Application of Eckart-Hellmann potential to study selected diatomic molecules using Nikiforov-Uvarov-Functional Analysis (NUFA) method

E. P. Inyang1,2, E. S. William2, E. Omugbe3, E. P. Inyang2, E.A.Ibanga1, F.Ayedun1, I.O.Akpan2 and J.E.Ntibi2

1Department of Physics, National Open University of Nigeria, Jabi, Abuja
2Theoretical Physics Group, Department of Physics, University of Calabar, P.M.B 1115, Calabar, Nigeria
3Department of Physics, Federal University of Petroleum Resources, Effurun, Delta State, Nigeria

Corresponding author email: etidophysics@gmail.com OR einyang@noun.edu.ng

Abstract
The energy levels of the Schrödinger equation under the Eckart-Hellmann potential (EHP) energy function are studied by the Nikiforov-Uvarov-Functional Analysis (NUFA) method. We obtained the analytic solution of the energy spectra and the wave function in closed form with the help of Greene-Aldrich approximation. The numerical bound states energy for various screening parameters at different quantum states and vibrational energies of EHP for CuLi, TiH, VH, and TiC diatomic molecules were computed. Four particular cases of this potential were achieved. To test the accuracy of our results, we computed the bound states energy eigenvalues of Hellmann potential which are in excellent agreement with the report of other researchers.

Keywords: Schrödinger equation; Nikiforov-Uvarov-Functional Analysis (NUFA) method; Eckart-Hellmann potential; diatomic molecule; Greene-Aldrich approximation

1. Introduction
The analytical methods for solving bound state problems that arise in physics and their applications have received much attention over the years. The development of these methods allows one to derive the analytic eigen-solutions of the relativistic and non-relativistic wave equations which play a crucial role in interpreting the behavior of quantum mechanical systems. The frequently used analytical methods are the Nikiforov-Uvarov method (NU) [1-30], Asymptotic iterative method (AIM) [31], Laplace transformation approach [32], ansatz solution method [33], super-symmetric quantum mechanics approach (SUSYQM) [34,35], exact and proper quantization methods [36,37], series expansion method [38-45], the recent study via the Heun function approach has been used widely to study those soluble quantum systems which could not be solved before, e.g. the systems including the Mathieu potential, rigid rotor problem, sextic type problem, Konwent potential and others[46-54] The Schrödinger equation (SE) can be studied for different quantum–mechanical processes with the above analytical methods [55-58]. The analytical solutions to this equation with a physical potential plays an important role in our understanding of the fundamental root of a quantum system. This is because the eigenvalues and eigenfunctions contain vital information concerning the quantum system under study [59, 60]. However, the exact bound state solutions of the SE
of a number of these potentials are possible in some cases for example, Coulomb potential [61]. Obtaining the approximate solutions when the arbitrary angular momentum quantum number \(l \) is not equal to zero, one can solve the SE utilizing a reasonable approximation schemes, like the Pekeris, Greene and Aldrich, and others [62-67].

The Eckart potential [68], presented by Eckart in 1930, is a diatomic molecular potential model. Because of its significance in physics and chemical physics, numerous authors in references therein [69-74], considered the bound state solutions of the wave equations for this potential.

Hellmann potential [75], has been widely utilized by numerous authors to obtain bound state solutions in atomic, nuclear, and particle physics [76-79]. The Hellmann potential finds application in condensed matter physics [80].

As of late, many researchers have shown a great deal of interest towards the combination of at least two potentials. The essence of joining at least two physical potential models is to take into account more physical application and comparative analysis to existing investigations of molecular physics [81-85].

With this in mind, we aim at obtaining the approximate bound state analytical solutions to the SE with the Eckart plus Hellmann potential using Nikiforov-Uvarov-Functional Analysis (NUFA) method. The obtained energy equation will be applied to study the energy spectra of some selected diatomic molecules. The combined potential takes the form [68,75]

\[
V(r) = -\frac{A e^{-\alpha r}}{1 - e^{-\alpha r}} + \frac{B e^{-\alpha r}}{(1 - e^{-\alpha r})^2} - \frac{C}{r} + \frac{D e^{-\alpha r}}{r},
\]

where \(A, B, C \) and \(D \) are the strength of the potential, \(\alpha \) is the screening parameter and \(r \) is inter molecular distance.

The paper is organized as follows: In Sect. 2, a brief introduction of the NUFA method is presented. In Sect. 3 we solve the SE with the EHP to obtain the energy equation and wave function. In Sect. 4, the derived energy equation will be used to obtain the numerical computation of energy eigenvalues at different states and selected diatomic molecules. In Sect. 4, we present the results and discussion. Conclusions are given in Sect. 5.

2. Nikiforov-Uvarov-Functional Analysis (NUFA) Method

Using the concepts of the NU, parametric NU and the functional analysis methods [1,86, 87], Ikot et al [88] proposed a simple and elegant method for solving a second order differential equation of the hypergeometric type called Nikiforov-Uvarov-Functional Analysis method (NUFA) method. This method is easy and simple. The NU method is used to solve a second-order differential equation of the form [1]

\[
\psi^{\prime\prime}(z) + \frac{\tilde{\tau}(z)}{\sigma(z)} \psi^{\prime}(z) + \frac{\tilde{\sigma}(z)}{\sigma^2(z)} \psi(z) = 0
\]

where \(\tilde{\sigma}(z) \) and \(\sigma(z) \) are polynomials of maximum second degree and \(\tilde{\tau}(z) \) is a polynomial of maximum first degree. Tezcan and Sever [86] latter introduced the parametric form of NU method in the form

\[
\psi^{\prime\prime} + \frac{\alpha_1 - \alpha_2}{z^2} \psi^{\prime} + \frac{1}{z^2 (1 - \alpha_2 z)^2} \left[-\xi_1 z^2 + \xi_2 z - \xi_3 \right] \psi(\xi) = 0
\]

where \(\alpha_i \) and \(\xi_i (i = 1, 2, 3) \) are all parameters. It can be observed in Eq. (3) that the differential equation has two singularities at \(z \to 0 \) and \(z \to 1 \), thus we take the wave function in the form,
\[
\psi(z) = z^{\lambda} (1 - z)^v f(z)
\]
(4)

