trial fibrillation is a major risk factor for stroke and systemic embolism, and strong evidence supports the use of the anticoagulant warfarin to reduce this risk.1–3 However, warfarin has a narrow therapeutic range and requires regular monitoring of the international normalized ratio to optimize its effectiveness and minimize the risk of hemorrhage.4,5 Although rates of major hemorrhage reported in trials of warfarin therapy typically range between 1% and 3% per person-year,6–11 observational studies suggest that rates may be considerably higher when warfarin is prescribed outside of a clinical trial setting.12–15 Approaching 7% per person-year in some studies.13–15 The different safety profiles derived from clinical trials and observational data may reflect the careful selection of patients, precise definitions of bleeding and close monitoring in the trial setting. Furthermore, although a few observational studies suggest that hemorrhage rates are higher than generally appreciated, these studies involve small numbers of patients who received care in specialized settings.14–16 Consequently, the generalizability of their results to general practice may be limited.

More information regarding hemorrhage rates during warfarin therapy is particularly important in light of the recent introduction of new oral anticoagulant agents such as dabigatran, rivaroxaban and apixaban, which may be associated with different outcome profiles.17–19 There are currently no large studies offering real-world, population-based estimates of hemorrhage rates among patients taking warfarin, which are needed for future comparisons with new anticoagulant agents once they are widely used in routine clinical practice.20

We sought to describe the risk of incident hemorrhage in a large population-based cohort of patients with atrial fibrillation who had recently started warfarin therapy.
Methods

Setting
We performed a population-based cohort study among Ontario residents aged 66 years and older who started warfarin therapy between Apr. 1, 1997, and Mar. 31, 2008. Eligible residents had access to prescription drug coverage, physician care and hospital services through the province’s universal health care system, the Ontario Health Insurance Plan (OHIP). The study was approved by the Research Ethics Board of the Sunnybrook Health Sciences Centre, Toronto, Ontario.

Data sources
We linked multiple administrative datasets from Ontario, Canada’s most populous province. Outpatient prescription records were identified from the Ontario Public Drug Benefit Program Database, which contains comprehensive information on prescription drugs dispensed to about 1.8 million residents of Ontario aged 65 years and older, annually. We identified hospital visits using the Canadian Institute for Health Information’s Discharge Abstract Database and emergency department visits using the National Ambulatory Care Reporting System. These databases contain detailed diagnostic and procedural information regarding all inpatient hospital admissions and visits to emergency departments. We used the OHIP database to identify claims for inpatient and outpatient physician services, and the Registered Persons Database to obtain demographic information for all members of the cohort. We used the Ontario Diabetes Database,21 the Congestive Heart Failure Database and the Hypertension Database22 to calculate the CHADS2 score (determined using criteria validated by Gage and colleagues,23 with 1 point each for congestive heart failure, hypertension, age ≥ 75 yr, and diabetes mellitus, and 2 points for previous ischemic stroke) for each patient in the cohort. The sensitivity and specificity of each of these databases are high.21,22 They are held securely in a linked, deidentified form and analyzed at the Institute for Clinical Evaluative Sciences, and are routinely used for the purposes of studying drug safety.24–27

Identification of the cohort
We identified all patients to whom warfarin was dispensed between Apr. 1, 1997, and Mar. 31, 2008. For each participant, we identified a period of continuous warfarin use beginning with the first prescription dispensed after his or her 66th birthday. To create an inception cohort, we excluded patients with any prescription for warfarin dispensed in the preceding year, and we did not include participants during their first year of eligibility for prescription drug coverage (age 65 yr) to avoid incomplete medication records. To restrict the analysis to patients with atrial fibrillation receiving warfarin therapy, we excluded patients who had not visited a physician, been assessed in an emergency department or been admitted to hospital for atrial fibrillation or flutter (International Classification of Diseases, 9th Revision (Clinical Modification) code 427.3; International Statistical Classification of Diseases and Related Health Problems, 10th revision codes 148.0 or 148.1; OHIP diagnosis code 427) in the 100 days preceding their first prescription for warfarin being dispensed. For all analyses, we defined the date of entry into the cohort as the date on which the first prescription for warfarin meeting these criteria was dispensed.

