Alleviation of drayage truck-entry points congestion in container terminals: a review

V. I. Ihebom 1*, R. J. O. Ekeocha 1, O. S. I. Fayomi 1

1Department of Mechanical Engineering, College of Engineering, Covenant University, Ota Ogun state, Nigeria
Corresponding Author; ihebomikechivictor@gmail.com, ojo.fayomi@covenantuniversity.edu.ng

Abstract-
The yardstick for deciding the limit of port is focused by three principal infrastructural assets to be specific, compartments, yards and entryways. An assortment of intrigue has been paid to enhancing billet and yard limits, presently not bounty consideration has been given to examining the entry points potential. The entryway framework is an associating hub between the landside and coastline activities in an ocean to-town esteem chain. The entry points framework requires consideration as put in Asian city, is a multi-polish parallel lining model with non-homogeneous Poisson entries. The point of this survey paper is to break down the impact of truck-entryway gridlock and conceivable practice received in easing this looming issue at a few terminals throughout the years. The characterizations for lessening drayage truck-entryway blockage at container terminal were effect of truck appointment system (TAS), reduction of system operational cost, increase of nodal productivity, decrease of truck emissions and minimization of truck turnaround time (TTT).

Keywords: Entry points Congestion, Container Terminal, Truck waiting time

1 Introduction
In container terminal activities, the bottlenecks observed by the terminal administrator and the clients spoke to by means of the trucking offices is delay. One supply of this deferral is a direct result of the long holding up time of the moving trucks at container terminals. A significant assessment of the previous outlines accessible inside the writing that concentrated on landside inconveniences in compartment terminal is introduced [1]. In the wake of recognizing a few differences, we reason that the appearance example of outside truckers and its effect on TTT deserves a justifiable progression [2].

Throughout the years, worldwide containerization continually rises developing global exchange exercises have invigorated the development of far off spots were traffic. Additional compartments must be served within lesser time. Moreover, compartment terminals were burden by the desire of operational expansion. Offering a top-notch bearer degree is the significant thing for the terminal's forceful advantage [3].

Seaport is the major interface associating transcendent carriage and corresponding hinterland transportation at maritime supply chain. A number of world seaborne substitute expanded over 2% in a large number of tons stacked in 2015 when contrasted with 2014, joined with rising convey measurements, particularly for field vessel, terminals face extreme difficulties to obtain the prolificacy requested by methods for customers [4]. Besides, different partners as the legislature, ecological associations and nearby natives force requests on port companies with respect to natural and social components. The progressing increment of field transport sizes prompts inordinate tallness circumstances in landside field managing and consequently intense traffic load on the port street network. Moreover, port drayage is an indispensable piece of
maritime chain, with frequently owed general transhipment charge and huge offer of entries in compartment terminals [5].

Worldwide change volumes have significantly quickened compartment throughput at us ports and made gridlock at and around the one’s ports, predominantly at Los Angeles and Long Shoreline. Truck dryage in field ports faces various difficulties. Because of the proceeded with blast of compartment convey sizes; there were an ever-increasing number of high-top conditions in landside container taking care of at strategic hubs inside the port, for example compartment port terminals, cargo stations [6]. In mix with developing needs to improve the port's environmental impression this requires the port and its organizations to adjust to the circumstance with the goal to reduce blockage [7]. To choose basic systems, key parameters, past inclinations and future advancements a sort plot dependent on a broad writing study on holding up times at terminals and dryage tasks is completed and did to seventy-one aides. The broke down strategies to diminish blockage inside the port assortment from enhancing the framework to controlling truck entry occurrences [8]. While this issue is exceptionally dissected from a container terminal point, its effects also affect different partners in the port as trucking enterprises, void stops or cargo stations. Past writing studies specifically centre around it is possible that one methodology or one partner. This realized limited checks for the total dryage arranges in ports [9]. Accordingly, the propelled class conspire is a premise to select promising comparatively ponders zones while empowering a more prominent all-encompassing procedure. Improved thoughtfulness regarding this issue has presented around a duplicated acknowledgment of truck defer talented by methods for dryage trucks prepared at and inside marine terminals. This truck defer will expand truck emanations in port neighbourhoods. [10], lessens dryage main thrust time-based compensations. Aspirin et al [11], made blockage on roads open airport terminals, and builds the adventure time of items among starting point and goal to energize operational changes that would decrease this deferral, California meeting bill 2650 progressed toward becoming proposed in 2002 and accordingly most California ports mounted entryway arrangement frameworks. Arrangement frameworks have been foreseen to lessen entry points hold-up time, be that as it may, those structures have been seen with the guide of the trucking venture pointless in diminishing truck turn cases and a squandered exertion by utilizing numerous terminal administrators.

