inequalities and Hölder continuity for weak solutions to linear equations with measurable coefficients, whose prototype is given by $u_t = |x|^\gamma \nabla \cdot (|x|^{-\beta}a(t, x)\nabla u)$, with $0 < \lambda_0 \leq a(t, x) \leq \lambda_1$; in our results we keep track on the dependence on $\lambda_0, \lambda_1$ in all constants, as Moser did in the non-weighted case, [71]. We refer to Section 1.14 for more details.
Finally, the Appendix contains the proof of the energy estimates of Part I, the proof of some functional inequalities that we use, together with a number of technical results. We have posponed those long and technical proofs there in order not to break the flow of the paper, and focus more on the main ideas.

We shall now present the main results and the different scenarios, together with the notation and definition of solutions that we are going to use.

1.1 Precise statement of the main results in the different scenarios

In order to state our main results, we need to introduce first some notations and definitions. We will write $a \asymp b$ whenever there exists constants $c_0, c_1 > 0$ such that $c_0 a \leq b \leq c_1 a$; we let $a \land b = \min\{a, b\}$ and $a \lor b = \max\{a, b\}$.

**Functional spaces.** Let $p \geq 1$ and $\Omega \subseteq \mathbb{R}^N$ be an open connected set. For any $\gamma \in \mathbb{R}$, $\mu_\gamma$ will denote the measure $\mu_\gamma(\Omega) \equiv \int_\Omega |x|^{-\gamma} \, dx$ and $\|f\|_{L^p_\gamma(\Omega)} \equiv (\int_\Omega |f|^p |x|^{-\gamma} \, dx)^{\frac{1}{p}}$. We will denote by $L^p_\gamma(\Omega)$ the weighted $L^p$-space with respect to $\mu_\gamma$; $L^p_\gamma$ is a Banach space, see e.g. [65]. Define next two Hilbert spaces of frequent use: $H^{1,\gamma}_\beta(\Omega)$ will be the closure of $C^\infty(\Omega)$ under the topology given by the norm $\|\phi\|_{H^{1,\gamma}_\beta(\Omega)}^2 = \|\phi\|^2_{2,\gamma} + \|\nabla \phi\|^2_{2,\beta}$, and $\mathcal{D}_{\gamma,\beta}(\Omega)$ will be the closure of $C^\infty(\Omega)$ under the norm $\|\phi\|_{\mathcal{D}_{\gamma,\beta}(\Omega)} = \|\nabla \phi\|_{2,\beta}$. We note that that without any further assumption on the weights, the elements of these spaces need not to be distribution nor functions $L^1_{\text{loc}}(\Omega)$, see [39], [52]; hence, the solution to [WFDE] has to be considered in a weak sense, as follows.

**Definition 1.1 (Weak and strong solutions)** Let $Q = (T_0, T) \times \Omega \subseteq (0, \infty) \times \mathbb{R}^N$. A function $u : Q \to \mathbb{R}$ is a local weak solution to equation (WFDE) in $Q$ if

$$u \in C_{\text{loc}}(T_0, T; L^2_{\gamma,\beta,\text{loc}}(\Omega)) \quad \text{and} \quad u^m \in L^2_{\text{loc}}(T_0, T; H^1_{\gamma,\beta,\text{loc}}(\Omega)), \tag{1.7}$$

and the following identity holds true,

$$\int_\Omega |u(t_2, x)\phi(t_2, x) - u(t_1, x)\phi(t_1, x)| \, |x|^{-\gamma} \, dx = \int_{t_1}^{t_2} \int_\Omega u(t_1, x) \phi(t_1, x) \, |x|^{-\gamma} \, dx \, dt - \int_{t_1}^{t_2} \int_\Omega \nabla u(t_1, x) \cdot \nabla \phi(t_1, x) \, |x|^{-\beta} \, dx \, dt, \tag{1.8}$$

for every compact subset $[t_1, t_2] \times K \subseteq Q$ and for any test function $\phi$ such that

$$\phi \in W^{1,\gamma}_\beta(T_0, T; L^2_\gamma(K)) \cap L^2_{\text{loc}}(T_0, T; \mathcal{D}_{\gamma,\beta}(K)).$$

A local strong solution to equation [WFDE] is a local weak solution such that $u_t \in L^1_{\text{loc}}(0, T; L^1_{\gamma,\text{loc}}(\Omega))$.

A local weak (or strong) super (resp. sub) solution satisfies $|u| \leq \phi$ (resp. $\geq \phi$) for any nonnegative test function in the same class.

**About the class of solutions.** As already mentioned in the Introduction, most of our results will be proven for local strong solutions: lengthy (but nowadays standard) approximation procedures allow to extend our results to a wider class of solutions, the so-called limit solutions, sometimes also called SOLA, Solutions Obtained by Limit of Approximations [5], [68]. In particular, our result apply to weak solutions in the sense of the above definition. However, such approximations are often long and technical in the framework of local solutions, but easier when dealing with global problems, like Cauchy, Dirichlet, Neumann, Robin, or even for large problems (Dirichlet problem whose solutions go to $+\infty$ on the lateral boundary). We shall say that most of the weaker concepts of solutions are included in the so-called class of limit solutions, i.e. limit of strong solutions, for which our estimates apply by a simple limiting process.

**Weights and different scenarios.** Our results concern quantitative a priori upper estimates of local type. We will consider a fixed cylinder of reference $Q = (T_0, T) \times \Omega \subseteq (0, \infty) \times \mathbb{R}^N$, as in Definition 1.1 and the estimates will take place on a smaller cylinder, typically sufficiently far from the boundary of $\Omega$. Due to the
lack of translation invariance of the weights, we need to find the right quantity that takes into account for the change of geometry, following \[26, 73, 83, 84\] we define for any \(x_0 \in \mathbb{R}^N\) and any \(R > 0\):

\[
\rho_{\gamma, \beta}^{x_0}(R) := \left( \int_{B_R(x_0)} |x|^{(\beta-\gamma)\frac{N}{2}} \, dx \right)^{\frac{2}{N}} \sim R^2 \frac{\mu_\gamma(B_R(x_0))}{\mu_\beta(B_R(x_0))},
\]

where the latter equivalence is proven in Lemma 5.3. Roughly speaking, the scaling properties of the equation change from \(R^{2+\beta-\gamma}\) to (a multiple of) \(R^{2}\), when we are considering problems around the origin or far from it, respectively. There are at least four possible scenarios, see figure (1):

(a) When \(x_0 = 0\) and any \(R_0 > 0\), we have \(\rho_{\gamma, \beta}^{x_0}(R_0) \sim R_0^{2+\beta-\gamma}\).

(b) When \(x_0 \neq 0\) and \(0 \in B_{R_0}(x_0)\), we have \(\rho_{\gamma, \beta}^{x_0}(R_0) \sim R_0^{2+\beta-\gamma}\).

(c) When \(x_0 \neq 0\), \(0 \notin B_{R_0}(x_0)\) and \(R_0 > |x_0|/2\), namely \(x_0\) is relatively far from the origin but the singularity is still felt by the equation, indeed, also in this case we have \(\rho_{\gamma, \beta}^{x_0}(R_0) \sim R_0^{2+\beta-\gamma}\).

(d) When \(x_0 \neq 0\), \(0 \notin B_{R_0}(x_0)\) and \(0 < R_0 \leq |x_0|/2\). This is the case when \(x_0\) is relatively far from the origin and the singularity is not felt anymore. Here, the geometry of the problem is the essentially the standard Euclidean one, indeed \(\rho_{\gamma, \beta}^{x_0}(R_0) \sim R_0|\gamma|\beta-\gamma\); in this case we are essentially dealing with a singular parabolic equation where the diffusion is driven by a uniformly elliptic operator; in this setting the results are known, see for instance [71] for the linear case and [17, 30] for the nonlinear case.

Figure 1: A representation of possible scenarios (a), (b), (c) and (d).

We will focus only on the cases (a), (b) and (c) in which we have novel results, and where the geometry of the weights really plays a role; as already mentioned, the case (d) follows from nowadays standard results. For the sake of simplicity, from now on, we will always make one of the following assumptions on the ball \(B_{R_0}(x_0)\) where our local estimates will take place:

(1) Let \(x_0 = 0\) and any \(R_0 > 0\), or

(2) Let \(x_0 \neq 0\) and \(|x_0|/32 \leq R_0 \leq |x_0|/16\), or

(3) Let \(x_0 \neq 0\) and \((5/2)|x_0| \leq R_0 \leq 4|x_0|\).

We notice that under the assumption (1), (2) or (3) a simple calculation shows that (see proof of Lemma 5.3)

\[
R^{2+\beta-\gamma} \sim R^2 \frac{\mu_\gamma(B_R(x_0))}{\mu_\beta(B_R(x_0))}.
\]
Before stating our main results we first need to introduce the following parameters whose role has been already explained above (recall that \( p_c \) is defined in (1.3)  

\[
\sigma = 2 + \beta - \gamma \quad \text{and} \quad \vartheta_p = \frac{1}{\sigma p - (N - \gamma)(1 - m)} = \frac{1}{\sigma(p - p_c)}. \tag{1.10}
\]

**Theorem 1.2 (Local Upper Bounds)** Let \( u \) be a nonnegative local strong solution to \( \text{WFDE} \) on the cylinder \( \Omega \times (0,T) \). Let moreover \( p \geq 1 \) if \( m \in (m_c, 1) \) and \( p > p_c \) if \( m \in (0, m_c] \). Let \( B_{2R_0}(x_0) \subset \Omega \), assume that \( B_{R_0}(x_0) \) satisfies either (1), (2) or (3). Then there exist \( \overline{\pi}_1, \overline{\pi}_2 > 0 \) such that for any \( t \in (0,T) \) we have  

\[
\sup_{y \in B_{R_0}(x_0)} u(t, y) \leq \frac{\overline{\pi}_1}{t^{(N-\gamma)\sigma_p}} \left[ \int_{B_{2R_0}(x_0)} |u_0(y)|^p |y|^{-\gamma} \, dy \right]^{\sigma_p} + \overline{\pi}_2 \left[ \frac{\mu_{\beta}(B_{R_0}(x_0))}{\mu_{\gamma}(B_{R_0}(x_0))} \right]^{t^{-m}}, \tag{1.11}
\]

where \( \vartheta_p \) and \( \sigma \) are defined as in (1.10). The constants \( \overline{\pi}_1, \overline{\pi}_2 \) depends only on \( N, \gamma \) and \( \beta \).

Part I contains the proof of Theorem 2.1 which implies the above theorem as a particular case.

**Remark 1.3** (i) The above smoothing effect may fail when \( m < m_c \), if we choose exponents \( p < p_c \). Indeed, there is an explicit counterexample to the above \( L^p \rightarrow L^\infty \) smoothing effect for solutions with initial data in \( L^p_{\gamma, loc} \) with \( p < p_c \), given by the following function:  

\[
U(t, x) = c (T-t)^{\frac{1}{1-m}} |x|^{-\frac{\sigma \vartheta_p}{\sigma \vartheta_p}},
\]

where \( c = c(m, N, \gamma, \beta) \) is chosen in such a way that \( U \) becomes a local solution to \( \text{WFDE} \) in the cylinder \( (0,T) \times \mathbb{R}^N \). In the non-weighted case \( \beta = \gamma = 0 \), the above counterexample was shown in [17, 30].

(ii) It is worth noticing that when \( \gamma = 2 + \beta \) or when \( \sigma = 0 \), i.e. outside our range of parameters (1.1), also in linear case the smoothing effect fails: this has been proved in [26] by means of counterexamples.

(iii) The above upper bound (2.1) contains two terms, the first takes into account the influence of the initial data, while the second takes into account the “worst case scenario”, that happens when the local weak solution comes from the so-called large solutions, namely solutions to the Dirichlet problem which go to \(+\infty\) in the lateral boundary, see for instance [10, 17].

Our second result concerns quantitative positivity estimates. In order to state our main positivity results, we need to introduce first the following intrinsic quantities, for \( p \geq 1 \):

\[
H_p(f, x_0, R) := \frac{\mu_\gamma(B_R(x_0))^{\sigma \vartheta_p}}{\mu_\gamma(B_R(0))^{\sigma \vartheta_p}} \left[ \frac{\mu_\gamma(B_R(x_0))}{\mu_\gamma(B_R(0))} \left( \frac{\int_{B_R(x_0)} f^p |x|^{-\gamma} \, dx}{\int_{B_R(0)} f^p |x|^{-\gamma} \, dx} \right)^{\frac{1}{\sigma \vartheta_p}} \right]^{\vartheta_p}, \tag{1.12}
\]

\[
\tilde{H}_p := H_p(f, x_0, R) := 1 + \left( \frac{|x_0|}{R} \vee 1 \right)^{\beta - \gamma} H_p(f, x_0, R)^{1-m} \geq 1,
\]

where \( \vartheta_p \) and \( \sigma \) are defined as in (1.10); we notice that in the cases (1), (2) and (3) the quantities \( |x_0|/R_0 \) and \( \mu_\gamma(B_R(x_0))^{\sigma \vartheta_p}, \mu_\gamma(B_R(0))^{-\sigma \vartheta_p} \), become independent of \( x_0, R \). The above quantity is an adaptation to the weighted case of a similar one introduced in [17] and it plays an essential role in the positivity estimates: in particular, \( H_p \) encodes the geometric information of the weights which is relevant in the estimates. Notice that in the good fast diffusion range, i.e. when we can choose \( p = 1 \), \( H_p \) (hence \( \tilde{H}_p \)) does not depend on \( f \):

\[
H_1(f, x_0, R) = \frac{\mu_\gamma(B_R(x_0))^{\sigma \vartheta_p}}{\mu_\gamma(B_R(0))^{\sigma \vartheta_p}}.
\]

We are now in the position to state our main positivity result.
\textbf{Theorem 1.4 (Local Lower Bounds)} Let \( u \) be a nonnegative local strong (super)solution to \text{WFDE} on \((0, T) \times \Omega \) and let \( 0 \leq u_0 \in L^p_{\text{loc}}(\Omega) \) with \( p \geq 1 \) if \( m \in (m_c, 1) \) and \( p > p_c \) if \( m \in (0, m_c) \). Let \( B_{2R}(x_0) \subseteq \Omega \) and assume that \( B_{R}(x_0) \) satisfies either (1), (2) or (3). Define the minimal life time \( t_* \) as

\[
t_* = t_*(u_0, x_0, R) = \kappa_* R^\sigma \frac{\|u_0\|_{L^1(B_R(x_0))}^{1-m}}{\mu_\gamma(B_R(x_0))^{1-m}}. \tag{1.13}
\]

Then, there exists \( \kappa_0 = \kappa(H_p(u_0, x_0, R), R, N, m, \gamma, \beta) > 0 \) such that

\[
\inf_{x \in B_{2R}(x_0)} u(t, x) \geq \kappa \left[ \frac{\mu_\beta(B_R(x_0))}{\mu_\gamma(B_R(x_0))} \right] \frac{t}{R^2} \quad \text{for any } t \in [0, t_* \wedge T]. \tag{1.14}
\]

The constants \( \kappa, \kappa_0 > 0 \) depend on \( N, m, \gamma, \beta; \kappa_* > 0 \) is given in Corollary 3.13 and \( \kappa \) has an (almost) explicit expression is given in (3.49); when \( m \in (0, m_c] \), \( \kappa_0 \) depends also on \( H_p(u_0, x_0, R) \) defined in (1.12).

\textbf{Remark 1.5} (i) Roughly speaking, the above lower bound (1.14) shows that any bounded nonnegative solution becomes instantaneously (strictly) positive on a whole time interval \( (t_0, t_* (t_0)] \). This result will allow us to give an estimate on the size of the intrinsic cylinders, which are the natural domain for Harnack and Hölder continuity estimates, see also Part III. We construct intrinsic cylinders inside arbitrary ones: in the literature this is often an assumption, cf. [30].

(ii) All the constants are computable: from the expression (3.49) of \( \kappa \) we deduce that when \( \bar{H}_p \), defined in (1.12), is large enough, then there is a \( c_1 > 0 \) depending on \( N, m, p, \beta, \gamma \) such that

\[
\kappa \leq \bar{H}_p^{-\frac{\beta}{m(1-m)}}.
\]

(iii) As already mentioned above, when \( m_c < m < 1 \), the constant \( H_p \) does not depend on \( u_0 \), hence formula (1.14) provides an absolute lower bound, i.e. independent of \( u \) and \( u_0 \):

\[
\inf_{x \in B_{2R}(x_0)} u(t, x) \geq \kappa \left[ \frac{\mu_\beta(B_R(x_0))}{\mu_\gamma(B_R(x_0))} \right] \frac{t}{R^2} \quad \text{for any } t \in [0, t_* \wedge T].
\]

where \( \kappa_0 \) only depends on \( N, m, \gamma, \beta \). However the presence of \( u_0 \) is still felt through \( t_* \sim \|u_0\|_{L^1}^{1-m} \).

(iv) The proof of Theorem 1.4, the major technical contribution of this paper consists of four main steps, explained in detail in Part II. Our proof applies also for the non-weighted case \( \gamma = \beta = 0 \), and we recover the result of [17] with a different proof.

Our quantitative upper and lower bounds fairly combine into Harnack-type inequalities.

\textbf{Theorem 1.6 (Harnack Inequalities)} Let \( u \) be a nonnegative local strong solution to \text{WFDE} on \((0, T) \times \Omega \) and let \( 0 \leq u_0 \in L^p_{\text{loc}}(\Omega) \) with \( p \geq 1 \) if \( m \in (m_c, 1) \) and \( p > p_c \) if \( m \in (0, m_c) \). Let \( B_{8R}(x_0) \subseteq \Omega; t_0 \in (0, T) \) and assume that \( B_{2R}(x_0) \) satisfies either (1), (2) or (3). Define

\[
t_* = t_*(u(t_0), x_0, 2R) = \kappa_* (2R)^\sigma \mu_\gamma(B_{2R}(x_0))^{m-1} \|u(t_0)\|_{L^1(B_{2R}(x_0))}^{1-m}.
\]

Then, for any \( \varepsilon \in (0, 1) \), there exists \( \overline{\gamma}_3 > 0 \) such that for any \( t, t \pm \theta \in [t_0 + \varepsilon t_*(t_0), t_0 + t_*(t_0)] \cap (0, T) \)

\[
\sup_{x \in B_{R}(x_0)} u(t, x) \leq \overline{\gamma}_3 \inf_{x \in B_{R}(x_0)} u(t \pm \theta, x). \tag{1.15}
\]

The constants \( \kappa_*, \overline{\gamma}_3 > 0 \) depend on \( N, m, \gamma, \beta \) and are given in (3.40) and (1.14) respectively; \( \overline{\gamma}_3 \) eventually depends on \( R, x_0 \) and \( \varepsilon \), when \( 0 < m \leq m_c \), also on \( H_p(u_0, x_0, 2R) \) defined in (1.12).
**Remark 1.7** (i) In (1.16) we may take the infimum and the supremum at the same time (elliptic-type Harnack inequality, $\theta = 0$); we can even take the infimum at a previous time (backward-type Harnack inequality, $\theta < 0$): both inequalities are in contrast with the classical parabolic Harnack inequality valid for the linear heat equation ($m = 1$), which needs to be forward in time (infimum at a later time, $\theta > 0$), [51] [70] [75]. Indeed, elliptic and backward Harnack inequalities are typical features of fast diffusion equations, as already observed in [17] [91]. They are false in general for the Heat Equation ($m = 1$) and for the Porous Medium Equation ($m > 1$), when dealing with local solutions (i.e. regardless of the boundary conditions), or in the case of solutions to the Cauchy problem posed on $\mathbb{R}^N$. However for solutions to the homogeneous Dirichlet problem, also when $m \geq 1$, elliptic and backward inequalities have been proven, see [10] [41] [18] [40] [81].

(ii) Our result is quantitative, in the sense that all the constants are computable: from the expression (4.14) of $\pi_3$, when $\tilde{H}_p$ is large enough, we deduce

\[ \pi_3 \approx \varepsilon \frac{1}{\kappa} |\tilde{H}_p(u_0, x_0, 2R)| \tilde{H}_p^{-1/2} \kappa, \]

where $\tilde{H}_p$ is given in (4.12), and $c > 0$ only depends on $N, m, p, \beta, \gamma$.

(iii) Notice that in the good fast diffusion range, we can choose $p = 1$ and obtain a more classical form of the above Harnack inequality i.e. with the constant independent of $u_0$:

\[ \sup_{x \in B_R(x_0)} u(t, x) \leq \pi_3' \inf_{x \in B_R(x_0)} u(t \pm \theta, x), \]

with $t_*$ as in (1.15) and where $\pi_3'$ depend only on $N, m, p, \gamma, \beta$ and eventually $R, x_0$. As already explained in the Introduction, in the very fast diffusion range we can not eliminate the dependence on $u_0$ in the above Harnack inequalities (1.15); indeed, explicit counterexamples as in the non-weighted case can be constructed, see [17] [31].

Our last main results concerns continuity estimates, and the proof relies on some results for linear weighted equation that we describe later.

**Theorem 1.8 (Interior Hölder Continuity)** Let $u$ be a nonnegative local weak solution to the WPDE on $Q := [0, T) \times \Omega$. Let $t_0 \in [0, T)$ and $B_{16R_0}(x_0) \subset \Omega$ and assume that $B_{4R_0}(x_0)$ satisfies either (1), (2) or (3). If $u \leq M_0 < \infty$ on $(t_0, T \land (t_0 + t_*)] \times B_{4R_0}(x_0)$ with $t_* = t_*(u(t_0), x_0, 4R_0)$ as in (1.19), then there exist $\alpha \in (0, 1)$ and $\pi_\alpha > 0$, such that we have the Hölder continuity estimates

\[ |u(t, x) - u(\tau, y)| \leq \pi_\alpha \frac{M_0}{R_0} |x - y|^\alpha + M_0^{m-1} |t - \tau|^{\frac{\gamma}{m}}, \]

for all $t, \tau \in \left[ t_0 + \frac{3}{5}t_*, t_0 + \frac{6}{5}t_* \right] \cap (0, T)$ and all $0 < |x - y| \leq R \leq R_0/4$, where $R$ satisfies

\[ R^{\gamma/\beta} (4R) \leq 2^{\gamma/2-3} M_0^{m-1} t_* \]

The constants $\alpha \in (0, 1)$ and $\pi_\alpha > 0$, depending on $N, \gamma, \beta, H_p(u(t_0), x_0, 4R_0)$ and eventually $R_0, x_0$.

**Remark 1.9** (i) We provide a (non optimal, but explicit) expression of the exponent $\alpha$ in Part III, and we show that it can vary depending on the base point $x_0$ and on the radius $R_0$; this may seem strange at a first sight, but indeed it is perfectly reasonable in view of the following example. Consider the Cauchy problem on the whole space: the fundamental (or Barenblatt) solution, has a selfsimilar form $B(t, x) = t^\alpha F(|x| t^{-\beta})$ where $F(|x|) = A(D + |x|)^{\gamma/2+1/2}$, see [8] [9]. Clearly this explicit solution is merely Hölder continuous at zero when $\sigma \in (0, 1)$, is $C^{1, \alpha}$ when $\sigma \in (1, 2]$ and so on. We can appreciate here the effect of the weights on the regularity of solutions. Again, it is worth noticing that when $\sigma = 0$, Hölder continuity fails, as well as the upper bounds, see Remark 1.3 (ii).

(ii) The above theorem is stated in a general form emphasizing the fact that bounded solutions are $C^\alpha$ on a smaller intrinsic cylinder, whose size depend both on $t_*$ (i.e. on the $L_1^1$ norm) and on the $L^\infty$ bound $M_0$. 
A closer inspection of the proof reveals that by slightly changing \( t_* \) to \( t_\ast = t_\ast(u(t_0), x_0, 8R) \), and using the upper bounds of Theorem 1.2 or 2.1, we can choose \( M_0 = cH_p(u(t_0), x_0, 8R_0)(t_\ast/R_0)^{1/m} \), as in the proof of Theorem 1.6. This fact reveals that the intrinsic cylinders, where Hölder continuity holds, have the form

\[
Q_\ast(t_0, x_0) = \left[ t_0 + \frac{5}{8} t_\ast, t_0 + \frac{6}{8} t_\ast \right] \times B_R(x_0), \quad \text{with} \quad \rho_{x_0}^{1,\ast}(4R) \leq c \frac{R_0^m}{H_p^{1-m}(u(t_0), x_0, 8R_0)}
\]

where the latter bounds now replaces (1.17). As a consequence, we deduce that \( H_p \) gives the correct size of the intrinsic cylinders. Also, the exponent \( \alpha \) depends on \( H_p \) and \( t_\ast \) in a quantitative way,

\[
\alpha \sim \exp \left( -\frac{c_6}{t_\ast} \frac{c p(1-m)}{m} H_p^{1-m/2} \right)
\]

where \( c_i > 0 \) only depend on \( N, m, p, \beta, \gamma \). See the end of the proof of Theorem 1.8 for more details. Therefore, the size of the intrinsic cylinders in the good fast diffusion range can be chosen to depend only on \( t_\ast \) (i.e. on the \( L^1 \) norm of \( u(t_0) \)), while in the very fast diffusion range it has to depend also on \( H_p \). The same happens for the exponent \( \alpha \). This reveals a typical feature of the fast diffusion equation, for which there are strong differences between the two regimes. We last notice that such quantities are stable in the limit \( m \to 1^- \), in which case we recover the linear results. On the other hand, by the above formulae, it is also clear that \( \alpha \to 0^+ \) when either \( m \to 0^+ \) or \( H_p \to +\infty \). These facts are compatible with the fact that it is known that solutions to the Dirichlet problem with \( m = 0 \) (i.e. the logarithmic diffusion) extinguish immediately, and with the fact that if \( H_p = +\infty \) the solution maybe unbounded.

(iii) We have already mentioned above that the optimal Hölder exponent \( \alpha \) is not known, since \( \alpha \) in general has to depend on \( R_0, x_0 \). However, in some particular cases, \( \alpha \) can be chosen uniformly in the whole range \( m \in (0, 1) \). This happens for instance in the Cauchy problem on the whole space, when we deal with the class of solutions trapped between two Barenblatt, in which case \( H_p \) can be shown to be a suitable constant, see for instance [8, 9]. Notice that in this latter case, solutions are \( C^\alpha \) around the origin, and classical elsewhere.

**Harnack inequalities and Hölder continuity in the linear case.** The study of quantitative regularity estimates for linear parabolic equations with measurable coefficients begins with Moser [71]. We show in Section 4.1 analogous quantitative Harnack inequalities and Hölder continuity for weak solutions to linear equations with degenerate/unbounded coefficients, whose prototype is given by \( u_t = |x|^{\gamma} \nabla \cdot (|x|^{-\beta} a(t, x) \nabla u) \), with \( 0 < \lambda_0 \leq a(t, x) \leq \lambda_1 \); in our estimates, we keep track on the dependence on \( \lambda_0, \lambda_1 \). We do not claim originality for these results, indeed in many ranges of parameters they were already known [23, 24, 25, 26, 50, 49]; however we did not find in literature the quantitative result that we needed, hence we sketch the proof in Section 4.1. The motivation for this analysis comes from the application to nonlinear equations: our proof of the Hölder continuity for solutions to WFDE, heavily depends on the linear estimates.

### 1.2 Possible generalizations.

**Other range of parameters.** Formally our results extend to a wider zone of parameters, namely zone (II) in Figure 2, which amounts to require: \( \gamma > N \) and \( \frac{N-2}{N} \gamma \geq \beta \geq N - 2 \), note that in this case the weight \( |x|^{-\gamma} \) is not integrable at \( x = 0 \), also \( |x|^{-\beta} \) is allowed to be not integrable and \( \sigma = 2 + \beta - \gamma < 0 \). Allowing this range of parameters would require more technical results about the weighted functional spaces and inequalities involved in our proofs: we have decided to not treat this case here, since a rigorous proof would require a significant amount of technical results that would increase the length of the paper. **Possible generalizations.** For the sake of simplicity we assume that \( N \geq 3 \), but our method works with straightforward modifications also when \( N = 1, 2 \). We can allow for more general weights, equations and nonlinearities. For instance,

\[
w_\gamma^{-1}(x)u_t = \sum_{i,j=1}^{N} \partial_i (A_{i,j}(t,x) \partial_j F(u)) + B(t,x,\nabla u, u).
\]
with namely $w_\gamma(x) \asymp |x|^{-\gamma}$ and $0 < \lambda_0|x|^{-\beta} |\xi|^2 \leq \sum_{i,j=1}^N A_{i,j}(t,x)\xi_i\xi_j \leq \lambda_1|x|^{-\beta} |\xi|^2$; we can also translate the singularity at another point $x_0 \neq 0$. The method can be extended also to more general nonlinear operators of the form

$$w_{\gamma}^{-1}(x)u_t = \nabla \cdot A(t,x,u,\nabla u) + B(t,x,\nabla u, u),$$

with $w_\gamma$ as above and $|A(t,x,u,\nabla u)| \leq \lambda_1|x|^{-\beta} |\nabla |u|^m|$, and $A(t,x,u,\nabla u) \cdot \nabla u \geq \lambda_0|x|^{-\beta} \nabla |u|^m|^2$. The assumptions on the nonlinearity $F$ can be weakened, we can allow a concave $F$ with $F(u) \asymp |u|^{m-1}u$ for $u \sim 0$, and regular outside zero. As for the lower order term $B$, the typical assumption would be $|B(t,x,u,\nabla u)| \leq \lambda_1|x|^{-\beta} |\nabla |u|^m| + \lambda_2 w_\gamma(x)|u|^m$, but they can be weakened.

Our methods can be adapted to hold also on Riemannian manifolds; we can possibly allow manifolds with unbounded curvature, as already mentioned, and this partially motivates the present paper.

### 1.3 Weighted Functional Inequalities

In order to study regularity properties of the solution to WFDE a key point in our approach is represented by weighted functional inequalities, that we briefly recall here. For any $\gamma < N$, consider the measure $\mu_\gamma(B) := \int_B |x|^{-\gamma} \, dx$, which is known to be doubling, i.e.

$$\mu_\gamma(B_{2R}) \leq D_{\gamma} \mu_\gamma(B_R),$$

(1.18)

where $B_R$ is a ball contained in $\mathbb{R}^N$ and the constant $D_{\gamma}$ depends only on the dimension $N$ and the parameter $\gamma$, see [52, Chp. 15]. On the whole $\mathbb{R}^N$, there is a celebrated family of interpolation inequalities, the so-called Caffarelli-Kohn-Nirenberg inequalities [20], that we state hereafter in a special case, namely as in (1.2). Let $\gamma, \beta$ as in (1.1), then there exists a constant $S_{\gamma, \beta} > 0$ such that for any $f \in C^\infty_c(\mathbb{R}^N)$ the following inequality holds true

$$\|f\|_{L^{r^*_\gamma}(\mathbb{R}^N)} \leq S_{\gamma, \beta} \|\nabla f\|_{L^2(\mathbb{R}^N)} \quad \text{where} \quad r^* = \frac{N - \gamma}{N - (2 + \beta)},$$

(CKNI)

the weighted $L^p$ norms are defined in subsection 1.1. This family of inequalities contains both the classical Sobolev inequality ($\gamma = \beta = 0$) and the Hardy inequality ($\beta = \gamma - 2$), cf. [66]. In our range of parameters (1.1) (see Figure 2) we always have $r^* \in [2, 2N/(N - 2)]$,
Proposition 1.10 Let \( N \geq 3 \), \( \gamma, \beta \) be as in (1.1), \( r^* \) be as in (CKNI) and \( \sigma \) as in (1.10). Let \( x_0 \in \mathbb{R}^N \) and \( R > 0 \). Then, there exists a constant \( S_{\gamma, \beta} > 0 \) depending only on \( N, \beta, \gamma \), such that for any \( f \in H^1_{\gamma, \beta}(B_R(x_0)) \) the following inequality holds true:

\[
\|f\|_{L^\sigma_r(B_R(x_0))} \leq S_{\gamma, \beta} \left( \|\nabla f\|_{L^2_r(B_R(x_0))} + \mu_\gamma(B_R(x)) \frac{r^*}{\gamma} \|f\|_{L^2_r(B_R(x_0))} \right). \tag{CKNI2}
\]

The above (CKNI2) will play the role of the classical Sobolev inequality in the proof of both upper and lower bounds, hence we have have given a short proof of the above inequality in Appendix-B.

