LOCC indistinguishable orthogonal product quantum states

Xiaoqian Zhang1, Xiaqing Tan1, Jian Weng2 & Yongjun Li3

We construct two families of orthogonal product quantum states that cannot be exactly distinguished by local operation and classical communication (LOCC) in the quantum system of $\mathbb{C}^{2^{k+1}} \otimes \mathbb{C}^{2^{l+1}} (i, j \in \{0, 1\}$ and $i \geq j$) and $\mathbb{C}^{2k+1} \otimes \mathbb{C}^{6i+1} (i, j \in \{0, 1, 2\})$. And we also give the tiling structure of these two families of quantum product states where the quantum states are unextendible in the first family but are extendible in the second family. Our construction in the quantum system of $\mathbb{C}^{2k+1} \otimes \mathbb{C}^{3l+1}$ is more generalized than the other construction such as Wang et al.’s construction and Zhang et al.’s construction, because it contains the quantum system of not only $\mathbb{C}^{2k} \otimes \mathbb{C}^{2l}$ and $\mathbb{C}^{2k+1} \otimes \mathbb{C}^{2l}$ but also $\mathbb{C}^{2k} \otimes \mathbb{C}^{2l+1}$ and $\mathbb{C}^{2k+1} \otimes \mathbb{C}^{2l+1}$. We calculate the non-commutativity to quantify the quantumness of a quantum ensemble for judging the local indistinguishability. We give a general method to judge the indistinguishability of orthogonal product states for our two constructions in this paper. We also extend the dimension of the quantum system of $\mathbb{C}^{2k} \otimes \mathbb{C}^{2l}$ in Wang et al.’s paper. Our work is a necessary complement to understand the phenomenon of quantum nonlocality without entanglement.

In quantum cryptography, quantum entangled states are easily distinguished by performing global operation if and only if they are orthogonal. Entanglement has good effects in some cases, but it has bad effects in other cases such as entanglement increases the difficulty of distinguishing quantum states when only LOCC is performed1. When many global operations cannot be performed, LOCC becomes very useful. The phenomenon of quantum nonlocality without entanglement2 is that a set of orthogonal states in a composite quantum system cannot be reliably distinguished by LOCC. The study of quantum nonlocality is one of the fundamental problems in quantum information theory. LOCC is usually used to verify whether quantum states are perfectly distinguished3–23 or not. In refs 3–12, they focus on the local distinguishability of quantum states such as multipartite orthogonal product states can be exactly distinguished19 or how to distinguish two quantum pure states11,12. Moreover, locally indistinguishability13–23 of quantum orthogonal product states plays an important role in exploring quantum nonlocality.

The nonlocality problem is considered in the bipartite setting case that Alice and Bob share a quantum system which is prepared in an known set contained some mutually orthogonal quantum states. Their aim is to distinguish the states only by LOCC. Bennett et al.2 proposed a set of nine pure orthogonal product states in quantum system of $\mathbb{C}^2 \otimes \mathbb{C}^2$ in 1999, which cannot be exactly distinguished by LOCC. In 2002, Walgate et al.16 also proved the indistinguishability of the nine states by using a more simple method. Zhang et al.19 extended the dimension of quantum system in Walgate et al.’s16. Yu and Oh21 give another equivalent method to prove the indistinguishability and this method is used to distinguish orthogonal quantum product states of Zhang et al.21. Furthermore, Wang et al.20 constructed orthogonal product quantum states under three quantum system cases of $\mathbb{C}^{2k} \otimes \mathbb{C}^{2l}$, $\mathbb{C}^{2k} \otimes \mathbb{C}^{2l+1}$ and $\mathbb{C}^{2k+1} \otimes \mathbb{C}^{2l+1}$. The smallest dimension of $\mathbb{C}^{2k} \otimes \mathbb{C}^{2l}$ can be constructed is $\mathbb{C}^6 \otimes \mathbb{C}^6$ in Wang et al.’s paper20. However, the smallest dimension of $\mathbb{C}^{2k} \otimes \mathbb{C}^{2l}$ can be constructed is $\mathbb{C}^4 \otimes \mathbb{C}^4$ in our paper. Ma et al.24 revealed and established the relationship between the non-commutativity and the indistinguishability. By calculating the non-commutativity, the quantumness of a quantum ensemble can be quantified for judging the indistinguishability of a family of orthogonal product basis quantum states. For the orthogonal product states, we firstly use a method to judge the indistinguishability of the set, the proof is meaningful. In this paper, we calculate the non-commutativity to judge the indistinguishability if and only if there exists a set to satisfy the inequality of Lemma 2.

In this paper, we construct two families of orthogonal product quantum states in quantum systems of $\mathbb{C}^{2k+i} \otimes \mathbb{C}^{2l+i}$ with $i, j \in \{0, 1\}$ ($i \geq j$) and $\mathbb{C}^{3k+i} \otimes \mathbb{C}^{3l+i}$ with $i, j \in \{0, 1, 2\}$ and the two families of orthogonal product

1Department of Mathematics, Jinan University, Guangzhou, P.R. China. 2Department of Computer Science, Jinan University, Guangzhou, P.R. China. 3School of Computer Science and Engineering, South China University of Technology, Guangzhou, P.R. China. Correspondence and requests for materials should be addressed to X.T. (email: ttanxq@jnu.edu.cn)
quantum states cannot be exactly distinguished by LOCC but can be distinguished by separable operations. Our constructions give the smaller dimension of quantum system in quantum system of $C^{2^k} \otimes C^{2^l}$ than Wang et al.’s construction can be extended, but our construction in quantum system of $C^{2k+i} \otimes C^{2l+j}$ with $i, j \in \{0, 1\}$ ($i \geq j$) is a complete unextendible product bases (i.e. UPB). Therefore, our construction is trivial. The indistinguishability of a complete UPB can be directly judged by performing projective measurements and classical communication, but not Wang et al.’s. In quantum system of $C^{3k+i} \otimes C^{3l+j}$ ($i, j = 0, 1, 2$), it contains not only $C^{2k} \otimes C^{2l}$ and $C^{2k+1} \otimes C^{2l+1}$ but also $C^{2k} \otimes C^{2l+1}$ and $C^{2k+1} \otimes C^{2l+1}$, so our construction in quantum system of $C^{3k+i} \otimes C^{3l+j}$ with $i, j \in \{0, 1, 2\}$ is more generalized than Zhang et al.’s and Wang et al. We also use a simple method to judge the local indistinguishable by calculating the non-commutativity to quantify the quantumness of a quantum ensemble^24, but not Zhang et al. and Wang et al. We also generalize the Theorem 2 in Ma et al. to Corollary 1 in Methods in this paper. Our work is a necessary complement to understand the phenomenon of quantum nonlocality without entanglement.

Results
LOCC indistinguishable orthogonal product quantum states in quantum system of $C^{2k+i} \otimes C^{2l+j}$ with $k \geq 1$, $l \geq 1$ and $i, j \in \{0, 1\}$ ($i \geq j$).

