X-ray Dichroism and Orbital Anapoles

Paolo Carra, Andrés Jerez, and Ivan Marri

1 European Synchrotron Radiation Facility, B.P. 220, F-38043 Grenoble Cédex, France
2 Institut Laue-Langevin, B.P. 156X, F-38042 Grenoble Cédex, France

(October 27, 2018)

We present a theoretical analysis of photo-absorption spectroscopies in noncentrosymmetric systems, covering both x-ray and optical regions. Integrated dichroic spectra are interpreted using microscopic effective operators, which are obtained by coupling the orbital angular momentum to the orbital anapole. Symmetry arguments afford a classification of valence-electron states in the presence of parity nonconserving hybridisation. Enantiomorphism is identified by a two-particle chiral operator.

PACS numbers:78.70.Dm, 33.55.Ad

The current paper aims at providing a theoretical interpretation of two recent experiments:

X-ray natural circular dichroism (XNCD), probed in α-LiIO$_3$ and in Na$_3$Nd(digly)$_3$·2NaBF$_4$·6H$_2$O. (The effect was observed at the iodine L edges and at the Nd L$_3$ edge.)

X-ray nonreciprocal linear dichroism (XNRLD), detected at vanadium K edge in the low-temperature insulating phase of a Cr-doped V$_2$O$_3$ crystal.

XNCD measures the difference in absorption between right and left circularly polarised radiations. XNRLD implies a difference in absorption in radiations with linear polarisation parallel or perpendicular to a local symmetry axis. Both phenomena stem from the interference between electric-dipole (E1) and electric-quadrupole (E2) transitions that raise an inner-shell electron to empty valence orbitals. Detecting a nonvanishing signal thus requires an ordered structure (crystal) and the breaking of space inversion.

As will be shown, Lie groups (or, alternatively, Lie algebras) furnish a powerful tool for interpreting x-ray dichroism in non-centrosymmetric crystals. In fact, effective microscopic operators, which express electronic properties revealed by the spectra, are readily deduced from the pertinent group generators: The **orbital angular momentum and orbital anapole**. Our approach hinges therefore on spectrum-generating algebras (SGAs), a concept originally introduced in nuclear and particle physics. We present a theoretical analysis of photo-absorption spectroscopies in noncentrosymmetric systems, over a finite energy range, corresponding to the two partners of a spin-orbit split inner-shell: $j_\pm = l_\pm \pm \frac{\hbar}{2}$.

We follow Carra and Benoist and consider the general framework of a de Sitter algebra: $so(3,2)$. A realisation of such an algebra is provided by the operators: $A^+ = i(A - A^\dagger)/2$, $A^− = (A + A^\dagger)/2$, L and N_0, where $A = n f_1(N_0) + \nabla_{\Omega} f_2(N_0)$, with $n = r/r$ and $\nabla_{\Omega} = −i n \times L$: L denotes the orbital angular momentum (in units of \hbar). Furthermore, $f_1(N_0) = (N_0 − 1/2)f_2(N_0)$ and $f_2(N_0) = \sqrt{(N_0 − 1)/N_0}$, where $N_0|lm⟩ = (l + \frac{1}{2})|lm⟩$, with $|lm⟩$ a spherical harmonic. A and A^\dagger are known as shift operators as their action on $|lm⟩$ changes l into $l \pm 1$.

As will be seen, discussing x-ray dichroism in noncentrosymmetric systems only requires L (rotations) and $A^−$ (boosts), which themselves generate a homogeneous Lorentz group: $SO(3,1)$. We observe that

$$L \cdot A^- = A^- \cdot L = 0,$$

and that a physical interpretation of $A^−$ is provided by the relation

$$Ω^- = (n \times L - L \times n)/2 = i [n, L^2]/2 = \frac{i}{2} (\nabla^\dagger_\Omega - \nabla_\Omega) = \frac{1}{2 \sqrt{N_0}} [N_0, A^-] + \frac{1}{\sqrt{N_0}},$$

where $[...]_+$ denotes an anticommutator. Eq. (2) defines the (purely angular) orbital anapole $Ω^-$. As pointed out by Dothan et al., L and $Ω^−$ also generate $SO(3,1)$, $[L$ and A^+} generate another $SO(3,1)$ subgroup of $SO(3,2)$. Being space-odd and time-even, A^+ does not enter our theory of dichroism in noncentrosymmetric systems.