The developing compartment truck volume has realized extraordinary gridlock; truckers need to look for quite a while at port offices. Gridlock lessens venture time dependability for the two workers and truckers that is a major test for immense and little associations. The delay because of gridlock should considerably expand the costs of the additional time spent in blockage reasons transporter bearers to make less brings with regards to day, resulting in higher costs for customers. Such gridlock inconveniences diminish the proficiency of cargo accept the way things were, deteriorate ecological top of the line, and at some point or another development the expenses of doing business endeavour, an impairment to truckers financial prosperity and close-by fiscal aggressiveness [12]. Despite the fact that, cargo float is an individual zone undertaking interest, the overall population division is ending up increasingly more mindful of the effect of developing field guests and postponements at port offices. These structures didn’t meet desires since terminals had minimal impetus to answer to trucker issues and improved device for truckers, and minimal motivating force to satisfy arrangement occurrences. Their exploration considers integrating terminal and dryage activities which will diminish transportation gadget wasteful aspects at this interface. In accordance with a field overview led at LA and LB terminals in July 2004, on basic 88.6% of truck transform time at terminal changed into spent on the compartment get exchange for pick-up experience; 73.1% of general transform time translated into spent on field drop-off for vehicle trips. Along these lines, this
exploration looks at the compartment pick up technique. On numerous container terminal yards, pressing compartments were stacked to more readily utilize land region. In this circumstance, the yard crane can likewise need to mitigate different canisters while in transit to recover the favoured field. This side interest is known as field re-handling. This is inefficient artworks anyway unavoidable if truck entries were a stochastic procedure, in light of the fact that the truck entry grouping only from time to time fits [13].

This review paper has a look at specializes in the frequently disregarded landside pick out-up operation and the hassle of lengthy turn time for outside trucks is studied. The terminal's task fragment is worry to high and dangerous supplier call for from the drayage transportation suppliers. In spite of its absence of research introduction when contrasted with the ocean side task, the landside activity's presentation is a fundamental component that fabricates the field multi-purpose coordination supplier altogether. Hence, an issue in enlarged convey chain system's suitability and intensity; terminal's interfaces can't disregard the significance of the landside activity [14].

The landside task is infamous for various negative inconveniences comprising of air contaminations, gridlock, and capacity adjusting issues. At some phase in the stature length, lining overwhelming commitment drayage trucks holding up in front of terminal's entry points makes circumstances even most noticeably awful. At these periods, the truck turn time is developing. Truck turn time (TTT) is an ideal opportunity to be taken to finish an exchange (select up or drop off field) at container yards [15]. In minimizing these TTT expanding the terminal's transporter charge is criticalness. A few terminals pick including additional yard cranes as a natural arrangement. Regardless of the engaging choice, the underlying subsidizing, assurance and working cost issues were hard. Every storage crane (RTG crane) can charge more than US$900,000. Furthermore, intermittent upkeep and steady gas utilization were some of the necessities that must be spent. What's more, there was also an uncertainty of getting disorderly occurrence as a result of clumsy cranes task. To moderate and diminish the over the top expense and risk in the meantime as amplifying the bearer level, we plan to pick the brilliant alternative from various operational circumstances of a RTG based absolutely compartment terminal. Each circumstance characterizes the amount cranes utilized and the coordination plan to them [16].

The expansion in vessel sizes and the relating to weight forced at the landside activity of container terminals because of crests in truck entries for turning in or choosing up a compartment cause a rising diversion being developed methods in every industry and research. Based at the over the top variance in truckers load the potential at the terminal entryways and at terrace were particularly either excessively inordinate or excessively minimal, principle to intertemporal diligent work charges at the station or at lengthy sitting events and as an impact to blockage at entry points [17]. A few methodologies have been prescribed to moderate this truck-entryway gridlock.

2 Effects of Entry Points-Congestion Minimization
2.1 Impact of truck appointment (TAS) and management system (TAM)
To abridge the exchange among the terminal and the trucking associations, a couple of Compartment terminals received a Truck Arrangement Framework (TAS) to control the presence of outer trucks, even as a couple of various terminals don't pursue an arrangement
gadget. The arrangement frameworks can be utilized to blast the transporter high calibre in Compartment terminal for all transhipment strategy; trucks and vessels [18]. Numerous terminals have created Truck Appointment system (TAS) to implement awareness for entries to mitigate the gridlocks during surge hours. The upsides of this TAS were expressed on writing as could be appeared. In their paper, they advocated a synergistic and influential arrangement control answer for help decision creators in the terminals acquire profits by applying the arrangement frameworks.

