Comparison of ontology alignment algorithms across single matching task via the McNemar test

MAJID MOHAMMADI, Delft University of Technology
AMIR AHOOYE ATASHIN, Ferdowsi University of Mashhad
WOUT HOFMAN, TNO
YAOHUA TAN, Delft University of Technology

Ontology alignment is widely used to find the correspondences between different ontologies in diverse fields. After discovering the alignment by methods, several performance scores are available to evaluate them. The scores require the produced alignment by a method and the reference alignment containing the underlying actual correspondences of the given ontologies. The current trend in alignment evaluation is to put forward a new score and to compare various alignments by juxtaposing their performance scores. However, it is substantially provocative to select one performance score among others for comparison. On top of that, claiming if one method has a better performance than one another can not be substantiated by solely comparing the scores. In this paper, we propose the statistical procedures which enable us to theoretically favor one method over one another. The McNemar test is considered as a reliable and suitable means for comparing two ontology alignment methods over one matching task. The test applies to a 2×2 contingency table which can be constructed in two different ways based on the alignments, each of which has its own merits/pitfalls. The ways of the contingency table construction and various apposite statistics from the McNemar test are elaborated in minute detail. In the case of having more than two alignment methods for comparison, the family-wise error rate is expected to happen. Thus, the ways of preventing such an error are also discussed. A directed graph visualizes the outcome of the McNemar test in the presence of multiple alignment methods. From this graph, it is readily understood if one method is better than one another or if their differences are imperceptible. Our investigation on the methods participated in the anatomy track of OAEI 2016 demonstrates that AML and CroMatcher are the top two methods and DKP-AOM and Alin are the bottom two ones. Moreover, the Levenstein and N-gram string-based distances discover the most correspondences while SMOA and Hamming distance are the ones with the least found correspondences.

Additional Key Words and Phrases: ontology alignment; McNemar test; family-wise error rate; anatomy;

ACM Reference format:
Majid Mohammadi, Amir Ahooye Atashin, Wout Hofman, and Yaohua Tan. 2017. Comparison of ontology alignment algorithms across single matching task via the McNemar test. *ACM Trans. Knowl. Discov. Data.* 0, 0, Article 0 (2017), 16 pages.
DOI: 0000001.0000001

1 INTRODUCTION

With the boom in information technology, data these days come from various sources. Such data have multiple salient but unwelcome features: they are big, dynamic and heterogeneous. There are solutions to cope with any of these features, and ontology alignment (or mapping/matching) is the remedy to data heterogeneity (Euzenat et al. 2007).

Given the source and target ontologies for alignment, a correspondence is defined as the mapping of one concept
in the source to one concept in the target ontology. For discovering correspondences, it is typical to utilize a similarity measure. There are three different similarity measure categories. The first category is the string-based measure which only considers the text of concepts to declare their similarities (Cohen et al. 2003; Levenshtein 1966; Stoilos et al. 2005). Another category is the linguistic-based similarity measures which consider the linguistic relations, e.g. synonym, antonym, hypernym, etc., between the strings of two concepts. The linguistic-based similarity measures usually take advantages of WordNet (Miller 1995) to discover the similarity. The third category is the structural-based measures which take into account the position of the concepts in their ontologies. Traditionally, the challenge of ontology alignment was to come up with a new similarity measure and then to find the interrelation between the ontologies (Stoilos et al. 2005). However, this focus has moved to take advantages of various similarity measures and try to reason the correspondences based on outcomes of different similarity measures (Jan et al. 2012; Nagy et al. 2006).

An alignment, which is the result of any standard ontology matching algorithm, comprises a set of correspondences, mapping various concepts of one ontology to one another. It is the common practice to find the goodness of an alignment method by comparing its output with the actual alignment which is in hand. However, it is controversial to select the appropriate performance score in different cases. On top of that, claiming the superiority of method against one another cannot be substantiated by merely comparing the obtained scores. In this article, the appropriate procedures are put forward to statistically opt for one method if it has actually better performance than the other. However, the claim of superior performance must be treated with caution as the no free lunch theorem suggests.

According to the no free lunch theorem (Wolpert 2012; Wolpert and Macready 1997), there is no context-independent reason to favor one strategy (or optimization method) over one another. The average performances of all strategies over all possible problems are the same. It is drawn, as a result, that the superior performance of one method over one another is due to its better fitness to the nature of the problem, not because of its inherent features. Any claim of performing the best in a general sense must be questioned and faced with doubts.

The no free lunch theorem is firstly introduced in the supervised machine learning realm (Wolpert 1996), but it is generalized to any optimization problem afterward (Wolpert and Macready 1997). Therefore, the results of the no free lunch theorem are also correct for the ontology alignment algorithms, and the preferred alignment method can be only discovered in one particular context.

To date, the attempt of claiming if one method is better than one another has been solely concentrated on employing a new performance score (e.g. precision, recall, etc.) (Ehrig and Sure 2004; Euzenat 2007; Ritze et al. 2013). If there are multiple pairs of ontologies for comparison, the superiority of a method is concluded only if its average performance across multiple pairs of ontologies is higher than the rest. Statistically speaking, the average performance is unsafe and inappropriate: it is highly sensitive to the outliers and having higher average performance does not necessarily indicate the superiority (the difference might be imperceptible and insignificant) (Demšar 2006). In the case of existing only one pair of ontologies, on the other hand, the comparison is merely performed by the juxtaposition of the performance scores of the methods.

