Desenvolvimento e Validação de Modelos Preditores de Mortalidade Cardíaca e Transplante na Terapia de Ressincronização Cardíaca

Development and Validation of Predictive Models of Cardiac Mortality and Transplantation in Resynchronization Therapy

Eduardo Arrais Rocha¹, Francisca Tatiana Moreira Pereira², José Sebastião Abreu², José Wellington O. Lima³, Marcelo de Paula Martins Monteiro², Almino Cavalcante Rocha Neto², Camilla Viana Arrais Coêês¹, Ana Cardênia P. Farias¹, Carlos Roberto Martins Rodrigues Sobrinho¹, Ana Rosa Pinto Quidute¹, Maurício Ibrahim Scanavacca¹

Instituto do Coração (InCor) – Universidade de São Paulo¹, São Paulo, SP; Hospital Universitário – Universidade Federal do Ceará², CE; Departamento de Saúde Pública – Universidade Estadual do Ceará³, Fortaleza CE – Brasil

Resumo

Fundamento: A terapia de ressincronização cardíaca pode demonstrar resultados desfavoráveis em 30-40% dos casos.

Objetivo: Este estudo teve por objetivo desenvolver modelos preditores para o desfecho combinado de morte cardíaca ou transplante (Tx) em diferentes estágios da terapia de ressincronização cardíaca (TRC).

Métodos: Estudo prospectivo observacional de 116 pacientes com idade média de 64,8 ± 11,1 anos, dos quais 68,1% estavam em classe funcional (CF) III e 31,9% em classe IV ambulatorial. Variáveis clínicas, eletrocardiográficas e ecocardiográficas foram avaliadas com regressão de Cox e curvas de Kaplan–Meier.

Resultados: O desfecho mortalidade/Tx cardíacos foi de 16,3% durante seguimento de 34,0 ± 17,9 meses. No período pré-implante, disfunção ventricular direita (DVD), fração de ejeção < 25% e uso de altas doses de diuréticos (ADD) aumentaram o risco de morte e Tx cardíacos em 3,9, 4,8 e 5,9 vezes, respectivamente. No primeiro ano após TRC, DVD, AHDD e hospitalização por insuficiência cardíaca congestiva elevaram o risco de morte (razões de risco de 3,5, 5,3 e 12,5, respectivamente). No segundo ano após TRC, DVD e CF III/IV foram fatores de risco significativos de mortalidade no modelo multivariado de Cox. As acurácia dos modelos foram 84,6% na pré-implante, 93% no primeiro ano após TRC e 90,5% no segundo ano após TRC. Os modelos foram validados por bootstrapping.

Conclusão: Desenvolvemos modelos preditores de morte e Tx cardíacos em diferentes estágios de TRC com base na análise de variáveis clínicas e ecocardiográficas simples e de fácil obtenção. Os modelos mostraram boa acurácia e ajuste, foram validados internamente e são úteis para a seleção, o monitoramento e a orientação de pacientes indicados para TRC. (Arq Bras Cardiol. 2015; 105(4):399-409)

Palavras-chave: Transplante de Coração / mortalidade; Insuficiência Cardíaca; Terapia de Ressincronização Cardíaca; Seguimentos; Marca-Passo Artificial.

Abstract

Background: 30-40% of cardiac resynchronization therapy cases do not achieve favorable outcomes.

Objective: This study aimed to develop predictive models for the combined endpoint of cardiac death and transplantation (Tx) at different stages of cardiac resynchronization therapy (CRT).

Methods: Prospective observational study of 116 patients aged 64.8 ± 11.1 years, 68.1% of whom had functional class (FC) III and 31.9% had ambulatory class IV. Clinical, electrocardiographic and echocardiographic variables were assessed by using Cox regression and Kaplan–Meier curves.

Results: The cardiac mortality/Tx rate was 16.3% during the follow-up period of 34.0 ± 17.9 months. Prior to implantation, right ventricular dysfunction (RVD), ejection fraction <25% and use of high doses of diuretics (ADD) increased the risk of cardiac death and Tx by 3.9-, 4.8-, and 5.9-fold, respectively. In the first year after CRT, RVD, HDD and hospitalization due to congestive heart failure increased the risk of death at hazard rates of 3.5, 5.3, and 12.5, respectively. In the second year after CRT, RVD and FC III/IV were significant risk factors of mortality in the multivariate Cox model. The accuracy rates of the models were 84.6% at preimplantation, 93% in the first year after CRT, and 90.5% in the second year after CRT. The models were validated by bootstrapping.

Conclusion: We developed predictive models of cardiac death and Tx at different stages of CRT based on the analysis of simple and easily obtainable clinical and echocardiographic variables. The models showed good accuracy and adjustment, were validated internally, and are useful in the selection, monitoring and counseling of patients indicated for CRT. (Arq Bras Cardiol. 2015; 105(4):399-409)

Keywords: Heart Transplantation / mortality; Heart Failure / physiopathology; Cardiac Resynchronization Therapy; Follow-Up Studies; Pacemaker, Artificial.

Correspondência: Eduardo Arrais Rocha • Universidade Federal do Ceará. Av. Padre Antônio Tomás, 3535 / 1301, Cocó. CEP 60192-120, Fortaleza, CE – Brasil E-mail: eduardoa@cardiol.br, eduardoaarraisrocha@gmail.com Artigo recebido em 15/03/15; revisado em 05/05/15; aceito em 05/06/15.

