Intranasal Dexamethasone: a New Clinical Trial For The Control of Inflammation and Neuroinflammation in Covid-19 Patients

Graciela Caádenas
 Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez: Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suarez

Ana María Espinosa
 Hospital General de Mexico Dr Eduardo Liceaga

María Chavez-Canales
 Instituto Nacional de Cardiología Ignacio Chávez: Instituto Nacional de Cardiología Ignacio Chavez

Antonio Jordán-Ríos
 Instituto Nacional de Cardiología Ignacio Chávez: Instituto Nacional de Cardiología Ignacio Chavez

Daniel Anica Malagon
 Hospital General de México Dr Eduardo Liceaga: Hospital General de Mexico Dr Eduardo Liceaga

Manlio F. Márquez
 Instituto Nacional de Cardiología Ignacio Chávez: Instituto Nacional de Cardiologia Ignacio Chavez

Laura Torres-Araujo
 Instituto Nacional de Cardiología Ignacio Chávez: Instituto Nacional de Cardiologia Ignacio Chavez

Ricardo Barajas-Campos
 Instituto Nacional de Cardiología Ignacio Chávez: Instituto Nacional de Cardiologia Ignacio Chavez

Rosa Wong
 UNAM Facultad de Medicina: Universidad Nacional Autonoma de Mexico Facultad de Medicina

Luis Ramírez
 Unidad Temporal Citibanamex

Karent Ibet
 Unidad Temporal Citibanamex

Enrique García
 Unidad temporal Citibanamex

Mariana Rodriguez
 Unidad Temporal Citibanamex

Yoana Leyva
 Instituto Nacional de Cardiología Ignacio Chávez: Instituto Nacional de Cardiologia Ignacio Chavez

Joselin Hemández-Ruíz
 Hospital General de México Dr Eduardo Liceaga: Hospital General de Mexico Dr Eduardo Liceaga
María Hernández-Mendel
Hospital General de México Dr Eduardo Liceaga: Hospital General de Mexico Dr Eduardo Liceaga

Mireya León-Hernández
Hospital General de México Dr Eduardo Liceaga: Hospital General de Mexico Dr Eduardo Liceaga

Karen Medina
SEDENA: Mexico Secretaria de Defensa Nacional

Anahi Sánchez
SEDENA: Mexico Secretaria de Defensa Nacional

Sergio Hernández
SEDENA: Mexico Secretaria de Defensa Nacional

Ignacia Zeron
SEDENA: Mexico Secretaria de Defensa Nacional

Adriana Martínez-Cuazitl
SEDENA: Mexico Secretaria de Defensa Nacional

Iván Martínez
SEDENA: Mexico Secretaria de Defensa Nacional

Eduardo Beltrán
SEDENA: Mexico Secretaria de Defensa Nacional

Aldo Figueroa
SEDENA: Mexico Secretaria de Defensa Nacional

Patricia Hernández
SEDENA: Mexico Secretaria de Defensa Nacional

Rafael I Aguilar
SEDENA: Mexico Secretaria de Defensa Nacional

Daniela Murillo-Reyes
SEDENA: Mexico Secretaria de Defensa Nacional

Luis R. Del Río
SEDENA: Mexico Secretaria de Defensa Nacional

Rogelio A. Alfaro-Bonilla
SEDENA: Mexico Secretaria de Defensa Nacional

Joselyn Cruz
Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez: Instituto Nacional de Neurologia y Neurocirugia Manuel Velasco Suarez

Leonor Huerta
UNAM Instituto de Investigaciones Biomedicas: Universidad Nacional Autonoma de Mexico Instituto de Investigaciones Biomedicas

Nora Fierro
UNAM Instituto de Investigaciones Biomedicas: Universidad Nacional Autonoma de Mexico Instituto de Investigaciones Biomedicas
Marisela Hernández
UNAM Instituto de Investigaciones Biomedicas: Universidad Nacional Autonoma de Mexico Instituto de Investigaciones Biomedicas

Mayra Pérez-Tapia
Unidad de desarrollo e investigación en Bioprocesos. ENCB-IPN

Gabriela Meneses
Insituto de diagnostico y referencia epidemiológicos

Helgi Jung
UNAM Facultad de Quimica: Universidad Nacional Autonoma de Mexico Facultad de Quimica

Erick Espínola-Arriaga
UNAM Instituto de Investigaciones Biomedicas: Universidad Nacional Autonoma de Mexico Instituto de Investigaciones Biomedicas

Gabriela Rosas
Universidad Autónoma del Estado de Morelos Facultad de Medicina: Universidad Autonoma del Estado de Morelos Facultad de Medicina

Roxana Olguin
UNAM Instituto de Investigaciones Biomedicas: Universidad Nacional Autonoma de Mexico Instituto de Investigaciones Biomedicas

Sandra Ortega
UNAM Instituto de Investigaciones Biomedicas: Universidad Nacional Autonoma de Mexico Instituto de Investigaciones Biomedicas

Alberto Chinney
Unidad Temporal Citibanamex

Sergio Rosales
Universidad Autónoma de San Luis Potosí: Universidad Autonoma de San Luis Potosi

Juan Hernández-Aceves
UNAM Instituto de Investigaciones Biomedicas: Universidad Nacional Autonoma de Mexico Instituto de Investigaciones Biomedicas

Jaquelynne Cervantes-Torres
UNAM Instituto de Investigaciones Biomedicas: Universidad Nacional Autonoma de Mexico Instituto de Investigaciones Biomedicas

Hugo Besedovsky
Institute of Physiology and Pathophysiology. Emil-ManKopff-Strabe

Marta C. Romano
CINVESTAV Departamento de Fisiologia Biofisica y Neurociencias

Raúl J Bobes
UNAM Instituto de Investigaciones Biomedicas: Universidad Nacional Autonoma de Mexico Instituto de Investigaciones Biomedicas

Gloria Soldevila
Research Article

Keywords: Dexamethasone, intranasal administration, inflammation, neuroinflammation, COVID-19

Posted Date: September 28th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-693766/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
INTRANASAL DEXAMETHASONE: A NEW CLINICAL TRIAL FOR THE CONTROL OF INFLAMMATION AND NEUROINFLAMMATION IN COVID-19 PATIENTS