The utilization of Truck Arrangement Frameworks (TAS) for outside trucks at Container terminals has won a couple of industry interests anyway the scholarly writing stays obliged. A few creators talk over with "Vehicle Arrangement Framework" or "Compartment Planning Framework". They haven’t experienced any papers on unstacking issues expressly managing troubles of (vehicle) declarations. This presentation of TAS structures might be related with fathoming terminal entry points blockage, to upgrade the turnaround time for outer vehicles, to diminish the ecological effect of holding up vehicles, elaborating tasks of stackings. The expressed instance of TAS is in Terminal of Hong Kong Universal, in which it was designed for making the limit of the kept to be had zone in the terminal. This presentation in California USA (Lowenthal Bill) 2002 forced points of confinement of the prepared occurrences for vehicles in a terminal which will reduce the ecological impact. This presentation of TAS moved toward becoming and proposed as one of the potential answers [19].

[20] extracted a synopsis in IT structure of a TAS and talked about the limit sway on non-computerized field terminals (like in an underdeveloped nation) applying straddle-bearers. [21] assessed the capacity in TAS for the programmed ECT Delta terminal inside Rotterdam port. Obtained outcome affirmed that the diminishing of the anticipated normal TTT for vehicles from an arrangement was contributed by presenting a raised TTT for those voids of an arrangement. The result transformed into basic TTT didn’t lower. Up until now, the detailed results were disillusioning concerning diminishing entryway gridlock and TTT. In his study, notwithstanding, we acknowledged at the plausible impact of arrangement framework for general execution of stacking activities inside storage yard. As the focal point is at the terminal patio, there were no issues about entry points gridlock and natural effects. A created enthusiasm for the extra information a TAS can likewise produce concerning the genuine time of take-off of a stacked field and utilize those measurements inside the stacking through doing significant reshuffles already of the gathering. This is alluded to as intra narrows remarshalling through. They posted a few papers who addressed this problem, however explicitly if there should be an occurrence of were containers with flawless records. Those papers also acknowledged the crane planning. For our situation recent pressing compartments come in, with restricted measurements, on the equivalent time as the remarshalling tasks, which confounds the inconvenience and those procedures were not practical. At long last, we would express that the term "truck declaration" demonstrates that the genuine coordination among trucking association and terminal administrator is out of entryways the extent of this examinations.

[22], researched the TAS with pondering the joint effort amongst truckers’ organizations and the container terminal. For those papers, an iterative methodology was utilized to display the joint effort among trucking associations and the terminal administrator. The flexible strategy incorporates two levels that were interwoven via comments circle. This main dimension is a numerical technique which incorporates a sub-issue for each trucking undertaking to limit the whole holding up charge at storage yard. On the contrary hand, the second one is a technique of appraising the foreseen occasions at yards on trucks dependency on arrangement of pivotal degree. This iterative strategy allows the coordinated effort technique. By mindful examination
of the techniques proposed, three voids were seen which must be ensured to improve the predominant strategies. The primary void is identified with the second degree in which a straightforward process is generally used to assess the truck-turn examples. This straightforward way needs genuine worldwide components which incorporates the holding up events at entryway. The second is that the overall procedure couldn’t recall the arbitrariness of the terminal activities. Thirdly, is identified with the assortment of times the trucker’s gatherings and administrator sent their choices to extra-ordinaries.

[23], presented the essential of what is currently alluded to as Truck Appointment system (TAS) in the ports of Los Angeles and Long Shoreline in 2002 in response to California Get together Bill 2650 represented a begin line for an improvement which is as yet progressing. The idea was to utilize a vehicle booking machine to control the assortment of vehicles touching base at the terminal at unique cases of the day. The achievement of the program has pleasingly seeking to be proven wrong because of its wilful appearance and the truth that all terminals completed an exceptional contraption. This realized exorbitant confinements for those truckers led into minimal interest. This occurred at once with rising requesting circumstances at the terminal entryways as a result of high quantities of arriving trucks with developing variances. Along these lines, the TAS just as various methods had been considered progressively more. Today, various a triumphs TAS were walking around uncommon pieces of the part, for example Vancouver, Sydney and Southampton; anyway, the advancement proceeds in advancing those structures or to discover effected options.

[24], instated a strategy named ‘vessel discrete time windows’ (VDTW) in lightening of entry points- blockage. Half breed calculation utilizing GA and re-enacted toughening was connected.

