DOORS: Dataset fOr bOuldeRs Segmentation. Statistical properties and Blender setup

Mattia Pugliatti* and Francesco Topputo†
Politecnico di Milano, Department of Aerospace Science and Technology, Via La Masa 34, 20156, Milan, Italy

Abstract

The capability to detect boulders on the surface of small bodies is beneficial for vision-based applications such as hazard detection during critical operations and navigation. This task is challenging due to the wide assortment of irregular shapes, the characteristics of the boulders population, and the rapid variability in the illumination conditions. Moreover, the lack of publicly available labeled datasets for these applications damps the research about data-driven algorithms. In this work, the authors provide a statistical characterization and setup used for the generation of two datasets about boulders on small bodies that are made publicly available.

Datasets link: 10.5281/zenodo.7107409

1 Introduction

Data-driven Image Processing (IP) algorithms represent an accurate, robust, generalized alternative to traditional algorithms for vision-based applications about small bodies. They can either be used for navigation applications as well as or for IP tasks that enable on-board autonomous capabilities.

The lack of publicly available labeled datasets (both synthetic and from real missions) is a critical showstopper for the development of these types of algorithms [SRA22]. In their absence, the algorithm designer has two choices: either to generate one on its own or to use unsupervised learning for the task. In the former case, it requires interdisciplinary skills that also cover aspects related to the capability to perform realistic renderings in an artificial environment. In the latter, it largely reduces the design space of the algorithms.

However, the design of a dataset generator is not a simple task and requires a non-negligible effort that may shift the focus from the algorithm design. Moreover, as the sole possession of artificial dataset generators poses a strategic advantage both in industrial and research applications, they are often not publicly available. The same reasoning applies also to the datasets.

In this work, artificial environments are specifically designed to generate large amounts of synthetic labeled images with boulders on small bodies. To do so, Blender¹ is used due to its simplicity, extensive prior usage, large support community, and open-source licensing. Using these artificial environments, two datasets are generated, for simplicity referred to as DS₁ and DS₂. These datasets have been originally designed for the work presented in [PT22a], but their application can be extended to additional cases. This paper presents the Blender setup used to generate them as well as their statistical properties. The datasets are available for download at [PT22b]. The 4-steps pipeline that has been used for their generations is illustrated in Figure 1.

![Figure 1: Pipeline used for the datasets generation.](image)

First, the rendering input needed by the artificial environment is generated as a txt file, which is read by a python script in Blender that loops through the input labels that controls all the objects in the artificial environment. After all image-mask pairs are generated, they are further processed in Step₃ and then prepared in a dataset-ready format to be used for training data-driven algorithms.

*PhD Student, ESR of Stardust-R, mattia.pugliatti@polimi.it
†Full professor
¹https://www.blender.org/, retrieved 13th of September, 2022.
2 Blender setup of DS₁

The artificial environment in Blender that is used to generate DS₁ is made by 4 elements:

1. A single randomly-generated boulder whose Center of Mass (CoM) is positioned in the center of the Blender reference frame
2. A unitary spherical mesh made of 16'258 vertexes and 32'512 faces
3. A camera, modeled with a 256 × 256 px size sensor and a FOV of 10 × 10 deg
4. A Sun lamp illuminating the scene

These elements are then positioned within the environment accordingly to a txt file that is used as an input file. The input files are composed of \(N \) rows and 16 columns, where \(N \) is the number of image-mask pairs as samples that will be generated. The meaning of each column is represented in Table 1, while the names of the splits used in this work for the training, validation, and test sets are illustrated in Table 2.

Col #	Units	Symbol	Name
1,2,3	BU	\(X, Y, Z \)	Camera position
4,5,6	BU	\(X_S, Y_S, Z_S \)	Sun direction vector
7	deg	\(\theta_b \)	Camera boresight rotation
8	-	ID	ID of the boulder
9	BU	\(s \)	Scale of the boulder
10	-	\(a_s \)	Albedo of the surface
11	-	\(a_b \)	Albedo of the boulder
12	-	\(I \)	Sun’s intensity
13	-	\(\nu_{s1} \)	Scale of the noise pattern
14	-	\(\nu_r \)	Roughness of the surface
15	-	\(\nu_d \)	Distortion of the surface
16	-	\(\nu_{s2} \)	Scale of the surface displacement

Table 1: Labels used in DS₁ to generate the renderings.

