Fusobacterium nucleatum

Contributes to the Carcinogenesis of Colorectal Cancer by Inducing Inflammation and Suppressing Host Immunity

Jiao Wu*, Qing Li* and Xiangsheng Fu†

*Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Sichuan, China, 646000; †Department of Gastroenterology, the Affiliated Hospital of North Sichuan Medical College, Nanchong City, China, 637000

Abstract

The presence of *Fusobacterium nucleatum* (*F. nucleatum*) in the gut is associated with the development of colorectal cancer (CRC). *F. nucleatum* promotes tumor development by inducing inflammation and host immune response in the CRC microenvironment. Adhesion to the intestinal epithelium by the cell surface proteins FadA, Fap2 and RadD expressed by *F. nucleatum* can cause the host to produce inflammatory factors and recruit inflammatory cells, creating an environment which favors tumor growth. Furthermore, *F. nucleatum* can induce immune suppression of gut mucosa by suppressing the function of immune cells such as macrophages, T cells and natural killer cells, contributing the progression of CRC.

Introduction

The human intestine is home to more than 100 trillion microbes, forming a unique genome that changes with human nutrition status, geographic location, and even age [1,2]. Gut microbiota is in harmony with the human body, affecting human health and shaping the immune system of the host [3]. Imbalance in gut microbiota can lead to a variety of diseases, such as colitis, colorectal cancer (CRC), infection, food allergies, obesity, diabetes, cardiovascular atherosclerosis, bone metabolic diseases, Parkinson’s and neurodegenerative diseases [4].

The colon has been colonized by the largest density of microorganisms [5]. Recent studies have reported that certain pathogenic bacteria in the colon are associated with CRC [5,6]. It’s possible to screen CRC by detecting tumor-associated microorganisms in the feces [7]. CRC is the third most common tumor in the world, causing significant morbidity and mortality [3]. Unfortunately, the mechanism of this malignancy has not been fully explained, but inflammation is a recognized risk factor [8]. CRC is a chronic disease which can arise from other intestinal inflammatory conditions [6].

In recent years, many studies have been conducted on the correlation between inflammatory microorganisms and CRC. The occurrence of intestinal inflammatory diseases such as colitis is related to the metastasis of intestinal microbes [2]. Colitis occurs when microbes turn from a ‘eubiotic’ to a ‘dysbiotic’ state [2]. Chronic bacterial infection of the colon is a driving factor in tissue inflammation, increasing the risk of developing CRC [9].

Gut Microbiota and Host Immunity

Human bodies are constantly exposed to a diverse array of microbes, as well as their metabolite byproducts [10]. The gut microbiome influences the development of the immune system of the host, and conversely the immune system regulates the microbe composition in the gut [5,11]. Microorganisms in the gut play a key role in the activation, training and regulation of the host immune system [12]. The communication between the intestinal microflora and the host’s immune system begins at a very early stage of development [13]. Intestinal microbes can recruit immune cells and initiate inflammatory reactions, which play a direct role in promoting the maturation of the immune system [10,14]. The intestinal...
mucosal immune system is a protective barrier system composed of cellular (i.e. epithelial- and mesoderm-derived immune cells) and non-cellular components (e.g. antimicrobial peptides, cytokines and antibodies), which can resist microbial attack [15].

On the one hand, intestinal microbes affect the host immune system through secretion of metabolites (e.g. butyrate, L-tryptophan, indole, bile acids and retinoic acid), signaling pathways (e.g. Toll-like receptors and Nod-like receptors), and small noncoding RNAs (e.g. miRNA) [9,16]. On the other hand, the intestinal immune system exposes bacteria to the host, reducing pathological outcomes, and modulating the stratification of bacteria in the epithelial barrier [17]. The intestinal immune system affects the composition of bacteria, whereas the bacteria promote the development of the intestinal immune system. Disruption of the relationship between intestinal bacteria and the host immune system will affect the overall health of the host [15,17]. Intestinal epithelial cells recognize pathogen-associated molecular structures (such as lipopolysaccharides and flagella) through their surface Toll-like receptors. This triggers the maturation of antigen-presenting cells (such as dendritic cells), the initiation of immune responses, and the release of inflammatory factors, which are associated with the development of CRC [18]. This dysregulation of the host immune system represents a potential mechanism for the effect of intestinal microbes on the development and progression of CRC [19].