DOI: 10.5935/abc.20150093
Introdução

As principais diretrizes internacionais recomendam fortemente (classe I) a terapia de ressincronização cardíaca (TRC) para pacientes com insuficiência cardíaca congestiva (ICC) e classe funcional (CF) da New York Heart Association (NYHA) II ou III ou classe IV ambulatorial (pacientes ambulatoriais em uso de medicação oral) quando apresentam distúrbios de condução intraventricular e fração de ejeção (FE) ≤ 35% durante tratamento médico ótimo1.

Entretanto, 30%–40% dos casos de TRC não têm desfechos favoráveis, indicando que os pacientes são submetidos a cirurgia com altos riscos e custos, mas sem benefícios clínicos, hemodinâmicos ou de sobrevida2. Portanto, índices ou escores multifatoriais precisam ser desenvolvidos para identificar de maneira mais precisa fatores preditores de sobrevida e os respondedores ao tratamento1,4. Esses índices devem envolver variáveis relacionadas à redução de mortalidade, com alta sensibilidade e especificidade.

Este artigo teve por objetivo desenvolver modelos preditores para o desfecho combinado de morte e transplante (Tx) cardíacos em diferentes estágios da TRC.

Métodos

Este estudo prospectivo observacional avaliou 116 pacientes submetidos a implante de marca-passo “multi-sítio” consecutivamente em um hospital universitário terciário entre janeiro de 2008 e março de 2013 (Tabela 1). Esses pacientes apresentavam CF da NYHA III ou IV ambulatorial, FE ≤ 35%, QRS ≥ 120 ms (bloqueio de ramo esquerdo [BRE] e bloqueio de ramo direito [BRD] com hemibloqueio ou ritmo de marca-passo) e tratamento otimizado. Os critérios de exclusão foram comorbidades graves, hemodinâmicas ou de sobrevida. Os pacientes não completaram o seguimento; 4 apresentaram perda de captura no eletrodo; 2 apresentaram infecção do marca-passo; 7 tinham dados incompletos; 4 tinham FE > 35%; 3 tinham bloqueio atrioventricular de 1º grau; 11 tinham valvopatia cardíaca; 11 tinham marcadores de infarto de miocárdio; 7 tinham dados incompletos.

Dos 147 pacientes submetidos à implante durante o período do estudo, apenas 116 foram incluídos pelas seguintes razões: 4 tinham FE > 35%; 2 tinham bloqueio atrioventricular total; 2 tinham valvopatia cardíaca primária; 2 apresentaram infecção do marca-passo; 7 tinham dados incompletos; 4 apresentaram perda de captura no eletrodo do ventrículo esquerdo; 2 não completaram o seguimento; 1 apresentou comorbidade grave; e 5 foram hospitalizados por ICC classe IV no momento da inclusão; e 1 morreu de infecção respiratória prematura.

Os eletrodos do ventrículo direito foram posicionados preferencialmente na região apical (84%). Os modelos St. Jude Medical, Biotronik, Medtronic e Guidant foram usados em 92, 12, 10 e 2 pacientes, respectivamente. Pacientes submetidos à implante foram acompanhados por 6 médicos experientes de ambos os lados do corpo.

As avaliações foram realizadas no período pré-implante (primeira análise), um ano após a implante (segunda análise) e dois anos após a implante (terceira análise) conforme protocolo fixo. Foram analisadas variáveis clínicas, eletrocardiográficas e ecocardiográficas. As variáveis clínicas foram: idade; sexo; índice de massa corporal; caquexia cardíaca; FE; etiologia da miocardiopatia; veia cardíaca em que o eletrodo foi posicionado no ventrículo esquerdo; nível sérico de creatinina; pressão arterial sistólica e diastólica; uso de alta dose de diuréticos de alça (≥ 80 mg/dia de furosemida); e hospitalização por insuficiência cardíaca. As variáveis eletrocardiográficas foram: fibrilação atrial, BRE ou BRD; marca-passo cardíaco prévio; bloqueio atriocarácio de 1º grau; duração do QRS; estreitamento do QRS após implante; onda R na derivação V1 em pacientes com BRE; e eixo QRS no plano frontal após implante. As variáveis ecocardiográficas foram: diâmetro diástolico e sistólico ventricular esquerdo (VE); FE calculada usando o método de Simpson; grau de disfunção diastólica (DD) de I a IV; grau de regurgitação mitral de I a III; disfunção ventricular direita (DVD); e dissincronismo.

Registrou-se eletrocardiograma de superfície de 12 derivações na velocidade de 25 mm/s e amplitude de 10 mm/mV. Considerou-se a maior duração do QRS medida em uma das derivações no plano frontal ou horizontal, que foi a derivação com o maior valor, que permitia melhor avaliação. Definiu-se mortalidade cardíaca como morte por ICC em estágio avançado ou morte súbita.

Parâmetros ecocardiográficos

As diretrizes ecocardiográficas para análise de vários parâmetros ecocardiográficos, assim como as diretrizes de dissincronismo para análise de tais parâmetros, foram seguidas14,46. Três médicos experientes realizaram os exames ecocardiográficos, dos quais, 72% foram feitos pelo mesmo especialista. O sistema GE Vivid 7 Ultrasound System (GE Healthcare, Fairfield, CT, EUA) foi utilizado para os exames.

A função sistólica das câmaras cardíacas foi analisada usando-se o método de Simpson no modo bidimensional. Os diâmetros ventriculares foram obtidos na ecocardiografia modo M, de acordo com a diretriz padrão. A função ventricular direita foi analisada qualitativamente, diferenciada em presença e ausência de qualquer grau de disfunção.

A função diastólica foi analisada avaliando-se o fluxo mitral (em repouso e após a manobra de Valsalva), imagens de Doppler tecidual e velocidade de propagação de fluxo com DVD; e dissincronismo.

