Microplastics contamination of fish from the creeks along the Kenya coast, Western Indian Ocean (WIO)

Joyce O. Kerubo, Agnes, W.N. Muthumbi, Deborah Robertson-Andersson, John M. Onyari and Edward N. Kimani

School of Biological Sciences, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya. E-mail: joycekerubo510@yahoo.com
School of Biological Sciences, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya. E-mail: amuthumbi@uonbi.ac.ke
School of Life Sciences, University of KwaZulu-Natal, P.O. Private Bag X54001, Durban, South Africa; Chrysalis Nature Training, Kei mouth. E-mail: deborah@safrica.org.za
Department of Chemistry, School of Physical Sciences, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya. E-mail: jonyari@yahoo.ac.ke
Kenya Marine and Fisheries Research Institute (KMFRI), P.O. Box 81651-80100, Mombasa, Kenya. E-mail: edwardndirui@yahoo.com

Abstract

Microplastics (MPs) are a global threat to marine life, but information available on the extent of pollution along the Kenya Indian ocean coast is absent. Ingestion of MPs by five common pelagic fish from the region was investigated in this study. Fish tissues were digested in 10% potassium Hydroxide (KOH) at 60°C for 14 h and the MPs separated by floatation method using supersaturated Sodium Chloride (NaCl) solution. The benthic fish studied (Acanthopagrus berda with a mean of 0.48 ± 0.06 MPs per gram (g⁻¹) tissue, Gerres oyena 0.20 ± 0.02, Terapon jarbua 0.20 ± 0.06) had higher MPs contamination compared to the pelagic (Rastrelliger kanagurta 0.054 ± 0.011) and reef fish (Leptoscarus vaigiensis 0.038 ± 0.009) reflecting the influence of habits and habitat on MPs contamination in fish. Fish caught in the second sampling had higher MPs contamination compared to the first and fish from Mida Creek had higher MPs contamination compared to those from Tudor and Port-Reitz probably because they were mainly benthic fish. Gut and gills of all species contained significantly higher concentrations of MPs than the flesh. Thus, we recommend that fish be gutted and thoroughly clean the gills before cooking to reduce MPs contamination. There is need for further research to evaluate the risk posed to humans by the consumption of marine water fish that ingested MPs.

Keywords: Microplastic contamination, Fish, Creeks, Western Indian Ocean (WIO)

1. Introduction

Pollution of the oceans with Microplastics (MPs) and their potential impact along marine food web through consumption is of increasing concern (Cole et al., 2013; Eerkes-Medrano et al., 2015; Romeo et al., 2015; and...
Beer et al., 2018). Barnes et al. (2009), defined MPs as synthetic particles measuring <5 mm in diameter. They can be primary in nature if they are particles manufactured for product production in which case they are referred to as nurdles or they can be secondary if the particles are degraded from microplastic debris (Lusher et al., 2013; and Free et al., 2014). Plastic degradation occurs through physical, microbial and ultra-violet radiation processes (Moore, 2008; Andrady, 2011; and Rummel, 2014) although very slowly. MPs are further classified as fibers, fragments, films, beads or foams based on shape (Cole et al., 2013; Claessens et al., 2013; Mathalon and Hill, 2014; and Hartline et al., 2016). Fibers originate mainly from plastic bags, fishing nets and clothing (Claessens et al., 2013; and Hartline et al., 2016), while fragments often originate from plastics that do not unfurl into filamentous threads such as molten plastics or plastic films, filters, and geo textiles (Cole et al., 2011; and Claessens et al., 2013).

Due to their large surface area and hydrophobic nature, MPs adsorb a lot of Persistent Organic Particles (POPs) and because of their minute size (1 μm - 5 mm), they can be easily swallowed by a diversity of organisms since they mimic prey particles and sediment grains (Hong et al., 2018). Research has shown that marine invertebrates and vertebrates ingest MPs (Neves et al., 2015; Van Cauwenbergh et al., 2015; Devriese et al., 2015; Li et al., 2016; Nelms et al., 2018; and A wour et al., 2020) with some such as crabs taking them in through the gills (Wright et al., 2013; Setälä et al., 2014; Cole et al., 2015; Weiden and Cowie, 2016; Karlsson et al., 2017). MPs transport POPs into marine organisms, as well as plastic additives, such as Bisphenol-A and nonylphenol, which leach out into the organisms (Koelmans et al., 2014). Bioaccumulation and biomagnification of MPs to higher trophic levels has also been reported (Farrell and Nelson, 2013; and Setälä et al., 2014).

MPs are therefore harmful to organisms along the food webs as well as the environment. For instance, styrene in polystyrene is an endocrine disrupter, while polyester contains hazardous level of monomers associated with respiratory irritation, cell mutation, and are toxic to aquatic environments (Lithner et al., 2011). Polyethylene and polyamides (nylon) although thought to be benign, may absorb POPs from the environment (Rochman et al., 2013) such as pesticides and polychlorinated biphenyls (PCB’s), known to disrupt immunity and cell division (Lauby-Secretan et al., 2013; and Hable and Nguyen, 2013). MPs toxins in low density polyethylene (LDPE) cause liver stress including: single cell glycogen depletion, necrosis, and fatty vacuolation (Rochman et al., 2013). MPs have been known to cause inimical physiological effects, leading to a decrease in feeding ability, energy accumulation, and reproduction for small-size organisms at lower trophic levels (Cole et al., 2013; and Sussarellu et al., 2016). However, information on contamination of fish by MPs is not well documented (Romeo et al., 2015) creating a knowledge gap, more so, no study has been done on contamination of fish by MPs along the Kenya coast.

Owing to the toxic effects of microplastic contamination to organisms along the food webs and the ever-increasing release of plastics into the ocean, it is important to understand the extent of the problem, to effectively mitigate it. The main objectives of this study were therefore to: (a) assess the presence and abundance of MPs in the gut, gills and muscles of five most common marine fish species from the creeks along the Kenya coast in WIO. (b) characterize the MPs by shape and colour. Considering the importance of the marine trophic web, as prey for big fish and food to humans, this study makes an important contribution to knowledge of MPs occurrence in fishes in Kenyan inshore waters.

2. Materials and methods

2.1. Sampling sites

The study was carried out in two creeks in Mombasa County (Tudor, Port-Reitz) and one creek in Kilifi County (Mida) along the Kenya Coast (Figure 1). The creeks are enclosed and surrounded by informal settlements, highly populated villages, and manufacturing industries (Okuku et al., 2011, 2019; and Maritim et al., 2016), hence may be prone to plastic pollution. The Kenya coastal region experiences two rainy seasons with two maxima in May and October and an average mean annual rainfall of 1204 mm (Obiero and Onyando, 2013). The region experiences fairly high average temperatures ranging between 26 and 32°C, a small diurnal range of between 7 and 9°C (Obiero and Onyando, 2013). Port-Reitz creek receives freshwater from rivers Mwache, Cha Shimba, and Mwambone while Tudor creek is fed by two main seasonal rivers; Kombeni and Tsalu which arise from around Mabati town, 32 km Northwest of Mombasa (Kitheka et al., 1999) (Figure 1a). Tudor creek passes under Nyali Bridge and is bordered by Makupa causeway which dissects it into Tudor creek to the East and Port-Reitz to the West (Kitheka et al., 1999) (Figure 1c). In port-Reitz Creek, fish samples were analyzed
only from Makupa station due to limited availability of fish. Mida creek within Watamu Marine National Park is a semi-pristine environment and was considered as a control (Figure 1b).

