Bacterial killing by complement requires membrane attack complex formation via surface-bound C5 convertases

Dani AC Heesterbeek1,†, Bart W Bardoe1,†, Edward S Parsons2, Isabel Bennett2, Maartje Ruyken1, Dennis J Doorduijn3, Ronald D Gorham Jr1, Evelien TM Berends1, Alice LB Pyne2, Bart W Hoogenboom2,3,† & Suzan HM Rooijakkers1,*.†

Abstract

The immune system kills bacteria by the formation of lytic membrane attack complexes (MACs), triggered when complement enzymes cleave C5. At present, it is not understood how the MAC perturbs the composite cell envelope of Gram-negative bacteria. Here, we show that the role of C5 convertase enzymes in MAC assembly extends beyond the cleavage of C5 into the MAC precursor C5b. Although purified MAC complexes generated from preassembled C5b6 perforate artificial lipid membranes and mammalian cells, these components lack bactericidal activity. In order to permeabilize the bacterial outer and inner membrane and thus kill a bacterium, MACs need to be assembled locally by the C5 convertase enzymes. Our data indicate that C5b6 rapidly loses the capacity to form bactericidal pores; therefore, bacterial killing requires both in situ conversion of C5 and immediate insertion of C5b67 into the membrane. Using flow cytometry and atomic force microscopy, we show that local assembly of C5b6 at the bacterial surface is required for the efficient insertion of MAC pores into bacterial membranes. These studies provide basic molecular insights into MAC assembly and bacterial killing by the immune system.

Keywords atomic force microscopy; complement; convertase; Gram-negative bacteria; membrane attack complex
Subject Categories Membrane & Intracellular Transport; Microbiology, Virology & Host Pathogen Interaction
DOI 10.15252/embj.201899852 | Received 18 May 2018 | Revised 5 December 2018 | Accepted 14 December 2018 | Published online 14 January 2019
The EMBO Journal (2019) 38: e99852

Introduction

Membrane attack complex (MAC) formation is an evolutionarily conserved immune mechanism to kill bacteria and altered self-cells. It results from activation of the complement cascade (present in blood and most bodily fluids; Kang et al, 2009; Ricklin et al, 2010), when newly formed C5b6 complexes bind C7, C8, and multiple C9 molecules to build hetero-oligomeric MAC pores into target cell membranes. The MAC has an essential role in human immune protection against Gram-negative bacteria; this is evident from recurrent infections in patients lacking MAC activity due to genetic deficiencies (Ram et al, 2010; Turley et al, 2015) or due to treatment with complement-inhibitory drugs (Konar & Granoff, 2017; McNamara et al, 2017; Ricklin et al, 2017). Since MAC-dependent cell lysis can be specifically triggered via antibodies, this killing mechanism is also exploited for therapeutic development of antibodies that target cancer cells or drug-resistant bacterial infections (Szijártó et al, 2015; de Jong et al, 2016). Despite its crucial role in immunity, it is currently not understood how the MAC kills bacteria.

In vivo, the MAC is generated via an enzymatic chain reaction on the target cell surface (Ricklin et al, 2010; Berends et al, 2014). Following recognition of a foreign cell via antibodies or pattern recognition molecules, proteins of the complement system (Ricklin et al, 2010; Ugurlar et al, 2018) rapidly organize into a proteolytic cascade that eventually results in cleavage—by C5 convertase enzymes—of precursor C5 into the anaphylatoxin C5a and C5b (Gros et al, 2008; Ricklin et al, 2010); C5b initiates the assembly of the MAC (C5b-9; Hadders et al, 2012; Serna et al, 2016; Sharp et al, 2016; Bayly-Jones et al, 2017). Nascent C5b by itself is labile, but forms stable C5b6 complexes by rapid association with C6 (Cooper & Müller-Eberhard, 1970; Hadders et al, 2012). Next, C5b6 complexes bind C7, which changes conformation to expose a hydrophobic domain that renders the complex lipophilic (Preissner et al, 1985). Once C5b-7 is bound to the target membrane, its assembly with C8 and 18 copies of C9 results in the formation of the MAC (Bayly-Jones et al, 2017; preprint: Parsons et al, 2018). Recent in vitro structural studies (Serna et al, 2016; Sharp et al, 2016; Menny et al, 2018; preprint: Parsons et al, 2018) have revealed detailed information on how MAC proteins form toroid-shaped...
pores with an inner diameter of 10 nm, spanning a single phospholipid (bilayer) membrane. Despite these structural insights, it remains unclear how these pores can kill Gram-negative bacteria. Since the cytoplasmic membrane of Gram-negative bacteria is physically protected by a peptidoglycan layer and an outer membrane (Silhavy et al., 2010), it is unclear how MAC pores, with a transmembrane region of < 10 nm (Serna et al., 2016; Sharp et al., 2016), can perturb this composite cell wall. Furthermore, it is not known if MAC can perturb both membranes and if other serum components, such as the peptidoglycan-degrading enzyme lysozyme (Wright & Levine, 1981), are required to kill a bacterium.

In this paper, we demonstrate that although the purified MAC components (C5b-9) form pores in artificial lipid membranes (Serna et al., 2016; Sharp et al., 2016), they require additional complement components to be bactericidal. Specifically, we find that MAC-dependent killing critically depends on the prior labeling of the bacterial surface with C5 convertases enzymes. Using novel membrane perturbation analyses and atomic force microscopy, we here show that in situ cleavage of C5 by convertases at the microbial surface and immediate insertion of newly formed C5b67 complexes into the membrane is essential for the MAC to perturb both bacterial membranes and to be bactericidal. Our data highlight a critical role for complement activation mechanisms at the cell surface to induce bacterial killing.

Results

MAC in serum perturbs both the outer and inner membrane of Gram-negative bacteria

To better understand bacterial killing by the MAC, we developed a flow cytometry-based approach that can distinguish between outer and inner membrane perforation in Gram-negative bacteria following exposure to human serum, which contains all complement proteins and has potent bactericidal activity against Gram-negative bacteria (Berends et al., 2014). Outer membrane integrity was monitored by measuring release of mCherry from the periplasmic space of genetically engineered E. coli MG1655 cells (Fig 1A and B). Inner membrane integrity was monitored by detecting release of cytosolic Green Fluorescent Protein (GFP) or by the influx of small molecule DNA dyes (Lebaron et al., 1998). Upon exposure of these cells to human serum, the periplasmic mCherry signal decreased in the entire population, indicating permeabilization of the outer membrane (Figs 1C and EV1A). Although cytosolic GFP signals remained constant, human serum induced effective passage of small DNA dyes (Figs 1C and EV1A).

By carefully titrating concentrations of serum (and thus complement components), we found that the influx of DNA dyes, but not mCherry release, strongly correlated with bacterial cell death (Figs 1C and EV1B). Also, in two wild-type E. coli strains and a clinical isolate of Stenotrophomonas maltophilia (S. maltophilia), we observed that serum-induced inner membrane disruption correlated with bacterial killing (Fig 1D and E). Both inner membrane disruption and killing by human serum fully relied on the presence of MAC components but not on the peptidoglycan-degrading lysozyme (Figs 1D and E, and EV1C). Taken together, these data suggest that MAC-mediated disruption of the inner membrane is an essential requirement for killing of Gram-negative bacteria in human serum.

Purified MAC components lack the bactericidal activity of serum

To assess how the MAC can damage both membranes, we used purified MAC components instead of serum. Although nascent C5b is unstable, rapid association with C6 (Cooper & Müller-Eberhard, 1970; Hadders et al., 2012) leads to formation of stable C5b6 complexes that initiate the assembly of the MAC (C5b6-9; Hadders et al., 2012; Serna et al., 2016; Sharp et al., 2016; Bayly-Jones et al., 2017; Fig 2A). Such stable C5b6 complexes can be generated by activating C5 and C6 on activating surfaces (in C7-deficient serum) and subsequently purified released C5b6 from the supernatant (van den Berg, 2000). Upon incubation with C7, C8, and C9, such purified, preassembled C5b6 complexes can form MAC pores in various cell types. This protocol was recently used for structure determination of the MAC following its formation in liposomes (Serna et al., 2016; Menny et al., 2018). In concordance with literature, we also observed that preassembled C5b6 complexes can associate with proteins C7, C8, and C9 to assemble lytic MAC pores (henceforward denoted as C5b6MACs) in liposomes (Fig EV2A; Sharp et al., 2016) and mammalian erythrocytes [human (Fig 2B) and rabbit (Fig EV2B (Lachmann & Thompson, 1970))]. However, when preassembled C5b6 triggers MAC formation on bacteria, these pores lack the bactericidal activity of human serum (Fig 2C), even at protein concentrations exceeding those in blood (Fig EV2C). Although C5b6MAC is not bactericidal, it decreased mCherry signals in the entire population, indicating permeabilization of the outer membrane (Fig 2D). While C5b6MAC pores perturb the bacterial outer membrane, they—unlike serum—lack the ability to damage the inner membrane of Gram-negative bacteria (Fig 2D and E). We conclude that C5b6MAC lacks bactericidal activity in spite of its effectiveness in perturbing the outer membrane.