Another essential tool in our proofs will be the following weighted Poincaré inequality.

Proposition 1.11 (Poincaré Inequality) Let \( N \geq 3 \) and \( \gamma, \beta < N \) as in (1.1), \( x_0 \in \mathbb{R}^N \) and \( R > 0 \). Then there exists a constant \( P_{\gamma, \beta} > 0 \) such that for any \( \phi \in H^1_{\gamma, \beta}(B_R(x_0)) \) we have

\[
\left( \frac{1}{\mu_\gamma(B_R(x_0))} \int_{B_R(x_0)} |\phi - \overline{\phi_\gamma}|^2 |x|^{-\gamma} \, dx \right)^\frac{1}{2} \leq P_{\gamma, \beta} R \left( \frac{1}{\mu_\beta(B_R(x_0))} \int_{B_R(x_0)} |\nabla \phi|^2 |x|^{-\beta} \, dx \right)^\frac{1}{2}, \tag{1.19}
\]

where \( \overline{\phi_\gamma} = \mu_\gamma(B_R(x_0))^{-1} \int_{B_R(x_0)} \phi |x|^{-\gamma} \, dx \); the constant \( P_{\gamma, \beta} > 0 \) depends only on \( N, \gamma, \beta \).

The above Poincaré inequality is a direct consequence of a more general one, called Sobolev-Poincaré inequality see [52 Chp. 15], and also [39, 42, 53, 44] and reference therein for the known results. For the sake of completeness, we have decided to give a proof of the above inequality in Appendix-B.

In the proof of positivity estimates we will also use BMO weighted spaces and a weighted John-Nirenberg inequality; we recall here the definition and inequalities that we will use, for convenience of the reader.

Definition 1.12 A function \( f \in L^1_{\gamma, \text{loc}}(\Omega) \) is said to be in \( \text{BMO}_\gamma(\Omega) \) if

\[
\|f\|_{\text{BMO}_\gamma(\Omega)} := \sup_{B \in \Omega} \frac{1}{\mu_\gamma(B)} \int_B |f - \overline{f}_B||x|^{-\gamma} \, dx < +\infty,
\]

where \( B \) are balls compactly contained in \( \Omega \) and \( \overline{f}_B = \mu_\gamma(B)^{-1} \int_B f |x|^{-\gamma} \, dx \).

The following version of the John-Nirenberg Lemma can be found for instance in [52 Thm 18.3].

Lemma 1.13 (Weighted John-Nirenberg inequality, [52]) Let \( f \in \text{BMO}_\gamma(\Omega) \). Then, for any ball \( B \) compactly contained in \( \Omega \) the following inequality holds

\[
\frac{1}{\mu_\gamma(B)} \int_B e^{|f - \overline{f}_B||x|^{-\gamma}} \, dx \leq \overline{\pi}_5 \text{ for any } 0 < s \leq \frac{1}{\overline{\pi}_6 \|f\|_{\text{BMO}_\gamma(\Omega)}}, \tag{1.20}
\]

where \( \overline{\pi}_5 \) and \( \overline{\pi}_6 \) are positive constants depending only on \( N, \gamma \).

From the above inequality follows Corollary 1.14 that will play a crucial role in Part II.

Corollary 1.14 Let \( u : \Omega \to \mathbb{R} \) be a positive measurable function such that \( \log(u) \in \text{BMO}_\gamma(\Omega) \). Then the following inequality holds

\[
\|u\|_{L^s_\gamma(B)} \leq \overline{\pi}_5^\frac{2}{\gamma} \mu_\gamma(B) \overline{\pi}_6^\frac{2}{\gamma} \|u\|_{L^2_\gamma(B)} \text{ for any } 0 < s \leq \frac{1}{\overline{\pi}_6 \|\log(u)\|_{\text{BMO}_\gamma(\Omega)}}, \tag{1.21}
\]

where \( B \) is any ball compactly contained in \( \Omega \), \( \overline{\pi}_6 > 0 \) is as in Lemma 1.13 and \( \overline{\pi}_7 > 0 \) is a constant depending on \( N, \gamma \).

Proof. The proof of this result follows by the weighted John-Nirenberg inequality (1.20); it is a straightforward adaptation of the proof of [70, Theorem 4], see also [15, Proposition 4.4].
2 Part I. Local upper bounds and energy estimates

The main result of this part is a precise and quantitative local upper bound, which ensures that sufficiently locally integrable solutions are indeed bounded at a later time, as precisely stated below; this generalizes Theorem 1.2 to cover all the cases (a), (b) and (c) discussed in Subsection 1.1.

Theorem 2.1 Let $u$ be a nonnegative local strong solution to $\text{WFDE}$ on the cylinder $\Omega \times (0, T]$. Let moreover $p \geq 1$ if $m \in (m_c, 1)$ and $p > p_c$ if $m \in (0, m_c]$. Let $x_0 \in \Omega$ and $0 < R_0$ such that $B_{2R_0}(x_0) \subset \Omega$. Then there exist $\overline{\kappa}_8, \overline{\kappa}_9 > 0$ for any $0 < t - t_0 < T$ such that

$$
\sup_{y \in B_{R_0}(x_0)} u(t, y) \leq \frac{\overline{\kappa}_8}{(t - t_0)^{(N - \gamma)\sigma_p}} \left[ \int_{B_{2R_0}(x_0)} |u(t_0, y)|^p |y|^{-\gamma} \, dy \right]^{\sigma_p} + \frac{\overline{\kappa}_9}{|R_0|^m}, \quad (2.1)
$$

where $\sigma_p$ and $\sigma$ are as in (1.10). The constants $\overline{\kappa}_8, \overline{\kappa}_9$ depend only on $N, \gamma, \beta$ and eventually on the quotient $|x_0|/R_0$; they both have a explicit expression given in (2.27).

We have already observed the main features of the above upper bounds, see Remark 1.3. We shall now proceed with the proof of the Theorem, Subsection 2.4. Before that, we need a number of preliminary results, some of them having their own interest.

2.1 Local space-time energy estimates

We collect in this Subsection all the energy inequalities that we will use in the rest of the paper, the proof is quite technical, but follows by nowadays standard ideas; the hidden difficulty relies on the careful approximations needed to deal with the singular/degenerate nature of the weights. We postpone the proof to Appendix-A in order to not break the flow of the proof. In order to state the energy inequalities in all the possible scenarios, we introduce an auxiliary function: to avoid unnecessary complications, we consider balls $B_{R_1}(x_0) \subset B_R(x_0)$ such that $0 \not\in B_R(x_0) \setminus B_{R_1}(x_0)$. Let $0 < R_1 < R$ and $\sigma = 2 + \beta - \gamma \in (0, \infty)$ and define

$$
h_\sigma (R, R_1, x_0) = \begin{cases} 
\left( \frac{R + |x_0|}{R - R_1} \right)^{2 - \sigma}, & \text{if } 0 < \sigma < 2, \\
1 \vee \left( \frac{R - R_1}{|x_0|} \right)^{\sigma - 2}, & \text{if } \sigma \geq 2 \text{ and } 0 \in B_{R_1}(x_0), \\
1 \vee \left( \frac{R - R_1}{|x_0| - R} \right)^{\sigma - 2}, & \text{if } \sigma \geq 2 \text{ and } 0 \not\in B_{R_1}(x_0).
\end{cases} \quad (2.2)
$$

The function $h_\sigma$ takes into account the change of geometry and cover more general cases that the ones defined in (1), (2) and (3). We moreover observe that under hypothesis (1), (2) or (3) we have

$$
h_\sigma (4R, R, x_0) \asymp h_\sigma (2R, R, x_0) \asymp C_{\gamma, \beta} \quad \text{and} \quad R^\sigma \asymp \frac{1}{|R_0|^m} \mu_\beta (B_{R_0}(x_0)),
$$

where the constant $C_{\gamma, \beta}$ depends only on the constants $\gamma, \beta$. This is consistent with the weighted estimates proved in the linear case, see [24, 50, 49] and also Remark 2.7 below.

Lemma 2.2 (Energy estimates) Let $x_0 \in \mathbb{R}^N$, $0 < R_1 < R$ such that $0 \not\in B_R(x_0) \setminus B_{R_1}(x_0)$ and let $0 < m < 1$, $0 \leq t_0 < T_1 < T$.

- Let $u$ be a nonlocal negative local subsolution to $\text{WFDE}$ in $(T_0, T) \times B_R(x_0)$. Let $p \geq 1$ and assume $u \in L^p((T_0, T) \times B_R(x_0))$. Then there exists $c_1 > 0$ depending only on $m, p, N$, such that

$$
\sup_{\tau \in [T_0, T]} \left\{ \int_{B_{R_1}(x_0)} u^p(\tau, x) |x|^{-\gamma} \, dx \right\} + \int_{T_0}^T \int_{B_{R_1}(x_0)} \left| \nabla u^{\frac{m-1}{m-1+p}} \right|^2 |x|^{-\beta} \, dx \, dt 
\leq c_1 \left[ \frac{h_\sigma (R, R_1, x_0)}{(R - R_1)^{\sigma}} + \frac{1}{T_1 - T_0} \right] \int_{T_0}^T \int_{B_{R_0}(x_0)} \left( u^{p+m-1} + u^p \right) |x|^{-\gamma} \, dx \, dt. \quad (2.3)
$$
• Let $\delta > 0$ and $u \geq \delta$ be a local strong supersolution to WFDE in $(T_0, T) \times B_R(x_0)$.
  - For all $0 < p < 1 - m$ there exists $c_2 > 0$ depending only on $m, p, N$, such that
    \[
    \int_{B_{R_1}(x_0)} u(T_0, x) \frac{1}{p} |x|^{-\gamma} \, dx + \int_{T_0}^{T_1} \int_{B_{R_1}(x_0)} \left| \nabla u^{\frac{m-1}{2}} \right|^2 |x|^{-\beta} \, dx \, dt \\
    \leq c_2 \left[ \left( \frac{h(R, R_1, x_0)}{R - R_1} + \frac{1}{T - T_1} \right) \int_{T_0}^{T} \int_{B_{R_1}(x_0)} (u^{p+m-1} + u^p) |x|^{-\gamma} \, dx \, dt \right],
    \]  
  \tag{2.4}
  \]
  - For all $p > 0$ there exists $c_3 > 0$ depending only on $m, p, N$, such that
    \[
    \sup_{\tau \in [T_1, T]} \left\{ \int_{B_{R_1}(x_0)} u(\tau, x) \frac{1}{p} |x|^{-\gamma} \, dx \right\} + \int_{T_1}^{T} \int_{B_{R_1}(x_0)} \left| \nabla u^{\frac{m-1}{2}} \right|^2 |x|^{-\beta} \, dx \, dt \\
    \leq c_3 \left[ \left( \frac{h(R, R_1, x_0)}{R - R_1} + \frac{1}{T_1 - T_0} \right) \int_{T_0}^{T} \int_{B_{R_1}(x_0)} (u^{-p+m-1} + u^{-p}) |x|^{-\gamma} \, dx \, dt \right], \tag{2.5}
    \]

The constants $c_1, c_2, c_3$ have an explicit expression given in the proofs.

We are going to consider the limiting case $p = 1 - m$, which in our setting plays the role of the celebrated Caccioppoli estimates: indeed, letting $m \to 1^-$ in (2.4) below (recall that $u^{1-m}/(1 - m) \to \log u$ in such limit), we recover the classical Caccioppoli estimates valid for $m = 1$ (and $\beta = \gamma = 0$), cf. \[1, 7, 8, 85\].

**Lemma 2.3 (Caccioppoli estimates)** Let $m \in (0, 1), \delta > 0$ and $u \geq \delta$ be a local strong supersolution to WFDE in $(T_0, T) \times B_R(x_0)$. Let $\psi \in C^\infty_\mathbb{C}(\Omega)$ with supp($\psi$) $\subseteq B_R(x_0) \subset \Omega$ and $T_0 \leq \tau < t \leq T$ we have
\[
\int_{B_{R_1}(x_0)} u(\tau, x) \frac{1-m}{2} \psi^2 |x|^{-\gamma} \, dx + \frac{m}{2} (1 - m) \int_{\tau}^{t} \int_{B_{R_1}(x_0)} \psi^2 |\nabla \log u|^2 |x|^{-\beta} \, dx \, dt \\
\leq 2 (1 - m) \int_{\tau}^{t} \int_{B_{R_1}(x_0)} |\nabla \psi|^2 |x|^{-\beta} \, dx \, dt + \int_{B_{R_1}(x_0)} u(t, x) \frac{1-m}{2} \psi^2 |x|^{-\gamma} \, dx.
\tag{2.6}
\]

**2.2 Behaviour of local $L^p$ norms.**

**Proposition 2.4** Let $m \in (0, 1)$ and $u(t, x) \in [T_0, T_1] \times \Omega \to \mathbb{R}$ be a nonnegative local strong solution to the WFDE. Let $x_0 \in \Omega$ and $R > 0$ such that $B_{2R}(x_0) \subseteq \Omega$. Then, for any $0 \leq \tau, t, \in [T_0, T_1]$ we have
\[
\left[ \int_{B_R(x_0)} u(t, x) |x|^{-\gamma} \, dx \right]^{1-m} \leq \left[ \int_{B_{2R}(x_0)} u(\tau, x) |x|^{-\gamma} \, dx \right]^{1-m} + \mathfrak{R}_1 \mu (B_R(x_0))^{1-m} |t - \tau|, \tag{2.7}
\]
where the constant $\mathfrak{R}_{10}$ depends only on $N, m, \gamma$ and $\beta$.

**Remark.** The above Lemma quantifies the displacement of local mass backward and forward in time, and has been first proved in [52] in the non-weighted case and for solutions to the Cauchy problem on $\mathbb{R}^N$: inequality (2.7) implies conservation of mass (letting $R \to \infty$, when $m > m_c$). It has also been used to prove estimates from below for the extinction time in different contexts: for the Cauchy problem when $m > m_c$, for any $m \in (0, 1)$ for the Dirichlet problem or on Manifolds with negative curvature, see [13, 17, 86]. Also in this weighted case it allows to prove the same results, we use it here (also) to prove lower bounds for the extinction time for the Minimal Dirichlet problem for all $m \in (0, 1)$, see [52].

**Proof.** Let $\phi$ be a cut-off function supported in $B_{2R}(x_0)$ and let $\phi = 1$ in $B_R(x_0)$. In what follows we will write $B_R$ instead of $B_R(x_0)$ when no confusion arises. We adopt the notation $L_{\gamma, \beta} f = |x|^{\gamma} \cdot \nabla \cdot (|x|^{-\beta} \nabla f)$, see also Lemma 5.2. Let us formally compute
\[
\frac{d}{dt} \int_{B_{2R}} u(t, x) \phi(x) |x|^{-\gamma} \, dx = \int_{B_{2R}} L_{\gamma, \beta} (u^m) \phi(x) |x|^{-\gamma} \, dx \\
= \int_{B_{2R}} u^m L_{\gamma, \beta} (\phi(x)) |x|^{-\gamma} \, dx \leq \int_{B_{2R}} u^m |L_{\gamma, \beta} (\phi(x))| |x|^{-\gamma} \, dx.
\tag{2.8}
\]
Let Proposition 2.5 Notice that joining the above estimate and (2.8) we get the closed differential inequality
\[ t \left\{ \int_{B_{2R}} u(t, x) \phi(x) |x|^{-\gamma} \, dx \right\}^{1-m} \leq C(\phi) \left[ \int_{B_{2R}} u(t, x) \phi(x) |x|^{-\gamma} \, dx \right]^{1-m} + (1-m) C(\phi) |t-\tau|. \]

An integration in time shows that for all $t, \tau \geq 0$ we have
\[ \left( \int_{B_{2R}} u(t, x) \phi(x) |x|^{-\gamma} \, dx \right)^{1-m} \leq \left( \int_{B_{2R}} u(\tau, x) \phi(x) |x|^{-\gamma} \, dx \right)^{1-m} + (1-m) C(\phi) |t-\tau|. \]

Since $\phi$ is supported in $B_{2R}$ and equal to 1 in $B_R$, this implies (2.7). The above proof is formal. It is quite lengthy, although standard to make it rigorous: we start by considering the integrated version of inequality (2.8), which follows by Definition 1.1 of weak solution plus an integration by parts (that can be justified through approximation); we then conclude by a Gronwall-type argument.

The proof is concluded once we show that $C(\phi)$ is bounded: choosing $\phi$ as in Lemma 5.2 we get
\[ \phi^{\frac{1-m}{m}} |\mathcal{L}_{\gamma, \beta}(\phi)|^{\frac{1}{1-m}} \leq \kappa_{10} R^{-\frac{1-m}{m}}, \]
where the constant $\kappa_{10} > 0$ does not depend on $x_0$ but only on $N, m, \gamma$ and $\beta$. Finally, we get
\[ (1-m) C(\phi) = (1-m) \left[ \int_{B_{2R}} \phi(x)^{\frac{1-m}{m}} |\mathcal{L}_{\gamma, \beta}(\phi(x))|^{\frac{1}{1-m}} |x|^{-\gamma} \, dx \right]^{1-m} \leq \frac{\kappa_{10}}{R^\sigma} \mu_\gamma(B_R)^{1-m}. \]

When $p > 1$ similar estimates still hold in the following slightly weaker form.

**Proposition 2.5** Let $m \in (0, 1)$ and $u$ be a nonnegative local strong solution to $\text{WFDE}$ on $(0,T) \times \Omega$. Let $p > 1$ and $u(\tau) \in L^p_{\gamma, \text{loc}}(\Omega)$ for some $\tau \geq 0$. Let $x_0 \in \Omega$ and $0 < R_1 < R$ such that $0 \not\in B_R(x_0) \setminus B_{R_1}(x_0)$. Then for any $t \geq \tau$ we have
\[ \left[ \int_{B_{R_1}(x_0)} u(t, x)^p |x|^{-\gamma} \, dx \right]^\frac{1-m}{p} \leq \left[ \int_{B_{R_0}(x_0)} u(\tau, x)^p |x|^{-\gamma} \, dx \right]^\frac{1-m}{p} + K_{R_0, R, p, \sigma, x_0}(t-\tau) \quad (2.9) \]
where the constant $K_{R_0, R, p, \sigma, x_0}$ is given by
\[ K_{R_0, R, p, \sigma, x_0} = c_p \frac{\mu_\gamma(B_{R_0}(x_0) \setminus B_{R_1}(x_0))^{1-m}}{(R_0 - R_1)^p}, \]
where $c_p \sim m(1-m)/(p-1)$ depends only on $p, m, N$.

**Remark.** The above estimates prove stability of local $L^p_\gamma$ norms. Analogous estimates have been proven in $\text{[17, 28, 29, 30]}$ in the non-weighted case and in $\text{[13]}$ on manifolds of non-positive curvature.

**Proof.** The energy inequality (5.1) can be formally written as follows, for any $0 \leq \psi \in C^\infty_c(\Omega)$
\[ \frac{d}{dt} \int_{\Omega} u^p \psi^2 |x|^{-\gamma} \, dx \leq \frac{2mp}{p-1} \int_{\Omega} u^{p+m-1} |\nabla \psi|^2 |x|^{-\beta} \, dx. \]
Using Hölder inequality with exponents $p/(1-m)$ and $p/(p+m-1)$ we get
\begin{equation*}
\int_{\Omega} u^{p+m-1} |\nabla \psi|^2 |x|^{-\beta} \, dx = \int_{\Omega} |\nabla \psi|^2 |x|^{-\beta} \frac{\gamma(p+m-1)}{p} \psi^{\frac{2(p+m-1)}{p}} u^{p+m-1} |x|^{-\gamma(p+m-1)} \frac{1}{p} \, dx
\end{equation*}
\begin{equation*}
\leq \left[ \int_{\Omega} u^{p} \psi^{2} |x|^{-\gamma} \, dx \right]^{1 - \frac{1}{p}} \left[ \int_{\Omega} |\nabla \psi|^{2(p+m-1)} |x|^{-\beta} \frac{\gamma(p+m-1)}{p} \psi^{-\gamma(p+m-1)} |x|^{\gamma} \psi^{-2(p+m-1)} \, dx \right]^{\frac{1}{p}}
\end{equation*}
Combining the above estimates we obtain the following differential inequality
\begin{equation*}
\frac{d}{dt} \int_{\Omega} u^{p} \psi^{2} |x|^{-\gamma} \, dx \leq C_{\psi} \left[ \int_{\Omega} u^{p} \psi^{2} |x|^{-\gamma} \, dx \right]^{1 - \frac{1}{p}} + \frac{(1 - m)}{p} C_{\psi} (t - \tau).
\end{equation*}
A rigorous derivation of the above inequality can be done by using directly the energy inequality \([6, 4]\) and a Grownall type argument. To conclude the proof, we need to show that $C_{\psi}$ is finite. To this end, we choose $\psi = \phi^{b}$ with $0 \leq \phi \leq 1$ so that $\text{supp}(\psi) \subseteq B_{R_{0}}$, $\text{supp}(|\nabla \psi|) \subseteq B_{R_{0}}(x_{0}) \setminus B_{R_{1}}(x_{0}) := A_{R_{0}, R_{1}}$; we take $b > p/(1-m)$ so that
\begin{equation*}
|\nabla \psi(x)| \frac{2b}{1-m} \psi(x) \frac{2p}{1-m} \leq C_{1} \phi^{2b} \frac{2p}{1-m} |\nabla \phi(x)| \frac{2p}{1-m} \leq C_{2} (R_{0} - R_{1})^{-\frac{2p}{1-m}}.
\end{equation*}
As a consequence, we obtain
\begin{equation*}
\frac{1 - m}{p} C_{\psi} = \frac{2m(1-m)}{p-1} \left[ \int_{A_{R_{0}, R_{1}}} |\nabla \psi|^{\frac{2p}{1-m}} \psi^{\frac{2p}{1-m}-\beta \frac{p}{1-m}} |x|^{\gamma} \, dx \right]^{\frac{1-m}{p}}
\end{equation*}
\begin{equation*}
\leq \left[ \frac{\pi c_{0,p}}{p} (R_{0} - R_{1})^{-\frac{2p}{1-m}} \int_{A_{R_{0}, R_{1}}} |x|^{\gamma - \beta \frac{p}{1-m}} \, dx \right]^{\frac{1-m}{p}} \leq c_{p} h_{\gamma}(R_{0}, R_{1}, x_{0}) \frac{1-m}{p} \mu_{\gamma}(A_{R_{0}, R_{1}})^{\frac{1-m}{p}} := K_{R_{0}, R_{1}, p, \gamma, x_{0}},
\end{equation*}
where $c_{p}, c_{0,p} \sim m(1-m)/(p-1)$, and in the last step we have used inequalities \([6, 2, 4, 5, 13, 3, 14]\), depending on the different cases. \hfill \Box

### 2.3 Space-time smoothing effects for linear and nonlinear equations

We prove here a weighted space-time $L^{p}_{\text{loc}} - L^{\infty}$ smoothing effects, through a Moser-type iteration. This result represents the core of the proof of our main upper estimates, Theorem \([2.1]\). Here we will cover more general cases than the ones defined in (1), (2) and (3).

**Theorem 2.6** Let $u \in L^{p}_{\text{loc}}((0, T) \times B_{R}(x_{0}))$ be a nonnegative local strong (sub)solution to \([\text{WFDE}]\), let $p \geq 1$ if $m \in (m_{c}, 1)$ and $p > p_{c}$ if $m \in (0, m_{c})$. Let $x_{0} \in \mathbb{R}^{N}$, $0 < R_{1} < R_{0} < R$ such that $0 \in B_{R_{0}}(x_{0}) \setminus B_{R_{1}}(x_{0})$ and let $0 \leq T_{0} < T_{1} < T$. Then there exists a constant $\overline{\sigma}_{11} > 0$ depending only on $\gamma, \beta, N, m, p$ such that the following inequality holds
\begin{equation}
\sup_{(t, y) \in (T_{0}, T) \times B_{R_{1}}(x_{0})} u(t, y) \leq \overline{\sigma}_{11} \left[ \left( \frac{h_{\gamma}(R_{0}, R_{1}, x_{0})}{(R_{0} - R_{1})^{p}} + \frac{1}{T_{1} - T_{0}} \right)^{(N-\gamma-\beta)\sigma_{p}} + \frac{1}{T_{0}} \int_{T_{0}}^{T} \int_{B_{R_{0}}(x_{0})} (u^{p+1}) \frac{dx}{|x|^{\gamma}} \right]^{\sigma_{p}} \tag{2.10}
\end{equation}
where $\sigma$ and $\sigma_{p}$ are defined in \((1.10)\), $h_{\gamma}$ is defined in \((2.2)\) and $\overline{\sigma}_{11}$ is given in \((2.20)\).
Remark 2.7 This result is similar to Theorem 2.4 of [17], but in this weighted case an important geometric factor appears: $h_\sigma$ defined in (2.22). Since the weights are not translation invariant, the factor $h_\sigma$ will change in a strong way the behaviour of the local estimates in the different situations (a), (b), (c) and (d), described in Section 2.1. The technical hypothesis $0 \in B_{R_0}(x_0) \setminus B_{R_1}(x_0)$ assumed in Theorem 2.6 guarantees that the quantity $h_\sigma(R_0, R_1, x_0)$ is finite. In the non-weighted case, similar estimates are proven in [28, 30, 31], with different operators and nonlinearities.

Remark 2.8 (The linear case with coefficients) A close inspection of the proofs (both of the above Theorem and of the energy inequalities) reveals that indeed the above result still hold true in the limit $m \to 1^-$, and eventually for more general equations, see Proposition 1.3 roughly speaking, we can consider solutions $v$ to the linear equation $v_t = \mathcal{L}_{\gamma, \beta} v$, where the prototype operator has the form $\mathcal{L}_{\gamma, \beta} v = |x|^{\gamma} \nabla \cdot (a(t, x)|x|^{\beta-\gamma} \nabla v)$ with $0 < \lambda_0 \leq a(t, x) \leq \lambda_1 < \infty$. We refer to Subsection 4.1 for more details.

We now proceed with the proof of Theorem 2.6 which relies on a variant of the celebrated Moser iteration, adapting the proof of Theorem 2.4 of [17] to the weighted setting under consideration, for this reason we will be rather sketchy in the proofs. As already mentioned in Subsection 2.1, the role of weighted Sobolev inequalities will be played here by the Caffarelli-Kohn-Nirenberg inequalities (CKN12), in the following form:

**Lemma 2.9 (Iterative version of CKNI Inequality)** Let $r^* := 2(N - \gamma)/(N - 2 - \beta)$ with $\gamma, \beta$ as in (1.10). Then for any ball $B_R(x_0)$ and for any $f \in L^2(T_0, T_1; H^1_{\gamma, \beta} B_R(x_0))$ and for any $a \in [1, r^*/2]$ the following inequality holds

$$
\int_{T_0}^{T_1} \int_{B_R(x_0)} f^{2a} \frac{dx}{|y|^\gamma} \leq 2 S_{\gamma, \beta}^2 \left( \int_{B_R(x_0)} f^{2} \frac{dx}{|y|^\gamma} + \mu_{\gamma}(B_R(x_0)) \right)^{\frac{2a-1}{2-a}} \left( \int_{B_R(x_0)} \nabla f \cdot \frac{dx}{|x|^\beta} \right)^{\frac{a}{2-a}},
$$

(2.11)

where $q = r^*/(r^* - 2) = (N - \gamma)/\sigma$, $\sigma$ is give in (1.10) and the constant $S_{\gamma, \beta} > 0$ is the one appearing in CKN12.

**Proof.** We will write $B_R$ instead of $B_R(x_0)$ and prove the result on $(T_0, T_1) \times B_1$. Since $r^*/2$ and $q$ are conjugate Hölder exponents, using Hölder and (CKN12) inequalities we get

$$
\int_{B_R(x_0)} f^{2a} \frac{dx}{|x|^\gamma} \leq \left[ \int_{B_R(x_0)} f^{r^*} \frac{dx}{|x|^\gamma} \right]^{\frac{2a}{r^*}} \left[ \int_{B_R(x_0)} f^{2(1-q)\frac{r^*}{2-a}} \frac{dx}{|x|^\gamma} \right]^{\frac{2-a}{r^*}} \leq 2 S_{\gamma, \beta}^2 \left[ \mu_{\gamma}(B_R(x_0)) \right]^{\frac{2-a}{2}} \left[ \int_{B_R(x_0)} \nabla f \cdot \frac{dx}{|x|^\beta} \right] \sup_{t \in (T_0, T_1)} \left[ \int_{B_R(x_0)} f^{2(1-q)\frac{r^*}{2-a}}(x, t) \frac{dx}{|x|^\gamma} \right]^{\frac{2-a}{r^*}}.
$$

Inequality (2.11) follows by integrating in time. □

**Proof of Theorem 2.6.** Throughout this proof $u$ will be a local strong solution to [WFDE] defined on $Q = (T_0, T) \times B_R(x_0)$. We shall define $v(t, x) = u(t, x) \vee 1$, so that $v$ is a local strong subsolution to the same equation. Notice that $v$ satisfies $u \leq v \leq u + 1$ almost everywhere in $Q$. Let us fix $x_0 \in \mathbb{R}^N$, and simply denote $B_R = B_R(x_0)$ ($B_{R_1} = B_{R_1}(x_0)$ resp.) when there is no ambiguity. In what follows we will make some a priori estimates of the solution: the quantity $h_\sigma$ will be involved and we can assume it to be bounded, as it will be clear later. We recall that $\sigma = 2 + \beta - \gamma > 0$, $r^* = 2(N - \gamma)/(N - 2 - \beta)$, and we set $q = (N - \gamma)/\sigma$. We will split the proof into several steps.

**Step 1. Preparation of the iteration step.** Let $0 < R_1 < R = R_0$ and $0 \leq T_0 < T < T_1$ and define $Q_0 := Q$ and $Q_1 := (T_1, T) \times B_{R_1}(x_0)$. We are going to prove the following inequality:

$$
\int_{Q_1} v^{a(p+m-1)} \frac{dt}{|x|^\gamma} \leq S_{\gamma, \beta}^2 (4c_1)^{1+\frac{\gamma}{2}} \left[ \frac{h_\sigma(R_0, R_1, x_0)}{(R_0 - R_1)} \right]^{1+\frac{\gamma}{2}} \left[ \int_{Q_0} v^{p} \frac{dt}{|x|^\gamma} \right]^{1+\frac{\gamma}{2}},
$$

(2.12)
where \( q = r^*/(r^* - 2) \) and \( c_1 > 0 \) depends on \( m, p, N \) and is given in the energy inequality (2.3).

