Appendix A – List of end points for the active substance and the representative formulation

Identity, Physical and Chemical Properties, Details of Uses, Further Information (Regulation (EU) N° 283/2013, Annex Part A, points 1.3 and 3.2)

Active substance (ISO Common Name)	Trifloxystrobin
Function (e.g. fungicide)	Fungicide
Rapporteur Member State	United Kingdom
Co-rapporteur Member State	Greece

Identity (Regulation (EU) N° 283/2013, Annex Part A, point 1)

Chemical name (IUPAC)	methyl \((E)\)-methoxyimino-\((1-\((\alpha,\alpha,\alpha\text{-trifluoromethyl})\text{-phenyl}\)ethylideneaminoxyl)\)-o-tolylacetate
Chemical name (CA)	methyl \((\alpha E)-\alpha-(\text{methoxyimino})\)-2-[[\((E)\)-1-\((3\text{-}(\text{trifluoromethyl})\text{-phenyl})\text{ethylidene}amino\)oxy)methyl]benzeneacetate
CIPAC No	617
CAS No	141517-21-7
EC No (EINECS or ELINCS)	Not allocated
FAO Specification (including year of publication)	An FAO specification does not exist
Minimum purity of the active substance as manufactured	975 g/kg
Identity of relevant impurities (of toxicological, ecotoxicological and/or environmental concern) in the active substance as manufactured	AE 1344136 (max. 4 g/kg).
Molecular formula	\(C_{20}H_{19}F_3N_2O_4\)
Molar mass	408.38 \ g/mol
Structural formula	![Structural formula](image)
Physical and chemical properties (Regulation (EU) N° 283/2013, Annex Part A, point 2)

Property	Value
Melting point (state purity)	72.9 °C (99.7%)
Boiling point (state purity)	Approx. 312°C at 101.325 kPa (99.7%) (thermal decomposition starts at about 285°C)
Temperature of decomposition (state purity)	Thermal decomposition starts at approximately 285°C (99.7%)
Appearance (state purity)	White powder (99.7%)
Vapour pressure (state temperature, state purity)	3.4 x 10^-6 Pa at 25°C (99.7%)
Henry’s law constant	2.3 x 10^-3 Pa m^3 mol^-1 at 25 °C
Solubility in water (state temperature, state purity and pH)	0.61 mg/L at 25°C with no pH dependence (99.7%) (Trifloxystrobin has no dissociation constant in an accessible pH range)
Solubility in organic solvents (state temperature, state purity)	hexane: 11 g/L at 25°C (97.4%)
	1-octanol: 18 g/L at 25°C (97.4%)
	methanol: 76 g/L at 25°C (97.4%)
	toluene: 500 g/L at 25°C (97.4%)
	ethyl acetate: > 500 g/L at 25°C (97.4%)
	acetone: > 500 g/L at 25°C (97.4%)
	dichloromethane: >500 g/L at 25°C (97.4%)
Surface tension (state concentration and temperature, state purity)	65.3-66.3 mN/m at 20 ± 0.2 °C (filtrates of 0.1 g/L suspension (97.4%)
Partition coefficient (state temperature, pH and purity)	log P_{OW} = 4.5 ± (0.0094) (at 25°C (99.7% pure) no pH dependence)
Dissociation constant (state purity)	Trifloxystrobin does not have a dissociation constant within the range 2 to 12
	CGA 107170 does not have a dissociation constant within the range 2 to 12 (99.6%)
UV/VIS absorption (max.) incl. ε (state purity, pH)	99.6% purity

Table: UV/VIS absorption

Solvent	Wavelength [nm]	Absorbance	Molar extinction coefficient [L/mol cm]
Methanol	254	0.791	31097
	252	0.440	17281
	290	0.041	1010
	291	0.005	1375
	295	0.019	746
	300	0.007	275
	310	0.001	39
	311	0.001	39
	312	0.000	0
10 mL of 1M HCl made up to 100 mL with Methanol, c_{HCl} = 0.1 mol/L	253	0.847	33367
	252	0.444	17429
	291	0.098	1414
10 mL of 1M NaOH made up to 100 mL with Methanol, c_{NaOH} = 0.1 mol/L	210	0.517	12451
	219	0.547	21484
	252	0.428	16810
	291	0.044	1235

www.efsa.europa.eu/efsajournal 2 EFSA Journal 2017;15(10):4989
Property	Description
Flammability (state purity)	Not considered highly flammable (97.4%)
Explosive properties (state purity)	Not considered explosive (97.4%)
Oxidising properties (state purity)	Not considered oxidising (97.4%)
Summary of representative uses evaluated, for which all risk assessments needed to be completed (Trifloxystrobin) (Regulation (EU) No 284/2013, Annex Part A, points 3, 4)

Central Europe: Critical GAPs for Representative crops

Crop and/or situation (a)	Member State	Product Name	Formulation	Application	Application rate per treatment	PHI (days) (l)	Remarks							
		Trifloxystrobin WG 50	F G I	Pests or group of pests controlled (c)	Formulation	Application	Application rate per treatment	PHI (days) (l)	Remarks					
		Trifloxystrobin WG 50	F G I	Pests or group of pests controlled (c)	Formulation	Application	Application rate per treatment	PHI (days) (l)	Remarks					
Central Europe		Trifloxystrobin WG 50	F	GLEOSP, PODOLE, VENTIN, VENTP, ALTEAL, NECTGA	WG 50 %	Tractor mounted/trailed broadcast air assisted sprayer	BBCH 53-87	1 - 3	10 -14	0.005	500 - 1500	0.025 – 0.075	14	0.05 kg product / ha and per m crown-high in 500 l water, with MAX 3m crown-high
Apple	Germany	Trifloxystrobin WG 50	F	GLEOSP, PODOLE, VENTIN, VENTP, ALTEAL, NECTGA	WG 50 %	Tractor mounted/trailed broadcast air assisted sprayer	BBCH 53-87	1 - 3	10 -14	0.005	500 - 1500	0.025 – 0.075	14	0.05 kg product / ha and per m crown-high in 500 l water, with MAX 3m crown-high
Apple	Slovakia	Trifloxystrobin WG 50	F	PODOLE, VENTIN	WG 50 %	Tractor mounted/trailed broadcast air assisted sprayer	BBCH 31-89	1 - 3	10	0.0075-0.0375	200-1000	0.075	14	-
Grape	Nether lands	Trifloxystrobin WG 50	F	PLASVI	WG 50 %	Tractor mounted/trailed broadcast air assisted sprayer	BBCH 12-89	1 - 3	10	0.0104-0.0312	400-1200	0.125	14	Application timing: April to October
Grape	Slovakia	Trifloxystrobin WG 50	F	BOTRCI, CONLDI, PLASVI, UNCINE	WG 50 %	Tractor mounted/trailed broadcast air assisted sprayer	BBCH 14-89	1 - 3	10	0.0125-0.0625	200-1000	0.125	14	-
Grape	Germany	Trifloxystrobin WG 50	F	UNCINE, PHOPVI, GUIGBI, PSPZTR	WG 50 %	Tractor mounted/trailed broadcast air assisted sprayer	BBCH 13-83	1 - 3	10 -14	0.0075	400 - 1600	0.03 – 0.12	35	-
Grape	Germany	Trifloxystrobin WG 50	F G	DIPCEA, MYCOFR, SPHRMA	WG 50 %	Tractor mounted/trailed broadcast air assisted sprayer	BBCH 55 - 89	1 - 2	7 -10	0.0075 – 0.015	1000 - 2000	0.150	1	-
-Strawberry	Poland	Trifloxystrobin WG 50	F	MYCOFR, SPHRMA	WG 50 %	Tractor mounted/trailed equipment: boom sprayer	BBCH 99 treatments of plants after harvest complete							

www.efsa.europa.eu/efsajournal 4 EFSA Journal 2017;15(10):4989
Southern Europe: Critical GAPs for Representative crops

Crop	Country	Active Substance	F	Brand Name	Formulation	Country of Origin	Equipment	BBCH	Application Timing	Concentration	Product Rate/ha	Spray Interval	Notes
Apple, Pear	Italy	Trifloxystrobin	F	PODOLE, VENTIN	WG 50								
	Spain	Trifloxystrobin	F	PODOLE, VENTIN	WG 50								
	Spain	Trifloxystrobin	F	UNCINE, GUIGBI	WG 50								
	Spain	FLINT	F	UNCINE	WG 50								
	Spain	FLINT	F	DIPCEA, MYCOFR, SPHRMA	WG 50								

Application timing:
- Apple, Pear: April to September
- Grape: May to June
- Strawberry: 0.0125% - 0.015% product/ha

Spray Interval:
- 10 day until BBCH 74; 10-14 from BBCH 74 to 85.
Further information, Efficacy

Effectiveness (Regulation (EU) N° 284/2013, Annex Part A, point 6.2)

Sufficient information has been provided on the effectiveness of trifloxystrobin for the representative uses.

Adverse effects on field crops (Regulation (EU) N° 284/2013, Annex Part A, point 6.4)

Sufficient information has been provided to establish there are no adverse effects for the representative uses.

Observations on other undesirable or unintended side-effects (Regulation (EU) N° 284/2013, Annex Part A, point 6.5)

Sufficient information has been provided to establish there are no undesirable effects for the representative uses.

Groundwater metabolites: Screening for biological activity (SANCO/221/2000-rev.10-final Step 3 a Stage 1)

Activity against target organism	CGA 321113	NOA 413161	NOA 413163
	no	no	no
Methods of Analysis

Analytical methods for the active substance (Regulation (EU) N° 283/2013, Annex Part A, point 4.1 and Regulation (EU) N° 284/2013, Annex Part A, point 5.2)

Analytical technique (key technique and/or method)	Method Details
Technical a.s. (analytical technique)	HPLC-UV
Impurities in technical a.s. (analytical technique)	HPLC-UV; GC-FID (solvent)
Plant protection product (analytical technique)	GC-FID
	AE 1344136 : data gap

Analytical methods for residues (Regulation (EU) N° 283/2013, Annex Part A, point 4.2 & point 7.4.2)

Residue definitions for monitoring purposes

Environment/Matrix	Residue Definitions
Food of plant origin	Trifloxystrobin
	Sum of trifloxystrobin and CGA 321113 (M5), expressed as trifloxystrobin
Food of animal origin	Trifloxystrobin
Soil	Trifloxystrobin
Sediment	At least trifloxystrobin, open regarding CGA 321113
Water surface	At least trifloxystrobin open regarding CGA 357261, CGA 107170, CGA 373466, NOA 409480, CGA 357276, CGA 381318, Trifloxystrobin, CGA 321113, NOA 413161, NOA 413163
Drinking/ground	Trifloxystrobin
Air	Trifloxystrobin
Body fluids and tissues	Sum of trifloxystrobin and CGA 321113, expressed as trifloxystrobin
Monitoring/Enforcement methods

Food/feed of plant origin (analytical technique and LOQ for methods for monitoring purposes)

Analytical Technique	LOQ	Determined
HPLC-UV	0.02 mg/kg, high water content (apples, potatoes), high acid content (grape), LOQ 0.01 mg/L grape: wine, juice	parent trifloxystrobin.
GC-ECD	0.02 mg/kg, dry commodities (wheat and barley grain), high water content (bananas (whole fruit, peel and pulp)), LOQ 0.05 mg/kg (straw)	parent and metabolite CGA 321113.
GC-NPD	0.02 mg/kg, high water content (apple (whole fruit, juice and pomace), melon, cucumber, potato, banana), high acid content (grape (incl. juice and raisins))	parent and metabolite CGA 321113.
QuEChERES (HPLC-MS/MS) method	LOQ of 0.01 mg/kg in high oil (olive), high protein (kidney bean) and hops, green cone (difficult matrix to analyse) and an LOQ of 0.05 mg/kg in hops, kiln-dried cone	parent trifloxystrobin.
QuEChERES (HPLC-MS/MS) method	LOQ of 0.01 mg/kg in high acid, dry, high sugar and high water content (EURL data pool)	parent trifloxystrobin.

Food/feed of animal origin (analytical technique and LOQ for methods for monitoring purposes)

Analytical Technique	LOQ	Determined
QuEChERES (HPLC-MS/MS) method	LOQ of 0.01 mg/kg in milk, eggs, meat, fat, liver and kidney	parent trifloxystrobin and metabolite CGA 321113.

Soil (analytical technique and LOQ)

Analytical Technique	LOQ	Determined
HPLC-UV	0.01 mg/kg (soil), determined: parent and soil metabolites CGA 321113, 357261, 357262, 331409, 373466.	
HPLC-MS/MS	0.005 mg/kg soil (Hoefchen, Laacher Hof, Dollendorf); determined: Parent trifloxystrobin	

Water (analytical technique and LOQ)

Analytical Technique	LOQ	Determined
HPLC-MS/MS	0.05 µg/L, determined: parent and Metabolite CGA 321113 (LOQ: 0.05 µg/L)	
Data gap: method(s) for the determination of metabolites NOA 413161 and 413163 in drinking water		
Method for metabolite CGA 381318 in surface water: open		

Air (analytical technique and LOQ)

Analytical Technique	LOQ	Determined
GC-ECD	2 µg/m³, determined: parent	
Body fluids and tissues (analytical technique and LOQ)

Technique	LOQ	Determined
GC-ECD	0.01 mg/kg (blood, urine)	Parent and metabolite CGA 321113
HPLC-MS/MS	50 µg/L (blood plasma)	Parent and metabolite CGA 321113

Classification and labelling with regard to physical and chemical data (Regulation (EU) No 283/2013, Annex Part A, point 10)

Substance	Classification	Peer review proposal
Trifloxystrobin	None	None

1 Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. OJ L 353, 31.12.2008, 1-1355.

2 It should be noted that harmonised classification and labelling is formally proposed and decided in accordance with Regulation (EC) No 1272/2008.
Impact on Human and Animal Health

Absorption, distribution, metabolism and excretion (toxicokinetics) (Regulation (EU) N° 283/2013, Annex Part A, point 5.1)

Rate and extent of oral absorption/systemic bioavailability	60 % (based on urinary (%) and biliary (%) excretion after 48 h at 0.5 mg/kg bw)
Toxicokinetics	0.5 mg/kg bw [Glyoxyl-Phenyl-U-14C] trifloxystrobin
	male female
Cmax (mg eq/kg)	0.07 0.07
Tmax (hour)	12 12
Plasma (hour) T1/2	48 23
AUC$_{(0-48h)}$(mg hour/kg)	2.7 1.6
100 mg/kg bw [Glyoxyl-Phenyl-U-14C] trifloxystrobin	male female
Cmax (mg eq/kg)	9.34 6.52
Tmax (hour)	24 12
Plasma T1/2 (hour)	50 44
AUC$_{(0-48h)}$(mg hour/kg)	334.6 214.3
Distribution	Widely distributed (highest residues were found in blood, kidneys and liver.)
Potential for bioaccumulation	No evidence for accumulation
Rate and extent of excretion	Rapid and extensive (94-96% within 48 h), mainly via faeces (62-75%) and urine (17-34%)
Metabolism in animals	Extensively metabolised (> 95 %)
	Major pathway: ester hydrolysis, O-demethylation of the methoxyamino group, hydroxylation of methyl side chain, cleavage between the glyoxyl phenyl and trifluoromethyl phenyl rings.

In vitro metabolism

Toxicologically relevant compounds (animals and plants)	Parent compound.
Toxicologically relevant compounds (environment)	Open for the metabolites (CGA 357262, CGA 357261 and CGA 331409) and CGA 321113 (M5).

Acute toxicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.2)

Rat LD$_{50}$ oral	> 5000 mg/kg bw
Rat LD$_{50}$ dermal	> 2000 mg/kg bw
Rat LC$_{50}$ inhalation	> 4.6 mg/l air/4h (nose only)
Skin irritation	Non-irritant
Eye irritation	Non-irritant
Skin sensitisation	Non-sensitising (weight of evidence based on M&K assay, Buehler assay and LLNA)
Phototoxicity	Not phototoxic to BALB/c 3T3 cells

Short-term toxicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.3)

Target organ / critical effect	Rat: reduced body weight gain and food consumption and liver (increased weight,
Genotoxicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.4)

In vitro studies
- **Ames test**: negative.
- **In vitro mammalian cell gene mutation test**: positive at highly toxic concentration only.
- **In vitro mammalian cell gene mutation test**: negative.
- **In vitro mammalian chromosome aberration test**: negative.
- **In vitro mammalian cell micronucleus test**: negative.
- **In vitro unscheduled DNA synthesis in mammalian cells (TG 482)**: negative.

In vivo studies
- **Micronucleus Test (OECD TG 474)**: Negative.

Photomutagenicity
The requirements for conducting a photomutagenicity were not met.

Potential for genotoxicity
Trifloxystrobin is unlikely to be genotoxic.

Long-term toxicity and carcinogenicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.5)

Long-term effects (target organ/critical effect)
- Rat: reduced body weight gain
- Mouse: reduced body weight gain, increased liver weight and microscopic changes in the liver

Relevant long-term NOAEL
- 2-year, rat: 10 mg/kg bw per day
- 18-month, mouse: 36 mg/kg bw per day

Carcinogenicity (target organ, tumour type)
- Rat: hemangiomas in the mesenteric lymph nodes and astrocytomas.
- Mouse: no evidence of a carcinogenic effect.
- Trifloxystrobin is unlikely to pose a carcinogenic hazard to humans.

Relevant NOAEL for carcinogenicity
- 2-year, rat: 30 mg/kg bw per day
- 18-month, mouse: 246 mg/kg bw per day

Reproductive toxicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.6)

Reproduction toxicity
- **Parental toxicity**: retarded body weight gain, liver effects (centrilobular hepatocyte hypertrophy) and kidney effects (pigmentation of renal tubules)
- Reproductive toxicity: no adverse effect observed in rat 2-generation study
- Offspring’s toxicity: decreased body weight (gain) during lactation

Relevant parental NOAEL
- 2.3 mg/kg bw per day

Hypertrophy and kidney (increased weight)
- Dog: decreased body weight, reduced food intake, effects on the liver (increased weight, hypertrophy)
- Mouse: liver, spleen.
Relevant reproductive NOAEL

Rat:	73 mg/kg bw per day
Rabbit:	2.3 mg/kg bw per day

Developmental toxicity

Developmental target / critical effect

Rat:	Maternal toxicity: decreased body weight gain and food consumption. Developmental toxicity: increased incidences of enlarged thymus
Rabbit:	Maternal toxicity: decreased body weight gain and food consumption. Developmental toxicity: increased incidences of skeletal anomalies

Relevant maternal NOAEL

Rat:	10 mg/kg bw per day
Rabbit:	50 mg/kg bw per day

Relevant developmental NOAEL

Rat:	100 mg/kg bw per day
Rabbit:	50 mg/kg bw per day

Neurotoxicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.7)

Acute neurotoxicity

| No evidence of neurotoxicity at a single oral dose of 2000 mg/kg bw |

Repeated neurotoxicity

| Additional testing conducted as part of the standard 90 day rat study. No evidence of neurotoxicity up to doses equivalent to 127 mg/kg bw/day in males and 618 mg/kg bw/day in females |

Additional studies (e.g. delayed neurotoxicity, developmental neurotoxicity)

| None |

Other toxicological studies (Regulation (EU) N° 283/2013, Annex Part A, point 5.8)

Supplementary studies on the active substance

| In an in vitro experiment trifloxystrobin caused a significant, concentration dependent inhibition of mitochondrial respiration. The potential induction of hepatocellular proliferation in rats and mice dosed with trifloxystrobin for 90 days was investigated using PCNA staining. There was no evidence for an induction of hepatocellular proliferation in either species. |

Endocrine disrupting properties

| ToxCast in vitro data indicated no estrogen, androgen, thyroid receptors and aromatase mediated activity associated with trifloxystrobin |

Studies performed on metabolites or impurities CGA 321113

| Acute oral rat LD₅₀ > 2000 mg/kg bw |
| Ames test: negative. |
| In vitro mammalian cell gene mutation test: negative. |
| In vitro mammalian chromosome aberration test: positive. |
| In vivo micronucleus test: negative. |
| In vivo UDS test (rat hepatocytes): negative |

| Unlikely to be genotoxic in vivo. Comparative in vitro experiment: CGA 321113 caused significantly less inhibition of mitochondrial respiration than trifloxystrobin. Data gap: toxicological profile after repeated exposure |
NOA 413161

Test Type	Result
Acute oral rat LD₅₀	> 2000 mg/kg bw
28-day rat: NOAEL	150 mg/kg bw per day based on changes in urine parameters
Ames test	negative
In vitro mammalian cell gene mutation test	negative
In vitro mammalian chromosome aberration test	negative
Comparative in vitro experiment	CGA 413161 caused significantly less inhibition of mitochondrial respiration than trifloxystrobin

NOA 413163

Test Type	Result
Acute oral rat LD₅₀	> 2000 mg/kg bw
Ames test	negative
Comparative in vitro experiment	CGA 413163 caused significantly less inhibition of mitochondrial respiration than trifloxystrobin

Mixture NOA 413161/NOA 413163

Test Type	Result
28-day rat: NOAEL	>1000 mg/kg bw per day
In vitro mammalian cell gene mutation test	negative
In vitro mammalian chromosome aberration test	negative

NOA 373466

Test Type	Result
Acute oral rat LD₅₀	> 2000 mg/kg bw
Ames test	negative
In vitro mammalian cell gene mutation test	negative
In vitro mammalian chromosome aberration test	negative
Comparative in vitro experiment	CGA 373466 caused significantly less inhibition of mitochondrial respiration than trifloxystrobin

CGA 357261

Test Type	Result
Acute oral rat LD₅₀	> 2000 mg/kg bw
Ames test	negative
In vitro mammalian cell micronucleus test	negative

NOA 414412 (M12)

Test Type	Result
Acute oral rat LD₅₀	> 2000 mg/kg bw
Ames test	negative

CGA 357262

Test Type	Result
Ames test	negative
In vitro mammalian cell micronucleus test	negative

CGA 331409

Test Type	Result
Ames test	negative
In vitro micronucleus test with human lymphocytes	negative

Medical data (Regulation (EU) No 283/2013, Annex Part A, point 5.9)

- Data gap: toxicological profile after repeated exposure
The Applicant has provided information from the Occupational Health Surveillance Programs at its Swiss manufacturing site and an updated paper on cases of potential adverse effects on humans exposed to trifloxystrobin during activities related to its use as a pesticide. The cases reported in humans relate to reports of potential skin irritation and sensitisation. A case reported from South Africa detailed an allergic reaction of one individual against the dry product. The validity of this finding cannot be excluded. A case from the Philippines was likely local skin irritation than sensitisation. Overall, the weight of evidence in humans with more than 120 operators involved in field trials in 11 countries using different formulations of trifloxystrobin and 80 operators involved in field trials in Switzerland, trifloxystrobin products do not have any intrinsic irritation or sensitisation potential to humans. This is in agreement with experience from the medical surveillance on manufacturing site personnel.

Summary

(Regulation (EU) No\(^\text{1107/2009, Annex II, point 3.1 and 3.6} \))

Value (mg/kg bw (per day))	Study	Uncertainty factor	
Acceptable Daily Intake (ADI)	0.1	2-year rat,	100
Acute Reference Dose (ARID)	0.5	rabbit, developmental	100
Acceptable Operator Exposure Level (AOEL)	0.06	2-year rat study, supported by the rat multigeneration study	160*
Acute Acceptable Operator Exposure Level (AAOEL)	0.3	rabbit, developmental	160*

* Including correction for limited oral absorption/bioavailability (60%).

Reference doses for metabolites (ADI only)

Value (mg/kg bw (per day))	Study	Uncertainty factor	
NOA 413161	0.15	Rat 28-day study	1000
NOA 413163	0.52	Rat 28-day study with mixture of NOA413161 and NOA413163 and corrected for the content of the metabolite in the mixture	1000

Dermal absorption

(Regulation (EU) No\(^\text{284/2013, Annex Part A, point 7.3} \))

Representative formulation:
Trifloxystrobin WG 50

0.2% for the neat formulation (500 g/kg); 9% for the low dose (0.04 g/l) based on an in vitro human study with the representative formulation.

\(^{3}\) If available include also reference values for metabolites
Exposure scenarios (Regulation (EU) No 284/2013, Annex Part A, point 7.2)

Operators	Critical Use: strawberry (outdoors), tractor mounted equipment, application rate 0.15 kg a.s./ha	Exposure estimates (model): % of AOEI/AAOEI
	UK POEM	
	Without PPE:	42
	German model	
	Without PPE:	14
	EFSA Calculator (75th perc.)	5
	Without PPE:	7*
	*Indicates exposure as a percentage of the AAOEL	
	Critical Use: grapes, broadcast air assisted sprayer, application rate 0.125 kg a.s./ha	
	UK POEM	
	Without PPE:	121
	PPE (gloves m/l & app)	78
	German model	
	No PPE	25
	EFSA Calculator (75th perc.)	15
	Without PPE:	11*
	*Indicates exposure as a percentage of the AAOEL	
	Critical Use: grapes (pome fruit), knapsack equipment, application rate 0.125 kg a.s./ha	
	UK POEM	
	Without PPE:	163
	PPE (gloves m/l & app)	80
	German model	
	Without PPE:	12
	EFSA Calculator (75th perc.)	28
	Without PPE:	34*
	*Indicates exposure as a percentage of the AAOEL	
	Tank and lance equipment, application rate 0.125 kg a.s./ha	
	EFSA Calculator (75th perc.)	28
	Without PPE:	35
	*Indicates exposure as a percentage of the AAOEL	
Critical Use: strawberry (protected), tank and lance sprayer, application rate 0.15 kg a.s./ha		

EUROPOEM		
No PPE		
33		
ECPA SEGM (High crop, standard)		
No PPE		
16		

Critical Use: strawberry (protected), hand held sprayer, application rate 0.15 kg a.s./ha
EUROPOEM
No PPE
14
German IVA (low cultures)
No PPE
8
German IVA (high cultures)
No PPE
42
Dutch Greenhouse Model
No PPE
68

Workers
EUROPOEM II worker re-entry model
Without PPE:
Pome fruit harvesting
91
Protected Strawberry harvesting
54
EFSA Calculator
Without PPE:
Pome fruit harvesting
74
Protected Strawberry harvesting
97
Higher tier data refinement
Grape harvesting
22

Bystanders and residents
UK Bystander approach:
Tractor mounted broadcast air assisted sprayer
Vapour (based on surrogate data)
14
Spray drift (based on surrogate data)
6
Drift fallout (based on published drift data and EPA SOPs)
3
Martin et al., 2008:
High crop tractor mounted
Bystander exposure (at 10 m)
3
Resident exposure (at 10 m)
2
Peer review of the pesticide risk assessment of the active substance trifloxystrobin

EFSA Calculator:	
Upward spraying, vehicle mounted	
Resident (75th perc.)	
Spray drift	13
Vapour	2
Surface deposits	1
Entry into treated crops	8
All pathways mean	17
Bystander (95th perc.)	
Spray drift	6*
Vapour	<1*
Surface deposits	<1*
Entry into treated crops	2*

*Indicates exposure as a percentage of the AAOEL

Classification with regard to toxicological data (Regulation (EU) N° 283/2013, Annex Part A, Section 10)

Substance:

Harmonised classification according to Regulation (EC) No 1272/2008 and its Adaptations to Technical Process [Table 3.1 of Annex VI of Regulation (EC) No 1272/2008 as amended]

Trifloxystrobin	
Skin Sens.1 H317 “May cause an allergic skin reaction	

Peer review proposal for harmonised classification according to Regulation (EC) No 1272/2008:

| Repro Cat. 2 H361; Suspected of damaging fertility of the unborn child |
| H362; May cause harm to breast-fed children |

4 Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. OJ L 353, 31.12.2008, 1-1355.