Substituting Eq.(4) into Eq.(3) leads to the following equation,

\[
z(1 - \alpha z) f''(z) + \left[\alpha_1 + 2 \lambda - (2 \lambda \alpha_3 + 2v \alpha_3 + \alpha_2) z \right] f'(z) = 0
\]

\[
-\alpha_3 \left(\lambda + v + \frac{\alpha_2}{\alpha_3} - 1 + \sqrt{\left(\frac{\alpha_2}{\alpha_3} - 1 \right)^2 + \frac{\xi_1}{\alpha_3}} \right)
\]

\[
\times \left(\lambda + v + \frac{\alpha_2}{\alpha_3} - 1 + \sqrt{\left(\frac{\alpha_2}{\alpha_3} - 1 \right)^2 + \frac{\xi_1}{\alpha_3}} \right) f(z) = 0
\]

(5)

Equation (5) can be reduced to a Gauss hypergeometric equation if and only if the following functions are gone,

\[
\lambda(\lambda - 1) + \alpha_1 \lambda - \xi_3 = 0
\]

(6)

\[
\alpha_2 v - \alpha_1 \alpha_3 v + v(v - 1) \alpha_3 - \frac{\xi_1}{\alpha_3} + \xi_2 - \xi_3 \alpha_3 = 0
\]

(7)

Thus Eq.(5) becomes

\[
z(1 - \alpha_3 z) f''(z) + \left[\alpha_1 + 2 \lambda - (2 \lambda \alpha_3 + 2v \alpha_3 + \alpha_2) z \right] f'(z) = 0
\]

\[
-\alpha_3 \left(\lambda + v + \frac{\alpha_2}{\alpha_3} - 1 + \sqrt{\left(\frac{\alpha_2}{\alpha_3} - 1 \right)^2 + \frac{\xi_1}{\alpha_3}} \right)
\]

\[
\times \left(\lambda + v + \frac{\alpha_2}{\alpha_3} - 1 + \sqrt{\left(\frac{\alpha_2}{\alpha_3} - 1 \right)^2 + \frac{\xi_1}{\alpha_3}} \right) f(z) = 0
\]

(8)

Solving Eqs. (6) and (7) gives Eqs. (9) and (10),

\[
\lambda = \frac{(1 - \alpha_1)}{2} \pm \frac{1}{2} \sqrt{(1 - \alpha_1)^2 + 4 \xi_3}
\]

(9)

\[
v = \frac{\left(\alpha_3 + \alpha_1 \alpha_3 - \alpha_2 \right) \pm \sqrt{\left(\alpha_3 + \alpha_1 \alpha_3 - \alpha_2 \right)^2 + \left(\frac{\xi_1}{\alpha_3} + \alpha_3 \xi_3 - \xi_2 \right)}}{2}
\]

(10)

Equation (8) is the hypergeometric equation type of the form,
\[x(1-x)f''(x) + \left[c + (a+b+1)x \right]f'(x) - abf(x) = 0 \]

(11)

Using Eqs.(4),(8) and (11), we obtain the energy equation and the corresponding wave equation respectively for the NUFA method as follows:

\[
\lambda^2 + 2\lambda \left(v + \frac{\alpha_2}{\alpha_3} - 1 + \frac{n}{\sqrt{\alpha_3}} \right) + \left(v + \frac{\alpha_2}{\alpha_3} - 1 + \frac{n}{\sqrt{\alpha_3}} \right)^2 - \left(\frac{\alpha_3}{\alpha_3} - 1 \right)^2 - \frac{\xi}{\alpha_3^2} = 0
\]

(12)

\[\psi(z) = N_z \left(1 - \alpha_1 \right) + \sqrt{1 - \alpha_1}^2 + 4\xi_3 \]

(13)

\[\times (1 - \alpha_3 z) \left(\alpha_3 + \alpha_3 - \alpha_2 \right) \pm \sqrt{\left(\alpha_3 + \alpha_3 - \alpha_2 \right)^2 + \left(\frac{\xi_3}{\alpha_3} + \alpha_3 \xi_3 - \xi_2 \right)} \times F_1(a,b,c;z) \]

where \(a, b, \) and \(c \) are given as follows;

\[a = \sqrt{\alpha_3} \left(\lambda + v + \frac{\alpha_2}{\alpha_3} - 1 + \sqrt{\left(\frac{\alpha_2}{\alpha_3} - 1 \right)^2 + \frac{\xi}{\alpha_3}} \right) \]

(14)

\[b = \sqrt{\alpha_3} \left(\lambda + v + \frac{\alpha_2}{\alpha_3} - 1 - \sqrt{\left(\frac{\alpha_2}{\alpha_3} - 1 \right)^2 + \frac{\xi}{\alpha_3}} \right) \]

(15)

\[c = \alpha_1 + 2\lambda \]

(16)

3. Approximate solutions of the Schrödinger equation with Eckart plus Hellmann potential

The SE takes the form [2]

\[\frac{d^2 U(r)}{dr^2} + \left[\frac{2\mu}{\hbar^2} \left(E_{nl} - V(r) \right) - \frac{l(l+1)}{r^2} \right] U(r) = 0 \]

(17)

\(E_{nl} \) is the energy eigenvalues of the quantum system, \(l \) is the angular momentum quantum number, \(\mu \) is the reduced mass of the system, \(\hbar \) is the reduced Planck’s constant and \(r \) is radial distance from the origin.