To prove the above inequality, we first recall the CKNI inequality (2.11) with \( f^2 = u^{p+m-1} \):

\[
\int_Q |v^{(p+m-1)}| \frac{dx \, dt}{|x|^{\gamma}} \leq 2 \delta_{r,\beta}^2 \left[ \int_Q \left( u^{p+m-1} |x|^{-\gamma} + \mu_\gamma(B_{R_1}) \frac{x}{|x|^2} |\nabla v|^{\frac{p+m-1}{2}} |x|^{-\beta} \right) dx \, dt \right] \times \left[ \sup_{t \in (T_1, T]} \mu_\gamma(B_{R_1})^{-1} \int_{B_{R_1}(x_0)} v^{(p+m-1)(a-1)} |x|^{-\gamma} dx \right]^\frac{1}{\gamma}.
\]  

(2.13)

Next, we estimate the first term in the right-hand side using the upper energy inequality (2.3) applied to \( v \geq 1 \), so that \( v^{p+m-1} \leq v^p \) and

\[
\int_Q \left( u^{p+m-1} |x|^{-\gamma} + \mu_\gamma(B_{R_1}) \frac{x}{|x|^2} |\nabla v|^{\frac{p+m-1}{2}} |x|^{-\beta} \right) dx \, dt \leq \int_Q v^p |x|^{-\gamma} dx,
\]

where we have assumed (without loss of generality) that

\[
\tilde{J} := 2c_1 \mu_\gamma(B_{R_1}) \frac{x}{|x|^2} \left[ h_\sigma(R_0, R_1, x_0) + \frac{1}{T_1 - T_0} \right] \geq 1.
\]

We next estimate the second term in the right-hand side of (2.13), using again (2.3) applied to \( v \geq 1 \) and we observe that we can always choose \( a \in (1, r^*/2) \) such that \((p + m - 1)(a - 1)q = p\) to get

\[
\left[ \sup_{t \in (T_1, T]} \int_{B_{R_1}(x_0)} u^{(p+m-1)(a-1)} \frac{dx}{|x|^{\gamma}} \right]^\frac{1}{\gamma} \leq 2c_1 \left( h_\sigma(R_0, R_1, x_0) \frac{1}{(R_0 - R_1)^{a-1}} + \frac{1}{T_1 - T_0} \right) \int_Q v^p \frac{dt \, dx}{|x|^{\gamma}}.
\]

(2.15)

Combining inequalities (2.13), (2.14) and (2.15) we finally obtain (2.12).

- **Step 2.** The \( k \)th iteration step. We define a sequence of increasing exponents \( p_k \to +\infty \) and nested cylinders \( Q_k \subset Q_{k+1} \) as follows. We define first the exponents \( p_k \), recalling that \( q = r^*/(r^* - 2) \):

\[
p_{k+1} = \left( 1 + \frac{1}{q} \right) p_k + m - 1 = \left( \frac{1}{1 + \frac{1}{q}} \right)^{k+1} \left[ p_0 - q (1 - m) \right] + q (1 - m).
\]

(2.16)

Notice that in the range \( m \in (0, m_c] \), we have \( p_k < p_{k+1} \to +\infty \) if and only if \( p_0 > p_c \), while when \( m \in (m_c, 1) \) it suffices to have \( p_0 \geq 1 \); this justifies the assumption on the initial datum.

Next, we define the cylinders \( Q_k \subset Q = (T_0, T] \times B_{R_0} \) as follows:

\[
Q_k := (T_k, T] \times B_{R_k}(x_0) \quad \text{such that} \quad Q = Q_0 \supset Q_k \supset Q_{k+1} \rightarrow Q_\infty = (T_\infty, T] \times B_{R_\infty}.
\]

(2.17)

where we have chosen a decreasing sequence of radii \( R_0 > R_k > R_{k+1} \rightarrow R_\infty \) and an increasing sequence of times \( T_0 < T_k < T_{k+1} \rightarrow T_\infty \) such that

\[
R_k - R_{k+1} = C_1 \frac{R_0 - R_\infty}{(k + 1)^\alpha} \quad \text{and} \quad T_{k+1} - T_k = C_2 \frac{T_\infty - T_0}{(k + 1)^\beta}.
\]

(2.18)

where (notice that we choose \( \alpha \) so that \( C_1, C_2 \) will be finite)

\[
\alpha = 2 \sqrt{\frac{1}{\sigma}}, \quad C_1 = \left( \sum_{k=0}^{\infty} \frac{1}{(k + 1)^\beta} \right)^{-1} \quad \text{and} \quad C_2 = \left( \sum_{k=0}^{\infty} \frac{1}{(k + 1)^\alpha} \right)^{-1}.
\]

(2.19)

Plugging all the above defined quantities in inequality (2.12), noticing that letting \( p = p_k \) implies \( p_{k+1} = \ldots \)
where

\[ a(p + m - 1), \]

we can write the \( k^{\text{th}} \) iteration step as follows

\[
\left[ \int_{Q_{k+1}} v_{pk+1} |x|^{-\gamma} \, dx \, dt \right]^{\frac{1}{pk+1}} \leq \left[ \int_{Q_k} v_{pk} |x|^{-\gamma} \, dx \, dt \right]^{\frac{1}{pk}} \leq \left[ \int_{Q_k} v_{pk} |x|^{-\gamma} \, dx \, dt \right]^{\frac{1}{pk}} \left[ \int_{Q_{k+1}} v_{pk+1} |x|^{-\gamma} \, dx \, dt \right]^{\frac{1}{pk+1}}. \]

(2.22)

**Bounds for the constants.** It is convenient to bound the constants appearing in (2.20) by a quantity which does not depend on \( p \), but only on \( m, \gamma, \beta, R_\infty \) and \( R_0 \). Recall that \( c_1 := 2K_\psi C_1^{-\gamma} \) is given in the energy inequality (2.20): while \( K_\psi > 0 \) depends only on \( N \), the quantity \( c_{m,pk} = \frac{p_k-1}{p_k} \land \frac{2m(p_k-1)^2}{(p_k+m-1)^2} \) needs to be bounded uniformly for all \( k \geq 0 \); since \( p_k > p_0 > 1 \lor p_c \) it is easy to show that we have \( c_{m,pk} \geq \left( 1 - \frac{1}{p_k} \right) \land 2m \left( 1 - \frac{m}{p_0+m-1} \right)^2 \) so that \( c_1 = c_1(p_k) \leq \overline{c} = \overline{c}(m,N,p_0) < +\infty \); hence \( c_1(p_k) \leq \overline{c} \) can be bounded uniformly by a constant that depends only on \( N, m, p_0 \). On the other hand, \( h_\sigma(R_k,R_{k+1},x_0) \) may be bounded by a fixed quantity depending only on \( \sigma, R_0 \) and \( R_\infty, i.e.

\[ h_\sigma(R_k,R_{k+1},x_0) \leq h_\sigma(R_0,R_\infty,x_0)(k+1)^{(2-\sigma)+} C_1^{-(2-\sigma)+}, \]

(2.21)

the constant \( C_1 \) is the one appearing in \( \text{(2.19)} \).

Finally, we can rewrite the \( k^{\text{th}} \) iteration step as follows

\[
\left[ \int_{Q_{k+1}} v_{pk+1} |x|^{-\gamma} \, dx \, dt \right]^{\frac{1}{pk+1}} \leq \left[ \int_{Q_k} v_{pk} |x|^{-\gamma} \, dx \, dt \right]^{\frac{1}{pk}} \leq \left[ \int_{Q_k} v_{pk} |x|^{-\gamma} \, dx \, dt \right]^{\frac{1}{pk}} \left[ \int_{Q_{k+1}} v_{pk+1} |x|^{-\gamma} \, dx \, dt \right]^{\frac{1}{pk+1}}. \]

(2.22)

where the constant \( I_{k+1} \) is bounded by,

\[
I_{k+1} \leq [2S_{\gamma,\beta}]^2 \left[ 2\overline{c} \left( \frac{h_\sigma(R_0,R_\infty,x_0) C_1^{-\frac{\beta}{2}}}{(R_0-R_\infty)^\sigma} + \frac{C_2^{-1}}{T_\infty-T_0} \right) \right]\frac{1+\frac{1}{q}}{n}(k+1)^{b(1+\frac{1}{q})}
\]

(2.23)

where \( b = 2\alpha \) if \( 0 < \sigma < 2 \), \( b = \sigma \alpha \) otherwise. The assumption \( \alpha \) on \( \alpha \) ensures that \( b > 1 \).

**Step 3. The iteration.** We now iterate the inequalities (2.22) and obtain

\[
\left[ \int_{Q_{k+1}} v_{pk+1} |x|^{-\gamma} \, dx \, dt \right]^{\frac{1}{pk+1}} \leq \left[ \int_{Q_k} v_{pk} |x|^{-\gamma} \, dx \, dt \right]^{\frac{1}{pk}} \leq \left[ \int_{Q_k} v_{pk} |x|^{-\gamma} \, dx \, dt \right]^{\frac{1}{pk}} \left[ \int_{Q_{k+1}} v_{pk+1} |x|^{-\gamma} \, dx \, dt \right]^{\frac{1}{pk+1}}. \]

(2.24)

Using inequality (2.23) we can estimate the first term appearing in right-hand side of (2.24):

\[
\prod_{j=1}^{k+1} \left[ \int_{Q_j} v_{pk+1} |x|^{-\gamma} \, dx \, dt \right]^{\frac{1}{pk+1}} \leq \left[ \prod_{j=1}^{k+1} \left[ \int_{Q_j} v_{pk} |x|^{-\gamma} \, dx \, dt \right]^{\frac{1}{pk}} \right] \leq \frac{1}{pk+1} \left[ \prod_{j=1}^{k+1} \left[ \int_{Q_j} v_{pk} |x|^{-\gamma} \, dx \, dt \right]^{\frac{1}{pk}} \right] \leq \left[ \prod_{j=1}^{k+1} \left[ \int_{Q_j} v_{pk} |x|^{-\gamma} \, dx \, dt \right]^{\frac{1}{pk}} \right] \leq \left( c' \right)^{\frac{b}{p_0-q(1-m)}} \leq +\infty.
\]

Notice that there is a constant \( c' > 0 \) depending on \( p_0 \), \( N \) and \( \gamma, \beta \) such that

\[
\lim_{k \to \infty} \prod_{j=1}^{k+1} \left[ \int_{Q_j} v_{pk} |x|^{-\gamma} \, dx \, dt \right]^{\frac{1}{pk}} \leq \exp \left( \frac{b}{p_0-q(1-m)} \sum_{j=1}^{\infty} \left( \frac{q}{q+1} \right)^j \log j \right) \leq (c' \right)^{\frac{b}{p_0-q(1-m)}} \leq +\infty.
\]
Using the expression (2.16) of $p_k$, we see that

$$\lim_{k \to \infty} \sum_{j=0}^{k} \left(1 + \frac{1}{q}\right)^j \frac{q}{p_0 - q (1 - m)} = \frac{1}{\left(1 + \frac{1}{q}\right)^{k+1}} \frac{q}{p_0 - q (1 - m)}.$$

We can now take the limit in (2.24) as $k \to \infty$ obtaining (recall that $\lim_{k \to \infty} \|f\|_{L^p(Q_k)} \geq \|f\|_{L^\infty(Q_k)}$)

$$\|v\|_{L^\infty(Q_\infty)} \leq (c') J_0 \frac{q}{m - q (1 - m)} \left(\int_{Q_0} v^{p_0} \, dx \, dt\right)^{1 - \frac{1}{q}} \left(\frac{q}{p_0 - q (1 - m)}\right)^{1/(m - q (1 - m))}. \tag{2.25}$$

Recalling that $J_0$ and $J_1$ are as in (2.22), and that $v(t, x) = u(t, x) \vee 1$, so that $u^{p_0} \leq v^{p_0} \leq u^{p_0} + 1$, we obtain from (2.25)

$$\sup_{Q_\infty} u \leq \bar{\sigma}_{11} \left[\frac{h_2 (R_0, R_\infty, x_0)}{(R_0 - R_\infty)^2} + 1 \right] \left(\frac{q}{p_0 - q (1 - m)}\right)^{1/(m - q (1 - m))} \left(\int_{Q_0} (u^{p_0} + 1) \, dx \, dt\right)^{1 - \frac{1}{q}},$$

where $\bar{\sigma}_{11} > 0$ depends only on $m, p_0, N, \gamma$ and $\beta$. We see that this is exactly inequality (2.10), recalling that $r^* := 2(N - \gamma)/(N - 2 - \beta), q = r^*/(r^* - 2), \sigma \vartheta_{p_0} = 1/(p_0 + q (1 - m))$ and $(N - \gamma + \sigma) \vartheta_{p_0} = \frac{q + 1}{p_0 - q (1 - m)}$ and that

$$\bar{\sigma}_{11} = \left[2 S_{\gamma, \beta} \frac{2}{p_0 - q (1 - m)} \left[\frac{q}{p_0 - q (1 - m)}\right]^{1/(m - q (1 - m))}\right]. \tag{2.26}$$

where $S_{\gamma, \beta}$ is as in Proposition (1.10), $C_1, C_2$ are as in (2.19), $b = 2 a$ if $0 < \sigma < 2$, $b = \sigma a$ otherwise, and $\sigma = \sigma (m, N, p_0)$, as is in Step 2. The proof of Theorem 2.1 is concluded by letting $p_0 = p$. 

### 2.4 Proof of Theorem 2.1

The aim of this section is to prove Theorem 2.1 (1.7). Here, we work out the details of the proof. Let $u(t, x)$ be a weak solution to (2.20) in the cylinder $(0, T) \times B_{2R_0} (x_0)$, and let $0 < \tau < T$, and define $\varepsilon = 1/3$ and $\rho = (3/2) R_0$, we apply Theorem 2.1 to the rescaled function

$$\hat{u} (t, x) = M u (\tau t, \rho x) \quad \text{where} \quad M = \left(\frac{\rho^\gamma}{\tau}\right)^{1/m},$$

which turns out to be a solution to (2.20) over the cylinder $Q = (0, 1] \times B_{1+\varepsilon} (\rho^{-1} x_0)$. Consider the cylinders $Q_0 = (0, 1] \times B_1 (\rho^{-1} x_0)$ and $Q_1 = ((1/3)^\tau, 1] \times B_{1-\varepsilon} (\rho^{-1} x_0)$. Applying estimate (2.10) to $\hat{u}$ over these two cylinders we get

$$\sup_{Q_1} \hat{u} \leq \bar{\sigma}_{11} \left[\frac{3^q h_2 ((3/2) R_0, R_0, x_0)}{(R_0 - R_\infty)^2} \right] \left(\frac{q}{p_0 - q (1 - m)}\right)^{1/(m - q (1 - m))} \left(\int_{Q_0} (\hat{u}^{p_0} + 1) \, dx \, dt\right)^{1 - \frac{1}{q}}.$$ 

Applying the inequalities obtained in Proposition 2.3 and Proposition 2.4 to $u$, on the domains $B_1 (\rho^{-1} x_0) \subset B_{1+\varepsilon} (\rho^{-1} x_0)$, for times $t \in [0, 1]$ and integrating them in $t$ over $(0, 1)$ we obtain

$$\int_0^1 \int_{B_1} \hat{u}^{p_0} \, dx \, dt \leq S_0 \int_{B_{1+\varepsilon}} \hat{u} (0, x)^{p_0} \, dx + \mathcal{K},$$

which holds for any $p_0 > p_c$ if $m \in (0, m_c)$ or $p_0 \geq 1$ if $m \in (m_c, 1)$; notice that $\mathcal{K} > 0$ is an upper bound for the two constants given in (2.7) and (2.9) when $p = 1$ or $p > 1$ respectively; the expression of $\mathcal{K}$ will be given below in (2.27). Rescaling back to $u$, using inequality $(a + b)^s \leq k_1 a^s + k_2 b^s$ and recalling that $h_2 (1, 1 - \varepsilon, \rho^{-1} x_0) = h_2 (\rho, \rho (1 - \varepsilon), x_0)$ and $\mu_\beta (B_1 (\rho^{-1} x_0) = \rho^{\gamma - N} \mu_\beta (B_\rho (x_0)))$, we finally obtain

$$\sup_{((1/3)^\tau, \tau] \times B_{2R_0} (x_0)} u \leq \frac{C_1}{\tau} \left[\tau \int_{B_{2R_0} (x_0)} u (0, y)^{p_0} \, dy\right]^{1/(m - q (1 - m))} + C_2 \left[\frac{\tau}{R_0}\right]^{1/m},$$

where $\tau = \tau (m, N, p_0, x_0)$. 

20
where the constants are (recall that $\varepsilon = 1/3$ and $\rho = (3/2)R_0$):
\[
C_1 = k_1 \kappa_{11} \left( \frac{1}{\nu^{N+\rho(m-\varepsilon)}} \left[ 3^\sigma h_\sigma \left( \frac{(3/2)R_0, R_0, x_0) \right) \right] \right)^{(q+1)/(q-1)},
\]
\[
C_2 = k_2 \kappa_{11} \left[ \mathcal{K} + \mu_{\gamma}(B_{(3/2)R_0}(x_0)) \right] \left[ \frac{1}{\nu^{N+\rho(m-\varepsilon)}} \left[ 3^\sigma h_\sigma \left( \frac{(3/2)R_0, R_0, x_0) \right) \right] \right)^{(q+1)/(q-1)},
\]
\[
\mathcal{K} = \left\{ \begin{array}{ll}
\mathcal{L}_{N, \gamma} c_{p,m} h_{\sigma}(2R_0, (3/2)R_0, x_0)) \frac{m}{q} (2R_0)^{\gamma-N} \mu_{\gamma}(B_{2R_0}(x_0)) & \text{if } p > 1 \\
\mathcal{L}_{N, \gamma} \frac{1}{\nu^{N+\rho}} (2R_0)^{\gamma-N} \mu_{\gamma}(B_{2R_0}(x_0)) & \text{if } p = 1,
\end{array} \right.
\]

where $\mathcal{L}_{N, \gamma}$ is a computable constants which depends on $N, \gamma$, and $c_{p,m}$ is defined in (2.19). This concludes the proof. \Box

3 Part II. Positivity estimates

This second part of the paper is devoted to the proof of our main positivity result, Theorem 1.4. The proof is delicate, quite long and technical, and represents the major novelty of this paper, as already explained. The strategy of the proof of our local lower bounds, Theorem 1.4, relies in the study of the worst-case scenario: we will prove lower bounds for solutions to a “smaller problem”, that we will call the Minimal Dirichlet Problem (MDP), following [17]. Then, by nowadays standard comparison arguments, see e.g. [54, 87], we can extend the result to local nonnegative solutions. Let us consider a the Minimal Dirichlet Problem, i.e. a homogeneous Dirichlet problem localized on a ball, with smaller initial datum:

\[
\begin{aligned}
&\partial_t u = |x|^\gamma \nabla \cdot (|x|^{-\beta} \nabla u^m) & \text{in } Q_T = (0, T) \times B_{R_0}(x_0) \\
u(t, x) = 0 & \text{for } t > 0 \text{ and } x \in \partial B_{R_0}(x_0) \\
u(0, x) = u_0 & = 0 \text{ in } B_{R_0}(x_0), \text{ with } 4R < R_0.
\end{aligned}
\]

Extinction time for MDP and minimal life time. We will show that nonnegative solutions to MDP extinguish in finite time $T = T(u_0) > 0$. Moreover, $T$ (hence its lower bound $t_*$) provides an estimate of the time interval for which any non-negative super-solution is strictly positive: recall that also super-solutions can extinguish in finite time. For this reason we call $t_*$ minimal life time of the (super)solution $u$, following [17]. Estimating $T$ in terms of the initial datum (or of the solution at a reference time) will provide estimates on the size of the intrinsic cylinders (the natural domains for positivity and Harnack estimates, whose size depends on $u$) for any local super-solution. We state the main result of this part

**Theorem 3.1 (Interior Lower Bounds for MDP)** Let $0 < 4R = R_0$ and $u$ be the solution to MDP corresponding to the initial datum $u_0 \chi_{B_R(x_0)} \in L^p(B_{R_0}(x_0))$ with $p > p_c$ when $m \in (0, m_c)$ and with $p \geq 1$ when $m \in (m_c, 1)$, moreover assume that $B_{R_0}(x_0)$ satisfies either (1), (2) or (3). Then, there exist $\kappa_*, \bar{\kappa}_{p,0} > 0$ depending on $N, m, \gamma, \beta$, such that we have the following estimates for the extinction time $T = T(u_0)$:

\[
t_* := \kappa_* R^\sigma \left( \frac{\|u_0\|_{L^1(B_{R_0})}}{\mu_{\gamma}(B_{R_0}(x_0))} \right)^{1-m} \leq \kappa_* \frac{\mu_{\gamma}(B_{R_0}(x_0))^{\gamma-\varepsilon-N}}{\mu_{\gamma}(B_{R_0}(x_0))^{\gamma-\varepsilon-N} \mu_{\gamma}(B_{2R_0}(x_0))^{R^2}} \leq T \leq \frac{\mu_{\gamma}(B_{R_0}(x_0))^{\gamma-\varepsilon-N}}{\mu_{\gamma}(B_{R_0}(x_0))^{\gamma-\varepsilon-N} \mu_{\gamma}(B_{2R_0}(x_0))^{R^2}} \left( \frac{\|u_0\|_{L^1_p(B_{R_0}(x_0))}}{\mu_{\gamma}(B_{R_0}(x_0))^{\gamma-\varepsilon-N}} \right)^{-1-m} \left( \frac{\|u_0\|_{L^1_{p/2}(B_{R_0}(x_0))}}{\mu_{\gamma}(B_{R_0}(x_0))^{\gamma-\varepsilon-N}} \right)^{R^2}
\]

Moreover, there exists $\kappa > 0$ such that

\[
\inf_{x \in \partial B_{R_0}(x_0)} u(t, x) \geq \kappa \left[ \frac{\mu_{\gamma}(B_{R_0}(x_0))}{\mu_{\gamma}(B_{R_0}(x_0))^{\gamma-\varepsilon-N} \mu_{\gamma}(B_{2R_0}(x_0))^{R^2}} \right]^{1-m} \text{ for any } t \in [0, t_*].
\]

The constants $\kappa_*, \bar{\kappa}_*, \kappa_{p,0} > 0$ depend on $N, m, \gamma, \beta$; $\kappa$ has an (almost) explicit expression is given in (3.24) and only when $0 < m \leq m_c$ depends also on $\bar{\kappa}_p$, defined in (1.12); $\bar{\kappa}_*, \kappa_{p,0}$ are given in (3.46) and (3.5).

**Remarks.** (i) Theorem 3.1 holds true for more general scenarios, as it will be clear by a close inspection of the proof presented in this Part. However, to simplify the presentation we have decided to state the result just under assumptions (1), (2) or (3), since as already remarked, they represent the most relevant cases.
(ii) We recall that $\kappa$ has a precise behaviour given in term of $\tilde{H}_p$, and that when $m > m_c$ it does not depend on $\tilde{H}_p$, see Remark 3.3(ii) and (iii) for more details.

(iii) A closer inspection of the proofs reveals that analogous results hold for solutions of the Dirichlet problem on arbitrary bounded domains $\Omega$ and general initial data. Bounds on the extinction time similar to (3.1) have been obtained in [17] for the model equation, and in [13] on Riemannian manifolds.

**Strategy of the proof of positivity estimates.** As already explained above, it is sufficient to prove our lower estimates for solutions to the reduced problem MDP, and to avoid unnecessary technicalities, we will work with strictly positive solutions which solve a “lifted problem”, cf. Subsection 3.3. The proof of our main positivity result is quite complex, as already mentioned in Subsection 1.2, indeed, more standard techniques seem to fail to give quantitative estimates, hence we develop a new method, that we split it into four steps:

1. Step 1, Section 3.4: Moser iteration
2. Step 2, Section 3.5: Smoothing
3. Step 3, Section 3.6: Parabolic John-Nirenberg
4. Step 4, Section 3.8: Smoothing

Prop. 3.4 for Lifted Problem, then let $\delta \to 0^+$ for MDP (Cor. 3.11)

The first step (Subsection 3.4) consists in proving a $L^{-\infty}_{\gamma} - L_{\gamma}^{-\epsilon}$ estimate through a lower Moser-type iteration with negative exponents; due to the nonlinear character of our equation, such iteration does not allow to reach all negative exponents, contrary to what happens in the linear case here we can only reach $-\epsilon < -(1-m)$.

The second step (Subsection 3.5) consists in proving quantitative $L_{\gamma}^{-\epsilon} - L_{\gamma}^{-\epsilon}$ estimates for any $\epsilon \in (0,1-m)$. Subsection 3.6 contains the third step, a parabolic analog of the celebrated John-Nirenberg Lemma: our Lemma provides a Reverse Hölder inequality for small exponents, in the form of a $L_{\gamma}^{-\epsilon} - L_{\gamma}^{\epsilon}$ estimate, and holds for solutions to the (lifted) MDP; the proof relies on the monotonicity properties of the solutions to the MDP, combined with a weighted version of the celebrated John-Nirenberg Lemma, which we borrow from [12].

Corollary 3.10 collects all the results of the first three steps, in the form of $L^{-\infty}_{\gamma} - L_{\gamma}^{\epsilon}$ smoothing effect for solutions $u_{\delta}$ to the $\delta$-MDP. Next, letting $\delta \to 0$, we prove Corollary 3.11 which is the analogous result of Corollary 3.10 for solutions of the MDP. Subsection 3.8 contains the fourth and last step, namely $L_{\gamma}^{\epsilon} - L_{\gamma}^{-\epsilon}$ estimates, see Lemma 3.12 gathering all the previous results, we finally obtain the $L^{-\infty}_{\gamma} - L_{\gamma}^{\epsilon}$ estimates in Corollary 3.13. The proof of Theorems 3.1 and 1.4 is contained in Section 3.9.

### 3.1 Basic properties of solutions to the Minimal Dirichlet Problem

We summarize here the standard properties of solutions to the [MDP] which will be used in what follows.

**Proposition 3.2** Let $u_0 \in L^{p}(B_{R_0}(x_0))$ with $p > p_c$ when $m \in (0,m_c]$ and with $p \geq 1$ when $m \in (m_c,1)$. Then there exists a unique strong solution to the problem $[MDP]$ and the following properties hold true:

(i) There exists $\mathfrak{r}_{12} = \mathfrak{r}_{12}(\gamma,\beta,N,m,p) > 0$ such that for any $t > 0$

$$
\|u(t)\|_{L^{\infty}(B_{R_0}(x_0))} \leq \mathfrak{r}_{12} \frac{\|u_0\|_{L_{M}^{p}(B_{R}(x_0))}}{t^{(N-\gamma)^{\sigma_p}}},
$$

where $\sigma_p = \frac{1}{\sigma_p(N-\gamma)(1-m)}$ and $\sigma = 2 + \beta - \gamma$.  

(ii) For all $t > 0$ we have $\|u(t)\|_{L^{\epsilon}(B_{R_0}(x_0))} \leq \|u_0\|_{L_{M}^{\epsilon}(B_{R}(x_0))}$.  

(iii) For all $t > 0$, the function $t \to u(t,x) t^{-\frac{\epsilon}{m}}$ is non-increasing, for almost any $x \in B_{R}(x_0)$.

**Remark.** The constant $\mathfrak{r}_{12}$ may be chosen to be independent of $B_{R_0}(x_0)$, as explained in the proof.

**Proof.** Existence and uniqueness of strong solutions follow by minor modifications of the standard arguments, cf. [87]. Also properties (ii) and (iii) follow by standard arguments that can be found in [87]. The upper bounds (i) hold as a consequence of the local upper estimates of Theorem 2.1 first observe that the solution the MDP (extended to zero outside of $B_{R}(x_0)$) is a subsolution to the WFDPE so Theorem 2.1 applies; letting then $R_0 \to \infty$ in inequality (2.1) (in such limit the constant $\mathfrak{r}_{8}$ becomes independent of $R_0$ and the second term vanish) we immediately obtain $336$. \qed

22
3.2 Proof of the bounds 3.1 on the extinction time for MDP.

We now prove the two sided estimate 3.1 on the extinction time. While the lower bounds follows from Proposition 2.3, the upper bounds requires the following Proposition, in which we show that Sobolev and Poincaré inequalities imply extinction in finite time for solutions to the MDP, as already observed in [13, 14] for the model equation $(\beta = \gamma = 0)$ both in Euclidean and Riemannian manifolds settings.

**Proposition 3.3** Let $u$ be the solution to the MDP, corresponding to $u_0 \in L^p(B_{R_0}(x_0))$ with $p \geq p_c \vee 1$. Then, for all $q > 1$ there exists a constant $\overline{\gamma}_q > 0$, such that for all $0 \leq \tau \leq t$ we have

$$
\|u(t)\|_{L^q(\partial B_{R_0}(x_0))}^{1-m} \leq \|u(\tau)\|_{L^q(\partial B_{R_0}(x_0))}^{1-m} - \overline{\gamma}_q (t - \tau),
$$

where the constant $\overline{\gamma}_q$ is given by

$$
\overline{\gamma}_q = \overline{\gamma}_{q,0} \mu_\gamma (B_{R_0}(x_0))^{\frac{q - m}{q - 1}} - \overline{\gamma}_{q,1} \mu_\gamma (B_{R_0}(x_0))^{\frac{q - m}{q - 1}},
$$

where $\overline{\gamma}_{q,1}$ depends only on geometrical quantities, but not on $R_0$; we recall that $\sigma = 2 + \beta - \gamma$.