2.2 Reduction of Truck Turnaround Time (TTT)

Truck tasks inside the landside were assessed the utilization of some exhibition measurements such as "TTT". Both truckers and terminal want to minimize TTT. TTT is depicted in light of the fact that the time from entry in the terminal entry points to the season of take-off. [25] extracted a scientific form to take a gander at the impact of confining truck entries on TTT and crane use. To procure the regular truck turn time, this creator utilized a DES technique and heuristics to comprehend their technique, as an expansion for their working hours, [26] delivered DES rendition to re-enact different arrangement rules. They analysed the human arrangements and framework arrangement ponders its effect on TTT and G-crane usage. In a former work, [27] analysed the wellsprings of postponement for drayage trucks at container terminals. They utilized choice brambles as a ground-breaking instrument for mining gadget.

[28] built-up a non-direct improvement bothers and completed a multi-server hold up in-line model to explore maritime entry points stations blockage and measure holding-up charge. They saw that arrangement truck framework is by all accounts the most extreme conceivable way to mitigate entry points gridlock and develop terminal execution. An advancement model for truck arrangements is figured with the guide of [22] to diminish weighty obligation truck blockage inside the terminal. The lining framework depicted by methods for a Basket Chandy Muntz Palacios (BCMP) lining system. To tackle this form, fundamental focused methodology Hereditary Calculation (GA) and Point reasonable Stationary Liquid Stream Estimation (PSFFA) changed into structured.

[29] evaluated the advantages of utilizing the truck arrangement framework for improving the bearer best in Container terminal. A consolidated answer approach is embraced in settling the
proposed joined whole number straight programming technique. DES approves the results acquired by the improvement form in stochastic situations. These field controls were entries to be considered. They proposed a whole number programming form and comprehended it the utilization of hereditary arrangement of principles (GA).

[30] built-up bi-target technique to limit both the truck holding-up times & truck entry design adjustment. GA based heuristics were utilized to determine that technique and radiated in retarding of truck emanations applying a little move in truck entries catching the ecological target for lessening the carbon dioxide outflows. Reproduction was connected in settling landside issues, for example, gridlock, pausing, assets lingering and emanations.

[31] connected operator based-re-enactment to lightening gridlock at seaport terminal entry points by presentation of the available continuous entryway blockage data and basic rationale for foreseeing the normal hold up time of trucks. [32] proposed a DES model to truck entry in storage yard and entry points. A different situation was reproduced to diminish lines by utilizing business re-enactment programming (FlexSim CT). An ongoing DES model to lessen void truck-trips by actualizing a planned truck arrangement was implemented by Hennessey. His model decreased outflows yet didn’t affect gridlock.

[33] utilized re-enactment to assess the utilization of truck entry data to alter container situating amid the system of import recovery. [34] additionally assessed truck entry data adequacy in diminishing truck working occasions around container terminals applying the reconsidered distinction heuristic. A PC based re-enactment was presented. [35] expounded the work and made a half breed approach of re-enactment and lining hypothesis to display the compartment recovery task and gauge the crane efficiency and TTT. The creators evaluated the effect of utilizing a truck arrangement framework on storage proficiency of CT. Smoothening truck entries in pinnacle hours turned into a need for both compartment terminals and trucking organizations. In accomplishing that objective, [36] tended to an arrangement procedure among various trucking organizations and a terminal for normalizing truck entries in pinnacle hrs. The nonlinear model is defined to build up an arrangement framework utilizing that proposed exchange technique. They utilization prescribed for recreation to approve their technique of arrangement.

[37] observed the trucks disparity entry from their arrangements. DES model utilization in investigating presentation of observed arrangement systems. The entryway administrators guarantee the trucks to hold up outside the terminal or at assigned holding up regions inside the terminal counteract yard gridlock. This makes new gridlock at the entryways. Be that as it may, a hand few of stations include enough holding-up slot. The arrangement frameworks for the outside trucks were viewed as an administrative answer for the long TTT and blockages. There were some components affecting the TTT such as the entryway limit, entry points working hours and assets inside the terminal and truck entry designs. A discrete recreation occasion model was connected to think about the impact of the entry designs on the TTT and the thought of the entry design in improving the truck arrangement framework. From the re-enactment results a methodology was created for ideal arrangement framework.

2.2.1 Turnaround Time Conceptual Framework

In terminals, compartments for fare were passed on to the quayside and imported containers were conveyed by external trucks to be transported into borderlands. A standout amongst the most basic tests for this external truck is the lengthy truck turn time (TTT). The descriptive equation of TTT:
TTT = Tgw + Tgs + Tyw + Tys + Tge
Tgw: entry points waiting time.
Tgs: entry points service time.
Tyw: yard waiting time.
Tys: yard service time.
Tge: entry points exit time duration

There is an immediate and aberrant impact that a long truck turn time has on the proficiency of the terminal. For the immediate impact, shorter pausing and administration time decline the blockage outside the entryways and inside the yard zone. Moreover; a decline in the turn time will expands the terminal throughput and decreases the operational handling cost. By implication, decrease of air contaminations from the truck’s lines at the entryway framework.

