Exactly solvable model of superstring
in plane wave Ramond–Ramond background

R.R. Metsaeva and A.A. Tseytlinb,c†

a Department of Theoretical Physics, P.N. Lebedev Physical Institute, Leninsky prospect 53, Moscow 119991, Russia
b Blackett Laboratory, Imperial College London, SW7 2BZ, U.K.
c Department of Physics, The Ohio State University Columbus, OH 43210-1106, USA

Abstract

We describe in detail the solution of type IIB superstring theory in the maximally supersymmetric plane-wave background with constant null Ramond-Ramond 5-form field strength. The corresponding light-cone Green-Schwarz action found in hep-th/0112044 is quadratic in both bosonic and fermionic coordinates. We obtain the light-cone Hamiltonian and the string representation of the corresponding supersymmetry algebra. The superstring Hamiltonian has a “harmonic-oscillator” form in both the string oscillator and the zero-mode parts and thus has a discrete spectrum. We analyze the structure of the zero-mode sector of the theory, establishing the precise correspondence between the lowest-lying “massless” string states and the type IIB supergravity fluctuation modes in the plane-wave background. The zero-mode spectrum has certain similarity to the supergravity spectrum in $AdS_5 \times S^5$ background of which the plane-wave background is a special limit. We also compare the plane-wave string spectrum with expected form of the light-cone gauge spectrum of the $AdS_5 \times S^5$ superstring.

* E-mail: metsaev@lpi.ru
† E-mail: tseytlin.1@osu.edu
1 Introduction

The simplest gravitational plane wave backgrounds

$$ds^2 = 2dx^+dx^- + K(x^+,x^I)dx^+dx^I + dx^I dx^I, \quad K = k_{IJ} x^I x^J$$

supported by a constant NS-NS 3-form background provide examples of exactly solvable (super)string models: the string action becomes quadratic in the light-cone gauge $$x^+ = p^+ \tau$$ (see, e.g., [1–4]). It was recently pointed out [5] that this solvability property is shared also by a conformal model describing type IIB superstring propagating in a particular plane-wave metric supported by a Ramond-Ramond 5-form background [6]:

$$ds^2 = 2dx^+dx^- - \tau^2 x^I dx^+ dx^I + dx^I dx^I, \quad I = 1, \ldots, 8, \quad (1.1)$$

$$F_{+1234} = F_{+5678} = 2f. \quad (1.2)$$

This background has several special properties. It preserves the maximal number of 32 supersymmetries [6], and it is related by a special limit (boost along a circle of $$S^5$$ combined with a rescaling of the coordinates and of the radius or $$\alpha'$$) to the $$AdS_5 \times S^5$$ background [7]. The exactly solvable string theory corresponding to (1.1) may thus have some common features with a much more complicated string theory on $$AdS_5 \times S^5$$ whose light-cone action contains non-trivial interaction terms [8, 9].

In the present paper which is an extension of [5] we will present in detail the solution of this R-R plane-wave string model. In particular, we will explicitly identify the massless modes in its spectrum with small fluctuations of the type IIB supergravity fields in the background (1.1). The results will have an obvious similarity to those of [10] in the case of $$AdS_5 \times S^5$$. In particular, a remarkable common feature of the R-R plane wave supermultiplets and the AdS supermultiplets is that the massless fields with different spins belonging to the same supermultiplet have, in general, different lowest energy values. The same is true also for massive supermultiplets.¹

Let us first recall the form of the light-cone gauge Green-Schwarz action for the type IIB superstring in the background (1.1). This action was found in [5] by using the supercoset method of [13], but there is a simple short-cut argument relating the presence of the fermionic “mass” term to the form of the generalized spinor covariant derivative in type IIB supergravity. In view of the special null Killing vector properties of the background (1.1), (1.2) it is possible to argue that the only non-vanishing fermionic contribution to the type IIB superstring action in the standard light-cone gauge

$$x^+ = p^+ \tau, \quad \Gamma^+ \theta^I = 0 \quad (1.3)$$

comes from the direct covariantization

$$\mathcal{L}_{2F} = i(\eta^{ab} \delta_{IJ} - \epsilon^{ab} \rho_{3IJ}) \partial_a x^m \bar{\theta}^I \Gamma_m \bar{D}_b \theta^J \quad (1.4)$$

¹This is different from what one finds in the case of the non-supersymmetric bosonic plane wave backgrounds, where massless fields of different spins have, as in the case of the flat space, the same lowest energy values. This difference is related to supersymmetry and not to the definition of masslessness: in both cases we use the same definition of massless fields based on so called sim invariance (invariance under transformations of the original plane-wave algebra supplemented by the dilatation) of the corresponding field equations [11, 12].
of the quadratic fermionic term in the flat-space GS [14] action. Here θ^T ($I=1,2$) are the two real positive chirality 10-d MW spinors and $\rho_3 = \text{diag}(1,-1)$ (see Appendix for notation). D is the generalized covariant derivative that appears in the Killing spinor equation (or gravitino transformation law) in type IIB supergravity [15]: acting on the real spinors θ^T it has the form (here we ignore the dilaton and R-R scalar dependence and rescale the R-R strengths by -2 compared to [15])

$$D_a = \partial_a + \frac{1}{4} \partial_a \bar{\omega} \left[(\omega_{\mu \nu m} - \frac{1}{2} H_{\mu \nu m} \rho_3) \Gamma^{\mu \nu} + \left(\frac{1}{3!} F_{\mu \lambda} \Gamma^{\mu \nu \lambda} \rho_1 + \frac{1}{2 \cdot 5!} F_{\mu \nu \rho \kappa} \Gamma^{\mu \nu \lambda \rho \kappa} \rho_0 \right) \Gamma_m \right]$$

(1.5)

where the ρ_3-matrices in the I,J space are the Pauli matrices $\rho_1 = \sigma_1$, $\rho_0 = i \sigma_2$. In the light-cone gauge (1.3) the non-zero contribution to (1.4) comes only from the term where both the “external” and “internal” $\partial_a x^{32}$ factors in (1.4) become $p^+ \gamma^m \delta^0_a$. As is well-known, in the flat-space light-cone GS action θ^1 and θ^2 become the right and the left moving 2-d fermions. In the presence of the F_5-background (1.2) the surviving quadratic fermionic term is proportional to $\theta^1 \Gamma^{\rho_1 \ldots \rho_4} \theta^2 F_{\gamma \mu \nu \lambda \rho}$. While in the case of an NS-NS 3-form background the fermionic interaction term has a chiral 2-d form (ρ_3 is diagonal), in the case of a R-R background one gets a non-chiral 2-d “mass-term” structure (ρ_1 and ρ_0 are off-diagonal) out of the interaction term in D_a in (1.4),(1.5).

The resulting quadratic light-cone action [5] can be written, like the flat-space GS action, in a 2-d spinor form and describes 8 free massive 2-d scalars and 8 free massive Majorana 2-d fermionic fields $\psi = (\theta^1, \theta^2)$ propagating in flat 2-d world-sheet

$$\mathcal{L} = \mathcal{L}_B + \mathcal{L}_F \ , \quad \mathcal{L}_B = \frac{1}{2} (\partial_+ x^I \partial_- x^I - m^2 x_I^2) \ , \quad m \equiv p^+ f \ ,$$

(1.6)

$$\mathcal{L}_F = i (\theta^1 \gamma^- \partial_+ \theta^1 + \theta^2 \gamma^- \partial_- \theta^2 - 2 m \theta^1 \gamma^- \Pi \theta^2) \ , \quad \gamma^+ \theta^T = 0 \ .$$

(1.7)

Here $\partial_\pm = \partial_0 \pm \partial_1$ and we absorbed one factor of p^+ into θ^T. We use the spinor notation of [5], i.e. γ^m, $\bar{\gamma}^m$ are the 16×16 Dirac matrices which are the off-diagonal parts of 32×32 matrices Γ^m. The matrix Π in the mass term ($\Pi^2 = 1$) is the product of four γ-matrices (see Appendix) which originates from $\Gamma^{\mu_1 \ldots \mu_4} F_{+\mu_1 \ldots \mu_4}$ in (1.4),(1.5).

In section 2.1 we shall review the solution of the classical equations corresponding to the light-cone gauge action (1.6),(1.7) and then (in section 2.2) perform the straightforward canonical quantization of this quadratic system already sketched in [5]. In section 2.3 we shall present the light-cone string realization of the basic symmetry superalgebra of the plane-wave background. We shall then use this superalgebra to fix the vacuum-energy (“normal-ordering”) constant in the zero-mode sector (section 2.4). As we shall explain, the choice of the fermionic zero-mode vacuum is not unique with different (physically equivalent) choices depending on how one decides to describe the presentation of the corresponding Clifford algebra. In particular, we note that a choice that leads to zero vacuum energy constant breaks the $SO(8)$ global symmetry down to $SO(4) \times SO'(4)$ (which is in fact the true symmetry of the plane-wave background (1.1),(1.2)) but is not the one that has a smooth flat-space limit.

In section 3 we shall determine the spectrum of fluctuations of type IIB supergravity expanded near the plane-wave background (1.1),(1.2). Section 3.1 will contain some
general remarks on solutions of massless Klein-Gordon-type equations in the plane-wave metric (1.2). The bosonic (scalar, 2-form, graviton and 4-form field) spectra will be found in section 3.2. The spin 1/2 and spin 3/2 cases will be analyzed in section 3.3. Our analysis will be similar to the one carried out in [10] in the case of the $AdS_5 \times S^5$ background. As a result, we will be able to give a space-time interpretation to the “massless” (zero-mode) sector of the string theory. The discreteness of the supergravity part of the light-cone energy spectrum will follow from the condition of square-integrability of the solutions of the corresponding wave equations at fixed p^+. In section 3.4 we will summarize the results for the bosonic and fermionic spectra in the two tables and then explain how the corresponding physical modes can be interpreted as components of a single scalar type IIB superfield satisfying a massless (dilatation-invariant) equation in light-cone superspace.

In the concluding section 4 we shall make some comments on the parameters and possible limits of the plane-wave string theory, and also compare it with the expected form of the light-cone string theory spectrum in $AdS_5 \times S^5$ background.

Our index and spinor notation and definitions as well as some useful relations will be given in Appendix.

2 Canonical quantization

2.1 Solution of classical equations

The equations of motion following from (1.6),(1.7) take the form:

$$\partial_+ \partial_- x^I + m^2 x^I = 0,$$

$$\partial_+ \theta^1 - m \Pi \theta^2 = 0, \quad \partial_- \theta^2 + m \Pi \theta^1 = 0.$$

The parameter f in (1.1) which has dimension of mass can be absorbed into rescaling of x^+, x^-, i.e. set to a given value.\(^2\) We shall choose the length of σ-interval to be 1. The flat space limit corresponds to $m \to 0$.

As follows from the structure of the covariant string action corresponding to the background (1.1),(1.2) one can absorb the dependence on the string tension into the following rescaling of the coordinates\(^3\) $x^- \to 2\pi \alpha' x^-$, $x^I \to (2\pi \alpha')^{1/2} x^I$, $\theta^\pm \to (2\pi \alpha')^{1/2} \theta^\pm$ with x^+ unchanged. Then all one needs to do to restore the dependence on the string tension is the following rescaling of p^+

$$p^+ \to 2\pi \alpha' p^+.$$

In particular, $m \to m = 2\pi \alpha' p^+ f$.

\(^2\)Note also that since the generator P^+ commutes with all other generators of the plane wave superalgebra we could fix p^+ to take some specific non-vanishing value. In what follows we shall p^+ arbitrary.

\(^3\)After the rescaling x^-, x^I will be dimensionless (like τ and σ) but x^+ (and $\alpha' p^+$) will have dimension of length.
The general solutions to (2.1),(2.2) satisfying the closed string boundary conditions
\[x^I(\sigma + 1, \tau) = x^I(\sigma, \tau), \quad \theta(\sigma + 1, \tau) = \theta(\sigma, \tau), \quad 0 \leq \sigma \leq 1, \tag{2.4} \]
are found to be
\[x^I(\sigma, \tau) = \cos m\tau x_0^I + m^{-1} \sin m\tau p_0^I + i \sum_{n \neq 0} \frac{1}{\omega_n} \left(\varphi_n^1(\sigma, \tau) \alpha_n^{1I} + \varphi_n^2(\sigma, \tau) \alpha_n^{2I} \right) \tag{2.5} \]
\[\theta^1(\sigma, \tau) = \cos m\tau \theta_0^1 + \sin m\tau \Pi \theta_0^2 + \sum_{n \neq 0} c_n \left(\varphi_n^1(\sigma, \tau) \theta_n^1 + i \frac{\omega_n - k_n}{m} \varphi_n^2(\sigma, \tau) \Pi \theta_n^2 \right) \tag{2.6} \]
\[\theta^2(\sigma, \tau) = \cos m\tau \theta_0^2 - \sin m\tau \Pi \theta_0^1 + \sum_{n \neq 0} c_n \left(\varphi_n^2(\sigma, \tau) \theta_n^2 - i \frac{\omega_n - k_n}{m} \varphi_n^1(\sigma, \tau) \Pi \theta_n^1 \right) \tag{2.7} \]
where the basis functions \(\varphi_n^1, \varphi_n^2(\sigma, \tau) \) are
\[\varphi_n^1(\sigma, \tau) = \exp(-i(\omega_n \tau - k_n \sigma)), \quad \varphi_n^2(\sigma, \tau) = \exp(-i(\omega_n \tau + k_n \sigma)) \tag{2.8} \]
and
\[\omega_n = \sqrt{k_n^2 + m^2}, \quad n > 0 ; \quad \omega_n = -\sqrt{k_n^2 + m^2}, \quad n < 0 ; \tag{2.9} \]
\[k_n \equiv 2\pi n, \quad c_n = \frac{1}{\sqrt{1 + (\frac{\omega_n - k_n}{m})^2}}, \quad n = \pm 1, \pm 2, \ldots . \tag{2.10} \]
The canonical momentum \(\mathcal{P}^I = \dot{x}^I \) takes the form
\[\mathcal{P}^I(\sigma, \tau) = \cos m\tau p_0^I - m \sin m\tau x_0^I + \sum_{n \neq 0} \left(\varphi_n^1(\sigma, \tau) \alpha_n^{1I} + \varphi_n^2(\sigma, \tau) \alpha_n^{2I} \right) \tag{2.11} \]
The fermionic momenta given by \(-i\tilde{\gamma}^{-}\Theta^I\) imply that there are the second class constraints which should be treated following the standard Dirac procedure (see, e.g., [5]).
The coordinate \(x^{-} \) satisfies the equation
\[p^+ \dot{x}^- + \mathcal{P}^I \dot{x}^I + i(\theta^1 \tilde{\gamma}^- \theta^1 + \theta^2 \tilde{\gamma}^- \theta^2) = 0, \tag{2.12} \]
which leads to the constraint
\[\int d\sigma [\mathcal{P}^I \dot{x}^I + i(\theta^1 \tilde{\gamma}^- \theta^1 + \theta^2 \tilde{\gamma}^- \theta^2)] = 0. \tag{2.13} \]
We get the following classical Poisson-Dirac brackets
\[[p_0^I, x_0^J]_{P.B.} = \delta^{IJ}, \quad [\alpha_m^I, \alpha_n^J]_{P.B.} = \frac{i}{2} \omega_m \delta_{m+n,0} \delta^{IJ} \delta^{IJ}, \tag{2.14} \]
\[\{\theta_m^I, \theta_n^J\}_{P.B.} = \frac{i}{4} (\gamma^+) \alpha^B \delta^{IJ} \delta_{m+n,0}. \tag{2.15} \]
The matrix \(\gamma^+ \) in (2.15) is reflecting the fact that we are using the light-cone gauge constrained fermionic coordinates, \(\tilde{\gamma}^+ \Theta^I = 0 \). The coefficients \(c_n \) (2.10) are chosen so that the Fourier modes of the fermionic coordinates satisfy the standard Poisson-Dirac brackets (2.15).
2.2 Quantization and space of states