Split	Name	\(N \)
\(Tr \)	\(T_{30'000_b_2022-08-02_11.11.22_txt} \)	30'181
\(V \)	\(V_{5000_b_2022-08-02_11.15.52_txt} \)	5044
\(T e_1 \)	\(T e_1_5000_b_2022-08-02_11.16.00_txt \)	5044
\(T e_2 \)	\(T e_2_5000_ub_2022-08-02_11.16.11_txt \)	5000

Table 2: Input files for the renderings of DS₁.

As it is possible to see in Table 2, the number of samples \(N \) is not reflected by the number used in the txt name. This is because, at the beginning of the input file generation, a rough number is expressed (e.g. 30'000), which may not be the final number of samples contained in the txt. This discrepancy is due to the balancing of the dataset. For example, the \(Tr \), \(V \), and \(T e_1 \) splits are balanced ones and as a result thus they have slightly more samples than the ones inputted at the beginning of the procedure. On the other hand, \(T e_2 \) has the same number, due to its unbalanced nature. The balancing regards the distribution of the phase angle \(\Psi \) among the samples, as will be illustrated later on. The balancing is handled by a flag \(\nu_{\text{bal}} \). Depending on this flag the number of points to be generated will respectively be \(N' = 5M \) for the balanced case, and \(N' = M \) for the unbalanced one, where \(M \) represents the rough number of desired samples expressed at the beginning of the procedure (e.g. 30'000 or 5000).

A cloud of \(N' \) points is therefore generated in spherical coordinates such that the range, equatorial and elevation angles are distributed uniformly as \(\rho \in [2.0860, 10.4301] \) BU, \(\theta \in [10, 170] \) deg, \(\phi \in [-30, 30] \) deg. These coordinates are then transformed into cartesian ones and represent camera positions in the Blender reference frame. The attitude of the camera at each position is set with the primary pointing towards the center of the Blender reference frame and with the secondary pointing commanded by a uniform random rotation about the boresight \(\theta_b \in [0, 360] \) deg. Each pose is associated with a unique image-masks set, that represents a dataset sample.

\(^2 \)Blender Units (BU)
The illumination conditions are defined by the orientation and intensity of the Sun’s lamp in Blender. The intensity is handled by a random uniform value \(I \in [35, 65] \). For what concern the orientation, the light is constrained to be directed from the equatorial plane of the Blender reference frame. The angle between the camera position’s vector projection on the equatorial plane and a line-of-sight vector on the equatorial plane generated by a random uniformly generated angle \(\theta_S \in [-90, 90] \) is computed. Whenever this angle is between 0 deg and 180 deg it is considered viable from a visibility and illumination point of view. The phase angle \(\Psi \) between the camera position vector and the illumination vector is computed for each sample and pruning is performed based on the balance flag \(\nu_{bal} \). In the case in which a balanced dataset is desired, the distribution of the phase angle is forced to assume a linear increase up to 10 deg, after which a constant value is kept from 10 deg to 90 deg, as illustrated in the example in Figure 2. The balanced distribution is set to have a number of samples as close as possible to the target value, by selecting subsets from the larger unbalanced distribution.

![Figure 2: Example between a balanced and unbalanced distributions respectively of 5044 and 25000 samples.](image)

Using the Rock Generator add-on in Blender, a set of 30 boulder archetype shapes is generated, as illustrated in Figure 3. These are divided into three classes defined within the Rock Generator add-on, characterized by different default settings. These are the ice, river, asteroid classes.

![Figure 3: The 30 archetype shapes that represent single instances of boulders in \(DS_1 \). From top to bottom the ice, river, and asteroid classes are shown.](image)

For each sample, one of the 30 boulders is randomly selected with a uniform random sample \(ID \in [0, 29] \) and positioned in the origin of the reference frame. To further increase variability, each boulder is also randomly scaled with a uniform random value \(s \), which is selected according to the specific class.