As a complement to the no free lunch theorem, this article aims to consider the statistical hypothesis testing to find the best ontology alignment on a particular task. Employing the appropriate statistical test, one can determine if one alignment method outperforms one another with substantial statistical evidence. Instead of comparing one alignment with the reference one, the methodology proposed here takes the reference alignment along with two alignments under comparison as the inputs and states if one alignment statistically outperforms the other. Thus, the outcome of the methodology in this article is not a score but the statement of superiority of an alignment in comparison with one another.

The McNemar test is the statistical means by which the various methods of alignment over one matching task can be compared. This test can be applied to the paired nominal data summarized in a contingency table with a dichotomous trait. Summing up the results of alignments in a contingency table would be challenging and might
erupt discussions. We present two ways to build such a contingency table whose applicabilities is conceptually similar to those of recall and F-measure. Further, four statistics from the McNemar family are considered, and their advantages and pitfalls are discussed. In the case of having two methods for comparison, the McNemar test can be simply applied. If more than two alignments are available, all pairwise comparisons must be performed. In this case, the family-wise error rate (FWER) is likely to happen and must be controlled. The appropriate procedures for the FWER prevention are elaborated as well. We leverage the proposed methodology across the anatomy track 2016, and the corresponding results are visualized by a directed graph. This graph indicates if the difference between each pair of methods are significant or not. AML and Cromatcher have shown the best performances, and DKP-AOM and Alin are the ones with reduced accomplishment. We further compare the string-based similarity measures over this track because many correspondences can be easily discovered by comparing the strings. The N-gram and Levenstein distances are the ones with the maximum discovery with respect to others.

This paper is organized as follows. The ways of the contingency table construction are brought in Section II, and the appropriate statistics from the McNemar test are discussed in Section III. The family wise error rate and the ways of adjusting the p-values are studied in Section IV. Section V dedicates to the experiments of the statistical procedures over the anatomy track, and the paper is concluded in Section VI.

2 CONTINGENCY TABLE CONSTRUCTION

The McNemar test is applicable when there are two experiments over N samples (McNemar 1947). Let the outcome of each test be either positive or negative; then a simple contingency table would be as Table 1.

Table 1. A simple contingency table

Exp. 1	Exp. 2	sum	
-	n_{00}	n_{01}	n_0
+	n_{10}	n_{11}	n_1
sum	n_{0}	n_{1}	N

In this table, n_{00} and n_{11} are called the accordant pair and are respectively the number of experiments when both experiments produce positive and negative outcomes. The discordant pair, i.e. n_{01} and n_{10}, are the number of experiments when the results of experiments are in contradiction; n_{01} is the number of experiments which the first outcome is negative while the second one is positive and n_{10} is the other way around.

In ontology matching case, the positive or negative outcome for experiments can be defined in two ways, each of which has its own merits and is suitable for particular situations.

For given two ontologies, let R be the reference alignment containing a set of correct correspondences and A_1 and A_2 be two alignments retrieved by two different methods. In the first approach of the contingency table construction, the focus is on the truly discovered alignments, thereby ignoring the concepts which have not correctly mapped. Hence, n_{00} and n_{11} are respectively the number of correspondences in the reference alignment R which are not in both alignments A_1 and A_2 and the number of correspondences which are in the reference and both alignments. n_{01} (and similarly n_{10}) is the number of correspondences truly discovered by A_2, but not by A_1. These elements can be written as...
where \(|.|\) indicates the cardinality operator. This approach is conceptually similar to recall as it does not consider the number of correspondences which are falsely discovered by methods. We again accent that the approach of this article is different than the performance scores, including recall, as we compare two alignments and do not produce any score indicating the fineness of the alignments.

An example elaborates the issue of this approach. Assume that both methods can discover the complete reference alignment, i.e. \(A_1 = A_2 = R\). In this case, \(n_{01} = n_{10} = 0\) which means that the both methods have performed equally well (it is discussed in further sections that \(n_{01}\) and \(n_{10}\) are the only important pair for the McNemar test). Now, suppose that \(A_1 = R\) and \(A_2 = R + B\), where \(B\) is a set of correspondences which are not in \(R\) (falsely discovered by \(A_2\)). In this case, \(n_{01}\) is the same as \(n_{10}\) which again indicates that the two methods perform equally well. However, it is plain to grasp that \(A_1\) is a more reliable method as it does not mistakenly discover any correspondences. Statistically speaking, this approach does not take into account the false positive and only considers the true positive. Nonetheless, such an approach is suitable for occasions where the goal is to have as many correspondences as possible so that the false discovery does not have a profound impact.

The second approach of building the contingency table avoids the aforementioned pitfall and consider the false discovery as well. As it considers the truly unmapped pairs of concepts, obtaining the elements of the contingency table is of higher complexity in comparison with the previous approach. Therefore, it is necessary to explain how to obtain each element of the table individually.