In Mida Creek two stations were sampled; that is, Dabaso and Kirepwe. In Tudor fish were sampled from three stations; Fort Jesus, English Point and Mikindani while from Port Reitz only Makupa was sampled.

Figure 1: Map of Kenya showing the study sites (a) Kenya Coastal region; (b) Mida Creek (Dabaso and Kirepwe); (c) Mombasa Island with Tudor (Fort Jesus-FJ, English Point-Eng Point and Mikindani-Mik) and Port-Reitz (Makupa-Mak) creeks

2.2. Sampling strategy

All institutional and national guidelines for the care and use of laboratory animals were followed. Sampling was done in January/February 2018 (Jan 2018) during the dry period and in September 2018 (Sept 2018) during the short rainy season to collect fish samples for microplastic extraction and analysis. Fish samples were bought from the local fishers encountered at the sampling stations or the landing sites (Tudor, Port-Reitz and Mida Creeks) and the number and species depended on availability in the catch. At each station, GPS coordinates were recorded (Table 1) using a handheld GPS (version; Mitac mio168).

The fish were sorted according to species and placed into ziploc bags that were labeled and then placed in cooler boxes with ice for transportation to the laboratory. In the laboratory, the fish were washed with distilled water, and rinsed in 70% ethanol to get rid of any particle affixed to the body surface. The fish samples were subdivided into three replicate groups of equal numbers based on species and location. Fish lengths (cm) and weights (g) were measured to the nearest 0.1 mm and 0.1 g respectively (Karami et al., 2017). The samples were
wrapped in aluminum foil to avoid external contamination, placed in ziplocs and stored at –40°C until further analyses.

2.3. Processing and analysis of fish samples

Sample processing and analysis were done at the Kenya Marine and Fisheries Research Institute (KMFRI) and the University of Nairobi (UON) Laboratories. The fins were chopped off and discarded. The fish were dissected by making a cut just below the throat and extending the cut down the ventral side to the anal pore (Gupta and Mullins, 2010). The gut, the gills and the rest of the fish were separated into different samples, weighed, chopped into smaller pieces and digested using 10% KOH (1 g, 5 ml) (Foekema et al., 2013; Eriksen et al., 2013; Rochman et al., 2015; Dehaut et al., 2016; Kühn et al., 2017; and Thiele et al., 2019) at 60°C for 14 h (modified protocol). Fins and bones did not digest completely and some organic matter was evident on samples of *R. kanagurta* and *L. vaigiensis*. Such samples were digested in 55% Nitric acid (HNO₃) solution (10mL/ g) for a further five minutes to remove any organic material (Collard et al., 2015). Acid digestion was done in a fume cupboard, in glass jars covered with watch glasses. The digestates were diluted by adding 100 mL of distilled water to protect the filtration equipment and ease floatation (Collard et al., 2015). The microplastic particles were density separated by adding filtered supersaturated Sodium Chloride (NaCl) solution (1.35g cm⁻³), in the ratio of 1: 3 (sample: salt solution), and left to settle overnight (12 h) (Rochman et al., 2015; and Kühn et al., 2017 modified protocol). The supernatant was filtered by vacuum pump filtration over 0.8 µm membrane filters. The filters with particles were placed in covered glass petri-dishes, and then dried at 40°C for 12 h before being examined under a dissecting microscope at X40 magnification (Claessens et al., 2013; and Lusher et al., 2013). Suspected MPs were confirmed using the hot needle test (De Witte et al., 2014; and Devries et al., 2015), and further characterization done. The MPs were characterized by shape and categorized as fiber, fragment or film and their color noted.

2.4. Quality control

Owing to the very light weight and mobility of MPs, caution was observed while analyzing samples to guarantee no contamination of samples by particles from the air. Sample processing and analyses were done in a clean room with no air flow (windows and doors shut) and limited human traffic. Samples were covered with aluminum foil and glass covers whenever not in use, while glassware and metal equipment were used. All equipment was rinsed with deionized water prior to use. Working surfaces were thoroughly cleaned using 70% ethanol three times and allowed to dry before use (Hidalgo-Ruz et al., 2012). Hand gloves were used and cotton laboratory coats were worn throughout. Long term blanks were measured (1 blank per sample analysis). A moistened filter paper (30 mm diameter, Whatman No. 1) (Lusher et al., 2017) per sample was placed in a petri dish and left exposed during the processing and analysis period. A series of blanks set during the analyses process were examined for contamination.

2.5. Data analysis

Shapiro-Wilk’s test was used to test data normality and all data was found to be normally distributed after log transformation. Species abundance and the mean concentrations of MPs in species during the different seasons were compared using one way ANOVA and the Turkey’s post hoc test separated the means. One way ANOVA

Table 1: Sites, stations and GPS coordinates
Site
Mikindani (Mik)
English Point (Eng point)
Fort Jesus (Fj)
Makupa (Mak)
Kirepwe
Dabaso
was also used to compare the concentration of MPs and the weight of tissues followed by a Turkey’s test. A spearman’s correlation was done to determine the relationship between the mean microplastic concentration and mean lengths and weights of the organisms. Species pairwise comparisons were done using Turkey’s test. Fish data from the two seasons was combined for von Bertalanffy growth curves.

The assessment of MPs in the guts, gills and muscles was done in accordance with procedure and ethical guidelines for animal experiments in the University of Nairobi and KM FRI.

3. Results

3.1. Fish distribution and size

A total of 225 individuals from five different species were obtained, most of which are benthic (Nelson, 1994; Sheaves, 2006; Lieske and Myers, 2004; and Froese and Pauly, 2020), and included Gerres oyena (Forsskal, 1775), A canthopagrus berda (Forsskal, 1775) and Terapon jarbua (Forsskal, 1775). Gerres oyena lives in coastal waters and is a carnivore (Cyrus and Blaber, 1982), A canthopagrus berda (Forsskal, 1775) is predominantly marine (Nelson, 1994; and Sheaves, 2006) with some living in euryhaline estuarine environments (Leu and Chou, 1996), and is an omnivore (Nasir, 2000; and Setälä et al., 2018), Leptoscarus vaigiensis (Quay & Galmard, 1824) is reef associated grazing fish (Locham et al., 2015) while, Rastrelliger kanagurta (Cuvier 1816) is pelagic and omnivore (Collette, 2001).

During the first sampling all five species were encountered and were represented by more individuals than during the second sampling. In the second sampling only four species were encountered (because L. vaigiensis that had been encountered at English point was not encountered again) and all species were represented by fewer individuals.

Mida and Tudor creeks had a higher variety of fish species compared to Port-Reitz. In Mida this was mainly because of the high diversity encountered in Dabaso station while in Tudor all three stations sampled had different species. Gerres oyena was the most predominant species (91 individuals representing 44%) and occurred in all stations except Fort Jesus and English Point (Table 2). Data on species diversity from the two sampling campaigns did not vary significantly (ANOVA: \(F = 0.77, df = 1, p = 0.790 \)). Although G. oyena was dominant, it did not occur in Port-Reitz Creek during the second sampling campaign.

