Abstract: Research progress on dopamine D₁ receptors indicates that signaling no longer is limited to G protein-dependent cyclic adenosine monophosphate phosphorylation but also includes G protein-independent β-arrestin-related mitogen-activated protein kinase activation, regulation of ion channels, phospholipase C activation, and possibly more. This review summarizes recent studies revealing the complexity of D₁ signaling and its clinical implications, and suggests functional selectivity as a promising strategy for drug discovery to magnify the merit of D₁ signaling. Functional selectivity/biased receptor signaling has become a major research front because of its potential to improve therapeutics through precise targeting. Retrospective pharmacological review indicated that many D₁ ligands have some degree of mild functional selectivity, and novel compounds with extreme bias at D₁ signaling were reported recently. Behavioral and neurophysiological studies inspired new methods to investigate functional selectivity and gave insight into the biased signaling of several drugs. Results from recent clinical trials also supported D₁ functional selectivity signaling as a promising strategy for discovery and development of better therapeutics.

Keywords: functional selectivity; dopamine D₁ receptor; clinical implications

1. A Brief Introduction of Functional Selectivity

The term functional selectivity [1] was first introduced in 1994 and soon thereafter other reports referred to this phenomenon alternately as “agonist trafficking of signaling”, “differential engagement”, or “biased agonism”. The concept of functional selectivity essentially means that a ligand may have different actions at two or more signaling pathways mediated by the same receptor. Ligand actions may range from full agonism at one pathway and antagonism at another. Before functional selectivity was introduced, a ligand was defined as either an agonist or antagonist for one canonical signaling pathway mediated by the same receptor. This simplified notion had to be abandoned once it became clear that multiple signaling pathways could be involved by the activation of a receptor. This pharmacological insight contributed significantly to the development of the concept of functional selectivity. Meanwhile, functional selectivity also benefited from the progress on structural biology where the discovery of heterodimers and some detailed crystal structures inspired understanding of additional signaling properties of a receptor. The concept of functional selectivity has evolved. Initially, functional selectivity was studied using a “paired model”, such that a newly discovered receptor signaling pathway was compared with the traditional canonical pathway. Now, the “network model” is more appreciated whereby all signaling pathways related to a receptor are treated equally and the signaling complex as a whole accounts for the pharmacological property of a ligand. Functional selectivity has become a major pharmacological research front and more relevant as additional signaling pathways were discovered. The full signaling properties of many new and some “old” ligands have been studied or reinvestigated to better understand their engagement of targets in more precise ways and potentially to improve their therapeutic index. To grasp the significance of functional selectivity of dopamine D₁ ligands, it is important first to
review all canonical and novel signaling pathways related to dopamine D_{1}-like receptors (D_{1}Rs).

2. G Protein-Dependent Cyclic Adenosine Monophosphate (cAMP) Phosphorylation

Dopamine receptors belong to the G-protein-coupled receptor (GPCR) group of receptors and classically have been linked to adenylate cyclase. D_{1}Rs interact with G_{\alpha_{s/olf}} to stimulate adenylate cyclase and produce cAMP (Figure 1). Nobel Laureate Paul Greengard and his colleagues made a series of discoveries in the 1970s [2] that revealed that dopamine interacts with receptors to cause an increase in cAMP, activates protein kinase A (PKA), and in turn phosphorylates other proteins. Therefore, G protein coupled adenylate cyclase activation traditionally was used as the canonical signaling pathway for D_{1}R.

![Figure 1. Dopamine D_{1} receptor-related signaling. The traditionally canonical G protein coupled cAMP signaling potentially could be subdivided based on G protein subtype [3] and PKA subunit [4]. G protein independent, β-arrestin-related signaling acts through MAP kinase phosphorylation [5], and has cross talk with cAMP signaling [6,7]. Receptor recycling is also regulated by β-arrestin. Regulation of ion channels could be through cAMP [8]. G_{\alpha_{q}} dependent PLC signaling is controversial [9]. Abbreviations: D_{1}R, dopamine D_{1} receptor; AC5, adenylate cyclase type 5; PKA, protein kinase A; ERK, extracellular-signal-regulated kinase; GRK, G protein-coupled receptor kinase; DARPP-32, Dopamine and cAMP-related phosphoprotein 32KDa; Rap, a small GTPase; CREB, cAMP response element-binding protein; PLC, phospholipase C.](image-url)

G proteins are a family of proteins made up of subunits G_{\alpha}, G_{\beta}, and G_{\gamma}. D_{1}Rs stimulate adenylate cyclase primarily through G_{\alpha_{s}}. The G_{\alpha_{s}} family is comprised of G_{\alpha_{s}} and G_{\alpha_{olf}}, the latter named for its predominant expression in the olfactory system. Studies on G_{\alpha_{olf}} knock-out mice suggested that G_{\alpha_{olf}} may play an essential role in D_{1}R-mediated cAMP accumulation [10,11]. G_{\alpha_{olf}} knock-out mice showed no hyperlocomotor response to the D_{1} agonist SKF81297, and their striatal D_{1}Rs had decreased affinity for dopamine. The adenylyl cyclase response to dopamine in the caudate/putamen and nucleus accumbens were also decreased dramatically, but prefrontal cortex signaling remained unaffected. Studies on the striatum of Parkinson’s disease patients also suggested that G_{\alpha_{olf}} plays the essential role in D_{1}R-mediated cAMP [12]. The hallmark of Parkinson’s disease is decreased dopamine in the striatum. Interestingly, G_{\alpha_{olf}} in this region is less abundant in Parkinson’s patients, whereas G_{\alpha_{s}} is highly expressed. The combination of dopamine deficiency and G_{\alpha_{olf}} being sparsely expressed suggested that the coupling of D_{1}Rs to adenylate cyclase is mediated primarily by G_{\alpha_{olf}} or the switch/shift between G_{\alpha_{s}} and G_{\alpha_{olf}}.

The mRNA of other G proteins are also expressed in the striatum. For example, G protein γ_{7} subunit mRNA was detected within rat brain areas that aligned with striatum-enriched adenylyl cyclase, dopamine receptors, and G_{\alpha_{olf}}. This suggested that γ_{7} may
be part of the G\(\alpha_{olf}\)-containing complex that couples dopamine receptors selectively to adenylyl cyclase [13]. Another study used a ribozyme strategy to suppress the expression of the G protein \(\gamma_7\) subunit in HEK 293 cells stably expressing the human D1Rs, and revealed a significant attenuation of D1 agonist SKF81297-stimulated adenylyl cyclase activity [14]. This evidence supported the potentially important function of the G protein \(\gamma_7\) subunit on D1R-mediated cAMP signaling.

Along with improved understanding of the interaction between D1Rs and each G protein subunit, there is ongoing progress regarding functional selectivity of G protein subtype-specific signaling. Although there are currently no D1 ligands being developed to target specific G protein subunits, such compounds have been reported for the C-C chemokine receptor 5 (CCR5) [3]. Lorenzen et al. studied four chemokine analogs and found that some analogs were super agonists for G\(q/11\) activation, whereas other analogs displayed a signaling bias for G\(i/o\). Their results demonstrated that ligands can elicit G protein subtype-specific signaling bias and cause receptors to couple preferentially to one subtype of G protein signaling over others. This is inspiring for the pharmacology field. A timely study is needed to investigate this interesting phenomenon since it is reasonable to assume that some dopamine ligands may also engage each G protein subtype differently, providing a more targeted action.