Our formulation is based on a localised (atomic) model and exploits the Racah-Wigner calculus to relate integrated dichroic spectra to the ground-state expectation value of effective orbital operators. These operators are constructed by coupling the hermitean vector operators L (space-even) and $Ω^−$ (space-odd) to obtain space-odd irreducible tensors. In such a framework, one-electron tensors are given by (l is an electron label).
\[
\sum_{l} [L_{l} \otimes \Omega_{l}^{-}]_{q}^{(k)l+l'} = \sum_{l} [L_{l} \otimes \Omega_{l}^{-}]_{q}^{(k)l,l'} + \text{H.c.}
\]
\[
= \sum_{m,m'} \langle l'm'|[L \otimes \Omega_{l}^{-}]_{q}^{(k)l}|lm \rangle a_{l'}^{\dagger} a_{lm} + \text{H.c.} \tag{3}
\]

Here, \(l' = l \pm 1\); \(a_{l'}^{\dagger}\) and \(a_{lm}\) create and annihilate valence electrons. (As usual, tensor couplings are defined via Clebsch-Gordan coefficients: \([U^{(p)} \otimes V^{(\kappa)}]_{q}^{(k)} \equiv \sum_{\mu,\nu} C_{\mu\nu}^{pq} C_{\mu\nu}^{pq}^{(k)} \otimes \mu_{\nu}^{(p) \otimes \kappa_{\nu}^{(p)}}\).) Extending Eq. (3) to define two-electron space-odd irreducible tensors is straightforward.

\(E1-E2\) interference: XNCD \[1\] The effect is characterised by an orbital pseudodevator, i.e., a space-odd and time-even rank-two irreducible tensor \([14]\). In our formulation, its microscopically expression is given by a coupling of \(L\) to the orbital anapole; it reads: \([L \otimes \Omega_{l}^{-}]_{q}^{(2)l+l'}\). For the integrated XNCD spectrum, we thus find
\[
\int_{j_{-}+j_{+}} \frac{\sigma_{\text{XNCD}}(\omega)}{(\hbar \omega)^{2}} d(\hbar \omega) = \frac{8\pi^{2}a}{3h \epsilon_{c}} (2\epsilon_{c} + 1) \sum_{l,l'=l \pm 1} R_{l,l'}^{(1)}
\]
\[
\sum_{l,l'=l \pm 1} R_{l,l'}^{(1)} \langle \psi_{0}| \sum_{l} [L_{l} \otimes (L \times n - n \times L)]_{l}^{(2)l+l'} |\psi_{0}\rangle \tag{4}
\]

In the foregoing equation, \(\sigma_{\text{XNCD}}(\omega) = \sigma_{\text{X}}^{\text{a}}(\omega) - \sigma_{\text{X}}^{\text{b}}(\omega)\) denotes the cross section for \(E1-E2\) circular dichroism in the x-ray region (\(X\)), with
\[
\sigma_{\text{X}}^{\text{a}}(\omega) = 2\pi^{2}a\hbar \omega [i \sum_{f,f'} \langle g | e^{*} \cdot r_{i} | f \rangle \langle f | e \cdot r_{i} \cdot k \cdot r_{f'} | g \rangle + \text{c.c.}] \delta(E_{f} - E_{g} - \hbar \omega); \tag{5}
\]
\(\hbar \omega\), \(k\) and \(e^{\pm} = \mp (i/\sqrt{2})(\epsilon_{1} \pm i \epsilon_{2})\) represent energy, wave vector, and circular polarisations of the photon, respectively; \(\alpha = e^{2}/\hbar \epsilon\). The integral terms are given by \(R_{l,l'}^{(1)} = \int_{0}^{\infty} dt_{e} \varphi_{l}(r) r^{L+2} \varphi_{l}(r)\), where \(\varphi_{l}(r)\) and \(\varphi_{l}(r)\) denote inner-shell and valence radial wave functions, respectively [11,12].

A general expression can be given for the wave-vector and polarisation responses used throughout this work. It reads: \(i^{z}T_{q}^{(k)}(e^{*}, e, k)z\), where
\[
T_{q}^{(k)}(e^{*}, e, k)z = \sum_{y} \sqrt{(2z+1)(2y+1)}(-1)^{1+k} \tag{6}
\]
\[
\{\begin{array}{c}
1 \ k \ y \\
1 \ 1 \ z
\end{array}\} \sum_{\eta \beta} C_{\eta \beta}^{yq} C_{\eta \beta}^{qy} Y_{1 \eta}(e^{*}) Y_{1 \alpha}(e) Y_{1 \beta}(k),
\]
with \(z = 1, 2\) denoting \(E1-M1\) (imaginary) and \(E1-E2\) (real) responses, respectively; \(k = k/k\). Explicit forms are given in Table [1].

