Precise Computation of Energy Levels and Radiative Lifetimes in the s, p, d, and f Sequence of Hydrogen Isotope, with Natural Line Widths

*Salman Raza1,2 M. Adil Khan2,3 Saqib Shahzad1 Shahzaib Naeem1,4
1.Department of Physics, University of Karachi
2.Department of Physics, Government National College No.1
3.Department of Physics, NED university of Engineering and Technology
4.Department of Radiology, The Aga Khan University Hospital

Abstract:
Energy levels and Radiative lifetimes in Deuterium for the following: ns2S1/2(n≥2), np2P0(1/2,3/2)(n≥2), nd2D3/2,5/2(n≥3), and nf2F0(5/2,7/2)(n≥4) sequence have been evaluated with uncertainties in energies caused due to uncertainty principal. Theoretical calculations performed utilizing the Weakest Bound Electron Potential Model Theory (WBEPMT). Both sets of data show quite an excellent agreement with the experimental data listed at NIST. This theoretical computation is also a continuation of the work by Raza. S. et al. in Neutral Hydrogen. The high ‘n’ (principal quantum number) values for both sets of data are presented very first time by utilizing WBEPMT.

Keywords: Energy levels, Radiative lifetimes, Quantum defects, Weakest bound electron, Natural line width.

DOI: 10.7176/JNSR/9-10-07
Publication date:May 31st 2019

1. Introduction
Deuterium has many commercial and scientific applications. Like it is used as heavy water moderator in fission reactors, commonly used in nuclear magnetic resonance spectroscopy (NMR), in environmental sciences it is being used as a tracer, in nuclear weapons, and in drugs etc[1]. The need of its spectroscopic data is highly demanded. So, in our work we are going to utilize a computational method called WBEPMT for the computation of spectroscopic data of Deuterium [2]. Recently In 2018 Raza. S et al. [3-4] computed the Rydberg energies series and radiative lifetimes of H I and In I by utilizing the same technique WBEPMT. And in past few years many elements in their atomic and ionic states were studied by this theory because of its semi-empirical nature. All these studies show remarkably good agreement in comparison with experimental results[5-22].

In this work first we obtained data from National Institute of Standards and Technology (NIST)[23] and rearranged them in an increasing order of quantum numbers ‘n’ and then by utilizing the first few energy levels and radiative lifetimes of lowest ‘n’ values (experimental values of radiative lifetimes were obtained from transition probabilities listed at NIST) we computed energy levels sequence with quantum defects and radiative lifetimes with natural line widths for the s, p, d and f sequence of Deuterium up to n=60. Both sets of data show excellent agreement with experimental data [23].

2. Theory and Computational Approach:
The WBEPMT used is very effective and simplest model for calculating energy level sequence of Rydberg atoms and ions. Unlike previously published theoretical methods, it relies on a simple concept of non-weakest bound electrons (NWBE’s) and weakest bound electron (WBE). The ionic-core of +(Z-1) charge formed with nucleus and NWBE’s. The WBE moves under the influence of effective potential of an ion-core. During consecutive ionization step by step all WBE’s separates from the ion-core, in each step only one weakest bound electron (WBE) ionize and rest non-weakest bound electrons (NWBE’s) forming a new ion-core with effective potential (the effective potential of ion-core is due to penetration, polarization and shielding effect). This effective potential in which WBE is residing can be given as[2]:

\[V(r) = -\frac{Z}{r} + \frac{Y}{r^2} \]

where, \(Y = \frac{m(m+1)}{2} + \frac{2ml}{n^2} \)

In equation (1) the first and second terms at right hand side represent coulombic potential and polarization potential respectively. The polarization potential created by the dipole formed between ion-core and WBE. In first term, the separation distance between nucleus and WBE’s is ‘r’, the effective nuclear charge is Z and in Y, the angular quantum number of WBE’s is ‘l’, and m is an unknown coefficient not necessarily an integer. So, the energy formula for WBE’s is:

\[T = \frac{1}{2} \left(\frac{E^2}{n^2} \right) \]

In equation (2), \(n^* \) is the effective quantum number, \(n^* \) and \(Z^* \) are unknown parameters, but the problem is solved
by the transformation between Eigen-values of Quantum defect theory (QDT) and WBE potential model theory, given as:

$$\frac{\Gamma}{n^2} = \frac{z_0}{n - \delta_n}$$ \hspace{1cm} (3)

In equation (3) \(Z_o \) is the atomic kernel net charge number \((Z_o = 1, 2, \text{and} 3...) \) for the ion-core charge in (QDT) and \(\delta_n \) is the quantum defect of \(n \)th energy level.

Now, the energy levels of Rydberg states of an atomic system in the WBEPMT written as: [24]

$$E = T_{lim} + T$$ \hspace{1cm} (4)

In equation (4) the first term in right hand side is the ionization limit \(T_{lim} \) and \(2^{nd} \) term is the energy \(T \) of WBE’s.

Now, by combining equations (3) and (4), we can rewrite (4) as:

$$E = T_{lim} - \frac{1}{2}(\frac{z_0}{n-\delta_n})^2$$ \hspace{1cm} (5)

The quantum defect \(\delta_n \) in equation (5) are computed by using Martin’s formula for energy levels sequence, can be given as: [25].

$$\delta_n = a_0 + a_2(n - \delta_0)^2 + a_4(n - \delta_0)^4 + a_6(n - \delta_0)^6$$ \hspace{1cm} (6)

In equation (6) \(\delta_0 \) is the lowest energy level quantum defect of the series, coefficients \((a_0, a_2, a_4, a_6)\) in (6) are obtained by the method of least-square-fitting, by using the first few given experimental values of the energy levels sequence. [26].

By utilizing the Quantum defects of energy levels sequence, the radiative lifetimes of the energy levels can be found by Rykova’s expression [27].

$$\tau = \tau_0 (n^a)^c$$ \hspace{1cm} (9)

In which

$$n^a = n - \delta_0$$

In equation (9), \(\tau \) and \(a \) and \(c \) are the parameter of Rykova’s expression. A least square method can be used to calculate values of the parameters with the help of known radiative lifetimes of first few levels.

The Radiative lifetimes ‘\(\tau \)’, the uncertainty in energy levels due to principal of uncertainty can be computed by expression [28].

$$\Gamma = \frac{h}{2\pi \tau}$$ \hspace{1cm} (10)

In equation (10), \(\Gamma \) is natural line width and \(h \) is Planck’s constant.

3. Result and Discussion:

3.1. Energy Levels Sequence with Quantum defects:

In this work first we computed energy levels sequence with quantum defects for the following: \(ns^2 S_{1/2}(n\geq 2) \), \(np^2 P_{1/2, 3/2}(n\geq 2) \), \(nd^2 D_{3/2, 5/2}(n\geq 3) \), and \(nf^2 F_{5/2, 7/2}(n \geq 4) \) sequence of deuterium. For the quantum defects are computed by equation 6 in text (Martin’s expression) for \(s, p, d \) and \(f \) sequence. The coefficients of equation 6 are listed in Table I: computed by first few experimental values of energy levels obtained from NIST[23].

