Mutation analysis of the MSMB gene in familial prostate cancer

Z Kote-Jarai1, D Leongamornlert1, M Tymrakiewicz1, H Field2, M Guy1, AA Al Olama3, J Morrison2, L O’Brien1, R Wilkinson1, A Hall1, E Sawyer1, K Muir1, F Hamdy5, J Donovan6, D Neal7,8, D Easton3 and R Eeles1,9

1Translational Cancer Genetics Team, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK; 2Department of Oncology, University of Cambridge, Strangways Laboratory, Worts Causeway, Cambridge CB1 6NR, UK; 3CR-UK Genetic Epidemiology Unit, University of Cambridge, Strangways Laboratory, Worts Causeway, Cambridge CB1 6NR, UK; 4University of Nottingham Medical School, Queens Medical Centre, Nottingham NG7 2UH, UK; 5Nuffield Department of Surgery, University of Oxford, Oxford OX3 9DU, UK; 6Department of Social Medicine, University of Bristol, Canynge Hall, Whiteladies Road, Bristol, UK; 7Surgical Oncology (Uro-Oncology, 54), Departments of Oncology and Surgery, University of Cambridge, Box 279, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 2QQ, UK; 8Cancer Research UK Cambridge Research Institute & Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK; 9The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT, UK & Fulham Road, London SW3 6JJ, UK

BACKGROUND: MSMB, a gene coding for β-microseminoprotein, has been identified as a candidate susceptibility gene for prostate cancer (PrCa) in two genome-wide association studies (GWAS). SNP rs10993994 is 2 bp upstream of the transcription initiation site of MSMB and was identified as an associated PrCa risk variant. The MSMB protein is underexpressed in PrCa and it was previously proposed to be an independent marker for the recurrence of cancer after radical prostatectomy.

METHODS: In this study, the coding region of this gene and 1500 bp upstream of the 5’UTR has been sequenced in germline DNA in 192 PrCa patients with family history. To evaluate the possible effects of these variants we used in silico analysis.

RESULTS: No deleterious mutations were identified, however, nine new sequence variants were found, most of these in the promoter and 5’UTR region. In silico analysis suggests that four of these SNPs are likely to have some effect on gene expression either by affecting ubiquitous or prostate-specific transcription factor (TF)-binding sites or modifying splicing efficiency.

INTERPRETATION: We conclude that MSMB is unlikely to be a familial PrCa gene and propose that the high-risk alleles of the SNPs in the 5’UTR effect PrCa risk by modifying MSMB gene expression in response to hormones in a tissue-specific manner.

Keywords: MSMB; prostate cancer; SNP; in silico; gene expression

Prostate cancer (PrCa) is the most common cancer in men in the western world, with 34 000 new cases every year and a lifetime risk of 1 in 14 in the United Kingdom (Cancer Research UK Factsheets, 2008). However, its aetiology remains poorly understood. The substantial worldwide variation in incidence rates suggests that there are lifestyle risk factors, but none have been identified definitively. Apart from demographic factors, the only well-established risk factor for PrCa is family history. The risk of the disease in first-degree relatives of cases is approximately twice that of the general population (Carter et al, 1992; Goldgar et al, 1994; Eeles, 1999; Hemminki and Czene, 2002; Gronberg, 2003; Edwards and Eeles, 2004). Familial risk is four-fold greater amongst close relatives of cases under 60 years-old. Men with two or more affected relatives are at even higher risk. Analyses of the Nordic twin registries show higher risks in monozygotic compared with dizygotic twins, thereby supporting the hypothesis that much familial aggregation is due to genetic factors rather than shared lifestyle factors (Lichtenstein et al, 2000). Epidemiological studies consistently demonstrate aggregation of PrCa in families, consistent with a multi-genetic origin.

To identify some of the multiple susceptibility loci we recently carried out a genome-wide association study (GWAS) of ~550 000 single base pair genetic variants (SNPs) in 1854 PrCa cases and 1894 controls. Seven new susceptibility loci were validated in a further set of 3650 PrCa cases and 3940 controls containing several plausible candidate genes, one of which was on chromosome 10 (Eeles et al, 2008). Single base pair genetic variants rs10993994 and rs7920517 lie within an LD block of ~100 kb on chromosome 10, containing the β-microseminoprotein gene, MSMB. The most strongly associated SNP, rs10993994, lies 2 bp upstream of the transcription start site of MSMB. This association was also reported by the CGEM study (Thomas et al, 2008). MSMB codes for PSP94, a prostatic secretory protein, synthesised almost exclusively in the prostate gland and it is the major constituent of seminal plasma. PSP94 functions in growth regulation and induction of apoptosis in PrCa cells (Garde et al, 1999) and, as it leaks into the blood, its serum level can be measured. There is a correlation between a reduced level of PSP94 and PrCa progression (Reeves et al, 2006; Bjartell, 2007), after radical prostatectomy. Thus, it is clear that the regulation of the expression of MSMB is a key element in PrCa development and any sequence variant, which has an effect on the level of MSMB gene expression would be a good candidate for a causal variant.

