A note on hyperquadratic elements of low algebraic degree

by A. Lasjaunias

Abstract. In different areas of discrete mathematics, a certain type of polynomials, having coefficients in a field K of finite characteristic, has been considered. The form and the degree of these polynomials, here called projective, are simply linked to the characteristic p of K. Roots of these projective polynomials are particular algebraic elements over K, called hyperquadratic. For a general algebraic element of degree d over K, we discuss the possibility of being hyperquadratic. Using a method of differential algebra, we obtain, for particular fields $K = \mathbb{F}_p$, projective polynomials only having polynomial factors of degree 1 or 2.

Let K be a field of positive characteristic p and $r = p^t$ where $t \geq 0$ is an integer. To a given quadruple (u, v, w, z) in K^4, such that $uz - vw \neq 0$, we associate a polynomial $H_{K,r}$ (or simply H) in $K[X]$, defined by:

$$H(x) = ux^{r+1} + vx^r + wx + z.$$

These polynomials have been considered long ago, probably first by Carlitz [6], and studied more recently from an algebraic point of view in a general context by several authors [1], [2]. Following Abyanbhar, we call H a projective polynomial over K. To be more precise, we can say a projective polynomial of order t. We observe that $H(x) = 0$ is equivalent to $x = f(x^r)$ where f is a linear fractional transformation defined by $f(x) = (-vx - z)/(ux + w)$. The condition $uz - vw \neq 0$ makes sure that this linear fractional transformation f is non-trivial and invertible.

If $\alpha \notin K$ is such that there exists a projective polynomial H and we have $H(\alpha) = 0$, we say that α is hyperquadratic over K. Hence, a hyperquadratic element is a fixed-point of the composition of a linear fractional transformation and of the Frobenius isomorphism $x \rightarrow x^r$. To be more precise, we say that an irrational root (i.e. $\notin K$) of $H_{K,r}$ is an hyperquadratic element of order t. Note that a hyperquadratic element over K is a particular algebraic element over K of degree d with $2 \leq d \leq r + 1$.

Since $x \rightarrow x^r$ is an isomorphism in K, we have the following: if α is
hyperquadratic of order \(t \) then we have \(\alpha = f(\alpha^r) = f((f(\alpha^r))^r) = g(\alpha^{r^2}) \), where \(g \) is another invertible linear fractional transformation. Hence \(\alpha \) is also hyperquadratic of order \(2t \), and by iteration of order \(mt \) for all integers \(m \geq 1 \).

If \(r = 1 \) (i.e. \(t = 0 \)), then \(H \) is a polynomial of degree 2. Hence quadratic elements over \(K \) are hyperquadratic elements of order 0. If \(r > 1 \) and \(\alpha \) is algebraic over \(K \) of degree \(2 \leq d \leq 3 \), then the four elements \(1, \alpha, \alpha^r \) and \(\alpha^{r+1} \) in \(K(\alpha) \) are linked over \(K \). Consequently there exists a polynomial \(H \) such that \(H(\alpha) = 0 \) and therefore \(\alpha \) is hyperquadratic of any order \(t \geq 1 \). Accordingly, to be more precise, we define the absolute order of a hyperquadratic element \(\alpha \) as the least integer \(t \) such there is \(H \) with \(H(\alpha) = 0 \) and \(r = p^t \). Hence a quadratic element over \(K \) is hyperquadratic of absolute order 0 (but also of any order \(t \geq 0 \)) and a cubic element over \(K \) is hyperquadratic of absolute order 1 (but also of any order \(t \geq 1 \)).

In this note, for the field \(K \), we will only be considering the following two cases. The first case is \(K \) finite and consequently \(K = \mathbb{F}_q \) where \(q \) is a power of a prime \(p \). The second case is \(K \) being a transcendental extension of a finite field, that is \(K = \mathbb{F}_q(T) \) where \(T \) is a formal indeterminate. Note that the first case can just be seen as a particular case of the second one. For \(K = \mathbb{F}_q \), the study of \(H \) appears in different works, some more general and others oriented to coding theory (see [5],[12], [9],[10],[11]). The importance of \(H \) in the second case appears in diophantine approximation and continued fractions in function fields over a finite field. The first consideration in this setting, with \(K = \mathbb{F}_2(T) \), is due to Baum and Sweet [4]. For a survey and more references in this area the reader may consult [8]. As we will see below the study of \(H \) in this second case, allows to use methods which bring results also in the first case.