Case 1. Firstly, we construct LOCC indistinguishable orthogonal product quantum states in quantum system of $C^{2k} \otimes C^{2l}$ ($k, l \geq 2$) (see Fig. 1(a)) and give an example in the smallest dimension (see Fig. 2(a)).
Figure 2. The tiling structure of orthogonal product quantum states in quantum system of (a) $\mathbb{C}^4 \otimes \mathbb{C}^4$, (b) $\mathbb{C}^2 \otimes \mathbb{C}^2$, (c) $\mathbb{C}^5 \otimes \mathbb{C}^6$, and (d) $\mathbb{C}^3 \otimes \mathbb{C}^3$.

\[
|\psi_{\text{bb}}\rangle = |i_b\rangle_A|j_b + (j_b + 1)\rangle_B, \text{ where } b = 1, 2, 3 \text{ and } \\
i_b = 0, 2, 4, \ldots, \min\{2k, 2l\} - 4, \quad j_b = i_b + 1, i_b + 3, \ldots, 2l - 3; \\
i_3 = 2k - 1, \quad j_3 = 0;
\]

\[
|\psi_{\text{cc}}\rangle = |i_c\rangle_A|j_c - (j_c + 1)\rangle_B, \text{ where } c = 1, 2, 3 \text{ and } \\
i_c = 0, 2, 4, \ldots, \min\{2k, 2l\} - 4, \quad j_c = i_c + 1, i_c + 3, \ldots, 2l - 3; \\
i_3 = 2k - 1, \quad j_3 = 0;
\]

\[
|\psi_{\text{dd}}\rangle = |i_d\rangle_A|j_d + (j_d + 1)\rangle_B, \text{ where } d = 1, 2, 3 \text{ and } \\
j_d = 1, 3, 5, \ldots, \min\{2k - 3, 2l - 1\}, \quad i_d = j_d, j_d + 2, \ldots, 2k - 3; \\
j_3 = 0, \quad i_3 = 0, 2, 4, \ldots, 2k - 4;
\]

\[
|\psi_{\text{ee}}\rangle = |i_e\rangle_A|j_e - (j_e + 1)\rangle_B, \text{ where } e = 1, 2, 3 \text{ and } \\
j_e = 1, 3, 5, \ldots, \min\{2k - 3, 2l - 1\}, \quad i_e = j_e, j_e + 2, \ldots, 2k - 3; \\
j_3 = 0, \quad i_3 = 0, 2, 4, \ldots, 2k - 4;
\]
\[|\psi_{ij,k}\rangle = |i_j\rangle_{A} |b_j + (j_b + 1)\rangle_{B}, \quad \text{where } f = 1, 2, 3 \text{ and } \\
\begin{align*}
 j_i &= 0, 2k - 1, 2k, \ldots, 2l - 1, \quad i_k = 2k - 2; \\
 j_i &= 3, 5, \ldots, 2k - 3, 2k - 1, 2k, 2k + 1, \ldots, 2l - 1, \quad i_k = 2k - 1; \\
 j_i &= 2l - 1, \quad i_k = 0, 2, 4, \ldots, \min(2l - 2, 2k - 4).
\end{align*}
\]

(1)

Here \(|\alpha \pm \beta\rangle = |\sqrt{\alpha}\rangle \pm |\sqrt{\beta}\rangle\). For example, \(|i_k - (i_k + 1)\rangle_k = |1\rangle_k \pm |0\rangle_k, \quad i_k = 0, 2, 4, \ldots, \min(2l - 2, 2k - 4). \]

Proposition 1. In quantum system of \(C^2 \otimes C^m\), there are 4 orthogonal product quantum states \(|\psi_i\rangle\) (in Eq. (1)) cannot be exactly distinguished by LOCC whatever Alice measures firstly or Bob.

Proof. We only discuss the case of Alice measures firstly and the same as Bob. We consider the subspace \(C^2 \otimes C^m\) to determine POVM elements \(M_m^1 M_m\). A set of general \(C^2 \otimes C^2\) POVM elements \(M_m^1 M_m\) under the basis \(|0\rangle, |1\rangle, \ldots, |2k - 1\rangle\) can be expressed as follows

\[
M_m^1 M_m = \begin{bmatrix}
a_{00} & a_{01} & \cdots & a_{0,2k-1} \\
a_{10} & a_{11} & \cdots & a_{1,2k-1} \\
\vdots & \vdots & \ddots & \vdots \\
a_{2k-2,0} & a_{2k-2,1} & \cdots & a_{2k-2,2k-1} \\
a_{2k-1,0} & a_{2k-1,1} & \cdots & a_{2k-1,2k-1}
\end{bmatrix},
\]

(2)

where \(a_{ij} \geq 0\) and \(i, j \in \{0, 1, 2, \ldots, 2k - 1\}\). Firstly, this selected sets \(|\alpha\rangle, |1\rangle_A, |\{1\}, |\{2\}, \ldots, |\{2k - 2\}, |\{2k - 1\}\rangle_A\) of states are of dimension \(C^2 \otimes C^{2k}\), Alice cannot find appropriate basis to express them in the form of Eq. (23) in Methods according to the necessary and sufficient condition of Lemma 1.

For example, we consider the subspace \(|\{0\}, |\{1\}\rangle_A\), there are quantum states

\[
|\psi_{ab}\rangle = |i_b\rangle_A |b + (j_b + 1)\rangle_B, \quad \text{where } b = 1, 2 \text{ and } \\
\begin{align*}
 i_1 &= 0, \quad j_1 = 1, 3, \ldots, 2l - 3; \\
 i_2 &= 1, \quad j_2 = 2, 4, \ldots, 2l - 2; \\
|\psi_{ij,kl}\rangle &= |0\rangle_A |l\rangle_B, \quad |\psi_{ij,kl}\rangle = |0\rangle_A |l\rangle_B, \quad \text{where } \alpha > \beta \geq 0. \]
\]

(3)

The necessary and sufficient of Lemma 1 already been proved by Walgate in ref. 16. Now we apply the necessary and sufficient condition of Lemma 1 to verify \(a_{00} = a_{11} = a_{10} = 0\) in the subspace \(|\{0\}, |\{1\}\rangle_A\). Suppose, the form \(|\alpha\rangle, |\{\{\}\}\rangle_A + |\beta\rangle, |\{\{\}\}\rangle_A\) is set up in Eq. (23), where \(|\{\{\}\}\rangle = |\{1 + 2\}, |\{3 + 4\}, |\{5 + 6\}, \ldots, |\{2l - 1\}, |\{2l - 2\}, |\{2l - 3\}, \ldots, |\{2l - 2\} + |\{2l - 1\}\rangle_A\) satisfy \(|\beta\rangle, |\{\{\}\}\rangle_A = |\{0\}, |\{1\}\rangle_A = 0\). If \(i = f\). However, there also exist quantum states \(|\{0\}, |\{1\}\rangle_A\) in the subspace \(|\{0\}, |\{1\}\rangle_A\). The reduction to absurdity is used to verify the correctness of the conclusion. Suppose there exists one POVM element that is not proportional to identity to distinguish these quantum states, the express of the POVM element is as follows

\[
M_m^1 M_m = \begin{bmatrix}
\alpha & 0 \\
0 & \beta
\end{bmatrix},
\]

(4)

where \(\alpha > \beta \geq 0\). For the quantum state \(|\alpha\rangle_A\), it collapses into \(|\alpha|\rangle_A\) after measurement. For the quantum state \(|\beta\rangle_A\), it collapses into \(|\beta|\rangle_A\), after measurement. For the quantum states \(|0\rangle_A = 1/\sqrt{2} (|0\rangle_A + |1\rangle_A)\), they collapse into \(|0\rangle_A\). Hence, if and only if \(\alpha = \beta = \sqrt{\alpha^2 + \beta^2} = 2 \cdot \frac{1}{\sqrt{2}} (|0\rangle_A + |1\rangle_A)\) holds. It produces contradiction between results and assumption. So it does not exist a non-trivial measurement to distinguish the orthogonal product quantum states. For the other subspaces, we have the same conclusions. After Alice performs a general measurement, the effect of this positive operator upon the following states

\[
|\psi_{ij,kl}\rangle = |i_j\rangle_A |l\rangle_B, \quad |\psi_{ij,kl}\rangle = |i_j\rangle_A |l\rangle_B, \quad \text{where } d = 3, i_3 = 0, j_3 = 0, \\
|\psi_{ij,kl}\rangle = |i_j\rangle_A |l\rangle_B, \quad \text{where } f = 3, i_3 = 0, j_3 = 2l - 1
\]

