Plaque Volume and Morphology are Associated with Fractional Flow Reserve Derived from Coronary Computed Tomography Angiography

Tsuyoshi Nozue1, Takeshi Takamura2, Kazuki Fukui3, Kiyoshi Hibi4, Satoru Kishi5 and Ichiro Michishita1

1 Division of Cardiology, Department of Internal Medicine, Yokohama Sakae Kyosai Hospital, Yokohama, Japan
2 Department of Cardiology, Sagamihara National Hospital, Sagamihara, Japan
3 Department of Cardiology, Kanagawa Cardiovascular and Respiratory Center, Yokohama, Japan
4 Division of Cardiology, Yokohama City University Medical Center, Yokohama, Japan
5 Cardiocore Japan, Tokyo, Japan

Aim: Coronary computed tomography angiography (CCTA)-derived fractional flow reserve (FFR_{CT}) accurately diagnoses ischemic lesions of intermediate stenosis severity. However, significant determinants of FFR_{CT} have not been fully evaluated.

Methods: This was a sub-analysis of the Treatment of Alogliptin on Coronary Atherosclerosis Evaluated by Computed Tomography-Based Fractional Flow Reserve trial. Thirty-nine diabetic patients (117 vessels) with intermediate coronary artery stenosis [percent diameter stenosis (%DS) < 70%] in whom FFR_{CT} was measured were included in this study. CCTA-defined, vessel-based volumetric and morphological characteristics of plaques were examined to determine their ability to predict FFR_{CT}.

Results: Patient-based, multivariate linear regression analysis showed that hemoglobinA1c, triglycerides, and the estimated glomerular filtration rate were significant independent factors associated with FFR_{CT}. Vessel-based, univariate linear regression analysis showed that the total atheroma volume ($r = -0.233, p = 0.01$) and the percentage atheroma volume (PAV) ($r = -0.284, p = 0.002$) as well as %DS ($r = -0.316, p = 0.006$) were significant determinants of FFR_{CT}. Among the plaque components, significant negative correlations were observed between FFR_{CT} and low- ($r = -0.248, p = 0.007$) or intermediate-attenuation plaque volume ($r = -0.186, p = 0.045$), whereas calcified plaque volume was not associated with FFR_{CT}. In the left anterior descending coronary artery (LAD), the plaque volume of each component was associated with FFR_{CT}.

Conclusions: Plaque volume, PAV, and %DS were significant determinants of FFR_{CT}. Plaque morphology, particularly in LAD, was associated with FFR_{CT} in diabetic patients with intermediate coronary artery stenosis.

Key words: Coronary atherosclerosis, Coronary computed tomography angiography, Fractional flow reserve, Plaque volume, Morphology

Introduction

The use of coronary computed tomography angiography (CCTA) for noninvasive anatomical detection or exclusion of coronary artery disease (CAD) is increasing. However, stenosis severity, evaluated using CCTA, overestimates the severity of atherosclerotic obstructions and does not correlate with functional ischemia assessed by invasive fractional flow reserve (FFR). CCTA-derived fractional flow reserve (FFR_{CT}) analysis was recently developed. FFR_{CT} accurately diagnoses ischemic lesions of intermediate stenosis severity.

Many previous studies have reported that an intravascular ultrasound (IVUS)-derived minimal lumen area (MLA) is useful in predicting the functional significance of invasive FFR. However, CCTA MLA is less able than IVUS MLA to detect...
significant ischemia defined as an FFR of ≤ 0.80; thus, stenosis severity or MLA of CCTA had lower diagnostic performance for assessing ischemia \(^{10}\). Compared with these parameters, the percentage atheroma volume (PAV) determined by CCTA improves the accuracy of determination of lesion-specific hemodynamic significance by invasive FFR \(^{11}\). However, these reports were based on invasive FFR. In other words, significant determinants of FFR\(_{CT}\) have not been fully evaluated.

Aim

The purpose of the present study was to evaluate significant determinants of FFR\(_{CT}\).