Invasion of Fusobacterium nucleatum Contributes to the Carcogenesis of CRC

Fusobacterium nucleatum is a Gram-negative, anaerobic oral commensal bacterium that is associated with a variety of human diseases, including periodontal disease [20], Alzheimer’s disease [21], brain abscess [22], cardiovascular disease [23], miscarriage [24] and inflammatory bowel disease [25]. Recently, F. nucleatum has been proposed to be associated with CRC [26]. F. nucleatum promotes the occurrence of CRC through several virulence mechanisms: colonization, invasion, and modulation of host immune response [27].

F. nucleatum bacteria interact with each other by expressing a variety of different virulence factors, and can adhere to many different mammalian cell types, including epithelial and endothelial cells, polymorph nuclear neutrophils, monocytes, erythrocytes, fibroblasts, and natural killer (NK) cells [28,29]. The cell surface protein FadA is a key virulence factor in F. nucleatum which regulates adhesion and invasion of the bacterium. The expression of FadA gene in human CRC specimens was significantly higher than that in adjacent normal tissues [30]. This protein enables F. nucleatum to bind E-cadherin in CRC and epithelial cells, activate the β-catenin pathway, and induce the expression of transcription factors lymphoid enhancer factor (LEF)/T cell factor (TCF) which promote tumor cell growth [30,31]. It’s recently reported that FadA can up-regulate Wnt/β-catenin modulator Annexin A1 expression through E-cadherin [32]. FadA can also bind to endothelial cells VE-cadherin, which is a linker molecule on endothelial cells [33]. This combination alters the integrity of the endothelium, increases the permeability of the endothelium, and allows the bacteria to overcome the blood brain barriers, placental barriers, and colonize different parts of the body [34]. Outer membrane vesicles (OMVs) from F. nucleatum can degrade E-cadherin, thus promoting bacterial invasion and tumor metastasis [35].

In addition, F. nucleatum also has two other outer membrane proteins, Fap2 and RadD [36]. The lectin Fap2 can bind Gal-GalNAc, a polysaccharide overexpressed in CRC. This binding of Fap2 facilitates colonization of F. nucleatum and explicates fusobacteria abundance in CRC [37]. RadD can mediate communication between F. nucleatum and other bacterial species, contributing to the formation of multispecies biofilms [36,38], which has been shown to be associated with proximal colon cancer [39].

F. nucleatum-Induced Inflammation Contributes to CRC Development

There has been a growing body of literature suggesting a link between chronic inflammation and CRC, in which gastrointestinal inflammation may promote CRC development [30]. Increased evidence suggests that F. nucleatum can shape the inflammatory microenvironment in the CRC, promoting tumor growth and metastasis [40]. For example, F. nucleatum can stimulate reactive oxygen species (ROS) production, inducing inflammatory responses in CRC cells [41]. Infection of CRC cells with F. nucleatum increased the expression of miR21, a pathogenic role in chronic inflammation and colitis-associated colon cancer, therefore promoting tumor cell proliferation and invasive activity [8,42].

Adherence of F. nucleatum to CRC cells via FadA stimulates the release of inflammatory factors, such as NF-κB, IL-6, IL-8, IL-10 and IL-18, which promote cell proliferation in CRC [30]. In patients with F. nucleatum infection, strong humoral immunity is induced, and antibodies against F. nucleatum, IgA and IgG are present [43]. F. nucleatum infection increases the infiltration of inflammatory cells, such as macrophages, dendritic cells, and granulocytes, which create a pro-inflammatory microenvironment that is conducive to the occurrence of CRC [44]. Macrofages infected with F. nucleatum can induce the release of inflammatory cytokines [45,46]. Natural cytotoxic receptor NKP46 of NK cell can directly recognize F. nucleatum through its surface ligand, secreting TNF-α to aggravate inflammation [20]. Some inflammatory response signatures were specific to F. nucleatum but not to other bacteria found in CRC tissues, such as IL1β, IL24, PTGS2 (COX-2), IL8, IL6 and TNF, which were enriched in F. nucleatum-infected CRCs [44].