\(E1-E2\) interference: XNRLD \[3\] One effective operators is found in this case: a space and time odd tensor of rank three, i.e., an orbital septor. This unusual magnetic moment stems from a coupling of the orbital anapole with the quadrupolar moment of \(L\) and takes the form \([L \otimes L]_{q}^{(3)l+l'}\).

The integrated XNRLD spectrum can thus be written as
\[
\int_{j_{-}+j_{+}} \frac{\sigma_{\text{XNRLD}}(\omega)}{(\hbar \omega)^{2}} d(\hbar \omega) = \frac{8\pi^{2}a}{3h \epsilon_{c}} (2\epsilon_{c} + 1) \sum_{l,l'=l \pm 1} R_{l,l'}^{(2)}
\]
\[
R_{l,l'}^{(2)} \langle l',l \rangle \sum_{q} \left[T_{q}^{(3)l}(\epsilon^{*}, k)_{2} - T_{q}^{(3)l}(\epsilon, k)_{2}\right] \tag{7}
\]
\[
\langle \psi_{0}| \sum_{l} [L_{l} \otimes L_{l}]^{2} (L \times n - n \times L)_{l}^{(3)l+l'} |\psi_{0}\rangle,
\]

where \(\sigma_{\text{XNRLD}}(\omega) = \sigma_{\text{X}}^{b}(\omega) - \sigma_{\text{X}}^{a}(\omega)\) stands for the cross section for \(E1-E2\) linear dichroism; here, \(\parallel\) and \(\perp\) denote two orthogonal linear-polarisation states [12].

Notice that the \(E1-E2\) interference contains a further magnetic term, which vanishes in the geometry of Eq. (3). It is an orbital vector, with polarisation response \(T_{q}^{(1)l}(\epsilon, k)z\). In our formulation, it is given by \(\sum_{l} \langle [L_{l} \times n - n \times L_{l}]_{l}^{(1)l+l'} \rangle\), i.e., by the orbital anapole. This toroidal contribution \(\parallel\) to the orbital current (see below) could be detected by the following experiment. Absorb linearly polarised x rays at the 'magic angle' \(\vec{k}B \approx 39.23^{\circ}\) for parallel and antiparallel magnetoelectric annealing \([3]\) of the sample; \(B \equiv \text{external magnetic field}\). Subtract the two spectra.

Stemming from parity nonconserving hybridisation of the valence electrons, the effect should be easier to detect than its nuclear counterpart \([17]\), as the work of Ref. [3] appears to indicate.

\(E1-M1\) interference. As previously stated, our approach readily extends to cover the visible range, where the \(E1-M1\) interference is predominant. In this case (for optical natural circular dichroism (ONCD) takes the form: \(\sigma_{\text{ONCD}}(\omega) = \sigma_{\text{\Omega}}^{a}(\omega) - \sigma_{\text{\Omega}}^{b}(\omega)\), with
\[
\sigma_{\text{\Omega}}^{a}(\omega) = \frac{2\pi^{2}a}{m^{2}} \sum_{f,f'} \langle g | e^{*} \cdot r_{i} | f \rangle \langle f | e \cdot r_{i} \cdot k \cdot l_{f'} | g \rangle + \text{c.c.}] \delta(E_{f} - E_{g} - \hbar \omega), \tag{8}
\]
\(\langle f | e \times k \cdot l_{f'} | g \rangle + \text{c.c.}] \delta(E_{f} - E_{g} - \hbar \omega), \tag{9}
\)
\(l = h \mathbf{L}\).