Reconstituting bactericidal MAC assembly via surface-bound C5 convertases

To identify which additional factors in serum are needed to form bactericidal MAC pores, we next attempted to more closely mimic in vivo MAC assembly via cell-bound C5 convertases (Figs 3A and EV3A; Berends et al., 2014). In serum, antibodies or pattern recognition molecules specifically drive the deposition of C5 convertases onto the target cell surface (Gros et al., 2008; Ricklin et al., 2010; Berends et al., 2014). This occurs in a step-wise manner (Fig EV3A): firstly, all three recognition pathways deposit C5 convertase enzymes that cleave protein C3 into C3b, which covalently attaches to the cell surface via a reactive thioester. At high densities of surface-bound C3b, C3 convertases associate with deposited C3b to form a C5 convertase. Although their surface-specific nature and covalent attachment make it technically challenging to generate C5 convertases in a purified manner, we here show that pre-incubation of bacteria with human serum devoid of C5 (ΔC5 serum) results in functionally active (mainly alternative pathway) C5 convertases on the bacterial surface (Fig EV3B–D).

When such convertase-labeled bacteria were next washed and then incubated with uncleaved C5 and components C6, C7, C8, and C9, we found that the resulting MAC pores (denoted as Conv-MAC) effectively killed bacteria (Fig 3B) in a C5 dose-dependent manner (Fig 3C). As is the case in vivo, C5 convertases here were essential
Figure 1. MAC in serum perturbs both the outer and inner membrane of Gram-negative bacteria.

A Schematic representation of engineered perimCherry/cytoGFP E. coli cells that express mCherry in the periplasmic space (between the outer and inner membrane) and GFP in the cytosol.

B Structured illumination microscopy image of perimCherry/cytoGFP E. coli confirming localization of mCherry (red) in the periplasm and GFP (green) in the cytosol. Scale bar = 3 μm.

C Outer membrane damage (mCherry intensity) and inner membrane damage (% Sytox positive) of perimCherry/cytoGFP E. coli bacteria exposed to (different concentrations of) human serum. Inner membrane damage correlates with killing (samples where bacteria are killed are indicated with gray shadings and a cross, see CFU data in Fig EV1B).

D, E (D) Serum-induced inner membrane damage (% Sytox positive) and (E) killing (CFU/ml) of different Gram-negative strains depends on MAC components C5 and C8, but not on lysozyme (10% serum). Dotted line represents the detection limit of the assay. Data information: The cfu/ml (E) and Sytox measurements (D) of "Buffer," "Serum," "ΔC5," "ΔC8," "Δlysozyme," and "control" were all generated from the same experiment. (C–E) Data represent mean ± SD of 3 independent experiments. (D, E) Statistical analysis was done using a ratio paired two-tailed t-test and displayed only when significant as *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, or ****P ≤ 0.0001.
for bacterial killing, since no killing was observed when bacteria were pre-incubated with convertase-negative serum (heat-inactivated ΔC5 serum (Fig 3C), which lacks the capacity to deposit C3b (Fig EV3C) and to convert C5 (Fig EV3D). In addition, bacterial killing was fully inhibited when convertase formation was blocked by compstatin (Sahu et al., 1996; Fig 3D), which specifically inhibits surface deposition of C3b (Fig EV3C) and formation of functional C5 convertases (Fig EV3D). The here observed bacterial killing was MAC-specific, as it required the presence of C5-C9 to be fully effective (Fig 3D). In the presence of C5-C8 alone (no C9), bacterial killing was much less effective but not insignificant (Fig 3D), supporting previous reports on bactericidal effects of Csb-8 in the absence of C9 (O’Hara et al., 2001). Similar to these results based on alternative pathway C5 convertases, specific labeling of bacteria with classical/lectin pathway C5 convertases also led to bacterial cell death upon incubation with C5-C9 (Fig 3E). Altogether, these data demonstrate that purified MAC can kill bacteria when its assembly is driven by cell-bound C5 convertases.

MAC assembly via surface-bound C5 convertases leads to inner membrane damage

Given that MAC assembly via surface-bound C5 convertases results in bacterial cell death, we assessed whether it also results in inner membrane damage. To study this, pperCherry/cytoGFP E. coli cells were all generated from the same experiment (B–E) Data represent mean ± SD of 3 independent experiments. [C, E] Statistical analysis was done using a ratio paired two-tailed t-test and displayed only when significant as *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, or ****P ≤ 0.0001. Normal concentrations of MAC proteins in 100% human serum are ± 375 nM C5, 550 nM C6, 600 nM C7, 350 nM C8, and 900 nM C9.

Figure 2. Purified MAC components lack the bactericidal activity of serum.

A Purified MAC (denoted as C5b-9MAC) can be formed by mixing preassembled C5b-6 complexes with C7, C8, and C9.
B Lysis of human erythrocytes after exposure to a concentration range of preassembled C5b-6 in the presence of 100 nM C7. After washing, erythrocytes were exposed to 20 nM C8 and 100 nM C9 for 30 min after which the OD405 nm of the supernatant was measured.
C Bacterial viability of three Gram-negative strains after exposure to buffer, serum C5b6, serum C5b6MAC (different concentrations of C5b-6), and C5b-9MAC. Buffer and serum conditions are the same as Fig 1E.
D, E Inner membrane damage of three Gram-negative strains exposed to buffer, 10% serum or C5b-9MAC. Buffer and serum conditions are the same as Fig 1D.

Data information: The cfu/ml (C) and Sytox measurements (E) of "Buffer", "Serum", "ΔC5", "ΔC8", "Alysozym", and "C5b-9MAC" were all generated from the same experiment. (B–E) Data represent mean ± SD of 3 independent experiments. (C, E) Statistical analysis was done using a ratio paired two-tailed t-test and displayed only when significant as *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, or ****P ≤ 0.0001. Normal concentrations of MAC proteins in 100% human serum are ± 375 nM C5, 550 nM C6, 600 nM C7, 350 nM C8, and 900 nM C9.

Consistent with the flow cytometry results, confocal microscopy
further confirmed that the combination of surface-bound C5 convertases and MAC induces inner membrane damage in bacteria (Fig 4D). In conclusion, when the MAC is assembled from purified C5-C9 by surface-bound C5 convertases, these pores trigger inner membrane damage and subsequent bacterial killing.

Local assembly of C5b6 by surface-bound C5 convertases is required for bacterial killing

Having established a protocol to generate bactericidal MACs under semi-purified conditions, we next investigated the difference between the non-bactericidal MACs formed by preassembled C5b6 and fully functional, convertase-generated MACs formed from C5 and C6. To this end, we labeled bacteria with C5 convertases as described above and subsequently generated MACs by incubation with preassembled C5b6 and C7-C9 (Conv-C5b6MAC) or by incubation with uncleaved C5 and C6 and C7-C9 (Conv-MAC; Fig 5A). In this direct comparison, only the Conv-MAC killed bacteria (Fig 5B) and triggered inner membrane damage (Fig 5C), whereas both Conv-C5b6MAC and Conv-MAC triggered outer membrane damage (Fig 5D). These results indicate that the role of C5 convertases extends beyond the cleavage of C5 into C5a and C5b: In particular, the C5 convertase should be present on the cell surface and locally assemble C5b6 to generate bactericidal pores. Interestingly, and fully consistent with the lytic function of C5b6MAC on liposomes (Fig EV2A) and mammalian erythrocytes (Figs 2B and EV2B), local assembly of C5b6 by surface-bound C5 convertases was not essential to kill human cells (Fig EV4; note that this experiment was performed on human (HAP1) cells deficient in complement regulators CD46, CD55, CD59 (Thielen et al, 2018).
that, if present, would prevent any C3b or MAC deposition on the cell surface).