In the shading tab, exploiting the Open Shading Language (OSL) package in Blender, the Akimov law is used to simulate light scattering. The modifications in the shading tab to perform scattering law corrections have been performed following the procedure illustrated in [PPK21]. The albedo of the surface is selected
from a random uniform distribution as \(a_s \in [0.05, 0.15] \). The albedo of each boulder \(a_b \) is then generated by multiplying a random uniform adimensional coefficient \(a_b' \in [0.7, 3] \) with the corresponding \(a_s \) for each sample. This is done to guarantee variability between surface and boulder’s albedo through the datasets. While both the boulders and surface are simulated through scattering laws in the shading tab, the spherical mesh representing the surface is also modified to generate a variety of different roughness surroundings, as illustrated in Figure 4.

![Figure 4: View of the shading tab in Blender regarding the surface mesh.](image)

The settings governing the surface displacement are the Scale, Detail, Roughness, Distortion settings within the Noise Texture block and the Scale setting within the Displacement block, as illustrated in Figure 5. These are varied as \(\nu_s \in [4, 6], \nu_r \in [0.4, 0.6], \nu_d \in [0.05, 0.2], \nu_{s2} \in [-0.25, 0.25] \).

![Figure 5: View within the DisplacementGroup of the shading tab in Blender.](image)

Following this procedure, renderings are executed looping through the different rows of each input file. By setting different pass indices to the surface and boulders and using Cycles as a rendering engine, its ray-tracing capabilities are used to obtain not only the grayscale images but their corresponding ground truth masks about surface and boulders. By combining this mask with the illumination conditions it is also possible to obtain the masks with shadows. Both sets of masks are generated for boulder and surface layers. During rendering, image-masks sets are rendered at \(256 \times 256 \) resolutions. However, a post-processing pipeline is put in place to perform random cropping and artificial noise addition. This pipeline is illustrated in Figure 6.

Artificial noise is added to images, while blobs analysis is performed on the boulder’s mask to perform randomized cropping which achieves a twofold objective: to reduce the image resolution to \(128 \times 128 \) px, and to scatter the boulder’s across the entire image plane, the latter being fundamental for generalization. It is noted that noise is added merely to reduce the possible domain gap between synthetic and real imagery and not to represent a specific camera model. The list of variables saved after post-processing is illustrated in Table 3. Note that these variables are saved in mat files with the corresponding names of the splits. Finally a sample of image-mask sets of \(DS_1 \) is illustrated in Figure 7.

![Figure 6: Illustration of the post-processing pipeline.](image)

![Figure 7: Sample of image-mask sets of DS1.](image)
Figure 6: Post-processing pipeline used in DS_1. For this dataset Type = Gaussian, $\mu = 0.1$, $\sigma = 0.0001$, $\sigma_{blur} = 0.5$, and $\gamma = 1.2$.

Col #	Units	Symbol	Name
1,2	px	$CoB_{u,v}$	CoB coordinates in the rendered images
3,4	px	$CoF_{u,v}$	CoF coordinates in the rendered images
5,6	px	$CoB_{u,v}$	CoB coordinates in the post-processed images
7,8	px	$CoF_{u,v}$	CoF coordinates in the post-processed images
9,10,11,12	px	Γ	Components of the bounding box around the boulder mask with shadow
13,14,15,16	px	δ	Padding values to reach target size image
17	px	$\delta\Gamma$	Target size of the image
18	-	N_{blobs}	Number of blobs detected in the image

Table 3: Labels generated after post-processing in DS_1 images.
Figure 7: Sample of image-mask sets of DS_1. From left to right: 256×256 grayscale renderings in Blender, masks without shadows, masks with shadows, followed by 128×128 noisy and randomly cropped grayscale images, and relative masks with shadows.
3 Blender setup of DS_2

The procedure adopted to generate the image-label pairs of DS_2 shares the same steps as the one used for DS_1 with few important differences. First of all, the Blender environment is represented by 4 elements:

1. A medium resolution mesh of the (65803) Didymos asteroid made of 652’032 faces that represents the surface
2. A particle system which scatters randomized populations of boulders from the collection of 30 samples in Figure 3 across the surface
3. A camera, modeled with a 128×128 px size sensor and a FOV of 10×10 deg
4. A Sun lamp illuminating the scene

The procedure to generate the input txt to use in Blender is the same as the one illustrated for DS_1. This time, however, only 10 of the original 16 labels are used and an additional one representing the random rotation of the asteroid around its axis is introduced as θ. Also, the ρ has been generated in a different interval, $\rho \in [3.9, 13]$ BU. These labels are illustrated in Table 4 while the name of the input file is summarized in Table 5. Note that for simplicity the columns of the labels are kept consistent with the ones in DS_1 and that the unnecessary columns are simply skipped during the rendering phase.

Col #	Units	Symbol	Name
1,2,3	BU	X, Y, Z	Camera position
4,5,6	BU	X_S, Y_S, Z_S	Sun direction vector
7	deg	θ_b	Camera boresight rotation
8	deg	θ_w	Angular rotation of the small body
10	-	a_s	Albedo of the surface
11	-	a_b	Albedo of the boulder
12	-	I	Sun’s intensity

Table 4: Labels used in DS_2 to generate the renderings.

Split	Name	N
TR	20000_b_2022-09-13 22.39.08.txt	200995
V	50000_b_2022-09-13 22.40.10.txt	5044
$T e_1$	50000_b_2022-09-13 22.40.14.txt	5044
$T e_2$	50000_ab_2022-09-13 22.40.20.txt	5000

Table 5: Input files for the renderings of DS_2.

The boulder population in DS_2 is handled by the particle system with the settings illustrated in Table 6 divided by the classes of the rock generator add-on.

Size	Ice	River	Asteroid
Small	2500	2500	2500
Medium	200	200	200
Large	2	2	2

Table 6: Settings of the particle system in Blender for DS_2.

Scattering laws are also applied in the shading tab as in the case of DS_1, note that this time, however, further randomization is added to the albedo of every single boulder by modifying the input value from the txt as follows:

$$a_b' = \max \left\{ a_b + \text{rand}(-0.5, 0.5)\sigma_b, 0.03 \right\}$$

where σ_b is an arbitrary parameter set to 0.35. After rendering, only artificial noise is added to images, as illustrated by the post-processing pipeline of DS_2 in Figure 8. A sample of image-mask sets from DS_2 is illustrated in Figure 9.
Figure 8: Post-processing pipeline used in DS_2. For this dataset Type = Gaussian, $\mu = 0.1$, $\sigma = 0.0001$, $\sigma_{blur} = 0.5$, and $\gamma = 1.2$.

Figure 9: Sample of image-label pairs of DS_2. 128×128 noisy grayscale images (left) and relative boulder masks (right).
4 Statistical properties of DS_1

The DS_1 dataset has been designed for different IP applications. Among these, the authors recognize boulders identification, segmentation, centroid regression, and navigation. The main statistical properties of DS_1 are illustrated in detail. Note that all histograms have been plotted with the value of the relative probability on the y-axis.

Figure 10 represents the distributions of the CoB coordinates of each boulder across the different splits of DS_1, while Figure 11 represents the same distributions in 2D plots. From these figures is possible to appreciate the beneficial effects of the post-processing in spreading the CoB coordinates uniformly across the image plane.

Figure 10: Histograms of the CoB coordinate of the boulders in the 256×256 (top) and 128×128 px (bottom) images of DS_1. Bin-width used is 1 (top) and 4 (bottom) px.

Figure 11: 2D histograms of the CoB coordinates of the boulders in the 256×256 (left) and 128×128 px (right) images of DS_1. Bin-width used is 1 (left) and 4 (right) px.