F. nucleatum is prevalent in gastrointestinal inflammation diseases especially inflammatory bowel disease (IBD) [25]. F. nucleatum strains originating from IBD patients were significantly more invasive than strains isolated from healthy tissues [25]. Highly invasive F. nucleatum isolates derived from the inflamed area of human Crohn’s disease triggered high expression of MUC2 and TNF-α in colon cancer cells [47]. In IBD patients, the release of IL-1β and TNF-α can damage colon cells and impair epithelial integrity, which increases the chance of contact between F. nucleatum and the colon epithelium [48]. This may partially explain why patients with IBD are susceptible to CRC. Mechanisms of adhesion, invasion and inflammation mediated by F. nucleatum in CRCs were summarized in Table 1.

F. nucleatum-Induced Immune Suppression Promotes CRC Development

Macrophages

F. nucleatum modulates the tumor immune environment by amplifying bone marrow-derived cells [49] such as tumor-associated macrophages, which play an important role in tumor invasion and metastasis [50]. Meanwhile, the tumor microenvironment can affect the heterogeneity of macrophages, which can differentiate from pro-inflammatory M1-phenotype to a tumor-promoting M2-phenotype [51,52]. Our recent study revealed that F. nucleatum displayed an immunosuppressive effect by promoting M2 polarization of macrophages in F. nucleatum-related CRCs, possibly through the TLR4/IL-6/p-STAT3/c-MYC signaling pathway [53]. F. nucleatum
induces infiltration of M2 macrophages in the colorectal environment, thus forming a tumor-promoting microenvironment \[54,55\]. The metabolite of \(F. \) nucleatum, butyric acid, can induce apoptosis in monocytes/macrophages and lymphocytes by activating free fatty acid receptors \[56\]. In addition, \(F. \) nucleatum can invade macrophages and induce the expression of indoleamine2,3-dioxygenase on the cell surface, creating a toxic microenvironment which impairs the function of peripheral blood lymphocytes, thereby allowing macrophages to escape cytotoxic T lymphocyte attack \[55\].

T cells

\(T \) cell activity can be inhibited by the virulence factors of \(F. \) nucleatum \[36,57\]. \(F. \) nucleatum abundance is negatively correlated with CD3\(^+\)T cell density in CRC \[1\]. Additionally, we have shown that a high abundance of \(F. \) nucleatum in CRC is associated with lower numbers of CD4\(^+\)T cells \[58\]. Decreased T cell density in CRC could be explained by apoptotic cell death and arrested proliferation of T cells induced by \(F. \) nucleatum \[59–61\]. For example, \(F. \)

\[Table 1. \textit{Fusobacterium nucleatum} induced invasion and inflammation contributes to colorectal cancer\]

Virulence factor	Function	Mechanisms	References
Fn infection	Pro-inflammatory microenvironment infiltration	Inducing inflammatory cells	[49]
	Inflammatory cytokines production	Accumulation of reactive oxygen species	[41]
	Cell proliferation and invasion	Increasing the expression of miR21	[8,42]
FadA	Cell proliferation	Activating the β-catenin pathway	[30,31]
		Up-regulating Wnt/β-catenin modulator Annexin A1	[32]
Fap2	Bacterial colonization	Binding endothelial cell VE-cadherin	[33,34]
	Bacterial colonization	Binding Gal-GalNAc overexpressed in CRC	[37]
RadD	Biofilms formation	Mediating communication between Fn and other bacteria	[36,38]
LPS	Inflammatory cytokines production	Activating immune cells	[55]
OMVs	Bacterial invasion and tumor metastasis	Degrading E-cadherin	[35]

