RESEARCH ARTICLE

The tomato yellow leaf curl virus C4 protein alters the expression of plant developmental genes correlating to leaf upward cupping phenotype in tomato

Chellappan Padmanabhan1,a, Yi Zheng2, Md Shamimuzzaman1, Jennifer R. Wilson1,ab, Andrea Gilliard1, Zhangjun Fei2,3, Kai-Shu Ling1,*

1 U.S. Department of Agriculture—Agricultural Research Service, U.S. Vegetable Laboratory, Charleston, SC, United States of America, 2 Boyce Thompson Institute, Cornell University, Ithaca, NY, United States of America, 3 U.S. Department of Agriculture—Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, United States of America

a Current address: U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Plant Protection and Quarantine, Science and Technology, Plant Pathogen Confirmatory Diagnostics Laboratory, Laurel, MD, United States of America
b Current address: U.S. Department of Agriculture–Agricultural Research Service, Corn, Soybean and Wheat Quality Research Unit, Wooster, OH, United States of America

* kai.ling@usda.gov

Abstract

Tomato yellow leaf curl virus (TYLCV), a monopartite begomovirus in the family Geminiviridae, is efficiently transmitted by the whitefly, Bemisia tabaci, and causes serious economic losses to tomato crops around the world. TYLCV-infected tomato plants develop distinctive symptoms of yellowing and leaf upward cupping. In recent years, excellent progress has been made in the characterization of TYLCV C4 protein function as a pathogenicity determinant in experimental plants, including Nicotiana benthamiana and Arabidopsis thaliana. However, the molecular mechanism leading to disease symptom development in the natural host plant, tomato, has yet to be characterized. The aim of the current study was to generate transgenic tomato plants expressing the TYLCV C4 gene and evaluate differential gene expression through comparative transcriptome analysis between the transgenic C4 plants and the transgenic green fluorescent protein (Gfp) gene control plants. Transgenic tomato plants expressing TYLCV C4 developed phenotypes, including leaf upward cupping and yellowing, that are similar to the disease symptoms expressed on tomato plants infected with TYLCV. In a total of 241 differentially expressed genes identified in the transcriptome analysis, a series of plant development-related genes, including transcription factors, glutaredoxins, protein kinases, R-genes and microRNA target genes, were significantly altered. These results provide further evidence to support the important function of the C4 protein in begomovirus pathogenicity. These transgenic tomato plants could serve as basic genetic materials for further characterization of plant receptors that are interacting with the TYLCV C4.
1. Introduction

Tomato (Solanum lycopersicum L.) is one of the most economically important and widely grown vegetable crops in the world. Viral diseases are a major factor limiting tomato production. Tomato yellow leaf curl virus (TYLCV), a whitefly (Bemisia tabaci)-transmitted begomovirus, has caused serious economic losses to tomato productions worldwide [1,2]. TYLCV, in the genus Begomovirus and the family Geminiviridae, has a monopartite genome of a single-stranded circular DNA molecule of ~2.8 kb in size. The TYLCV genome contains six open reading frames (ORFs), including two ORFs in virion (V) sense orientation, V1 and V2, encoding coat protein and pre-coat, respectively, and four ORFs in complementary (C) orientation, C1, C2, C3 and C4, encoding proteins responsible for virus replication, trans-activation, accumulation and induction of symptoms, respectively. Furthermore, three geminivirus-encoded proteins, C2, C4 and V2, also play a role in RNA-silencing suppression [3].

TYLCV-encoded C4 is embedded within a larger ORF, C1, in a different reading frame. C4 is a relatively conserved protein which may display diverse biological functions in monopartite and bipartite geminiviruses. In monopartite begomoviruses, expression of tomato leaf curl virus (TLCV) C4 showed virus-like symptoms in transgenic tobacco and tomato plants [4]. The C4 protein of tomato leaf curl Yunnan virus (TLCYnV) induced severe developmental abnormalities in N. benthamiana [5] and great progress has been achieved to identify several host factors that are interacting with TLCYnV C4 [6–9].

There are likely multi-functional roles for TYLCV C4 that would need to be further explored [10–12]. It has been shown that the TYLCV C4 protein interacts with BARELY ANY MERISTEM 1 (BAM1) and suppresses the cell-to-cell movement of RNAi signals [13] and chloroplast-dependent anti-viral salicylic acid (SA) biosynthesis in Arabidopsis [14]. Another study in Arabidopsis demonstrated that the TYLCV C4 protein interacted broadly with plant receptor-like kinases [15]. It has been suggested that due to its interaction with CLV1, C4 inhibits the cooperative interaction between CLV1 and WUSCHEL, affecting their function in maintenance of stem cells in shoot meristems, resulting in the leaf curl-like symptoms [16]. These recent development in TYLCV C4 functional studies in model plant species are very encouraging and we were aiming to characterize TYLCV C4 function in the natural host plant, tomato.

In the present study, transgenic tomato plants expressing the TYLCV C4 gene developed plant stunting, leaf upward cupping and yellowing phenotypes that resemble disease symptoms in tomato plants infected by TYLCV. To characterize what types of genes and metabolic pathways are affected by expressing TYLCV C4 gene in transgenic tomato plants, we conducted a comparative transcriptome analysis and identified that a series of genes encoding transcription factors, glutaredoxins, protein kinases, R-genes and microRNAs were significantly altered.

2. Results

2.1. Development of TYLCV C4 expressing transgenic tomato plants

To develop transgenic tomato plants expressing TYLCV C4, a full sequence of the C4 gene of a TYLCV isolate from Florida, USA was synthesized and cloned into the plant expression vector PEG101 (Gateway) between the cauliflower mosaic virus (CaMV) 35S promoter and nopaline synthase (NOS) terminator. Transgenic tomato plants were generated using Agrobacterium (LBA4404)-mediated transformation of the tomato ‘Moneymaker,’ a cultivar that is very susceptible to TYLCV infection. We initiated an Agrobacterium transformation with 353 explants (leaf-discs), which resulted in 28 plantlets in the selection media, from which we recovered 18
rooted plants. Among those, two transgenic tomato lines (designated C4-C1 and C4-C5) were selected for further analysis. These T₀ and T₁ transgenic C4 plants developed phenotypes of plant stunting, upward leaf cupping and leaf yellowing, which resembled typical tomato yellow leaf curl disease symptoms on tomato plants infected by TYLCV (Figs 1 and 2).

The two transgenic lines induced similar phenotypes, with upward leaf cupping and plant stunting, while producing smaller size of fruits (line ‘C4-C1’) or no fruit (line ‘C4-C5’) (Fig 2). In contrast, similarly generated control transgenic Gfp plants presented with a normal phenotype (Fig 2). The insertion of the transgenes C4 or Gfp in those transgenic plants was validated using polymerase chain reaction (PCR) and their expression was confirmed via reverse-tran- scriptase (RT)-PCR with their respective gene-specific primers (Figs 2 and S1). These analyses demonstrated that the transgenic C4 plants with the yellow leaf curl disease-like phenotype contained and expressed the expected TYLCV C4 transgene. Observation of disease-like phenotypes in the stable transgenic tomato plants offered a golden opportunity to unravel the function of the TYLCV C4 gene. To characterize inheritance of the disease-like phenotype in the T₁ transgenic plants, we observed a segregation of leaf curl-like phenotype in the T₁ seedlings generated from transgenic tomato plants expressing TYLCV C4. RT-PCR tests confirmed the presence of transgene expression in those T₁ plants exhibiting plant stunting and leaf upward cupping phenotype. On the other hand, the control transgenic tomato plants expressing a green fluorescent protein (Gfp) gene exhibited a normal appearance phenotype similar to non-transgenic plants (Fig 1).