2.3 Reduction of Emission
Diminishing outflows in ports has been a repetitive wellbeing risk in the terminal. The most broadly utilized methods were affecting truck entries and improving existing Truck Appointment System (TAS) approach. In any event mostly, everything except one paper centres on compartment terminals [39]. One concentrates just on trucking firms and two on both trucking firms and compartment terminals. The strategies utilized were disseminated equitably. Over half of these publications concentrated their work on ports in North America [40].

[41], [42] concentrated on the Los Angeles (LA) and Long Shoreline (LB) ports gridlock. They proposed the main presentation of TAS and advantage on gridlock and truck lethal discharges at the entryway framework. They call attention to that the correct setting and execution of a TAS is significant for it to work precisely. [43], [44] analysed the connection between impacting truck entries and decreasing outflows at compartment wharf. The effect of a terminal’s off-dock with station trade framework to limit stacking and emptying times at the terminals was inspected. [45] gave a framework singular schedule openings per truck which don't need to be reserved ahead of time. [46] dissected approaches to limit treks of void truck by presenting coordinated effort among truckers working in at terminal with a TAS.

2.4 Decrease of Operational Cost
This procedure developed inside his papers done in North America on triple events, to South America & Asia each in a solitary event and a single publication had no effect in the industry. System costs were seen essentially as the joined expenses for one transport of trucking organizations and compartment terminals. Therefore, the recipients in many papers were both trucking organizations and compartment terminals. What's more, most productions utilize different strategies, for the most part a piece of the investigation, joining hypothesis and scientific streamlining. Re-enactment is utilized distinctly by one of the investigations [47].

[48] extended a cooperative coordination system for the conveyance chain inside the port. With this structure the stand-out partners inside the port and methodologies were coordinated to improve general execution. A few papers look at the effect of affecting truck entries on entry points blockage. [49] connected queuing hypothesis to form the blockage of inbound vehicles at field terminal entryways to evaluate holding up costs and to discover potential techniques to enhance the entry points methods. [50] used a calculation to produce helpful time windows and concentrate their belongings through the utilization of a compartment terminal reproduction rendition. [51] upheld vessel set up time windows for arriving vans to smooth the pinnacles and in this manner decreasing truck blockage on the terminal entryways. [52] showed a charge
model which was connected to see the best amount of capacity territory and exchange cranes for import container contemplating the price for zone charge and other charges. [53] gave answers for boost the hub productiveness by methods for affecting truck entries. From one viewpoint the truck entry record was connected to decrease the adapting to occurrences and afterward the measures of rearrangement in the container stack were diminished by methods for smart stacking orders. Furthermore, conceivable outcomes to arrange terminal and truck drayage tasks via x-rayed observation, for example TAS or GPS on vehicles were examined.

[54], [55] improved the terminal by and large execution by perusing the effect of various TAS qualities and looking at aggravations in truck entries. [56] investigated the effect of an advanced yard control at the hub efficiency. They look at the effect of advanced stacking calculations and improved course situating of terminal trucks essentially dependent on respected truck entry times. [57] built-up a decision help device for upgrading the terminal profitability. Some portion of this determination control framework is the yard the executives notwithstanding the truck entry control.

3 Conclusion
Preceding analyst's disclosures from past works that framed the reason of present research gapes at research stages were caught and promising future research regions were sketched out. Easing blockage in container terminal is a wide research work particularly thinking about a catchment zone. Scarcely any papers have used the blend of ways to deal with moderate this approaching test. Hence, it is fundamental to audacious the association between those methodologies and apply results from current works. This has prompted deficiency of parameters in doing the investigation to help relieve the blockage, explicitly TAS, on terminal system and on truck-drayage. This was anticipated in arrangement of closed works yet never balanced nor assessed. Consequent papers later on should top off those holes in acquiring substantial end point. Additionally, it was seen that the majority of the distributed papers caught comparative port as contextual analysis, perhaps because of confirmed auxiliary information. That has prompted a restricted secured contextual investigation forgetting incredibly famous ports in creating and rising countries. At the previous stage, various plans sprang out for TAS however at this point because of satisfactory looks into led TAS relate on couple of criteria, for example, nature mandatory, time allotment windows and the utilization of punishments for trucking organizations. This present paper's methodology for mitigating the drayage truck-entry points blockage at container terminals, explicitly drayage trucks were dissected, momentum look into and ensuing examination works were revealed.

4 Recommendation
The utilization of this gate system strategy called Truck appointment system (TAS) and the advanced model (TAM) has proved to be an effective tool in assisting in mitigating this impending truck-entry points congestion of external trucks at the terminals. Though it’s costly to install and has a high maintenance policy in management but it serves it purpose than that of manually instituted policy like extension of entry points operating hours etc.