3. \(\beta\)-arrestin-related Signaling and Mitogen-Activated Protein (MAP) Kinase Activation

In addition to G protein-dependent adenylyl cyclase signaling, research has demonstrated the importance of G protein independent \(\beta\)-arrestin-related signaling. Originally, arrestin was thought to only promote receptor desensitization and internalization. It blocks GPCR coupling to G proteins, preventing GPCR's activation (desensitization), or links GPCR to elements of internalization machinery. Starting in the 1970s, Nobel Laureate Robert Lefkowitz and his colleagues made several discoveries related to \(\beta\)-adrenergic receptors, and \(\beta\)-arrestin related signaling is one of their concomitant discoveries. To date, it has been reported widely in several receptor systems, including \(\beta\)-adrenergic [5], opioid [15], cannabinoid [16], angiotensin II type 1 [17], 5-HT2A [18], apelin [19], growth hormone secretagogue [20], sphingosine 1-phosphate [21], and dopamine D2-like receptors (D2Rs) [22,23]. Regarding D1Rs, there are a few reports that suggested the existence of an interaction between D1R and \(\beta\)-arrestin and indicated the involvement of MAP kinase phosphorylation (Figure 1), but many of them did not specify or propose D1R-mediated \(\beta\)-arrestin signaling.

Chen et al. used co-immunoprecipitation to show that extracellular signal-regulated kinases 1 and 2 (ERK1/2) formed stable heterotrimeric complexes with the D1R and \(\beta\)-arrestin2. In cells transfected with the dominant negative mutant of \(\beta\)-arrestin2, however, the formation of such complexes was inhibited substantially [24]. Similarly, Urs et al. utilized a D1R knockout mouse model and demonstrated that formation of the \(\beta\)-arrestin2 and ERK1/2 complexes was also blunted [25,26]. In contrast, others stimulated striatal or prefrontal cortex D1Rs in vivo or in vitro with the D1 selective agonist SKF38393 and showed ERK1/2 was phosphorylated [24,27,28]. These studies provided the initial evidence of D1R-mediated \(\beta\)-arrestin signaling and its function through ERK1/2. In addition to ERK1/2, several studies indicated the involvement of other MAP kinases. Zhen et al. showed SKF38393 increased activation of p38 MAP kinase and c-Jun amino-terminal kinase in SK-N-MC neuroblastoma cells that endogenously express D1Rs, whereas ERK activity was not affected [29]. This study suggested that D1R-mediated MAP kinase phosphorylation could be cell-type specific.

Another interesting finding is that D1R-mediated MAP kinase phosphorylation may also be dependent of PKA. Studies in parkinsonian mouse models indicated that a PKA substrate, dopamine and cAMP-regulated 32 kDa phosphoprotein (DARPP-32), was critically involved in D1R-mediated ERK1/2 phosphorylation. A mutation on the phosphorylation site of DARPP-32 reduced activation of ERK, whereas sensitization of DARPP-32 led to increased activation of ERK1/2 [6,30]. The selective PKA inhibitor Rp-cAMP eliminated
the activations of ERK$_{1/2}$, p38 MAP kinase, and c-Jun amino-terminal kinase [27,29]. In contrast, cAMP directly activated a guanine-nucleotide-exchange factor that stimulates Rap GTPase and promotes the MAP kinase cascade [7,31]. These studies suggested there may be potential cross talk between D$_1$R-mediated cAMP and β-arrestin-related signaling.

4. Regulation of Ca$^{2+}$, K$^+$, and Na$^+$ Channels

Many studies have indicated D$_1$R involvement in the regulation of ion channels. Voltage-dependent Ca$^{2+}$ channels (L-, N-, and P/Q-type) play critical roles in balancing intracellular Ca$^{2+}$ concentrations that are key for neurotransmitter release and synaptic plasticity [32]. Using whole-cell voltage-clamp techniques, Surmeier et al. showed that the application of D$_1$ agonists reduced N- and P-type Ca$^{2+}$ currents, but enhanced L-type currents. The differential regulation of Ca$^{2+}$ currents by D$_1$ agonists helps to explain the diversity of effects that D$_1$Rs have on synaptic integration and plasticity [33]. Hernandez-Lopez et al. furthered the study of D$_1$R effects on L-type Ca$^{2+}$ current. They examined the impact of D$_1$ agonists at depolarized and hyperpolarized membrane potentials and showed that D$_1$R activation either can inhibit or enhance evoked activity, depending on the level of membrane depolarization. Interestingly, the effects on evoked activity at membrane potentials were blocked by the L-type Ca$^{2+}$ channel antagonists nicardipine or calciestine, and were occluded by the agonist BayK8644. These data indicated that the D$_1$R-mediated effects occurred through the L-type Ca$^{2+}$ channel [34]. For N-type Ca$^{2+}$ channels, coimmunoprecipitation showed the existence of a D$_1$R-N-type Ca$^{2+}$ channel signaling complex in the prefrontal cortex. This complex had a direct receptor-channel interaction. D$_1$ agonists not only regulated N-type Ca$^{2+}$ channel distribution but also inhibited influx Ca$^{2+}$ current. Consequently, neuronal transduction was attenuated [35,36]. The cAMP/PKA/DARRPP-32 signaling cascade appeared to mediate these effects on Ca$^{2+}$ channels, as cyclic AMP analogs mimicked the effects of D$_1$ agonists [33].

The D$_1$ agonist SKF81297 or SKF82957 in combination with the D$_2$ agonist quinpirole increased spike firing of nucleus accumbens neurons via inhibition of a slow A-type K$^+$ current. This enhancement was prevented by inhibitors of PKA or G$_{βγ}$ and enabled by intracellular perfusion with G$_{βγ}$. These data suggested that the underlying mechanism of D$_1$R and D$_2$R cooperativity in mediating the slow A-type K$^+$ current was by activation of specific subtypes of adenylyl cyclases released by the G$_{i/o}$-linked D$_2$R in combination with the G$_{α}$-linked D$_1$R [37]. The D$_1$ agonists SKF81297 or dihydrexidine induced prolonged membrane depolarization and excitability of fast-spiking interneurons in the prefrontal cortex. Voltage-clamp analyses revealed that this mimicked dopamine-suppressed inward rectifying K$^+$ current and can be reduced by the D$_1$ antagonist SCH23390 [38–41]. Although the precise mechanism underlying D$_1$R-mediated K$^+$ current changes has not been fully understood, studies have suggested possible options: the direct interaction of cAMP with K$^+$ channels and the involvement of D$_1$R-mediated cAMP/PKA signaling. The first reason is that the effect of D$_1$R stimulation on K$^+$ current can be mimicked by the adenylyl cyclase activator forskolin and the active cAMP analog Sp-cAMP. The second reason is that the inhibition of PKA with either PKI, Rp-cAMP, or the protein phosphatase inhibitor okadaic acid abolished D$_1$R modulation [40,41].