2.2. Comparative transcriptome analysis of transgenic C4 and Green Fluorescent Protein (Gfp) control plants

To understand the underlying molecular mechanism leading to the yellow leaf curl disease-like phenotype in transgenic C4 plants, we conducted a comparative transcriptome profile analysis to identify differentially expressed genes between the C4 transgenic plants and the control Gfp transgenic plants. Among them, three individual T₁ transgenic plants from the ‘C4-C1’ line and three transgenic tomato plants expressing Gfp at the same growth stage under the same environmental conditions in the same greenhouse were selected for transcriptome analysis. Overall, an average of ~21.5 million raw reads per library were generated. After adapter trimming and removal of low-quality reads and rRNA sequences, an average of ~17.1 million high quality clean reads were obtained, with ~15.9 million of those reads mapped to the tomato genome (version SL3.0) (S1 Table). Values of Pearson’s correlation coefficients for all biological replicates were high, suggesting highly reproducible data generated by RNA-Seq (S2 Table).

Among these RNA-seq libraries, a high number of reads were mapped to the target transgenes, 105 to 285 reads to TYLCV C4 and 10,834 to 20,311 reads to Gfp (Table 1). We also observed a similar trend when using normalized expression of the C4 and Gfp transgenes in RPKM (Reads Per Million Per Kilobase Mapped Reads) (Table 1). This provided further evidence supporting the expression of the target transgenes in their respective transgenic plants, which laid a foundation for a comprehensive analysis of global gene expression in transgenic tomato plants to examine their responses in association with expression of a disease-like phenotype in the C4 transgenic plants.

We identified a total of 241 differentially expressed genes (DEGs) (S1 Dataset), with 152 upregulated (S2 Dataset) and 89 down-regulated (S3 Dataset) in the transgenic C4 plants compared to the transgenic Gfp plants (Fig 3A). A pathway analysis of all DEGs showed that 126 pathways were altered (S4 Dataset). Gene Ontology (GO) term enrichment analysis revealed that 13 different functional categories were enriched in the DEGs (Fig 3B), with glutaredoxin
activity, arsenate reductase activity and cell redox homeostasis being the top three categories. Among 152 up-regulated genes, the most prominent annotation group was glutaredoxins. Among 89 down-regulated genes, the most prominent annotation group was receptor-like protein kinases (Table 2).

2.3. Characterization of selected differentially expressed genes

Further classification placed DEGs into different regulatory groups such as transcription factors, protein kinases, R-genes, and microRNA target genes. From the GO enrichment analysis, we determined that the oxidoreductase activity of glutaredoxin (GRX) was one of the most highly enriched categories of DEGs (Fig 3B). GRXs allow for redox regulation of protein
activity by reversibly glutathionylating or reducing disulfide bridges in their targets with plant developmental functions (Table 3). Twelve glutaredoxin genes were differentially expressed and all of them were induced in the C4 transgenic plants (Table 3).

On the other hand, a total of 18 transcription factor (TF) genes belonging to eight different families exhibited differential expression patterns between the transgenic C4 plants and the

Table 1. Transgene expression analysis of RNA-seq reads mapped to the C4 or Gfp transgene.

Library	Genome Mapped Reads (Million)	Transgene Length (Kb)	Transgene Read Counts	Normalized Transgene Expression (RPKM)*
C4-C1-1	15.51	0.298	105	22.72
C4-C1-2	24.98	0.298	285	38.29
C4-C1-3	15.87	0.298	131	27.70
GFP1-1	11.78	0.721	10834	1275.58
GFP1-2	15.9	0.721	20311	1771.74
GFP1-3	11.82	0.721	12145	1425.10

*Reads were normalized in RPKM (Reads Per Million Per Kilobase Mapped Reads). Number of reads were divided by length of transgene in kilobases and total number of genome mapped reads in millions.

https://doi.org/10.1371/journal.pone.0257936.t001
control *Gfp* transgenic plants, among which 14 were up-regulated while four were down-regulated in the C4 transgenic plants (Table 4). The 14 up-regulated TFs included one basic helix-loop-helix (bHLH), two HD-ZIP, three MADS box, three MYB, one NAM/NAC, three WRKY and one LOB TF gene. On the other hand, one bHLH, two bZIP and one MYB TF gene were downregulated.

A total of seven DEGs coding for protein kinases were identified in the RNA-seq dataset, among which three were induced and four suppressed in the transgenic C4 plants (Table 5). Specifically, a CBL-interacting protein kinase, a calcium-dependent protein kinase and an LRR receptor-like serine/threonine-protein kinase were induced by 1.5 to 2.4 log2fold. On the

Table 2. Classification of differentially expressed genes to prominent annotation groups.

Up-regulated Genes Annotation Group	Number of Genes (152)
Glutaredoxin	12
Avr9/Cf-9 rapidly elicited protein	3
Cytochrome P450	3
Late embryogenesis abundant family protein	3
MADS box transcription factor	3
MYB transcription factor	3
Plant-specific domain TIGR01589 family protein	3
WRKY transcription factor	3
Unknown Protein	30
Others	89

Down-regulated Genes Annotation Group	Number of Genes (89)
Receptor like protein kinase	4
Xyloglucan endotransglucosylase/hydrolase	3
Cytochrome P450	3
bZIP/bHLH transcription factor	3
Unknown Protein	5
Others	71

https://doi.org/10.1371/journal.pone.0257936.t002
other hand, expression of four other protein kinase genes in the families of RLK-Pelle_LRR-XI-1, RLK-Pelle_PERK-2, RLK-Pelle_RLCK-VIIa-1 and RLK, were suppressed in the C4 transgenic plants (Table 5).

Table 3. Glutaredoxin genes differentially expressed between the transgenic C4 plants and the transgenic Gfp control plants.

Gene ID	Annotation	log2fold	Adjusted P-value	General Functions
Solyc05g051720	Glutaredoxin	7.99	0.008	Flower development, Salicylic acid signaling, Oxidative stress, Root development,
Solyc04g011880	Glutaredoxin	4.38	0.0183	Anther development, Floral organ primordium formation, Dwarf phenotype, and Embryo
Solyc01g067440	Glutaredoxin	2.75	1.05E-09	development.
Solyc04g011840	Glutaredoxin	7.62	0.0192	
Solyc05g051730	Glutaredoxin	3.68	0.0009	
Solyc04g053110	Glutaredoxin	3.27	0.0007	
Solyc04g011800	Glutaredoxin	3.12	0.0293	
Solyc04g011830	Glutaredoxin	4.6	0.0011	
Solyc06g054570	Glutaredoxin	4.23	1.66E-08	
Solyc01g067460	Glutaredoxin	1.95	6.83E-07	
Solyc09g07590	Glutaredoxin	2.18	0.0478	

Table 4. Differentially expressed genes representing transcription factors between transgenic C4 plants and the Gfp control plants.