Given that C5b6MAC (Fig 2D) and Conv-C5b6MAC (Fig 5D) pores both perturb the bacterial outer membrane, but not the inner membrane, the local assembly of C5b6 via surface-bound C5 convertases seems particularly important to generate pores that can damage the complete, composite cell envelope of a Gram-negative bacterium.

C5b6 rapidly loses the capacity to form bactericidal pores

To understand why local formation of C5b6 is required, we next focused on the early assembly steps of the MAC, involving C5b, C6, and C7. In the experiments described above, bactericidal pores (Conv-MAC) were generated when convertase-labeled were simultaneously incubated with C5-C9 (Fig 4) [or when directly compared to C5b6MAC, with C5-C7 and after washing C8 and C9 (Fig 5)]. Next, we studied whether we could introduce a washing step between the formation of C5b6 and the addition of C7. Interestingly, we found that washing after C5b6 assembly did not affect the formation of MAC pores that permeabilize the outer membrane (Fig 6A), but strongly blocked formation of MAC pores that trigger inner membrane damage (Fig 6B). In contrast, when C5b6 was formed in the presence of C7, we observed that washing did not affect the ability of MACs to permeabilize the outer and inner membrane (Fig 6A and B). This suggests that locally assembled C5b6 requires immediate insertion into the membrane via C7. In a different experimental
set-up, we did not wash the bacteria following incubation with C5 and C6, but instead blocked the generation of new C5b6 molecules using Eculizumab, a clinically approved C5 inhibitor that blocks recognition and cleavage of C5 by the convertase (Rother et al., 2007). We observed that Eculizumab blocked formation of bactericidal MAC pores when it was added after C5b6 assembly but before the addition of C7 (Fig 6A and B). In contrast, Eculizumab could not prevent bactericidal MAC formation when added after the addition of C5, C6, and C7 (Fig 6A and B). These data show that although C5b6 complexes that are formed in the absence of C7 can form pores that damage the outer membrane, these complexes rapidly lose the ability to form bactericidal pores. In contrast, when newly generated C5b6 can immediately bind C7 at the bacterial surface, these complexes can form a bactericidal MAC. Together with the fact that purified, preassembled C5b6 complexes lack the capacity to form bactericidal MAC pores, these data indicate a previously unrecognized short-lived ability of C5b6 to induce bacterial killing and further explains why local assembly of C5b6 by C5 convertases on the target surface is so crucial for bacterial killing via the MAC.

Inner membrane damage is driven by MAC assembly at the outer membrane

Next, we investigated how bactericidal MAC pores perturb the bacterial cell envelope. Specifically, we analyzed whether inner membrane damage results from MAC formation in the outer or inner membrane.

Figure 5. Local assembly of C5b6 by surface-bound C5 convertases is required for killing.

A Schematic overview of MAC assembly on convertase-labeled bacteria by C5b6 that is locally generated by incubation with C5 and C6 (top) or by preassembled C5b6 (bottom).

B Bacterial viability of convertase-labeled E. coli MG1655 exposed to Buffer (Conv), preassembled C5b6 (Conv + C5b6 MAC) or a mixture of C5 and C6 (Conv-MAC), in the presence of C7, C8, and C9. Dotted line represents the detection limit of the assay.

C, D (C) Inner membrane damage (% Sytox positive) and (D) outer membrane damage (mCherry) of convertase-labeled peric/periGFP E. coli exposed to a concentration range of preassembled C5b6 or a mixture of C5 and C6, in the presence of 100 nM C7. After washing, bacteria were exposed to 20 nM C8 and 100 nM C9.

Data information: (B–D) Data represent mean ± SD of 3 independent experiments. (B) Statistical analysis was done using a ratio paired two-tailed t-test and displayed only when significant as **P ≤ 0.01.
Local formation of C5b6 is required for efficient insertion of MAC pores into the outer membrane

Since the above experiments indicate that formation of bactericidal MAC pores mainly takes place on the outer membrane, we more closely analyzed pore formation on the bacterial surface. First, we quantified the total number of MAC assemblies on convertase-labeled bacteria using flow cytometry (Fig 8A). We compared C9-Cy3 incorporation on convertase-labeled bacteria when MAC formation was triggered via uncleaved C5 and C6 (Conv-MAC) or preassembled C5b6 (Conv+C5b6MAC; solid lines in Fig 8A). The dose–response curves indicate that MAC formation was up to ~3-fold more efficient with locally formed C5b6 (Conv-MAC), although the difference was absent at higher (100 nM) concentrations of C5b6 (Fig 8A). This is in apparent contradiction with the vast differences in inner membrane damage between Conv-MAC and Conv+C5b6MAC at these concentrations (Fig 5C). Since these differences could not be explained by a different distribution of Conv-C5b6MAC and Conv-MAC pores at the cell surface either (Fig 8B), we next tested how well Conv-C5b6MAC or Conv-MAC pores are inserted into the bacterial membrane by measuring their resistance to trypsin after MAC formation. Trypsin is commonly used as a shaving method to determine surface exposure of membrane-associated proteins (Moskovich & Fishelson, 2007; Besingi & Clark, 2015). While trypsin treatment effectively reduced the amount of C9-Cy3 incorporation for the preparations with preassembled C5b6, it had no effect on MAC pores generated via C5 and C6 (Fig 8A). Altogether, these data indicate that the C5b6MACs are less well attached to and therefore presumably less well inserted into the bacterial membrane than Conv-MACs.

Next, we visualized MAC assembly in the outer membrane using atomic force microscopy (AFM) on live bacteria. Immobilized, untreated *E. coli* cells appeared as smooth rods (Fig 8C), which at
convertase-labeled bacteria (Conv-C5b6MAC), it became extremely sensitive to the local material properties (Figs 8D and EV5A). However, when MACs were formed from preassembled C5b6 on liposomes (Serna et al., 2016), in which inserted pores were readily detected on supported lipid bilayers, but mobile, non-inserted pores were harder to resolve due to the invasiveness of the AFM measurement and/or insufficient temporal resolution. Hence, the trypsin shaving and AFM results together with the trypsin shaving and AFM results, these data indicate that local assembly of MAC pores triggers more efficient membrane insertion and subsequently more effective damage to the bacterial outer membrane. Future experiments are required to determine whether subsequent destabilization of the inner membrane (Fig EV5E) results directly from a more extensively damaged outer membrane or whether other mechanisms are at play to kill the cell.

Discussion

Although recent *in vitro* structural studies (Dudkina et al., 2016; Serna et al., 2016; Sharp et al., 2016; Menny et al., 2018) have significantly advanced our understanding of MAC formation in liposomes, it is still not understood how these pores can damage the composite envelope of Gram-negative bacteria. Here, we reveal that the assembly and insertion of MAC pores into bacterial membranes differ from liposomes and erythrocytes. While MAC pores generated from high resolution showed densely packed, ~7-nm-wide porins, characteristic of the bacterial outer membrane (Yamashita et al., 2012). By contrast, following exposure of convertase-labeled bacteria to C5-C9 (Conv-MAC), the bacterial surface was covered with nanometer-scale protrusions that at higher resolution appeared as 10 ± 2 nm high and 17 ± 2 nm (peak to peak) wide pores, including—depending on AFM resolution—signatures of a C5b stalk extending upwards from the pore (Fig 8C). These dimensions and appearance are consistent with cryo-EM maps of MACs built up from preassembled C5b6 on liposomes (Serna et al., 2016; Sharp et al., 2016). At the surface of the immobilized, convertase-labeled bacteria, Conv-MAC pores were further accentuated in the phase image (see Materials and Methods), which provides an alternative means to differentiate MAC pores from the underlying bacterial surface since it is still not understood how these pores can damage the composite envelope of Gram-negative bacteria. Here, we reveal that the assembly and insertion of MAC pores into bacterial membranes differ from liposomes and erythrocytes. While MAC pores generated from

Finally, to further validate this explanation, we more closely analyzed the efficiency by which Conv-C5b6MAC and Conv-MAC pores damage the bacterial outer membrane. At high (0.3 nM) C8 concentrations, it appeared that Conv-C5b6MAC and Conv-MAC pores are equally efficient in inducing leakage of mCherry through the outer membrane (Fig EV5D), consistent with the findings in Fig 5D. However, by carefully titrating the concentration of C8, we observed that less pores (> 100-fold) are needed to induce maximum mCherry leakage in the conditions of locally assembled MAC (Conv-MAC) compared to preassembled Conv-C5b6MAC (Fig EV5D). Together with the trypsin shaving and AFM results, these data indicate that local assembly of MAC pores triggers more efficient membrane insertion and subsequently more effective damage to the bacterial outer membrane. Future experiments are required to determine whether subsequent destabilization of the inner membrane (Fig EV5E) results directly from a more extensively damaged outer membrane or whether other mechanisms are at play to kill the cell.