(5)
and the subspace $\{[1], [2]\}_A$, we make the same argument. Then we get the result $a_{i1} = a_{i2} = a, a_{i3} = a_{i5} = 0$. For the states

$$\left| \psi_{ij,k} \right\rangle = i_j \left| 0 \right\rangle + \left(i_j + 1 \right) \left| 1 \right\rangle, \quad \text{where} \quad b = 1, 2$$

$$i_1 = 2, \quad j_1 = i_1 + 1, i_1 + 3, \cdots 2l - 3; \quad i_2 = i_1 + 1, i_1 + 3, \cdots 2l - 2,$$

$$\left| \psi_{ij,k} \right\rangle = i_j \left| 1 \right\rangle + \left(i_j + 1 \right) \left| 0 \right\rangle, \quad \text{where} \quad c = 1, 2$$

$$i_1 = 2, \quad j_1 = i_1 + 1, i_1 + 3, \cdots 2l - 3; \quad j_2 = i_1 + 1, i_1 + 3, \cdots 2l - 2,$$

$$\left| \psi_{ij,k} \right\rangle = i_j \left| i_j \right\rangle, \quad \text{where} \quad d = 1 \text{ and } i_1 = j_1 = 1,$$

$$\left| \psi_{ij,k} \right\rangle = i_j \left| i_j \right\rangle, \quad \text{where} \quad f = 3 \text{ and } i_1 = 2, j_1 = 2l - 1 - 1$$

(6)

and the subspace $\{[1], [2]\}_A$, we get the same argument and we get

$$a_{i4} = \cdots = a_{2k-2,2k-2} = a_{2k-2,2k-1} = a, \quad a_{i5} = \cdots = a_{2k-3,2k-1} = a_{2k-3,2k-2} = 0.$$

(8)

Because POVM elements $M_m^\dagger M_m$ is Hermitian, the equation $(M_m^\dagger M_m)^\dagger = M_m^\dagger M_m$ is correct. Then we obtain

$$a^* = a, \quad a_{20} = a_{02}, \quad a_{30} = a_{03}, \cdots, a_{2k-1,2k-3} = a_{2k-3,2k-1}.$$

(9)

Now $M_m^\dagger M_m$ can be rewritten as

$$M_m^\dagger M_m = \begin{pmatrix} a & 0 & a_{02} & \cdots & a_{0,2k-1} \\ 0 & a & 0 & \cdots & a_{1,2k-1} \\ \vdots & & \ddots & \vdots & \vdots \\ a_{0,2k-2} & a_{1,2k-2} & \cdots & a & 0 \\ a_{0,2k-1} & a_{1,2k-1} & \cdots & 0 & a \end{pmatrix},$$

(10)

where a is a real number.

We now consider the states $\left| \psi_{ij,k} \right\rangle = i_j \left| i_j \right\rangle \left(2l - 1 \right) \left| 0 \right\rangle$ with $k = 3, i = 0, 2$ and the subspace $\{[0], [2]\}_A$. After Alice measures, the result is either the states orthogonal or distinguishing them outright. If the states are orthogonal, we demand that $\left(0 \right| M_m^\dagger M_m \left| 0 \right) = a_{i2} = 0$. So, we get $a_{i2} = a_{i3} = 0$. For the states

$$\left| \psi_{ij,k} \right\rangle = i_j \left| i_j \right\rangle \left(2l - 1 \right) \left| 0 \right\rangle$$

with $3a$ and $2, 21$, we get the same argument and we get

$$a_{i4} = a_{i5} = \cdots = a_{i3} = a_{i5} = \cdots = a_{2k-3,2k-1} = a_{2k-3,2k-2} = 0.$$

(11)

Now the $M_m^\dagger M_m$ is proportional to the identity. However, if Alice distinguishes the state $\left| \psi_{ij,k} \right\rangle = i_j \left| i_j \right\rangle \left(2l - 1 \right) \left| 0 \right\rangle$ with $k = 3, i = 0, 2$, we get the result $\left(\psi_{ij,k} \right| M_m^\dagger M_m \left| \psi_{ij,k} \right\rangle = 0$. We can also have the result $\left(\psi_{ij,k} \right| M_m^\dagger M_m \left| \psi_{ij,k} \right\rangle = a$, therefore $a = 0$. It produces contradictory with the theorem of Walgate8. So, $M_m^\dagger M_m$ is proportional to the identity and the 4kl orthogonal product states are indistinguishable.

Example 1. Now we will give 16 orthogonal product quantum states in quantum system of $\mathcal{H}^4 \otimes \mathcal{H}^4$ (see Fig. 2(a)).

$$\left| \psi_{ij} \right\rangle = \left| 0 \right\rangle \left| i \pm j \right\rangle, \quad \left| \psi_{ij} \right\rangle = \left| 1 \right\rangle \left| i \pm j \right\rangle, \quad \left| \psi_{ij} \right\rangle = \left| 2 \right\rangle \left| i \pm j \right\rangle, \quad \left| \psi_{ij} \right\rangle = \left| 3 \right\rangle \left| i \pm j \right\rangle,$$

where $| i \pm j \rangle = \frac{1}{\sqrt{2}} \left(| i \rangle \pm | j \rangle \right)$ with $0 \leq i < j \leq 3$.

Case 2. Secondly, we construct LOCC indistinguishable orthogonal product quantum states in quantum system of $\mathcal{H}^{2l+1} \otimes \mathcal{H}^{2l+1}$ with $l \geq 1$ and $l \leq 1$ (see Fig. 1(b)) and also give an example in the smallest dimension (see Fig. 2(b)).

$$\left| \phi_{ij} \right\rangle = \left| i \right\rangle \left| i \right\rangle \left| j \right\rangle + \left(i + j \right) \left| 1 \right\rangle,$$

where $g = 1, 2$ and

$$i_1 = 0, 1, 2, \cdots, k - 1, \quad j_1 = i_1, i_1 + 2, \cdots, 2l - 2 - i_1,$$

$$i_2 = 2k, 2k - 1, \cdots, k + 1, \quad j_2 = 2l - 3 - i_2, 2l - 1 - i_2, \cdots, 3 + i_2,$$
\[|\phi_{\alpha h}\rangle = |\alpha\rangle |\beta_i - (j_h + 1)\rangle_B, \text{ where } h = 1, 2 \text{ and } \]
\[i_1 = 0, 1, 2, \cdots, k - 1, \quad j_1 = i_1 + 2, \cdots, 2l - 2 - i_1; \]
\[i_2 = 2k, 2k - 1, \cdots, k + 1, \quad j_2 = 2l - 3 - i_2, 2l - 1 - i_2, \cdots, 3 + i_2. \]
\[|\phi_{\beta l}\rangle = |\beta_i + (i_l + 1)\rangle |\beta_j\rangle_B, \text{ where } l = 1, 2 \text{ and } \]
\[j_1 = 0, 1, \cdots, k - 1, \quad i_1 = j_1 + 1, j_1 + 3, \cdots, 2k - 1 - j_1; \]
\[j_2 = 2l, 2l - 1, \cdots, 2l - k + 1, \quad i_2 = 2l - j_2, 2l + 2 - j_2, \cdots, 2l - 2 - (2l - j_2). \]
\[|\phi_{\gamma p}\rangle = |\gamma_i - (p_i + 1)\rangle |\gamma_j\rangle_B, \text{ where } p = 1, 2 \text{ and } \]
\[j_1 = 0, 1, \cdots, k - 1, \quad i_1 = j_1 + 1, j_1 + 3, \cdots, 2k - 1 - j_1; \]
\[j_2 = 2l, 2l - 1, \cdots, 2l - k + 1, \quad i_2 = 2l - j_2, 2l + 2 - j_2, \cdots, 2k - 2 - (2l - j_2), \]
\[|\phi_{\delta j}\rangle = |j\rangle |\delta_i\rangle_B, \text{ where } j = k, k + 1, \cdots, 2l - k. \]

Here we just give the construction for \(k \leq l \). When \(k > l \), it should be rotated along the clockwise direction for Fig. 1(b) to get the construction.

