Study of the Properties of Open Graded Asphalt Mixtures With the addition of SBS

Mohammed M. Namaa, Zaynab I. Qasim, and Karim H. Ibrahim AlHelo

1Diwaniya Governorate Court, Diwaniya, Iraq,
2Civil Engineering Department, University of Technology, Baghdad, Iraq,
3Civil Engineering Department, University of Technology, Baghdad, Iraq,
*Corresponding author e-mail address: 42362@student.uotechnology.edu.iq

Abstract. Porous asphalt (PA) is widely used in a growing number of countries where porous asphalt is applied for a variety of purposes, e.g. for the effective drainage of rainwater, traffic safety (high slip resistance), the control of noise pollution and lower temperatures surrounding the city. However, it has many other disadvantages, such as poor resistance to rutting, poor resistance to fatigue, and PA is susceptible to raveling (wastage of aggregates from the pavement surface), due to effects of climatic and traffic loading. In general, this type of mixtures is not as good as traditional mixtures. This research aims to study and improve the properties of porous mixtures using SBS. In this paper, laboratory tests were carried out to the materials involved in the composition of this mixture: binder, aggregate, and additive. SBS is used in the proportion of (2.0, 3.0, and 4.0) % of the weight of the binder. It was found that this additive leads to reduce the permeability and air void, but not as large as that without polymer modifier by (1.7 %, 3%, and 3.5%), while in the case of abrasion loss (aged and unaged) decrease by (4.1, 6.67 and 10.92) (4.7, 6.3and 2.6)% respectively. The drain down value is decreased by (16.5%, 38.25%, and 43.51%) respectively, from original asphalt cement.

Keywords: PA, Drain down, Cantabria Abrasion Loss, SBS, and Permeability.

1-Introduction
Open-Graded Asphalt, also known by different names: Graded Friction Course (OGFC), Porous Friction Course (PFC), permeable European mix (PEM) and Porous Asphalt (PA), which in Europe was mightily used, for instance, Netherlands, France, and Germany, whereas in Asia e.g. China, Japan, and Korea [1]. The open-graded asphalt mix is defined as the thin wear surface of the "HMA" hot mix asphalt, pavement that is used worldwide due to its safety properties that have an affirmative influence on a driver and is orderly used as the last lane on the interstate and high-speed low-volume expressways. Figure (1) explain the cross-section of a type of (PEM) [2].

The open-graded asphalt mix is light compared to dense asphalt mix and can cover more road surfaces. Open-graded asphalt mixture layer that improves drainage when it rains. The rainwater flows vertically through the road surface to the base course and then horizontally for the end of the road. Open asphalt mixes consist of a high proportion of coarse aggregate, which creates a high percentage of air and thus leads to rainwater flowing vertically across the road surface to the base layer and laterally to the end of the road [3]. On the other side Kandhal and Mallick, (1999) [4], studied the percentage of aggregate passing through sieve number 4.75 mm. They found that the ratio does not exceed 20% to maintain contact with a stone-on- the stone in the skeleton of the coarse aggregate and to ensure and provide sufficient permeability high air spaces in the open asphalt mixture. The benefits of open asphalt
pavement include reducing splash and spray, decrease wet skidding, diminish the risk of water planning, and improve visibility of pavement; signs in wet weather [5]. And compared to dense hot asphalt (DGHMA), this type of mixture improves driving quality and noise reduction efficiency. Also, several studies have shown that the lowest concentrations of particles and total suspended soil pollutants in the proven runoff of asphalt mixes with open gradients compared to conventional DGHMA [6]. Table (1) exhibit specifications for porous Asphalt [7].

![Image](Figure%201.%20Cross-section%20for%20OGFC%20pavement.)