5 It should be noted that harmonised classification and labelling is formally proposed and decided in accordance with Regulation (EC) No 1272/2008.
Residues in or on treated products food and feed

Metabolism in plants (Regulation (EU) No 283/2013, Annex Part A, points 6.2.1, 6.5.1, 6.6.1 and 6.7.1)

Primary crops (Plant groups covered)	Crop groups	Crop(s)	Application(s)	DAT (days)
OECD Guideline 501				
Fruit crops	Apple	4 x 100 g as/ha [\(^{14}\)C-GP] and [\(^{14}\)C-TP]	+0 (1 hour)	14
	Cucumber	3 x 312.5 g as/ha [\(^{14}\)C-GP] and [\(^{14}\)C-TP]	1	7
Root crops	Sugar beet	3 x 130 g as/ha [\(^{14}\)C-GP] and [\(^{14}\)C-TP]	+0 (1 hour)	21
		and 3 applications: 692, 693 & 768 g as/ha [\(^{14}\)C-GP] and [\(^{14}\)C-TP]	45	
Leafy crops	-	-		-
Cereals/grass crops	Wheat	2 x 250 g as/ha [\(^{14}\)C-GP] and [\(^{14}\)C-TP]	3	35
		2 x 250 g as/ha [\(^{14}\)C-GP] and [\(^{14}\)C-TP]	+0 (1 hour)	24
		1 x 500 g as/ha (\(^{14}\)C-TP)	49	
Pulses/Oilseeds	Peanuts	4 x 505 g as/ha [\(^{14}\)C-GP] and [\(^{14}\)C-TP]	+0 days after 1st treatment; 14 days after 1st treatment; 14 days after last treatment.	
Miscellaneous	-	-		-

\[\text{\(^{14}\)C-TP} = \text{trifluoromethyl-phenyl-UL-}\(14\text{C}\) trifloxystrobin\]

\[\text{\(^{14}\)C-GP} = \text{glyoxyl-phenyl-UL-}\(14\text{C}\) trifloxystrobin\]

Rotational crops (metabolic pattern)	Crop groups	Crop(s)	PBI (days)	Comments
OECD Guideline 502				
Root/tuber crops	Radish	31, 120, 365	Soil treatment using [\(^{14}\)C-TP] and [\(^{14}\)C-GP] trifloxystrobin.	
Leafy crops	Lettuce	31, 120, 365		
Cereal (small grain)	Wheat	31, 174, 365		
Other	-	-		

Rotational crop and primary crop metabolism similar?

Yes

| Processed commodities | Conditions | |
|-----------------------|------------|
(standard hydrolysis study)

OECD Guideline 507	20 min, 90°C, pH 4	Stable under these conditions
	60 min, 100°C, pH 5	2.6% degradation, mainly (2%) to CGA321113
	20 min, 120°C, pH 6	21.5% degradation, mainly (ca. 20%) to CGA321113

Residue pattern in processed commodities similar to residue pattern in raw commodities?

Yes

Plant residue definition for monitoring (RD-Mo)

OECD Guidance, series on pesticides No 31

Plant residue definition for risk assessment (RD-RA)

Primary Crops: Sum of trifloxystrobin, its 3 isomers (CGA 357262, CGA 357261 and CGA 331409) and CGA 321113 (M5), expressed as trifloxystrobin.

Processed commodities: Sum of trifloxystrobin and CGA 321113 (M5), expressed as trifloxystrobin.

Conversion factor (monitoring to risk assessment)

CFs calculated from the available residue field trials on the representative uses:

- Pome fruit: 1.8
- Grapes: 1.3
- Strawberry: 1.4

Metabolism in livestock (Regulation (EU) Nº 283/2013, Annex Part A, points 6.2.2, 6.2.3, 6.2.4, 6.2.5 6.7.1)

OECD Guideline 503 and SANCO/11187/2013 rev. 3 (fish)	Animal	Dose (mg/kg bw/d)	Duration (days)	N rate* / comment
	Laying hen	7.7 [14C-TP]	4	No N rate since none of the representative crops are fed to poultry.
		6.7 [14C-GP]	4	
	Goat	4.24 [14C-TP]	4	-
		4.13 [14C-GP]	4	
	Pig	-	-	-
	Fish	-	-	-

\[14C-TP] = [trifluoromethyl-phenyl-UL-14C] trifloxystrobin

\[14C-GP] = [glyoxyl-phenyl-UL-14C] trifloxystrobin

Time needed to reach a plateau concentration in milk and eggs (days)

- Milk: cannot be established
- Eggs: cannot be established

Animal residue definition for monitoring (RD-Mo)

OECD Guidance, series on pesticides No 31

Sum of trifloxystrobin and CGA 321113 (M5), expressed as trifloxystrobin.
Animal residue definition for risk assessment (RD-RA)

	Ruminants:	Poultry:
	Sum of trifloxystrobin and CGA 321113 (M5) (free and conjugated), expressed as trifloxystrobin.	Sum of trifloxystrobin and CGA 321113 (M5) (only free), expressed as trifloxystrobin.

Conversion factor (monitoring to risk assessment)

	Ruminants: Calculation not possible from the feeding study since the content of CGA 321113 (M5) conjugates in ruminant matrices was not determined.
	Poultry: 1 (RD-Mo = RD-RA)

Metabolism in rat and ruminant similar (Yes/No)

	Yes
Fat soluble residues	Yes
(FAO, 2009)	

Residues in succeeding crops (Regulation (EU) N° 283/2013, Annex Part A, point 6.6.2)

Confined rotational crop study	Based on the results from metabolism studies in rotational crops, which were performed with a higher application rate (0.5 kg a.s./ha) than that intended on the representative crops under consideration (max. 0.3 kg a.s./ha/season for strawberries which is the only representative crop which could be grown in rotation), and application to bare soil (interception by the plants is expected in practice), relevant residue levels are unlikely to occur in rotational crops.
(Quantitative aspect)	
OECD Guideline 502	

Field rotational crop study	Three rotational field trials in lettuce, turnip and wheat conducted with 1128 g/ha (7.5N) at 30d PBI were available. They were analysed for trifloxystrobin and M5 and all the results were below LOQ (0.02 mg/kg).
OECD Guideline 504	
Stability of residues (Regulation (EU) N° 283/2013, Annex Part A, point 6.1)
OECD Guideline 506

Plant products (Category)	Commodity	T (°C)	Stability (Months)		
			Trifloxystrobin	CGA 321113	CGA 357261, 357262, 331409 & 373466
High water content	Corn (green material)	≤18°C	24	24	24
	Wheat whole plant¹	≤18°C	24	24	Not tested
	Cucumber	≤18°C	24	24	Not tested
	Apple fruit	≤18°C	18.5	See footnote 2	Not tested
High oil content	Oilseed rape seed	≤18°C	24	24	24
	Peanut nutmeat	≤18°C	18.5	See footnote 2	Not tested
High protein content	Dry beans	≤18°C	24	24	24
High starch content	Rye grain	≤18°C	24	24	24
	Wheat grain¹	≤18°C	24	24	Not tested
	Potato tuber	≤18°C	24	24	Not tested
High acid content	Oranges	≤18°C	24	24	24
	Grapes	≤18°C	24	24	Not tested
Processed products	Apple, wet pomace	≤18°C	18.5	See footnote 2	Not tested
	Peanut oil	≤18°C	18.5	See footnote 2	Not tested
	Potato granules/flakes	≤18°C	18.5	18.5	Not tested
	Grape juice	≤18°C	18.5	18.5	Not tested
Others	Wheat straw¹	≤18°C	24	24	Not tested
	Peanut hay	≤18°C	18.5	See footnote 2	Not tested

¹ Recoveries of Trifloxystrobin residues were found to be below 70% in wheat whole plant (at 118 days), in wheat straw (at 357 days) and in wheat grain (at 357 days). It was agreed at the Pesticides Peer Review TC 146 that the degradation of residues in wheat at these time points was mainly related to analytical performance deficiencies instead of an actual degradation of the residues of trifloxystrobin in wheat. Recoveries were acceptable at later time intervals, including at the 24 month storage period.

² Recoveries of CGA 321113 were reported below 70% at several timepoints in apple fruit and apple wet pomace and in peanut nutmeat and peanut hay. It was agreed at the Pesticides Peer Review TC 146 that these studies were not acceptable and since significant variations in the concentrations in these matrices over various timepoints was observed then it was not possible to conclude on the stability of this metabolite in these commodities.
commodity	(°C)	Trifloxystrobin	CGA 321113
Cow	≤20°C	12	12
Cow	≤20°C	3	12
Cow	≤20°C	7	12
Hen	≤20°C	6	12
Summary of residues data from the supervised residue trials (Regulation (EU) No 283/2013, Annex Part A, point 6.3) OECD Guideline 509, OECD Guidance, series on pesticides No 66 and OECD MRL calculator

Crop	Region/Indoor (a)	Residue levels (mg/kg) observed in the supervised residue trials relevant to the supported GAPs (b)	Recommendations/comments (OECD calculations)	MRL proposals (mg/kg)	HR (mg/kg) (c)	STMR (mg/kg) (d)
Representative uses						
Pome fruit	NEU	Mo: <0.02; 0.03; 0.03; 0.04; 0.04; 0.05; 0.05; 0.06; 0.06; 0.09; 0.11 RA: 0.08; 0.10; 0.10; 0.18	13 trials that cover Mo residue definition 4 trials that cover RA residue definition	0.15	0.18 (0.11)	0.10 (0.05)
Pome fruit	SEU	Mo: 0.02; 0.05; 0.06; 0.10; 0.12; 0.12; 0.15; 0.17 RA: 0.10; 0.20; 0.22; 0.32	9 trials that cover Mo residue definition 4 trials that cover RA residue definition	0.30	0.32 (0.17)	0.21 (0.1)
Grapes	NEU	Mo: 0.14; 0.18; 0.19; 0.29; 0.38; 0.42; 0.42; 0.49 RA: 0.15; 0.22; 0.25; 0.37; 0.45; 0.49; 0.60; 0.67	8 trials	1.0	0.67 (0.49)	0.41 (0.34)
Grapes	SEU	Mo: 0.12; 0.12; 0.14; 0.18; 0.20; 0.22; 0.39; 0.51 RA: 0.16; 0.17; 0.19; 0.22; 0.25; 0.31; 0.46; 0.60	8 trials	0.8	0.60 (0.51)	0.24 (0.19)
Strawberry	NEU	Mo: 0.04; 0.07; 0.08; 0.09; 0.10; 0.13; 0.14; 0.15; 0.15 RA: 0.08; 0.12; 0.13; 0.14; 0.18; 0.18; 0.19; 0.20; 0.20	9 trials	0.4	0.20 (0.15)	0.18 (0.096)
Strawberry	SEU	Mo: 0.06; 0.08; 0.11; 0.13; 0.15; 0.17; 0.20; 0.20; 0.23 RA: 0.11; 0.13; 0.16; 0.18; 0.20; 0.26; 0.26; 0.29	9 trials	0.5	0.29 (0.23)	0.20 (0.15)
Strawberry	Indoor	Mo: 0.08; 0.09; 0.10; 0.12; 0.13; 0.16; 0.27; 0.41 RA: 0.13; 0.13; 0.14; 0.17; 0.18; 0.20; 0.31; 0.46	8 trials	0.7	0.46 (0.41)	0.18 (0.13)

Summary of the data on formulation equivalence OECD Guideline 509

Crop	Region	Residue data (mg/kg)	Recommendations/comments
N/A			

Summary of data on residues in pollen and bee products (Regulation (EU) No 283/2013, Annex Part A, point 6.10.1)

Product(s)	Region	Residue data (mg/kg)	Recommendations/comments
N/A			

Not a current EU requirement as there is no agreed established guidance document.
(a): **NEU** or **SEU** for northern or southern **outdoor** trials in EU member states (**N+SEU** if both zones), **Indoor** for glasshouse/protected crops, **Country** if non-EU location.

(b): Residue levels in trials conducted according to GAP reported in ascending order (e.g. 3x <0.01, 0.01, 0.02, 0.04, 0.08, 3x 0.10, 2x 0.15, 0.17). When residue definition for monitoring and risk assessment differs, use **Mo/RA** to differentiate data expressed according to the residue definition for Monitoring and Risk Assessment.

(c): **HR**: Highest residue. When residue definition for monitoring and risk assessment differs, HR according to residue definition for monitoring reported in brackets (HR_{Mo}).

(d): **STMR**: Supervised Trials Median Residue. When residue definition for monitoring and risk assessment differs, STMR according to definition for monitoring reported in brackets (STMR_{Mo}).
Inputs for animal burden calculations

Feed commodity	Median dietary burden (mg/kg)	Maximum dietary burden (mg/kg)	Comment
Apple pomace	1.42	N/A	N/A – only STMR considered for this processed commodity

Median residue (0.12 mg/kg; defined using the risk assessment residue definition for processed commodities as trifloxystrobin + CGA 321113, expressed as trifloxystrobin see Table B.7.3.3-1b) x PF (11.8 as the median processing factor for apple pomace).
Residues from livestock feeding studies (Regulation (EU) N° 283/2013, Annex Part A, points 6.4.1, 6.4.2, 6.4.3 and 6.4.4)

OECD Guideline 505 and OECD Guidance, series on pesticides No 73

MRL calculations

Highest expected intake (mg/kg bw/d) (mg/kg DM for fish)	Ruminant	Pig/Swine	Poultry	Fish	
Beef cattle	0.017		Breeding	0.0	
Ram/Ewe	0.012		Broiler	0.0	
Dairy cattle	0.014		Finishing	0.0	
Lamb	0.015		Layer	0.0	
				Trout	N/A

Intake >0.004 mg/kg bw

	Beef cattle	Dairy cattle	Pig/Swine	Poultry	Fish
Intake >0.004 mg/kg bw	Yes	Yes	No	No	N/A
Feeding study submitted	Yes	No	No	Yes	N/A

Representative feeding level (mg/kg bw/d, mg/kg DM for fish) and N rates

	Level	Beef: 3.8 N	Level	Lamb: 4.3 N	N rate
Ruminant	0.065		0.065		
	0.193		0.635		
Dairy cattle					
Pig/Swine					
Poultry					
Fish					

Estimated HR(a) at 1N

	Estimated HR(a)				
Muscle	<0.04	<0.04	0.04*	N/A	N/A
Fat	<0.04	<0.04	0.04*	N/A	N/A
Meat	<0.04	<0.04	0.04*	N/A	N/A
Liver	<0.04	<0.04	0.04*	N/A	N/A
Kidney	<0.04	<0.04	0.04*	N/A	N/A
Milk	<0.02	<0.02	0.02*	N/A	N/A
Eggs				N/A	N/A

Method of calculation(c)

- Estimated HR calculated at 1N level (estimated mean level for milk).

(a): Estimated HR calculated at 1N level (estimated mean level for milk).
HR in meat calculated for mammalian on the basis of 20% fat + 80% muscle and 10% fat + 90% muscle for poultry.

The OECD guidance document on residues in livestock (series on pesticides 73) recommends three different approaches to derive MRLs for animal products; by applying a transfer factor (Tf), by interpolation (It) or by linear regression (Ln). Fill in method(s) considered to derive the MRL proposals.
STMR calculations

Median expected intake (mg/kg bw/d)	Ruminant	Pig/Swine	Poultry	Fish
Beef cattle	0.017	0.012	Breeding	0.0
Dairy cattle	0.014	0.015	Finishing	0.0
			Layer	0.0
			Trout	N/A
			Turkey	0.0

Representative feeding level (mg/kg bw/d, mg/kg DM for fish) and N rates
Level
0.065

Mean level in feeding level	Estimated STMR (b) at 1N	Mean level in feeding level	Estimated STMR (b) at 1N	Mean level in feeding level	Estimated STMR (b) at 1N	Mean level in feeding level	Estimated STMR (b) at 1N
Muscle	<0.04	<0.04	<0.04	N/A	N/A	N/A	N/A
Fat	<0.04	<0.04	<0.04	N/A	N/A	N/A	N/A
Meat (a)	<0.04	<0.04	<0.04	N/A	N/A	N/A	N/A
Liver	<0.04	<0.04	<0.04	N/A	N/A	N/A	N/A
Kidney	<0.04	<0.04	<0.04	N/A	N/A	N/A	N/A
Milk	<0.02	<0.02	<0.02	N/A	N/A	N/A	N/A
Eggs							

| Method of calculation (c) | Tf | Tf | N/A | N/A | N/A |

(a): STMR in meat calculated for mammalian on the basis of 20% fat + 80% muscle and 10% fat + 90% muscle for poultry
(b): When the mean level is set at the LOQ, the STMR is set at the LOQ.
(c): The OECD guidance document on residues in livestock (series on pesticide 73) recommends three different approaches to derive MRLs for animal products; by applying a transfer factor (Tf), by extrapolation (It) or by linear regression (Ln). Fill in method(s) considered to derive the MRL proposals.
Processing factors (Regulation (EU) N° 283/2013, Annex Part A, points 6.5.2 and 6.5.3)

OECD Guideline 508 and OECD Guidance, series on testing and assessment No 96

Crop (RAC)/Edible part or Crop (RAC)/Processed product	Number of studies(a)	Processing Factor (PF)	Conversion Factor (CF_P) for RA (b)	
		Individual values	Median PF	
Pomefruit / washed fruit	8	0.64; 1.19; 1.21; 1.70; 0.91; 0.65; 1.12; 0.82	1.01	N/A
Pomefruit / pomace	8	2.75; 7.86; 12.3; 12.6; 18.6; 16.9; 11.2; 4.92	11.8	N/A
Pomefruit / dry pomace	1	20	21	N/A
Pomefruit / juice	8	0.17; 0.14; 0.11; 0.07; 0.28; 0.09; 0.06; 0.01	0.10	N/A
Pomefruit / puree	3	0.33; 0.15; 0.12	0.15	N/A
Pomefruit / Dried fruit	2	0.17; 0.31	0.40	N/A
Grapes / must	17	0.15; 0.08; 0.51; 0.50; 0.16; 0.06; 0.57; 0.85; 0.23; 1.17; 0.58; 0.9; 0.06; 0.14; 0.1; 0.4; 0.81	0.4	N/A
Grapes / wine	18	0.06; 0.02; 0.01; 0.18; 0.06; 0.02; 0.02; 0.2; 0.01; 0.11; 0.02; 0.02; 0.06; 0.02; 0.03; 0.13; 0.02; <0.1	0.02	N/A
Grapes / juice	6	0.15; 0.18; 0.14; 0.10; 0.07; 0.15	0.14	N/A
Grapes / pomace	2	5.0; 5.9	5.5	N/A
Grapes / raisins	2	0.59; 2.3	1.45	N/A
Strawberry / washed	4	0.85; 0.65; 0.5; 0.4	0.58	N/A
Strawberry / preserve	4	0.35; 0.3; <0.3; 0.2	0.3	N/A
Strawberry / jam	4	0.8; 0.55; <0.3; 0.3	0.43	N/A

(a): Studies with residues in the RAC at or close to the LOQ should be disregarded (unless concentration)

(b): When the residue definition for risk assessment differs from the residue definition for monitoring; N/A because calculation of CF not possible, or not meaningful since residues of CGA 321113 were either not determined or were <LOQ, or close to it in the RAC prior to processing.

Consumer risk assessment (Regulation (EU) N° 283/2013, Annex Part A, point 6.9)

Including all uses (representative uses and uses related to an MRL application).

IMPORTANT NOTE: The risk assessment is indicative only, considering the proposed residue definition for risk assessment for plant, animal and processed commodities, and pending the outcome of the toxicological evaluation of all components included in the residue definition.

ADI	0.1 mg/kg bw per day
TMDI according to EFSA PRIMo	Highest TMDI: N/A see IEDI according to EFSA PRIMo
NTMDI, according to (to be specified)	Highest NTMDI: N/A: see NEDI according to UK
IEDI (% ADI), according to EFSA PRIMo	Highest IEDI: 3.6% (DE child)
NEDI (% ADI), according to UK

Factors included in the calculations

ARfD

IESTI (% ARfD), according to EFSA PRIMo

NESTI (% ARfD), according to UK

Factors included in IESTI and NESTI

Proposed MRLs (Regulation (EU) No 283/2013, Annex Part A, points 6.7.2 and 6.7.3)

Code\(^{(a)}\)	Commodity/Group	MRL/Import tolerance\(^{(b)}\) (mg/kg) and Comments	
130010	Apples	0.3	Based on SEU GAP.
130020	Pears	0.3	Based on SEU GAP.
130030	Quinces	0.3	Extrapolated from apples/pears data supporting SEU GAP.
151010	Table grape	1.0	Based on NEU GAP.
151020	Wine grape	1.0	Based on NEU GAP.
152000	Strawberry	0.7	Based on protected GAP.

Plant commodities

Representative uses

Animal commodities

Code\(^{(a)}\)	Commodity/Group	MRL/Import tolerance\(^{(b)}\) (mg/kg) and Comments	
1010000 – 1017990;	Animal tissues	0.04*	No residues expected in animal commodities on the basis of the proposed representative uses.
1020000-1020990;	Milk	0.02*	No residues expected in animal commodities on the basis of the proposed representative uses.
1030000-1030990	Birds’ eggs	0.04*	No residues expected in animal commodities on the basis of the proposed representative uses.

(a): Commodity code number, as listed in Annex I of Regulation (EC) No 396/2005
(b): MRLs proposed at the LOQ, should be annotated by an asterisk (*) after the figure.
Environmental fate and behaviour

Route of degradation (aerobic) in soil (Regulation (EU) No 283/2013, Annex Part A, point 7.1.1.1)

Characteristic	Description
Mineralisation after 100 days	4-64% after 105-365d [14C-GP]-label (n=8), 57% after 365 days [14C-TP]-label (n=1)
	sterile conditions - negligible after 365 d (n=1)
Non-extractable residues after 100 days	9-27% after 105-365d [14C-GP]-label (n=8), 27% after 365 days [14C-TP]-label (n=1)
	sterile conditions - negligible after 365d (n=1)
Metabolites requiring further consideration	CGA321113 85-97% at 7-28d (n=9) [14C-GP & TP]-labels
	NOA 413161 5.3% after 93, 120 days (also seen at 13.6% in dark samples of soil photolysis study)
	CGA 357276 5.6%

Route of degradation (anaerobic) in soil (Regulation (EU) No 283/2013, Annex Part A, point 7.1.1.2)

Characteristic	Description
Mineralisation after 100 days	Mineralisation negligible
Non-extractable residues after 100 days	Non-extractable residues 7% after 365d
Metabolites that may require further consideration for risk assessment - name and/or code, % of applied (range and maximum)	CGA321113 97% after 90 d, (n=1, [14C-GP]-label)

Route of degradation (photolysis) on soil (Regulation (EU) No 283/2013, Annex Part A, point 7.1.1.3)

Characteristic	Description
Metabolites that may require further consideration for risk assessment - name and/or code, % of applied (range and maximum)	CGA321113 57.4%
	CGA357261 15.5% after 4 hours
	CGA373466 42.5% after 22d
	NOA413163 6.0% after 30d
	NOA409480 9.3% after 21d
	CGA381318 6.2% after 11d
Mineralisation at study end	Mineralisation 2-5% after 30d
Non-extractable residues at study end	Non-extractable residues 7% after 365d

Rate of degradation in soil (aerobic) laboratory studies active substance (Regulation (EU) No 283/2013, Annex Part A, point 7.1.2.1.1 and Regulation (EU) No 284/2013, Annex Part A, point 9.1.1.1)
Trifloxystrobin	Dark aerobic conditions						
Soil and texture type	pH	t. °C / %MWHC	DT$_{50}$	DT$_{90}$ (d)	DT$_{50}$ (d)	chi2	Method of calculation
Grand Forks / loam	6.8	25 / 75% FC at 1/3 bar	0.85	0.99	7.9	4.75	FOMC
Gartenacker / silt loam	7.2	19 / 75% FC	0.49	0.45	5.1	2.23	FOMC
Gartenacker / loam	7.25	19 / 75% FC	0.41	0.37	7.2	1.35	SFO
Gartenacker A (1ppm) / silt loam	7.2	20 / 60% FC at 1/3 bar	0.49	0.30	2.2	2.66	FOMC
Gartenacker B 3 (1ppm) / silt loam	7.2	20 / 30% FC at 1/3 bar	0.89	0.33*	5.7	4.31	FOMC
Gartenacker D (0.1ppm) / silt loam	7.2	20 / 60% FC at 1/3 bar	0.64	0.39	5.6	3.37	FOMC
Neuhofen / loamy sand	7.85	20 / 40% MWHC	0.57	0.31	11.92	2.75	FOMC
Collombey / loamy sand	7.65	20 / 40% MWHC	0.73	0.44	5.39	2.9	FOMC
Strassenacker / sandy loam	8.05	20 / 40% MWHC	0.58	0.33	4.2	2.96	FOMC
Gartenacker / silty loam	7.2	20 / 75% of FC at 1/3 bar	0.82	0.58	4.6	2.72	SFO
Collombey / loamy sand	7.65	20 / 40% MWHC	0.46	0.26	3.6	2.9	FOMC
Weide A / sandy loam	7.5	19.2 / 40% MWHC	0.34	0.17	2.5	2.62	FOMC
Weide B / sandy loam	7.5	19.2 / 40% MWHC	0.4	0.20	4.1	2.69	FOMC
Collombey / loamy sand	7.45	19.2 / 40% MWHC	0.44	0.19*	4.8	2.84	FOMC
Borstel / sandy loam	5.14	20 / 40% MWHC	4.35	2.83	3.0	160.3	DFOP
Laacher Hof Wurmwiese / sandy loam	5.1	20.1 / 53.9% MWHC	0.13	0.13	4.3	0.8	FOMC
Laacher Hof AXXa / sandy loam	5.9	20.1 / 52.9% MWHC	0.15	0.15	6.5	1.22	FOMC
Hoefchen am Hohenseh 4a / silt loam	6.2	20.1 / 53.3% MWHC	0.19	0.18	3.5	1.73	FOMC
Dollendorf II / clay loam	7.1	20.1 / 53.9% MWHC	0.3	0.30	1.4	0.8	FOMC
Gartenacker C (1ppm) / silt loam	7.2	10 / 60% FC at 1/3 bar	1.05	0.25*	10.6	8.46	FOMC

Geometric mean: 0.34

*excluded from geometric mean calculation since other studies on the same soil were performed at closer to reference conditions.

*Normalised using a Q$_{10}$ of 2.58 and Walker equation coefficient of 0.7
Rate of degradation in soil (aerobic) laboratory studies transformation products (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.1.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.1)

CGA 321113	Soil and texture type	pH	t. °C / %MWHC	DT$_{30}$/DT$_{90}$ (d)	DT$_{30}$ (d) 20°C pF2/10kPaa	Formation fraction †	chi²	Method of calculation
Grand Forks / loam	6.8 / n.s.	25 / 75% FC at 1/3 bar	257.2 / 853.9	299.0	0.822	7.2	FOMC-SFO	
Gartenacker / silt loam	7.2 / n.s.	20 / 75% FC	80.3 / 266.6	73.0	0.969	3.2	FOMC-SFO	
Gartenacker / loam	7.25 / n.s.	20 / 75% FC	99.2 / 329.3	90.2	0.947	1.7	SFO-SFO	
Gartenacker A / silt loam	7.2 / n.s.	20 / 60% FC at 1/3 bar	120 / 398.2	72.3	0.951	2.3	FOMC-SFO	
Gartenacker B / silt loam	7.2 / n.s.	20 / 30% FC at 1/3 bar	262.7 / 872.2	97.4*	1.000	2.7	FOMC-SFO	
Gartenacker D / silt loam	7.2 / n.s.	20 / 60% FC at 1/3 bar	35.1 / 116.5	21.1	1.000	1.5	FOMC-SFO	
Neuhofen / loamy sand	7.85 / n.s.	20 / 40% MWHC	755.6 / >1000	406.8	0.944	1.1	FOMC-SFO	
Collombe / loamy sand	7.65 / n.s.	20 / 40% MWHC	428.4 / >1000	258.3	0.970	1.2	FOMC-SFO	
Strassenacker / sandy loam	8.05 / n.s.	20 / 40% MWHC	358 / >1000	206.3	0.946	1.5	FOMC-SFO	
Gartenacker / silty loam	7.2 / n.s.	20 / 75% of FC at 1/3 bar	386.1 / >1000	271.8	0.935	1.3	SFO-SFO	
Collombe / loamy sand	7.65 / n.s.	20 / 40% MWHC	115.3 / 382.8	65.4	0.913	2.1	FOMC-SFO	
Weide A / sandy loam	7.5 / n.s.	19.2 / 40% MWHC	112.4 / 373.2	55.7	1.000	2.4	FOMC-SFO	
Weide B / sandy loam	7.5 / n.s.	19.2 / 40% MWHC	235 / 780.2	116.5	0.957	2.1	FOMC-SFO	
Collombe / loamy sand	7.45 / n.s.	19.2 / 40% MWHC	157.4 / 522.6	69.4*	1.000	0.6	FOMC-SFO	
Borstel / loamy sand	5.8 / CaCl$_2$	20 / 40% MWHC	223.2 / 741.0	194.5	N/A	1.8	SFO	
Borstel / sandy loam	5.14 / KCl	20 / 40% MWHC	380.4 / >1000	247.6	0.983	2.7	DFO-P-SFO	
Laacher Hof Wurmwiese / sandy loam	5.1 / CaCl$_2$	20.1 / 53.9% MWHC	70.1 / 232.7	70.8	0.917	4.6	FOMC-SFO	
Laacher Hof AXXa / sandy loam	5.9 / CaCl$_2$	20.1 / 52.9% MWHC	71.6 / 237.7	72.3	0.996	3.6	FOMC-SFO	
Hoehehen am Hohenseh 4a / silt loam	6.2 / CaCl$_2$	20.1 / 53.3% MWHC	55.5 / 184.3	52.0	0.973	1.9	FOMC-SFO	
Dollendorf II / clay loam	7.1 / CaCl$_2$	20.1 / 53.9% MWHC	77.4 / 257.0	78.1	0.961	2.9	FOMC-SFO	
Gartenacker

Soil	pH	t. °C / %MWHC	DT$_{50}$/DT$_{90}$ (d)	DT$_{50}$ (d) 20°C pF2/10kPaa	Formation fraction †	chi2	Method of calculation
C / silt loam	7.2	10 / 60% FC at 1/3 bar	369.5 / >1000	86.3* 0.996	4.3	FOMC-SFO	

Geometric mean 122.4

Arithmetic mean 0.947

aNormalised using a Q$_{10}$ of 2.58 and Walker equation coefficient of 0.7

formation fractions derived considering trifloxystrobin as the precursor

*excluded from geometric mean calculation since other studies on the same soil were performed at conditions closer to standard reference conditions.