Proposition 2. In quantum system of \(\mathbb{C}^{2k+1} \otimes \mathbb{C}^{2l+1} \), there are \((2k + 1)(2l + 1) \) orthogonal product quantum states \(|\phi_j\rangle \) (in Eq. (13)) can not be exactly distinguished by LOCC whatever Alice measures firstly or Bob.

Example 2. Now we will give 9 orthogonal product quantum states in quantum system of \(\mathbb{C}^3 \otimes \mathbb{C}^3 \) (see Fig. 2(b)).

\[|\phi_{1,2}\rangle = |0\rangle |0\pm 1\rangle_B, \quad |\phi_{3,4}\rangle = |2\rangle |1\pm 2\rangle_B, \quad |\phi_{5,6}\rangle = |1\pm 2\rangle |0\rangle_B, \quad |\phi_{7,8}\rangle = |0\pm 1\rangle |2\rangle_B, \quad |\phi_{9}\rangle = |1\rangle |1\rangle_B, \]

where \(|i\pm j\rangle = \frac{1}{\sqrt{2}}(|i\rangle \pm |j\rangle) \) with \(0 \leq i < j \leq 2 \).

Case 3. Thirdly, we consider the indistinguishable orthogonal product states in quantum system \(\mathbb{C}^{2k+1} \otimes \mathbb{C}^{2l} \) with \(k \geq 2, l \geq 3 \) (see Fig. 3) and give an example in the smallest dimension (see Fig. 2(c)).

\[|\chi_{1,3}\rangle = |i\rangle |i\pm 1\rangle_B, \text{ where } q = 1, 2, 3, 4 \text{ and } \]
\[i_1 = 1, 3, \cdots, 2k - 1 (i_1 \neq k), \quad j_1 = 1, 3, \cdots, 2l - 3; \]
\[i_2 = 2, 4, \cdots, 2k - 2, (i_2 \neq k), \quad j_2 = 2, 4, \cdots, 2l - 4; \]
\[i_3 = 0, \quad j_3 = 2, 4, \cdots, 2l - 2; \]
\[i_4 = 2k, \quad j_4 = 0, 2, \cdots, 2l - 4, \]

\[|\chi_{1,4}\rangle = |i\rangle |i\pm 1\rangle_B, \text{ where } r = 1, 2, 3, 4 \text{ and } \]
\[i_1 = 1, 3, \cdots, 2k - 1 (i_1 \neq k), \quad j_1 = 1, 3, \cdots, 2l - 3; \]
\[i_2 = 2, 4, \cdots, 2k - 2, (i_2 \neq k), \quad j_2 = 2, 4, \cdots, 2l - 4; \]
\[i_3 = 0, \quad j_3 = 2, 4, \cdots, 2l - 2; \]
\[i_4 = 2k, \quad j_4 = 0, 2, \cdots, 2l - 4, \]

\[|\chi_{1,5}\rangle = |i\rangle |i\pm 1\rangle_B, \text{ where } s = 1, 2 \text{ and } \]
\[j_1 = 0, \quad i_1 = 0, 2, \cdots, 2k - 2; \]
\[j_2 = 2l - 1, \quad i_2 = 1, 3, \cdots, 2k - 1; \]

\[|\chi_{1,6}\rangle = |i\rangle |i\pm 1\rangle_B, \text{ where } t = 1, 2 \text{ and } \]
\[j_1 = 0, \quad i_1 = 0, 2, \cdots, 2k - 2; \]
\[j_2 = 2l - 1, \quad i_2 = 1, 3, \cdots, 2k - 1; \]

\[|\chi_{1,7}\rangle = |i\rangle |i\pm 1\rangle_B, \text{ where } u = 1, 2, 3 \text{ and } \]
\[j_1 = 1, \quad i_1 = 0, 2, \cdots, 2k - 2 (i_1 \neq k); \]
\[j_2 = 2l - 2, \quad i_2 = 2, 4, \cdots, 2k (i_2 \neq k); \]
\[j_3 = 1, 2, 3, \cdots, 2l - 2, \quad i_3 = k. \]
Proposition 3. In quantum system of $C^{2k+1} \otimes C^{2l}$, there are $2l(2k + 1)$ orthogonal product quantum states $|\chi_i\rangle$ (in Eq. (15)) can not be exactly distinguished by LOCC whatever Alice measures firstly or Bob.

Example 3. Now we will give 30 orthogonal product quantum states in quantum system of $C^5 \otimes C^6$ (see Fig. 3(c)).

\begin{align*}
|\chi_{1,2}\rangle &= |0\rangle_A |2 \pm 3\rangle_B, & |\chi_{3,4}\rangle &= |0\rangle_A |4 \pm 5\rangle_B, & |\chi_{5,6}\rangle &= |1\rangle_A |1 \pm 2\rangle_B, \\
|\chi_{7,8}\rangle &= |1\rangle_A |3 \pm 4\rangle_B, & |\chi_{9,10}\rangle &= |3\rangle_A |1 \pm 2\rangle_B, & |\chi_{11,12}\rangle &= |3\rangle_A |3 \pm 4\rangle_B, \\
|\chi_{13,14}\rangle &= |4\rangle_A |0 \pm 1\rangle_B, & |\chi_{15,16}\rangle &= |4\rangle_A |2 \pm 3\rangle_B, & |\chi_{17,18}\rangle &= |0 \pm 1\rangle_A |0\rangle_B, \\
|\chi_{19,20}\rangle &= |2 \pm 3\rangle_A |0\rangle_B, & |\chi_{21,22}\rangle &= |1 \pm 2\rangle_A |5\rangle_B, & |\chi_{23,24}\rangle &= |3 \pm 4\rangle_A |5\rangle_B, \\
|\chi_{25}\rangle &= |0\rangle_A |1\rangle_B, & |\chi_{26}\rangle &= |2\rangle_A |1\rangle_B, & |\chi_{27}\rangle &= |2\rangle_A |2\rangle_B, & |\chi_{28}\rangle &= |2\rangle_A |3\rangle_B, \\
|\chi_{29}\rangle &= |2\rangle_A |4\rangle_B, & |\chi_{30}\rangle &= |4\rangle_A |4\rangle_B.
\end{align*}

(16)

where $|i \pm j\rangle = \frac{1}{2}(|i\rangle \pm |j\rangle)$ with $0 \leq i \leq 4$ and $0 \leq j \leq 5$.