Gene ID	Annotation	Function	log2fold	Adj P-val
bHLH Family				
Solyc02g091690	bHLH transcription factor	Erect leaf phenotype dwarfism	-2.4	7.00E-06
Solyc03g009910	bHLH transcription factor	Erect leaf phenotype dwarfism	3.27	0.0015
bZIP Family				
Solyc07g053450	bZIP transcription factor	Leaf cell number and cell size	-2.06	0.0307
Solyc12g010800	bZIP transcription factor	Leaf cell number and cell size	-1.64	6.00E-09
HD-ZIP Family				
Solyc01g096320	HD-ZIP transcription factor	Adaxialized leaf (upward leaf cupping)	3.1	5.16E-28
Solyc06g053220	HD-ZIP transcription factor	Adaxialized leaf (upward leaf cupping)	2.2	0.0288
LOB Family				
Solyc04g077990	LOB domain transcription factor	Leaf primordia development	1.62	0.0061
MADS Family				
Solyc02g065730	MADS box transcription factor	Leaf morphogenesis	1.73	4.49E-08
Solyc05g056620	MADS box transcription factor	Leaf morphogenesis	2.37	0.0003
Solyc02g071730	MADS-box transcription factor	Leaf morphogenesis	2.59	0.0003
MYB Family				
Solyc01g010910	MYB transcription factor	Maintenance of leaf morphogenesis	-1.51	0.007
Solyc05g008250	MYB transcription factor	Maintenance of leaf morphogenesis	1.79	0.048
Solyc11g073120	MYB transcription factor	Maintenance of leaf morphogenesis	1.55	0.0001
Solyc01g096700	MYB transcription factor	Maintenance of leaf morphogenesis	4.18	2.00E-10
NAM Family				
Solyc12g013620	NAM/NAC transcription factor	Specification of leaflet boundaries	1.77	0.0001
WRKY Family				
Solyc08g062490	WRKY transcription factor	Flag leaf growth and host defense	1.78	0.0119
Solyc03g118890	WRKY transcription factor	Flag leaf growth and host defense	2.05	0.0203
Solyc09g019490	WRKY-like transcription factor	Flag leaf growth and host defense	2.05	0.0025

https://doi.org/10.1371/journal.pone.0257936.t003

https://doi.org/10.1371/journal.pone.0257936.t004
In addition, one gene encoding gibberellin 2-beta-dioxygenase 7 in the gibberellin (GA) biosynthesis pathway was induced by more than 2 log2fold in transgenic C4 plants (S2 Dataset). Furthermore, we identified two un-annotated microRNAs (M00148 and M00188), targeting the same gene, Solyc10g007080, which encodes an Aberrant lateral root formation 5 protein, resulting in down-regulated expression (-2.94) in the transgenic C4 plants (S3 Dataset). Two different microRNAs regulating the expression of the same host gene (Solyc10g007080) is an important discovery, although their functions in regulating aberrant lateral root formation and its causal effect on plant stunting would need further study.

2.4. Validation of gene expression using quantitative reverse transcription PCR (qRT-PCR)

Differential expression of 12 randomly selected DEGs from the transcriptome study were validated by qRT-PCR. All genes tested by qRT-PCR were in full agreement with the expression pattern (upregulation or downregulation) observed in the RNA-seq dataset (Table 6). For all but one of these genes (Solyc11g073120), the differential expression observed via qRT-PCR was also statistically significant ($p < 0.05$).

To verify whether those DEGs identified in the transgenic C4 plants had similar effects on tomato plants infected by TYLCV, using qRT-PCR, we conducted a comparative analysis on gene expression on tomato plants that were naturally infected by TYLCV through whitefly transmission and those other healthy tomato plants that were grown under the same environmental conditions in a greenhouse. Interestingly, a similar trend in gene expression was observed for nearly all of the DEGs (9 of 11 or 82%) analyzed in the present study between...
3. Discussion

Using stable transformed tomato plants and comparative transcriptome analysis, we were able to profile the global effects on gene expression in transgenic tomato plants expressing the TYLCV C4 gene in comparison to the same genetic background tomato plants transformed with the Gfp gene. Transgenic tomato plants expressing TYLCV C4 developed plant stunting, upward leaf cupping, and small fruit size phenotypes that resemble the yellow leaf curl disease symptoms on tomato plants naturally infected with TYLCV. Through comprehensive transcriptome profile analysis between the C4 transgenic plants and the control Gfp transgenic plants, we identified a total of 241 differentially expressed genes (152 up-regulated and 89 down-regulated) using robust statistical analysis on three biologically replicated RNA-Seq with a stringent cutoff \(\text{adjusted } p \text{ values } < 0.05 \) and \(\log_2(\text{fold change}) \geq 1.5 \). We believe that these DEG analyses are highly reliable as the validation test on selected 12 genes using qRT-PCR agreed with the expression pattern generated in RNA-seq datasets used for transcriptome analysis. Our results are in agreement with several other studies which have also demonstrated the high correlation between RNA-Seq and qRT-PCR [17,18].

Among the differentially expressed genes (DEGs) identified in our study are a series of glutaredoxins, protein kinases, transcription factors, and microRNAs target genes that are potentially involved in leaf tissue formation and plant development that could potentially contribute to the yellow leaf curl disease-like symptom development in transgenic tomato plants expressing TYLCV C4. The result from the present study offers another piece of evidence to support the C4 as a pathogenicity determinant for TYLCV, one of the most important tomato viruses. Several studies have demonstrated that the C4 protein of geminiviruses is responsible for developing disease-like symptoms in tobacco, tomato, and \textit{N. benthamiana} [4,5]. The C4 protein has also been shown to be the pathogenicity determinant for numerous viruses in the \textit{Geminiviridae} [4,19–21]. Its function in TYLCV has received great attention in recent years using model plants, \textit{Arabidopsis} and \textit{N. benthamiana} [12,14,18,22]. Previously, Rojas and colleagues showed that TYLCV C4 is localized to the cell periphery, thus suggesting it may be involved in mediating virus cell-to-cell movement [23]. However, as the C4 gene is totally embedded inside the C1 open reading frame in TYLCV, this cell-to-cell movement may be attributed to the C1 protein’s function as evidenced in other bipartite begomoviruses. Another study [24] suggested that the TYLCV C4 protein is likely a pathogenicity factor due to its interaction with and suppression by a host resistance factor to restrict virus systemic movement.

We identified a total of seven DEGs in the protein kinase families, four of which are receptor-like kinases (in the families of RLK-Pelle_LRR-XI-1, RLK-Pelle_PERK-2, RLK-Pelle_RLCK-VIIa-1, and RLK), and all are down-regulated (Table 5). Geminivirus-encoded C4/AC4 proteins have previously been shown to interact with RLKs, including CLV1 in the CLAVATA 1 (CLV1) clade [16,22,25], as well as BAM1 and BAM 2 [26,27]. The targeting of BAM1 and BAM2 by TYLCV C4 has been shown to block RNAi signal spread from cell to cell [13]. In addition to two RLKs (BAM1 and BAM2) that have previously been shown to be involved in TYLCV C4 functions [12–14,22], our transcriptome analysis also revealed the suppression of four RLK genes in the transgenic C4 tomato plants, indicating that the RLK-mediated plant defense system may have been compromised, leading to the development of a disease-like phenotype in the transgenic tomato plants. Thus, these four RLKs identified in the present study deserve further characterization on their functions in relationship to the TYLCV resistance and susceptibility in tomato plants.
We identified a total of 12 glutaredoxins (GRXs, also known as thioltransferases) that were induced in the C4 transgenic tomato plants, with all of them being up-regulated. GRXs are small redox enzymes of approximately one hundred amino acid residues that use glutathione as a cofactor [28]. In plants, GRXs are involved in flower development and salicylic acid signaling [29], and GRXs are well-documented to be involved in oxidative stress responses [29]. Studies revealed that two members of a land plant-specific class of GRXs, ROXY1 and ROXY2, are required for petal development in Arabidopsis [30]. Further studies revealed that ROXY1 interacts with several TGA transcription factors, including TGA2, TGA3, TGA7, and PERIANTHIA (PAN); the function of PAN is floral organ primordium formation [31] and root development [32], thus supporting the role of GRXs in these processes. Overexpression of a rice glutaredoxin (OsGRX6), affects hormone and nitrogen status in rice plants, resulting in a dwarf phenotype [33] whereas overexpression of OsGrxC2.2 resulted in abnormal embryos and an increased grain weight in rice [34]. In our study, we observed a stunting (dwarf) phenotype in the C4-transgenic plants (Fig 2), suggesting that C4 may play a role in plant development by interfering with hormone and nitrogen status, similar to the effects of overexpressing OsGRX6 in rice [33].