\(n_{00}\) is the number of correspondences which are wrongly discovered by both alignments. Hence it includes the correspondences which are in \(R\) but not in \(A_1\) or \(A_2\) plus the correspondences which are in both \(A_1\) and \(A_2\) but not in \(R\), i.e. \(n_{00} = |R - (A_1 \cup A_2)| + |(A_1 \cap A_2) - R|\). \(n_{10}\) is the number of truly discovered correspondences by \(A_1\) which are not in \(A_2\) plus the correspondences which are falsely identified only by \(A_2\) and not by \(A_1\), i.e. \(n_{10} = |(A_1 \cap R) - A_2| + |A_2 - A_1 - R|\). With the same token, \(n_{01}\) can also be obtained. \(n_{11}\) is a bit more challenging as the total number of possible correspondences between two ontologies is required. Let this number be \(T\), one possibility for \(T\) is to multiply the number of concepts of two ontologies, i.e. \(T = n \times m\) where \(n\) and \(m\) are the numbers of candidate concepts for matching in two ontologies. Thus, \(n_{11} = |A_1 \cap A_2 \cap R| + |T - (A_1 \cup A_2 - R)|\). The statistics considered in this paper only need the discordant pair; therefore the value of \(n_{11}\) and subsequently \(T\) is not taken into account. The elements as mentioned earlier of the contingency table from the second approach can be summarized as:

\[
\begin{align*}
 n_{00} &= |R - (A_1 \cup A_2)| + |(A_1 \cap A_2) - R| \\
 n_{01} &= |(A_2 \cap R) - A_1| + |A_1 - A_2 - R| \\
 n_{10} &= |(A_1 \cap R) - A_2| + |A_2 - A_1 - R| \\
 n_{11} &= |A_1 \cap A_2 \cap R| + |T - (A_1 \cup A_2 - R)|
\end{align*}
\]

This way of the contingency table construction considers the falsely discovered correspondences of methods. Note that this calculation is relative to the other method. In other words, it does not consider all the incorrectly identified correspondences, but the false correspondences are considered which are not in the rival method. As the goal is to compare two alignments together, it is entirely rational to find the relative false positive. This approach can be figuratively viewed as similar to F-measure due to its consideration of both true and false discoveries.
3 MCNEMAR TEST

Having built the contingency table, it is time to run the McNemar test. Before elaborating the McNemar test, we digress a little to explain the null hypothesis testing.

To leverage any statistical test, the null and alternative hypotheses are required. The null hypothesis H_0 states that the difference between two populations is insignificant, and this difference is due to the sampling or experimental errors (Sheskin 2003). The alternative hypothesis, on the other hand, states the contrary: the difference between two populations is significant and not random.

To reject or retain H_0, we need to compute the p-value and compare it with significant level α which must be determined before running the test. The p-value is the probability of obtaining a result equal to, or even more extreme than the observations (Sheskin 2003). If the p-value is less than the nominal significant level α, then the null hypothesis is rejected, and it is drawn that the difference between populations is significant.

In the comparison of ontology alignment methods, the populations mentioned above are the outcomes of two methods. Therefore, the null hypothesis is that the difference between the outcomes of alignment methods is random and insignificant. The null hypothesis in the McNemar test states that the two marginal probabilities of the contingency table are the same, i.e.

$$p(n_{00}) + p(n_{01}) = p(n_{00}) + p(n_{10})$$
$$p(n_{10}) + p(n_{11}) = p(n_{01}) + p(n_{11})$$

where $p(a)$ indicates the probability of occurring the cell of Table 1 with the label a. After canceling out the $p(n_{00})$ and $p(n_{11})$ from the aforementioned equations, the null and alternative hypotheses are obtained as

$$H_0 : \quad p(n_{01}) = p(n_{10})$$
$$H_a : \quad p(n_{01}) \neq p(n_{10}).$$

To obtain the p-value of the null hypothesis (4), we consider four statistics from the McNemar family and discuss their advantages and pitfalls in the hypothesis testing. The statistics studied here only work with the accordant pair of the contingency table. However, there is also an exact unconditional McNemar test which takes into account the discordant pair of the contingency table (Suissa and Shuster 1991). The exact unconditional test is way more intricate than the McNemar tests put forward here, but its power is approximately the same as other tests (Fagerland et al. 2013). Therefore, this test is ignored in this paper.

3.1 The asymptotic McNemar test

The asymptotic McNemar test assumes that n_{01} is binomially distributed with $p = 0.5$ and parameters $n = n_{01} + n_{10}$ under the null hypothesis (McNemar 1947). The asymptotic McNemar test statistic

$$\chi^2 = \frac{(n_{01} - n_{10})^2}{n_{01} - n_{10}}$$

is distributed according to χ^2 with one degree of freedom. This test is undefined for $n_{01} = n_{10} = 0$.

To reject the null hypothesis, this test requires a sufficient number of data ($n_{01} + n_{10} \geq 25$) because it might violate the nominal significant level α for the small sample size.

3.2 The McNemar exact test

It is traditionally advised to use the McNemar exact test when a small sample size is available in order not to exceed the nominal significant level. In this test, n_{01} is compared to a binomial distribution with parameter
\[n = n_{01} + n_{10} \text{ and } p = 0.5. \] Thus, the p-value for this test is obtained as

\[\text{exact-p-value} = \sum_{x=n_{01}}^{n} \binom{n}{x} \left(\frac{1}{2} \right)^{x}. \]

The one-sided p-value can be multiplied by two to obtain the two-sided p-value. This test guarantees to have type I error rate below the nominal significant level \(\alpha \).