Table 1 (part 1 of 2): Baseline characteristics of people starting warfarin therapy after atrial fibrillation was diagnosed

Characteristic	Patients, no. (%)*
Characteristic	n = 125 195
Age at start of study, yr, median (IQR)	77 (72–82)
Age category, yr	
66–75	53 260 (42.5)
76–85	56 026 (44.8)
≥ 86	15 909 (12.7)
Male sex	61 911 (49.5)
Income quintile	
1	24 945 (19.9)
2	27 033 (21.6)
3	24 707 (19.7)
4	23 401 (18.7)
5	24 752 (19.8)
Missing	357 (0.3)
Rural residence	18 942 (15.1)
Charlson comorbidity index	
0	36 616 (29.2)
1	26 397 (21.1)
≥ 2	39 919 (31.9)
No admission to hospital	22 263 (17.8)
Drugs prescribed in past 1 yr, no., median (IQR)	8 (5–12)
Previous admission to hospital for hemorrhage	5 596 (4.5)
Resident of long-term care facility	6 411 (5.1)
Comorbidity (past 3 yr)	
Renal disease	1 876 (1.5)
Liver disease	3 873 (3.1)
Alcoholism	3 801 (3.0)
Dementia	11 831 (9.5)
Medication use (past 120 d)	
Acetylsalicylic acid	24 328 (19.4)
Warfarin exposure
Because the maximum duration of a prescription eligible for funding by the Ontario Public Drug Program is 100 days, we defined ongoing warfarin therapy by successive refills of a prescription within 180 days to allow for periodic adjustments to doses, lapses in adherence and variable timing of refills. If more than 180 days elapsed between successive prescriptions, patients were deemed to have stopped treatment; such patients were followed for 100 days from the date of the last prescription to identify instances of hemorrhage that may have precipitated the end of treatment.

Risk of hemorrhage
A major hemorrhage was defined as a visit to an emergency department or an admission to hospital for hemorrhage during warfarin therapy. We followed patients until 1 of the following events occurred: a visit to hospital for hemorrhage, the end of warfarin therapy, death, 5 years of follow-up or the end of the study period (Mar. 31, 2010). We stratified hemorrhage anatomically as upper gastrointestinal, lower gastrointestinal, intracranial or other (principally consisting of hemorrhage involving the genitourinary tract or respiratory system). Detailed ICD-9 and ICD-10 codes for these definitions are provided in Appendix 1 (available at www.cmaj.ca/lookup/suppl/doi:10.1503/cmaj.121218/-/DC1), and are based on a validation study that found these codes to have 94% sensitivity and 83% specificity in defining major hemorrhage events.28 If a patient had multiple admissions for hemorrhage during warfarin therapy, we included only the first such event.

Patient characteristics
We determined the following baseline characteristics for members of the study cohort: age, sex, estimated socioeconomic status (based on neighbourhood income quintile),29 residence in a long-term care facility, rural residence and receipt of prescriptions for antiplatelet drugs (acetylsalicylic acid [ASA], clopidogrel, dipyridamole or ticlopidine) or nonsteroidal anti-inflammatory drugs (NSAIDs) in the 120 days preceding entry to the cohort. We defined several indicators of comorbidity in the preceding 3 years, including the Charlson comorbidity index,30,31 the total number of drugs for which patients had received a prescription in the previous year, admission to hospital for renal disease, liver disease, alcoholism or dementia, and previous admissions to hospital involving hemorrhage.

Although we did not have access to laboratory data to assess the quality of anticoagulation, we performed 2 analyses to explore the frequency of international normalized ratio testing in our population. In the first analysis, we restricted our cohort to those patients receiving warfarin for at least 365 days, and measured the average number of prothrombin time tests per person during the first year of follow-up. The second analysis assessed the prevalence of a prothrombin time test in the 7 and 14 days before hemorrhage as a surrogate measure of the adequacy of monitoring the international normalized ratio. To create a comparator group, we randomly assigned index dates to patients without a hemorrhage during the 5-year follow-up that followed the same temporal distribution as the hemorrhage dates. For each patient with a hemorrhage, a patient who did not have a hemorrhage was randomly selected, and the prevalence of a prothrombin time test was assessed for the period before his or her index date.