Figure 7. Inner membrane damage is driven by MAC assembly at the outer membrane.

A. Outer and inner membrane damage of convertase-labeled bacteria exposed to different combinations of MAC components.”@” indicates a washing step.

B. Outer and inner membrane damage of convertase-labeled bacteria exposed to C5-C8 and after washing, to a concentration range of C9.

Data information: Data represent mean ± SD of 3 independent experiments. (A) Statistical analysis was done using a one-way ANOVA and displayed only when significant as **P ≤ 0.01 or ****P ≤ 0.0001.
Figure 8. Local formation of C5b6 is required for efficient insertion of MAC pores into the outer membrane.

Surface-bound MAC pores were quantified by flow cytometry or confocal microscopy.

A Convertase-labeled bacteria were exposed to a concentration range of either preassembled C5b6 (Conv-MAC) or a mixture of C5 and C6 (Conv-MAC), in the presence of 100 nM C7. After washing, 20 nM C8 and 100 nM C9-Cy3 were added. Controls at 0 nM C5b6 or C5-C6 confirm that the detected C9-Cy3 deposition is specifically related to MAC formation (solid lines). Proper insertion of pores was assessed by a previously described shaving method with trypsin (Moskovich & Fishelson, 2007). Bacteria were first incubated with MAC components for 30 min and subsequently treated with 20 μg/ml trypsin for 15 min at 37°C (dotted lines).

B Convertase-labeled mCherry/cytoGFP bacteria (Green) exposed to C5b6 MAC or Conv-MAC. Conditions were similar to those in (A); however, C9-Cy5 was used to detect MAC pores (Red). 100 nM of C5 and C6 or C5b6 was used in combination with 100 nM C7, 20 nM C8, and 100 nM C9-Cy5. Conv + C5b6MAC and Conv-MAC images were taken in separate experiments in which laser settings were adjusted to the staining intensity of C9-Cy5 to properly visualize pore distribution. Scale bars = 3 μm.

C, D Atomic force microscopy analysis of E. coli BL21 and MG1655 immobilized using the Poly-L-Lysine protocol. (C) Entire bacteria and high-resolution comparisons of untreated and convertase-labeled E. coli BL21 exposed to C5-C9 (Conv-MAC) for 10 min. Scale bars: 800 nm (left) and 30 nm (right). Height scales: 1 μm (left), 8 nm (top right), 22 nm (bottom right). Width of magnification boxes: 42 nm, height scales: 8 nm (top) and 13 nm (bottom). Arrows highlight E. coli porin structures; an asterisk highlights the C5b-7 stalk. Height profiles (bottom) are shown for the white dashed lines in the images. (D) Atomic force microscopy (height and phase images) of convertase-labeled E. coli MG1655 exposed to a mixture of C5 and C6 (Conv-MAC) or preassembled C5b6 (Conv + C5b6MAC), in the presence of C7, C8, C9, FB, and FD. Images were generated in the same experiment. Scale bars: 50 nm. Height scales: 15 nm. This figure and three other replicates are included in Fig EV5B and C.

Data information: (A) Data represent mean ± SD of 3 independent experiments.
preassembled C5b6 can efficiently perforate single membrane particles, these MACs lack bactericidal activity. In order to kill a Gram-negative bacterium, MACs need to be assembled locally by cell-bound C5 convertase enzymes. Our data indicate that both the in situ conversion of C5 by surface-bound convertases and immediate association of C5b with C6 and C7 are needed to guide proper insertion of bactericidal MAC pores.

Our data imply that the C5b6 complex has a hitherto unrecognized limitation in its ability to induce bacterial killing. The purified C5b6 complex used in this study was generated by cleaving C5 in the presence of C6, but in the absence of C7, on an activating surface. Subsequently, the released C5b6 complexes were purified from the solution (van den Berg, 2000). Numerous reports have shown that these “preassembled” C5b6 complexes can efficiently form MAC pores in eukaryotic membranes (lida et al., 1991) and liposomes (Michaels et al., 1976; Hu et al., 1981; Serna et al., 2016; Sharp et al., 2016; Menny et al., 2018; preprint: Parsons et al., 2018). We here found that the same preassembled C5b6 complexes lack the capacity to generate MACs that kill bacteria. In contrast, C5b6 that is formed locally by surface-bound C5 convertases efficiently forms bactericidal MAC pores. The fact that locally assembled C5b6 rapidly loses the ability to form bactericidal pores (Fig 6) suggests that C5b6 somehow becomes inactivated. Although the exact molecular mechanism for C5b6 inactivation is yet unknown, we here propose several possible explanations. First, cleavage of C5 by C5 convertases (hypothetical model in Fig 9A) results in a major conformational change in which the C5d domain of C5 (colored dark green) translocates away from its original position. It is long known that newly formed C5b is hydrophobic and therefore unstable in solution (DiScipio et al., 1983); the rapid association with C6 (within ~2.5 min; Cooper & Müller-Eberhard, 1970; Shin et al., 1971) is needed to form stable C5b6 complexes. We wonder whether local cleavage of C5 would allow these hydrophobic sites of C5b to directly bind to membranes (Al Salihi et al., 1988). Alternatively, we speculate that locally assembled C5b may have more flexibility to properly guide the localized insertion of following MAC components into the bacterial membrane. The position of C5d in Fig 9A is based on structures of preassembled C5b6 (Aleshin et al., 2012; Hadders et al., 2012). However, the exact position of C5d in locally assembled C5b may be different. Although the nature of the conformational change from C5 to C5b is similar to that observed in conversion of the highly homologous C3 into C3b (Janssen et al., 2006; Aleshin et al., 2012), C5d translocation is less pronounced than C3d (Fig 9B). Since the C5d domain is bound to a flexible arm, we speculate that the functional differences between locally assembled C5b6 and preassembled C5b6 could be due to more conformational flexibility of C5b during local assembly (Fig 9C). These hypotheses seem in contrast with a recent manuscript by Menny et al. (2018) showing that the core of C5b remains largely unchanged during MAC assembly in liposomal membranes. However, since Menny et al. used preassembled C5b6 to generate MAC pores, the C5b6 structure within these pores may differ from that of convertase-generated C5b6 on a bacterial surface. Potential structural differences in locally assembled C5b6 may be crucial to stably insert pores into bacterial (outer) membranes that have a very heterogenous lipid composition and varying lengths of lipopolysaccharide (LPS; Silhavy et al., 2010). Interestingly, Menny et al. also describe how C6 undergoes marked domain rearrangements upon integration into the MAC. In contrast to its conformation in preassembled C5b6 in solution, C6 in membrane-inserted MAC pores has transmembrane hairpin regions inserted into the membrane. The authors suggest that binding of C7 is needed to induce this structural change in C6 (Menny et al., 2018). Potentially, such structural changes in C6 occur less efficient on bacterial membranes, but are enhanced upon local C5b6 assembly, immediate binding of C7 and insertion into the membrane. In addition, a direct and stable interaction between the C5 convertase and C5b6 may be needed to maintain a different conformation of C5b6 that is lost upon release of C5b6 from the surface. Although it has been postulated that C5b6 remains bound to the C5 convertase (Morgan et al., 2016), it is currently difficult to assess such complexes because of limited tools to study the multi-component C5 convertase enzymes that have a surface-specific conformation (Rawal & Pangburn, 2001). Please note that the structural models of a subunit of the C5 convertase enzyme bound to C5, C5b, and C5b6 (Fig 9A, B, C1 and CII) are not experimentally proven. Furthermore, the fact that such interactions are likely very transient (washing abrogates C5b6 activity; Fig 6) will further complicate demonstrating the existence of such intermediary complexes. Finally, different forms of MAC assemblies may exist as has been observed in liposomes, such as open versus closed pores (Menny et al., 2018) or clustered pores (Sharp et al., 2016). Potentially, the local generation of MAC pores by surface-bound C5 convertases may influence the structure or clustering of pores on bacterial membranes. Nevertheless, the here-proposed models do not exclude other scenarios of C5b6 inactivation and further studies are needed to determine what causes the rapid inactivation of C5b6.

