The Rana catesbeiana rcr Gene Encoding a Cytotoxic Ribonuclease

TISSUE DISTRIBUTION, CLONING, PURIFICATION, CYTOTOXICITY, AND ACTIVE RESIDUES FOR RNase ACTIVITY*

(Received for publication, October 29, 1997, and in revised form, January 2, 1998)

Huey-Chung Huang‡‡, Sui-Chi Wang‡, Ying-Jen Leu‡‡, Shao-Chun Lu§, and You-Di Liao¶¶

From the §Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, the ¶¶Institute of Biochemistry, College of Medicine, National Taiwan University, Taipei 10016, and the §Institute of Radiation Biology, National Tsing-Hua University, Hsin-Chu 30043, Taiwan.

Rana catesbeiana ribonuclease (RC-RNase) is a pyrimidine-guanine sequence-specific ribonuclease found in R. catesbeiana (bullfrog) oocytes. It possesses both ribonuclease activity and cytotoxicity against tumor cells. We report here for the first time the cloning of RC-RNase cDNA from liver rather than from oocytes where RC-RNase is stored. An internal fragment of cDNA was obtained by reverse transcription-PCR using deduced oligonucleotides as primers. Full-length cDNA was obtained by 5′- and 3′-RACE technique. The cDNA clone, named rcr gene, contained a 5′-untranslated region, a putative signal peptide (22 amino acids), a mature protein (111 amino acids), a 3′-untranslated region, and a polyadenylation site. The cDNA which encoded the mature protein was fused upstream with a modified pelB signal peptide DNA and inserted into pET11d for expression in Escherichia coli strain BL21(DE3). The secretory RC-RNase in the culture medium was enzymatically active and was purified to homogeneity. The recombinant RC-RNase had the same amino acid sequence, specific activity, substrate specificity, antigenicity, and cytotoxicity as that of native RC-RNase from frog oocytes. Amino acid residues His-10, Lys-35, and His-103 are involved in RC-RNase catalytic activity. Ribonucleolytic activity was involved in and may be essential for RC-RNase cytotoxicity. DNA sequence analysis showed that RC-RNase had approximately 45% identity to that of RNase superfamily genes. This indicates that RC-RNase is a distinct ribonuclease gene in the RNase superfamily.

Ribonucleases are widely found in living organisms and have been proposed to function in RNA metabolism and gene expression (1). Several abundant ribonucleases have been isolated from organs of various animals and have been well characterized. For example, various kinds of ribonuclease have been purified from bovine organs, e.g. pancreas, liver, kidney, brain, and seminal fluids. RNase A, from bovine pancreas, has been extensively characterized and is widely used in molecular biology (2). The occurrence of several homologous ribonucleases in different organs of the same animal suggests the existence of a family of homologous genes regulated in a tissue-specific fashion. Although these ribonucleases are abundant and well characterized biochemically, their biological significance is still not clear (3, 4). Recently, several proteins with known biological functions were found to have intrinsic ribonucleolytic activity. For example, angiogenin from humans possesses both angiogenesis and ribonucleolytic activities (5). Eosinophil-derived neurotoxin and eosinophil cationic protein from humans exert both neurotoxicity and ribonucleolytic activity (6, 7). Bovine seminal ribonuclease, a dimer made up of two identical 124 amino acid subunits, exerts both antitumor and ribonucleolytic activity (8). The ribonucleases from frog oocytes exert antitumor activity as well as ribonucleolytic activity, e.g. onconase from Rana pipiens (9–11) and RC-RNase1 from Rana catesbeiana (12, 13).

Three distinct properties are found in the frog RNases. First, the substrate specificity of frog RNase is pyrimidine-guanine and that of mammalian RNase is pyrimidine-adenine (14). Second, RNase from the frog is resistant to RNase inhibitor from human placenta, whereas mammalian RNase is susceptible to the inhibitor. Third, the RNases of frogs with antitumor activity are found in oocytes, e.g. bullfrog RC-RNase (14), whereas most of mammalian RNases with cytotoxic activity are found in eosinophils. Cloning and site-directed mutagenesis of the ribonuclease gene and overexpression of the gene product will enable us to elucidate this difference more effectively than traditional chemical modification methods. However, prior to the present study, cloning of a frog RNase gene had not yet been successful, although some efforts were made. For example, a synthetic gene for onconase was made by oligonucleotide synthesis and assembly, and a semisynthetic gene for onconase was made by ligating a genomic DNA fragment with two synthetic DNA fragments. However, the recombinant products of this gene expressed in Escherichia coli was not enzymatically active (15, 16). In this report, we present for the first time the successful cloning of ribonuclease cDNA from frog liver rather than from oocytes where RC-RNase is stored. We also describe the expression of active RC-RNase in E. coli and purification of recombinant RC-RNase to homogeneity. Site-directed mutagenesis of RC-RNase was made to determine the residues essential for catalytic activity and cytotoxicity.