We can now quantize 2-d fields x^I and θ^I by promoting as usual the coordinates and momenta or the Fourier components appearing in (2.5),(2.6),(2.7) to operators and replacing the classical Poisson (anti)brackets (2.14)(2.15) by the equal-time (anti)commutators of quantum coordinates and momenta according to the rules $\{\ldots\}_{P.B.} \rightarrow i \{\ldots\}_{\text{quant}}$. This gives $(m, n = \pm 1, \pm 2, \ldots)$

$$[p^I_0, x^J_0] = -i\delta^{IJ}, \quad [\alpha^I_m, \alpha^J_n] = \frac{1}{2} \omega_m \delta_{m+n, 0} \delta^{IJ} \delta^{IJ},$$

(2.16)

$$\{\theta^I_0, \theta^J_0\} = \frac{1}{4} (\gamma^+)^{\alpha\beta} \delta^{IJ}, \quad \{\theta^I_m, \theta^J_n\} = \frac{1}{4} (\gamma^+)^{\alpha\beta} \delta^{IJ} \delta_{m+n, 0}.$$

(2.17)

The light-cone superstring Hamiltonian is

$$H \equiv -P^-, $$

(2.18)

$$H = \frac{1}{p^+} \int_0^1 d\sigma \left[\frac{1}{2} (P_i^2 + \dot{x}_i^2 + m^2 x_i^2) + 2im \theta^I \tilde{\gamma}^{-1} \Pi \theta^2 - i(\theta^1 \tilde{\gamma}^{-1} \dot{\theta}^1 - \theta^2 \tilde{\gamma}^{-1} \dot{\theta}^2) \right].$$

(2.19)

Using the fermionic equations of motion it can be rewritten in the form

$$H = \frac{1}{p^+} \int d\sigma \left[\frac{1}{2} (P_i^2 + \dot{x}_i^2 + m^2 x_i^2) + i(\theta^1 \tilde{\gamma}^{-1} \dot{\theta}^1 + \theta^2 \tilde{\gamma}^{-1} \dot{\theta}^2) \right].$$

(2.20)

Plugging in the above expressions for the coordinates and momenta we can represent the resulting light-cone energy operator as

$$H = E_0 + E^1 + E^2,$$

(2.21)

where E_0 is the contribution of the zero modes and E^1, E^2 are the contributions of the string oscillation modes

$$E_0 = \frac{1}{2p^+} (p_0^2 + m^2 x_0^2) + 2i \theta_0^I \tilde{\gamma}^{-1} \Pi \theta_0^2,$$

(2.22)

$$E^I = \frac{1}{p^+} \sum_{n \neq 0} (\alpha^I_m \alpha^I_n + \omega_n \theta^I_n \tilde{\gamma}^{-1} \theta^I_n), \quad I = 1, 2.$$

(2.23)

The constraint (2.13) takes the form

$$N^1 = N^2, \quad N^I \equiv \sum_{n \neq 0} \left(\frac{k_n}{\omega_n} \alpha^I_m \alpha^I_n + k_n \theta^I_n \tilde{\gamma}^{-1} \theta^I_n \right).$$

(2.24)

Let us introduce the following basis of creation and annihilation operators

$$a^I_0 = \frac{1}{\sqrt{2m}} (p_0^I + im x_0^I), \quad \bar{a}^I_0 = \frac{1}{\sqrt{2m}} (p_0^I - im x_0^I),$$

(2.25)
\[\alpha^T_{-n} = \sqrt{\frac{\omega_n}{2}} \alpha^T_n, \quad \bar{\alpha}^T_{-n} = \sqrt{\frac{\omega_n}{2}} \bar{\alpha}^T_n, \quad n = 1, 2, \ldots \]

\[\theta_0 = \frac{1}{\sqrt{2}} (\theta_0^1 + i \theta_0^2), \quad \bar{\theta}_0 = \frac{1}{\sqrt{2}} (\theta_0^1 - i \theta_0^2), \]

\[\theta^T_{-n} = \frac{1}{\sqrt{2}} \eta^T_n, \quad \bar{\theta}^T_n = \frac{1}{\sqrt{2}} \bar{\eta}^T_n, \quad n = 1, 2, \ldots \]

in terms of which the commutation relations (2.16),(2.17) take the form

\[[\bar{a}_0^I, a_0^J] = \delta^{IJ}, \quad [\bar{a}_{-n}^{T I}, a_n^{T J}] = \delta_{m,n} \delta^{IJ} \delta^{T I} \delta^{T J}, \]

\[\{ \bar{\theta}_0^\alpha, \theta_0^\beta \} = \frac{1}{4} (\gamma^+)^{\alpha\beta}, \quad \{ \bar{\eta}_{-n}^{T \alpha}, \eta_n^{T \beta} \} = \frac{1}{2} (\gamma^+)^{\alpha\beta} \delta_{m,n} \delta^{T I} \delta^{T J}. \]

Here \(\alpha = 1, \ldots, 16 \), and the spinors are subject to the \(\bar{\gamma}^+ \theta_0^\alpha = 0, \bar{\gamma}^+ \eta_n^T = 0 \) constraint.

In this basis the light-cone energy operator (2.21) becomes the sum of \(\tilde{E}_0 \), \(E^1 \) and \(E^2 \) where

\[\tilde{E}_0 = f \mathcal{E}_0, \quad \mathcal{E}_0 = a_0^I \bar{a}_0^I + 2 \bar{\theta}_0 \bar{\gamma}^- \Pi \theta_0 + 4, \]

\[E^T = \frac{1}{p^+} \sum_{n=1}^{\infty} \omega_n (a_n^{T I} \bar{a}_n^{T I} + \eta_n^{T \alpha} \bar{\eta}_n^{T \alpha}). \]

We have normal-ordered the bosonic zero modes in \(\mathcal{E}_0 \) (getting extra term \(\frac{1}{2} \times 8 = 4 \)) and both the bosonic and fermionic operators in \(E^T \) (here the normal-ordering constants cancel out as there are equal numbers of bosonic and fermionic oscillators). Note that because of the relation \(\text{Tr}(\gamma^+ \bar{\gamma}^- \Pi) = 0 \) the contribution of the fermionic zero modes in (2.31) does not depend on ordering of \(\theta_0 \) and \(\bar{\theta}_0 \).

To restore the dependence on \(\alpha' \) we need to rescale \(p^+ \) as in (2.3). The explicit form of the light-cone Hamiltonian is then

\[H = f (a_0^I \bar{a}_0^I + 2 \bar{\theta}_0 \bar{\gamma}^- \Pi \theta_0 + 4) + \frac{1}{\alpha' p^+} \sum_{I=1,2} \sum_{n=1}^{\infty} \sqrt{n^2 + (\alpha' p^+ f)^2} (a_n^{T I} \bar{a}_n^{T I} + \eta_n^{T \alpha} \bar{\eta}_n^{T \alpha}). \]

Note that the energy thus depends on the two parameters of mass dimension 1: the curvature (or R-R field) scale \(f \) and the string scale \((p^+ \alpha')^{-1} \). The flat-space limit corresponds to \(f = 0 \) (the zero-mode part recovers its flat-space form \(\frac{p^2}{2p^+} \) as in the case of the standard harmonic oscillator, cf. section 3.1).

The vacuum state is the direct product of a zero-mode vacuum and the Fock vacuum for string oscillation modes, i.e. it is defined by

\[a_0^I |0\rangle = 0, \quad \bar{\theta}_0^\alpha |0\rangle = 0, \quad a_n^{T I} |0\rangle = 0, \quad \bar{\eta}^{T \alpha}_n |0\rangle = 0, \quad n = 1, 2, \ldots. \]

Generic Fock space vectors are then built up in terms of products of creation operators \(a_0^I, a_n^{T I}, \theta_0^\alpha, \eta_n^{T \alpha} \) acting on the vacuum.
\[|\Phi\rangle = \Phi(a_0, a_n, \theta_0, \eta_n)|0\rangle. \quad (2.35) \]
The subspace of physical states is obtained by imposing the constraint
\[N^1|\Phi_{\text{phys}}\rangle = N^2|\Phi_{\text{phys}}\rangle, \quad N^I = \sum_{n=1}^{\infty} k_n (a_n^{I\bar{I}} a_n^{I\bar{I}} + \eta_n^{I\bar{I}} \eta_n^{I\bar{I}}). \quad (2.36) \]

Note that in contrast to the flat space case here \(E^I \neq N^I \).

Let us now make few remarks about the global symmetry of the above expressions. While the metric (1.1) and the bosonic part of the string action (1.6) have \(SO(8) \) symmetry, the 5-form background (1.2) and thus the fermionic part of the classical action (1.7) is invariant only under \(SO(4) \times SO'(4) \). The contribution of the string oscillators to the Hamiltonian (2.32) is \(SO(8) \) invariant, but this invariance is broken down to \(SO(4) \times SO'(4) \) by the contribution of the fermionic zero modes in (2.31). In general, the amount of global symmetry of the zero-mode Hamiltonian depends on the definition of the fermionic creation and annihilation operators, i.e. on the definition of the zero-mode vacuum. With the definition used in (2.27) the vacuum (2.34) preserves \(SO(8) \) symmetry, but the fermionic part of the zero-mode Hamiltonian (2.31) is not \(SO(8) \) invariant. One can instead introduce another set of fermionic creation/annihilation operators, i.e. use another definition of the fermionic zero-mode vacuum, which preserves only the \(SO(4) \times SO'(4) \) invariance, but which formally restores the \(SO(8) \) invariance of the zero-mode Hamiltonian (see section 2.4 below). In any case, the \(SO(8) \) invariance is broken down to \(SO(4) \times SO'(4) \) not only in the fermionic zero mode sector, but also explicitly by the string-mode contributions to the dynamical supercharges discussed in section 2.3.

2.3 Light cone string realization of the supersymmetry algebra

In general, the choice of the light-cone gauge spoils part of manifest global symmetries, and in order to demonstrate that these global invariances are still present, one needs to find the (bosonic and fermionic) Noether charges that generate them. These charges play a crucial role in formulating superstring field theory in the light-cone gauge in flat space \([16, 17]\) and are of equal importance in the present plane-wave context (see also \([5]\)).

In the light-cone formalism, the generators (charges) of the basic superalgebra can be split into the kinematical generators \(P^+, P^I, J^{+I}, J^{ij}, J^{i\bar{j}}, Q^+, \bar{Q}^+ \), and the dynamical generators \(P^-, Q^-, \bar{Q}^- \) (here \(I = (i, \bar{i}), i = 1, 2, 3, 4; \bar{i} = 5, 6, 7, 8 \). \]^4\ It is important to find a free (quadratic) field representation for the generators of the basic superalgebra. The kinematical generators which effectively depend only on the zero

\[^4\text{At point } x^+ = p^+ \tau = 0 \text{ the kinematical generators in the superfield realization are quadratic in the physical string fields, while the dynamical generators receive higher-order interaction-dependent corrections.}\]
modes are

\[P^+ = p^+ , \quad P^I = \int d\sigma (\cos fx^+ \mathcal{P}^I + \sin fx^+ x^I p^+) , \quad (2.37) \]

\[J^{+I} = \int d\sigma (f^{-1} \sin fx^+ \mathcal{P}^I - \cos fx^+ x^I p^+) , \quad (2.38) \]

\[Q^+ = 2\sqrt{p^+} \int d\sigma \gamma^+ e^{i[v^x^+ + f]} , \quad \bar{Q}^+ = 2\sqrt{p^+} \int d\sigma \gamma^- e^{-i[v^x^+ + f]} . \quad (2.39) \]

The remaining kinematical charges \(J^{IJ} = (J^{ij}, J^{i'j'}) \) have non-zero components which depend on all string modes are

\[J^{ij} = \int d\sigma (x^i \mathcal{P}^j - x^j \mathcal{P}^i - i\bar{\theta}\gamma^- \gamma^{ij}\theta) , \quad J^{i'j'} = \int d\sigma (x^{i'} \mathcal{P}^{j'} - x^{j'} \mathcal{P}^{i'} - i\bar{\theta}\gamma^- \gamma^{i'j'}\theta) . \quad (2.40) \]

The dynamical charge \(P^- \) is given by (2.19), while the supercharges \(Q^- \) and \(\bar{Q}^- \) are given by \((Q, \bar{Q}^-) = \sqrt{2} (Q_1 \pm iQ_2) \)

\[Q^- = 2\sqrt{p^+} \int d\sigma \gamma^- \Pi \theta, \quad \bar{Q}^- = 2\sqrt{p^+} \int d\sigma \bar{\gamma}^- \bar{\Pi} \bar{\theta} . \quad (2.41) \]

The derivation of these supercharges was given in [5].