Table I. Shows the Coefficients of Martin's Expression & Sequence Convergence (Limit: 109708.61455299 cm \(^{-1}\))

Energy Sequence	\(a_0 \)	\(a_1 \)	\(a_2 \)	\(a_4 \)	\(\delta_0 \)	\(\delta_6 \)	Convergence Nature
\(ns^2 S_{1/2} \) (n\geq 2)	-0.00105	0.01291	-0.08122	0.16919	-0.00025	-0.00105	Core-polarization
\(np^2 P_{1/2} \) (n\geq 2)	-0.00106	0.01291	-0.08121	0.16919	-0.00027	-0.00106	Core-polarization
\(np^2 P_{3/2} \) (n\geq 2)	-0.00105	0.01291	-0.08121	0.16918	-0.00025	-0.00104	Core-polarization
\(nd^2 D_{3/2} \) (n\geq 3)	-0.00135	0.02716	-0.30029	1.19460	-0.00040	-0.00134	Core-polarization
\(nd^2 D_{5/2} \) (n\geq 3)	-0.00135	0.02716	-0.30029	1.19459	-0.00040	-0.00134	Core-polarization
\(nf^2 F_{5/2} \) (n\geq 4)	-0.00127	0.02079	-0.14486	0.00000	-0.00054	-0.00126	Core-polarization
\(nf^2 F_{7/2} \) (n\geq 4)	-0.00127	0.02079	-0.14486	0.00000	-0.00054	-0.00127	Core-polarization

From Table I. we can clearly see by the comparison of \(\delta_6 \) the quantum defects of the highest energy level up to which energy level sequence computed in this work with \(a_0 \) the first coefficient of equation 6 in text, \(s, p, d \) and \(f \) sequence of quantum defects converge toward \(a_0 \). The negative sign of \(a_0 \) indicates that core-polarization potential dominates the \('nl' \) (\(o = s, p, d \text{ and } f \)) energy levels sequence.

Using these quantum defects energy levels sequence of all \('nl' \) sequence of Deuterium are determined precisely by utilizing equation 4 in text up to \(n = 60 \) principal quantum number, listed in Tables: II-VIII. The results are in good accuracy with NIST values[23]. The energy levels and Quantum Defects for high \('n' \) values are presented very first time.
n	Quantum defects	Energy Levels	n	Quantum defects	Energy Levels	
	δ_{NIST}	δ_{Cal}	E_{NIST}	E_{Cal}	δ_{NIST}	δ_{Cal}
2	-0.00025	-0.00025	82281.34	82281.34	-0.00104	109601.46
3	-0.00039	-0.00039	97518.75	97518.75	-0.00104	109607.85
4	-0.00052	-0.00052	102851.83	102851.83	-0.00104	109613.69
5	-0.00065	-0.00065	105320.28	105320.28	-0.00104	109619.04
6	-0.00079	-0.00075	106661.16	106661.13	-0.00104	109623.95
7	-0.00106	-0.00087	107994.43	107994.35	-0.00104	109632.62
8	-0.00119	-0.00090	108354.19	108354.11	-0.00104	109636.47
9	-0.00132	-0.00093	108611.54	108611.45	-0.00104	109640.03
10	-0.00146	-0.00095	108801.94	108801.85	-0.00104	109643.34
11	-0.00159	-0.00096	108946.75	108946.67	-0.00104	109646.41
12	-0.00098	109059.38	-0.00104	109649.27		
13	-0.00099	109148.81	-0.00104	109651.93		
14	-0.00099	109220.96	-0.00104	109654.43		
15	-0.00100	109280.01	-0.00104	109656.76		
16	-0.00101	109328.95	-0.00104	109658.94		
17	-0.00101	109369.96	-0.00104	109660.99		
18	-0.00101	109404.67	-0.00104	109662.91		
19	-0.00102	109434.30	-0.00104	109664.72		
20	-0.00102	109459.80	-0.00104	109666.43		
21	-0.00102	109481.91	-0.00105	109668.03		
22	-0.00103	109501.19	-0.00105	109669.55		
23	-0.00103	109518.12	-0.00105	109670.98		
24	-0.00103	109533.05	-0.00105	109672.34		
25	-0.00103	109546.29	-0.00105	109673.62		
26	-0.00103	109558.10	-0.00105	109674.84		
27	-0.00103	109568.65	-0.00105	109675.99		
28	-0.00103	109578.14	-0.00105	109677.09		
29	-0.00104	109586.69	-0.00105	109678.13		
30	-0.00104	109594.43	-0.00105	109678.13		
Table III: Energy Level sequence in cm\(^{-1}\) and Quantum Defects of \(np^2P_{1/2}\) (2\(\leq n\leq60\)) in Deuterium.

n	Quantum defects	Energy Levels	n	Quantum defects	Energy Levels			
	\(\delta_{\text{NIST}}\)	\(E_{\text{NIST}}\)	\(\delta_{\text{Cal}}\)	\(E_{\text{Cal}}\)	\(\delta_{\text{NIST}}\)	\(E_{\text{NIST}}\)	\(\delta_{\text{Cal}}\)	\(E_{\text{Cal}}\)
2	-0.00025	-0.00025	82281.30	82281.30	32	-0.00104	109601.46	
3	-0.00038	-0.00038	97518.74	97518.74	33	-0.00104	109607.85	
4	-0.00052	-0.00052	102851.83	102851.83	34	-0.00104	109613.69	
5	-0.00065	-0.00065	105320.28	105320.28	35	-0.00104	109619.04	
6	-0.00079	-0.00075	106661.16	106661.13	36	-0.00104	109623.95	
7	-0.00092	-0.00082	107469.67	107469.61	37	-0.00104	109628.46	
8	-0.00105	-0.00087	107994.43	107994.35	38	-0.00104	109632.62	
9	-0.00119	-0.00090	108354.19	108354.11	39	-0.00104	109636.47	
10	-0.00132	-0.00093	108611.53	108611.45	40	-0.00104	109640.03	
11	-0.00146	-0.00095	108801.94	108801.85	41	-0.00104	109643.34	
12	-0.00159	-0.00096	108946.75	108946.67	42	-0.00104	109646.41	
13	-0.00097	-0.00097	109059.38	109059.38	43	-0.00104	109649.27	
14	-0.00098	-0.00098	109148.81	109148.81	44	-0.00104	109651.93	
15	-0.00099	-0.00099	109220.96	109220.96	45	-0.00104	109654.43	
16	-0.00100	-0.00100	109280.01	109280.01	46	-0.00104	109656.76	
17	-0.00100	-0.00100	109328.95	109328.95	47	-0.00104	109658.94	
18	-0.00101	-0.00101	109369.96	109369.96	48	-0.00104	109660.99	
19	-0.00101	-0.00101	109404.67	109404.67	49	-0.00104	109662.91	
20	-0.00102	-0.00102	109434.30	109434.30	50	-0.00104	109664.72	
21	-0.00102	-0.00102	109459.80	109459.80	51	-0.00104	109666.43	
22	-0.00102	-0.00102	109481.91	109481.91	52	-0.00104	109668.03	
23	-0.00102	-0.00102	109501.19	109501.19	53	-0.00104	109669.55	
24	-0.00103	-0.00103	109518.12	109518.12	54	-0.00104	109670.98	
25	-0.00103	-0.00103	109533.05	109533.05	55	-0.00104	109672.34	
26	-0.00103	-0.00103	109546.29	109546.29	56	-0.00104	109673.62	
27	-0.00103	-0.00103	109558.10	109558.10	57	-0.00104	109674.84	
28	-0.00103	-0.00103	109568.65	109568.65	58	-0.00104	109675.99	
29	-0.00103	-0.00103	109578.14	109578.14	59	-0.00104	109677.09	
30	-0.00103	-0.00103	109586.69	109586.69	60	-0.00104	109678.13	
31	-0.00104	-0.00104	109594.43	109594.43				
Table IV: Energy Level sequence in cm⁻¹ and Quantum Defects of \(nd^2P_{\frac{3}{2}} \) (2≤n≤60) in Deuterium.