Site	Station	Species	Jan 2018	Sept 2018
Mida	Dabaso	G. Oyena		16
		A. Berda	31	9
		T. Jarbua	37	6
	Kirepwe	G. Oyena	15	-
Port-Reitz	Makupa	G. Oyena	11	-
Tudor	Mikindani	G. Oyena	31	18
	Fort Jesus	R. Kanagurta	35	6
	English Point	L. Vaigiensis	10	-

The average (±SE) weights and lengths of the different fish species showed wide ranges (Table 3) with the greatest mean weight range being observed in G. oyena perhaps because of its occurrence in different stations and seasons. The heaviest G. oyena individuals were encountered in Makupa followed by those from Dabaso while Mikindani had the smallest individuals. L. vaigiensis individuals were as heavy as the heaviest G. oyena individuals from Makupa while A. berda had the smallest individuals.
3.2 Fish growth and Von Bertalanffy growth curves

The length-weight relationship of the fish samples varied widely among species (Table 4).

Table 4: Length-weight Von Bertalanffy growth curve parameters for the different fish species

Species	Station	a-value	b-value	R^2	n	Nonlinear equation
G. oyena	Dabaso	3.126	0.3675	0.4962	17	$W = 3.126L^{0.3675}$
G. oyena	Kirepwe	4.2102	0.3275	0.8813	16	$W = 4.202L^{0.3275}$
G. oyena	Makupa	6.3678	0.3042	0.9796	12	$W = 6.3678L^{0.3042}$
G. oyena	Mikindani	11.631	0.0964	0.0127	46	$W = 11.631L^{-0.0964}$
R. kanagurta	Fort Jesus	1.5434	1.3915	0.393	41	$W = 1.5434L^{-1.3915}$
A. berda	Dabaso	0.0107	3.054	0.9143	40	$W = 0.0107L^{3.054}$
T. jarbua	Dabaso	0.1226	2.0467	0.4172	43	$W = 0.1226L^{2.0467}$
L. vaigiensis	English Point	0.0273	2.8453	0.9137	10	$W = 0.0273L^{2.8453}$

Note: Y-intercept (a-value), slope of the curve (b-value) and the coefficient of determination (R^2).

The estimated a and b constants (Table 4) for G. oyena varied widely from those obtained by Kanak Tachihara (2006) who calculated the relationship as $W = 0.0035L^{2.05}$ for fish from Okinawa Island Japan, El Agamy (1988) $W = 0.00812L^{3.37}$ for fish from the Arabian gulf, and Letourneur et al. (1998) $W = 0.012L^{3.232}$ for fish from New Caledonia. The mean b-value was low as all fish species except A. berda had negative allometry, hence did not obey the cubic law (Wootton, 2012). The growth of weight relative to length for A. berda was positively allometric showing that weight of fish increases lightly more than the cube of its length. The length-weight data fitted to the Von Bertalanffy growth curve model produced varied growth curves for the different fish species (Figure 2).

3.3 Overall mean concentration (g⁻¹) of MPs in different fish species

The overall (±SE) mean MPs concentration in different species were below 1 microplastic per gram of tissue (Table 5) and were significantly different for R. kanagurta, T. jarbua and A. berda ($p < 0.05$) between the first and second sampling campaigns.
Figure 2: Von Bertalanffy growth curves fitted to the length-weight data for (a) Gerres oyena, (b) Rastrelliger kanagurta, (c) Terapon jarbua, (d) Acanthopagrus berda, (e) Leptoscarus vaigiensis from the creeks along the Kenya coast.
Table 5: Concentration of MPs (x ± SE) in the different species in different creeks and stations

Site	Station	Species	Jan 2018	Sept 2018	Mean conc
Mida	Dabaso	G. oyena		0.18 ± 0.041	
		A. berda	0.16 ± 0.003	0.52 ± 0.01	0.480 ± 0.058
		T. jarbua	0.15 ± 0.008	0.31 ± 0.01	0.240 ± 0.04
	Kirepwe	G. oyena	0.041 ± 0.032	-	
Port-Reitz	Makupa	G. oyena	0.1 ± 0.034	-	
Tudor	Mikindani	G. oyena	0.2 ± 0.02	0.21 ± 0.011	0.209 ± 0.051
	Fort Jesus	R. kanagurta	0.07 ± 0.01	0.16 ± 0.004	0.132 ± 0.011
	English Point	L. vaigiensis	0.04 ± 0.001	-	

Overall, the mean concentration of MPs showed significant difference (F = 12.69, df = 11, p < 0.01) among species. Acanthopagrus berda from Mida had the highest mean concentration while G. oyena from Mida and L. vaigiensis from Tudor had the lowest mean concentration of MPs per gram tissue.

A pairwise comparison in MPs concentration between different stations but same sampling period, and same species but different sampling seasons produced varied results (Table 6).

Stations and seasons	Mean	SE mean	t-value	df	p
Same species (Gerres oyena)					
1 Jan-Sept Mik (same stn; diff sampling)	0.014	0.031	0.45	2	0.70
2 Mik-Mak Jan (diff stn; same sampling)	0.169	0.020	8.51	2	0.01
3 Mik-Kir Jan (diff stns; same sampling)	0.159	0.029	5.55	2	0.03
4 Mik-Dab Sept (diff stn; same sampling)	0.033	0.045	0.72	2	0.54
5 Kir Jan-Dab Sept (diff stns; diff sampling)	0.141	0.056	2.50	2	0.13
Other species					
6 R. kanagurta Jan -Sept (FJ) (diff sampling)	0.408	0.153	7.62	2	0.012
7 A. berda Jan-Sept (Dab) (diff sampling)	0.177	0.060	6.93	2	0.039
8 T.jarbua Jan-Sept (Dab) (diff sampling)	0.036	0.012	5.98	2	0.040

Significant differences (p < 0.05) were observed in the concentration of MPs in G. oyena between different stations during the same sampling season some cases (Table 6). There was no significant difference in the concentration of MPs in G. oyena from Mikindani during the different sampling seasons (t = 0.45, df = 2, p = 0.07). On the other hand significant differences (p < 0.05) were observed in the concentration of MPs in all the other fish species between same species and different sampling seasons.

3.4. Concentration of MPs in different fish species per gram tissue

MPs were observed in all the fish sampled (Figure 3) with the benthic fish like A. berda (0.480 ± 0.058) G. oyena () and T. jarbua (0.240 ± 0.04) having higher mean concentration compared to the pelagic, R. kanagurta (0.132 ± 0.011) and reef fish L. vaigiensis (0.04 ± 0.001), (Figure 3) and the differences were significant (Chisq =5504, p =<0.01).
A correlation between MPs concentration and body length and weight showed that all the fish species except R. kanagurta had increased MPs concentration with increase in body length (Figure 4a), while G. oyena and L. vaigiensis showed a decease in MPs concentration with increase in body weight (Figure 4b).