3.3 The asymptotic McNemar test with continuity correction

The main drawback of the McNemar exact test, though preserving the nominal significant level, is conservatism: it unnecessarily generates large p-values so that the null hypothesis cannot be rejected. As a remedy to conservatism, Edwards (Edwards 1948) approximated the exact p-value by the following continuity corrected statistic

\[\chi^2 = \frac{(|b - c| - 1)^2}{b + c} \]

which is \(\chi^2 \)-distributed with one degree of freedom. This test is also undefined for \(n_{01} = n_{10} = 0 \).

3.4 The McNemar mid-p test

The continuity corrected method is not as conservative as the McNemar exact test, but it does not guarantee to preserve the nominal significant level. The mid-p approach propounds a way to trade off between the conservatism of the exact test and the significant level transgression of the continuity correction (Lancaster 1961). To obtain the mid-p-value, a simple modification is required: the mid-p-value equals the exact p-value minus half the point probability of the observed test statistic (Fagerland et al. 2013). Hence, the p-value is obtained as

\[\text{mid-p-value} = 2\text{-sided exact p-value} - \binom{n}{n_{01}} 0.5^n. \]

The McNemar mid-p test resolves the conservatism of the exact test, but it does not theoretically guarantee to preserve the nominal significant level. In a recent study, however, it is investigated that the mid-p test has low type I error and does not violate the significant level. The continuity corrected test, in contrast, indicated the high type I error, coming from the nature of asymptotic tests, as well as high type II error, inherited from the exact test. Thus, it is rational not to use the continuity corrected test for the alignment comparison.

4 FAMILY-WISE ERROR RATE AND P-VALUE ADJUSTMENT

When there are two methods for comparison, the null hypothesis will be rejected if the obtained p-value is below the nominal significant level \(\alpha \). If more than two alignment algorithms are available for comparison, the well-known family-wise error rate (FWER) might happen. FWER refers to the increase in the probability of type I error which is likely to violate the nominal significant level \(\alpha \) when multiple populations are to be compared.

To explain what FWER is, assume that there are 5 methods for comparison and the significant level is \(\alpha = 0.05 \). If it is desired to do all the pairwise comparisons, then there are \(k = 5 \times 4 / 2 = 10 \) hypotheses overall. For each of the null hypothesis, the probability of rejection without occurring the type I error is \(1 - \alpha = 0.95 \). For all comparisons, on the other hand, the probability of not having any type I error in all the hypotheses is \((0.95)^{10} = 0.6 \).

As a result, the probability of occurring type I error increases to \(1 - 0.6 = 0.4 \), which is way higher than the nominal \(\alpha = 0.05 \). This phenomenon is the so-called family-wise error rate.

To prevent this error, there are two primary approaches. Akin to the above example, the first approach is applicable when all the pairwise comparisons are desired. Conducting all pairwise comparisons are suitable when a comparison study of the existing methods in the literature or a comparison of methods in a competition like
When a new alignment method is proposed, it is usually compared with other state-of-the-art alignments. For example, the APV (Altman et al. 1993) is almost the same as the Holland’s procedure and compares each method against all other methods. A null hypothesis is rejected if its corresponding adjusted p-value is below the nominal significance level α. Let H_i, $i = 1, ..., k$ be all hypotheses for n methods and p_i, $i = 1, ..., k$ be their corresponding p-values. The Bonferroni’s method (Dunn 1961) is the most straightforward way to prevent FWER. In this procedure, all the p-values are compared with the nominal significant level α divided by the total number of comparisons. In other words, the hypothesis H_i is rejected if $p_i < \alpha/k$. Based on this equation, the adjusted p-value for the H_i hypothesis is obtained by multiplying both sides of above inequality by k, i.e., $\text{APV}_i = \min(k \times p_i, 1)$. Thus, H_i is rejected if $\text{APV}_i < \alpha$. This procedure, though simple, is too conservative: it retains the hypotheses which must be rejected by generating high APV.

Contrary to the single step Bonferroni correction, there are step-up and step-down procedures which sequentially reject the null hypothesis. It is necessary to order p-values for sequential rejective procedures and we denote the ordered p-values as $p_{(1)} \leq p_{(2)} \leq ... \leq p_{(k)}$ and their corresponding hypotheses are $H_{(1)}, H_{(2)}, ..., H_{(k)}$.

