Facile Synthesis of Cu$_2$O Nanocubes and Their Enhanced Photocatalytic Property Assisted by H$_2$O$_2$

JUNCUI XU1,2,*, HUI WANG3, HEYUN GU4, CHUNYAN ZENG5 and YUMEI YANG1

1School of Chemical Engineering and Anhui Key Laboratory of Controllable Chemical Reaction and Material Chemical Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, P.R. China
2Department of Chemical and Chemical Engineering, Hefei Normal University, Hefei 230061, Anhui Province, P.R. China

*Corresponding author: Fax: +86 551 2901450; Tel: +86 551 2901450; E-mail: xxjjcz20000214@yahoo.cn

Well-defined and uniform Cu$_2$O nanocubes with an average edge length of about 170 nm have been successfully synthesized in the absence of any surfactant using home-made CuC$_2$O$_4$ as precursor at room temperature. The composition, structure and morphology of the obtained products have been characterized by X-ray powder diffraction, transmission electron microscope and field-emission scanning electron microscopy. The experimental results demonstrate that the Cu$_2$O nanocubes exhibit enhanced photocatalytic property for high concentration (100 mg/L) of acid fuchsin degradation under UV light in the presence of H$_2$O$_2$. The factors affecting the acid fuchsin photocatalytic degradation have been investigated, such as irradiation, photocatalyst concentration and hydrogen peroxide initial concentration.

Key Words: Cu$_2$O nanocubes, Photocatalytic activity, Acid fuchsin, Hydrogen peroxide.

INTRODUCTION

Over the past decades, controlled synthesis of nanostructured materials has attracted considerable interests due to the fact that the particle size and morphology of nano-materials greatly influence their properties. Cuprous oxide is a p-type semiconductor with a direct band gap of 2.17 eV and displays unique optical and magnetic properties, which makes it a promising material in a wide range of applications for solar energy conversion, gas sensing, CO oxidation, lithium ion batteries and photocatalytic degradation of organic pollutants. Recently, much effort has been devoted to the synthesis of cuprous oxide nanocubes owing to its numerous advantages, such as non-toxicity, low cost, chemical stability and a high absorption coefficient in visible regions. However, electron-hole pairs can easily recombine and the photochemical reaction is possible inhibited when the narrow gap semiconductor is used as a photocatalyst. It is known that the photocatalytic activity closely relates to not only the efficiency of electron-hole (e^-/h^+) separation but also the size, morphology, crystal structure and specific surface area of a photocatalyst. Thus, some researchers have done much work to find a way to improve the photoactivity of Cu$_2$O nanomaterial.

Taking the mentioned concept into account, our aim focuses on the preparation of uniform Cu$_2$O nanocubes and enhancement of their photocatalytic activity. Herein, a simple and rapid route has been chosen to synthesize the uniform and monodispersed Cu$_2$O nanocubes with the edge length of about 170 nm. The method does not require the assistance of any organic compounds or surfactants and high temperature and the as-prepared Cu$_2$O nanocubes are uniform in both shape and size. Furthermore, the photocatalytic activity of Cu$_2$O nanocubes in presence of H$_2$O$_2$ has been investigated for the decomposition of acid fuchsin with high concentration (100 mg/L) under UV at room temperature.

EXPERIMENTAL

All chemicals were of analytical grade and used as received. Distilled water was used throughout.

Preparation of copper oxalate precursor: A typical procedure was performed as follows. 100 mL of copper sulfate solution (0.015 M) was put in the 400 mL beaker, then 30 mL oxalic acid solution (0.05 M) was added drop by drop in the solution under constant magnetic stirring at room temperature. A light blue precipitate appeared immediately. After 0.5 h of
reaction time, the precipitates in the beaker were collected by centrifugation, washed thoroughly with distilled water and absolute ethanol and finally dried in air for 12 h.

Preparation of Cu$_2$O nanocubes: Typically, the as-prepared precursor was dispersed in 130 mL of distilled water by ultrasonication and then the mixture was stirred for about 10 min, followed by 30 mL of ascorbic acid (0.05 M) solution and 40 mL of NaOH solution (0.0625 M) added in the solution, stirred for about 30 min in turn. A colour change from light blue to brick red soon took place. Finally, the brick red precipitates were collected and washed with distilled water and absolute ethanol respectively and dried at 50 °C in oven for 6 h.

Characterization: The as-prepared precursor and sample were characterized by X-ray powder diffraction in a Rigaku D/max-γB X-ray diffractometer with a CuK$_\alpha$ radiation source (λ = 1.5418 Å) operated at 40 kV and 80 mA. Field-emission scanning electron microscopy (FE-SEM) measurement was taken by JEOL-7500F (FEI Sirion-200) and JEOL JSM-6490 (LV) scanning electron microscope. Transmission electron microscopic images were taken with Hitachi H-800 transmission electron microscope performed at an accelerating voltage of 200 kV, respectively.