CGA 357276

Soil and texture type	pH	t. °C / %MWHC	DT$_{50}$/DT$_{90}$ (d)	DT$_{50}$ (d) 20°C pF2/10kPaa	Formation fraction †	chi2	Method of calculation
Laacher Hof Wurmwiese / sandy loam	5.1 / CaCl$_2$	20.1 / 53.9% MWHC	n.r.	-	0.061	4.8	SFO-SFO
Laacher Hof AXXa / sandy loam	5.9 / CaCl$_2$	20.1 / 52.9% MWHC	n.r.	-	0.044	6.1	SFO-SFO
Laacher Hof Wurmwiese / sandy loam	5 / CaCl$_2$	19.9 / 55.7% MWHC	20.2/161	65.9	N/A	3.2	HS
Laacher Hof AXXa / loamy sand	6 / CaCl$_2$	19.9 / 55.5% MWHC	21.1/168.5	71.2	N/A	1.2	DFOP
Hoefchen am Hohenseh 4a / silt loam	6.4 / CaCl$_2$	19.9 / 55% MWHC	21.4/131.2	69.2	N/A	2.8	DFOP
Dollendorf II / loam	7.3 / CaCl$_2$	19.9 / 55.4% MWHC	12 / 71.7	21.4	N/A	1.8	FOMC

Geometric mean 51.3

Arithmetic mean 0.053

aNormalised using a Q$_{10}$ of 2.58 and Walker equation coefficient of 0.7

† formation fractions derived considering CGA 321113 as the precursor and the DT$_{50}$ of CGA 357276 was fixed to the K2 value from the CGA 357276 metabolite dosed study in the same soil.

For normalised DT$_{50}$ values reported for the bi-phasic models, these represent the conservative pseudo SFO DT$_{90}$/3.32

NOA 413161

Soil and texture type	pH	t. °C / %MWHC	DT$_{50}$/DT$_{90}$ (d)	DT$_{50}$ (d) 20°C pF2/10kPaa	Formation fraction †	chi2	Method of calculation	
Laacher Hof Wurmwiese / sandy loam	5.1 / CaCl$_2$	20.1 / 53.9% MWHC	90.4 / 300.1	91.3	0.135	3.3	SFO-SFO	
Laacher Hof AXXa / sandy loam	5.9 / CaCl$_2$	20.1 / 52.9% MWHC	48.1 / 159.7	48.6	0.164	5.1	SFO-SFO	
Hoefchen am Hohenseh 4a / silt loam	6.2 / CaCl$_2$	20.1 / 53.3% MWHC	35.1 / 116.5	32.9	0.132	4.0	SFO-SFO	
Dollendorf II / clay loam	7.1 / CaCl$_2$	20.1 / 53.9% MWHC	30.9 / 102.6	31.2	0.213	4.7	SFO-SFO	
Borstel /	5.8 /	20 / 40%	253.7 /	221.1	N/A	3.6	SFO-SFO	
Soil and texture type	pH	t. °C / %MWHC	DT$_{50}$/DT$_{90}$ (d)	DT$_{50}$ (d) 20°C pF2/10kPa	Formation fraction	chi2	Method of calculation	
--	-------------	---------------	-------------------------	------------------------------	--------------------	---------	-----------------------	
Loamy sand	CaCl$_2$							
Laacher Hof Wurmwiese / sandy loam	5.3 / CaCl$_2$	20 / 55%	MWHC	89.6 / 297.5	89.6	N/A	7.1	SFO-SFO
Hoechhen am Hohenseh 4a / silty loam	6.5 / CaCl$_2$	20 / 55%	MWHC	149.3 / 495.7	149.3	N/A	3.3	SFO-SFO
Dollendorf II / clay loam	7.1 / CaCl$_2$	20 / 55%	MWHC	85 / 282.2	85.0	N/A	2.9	SFO-SFO
Geometric mean							76.3 days	
Arithmetic mean							0.161	

a Normalised using a Q_{10} of 2.58 and Walker equation coefficient of 0.7

† formation fractions derived considering CGA 321113 as the precursor

Soil and texture type	pH	t. °C / %MWHC	DT$_{50}$/DT$_{90}$ (d)	DT$_{50}$ (d) 20°C pF2/10kPa	Formation fraction	chi2	Method of calculation	
CGA 357261								
Laacher Hof Wurmwiese / sandy loam	5.1 / CaCl$_2$	20.2 / 55		0.07/0.23	0.07	N/A	9.7	SFO
Laacher Hof AXXa / sandy loam	5.9 / CaCl$_2$	20.2 / 55		0.07 / 0.23	0.07	N/A	16.0	SFO
Hoechhen am Hohenseh 4a / silty loam	6.2 / CaCl$_2$	20.2 / 55		0.1 / 0.33	0.1	N/A	13.9	SFO
Dollendorf II / clay loam	7.1 / CaCl$_2$	20.2 / 55		0.13/0.43	0.13	N/A	10.8	SFO
Geometric mean							0.09	
Arithmetic mean								

|a Normalised using a Q_{10} of 2.58 and Walker equation coefficient of 0.7

† formation fractions derived considering CGA 357261 as the precursor

Soil and texture type	pH	t. °C / %MWHC	DT$_{50}$/DT$_{90}$ (d)	DT$_{50}$ (d) 20°C pF2/10kPa	Formation fraction	chi2	Method of calculation	
CGA 373466								
Laacher Hof Wurmwiese / sandy loam	5.1 / CaCl$_2$	20.2 / 55		31.3 / 103.9	31.9	0.98	4.7	FOMC-SFO
Laacher Hof AXXa / sandy loam	5.9 / CaCl$_2$	20.2 / 55		44.6 / 148.1	45.5	1.00	1.7	DFOP-SFO
Hoechhen am Hohenseh 4a / silty loam	6.2 / CaCl$_2$	20.2 / 55		44.7 / 148.4	43.2	1.00	1.9	DFOP-SFO
Dollendorf II / clay loam	7.1 / CaCl$_2$	20.2 / 55		72.3 / 240.0	73.7	1.00	2.5	FOMC-SFO
Geometric mean							46.3	
Arithmetic mean								

|a Normalised using a Q_{10} of 2.58 and Walker equation coefficient of 0.7

† formation fractions derived considering CGA 357261 as the precursor

Soil and texture type	pH	t. °C / %MWHC	DT$_{50}$/DT$_{90}$ (d)	DT$_{50}$ (d) 20°C pF2/10kPa	Formation fraction	chi2	Method of calculation	
NOA 413163								
Laacher Hof Wurmwiese /	5.1 / CaCl$_2$	20.2 / 55		76.0 / 252.3	77.4	0.23	5.0	SFO-SFO
Soil and texture type	pH	t. °C / %MWHC	DT₅₀ / DT₉₀ (d)	DT₃₀ (d) 20°C pF2/10kPa	Formation fraction	chi²	Method of calculation	
---	---------	---------------	-----------------	------------------------	--------------------	------	----------------------	
Laacher Hof Wurmwiese / sandy loam	5.0 / CaCl₂	19.4 / 55	45.3 / 150.4	42.8	N/A	9.2	SFO	
Laacher Hof AXXa / sandy loam	5.7 / CaCl₂	19.4 / 55	39.3 / 130.5	37.1	N/A	8.2	SFO	
Hoechen am Hohenseh 4a / silt loam	6.1 / CaCl₂	19.4 / 55	24.9 / 82.7	23.5	N/A	9.1	SFO	
Dollendorf II / loam	7.2 / CaCl₂	19.4 / 55	19.1 / 63.4	15.2	N/A	7.5	SFO	
Geometric mean						27.5		
Arithmetic mean						N/A		

a) Normalised using a Q₁₀ of 2.58 and Walker equation coefficient of 0.7

CGA 381318

Soil and texture type	pH	t. °C / %MWHC	DT₅₀ / DT₉₀ (d)	DT₃₀ (d) 20°C pF2/10kPa	Formation fraction	chi²	Method of calculation
Laacher Hof Wurmwiese / sandy loam	5.2 / CaCl₂	20.3 / 54.5	11.9 / 39.5	12.2	N/A	5.2	SFO
Laacher Hof AXXa / loamy sand	5.9 / CaCl₂	20.3 / 54.5	22.8 / 75.7	23.5	N/A	5.0	SFO
Hoechen am Hohenseh 4a / silt loam	6.2 / CaCl₂	20.3 / 54.5	22.8 / 75.7	23.5	N/A	4.1	SFO
Dollendorf II / loam	7.2 / CaCl₂	20.3 / 54.6	20.4 / 67.7	21.0	N/A	3.5	SFO
Geometric mean						19.4	
Arithmetic mean						N/A	
a) Normalised using a Q_{10} of 2.58 and Walker equation coefficient of 0.7

Rate of degradation field soil dissipation studies (Regulation (EU) No 283/2013, Annex Part A, point 7.1.2.2.1 and Regulation (EU) No 284/2013, Annex Part A, point 9.1.1.2.1)

Trifloxystrobin	Aerobic conditions										
Soil type (indicate if bare or cropped soil was used).	Location (country or USA state).	pH^a	Depth (cm)	DT₅₀ (d) actual	DT₉₀ (d) actual	DT₅₀ (d) Norm^b	St. (χ^2) (actual / norm)	Kinetic parameter	Method of calculation (actual / norm)		
0-100 cm – Loam	Wipperfuerth (Germany)	0-30 cm – 4.3 30-50 cm – 4.5 50-75 cm – 4.7 75-100cm - 4.7	100	2.36	35.6	1.13	12.6 / 27.1	K_1 9.555 K_2 0.052	DFOP / DFOP		
Grass	0-75 cm – Sandy Loam	Wellesbourne (United Kingdom)	0-30 cm – 5.7 30-50 cm – 5.6 50-75 cm – 6.1 75-100cm - 7.0	100	6.65	22.1	1.66	17.9 / 16.5	K 0.1042	SFO / SFO	
75-100 cm – Sandy Clay Loam	Grass	0-100 cm – Silt Loam	Chilly (Northern France)	0-30 cm – 6.7 30-50 cm – 6.7 50-75 cm – 6.7 75-100cm - 6.9	100	6.02	20.0	1.69	22.6 / 28.8	K 0.4367	SFO / SFO
Grass	0-30 cm – Silt Loam	St. Etienne du Gres (Southern France)	0-30 cm – 7.8 30-50 cm – 7.8 50-75 cm – 7.8 75-100cm - 7.8	100	6.71	22.3	2.73	12.9 / 9.0	K 0.4559	SFO / SFO	
30-100 cm – Silty Clay Loam	Grass	0-50 cm – Loam	Vilobi d’Onyar (Spain)	0-30 cm – 6.2 30-50 cm – 6.4 50-75 cm – 6.4 75-100cm - 6.5	100	1.76	10.4	1.10	11.2 / 19.5	α 0.5157 β 3.333	FOMC / SFO
50-100 cm – Sandy Clay Loam	Grass	0-50 cm – Silty Clay Loam	Albaro (Italy)	0-30 cm – 7.3 30-50 cm – 7.4 50-75 cm – 7.4 75-100cm - 7.3	100	3.33	14.7	2.49	9.27 / 13.5	α -0.131 β -0.169	FOMC / SFO

Geometric mean (if not pH dependent): 1.69

pH dependence, Yes or No: No

^aMeasured in CaCl₂

^bNormalised using a Q_{10} of 2.58 and Walker equation coefficient of 0.7
CGA 321113	Aerobic conditions									
Soil type (indicate if bare or cropped soil was used).	Location (country or USA state).	pH	Depth (cm)	DT₅₀ (d) actual	DT₉₀(d) actual	St. (χ²) (norm)	DT₅₀ (d) Norm^h.	Formation fraction †	Method of calculation (norm)	
0-100 cm – Loam Grass	Wipperfuerth (Germany)	0-30 cm – 4.3	30-50 cm – 4.5	50-75 cm – 4.7	75-100cm– 4.7	100	8.9	52.4	0.680	DFOP-SFO
0-75 cm – Sandy Loam 75-100 cm – Sandy Clay Loam Grass	Wellesbourne (United Kingdom)	0-30 cm – 5.7	30-50 cm – 5.6	50-75 cm – 6.1	75-100cm– 7.0	100	9.5	24.7	0.830	SFO-SFO
0-100 cm – Silt Loam Grass	Chilly (Northern France)	0-30 cm – 6.7	30-50 cm – 6.7	50-75 cm – 6.7	75-100cm– 6.9	100	16.8	53.0	0.556	SFO-SFO
0-30 cm – Silt Loam 30-100 cm – Silty Clay Loam Grass	St. Etienne du Gres (Southern France)	0-30 cm – 7.8	30-50 cm – 7.8	50-75 cm – 7.8	75-100cm– 7.8	100	19.1	95.8	0.668	SFO-SFO
0-50 cm – Loam 50-100 cm – Sandy Clay Loam Grass	Vilobi d’Onyar (Spain)	0-30 cm – 6.2	30-50 cm – 6.4	50-75 cm – 6.4	75-100cm– 6.5	100	28.5	23.7	0.488	SFO-SFO
0-50 cm – Silty Clay Loam 50-75 cm – Silty Clay 75-100 cm – Clay Loam Grass	Albaro (Italy)	0-30 cm – 7.3	30-50 cm – 7.4	50-75 cm – 7.4	75-100cm– 7.3	100	15.2	79.8	1.00	SFO-SFO

Geometric mean (if not pH dependent) 48.1
Arithmetic mean 0.707
Aerobic conditions

CGA 321113	Soil type (indicate if bare or cropped soil was used).	Location (country or USA state).	pH\(^a\)	Depth (cm)	DT\(_{50}\) (d) actual	DT\(_{90}\) (d) actual	St. (χ\(^2\)) (norm)	DT\(_{50}\) (d) Norm\(^b\).	Formation fraction \(\dagger\)	Method of calculation (norm)
		pH dependence, Yes or No								
		No								

\(^a\) Measured in CaCl\(_2\)

\(^b\) Normalised using a Q\(_{10}\) of 2.58 and Walker equation coefficient of 0.7

\(\dagger\) formation fractions derived considering trifloxystrobin as the precursor
CGA 357276	Aerobic conditions								
Soil type (indicate if bare or cropped soil was used).	Location (country or USA state).	pH^a	Depth (cm)	DT₅₀ (d) actual	DT₉₀(d) actual	St. (χ^2) (norm)	DT₉₀ (d) Norm^b	Formation fraction †	Method of calculation (norm)
0-100 cm – Loam Grass	Wipperfürth (Germany)	0-30 cm – 4.3 30-50 cm – 4.5 50-75 cm – 4.7 75-100cm – 4.7	100	20.1	36.5	0.072	SFO-SFO		
0-75 cm – Sandy Loam 75-100 cm – Sandy Clay Loam Grass	Wellesbourne (United Kingdom)	0-30 cm – 5.7 30-50 cm – 5.6 50-75 cm – 6.1 75-100cm – 7.0	100	2.8	80.2[*]	*	SFO		
0-100 cm – Silt Loam Grass	Chilly (Northern France)	0-30 cm – 6.7 30-50 cm – 6.7 50-75 cm – 6.7 75-100cm – 6.9	100	7.9	36.1	0.062	SFO-SFO		
0-50 cm – Loam 50-100 cm – Sandy Clay Loam Grass	Vilobi d’Onyar (Spain)	0-30 cm – 6.2 30-50 cm – 6.4 50-75 cm – 6.4 75-100cm – 6.5	100	19.7	45.5[*]	*	SFO		
0-50 cm – Silty Clay Loam 50-75 cm – Silty Clay 75-100 cm – Clay Loam Grass	Albaro (Italy)	0-30 cm – 7.3 30-50 cm – 7.4 50-75 cm – 7.4 75-100cm – 7.3	100	23.2	76.5	0.032	SFO-SFO		

Geometric mean (if not pH dependent) 51.7
Arithmetic mean 0.055

^a Measured in CaCl₂
^b Normalised using a Q_{10} of 2.58 and Walker equation coefficient of 0.7
† formation fractions derived considering CGA 321113 as the precursor
*Top down fit of the decline curve from maximum observed peak
NOA 413161: Aerobic Conditions

Soil type (indicate if bare or cropped soil was used)	Location (country or USA state)	pH^{a)†}	Depth (cm)	DT₅₀ (d) actual	DT₉₀(d) actual	St. (χ²) (norm)	DT₅₀ (d) Norm^{b)}	Formation fraction †	Method of calculation (norm)	
0-100 cm – Loam – Grass	Wipperfuerth (Germany)	0-30 cm – 4.3	30-50 cm – 4.5	50-75 cm – 4.7	75-100 cm – 4.7	100	18.9	43.4[†]	-	SFO
0-75 cm – Sandy Loam – 75-100 cm – Sandy Clay Loam – Grass	Wellesbourne (United Kingdom)	0-30 cm – 5.7	30-50 cm – 5.6	50-75 cm – 6.1	75-100 cm – 7.0	100	15.4	30.7	0.263	SFO-SFO
0-30 cm – Silt Loam – 30-100 cm – Silty Clay Loam – Grass	St. Etienne du Gres (Southern France)	0-30 cm – 7.8	30-50 cm – 7.8	50-75 cm – 7.8	75-100 cm – 7.8	100	17.3	26.0	0.078	SFO-SFO
0-50 cm – Loam – 50-100 cm – Sandy Clay Loam – Grass	Vilobi d’Onyar (Spain)	0-30 cm – 6.2	30-50 cm – 6.4	50-75 cm – 6.4	75-100 cm – 6.5	100	17.2	34.9	0.259	SFO-SFO
0-50 cm – Silty Clay Loam – 50-75 cm – Silty Clay – 75-100 cm – Clay Loam – Grass	Albaro (Italy)	0-30 cm – 7.3	30-50 cm – 7.4	50-75 cm – 7.4	75-100 cm – 7.3	100	16.9	50.8	0.055	SFO-SFO

| Geometric mean (if not pH dependent) | 36.1 |
| Arithmetic mean | 0.164 |

pH dependence, Yes or No
No

^{a)} Measured in CaCl₂
^{b)} Normalised using a Q₁₀ of 2.58 and Walker equation coefficient of 0.7
† formation fractions derived considering CGA 321113 as the precursor
*Top down fit of the decline curve from maximum observed peak
CGA 357261	Aerobic conditions (as metabolite dosed study)								
Soil type (indicate if bare or cropped soil was used).	Location (country or USA state).	pH^a	Depth (cm)	DT₅₀ (d) actual	DT₉₀(d) actual	DT₅₀ (d) Norm^b	St. (χ²) (actual / norm)	Kinetic parameter	Method of calculation (actual / norm)
0-100cm - Loam	Wipperfuerth (Germany)	0-30 cm–4.3	100	0.91	7.51	0.27	2.36 / 2.2	K₁ 2.50	DFOP / DFOP
Grass		30-50 cm–4.5						K₂ 0.199	
0-75 cm - Sandy Loam	Wellesbourne (United Kingdom)	0-30 cm–5.7	100	2.62	9.1	0.61	2.25 / 7.9	K₁ 0.171	DFOP / SFO
75-100 cm - Sandy Clay Loam		30-50 cm–5.6						K₂ 0.025	
Grass		50-75 cm–6.1						g -0.035	
0-100 cm - Silt Loam	Chilly (Northern France)	0-30 cm–6.7	100	2.23	17.5	0.12	26.9 / 17.5	α 0.540	FOMC / HS
Grass		30-50 cm–6.7						β 2.206	
0-30 cm - Silt Loam	St. Etienne du Gres (Southern France)	0-30 cm–7.8	100	3.17	13.0	1.35	1.09 / 8.5	K₁ 0.037	DFOP / SFO
30-100 cm - Silty Clay Loam		30-50 cm–7.8						K₂ 0.009	
Grass		50-75 cm–7.8						g 0.0134	
0-50 cm - Loam	Vilobi d’Onyar (Spain)	0-30 cm–6.2	100	1.64	6.78	0.92	3.03 / 8.96	α 3.861	FOMC / SFO
50-100 cm - Sandy Clay Loam		30-50 cm–6.4						β 8.318	
Grass		50-75 cm–6.4							
0-50 cm - Silty Clay Loam	Albaro (Italy)	0-30 cm–7.3	100	0.76	4.80	0.88	4.67 / 24.9	α 1.47	FOMC / SFO
50-75 cm - Silty Clay		30-50 cm–7.4						β 1.267	
75-100 cm - Clay Loam		50-75 cm–7.4							
Grass		75-100cm–7.3							
Geometric mean (if not pH dependent)									
pH dependence, Yes or No							0.53		No

^a Measured in CaCl₂

^b Normalised using a Q₁₀ of 2.58 and Walker equation coefficient of 0.7
CGA 373466	Aerobic conditions	Soil type (indicate if bare or cropped soil was used)	Location (country or USA state)	pH[^1]	Depth (cm)	DT₅₀ (d) actual	DT₉₀ (d) actual	St. (χ²) (norm)	DT₅₀ (d) Norm[^b]	Formation fraction †	Method of calculation (norm)
0-100 cm - Loam Grass	Wipperfuerth (Germany)	0-30 cm–4.3 30-50 cm–4.5 50-75 cm–4.7 75-100cm–4.7	100	12.9	6.6[^*]	-	SFO				
0-75 cm - Sandy Loam 75-100 cm - Sandy Clay Loam Grass	Wellesbourne (United Kingdom)	0-30 cm–5.7 30-50 cm–5.6 50-75 cm–6.1 75-100cm–7.0	100	12.7	8.57	1.000	SFO-SFO				
0-100 cm - Silt Loam Grass	Chilly (Northern France)	0-30 cm–6.7 30-50 cm–6.7 50-75 cm–6.7 75-100cm–6.9	100	27.5	29.1	0.618	HS-SFO				
0-30 cm - Silt Loam 30-100 cm - Silty Clay Loam Grass	St. Etienne du Gres (Southern France)	0-30 cm–7.8 30-50 cm–7.8 50-75 cm–7.8 75-100cm–7.8	100	36.5	91.0	1.000	SFO-SFO				
0-50 cm - Loam 50-100 cm - Sandy Clay Loam Grass	Vilobi d’Onyar (Spain)	0-30 cm–6.2 30-50 cm–6.4 50-75 cm–6.4 75-100cm–6.5	100	9.4	14.0	1.000	SFO-SFO				
0-50 cm - Silty Clay Loam 50-75 cm - Silty Clay 75-100 cm - Clay Loam Grass	Albaro (Italy)	0-30 cm–7.3 30-50 cm–7.4 50-75 cm–7.4 75-100cm–7.3	100	20.4	56.1	1.000	SFO-SFO				
Geometric mean (if not pH dependent) Arithmetic mean				22.1	0.924						

[^1]Measured in CaCl2

[^2]Normalised using a Q₁₀ of 2.58 and Walker equation coefficient of 0.7

† formation fractions derived considering CGA 357261 as the precursor

[^*]Top down fit of the decline curve from maximum observed peak

pH dependence, Yes or No

No

www.efsa.europa.eu/efsajournal
NOA 413163

Aerobic conditions

Soil type (indicate if bare or cropped soil was used).	Location (country or USA state).	pH^a	Depth (cm)	DT₅₀ (d) actual	DT₉₀(d) actual	St. (χ²) (norm)	DT₉₀ (d) Norm^b	Formation fraction †	Method of calculation (norm)
0-100 cm - Loam Grass	Wipperfuerth (Germany)	0-30 cm – 4.3 30-50 cm – 4.5 50-75 cm – 4.7 75-100cm- 4.7	100	17.5	53.0*	–	SFO		
0-75 cm - Sandy Loam 75-100 cm - Sandy Clay Loam Grass	Wellesbourne (United Kingdom)	0-30 cm – 5.7 30-50 cm – 5.6 50-75 cm – 6.1 75-100cm- 7.0	100	40.5	87.4	0.457	SFO-SFO		
0-100 cm - Silt Loam Grass	Chilly (Northern France)	0-30 cm – 6.7 30-50 cm – 6.7 50-75 cm – 6.7 75-100cm- 6.9	100	26.7	29.9	0.4989	SFO-SFO		
0-30 cm - Silt Loam 30-100 cm - Silty Clay Loam Grass	St. Etienne du Gres (Southern France)	0-30 cm – 7.8 30-50 cm – 7.8 50-75 cm – 7.8 75-100cm- 7.8	100	20.6	36.5	0.185	SFO-SFO		
0-50 cm - Loam 50-100 cm - Sandy Clay Loam Grass	Vilobi d’Onyar (Spain)	0-30 cm – 6.2 30-50 cm – 6.4 50-75 cm – 6.4 75-100cm- 6.5	100	22.3	25.8	0.271	SFO-SFO		
0-50 cm - Silty Clay Loam 50-75 cm - Silty Clay 75-100 cm - Clay Loam Grass	Albaro (Italy)	0-30 cm – 7.3 30-50 cm – 7.4 50-75 cm – 7.4 75-100cm- 7.3	100	20.3	28.7	0.115	SFO-SFO		

| Geometric mean (if not pH dependent) | 39.4 |
| Arithmetic mean | 0.305 |

pH dependence, Yes or No

| Yes or No | No |

^a Measured in CaCl₂

^b Normalised using a Q₁₀ of 2.58 and Walker equation coefficient of 0.7

† formation fractions derived considering CGA 373466 as the precursor

*Top down fit of the decline curve from maximum observed peak
NOA 409480	Aerobic conditions									
Soil type (indicate if bare or cropped soil was used).	Location (country or USA state).	pH^{a)}	Depth (cm)	DT₅₀ (d) actual	DT₅₀(d) actual	St.[†] (χ²) (norm)	DT₉₀ (d) Norm^{b)}	Formation fraction †	Method of calculation (norm)	
0-100 cm - Loam - Grass	Wipperfuerth (Germany)	0-30 cm – 4.3 30-50 cm – 4.5 50-75 cm – 4.7 75-100 cm - 4.7	100						-	SFO
0-75 cm - Sandy Loam 75-100 cm - Sandy Clay Loam - Grass	Wellesbourne (United Kingdom)	0-30 cm – 5.7 30-50 cm – 5.6 50-75 cm – 6.1 75-100 cm - 7.0	100					0.024^a	Top down DT50 SFO Formation fraction SFO-SFO	
0-100 cm - Silt Loam - Grass	Chilly (Northern France)	0-30 cm – 6.7 30-50 cm – 6.7 50-75 cm – 6.7 75-100 cm - 6.9	100				34.7	0.025	SFO-SFO	
0-30 cm - Silt Loam 30-100 cm - Silty Clay Loam - Grass	St. Etienne du Gres (Southern France)	0-30 cm – 7.8 30-50 cm – 7.8 50-75 cm – 7.8 75-100 cm - 7.8	100				111.1[†]	-	SFO	
0-50 cm - Loam 50-100 cm - Sandy Clay Loam - Grass	Vilobi d’Onyar (Spain)	0-30 cm – 6.2 30-50 cm – 6.4 50-75 cm – 6.4 75-100 cm - 6.5	100				18.5	0.028	SFO-SFO	
0-50 cm - Silty Clay Loam 50-75 cm - Silty Clay 75-100 cm - Clay Loam - Grass	Albaro (Italy)	0-30 cm – 7.3 30-50 cm – 7.4 50-75 cm – 7.4 75-100 cm - 7.3	100				29.7	0.035	SFO-SFO	