1Graciela Cárdenas, 2Ana María Espinosa, 3María Chávez-Canales, 3Antonio Jordán-Ríos, 4Daniel Anica Malagon, 5Manlio Fabio Márquez Murillo, 5Laura Victoria Torres Araujo, 5Ricardo Leopoldo Barajas Campos, 5Rosa María Wong, 5Luis Esteban Ramírez González, 5Karent Ibet Cresencio, 5Enrique García Velázquez, 5Mariana Rodríguez de la Cerda, 6Yoana Leyva, 6Joselin Hernández-Ruiz, 2María Luis Hernández-Medel, 2Mireya León-Hernández, 6Karen Medina Quero, 6Anaí Sánchez Monciváis, 6Sergio Hernández Díaz, 6Ignacia Rosalia Zeron Martínez, 6Adriana Martínez-Cuazitl, 6Iván Noé Martínez Salazar, 6Eduardo Beltrán Sarmiento, 6Aldo Figueroa Peña, 6Patricia Saraí Hernández Hernández, 6Rafael Ignacio Aguilar Reynoso, 6Daniela Murillo Reyes, 6Luis Rodrigo del Río Ambriz, 6Rogelio Antonio Alfaro Bonilla, 7Jocelyn Cruz, 7Leonor Huerta, 7Nora Alma Fierro, 7Marisela Hernández, 8Mayra Pérez-Tapia, 9Gabriela Meneses, 10Helgi Jung, 7Erick Espíndola-Arriaga, 11Gabriela Rosas, 7Roxana Olguín Alor, 7Sandra Ortega Francisco, 7Alberto Chimny, 12Sergio Rosales Mendoza, 7Juan Alberto Hernández-Aceves 16Jaquelynne Cervantes-Torres, 7Anaí Fuentes Rodríguez 13Hugo Besedovsky, 14Marta C. Romano, 7Raúl J. Bobes 7Gloria Soldevila, 15Juan López Alvarenga 7Gladis Fragoso, 7Juan Pedro Laclette, 7Edda Sciutto.

1Instituto Nacional de Neurología y Neurocirugía (INNN), Av. Insurgentes Sur 3877, La Fama, Tlalpan, 14269 Ciudad de México, México.

2Clinical Pharmacology Unit, Hospital General de México Dr. Eduardo Liceaga, Dr. Balmis 148, Doctores, Cuauhtémoc, 06720 Ciudad de México, México.

3Unidad de Investigación UNAM-INC, Instituto Nacional de Cardiología Ignacio Chávez and Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, 14080 Ciudad de México, México.

4Facultad de Medicina. Universidad Nacional Autónoma de México, 04510 Ciudad de México, México.

5Unidad Temporal COVID-19. Centro Citibanamex. Avenida del Conscripto 311, Lomas de Sotelo, 11200 Miguel Hidalgo, CDMX, México.

6Hospital Militar. Secretaría de la Defensa Nacional Periférico Blvrd Manuel Ávila Camacho s/n, Militar, Miguel Hidalgo, 11200 Ciudad de México, CDMX

7Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México.

8Unidad de Desarrollo e Investigación en Bioprocesos. Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Col. Casco de Santo Tomas, Del. Miguel Hidalgo, 11340. Ciudad de México.

9Instituto de Diagnóstico y Referencia Epidemiológicos Dr. Manuel Martínez Báez. Francisco de Miranda 177, Lomas de Plateros, Alvaro Obregón, 01480 Ciudad de México.
REVIVAL is a controlled, open-label multicentric study to compare the standard low doses of intravenous dexamethasone with low doses weight-adjusted of intranasal dexamethasone.

Intranasal dexamethasone can reach more effectively than intravenous the respiratory tract.

Intranasal dexamethasone can reach the central nervous system in therapeutic concentrations even at low doses.

REVIVAL aims to add to the control of systemic inflammation, the control of neuroinflammation to reduce central failures and sequelae.
COVID-19 has produced more than 176 million infected individuals and almost 3.2 million deaths worldwide. The infection results in a dysregulated systemic inflammation, multi-organ dysfunction, and critical illness. Cells of the central nervous system (CNS) are also affected triggering a dysregulated neuroinflammatory response.

Low doses of glucocorticoids (GCs) orally or intravenously administered has been proved to reduce mortality of moderate and severe COVID-19 patients. However, low doses administered by those routes do not reach therapeutic levels in the CNS. In contrast, if dexamethasone is administered by the intranasal route can result in therapeutic doses in the CNS even at low doses of the GC.

Methods: This is an approved multicentric randomized controlled protocol to compare the effectiveness of low doses of intranasal dexamethasone versus intravenous administered in adult moderate and severe COVID-19 patients. The protocol is conducted in five health institutions in Mexico City. A total of 120 patients will be randomized in two groups (intravenous vs intranasal) at 1:1 ratio, both groups will be treated with these dexamethasone schemes for 10 days. The primary outcome of the study will be clinical improvement, defined as a statistically significant higher reduction in the NEWS-2 score in intranasally versus intravenously dexamethasone treated patients. The second outcome will be the reduction in mortality during hospitalization.

Conclusions: This protocol is currently undertaken to improve the efficacy of the standard therapeutic dexamethasone regimen for moderate and severe COVID-19 patients.
Trial registration: ClinicalTrials.gov identifier: NCT04513184 Registered November 12, 2020 and was approved by COFEPRIS with identifier DI/20/407/04/36. People are currently being recruited.

Keywords: Dexamethasone, intranasal administration, inflammation, neuroinflammation, COVID-19
Background

So far, the outbreak of COVID-19 has caused more than 176 million infected individuals and almost 3.2 million deaths worldwide (https://coronavirus.jhu.edu/map.html) with a current global case-fatality ratio of 2.1%, the most affected geographic region are the Americas with a case-fatality ratio of 2.6%.

Several factors predict a poor outcome for COVID-19 patients, such as comorbidities (diabetes, hypertension, obesity) and aging with an underlying dysregulated inflammatory response\(^1\). Other relevant factors include SARS-CoV-2 neurotropism/neuroinvasiness \(^2-9\). In fact, the viral RNA was observed in the brain of patients that deceased by severe acute respiratory syndrome due to COVID-19 infection \(^10-12\). Likewise, it was reported evidence of astrocytic activation and neuronal damage in severe COVID-19 patients, which present elevated plasmatic levels of GFAP and NfL \(^13\). Other authors have evaluated astrocytes \(^14\) and neurons in 2D o 3D cultures showing an extensive infection \(^15,16\). The infection of cells of the Central Nervous System results in the expression of PAMPs and DAMPs that trigger a neuroinflammatory response. The exacerbated systemic inflammation with the consequent breakdown of the blood-brain barrier and the migration of cells and peripheral inflammatory mediators also contribute to increase to the in situ generated neuroinflammatory response. Together, this dysregulated and sustained neuroinflammation can add to peripheral damage, central (CNS) damage, which may contribute to the multi-organ dysfunction and death \(^10,12\).
Natural history of SARS-CoV-2 infection

A clinical staging system has been proposed in SARS-CoV-2 infection as follow, early infection (Stage I, mild), pulmonary involvement (Stage IIa, moderate) without hypoxia, or with hypoxia (Stage IIb), and finally Stage III (systemic hyperinflammation) (Figure 1).