**Proof.** We will write $B_{R_0}$ instead of $B_{R_0}(x_0)$ and $L^q_B$ instead of $L^q_B(B_{R_0})$ when no confusion arises. We combine weighted Sobolev and Poincaré inequalities ([CKNI]) via Hölder inequality as follows:

$$
\|f\|_{L^q_B} \leq \|f\|_{L^q_B}^{(1-\theta)} \|\nabla f\|_{L^q_B}^{\theta} \leq \overline{\gamma}_{13} \mu_\gamma (B_{R_0})^{\frac{n - \gamma}{(n - \gamma) \sigma}} \|\nabla f\|_{L^q_B}.
$$

for any $s \in (2, r^*)$ for any function $f \in D_{\gamma,\beta}$. Letting now $s = \frac{2q}{q + m - 1}$, $f = u^{\frac{q + m - 1}{2}}$ and $\theta = p_c/q$, and recalling that $s < r^*$ if and only if $q > p_c$, we have that inequality (3.6) implies

$$
\|u\|_{L^q_B}^2 \leq \overline{\gamma}_{13} \mu_\gamma (B_{R_0})^{\frac{n - \gamma}{(n - \gamma) \sigma}} \|\nabla u\|^{\frac{q + m - 1}{2}}_{L^q_B}.
$$

Next, we formally derive $L^q_B$ norm of $u$ to get the following differential inequality

$$
\frac{d}{dt}\|u\|_{L^q_B}^2 = - \frac{4q(q - 1)}{(q + m - 1)^2} \|\nabla u\|^{\frac{q + m - 1}{2}}_{L^q_B} \leq - \frac{4q(q - 1)}{(q + m - 1)^2} \overline{\gamma}_{13} \mu_\gamma (B_{R_0})^{\frac{n - \gamma}{(n - \gamma) \sigma}} \|u\|^{\frac{q + m - 1}{2}}_{L^q_B}.
$$

Integrating this last inequality in $[\tau, t] \subset [0, T]$ we get (3.1). A rigorous proof (long and technical, but nowadays standard) can be done by using energy inequalities and Gronwall-type arguments. □

**Proof of Inequalities 3.1.** As an immediate corollary of inequalities (3.1), there exist the extinction time $T > 0$; moreover, it satisfies the upper bound (3.1) which is nothing but inequality (3.3) with $\tau = 0$ and $t = T$. The lower bounds follows by letting $t = 0$ and $\tau = T$ in formula (2.7). □

3.3 Lifted problem and a first positivity result

In this section we address the question of proving quantitative estimates of positivity for the MDP. We begin by introducing the following “lifted” problem: let $\delta > 0$, $0 < R \leq R_0$

$$
\begin{align*}
\partial_t u_\delta &= |x|^{\gamma} \cdot |x|^{-\gamma} \nabla u_\delta \text{ in } (0, \infty) \times B_{R_0}(x_0) \\
\delta_\alpha u_\delta &= \beta \text{ on } (0, \infty) \times \partial B_{R_0}(x_0) \\
u_\delta(0, x) &= u_0(x) \chi_{B_R(x_0)}(x) + \delta \text{ for } x \in B_{R_0}(x_0).
\end{align*}
$$

The results of Proposition 3.2 hold true also for solutions to the $\delta$-MDP, more precisely, (ii) and (iii) hold in the same form, while (i) holds true with an extra $\delta$ factor on the right-hand side, as explained below; the proofs of these latter facts are a straightforward modification of the case $\delta = 0$, see e.g. [10, 87]. However, we recall explicitly the two main estimates that we will use in what follows: the time monotonicity property

23
Proposition 3.4 (certain weighted main Theorem 3.1 and it contains the first three steps explained above. In what follows, we need to assume a there exist explained before. We need to cover more general cases than (1), (2) or (3). We are going to prove a priori estimates of the solution to the (3.7), given in (3.10), such that for any \( \varepsilon > 0 \) such that 

\[
0 < \varepsilon < \nu_0 \wedge (1 - m) \quad \text{with} \quad \nu_0 = 1 \frac{1}{\kappa_1 \kappa_0} \left[ 1 + \frac{R^2_0}{R_1} \left( \frac{|x_0|}{R_1} \lor 1 \right)^{\beta - \gamma} \right]^{1/2} M_p(u_0, \delta, T_0)^{1-m}, \tag{3.8}
\]

there exist \( s_\varepsilon > 1 - m \) and \( k_\varepsilon > 0 \) such that 

\[
\inf_{(T_1, T_2) \times B_{R_2}(x_0)} u_\delta \geq k_\varepsilon \left[ (1 + M_p(u_0, \delta, T_0)^{1-m}) \left( \frac{h_\sigma(R_1, R_2, x_0)}{(R_1 - R_2)^p} + \frac{1}{T_1 - T_0} \right) \right]^{\eta_\varepsilon + \kappa_7}, \tag{3.9}
\]

where \( k_\varepsilon \) is the smallest \( k \in \mathbb{N} \) such that \((r^*)^2k\varepsilon > 1 - m\) and 

\[
s_\varepsilon := \left( \frac{r^*}{2} \right)^k \varepsilon, \quad \eta_\varepsilon := -\frac{1}{s_\varepsilon + m - 1} \left( \frac{N - \gamma}{2 + \beta - \gamma} + 1 \right) < 0, \quad \zeta_\varepsilon := -\frac{1}{\varepsilon} - \frac{2 r^*}{r^* - 1} < 0, \tag{3.10}
\]

with \( h_\sigma, M_p \) and \( r^* \) are defined in (2.22), (3.7) and respectively (CKN1); we also provide the expression of the constant \( k_\varepsilon = \kappa_3 \kappa_4 \kappa_5 \kappa_6 \kappa_7 \) with \( \kappa_3, \kappa_4, \kappa_5, \kappa_7 \) that depend only on \( N, m, p, \beta, \gamma, \varepsilon \) and are given in (3.11), (3.23), (1.21) respectively.

The next four subsections will be devoted to the proof of the above Proposition.

3.4 Step 1. Lower Moser Iteration.

In this section we prove \( L^{-\infty} - L^{r} \) smoothing effects by means of a lower Moser-type iteration. We will cover more general cases than (1), (2) or (3). We are going to prove a priori estimates of the solution to the \( \Delta - \text{MDP} \) such bounds involve the quantity \( h_\sigma \) that under our assumptions will always be bounded.

Proposition 3.5 (Nonlinear case) Let \( u \) be a strong (super)solution to \( \Delta - \text{MDP} \) on \((T_0, T_2) \times B_{R_0}(x_0)\), corresponding to \( u_0 \in L^p(B_{R_0}(x_0)) \) with \( p > p_c \) when \( m \in (0, m_c) \) and with \( p \geq 1 \) when \( m \in [m_c, 1) \). Then, for any \( s > 1 - m \), for any \( 0 < R_2 < R_1 \leq R_0 \) such that \( 0 \not= B_{R_1}(x_0) \setminus B_{R_2}(x_0) \) and for any \( T_1 \in (T_0, T_2) \), there exists \( \kappa_3 > 0 \) such that 

\[
\inf_{(T_1, T_2) \setminus B_{R_2}(x_0)} u \geq \kappa_3 \left[ (1 + M_p(u_0, \delta, T_0)^{1-m}) \left( \frac{h_\sigma(R_1, R_2, x_0)}{(R_1 - R_2)^p} + \frac{1}{T_1 - T_0} \right) \right]^{\eta_\varepsilon + \kappa_7}, \tag{3.11}
\]

where \( \eta_\varepsilon := -\frac{1}{s + m - 1} \left( \frac{N - \gamma}{r^* + \beta - \gamma} + 1 \right), h_\sigma \) and \( M_p \) are defined in (2.22) and (3.7) respectively, and \( \kappa_3 > 0 \) depends on \( s, p, N, \beta, \gamma, m \).
Remarks. (i) We recall that the technical assumption $0 \not\in B_{R_1}(x_0) \setminus B_{R_2}(x_0)$ is needed only to guarantee that the quantity $h_\sigma$ is finite.

(ii) The above estimate also holds when $m = 1$, in which case we can take any $s > 0$, see Proposition (14). This fact considerably simplifies the proof of lower bounds in the linear case: the lower bound is formulated in terms of a space time integral on a bigger parabolic cylinder, and this is the classical result in linear parabolic equations, see for instance [23, 24]. We refer to Section 4.1 for further details.

Proof of Proposition 3.5. Throughout the proof $u_\sigma$ will be a strong (super)solution to $\delta$-MDP on $Q := (T_0, T) \times B_R(x_0)$; we will write $u = u_\sigma$, and $B_R = B_R(x_0)$ ($B_{R_1} = B_{R_1}(x_0)$ resp.) when no confusion arises. We recall that $\sigma = 2 + \beta - \gamma > 0$, $r^* = (N - \gamma)/(N - 2 - \beta)$, and we set $q = (N - \gamma)/\sigma$. We will split the proof into several steps.

Step 1. Preparation of the iteration step. Let $0 < R_1 < R_0$ and $0 \leq T_0 < T_1 < T$ and define $Q_0 := Q$ and $Q_1 := (T_1, T) \times B_{R_1}(x_0)$. We are going to prove the following inequality:

$$
\int_{Q_1} u^{(m-p-1)}|x|^{-\gamma} \, dx \, dt \leq 2S^2_{\gamma,\beta}\left[ \frac{h_\sigma(R_0, R_1, x_0)}{(R_0 - R_1)} + \frac{1}{T_1 - T_0} \right]^{1+\frac{\sigma}{\beta}} \times [1 + M_{\beta}(u_0, \delta, T_0)^{1-m}]^{1+\frac{\sigma}{\beta}} \left( \int_{Q_1} u^{-p+m-1}|x|^{-\gamma} \, dx \, dt \right)^{1+\frac{\sigma}{\beta}}.
$$

To prove the above inequality, we first recall the CKNI inequality (2.11) with $f^2 = u^{m-p-1}$, with $p > 0$:

$$
\int_{Q_1} u^{(m-p-1)} \frac{dx \, dt}{|x|^\gamma} \leq 2S^2_{\gamma,\beta} \left[ \int_{Q_1} \left( u^{-p+m-1} |x|^{-\gamma} + \mu_\gamma(B_{R_1}) \frac{x^\gamma}{|x|^\gamma} \left| \nabla u^{m-p-1} \right|^2 \right) \, dx \, dt \right]^{\frac{1}{2}} \times \mu_\gamma(B_{R_1}) \frac{1}{\sup_{t \in (T_1, T)} \int_{B_{R_1}} u^{(m-p-1)(a-1)q} |x|^{-\gamma} \, dx}^{\frac{1}{2}}.
$$

We are going to estimate the two terms on the right-hand side of the above inequality, by means of a modified form of the lower energy estimates (2.3), which easily follows by using (3.7); for any $p > 0$ and any $T_1 \in (T_0, T)$ and $R_1 \in (0, R)$ we have

$$
\sup_{t \in [T_1, T]} \int_{B_{R_1}(x_0)} u(t, x)^{-p} \, dx \, T \int_{T_1B_{R_1}(x_0)} \nabla u^{m-p-1} \frac{x^\gamma}{|x|^\gamma} \, dx \, dt \leq c_3 \left[ 1 + M_\beta(u_0, \delta, T_0)^{1-m} \right]
$$

where $M_\beta(u_0, \delta, T_0)$ is defined in (3.3), $h_\sigma$ is defined in (2.2), and $c_3 > 0$ depends on $m, p, N$, as in and is given in the energy inequality (2.3). We estimate now the first term of (3.13) using (3.14):

$$
\int_{Q_1} \left( u^{-p+m-1} |x|^{-\gamma} + \mu_\gamma(B_{R_1}) \frac{x^\gamma}{|x|^\gamma} \left| \nabla u^{m-p-1} \right|^2 \right) \, dx \, dt \leq 2c_3 \mu_\gamma(B_{R_1}) \frac{x^\gamma}{|x|^\gamma} \left[ 1 + M_\beta(u_0, \delta, T_0)^{1-m} \right]
$$

We estimate the second term in the right-hand side of (3.13) using again (3.14), observing that we can always choose $a \in (1, r^*/2)$ such that $(m - p - 1)(a-1)q = -p$ to get

$$
\left[ \sup_{t \in (T_1, T)} \int_{B_{R_1}} u^{-p} |x|^{-\gamma} \, dx \right]^{\frac{1}{2}} \leq \left[ c(m, p, (1 + M_\beta(u_0, \delta, T_0)^{1-m}))^{\frac{1}{2}} \times \left[ \frac{h_\sigma(R, R_1, x_0)}{(R - R_1)^\sigma} + \frac{1}{T_1 - T_0} \right]^{\frac{1}{2}} \left( \int_{Q_0} u^{-p+m-1} |x|^{-\gamma} \, dx \, dt \right)^{\frac{1}{2}}.
$$

(3.16)
Combining inequalities (3.13), (3.15) and (3.16) we get (3.12).

**Step 2.** The $k^{th}$ iteration step. We first define an increasing sequence of exponents $p_k$, recalling that $q = r^*/(r^* - 2)$ and $p_0 > 0$, so that

$$p_{k+1} = \left(1 + \frac{1}{q}\right) p_k = \left(1 + \frac{1}{q}\right)^{k+1} p_0 \rightarrow \infty.$$

Next, we define the cylinders $Q_k := (T_k, T) \times B_{R_k}(x_0)$ as in (2.17), so that $Q_k \supset Q_{k+1} \rightarrow Q_\infty$; we have chosen a decreasing sequence of radii $R_0 > R_k > R_{k+1} \rightarrow R_\infty$ and an increasing sequence of times $T_0 < T_k < T_{k+1} \rightarrow T_\infty$ as in (2.18), namely $R_k - R_{k+1} = C_1 (R_0 - R_\infty)(k+1)^{-\alpha}$ and $T_k - T_{k+1} = C_2 (T_\infty - T_0)(k+1)^{-\alpha\sigma}$, where $\alpha = 2 \vee \sigma^{-1}$ and $C_1, C_2 > 0$ are as in (2.19).

Plugging all the above defined quantities in inequality (3.12), the $k^{th}$ iteration step reads

$$\int_{Q_{k+1}} u^{-(p_{k+1}+1-m)} |x|^{-\gamma} \, dx \, dt \geq \frac{2S_\gamma,\beta}{\frac{1}{1-m} \left[ 2C_3 \left(1 + M_p(u_0, \delta, T_k)^{1-m}\right) \left(\frac{1}{p_{k+1}}\right) \right]^{1+\frac{1}{\delta}} \left[ 1 - \frac{p_{k+1}+1}{p_{k+1}+1-m} \right] \left[ \int_{Q_{k+1}} u^{-(p_{k+1}+1-m)} |x|^{-\gamma} \, dx \, dt \right]^{-\frac{1}{p_{k+1}+1-m}}. \tag{3.17}$$

**Bounds for the constants.** It is convenient to bound the constants appearing in (3.17) by a quantity which does not depend on $p$, but only on $m, \gamma, \beta, R_\infty$ and $R_0$. Recall that $c_3 := 4K_p c_{m,p_k}$ is given in the energy inequality (2.8): while $K_p > 0$ depends only on $N$, the quantity $c_{m,p_k} = \left( m \vee \frac{p_{k+1}}{p_k} \left( \frac{p_{k+1}}{p_k} \wedge \frac{4(p_{k+1}+1)^2}{(m-p_{k+1})^2} \right) \right)^{-1}$ needs to be bounded uniformly for all $k \geq 0$; since $p_k > p_0 > 0$ it is easy to show that we have $c_{m,p_k} \leq (1 + p_0^{-1})/(1.4m)$, so that $c_3 = c_3(p_k) \leq c_3(m, N, p_0) < +\infty$; hence $c_3(p_k) \leq c$ can be bounded uniformly by a constant that depends only on $N, m, p_0$. As in (2.18), also $\hat{h}_\sigma(R_k, R_{k+1}, x_0)$ can be bounded by a quantity depending only on $\sigma, R_0$ and $R_\infty$, as follows:

$$\hat{h}_\sigma(R_k, R_{k+1}, x_0) \leq \hat{h}_\sigma(R_0, R_\infty, x_0) (k+1)^{\alpha(2-\sigma)+}\left(C_1^{-\sigma}(2-\sigma)_{+}\right),$$

where $C_1 > 0$ is as in (2.19). Finally, by (3.7) we have that $M_p(u_0, \delta, T_k) \leq M_p(u_0, \delta, T_0)$, since $T_0 < T_k$.

Finally, we can rewrite the $k^{th}$ iteration step (3.17) as follows

$$\int_{Q_{k+1}} u^{-(p_{k+1}+1-m)} \, dx \, dt \geq \frac{p_{k+1}+1}{p_{k+1}+1-m} \left[ \int_{Q_{k+1}} u^{-(p_{k+1}+1-m)} \, dx \, dt \right]^{-\frac{1}{p_{k+1}+1-m}} \tag{3.18},$$

where the constant $I_{k+1}$ is bounded by,

$$I_{k+1} \leq \left[ 2S_\gamma,\beta \right]^2 \left[ \frac{\hat{h}_\sigma(R_0, R_\infty, x_0)}{(R_0 - R_\infty)^{\sigma}} + \frac{C_1^{-1}}{T_\infty - T_0} \left(1 + M_p(u_0, \delta, T_0)^{1-m}\right) \right]^{1+\frac{1}{\delta}} \left(k+1\right)^{b(1+\frac{1}{\delta})} \tag{3.19}$$

$$\leq \left[ 2S_\gamma,\beta \right]^2 \left[ \frac{\hat{h}_\sigma(R_0, R_\infty, x_0)}{(R_0 - R_\infty)^{\sigma}} + \frac{1}{T_\infty - T_0} \left(1 + M_p(u_0, \delta, T_0)^{1-m}\right) \right]^{1+\frac{1}{\delta}} \left(k+1\right)^{b(1+\frac{1}{\delta})} \tag{3.19.1}$$

$$:= J_0^{1+\frac{1}{\delta}} (k+1)^{b(1+\frac{1}{\delta})},$$

where $b = 2\alpha$ if $0 < \sigma < 2$, $b = \sigma\alpha$ otherwise. The assumption (2.19) on $\sigma$ ensures that $b > 1$.

**Step 3.** The iteration. We now iterate inequalities (3.13) to get

$$\int_{Q_{k+1}} u^{-(p_{k+1}+1-m)} \, dx \, dt \geq \prod_{j=1}^{k+1} I_j \left[ \int_{Q_0} u^{-(p_0+1-m)} \, dx \, dt \right]^{-\frac{1}{p_{k+1}+1-m}} \tag{3.20}.$$
We estimating the product appearing in the above inequality as follows:

\[
\prod_{j=1}^{k+1} I_j^{-\frac{1}{p_j+1-m}} (1 + \frac{1}{q})^{k+1-j} \geq \left[ J_0 J_1^{\frac{1}{p_1}} \right]^{-\frac{1}{p_1-1}} \sum_{j=0}^{k} (1 + \frac{1}{q})^j \left[ (k+1)^b \right]^{-\frac{1}{p_1+1-m}} \cdots \left[ 2^b \right]^{-\frac{1}{p_k+1-m}} (1 + \frac{1}{q})^{k+1-j} = \left[ J_0 J_1^{\frac{1}{p_1}} \right]^{-\frac{1}{p_1-1}} \sum_{j=0}^{k} (1 + \frac{1}{q})^j \prod_{j=1}^{k+1} \frac{k+1-j}{p_k+1-m} (1 + \frac{1}{q})^{k+1-j}
\]

Recalling that \( p_k = (1 + \frac{1}{q})^k p_0 \) we get

\[
\frac{-1}{p_k+1-m} \sum_{j=0}^{k} \left( 1 + \frac{1}{q} \right)^j \xrightarrow{k \to +\infty} \frac{q}{p_0} \quad \text{and} \quad \frac{p_k+1-m}{k+1} \xrightarrow{k \to +\infty} p_0.
\]

Moreover, it is easy to show that

\[
\lim_{k \to +\infty} \prod_{j=1}^{k+1} j^{-\frac{b}{p_0(1+\frac{1}{q})^{j+1}-1-m}} (1 + \frac{1}{q})^{k+1-j} \leq \lim_{k \to +\infty} \exp \left( \frac{b}{p_0 + (1-m)(1+\frac{1}{q})^{k+1}} \sum_{j=1}^{\infty} \left( \frac{q}{q+1} \right)^j \log j \right) \leq (c'' \frac{\overline{\alpha}}{m}) < +\infty.
\]

Taking the limit in (3.20) as \( k \to \infty \) we obtain

\[
\inf_{Q_0} u \geq \left[ c'' J_0 J_1^{\frac{1}{p_1}} \right]^{-\frac{\overline{\alpha}}{p_0}} \left( \int_{Q_0} u^{-\left( p_0+1-m \right)} |x|^{-\gamma} \, dx \, dt \right)^{-\frac{\overline{\alpha}}{p_0}}.
\]  

(3.21)

Note that \( J_0 \) and \( c'' \) depend only on \( m, p_0, N, \gamma \) and \( \beta \), while \( J_1 \) depends also on \( R_0 - R_\infty \) and \( T_\infty - T_0 \).

- Step 4. The goal of this step is show that estimate (3.21) implies estimate (3.11). To this end, we use the monotonicity properties of the solution, namely that \( t \to u(t,x) t^{-\frac{1}{1-m}} \) is non-increasing in time for almost every \( x \in B_{R_0}(x_0) \). Recalling that \( p_0 > 0 \), we get for any \( t \in [T_0, T] \)

\[
\int_{B_{R_0}(x_0)} u(t,x) t^{-\left( p_0+1-m \right)} |x|^{-\gamma} \, dx \leq \left( \frac{T}{T'_0} \right)^{-\frac{p_0+1-m}{p_0(1-\gamma)}} \int_{B_{R_0}(x_0)} u(T,x) t^{-\left( p_0+1-m \right)} |x|^{-\gamma} \, dx.
\]

Hence, (3.21) can be estimated as follows (recall that \( J_0, J_1 \) are defined in (3.14))

\[
\inf_{Q_0} u \geq \left[ J_0 J_1^{\frac{1}{p_1+1}} \right]^{-\frac{1}{p_0}} \left( \frac{T}{T'_0} \right)^{-\frac{p_0+1-m}{p_0(1-\gamma)}} \left( \int_{B_{R_0}(x_0)} u^{-\left( p_0+1-m \right)}(T,x) |x|^{-\gamma} \, dx \right)^{-\frac{1}{p_0}}.
\]

This is exactly (3.5), with \( R_0 \sim R_1, R_\infty \sim R_2, T_\infty \sim T_1, T \sim T_2 \) and \( s := p_0 + 1 - m, p := \overline{p} \).

\[\square\]

**Remark.** Note that the estimate degenerates in the limits \( m \to 1^- \) or \( m \to 0^+ \), indeed the term \( (T_0/T)^{\frac{p_0+1-m}{p_0(1-\gamma)}} \) \( \xrightarrow{m \to 1^-} 0 \); also, by (3.14) we have \( J_1 \sim 1/m \), so that \( J_1 \sim 1/m \), through a finite iteration.

### 3.5 Step 2. Smoothing effects for negative norms.

In the previous step we have proved an estimate of type \( L^{-\infty} \leq L^{-s} \), which holds for any \( s > 1 - m \), but this is not sufficient in order to use the reverse Hölder inequalities of Corollary 1.14, which may hold true only for exponents close to 0. In this step we solve this issue by proving \( L^{-s} \leq L^{-\varepsilon} \) estimates, for any \( \varepsilon \in (0, 1-m) \), through a finite iteration.
Proposition 3.6 (L$^{-s}$ – L$^{-2}$ Smoothing Effects) Let $u_0$ be a strong (super)solution to $\mathcal{A}$-MDP on $(0, \infty) \times B_{R_0}(x_0)$, corresponding to $u_0 \chi_{B_{R_0}(x_0) \in L^p(B_{R_0}(x_0))}$ with $p > p_\varepsilon$ when $m \in (0, m_\varepsilon)$ and with $p \geq 1$ when $m \in (m_\varepsilon, 1)$. Let $0 < R_2 < R_1 \leq R$ such that $0 \notin B_{R_1}(x_0) \setminus B_{R_2}(x_0)$ and let $0 < T_0 < T_1$. For any $\varepsilon \in (0, 1 - m)$ there exists $s_\varepsilon \in \{1 - m, \frac{1}{\varepsilon}(1 - m)\}$ and $k_\varepsilon > 0$ such that

$$
\left( \int_{B_{R_2}(x_0)} u_\delta(T_0, x)^{-s_\varepsilon} |x|^{-\gamma} \, dx \right)^{-\frac{1}{s_\varepsilon}} \geq k_\varepsilon \left( 1 + M_p(u_0, \delta, T_0)^{1-m} \right) \left( \frac{h_\nu(R_1, R_2, x_0)}{(R_1 - R_2)^{\sigma}} + \frac{1}{T_1 - T_0} \right)^{\zeta_\varepsilon} \times \left( \frac{T_0}{T_1} \right)^{\frac{1}{\gamma_{\nu}}} \left( \int_{B_{R_1}(x_0)} u_\delta(T_1, x)^{-s_\varepsilon} |x|^{-\gamma} \, dx \right)^{-\frac{1}{s_\varepsilon}},
$$

(3.22)

where $k_\varepsilon$ is the smallest $k \in \mathbb{N}$ such that $(r^{\nu}/2)^{k_\varepsilon} > 1 - m$ and

$$
s_\varepsilon := \left( \frac{r^{\nu}}{2} \right)^{k_\varepsilon} > 1 - m \quad \text{and} \quad \zeta_\varepsilon := -\frac{11}{\varepsilon} - \frac{\left( \frac{2}{\varepsilon} \right)^{k_\varepsilon}}{1 - \frac{2}{\varepsilon}}.
$$

(3.23)

where $h_\nu, M_p$ and $r^{\nu}$ are defined in (2.22), (3.7) and (CKNI) respectively, while $k_\varepsilon$ only depends on $N, m, \beta, \gamma, \varepsilon$.

**Proof.** The proof relies on a finite iteration and it is split into two steps. Let us fix $x_0 \in \mathbb{R}^N$, and simply denote $B_R = B_R(x_0)$ and $u = u_\delta \geq \delta > 0$, when there is no ambiguity.

**Step 1. Preparation of the iteration step.** We are going to prove that for any $s \in (0, 1 - m)$, for any $0 < R_2 < R_1 \leq R$ and $0 < t_0 < t_1$, there exists constants $k_4 > 0$, depending on $q, \gamma, \beta, N, m_0, x_0$ and $R_1, R_2, t_0, t_1$ and the norm of the initial data $\|u_0\|_{L^s(B_{R_0}(x_0))}$ such that

$$
\left( \int_{B_{R_2}(x_0)} u(t_0, x)^{-s_\varepsilon} |x|^{-\gamma} \, dx \right)^{-\frac{1}{s_\varepsilon}} \geq \left( \int_{B_{R_1}(x_0)} u(t_1, x)^{-s_\varepsilon} |x|^{-\gamma} \, dx \right)^{-\frac{1}{s_\varepsilon}},
$$

(3.24)

where $s_\varepsilon = \left( \frac{r^{\nu}/2}{s_\varepsilon} \right)^{k_\varepsilon}$ if $\varepsilon \neq (1-m)/(r^{\nu})$ for all $k \in \mathbb{N}$, and $s_\varepsilon = (1-m)/(r^{\nu})$ for some $k \in \mathbb{N}$.

Notice that while $s \in (0, 1-m)$, in general $r^{\nu}/2$ may be bigger than $1-m$, we will exploit this fact in the next step. We first integrate in time inequality (2.22) applied to $f = u^{p+m-1}$, with $\tilde{p} \in (0, 1-m)$, to get

$$
\int_{t_0}^{t_1} \left( \int_{B_{R_2}} u^{\tilde{p}+m-1} \frac{dx}{|x|^\gamma} \right)^{\frac{2}{\tilde{p}+m-1}} \, dt \leq S^2_{\gamma, \beta} \left( \mu_\gamma(B_{R_2}) \frac{2^{\sigma-\gamma}}{2^{\sigma-\beta}} \right)^{-1} \int_{t_0}^{t_1} \int_{B_{R_2}} u^{\tilde{p}+m-1} \frac{dx \, d\tau}{|x|^\gamma} + \int_{t_0}^{t_1} \int_{B_{R_2}} \left| \nabla u^{\tilde{p}+m-1} \right|^2 \frac{dx \, d\tau}{|x|^\beta}.
$$

(3.25)

Recalling that by (3.7) we have $u(t, x) \leq M_p(u_0, \delta, t_0)$, for all $t \geq t_0$ and $x \in B_{R_0}(x_0)$, then the energy inequality (2.4) implies for all $\tilde{p} \in (0, 1-m)$ (recall that $\tilde{p} + m - 1 < 0$ and $u \geq \delta > 0$)

$$
\int_{t_0}^{t_1} \int_{B_{R_2}} \left| \nabla u^{\tilde{p}+m-1} \right|^2 \frac{dx \, dt}{|x|^\beta} \leq \tau \int_{t_0}^{t_1} \int_{B_{R_1}} u^{\tilde{p}+m-1} \frac{dx \, dt}{|x|^\gamma},
$$

where $t \in (t_0, t_1)$ and

$$
\tau = c_2 \left[ 1 + M_p(u_0, \delta, t_0)^{1-m} \right] \left[ \frac{h_\nu(R_1, R_2, x_0)}{(R_1 - R_2)^{\sigma}} + \frac{1}{t_1 - t} \right].
$$

$h_\nu$ and $M_p$ are defined in (2.22) and (3.7) and $c_2 = c_2(\tilde{p}, R) > 0$ as in (2.4).

Combining the two above inequalities we obtain

$$
\int_{t_0}^{t_1} \left( \int_{B_{R_2}} u^{\tilde{p}+m-1} \frac{dx}{|x|^\gamma} \right)^{\frac{2}{\tilde{p}+m-1}} \, d\tau \leq 2S^2_{\gamma, \beta} \left( \mu_\gamma(B_{R_2}) \frac{2^{\sigma-\gamma}}{2^{\sigma-\beta}} \right)^{-1} \int_{t_0}^{t_1} \int_{B_{R_1}(x_0)} u^{\tilde{p}+m-1} \frac{dx \, d\tau}{|x|^\gamma},
$$

(3.25)
where $\tilde{c} = (1 - m)/\tilde{p}$. Analogously, we can estimate the right-hand side of (3.26) from above,

$$\int_{t_0}^{t_1} \int_{B_{R_2}(x_0)} u(t, x) \tilde{p}^{m-1} \frac{dx \, dt}{|x|^\gamma} \leq \tilde{c} \int_{t_0}^{t_1} \int_{B_{R_1}(x_0)} u(t, x) \tilde{p}^{m-1} \frac{dx}{|x|^\gamma}. \quad (3.27)$$

Finally, letting $\tilde{s} = -\tilde{p} + 1 - m$, we have $\tilde{s} \in (0, 1 - m)$; taking $t_1^{\tilde{p}/(1-m)} = (t_1^{\tilde{p}/(1-m)} + t_0^{\tilde{p}/(1-m)})/2$, we have $2 = (t_1^{\tilde{p}/(1-m)} - t_0^{\tilde{p}/(1-m)})/(t_1^{\tilde{p}/(1-m)} - t_0^{\tilde{p}/(1-m)})$, so that (3.25), (3.26) and (3.27) gives (3.24). Notice that we also have

$$\tilde{c} \leq 2c_2 \left[ 1 + M_p(u_0, \delta, t_0)^{1-m} \right] \left[ h(x_i, R_i, x_0) (R_i - R_2)^\beta + \frac{1}{t_1 - t_0} \right] := \tilde{c}_1, \quad (3.28)$$

since we have that $\tilde{p} < 1 - m$ implies $t_1 - t = t_1 - \left[(t_1^{\tilde{p}/(1-m)} + t_0^{\tilde{p}/(1-m)})/2 \right]^{(1-m)/\tilde{p}} \geq (t_1 - t_0)/2$.  