Let us consider the case \(K = \mathbb{F}_q(T) \). A method to study rational approximation of roots of \(H \) in power series fields, based on arguments of differential algebra, was developed. See [8], for more precisions and references (note that hyperquadratic elements were first called algebraic of class I). For a short presentation of the arguments developed below, the reader may also consult [3 p. 260-262]. We use formal differentiation in \(K \). If \(x \in K \) (or a field extension of \(K \)), we denote by \(x' \) the formal derivative of \(x \) respect to \(T \). If \(\alpha \) is algebraic of degree \(d \), there is a polynomial \(P \in K[x] \) of degree \(d \) such that we have \(P(\alpha) = 0 \). By differentiation, we get \(\alpha'P_\alpha(\alpha) + P_\alpha'(\alpha) = 0 \) and consequently \(\alpha' \in \mathbb{F}_q(T, \alpha) \). Therefore we get \(\alpha' = Q(\alpha) \) where \(Q \) is a polynomial of degree less or equal to \(d - 1 \), with coefficients in \(\mathbb{F}_q(T) \).
Just to illustrate the above argument, let us consider the simple case $d = 2 : x$ satisfies $x^2 + ax + b = 0$ where $a, b \in K$ with $p > 2$. Then setting $\Delta = a^2 - 4b$, through a basic computation the reader may check that we get $\Delta x' = (aa' - 2b')x + 2ba' - ab'$. We report here below the computation by means of electronic media, applying PARI/GP (This computation can be performed online at https://pari.math.u-bordeaux.fr/gp.html). Given a polynomial P, the polynomial ΔQ is returned (where Δ is the discriminant of P). Here the derivatives of a and b are denoted by ap and bp respectively.

\begin{verbatim}
? P=Pol([1,a,b]);Pt=Pol([ap,bp]);
[U,V,R]=polresultantext(P,P');Q=V*Pt%P
%1 = (ap*a - 2*bp)*x + (-bp*a + 2*ap*b)
\end{verbatim}

Returning to the general case, if α is a hyperquadraic element, since $\alpha = f(\alpha')$, we get $\alpha' = Q(\alpha)$ with $\deg(Q) \leq 2$ (see [3, p. 262, Proposition 2.2]).

Hence a hyperquadratic element satisfies a Riccati differential equation, in other words we say that it is a differential-quadratic element. Incidentally, this shows that, for a general algebraic element of large degree d over K, the possibility of being hyperquadratic is remote.

Indeed, from $d \geq 4$ on, the situation is more complex : a general algebraic element of degree d over K may not be differential-quadratic and therefore it cannot be hyperquadratic. Starting from this observation, we could ask the following: Given a general polynomial P of degree $d = 4$, is there a simple condition on its coefficients such that the root of P is differential-quadratic ? The polynomial in its general form, after a translation on x, for a characteristic $p > 3$, can be written as $P(x) = x^4 + ax^2 + bx + c$. It was proved that $a^2 + 12c = 0$ is a condition which implies that an eventual root of P is differential-quadratic (see [3, p. 262]). This can be checked using computer calculations. We write here below the code using PARI/GP as above. The polynomial returned has degree 3 (here as above ap, bp and cp stand for the derivatives a', b' and c').

\begin{verbatim}
? P=Pol([1,0,a,b,c]);Pt=Pol([ap,bp,cp]);
[U,V,R]=polresultantext(P,P');Q=V*Pt%P
%1 = (-8*cp*a^3+(4*bp*b+16*ap*c)*a^2+(-6*ap*b^2+32*cp*c)*a+
(-36*cp*b^2+48*bp*c*b-64*ap*c^2))*x^3+((-4*cp*b+16*bp*c)*a^2+
\end{verbatim}
\((-6*bp*b^2 - 32*ap*c*b)*a + (9*ap*b^3 + 48*cp*c*b - 64*bp*c^2)\) \cdot x^2 + \((-8*cp*a^4 + (4*bp*b + 8*ap*c)*a^3 + (-4*ap*b^2 + 48*cp*c)*a^2 + (-42*cp*b^2 + 16*bp*c*b - 32*ap*c^2)*a + (9*bp*b^3 - 12*ap*c*b^2 - 64*cp*c^2)\) \cdot x + ((-4*cp*b + 8*bp*c) \cdot a^3 - 4*ap*c*b \cdot a^2 + (48*cp*c*b - 32*bp*c^2) \cdot a + (-27*cp*b^3 + 36*bp*c*b - 48*ap*c^2)*b).\]

And finally, after the substitution \(c = -a^2/12\) and the one obtained by differentiation, we observe that the leading coefficient of \(Q\) vanishes.