Avaliou-se a fração de ejeção mitral como a percentagem de enchimento do átrio esquerdo usando-se ecocardiografia com Doppler colorido. A percentagem foi inferior a 20% no refluxo leve, entre 20% e 40% e moderado e valores acima desses indicaram refluxo grave. Nesse contexto, foi interpretado como refluxo moderado quando restrito à parede lateral do átrio, e acentuado quando se estendeu pelo polo superior do átrio.
Tabela 1 – Características basais e comparação dos resultados de algumas variáveis durante os períodos avaliados

Variáveis	Tempo 1	Tempo 2	Valor de p	Tempo 3	Valor de p*
Pacientes	116	114	-	92	-
Idade (anos)	64,8 ± 11,1	-	-	-	-
Sexo (masculino)	69,8%	-	-	-	-
IMC	25,8 ± 4,1	-	-	-	-
Betabloqueadores	88,7%	89,2%	-	91,8%	-
Inibidores da ECA	97,4%	96%	-	95,9%	-
Furosemida ≥ 80 mg/dia	31,9%	17%	-	-	-
Miocardiopatia dilatada	59,4%	-	-	-	-
Miocardiopatia isquêmica	29,3%	-	-	-	-
Doença de Chagas	11,2%	-	-	-	-
Fibrilação atrial	12%	-	-	-	-
TRC-D	54,2%	-	-	-	-
BRE	71,55%	-	-	-	-
BRD com hemibloqueio	12%	-	-	-	-
Marca-passo	16,3%	-	-	-	-
Veia posterolateral	45,4%	-	-	-	-
Veias anterolaterais	52,5%	-	-	-	-
Largura prévia do QRS (ms)	160	149	< 0,001	-	-
Número de hospitalizações por ICC	108	24	< 0,001	16	0,79*
FE (mediana)	29%	33%	< 0,001	35%	0,03*
DDVE (mm)	70	66	< 0,001	65	0,73*
PA sistólica (mmHg)	115	119,6	< 0,001	121,8	0,84*
PA diastólica (mmHg)	70	80	0,07	70	0,34*
CF III (NYHA)	68,1%	8,7%	< 0,001	12%	0,07*
CF IV (NYHA)	31,9%	6,1%	< 0,001	7,6%	0,07*
DD	< 0,001	-	-	0,06*	-
DD Grau I	34,6%	59,2%	-	63,2%	-
DD Grau II	23,7%	27,1%	-	13,9%	-
DD Grau III	29,7%	8,7%	-	16,4%	-
DD Grau IV	11,8%	4,8%	-	5,0%	-
RM	-	-	0,008	-	0,009*
Sem RM	3,4%	5,3%	-	15,3%	-
Leve RM	50,4%	66,0%	-	56,0%	-
Moderada RM	30,4%	18,7%	-	18,6%	-
Grave RM	15,6%	9,8%	-	9,8%	-
Disfunção de VD	20,9%	17%	0,62	12%	0,5*
Creatinina (mg/dl)	1,1	1,1	-	1,2	-

*Tempo 1, pré-implante; tempo 2, 1 ano; tempo 3, 2 anos.
*Análise do tempo 3 em relação ao tempo 2; largura do QRS, fração de ejeção, diâmetro diastólico do ventrículo esquerdo e pressão arterial foram variáveis sem distribuição normal (valores de mediana); IMC: Índice de massa corporal; ECA: Enzima conversora da angiotensina; TRC-D: Cardioversor-desfibrilador com marca-passo biventricular; BRE: Bloqueio de ramo esquerdo; BRD: Bloqueio de ramo direito; ICC: Insuficiência cardíaca congestiva; FE: Fração de ejeção; DDVE: Diâmetro diastólico do ventrículo esquerdo; PA: Pressão arterial; CF: Classe funcional (NYHA); DD: Disfunção diastólica; RM: Regurgitação mitral; VD: Ventrículo direito.
Todos os pacientes assinaram o termo de consentimento livre e informado, tendo o Comitê de Ética do hospital aprovado o estudo, cujo protocolo obedeceu às normas éticas da declaração de Helsinki.

Análise estatística

As variáveis categóricas foram apresentadas como frequências e percentagens, enquanto as contínuas foram apresentadas como média e desvio padrão, ou mediana. As variáveis categóricas foram comparadas usando-se os testes de McNemar, Stuart–Maxwell ou qui-quadrado. O teste t de Student foi usado para comparar as variáveis contínuas com distribuição normal, sendo o teste Wilcoxon/Mann–Whitney U usado para as contínuas sem distribuição normal. As distribuições foram consideradas significativamente diferentes para p < 0,05.

A relação univariada das variáveis clínicas, eletrocardiográficas e ecocardiográficas com mortalidade ou Tx cardíacos foi avaliada usando-se a curva de sobrevida de Kaplan–Meier, o teste log-rank e a análise de regressão de Cox. Algumas variáveis contínuas foram avaliadas para determinar o ponto de corte.

Os modelos de regressão múltipla de Cox foram desenvolvidos nos seguintes tempos para avaliar a contribuição independente de cada uma das variáveis significativas no modelo univariado de Cox: pré-implante (tempo 1); primeiro ano após a TRC (tempo 2); e segundo ano após a TRC (tempo 3). As variáveis com p < 10% foram consideradas potenciais confundidoras. Cada variável foi incluída no modelo multivariado de acordo com a ordem descendente de risco, sendo excluída quando p ≥ 5%. Após a obtenção do modelo final, as variáveis previamente excluídas foram de novo incluídas no modelo e testadas individualmente, usando-se o mesmo critério.