Figure 3: Mean (±SE) microplastics concentrations for the different fish species with standard error bars (MPs per gram)

Figure 4: Relationship between (a) MPs concentration and body length and (b) MPs concentration and body weight in the different species
3.5. Mean (± SE) concentration of MPs in different organ tissues in different species

All the fish species contained MPs in their guts, gills and body tissues (Table 7). There were significant differences ($F = 22.725, df = 20, p = 0.002$) in mean microplastic concentration in the guts between species. Guts of A. berda (7.41 ± 0.42) had significantly higher mean MPs concentration, compared to G. oyena, R. Kanagurta, T. jarbua and L. vaigiensis but the latter three were not significantly different ($F = 1.549, df = 20, p = 0.211$) (Table 7. With respect to the gills, A. berda and G. oyena had significantly higher mean concentrations of MPs per gram tissue compared to other species but the two were not significantly different ($p > 0.05$). Generally, the

Site	Station	Species	MPs g⁻¹	Guts	Gills	Body
Mida	Dabaso	G. oyena	0.181 ± 0.041	*3.557 ± 0.15	*2.599 ± 0.23	0.042 ± 0.001
Mida	Kirepwe	G. oyena	0.041 ± 0.032	1.398 ± 0.05	1.339 ± 0.07	0.004 ± 0.001
Tudor	Mikindani	G. oyena	0.209 ± 0.051	1.43 ± 0.02	0.172 ± 0.05	0.015 ± 0.001
Port-Reitz	Makupa	G. oyena	0.1 ± 0.034	0.94 ± 0.01	1.92 ± 0.12	0.02 ± 0.0
Tudor	Fort Jesus	R. Kanagurta	0.132 ± 0.011	1.44 ± 0.03	0.74 ± 0.01	0.01 ± 0.01
Tudor	English Point	L. vaigiensis	0.04 ± 0.001	0.56 ± 0.1	0.45 ± 0.1	0.01 ± 0.0
Mida	Dabaso	A. berda	0.48 ± 0.058	*7.41 ± 0.42	*2.82 ± 0.08	0.081 ± 0.01
Mida	Dabaso	T. jarbua	0.240 ± 0.04	1.38 ± 0.02	1.97 ± 0.025	0.031 ± 0.01

Note: Asterix indicates high concentration of microplastics.
mean concentration of MPs in the rest of the fish body were lower than 0.1 MPs g\(^{-1}\) across all species and stations.

Based on station, the guts of G. oyena from Dabaso had a significantly higher (\(F = 12.692, \text{df} = 7, p < 0.05\)) mean concentration (g\(^{-1}\)) of MPs compared to those from Kirepwe, Mikindani and Makupa but the latter three were not significantly different (\(p > 0.05\)). Similarly, the gills of G. oyena from Dabaso had a significantly higher mean concentration of MPs (g\(^{-1}\)) (\(F = 13.142, \text{df} = 7, p = 0.001\)) compared to other stations (Table 7).

3.6. Microplastic types by shape and colour in the tissues of the different fish species

Most of the MPs recovered from the fish were fibers (91.4%) and a small percentage (8.6%) were fragments (Figure 4). Similarly, significantly higher (\(F = 22.721, \text{df} = 20, p < 0.001\)) proportions of fibers were observed in fish gills, compared to fibers in guts, and in fish body (Figure 5).

![Graph showing relative abundance of microplastics by organ](image)

Figure 5: Mean percentage concentration of microplastic shapes observed in organs of different fish species from the creeks along the Kenya coast

In addition, clear balls of fibers were observed in the guts of some fish of R. kanagurta and G. oyena species (Figure 6).

![Images showing microplastics in fish tissues](image)

Figure 6: Examples of microplastic types by shape recovered from fish tissues: (a) Blue fragment from the gut of R. kanagurta of Fort Jesus (b) Red, blue and black tangled fibers from the gills of G. oyena of Makupa
The majority of the MPs were blue (36.4%) and black (34.2%) followed by white (18.4%), green (6.5%), red (3.3%), and purple (0.9%) (Figure 7).

Figure 7: Mean percentage concentration of microplastic colors observed in different fish species from the creeks along the Kenya coast

4. Discussion
Kosore et al. (2018), Awuor et al. (2020) and Kerubo et al. (2020 and 2021) distinctly show that MPs are abundant in the Kenya’s marine environments and are interacting with zooplankton and macro-invertebrates by way of ingestion. Fish are economically important as human food (Barboza et al., 2018). Some of the risks associated with marine fish are the incorporation of MPs and adsorbed chemicals into the food web through trophic transfer (Setälä et al., 2018). Ingestion of MPs increases toxicity of plastic chemicals such as nonylphenols, bisphenol A and antioxidants in the organisms through leaching (Hermabessiere et al., 2017). It is therefore imperative to assess the interaction of MPs with marine fish, as a potential risk to humans. The study focused on the sites around Mombasa due to the rapid increase in human population and high solid waste from tourism and industrial sectors (Okuku, 2019). MPs are present everywhere including Dabaso within Watamu Marine National Park, a protected area expected to be free from microplastic contamination (Kerubo et al., 2020 and 2021).

Growth in fish is isometric if body weight increases with increase in total body length ($b = 3$), positively allometric if the b-value is greater than three and negatively allometric if the b-value is far less than 3 (Ricker, 1975; and Wootton, 2012). Based on Fish Base data, different fish species attain maturity at different body lengths with G. oyena attaining maturity at an average total body length of 22 cm (Roux et al., 1986), T. jarbua 13 cm (Lieske and Myers, 1994), A. berda 20-22 cm (Smith and Smith, 1986), R. kanagurta 19.9 cm (Sommer et al., 1996) and L. vaigiensis at 16.5-18.4 cm total body length for fish in parks and reserves and attains a maximum body length of 35 cm (Randall, 1986). In this study therefore, only G. oyena, from Makupa could be considered mature while the rest of the fish sampled were immature.

The length-weight relationship gave a good fit to the length and weight of A. berda Von Bertalanffy growth curve (James et al., 2003; and Ontomwa et al., 2018) while data for the length-weight relationship for fish of other species did not. The length-weight relationships for A. berda, indicates isometric allometry, an indication that the species had homogenous groups in their populations with body weights varying independently with the cube of the total length. The high coefficient of determination implied proportional increase in weight and length. These results affirm earlier research on A. berda from the North Coast of Kenya, ($W = 0.0191L^{2.988}$) with a coefficient determination ($R^2 = 0.9676$) (Anam et al., 2019) and from Shimoni artisanal fishery, Kenya (Ontomwa et al., 2018). The length-weight relationship of A. berda could have influenced microplastic ingestion during feeding. Isometric growth could be attributed to the phenotype of the species, condition of the fish, the environment and food availability (Ontomwa et al., 2018; and Anam et al., 2019) which were not part of the study scope.
The length-weight relationship for G. oyena and L. vaigiensis imply positive correlation and negative allometric growth while the length-weight relationships for R. kanagurta, and T. jarbua indicate negative correlation and negative allometric growth patterns. Negative allometry indicates that the species had heterogeneous groups with body weights varying differently with the cube of total length. Such growth could be attributed to feeding and spawning biological aspects which have much impact on the length-weight relationships. However, this was not within the scope of the research. These results contrast previous research results for G. oyena from the Gulf of Suez, \(W = 0.094L^{3.11} \) (Saber et al., 2020), and from Caledonia (\(W = 0.0120L^{3.232} \)) (Letourneur et al., 1996) but agree with results for G. oyena from Okinawa Island Southern Japan, \(W = 0.035L^{2.89} \) (Kanak and Tachihiro, 2006), T. jarbua from Mindano, Philippines, \(W = 0.0006L^{2.8384} \) (Fortaleza et al., 2019) and L. vaigiensis from Shimoni artisanal Fishery, Kenya, \(W = 0.0000129L^{2.3} \) (Ontomwa et al., 2018), showing that length of fish increased more than weight. The results also contrast results for R. kanagurta from Mangalore India, \(W = 0.0045L^{3.2234} \) (Hulkot et al., 2013), which indicate positive correlation and allometry. The negative allometric growth could be attributed to several factors including; fullness of the stomach probably by MPs (own observation), insufficient feeding, age, sex, health condition of the fish, poor food quality and availability, low salinities and poor habitat conditions (Sarre and Potter, 2000; and Froese, 2006).

