The importance of being dead: cell death mechanisms assessment in anti-sarcoma therapy

Santiago Rello-Varona, David Herrero-Martín, Laura Lagares-Tena, Roser López-Alemany, Nuria Mulet-Margalef, Juan Huertas-Martínez, Silvia García-Monclús, Xavier García del Muro, Cristina Muñoz-Pinedo and Oscar Martinez Tirado

Sarcoma Research Group, Molecular Oncology Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain

Cell Death Regulation Group, Molecular Oncology Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain

Edited by: Thomas Grunewald, Ludwig-Maximilians-Universität München, Germany

Reviewed by: David Loeb, Johns Hopkins University, USA

Correspondence: Oscar Martinez Tirado, Grupo de Recerca en Sarcomas, Institut de Investigació Biomèdica de Bellvitge, Hospital Duran i Reynals 3ª planta, Gran Via de l'Hospitalet 199, L'Hospitalet de Llobregat, Barcelona 08908, Spain. e-mail: omartinez@idibell.cat

Dedication: To the memory of Alba Pérez.

INTRODUCTION

FACTS

• Sarcomas are a highly heterogeneous group of mesenchymal tumors.
• Among cell death mechanisms, only apoptosis has been extensively studied in sarcomas.
• Fusion proteins, actors of translocation-derived sarcomagenesis, play an anti-apoptotic role in sarcomas.
• Proper and deeper assessment of cell death in sarcomas is mandatory.

CHALLENGES

• Can we improve the current therapeutic protocols in sarcomas through a better knowledge of cell death mechanisms?
• Can we assess more accurately the sequence of events of every type of cell death?
• Which are the key molecules that determine tumor cell death after therapy?
• Do translocation-bearing sarcomas have specific weaknesses in their cell death signaling networks?

Cancer therapies are aimed to induce the specific destruction of tumor cells without compromising patient health. This makes cell death mechanisms a central point of any therapeutic approach (1, 2). However, no every death is equally desirable in terms of therapy (3). The need of theoretical arrangement in the field has become evident during the past years. Our knowledge on cell death mechanisms has increased enormously and of rapamycin protein; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells protein; NGF, low-affinity nerve growth factor receptor; Noxa, Phorbol-12-myristate-13-acetate-induced protein 1; oct4, octamer-binding transcription factor 4; p21, cyclin-dependent kinase inhibitor 1; PARP, poly (ADP-ribose) polymerase; PAX, protein encoded by paired box gene; PD, progression disease; PDGFR, platelet-derived growth factor receptor; PET-CT, positron emission tomography; PI, propidium iodide; PI3K, phosphatidylinositol-4,5-bisphosphate 3-kinase; Plk1, polo-like kinase 1; PM, plasma membrane; PR, partial response; pRB, retinoblastoma protein; p53, p53 upregulated modulator of apoptotic; RAGF, raf proto-oncogene serine/threonine-protein kinase; RANK, receptor activator of nuclear factor κB; ROS, reactive oxygen species; smo2, sex determining region Y-box 2; SXX, protein encoded by synovial sarcoma X breakpoint gene; STS, soft tissue sarcoma; SYT, protein encoded by synovial sarcoma translocation on chromosome 18 gene; TNFR, tumor necrosis factor receptor; TRAIL, TNF-related apoptosis-inducing ligand; VEGFR-2, vascular endothelial growth factor receptor 2.

Cell death can occur through different mechanisms, defined by their nature and physiological implications. Correct assessment of cell death is crucial for cancer therapy success. Sarcomas are a large and diverse group of neoplasias from mesenchymal origin. Among cell death types, apoptosis is by far the most studied in sarcomas. Albeit very promising in other fields, regulated necrosis and other cell death circumstances (as so-called “autophagic cell death” or “mitotic catastrophe”) have not been yet properly addressed in sarcomas. Cell death is usually quantified in sarcomas by unspecific assays and in most cases the precise sequence of events remains poorly characterized. In this review, our main objective is to put into context the most recent sarcoma cell death findings in the more general landscape of different cell death modalities.

Keywords: cell death mechanisms, sarcoma, translocation-bearing sarcomas, apoptosis, necrosis, autophagic cell death, mitotic catastrophe.
the available methodology has become more and more sophisticated. Therefore, a clear nomenclature based on reliable markers has been proposed (1, 4). Additionally, the growing number of cell death participants have been organized in clear hierarchic frameworks (5).

Sarcomas are a rare and heterogeneous group (more than 50 different clinical and molecular entities) of malignant tumors with mesenchymal origin. Molecular biology of sarcomas has remained elusive until recently, and a better knowledge remains as an unmet need (6). New drugs against potential targets in tumor cells with a crucial role in their metabolism or pro-survival fitness could improve the prognosis of these patients. Indeed, the relatively high rate of therapeutic failure and tumor relapse demands a better assessment of cell death induction. But scientific efforts in this discipline are historically undermined by the relative low investments and isolated work (7).

The scientific landscape involving cell death mechanisms in sarcomas can be improved. The majority of articles included in the present review focused on apoptosis (mostly) and necrosis, whose morphological characters (Figure 1) and signaling players (Figure 2) are better described. Many studies about cell death in sarcomas just describe the occurrence of cell death without a proper characterization of the sequence-of-events leading to a particular form of death. The aim of the present review is to help sarcoma researchers to face new knowledge on cell death mechanisms in order to routinely include it in their assessments.

CELL DEATH MECHANISMS

APOPTOSIS

Apoptosis involves a cellular controlled demolition process. Signaling cascades are finely orchestrated and secured, to ensure its perfect onset only when it is required (8). Caspases are the major actors in cellular demolition; once triggered, caspases can cross-activate each other and thus amplify the apoptotic signal (8). Apoptosis is by far the most studied form of cell death in sarcoma research. Nevertheless, researchers either employ uninformative methods about the form of death (i.e., Trypan Blue assay), or the mechanisms leading to such death are not always fully analyzed. Apoptosis recognition is easy by simple morphological features visible under the microscope: nuclear condensation and fragmentation, blebbing etc. (Figure 1). Other techniques (immunofluorescence or western blotting of cleaved caspases and/or caspase substrates, etc.) can be used to monitor specific mediators and executors of the process (9–11). Based on their biochemical features, we can describe two major pathways in apoptotic signaling: the intrinsic or mitochondrial pathway and the death receptor pathway (Figure 2).