Conduziram-se as análises de regressão logística usando-se a razão de risco\(^6\) como variável independente e morte/Tx cardíacos como variável dependente. Testou-se a acurácia dos modelos com a curva receiver-operating characteristic (ROC), juntamente com sensibilidade e especificidade. Modelos foram preparados dividindo-se os escores de risco em categorias de acordo com o número de variáveis presentes, sendo classificados como de risco baixo (classe A), médio (classe B) e alto (classe C).

As curvas de sobrevida de Kaplan–Meier foram elaboradas individualmente para variáveis independentes e classes de risco, sendo comparadas usando-se o teste log-rank.

Para os modelos propostos, todas as variáveis foram testadas quanto à observância à suposição de riscos proporcionais com o teste de Schoenfeld e a análise visual dos resíduos contra o tempo de mortes ou censura. Para cada modelo, analisou-se o efeito de cada observação nos parâmetros estimados. Para tal, após a deleção de uma observação, o modelo foi estimado de novo, sendo as novas estimativas comparadas às anteriores. Os valores não devem mudar muito ou o modelo é demasiado sensível para determinada observação.

Para a obtenção dos intervalos de confiança bootstrap, os dados originais foram experimentados 10 mil vezes para a obtenção de 10 mil pseudo-amostras de tamanho 60. Assim, para cada pseudo-amostra, estimaram-se razões de risco dos três modelos. Tais razões de risco estimadas foram ordenadas, relacionando-se o intervalo de confiança de 95%.

Os dados foram analisados usando-se Stata/SE, versão 12.1 (StataCorp LP, College Station, TX, EUA) e o programa “R” (2014 – “R”: A language and environment for statistical computing. R Foundation for Statistical Computing, Viena, Áustria).

Resultados

Durante o estudo, registraram-se 29 mortes, correspondendo a uma taxa de mortalidade total de 25% durante o seguimento de 34,09 ± 17,9 meses. Mortalidade/Tx cardíacos corresponderam a 16,3% (19 pacientes). Seis pacientes foram submetidos a Tx durante o período do estudo, cinco por ICC refratária e um por tempestade arrítmica recorrente. Três pacientes de Tx morreram prematuramente devido à gravidade da doença por ocasião do Tx. Não houve morte súbita no grupo TRC-D, mas três mortes súbitas ocorreram no grupo TRC-P (marca-passo sem desfibrilador). No grupo TRC-D, seis pacientes com taquicardia ventricular rápida ou fibrilação (marca-passo sem desfibrilador) foram tratados com choque eficaz.

Análise das variáveis no tempo 1 (pré-implante)

Das 27 variáveis analisadas durante o primeiro período do estudo (pré-implante), 13 foram significativas no modelo de regressão univariada de Cox. Nesse modelo, RVD, FE < 25% e o uso de altas doses de diuréticos associaram-se independentemente com aumento do desfecho mortalidade/Tx cardíacos, com razões de risco de 3,9, 4,8 e 5,9, respectivamente (Tabela 3).

As variáveis significativas no modelo multivariado também foram significativas no modelo de Kaplan–Meier ao serem comparadas usando-se o teste log-rank. A análise do modelo usando a curva ROC mostrou uma área sob a curva (AUC) de 0,81, com sensibilidade de 61,1%, especificidade de 89,5% e acurácia de 84,6% (Figura 1).

A partir de combinações dessas variáveis, desenvolvemos um modelo com três classes como se segue: classe A (baixo risco para morte/Tx cardíacos), ausência de variáveis ou presença de apenas uma das variáveis significativas na análise multivariada, correspondendo a uma taxa de ausência de evento cardíaco em 30 meses de 93%. A combinação de duas (classe B) e três variáveis (classe C) resultou em uma taxa de ausência de evento cardíaco em 30 meses de 61% e 0%, respectivamente.
Análise das variáveis no tempo 2 (primeiro ano após TRC)

No tempo 2 (primeiro ano após TRC), 13 variáveis mostraram-se significativas no modelo de regressão univariada de Cox, onde RVD, uso de altas doses de diuréticos e hospitalização por ICC relacionaram-se de maneira independente com o aumento do desfecho mortalidade/Tx cardíacos, com razões de risco de 3,5, 5,3 e 12,5, respectivamente.

As variáveis significativas no modelo multivariado também foram significativas no modelo de Kaplan–Meier quando comparadas usando-se o teste log-rank. A análise do modelo usando a curva ROC mostrou uma AUC de 0,910, com sensibilidade de 76,4%, especificidade de 96,3% e acurácia de 93% (Figura 2).

A partir de combinações dessas variáveis, desenvolvemos um modelo com três classes (Tabela 4): classe A (baixo risco de morte/Tx cardíacos), ausência de variáveis ou presença de apenas uma das variáveis significativas na análise multivariada, correspondendo a uma taxa de ausência de evento cardíaco em 30 meses de 98%. A combinação de duas (classe B) e três variáveis (classe C) resultou em uma taxa de ausência de evento cardíaco em 30 meses de 65% e 0%, respectivamente (Figura 2).

Análise das variáveis no tempo 3 (segundo ano após TRC)

Hospitalizações por ICC, uso de altas doses de diuréticos, CF, DD, DVD, FE <30%, doença de Chagas e pressão arterial sistólica <110 mmHg mostraram-se significativas no modelo de regressão univariada de Cox no segundo ano após TRC.

No modelo multivariado de Cox, DVD e CF III/IV relacionaram-se de modo independente com o desfecho mortalidade/Tx cardíacos, com razões de risco de 7,7 e 12,0, respectivamente. As variáveis significativas no modelo multivariado também mostraram-se significativas em separado no modelo de Kaplan–Meier quando comparadas usando-se o teste log-rank (p < 0,001). A análise do modelo usando a curva ROC mostrou uma AUC de 0,789, com sensibilidade de 40%, especificidade de 98,4% e acurácia de 90,5% (Figura 3).