The location of the rs10993994 and the strength of the association (P = 10⁻¹³⁷) raise the possibility that this SNP may be causally related to disease risk, although this remains to be proven.

*Correspondence: Dr Z Kote-Jarai; E-mail: zssofia.kote-jarai@icr.ac.uk
Received 18 August 2009; revised 11 November 2009; accepted 16 November 2009; published online 8 December 2009
However, GWAS are designed to tag common variants, and associations mediated by rare variants may have been missed. In order to establish the contribution of variants at this locus to familial PrCa and to explore the possibility that there may be additional disease-associated variants in the \textit{MSMB} gene, we re-sequenced the genomic sequence of the \textit{MSMB} gene including a ~1500 bp region upstream of the transcription start site in 192 PrCa cases with strong family history of the disease.

MATERIALS AND METHODS

Whole blood samples from PrCa cases were collected as part of the UK Genetic Prostate Cancer Study (UKGPCS) at the Institute of Cancer Research (http://www.icr.ac.uk). We have selected 192 families with three or more cases of PrCa. A sample from one person per family was used for sequence analysis and wherever possible this was the youngest family member affected with PrCa. Control samples were from the ProtecT study; this is a national study of community-based PSA testing and a randomised trial of subsequent PrCa treatment (Donovan \textit{et al}, 2003). Men between the ages of 50 and 69 years are being recruited through general practices in nine regions in the UK. DNA was extracted from their peripheral blood using standard methods as described previously (Eeles \textit{et al}, 2008).

For the familial cases the full coding sequence of the \textit{MSMB} gene, exon–intron boundaries and a ~1500 bp region of the 5’UTR region was analysed by sequencing using the BigDye Terminator Cycle Sequencing kit (v3.1) and a 3730xl DNA Analyzer, (ABI Perkin Elmer, Foster City, CA, USA). Control samples were sequenced only for the 5’UTR region to assess the allele distribution of the newly discovered promoter SNPs. One new variant, rs12770171 was found in addition to six previously known SNPs in this region. This region has been characterised previously as the proximal promoter region for \textit{MSMB}. Four of the new variants are in the 5’UTR region and were identified in 192 control samples to analyse the relative frequency of the three commonly known SNPs in the 192 PrCa cases and 192 control samples (Table 2a). SNPs (rs12770171) and SNP9, (rs1093994) all were significantly associated with rs12770171 after adjustment for rs10993994 (Table 3).

Table 1

SNP	NCBI 36 coordinates	dbSNP ID	Designation (VEGA transcript OTTHUMG0000018212)	Genotype	No (of 192)
SNP1	10:51218441	New	−1063 T>C	CT	1
SNP2	10:51218461	rs61847070	−1043 T>C	TC	34
SNP3	10:51218615	New	−889 G>C	GC	4
SNP4	10:51219036	New	−468 T>C	GC	1
SNP5	10:51219230	rs12247790	−299 T>G	GG	1
SNP6	10:51219227	rs1069586	−276 indelCT	CT	6
SNP7	10:51219266	New	−238 C>T	CT	72
SNP8	10:51219320	rs12770171	−184 C>T	CT	8
SNP9	10:51219502	rs10993994	−2 T>C	CT	91
SNP10	10:51219539	rs41274660	UTR −19 T>G	GT	7
SNP11	10:51225699	New	IVS1 −38 T>G	GT	1
SNP12	10:51225716	New	IVS1 −21 T>C	GC	1
SNP13	10:51226117	rs2075894	IVS2 +275 T>C	GC	1
SNP14	10:51226665	New	IVS2 −92 G>T	GT	2
SNP15	10:51226682	New	IVS2 −75 G>T	GT	1
SNP16	10:51226927	rs10994385	IVS3 +66 G>C	GC	52
SNP17	10:51232109	New	IVS3 −168 C>T	CT	1

RESULTS

We have sequenced the \textit{MSMB} gene and a 1500 bp 5’UTR region in 192 blood DNA samples with strong family history of 3PrCa cases in the family. No deleterious mutation was found in any of the exons, but we identified nine new SNP sequence variants as well as six other previously known SNPs in HapMap. The list of all the SNPs in this region is shown in Table 1.

