A FOUR DIMENSIONAL EXAMPLE OF RICCI FLAT METRIC ADMITTING ALMOST-KÄHLER NON-KÄHLER STRUCTURE

Paweł Nurowski

Dipartimento di Scienze Matematiche
Universita degli Studi di Trieste, Trieste, Italy

Maciej Przanowski

Instytut Fizyki, Politechnika Łódzka
Wólczańska 219, 93-005 Łódź, Poland

August 2, 2021

Abstract

We construct an example of Ricci-flat almost-Kähler non-Kähler structure in four dimensions.

*Research supported in part by: Komitet Badań Naukowych (Grant nr 2 P302 112 7), Consorzio per lo Sviluppo Internazionale dell’Università degli Studi di Trieste and Erwin Schrödinger International Institute for Mathematical Physics.

†Permanent address: Katedra Metod Matematycznych Fizyki, Wydział Fizyki, Uniwersytet Warszawski, ul. Hoża 74, Warszawa, Poland, e-mail: nurowski@fuw.edu.pl
1. Let \mathcal{M} be a 4-manifold equipped with a metric g of signature $(++++)$. The pair (\mathcal{M}, g) is called a Riemannian 4-manifold.

An almost hermitian structure on (\mathcal{M}, g) is a tensor field $J : T\mathcal{M} \to T\mathcal{M}$ such that $J^2 = -id$ and $g(JX, JY) = g(X, Y)$. An almost hermitian structure (\mathcal{M}, g, J) is called hermitian if J is integrable. Due to the Newlander-Nirenberg theorem this is equivalent to the vanishing of the Nijenhuis tensor $N_J(X, Y) = [JX, JY] - [X, Y] - J[JX, Y] - J[X, JY]$ for J.

Given an almost hermitian structure (\mathcal{M}, g, J) one defines the fundamental 2-form ω by $\omega(X, Y) = g(X, JY)$. An almost hermitian structure (\mathcal{M}, g, J) is called almost-Kähler if its fundamental 2-form is closed. If, in addition, J is integrable then such structure is called Kähler.

This paper is motivated by the following conjecture [5].

Goldberg’s Conjecture

The almost Kähler structure of a compact Einstein manifold is necessarily Kähler.

The conjecture was proven in the case of non-negative scalar curvature of the Einstein manifold by K. Sekigawa in [10].

In this paper we show that the assumption about compactness of the Einstein manifold is essential for the Goldberg conjecture. In particular, we give an explicit example of a Ricci-flat almost-Kähler non-Kähler structure on a noncompact 4-manifold. This result is given by Theorem 1 of paragraph 4.

2. Let \mathcal{U} be an open subset of \mathbb{R}^4. Let $\theta^i = (M, \bar{M}, N, \bar{N})$ be four complex-valued 1-forms on \mathcal{U} such that $M \wedge \bar{M} \wedge N \wedge \bar{N} \neq 0$. Using θ^i we define a metric g on \mathcal{U} by

$$g = 2(M\bar{M} + N\bar{N}) := M \otimes \bar{M} + \bar{M} \otimes M + N \otimes \bar{N} + \bar{N} \otimes N.$$

Clearly (\mathcal{U}, g) is a Riemannian 4-manifold.

The Weyl tensor W of the metric g splits onto self-dual (W^+) and anti-self-dual (W^-) parts. (\mathcal{U}, g) is said to be (anti-)self-dual iff $(W^+ \equiv 0)$ $W^- \equiv 0$. If $(W^+ \neq 0)$ $W^- \neq 0$ then in every point of \mathcal{U} it defines at most two spinor directions ($[\alpha^+, \beta^+]$) $[\alpha^-, \beta^-]$; see e.g. [3, 9]. $(W^+) W^-$ is said to be of type D if $(\alpha^+) \alpha^-$ coincides with $(\beta^+) \beta^-$.
Let $e_i = (m, \bar{m}, n, \bar{n})$ be a basis dual to $\theta^i = (M, \bar{M}, N, \bar{N})$. For any $\xi \in \mathbb{C}$ it is convenient to consider 1-forms

$$M_\xi = \frac{M - \xi \bar{N}}{\sqrt{1 + \xi \bar{\xi}}} \quad N_\xi = \frac{N + \xi \bar{M}}{\sqrt{1 + \xi \bar{\xi}}}$$

and vector fields

$$m_\xi = \frac{m - \xi \bar{n}}{\sqrt{1 + \xi \bar{\xi}}} \quad n_\xi = \frac{n + \xi \bar{m}}{\sqrt{1 + \xi \bar{\xi}}}$$

The following Lemma is well known (see for example [3, 9]).