Acknowledgements
The authors wish to acknowledge the financial support offered by Covenant University in actualization of this research work for publication.
References

[1] Absari, H. N., Hanif, M. F., Tjakra, V. P., and Prathama, W. A. (2016). Reducing Dwelling Time and Logistics Cost by Implementing Dry Port. *Maritime Economics & Logistics*. 2(3) 14-24. https://doi.org/10.13140/RG.2.1.4112.7921.

[2] Fcilt, U. G. (2015). Consequences of Port Congestion on Logistics and Supply Chain in African Ports. *Maritime Economics and Logistics*, 5(6), 160–168.

[3] Voss, S. (2015). Container terminal operation and operations research – Recent challenges Container terminal Operation and operations, *European Journal of Operational Research*. 2(4) 500-512.

[4] Steenken, D., Voß, S., and Stahlbock, R. (2007). Container terminal operation and operations research – a classification and literature review. In *European Journal of Business and Management*. 2(4), 12-17.

[5] Wong, A. K. (2008). Optimization of Container Process at Multimodal Container Terminals, *Journal of Applied Research and Technology*. 2(3) 200-211

[6] Maguire, A., Ivey, S., Golias, M. M., and Lipinski, M. E. (2010). Relieving Congestion at Intermodal Marine Container Terminals: Review of Tactical/Operational Strategies. *Transportation Research Part E*, 2(4) 11-19.

[7] Roy, D. (2013). Modeling and Design of Container Terminal Operations, *International Journal of Production Economics*, 2(7) 2-13

[8] Garcia-morales, R. M., Baquerizo, A., and Losada, M. Á. (2015). Port management and multiple-criteria decision making under uncertainty. *Ocean Engineering*, 1(4), 31–39. https://doi.org/10.1016/j.oceaneng.2015.05.007.

[9] Chu, M. C. (2018). Optimal design of container terminal entry points layout. *European Journal of Logistics Purchasing and Supply Chain Management*, 3(2), 110-122. https://doi.org/10.1504/IJSTL.2017.10005707

[10] Hess, S. (2015). Review of Technological Processes at the Container Terminal, *European Journal of Logistics Purchasing and Supply Chain Management*. 25(2), 67–83

[11] Asperen, E. Van, and Borgman, B. (2013). Evaluating impact of truck announcements on container stacking efficiency. *Intern. Journal of Production Economics*, 2(2), 543–556. https://doi.org/10.1007/s10696-011-9108-1.

[12] Gronalt, M. (2017). Truck entry points simulation for inland terminals, *Maritime Economics and Logistics, Transportation Research Part E*. 1(3) 213-222.

[13] Hayden, S., and Brien, T. O. (2008). Evaluation of the Terminal Entry points Appointment System at the Los Angeles / Long Beach Ports, *European Journal of Logistics Purchasing and Supply Chain Management*. 3(2) 200-211.
[14] Balla, V. N., Fouda, R. A. N., and Bissemb, C. D. (2016). Assessment of Ports Competitiveness in West and Central African Sub-Regions Using Priest Analytic Hierarchy Process: The Defies and Incompetence of the Port of Douala (Cameroon), *Intern. Journal of Production Economics*, 1(3) 112–122.

[15] Kahyarara, G. (2018). Maritime Transport in Africa: Challenges, Opportunities, and an Agenda for Future Research Opportunity and Growth Diagnostic of Maritime

[16] Chen, G. A. N. G., and Yang, Z. H. E. N. (2014). Methods for estimating queues at a marine terminal: A computational comparism, *Intern. Journal of Production Economics* 24(3), 611–619. https://doi.org/10.2478/amcs-2014-0044.

[17] Askari, A., Yousefi, H., and Jafari, H. (2014). Cargo and container dwell time reduction: Effective strategy to increase the efficiency if Iran ports, *Intern. Journal of Production Economics*, 3(10), 370–377.

[18] Aksar, M. (2017). Model Development of operational services of major commercial port in Indonesia, A Case study: Makassar container terminal, *International Journal of Civil Engineering and Technology*, 8(8), 251–263.

[19] Herdian, T., Kusumastanto, T., and Sartono, B. (2017). Operational analysis of container Truck. *Maritime Economics and Logistics*, 7(3), 70–85.

[20] Chen, G., Govindan, K., and Golias, M. M. (2013). Reducing truck emissions at container terminals in a low carbon economy: Proposal of a queueing-based bi-objective model for optimizing truck arrival pattern. *Transportation Research Part E*, 55(2), 3–22. https://doi.org/10.1016/j.tre.2013.03.008.