n	Quantum defects	Energy Levels						
	\(\delta_{NIST} \)	\(\delta_{Cal} \)	\(E_{NIST} \)	\(E_{Cal} \)	\(\delta_{NIST} \)	\(\delta_{Cal} \)	\(E_{NIST} \)	\(E_{Cal} \)
2	-0.00027	-0.00027	82281.67	82281.67	32	-0.00105	109601.46	
3	-0.00040	-0.00040	97518.85	97518.85	33	-0.00105	109607.85	
4	-0.00053	-0.00053	102851.87	102851.87	34	-0.00105	109613.69	
5	-0.00066	-0.00066	105320.30	105320.30	35	-0.00105	109619.04	
6	-0.00080	-0.00076	106661.14	106661.14	36	-0.00105	109623.95	
7	-0.00093	-0.00083	107469.68	107469.62	37	-0.00105	109628.46	
8	-0.00107	-0.00088	107994.35	107994.35	38	-0.00105	109632.62	
9	-0.00120	-0.00091	108354.20	108354.11	39	-0.00105	109636.47	
10	-0.00134	-0.00094	108611.54	108611.45	40	-0.00105	109640.03	
11	-0.00147	-0.00096	108801.86	108801.86	41	-0.00105	109643.34	
12	-0.00161	-0.00098	108946.76	108946.68	42	-0.00105	109646.41	
13	-0.00099	-0.00100	109059.38	109059.38	43	-0.00105	109649.27	
14	-0.00101	-0.00101	109148.81	109148.81	44	-0.00106	109651.93	
15	-0.00101	-0.00101	109220.96	109220.96	45	-0.00106	109654.43	
16	-0.00101	-0.00101	109280.01	109280.01	46	-0.00106	109656.76	
17	-0.00102	-0.00102	109328.95	109328.95	47	-0.00106	109658.94	
18	-0.00102	-0.00102	109369.96	109369.96	48	-0.00106	109660.99	
19	-0.00103	-0.00103	109404.67	109404.67	49	-0.00106	109662.91	
20	-0.00103	-0.00103	109434.30	109434.30	50	-0.00106	109664.72	
21	-0.00103	-0.00103	109459.80	109459.80	51	-0.00106	109666.43	
22	-0.00104	-0.00104	109481.91	109481.91	52	-0.00106	109668.03	
23	-0.00104	-0.00104	109501.19	109501.19	53	-0.00106	109669.55	
24	-0.00104	-0.00104	109518.12	109518.12	54	-0.00106	109670.98	
25	-0.00104	-0.00104	109533.05	109533.05	55	-0.00106	109672.34	
26	-0.00104	-0.00104	109546.29	109546.29	56	-0.00106	109673.62	
27	-0.00104	-0.00104	109558.10	109558.10	57	-0.00106	109674.84	
28	-0.00105	-0.00105	109568.65	109568.65	58	-0.00106	109675.99	
29	-0.00105	-0.00105	109578.14	109578.14	59	-0.00106	109677.09	
30	-0.00105	-0.00105	109586.69	109586.69	60	-0.00106	109678.13	
31	-0.00105	-0.00105	109594.43	109594.43				
Table V: Energy Level Sequence in cm$^{-1}$ and Quantum Defects of $nd^2D_{3/2}$ ($3 \leq n \leq 60$) in Deuterium.

n	δ_{NIST}	δ_{Cal}	E_{NIST}	E_{Cal}	δ_{NIST}	δ_{Cal}	E_{NIST}	E_{Cal}
3	-0.00040	-0.00040	97518.85	97518.85	-0.00132	-0.00132	109601.46	109601.46
4	-0.00053	-0.00053	102851.87	102851.87	-0.00132	-0.00132	109607.85	109607.85
5	-0.00066	-0.00066	105320.30	105320.30	-0.00132	-0.00132	109613.69	109613.69
6	-0.00080	-0.00080	106661.18	106661.18	-0.00133	-0.00133	109619.04	109619.04
7	-0.00093	-0.00091	107469.68	107469.66	-0.00133	-0.00133	109623.95	109623.95
8	-0.00107	-0.00099	107994.43	107994.40	-0.00133	-0.00133	109628.46	109628.46
9	-0.00120	-0.00106	108354.20	108354.15	-0.00133	-0.00133	109632.62	109632.62
10	-0.00134	-0.00110	108611.54	108611.49	-0.00133	-0.00133	109636.47	109636.47
11	-0.00147	-0.00114	108801.94	108801.89	-0.00133	-0.00133	109640.03	109640.03
12	-0.00161	-0.00117	108946.76	108946.70	-0.00133	-0.00133	109643.34	109643.34
13	-0.00120	-0.00120	109059.40	109059.40	-0.00133	-0.00133	109646.41	109646.41
14	-0.00122	-0.00122	109148.83	109148.83	-0.00133	-0.00133	109649.27	109649.27
15	-0.00123	-0.00123	109220.97	109220.97	-0.00133	-0.00133	109651.94	109651.94
16	-0.00125	-0.00125	109280.02	109280.02	-0.00133	-0.00133	109654.43	109654.43
17	-0.00126	-0.00126	109328.96	109328.96	-0.00133	-0.00133	109656.76	109656.76
18	-0.00127	-0.00127	109369.97	109369.97	-0.00133	-0.00133	109658.94	109658.94
19	-0.00127	-0.00127	109404.67	109404.67	-0.00134	-0.00134	109660.99	109660.99
20	-0.00128	-0.00128	109434.31	109434.31	-0.00134	-0.00134	109662.91	109662.91
21	-0.00129	-0.00129	109459.81	109459.81	-0.00134	-0.00134	109664.72	109664.72
22	-0.00129	-0.00129	109481.91	109481.91	-0.00134	-0.00134	109666.43	109666.43
23	-0.00130	-0.00130	109501.20	109501.20	-0.00134	-0.00134	109668.03	109668.03
24	-0.00130	-0.00130	109518.12	109518.12	-0.00134	-0.00134	109669.55	109669.55
25	-0.00130	-0.00130	109533.05	109533.05	-0.00134	-0.00134	109670.98	109670.98
26	-0.00131	-0.00131	109546.30	109546.30	-0.00134	-0.00134	109672.34	109672.34
27	-0.00131	-0.00131	109558.10	109558.10	-0.00134	-0.00134	109673.62	109673.62
28	-0.00131	-0.00131	109568.66	109568.66	-0.00134	-0.00134	109674.84	109674.84
29	-0.00132	-0.00132	109578.14	109578.14	-0.00134	-0.00134	109676.00	109676.00
30	-0.00132	-0.00132	109586.70	109586.70	-0.00134	-0.00134	109677.09	109677.09
31	-0.00132	-0.00132	109594.43	109594.43	-0.00134	-0.00134	109678.13	109678.13
Table VI: Energy Level Sequence in cm\(^{-1}\) and Quantum Defects of \(nd^2D_{5/2}\) (3\(\leq n\leq 60\)) in Deuterium.