D$_1$Rs also appear to impact Na$^+$ channels. For example, the D$_1$ agonist SKF38393 reduced the peak Na$^+$ current amplitude in rat striatal neurons and subsequently depressed striatal neuron excitability. These effects were reversed by the D$_1$ antagonist SCH23390 [42,43]. Intracellular loading of PKA mimicked D$_1$R-mediated Na$^+$ current inhibition, and diffusion of the PKA inhibitor PKI into the cytosol of neurons blocked it, suggesting the involvement of PKA [44]. Schiffrmann et al. suggested the critical role of phosphorylated DARPP-32 as part of this pathway since its injection reduced the Na$^+$ current amplitude [45]. This line of evidence suggested that D$_1$R regulation of ion channels may be a subsequent event of D$_1$-mediated G protein-dependent cAMP signaling. On the other hand, Cantrell et al. reported that phosphorylation of Ser573 on the Na$^+$ channel α subunit was critical for D$_1$R-mediated effects on the Na$^+$ current since this site was phos-
phorylated by D₁R activation [46]. Since the structure of the ion channel itself potentially could play a critical role, as shown by the Ser 573 study, it is also reasonable to assume that there is a more “direct” interaction between the D₁R and ion channel. A timely study is needed to investigate this interesting hypothesis. More importantly, if some dopamine ligands can engage each ion channel differently, they may provide a more targeted action and potentially lead to better therapeutic implications.

5. Phospholipase C (PLC) Activation

D₁R-mediated PLC signaling was once proposed as a novel target, but controversies occurred, and it now is considered to be purported. The possibility that D₁Rs may function through PLC first was reported in a series of studies on adenylate cyclase type 5 (AC5), a dopamine sensitive-adenylate cyclase. Genetic disruption of the AC5 isoform led to loss of adenylyl cyclase activity after administering the D₁ agonist SKF38393, and this was accompanied by a decrease in the expression of Gαs. AC5 null mice also showed parkinsonian-like motor dysfunction. Interestingly, administration of the partial D₁ agonist SKF38393 improved some of the symptoms, suggesting compensation of D₁ signaling outside the Gαs mechanism and beyond adenylate cyclase [47,48]. Gαq-mediated PLC activation and subsequent Ca²⁺ elevation as a non-cyclase signaling for D₁Rs was then proposed to explain D₁R-mediated motor behaviors of the null mice. SKF38393 increased Gαq protein binding to the D₁R in the striatum, suggesting the possible role of the Gαq protein in D₁R-mediated PLC activation [49]. Several studies indicated that SKF38393 activated PLC in brain slices, and this action was inhibited selectively by the D₁ antagonist SCH23390. In addition, dopamine-induced inward Ca²⁺ current was mimicked by the administration of SKF38393 and blocked by SCH23390 [50–52].

The most supportive evidence for D₁R-mediated PLC signaling came from studies using the D₁ ligand SKF83959 that has small effects on adenylate cyclase but strong efficacy for PLC activation. Interestingly, it induced contralateral rotations in the unilateral 6-OHDA-lesioned parkinsonian rat model, and the rotations were completely blocked by the D₁ antagonist SCH23390 [53,54]. The involvement of the D₁R in PLC signaling, however, is still controversial [9] because the behavioral effects of SKF83959 can be explained by several other mechanisms. First, SKF83959 is still a typical partial agonist for adenylate cyclase [55]. Second, non-specific effects on other receptors also could explain the behavioral effects of SKF83959 since it can bind to several GPCRs in micromolar concentrations [56]. Third, it is postulated that D₁Rs and D₂Rs form a D₁/D₂ heterodimer. Heterodimers have been shown to play a role in functional selectivity in several other GPCR systems [57,58], including the D₂/neurotensinNTS1 receptor complex [59] and the D2/trace amine-associated receptor 1 heterodimer [60]. It is very tantalizing to think that the D₁/D₂ heterodimer led to PLC signaling. D₁Rs and D₂Rs, however, are seldom co-expressed in striatal neurons [61–65], suggesting that the heterodimer mechanism is likely not a major contributor. Collectively, the evidence suggests that D₁Rs actually may be independent of PLC activation.

6. Insight on Functional Selectivity through the Implications of D₁ Signaling

Dopamine receptors are highly expressed in the brain. The densest area is forebrain where the major dopaminergic terminal fields occur including caudate-putamen and nucleus accumbens. The midbrain (i.e., substantia nigra and ventral tegmental area) also has a high density of dopamine receptors. Olfactory, limbic, and brainstem areas have moderate densities of dopamine receptors. The cerebral cortex has a relatively light density of dopamine receptors but those that are there have important functional implications. In general, the density of D₁Rs (including D₁ and D₅) is higher than that of D₂Rs (D₂, D₃ and D₄), especially in the cortex where there is a significantly higher overall density and different laminar patterning of D₁R compared to D₂R. The D₁R is preferentially distributed in deeper cortex layers and is proportionally more widespread and expressed within local GABAergic interneuron populations. In the basal ganglia where the density of dopamine
receptors is the highest, the segregation of D_1R and D_2R is more distinct, with <10% overlap. The GABAergic medium spiny projection neurons of the striatum express D_1R in the direct pathway and D_2R in the indirect pathway. These two parallel and segregated pathways form the outflow of the basal ganglia to regulate thalamocortical circuitry [66]. Dysfunction of dopamine receptors in these brain areas play causal roles in many neurological disorders. Therefore, targeting D_1R for therapeutic intervention is attractive. In this section, we try to differentiate D_1 signaling by highlighting some reports that in retrospect have contributed to the understanding of functional selectivity.

There has been a long history between D_1R-mediated cAMP and Parkinson’s disease. AC5 is highly concentrated in the striatum. Genetic ablation of the AC5 gene eliminated adenylate cyclase activity stimulated by D_1 agonists in the striatum, and induced parkinsonian-like motor dysfunction. These findings supported the involvement of D_1R-mediated AC5 activation in the motor symptoms of Parkinson’s disease [47,48,67]. AC5-produced striatal cAMP binds to the regulatory subunits of PKA that then phosphorylates various proteins such as DARPP-32 and cAMP response element-binding protein (CREB). Although how this signaling leads to D_1-mediated behavioral effects is still unclear, these downstream molecules are involved in the regulation of gene expression [4]. These lines of evidence encouraged the development of functionally selective dopamine ligands whose cAMP signaling can be biased to the PKA subunit to provide a more targeted action improved therapeutic index.

Recent studies on D_1R-mediated β-arrestin have yielded several impressive clinical implications. Urs et al. reported that the D_1R-dependent, β-arrestin-related ERK signal cascade affected morphine-induced psychomotor activation but not reward [24,25], suggesting a separation of therapeutics (e.g., analgesic) from side effects (e.g., addiction). By analyzing transcriptional signatures in humans and mice, Labonte et al. reported that D_1R-mediated β-arrestin signaling through ERK may effect sex-specific depression [68]. Several studies on rats or mice with mutations that eliminate β-arrestin recruitment showed less locomotor activity [69], more dyskinesia-like behavior [26], enhanced adiposity [20], and impaired memory reconsolidation [70]. Recently, our team used a pair of D_1 agonists with distinct signaling profiles at β-arrestin recruitment to evaluate rodent behavior in a working memory-related T-maze task [71]. We showed subtle but significant behavioral variation associated with the level of β-arrestin recruitment, suggesting a promising implication of β-arrestin-selective D_1 agonists on cognitive improvement. Interestingly, there were also clinical implications reported from ligands that bias against β-arrestin. Jiang et al. and other groups reported that β-arrestin activation was related to β-amyloid-induced cognitive impairment [72–74]. Since β-amyloid is one of the key players in Alzheimer’s disease, this finding implies that bias against β-arrestin could be a target for limiting β-amyloid-induced cognitive impairment. D_1 agonists that have less β-arrestin activity may be novel therapeutics. Functionally selective D_1 agonists that have less β-arrestin activity may have less side effects in Parkinson’s disease because ERK1/2 activation correlated with levodopa-induced dyskinesia, whereas blocking ERK1/2 activation significantly decreased it [30]. Indeed, recent phase III Parkinson’s disease and phase Ila schizophrenia trials using novel D_1 agonists with almost no β-arrestin activity have shown highly positive clinical indications [75–80].