The Holm’s procedure (Holm 1979) is a step-down method which starts with the most significant (or the smallest) p-value p_1. If $p_1 \leq \frac{\alpha}{k}$, then H_1 is rejected, and p_2 is compared with $\frac{\alpha}{k-1}$. If $p_2 \leq \frac{\alpha}{k-1}$, then H_2 is rejected, and p_3 is compared with $\frac{\alpha}{k-2}$. This procedure continues until an hypothesis is retained. In other words, each p_i in the Holm’s method is compared with $\frac{\alpha}{k-i}$ and it is rejected if it is below this value, otherwise it is not rejected and the rest hypotheses are retained as well. The Holm adjusted p-value is $\text{APV}_i = \min\{v_i, 1\}$ where $v_i = \max\{(k-j)p_j : 1 \leq j \leq i\}$. Similar to the Holm’s procedure, the Holland’s procedure (Holland and Copenhaver 1987) is also a step-down method. Instead of comparing the p-values with $\frac{\alpha}{k-i}$, it compares each p_i with $1 - (1-\alpha)^{k-i}$. Thus, the adjusted p-value is $\text{APV}_i = \min\{v_i, 1\}$ where $v_i = \max\{1 - (1-p_j)^{k+1-j} : 1 \leq j \leq i\}$. The Finner’s procedure (Finner 1993) is almost the same as the Holland’s procedure and compares each p_i with $1 - (1-\alpha)^{\frac{i}{2}}$. The Finner adjusted p-value is $\text{APV}_i = \min\{v_i, 1\}$ where $v_i = \max\{1 - (1-p_j)^{\frac{i}{2}} : 1 \leq j \leq i\}$. The Hochberg’s procedure (Hochberg 1988) works in the opposite direction and starts with the largest p-value. It compares the largest p-value with α, the next largest with $\alpha/2$ and it is terminated until a hypothesis can be rejected. All the hypotheses with the smaller p-values are then rejected as well. The Hochberg adjusted p-value is $\text{APV}_i = \max\{(k-j)p_j : (k-1) \geq j \geq i\}$.

4.2 Controlling FWER in $N \times N$ comparison

For performing all the pairwise comparisons when n methods are available, there are $k = n(n-1)/2$ hypotheses overall. The Nemenyi’s method (Nemenyi 1963) is the Bonferroni’s method with k is set to the $N \times N$ comparison, i.e. $k = n(n-1)/2$. Thus, it has high type II error which results in not detecting the difference among the population when there is a de facto difference. The same modification of k must be applied to other methods so that they are suitable for $N \times N$ comparison case.

There is also another sequential-rejective null hypothesis approach which is suitable for $N \times N$ comparison and...
takes into account the logical relations between hypotheses. Shaffer (Shaffer 1986) discovered that the Holm’s procedure could be improved when hypotheses are logically interrelated. In many scenarios, it is not feasible to get any combination of true and false hypotheses. In the pairwise comparison among means, for instance, it is not possible to have $\mu_1 = \mu_2$ and $\mu_3 \neq \mu_4$. Thus, this case need not be protected against FWER. Correction procedures which take into account the logical relations are similar to the Holm’s correction: they start with the most significant (or the smallest) p-value but compare it with α/t_i, where t_i is the maximum number of hypotheses which can be retained at the first step. If $p_1 < \alpha/t_1$, then the corresponding hypothesis H_1 is rejected, and p_2 is compared with α/t_2. If H_2 is rejected, then p_3 is compared with α/t_3 and so on. The procedure terminates at the stage j if H_j cannot be rejected. The remaining hypotheses with smaller p-values than p_j are also retained. The adjusted p-value for the sequential corrective methods is $APV_i = \min\{v_i, 1\}$ where $v_i = \min\{t_i \times p_i, 1\}$.

There are two major methods which consider the logical relations of hypothesis: Shaffer’s and Bergmann’s procedures. These methods differ in their way to obtain the maximum number of true hypotheses at each level. The Holm’s procedure simply set the maximum number of true hypothesis at the stage j as the rest of hypotheses after the j^{th} stage, i.e. $t_j = k - j + 1$.

In the Shaffer’s method (Shaffer 1986), the possible numbers for true hypothesis and consequently t_j is obtained by the following recursive formula

$$S(k) = \bigcup_{j=1}^{k} \binom{2}{j} + x : x \in S(k-j)$$

where $S(k)$ is the set of all possible numbers of true hypotheses when there are k alignments for comparison and $S(0) = S(1) = 0$. t_j is simply computed based on the set $S(k)$.

Similar to the Shaffer’s method, the Bergmann’s method (Bergmann and Hommel 1988) use the logical interrelations between the hypotheses but dynamically estimates the maximum number of true hypotheses at the stage j, given that $j-1$ hypotheses are rejected.

To do so, they defined the exhaustive which is an index set of hypotheses $I \subseteq \{1,...,m\}$ where exactly all the hypotheses $H_j, j \in I$ can be true. Then, any hypothesis H_j is rejected if $j \notin A$ where A is the acceptance set which is retained and defined as

$$A = \bigcup\{I : I \text{ exhaustive}, \min\{P_i : i \in I\} > \alpha/|I|\}$$

(5)

The Bergmann’s method is the most powerful procedures when $N \times N$ comparison is required. However, building the exhaustive set is very time-consuming especially if more than nine methods are available for comparison.

5 RESULTS

In this section, the aforementioned statistical procedures are applied to the anatomy track of OAEI 2016, and the corresponding results are reported. Further, different string similarity measures are compared and ranked according to the number of correct discovery.

We have two ways of obtaining the contingency table, four McNemar tests and four ways to prevent the FWER. Therefore there are totally 32 states for comparison. For the sake of simplicity (and probably for the exclusion of duplication), we only consider four states: the two ways of building the contingency table compared with the McNemar mid-p test and controlling FWER by the Nemenyi’s and Bergmann’s correction, the most conservative and the most robust methods. The underlying reason behind the mid-p test selection is that it is not as conservative as the exact test and it is less likely to violate the nominal significant level α.