After exposure to SARS-CoV-2, virus gains host access through the nasal cavity and respiratory airway. During early infection (Stage I), mild and non-specific symptoms may be observed (fever, malaise, and asthenia), upon this prodromic phase virus binds its target ACE2, TMPRSS2 and more recently NRP-1. These receptors are highly present on several tissues including the olfactory neuroepithelium (less in the sensitive olfactory neurons) and lung, consequently, the infection can be established in the lungs (Stage II) and lead to viral pneumonia, cough, and fever with or without hypoxia. Here the SARS-CoV-2 PAMPs will be recognized by TLR3, TLR7 and TLR8 in the endosome but also in the RIG-1 like receptor in the cytosol. The virus can also reach the CNS through the olfactory and trigeminal nerves terminal. Once in the CNS it can infect and damage endothelial, pericytes and neural cells that expressed ACE2, NRP-1 receptors promoting neuroinflammation (Figure 1). CNS viral involvement is related to headache, dizziness, and ataxia, but infection also may progress to the whole brain including the brainstem. Finally, in a minority of infected-patients disease progresses to Stage III where a hyperinflammatory syndrome (the sustained production of proinflammatory cytokines including IL-1β and TNFα) is observed, with mitochondrial and lysosomal damage, expressing elevated proinflammatory cytokines, reactive oxygen species (ROS), and the hyperactivation of P2X7 receptors. These processes induce inflammasome activation (which increased IL-6 levels) and lead to pyroptosis which
determines a persistent inflammatory cycle by disseminating viral antigens and RNA in the circulation. Thereafter, it is possible the generation of immune complex and its deposition in target organs 23-25. During this phase, sustained neuroinflammation may exacerbate the neuronal injury, therefore spreading damage and contributing towards central respiratory failure besides other signs of systemic organ involvement resulting in multi-organ dysfunction 17.

A crucial strategy to treat COVID-19 patients seems to be the control of neuroinflammation and systemic inflammation. For this purpose, it is important to consider how the virus invades the human organism. The most frequent form is the intranasal route which allows a direct access to both, the respiratory and the central nervous systems through neural pathways 5; 15-18. Coronaviruses including SARS-CoV-2 can infect brainstem neurons associated with cardio-respiratory control, which induces central alterations of pulmonary function 5; 26-29. In fact, COVID-19 neurological clinical symptoms particularly nausea, vomiting, and dysgeusia appear to involve the dorsal vagal complex (DVC) and the nucleus tractus solitary (NTS) linked to the control of several autonomic functions 26. The NTS is a well-known target of neuro-immune activation 33, and its ascending projections reach the hypothalamus (hypothalamic paraventricular nucleus) involved in the HPA axis activation while other NTS projections come to the rostral ventrolateral medulla (RVM), which controls respiratory and cardiovascular functions 34. The viral infection in respiratory and central nervous system cells promotes the expression of pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) signals that in turn trigger inflammasome and oxidative stress 23,35. Later
during infection, inflammatory response may become dysregulated extending the initial
damage caused by the infection.

Adrenal affection in SARS-CoV-2 infection

Critically ill-patients of different pathologies frequently show adrenal insufficiency which
may increase morbidity and mortality. COVID-19 might affect the hypothalamic-
pituitary-adrenal (HPA) axis as well. Hypothalamic and hypophysis tissues do express ACE2
and can therefore be viral targets. The virus may directly damage the hypothalamus as well
as the pituitary leading to hypothalamo-pituitary dysfunctions. In fact, since SARS outbreak
in 2003, it was observed that coronavirus affects the HPA axis, and vasculitis was
demonstrated by autopsy studies in several organs including adrenal glands, particularly
adrenal cortical cells undergo degeneration and necrosis. Although the full spectrum of
COVID-19 endocrinological manifestations within long-term is still unclear, several
endocrine alterations have been reported in SARS survivors, as well as hypocortisolism, and
hypothyroidism, and low levels of dehydroepiandrosterone, which suggested a transient
hypothalamic-pituitary dysfunction. Recently, an Arabian study in 28-patients reported the
adrenal response to an acute COVID-19 infection, the median morning cortisol level was 196
(31-587) nmol/L, the ACTH median level of 18.5 (4-38ng/L). Interestingly, severe forms
patients had lower cortisol and ACTH. In addition, in other autopsy studies, edema,
neuronal degeneration and evidence of viral genome were found in the hypothalamus. Thus,
in the presence of subacute thyroiditis or adrenal insufficiency, corticosteroid therapy should
help in reduced high amounts of thyroid hormones, and replace adrenal function, improving
the evolution of these patients, regardless the route of administration.
Rationale

Dexamethasone sodium phosphate (ALIN, injectable solution. Chinoin Laboratory) is a highly soluble glucocorticoid with a neutral pH 7-8.5, which did not injury the nasal mucosa. This synthetic steroid is an anti-inflammatory and immunomodulator drug that inhibits prostaglandins and leukotrienes synthesis, platelet activation, and coagulation through regulation of transcriptional factors such as NFK-β y AP-1. In addition, it can sensitize the cells to extracellular ATP during NLRP3 induction, which enhances the release of proinflammatory molecules. In addition, it has been reported that DXM exerts important neuroprotective effects as rescue the neurovascular integrity during neuroinflammation.
Figure 1.
Dexamethasone a potent anti-inflammatory drug

Considering that complications of COVID-19 result from exacerbated and uncontrolled peripheral inflammation and neuroinflammation, derived from the so-called cytokine storms, at least three important and key points have been considered in the use of DXM for the treatment of victims of the Coronavirus: the timing, the dose, and the route of administration of the steroid. First, the drug would not be applied from the beginning of the infection, the time at which the inflammation favors the host. It should be given to promote the installation of an adaptive immune response and thus control the infection. A low dose of DXM (6 mg per patient for 10 days) applied to quickly and effectively control pulmonary inflammation with minimal negative side effects \(^{47}\). In addition, the intranasal route would allow direct access of the DXM to the CNS, thereby controlling the sustained neuroinflammation provoked by damage to infected astrocytes, neurons and microglia during the progression of COVID that cause the fatal central respiratory and cardiac failure in these patients.