Table 1 (part 2 of 2): Baseline characteristics of people starting warfarin therapy after atrial fibrillation was diagnosed

Characteristic	Patients, no. (%)*
Medication use (past 120 d)	
Acetylsalicylic acid and clopidogrel	557 (0.4)
Acetylsalicylic acid and dipyridamole	817 (0.7)
Other nonsteroidal anti-inflammatory drugs	20 671 (16.5)
Clopidogrel	4 151 (3.3)
Ticlopidine	1 092 (0.9)
Time to starting warfarin therapy, d, median (IQR)	7 (2–22)
0	21 573 (17.2)
1–7	41 278 (33.0)
8–14	21 090 (16.8)
15–30	16 976 (13.6)
31–100	24 278 (19.4)
CHADS2 score (components)	
Congestive heart failure	44 011 (35.2)
Hypertension	94 063 (75.1)
Age > 75 yr	78 408 (62.6)
Diabetes	30 437 (24.3)
Previous stroke	26 661 (21.3)
CHADS2 score	
0	8 655 (6.9)
1	30 108 (24.0)
2	44 716 (35.7)
3	29 713 (23.7)
4	9 599 (7.7)
5	1 860 (1.5)
6	544 (0.4)

Note: IQR = interquartile range.
*Unless otherwise indicated.
Statistical analysis
We calculated the crude rate of hemorrhage in each 30-day interval after the start of warfarin therapy. The rate was calculated as the total number of people with a visit to hospital for a hemorrhage divided by the number of people taking warfarin, alive and event-free, at the beginning of the interval. All rates were expressed as a percentage per person-year of follow-up. We stratified analyses by CHADS₂ score. We used the Cochrane–Armitage test to identify differences in hemorrhage rates among groups. In a sensitivity analysis, we stratified hemorrhage rates by age (<75 yr and ≥75 yr) to align with typical inclusion criteria in randomized controlled trials. This stratification is important, because patients aged 75 years and older typically have a higher burden of atrial fibrillation, greater frailty and greater propensity for hemorrhagic outcomes than younger patients.

Table 2: Rates of hemorrhage by length of time since starting warfarin therapy

Characteristic	Hemorrhages during 5-yr follow-up, no. (%)*	Rate of hemorrhage, % per person-year (95% CI)	Overall
Overall, no.	10 840	First 30 d	3.8 (3.8–3.9)
CHADS₂ score		Remainder of 5-yr follow-up	
0	382 (3.5)	7.2 (5.5–9.5)	1.8 (1.6–2.0)
1	1 845 (17.0)	7.3 (6.3–8.4)	2.5 (2.4–2.6)
2–3	7 053 (65.1)	13.3 (12.5–14.3)	4.3 (4.2–4.4)
4–6	1 560 (14.4)	16.7 (14.3–19.4)	6.7 (6.3–7.0)
Type of hemorrhage			
Intracranial	549 (5.1)	0.4 (0.4–0.5)	0.2 (0.2–0.2)
Upper gastrointestinal	2 829 (26.1)	4.0 (3.8–4.2)	1.0 (1.0–1.0)
Lower gastrointestinal	3 956 (36.5)	4.6 (4.4–4.9)	1.4 (1.4–1.4)
Other	4 190 (38.7)	4.7 (4.5–5.0)	1.5 (1.5–1.5)
Age ≤ 75 yr, no.			
CHADS₂ score			
0	382 (10.4)	7.2 (5.5–9.5)	1.8 (1.6–2.0)
1	1 204 (32.7)	6.8 (5.7–8.1)	2.3 (2.1–2.4)
2–3	1 881 (51.1)	12.1 (10.6–13.9)	3.9 (3.7–4.0)
4–6	217 (5.9)	13.1 (8.2–20.7)	6.0 (5.3–6.9)
Type of hemorrhage			
Intracranial	194 (5.3)	0.4 (0.3–0.4)	0.2 (0.1–0.2)
Upper gastrointestinal	1 055 (28.6)	3.9 (3.5–4.3)	0.8 (0.8–0.9)
Lower gastrointestinal	1 268 (34.4)	3.5 (3.2–3.9)	1.0 (1.0–1.0)
Other	1 406 (38.2)	3.3 (3.0–3.7)	1.1 (1.1–1.1)
Age > 75 yr, no.			
CHADS₂ score			
0	0 (0.0)	—	3.1 (2.9–3.4)
1	641 (9.0)	8.5 (6.6–10.9)	4.5 (4.4–4.6)
2–3	5 172 (72.3)	13.8 (12.8–15.0)	4.5 (4.4–4.6)
4–6	1 343 (18.8)	17.3 (14.6–20.3)	6.8 (6.4–7.1)
Type of hemorrhage			
Intracranial	355 (5.0)	0.5 (0.4–0.5)	0.2 (0.2–0.2)
Upper gastrointestinal	1 774 (24.8)	4.1 (3.8–4.3)	1.1 (1.1–1.2)
Lower gastrointestinal	2 688 (37.6)	5.5 (5.1–5.9)	1.7 (1.7–1.8)
Other	2 784 (38.9)	5.7 (5.3–6.1)	1.8 (1.8–1.8)