Mitochondrial apoptosis

The “intrinsic pathway” is defined by the role of the mitochondria as encounter point of most of its initiators and mediators. The Bcl-2 family of proteins controls this pathway by regulating the formation of a pore in the mitochondrial outer membrane (12). Several signaling pathways converge in the regulation of Bcl-2 proteins, from DNA-damage sensor system to organelle stress and malfunction or growth factor signaling (Figure 2) (13, 14). In order to demonstrate that a drug or physiological input induces apoptosis through the mitochondrial pathway, exogenous overexpression of anti-apoptotic Bcl-2 family members can be performed; this should either prevent cell death or switch the mechanism to necrosis.
Some sarcomas rely on the presence of specific aberrant fusion proteins, generated after chromosomal rearrangements. Derepression of gene expression in sarcomas driven by these chimeric oncoproteins can occur at different levels (epigenetic silencing, transcription activity, messenger processing, etc.) affecting every cellular process, including apoptosis (Figure 3). In the case of Ewing Sarcoma (ES), the fusion proteins EWS-FLI1 or EWS-ERG have an inhibitory effect on part of the apoptotic machinery (15, 16). This effect is mediated by direct or indirect interactions with several signaling pathways modulating apoptosis repression and inducing sustained growth (17–20). Alveolar rhabdomyosarcoma (aRMS) is also dependent on fusion proteins involving different PAX proteins with FOXO1, which also targets different signaling networks in order to ensure evasion of apoptosis (21, 22). SYT-SSX chimera proteins are present in the majority of synovial sarcoma tumors. They are involved in resistance to pro-apoptotic stimuli by modulating the levels and the activity of key apoptotic players of the Bcl-2 family of proteins (23). Furthermore, certain translocation-bearing sarcomas are also characterized by failure to complete tissue differentiation (i.e., RMS to skeletal muscle, liposarcoma to adipocytes) in a process mediated by their specific fusion protein and linked to the inhibition of apoptosis induction (24–26). Several recent studies have linked miRNAs status with apoptosis regulation in chromosome translocation-bearing sarcomas. Hence, mitochondrial apoptotic resistance in ES correlates with miR-125b upregulation through p53 and Bak (27) but overexpression of miR-206 in RMS promotes proliferation arrest and some sort of cell death (28). Overexpression of miR-145 and miR-451 in liposarcoma cell lines decreases cellular proliferation, impairs cell cycle progression, and boosts cell death (29), whereas overexpression of miR-26a-2 has the opposite effects (30).

The levels and status of key pro- and anti-apoptotic proteins are also crucial for understanding the differential sensitivity of cells toward apoptosis. Most ES cells have both the p53 downstream...
pathway and the DNA-damage signaling pathway functionally intact. The resistance of some ES cell lines to p53-induced apoptosis has been linked to a high Bcl-2/Bax ratio and low levels of Apaf-1 (31). However, the influence of fusion proteins inactivates p53 by deacetylation at Lys-382 driven by both EWS-FLI1 and HDAC1 (32), meaning that re-expression or re-activation of p53 could be a good strategy against these tumors. Similar phenomena occur in other fusion-positive sarcomas and accordingly, histone deacetylase inhibitors have been successfully tested as apoptotic inducers in different sarcoma types (33, 34). p53 re-activator agents as Nutlin-3 and/or PRIMA-1 are able to induce apoptosis successfully through Noxa, Puma, or p21 upregulation in both mutant and wild-type p53 sarcoma cell lines (35–37). Among downstream p53 targets p21, c-Myc, Bax, MDM2, DRAL, Bcl-2, and Bcl-xL have been suggested as key apoptotic regulators in different sarcoma models (38–43). Plasma membrane-anchored growth receptors such as NGFR or IGF-1R have an anti-apoptotic role (44, 45). In contrast, distinct behaviors have been suggested for the closely related receptors PDGFR α and β (46). Thus, PDGFR α favors cellular stemness and PDGFR β promotes angiogenesis in the tumor stroma. Heat shock protein 90 (Hsp-90) antagonists had been shown to induce apoptosis through the mitochondrial commitment to cell suicide (Figure 2) (63). Cell culture in non-adherent conditions, like soft-agar, is the better way to study this process. Suppression of anoikis cell death is considered an important hallmark of transformed cells and thus, a pre-metastatic key process (64).

Anoikis resistance in sarcomas has been described to be associated with integrins, Bcl-2 and caspase-8, CD99 isoforms, RANK, and ERK (65–68). ES cells survival in non-adherent conditions is mediated by E-cadherin dependent spheroid formation, avoiding apoptotic triggering by means of the PI3K/Akt pathway (69). Scott-landis et al. demonstrated the relevance of IGF-1R in the anoikis-resistant ES cell line TC71. Impairment of IGF-1R signaling (by neutralizing antibodies or siRNAs expression) led to a lower survival in anchorage-independent growth conditions and a decrease on metastatic ability (70). In synovial sarcoma, the increased IGF-2 synthesis protects cells from anoikis and is required for tumor formation in vivo (71). Another trans-membrane growth factor receptor, the ErbB4 Tyrosine kinase, gets phosphorylated in ES spheroids and its expression is linked to anoikis avoidance, metastatic disease, and bad outcome (72). In RMS, spheroids obtained after cell culture enrichment express stem cell markers such as oct4, pax3, sox2, c-myc, and nanog. It was also found that CD133 was upregulated in these spheres, conferring cells higher resistance to Cisplatin and Chlorambucil in vivo (73). In osteosarcoma (OS) cells, anoikis can be induced by zoledronic acid, DNA methylation inhibitors as decitabine or cyclooxygenase-2 inhibitors via PI3K/Akt pathway inducing β-catenin, TrkB, and E-cadherin (74–76).

Several of the aforementioned reports present indeed interesting data for a number of plausible targets concerning mitochondrial apoptosis. However, it is worth noting that in most of these cases, apoptotic analyses rely only in AnnexinV (AnnV) tests or caspase-3 activation kits, being uninformative about the precise processes involved. Although extended in the community, when the end-points of AnnV-PI tests are not carefully selected, this could lead to the misidentification of late apoptotic and necrotic cells; similarly, caspase-3 is a common final step in apoptotic cell death that does not imply a single precise activation pathway (Figure 2) (11).

The death receptor pathway

Caspase-8 is the most characteristic mediator of the “death receptor pathway” (Figure 2). In this case, the triggers of the apoptotic process are extracellular signals (mostly from the TNF family) and the initiators and mediators encounter not in the mitochondrial outer membrane but rather close to the plasma membrane (77). Besides direct stimulation of cell death, death receptors can also induce specific protein synthesis by means of the NF-kB pathway that balances and even counteracts the apoptotic signaling (78).

TRAIL is a death ligand that has been studied in several sarcomas for therapeutic purposes (79–81). TRAIL-induced apoptosis is regulated by other receptors and downstream effectors including...
Activation of death receptors could be combined with other strategies to induce apoptosis in RMS, synovial sarcoma and leiomyosarcoma, activating several apoptosis triggers (85–87). TNFα and FasL receptors play a significant role in the survival/apoptotic balance with p21 as a critical mediator of the anti-apoptotic effect of TNFα-induced NF-κB (88, 89). Bad, a pro-apoptotic member of the Bcl-2 gene family, has been linked to Fasl-induced apoptosis in ES (90). Activation of death receptors could be combined with other challenges like doxorubicin, interleukin-12, or immunotoxins (91–93). Some other TNF receptor-related proteins, like NGFR, have been proposed to be crucial in specific sarcomas (94). Thus, there is still a need for a better understanding of the role of the other cell death receptors in sarcomas.