Lemma 1

i) For any value of the complex parameter $\xi \in \mathbb{C} \cup \{\infty\}$ the expressions

$$J_\xi^+ = i(M_\xi \otimes \overline{m_\xi} - M_\xi \otimes m_\xi + N_\xi \otimes \overline{n_\xi} - N_\xi \otimes n_\xi)$$

$$J_\xi^- = i(M_\xi \otimes m_\xi - \overline{M_\xi} \otimes m_\xi + N_\xi \otimes \overline{n_\xi} - N_\xi \otimes n_\xi)$$

define almost hermitian structures on (\mathcal{U}, g).

ii) The fundamental 2-forms corresponding to J_ξ^+ and J_ξ^- are respectively given by

$$\omega_\xi^+ = i(M_\xi \wedge \overline{M_\xi} + N_\xi \wedge \overline{N_\xi})$$

$$\omega_\xi^- = i(M_\xi \wedge M_\xi + N_\xi \wedge N_\xi).$$

iii) Any almost hermitian structure on (\mathcal{U}, g) is given either by one of J_ξ^+ or by one of J_ξ^-. Structures J_ξ^+ are different from J_ξ^-; also, different ξs correspond to different structures.

iv) If the metric g is not self-dual then among J_ξ^+s only at most four structures, corresponding to specific four values of the parameter ξ, may be integrable. Analogously, if the metric g is not anti-self-dual then only at most four J_ξ^-s may be integrable.
3. Let \((x^1, x^2, x^3, x^4)\) be Euclidean coordinates on \(U\). Define
\[
z_1 = x^1 + ix^2 \quad z_2 = x^3 + ix^4.
\] (1)

Let \(\partial_k = \frac{\partial}{\partial z_k}\) and \(\bar{\partial}_k = \frac{\partial}{\partial \bar{z}_k}\), \(k = 1, 2\).

Consider two 1-forms \(M\) and \(N\) on \(U\) defined by
\[
M = f(dz_1 + hdz_2) \quad N = \overline{f(dz_2)},
\] (2)
where \(f \neq 0\) (real) and \(h\) (complex) are functions on \(U\).

Since \(M \wedge \bar{M} \wedge N \wedge \bar{N} = dz_1 \wedge d\bar{z}_1 \wedge dz_2 \wedge d\bar{z}_2 \neq 0\) then the metric \(g = 2(M\bar{M} + N\bar{N})\) equips \(U\) with the Riemannian structure. Consider almost hermitian structures \(J^+\xi\) for such \((U, g)\). It is interesting to note that if \(\xi = e^{i\phi} = \text{const}\) then the corresponding fundamental 2-form \(\omega^+_{e^{i\phi}}\) reads
\[
\omega^+_{e^{i\phi}} = i(e^{i\phi}dz_2 \wedge dz_1 - e^{-i\phi}d\bar{z}_2 \wedge d\bar{z}_1)
\]
and is closed. Thus, for any \(e^{i\phi} \in S^1\) we constructed an almost-Kähler structure \((U, g, J^+_{e^{i\phi}})\). If the functions \(f\) and \(h\) are general enough, then the metric \(g\) has no chance to be self-dual. Moreover, since in such case there is a finite number of hermitian structures among \(J^+\xi\), then most of our structures must be non-Kähler. Summing up we have the following Lemma.

Lemma 2 Let \((z_1, \bar{z}_1, z_2, \bar{z}_2)\) be coordinates on \(U\) as in (1). Then for each value of the real constant \(\phi \in [0, 2\pi]\) the metric
\[
g = 2f^2(dz_1 + hdz_2)(d\bar{z}_1 + \bar{h}d\bar{z}_2) + \frac{1}{f^2}dz_2d\bar{z}_2
\] (3)
and the almost complex structure
\[
J^+_{e^{i\phi}} = 2\text{Re}\{ie^{i\phi}[f^2(dz_1 + hdz_2) \otimes (\partial_2 - \bar{h}\partial_1) - \frac{1}{f^2}dz_2 \otimes \partial_1]\}
\] (4)
define an almost-Kähler structure on \(U\).
If the functions \(f\) and \(h\) are general enough to prevent the metric of being self-dual then these structures are non-Kähler for almost all values of \(\phi\).
4. We look for not-self-dual Ricci-flat metrics among the metrics of Lemma 2. For this purpose it is convenient to restrict to the metrics (3) whose anti-self-dual part of the Weyl tensor is strictly of type D. Such a restriction guarantees that all structures (4) are non-Kähler [6, 9].