\[
\text{? substvec(Q, [c, cp], [-a^2/12, -a*ap/6])}
\]

\[
\%2 = (-16/9*bp*a^4 + 8/3*ap*b*a^3 - 6*bp*b^2*a + 9*ap*b^3) \cdot x^2 + (32/27*ap*a^5 + 8/3*bp*b*a^3 + 4*ap*b^2*a^2 + 9*bp*b^3) \cdot x + (-8/9*bp*a^5 + 4/3*ap*b*a^4 - 3*bp*b^2*a^2 + 9/2*ap*b^3*a).\]

Then a natural question arises: under the condition \(a^2 + 12c = 0\), may a solution of \(P\) be hyperquadratic? The answer is positive. Indeed, in [7, p. 35-38] with a limitation on the size of the prime \(p\), and in [3] without limitation, the following was proved: For \(p > 3\) and \(p \equiv i \mod 3\) (\(i = 1, 2\)), \(a, b \in K\), the polynomial \(P(x) = x^4 + ax^2 + bx - a^2/12\) divides a projective polynomial of order \(i\). Just to briefly illustrate this: if \(p = 7\) and \(a, b \in K\), we have

\[
ax^8 + 3bx^7 + 4b(b^2 + 4a^3)x + 2a^2(b^2 + a^3) = (x^4 + ax^2 + bx + 4a^2)(ax^4 + 3bx^3 + 6a^2x^2 + 3abx + 4(b^2 + a^3)).\]

The existence of such a simple condition, on the coefficients of the polynomial \(P\), implying it to divide a projective polynomial remains somehow mysterious. Thus, we decided to investigate the case \(d = 5\), searching for eventual differential-quadratic elements. After a translation on \(x\), the general form of \(P\) would be \(P = x^5 + ax^3 + bx^2 + cx + d\) for \(p > 5\). The polynomial \(Q\), such that \(x' = Q(x)\), would be of degree 4: \(Q = b_4x^4 + b_3x^3 + b_2x^2 + b_1x + b_0\). Hence we need to check the coefficients \(b_4\) and \(b_3\), trying to find which conditions on \(a, b, c\) and \(d\) would make them both vanish. The computations to obtain the 5 coefficients of \(Q\), have been performed as above using PARI. However, the situation appears too intricated due to the number 4 of coefficients in \(P\). To simplify, we decided to check the simpler case of \(P\) having no term of degree 3. Our goal was to obtain a
hyperquadratic element algebraic of degree 5. However, we were unsuccessful. We could only obtain very partial results, bringing more questions than answers, which we expose here below.

We consider $P = x^5 + ax^2 + bx + c$ with a, b and c in $\mathbb{F}_q(T)$ and $p > 5$. After a thorough examination of the coefficients b_4 and b_3, we observed the following. Under a couple of particular sufficient conditions (C_1) and (C_2) on the three coefficients a, b and c, we have $b_3 = 0$ and $b_4 = 0$. These conditions are the following:

$$(C_1) \quad 18a^3 + 325bc = 0 \quad \text{and} \quad (C_2) \quad 5b'c = 4c'b.$$

Hence, if (C_1) and (C_2) are satisfied then a solution of P is differential-quadratic. (We checked the other coefficients b_2, b_1 and b_0 and we observed that we also have $b_2 = b_0 = 0$!). The question is: under conditions (C_1) and (C_2) could this solution be hyperquadratic ? We could only give a very partial answer to this question. Note that condition (C_2) can be written as $(b^5/c^4)' = 0$ if $c \neq 0$. We introduce the condition (C_3) $b^5 = 2c^4$. Note that (C_3) implies (C_2). Our result is the following: Let $K = \mathbb{F}_p$, P as above and a, b and c satisfying (C_1) and (C_3). Then, if $p = 11$ or $p = 17$, P divides a projective polynomial H of order 1.

This was obtained by direct computations. Amazingly, the attempt to obtain the same for other prime numbers was unsuccessful. Moreover, in all these cases, the polynomial P is split in the same form $2^2 \ast 1$ (two factors of degree 2 and one of degree 1), while the corresponding polynomial H has $(p + 3)/2$ factors and it is split in the form $2^{(p-1)/2} \ast 1 \ast 1$.

First we show how the three coefficients of P have been obtained satisfying the above conditions. Once P is chosen, to possibly obtain the polynomial H, it is enough to compare the remainders modulo P of x^{r+1} and x^r respectively and then to check whether a linear combination of these ones forms a polynomial of degree 1.