Besides the death receptors themselves, the best strategy to enhance extrinsic apoptosis is repressing NF-κB activation. This rationale has been employed with success against ES and synovial sarcoma (95, 96). Sensitization to apoptosis has also been achieved by re-expressing caspase-8 through demethylation or gene transfer (97).

Necrosis
Necrosis, in contrast to apoptosis, has been viewed classically as a form of accidental death brought about by injury to the cell by pathogens or toxins. Despite the extended pre-judice, necrosis is more than a mere accidental death (5). Loss of plasma membrane integrity, the “cellular explosion”, is the major morphological feature and characteristic feature of necrosis (Figure 1) (9, 98). Non-accidental or “regulated” necrosis has attracted a growing interest in the scientific community in the last years. Necroptosis is the best known phenotype in this group. It is induced by either the activation of death receptors or specific injuries that are followed by the recruitment of the so-called necroosomes of which the principal participants are the receptor-interacting protein kinases (RIPK1 and RIPK3), which finally activate the executor MLKL (Figure 2) (99).

Necroptosis is just starting to be studied in sarcomas. It can be distinguished from apoptosis by its distinct morphology and the inability of caspase inhibitors to prevent it (10, 11). In an OS model, RIPK1-mediated necroptosis was confirmed as the main cell death mechanism involved in Shikonin therapy, as only Necrostatin-1 (an inhibitor of RIPK1) was able to induce treatment reversion (100). Basit et al. found that Obatoclax (a Bcl-2 inhibitor) treatment in RMS cell lines promoted necroptosis rather than autophagic cell death, being autophagy only a necessary event required for the necroosome assembly (101). So, it becomes clear that there is still a big room for improvement in the accurate characterization of regulated necrosis responses in anti-sarcoma therapy.

A classical example of “double-edged sword” is autophagy, sometimes included as a cell death mechanism, although it usually proceeds as a pro-survival process. Autophagy targets apoptotic signaling mitochondria for isolation and degradation, thus interrupting the apoptotic outcome. Several proteins cross-link autophagy and apoptosis signaling pathways, being mTOR one of the most studied (103). As a process impacting the energy availability, autophagy also dialogues with necrotic signaling and some reports point to a close relationship with necroptotic triggering (101, 102). Again, it seems to be a question of threshold. In many cases, an excessive autophagy can lead to cell death but this death follows a mixed pattern with parallel apoptotic or necrotic phenotypes. Only when inhibition of autophagy can impede cell death and the final phenotype is considered non-apoptotic cell death, we can classify it as “autophagic cell death” (4, 102). Among the different techniques available, autophagy can be better followed by microscopy assessment of autophagosome formation (11, 104).

To our knowledge, except for some interesting report showing autophagic triggering of necrosis in RMS (101), no instances of true autophagic cell death have been described in sarcomas yet. Indeed, its role in cancer therapy is still controversial (102). In ES and OS, the protective role of autophagy was insufficient to block apoptotic cell death when triggered by either the intrinsic or the death receptor pathways (105, 106). Autophagy has also been described to be actively removing micronuclei in OS cells, generating an interesting connection with the stabilization of cells recovering from failures during mitosis (107).

Mitotic catastrophe (MC), previously classified as a form of cell death, constitutes a crossroad that could drive cells to die with either apoptotic or necrotic features, go into senescence, or even survive (108). Again, the precise features of the final death phenotype depend on cell context and energy availability (108, 109). The clearest triggers of MC are the dysfunctions of the mitotic spindle. Those dangers are monitored by specific checkpoint proteins determining the final outcome. Thus, cells evading the mitotic arrest have an increase in chromosome instability (110). MC can be easily followed by means of microscopy observation, usually aided with fluorescent markers, video-microscopy, and cell fate imaging analysis.

Proper metaphase arrangement is required for mitosis and is a key process monitored by several checkpoint regulators (Figure 2). BubR1, involved in the mitotic spindle checkpoint, has been shown to be necessary for survival in some RMS cell lines and its knockdown promoted growth suppression and “mitotic catastrophe” but the final outcome was not elucidated (111). Plk1 is another major component of MC signaling; siRNA inhibition of Plk1 killed RMS cells and the chemical inhibitor BI 2536 induced G2/M arrest and cell death in OS cell lines (112, 113). Inhibitors of Aurora kinases block the formation of the cleavage furrow, disrupting cytokinesis, and killing leiomyosarcoma and synovial sarcoma cells (114, 115). Chk1 blockade with CEP-3891 caused an abrogation of the S and G2 checkpoints after ionizing radiation, giving rise to nuclear fragmentation as a consequence of defective chromosome segregation and promoting cell death (116). Many active drugs tested in sarcoma cells have been described to disrupt normal cell cycle. Those compounds range from small molecules or plant derivatives, to cell cycle kinase inhibitors, viral proteins etc. Several studies showed...
Table 1 | Summary of already published clinical trials that evaluate target therapies in sarcomas, classified regarding the mechanism of action

Mechanism of action	Drugs	Trial (reference)	Study population	Benefits	Common severe toxetilities
Apoptosis					
PARP inhibitors	Olaparib	Phase II (127)	Recurrent/metastatic adult ES (failure to prior CH), n = 12 patients	NO responses SD: 4 patients, TTP: 5.7 weeks	No significant toxicities
Heat shock protein inhibitors	Retaspimycin (Hsp-90 INH)	Phase I (128)	Metastatic and/or unresectable STS, n = 54 patients	PR: 2 patients (proof of clinical activity)	Grade 3–4: Fatigue, Nausea and vomiting, Headache, Arthralgia
Proteasome inhibitor	Bortezomib	Phase II (129)	Metastatic OS, ES, RMS, and STS with no prior treatment for advanced disease, n = 25 patients	Lack of benefit (trial prematurely closed)	Grade 3–4: Neutropenia, Myalgias
MDM2 inhibitor	RG7112	Proof of mechanism study (130)	WDLS or DDLs with MDM2 amplification receive RG7112 prior to surgery, n = 20 patients	SD: 14 patients, IHQ: activation of p53 pathway	Grade 3–4: Neutropenia, Thrombocytopenia, Cytopenias
PI3K-AKT-mTOR pathway inhibitors	Ridaforolimus (mTOR INH)	Phase II (132)	Pre-treated advanced bone and STS, n = 212 patients	RR: 1.9%, clinical benefit: 28.8%	Grade 3–4: Fatigue, Stomatitis, Hypertriglyceridemia, Anemia, Thrombocytopenia, Similar to previous study
		Phase III (133)	Advanced bone and STS with clinical benefit to previous CH were randomized to maintenance Ridaforolimus vs. Placebo, n = 711 patients	Improvement in PFS (177 weeks with Ridaforolimus vs. 14.6 weeks with Placebo, HR: 0.72, p: 0.001)	Grade 3–4: Hyperglycemia, Stomatitis, Pain, Anemia, Thrombocytopenia, Similar to previous study
	Everolimus (mTOR INH)	Phase II (134)	Pre-treated advanced bone and STS, n = 41 patients	Poor clinical activity	Grade 3–4: Hypertension, Stomatitis, Pain, Anemia, Thrombocytopenia
Anti-angiogenic therapy	Sorafenib (VEGFR2, VEGFR3, PDGFR, and c-Kit INH)	Phase II (135)	Pre-treated advanced STS, n = 101 patients	RR: 14.5%, SD: 32.9% (leiomyosarcoma better PFS)	Grade 3–4: Fatigue, Diarrhea, Hand–foot Syndrome, Nausea and vomiting
	Pazopanib (VEGFR-1, VEGFR-2, VEGFR-3, PDGFR, and c-Kit INH)	Phase III (136)	Pre-treated non-adipocytic STS randomized to PAZOPANIB vs. PLACEBO, n = 369 patients	Improvement in PFS (4.6 months with PAZOPANIB vs. 1.6 months with Placebo, HR: 0.31, p < 0.0001)	Grade 3–4: Anemia, Hypertension, Anorexia, Alteration of transaminases
Mitotic catastrophe	Palbociclib (CDK4 and CDK6 INH)	Phase II (137)	WDLS or DDLs with CDK4 amplification and pRb expression	66% of patients free of PD at 12 weeks	Grade 3–4: Anemia, Neutropenia, Thrombocytopenia