Using the mode expansions of section 2.1 in (2.37),(2.39) we get by

\[P^+ = p^+ , \quad P^I = p^I_0 , \quad J^{+I} = -ix^I_0 p^+ , \quad (2.43) \]

\[Q^+ = 2\sqrt{p^+} \gamma^- \theta_0 , \quad \bar{Q}^+ = 2\sqrt{p^+} \bar{\gamma}^- \bar{\theta}_0 . \quad (2.44) \]

The charges \(J^{IJ} = (J^{ij}, J^{i'j'}) \) are given by

\[J^{IJ} = J_0^{IJ} + \sum_{I=1,2} \sum_{n=1}^{\infty} (a_n^{TI} a_n^{IJ} - a_n^{I} a_n^{J} + \frac{1}{2} \eta_n^{I} \bar{\eta}_n^{J} \gamma^{IJ} \gamma^0) , \quad (2.45) \]

where \(J_0^{IJ} \) is the contribution of the zero modes

\[J_0^{IJ} = a_0^I a_0^J - a_0^J a_0^I + \frac{1}{2} \sum_{I=1,2} \theta_0^I \bar{\gamma}^- \gamma^{IJ} \theta_0^I . \quad (2.46) \]

Note that the kinematical generators do not involve the matrix \(\Pi \) and formally look as if the \(SO(8) \) symmetry were present.

\[^5 \text{We define } \theta \equiv \frac{1}{\sqrt{2}}(\theta^1 + i\theta^2), \bar{\theta} \equiv \frac{1}{\sqrt{2}}(\theta^1 - i\theta^2). \]

\[^6 \text{While transforming the generators } J^{\mu\nu} \text{ to the form given in (2.43),(2.45) we multiply them by factor } +i. \]
The dynamical supercharges (2.41) have the following explicit form
\[
\sqrt{p^+Q^{-1}} = 2p^0_{\gamma} \gamma_{\theta}^1 - 2m x^0_{\gamma} \gamma_{\theta}^j \Pi \partial_0^2 + \sum_{n=1}^{\infty} (2\sqrt{\omega_n c_n} a^{\gamma}_{n} \gamma_{\theta}^1 \bar{\eta}_n^{\alpha} + \frac{\text{Im}}{\sqrt{\omega_n c_n}} a^{\gamma}_{n} \gamma^j \Pi \bar{\eta}_n^{\beta} + \text{h.c.}) \tag{2.47}
\]
\[
\sqrt{p^+Q^{-2}} = 2p^0_{\gamma} \gamma_{\theta}^1 - 2m x^0_{\gamma} \gamma_{\theta}^j \Pi \partial_0^1 + \sum_{n=1}^{\infty} (2\sqrt{\omega_n c_n} a^{\gamma}_{n} \gamma_{\theta}^1 \bar{\eta}_n^{\alpha} - \frac{\text{Im}}{\sqrt{\omega_n c_n}} a^{\gamma}_{n} \gamma^j \Pi \bar{\eta}_n^{\beta} + \text{h.c.}) \tag{2.48}
\]
These expressions explicitly break the SO(8) invariance down to SO(4) \times SO'(4).

The requirement that the light-cone gauge formulation respects basic global symmetries amounts to the condition that the above generators satisfy the relations of the symmetry superalgebra of the plane wave R-R background. The commutators of the bosonic generators are\(^7\)
\[
[P^-, P^I] = f^2 J^I, \quad [P^I, J^{+j}] = -\delta^{IJ} P^+, \quad [P^-, J^{+I}] = P^I, \tag{2.49}
\]
\[
[P^i, J^{jk}] = \delta^{ij} P^k - \delta^{ik} P^j, \quad [P^i, J^{j'k'}] = \delta^{j'j} P^{k'} - \delta^{i'k} P^{j'}, \tag{2.50}
\]
\[
[J^{+i}, J^{jk}] = \delta^{ij} J^{+k} - \delta^{ik} J^{+j}, \quad [J^{j'i'}, J^{j''k''}] = \delta^{j'j''} J^{+k''} - \delta^{i'k''} J^{+j''}, \tag{2.51}
\]
\[
[J^{ij}, J^{kl}] = \delta^{ik} J^{jl} + 3 \text{ terms}, \quad [J^{j'i'}, J^{k''l'k''}] = \delta^{j'k''} J^{i'l'} + 3 \text{ terms}. \tag{2.52}
\]
The commutation relations between the even and odd generators are
\[
[J^I, Q^\pm_\alpha] = \frac{1}{2} Q^\pm_\beta (\gamma^{ij})^{\beta}_{\alpha}, \quad [J^{j'i'}, Q^\pm_\alpha] = \frac{1}{2} Q^\pm_\beta (\gamma^{ij'})^{\beta}_{\alpha}, \tag{2.53}
\]
\[
[J^{+I}, Q^+_\alpha] = \frac{1}{2} Q^+_\beta (\gamma^{+I})^{\beta}_{\alpha}, \tag{2.54}
\]
\[
[P^I, Q^-_\alpha] = \frac{1}{2} f Q^+_\beta (\Pi^{+I})^{\beta}_{\alpha}, \quad [P^-, Q^+_\alpha] = f Q^+_\beta \Pi^{\alpha}_{\beta}, \tag{2.55}
\]

\(^7\)Note that we use the Hermitian \(P^\mu\) and the anti-Hermitian \(J^{\mu
u}\) generators. The supercharges \(Q^\pm\) and \(\bar{Q}^\pm\) are related to each other by the conjugation \((Q^\pm)^\dagger = \bar{Q}^\pm\).
2.4 Choice of fermionic zero-mode vacuum

The states obtained by applying the fermionic zero-mode creation operators to the vacuum form a supermultiplet. States of that supermultiplet can be described in different ways depending on how one picks up a (“Clifford”) vacuum to construct the tower of other states on top of it. While it is natural to define “the” vacuum to have zero energy, this is not the only possible or necessary choice as we shall discuss below.

In general, the quantum counterpart of the zero-mode energy (2.22) may be written as (cf. (2.33))

$$E_0 = E \mathcal{E}_0 \ , \quad \mathcal{E}_0 = a_0^I \bar{a}_0^I - 2\theta_0 \bar{\gamma}^- \Pi \bar{\theta}_0 + e_0 \ ,$$

(2.60)

where $\theta_0 = \frac{1}{\sqrt{2}}(\theta_0^I + i\theta_0^J)$ (see (2.27)) and e_0 is a constant that should be fixed from the condition of the realization of the superalgebra (2.56)–(2.59) at the quantum level. Note that $E_0 = 0$ in the flat-space limit $f \to 0$.

We shall need the following expressions for the zero-mode parts of some symmetry generators (see (2.46),(2.47),(2.48))

$$J_{0}^{IJ} = a_0^I \bar{a}_0^J - a_0^J \bar{a}_0^I + \bar{\theta}_0 \gamma^{-} \gamma^{IJ} \theta_0 \ ,$$

(2.61)

$$\sqrt{p^+ Q^-} = 2p_0^I \gamma^I \theta_0 + 2i m x_0^I \gamma^I \Pi \theta_0 \ , \quad \sqrt{\bar{p}^- \bar{Q}^-} = 2p_0^I \bar{\gamma}^I \bar{\theta}_0 - 2i m x_0^I \bar{\gamma}^I \Pi \bar{\theta}_0 \ .$$

(2.62)

Let us introduce instead of θ_0 the following complex fermionic zero-mode coordinates

$$\theta_R = \frac{1 + \Pi}{\sqrt{2}} \theta_0 \ , \quad \theta_L = \frac{1 - \Pi}{\sqrt{2}} \theta_0 \ .$$

(2.63)

satisfying in view of (2.15),(2.30) the following relations

$$\{\bar{\theta}_R, \theta_R\} = \frac{1}{4}(1 + \Pi)\gamma^+ \ , \quad \{\bar{\theta}_L, \theta_L\} = \frac{1}{4}(1 - \Pi)\gamma^+ \ , \quad \{\bar{\theta}_R, \theta_L\} = 0 \ .$$

(2.64)

In terms of them

$$\mathcal{E}_0 = a_0^I \bar{a}_0^I + \theta_L \bar{\gamma}^- \bar{\theta}_L - \theta_R \bar{\gamma}^- \bar{\theta}_R + e_0 \ ,$$

(2.65)

and

$$Q^- = 2\sqrt{F} \left(a_0^I \bar{\gamma}^I \theta_R + a_0^J \bar{\gamma}^J \theta_L \right) \ , \quad \bar{Q}^- = 2\sqrt{\bar{F}} \left(\bar{a}_0^I \bar{\gamma}^I \bar{\theta}_R + \bar{a}_0^J \bar{\gamma}^J \bar{\theta}_L \right) \ ,$$

(2.66)

$$J_{0}^{IJ} = a_0^I \bar{a}_0^J - a_0^J \bar{a}_0^I + \frac{1}{2} \bar{\theta}_R \bar{\gamma}^- \gamma^{IJ} \theta_R + \frac{1}{2} \bar{\theta}_L \bar{\gamma}^- \gamma^{IJ} \theta_L \ .$$

(2.67)

Let us now discuss several possible definitions of the zero-mode vacuum (we shall always assume that $a_0^I |0\rangle = 0$). In all the cases below the expression for J^{IJ} will imply that the vacuum is a scalar with respect to $SO(4) \times SO'(4)$.

First, we may define the fermionic zero-mode vacuum in the same way is in the case of the flat space background by imposing

$$\bar{\theta}_0 |0\rangle = 0 \ , \quad \bar{\theta}_R |0\rangle = 0 \ , \quad \bar{\theta}_L |0\rangle = 0 \ .$$

(2.68)
This is the definition we used in (2.34). Then

\[\{Q^-_0, \bar{Q}^-_0\}|0\rangle = 4f \{a_0^I \gamma^I \theta_R + \bar{a}_0^I \bar{\gamma}^I \theta_L, \bar{a}_0^I \bar{\gamma}^I \bar{\theta}_R + a_0^I \gamma^I \bar{\theta}_L\}|0\rangle \]

\[= 4f \{a_0^I \gamma^I \bar{\theta}_R\} (a_0^I \gamma^I \theta_R)|0\rangle = 4f \gamma^I \bar{\theta}_R \gamma^I \theta_R|0\rangle = f \gamma^I (1 + \Pi) \bar{\gamma}^I |0\rangle = -8f \bar{\gamma}^+|0\rangle , \quad (2.69) \]

where we use the relation \(\bar{\gamma}^I \Pi \gamma^I = 0 \). On the other hand, from the supersymmetry algebra relation (2.59) we have

\[\{Q^-, \bar{Q}^-\}|0\rangle = 2f \bar{\gamma}^+ P^-|0\rangle = -2f \bar{\gamma}^+ e_0|0\rangle , \quad (2.70) \]

where we used that \(J^{IJ}|0\rangle = 0 \). Since for the zero modes \(E_0 = -P^- \) we learn that here \(e_0 = 4 \).

Thus the normal ordering of bosons done in (2.31) is indeed consistent with the supersymmetry algebra. Then from (2.65) we see that acting with \(\theta_L (\theta_R) \) on \(|0\rangle \) we increase (decrease) the energy by one unit. The generic fermionic zero-mode state is

\[(\theta_R)^{n_R} (\theta_L)^{n_L}|0\rangle , \quad n_L, n_R = 0, 1, 2, 3, 4. \quad (2.71) \]

The restriction on the values of \(n_R \) and \(n_L \) comes from \((\theta_R)^5 = 0 \), \((\theta_L)^5 = 0 \) (the projected fermions have only 4 independent components). The corresponding energy spectrum is thus

\[E_0(n_R, n_L) = 4 - n_R + n_L . \quad (2.72) \]

The values of the energy of the lightest massless (type IIB supergravity) string modes with no bosonic excitations thus run from 0 to 8 (in units of \(f \)).

The equivalent definition of the vacuum is obtained by using the conjugate of (2.68)

\[\theta_0|0\rangle = 0 , \quad \text{i.e.} \quad \theta_R|0\rangle = 0 , \quad \theta_L|0\rangle = 0 , \quad (2.73) \]

so that

\[e_0 = 4 , \quad E_0(n_R, n_L) = 4 + n_R - n_L . \quad (2.74) \]

One may instead define the vacuum by

\[\bar{\theta}_R|0\rangle = 0 , \quad \theta_L|0\rangle = 0 \quad (2.75) \]

leading to

\[e_0 = 8 , \quad E_0(n_R, n_L) = 8 - n_R - n_L , \quad (2.76) \]

so that \(E_0 \) again takes values in the range 0, 1, \ldots, 8.

Finally, another possible choice is

\[\theta_R|0\rangle = 0 , \quad \bar{\theta}_L|0\rangle = 0 , \quad (2.77) \]

in which case one finds that

\[e_0 = 0 , \quad E_0(n_R, n_L) = n_R + n_L . \quad (2.78) \]
Here also $E_0 = 0, 1, \ldots, 8$. Note that the two choices of the vacuum (2.68) and (2.73) preserve the $SO(8)$ symmetry but break the effective 2-d supersymmetry of the light-cone string action (1.6) (the 2-d vacuum energy does not vanish). At the same time, the choice (2.78) preserves the 2-d supersymmetry, but breaks the $SO(8)$ symmetry down to $SO(4) \times SO'(4)$ (cf. (2.63)).

All these definitions of the vacuum are physically equivalent, being related by a relabelling of the states in the same “massless” supermultiplet. While in the last choice we discussed the vacuum energy constant e_0 is zero (i.e. the normal ordering constants of the bosonic and fermionic zero modes cancel as they do for the string oscillation modes), the advantage of the first definition we have used above in (2.34) is that it directly corresponds to the definition of the fermionic vacuum in flat space [16, 18], i.e. with this definition one has a natural smooth flat space limit.

In the next section we shall determine the spectrum of the type IIB supergravity fluctuation modes in the background (1.1),(1.2) and will thus be able to explicitly interpret the states (2.71) with energies $E_0 = 0, 1, \ldots, 8$ in terms of particular supergravity fields.

3 Type IIB supergravity fluctuation spectrum in the R-R plane-wave background

The string states obtained by acting by the fermionic and bosonic zero-mode operators on the vacuum should be in one-to-one correspondence with the fluctuation modes of type IIB supergravity fields expanded near the plane-wave background (1.1),(1.2). Assuming the choice of the zero-mode vacuum in (2.34) or (2.68) and acting by the products of the fermionic zero-mode operators one finds the lowest-lying states that can be symbolically represented as

$|0\rangle$ complex scalar

$\theta_0|0\rangle$ spin 1/2 field

$\theta_0\theta_0|0\rangle$ complex 2-form field

$\theta_0\theta_0\theta_0|0\rangle$ spin 3/2 field

$\theta_0\theta_0\theta_0\theta_0|0\rangle$ graviton and self-dual 4-form field

.. complex conjugates to the above

(3.1)

The complete type IIB supergravity spectrum is obtained by acting with the bosonic zero mode creation operators a_I^0 on the above states.

The aim of this section is to explicitly derive the supergravity spectrum using the standard field-theoretic approach, analogous to the one used in [10] for the $AdS_5 \times S^5$ background.