It is well known that drugs administered intranasal usually permit higher bioavailability in CNS without the need of BBB pass or hepatic degradation, in comparison with similar intravenous doses administered in experimental models \(^{55-58}\). In addition, the administration of DXM by this route induces an inflammatory control by arriving directly to the respiratory system, more effectively and quickly than by using intravenous route \(^{56-59}\). DXM prevents the binding of ACE2 to spike protein of SARS-CoV-2 and can bind LYS353, an active residue of RBD \(^{60}\), and reduces ACE2 expression in several types of cells by suppressing type I interferon expression \(^{61}\), can also downregulate neutrophils extracellular traps, possibly through Toll-like receptor regulation \(^{62}\). It is known that hyper inflammation
is related to high levels of NETs which is related to ARDS in which neutrophilia predicts thrombosis and poorer outcomes.63, 64

\section*{METHODS}

\subsection*{Trial design}

The “REVIVAL trial” an interventional study, phase 2, multicentric randomized controlled in adult patients with confirmed COVID-19 diagnosis was designed to evaluate the efficacy of low doses of intranasal DXM compared to intravenous administration in patients of five COVID-19 referral centers in Mexico City. This protocol is supported in part by the Institutional grant "Programa de Investigación para el Desarrollo y la Optimización de Vacunas, Inmunomoduladores y Métodos Diagnósticos del Instituto de Investigaciones Biomédicas", UNAM (DGAPA-UNAM, PAPIIT IN201020), as well as by another specific grant provided by the Mexican Ministry of Foreing Affairs (Secretaria de Relaciones Exteriores) and Mexican Agency for International Development Cooperation (AMEXCID) with identifier: 318.01 fund MEX-CHI. This trial is being coordinated at the Department of Immunology of the Biomedical Research Institute, UNAM.

\subsection*{Settings}

This clinical trial is being conducted at the following Institutions “Hospital General de México Dr. Eduardo Liceaga”, “Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez”, “Instituto Nacional de Cardiología Ignacio Chavez”, “COVID-19 unit at Citibanamex” and “Hospital Central Militar” all of them in Mexico City.
Eligibility criteria

Inclusion criteria includes patients of both sexes, (non-pregnant female) 18 years of age and under 90 years, with presumptive SARS-CoV-2 infection with more than 5 days of clinical evolution and with moderate to severe symptoms requiring oxygen support or high flux mechanical ventilation (NEWS-2 ≥ 5), abnormal CT- chest scan CO-RADS >3. Patients diagnosed with atypical pneumonia, confirmed by chest images and oxygen saturation (SpO$_2$) less than 93% in ambient air or when a ratio of the partial pressure of oxygen (PaO$_2$) and the fraction of inspired oxygen (FiO$_2$) (PaO$_2$: FiO$_2$) was 300 mm Hg or less, and a confirmatory RT-PCR SARS-CoV-2 positive test. These patients will be allocated into the experimental group or the control group in a ratio 1:1 (two arms) (Fig. 2) according to the randomization.

Exclusion criteria includes patients with RT-PCR SARS-CoV-2 negative test, those receiving previously GCs at high doses, by oral or intravenous administration, or severely immunosuppressed as in AIDS, pregnancy; autoimmune disease patients as well as those who have received outpatient treatment with steroids for more than 72 hours prior to hospital admission, older than 90 years, or with DXM allergy, risk for glaucoma or recurrent respiratory diseases.

Elimination criteria will be considered in case of voluntary withdrawing or lacking informed consent, or imminent risk of death within 48 hrs.

The pharmacovigilance staff of each hospital will perform a continuous monitoring each 72 hours during the period of study (including all adverse events).
Interventions

Groups and comparators

The study will be carried out in two groups, group A (experimental) that will receive intranasal DXM, and group B (Control) that will receive intravenous DXM (Fig.2), based on the previously reported data, where the intranasal administration can reach the brain and bloodstream more quickly and efficiently \(^{56-59}\). Group A will receive daily intranasally DXM at a dose of -0.12 mg / kg for the first three days, that will be followed by seven days at a dose of 0.06mg / kg. Group B will receive daily 6mg intravenous DXM. In both groups, a close follow-up will be done by the pharmacovigilance staff every 72 hours, they will assess whether it is appropriate for the patients to continue within the protocol.

Procedures

A double follow-up form (written and online) will be filled for each patient, and completed at the end of treatment or fatal outcome after randomization, whatever occurs first. Besides a daily clinical evaluation, blood and saliva samples will be collected every third day during the whole treatment period, to perform ancillary tests as SARS-CoV-2 viral load, functional immunological assessment (lymphocyte cytometry, cytokines / chemokines profile), as well as cortisol levels, among other analysis. All human samples will be stored at -70ºC until use. All patient’s personal data and medical information will be treated in a strictly confidential way. Only the lead investigator and the hospital coordinator investigators will have access.
Participants

The sample includes 120 adult patients between 18 and 90 year-olds, both sexes with moderate and severe forms of COVID-19.

Sample size and Randomization

The sample size was calculated with EPIDAT version 3.1.2 software, with the option “Sample size and surveillance curves” with an estimation of 50% increase in the proportion of patients free of mechanical ventilation [intranasal DXM 70% vs intravenous DXM 45%]. This value was estimated based on the data of the COVID-19 patients registered in Mexican hospitals with a confidence of 95%, power of 80% and proportion of losses of 10%, with these characteristics is obtained 60 per group. The randomization will be making with Sealed Envelope software. This software is a freeware [Online] available from: https://www.sealedenvelope.com/simple-randomiser/v1/lists [Accessed 5 May 2020]. This study is a multicenter randomized controlled trial. (Fig. 2)

Confidentially

Each patient who agrees to participate in the protocol will be assigned an identification number, which will be used to check out throughout the procedure. This code identifies the hospital of origin and the patient identification number. All the information collected during the procedure will be confidential and used for the research purpose only and follow up for any adverse effect.
Outcomes

The expected primary outcome is clinical improvement, defined as a two-point improvement of ordinal scale regarding the initial NEWS-2 score. The secondary expected outcome includes a reduction in mortality that will be follow-up during treatment (after randomization), as well as a reduction of the time required for mechanical ventilation and the length time of patient’s stay in hospital. Viral load, several other physiological parameters and the immune-inflammatory profile will also be evaluated before and after treatment (see above).