Geometric mean (if not pH dependent) 56.9
Arithmetic mean (n = 5) 6.9
pH dependence, Yes or No No

^{a)} Measured in CaCl₂
^{b)} Normalised using a Q₁₀ of 2.58 and Walker equation coefficient of 0.7
† formation fractions derived considering CGA 373466 as the precursor
*Top down fit of the decline curve from maximum observed peak
Δ DT50 NOA 409480 fixed to top down value then FF fitted iteratively
Combined laboratory and field kinetic endpoints for modelling (when not from different populations)

Rate of degradation in soil active substance, normalised geometric mean (if not pH dependent) 0.52 (d) geometric mean (n=23) combined lab and field studies

Transformation product	Rate of degradation in soil transformation products, normalised geometric mean (if not pH dependent)	Kinetic formation fraction (f. f. k_f / k_{dp}) of transformation products, arithmetic mean
CGA 321113	48.1 d, geomean (n=6) from field studies	0.707 from field studies formed from parent
CGA 357276	51.5 d, geomean (n=9) from combined lab and field studies	0.0542 from combined lab and field studies formed from CGA 321113
NOA 413161	36.1 d, geomean (n=5) from field studies	0.164 from field studies formed from CGA 321113
CGA 357261	0.26 d, geomean (n=10) from combined lab and field studies	1.0 formed from parent1
CGA 373466	22.1 d, geomena (n=6) from field studies	0.924 from field studies formed from CGA 35726
NOA 413163	41.7 d, geomean (n=13) from combined lab and field studies	0.27 from combined lab and field studies formed from CGA 373466
NOA 409480	4.25 d, geomean (n=10) from combined lab and field studies	0.028 from field studies formed from CGA 373466
CGA 381318	19.4 d, geomean (n=4) from lab studies	0.062 maximum value from trifloxystrobin from lab soil photolysis studies

1 Formation fraction of 1 accepted for transient nature of metabolite and data generated with metabolite dosed studies

Soil accumulation (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.2.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.2.2)

Soil accumulation and plateau concentration -

Rate of degradation in soil (anaerobic) laboratory studies active substance (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.1.3 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.1)

Parent	Dark anaerobic conditions						
Soil type	X	pH5	t. °C / % MWHC	DT_{50} / DT_{90} (d)	DT_{50} (d) 20 °C6	St. (χ^2)	Method of calculation
Data Gap							
Geometric mean (if not pH dependent)	Measured in [medium to be stated, usually calcium chloride solution or water] Normalised using a Q10 of 2.58						

Rate of degradation in soil (anaerobic) laboratory studies transformation products (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.1.4 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.1)

| Met 1 | Dark anaerobic conditions | Metabolite dosed or the precursor from which the f.f. was derived was xxx |

www.efsa.europa.eu/efsajournal 46 EFSA Journal 2017;15(10):4989
Rate of degradation on soil (photolysis) laboratory active substance (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.1.3)

Soil type	pH^a	t. °C / % MWHC	Condition	DT₅₀ / DT₉₀ experimental	DT₅₀ under natural conditions	St. (χ²)	Method of calculation
Loamy sand	7.3 (H₂O)	25°C / 75% FC at 1/3 bar	Irradiated	2.28 / 41.7 (overall values*)	-	5.63	DFOP
Loamy sand	7.3 (H₂O)	25°C / 75% FC at 1/3 bar	Dark control	2.33 / 52.5 (overall values *)	-	8.92	DFOP
Silt loam	6.3 (0.01M CaCl₂)	20°C / 53% MWHC	Irradiated	1.2 / 4.0	3.4 d Arizona 5.2 d Athens	13.2	SFO
Silt loam	6.3 (0.01M CaCl₂)	20°C / 53% MWHC	Dark control	1.68 / 5.59	4.7d Arizona 7.3 d Athens	4.25	SFO

*The values observed in the DFOP analysis do not support the evaluation of the fast phase in isolation because there is only one data point in the assessment prior to the degradation of approximately 50% of the compound. For this reason the UK RMS considers it more reliable to compare the overall DT₅₀ for the irradiated and dark samples.** The net DT₅₀ was determined by subtracting the rate constant from the dark control from the rate constant for the irradiated sample, and then converting the result into a DT₅₀ to obtain the rate of degradation which was due solely to photolysis.

Soil type	pH^a	t. °C / % MWHC	Condition	DT₅₀ / DT₉₀ experimental	DT₅₀ under natural conditions	St. (χ²)	Method of calculation
Silt loam	6.3 (0.01M CaCl₂)	20°C / 53% MWHC	Irradiated	4.6 / 15.3	12.9 d Arizona 20.0 d Athens	21.2	SFO
**The net DT₅₀ was determined by subtracting the rate constant from the dark control from the rate constant for the irradiated sample, and then converting the result into a DT₅₀ to obtain the rate of degradation which was due solely to photolysis.

Soil adsorption active substance (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.3.1.1 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.2.1)

Soil Type	OC %	Soil pH^{a)}	K_d (mL/g)	K_{doc} (mL/g)	K_F (mL/g)	K_{Foc} (mL/g)	1/n
Borstal loamy sand	1.0	5.1	23.3	2327	0.94		
Collombey loamy sand	0.8	7.3	14.7	1837	0.92		
Speyer 2.1 sand	0.3	6.8	11.2	3745	1.00		
Gartenacker loam	2.0	7.1	42.9	2031	0.94		
Vetroz silt loam	4.7	7.2	126.1	2683	0.98		
Illarsaz humic silt loam	19.8	6.7	325.0	1642	0.97		

Geometric mean (if not pH dependent): 43.5
Arithmetic mean (if not pH dependent): 0.958

pH dependence, **Yes or No**

No

^{a) Medium of pH measurement not reported in the RAR}

Soil adsorption transformation products (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.3.1.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.2.1)

Soil Type	OC %	Soil pH^{a)}	K_d (mL/g)	K_{doc} (mL/g)	K_F (mL/g)	K_{Foc} (mL/g)	1/n
Collombey loamy sand	0.8	7.3	0.83	104	1.00		
Speyer 2.1 sand	0.3	6.8	0.58	194	1.11		
Gartenacker loam	2.0	7.1	2.33	117	0.99		
Vetroz silt loam	4.7	7.2	3.96	84	0.95		
Illarsaz humic silt loam	19.8	6.7	16.61	94	0.97		
Borstal loamy sand	1.0	5.1	1.32	132	0.98		

Geometric mean (if not pH dependent): 2.14
Arithmetic mean (if not pH dependent): 1.00

pH dependence, **Yes or No**

No

^{a) Medium of pH measurement not reported in the RAR}

**Soil Type	OC %	Soil pH^{a)}	K_d (mL/g)	K_{doc} (mL/g)	K_F (mL/g)	K_{Foc} (mL/g)	1/n
Madera sandy loam	0.6	7.0	48.5	8345	0.952		
Northwood loam	3.1	6.9	207	6587	0.813		
Louisberg sandy loam	0.8	6.6	75.1	9228	0.962		
Raleigh sand	0.8	5.6	79.4	9756	0.847		
Northwood clay loam	2.4	6.9	169	6934	0.813		

Geometric mean (if not pH dependent): 100
Arithmetic mean (if not pH dependent): 0.877

pH dependence, **Yes or No**

No

^{a) Medium of pH measurement not reported in the RAR}
NOA 413161

Soil Type	OC %	Soil pH⁰	K_d (mL/g)	K_{doc} (mL/g)	K_F (mL/g)	K_{Foc} (mL/g)	l/n
Bortel loamy sand	1.0	5.1	0.042	4.2			
Laacher Hof Wurmweise sandy loam	1.8	5.5	0.116	6.4	0.912		
Laacher Hof AXXa sandy loam	1.8	6.5	0.066	3.7	0.931		
Hoefchen am Hohenseh 4a silt loam	2.4	6.8	0.049	2.0	0.885		
Dollendorf II clay loam	4.6	7.1	0.095	2.1	0.890		
Geometric mean (if not pH dependent)			0.068	3.3			0.905
Arithmetic mean (if not pH dependent)							
pH dependence, Yes or No	No						

a) Measured in calcium chloride solution

CGA 357261

Soil Type	OC %	Soil pH⁰	K_d (mL/g)	K_{doc} (mL/g)	K_F (mL/g)	K_{Foc} (mL/g)	l/n
Madera sandy loam	0.6	7.0	2.78	479	1.034		
Northwood loam	3.1	6.9	14.9	476	1.005		
Louisberg sandy loam	0.8	6.6	3.17	389	0.962		
Raleigh sand	0.8	5.6	4.61	567	0.980		
Northwood clay loam	2.4	6.9	12.8	526	0.990		
Geometric mean (if not pH dependent)			6.00	483.6			
Arithmetic mean (if not pH dependent)							0.994
pH dependence, Yes or No	No						

a) Medium of pH measurement not reported in the RAR

CGA 373466

Soil Type	OC %	Soil pH⁰	K_d (mL/g)	K_{doc} (mL/g)	K_F (mL/g)	K_{Foc} (mL/g)	l/n
Madera sandy loam	0.6	7.0	0.175	30	0.91		
Northwood loam	3.1	6.9	3.07	98	0.88		
Louisberg sandy loam	0.8	6.6	0.516	63	0.99		
Raleigh sand	0.8	5.6	1.35	166	0.90		
Northwood clay loam	2.4	6.9	1.98	81	0.79		
Geometric mean (if not pH dependent)			0.942	75.7			
Arithmetic mean (if not pH dependent)							0.894
pH dependence, Yes or No	No						

a) Medium of pH measurement not reported in the RAR

NOA 413163

Soil Type	OC %	Soil pH⁰	K_d (mL/g)	K_{doc} (mL/g)	K_F (mL/g)	K_{Foc} (mL/g)	l/n
Laacher Hof Wurmweise sandy loam	1.8	5.6	0.172	9.6	0.887		
Laacher Hof AXXa sandy loam	1.8	6.4	0.115	6.4	0.920		
Hoefchen am Hohenseh 4a silt loam	2.4	6.7	0.118	4.9	0.949		
Dollendorf II clay loam	4.6	7.1	0.201	4.4	0.893		
Geometric mean (if not pH dependent)			0.147	6.0			0.912
Arithmetic mean (if not pH dependent)							
pH dependence, Yes or No	No						

a) Measured in calcium chloride solution

NOA 409480

Soil Type	OC %	Soil pH⁰	K_d (mL/g)	K_{doc} (mL/g)	K_F (mL/g)	K_{Foc} (mL/g)	l/n
Laacher Hof Wurmweise sandy loam	1.8	5.5	41.7	2317	0.847		
Soil Type	OC %	Soil pH	K_d (mL/g)	K_{disc} (mL/g)	K_F (mL/g)	K_{Foc} (mL/g)	1/n
---------------------------------	------	---------	--------------	------------------	-------------	-----------------	-----
Laacher Hof AXXa sandy loam	1.5	6.2	37.6	2507	0.865		
Hoefchen am Hohenseh 4a silt loam	1.6	6.5	40.5	2530	0.862		
Dollendorf II clay loam	4.8	7.1	99.4	2070	0.879		
Geometric mean (if not pH dependent)			50.1	2348			
Arithmetic mean (if not pH dependent)						0.863	
pH dependence, Yes or No	No						

*Measured in calcium chloride solution

CGA 381318

Soil Type	OC %	Soil pH	K_d (mL/g)	K_{disc} (mL/g)	K_F (mL/g)	K_{Foc} (mL/g)	1/n
Laacher Hof Wurmweise sandy loam	1.8	5.1	1.41	78.2	0.866		
Laacher Hof AXXa sandy loam	1.5	5.9	1.13	75.5	0.892		
Hoefchen am Hohenseh 4a silt loam	1.6	6.2	1.21	75.9	0.895		
Dollendorf II clay loam	4.8	7.1	3.68	76.6	0.896		
Geometric mean (if not pH dependent)			1.63	76.5			
Arithmetic mean (if not pH dependent)						0.887	
pH dependence, Yes or No	No						

*Measured in calcium chloride solution
Mobility in soil column leaching active substance (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.4.1.1 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.2.1)

Column leaching	SETAC/EPA Guideline. 251ml (percolation period 1-144 hours depending on soil type), 5 soil columns. Leachate 0.2-1.2% radioactivity in leachate 86-102% radioactivity in top 6cm soil.
	Dutch Guideline. Aged for 2d, 200ml over 2-6d (2 soil columns). [14C-GP]-label Leachate 0.1-0.4% radioactivity in leachate 21-44% radioactivity in top 6cm soil. [14C-TP]-label Leachate 3.3-4.1% radioactivity in leachate 20-35% radioactivity in top 6cm soil.
	EPA Guideline. Aged for 1-45d, 490ml over <1-84d (7 soil columns). [14C-GP]-label Results after 1 day aging Leachate: <0.1-30.1% radioactivity in leachate. Mainly CGA321113, trifloxystrobin not detected. 10-57% radioactivity in top 6cm of soil

Mobility in soil column leaching transformation products (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.4.1.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.2.1)

| Column leaching | No data submitted or required as leaching data have not been used in the environmental exposure assessment |

Lysimeter / field leaching studies (Regulation (EU) N° 283/2013, Annex Part A, points 7.1.4.2 / 7.1.4.3 and Regulation (EU) N° 284/2013, Annex Part A, points 9.1.2.2 / 9.1.2.3)

Lysimeter/ field leaching studies

Location	Duration	Soil	Crop	Applications	Rainfall	Leachate Volume	Leachate Concentrations
US	3 months	90cm soil columns	90cm soil columns	1 application of 3.4 kg/ha to 90cm deep soil columns, rainfall 403mm over period.	4806ml	<0.04% radioactivity detected in leachate which was not identified.	
Switzerland	3 years	120cm soil monoliths, cropped with wheat	120cm soil monoliths, cropped with wheat	Up to 4 applications over 2 years, 0.5 kg a.s. / ha / year, annual rainfall+irrigation 935-1032mm over period.	404-635ml (43-66% of precipitation, very high).	Trifloxystrobin: Not detected, CGA373466: up to 0.24 µg/l, CGA321113: up to 1.22 µg/l, NOA413163: up to 2.76 µg/l, NOA413161: up to 6.69 µg/l	

All resolved radioactivity representing annual average leachate concentrations > 0.1 µg/l was identified.
Hydrolytic degradation (Regulation (EU) No 283/2013, Annex Part A, point 7.2.1.1)

pH	[14C-GP]-label	25°C - DT50	(1st order, \(r^2 = 0.54 \))	[14C-TP]-label	25°C - DT50	>1000d (1st order, \(r^2 = 0.02 \))
5		480d				
7		39-41d	(1st order, \(r^2 = 0.96 \))		40d	(1st order, \(r^2 = 0.99 \))
9		1.2d	(1st order, \(r^2 = 0.98 \))		2.3d	(1st order, \(r^2 = 0.9 \))

CGA321113 32-46%AR at study end

CGA321113 60%AR at study end

CGA321113 stable to hydrolysis at 25°C
Aqueous photochemical degradation (Regulation (EU) N° 283/2013, Annex Part A, points 7.2.1.2 / 7.2.1.3)

Photolytic degradation of active substance and metabolites above 10 %

[14C-GP]trifloxystrobin	Xenon arc lamp (>290nm, 22.2 W/m²)
pH 7.2 DT₅₀ 2.7d, CGA 357262 10.2%, CGA357261 40%, CGA 373466 16.9%	

Xenon arc lamp (>290nm, 23-40.65 W/m²)

| [14C-TP]trifloxystrobin | pH5 DT₅₀ 2.6d, CGA107170 52%, CGA 357261 41.6% |

| [14C-TP]trifloxystrobin | pH7 DT₅₀ 5.8-9.5d, CGA 357261 35%, CGA373466 44.1%, CGA321113 23%, CGA107170 21.4% |

Photolysis of CGA321113

Xenon-arc lamp (>290nm, 35-44.6 W/m²)

DT₅₀ 1.7d

Estimated DT₅₀ at 50°N by quantum yield

Trifloxystrobin + isomers 42.2d

Trifloxystrobin alone 3.1d

CGA321113 + isomers 42.2d

CGA321113 alone 3.4d

Indirect photolysis:

Experimental DT₅₀ lab of trifloxystrobin: 0.11 d (hockey stick kinetics of irradiated samples, in natural river water with mean average pH 7.9)

Metabolites in irradiated samples:

CGA357261(isomer of trifloxystrobin) (max 51.5% AR at 7 h)

CGA 321113 (max 11.1% AR at 4 d)

CGA373466 (isomer of CGA321113) (max 21.1% AR at 4 d)

Metabolites in non-irradiated samples:

CGA 321113 (max 86.0% AR at 8 d)

Quantum yield of direct phototransformation in water at Σ > 290 nm

0.0639 - trifloxystrobin & isomers

0.2272 - trifloxystrobin alone

‘Ready biodegradability’ (Regulation (EU) N° 283/2013, Annex Part A, point 7.2.2.1)

Readily biodegradable (yes/no)

Not readily biodegradable
Aerobic mineralisation in surface water (Regulation (EU) N° 283/2013, Annex Part A, point 7.2.2.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.2.1)

Parent	pH, water phase	pH, sed ^a	t, °C^b	DT₅₀/DT₉₀, whole sys. (suspended sediment test)	St. (χ²)	DT₅₀/DT₉₀, Water (pelagic test)	St. (χ²)	Method of calculation		
Froeschweiher Pond (6.1 µg/l)	8.2, -	22.9	At study temp	Normalised to x °C^c	At study temp	Normalised to 12 °C^c	1.41/4.68	3.90/12.94	3.6/3.9	SFO
Froeschweiher Pond (53.7 µg/l)	8.2, -	22.9	At study temp	Normalised to x °C^c	At study temp	Normalised to 12 °C^c	1.36/4.52	3.76/12.49	3.6/3.9	SFO
Mean	8.2	22.9	At study temp	Normalised to x °C^c	At study temp	Normalised to 12 °C^c	1.4/4.6	3.87/12.71		

^a Measured in [medium to be stated, usually calcium chloride solution or water]

^b Temperature of incubation=temperature that the environmental media was collected or std temperature of 20°C

^c Normalised using a Q₁₀ of 2.58 in line with ECHA (2014, 2017) R11 PBT Guidance.
Mineralisation and non extractable residues (for parent dosed experiments)

System identifier (indicate fresh, estuarine or marine)	pH water phase	pH sed	Mineralisation	Non-extractable residues (suspended sediment test)	Non-extractable residues, max \(x \% \) after \(n \) d (end of the study) (suspended sediment test)
Froeschweiher Pond (6.1 µg/l)	8.2	0.1% at 62 days	0.6% at 62 days		
Froeschweiher Pond (53.7 µg/l)	8.2	<0.1% at 62 days	0.9% at 62 days		
Mean					

Water / sediment study (Regulation (EU) N° 283/2013, Annex Part A, point 7.2.2.3 and Regulation (EU) N° 284/2013, Annex Part A, point 9.2.2) modelling

Parent	Distribution (max. in sediment 36.6% AR after 1 day)	Method of calculation								
Water / sediment system	pH water phase	pH sed	t. °C	DT\(_{50}^{a}\)/DT\(_{90}^{a}\) whole sys.	St. (\(\chi^2\))	DT\(_{50}^{a}\)/DT\(_{90}^{a}\) water	St. (\(\chi^2\))	DT\(_{50}^{a}\)/DT\(_{90}^{a}\) sed	St. (\(\chi^2\))	Method of calculation
Swiss river\(^c\)	7.5	20	2.18	4.3	0.77	9.7	3.57	9.2	SFO	
Swiss pond\(^c\)	7.3	20	1.25	1.9	0.90	4.8	1.48	6.0	SFO	
Swiss river\(^d\)	7.5	20	2.63	6.1	0.57	8.9	4.08	12.3	SFO	
Swiss pond\(^d\)	7.3	20	1.14	1.0	0.86	2.8	1.67	6.3	SFO	
Geometric mean at 20°C\(^b\)	1.69	0.76	2.45							

\(^a\) Medium of pH measurement not reported in the RAR
\(^b\) Normalised using a Q10 of 2.58
\(^c\) (U\(^{14}\)-C-phenyl-glyoxylat-labeled CGA 279202
\(^d\) [trifluoromethyl-phenyl-(U)-\(^{14}\)C] labelled CGA 279202

Water / sediment study (Regulation (EU) N° 283/2013, Annex Part A, point 7.2.2.3 and Regulation (EU) N° 284/2013, Annex Part A, point 9.2.2) trigger

Parent	Distribution	Method of calculation								
Water / sediment system	pH water phase	pH sed	t. °C	DT\(_{50}^{a}\)/DT\(_{90}^{a}\) whole sys.	St. (\(\chi^2\))	DT\(_{50}^{a}\)/DT\(_{90}^{a}\) water	St. (\(\chi^2\))	DT\(_{50}^{a}\)/DT\(_{90}^{a}\) sed	St. (\(\chi^2\))	Method of calculation
Swiss river\(^c\)	7.5	20	2.18/7.25	4.2	0.66/3.23	0.7	3.57/11.85	9.2	SFO/DFOP/ SFO	
Swiss pond\(^c\)	7.3	20	1.25/4.16	1.9	0.86/3.33	1.4	1.45/4.82	2.2	SFO/FOMC /HS	
Swiss river\(^d\)	7.5	20	2.63/8.73	6.1	0.56/3.18	1.3	4.08/13.55	12.3	SFO/HS/SFO	
Swiss pond\(^d\)	7.3	20	1.14/3.79	1.0	0.83/3.12	0.7	1.37/6.59	2.4	SFO/FOMC /FOMC	
Geometric mean at 20°C\(^b\)	1.69/5.62	0.72/3.21	2.32/8.45							

\(^a\) Medium of pH measurement not reported in the RAR
\(^b\) Normalised using a Q10 of 2.58
\(^c\) (U\(^{14}\)-C-phenyl-glyoxylat-labeled CGA 279202
\(^d\) [trifluoromethyl-phenyl-(U)-\(^{14}\)C] labelled CGA 279202
d) [trifluoromethyl-phenyl-(U)-14C] labelled CGA 279202

Water / sediment study (Regulation (EU) N° 283/2013, Annex Part A, point 7.2.2.3 and Regulation (EU) N° 284/2013, Annex Part A, point 9.2.2) modelling

CGA 321113	Distribution (max. in water 76.9% AR after 7 days, max in sediment 51.1% AR after 21 day)									
Water / sediment system	pH water phase	pH sed a	t. °C	DT_{50}/DT_{90} whole sys.	St. (χ^2)	DT_{50}/DT_{90} water	St. (χ^2)	DT_{50}/DT_{90} sed	St. (χ^2)	Method of calculation
Swiss river c	7.5	20	423.1	2.2	285.1	6.1	570.9	2.1	SFO	
Swiss pond c	7.3	20	341.1	1.5	154.6	7.1	1000d	n/a	SFO	
Swiss river d	7.5	20	362.9	2.1	319.9	5.2	441.8	3.4	SFO	
Swiss pond d	7.3	20	432.7	2.6	137.1	11.3	1000f	n/a	SFO	

Geometric mean at 20°Cb 388.0 209.7 708.7

a) Medium of pH measurement not reported in the RAR
b) Normalised using a Q10 of 2.58
c) (U)14-C-phenyl-glyoxylat-labeled CGA 279202
d) [trifluoromethyl-phenyl-(U)-14C] labelled CGA 279202
e) No clear dissipation occurred, FOCUS default used

Water / sediment study (Regulation (EU) N° 283/2013, Annex Part A, point 7.2.2.3 and Regulation (EU) N° 284/2013, Annex Part A, point 9.2.2) trigger

CGA 321113	Distribution									
Water / sediment system	pH water phase	pH sed a	t. °C	DT_{50}/DT_{90} whole sys.	St. (χ^2)	DT_{50}/DT_{90} water	St. (χ^2)	DT_{50}/DT_{90} sed	St. (χ^2)	Method of calculation
Swiss river c	7.5	20	423.1/ >1000	2.2	281.0/ >1000	1.4	570.9/ >1000	2.1	SFO/DFOP/ SFO	
Swiss pond c	7.3	20	341.1/ >1000	1.5	126.7/ 633	2.8	>1000/ >1000e	n/a	SFO/DFOP/ SFO	
Swiss river d	7.5	20	362.9/ >1000	2.1	319.9/ >1000	5.2	441.8/ >1000	3.4	SFO/SFO/SFO	
Swiss pond d	7.3	20	432.7/ >1000	2.6	79.6/ >1000	5.2	>1000/ >1000e	n/a	SFO/FOMC /SFO	

Geometric mean at 20°Cb 388.0/ >1000 173.5/ >1000 708.7/ >1000

a) Medium of pH measurement not reported in the RAR
b) Normalised using a Q10 of 2.58
c) (U)14-C-phenyl-glyoxylat-labeled CGA 279202
d) [trifluoromethyl-phenyl-(U)-14C] labelled CGA 279202
e) No clear dissipation occurred, FOCUS default used

Mineralisation and non extractable residues (for parent dosed experiments)

System identifier	Mineralisation	Non-extractable residues Max % and time	Non-extractable residues, max % (end of the study)

www.efsa.europa.eu/efsajournal 57 EFSA Journal 2017;15(10):4989
Fate and behaviour in air (Regulation (EU) N° 283/2013, Annex Part A, point 7.3.1)

Environment	Activity	Description
Swiss river	Direct photolysis in air	Not studied - no data requested
Swiss pond	Direct photolysis in air	Not studied - no data requested
Swiss river	Photochemical oxidative degradation in air	Trifloxystrobin: DT$_{50}$ 1.5-2 days (Atkinson method) CGA107170: DT$_{50}$ 23.3d (Atkinson method)
Swiss pond	Photochemical oxidative degradation in air	Trifloxystrobin: DT$_{50}$ 1.5-2 days (Atkinson method) CGA107170: DT$_{50}$ 23.3d (Atkinson method)
Swiss river	Volatilisation	from plant surfaces (BBA guideline): 10-15% of applied radioactivity lost after 24hrs
Swiss pond	Volatilisation	from soil surfaces (BBA guideline): not submitted

Residues requiring further assessment (Regulation (EU) N° 283/2013, Annex Part A, point 7.4.1)

Environmental occurring residues requiring further assessment by other disciplines (toxicology and ecotoxicology) and or requiring consideration for groundwater exposure:

- **Soil:** trifloxystrobin, CGA 357261, CGA 321113, CGA 373466, CGA 381318, NOA 413161, NOA 413163, CGA 357276, NOA 409480
- **Surface water:** same as soil plus CGA 357262, CGA 107170
- **Sediment:** trifloxystrobin, CGA 321113
- **Ground water:** same as soil
- **Air:** trifloxystrobin, CGA 107170

Definition of the residue for monitoring (Regulation (EU) N° 283/2013, Annex Part A, point 7.4.2)

See section 5, Ecotoxicology

Monitoring data, if available (Regulation (EU) N° 283/2013, Annex Part A, point 7.5)

Environment	Activity	Description
Soil (indicate location and type of study)	-	-
Surface water (indicate location and type of study)	-	-
Ground water (indicate location and type of study)	-	-
Air (indicate location and type of study)	-	-
PEC soil (Regulation (EU) N° 284/2013, Annex Part A, points 9.1.3 / 9.3.1)

Parent & metabolites	Method of calculation	Application data
	DT$_{50}$ (d): N/A	Crop: N/A
	Kinetics: N/A	Depth of soil layer: 5cm or 20cm
	Field or Lab: N/A	Soil bulk density: 1.5g/cm3
		% plant interception: 0%
		Number of applications: 1
		Interval (d): N/A
		Application rate(s): 375 g a.s./ha
		PEC$_{s}$ (mg/kg)

	Single application Actual	Single application Time weighted average	Multiple application Actual	Multiple application Time weighted average
Initial	0.500	0.500		
Short term				
24h	0.435	0.467		
2d	0.379	0.437		
4d	0.287	0.384		
Long term				
7d	0.189	0.320		
14d	0.072	0.221		
21d	0.027	0.162		
28d	0.010	0.126		
Plateau concentration	N/A			

d) * A simple first tier soil calculation suitable for risk assessment of both the parent and associated metabolites has been provided.

e) This first tier PEC$_{soil}$ value was based on the following conservative assumptions:-

- Single application of the maximum intended total annual dose of 375 g a.s./ha (based on a worst case GAP of 3 x 125 g a.s./ha to vines)
- No crop interception
- No degradation
- Even incorporation over 5cm soil layer with dry bulk density of 1.5 g cm$^{-3}$

This resulted in a first tier PEC$_{soil}$ value of 0.50 mg a.s./kg.