\(n\)	\(\delta_{\text{NIST}}\)	\(\delta_{\text{Cal}}\)	\(E_{\text{NIST}}\)	\(E_{\text{Cal}}\)	\(\delta_{\text{NIST}}\)	\(\delta_{\text{Cal}}\)	\(E_{\text{NIST}}\)	\(E_{\text{Cal}}\)
3	-0.00040	-0.00040	97518.88	97518.88	32	-0.00133	109601.46	
4	-0.00054	-0.00054	102851.89	102851.89	33	-0.00133	109607.85	
5	-0.00067	-0.00067	105320.31	105320.31	34	-0.00133	109613.69	
6	-0.00080	-0.00080	106661.18	106661.18	35	-0.00133	109619.04	
7	-0.00094	-0.00094	107469.68	107469.67	36	-0.00133	109623.95	
8	-0.00107	-0.00107	107994.43	107994.40	37	-0.00133	109628.46	
9	-0.00121	-0.001106	108354.20	108354.16	38	-0.00133	109632.62	
10	-0.00134	-0.001111	108611.54	108611.49	39	-0.00133	109636.47	
11	-0.00148	-0.001115	108801.94	108801.89	40	-0.00133	109640.03	
12	-0.00161	-0.001118	108946.76	108946.70	41	-0.00134	109643.34	
13	-0.00120		109059.40	109059.40	42	-0.00134	109646.41	
14	-0.00122		109148.83	109148.83	43	-0.00134	109649.27	
15	-0.00124		109220.97	109220.97	44	-0.00134	109651.94	
16	-0.00125		109280.02	109280.02	45	-0.00134	109654.43	
17	-0.00126		109328.96	109328.96	46	-0.00134	109656.76	
18	-0.00127		109369.97	109369.97	47	-0.00134	109658.94	
19	-0.00128		109404.67	109404.67	48	-0.00134	109660.99	
20	-0.00129		109434.31	109434.31	49	-0.00134	109662.91	
21	-0.00129		109459.81	109459.81	50	-0.00134	109664.72	
22	-0.00130		109481.91	109481.91	51	-0.00134	109666.43	
23	-0.00130		109501.20	109501.20	52	-0.00134	109668.03	
24	-0.00131		109518.12	109518.12	53	-0.00134	109669.55	
25	-0.00131		109533.05	109533.05	54	-0.00134	109670.98	
26	-0.00131		109546.30	109546.30	55	-0.00134	109672.34	
27	-0.00131		109558.10	109558.10	56	-0.00134	109673.62	
28	-0.00132		109568.66	109568.66	57	-0.00134	109674.84	
29	-0.00132		109578.14	109578.14	58	-0.00134	109676.00	
30	-0.00132		109586.70	109586.70	59	-0.00134	109677.09	
31	-0.00132		109594.43	109594.43	60	-0.00134	109678.13	
Table VII: Energy Level Sequence in cm\(^{-1}\) and Quantum Defects of \(nf^2P_{\frac{5}{2}}\) \((4 \leq n \leq 60)\) in Deuterium.

\(n\)	Quantum defects	Energy Levels \(\delta_{\text{NIST}}\)	Energy Levels \(\delta_{\text{Cal}}\)	Energy Levels \(E_{\text{NIST}}\)	Energy Levels \(E_{\text{Cal}}\)		
4	-0.00054	-0.00054	102851.89	102851.89	33	-0.00125	109607.85
5	-0.00067	-0.00067	105320.31	105320.31	34	-0.00125	109613.69
6	-0.00080	-0.00080	106661.18	106661.18	35	-0.00125	109619.04
7	-0.00090	-0.00090	107469.66	107469.66	36	-0.00125	109623.95
8	-0.00098	-0.00098	107994.39	107994.39	37	-0.00125	109628.46
9	-0.00103	-0.00103	108354.15	108354.15	38	-0.00125	109632.62
10	-0.00108	-0.00108	108611.48	108611.48	39	-0.00125	109636.47
11	-0.00111	-0.00111	108801.88	108801.88	40	-0.00126	109640.03
12	-0.00113	-0.00113	108946.70	108946.70	41	-0.00126	109643.34
13	-0.00115	-0.00115	109059.40	109059.40	42	-0.00126	109646.41
14	-0.00117	-0.00117	109148.83	109148.83	43	-0.00126	109649.27
15	-0.00118	-0.00118	109220.97	109220.97	44	-0.00126	109651.94
16	-0.00119	-0.00119	109280.02	109280.02	45	-0.00126	109654.43
17	-0.00120	-0.00120	109328.96	109328.96	46	-0.00126	109656.76
18	-0.00121	-0.00121	109369.97	109369.97	47	-0.00126	109658.94
19	-0.00121	-0.00121	109404.67	109404.67	48	-0.00126	109660.99
20	-0.00122	-0.00122	109434.31	109434.31	49	-0.00126	109662.91
21	-0.00122	-0.00122	109459.81	109459.81	50	-0.00126	109664.72
22	-0.00123	-0.00123	109481.91	109481.91	51	-0.00126	109666.43
23	-0.00123	-0.00123	109501.19	109501.19	52	-0.00126	109668.03
24	-0.00123	-0.00123	109518.12	109518.12	53	-0.00126	109669.55
25	-0.00124	-0.00124	109533.05	109533.05	54	-0.00126	109670.98
26	-0.00124	-0.00124	109546.30	109546.30	55	-0.00126	109672.34
27	-0.00124	-0.00124	109558.10	109558.10	56	-0.00126	109673.62
28	-0.00124	-0.00124	109568.66	109568.66	57	-0.00126	109674.84
29	-0.00124	-0.00124	109578.14	109578.14	58	-0.00126	109675.99
30	-0.00125	-0.00125	109586.69	109586.69	59	-0.00126	109677.09
31	-0.00125	-0.00125	109594.43	109594.43	60	-0.00126	109678.13
Table VIII: Energy Level Sequence in cm⁻¹ and Quantum Defects of \(n^2F_{9/2} \) (4≤n≤60) in Deuterium.

n	Quantum defects NIST	Energy Levels	Quantum defects Cal	Energy Levels	n	Quantum defects NIST	Energy Levels	Quantum defects Cal	Energy Levels
4	-0.00054	102851.89	-0.00054	102851.89	33	-0.00125	109607.85		
5	-0.00067	105320.31	-0.00067	105320.31	34	-0.00125	109613.69		
6	-0.00081	106661.18	-0.00081	106661.18	35	-0.00125	109619.04		
7	-0.00091	107469.66	-0.00091	107469.66	36	-0.00126	109623.95		
8	-0.00098	107994.39	-0.00098	107994.39	37	-0.00126	109628.46		
9	-0.00104	108354.15	-0.00104	108354.15	38	-0.00126	109632.62		
10	-0.00108	108611.48	-0.00108	108611.48	39	-0.00126	109636.47		
11	-0.00111	108801.88	-0.00111	108801.88	40	-0.00126	109640.03		
12	-0.00113	108946.70	-0.00113	108946.70	41	-0.00126	109643.34		
13	-0.00115	109059.40	-0.00115	109059.40	42	-0.00126	109646.41		
14	-0.00117	109148.83	-0.00117	109148.83	43	-0.00126	109649.27		
15	-0.00118	109220.97	-0.00118	109220.97	44	-0.00126	109651.94		
16	-0.00119	109280.02	-0.00119	109280.02	45	-0.00126	109654.43		
17	-0.00120	109328.96	-0.00120	109328.96	46	-0.00126	109656.76		
18	-0.00121	109369.97	-0.00121	109369.97	47	-0.00126	109658.94		
19	-0.00121	109404.67	-0.00121	109404.67	48	-0.00126	109660.99		
20	-0.00122	109434.31	-0.00122	109434.31	49	-0.00126	109662.91		
21	-0.00122	109459.81	-0.00122	109459.81	50	-0.00126	109664.72		
22	-0.00123	109481.91	-0.00123	109481.91	51	-0.00126	109666.43		
23	-0.00123	109501.19	-0.00123	109501.19	52	-0.00126	109668.03		
24	-0.00124	109518.12	-0.00124	109518.12	53	-0.00126	109669.55		
25	-0.00124	109533.05	-0.00124	109533.05	54	-0.00126	109670.98		
26	-0.00124	109546.30	-0.00124	109546.30	55	-0.00126	109672.34		
27	-0.00124	109558.10	-0.00124	109558.10	56	-0.00126	109673.62		
28	-0.00124	109568.66	-0.00124	109568.66	57	-0.00126	109674.84		
29	-0.00125	109578.14	-0.00125	109578.14	58	-0.00126	109675.99		
30	-0.00125	109586.69	-0.00125	109586.69	59	-0.00127	109677.09		
31	-0.00125	109594.43	-0.00125	109594.43	60	-0.00127	109678.13		
32	-0.00125	109601.46	-0.00125	109601.46					

3.2. Radiative Lifetimes with Natural line widths:

Transition probabilities listed at NIST [23], the reference values of Radiative lifetimes for Deuterium are obtained. Utilizing these reference values of radiative lifetimes, the coefficients of expression 9 in text (Rykova’s Expression) can be conveniently determined by least square fitting, are listed in Table IX.