CH: chemotherapy, DDLS: dedifferentiated liposarcoma, HR: hazard ratio, INH: inhibitor, MPNST: malignant peripheral nerve sheath tumor, PFS: progression-free survival, RR: response rate, SD: stabilization disease, STS: soft-tissues sarcoma, TTP: time to progression, WDLS: well-differentiated liposarcoma.
Table 2 | Summary of clinical trials that are ongoing and evaluate target therapies in sarcomas, classified regarding the mechanism of action.

Mechanism	Therapy Description	Status	Identifier
Apoptosis	PARP inhibitors: ESP1/SARC025 global collaboration: a Phase I study of a combination of the PARP inhibitor, niraparib, and temozolomide in patients with previously treated, incurable Ewing sarcoma. Olaparib in adults with recurrent/metastatic Ewing's sarcoma.	Ongoing, but not recruiting	NCT02044120
	Heat shock protein inhibitor: A trial of ganetespib Plus sirolimus: phase 1 includes multiple sarcoma subtypes and Phase 2 MPNST.	Ongoing, but not recruiting	NCT01583543
	PI3K-AKT-mTOR pathway inhibitors: Recruiters for everolimus in children and adolescents with refractory or relapsed osteosarcoma.	Recruiting	NCT01216826
	Study of everolimus with bevacizumab to treat refractory malignant peripheral nerve sheath tumors.	Recruiting	NCT01661283
	Study of everolimus in children and adolescents with refractory or relapsed rhabdomyosarcoma and other soft tissue sarcomas.	Recruiting	NCT01216839
Anti-angiogenic therapy	Sorafenib tosylate, combination chemotherapy, radiation therapy, and surgery in treating patients with high-risk stage IIb–IV soft tissue sarcoma.	Recruiting	NCT02050919
	Pazopanib hydrochloride followed by chemotherapy and surgery in treating patients with soft tissue sarcoma.	Recruiting	NCT01446809
	Activity and tolerability of pazopanib in advanced and/or metastatic liposarcoma. a phase ii clinical trial.	Recruiting	NCT01692496
	Study of pazopanib in the treatment of osteosarcoma metastatic to the lung.	Recruiting	NCT01759303
	Study of pre-operative therapy with pazopanib (votrient®) to treat high-risk soft tissue sarcoma (NOPASS).	Recruiting	NCT01543802
Mitotic catastrophe	Aurora-kinase inhibitors: Alisertib in treating patients with advanced or metastatic sarcoma.	Recruiting	NCT01653028
CDK inhibitors	PD0332991 in patients with advanced or metastatic liposarcoma.	Recruiting	NCT01209598

cell cycle arrest and changes in the levels of MC mediators as Survivin. For example, Keyomarsi’s group showed that combined therapy with doxorubicin and roscovitine in synovial sarcoma and leiomyosarcoma induced a synergistic increase in autophagy in addition to a marked arrest in G2/M (117). Links between MC and autophagy have also been commented previously for OS (107). In any case, it would be desirable to perform an exhaustive mitotic study or cell fate analysis together with the proper assessment of the nature of cell cycle blockade (metaphase arrest, G2 stop, or even senescence).

CELL DEATH MECHANISMS IN ANTI-SARCOMA CLINICAL TRIALS

New targeted therapies linked to key cell death mechanisms are continuously being developed (118). Preferred to cytostatic alternatives, cell death induction is the goal of the vast majority of cancer treatments. And among the known mechanisms, apoptosis is the center of therapeutic developments (118). As a non-inflammatory mechanism, apoptosis is traditionally considered cleaner than necrosis, but its exact relevance in overall therapeutic success is uncertain. Necrosis, due to its pro-inflammatory nature, has been regarded as a back door for metastatic cells to escape from the primary tumor (3, 119). But, depending on the circumstances, necrosis could be effective enough to induce tumor clearance (120). Conversely, a particular apoptotic phenotype with the ability to trigger immune response against cancer cells has been described (119). Moreover, classic chemotherapeutic agents are shown to induce apoptosis by interfering with the normal cell division processes and this could lead to the triggering of MC (108, 109, 121). Induction of MC vs. direct apoptosis triggering depends of the effective drug concentration within the cells and thus, could be different among the tumor mass (122). MC drives most of
the cells to major death mechanisms but opens the gates for the appearance of new stable karyotypes translating into perhaps new resistant cancer clones (108, 123, 124).

The treatment of advanced sarcomas is based on classic chemotherapeutic agents: anthracyclines and ifosfamide as first option and, after progression, other agents like gemcitabine in combination with docetaxel (or Dacarbazine) and trabectedin. The benefit of chemotherapy is well-known, but limited, because a high percentage of patients die due to the disease in approximately 1 year from diagnosis (125, 126).

In the past years, several sarcoma-focused clinical trials have evaluated the activity in monotherapy of novel drugs with known connections to a particular cell death mechanism (Table 1). So far, only two phase III trials have been reported, reflecting that targeted therapies have been mostly developed in recent years and remain in a pre-clinical stage (127–137). The first trial was focused on the mTOR signaling pathway, which links apoptosis with autophagy (102, 103). The study evaluated the role of ridaforolimus as maintenance therapy after the clinical benefit to chemotherapy (133). The other trial analyzed the activity of Pazopanib (a multitargeted kinase inhibitor) in pre-treated soft-tissue sarcoma patients (136).