Equation (17) cannot be solved exactly with the proposed potential. So we introduce an approximation scheme proposed by Greene-Aldrich [62] to deal with the centrifugal barrier. This approximation is a good approximation to the centrifugal term which is valid for \(\alpha << 1 \), and it becomes

\[\frac{1}{r^2} \approx \frac{\alpha^2}{(1 - e^{-ar})^2} \]

(18)

Substituting Eqs. (1) and (18) into Eq.(17), Eq.(19) is obtain as;

\[\frac{d^2 F_1(a,b,c;z)}{dz^2} + \left[\frac{2\mu}{\hbar^2} \left(E_{nl} - V(z) \right) - \frac{l(l+1)}{z^2} \right] F_1(a,b,c;z) = 0 \]
\[
\frac{d^2 U(r)}{dr^2} + \left[\frac{2 \mu}{\hbar^2} \left(E_{nl} - \frac{Ae^{-ar}}{1-e^{-ar}} - \frac{Be^{-ar}}{(1-e^{-ar})^2} + \frac{C \alpha}{1-e^{-ar}} - \frac{De^{-ar}}{1-e^{-ar}} \right) + \frac{l(l+1)\alpha^2}{(1-e^{-ar})^2} \right] U(r) = 0
\] (19)

By using the change of variable from \(r \to x \), our new coordinate becomes
\[
x = e^{-ar}.
\] (20)

We substitute Eq. (20) into Eq. (19) and after some simplifications; Eq. (21) is gotten as,
\[
\frac{d^2 U(x)}{dx^2} + \frac{1-x}{x(1-x)} \frac{dU(x)}{dx} + \frac{1}{x^2(1-x)} \left[-(e - \beta_0 - \beta_3)x^2 + (2e - \beta_0 + \beta_1 - \beta_2 - \beta_3)x - (e - \beta_2 + \gamma) \right] U(x) = 0,
\] (21)

where
\[
-e = \frac{2 \mu E_{nl}}{\alpha^2 \hbar^2}, \quad \beta_0 = \frac{2 \mu A}{\alpha^2 \hbar^2}, \quad \beta_1 = \frac{2 \mu B}{\alpha^2 \hbar^2}, \quad \beta_2 = \frac{2 \mu C}{\alpha^2 \hbar^2}, \quad \beta_3 = \frac{2 \mu D}{\alpha^2 \hbar^2}, \quad \gamma = l(l+1).
\] (22)

Comparing Eq. (21) and Eq. (3), we obtain the relevant polynomials as:
\[
\alpha_1 = \alpha_2 = \alpha_3 = 1, \xi_1 = e - \beta_0 - \beta_3, \xi_2 = 2e - \beta_0 + \beta_1 - \beta_2 - \beta_3, \xi_3 = e - \beta_2 + \gamma
\] (23)

Inserting the polynomials given by Eq. (23) into Eqs. (9) and (10), we have
\[
\lambda = \sqrt{4(e - \beta_2 + \gamma)} \quad \text{(24)}
\]
\[
v = \frac{1}{2} \pm \sqrt{1 + 4(\gamma - \beta_1)} \quad \text{(25)}
\]

Substituting Eqs. (23), (24), (25) and (22) into Eq. (12), we obtain the energy equation of the EHP as;
\[
E_{nl} = \frac{\alpha^2 \hbar^2 (l+l^2)}{2 \mu} - A - C \alpha - \frac{\hbar^2 \alpha^2}{8 \mu} \left[\frac{n+1}{2} + \frac{1}{4} \frac{2B \mu}{\alpha^2 \hbar^2} + (l+l^2) \right]^2 - \frac{2A \mu}{\alpha^2 \hbar^2} - \frac{2B \mu}{\alpha^2 \hbar^2} + \frac{2C \mu}{\alpha^2 \hbar^2} + \frac{2D \mu}{\alpha^2 \hbar^2} + (l+l^2) \quad \text{(26)}
\]

3.1 Particular case

To test for the accuracy of our results, we set some parameters in Eqs. (1) and (26) to zero and obtain four particular cases of potential and energy equation.

1. We set \(A = B = 0 \) and obtain the Hellmann potential and its energy equation as shown in Eqs. (27) and (28)
\[V(r) = -\frac{C}{r} + \frac{D e^{-ar}}{r}. \]
\[(27) \]

\[E_{nl} = \frac{\alpha^2 \hbar^2 (l + l^2)}{2\mu} - C\alpha - \frac{\hbar^2 \alpha^2}{8\mu} \left[n + \frac{1}{2} + \sqrt{\frac{1}{4} + (l + l^2)} \right]^2 \frac{2C\mu + 2D\mu}{\alpha^2 \hbar^2 + (l + l^2)} \]
\[(28) \]

Equation (28) is in agreement with Eq. (38) of Ref. [77]

2. We set \(C = D = 0 \) and obtain the Eckart potential and its energy equation in the form of Eqs. (29) and (30)

\[V(r) = -\frac{A e^{-ar}}{1-e^{-ar}} + \frac{B e^{-ar}}{(1-e^{-ar})^2}. \]
\[(29) \]

\[E_{nl} = \frac{\alpha^2 \hbar^2 (l + l^2)}{2\mu} - A - \frac{\hbar^2 \alpha^2}{8\mu} \left[n + \frac{1}{2} + \sqrt{\frac{1}{4} + (l + l^2)} \right]^2 \frac{2A\mu + 2B\mu}{\alpha^2 \hbar^2 + (l + l^2)} \]
\[(30) \]

3. We set \(A = B = D = \alpha = 0 \), the Coulomb potential and its energy equation in the form of Eqs. (31) and (32) is obtain

\[V(r) = -\frac{C}{r}. \]
\[(31) \]

\[E_{nl} = -\frac{\mu C^2}{2\hbar^2 (n_r + l + 1)^2} \]
\[(32) \]

Where \(n_r + l + 1 = n \) is the principal quantum number.