Table 1. Porous asphalt specification based on AAPA standard.
Criteria
Stability
Flow
Air void
Permeability
Cantabro loss unaged
Cantabro loss aged
Draindown
Indirect tensile ratio

2. Material
2.1. Bitumen
Bitumen cement of grade (40-50) was brought from the Central Refinery (Dora refinery) Company. The table (2) presented the general properties of the binder.

2.2. Aggregate
Aggregate utilized in this study consists of coarse material (Remaining No. 4, Sieve, 4.75 mm) and fine (Sizes of fine aggregates gradation are ranged between No.4 and No.200). This material was obtained from quarries, Al-Nibaie. Physical characteristics of the Coarse and Fine Aggregates in Tables (3) and (4) respectively.
Table 2. Physical Properties of Asphalt Binder (Dura Refinery).

Tests	Specification (ASTM)	Value of Test	SCRBB
Penetration (25°C-100g -5sec) (0.1mm)	ASTM D5-13	43	(40-50)
Ductility (25 °C, 5 cm/min)	ASTM D113-07	145	> 100
Flash point (cleave land open cup)	ASTM D92-16b	295	> 232
Fire points °C	ASTM D92-16b	305	…………
Softening point R&B (4±1) °C/min.	ASTM D36-14	51.5	(51-62)
**RV 135 °C **	ASTM D4402-15	0.432	
**RV 165 °C **		0.118	…………
Specific gravity at 25 °C	ASTM D70-08	1.048	(1.01-1.05)
Retained penetration; % of original	ASTM D5	88	> 55
Ductility of residue (25 °C - 5 cm/min)	ASTM D113	130	> 25

Table 3. Physical Properties of Coarse Aggregates

Property	Specification ASTM	Coarse Aggregate			
	sievesize(mm)	Gsb	Gsa	Abs %	
Specific gravity	ASTM C127-128-15	12.5	2.65	2.67	0.32
		9.5	2.58	2.59	0.09
		4.75	2.57	2.58	0.18
Los Angeles abrasion 30 % Max	ASTM (C131-14)	21.72%			
Fractured pieces % 95% Min	ASTM (D5821-13)	98			
Percent flat and elongated	Flat Elongated	0.9%			
Particles, 10 % max		2.5%			
Table 4. Physical Properties of Fine Aggregates

Property	Specification ASTM	Fine Aggregate	sieve size (mm)	Gsb	Gsa	Ab s%
Specific gravity	(ASTM C127-128-15)		2.36 - 0.075	2.58	2.77	4
Clay content by Sand	equivalent% 45 min			51		

2.3. Mineral filler

Mineral filler utilized in this research is Ordinary Portland Cement collected from the local markets. Table (5) shows the physical properties of mineral filler.

Table 5. Physical Properties of Ordinary Portland Cement.

properties	Results
% Passing sieve No. 200	97%
Bulk specific gravity	3.20

2.4. Styrene Butadiene Styrene (SBS)

Modifier utilized in this research is (SBS) collected from the local markets. Table (6) shows the characteristics of the Modifier.

Table 6. Physical and Mechanical Properties for SBS polymer.

Typical Properties	Unit	Value
Specific gravity	-----	940
Tensile strength (et)	MPa	32 min
Melting point	°C	180
Elongation	%	88
Density	Kg/m³	1242

3. Aggregate Gradation

Depending on, ASTM-D7064 (2013) [8] the gradation aggregate shown in figure (1) and the table (7) were determined.

Table 7. Gradations of the Open-Graded Asphalt.

Sieve Size (mm)	ASTM (D7064–13)	Trial Blend
3/4 inch (19.0 mm)	100	100
1/2 inch (12.5 mm)	85 - 100	93
3/8 inch (9.5 mm)	35 - 60	48
4. The Experimental Works

4.1. Design of Marshall Molds

Porous friction course (PFC) specimens were prepared by mixing the aggregates, cement filler, and bitumen in its mold of Marshall (diameter 101.4mm and high 64mm) with a weight of around 1200 grams [9]. 50 blows on each side (marshal hammer) are used to compress the samples as indicated (ASTM D7064.13) [8]. Figure (2) displays some of the prepared specimens.
4.2. Mixing and Compaction Temperature
In this paper was determined temperatures (mixing and compaction) from rotational viscometer test (Asphalt Institute 2003) [10]. The results display that the temperature of mixing approximately (155 °C), and temperature of compaction approximately (144°C) as shown in Figure (3).