EXPERIMENTAL PROCEDURES

Frogs—Native bullfrogs (R. catesbeiana) were obtained from a local frog farm and housed at 25 °C. The frogs were 300–400 g in body
Recombinant cloning of the RC-RNase gene was performed using a Quickprep Micro mRNA Purification Kit from Invitrogen. The expression vector pET11d was digested with BamHI and NcoI and named pET-RC-RNase. The RC-RNase gene was amplified by PCR using oligonucleotides 5'-CCAT GGCTGAGA TACG CCTAT-3' and 5'-TTGGAT TTGAT TGC-3' as primers. The PCR product was ligated into pET11d through the NcoI and BamHI sites and named pET-RC-RNase.

Protein Determination—Total protein of each purification step was determined by Bradford method (21). The concentration of RC-RNase was estimated from Coomassie Blue-stained gels using bovine serum albumin as a standard. The protein concentration of the RC-RNase sample was determined by SDS-PAGE following the instruction manual provided by the manufacturer. Biotinylated RNAs from New England Biolabs (Beverly, MA) were used according to the manufacturer’s instruction manual.

DNA Sequence Analysis—DNA sequencing was performed by the dyeodeoxy chain termination method using d-Rhodamine Terminator Cycle Sequencing Ready Reaction Kit (Perkin-Elmer). The nucleotide sequence was analyzed by a Perkin-Elmer 3700 automated DNA sequencer. The biotinylation of DNA probe was performed using the Biotin-NHS Ester Kit from Tropix (Bedford, MA). The signals on the membrane were detected by a Southern-Star Chemiluminescent Detection System kit from Tropix. The signals on the membrane were detected by a chemiluminescent detection system from Tropix (Bedford, MA).

Protein Determination—Total protein of each purification step was determined by the Bradford method (21). The concentration of RC-RNase was estimated from Coomassie Blue-stained gels using bovine serum albumin as a standard. The protein concentration of the RC-RNase sample was determined by SDS-PAGE following the instruction manual provided by the manufacturer. Biotinylated RNAs from New England Biolabs (Beverly, MA) were used as RNA markers.

Ribonuclease Assay—The ribonuclease activity of each column eluate was determined by the ability for dinucleotide CpG cleavage, followed by thin layer chromatography (PERI-cellulose F) from Merck (Darmstadt, Germany).
FIG. 1. Nucleotide sequence of RC-RNase cDNA and its deduced amino acid sequence. The cDNA of RC-RNase was cloned in pGEM-T vector and named pGEM-RC. The nucleotide sequence was analyzed by Perkin-Elmer DNA sequencer 377 using d-Rhodamine Terminators Cycle Sequencing Ready Reaction Kit. Degenerate oligonucleotides marked by dashed arrows were used as primers for PCR amplification of the RC-RNase gene. Internal oligonucleotides marked by arrows were used as primers for 5'- and 3'-RACE of the cDNA. AATAAA for polyadenylation signal is underlined. N terminus of mature RC-RNase protein located at Gln(Q)1 is marked by a left margin represent amino acid residues. Numbers at the right margin represent nucleotides of the cDNA.

FIG. 2. Northern blotting analysis of RC-RNase mRNA expression in bullfrog tissues/organ. A, 20 μg of total RNA from different tissues/organ of a single bullfrog were fractionated with 1.2% agarose gel electrophoresis and blotted onto Hybond-N+ nylon membrane. The RNAs were probed with biotin-labeled RC-RNase DNA fragment and detected by Southern-StartTM Chemiluminescent Kit. Samples from 1 to 7 were taken from a female bullfrog. Lane 1, liver; lane 2, pancreas; lane 3, kidney; lane 4, stomach; lane 5, intestine; lane 6, ovary; lane 7, spleen; lane 8, liver from a male bullfrog. Biotinylated RNAs were used as RNA markers. B, total RNAs from different tissues/organs were stained with ethidium bromide. The amounts of RNA loaded and sample alignment were identical to A.