Metabolites proposed for consideration in the soil exposure assessment:-

- CGA 321113
- NOA 413161
- CGA 357276
- CGA 357261 (additional 21 day TWA calculated based on proportion for ecotoxicology)
- CGA 373466
- NOA 413163
NOA 409480
CGA 381318

This simplified approach is appropriate for first tier risk assessments due to the relatively low toxicity to soil non-target organisms by both Trifloxystrobin-methyl and the majority of metabolites.

CGA 357276 * Method of calculation
Molecular weight relative to the parent
DT$_{50}$ (d): N/A
Kinetics: N/A
Field or Lab: N/A

Application data
N/A

PEC$_{(s)}$ (mg/kg)	Single application Actual	Single application Time weighted average	Multiple application Actual	Multiple application Time weighted average
Initial	0.022			
Plateau concentration	N/A			

*Based on the first tier consideration (PECsoil 0.50 mg/kg) by UK RMS ecotox specialists, CGA 357276 required further refinement.

The first tier PECsoil value for CGA 357276 has been refined based on the metabolite’s relative molecular mass compared to the parent substance ($318.3/408.4 = 0.779$), and a peak formation in soil of 5.6%.

The first tier PECsoil value of 0.5 mg/kg is therefore reduced to 0.022 mg/kg ($0.5 \times 0.779 \times 0.056$), for environmental exposure CGA 357276.

NOA409480 *
Method of calculation
Molecular weight relative to the parent
DT$_{50}$ (d): N/A
Kinetics: N/A
Field or Lab: N/A

Application data
N/A

PEC$_{(s)}$ (mg/kg)	Single application Actual	Single application Time weighted average	Multiple application Actual	Multiple application Time weighted average
Initial	0.036			
Plateau concentration	N/A			

*Based on the first tier consideration (PECsoil 0.50 mg/kg) by UK RMS ecotox specialists, NOA 409480 required further refinement.

The first tier PECsoil value for NOA 409480 has been refined based on the metabolite’s relative molecular mass compared to the parent substance ($318.3/408.4 = 0.779$), and a peak formation in soil of 9.3%.
The first tier PECsoil value of 0.5 mg/kg is therefore reduced to 0.036 mg/kg (0.5 x 0.779 x 0.093), for environmental exposure NOA 409480.

Provided these PECsoil values result in acceptable ecotoxicological risk assessments, no further refinement is required.

CGA 357261 *

Method of calculation

Molecular weight relative to the parent
DT$_{50}$ (d): N/A
Kinetics: N/A
Field or Lab: N/A

Application data

PEC$_{(s)}$ (mg/kg)	Single application	Single application	Multiple application	Multiple application
	Actual	Time weighted average	Actual	Time weighted average
Initial	0.078	0.078		
Short term 24h	0.067	0.072		
2d	0.059	0.068		
4d	0.045	0.059		
Long term 7d	0.029	0.050		
14d	0.011	0.034		
21d	0.004	0.025		
28d	0.002	0.020		
Plateau concentration	N/A			

*Based on the first tier consideration (PEC$_{(s)}$ 0.50 mg/kg) by ecotox specialists, CGA 357261 required further refinement (in the form of a 21 day TWA value).

The first tier PEC$_{(s)}$ value for CGA 357261 has been refined based on the metabolite’s relative molecular mass compared to the parent substance (408.4/408.4 = 1.000), and a peak formation in soil of 15.5%.

The first tier PEC$_{(s)}$ value of 0.5 mg/kg for trifloxystrobin is therefore reduced to 0.078 mg/kg (0.5 x 1.000 x 0.155), for environmental soil exposure of CGA 357261.
PEC ground water (Regulation (EU) N° 284/2013, Annex Part A, point 9.2.4.1)

Method of calculation and type of study - modelling

Substance	Crop uptake factor	Water solubility (mg/L)	Vapour pressure	Geometric mean DT₅₀	KₐOC	Formation Fraction
Trifloxystrobin	0	0.61 at pH 4-10 and 25°C	0 Pa at 20°C (default)	0.6d	parent, geometric mean 2287 mL/g, arithmetic mean \(1/n=0.96\).	
Metabolites:						
CGA 321113- from parent	0	21000 at pH 6.6 and 25°C	0 Pa at 20°C (default)	48.1d	geometric mean 116.19 mL/g, arithmetic mean \(1/n=1.00\)	
NOA 413161- from CGA 321113	0	290000 at pH 7.1 and 25°C	0 Pa at 20°C (default)	36.1d	geometric mean 3.3 mL/g, arithmetic mean \(1/n=0.905\)	
CGA 357276- from CGA 321113	0	0.6 at pH 6.2 and 20°C	0 Pa at 20°C (default)	51.5d	geometric mean 8074 mL/g, arithmetic mean \(1/n=0.877\)	
CGA 357261- from parent	0	4 at 25°C				

For FOCUS gw modelling, values used –
Modelling using FOCUS model(s), with appropriate FOCUSgw scenarios, according to FOCUS guidance.
Model(s) used: PEARL v4.4.4 / PELMO v5.5.3

Trifloxystrobin:
Crop uptake factor: 0
Water solubility (mg/L): 0.61 at pH 4-10 and 25°C
Vapour pressure: 0 Pa at 20°C (default)
Geometric mean parent DT₅₀:0.6d
KₐOC: parent, geometric mean 2287 mL/g, arithmetic mean \(1/n=0.96\).
Vapour pressure: 0 Pa at 20°C (default)
Geometric mean DT₅₀: 0.25 d
Kₐₒₐ: geometric mean 483.6 mL/g, arithmetic mean 1/n= 0.994
Formation Fraction: 1 (worst case)

CGA 373466- from CGA 357261
Crop uptake factor: 0
Water solubility (mg/L): 250000 at pH 6.9 and 25°C
Vapour pressure: 0 Pa at 20°C (default)
Geometric mean DT₅₀: 22.1 d
Kₐₒₐ: geometric mean 75.7 mL/g, arithmetic mean 1/n= 0.894
Formation Fraction: 0.936

NOA 413163- from CGA 373466
Crop uptake factor: 0
Water solubility (mg/L): 63000 at pH 4.9 and 25°C
Vapour pressure: 0 Pa at 20°C (default)
Geometric mean DT₅₀: 41.5 d
Kₐₒₐ: geometric mean 6 mL/g, arithmetic mean 1/n= 0.912
Formation Fraction: 0.269

NOA 409480- from CGA 373466
Crop uptake factor: 0
Water solubility (mg/L): 2.6 at pH 6 and 20°C
Vapour pressure: 0 Pa at 20°C (default)
Geometric mean DT₅₀: 42.5 d
Kₐₒₐ: geometric mean 2349 mL/g, arithmetic mean 1/n= 0.863
Formation Fraction: 0.028

CGA 381318- from parent
Crop uptake factor: 0
Water solubility (mg/L): 21000 at pH 6.6 and 25°C
Vapour pressure: 0 Pa at 20°C (default)
Geometric mean DT₅₀: 19.4 d
Kₐₒₐ: geometric mean 76.5 mL/g, arithmetic mean 1/n= 0.887
Formation Fraction: 0.062

PEC(gw) - FOCUS modelling results (80th percentile annual average concentration at 1m)

Crop code	Scenario	1st Appl. Date	Parent (µg/L)	Metabolite (µg/L)
NOA 413161	CGA 321113	NOA 413161	CGA 357276	
Trifloxystrobin Metabolite Levels in Different Locations

Location	Application Date	Parent (µg/L)	Metabolite (µg/L)	CGA 357 261	CGA 373466	NOA 413163	NOA 409480	CGA 381318
Châteaudun	07-Apr	0.000	0.610	1.503	0.000			
Hamburg	22-Apr	0.000	0.953	3.135	0.002			
Jokioinen	15-May	0.000	0.434	2.968	0.000			
Kremsmünster	21-Apr	0.000	0.528	1.083	0.000			
Okehampton	31-Mar	0.000	0.527	0.965	0.000			
Piacenza	8-Apr	0.000	0.419	0.846	0.001			
Porto	23-Mar	0.000	0.229	0.546	0.000			
Sevilla	22-Mar	0.000	0.566	1.409	0.000			
Thiva	22-Mar	0.000	0.485	1.182	0.000			

Trifloxystrobin Metabolite Levels in Different Locations (continued)

Location	Application Date	Parent (µg/L)	Metabolite (µg/L)	CGA 357 261	CGA 373466	NOA 413163	NOA 409480	CGA 381318
Châteaudun	07-Apr	0.000	0.675	1.280	0.000			
Hamburg	22-Apr	0.000	0.618	1.722	0.002			
Jokioinen	15-May	0.000	0.378	2.352	0.000			
Kremsmünster	21-Apr	0.000	0.603	1.207	0.000			
Okehampton	31-Mar	0.000	0.726	1.036	0.000			
Piacenza	08-Apr	0.000	0.598	0.808	0.002			
Porto	23-Mar	0.000	0.348	0.556	0.000			
Sevilla	22-Mar	0.000	0.385	1.120	0.000			
Thiva	22-Mar	0.000	0.378	0.910	0.000			

1 Route of degradation Trifloxystrobin → GA 318381 not simulated using PEARL for Apples Early 3 x 75 g/ha.
Table 1: Metabolite Concentrations in Pear Juice Following Pesticide Application

Scenario	Metabolite (µg/L)	Parent (µg/L)	Parent (µg/L)	Parent (µg/L)	
	CGA 357 261	CGA 373466	NOA 413163	NOA 409480	CGA 381318
Châteaudun	0.000	0.007	2.910	0.000	0.000
Hamburg	0.000	0.010	3.465	0.000	0.000
Jokioinen	0.000	0.001	4.633	0.000	0.000
Kremsmünster	0.000	0.007	2.554	0.000	0.000
Okehampton	0.000	0.014	2.178	0.000	0.000
Piacenza	0.000	0.021	1.913	0.000	0.000
Porto	0.000	0.005	1.162	0.000	0.000
Sevilla	0.000	0.001	2.385	0.000	0.000
Thiva	0.000	0.001	1.960	0.000	0.000

Table 2: Metabolite Concentrations in Pear Juice Following Pesticide Application

Scenario	1st Appl. Date	Parent (µg/L)	Metabolite (µg/L)	Parent (µg/L)	Parent (µg/L)
			CGA 321113	NOA 413161	CGA 357276
Châteaudun	29-Apr	0.000	0.880	2.195	0.000
Hamburg	17-May	0.000	1.568	4.974	0.004
Jokioinen	03-Jun	0.000	0.698	4.671	0.000
Kremsmünster	16-May	0.000	0.844	1.627	0.000
Okehampton	21-Apr	0.000	0.792	1.468	0.000
Piacenza	04-May	0.000	0.656	1.328	0.001
Porto	20-Apr	0.000	0.333	0.842	0.000
Sevilla	17-Apr	0.000	0.818	2.119	0.000
Thiva	18-Apr	0.000	0.786	1.831	0.000

Table 3: Metabolite Concentrations in Pear Juice Following Pesticide Application

Scenario	Metabolite (µg/L)	Parent (µg/L)	Parent (µg/L)	Parent (µg/L)	
	CGA 357 261	CGA 373466	NOA 413163	NOA 409480	CGA 381318
Châteaudun	0.000	0.010	4.973	0.000	0.000
Hamburg	0.000	0.026	10.595	0.000	0.000
Jokioinen	0.000	0.002	9.275	0.000	0.000
Kremsmünster	0.000	0.014	3.521	0.000	0.000
Okehampton	0.000	0.014	3.021	0.000	0.000
Piacenza	0.000	0.010	2.725	0.000	0.000
Porto	0.000	0.001	1.649	0.000	0.000
Sevilla	0.000	0.010	4.749	0.000	0.000
Thiva	0.000	0.006	4.005	0.000	0.000
PELMO / 'Apples Early', 3 x 112.5 g/ha, 10 day interval, 60% crop interception (45 g/ha net of interception), BBCH 55-87

Scenario	1st Appl. Date	Parent (µg/L)	Metabolite (µg/L)		
			CGA 321113	NOA 413161	CGA 357276
Châteaudun	29-Apr	0.000	0.932	1.878	0.000
Hamburg	17-May	0.000	1.071	2.724	0.004
Jokioinen	03-Jun	0.000	0.598	3.680	0.000
Kremsmünster	16-May	0.000	0.882	1.824	0.000
Okehampton	21-Apr	0.000	1.045	1.591	0.000
Piacenza	04-May	0.000	0.860	1.190	0.002
Porto	20-Apr	0.000	0.499	1.591	0.000
Sevilla	17-Apr	0.000	0.490	1.638	0.000
Thiva	18-Apr	0.000	0.529	1.350	0.000

PELMO / 'Apples Late', 3 x 75 g/ha, 10 day interval, 65% crop interception (26.25 g/ha net of interception), BBCH 31-89

Scenario	Metabolite (µg/L)				
	CGA 357261	CGA 373466	NOA 413163	NOA 409480	CGA 381318
Châteaudun	0.000	0.011	4.317	0.000	0.000
Hamburg	0.000	0.028	5.647	0.000	0.000
Jokioinen	0.000	0.003	7.485	0.000	0.000
Kremsmünster	0.000	0.014	3.878	0.000	0.000
Okehampton	0.000	0.026	3.151	0.000	0.000
Piacenza	0.000	0.032	2.741	0.000	0.000
Porto	0.000	0.006	1.552	0.000	0.000
Sevilla	0.000	0.002	3.521	0.000	0.000
Thiva	0.000	0.002	2.955	0.000	0.000

PEARL / 'Apples Late', 3 x 75 g/ha, 10 day interval, 65% crop interception (26.25 g/ha net of interception), BBCH 31-89

Scenario	1st Appl. Date	Parent (µg/L)	Metabolite (µg/L)		
			CGA 321113	NOA 413161	CGA 357276
Châteaudun	11-Sep	0.000	0.624	1.174	0.000
Hamburg	11-Sep	0.000	1.192	2.885	0.003
Jokioinen	11-Sep	0.000	0.545	2.774	0.000
Kremsmünster	11-Sep	0.000	0.615	1.036	0.000
Okehampton	11-Sep	0.000	0.766	1.066	0.000
Piacenza	11-Sep	0.000	0.886	1.162	0.002
Porto	11-Sep	0.000	0.558	0.637	0.001
Sevilla	11-Sep	0.000	0.469	0.859	0.001
Thiva	11-Sep	0.000	0.535	0.905	0.000
Table 1: Metabolite Concentrations in Water (µg/L) for Apples Late

Scenario	Metabolite (µg/L)	CGA 357 261	CGA 373466	NOA 413163	NOA 409480	CGA 381318
Châteaudun	CGA 357 261	0.000	0.005	2.448	0.000	N/A
Hamburg	CGA 357 261	0.000	0.043	6.368	0.000	N/A
Jokioinen	CGA 357 261	0.000	0.003	5.753	0.000	N/A
Kremsmünster	CGA 357 261	0.000	0.011	2.373	0.000	N/A
Okehampton	CGA 357 261	0.000	0.097	2.717	0.000	N/A
Piacenza	CGA 357 261	0.000	0.038	3.034	0.000	N/A
Porto	CGA 357 261	0.000	0.004	2.051	0.000	N/A
Sevilla	CGA 357 261	0.000	0.006	2.158	0.000	N/A

1 Route of degradation Trifloxystrobin → CGA 318381 not simulated using PEARL for Apples Early 3 x 112.5 g/ha.

Table 2: Metabolite Concentrations in Water (µg/L) for Apples Late

Scenario	1st Appl. Date	Parent (µg/L)	CGA 321113	NOA 413161	CGA 357276
Châteaudun	11-Sep	0.000	0.565	1.060	0.000
Hamburg	11-Sep	0.000	0.942	1.855	0.003
Jokioinen	11-Sep	0.000	0.484	2.211	0.000
Kremsmünster	11-Sep	0.000	0.629	1.181	0.000
Okehampton	11-Sep	0.000	0.944	1.128	0.000
Piacenza	11-Sep	0.000	0.801	0.874	0.002
Porto	11-Sep	0.000	0.674	0.696	0.000
Sevilla	11-Sep	0.000	0.312	1.107	0.000
Thiva	11-Sep	0.000	0.374	0.903	0.000

Table 3: Metabolite Concentrations in Water (µg/L) for Apples Late

Scenario	Metabolite (µg/L)	CGA 357 261	CGA 373466	NOA 413163	NOA 409480	CGA 381318
Châteaudun	CGA 357 261	0.000	0.005	2.318	0.000	0.000
Hamburg	CGA 357 261	0.000	0.035	4.201	0.000	0.000
Jokioinen	CGA 357 261	0.000	0.004	4.671	0.000	0.000
Kremsmünster	CGA 357 261	0.000	0.011	2.712	0.000	0.000
Okehampton	CGA 357 261	0.000	0.042	2.829	0.000	0.000
Piacenza	CGA 357 261	0.000	0.046	2.252	0.000	0.000
Porto	CGA 357 261	0.000	0.042	1.692	0.000	0.000
Sevilla	CGA 357 261	0.000	0.001	2.553	0.000	0.000
Peer review of the pesticide risk assessment of the active substance trifloxystrobin

www.efsa.europa.eu/efsajournal

EFSA Journal 2017;15(10):4989

ScENARIO	1st Appl. Date	Metabolite (µg/L)	Parent (µg/L)		
		CGA 321113	NOA 413161	CGA 357276	
PEARL / 'Apples Late', 3x1,125 g/ha, 10 day	Châteaudun 11-Sep	0.000	0.937	1.774	0.000
	Hamburg 11-Sep	0.000	1.789	4.368	0.005
	Jokioinen 11-Sep	0.000	0.817	4.220	0.000
	Kremsmünster 11-Sep	0.000	0.922	1.566	0.000
	Okehampton 11-Sep	0.000	1.149	1.757	0.003
	Piacenza 11-Sep	0.000	1.320	1.757	0.000
	Porto 11-Sep	0.000	0.837	0.962	0.000
	Sevilla 11-Sep	0.000	0.703	1.297	0.000
	Thiva 11-Sep	0.000	0.803	1.364	0.000

ScENARIO	Metabolite (µg/L)					
	CGA 357 261	CGA 373466	NOA 413163	NOA 409480	CGA 381318	
	Châteaudun	0.000	0.010	3.731	0.000	0.000
	Hamburg	0.000	0.081	9.743	0.000	0.000
	Jokioinen	0.000	0.006	8.843	0.000	0.000
	Kremsmünster	0.000	0.022	3.623	0.000	0.000
	Okehampton	0.000	0.057	3.837	0.000	0.000
	Piacenza	0.000	0.071	4.644	0.000	0.000
	Porto	0.000	0.039	2.346	0.000	0.000
	Sevilla	0.000	0.007	3.281	0.000	0.000
	Thiva	0.000	0.013	3.281	0.000	0.000

ScENARIO	1st Appl. Date	Metabolite (µg/L)	Parent (µg/L)		
		CGA 321113	NOA 413161	CGA 357276	
PELMO / 'Apples Late', 3x1,125 g/ha, 10 day	Châteaudun 11-Sep	0.000	0.847	1.600	0.000
	Hamburg 11-Sep	0.000	1.413	2.807	0.005
	Jokioinen 11-Sep	0.000	0.726	3.357	0.000
	Kremsmünster 11-Sep	0.000	0.943	1.787	0.000
	Okehampton 11-Sep	0.000	1.417	1.701	0.001
	Piacenza 11-Sep	0.000	1.201	1.318	0.003
	Porto 11-Sep	0.000	1.011	1.052	0.000
	Sevilla 11-Sep	0.000	0.467	1.675	0.000
Thiva

Scenario	Metabolite (µg/L)	CGA 357 261	CGA 373466	NOA 413163	NOA 409480	CGA 381318	
Châteaudun	0.000	0.000	0.561			1.365	0.000
Hamburg	0.000	0.066	0.000			0.000	0.000
Jokioinen	0.000	0.008	0.000			0.000	0.000
Kremsmünster	0.000	0.023	0.000			0.000	0.000
Okehampton	0.000	0.080	0.000			0.000	0.000
Piacenza	0.000	0.082	0.000			0.000	0.000
Porto	0.000	0.077	0.000			0.000	0.000
Sevilla	0.000	0.001	0.000			0.000	0.000
Thiva	0.000	0.003	0.000			0.000	0.000

Châteaudun

Scenario	1st Appl. Date	Parent (µg/L)	Metabolite (µg/L)	CGA 321113	NOA 413161	CGA 357276
Châteaudun	05-Apr	0.000	0.000	0.822	2.019	0.000
Hamburg	19-Apr	0.000	0.000	0.888	2.200	0.002
Kremsmünster	04-May	0.000	0.000	0.684	1.295	0.000
Piacenza	05-Apr	0.000	0.000	0.580	1.158	0.001
Porto	18-Mar	0.000	0.000	0.327	0.751	0.000
Sevilla	04-Apr	0.000	0.000	0.511	1.200	0.000
Thiva	19-Mar	0.000	0.000	0.278	0.986	0.000

PEARL / Vines Early

Scenario	Metabolite (µg/L)	CGA 357 261	CGA 373466	NOA 413163	NOA 409480	CGA 381318
Châteaudun	0.000	0.008	0.000			N/A¹
Hamburg	0.000	0.014	0.000			N/A¹
Kremsmünster	0.000	0.013	0.000			N/A¹
Piacenza	0.000	0.007	0.000			N/A¹
Porto	0.000	0.001	0.000			N/A¹
Sevilla	0.000	0.004	0.000			N/A¹
Thiva	0.000	0.000	0.000			N/A¹

¹ Route of degradation Trifloxystrobin→CGA 318381 not simulated using PEARL for Vines Early 3 x 125 g/ha.
PELOMO / 'Vines Early', 3x125 g/ha, 10 day interval, 50-60-60 % crop interception (62.5, 50, 50 g/ha net of interception), BBCH 12-89

Scenario	1st Appl. Date	Parent (µg/L)	Metabolite (µg/L)	CGA 321113	NOA 413161	CGA 357276
Châteaudun	05-Apr	0.000	0.876	1.861	0.000	
Hamburg	19-Apr	0.000	0.983	2.540	0.003	
Kremsmünster	04-May	0.000	0.868	1.694	0.000	
Piacenza	05-Apr	0.000	0.860	1.261	0.002	
Porto	18-Mar	0.000	0.555	0.912	0.000	
Sevilla	04-Apr	0.000	0.342	1.002	0.000	
Thiva	19-Mar	0.000	0.368	1.134	0.000	

PEARL / 'Vines Late', 3x125 g/ha, 10 day interval, 75 % crop interception (31.25 g/ha net of interception), BBCH 12-89

Scenario	Metabolite (µg/L)	CGA 357 261	CGA 373466	NOA 413163	NOA 409480	CGA 381318
Châteaudun	0.000	0.007	2.363	0.000	N/A¹	
Hamburg	0.000	0.036	2.961	0.000	N/A¹	
Kremsmünster	0.000	0.014	1.830	0.000	N/A¹	
Piacenza	0.000	0.035	2.537	0.000	N/A¹	

1. N/A: Not applicable.
Table 1: Metabolite Concentrations

Scenario	1st Appl. Date	Parent (µg/L)	Metabolite (µg/L)
PELMO / 'Vines Late', 3x125 g/ha, 10 day interval, 75% crop interception, BBCH 12-89			
Châteaudun	27-Sep	0.000	0.638 1.127 0.000
Hamburg	27-Sep	0.000	0.927 1.491 0.002
Kremsmünster	27-Sep	0.000	0.677 1.005 0.000
Piacenza	27-Sep	0.000	0.850 0.951 0.002
Porto	27-Sep	0.000	0.790 0.828 0.000
Sevilla	27-Sep	0.000	0.242 0.857 0.000
Thiva	27-Sep	0.000	0.424 0.968 0.000

PELMO / 'Vines Late', 3x125 g/ha, 10 day interval, 75% crop interception, BBCH 12-89			
Châteaudun	0.000	0.007	2.532 0.000 0.000
Hamburg	0.000	0.040	3.476 0.000 0.000
Kremsmünster	0.000	0.021	2.277 0.000 0.000
Piacenza	0.000	0.045	2.538 0.000 0.000
Porto	0.000	0.062	2.084 0.000 0.000
Sevilla	0.000	0.001	2.135 0.000 0.000
Thiva	0.000	0.003	2.458 0.000 0.000

Notes
1. Route of degradation Trifloxystrobin→CGA 318381 not simulated using PEARL for Vines Late 3 x 125 g/ha
| Scenario | 1st Appl. Date | Parent (µg/L) | Metabolite (µg/L) | | | |
|---|---|---|---|---|---|---|
| PEALMO / 'Strawberry Early', 2 x 125 g/ha, 7 day interval, 30% crop interception (87.5 g/ha net of interception), BBCH 10-92 | Parent (µg/L) | Metabolite (µg/L) |
| Hamburg | 16-Mar | 0.000 | 0.831 | 2.207 | 0.000 | 0.000 |
| Jokioinen | 15-May | 0.000 | 0.305 | 2.519 | 0.000 |
| Kremsmünster | 15-Mar | 0.000 | 0.679 | 1.593 | 0.000 |
| Sevilla | 01-Dec | 0.000 | 0.073 | 0.354 | 0.000 |

1 Route of degradation Trifloxystrobin→CGA 318381 not simulated using PEARL for Strawberry Early 2 x 125 g/ha.

Scenario	Metabolite (µg/L)				
PEALMO / 'Strawberry Late', 2 x 150 g/ha, 7 day interval, 60% crop interception (60 g/ha net of interception), BBCH 55-89	Metabolite (µg/L)				
Hamburg	0.000	0.011	4.352	0.000	0.000
Jokioinen	0.000	0.001	5.009	0.000	0.000
Kremsmünster	0.000	0.007	3.577	0.000	0.000
Sevilla	0.000	0.000	0.810	0.000	0.000

Scenario	Metabolite (µg/L)				
PEALMO / 'Strawberry Late', 2 x 150 g/ha, 7 day interval, 60% crop interception (60 g/ha net of interception), BBCH 55-89	Metabolite (µg/L)				
Hamburg	23-Aug	0.000	1.014	2.774	0.002
Jokioinen	23-Aug	0.000	0.337	2.212	0.000
Kremsmünster	23-Aug	0.000	0.641	1.270	0.000
Sevilla	23-Aug	0.000	0.085	0.748	0.000

1 Route of degradation Trifloxystrobin→CGA 318381 not simulated using PEARL for Strawberry Late 2 x 150 g/ha.
Hamburg 23-Aug 0.000 1.034 2.173 0.004
Jokioinen 23-Aug 0.000 0.359 1.106 0.000
Kremsmünster 23-Aug 0.000 0.704 1.357 0.000
Sevilla 23-Aug 0.000 0.080 0.619 0.000

PELCMO / 'Strawberry Late', 2x150 g/ha, 7 day interval, 60% crop interception (60 g/a net of interception), BBCH 55-89

Scenario	Metabolite (µg/L)				
	CGA 357 261	CGA 373466	NOA 413163	NOA 409480	CGA 381318
Hamburg	0.000	0.031	5.010	0.000	0.000
Jokioinen	0.000	0.002	4.565	0.000	0.000
Kremsmünster	0.000	0.014	3.105	0.000	0.000
Sevilla	0.000	0.000	1.588	0.000	0.000

PEC surface water and PEC sediment (Regulation (EU) N° 284/2013, Annex Part A, points 9.2.5 / 9.3.1)

Parent
Parameters used in FOCUSsw step 1 and 2

Molecular weight (g/mol): 408.7

KOC (mL/g): 2287

DT50 soil (d): 0.6 days (geomean of lab and field data)

DT50 water/sediment system (d): 1.69 (geomean from sediment water studies)

DT50 water (d): 1.69 (total system value)

DT50 sediment (d): 1.69 (total system value)

Crop interception (%):

Parameters used in FOCUSsw step 3 (if performed)