Data collection and management

The patient receives an informed consent letter, where the characteristics of the procedure are detailed, if he accepts, the letter will be signed and the patient will be randomized; saliva and nasopharyngeal sample will be taken to know the viral load and treatment will begin as indicated in figure 2; a clinical history will be made based on the initial results and physical inspection of the patient.

The samples taken will be sent for specialized analysis following standardized operating procedures (SOP’s) for the analysis.

Plans to promote participant retention and complete follow-up

All participants in the research protocol will receive specialized medical care, by monitoring continuously clinical, neurological, and neuropsychological studies. These evaluations will be carried out to monitor the evolution of the disease at 1, 3, 6, and 12 months after COVID-19. Those participants presenting some functional decline post COVID will be received
medical treatment and neurorehabilitation.

Likewise, for patients who present an adverse effect or health problem during its participation in the dexamethasone treatment study or derive to it upon hospitalization, the General Hospital of Mexico Dr. Eduardo Liceaga will take care of the necessary treatment and/or care until their resolution. In addition, patients will be monitored every 3 months for 1 year after the study

Management

The information collected during the procedure will be documented physically and digitally in an exact and precise way. Each complete patient report will be used by researchers in conjunction with the molecular and immunological tests to analyze the outcomes. The information collected will be treated as confidential, and only the global results will be published without showing the names of the patients, in case the data is required, the information can be request to the researchers with valid reasons.

Analysis of outcomes

A database will be built, and a descriptive statistic will be performed. The data distribution will be analyzed and compared with DXM route of administration with a multivariable analysis: nested ANOVA with repeated measures and Markov test. The analysis will be done with a R software (4.0.0, Arbor Day). A statistical difference with $P < 0.05$ will be considered significant.
Figure 2.
5. Conclusions

Intranasal DXM at low doses could be a more effective therapeutic option to control inflammation and neuroinflammation during ARDS in severe and critical forms of SARS-CoV-2 infection. In addition, it could aid the HPA axis upon this severe stress condition. DXM in low doses applied by systemic route although beneficial for COVID-19 patients, cannot reach effective therapeutic concentration in the CNS to control neuroinflammation. In contrast, intranasal administration of DXM is highly effective to control neuroinflammation as demonstrated in experimental models of several inflammatory conditions. Therefore, in the REVIVAL trial clinical protocol, we propose boosting the effect of DXM treatment at low doses in COVID-19 through an intranasal route of administration to reach CNS at therapeutic doses that may effectively reduce the morbidity and mortality in severe or critical COVID-19 patients, even more than that reported data in the RECOVERY trial.

A randomized study in hospitalized COVID-19 patients (moderate and severe forms), the intranasal DXM at low doses (clinicaltrials.gov id: NCT04513184) is being tested. The clinical evolution and respiratory parameters of the patients receiving intranasal DXM (experimental treatment) is compared with recommended treatment of 6 mg of intravenously DXM (https://www.covid19treatmentguidelines.nih.gov/). Considering the prevalence of metabolic syndrome and obesity in Mexico, a therapeutic scheme weight-adjusted at low dose is being applied i.e., three-day schedule of 0.12 mg/kg and 7 days at 0.06 mg/kg. If the current approach results less prone to adverse effects but enough to reach CNS and control neuroinflammation as we hypothesized, there will be direct interest to extent this protocol to
several COVID hospitals of the National Healthy System in Mexico. In addition, it will be mandatory to increase the initial sample size (preliminary results) to publish it and share it with the international scientific community.

6. Declarations

6.1 Study Status

The study was registered under the platform Clinical Trials from NCBI in August 2020, and was approved by COFEPRIS in Mexico with identifier DI/20/407/04/36. People are currently being recruited.

6.2 Ethics declarations

This study was reviewed and approved by the Committees of Ethics, Research and Biosecurity of the five Hospitals committees. Hospital General de México “Dr. Eduardo Liceaga” (DI/20/407/04/36), Instituto Nacional de Neurología y Neurocirugía (INNN 31/20) and Instituto Nacional de Cardiología (INCICH: 20-1167), temporary unit for COVID Citibanamex, and Hospital Central Militar (FM/DI/107/SR/2020), and is approved for COFEPRIS with identifier DI/20/407/04/36.

All participants will provide a written informed consent before enrollment and all the work will be conducted according to the Helsinki statements.

6.3 Availability of data and materials

Data and materials are not available at this moment, because the work being considered is the first approach to a clinical trial currently started. When the study will be completed, the
dataset obtained and analyzed will be available from the corresponding author only by reasonable request.

6.4 Funding

This work were supported by Dirección General de Personal Académico, UNAM (DGAPA-UNAM, PAPIIT IV201020), by the Institutional program "Programa de Investigación para el Desarrollo y la Optimización de Vacunas, Inmunomoduladores y Métodos Diagnósticos del Instituto de Investigaciones Biomédicas" U.N.A.M as well by the Mexican Ministry of Foreing Affairs (Secretaria de Relaciones Exteriores) and Mexican Agency for International Development Cooperation (AMEXCID) with identifier: 318.01 fund MEX-CHI.