Expression of a series of leaf development transcription factors (TFs), including those in the bHLH, bZIP, HD-ZIP, NAC/NAM, MADS box, LOB, MYB and WRKY families, were altered in the C4-transgenic plants (Table 4). These leaf development transcription factors could be involved in functions such as regulating leaflet boundary, leaf primordial development, leaf morphogenesis, and leaf cell number and size, which may potentially lead to the leaf upward cupping phenotype.

The bHLH transcription factors, one of the largest TF super-families in plants, can participate in a broad range of growth and developmental signaling pathways. In the transgenic C4 plants, two bHLH TFs were differentially expressed: one induced and another suppressed. Plant bHLH proteins have the potential to be involved in regulating a multiplicity of transcriptional programs. Experimental evidence reveals that bHLH genes make a significant contribution to the specification of stomata in plants [35]. On the other hand, HHLH/bHLH transcription factors could have an opposite effect in mediating brassinosteroid regulation of cell elongation and plant development, and their overexpression resulted in an erect leaf phenotype in rice and dwarfism in Arabidopsis [36]. In another study, Ichihashi and colleagues [37] demonstrated that the bHLH transcription factor SPATULA controls final leaf size in Arabidopsis.

Next, some of the altered TF genes in the C4-transgenic plants belong to the bZIP family. TYLCV C4 mediated a strong suppression of two bZIP genes, which may ultimately alter normal plant development, resulting in an enhanced disease-like leaf curl phenotype in the C4-transgenic tomato plants. bZIP TFs play crucial roles in plant development, signaling and responses to abiotic/biotic stimuli, including abscisic acid (ABA) signaling, hypoxia, drought, high salinity, cold stress, hormone signaling, light responses, osmotic stresses and pathogen defense [38,39].

In contrast to the suppression of bZIP TFs, two TFs in the homodomain-leucine zipper (HD-ZIP) family were induced in the transgenic C4 plants. Bou-Terrent and colleagues demonstrated that loss-of-function mutations in two HD-ZIPII transcription factors (athb4 and hat3) resulted in severely abaxialized and entirely radialized leaves [40]. Conversely, overexpression of HAT3 results in adaxialized leaf development. Our data agree with the second aforementioned study as the overexpression of two HD-ZIP TFs is correlated with adaxialized leaf development (upward leaf cupping) in the transgenic C4 tomato plants.

The NAC transcription factors, including NAM (no apical meristem), ATAF (Arabidopsis transcription activation factor), and CUC (cup-shaped cotyledon), have a conserved NAC.
domain (derived from the first letter of each gene). The transgenic C4 tomato plants with abnormal upward leaf cupping phenotype also had an elevated expression on one of the NAC domain transcription factors. The NAC proteins are thought to be involved in developmental processes, including formation of the shoot apical meristem (SAM), floral organs, and lateral shoots [41]. Two independent studies have also provided evidence for microRNA-mediated regulation of CUC1 [42] and CUC2 [43].

MADS-box transcription factors are important regulators of plant developmental pathway genes. Our study determined that expression of three MADS box TF genes were induced in the C4-transgenic plants, implicating their involvement in flower development. Previous studies have shown that members of the MADS-box family are known to be involved predominantly in developmental processes, including flowering time, floral meristem identity, floral organogenesis, fruit formation, seed pigmentation and endothelium development [44,45].

We observed an up-regulation of one transcription factor in the LOB family. LOB TFs play important functions in maintaining lateral organ boundaries [46]. For example, the rice OsAS2 gene, a member of the LOB domain family, functions in regulating shoot differentiation and leaf development. Transgenic plants overexpressing the OsAS2 gene showed aberrant twisted leaves [47]. It is reasonable to speculate that the increased expression of LOB contributes to the development of leaf upward curling phenotype in the C4-transgenic tomato plants.

We also observed that four transcription factors in the MYB family were altered in the present study. One was suppressed, and three others induced in the transgenic C4 plants. It is possible that alternation in the expression of these MYB genes led to the adverse effect on flower and fruit production and development as observed in the transgenic C4 tomato plants. The MYB family is a part of a large family of transcription factors found in plants and animals. The MYB TFs are regulators of many plant processes, including responses to biotic and abiotic stresses, development, differentiation, metabolism, and defense [48,49].

Finally, modulated expression of three WRKY TF genes in the transgenic C4 tomato plants may lead to suppression of the host defense to TYLCV infection. The WRKY family transcription factors are key regulators of many processes in plants, including biotic and abiotic stresses, seed dormancy and germination, and other developmental process [50,51]. It has been reported that AtWRKY52 contains a TIR–NBS–LRR (Toll/interleukin-1 receptor–nucleotide-binding site-leucine-rich repeat) domain acts together with RPS4 to provide resistance against fungal pathogen Colletotrichum higginsianum and bacterial pathogen Pseudomonas syringae [52].

We considered the C4 transgenic plants as a tool to investigate the role of the C4 protein specifically and our transgenic plants have revealed that this protein alone is sufficient to cause the upward leaf cupping phenotype. Our transcriptome analysis has pointed to several differentially expressed genes potentially responsible for causing this phenotype, but follow up functional studies, such as RNAi or virus-induced gene silencing (VIGS), are needed to definitively determine how each of these genes contributes to upward leaf cupping phenotype. In addition, a similar trend of gene expression was observed in tomato plants that were naturally infected by TYLCV. This finding might help us in future studies on C4 transgenic plants to identify host susceptible factors that are involved in disease-like phenotype change, which could be used to generate novel plant materials with resistance to TYLCV using the CRISPR gene-editing technology.

4. Conclusions

A comprehensive understanding of key host genes involved in plant response to virus infection is a fundamental knowledge in developing an effective strategy for disease management.
Transgenic tomato plants expressing the C4 gene of TYLCV developed an upward leaf cupping phenotype that resembles the yellow leaf-curl disease symptoms on tomato plants infected by TYLCV, indicating importance of the C4 protein of TYLCV (Fig 4). Through comparative transcriptome analysis between the C4-transgenic plants and the control Gfp-transgenic plants, a series of differentially expressed genes and their regulatory networks were uncovered. Our analysis revealed that the C4 protein of TYLCV interferes with the expression of several transcription pathway genes, potentially leading to the leaf upward cupping phenotype (Fig 4). A basic understanding of this virus-encoded virulence factor and associated host responses on the molecular level is important for viral disease management.