Methods

Study Design

This study was a sub-analysis of the Treatment of Alogliptin on Coronary Atherosclerosis Evaluated by Computed Tomography-Based Fractional Flow Reserve (TRACT) trial. TRACT was a prospective, multicenter, observational trial to evaluate the effects of 48-week alogliptin treatment on coronary atherosclerosis using CCTA in patients with type 2 diabetes. Details of the study design have been reported previously \(^{12}\). Briefly, patients with type 2 diabetes who were suspected of having CAD and underwent CCTA examination were screened and had intermediate coronary artery stenosis [percent diameter stenosis (%DS) ≤ 70%], as evaluated by CCTA, were included in the TRACT trial. Inclusion and exclusion criteria have been described previously \(^{12}\). In total, 51 patients were enrolled in the TRACT trial, but one patient was lost to follow-up. Therefore, quantitative analysis of CCTA images was performed on 143 vessels from 50 patients. The FFR value could not be measured in 11 patients because of poor CCTA image quality \(^{13}\). Therefore, we evaluated the significant determinants of FFR\(_{CT}\) in 117 vessels from 39 patients using CCTA examination at baseline.

The TRACT trial was conducted in accordance with the Declaration of Helsinki and had the approval of the institutional ethical committees of the three participating institutions. The TRACT trial has been registered with the University Hospital Medical Information Network (UMIN; UMIN ID: 000015381). Written informed consent was obtained from each patient enrolled in the study.

Examination Using CCTA and Image Acquisition

The CCTA examination details were described previously \(^{12}\). Each center performed CCTA examinations in accordance with the Society of Cardiovascular Computed Tomography (SCCT) guidelines on the performance of CCTA using a variety of different CT scanner platforms \(^{14}\). CCTA was performed using 64-detector-row CT scans. Sublingual nitrates were administered to all patients before scanning. If necessary, beta-blockers were orally or intravenously administered, targeting a heart rate of < 60 beats per minute. During acquisition, 80–100 mL of contrast material was injected intravenously, followed by a saline flush. Helical or axial scan data were obtained with retrospective or prospective electrocardiographic gating, respectively. Image acquisition was prescribed to include the coronary arteries, left ventricle, and proximal ascending aorta.

CCTA Core Laboratory Analysis

CCTA images recorded in DVD format were transmitted to the core laboratory (HeartFlow, Redwood City, CA, USA) for computational analysis of FFR\(_{CT}\), which was performed in a blinded manner. FFR\(_{CT}\) was calculated after semi-automated segmentation of the coronary arteries and left ventricular mass \(^{4}\). Briefly, we conducted three-dimensional blood flow simulations in the coronary vasculature via proprietary software with quantitative image quality analysis, image segmentation, and physiological modeling using computational fluid dynamics. Coronary blood flow and pressure were calculated under conditions simulating maximal hyperemia. FFR\(_{CT}\) was displayed at each point in the coronary tree > 2.0 mm in vessel diameter. The lowest FFR\(_{CT}\) values in the major epicardial arteries [left anterior descending coronary artery (LAD), left circumflex coronary artery (LCX), and right coronary artery (RCA)] were registered.

Quantitative analyses of the coronary artery were performed at another independent core laboratory (Cardiocore Japan, Tokyo, Japan) in accordance with the SCCT guidelines on CCTA interpretation \(^{14}\). Details of the core laboratory analyses were reported previously \(^{12}\). Briefly, quantitative atheroma analyses were performed by independent, experienced observers who were blinded to the FFR\(_{CT}\) and clinical data. All reconstructed datasets were transferred to an offline workstation for quantitative coronary atheroma volume analysis using a dedicated software with a semi-automated three-dimensional contour detection algorithm (QAngioCT version 2.1 RC4; MEDIS\(^{TM}\), Leiden, the Netherlands) \(^{15}\). The reconstructed image was set at a window width of 740 and level of 220 for the quantitative coronary artery assessment. All three coronary vessels measuring > 2.0 mm in diameter were analyzed (QAngioCT, vs. 2.1 RC4, MEDIS\(^{TM}\)) according to an American Heart Association 17-seg-
The estimated glomerular filtration rate (eGFR) was calculated as follows: eGFR (mL/min/1.73 m²) = 194 × serum creatinine (mg/dL)⁻¹.⁰⁹⁴ × Age (years)⁻⁰.₂₈⁷ (× 0.₇₃₉ for female subjects) ¹⁷.

Statistical Analysis

The statistical analysis was performed using StatView version 5.0 (SAS Institute, Cary, NC, USA). The results are expressed as mean ± standard deviation or median (range). Univariate linear regression analysis was performed to assess the factors associated with FFRCT. Statistically significant variables on univariate analysis were entered into multivariate models. Statistical significance was set at \(p < 0.05 \).