**Step 2. The finite iteration.** Fix $\varepsilon \in (0, 1 - m)$ and assume that $\varepsilon \neq (1 - m)(2/r^*)^k$ for all $k \in \mathbb{N}$, to avoid that $(r^*/2)^k \varepsilon = 1 - m$ for some $k \in \mathbb{N}$; the remaining cases are similar and will be discussed at the end of the proof. Let $k_\varepsilon$ be the smallest positive integer such that $(r^*/2)^k \varepsilon > 1 - m$, notice that $k_\varepsilon \geq \log((1 - m)/\varepsilon)/\log(r^*/2)$. We are going to iterate inequality (3.24) $k_\varepsilon$ times; let us define a decreasing sequence of exponents, and increasing sequences of radii and times for all $0 \leq i \leq k_\varepsilon$

$$s_i := (r^*/2)^{k_\varepsilon - i} \varepsilon, \quad r_i := R_2 + \frac{i}{k_\varepsilon} (R_1 - R_2) \quad \text{and} \quad t_i := T_0 + \frac{i}{k_\varepsilon} (T_1 - T_0) \quad (3.29)$$

Notice that by construction $s_i \in (0, 1 - m)$ for all $i = 0, \ldots, k_\varepsilon - 1$, $s_{k_\varepsilon} = \varepsilon$, and $s_0 = (r^*/2)^{k_\varepsilon} \varepsilon > 1 - m$, so that we can rewrite inequality (3.24) as follows:

$$\|u(t_i)\|_{L_1^{-s_i}(x_0)} \geq c_i \|u(t_{i+1})\|_{L_1^{-s_i+1}(x_0)} \quad (3.30)$$

where $c_i = c(s_i, t_i, r_i)$ has the expression

$$c_i = \left[ 4S_2^2 (1 + c(m, 1 - m - s_{i+1}) (1 + M_p(u_0, \delta, t_i)^{1-m})) \right]^{-1/s_i} \times \left[ \left[ h(x_i, R_i, x_0) \frac{1}{(R_i - R_2)\beta} + \frac{1}{t_i - t_{i+1}} \right]^{1/s_i} \left[ \frac{t_i}{t_{i+1}} \right] \right] \quad (3.31)$$

where $c = c(m, 1 - m - s_{i+1})$ is as in (2.4). Iterating $k_\varepsilon$-times inequality (3.30) we get

$$\|u(t_0)\|_{L_1^{-s_0}(x_0)} \geq c_0 \|u(t_1)\|_{L_1^{-s_1}(x_0)} \geq \cdots \geq \left( \prod_{i=0}^{k_\varepsilon - 1} c_i \right) \|u(t_{k_\varepsilon})\|_{L_1^{-s_{k_\varepsilon}}(x_0)} \quad (3.32)$$

Recalling that $t_0 = T_0 < t_{k_\varepsilon} = T_1$, $r_0 = R_2 < r_{k_\varepsilon} = R_1 \leq R$, and that $s_0 = (r^*/2)^{k_\varepsilon} \varepsilon > 1 - m$ we have

$$\|u(T_0)\|_{L_1^{-s_0}(x_0)} \geq C \|u(T_1)\|_{L_1^{-s_{k_\varepsilon}}(x_0)} \quad (3.33)$$

where $C > 0$ is the lower bound of the product $\prod_{i=0}^{k_\varepsilon - 1} c_i$ that we are going to estimate explicitly below. From formulæ (3.31) and (3.29) we deduce that

$$c_i \geq c \left( \frac{T_0}{T_1} \right)^{-1/s_i} \left[ h(x_i, R_i, x_0) \frac{1}{(R_i - R_2)\beta} + \frac{1}{t_i - t_{i+1}} \right]^{1/s_i} \left[ (1 + M_p(u_0, \delta, T_0)^{1-m}) \right]^{-1/s_i+1} \quad (3.34)$$
where we have used that \( t_i \in [T_0, T_1] \), hence \( t_i / t_{i+1} \leq T_0 / T_1 \) and \( M_p(u_0, \delta, t_i) \leq M_p(u_0, \delta, T_1) \); moreover, 
\[ h_{\sigma}(r_{i+1}, r_i, x_0) \leq k_\varepsilon^{(2-\sigma)k} h_{\sigma}(R_1, R_2, x_0) ; \]
finally we have set 
\[ \mathcal{C}_i = \left[ 2^4 S_{\gamma, \beta} c(m, 1 - m - s_{i+1})(k_\varepsilon^{2/\sigma} + k_\varepsilon) \right]_{T_i}^{T_{i+1}}. \]
Finally, we can estimate \( C \) as follows,
\[ \prod_{i=0}^{k_x} c_i \geq \left( \frac{T_0}{T_1} \right)^{k_x} \left[ \prod_{i=0}^{k_x} \mathcal{C}_i \right] \left( 1 + M_p(u_0, \delta, T_0) \right)^{1-m} \left( \frac{h_{\sigma}(R_1, R_2, x_0)}{(R_1 - R_2)^\sigma} + \frac{1}{T_1 - T_0} \right) \sum_{i=0}^{k_x} \frac{1}{T_i - T_{i+1}}, \]
where we have used that \( \sum_{i=0}^{k_x} \frac{1}{T_i - T_{i+1}} = \frac{1}{\varepsilon} \sum_{j=0}^{k_x - 1} \left( \frac{2^j}{\varepsilon} \right)^{1} = \frac{1}{\varepsilon} \left[ 1 - \left( \frac{2^j}{\varepsilon} \right) \right] / \left[ 1 - \frac{2^1}{\varepsilon} \right] \), and we have defined 
\[ \mathcal{A}_k = \prod_{i=0}^{k_x-1} \mathcal{C}_i > 0 \] so that it only depends on \( N, m, \beta, \gamma, \varepsilon \).

**Remark.** As it happens in the elliptic case, the above reverse Hölder inequality plays a fundamental role in the proof of the lower bounds; the above Proposition can be considered the parabolic analog of the celebrated John-Nirenberg Lemma, cf [14]. As far as we know, in the literature of parabolic equations, there are basically only two techniques that allow to prove the above estimates: one is due to Moser [70], the other is due to Bombieri and Giusti [6], see also [71]. None of the above techniques applies directly to our nonlinear setting: in order to establish the validity of the reverse Hölder inequalities of Corollary [1.4], we need to show that \( \log u \in BMO \) (\( u \) is a solution to the MDP or to the \( \delta \)-MDP). In order to obtain a quantitative control on the \( BMO \) norm, we will use the Caccioppoli inequalities (2.3) of Lemma [2.3], combined with the weighted Poincaré inequality of Proposition [1.11] as follows.

**Lemma 3.8** Let \( u_\delta \) be a non-negative solution to \( \delta \)-MDP on \( (0, \infty) \times \Omega \) and let \( B_{2R}(x_0) \subset \Omega \). Let \( u_0 \in \mathcal{L}_p(\Omega) \) for \( p > p_0 \), if \( 0 < m \leq m_c \), or \( p \geq 1 \) if \( m_c < m < 1 \). Then for any \( t > 0 \) the function \( \log u_{\delta}(t) \in BMO(B_R(x_0)) \), more precisely there exists a constant \( \mathcal{A}_{10} > 0 \) such that for any \( t > 0 \)
\[ \| \log u_{\delta}(t) \|_{BMO(B_R(x_0))} \leq \mathcal{A}_{14} \left[ 1 + \frac{R^\sigma}{t} \left( \frac{|x_0|}{R} \vee 1 \right)^{\beta - \gamma} M_p(u_0, \delta, t)^{1-m} \right]^{\frac{1}{\gamma}} = \frac{1}{\mathcal{A}_{0} u_{\delta}}, \]
where \( M_p \) is given in [3.7] and the constant \( \mathcal{A}_{14} \) depends only on \( N, m, \gamma, \beta \), while \( \mathcal{A}_{0} \) is as in Corollary [1.14].

**3.6 Step 3. Reverse Hölder inequalities**

In this subsection we prove the Step 3 of the proof of our positivity result. More precisely we prove \( L^{-\varepsilon} \rightarrow L^\varepsilon \) estimates, in the form of reverse Hölder inequalities.

**Proposition 3.7 (Reverse Hölder inequality for \( \delta \)-MDP)** Let \( u \) be a solution to \( \delta \)-MDP on \( (0, \infty) \times B_{R_0}(x_0) \). Let \( u_0 \chi_{B_R(x_0)} \in \mathcal{L}_p(B_{R_0}(x_0)) \) with \( p > p_c \) when \( m \in (0, m_c) \) and with \( p \geq 1 \) when \( m \in (m_c, 1) \). Then for all \( t \geq t_0 > 0 \) and all \( 0 < R_1 < R \), there exists a \( \nu_\delta = \nu_\delta(t_0, u_0) > 0 \), such that 
\[ \| u_\delta(t) \|_{L^\varepsilon(B_{R_1}(x_0))} \leq \mathcal{A}_{14}^{p_1/p} \mu_\varepsilon(B_{R_1}(x_0))^{p_2/p} \| u_\delta(t) \|_{L^{-\varepsilon}(B_{R_1}(x_0))} \] for all \( 0 < \varepsilon < \nu_\delta \),
where 
\[ \nu_\delta = \frac{1}{\mathcal{A}_{14}^{p_1/p}} \left[ 1 + \frac{R^\sigma}{t} \left( \frac{|x_0|}{R} \vee 1 \right)^{\beta - \gamma} M_p(u_0, \delta, t)^{1-m} \right]^{-1/2}. \]
\( M_p \) is given in [3.7], \( \mathcal{A}_{14} \) as is in Lemma [6.8] and \( \mathcal{A}_6, \mathcal{A}_7 \) as are in Corollary [1.14].

**Remark.** As it happens in the elliptic case, the above reverse Hölder inequality plays a fundamental role in the proof of the lower bounds; the above Proposition can be considered the parabolic analog of the celebrated John-Nirenberg Lemma, cf [14]. As far as we know, in the literature of parabolic equations, there are basically only two techniques that allow to prove the above estimates: one is due to Moser [70], the other is due to Bombieri and Giusti [6], see also [71]. None of the above techniques applies directly to our nonlinear setting: in order to establish the validity of the reverse Hölder inequalities of Corollary [1.4], we need to show that \( \log u \in BMO \) (\( u \) is a solution to the MDP or to the \( \delta \)-MDP). In order to obtain a quantitative control on the \( BMO \) norm, we will use the Caccioppoli inequalities (2.3) of Lemma [2.3], combined with the weighted Poincaré inequality of Proposition [1.11] as follows.
Proof of Lemma 3.8. We will write $u = u_δ$, since no confusion arises here. Let $ρ > 0$, $h > 0$ and $ψ ∈ C^∞_c(B_{2ρ}(x_0))$. Then by Caccioppoli’s inequality (2.6) of Lemma 2.8, we get

$$m^2(1 - m)^2 \int_{B_{2ρ}(x_0)} \frac{1}{h} \int_{τ}^{τ + h} ψ^2 |∇ log u|^2 dt |x|^{-β} dx$$

$$\leq 2(1 - m) \int_{B_{2ρ}(x_0)} |∇ψ|^2 |x|^{-β} dx + \int_{B_{2ρ}(x_0)} \frac{u_1 - m(τ + h, x) - u_1 - m(τ, x)}{h} \psi^2 |x|^{-γ} dx$$

By Lebesgue’s Differentiation Theorem, the Steklov averages $\frac{1}{h} \int_s^{s + h} ψ^2 |∇ log v|^2 dt$ converge to $ψ^2 |∇ log v|^2$ as $h → 0$. Using the time monotonicity property of $u$, namely that $u(τ + h, x)^{1 - m} ≤ u(τ, x)^{1 - m}$ (2.16), we get

$$\int_{B_{ρ}(x_0)} \frac{u_1 - m(τ + h, x) - u_1 - m(τ, x)}{h} \psi^2 |x|^{-γ} dx ≤ \frac{1}{τ} \int_{B_{ρ}(x_0)} u(1 - m)(τ, x) \psi^2 |x|^{-γ} dx.$$ 

We can now take $ψ = 1$ on $B_{ρ}(y)$ and $ψ = 0$ outside $B_{2ρ}(x_0)$ and let $v = log u$, to obtain

$$\int_{B_{2ρ}(x_0)} ψ^2 |∇ v(τ)|^2 |x|^β dx ≤ \frac{4}{m^2} \int_{B_{2ρ}(x_0)} |∇ψ|^2 |x|^β dx + \frac{2}{m^2(1 - m)τ} \int_{B_{2ρ}(x_0)} u_1 - m(τ)|ψ|^2 |x|^β dx.$$

(3.35)

In order to estimate the $BMO$ norm of $v = log u$ on $B_{ρ}(x_0)$ we need to estimate the quantity $μ_γ(B_{ρ}(y))^{-1} \int_{B_{ρ}(y)} |v - \tau_{B_{ρ}(y)}||x|^{-γ} dx$ on any ball $B_{ρ}(y) ⊂ B_{ρ}(x_0)$. To this end, we use the weighted Poincaré inequality (1.19), Hölder inequality and estimate (3.35), and we obtain the following

$$\left( \frac{1}{μ_γ(B_{ρ}(y))} \int_{B_{ρ}(y)} |v(τ) - u(τ)|_{B_{ρ}(y)} |x|^{-γ} dx \right)^2 \leq \frac{P^2_γ ρ^2}{μ_β(B_{ρ}(y))} \int_{B_{ρ}(y)} ψ^2 |∇ v(τ)|^2 |x|^β dx,$$

$$≤ \frac{4P^2_γ ρ^2}{m^2} + \frac{2P^2_γ ρ^2 D_γ}{m^2(1 - m)} \frac{ρ^2 μ_γ(B_{ρ}(y))}{μ_β(B_{ρ}(y))} \frac{M_p(u_0, δ, τ)^{1 - m}}{τ},$$

where $D_γ$ is the doubling constant of the measure $μ_γ$, defined in (1.18). Finally, by Lemma 5.3

$$\frac{ρ^2 μ_γ(B_{ρ}(y))}{μ_β(B_{ρ}(y))} ≤ c_0 \left( \int_{B_{ρ}(x_0)} |x|^{(β - γ)\frac{α}{2}} dx \right)^{\frac{α}{β - γ}} ≤ c_1 (|x_0| ∨ R)^{β - γ} R^2 ≤ c_2 \left( \frac{|x_0|}{R} ∨ 1 \right) R^α.$$

where $c_0, c_1, c_2 > 0$ only depend on $N, γ, β$. This concludes the proof. \qed

Proof of Proposition 3.7. We have shown that $log u_δ(t) ∈ BMO_γ(B_{ρ}(x_0))$ for any $t ≥ t_0 > 0$ in Lemma 3.8, more precisely, inequality (3.34) gives $\|log u_δ(t)\|_{BMO_γ(B_{ρ}(x_0))} ≤ 1/|n_δ|^β$ for all $t ≥ t_0$. We are now in the position to apply inequality (1.21) of Corollary 1.14 which gives inequality (5.33), namely

$$\|u(t)\|_{L^s_\gamma(B_{ρ}(x_0))} \leq \frac{P^2_γ}{μ_γ(B_{ρ}(x_0))^{2/s}} \|u(t)\|_{BMO_s(B_{ρ}(x_0))},$$

for all $t ≥ t_0 > 0$, and all $0 < s < n_δ ≤ 1/(|n_δ| log u(t))_{BMO_s(B_{ρ}(x_0))}$. Letting $s = ε$ concludes the proof. \qed

The above results extend to the case of the MDP as in the following lemma.
Proposition 3.9 (Reverse Hölder inequality for MDP) Let $u$ be a solution to MDP on $(0, \infty) \times B_{R_0}(x_0)$, corresponding to the initial datum $u_0 \chi_{B_R(x_0)} \in L^p(B_{R_0}(x_0))$ with $p > p_c$ when $m \in (0, m_c]$ and with $p \geq 1$ when $m \in (m_c, 1)$, with $4R < R_0$; let $T = T(u_0)$ be its extinction time. Then, estimate (3.34) holds for $u$, with $\delta = 0$. Moreover, let $H_p$ be as in (1.12), then for every $\tau_\epsilon \in (0, 1]$ we define

$$
u_0 := \frac{\tau_\epsilon^p}{\bar{\rho}_6} \left[ 1 + \left( \frac{|x_0|}{R} \vee 1 \right)^{\beta - \gamma} H_p(u_0, x_0, R)^{1-m} \right]^{-\frac{1}{2}} > 0,$$  \tag{3.36}

so that for every $t \in [\tau, t_\epsilon, t_*] \subset (0, T)$ with $t_* = t_\epsilon(u_0, x_0, R)$ is as in (1.13), we have

$$\| \log u(t) \|_{BMO, (B_{R_0}(x_0))} \leq (\nu_0 \vartheta_0)^{-1}.$$  \tag{3.37}

Finally, for all $t \in [\tau_\epsilon, t_\epsilon, t_\star] \subset (0, T)$ and all $0 < R_1 < R$, we have

$$\| u(t) \|_{L^\infty(B_{R_1}(x_0))} \leq \tau_\epsilon^{2s} \mu_\gamma(B_{R_1}(x_0))^{2s} \| u(t) \|_{L^\infty(B_{R_1}(x_0))} \quad \text{for all } 0 < \varepsilon < \nu_0.$$  \tag{3.38}

The constant $\tau_\epsilon \approx [m(1 - m)]^{-1}$ depends on $N, m, \gamma, \beta$ and $\rho_6, \rho_7 > 0$ are as in Corollary 4.12.

**Proof.** Inequality (3.37) follows by letting $\delta \to 0$ in inequality (3.34), then substituting $t = \tau, t_\epsilon, T$, with $t_\epsilon$ given in (1.13), and finally noticing that

$$\frac{1}{\tau_\epsilon t_\epsilon} M_p(u_0, \delta, t_\epsilon) \sim \frac{c_3}{R^{p \sigma^p \rho^p \rho_6}} H_p(u_0, x_0, R)^{1-m},$$

where $\nu_0$ depends on $N, \gamma, \beta$ and $m$. Inequality (3.38) then follows as in the proof of Proposition 3.7.

**Remark 3.10** When we are in the good fast diffusion range, i.e $m \in (m_c, 1)$, we can choose $\nu_0$ independent of $u_0$, indeed, by letting $p = 1$ in (3.36) and recalling that $H_1(u_0, x_0, R) = \mu_\gamma(B_{R}(x_0))^{\sigma^p \rho^p \rho_6} R^{-\sigma(N-\gamma)\rho_p}$ so that

$$\nu_0 := \frac{\tau_\epsilon^{\sigma^{p_1}}}{\bar{\rho}_6} \left[ 1 + \left( \frac{|x_0|}{R} \vee 1 \right)^{\beta - \gamma} \left( \frac{\mu_\gamma(B_{R}(x_0))^{\sigma^p \rho^p \rho_6}}{R^{\sigma(N-\gamma)\rho_p}} \right)^{1-m} \right]^{-\frac{1}{2}}.$$  

This will have important consequences, but in particular we immediately obtain an absolute bound of the BMO norm of $\log u$ on intrinsic cylinders, namely $\| \log u(t) \|_{BMO, (B_{R_0}(x_0))} \leq (\nu_0 \vartheta_0)^{-1}$, for all $t \in [\tau, t_\epsilon, t_*] \subset (0, T)$. Unfortunately the dependence on $u_0$ cannot be dropped in the very fast diffusion range, i.e. when $m \in (0, m_c]$.

### 3.7 End of Step 3. Proof of Proposition 3.4 and $L^{-\infty} = L^{-\varepsilon}$ for MDP

We now sum up all the results of the first three Steps to prove the $L^{-\infty} - L^{-\varepsilon}$ estimates for the $\delta$-MDP. Next we prove analogous estimates for the MDP by letting $\delta \to 0$. **Proof of Proposition 3.4.** Let us first fix $\varepsilon > 0$ as in (3.38), namely such that

$$0 < \varepsilon < \nu_\delta \wedge (1 - m) \quad \text{with} \quad \nu_\delta = \frac{1}{\bar{\rho}_6 \bar{\rho}_6} \left[ 1 + \frac{R_\delta}{t_0} \left( \frac{|x_0|}{R_1} \vee 1 \right)^{\beta - \gamma} M_p(u_0, \delta, t_0)^{1-m} \right]^{-1/2}.$$  

where $M_p$ is given in (3.37), $\bar{\rho}_6$ is as in Lemma 3.8 so that the Reverse Hölder inequality (3.33) holds. Then we are in the position to use the $L^{-s_\varepsilon} - L^{-\varepsilon}$ smoothing effect of Proposition 3.6 with $\varepsilon \in (0, 1 - m)$ as above, together with the $L^{-\infty} - L^{-s_\varepsilon}$ lower bounds of Proposition 3.5, combining all the above results we obtain,
choosing $\bar{R} = (R_1 + R_2)/2$ and times as in the statement we have that

$$
\inf_{(T_1, T_2) \times B_{R_2}(x_0)} u \geq \kappa_3 \left[ (1 + M_p(u_0, \delta, T_0)^{1-m}) \left( \frac{h_\sigma (\bar{R}, R_2, x_0)}{(\bar{R} - R_2)^\gamma} + \frac{1}{T_1 - T_0} \right) \right]^{\gamma_r} 
\times \left[ \left( \frac{T_0}{T_2} \right)^{1-m} \left( \int_{B_{R_2}(x_0)} u^{-s}(T_2, x) \frac{|x|^{-\gamma}}{d} \right)^{\frac{1}{s}} \right] 
\geq \kappa_3 \left[ 2^{(2-\sigma)_+} (1 + M_p(u_0, \delta, T_0)^{1-m}) \left( \frac{h_\sigma (R_1, R_2, x_0)}{(R_1 - R_2)^\gamma} + \frac{1}{T_1 - T_0} \right) \right]^{\gamma_r} 
\times \left[ \left( \frac{T_0}{T_3} \right)^{1-m} \kappa_2 \frac{\mu_\gamma(B_{R_1}(x_0))}{|x|} \left( \int_{B_{R_1}(x_0)} u_\delta(T_3, x) \frac{|x|^{-\gamma}}{d} \right)^{\frac{1}{s}} \right]
$$

where in the first step we have used (3.30) with $s_\varepsilon > 1 - m$ as in (3.23), and $0 < R_2 < \bar{R} < R_1$ and $T_1 \in (T_0, T_2)$. Notice that $\eta_\varepsilon := s_\varepsilon \in (s_\varepsilon + m - 1)$, $\zeta_\varepsilon = \frac{1}{s_\varepsilon + m - 1}$, $h_\sigma$ and $M_p$ are defined in (2.2) and (3.7) respectively, and $\kappa_3 > 0$ is as in (3.33) only depends on $s_\varepsilon, N, \gamma, \beta, m$. In the second step we have used (3.22) with $\kappa_1$ as in (3.23), noticing that $M_p(u_0, \delta, T_2) \leq M_p(u_0, \delta, T_0)$ and that $h_\sigma (\bar{R}, R_2, x_0) \times h_\sigma (R_1, \bar{R}, x_0) \leq 2^{(2-\sigma)_+} h_\sigma (R_1, R_2, x_0)$, and where $s_\varepsilon > 1 - m$ and $\kappa_3 > 0$ are given in (3.23). In the third step we have used the Reverse Hölder inequality (3.33) with $\varepsilon$ and $\nu_0$ as above, with $\pi_7$ as in Corollary 1.14. □

**Taking the limit $\delta \to 0$.** L$^{-\infty}$ – $L^\infty$ interior estimates for MDP. Consider the solution $u$ of the MDP with initial data $u_0$. Then the solutions of the “lifted problem” $u_\delta$ are ordered with respect to $\delta$: more precisely, for $\delta > \delta'$, for any $x \in B_R(x_0)$ and for any $t \in (0, \infty)$

$$u_\delta(t, x) \geq u_{\delta'}(t, x).$$

In particular, for any $x \in B_R(x_0)$ and for any $t \in (0, \infty)$, the limit as $\delta \to 0$ exists and it equal to $u(t, x)$. See [10] Section B.3] for more details. Notice that the constants in the inequality (3.39) remain stable as $\delta \to 0^+$ (see also Proposition 3.9). As an immediate consequence of Proposition 3.3 we get

**Corollary 3.11 (L$^{-\infty}$ – L$^\infty$ estimates for MDP)** Let $u$ be a strong (super)solution to MDP on $(0, \infty) \times B_{R_0}(x_0)$, corresponding to the initial datum $u_0 \chi_{B_{R_0}(x_0)} \in L^p(B_{R_0}(x_0))$ with $p > p_c$ when $m \in (m_c, 1]$ and with $p \geq 1$ when $m \in (m_c, 1)$, moreover assume that $4R = R_0$ and that $B_{R_0}(x_0)$ satisfies either (1), (2) or (3); let $T = T(u_0)$ be the extinction time. Let $\bar{H}_p$ be as in (1.12), and define, for any fixed $\tau_* \in (0, \frac{1}{2})$,

$$\nu_0 := \frac{m(1-m)}{\bar{H}_p(u_0, x_0, R)^{\frac{2}{s}}} \in (0, 1 - m).$$

Then, $[2\tau_* \bar{t}_\varepsilon, (1 - \tau_*) \bar{t}_\varepsilon] \subset [\tau_* \bar{t}_\varepsilon, \bar{t}_\varepsilon] \subset (0, T)$ with $\bar{t}_\varepsilon = \bar{t}_\varepsilon(u_0, x_0, R)$ as is in (3.32). Moreover, for any $\varepsilon \in (0, \nu_0)$ there exist $s_\varepsilon > 1 - m$ and $\kappa_2 > 0$ such that

$$\inf_{[2\tau_* \bar{t}_\varepsilon, (1 - \tau_*) \bar{t}_\varepsilon] \times B_{2\bar{R}}(x_0)} u \geq \kappa_3 \left( \int_{B_{4\bar{R}}(x_0)} u(\bar{t}_\varepsilon, x)^{\frac{2}{s}} d |x|^{-\gamma} dx \right)^{\frac{1}{s_\varepsilon + m - 1}}.$$
with

$$κ_ε := \frac{κ_5 R^p}{μ_γ(B_{4R}(x_0))^{1−m}} \left[ \tilde{H}_p(u_0, x_0, R) \left( 1 \vee \frac{\tau_{s}}{R^p} \right)^{\frac{1}{2−m}} \left( h_ε(4R, 2R, x_0) + \frac{1}{\tau_{s}} \right) \right]^{\eta_ε + \frac{κ_6 R}{R^{1−m}}} \quad (3.41)$$

where \( s_ε > 0, \eta_ε, \zeta_ε < 0 \) are as in (3.10), \( θ_ε = (1−pσθ_p)(\eta_ε + \frac{κ_6 R}{R^{1−m}}) + \frac{1}{1−m} \frac{κ_8}{s_ε + m−1} \); \( h_ε, M_p \) and \( θ_p \) are defined in (2.4), (2.7) and (1.10) respectively; finally, \( κ_5 > 0 \) depends only on \( N, m, p, β, γ \), through \( κ_5, κ_4 \) defined in (3.11), (3.24), and through \( κ_6, κ_7 \), which are defined in Corollary 3.1.

**Remark.** Corollary 3.11 holds true for more general scenarios, cf. the proof of Proposition 3.4: in order to simplify the presentation we have decided to state the result only in the most relevant cases.

### 3.8 Step 4. Reverse \( L^1 \) \(-\) \( L^ε \) smoothing effects and interior lower bounds for MDP

Next we derive a useful Lemma about quantitative positivity of local \( L^1 \) norms and a local reverse \( L^ε \) \(-\) \( L^1 \) smoothing effects for solutions to the MDP.

**Lemma 3.12** Let \( u \) be the solution to [MDP] on \((0, ∞) \times B_{R_0}(x_0)\), corresponding to the initial datum \( u_0χ_{B_R(x_0)} \in L^p(B_{R_0}(x_0)) \) with \( p > p_ε \) when \( m \in (0, m] \) and with \( p \geq 1 \) when \( m \in (m_ε, 1) \), with \( 4R \leq R_0 \); let \( T = T(u_0) \) be its extinction time and define \( 0 \leq t_ε \leq T \) as

$$t_ε = t_ε(u_0, x_0, R) = \frac{π_{10}^1}{2−m} \frac{D_γ(1−m)}{μ_γ(B_R(x_0))^{1−m}} \| u_0 \|_{L^1(B_R(x_0))}^{1−m}, \quad (3.42)$$

where \( D_γ \) is the doubling constant of the measure \( μ_γ \), and \( π_{10} ≥ 1 \) is the constant defined in (5.18) and depends only on \( N, γ, β \) and \( m \). Then there exists \( κ_0 > 0 \) such that

$$\frac{π_{10}^1}{μ_γ(B_R(x_0))} \int_{B_R(x_0)} u_0 |x|^{−γ} \, dx \leq \frac{1}{μ_γ(B_{4R}(x_0))} \int_{B_{4R}(x_0)} u(t_ε, x) |x|^{−γ} \, dx, \quad (3.43)$$

where \( κ_0 \) depends on \( N, γ, β, m \). Moreover, for any \( ε ∈ (0, 1) \) the following estimate holds true

$$\left( \frac{1}{μ_γ(B_R(x_0))} \int_{B_R(x_0)} u_0 |x|^{−γ} \, dx \right)^ε ≤ κ_0 \frac{H_p(u_0, x_0, R)}{μ_γ(B_{4R}(x_0))} \int_{B_{4R}(x_0)} u^{ε}(t_ε, x) |x|^{−γ} \, dx, \quad (3.44)$$

where \( H_p(u_0, x_0, R) \) is defined in (1.12).

The constant \( κ_0 = κ_0 = κ_0 \frac{π_{12} μ_γ(B_R(x_0))^{−σ_d} μ_γ(B_R(0))^{σ_d}}{p} \), with \( π_{12} > 0 \) that depends only on \( N, m, γ, β, p \) and is given in (3.22).

**Proof.** Let \( u(t, x) \) be a solution to [MDP] over the cylinder \( B_{R_0}(x_0) \times (0, T) \). Applying inequality (2.7) with times \( t = 0, τ = t_ε \) and radii \( 2R \) and \( 4R \) we obtain

$$\frac{1}{μ_γ(B_R(x_0))} \int_{B_R(x_0)} u_0 \, dx |x|^{γ} ≤ \frac{2}{μ_γ(B_{4R}(x_0))} \left[ \int_{B_{4R}} u(τ, x) \, dx |x|^{γ} + \frac{κ_1 R^{1−m}}{R^{1−m}} μ_γ(B_R(x_0)) \right], \quad (3.45)$$

where we used the fact that \( u_0 \) is supported in \( B_R \) and the doubling property of the measure \( μ_γ \). Inequality (3.43) is then deduced from (3.45) with constant \( κ_0 = κ_0 = 2^{−\frac{1}{1−m}} D_γ^2 \). We now turn our attention to inequality (3.44), which will be deduced from (3.43). Let \( ε ∈ (0, 1) \), using the smoothing effect inequality (3.3), namely
\( \|u(t)\|_{L^\infty(B_{R_0}(x_0))} \leq \kappa_{12} |u_0|_{L^p_\infty(B_{R_0}(x_0))} t^{-(N-\gamma)\frac{1}{p}} \) (recall that \( \kappa_{12} \) does not depend on \( B_{R_0}(x_0) \)) applied at \( t = t_\ast \), we get

\[
\|u(t_\ast)\|_{L^\infty(B_{R_0}(x_0))} \leq \kappa_0 H_p(u_0,0,R) \frac{|u_0|_{L^p_\infty(B_{R_0}(x_0))}}{\mu_\gamma(B_{R_0}(x_0))} \leq \frac{\kappa_0}{\kappa_0} H_p(u_0,0,R) \frac{|u(t_\ast)|}{\mu_\gamma(B_{R_0}(x_0))},
\]

where in the last step we have used inequality (3.33) and \( \kappa_0 = \kappa_{12} \mu_\gamma(B_{R_0}(x_0))^{-\frac{1}{p}} \mu_\gamma(B_{R_0}(x_0))^\frac{1}{p} \). We finally combine the above inequality with \( \|u(t_\ast)\|_{L^\infty(B_{R_0}(x_0))} \leq \|u(t_\ast)\|_{L^{\infty}(B_{4R}(x_0))} \|u(t_\ast)\|_{L^r_\infty(B_{4R}(x_0))} \), and we obtain inequality (3.43).

Putting together all the results of the 4 Steps, we obtain the following

**Corollary 3.13 (L^\infty \rightarrow L^1 estimates for MDP)** Let \( u \) be a strong (super) solution to MDP on \( (0, \infty) \times B_{R_0}(x_0) \), corresponding to \( u_0 \chi_{B_{R_0}(x_0)} \in L^p_\infty(B_{R_0}(x_0)) \) with \( p > p_c \) if \( m \in (0, m_c) \) or \( p \geq 1 \) if \( m \in (m_c, 1) \), moreover assume that \( 4R = R_0 \) and that \( B_{R_0}(x_0) \) satisfies either (1), (2) or (3); let \( T = T(u_0) \) be its extinction time and define \( t_\ast \in [0, T] \)

\[
t_\ast = t_\ast(u_0,0,R) = \kappa_\ast R^\gamma \|u_0\|_{L^p_\infty(B_{R_0}(x_0))}^{-1-m} \mu_\gamma(B_{R_0}(x_0))^{1-m} \quad (3.46)
\]

where \( \kappa_\ast = 5^{-1} 2^{-m} \sigma_0^{-1} \gamma_0^{-1} D_\gamma^{-1-m} \), \( D_\gamma \) is the doubling constant of the measure \( \mu_\gamma \), and \( \sigma_0 \geq 1 \) depending only on \( \gamma, \beta, \gamma_\ast \) and \( m \) as in (5.18). Then, there exists \( \kappa > 0 \) such that

\[
\inf_{\{u \geq \tilde{H}_p \mid \tilde{B}_R(x_0) \}} u \geq \kappa \tilde{H}_p \left( \frac{t_\ast^{1+m(\gamma_r-\gamma)}}{R^\gamma} \right)
\]

where \( \kappa \) has an explicit form given in (3.49), in particular for \( R \) bounded and \( \tilde{H}_p \gg 1 \) we have

\[
\kappa \approx \left( \frac{R^\gamma}{H_p^{1/2}} \right)^{\frac{1}{m(1-m)}} \quad \text{with} \quad \tilde{H}_p(u_0,0,R) := 1 + \left( \frac{x_0}{R} \right)^{\beta-\gamma} H_p(u_0,0,R) \quad (3.48)
\]

and with \( c_1, c_2 > 0 \) only depend on \( N, \gamma, \beta, \gamma_\ast \).