5. Material and Methods
5.1. Generation of binary TYLCV C4 constructs
The C4 gene of the TYLCV isolate from Florida, USA (GenBank Accession No. AY530931.1) was synthesized by IDT (Coralville, IA). The synthetic C4 gene (C-terminus fusion) was inserted into a pENTR D TOPO vector and transformed into Top 10 chemically competent cells (Invitrogen). Colonies were selected on kanamycin-containing LB plates and the cloned C4 sequence was confirmed using Sanger sequencing. A positive clone was recombined with a plant expression vector, pEG101, using LR clonase (Invitrogen, USA) to insert the TYLCV C4 gene in between the CaMV 35S promoter and nopaline synthase (NOS) terminator. The
sequence-confirmed C4 gene in the pEG101 background was mobilized into Agrobacterium tumefaciens strain LBA4404 by electroporation. Agrobacterium colonies selected on a YM agar plate containing kanamycin and streptomycin were used for plant transformation.

5.2. Tomato transformation and confirmation

Tomato transformation was conducted using tomato cv. ‘Moneymaker’ following the outlined procedures [53]. The primary transformant plants were confirmed to contain the TYLCV C4 sequence by PCR using the following primer pair: KL14-390 C4N-1F: 5’-CACCATGGGGAAC CACATCTCCAT-3’ and KL14-391 C4N-1R: 5’-TTAATATATTGAAGGCGCTGGATTT-3’. As an experimental control, transgenic tomato plants with the same genetic background, cv. ‘Moneymaker’, containing the green fluorescent protein gene (Gfp) was previously developed [54].

For the control Gfp-transgenic plants, a confirmation test was conducted using the primer pair KL14-414 GFP-1F: 5’-CACCATGGGCAAGGGCGAGGAACT-3’ and KL14-415 GFP-1R: 5’-GGGAGTTGTAGTTGTACTCCAGCTT-3’. Transgenic tomato plants were self-pollinated and T1 seeds extracted from fruits harvested from each individual line. The T1 seeds were germinated on MS basal medium containing 1 mg/L Phosphinotricin, and seedlings that survived under the herbicide selection were transferred to pots containing sterile soil and maintained in a glasshouse at 28–29˚C and 80–90% relative humidity. Transgene insertion was confirmed by gene-specific PCR and gene expression confirmed by RT-PCR using the TYLCV C4- or Gfp-specific primers as described above. For the internal control, a pair of primers for the actin gene (forward primer KL17-071 03g078400F: 5’-TTGCTGGTCGTGACCTTACT-3’ and reverse primer KL17-072 03g078400R: 5’-TGCTCCTAGCGGTTTCAAGT-3’) was used.

5.3. Plant RNA extraction

Total RNA was extracted using 500 mg freshly collected leaf tissue from top third developed leaves of the TYLCV C4-transgenic tomato plants (line ‘C4-C1’) in the T1 generation as well as those from Gfp-transgenic tomato plants as a control, which were in the same developmental stage and growing under the same greenhouse conditions. These T1 seedlings were 21 days post germination and grown in a greenhouse with the same environmental conditions of 28–29˚C, 80–90% relative humidity, and 14 h natural sunlight. Each individual leaf tissue sample was processed in a plastic extraction bag using a HOMEX 6 homogenizer (BioReba, Switzerland) with 2.25 ml of TRIzol reagent following the manufacturer’s protocol (Thermo Fisher Scientific, USA). Concentration of the resulting RNA preparation was measured with a NanoDrop micro-volume spectrophotometer (Thermo Fisher Scientific, USA). The quality of cleaned DNA-free RNA preparations was checked in a 1X bleach gel [55].

5.4. RNA-Seq library preparation, sequencing and data analysis

RNA-Seq libraries were constructed as previously described [56]. Six separate RNA-seq libraries were prepared using total RNA preparations extracted from three individual transgenic C4 plants (T1 generation) and three transgenic Gfp plants (T1 generation). RNA-Seq libraries were sequenced on an Illumina HiSeq 2500 system to generate 100-bp single-end reads. Adapter trimming and removal of low-quality reads were performed using Trimmomatic [57]. RNA-Seq reads were filtered to remove reads aligned to the ribosomal RNA database [58] using Bowtie [59]. The resulting high-quality cleaned reads were aligned to the tomato reference genome (version SL3.0, The Tomato Genome Consortium, 2012 [60]) using HISAT [61]. Reads were counted for each tomato gene model and normalized to reads per kilobase of exon model per million mapped reads (RPKM). Raw read counts were used as input to the DESeq package [62] to identify differentially expressed genes between the C4-transgenic and the...
control Gfp-transgenic plants. Genes with adjusted p-values less than 0.05 and log2fold changes greater than or equal to 1.5 were considered to be differentially expressed.

The Gene Ontology (GO) enrichment analysis of differentially expressed genes was performed using the agriGO program [63]. The Tomato Functional Genomics Database [64] and the iTAK database [65] were used for identification of tomato transcription factors, receptor-like kinases, and microRNA targets. Standalone BLAST [66] was used to identify other genes of interest by comparing them with Arabidopsis homologs in conjunction with utilizing annotated GO terms of tomato genes [67].

5.5. Validation of differentially expressed genes by qRT-PCR

To validate the differential gene expression as observed in the RNA-seq libraries, 12 DEGs were randomly selected for testing using qRT-PCR. Primers were designed (S5 Dataset) and their specificity confirmed by aligning the primer sequences to the tomato genome. cDNA was generated from 2 μg of the same tomato RNA preparations as those used for RNA-seq using the SuperScript III cDNA Synthesis System (ThermoFisher Scientific, USA). Twenty-five microliter PCR reactions consisted of 2 μL of diluted cDNA, 0.75 μL of each primer (10 μM), 12.5 μL of 2x Brilliant II SYBR Green Master Mix with low ROX (Agilent), and 9.3 μL of nuclease-free water. PCR amplifications were performed in an Mx3005P Real-Time PCR System (Agilent, USA) using the following cycling conditions: 95˚C for 10 minutes, followed by 40 cycles of 95˚C for 30 seconds and 60˚C for 1 minute with SYBR Green detection during the 60˚C step. The presence of a single amplicon in PCR reactions was confirmed by the presence of a single, uniform peak on dissociation curves conducted after amplification. Each of the selected genes was amplified from 3 biological replicates per treatment, with 3–4 technical replicates per biological replicate. Expression levels were normalized to the tomato actin gene (Solyc04g011500) using the ΔΔCt method and expressed in terms of log₂(fold change) for comparison with the RNA-seq data. Significant differences in gene expression via qRT-PCR was determined using a one-tailed unpaired Student’s t-test (if data are normal and homoscedastic), Welch’s t-test (if heteroscedastic) or the Mann-Whitney Wilcox test (if not normally distributed). Statistical analysis was conducted in R (R Core Team 2018 [68]).

5.6. DNA and RNA extraction from tomato plants naturally infected by TYLCV

To evaluate gene expression in tomato plants naturally infected by TYLCV, tomato plants previously fed with viruliferous whiteflies and expressed typical yellow leaf curl symptoms were used.