\(Fn, Fusobacterium nucleatum; CRC, colorectal cancer; OMV, outer membrane vesicles. \)

Figure 1. Infiltrating immune cell populations in human \(F. \) nucleatum related colorectal cancer. High abundance of \(F. \) nucleatum within colon cancer tissue (A) and matched metastatic lymph nodes (B) detected by immunofluorescence. High density of immune cells (CD3\(^+\), CD68\(^+\), CD83\(^+\), and NE cells) within the environment of \(F. \) nucleatum-positive colon cancers (immunofluorescence). NE, neutrophils.
Fusobacterium nucleatum inhibitory protein (FIP) can inhibit human T cell activation by arresting cells in the G1 phase of the cell cycle [60]. A recent study revealed that the association of *F. nucleatum* with tumor-infiltrating lymphocytes (TIL) differed by MSI status of CRC. The presence of *F. nucleatum* was negatively associated with TIL in MSI-high tumors, but positively in non-MSI-high tumors [62].

In the colorectal tumor microenvironment, *F. nucleatum* can release short-peptides (formylmethionyl-leucyl-phenylalanine) and short-chain fatty acids (butyrate, propionate, and acetate) which lead to recruitment of myeloid-derived suppressor cells (MDSCs) [48]. MDSCs can regulate immune response by suppressing CD4+ T helper cell function, inhibiting T cell proliferation, and inducing T cell apoptosis [48,63]. *F. nucleatum* can also induce human lymphocyte death through Fap2 and RadD [36]. Fap2 of *F. nucleatum* can inhibit human T cell activation by directly interacting with TIGIT, an inhibitory receptor present on various T cells [57]. Moreover, *F. nucleatum* can interact directly with monocytes, which may recruit T helper 17 cells and T regulatory cells through CCL20/CCR6 pathway, promoting CRC formation [64].

NK Cells

All human NK cells express the Fap2 receptor TIGIT, which recognizes poliovirus receptor (PVR) and nectin-2 as ligands [65]. This binding of NK cells to *F. nucleatum* inhibits the killing activity of NK cells, thereby promoting the formation of colorectal tumors [35,57,66].

Dendritic Cells

The infiltration of CD103+ dendritic cells (DCs) was increased in tumors from *F. nucleatum*-fed mice compared with control group [44]. This population of DCs can promote the expansion of Foxp3+ regulatory T cells, a CD4+ T cell subset that inhibits cytotoxic and effector T cells, therefore diminishing anti-tumor immunity [67].

Tumor-Associated Neutrophils

Amount of tumor-associated neutrophils (TANs) in intestinal tumors of *F. nucleatum*-fed mice was significantly increased compared with controls [44]. It’s recently reported that TANs play a role in tumor progression and in the regulation of anti-tumor immunity [68]. Increased TANs in CRC associate with malignant phenotype and predict poor prognosis of patients with CRC [69]. These findings suggest that *F. nucleatum* may suppress antitumor immunity through inducing the infiltration of TANs in CRC.

Representative images of infiltrating immune cells in *F. nucleatum*-related CRC were shown in Figure 1. Adhesion, invasion, inflammation and immune suppression mediated by *F. nucleatum* in CRC was sketched in Figure 2. Mechanisms of immune suppression induced by *F. nucleatum* in CRC were summarized in Table 2.