4.3. Open-Graded Asphalt Properties
4.3.1 volume of air voids
(Va) % was calculated for the compacted specimen according to the test method (ASTMD3203-11) [11] and (ASTMD7064-13) [8]. The percentage of air voids determined by using the following equation:

\[Va = 100 \times \left(1 - \frac{G_{mb}}{G_{mm}}\right) \]

(1)

where: -

G_{mb} = Bulk specific gravity determined according to the method

9ASTMD3203-11) [11],
Gmm = Theoretical maximum specific gravity determined according to the method ASTMD2041-11) [12].

4.3.2. Cantabro Abrasion Loss
The Cantabro test is used to determine the abrasion resistance of porous pavement, this examination was conducted according to American specifications [13]. One group was tested in the unaged condition using the (Los Angeles) machine test method and the other was aged for 7 days at 140°F (60°C) in the oven. To measure the abrasion resistance of the open-graded specimens, the initial mass of a sample was measured and then the sample was placed inside the cylinder without any steel charge at speed (30-33) rpm so, that the number of rotations does not exceed ,300 rotations, at 77 °F (25 °C), after that the sample is removed and then weighed again. Figure (4) illustrate specimens before and after the abrasion loss test (Before and After Test). Allowed limits of 20 % maximum for un-aged specimens and 30 % maximum for aged specimens. Abrasion loss was calculated using Equation. Where Ai and Af are the initial and final masses of the sample, respectively.

\[
\text{Abrasion loss } \% = \left[\frac{(A_i - A_f)}{A_i}\right] \times 100
\]

(2)

![Figure 5. Abrasion Loss](image)

4.3.3 Draindown test
According to (ASTMD6390 -11) [14], un-compacted samples were prepared (the mass of the sample is 1200 ± 200 g) so that the value of draindown should not exceed 0.3 %. Then, placed the assembly in the oven at the temperature would be the anticipated plant production temperature as well as 15°C above for one hour ± 5.0 min. The assembly is removed from the oven and cooled at 24°C, as shown in figure (5). The draindown percentage is calculated using the following equation:

\[
\text{draindown } \% = \frac{(D-C)}{(B-A)} \times 100
\]

(3)

where:
- \(A \) = mass of the empty wire basket gm,
- \(B \) = mass of the wire basket and sample gm,
- \(C \) = mass of the empty catch plate gm, and
- \(D \) = mass of the catch plate plus drained material gm.

![Figure 6. Draindown Asphalt Test.](image)

4.3.4 Hydraulic Conductivity Test (Permeability)

Permeability is one of the most important features used in the evaluation of the open-graded asphalt mixtures. The minimum value of permeability of the porous asphalt is100m/day. To determine the rate of flow water was used the Falling-Head test apparatus as shown in the figure (6). According to Darcy law, the \(K \) value is calculated for compacted paving mixture, using the following equation:

\[
K = \frac{a \times l}{A \times t} \ln \left(\frac{h_1}{h_2} \right) \times t_c
\]

(4)

where:
- \(K \) = coefficient of water permeability, cm/s
- \(a \) = inside cross-sectional area of inlet standpipe, cm²
- \(l \) = thickness of test specimen, cm
- \(A \) = cross-sectional area of test specimen, cm²
- \(T \) = average elapsed time of water flow between timing marks, s
- \(h_1 \) = hydraulic head on specimen at time \(t_1 \), cm
- \(h_2 \) = hydraulic head on specimen at time \(t_2 \), cm
- \(\ln \) = natural logarithmic function and
- \(t_c \) = temperature correction for viscosity of water.
5. Asphalt binder content selection
Depending on test method (ASTM D 7064–13) [8], the content of asphalt for porous mixtures was determined using five ratios (4.0 to 6.0) % by weight of the mixture, with an increase of 0.5 %. Practical tests showed that the optimum asphalt ratio is (5.2) as shown in figure (7) and table (8).
Table 8. Experimental Tests Results of Marshall Specimens to Find Optimum Asphalt Content.