DNA was extracted from fresh tomato leaf tissue using the DNeasy Plant Mini Kit (Qiagen) per modified manufacturer’s protocol. Briefly, 200mg young leaf tissue in BioReba extraction bag was macerated in 2 ml CTAB buffer and sodium metabisulfite (~15mg), using a Homex6 homogenizer (BioReba). 500μL of homogenate was then transferred to a microcentrifuge tube to complete DNA extraction following the DNeasy Plant Mini Kit protocol. The resulting DNA was quantified using a Nanodrop 2000 Spectrophotometer. To confirm the presence of TYLCV, PCR was ran using primers (KL04-06: TYLCV CP F: 5’-gccgccgaatttACGTTTACTATGTCGAAG-3’; KL04-07: TYLCV CP R: 5’-gccgcccttaagTTGCAAACTCATGATATA-3’).

RNA preparation was extracted from fresh tomato leaf tissue of TYLCV-tomato plants and healthy control using Trizol RNA extraction method (ThermoFisher Scientific, USA) as described above in 5.3. The resulting RNA was quantified using a Nanodrop 2000 Spectrophotometer. qRT-PCR was conducted and differential gene expression analyzed using the procedures as described in 5.5.
Supporting information

S1 Fig. Original gel pictures used for Fig 2.
(TIF)

S2 Fig. Tomato plants infected with TYLCV. A. TYLCV-infected tomato plant. B. Healthy tomato plant. C. PCR analysis of tomato plants infected with TYLCV.
(TIF)

S1 Table. Reads summary for the RNA-Seq libraries.
(DOCX)

S2 Table. Pearson correlation coefficient among replicate libraries indicate the reproducibility of RNA-seq libraries.
(DOCX)

S3 Table. Validation of selected differentially expressed genes in naturally TYLCV-infected tomato plants using qRT-PCR in comparison with RNA-seq and qRT-PCR in transgenic C4 plants.
(DOCX)

S1 Dataset. Differentially expressed genes (DEGs) between the TYLCV-C4 transgenic line (C4-C1) and the control transgenic Gfp line (GFP1).
(XLSX)

S2 Dataset. Up-regulated differentially expressed genes (DEGs) between the TYLCV-C4 transgenic line (C4-C1) and the control transgenic Gfp line (GFP1).
(XLSX)

S3 Dataset. Down-regulated differentially expressed genes (DEGs) between the TYLCV-C4 transgenic line (C4-C1) and the control transgenic Gfp line (GFP1).
(XLSX)

S4 Dataset. Pathway analysis of differentially expressed genes (DEGs) between the TYLCV-C4 transgenic line (C4-C1) and the control transgenic Gfp line (GFP1).
(XLSX)

S5 Dataset. Quantitative RT-PCR validation of select differentially expressed genes and associated primers.
(XLSX)

Acknowledgments

We thank Deanna Dong, Louis William and Tyler Devaney for their excellent technical assistance, and Bidisha Chanda for reviewing the manuscript.

Author Contributions

Conceptualization: Kai-Shu Ling.

Data curation: Chellappan Padmanabhan, Md Shamimuzzaman, Zhangjun Fei.

Formal analysis: Chellappan Padmanabhan, Yi Zheng, Md Shamimuzzaman, Jennifer R. Wilson.

Investigation: Chellappan Padmanabhan, Yi Zheng, Md Shamimuzzaman, Jennifer R. Wilson, Andrea Gilliard.
Methodology: Chellappan Padmanabhan, Yi Zheng, Md Shamimuzzaman, Jennifer R. Wilson, Andrea Gilliard, Zhangjun Fei, Kai-Shu Ling.

Resources: Zhangjun Fei, Kai-Shu Ling.

Supervision: Kai-Shu Ling.

Validation: Jennifer R. Wilson, Andrea Gilliard.

Visualization: Chellappan Padmanabhan, Kai-Shu Ling.

Writing – original draft: Chellappan Padmanabhan, Kai-Shu Ling.

Writing – review & editing: Md Shamimuzzaman, Jennifer R. Wilson, Andrea Gilliard, Zhangjun Fei, Kai-Shu Ling.

References

1. Lefeuvre P, Martin D P, Harkins G, Lemey P, Gray A J, Meredith S, Lakay F, et al. The spread of tomato yellow leaf curl virus from the Middle East to the world. PLoS Pathog. 2017; 6: e1001164.

2. Prasad A, Sharma N, Hari-Gowtham G, Muthamilarasan M, Prasad, M. Tomato yellow leaf curl virus: Impact, Challenges, and Management. Trends Plant Sci. 2020; 25: 897–911. https://doi.org/10.1016/j.tplants.2020.03.015 PMID: 32371058

3. Glick E, Zrachya A, Levy Y, Mett A, Gidon D, Belausov E, et al. Interaction with host SGS3 is required for suppression of RNA silencing by tomato yellow leaf curl virus V2 protein. Proc Natl Acad Sci USA. 2009; 105: 157–161.

4. Krake LR, Rezaian MA, Dry IB. Expression of the tomato leaf curl Geminivirus C4 gene produces virus-like symptoms in transgenic plants. Mol Plant-Microbe Interact. 1998; 11: 413–417.

5. Xie Y, Zhao L, Jiao X, Jiang T, Gong H, Wang B, et al. A recombinant begomovirus resulting from exchange of the C4 gene. J Gen Virol. 2013; 94: 1896–1907. https://doi.org/10.1099/vir.0.053181-0 PMID: 23720217

6. Dogra SC, Eini O, Rezaian MA, Randles JW. A novel shaggy-like kinase interacts with the tomato leaf curl virus pathogenicity determinant C4 protein. Plant Mol Biol. 2009; 71: 25–38. https://doi.org/10.1007/s11103-009-9506-x PMID: 19533382

7. Mei Y, Yang X, Huang C, Zhang X, Zhou X. Tomato leaf curl Yunnan virus-encoded C4 induces cell division through enhancing stability of Cyclin D1.1 via impairing NbSKH-mediated phosphorylation in Nicotiana benthamiana. PLoS Pathog. 2018a; 14: e1006789. https://doi.org/10.1371/journal.ppat.1006789 PMID: 29293689

8. Mei Y, Wang Y, Hu T, Yang X, Lozano-Duran R, Sunter G, et al. Nucleocytoplasmic shuttling of geminivirus C4 protein mediated by phosphorylation and myristoylation is critical for viral pathogenicity. Mol Plant. 2018b; 11: 1466–1481. https://doi.org/10.1007/s11037-018-05237-8

9. Mei Y, Wang Y, Hu T, He Z, Zhou X. The C4 protein encoded by tomato leaf curl Yunnan virus interferes with MAPK cascade-related defense responses through inhibiting the dissociation of the ERECTA/BR11 complex. New Phytol. 2021; 231: 747–762. https://doi.org/10.1111/nph.17387 PMID: 33829507

10. Fondong VN. The ever-expanding role of C4/AC4 in geminivirus infection: punching above its weight? Mol. Plant. 2019; 12: 145–147. https://doi.org/10.1016/j.molp.2018.12.006 PMID: 30578853

11. Luna AP, Lazano-Duran R. Geminivirus-encoded proteins: not all positional homologs are made equal. Front Microbiol. 2020; 11: 878. https://doi.org/10.3389/fmicb.2020.00878 PMID: 32431689

12. Corrales-Gutierrez M, Medina-Puche L, Yu Y, Wang L, Ding X, Luna A, et al. The C4 protein from the geminivirus tomato yellow leaf curl virus confers drought tolerance in Arabidopsis through an ABA-independent mechanism. Plant Biotechnol J. 2020; 18: 1121–1123. https://doi.org/10.1111/pbi.13280 PMID: 31637850

13. Rosas-Diaz T, Zhang D, Fan P, Wang L, Ding X, Jiang Y, et al. A virus-targeted plant receptor-like kinase promotes cell-to-cell spread of RNAi. Proc Natl Acad Sci U S A. 2018; 115: 1388–1393. https://doi.org/10.1073/pnas.1715556115 PMID: 29363594

14. Medina-Puche L, Tan H, Dogra V, Wu M, Rosas-Diaz T, Wang L, et al. A defense pathway linking plasma membrane and chloroplasts and co-opted by pathogens. Cell. 2020; 182: 1109–1124. https://doi.org/10.1016/j.cell.2020.07.020 PMID: 32641601
15. Gómez BG, Zhang D, Rosas-Díaz T, Wei Y, Macho AP, Lozano-Durán R. The C4 protein of tomato yellow leaf curl virus can broadly interact with plant receptor-like kinases. Viruses. 2019; 11: 1009.