Table 2: *Fusobacterium nucleatum* induces immune suppression in colorectal cancer

Immune cells	Function	Mechanism	References
Macrophages	M2 polarization	Activating TLR4 signaling pathway	[53]
	Apoptosis	Butyric acid activating free fatty acid receptors	[56]
	Escape T lymphocyte attack	Impairing the function of peripheral blood lymphocytes	[55]
Lymphocytes	Reducing CD3+ T cells	Correlated with TOX expression	[1]
	Reducing CD4+ T cells	Arresting cells in the G1 phase	[60]
	Inhibiting proliferation	Interaction with TIGIT	[57]
	Inhibiting activation	Recruitment of MDSCs	[48,63]
	Apoptosis	Butyric acid	[56]
NK cells	Inhibition of NK cell cytotoxicity	Fap2 binding TIGIT molecule	[35,57]
DCs	Dampening anti-tumor immunity	Promoting the expansion of regulatory T cells	[67]
TANs	Dampening anti-tumor immunity	Increasing the number of TANs	[44]

TOX, thymocyte selection-associated high-mobility group box; MDSCs, myeloid-derived suppressor cells; NK, natural killer; DCs, dendritic cells; TANs, tumor-associated neutrophils.
Conclusion
The presence of *F. nucleatum* as symbiotic bacteria in the human intestinal tract has been confirmed to be related to the development of CRC. *F. nucleatum* promotes CRC through different virulence mechanisms, such as adhesion to the intestinal epithelium and inducing inflammatory and immune responses in the host. The resistance reactions induced in the host by *F. nucleatum* induce an inflammatory environment in the host, and promote the recruitment of inflammatory cells as well as the secretion of inflammatory factors. This response to *F. nucleatum* creates a microenvironment which favors tumor growth. Furthermore, *F. nucleatum* can induce immune suppression of gut mucosa by suppressing the function of immune cells such as macrophages, T cells and NK cells, contributing to the progression of CRC.

Conflicts of Interest
Authors declare no Conflict of Interests for this article.

Funding
This work was supported by Natural Science Foundation of Sichuan Science and Technology Agency under Award No. 2018JY0167.

References
[1] Mima K, Sutakwa Y, Nishihara R, Qian ZR, Yamauchi M, Imamura K, Kim SA, Masuda A, Nowak JA, and Nosho K, et al (2015). *Fusobacterium nucleatum* and T cells in colorectal cancer. *JAMA Oncol* 1(5), 653–661.
[2] Sethi V, Kurton S, Tarique M, Lavana S, Malchiodi Z, Hellmud L, Zhang L, Sharma U, Giri B, and Garg B, et al (2018). Gut microbiota promotes tumor growth in mice by modulating immune response. *Gastroenterology* 155(1), 33–37.e6.
[3] Louis P, Hold GL, and Flint HJ (2014). The gut microbiota, bacterial metabolites and colorectal cancer. *Nat Rev Microbiol* 12(10), 661–672.
[4] Hall AB, Tolonen AC, and Xavier RJ (2017). Human genetic variation and the microbiome in colorectal cancer. *Nat Rev Genet* 18(11), 690–699.
[5] Tilg H, Adolph TE, Gerner RR, and Moschen AR (2018). The intestinal microbiota in colorectal cancer. *Cancer Cell* 33(6), 954–964.
[6] Flemer B, Lynch DB, Brown JM, Jeffery IB, Ryan FJ, Claesson MJ, O’Riordain M, Shanahan F, and O’Toole PW, et al (2017). Tumour-associated and non-tumour-associated microbiota in colorectal cancer. *Gut* 66(4), 633–643.
[7] Eklof V, Lofgren-Burstrom A, Zingmark C, Edin S, Larsson P, Karling P, Alexeyev O, Rutegard J, Wikberg ML, and Palmqvist R (2017). Cancer-associated fecal microbial markers in colorectal cancer detection. *Int J Cancer* 141(12), 2528–2536.
[8] Yang Y, Weng W, Peng J, Hong L, Yang L, Toiyama Y, Gao R, Liu M, Yin M, and Pan C, et al (2017). *Fusobacterium nucleatum* increases proliferation of colorectal cancer cells and tumor development in mice by activating toll-like receptor 4 signaling to nuclear factor-kappaB, and up-regulating expression of microRNA-21. *Gastroenterology* 152(4), 851–866.e24.
[9] Wang X, Yang Y, and Huycce MM (2017). Microbiome-driven carcinogenesis in colorectal cancer: models and mechanisms. *Free Radic Biol Med* 105, 3–15.
[10] Kuriilshikov A, Wijmenga C, Fu J, and Zhernakova A (2017). Host genetics and gut microbiome: challenges and perspectives. *Trends Immunol* 38(9), 633–647.
[11] Zeng MY, Inohara N, and Nunez G (2017). *Fusobacterium nucleatum* promoters beta-catenin signaling in colorectal cancer via a TLR4/P-PAK1 cascade. *Oncotarget* 8(19), 31802–31814.
[12] Rubinstein MR, Baik JE, Lagana SM, Han RP, Raab WJ, Sahoo D, Dalbera P, Wang TC, and Han YW (2019). *Fusobacterium nucleatum* promotes colorectal carcinogenesis by modulating Fadd/beta-catenin signaling via its FadA adhesin. *Cell Host Microbe* 14(2), 195–206.
[13] Chen Y, Peng Y, Xu J, Chen T, Wu Y, Shi L, Li Q, Wu J, and Fu X (2017). Invasive *Fusobacterium nucleatum* activates beta-catenin signaling in colorectal cancer via a TLR4–PAK1 cascade. *Oncotarget* 8(19), 31802–31814.