As a preparation, it is useful to present the decomposition of the 128+128 physical transverse supergravity degrees of freedom in the light-cone gauge using the $SO(8) \rightarrow$
SO(4) × SO'(4) decomposition:

graviton: \(h^1_{i\bar{j}}(9) \), \(h^1_{i\bar{j}'}(9) \), \(h_{ij'}(16) \), \(h(1) \);
\[N_{d.o.f} = 35 \] (3.2)

\(h^1_{i\bar{j}}, h^1_{i\bar{j}'} \) are traceless and the \(h_{ij'} \) is not symmetric in \(i, j' \)

4 – form field: \(a_{ij'}(16) \), \(a_{ij'}(18) \), \(a(1) \);
\[N_{d.o.f} = 35 \] (3.3)

\(a_{ij'} \) is not antisymmetric in \(i, j' \) and \(a_{ij'} = -\frac{1}{4} \epsilon_{ijkl} \epsilon_{l'k'j'k'} a_{klk'} \)

complex 2 – form field: \(b_{ij}(12) \), \(b_{i'j'}(12) \), \(b_{ij}(32) \);
\[N_{d.o.f} = 56 \] (3.4)

\(b_{ij} \) is not antisymmetric in \(i, j' \)

complex scalar field: \(\phi(2) \);
\[N_{d.o.f} = 2 \] (3.5)

spin 1/2 field: \(\lambda^\oplus(16) \);
\[N_{d.o.f} = 16 \] (3.6)

(\(\lambda \) is negative chirality complex spinor, and \(\lambda^\oplus = \frac{1}{2} \gamma^- \gamma^\dagger \lambda \) is its light-cone projection)

spin 3/2 field: \(\psi^\perp_i(48) \), \(\psi^\perp_{i'}(48) \), \(\psi^\parallel_i(16) \);
\[N_{d.o.f} = 112 \] (3.7)

(the gravitino is a positive chirality complex spinor, and \(\psi^\perp \) and \(\psi^\parallel \) are its \(\gamma \)-transverse and \(\gamma \)-parallel parts).

As we have already found in string theory (and will confirm directly from the supergravity equations below), here, as in the case of the AdS supermultiplets, the spectrum of the lowest eigenvalues of the light-cone energy operator is non-degenerate, i.e. different states have different values of \(E_0 \).

3.1 Massless field equations in plane-wave geometry

Our aim will be to find the explicit form of the type IIB equations of motion expanded to linear order in fluctuations near the plane-wave background (1.1),(1.2) and then to determine the corresponding light-cone energy spectrum. Let us first discuss the solutions of the simplest wave equations in the curved metric (1.1). The non-trivial components of the corresponding connection and curvature are \((g^- = f^2 x_+^2)\):
\[
\Gamma^m_{+l} = -f^2 x^l \delta^m_- , \quad \Gamma^m_{++} = f^2 x^l \delta^m_+ , \quad R_{l++} = -f^2 \delta_{lJ} , \quad R_{++} = 8f^2 .
\]
(3.8)

The massless scalar equation in the plane-wave geometry has the following explicit form:
\[
\Box \varphi = 0 , \quad \Box \equiv \frac{1}{\sqrt{-g}} \partial_m (\sqrt{-g} g^{mn} \partial_n) = 2 \partial^+ \partial^- + f^2 x_I^2 \partial^2_I + \partial^2_I .
\]
(3.9)

\(^8 \)The number of independent components are indicated in brackets and \(N_{d.o.f} \) is the total number of degrees of freedom.
After the Fourier transform in x^-, x^f corresponding to the light-cone description where x^+ is the evolution parameter

$$\varphi(x^+, x^-, x^f) = \int \frac{dp^+ dp^8}{(2\pi)^{9/2}} e^{i(p^+ x^- + p^f x^f)} \tilde{\varphi}(x^+, p^+, p^f)$$ \hspace{1cm} (3.10)$$

it becomes

$$(2p^+ P^- - t^2 p^+ p^2_\rho + p^2_\rho) \tilde{\varphi} = 0 ,$$ \hspace{1cm} (3.11)$$

where $-P^- = i\partial^-$ may thus be interpreted as the light-cone Hamiltonian appearing in the non-relativistic Schrodinger equation for the free harmonic oscillator in 8 dimensions with mass p^+ and frequency f:

$$H = -P^- = \frac{1}{2p^+}(p^2_\rho - m^2 \partial^2_\rho) , \quad m \equiv fp^+ .$$ \hspace{1cm} (3.12)$$

Introducing the standard creation and annihilation operators

$$a^I \equiv \frac{1}{\sqrt{2m}}(p^I - m\partial^I_\rho) , \quad \bar{a}^I \equiv \frac{1}{\sqrt{2m}}(p^I + m\partial^I_\rho) , \quad [\bar{a}^I, a^J] = \delta^{IJ} ,$$ \hspace{1cm} (3.13)$$

we get the following normal-ordered form of the Hamiltonian

$$H = \frac{1}{2}f(a^I \bar{a}^I + a^I \bar{a}^I + 4) ,$$ \hspace{1cm} (3.14)$$

where $4 = \frac{D-2}{2} , D = 10$. As usual, the spectrum of states (and thus the solution of (3.9)) is then found by acting by a^I on the vacuum satisfying $\bar{a}^I|0\rangle = 0$.

Below we will need the following simple generalization of this analysis: if a field φ satisfies the following equation

$$(\Box + 2ifc\partial^+)\varphi(x) = 0 ,$$ \hspace{1cm} (3.15)$$

where \Box is defined in (3.9) and c is an arbitrary constant, then the corresponding light-cone Hamiltonian is

$$H = -P^- = \frac{p^2_\rho - f^2 p^+ p^2_\rho + \partial^2_\rho}{2p^+} + fc = f(a^I \bar{a}^I + 4 + c) ,$$ \hspace{1cm} (3.16)$$

so that the lowest light-cone energy value is given by

$$E_0 = f\mathcal{E}_0 , \quad \mathcal{E}_0 = 4 + c .$$ \hspace{1cm} (3.17)$$

In what follows we shall discuss in turn the equations of motion for various fields of type IIB supergravity reducing them to the form (3.15) and thus determining the corresponding lowest energy values from (3.17).
3.2 Bosonic fields

Complex scalar field

The dilaton and R-R scalar are decoupled from the 5-form background (1.2), i.e. satisfy

$$\Box \phi = 0 , \quad \text{i.e.} \quad \mathcal{E}_0(\phi) = 4 . \quad (3.18)$$

Complex 2-form field

The corresponding nonlinear equations are [15]

$$D^m G_{m m_1 m_2} = P^m G^*_{m m_1 m_2} - \frac{i}{3} F_{m_1 ... m_5} G^{m_1 m_2 m_3}$$

where $G_{m m_1 m_2} = 3 \partial_{[m_1} B_{m_2] m_3}$ is the field strength of the complex 2-form field $B_{m n}$ and P_m is the complex scalar field strength. The aim is to derive the equation for small fluctuations $B_{m n} = b_{m n}$ in the plane-wave background (1.1),(1.2) (with $P_m = 0$) using the light-cone gauge

$$b_{-m} = 0 . \quad (3.20)$$

It is sufficient to analyze the equations (3.19) for the following values of the indices (m_1, m_2): $(-, I)$ and (I, J). We find

$$D^m G_{m I J} = \partial_\mu G_{\mu I J} + f^2 x^2 \partial^+ G_{-I J} , \quad D^m G_{m -I J} = \partial_\mu G_{\mu -I J} . \quad (3.21)$$

Taking into account that $F_{-m_1 ... m_5} = 0$ and the light-cone gauge condition (3.20) we find

$$\partial^+ b_{+I} + \partial^J b_{JI} = 0 , \quad (3.22)$$

which allows us to express the non-dynamical modes b_{+I} in terms of the physical ones b_{IJ}. Then

$$D^m G_{m I J} = \Box b_{IJ} . \quad (3.23)$$

Using that $F_{ij m_1 m_2 m_3} = 0$ (cf. (1.2)) and $F_{ijk m_1 m_2 m_3} G^{m_1 m_2 m_3} = 6 f^2 \epsilon_{ijkl} \partial^+ b_{kl}$ we get from (3.19),(3.23) the following equations for the physical modes b_{IJ}

$$\Box b_{ij'} = 0 , \quad \Box b_{ij} + 2 i f \epsilon_{ijkl} \partial^+ b_{kl} = 0 , \quad \Box b_{ij'} + 2 i f \epsilon_{ij'j''k''} \partial^+ b_{k''} = 0 . \quad (3.24)$$

The equation for $b_{ij'}$ implies that $\mathcal{E}_0(b_{ij'}) = 4$ (see (3.9),(3.17)). To diagonalize the remaining equations we decompose the antisymmetric tensor field b_{ij} into the irreducible tensors of the $so(4)$ algebra

$$b_{ij} = b_{ij}^{\oplus} + b_{ij}^{\ominus} , \quad b_{ij}^{\oplus, \ominus} = \pm \frac{1}{2} \epsilon_{ijkl} b_{kl}^{\oplus, \ominus} . \quad (3.25)$$

Then

$$\Box b_{ij}^{\oplus} = 0 , \quad \Box b_{ij}^{\ominus} = 0 . \quad (3.26)$$
The same relations are found for $b_{ij'}$. Then according to (3.15),(3.17) we find the following lowest energy values

$$\mathcal{E}_0(b_{ij}^0) = 2, \quad \mathcal{E}_0(b_{i'j'}^0) = 2, \quad \mathcal{E}_0(b_{ij'}^0) = 6, \quad \mathcal{E}_0(b_{ij}^0) = 6, \quad \mathcal{E}_0(b_{i'j'}^0) = 4.$$ \hspace{1cm} (3.27)

In the oscillator construction of section 2.4 (see (2.68),(2.71),(2.72)) the monomials of the second order in $\theta_{L,R}$ with $\mathcal{E}_0 = 4$ are $\theta_R \theta_L$, which have 16 complex components, i.e. these monomials can be identified with the ground state of $b_{ij'}$. The 2-nd and 6-th order monomials in θ_R, θ_L which can be identified with the ground states of $b_{ij}^0, b_{i'j'}^0, b_{ij'}^0, b_{ij}^0$ may be found in Table I.

Graviton and 4-form field

Since both the graviton and the 4-form field have non-trivial backgrounds, some of their fluctuation modes are mixed and need to be analyzed together. The full non-linear form of the corresponding equations of motion are9

$$R_{m\bar{n}} = \frac{1}{24} F_{m \bar{m} \cdots \bar{m}, \bar{n} \cdots \bar{n}} F_{\bar{m} \cdots \bar{m}, \bar{n} \cdots \bar{n}},$$ \hspace{1cm} (3.28)

$$F_{m \cdots \bar{m}, \bar{n} \cdots \bar{n}} = -\frac{1}{3!} \sqrt{-g} \epsilon_{m \cdots \bar{m}, \bar{n} \cdots \bar{n}} F_{m \cdots \bar{m}},$$ \hspace{1cm} (3.29)

$$D^m F_{m \bar{m} \cdots \bar{m}, \bar{n} \cdots \bar{n}} = 0, \quad F_{m \bar{m}, \bar{n} \cdots \bar{n}} = 5 \partial_{[m} A_{m \cdots \bar{m}]},$$ \hspace{1cm} (3.30)

Expanding near the plane wave R-R background

$$g_{m\bar{n}} \to g_{m\bar{n}} + h_{m\bar{n}}, \quad A_{m \bar{m} \cdots \bar{m}} \to A_{m \bar{m} \cdots \bar{m}} + a_{m \cdots \bar{m}},$$ \hspace{1cm} (3.31)

$$R_{m\bar{n}} \to R_{m\bar{n}} + r_{m\bar{n}}, \quad F_{m \bar{m} \cdots \bar{m}} \to F_{m \bar{m} \cdots \bar{m}} + f_{m \cdots \bar{m}},$$ \hspace{1cm} (3.32)

we shall choose the light-cone gauges for the fluctuations $h_{m\bar{n}}$ and $a_{m \cdots \bar{m}}$

$$h_{m \bar{n}} = 0, \quad a_{m \bar{m}, m \bar{m}} = 0.$$ \hspace{1cm} (3.33)

The linearized form of the Einstein equation is

$$r_{m\bar{n}} = \frac{1}{24} (F_{m \bar{m} \cdots \bar{m}, \bar{n} \cdots \bar{n}} F_{\bar{m} \cdots \bar{m}, \bar{n} \cdots \bar{n}} - 4F_{m \bar{m}, m \bar{m}, m \bar{m}, m \bar{m}} F_{m \bar{m}, m \bar{m}, m \bar{m}, m \bar{m}})$$ \hspace{1cm} (3.34)

where

$$r_{m\bar{n}} = \frac{1}{2} \left(-D^2 h_{m\bar{n}} + D_m D_k h_{k\bar{n}} + D_{\bar{k}} D_{\bar{n}} h_{m\bar{k}} - D_{\bar{m}} D_m h_{k\bar{n}} + 2R_{m \bar{m}, m \bar{m}, n \bar{n}} h_{m\bar{m}, n\bar{n}} + R_{k\bar{m}} h_{k\bar{n}} + R_{n \bar{n}} h_{k\bar{n}} \right).$$ \hspace{1cm} (3.35)

9The equation $DF_3 = 0$ follows of course from the self-duality of F_3, but we will find it useful to use this 2-nd order form of the equation for A_4 below. Note that we ignore the quadratic 2-form correction term in F_3 [15] as it does not contribute to the linear fluctuation equations here.
The \((-\cdotp -\cdotp)\) component gives \(r_{-\cdotp -\cdotp} = 0\) and thus we find the zero-trace condition for the transverse modes of the graviton
\[
h_{II} = 0. \quad (3.36)
\]
The \((-I)\) components of (3.34) gives \(r_{-I} = 0\) and this leads to the equation \(D_{m}h_{mI} = 0\) which allows us to express the non-dynamical modes in terms of the physical modes represented by the traceless tensor \(h_{IJ}\)
\[
h_{+I} = \frac{1}{\partial^+} \partial_J h_{IJ}. \quad (3.37)
\]
Next, we need to consider the self-duality equation for the 5-form field whose \((I_1I_2I_3I_4\cdotp \cdotp)\) component implies that \(a_{+I_1I_2I_3}\) is expressed in terms of the physical modes \(a_{IJKL}\)
\[
a_{+I_1I_2I_3} = -\frac{1}{\partial^+} \partial_J a_{IJ_1I_2I_3} \quad (3.38)
\]
In terms of \(a_{IJKL}\) the 5-form field strength self-duality condition becomes
\[
a_{I_1...I_4} = -\frac{1}{4!} \epsilon_{I_1...I_4J_1...J_4} a_{J_1...J_4}. \quad (3.39)
\]
The \((++\cdotp)\) component of (3.34) leads to the expression for \(h_{++}\) (after taking into account the above results): \(h_{++} = \frac{1}{\partial^+} \partial_I \partial_J h_{IJ}\). So far all is just as in the light-cone analysis near flat space.