**Proof.** Let \( H_p \) be as in (1.12) and fix \( \tau_\ast = 5^{-1}, \kappa_\ast = (1-\tau_\ast) 2^{-m} \sigma_0^{-1} \gamma_0^{-1} D_\gamma^{-1-m} \), and \( t_\ast := (1-\tau_\ast) \tau_\ast \), where \( \tau_\ast \) in (3.22); recall that \( D_\gamma \geq 1 \) is the doubling constant of the measure \( \mu_\gamma \), and \( \sigma_0 \geq 1 \) as in (5.18) (since \( \sigma_0 \) is a constant in an upper bound, hence without loss of generality we can take it bigger than 1). Next we fix \( \tau_0 \) (that depends on \( \tau_\ast \)) as in (3.32) with \( \tau = \tau_\ast \). Finally, we choose \( \varepsilon = \varepsilon_0 := (2/r^*) \sigma_0 (1-m) \), where \( \sigma_0 \) is the smallest integer such that \( \varepsilon_0 < \nu_0 \), notice that we have \( \nu_0 \geq \log(\nu_0)/\log(2/r^*) \). With these choices, we know that \( k_\varepsilon = k_0 + 1 \) and the exponents \( s_\varepsilon > 1-m, \eta_\varepsilon, \zeta_\varepsilon < 0 \) given in (3.10) become

\[
\begin{align*}
s_\varepsilon &= s_\varepsilon = \left( \frac{r^*}{2} \right) k_\varepsilon \varepsilon_0 = (1-m) \frac{r^*}{2} > 1-m, \quad \frac{s_\varepsilon}{s_\varepsilon + m - 1} = \frac{r^*}{r^* - 2} > 0 \quad \text{with} \quad s_\varepsilon \geq 0, \\
\eta_\varepsilon &= \eta_\varepsilon = -2 \left( \frac{N-\gamma}{(1-m)(r^*-2)} + 1 \right) < 0, \quad \zeta_\varepsilon = \zeta_\varepsilon = -\frac{1}{\varepsilon_0} \frac{r^*(1-m) - 2 \varepsilon_0}{(1-m)(r^*-2)} < 0.
\end{align*}
\]

Notice that, even if \( \varepsilon_0 \) depends on \( \nu_0 \) (through \( \nu_0 \)), the exponents \( s_\varepsilon \) and \( \eta_\varepsilon \) now only depend on \( N, \gamma, \beta, m \).

We are now in the position to combine inequalities (3.40) and (3.44) (with \( \sigma_0 \geq 1 \)) as follows: for any \( 0 < R, R_1 < 4R \leq R_0 \) we have

\[
\begin{align*}
\frac{\inf_{\{u \geq \tilde{H}_p \mid \tilde{B}_R(x_0) \}} u \geq \kappa_0}{\left( \frac{\mu_\gamma(B_4R(x_0))}{\kappa_0 H_p(u_0,0,R)} \right)^{1-\varepsilon_0}} & \geq \kappa_0 \left( \frac{\mu_\gamma(B_4R(x_0))}{\kappa_0 H_p(u_0,0,R)} \right)^{1-\varepsilon_0} \left( \frac{1}{\mu_\gamma(B_4R(x_0))} \right) \int_{B_4R(x_0)} u_0 |x|^{-\gamma} dx \left( \frac{r^*}{r^* + s_\varepsilon} \right)^{1-\varepsilon_0}
\end{align*}
\]

or

\[
\begin{align*}
\frac{\kappa_0 \tilde{H}_p R^{1+m(\gamma_r-\gamma)}}{t_\ast^{1-m(\gamma_r-\gamma)}} & = \kappa_0 \tilde{H}_p R^{1+m(\gamma_r-\gamma)}
\end{align*}
\]
where in the second step we have used inequality (3.44) and $\kappa_*$ is as in (3.41) and $\kappa_0$ as in (3.44). Finally we have used the expression of $t_*$ given in (3.40). Using the expression of $\hat{H}_p = \hat{H}_p(\mu_0, x_0, R)$ given in (3.48), we have that $\kappa(\hat{H}_p, R)$ becomes

$$
\kappa := \kappa_0 - \frac{1}{\tau_0} \eta_0 \kappa_0 - 2\sigma \rho^p (\eta_0 + \frac{\tau_0 \gamma}{\sigma + \gamma}) - \frac{\kappa_1}{\tau_0} \mu_\gamma (B_4 R(x_0)) \frac{2 \gamma_0}{\sigma + \mu_\gamma} \hat{H}_p^2 \eta_0 + \frac{\kappa_0}{\sigma + \gamma} (\gamma_0 + \frac{\gamma_0}{\eta_0})
\times \left[ R^{-\sigma} \left( 1 \vee \frac{t_*}{(1 - \gamma) R^e} \right) h_\sigma (4 R, 2 R, x_0) \left( 1 + \frac{R^e (1 - \gamma)}{\tau_0 t_*} \right) \right] \eta_0 + \frac{\tau_0 \gamma}{\sigma + \gamma} (3.49)
$$

where we have used that: $\kappa_0 = \kappa_0 + \frac{\kappa_1}{\sigma + \gamma}$ and $\kappa_1 = \kappa_1 \mu_\gamma (B_4 R(x_0)) \frac{2 \gamma_0}{\sigma + \mu_\gamma}$. We also recall that as in Lemma (3.12), $\kappa_0 = \kappa_0 + \kappa_1 R_0 (B_4 R(x_0)) \sigma \rho^p$, with $\kappa_1 > 0$ that depends only on $N, m, \gamma, \beta, p$ and is given in (3.3). Notice that for sufficiently small $\varepsilon_0 < \varepsilon_0 \sim (1 - m) / \hat{H}_p^2$, we have that $\varepsilon_0 + \frac{\varepsilon_0 - 1}{\varepsilon_0} \sim \frac{\varepsilon_0}{\varepsilon_0}$.

Finally, notice that when $R$ is bounded and $H_p$ is large enough, we have that $\kappa \sim \left( R^e / \hat{H}_p^2 \right)^{2/1 + 1} \gamma_0^{m(1 - m)}$, where $c_i > 0$ only depend on $N, m, p, \beta, \gamma$.

3.9 Positivity for local solutions. End of the proof of Theorems 1.4 and 3.1

We are now in the position to conclude the proof of the main result of this Part, Theorems 1.4 and 3.1

End of the proof Theorem 3.1. Let $u(t, x)$ be a solution to the MDP on the cylinder $B_4 \times (0, T)$, where $T = T(u_0)$ is the extinction time. Recall that $0 \leq u_0 \in L^p_c(B_4(x_0))$ for $p > p_c$ if $0 < m \leq m_c$ or $p \geq 1$ if $m_c < m < 1$. Let $M = \int_{B_4(x_0)} u_0 |x|^\gamma dx > 0$ and define the rescaled solution $\hat{u}$ as follows

$$
\hat{u}(\hat{t}, \hat{x}) = \frac{R^{N-\gamma}}{M} u \left( \frac{\hat{t}}{R}, \frac{\hat{x}}{R} \right), \quad \tau = R^{N-\gamma} (1 - m) M^{1-m}.
$$

The rescaled solution $\hat{u}$ solves the MDP on the cylinder $B_4 \times (0, \hat{T})$ with mass $1$ and extinction time $\hat{T}$. We are in the position to apply Corollary 3.13 to get: (recall that $\hat{t} = R^{-\gamma} t$ and $\hat{r} = \tau^{-1} t$)

$$
\inf_{x \in B_4(x_0)} \hat{u}(\hat{t}, \hat{x}) \geq \kappa(\hat{H}_p, 1) \hat{t}_*^{\tau - \gamma / 2} \hat{t}^{\tau / m}, \quad \text{where} \quad \hat{t}_* = \kappa_* \left( \mu_\gamma (B_4(0)) \right)^{1-m} \left( \mu_\gamma (B_4(x_0)) \right)^{-1-m} (3.50)
$$

where the value of $\kappa(\hat{H}_p, 1)$ is given in (3.49), while $\hat{H}_p(\mu_0, x_0, 1)$ and $\kappa_*$ are given in Corollary 3.13 notice that $\hat{t}_*$ only depends on $N, m, \gamma, \beta$, but not on $u, u_0$ nor $R, x_0$ (here is where we use either assumption (1), (2) or (3)); indeed, using $\mu_\gamma (B_4(-x_0) = \rho^{-N} \mu_\gamma (B_4(x_0))$ it is straightforward to check that $\hat{t} \approx \kappa_*$. Recalling that $\hat{t} \rightarrow \hat{t}^{\tau / m} = u(t, x)$ is non-increasing in time for almost every $\hat{x} \in B_4(x_0)$, we get as a consequence of (3.50), for all $0 \leq \hat{t} \leq \hat{t}_*$

$$
\inf_{\hat{t} \in B_4(x_0)} \hat{u}(\hat{t}, \hat{x}) \geq \left( \frac{\hat{t}}{\hat{t}_*} \right)^{\tau / m} \inf_{\hat{x} \in B_4(x_0)} \hat{u}(\hat{t}, \hat{x}) \geq \kappa(\hat{H}_p, 1) \hat{t}_*^{\tau - \gamma / 2} \hat{t}^{\tau / m} := \kappa(\hat{H}_p, 1) \hat{t}^{\tau / m} (3.51)
$$

We observe that the constant $\kappa(\hat{H}_p, 1)$ in inequality (3.51) does not depend on $x_0$ and $R$; indeed, one of our assumptions (1), (2) or (3) together with the identity $\mu_\gamma (B_1(-x_0) = \rho^{-N} \mu_\gamma (B_4(x_0))$ imply that $\kappa_0 > \kappa_1 R_0$ as well as $\mu_\gamma (B_4(-x_0) > C_{N, \gamma}$ and $h_\sigma (X, 2, R, x_0) \sim C_{\gamma, \beta}$, where $C_{N, \gamma}, C_{\gamma, \beta}$ only depend on $N, \gamma$ and $\gamma, \beta$ respectively. Recall also that $R^e \sim \frac{\mu_\gamma (B_4(x_0))}{\mu_\gamma (B_4(x_0))}$ Finally, we observe that when $\hat{H}_p$ is large, we have $\kappa(\hat{H}_p) \sim \frac{\varepsilon_0 - R_{\hat{H}}^e}{\varepsilon_0^{-1} \hat{H}_p^2}$, where $c_2$ only depends on $N, m, \gamma, \beta$. Undoing the rescaling we obtain the lower bound (3.2) and the proof of Theorem 3.1 is concluded.

Proof of Theorem 1.4. Once the positivity result is proven for solutions to the MDP namely once Theorem 3.1 is established, then by a standard comparison argument, the positivity result can be extended to any nonnegative local (super)solution. For strong (super) solutions the result is immediate, while for more general concepts of solutions, such as weak energy or very weak, the proof follows by a long but straightforward limiting process; see [54] and [87] for more details about the non-weighted case; the case with weights follows along similar lines.
4 Part III. Harnack inequalities and Hölder continuity

In this third part of the paper we study regularity estimates for nonnegative solutions to both linear and nonlinear equations.

4.1 The linear case. Harnack inequalities and Hölder continuity

We are going to prove Harnack inequalities and local space-time Hölder continuity for nonnegative local solutions to the linear equation with Caffarelli-Kohn-Nirenberg weights. The equation

\[ v_t = w_\gamma \sum_{i,j=1}^N \partial_{ij}(A_{i,j}(t,x) \partial_j v), \]

is posed on the cylinder \( Q := (0, T) \times \Omega \), where \( A_{i,j} = A_{j,i} \) and for some \( \gamma, \beta < N \) satisfying (1.1), i.e. \( \gamma - 2 < \beta \leq \left( \frac{N-2}{N} \right) \gamma \), we have

\[ w_\gamma \asymp |x|^{\gamma} \quad \text{and} \quad 0 < \lambda_0 |x|^{-\beta} |\xi|^2 \leq \sum_{i,j=1}^N A_{i,j}(t,x) \xi_i \xi_j \leq \lambda_1 |x|^{-\beta} |\xi|^2. \]

The regularity estimates that we present in this section are not present in the literature in the full range of parameters that we consider here, but several results have been obtained in different settings, see [23, 24, 25, 40, 49, 70, 71, 81]. We will only sketch the proofs, since they are minor modifications of those obtained by Chiarenza-Serapioni and Gutierrez-Wheeden, [23, 50, 49] combined with the original proof of Moser [71].

The following cylinders generalize the standard parabolic ones:

\[ Q_R(t_0, x_0) := \left\{ (t, x) \in \mathbb{R}^+ \times \mathbb{R}^d : t_0 - \frac{1}{2\sigma/2} \rho_{x_0}^{\gamma,\beta}(R) < t < t_0, \ |x - x_0| < 2R \right\}, \]

\[ Q_R^+(t_0, x_0) := \left\{ (t, x) \in \mathbb{R}^+ \times \mathbb{R}^d : t_0 - \frac{1}{4\sigma/2} \rho_{x_0}^{\gamma,\beta}(R) < t < t_0, \ |x - x_0| < \frac{1}{2} R \right\}, \]

\[ Q_R^-(t_0, x_0) := \left\{ (t, x) \in \mathbb{R}^+ \times \mathbb{R}^d : t_0 - \frac{7\sigma/2}{8\sigma/2} \rho_{x_0}^{\gamma,\beta}(R) < t < t_0 - \frac{5\sigma/2}{8\sigma/2} \rho_{x_0}^{\gamma,\beta}(R), \ |x - x_0| < \frac{1}{2} R \right\}. \]

The following result generalizes the Harnack inequality of Moser [71], in the spirit of Chiarenza-Serapioni [24, 25, 26] and Gutierrez-Wheeden [50, 49]:

**Theorem 4.1 (Parabolic Harnack inequality in the linear case)** Let \( v \) be a nonnegative bounded local weak solution to equation (4.1) on \( Q := (0, T) \times \Omega \), under the assumption (4.2). Then, for all \( Q_R(t_0, x_0) \subset Q \), there exists \( \bar{v}_\ell > 0 \) such that

\[ \sup_{Q_R^-(t_0, x_0)} v \leq \bar{v}_\ell^{\lambda_0^{\gamma,\beta}} \inf_{Q_R^+(t_0, x_0)} v \]

\[ (4.4) \]

The constant \( \bar{v}_\ell > 0 \) depends on \( N, \gamma, \beta \), but not on \( v \) nor on \( \lambda_0, \lambda_1 \).
Remark. As remarked before, although this result has been proven before at least in some range of parameters, the dependence of the Harnack constant on the ellipticity constants \( \lambda_0, \lambda_1 \) was not clear nor explicit; such dependence is needed in the proof of Hölder continuity for nonlinear equation, as we will show at the end of this section; this was pointed out by Moser in [71], where a complete proof of \([44]\) in the unweighted case \( \beta = \gamma = 0 \) can be found.

As it often happens for linear parabolic equations, Hölder continuity follows by Harnack inequalities using a nowadays standard argument, cf. [70], that we sketch in the proof of Proposition 4.2. We will assume in what follows, without loss of generality, that \( \pi_\gamma \geq 2 \) and \( 0 < \lambda_0 \leq 1 \leq \lambda_1 \), and we define

\[
\alpha := \log_\kappa \frac{\kappa_{\ell}^{\lambda_0^{-1} + \lambda_1}}{\kappa_{\ell}^{\lambda_0^{-1} + \lambda_1} - 1} \in (0,1).
\]

**Proposition 4.2 (Hölder Continuity in the linear case)** Let \( v \) be a nonnegative bounded local weak solution to equation \((4.1)\) on \( Q := (0,T) \times \Omega \), under the assumption \((4.2)\). Then there exist \( \alpha \in (0,1) \) as in \((4.5)\) and \( \kappa_\alpha > 0 \), such that for all \( Q_R \subset Q_{4R} \subseteq Q \)

\[
\sup_{(t,x), (\tau,y) \in Q_R} \frac{|v(t,x) - v(\tau,y)|}{(|x - y|^\gamma + |t - \tau|)^{\beta}} : = [v]_{C^{\alpha/\sigma}_{\gamma,\beta}(Q_R)} \leq \kappa_\alpha \|v\|_{L^\infty(Q_{4R})} \quad (4.6)
\]

The proof of the above results relies on the following upper and lower bounds.

**Proposition 4.3** Let \( u \in L^p_\text{loc}((0,T) \times B_R(x_0)) \) with \( p > 0 \) be a nonnegative local strong (super)solution to \((1.1)\) and let \( x_0 \in \mathbb{R}^N \), \( 0 < R_1 < R_0 < R \) such that \( 0 \notin B_{R_0}(x_0) \setminus B_{R_1}(x_0) \) and let \( 0 \leq T_0 < T_1 < T \). Then there exists a constant \( \kappa_{\text{lin}} > 0 \) depending only on \( \gamma, \beta, N, p \) such that the following inequality holds

\[
\sup_{(\tau,y) \in (T_1,T) \times B_{R_1}(x_0)} u(\tau,y) \leq \kappa_{\text{lin}} \left[ h_\sigma(R_0, R_1, x_0) \left( \frac{1}{(R_0 - R_1)} \right)^{\frac{N - \sigma + \gamma}{\sigma p}} \left[ \int_{T_0}^T \int_{B_{R_0}(x_0)} u^p \frac{dx \, dt}{|x|^\gamma} \right]^{\frac{1}{p}} \right]^{\frac{1}{\sigma}} \quad (4.7)
\]

where \( \sigma \) is defined in \((1.10)\), \( h_\sigma(R_0, R_1, x_0) \) is defined in \((2.2)\) and \( \kappa_{\text{lin}} \) is a computable constant that depends only on \( N, \gamma, \beta \) and \( \kappa_{\text{lin}} \lesssim S_{\gamma,\beta} \left( \lambda_0^{-1} \lambda_1 \right)^{\frac{N - \sigma + \gamma}{\sigma p}} \), with \( S_{\gamma,\beta} \) as in Proposition 4.1.

**Proposition 4.4** Let \( u \) be a nonnegative local strong (sub)solution to \((1.1)\) on \( (0,T) \times B_R(x_0) \), with \( 0 < R_1 < R_0 < R \) such that \( 0 \notin B_{R_0}(x_0) \setminus B_{R_1}(x_0) \) and let \( 0 \leq T_0 < T_1 < T \). Then for any \( p > 0 \) there exists a constant \( \kappa_{\text{lin}} > 0 \) depending only on \( \gamma, \beta, N, p \) such that the following inequality holds

\[
\inf_{(\tau,y) \in (T_1,T) \times B_{R_1}(x_0)} u(\tau,y) \geq \kappa_{\text{lin}} \left[ h_\sigma(R_0, R_1, x_0) \left( \frac{1}{(R_0 - R_1)} \right)^{\frac{N - \sigma + \gamma}{\sigma p}} \left[ \int_{T_0}^T \int_{B_{R_0}(x_0)} u^{-p} \frac{dx \, dt}{|x|^\gamma} \right]^{\frac{1}{p - 1}} \right]^{\frac{1}{\sigma}} \quad (4.8)
\]

where \( \sigma \) is defined in \((1.10)\), \( h_\sigma \) is defined in \((2.2)\) and \( \kappa_{\text{lin}} \) is a computable constant that depends only on \( N, \gamma, \beta \) and \( \kappa_{\text{lin}} \gtrsim S_{\gamma,\beta} \left( \lambda_0^{-1} \lambda_1 \right)^{\frac{N - \sigma + \gamma}{\sigma p}} \), where \( S_{\gamma,\beta} \) is as in Proposition 7.10.

Remark. The above estimates have been previously obtained by several authors in different settings, we just mention here the closest results: Lemma 3.17 of [49] (in the case of general \( A_2 \) weights), Lemma 2.1 of [24], and Lemma 1 of [71] when there are no weights. The proof follows Moser’s idea: using weighted Sobolev inequalities and upper (resp. lower) iteration, to obtain upper (resp. lower) space-time smoothing effects; indeed, the space-time upper bounds \((4.7)\) can be obtained also by taking \( m = 1 \) in the proofs of Theorems 2.6 analogously, the space-time lower bounds \((4.8)\) follows by a minor modification of the proof of Proposition 3.5 with \( m = 1 \); these proofs are considerably simpler than in the nonlinear setting, \( m \in (0,1) \).

**Proof of Harnack inequalities, Theorem 4.1** The proof follows the lines of the original Moser proof in [71]. Once obtained local upper and lower bounds, \((4.7)\) and \((4.8)\), the harder part of the proof consists in obtaining a reverse Hölder inequalities that allows to join them and conclude the Harnack inequalities \((4.4)\).
To our knowledge only two techniques are known to perform this step: one originally due to Moser \[70\] and the other due to Bombieri and Giusti \[6\] see also \[71\]. We are going to use a weighed version of Bombieri-Giusti Lemma as it has been done in Section 5 of \[49\] (see also Lemma 3 of \[71\]). Let \( A, B, \gamma, \beta, \delta \) be positive constants, and \( Q_1, Q_{R_0}, Q_{R_1}, Q_\delta \) as in \((4.4)\). Also, we assume that the positive measurable function \( f \) defined on \( Q_1 \), and the doubling measure \( \nu \) on \( \mathbb{R}^{N+1} \) satisfy the inequalities

\[
\sup_{Q_{R_1}} f^p \leq \frac{A}{(R_0 - R_1)^d} \int_{Q_{R_0}} f^p \nu(t, x) \, dx \, dt \quad \text{and} \quad \nu \left\{ (t, x) \in Q_1 : \log f > s \right\} \leq \left( \frac{1}{s^p} \right)^{\delta} \nu(Q_1)
\]

for all \( s > 0 \), \( \frac{1}{2} \leq \varrho \leq R_1 < R_0 < 1 \), all \( p \in (0, \overline{p}) \). Then there exists \( c_0 = c_0(A, B, \delta) > 0 \) such that

\[
\log \sup_{Q_{R_\delta}} f \leq \frac{c_0}{(1 - \varrho)^{2\overline{p}}}
\]

the proof of the above result is a minor modification of the proof of Lemma 5.1 of \[49\], see Section 5 of \[49\] for more details. The proof relies on “localized” weighted Poincaré inequality of the form

\[
\int_{B_R(y_0)} |u(x) - \overline{u}|^{2} \varphi(x) |x|^{\gamma} \, dx \leq c_\varphi \frac{\mu_\varphi(B_R(y_0))}{\mu_\varphi(B_R(y_0)) R^2} \int_{B_R(y_0)} |\nabla u|^{2} \varphi(x) |x|^{\beta} \, dx
\]

valid on any ball \( B_R(y_0) \subset \mathbb{R}^N \) and for a function \( \varphi \in C_0(B_R(y_0)) \), \( 0 \leq \varphi \leq 1 \) with convex super-level sets, where \( c_\varphi = c_{\varphi, \gamma, \beta} \left( \frac{\mu_\varphi(B_R(y_0))}{\mu_\varphi(B_R(y_0))} \right) \); see Lemma 4.1 of both \[49\] \[50\], where the proof of the above inequality is shown to rely on results of \[82\] (in the non-weighted case, cf. Lemma 3 of \[70\]). Indeed, the results of \[49\] \[50\] do not cover all the range of parameters \( \gamma, \beta \) analyzed here: their result holds for weights which satisfies the \( A_2 \) property (or generalizations of it). A closer inspection of the proof of Lemma 3 of \[70\] reveals that it is enough to prove \((4.11)\) just for one function \( \varphi \). To this end, we recall the so-called Intrinsic Poincaré inequality

\[
(\lambda_2 - \lambda_1) \int_{B_R(y_0)} |u(x) - \overline{u}|^{2} \varphi^2(x) |x|^{\gamma} \, dx \leq C_{\gamma, \beta} \int_{B_R(y_0)} |\nabla u|^{2} \varphi^2(x) |x|^{\beta} \, dx,
\]

where \( \varphi_1 \) is the first eigenfunction of the operator \( L_{\gamma, \beta} \) (with Dirichlet boundary condition) on \( B_R(y_0) \) and \( \lambda_1, \lambda_2 \) are respectively the first and the second eigenvalue of the \( L_{\gamma, \beta} \) on \( B_R(y_0) \). This inequality is indeed equivalent to the second Poincaré inequality for the second Dirichlet boundary value problem \( L_{\gamma, \beta} \|g\|_{L^2(B)} \leq \|g\|_{L^2(B)} \), valid for function \( g \in D_{\gamma, \beta}(B) \) orthogonal in \( L^2(B) \) to \( \varphi_1 \); the latter is true on balls as a consequence of the compactness of the embedding \( D_{\gamma, \beta}(B) \subset L^2(B) \), where \( D_{\gamma, \beta} \) is defined in Subsection 1.3 finally, inequality \((4.12)\) follows by letting \( g = u \varphi_1 \), see for instance Lemma 3.1 of \[12\]. In order to be able to use inequality \((4.10)\) we need to ensure the validity of hypotheses \((4.4)\): the upper bounds for \( f = u \) (resp \( f = u^{-1} \)) follow by the upper (resp. lower) bounds \((4.7)\) (resp. \((4.8)\)); the logarithmic estimates, follow analogously to Lemma 4.9 of \[49\]: for any solution \( u \) defined on \((a, b) \times B_{2R} \), and bounded below by some positive constant, then there exist \( c_1, M_2, \delta \) and \( V \) such that, for any \( s > 0 \)

\[
\mu_\gamma \left\{ (t, x) \in (t_0, b) \times B_R(x_0) : \log u < -s - M_2(b - t_0) - V \right\} \leq c_1 \left[ \frac{\mu_\gamma(B_R(x_0))}{\mu_\gamma(B_R(x_0))} \right] R^2 \frac{t_b}{s} \left( b - t_0 \right) \delta \left( b - t_0 \right) - V \}
\]

\[
\mu_\gamma \left\{ (t, x) \in (a, t_0) \times B_R(x_0) : \log u > s - M_2(a - t_0) - V \right\} \leq c_1 \left[ \frac{\mu_\gamma(B_R(x_0))}{\mu_\gamma(B_R(x_0))} \right] R^2 \frac{t_b}{s} \left( t_0 - a \right) \delta \left( t_0 - a \right),
\]

where the constants \( c_1, \delta > 0 \) only depend on \( N, \beta, \gamma, M_2 \sim \mu_\beta(B_R(x_0))/R^2 \mu_\gamma(B_R(x_0)) \), and \( V \) depends on \( u \). Details about the proof of both Poincaré and logarithmic estimates can be found in Section 4 of \[49\], which in turn extend ideas of Moser (Section 2 and 3 of \[71\]) to the weighted case.

Finally, we can conclude the proof of Harnack inequalities \((4.4)\), by a minor modification of the proof of Section 3 of \[71\] (in the non-weighted case) or of Section 6 of \[49\] (see also \[50\], for the weighted case).
just remark that here we have kept track of the dependence of the constants from the “ellipticity” constants
$0 < \lambda_0 \leq 1 \leq \lambda_1 < +\infty$, as in \cite{[21]}. \hfill \blacksquare

**Proof of Hölder continuity, Proposition 4.2.** We just sketch this proof, which is an adaptation of Moser’s proof, \cite{[70]}. Fix $r \in (0, R/2)$ and denote for simplicity $Q_r := Q_r(t_0, x_0)$ and $Q_r^\pm := Q_r^\pm(t_0, x_0)$. Let us introduce the following quantities:

$$
\nabla_{Q_r} := \inf_{Q_r} v, \quad \nabla_{Q_r}^\pm := \inf_{Q_r^\pm} v, \quad \nabla_{Q_r} := \inf_{Q_r} v, \quad \nabla_{Q_r}^\pm := \inf_{Q_r^\pm} v.
$$

We are in the position to apply the Harnack inequality (4.4) to the nonnegative solution $\nabla_{Q_r} - v$ to obtain

$$
\nabla_{Q_r} - \nabla_{Q_r}^- = \sup_{Q_r} (\nabla_{Q_r} - v) \leq H \inf_{Q_r} (\nabla_{Q_r} - v) = H (\nabla_{Q_r} - \nabla_{Q_r}^+).
$$

Notice that without loss of generality we can set $H := \frac{\lambda_0^{\lambda_1 + \lambda_1}}{\lambda_0} \geq 4$, with $\lambda_0$ as in (4.4). Similarly, using $v - \nabla_{Q_r}$ we obtain $\nabla_{Q_r} - \nabla_{Q_r}^- \leq H (\nabla_{Q_r}^+ - \nabla_{Q_r})$ which, summed up with the previous inequality, gives

$$
H (\nabla_{Q_r}^+ - \nabla_{Q_r}) + \nabla_{Q_r}^+ - \nabla_{Q_r}^- \leq (H - 1) (\nabla_{Q_r} - \nabla_{Q_r}^-).
$$

Using $Q_r/4 \subset Q_r^\pm$, we conclude that

$$
\text{osc}_{Q_{r/4}} v \leq \text{osc}_{Q_r} \nabla_{Q_r}^+ - \nabla_{Q_r}^- \leq \frac{H - 1}{H} \left( \nabla_{Q_r} - \nabla_{Q_r}^- \right) = \frac{H - 1}{H} \text{osc}_{Q_r} v.
$$

Recall that without loss of generality we have assumed that $H/(H - 1) \leq 8$, see also (4.5); a well-known iteration technique (see, e.g., \cite{[13]} Lemma 6.1) then shows that

$$
\text{osc}_{Q_r} v \leq \frac{H}{H - 1} \frac{\rho_0}{R^\alpha} \text{osc}_{Q_r} v
$$

for all $r \in (0, R]$, with $\alpha := \log(H/(H - 1))/\log 8 \in (0, 1)$, as in \cite{[13]}, and $H > 1$ as above. By a standard argument, see \cite{[70]}, we therefore obtain uniform Hölder continuity on smaller cylinders, namely

$$
\sup_{(t,x), (\tau,y) \in Q_r} \frac{|u(t,x) - u(\tau,y)|}{|x - y|^{(\beta + 1)\tau} + |t - \tau|} \leq \rho_0 \|u\|_{L^\infty(Q_{2R})}
$$

for any $r \in (0, R]$, where $\rho_0 > 0$ is depends only on $H$, eventually through $\alpha$. \hfill \blacksquare

### 4.2 The nonlinear case. Harnack inequalities and Hölder continuity

This Subsection essentially contains the proofs of Harnack inequalities and Hölder continuity for WFDE, Theorems 1.6 and 1.8 respectively.

**Theorem 4.5 (Alternative form of Harnack inequality)** Under the assumptions of Theorem \ref{thm:a} for any $t_0 > 0$ there exist constants $\rho_8, \rho_9, \kappa_9 > 0$ such that

$$
\sup_{x \in B_R(x_0)} u(t, x) \leq \rho_8 \frac{\|u(t_0)\|_{L^\infty(B_R(x_0))}^\rho}{t_0^{\rho(m - 1)}/L^\gamma(B_R(x_0))} + \rho_9 \inf_{x \in B_R(x_0)} u(t + \theta, x)
$$

for any

$$
t, t + \theta \in (t_0, t_0 + t_*) \cap (0, T), \quad \text{and} \quad t_* = \kappa_9 R^\rho \mu_\gamma(B_R(x_0))^{m - 1} \|u(t_0)\|_{L^\infty(B_R(x_0))}^{1 - m}.
$$

The constants $\rho_8, \rho_9, \kappa_9 > 0$ depend on $N, m, \gamma, \beta$; $\kappa_9 > 0$ is given in the proof of Corollary \ref{cor:a} and $\rho_9 = \rho_9 \kappa_9^{-1}$ where $\rho_8, \rho_9 > 0$ are as in \cite{[21]}, while $\kappa_9 > 0$ has an (almost) explicit expression is given in \cite{[43]}; notice that $\rho_8, \rho_9$ and $\kappa_9$ eventually depend on $R$ and $x_0$ and, when $0 < m \leq m_c$, $\kappa_9$ depends also on $H_p(u_0, x_0, R)$ defined in \cite{[14,21]}. 40
Proof. It follows immediately by combining inequalities (2.1) and (1.14).