A partir de combinações dessas variáveis, desenvolvemos um modelo com três classes: classe A (baixo risco de morte/Tx cardíacos), ausência da dosa variáveis significativas na análise multivariada, correspondendo a uma taxa de ausência de evento cardíaco em 30 meses de 97,5%. A combinação de duas (classe B) e três variáveis (classe C) resultou em uma taxa de ausência de evento cardíaco em 30 meses de 83,1% e 38,5%, respectivamente.

Discussão

No presente estudo, desenvolvemos três modelos preditores para risco de morte e Tx cardíacos em diferentes estágios da TRC. Até onde sabemos, este é o primeiro estudo a analisar sequencial e prospectivamente variáveis preditores na mesma população e em diferentes estágios de desenvolvimento (pré-implante, e no primeiro e segundo anos após TRC) e a desenvolver modelos de risco para morte e Tx cardíacos. Os modelos identificaram variáveis simples que, quando presentes, associaram-se a alto risco de morte e Tx cardíacos.

A mortalidade total foi de 25% (29/116) aos 34 ± 17 meses. No estudo CARE-HF\(^9\), a mortalidade foi 30% no grupo sem intervenção, comparada a 20% no grupo com TRC, durante o seguimento de 29,4 meses. No estudo COMPANION\(^10\), a taxa de mortalidade foi 21% (131/617) no grupo TRC, comparada a 25% (77/308) no grupo controle, durante seguimento de 24 meses. Portanto, nossa mortalidade total acha-se dentro da variação descrita nos grandes estudos. Analisamos os desfechos combinados de mortalidade e Tx cardíacos, visando a identificar variáveis mais específicas relacionadas aos resultados da TRC\(^11\).
Vários estudos avaliaram fatores preditores de resposta ou morte em diferentes populações e com diferentes critérios de resposta, sendo os resultados inconsistentes. Entretanto, várias publicações identificaram os seguintes fatores preditores de resposta: miocardiopatia dilatada22; largura do QRS11; estreitamento do QRS12; presença de disincronismo13; sexo feminino14; tipo de bloqueio de ramo15; diâmetro do ventrículo esquerdo16; integral da velocidade aórtica no tempo17; e DD1819.

Os pacientes com DVD (20,9% do grupo) apresentaram pior evolução em todos os tempos da análise. Entretanto, observamos que seis pacientes com boa evolução apresentaram regressão das alterações no ventrículo direito. O estudo de Praus e cols.20 mostrou que a regressão do ventrículo direito ocorreu mais tarde (15 meses), enquanto Leong e cols.21 identificaram o ventrículo direito como um preditor independente de mortalidade. Logo, pacientes com DVD não deveriam ser excluídos da indicação para TRC, embora representem um subgrupo de maior risco para mortalidade após TRC. A hospitalização por ICC mostrou-se uma variável independente quanto à predição de mortalidade/Tx cardíacos no primeiro ano após TRC. O estudo representa, até onde sabemos, a primeira vez em que aquela variável foi incluída como independente na análise do risco de mortalidade no primeiro ano após TRC e não como uma parte do desfecho combinado com morte. Hospitalização por ICC e cols.27 relataram que FE basal < 22,5% determinou maior mortalidade após TRC.

Outra variável clínica facilmente obtida que mostrou significativo valor no período pré-implante e primeiro ano após TRC foi o uso de altas doses de diurético de alça (furosemida ≥ 80 mg/dia). Van Boven e cols.28 relataram uma associação entre o não uso crônico de diuréticos e a resposta à TRC. Entretanto, Cleland e cols.29 observaram que o uso de altas doses de diurético relacionou-se a pior prognóstico apenas na análise univariada. Acreditamos que a descrição dessa variável como tendo um valor independente para mortalidade na análise de TRC não esteve exclusivamente relacionada à doença de Chagas, pois 19 pacientes tinham DVD devida a outras etiologias.

Logo, a relevância da DVD não esteve exclusivamente relacionada à doença de Chagas, pois 19 pacientes tinham DVD devida a outras etiologias.

Tabela 3 – Análise pelo modelo de Cox relacionada com mortalidade/Tx cardíacos no tempo 1 (pré-implante)

Variável	HR	IC 95%	p	HR	IC 95%	p
	Univariada	Multivariada				
Hospitalização ≥ 1	9,23	1,23-69,21	0,031	3,95	1,45-10,74	0,007
Disfunção de VD	5,01	1,97-12,76	0,001	4,85	1,71-13,73	0,003
CF III / IV	4,87	1,85-12,83	0,001			
Doença de Chagas	4,73	1,77-12,83	0,002			
FE < 25 %	4,43	1,77-11,05	0,001	4,85	1,71-13,73	0,003
Diurético ↑	3,89	1,56-9,72	0,004	5,97	2,15-16,53	0,001
PAS < 100 mmHg	3,38	1,35-8,46	0,009			
Creatinina > 1,1	2,85	1,06-7,67	0,038			
DDVE > 80 mm	2,68	1,00-7,15	0,048			
PAD < 60 mmHg	2,63	1,02-6,75	0,044			
Inibidores da ECA	4,34	0,98-19,17	0,052			
RM grau II	2,50	0,89-7,41	0,08			
RM grau III	2,80	0,87-8,43	0,08			

HR: Hazard ratio no modelo de Cox; IC: Intervalo de confiança; P: Nível de significado estatístico; Diurético ↑: ≥ 80 mg de furosemida; PAS: Pressão arterial sistólica; PAD: Pressão arterial diastólica; CF III / IV: Percentagem de classe funcional (CF) III sobre a CFC IV; Hospitalização ≥ 1: uma ou mais hospitalizações por insuficiência cardíaca congestiva; VD: Ventrículo direito; FE: Fração de ejeção; DDVE: Diâmetro diastólico do ventrículo esquerdo; ECA: Enzima conversora da angiotensina; RM: Regurgitação mitral.