Four of the new variants are in the 5’ UTR of the \textit{MSMB} gene, these were found in addition to six previously known SNPs in this region. This region has been characterised previously as the proximal promoter region for \textit{MSMB}. In all, 10 out of 17 SNPs identified lie in the promoter region. Of this region, 1500 bp was resequenced in 192 control samples to analyse the relative frequency of the three commonly known SNPs in the 192 PrCa cases and 192 control samples (Table 2a). SNPs (rs12770171) and SNP9, (rs1093994) all were significantly associated with rs12770171 after adjustment for rs10993994 (Table 3).

To further investigate its association with PrCa risk, we genotyped the uncharacterised SNP (it was not genotyped in HapMap Phase 2). To explore the possibility that there may be additional disease-associated variants in the \textit{MSMB} gene, we re-sequenced the genomic sequence of the \textit{MSMB} gene including a ~1500 bp region upstream of the transcription start site in 192 PrCa cases with strong family history of the disease.
Table 2 (a) Common SNPs with significant difference in the frequency of alleles in 192 familial cases and 192 controls and (b) Haplotype analysis of the three common SNPs in the promoter region in 192 familial cases and 192 controls

SNP	NCBI 36 coordinates	SNP ID	Associated allele	Frequency in cases	Frequency in controls	P-value
SNP2	10: 51218461	ENSSNP10237085	C	0.094	0.048	0.0172
SNP8	10: 51219320	rs12770171	T	0.236	0.151	0.0036
SNP9	10: 51219502	rs10993994	T	0.453	0.352	0.0052

Haplotype	Frequency	Case, control ratio counts	Case, control frequencies	χ^2	P-value
SNP 2, 8 and 9					
TCC	0.597	210.5: 173.5, 234.6: 127.4	0.548, 0.648	7.721	0.0055
TCT	0.209	83.2: 300.8, 72.9: 289.1	0.217, 0.201	0.259	0.6111
TTT	0.122	54.4: 329.6, 36.4: 325.6	0.142, 0.101	2.934	0.0686
CTT	0.073	36.0: 348.0, 18.1: 343.9	0.094, 0.050	5.287	0.0215

Table 3 Haplotype analysis of SNP 8 rs1277017 and SNP 9 rs10993994 using our data from stage1 and 2 genome-wide association study (GWAS) adjusted for strata (Eeles et al, 2008)

Haplotype	rs10993994	rs12770171	P-value	Freq	Odds ratio (OR)
1	1 C	1 C	0.580	1	
2	1 C	2 T	0.25	0.0021	1.38 (0.71–2.04)
3	2 T	1 C	7.0 x 10^{-18}	0.210	1.35 (1.28–1.42)
4	2 T	2 T	3.7 x 10^{-19}	0.208	1.37 (1.30–1.44)

DISCUSSION

We present the resequencing results of the MSMB gene and its 5’UTR region in familial PrCa cases and controls. Recently, two GWAS identified MSMB as a PrCa susceptibility locus. Both studies found that SNP rs10993994 is associated with PrCa risk, with a per allele OR of 1.25, $P = 10^{-15}$ to 10^{-29}.

Resequencing germline DNA from 192 familial PrCa cases did not find any deleterious mutations in the coding region of MSMB, hence it is unlikely that this gene is altered by rare deleterious coding mutations in familial PrCa. We have identified nine new sequence variants and using bioinformatics tools, have assessed their predicted effect on MSMB gene expression/regulation. The MSMB gene consists of four exons and is located on chromosome 10q11.2. In the upstream region of MSMB there are many putative transcription regulatory elements and it has been shown that the proximal promoter regions, −275 to −207 and −186−128, function in a prostate-specific manner. We have identified several new sequence variants in the non-coding intronic and promoter regions. SNP8, rs12770171, a previously uncharacterised SNP was found to be strongly associated with PrCa in our familial set, however, this association could be explained by the correlation between this SNP and rs10994993 and therefore it is not independently associated. In silico analysis revealed that SNP8 (rs12770171) lies within a known enhancer region and we propose that it might have an effect on gene regulation. The most strongly associated SNP, SNP9 (rs10993994) is predicted to change the binding site for the ubiquitous CCAAT and Gli–Kreuel TFs. SNPs 7 and 10 are predicted to have allele-specific TF binding in prostate tissue. SNP7 is predicted to bind glucocorticoid receptor TFs, including androgen and progesterone receptors, NR3C1&2 (nuclear receptor subfamily 3, group C) and aldosterone-receptor TFs. The rare allele of SNP7 (c.-238 C > T) increases predicted glucocorticoid binding two-fold, and is predicted to displace binding of ubiquitous CCAAT and Gli–Kreuel TFs. As a result, a subtle repositioning of ubiquitous TFs would lead to allele-specific tissue specificity predisposing to PrCa. SNP10 is predicted to bind NKX homeobox domain TFs. The in-silico data for SNPs 7–10 are summarised in Figure 1.