The result of Eq. (32) is consistent with the result obtained in Eq. (36) in Ref. [21]

4. We set \(A = B = C = 0 \), the Yukawa potential and its energy equation of the form of Eqs. (33) and (34) is obtain

\[V(r) = \frac{D e^{-ar}}{r}. \]
\[(33) \]
The result of Eq. (34) is consistent with the result obtained in Eq. (38) in Ref. [24]

The corresponding wavefunction is given as

\[\psi(x) = N \frac{\sqrt{4(\varepsilon - \beta_2 + \gamma)}}{2} (1 - z) \sqrt{4(4(\gamma - \beta_1))} \text{F}_1(a, b, c; z) \] (35)

where,

\[a = \sqrt{4(\varepsilon - \beta_2 + \gamma)} + \frac{1}{2} \pm \sqrt{1 + 4(\gamma - \beta_1) + \varepsilon - \beta_0 - \beta_3} \] (36)

\[b = \sqrt{4(\varepsilon - \beta_2 + \gamma)} + \frac{1}{2} \pm \sqrt{1 + 4(\gamma - \beta_1) - \varepsilon - \beta_0 - \beta_3} \] (37)

\[c = 1 + 2\sqrt{4(\varepsilon - \beta_2 + \gamma)} \] (38)
4. Results and discussion

To test the accuracy of our results, we computed the bound states energy eigenvalues of EHP with $\hbar = \mu = 1$ using arbitrary potential parameters as presented in table 1. The result shows, as the screening parameter and potential strength increases, there is a decrease in energy eigenvalues at different quantum states. We apply the experimental data obtained from Ref. [89] as presented in table 2 and also, adopted the conversions: $1 \text{amu} = 931.494028 \text{ MeV}/c^2$ and $\hbar c = 1973.29 \text{ eV} \text{A}$ [90] to compute the vibrational energies of EHP for CuLi, TiH, VH, and TiC diatomic molecules using Eq. (26). The numerical computation is given in Tables 3. It is observed that for each vibrational quantum number, the vibrational energies increase with increase in the rotational quantum number, for each of the selected diatomic molecules.

The numerical energy eigenvalues for Hellmann potential is also computed to check for the accuracy of the NUFA method as presented in Table 4. The result is in good agreement with the earlier results of Ref. [76] with NU, AP, and SUSY method of [77] and PT method of [78].

From Figs. 1(a) and (b) – Figs. 4(a) and (b) respectively, we plotted the ground and excited states energy eigenvalues of the different quantum states as a function of the EHP strengths, respectively. We observed that there is a decrease in energy in both the ground and excited states as the potential strength, A, B, C and D increases, respectively. In Fig. 5(a) and 5(b), we plotted the energy eigenvalues of EHP versus the screening parameter. Here, the energy increases for $\ell = 0, 1, 2$ and 3 in the ground states and decreases in $\ell = 4$, as the screening parameter increases. We also observed increase in energy for $\ell = 0, 1, 2$ and decrease in $\ell = 3$ and 4 as the screening parameter increases in the excited states.

State	α	$A = 0.01, B = 0.5,$	$A = 0.005, B = 0.25,$	$A = 0.0025, B = 0.125,$
		$C = 1, D = -1$	$C = 2, D = -2$	$C = 4, D = -4$
1s	0.025	-0.5263521625	-0.3104395873	-0.3041019021
	0.050	-0.5563594522	-0.3923969578	-0.6301704138
	0.075	-0.5898519860	-0.4938113093	-1.081923010
	0.100	-0.6266198628	-0.6127403461	-1.640204160
	0.150	-0.709198628	-0.8960512898	-3.009546904
2s	0.025	-0.5278462720	-0.3134850809	-0.3064758005
	0.050	-0.5622260539	-0.4015176484	-0.6147211738
	0.075	-0.6021935108	-0.5081767351	-1.004551117
	0.100	-0.6469257426	-0.6289588255	-1.445599734
	0.150	-0.7480659625	-0.8999476994	-2.405459656
2p	0.025	-0.5257258961	-0.3097912239	-0.3031052053
--------	-------	---------------	---------------	---------------
	0.050	-0.5538354335	-0.3895266085	-0.6221624598
	0.075	-0.5841024422	-0.4863981654	-1.050909737
	0.100	-0.6162307409	-0.5974170774	-1.557847309
	0.150	-0.6848372934	-0.8500952692	-2.695002862
3s	0.025	-0.5298392842	-0.3168335532	-0.3091243145
	0.050	-0.5696640174	-0.4113242511	-0.6050340761
	0.075	-0.6173762645	-0.5240248324	-0.9557836844
	0.100	-0.6713937028	-0.6488631591	-1.331376322
	0.150	-0.7939098630	-0.9203977116	-2.099855330
3p	0.025	-0.5272195493	-0.3128354399	-0.3055088368
	0.050	-0.5596966036	-0.3986642162	-0.6077677944
	0.075	-0.5964276548	-0.5009934106	-0.9806451254
	0.100	-0.6365166896	-0.6146925374	-1.388641432
	0.150	-0.7238605000	-0.8612543564	-2.224098580
3d	0.025	-0.5244733721	-0.3084983299	-0.3011225088
	0.050	-0.5487880544	-0.3838064758	-0.606747212
	0.075	-0.5726108402	-0.4717847684	-0.9945628778
	0.100	-0.5954927171	-0.5678320312	-1.419102816
	0.150	-0.6365278213	-0.7672835076	-2.251887755
4s	0.025	-0.5323000579	-0.3204668349	-0.3120277371
	0.050	-0.5785157811	-0.4218033616	-0.5996463159
	0.075	-0.6350697965	-0.5413329210	-0.9254852509
	0.100	-0.6995504645	-0.6720273560	-1.263244881
	0.150	-0.8462213682	-0.9524357106	-1.93504414
4p	0.025	-0.5292122102	-0.3161831200	-0.3081839761
	0.050	-0.5671318525	-0.4084922092	-0.5988699390
	0.075	-0.6116097382	-0.5170512012	-0.9364831796
	0.100	-0.6610134522	-0.6354309818	-1.288956165
	0.150	-0.7700398596	-0.8863990934	-1.980709322
Table 2. Parameters of selected diatomic molecules used in this study [89]