Results

The subjects’ baseline characteristics are shown in **Table 1**. Twenty-one patients (54%) were men, and the mean patient age was 71 years. Seventeen patients (44%) were treated with statins at the time of the CCTA examination.

Table 1. Baseline characteristics of the subjects

Characteristic	Value
Age (years)	71 ± 9
Males	21 (54)
Body mass index (kg/m²)	24.7 ± 3.4
Hypertension	33 (85)
Dyslipidemia	24 (62)
Smoking	8 (21)
Statin	17 (44)
Ezetimibe	5 (13)
Antiplatelet	8 (21)
ACE inhibitor or ARB	17 (44)
Beta-blocker	8 (21)
Hypoglycemic medications	
DPP-4 inhibitor	21 (54)
Sulfonylurea	11 (28)
Biguanide	10 (26)
α-Glucosidase inhibitor	4 (10)
Glinide	2 (5)
Thiazolidine	1 (3)
Insulin	0 (0)

Data are expressed as mean ± SD or n (%).

Table 2. Risk factor control at the time of the CCTA examination

Risk factor	Value
Total cholesterol (mg/dL)	199 ± 30
LDL cholesterol (mg/dL)	120 ± 31
Triglycerides (mg/dL)	146 (36-442)
HDL cholesterol (mg/dL)	63 ± 15
hs-CRP (ng/mL)	683 (65-8970)
PG (mg/dL)	140 ± 46
HbA1c (%)	7.1 ± 0.8
SBP (mmHg)	139 ± 19
DBP (mmHg)	83 ± 13
HR (beats/min)	63 ± 10
eGFR (mL/min/1.73m²)	65 ± 12

Data are expressed as mean ± SD or median (range).

CCTA, coronary computed tomography angiography; LDL, low-density lipoprotein; HDL, high-density lipoprotein; hs-CRP, high-sensitivity C-reactive protein; PG, plasma glucose; HbA1c, hemoglobin A1c; SBP, systolic blood pressure; DBP, diastolic blood pressure; HR, heart rate; eGFR, estimated glomerular filtration rate.

Hemoglobin A1c (HbA1c) levels were measured using high-performance liquid chromatography (Adams A1c HA-8160; Arkray Inc., Kyoto, Japan), whereas plasma glucose (PG) levels were measured using the glucose oxidation method (chemical reagent and Glucose AUTO and STAT GA-1160 analyzer; Arkray Inc.). Serum levels of total cholesterol (TC), low-density lipoprotein (LDL) cholesterol, triglycerides (TG), and high-density lipoprotein (HDL) cholesterol were measured using standard enzymatic methods (AU2700; Beckman Coulter, CA, USA) and commercially available kits (Kyowa Medex, Tokyo, Japan). Serum levels of high-sensitivity C-reactive protein (hs-CRP) were measured at a central clinical laboratory (SRL, Inc., Tokyo, Japan). The estimated glomerular filtration rate (eGFR) was calculated as follows: eGFR (mL/min/1.73 m²) = 194 × serum creatinine (mg/dL)⁻¹.⁰⁹⁴ × Age (years)⁻⁰.₂₈⁷ (× 0.₇₃₉ for female subjects) ¹⁷.

Laboratory Data

Hemoglobin A1c (HbA1c) levels were measured using high-performance liquid chromatography (Adams A1c HA-8160; Arkray Inc., Kyoto, Japan), whereas plasma glucose (PG) levels were measured using the glucose oxidation method (chemical reagent and Glucose AUTO and STAT GA-1160 analyzer; Arkray Inc.). Serum levels of total cholesterol (TC), low-density lipoprotein (LDL) cholesterol, triglycerides (TG), and high-density lipoprotein (HDL) cholesterol were measured using standard enzymatic methods (AU2700; Beckman Coulter, CA, USA) and commercially available kits (Kyowa Medex, Tokyo, Japan). Serum levels of high-sensitivity C-reactive protein (hs-CRP) were measured at a central clinical laboratory (SRL, Inc., Tokyo, Japan). The estimated glomerular filtration rate (eGFR) was calculated as follows: eGFR (mL/min/1.73 m²) = 194 × serum creatinine (mg/dL)⁻¹.⁰⁹⁴ × Age (years)⁻⁰.₂₈⁷ (× 0.₇₃₉ for female subjects) ¹⁷.