Table IX: Coefficients of Rykova’s Expression.

Energy Sequence	\(\tau_{(58)} \)	\(\alpha \)
\(ns^2S_{1/2} \) (n≥2)	1.19564E-08	2.1146
\(np^2P_{1/2,3/2} \) (n≥2)	2.06236E-10	2.9500
\(nd^2D_{3/2,5/2} \) (n≥3)	6.0851E-10	2.9449
\(nf^2F_{5/2,7/2} \) (n≥4)	1.21321E-09	2.9510

Finally exploiting computed values of quantum defects listed in Tables: II-VIII and coefficients listed in Table IX, computed the radiative lifetimes up to \(n=60 \), with natural line widths for the following: \(ns^2S_{1/2}(n≥2) \), \(np^2P_{1/2,3/2}(n≥2) \), \(nd^2D_{3/2,5/2}(n≥3) \), and \(nf^2F_{5/2,7/2}(n≥4) \) sequence of deuterium Listed in Tables X-XIII.
Table X: Radiative Lifetimes in nS and Natural linewidths in cm⁻¹ of $^2S_{1/2} (2\leq n \leq 60)$ in Deuterium.

n	τ_{NIST}	τ_{Cal}	Γ_{Cal}	τ_{NIST}	τ_{Cal}	Γ_{Cal}
2	51.793	2.036E-20		32	18214.614	5.790E-23
3	122.078	8.639E-21	3.346E-21	33	19439.206	5.425E-23
4	226.489	4.702E-21	3.675E-21	34	20705.868	5.093E-23
5	352.185	2.933E-21	3.953E-21	35	22014.743	4.790E-23
6	534.972	1.995E-21	4.233E-21	36	23365.972	4.513E-23
7	732.406	1.440E-21	4.513E-21	37	24759.693	4.259E-23
8	971.345	1.086E-21	4.803E-21	38	26196.038	4.026E-23
9	1246.044	8.464E-22	5.103E-22	39	27675.138	3.811E-23
10	1556.988	6.773E-22	5.413E-22	40	29197.122	3.612E-23
11	1904.619	5.537E-22	5.733E-22	41	30762.112	3.428E-23
12	2289.341	4.607E-22	6.073E-22	42	32370.232	3.258E-23
13	2711.525	3.889E-22	6.433E-22	43	34021.600	3.100E-23
14	3171.517	3.325E-22	6.803E-22	44	35716.333	2.953E-23
15	3669.640	2.874E-22	7.193E-22	45	37454.546	2.816E-23
16	4206.197	2.507E-22	7.623E-22	46	39236.351	2.688E-23
17	4781.473	2.206E-22	8.083E-22	47	41061.857	2.568E-23
18	5395.738	1.954E-22	8.573E-22	48	42931.174	2.456E-23
19	6049.249	1.743E-22	9.083E-22	49	44844.405	2.352E-23
20	6742.250	1.564E-22	9.623E-22	50	46801.656	2.253E-23
21	7474.973	1.411E-22	1.024E-22	51	48803.028	2.161E-23
22	8247.642	1.279E-22	1.085E-22	52	50848.622	2.074E-23
23	9060.469	1.164E-22	1.150E-22	53	52938.536	1.992E-23
24	9913.661	1.064E-22	1.224E-22	54	55072.867	1.915E-23
25	10807.415	9.758E-23	1.309E-22	55	57251.710	1.842E-23
26	11741.920	8.918E-23	1.394E-22	56	59475.159	1.773E-23
27	12717.361	8.293E-23	1.480E-22	57	61743.306	1.708E-23
28	13733.914	7.679E-23	1.566E-22	58	64056.242	1.646E-23
29	14791.752	7.120E-23	1.652E-22	59	66414.057	1.588E-23
30	15891.042	6.636E-23	1.740E-22	60	68816.837	1.532E-23
31	17031.943	6.192E-23				
Table XI: Radiative Lifetimes in nS and Natural linewidths in cm$^{-1}$ of np $^2P_{(1/2,3/2)}$ (2≤n≤60) in Deuterium.

n	Radiative Lifetimes	Natural line Widths	n	Radiative Lifetimes	Natural line Widths	
	τ\text{NIST}	τ\text{Cal}	Γ\text{Cal}	τ\text{NIST}	τ\text{Cal}	Γ\text{Cal}
2	1.596 6.615E-19	1.594 2.000E-19	32	5683.271 1.856E-22	5683.271 1.856E-22	
3	5.270 8.560E-20	5.273 4.432E-20	33	6796.203 1.552E-22	6796.203 1.552E-22	
4	12.320 2.588E-20	12.320 7.827E-21	34	7402.922 1.425E-22	7402.922 1.425E-22	
5	23.795 2.000E-20	23.793 4.432E-20	35	8044.403 1.311E-22	8044.403 1.311E-22	
6	40.745 1.108E-20	40.746 7.827E-21	36	8721.587 1.209E-22	8721.587 1.209E-22	
7	64.203 1.643E-20	64.205 4.432E-20	37	9435.418 1.118E-22	9435.418 1.118E-22	
8	95.196 1.108E-20	95.206 7.827E-21	38	10186.834 1.035E-22	10186.834 1.035E-22	
9	134.744 7.827E-21	134.755 4.432E-20	39	10976.775 9.607E-23	10976.775 9.607E-23	
10	183.858 5.736E-21	183.872 9.607E-23	40	11806.179 8.933E-23	11806.179 8.933E-23	
11	243.547 3.350E-21	243.561 3.350E-21	41	12675.983 8.320E-23	12675.983 8.320E-23	
12	314.812 2.645E-21	314.825 2.645E-21	42	13587.121 7.762E-23	13587.121 7.762E-23	
13	398.652 2.126E-21	398.666 2.126E-21	43	14540.529 7.253E-23	14540.529 7.253E-23	
14	496.058 1.734E-21	496.072 1.734E-21	44	15537.139 6.788E-23	15537.139 6.788E-23	
15	608.021 1.434E-21	608.035 1.434E-21	45	16577.884 6.361E-23	16577.884 6.361E-23	
16	735.527 1.199E-21	735.541 1.199E-21	46	17663.695 5.970E-23	17663.695 5.970E-23	
17	879.558 1.013E-21	879.573 1.013E-21	47	18795.503 5.611E-23	18795.503 5.611E-23	
18	1041.095 8.636E-22	1041.112 8.636E-22	48	19974.236 5.280E-23	19974.236 5.280E-23	
19	1221.113 7.424E-22	1221.130 7.424E-22	49	21200.823 4.974E-23	21200.823 4.974E-23	
20	1420.588 6.429E-22	1420.605 6.429E-22	50	22476.190 4.692E-23	22476.190 4.692E-23	
21	1640.490 5.604E-22	1640.507 5.604E-22	51	23801.265 4.431E-23	23801.265 4.431E-23	
22	1881.789 4.915E-22	1881.806 4.915E-22	52	25176.973 4.189E-23	25176.973 4.189E-23	
23	2145.451 4.336E-22	2145.468 4.336E-22	53	26604.238 3.964E-23	26604.238 3.964E-23	
24	2432.442 3.844E-22	2432.459 3.844E-22	54	28083.984 3.755E-23	28083.984 3.755E-23	
25	2743.722 3.424E-22	2743.739 3.424E-22	55	29617.135 3.561E-23	29617.135 3.561E-23	
26	3080.254 3.063E-22	3080.271 3.063E-22	56	31204.611 3.380E-23	31204.611 3.380E-23	
27	3442.996 2.751E-22	3442.999 2.751E-22	57	32847.334 3.211E-23	32847.334 3.211E-23	
28	3832.903 2.481E-22	3832.906 2.481E-22	58	34546.224 3.053E-23	34546.224 3.053E-23	
29	4250.593 2.245E-22	4250.596 2.245E-22	59	36302.202 2.905E-23	36302.202 2.905E-23	
30	4698.036 2.038E-22	4698.039 2.038E-22	60	38196.180 2.780E-23	38196.180 2.780E-23	
Table XII: Radiative Lifetimes in nS and Natural linewidths cm\(^{-1}\) of \(n^2D_{3/2,5/2}\) (3\(\leq n\leq 60\)) in Deuterium.