Note: CI = confidence interval.
*Unless otherwise indicated
Results

Over the 13-year study period, we identified 266 460 new users of warfarin in Ontario aged 66 years or older. Of these patients, 125 195 (47.0%) had a visit to a physician or an admission to hospital for atrial fibrillation in the preceding 100 days. The median age for starting warfarin therapy was 77 years, and about one-half of the participants were men (Table 1). Overall, 69.0% (n = 86 432) of patients with atrial fibrillation newly receiving warfarin therapy had an estimated CHADS2 score of 2 or more at the start of therapy. The 5-year all-cause mortality for the cohort was 35.7% (n = 44 692).

Among patients starting warfarin for atrial fibrillation, the cumulative incidence of hemorrhage was 1.0% (n = 1196) at 30 days, 4.1% (n = 5095) at 1 year and 8.7% (n = 10 840) at 5 years. The overall risk of hemorrhage for the duration of the study was 3.8% (95% confidence interval [CI] 3.8%–3.9%) per person-year (Table 2). The risk was highest during the first 30 days of therapy (11.8% [95% CI 11.1–12.4] per person-year), falling to 3.4% (95% CI 3.4–3.5) per person-year during the remaining follow-up period (Table 2; Figure 1). Crude 5-year rates of hemorrhage varied significantly according to patients’ CHADS2 scores at the start of treatment (Table 2; p < 0.001). Those with a CHADS2 score of 4 or higher had higher than average rates of hemorrhage (16.7% [95% CI 14.3%–19.4%] per person-year in the first 30 d, 6.0% [95% CI 5.7%–6.3%] per person-year thereafter), and patients with a CHADS2 score of less than 2 had lower than average rates of hemorrhage (1.8% [95% CI 1.6%–2.0%] per person-year for a score of 0, and 2.5% [95% CI 2.4%–2.6%] per person-year for a score of 1; Figure 1). Similarly, rates of hemorrhage varied by patient age at the start of treatment. The risk of hemorrhage among patients older than 75 years was 4.6% (95% CI 4.5%–4.7%) per person-year, compared with 2.9% (95% CI 2.8%–3.0%) per person-year among patients aged 75 years or younger (Table 2).

Most admissions to hospital involved gastrointestinal hemorrhages (62.6%, n = 6785); more than one-third involved hemorrhages at other sites (38.7%, n = 4190) (Table 2). In total, 1963 (18.1%) patients admitted to hospital with hemorrhages died in hospital or within 7 days of being discharged (data not shown). As expected, mortality was highest among patients admitted to hospital for intracranial hemorrhage (n = 229, 41.7%) as compared with upper gastrointestinal hemorrhages.

Figure 1: Incident rate of visits to hospital with hemorrhages in 30-day increments after the start of warfarin therapy among older patients (≥ 66 yr) with atrial fibrillation. Rates are stratified by CHADS2 score at the start of treatment.
hemorrhages ($n = 408, 14.4\%$), lower gastroin-
testinal hemorrhages ($n = 595, 15.0\%$) and other
hemorrhages ($n = 527, 12.6\%$) (data not shown).