Molecules	μ (MeV)	$\alpha (\text{amu}^{-1})$	μ (amu)
VH	0.09203207571	1.44370	0.988005
TiH	0.09197301899	1.32408	0.987371
TiC	0.8948005221	1.52550	9.606079
CuLi	0.58306812793	1.00818	6.259494

Table 3. Bound state energy spectra $E_n(l)$ (eV) of the Eckart plus Hellmann potential for VH, TiH, TiC and CuLi diatomic molecules

n	l	$E_n(l)$ (eV) of VH	$E_n(l)$ (eV) of TiH	$E_n(l)$ (eV) of TiC	$E_n(l)$ (eV) of CuLi
0	0	-4.388393324	-3.995461324	-4.687262254	-3.014649864
0	1	-4.363576420	-3.976536942	-4.684013156	-3.013313002
0	2	-4.315482766	-3.939708307	-4.677541581	-3.01064546
0	3	-4.246835875	-3.886588443	-4.667899981	-3.00654929
0	4	-4.160974946	-3.819343691	-4.655165101	-3.001359541
0	5	-4.061278595	-3.740228732	-4.639435781	-2.994778429
1	0	-4.351517256	-3.974290474	-4.66595573	-3.015347165
1	1	-4.329538507	-3.957243671	-4.662501668	-3.01402854
1	2	-4.286754140	-3.923883123	-4.656337945	-3.011439114
1	3	-4.225253356	-3.875536963	-4.647151876	-3.007545617
1	4	-4.147627936	-3.813899190	-4.635012960	-3.002376632
1	5	-4.056543954	-3.740778524	-4.620010768	-2.995950756
2	0	-4.330562184	-3.964109406	-4.646784709	-3.016648024
2	1	-4.310755837	-3.948515786	-4.643830791	-3.015373953
2	2	-4.272055607	-3.917910429	-4.637944814	-3.012830346
2	3	-4.216096257	-3.873352684	-4.629169881	-3.009026184
2	4	-4.144926129	-3.816204629	-4.617569118	-3.003974719
2	5	-4.060681968	-3.747937031	-4.603223944	-2.997693235
3	0	-4.32179419	-3.962583306	-4.630535913	-3.018511506
3	1	-4.303698065	-3.948159012	-4.627708751	-3.017265610
Table 4. Comparison of energy eigenvalues (eV) for a special case of Hellmann potential as a function of the screening parameter α with $\hbar = 2\mu = 1$ for $A = B = 0$, $B = 2$, and $D = -1$

State	α	Present method	(NU) [76]	(AP) [77]	(PT) [78]
1S	0.001	-2.250500250	-2.250 500	-2.248 981	-2.249 00
	0.005	-2.252506250	-2.252 506	-2.244 993	-2.245 01
	0.01	-2.255025000	-2.255 025	-2.240 030	-2.240 05
2S	0.001	-0.563001000	-0.563 001	-0.561 502	-0.561 502
	0.005	-0.565025000	-0.565 025	-0.557 549	-0.557 550
	0.01	-0.567600000	-0.567 600	-0.552 697	-0.552 697
2P	0.001	-0.562250250	-0.563 000	-0.561 502	-0.561 502
	0.005	-0.561256250	-0.565 000	-0.557 541	-0.557 541
	0.01	-0.560625000	-0.567 500	-0.552 664	-0.552 664
3S	0.001	-0.250502250	-0.250 502	-0.249 004	-0.249 004
	0.005	-0.252556250	-0.252 556	-0.245 110	-0.245 111
	0.01	-0.255225000	-0.255 225	-0.240 435	-0.240 435
3p	0.001	-0.2501680278	-0.250 501	-0.249 004	-0.249 004
	0.005	-0.2508673611	-0.252 531	-0.245 102	-0.245 103
	0.01	-0.2518027778	-0.255 125	-0.240 404	-0.240 404
3d	0.001	-0.249500250	-0.250 833	-0.249 003	-0.249 003
	0.005	-0.247506250	-0.254 151	-0.245 086	-0.245 086
	0.01	-0.245025000	-0.258 269	-0.240 341	-0.240 341
4S	0.001	-0.1411290000	-0.141 129	-0.139 633	-0.139 633
FIGURE 1(a). Variation of the ground state energy spectra for various l as a function of α.

(b). The plot of the first excited state energy spectra for different l as a function of α. We choose $A = 1$, $B = -1$, $C = 4$, $D = -4$ and $\alpha = 0.025$ for the ground and excited states.

	0.005	-0.1432250000	-0.143 225	-0.135 819	-0.135 819
	0.01	-0.1460250000	-0.146 025	-0.131 380	-0.131 381
4p					
	0.001	-0.1409405625	-0.141 128	-0.139 632	0.139 633
	0.005	-0.1422640625	-0.143 200	-0.135 811	0.135 811
	0.01	-0.1440562500	-0.145 925	-0.131 350	-0.131 351
4d					
	0.001	-0.1405640625	-0.141 314	-0.139 632	-0.139 632
	0.005	-0.1403515625	-0.144 089	-0.135 795	-0.135 796
	0.01	-0.1401562500	-0.147 606	-0.131 290	-0.131 290
4f					
	0.001	-0.14000002500	-0.141 686	-0.139 631	-0.139 631
	0.005	-0.1375062500	-0.145 902	-0.135 772	-0.135 772
	0.01	-0.1344000000	-0.151 106	-0.131 200	-0.131 200
FIGURE 2(a). Variation of the ground state energy spectra for various l as a function of b. (b) A plot of the first excited state energy spectra for various l as a function of b. We choose $A = 1$, $B = -1$, $C = 4$, $D = -4$ and $\alpha = 0.025$ for the ground and excited states.

FIGURE 3(a). Variation of the ground state energy spectra for various l as a function of c. (b) The plot of the first excited state energy spectra for various l as a function of c. We choose $A = 1$, $B = -1$, $C = 4$, $D = -4$ and $\alpha = 0.025$ for the ground and excited states.
FIGURE 4(a). Variation of the ground state energy spectra for various l as a function of d.
(b). The plot of the first excited state energy spectra for various l as a function of d. We choose $A = 1, B = -1, C = 4, D = -4$ and $\alpha = 0.025$ for the ground and excited states.

