BRAINSTEM AUDITORY EVOKED POTENTIALS FINDINGS IN ANKYLOSING SPONDYLITIS

Iulia Georgiana Stamate1,2, Daniela Marilena Trofin3, Elena Rezus1,2, Cristian Dinu Popescu1,3

1“Gr. T. Popa” University of Medicine and Pharmacy Iasi, Romania
2Rheumatology Clinic, Rehabilitation Hospital Iasi, Romania
3Neurology Clinic, Rehabilitation Hospital Iasi, Romania

ABSTRACT

Background. Ankylosing spondylitis (AS) is a chronic inflammatory potentially debilitating disease predominantly affecting the axial skeleton. A few intermittently published studies and research have proved the existence of some not yet explained neurophysiologic abnormalities in patients with AS.

Objectives. The aim of this study was to investigate the brainstem auditory evoked potentials and its relation with clinical findings, laboratory tests and pharmacological therapy used in patients with AS.

Material and method. Thirty-nine patients with AS were included in the study. The control group was composed of 50 healthy subjects. BAEP were recorded for all subjects. Patients were assessed by clinical specific tests, inflammatory laboratory tests, Bath Ankylosing Spondylitis Functional Index (BASFI), Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) and type of pharmacological therapy.

Results. The results have shown differences between the control group and the patients with AS in most of the wave latencies. Correlations Schober test, Ott index, chest expansion measurement and BASDAI were significant for some waves. CRP seems to be more valuable than ESR as a possible marker for neurologic subclinical involvement. Axial AS is more likely to be associated with BAEP abnormalities. There were also differences between the group with TNF alpha blockers therapy comparative with the group with other therapies.

Conclusions. This study highlights some abnormalities of BAEP in patients with AS. Diagnosis of multiple sclerosis or demyelination due to administration of TNF alpha blockers should be excluded in medical practice. Collaboration between neurologists and rheumatologists should be considered in monitoring AS patients.

Keywords: ankylosing spondylitis, auditory evoked potentials, TNF-alpha blockers, subclinical neurologic involvement

Acknowledgement

This work received financial support through the “Program of excellence in multidisciplinary doctoral and postdoctoral research in chronic diseases” contract number POSDRU/159/1.5/S/133377, financed by the European Social Fund through “Human Resources Development” Operational Programme 2007-2013.

INTRODUCTION

Ankylosing spondylitis (AS) is a chronic inflammatory potentially debilitating disease predominantly affecting the axial skeleton. Progression towards irreversible ankylosis due to vertebral fusion causes severe functional disability, with important impact on quality of life. Peripheral joints arthritis and other extra-articular organs such as the skin, eyes, pulmonar, cardiovascular and neurologic system are less frequently involved. The disease affects mostly HLA-B27-positive population, especially the male gender. The onset is usually in the second or third decade of life. (1-3)

Most common neurological complications associated with AS are C1-C2 subluxation, spinal stenosis in the cervical or lumbar regions, cauda equina syndrome and radiculopathy. AS patients in
AIM AND OBJECTIVES

A few intermittently published studies and research have proved the existence of some not yet explained neurophysiologic abnormalities in patients with AS. Somatosensory evoked potentials, auditory evoked potentials, visual evoked potentials and magnetic motor evoked potentials abnormalities have been reported. (6-9) Furthermore, sporadic associations of AS and multiple sclerosis was also reported. (10-15) Neurologic complications largely due to demyelination mechanisms may be present in AS patients treated with TNF alpha blockers. (16-25)

The aim of this study was to investigate the brainstem auditory evoked potentials (BAEP) and its relation with clinical findings, laboratory tests and pharmacological therapy used in patients with AS.

MATERIAL AND METHOD

Thirty-nine patients with AS were included in the study. The control group was composed of 50 healthy medication-free adults. All patients have been assessed in Rheumatology Department and BAEP were recorded in Neurology Department, both in Clinical Rehabilitation Hospital Of Iasi, Romania. This study has been approved by the institutional review board. Prior to study inclusion, the informed consent was signed by all subjects from both groups.