One cDNA clone, named rcr gene, contained an 883-nucleotide insert including a 31-base poly(A) tail. It had a single open reading frame with the first ATG initiation codon located at nucleotide 244 from the 5' end of the clone followed by a 399-nucleotide open reading frame and ending with an in-frame termination codon TAG at position 642. The open reading frame encoded a 133-amino acid protein including a 22-amino acid putative signal peptide and a 111-amino acid sequence. The presumptive polyadenylation site, AATAAA, was located 121 nucleotides downstream from the TAG stop codon. The N-terminal residue was glutamine rather than pyroglutamate as found on RC-RNase. The encoded amino acid of the open reading frame was identical to that of RC-RNase from bullfrog oocytes except a 22-amino acid putative signal peptide was found at the N terminus (23).

Expression of RC-RNase mRNA in the Liver of Female Bullfrog

As shown in Fig. 2A, the RC-RNase mRNA was only expressed in the liver of female bullfrogs, and no signal was found in the liver of male bullfrogs. The RC-RNase mRNA was not found in other tissues or organs of female frogs, i.e. pancreas, kidney, stomach, intestine, ovary, and spleen. The ribosomal RNA content including 28 S rRNA and 18 S rRNA in each tissue and organ was similar except 28 S rRNA of oocyte was partially degraded as detected by ethidium bromide staining (Fig. 2B). This indicates that the rcr gene was specifically transcribed in the liver of female bullfrogs rather than in oocytes where it localized.

Expression and Purification of Recombinant RC-RNase

The RC-RNase gene with pelB signal sequence was subcloned in expression vector and named pET-pel-RC (Fig. 3).
purified by two column chromatographies (Fig. 5).

To purified crude samples, and it was homogeneous after being treated with PEG-concentrated medium. The production of secreted RC-RNase in the culture medium reached a plateau after 3 days' incubation as measured by both Western blotting and the acid-soluble method (data not shown).

...activity dropped to 30 °C. There was no apparent effect of IPTG from bullfrog oocytes was studied. A, total protein analysis of soluble proteins, insoluble debris, and culture media. 40 ml of pET-pel-RC transformed cells were cultivated to stationary phase (A600 of 1.8) at 34 or 37 °C. IPTG (0.5 mM) was added and incubated for another 24 h. One-two hundredth aliquot of soluble protein (S), insoluble debris (P), and culture media (M) were taken for SDS-PAGE and Coomassie Blue staining. Lane 1, RC-RNase from bullfrog oocyte; lanes 2–4, S, P, and M of transformed E. coli incubated at 37 °C without IPTG induction; lanes 5–7, S, P, and M of transformed E. coli at 37 °C with IPTG induction; lanes 8–10, S, P, and M of transformed E. coli at 34 °C without IPTG induction; lanes 11–13, S, P, and M of transformed E. coli at 34 °C with IPTG induction. B, Western blotting of RC-RNase from transformed E. coli cells. One-thousandth aliquot of 40-ml culture was taken for analysis. The order of sample alignment was similar to A except for lane 1 of A was absent. RC, RC-RNase, pRC, RC-RNase precursor. C, ribonuclease activity assay on RNA-casting SDS-PAGE. One ten-thousandth aliquot of 40-ml culture was taken for activity assay. The order of sample alignment was identical to that of A.

General Properties of Recombinant RC-RNase

Amino Acid Sequence Identity—The recombinant RC-RNase purified from E. coli culture media has a modified N terminus similar to that of native RC-RNase, and neither yield any signal upon Edman degradation. Therefore, the protein was fragmented with CNBr for internal sequence analysis. One peptide had a sequence of NVLST which was identical to residues 59–63 of native RC-RNase and the corresponding amino acid sequence encoded by the cDNA.

Substrate Specificity—Only dinucleotides CpG and UpG were cleaved by the recombinant RC-RNase, whereas the others, i.e. UpA, ApU, CpC, UpU and CpA, were not cleaved under the same assay conditions. This property was identical to that of native RC-RNase from bullfrog as determined by Western blotting analysis (Fig. 5B). Both recombinant and native RC-RNase also showed similar specific activity and identical mobility as observed on the zymogram of RNA-casting SDS-PAGE (Fig. 5C). These results indicated that recombinant RC-RNase had similar properties to that of native RC-RNase. The results of purification after quantitation of ribonuclease activity at each purification step using the acid-soluble method are summarized in Table II. 2.55 mg of RC-RNase was purified from 120 ml of PEG-concentrated medium which came from the original 700 ml of culture medium. The yield of ribonuclease activity was 28.5% from the concentrated medium and 11% from the original culture medium. The specific activity of the recombinant RC-RNase was the same as that of native RC-RNase from bullfrog oocytes as determined by the acid-soluble method (12).