This study established that fish within the Creeks along the Kenya coast are contaminated with MPs, including those from Mida Creek expected to be free of microplastic contamination. G. oyena was the most abundant and widespread species. This could be due to it probably being the most well adapted for survival or other species were depleted by the time of sampling.

Significant variations in microplastic concentrations among species could be explained by differences in habitats and feeding behaviour that affect ingestion of MPs. For example, A. berda is demersal and feeds on benthic invertebrates mainly barnacles, crabs and oysters, known to ingest and accumulate MPs (Nunes et al., 2015; Li et al., 2016; Nelms et al., 2018; and Awuor, 2020) hence the high MPs in the species. G. oyena is demersal inhabiting inshore areas and feeds on small organisms and benthic invertebrates living in sandy bottoms (Lieske and Myers, 2004; and Froese and Pauly, 2020), while T. jarbua is demersal feeding mainly on white (Paneaus indica) and brown (Paneaus moncorus) shrimps and on small fishes which may accumulate MPs and pass them on to a higher trophic predator. Rastrelliger kanagurta is pelagic and omnivore, feeding on algal material and small invertebrates (Collette, 2001), while L. vaigiensis, is pelagic, reef associated inhabiting seagrass areas and is herbivorous feeding on sea grasses and algae (Somer, 1996; Locham et al., 2015; and Froese and Pauly, 2017). MPs are likely to arrive into the coastal environment through rivers and may have high concentration in the surface waters (Kerubo et al., 2020) yet pelagic fish tend to accumulate much less compared to the demersal fish.

Small invertebrates accumulate MPs passing them up trophic levels, thereby increasing MPs in higher trophic levels (GESAMP, 2016) as was the case with A. berda and G. oyena. The high contamination with MPs of A. berda from Dabaso both in the gut and gills could not be explained as it was not the site with the highest MPs concentration in the surface water and the sediments (Kerubo et al., 2020 and 2021) although Awuor et al. (2020) found that MPs concentrations in the invertebrates in Dabaso were comparable to other sites along the Kenya Coast. On the contrary, Mikindani had recorded relatively high MPs in the sediments (Kerubo et al., 2021) and yet, G. oyena population from that site had not accumulated as high MPs in the gut and gills as was observed in the population from Dabaso. This suggests that several factors playing together influence MPs contamination in fish and not just the level of contamination of the environment.

Leptoscarus vaigiensis from English Point had the lowest microplastic concentrations in the gut and gills which could be as a result of the fish not spending much time in the creeks being reef associated species (Locham et al., 2015) and only occasionally venturing into the creeks (Locham et al., 2015). This could imply that the reefs are less contaminated with MPs compared to the creeks. Our results are consistent with earlier research where similar concentrations have been observed in the digestive tracts of the Mediterranean lantern fishes which are both shallow and deeer-living but pelagic feeders, mainly feeding on mesopelagic fish (Romeo et al., 2016) and the South African catfish which is omnivore with carnivorous tendency (Silva-Canti et al., 2017), but were lower than those obtained in the gastrointestinal tracts of fish from other regions of the world, such as crevalle jack (Caranx hippos, Froese and Pauly, 2017). The relatively high microplastic concentrations in both juvenile and mature fish samples indicates that size or age does not influence microplastic ingestion in fish.
Microplastic concentrations were significantly lower in fish body tissues but significantly higher in the guts and gills of all the fish species. The low microplastic concentration in the fish body could be attributed to the total weight due to inclusion of bones and fins. The high concentration of MPs in the guts and gills of A. berda and G. oyena from Dabaso could imply transfer of the contaminants to humans in high concentrations if the fish is consumed whole. For example, in this study, consuming 1 kg whole A. berda from Dabaso could transfer as much as 1031 ± 0.42 MPs while the same quantity of gutted fish with gills discarded would transfer about 81 ± 0.02 MPs particles only.

MPs were mainly fibers agreeing with earlier research by Nelms et al. (2018), reporting similar results in the Atlantic Mackerel with fibers (72%) being higher than fragments (Nelms et al., 2018), as well as in the digestive tracts of the South African catfish (Silva-Canti et al., 2017). Fibers made up 88% of the MPs in five fish species in China (Jabeen et al., 2017), 96% of MPs in fish from Texas (Fazey and Ryan, 2016) and were predominant in the stomachs of Mediterranean lantern fishes (Romeo et al., 2016) among others. The occurrence of clear balls of fibers in guts of some fish is consistent with earlier research reports of bunched balls of MPs in the digestive tract of the Lates niloticus (Linnaeus, 1758) and the Oreochromis niloticus. (Linnaeus, 1758) in Lake Victoria (Biginagwa et al., 2016).

The high percentage of fibers suggests waste water treatment, domestic waste water, fishing ropes and nets, degraded plastic bags, synthetic textiles and tourism activities could be the main sources of MPs (Khan et al., 2018; and Graca et al., 2017). The presence of film fragments suggests light weight plastics could be the source. It is worthwhile to note that the source of MPs directly influences their concentration in water bodies and subsequently fishes (Free et al., 2014).

Most of the microplastic particles from fish in this study were blue and black. Earlier research reported red, blue, and white elongated fibers in the Gulf of Mexico with no proportions (Phillips and Bonner, 2015). Variations in microplastic particle colours implied multiple sources of the pollutants. Further investigation is required to establish the source of MPs in the demersal and pelagic fishes of the creeks along the Kenya Coast and the subsequent impact on human health.

5. Conclusion

The study established that both demersal and pelagic fish ingest MPs and body size or age did not influence their ingestion.

Growth of the fish species in the study deviated from the norm in literature for the same species which could probably suggest that fish are affected by MPs in the aquatic environment. Although all the fish species had MPs in the guts, gills and the rest of the body, fish body had significantly lower values than the gut and gills. But the fact that MPs are found in the fish body tissue is alarming as it demonstrates gut tissue or gill tissue transfer of MPs. In retrospect, this study shows that common fish in the creeks along the Kenya coast ingesting MPs could pose a risk to humans especially if they are consumed whole. All fish regardless of size should be gutted and gills removed before being processed or cooked for human consumption.

MPs of different shapes and colours were ingested most of which were blue indicating multiple sources of the pollutants. High microplastic concentrations in demersal and pelagic fish indicates that MPs in the creeks along the Kenya coast accumulate in sediments and the water column and differences in feeding modes influence ingestion.

This study has implications for fishery and wildlife management. Understanding of the results could benefit the National and International Governments, environmental advocacy groups such as NEMA, and Intergovernmental organizations.