In Figure 12 the X, Y, Z coordinates of the camera are represented in the Blender reference frame. In Figure 13 various histograms are illustrated for the X, Y, Z coordinates, boresight rotation angle θ_b, range ρ, phase angle Ψ, and Sun’s intensity I. In particular, it is interesting to note the different distributions of Ψ between the Te_2 split and Tr, V, and Te_1 splits. These distributions reflect the balanced nature of the latter datasets. Finally, the relationship between boulder’s and surface albedo is illustrated in Figure 14 while in Figure 15 their histograms are represented.
Figure 12: Cloud of points of positions and Sun’s direction used in the various splits of DS_1 in the Blender reference frame. Sun direction varies only in the equatorial plane.
Figure 13: Histograms of properties of the various splits of DS_1. From top to bottom: Cartesian coordinates, boresight rotation, range, phase angle, and Sun’s intensity. Bin-width used from top to bottom: 0.5, 10 deg, 0.2, 1 deg, 1.
Figure 14: Boulders albedo as function of the surface albedo for the various samples of the splits of DS_1. The red line represents the albedo equality condition.

Figure 15: Histograms of surface (transparent) and boulder (solid) albedo’s (top) and their difference (bottom) in DS_1. Bin-width used: 0.01.

5 Statistical properties of DS_2

The DS_2 dataset has been designed for different IP applications. Among these, the authors recognize boulders identification, segmentation, and navigation. The main statistical properties of DS_2 are illustrated in detail. Note that all histograms have been plotted with the value of the relative probability on the y-axis corresponding to each bin.

In Figure 16 the X, Y, Z coordinates of the camera are represented in the Blender reference frame. In Figure 17 various histograms are illustrated for the X, Y, Z coordinates, boresight rotation angle θ_b, range ρ, phase angle Ψ, and Sun’s intensity I. In particular, it is interesting to note the different distributions of Ψ between the Tc_2 split and Tr, V, and Tc_1 splits. These distributions reflect the balanced nature of the latter datasets. Finally, the relationship between boulder’s and surface albedo is illustrated in Figure 18 while in Figure 19 their histograms are represented.
Figure 16: Cloud of points of positions and Sun’s direction used in the various splits of DS_2 in the Blender reference frame. Sun direction varies only in the equatorial plane.
Figure 17: Histograms of properties of the various splits of DS_2. From top to bottom: Cartesian coordinates, boresight rotation, range, phase angle, and Sun’s intensity. Bin-width used from top to bottom: 0.5, 10 deg, 0.2, 1 deg, 1.
Figure 18: Boulders albedo as function of the surface albedo for the various samples of the splits of DS2. The red line represents the albedo equality condition.

Figure 19: Histograms of surface (transparent) and boulder (solid) albedo’s (top) and their difference (bottom) in DS2. Bin-width used: 0.01.

6 Conclusions

In this work the authors have presented the Blender setup and statistical characterization of two datasets that can be used for various IP tasks about small bodies. The datasets have been first used in [PT22a] and are made publicly available at [PT22b].

Acknowledgment

The authors would like to acknowledge the funding received from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 813644.
References

[PPK21] Antti Penttilä, Mario F. Palos, and Tomas Kohout. “Realistic visualization of solar system small bodies using Blender ray tracing software”. In: *European Planetary Science Congress*, Wien, Austria. https://doi.org/10.5194/epsc2021-791. Sept. 2021, p. 1.

[PT22a] Mattia Pugliatti and Francesco Topputo. “Boulders identification on small bodies under varying illumination conditions”. In: *3rd Space Imaging Workshop*, Atlanta, GA. SIW22-09. Oct. 2022, pp. 1–12.

[PT22b] Mattia Pugliatti and Francesco Topputo. *DOORS: Dataset for bOuldeRs Segmentation*. Version 1.0. Sept 2022, Zenodo, V1.0, doi: 10.5281/zenodo.7107409. Zenodo, Sept. 2022. doi: 10.5281/zenodo.7107409.

[SRA22] Jianing Song, Duarte Rondao, and Nabil Aouf. “Deep learning-based spacecraft relative navigation methods: A survey”. In: *Acta Astronautica* 191 (2022), pp. 22–40.