In an analysis of the frequency of monitoring the international normalized ratio among the 77267 patients receiving warfarin therapy for at least 1 year, we found that the average number of prothrombin time tests per person was 24.1 (standard deviation [SD] 14.9). Furthermore, in an analysis of the quality of such monitoring among the 10840 patients admitted to hospital with a hemorrhage over 5 years and a randomly selected group of patients who did not have hemor-
hraghes, we found similar rates of testing in the preceding 7 (35.9\% v. 31.7\%) and 14 days (51.9\% and 51.2\%) (Appendix 1).

Interpretation

In this population-based study spanning 13 years, we found that the rate of hemorrhage among older patients with atrial fibrillation who were receiving warfarin therapy is roughly half that reported in other observational studies (3.8\% v. 6.8\%–7.2\% per person-year).13–15 This is expected, because previous studies have considered shorter periods of warfarin use (when the risk of hemorrhage is highest) and patients whose condition is managed at anticoagulation clinics, where closer monitoring may lead to more complete identification of major hemorrhagic events. Conversely, the rate of hemorrhage in our study is considerably higher than those reported in randomized controlled trials of warfarin therapy, which have ranged between 1\% and 3\% per person-year.6,7,9,11 This difference is likely due to the strict inclusion criteria and close monitoring of patients in clinical trials and the average age of our participants being older than that of patients included in trials. This latter factor is emphasized by our sensitivity analysis stratified by age, in which the rate of hemorrhage for the younger group of patients (aged ≤ 75 yr) newly receiving warfarin therapy more closely aligns with results from randomized clinical trials.

Our study shows that the risk of hemorrhage is particularly high during the first 30 days of warfarin therapy, with almost 1\% of all new users admitted to hospital for hemorrhage during this period. Furthermore, this risk is amplified among patients with CHADS$_2$ scores higher than 4. The clinical importance of this finding is underscored by the number of patients admitted to hospital for hemorrhage who died either in hospital or shortly after discharge.

Strengths and limitations

Strengths of our study include its large sample, extended follow-up and inclusiveness. Further-
more, our cohort members had comprehensive health insurance, including coverage for prescrip-
tion drugs, thereby minimizing selection bias. Al-
though the rates of hemorrhage we describe are crude estimates, characterizing these risks in such a large population receiving routine clinical care is an important contribution to the literature.

Our findings derive from Ontario residents aged 66 years and older. Thus, the generalizabil-
ity of our results to younger patients and people in other jurisdictions is unknown. However, be-
cause atrial fibrillation is diagnosed at a mean age of 71 years,32 most people receiving warfarin therapy for new onset of the condition would be eligible for inclusion in our study.

We do not have information regarding med-
ications obtained without a prescription, and thus the true prevalence of the use of ASA and
NSAIDs by our cohort is underestimated.

We do not have access to international nor-
malized ratio values during bleeding episodes,
which would provide interesting data on risk of hemorrhage for individual patients. However, a
population-based study in Ontario recently found the time in therapeutic range among residents of
Ontario receiving warfarin therapy to be about 59\%.33 In addition, we found similar rates of
monitoring the international normalized ratio among patients with and without hemorrhage.

We limited our analyses to patients who started warfarin therapy after a clinical encounter for
atrial fibrillation or flutter. Although the sensitivity (77.8\%–87.7\%) and specificity (99\%–100\%) of
this definition has been shown to be high,34 our approach will undoubtedly exclude some patients
with atrial fibrillation, particularly those with paroxysmal atrial fibrillation or flutter.

We are unable to determine which patients
received treatment in the community as opposed to in hospital-based anticoagulation clinics,
which could help guide future research.

Finally, our study examined the incidence of hemorrhage resulting in a visit to hospital, and
therefore excludes minor events not resulting in a
visit to hospital and severe events leading to pre-
hospital death. Consequently, our rates of hemor-
hage underestimate the true overall rates in this
population. Furthermore, although the codes used to
identify major hemorrhage are highly sensitive
and specific, care must be taken when comparing
hemorrhage rates between studies given the vary-
ing definitions of major bleeding events.

Conclusion

In this large cohort of older patients with atrial fibrillation, we found that rates of hemorrhage
are highest during the first 30 days after the start of warfarin therapy, and that almost 1 in 5 such
patients who have a hemorrhage requiring admission to hospital died either in hospital or patients who have a hemorrhage requiring admission to hospital died either in hospital or

References

1. Camm AJ, Kirchhof P, Lip GY, et al. Guidelines for the management of atrial fibrillation: the Task Force for the Management of Atrial Fibrillation of the European Society of Cardiology (ESC). Eur Heart J 2010;31:2369-429.