Application rate

Version control no. of FOCUS calculator: 2.1

Water solubility (mg/L): 0.61

Vapour pressure: 3.4E-6 Pa at 20°C

Koc (mL/g): 2287

1/n:0.96

Q10=2.58, Walker equation coefficient 0.7

Crop uptake factor:

N/A
Crop and growth stage: Apples BBCH 31-89
Number of applications: 3
Interval (d): 10
Application rate(s): 75 g a.s./ha
Application window: Early spray drift / Mar-May
Crop Interception: Average (40%)

FOCUS STEP 1 Scenario	Day after overall maximum	PEC_{SW} (µg/L)	PEC_{SED} (µg/kg)		
		Actual	TWA	Actual	TWA
0 h		13.4731		141.1961	
24 h		5.2928		121.0461	131.1211
2 d		3.5120		80.3205	115.2082
4 d		1.5464		35.3654	85.0060
7 d		0.4518		10.3325	57.2940
14 d		0.0256		0.5852	30.3445
21 d		0.0014		0.0331	20.2938
28 d		0.0001		0.0019	15.2231
42 d		0.0000		0.0000	10.1488

FOCUS STEP 2 Scenario	Day after overall maximum	PEC_{SW} (µg/L) Multiple Applications (Single Application)	PEC_{SED} (µg/kg) Multiple Applications (Single Application)
		Actual TWA	Actual TWA
Northern EU	0 h	6.0232 (2.4119)	15.3017 (18.2367)
	24 h	2.0013 (1.1954)	4.0123 (4.8556)
		2.7554 (3.3296)	12.6462 (15.1385)
		1.7034 (2.0554)	4.5359 (5.4139)
		1.0553 (1.2723)	1.3252 (1.5817)
		0.5422 (0.6535)	0.0751 (0.0896)
		0.3620 (0.4363)	0.0043 (0.0051)
		0.2715 (0.3273)	0.0002 (0.0003)
		0.1810 (0.2812)	0.0000 (0.0000)
	24 h	6.0232 (2.4119)	15.3017 (18.2367)
	2 d	0.9956 (1.1954)	2.7554 (3.3296)
		1.7034 (2.0554)	4.5359 (5.4139)
		1.0553 (1.2723)	1.3252 (1.5817)
		0.5422 (0.6535)	0.0751 (0.0896)
		0.3620 (0.4363)	0.0043 (0.0051)
		0.2715 (0.3273)	0.0002 (0.0003)
		0.1810 (0.2812)	0.0000 (0.0000)
Southern EU	0 h	6.0232 (2.4119)	15.3017 (18.2367)
	24 h	2.0013 (2.4119)	4.0123 (4.8556)
		2.7554 (3.3296)	12.6462 (15.1385)
		1.7034 (2.0554)	4.5359 (5.4139)
		1.0553 (1.2723)	1.3252 (1.5817)
		0.5422 (0.6535)	0.0751 (0.0896)
		0.3620 (0.4363)	0.0043 (0.0051)
		0.2715 (0.3273)	0.0002 (0.0003)
		0.1810 (0.2812)	0.0000 (0.0000)
FOCUS STEP 3

Scenario	Water body	Day after overall maximum	PEC\textsubscript{SW} (µg/L)	PEC\textsubscript{SED} (µg/kg)
			Actual	TWA
D3	Ditch	0 h	4.694 (5.819)	4.071 (3.342)
		24 h	2.170 (2.688)	3.404 (4.219)
		2 d	0.421 (0.517)	2.290 (2.836)
		4 d	0.0437 (0.0493)	1.214 (1.501)
		7 d	0.0197 (0.0205)	0.706 (0.871)
		14 d	0.00683 (0.00592)	0.566 (0.441)
		21 d	0.00379 (0.00288)	0.451 (0.295)
		28 d	0.00253 (0.00177)	0.442 (0.222)
		42 d	0.00151 (0.000953)	0.334 (0.149)
D4	Pond	0 h	0.317 (0.353)	0.862 (0.452)
		24 h	0.242 (0.269)	0.277 (0.308)
		2 d	0.187 (0.206)	0.254 (0.272)
		4 d	0.113 (0.123)	0.227 (0.217)
		7 d	0.0555 (0.0593)	0.191 (0.161)
		14 d	0.0129 (0.0128)	0.138 (0.0956)
		21 d	0.00415 (0.00360)	0.110 (0.0661)
		28 d	0.00149 (0.00107)	0.0860 (0.0501)
		42 d	0.000606 (0.000340)	0.0733 (0.0336)
D4	Stream	0 h	4.835 (6.046)	0.699 (0.675)
		24 h	0.00122 (0.00142)	0.753 (0.942)
		2 d	0.000927 (0.00106)	0.377 (0.472)
		4 d	0.000558 (0.000620)	0.189 (0.236)
Table 1: Concentration of trifloxystrobin in different environmental compartments

	7 d	14 d	21 d	28 d	42 d
	0.000296	0.000122	0.000077	0.000055	0.000034
	(0.000311)	(0.000113)	(0.000065)	(0.000044)	(0.000026)
	0.108 (0.135)	0.0943 (0.0677)	0.0630 (0.0451)	0.0473 (0.0339)	0.0315 (0.0226)
	0.328 (0.255)	0.245 (0.173)	0.206 (0.139)	0.182 (0.120)	0.152 (0.0968)
	0.469 (0.410)	0.376 (0.310)	0.334 (0.259)	0.311 (0.226)	0.272 (0.187)

Table 2: Concentration of trifloxystrobin in D5 and R1 compartments

	0 h	24 h	2 d	4 d	7 d	
	0.325 (0.353)	0.275 (0.297)	0.233 (0.252)	0.171 (0.183)	0.110 (0.117)	
		0.298 (0.324)	0.276 (0.299)	0.238 (0.257)	0.196 (0.210)	
		0.888 (0.596)	0.872 (0.587)	0.829 (0.552)	0.759 (0.489)	
			0.894 (0.599)		0.867 (0.584)	
						0.773 (0.495)
						0.781 (0.453)
						0.737 (0.391)

	0.180 (0.0073)	0.0368 (0.00276)	0.00335 (0.000739)	4.876 (6.101)	0.000170 (0.000208)	
						0.284 (0.291)
	0.142 (0.0973)	0.122 (0.0741)	0.110 (0.0499)	0.325 (0.407)	0.000118 (0.000143)	
				0.244 (0.239)		0.265 (0.267)
				0.213 (0.200)		0.248 (0.244)
						0.220 (0.209)
						0.193 (0.175)

Table 3: Concentration of trifloxystrobin in D5, R1, and R2 compartments

	0 h	24 h	2 d	4 d	7 d
	0.000038	0.000018	0.0000124	0.000038	0.000032
	(0.000044)	(0.000020)	(0.000007)	(0.000006)	(0.000011)
	0.0465	0.0233	0.0298	0.0224	0.0190
	(0.0582)	(0.0291)	(0.0194)	(0.0146)	(0.00971)
	0.140 (0.110)	0.107 (0.0741)	0.0918 (0.0595)	0.0819 (0.0512)	0.0693 (0.0414)
	0.193 (0.175)	0.157 (0.132)	0.138 (0.110)	0.136 (0.0963)	0.126 (0.0795)

Table 4: Concentration of trifloxystrobin in D5 and R1 compartments

	0 h	24 h	2 d	4 d	
	0.323 (0.353)	0.261 (0.284)	0.212 (0.229)	0.142 (0.152)	
-----	--------	--------	--------	--------	--------
	7 d	14 d	21 d	28 d	42 d
	0.0808	0.0243	0.00868	0.0752	0.00376
	(0.0852)	(0.0247)	(0.00829)	(0.00250)	(0.000569)
	0.172	0.143	0.134	0.109	0.0967
	(0.185)	(0.117)	(0.0828)	(0.0634)	(0.0426)
	0.654	0.541	0.473	0.427	0.366
	(0.427)	(0.335)	(0.275)	(0.234)	(0.188)
	0.757	0.702	0.650	0.656	0.644
	(0.501)	(0.463)	(0.423)	(0.389)	(0.335)
R1	Stream	0 h	24 h	2 d	4 d
	3.758	0.000775	0.000561	0.000311	0.000112
	(4.701)	(0.000976)	(0.000704)	(0.000388)	(0.000140)
	0.498	0.641	0.321	0.161	0.0919
	(0.578)	(0.802)	(0.401)	(0.201)	(0.115)
	0.431	0.381	0.315	0.315	0.261
	(0.475)	(0.397)	(0.297)	(0.297)	(0.219)
	0.470	0.441	0.396	0.396	0.350
	(0.536)	(0.491)	(0.422)	(0.422)	(0.352)
	0 h	24 h	2 d	4 d	7 d
	5.065	0.000560	0.000411	0.000235	0.000119
	(6.337)	(0.000671)	(0.000486)	(0.000269)	(0.000128)
	0.504	0.539	0.270	0.135	0.0772
	(0.486)	(0.674)	(0.337)	(0.169)	(0.0966)
	0.431	0.375	0.303	0.245	0.245
	(0.398)	(0.332)	(0.248)	(0.183)	(0.183)
	0.473	0.440	0.391	0.341	0.341
	(0.448)	(0.410)	(0.351)	(0.293)	(0.293)
R2	Stream	0 h	24 h	2 d	4 d
	0.000560	0.000411	0.000235	0.000119	0.000043
	(0.000671)	(0.000486)	(0.000269)	(0.000128)	(0.000040)
	0.386	0.461	0.135	0.0772	0.0346
	(0.0483)	(0.0322)	(0.169)	(0.0966)	(0.0242)
	0.186	0.159	0.142	0.245	0.142
	(0.124)	(0.0996)	(0.0857)	(0.183)	(0.0857)
	0.276	0.242	0.228	0.245	0.245
	(0.221)	(0.184)	(0.161)	(0.293)	(0.293)
	0.207	0.207	0.207	0.207	0.207
	(0.133)	(0.133)	(0.133)	(0.133)	(0.133)
FOCUS Step 3 - Scenario

Scenario	Max PEC_{sw} (µg/L)	Mitigation Required for First Tier RAC (0.052 µg/L) (%)	Mitigation Required for Higher Tier RAC (0.128 µg/L) (%)
D3-Ditch	4.694	99.1	97.8
D4-Pond	0.317	85.3	63.7
D4-Stream	4.835	99.1	97.9

FOCUS Step 4 - Percentage mitigation required to meet calculated RACs. Shaded cells require more than 95% mitigation so indicate the situations where low risk was not demonstrated, when complying with FOCUS 2007 Landscape and mitigation guidance. No FOCUS scenario indicated low risk. Only half scenarios (ponds) have low risk indicated.
Crop and growth stage: Apples BBCH 61-85
Number of applications: 3
Interval (d): 10
Application rate(s): 112.5 g a.s./ha
Application window: Early spray drift / Mar-May
Crop Interception: Average (40%)

	D5-Pond	D5-Stream	R1-Pond	R1-Stream	R2-Stream	R3-Stream	R4-Stream
	0.325	4.876	0.323	3.758	5.065	5.317	3.78
	0.353	6.101	0.353	4.701	6.337	6.651	4.729
	85.3	99.1	88.3	98.9	99.2	99.2	98.9
	63.7	97.9	63.7	97.3	98.0	98.1	97.3

FOCUS STEP 1	Day after overall maximum	PEC$_{SW}$ (µg/L)	PEC$_{SED}$ (µg/kg)		
		Actual	TWA	Actual	TWA
0 h		20.2097	211.7941		
24 h		7.9392	14.0744	181.5692	196.6816
2 d		5.2681	10.2935	120.4808	172.8123
4 d		2.3195	6.9440	53.0480	127.5090
7 d		0.6777	4.5399	15.4987	85.9410
14 d		0.0384	2.3813	0.8779	45.5168
21 d		0.0022	1.5917	0.0497	30.4407
28 d		0.0001	1.1940	0.0028	22.8346
42 d		0.0000	0.7960	0.0000	15.2232

FOCUS STEP 2	Day after overall maximum	PEC$_{SW}$ (µg/L) Multiple Applications (Single Application)	PEC$_{SED}$ (µg/kg) Multiple Applications (Single Application)		
		Actual	TWA	Actual	TWA
Northern EU		9.0348	(10.9489)	22.9526	(27.3550)
Peer review of the pesticide risk assessment of the active substance trifloxystrobin

Peer review of the pesticide risk assessment of the active substance trifloxystrobin

www.efsa.europa.eu/efsajournal 80

EFSA Journal 2017;15(10):4989

FOCUS STEP 3

Water body	Day after overall maximum	PEC_{sw} (µg/L) Actual	TWA	PEC_{sed} (µg/kg) Actual	TWA
D3	Ditch				
0 h		7.041 (8.729)	5.732 (4.998)		
24 h		3.258 (4.035)	5.159 (6.330)	5.354 (4.528)	5.678 (4.926)
2 d		0.633 (0.778)	3.650 (4.256)	4.811 (3.894)	5.540 (4.745)
4 d		0.0652 (0.0743)	1.985 (2.253)	4.023 (3.016)	5.167 (4.290)
7 d		0.0287 (0.0306)	1.156 (1.308)	3.361 (2.312)	4.654 (3.704)
14 d		0.00945 (0.00883)	0.996 (0.662)	2.659 (1.625)	3.887 (2.878)
21 d		0.00500 (0.00428)	0.677 (0.444)	2.314 (1.323)	3.444 (2.426)
28 d		0.00324 (0.00263)	0.511 (0.333)	2.090 (1.142)	3.146 (2.136)
42 d		0.0322 (0.00142)	0.374 (0.223)	1.798 (0.927)	2.820 (1.773)
D4	Pond				
0 h		0.475 (0.530)	1.221 (0.673)		
24 h		0.364 (0.404)	0.416 (0.462)	1.210 (0.666)	1.220 (0.673)
2 d		0.280 (0.309)	0.367 (0.408)	1.184 (0.648)	1.217 (0.671)
4 d		0.170 (0.185)	0.294 (0.325)	1.112 (0.599)	1.205 (0.662)
7 d		0.0837 (0.0891)	0.221 (0.242)	0.998 (0.522)	1.175 (0.641)
14 d		0.0170 (0.0167)	0.207 (0.143)	0.793 (0.384)	1.081 (0.577)
21 d		0.00436 (0.00362)	0.182 (0.0983)	0.671 (0.310)	1.024 (0.515)
28 d		0.00195 (0.00134)	0.179 (0.0743)	0.593 (0.267)	0.977 (0.466)
	42 d	0.000865 (0.000486)	0.127 (0.0498)	0.496 (0.216)	0.874 (0.396)
-------	------	---------------------	----------------	--------------	--------------
D4					
	0 h	7.354 (9.197)	1.383 (1.264)	1.190 (1.034)	1.311 (1.181)
	24 h	0.00310 (0.00357)	1.426 (1.784)	1.109 (1.034)	1.224 (1.082)
	2 d	0.00220 (0.00249)	0.715 (0.893)	1.035 (0.862)	1.224 (1.082)
	4 d	0.00136 (0.00148)	0.358 (0.448)	0.835 (0.644)	1.087 (0.926)
	7 d	0.000717 (0.000722)	0.205 (0.256)	0.671 (0.477)	0.946 (0.772)
	14 d	0.000289 (0.000248)	0.184 (0.128)	0.505 (0.324)	0.764 (0.583)
	21 d	0.000178 (0.000137)	0.162 (0.0856)	0.426 (0.261)	0.708 (0.486)
	28 d	0.000128 (0.000092)	0.122 (0.0642)	0.377 (0.225)	0.657 (0.425)
	42 d	0.000073 (0.000049)	0.0816 (0.0429)	0.314 (0.182)	0.572 (0.351)
D5					
	0 h	0.447 (0.530)	1.179 (0.693)		
	24 h	0.346 (0.409)	0.397 (0.465)	1.169 (0.685)	1.178 (0.693)
	2 d	0.269 (0.317)	0.366 (0.413)	1.145 (0.664)	1.176 (0.690)
	4 d	0.166 (0.195)	0.315 (0.332)	1.07 (0.607)	1.165 (0.680)
	7 d	0.764 (0.0880)	0.257 (0.248)	0.972 (0.0411)	1.138 (0.656)
	14 d	0.0150 (0.0160)	0.169 (0.145)	0.796 (0.387)	1.053 (0.586)
	21 d	0.00449 (0.00414)	0.151 (0.0995)	0.691 (0.314)	0.971 (0.522)
	28 d	0.00209 (0.00161)	0.146 (0.0752)	0.621 (0.271)	0.959 (0.472)
	42 d	0.000787 (0.000472)	0.138 (0.0505)	0.530 (0.219)	0.897 (0.401)
D5					
	0 h	7.752 (9.695)	0.988 (1.074)		
	24 h	0.00203 (0.00249)	1.202 (1.504)	0.830 (0.880)	0.925 (0.997)
	2 d	0.00157 (0.00191)	0.602 (0.753)	0.709 (0.733)	0.856 (0.912)
	4 d	0.00119 (0.00142)	0.302 (0.377)	0.555 (0.547)	0.749 (0.781)
	7 d	0.000652 (0.000756)	0.173 (0.216)	0.434 (0.404)	0.641 (0.651)
	14 d	0.000321 (0.000344)	0.0867 (0.108)	0.317 (0.274)	0.505 (0.491)
----------------	----------------	----------------	----------------		
21 d	0.000173 (0.000175)	0.0791 (0.0723)	0.266 (0.221)	0.434 (0.410)	
28 d	0.000114 (0.000110)	0.0595 (0.0543)	0.234 (0.190)	0.388 (0.359)	
42 d	0.000064 (0.000058)	0.0512 (0.0362)	0.195 (0.154)	0.330 (0.296)	
R1 Pond 0 h	0.453 (0.530)		1.102 (0.634)		
24 h	0.337 (0.393)	0.392 (0.456)	1.095 (0.626)	1.101 (0.634)	
4 d	0.252 (0.293)	0.350 (0.398)	1.068 (0.607)	1.098 (0.631)	
7 d	0.145 (0.166)	0.290 (0.311)	1.002 (0.555)	1.086 (0.622)	
14 d	0.0659 (0.0743)	0.227 (0.227)	0.900 (0.477)	1.058 (0.600)	
21 d	0.0135 (0.0140)	0.161 (0.131)	0.730 (0.353)	0.973 (0.534)	
28 d	0.00365 (0.00323)	0.145 (0.0900)	0.627 (0.285)	0.910 (0.475)	
42 d	0.000675 (0.000392)	0.121 (0.0455)	0.475 (0.198)	0.802 (0.364)	
R1 Pond 24 h	0.337 (0.393)	0.392 (0.456)	1.095 (0.626)	1.101 (0.634)	
2 d	0.252 (0.293)	0.350 (0.398)	1.068 (0.607)	1.098 (0.631)	
4 d	0.145 (0.166)	0.290 (0.311)	1.002 (0.555)	1.086 (0.622)	
7 d	0.0659 (0.0743)	0.227 (0.227)	0.900 (0.477)	1.058 (0.600)	
14 d	0.0135 (0.0140)	0.161 (0.131)	0.730 (0.353)	0.973 (0.534)	
21 d	0.00365 (0.00323)	0.145 (0.0900)	0.627 (0.285)	0.910 (0.475)	
28 d	0.00149 (0.00107)	0.120 (0.0679)	0.560 (0.245)	0.881 (0.428)	
42 d	0.000675 (0.000392)	0.121 (0.0455)	0.475 (0.198)	0.802 (0.364)	
R1 Pond 4 d	0.145 (0.166)	0.290 (0.311)	1.002 (0.555)	1.086 (0.622)	
7 d	0.0659 (0.0743)	0.227 (0.227)	0.900 (0.477)	1.058 (0.600)	
14 d	0.0135 (0.0140)	0.161 (0.131)	0.730 (0.353)	0.973 (0.534)	
21 d	0.00365 (0.00323)	0.145 (0.0900)	0.627 (0.285)	0.910 (0.475)	
28 d	0.00149 (0.00107)	0.120 (0.0679)	0.560 (0.245)	0.881 (0.428)	
42 d	0.000675 (0.000392)	0.121 (0.0455)	0.475 (0.198)	0.802 (0.364)	
R1 Stream 0 h	5.672 (7.094)		1.034 (1.006)		
24 h	0.00174 (0.00207)	1.123 (1.405)	0.882 (0.826)	0.975 (0.936)	
2 d	0.00126 (0.00148)	0.562 (0.703)	0.765 (0.688)	0.909 (0.857)	
4 d	0.000710 (0.000808)	0.282 (0.352)	0.613 (0.513)	0.804 (0.734)	
7 d	0.000353 (0.000379)	0.161 (0.201)	0.491 (0.379)	0.698 (0.612)	
14 d	0.000140 (0.000132)	0.133 (0.102)	0.381 (0.269)	0.567 (0.467)	
21 d	0.000077 (0.000067)	0.0894 (0.0681)	0.322 (0.216)	0.495 (0.392)	
28 d	0.000051 (0.000511)	0.0675 (0.0511)	0.286 (0.186)	0.461 (0.344)	
42 d	0.000029 (0.000341)	0.0622 (0.0341)	0.240 (0.151)	0.413 (0.285)	
R2 Stream 0 h	7.600 (9.505)		0.814 (0.727)		
24 h	0.000876 (0.00102)	0.809 (1.011)	0.699 (0.594)	0.765 (0.670)	
2 d	0.000642 (0.000733)	0.405 (0.506)	0.612 (0.494)	0.715 (0.612)	
4 d	0.000369 (0.000403)	0.203 (0.253)	0.499 (0.368)	0.637 (0.523)	
	R3 Stream	R4 Stream			
-------	-----------	-----------			
	0 h	0 h			
7 d	0.000189 (0.000191)	5.671 (7.093)			
	0.116 (0.145)	1.026 (1.012)			
	0.407 (0.271)	0.966 (0.942)			
	0.558 (0.436)	0.966 (0.942)			
14 d	0.000071 (0.000060)	0.01176 (0.00208)			
	0.116 (0.0725)	1.125 (1.406)			
	0.312 (0.183)	0.872 (0.831)			
	0.456 (0.328)	0.966 (0.942)			
21 d	0.000046 (0.000036)	0.00128 (0.00149)			
	0.0773 (0.0484)	0.563 (0.704)			
	0.273 (0.154)	0.753 (0.692)			
	0.431 (0.274)	0.899 (0.862)			
28 d	0.000029 (0.000020)	0.000425 (0.000478)			
	0.0580 (0.0363)	0.284 (0.354)			
	0.242 (0.132)	0.599 (0.517)			
	0.409 (0.241)	0.793 (0.739)			
42 d	0.000017 (0.000011)	0.000212 (0.000225)			
	0.0540 (0.0242)	0.163 (0.203)			
	0.204 (0.107)	0.475 (0.382)			
	0.362 (0.200)	0.685 (0.616)			
	0.000080 (0.000048)	0.000495 (0.000082)			
	0.106 (0.0544)	0.162 (0.103)			
	0.435 (2.44)	0.687 (0.269)			
	0.566 (0.364)	0.610 (0.469)			
	0.000054 (0.000031)	0.0459 (0.0459)			
	0.0726 (0.0363)	0.108 (0.0705)			
	0.345 (0.195)	0.530 (2.90)			
	0.507 (0.315)	0.593 (0.395)			
FOCUS Step 4- Percentage mitigation required to meet calculated RACs. Shaded cells require more than 95% so indicate the situations where low risk was not demonstrated, when complying with FOCUS 2007 Landscape and mitigation guidance. No FOCUS scenario indicated low risk. Only half scenarios (ponds) have low risk indicated.

FOCUS Step 3 Scenario	Max PEC_{sw} (µg/L)	Mitigation Required for First Tier RAC (0.052 µg/L) (%)	Mitigation Required for Higher Tier RAC (0.128 µg/L) (%)
	Multiple Applications	Single Applications	
D3-Ditch	7.041	8.729	
D4-Pond	0.475	0.53	
D4-Stream	7.354	9.197	
D5-Pond	0.447	0.53	
D5-Stream	7.752	9.695	
R1-Pond	0.453	0.53	
R1-Stream	5.672	7.094	
R2-Stream	7.6	9.505	
R3-Stream	8.009	10.016	
R4-Stream	5.671	7.093	

Crop and growth stage: Apples BBCH 31-89
Number of applications: 3
Interval (d): 10
Application rate(s): 75 g a.s./ha
Application window: Late spray drift / Mar-May
Crop Interception: Full canopy (70%)

FOCUS STEP 1 Scenario	Day after overall maximum	PEC_{sw} (µg/L)	PEC_{sed} (µg/kg)		
		Actual	TWA	Actual	TWA
0 h		10.1051	141.1961		
24 h		4.7409	7.4230	108.4240	124.8101
2 d		3.1458	5.6560	71.9451	106.8757
4 d		1.3851	3.9012	31.6776	77.9824
7 d		0.4047	2.5708	9.2551	52.3713
14 d		0.0229	1.3519	0.5242	27.7062
21 d		0.0013	0.9038	0.0297	18.5282
28 d		0.0001	0.6779	0.0017	13.8986
42 d		0.0000	0.4520	0.0000	9.2658

FOCUS STEP 2 Scenario	Day after overall maximum	PEC_{sw} (µg/L) Multiple Applications (Single Application)	PEC_{sed} (µg/kg) Multiple Applications (Single Application)		
		Actual	TWA	Actual	TWA
FOCUS STEP 3

Scenario

Water body	**Day after overall maximum**	**PEC$_{SW}$ (µg/L)**	**PEC$_{SED}$ (µg/kg)**
D3	Ditch		
	0 h	1.968 (2.756)	1.964 (2.756)
	24 h	1.360 (1.902)	1.640 (2.295)
	2 d	0.786 (1.096)	1.359 (1.901)
	4 d	0.148 (0.199)	0.878 (1.225)
	7 d	0.0342 (0.0417)	0.532 (0.739)
	14 d	0.00576 (0.00601)	0.497 (0.378)
	21 d	0.0117 (0.0211)	0.345 (0.253)
	28 d	0.00347 (0.00125)	0.330 (0.190)
	42 d	0.00123 (0.000615)	0.224 (0.127)

D4 | Pond | | |
	0 h	0.116 (0.123)	0.116 (0.123)
	24 h	0.103 (0.108)	0.109 (0.115)
	2 d	0.0917 (0.0959)	0.103 (0.108)
	Stream	D4	0 h	4.0743 (0.0767)	0.0927 (0.0971)	0.411 (0.243)	0.425 (0.251)
4 d	0.0743 (0.0767)	0.0927 (0.0971)	0.411 (0.243)	0.425 (0.251)			
7 d	0.0527 (0.0536)	0.0802 (0.0833)	0.391 (0.230)	0.421 (0.249)			
14 d	0.0250 (0.0246)	0.0598 (0.0601)	0.344 (0.199)	0.407 (0.240)			
21 d	0.0129 (0.0123)	0.0612 (0.0460)	0.304 (0.173)	0.390 (0.228)			
28 d	0.00712 (0.00654)	0.0533 (0.0368)	0.274 (0.153)	0.372 (0.217)			
42 d	0.00293 (0.00246)	0.0433 (0.0259)	0.231 (0.126)	0.343 (0.195)			
Pond	0.101 (0.123)	0.265 (0.175)	0.263 (0.173)	0.264 (0.174)			
D5	24 h	0.0797 (0.0971)	0.0894 (0.109)	0.263 (0.173)	0.264 (0.174)		
2 d	0.0636 (0.0770)	0.0803 (0.0979)	0.258 (0.169)	0.264 (0.174)			
4 d	0.0412 (0.0493)	0.0660 (0.0800)	0.244 (0.159)	0.262 (0.172)			
7 d	0.0223 (0.0262)	0.0510 (0.0614)	0.222 (0.141)	0.256 (0.168)			
14 d	0.00617 (0.00683)	0.0449 (0.0379)	0.179 (0.109)	0.238 (0.154)			
21 d	0.00213 (0.00216)	0.0373 (0.0266)	0.153 (0.0901)	0.220 (0.140)			
28 d	0.00131 (0.00120)	0.0365 (0.0203)	0.136 (0.0785)	0.210 (0.128)			
----------------	--------	--------	--------	--------			
	42 d	0.000605 (0.00470)	0.0266 (0.0138)	0.114 (0.0641)	0.191 (0.111)		
D5 Stream	0 h	2.126 (2.979)					
	24 h	0.0110 (0.0148)	0.779 (1.091)	0.726 (0.628)	0.795 (0.712)		
	2 d	0.00278 (0.00341)	0.392 (0.549)	0.644 (0.528)	0.753 (0.660)		
	4 d	0.00160 (0.00186)	0.197 (0.276)	0.534 (0.399)	0.681 (0.572)		
	7 d	0.000827 (0.000872)	0.113 (0.158)	0.441 (0.298)	0.603 (0.481)		
	14 d	0.000313 (0.000268)	0.112 (0.0793)	0.341 (0.204)	0.509 (0.365)		
	21 d	0.000180 (0.000135)	0.111 (0.0529)	0.291 (0.165)	0.489 (0.305)		
	28 d	0.000125 (0.000086)	0.0839 (0.0397)	0.259 (0.142)	0.452 (0.268)		
	42 d	0.000073 (0.000046)	0.0560 (0.0265)	0.218 (0.115)	0.401 (0.221)		
R1 Pond	0 h	0.107 (0.123)		0.339 (0.204)			
	24 h	0.0891 (0.102)	0.0974 (0.112)	0.338 (0.203)	0.338 (0.204)		
	2 d	0.0750 (0.0855)	0.0895 (0.103)	0.336 (0.200)	0.338 (0.203)		
	4 d	0.0537 (0.0607)	0.0766 (0.0875)	0.329 (0.191)	0.337 (0.202)		
	7 d	0.0335 (0.0374)	0.0648 (0.0706)	0.316 (0.177)	0.335 (0.199)		
	14 d	0.0139 (0.0150)	0.0523 (0.0470)	0.283 (0.152)	0.327 (0.188)		
	21 d	0.00773 (0.00812)	0.0458 (0.0351)	0.253 (0.133)	0.315 (0.177)		
	28 d	0.0663 (0.00457)	0.0377 (0.0279)	0.229 (0.117)	0.303 (0.167)		
	42 d	0.0167 (0.00167)	0.0372 (0.0195)	0.195 (0.0960)	0.279 (0.150)		
R1 Stream	0 h	1.507 (2.112)		0.309 (0.318)			
	24 h	0.000524 (0.000672)	0.319 (0.444)	0.268 (0.262)	0.294 (0.297)		
	2 d	0.000387 (0.000488)	0.160 (0.222)	0.236 (0.220)	0.276 (0.273)		
	4 d	0.000225 (0.000272)	0.0800 (0.111)	0.195 (0.166)	0.247 (0.235)		
	7 d	0.000115 (0.000130)	0.0458 (0.0637)	0.160 (0.123)	0.218 (0.197)		
Table 1: Pesticide Risk Assessment Results