We recall a useful Lemma [7].

Lemma 3 Let g be a Ricci-flat Riemannian metric in four dimensions. Assume that the anti-self-dual part of the Weyl tensor for g is strictly of type D. Then, locally there always exist complex coordinates (z_1, z_2) and a real function $K = K(v, z_2, \overline{z_2})$, $v = z_1 + \overline{z_1}$ such that the metric can be written as

$$g = \frac{\varepsilon K_{vv}}{(K_v)^{3/2}}(dz_1 + \frac{K_{vz}}{K_v}dz_2)(dz_1 + \frac{K_{v\bar{z}}}{K_v}d\bar{z}_2) + 4e^{-K(K_v)^{1/2}} \varepsilon K_{vv} dz_2 d\bar{z}_2,$$

where $K_v = \frac{\partial^2 K}{\partial v \partial \bar{z}_2}$, etc. The function K satisfies

$$K_{vv}K_{\bar{z}\bar{z}} - K_{v\bar{z}}K_{vv} - 2e^{-K}(K_{vv} + 2(K_v)^2) = 0,$$

$$K_v > 0, \quad \varepsilon K_{vv} > 0$$

where ε is either plus or minus one.

Also, every function $K = K(v, z_2, \overline{z_2})$ satisfying (4)-(7) defines, via (3), a Ricci-flat metric. This metric has the anti-self-dual part of the Weyl tensor of strictly type D.

We ask when the metric (3) can be written in the form (3). Identifying coordinates (z_1, z_2) in both metrics we see that it is possible if

$$2f^2 = \frac{\varepsilon K_{vv}}{(K_v)^{3/2}} \quad \text{and} \quad \frac{2}{f^2} = 4e^{-K(K_v)^{1/2}} \varepsilon K_{vv}.$$

These two equations are compatible only if $K_v e^K = 1$. It is a matter of straightforward integration that, modulo the coordinate transformations, the general solution of this equation which simultaneously satisfies the equation (3) is $K = \log(v - 2z_2\overline{z_2})$. Using such K we easily find that in the region

$$U' = \{U \ni (z_1, z_2) \quad \text{s.t.} \quad v - 2z_2\overline{z_2} > 0\}$$

\footnote{This solution was already known to Sławomir Bialecki in 1984 [4].}
the metric (3) with
\[f = \frac{1}{\sqrt{2(v - 2\overline{z}_2)^{1/4}}}, \quad h = -2\overline{z}_2, \]
is Ricci-flat and strictly of type D on the anti-self-dual side of its Weyl tensor. The explicit expression for such \(g \) reads
\[g = \frac{1}{(v - 2\overline{z}_2)^{1/2}}(dz_1 - 2\overline{z}_2dz_2)(d\overline{z}_1 - 2z_2d\overline{z}_2) + 4(v - 2z_2\overline{z}_2)^{1/2}dz_2d\overline{z}_2, \quad (8) \]
To have a better insight into this metric we choose new coordinates
\[x = (v - 2\overline{z}_2)^{1/2}, \quad y = z_2 + \overline{z}_2, \quad z = i(\overline{z}_2 - z_2), \quad q = \frac{z_1 - \overline{z}_1}{2i} \]
on \(U' \). These coordinates are real. The metric (8) in these coordinates reads
\[g = x(dx^2 + dy^2 + dz^2) + \frac{1}{x} (\frac{1}{2} ydz - \frac{1}{2} ydz + dq)^2. \]
This shows that it belongs to the Gibbons-Hawking class [4] and that its self-dual part of the Weyl tensor vanishes.

We also recall [8] that a suitable Lie-Backlund transformation brings equation (6) to the Boyer-Finley-Plebański [2, 3] equation
\[F_{yy} + F_{zz} + (e^F)_{xx} = 0 \]
for one real function \(F = F(x, y, z) \) of three real variables. It is interesting to note that the metric (8) corresponds to the simplest solution \(F = 0 \) of this equation.

Summing up we have the following theorem.

Theorem 1 Let \((z_1, \overline{z}_1, z_2, \overline{z}_2)\) be coordinates on \(U \subset R^4 \cong C^2 \). The Riemannian manifold \((U', g)\), where
\[U' = \{ U \ni (z_1, z_2) \text{ s.t. } v - 2z_2\overline{z}_2 > 0, \quad v = z_1 + \overline{z}_1 \} \]

is also known to describe the SU(∞) Toda lattice.