6.5 Conflict of interest

The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

7. Author’s contributions

Study concept and design: GC, ES, HB, MR, JH, MCC

Data acquisition and interpretation: GC, ES, HB, MR, JH, MCC, AJR, DAM, MFMM, LVTA, RLBC, RMW, LERG, KIC, EGV, MRC, YL, MLHM, MLH, KMQ, ASM, SHD, IGRZM, AMC, INMS, EBS, AFP, MJFM, PSHH, JC, LH, NAF, MH, MPT, GM, HJ, EEA, GR, ROA, SOF, SRM, JAHA, JCT, AFR, HB, MCR, RJB, GS, JLA, GF, JPL, RIAR, DMR, LRRA, RAAB

Manuscript drafting: GC, ES, HB, MR, JH, JAHA, MCR, RJB, GS, JLA, GF, JPL
Critical revision of the manuscript for important intellectual content: GC, ES, HB, MR, JH, JAHA, MCR, RJB, GS, JLA, GF, JPL

8. Consent for publication

Not applicable

9. Acknowledgements

Not applicable

10. List of abbreviations

DVC: Dorsal Vagal Complex

NTS: Nucleus Tractus Solitary

HPA: Hypothalamic Pituitary Adrenal axis

RVM: Rostral Ventrolateral Medulla

DAMP: Damage-Associated Molecular Patterns

PAMP: Pathogen-Associated Molecular Patterns

DXM: Dexamethasone

GCs: Glucocorticoids

ACE2: Angiotensin-Converting Enzyme 2

TMPRSS2: Transmembrane Protease Serine 2

CNS: Central Nervous System

ROS: Reactive Oxygen Species
NFK-B: Nuclear Factor K beta

AP-1: Activator Protein 1

ARDS: Severe Acute Respiratory Distress Syndrome

BBB: Blood Brain Barrier

NET: Neutrophil Extracellular Traps
Figure Legends

Figure 1. Inflammatory phenomenon associated with SARS-CoV-2 infection and its neurological and respiratory manifestations. The SARS-CoV-2 virus enters mainly by air and reaches the lungs through direct ventilation and the CNS through the olfactory and trigeminal nerve, the entry of the virus is facilitated by NRP-1, ACE2 receptors and the protein S activation by TMPRSS2. In the CNS, the virus infects neurons, glial cells, and endothelial cells, increasing the permeability of the BBB, and may cause cerebral edema and intracranial hypertension, as well as neuroinflammation. If the viral infection continues, the damage spreads throughout the body causing heart and systemic failure. This damage is associated with an increase in neuroinflammation, directed by microglia and oligodendrocytes, causing damage to the brain stem, and causing a dysfunctional state of the heart and lung. Likewise, in the lung, due to exacerbated inflammation and intravascular coagulation, respiratory arrest is induced that can lead to the patient death. The inflammation is conducted by the cellular activation trough TLR3, 7 and 8 for components from the virus (PAMPS) and subsequent production of pro-inflammatory cytokines (TNFα and IL 1β) and generation of ROS; those ROS can be able to modify the P2X7 receptor in the brain and activate the inflammasome by the decrease of K+. The activation of inflammasome increases the production of IL-6 and pyroptosis.

Figure 2. Outline of the REVIVAL trial clinical protocol. Initially, patients will be informed about the clinical trial, if they accept and sign the consent, they will be randomized using the Sealed envelope® software. Group A receive DXM intranasally obtaining serum and a swab on days 0, 3, 6 and 10 post treatment. On the other hand, group B receive intravenous DXM, obtaining the same samples on the same days 0,3,6 and 10. Throughout the study, the patients
are monitored. Once the results are obtained, these are analyzed to define if exist a statistically difference between groups.
References

[1] Medzhitov R. Origin and physiological role of inflammation. Nature (2008) 454:428-35.10.1038/nature07201.

[2] Li YC, Bai WZ, Hashikawa T. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J Med Virol. 2020;92:552-555

[3] Zhou Z, Kang H, Li S, Zhao X. Understanding the neurotropic characteristics of SARS-CoV-2: from neurological manifestations of COVID-19 to potential neurotropic mechanisms. J Neurol. 2020;267(8):2179-2184

[4] Ng Kee Kwong, Koy Chong, Puja R. Mehta, Garima Shukla, and Arpan R. Mehta. 2020. “COVID-19, SARS and MERS: A Neurological Perspective.” Journal of Clinical Neuroscience. Churchill Livingstone. https://doi.org/10.1016/j.jocn.2020.04.124.

[5] Li YC, Bai WZ, Hirano N, Hayashida T, Hashikawa T. Coronavirus infection of rat dorsal root ganglia: ultrastructural characterization of viral replication, transfer, and the early response of satellite cells. Virus Res. 2012;163(2):628-635

[6] Desforges M, Le coupanclic A, Dubac P, Bourgouin A, Lajoie L, Dubé M, Talbot PJ. Human coronaviruses and other respiratory viruses: underestimated opportunistic pathogens of the central nervous system? Viruses 2019;12(1):14

[7] Gasmi A, Noor S, Menzel A, Dosa A, Pivina L, Bjoorklund G. Obesity and Insulin Resistance: Associations with Chronic Inflammation, Genetic and Epigenetic Factors. Curr Med Chem 2020. doi: 10.2174/0929867327666200824112056.
[8] Liu Danlin, Richardson G, Benli FM, Park C, de Souza JV, Bronowska AK, Spyridopoulos. Inflammageing in the cardiovascular system: mechanisms, emerging targets, and novel therapeutic strategies. Clin Sci (Lond) 2020; 134(17):2243-2262.

[9] Meinhardt J, Radke J, Dittmayer C et al. Olfactory transmucosal SARS-CoV-2 invasion as a port of a central nervous system entry in individuals with COVID-19. Nat Neurosci 2021;24(2):1698-175

[10] Dos Santos MF, Devalle S, Aran V, Capra D, Roque NR, Coelho-Aguiar JM, Spohr TCLSE, Subilaga JG, Pereira CM, D’Andrea Meira I, Niemeyer Soares Filho P, Moura-Neto V. Neuromechanisms of SARS-CoV-2: A review. Front Neuroanat. 2020;14:37

[11] Somolon IH, Normandin E, Bhattacharyya S, Mukerji SS, Kellner K, Ali AS, Adams G, Hornick JL, Padera RF Jr, Sabeti P. Neuropathological features of COVID-19. N Engl J Med 2020;383;989-992

[12] Paniz-Mondolfi A, Bryce C, Grimes Z, Gordon RE, Reidy J, Lednicky J, Sordillo EM, Fowkes M. Central nervous system involvement by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). J Med Virol. 2020;92(7):699-702

[13] Kanberg N, Ashton NJ, Andersson LM, Yilmaz A, Lindh M, Nilsson S, Price RW, Blennow K, Zetterberg H, Gisslén M. Neurochemical evidence of astrocytic and neuronal injury commonly found in COVID-19. Neurology. 2020;e1754-e1759.