Let us now do the 4 + 4 split of the 8 transverse directions. The \((i,j)\) components of (3.34) take the form
\[
r_{ij} = f \delta_{ij} \partial^+ a, \quad a \equiv \frac{1}{6} \epsilon_{i_1...i_4} a_{i_1...i_4}. \quad (3.40)
\]
Using that \(r_{ij} = -\frac{1}{\partial} \square h_{ij}\) we get
\[
\square h_{ij} + 2f \delta_{ij} \partial^+ a = 0. \quad (3.41)
\]
Thus there is a mixing between the trace of the \(SO(4)\) part of the graviton \(h_{ii}\) and the (pseudo) scalar part of the 4-form potential. From the \((i_1i_2i_3i_4)\) component of the \(DF = 0\) equation for the 4-form field in (3.30) we also find that
\[
\square a - 8f \partial^+ h_{ii} = 0. \quad (3.42)
\]
These equations are diagonalized by introducing the traceless graviton and the complex scalar
\[
h_{ij}^\perp \equiv h_{ij} - \frac{1}{4} \delta_{ij} h_{kk}, \quad h \equiv h_{ii} + ia, \quad \bar{h} \equiv h_{ii} - ia, \quad (3.43)
\]
so that we finish with
\[
\square h_{ij}^\perp = 0, \quad (\square - 8if \partial^+) h = 0, \quad (\square + 8if \partial^+) \bar{h} = 0. \quad (3.44)
\]
According to (3.17) this implies
\[E_0(h^\perp_{ij}) = 4, \quad E_0(h) = 0, \quad E_0(\bar{h}) = 8. \] (3.45)

The same results are found of course in the other four directions, i.e. with \(h_{ij} \to h_{ij}', \) and \(a \to a' = \frac{1}{6} \epsilon_{i'1 \ldots i'4} a_{i'1 \ldots i'4}, \) \(a' = -a. \)

Let us now look at “mixed” components. Eqs. (3.34) in \((ij')\) directions give
\[\Box h_{ij} + 4f \partial^+ a_{ij} = 0, \quad a_{ij} \equiv \frac{1}{3} \epsilon_{i1i2i3} a_{j1i2i3}. \] (3.46)

We have used the self-duality (3.39) implying \(\epsilon_{i2i3i4} a_{j1i2i3} = \epsilon_{i2i3i4} a_{j1i2i3}. \) In addition, the \((ij'j_1j_2')\) components of the \(DF=0\) equations (3.30) give
\[\Box a_{ij} - 4f \partial^+ h_{ij} = 0. \] (3.47)

Again there is a mixing between the components of the graviton and the 4-form field. These equations are diagonalized by defining the complex tensor
\[h_{ij}' \equiv h_{ij} + ia_{ij}', \quad \bar{h}_{ij}' \equiv h_{ij} - ia_{ij}', \] (3.48)
\[(\Box - 4f \partial^+) h_{ij}' = 0, \quad (\Box + 4f \partial^+) \bar{h}_{ij}' = 0, \] (3.49)
so that the corresponding lowest eigenvalues of the energy are
\[E_0(h_{ij}') = 2, \quad E_0(\bar{h}_{ij}') = 6. \] (3.50)

Finally, for \(a_{ij'i''j'}\) satisfying, according to (3.39), the constraint
\[a_{ij'i''j'} = -\frac{1}{4} \epsilon_{ijkl} \epsilon_{i'j'k'l'} a_{k'lk'i'}, \] (3.51)
we find from (3.30) that
\[\Box a_{ij'i''j'} = 0, \quad \text{i.e.} \quad E_0(a_{ij'i''j'}) = 4. \] (3.52)

Note that the self-dual tensor field \(a_{ij'i''j'}\) is reducible with respect to the \(SO(4) \times SO'(4)\) group. It can be decomposed into the irreducible parts \(a_{ij'i''j'}^{\oplus}, a_{ij'i''j'}^{\ominus} \) satisfying
\[a_{ij'i''j'}^{\oplus} = \frac{1}{2} \epsilon_{ijkl} a_{kl'i''j'}, \quad a_{ij'i''j'}^{\ominus} = -\frac{1}{2} \epsilon_{ijkl} a_{kl'i''j'}, \] (3.53)
\[a_{ij'i''j'}^{\ominus} = \frac{1}{2} \epsilon_{ijkl} a_{kl'i''j'}, \quad a_{ij'i''j'}^{\oplus} = \frac{1}{2} \epsilon_{ijkl} a_{kl'i''j'}. \] (3.54)

The \(SO(4) \times SO'(4)\) labels of these irreducible parts may be found in Table 1.
3.3 Fermionic fields

Let us now extend the above analysis to the fermionic fields of type IIB supergravity.

Spin 1/2 field

The equation of motion for the two Majorana-Weyl negative chirality spin 1/2 fields combined into one 32-component Weyl spinor field Λ [15]

$$ (\Gamma^m D_m - \frac{i}{480} \Gamma^{m_1 \cdots m_5} F_{m_1 \cdots m_5}) \Lambda = 0, $$

(3.55)
can be rewritten in terms of the complex-valued 16-component spinor field λ (see Appendix for notation)

$$ (\gamma^m D_m - \frac{i}{480} \gamma^{m_1 \cdots m_5} F_{m_1 \cdots m_5}) \lambda = 0, \quad \Lambda = \begin{pmatrix} 0 \\ \lambda^\alpha \end{pmatrix}. $$

(3.56)

Here $\gamma^m = e^m_\mu \gamma^\mu$ where e^m_μ is the (inverse) vielbein matrix. We use the following vielbein basis corresponding to the metric (1.1) ($e^\mu = e^\mu_\mu dx^\mu$)

$$ e^+ = dx^+, \quad e^- = dx^- - \frac{f^2}{2} x^I dx^I, \quad e^I = dx^I. $$

(3.57)

The spinor covariant derivative $D_m = \partial_m + \frac{i}{4} \omega^\mu_m \bar{\gamma}^\mu$ then takes the following explicit form

$$ D_- = \partial_-, \quad D_I = \partial_I, \quad D_+ = \partial_+ - \frac{f^2}{2} x^I \bar{\gamma}^+ I. $$

(3.58)

Taking into account the background value of the 5-form field (1.2) we get

$$ \left[\gamma^+ (\partial^- + \frac{f^2}{2} x_I^2 \partial^+ - i f \bar{\Pi}) + \gamma^- \partial^+ + \gamma^I \partial^I \right] \lambda = 0, $$

(3.59)

where we used that

$$ \gamma^{m_1 \cdots m_5} F_{m_1 \cdots m_5} = 480 f^{+} \bar{\Pi}. $$

(3.60)

Decomposing λ as

$$ \lambda = \lambda^\oplus + \lambda^\ominus, \quad \lambda^\oplus = \frac{1}{2} \bar{\gamma}^- \gamma^+ \lambda, \quad \lambda^\ominus = \frac{1}{2} \bar{\gamma}^+ \gamma^- \lambda, $$

(3.61)

we find that in the light-cone description λ^\ominus is non-dynamical mode expressed in terms of the physical mode λ^\oplus

$$ \lambda^\oplus = \frac{1}{2\partial^+} \bar{\gamma}^I \partial^I \gamma^+ \lambda^\oplus, \quad (\Box - 2 i f \bar{\Pi} \partial^+) \lambda^\oplus = 0. $$

(3.62)

Decomposing λ^\oplus further as (cf. (2.63))

$$ \lambda^\oplus = \lambda^\oplus_R + \lambda^\oplus_L, \quad \lambda_R \equiv \frac{1 + \bar{\Pi}}{2} \lambda, \quad \lambda_L \equiv \frac{1 - \bar{\Pi}}{2} \lambda, $$

(3.63)
we get the diagonal equations of the desired form (3.15)

\[(\square - 2if\partial^+)\lambda_R^{\oplus} = 0, \quad (\square + 2if\partial^+)\lambda_L^{\oplus} = 0, \quad (3.64)\]

Then from (3.17) we conclude that the lowest values of the light-cone energy for the fields \(\lambda_R^{\oplus}, \lambda_L^{\oplus}\) are

\[E_0(\lambda_R^{\oplus}) = 3, \quad E_0(\lambda_L^{\oplus}) = 5. \quad (3.65)\]

Spin 3/2 field

The equation for the positive chirality gravitino in the 32-component notation is\(^{10}\)

\[
\Gamma^{mn\cdots m_2}(D_{m_1} + \frac{i}{960} \gamma_{n_1\cdots n_5} F_{n_1\cdots n_2} \Gamma_{m_1}) \Psi_{m_2} = 0. \quad (3.66)
\]

In the 16-component notation it becomes

\[
\bar{\gamma}^{mn}(D_{m_1} + \frac{i}{960} \gamma_{n_1\cdots n_5} F_{n_1\cdots n_2} \bar{\gamma}_{m_1}) \psi_{m_2} = 0, \quad \psi_m = \begin{pmatrix} \psi_m^\alpha \\ 0 \end{pmatrix}. \quad (3.67)
\]

This can be rewritten as

\[
\bar{\gamma}^{mn}D_m \psi_n - D_m \psi - \frac{i}{960} \bar{\gamma}^{mn} \gamma^{n_1\cdots n_5} F_{n_1\cdots n_2} \bar{\gamma}_m \psi_n = 0, \quad \psi \equiv \bar{\gamma}^{mn} \psi_m. \quad (3.68)
\]

Making use of (3.60) we get

\[
\bar{\gamma}^{mn}D_m \psi_n - D_m \psi - \frac{if}{2} \bar{\gamma}^{mn} \gamma^{n_1\cdots n_5} \psi_n = 0, \quad (3.69)
\]

and impose the light-cone gauge for the gravitino field

\[\psi_- = 0. \quad (3.70)\]

Eq. (3.69) for \(m = -\) then gives

\[\psi = \bar{\gamma}^+ \psi_+ + \bar{\gamma}^I \psi_I = 0, \quad \text{i.e.} \quad \gamma^+ \bar{\gamma}^I \psi_I = 0. \quad (3.71)\]

As a consequence,

\[
\bar{\gamma}^I \Pi \gamma^+ \bar{\gamma}_I \psi_I = 2\Pi \bar{\gamma}^+ (\delta_{ij} - \gamma_i \bar{\gamma}_j) \psi_J, \quad \bar{\gamma}^I \Pi \gamma^+ \bar{\gamma}_I \psi_I = -2\Pi \bar{\gamma}^+ (\delta_{ij} - \gamma_i \bar{\gamma}_j) \psi_I. \quad (3.72)
\]

With the help of these relations the \(m = i\) component of (3.69) becomes

\[
[\bar{\gamma}^+(\partial^- + \frac{f^2}{2} x_i^2 \partial^+) + \bar{\gamma}^- \partial^+ + \bar{\gamma}^I \partial_I] \psi_i - if \Pi \bar{\gamma}^+ (\delta_{ij} - \gamma_i \bar{\gamma}_j) \psi_j = 0. \quad (3.73)
\]

\(^{10}\)The 5-form term in the gravitino equation was missing in [15] but its presence is implied by the supersymmetry transformations given there and in [19]. This term was explicitly included in [10].
Decomposing the gravitino field into the physical mode ψ^{\oplus}_i and non-dynamical mode ψ^{\ominus}_i as in (3.61) we get from eq. (3.73) (acting by γ^+ or by γ^-)

$$\Box \psi^{\oplus}_i - 2i f (\delta_{ij} - \gamma_i \gamma_j) \partial^+ \psi^{\oplus}_j = 0, \quad \psi^{\ominus}_i = -\frac{1}{2\partial^+} \gamma^+ (\gamma^j \partial_j) \psi^{\ominus}_i. \quad (3.74)$$

The other non-dynamical mode ψ_+ (split into ψ^{\ominus}_i and ψ^{\oplus}_i as in (3.61)) is found from (3.71) and the $m_+ = \text{component}$ of the gravitino equation (3.69)

$$\psi^{\ominus}_+ = -\frac{1}{2} \partial^+ \gamma^+ \bar{\gamma}^I \partial_I \psi^{\ominus}_i, \quad \psi^{\oplus}_+ = \frac{1}{2} \partial^+ \gamma^+ \bar{\gamma}^I \partial_I \psi^{\ominus}_i. \quad (3.75)$$

Decomposing the dynamical gravitino mode ψ^{\oplus}_i into the γ-transverse and γ-parallel parts as

$$\psi^{\ominus\perp}_i \equiv (\delta_{ij} - \frac{1}{4} \gamma_i \bar{\gamma}_j) \psi^{\oplus}_j, \quad \psi^{\ominus\parallel}_i \equiv \bar{\gamma}_i \psi^{\ominus}_i \quad (3.76)$$

we find

$$\Box - 2i f \Pi \partial^+ \psi^{\ominus\perp}_i = 0, \quad \Box - 6i f \bar{\Pi} \partial^+ \psi^{\ominus\parallel}_i = 0. \quad (3.77)$$

As in the spin $1/2$ case, to diagonalize these equations we introduce (cf. (3.63))

$$\psi^{\ominus\perp}_{iR} = \frac{1 + \Pi}{2} \psi^{\ominus\perp}_i, \quad \psi^{\ominus\perp}_{iL} = \frac{1 - \Pi}{2} \psi^{\ominus\perp}_i, \quad \psi^{\ominus\parallel}_R = \frac{1 + \bar{\Pi}}{2} \psi^{\ominus\parallel}, \quad \psi^{\ominus\parallel}_L = \frac{1 - \bar{\Pi}}{2} \psi^{\ominus\parallel}. \quad (3.78)$$

This gives finally

$$\Box - 2i f \partial^+ \psi^{\ominus\perp}_{iR} = 0, \quad \Box + 2i f \partial^+ \psi^{\ominus\perp}_{iL} = 0, \quad \Box - 6i f \partial^+ \psi^{\ominus\parallel}_R = 0, \quad \Box + 6i f \partial^+ \psi^{\ominus\parallel}_L = 0. \quad (3.79)$$

These equations give, according to (3.15), (3.17) the following values of the minimal energy \mathcal{E}_0 for the respective physical gravitino modes

$$\mathcal{E}_0(\psi^{\ominus\perp}_{iR}) = 3, \quad \mathcal{E}_0(\psi^{\ominus\perp}_{iL}) = 5, \quad \mathcal{E}_0(\psi^{\ominus\parallel}_R) = 1, \quad \mathcal{E}_0(\psi^{\ominus\parallel}_L) = 7. \quad (3.80)$$

Similar analysis applies to the gravitino components ψ_ν. In this case we get (cf. (3.74))

$$\Box \psi^{\ominus}_\nu + 2i f (\delta_{\nu\nu'} - \gamma_\nu \bar{\gamma}_{\nu'}) \partial^+ \psi^{\ominus}_\nu = 0, \quad (3.81)$$

and as a result

$$\mathcal{E}_0(\psi^{\ominus\perp}_{\nu R}) = 5, \quad \mathcal{E}_0(\psi^{\ominus\perp}_{\nu L}) = 3. \quad (3.82)$$

As for the γ-parallel part $\psi^{\ominus\parallel}_\nu = \bar{\gamma}_\nu \psi^{\ominus}_\nu$ of ψ_ν, it does not represent an independent dynamical mode being related to $\psi^{\ominus\parallel}_\nu$ through the equation (3.71), i.e. $\bar{\gamma}^I \psi^{\ominus}_i = 0$.