LOCC indistinguishable orthogonal product quantum states in quantum system of $C^{3k+i} \otimes C^{3k+j}$ with $i, j \in \{0, 1, 2\}$. We give LOCC indistinguishable orthogonal product quantum states in quantum system of $C^m \otimes C^n$.

\begin{align*}
|\theta_{1,2}\rangle &= |1\rangle_A |0 \pm 1\rangle_B, \\
|\theta_{3,4}\rangle &= |(m - 2) \pm (m - 1)\rangle_A |0\rangle_B, \\
|\theta_{i,j}\rangle &= |i\rangle_A |j\rangle_B, & \text{where } v = 1, 2, 3 & \text{and } \\
i_1 &= 1, & j_1 &= 2; \\
i_2 &= 2, & j_2 &= 0, 1, 2, \ldots, n - 3; \\
j_3 &= 2, & i_3 &= 3, 4, \ldots, m - 2;
\end{align*}

(17)

In quantum system of $C^{3k} \otimes C^N, C^{3k} \otimes C^{N+1}, C^{3k+1} \otimes C^N$ with $k, l \geq 2, C^{3k+2} \otimes C^N$ with $k, l \geq 1$, $C^{3k+1} \otimes C^{N+1}$ and $C^{3k+2} \otimes C^{N+1}$ with $k, l \geq 2$.

\begin{align*}
|\theta_{w,v}\rangle &= |i_w\rangle_A |j_w + (j_w + 1)\rangle_B, & \text{where } w = 1, 2, 3, 4 & \text{and } \\
i_1 &= 0, & j_1 &= 1, 3, \ldots, n - 3(l = 2\mu + 1); & i_2 &= 0, & j_2 &= 2, 4, \ldots, n - 3(l = 2\mu + 1); \\
i_3 &= m - 1, & j_3 &= 2, 4, \ldots, n - 2(l = 2\mu); & i_4 &= m - 1, \\
j_4 &= 1, 3, \ldots, n - 2(l = 2\mu + 1), \\
|\theta_{x,y}\rangle &= |i_x\rangle_A |j_x - (j_x + 1)\rangle_B, & \text{where } x = 1, 2, 3, 4 & \text{and } \\
i_1 &= 0, & j_1 &= 1, 3, \ldots, n - 3(l = 2\mu + 1); & i_2 &= 0, & j_2 &= 2, 4, \ldots, n - 3(l = 2\mu + 1); \\
i_3 &= m - 1, & j_3 &= 2, 4, \ldots, n - 2(l = 2\mu); & i_4 &= m - 1, \\
j_4 &= 1, 3, \ldots, n - 2(l = 2\mu + 1).
\end{align*}

(18)
In quantum system of $\mathcal{G}^m \otimes \mathcal{G}^n$ including $\mathcal{G}^{3k} \otimes \mathcal{G}^{3l+1}$, $\mathcal{G}^{3k+2} \otimes \mathcal{G}^{3l+1}$, $\mathcal{G}^{3k+1} \otimes \mathcal{G}^{3l+1}$ with $k, l \geq 2$.

\[
|\theta_{ij}\rangle = |i_j\rangle_\mathcal{A} |j_j\rangle_\mathcal{B}, \quad \text{where } y = 1, 2, 3, 4 \text{ and }
\]
\[
i_1 = 0, \quad j_1 = 2, 4, \ldots, n - 3(l = 2\rho); \quad i_2 = 0, \quad j_2 = 1, 3, \ldots, n - 3(l = 2\mu + 1),
\]
\[
i_3 = m - 1, \quad j_3 = 1, 3, \ldots, n - 2(l = 2\rho); \quad i_4 = m - 1,
\]
\[
j_4 = 2, 4, \ldots, n - 2(l = 2\mu + 1),
\]

\[
|\theta_{ij}\rangle = |i_j\rangle_\mathcal{A} |j_j\rangle_\mathcal{B}, \quad \text{where } z = 1, 2, 3, 4, 5 \text{ and }
\]
\[
i_1 = 0, \quad j_1 = 2, 4, \ldots, n - 3(l = 2\rho); \quad i_2 = 0, \quad j_2 = 1, 3, \ldots, n - 3(l = 2\mu + 1),
\]
\[
i_3 = m - 1, \quad j_3 = 1, 3, \ldots, n - 2(l = 2\rho); \quad i_4 = m - 1,
\]
\[
j_4 = 2, 4, \ldots, n - 2(l = 2\mu + 1). \quad (19)
\]

In quantum system of $\mathcal{G}^m \otimes \mathcal{G}^n$ including $\mathcal{G}^{3k} \otimes \mathcal{G}^N$, $\mathcal{G}^{3k} \otimes \mathcal{G}^{3l+2}$, $\mathcal{G}^{3k+1} \otimes \mathcal{G}^N$, $\mathcal{G}^{3k+1} \otimes \mathcal{G}^{3l+1}$ and $\mathcal{G}^{3k+2} \otimes \mathcal{G}^{3l+1}$ with $k, l \geq 2$, $\mathcal{G}^{3k+2} \otimes \mathcal{G}^{3l+2}$ with $k, l \geq 1$.

\[
|\theta_{ij}\rangle = |i_j + (i_j + 1)\rangle_\mathcal{A} |j_j\rangle_\mathcal{B}, \quad \text{where } \gamma = 1, 2, 3, 4 \text{ and }
\]
\[
i_1 = n - 2, \quad i_2 = 1, 3, \ldots, m - 3(k = 2\rho); \quad j_2 = n - 2,
\]
\[
i_2 = 1, 3, \ldots, m - 4(k = 2\mu + 1),
\]
\[
i_3 = n + 1, \quad i_3 = 0, 2, \ldots, m - 4(k = 2\rho); \quad j_3 = n - 1,
\]
\[
i_4 = 0, 2, \ldots, m - 3(k = 2\mu + 1),
\]

\[
|\theta_{ij}\rangle = |i_j + (i_j + 1)\rangle_\mathcal{A} |j_j\rangle_\mathcal{B}, \quad \text{where } \delta = 1, 2, 3, 4 \text{ and }
\]
\[
i_1 = n - 2, \quad i_2 = 1, 3, \ldots, m - 3(k = 2\rho); \quad j_2 = n - 2,
\]
\[
i_2 = 1, 3, \ldots, m - 4(k = 2\mu + 1),
\]
\[
i_3 = n - 1, \quad i_3 = 0, 2, \ldots, m - 4(k = 2\rho); \quad j_3 = n - 1,
\]
\[
i_4 = 0, 2, \ldots, m - 3(k = 2\mu + 1). \quad (20)
\]

In quantum system of $\mathcal{G}^m \otimes \mathcal{G}^n$ including $\mathcal{G}^{3k+1} \otimes \mathcal{G}^N$, $\mathcal{G}^{3k+1} \otimes \mathcal{G}^{3l+2}$, $\mathcal{G}^{3k+2} \otimes \mathcal{G}^N$ and $\mathcal{G}^{3k+2} \otimes \mathcal{G}^{3l+1}$ with $k, l \geq 2$.

\[
|\theta_{ij}\rangle = |i_j + (i_j + 1)\rangle_\mathcal{A} |j_j\rangle_\mathcal{B}, \quad \text{where } \xi = 1, 2, 3, 4 \text{ and }
\]
\[
i_1 = n - 2, \quad i_2 = 1, 3, \ldots, m - 4(k = 2\rho); \quad j_2 = n - 2,
\]
\[
i_2 = 1, 3, \ldots, m - 3(k = 2\mu + 1),
\]
\[
i_3 = n - 1, \quad i_3 = 0, 2, \ldots, m - 3(k = 2\mu + 1); \quad j_3 = n - 1,
\]
\[
i_4 = 0, 2, \ldots, m - 4(k = 2\mu + 1). \quad (21)
\]

The equation $k = 2\rho$ (or $k = 2\mu + 1$) expresses that k is even (or odd).

Proposition 4. In quantum system of $\mathcal{G}^m \otimes \mathcal{G}^n$, there are $3(n + m) - 9$ orthogonal product quantum states $|\theta\rangle$ (in Eqs (17–21)) can not be exactly distinguished by LOCC whatever Alice measures firstly or Bob, where $m = 3k + i$, $n = 3l + j$ with $i, j \in [0, 1, 2]$.

For the proof of the proposition 2, 3, 4, we make the same arguments to prove the indistinguishability only by LOCC. We only need to modify some relevant places.