It is easily noticeable that many of the targets mentioned above have still not reached the clinical trial stage in sarcomas. Further research should be aimed to fill that gap by a better description of the pre-clinical effects in terms of quantity and quality (type, characterization, assessment of resistant phenotypes, etc.) of the induced cell death. A summary of the ongoing clinical trials in sarcomas are included in Table 2.

CONCLUDING REMARKS

As often happens with research on rare diseases, sarcoma research suffers from funding shortage and delayed implementation of technical advances. But there is also an urgent need to improve current therapeutic modalities in sarcomas and reduce their burden. Additionally, due to their heterogeneity, sarcoma models are very difficult to compare among them. Those constraints define sarcoma research today. Cell death induction is the basis of cancer therapy, but we are still far from understanding the mechanisms of cell death signaling in sarcomas. The relatively low attention paid to particular phenomena like autophagy or MC, with crucial roles in therapy success, is symptomatic that we need to get back to the laboratory benches and improve our methods (3, 118, 124). We abuse too often of indirect tests, easy to read-out in flow cytometers, or high-content analyzers. And perhaps, we rely too much in abuse too often of indirect tests, easy to read-out in flow cytometers, or high-content analyzers. And perhaps, we rely too much in.

Sarcoma research needs the implementation of a better determination of cell death mechanisms. The definition of the nature of cell death is not a vain effort as the differences in mechanisms could have tremendous consequences in terms of chemo-resistance or in immunogenic potential (108, 119, 123, 124). We need to dedicate more time to define cell death circumstances, but sometimes it seems that this attention only happens when researchers are faced with unusual/specific cell death signals (death receptors, MC, necroptosis etc.) while relying in the bulk caspase-3 or Annexin-P1 kits for the rest of the occasions.

The extra work we are proposing is neither difficult nor exhausting, as it requires only to spend a little time looking “what” actually happens to our cells (and “when”). Cell death is evident to the trained eye by merely observing the cells in the cell culture room’s inverted microscope (Figure 1). Then, there are enough valuable tests, clear and easy to perform, for the major cell death pathways (138). Performed in the correct set of end-points a simple DAPI staining would serve to determine whether we are facing apoptosis, necrosis, or MC (10, 11). Therefore, we encourage researchers to perform those tests and include their results in their publications prior to embark themselves into more complex analysis about the intimacy of cell physiology. Let’s concentrate on describing better “what” is happening before moving on solving “how” it is happening.

ACKNOWLEDGMENTS

SR-V is a MarieCurieCOFUND-BeatriuDePinós Researcher (The European Union 7th Framework Program for RD and the Generalitat de Catalunya’s Department for Economy and Knowledge: Secretary for Universities and Research). DH-M is funded by Asociación Española contra el Cáncer–AECC. LL-T is funded by the Comissionat per a Universitats i Recerca (CUR) from Departament d’Innovació, Universitats I Empresa (DIEU) de la Generalitat de Catalunya i del Fons Social Europeu. SG-M is funded by Asociación Alba Pérez lucha contra el cáncer infantil. This work was funded by Fondo de Investigaciones Sanitarias-ISICIII (CP06/00151; CES12/021; PI11/00038; P112/01908). Studies in CMP’s lab related to the topic of this review are supported by Fondo de Investigaciones Sanitarias-ISICIII grant PI13/00139. We apologize to those whose valuable work could not be covered in this issue for space reasons.

REFERENCES

1. Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ (2009) 16:3–11. doi:10.1038/cdd.2008.150
2. Fulda S. Exploiting apoptosis pathways for the treatment of pediatric cancers. Pediatr Blood Cancer (2009) 53:533–6. doi:10.1002/pbc.21922
3. Rucci MS, Zong W. Chemotherapeutic approaches for targeting cell death pathways. Oncologist (2006) 11:342–57. doi:10.1634/theoncologist.11-4-342
4. Galluzzi L, Vitale I, Abrams J, Alnemri ES, Baehrecke EH, Blagosklonny MV, et al. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ (2012) 19:107–20. doi:10.1038/cdd.2011.96
5. Vanden Berghhe T, Linkermann A, Jouan-Lanhout S, Walczak H, Vandenabeele P. Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol (2014) 15:135–47. doi:10.1038/nrm3737
6. Rodríguez JL, Osuna D, García-Dominguez DJ, Amaral AT, Otero-Motta AP, Mackintosh C, et al. The clinical relevance of molecular genetics in soft tissue sarcomas. Adv Anat Pathol (2010) 17:162–81. doi:10.1097/PAP.0b013e3181d99c9f
7. Martin Liberal J, Lagares-Tena L, Sáinz-Jaspeado M, Mateo-Lozano S, García Del Muro X, Tirado OM. Targeted therapies in sarcomas: challenging the challenge. Sarcoma (2012) 2012:626094. doi:10.1155/2012/626094
8. Fernald K, Kurokawa M. Evading apoptosis in cancer. Trends Cell Biol (2013) 23:620–33. doi:10.1016/j.tcb.2013.07.006
9. Rello S, Stockert JC, Moreno V, Gámez A, Pacheco M, Juanrarranz A, et al. Morphological criteria to distinguish cell death induced by apoptotic and necrotic treatments. Apoptosis (2005) 10:201–8. doi:10.1007/s10495-005-6075-6
10. Kryska DV, Vanden Berge T, D’Herde K, Vandenabeele P. Apoptosis and necro- stic detection, discrimination and phagocytosis. Methods (2008) 44:205–21. doi:10.1016/j.ymeth.2007.12.001

11. Kepp O, Galluzzi L, Lipinski M, Yuan J, Kroemer G. Cell death assays for drug discovery. Nat Rev Drug Discov (2010) 10:221–37. doi:10.1038/nrd3373

12. Braun F, de Carné Trécesson S, Bertin-Cafci J, Puin P. Protect and serve: Bcl-2 proteins as guardians and rulers of cancer cell survival. Cell Cycle (2013) 12:2937–47. doi:10.4161/cc.25972

13. Galluzzi L, Bravo-San Pedro JM, Kroemer G. Organelle-specific initiation of cell death. Nat Cell Biol (2014) 16:728–36. doi:10.1038/ncb3005

14. Voussens KH, Lane DP. P53 in health and disease. Nat Rev Mol Cell Biol (2007) 8:275–83. doi:10.1038/nrm2147

15. Yi H, Fujimura Y, Ouchida M, Prasad DD, Rao VN, Reddy ES. Inhibition of p53 acetylation by EWS-FLI chimeric protein in Ewing family tumors. Cancer Lett (2012) 320:14–22. doi:10.1016/j.canlet.2012.01.018

16. Hecker RM, Amstutz RA, Wachtel M, Walter D, Niggli FK, Schafer BW. p21 downregulation is an important component of PAX3/FKHR oncogenicity and its reactivation by HDAC inhibitors enhances combination treatment. Oncogene (2010) 29:3942–52. doi:10.1038/onc.2010.145