It is encouraging to see D_1R signaling has several clinical implications, even though some results seemed to contradict each other. In fact, the concept of functional selectivity was born in part to deal with the fact that different types of bias at a signaling pathway lead to benefits or disadvantages depending on different conditions. Essentially, functional selectivity was founded on the idea of precise targeting. In other words, the bias at one receptor’s whole signaling complex could be adjusted based on different applications to magnify merit.
7. Progress on the Structural Biology of Dopamine Receptors

Progress on the structural biology of dopamine receptors has a large impact on the theory of functional selectivity and the discovery of subtype selective ligands, although it is rather slow for D₁Rs. The crystal structure of D₁R complexed with a G protein and a non-catechol agonist was reported only recently [81], although predictions of the 3D structure of human D₂Rs, the binding site, and binding affinities for agonists and antagonists have been around since the 2000s [82]. Over the intervening years, several crystal structures of ligand-bound D₂R, D₃R, D₄R, and D₂R-Gᵢ complexes were reported [83–85]. By studying selected transmembrane-5 serine mutations, Fowler et al. showed that receptor conformations were involved in D₂L functional selectivity [86]. Using docking simulations and site-directed mutagenesis, Zhang et al. not only reported the crystal structure of the human angiotensin II type 1 receptor in complex with one of its inverse agonists but also identified specific interactions between the angiotensin II type 1 receptor and different ligands. This provided support for the structural basis of ligand recognition and functional selectivity [87].

The heterodimer theory was also enhanced by structural biology progress. Crystal structures of receptor–ligand complexes allow for rational design of novel molecular probes and drugs. Following this strategy, bivalent ligands were synthesized and investigated for the D₂R/neurotensin NTS1 receptor heterodimer. The results indicated a strong, predominantly NTS1 receptor-mediated β-arrestin-2 recruitment in D₂R/NTS1 receptor-co-expressing cells [59]. There have been several other studies on the functional selectivity of GPCR heterodimerization [57,58] but because of the sparse co-expression of D₁Rs and D₂Rs in the same neuron [61–65], it still is unclear whether the D₁/D₂ heterodimer plays a critical role in cell signaling or overt behaviors.

8. Potential of Receptor Localization-Related Functional Selectivity

It is commonly known that dopamine receptors function differently in distinctive brain areas. Although there is not yet many focused studies to specifically investigate this, the possibility is high that functional selectivity is involved as a part of the underlying mechanism. More intriguingly, recent studies have shown that besides the primary effects in the central nervous system, dopamine also acts in the pancreas as a peripheral regulator of metabolism, and this action is functionally biased at D₂Rs [88]. This suggests that the receptor localization-related functional selectivity may be a widespread phenomenon. GPCRs not only function at the plasma membrane but also at various cellular organelles including endosomes, mitochondria, and Golgi [89]. Although D₁-related studies are sparse, it will not be a surprise that future studies show D₁ functional selectivity in different organelles. Location bias is an emerging paradigm in GPCR biology and drug discovery. This is particularly true for endosomes regarding D₁Rs. D₁Rs start to internalize through endosomes where β-arrestin is recruited. It has been shown that endocytosis promotes rapid D₁ signaling [90]. This could be in line with the initial signal at the plasma membrane, but there are studies showing GPCR signaling via heterotrimeric G proteins from endosomes [91]. Therefore, it will not be unexpected that D₁ has signaling bias toward β-arrestin at endosomes, but more studies are needed for this topic.

9. Functionally Selective D₁ Ligands: Pharmacological Retrospect

Functional selectivity is currently a hot topic in the drug discovery field. Recently, several novel, functionally selective D₁ ligands were reported [92,93]. They all were biased toward cAMP compared to β-arrestin signaling. Functional selectivity, at the extreme, has a ligand act as both an agonist and antagonist in different cellular functions at a single receptor [1]. An example would be functioning as an agonist at cAMP and an antagonist at β-arrestin (Figure 2). For many dopamine ligands, however, it is more common to activate all signaling pathways but to different degrees. This incomplete/subtle functional selectivity was first reported by our group using a series of full and partial D₁ agonists [71]. Full and partial agonists were defined by activation of the canonical D₁ signaling pathway—the intrinsic activity at stimulating adenylate cyclase and producing cAMP. It is noteworthy
that a retrospective review of some “traditional/classical” D₁ ligands may have revealed that they are functionally selective even if this was not appreciated at the time of publication, as highlighted by our group [71].

Lewis et al. compared the intrinsic activities at adenylate cyclase for a series of structurally dissimilar full and partial D₁ agonists and their ability to cause functional desensitization [94]. Surprisingly at the time, they found a dissociation between these two activities. For example, three full D₁ agonists (dihydrexidine, SKF82958, A77636) caused homologous desensitization of the D₁R in vitro to the same extent as dopamine, whereas two other full agonists (dinapsoline, A68930) and all the partial agonists (SKF38393, pergolide, LSD) caused only partial desensitization that was homologous, but not associated with PKA-induced phosphorylation. Ryman-Rasmussen et al. later tested 13 D₁ agonists and showed that internalization efficacy was independent of either agonist affinity or chemotype [95]. For example, four agonists from two chemotypes were able to activate adenylate cyclase fully without inducing internalization. A follow-up study further confirmed that ligand-specific differential effects on receptor recycling involved aspects of D₁Rs that are distal to the ligand-binding domain [96]. Since receptor recycling (i.e., desensitization, internalization) is initiated by β-arrestin recruitment, it is logical to conclude that a retrospective review of these data actually provides proof that these compounds have some degree of functional selectivity between canonical cAMP signaling and novel β-arrestin-related signaling. Moreover, these data are consistent with the hypothesis that functional selectivity reflects subtle ligand-induced conformational changes, as opposed to simple agonist trafficking among discrete receptor active states.

10. Prospect on Future Studies of Function Selectivity

Functional selectivity was first reported as a pharmacological phenomenon. Later studies using behavioral and neurophysiological methods, and recent clinical trials, have led to improved understanding of functionally selective drugs and provided significant insight on how to further investigate this “so called” pharmacological phenomenon. The earliest example of functional selectivity was for a series of D₂ ligands that were full agonists at adenylate cyclase but antagonists at other functions [97–99]. The translated in vivo behavioral effects of these highly functionally selective compounds indicated they were uncharacteristic of typical D₂ agonists [100,101]. Contemporaneous studies of OPC-
14597 (later named aripiprazole) showed that its unusual properties most likely involved functional selectivity at the D₂Rs and possibly 5-HT₁₅ receptors [1,102,103], contrary to later views of it functioning as a simple partial agonist. Spurred by studies emerging at the same time in serotonin [104], angiotensin [17], and opioid [105] systems, both basic research and drug discovery have exploded in the past decade with numerous exciting findings on functional selectivity. One timely area relates to the opioid epidemic in which the search for functionally selective opioid receptor ligands indicated superior analgesic action with decreased addictive or other unwanted properties [106–109]. Recently, our group reported a landmark neurophysiological study on the functional selectivity of D₁R-mediated cAMP and β-arrestin signaling. Using a pair of D₁ agonists with distinct signaling profiles, we evaluated rodent behavior in a T-maze task and examined how this was associated with neural activities in the prefrontal cortex [71]. We showed significant neurophysiological changes correlated with the level of β-arrestin recruitment. These results indicated the feasibility of using neurophysiological measurements as markers for studying D₁R functional selectivity. It is encouraging that the field has discovered more ways to investigate functional selectivity—not only by pharmacological means but also behavioral and neurophysiological methods. These interdisciplinary approaches improve the innovation and development of more functionally selective D₁ ligands as better therapeutics.