The anatomy track has been a part of OAEI since 2011 and its aim is to find the alignment between the Adult
Comparison of ontology alignment algorithms across single matching task via the McNemar test

Table 2. The \(n_{01} \) and \(n_{10} \) for constructing the contingency table from the first point of view which does not consider the false positive rate (see Eq. (1)). For the comparison of the \(i^{th} \) and \(j^{th} \) methods, \(n_{01} = (i, j) \) and \(n_{10} = (j, i) \) where \((i, j)\) is the element of the \(i^{th}\) row and the \(j^{th}\) column in the table.

	Alin	AML	CroMatcher	DKP-AOM	FCA_Map	Lily	LogMapLite	LPHOM	LYAM	XMap
Alin	0	0	13	405	2	18	2	52	3	0
AML	911	0	62	1214	184	237	328	339	118	134
CroMatcher	873	11	0	1170	176	216	311	314	108	124
DKP-AOM	102	0	7	0	0	13	0	49	1	0
FCA_Map	763	34	77	1064	0	161	167	253	51	58
Lily	713	21	51	1011	95	0	176	210	45	60
LogMapLite	597	12	46	898	1	76	0	203	5	19
LPHOM	646	22	48	946	86	109	202	0	43	39
LYAM	823	27	68	1124	110	170	230	269	0	74
XMap	804	27	68	1107	101	169	228	249	58	0

Table 3. The \(n_{01} \) and \(n_{10} \) for constructing the contingency table from the second point of view which takes into account the false positive discovery (see Eq. (2)). For comparison of the \(i^{th} \) and \(j^{th} \) methods, \(n_{01} = (i, j) \) and \(n_{10} = (j, i) \) where \((i, j)\) is the element of the \(i^{th}\) row and the \(j^{th}\) column in the table.

	Alin	AML	CroMatcher	DKP-AOM	FCA_Map	Lily	LogMapLite	LPHOM	LYAM	XMap
Alin	0	72	86	405	92	195	46	506	212	100
AML	917	0	94	1214	252	396	368	777	298	203
CroMatcher	879	42	0	1170	249	375	351	749	298	204
DKP-AOM	108	72	80	0	90	190	50	509	210	100
FCA_Map	769	84	133	1064	0	323	181	691	220	135
Lily	719	75	106	1011	170	0	219	617	234	138
LogMapLite	597	74	109	898	55	246	0	648	186	107
LPHOM	647	73	97	947	155	234	0	214	105	
LYAM	829	70	122	1124	160	327	252	690	0	142
XMap	810	68	121	1107	168	324	266	674	235	0

Mouse Anatomy and a part of the NCI Thesaurus related to the human anatomy. We select 10 methods participated in OAEI 2016 for conducting the comparison: Alin (da Silva 2016), AML (Faria et al. 2013), CroMatcher (Achichi et al. 2016a), DKP-AOM (Amrouch et al. 2016), FCA-Map (Zhao and Zhang 2016), Lily (Wang and Xu 2008), LogMapLite (Jiménez-Ruiz and Grau 2011), LPHOM (Megdiche et al. 2016), LYAM (Achichi et al. 2016b) and XMap (Djeddi and Khadir 2010).
The contingency table is built by the two aforementioned methodologies. The values for n_{01} and n_{10} for the way of ignoring the false positive and considering it are brought in Tables 2 and 3. For the sake of simplicity, n_{01} and n_{10} are tabulated in one single table for each perspective (below and upper diagonal). To compare the i^{th} and j^{th} methods in each approach, (i, j) and (j, i) elements of this table is taken as n_{01} and n_{10}, where (i, j) is the element at the i^{th} row and j^{th} column. For instance, let’s compare the Alin and AML methods. In the first perspective, $n_{01} = 911$ which means that there are 911 correspondences discovered by AML but not by Alin. And, $n_{10} = 0$ indicates that there are no correspondences which are in the Alin but are not in the AML alignment. In the second perspective, on the other hands, $n_{01} = 917$ and $n_{10} = 72$. Comparing with the previous view, n_{10} changes from 0 to 72 which means that AML has discovered 72 wrong correspondences while Alin has not. The little increase in n_{01} is due to the false discovery rate of Alin (6 correspondences) in comparison to AML. As a result, it is grasped that the false discovery rate of Alin is less than AML while the true discovery rate of AML is way higher than Alin. If the McNemar test rejects the null hypothesis, then AML is concluded to have a better performance than Alin due to its higher true discovery rate than Alin. The comparison of other methods can be conducted likewise which clarifies the difference between the two perspectives.

For the comparison study, we conduct all the pairwise comparisons. We take advantage of the Nemenyi’s correction, the most conservative one, and Bergman’s correction, the most powerful one, to control the family-wise error rate.