17. Su L, Sampson JW, Jones KB, Pacheco A, Moyal A, Lan S, et al. Deconstruction of the SS18-SSX fusion oncoprotein complex: insights into disease etiology and therapeutics. Cancer Cell (2012) 21:333–47. doi:10.1016/j.ccr.2012.01.010

18. Fisher KI, Al-Ejeh F, Zinonos I, Kumar R, Evdokiou A, Brown MP, et al. Nutilin-3 is a potential therapeutic for ewing sarcoma. Clin Cancer Res (2011) 17:494–504. doi:10.1158/1078-0432.CCR-10-1587

19. Miyachi M, Kakazu N, Yagyu S, Katsumi Y, Tsuhashi-Shimizu S, Kikuchi K, et al. Restoration of p53 pathway by nutlin-3 induces cell cycle arrest and apoptosis in human rhabdomyosarcoma cells. Clin Cancer Res (2009) 15:4077–84. doi:10.1158/1078-0432.CCR-08-2955

20. Arroyo DNT, Niedan S, Ban J, Schwentner R, Muehlbacher K, Mauer M, et al. Variability in functional p53 reactivation by PRIMA-1 (Met)/APR-246 in Ewing sarcoma. Br J Cancer (2013) 109:666–704. doi:10.1038/bjc.2013.635

21. Leiser AL, Anderson SE, Sonnaka D, Chua S, Oshen AB, Chi DS, et al. Apoptotic and cell cycle regulatory markers in uterine leiomyosarcoma. Gynecol Oncol (2006) 101:86–91. doi:10.1016/j.ygyno.2005.09.055

22. Taylor AC, Schuster K, McKenzie PP, Harris LC. Differential cooperation of oncogenes with p53 and Bax to induce apoptosis in rhabdomyosarcoma. Mol Cancer (2006) 5:53. doi:10.1186/1476-4598-5-53

23. Chaney MJ, McKenzie PP, Volk EL, Fan L, Harris LC. MDM2 displays differential activities dependent upon the activation status of NFkappaB. Cancer Biol Ther (2008) 7:38–44. doi:10.4161/cbt.7.1.5125

24. Scholl FA, McLoughlin P, Elber E, De Giovannoni G, Schafer BW. DRAL is a p53-responsive gene whose four and a half LIM domain protein produces apoptosis. J Cell Biol (2000) 151:495–506. doi:10.1083/jcb.151.4.495

25. Armistead PM, Salganick J, Rob JS, Steiner DM, Patel S, Munsell M, et al. Expression of receptor tyrosine kinases and apoptotic molecules in rhabdomyosarcoma: correlation with overall survival in 105 patients. Cancer (2007) 110:2293–303. doi:10.1158/0008-5472.CAN-06-0307

26. Margue CM, Bernasconi M, Barr FG, Schafer BW. Transcriptional modulation of the anti-apoptotic protein BCL-XL by the paired box transcription factors PAX3 and PAX5/FKHR. Oncogene (2000) 19:2921–9. doi:10.1038/sj.onc.1203607

27. Astolfi A, Nanni P, Landuzzi L, Ricci C, Nicoletti G, Rossi I, et al. Anti-apoptotic role for NGF receptors in human rhabdomyosarcoma. Eur J Cancer (2001) 37:1719–25. doi:10.1016/S0959-8049(01)00190-3

28. Mayeunuddin LH, Yu Y, Kang Z, Helman LJ, Cao L. Insulin-like growth factor 1 receptor antibody induces rhabdomyosarcoma cell death via a process involving AKT and Bcl-x(L). Oncogene (2010) 29:6367–77. doi:10.1038/onc.2010.364

29. Ehmnn M, Missiaglia E, Folestad E, Selfe J, Strell C, Thwry R, et al. Distinct effects of ligand-induced PDGFRα and PDGFRβ signaling in the human rhabdomyosarcoma tumor cell and stroma cell compartments. Cancer Res (2013) 73:2139–49. doi:10.1158/0008-5472.CAN-12-1646

30. Nakamura K, Abarazu F, Hongo A, Kodama J, Nasu Y, Kumu H, et al. Hepatocyte growth factor activator inhibitors (HA1-1 and HA1-2) are potential targets in uterine leiomyosarcoma. Int J Oncol (2010) 37:605–14. doi:10.3892/ijo.20090709

31. Makino K, Kawamura K, Sato W, Kawamura N, Fujimoto T, Terada Y. Inhibition of uterine sarcoma cell growth through suppression of endogenous tyro- sine kinase B signaling. PLoS One (2012) 7:e41049. doi:10.1371/journal.pone.0041049

32. Pula G, Pistilli A, Montagnoli C, Stabile AM, Rambotti MG, Rende M. The tripartite antecedent ampinitrilipiney is cytotoxic to HTB114 human sarcoma cell lines. Cell death mechanisms in sarcomas
leiomiosarcoma and induces p75(NTR)-dependent apoptosis. *Anticancer Drugs* (2013) 24:899–910. doi:10.1097/CAD.0b013e328364312f

50. Michels S, Trautmann M, Sievers E, Knudler D, Huss S, Brenner M, et al. SBC signaling is crucial in the growth of synovial sarcoma cells. *Cancer Res* (2013) 73:2518–28. doi:10.1158/0008-5472.CAN-12-3023

51. Cen L, Hsieh F-C, Lin H-J, Chen C-S, Qualman SJ, Lin J. PDK-1/AKT pathway as a novel therapeutic target in rhabdiosarcoma cells using OSU-03012 compound. *Br J Cancer* (2007) 97:785–91. doi:10.1038/sj.bjc.6603952

52. Yan S, Li Z, Thiele CJ. Inhibition of STAT3 with orally active JAK inhibitor, AZD1480, decreases tumor growth in Neuroblastoma and Pediatric Sarcomas In vitro and In vivo. *Oncotarget* (2013) 4:4433–45.