Glucocorticoid TF-binding sites are also found across SNP15 and close to (within 50 bp of) SNP11/12, SNP14 and SNP16. Allele-specific alterations in binding of splice factors SFP40, ASP/SP2 are predicted for SNP12.

The two SNPs predicted to have prostate-tissue and allele-specific effects on TF binding are rare sequence variants; SNP7 has not been previously reported and we found it in only 1 out of 192 case samples (this variant was also present in a sibling with PrCa); SNP10, rs41274660, is found at a frequency of 7 out of 192 heterozygotes and 1 out of 192 homozygotes in our familial cases compared with 6 heterozygotes in 192 controls; therefore there is no evidence that this SNP is associated with PrCa risk.
In silico analysis showed that SNP7 is predicted to alter the response to glucocorticoid transcription factors (TFs) in prostate tissue; SNP8 is the most conserved and falls within an enhancer; SNP9 (rs10993994) is predicted to change the binding site for the ubiquitous CCAAT and Gli–Kreupel TFs, whereas only the common allele of SNP10 is predicted to bind homeobox TFs. SNPs 13 and 14 are also highly conserved; binding of splice factors is predicted to be altered by SNP14 alleles.

Acknowledgements
This study was funded by CR-UK grant C5047/A8385. We acknowledge NHS support to the NIHR Biomedical Research Centre at The Royal Marsden NHS Foundation Trust and The Institute of Cancer Research.

Supplementary Information accompanies the paper on British Journal of Cancer website (http://www.nature.com/bjc)
REFERENCES

Barrett JC, Fry B, Maller J, Daly MJ (2005) Haplovie: analysis and visualization of LD and haplotype maps. Bioinformatics 21: 263–265

Bjartell A (2007) PSA and prostate cancer screening: the challenge of the new millennium. Eur Urol 52: 1284–1286

Buckland PR, Hoogendoorn B, Coleman SL, Guy CA, Smith SK, O’Donovan MC (2005) Strong bias in the location of functional promoter polymorphisms. Hum Mutat 26: 214–223

Cancer Research UK, Statistical Information Team (2008) CancerStats

Cartharius K, Frech K, Grote K, Klocke B, Haltmeier M, Klingenhoff A, Carter BS, Beaty TH, Steinberg GD, Childs B, Walsh PC (1992) Mendelian inheritance of familial prostate cancer. Proc Natl Acad Sci USA 89: 3367–3371

Cathararius K, Frech K, Grote K, Klocke B, Haltmeier M, Klingenhoff A, Frisch M, Bayerlein M, Werner T (2005) MatInspector and beyond: a promoter analysis based on transcription factor binding sites. Bioinformatics 21: 2933–2942

Chang BL, Cramer SD, Wiklund F, Isaacs WB, Gronberg H, Xu J (2009) Fine mapping association and functional analysis implicate a SNP in MSMB at 10q11 as a causal variant for prostate cancer risk. Hum Mol Genet 18: 1368–1375

Donovan J, Hamdy F, Neal D, Peters T, Oliver S, Brindle L, Jewell D, Powell P, Gillatt D, Redmond-Jones AT, Hall AL, O’Brien LT, Gehr-Swain ZKote-Jarai et al

Eeles RA (2004) Unravelling the genetics of prostate cancer. Prostate Cancer and Treatment (ProtecT) feasibility study. Health Technol Assess 7: 1–88

Edwards SM, Eeles RA (2004) Unraveling the genetics of prostate cancer. Am J Med Genet C Semin Med Genet 129C: 65–73

Eeles RA (1999) Genetic predisposition to prostate cancer. Prostate Cancer Prostastic Dis 2: 9–15