We visualize the results using weighted graphs. Four different weighted graphs correspond to each perspective, and each correction methods are brought in Figures (1 - 4). The nodes in these graphs are the methods under study and any directed edge $A \rightarrow B$ means that the method A is significantly better than the method B. If there is no such an edge, there is no significant difference between the corresponding methods.
First, we compare the results obtained from the Nemenyi’s and Bergman’s correction from each perspective of the contingency table construction. Figures 2 and 1 are the weighted graphs corresponds to the pairwise comparisons of alignment methods obtained by applying respectively the Nemenyi’s and Bergmann’s correction under the first perspective of contingency table construction. The results of these two correction methods are different in only one comparison: the Bergmann’s correction indicates the significant difference between Cromatcher and LYAM while the Nemenyi’s correction method can not detect it. Thus, the Bergmann’s correction is more powerful than the Nemenyi’s correction as the theory suggests.

In the second approach which also considers the false positive, the Bergmann’s correction method indicates its power in comparison with the Nemenyi’s correction. It declares the difference between FCA-Map LYAM and between LYAM and LogMapLite significant while the Nemenyi’s correction cannot detect such differences as significant. Now, we compare the two perspectives on the contingency table construction. To do so, the Bergmann’s correction method is considered due to its ability to detect more differences. Considering Fig. 2, it is readily seen that the LYAM and XMAP methods are not declared significant, but both of them are declared significant in comparison to FCA-MAP. If the false positive rate is taken into account, as in Fig. 4, FCA-MAP is replaced LYAM. To investigate such a replacement, Tables 2 and 3 must be considered. While the false positive rate is not considered, FCA-Map has 51 correct correspondences which are not in LYAM, and LYAM has 110 true correspondences which do not exist in FCA-MAP. However, when the false positive is also considered, the number of truly discovered correspondences by FCA-MAP which are not in the LYAM alignment increases to 220 while the number of truly discovered correspondences by LYAM which are not in FCA-MAP is 160. As a result, the LYAM ontology mapping is better than FCA-MAP from the first point of view, but FCA-MAP outperforms LYAM in the second approach because it has a lower false discovery rate in comparison with LYAM. The same
argument is also valid for the comparison of FCA-MAP and XAMP: if the falsely discovered correspondences are not taken into account, XAMP outperforms FCA-MAP while they are declared insignificant when the false discovery error is considered as well.

Another difference between two perspectives on the contingency table construction is about the LogMapLite method. When the false discovery rate does not matter, Lily outperforms LogMapLite, which is further declared insignificant compared with LPHOM. If the false positive error is heeded, however, LogMapLite outperforms LPHOM and it is declared insignificant with Lily. This indicates that LogMapLite has a lower false discovery rate than Lily and LPHOM.

We finally rank the methods participated in OAEI 2016 in Table 4 based on the Bergmann’s correction. The columns with labels IFP and CFP correspond to the contingency table construction with ignoring the false discovery (IFP) and considering (CFP) it. In this table, the methods in higher rows are ones which are significantly better than the methods in lower rows. If two methods are not significantly different, they are placed in the same cell. It can be readily seen that AML and DKP-AOM are the best and the worst methods from two perspectives.

The string-based similarity measures are of utmost importance in the anatomy track because many correspondences can be discovered if the right string-based similarity is employed. To compare various measures, we take advantage of Shiva framework (Mathur et al. 2014) which convert the ontology mapping into an assignment problem. In this framework, the similarity between each concept from the source ontology is gauged with all the concepts of the target ontology. The similarity score from the concepts of two ontologies construct a matrix, which can be given to the Hungarian algorithm (Munkres 1957) to find the best match for each concept. We use nine string-based similarity measure to construct the matrix: Levenstein (Levenshtein 1966), N-gram (Kondrak 2005), Hamming (Euzenat et al. 2007), Jaro (Jaro 1995), JaroWinkler (Winkler 1999), SMOA (Stoilos et al. 2005), NeedlemanWunsch2 (Needleman and Wunsch 1970), Substring distance (Euzenat et al. 2007) and equivalence...
Fig. 4. Comparison of alignment methods by the mid-p McNemar test with the Bergmann’s correction and the false positive is considered. The edge $A \rightarrow B$ indicates that the method A outperforms method B.

Table 4. Ranking of methods participated in the anatomy track, OAEI 2016 from two different perspectives. The first perspective is to ignore the false positive (IFP) and the second is to consider it (CFP). The position of upper rows in this table indicates that it is significantly better than the methods coming in the lower rows. Cells with two methods indicate that the methods are not declared significantly different.

	IFP	CFP
1	AML	AML
2	CroMatcher	CroMatcher
3	LYAM & XAMP	FCA-MAP & XMAP
4	FCA-MAP	LYAM
5	Lily	LogMapLite & LPHOM
6	LogMapLite & LPHOM	LPHOM
7	Alin	Alin
8	DKP-AOM	DKP-AOM

measure. The Hungarian method applies to the resultant matrix to find the best correspondence for each concept.
Table 5. The n_{01} and n_{10} for constructing the contingency table from the first point of view (ignoring the false positive) across the various string-based similarity measures. For the comparison of the i^{th} and j^{th} methods, $n_{01} = (i, j)$ and $n_{10} = (j, i)$ where (i, j) is the element of the i^{th} row and the j^{th} column in the table.