Example 4. Now we will give the 21 orthogonal product quantum states in quantum system of $\mathcal{G}^5 \otimes \mathcal{G}^5$ (see Fig. 2(d)).

\[
|\theta_{1,2}\rangle = |0\rangle_\mathcal{A} |2 \pm 3\rangle_\mathcal{B}, \quad |\theta_{1,4}\rangle = |1\rangle_\mathcal{A} |0 \pm 1\rangle_\mathcal{B}, \quad |\theta_{2,6}\rangle = |4\rangle_\mathcal{A} |1 \pm 2\rangle_\mathcal{B},
\]
\[
|\theta_{2,8}\rangle = |3 \pm 4\rangle_\mathcal{A} |0\rangle_\mathcal{B}, \quad |\theta_{9,10}\rangle = |3 \pm 4\rangle_\mathcal{A} |0\rangle_\mathcal{B}, \quad |\theta_{11,12}\rangle = |1 \pm 2\rangle_\mathcal{A} |3\rangle_\mathcal{B},
\]
\[
|\theta_{13,14}\rangle = |0 \pm 1\rangle_\mathcal{A} |4\rangle_\mathcal{B}, \quad |\theta_{15,16}\rangle = |2 \pm 3\rangle_\mathcal{A} |4\rangle_\mathcal{B}, \quad |\theta_{17,18}\rangle = |2\rangle_\mathcal{A} |0\rangle_\mathcal{B},
\]
\[
|\theta_{19,20}\rangle = |2\rangle_\mathcal{A} |1\rangle_\mathcal{B}, \quad |\theta_{19,21}\rangle = |2\rangle_\mathcal{A} |2\rangle_\mathcal{B}, \quad |\theta_{21}\rangle = |3\rangle_\mathcal{A} |2\rangle_\mathcal{B}. \quad (22)
\]

where $|i_j \pm j\rangle = \frac{1}{\sqrt{2}}(|i_j \rangle \pm |j\rangle)$ with $0 \leq i \leq 4$ and $0 \leq j \leq 4$.

Discussion

The orthogonal product quantum states constructed by us are indistinguishable by performing local operation and classical communication, but not separable operations. Now, we discuss whether the separable operations can distinguish these product quantum states or not.
LOCC indistinguishable orthogonal product quantum states in quantum system of $\mathcal{G}^{2k+i} \otimes \mathcal{G}^{2l+j}$ with $i, j \in \{0, 1\}$ $(i \leq j)$. Obviously, these states in Eqs (1, 12, 13, 14, 15, 16) can be distinguished by separable operations. The orthogonal quantum states are not extended. Suppose, the mn quantum states are $\{ |\varphi_i\rangle \}_{i=1}^{mn}$ respectively. Now, we give the measurement operations $\{ M_i = |\varphi_i\rangle \langle \varphi_i | \}_{i=1}^{mn}$. Because the set $\{ |\varphi_i\rangle \}_{i=1}^{mn}$ is an orthogonal product normal base of $\mathcal{G}^{m} \otimes \mathcal{G}^{n}$, the equation $\sum_{i=1}^{mn} M_i = \sum_{i=1}^{mn} |\varphi_i\rangle \langle \varphi_i | = I$ satisfies the completeness and $\{ M_i \}_{i=1}^{mn}$ is a separable measurement. Due to $\langle \varphi_i | M_j | \varphi_i \rangle = \langle \varphi_i | \varphi_j \rangle = \delta_{ij}$, where $1 \leq i \leq mn, 1 \leq j \leq mn$, if the measurement outcome is $|\varphi_i\rangle$, the quantum state is $|\varphi_i\rangle$. Therefore, the mn quantum states in Eqs (1, 12, 13, 14, 15, 16) can be distinguished by the separable operations.

Similar to Zhang et al.’s paper, the multiparty quantum systems can be constructed when $m = n = d$. Such as in the quantum system $\mathcal{G}^{d} \otimes \mathcal{G}^{d} \otimes \mathcal{G}^{d}$, we give the orthogonal indistinguishable product states $\{ |\varphi_i\rangle \}_{i=1}^{d^3}$, where φ_i is d-dimensional quantum states in Eqs (1, 12). When $1 \leq i \leq d$, the i-th qubit states are $\ket{\varphi_0}$ or $\ket{\varphi_1}$, respectively. Now, we give the measurement operations $\{ M_i \}_{i=1}^{d}$ as a standard of judging the indistinguishability of complete orthogonal product states.

Definition. Let A_1, A_2, \ldots, A_n be a set of operators. The total non-commutativity for this set is defined

$$N(A_1, A_2, \ldots, A_n) = \sum_{i,j=1, i \neq j}^{n} \| [A_i, A_j] \|,$$

where $[A, B] = AB - BA, \| A \|$ is the trace norm of the operator $A, \| A \| = Tr \sqrt{AA^*}$. In the Methods of Ma et al., they give the concrete calculation formula, i.e., suppose $A = \ket{\phi} \bra{\phi}$ and $B = \ket{\psi} \bra{\psi}$. Denote $\ket{\phi} = xe^{i\theta}$ with $x \in [0, 1], \theta \in [0, 2\pi]$. Hence $\| [A, B] \| = 2x \sqrt{1 - x^2}$. When $\theta = 0$ or $\pi, \| [\ket{\phi}, \bra{\phi}] \| = 0, \| [\ket{\phi}, \bra{\psi}] \| = 1$. When $\theta = 1$ or $\theta = \pi, \| [\ket{\phi}, \bra{\phi}] \| = 0.87$. Next, we give Lemma 2 as a standard of judging the indistinguishability of complete orthogonal product states.

Lemma 2. For a complete set of $\mathcal{G}^{m} \otimes \mathcal{G}^{n}$-POPS, $e = \{ |\psi_i\rangle = |a_i\rangle \otimes |b_i\rangle \}$ with $\langle \psi_i | \psi_j \rangle = 0, i \neq j$, the e cannot be completely locally distinguished if and only if there exist subsets $\{ |\psi_i'\rangle = |a_i'\rangle \otimes |b_i'\rangle \} \subseteq e$, such that $|a_i'\rangle$ and $|b_i'\rangle$ are all single sets, i.e., there exist $m' = \dim(\text{span} \{ |a_i'\rangle \})$ linear independent $\{ |a_i'\rangle \}_{i=1}^{m'}$ in $\{ |a_i\rangle \}$ and $n' = \dim(\text{span} \{ |b_i'\rangle \})$ linear independent $\{ |b_i'\rangle \}_{i=1}^{n'}$ in $\{ |b_i\rangle \}$ satisfying

$$0 \leq N(\{ |a_i\rangle \}, |a_j\rangle) \leq N(\{ |a_i\rangle \}, |b_j\rangle) \leq \cdots \leq N(\{ |a_i\rangle \}, |a_{m'}\rangle),$$

$$0 \leq N(\{ |b_i\rangle \}, |b_j\rangle) \leq N(\{ |b_i\rangle \}, |b_{j'}\rangle) \leq \cdots \leq N(\{ |b_i\rangle \}, |b_{n'}\rangle).$$

The quantity non-commutativity is used to quantify the quantumness of a quantum ensemble for judging the indistinguishability.