[14] Rubinstein MR, Baik JE, Lagana SM, Han RP, Raab WJ, Sahoo D, Dalbera P, Wang TC, and Han YW (2019). *Fusobacterium nucleatum* promotes colorectal cancer by inducing Wnt/beta-catenin signaling through Annexin A1. *EMBO Rep*. https://doi.org/10.15252/embr.201847638.
[15] Vander Haar EL, So J, Gyarmati-Bannerman C, and Han YW (2018). *Fusobacterium nucleatum* and adverse pregnancy outcomes: Epidemiological and mechanistic evidence. *Anat Rec* 50, 55–59.
[16] Fardini Y, Wang X, Temsin S, Nishinamath S, Lee D, Shoah M, and Han YW (2011). *Fusobacterium nucleatum* adhesin FadA binds vascular endothelial cadherin and alters endothelial integrity. *Mol Microbiol* 82(6), 1468–1480.
[17] Hashemi Goradel N, Heidarzadeh S, Jahangiri S, Farhood B, Mortezaee K, Khanlarkhani N, and Negahdari B (2019). *Fusobacterium nucleatum* promotes colorectal and cervical cancer: A mechanistic overview. *J Cell Physiol* 234(3), 2337–2344.
[18] Kaplan CW, Ma X, Paranjpe A, Jewett A, Lux R, Kinder-Haake S, and Shi W (2010). *Fusobacterium nucleatum* outer membrane proteins Fap2 and RadD induce cell death in human lymphocytes. * Infect Immun* 78(11), 4773–4778.
Chen T, Emgard JE, Zamir G, Faroja M, Almogy G, Grenov A, Sol A, Naor R, Pikarsky E, and Atlan KA, et al (2016). Fap2 mediates Fusobacterium nucleatum colorectal adenocarcinoma enrichment by binding to tumor-expressed Gal-GalNAc. Cell Host Microbe 20(2), 215–225.

Kaplan CW, Lux R, Haake SK, and Shi W (2009). The Fusobacterium nucleatum outer membrane protein RadD is an arginine-inhibitable adhesin required for inter-species adherence and the structured architecture of multispecies biofilm. Mol Microbiol 71(1), 35–47.

Yu J, Chen Y, Fu X, Zhou X, Peng Y, Shi L, Chen T, and Wu Y (2016). Invasive Fusobacterium nucleatum may play a role in the carcinogenesis of proximal colon cancer through the serrated neoplasia pathway. Int J Cancer 139(6), 1318–1326.

Brennan CA and Garrett WS (2016). Gut microbiota, inflammation, and colorectal cancer. Annu Rev Microbiol 70, 395–411.