2. Fuster V, Ryden LE, Cannom DS, et al. 2011 AHA/ACC/HRS focused updates incorporated into the ACC/AHA/ESC 2006 Guidelines for the Management of Patients with Atrial Fibrillation: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines developed in partnership with the European Society of Cardiology and in collaboration with the European Heart Rhythm Association and the Heart Rhythm Society. J Am Coll Cardiol 2011;57:e101-98.

3. Lindsay P, Bayley M, McDonald A, et al. Toward a more effective approach to stroke: Canadian Best Practice Recommendations for Stroke Care. Can J Cardiol 2010;26:55-62.

4. Lane DA, Lip GY. Maintaining therapeutic anticoagulation: the importance of keeping “within range.” Chest 2007;131:1277-9.

5. van Walraven C, Oake N, Wells PS, et al. Burden of potentially avoidable anticoagulant-associated hemorrhagic and thromboembolic events in the elderly. Med Care 2005;43:1110-9.

6. Ezekowitz MD, Bridges SL, James KE, et al. Warfarin in the prevention of stroke associated with nonhemorrhagic atrial fibrillation: Veterans Affairs Stroke Prevention in Nonhemorrhagic Atrial Fibrillation Investigators. N Engl J Med 1992;327:1406-12.

7. Connolly SJ, Laupacis A, Gent M, et al. Canadian Atrial Fibrillation Anticoagulation (CAFA) Study. J Am Coll Cardiol 1991;18:349-55.

8. The effect of low-dose warfarin on the risk of stroke in patients with nonhemorrhagic atrial fibrillation: The M. A. Anticoagulation and Stroke in Atrial Fibrillation Trial for Atrial Fibrillation Investigators. N Engl J Med 1990;323:1505-11.

9. Stroke Prevention in Atrial Fibrillation Study. Final results. Circulation 1991;84:527-39.

10. DiMarco JP, Flaker G, Waldo AL, et al. Factors affecting bleeding risk during anticoagulant therapy in patients with atrial fibrillation: observations from the Atrial Fibrillation Follow-up Investigation of Rhythm Management (AFFIRM) study. Am Heart J 2005;149:650-6.

11. Granger CB, Alexander JH, McMurray JJ, et al. Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med 2011;365:981-92.

12. Wieloch M, Sjalander A, Frykman V, et al. Anticoagulation control in Sweden: reports of time in therapeutic range, major bleeding, and thrombo-embolic complications from the national quality registry SWEAFIRMA. Eur Heart J 2011;32:2282-9.

13. Mercaldi CJ, Giaramento M, Hahn B, et al. Cost efficiency of anticoagulation with warfarin to prevent stroke in medicare beneficiaries with nonvalvular atrial fibrillation. Stroke 2011;42:112-8.

14. Hylek EM, Evans-Molina C, Shea C, et al. Major hemorrhage and tolerability of warfarin in the first year of therapy among elderly patients with atrial fibrillation. Circulation 2007;115:1289-96.

15. Fihn SD, Callahan CM, Martin DC, et al. The risk for and severity of bleeding complications in elderly patients treated with warfarin. The National Consortium of Anticoagulation Clinics. Ann Intern Med 1996;124:970-9.

16. Landefeld CS, Goldman L. Major bleeding in outpatients treated with warfarin: incidence and prediction by factors known at the start of outpatient therapy. Am J Med 1989;87:144-52.

17. Connolly SJ, Ezekowitz MD, Yusuf S, et al. Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med 2009;361:1139-51.

18. Connolly SJ, Ezekowitz MD, Yusuf S, et al. Apixaban in patients with atrial fibrillation. N Engl J Med 2011;364:306-17.

19. ROCKET AF Study Investigators. Rivaroxaban-once daily, oral, direct factor Xa inhibition compared with vitamin K antagonist for prevention of stroke and Embolism Trial in Atrial Fibrillation: rationale and design of the ROCKET AF study. Am Heart J 2010;159:340-7.