Statistical Analysis

The statistical analysis was performed using StatView version 5.0 (SAS Institute, Cary, NC, USA). The results are expressed as mean ± standard deviation or median (range). Univariate linear regression analysis was performed to assess the factors associated with FFRCT. Statistically significant variables on univariate analysis were entered into multivariate models. Statistical significance was set at \(p < 0.05 \).
values in RCA, LAD, and LCX were 0.79, 0.65, and 0.80, respectively. An invasive FFR value of LAD was 0.74.

Vessel-based quantitative and qualitative analyses of coronary atherosclerosis in the whole three coronary arteries are shown in Table 3. FFRCT, %DS, vessel volume, TAV, lumen volume, and PAV per-vessel were 0.86 ± 0.09, 41.9 ± 10.4%, 1267.2 ± 728.7 mm³, 658.5 ± 390.5 mm³, 608.7 ± 405.9 mm³, and 52.9% ± 10.9%, respectively. Overall, 93 vessels (79%) were negative for ischemia (FFRCT > 0.80), whereas 24 (21%) were positive (FFRCT ≤ 0.80). Patient-based univariate linear regression analyses showed that HbA1c (r = −0.276, p = 0.003), TG (r= 0.280, p = 0.002), and eGFR (r= −0.305, p = 0.001) were associated with FFRCT (Table 4). Multivariate linear regression analyses showed that HbA1c (β = −0.296, p = 0.0009), TG (β=0.281, p = 0.002), and eGFR (β = −0.180, p = 0.04) were significant independent factors associated with FFRCT (Table 4). Vessel-based univariate linear regression analysis showed that TAV (r = −0.233, p = 0.01), PAV (r = −0.284, p = 0.002), and %DS (r = −

Table 3. Vessel based quantitative and qualitative analyses of the three coronary arteries

	RCA (mm³)	LAD (mm³)	LCX (mm³)
Vessel volume	1885	1753	1007
TAV (mm³)	1067	1058	629
Lumen volume (mm³)	818	695	378
PAV (%)	56.6	60.4	62.5

Data are expressed as mean ± SD or n (%).

FFR, fractional flow reserve; TAV, total atheroma volume; PAV, percentage atheroma volume.

Fig. 1. A case example

(A) CCTA (curved multiplanar reconstructions) images. (B) FFRCT values of the three coronary arteries. (C) Invasive coronary angiograms.

A 62-year-old man with a history of diabetes presented with atypical chest pain on effort. The CCTA images and invasive coronary angiograms demonstrated intermediate stenosis in the three coronary arteries. FFRCT values in RCA, LAD, and LCX were 0.79, 0.65, and 0.80, respectively. An invasive FFR value of LAD was 0.74.

CCTA, coronary computed tomography angiography; FFR, fractional flow reserve; TAV, total atheroma volume; PAV, percentage atheroma volume; RCA, right coronary artery; LAD, left anterior descending coronary artery; LCX, left circumflex coronary artery.
The present study’s major findings are as follows: (1) greater atheroma volume, PAV, and %DS were associated with a low FFR_{CT}; (2) plaque morphology, particularly in LAD, was a significant determinant of FFR_{CT}; and (3) a significant negative correlation was observed between HbA_{1c} and FFR_{CT}.

FFR is a useful tool for detecting lesion-specific myocardial ischemia and assessing the functional significance of CAD¹⁸. Many previous studies have reported that MLA evaluated by IVUS is useful for predicting the functional significance of invasive FFR^{8, 9}. However, a recent study reported that the optimal cut-
off for an MLA to FFR of ≤ 0.80 was vessel dependent. However, the diagnostic performance of CCTA MLA is lower than that of IVUS MLA for detecting significant ischemia, defined as an FFR of ≤ 0.80. Compared with stenosis severity or MLA, PAV by CCTA improves the determination of lesion-specific hemodynamic significance by invasive FFR. Recently, Doris et al. reported that the total plaque volume, quantified on a per-vessel basis, predicted an abnormal FFRCT, suggesting that an abnormal FFRCT may reflect diffuse coronary atherosclerosis. Consistent with above reports, we found a significant negative correlation between FFRCT and vessel-based TAV or PAV. Thus, plaque volume and its ratio to the vessel are significant determinants of FFRCT.