FIGURE 5(a). Variation of the ground state energy spectra for various l as a function of the screening parameter α.
(b). A plot of the first excited state energy spectra for different l as a function of the screening parameter α. We choose $A = 1, B = -1, C = 4, D = -4$ and $\alpha = 0.025$ for the ground and excited states.

5. Conclusion
In this research, the bound state solutions to the Schrödinger equation with EHP have been studied within the Greene-Aldrich approximation scheme. The eigenvalues and the eigen functions are obtained using the NUFA method. We then apply the energy equation for four diatomic molecules by imputing the experimental values of each molecular parameter. The results show that the bound state energy spectra of these diatomic molecules increases as various quantum numbers \(n \) and \(l \) increase. To test the accuracy of our results, we computed the bound states energy (eV) eigenvalues of EHP and Hellmann potential which agree with the report of other researchers. We plotted the ground and excited states energy eigenvalues of the different quantum states as a function of the EHP strengths, respectively. We observed that there is a decrease in energy in both the ground and excited states as the potential strength increases.

References
1. S.K. Nikiforov, and V.B. Uvarov. Special functions of mathematical Physics (Birkhauser, Basel, 1988)
2. E.P.Inyang, E.P.Inyang, I.O.Akpan, J.E.Ntibi, and E.S.William, Masses and thermodynamic properties of a Quarkonium system. Canadian J. Phys. (2021) https://doi.org/10.1139/cjp-2020-0578
3. I.O.Akpan, E.P. Inyang, E.P.Inyang, and E.S.William, Approximate solutions of the Schrödinger equation with Hulthen-Hellmann Potentials for a Quarkonium system. Rev. Mex. Fis. 67 (2021) 490.
4. E.P. Inyang, E. P. Ntibi, E.E.Ibekwe and E. S.William, Analytical study on the Applicability of Ultra Generalized Exponential Hyperbolic potential to predict the mass spectra of the Heavy Mesons (2021) arXiv:2101.06389[hep-ph]
5. J. E. Ntibi, E. P. Inyang, E. P. Inyang and E. S. William, Relativistic Treatment of D-Dimensional Klien-Gordon equation with Yukawa potential. International Journal of Innovative & Engineering Technology 11 (2020) 2432.
6. M.Abu-Shady,C.O.Edet and A.N.Ikot,Non-relativistic Quark model under external magnetic and Aharanov-Bohm(AB) fields in the Presence of temperature-dependent confined Cornell potential. Can. J. Phys. (2021) Doi:10.1139/cjp-2020-0101
7. E. S. William, J. A. Obu, I. O. Akpan, A. A. Thompson and E. P. Inyang, Analytical Investigation of the Single-particle energy spectrum in Magic Nuclei of \(^{56}\text{Ni}\) and \(^{116}\text{Sn}\). European Journal of Applied Physics 2 (2020) 28
8. E. S. William, E. P. Inyang, and E. A. Thompson, Arbitrary \(\ell \)-solutions of the Schrödinger equation interacting with Hulthén-Hellmann potential model. Rev. Mex. Fisi. 66 (2020)730.
9. C. M. Ekpo, E. P. Inyang, P. O. Okoi, T. O. Magu, E. P. Agbo, K. O. Okorie, and E. P. Inyang, New Generalized Morse-Like Potential for studying the atomic interaction in diatomic molecules. https://arXiv:2012.02581[quant-ph].(2020)
10. O. Ekwevugbe, Thermodynamic properties and Bound state solutions of Schrödinger equation with Mobius square plus screened-Kratzer potential using Nikiforov-Uvarov method, Computational and Theoretical Chemistry (2020) Doi:10.1016/j.comptc.2020.113132
11. M. Abu-Shady, N-dimensional Schrödinger equation at finite temperature using the Nikiforov-Uvarov method” Journal of Egyptian Mathematical Society 23 (2016) 4.
12. P.O. Okoi, C. O. Edet, and T.O. Magu, Relativistic treatment of the Hellmann generalized Morse potential, Rev. Mex. Fisi. 66 (2020) 1.
13. C. O. Edet, and P.O. Okoi, Any \(l \)-state solutions of the Schrödinger equation for q-deformed Hulthen plus generalized inverse quadratic Yukawa potential in arbitrary dimensions”, Rev. Mex. Fisi., 65 (2019) 333.
14. E. P. Inyang, E. S. William and J.A.Obu, Eigensolutions of the N-dimensional Schrödinger equation` interacting with Varshni-Hulthen potential model, Rev. Mex. Fisi. 67 (2021) 193.
15. E. P. Inyang, J. E. Ntibi, E.A.Ibanga, F. Ayedun, E. P. Inyang, E.E.Ibekwe, E. S. William and I.O. Akpan. Thermodynamic properties and mass spectra of a quarkonium system with Ultra Generalized Exponential-Hyperbolic potential. Communication in Physical Science, 7, (2021)114.

16. E.P.Inyang, B.I.Ita and E.P.Inyang, Relativistic treatment of Quantum mechanical Gravitational-Harmonic Oscillator potential. European Journal of Applied Physics, 3, (2021)42.

17. E.P.Inyang, E. P., Inyang, J.E. Ntibi, E.E. Ibekwe, and E.S. William, Analytical study on the Applicability of Ultra Generalized exponential Hyperbolic potential to predict the mass spectra of the heavy mesons. (2021). http://arxiv.org/abs/2101.06389

18. E.P.Inyang, E.P. Inyang, E. S. William and E.E. Ibekwe, Study on the applicability of Varshni potential to predict the mass-spectra of the Quark-Antiquark systems in a non-relativistic framework. Jord. J. Phys. 14 (2021)345.