In all, our data imply that the natural assembly of MAC via surface-specific complement activation mechanisms is essential to induce bacterial killing. Our findings that (high concentrations of) preassembled C5b6 can trigger MAC-mediated perforation of mammalian cells could be relevant for future studies on complement-mediated human diseases, where the MAC attacks the body’s own cells. Some studies suggest that C5b6 can be released from activating surfaces (erroneously recognized host cell or bacterium) and associate with neighboring host cells, thereby causing unwanted “bystander” lysis (Podack & Tschopp, 1984). The information that bacterial and human cells have different sensitivities for “released” C5b6 may guide the development of complement inhibitors that specifically block bystander lysis by released C5b6 without affecting the assembly of bactericidal MAC pores.

Finally, our data also shed new light on the strongly debated mechanism of bacterial killing via the MAC. The potent bacteriolytic activity of serum was recognized in 1895 by Jules Bordet who discovered complement as a potent system that allows antibodies to directly kill bacteria (Schmalstieg & Goldman, 2009). However, the exact mechanism of MAC-mediated bacterial killing has been strongly debated (Bhakdi et al., 1987; Dankert & Esser, 1987; Taylor, 1992; Berends et al., 2014; Morgan et al., 2017). The fact that we now have tools to form bactericidal MAC pores in a purified manner will allow mechanistic studies to unravel how bactericidal MACs damage the bacterial cell envelope. The data with step-wise MAC formation (Fig 7) rule out the idea that formation of convertases and/or C5b-9 underneath the outer membrane is required to make pores in the inner membrane. Washing experiments show that convertase-mediated MAC assembly mainly takes place on the outer membrane. Up till the formation of C5b-8, we did not observe
extensive damage to both membranes. Addition of C9 was required to efficiently perturb the outer and inner membrane. This leaves us with two potential hypotheses for bactericidal effects at the inner membrane. First, MAC pores in the outer membrane could allow C9 to go through the pores and reach the inner membrane (as was suggested earlier; Wang et al., 2000; Dankert & Esser, 1987). Given that peptidoglycan has a pore-size distribution of 4–16 nm (Turner et al., 2013), C9 (61 kDa) might be able to reach the inner membrane where it may have cytotoxic effects (Berends et al., 2014). This would mean that pores formed in the inner membrane (by C9) are different from the pores formed in the outer membrane (C5b-9). However, since we observed no GFP leakage from the cytoplasm of E. coli upon exposure to the MAC (Fig EV1A), it seems less likely that large pores are formed in the inner membrane. Second, inner membrane damage may directly result from MAC-dependent damage of the outer membrane. The fact that we measure influx of DNA dyes does not necessarily mean that large pores are formed in the inner membrane. Others have reported that extensive outer membrane stress by itself may cause destabilization of the inner membrane and passage of DNA dyes (Lebaron et al., 1998). Outer membrane degradation may disrupt protein connections between the outer and inner membrane that influence envelope stability.

Figure 9. Structural model for C5b6 assembly by C5 convertases.

A Hypothetical model for C5b6 cleavage by the alternative pathway C5 convertase. The AP C5 convertase is a multimeric complex between a dimeric C3 convertase enzyme (comprised of surface-bound non-catalytic C3b in complex with protease Bb), together with additional surface-bound C3b molecules (not depicted here), which are required to strengthen the affinity for C5. Hypothetical model of C3bBb (surface representation, C3b in gray, Bb in orange) bound to substrate C5 (light green, C5d domain in dark green). C3bBb is derived from the dimeric C3bBb-SCIN complex (PDB 2WIN; Rooijakkers et al., 2009), and C5 is modeled based on superposition of the CVF-C5 complex (PDB 3PVM; Laursen et al., 2011) on the C3b molecule from C3bBb. The right panel shows C3bBb bound to C5b (light green, C5d in dark green). The structure of C5b is derived from the structure of the C5b complex (PDB 1A5W; Hadders et al., 2012) and superimposed on C5 from the model in the left panel.

B Superposition of C5b with the C5d domain in the pC5b6 (dark green) and C3b-like (light blue) orientation. The C3b-like conformation of C5d was generated based on superposition of the C5d structure (extracted from the pC5b6 structure, PDB 1A5W) on the C3d domain of the second C3b subunit from the dimeric C3bBb-SCIN structure (PDB 2WIN).

C Hypothetical structural models for C5b6 assembly by convertases. (i) Model of pC5b6 bound to C3bBb, as in (A, right). (ii) Model of pC5b6, with C5d-C6 superimposed on C5d in the C3b-like orientation, as in (B). Note that this orientation allows C6 to extend further toward the membrane relative to the convertase. (iii) Model in which C5b6 has dissociated from C3bBb, but adopted the orientation shown in (ii). All structural models and superpositions were generated using UCSF Chimera (Pettersen et al., 2004).
(Silhavy et al., 2010) or bacteria may turn on self-death machinery in response to outer membrane stress, for example via the production of regulatory RNAs (Konovalova et al., 2016). Exposing a bacterial knockout library to the MAC may reveal whether bacterial factors and active processes are involved in triggering OM-mediated IM damage. This hypothesis would be consistent with the idea that local assembly of the MAC is required to more efficiently perforate the outer membrane and thereby indirectly cause inner membrane damage. Since the outer membrane is a major permeability barrier for most antibiotics, the mechanisms by which complement disrupts Gram-negative cell envelopes may hold information crucial for development of antimicrobial strategies against drug-resistant Gram-negative bacteria (Laxminarayan et al., 2013).

Materials and Methods

Serum, reagents, and bacterial strains

Normal human serum and heat-inactivated serum were obtained from healthy volunteers as previously described (Berends et al., 2013). Sera depleted of complement factors and complement factors C5b6, C7, and C8 were obtained from Complement Technology. His-tagged C5, C6, C9, FB, and FD were expressed in and purified from HEK293E cells (U-Protien Express). Lysozyme-depleted serum was prepared as described below. pPeriMCherry/pEcoGFP E. coli was prepared by transforming a pPeriMCh plasmid into E. coli MG1655. pPeriMCh was modified from plasmid pFCcGi containing a constitutively expressed mCherry and a L-arabinose inducible GFP (kindly provided by Sophie Helaine). A pelB leader was added in front of the mCherry sequence to direct mCherry to the periplasmic space. Gram-negative isolate *S. maltophilia* 566954.1 was obtained from the diagnostic Medical Microbiology department of the University Medical Center Utrecht. OmCl was produced in HEK293E cells and purified as previously described (Nunn et al., 2005). Eculizumab was kindly provided by Frank Beurskens (Genmab, Utrecht, The Netherlands). Normal concentrations of MAC proteins in 100% human serum are: ± 375 nM C5, 550 nM C6, 600 nM C7, 350 nM C8, and 900 nM C9. Hybridoma cells producing MoAb bh6 to C3b were kindly provided by Peter Garred (University of Copenhagen) and Tom Eirik Mollnes (University of Oslo). Antibodies were purified as previously described (Garred et al., 1988). Purified antibodies were labeled with Alexa Fluor 488 reactive molecules (ThermoFisher) following the supplier’s protocol.

Preparation of lysozyme-depleted serum

The sequence of lysozyme inhibitor LprI of *M. tuberculosis* without signal peptide was synthesized (IDT; Sethi et al., 2016). The sequence was cloned into a modified, N-terminal His-tag followed by a TEV cleavage site, pRSETB vector (ThermoFisher) digested with BamHI/NotI using Gibson assembly (NEB). The protein of interest was expressed in BL21(DE3; Thermofisher) by adding 1 mM IPTG. LprI was isolated under denaturing conditions using a Histrap column (GE Healthcare). For lysozyme depletion, a Histrap column was charged with CoCl2 and loaded with 1.1 mg His-tagged LprI. The protein was covalently linked to the column by adding 0.05% H2O2 in PBS for 1 h at RT. After washing with PBS, 4 ml of human pooled serum in the presence of 10 mM EDTA was loaded on the column. To the flow-through, containing lysozyme-depleted serum, 10 mM CaCl2 and 10 mM MgCl2 were added. Lysozyme-depleted serum was analyzed for complement activity by performing a CH50 (Fig EV1C). Complement activity was comparable to serum before lysozyme depletion. Successful depletion was demonstrated using a lysozyme ELISA (Abcam), which showed over 99% depletion of lysozyme.