16. Li H, Zeng R, Chen Z, Liu X, Cao Z, Xie Q, et al. S-acylation of a geminivirus C4 protein is essential for regulating the CLAVATA pathway in symptom determination. J Exp Bot 2018; 69: 4459–4468. https://doi.org/10.1093/jxb/ery228 PMID: 29931348

17. Nagalakshmi U, Wang Z, Waen K, Shou C, Raha D, Gerstein M, et al. The transcriptional landscape of the yeast genome defined by RNA sequencing. Science. 2008; 320: 1344–1349. https://doi.org/10.1126/science.1158441 PMID: 18451266

18. Camarena L, Bruno V, Euskirchen G, Poggio S, Snyder M. Molecular mechanisms of ethanol-induced pathogenesis revealed by RNA-sequencing. PLoS Pathog. 2010; 6: e1000834. https://doi.org/10.1371/journal.ppat.1000834 PMID: 20368969

19. Latham JR, Saunders K, Pinner MS, Stanley J. Induction of plant cell division by beet curly top virus gene C4. Plant J. 1997; 11: 1273–1283.

20. Piroux N, Saunders K, Page A, Stanley J. Geminivirus pathogenicity protein C4 interacts with Arabidopsis thaliana shaggy-related protein kinase AtSKeta, a component of the brassinosteroid signalling pathway. Virology. 2007; 362: 428–440. https://doi.org/10.1016/j.virol.2006.12.034 PMID: 17280695

21. Lai J, Chen H, Teng K, Zhao Q, Zhang Z, Li Y, et al. RKp, a RING finger E3 ligase induced by BSCV C4 protein, affects geminivirus infection by regulation of the plant cell cycle. Plant J. 2009; 57: 905–917. https://doi.org/10.1111/j.1365-313X.2008.03737.x PMID: 19000158

22. Macho AP, Lozano-Duran R. Molecular dialogues between viruses and receptor-like kinases in plants. Mol Plant Pathol. 2019; 20: 1191–1195. https://doi.org/10.1111/mpp.12812 PMID: 31094075

23. Rojas MR, Jiang H, Salati R, Xoconostle-Cázares B, Sudarshana MR, Lucas WJ, et al. Functional analysis of proteins involved in movement of the monopartite begomovirus, tomato yellow leaf curl virus. Virology. 2001; 291: 110–125. https://doi.org/10.1006/viro.2001.1194 PMID: 11878881

24. Tomas DM, Cañizares MC, Abad J, Fernández-Muñoz R, Moriones E. Resistance to tomato yellow leaf curl virus accumulation in the tomato wild relative Solanum habrochaites associated with the C4 viral protein. Mol Plant Microbe Interact. 2011; 24: 849–861. https://doi.org/10.1094/MPMI-12-10-0291 PMID: 21405986

25. Zeng R, Liu X, Yang C, Lai J. Geminivirus C4: Interplaying with Receptor-like Kinases. Trends Plant Sci. 2018; 23: 1044–1046. https://doi.org/10.1016/j.plants.2018.09.003 PMID: 30279072

26. Carluccio AV, Prigigallo M, Rosas-Diaz T, Lozano-Duran R, Stavolone L. S-acylation mediates mungbean yellow mosaic virus AC4 localization to the plasma membrane and in turn gene silencing suppression. PLoS Pathog. 2018; 14: 1–26. https://doi.org/10.1371/journal.ppat.1007207 PMID: 30067843

27. Li Z, Du Z, Tang Y, She X, Wang X, Zhu Y, et al. The pathogenic determinant of tomato leaf curl Guangdong virus, may suppress post-transcriptional gene silencing by interacting with BAM1 protein. Front Microbiol. 2020; 11: 851 https://doi.org/10.3389/fmicb.2020.00851 PMID: 32431688

28. Thioredoxin Holmgren A. and glutaredoxin: small multi-functional redox proteins with active-site disul-fide bonds. Biochem Soc Trans. 1988; 16: 95–96. https://doi.org/10.1042/bst0160095 PMID: 3286320

29. Rouhier N, Lemaire SD, Jacquot JP. The role of glutathione in photosynthetic organisms: emerging functions for glutaredoxins and glutathionylation. Annu Rev Plant Biol. 2008; 59: 143–166. https://doi.org/10.1146/annurev.arplant.59.032607.092811 PMID: 18448899

30. Xing S, Rosso MG, Zachgo S. ROXY1, a member of the plant glutaredoxin family, is required for petal development in Arabidopsis thaliana. Development. 2005; 132: 1555–1565. https://doi.org/10.1242/dev.01725 PMID: 15728668

31. Li S, Lauri A, Ziemann M, Busch A, Bhave M, Zachgo S. Nuclear activity of ROXY1, a glutaredoxin interacting with TGA factors, is required for petal development in Arabidopsis thaliana. Plant Cell. 2009; 21: 429–441. https://doi.org/10.1105/tpc.108.064477 PMID: 19218396

32. Patterson K, Walters LA, Cooper AM, Olivera JG, Rosas MA, Rasmusson AG, et al. Nitrate-regulated glutaredoxins control Arabidopsis primary root growth. Plant Physiol. 2016; 170: 989–999. https://doi.org/10.1104/pp.15.01776 PMID: 26662603

33. El-Keraemy A, Bi YM, Mahmood K, Ranathunge K, Yaish MW, Nambara E, et al. Overexpression of the CC-type glutaredoxin, OsGRX6 affects hormone and nitrogen status in rice plants. Front Plant Sci. 2015; 6: 934. https://doi.org/10.3389/fpls.2015.00934 PMID: 26579177

34. Liu S, Fu H, Jiang J, Chen Z, Gao J, Shu H, et al. Overexpression of a CPYC-type glutaredoxin, OsGrxC2.2, causes abnormal embryos and an increased grain weight in rice. Front Plant Sci. 2019; 10: 848. https://doi.org/10.3389/fpls.2019.00848 PMID: 31316541
35. Zhao H, Li Xia, Ma L. Basic helix-loop-helix transcription factors and epidermal cell fate determination in *Arabidopsis*. Plant Signal Behav. 2012; 7: 1556–1560. https://doi.org/10.4161/psb.22404 PMID: 23073001

36. Zhang LY, Bai MY, Wu J, Zhu JY, Wang H, Zhang Z, et al. Antagonistic HLH/bHLH transcription factors mediate brassinosteroid regulation of cell elongation and plant development in rice and Arabidopsis. Plant Cell. 2019; 21: 3767–3780.