3.4 Light-cone gauge superfield formulation of type IIB supergravity on the plane wave background

Before proceeding, let us first summarize the results of the above analysis in the two Tables: one for the bosonic modes, and another for the fermionic modes.
TABLE I. Spectrum of bosonic physical on-shell fields

\mathcal{E}_0	Field and $N_{d.o.f}$	Energy spectrum $k \geq 0$	$SO(4) \times SO'(4)$ labels	Term in superfield expansion
0	$h^{(2)}$	$(0, 0) \times (0, 0)$	θ^4_R	
2	$h_{ij'}^{(32)}$	$(1, 0) \times (1, 0)$	$\theta_R \gamma^{-ik} \theta_R \gamma^{-j'k} \theta_L$	
2	$\bar{\phi}_{ij}^{(6)}$	$(1, 1) \times (0, 0)$	$\theta^4_R (\theta^{\mu}_L \pi^{\nu} \gamma^{-ij} \theta_R)$	
2	$\bar{b}_{ij'}^{(6)}$	$(0, 0) \times (1, 1)$	$\theta^4_R (\theta^{\mu}_L \pi^{\nu} \gamma^{-ij} \theta_R)$	
2	$b_{ij'}^{(6)}$	$(1, 1) \times (0, 0)$	$\theta_R \pi^{\nu} \gamma^{-ij} \theta_R$	
2	$\tilde{b}_{ij'}^{(6)}$	$(0, 0) \times (1, -1)$	$\theta_R \pi^{\nu} \gamma^{-ij} \theta_R$	
4	$\phi^{(2)}$	$(0, 0) \times (0, 0)$		1
4	$\tilde{\phi}^{(2)}$	$(0, 0) \times (0, 0)$		$\theta^4_R \theta^4_R$
4	$h_{ij}^{(9)}$	$(2, 0) \times (0, 0)$	$\theta_R \gamma^{-k(i \theta_R \theta_L \gamma^{j})} \theta_L$	
4	$h_{ij'}^{(9)}$	$(0, 0) \times (2, 0)$	$\theta_R \gamma^{-k'(i' \theta_R \theta_L \gamma^{j'})} \theta_L$	
4	$a_{ij'}^{(9)}$	$(1, 1) \times (0, 0)$	$\theta_R \pi^{\nu} \gamma^{-ij} \theta_R \pi^{\nu} \gamma^{-ij} \theta_L$	
4	$\tilde{a}_{ij'}^{(9)}$	$(1, 1) \times (1, -1)$	$\theta_R \pi^{\nu} \gamma^{-ij} \theta_R \pi^{\nu} \gamma^{-ij} \theta_L$	
4	$b_{ij'}^{(32)}$	$(1, 0) \times (0, 0)$		$\theta_R \gamma^{-ij} \theta_L$
6	$b_{ij'}^{(6)}$	$(1, 1) \times (0, 0)$	$\theta_R \pi^{\nu} \gamma^{-ij} \theta_L$	
6	$\tilde{b}_{ij'}^{(6)}$	$(0, 0) \times (1, 1)$		$\theta^4_R (\theta_R \pi^{\nu} \gamma^{-ij} \theta_R)$
TABLE II. Spectrum of fermionic physical on-shell fields

\mathcal{E}_0	Field and $N_{d.o.f}$	Energy spectrum $k \geq 0$	$SO(4) \times SO'(4)$ labels	Term in superfield expansion
1	$\psi_R^\| (8)$	k+1	$(\frac{1}{2}, -\frac{1}{2}) \times (\frac{1}{2}, \frac{1}{2})$	θ^3_R
1	$\psi_L^{\|} (8)$	k+1	$(\frac{1}{2}, \frac{1}{2}) \times (\frac{1}{2}, -\frac{1}{2})$	$\theta^2_R \theta_L$
3	$\psi_{LR}^{\|} (24)$	k+3	$(\frac{3}{2}, -\frac{1}{2}) \times (\frac{1}{2}, \frac{1}{2})$	$(\theta_R \gamma^{-ij} \theta_R \gamma^j \theta_L)$
3	$\psi_{IR}^{\|} (24)$	k+3	$(\frac{1}{2}, \frac{1}{2}) \times (\frac{3}{2}, -\frac{1}{2})$	$(\theta_R \gamma^{-ij} \theta_R \gamma^j \theta_L)$
3	$\psi_{IL}^{\|} (24)$	k+3	$(\frac{3}{2}, \frac{1}{2}) \times (\frac{1}{2}, -\frac{1}{2})$	$\theta^2_R \theta_L^2$
3	$\psi_{IR}^{\|} (24)$	k+3	$(\frac{1}{2}, -\frac{1}{2}) \times (\frac{3}{2}, \frac{1}{2})$	$\theta^2_R \theta_L^2$
3	$\psi_{IL}^{\|} (24)$	k+3	$(\frac{1}{2}, -\frac{1}{2}) \times (\frac{1}{2}, \frac{1}{2})$	θ_R
3	$\lambda_R^\| (8)$	k+3	$(\frac{1}{2}, -\frac{1}{2}) \times (\frac{1}{2}, -\frac{1}{2})$	$\theta_R \theta_L^3$
5	$\lambda_L^\| (8)$	k+5	$(\frac{1}{2}, \frac{1}{2}) \times (\frac{1}{2}, -\frac{1}{2})$	θ_L
5	$\lambda_R^{\|} (8)$	k+5	$(\frac{1}{2}, -\frac{1}{2}) \times (\frac{1}{2}, \frac{1}{2})$	$\theta_R \theta_L^4$
5	$\psi_{LR}^{\|} (24)$	k+5	$(\frac{3}{2}, -\frac{1}{2}) \times (\frac{1}{2}, -\frac{1}{2})$	$(\theta_L \gamma^{-ij} \theta_L \gamma^j \theta_R)$
5	$\psi_{IR}^{\|} (24)$	k+5	$(\frac{1}{2}, -\frac{1}{2}) \times (\frac{3}{2}, \frac{1}{2})$	$(\theta_L \gamma^{-ij} \theta_L \gamma^j \theta_R)$
5	$\psi_{IL}^{\|} (24)$	k+5	$(\frac{3}{2}, -\frac{1}{2}) \times (\frac{1}{2}, \frac{1}{2})$	$\theta^2_R \theta_L^3$
5	$\psi_{IR}^{\|} (24)$	k+5	$(\frac{3}{2}, \frac{1}{2}) \times (\frac{1}{2}, -\frac{1}{2})$	$\theta^2_R \theta_L^3$
7	$\psi_{LR}^{\|} (8)$	k+7	$(\frac{1}{2}, \frac{1}{2}) \times (\frac{1}{2}, -\frac{1}{2})$	$\theta_R^4 \theta_L$
7	$\psi_{IR}^{\|} (8)$	k+7	$(\frac{1}{2}, -\frac{1}{2}) \times (\frac{1}{2}, \frac{1}{2})$	$\theta_R^4 \theta_L$

In Tables I,II in the \mathcal{E}_0 column we indicate lowest eigenvalues of the light-cone energy operator of the corresponding field. The energy spectrum of higher “Kaluza-Klein” modes (obtained by further action by the bosonic zero-mode creation operators a_0^I) is labeled by k, where k= 0 corresponding to the ground state. Note, however, that these are not the usual Kaluza-Klein-type modes because the action of the symmetry algebra of the plane wave background mixes modes with different values of k. This
algebra can be thus viewed as a spectrum generating algebra for the “Kaluza-Klein” modes.

In the fourth column we have given the Gelfand-Zetlin labels of the corresponding $SO(4) \times SO'(4)$ representations. In the last column we indicated the monomials in fermionic zero modes θ_L, θ_R which accompany the corresponding field components in the θ-expansion of the light-cone superfield discussed below.

In the rest of this section we shall present the light-cone gauge superfield description of type IIB supergravity in the plane wave R-R background. As in flat space, the equations for the physical modes we have found above can be summarized in a light-cone superfield form. The corresponding unconstrained scalar superfield $\Phi(x, \theta_0)$ will satisfy the “massless” equation, invariant under the dilatational invariance in superspace.

Finding even the quadratic part of the action for fluctuations of the supergravity fields in a curved background is a complicated problem.¹¹ We could in principle use the covariant superfield description of type IIB supergravity [21], starting with linearized expansion of superfields, imposing light-cone gauge on fluctuations and then solving the constraints to eliminate non-physical degrees of freedom in terms of physical ones. That would be quite tedious. The light-cone gauge approach is self-contained, i.e. does not rely upon existence of a covariant description, and provides a much shorter route to final results.

There are two methods of finding the light-cone gauge formulation of the type II supergravity. One [22] reduces the problem of constructing a new (light-cone gauge) dynamical system to finding a new solution of the commutation relations of the defining symmetry algebra. This method of Dirac was applied to the case of supergravity in $AdS_5 \times S^5$ and $AdS_3 \times S^3$ in [23] and [24].¹² The second method one is based on finding the equations of motion by using the Casimir operators of the symmetry algebra. Here we shall follow this second approach.

The basic light-cone gauge superfield will be denoted as $\Phi(x, \theta)$ and will have the following expansion in powers of the Grassmann coordinates θ.

\[
\Phi(x, \theta) = \partial^+ A + \theta^a \partial^+ \psi_a + \theta^{a_1} \theta^{a_2} \partial^+ A_{a_1 a_2} + \theta^{a_1} \theta^{a_2} \theta^{a_3} \psi_{a_1 a_2 a_3} + \theta^{a_1} \ldots \theta^{a_4} A_{a_1 \ldots a_4} - (\epsilon \theta^5)_{a_1 a_2 a_3} \frac{1}{\partial^+} \psi_{a_1 a_2 a_3}^* - (\epsilon \theta^6)_{a_1 a_2} \frac{1}{\partial^+} A_{a_1 a_2}^* + (\epsilon \theta^8)_{a} \frac{1}{\partial^+} \psi_a^* + (\epsilon \theta^8) \frac{1}{\partial^+} A^*,
\]

(3.83)

¹¹In the case of the $AdS_5 \times S^5$ background in covariant gauge it was solved in [20].

¹²The application of this method to a superfield formulation of interaction vertices of $D = 11$ supergravity may be found in [25] (see also [26] for various related discussions).

¹³Here we omit the index 0 on the light-cone fermionic zero-mode variable θ_0 denoting it simply as θ. To simplify the expressions for the superfield expansion and its reality constraint we solve the light-cone gauge constraint $\gamma^+ \theta = 0$ in terms of eight fermions θ^a ($a = 1, \ldots, 8$) by using the representation for γ^0 in (A.8) and $\gamma^3 = \text{diag}(1_8, -1_8)$.

24
where $\epsilon^{a_1...a_8}$ is the spinorial Levi-Civita tensor, i.e.

$$(\epsilon \theta^{8-n})_{a_1...a_n} \equiv \frac{1}{(8-n)!} \epsilon^{a_1...a_n a_{n+1}...a_8} \theta^{a_{n+1}}...\theta^{a_8}. \quad (3.84)$$

Here we use the following Hermitean conjugation rule: $(\theta_1 \theta_2)^\dagger = \theta_2^\dagger \theta_1^\dagger$. This superfield has a certain reality property: the component field for the monomial θ^n is complex conjugated to the one for θ^{8-n}. This reality constraint can be written in the superfield notation as

$$\Phi(x, \theta) = \int d^8 \theta^\dagger e^{i(\partial^+)^{-1}\theta \theta^\dagger} (\partial^+)^4 (\Phi(x, \theta))^\dagger. \quad (3.85)$$

In what follows we will use again the 16-component spinor $\theta^\alpha = (\theta^a_0)$. Decomposing it into θ^R and θ^L as in (2.63) we can expand the superfield Φ in terms of these anticommuting coordinates.

The expansion in this basis can be used to identify the superfield components with physical on-shell modes of type IIB supergravity fields found earlier in this section. The corresponding monomials in θ^R and θ^L are shown in Tables I,II. The dilaton field ϕ is the lowest superfield component, while its complex conjugate $\bar{\phi}$ appears in the last component multiplying $\theta^R \theta^L$. As another example, consider the antisymmetric 2-nd rank complex tensor field modes b^{\oplus}_{ij} and b^{\ominus}_{ij}. According to Table I, they correspond to the monomials $\theta^R \pi^{\oplus \gamma_{ij}} \theta^L$ and $\theta^R \pi^{\ominus \gamma_{ij}} \theta^L$ where we used the following notation for the self-dual projectors ($\pi^{\oplus \gamma_{ij}} = \pi_{ij;}^{\oplus} \gamma_{kl}$)

$$\pi^{\oplus}_{ij;kl} = \frac{1}{4} (\delta_{ik} \delta_{jl} - \delta_{il} \delta_{jk} + \epsilon_{ijkl}), \quad \pi^{\ominus}_{ij;kl} = \frac{1}{4} (\delta_{ik} \delta_{jl} - \delta_{il} \delta_{jk} - \epsilon_{ijkl}). \quad (3.86)$$

Let us now determine the equations of motion for the scalar superfield Φ. For this we will need the explicit form of the second-order Casimir operator for the plane wave superalgebra described in section 2.3

$$C = 2P^+ P^- + P^I P^I + f^2 J^I J^I - \frac{1}{2} f \bar{Q}^+ \Pi \gamma^+ Q^+. \quad (3.87)$$

The representations of the generators of the plane-wave superalgebra in terms of differential operators acting of $\Phi(x, \theta)$ may be found by using the standard supercoset method (cf. (2.37)-(2.39))

$$P^+ = \partial^+, \quad P^- = \partial^-, \quad P^I = \cos f x^+ \partial^I + f \sin f x^+ x^I \partial^+, \quad J^I J = x^I \partial^I - x^I \partial^I + \frac{1}{2} \partial_\theta \gamma^{IJ} \theta, \quad (3.89)$$

In this section we use the antihermitean representation for the generators P^μ. The corresponding commutation relations in this representation can be found from (2.49)-(2.59) by the substitutions $P^\mu \rightarrow -i P^\mu$.