This study supports the February 2017 ban on production, and use of light weight plastics by the Kenya government as there were both fiber and film particles found in the study.

6. Recommendations

Research is needed to determine the source of MPs. It is the researchers’ opinion that based on this work all fish regardless of size should be gutted and gills removed before being processed or cooked for human consumption.

The information of the present research study along with research into the effects of plastic contamination in the Kenyan environment is enough to compel more effective action and mitigation for plastic waste management to help reduce the microplastic numbers in the oceans.
This research was funded by NRF, NACOSTI/ STI/ KE-SA/ 5/ 003 to which I am grateful. I wish to thank the Director KM FRI for allowing the use of institutional facilities, the UON and KM FRI technical staff and David Gitahi for his assistance.

References

Anam, R.O., Munga, C.N. and Gonda, J. R. (2019). The biology of goldsilk sea bream (family: Sparidae) from the inshore waters of north coast Kenya. Western Indian Ocean Journal of Marine Science, 18(2), 77-86.

Andrady, A.L. (2011). Microplastics in the marine environment. Marine Pollution Bulletin, 62, 1596-1605. PMID: 21742351. doi:10.1016/j.marpolbul.2011.05.030

Awuor, W., Muthumbi, A.W.N. and Robertson-Andersson, D. V. (2020). Presence of microplastics in benthic macroinvertebrates along the Kenyan coast. African Journal of Marine Science, 42(4), 405-411, DOI: 10.2989/1814232X.2020.1829045

Barnes, D.K.A., Galgani F., Thompson, R.C. and Barlaz, M., (2009). Accumulation and fragmentation of plastic debris in global environments. Philosophical Transactions of the Royal Society B, 364, 1985-1998.

Barboza, L.G.A., Vethaak, A.D., Lavorante, B.R., Lundøye, A.K. and Guilhermino, L. (2018). Marine microplastic debris: An emerging issue for food security, food safety and human health. Marine Pollution Bulletin, 133, 336-348.

Beer, S., Garm, A., Huwer, B., Dierking, J. and Nielsen, T.G. (2018). No increase in marine microplastic concentration over the last three decades – A case study from the Baltic Sea. Science of the Total Environment, 621, 1272-1279.

Biginagwa, F.J., Mayomaa, B.S., Shashoua, Y., Syberga, K. and Khan, F.R. (2016). First evidence of microplastics in the African Great Lakes: recovery from Lake Victoria Nile perch and Nile tilapia. Journal of Great Lakes Research, 42, 146-149. doi:10.1016/j.jglr.2015.10.012

Claessens, M., Van Cauwenbergh, L., Vandeghecht, M.B. and Janssen, C.R. (2013). New techniques for the detection of microplastics in sediments and field collected organisms. Marine Pollution Bulletin, 70(1-2), 227-233.

Dehaut, A., Cassone, A.-L., Frère, L., Hermaabessière, L., Himber, C., Rinnert, E., Rivière, G., Lambert, C., Soudant, P., Huvet, A., Duflos, G. and Paul-Pont, I. (2016). Microplastics in seafood: Benchmark protocol for their extraction and characterization. Environ. Pollut. 215, 223-233. doi:10.1016/j.envpol.2016.03.021

De Witte, B., Devriese, L., Bekaert, K., Hoffman, S., Vandermeersch, G., Cooreman, K. and Robbens, K. (2014). Quality assessment of the blue mussel (Mytilus edulis): Comparison between commercial and wild types. Marine Pollution Bulletin, 85(1), 146-155. DOI: 10.1016/j.marpolbul.2014.06.006

El-Agamy, A.E. (1988). Age determination and growth studies of Gerres oyena (Forskal) in the Arabian Gulf waters. Mahasagar, 21, 23-44.
Eerkes-Medrano, D., Thompson, R.C. and Aldridge, D.C. (2015). Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritization of research needs. Water Research, 75: 63–82. PMID: 25746963. doi:10.1016/j.watres.2015.02.012.

Eriksen, M., Mason, S., Wilson, S., Box, C., Zellers, A. and Edwards W et al. (2013). Microplastic pollution in the surface waters of the Laurentian Great Lakes. Marine Pollution Bulletin, 77, 177–182.

Fazey, F.M.C. and Ryan, P.G. (2016). Biofouling on buoyant marine plastics: an experimental study into the effect of size on surface longevity. Environmental Pollution, 210, 354-360. PMID: 26803792. doi:10.1016/j.envpol.2016.01.026.

Farrell, P. and Nelson, K. (2013). Trophic level transfer of microplastic: Mytilus edulis (L.) to Carcinus maenas (L.). Environmental Pollution, 177, 1-3. https://doi.org/10.1016/j.envpol.2013.01.046

Foekema, E.M., De Gruijter, C., Mergia, M.T., Van Franeker, J.A., Murk, A.J. and Koelmans A.A. (2013). Plastic in North Sea fish. Environmental Science and Technology, 47(15), 8818-8824.

Frotaleza, M.A., Uy, R.C.L., Elumba, M.E. and Nañola, C.L. (2019). Age-growth parameters of Crescent Grunter, Terapon jarbua (Forsskål, 1775) in Mindanao, Philippines. Philippine Journal of Natural Sciences, 24, 42-49.

Free, C., Jensen, O., Mason, S., Eriksen, M., Williamson, N. and Boldgiv, B. (2014). High-levels of microplastic pollution in a large, remote, mountain lake. Marine Pollution Bulletin, 85, 156-163. PMID: 24973278. doi:10.1016/j.marpolbul.2014.06.001

Froese, R. (2006). Cube law, condition factor and weight-length relationships: History, meta-analysis and recommendations. Journal of Applied Ichthyology, 22, 241-253.

Froese, R. and Pauly, D. (Eds.) (2017). FishBase, World Wide Web Electronic Publication. http://www.fishbase.org (02/2017)

Froese, R. and Pauly, D. (Eds.) (2020). Fishbase. World WideWeb Electronic Publication. www.fishbase.org, (2/2020).

GESAMP (2016). Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection. 2016. Sources, fate and effects of microplastics in the marine environment: part 2 of a global assessment. Reports Stud GESAMP [Internet]. 93:96. issn: 1020-4873%5Cn. http://ec.europa.eu/environment/marine/good-environmental-status/ descriptor-10/pdf/GESAMP_microplasticsfullstudy.pdf

Graca, B., Szewc, K., Zakrzewska, D., Dołęga, A. and Szczерbowska-Boruchowska, M. (2017). Sources and fate of microplastics in marine and beach sediments of the Southern Baltic Sea—a preliminary study. Environmental Science Pollution Research, 24, 7650-7661.

Gupta, T. and Mullins, M.C. (2010). Dissection of organs from the adult zebra fish. Journal of Visualized Experiments, (37), e1717.

Hable, W.E. and Nguyen X. (2013). Polychlorinated biphenyls disrupt cell division and tip growth in two species of fucoid algae. Journal of Phycology, 49(4), 701-708.

Hartline, N.L., Bruce, N.J., Karba, S.N., Ruff, E.O., Sonar, S.U. and Holden, P.A. (2016). Microfiber masses recovered from conventional machine washing of new or aged garments. Environmental Science and Technology, 50, 11532-11538. PMID: 27689236. doi:10.1021/acs.est.6b03045

Hermabessiere L., Dehaut, A., Paul-Pont, I., Lacroix, C., Jezequel, R., Soudant, P. and Duflos, G. (2017). Occurrence and effects of plastic additives on marine environments and organisms: A review. Chemosphere, 182, 718-793.