If $p = 6k + 5$, we observe that the map $x \rightarrow x^3$ is one to one in \mathbb{F}_p. We denote the inverse map by $x \rightarrow cr(x)$ and we simply have $cr(x) = x^{-2k-1}$ in \mathbb{F}_p^*. For $p \neq 5, 13$, we set $u = 2(18/325)^4 \in \mathbb{F}_p^*$. Let us consider the triple $(a, b, c) \in \mathbb{F}_p^3$ where

$$p = 11, 17 \quad a \in \mathbb{F}_p^* \quad b = cr(a^4cr(u)) \quad \text{and} \quad c = (-18a^3)/(325b).$$

It is easy to check that the triple (a, b, c) satisfies conditions (C_1) and (C_3). Each triple (a, b, c) will correspond to a polynomial P, hence we have 10 + 16 possible cases.
Here below, in two tables corresponding to the cases $p = 11$ and $p = 17$ respectively, we describe the polynomials P and H in $\mathbb{F}_p[X]$ such that P divides H. In these tables the polynomials $P = x^5 + ax^2 + bx + c$ and $H = ux^{p+1} + vx^p + wx + z$, where a, b, c, u, v, w and $z \in \mathbb{F}_p$, are respectively represented by the tuples (a, b, c) and (u, v, w, z). Moreover H is defined up to a constant factor and consequently we may choose it to be unitary.

Table 1: $p = 11$

P	H	P	H
$(1,7,9)$	$(1,7,7,2)$	$(6,6,2)$	$(1,1,1,7)$
$(2,10,2)$	$(1,5,5,10)$	$(7,8,2)$	$(1,9,9,6)$
$(3,2,9)$	$(1,8,8,8)$	$(8,2,2)$	$(1,3,3,8)$
$(4,8,9)$	$(1,2,2,6)$	$(9,10,9)$	$(1,6,6,10)$
$(5,6,9)$	$(1,10,10,7)$	$(10,7,2)$	$(1,4,4,2)$

Table 2: $p = 17$

P	H	P	H
$(1,15,13)$	$(1,13,13,3)$	$(9,2,9)$	$(1,8,8,12)$
$(2,2,15)$	$(1,2,2,5)$	$(10,8,14)$	$(1,5,5,10)$
$(3,9,7)$	$(1,6,6,11)$	$(11,8,5)$	$(1,3,3,7)$
$(4,15,16)$	$(1,16,16,14)$	$(12,9,6)$	$(1,10,10,6)$
$(5,9,11)$	$(1,7,7,6)$	$(13,15,1)$	$(1,1,1,14)$
$(6,8,12)$	$(1,14,14,7)$	$(14,9,10)$	$(1,11,11,11)$
$(7,8,3)$	$(1,12,12,10)$	$(15,2,2)$	$(1,15,15,5)$
$(8,2,8)$	$(1,9,9,12)$	$(16,15,4)$	$(1,4,4,3)$

Acknowledgements. We would like to thank Bill Allombert for his skillful advices on computer programming and his help in using PARI system.

References

[1] S. Abhyankar, Projective polynomials. Proc. Amer. Math. Soc. 125 (1997), 1643–1650.

[2] A. Bluher, On $x^{q+1} + ax + b$. Finite Fields Appl. 10 (2004), 285–305.
[3] A. Bluher and A. Lasjaunias, Hyperquadratic power series of degree four. Acta Arith. 124 (2006), 257–268.

[4] L. Baum and M. Sweet, Continued fractions of algebraic power series in characteristic 2. Ann. of Math. 103 (1976), 593–610.

[5] I. Blake, S. Gao and R. Mullin, Normal and self-dual normal bases from factorizatio of $cx^{q+1} + dx^q - ax - b$. Finite Fields Appl. 6 (2000), 255–281.

[6] L. Carlitz, Resolvents of certain linear groups in a finite field. Canad. J. Math. 8 (1956), 568–579.

[7] A. Lasjaunias, Approximation diophantienne en caractéristique positive. Thèse en mathématiques pures. Université Bordeaux I (1996).

[8] A. Lasjaunias, A survey of diophantine approximation in fields of power series. Monatsh. Math. 130 (2000), 211–229.

[9] K. Magamba and J. Ryan, Counting extended irreducible Goppa codes. Appl. Algebra. Eng. Comm. Comput. 30 (2019), 313–331.

[10] K. Magamba and J. Ryan, Enumeration of irreducible and extended irreducible Goppa codes. CoRR abs/1904.02791 (2019).

[11] K. Magamba and J. Ryan, On the factorization of polynomials of the form $cx^{q+1} + dx^q - ax - b$. Preprint (2018).

[12] H. Stichtenoth and A. Topuzoglu, Factorization of a class of polynomials over finite fields. Finite Fields Appl. 18 (2012), 108–122.

Alain LASJAUNIAS
Rue du Livran
Léognan 33850, France
E-mail: lasjauniasalain@gmail.com