20. Shah SN, Gage BF. Cost-effectiveness of dabigatran for stroke prophylaxis in atrial fibrillation. Circulation 2011;123:2562-70.

21. Hux JE, Ivis F, Flintoft V, et al. Diabetes in Ontario: determination of prevalence and incidence using a validated administrative database algorithm. Diabetes Care 2002;25:512-6.

22. Tu K, Campbell NR, Chen ZL, et al. Accuracy of administrative databases in identifying patients with hypertension. Open Med 2007;1:e18-26.

23. Gage BF, Waterman AD, Shannon W, et al. Validation of clinical classification schemes for predicting stroke: results from the National Registry of Atrial Fibrillation. JAMA 2001;285:2664-70.

24. Juurlink DN, Gomes T, Lipscombe LL, et al. Adverse cardiovascular events during treatment with pioglitazone and rosiglitazone: population based cohort study. BMJ 2009;339:b2942.

25. Mamdani M, Rochon P, Juurlink DN, et al. Effect of selective cyclooxygenase 2 inhibitors and naproxen on short-term risk of acute myocardial infarction in the elderly. Arch Intern Med 2003;163:481-6.

26. Gomes T, Mamdani MM, Dhalia IA, et al. Opoid dose and drug-related mortality in patients with nonmalignant pain. Arch Intern Med 2011;171:686-91.

27. Juurlink DN, Gomes T, Ko DT, et al. A population-based study of the drug interaction between proton pump inhibitors and clopidogrel. CMAJ 2009;180:713-8.

28. Arnason T, Wells PS, van Walraven C, et al. Accuracy of coding for possible warfarin complications in hospital discharge abstracts. Thromb Res 2006;118:253-62.

29. Wilkins R, PCCF Version SE User’s Guide. Automated geographic coding based on the Statistics Canada postal code conversion files, including postal codes through March 2009. Ottawa (ON): Statistics Canada; 2010. Cat. no 82F0086-XDB.

30. Charlson ME, Pompei P, Ales KL, et al. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis 1987;40:373-83.

31. Quan H, Sundararajan V, Halfon P, et al. Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative databases in identifying patients with hypertension. Thromb Res 2007;119:705-14.

32. Jensen PN, Johnson K, Floyd J, et al. A systematic review of validated methods for identifying atrial fibrillation using administrative data. Pharmacoeconomics Drug Saf 2012;21(Suppl 1):141-7.

Affiliations: The Leslie Dan Faculty of Pharmacy (Gomes, Mamdani) and the Department of Health Policy, Management, and Evaluation (Juurlink, Mamdani, Paterson), University of Toronto; the Institute for Clinical Evaluative Sciences (Juurlink, Paterson, Heiligers, Mamdani); the Sunnybrook Research Institute (Juurlink); and the Keenan Research Centre of the Li Ka Shing Knowledge Institute (Mamdani), St. Michael’s Hospital, Toronto, Ont.; the Department of Family Medicine (Paterson) and Division of Clinical Pharmacology & Therapeutics (Holbrook), McMaster University; and the Centre for Evaluation of Medicines (Holbrook, Paterson), St. Joseph’s Healthcare, Hamilton, Ont.

Contributors: Tara Gomes was involved in the conception and design of the study, the acquisition, analysis and interpretation of data and the drafting of the manuscript. Muhammad Mamdani, Anne Holbrook, J. Michael Paterson and David Juurlink were involved in the conception and design of the study, the interpretation of data and critical revision of the manuscript. Chelsea Heiligers was involved in the conception and design of the study and the critical revision of the manuscript. All of the authors approved the final version of the manuscript submitted for publication.

Funding: This study was supported by a grant from the Ontario Ministry of Health and Long-Term Care (MOHLTC) Drug Innovation Fund and the Institute for Clinical Evaluative Sciences (ICES), a nonprofit research institute sponsored by the Ontario MOHLTC. The opinions, results and conclusions reported in this paper are those of the authors and are independent from the funding sources. No endorsement by ICES or the Ontario MOHLTC is intended or should be inferred.

Acknowledgement: The authors thank Brogan Inc., Ottawa, Ont., for the use of their Drug Product and Therapeutic Class Database.

CMAJ, February 5, 2013, 185(2)