Cloning and Active Residues of a Cytotoxic Ribonuclease Gene

pET-pel-RC transformed E. coli BL21(DE3) cells were grown at 37 and 34 °C to stationary phase (A600 of 1.8). IPTG was added to a final concentration of 0.5 mM, and incubation was continued for another 24 h. Equal aliquots of total supernatant, insoluble pellet, and culture media were taken for analysis. The amount of total protein in culture media was quite low compared with that of the supernatant and insoluble pellet of cell lysate (Fig. 4A). Most of the mature RC-RNase protein was equally present in the supernatants and insoluble pellets, but the precursor of RC-RNase, which had slower mobility than RC-RNase on the gel, existed exclusively in the insoluble pellets upon IPTG induction (Fig. 4B). The insoluble pellets, which contained a large amount of RC-RNase, showed no activity, whereas the RC-RNase in the culture medium and supernatant, possibly derived from the periplasm of E. coli, was active (Fig. 4C). The ribonuclease activity in culture medium increased 5–10-fold when the temperature was shifted from 37 to 34 °C. The activity did not increase further when the temperature dropped to 30 °C. There was no apparent effect of IPTG induction on the production of secreted active RC-RNase in the culture medium. The production of secreted RC-RNase in the culture medium reached a plateau after 3 days' incubation as measured by both Western blotting and the acid-soluble method (data not shown).

The RC-RNase in the culture medium was concentrated by PEG absorption and purified by blue dextran-Sepharose CL6B and carboxymethylcellulose column chromatographies. RC-RNase protein seemed visible on the gel with PEG-concentrated crude samples, and it was homogeneous after being purified by two column chromatographies (Fig. 5A). The recombinant RC-RNase had similar antigenicity and identical mobility as that of native RC-RNase from bullfrog as determined by Western blotting analysis (Fig. 5B). Both recombinant and native RC-RNase also showed similar specific activity and identical mobility as observed on the zymogram of RNA-casting SDS-PAGE (Fig. 5C). These results indicated that recombinant RC-RNase had similar properties to that of native RC-RNase. The results of purification after quantitation of ribonuclease activity at each purification step using the acid-soluble method are summarized in Table II. 2.55 mg of RC-RNase was purified from 120 ml of PEG-concentrated medium which came from the original 700 ml of culture medium. The yield of ribonuclease activity was 28.5% from the concentrated medium and 11% from the original culture medium. The specific activity of the recombinant RC-RNase was the same as that of native RC-RNase from bullfrog oocytes as determined by the acid-soluble method (12).

General Properties of Recombinant RC-RNase

Amino Acid Sequence Identity—The recombinant RC-RNase purified from E. coli culture media has a modified N terminus similar to that of native RC-RNase, and neither yield any signal upon Edman degradation. Therefore, the protein was fragmented with CNBr for internal sequence analysis. One peptide had a sequence of NVLST which was identical to residues 59–63 of native RC-RNase and the corresponding amino acid sequence encoded by the cDNA.

Substrate Specificity—Only dinucleotides CpG and UpG were cleaved by the recombinant RC-RNase, whereas the others, i.e. UpA, ApU, CpC, UpU and CpA, were not cleaved under the same assay conditions. This property was identical to that
Amino Acid Sequence and DNA Sequence Homologies in RNase Superfamily

The amino acid sequence of RC-RNase is homologous to those of frogs’ RNases, i.e. 79.1% identity for Rana japonica oocytic RNase, 65.5% identity for R. catesbeiana liver RNase, and 52.4% identity for R. pipiens oocytic RNase (onconase) as calculated by the GCG-GAP program (15). It is not highly homologous to human eosinophil-derived neurotoxin (26.7% identity) and eosinophil cationic protein (25.0% identity), which are both cytotoxic to some neurons (6, 7). The homologies of RC-RNase to other mammalian RNase genes are between 27.6 and 34.3% identity.

The DNA sequence homologies among frog RNase genes could not be compared because no DNA sequence data are available except for the RC-RNase gene. The homologies of RC-RNase to the RNase superfamily is between 41.5 and 47.9% identity, when compared with 12 RNase genes by the GCG-GAP program. The relationship of these RNase genes is expressed as a phylogenetic tree created by the GCG-PILEUP program in Fig. 8. Amino acid sequence analysis indicated that RC-RNase is a cognate member in the frog RNase family but it is a distinct class in the RNase superfamily according to both amino acid sequence and DNA sequence.