11. Summary

The understanding of functional selectivity has evolved over the years in conjunction with advances in improved knowledge of fundamental receptor signaling and complexes. With the discovery of many novel signaling or sub-pathways related to D₁Rs, studies related to grasping the breadth of D₁R functional selectivity are expanding. Even though some reports at the time of publishing did not focus on functional selectivity, a retrospective review of their findings indicate they contributed to this field. More importantly, many studies showed positive implications for each unique D₁ signaling pathway, suggesting that functional selectivity could be a promising strategy for drug discovery. Furthermore, retrospective pharmacological review revealed that many D₁ ligands have some degree of mild functional selectivity. Moreover, novel compounds with extreme bias at D₁ signaling were reported recently. Collectively, these data show that the development of precision medicine with the use of functionally selective D₁ ligands is a promising direction to pursue.

Funding: This research was funded by the Brain & Behavior Research Foundation Young Investigator Award (19469), Children’s Miracle Network Research Grant (2017-2018 #10), the National Institutes of Health (RF1 AG071675), and the Penn State Translational Brain Research Center.

Acknowledgments: The author wishes to thank Mechelle Lewis for her insight and supportive comments on this review.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Urban, J.; Clarke, W.; Von Zastrow, M.; Nichols, D.E.; Kobilka, B.; Weinstein, H.; Javitch, J.; Roth, B.L.; Christopoulos, A.; Sexton, P.; et al. Functional Selectivity and Classical Concepts of Quantitative Pharmacology. J. Pharmacol. Exp. Ther. 2006, 320, 1–13. [CrossRef]
2. Kebabian, J.W.; Greengard, P. Dopamine-Sensitive Adenyl Cyclase: Possible Role in Synaptic Transmission. Science 1971, 174, 1346–1349. [CrossRef] [PubMed]
3. Lorenzen, E.; Ceraudo, E.; Berchiche, Y.A.; Rico, C.A.; Fürstenberg, A.; Sakmar, T.P.; Huber, T. G protein subtype–specific signaling bias in a series of CCR5 chemokine analogs. Sci. Signal. 2018, 11, eaao6152. [CrossRef]
4. Neve, K.A.; Seamans, J.K.; Trantham-Davidson, H. Dopamine receptor signaling. J. Recept. Signal Transduct. Res. 2004, 24, 165–205. [CrossRef] [PubMed]
5. Lefkowitz, R.J.; Shenoy, S.K. Transduction of receptor signals by beta-arrestins. Science 2005, 308, 512–517. [CrossRef] [PubMed]
1. Santini, E.; Feyder, M.; Gangarossa, G.; Bateup, H.S.; Greengard, P.; Fisone, G. Dopamine- and cAMP-regulated phosphoprotein of 32-kDa (DARP-32)-dependent activation of extracellular signal-regulated kinase (ERK) and mammalian target of rapamycin complex 1 (mTORC1) signaling in experimental parkinsonism. J. Biol. Chem. 2012, 287, 27806–27812. [CrossRef]

2. De Rooij, J.; Zwartkruis, F.J.T.; Verheijen, M.H.G.; Cool, R.H.; Nijman, S.M.B.; Wittinghofer, A.; Bos, J.L. Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature 1998, 396, 474–477. [CrossRef]

3. Gameo, N.J.; Lur, G.; Higley, M.J.; Wang, M.; Faspalas, C.D.; Vijayraghavan, S.; Yang, Y.; Ramos, B.P.; Peng, K.; Kata, A.; et al. Stress Impairs Prefrontal Cortical Function via D1 Dopamine Receptor Interactions With Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels. Biol. Psychiatry 2015, 78, 860–870. [CrossRef]

4. Lee, S.-M.; Yang, Y.; Mailman, R.B. Dopamine D1 receptor signaling: Does GoQ-phospholipase C actually play a role? J. Pharmacol. Exp. Ther. 2014, 351, 9–17. [CrossRef]

5. Zhuang, X.; Belluscio, L.; Hen, R. GOLpha Mediates Dopamine D1 Receptor Signaling. J. Neurosci. 2000, 20, 1–5. [CrossRef]

6. Corvol, J.C.; Studler, J.M.; Schonn, J.S.; Girault, J.A.; Herve, D. Galpha(olf) is necessary for coupling D1 and A2a receptors to adenylyl cyclase in the striatum. J. Neurochem. 2001, 76, 1585–1588. [CrossRef]

7. Herve, D.; Levi-Strauss, M.; Marey-Semper, I.; Verney, C.; Tassin, J.P.; Glowinski, J.; Girault, J.A. G olf and G s in rat basal ganglia: Possible involvement of G olf in the coupling of dopamine D 1 receptor with adenylyl cyclase. J. Neurosci. 1993, 13, 2237–2248. [CrossRef]

8. Watson, J.B.; Coulter, P.M., II; Margulies, J.E.; de Lecea, L.; Danielson, P.E.; Erlander, M.G.; Sutcliffe, J.G. G-protein gamma 7 subunit is selectively expressed in medium-sized neurons and dendrites of the rat neostriatum. J. Neurosci. Res. 1994, 39, 108–116. [CrossRef]

9. Wang, Q.; Jolly, J.P.; Surmeier, J.D.; Mullah, M.S.; Bergson, C.M.; Robishaw, J.D. Differential dependence of the D1 and D5 dopamine receptors on the G protein gamma 7 subunit for activation of adenylylcyclase. J. Biol. Chem. 2001, 276, 39386–39393. [CrossRef] [PubMed]

10. Lovell, K.M.; Frankowski, K.J.; Stahl, E.L.; Slauson, S.R.; Yoo, E.; Prisinzano, T.E.; Aube, J.; Bohn, L.M. Structure-activity relationship studies of functionally selective kappa opioid receptor agonists that modulate ERK 1/2 phosphorylation while preserving G protein over betaarrestin2 signaling bias. ACS Chem. Neurosci. 2015, 6, 1411–1419. [CrossRef]

11. Khajehali, E.; Malone, D.T.; Glass, M.; Sexton, P.; Christopoulos, A.; Leach, K. Biased Agonism and Biased Allosteric Modulation preserving G protein over betaarrestin2 signaling. ACS Chem. Neurosci. 2015, 6, 1411–1419. [CrossRef]

12. Aringhieri, S.; Kolachalam, S.; Gerace, C.; Carlr, M.; Verdesca, V.; Brunacci, M.G.; Rossi, C.; Ippolito, C.; Solini, A.; Corsini, G.U.; et al. Clozapine as the most efficacious antipsychotic for activating ERK 1/2 kinases: Role of 5-HT2A receptor agonism. Eur. Neuropsychopharmac. 2017, 27, 383–398. [CrossRef]

13. Turu, G.; Balla, A.; Hunyady, L. The Role of β-Arrestin Proteins in Organization of Signaling and Regulation of the AT1 Angiotensin Receptor. Front. Endocrinol. 2019, 10, 519. [CrossRef] [PubMed]