Eeles RA, Kote-Jarai Z, Giles GG, Al Olama AA, Guy M, Jugnaruth S, Mullholland S, Leongamornratt DA, Edwards SM, Morrison J, Field HI, Southery MC, Severi G, Donovan JL, Hamdy FC, Dearnaley DP, Murie KR, Smith C, Bagno N, dren-Jones AT, Hall AL, O’Brien LT, Gehr-Swain BN, Wilkinson RA, Cox A, Lewis S, Brown PM, Jhavar SG, Tymrakiewicz M, Lophatananorn A, Bryant SL, Horwich A, Huddart RA, Khoj VS, Parker CG, Woodhouse CJ, Thompson A, Ogden C, Fisher C, Jamieson C, Cooper GS, English DR, Hopper JL, Neal DE, Easton DF (2008) Multiple newly identified loci associated with prostate cancer susceptibility. Nat Genet 40: 316–321

Garde SV, Basrur VS, Li L, Finkelstein MA, Krishan A, Wellham L, Ben-Josef E, Haddad M, Taylor JD, Porter AT, Tang DG (1999) Prostate secretory protein (PSP94) suppresses the growth of androgen-independent prostate cancer cell line (PC3) and xenografts by inducing apoptosis. Prostate 38: 118–125

Goldgar DE, Easton DF, Cannonalbright LA, Skolnick MH (1994) Systematic population-based assessment of cancer risk in first-degree relatives of cancer probands. J Natl Cancer Inst 86: 1600–1608

Gronberg H (2003) Prostate cancer epidemiology. Lancet 361: 859–864

Hemminki K, Czene K (2002) Age specific and attributable risks of familial prostate carcinoma from the family-cancer database. Cancer 95: 1346–1353

Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M, Pukkala E, Skytte A, Hemminki K (2000) Environmental and heritable factors in the causation of cancer – analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med 343: 78–85

Lou H, Yeager M, Li H, Bosquet JG, Hayes RB, Orr N, Yu K, Hutchinson A, Jacobs KB, Kraft P, Wacholder S, Chatterjee N, Feigelson HS, Thun MJ, Diver WR, Albanes D, Virtamo J, Weinstein S, Ma J, Gaziano JM, Stampfer M, Schumacher FR, Giovannucci E, Cancel-Tassin G, Cussenot O, Valeri A, Andriole GL, Crawford ED, Anderson SK, Tucker M, Hoover RN, Fraumeni Jr SJ, Thomas G, Hunter DJ, Dean M, Chanoek S (2009) Fine mapping and functional analysis of a common variant in MSMB on chromosome 10q11.2 associated with prostate cancer susceptibility. Proc Natl Acad Sci USA 106: 7933–7938

Ochiai Y, Inazawa J, Uyama H, Ohkubo I (1995) Human gene for beta-microseminoprotein: its promoter structure and chromosomal localization. J Biochem 117: 346–352

Reeves JR, Dulude H, Panchal C, Daigneault L, Ramnani D (2006) Prognostic value of prostate secretory protein of 94 amino acids and its binding protein after radical prostatectomy. Clin Cancer Res 12: 6018–6022

Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA (2002) Score tests for association between traits and haplotypes when linkage phase is ambiguous. Am J Hum Genet 70: 425–434

Thomas G, Jacobs KB, Yeager M, Kraft P, Wacholder S, Orr N, Yu K, Chatterjee N, Welch R, Hutchinson A, Crenshaw A, Cancel-Tassin G, Staats BJ, Wang Z, Gonzalez-Bosquet J, Fang J, Deng X, Berndt SI, Calle EE, Feigelson HS, Thun MJ, Rodriguez C, Albanes D, Virtamo J, Weinstein S, Schumacher FR, Giovannucci E, Willett WC, Cussenot O, Valeri A, Andriole GL, Crawford ED, Tucker M, Gerhard DS, Fraumeni JF, Hoover R, Hayes RB, Hunter DJ, Chanoek S (2008) Multiple loci identified in a genome-wide association study of prostate cancer. Nat Genet 40: 310–315

Yeager M, Deng Z, Boland J, Matthews C, Bacior J, Lonsberry V, Hutchinson A, Burdett L, Qi L, Jacobs K, Gonzalez-Bosquet J, Berndt SI, Hayes R, Hoover R, Thomas G, Hunter D, Dean M, Chanoek S (2009) Comprehensive resequence analysis of a 97 kb region of chromosome 10q11.2 containing the MSMB gene associated with prostate cancer. Hum Genet 2009 Jul 31. E-pub ahead of print. doi: 10.1007/s00439-009-0723-9