DISCUSSION

The ribonuclease (RNase) gene superfamily combines functionally divergent proteins that share statistically significant

* H. C. Huang and Y. D. Liao, unpublished results.

of native RC-RNase.

Amino Acid Residues for the RNase Activity—Since residues His-12, Lys-41, and His-119 of RNase A are conserved in the RNase superfamily and are involved in catalysis of RNA degradation, the corresponding residues of RC-RNase, His-10, Lys-35, and His-103, were mutated to Ala. The recombinant proteins were purified to homogeneity by the same method as that of wild type RC-RNase (Fig. 6A). The antigenicity of mutated RC-RNase was the same as that of wild type RC-RNase (data not shown). The catalytic activities of recombinant H10A-RC-RNase and H103A-RC-RNase were completely lost, whereas the catalytic activity of recombinant K35A-RC-RNase was very low compared with that of wild type RC-RNase (Fig. 6B). These results indicate that RC-RNase and RNase superfamily genes possess similar catalytic residues.

Cytotoxicity—Both RNase activity and cytotoxicity exist in frog oocytic RNase. The cytotoxicities of native RC-RNase and recombinant RC-RNase against HeLa Tet-On cells were similar (Fig. 7). Nine percent of HeLa Tet-On cells survived when treated with native RC-RNase and 12% survived when treated with recombinant wild type RC-RNase at day 3 compared with untreated control cells. RNase activity-deficient H103A-RC-RNase was not toxic to the HeLa Tet-On cell. Typical phenomena of apoptosis were observed in the detached cells after RC-RNase treatment at day 2 and day 3, e.g. nuclear fragmentation, cytoplasmic blebbing, and DNA laddering. The surviving attached cells detached and floated into the medium after further RC-RNase incubation. These results show that the residue His-103 is involved in both RNase activity and cytotoxicity.

![Fig. 5. Analysis of RC-RNase purified from E. coli culture media. A, components of proteins at each purification step. Samples were separated by 13.3% SDS-PAGE and stained by Coomassie Blue. Lane 1, PEG concentrated crude media (90 μg); lane 2, blue dextran-Sepharose CL6B column eluates (45 μg); lane 3, CM-cellulose column eluate (3 μg); lane 4, RNA-casting SDS-PAGE. Purified RC-RNase from unfrozen oocytes (4 μg). B, Western blotting analysis of RC-RNase. One-tenth aliquot of sample as described in A was taken for Western blotting analysis. The order of sample alignment was identical to that of A. C, ribonuclease activity assay on RNA-casting SDS-PAGE. One-fiftieth aliquot of sample as described in A was taken for activity assay. The order of sample alignment was identical to that of A.](Image 56x530 to 300x729)

![Fig. 6. Analysis of wild type and mutated RC-RNase. A, SDS-PAGE analysis. Purified RC-RNases (2 μg each) were separated by 13.3% SDS-PAGE and stained by Coomassie Blue. Lane 1, native RC-RNase from bullfrog oocytes; lane 2, wild type recombinant RC-RNase; lane 3, H10A-RC-RNase; lane 4, K35A-RC-RNase, lane 5, H103A-RC-RNase. B, zymogram assay on RNA-casting SDS-PAGE. Purified RC-RNase (10 ng) was taken for analysis by RNA containing SDS-PAGE. The order of sample alignment was identical to that of A.](Image 538x537 to 534x729)

FIG. 5. Analysis of RC-RNase purified from E. coli culture media. A, components of proteins at each purification step. Samples were separated by 13.3% SDS-PAGE and stained by Coomassie Blue. Lane 1, PEG concentrated crude media (90 μg); lane 2, blue dextran-Sepharose CL6B column eluates (45 μg); lane 3, CM-cellulose column eluate (3 μg), estimated by SDS-PAGE and Coomassie Blue staining using bovine pancreatic RNase A as standard; lane 4, RC-RNase from unfrozen oocytes (4 μg). B, Western blotting analysis of RC-RNase. One-tenth aliquot of sample as described in A was taken for Western blotting analysis. The order of sample alignment was identical to that of A. C, ribonuclease activity assay on RNA-casting SDS-PAGE. One-fiftieth aliquot of sample as described in A was taken for activity assay. The order of sample alignment was identical to that of A.