Method	Equal	Hamming	Jaro	JaroWinkler	Levenshtein	N-gram	Needleman	SMOA	SubString
Equal	0	0	2	2	0	0	0	71	1
Hamming	842	0	51	51	32	54	48	258	494
Jaro	888	95	0	42	59	60	252	532	
JaroWinkler	888	95	0	42	59	60	252	532	
Levenshtein	966	156	122	122	64	50	277	593	
N-gram	1041	253	214	214	139	0	174	290	636
Needleman	932	138	106	106	16	65	0	276	573
SMOA	880	225	175	175	120	58	153	0	552
SubString	422	74	68	68	49	17	63	165	0

Fig. 5. comparison of string-based similarity measures for the anatomy track. The arrow $A \rightarrow B$ indicates that A outperforms B.

We consider the case when the false positive is not taken into account for two reason. First, the string-based alignment is generally exploited to discover a first-line matching (Marie and Gal 2007). The result of this measure is then improved by various methodologies to discover the so-called second-line matching. Thus, the goal of the first-line matcher would be to find as much true correspondences as possible. Second, we have not used any threshold to invalidate some correspondences. The Hungarian method surely assigns a concept from the source
ontology to one in the target ontology. Therefore, there are many correspondences with low confidence which might invalidate even if a small threshold is applied. For these two reasons, we report the outcomes of the string-based similarity measure with the neglect of the false positive.

Similar to the previous ones, Table 5 tabulates n_{01} and n_{10} corresponding to different string-based similarity measures while the false positive is ignored. The results are visualized by a directed graph shown in Fig. 5. From this figure, N-gram has shown the best performances and is followed by Levenstein. Further, SMOA and Hamming distances are the ones with the least retrieved correspondences but they are better than Substring and Equivalence measures as expected.

6 CONCLUSION

This paper proposed the utilization the McNemar test to compare various ontology alignment methods over one single task. The current approach for the alignment comparison is to firstly select a performance score and then compare two methods by obtaining their performance scores on a task with reference alignment. In this article, the alignment produced by two methods as well as the reference alignment are given, and the outcome is if two methods are significantly different. Thus, the output is not a score, but to / not to declare the significance between two ontology matching algorithms. Further, The ways for preventing family-wise error rate, which is likely to happen in the comparison of multiple (> 2) alignment methods, are explored in minute detail. The proposed methodologies are applied to the anatomy track of ontology alignment initiative evaluation (OAEI) 2016. It is indicated that the AML and CroMatcher are the top two algorithms, and Alin and DKP-AOM are the worst alignment methods. For string-based measures, N-gram and Levenstein outperform other methods while SMOA and Hamming distance have shown poor performances.

REFERENCES

Manel Achichi, Michelle Cheatham, Zlatan Dragisic, Jérôme Euzenat, Daniel Faria, Alfio Ferrara, Giorgos Flouris, Irini Fundulaki, Ian Harrow, Valentina Ivanova, and others. 2016a. Results of the Ontology Alignment Evaluation Initiative 2016. In 11th ISWC workshop on ontology matching (OM). No commercial editor., 73–129.

Manel Achichi, Michelle Cheatham, Zlatan Dragisic, Jérôme Euzenat, Daniel Faria, Alfio Ferrara, Giorgos Flouris, Irini Fundulaki, Ian Harrow, Valentina Ivanova, and others. 2016b. Results of the Ontology Alignment Evaluation Initiative 2016. In 11th ISWC workshop on ontology matching (OM). No commercial editor., 73–129.

Siham Amrouch, Sihem Mostefai, and Muhmmad Fahad. 2016. Decision trees in automatic ontology matching. International Journal of Metadata, Semantics and Ontologies 11, 3 (2016), 180–190.

Beate Bergmann and Gerhard Hommel. 1988. Improvements of general multiple test procedures for redundant systems of hypotheses. In Multiple Hypothesenprüfung/Multiple Hypotheses Testing. Springer, 100–115.

William Cohen, Pradeep Ravikumar, and Stephen Fienberg. 2003. A comparison of string metrics for matching names and records. In Kdd workshop on data cleaning and object consolidation, Vol. 3. 73–78.

Jomar da Silva. 2016. ALIN Results for OAEI 2016. Ontology Matching (2016), 130.

Olive Jean Dunn. 1961. Multiple comparisons among means. J. Amer. Statist. Assoc. 56, 293 (1961), 52–64.

Allen L Edwards. 1948. Note on the correction for continuity in testing the significance of the difference between correlated proportions. Psychometrika 13, 3 (1948), 185–187.

Marc Ehrig and York Sure. 2004. Ontology mapping--an integrated approach. In European Semantic Web Symposium. Springer, 76–91.

Jérôme Euzenat. 2007. Semantic Precision and Recall for Ontology Alignment Evaluation.. In IJCAI 348–353.

Jérôme Euzenat, Pavel Shvaiko, and others. 2007. Ontology matching. Vol. 18. Springer.

Morten W Fagerland, Stian Lydersen, and Petter Laake. 2013. The McNemar test for binary matched-pairs data: mid-p and asymptotic are better than exact conditional. BMC medical research methodology 13, 1 (2013), 1.

Daniel Faria, Catia Pesquita, Emanuel Santos, Matteo Palmonari, Isabel F Cruz, and Francisco M Couto. 2013. The agreementmakerlight ontology matching system. In OTM Confederated International Conferences" On the Move to Meaningful Internet Systems". Springer, 527–541.

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 0. Publication date: 2017.