[14] Andrews MG, Mukhtar T, Enze UC, Simoneau CR, Perez Y, Mostajo-Radji MA, Wang S, Velmeshev D, Salma J, Kumar GR, Pollen AA, Crouch EE, Ott M, Kriegstein AR. Tropism
of SARS-CoV-2 for developing human cortical astrocytes. Version 1. bioRxiv. Preprint. 2021

Jan 18. Doi:10.1101/2021.01.17.427024

[15] Ramani A, Müller L, Ostermann PN, Gabriel E, Abida-Islam P, Müller-Schiffmann A, Mariappan A, Goureau O, Gruell H, Walker A, Andrée M, Hauka S, Houwaart T, Dilther A, Wohlgemuth K, Omran H, Klein F, Wieczorek D, Adams O, Timm J, Korth C, Schaal H, Gopalakrishnan J. SARS-CoV-2 targets neurons of 3D human brain organoids. EMBO J. 2020;39:e106230

[16] Song E, Zhang Ce, Israelow B, Lu-Culligan A, Veites Prado A, Skriabine S, Lu P, Orr-El Weizman L, Lui F, Dai Y, Szigeti-Buck K, Yasumoto Y, Wang G, Castaldi C, Heltke J, Ng E, Wheeler J, Madel Alfajaro M, Levavasseur E, Fontes B, Ravindra NG, van Dijk D, Gunel M, Ring A, Jaffar Kazmi SA, Khang K, Willen CB, Horvath TL, Plu I, Haik S, Thomas JL, Louvi A, Farhadian SF, Huttner A, Seilhean D, Renier N, Bilguvar K, Iwaski A. Neuroinvasion of SARS-CoV-2 in human and mouse brain. J Exp Med. 2021;218:e20202135

[17] Siddiqi HS, Mehra MR. COVID-19 illness in native and immunosuppressed states: A clinical-therapeutic staging proposal. J Heart Lung Transplant. 2020;39(5):405-407

[18] Hoffmann, Markus, Hannah Kleine-Weber, Simon Schroeder, Nadine Krüger, Tanja Herrler, Sandra Erichsen, Tobias S. Schiergens, et al. 2020. “SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor.” Cell 181 (2): 271-280.e8 https://doi.org/10.1016/j.cell.2020.02.052

[19] Sungnak W, Huang N, Becavin C, et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat Med 2020; 26: 681–687. doi:10.1038/s41591-020-0868-6
[20] Cantuti-Castelvetri L, Ojha R, Pedro LD, Djannatian M, Franz J, Kuivanen S, van der Meer F, Kallio K, Kaya T, Anastasina M, Smura T, Levanov L, Szirovicza L, Tobi A, Kallio-Kokko H, Österlund P, Joensuu M, Meunier FA, Butcher SJ, Winkler MS, Mollenhauer B, Helenius A, Gokce O, Teesalu T, Hepojoko J, Vapalahti O, Stadelmann C, Balistreri G, Simons M. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science 2020;370:856-860.

[21] Davies J, Randeva HS, Chatha K, Hall M, Spandidos DA, Karteris E, Kyrou I. Neuropilin-1 as a new potential SARS-CoV-2 infection mediator implicated in the neurologic features and central nervous system involvement of COVID-19. Mol Med Rep. 2020;22:4221-4226

[22] Butowt, R. and Bilinska, K. (2020) SARS-CoV-2: Olfaction, brain infection and the urgent need for clinical samples allowing earlier virus detection. ACS Chem. Neurosci. 11(9), 1200–1203, doi: 10.1021/acschemneuro.0c00172

[23] Yap JKY; Moriyama M, Iwasaki A. Inflammasomes and pyroptosis as therapeutic targets for COVID-19. J Immunol. 2020;205(2):307-312

[24] Freeman TL, Swartz TH. Targeting the NLRP3 inflammasome in severe COVID-19. Front Immunol. 2020;11:1518

[25] Ribeiro Dem Oliveira-Giacomelli A, Glaser T, Arnaud.Sampaio VF, Andrejew R, Diekmann L, Baranova J, Lameu C, Ratajczak M, Ulrich H. Hyperactivation of P2X7 receptors as a culprit of COVID-19 neuropathology. Mol Psychiatry 2020;1-16
[26] Netland J, Meyerholz DK, Moore S, Cassell M, Perlman S. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J Virol. 2008;82(15):7264-7275.

[27] Wu Y., Xu X., Chen Z., Duan J., Hashimoto K., Yang L. Nervous system involvement after infection with COVID-19 and other coronaviruses. Brain Behav. Immun. 2020;20 30357-3.

[28] Zhou L., Zhang M., Wang J., Gao J. Sars-Cov-2: underestimated damage to nervous system. Travel Med. Infect. Dis. 2020 doi: 10.1016/j.tmaid.2020.101642.

[29] Sun T., Guan J. Novel coronavirus and central nervous system. Eur. J. Neurol. 2020 doi: 10.1111/ene.14227.

[30] Gandhi S, Srivastava AK, Ray U, Tripathi PP. Is the collapse of the respiratory center in the brain responsible for respiratory breakdown in COVID-19 patients? ACS Chem Neurosci 2020. https://doi.org/10.1021/acschemneuro.0c00217

[31] Misra R, Florez-Perdomo WA, Vasquez HE, Moscote-Salazar LR, Agrawal A. SARS-CoV2 and the pathobiology of the respiratory control mechanism in the brainstem. J Formos Med Assoc. 2020: S0929-6646(20)30347-8

[32] Chigr F, Merzouki M, Najimi M. Autonomic brain centers and pathophysiology of COVID-19. ACS Chem Neurosci 2020;11(11):1520-1522

[33] Cai Y, Hay M, Bishop VS. Synaptic connections and interactions between area postrema and nucleus tractus solitarius. Brain Res. 1996; 724, 121–124. doi: 10.1016/0006-8993(96)00282-X
[34] Goodchild AK, Moon EA. Maps of cardiovascular and respiratory regions of rat ventral medulla: focus on the caudal medulla. J Chem Neuroanat. 2009;38(3):209-21

[35] Delgado-Roche L, Mesta F. Oxidative stress as key player in severe acute respiratory syndrome coronavirus (SARS-CoV) infection. Arch Med Res. 2020; 51:384-387

[36] Hamrahian AH, Fleseriu M; AACE adrenal scientific committee. Evaluation and management of adrenal insufficiency in critically ill patients: disease state review. Endocr Pract. 2017;23(6):716-725

[37] Mateos Moreno L, Palacios Garcia N, Estrada Garcia FJ. Adrenal insufficiency in critical patients: new ethiopathogenic concepts and therapeutic implications. Endocrinol Diabetes Nutr. 2017;64(10):557-563.