FIG. 6. Analysis of wild type and mutated RC-RNase. A, SDS-PAGE analysis. Purified RC-RNases (2 μg each) were separated by 13.3% SDS-PAGE and stained by Coomassie Blue. Lane 1, native RC-RNase from bullfrog oocytes; lane 2, wild type recombinant RC-RNase; lane 3, H10A-RC-RNase; lane 4, K35A-RC-RNase, lane 5, H103A-RC-RNase. B, zymogram assay on RNA-casting SDS-PAGE. Purified RC-RNase (10 ng) was taken for analysis by RNA containing SDS-PAGE. The order of sample alignment was identical to that of A.
a amino acid sequence similarity. Known members assigned to this family include secretory and nonsecretory RNases, angiogenin, eosinophil cationic protein (ECP), eosinophil-derived neurotoxin (EDN), antitumor protein (onconase), and RC-RNase from frog oocytes. Most of these genes in the superfamily have been cloned and sequenced and possess DNA sequence homology as shown in Fig. 8. The RNase gene from frogs has not previously been cloned and compared, although they possess several important properties, e.g. substrate specificity for pyrimidine-guanine and cytotoxic activity toward tumor cells. In this report, we succeeded in cloning RC-RNase gene and characterized the active residues for RNase activity and possible sites for cytotoxicity. From DNA sequence analysis, we found that RC-RNase is a distinct class in the RNase superfamily genes.

Onconase from R. pipiens oocytes combined with tamoxifen is being evaluated in human phase III clinical trials in patients with pancreatic carcinoma, and it is approaching maturity as a new member of the anticancer arsenal of drugs (16). However, a gene from R. pipiens has not been successfully cloned. A synthetic gene was made by oligonucleotide synthesis and assembly, and a semisynthetic gene was obtained by ligating a genomic DNA fragment with two synthetic DNA fragments. Those onconase genes expressed in E. coli and formed inclusion bodies. No RNase activity was observed until it was renatured by extensive steps. The specific activity of renatured onconase is 3–10% of native onconase from frog oocytes. In addition, an extra methionine is added on onconase’s N terminus which is crucial for its RNase activity and cytotoxicity. The N-terminal methionine is removed by CNBr cleavage only if its internal methionine is substituted by other residues (15, 16). In this report, a modified pelB signal peptide was introduced in front of RC-RNase; therefore, the expressed RC-RNase was secreted into the culture medium and was enzymatically active. There were still some RC-RNases with the same size as that of mature form RC-RNase that remained in soluble fractions and insoluble pellets of cell lysate, but they were not enzymatically active until denaturation and renaturation were performed. However, the renatured RC-RNase was not homogeneous because several minor bands with slower mobility than native RC-RNase were found on the RNA-casting gel (data not shown). Therefore, the establishment of a secretory expression system enabled us to obtain a recombinant RC-RNase comparable with native RC-RNase directly from culture media without further treatment.

Antitumor activity of RNase exists only in frog oocytic RNases and bovine seminal dimer RNase but not in other RNases, e.g. RNase A, bovine seminal monomer RNase, and bullfrog liver RNase. Neurotoxicity was found in human EDN, ECP, as well as in frog onconase. Chemical inactivation on RNase activity of onconase, EDN, and ECP by iodoacetate reduced the cytotoxicity/neurotoxicity of these proteins. These results indicate that RNase activity is essential to induce cytotoxic or neurotoxic action (9, 11, 24). However, two single base pair mutations (K35R, H128D) were introduced in human recombinant ECP to convert RNase inactivity and did not have discernible effect on antibacterial activity (25). This indicates that RNase activity is independent for antimicrobial activity of recombinant ECP. In the case of RC-RNase, our study showed that the wild type recombinant RC-RNase was cytotoxic to the HeLa Tet-On cells, and RNase activity-depleted H103A-RC-RNase was not cytotoxic to HeLa Tet-On cells. These results demonstrated that RNase activity is involved in cytotoxicity of RC-RNase against tumor cells. The amino acid residues of RC-RNase were modified by point mutation rather than chemical modification which might cause nonspecific modifications. Since RNase activity is involved in cytotoxicity of RC-RNase against tumor cells, specific receptors on tumor cell surfaces may recognize a receptor-binding domain on RC-RNase and allow for the entry of RC-RNase into the cytosol thus causing RNA degradation (26, 27). The presence of specific receptors may explain the differential cytotoxicity of RC-RNase against tumor cells and normal cells. A receptor-binding domain may exist only in frog oocytic RNase, i.e. RC-RNase, that causes their cytotoxicity against tumor cells but does not exist in other

![Figure 7](image7.png)

Fig. 7. Cytotoxic effects of RC-RNase on HeLa Tet-On cells. HeLa Tet-On cells (1.5 × 10⁶, CLONTECH) were seeded on 60-mm Nunc plates overnight in Dulbecco’s modified Eagle’s medium containing 10% fetal calf serum before 2 μM RC-RNase treatments. Cell numbers were counted by trypan blue exclusion assay (13). ○, cell without RC-RNase treatment; ●, cells treated by recombinant wild type RC-RNase; □, cells treated by H103A RC-RNase. Bars represent standard deviations of three experiments.