Here, we use the same method in Lemma 2 to judge the indistinguishability of orthogonal product states in \mathcal{G} by calculating the non-commutativity N. The orthogonal product quantum states in Eqs (1, 13, 15) are complete. Such as the set of complete orthogonal product states in Eq. (1), we give the briefly process. Firstly, we give the sets of e^a and e^b.

null
\[\varepsilon^A = \{ |a_1\rangle = |0\rangle, |a_2\rangle = |1\rangle, |a_3\rangle = |2\rangle, |a_4\rangle = |3\rangle, |a_5\rangle = |4\rangle, \ldots, |a_{2k-3}\rangle = |2k-4\rangle, |a_{2k-2}\rangle = |2k-3\rangle, |a_{2k-1}\rangle = |2k-2\rangle, |a_{2k}\rangle = |2k-1\rangle, |a_{2k+1}\rangle = 1/\sqrt{2}(|0\rangle + |1\rangle), |a_{2k+2}\rangle = 1/\sqrt{2}(|0\rangle - |1\rangle), |a_{2k+3}\rangle = 1/\sqrt{2}(|1\rangle + |2\rangle), |a_{2k+4}\rangle = 1/\sqrt{2}(|1\rangle - |2\rangle), |a_{2k+5}\rangle = 1/\sqrt{2}(|2\rangle + |3\rangle), |a_{2k+6}\rangle = 1/\sqrt{2}(|2\rangle - |3\rangle) \}, \]

\[\varepsilon^B = \{ |b_1\rangle = 1/\sqrt{2}(|1\rangle + |2\rangle), |b_2\rangle = 1/\sqrt{2}(|1\rangle - |2\rangle), |b_3\rangle = 1/\sqrt{2}(|3\rangle + |4\rangle), |b_4\rangle = 1/\sqrt{2}(|3\rangle - |4\rangle), |b_5\rangle = 1/\sqrt{2}(|5\rangle + |6\rangle), |b_6\rangle = 1/\sqrt{2}(|5\rangle - |6\rangle), |b_7\rangle = 1/\sqrt{2}(|7\rangle + |8\rangle), |b_8\rangle = 1/\sqrt{2}(|7\rangle - |8\rangle), |b_9\rangle = 1/\sqrt{2}(|9\rangle + |10\rangle), |b_{10}\rangle = 1/\sqrt{2}(|9\rangle - |10\rangle), \ldots, |b_{2l+1}\rangle = 1/\sqrt{2}(|2l-3\rangle + |2l-2\rangle), |b_{2l+2}\rangle = 1/\sqrt{2}(|2l-3\rangle - |2l-2\rangle), |b_{2l+3}\rangle = 1/\sqrt{2}(|2l-2\rangle + |3\rangle), |b_{2l+4}\rangle = 1/\sqrt{2}(|2l-2\rangle - |3\rangle), |b_{2l+5}\rangle = 1/\sqrt{2}(|4\rangle + |5\rangle), |b_{2l+6}\rangle = 1/\sqrt{2}(|4\rangle - |5\rangle), |b_{2l+7}\rangle = 1/\sqrt{2}(|6\rangle - |7\rangle), \ldots, |b_{2l-1}\rangle = 1/\sqrt{2}(|2l-2\rangle + |2l-1\rangle), |b_{2l-2}\rangle = 1/\sqrt{2}(|2l-2\rangle - |2l-1\rangle), |b_{2l-3}\rangle = 1/\sqrt{2}(|0\rangle + |1\rangle), |b_{2l-4}\rangle = 1/\sqrt{2}(|0\rangle - |1\rangle), |b_{2l-5}\rangle = |0\rangle, |b_{2l-6}\rangle = |0\rangle, |b_{2l-7}\rangle = |2\rangle, |b_{2l-8}\rangle = |3\rangle, |b_{2l-9}\rangle = |4\rangle, |b_{2l-10}\rangle = |5\rangle, |b_{2l-11}\rangle = |6\rangle, \ldots, |b_{2l-3}\rangle = |2l-2\rangle, |b_{2l-2}\rangle = |2l-1\rangle \} \tag{26} \]

Some duplicate items are removed in \(\varepsilon^A \) and \(\varepsilon^B \). Nextly, we concretely calculate the non-commutativity \(N \) to quantify the quantumness of a quantum ensemble. There are 2k = (span\(\varepsilon^A \)) linear independent states in \(\varepsilon^A \).

\[
N(|a_2\rangle, |a_{2k+1}\rangle) = 1,
\]

\[
N(|a_2\rangle, |a_{2k+1}\rangle, |a_{2k+3}\rangle) = 2.87,
\]

\[
N(|a_2\rangle, |a_{2k+1}\rangle, |a_{2k+3}\rangle, |a_{2k+5}\rangle) = 3.74,
\]

\[
N(|a_2\rangle, |a_{2k+1}\rangle, |a_{2k+3}\rangle, |a_{2k+5}\rangle, |a_{2k+7}\rangle) = 4.61,
\]

\[
\ldots,
\]

\[
N(|a_2\rangle, |a_{2k+1}\rangle, \ldots, |a_{6k-3}\rangle) = 2 + (2k - 3) \times 0.87 = 1.74k - 0.61,
\]

\[
N(|a_2\rangle, |a_{2k+1}\rangle, \ldots, |a_{6k-3}\rangle, |a_{6k-5}\rangle) = 2 + (2k - 2) \times 0.87 = 1.74k + 0.26. \tag{27}
\]

For the last two non-commutativity 1.74k + 0.26 and 1.74k + 0.61, we obtain that the difference \((1.74k + 0.26) - (1.74k - 0.61) = 0.87 > 0\). Hence, we obtain the inequality as follows
\[N ([a_2], [a_{2k+1}]) = 1 \]
\[< N ([a_2], [a_{2k+1}], [a_{2k+3}]) = 2.87 \]
\[< N ([a_2], [a_{2k+1}], [a_{2k+3}], [a_{2k+5}]) = 3.74 \]
\[< N ([a_2], [a_{2k+1}], [a_{2k+3}], [a_{2k+5}], [a_{2k+7}]) = 4.61 \]
\[< \ldots < \ldots < \ldots < \ldots \]
\[< N ([a_2], [a_{2k+1}], [a_{2k+3}], \ldots, [a_{6k-5}]) = 2 + (2k - 3) \times 0.87 = 1.74k - 0.61 \]
\[< N ([a_2], [a_{2k+1}], [a_{2k+3}], \ldots, [a_{6k-5}], [a_{6k-3}]) \]
\[= 2 + (2k - 2) \times 0.87 \]
\[= 1.74k + 0.26. \]

So \(\varepsilon^B \) is a single set according to Lemma 2. There are \(2l = \dim(\text{span}^B) \) linear independent states in \(\varepsilon^B \).

\[N ([b_2], [b_{4-3}]) = 1, \]
\[N ([b_2], [b_{4-3}], [b_1]) = 2.87, \]
\[N ([b_2], [b_{4-3}], [b_1], [b_{2l-1}]) = 3.74, \]
\[N ([b_2], [b_{4-3}], [b_1], [b_{2l-1}], [b_3]) = 4.61, \]
\[\ldots \]
\[N ([b_2], [b_{4-3}], [b_1], [b_{2l-1}], \ldots, [b_{2l-3}], [b_{6l-5}]) = 2 + (2l - 3) \times 0.87 = 1.74l - 0.61, \]
\[N ([b_2], [b_{4-3}], [b_1], [b_{2l-1}], \ldots, [b_{2l-3}], [b_{6l-5}]) \]
\[= 2 + (2l - 2) \times 0.87 \]
\[= 1.74l + 0.26. \]

For the last two non-commutativity \(1.74l + 0.26 \) and \(1.74l + 0.61 \), we obtain that the difference \((1.74l + 0.26) - (1.74l - 0.61) = 0.87 > 0 \). Hence, we obtain the inequality as follows

\[N ([b_2], [b_{4-3}]) = 1 \]
\[< N ([b_2], [b_{4-3}], [b_1]) = 2.87 \]
\[< N ([b_2], [b_{4-3}], [b_1], [b_{2l-1}]) = 3.74 \]
\[< N ([b_2], [b_{4-3}], [b_1], [b_{2l-1}], [b_3]) = 4.61 \]
\[< \ldots < \ldots < \ldots < \ldots \]
\[< N ([b_2], [b_{4-3}], [b_1], [b_{2l-1}], \ldots, [b_{2l-3}], [b_{6l-5}]) = 2 + (2l - 3) \times 0.87 = 1.74l - 0.61, \]
\[< N ([b_2], [b_{4-3}], [b_1], [b_{2l-1}], \ldots, [b_{2l-3}], [b_{6l-5}]) \]
\[= 2 + (2l - 2) \times 0.87 \]
\[= 1.74l + 0.26. \]

So \(\varepsilon^B \) is also a single set according to Lemma 2. According to the necessary and sufficient condition of Lemma 2, we make a conclusion that the set of complete orthogonal product quantum states in Eq. (1) is indistinguishable. Similarly, for the orthogonal product states in Eqs (13, 15), we obtain the same conclusion. The quantum orthogonal product states in Eqs (17–21) are incomplete but can be extended into a complete set, we can also judge the indistinguishability by Corollary 1. Now we will introduce the Corollary 1.