Proof of the Harnack inequalities of Theorem 1.6. Due to the time translation invariance of the equation it suffices to prove the result for \( \tau = 0 \). Assume \( t \in \langle \epsilon t_*, t_* \rangle \), for \( \epsilon \in (0, 1) \) fixed. Recall that \( R^\sigma > R^2 \mu_\gamma(B_R(x_0)) \mu_\beta(B_R(x_0))^{-1} \). Using the upper bound (1.14) we get

\[
\sup_{x \in B_R(x_0)} u(t, x) \leq \left( \kappa_8 + \kappa_9 \right) \left[ \frac{\| u_0 \|_{L^p(B_R(x_0))}}{\varepsilon \mu_{p \sigma}^{1/m} R^{1/m}} \right] \left[ \frac{t}{R^\sigma} \right]^{-\frac{1}{1/m}} \leq \frac{\kappa_8 + \kappa_9}{\varepsilon \mu_{p \sigma}^{1/m}} H_p(u_0, x_0, 2R) \left[ \frac{t}{R^\sigma} \right]^{-\frac{1}{1/m}} \quad \text{(4.13)}
\]

We recall the lower bound (1.14), that in this case reads

\[
\inf_{x \in B_R(x_0)} u(t, x) \geq \inf_{x \in B_R(x_0)} u(t, x) = \kappa \left[ \frac{t}{(2R)^\sigma} \right]^{-\frac{1}{1/m}} \quad \text{for any } t \in \langle 0, t_* \rangle \cap (0, T).
\]

We combining the two inequalities we get for any \( \epsilon t \in \langle \epsilon t_*, t_* \rangle \):

\[
\sup_{x \in B_R(x_0)} u(t, x) \leq 2 \left( \frac{\kappa_8 + \kappa_9}{\varepsilon \mu_{p \sigma}^{1/m}} H_p(u_0, x_0, 2R) \right) \inf_{x \in B_R(x_0)} u(t, x) = \kappa_3 \inf_{x \in B_R(x_0)} u(t, x)
\]

The constants \( \kappa_8, \kappa_9 > 0 \) depend on \( N, m, \gamma, \beta \) and eventually on \( x_0, R \), and are given in (2.1); \( \kappa > 0 \) is given in (3.49) notice that, when \( 0 < m \leq m_c \), \( \kappa \) depends also on \( H_p(u_0, x_0, 2R) \) defined in (1.12). We finally recall that

\[
\kappa_3 := 2 \left( \frac{\kappa_8 + \kappa_9}{\varepsilon \mu_{p \sigma}^{1/m}} H_p(u_0, x_0, 2R) \right) \kappa \leq 2 \left( \frac{\kappa_8 + \kappa_9}{\varepsilon \mu_{p \sigma}^{1/m}} H_p(u_0, x_0, 2R) \right) \left( \frac{\hat{H}_p}{R^{1/m}} \right)^{1/2} \left( \frac{1}{m+1} \right), \quad \text{(4.14)}
\]

where \( \hat{H}_p(u_0, x_0, 2R) := 1 + \left( \frac{|x_0|}{2R} \right)^{1/1} H_p(u_0, x_0, 2R)^{1/m} \geq 1 \) and \( c_1, c_2 > 0 \) only depend on \( N, m, p, \gamma \).

See also Corollary (3.13) for a more detailed the expression of \( \kappa, c_1, c_2 \). This concludes the proof.

We can prove an analogous continuity result for local solutions to the (WFDE), using the upper and lower bounds of Theorems 2.4 and 1.14 and the the linear results of the previous subsection.

Proof of the Hölder continuity estimate of Theorem 1.8. We split the proof in two steps.

• Step 1. Intrinsic rescaling. We begin by considering a local solution \( u \) on the cylinder \( Q := (0, T) \times \Omega \). Fix \( t_0, R_0 > 0 \) such that \( Q_{4R_0}(t_0, x_0) := (t_0, T \cup (t_0 + t_*]) \times B_{4R_0}(x_0) \subset Q \). We define the rescaled solution \( \hat{u} \) as follows:

\[
\hat{u}(\hat{t}, \hat{x}) := M_0^{-1} u(t, x) \quad \text{with} \quad \hat{t} = R_0^\sigma M_0^{1-m} t, \quad \hat{x} = R_0 x
\]

It is easy to check that if \( u \) is a local solution on \( Q_{4R_0}(t_0, x_0) \), then \( \hat{u} \) is a local solution to the same equation on \( Q_{4}^*(\hat{t}_0, \hat{x}_0) := [\hat{t}_0, \hat{T} \cap (\hat{t}_0 + \hat{t}_*)] \times B_4(\hat{x}_0) \), where

\[
\hat{t}_* = \hat{t}_* (\hat{t}_0, \hat{x}_0, 4) = \kappa_4 \left( \frac{\hat{u}(\hat{t}_0) || \hat{u}(\hat{t}_0) ||_{L^1_1(B_4(\hat{x}_0))}^{1-m} }{\mu_{1/4}(B_4(\hat{x}_0))^{1-m}} \right)^{1-m} = \kappa_4 \left( \frac{\hat{u}(\hat{t}_0) || \hat{u}(\hat{t}_0) ||_{L^1_1(B_4(\hat{x}_0))}^{1-m} }{\mu_{1/4}(B_4(\hat{x}_0))^{1-m}} \right)^{1-m}
\]

Moreover, \( \| \hat{u} \|_{L^\infty(Q_{4}^*(\hat{t}_0, \hat{x}_0))} \leq 1 \), since by assumption we have \( M_0 \geq \| u \|_{L^\infty(Q_{4R_0}(t_0, x_0))} \).

We are now in the position to apply the lower bounds of Theorem 1.4 to \( u \) on \( Q_{4}^*(\hat{t}_0, \hat{x}_0) \):

\[
\inf_{x \in B_2(\hat{x}_0)} \hat{u}(\hat{t}, x) \geq \kappa \left[ \frac{\hat{t} - \hat{t}_0}{2^\sigma} \right]^{-\frac{1}{1/m}} \quad \text{for any } \hat{t} \in [\hat{t}_0 + \frac{1}{4} \hat{t}_*, \hat{t}_0 + \hat{t}_*] \cap (0, \hat{T}) \quad \text{(4.15)}
\]

Notice that \( \kappa \) has an (almost) explicit expression is given in (3.39), and eventually (in the very fast diffusion range, i.e. when \( m < m_c \) and \( p > 1 \)) depends on \( H_p(\hat{u}(\hat{t}_0), \hat{x}_0, 4) \) defined in (1.12). Clearly inequality (4.15) implies

\[
\inf_{(t,x) \in Q_{4}^*(\hat{t}_0, \hat{x}_0)} \hat{u}(t, x) = \inf_{(t,x) \in [\hat{t}_0 + \hat{t}_* / 2, \hat{t}_0 + \hat{t}_*] \cap (0, \hat{T}) \times B_2(\hat{x}_0)} \hat{u}(t, x) \geq 4^{-\frac{1}{1/m}} \kappa_4^{1/m} \hat{t}_*^{-1/m}.
\]
• **Step 2. Application of the linear result.** \( \dot{u} \) can be considered a solution to the linear equation (1.1) with \( a(t, x) = m \dot{u}^{m-1}(t, x) \); we are now in the position to apply the result of Proposition 4.2 inside the cylinder \( Q_{2}^{*} := [\dot{t}_{0} + \dot{t}_{*}/2, \dot{t}_{0} + \dot{t}_{*}] \cap (0, \dot{T}) \times B_{2}(\dot{x}_{0}) \), since in \( Q_{2}^{*} \) we have

\[
\lambda_{0} := m \leq m \dot{u}^{m-1} = a(t, x) \leq 4^{\sigma} \kappa^{-1}_{m-1} \dot{t}_{*}^{-1} =: \lambda_{1}.
\]

Then, whenever \( Q_{4R}(\dot{t}_{0} + (3/4)\dot{t}_{*}, \dot{x}_{0}) \cap (0, \dot{T}) \times B_{2}(\dot{x}_{0}) \subset Q_{2}^{*} \), the result of Proposition 4.2 implies that there exist \( \alpha \in (0, 1) \) given in (4.3), and \( \kappa_{\alpha} > 0 \), depending on \( N, \gamma, \beta, \lambda_{0}, \lambda_{1} \) such that

\[
\sup_{(\dot{t}, \dot{x}) \in Q_{4R}(0, \dot{T}) \times B_{2}(\dot{x}_{0})} \frac{|\dot{u}(\dot{t}, \dot{x}) - \dot{u}(\dot{t}, \dot{x})|}{\dot{t}_{*}^{\alpha} |\dot{x}_{*}|^{\sigma}} \leq \kappa_{\alpha} \| \dot{u} \|_{L^{\infty}(Q_{4R})} \leq \kappa_{\alpha} \gamma
\]

since \( \| \dot{u} \|_{L^{\infty}(Q_{4R})} \leq 1 \). It only remains to check the inclusion \( Q_{4R} \subset Q_{2}^{*}(\dot{t}_{0}, \dot{x}_{0}) \), which is easily shown to be implied by the conditions \( 0 < R < 1/4 \) and \( \rho_{20}^{\beta}(4R) < 2\sigma^{2/3} \rho_{20}^{\gamma} \), where \( \rho_{20}^{\gamma} \) is as in (4.4). As a consequence we also have \( [\dot{t}_{0} + \frac{5}{2} \dot{t}_{*}, \dot{t}_{0} + \frac{6}{2} \dot{t}_{*}] \times B_{2}(\dot{x}_{0}) \subset Q_{R}(\dot{t}_{0} + (3/4)\dot{t}_{*}, \dot{x}_{0}) \cap (0, \dot{T}) \times B_{2}(\dot{x}_{0}) \).

Undoing the intrinsic change of variables, (4.6) transforms into (1.10) and the proof is concluded.

Finally, notice that when \( H_{p} \) is large enough, by Corollary 4.13 we know that \( \kappa \sim \left( R^{c_{1}} H_{p}^{c_{2}} \right)^{H_{1}/2m(1-m)} \), hence \( \alpha = \log_{\kappa} \frac{\kappa_{1}^{-1} + \lambda_{1}}{\kappa_{1}^{-1} + \lambda_{1}^{-1}} \) given in (4.3), with \( \lambda_{0}, \lambda_{1} \) given in (4.10), behaves like \( \alpha \sim \exp \left( -\frac{c_{1}^{\gamma}}{\dot{t}_{*}^{\beta} H_{p}^{\gamma} t_{p}^{\beta}} \right) \), recalling that \( c_{i} > 0 \) only depend on \( N, m, p, \beta, \gamma. \)

### 5 Appendices

We collect in this Appendix several technical facts and proofs, used in the rest of the paper.

#### 5.1 Appendix-A

This Appendix is devoted to the proof of the upper and lower energy estimates of Lemma 2.8 and of the Caccioppoli estimate of Lemma 2.8.

**Approximation (via truncation) of powers of strong solutions.** The proof of the energy estimates relies on the idea of using \( u^{p-1} \psi \) as a test function, where \( \psi \) is a suitable smooth cutoff function and \( u \) is a solution to the WFDE. The reader may guess, this is not an admissible test function, hence we need to proceed by a careful approximation. An additional difficulty is represented by the presence of singular/degenerate weights: under our assumptions, \( u \) is merely a function in \( C_{loc}(T_{0}, T; L^{1}_{\gamma, \text{loc}}(\Omega)) \) such that \( u^{m} \in L_{\text{loc}}^{1}(T_{0}, T; H^{1}_{\gamma, \beta, \text{loc}}(\Omega)) \); as already observed, \( u \) need not to be a function in \( L^{1}_{\text{loc}}(\Omega) \) and its gradient \( \nabla u \) needs not to be the distributional one, see [29, 52]. The goal of the next Lemma is to show that a suitable truncation of a strong solution to WFDE belongs to the class of admissible test functions, hence an approximate energy identity holds. Let \( p > 1 \) and \( 1 < l < k, p \):

\[
J_{p}(u) := \begin{cases} 
(u^{p-1} - l^{-1 \frac{1}{p}})_{+} & \text{if } 0 \leq u \leq l^{\frac{1}{p}}, \\
\frac{l^{m-1}}{m} u^{m-1} & \text{if } l^{\frac{1}{p}} \leq u \leq k^{\frac{1}{p}}, \\
\frac{l^{m-1}}{m} u^{m-1} - k^{m-1} & \text{if } u \geq k^{\frac{1}{p}}, 
\end{cases}
\]

\[
G_{p}(u) := \begin{cases} 
\frac{u^{p}}{p} - l^{-1 \frac{1}{p}} u^{m} & \text{if } 0 \leq u \leq l^{\frac{m}{p}}, \\
\frac{l^{m-1}}{m} u^{m-1} + A & \text{if } l^{\frac{m}{p}} \leq u \leq k^{\frac{m}{p}}, \\
\frac{l^{m-1}}{m} u^{m-1} - k^{m-1} B & \text{if } u \geq k^{\frac{m}{p}}, 
\end{cases}
\]

where \( A = \frac{k^{m}}{p} - 1 - \frac{p^{m}}{m}, B = A - \frac{m^{m-1}}{m^{m-1} - k^{m-1}.} \) Clearly, \( G_{p} \) is a primitive of \( J_{p} \).

**Lemma 5.1** Let \( u \) be a non-negative strong local solution to \( \text{WFDE} \) in \( (T_{0}, T) \times B_{R}(x_{0}) \). For every \( p \geq 1 \) and for any \( [t_{1}, t_{2}] \subset (T_{0}, T) \) the following equality holds

\[
\int_{t_{1}}^{t_{2}} \int_{B_{R}(x_{0})} u_{t} J_{p}(u) \psi \, dx \, dt + \int_{t_{1}}^{t_{2}} \int_{B_{R}(x_{0})} \nabla u^{m} \cdot \nabla (J_{p}(u) \psi) \, dx \, dt = 0,
\]

for any \( \psi \in C^{2}(\{T_{0}, T \} \times B_{R}(x_{0})) \). A local strong sub (resp. super) solution satisfies (5.1) with \( \leq \) (resp. \( \geq \)) for any nonnegative test function in the same class.
Proof. By definition $u^m \in L^2_{\text{loc}}(T_0, T; H^1_{\gamma, \beta, \text{loc}}(B_R(x_0)))$, hence there is a sequence $\phi_n \in C_0^\infty((T_0, T) \times B_R(x_0))$ which converges strongly to $u^m$ in $L^2_{\text{loc}}(T_0, T; H^1_{\gamma, \beta, \text{loc}}(B_R(x_0)))$. Since $J_p(\cdot)$ is a Lipschitz function, the family $\{J_p(\phi_n^+))\}$ is a subset of $W^{1,2}_{\text{loc}}(T_0, T; L^2(K)) \cap L^2_{\text{loc}}(T_0, T; \mathcal{D}_{\gamma, \beta}(B_R(x_0)))$, hence an admissible test function in the sense of Definition 1.1 so that

$$
\int_{\Omega} |u(t_2, x) \psi(t_2, x)J_p(\phi_n^+)(t_2, x) - u(t_1, x)\psi(t_1, x)J_p(\phi_n^+)(t_1, x)|^\gamma \, dx
= \int_{t_1}^{t_2} \int_{\Omega} \nabla u^m \cdot \nabla (\psi J_p(\phi_n^+)) |x|^{-\beta} \, dx \, dt.
$$

Integrating by parts in time the first integral on the right-hand side, we obtain

$$
\int_{t_1}^{t_2} \int_{B_R(x_0)} u_t J_p(\phi_n^+) \psi \, dx \, dt + \int_{t_1}^{t_2} \int_{B_R(x_0)} \nabla u^m \cdot \nabla (J_p(\phi_n^+) \psi) \, dx \, dt = 0,
$$

(5.2)

the reader may observe that this integration by parts makes sense since $u$ is assumed to be a strong solution, i.e. $u_t \in L^1((T_0, T) \times B_R(x_0))$. Taking the limit as $n \to \infty$ in (5.2) gives (5.1). \[ \square \]

5.1.1 Proof of the energy estimates of Lemma 2.2

We split the proof of Lemma 2.2 into several parts: first we prove the upper estimate, then the lower.

Proof of the upper energy inequality 2.3. Let us fix $x_0 \in \mathbb{R}^N$, and simply denote $B_R = B_R(x_0)$ when there is no ambiguity. We will prove the inequality for $p > 1$, the case $p = 1$ is recovered by similar methods.

• Step 1. Reduction. The upper energy inequality 2.3 follows by a slightly different inequality:

$$
\int_{B_R} u(T, x)^p |x|^{-\gamma} \, dx + \int_{T_1}^{T} \int_{B_R} \left| \nabla u^{\frac{p+m-1}{p}} \right|^2 |x|^{-\beta} \, dx \, dt
\leq C(m, p) \left[ \frac{h_\beta(R, R_1, x_0)}{(R - R_1)^\beta} + \frac{1}{T_1 - T_0} \right] \int_{T_0}^{T} \int_{B_R} (u^{p+m-1} + u^p) |x|^{-\gamma} \, dx \, dt.
$$

(5.3)

Indeed, inequality (2.3) follows from (5.3) by letting $T = \tau$ and taking the supremum in $\tau \in [T_1, T]$.

• Step 2. First energy inequality. In this step we want to prove the following inequality:

$$
\frac{p-1}{p} \int_{B_R} |u(T, x)^p \psi^2(T, x) - u(T_0, \cdot)^p \psi^2(T_0, x)| |x|^{-\gamma} \, dx
+ \frac{2m(p-1)^2}{(p+m-1)^2} \int_{T_0}^{T} \int_{B_R} \psi^2 \left| \nabla u^{\frac{p+m-1}{p}} \right|^2 |x|^{-\beta} \, dx \, dt
\leq 2 \left[ \int_{T_0}^{T} \int_{B_R} u^p \psi |x|^{-\gamma} \, dx \, dt + \int_{T_0}^{T} \int_{B_R} u^{p+m-1} |\nabla \psi|^2 |x|^{-\beta} \, dx \, dt \right].
$$

(5.4)

Following Moser’s approach, we would like to test the equation with $u^{p-1} \psi^2$, but unfortunately this is not an admissible test function: we shall proceed by approximation, using $J_p(u) \psi^2$ as in Lemma 5.1, this approximation extend to our weighted setting some ideas from Aronson and Serrin [4].

$$
\int_{T_0}^{T} \int_{B_R} u_t J_p(u) \psi^2 |x|^{-\gamma} \, dx \, dt + \int_{T_0}^{T} \int_{B_R} \nabla u^m \cdot \nabla (J_p(u) \psi^2) |x|^{-\beta} \, dx \, dt = 0.
$$

(5.5)

Recall that $\partial_t G_p(u) = J_p(u) u_t$, an integration by parts (in time) in the left-hand side of (5.5) gives

$$
\int_{B_R} \left[ G_p(u)(T, x) \psi^2(T, x) - G_p(u)(T_0, x)^p \psi^2(T_0, x) \right] |x|^{-\gamma} \, dx
+ \int_{T_0}^{T} \int_{B_R} \nabla u^m \cdot \nabla (J_p(u) \psi^2) |x|^{-\beta} \, dx \, dt \leq 2 \int_{T_0}^{T} \int_{B_R} |\psi| |\psi_t| G_p(u) |x|^{-\gamma} \, dx \, dt.
$$

(5.6)
Note that \( J_p(u) \to \tilde{J}_p(u^m) \) and \( G_p(u) \to \tilde{G}_p(u) \) as \( k \to \infty \) where

\[
\tilde{J}_p(u) := \begin{cases} (u^m - l\frac{m}{m+1} u^{m+1} - l\frac{m}{m+1} u) & \text{if } u < l, \\ (u^m - l\frac{m}{m+1} u^{m+1} + A) & \text{if } u \geq l, \end{cases}
\]

\[
\tilde{G}_p(u) := \begin{cases} (\frac{p}{T} - l\frac{m}{m+1} u^m) & \text{if } 0 \leq u < l, \\ \frac{p}{T} - l\frac{m}{m+1} u^{m+1} & \text{if } l \frac{m}{m+1} \geq u. \end{cases}
\] (5.7)

Since \( J_p \) is a Lipschitz function, taking now limits as \( k \to \infty \) in inequality (5.6) we get:

\[
\int_{B_R} \left[ \tilde{G}_p(u)(T,x) \psi^2(T,x) - \tilde{G}_p(u)(T_0,x) \psi^2(T_0,x) \right] \frac{dx}{|x|^\gamma} + \int_{T_0}^T \int_{B_R} \psi^2 \tilde{J}_p'(u^m) \left| \nabla u^m \right|^2 \frac{dx \, dt}{|x|^\beta} \leq 2 \int_{T_0}^T \int_{B_R} \psi \left| \tilde{G}_p(u) \right| |x|^{-\gamma} \, dx \, dt - 2 \int_{T_0}^T \int_{B_R} \psi \tilde{J}_p(u^m) \nabla u^m \cdot \nabla \psi |x|^{-\beta} \, dx \, dt.
\] (5.8)

We combine now the following numerical inequality \( \tilde{J}_p'(u^m) \leq \frac{m}{p-1} \tilde{J}_p(u^m) u^{p+m-1} \) with Young inequality \(|v \cdot w| \leq |v|^2/2\varepsilon + |w|^2/2\varepsilon\), we obtain

\[
2 |\psi \tilde{J}_p(u^m) \nabla u^m \cdot \nabla \psi| \leq \frac{1}{2} \tilde{J}_p(u^m) \left| \nabla u^m \right|^2 + \frac{2m}{p-1} u^{p+m-1} |\nabla \psi|^2.
\] (5.9)

Combining (5.8) and (5.9) we get

\[
\int_{B_R} \left[ \tilde{G}_p(u)(T,x) \psi^2(T,x) - \tilde{G}_p(u)(T_0,x) \psi^2(T_0,x) \right] |x|^{-\gamma} \, dx + \frac{1}{2} \int_{T_0}^T \int_{B_R} \psi^2 \tilde{J}_p'(u^m) \left| \nabla u^m \right|^2 |x|^{-\beta} \, dx \, dt \leq 2 \int_{T_0}^T \int_{B_R} |\psi| \left| \tilde{G}_p(u) \right| |x|^{-\gamma} \, dx \, dt + \frac{2m}{p-1} \int_{T_0}^T \int_{B_R} u^{p+m-1} |\nabla \psi|^2 |x|^{-\beta} \, dx \, dt.
\]

Finally, we obtain (5.4) by taking the limit as \( l \to \infty \) in the above inequality: we notice that in such limit \( \tilde{J}_p'(u^m) \left| \nabla u^m \right|^2 \to \left| \tilde{u} \right|_{L^{p+m-1}(\Omega)}^2 \) in the appropriate integral sense.

**Step 3. Choice of the test function \( \psi \).** By a suitable choice of test function, we can show that inequality (5.4) implies (5.3). It is always possible to choose a smooth \( 0 \leq \psi \leq 1 \) supported in \([T_0, T] \times B_R \), such that \( \psi \equiv 1 \) on \([T_1, T] \times B_{R_1}, \psi(T_0, x) = 0 \) for all \( x \in B_R \), and so that there exists \( K_\psi > 0 \) (depending only on \( N \)) such that \( |\nabla \psi(t, x)|^2 \leq K_\psi(R - R_1) \) and \( |\tilde{\psi}(t, x)| \leq K_\psi(T - T_0)^{-1} \) for all \( t, x \in (T_0, T) \times B_R \setminus B_{R_1} \).

**Estimating the right-hand side of (5.4).** We will show that

\[
\left[ \int_{T_0}^T \int_{B_R} u^p \psi |\psi_t| \left| x \right|^{-\gamma} \, dx \, dt + \int_{T_0}^T \int_{B_R} u^{p+m-1} \left| \nabla \psi \right|^2 \left| x \right|^{-\beta} \, dx \, dt \right] \leq 2 K_\psi \left[ \frac{1}{T_1 - T_0} + \frac{h_\sigma(R, R_1, x_0)}{(R - R_1)^2} \right] \left[ \int_{T_0}^T \int_{B_R} \frac{u \, dx \, dt}{|x|^\gamma} + \int_{T_0}^T \int_{B_R} u^{p+m-1} \frac{dx \, dt}{|x|^\beta} \right].
\] (5.10)

where the function \( h_\sigma(R, R_1, x_0) \) is defined in (5.2). Indeed, plugging the above chosen \( \psi \) in the right-hand side of inequality (5.4) we get

\[
c_{m,p} \left[ \int_{B_R} u(T, \cdot)^p \psi^2(T, \cdot) \left| x \right|^{-\gamma} \, dx + \int_{T_0}^T \int_{B_R} \psi^2 \left| \nabla u \right|_{L^{p+m-1}(\Omega)}^2 \left| x \right|^{-\beta} \, dx \, dt \right] \leq 2 \left[ \int_{T_0}^T \int_{B_R} u^p \psi |\psi_t| \left| x \right|^{-\gamma} \, dx \, dt + \int_{T_0}^T \int_{B_R} u^{p+m-1} \left| \nabla \psi \right|^2 \left| x \right|^{-\beta} \, dx \, dt \right].
\] (5.11)
where the constant $c_{m,p}$ is given by

$$c_{m,p} = \frac{p - 1}{p} \wedge \frac{2m(p - 1)^2}{(p + m - 1)^2}. $$

We just have to estimate $|x|^{-\beta}$ in the right-hand side of (5.11) to get (5.10). First, recall that $\nabla \psi(t, \cdot)$ is supported in $B_R(x_0) \setminus B_{R_1}(x_0)$ for all $t \in (T_0, T_1]$. Next we split two cases, namely $\sigma < 2$ and $\sigma \geq 2$.

- **Case 0 < $\sigma < 2$.** In $B_R(x_0) \setminus B_{R_1}(x_0)$ we have $|x|^{-\beta} = |x|^{\gamma - \beta} |x|^{-\gamma} \leq (|x_0| + R)^{-\beta} |x|^{-\gamma}$, hence

$$\frac{|x_0| + R}{(R - R_1)^2} \gamma^{-\beta} \left(\frac{|x_0| + R}{R - R_1}\right)^{\gamma - \beta} \frac{1}{(R - R_1)^\sigma} = \frac{h_\sigma(R, R_1, x_0)}{(R - R_1)^\sigma}, \quad (5.12)$$

since we recall that $0 < \sigma = 2 + \beta - \gamma < 2$ means $\gamma > \beta$ and $\frac{R + |x_0|}{R - R_1} \geq \frac{R}{R - R_1} > 1$.

- **Case $\sigma \geq 2$.** Recall that $\sigma \geq 2$ means that $\gamma \leq \beta$. We now consider two sub-cases. Recall that we consider balls $B_{R_1}(x_0) \subset B_R(x_0)$ such that $0 \notin B_R(x_0) \setminus B_{R_1}(x_0)$.

If $0 \notin B_{R_1}(x_0)$, i.e. $|x_0| > R$, then in $B_R(x_0) \setminus B_{R_1}(x_0)$ we have $|x|^{-\beta} = |x|^{-\gamma}/|x|^{\beta - \gamma} \leq |x|^{-\gamma} / (|x_0| - R)^{\beta - \gamma}$ hence,

$$\frac{|x_0| - R}{(R - R_1)^2} \gamma^{-\beta} \left(\frac{|x_0| - R}{R - R_1}\right)^{\beta - \gamma} \frac{1}{(R - R_1)^\sigma} \leq \frac{h_\sigma(R, R_1, x_0)}{(R - R_1)^\sigma}. \quad (5.13)$$

If $0 \in B_{R_1}(x_0)$, i.e. $R_1 > |x_0|$ then in $B_R(x_0) \setminus B_{R_1}(x_0)$ we have $|x|^{-\beta} = |x|^{-\gamma}/|x|^{\beta - \gamma} \leq |x|^{-\gamma} / (R_1 - |x_0|)^{\beta - \gamma}$, hence

$$\frac{(R_1 - |x_0|)^{-\beta}}{(R - R_1)^2} \gamma^{-\beta} \left(\frac{(R_1 - |x_0|)}{R_1 - |x_0|}\right)^{\beta - \gamma} \frac{1}{(R - R_1)^\sigma} \leq \frac{h_\sigma(R, R_1, x_0)}{(R - R_1)^\sigma}. \quad (5.14)$$

**Estimating the right-hand side of (5.4).** We just notice that since $\psi = 1$ in $[T_1, T] \times B_{R_1}$ we get

$$\int_{B_{R_1}} u(T, x)^p |x|^{-\gamma} \, dx \leq \int_{B_R} u(T, x)^p \psi^2(T, x) |x|^{-\gamma} \, dx,$$

and

$$\int_{T_1} \int_{B_{R_1}} |\nabla u|^{p + 1} |x|^{-\beta} \, dx \, dt \leq \int_{T_0} \int_{B_R} \psi^2 |\nabla u|^{p + 1} |x|^{-\beta} \, dx \, dt.$$ 

Summing up, inequality (5.4) becomes

$$c_{m,p} \left[ \int_{B_{R_1}} u(T, x)^p |x|^{-\gamma} \, dx + \int_{T_1} \int_{B_{R_1}} |\nabla u|^{p + 1} |x|^{-\beta} \, dx \, dt \right] \leq 2K_\psi \left[ \frac{h_\sigma(R, R_1, x_0)}{(R - R_1)^\sigma} + \frac{1}{T_1 - T_0} \right] \int_{T_0} \int_{B_{R_1}} \left( w^{p + m - 1} + u^p \right) |x|^{-\gamma} \, dx \, dt,$$

where $c_1 := 2K_\psi c_{m,p}$ and $K_\psi > 0$ depends on $N$. The proof of inequality (5.3) is concluded. □

### 5.1.2 Proof of the lower energy inequalities (5.4) and (5.5)

We will perform before a common step, used in the proof of both inequalities. Let us fix $x_0 \in \mathbb{R}^N$, and simply denote $B_R = B_R(x_0)$ when no confusion arises. We always consider $p \in \mathbb{R} \setminus \{0\}$.

**Step 1. First energy inequality.** In this step we prove the following inequality for $-p < 1 - m$, $p \neq 0$:

$$\frac{p + 1}{p} \left[ \int_{B_R} (u(T, x)^{-p} \psi^2(T, x) - u(T_0, x)^{-p} \psi^2(T_0, x)) |x|^{-\gamma} \, dx \right] + \frac{4m(p + 1)^2}{(m - p - 1)^2} \int_{T_0} \int_{B_R} |\nabla u|^{m - p - 1} \psi^2 |x|^{-\beta} \, dx \, dt \leq 2m \int_{T_0} \int_{B_R} u^{m - p - 1} |\nabla \psi|^2 |x|^{-\beta} \, dx \, dt + \frac{2p + 1}{p} \int_{T_0} \int_{B_R} u^{-p} \psi \psi \, |x|^{-\gamma} \, dx \, dt. \quad (5.15)$$

45
We just sketch the proof, since it is similar - but simpler - to Step 2 of the proof of the upper energy inequality (2.3): we approximate \( u^{-p-1} \psi^2 \) with admissible test functions, we use the weak formulation of the equation (1.8) and after a double limiting process, we obtain:

\[
-(p+1) \int_{T_0}^{T} \int_{B_R} u_t u^{-(p+1)} \psi^2 |x|^{-\gamma} \, dx \, dt + 4m(p+1)^2 \int_{T_0}^{T} \int_{B_R} \left| \nabla u^{m-p-1} \right|^2 |x|^{-\beta} \, dx \, dt \\
\leq \frac{4m(p+1)}{(m-p-1)^2} \int_{T_0}^{T} \int_{B_R} \psi \nabla u^{m-p-1} \cdot u^{m-p-1} \nabla \psi \, |x|^{-\beta} \, dx \, dt.
\]

Using Young’s inequality, i.e., \(|v \cdot w| \leq \frac{|v|^2}{2p} + \frac{|w|^2}{2} \), with \( \varepsilon = -\frac{p+1}{m-p-1} > 0 \) we get the following inequality

\[
\frac{p+1}{p} \int_{T_0}^{T} \int_{B_R} \partial_t(u^{-p}) \psi^2 |x|^{-\gamma} \, dx \, dt + 2m(p+1)^2 \int_{T_0}^{T} \int_{B_R} \left| \nabla u^{m-p-1} \right|^2 |x|^{-\beta} \, dx \, dt \\
\leq 2m \int_{T_0}^{T} \int_{B_R} u^{m-p-1} |\nabla \psi|^2 |x|^{-\beta} \, dx \, dt.
\]

Integrating by parts in time the first term of the above inequality, we obtain (5.15).