AC	Air Void	Draindown	Abrasion Un-aging	Abrasion Aging	Permeability m/day
%	%	%	%	%	
4.0	22.8	0.238	28.8	47.1	255.15
4.5	22	0.258	25.64	41	250.16
5.0	21.1	0.264	19.5	28.5	244.78
5.2	20.2	0.285	18.76	27.7	242.82
5.5	19.3	0.46	16.78	26.1	242.61
6.0	18.2	0.63	15.52	24.3	238.1

6. The SBS polymer effect on Open-Graded Asphalt Mixtures Properties.

6.1. The SBS polymer effect on Air Voids

The results registered that the Va of the specimens containing (2, 3, 4) % modifier SBS decreased by 1.7 %, 3%, 3.5% respectively, as shown in the figure (8).
6.2. The SBS polymer effect on Abrasion Loss
From Figures (9) and (10), it is possible to notice a decrease in abrasion loss aging and un-aging for porous asphalt after adding the polymer SBS.

![Figure 10. Effect of SBS polymer on un-aged.](image)

6.3. Effect of SBS polymer on Draindown
When (2%, 3%, and 4%) SBS is added for asphalt binder the value of the draindown is decreased (16.5%, 38.25%, and 43.51%) respectively. See figure (11).

![Figure 11. The SBS polymer Effect on aged.](image)

6.4. The SBS polymer Effect on Permeability
The addition of the polymer (2%, 3%, 4%) leads to reduce the coefficient of permeability are decreased (1.42%, 2.1%, and 4.2%) respectively, from the control asphalt content value, as shown in Figure (12).

![Figure 13. The polymer effect on permeability.](image)

7. Conclusions
The following conclusions was determined based on the testing results: -
1. Comparing with un-modified mixture, air voids decreased to 1.7 %, 3%, 3.5% with SBS content (2, 3, and 4) %, respectively.
2- Draindown results show improvement after incorporating SBS polymer. For example, adding 4% of SBS polymer decreases the draindown by 43.51%.
3- Cantabro abrasion results are decreased for mixtures containing SBS polymer in comparison to traditional open-graded asphalt mixtures. For example, the cantabro abrasion loss (aging and unaging) with 4% SBS is decreased by (11.2%) and (10.9%) from control asphalt content mixture.
4- When using polymer content (2, 3, and 4) % SBS polymer the percent of permeability coefficient decreased (1.42%, 2.1%, and 4.2%).

8. Recommendations
1. It is recommended to use SBS polymer to obtain high-performance asphalt concrete and improve durability (aging and un-aging) for porous asphalt.
2. Adopting other types of polymers mixing with asphalt cement with different percentages such as Crumb Rubber (CR), High-Density Polyethylene (HDPE) and Styrene Butadiene Rubber (SBR), also using waste materials as modified such as (fly ash, slag, glasses, and plastic).