Corollary 1. For an incomplete set of orthogonal product states in quantum system of \(6^n \otimes 6^n \), it firstly should be extended into a complete set \(\varepsilon = \{ |\psi_i \rangle = [a_i] \otimes [b_j] \} \) with \(|\psi_i \rangle |\psi_j \rangle = 0, i \neq j \) if and only if it is completable. The indistinguishability of its complete set can be judged by Lemma 2.

The Corollary 1 is used to judge the indistinguishability of a set of incomplete orthogonal product states which is completable. The second family construction in quantum system of \(6^{m+k} \otimes 6^{m+k} \) with \(i, j \in \{0, 1, 2\} \) is incomplete but can be completable, so we can use the Corollary 1 to judge the indistinguishability. For example, for the quantum system of \(6^{m+k} \otimes 6^{m+k} \) when \(k, l \) are all even, quantum states \(|0\rangle A |0\rangle B, |1\rangle A |n_3\rangle B \) with \(n_3 = 3, 4, 5, 6, \ldots, 3l - 3, \]
\[|m\rangle A |n_3\rangle B \] with \(m = 3, 4, 5, 6, \ldots, 3k - 3, \]
\[n_3 = 0, 1, 2, 4, 5, 6, \ldots, 3l - 3, \]
\[|3k - 2\rangle A |n_3\rangle B \]
with \(n_3 = 2, 4, 5, 6, \ldots, 3l - 3, 3l - 1 \) and \(|3k - 1\rangle A |2\rangle B \) are added into the original incomplete set. The original incomplete set becomes a complete set. And its indistinguishability can be judged by using Corollary 1.

References
1. Hayashi, M., Markham, D., Murao, M. & Virmani, S. Bounds on Multpartite Entangled Orthogonal State Discrimination Using Local Operations and Classical Communication. Phys. Rev. Lett. 96, 040501 (2006).
2. Bennett, C. H. et al. Quantum nonlocality without entanglement. Phys. Rev. A 59, 1070–1091 (1999).
3. Yu, N. K., Duan, R. Y. & Ying, M. S. Any 2 ⊗ n subspace is locally distinguishable. Phys. Rev. A 84, 012304 (2011).
4. Ghosh, S., Kar, G., Roy, A., Sen(De), A. & Sen, U. Distinguishability of Bell States. Phys. Rev. Lett. 87, 277902 (2001).
5. Cohen, S. M. Local distinguishability with preservation of entanglement. Phys. Rev. A 75, 052313 (2007).
6. Bandyopadhyay, S. Entanglement and perfect discrimination of a class of multiqubit states by local operations and classical communication. Phys. Rev. A 81, 022327 (2010).
7. Bandyopadhyay, S. & Walgate, J. Local distinguishability of any three quantum states. J. Phys. A: Math. Theor. 42, 072002 (2009).
8. Duan, R. Y., Feng, Y., Ji, Z. F. & Ying, M. S. Distinguishing Arbitrary Multiparty Basis Unambiguously Using Local Operations and Classical Communication. Phys. Rev. Lett. 98, 230502 (2007).
9. Zhang, Z. C., Gao, F., Qin, S. J., Zuo, H. J. & Ying, M. S. Local distinguishability of maximally entangled states in canonical form. Quantum Inf. Process 14, 3961–3969 (2015).
10. Walgate, J., Short, A. J., Hardy, L. & Vedral, V. Local Distinguishability of Multiparticle Orthogonal Quantum States. Phys. Rev. Lett. 85, 4975–4975 (2000).
11. Virmani, S., Sacchi, M. F., Plenio, M. B. & Markham, D. Optimal local discrimination of two multiparticle pure states. Phys. Lett. A 288, 62–68 (2001).
12. Hillery, M. & Mimi, J. Distinguishing two-qubit states using local measurements and restricted classical communication. Phys. Rev. A 67, 042304 (2003).
13. Yu, N. K., Duan, R. Y. & Ying, M. S. Four Locally Indistinguishable Ququadr-Ququadr Orthogonal Maximally Entangled States. Phys. Rev. Lett. 109, 020506 (2012).
14. Duan, R. Y., Xin, Y. & Ying, M. S. Locally indistinguishable subspaces spanned by three-qubit unextendible product bases. Phys. Rev. A 81, 032329 (2010).
15. Bennett, C. H. et al. Unextendible Product Bases and Bound Entanglement. Phys. Rev. Lett. 82, 5385–5388 (1999).
16. Walgate, J. & Hardy, L. Nonlocality, Asymmetry, and Distinguishing Bipartite States. Phys. Rev. Lett. 89, 147901 (2002).
17. Horodecki, M., De Sen, A., Sen, U. & Horodecki, K. Local Indistinguishability: More Nonlocality with Less Entanglement. Phys. Rev. Lett. 90, 047902 (2003).
18. Yang, Y. H., Gao, F., Tian, G. J., Cao, T. Q. & Wen, Q. Y. Local distinguishability of orthogonal quantum states in a $2 \otimes 2 \otimes 2$ system. Phys. Rev. A 88, 024301 (2013).
19. Zhang, Z. C., Gao, F., Tian, G. Q., Cao, T. Q. & Wen, Q. Y. Nonlocality of orthogonal product basis quantum states. Phys. Rev. A 90, 022313 (2014).
20. Wang, Y. L., Li, M. S., Zheng, Z. J. & Fei, S. M. Nonlocality of orthogonal product-basis quantum states. Phys. Rev. A 92, 032313 (2015).
21. Zhang, Z. C., Gao, F., Qin, S. J., Yang, Y. H. & Wen, Q. Y. Nonlocality of orthogonal product states. Phys. Rev. A 92, 012332 (2015).
22. Yu, S. X. & Oh, C. H. Detecting the local indistinguishability of maximally entangled states. arXiv:1502.01274v1 (2015).
23. Zhang, Z. C., Gao, F., Cao, Y., Qin, S. J. & Wen, Q. Y. Local indistinguishability of orthogonal product states. arXiv:1509.01814v2 Phys. Rev. A 93, 012314 (2016).
24. Ma, T., Zhao, M. J., Wang, Y. K. & Fei, S. M. Non-commutativity and local indistinguishability of quantum states. Sci. Rep. 4, 6336 (2014).
25. Childs, A. M., Leung, D., Mančinska, L. & Ozols, M. A Framework for Bounding Nonlocality of State Discrimination. Commun. Math. Phys. 323, 1121–1153 (2013).

Acknowledgements
The research is funded by National Natural Science Foundation of China, under Grant Nos 61370228, 61472165 and 61502200, and Science and Technology Planning Project of Guangdong Province, China, under Grant Nos 2013B010401018 and 2015B010128008, and Natural Science Foundation of Guangdong province, China, under Grant Nos 2014A030310245 and 2016A030313090.

Author Contributions
X.Z. and X.T. proposed and wrote the main manuscript text. J.W. and Y.L. reviewed the manuscript and provided funding support.

Additional Information
Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Zhang, X. et al. LOCC indistinguishable orthogonal product quantum states. Sci. Rep. 6, 28864; doi: 10.1038/srep28864 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/