37. Ichihashi Y, Horiguchi G, Gleissberg S, Tsukaya H. The bHLH transcription factor SPATULA controls final leaf size in *Arabidopsis thaliana*. Plant Cell Physiol. 2010; 51: 3767–3780. https://doi.org/10.1093/pcp/pcp184 PMID: 20040585

38. Wang Z, Cheng K, Wan L, Yan L, Jiang H, Liu S, et al. Genome-wide analysis of the basic leucine zipper (bZIP) transcription factor gene family in six legume genomes. BMC Genomics. 2015; 16: 1053. https://doi.org/10.1186/s12864-015-2258-x PMID: 26651343

39. Uno Y, Furuhata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci U S A. 2000; 97: 11632–11637. https://doi.org/10.1073/pnas.190309197 PMID: 11005831

40. Bou-Torrent J, Sella-Martret M, Brandt R, Musielak T, Martínez-García JF, et al. ATHB4 and HAT3, two class II HD-ZIP transcription factors, control leaf development in *Arabidopsis*. Plant Signal Behav. 2012; 7: 1382–1387. https://doi.org/10.4161/psb.21824 PMID: 22918502

41. Xie Q, Frugis G, Colgan D, Chua NH. Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes Dev. 2000; 14: 3024–3036. https://doi.org/10.1101/gad.852200 PMID: 11114891

42. Mallory AC, Dugas DV, Bartel D, Bartel B. MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs. Curr Biol, 2020; 14: 1035–1046.

43. Laufs P, Peaucelle A, Morin H, Traas J. MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems. Development. 2004; 131: 4311–4322. https://doi.org/10.1242/dev.01320 PMID: 15294871

44. Parenicová L, de Folter S, Kieffer M, Horner DS, Favalli C, Busscher J, et al. Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world. Plant Cell. 2003; 15: 1538–1551. https://doi.org/10.1105/tpc.011544 PMID: 12837945

45. Grimplet J, Martínez-Zapater JM, Carmona MJ. Structural and functional annotation of the MADS-box transcription factor family in grapevine. BMC Genomics. 2016; 17: 80. https://doi.org/10.1186/s12864-016-2398-7 PMID: 26818751

46. Shuai B, Reynaga-Peña CG, Springer PS. The lateral organ boundaries gene defines a novel, plant-specific gene family. Plant Physiol. 2002; 129: 747–761. https://doi.org/10.1104/pp.010926 PMID: 12068116

47. Ma Y, Wang F, Guo J, Zhang XS. Rice OsAS2 gene, a member of LOB domain family, functions in the regulation of shoot differentiation and leaf development. J Plant Biol. 2009; 52: 374–381.

48. Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L. MYB transcription factors in Arabidopsis. Trends Plant Sci. 2010; 15: 573–581. https://doi.org/10.1016/j.tplants.2010.06.005 PMID: 20674465

49. Ambawat S, Sharma P, Yadav NR, Yadav RC. MYB transcription factor genes as regulators for plant responses: an overview. Physiol Mol Biol Plants. 2013; 19: 307–321. https://doi.org/10.1007/s12298-013-0179-1 PMID: 24431500

50. Phukan UJ, Jeena GS, Shukla RK. WRKY transcription factors: molecular regulation and stress responses in plants. Front Plant Sci. 2016; 7: 760. https://doi.org/10.3389/fpls.2016.00760 PMID: 27375634

51. Jiang J, Ma S, Ye N, Jiang M, Cao J, Zhang J. WRKY transcription factors in plant responses to stress. J Integrative Plant Biol. 2017; 59: 86–101.

52. Narusaka M, Shirasu K, Noutoshi Y, Kubo Y, Shiraishi T, Iwabuchi M, et al. RRS1 and RPS4 provide a dual resistance-gene system against fungal and bacterial pathogens. Plant J. 2009; 60: 218–226. https://doi.org/10.1111/j.1365-313X.2009.03949.x PMID: 19519800

53. Khuong TTH, Crete P, Robaglia C, Caffarri S. Optimization of tomato Micro-tom regeneration and selection on glutosinate/Basta and dependency of gene silencing on transgenic copy number. Plant Cell Rep. 2013; 32: 1441–1454. https://doi.org/10.1007/s00299-013-1456-8 PMID: 23673466

54. Padmanabhan C, Ma Q, Shekastebad R, Stewart KS, Hutton SF, Scott JW, et al. Comprehensive transcriptome analysis and functional characterization of PR-5 for its involvement in tomato Sw-7 resistance...
The tomato yellow leaf curl virus C4 protein induces symptom expression in tomato

Sci Rep. 2019; 9: 7673. https://doi.org/10.1038/s41598-019-44100-x
PMID: 31114006

55. Aranda PS, LaJoie DM, Jorcyk CL. Bleach gel: a simple agarose gel for analyzing RNA quality. Electrophoresis. 2012; 33: 366–369. https://doi.org/10.1002/elps.201100335 PMID: 22222980

56. Zhong S, Joung JG, Zheng Y, Chen YR, Liu B, Shao Y, et al. High-throughput Illumina strand-specific RNA sequencing library preparation. Cold Spring Harb Protoc. 2011; 8: 940–949. https://doi.org/10.1101/pdb.prot5652 PMID: 21807852

57. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014; 30: 2114–2120. https://doi.org/10.1093/bioinformatics/btu170 PMID: 24695404

58. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucl Acids Res. 2013; 41: D590–D596. https://doi.org/10.1093/nar/gks1219 PMID: 23193283

59. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009; 10: R25. https://doi.org/10.1186/gb-2009-10-3-R25 PMID: 19261174

60. The Tomato Genome Consortium. The tomato genome sequence provides insights into fleshy fruit evolution. Nature. 2012; 485:635–641. https://doi.org/10.1038/nature11119 PMID: 22660326

61. Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015; 12: 357–360. https://doi.org/10.1038/nmeth.3317 PMID: 25751142

62. Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010; 11: R106. https://doi.org/10.1038/gb-2010-11-10-r106 PMID: 20979621

63. Du Z, Zhou X, Ling Y, Zhang Z, Su Z. agrigo: a GO analysis toolkit for the agricultural community. Nucleic Acids Res. 2010; 38: W64–W70. https://doi.org/10.1093/nar/gkq310 PMID: 20435677

64. Fei Z, Joung JG, Tang X, Zheng Y, Huang M, Lee JM, et al. Tomato functional genomics database: a comprehensive resource and analysis package for tomato functional genomics. Nucleic Acids Res. 2011; 39: D1156–D1163. https://doi.org/10.1093/nar/gkq991 PMID: 20965973

65. Zheng Y, Jiao C, Sun H, Rosli HG, Pombo MA, Zhang P, et al. iTAK: a program for genome-wide prediction and classification of plant transcription factors, transcriptional regulators, and protein kinases. Mol Plant 2016; 9: 1667–1670. https://doi.org/10.1016/j.molp.2016.09.014 PMID: 27717919

66. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990; 215: 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2 PMID: 2231712

67. Fernandez-Pozo N, Menda N, Edwards JD, Saha S, Teclle IY, Strickler SR, et al. The Sol Genomics Network (SGN) from genotype to phenotype to breeding. Nucleic Acids Res. 2015; 43: D1036–D1041. https://doi.org/10.1093/nar/gku1195 PMID: 25428362

68. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2018. Available from: https://www.R-project.org/;