14. Brame, A.L.; Maguire, J.J.; Yang, P.; Dyson, A.; Torella, R.; Cheriyian, J.; Singer, M.; Glen, R.C.; Wilkinson, I.B.; Davenport, A.P. Design, Characterization, and First-In-Human Study of the Vascular Actions of a Novel Biased Apelin Receptor Agonist. Hypertension 2015, 65, 834–840. [CrossRef]

15. Chebani, Y.; Marion, C.; Zizzari, P.; Chettab, K.; Pastor, M.; Korostelev, M.; Geny, D.; Epelbaum, J.; Tolle, V.; Morisset-Lopez, S.; et al. Enhanced responsiveness of Ghα Q343X rats to ghrelin results in enhanced adiposity without increased appetite. Sci. Signal. 2016, 9, ra39. [CrossRef] [PubMed]

16. Sykes, D.; Riddy, D.; Stamp, C.; Bradley, M.E.; McGuiness, N.; Sattikar, A.; Guerini, D.; Rodrigues, I.; Glaenzel, A.; Dowling, M.R.; et al. Investigating the molecular mechanisms through which FTY720-P causes persistent S1P1receptor internalization. Br. J. Pharmacol. 2014, 171, 4797–4807. [CrossRef] [PubMed]

17. Möller, D.; Kling, R.C.; Skultety, M.; Leuner, K.; Hübner, H.; Gmeiner, P. Functionally Selective Dopamine D2, D3 Receptor Partial Agonists. J. Med. Chem. 2014, 57, 4861–4875. [CrossRef] [PubMed]

18. Rose, S.J.; Pack, T.F.; Peterson, S.M.; Payne, K.; Borrelli, E.; Caron, M.G. Engineered D2R Variants Reveal the Balanced and Biased Contributions of G-Protein and β-Arrestin to Dopamine-Derived Functions. Neuropsychopharmacology 2018, 43, 1164–1173. [CrossRef]

19. Chen, J.; Rusnak, M.; Luedtke, R.R.; Sidhu, A. D1 Dopamine Receptor Mediates Dopamine-induced Cytotoxicity via the ERK Signal Cascade. J. Biol. Chem. 2004, 279, 39317–39330. [CrossRef] [PubMed]

20. Uus, N.M.; Daigle, T.L.; Caron, M.G. A dopamine D1 receptor-dependent beta-arrestin signaling complex potentially regulates morphine-induced psychomotor activation but not reward in mice. Neuropsychopharmacology 2011, 36, 551–558. [CrossRef]

21. Uus, N.M.; Bido, S.; Peterson, S.M.; Daigle, T.L.; Bass, C.E.; Gainetdinov, R.R.; Bezard, E.; Caron, M.G. Targeting beta-arrestin2 in the treatment of L-DOPA-induced dyskinesias in Parkinson’s disease. Proc. Natl. Acad. Sci. USA 2015, 112, E2517–E2526. [CrossRef]

22. Brami-Cherrier, K.; Valjent, E.; Garcia, M.; Pagè, C.; Hipkinds, R.A.; Caboche, J. Dopamine Induces a Pi3-Kinase-Independent Activation of Akt in Striatal Neurons: A New Route to cAMP Response Element-Binding Protein Phosphorylation. J. Neurosci. 2002, 22, 8911–8921. [CrossRef]

23. Nagai, T.; Takuma, K.; Kamei, H.; Ito, Y.; Nakamichi, N.; Ibi, D.; Nakamishi, Y.; Murai, M.; Mizoguchi, H.; Nabeshima, T.; et al. Dopamine D1 receptors regulate protein synthesis-dependent long-term recognition memory via extracellular signal-regulated kinase 1/2 in the prefrontal cortex. Learn. Mem. 2007, 14, 117–125. [CrossRef]
29. Zhen, X.; Uryu, K.; Wang, H.-Y.; Friedman, E. D1 Dopamine Receptor Agonists Mediate Activation of p38 Mitogen-Activated Protein Kinase and c-Jun Amino-Terminal Kinase by a Protein Kinase A-Dependent Mechanism in SK-N-MC Human Neuroblastoma Cells. Mol. Pharmacol. 1998, 54, 453–458. [CrossRef]

30. Santini, E.; Valjent, E.; Usiello, A.; Carta, M.; Borgkvist, A.; Girault, J.-A.; Herve, D.; Greengard, P.; Fisone, G. Critical Involvement of cAMP/DARPP-32 and Extracellular Signal-Regulated Protein Kinase Signaling in L-DOPA-Induced Dyskinesia. J. Neurosci. 2007, 27, 6995–7005. [CrossRef]

31. Weissman, J.T.; Ma, J.-N.; Essex, A.; Gao, Y.; Burstrne, E.S. G-protein-coupled receptor-mediated activation of rap GTPases: Characterization of a novel Gai regulated pathway. Oncogene 2004, 23, 241–249. [CrossRef]

32. Cull-Candy, S.; Kelly, L.; Farrant, M. Regulation of Ca2+-permeable AMPA receptors: Synaptic plasticity and beyond. Curr. Opin. Neurobiol. 2006, 16, 288–297. [CrossRef] [PubMed]

33. Surmeier, D.; Bargus, J.; Hemnings, H.C., Jr; Nairn, A.C.; Greengard, P. Modulation of calcium currents by a D1 dopaminergic protein kinase/phosphatase cascade in rat neostriatal neurons. Neuron 1995, 14, 385–397. [CrossRef]

34. Hernández-López, S.; Bargus, J.; Surmeier, D.J.; Reves, A.; Galarraga, E. D1 Receptor Activation Enhances Evoked Discharge in Neostriatal Medium Spiny Neurons by Modulating an L-Type Ca2+ Conductance. J. Neurosci. 1997, 17, 3334–3342. [CrossRef]

35. Takahashi, T.; Momiyama, Y. Different types of calcium channels mediate central synaptic transmission. Nat. Cell Biol. 1993, 366, 156–158. [CrossRef]

36. Kislevsky, A.E.; Mulligan, S.J.; Altier, C.; Iftlnca, M.C.; Varela, D.; Tai, C.; Chen, L.; Hameed, S.; Hamid, J.; MacVicar, B.A.; et al. D1 Receptors Physically Interact with N-Type Calcium Channels to Regulate Channel Distribution and Dendritic Calcium Entry. Neuron 2008, 58, 557–570. [CrossRef]

37. Hopf, F.W.; Cascini, M.G.; Gordon, A.S.; Diamond, I.; Bonci, A. Cooperative activation of dopamine D1 and D2 receptors increases spike firing of nucleus accumbens neurons via G-protein betagamma subunits. J. Neurosci. 2003, 23, 5079–5087. [CrossRef]

38. Gorelova, N.; Seamans, J.K.; Yang, C.R. Mechanisms of Dopamine Activation of Fast-Spiking Interneurons That Exert Inhibition. J. Neurosci. 2006, 26, 1312–1320. [CrossRef]

39. Yang, C.R.; Seamans, J.K. Dopamine D1 receptor actions in layers V-VI rat prefrontal cortex neurons in vitro: Modulation of dendritic-somatic signal integration. J. Neurosci. 1996, 16, 1922–1935. [CrossRef] [PubMed]

40. Dong, Y.; White, F.J. Dopamine D1-Class Receptors Selectively Modulate a Slowly Inactivating Potassium Current in Rat Medial Prefrontal Cortex Pyramidal Neurons. J. Neurosci. 2003, 23, 2686–2695. [CrossRef]