Arq Bras Cardiol. 2015; 105(4):399-409
Figura 1 – Curva de sobrevida de Kaplan-Meier das variáveis com valor independente na análise multivariada de Cox, comparada usando o teste log-rank, com a construção da curva ROC, área sob a curva (AUC) de 0,81, sensibilidade de 61%, especificidade de 89% e acurácia de 84%. À direita, parte inferior, modelo de risco, correspondendo a baixo risco de mortalidade/Tx cardíacos a ausência das três variáveis, furosemida > 80 mg/dia, disfunção ventricular direita (VD) e fração de ejeção (FE) < 25%, ou a presença de uma delas.
Recentemente elaborou-se uma regra clínica de predição para identificar pacientes com risco elevado de morte precoce após TRC, incluindo as seguintes quatro variáveis independentes: diâmetro diastólico final do ventrículo esquerdo (DDVE) > 65 mm, morfologia de não-BRE, nível de creatinina > 1,5, e não uso de betabloqueadores. No nosso estudo, DDVE e nível de creatinina foram significativos apenas nas análises univariadas. Hospitalização por ICC, uso de altas doses de diurético e DVD, algumas variáveis independentes no nosso estudo, não foram incluídas no estudo anterior.

Conseguimos uma significativa melhora na especificidade dos modelos preditores de mortalidade ou resposta após TRC, alcançando 96% no primeiro ano após TRC e 98% no segundo ano após TRC, quando comparada com especificidade de 22%–70% dos modelos previamente descritos em relação às mortalidades total e cardíaca. Tais resultados estão de acordo com os desfechos-alvo da TRC no tratamento de pacientes com doenças graves, com altos custos e riscos no procedimento. Os modelos criados não foram validados externamente, apenas internamente. Outra limitação deste estudo é o pequeno número de pacientes, o grande número de excluídos e o fato de ter sido conduzido em um único centro. A função do ventrículo direito foi analisada qualitativamente devido à ausência de correlação entre as medidas desse ventrículo e de significância usuais, o modelo foi validado internamente e não revelou falta de ajuste ou sensibilidade exagerada dos dados.

Acreditamos que este estudo contribua, promovendo o avanço da busca por melhores critérios de avaliação prognóstica, com a composição de índices multifatoriais simples e com a inclusão de variáveis usadas na prática clínica de fácil obtenção. Os modelos serão úteis para seleção, monitoramento e orientação de pacientes com indicação para TRC.

Limitações do estudo

Não foram realizadas análises da variabilidade intra-e interobservador de parâmetros ecocardiográficos e eletrocardiográficos. Os pacientes não foram submetidos à otimização do intervalo atrioventricular após a cirurgia. Os modelos criados não foram validados externamente, apenas internamente. Outra limitação deste estudo é o pequeno número de pacientes, o grande número de excluídos e o fato de ter sido conduzido em um único centro. A função do ventrículo direito foi analisada qualitativamente devido à ausência de correlação entre as medidas desse ventrículo e...
Tabela 4 – Escores preditores de mortalidade cardíaca e transplante na terapia de ressincronização cardíaca

Escore no tempo 1 (pré-implante)

Variável	Hazard	N	Escores	Classe	Risco
Nenhuma	1,0	45	0	A	Baixo
DVD	3,9	8	3	A₁	Baixo
FE	4,8	14	4	A₁	Baixo
Diurético ↑	5,9	17	5	A₂	Baixo
DVD + FE	19,1	5	7	B	Intermediário
DVD + Diurético ↑	23,6	4	8	B	Intermediário
FE + Diurético ↑	29,0	6	9	B	Intermediário
DVD + FE + Diurético ↑	114,0	5	12	C	Alto

Escore no tempo 2 (1° ano)

Variável	Hazard	N	Escores	Classe	Risco
Nenhuma	1,0	62	0	A	Baixo
DVD	3,5	7	2	A	Baixo
Diurético ↑	5,3	12	3	A	Baixo
Hospitalização	12,5	3	5	A	Baixo
DVD + Diurético ↑	18,7	2	6*	B	Intermediário
DVD + Hospitalização	44,0	2	7	B	Intermediário
Diurético ↑ + Hospitalização	66,3	6	8	B	Intermediário
DVD + Hospitalização + Diurético ↑	234,0	6	10	C	Alto

Escore no tempo 3 (2° ano)

Variável	Hazard	N	Escores	Classe	Risco
Nenhuma	1,0	55	0	A	Baixo
CF III/IV	7,7	10	8	B	Intermediário
DVD	12,1	4	13	B	Intermediário
DVD + CF III/IV	94,5	5	21	C	Alto

DVD: Disfunção ventricular direita; **FE**: Fração de ejeção < 25%; **diurético ↑**: uso de furosemida ≥ 80 mg; **CF**: Classe funcional (NYHA); hospitalização: ≥ 1 hospitalização por insuficiência cardíaca congestiva; classe A: Risco baixo; classe B: Risco intermediário; classe C: Risco alto.