Hemolytic and liposome assay

Rabbit erythrocytes (1 × 108/ml) or liposomes (Wako CH50 Auto kit) were incubated with buffer or purified MAC components for 30 min, non-shaking at 37°C. 10 nM C5b6, 20 nM C7, 20 nM C8, and 100 nM C9 were used. Incubations were done in Veronal + 2.5 mM MgCl2 and 0.5 mM CaCl2, VBS++. As positive controls, erythrocytes were incubated with MQ, liposomes with 0.05% PBS-Tween. After incubations, erythrocytes were spun down and absorbance of the supernatant at OD405 nm was measured. The percentage of lysed rabbit erythrocytes was calculated by comparing the OD405 nm of the test sample with the OD405 nm of the Mill-Q control sample, which was set at 100% lysis. NADH production as a result of G6PDH leakage from liposomes was determined by measuring the absorbance at OD340 nm. Human erythrocytes were collected from freshly drawn blood, which was spun down, washed three times in PBS after which the cells were collected. Cells (1 × 108/ml) were exposed to a concentration range of C5b6 or C5 and C6 in the presence of 100 nM C7. After washing, cells were exposed to 20 nM C8 and 100 nM C9 for 30 min and spun down, and absorbance of the supernatant at OD405 nm was measured.

Convertase labeling of bacteria

In all experiments, bacteria were grown overnight (o/n) in Lysogeny broth (LB) medium (containing 50 µg/ml ampicillin for pPeriMCherry/pEcoGFP E. coli MG1655). Next day, subcultures were grown to mid-log phase (OD600~0.5), washed and resuspended in RPMI + 0.05% HSA. Unless stated differently, all incubations with bacteria were performed in RPMI + 0.05% HSA. Bacteria with OD600~0.1 were incubated with 10% C5 depleted serum (ΔC5 serum) for 30 min at 37°C, washed and resuspended to OD600~0.05. Complement activation in ΔC5 serum was blocked by heat inactivation or by adding 5 µM compstatin. For labeling with classical pathway convertases, bacteria were incubated with ΔFb serum in the presence of 20 µg/ml OmCl for 30 min at 37°C. C5a generation was measured in a calcium mobilization assay as previously described (Bestebroer et al., 2010).

HAP1 cell lysis assay

ACD46/ACD55/ACD59 HAP1 cells (Thielen et al., 2018) were kindly provided by Sanquin (Amsterdam, the Netherlands). Cells were cultured in Iscove’s modified Dulbecco’s medium (IMDM) supplemented with 10% fetal bovine serum, penicillin, and streptomycin (Gibco) at 37°C with 5% CO2. Cells were washed in PBS and harvested using trypsin. The collected cells were washed 2 times in PBS and resuspended to a concentration of 4 × 106 cells/ml in VBS++. These cells were incubated with buffer (VBS++) or 25% C5
depleted serum for 30 min at 37°C under shaking conditions. Unlabeled or opsonized cells were washed twice in VBS++ (2 min at 300 g) after which 50 µl (100,000 cells/well) was incubated with 100 nM C5b6 or C5 and C6 in the presence of 100 nM C7, 10 µg/ml FB, and 1 µg/ml FD for 15 min at 37°C. Cells were washed twice and incubated with 100 nM C8 and C9 for 30 min at 37°C in the presence of Sytox green. Cells were diluted 1:1 with PBS and Sytox intensity was measured by flow cytometry.

Membrane permeabilization and bacterial viability assay

Unlabeled or convertase-labeled bacteria were prepared as described above and incubated with 10% serum or purified MAC components. Unless stated differently, 10 nM C5, 10 nM C6, 10 nM C5b6, 20 nM C7, 20 nM C8, and 100 nM C9 were used. These concentrations are similar to protein concentrations in 2–10% serum. All incubations with serum and purified MAC components were done for 30 min at 37°C. However, in experiments with preassembled C5b6, a washing step was introduced to prevent fluid phase MAC formation. Incubations with preassembled C5b6 were done in the presence of C7 for 15 min at 37°C. Samples were washed 3 times after which C8 and C9 were added for 30 min at 37°C. The washing step after C7 was also introduced when uncleaved C5 and C6 were tested in the same experiment as preassembled C5b6. For the C5b6 stability experiments, convertase-labeled bacteria were incubated with C5 and C6 in the presence or absence of C7 for 15 min at 37°C. Then, bacteria were washed or incubated with RPMI or 10 µg/ml Eculizumab for another 15 min at 37°C. Subsequently, the remaining MAC components were added for 30 min at 37°C, after which samples were diluted and measured by flow cytometry. In all experiments, 2.5 µM Sytox Blue Dead Cell Stain (Thermofisher) was added to the final incubation step of the experiments. mCherry, Sytox, and GFP intensities were measured by a MACSQuant flow cytometer.

Bacterial viability assay

After incubating bacteria with serum or purified MAC components as described above, samples were serially diluted in PBS and plated onto LB agar plates. Colonies were counted after overnight incubation.

Complement deposition and trypsin treatment

Convertase-labeled bacteria were prepared as described above. To measure C3b deposition, bacteria were incubated with 3 µg/ml Alexa-488 labeled mouse-anti-C3b (described above) for 30 min at 4°C. C9 deposition was measured by C-terminal sorting C9-LPETG-His with GGG-N3, which was then coupled to Cy3-DBCO or Cy5-DBCO. For trypsinization, bacteria were first incubated with MAC components for 30 min and subsequently treated with 20 µg/ml trypsin for 15 min at 37°C. C3b and C9 deposition was measured by flow cytometry.

Confocal microscopy

Samples were prepared as described above, concentrated to OD600~1.5, and dried onto 1% agar pads. To-pro-3 (1 µM, Thermofisher) was used as a DNA dye. Agar pads were placed onto a coverslip and samples were imaged using a Leica SP5 confocal microscope with a HCX PL APO CS 63/-1.40–0.60 OIL objective (Leica Microsystems, the Netherlands).

Structured illumination microscopy

8-well microslide (Ibidi) chambers were washed three times with 500 µl 1 M HCl/70% EtOH solution and rinsed with 500 µl MQ for three times. Chambers were coated with 150 µl 1 M sodium acetate/0.01 M NaOH and 4 µl Cell-Tak solution (Corning) for 20 min (RT), washed three times with MQ and dried. mCherry, GFP. E. coli were grown to mid-log phase in the presence of 0.1% arabinose, washed three times in MQ, and immobilized onto the coverslip for 30 min. Samples were washed with RPMI + 0.05% HSA, and images were obtained using the GE Healthcare Life-Sciences “Deltavision OMXV4 blaze” microscope using 60× Olympus lens (U-PLAN APO, NA 1.42) and immersion oil 1.516 (Cargille laboratories). GFP and mCherry signals were measured using the 488-nm and 561-nm lasers, respectively, with suited dichroics and emission filter setting of 528/48 and 609/37. Reconstructions and registrations were performed using softWoRx (GE healthcare).

Atomic force microscopy

Mid-log phase bacteria (E. coli—MG1655/BL21) were washed three times in PBS or PB (10 mM), concentrated four times, and immobilized onto Cell-Tak or poly-L-lysine (0.01%) covered glass slides (Corning/Sigma-Aldrich). Both methods of immobilization were found to yield equivalent results. Care was taken not to allow the bacteria to dry out during immobilization. Immobilized bacteria were incubated with 10% ΔC5 serum in VBS++ containing 0.1% bovine serum albumin (BSA) for 20 min at 37°C. Glass slides with immobilized, serum-treated bacteria were rinsed 3 times with PBS/PB. Bacteria were then treated with a solution of 25 µg/ml C5b6, 20 µg/ml C5, 12 µg/ml C6, 12 µg/ml C7, 50 µg/ml FB, and 5 µg/ml FD (all in VBS++) and incubated for 5 min at RT. Following this, 15 µg/ml C8 and 70 µg/ml C9 in VBS++ were added for a 10–40 min incubation at 37°C. Glass slides with immobilized, treated bacteria were rinsed 3 times in PBS/PB before atomic force microscopy imaging.