BAEP were performed with Nihon Kohden Neuropack for all patients and for all voluntaries in the control group. We used 80 dB HL alternating polarity clicks in each ear at a rate of 10/s and a masking white noise of 40 dB was used for the unstimulated ear. The electrodes were placed as following: ground electrode in the midline frontal area, the reference electrode at vertex and the active electrodes (A1, A2) at the ear lobes. We recorded the latencies of all the waves: I, II, III, IV and V for and the Interval Latencies (IL): I-III, III-V and I-V. Patients were assessed by clinical specific tests such as Schober test, Ott index, chest expansion measurement, inflammatory laboratory tests: erythrocyte sedimentation rate (ESR), C reactive protein (CRP), indexes: Bath Ankylosing Spondylitis Functional Index (BASFI), Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) and type of pharmacological therapy. The diagnosis of AS was made according to the modified New York criteria. (26)

All these parameters have been processed using the Statistical Package for Social Sciences (SPSS), version 16.0 for Windows. For the correlation test, p value of <0.05 was considered statistically significant.

RESULTS AND DISCUSSIONS

The mean age of all the 39 patients, 26 males and 13 females, included in this study, was 40.65±14.34 years and the mean duration of disease of the patients was 13.31 ± 7.52 years.

BASDAI had a mean of 3.4 ± 2.3 and BASFI was 4.1±1.3. Most of the patients (n=25) were taking Nonsteroidal anti-inflammatory drugs (NSAID) or sulfasalazine (SSZ) or the association between these drugs. Fourteen patients were treated with TNF-alpha blockers. BAEP results for all SA patients included in the study may be seen in Table 1.
there was a mean difference of 0.29 which was very significant for \(p < 0.001 \) and \(F > F_{0.001} \), CI 95%.

The left wave I latency was in a significantly correlation (\(p < 0.005, CI = 95\% \)) with the duration of the disease, \(R = 0.286 (28\%) \), CRP \(p < 0.05, CI 95\% \), \(R = 0.458 (45\%) \) and BASDAI, \(p < 0.05, CI 95\% \) and \(R = 0.525 (52\%) \). ANOVA test showed the wave I latency was in a significantly correlation with BASFI (\(p < 0.05, CI 95\% \)). A positive and intermediate correlation between both left and right wave I latencies and the type of disease (axial or peripheral), \(r = 0.385 (38\%) \) and 0.347 (34%) was significant, \(p < 0.05 \). Pearson correlation between variables wave I latency and Ott index highlights that there is a negative and significant correlation (\(p < 0.05 \)) where \(r = -0.278 (27\%) \). The disease duration wave one has \(r = 0.238 stg (23\%) \) but insignificant which means that this variable can influence wave 1 but in combination with other factors. There was also a correlation between CRP and right wave I latency. Since regression line is oriented from the bottom up, with the points focused on the right, we can conclude that between the right wave I and CRP there is a close and positive correlation as seen in Fig. 1.

Right wave I latency is positively and intermediate correlated with CRP, \(r = 0.302 (30\%) \), significant for \(p < 0.05 \). Also age is positively correlated, intermediate to intense and very significantly, with disease duration, \(r = 0.587 (58\%) \). Age was also correlated with Schober index, \(r = -0.536 (53\%) \), and chest expansion measurement, \(r = -0.622 (62\%) \).

Left wave II latency is significantly correlated with CRP, \(r = 0.302 (30\%) \), significant for \(p < 0.05 \). Also age is positively correlated, intermediate to intense and very significantly, with disease duration, \(r = 0.587 (58\%) \). Age was also correlated with Schober index, \(r = -0.536 (53\%) \), and chest expansion measurement, \(r = -0.622 (62\%) \). Left wave IV latency is negatively significant correlated with type of disease. Right wave V latency is correlated with CRP and type of disease.

There were differences of the latencies in the group of SA patients treated with TNF alpha blockers compared with the group with AINS/DMARDs. Results of BAEP in group treated with TNF alpha blockers and the group with other pharmacological treatment may be seen in Table 3 and Table 4.

