A LOWER BOUND ON THE ENTRIES OF THE PRINCIPAL EIGENVECTOR OF A GRAPH

FELIX GOLDBERG

Abstract. We obtain a lower bound on each entry of the principal eigenvector of a non-regular connected graph.

1. Introduction

The theory of graph spectra, in whose earliest annals we find such illustrious names as Hoffman, Bose, Seidel, and Fiedler, has by now attained a fairly mature stage. Recent expositions of the theory may be found in the books [3, 6, 7, 9].

On the other hand, while the theory of graph eigenvectors may be already out of its infancy, it is still very much in a state of toddlerhood. The purpose of the present note is to make a modest contribution to one of the basic problems of this theory - the description of the entries of the principal eigenvector of a non-regular graph.

2. The problem

Let \(G \) be a connected graph on \(n \) vertices with adjacency matrix \(A \in \mathbb{R}^{n \times n} \). The following facts are widely known (and may be found in each of the references mentioned above):

- \(A \) is an irreducible nonnegative matrix.
- The spectral radius \(\rho(G) \) of \(A \) is a simple eigenvalue.
- The eigenvector \(x \in \mathbb{R}^n \) corresponding to \(\rho \) is positive entrywise.

We shall refer to \(\rho(G) \) as the spectral radius of \(G \) and when the context is clear, denote simply \(\rho = \rho(G) \). The vector \(x \) will be referred to as the principal eigenvector of \(G \). An alternative name, which we shall not use here, would be the Perron vector.

It is also very well known that:

\[\]

Date: March 6, 2014.
1991 Mathematics Subject Classification. 05C50,15A42,15A18.
Key words and phrases. adjacency matrix, Perron vector, principal eigenvector, induced subgraph.

This research was supported by the Israel Science Foundation (grant number 862/10.)
If G is regular, then all the entries of x are equal.

Papendieck and Recht in [11] were the first to study the problem of estimating the entries of x in the case that G is non-regular. Before presenting their result, we make an assumption which will be sustained throughout the rest of the note:

Assumption 1. The vector x is normalized so that $\sum_{i=1}^{n} x_i^2 = 1$.

Theorem 2. [11] Let G be a connected graph with principal eigenvector x. Let x_{max} be the largest entry of x. Then

$$x_{\text{max}} \leq \frac{1}{\sqrt{2}}$$

Equality is attained if and only if $G = K_{1,n-1}$ is the star on n vertices.

In fact, Papendieck and Recht’s full result is more general, holding for every p-norm ($p \in [1,\infty]$) and depending also on ρ. However, in the case of interest to us, $p = 2$, it reduces to $\frac{1}{\sqrt{2}}$.

3. Known bounds on x

Let us introduce some more notation: denote the degree of the ith vertex of G by d_i. The subgraph of G obtained by deleting the ith vertex (and all edges incident on it) will be denoted as $G_{(i)}$. The spectral radius of $G_{(i)}$ will be denoted by ρ_i. Note that since G is connected, we have by [2, Corollary 2.1.5(b)]:

$$\rho > \rho_i.$$

Cioabă and Gregory [5] have generalized Theorem 2 to give upper bounds on every entry of x.

Theorem 3. [5, Theorem 3.2] Let G be a connected graph with principal eigenvector x. Then for every $1 \leq i \leq n$:

$$x_i \leq \frac{1}{\sqrt{1 + \frac{\rho^2}{d_i}}}.$$

Equality is attained if and only if $x_i = x_{\text{max}}$, $d_i = n - 1$, and $G_{(i)}$ is regular.

A natural counterpart to Theorem 3 is given by Li, Wang, and Van Mieghem [8]:

Theorem 4. [8] Let G be a connected graph with principal eigenvector x. Then for every $1 \leq i \leq n$:

$$x_i \geq \sqrt{\frac{\rho - \rho_i}{2\rho}}.$$
We remark that additional bounds for x_{max} and x_{min} can be found in [5, 10]. There are also in the literature results of a different kind where $\sum_{i \in S} x_i^2$ is estimated from above for subsets $S \subseteq V(G)$ which induce either empty [4, 8] or, more generally, regular subgraphs [1]. When S is a singleton set such bounds reduce to an analogue of Theorem 3.

4. A NEW LOWER BOUND

Our new result is another lower bound on x_i, which is often, but not always, better than Theorem 4.