Tang B, Wang K, Jia YP, Zhu P, Fang Y, Zhang ZJ, Mao XH, Li Q, and Zeng DZ (2016). Fusobacterium nucleatum-induced impairment of autophagic flux enhances the expression of proinflammatory cytokines via ROS in Caco-2 cells. PLoS One 11(11)e0165701.

Shi C, Yang Y, Xia Y, Okugawa Y, Yang J, Liang Y, Chen H, Zhang P, Wang F, and Han H (2016). Novel evidence for an oncogenic role of microRNA-21 in colitis-associated colorectal cancer. Gut 65(9), 1470–1481.

Wang HF, Li LF, Guo SH, and Zeng QY (2016). Evaluation of antibody level against Fusobacterium nucleatum in the serological diagnosis of colorectal cancer. Sci Rep 633440.

Kostic AD, Chun E, Robertson L, Glickman JN, Gaillini CA, Michaud M, Clancy TE, Chung DC, Lochhead P, and Hold GL, et al (2013). Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 14(2), 207–215.

Park SR, Kim DJ, Han SH, Kang MJ, Lee JY, Jeong YJ, Lee SJ, Kim TH, Ahn SG, and Yoon JH, et al (2014). Diverse Toll-like receptors mediate cytokine production by Fusobacterium nucleatum and Aggregatibacter actinomycetemcomitans in macrophages. Infect Immun 82(5), 1914–1920.

Noh EJ, Kang MJ, Jeong YJ, Lee JY, Park JH, Choi HJ, Oh SM, Lee KB, Kim DJ, and Shin JA, et al (2016). Withaferin A inhibits inflammatory responses induced by Fusobacterium nucleatum and Aggregatibacter actinomycetemcomitans in macrophages. Mol Med Rep 14(4), 983–988.

Dharmani P, Strauss J, Ambrose C, Allen-Veazee E, and Chadie K (2011). Fusobacterium nucleatum infection of colonic cells stimulates MUC2 mucin and tumor necrosis factor alpha. Infect Immun 79(7), 2597–2607.

Bashir A, Miskeen AY, Hazari YM, Asrafuzzaman S, and Fazili KM (2016). Fusobacterium nucleatum, inflammation, and immunity: the fire within human gut. Tumour Biol 37(3), 2805–2810.

Keku TO, McCoy AN, and Azcarate-Peril AM (2013). Fusobacterium spp. and colorectal cancer: cause or consequence? Trends Microbiol 21(10), 506–508.

Edin S, Wågberg ML, Dahlén AM, Rutegard J, Obregård A, Oldenborg PA, and Palmqvist R (2012). The distribution of macrophages with a M1 or M2 phenotype in relation to prognosis and the molecular characteristics of colorectal cancer. PLoS One 7(10)e47054.

Edin S, Wågberg ML, Oldenborg PA, and Palmqvist R (2013). Macrophages: Good guys in colorectal cancer. Oncoimmunology 2(2)e23038.

Chen W, Xu Y, Zhong J, Wang H, Meng W, Cheng Q, Wu Q, Sun Z, Jiang H, and Zhu M, et al (2016). MFHA1 promotes colorectal cancer growth by regulating polarization of tumor-associated macrophages via STAT6 signaling pathway. Oncotarget 7(48), 78726–78735.

Chen T, Li Q, Wu J, Wu Y, Peng W, Li H, Wang J, Tang X, Peng Y, and Fu X (2018). Fusobacterium nucleatum promotes M2 polarization of macrophages in the microenvironment of colorectal tumours via a TLR4-dependent mechanism. Cancer Immunol Immunother 67(10), 1635–1646.

Park HE, Kim JH, Cho NY, Lee HS, and Kang GH (2017). Intratumoral Fusobacterium nucleatum abundance correlates with macrophage infiltration and CDR2L2 methylation in microsatellite-unstable colorectal carcinoma. Virchows Arch 471(3), 329–336.