25
\[Q^+ = -2i \partial^+ \gamma^- e^{ix^+ \Pi} \theta, \quad \bar{Q}^+ = \frac{1}{2} \gamma^- e^{-ix^+ \gamma^+} \partial_\theta, \quad \{ \partial_\theta^\alpha, \theta^\beta \} = \frac{1}{2} (\gamma^+ \gamma^-)^{\alpha \beta}. \tag{3.90} \]

The projector in the r.h.s. of the definition of the fermionic derivatives \(\partial_\theta \) in (3.90) reflects the fact that \(\theta \) satisfies the light-cone gauge condition. Plugging these expressions into (3.87) we find

\[\mathcal{C} = \Box - 2i f \partial^+ \theta \bar{\Pi} \partial_\theta, \tag{3.91} \]

where \(\Box \) was defined in (3.9).

In a general curved background the equations of motion for the superfield \(\Phi \) take the form \((\mathcal{C} - C_0) \Phi = 0 \), where the constant term \(C_0 \) should be fixed by an additional requirement. For example, in the case of the AdS space, \(C_0 \) is expressed in terms of constant curvature of the background. In the present case of the plane wave background the \(C_0 \) can be fixed by using the so called "sim" invariance – the invariance under the original plane-wave superalgebra supplemented by the scale-invariance condition, i.e. by the condition of dilatational invariance in superspace [12].

The generator \(D \) of dilatations in the light-cone superspace (\(\lambda = \text{const} \))

\[\delta x^+ = 0, \quad \delta x^- = 2\lambda x^-, \quad \delta x^I = \lambda x^I, \quad \delta \theta = \lambda \theta, \tag{3.92} \]

has the obvious form

\[D = 2x^- \partial^+ + x^I \partial^I + \theta \partial_\theta. \tag{3.93} \]

The requirement of sim invariance of the superfield equations of motion amounts to the condition \([D, \mathcal{C}] \Phi = 0\). Since, as it is easy to see from (3.91), \([D, \mathcal{C}] = -2 \mathcal{C}\) it follows then that the only sim-invariant equation of motion is simply

\[\mathcal{C} \Phi = 0, \quad \text{i.e.} \quad (\Box - 2i f \partial^+ \theta \bar{\Pi} \partial_\theta) \Phi(x, \theta) = 0. \tag{3.94} \]

The corresponding quadratic term in the superfield light-cone gauge action is then

\[S_{l.c.} = \frac{1}{2} \int d^{10} x d^8 \theta \, \Phi(x, \theta)(\Box - 2i f \partial^+ \theta \bar{\Pi} \partial_\theta) \Phi(x, \theta). \tag{3.95} \]

Splitting the fermionic coordinate \(\theta \) into \(\theta_R \) and \(\theta_L \) parts as in (2.63) one can rewrite (3.94) as

\[\left[\Box + 2i f \partial^+ (\theta^R \partial_\theta^L - \theta^L \partial_\theta^R) \right] \Phi(x, \theta_R, \theta_L) = 0. \tag{3.96} \]

This remarkably simple equation summarizes all the field equations for the physical fluctuation modes of type IIB supergravity fields in the present R-R plane-wave background (i.e. the components of \(\Phi \) (3.83)) which were derived earlier in this section. In particular,

\[^{15}\text{In the usual 4 dimensions scale transformations (dilatations) combined with the Poincare group form the maximal subgroup of the conformal group, or similitude group SIM(3,1). Dilatation invariance ensures masslessness, so the direct generalization to the supergroup case should give a criterion of masslessness for the superfields.} \]
the universal expression for the lowest values of the light-cone energy operator can be found by applying (3.15),(3.17) to the case of the equation (3.96):

\[E_0 = f(4 + \theta_L \partial_{\theta_L} - \theta_R \partial_{\theta_R}). \]

(3.97)

This reproduces the values of \(E_0 \) in Tables I,II.

4 Concluding Remarks

In this paper we presented the quantization of type IIB string theory in the maximally supersymmetric R-R plane-wave background of [6] whose light-cone gauge action was found in [5]. We explicitly constructed the quantum light-cone Hamiltonian and the string representation of the corresponding supersymmetry algebra. The superstring Hamiltonian has the standard “harmonic-oscillator” form, i.e. is quadratic in creation/annihilation operators in all 8 transverse directions, so that its spectrum can be readily obtained.

We have discussed in detail the structure of the zero-mode sector of the theory, giving it the space-time field-theoretic interpretation by establishing the precise correspondence between the lowest-lying “massless” string states and the type IIB supergravity fluctuation modes in the plane-wave background.

The “massless” (supergravity) part of the spectrum has certain similarities with the supergravity spectrum found [10] in the case of another maximally supersymmetric type IIB background – \(AdS_5 \times S^5 \) [15] (this may not be completely surprising given that the two backgrounds are related by a special limit [7]). In particular, the light-cone energy spectrum of a superstring in the R-R plane-wave background is discrete. As in the \(AdS \) case [27], the discreteness of the spectrum depends on a particular natural choice of the boundary conditions. In the present case they are the same as in the standard harmonic oscillator problem: the square-integrability of the wave functions in all 8 transverse spatial directions.

An interesting feature of the plane-wave string spectrum is its non-trivial dependence on \(p^+ \). This is possible due to the fact that the generator \(P^+ \) commutes with all other generators of the symmetry superalgebra. We defined the spectrum in terms of the light-cone energy \(H = -P^- \), which does not depend on \(p^+ \) for the massless (zero-mode) states but does depend on it for the string oscillator modes. In general, one may define the string spectrum in curved space in terms of the second-order Casimir operator of the corresponding superalgebra. In the present case the eigen-values of this operator depend on discrete quantum numbers as well as on \(p^+ \) (through the dimensionless combination \(m = 2\pi \alpha' p^+ f \) with the curvature scale \(f \) and the string scale \(\alpha' \)).

Given the exact solvability of this plane-wave string theory, there are many standard flat-space string calculations that can be straightforwardly repeated in this case. One can determine the vertex operators for the “massless” superstring states and compute the 3-point and 4-point correlation functions, following the same strategy as in the light-cone
Green-Schwarz approach to flat superstring theory.\footnote{Note that in the present plane-wave case we do not have the standard S-matrix set-up: the string spectrum is discrete in all 8 transverse directions, i.e. the string states with non-zero p^+ are localized near $x_I = 0$ and cannot escape to infinity.} It would be interesting to compare (the $\alpha' \to 0$ limits of) the plane-wave string results to the corresponding correlation functions in the type IIB supergravity on $AdS_5 \times S^5$. One can also find possible D-brane configurations, by imposing open-string boundary conditions in some directions and repeating the analysis of section 2.\footnote{One obvious candidate is a D-string along x^9 direction. For a light-cone gauge description of D-branes in flat space see \cite{28}.}

Let us comment on some limits of this plane-wave string theory. It depends on the two mass parameters which enter the Hamiltonian (2.33): the curvature scale f and the string scale $(\alpha' p^+)^{-1}$. The limit $f \to 0$ is the flat-space limit: the discrete spectrum then becomes the standard type IIB flat-space string spectrum (in the same sense in which the harmonic oscillator spectrum reduces to the spectrum of a free particle in the zero-frequency limit). The $f \to \infty$ limit is not special: it corresponds simply to a rescaling of the light-cone energy and p^+ (recall that f in (1.1) can be set to 1 by a rescaling of x^+ and x^-).

The limit $\alpha' p^+ \to 0$ corresponds to the supergravity in the plane-wave background: the string Hamiltonian (2.21),(2.31),(2.32) becomes infinite on all states that contain non-zero string oscillators, i.e. it effectively reduces to E_0 (2.31) restricted to the subspace of the zero-mode states. The opposite (“zero-tension”) limit $\alpha' p^+ \to \infty$ is also regular: it follows from (2.33) that here we are left with

$$H_{\alpha' p^+ \to \infty} = f \left[(a_I^0 \bar{a}_I^0 + 2 \theta_0 \gamma^- \Pi \theta_0 + 4) + \sum_{I=1,2} \sum_{n=1}^{\infty} (a_n^{II} \bar{a}_n^{II} + \eta_n \bar{\gamma}^- \bar{\eta}_n^-) \right]. \quad (4.1)$$

The constraint (2.36) remains the same as it does not involve α'. This provides an interesting example of a non-trivial “null-string” spectrum which is worth further study. Note, in particular, that here the energies do not grow with the oscillator level number n, i.e. there is no Regge-type trajectories.\footnote{Note that the parameter f may be viewed as a “regularization” introduced to define a non-trivial tensionless string limit of the flat superstring.}

Let us now compare the plane-wave string spectrum with the expected form of the light-cone spectrum of the superstring in $AdS_5 \times S^5$ background. In general, the spectrum of the light-cone Hamiltonian $\mathcal{H} = -\mathcal{P}^-$ in $AdS_5 \times S^5$ \cite{9} should depend on two characteristic mass parameters: the curvature scale R^{-1} (the inverse AdS radius)\footnote{In the context of the standard AdS/CFT the radius R is related to the ‘t Hooft coupling λ by \cite{29} $R = \lambda^{1/4} \sqrt{\alpha'}.\!$} which is the analog of f in (1.1) and the string mass scale $\sqrt{\alpha'}$. In the context of the standard AdS/CFT correspondence the coordinates should be rescaled so that R is always combined with α' into the effective dimensionless tension parameter $T = R^2 T = \frac{R^2}{2 \pi \alpha'} = \frac{\lambda}{2 \pi}$. In contrast to the plane-wave case, here the dependence of \mathcal{H} on p^+ can only
be the trivial one, i.e. only through the \(\frac{1}{p}\) factor (in Poincare coordinates the \(AdS_5 \times S^5\) background has Lorentz invariance in \((+, -)\) directions). Let us recall the form of the light-cone string Hamiltonian using the “conformally-flat” 10-d coordinates \((x^a, Z^M)\) in which the \(AdS_5 \times S^5\) metric is (here \(a = 0, 1, 2, 3, M = 1, ..., 6\))

\[
ds^2 = R^2 Z^{-2}(dx^a dx^a + dZ^M dZ^M) .
\] (4.2)

Splitting the 4-d coordinates as \(x^a = (x^+, x^-, x^\perp)\) and using the appropriate light-cone gauge one finds the following phase space Lagrangian [9]

\[
\mathcal{L} = \mathcal{P}_\perp \dot{x}_\perp + \mathcal{P}_M \dot{Z}^M + \frac{1}{2} (\theta^i \dot{\theta}_i + \eta^i \dot{\eta}_i - \text{h.c.}) - \mathcal{H} ,
\] (4.3)

\[
\mathcal{H} = \frac{1}{2p^+} \left(\mathcal{P}_\perp^2 + \mathcal{P}_M \mathcal{P}_M + T^2 Z^{-4}(\dot{x}_\perp^2 + \dot{Z}^M \dot{Z}^M) + Z^{-2}(\eta^2) + 2i\eta^i \rho^{MN}_i \eta_j Z^M \mathcal{P}_N \right)
\]

\[- 2T \left[|Z|^{-3} \eta^i \rho^{MN}_i Z^M (\dot{\theta}^j - i\sqrt{2}|Z|^{-1}\eta^j \dot{x}_\perp) + \text{h.c.} \right] \right).\] (4.4)

Compared to [9] we have rescaled the fermions \(\theta^i, \eta^i (i = 1, 2, 3, 4)\) by \(\sqrt{p^+}\) (thus absorbing all spurious \(p^+\)-dependence). \(\mathcal{P}_\perp, \mathcal{P}_M\) are the momenta and \(\rho^{MN}\) is a product of Dirac matrices. Here the coordinates and momenta (including \(\mathcal{H}\) and \(p^+\)) are all dimensionless (measured in units of \(R\)), reflecting the rescaling done in (4.2). Restoring the canonical mass dimensions (\(\mathcal{H} \rightarrow RH, p^+ \rightarrow Rp^+\)) the corresponding analog of the plane-wave result (2.33) should thus have the structure

\[
H = \frac{1}{p^+ R^2}[\mathcal{E}_0 + T \mathcal{E}_{str}(T)] = \frac{1}{p^+} \left[\frac{1}{R^2} \mathcal{E}_0 + \frac{1}{2\pi \alpha'} \mathcal{E}_{str}(\frac{R^2}{2\pi \alpha'}) \right] ,
\] (4.5)

where \(\mathcal{E}_0, \mathcal{E}_{str}\) are dimensionless functions of the parameters and discrete quantum numbers.

Here the limit \(\alpha' \rightarrow 0\) or \(T \rightarrow \infty\) for fixed \(p^+ R^2\) corresponds to the type IIB supergravity \(AdS_5 \times S^5\) background with only the \(\mathcal{E}_0\) part (known explicitly [10, 23]) surviving on the subspace of finite mass states. The limit \(R \rightarrow \infty\) with fixed \(p^+\) should reproduce the flat space string spectrum (this suggests that \(\mathcal{E}_{str}(T \rightarrow \infty)\) should be finite). The limit \(T \rightarrow 0\) for fixed \(p^+ R^2\) is a “null-string” limit [30]. Like the corresponding limit in the plane-wave case (4.1) it is expected to be well-defined.

A formal correspondence between (4.5) and (2.33) is established by identifying \(f\) with \(\frac{1}{p^+ R^2}\), so that \(m = 2\pi \alpha' p^+ f\) in (2.33) goes over to \(\frac{2\pi \alpha'}{R^2} = T^{-1}\). This rescaling of \(R^2\) by \(p^+\) “explains” why (4.5) does not have a non-trivial dependence on \(p^+\) while (2.33) does.

The dependence of the string-mode part \(\mathcal{E}_{str}\) of (4.5) on \(T\) should of course be much more complicated than dependence on \(\alpha' p^+ f\) in (2.33). To determine it remains an outstanding problem.

While this work was nearing completion there appeared an interesting paper [31] which provides a gauge-theory interpretation of this plane-wave string theory based on a special limit of the AdS/CFT correspondence.
Acknowledgments

The work of R.R.M. was supported by the INTAS project 00-00254, by the RFBR Grant 02-02-16944 and RFBR Grant 01-02-30024 for Leading Scientific Schools. The work of A.A.T. was supported in part by the DOE DE-FG02-91ER-40690, PPARC PPA/G/S/1998/00613, INTAS 991590, CRDF RPI-2108 grants and the Royal Society Wolfson research merit award. We are grateful to S. Frolov and J. Russo for useful discussions.