41. Dong, Y.; Cooper, D.; Nasif, F.; Hu, X.-T.; White, F.J. Dopamine Modulates Inwardly Rectifying Potassium Currents in Medial Prefrontal Cortex Pyramidal Neurons. J. Neurosci. 2004, 24, 3077–3085. [CrossRef]

42. Calabresi, P.; Mercuri, N.; Stanzione, P.; Stefan, A.; Bernardi, G. Intracellular studies on the dopamine-induced firing inhibition of neostriatal neurons in vitro: Evidence for D1 receptor involvement. Neuroscience 1987, 20, 757–771. [CrossRef]

43. Surmeier, D.J.; Eberwine, J.; Wilson, C.J.; Cao, Y.; Stefan, A.; Kita, S.T. Dopamine receptor subtypes colocalize in rat striatonigral neurons. Proc. Natl. Acad. Sci. USA 1992, 89, 10178–10182. [CrossRef] [PubMed]

44. Schiffmann, S.; Lledo, P.M.; Vincent, J.D. Dopamine D1 receptor modulates the voltage-gated sodium current in rat striatal neurons through a protein kinase A-like mechanism. J. Physiol. 1995, 483, 95–107. [CrossRef] [PubMed]

45. Schiffmann, S.N.; Desoumis, F.; Menu, R.; Greengard, P.; Vincent, J.D.; Vanderhaeghen, J.J.; Girault, J.A. Modulation of the voltage-gated sodium current in rat striatal neurons by DARPP-32, an inhibitor of protein phosphatase. Eur. J. Neurosci. 1998, 10, 1312–1320. [CrossRef]

46. Cantrell, A.R.; Smith, R.D.; Goldin, A.L.; Scheuer, T.; Catterall, W.A. Dopaminergic modulation of sodium channels in hippocampal neurons via cAMP-dependent phosphorylation of specific sites in the sodium channel alpha subunit. J. Neurosci. 1997, 17, 7330–7338. [CrossRef]

47. Ishimoto, T.; Okumura, S.; Iwatsubo, K.; Kawabe, J.-I.; Ohtsu, K.; Sakai, I.; Hashimoto, Y.; Izumitani, A.; Sango, K.; Ajiki, K.; et al. Motor Dysfunction in Type 5 Adenylyl Cyclase-null Mice. J. Biol. Chem. 2003, 278, 16936–16940. [CrossRef] [PubMed]

48. Lee, K.-W.; Hong, J.-H.; Choi, I.Y.; Che, Y.; Lee, J.-K.; Yang, S.-D.; Song, C.-W.; Kang, H.S.; Lee, J.-H.; Noh, J.S.; et al. Impaired D2 Dopamine Receptor Function in Mice Lacking Type 5 Adenylyl Cyclase. J. Neurosci. 2002, 22, 7931–7940. [CrossRef] [PubMed]

49. Wang, H.Y.; Undie, A.S.; Friedman, E. Evidence for the coupling of Gq protein to D1-like dopamine sites in rat striatum: Possible role in dopamine-mediated inositol phosphate formation. Mol. Pharmacol. 1995, 48, 988–994.

50. Mahan, L.C.; Burch, R.M.; Monsma, F.J.; Sibley, D.R. Expression of striatal D1 dopamine receptors coupled to inositol phosphate production and Ca2+ mobilization in Xenopus oocytes. Proc. Natl. Acad. Sci. USA 1990, 87, 2196–2200. [CrossRef]

51. Undie, A.S.; Friedman, E. Stimulation of a dopamine D1 receptor enhances inositol phosphates formation in rat brain. J. Pharmacol. Exp. Ther. 1990, 253, 987–992. [PubMed]

52. Undie, A.S.; Weinstock, J.; Sarau, H.M.; Friedman, E. Evidence for a Distinct D1 Like Dopamine Receptor that Couples to Activation of Phosphoinositide Metabolism in Brain. J. Neurochem. 2008, 62, 2045–2048. [CrossRef] [PubMed]

53. Jin, L.; Goswami, S.; Cai, G.; Zhen, X.; Friedman, E. SKF83959 selectively regulates phosphatidylinositol-linked D1 dopamine receptors in rat brain. J. Neurochem. 2003, 85, 378–386. [CrossRef] [PubMed]

54. Zhen, X.; Goswami, S.; Friedman, E. The role of the phosphatidylinositol-linked D1 dopamine receptor in the pharmacology of SKF83959. Pharmacol. Biochem. Behav. 2005, 80, 597–601. [CrossRef]

55. Lee, S.-M.; Kant, A.; Blake, D.; Murthy, V.; Boyd, K.; Wyrick, S.J.; Mailman, R.B. SKF-83959 is not a highly-biased functionally selective D1 dopamine receptor ligand with activity at phospholipase C. Neuropharmacology 2014, 86, 145–154. [CrossRef]
81. Sun, B.; Feng, D.; Chu, M.L.-H.; Fish, I.; Lovera, S.; Sands, Z.A.; Kelm, S.; Valade, A.; Wood, M.; Ceska, T.; et al. Crystal structure of dopamine D1 receptor in complex with G protein and a non-catechol agonist. Nat. Commun. 2021, 12, 3305. [CrossRef]

82. Kalani, M.Y.; Vaidhehi, N.; Hall, S.E.; Trabanino, R.J.; Freedolino, P.L.; Fioriano, W.; Kam, V.W.T.; Goddard, W.A. The predicted 3D structure of the human D2 dopamine receptor and the binding site and binding affinities for agonists and antagonists. Proc. Natl. Acad. Sci. USA 2004, 101, 3815–3820. [CrossRef] [PubMed]

83. Chien, E.Y.T.; Liu, W.; Cherezov, V.; Zhao, Q.; Katritch, V.; Han, G.W.; Hanson, M.A.; Shi, L.; Newman, A.H.; et al. Structure of the Human Dopamine D3 Receptor in Complex with a D2/D3 Selective Antagonist. Science 2010, 330, 1091–1095. [CrossRef]

84. Wang, S.; Wacker, D.; Levit, A.; Che, T.; Betz, R.M.; McCorvy, J.D.; Venkatakrishnan, A.J.; Huang, X.-P.; Dror, R.O.; Shoichet, B.K.; et al. D4 dopamine receptor high-resolution structures enable the discovery of selective agonists. Science 2017, 358, 381–386. [CrossRef] [PubMed]

85. Yin, J.; Chen, K.-Y.M.; Clark, M.J.; Hijazi, M.; Kumari, P.; Bai, X.-C.; Sunahara, R.K.; Barth, P.; Rosenbaum, D.M. Structure of a D2 dopamine receptor–G-protein complex in a lipid membrane. Nat. Cell Biol. 2020, 584, 125–129. [CrossRef]

86. Fowler, J.C.; Bhattacharya, S.; Urban, J.D.; Vaidhehi, N.; Mailman, R.B. Receptor Conformations Involved in Dopamine D2L Receptor Functional Selectivity Induced by Selected Transmembrane-5 Serine Mutations. Mol. Pharmacol. 2012, 81, 820–831. [CrossRef] [PubMed]

87. Zhang, H.; Unal, H.; Desnoyer, R.; Han, G.W.; Patel, N.; Katrich, V.; Karnik, S.S.; Cherezov, V.; Stevens, R.C. Structural Basis for Ligand Recognition and Functional Selectivity at Angiotensin Receptor. J. Biol. Chem. 2015, 290, 29127–29139. [CrossRef]