Another important result of this study was that plaque morphology, particularly in LAD, was associated with FFRCT. The prognostic outcome has traditionally been linked to the morphological features of high-risk plaques that are vulnerable to rupture. Therefore, it is important to address whether plaque morphology can influence FFR value. There are some discrepancies in the influence of plaque morphology on the FFR value. In the Fractional Flow Reserve and Intravascular Ultrasound Relationship Study, the plaque morphology, as measured by virtual histology (VH)-IVUS at the MLA site, did not correlate with the invasive FFR value. Brown et al. also reported no relationship between the invasive FFR value and the VH-IVUS derived plaque composition. However, Sakurai et al. reported that lipid plaque volume, evaluated using integrated backscatter IVUS, was significantly correlated with invasive FFR value. Hüseyinova et al. also reported that invasive FFR value negatively correlated with the necrotic core volume or presence of thin-cap fibroatheroma (TCFA) evaluated using VH-IVUS. Furthermore, the presence of optical coherence tomography-derived TCFA and reduced fibrous cap thickness was associated with lower FFR values. Recent studies also reported that the low-attenuation plaque volume, evaluated by CCTA, was an independent predictor of the invasive FFR value. Furthermore, Doris et al. reported that the non-calcified plaque volume and the low-density, non-calcified plaque volume were stronger predictors of abnormal FFRCT than calcified plaque volume. Consistent with these reports, low- and intermediate-attenuation plaque volumes were negatively and significantly correlated with FFRCT, whereas the calcified plaque volume was not associated with FFRCT in the whole three coronary arteries. Furthermore, although the plaque volume of each component was associated with FFRCT in LAD, the correlation coefficients were stronger in low- and intermediate-attenuation plaque volumes than in the calcified plaque volume. Thus, the presence of vulnerable plaque contributes to the dissociation of morphological findings from the hemodynamic consequence.

Diabetes mellitus is a major risk factor for CAD, and hyperglycemia is related to the progression of atherosclerosis. Recently, Kitabata et al. reported that diabetes and hypertension were independent predictors of abnormal FFRCT. Consistent with this report, we found a significant negative correlation between HbA1c and FFRCT. Thus, poor glycemic control is associated with the progression of diffuse coronary atherosclerosis and leads to decreased FFRCT. We could not clearly explain the mechanisms associating FFRCT with TG or eGFR. We speculate that vessel remodeling and plaque morphology under these conditions may affect FFRCT value because a decreased eGFR is associated with expanding vessel remodeling and plaque morphology.

This study had several limitations. First, this was a post hoc sub-analysis of the non-randomized TRACT trial. Second, TRACT trial specifically included diabetic patients with intermediate coronary artery stenosis. Non-diabetic patients and those who required percutaneous coronary intervention were excluded. Furthermore, 93 vessels (79%) were negative for ischemia (FFRCT > 0.8). Therefore, the results of this study could not be generalized to all subjects and all vessels. Third, the remodeling index was not included in the analysis because FFRCT was obtained from the far distal site of the coronary artery to evaluate whole vessel ischemia. Finally, this study was limited by its relatively small number of patients. Further studies with larger sample sizes are necessary to confirm our conclusions.

Conclusions

Plaque volume, PAV, and %DS were significant determinants of FFRCT. Plaque morphology, particularly in LAD, was associated with FFRCT in diabetic patients with intermediate coronary artery stenosis.

Declaration of Conflict of Interest

None.

References

1) Hamon M, Biondi-Zoccai GG, Malagutti P, Agostoni P, Morello R, Valgimigli M, Hamon M. Diagnostic performance of multislice spiral computed tomography of coronary arteries as compared with conventional invasive coronary angiography: a meta-analysis. J Am Coll Cardiol,
Knuuti J, Kolh P, et al; Document Reviewers, Knuuti J, Valgimigli M, Bueno H, Claeyss MJ, Donner-Banzhoff N, Erol C, Frank H, Funck-Brentano C, Gaemperli O, Gonzalez-Juanatey JR, Hamilos M, Hasdai D, Husted S, James SK, Kervinen K, et al. 2013 ESC guidelines on the management of stable coronary artery disease: the Task Force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J, 2013; 34: 2949-3003