Xue Y, Xiao H, Guo S, Xu B, Liao Y, Wu Y, and Zhang G (2018). Indoleamine 2,3-dioxygenase expression regulates the survival and proliferation of Fusobacterium nucleatum in THP-1-derived macrophages. Cell Death Dis 9(3), 355.

Abe K (2012). Butyric acid induces apoptosis in both human monocytes and lymphocytes equivalently. J Oral Sci 54(1), 7–14.

Gur C, Ibrahim Y, Isaacson B, Yamin R, Abdel J, Gamliel M, Enk J, Bar-On Y, Staniey-Kaytan N, and Coppenagen-Glazer S, et al (2015). Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity 42(2), 344–355.

Chen T, Li Q, Zhang X, Long R, Wu Y, Wu J, and Fu X (2018). TOX expression decreases with progression of colorectal cancers and is associated with CD4+ T-cell density and Fusobacterium nucleatum infection. Hum Pathol 79, 93–101.

Huyyn T, Kapur RV, Kaplan CW, Cacalano N, Kinder Haake S, Shi W, Sieling P, and Joret W (2011). The role of aggregation in Fusobacterium nucleatum-induced immune cell death. J Endotox 11(1), 1531–1535.

Shenker BJ and DiRienzo JM (1984). Suppression of human peripheral blood lymphocytes by Fusobacterium nucleatum. J Immunol 132(5), 2357–2362.

Harada T, Zhang X, Mima K, Bullman S, Sawa Y, Nowak JA, Kosumi K, Masugi Y, Twombly TS, and Cao Y, et al (2018). Fusobacterium nucleatum in colorectal cancer relates to immune response differentially by tumor microsatellite instability status. Cancer Immunol Res 6(11), 1327–1336.

Gabrilovich DI, Ostrand-Rosenberg S, and Bronte V (2012). Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 12(4), 253–268.64.

Ye X, Wang R, Bhattacharya R, Boulbes DR, Fan F, Xia L, Adoni H, Ajami NJ, Wong MC, and Smith DP, et al (2017). Fusobacterium nucleatum subspecies animals influences proinflammatory cytokine expression and monocyte activation in human colorectal tumors. Cancer Prev Res (Phila) 10(7), 398–409.65.

Staniesky N, Simic H, Arapovic J, Toporik A, Levy O, Novak A, Levine Z, Beiman M, Dassa L, and Achaout H, et al (2009). The interaction of TIGIT with PVR and PVR2 inhibits human NK cell cytotoxicity. Proc Natl Acad Sci U S A 106(42), 17858–17863.

Guevarra Jr LA, Afable ACF, Belza PJO, Dy KJS, Lee SJQ, Sy-Ortin TT, and Guevarra Jr LA (2018). Immunogenicity of a Fap2 peptide mimotope of Fusobacterium nucleatum and its potential use in the diagnosis of colorectal cancer. Infect Agent Cancer 13, 11.

Edin S, Wågberg ML, Oldenborg PA, and Palmqvist R (2012). The distribution of macrophages with a M1 or M2 phenotype in relation to prognosis and the molecular characteristics of colorectal cancer. PLoS One 7(1)e47054.

Edin S, Wågberg ML, Oldenborg PA, and Palmqvist R (2013). Macrophages: Good guys in colorectal cancer. Oncoimmunology 2(2)e23038.

Chen W, Xu Y, Zhong J, Wang H, Meng W, Cheng Q, Wu Q, Sun Z, Jiang H, and Zhu M, et al (2016). MFHA1 promotes colorectal cancer growth by regulating polarization of tumor-associated macrophages via STAT6 signaling pathway. Oncotarget 7(48), 78726–78735.

Chen T, Li Q, Wu J, Wu Y, Peng W, Li H, Wang J, Tang X, Peng Y, and Fu X (2018). Fusobacterium nucleatum promotes M2 polarization of macrophages in the microenvironment of colorectal tumours via a TLR4-dependent mechanism. Cancer Immunol Immunother 67(10), 1635–1646.