O risco foi usado como variável independente no modelo de regressão logística para a preparação do escore. O escore foi obtido pela hazard ratio da variável dividida pelo valor mais alto. "*" adicionou-se uma unidade para manter a proporção de risco. N: Número de pacientes.

o prognóstico no início do estudo. Tais resultados devem ser considerados no contexto da população do estudo: 59,4% tinham miocardiopatia dilatada, 11,2% tinham miocardiopatia chagásica, 12% tinham BRD e 16,3% tinham implante prévia de marca-passo cardíaco. Maiores estudos prospectivos são necessários para validar as importantes variáveis relacionadas a morte e Tx cardíacos após TRC.

Conclusão

Desenvolvemos modelos preditores de morte ou Tx cardíacos em diferentes estágios da TRC com base na análise de variáveis clínicas e ecocardiográficas simples e de fácil obtenção. Os modelos mostram boa acurácia e ajuste, foram validados internamente e são úteis para a seleção, o monitoramento e a orientação de pacientes indicados para TRC.

Agradecimentos

Agradecemos aos professores José Wellington O. Lima, Luís Gustavo Bastos Pinho e Juvêncio Santos Nobre pela orientação em estatística e ao Dr. Italo Martins pela coordenação local do doutorado.
Contribuição dos autores

Concepção e desenho da pesquisa: Rocha EA, Pereira FTM, Abreu JS, Lima JWO, Rocha Neto AC, Farias AGP, Sobrinho CRMR, Scanavacca MI; Obtenção de dados: Rocha EA, Pereira FTM, Abreu JS, Monteiro MPM, Goés CVA, Farias AGP; Análise e interpretação dos dados: Rocha EA, Pereira FTM, Abreu JS, Lima JWO, Monteiro MPM, Rocha Neto AC; Análise estatística: Rocha EA, Lima JWO, Quidute ARP; Obtenção de financiamento: Rocha EA; Redação do manuscrito: Rocha EA, Abreu JS, Rocha Neto AC, Quidute ARP, Sobrinho CRMR, Scanavacca MI.

Potencial conflito de interesse

Declaro não haver conflito de interesses pertinentes.

Fontes de financiamento

O presente estudo foi financiado pela CAPES e FUNCAP.

Vinculação acadêmica

Este artigo é parte de tese de Doutorado de Eduardo Arrais Rocha pela Universidade de São Paulo e Universidade Federal do Ceará.
Referências

1. Tracy CM, Epstein AE, Darbar D, Dimarco JP, Dunbar SB, Etes NA 3rd, et al. ACCF/AHA/HRS focused update of the 2008 guidelines for device-based therapy of cardiac rhythm abnormalities: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2012;60(14):1297-313.

2. Saxon LA, Ellenbogen KA. Resynchronization therapy for the treatment of heart failure. Circulation. 2003;108(9):1044-8.

3. Achilli A, Peraldo C, Sassara M, Orazzi A, Blanchi S, Lauretti F, et al. SCART Study Investigators. Prediction of response to cardiac resynchronization therapy: the selection of candidates for CRT (SCART) study. Pacing Clin Electrophysiol. 2006;29 Suppl S2:51-9.

4. Foley PW, Levy F, Fremeaux MP. What is treatment success in cardiac resynchronization therapy? Europace 2009;11 Suppl 5:58-65.

5. Gottfried M, Kodner J, Devereux R, Gardin J, Klein A, Manning WJ, et al. American Society of Echocardiography. American Society of Echocardiography recommendations for use of echocardiography in clinical trials. J Am Soc Echocardiogr. 2004;17(10):1086-119.

6. Gorcsan J 3rd, Abraham T, Agler DA, Bax JJ, Derumeaux G, Grimm RA, et al. Clinical predictors of marked improvement in left ventricular performance after cardiac resynchronization therapy: validation using data from the Atrial Pacing or Biventricular Pacing for Sustained Ambulatory Ventricular HaRt arrhythmias (AP-BPHAHRA) Study. Circulation. 2005;112(15):2329-34. Erratum in: J Am Coll Cardiol. 2008;51(22):2197.

7. Nagueh SF, Appleton CP, Gillebert TC, Marino PN, Oh JK, Smiseth OA, et al. Guidelines for the evaluation of left ventricular diastolic function by echocardiography. Eur J Echocardiogr. 2009;10(2):165-93.

8. Boidol J, Sedmova L, Kovalsky O, Zuzilk M, Mazeruk M, Sokal A, et al. Triple-Site Versus Standard Cardiac Resynchronisation Trial (TRUST CRT) Investigators. Triple-site atrioventricular conduction delay improves clinical response to cardiac resynchronization therapy: a randomized trial. Eur J Heart Fail. 2013;15(6):635-44.

9. Cleland JG, Daubert JC, Erdmann E, Freemantle N, Ghio S, Fruhwald F, Shankar A, Marijanowski M, et al; European Society of Cardiology. Recommendations for the evaluation of left ventricular diastolic function by echocardiography. Eur Heart J. 2005;26(15):1539-49.

10. Bristow MR, Saxon LA, Boehmer J, Krueger S, Kass DA, De Marco T, et al.; Comparison of Medical Therapy, Pacing, and Defibrillation in Heart Failure (COMPANION) Investigators. Comparison of medical therapy with or without an implantable defibrillator for patients with advanced chronic heart failure. N Engl J Med. 2000;343(21):1539-49.

11. Carson P, Amon S, O'Connor C, Jaski B, Steinberg J, Lwin A, et al. Clinical predictors of marked improvement in left ventricular performance after cardiac resynchronization therapy in patients with chronic heart failure. Am Heart J. 2004;150(2):2140-50.