88. Aslanoglou, D.; Bertera, S.; Sánchez-Soto, M.; Free, R.B.; Lee, J.; Zong, W.; Xue, X.; Shrestha, S.; Brissova, M.; Logan, R.W.; et al. Dopamine regulates pancreatic glucagon and insulin secretion via adrenergic and dopaminergic receptors. Transl. Psychiatry 2021, 11, 59. [CrossRef] [PubMed]

89. Nezhady, M.A.M.; Rivera, J.C.; Chemtob, S. Location Bias as Emerging Paradigm in GPCR Biology and Drug Discovery. iScience 2020, 23, 101643. [CrossRef]

90. Kotowski, S.J.; Hopf, F.W.; Seif, T.; Bonci, A.; von Zastrow, M. Endocytosis Promotes Rapid Dopaminergic Signaling. Neuron 2011, 71, 278–290. [CrossRef]

91. Tsvetanova, N.G.; Irannajad, R.; von Zastrow, M. G Protein-coupled Receptor (GPCR) Signaling via Heterotrimeric G Proteins from Endosomes. J. Biol. Chem. 2015, 290, 6689–6696. [CrossRef]

92. Gray, D.L.; Allen, J.A.; Mente, S.; O’Connor, R.E.; DeMarco, G.J.; Efremov, I.; Tierney, P.; Volfson, D.; Davoren, J.; Guilmette, E.; et al. Impaired beta-arrestin recruitment and reduced desensitization by non-catechol agonists of the D1 dopamine receptor. Nat. Commun. 2018, 9, 674. [CrossRef]

93. Kozak, R.; Kiss, T.; Dlugolenski, K.; Johnson, D.E.; Gorczyca, R.R.; Kuszpit, K.; Harvey, B.D.; Stolyar, P.; Rizzo, S.J.S.; Hoffmann, W.E.; et al. Characterization of PF-6142, a Novel, Non-Catecholamine Dopamine Receptor D1 Agonist, in Murine and Nonhuman Primate Models of Dopaminergic Activation. Front. Pharmacol. 2020, 11, 1005. [CrossRef]

94. Lewis, M.M.; Watts, V.J.; Lawler, C.P.; Nichols, D.E.; Mailman, R. Homologous desensitization of the D1A dopamine receptor: Efficacy in causing desensitization dissociates from both receptor occupancy and functional potency. J. Pharmacol. Exp. Ther. 1998, 286, 345–353. [PubMed]

95. Ryman-Rasmussen, J.P.; Nichols, D.E.; Mailman, R.B. Differential Activation of Adenylate Cyclase and Receptor Internalization by Novel Dopamine D1 Agonists. Mol. Pharmacol. 2005, 68, 1039–1048. [CrossRef] [PubMed]

96. Ryman-Rasmussen, J.P.; Griffith, A.; Olof, S.; Vaidhehi, N.; Brown, J.T.; Goddard, W.A., III; Mailman, R.B. Functional selectivity of dopamine D1 receptor agonists in regulating the fate of internalized receptors. Neuropharmacology 2007, 52, 562–575. [CrossRef]

97. Mottola, D.M.; Cook, L.L.; Jones, S.R.; Booth, R.G.; Nichols, D.E.; Mailman, R.B. Dihydrexidine, a selective dopamine receptor agonist that may discriminate postsynaptic D2 receptors. Soc. Neurosci. Abstr. 1991, 17, 818.

98. Mottola, D.M.; Kilts, J.D.; Lewis, M.M.; Connery, H.S.; Walker, Q.D.; Jones, S.; Booth, R.G.; Hyslop, D.K.; Piercey, M.; Wightman, R.M.; et al. Functional Selectivity of Dopamine Receptor Agonists. I. Selective Activation of Postsynaptic Dopamine D2Receptors Linked to Adenylate Cyclase. J. Pharmacol. Exp. Ther. 2002, 301, 1166–1178. [CrossRef]

99. Kilts, J.D.; Connery, H.S.; Arrington, E.G.; Lewis, M.M.; Lawler, C.P.; Oxford, G.S.; O’Malley, K.L.; Todd, R.D.; Blake, B.L.; Nichols, D.E.; et al. Functional Selectivity of Dopamine Receptor Agonists. II. Actions of Dihydrexidine in D2L-Receptor-Transfected MN9D Cells and Pituitary Lactotrophs. J. Pharmacol. Exp. Ther. 2002, 301, 1179–1189. [CrossRef] [PubMed]

100. Darney, K.J.; Lewis, M.H.; Brewster, W.K.; Nichols, D.E.; Mailman, R. Behavioral effects in the rat of dihydrexidine, a high-potency, full-efficacy D1 dopamine receptor agonist. Neuropsychopharmacology 1991, 5, 187–195.

101. Smith, H.P.; Nichols, D.E.; Mailman, R.B.; Lawler, C.P. Locomotor inhibition, yawning and vacuous chewing induced by a novel dopamine D2 post-synaptic receptor agonist. Eur. J. Pharmacol. 1997, 323, 27–36. [CrossRef]

102. Shapiro, D.A.; Renock, S.; Arrington, E.; Chiodo, L.A.; Liu, L.-X.; Snyder, D.R.; Roth, B.L.; Mailman, R. Aripiprazole, a Novel Atypical Antipsychotic Drug with a Unique and Robust Pharmacology. Neuropsychopharmacology 2006, 32, 67–77. [CrossRef] [PubMed]

103. Urban, J.; Vargas, G.A.; Von Zastrow, M.; Mailman, R.B. Aripiprazole has Functionally Selective Actions at Dopamine D2 Receptor-Mediated Signaling Pathways. Neuropsychopharmacology 2006, 31, 491–500. [CrossRef] [PubMed]
105. Whistler, J.L.; Chuang, H.H.; Chu, P.; Jan, L.Y.; von Zastrow, M. Functional dissociation of mu opioid receptor signaling and endocytosis: Implications for the biology of opiate tolerance and addiction. *Neuron* 1999, 23, 737–746. [CrossRef]

106. Manglik, A.; Lin, H.; Aryal, D.K.; McCorvy, J.D.; Dengler, D.; Corder, G.; Levit, A.; Kling, R.C.; Bernat, V.; Hübner, H.; et al. Structure-based discovery of opioid analgesics with reduced side effects. *Nature* 2016, 537, 185–190. [CrossRef]

107. Viscusi, E.R.; Webster, L.R.; Kuss, M.E.; Daniels, S.E.; Bolognese, J.A.; Zuckerman, S.; Soergel, D.G.; Subach, R.A.; Cook, E.; Skobieranda, F. A randomized, phase 2 study investigating TRV130, a biased ligand of the µ-opioid receptor, for the intravenous treatment of acute pain. *Pain* 2016, 157, 264–272. [CrossRef]

108. White, K.L.; Robinson, J.E.; Zhu, H.; DiBerto, J.F.; Polepally, P.R.; Zjawiony, J.K.; Nichols, D.E.; Malanga, C.J.; Roth, B.L. The G protein-biased kappa-opioid receptor agonist RB-64 is analgesic with a unique spectrum of activities in vivo. *J. Pharmacol. Exp. Ther.* 2015, 352, 98–109. [CrossRef]

109. White, K.L.; Scopton, A.P.; Rives, M.L.; Bikbulatov, R.V.; Polepally, P.R.; Brown, P.J.; Kenakin, T.; Javitch, J.A.; Zjawiony, J.K.; Roth, B.L. Identification of novel functionally selective kappa-opioid receptor scaffolds. *Mol. Pharmacol.* 2014, 85, 83–90. [CrossRef]