Photo-catalytic activity evaluation: Acid fuchsin, a common triphenylmethylene dye, was selected as the model pollutant to evaluate the photocatalytic activity of the Cu$_2$O nanocubes as-prepared. The photocatalytic experiments were performed in a photochemical reactor (BD-GHX-II, BD experimental instrument Co. Ltd., Nanjing, China). The ultraviolet light was provided by a high pressure Hg lamp (300 W) with the major emission at 365 nm, which was cooled to room temperature by a circulating water jacket. The distance between the light and the reaction beaker was maintained at 10 cm. In all the experiments, the initial concentration of acid fuchsin aqueous solution was constant (100 mg/L). 50 mg of Cu$_2$O samples (except the experiments involving variation of catalyst amounts) was dispersed in a beaker, which contained 100 mL of acid fuchsin solution. The degradation reactions were carried out after the establishment of the adsorption/desorption equilibrium by magnetic stirring for 0.5 h in the dark. After that, 0.4-1.2 mL of H$_2$O$_2$ (30%, wt%) was dropped into the above solution. At given time intervals, 1 mL of the mixture solution was pipetted into a volumetric flask and quickly diluted with distilled water to 10 mL prior to analysis.

For optical absorption measurements, the diluted solution was immediately centrifuged in order to remove the catalyst particles, which tend to scatter the incident beam. The supernatant solution was analyzed by a Shimadzu UV-2550 ultraviolet-visible (UV-VIS) spectrophotometer at a wavelength of 540 nm (the maximum of the acid fuchsin adsorption wavelength). The decolourization ratio of acid fuchsin solution was calculated according to the equation C = (A$_0$ - A)/A$_0$ x 100 %, where C stands for the decolourization ratio, A$_0$ is the initial absorbance of acid fuchsin solution and A is the absorbance of photo-degraded acid fuchsin solution at different time.

RESULTS AND DISCUSSION

The composition and phase purity of samples were examined by XRD. Fig. 1a shows the XRD pattern of as-prepared Cu$_2$O nanocubes synthesized by direct reaction of aqueous ascorbic acid and CuC$_2$O$_4$ precursor for 0.5 h at room temperature without any surfactant in alkaline solution. The CuC$_2$O$_4$ precursor (XRD pattern of CuC$_2$O$_4$ was shown in Fig. 1a in Supplementary Data) was prepared by using aqueous CuSO$_4$ and H$_2$C$_2$O$_4$ solution for 0.5 h of reaction at room temperature. As presented in Fig. 1a that all the peaks match well with those of cubic Cu$_2$O, with the Pnnm space group (JCPDS No. 78-2076).

Field-emission scanning electron microscopy (FESEM) and TEM were used to observe the morphology and structure of the samples. Fig. 1b presents FESEM image of the Cu$_2$O sample. The FESEM image obviously shows that the sample is composed of well-defined cubic morphology with rough surfaces and uniform sizes. The average diameter is about 170 nm, which is smaller than the average diameter of about 400 nm for Cu$_2$O cubes reported by our group, which were prepared by reducing a copper citrate complex solution with ascorbic acid at room temperature. The TEM image of Cu$_2$O nanocubes (Fig. 1c) further confirms the uniform cubic shape of the Cu$_2$O nanocubes.

Fig. 1. (a) XRD pattern, (b) FESEM image and (c) TEM image of Cu$_2$O nanocubes.

Here, the photocatalytic activity of the as-synthesized Cu$_2$O nanocubes was investigated towards the degradation of acid fuchsin at room temperature. The change of the decolourization ratio of acid fuchsin under different conditions is depicted in Fig. 2. As shown in trace ‘a’, acid fuchsin
was hardly degraded (about 5%) observed at the absence of both catalyst and H$_2$O$_2$ under UV light irradiation, suggesting that the dye is photostable. Even under UV light irradiation, acid fuchsin was still difficult to degrade in dispersion with Cu$_2$O (trace ‘b’, 15%) only or in the H$_2$O$_2$-only solution (trace ‘c’, 20%). The results also demonstrate that in the presence of Cu$_2$O, the photocatalytic degradation of acid fuchsin is faster than that of without Cu$_2$O (trace ‘a’ and ‘b’). Observed from trace ‘d’, acid fuchsin was not completely photodegraded in the presence of both catalyst and H$_2$O$_2$ in the dark (below 60%). However, as shown in trace ‘e’ (91%), it was nearly completely degraded under UV light irradiation which suggests that UV light irradiation is essential for the catalytic degradation of dye pollutants. Specially, comparing trace ‘b’ with ‘e’, which demonstrated the curves of photodegradation of the acid fuchsin solution without H$_2$O$_2$ and with H$_2$O$_2$ respectively, we can easily see that upon addition of H$_2$O$_2$, the catalyst Cu$_2$O nanocubes presented considerable enhancement for the degradation of the acid fuchsin solution. It is due to that the hydroxyl radicals (‘OH) and superoxide radical anions (O$_2^-$) are the primary oxidizing species in the photocatalytic processes15. Therefore, it is important for the excited electron in the conduction band to be scavenged by an external agent to prevent its recombination with the positive hole. Here, H$_2$O$_2$ plays two important roles not only as strong oxidant but also as electron scavengers16, which can enhance the photocatalytic degradation by contribution to the ‘OH formation and inhibiting the electron-hole recombination at the semiconductor surface17.