Atomic force microscopy topographic images of E. coli (MG1655) in Figs 8D and EV5 were obtained using a Nanowizard III AFM with an UltraSpeed head (JPK, Germany) operated in liquid at room temperature. The microscope was operated in intermittent contact mode using FastScan-D probes (k = 0.25 N/m; Bruker). Images were processed using Gwyddion (Nečas & Klapetek, 2012) (http://gwyddion.net/) for 1st order line-by-line flattening to remove tilt. Images of bacterial surfaces were then processed using an additional 2nd order polynomial fit to remove the curvature of the bacteria. The data on E. coli (BL21) shown in Fig 8C were obtained using a Bruker FastScan Bio AFM, operated in PeakForce Tapping mode in liquid at 8 kHz using FastScan-D probes (k = 0.25 N/m; Bruker). Images were processed using NanoScope Analysis (Bruker) for 1st order line-by-line flattening to remove tilt. Images of E. coli surfaces were processed using an additional 2nd order polynomial fit to remove the curvature of the bacteria and using a ~1.5 nm low-pass filter to remove high frequency noise. Images are displayed as height data in 3D. Cross-sectional analysis was performed in
NanoScope Analysis and plotted in Origin (OriginLab), along the dotted lines indicated in Fig 8C. For measurements of bacterial height, the cross-sectional profile was taken over a 500 nm width to obtain an average for the bacterium.

Data analysis and statistical testing

Flow cytometry data were analyzed in FlowJo, and percentage positive cells were based on gating for positive controls. Graphpad 6.0 was used for graph design and statistical analysis. Statistical analysis was done using a ratio paired two-tailed t-test or a one-way ANOVA as indicated in the figure legends, in which each condition was compared with a control sample (buffer treated) unless stated differently. Three experimental replicates were performed to allow statistical analysis.

References

AI Salhi A, Ripoche J, Fontaine M (1988) Localization of a hydrophobic domain in human CS. Mol Immunol 25: 367 – 377

Aleshin AE, Discipio RG, Stec B, Liddington RC (2012) Crystal structure of C5b-6 suggests structural basis for priming assembly of the membrane attack complex. J Biol Chem 287: 19642 – 19652

Bayl-Jones C, Bubeck D, Dunstone MA (2017) The mystery behind membrane insertion: a review of the complement membrane attack complex. Philos Trans R Soc Lond B Biol Sci 372: 20160221

Berends ETM, Dekkers JF, Nijland R, Kuipers A, Soppe JA, van Strijp JAG, Rooijakkers SHM (2013) Distinct localization of the complement C5b-9 complex on gram-positive bacteria. Cell Microbiol 15: 1955 – 1968

Berends ETM, Kuipers A, Ravesloot MM, Urbanus RT, Rooijakkers SHM (2014) Bacteria under stress by complement and coagulation. FEMS Microbiol Rev 38: 1146 – 1171

van den Berg CW (2000) Purification of complement components, regulators, and receptors by classical methods. Methods Mol Biol 150: 15 – 52

Besingi RN, Clark PL (2015) Extracellular protease digestion to evaluate membrane protein cell surface localization. Nat Protoc 10: 2074 – 2080

Bestebroer J, Aerts PC, Rooijakkers SHM, Pandey MK, Köhl J, Van Strijp JAG, De Haas CJC (2010) Functional basis for complement evasion by staphylococcal superantigen-like 7. Cell Microbiol 12: 1506 – 1516

Bhakdi S, Koller G, Muhly M, Fromm S, Seibert G, Parrisius J (1987) Formation of transmural complement pores in serum-sensitive Escherichia coli. Infect Immun 55: 206 – 210

Cooper NR, Müller-Eberhard HJ (1970) The reaction mechanism of human C5 in immune hemolysis. J Exp Med 132: 775 – 793

Dankert JR, Esser AF (1987) Bacterial killing by complement. C9-mediated killing in the absence of C8. Biochem J 244: 393 – 399

DiScipio RG, Smith CA, Muller-Eberhard HJ, Hugli TE (1983) The activation of human complement component C5 by a fluid phase C5 convertase. J Biol Chem 258: 10629 – 10636

Dudkina NV, Spencer BA, Rebolu CF, Conroy PJ, Lukoyanova N, Elmlund H, Law RHP, Ekkel SM, Kondos SC, Goode RJA, Ramm G, Whisstock JC, Saibil HR, Dunstone MA (2016) Structure of the poly-C9 component of the complement membrane attack complex. Nat Commun 7: 10588

Garred P, Molines TE, Lea T, Fischer E (1988) Characterization of a monoclonal antibody MoAb bH6 reacting with a neopepitope of human C3 expressed on C3b, iC3b, and C3c. Scand J Immunol 27: 319 – 327

Gros P, Milder FJ, Janssen BJ (2008) Complement driven by conformational changes. Nat Rev Immunol 8: 48 – 58

Hadders MA, Bubeck D, Roovers P, Hakobyan S, Forneris F, Morgan BP, Pangburn MK, Llorca O, Lea SM, Gros P (2012) Assembly and regulation of the membrane attack complex based on structures of C5b6 and sC5b9. Cell Rep 1: 200 – 207

Hu VW, Esser AF, Podack ER, Wisnieski BJ (1981) The membrane attack mechanism of complement: photolabeling reveals insertion of terminal proteins into target membrane. J Immunol 127: 380 – 386

Iida K, Whitlow MB, Nussenzweig V (1993) Membrane vesiculation protects erythrocytes from destruction by complement. J Immunol 147: 2638 – 2642

Janssen BJ, Christodoulidou A, McCarthy A, Lambris JD, Gros P (2006) Structure of C3b reveals conformational changes that underlie complement activity. Nature 444: 213 – 216

de Jong RN, Beurskens FJ, Verploegen S, Strumane K, van Kampen MD, Voorhorst M, Horstman W, Engelberts PJ, Oostindie SC, Wang G, Heck AJR, Schuurman J, Parren PWHL (2016) A novel platform for the potentiation of therapeutic antibodies based on antigen-dependent formation of IgG hexamers at the cell surface. PLoS Biol 14: e1002344

Kang YH, Tan LA, Carroll MV, Gentle ME, Sim RB (2009) Target pattern recognition by complement proteins of the classical and alternative pathways. Adv Exp Med Biol 653: 117 – 128
How complement kills bacteria

Dani AC Heesterbeek et al

16 of 17

The EMBO Journal 38: e99852 | 2019

© 2019 The Authors

Konar M, Granoff DM (2017) Eculizumab treatment and impaired opsonophagocytic killing of meningococci by whole blood from immunized adults. Blood 130: 891 – 899

Konovalova A, Mitchell AM, Silhavy TJ (2016) A lipoprotein/b-barrel complex monitors lipopolysaccharide integrity transducing information across the outer membrane. Elife 5: e15276

Lachmann PJ, Thompson RA (1970) Reactive lysis: the complement-mediated lysis of unsensitized cells. II. The characterization of activated reator as C56 and the participation of C8 and C9. J Exp Med 131: 643 – 657

Laursen NS, Andersen KR, Braren I, Spiller E, Sottrup-Jensen L, Andersen GR (2011) Substrate recognition by complement convertases revealed in the CS-cobra venom factor complex. EMBO J 30: 606 – 616

Laxminarayan R, Duse A, Wattal C, Zaidi AKM, Wertheim HFL, Sumpradit N, Vliege H, Eara GL, Gould IM, Coossens H, Greko C, So AD, Bigdeli M, Tomson G, Woodhouse W, Ombaka E, Peralta AQ, Qamar FN, Mir F, Kariuki S et al (2013) Antibiotic resistance-the need for global solutions. Lancet Infect Dis 13: 1057 – 1098

Lebaron P, Catala P, Parthuisot N (1998) Effectiveness of SYTOX green stain for bacterial viability assessment. Appl Environ Microbiol 64: 2697 – 2700