53. Dimitroulakos J, Ye LY, Benzaquen M, Moore MJ, Kamel-Reid S, Freedman PA, et al. Paoli P, Giannoni E, Chiarugi P. Anoikis molecular pathways and its role in cancer progression. *Cancer Cell* (2008) 14:876–84. doi:10.1016/j.ccc.2008.02.022

54. Seitz G, Warmann SW, Armasanu S, Heitmann H, Ruck P, Hoffman RM, et al. In vitro photodynamic therapy of childhood rhabdiosarcoma. *Int J Oncol* (2007) 30:615–20. doi:10.3892/ijo.30.3.615

55. Herrero Martín D, Boro A, Schäfer BW. Cell-based small-molecule compound screen identifies fenretinide as potential therapeutic for translocation-positive rhabdiosarcoma. *PloS One* (2013) 8:e50372. doi:10.1371/journal.pone.0050372

56. Nakamura T, Tanaka K, Matsunobu T, Okada T, Nakatani F, Sakamura R, et al. The mechanism of cross-resistance to proteasome inhibitor bortezomib and overcoming resistance in Ewing’s family tumor cells. *Int J Oncol* (2007) 31:803–11. doi:10.3892/ijo.31.4.803

57. Bersani F, Taulli R, Accornero P, Morotti A, Miretti S, Crepaldi T, et al. Bortezomib-mediated proteasome inhibition as a potential strategy for the treatment of rhabdiosarcoma. *Eur J Cancer* (2008) 44:876–84. doi:10.1016/j.ejca.2008.02.014

58. Lesko E, Godzilk J, Kijowski J, Jenner B, Wiecha O, Majka M. HSP90 antagonist, geldanamycin, inhibits proliferation, induces apoptosis and blocks migration of rhabdiosarcoma cells in vitro and seeding into bone marrow in vivo. *Anticancer Drugs* (2007) 18:173–81. doi:10.1097/CAD.0b013e32802e532d

59. Dimitrioulakos J, Ye LY, Benzacena M, Moore MJ, Kamel-Reid S, Freedman MH, et al. Differential sensitivity of various pediatric cancers and squamous cell carcinomas to lovastatin-induced apoptosis: therapeutic implications. *Clin Cancer Res* (2001) 7:158–67.

60. Sun Y, Wang H, Lin F, Hua J, Zhou G. Inhibition of proliferation and gene expression regulation by (-)-epigallocatechin-3-gallate in human synovial sarcoma cells. *Med Oncol* (2011) 28:1463–8. doi:10.1007/s12032-010-9560-x

61. Ramírez-Peinado S, Alcázar-Limones F, Lagares-Tena L, El Mijyad N, Caro-Maldonado A, Tirado OM, et al. 2-deoxyglucose induces Noxa-dependent apoptosis in alveolar rhabdiosarcoma. *Cancer Res* (2011) 71:6796–806. doi:10.1158/0008-5472.CAN-11-0759

62. Holt SV, Brookes KE, Dice C, Makin GW. Down-regulation of XIAP by AEG35156 in paediatric tumour cells induces apoptosis and sensitises cells to cytotoxic agents. *Oncol Rep* (2011) 25:1177–81. doi:10.3892/or.2011.1167

63. Paoli P, Giannoni E, Chiarpighi P, Anoikis molecular pathways and its role in cancer progression. *Biochim Biophys Acta* (2013) 1833:3481–98. doi:10.1016/j.bbamcr.2013.06.026

64. Crompton BD, Carlson AL, Thorner AR, Christie AL, Du J, Calicchio ML, et al. High-throughput tyrosine kinase activity profiling identifies FAK as a candidate therapeutic target in Ewing sarcoma. *Cancer Res* (2013) 73:2873–83. doi:10.1158/0008-5472.CAN-12-1944

65. Díaz-Montero CM, McIntyre BW. Acquisition of anoikis resistance in human osteosarcoma cells. *Eur J Cancer* (2003) 39:2395–402. doi:10.1016/S0959-8049(03)00573-6

66. Lin D, Feng J, Chen W. Bcl-2 and caspase-8 related anoikis resistance in human osteosarcoma cells. *Eur Cell Biol* (2008) 32:1199–206. doi:10.1016/j.eceb.2008.07.002

67. Scallion K, Zunzini M, Manara MC, Siccarda M, Rocchi A, Benini S, et al. CD99 isoforms dictate opposite functions in tumour malignancy and metastatic activity for repressing c-Src kinase activity. *Oncogene* (2007) 26:6604–10. doi:10.1038/sj.onc.1210481

68. Akiyama T, Choong PFM, Dass CR. A pro-apoptotic role of the receptor tyrosine kinase Flt. *Oncogene* (2000) 19:61–8. doi:10.1038/sj.onc.1203241
109. Mitsiades N, Poulaki V, Leone A, Tsokos M. Fas-mediated apoptosis in Ewing’s sarcoma cell lines by metalloproteinase inhibitors. J Natl Cancer Inst (1999) 91:1678–84. doi:10.1093/jnci/91.19.1678

110. Lee B, Galli S, Tsokos M. Sensitive Ewing sarcoma and neuroblastoma cell lines have increased levels of BAD expression and decreased levels of BAR expression compared to resistant cell lines. Cancer Lett (2007) 247:110–4. doi:10.1016/j.canlet.2006.03.033

111. Ricci C, Pelito L, Nanni P, Landuzzi L, Astolfi A, Nicoletti G, et al. HER/erbB receptors as therapeutic targets of immunotoxins in human rhabdomyosarcoma cells. J Immunother (2002) 25:314–23. doi:10.1097/00002371-200207000-00003

112. Zhou Z, Lalleur EA, Koshikina NV, Worth LL, Lester MS, Kleinerman ES. Interleukin-12 up-regulates Fas expression in human osteosarcoma and Ewing’s sarcoma cells by enhancing its promoter activity. Mol Cancer Res (2005) 3:685–91. doi:10.1158/1541-7786.MCR-05-0092

113. Kuçì S, Rettinger E, Voss B, Weber G, Stais M, Kreyenberg H, et al. Efficient lysis of rhabdomyosarcoma cells by cytokine-induced killer cells: implications for adoptive immunotherapy after allogeneic stem cell transplantation. Haematologica (2010) 95:1579–86. doi:10.3324/haematol.2009.19885

114. Fanburg-Smith JC, Miettinen M. Low-affinity nerve growth factor receptor (p75) in dermatofibrosarcoma protubers and other nonneural tumors: a study of 1,150 tumors and fetal and adult normal tissues. Hum Pathol (2001) 32:976–83. doi:10.1016/j.humpath.2001.07.062

115. Horisuchi K, Morioha K, Nishimoto K, Suzuki Y, Sasa M, Nakayama R, et al. Growth suppression and apoptosis induction in syndral sarcoma cell lines by a novel NF-kappaB inhibitor, dehydroxytretonoxypquinomycin (DHMEQ). Cancer Lett (2008) 272:336–44. doi:10.1016/j.canlet.2007.07.021

116. Mathieu J, Besançon E. Clinically tolerable concentrations of arsenic trioxide (Trisenix®) promote the assembly of the necrosome on autophagosomal membranes. BMC Cancer (2012) 12:3352–65. doi:10.1186/1471-2407-12-3358

117. Arai R, Tsuda M, Watanabe T, Ose T, Obuse C, Maenaka K, et al. Simultaneous inhibition of Src and aurora kinases by SU6666 induces therapeutic synergy in human synovial sarcoma growth, invasion and angiogenesis in vivo. Eur J Cancer (2012) 48:2417–30. doi:10.1016/j.ejca.2011.12.028

118. Syljuåsen RS, Syljuåsen DG, et al. A small-molecule inhibitor targeting the mitotic spindle checkpoint impairs the growth of uterine leiomyosarcoma. Clin Cancer Res (2012) 18:3532–65. doi:10.1158/1078-0432.CCR-11-3058