TABLE 3. BAEP results in patients with TNF alpha blockers

WAVE/ INTERVAL	n	\(\overline{X} \)	\(\pm s^2 \)	s	V%	Min	Max
I L	14	1.62	0.082	0.306	18.826	1.12	2.41
I R	14	1.64	0.086	0.299	18.26	1.31	2.56
II L	14	2.78	0.133	0.497	17.866	2.18	4.04
II R	14	2.66	0.078	0.293	11.039	2.21	4.49
III L	14	3.71	0.083	0.31	8.345	3.2	4.39
III R	14	3.96	0.096	0.359	7.236	3.87	5.57
IV L	14	4.71	0.087	0.324	7.596	3.87	5.57
IV R	14	4.05	0.073	0.275	6.59	5.18	6.17
V L	14	5.89	0.096	0.359	6.104	5.19	6.51
V R	14	5.58	0.087	0.324	7.596	3.6	4.74

Legend: L=Left, R=right

FIGURE 1. Right wave I latency and CRP regression
TABLE 4. BAEP results in patients with AINS/SSZ

WAVE INTERVAL	n	X	± S	s	V%	Min	Max
I-V	25	1.61	0.087	0.435	26.989	0.77	3.23
I-III	25	1.65	0.096	0.482	29.266	0.91	3.28
III-IV	25	2.69	0.129	0.644	23.973	1.67	5.31
I-III	25	2.83	0.2	0.998	35.308	1.87	6.99
V	25	3.74	0.134	0.67	17.902	2.65	6.25
V	25	3.68	0.113	0.563	15.319	2.72	5.43
IV	25	4.76	0.114	0.572	12.014	3.72	6.26
III	25	5.8	0.136	0.681	11.747	5.17	8.45
II	25	5.72	0.103	0.515	9.005	4.98	7.2
I	25	2.03	0.06	0.301	14.823	1.52	2.66
I	25	2.03	0.06	0.301	14.823	1.52	2.66
I	25	2.07	0.071	0.354	17.112	1.51	2.86
I	25	2.03	0.075	0.375	18.455	1.6	3.06
I	25	4.18	0.074	0.369	8.822	3.69	5.22
I	25	4.07	0.078	0.388	9.541	3.29	5.04

CONCLUSIONS

This study highlights some abnormalities of BAEP in patients with AS. The results have shown differences between the control group and the patients with AS in most of the wave latencies. Correlations Schober test, Ott index, chest expansion measurement and BASDAI were significant for some waves. CRP seems to be more valuable than ESR as a possible marker for neurologic subclinical involvement. Axial AS is more likely to be associated with BAEP abnormalities. There were differences of the latencies in the group of SA patients treated with TNF alpha blockers compared with the group with AINS/DMARDs. Multiple sclerosis or demyelination due to administration of TNF alpha blockers should be excluded in medical practice. Collaboration between neurologists and rheumatologists should be considered in monitoring AS patients.

Acknowledgement

This work received financial support through the “Program of excellence in multidisciplinary doctoral and postdoctoral research in chronic diseases” contract number POSDRU/159/1.5/S/133377, financed by the European Social Fund through “Human Resources Development” Operational Programme 2007-2013.

Disclosure statement

The authors have declared no conflicts of interest.
21. C. Faillace, J.R. de Almeida, J.F. de Carvalho, “Optic neuritis after infliximab therapy,” *Rheumatology International*, vol. 33, no. 4, pp. 1101-1103, 2013.

22. A. Fromont, J. De Seze, M.C. Fleury, J.F. Maillefert, T. Moreau, Inflammatory demyelinating events following treatment with anti-tumor necrosis factor, *Cytokine*, 45, 2, 55-57, 2009

23. P. Lozeron, C. Denier, C. Lacroix, D. Adams, “Long-term course of demyelinating neuropathies occurring during tumor necrosis factor-a-blocker therapy,” *Archives of Neurology*, vol. 66, no. 4, pp. 490-497, 2009.

24. S.J. Shin, A.N. Baer, H.J. Kwon, E.J. Papadopoulos, J.N. Siegel, “Guillain-Barré and Miller Fisher syndromes occurring with tumor necrosis factor a antagonist therapy,” *Arthritis and Rheumatism*, vol. 54, no. 5, pp. 1429-1434, 2006

25. Scheinfeld N. A comprehensive review and evaluation of the side effects of the tumor necrosis factor alpha blockers etanercept, infliximab and adalimumab. *J Dermatolog Treat*. 2004; 15:280-294.

26. Goie The H.S., Steven M.M., van der Linden S.M., Cats A. Evaluation of diagnostic criteria for ankylosing spondylitis: a comparison of the Rome, New York and modified New York criteria in patients with a positive clinical history screening test for ankylosing spondylitis. *Br J Rheumatol*. 1985 24(3):242-9.