Hidalgo-Ruz, V., Gutow, L., Thompson, R.C. and Thiel, M. (2012). Microplastics in the marine environment: a review of the methods used for identification and quantification. Environmental Science Technology, 46(6), 3060-3070.

Hong, S.H., Shim, W.J. and Jang, M. (2018). Chemicals associated with marine plastic debris and microplastics: Analyses and contaminant levels. In M icromaterial Contamination In Aquatic Environments, 271-315.

Jabeen, K., Su L., Li, J., Yang, D., Tong, C. and Mu, J. (2017). Microplastics and mesoplastics in fish from coastal and fresh waters of China. Environmental Pollution, 221, 141-149. PMID: 27939629. doi:10.1016/j.envpol.2016.11.055
James, N.C., Mann, B.Q., Beckley, L.E. and Govender, A. (2003). Age and growth of the estuarine-dependent sparid Acanthopagrus berda in northern KwaZulu-Natal, South Africa. African Zoology, 38(2), 265-271.

Kanak, M.K. and Tachihara, K. (2006). Age and growth of Gerres sp. (Perciformes: Gerreidae) in Okinawa Island of southern Japan. Fisheries Science, 72(5), 932-938.

Karami, A., Golieskardi, A., Choo, C.K., Romano, N., Ho, Y.B. and Salamatnia, B. (2017). A high-performance protocol for extraction of microplastics in fish. Science of the Total Environment, 578, 485-494.

Karlsson, T.M., Vethaak, A.D., Almroth, B.C., Ariese, F., van Velzen, M., Hasselöv, M. and Leslie, H.A. (2017). Screening for microplastics in sediment, water, marine invertebrates and fish: Method development and microplastic accumulation. Marine Pollution Bulletin, 122(1-2), 403-408.

Kerubo, J.O., Muthumbi, A.W., Onyari, J.M., Kimani, E.N. and Robertson-Andersson, D. (2020). Microplastic pollution in the surface waters of creeks along the Kenyan coast, Western Indian Ocean (WIO). Western Indian Ocean Journal of Marine Science, 19(2), 75-88.

Kerubo, J. O., Muthumbi, A. W. N., Onyari, J. M., Robertson-Andersson, D., & Kimani, E. (2021). Microplastics pollution in the sediments of creeks and estuaries of Kenya, western Indian Ocean. African Journal of Marine Science, 1-16.

Khan, F.R., Mayoma, B.S., Biginagwa, F.J. and Syberg, K. (2018). Microplastics in inland African waters: Presence, sources, and fate. In Freshwater Microplastics, pp. 101-124, Springer, Cham.

Kithioka, J.U., Okemwa, E.N. and Kazungu, J.M. (1999). Monitoring of nutrient levels, turbidity and sediment transport at Port-Reitz Creek in Kenya. IOC-SIDA.

Koelmans A.A, Besseling, E. and Foekema E.M. (2014). Leaching of plastic additives to marine organisms. Environmental Pollution, 187, 49-54. doi: 10.1016/ j.envpol.2013.12.013. 24440692.

Kosore, C., Ojwang, L., Maghanga, J., Kamau, J., Kimeli, A., Omukuto, J., Ngisiage, N., Mwaluma, J., Onyaga, H., Magori, C. and Ndirui, E. (2018). Occurrence and ingestion of microplastics by zooplankton in Kenya’s marine environment: first documented evidence. African Journal of Marine Science, 40(3), 225-234.

Kühn, S., van Werven, B., van Oyen, A., Meijboom, A.A., Bravo Rebolledo, E.L. and van Franeker, J.A. (2017). The use of potassium hydroxide (KOH) solution as a suitable approach to isolate plastics ingested by marine organisms. Marine Pollution Bulletin, 115, 86-90. https://doi.org/10.1016/j.marpolbul.2016.11.034

Lauby-Secretan, B., Loomis, D., Grosse, Y., El Ghissassi, F., Bouvard, V., Benbrahim-Tallaa, L. and Iarc Working Group (2013). Carcinogenicity of polychlorinated biphenyls and polybrominated biphenyls. Lancet Oncology, 14(4), 287-288.

Letourneur, Y., Kulbicki, M. and Labrosse, P. (1998). Length-weight relationship of fishes from coral reefs and lagoons of New Caledonia: An update. Naga, the ICLARM Quarterly, 21(4), 39-46.

Leu, M.Y. and Chou, Y.H. (1996). Induced spawning and larval rearing of captive yellowfin porgy, Acanthopagrus latus (Houttuyn). Aquaculture, 143(2), 155-166.

Li, J., Qu, X., Su, L., Zhang, W., Yang, D., Kolanhasamy, P., Li, D. and Shi, H. (2016). Microplastics in mussels along the coastal waters of China. Environmental Pollution [Internet], 214, 177-184. doi:10.1016/ j.envpol.2016.04.012

Lieske, E. and Myers, R. (1994). Collins Pocket Guide. Coral reef fishes. Indo-Pacific and Caribbean including the Red Sea. Harper Collins Publishers, 400 p.

Lithner, D., Larsson, Å. and Dave, G. (2011). Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition. Science of the Total Environment, 409, 3309-3324. PMID:21663944. doi:10.1016/ j.scitotenv.2011.04.038

Locham, A.G., Kaunda Arara, B., Wakibia, J.G. and Muya, S. (2015). Diet and niche breadth variation in the marbled parrotfish, Leptocarcus vaigiensis, among coral reef sites in Kenya. African Journal of Ecology, 53(4), 560-571.

Lusher, A.L., McHugh, M. and Thompson, R.C. (2013). Occurrence of microplastics in the gastrointestinal tract of pelagic and demersal fish from the English Channel. Marine Pollution Bulletin, 67, 94-99.

Lusher, A.L., Hollman, P.C.H. and Mendoza-Hill, J.J. (2017). Microplastics in fisheries and aquaculture: Status of knowledge on their occurrence and implications for aquatic organisms and food safety. Rome: FAO Fisheries and Aquaculture Technical Paper. No. 615.
Maritim, P.K., Gachanja, A.N. and Munyao, T.M. (2016). Speciation of trace metals Pb, Zn, Cu and Cd in surficial sediment from makupa creek Mombasa coastal Kenya. Open Access Library 3: e2679. doi.org/10.4236/oalib.1102679

Mathalon, A. and Hill, P. (2014). Microplastic fibers in the intertidal ecosystem surrounding Halifax Harbor, Nova Scotia. Marine Pollution Bulletin, 81, 69–79. PMID: 24650540. doi:10.1016/j.marpollbul.2014.02.018

Moore, C. J. (2008). Synthetic polymers in the marine environment: A rapidly increasing long-term threat. Environmental Research, 108(2), 131-139.

Nasir, N. A. (2000). The food and feeding relationships of the fish communities in the inshore waters of Khor Al Zubair, north-west Arabian Gulf. Cybium, 24, 89-99.