![Figure 8](image8.png)

Fig. 8. Phylogenetic tree of ribonuclease genes. The DNA sequences of the following RNase genes were aligned by GCG-PILEUP program: bullfrog (R. catesbeiana) oocytic RNase (RC-RNase), bovine pancreatic RNase (19), bovine brain RNase (31), bovine seminal RNase (32), human pancreatic RNase (33), human eosinophil-cationic protein (34), human eosinophil-derived neurotoxin (35), human angiogenin (36), mouse pancreatic RNase (37), mouse eosinophil-associated RNases (38), rat pancreatic RNase (39), and chicken bone marrow RNase (40).
Cloning and Active Residues of a Cytotoxic Ribonuclease Gene

6401

ribonucleases, e.g. RNase A. Successful cloning and series mutation of RC-RNase gene followed by RNase activity and cytotoxicity assay in a later study will enable us to find the receptor-binding domain of RC-RNase which may be crucial for understanding the cytotoxicity of RC-RNase.

Vitellogenin is a major yolk protein used for nutrition during embryogenesis. The vitellogenin gene is transcribed and translated in liver. The protein is secreted into the bloodstream and passed into the ovaries by receptor-mediated endocytosis and then stored in yolk granules of oocytes in X. laevis (28, 29). In bullfrogs, the RC-RNase gene is transcribed in the liver, and the protein is closely associated with vitellogenin in the yolk granules of oocytes (22, 30). No precursor form of RC-RNase is found in the oocyte, although a putative signal peptide exists in front of RC-RNase from DNA sequence analysis of the cloned gene. Therefore, it is suggested that RC-RNase is transcribed, translated, and processed in the liver, secreted into the bloodstream, passed into the ovaries by receptor-mediated endocytosis, and then stored in yolk granules. This is why the RC-RNase gene could be cloned from bullfrog liver rather than from oocytes. The possible function of RC-RNase in oocytes and early embryos may be involved in a defense mechanism against predators because of its cytotoxicity. The RNase activity and cytotoxicity to the oocyte itself is regulated by compartmentation in yolk granules and RNase-specific inhibitor binding in the cytosol to prevent self-attack of RNA and susceptible factors (22, 30). Therefore, the absence of receptors on cell surfaces as well as the presence of inhibitors in the cytosol may also protect bullfrogs from self-attack in other tissues.

Acknowledgments—We thank Drs. T. C. Lee, K. King, J. Y. Yeng, and Sue Lin-Chao for critical readings and helpful discussions of the manuscript.