19. P.Nwabuzor, C.Edet, A. Ndemikot, U.Okorie, M.Ramantswana, R.Horchani, A.Abdel-Aty and G.Rampho, Analyzing the effects of Topological defect(TD) on the Energy Spectra and Thermal Properties of LiH,TiC and I₂ Diatomic molecules. Entropy 23, (2021)1060.

20. E.P. Inyang, E.P. Inyang, J. E. Ntibi, E. E. Ibekwe, and E. S. William, Approximatve solutions of D-dimensional Klein-Gordon equation with Yukawa potential via Nikiforov-Uvarov method. Ind. J. Phys. (2021) 01933

21. C. O. Edet, U. S. Okorie, A. T. Ngiangia, and A. N. Ikot, Bound state solutions of the Schrödinger equation for the modified Kratzer plus screened Coulomb potential. Ind. J. Phys. 94 (2020) 423.

22. M. Abu-Shady, N-dimensional Schrödinger equation at finite temperature using the Nikiforov-Uvarov method Journal of Egyptian Mathematical Society 23, (2016) 4.

23. P.O.Okoi, C.O. Edet, and T.O. Magu, Relativistic treatment of the Hellmann generalized Morse potential. Rev. Mex. Fis. 66, (2020)10.

24. C. O. Edet, P. O. Okoi, A. S. Yusuf, P. O. Oshie, and P. O. Amadi,. Bound state solutions of the generalized shifted Hulthen potential. Ind. J. Phys (2020)10.

25. A.N.Ikot, C.O.Edet, P.O.Amadi, U.S.Okorie, G.J.Rampho, and H.Y.Abdullah, Thermodynamic function for diatomic molecules with modified Kratzer plus screened Coulomb potential. Ind. J. Phys.159 (2020)11.

26. O. Ekwevugbe, Non-relativistic eigensolutions of molecular and heavy quarkonia interacting potentials via the Nikiforov-Uvarov method, Can. J.Phys.(2020) Doi:10.1139/cjp-2020-0039

27. C.O.Edet, P.O.Okoi, and S.O.Chima, Analytic solutions of the Schrödinger equation with non-central generalized inverse quadratic Yukawa potential. Revista Brasileira de Ensino de Física. pp (2019) 1-9.

28. L. Hitler ,B.I. Ita, T.O.Magu, O.U.Akakuru, N.A.Nzeata-Ibe, A.I.Keuba, A.I.Pigweh, C.O.Edet, Solutions to the Dirac Equation for Manning-Rosen Plus Shifted Deng-Fan Potential and CoulombLike Tensor Interaction Using Nikiforov-Uvarov Method. Intl. J. Chem. 10(2018) 99

29. A.I.Ahmadov, C.Aydin, and O.Uzun, Bound state solution of the Schrödinger equation at finite temperature, J.Phys.: Conf. Series1194 (2019)012001

30. H.Hassanabadi, E.Maghsoodi, A.N.Ikot, and S.Zarrinkamar Approximate arbitrary-state solutions of Dirac equation for modified deformed Hylleraas and modified Eckart potentials by the NU method. Applied Mathematics and Computation 219(17) (2013)9398

31. S.B.Rani, S. Bhardwaj, and F. Chand, Mass Spectra of Heavy and Light Mesons Using Asymptotic Iteration Method,Commu.Theo. Phys. 70 (2018)179

32. M. Abu-Shady, T. A. Abdel-Karim, and E. M. Khokha, Exact Solution of the N-dimensional Radial Schrödinger Equation via Laplace Transformation Method with the Generalized Cornell Potential, Sci Fed Journal of Quantum Physics, 2 (2018)1