119. Reed JC. Drug insight: cancer therapy strategies based on restoration of cell death mechanisms. Nat Clin Pract Oncol (2006) 3:388–98. doi:10.1038/ncponc0538

120. Green DR. Necrosis. N Engl J Med (2014) 370:455–65. doi:10.1056/NEJMra1310050

121. Fu Z, Deng B, Liao Y, Shan L, Yin F, Wang Z, et al. The anti-tumor effect of 2-methoxyestradiol-treated Ewing sarcoma cell lines by metalloproteinase inhibitors. Mol Cancer Ther (2012) 11:255–63. doi:10.1158/1535-7163.MCT-11-0193

122. Manchado E, Guillamot M, Malumbres M. Killing cells by targeting mitosis. Nature (2006) 444:281–5. doi:10.1038/nature05387

123. Ricci C, Polito L, Astolfi A, Nicoletti G, et al. HER/erbB receptors as therapeutic targets of immunotoxins in human rhabdomyosarcoma cells. J Immunother (2002) 25:314–23. doi:10.1097/00002371-200207000-00003

124. Yates LR, Campbell PJ. Evolution of the cancer genome. Nat Rev Genet (2012) 13:795–806. doi:10.1038/nrg3317

125. Italiano A, Mathoulin-Pelissier S, Cazene AL, Terrier P, Bonvalot S, Collin F, et al. Trends in survival for patients with metastatic soft-tissue sarcoma. Cancer (2011) 117:1049–54. doi:10.1002/cncr.25538

126. Billingsley KG, Lewis JJ, Leung DH, Casper ES, Woodruff JM, Brennan MF. Multifactorial analysis of the survival of patients with distant metastasis arising from primary extremity sarcoma. Cancer (1999) 85:389–95. doi:10.1002/(SICI)1097-0248(19990701)85:3<389::AID-CNCR17>3.3.CO;2-A

127. Chey E, Butynski J, Harmon D, Morgan J, George S, Wagner A, et al. Transl. of preclinical predictive sensitivity of Ewing sarcoma to PARP inhibition: phase II study of olaparib in adult patients with recurrent/metastatic Ewing sarcoma following failure of prior chemotherapy. Proceedings of the 104th Annual Meeting of the American Association for Cancer Research, Washington DC (2013). LB-174.

128. Wagner AJ, Chugh R, Rosen LS, Morgan JA, George S, Gordon M, et al. A phase I study of the HSP90 inhibitor retasipycin hydrochloride (IP1-504) in patients with gastrointestinal stromal tumors or soft-tissue sarcomas. Clin Cancer Res (2013) 19:6020–9. doi:10.1158/1078-0432.CCR-13-0953
129. Maki RG, Kraft AS, Scheu K, Yamada J, Wadler S, Antonescu CR, et al. A multi-center phase II study of bortezomib in recurrent or metastatic sarcomas. Cancer (2005) 103:1431–8. doi:10.1002/cncr.20968

130. Ray-Coquard I, Blay J-Y, Italiano A, Le Cesne A, Penel N, Zhi J, et al. Effect of the MDM2 antagonist RG7112 on the P53 pathway in patients with MDM2-amplified, well-differentiated or dedifferentiated liposarcoma: an exploratory proof-of-mechanism study. Lancet Oncol (2012) 13:1133–40. doi:10.1016/S1470-2045(12)70474-6

131. Kurzock R, Blay J-Y, Bui-Nguyen B, Wagner A, Maki RG, Schwartz GK, et al. A phase I study of MDM2 antagonist RG7112 in patients (pts) with relapsed/refractory solid tumors. Proceedings of the 2012 ASCO Meeting. Chicago, IL (2012). e13600.

132. Chawla SP, Staddon AP, Baker LH, Schuetze SM, Tolcher AW, D’Amato GZ, et al. Phase II study of the mammalian target of rapamycin inhibitor ridaforolimus in patients with advanced bone and soft tissue sarcomas. J Clin Oncol (2012) 30:78–84. doi:10.1200/JCO.2011.35.6329

133. Demetri GD, Chawla SP, Ray-Coquard I, Le Cesne A, Staddon AP, Milhem MM, et al. Results of an international randomized phase III trial of the mammalian target of rapamycin inhibitor ridaforolimus versus placebo to control metastatic sarcomas in patients after benefit from prior chemotherapy. J Clin Oncol (2013) 31:2485–92. doi:10.1200/JCO.2012.45.5766

134. Yoo C, Lee J, Rha SY, Park KH, Kim TM, Kim YJ, et al. Multicenter phase II study of everolimus in patients with metastatic or recurrent bone and soft tissue sarcomas after failure of anthracycline and ifosfamide. Invest New Drugs (2013) 31:1602–8. doi:10.1007/s10637-013-0028-7

135. Santore A, Comandone A, Basso U, Soto Parra H, De Sanctis R, Stroppa E, et al. Phase II prospective study with sorafenib in advanced soft tissue sarcomas after anthracycline-based therapy. Ann Oncol (2013) 24:1093–8. doi:10.1093/annonc/mds6607

136. Van der Graaf WTA, Blay J-Y, Chawla SP, Kim D-W, Bui-Nguyen B, Casali PG, et al. Pazopanib for metastatic soft-tissue sarcoma (PALETTE): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet (2012) 379:1879–86. doi:10.1016/S0140-6736(12)60651-5

137. Dickson MA, Tap WD, Keohan ML, D’Angelo SP, Gounder MM, Antonescu CR, et al. Phase II trial of the CDK4 inhibitor PD0332991 in patients with advanced CDK4-amplified well-differentiated or dedifferentiated liposarcoma. J Clin Oncol (2013) 31:2024–8. doi:10.1200/JCO.2012.46.5476

138. Rello-Varona S, Herrero-Martin D, Lopez-Alemany R, Munoz-Pinedo C, Tirado OM. “(Not) All (Dead) Things Share the Same Breath”: identification of cell death mechanisms in anticancer therapy. Cancer Res (2015) 75(6):913–7. doi:10.1158/0008-5472.CAN-14-3494

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 16 January 2015; accepted: 21 March 2015; published online: 07 April 2015. Citation: Rello-Varona S, Herrero-Martin D, Lagos-Tena L, Lopez-Alemany R, Mulet-Margalef N, Huertas-Martinez J, Garcia-Monclo S, Garcia del Muro X, Muoz-Pinedo C and Tirado OM (2015) The importance of being dead: cell death mechanisms assessment in anti-sarcoma therapy. Front. Oncol. 5:82. doi: 10.3389/fonc.2015.00082

This article was submitted to Pediatric Oncology, a section of the journal Frontiers in Oncology.

Copyright © 2015 Rello-Varona, Herrero-Martin, Lagos-Tena, Lopez-Alemany, Mulet-Margalef, Huertas-Martinez, Garcia-Monclo, Garcia del Muro, Muoz-Pinedo and Tirado. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.