REFERENCES

1. D’Alessio, G. (1993) Trends Cell Biol. 3, 106–109
2. Blackburn, P., and Moore, S. (1982) in The Enzymes (Boyer, P. D., ed) 3rd Ed., Vol. 15, pp. 317–433, Academic Press, New York
3. Deutscher, M. P. (1993) J. Biol. Chem. 268, 13011–13014
4. Barnard, E. A. (1969) Nature 221, 340–344
5. Shapiro, R., Riordan, J. F., and Vallee, B. L. (1986) Biochemistry 25, 3527–3532
6. Gleich, G. J., Loegering, D. A., Bell, M. P., Chekel, J. L., Ackerman, S. J., and McKean, D. J. (1986) Proc. Natl. Acad. Sci. U. S. A. 83, 3146–3150
7. Gullberg, U., Widmer, B., Arnason, U., Egesten, A., and Olsson, I. (1986) Biochem. Biophys. Res. Commun. 139, 1239–1242
8. Vescia, S., Tramontano, D., Augusti-Tocco, G., and D’Alessio, G. (1986) Cancer Res. 40, 3740–3744
9. Ardei, A., Mikulski, S. M., and Shogen, K. (1991) J. Biol. Chem. 266, 245–251
10. Wush, Y., Mikulski, S. M., Ardei, W., Ruhak, S. M., and Youle, R. J. (1993) J. Biol. Chem. 268, 10686–10693
11. Newton, D. L., Walbridge, S., Mikulski, S. M., Ardei, W., Shogen, K., Ackerman, S. J., Ruhak, S. M., and Youle, R. J. (1994) J. Neurosci. 14, 538–544
12. Liao, Y. D. (1992) Nucleic Acids Res. 20, 1371–1377
13. Liao, Y. D., Huang, H. C., Chan, H. J., and Kuo, S. J. (1996) Protein Expression Purif. 7, 194–202
14. Youle, R. J., and D’Alessio, G. (1997) in Ribonuclease: Structures and Functions (D’Alessio, G., and Riordan, J. F., eds) pp. 491–514, Academic Press, New York
15. Boix, E., Wu, Y. N., Vasandani, V. M., Saxena, S. K., Ardei, W., Ladner, J., and Youle, R. J. (1996) J. Mol. Biol. 257, 992–1007
16. Newton, D. L., Xue, Y., Bue, L., Wladowaw, A., Kung, H. F., and Ruhak, S. M. (1997) Protein Eng. 10, 462–470
17. Dumont, J. (1972) J. Morphol. 136, 153–180
18. Chomczynski, P., and Sacchi, N. (1987) Anal. Biochem. 162, 156–159
19. Carsana, A., Confalone, E., Palmeri, M., Libonati, M., and Pavia, A. (1988) Nucleic Acids Res. 16, 5491–5502
20. Low, R., and Rausch, T. (1994) BioTechniques 17, 1026–1029
21. Bradford, M. M. (1976) Anal. Biochem. 72, 248–254
22. Liao, Y. D., and Wang, J. J. (1994) Eur. J. Biochem. 222, 215–220
23. Chen, C. P., Hom, K., Huang, R. F., Chou, P. J., Liao, Y. D., and Huang, T. H. (1996) J. Biol. Chem. 271, 331–344
24. Sorrentino, S., Glitz, D. G., Hamann, K. J., Loegering, D. A., Cheek, J. L., and Gleich, G. J. (1992) J. Biol. Chem. 267, 14589–14606
25. Rosenberg, H. F. (1995) J. Biol. Chem. 270, 7876–7881
26. Sakakibara, F., Kawashita, H., Takayanagi, G., and Ise, H. (1979) Cancer Res. 39, 1547–1552
27. Nitta, K., Takayanagi, G., Kawashita, H., and Kakmorisis, S. I. (1987) Cancer Res. 47, 4877–4883
28. Stilani, S., Nimpf, J., and Schneider, W. J. (1990) J. Biol. Chem. 265, 882–888
29. Okabayashi, K., Shoji, H., Nakamura, T., Hashimoto, O., Aashima, M., and Sugino, H. (1996) Biochem. Biophys. Res. Commun. 243, 406–413
30. Wang, J. J., Tang, P. C., Chao, S. H., Chen, C. H., Ma, H. J., and Liao, Y. D. (1995) Cell Tissue Res. 260, 259–265
31. Sasso, M. P., Carsana, A., Confalone, E., Cosi, C., Sorrentino, S., Viola, M., Palmeri, M., Russo, E., and Pavia, A. (1991) Nucleic Acids Res. 19, 6409–6447
32. Preuß, K. D., Wagner, S., Freudenstein, J., and Scheit, K. H. (1990) Nucleic Acids Res. 18, 1057
33. Seno, M., Putami, J., Kosaka, M., Seno, S., and Yamada, H. (1994) Biochem. Biophys. Acta 1218, 466–468
34. Rosenberg, H. F., Ackerman, S. J., and Tenen, D. G. (1989) J. Exp. Med. 170, 163–176
35. Barker, R. L., Loegering, D. A., Ten, R. M., Hamann, K. J., Pease, L. R., and Gleich, G. J. (1989) J. Immunol. 143, 952–955
36. Kurachi, K., Dave, E. W., Strydom, D. J., Riordan, J. F., and Vallee, B. L. (1985) Biochemistry 24, 5499–5502
37. Schueller, C., Nijssen, H. M. J., Kuc, R., and Beintema, J. J. (1990) Mol. Biol. Evol. 7, 29–44
38. Larsson, K. A., Olson, E. V., Madden, B. J., Gleich, G. J., Lee, N. A., and Lee, J. J. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 12370–12375
39. Macdonald, R. J., Stary, S. J., and Swift, G. H. (1982) J. Biol. Chem. 257, 14582–14585
40. Klenova, E. M., Botezatu, T., Lauder, V., Goodwin, G. H., Wallace, J. C., and Lohenenkov, V. V. (1992) Biochem. Biophys. Res. Commun. 185, 231–239