14 d	0.000041 (0.000041)	0.0454 (0.0319)	0.125 (0.0836)	0.180 (0.149)
21 d	0.000023 (0.000021)	0.0303 (0.0213)	0.109 (0.0674)	0.159 (0.125)
28 d	0.000276 (0.000013)	0.228 (0.0160)	0.0980 (0.0581)	0.145 (0.109)
42 d	0.000011 (0.000003)	0.228 (0.0106)	0.0841 (0.0471)	0.147 (0.0902)

Table 2: Stream Concentrations

R2 Stream 0 h	2.02 (2.831)		0.253 (0.234)	
24 h	0.000252 (0.000313)	0.220 (0.309)	0.221 (0.195)	0.239 (0.217)
2 d	0.000097 (0.000118)	0.110 (0.154)	0.197 (0.165)	0.225 (0.200)
4 d	0.000058 (0.000066)	0.0560 (0.0772)	0.164 (0.127)	0.203 (0.174)
7 d	0.000031 (0.000032)	0.0320 (0.0442)	0.136 (0.0961)	0.181 (0.147)
14 d	0.000012 (0.000010)	0.0318 (0.0223)	0.106 (0.0679)	0.153 (0.113)
21 d	0.000004 (0.000003)	0.0212 (0.0149)	0.0918 (0.0562)	0.147 (0.0962)
28 d	0.000005 (0.000004)	0.0238 (0.0112)	0.0823 (0.0494)	0.137 (0.0854)
42 d	0.000003 (0.000002)	0.0159 (0.00745)	0.0702 (0.0413)	0.120 (0.0719)

Table 3: Stream Concentrations

R3 Stream 0 h	2.125 (2.977)		0.894 (0.847)	
24 h	0.00736 (0.0104)	0.720 (1.008)	0.928 (0.818)	0.963 (0.839)
2 d	0.00209 (0.00295)	0.361 (0.506)	0.882 (0.792)	0.938 (0.828)
4 d	0.00115 (0.00161)	0.181 (0.254)	0.819 (0.753)	0.897 (0.809)
7 d	0.000273 (0.000380)	0.104 (0.146)	0.762 (0.713)	0.853 (0.782)
14 d	0.000469 (0.000118)	0.0794 (0.0730)	0.690 (0.655)	0.826 (0.737)
21 d	0.000462 (0.000402)	0.0630 (0.0588)	0.648 (0.617)	0.808 (0.705)
28 d	0.000908 (0.000170)	0.0609 (0.0442)	0.616 (0.589)	0.780 (0.681)
42 d	0.000135 (0.000089)	0.0407 (0.0295)	0.568 (0.544)	0.732 (0.644)

Table 4: Stream Concentrations

R4 Stream 0 h	1.507 (2.112)		0.371 (0.381)	
FOCUS Step 3 - Scenario

Scenario	Max PEC_{sw} (µg/L)	Mitigation Required for First Tier RAC (0.052 µg/L) (%)	Mitigation Required for Higher Tier RAC (0.128 µg/L) (%)	
Multiple	Single	Applications	Applications	
D3-Ditch	1.968	2.756	98.1	95.4
D4-Pond	0.116	0.123	57.7	N/A
D4-Stream	1.929	2.694	98.1	95.2
D5-Pond	0.101	0.123	57.7	N/A
D5-Stream	2.126	2.979	98.3	95.7
R1-Pond	0.107	0.123	57.7	N/A
R1-Stream	1.507	2.112	97.5	93.9
R2-Stream	2.02	2.831	98.2	95.5
R3-Stream	2.125	2.977	98.3	95.7
R4-Stream	1.507	2.112	97.5	93.9

FOCUS Step 4 - Percentage mitigation required to meet calculated RACs. Shaded cells require more than 95% mitigation so indicate the situations where low risk was not demonstrated, when complying with FOCUS 2007 Landscape and mitigation guidance.

Crop and growth stage: Apples BBCH 61-85
Number of applications: 3
Interval (d): 10
Application rate(s): 112.5 g a.s./ha
Application window: Late spray drift
Crop Interception: Full canopy (70%)

Time (d)	Max PEC_{sw} (µg/L)	Mitigation Required for First Tier RAC (0.052 µg/L) (%)	Mitigation Required for Higher Tier RAC (0.128 µg/L) (%)	
24 h	0.000507 (0.000678)	0.316 (0.443)	0.329 (0.325)	
		0.355 (0.360)		
2 d	0.000376 (0.000495)	0.158 (0.222)	0.297 (0.283)	
		0.337 (0.336)		
4 d	0.000220 (0.000279)	0.0793 (0.111)	0.254 (0.228)	
		0.308 (0.298)		
7 d	0.000116 (0.000137)	0.0510 (0.0636)	0.218 (0.184)	
		0.278 (0.259)		
14 d	0.000046 (0.000047)	0.0276 (0.0318)	0.180 (0.142)	
		0.238 (0.210)		
21 d	0.000028 (0.000026)	0.0314 (0.0212)	0.161 (0.124)	
		0.217 (0.184)		
28 d	0.000020 (0.000018)	0.0235 (0.0174)	0.149 (0.113)	
		0.217 (0.168)		
42 d	0.000005 (0.000004)	0.0233 (0.0125)	0.132 (0.0990)	
		0.202 (0.147)		
FOCUS STEP 1 Scenario	Day after overall maximum	PEC_{SW} (µg/L)	PEC_{SED} (µg/kg)	
-----------------------	--------------------------	--------------------------	--------------------------	
	Actual	TWA	Actual	TWA
0 h	15.1577	211.7941		
24 h	7.1113	11.1345	162.6361	187.2151
2 d	4.7187	8.4840	107.9177	160.3135
4 d	2.0777	5.8518	47.5165	116.9736
7 d	0.6070	3.8561	13.8826	78.5570
14 d	0.0344	2.0278	0.7863	41.5593
21 d	0.0019	1.3556	0.0445	27.7923
28 d	0.0000	1.0169	0.0025	20.8479
42 d	0.0000	0.6779	0.0000	13.8987

FOCUS STEP 2 Scenario	Day after overall maximum	PEC_{SW} (µg/L) Multiple Applications (Single Application)	PEC_{SED} (µg/kg) Multiple Applications (Single Application)	
	Actual	TWA	Actual	TWA
Northern EU 0 h	4.1520 (5.8969)	10.5480 (14.7329)		
24 h	1.3796 (1.9485)	2.7658 (3.9227)	8.7175 (12.300)	9.6328 (13.4815)
2 d	0.6863 (0.9657)	1.8994 (2.6899)	6.0707 (8.5240)	8.5134 (11.9292)
4 d	0.2760 (0.3854)	1.1743 (1.6604)	3.1335 (4.3673)	6.4575 (9.0384)
7 d	0.0603 (0.0841)	0.7276 (1.0277)	0.9155 (1.2760)	4.4733 (6.2566)
14 d	0.0034 (0.0048)	0.3739 (0.5279)	0.0519 (0.0723)	2.3892 (3.3408)
21 d	0.0002 (0.0003)	0.2496 (0.3524)	0.0029 (0.0041)	1.5985 (2.2353)
28 d	0.0000 (0.0000)	0.1872 (0.2644)	0.0002 (0.0002)	1.1991 (1.6768)
42 d	0.0000 (0.0000)	0.1248 (0.1762)	0.0000 (0.0000)	0.7994 (1.1179)
Southern EU 0 h	4.1520 (5.8969)	10.5480 (14.7329)		
24 h	1.3796 (1.9485)	2.7658 (3.9227)	8.7175 (12.300)	9.6328 (13.4815)
2 d	0.6863 (0.9657)	1.8994 (2.6899)	6.0707 (8.5240)	8.5134 (11.9292)
4 d	0.2814 (0.3909)	1.1750 (1.6611)	3.2165 (4.4503)	6.4991 (9.0800)
7 d	0.0619 (0.0857)	0.7294 (1.0295)	0.9397 (1.3002)	4.5179 (6.3011)
14 d	0.0035 (0.0049)	0.3750 (0.5290)	0.0532 (0.0736)	2.4155 (3.3672)
21 d	0.0002 (0.0003)	0.2504 (0.3532)	0.0030 (0.0042)	1.6162 (2.2530)
28 d	0.0000 (0.0000)	0.1878 (0.2649)	0.0002 (0.0002)	1.2124 (1.6901)
42 d	0.0000 (0.0000)	0.1252 (0.1766)	0.0000 (0.0000)	0.8083 (1.1267)

FOCUS STEP 3 Scenario	Water body	Day after overall maximum	PEC_{SW} (µg/L)	PEC_{SED} (µg/kg)
	Actual	TWA	Actual	TWA

www.efsa.europa.eu/efsajournal 90 EFSA Journal 2017;15(10):4989
D3 Ditch

Time	0 h	2.5952 (4.134)	3.675 (3.644)	
24 h	2.040 (2.853)	2.459 (3.442)	3.516 (3.447)	3.657 (3.621)
2 d	1.180 (1.645)	2.039 (2.852)	3.232 (3.103)	3.606 (3.557)
4 d	0.222 (0.299)	1.318 (1.838)	2.728 (2.511)	3.441 (3.352)
7 d	0.512 (0.0625)	0.798 (1.109)	2.249 (1.971)	3.155 (3.008)
14 d	0.00855 (0.00893)	0.745 (0.567)	2.764 (1.392)	2.639 (2.416)

D4 Pond

Time	0 h	0.174 (0.185)	0.636 (0.376)	
24 h	0.154 (0.162)	0.164 (0.173)	0.634 (0.375)	0.636 (0.376)
2 d	0.138 (0.144)	0.155 (0.163)	0.629 (0.372)	0.635 (0.376)
4 d	0.111 (0.115)	0.139 (0.146)	0.613 (0.362)	0.633 (0.374)
7 d	0.0791 (0.0806)	0.120 (0.125)	0.583 (0.343)	0.627 (0.371)
14 d	0.0375 (0.0370)	0.0897 (0.0903)	0.512 (0.297)	0.606 (0.357)
21 d	0.0193 (0.0185)	0.0919 (0.0691)	0.453 (0.257)	0.581 (0.340)
28 d	0.0107 (0.00981)	0.0801 (0.0552)	0.407 (0.228)	0.554 (0.323)
42 d	0.00439 (0.00368)	0.0560 (0.0388)	0.344 (0.188)	0.510 (0.291)

D4 Stream

Time	0 h	2.894 (4.055)	0.454 (0.478)							
24 h	0.000732 (0.00104)	0.477 (0.668)	0.394 (0.395)	0.430 (0.445)						
2 d	0.000540 (0.000762)	0.239 (0.334)	0.348 (0.330)	0.404 (0.408)						
4 d	0.000309 (0.000433)	0.120 (0.167)	0.288 (0.247)	0.363 (0.350)						
7 d	0.000154 (0.000214)	0.0684 (0.958)	0.239 (0.183)	0.321 (0.293)						
14 d	0.000051 (0.000071)	0.0625 (0.0480)	0.186 (0.124)	0.266 (0.222)						
21 d	0.000022 (0.000030)	0.0419 (0.0320)	0.10 (0.100)	0.254 (0.185)						
28 d	0.000151 (0.000017)	0.0330 (0.0240)	0.143 (0.0862)	0.240 (0.162)						
-------	-------	-------	-------							
42 d	0.00325 (0.00325)	0.0324 (0.0161)	0.122 (0.0722)	0.212 (0.134)						
D5	Pond									
0 h	0.151 (0.185)		0.394 (0.260)							
24 h	0.120 (0.146)	0.134 (0.164)	0.391 (0.258)	0.394 (0.260)						
2 d	0.0955 (0.116)	0.121 (0.147)	0.384 (0.252)	0.393 (0.259)						
4 d	0.0619 (0.0741)	0.0991 (0.120)	0.364 (0.237)	0.390 (0.257)						
7 d	0.0335 (0.0393)	0.0765 (0.0922)	0.330 (0.210)	0.382 (0.251)						
14 d	0.00925 (0.0103)	0.0673 (0.0568)	0.264 (0.162)	0.355 (0.230)						
21 d	0.00318 (0.00323)	0.0560 (0.0399)	0.227 (0.134)	0.328 (0.209)						
28 d	0.00196 (0.00180)	0.0548 (0.0305)	0.202 (0.117)	0.313 (0.191)						
42 d	0.0009901 (0.000700)	0.0399 (0.0207)	0.170 (0.0953)	0.284 (0.165)						
D5	Stream									
0 h	3.190 (4.468)		1.229 (1.119)							
24 h	0.0165 (0.223)	1.169 (1.637)	1.082 (0.938)	1.187 (1.065)						
2 d	0.00419 (0.0516)	0.588 (0.823)	0.958 (0.786)	1.124 (0.987)						
4 d	0.00240 (0.00279)	0.296 (0.413)	0.794 (0.593)	1.014 (0.854)						
7 d	0.00123 (0.00130)	0.170 (0.237)	0.655 (0.443)	0.897 (0.716)						
14 d	0.000465 (0.000398)	0.168 (0.119)	0.506 (0.303)	0.758 (0.544)						
21 d	0.000268 (0.000201)	0.167 (0.0793)	0.433 (0.245)	0.727 (0.454)						
28 d	0.000186 (0.000128)	0.126 (0.0596)	0.385 (0.211)	0.673 (0.398)						
42 d	0.000108 (0.000068)	0.0841 (0.0397)	0.325 (0.172)	0.597 (0.329)						
R1	Pond									
0 h	0.160 (0.185)		0.504 (0.304)							
24 h	0.134 (0.154)	0.146 (0.168)	0.503 (0.302)	0.504 (0.304)						
2 d	0.113 (0.128)	0.134 (0.154)	0.500 (0.298)	0.504 (0.303)						
4 d	0.0807 (0.0912)	0.115 (0.131)	0.491 (0.285)	0.503 (0.301)						
7 d	0.0503 (0.0561)	0.0972 (0.106)	0.471 (0.264)	0.499 (0.296)						
14 d	0.0208 (0.0225)	0.0784 (0.0706)	0.422 (0.227)	0.486 (0.280)						
Time	R1 Stream	0 h	24 h	2 d	4 d	7 d	14 d	21d	28 d	42 d
-------	-----------	-----	------	-----	-----	-----	------	-----	------	------
21 d	0.0116 (0.0122)	0.0687 (0.0527)	0.377 (0.198)	0469 (0.264)						
28 d	0.0996 (0.00686)	0.0566 (0.0418)	0.341 (0.175)	0.450 (0.249)						
42 d	0.0250 (0.00250)	0.0558 (0.0293)	0.290 (0.143)	0.415 (0.223)						

Time	R2 Stream	0 h	24 h	2 d	4 d	7 d	14 d	21d	28 d	42 d
21 d	3.261 (3.168)	0.462 (0.476)								
24 h	0.000794 (0.00102)	0.478 (0.666)	0.400 (0.392)	0.439 (0.444)						
2 d	0.000584 (0.000737)	0.240 (0.333)	0.352 (0.328)	0.412 (0.408)						
4 d	0.000336 (0.000408)	0.120 (0.167)	0.289 (0.246)	0.369 (0.351)						
7 d	0.000171 (0.000194)	0.0687 (0.0955)	0.238 (0.183)	0.325 (0.294)						
14 d	0.000062 (0.000061)	0.0682 (0.0478)	0.186 (0.124)	0.268 (0.222)						
21d	0.000034 (0.000031)	0.0455 (0.0319)	0.162 (0.100)	0.237 (0.185)						
28 d	0.000415 (0.000020)	0.0342 (0.0239)	0.146 (0.0864)	0.216 (0.162)						
42 d	0.000017 (0.000004)	0.0342 (0.0160)	0.125 (0.0701)	0.218 (0.134)						

Time	R3 Stream	0 h	24 h	2 d	4 d	7 d	14 d	21d	28 d	42 d
21 d	3.187 (4.465)	1.466 (1.263)								
24 h	0.111 (0.0156)	1.079 (1.512)	1.381 (1.218)	1.434 (1.249)						
2 d	0.00316 (0.00445)	0.542 (0.760)	1.312 (1.179)	1.396 (1.234)						
Scenario	Time	Max PEC_{sw} (µg/L)	Mitigation Required for First Tier RAC (0.052 µg/L) (%)	Mitigation Required for Higher Tier RAC (0.128 µg/L) (%)						
------------	------	-----------------------------	---	---						
Multiple Applications	Single Applications									
D3-Ditch	4 d	0.00172 (0.00241)	0.272 (0.381)	1.218 (1.120)	1.335 (1.205)					
	7 d	0.000406 (0.000565)	0.156 (0.219)	1.132 (1.060)	1.268 (1.165)					
	14 d	0.000703 (0.000175)	0.119 (0.110)	1.026 (0.974)	1.229 (1.097)					
	21 d	0.000694 (0.000606)	0.0948 (0.0884)	0.962 (0.917)	1.202 (1.049)					
	28 d	0.00137 (0.000255)	0.0916 (0.0664)	0.914 (0.874)	1.160 (1.013)					
	42 d	0.000201 (0.000134)	0.0612 (0.0443)	0.843 (0.808)	1.088 (0.957)					
R4 Stream	0 h	2.261 (3.167)	0.555 (0.571)							
	24 h	0.000769 (0.00103)	0.475 (0.665)	0.491 (0.486)	0.531 (0.539)					
	2 d	0.000567 (0.000747)	0.238 (0.333)	0.443 (0.422)	0.504 (0.503)					
	4 d	0.000330 (0.000418)	0.119 (0.167)	0.378 (0.339)	0.460 (0.445)					
	7 d	0.000172 (0.000204)	0.0767 (0.0954)	0.325 (0.274)	0.415 (0.387)					
	14 d	0.000068 (0.000069)	0.0416 (0.0478)	0.268 (0.211)	0.355 (0.313)					
	21 d	0.000041 (0.000038)	0.0471 (0.0319)	0.240 (0.185)	0.323 (0.275)					
	28 d	0.000030 (0.000026)	0.0354 (0.0261)	0.222 (0.168)	0.324 (0.250)					
	42 d	0.000007 (0.000006)	0.0350 (0.0188)	0.196 (0.147)	0.301 (0.219)					

FOCUS Step 4- Percentage mitigation required to meet calculated RACs. Shaded cells require more than 95% mitigation, so indicate the situations where low risk was not demonstrated, when complying with FOCUS 2007 Landscape and mitigation guidance. No FOCUS scenario indicated low risk. Only half scenarios (ponds) have low risk indicated.
Peer review of the pesticide risk assessment of the active substance trifloxystrobin

FOCUS STEP 1

Scenario	Day after overall maximum	PEC_{SW} (µg/L)	PEC_{SED} (µg/kg)	
	Actual	TWA	Actual	TWA
0 h	13.6348	235.3268	202.0073	
24 h	7.3759	10.5053	118.6877	170.1917
2 d	4.8943	8.2780	49.2854	123.2827
4 d	2.1550	5.8087	98.8	97.0
7 d	0.6296	3.8506	14.3992	82.5981
14 d	0.0357	2.0287	0.8156	43.6647
21 d	0.0020	1.3564	0.0462	29.1991
28 d	0.0001	1.0175	0.0026	21.9031
42 d	0.0000	0.6783	0.0000	14.6022

FOCUS STEP 2

Scenario	Day after overall maximum	PEC_{SW}(µg/L) Multiple Applications (Single Application)	PEC_{SED}(µg/kg) Multiple Applications (Single Application)			
	Actual	TWA	Actual	TWA		
Northern EU	0 h	2.8901 (3.3450)	7.3422 (8.3527)			
	24 h	0.9603 (1.1053)	6.0680 (6.9375)	6.7051 (7.6474)		
	2 d	0.4777 (0.5478)	4.2257 (4.8352)	5.9260 (6.7669)		
	4 d	0.2004 (0.2277)	2.3078 (2.6147)	4.5584 (5.1959)		
	7 d	0.0444 (0.0503)	0.6743 (0.7639)	3.1817 (3.6228)		
	14 d	0.0025 (0.0029)	0.0382 (0.0433)	1.7032 (1.9386)		
	21 d	0.0001 (0.0002)	0.0022 (0.0025)	1.1397 (1.2972)		
	28 d	0.0000 (0.0000)	0.0001 (0.0001)	0.8550 (0.9731)		
	42 d	0.0000 (0.0000)	0.0000 (0.0000)	0.5700 (0.6488)		
Southern EU	0 h	2.8901 (3.3450)	7.3422 (8.3527)			
Water body	Day after overall maximum	PEC_{SW} (µg/L) Multiple Applications (Single Application)	PEC_{SED} (µg/kg) Multiple Applications (Single Application)			
------------	---------------------------	---	---			
D6 Ditch	0 h	1.831 (2.135)	2.234 (1.984)			
	24 h	1.284 (1.495)	2.136 (1.878)	2.223 (1.972)		
	2 d	0.808 (0.939)	1.952 (1.680)	2.192 (1.938)		
	4 d	0.152 (0.174)	1.606 (1.320)	2.090 (1.827)		
	7 d	0.00618 (0.00644)	0.508 (0.590)	1.303 (1.018)	1.903 (1.628)	
	14 d	0.00356 (0.00333)	0.389 (0.297)	0.991 (0.727)	1.572 (1.291)	
	21 d	0.00607 (0.00529)	0.279 (0.200)	0.849 (0.606)	1.371 (1.096)	
	28 d	0.00490 (0.00407)	0.210 (0.151)	0.757 (0.531)	1.254 (0.971)	
	42 d	0.00218 (0.00170)	0.156 (0.102)	0.632 (0.434)	1.117 (0.813)	
R1 Pond	0 h	0.0713 (0.0762)	0.178 (0.114)			
	24 h	0.0575 (0.0612)	0.0640 (0.0682)	0.176 (0.114)	0.178 (0.114)	
	2 d	0.0467 (0.0494)	0.0579 (0.0616)	0.173 (0.111)	0.177 (0.114)	
	4 d	0.0313 (0.0328)	0.0482 (0.0510)	0.163 (0.105)	0.176 (0.113)	
	7 d	0.0178 (0.0183)	0.0378 (0.0398)	0.148 (0.0947)	0.172 (0.111)	
	14 d	0.00537 (0.00531)	0.0315 (0.0251)	0.123 (0.0743)	0.159 (0.102)	
	21 d	0.00193 (0.00180)	0.0295 (0.0178)	0.108 (0.0610)	0.148 (0.0938)	
---	---	---	---	---		
28 d	0.0165 (0.000547)	0.0240 (0.0136)	0.0971 (0.0521)	0.149 (0.0862)		
42 d	0.000841 (0.000127)	0.0213 (0.00918)	0.0832 (0.0420)	0.146 (0.0744)		
R1	Stream	0 h	1.326 (1.555)	0.165 (0.184)		
		24 h	0.000242 (0.000285)	0.217 (0.254)	0.144 (0.152)	0.156 (0.171)
		2 d	0.000177 (0.000209)	0.108 (0.127)	0.128 (0.128)	0.147 (0.157)
		4 d	0.000100 (0.000118)	0.0543 (0.0637)	0.107 (0.0963)	0.132 (0.135)
		7 d	0.000035 (0.000041)	0.0311 (0.0364)	0.0885 (0.0713)	0.117 (0.113)
		14 d	0.000104 (0.00013)	0.0269 (0.0182)	0.0698 (0.0483)	0.0978 (0.0860)
		21 d	0.000023 (0.000007)	0.0180 (0.0122)	0.0633 (0.0388)	0.0890 (0.0718)
		28 d	0.000011 (0.000005)	0.0136 (0.00919)	0.0572 (0.0348)	0.0851 (0.0631)
		42 d	0.000050 (0.000004)	0.0129 (0.00613)	0.489 (0.0280)	0.0837 (0.0525)
R2	Stream	0 h	1.787 (2.097)	0.176 (0.158)		
		24 h	0.000183 (0.000205)	0.186 (0.218)	0.152 (0.130)	0.166 (0.146)
		2 d	0.000136 (0.000105)	0.0931 (0.109)	0.133 (0.110)	0.155 (0.134)
		4 d	0.000041 (0.000085)	0.0466 (0.0547)	0.108 (0.0827)	0.138 (0.116)
		7 d	0.000015 (0.000041)	0.0267 (0.0313)	0.0875 (0.0613)	0.121 (0.0969)
		14 d	0.000008 (0.000013)	0.133 (0.0156)	0.0667 (0.0416)	0.0984 (0.0735)
		21 d	0.000006 (0.000007)	0.161 (0.0104)	0.0570 (0.0335)	0.0861 (0.0614)
		28 d	0.000003 (0.000004)	0.120 (0.00783)	0.0509 (0.0289)	0.0817 (0.0538)
		42 d	0.000003 (0.000002)	0.00804 (0.0052)	0.0433 (0.0236)	0.0741 (0.0446)
R3	Stream	0 h	1.876 (2.200)	0.511 (0.459)		
		24 h	0.00270 (0.00299)	0.552 (0.647)	0.00443 (0.386)	0.489 (0.435)
		2 d	0.00146 (0.00156)	0.277 (0.324)	0.385 (0.325)	0.458 (0.402)
FOCUS Step 4 - Percentage mitigation required to meet calculated RACs.