\(n\)	\(\tau_{\text{NIST}}\)	\(\tau_{\text{Cal}}\)	\(\Gamma_{\text{Cal}}\)	\(n\)	\(\tau_{\text{NIST}}\)	\(\tau_{\text{Cal}}\)	\(\Gamma_{\text{Cal}}\)
3	15.463	15.471	6.817E-20	32	16475.555	6.401E-23	
4	36.139	36.095	2.922E-20	33	18038.235	5.846E-23	
5	69.651	69.637	1.514E-20	34	19695.779	5.354E-23	
6	119.084	119.129	8.852E-21	35	21450.899	4.916E-23	
7	187.571	187.522	5.622E-21	36	23306.306	4.525E-23	
8	277.932	277.914	3.794E-21	37	25264.705	4.174E-23	
9	393.160	393.141	2.682E-21	38	27328.797	3.859E-23	
10	536.182	536.163	1.967E-21	39	29501.279	3.575E-23	
11	709.907	709.888	1.486E-21	40	31784.845	3.318E-23	
12	917.227	917.208	1.150E-21	41	34182.183	3.085E-23	
13	1161.022	1160.993	9.083E-22	42	36695.979	2.874E-23	
14	1444.158	1444.139	7.302E-22	43	39328.916	2.681E-23	
15	1769.487	1769.468	5.960E-22	44	42083.672	2.506E-23	
16	2139.851	2139.832	4.928E-22	45	44962.923	2.345E-23	
17	2558.083	2558.064	4.123E-22	46	47969.339	2.198E-23	
18	3027.004	3027.035	3.484E-22	47	51105.589	2.064E-23	
19	3549.428	3549.409	2.971E-22	48	54374.339	1.940E-23	
20	4128.157	4128.138	2.555E-22	49	57778.252	1.825E-23	
21	4765.989	4765.970	2.133E-22	50	61319.985	1.720E-23	
22	5465.712	5465.693	1.929E-22	51	65002.196	1.622E-23	
23	6230.107	6230.088	1.693E-22	52	68827.537	1.532E-23	
24	7061.948	7061.929	1.493E-22	53	72798.659	1.449E-23	
25	7964.002	7964.012	1.324E-22	54	76918.209	1.371E-23	
26	8939.031	8939.021	1.180E-22	55	81188.832	1.299E-23	
27	9989.789	9989.779	1.056E-22	56	85613.171	1.232E-23	
28	11119.026	11119.016	9.485E-23	57	90193.864	1.169E-23	
29	12329.486	12329.476	8.553E-23	58	94933.550	1.111E-23	
30	13623.906	13623.896	7.741E-23	59	99834.861	1.056E-23	
31	15005.020	15005.010	7.028E-23	60	104900.429	1.005E-23	
Table XIII: Radiative Lifetimes in nS and Natural linewidths cm⁻¹ in Deuterium.

n	\(\tau_{NIST}\) (nS)	\(\tau_{Cal}\) (nS)	\(\Gamma_{Cal}\) (cm⁻¹)	\(\tau_{NIST}\) (nS)	\(\tau_{Cal}\) (nS)	\(\Gamma_{Cal}\) (cm⁻¹)
4	72.509	72.575	1.453E-20	33	36738.165	2.871E-23
5	140.281	140.206	7.522E-21	34	40121.367	2.629E-23
6	239.880	240.121	4.392E-21	35	43704.376	2.413E-23
7	378.429	378.716	1.879E-21	36	47492.777	2.221E-23
8	561.190	559.054	1.327E-21	37	51492.147	2.048E-23
9	794.422	794.054	7.522E-21	38	55708.054	1.893E-23
10	1084.107	1083.347	9.728E-22	39	60146.061	1.753E-23
11	1436.194	1435.547	7.343E-22	40	64811.722	1.627E-23
12	1856.603	1855.947	5.680E-22	41	69710.584	1.513E-23
13	2351.227	2350.571	4.504E-22	42	74848.190	1.409E-23
14	2925.937	2925.281	3.604E-22	43	80230.072	1.314E-23
15	3586.579	3585.923	2.940E-22	44	85861.759	1.228E-23
16	4338.980	4338.324	2.431E-22	45	91748.772	1.149E-23
17	5188.949	5188.293	2.032E-22	46	97896.626	1.077E-23
18	6142.276	6141.620	1.717E-22	47	10431.831	1.011E-23
19	7204.734	7204.078	1.464E-22	48	110996.891	9.501E-24
20	8382.081	8381.425	1.258E-22	49	117960.303	8.940E-24
21	9680.059	9679.397	1.089E-22	50	125206.559	8.423E-24
22	11104.399	11103.743	9.497E-23	51	132741.145	7.945E-24
23	12660.815	12659.159	8.330E-23	52	140569.544	7.502E-24
24	14355.010	14353.354	7.347E-23	53	148697.231	7.092E-24
25	16192.675	16191.018	6.513E-23	54	157129.676	6.712E-24
26	18179.489	18177.833	5.801E-23	55	165872.347	6.358E-24
27	20321.120	20319.464	5.190E-23	56	174930.702	6.029E-24
28	22623.225	22621.568	4.662E-23	57	184310.200	5.722E-24
29	25091.450	25089.794	4.203E-23	58	194016.290	5.436E-24
30	27731.433	27730.779	3.803E-23	59	204054.419	5.168E-24
31	30548.804	30547.149	3.452E-23	60	214430.029	4.918E-24
32	33549.178	33547.523	3.143E-23			

All \('n'\) sequence radiative lifetimes of Deuterium show a good agreement with reference values [23] and follows the simple scaling law \((n - \delta)^{\alpha}\), with their uncertainty in energies due to uncertainty principle. The uncertainties that is natural line width shows that all transitions have negligible natural broadening. In result the spectrum of Deuterium must have sharp spectral lines. The radiative lifetimes and Natural line widths for high \('n'\) values are presented very first time.

3.3. Graphical Representation:
Graph I: Quantum defects as a function of Principal quantum numbers \((n-\delta curves)\).
From the comparison of coefficient of equation 6 in text ‘a_0’ with the quantum defects of lowest possible state of each series that is ‘δ_0’ and highest state up to which series is computed that is ‘δ_{60}’. We can clearly see that quantum defects of all ‘nl’ sequence of Deuterium converges towards the coefficient ‘a_0’. can also be clearly seen in Graph I. The core-polarization nature of all ‘nl’ sequence of Deuterium clearly displays in Graph I. Further analysis of the $n-\delta$ curves in Graph I, reveals that in all sequence, quantum defects ‘δ_n’, first exponentially decrease and then becomes constant and shows asymptotic behaviour due to the continuous change in quantum defects.