[21] Chen, G., Govindan, K., and Yang, Z. (2013b). Managing truck arrivals with time windows to alleviate entry points congestion at container terminals. *International Journal of Applied Research*. 41(1), 179–188. https://doi.org/10.1016/j.ijper.2012.03.033.

[22] Azab, A., Karam, A., and Eltawil, A. (2017). A Dynamic and Collaborative Truck Appointment Management System in Container Terminals, *Journal of Transportation Engineering*. 85–95. https://doi.org/10.5220/0006188100850095.

[23] Vidyapeetham, A. V. (2018). Reduction of Turnaround Time for Vessels at Cochin Port Trust, *Journal of Applied Research and Technology*. 117(20), 917–922.

[24] Dragovic, B., Tzannatos, E., and Park, N. K. (2016). Simulation modelling in ports and container terminals : literature overview and analysis by research field, application werea and tool, *The Asian Journal of Shipping and Logistics* 31(1). https://doi.org/10.1007/s10696-016-9239-5

[25] Dyck, G. K. Van. (2015). Assessment of Port Efficiency in West Africa Using Data Envelopment Analysis, *Journal of the transportation Research Board*. 2(1), 208–218.

[26] Fazi, S., and Roodbergen, K. J. (2018). Effects of demurrage and detention regimes on dry-port-based inland container transport. *Transportation Research Part C*, 8(2), 1–18. https://doi.org/10.1016/j.trc.2018.01.012.
[27] Askari, A., Yousefi, H., and Jafari, H. (2014). Cargo and container dwell time reduction: Effective strategy to increase the efficiency of Iran ports, *Intern. Journal of Production Economics*, 3(10), 370–377.

[28] Veloqui, M., Turias, I., Cerbán, M. M., González, M. J., Buiza, G., and Beltrán, J. (2014). Simulating the landside congestion in a container terminal. The experience of the port of Naples (Italy). *Procedia - Social and Behavioural Sciences*, 160(Cit), 615–624. https://doi.org/10.1016/j.sbspro.2014.12.175.

[29] Kim, K. H., and Lee, H. (2015). Container Terminal Operation: Current Trends and Future Challenges. *Journal of Transportation Engineering*. 2(5) 27-56 https://doi.org/10.1007/978-3-319-11891-8.

[30] G., M. G., González-araya, M. C., González-ramírez, R. G., and H., C. A. (2017). A Dwell Time-based Container Positioning Decision Support System at a Port Terminal. *Journal of Transportation Engineering* 1(3) 978–989. https://doi.org/10.5220/0006193001280139.

[31] Smith, N. R., and Stefan, R. G. (2017). Impact on Yard Efficiency of a Truck Appointment System for a Port Terminal. *Annals of Operations Research*, 2(2), 22-25 https://doi.org/10.1007/s10479-016-2384-0.

[32] Henesey, L. E. (2006). Multi-Agent systems for container terminal management. *International Conference of Transport and Development*. 2(2) 11-13. [23] Guan, C., and Rachel, R. (2009). Container terminal entry points appointment system optimization. *Maritime Economics and Logistics*, 11(4), 378–398. https://doi.org/10.1057/mel.2009.13

[33] Rebollo, M., Julian, V., Carrascosa, C., and Botti, V. (2011). A MAS Approach for Port Container Terminal Management, *Journal of Transportation Research Board*, 2(1) 1–12.

[34] Hayden, S., and Brien, T. O. (2008). Evaluation of the Terminal Entry points Appointment System at the Los Angeles / Long Beach Ports, *European Journal of Logistics Purchasing and Supply Chain Management* . 3(2) 200-211.

[35] Huynh, N. (2007). Reducing Truck Turn Times at Marine Terminals with Appointment Scheduling, 1(2) 47–57. *European Journal of Logistics Purchasing and Supply Chain Management* https://doi.org/10.3141/2100-06.

[36] Huynh, N., and Walton, C. M. (2009). Robust Scheduling of Truck Arrivals at Marine Container Terminals, *Maritime Economics and Logistics*. 4(8), 347–353.

[37] Kiesling, M. K., and Walton, C. M. (2011). Loading/Unloading Operations and Vehicle Queuing Processes at Container Ports. *European Journal of Operational Research, Transportation Research Part E*. 1(2) 23-24

[38] Kulkarni, K., and Wang, H. (2017). Efficient entry points system operations for a multi-purpose port using simulation optimization. *European Journal of Logistics Purchasing and Supply Chain Management*, 2(4), 56-88.
[39] Lang, N., and Veenstra, A. (2010). Planning strategies, *European Journal of Logistics Purchasing and Supply Chain Management*, 1(3), 477–499. https://doi.org/10.1007/s00291-009-0186-3.