Fig. 2. Decolourization ratio of acid fuchsin solution as a function of degradation time under different catalytic conditions: (a) UV, (b) Cu$_2$O + UV, (c) H$_2$O$_2$ + UV, (d) Cu$_2$O + H$_2$O$_2$ (in the dark) and (e) Cu$_2$O + H$_2$O$_2$ + UV. (Experimental conditions: the initial concentration of acid fuchsin solution, 100 mg/L; photocatalyst concentration, 0.5 g/L; the initial concentration of H$_2$O$_2$, 0.078 M)

The effect of photocatalyst concentration on the degradation ratio of acid fuchsin was investigated employing different concentrations of the Cu$_2$O nanocubes varying from 0.3 to 2.0 g/L, as shown in Fig. 3. When the content of Cu$_2$O nanocubes was in the range of 0.30-1.0 g/L, the decolourization ratio increased from 82.2 to 96.6% with increase in catalyst concentration (Fig. 3a, b and c). However, increase of the catalyst concentration more than 1 g/L results in the decrease of degradation rate (Fig. 3d, about 93%). The reason is due to that at the beginning, the increase in the concentration of catalyst increases the availability of active sites on the photocatalyst surface, which in turn increases the number of hydroxyl and superoxide radicals18. However, when the concentration of the catalyst increases above the optimum value, the degradation rate decreases, which is due to increased light scattering of the catalyst particles causing a reduction of light penetration in the solution17. Moreover, the decrease in the percentage of degradation at higher catalyst loading may be due to deactivation of activated molecules by collision with ground state molecules19. Therefore, there is a limit of catalyst concentration that must be used for the photodegradation of a particular pollutant in wastewater. This optimum loading of photocatalyst is found to be dependent on the initial solute concentration20.

Fig. 3. Decolourization ratio of acid fuchsin solution as a function of degradation time with cuprous oxide as the catalyst under different initial concentrations: (a) 0.3 g/L, (b) 0.5 g/L, (c) 1.0 g/L, (d) 2.0 g/L. (Experimental conditions: the initial concentration of acid fuchsin solution, 100 mg/L; UV; the initial concentration of H$_2$O$_2$, 0.078 M)

Since hydroxyl radicals appear to play an important role in the photocatalytic degradation, as electron acceptors, hydrogen peroxide was added into the solution in order to enhance the formation of hydroxyl radicals and also to inhibit the electron/hole (h$^+$/e$^-$) pair recombination21. The effect of change in H$_2$O$_2$ concentration on degradation efficiency for acid fuchsin is depicted in Fig. 4. Interestingly, the initial hydrogen peroxide concentration in the solution has a very similar effect on the decolourization ratio to that of Cu$_2$O nanocubes. When the concentration of H$_2$O$_2$ was increased from 0.039 to 0.078 M (Fig. 4a and b), the photocatalytic performance of the nanocubes reached a peak (Fig. 4b), which is attributed to incremental 'OH radical produced by reacting with e$^-_{cb}$ and superoxide radical anion of oxygen22. However, further increasing the concentration of H$_2$O$_2$, the photocatalytic activity didn't yield further improvements (Fig. 4c and d). The result is consisted with Coleman's group, who degraded 1,4-dioxane in water using TiO$_2$ photocatalysis in the presence of H$_2$O$_2$ under UV irradiation23. The decrease may
be a combination of formation of less reactive hydroperoxyl radicals and also due to competition of hydrogen peroxide with the contaminants for conduction band electrons. Hydrogen peroxide has been found to consume hydroxyl radicals. Finally, the catalyst Cu$_2$O could also be oxidized by H$_2$O$_2$ with high concentration to form CuO, which is a semiconductor with a narrow band gap of about 1.4 eV and its photocatalytic efficiency is poor due to its serious recombination and weak redox ability of those excited electrons and holes compared with Cu$_2$O*. Therefore, the proper addition of hydrogen peroxide could enhance the photocatalytic activity of Cu$_2$O nanocubes.