From above $n-\delta$ curves we can also see that $ns^2S_{1/2}$ sharply overlapped $np^2P_{1/2}$, and in these $nd^2D_{3/2,5/2}$, $nf^2F_{5/2,7/2}$ sequences $J=\pm 1/2$ sharply overlaps each other and there is a fine splitting between $^2P_{1/2}$ and $^2P_{3/2}$. The quantum defects sequence of $nf^2F_{(5/2,7/2)}$ lies above $nd^2D_{(3/2,5/2)}$.

From above $n-\delta$ curves we can also see that $ns^2S_{1/2}$ sharply overlapped $np^2P_{1/2}$, and in these $nd^2D_{3/2,5/2}$, $nf^2F_{5/2,7/2}$ sequences $J=\pm 1/2$ sharply overlaps each other and there is a fine splitting between $^2P_{1/2}$ and $^2P_{3/2}$. The quantum defects sequence of $nf^2F_{(5/2,7/2)}$ lies above $nd^2D_{(3/2,5/2)}$.

Graph II: Radiative Lifetimes as a function of principal quantum numbers ($n-\tau$ curves).

In $n-\tau$ curves in the following sequence $np^2P_{(1/2,3/2)}$, $nd^2D_{(3/2,5/2)}$ and $nf^2F_{(5/2,7/2)}$, $J=\pm 1/2$ sharply overlaps each other and shows exponentially increasing behaviour. Among all sequence $nf^2F_{(5/2,7/2)}$ has the steepest curve but series: $ns^2S_{1/2}$ and, $nd^2D_{(3/2,7/2)}$ are closest and $np^2P_{(1/2,3/2)}$ has the lowest curve. The Graph II. also shows that s, p, d and f sequence follow the simple scaling law $(n-\delta)n$. The values of ‘α’ for ‘nl’ sequence of radiative lifetimes are explicitly shows in Graph II.
Graph III: Grotrian Energy Level Diagram for \(s\), \(p\), \(d\) and \(f\) Sequence of Deuterium.

A summarising view of all \('nl'\) energy levels sequences of Deuterium are shown in Grotrian energy level diagram. From Graph III we can deduce that \(s\), \(p\), \(d\) and \(f\) energy levels sequence of Deuterium are same as hydrogen with bound and \(l\) degenerated states for higher \('n'\) levels and all the transitions obeys the selection rule \(J=0, \pm 1, \pm 2\). It also shows that for all \('nl'\) energy levels sequence of Deuterium the quantum defect is approximately equal to zero.

4. Conclusion
The energy level sequence with Quantum defects and Radiative lifetimes with Natural line widths for the following sequence: \(ns^2S_{1/2}\), \(np^2P_{(1/2,3/2)}\), \(nd^2D_{(3/2,5/2)}\) and, \(nf^2F_{(5/2,7/2)}\) up to \(n=60\), in deuterium are presented. Both sets of that compared with their experimental values obtained from NIST[23]. Quite an excellent agreement found between experimental and computed values in this work.
Conclusive remarks about theoretical computation of deuterium are as:

i. The deviation of this work is less than 0.1 cm$^{-1}$ for energy levels sequence of Deuterium and 0.001 for quantum defects.

ii. Transition probabilities A_{lk} listed at NIST [23] were utilized to obtained first few experimental values of radiative Lifetimes of all 'nl' sequence in deuterium. Then by least square fitting of data by using equation 9 in text, radiative lifetimes were computed for up to $n=60$ quantum number. The deviation of radiative lifetimes in this work is less than 0.1 ns in p, d and f sequence except for s sequence.

iii. From Table I and Graph I in text we can clearly infer that all 'nl' sequence of Deuterium are converges towards the Martin’s expression coefficient 'a0' and the negative sign of 'a0' indicates that all 'nl' sequence are low lying core polarization sequence.

iv. In all 'nl' sequence of quantum defects of $ns^2S_{1/2}$ sharply overlaps $np^2P_{1/2}$, and in $nd^2D_{3/2,5/2}$, $nf^2F_{5/2,7/2}$ sequences quantum defects of $J=\pm 1/2$ sharply overlaps each other and there is a fine splitting between $np^2P_{1/2}$ and $np^2P_{3/2}$ (see Graph. I).

v. In all 'nl' sequence of radiative lifetimes $J=\pm 1/2$ sharply overlaps each other except ns sequence and shows exponentially increasing behaviour. Among them the $nf^2F_{5/2,7/2}$ has the steepest curve but series: $ns^2S_{1/2}$ and, $nd^2D_{3/2,5/2}$ are closest (see Graph. III).

vi. All 'nl' sequences of radiative lifetimes in Deuterium follows the simple scaling law $(n-\delta_0)^2$.

vii. The Natural line widths computed based on principal of uncertainty show negligible values. Means natural broadening is approximately zero which shows the Deuterium spectrum is a sharp line spectrum (see Graph. III).

viii. The Grotrian diagram clearly displays the approximately zero quantum defects of deuterium 'nl' sequence and the degeneracy of states for higher n values (see Graph. II).

ix. Finally, In Grotrian diagram for all the allowed transitions data available at NIST [23] are shown, following the selection rule $J=0, \pm 1, \pm 2$.

x. This theoretical computation is also a continuation of the work by Raza. S. et al. in Neutral Hydrogen [3].

5. Appendix A. Supplementary Data:
Related to this work, all the supplementary Data can be easily available online at:
https://www.physics.nist.gov/PhysRefData/ASD/lines_form.html

6. Explanation of Tables:

Table I. Shows the Coefficients of Martin’s Expression & Sequence Convergence (Limit:109708.61455299 cm$^{-1}$)

Energy Sequence	Energy levels sequence of Deuterium with initial principal quantum number n: Principal Quantum number.	a_0: Coefficient of Martin's expression for 'nl' sequence of Deuterium.	a_1: Coefficient of Martin's expression for 'nl' sequence of Deuterium.	a_2: Coefficient of Martin's expression for 'nl' sequence of Deuterium.	δ_0: Quantum defects of lowest possible state of each series of Deuterium.	δ_0: Quantum defects of highest possible state up to which sequence is computed.
	Energy Sequence: Energy levels sequence of Deuterium with initial principal quantum number	a_0: Coefficient of Martin's expression for 'nl' sequence of Deuterium.	a_1: Coefficient of Martin's expression for 'nl' sequence of Deuterium.	a_2: Coefficient of Martin's expression for 'nl' sequence of Deuterium.	δ_0: Quantum defects of lowest possible state of each series of Deuterium.	δ_0: Quantum defects of highest possible state up to which sequence is computed.