[38] Hamming I, Timens W, Bultuis MLC, Lely AT, Navis GJ, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004;203(2):631-637

[39] Ding YQ, Wang HJ, Shen H, Li ZG, Geng J, Han HX, Cai JJ, Li X, Kang W, Weng DS, Lu YD, Yao KT. Study on etiology and pathology of severe acute respiratory syndrome. Zhonghua Bing Li Xue Za Zhi. 2003;32(3):195-200

[40] Leow MKS, Kwek DSK, Ng AWK, Kaw GJL, Lee LSU. Hypocortisolism in survivors of severe acute respiratory syndrome (SARS). Clin Endocrinol (Oxf).2005;63:197-202
[41] Alzahrani AS, Mukhtar N, Aljomaiah A, Aljamei H, Barkhsh A, Alsudani N, Elsayed T, Alrashidi N, Fadel R, Alqahtani E, Raef H, Butt MI, Sulaiman O. Endocr Pract. 2021;27(2):83-89

[42] Pal R. COVID-19, hypothalamo-pituitary-adrenal axis and clinical implications. Endocrine. 2020;68(2):251-252

[43] Coutinho AE, Chapman KE. The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol Cell Endocrinol. 2011;335:2-13

[44] Van Der Velden VHJ. Glucocorticoids: mechanisms of action and anti-inflammatory potential in asthma. Mediators Inflam. 1998 (7):229-237

[45] Busillo JM, Azzam KM, Cidlowski JA. Glucocorticoids sensitize the innate immune system through regulation of the NLRP3 inflammasome. J Biol Chem. 2011;286:38703-38713

[46] Pinto A, Jacobsen M, Geoghegan PA, Cangelosi A, Cejudo ML, Tironi-Farinati C, Goldstein J. Dexamethasone rescues neurovascular unit integrity from cell damage caused by systemic administration of shiga toxin 2 and lipopolysaccharide in mice motor cortex. PLoS One 2013;8:e70020

[47] RECOVERY Collaborative Group, Horby P, Lim WS, Emberson JR, Mafham M, Bell JL, Linsell L, et al. Dexamethasone in hospitalized patients with Covid-19 - Preliminary report. N Engl J Med. 2020 Jul 17.
[48] Singh AK, Majumdar S, Singh R, Misra A. Role of corticosteroids in the management of COVID-19: A systemic review and a clinician’s perspective. Diabetes Metab Syndr. 2020;14(5):971-978

[49] Selvaraj V, Dappah-Afriyie K, Finn A, Flanigan TP. Short-term dexamethasone in SARS-CoV-2 patients. R I Med J (2013). 2020;103(6):39-43

[50] Ledford H. Coronavirus breakthrough: dexamethasone is first drug shown to save lives. Nature. 2020;582(7813):469

[51] Isidori AM, Arnaldi G, Boscaro M, et al. COVID-19 infection and glucocorticoids: update from the Italian Society of Endocrinology Expert Opinion on steroid replacement in adrenal insufficiency. J Endocrinol Invest. 2020;43(8):1141-1147. doi:10.1007/s40618-020-01266-w

[52] Villar J, Ferrando C, Martínez D, et al. Dexamethasone treatment for the acute respiratory distress syndrome: a multicentre, randomised controlled trial. Lancet Respir Med. 2020;8(3):267–276. doi:10.1016/S2213-2600(19)30417-5.

[53] Russell CD, Millar JE, Baillie JK. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet. 2020;395(10223):473–475. doi:10.1016/S0140-6736(20)30317-2.

[54] Lee N, Allen Chan KC, Hui DS. Effects of early corticosteroid treatment on plasma SARS-associated Coronavirus RNA concentrations in adult patients. J Clin Virol. 2004;31:304–309.
[55] Erdó F, Bors LA, Farkas D, Bajza Á, Gizurarson S. Evaluation of intranasal delivery route of drug administration for brain targeting. Brain Res Bull. 2018;143:155-170

[56] Meneses G, Cárdenas G, Espinosa A, et al. Sepsis: developing new alternatives to reduce neuroinflammation and attenuate brain injury. Ann N Y Acad Sci. 2019;1437(1):43–56. doi:10.1111/nyas.13985

[57] Espinosa A, Meneses G, Chavarría A, Mancilla R, Pedraza-Chaverri J, Fleury A, Barcena B, Pérez Osorio IN, Besedovsky H, Arauz A, Fragoso G, Sciutto E. Intranasal dexamethasone reduces mortality and brain damage in a mouse experimental ischemic stroke model. Neurotherapeutics 2020 Jul 6. Doi:10.1007/s13311-020-00884-9

[58] Meneses G, Gevorkian G, Florentino A, et al. Intranasal delivery of dexamethasone efficiently controls LPS-induced murine neuroinflammation. Clin Exp Immunol. 2017;190(3):304–314. doi:10.1111/cei.13018

[59] Rassy D, Bárcena B, Pérez-Osorio IN, et al. Intranasal Methylprednisolone Effectively Reduces Neuroinflammation in Mice with Experimental Autoimmune Encephalitis. J Neuropathol Exp Neurol. 2020;79(2):226–237.

[60] Zhang Y, Hu S, Wang J, Xue Z, Wang C, Wang N. Dexamethasone inhibits SARS-CoV-2 spike pseudotyped virus viropexis by binding to ACE2. Virology 2021;554:83-88

[61] Finney LJ, Glaville N, Farne H, et al. Inhaled corticosteroids downregulate the SARS-CoV-2 receptor ACE2 in COPD through suppression of type I interferon. BioRxiv 2020. Doi:10.1101/202.06.13.149039
[62] Wang T, Zhao Y, Fan F, Hu R, Jin X. Dexamethasone inhibits S. aureus-induced neutrophils extracellular pathogen-killing mechanism, possibly through toll-like receptor regulation. Front Immunol 2017:8:60. Doi:10.3389/fimmu.2017.00060.

[63] Zuo Y, Yalavarthi S, Shi H, Gockman K, Zuo M, Madison JA, et al. Neutrophils extracellular traps (NETs) as markers of disease severity in COVID-19. medRxiv. 2020:2020.04.09.20059626

[64] Middleton EA, He XY, Denorme F, Campbell RA, Ng D, Salvatore SP et al. Neutrophils extracellular traps (NETs) contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. Bloods 2020: blood.202007008
Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- SPIRItchecklist2021.docx