For the integrated ONCD spectrum we obtain
\[
\int_{j_{-}+j_{+}} \frac{\sigma_{\text{ONCD}}(\omega)}{(\hbar \omega)^{2}} d(\hbar \omega) = \frac{4\pi^{2}a}{3mc} \sum_{l,l'=l \pm 1} R_{l,l'}^{(1)}
\]
\[
d(l,l') \langle \psi_{0}| \left\{ \sqrt{\frac{2}{3}} T_{0}^{(0)}(\epsilon^{*}, \epsilon, \hat{k}) + \hat{k}_{1} \right\} \right| \langle \psi_{0}| \tag{9}
\]}
\[
\sum_{l \neq l'} \left[L_l \cdot (L \times n - n \times L)_{l'} \right]^{l+l'-1} - \sum_q \sqrt{2T_q} (e^+, e^-, \hat{k}),
\]

\[
\sum_{l, l'} \left[L_l \otimes (L \times n - n \times L)_{l'} \right]^{l+l'-1}_{q}\}
\]

\[
\psi_0,
\]

with \(d(l, l+1) = 1/(l+1)\) and \(d(l, l-1) = -1/l\). Two irreducible tensors are thus associated to ONCD: a two-particle orbital pseudoscalar, which identifies chirality (see below), and a orbital pseudoelevator; the latter generalises the results of Eq. (1) to the two-particle case and will not be discussed any further. (There is an important difference between E1-E2 and E1-M1 involved dichroic spectra. E1-E2 implies excitations from inner shells, which are filled in the ground state and can therefore be 'integrated out'. As a result, one-electron contributions, and thus providing a physical basis to our consideration.

Interpretation of the results. The choice of \(L\) and \(\Omega^-\) as the building blocks of our analysis is physically motivated as follows. As both generators are magnetic, they are expected to contribute to the electron orbital current, a conjecture which is readily verified. To this purpose, consider Trammell's expansion of the Fourier transform of the atomic orbital magnetisation density [23]

\[
L(k) = \frac{1}{2} \langle \psi_0 | \sum_i [L_i f(k \cdot r_i) + f(k \cdot r_i) L_i] | \psi_0 \rangle,
\]

and perform a recoupling with use of [23]:

\[
f(k \cdot r) = 4\pi \sum_i g_i(kr) Y_{lm}(n) Y_{lm}^*(k),
\]

with \(g_i(x) = (2/x^2) \int_{0}^{\pi} d\xi j_i(\xi)\), where \(j_i(\xi)\) denotes a spherical Bessel function.

We have

\[
L(k) = \sum_i \langle \psi_0 | \left[g_0(kr_i) L_i + 3 g_1(kr_i) \right] / 2
\]

\[
(\hat{k} \times (L_i \times n_i - n_i \times L_i) / 2 + \cdots) | \psi_0 \rangle,
\]

displaying the orbital angular momentum and anapole contributions, and thus providing a physical basis to our chosen so(3,1) SGA, which is realised by \(L\) and \(\Omega^-\).

The representations of the homogeneous Lorentz group, which are identified by a pair of indexes, \(\nu\) and \(\rho\), afford a classification of electronic states in noncentrosymmetric systems. Unitary (unirreps) and nonunitary (nonunirreps) irreducible representations will be considered.

It is readily seen [24] that \(\Omega^-\) corresponds to having \(\nu = \rho = 0\), yielding the unirrep \(\mathcal{D}(\nu = 0, \rho = 0) = \sum_{l=0,1,\ldots} \mathcal{D}^l\) ("supplementary" series), with basis \(\sum_{l=0,1,\ldots} |lm\rangle\), thus confirming that we are dealing with a spinless case. (Here, \(\mathcal{D}^l\) identifies the representations of the rotation group.) Notice that the spherical harmonics are eigenstates not only of the so(3) invariant (Casimir) \(\mathcal{L}^2\), but also of the corresponding so(3,1) invariants \(\mathcal{L}^2 - (\Omega^-)^2\) and \(\mathcal{L} \cdot \Omega^-\). The latter, with eigenvalues \(\nu \rho\), identifies the chiral operator and evinces the deep interweaving of the Lorentz group with chirality. As \(\mathcal{L} \cdot \Omega^- = 0\) [Eq. (1)], orbital chirality cannot manifest itself at the one-particle level.

We can build a two-particle basis using the same so(3,1) SGA. The generators are given by \(L_T = L_1 + L_2\) and \(\Omega_T = \Omega_1^- + \Omega_2^-\), in this case. In such a basis, the two-particle states are eigenstates of the so(3,1) invariants; in particular of \(\mathcal{L} \cdot \Omega_T\), the chiral operator that emerges from the E1-M1 processes [Eq. (1)]. The Clebsch-Gordon series for the direct product of two \(\mathcal{D}(0,0)\) representation takes the form [22]:

\[
\mathcal{D}(0,0) \otimes \mathcal{D}(0,0) = \sum_{\nu=0}^{\infty} \int\mathcal{D}(\nu,\rho) d\mu(\nu,\rho).
\]

The direct product thus decomposes into a direct sum of representations some of which characterised by \(\nu \rho \neq 0\), i.e. orbital chirality appears naturally when considering two-particle properties.