Appendix A Notation and definitions

We use the following conventions for the indices:

\[m, n, k = 0, 1, \ldots, 9 \] \hspace{1cm} 10-d space-time coordinate indices
\[\mu, \nu, \rho = 0, 1, \ldots, 9 \] \hspace{1cm} so(9,1) vector indices (tangent space indices)
\[I, J, K, L = 1, \ldots, 8 \] \hspace{1cm} so(8) vector indices (tangent space indices)
\[i, j, k, l = 1, \ldots, 4 \] \hspace{1cm} so(4) vector indices (tangent space indices)
\[i', j', k', l' = 5, \ldots, 8 \] \hspace{1cm} so'(4) vector indices (tangent space indices)
\[\alpha, \beta, \gamma = 1, \ldots, 16 \] \hspace{1cm} so(9,1) spinor indices in chiral representation
\[a, b = 0, 1 \] \hspace{1cm} 2-d world-sheet coordinate indices
\[I, J = 1, 2 \] \hspace{1cm} labels of the two real MW spinors

We identify the transverse target indices with tangent space indices, i.e. \(x^I = x^I \), and avoid using the underlined indices in \(+\) and \(-\) light-cone directions, i.e. adopt simplified notation \(x^+, x^- \). We suppress the flat space metric tensor \(\eta_{\mu\nu} = (-,+,+,\ldots,+) \) in scalar products, i.e. \(X^\mu Y^\mu \equiv \eta_{\mu\nu} X^\mu Y^\nu \). We decompose \(x^\mu \) into the light-cone and transverse coordinates: \(x^\mu = (x^+, x^-, x^I) \), \(x^I = (x^i, x^{i'}) \), where

\[x^\pm \equiv \frac{1}{\sqrt{2}}(x^9 \pm x^0). \] (A.1)

The scalar products of tangent space vectors are decomposed as

\[X^\mu Y^\mu = X^+ Y^- + X^- Y^+ + X^I Y^I, \quad X^I Y^J = X^I Y^i + X^{i'} Y^{i'}. \] (A.2)

The notation \(\partial_\pm, \partial_I \) is mostly used for target space derivatives\(^{20}\)

\[\partial_+ \equiv \frac{\partial}{\partial x^+}, \quad \partial_- \equiv \frac{\partial}{\partial x^-}, \quad \partial_I \equiv \frac{\partial}{\partial x^I}. \] (A.3)

\(^{20}\)In sections 1 and 2.1 \(\partial_\pm \) indicate world-sheet derivatives.
We also use
\[\partial^+ = \partial_-, \quad \partial^- = \partial_+, \quad \partial^i = \partial_i. \] (A.4)

The SO(9,1) Levi-Civita tensor is defined by \(\epsilon^{01\cdots 9} = 1 \), so that in the light-cone coordinates \(\epsilon^{+\ldots 8} = 1 \). The derivatives with respect to the world-sheet coordinates \((\tau, \sigma) \) are denoted as
\[\dot{x}^I \equiv \partial_\tau x^I, \quad \dot{x}^I \equiv \partial_\sigma x^I. \] (A.5)

We use the chiral representation for the 32 \(\times \) 32 Dirac matrices \(\Gamma^\mu \) in terms of the 16 \(\times \) 16 matrices \(\gamma^\mu \)
\[\Gamma^\mu = \begin{pmatrix} 0 & \gamma^\mu \\ \bar{\gamma}^\mu & 0 \end{pmatrix}, \] (A.6)
\[\gamma^\mu \bar{\gamma}^\nu + \gamma^\nu \bar{\gamma}^\mu = 2\eta^{\mu
u}, \quad \gamma^\mu = (\gamma^\mu)^\alpha_\beta, \quad \bar{\gamma}^\mu = \gamma^\mu_\alpha\beta, \] (A.7)
\[\gamma^\mu = (1, \gamma^I, \gamma^9), \quad \bar{\gamma}^\mu = (-1, \gamma^I, \gamma^9), \quad \alpha, \beta = 1, \ldots, 16. \] (A.8)

We adopt the Majorana representation for \(\Gamma \)-matrices, \(C = \Gamma^0 \), which implies that all \(\gamma^\mu \) matrices are real and symmetric, \(\gamma^\mu_\alpha\beta = \gamma^\mu_\beta\alpha \), \((\gamma^\mu_\alpha\beta)^* = \gamma^\mu_\bar{\beta}\bar{\alpha} \). As in [5] \(\gamma^{\mu_1\ldots\mu_k} \) are the antisymmetrized products of \(k \) gamma matrices, e.g., \((\gamma^{\mu\nu})_\alpha^\beta \equiv \frac{1}{2}(\gamma^{\mu\nu})_\alpha^\beta - (\mu \leftrightarrow \nu) \), \((\gamma^{\mu\nu\rho})_\alpha^\beta \equiv \frac{1}{6}(\gamma^{\mu\nu\rho})_\alpha^\beta \pm 5 \) terms. Note that \((\gamma^{\mu\nu\rho})_\alpha^\beta \) are antisymmetric in \(\alpha, \beta \). We assume the normalization
\[\Gamma_{11} \equiv \Gamma^{0 \ldots 9} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad \gamma^{0 \gamma^1 \ldots \gamma^8 \gamma^9} = I. \] (A.9)

We use the following definitions
\[\Pi^\alpha_\beta \equiv (\gamma^1 \gamma^2 \gamma^3 \gamma^4)_{\alpha}^\beta, \quad (\Pi')^\alpha_\beta \equiv (\gamma^5 \gamma^6 \gamma^7 \gamma^8)_{\alpha}^\beta. \] (A.10)
\[\bar{\Pi}^\alpha_\beta \equiv (\bar{\gamma}^1 \bar{\gamma}^2 \bar{\gamma}^3 \bar{\gamma}^4)_{\alpha}^\beta, \quad \bar{\Pi}'^\alpha_\beta \equiv (\bar{\gamma}^5 \bar{\gamma}^6 \bar{\gamma}^7 \bar{\gamma}^8)_{\alpha}^\beta. \] (A.11)

Note that \(\Pi^\alpha_\beta = \bar{\Pi}^\beta_\alpha \). Because of the relation \(\gamma^{0 \gamma^9} = \gamma^{++} \) the normalization condition (A.9) takes the form \(\gamma^{++} \Pi\Pi' = 1 \). Note also the following useful relations (see also [5])
\[(\gamma^{++})^2 = \Pi^2 = (\Pi')^2 = 1, \] (A.12)
\[\gamma^{+-} = \pm \gamma^{\pm}, \quad \bar{\gamma}^{\pm} \gamma^{+-} = \mp \bar{\gamma}^{\pm}, \quad \gamma^+ \bar{\gamma}^+ = \gamma^- \bar{\gamma}^- = 0, \] (A.13)
\[\gamma^+ (\Pi + \Pi') = (\Pi + \Pi') \gamma^- = 0, \quad \gamma^- (\Pi - \Pi') = (\Pi - \Pi') \gamma^+ = 0. \] (A.14)
\[\gamma^\pm \bar{\Pi} = \bar{\gamma}^\pm, \quad \gamma^i \bar{\Pi} = -\gamma^i \bar{\Pi}, \quad \bar{\gamma}^i \Pi = -\bar{\gamma}^i \Pi, \quad \gamma^i \Pi' = \Pi' \gamma^i, \quad \bar{\gamma}^i \Pi' = \bar{\Pi}' \gamma^i. \] (A.15)

The 32-component positive chirality spinor \(\theta \) and the negative chirality spinor \(Q \) are decomposed in terms of the 16-component spinors as
\[\theta = \begin{pmatrix} \theta^\alpha \\ 0 \end{pmatrix}, \quad Q = \begin{pmatrix} 0 \\ Q_\alpha \end{pmatrix}. \] (A.16)

The complex Weyl spinor \(\theta \) is related to the two real Majorana-Weyl spinors \(\theta^1 \) and \(\theta^2 \) by
\[\theta = \frac{1}{\sqrt{2}}(\theta^1 + i\theta^2), \quad \bar{\theta} = \frac{1}{\sqrt{2}}(\theta^1 - i\theta^2). \] (A.17)

The short-hand notation like \(\bar{\theta} \gamma^\mu \theta \) and \(\gamma^\mu \theta \) stand for \(\bar{\theta}^\alpha \gamma^\mu_\alpha \theta^\beta \) and \(\gamma^\mu_\alpha \theta^\beta \) respectively.
References

[1] D. Amati and C. Klimcik, “Strings In A Shock Wave Background And Generation Of Curved Geometry From Flat Space String Theory,” Phys. Lett. B 210, 92 (1988). G. T. Horowitz and A. R. Steif, “Space-Time Singularities In String Theory,” Phys. Rev. Lett. 64, 260 (1990). H. J. de Vega and N. Sanchez, “Space-Time Singularities In String Theory And String Propagation Through Gravitational Shock Waves,” Phys. Rev. Lett. 65, 1517 (1990).

[2] C. R. Nappi and E. Witten, “A WZW model based on a nonsemisimple group,” Phys. Rev. Lett. 71, 3751 (1993) [hep-th/9310112]. E. Kiritsis and C. Kounnas, “String Propagation In Gravitational Wave Backgrounds,” Phys. Lett. B 320, 264 (1994) [hep-th/9310202]. C. Klimcik and A. A. Tseytlin, “Duality invariant class of exact string backgrounds,” Phys. Lett. B 323, 305 (1994) [hep-th/9311012]. K. Sfetsos and A. A. Tseytlin, “Four-dimensional plane wave string solutions with coset CFT description,” Nucl. Phys. B 427, 245 (1994) [hep-th/9404063].

[3] O. Jofre and C. Nunez, “Strings In Plane Wave Backgrounds Revisited,” Phys. Rev. D 50, 5232 (1994) [hep-th/9311187].

[4] J. G. Russo and A. A. Tseytlin, “Constant magnetic field in closed string theory: An Exactly solvable model,” Nucl. Phys. B 448, 293 (1995) [hep-th/9411099]. P. Forgacs, P. A. Horvathy, Z. Horvath and L. Palla, “The Nappi-Witten string in the light-cone gauge,” Heavy Ion Phys. 1, 65 (1995) [hep-th/9503222].

[5] R. R. Metsaev, “Type IIB Green Schwarz superstring in plane wave Ramond background,” hep-th/0112044.

[6] M. Blau, J. Figueroa-O’Farrill, C. Hull and G. Papadopoulos, “A new maximally supersymmetric background of IIB superstring theory,” hep-th/0110242.

[7] M. Blau, J. Figueroa-O’Farrill, C. Hull and G. Papadopoulos, “Penrose limits and maximal supersymmetry,” hep-th/0201081.

[8] R. R. Metsaev and A. A. Tseytlin, “Superstring action in $AdS_5 \times S^5$: kappa-symmetry light-cone gauge,” Phys. Rev. D 63, 046002 (2001) [hep-th/0007036].

[9] R. R. Metsaev, C. B. Thorn and A. A. Tseytlin, “Light-cone superstring in AdS space-time,” Nucl. Phys. B 596, 151 (2001) [hep-th/0009171].

[10] H. J. Kim, L. J. Romans and P. van Nieuwenhuizen, “The Mass Spectrum Of Chiral N=2 D = 10 Supergravity On S^5,” Phys. Rev. D 32, 389 (1985).

[11] V. Bhansali, “Induced Representations For Sim(D-1,1) And Scaling Of Massless Fields In Even Dimensional Spaces,” J. Math. Phys. 32, 302 (1991).

[12] R. R. Metsaev, “Massless fields in plane wave geometry,” J. Math. Phys. 38, 648 (1997) [hep-th/9701141].

[13] R. R. Metsaev and A. A. Tseytlin, “Type IIB superstring action in $AdS_5 \times S^5$ background,” Nucl. Phys. B 533, 109 (1998) [hep-th/9805028].

[14] M. B. Green and J. H. Schwarz, “Covariant Description Of Superstrings,” Phys. Lett. B 136, 367 (1984).
[15] J. H. Schwarz, “Covariant Field Equations Of Chiral N=2 D = 10 Supergravity,” Nucl. Phys. B 226, 269 (1983).
[16] M.B. Green, J. H. Schwarz and L. Brink, “Superfield Theory Of Type II Superstrings,” Nucl. Phys. B219, 437 (1983).
[17] M.B. Green and J. H. Schwarz, “Superstring Field Theory,” Nucl. Phys. B243, 475 (1984); “Superstring Interactions,” Nucl. Phys. B218, 43 (1983).
[18] M. B. Green and J. H. Schwarz, “Extended Supergravity In Ten-Dimensions,” Phys. Lett. B 122, 143 (1983).
[19] J. H. Schwarz and P. C. West, “Symmetries And Transformations Of Chiral N=2 D = 10 Supergravity,” Phys. Lett. B 126, 301 (1983).
[20] G. E. Arutyunov and S. A. Frolov, “Quadratic action for type IIB supergravity on $AdS_5 \times S^5$,” JHEP 9908, 024 (1999) [hep-th/9811106].
[21] P.S. Howe and P.C. West, “The Complete N=2, D = 10 Supergravity,” Nucl. Phys. B238, 181 (1984).
[22] P. A. Dirac, “Forms Of Relativistic Dynamics,” Rev. Mod. Phys. 21, 392 (1949).
[23] R. R. Metsaev, “Light cone gauge formulation of IIB supergravity in $AdS_5 \times S^5$ background and AdS/CFT correspondence,” Phys. Lett. B 468, 65 (1999) [hep-th/9908114].
[24] R. R. Metsaev and A. A. Tseytlin, “Superparticle and superstring in $AdS_3 \times S^3$ Ramond-Ramond background in light-cone gauge,” J. Math. Phys. 42, 2987 (2001) [hep-th/0011191].
[25] R. R. Metsaev, “Light-cone approach to eleven dimensional supergravity,” hep-th/0010248. Talk given at International Conference on Quantization, Gauge Theory, and Strings: Conference Dedicated to the Memory of Professor Efim Fradkin, Moscow, Russia, 5-10 Jun 2000.
[26] R. Helling, J. Plefka, M. Serone and A. Waldron, “Three graviton scattering in M-theory,” Nucl. Phys. B559, 184 (1999) [hep-th/9905183]. T. Dasgupta, M. R. Gaberdiel and M. B. Green, “The type I D-instanton and its M-theory origin,” JHEP 0008, 004 (2000) [hep-th/0005211]. M. B. Green, H. Kwon and P. Vanhove, “Two loops in eleven dimensions,” Phys. Rev. D61, 104010 (2000) [hep-th/9910055].
[27] P. Breitenlohner and D. Z. Freedman, “Stability In Gauged Extended Supergravity,” Annals Phys. 144, 249 (1982).
[28] M. B. Green and M. Gutperle, “Light-cone supersymmetry and D-branes,” Nucl. Phys. B 476, 484 (1996) [hep-th/9604091].
[29] J. Maldacena, “The large N limit of superconformal field theories and supergravity,” Adv. Theor. Math. Phys. 2, 231 (1998) [hep-th/9711200].
[30] A. A. Tseytlin, “On limits of superstring in $AdS_5 \times S^5$,” hep-th/0201112.
[31] D. Berenstein, J. Maldacena and H. Nastase, “Strings in flat space and pp waves from N = 4 super Yang Mills,” hep-th/0202021.