19) Waksman R, Legutko J, Singh J, Orlando Q, Mars O, Schloss T, Tugaoen J, DeVries J, Palmer N, Haude M, Swymel S, Torguson R. FIRST: Fractional Flow Reserve and Intravascular Ultrasound Relationship Study. J Am Coll Cardiol, 2013; 61: 917-923

20) Doris MK, Otaki Y, Aronson Y, Tamarappoo B, Grasser M, Grasser H, Wang J, Hayes S, Friedman J, Thomson L, Slomka P, Dey D, Berman D. Non-invasive fractional flow reserve in vessels without severe obstructive stenosis is associated with coronary plaque burden. J Cardiovasc Comput Tomogr, 2018; 12: 379-384

21) Brown AJ, Giblett JP, Bennett MR, West NEJ, Hoole SP. Anatomical plaque and vessel characteristics are associated with hemodynamic indices including fractional flow reserve and coronary flow reserve: A prospective exploratory intravascular ultrasound analysis. Int J Cardiol, 2017; 248: 92-96

22) Sakurai S, Takashima H, Waseda K, Gosh M, Kurita A, Ando H, Maeda K, Suzuki A, Fujimoto M, Amano T. Influence of plaque characteristics on fractional flow reserve for coronary lesions with intermediate to obstructive stenosis: insights from integrated-backscatter intravascular ultrasound analysis. Int J Cardiovasc Imaging, 2015; 31: 1295-1301

23) Hüseyinova G, Aslanger E, Çakir O, Atıcı A, Panç C, Demirkiran A, Sürmen S, Sarıkaya R, Erdoğan O, Gülçük E, Umman S, Sezer M. Potential contribution of virtual histology plaque composition to hemodynamic-morphologic dissociation in patients with non-ST elevation acute coronary syndrome. Int J Cardiol, 2015; 187: 33-38

24) Reith S, Battermann S, Jaskolka A, Lehmacher W, Hoffmann R, Marx N, Burgmaier M. Relationship between optical coherence tomography derived intraluminal and intramural criteria and haemodynamic relevance as determined by fractional flow reserve in intermediate coronary stenoses of patients with type 2 diabetes. Heart, 2013; 99: 700-707

25) Gaur S, Øvrehus KA, Dey D, Leipsic J, Bøtker HE, Jensen JM, Narula J, Ahmadi A, Achenbach S, Ko BS, Christiansen EH, Kaltoft AK, Berman DS, Bezzera H, Lassen JF, Nørgaard BL. Coronary plaque quantification and fractional flow reserve by coronary computed tomography angiography identify ischaemia-causing lesions. Eur Heart J, 2016; 37: 1220-1227

26) Ahmadi A, Leipsic J, Øvrehus KA, Gaur S, Bagiella E, Ko B, Dey D, LaRocca G, Jensen JM, Bøtker HE, Achenbach S, De Bruyne B, Nørgaard BL, Narula J. Lesion-Specific and Vessel-Related Determinants of Fractional Flow Reserve Beyond Coronary Artery Stenosis. JACC Cardiovasc Imaging, 2018; 11: 521-530

27) Coutinho M, Gerstein HC, Wang Y, Yusuf S. The relationship between glucose and incident cardiovascular events. A metaregression analysis of published data from 20 studies of 95,783 individuals followed for 12.4 years. Diabetes Care, 1999; 22: 233-240

28) Kitabata H, Leipsic J, Patel MR, Nieman K, De Bruyne B, Rogers C, Pontone G, Nørgaard BL, Bax JJ, Raff G, Chinnaiyan KM, Rabbat M, Rønnow Sand NP, Blanke P, Fairbairn TA, Matsuo H, Amano T, Kawasaki T, Morino Y, Akasaka T. Incidence and predictors of lesion-specific ischemia by FFRCT: Learnings from the international ADVANCE registry. J Cardiovasc Comput Tomogr, 2018; 12: 95-100

29) Nozue T, Yamamoto S, Tohyama S, Fukui K, Umezawa S, Onishi Y, Kunishima T, Hibi K, Terashima M, Michishita I; TRUTH INVESTIGATORS. Impacts of estimated glomerular filtration rate on coronary atherosclerosis and plaque composition before and during statin therapy in patients with normal to mild renal dysfunction: subanalysis of the TRUTH study. Nephrology (Carlton), 2012; 17: 628-635