From the relations between the so(3,1) Clebsch-Gordon coefficients [24], it is readily seen that states with \(\nu \rho \neq 0\) have mixed parity. For a given value of \(\nu|\rho| \neq 0\), there are two inequivalent representations with basis states of the form \([\mathcal{D}(0,0)]\), with eigenvalues \(j + 1\) and \(j\) (\(j\)'s values), respectively; \(j\)'s take integer or half-integers values. These nonunirreps are denoted by \(\mathcal{D}(J^J)\). The representation space is spanned by the \((2j+1)(2j'+1)\) basis vectors \([jm]\)\([j'm']\) (canonical basis). [All nonunirreps for which \(j + j'\) is an integer are true representations of SO(3,1), while those for which \(j + j'\) is half-integer are double-valued.] Observe that \(\mathcal{N}\) and \(\mathcal{N}^\dagger\) are not independent as they can be interchanged by space inversion. This is equivalent to swapping \(j \leftrightarrow j'\). Notice that \(\mathcal{L} \cdot \Omega^- = 0\) implies \(j = j'\). Again, orbital chirality does not appear at the one-particle level.

To illustrate the use of nonunirreps in constructing two-electron states, we resort to the simple case \(\mathcal{D}(\mathcal{J}^\mathcal{J}) \otimes \mathcal{D}(\mathcal{J}^\mathcal{J})\). We have

\[
\Psi_{MM'}^{LL'}(1,2) = \sum_{\alpha \sigma} C^{LM}_{\alpha1,\sigma1} C^{LM}_{\alpha2,\sigma2} \psi_{\sigma1,\sigma1'}(1) \psi_{\sigma2,\sigma2'}(2),
\]

with \(\psi_{\sigma,\sigma'} = |\frac{1}{2}\sigma\rangle \langle \frac{1}{2}\sigma'|\). In this basis, the two-particle chiral operator takes the form: \(\mathcal{L}_T \cdot \mathcal{\Omega}_T = \mathcal{L} \cdot \mathcal{\Omega} = \mathcal{L} \cdot \mathcal{\Omega}_T = 0\).
so electronic properties probed by x-ray and optical dichroism of microscopic effective operators, which identify the elec-
symmetry-breaking hybridisation, valence electrons de-
approach to photo-absorption spectroscopies in noncen-
knowledged.

variant (pseudoscalar), which is measured by optical nat-
⋆⋆Permanent address: INFM and Dipartimento di Fisica
Address from September 1, 2001: European Synchrotron
Radiation Facility, B.P. 220, F-38043 Grenoble Cédex,
France

A symmetry analysis based on homogeneous Lorentz
group has indicated that, in the presence of inversion-
symmetry-breaking hybridisation, valence electrons de-
velop an orbital anapole moment. The coupling of such a
moment to the orbital angular momentum yields a set of
microscopic effective operators, which identify the elec-
tronic properties probed by x-ray and optical dichroism
(E1-E2 and E1-M1 interferences).

It has also been shown that orbital chirality (enantio-
morphism) is described by a two-electron so(3, 1) in-
variant (pseudoscalar), which is measured by optical nat-
ural circular dichroism.

Stimulating discussions with E. Katz are gratefully ac-
knowledged.

* Address from September 1, 2001: European Synchrotron
Radiation Facility, B.P. 220, F-38043 Grenoble Cédex,
France

** Permanent address: INFM and Dipartimento di Fisica
dell’Università degli Studi di Modena e Reggio Emilia,
41100 Modena, Italy.

1] Goulon J. et al., J. Chem. Phys. 108, 6394 (1998).
2] Alagna L. et al., Phys. Rev. Lett. 80, 4799 (1998).
3] J. Goulon et al. Phys. Rev. Lett., 85, 4385 (2000).
4] S. Goshen and H. J. Lipkin, Ann. Phys. (N. Y.) 6, 301
(1959); and in Spectroscopic and Group Theoretical Meth-
ods in Physics - Racah Memorial Volume, F. Bloch et al.
Eds., North-Holland, Amsterdam, 1968.