In the following steps we show that (5.15) implies both (2.4) and (2.5). We will just sketch the proof, since it is very similar to the proof of inequality (2.3).

- **Step 2. Proof of inequality (2.4).** In order to keep the same notation in the proofs, we will change the sign of the exponent \( p \) with respect to the statement of inequality (2.4), namely we will switch \( p \) to \(-p\). So \( m - 1 < p < 0 \), hence we have \( \frac{p+1}{p} < 0 \). We follow the Steps 3 of the proof of inequality (2.3): we choose a smooth \( 0 \leq \psi \leq 1 \) supported in \( [T_0, T] \times B_R \), such that \( \psi \equiv 1 \) on \( [T_0, T_1] \times B_{R_1} \), \( \psi(T, x) = 0 \) for all \( x \in B_R \), and so that there exists \( K_\psi > 0 \) (depending only on \( N \)) such that \( |\nabla \psi(t, x)|^2 \leq K_\psi (R-R_1)^{-2} \) and \( |\psi(t, x)| \leq K_\psi(T_1-T_0)^{-1} \) for all \((t, x) \in (T_0, T) \times B_R \setminus B_{R_1} \). With this choice of \( \psi \) we obtain the following inequality

\[
\int_{B_{R_1}(x_0)} u(T_0, x)^{-p} |x|^{-\gamma} \, dx + \int_{T_0}^{T_1} \int_{B_{R_1}} |\nabla u^{m-p-1}|^2 |x|^{-\beta} \, dx \, dt \\
\leq c_4 \left[ \int_{T_0}^{T} \int_{B_R} u^{m-p-1} |\nabla \psi|^2 |x|^{-\beta} \, dx \, dt + \int_{T_0}^{T} \int_{B_R} u^{-p} |\psi_t| |x|^{-\gamma} \, dx \, dt \right].
\]

Proceding as in Step 3 of the proof of the inequality (2.3) we obtain inequality (2.4), with

\[
c_2 = 2 K_\psi \frac{2 \left( m \vee \frac{|p+1|}{|p|} \right)}{|p+1| \left( \frac{1}{|p|} \wedge \frac{4m(p+1)}{(m-p-1)^2} \right)}.
\]

- **Step 3. Proof of inequality (2.5).** We choose \( \psi \) as in Step 3 of the proof of inequality (2.4) and repeating the same estimates used there, we can estimate (5.15) to get

\[
\int_{B_{R_1}(x_0)} u(T, x)^{-p} |x|^{-\gamma} \, dx + \int_{T_1}^{T} \int_{B_R} |\nabla u^{m-p-1} |^2 |x|^{-\beta} \, dx \, dt \\
\leq c_3 \left[ h_R(R_1, R, x_0) \int_{T_1}^{T} \int_{B_{R_1}} (u^{p+m-1} + u^{-p}) |x|^{-\gamma} \, dx \, dt, \right]
\]

Finally, inequality (2.5) follows by letting \( T = \tau \) and taking the supremum in \( \tau \in [T_1, T] \) in the above inequality. The constant \( c_3 > 0 \) becomes

\[
c_3 = \frac{4 K_\psi}{p+1} \frac{m \vee \frac{p+1}{p}}{\frac{1}{p} \wedge \frac{4m(p+1)}{(m-p-1)^2}} > 0, \quad \text{since } p > 0.
\]

The proof of Lemma (2.2) in now concluded.
5.1.3 Proof of the Caccioppoli estimates of Lemma 2.3

We just sketch the proof. We use the test function \( \psi^2 u^{-m} \), assuming first \( 0 < \delta \leq u \leq M \), and we approximate it as in Step 2 of the proof of the upper energy inequality (2.3) so that we obtain

\[
- \iint_Q \psi^2 \partial_t (u^{1-m}) |x|^{-\gamma} \, dx \, dt + m^2 (1-m) \iint_Q \psi^2 |\nabla \log u|^2 |x|^{-\beta} \, dx \, dt \\
\leq 2m (1-m) \iint_Q \psi |\nabla \psi| |x|^{-\beta} \, dx \, dt,
\]

where \( Q = (\tau, t) \times B_R(x_0) \). Inequality (2.3) follows by using Young’s inequality \( ab \leq \varepsilon a^2 + b^2/4\varepsilon \), with \( \varepsilon = m/2 \), on the right-hand side of (5.16) and integrating by parts in time the first term of inequality (5.16). Note that the assumption \( u \in [\delta, M] \) can be removed by a lengthy but straightforward approximation, but we refrain from doing this here, since we apply (2.6) only to solutions to a “lifted” Dirichlet problem (\( \text{MDP} \)), which we already know to be positive and bounded. \( \square \)

5.1.4 Further estimates on test functions

The operator \( \mathcal{L}_{\gamma, \beta} f = |x|^\gamma \nabla \cdot (|x|^{-\beta} \nabla f) \) acts on smooth functions as follows:

\[
\mathcal{L}_{\gamma, \beta} (\phi) = |x|^{-\beta} \left( \Delta \phi - \beta \frac{x}{|x|^2} \cdot \nabla \phi \right)
\]

In the proof of Proposition 2.4 we use the following technical Lemma.

Lemma 5.2 For any \( x_0 \in \mathbb{R}^N \) and any \( R > 0 \) there exists \( \phi \in C^2_c(\mathbb{R}^N) \) such that supp(\( \phi \)) \( \subset B_{2R}(x_0) \), \( \phi \equiv 1 \) on \( B_R(x_0) \), \( 0 < \phi < 1 \) and the following estimate holds

\[
\phi^\frac{1}{1-m}(x) |\mathcal{L}_{\gamma, \beta}(\phi)(x)|^\frac{1}{1-m} \leq \Omega_{10} R^{-\gamma} \quad \text{for all } x \in \mathbb{R}^N,
\]

where \( \Omega_{10} > 0 \) depends only on \( N, \gamma, \beta \) and \( m \).

Proof. We define a function \( \phi := \psi(|x-x_0|^\sigma R^{-\sigma})^b \) with \( b > 0 \) to be chosen later; we choose the cutoff function \( \psi : [0, \infty) \to [0, 1] \) to be smooth. A simple calculation shows that

\[
\nabla \phi = b \sigma R^{-\sigma} \psi^b (|x-x_0|^\sigma R^{-\sigma})^{b-1} \psi' (|x-x_0|^\sigma R^{-\sigma}) |x-x_0|^\sigma - (x - x_0),
\]

\[
\Delta \phi = b \sigma R^{-\sigma} \psi^{b+1} |x-x_0|^\sigma - 2 |\sigma |x-x_0| |R^{-\sigma} \left((b-1)|\psi'|^2 + |\psi''|\right) + \psi \psi'(N + \beta - \gamma) ,
\]

Using the expression (5.17) we get

\[
\phi^\frac{1}{1-m} |\mathcal{L}_{\gamma, \beta} (\phi)|^\frac{1}{1-m} = \psi^\frac{1}{1-m} |\mathcal{L}_{\gamma, \beta} (\psi^b)|^\frac{1}{1-m} = \psi^\frac{1}{1-m} \left( b \sigma R^{-\sigma} |x|^\sigma |x-x_0|^{-2\sigma} \right)^\frac{1}{1-m} \times |\sigma |x-x_0|^\sigma \left((b-1)|\psi'|^2 + |\psi''|\right) + \psi \psi'(N + \beta - \gamma) - \psi \psi' |x|^{-2}(x - x_0) \cdot x^\frac{1}{1-m}
\]

We need to split the proof in two cases, depending on the relation between \( |x_0| \) and \( R \).

- **When \( 0 \leq |x_0| \leq \frac{5}{4} R \):** Choosing \( \psi = \psi(|x-x_0|) \) to be a equal to 1 on \( B_{(7/4)R}(x_0) \) and zero outside \( B_{2R}(x_0) \), we have supp(\( \mathcal{L}_{\gamma, \beta} (\psi^b) \)) \( \subseteq B_{(7/4)R}(x_0) \cap B_{2R}(x_0) \); since \( B_{(7/4)R}(0) \subset B_{(7/4)R}(x_0) \), it turns out that supp(\( \mathcal{L}_{\gamma, \beta} (\psi^b) \)) \( \subseteq \{(1/4)R \leq |x| \leq 3R\} \cap \{(7/4)R \leq |x-x_0| \leq 2R\} \). Taking \( b \geq \frac{2}{1-m} \) we obtain

\[
\phi^\frac{1}{1-m} |\mathcal{L}_{\gamma, \beta} (\phi)|^\frac{1}{1-m} \leq C_\sigma \left[ b \sigma R^{-\sigma} \right]^\frac{1}{1-m} \left[ \sigma 4^\sigma ((b-1)|\psi'|^2 + |\psi''|) + \psi' |N + \beta - \gamma| + 4|\beta| \right]^\frac{1}{1-m},
\]

where we have used that \( 0 \leq \psi \leq 1 \); note that \( C_\sigma > 0 \) depends only on \( \sigma \) and this proves (5.18).

- **When \( |x_0| \geq \frac{3}{2} R \):** In this case we choose \( \psi(|x-x_0|) \) to be equal to 1 on \( B_{R}(x_0) \) and equal to 0 outside \( B_{(5/4)R}(x_0) \). In this way, supp(\( \mathcal{L}_{\gamma, \beta} (\psi^b) \)) \( \subseteq \{|R \leq |x-x_0| \leq (5/4)R\} \); noticing that \( \{ R \leq |x-x_0| \leq (5/4)R \} \subset \{|x| \geq R/4\} \) and proceeding as in the previous case, we conclude the proof of (5.18). \( \square \)
5.2 Appendix-B

The goal of this Appendix is to prove the weighted Caffarelli-Kohn-Nirenberg and Poincaré Inequalities of Propositions 1.10 and 1.11. We begin with a technical lemma.

**Lemma 5.3** Let $N \geq 3$, assume that $\gamma, \beta \in \mathbb{R}$, $\gamma < N$, $\beta < N - 2$ and they satisfy inequality (1.11). Then for any $y \in \mathbb{R}^N$ and for any $R > 0$ the following relation holds

\[
R^2 \frac{\mu_{\gamma}(B_R(y))}{\mu_\beta(B_R(y))} \leq \left( \int_{B_R(y)} |x|^{\beta - \gamma} \frac{d^N \phi}{|x|^N} \right)^{\frac{1}{\beta}},
\]

(5.19)

**Proof.** The proof will be divided in different cases.

- **Case 1.** Assume $y = 0$ and $R > 0$. This case is done by direct calculation.

- **Case 2.** Assume that $0 < |y| \leq 2R$. The reader may observe that in this case the following inclusions holds true $B_r(y) \subset B_{4r}(0) \subset B_{8r}(y)$. Then, by doubling property, we obtain the following inequalities (recall that $\sigma = 2 + \beta - \gamma$)

\[
\mu_{(\sigma-2)\beta}(B_r(y)) \leq \mu_{(\sigma-2)\beta}(B_{4r}(0)) \leq C_1 r^{2+\beta-\gamma} r^{N-\beta} \leq C_2 r^2 \mu_\gamma(B_{4r}(0)) \leq C_3 r^2 \mu_\gamma(B_{8r}(y)) \leq C_4 r^2 \mu_\gamma(B_r(y)).
\]

The other inequality is obtained by similar techniques.

- **Case 3.** Assume that $0 < 2R < |y|$. Assume that $z \in B_r(y)$, therefore $\frac{|y|}{2} \leq |z| \leq \frac{3|y|}{2}$. In order to prove inequality (5.19) we will show that the quantity $I$ defined by

\[
I = \left( \frac{1}{R^N} \int_{B_R(y)} |z|^{\sigma-2} \frac{d^N \phi}{dz} \right)^{\frac{1}{\sigma-2}} \left( \frac{1}{R^N} \int_{B_R(y)} |z|^{-\beta} dz \right)^{\frac{1}{\beta}} \left( \frac{1}{R^N} \int_{B_R(y)} |z|^{-\gamma} dz \right)^{-1},
\]

is bounded (above and below) by a constant independent of $y$ and $R$. For any $\alpha > -N$ we can estimate $\int_{B_R(y)} |z|^{\alpha} dz$ as

\[
C_5 R^N |y|^\alpha \leq \int_{B_R(y)} |z|^{\alpha} dz \leq C_6 R^N |y|^\alpha,
\]

where the constant $C_5$ and $C_6$ depends only on the dimension $N$. Therefore the quantity $I$ is bounded (above) by

\[
I \leq C_7 |y|^{\beta-\gamma} |y|^{-\beta} |y|^\gamma \leq C_7,
\]

recall that $\sigma = 2 + \beta - \gamma$. The very same technique works also for the other bound. \( \square \)

**Proof of the weighted Poincaré inequality of Proposition 1.11** The Poincaré inequality (1.19) will follow from the following weighted Sobolev-Poincaré inequality

\[
\left( \int_{B_R(y)} |\phi - a|^2 |x|^{-\beta} \frac{d^N \phi}{|x|^N dx} \right)^{\frac{1}{2}} \leq C \left( \int_{B_R(y)} |\nabla \phi|^2 |x|^{-\beta} dx \right)^{\frac{1}{2}},
\]

(5.20)

where $\beta < N - 2$ and $a = \mu_\beta(B_R(y))^{-1} \int_{B_R(y)} \phi |x|^{-\beta} \frac{d^N \phi}{|x|^N dx}$. The constant $C$ depends only on $N$ and $\beta$. Without loss of generality, we will prove inequality (1.19) for bounded $\phi \in C^\infty(B_R(y))$, as follows:

\[
\int_{B_R(y)} |\phi - a|^2 \frac{dx}{|x|^\gamma} = \inf_{a \in \mathbb{R}} \int_{B_R(y)} |\phi - a|^2 \frac{dx}{|x|^\gamma} \leq \int_{B_R(y)} |\phi - a|^2 \frac{dx}{|x|^\gamma} = \int_{B_R(y)} |\phi - a|^2 \frac{|x|^{\beta-\gamma} dx}{|x|^\beta} \\
\leq \left( \int_{B_R(y)} |\phi - a|^{2\gamma} \frac{dx}{|x|^\beta \frac{d^N \phi}{|x|^N dx}} \right)^{\frac{1}{2\gamma}} \left( \int_{B_R(y)} |x|^{\alpha} dx \right)^{\frac{1}{\alpha}} \leq C \left( \int_{B_R(y)} |\nabla \phi|^2 \frac{dx}{|x|^\beta} \right)^{\frac{1}{2}} \left( \int_{B_R(y)} |x|^{\alpha} dx \right)^{\frac{1}{\alpha}};
\]
where $\alpha = (\beta - \gamma) \frac{1}{N}$. We have used Hölder (with exponents $\frac{N}{\gamma}$ and $\frac{N}{\beta}$) and inequality (5.21). The proof is concluded once we prove inequality (5.20), which is known in the literature as the Sobolev-Poincaré inequality on quasiballs, see [53] and [52] Theorem 15.39, pag. 313 and it is a particular case of the following, more general, Sobolev-Poincaré inequality proven in [12] Theorem I.

\[
\left( \int_{B_R(y)} |\phi - \overline{\phi}|^2 |x|^{-\gamma} \, dx \right)^{\frac{1}{2}} \leq C_1 R \frac{\mu_\gamma(B_R(y))^{\frac{1}{2}}}{\mu_\beta(B_R(y))^{\frac{1}{2}}} \left( \int_{B_R(y)} |\nabla \phi|^2 |x|^{-\beta} \, dx \right)^{\frac{1}{2}}. \tag{5.21}
\]

where $\overline{\phi} = \mu_\gamma (B_R(y))^{-1} \int_{B_R(y)} \phi |x|^{-\gamma} \, dx$, $B_R(y)$ any ball and $C_1 > 0$ depends only on $N, \gamma$ and $\beta$. It is indeed enough to show that $R^{\frac{1}{2}} \frac{\mu_\gamma(B_R(y))^{\frac{1}{2}}}{\mu_\beta(B_R(y))^{\frac{1}{2}}} < C_2$ for any $y \in \mathbb{R}^N$ and any $R > 0$; this can be done by proceeding similarly to the proof on Lemma [53].

**Proof of proposition 1.10.** Inequality (CKNI2) follows from (5.21), estimating the constant as in the above proof, then using $\|f - \overline{f}\|_{L^p(B_R(x_0))} \geq \|f\|_{L^p(B_R(x_0))} - \|\overline{f}\|_{L^p(B_R(x_0))}$ and Hölder inequality. $\square$

ACKNOWLEDGMENTS. This work was partially funded by Projects MTM2014-52240-P and MTM2017-85757-P (Spain), and by the E.U. H2020 MSCA programme, grant agreement 777822. N. S. was partially funded by the FPI-grant BES-2015-072962, associated to the project MTM2014-52240-P (Spain). © 2018 by the authors. This paper may be reproduced, in its entirety, for non-commercial purposes.

References

[1] B. Abdellaoui, A. I. Peral. Hölder regularity and Harnack inequality for degenerate parabolic equations related to Caffarelli-Kohn-Nirenberg inequalities. Nonlinear Anal. 57 (2004), no. 7-8, 971–1003.

[2] D.G. Aronson, P. Besala, Parabolic equations with unbounded coefficients. J. Differential Equations 3 (1967) 1–14.

[3] D.G. Aronson, P. Besala, Uniqueness of positive solutions of parabolic equations with unbounded coefficients. Colloq. Math. 18 (1967) 125–135.

[4] D. G. Aronson, J. Serrin, Local behavior of solutions of quasilinear parabolic equations, Arch. Rational Mech. Anal. 25 (1967), 81–122.

[5] L. Boccardo, T. Gallouët. Nonlinear elliptic and parabolic equations involving measure data. J. Funct. Anal. 87 (1989), 149–169.

[6] E. Bombieri, E. Giusti, Harnack’s inequality for elliptic differential equations on minimal surfaces, Invent. Math. 15 (1972), 24–46.

[7] S. Bonafede, I. Skrypnik, On Hölder continuity of solutions of doubly nonlinear parabolic equations with weight. (English, Ukrainian summary) Ukraïn. Mat. Zh. 51 (1999), no. 7, 890–903; translation in Ukrainian Math. J. 51 (1999), no. 7, 996–1012 (2000)

[8] M. Bonforte, J. Dolbeault, M. Muratori, B. Nazaret, Weighted fast diffusion equations (Part II): Sharp asymptotic rates of convergence in relative error by entropy methods, Kin. Rel. Mod. 10 (2017), 61–91.

[9] M. Bonforte, J. Dolbeault, M. Muratori, B. Nazaret, Weighted fast diffusion equations (Part I): Sharp asymptotic rates without symmetry and symmetry breaking in Caffarelli-Kohn-Nirenberg inequalities, Kin. Rel. Mod. 10 (2017), 33–59.

[10] M. Bonforte, A. Figalli, X. Ros-Oton, Infinite speed of propagation and regularity of solutions to the fractional porous medium equation in general domains, Comm. Pure Appl. Math. 70, (2017), n.8, 1472–1508.

[11] M. Bonforte, A. Figalli, J. L. Vázquez. Sharp global estimates for local and nonlocal porous medium type equations in bounded domains. Anal. PDE 11 (2018), no. 4, 945–982.

[12] M. Bonforte, G. Grillo, J. L. Vázquez, Behaviour near extinction for the Fast Diffusion Equation on bounded domains, J. Math. Pures Appl. 97, (2012), n.1, 1–38.

[13] M. Bonforte, G. Grillo, J.L Vázquez. Fast diffusion flow on manifolds of nonpositive curvature. J. Evol. Equ. 8 (2008), no. 1, 99–128.
M. Bonforte, G. Grillo, J. L. Vázquez, Special fast diffusion with slow asymptotics. Entropy method and flow on a Riemannian manifold, Arch. Rat. Mech. Anal. 196, (2010), 631–680.

M. Bonforte, G. Grillo, J. L. Vázquez, Quantitative local bounds for subcritical semilinear elliptic equations, Milan J. Math. 80 (2012), no. 1, 65–118.

M. Bonforte, R. G. Iagar, J. L. Vázquez, Local smoothing effects, positivity, and Harnack inequalities for the fast $p$-Laplacian equation, Advances in Math. 224, (2010), 2151–2215.

M. Bonforte, J. L. Vázquez, Positivity, local smoothing, and Harnack inequalities for very fast diffusion equations, Advances in Math. 223 (2010), 529–578.

M. Bonforte, J. L. Vázquez, A Priori Estimates for Fractional Nonlinear Degenerate Diffusion Equations on bounded domains, Arch. Rat. Mech. Anal. 218 (2015), no. 1, 317–362.

X. Cabré, X. Ros-Oton, Sobolev and isoperimetric inequalities with monomial weights, J. Differential Equations 255 (2013), no. 11, 4312–4336.

L. Caffarelli, R. Kohn, L. Nirenberg, First order interpolation inequalities with weights, Compositio Math. 53 (1984), 259–275.

F. Catrina, Z.-Q. Wang, On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions, Comm. Pure Appl. Math. 54 (2001), 229–258.

F. Chiarenza, M. Frasca, Boundedness for the solutions of a degenerate parabolic equation, Applicable Anal. 17 (1984), 243–261.

F. Chiarenza, R. Serapioni, Pointwise estimates for degenerate parabolic equations, Appl. Anal. 23 (1987), 287–299.

F. Chiarenza, R. Serapioni, A remark on a Harnack inequality for degenerate parabolic equations, Rend. Sem. Mat. Univ. Padova 73 (1985), 179–190.

F. Chiarenza, R. Serapioni, Degenerate parabolic equations and Harnack inequality, Ann. Mat. Pura Appl. 137 (1984), 139–162.

F. Chiarenza, R. Serapioni, A Harnack inequality for degenerate parabolic equations, Comm. Partial Differential Equations 9 (1984), 719–749.

A. Dall’Aglio, D. Giachetti, I. Peral, Results on parabolic equations related to some Caffarelli-Kohn-Nirenberg inequalities, SIAM J. Math. Anal. 36 (2004/05), no. 3, 691–716.

P. Daskalopoulos, C. E. Kenig, “Degenerate diffusions. Initial value problems and local regularity theory”. EMS Tracts in Mathematics, 1. European Mathematical Society (EMS), Zürich, 2007. x+198 pp. ISBN: 978-3-03719-033-3

E. DiBenedetto. “Degenerate parabolic equations”, Universitext. Springer-Verlag, New York, 1993.

E. DiBenedetto, U. Gianazza, V. Vespri, “Harnack’s inequality for degenerate and singular parabolic equations”. Springer Monographs in Mathematics. Springer, New York, 2012. xiv+278 pp. ISBN: 978-1-4614-1583-1

E. DiBenedetto, U. Gianazza, V. Vespri, Forward, Backward and Elliptic Harnack Inequalities for Non–Negative Solutions to Certain Singular Parabolic Partial Differential Equations, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 9 (2010), no. 2, 385–422.

E. DiBenedetto, M. Urbano, V. Vespri, Current issues on singular and degenerate evolution equations, Evolutionary equations. Vol. I, 169–286, Handb. Differ. Equ., North-Holland, Amsterdam, 2004.

J. Dolbeault, M. J. Esteban, S. Filippas, A. Tertikas, Rigidity results with applications to best constants and symmetry of Caffarelli-Kohn-Nirenberg and logarithmic Hardy inequalities, Calc. Var. Partial Differential Equations, 42 (2011), 461–485.

J. Dolbeault, M. J. Esteban, M. Loss, Rigidity versus symmetry breaking via nonlinear flows on cylinders and Euclidean spaces, Invent. Math. 206 (2016), no. 2, 397–440.

J. Dolbeault, M. J. Esteban, M. Loss, M. Muratori, Symmetry for extremal functions in subcritical Caffarelli-Kohn-Nirenberg inequalities, C. R. Math. Acad. Sci. Paris 355 (2017), no. 2, 133–154.

J. Dolbeault, M. J. Esteban, G. Tarantello, A. Tertikas, Radial symmetry and symmetry breaking for some interpolation inequalities, Calc. Var. Partial Differential Equations, 42 (2011), 461–485.

D. Eidus, The Cauchy problem for the nonlinear filtration equation in an inhomogeneous medium, J. Differential Equations 84 (1990), 309–318.

D. Eidus, S. Kamin, The filtration equation in a class of functions decreasing at infinity, Proc. Amer. Math. Soc.
[30] E. B. Fabes, C. E. Kenig, R. P. Serapioni. The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations 7 (1982), no. 1, 77–116.

[31] E. B. Fabes, N. Garofalo, S. Salsa. A backward Harnack inequality and Fatou theorem for nonnegative solutions of parabolic equations, Illinois J. Math. 30 n. 4 (1986), 536–565.

[32] V. Felli, M. Schneider, Perturbation results of critical elliptic equations of Caffarelli-Kohn-Nirenberg type, J. Differential Equations, 191 (2003), 121–142.

[33] B. Franchi, C. Gutiérrez, R. L. Wheeden Weighted Sobolev-Poincaré inequalities for Grushin type operators, Comm. Partial Differential Equations 19 (1994), 523–604.

[34] E. Fabes, N. Garofalo Parabolic B.M.O. and Harnack’s inequality, Proc.Am. Math. Soc. 50, (1985) 63–69.

[35] E. Giusti, “Direct Methods in the Calculus of Variations”, World Scientific Publishing Co., Inc., River Edge, NJ, 2003.

[36] G. Grillo, M. Muratori, Radial fast diffusion on the hyperbolic space, Proc. Lond. Math. Soc. (3), 109 (2014), 283–317.

[37] G. Grillo, M. Muratori, M. M. Porzio, Porous media equations with two weights: smoothing and decay properties of energy solutions via Poincaré inequalities, Discrete Contin. Dyn. Syst., 33 (2013) 3599–3640.

[38] G. Grillo, M. Muratori, F. Punzo, On the asymptotic behaviour of solutions to the fractional porous medium equation with variable density, Discrete Contin. Dyn. Syst., 35 (2015), 5927–5962.

[39] G. Grillo, M. Muratori, J. L. Vázquez, The porous medium equation on Riemannian manifolds with negative curvature. The large-time behaviour. Advances in Mathematics 314 (2017), 328–377.

[40] C. Gutiérrez, R. L. Wheeden, Mean value and Harnack inequalities for degenerate parabolic equations. Colloq. Math. 60/61 (1990), no. 1, 157–194.

[41] C. Gutiérrez, R. L. Wheeden, Harnack’s inequality for degenerate parabolic equations. Comm. Partial Differential Equations 16 (1991), no. 4-5, 745–770.

[42] J. Hadamard, Extension á l’équation de la chaleur d’un théoréme de A. Harnack. Rend. Circ. Mat. Palermo, 3 (1954), 337–346.

[43] J. Heinonen, T. Kilpeläinen, O. Martio. “Nonlinear potential theory of degenerate elliptic equations”. Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1993. vi+363 pp. ISBN: 0-19-853669-0

[44] J. Heinonen, P. Koskela Weighted Sobolev and Poincaré inequalities and quasiregular mappings of polynomial type, Math. Scand. 77 (1995), 251–271.

[45] M.A. Herrero, M. Pierre. The Cauchy problem for \(u_t = \Delta u^m\) when \(0 < m < 1\), Trans. Amer. Math. Soc. 291 (1985), 145–158.

[46] R. G. Iagar, A. Sánchez, Large time behavior for a porous medium equation in a nonhomogeneous medium with critical density, Nonlinear Anal., 102 (2014), 226–241.

[47] K. Ishige, On the behavior of the solutions of degenerate parabolic equations. Nagoya Math. J. 155 (1999), 1–26.

[48] K. Ishige, M. Murata, An intrinsic metric approach to uniqueness of the positive Cauchy problem for parabolic equations. Math. Z. 227 (1998), no. 2, 313–335.

[49] K. Ishige, M. Murata, Uniqueness of nonnegative solutions of the Cauchy problem for parabolic equations on manifolds or domains. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 30 (2001), no. 1, 171–223.

[50] S. Kamin, R. Kersner, A. Tesei, On the Cauchy problem for a class of parabolic equations with variable density, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei Mat. Appl. 9 (1998), 279–298.

[51] S. Kamin, G. Reyes, J.L. Vázquez, Long time behavior for the inhomogeneous PME in a medium with rapidly decaying density, Discrete Contin. Dyn. Syst. 26 (2010), 521–549.

[52] S. Kamin, P. Rosenau, Propagation of thermal waves in an inhomogeneous medium. Comm. Pure Appl. Math. 34 (1981), 831–852.

[53] S. Kamin, P. Rosenau, Nonlinear diffusion in a finite mass medium, Comm. Pure Appl. Math. 35 (1982), 113–127.

[54] S. Kamin, P. Rosenau, Nonlinear thermal evolution in an inhomogeneous medium, J. Math. Phys. 23 (1982), 1385–1390.

[55] J. Kinminen, T. Kuusi, Local behaviour of solutions to doubly nonlinear parabolic equations. Math. Ann. 337
[65] A. Kufner, B. Opic, How to define reasonably weighted Sobolev spaces, Comment. Math. Univ. Carolin. 25 (1984), no. 3, 537–554.

[66] A. Kufner, B. Opic, Hardy-type inequalities. Pitman Research Notes in Mathematics Series, 219. Longman Scientific & Technical, Harlow, 1990. xii+333 pp. ISBN: 0-582-05198-3.

[67] T. Kuusi, Harnack estimates for weak supersolutions to nonlinear degenerate parabolic equations. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 7 (2008), no. 4, 673–716.

[68] T. Kuusi, G. Mingione. Guide to Nonlinear Potential Estimates. Bulletin of Math. Sci. 4 (2014), 1–82.

[69] C. Maderna, S. Salsa, Sharp estimates of solutions to a certain type of singular elliptic boundary value problems in two dimensions, Applicable Anal. 12 (1981), no. 4, 307–321.

[70] J. Moser, A Harnack inequality for parabolic differential equations, Comm. Pure and Appl. Math. 17 (1964), 101–134. And Correction to: “A Harnack inequality for parabolic differential equations”, Comm. Pure Appl. Math. 20 (1967), 231–236.

[71] J. Moser, On a pointwise estimate for parabolic differential equations, Comm. Pure Appl. Math. 24 (1971), 727–740.

[72] S. Nieto, G. Reyes, Asymptotic behavior of the solutions of the inhomogeneous porous medium equation with critical vanishing density, Commun. Pure Appl. Anal. 12 (2013), 1123–1139.

[73] G. Reyes, J.L. Vázquez, The Cauchy problem for the inhomogeneous porous medium equation in hyperbolic space, J. Math. Pures Appl. (9) 104 (2015), no. 3, 454–484.

[74] Y. Wang, P. Niu, X. Cui, Harnack estimates for a quasi-linear parabolic equation with a singular weight. Nonlinear Anal. 74 (2011), no. 17, 6265–6286.