2
and
\[g = \frac{1}{(v - 2z_2 \overline{z}_2)^{1/2}}(dz_1 - 2\overline{z}_2 dz_2)(d\overline{z}_1 - 2z_2 dz_2) + 4(v - 2z_2 \overline{z}_2)^{1/2}dz_2 \overline{dz}_2, \]

is Ricci-flat, anti-self-dual and has the anti-self-dual part of the Weyl tensor of type \(D \). Moreover, \((U', g)\) admits a circle of almost-Kähler non-Kähler structures
\[J^+_{\varphi_0} = 2\text{Re}\{ie^{i\varphi}\left[1 \over 2(v - 2z_2 \overline{z}_2)^{1/2}(dz_1 - 2\overline{z}_2 dz_2) \otimes (\partial_2 + 2z_2 \partial_1) - 2(v - 2z_2 \overline{z}_2)^{1/2}dz_2 \otimes \partial_1\right]\}. \]

These structures are parametrized by the real constant \(\varphi \in [0, 2\pi[. \) Their fundamental 2-forms are given by
\[\omega^+_{\varphi_0} = i(e^{i\varphi} dz_2 \wedge dz_1 - e^{-i\varphi} \overline{dz}_2 \wedge \overline{dz}_1). \]

5. Interestingly, our examples can be globalized. Indeed, the transformation
\[t = \frac{1}{2} \log(v - 2z_2 \overline{z}_2), \quad y = z_2 + \overline{z}_2, \quad z = i(\overline{z}_2 - z_2), \quad q = \frac{z_1 - \overline{z}_1}{2i} \]
brings the structures \((g, J^+_{\varphi_0}, \omega^+_{\varphi_0})\) of Theorem 1 to a form which is regular for all the values of the real parameters \((t, y, z, q) \in \mathbb{R}^4\).

6. Finally, we observe that the metric (8), as being anti-self-dual, possesses a strictly Kähler structure. This is given by
\[J = i[(dz_1 - 2\overline{z}_2 dz_2) \otimes \partial_1 - (d\overline{z}_1 - 2z_2 dz_2) \otimes \partial_1 + dz_2 \otimes (\partial_2 + 2z_2 \partial_1) - dz_2 \otimes (\partial_2 + 2\overline{z}_2 \partial_1)] \]
and belongs to the structures of opposite orientation that \(J^+_{\varphi_0} \). It is interesting whether there exist Ricci-flat metrics that admit almost-Kähler non-Kähler structures but do not admit any strictly Kähler structure.

Acknowledgements

We are very grateful to Włodek Jelonek for bringing to our attention the problem of existence of almost-Kähler non-Kähler Einstein metrics. We also wish to thank John Armstrong and Simon Salamon for information about their proof of existence of such metrics in four dimensions.

This work was completed during the workshop “Spaces of geodesics and complex methods in general relativity and differential geometry” held in Vienna at the Erwin Schrödinger Institute. We thank the members of the Institute and, especially, Helmuth Urbantke for creating the warm atmosphere during our stay in Vienna.
References

[1] Białek S, 1984 “Instantony Grawitacyjne”, Master Thesis, Instytut Fizyki Politechniki Łódzkiej, Łódź

[2] Boyer C P, Finley III J D 1982 “Killing Vectors in Self-Dual, Euclidean Einstein Spaces” J. Math. Phys. 23 1126-1130

[3] Finley III J D, Plebański J F 1979 “The Classification of all H-Spaces Admitting a Killing Vector” J. Math. Phys. 20 1938-1945

[4] Gibbons G W, Hawking S W 1978 “Gravitational Multi-instantons” Phys. Lett. 78B 430-432

[5] Goldberg S I 1969 “Integrability of almost Kähler manifolds” Proc. Amer. Math. Soc. 21 96-100

[6] Nurowski P 1993 “Einstein equations and Cauchy-Riemann geometry” PhD Thesis, SISSA

[7] Przanowski M, Baka B 1984 “One-sided type-D gravitational instantons” Gen. Rel. Grav. 16, 797-803

[8] Przanowski M, Białek S 1987 “Lie-Backlund Transformation and Gravitational Instantons” Acta Phys. Polon. B18, 879-889

[9] Przanowski P, Broda B 1983 “Locally Kahler gravitational instantons” Acta Phys. Polon. B14 637-661

[10] Sekigawa K 1987 “On some compact Einstein almost Kahler manifolds” J. Math. Soc. Japan 36, 677-684