Theorem 5. Let G be a connected graph with principal eigenvector x. Then for every $1 \leq i \leq n$:

$$x_i \geq \frac{1}{\sqrt{1 + \frac{d_i}{(\rho - \rho_1)^2}}}.$$

For the proof we need a lemma:

Lemma 6. [12, p. 148] Let the Hermitian matrix A be partitioned as

$$A = \begin{bmatrix} a & b^T \\ b & B \end{bmatrix}$$

and let x be a unit eigenvector of A corresponding to the eigenvalue λ. If λ is not an eigenvalue of B, then

$$|x_1|^2 = \frac{1}{1 + ||(\lambda I - B)^{-1}b||^2}.$$

Proof of Theorem 5. Without loss of generality, let $i = 1$ and suppose that A is partitioned as in (1). Then B is the adjacency matrix of $G_{(1)}$. As observed before: $\rho > \rho_1$. This means that ρ is not an eigenvalue of B and the hypothesis of Lemma 6 is satisfied. Thus we have

$$|x_1|^2 = \frac{1}{1 + ||(\rho I - B)^{-1}b||^2} \geq \frac{1}{1 + ||(\rho I - B)^{-1}||^2||b||^2},$$

where $||(\rho I - B)^{-1}||$ is the 2-norm, which is known to be equal to

$$\lambda_{\max}((\rho I - B)^{-1}) = \frac{1}{\lambda_{\min}(\rho I - B)} = \frac{1}{\rho - \lambda_{\max}(B)} = \frac{1}{\rho - \rho_1}.$$

Thus, since $||b||^2 = d_1$ we obtain

$$|x_1|^2 \geq \frac{1}{1 + \frac{d_1}{(\rho - \rho_1)^2}}.$$

\[\square\]
5. An example

Consider the following graph:

In the table we list the actual values of the principal eigenvector x and the bounds given by all three theorems discussed.

vertex name	vertex degree	Theorem 4	Theorem 5	x_i	Theorem 3
b	6	0.39725	0.45901	0.49917	0.5213
c	6	0.374	0.41636	0.48264	0.5213
g	4	0.29584	0.33114	0.39818	0.44634
a	3	0.18076	0.14959	0.26109	0.39654
e	3	0.25233	0.28276	0.34415	0.39654
i	3	0.18904	0.16325	0.27064	0.39654
d	2	0.17415	0.16949	0.24485	0.33261
f	2	0.13045	0.096049	0.18786	0.33261
h	1	0.044799	0.016093	0.065114	0.24198

As the table makes clear, Theorems 5 and Theorem 4 are, generally speaking, incomparable. Nevertheless, a rule of thumb may be discerned as to when is one better than the other: Theorem 5 works better for vertices of higher degree and Theorem 4 for vertices of low degree. As vertices a, e, i show, however, this rule of thumb is not perfect.
REFERENCES

[1] M. Andelić and D. M. Cardoso. Spectral characterization of families of split graphs. *Graphs and Combinatorics*, In press.

[2] A. Berman and R. J. Plemmons. *Nonnegative Matrices in the Mathematical Sciences*, volume 9 of *Classics in Applied Mathematics*. SIAM, 1994.

[3] A. E. Brouwer and W. H. Haemers. *Spectra of Graphs*, volume 223 of *Universitext*. Springer, 2012.

[4] S. M. Cioabă. A necessary and sufficient eigenvector condition for a connected graph to be bipartite. *Electron. J. Linear Algebra*, 20:351–353, 2010.

[5] S. M. Cioabă and D. A. Gregory. Principal eigenvectors of irregular graphs. *Electron. J. Linear Algebra*, 16:366–379, 2007.

[6] D. Cvetković, P. Rowlinson, and S. K. Simić. *An Introduction to the Theory of Graph Spectra*, volume 223 of *Universitext*. Springer, 2010.

[7] C. Godsil and G. Royle. *Algebraic Graph Theory*, volume 207 of *Graduate Texts in Mathematics*. Springer, 2001.

[8] C. Li, H. Wang, and P. V. Mieghem. Bounds for the spectral radius of a graph when nodes are removed. *Linear Algebra Appl.*, 437(1):319–323, 2012.

[9] P. V. Mieghem. *Graph spectra for complex networks*. Cambridge University Press, 2011.

[10] V. Nikiforov. A spectral condition for odd cycles in graphs. *Linear Algebra Appl.*, 428(7):1492–1498, 2008.

[11] B. Papendieck and P. Recht. On maximal entries in the principal eigenvector of graphs. *Linear Algebra Appl.*, 310(1–3):129–138, 2000.

[12] T. Tao and V. Vu. Random matrices: universality of local eigenvalue statistics. *Acta Math.*, 26(1):127–204, 2011.

Caesarea-Rothschild Institute, University of Haifa, Haifa, Israel
E-mail address: felix.goldberg@gmail.com