Nelms, S.E., Galloway, T.S., Godley, B.J., Jarvis, D.S. and Lindeque, P.K. (2018). Investigating microplastic trophic transfer in marine top predators. Environmental Pollution, 1-9, https://doi.org/10.1016/j.envpol.2018.02.016

Nelson, J.S. (1994). Fishes of the World. Wiley, New York, 600 pp.

Neves, D., Sobral, P., Ferreira, J. L. and Pereira, T. (2015). Ingestion of microplastics by commercial fish off the Portuguese coast. Marine Pollution Bulletin, 101, 119-126.

Obiero, J.P. and Onyando, J.O. (2013). Climate. In Developments in Earth Surface Processes, 16, 39-50.

Okuku, E.O., Ohowa, B., Mwangi, S.N., Munga, D., Kiteresi, L., Wanjeri, V.O., Okumu, S. and Kilonzo, J. (2011). Sewage pollution in the coastal water of mombasa City, Kenya: A norm rather than an exception. Environmental Research, 5(4), 865-874.

Okuku, E.O., Imbayi, K.L., Omondi, O.G., Wayayi, W.V.O., Sezi, M.C., Maureen, K.M. and Oduor, N. (2019). Decadal Pollution Assessment and Monitoring along the Kenya Coast. In Monitoring of Marine Pollution, Intech Open.

Ontomwa, M.B., Okemwa, G.M., Kimani, E.N. and Obota, C. (2018). Seasonal variation in the length-weight relationship and condition factor of thirty fish species from the Shimoni artisanal fishery, Kenya. Western Indian Ocean Journal of Marine Science, 17(1), 103-110.

Phillips, M.B. and Bonner, T.H. (2015). Occurrence and amount of microplastic ingested by fishes in watersheds of the Gulf of Mexico. Marine Pollution Bulletin, 100(1), 264-269.

Randall, J.E. (1986). Scaridae. In: M.M. Smith and P.C. Heemstra (eds), p. 706-714. Smiths’ sea fishes. Springer-Verlag, Berlin.

Ricker, W.E. (1975). Computation and interpretation of biological statistics of fish populations. Fish. Res. Board Can. Bull., 191, 1–382.

Rochman, C.M., Hoh, E., Kurobe, T. and Teh, S.J. (2013). Ingested plastic transfers contaminants to fish and induces hepatic stress. Nature Science Rep., 3, 3263.

Rochman, C.M., Tahir, A., Williams, S.L., Baxa, D.V., Lam, R., Miller, J.T, Teh F.C., Weronilangi, S. and The, S.J., (2015). Anthropogenic debris in seafood: Plastic debris and fibers from textiles in fish and bivalves sold for human consumption. Sci. Rep., 5, 14340, DOI: 10.1038/srep.14340.

Romeo, T., Battaglia, P., Pedà, C., Consoli, P., Andaloro, F. and Fossi, M. C. (2015). First evidence of presence of plastic debris in stomach of large pelagic fish in the Mediterranean sea. Marine Pollution Bulletin, 95, 358–361.

Romeo, T., Peda, C., Fossi, M. C., Andaloro, F. and Battaglia, P. (2016). First record of plastic debris in the stomach of Mediterranean lantern fishes. Acta Adriatica, 57(1).

Roux, C., Gerridae,Daget, J., Gosse, J.P., and Thys van den Audenaerde, D.F.E. (Eds.) (1986). Check list of the freshwater fishes of Africa (CLOFFA). ISBN , Brussels; MRAC, Tervuren; and ORSTOM, Paris. Vol.2. pp. 325-326.

Rummel, C.D. (2014). Occurrence and potential effects of plastic ingestion by pelagic and demersal fish from the North Sea and Baltic sea. Johannes Gutenberg-Universität Mainz, Mainz, Germany.
Saber, M.A., Osman, H.M., El Ganainy, A.A. and Shaaban, A.M. (2020). Improving the size-selectivity of trammel net for Pomadasys striden and Gerres oyena in Suez Bay, the Gulf of Suez, Red Sea. The Egyptian Journal of Aquatic Research, 46(4), 383-388.

Sarre, G.A. and Potter, I.C. (2000). Variation in age compositions and growth rates of A canthuspumus butcheri (Sparidae) among estuaries: some possible contributing factors. Fishery Bulletin, 98(4), 785-799.

Setälä, O., Lehtiniemi, M., Coppock, R. and Cole, M. (2018). Microplastics in marine food webs. In Microplastic Contamination in Aquatic Environments (pp. 339-363). Elsevier.

Sheaves, M.J. (2006). Is the timing of spawning in sparid fishes a response to sea temperature regimes? Coral Reefs 25, 655-669. https://link.springer.com/article/10.1007/s00338-006-0150-5

Sarre, G.A. and Potter, I.C. (2000). Variation in age compositions and growth rates of A canthuspumus butcheri (Sparidae) among estuaries: some possible contributing factors. Fishery Bulletin, 98(4), 785-799.

Setälä, O., Lehtiniemi, M., Coppock, R. and Cole, M. (2018). Microplastics in marine food webs. In Microplastic Contamination in Aquatic Environments (pp. 339-363). Elsevier.

Sheaves, M.J. (2006). Is the timing of spawning in sparid fishes a response to sea temperature regimes? Coral Reefs 25, 655-669. https://link.springer.com/article/10.1007/s00338-006-0150-5

Silva-Cavalcanti, J.S., Silva, J.D.B., de França, E.J., de Araújo, M.C.B. and Gusmão, F. (2017). Microplastics ingestion by a common tropical freshwater fishing resource. Environmental Pollution, 221, 218-226. doi:10.1016/j.envpol.2016.11.068

Smith, J.L.B. and Smith, M.M. (1986). Family No. 183: Sparidae. In: Smith M.M. and Heemstra P.C. ZOOTAXA (eds.), Smiths' Sea Fishes. Macmillan South Africa, Johannesburg, South Africa, pp. 580-594.

Sommer, C., Schneider, W. and Poutiers, J. M. (1996). FAO species identification field guide for fishery purposes. The Living Marine Resources of Somalia. FAO, Rome. 376 p.

Sussarellu, R., Suquet, M., Thomas, Y., Lambert, C., Fabioux, C., Pernet, M.E.J. and Corporeau, C. (2016). Oyster reproduction is affected by exposure to polystyrene microplastics. Proc. Natl. Acad. Science. 113(9), 2430-2435. https://doi.org/10.1073/pnas.1519019113

Thiele, C.J., Hudson, M.D. and Russell, A.E. (2019). Evaluation of existing methods to extract microplastics from bivalve tissue: Adapted KOH digestion protocol improves filtration at single-digit pore size. Marine Pollution Bulletin, 142, 384-393.

Van Cauwenbergh, L., Devriese, L., Galgani, F., Robbens, J. and Janssen, C.R. (2015). Microplastics in sediments: A review of techniques, occurrence and effects. Marine environmental research, 111, 5-17.

Weiden, N.A.C. and Cowie, P.R. (2016). Environment and gut morphology influences microplastic retention in langoustine Nephrops norvegicus. Environmental Pollution, 214, 859-856. https://doi.org/10.1016/j.envpol.2016.03.067

Woolton, R.J. (2012). Ecology of teleost fishes. Springer Science and Business Media. 386p.

Wright, S.L., Thompson, R.C. and Galloway, T.S. (2013). The physical impacts of microplastics on marine organisms: a review. Environmental Pollution, 178, 483-492.