Table II Energy Level sequence and Quantum Defects of $ns^2S_{1/2}$ ($2n\leq 60$) in Deuterium.

| Energy Level sequence and Quantum Defects of $ns^2S_{1/2}$ ($2n\leq 60$) in Deuterium. |
|---|---|---|---|---|---|
| Energy Level sequence and Quantum Defects of $ns^2S_{1/2}$ ($2n\leq 60$) in Deuterium. | $\delta_{n,NIST}$ Quantum Defects computed by the Experimental values of energies listed at NIST | $\delta_{n,Cal}$ Quantum Defects calculated in this work by WBEPMT | $E_{n,NIST}$ Energy levels Listed at NIST | $E_{n,Cal}$ Energy levels calculated in this work by WBEPMT |
| n: Principal Quantum number. | $\delta_{n,NIST}$ Quantum Defects computed by the Experimental values of energies listed at NIST | $\delta_{n,Cal}$ Quantum Defects calculated in this work by WBEPMT | $E_{n,NIST}$ Energy levels Listed at NIST | $E_{n,Cal}$ Energy levels calculated in this work by WBEPMT |
| n: Principal Quantum number. | $\delta_{n,NIST}$ Quantum Defects computed by the Experimental values of energies listed at NIST | $\delta_{n,Cal}$ Quantum Defects calculated in this work by WBEPMT | $E_{n,NIST}$ Energy levels Listed at NIST | $E_{n,Cal}$ Energy levels calculated in this work by WBEPMT |

Table III Energy Level sequence and Quantum Defects of $np^2P_{1/2}$ ($2n\leq 60$) in Deuterium.

| Energy Level sequence and Quantum Defects of $np^2P_{1/2}$ ($2n\leq 60$) in Deuterium. |
|---|---|---|---|---|---|
| Energy Level sequence and Quantum Defects of $np^2P_{1/2}$ ($2n\leq 60$) in Deuterium. | $\delta_{n,NIST}$ Quantum Defects computed by the Experimental values of energies listed at NIST | $\delta_{n,Cal}$ Quantum Defects calculated in this work by WBEPMT | $E_{n,NIST}$ Energy levels Listed at NIST | $E_{n,Cal}$ Energy levels calculated in this work by WBEPMT |
| n: Principal Quantum number. | $\delta_{n,NIST}$ Quantum Defects computed by the Experimental values of energies listed at NIST | $\delta_{n,Cal}$ Quantum Defects calculated in this work by WBEPMT | $E_{n,NIST}$ Energy levels Listed at NIST | $E_{n,Cal}$ Energy levels calculated in this work by WBEPMT |
| n: Principal Quantum number. | $\delta_{n,NIST}$ Quantum Defects computed by the Experimental values of energies listed at NIST | $\delta_{n,Cal}$ Quantum Defects calculated in this work by WBEPMT | $E_{n,NIST}$ Energy levels Listed at NIST | $E_{n,Cal}$ Energy levels calculated in this work by WBEPMT |

Table IV Energy Level sequence and Quantum Defects of $np^2P_{1/2}$ ($2n\leq 60$) in Deuterium

| Energy Level sequence and Quantum Defects of $np^2P_{1/2}$ ($2n\leq 60$) in Deuterium. |
|---|---|---|---|---|---|
| Energy Level sequence and Quantum Defects of $np^2P_{1/2}$ ($2n\leq 60$) in Deuterium. | $\delta_{n,NIST}$ Quantum Defects computed by the Experimental values of energies listed at NIST | $\delta_{n,Cal}$ Quantum Defects calculated in this work by WBEPMT | $E_{n,NIST}$ Energy levels Listed at NIST | $E_{n,Cal}$ Energy levels calculated in this work by WBEPMT |
| n: Principal Quantum number. | $\delta_{n,NIST}$ Quantum Defects computed by the Experimental values of energies listed at NIST | $\delta_{n,Cal}$ Quantum Defects calculated in this work by WBEPMT | $E_{n,NIST}$ Energy levels Listed at NIST | $E_{n,Cal}$ Energy levels calculated in this work by WBEPMT |
E_{cal}: Energy levels calculated in this work by WBEPMT

Table V \hspace{1cm} Energy Level Sequence and Quantum Defects of $ns^2D_{3/2}$ \textup{(}3\leq n\leq 60\textup{)} in Deuterium.

n: Principal Quantum number.
δ_{NIST}: Quantum Defects computed by the Experimental values of energies listed at NIST
δ_{Cal}: Quantum Defects calculated in this work by WBEPMT

E_{NIST}: Energy levels Listed at NIST
E_{cal}: Energy levels calculated in this work by WBEPMT

Table VI \hspace{1cm} Energy Level Sequence and Quantum Defects of $ns^2D_{5/2}$ \textup{(}3\leq n\leq 60\textup{)} in Deuterium.

n: Principal Quantum number.
δ_{NIST}: Quantum Defects computed by the Experimental values of energies listed at NIST
δ_{Cal}: Quantum Defects calculated in this work by WBEPMT

E_{NIST}: Energy levels Listed at NIST
E_{cal}: Energy levels calculated in this work by WBEPMT

Table VII \hspace{1cm} Energy Level Sequence and Quantum Defects of $ns^2F_{5/2}$ \textup{(}4\leq n\leq 60\textup{)} in Deuterium.

n: Principal Quantum number.
δ_{NIST}: Quantum Defects computed by the Experimental values of energies listed at NIST
δ_{Cal}: Quantum Defects calculated in this work by WBEPMT

E_{NIST}: Energy levels Listed at NIST
E_{cal}: Energy levels calculated in this work by WBEPMT

Table VIII \hspace{1cm} Energy Level Sequence and Quantum Defects of $ns^2D_{7/2}$ \textup{(}4\leq n\leq 60\textup{)} in Deuterium.

n: Principal Quantum number.
δ_{NIST}: Quantum Defects computed by the Experimental values of energies listed at NIST
δ_{Cal}: Quantum Defects calculated in this work by WBEPMT

E_{NIST}: Energy levels Listed at NIST
E_{cal}: Energy levels calculated in this work by WBEPMT

Table IX. \hspace{1cm} Coefficients of Rykova’s Expression.

Energy Sequence: Energy levels sequence of Deuterium with initial principal quantum number τ_0: Coefficients of Rykova’s Expression for measuring radiative lifetimes.
α: Power of effective quantum number n^*, for which Radiative lifetimes are directly proportional.

Table X. \hspace{1cm} Radiative Lifetimes in nS and Natural linewidths in cm$^{-1}$ of $^2S_{1/2}$ \textup{(}2\leq n\leq 60\textup{)} in Deuterium.

n: Principal Quantum number.
τ_{NIST}: Experimental values of radiative lifetimes obtained from Transition probabilities listed at NIST.
τ_{Cal}: Radiative lifetimes computed by exploiting Rykova’s expression and WBEPMT.
Γ_{Cal}: Natural line widths produce due to uncertainty principal.

Table XI. \hspace{1cm} Radiative Lifetimes in nS and Natural linewidths in cm$^{-1}$ of $^2P_{1/2,3/2}$ \textup{(}2\leq n\leq 60\textup{)} in Deuterium.

n: Principal Quantum number.
τ_{NIST}: Experimental values of radiative lifetimes obtained from Transition probabilities listed at NIST.
τ_{Cal}: Radiative lifetimes computed by exploiting Rykova’s expression and WBEPMT.
Γ_{Cal}: Natural line widths produce due to uncertainty principal.

Table XII. \hspace{1cm} Radiative Lifetimes in nS and Natural linewidths cm$^{-1}$ of $^2D_{3/2,5/2}$ \textup{(}2\leq n\leq 60\textup{)} in Deuterium.

n: Principal Quantum number.
τ_{NIST}: Experimental values of radiative lifetimes obtained from Transition probabilities listed at NIST.
τ_{Cal}: Radiative lifetimes computed by exploiting Rykova’s expression and WBEPMT.
Γ_{Cal}: Natural line widths produce due to uncertainty principal.

Table XIII. \hspace{1cm} Radiative Lifetimes in nS and Natural linewidths cm$^{-1}$ of $^2F_{5/2,7/2}$ \textup{(}2\leq n\leq 60\textup{)} in Deuterium.

n: Principal Quantum number.
τ_{NIST}: Experimental values of radiative lifetimes obtained from Transition probabilities listed at NIST.
τ_{Cal}: Radiative lifetimes computed by exploiting Rykova’s expression and WBEPMT.
Γ_{Cal}: Natural line widths produce due to uncertainty principal.

7. References:
[1] https://en.wikipedia.org/wiki/Deuterium#Applications.
8. Acknowledgement:
This work is supported by Dr. Zaheer Uddin from University of Karachi, Department of Physics. We all are highly great full to Dr. Zaheer Uddin for providing the assistance during the completion of this work.