12. Carson P, Amon S, O'Connor C, Jaski B, Steinberg J, Lwin A, et al. Mode of death in advanced heart failure: the Comparison of Medical, Pacing, and Defibrillation Therapies in Heart Failure (COMPANION) Trial. J Am Coll Cardiol. 2005;46(12):2329-34. Eratum in: J Am Coll Cardiol. 2008;51(22):2197.

13. Mangiafico M, Casparini M, Falletta F, Klersy C, Morenghi E, Galimberti P, et al. Clinical predictors of marked improvement in left ventricular performance after cardiac resynchronization therapy in patients with chronic heart failure. Am Heart J. 2006;151(2):477-e1-477.

14. Bonakdar HR, Jorat MV, Fazelifar AF, Alizadeh A, Givtaj N, Samei N, et al. Prediction of response to cardiac resynchronization therapy using simple electrocardiographic and echocardiographic tools. Europace. 2009;11(10):1330-7.

15. Yeim S, Bordachar P, Reuter S, Laborde J, O'Neill MD, Laffitte S, et al. Predictors of a positive response to biventricular pacing in patients with severe heart failure and ventricular conduction delay. Pacing Clin Electrophysiol. 2007;30(8):970-5.

16. Shen X, Nair CK, Aronow WS, Holmberg MJ, Reddy M, Anand K, et al. A new baseline scoring system may help to predict response to cardiac resynchronization therapy. Arch Med Sci. 2011;7(4):627-33.

17. Verhaert D, Grimm RA, Puntawangkoon C, Wolski K, De S, Wilkoff BL, et al. Long-term reverse remodeling with cardiac resynchronization therapy: results of extended echocardiographic follow-up. J Am Coll Cardiol. 2010;55(17):1788-95.

18. Martellini Filho M, Baggio Júnior JM, Nishioka SA, Pedroso A, Torres GG, Escarão A, et al. Cardiac resynchronization in long-term follow up: analysis of clinical response predictors. Rev Bras Cardiol. 2006;19(1):45-52.

19. Gradua R, Stuckenborg V, Loher A, Kobe J, Reinke F, Gunia S, et al. Diastolic filling pattern and left ventricular diameter predict response and prognosis after cardiac resynchronization therapy. Heart. 2008;94(8):1026-31.

20. Kandala J, Altman RK, Park MY, Singh JP. Clinical, laboratory, and pacing predictors of CRT response. J Cardiovasc Transl Res. 2012;5(2):196-212.

21. Praus R, Haman L, Tauchman M, Pudil R, Blaha V, Parizek P. Echocardiographic changes after cardiac resynchronization therapy. Kardiol Pol. 2012;70(12):1250-7.

22. Leong DP, Hsu-H, Delgado V, Auger D, Witkowski T, Thijssen J, et al. Right ventricular function and survival following cardiac resynchronization therapy. Heart. 2013;99(10):722-8.

23. Nunes Mdo C, Rocha MO, Ribeiro AL, Colosimo EA, Rezende RA, Carmo GA, et al. Right ventricular dysfunction is an independent predictor of survival in patients with dilated chronic Chagas’ cardiomyopathy. Int J Cardiol. 2008;127(3):372-9.

24. Ogumyankin KO, Puthumana JJ. Effect of cardiac resynchronization therapy on right ventricular function. Curr Opin Cardiol. 2010;25(5):464-8.

25. Aksoy H, Okutucu S, Aytemir K, Kayab EB, Tulumen E, Evranos B, et al. Improvement in right ventricular systolic function after cardiac resynchronization therapy correlates with left ventricular reverse remodeling. Pacing Clin Electrophysiol. 2011;34(2):200-7.

26. Freitas HF, Chizolla PR, Paes AT, Lima AC, Mansur AJ. Risk stratification in a Brazilian hospital-based cohort of 1220 outpatients with heart failure: role of Chagas’ heart disease. Int J Cardiol. 2005;102(2):239-47.

27. Linde C, Daubert C, Abraham WT, St John Sutton M, Ghio S, Hassager C, et al. Resynchronization reVerses Remodeling in Systolic left vEntricular dysfunction (REVERSE) Study Group. Impact of ejection fraction on the clinical response to cardiac resynchronization therapy in mil heart failure. Circ Heart Fail. 2013;6(6):1180-9.

28. Cronborg MB, Mortensen PT, Kirkfeldt RE, Nielsen JC. Very long term follow-up of cardiac resynchronization therapy: clinical outcome and predictors of mortality. Eur J Heart Fail. 2008;10(8):796-801.

29. Van Boven N, Bogaard K, Ruiter J, Kimmig G, Theuns D, Kardys I, et al. Functional response to cardiac resynchronization therapy is associated with improved clinical outcome and absence of appropriate shocks. J Cardiovasc Electrophysiol. 2013;24(3):316-22.

30. Cleland J, Freemantle N, Ghio S, Fruhwald F, Shankar A, Marijanowski M, et al. Predicting the long-term effects of cardiac resynchronization therapy on mortality from baseline variables and the early response a report from the CARE-HF (Cardiac Resynchronization in Heart Failure) Trial. J Am Coll Cardiol. 2008;52(6):438-45.

31. Rickard J, Cheng A, Spragg D, Cantillon D, Baranoski B, Varma N, et al. A clinical prediction rule to identify patients at heightened risk for early demise following cardiac resynchronization therapy. J Cardiovasc Electrophysiol. 2014;25(3):278-82.

32. Van Rees JB, de Bie MK, Thijssen J, Borlefs C, Schalij MJ, van Erven L. Implantation-related complications of implantable cardioverter-defibrillators and cardiac resynchronization therapy devices: a systematic review of randomized clinical trials. J Am Coll Cardiol. 2011;58(10):995-1000.