The stability of Cu$_2$O particles after the photocatalytic process was also studied. The X-ray diffraction analysis of Cu$_2$O nanoparticles after irradiation of 4 h indicates that no other phase such as CuO and Cu(OH)$_2$ could be found except cubic Cu$_2$O, which proves that the Cu$_2$O nanocubes are photo-stable and not oxidized even though in the presence of H$_2$O$_2$ throughout the photocatalysis process. Similar results have also been shown in previous studies for photocatalytic degradation of methyl orange.

Conclusion

In summary, highly uniform and monodispersed Cu$_2$O nanocubes with the edge length of about 170 nm have been synthesized by reducing CuC$_2$O$_4$ precursor with ascorbic acid at room temperature. The photocatalytic activity of Cu$_2$O nanocubes prepared can be efficiently enhanced by adding proper concentration of H$_2$O$_2$ into the system under UV light irradiation. The reason can be attributed to the formation of more *OH and inhibiting the electron-hole recombination at the semiconductor surface by addition of H$_2$O$_2$. In comparison with other methods with the absence of H$_2$O$_2$, this method can more effectively degrade pollutants with higher concentration and with smaller H$_2$O$_2$ consumption. Therefore, the present study provides a potential approach for wastewater treatment with Cu$_2$O nanocubes as the photocatalyst.

ACKNOWLEDGEMENTS

The authors are grateful to the financial supports of the National Natural Science Foundation of China (NSFC Grants 20871038, 20876031 and 20976033), the Fundamental Research Funds for the Central Universities (2010HGZY0012), the Education Department of Anhui Provincial Government (TD200702), and the Natural Science Foundation of the Education Department of Anhui Province (KJ2012B146 and KJ2012Z323).

REFERENCES

1. R.A. Briskman, Sol. Energy Mater. Solar Cells, 27, 361 (1992).
2. J.T. Zhang, J.F. Liu, Q. Peng, X. Wang and Y.D. Li, Chem. Mater., 18, 867 (2006).
3. B. White, M. Yin, A. Hall, D. Le, S. Stolbov, T. Rahman, N. Turro and S. O'Brien, Nano Lett., 6, 2095 (2006).
4. P. Poizot, S. Laruelle, S. Grugel, L. Dupont and J.M. Tarascon, Nature, 407, 496 (2000).
5. C.H. Kuo, C.H. Chen and M.H. Huang, Adv. Funct. Mater., 17, 3773 (2007).
6. H.L. Xu, W.Z. Wang and W.J. Zhu, J. Phys. Chem. B, 110, 13829 (2006).
7. L.F. Gou and C.J. Murphy, Nano Lett., 3, 231 (2003).
8. Y.Q. Wang, W.S. Liang, A. Satti and K. Nikitin, J. Cryst. Growth, 312, 1605 (2010).
9. Y. Xu, H. Wang, Y.F. Yu, L. Tian, W.W. Zhao and B. Zhang, J. Phys. Chem. C, 115, 15288 (2011).
10. L. Huang, F. Peng, H. Yu and H.J. Wang, Solid State Sci., 11, 129 (2008).
11. J. Li, L. Liu, Y. Yu, Y. Tang, H. Li and F. Du, Electrochem. Commun., 6, 940 (2004).
12. Y.L. Du, N. Zhang and C.M. Wang, Catal. Commun., 11, 670 (2010).
13. W. Sun, W.D. Sun, Y.J. Zhuo and Y. Chu, J. Solid State Chem., 184, 1638 (2011).
14. W.X. Zhang, Z.X. Chen and Z.H. Yang, Phys. Chem. Chem. Phys., 11, 6263 (2009).
15. M. Saqib and M. Muneer, Dyes. Pigmen., 56, 37 (2003).
16. K.B. Dhanalakshmi, S. Anandan, J. Madhavan and P. Maruthamuthu, Mater. Solar Cells, 92, 457 (2008).
17. O. Carp, C.L. Huisman and A. Reller, Solid State Chem., 132, 33 (2004).
18. U.G. Akpan and B.H. Hameed, J. Hazard. Mater., 170, 520 (2009).
19. J.I. Teo, Y. Chang and H.C. Zeng, Langmuir, 22, 7369 (2006).
20. J.M. Hermann, Catal. Today, 53, 115 (1999).
21. M. Saqib, M.T. Abu, M. Faisal and M. Muneer, Desalination, 219, 301 (2008).
22. N. Shamiuzz, C. Ogino, M.F. Dadjour and T. Murata, Ultrason. Sonochem., 14, 184 (2007).
23. H.M. Coleman, V. Vimonses, G. Leslie and R. Amal, J. Hazard. Mater., 146, 496 (2007).
24. V. Kavitha and K. Palanivelu, Water Res., 39, 3062 (2005).