33. S.H. Dong, The Ansatz Method for Analyzing Schrödinger’s Equation with Three Anharmonic Potentials in D Dimensions. Foundations of Physics Letters 15 (2002)395
34. F. Cooper, A. Khare, and U. Sukhatme, Supersymmetry and quantum mechanics, Physics Reports, 251 (1995) 385
35. M. Abu-Shady and A. N. Ikot, Analytic solution of multi-dimensional Schrödinger equation in hot and dense QCD media using the SUSYQM method. The European Physical Journal Plus, 134 (2019) 7. doi:10.1140/epjp/i2019-12685-y
36. S.H. Dong, Exact and Proper Quantization Rules and Langer Modification. In: Wave Equations in Higher Dimensions. Springer, Dordrecht. (2011) 1917
37. E. P. Inyang, E. P. Inyang, E. S. William, E. E. Ibekwe, and I.O.Akpan, Analytical solution of multi-dimensional Schrödinger equation in hot and dense QCD media using the SUSYQM method. The European Physical Journal Plus, 134 (2019) 7. doi:10.1140/epjp/i2019-12685-y
38. S.H. Dong, Exact and Proper Quantization Rules and Langer Modification. In: Wave Equations in Higher Dimensions. Springer, Dordrecht. (2011) 1917
39. E.P.Inyang, E.P.Inyang, J.E.Ntibi, and E.S.William, Analytical solutions of the Schrödinger equation with class of Yukawa potential for a quarkonium system via series expansion method, EJ. Physics. 2 (2020) 26.
40. M. Abu-Shady, and H.M. Fath-Allah, The effect of extended Cornell potential on heavy and heavy-light meson masses using series method. Journal of the Egyptian mathematical society, 23, (2019)165.
41. E.E.Ibekwe, T.N.Alalibo, S.O.Uduakobong, A.N.Ikot and N.Y.Abdullah, Bound state solution of radial Schrödinger equation for the quark-antiquark interaction potential. Iran Journal of Science Technology 20(2020)00913.
42. A. Chouikh,T. Said, and M. Bennai, Alternative Approach for Quantum Computation in a cavity QED. Quant.Phys.Lett. 6 (2017) 65.
43. Q.Dong,A.J.Torres-Arenas,G-H.Sun,O.Camacho-Nieto,S.Femmam and S-H. Dong, Exact solutions of the sine hyperbolic type potential. J.Math.Chem.57(8) (2019)1924
44. Q.Dong, G-H. Sun,M.A.Aoki,C-Y.Chen and S-H.Dong, Semi-exact solutions of a quartic potential. Mod.Phys.Lett.A 34(26), (2019) 1950208.
45. Q.Dong, G-H. Sun,J.Jing and S-H.Dong, New findings for two new type sine hyperbolic potentials. Phys.Lett.A 383(2-3), (2019) 270.
46. Q. Dong, H.I.G.Hernandez,G-H.Sun,M.Toutounji and S-H,Dong,Exact solutions of the harmonic oscillator plus non-polynomial interaction.Proceedings of the Royal Society A 476(2241),(2020) 20200050.
47. Q. Dong, G-H. Sun,B. He and S-H.Dong, Semi-exact solutions of sextic potential plus a centrifugal term. J.Maths.Chem. 58(10)(2020)2197.
48. C.-Y.Chan,X-H,Wang,Y.You,G-H.Sun and S-H.Dong,Exact solutions of the rigid rotor in the electric field. Int.J.Quan.Chem.120(18), (2020) e26336
49. G-H.Sun,C-Y.Chen,H.Taud,C.Yanez-Marquez, and S-H.Dong, Exact solutions of the 1D Schrodinger equation with the Mathieu potential. Phys.Lett.A 384(19)(2020)126480
50. N.Cheemaa,A.R.Seadawy and S.Chen, Some new families of solitary wave solutions of the generalized Schamel equation and their applications in plasma physics. Eur.Phys.J.Plus 134(3),(2019)117
51. Q.Dong,A.J.Torres-Arenas,G-H.Sun,O.Camacho-Nieto,S.Femmam and S-H. Dong, Exact solutions of the sine hyperbolic type potential.J.Math.Chem.57(8) (2019)1924
52. Q.Dong, G-H. Sun,M.A.Aoki,C-Y.Chen and S-H.Dong, Exact solutions of a quartic potential.Mod.Phys.Lett.A 34(26), (2019) 1950208.
53. Q. Dong, G-H. Sun,J.Jing and S-H.Dong, New findings for two new type sine hyperbolic potentials. Phys.Lett.A 383(2-3),(2019) 270.
54. Q. Dong, S.Dong,E.Hernandez-Marquez,R.Silva-Ortigoza,G-H.Sun, and S-H. Dong, Semi-exact solutions of Konwent potential. Commun.Theor. Phys.71(2), (2019)231.
Approximate Eigen Solutions of D.K.P. and Klein-Gordon Equations with Hellmann Potential, Afr. Rev. Phys, 9:0062 497 (2014), 1 – 8.
77. S. M. Ikhdair, and R. Sever, *A perturbative treatment for the bound states of the Hellmann potential*, Journal of Molecular Structure: THEOCHEM 809 (2007)113

78. M. Hamzavi, K. E. Thylwe, and A. A. Rajabi, Approximate Bound States Solution of the Hellmann Potential, *Commun Theor Phys.,* 60 (2013) 8. doi:10.1088/0253-6102/60/1/01

79. C. A. Onate, O. Ebomwonyi, K. O. Dopamu, J. O. Okoro, and M. O. Oluwayemi, Eigen solutions of the D-dimensional Schrödinger equation with inverse trigonometry scarf potential and Coulomb potential *Chin. J. Phys.,* 56 (2018)2546

80. C. O. Edet, P. O. Amadi, U. S. Okorie, A. Tas, A. N. Ikot , and G. Rampho, Solutions of Schrödinger equation and thermal properties of generalized trigonometric Poschl-Teller potential *Rev. Mex. Fis.,* 66, (2020) 824

81. C. P. Onyenegecha, U.M. Ukewuihe, A.I. Opara, C.B. Agbakwuru, C.J. Okereke, N.R. Ugochukwu, S.A. Okolie, and I. J. Njoku, Approximate solutions of Schrödinger equation for the Hua plus modified Eckart potential with the centrifugal term *Eur. Phys. J. Plus,* 135, (2020)571

82. B.I. Ita , Solutions of the Schrödinger equation with inversely quadratic Hellmann plus Mie-type potential using Nikiforov-Uvarov method. *International Journal of Recent Advances in Physics.* 2(2013)4

83. A.R. Sari, A. Suparmi, and C. Cari, Solution of Dirac equation for Eckart potential and trigonometric Manning Rosen potential using asymptotic iteration method *Chin. Phys. B,* 25, (2015)010301

84. C.A. Onate, M.C. Onyeaju, A.N. Ikot, J.O. Idiodi, and J.O. Ojonubah, Eigen solutions, Shannon entropy and fisher information under the Eckart Manning Rosen potential *J. Korean Phys. Soc.* 70,(2017) 339

85. N. Hatami, J. Naji, and M. Pananeh, Analytical solutions of the Klein-Gordon equation for the deformed generalized Deng-Fan potential plus deformed Eckart potential *Eur. Phys. J. Plus,* 134, (2019)90

86. C.Tezcan and R.Sever, A general approach for the exact solution of the Schrödinger equation *Int.J.Theor.Phys.* 48,(2009)337

87. S.H.Dong, Factorization Method in Quantum Mechanics, Fundamental Theories in Physics (Springer, 2007)

88. A.N.Ikot,U.S. Okorie, P.O.Amadi,C.O. Edet, G.J. Rampho, and R.Sever, The Nikiforov–Uvarov-Functional Analysis (NUFA) Method: A new approach for solving exponential-type potentials. Few-body syst. 62(2021)1

89. O. J. Oluwadere, and K. J. Oyewumi, Energy spectra and the expectation values of diatomic molecules confined by the shifted Deng-Fan potential *Eur. Phys. J. plus*133,(2018) 422

90. I. B. Okon, A. D. Antia, L. E. Akpabio , and B. U. Archibong, Expectation values of some diatomic molecules with Deng-Fan potential using Hellmann Feynman theorem *J. Appl Phys. Sci Intl.*10, (2018) 247