Leung C, Dudkina NV, Lukoyanova N, Hodel AW, Farabella I, Pandurangan AP, Jahan N, Pires Damaso M, Osmanovic D, Rebolu CF, Dunstone MA, Andrew PW, Lonnen R, Topf M, Saibil HR, Hoogenboom BW (2014) Stepwise visualization of membrane pore formation by suilysin, a bacterial cholesterol-dependent cytolsin. Elife 3: e04247

Leung C, Hodel AW, Brennan AJ, Lukoyanova N, Tran S, House CM, Kondos SC, Whisstock JC, Dunstone MA, Trapani JA, Voskoboinik I, Saibil HR, Hoogenboom BW (2017) Real-time visualization of perforin nanopore formation. Nat Nanotechnol 12: 467 – 473

McNamara LA, Topaz N, Wang X, Hariri S, Fox L, MacNeil JR (2017) High risk for invasive meningococcal disease among patients receiving eculizumab (Soliris) despite receipt of meningococcal vaccine. Am J Transplant 17: 2481 – 2484

Menny A, Serna M, Boyd CM, Gardner S, Joseph AP, Morgan BP, Topf M, Brooks NJ, Bubeck D (2018) CryoEM reveals how the complement membrane attack complex ruptures lipid bilayers. Nat Commun 9: 5316

Michaels DW, Abramovitz AS, Hammer CH, Mayer MM (1976) Increased ion permeability of planar lipid bilayer membranes after treatment with the C5b-9 cytolytic attack mechanism of complement. Proc Natl Acad Sci USA 73: 2852 – 2856

Morgan BP, Walters D, Serna M, Bubeck D (2016) Terminal complexes of the complement system: new structural insights and their relevance to function. Immuno Rev 274: 141 – 151

Morgan BP, Boyd C, Bubeck D (2017) Molecular cell biology of complement membrane attack. Semin Cell Dev Biol 72: 124 – 132

Moskovich O, Fishelson Z (2007) Live cell imaging of outward and inward vesiculation induced by the complement C5b-9 complex. J Biol Chem 282: 29977 – 29986

Necas D, Klapetek P (2012) Gwyddion: an open-source software for SPM data analysis. Cent Eur J Phys 10: 181 – 188

Nunn MA, Sharma A, Paesen GC, Adamson S, Lissina O, Willis AC, Nuttall PA (2005) Complement inhibitor of C5 activation from the soft tick Ornithodoros moubata. J Immunol 174: 2084 – 2091

O’Hara AM, Moran AP, Würzner R, Orren A (2001) Complement-mediated lipopolysaccharide release and outer membrane damage in Escherichia coli J5’s requirement for C9. Immunology 102: 365 – 372

Parsons ES, Stanley GJ, Pyne ALB, Hodel AW, Nievergelt AP, Menny A, Yon AR, Rowley A, Richter RP, Fantner GE, Bubeck D, Hoogenboom BW (2018) Single-molecule kinetics of pore formation by the membrane attack complex. bioRxiv https://doi.org/10.1101/472274 [PREPRINT]

Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera - A visualization system for exploratory research and analysis. J Comput Chem 25: 1605 – 1612

Podack ER, Tschopp J (1984) Membrane attack complex by complement. Mol Immunol 21: 589 – 603

Preissner KT, Podack ER, Müller-Eberhard HJ (1985) The membrane attack complex of complement: relation of C7 to the metastable membrane binding site of the intermediate complex C5b-7. J Immunol 135: 445 – 451

Ram S, Lewis LA, Rice PA (2010) Infections of people with complement deficiencies and patients who have undergone splenectomy. Clin Microbiol Rev 23: 740 – 780

Rawal N, Pangburn MK (2001) Structure/function of CS convertases of complement. Int Immunopharmacol 1: 415 – 422

Ricklin D, Hajishengallis G, Yang K, Lambris JD (2010) Complement: a key system for immune surveillance and homeostasis. Nat Immunol 11: 785 – 797

Ricklin D, Mestellos DC, Reis ES, Lambris JD (2017) The renaissance of complement therapeutics. Nat Rev Nephrol 14: 26 – 47

Rooijakkers SHM, Wu J, Ruyken M, van Domselaar R, Planken KL, Tzekou A, Ricklin D, Lambris JD, Janssen BJ, van Strijp JAG, Gros P (2009) Structural and functional implications of the alternative complement pathway C3 convertase stabilized by a staphylococcal inhibitor. Nat Immunol 10: 721 – 727

Rother RP, Rollins SA, Mocjik CF, Brodsky RA, Bell L (2007) Discovery and development of the complement inhibitor eculizumab for the treatment of paroxysmal nocturnal hemoglobinuria. Nat Biotechnol 25: 1256 – 1264

Sahu A, Kay BK, Lambris JD (1996) Inhibition of human complement by a C3-binding peptide isolated from a phage-displayed random peptide library. J Immunol 157: 884 – 891

Schmalstieg FC, Goldman AS (2009) Jules Bordet (1870–1961): a bridge between early and modern immunology. J Med Biogr 17: 217 – 224

Serna M, Giles JL, Morgan BP, Bubeck D (2016) Structural basis of complement membrane attack complex formation. Nat Commun 7: 10587

Sethi D, Mahajan S, Singh C, Lama A, Hade MD, Gupta P, Dikshit KL (2016) Lipoprotein LprI of mycobacterium tuberculosis acts as a lysozyme inhibitor. J Biol Chem 291: 2938 – 2953

Sharp TH, Koster AJ, Gros P (2016) Heterogenous MAC initiator and pore structures in a lipid bilayer by phase-cryo electron tomography. Cell Rep 15: 1 – 8

Shin HS, Pickering RJ, Mayer MM (1971) The fifth component of the guinea pig complement system. 3. Dissociation and transfer of C5b, and the probable site of C5b fixation. J Immunol 106: 480 – 493

Silhavy TJ, Kahne D, Walker S (2010) The bacterial cell envelope. Cold Spring Harb Perspect Biol 2: a000414

Sjizjartó V, Guachalla LM, Visram ZC, Hartl K, Varga C, Mirkina I, Zmajkovic J, Badarau A, Zauner G, Pleen C, Magyarnics Z, Nagy E, Nagy G (2015) Bactericidal monoclonal antibodies specific to the lipopolysaccharide O antigen from multidrug-resistant Escherichia coli strain ST131-O25b:H4 elicit protection in mice. Antimicrob Agents Chemother 59: 3109 – 3116

Taylor PW (1992) Complement-mediated killing of susceptible Gram-negative bacteria: an elusive mechanism. Exp Clin Immunogenet 9: 48 – 56

Thielen AJF, van Baarsen IM, Jongsma ML, Zeerleder S, Spaapen RM, Wouters E (2018) CRISPR/Cas9 generated human CD46, CD55 and CD59 knockout cell lines as a tool for complement research. J Immunol Methods 456: 15 – 22
Turley AJ, Gathmann B, Bangs C, Bradbury M, Seneviratne S, Gonzalez-Granado Li, Hackett S, Kutukculer N, Alachkar H, Hambleton S, Ritterbusch H, Kralickova P, Marodi L, Seidel MG, Dueckers G, Roesler J, Huissoon A, Baxendale H, Litzman J, Arkwright PD (2015) Spectrum and management of complement immunodeficiencies (excluding hereditary angioedema) across Europe. J Clin Immunol 35: 199–205

Turner RD, Hurd AF, Cadby A, Hobbs JK, Foster SJ (2013) Cell wall elongation mode in Gram-negative bacteria is determined by peptidoglycan architecture. Nat Commun 4: 1496–1498

Ugurlar D, Howes SC, de Kreuk B-J, Koning RI, de Jong RN, Beurskens FJ, Schuurman J, Koster AJ, Sharp TH, Parren PWHI, Gros P (2018) Structures of C1-IgG1 provide insights into how danger pattern recognition activates complement. Science 359: 794–797

Wang Y, Bjes ES, Esser AF (2000) Molecular aspects of complement-mediated bacterial killing. J Biol Chem 275: 4687–4692

Wright SD, Levine RP (1981) How complement kills E. coli. I. Location of the lethal lesion. J Immunol 127: 1146–1151

Yamashita H, Taoka A, Uchihashi T, Asano T, Ando T, Fukumori Y (2012) Single-molecule imaging on living bacterial cell surface by high-speed AFM. J Mol Biol 422: 300–309

License: This is an open access article under the terms of the Creative Commons Attribution 4.0 License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.