[40] Lange, A., Schwientek, A., and Jahn, C. (2017). Reducing Truck Congestion at Ports – Classification and Trends, *European Journal of Logistics Purchasing and Supply Chain Management*, 4(3), 16-18. https://doi.org/10.15480/882.1484.

[41] Lee, D., Xin, J., Shi, Q., and Hang, J. (2009). A heuristic algorithm for yard truck scheduling and storage allocation problems. *Transportation Research Part E*, 45(5), 810–820. https://doi.org/10.1016/j.tre.2009.04.008.

[42] Dekker, R., and Heide, S. Van Der. (2013). A chassis exchange terminal to reduce truck congestion at container terminals, *European Journal of Logistics Purchasing and Supply Chain Management*, 1(8), 528–542. https://doi.org/10.1007/s10696-012-9146-3

[43] Li, N., Chen, G., Govindan, K., and Jin, Z. (2018). Disruption management for truck appointment system at a container terminal: A green initiative, *European Journal of Logistics Purchasing and Supply Chain Management*, 6(1), 261–273. https://doi.org/10.1016/j.trd.2015.12.014.

[44] Zehendner, E., and Feillet, D. (2014). Benefits of a truck appointment system on the service quality of inland transport modes at a multimodal container terminal. *European Journal of Operational Research*, 235(2), 461–469. https://doi.org/10.1016/j.ejor.2013.07.005

[45] Nossack, J., and Pesch, E. (2013). A truck scheduling problem arising in intermodal container transportation. *European Journal of Operational Research*, 230(3), 666–680. https://doi.org/10.1016/j.ejor.2013.04.042.

[46] Zhang, X., Zeng, Q., and Yang, Z. (2018). Optimization of truck appointments in container terminals. *Maritime Economics and Logistics*, 1(3) 22-67. https://doi.org/10.1057/s41278-018-0105-0

[47] Schulte, F., and Gonz, R. G. (2015). Reducing Port-Related Truck Emissions: Coordinated Truck Appointments to Reduce Empty Truck Trips Reducing Port-Related Truck Emissions: Coordinated Truck Appointments to Reduce Empty Truck Trips, *International Journal of Applied Research*, 2(4)11-17. https://doi.org/10.1007/978-3-319-24264-4.

[48] Ambrosino, D. (2013). Truck arrival management at maritime container terminals. *Journal of Transportation Engineering*, Department of maritime Engineering. Department of Economics and Business studies. 2(4), 55-78.

[49] Phan, M., and Kim, K. H. (2015). Negotiating truck arrival times among trucking companies and a container terminal. *Transportation Research Part E*, 75, 132–144. https://doi.org/10.1016/j.tre.2015.01.004
[50] Azab, A., and Eltawil, A. (2016). Turn time in container terminal: A simulation based study of the effect of truck arrival. *13th COTA International Conference of Transportation Professionals*. 1(5) 109-115. https://doi.org/10.7148/2016-0080.

[51] Zhao, W., and Goodchild, A. V. (2010). The impact of truck arrival information on container terminal rehandling. *Transportation Research Part E*, 46(3), 327–343. https://doi.org/10.1016/j.tre.2009.11.007

[52] Torkjazi, M., Huynh, N., and Shiri, S. (2018). Truck appointment systems considering impact to drayage truck tours. *Transportation Research Part E*, 1(3), 208–228. https://doi.org/10.1016/j.tre.2018.06.003.

[53] Sharif, O., Huynh, N., and Vidal, J. M. (2011). Research in Transportation Economics Application of El Farol model for managing marine terminal entry points congestion. *Research in Transportation Economics*, 32(1), 81–89. https://doi.org/10.1016/j.retrec.2011.06.004.

[54] Zhang, X., Zeng, Q., and Chen, W. (2013). Optimization Model For Truck Appointment In Container Terminals. *Procedia - Social and Behavioural Sciences*, 9(6), 1938–1947. https://doi.org/10.1016/j.sbspro.2013.08.219

[55] Stahlbock, R., and Voss, S. (2008). Vehicle Routing Problems and Container Terminal Operations – An Update of Research Vehicle Routing Problems and Container Terminal Operations. *International Journal of Applied Research*. 2(1) 101-103. https://doi.org/10.1007/978-0-387-77778-8.

[56] Phan, M., and Kim, K. H. (2016). Collaborative truck scheduling and appointments for trucking companies and container terminals. *International Journal of Applied Research*, 8(6), 37–50. https://doi.org/10.1016/j.trb.2016.01.006

[57] Zehendner, E., (2014). Operations management at container terminals using advanced information technologies. *European Journal of Operational Research*. 1(2) 201-203.