5] Y. Dothan, M. Gell-Mann, and Y. Ne’eman, Phys. Lett.
17, 148 (1965); N. Mukunda, L. O’Raifeartaigh and
E.C.G. Sudarshan, Phys. Rev. Lett. 15, 1041 (1965).
6] Y. Dothan and Y. Ne’eman, Band Spectra Generated By
Non-Compact Algebra, reprinted in F.J. Dyson, Symme-
try Groups in Nuclear and Particle Physics - A Lecture-
Note and Reprint Volume, Benjamin, New York, 1966.

7] G. T. Trammell, Phys. Rev. 92, 1387 (1953).
8] P. Carra and R. Benoist, Phys. Rev. B 62, R7703 (2000).
9] M. J. Englefield, Group Theory and the Coulomb Prob-
lem, Wiley-Interscience, New York, 1972.
10] Ya. B. Zel’dovich, Zh. Éksp. Teor. Fiz. 33, 1531 (1957)
[Sov. Phys. JETP 6, 1184 (1958)].
11] V. V. Flambaum and I. B. Khriplovich, Zh. Éksp. Teor.
Fiz. 79, 1656 (1980) [Sov. Phys. JETP 52, 835 (1980)].
12] M.-A. Bouchiat and C. Bouchiat, Rep. Prog. Phys. 60,
1351 (1997).
13] P. Carra and B. T. Thole, Rev. Mod. Phys. 66, 1509
(1994).
14] C. R. Natoli et al., Eur. Phys. J. B 4, 1 (1998).
15] Relativistic corrections to the radial part of the atomic
wave functions are neglected.
16] In Eq. (6) and (7), the coefficients are given by
a_{l}(l_{c}, l) = b_{l}(l_{c}, l)[6 + 3l(l_{c} + 1) - 2(l + 1) - l’(l’ + 1)],
with
b_{l}(l_{c}, l) = \frac{2(l + 1)(l’ + 1)}{h(l, l’)(l_{c} - 3l’ + 2l)(l_{c} + 3l’ - 2l + 1)h(l_{c}, l)},

17] C. S. Wood et al., Science 275, 1759 (1997).
18] Equation (6) corrects a misprint in Eq. (16) of Ref. 6.
19] M. Blume and D. Gibbs, Phys. Rev. B 37, 1779 (1988).
20] S. W. Lovesey, J. Phys. C 2, 470 (1969).
21] A. Bohn, Quantum Mechanics: Foundations and Appli-
cations, Springer-Verlag, Heidelberg, 1993; Ch. V.
22] M.A. Naimark, Tr. Mosk. Mat. Obshch. 8, 121 (1959);
9 237 (1960); 10, 181 (1961) [Amer. Math. Soc. Transl.,
Ser. 2, 36, 101-229 (1964)].
23] R.L. Anderson, R. Raczkiewicz, M.A. Rashid, and P. Winter-
nitz, J. Math. Phys. 11, 1050 (1970); 11, 1059 (1970), and
references therein.
24] Y. Frishman and C. Itzykson. Phys. Rev. 180, 1556
(1969).
25] L. Fonda and G.C. Ghirardi, Symmetry Principles in
Quantum Physics, Marcel Dekker, New York, 1970; Ch.
III.
26] P. Ramond, Field Theory: A Modern Primer, Addison-
Wesley, Redwood City, California, 1989.

TABLE I. Polarisation responses of E1-E2 and E1-M1 in-
terferences.

E1-E2	E1-M1
iT_0^{(0)}(\epsilon^*, \epsilon, \hat{k})_1 = -iT_0^{(0)}(\epsilon, \epsilon^*, \hat{k})_1 = -i/\sqrt{6},	
iT_q^{(2)}(\epsilon^*, \epsilon, \hat{k})_1 = -iT_q^{(2)}(\epsilon, \epsilon^*, \hat{k})_1 = -i/2[\epsilon^* \otimes \epsilon
T_q^{(1)}(\epsilon, \hat{k})_2 = T_q^{(1)}(\epsilon^*, \hat{k})_2 = -1/2\sqrt{2}\hat{k}q,	
T_q^{(2)}(\epsilon^*, \epsilon, \hat{k})_2 = -T_q^{(2)}(\epsilon, \epsilon^*, \hat{k})_2 = \frac{\sqrt{5}}{2}[\epsilon^* \otimes \epsilon
T_q^{(3)}(\epsilon, \hat{k})_2 = [[\epsilon^* \otimes \epsilon