9. Acknowledgments
The researchers would like to thank the University of Technology, workers in the asphalt laboratory.

10. References
[1] Kuennen, T., "Open Graded Mixes": Better the second time around. American City and County, volume. 111, no 9, 1996.
[2] Qureshi, N. A., Farooq, S. H., and Khurshid, B. (2015). "Laboratory evaluation of durability of open-graded friction course mixtures", Int. J. Eng. Techno, volume. 7, no.3, PP. 956-964.
[3] Kandhal, P. S. (2002). "Design, construction, and maintenance of open - graded asphalt friction courses", National asphalt pavement association information series 115. Eka Putri, E., & Vasilisa, O. (2019, March). Improve the Marshall stability of porous asphalt pavement with HDPE addition. In MATEC Web of Conferences (Vol. 276, p. 03005). EDP Sciences.
[4] Kandhal, P. S., and Mallick, R. B. (1999) "Design Of New- Generation Open- Graded Friction Course", NCAT Report 99-03, National Center For Asphalt Technology, Auburn University, 277 Technology Parkway, Auburn, Al 36830.

[5] Arrieta, V. S., and Maquilón. (2014). "Resistance to Degradation or Cohesion Loss in Cantabro Test on Specimens of Porous Asphalt Friction Courses”. Procedia - Social and Behavioral Sciences. Elsevier, 162, pp. 290–299. doi: 10.1016/J.SBSPRO.2014.12.210 J. E. C.

[6] Barrett, M. E. (2008). "Effects of the Permeable Friction Course (PFC) on Highway Runoff", journal of irrigation and drainage engineering vol. 134, no. 5, PP. 646-651.

[7] APA, (2004). "Open graded asphalt design guide". Australian Asphalt Pavement Association, Victoria, Australia.
[8] ASTM-D7064 (2013). Standard Practice for Open-Graded Friction Course (OGFC) Mix Design. Annual book of ASTM standards.
[9] ASTM-D6926 (2010). Standard Practice for Preparation of Bituminous Specimens Using Marshall Apparatus I. Annual Book of ASTM Standards.
[10] Asphalt Institute, (2003). "Performance Grade Asphalt Binder Specification and Testing". Manual Series No.1, (SP-1), Asphalt Institute, Lexington, Kentucky.
[11] ASTM-D3203 (2011). Standard Test Method for Percent Air Voids Percent in Compacted Dense and Open Bituminous Paving Mixtures Annual Book of ASTM Standards.
[12] ASTM-D2041 (2011). Standard Test Method for Theoretical Maximum Specific Gravity and Density of Bituminous Paving Mixtures. Annual Book of ASTM Standards.
[13] ASTM-C131 (2014). Standard Test Method for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine. Annual Book of ASTM Standards.
[14] ASTM-D6390 (2011). Standard test method for determination of draindown characteristics in uncompacted asphalt mixtures. Annual Books of American Society for Testing and Materials 100 Barr Harbor Dr., West Conshohocken, PA 19428, United States.
[15] ASTM-C127 (2015). Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate. Annual Book of ASTM Standards.
[16] ASTM-C128 (2015). Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate. Annual Book of ASTM Standards.
[17] ASTM-D113 (2007). Standard Test Method for Ductility of Bituminous Materials. Annual Book of ASTM Standards.
[18] ASTM-D2419 (2014). Standard Test Method for Sand Equivalent Value of Soils and Fine Aggregate. Annual Book of ASTM Standards.
[19] ASTM-D36 (2014). Standard Test Method for Softening Point of Bitumen (Ring-and-Ball Apparatus). Annual Book of ASTM Standards.
[20] ASTM-D4791 (2010). Standard Test Method for Flat Particles, Elongated Particles, or Flat and Elongated Particles in Coarse Aggregate. Annual Book of ASTM Standards.
[21] ASTM-D5 (2013). Standard Test Method for Penetration of Bituminous Materials. Annual Book of ASTM Standards.
[22] ASTM-D5821 (2013). Standard Test Method for Determining the Percentage of Fractured Particles in Coarse Aggregate. Annual Book of ASTM Standards.
[23] ASTM-D70 (2008). Standard Test Method for Density of Semi-Solid Bituminous Materials (Pycnometer Method). Annual Book of ASTM Standards.
[24] ASTM-D92 (2016b). Standard Test Method for Flash and Fire Points by Cleveland Open Cup Tester. Annual Book of ASTM Standards.