FOCUS Step 3 Scenario	Max PEC_{sw} (µg/L)	Mitigation Required for First Tier RAC (0.052 µg/L) (%)	Mitigation Required for Higher Tier RAC (0.128 µg/L) (%)	
	Multiple Applications	Single Applications		
D6-Ditch	1.831	2.135	97.6	94.0
R1-Pond	0.0713	0.0762	31.8	N/A
R1-Stream	1.326	1.555	96.7	91.8
R2-Stream	1.787	2.097	97.5	93.9
R3-Stream	1.876	2.2	97.6	94.2
R4-Stream	1.336	1.567	96.7	91.8

FOCUS Step 3 - Scenario

Multiple Applications	Single Applications			
Max PEC_{sw} (µg/L)	Mitigation Required for First Tier RAC (0.052 µg/L) (%)	Mitigation Required for Higher Tier RAC (0.128 µg/L) (%)		
4 d	0.000834 (0.000861)	0.141 (0.165)	0.310 (0.246)	0.408 (0.348)
7 d	0.000421 (0.000409)	0.0811 (0.0947)	0.247 (0.184)	0.355 (0.293)
14 d	0.000127 (0.000108)	0.0802 (0.0475)	0.183 (0.126)	0.284 (0.223)
21 d	0.000070 (0.000055)	0.0537 (0.0317)	0.154 (0.102)	0.261 (0.187)
28 d	0.000966 (0.000034)	0.0403 (0.0238)	0.363 (0.0881)	0.243 (0.164)
42 d	0.000124 (0.000020)	0.0381 (0.0159)	0.193 (0.0715)	0.244 (0.136)
R4 Stream	0 h	1.336 (1.567)	0.235 (0.223)	
24 h	0.000376 (0.000435)	0.264 (0.310)	0.203 (0.185)	0.223 (0.208)
2 d	0.000175 (0.000201)	0.132 (0.155)	0.177 (0.155)	0.208 (0.191)
4 d	0.000100 (0.000113)	0.0662 (0.0777)	0.143 (0.117)	0.185 (0.165)
7 d	0.000050 (0.000054)	0.0379 (0.0444)	0.116 (0.0866)	0.162 (0.138)
14 d	0.000017 (0.000017)	0.0308 (0.0222)	0.0888 (0.0586)	0.131 (0.105)
21 d	0.000031 (0.000030)	0.0206 (0.0155)	0.0934 (0.0639)	0.116 (0.0884)
28 d	0.000011 (0.000010)	0.0154 (0.0116)	0.0805 (0.0521)	0.109 (0.0807)
42 d	0.000008 (0.000006)	0.0115 (0.00777)	0.0682 (0.0420)	0.0972 (0.0693)
Crop and growth stage: Strawberries (Vegetables, fruiting)
BBCH 19-89
Number of applications: 2
Interval (d): 7
Application rate(s): 125 g a.s./ha
Application window: Mar-May
Crop Interception: Minimal crop cover (25%)

FOCUS STEP 1 Scenario	Day after overall maximum	PEC$_{SW}$ (µg/L)	PEC$_{SED}$ (µg/kg)		
		Actual	TWA	Actual	TWA
0 h	11.4393	235.3268			
24 h	7.0162	9.2278	160.4601	197.8934	
2 d	4.6556	7.4916	106.4738	164.7602	
4 d	2.0499	5.3341	46.8807	118.7044	
7 d	0.5989	3.5534	13.6969	79.3893	
14 d	0.0339	1.8751	0.7758	41.9449	
21 d	0.0019	1.2538	0.0439	28.0482	
28 d	0.0001	0.9405	0.0025	21.0398	
42 d	0.0000	0.6270	0.0000	14.0267	

FOCUS STEP 2 Scenario	Day after overall maximum	PEC$_{SW}$ (µg/L) Multiple Applications (Single Application)	PEC$_{SED}$ (µg/kg) Multiple Applications (Single Application)			
		Actual (TWA)	Actual (TWA)		Actual (TWA)	Actual (TWA)
Northern EU	0 h	1.0348 (1.1496)	2.7299 (2.8722)		2.2342 (2.3842)	2.4820 (2.6282)
	24 h	0.3482 (0.3799)	0.6915 (0.7647)	2.2342 (2.3842)	2.4820 (2.6282)	
	2 d	0.1747 (0.1883)	0.4765 (0.5244)	1.5529 (1.6617)	2.1878 (2.3256)	
	4 d	0.0843 (0.0893)	0.2973 (0.3255)	1.0105 (1.0658)	1.7618 (1.8696)	
	7 d	0.0195 (0.0205)	0.1878 (0.2049)	0.2952 (0.3114)	1.2593 (1.3348)	
	14 d	0.0011 (0.0012)	0.0971 (0.1059)	0.0167 (0.0176)	0.6788 (0.7193)	
	21 d	0.0001 (0.0001)	0.0649 (0.0707)	0.0009 (0.0010)	0.4544 (0.4815)	
	28 d	0.0000 (0.0000)	0.0487 (0.0530)	0.0001 (0.0001)	0.3409 (0.3612)	
	42 d	0.0000 (0.0000)	0.0324 (0.0354)	0.0000 (0.0000)	0.2273 (0.2408)	
Southern EU	0 h	1.0348 (1.1496)	2.7299 (2.8722)		2.2342 (2.3842)	2.4820 (2.6282)
	24 h	0.3482 (0.3799)	0.6915 (0.7647)	2.2342 (2.3842)	2.4820 (2.6282)	
	2 d	0.1747 (0.1883)	0.4765 (0.5244)	1.5529 (1.6617)	2.1878 (2.3256)	
	4 d	0.0995 (0.1045)	0.2992 (0.3274)	1.2411 (1.2963)	1.8775 (1.9853)	
	7 d	0.0239 (0.0250)	0.1927 (0.2098)	0.3626 (0.3787)	1.3831 (1.4585)	
	14 d	0.0014 (0.0014)	0.1003 (0.1090)	0.0205 (0.0215)	0.7520 (0.7923)	
	21 d	0.0001 (0.0001)	0.0670 (0.0729)	0.0012 (0.0012)	0.5036 (0.5306)	
FOCUS STEP 3 Scenario	Water body	Day after overall maximum	PEC_{SW} (µg/L) Multiple Applications (Single Application)	PEC_{SED} (µg/kg) Multiple Applications (Single Application)		
-----------------------	------------	---------------------------	--	--		
D6	Ditch	0 h	0.690 (0.790)	0.366 (0.419)		
		24 h	0.259 (0.297)	0.328 (0.375)		
		2 d	0.0283 (0.0324)	0.283 (0.323)		
		4 d	0.00451 (0.00517)	0.221 (0.252)		
		7 d	0.000739 (0.000844)	0.168 (0.191)		
		14 d	0.00203 (0.00175)	0.217 (0.133)		
		21 d	0.000547 (0.000229)	0.144 (0.108)		
		28 d	0.000106 (0.000063)	0.117 (0.093)		
		42 d	0.000072 (0.000052)	0.0916 (0.0753)		
R2	Stream	0 h	0.597 (0.690)	0.248 (0.241)		
		24 h	0.000045 (0.000046)	0.241 (0.234)		
		2 d	0.000034 (0.000034)	0.245 (0.239)		
		4 d	0.0231 (0.0231)	0.236 (0.229)		
		7 d	0.000069 (0.000068)	0.226 (0.220)		
		14 d	0.000026 (0.000025)	0.211 (0.206)		
		21 d	0.000016 (0.000015)	0.201 (0.197)		
		28 d	0.000012 (0.000011)	0.193 (0.189)		
		42 d	0.000011 (0.000010)	0.181 (0.177)		
R3	Stream	0 h	0.637 (0.737)	0.196 (0.183)		
		24 h	0.00241 (0.00274)	0.171 (0.156)		
FOCUS Step 4: Percentage mitigation required to meet calculated RACs. Shaded cells require more than 95% mitigation. So indicate the situations where low risk was not demonstrated, when complying with FOCUS 2007 Landscape and mitigation guidance.

FOCUS Step 3 Scenario	Max PEC_{sw} (µg/L)	Mitigation Required for First Tier RAC (0.052 µg/L) (%)	Mitigation Required for Higher Tier RAC (0.128 µg/L) (%)	
	Multiple Applications	Single Applications		
D6-Ditch	0.69	0.79	93.4	83.8
R2-Stream	0.597	0.69	92.5	81.4
R3-Stream	0.637	0.737	92.9	82.6
R4-Stream	0.451	0.522	90.0	75.5
Crop and growth stage: Strawberries (Vegetables, fruiting)
BBCH 19-89
Number of applications: 2
Interval (d): 7
Application rate(s): 150 g a.s./ha
Application window: Mar-May
Crop Interception: Full canopy (70%)

FOCUS STEP 1

Scenario	Day after overall maximum	PEC\textsubscript{SW} (µg/L)	PEC\textsubscript{SED} (µg/kg)		
		Actual	TWA	Actual	TWA
0 h		13.7272		282.3922	
24 h		8.4194	11.0733	192.5521	237.4721
2 d		5.5867	8.9899	127.7686	197.7122
4 d		2.4599	6.4009	56.2569	142.4452
7 d		0.7187	4.2641	16.4362	95.2671
14 d		0.0407	2.2501	0.9310	50.3339
21 d		0.0023	1.5045	0.0527	33.6579
28 d		0.0001	1.1286	0.0030	25.2477
42 d		0.0000	0.7524	0.0000	16.8320

FOCUS STEP 2

Scenario	Day after overall maximum	PEC\textsubscript{SW} (µg/L) Multiple Applications (Single Application)	PEC\textsubscript{SED} (µg/kg) Multiple Applications (Single Application)				
		Actual	TWA	Actual	TWA		
Northern EU	0 h	1.2418 (1.3795)		3.2759 (3.4466)			
	24 h	0.4179 (0.4558)	0.8298 (0.9177)	2.6810 (2.8611)	2.9785 (3.1538)		
	2 d	0.2097 (0.2259)	0.5718 (0.6293)	1.8635 (1.9941)	2.6254 (2.7907)		
	4 d	0.0903 (0.0962)	0.3554 (0.3892)	1.0465 (1.1129)	2.0308 (2.1602)		
	7 d	0.0201 (0.0214)	0.2218 (0.2424)	0.3058 (0.3252)	1.4221 (1.5126)		
	14 d	0.0011 (0.0012)	0.1143 (0.1247)	0.0173 (0.0184)	0.7620 (0.8105)		
	21 d	0.0001 (0.0001)	0.0763 (0.0833)	0.0010 (0.0010)	0.5099 (0.5424)		
	28 d	0.0000 (0.0000)	0.0572 (0.0625)	0.0001 (0.0001)	0.3825 (0.4069)		
	42 d	0.0000 (0.0000)	0.0382 (0.0417)	0.0000 (0.0000)	0.2550 (0.2712)		
Southern EU	0 h	1.2418 (1.3795)		3.2759 (3.4466)			
	24 h	0.4179 (0.4558)	0.8298 (0.9177)	2.6810 (2.8611)	2.9785 (3.1538)		
	2 d	0.2097 (0.2259)	0.5718 (0.6293)	1.8635 (1.9941)	2.6254 (2.7907)		
	4 d	0.0976 (0.1035)	0.3563 (0.3901)	1.1572 (1.2236)	2.0863 (2.2157)		
	7 d	0.0223 (0.0236)	0.2242 (0.2447)	0.3381 (0.3575)	1.4815 (1.5720)		
	14 d	0.0013 (0.0013)	0.1158 (0.1263)	0.0192 (0.0202)	0.7971 (0.8456)		
FOCUS STEP 3 Scenario	Water Body	Day after overall maximum	PEC_{SW} (µg/L) Multiple Applications (Single Application)	PEC_{SED} (µg/kg) Multiple Applications (Single Application)			
-----------------------	------------	---------------------------	---	---			
		Actual	TWA	Actual	TWA		
D6	Ditch	0 h	0.829 (0.948)	0.473 (0.407)			
		24 h	0.198 (0.226)	0.429 (0.361)	0.465 (0.399)		
		2 d	0.0138 (0.0154)	0.289 (0.330)	0.378 (0.308)	0.447 (0.380)	
		4 d	0.00306 (0.00316)	0.147 (0.168)	0.309 (0.239)	0.407 (0.339)	
		7 d	0.00150 (0.00146)	0.0850 (0.0969)	0.250 (0.182)	0.360 (0.291)	
		14 d	0.000440 (0.000377)	0.0829 (0.0488)	0.187 (0.126)	0.292 (0.224)	
		21 d	0.000247 (0.000194)	0.0562 (0.0327)	0.156 (0.102)	0.262 (0.188)	
		28 d	0.000111 (0.000083)	0.0423 (0.0245)	0.137 (0.0873)	0.248 (0.165)	
		42 d	0.000210 (0.000147)	0.0283 (0.0164)	0.113 (0.0704)	0.217 (0.137)	
R2	Stream	0 h	0.727 (0.841)	0.242 (0.232)			
		24 h	0.000089 (0.000087)	0.0785 (0.0908)	0.236 (0.227)	0.239 (0.230)	
		2 d	0.000067 (0.000064)	0.0393 (0.0454)	0.231 (0.222)	0.236 (0.227)	
		4 d	0.000040 (0.000037)	0.0197 (0.0227)	0.223 (0.214)	0.232 (0.223)	
		7 d	0.000021 (0.000019)	0.0113 (0.0130)	0.215 (0.206)	0.226 (0.217)	
		14 d	0.000085 (0.000083)	0.0113 (0.00747)	0.201 (0.194)	0.217 (0.209)	
		21 d	0.000029 (0.0000278)	0.00815 (0.00500)	0.192 (0.185)	0.210 (0.202)	
		28 d	0.000018 (0.000018)	0.00612 (0.00375)	0.184 (0.178)	0.205 (0.197)	
		42 d	0.000012 (0.000011)	0.00409 (0.00251)	0.172 (0.166)	0.196 (0.189)	
R3	Stream	0 h	0.765 (0.885)	0.285 (0.242)			
		24 h	0.00255 (0.00276)	0.252 (0.291)	0.252 (0.211)	0.275 (0.233)	
	2 d	4 d	7 d	14 d	21 d	28 d	42 d
-----	-----------	-----------	-----------	-----------	-----------	-----------	-----------
	0.0000864 (0.000843)	0.0119 (0.0119)	0.000305 (0.000276)	0.000130 (0.000110)	0.000073 (0.000059)	0.000016 (0.000016)	0.000031 (0.000025)
	0.127 (0.146)	0.0645 (0.0743)	0.0379 (0.0435)	0.0375 (0.0223)	0.0252 (0.0149)	0.0189 (0.0112)	0.0126 (0.00747)
	0.225 (0.184)	0.217 (0.178)	0.182 (0.146)	0.170 (0.140)	0.152 (0.126)	0.140 (0.117)	0.123 (0.104)
	0.261 (0.219)	0.238 (0.197)	0.223 (0.183)	0.201 (0.164)	0.188 (0.154)	0.178 (0.146)	0.163 (0.134)

FOCUS Step 4: Percentage mitigation required to meet calculated RACs. Shaded cells require more than 95% mitigation, so indicate the situations where low risk was not demonstrated, when complying with FOCUS 2007 Landscape and mitigation guidance.

FOCUS Step 3 Scenario	Max PEC\textsubscript{sw} (µg/L)	Mitigation Required for First Tier RAC (0.052 µg/L) (%)	Mitigation Required for Higher Tier RAC (0.128 µg/L) (%)
D6-Ditch	0.829	94.5	86.5
R2-Stream	0.727	93.8	84.8
R3-Stream	0.765	94.1	85.5
R4-Stream	0.543	91.7	79.6

R4 Stream:

	0 h	24 h	2 d	4 d	7 d	14 d	21 d	28 d	42 d
	0.543 (0.628)	0.111 (0.128)	0.0631 (0.0711)	0.0529 (0.0572)	0.0303 (0.0327)	0.0284 (0.0217)	0.0284 (0.0217)	0.00949 (0.00726)	0.168 (0.160)
	0.306 (0.289)	0.289 (0.273)	0.293 (0.277)	0.281 (0.265)	0.267 (0.252)	0.246 (0.232)	0.236 (0.221)	0.227 (0.213)	0.213 (0.200)
Metabolites CGA 321113, CGA 373466, NOA 413161, NOA 413163 and CGA 107170

Parameters used in FOCUSsw step 1 and 2

- Molecular weight: 408.4 (parent value used as default)
- Soil or water metabolite:
 - Koc/Kom (L/Kg): 0 (worst case for PECsw)
- Water Solubility (mg/L): 1000 (default)
- DT50 soil (d): 1000 (default)
- DT50 water/sediment system (d): 1000 (default)
- DT50 water (d): 1000 (default)
- DT50 sediment (d): 1000 (default)
- Crop interception (%): 40%
- Maximum occurrence observed (% molar basis with respect to the parent)
- Total Water and Sediment: 100 (worst case)
- Soil: 100 (worst case)

Application rate

- Crop and growth stage: Apples (BBCH 61-85)
- Number of applications: 3
- Interval (d): 10
- Application rate(s): 112.5 g a.s./ha
- Application window: Mar-May (Early spray drift)

Main routes of entry

FOCUS STEP 1 Scenario	Day after overall maximum	PECsw (µg/L) Actual	TWA
0h	145.3466		
24h	145.2459	145.2963	
2d	145.1453	145.2459	
4d	144.9442	145.1453	
7d	144.6431	144.9946	
14d	143.9430	144.6437	
21d	143.2463	144.2939	
28d	142.5529	143.9453	
42d	141.1763	143.2513	

FOCUS STEP 2 Scenario	Day after overall maximum	PECsw (µg/L) Actual	Multiple Applications (Single Application)	TWA
Northern EU 0 h	40.0650 (15.4061)	40.0511 (15.4008)		
24 h	40.0372 (15.3954)	40.0372 (15.3954)		
2 d	40.0095 (15.3848)	40.0095 (15.3848)		
4 d	39.9540 (15.3634)	40.0095 (15.3848)		
FOCUS STEP 2 Scenario

Day after overall maximum	PEC_{SW} (µg/L)	Multiple Applications (Single Application)
	Actual	TWA
7 d	39.8710 (15.3315)	39.9679 (15.3688)
14 d	39.6781 (15.2573)	39.8715 (15.3316)
21 d	39.4860 (15.1835)	39.7748 (15.2945)
28 d	39.2949 (15.1100)	39.6787 (15.2576)
42 d	38.9154 (14.9641)	39.4874 (15.1840)

Southern EU

Day after overall maximum	PEC_{SW} (µg/L)	Multiple Applications (Single Application)
0 h	53.4348 (19.8936)	
24 h	53.3978 (19.8799)	53.4163 (19.8867)
2 d	53.3608 (19.8661)	53.3978 (19.8799)
4 d	53.2869 (19.8386)	53.3608 (19.8661)
7 d	53.1762 (19.7974)	53.3054 (19.8455)
14 d	52.9188 (19.7015)	53.1764 (19.7974)
21 d	52.6626 (19.6062)	53.0478 (19.7496)
28 d	52.4077 (19.5113)	52.9196 (19.7018)
42 d	51.9016 (19.3228)	52.6645 (19.6069)

Metabolite CGA 357262

Parameters used in FOCUS_{sw} step 1 and 2

- Molecular weight: 408.4 (parent value used as default)
- Soil or water metabolite:
 - Koc/Kom (L/Kg): 0 (worst case for PEC_{SW})
- Water Solubility (mg/L): 1000 (default)
- DT₅₀ soil (d): 1000 (default)
- DT₅₀ water/sediment system (d): 1000 (default)
- DT₅₀ water (d): 1000 (default)
- DT₅₀ sediment (d): 1000 (default)
- Crop interception (%): 40%
- Maximum occurrence observed (% molar basis with respect to the parent)
 - Total Water and Sediment: 10.1
 - Soil: 0

Application rate

- Crop and growth stage: Apples (BBCH 61-85)
- Number of applications: 3
- Interval (d): 10
- Application rate(s): 112.5 g a.s./ha
- Application window: Mar-May (Early spray drift)

Main routes of entry
FOCUS STEP 1 Scenario	Day after overall maximum	PEC_{SW} (µg/L)	Actual	TWA
0h		3.3288		
24h		3.3265	3.3276	
2d		3.3241	3.3265	
4d		3.3195	3.3241	
7d		3.3126	3.3207	
14d		3.2966	3.3127	
21d		3.2807	3.3046	
28d		2.2648	3.2967	
42d		3.2332	3.2808	

FOCUS STEP 2 Scenario	Day after overall maximum	PEC_{SW} (µg/L)	Multiple Applications (Single Application)	Actual	TWA
Northern EU	0 h	2.7037 (1.1058)			
	24 h	2.7018 (1.1051)	2.7028 (1.1055)		
	2 d	2.6999 (1.1043)	2.7018 (1.1051)		
	4 d	2.6975 (1.1032)	2.7001 (1.1044)		
	7 d	2.6919 (1.1009)	2.6978 (1.1034)		
	14 d	2.6789 (1.0956)	2.6916 (1.1008)		
	21 d	2.6659 (1.0903)	2.6852 (1.0982)		
	28 d	2.6530 (1.0850)	2.6788 (1.0956)		
	42 d	2.6274 (1.0745)	2.6659 (1.0903)		
Southern EU	0 h	2.7037 (1.1058)			
	24 h	2.7018 (1.1051)	2.7028 (1.1055)		
	2 d	2.6999 (1.1043)	2.7018 (1.1051)		
	4 d	2.6989 (1.1037)	2.7003 (1.1044)		
	7 d	2.6933 (1.1014)	2.6985 (1.1036)		
	14 d	2.6802 (1.0960)	2.6926 (1.1012)		
	21 d	2.6673 (1.0907)	2.6863 (1.0986)		
	28 d	2.6544 (1.0855)	2.6799 (1.0960)		
	42 d	2.6287 (1.0750)	2.6671 (1.0907)		
Metabolite NOA 409480

Parameters used in FOCUSsw step 1 and 2

Molecular weight: 408.4 (parent used as default)

Soil or water metabolite:

Koc/Kom (L/Kg): 0 (worst case for PEC\textsubscript{SW})

Water Solubility (mg/L): 1000 (default)

DT\textsubscript{50} soil (d): 1000 (default)

DT\textsubscript{50} water/sediment system (d): 1000 (default)

DT\textsubscript{50} water (d): 1000 (default)

DT\textsubscript{50} sediment (d): 1000 (default)

Crop interception (%): 40%

Maximum occurrence observed (% molar basis with respect to the parent)

Total Water and Sediment: 0

Soil: 9.3

Application rate

Crop and growth stage: Apples (BBCH 61-85)

Number of applications: 3

Interval (d): 10

Application rate(s): 112.5 g a.s./ha

Application window: Mar-May (Early spray drift)

Main routes of entry

FOCUS STEP 1 Scenario	Day after overall maximum	PEC\textsubscript{SW} (µg/L)	Actual	TWA
0h		10.4658		
24h		10.4585		
2d		10.4513		
4d		10.4368		
7d		10.4151		
14d		10.3647		
21d		10.3145		
28d		10.2646		
42d		10.1655		

FOCUS STEP 2 Scenario	Day after overall maximum	PEC\textsubscript{SW} (µg/L)	Multiple Applications (Single Application)	Actual	TWA
Northern EU		1.2461 (0.4184)			
0 h		1.2452 (0.4181)	1.2456 (0.4183)		
24 h		1.2443 (0.4179)	1.2452 (0.4181)		
2 d		1.2426 (0.4173)	1.2443 (04179)		
FOCUS STEP 2 Scenario

Day after overall maximum	PEC_{SW} (µg/L) Multiple Applications (Single Application)	
	Actual	TWA
7 d	1.2400 (0.4164)	1.2430 (0.4174)
14 d	1.2340 (0.4144)	1.2400 (0.4164)
21 d	1.2281 (0.4124)	1.2370 (0.4154)
28 d	1.2221 (0.4104)	1.2341 (0.4144)
42 d	1.2103 (0.4064)	1.2281 (0.4124)

Southern EU

0 h	2.4895 (0.8358)	
24 h	2.4877 (0.8352)	2.4886 (0.8355)
2 d	2.7860 (0.8346)	2.4877 (0.8352)
4 d	2.4826 (0.8335)	2.4860 (0.8346)
7 d	2.4774 (0.8317)	2.4834 (0.8338)
14 d	2.4654 (0.8277)	2.4774 (0.8317)
21 d	2.4535 (0.8237)	2.4714 (0.8297)
28 d	2.4416 (0.8197)	2.4655 (0.8277)
42 d	2.4180 (0.8118)	2.4536 (0.8237)

Metabolite CGA 357261

- **Parameters used in FOCUSsw step 1 and 2**
 - Molecular weight: 408.4 (parent value used as default)
 - Soil or water metabolite:
 - Koc (L/Kg): 484
 - Water Solubility (mg/L): 4
 - DT₅₀ soil (d): 0.25
 - DT₅₀ water/sediment system (d): 1000 (default)
 - DT₅₀ water (d): 1000 (default)
 - DT₅₀ sediment (d): 1000 (default)
 - Crop interception (%): 40%
 - Maximum occurrence observed (% molar basis with respect to the parent)
 - Total Water and Sediment: 51.5
 - Soil: 13.5% stated to originate from a field dissipation study but which one and how it was estimated not available (data gap).

- **Parameters used in FOCUSsw step 3 (if performed)**
 - Not performed (parent values used to estimate exposure of CGA 357261)

- **Application rate**
 - Crop and growth stage: Apples (BBCH 61-85)
 - Number of applications: 3
 - Interval (d): 10
 - Application rate(s): 112.5 g a.s./ha
 - Application window: Mar-May (Early spray drift)

- **Main routes of entry**
A further refinement was carried out beyond FOCUS Step 2 using a conversion from worst case parent PEC\textsubscript{SW} (early application to apples of 112.5 g/ha, scenario R2) to calculate the maximum concentration formed in
water/sediment and the FOCUS Step 2 model to calculate the maximum formation formed in soil. Resultant PEC_{SW} values are below:

Substance	PEC_{SW} Value
CGA 357261 (single application)	6.37 µg/L
CGA 357261 (multiple applications)	7.73 µg/L

Metabolite CGA 357276

Parameters used

- Molecular weight: 318.3
- Soil or water metabolite:
 - Koc (L/Kg): 8074
 - Water Solubility (mg/L): 0.6
 - DT_{50} soil (d): 51.5
 - DT_{50} water/sediment system (d): 1000 (default)
 - DT_{50} water (d): 1000 (default)
 - DT_{50} sediment (d): 1000 (default)
 - Crop interception (%): 40%
- Maximum occurrence observed (% molar basis with respect to the parent)
- Total Water and Sediment: not formed so soil incorporation selected in calculator.
- Soil: 5.6

Application rate

- Crop and growth stage: Apples (BBCH 61-85)
- Number of applications: 3
- Interval (d): 10
- Application rate(s): 112.5 g a.s./ha
- Application window: Mar-May soil incorporation (no drift) selected in calculator.

Parameters used in FOCUSsw step 3 (if performed)

- -

Main routes of entry

FOCUS STEP 1 Scenario	Day after overall maximum	PEC_{SW} (µg/L)	Actual	TWA
	0h	0.17		

FOCUS STEP 2 Scenario	Day after overall maximum	PEC_{SW} (µg/L)	Multiple Applications (Single Application)	Actual	TWA
	Northern EU 0 h	0.03 (0.01)			
	Southern EU 0 h	0.06 (0.02)			
Metabolite CGA 321113 (PEC_{SED} calculation)

Parameters used in FOCUSsw step 1 and 2

- Molecular weight: 394.4 (parent value used as default)
- Soil or water metabolite:
 - K_{oc}(L/Kg): 116.19
 - Water Solubility (mg/L): 21000
 - DT₅₀ soil (d): 48.10
 - DT₅₀ water/sediment system (d): 388
 - DT₅₀ water (d): 388
 - DT₅₀ sediment (d): 388
- Crop interception (%): 40%
- Maximum occurrence observed (% molar basis with respect to the parent)
- Total Water and Sediment: 100
- Soil: 51.2 stated to originate from a field dissipation study but which one and how it was estimated not available (data gap).

Application rate

- Crop and growth stage: Apples (BBCH 61-85)
- Number of applications: 3
- Interval (d): 10
- Application rate(s): 112.5 g a.s./ha
- Application window: Mar-May (Early spray drift)

Main routes of entry

FOCUS STEP 1 Scenario	Day after overall maximum	PEC_{SED} (µg/kg) Multiple Applications (Single Application)	
		Actual	TWA
0h		55.9616	
24h		87.7172	71.8394
2d		87.5606	79.7391
4d		87.2483	83.5717
7d		86.8720	85.0474
14d		85.7035	85.6445
21d		84.6384	85.4863
28d		83.5866	85.1426
42d		81.5220	84.2784

FOCUS STEP 2 Scenario	Day after overall maximum	PEC_{SED} (µg/kg) Multiple Applications (Single Application)	
		Actual	TWA
0h Northern EU		31.0153 (12.6522)	
24 h Northern EU		30.9599 (12.6296)	30.9876 (12.6409)
2d Northern EU		30.9046 (12.6070)	30.9599 (12.6296)
	Southern EU	Metabolites CGA 381318	
----------	-------------	------------------------	
4 d	30.7944 (12.5621)	30.9047 (12.6071)	
7 d	30.6298 (12.4949)	30.8222 (12.5734)	
14 d	30.2492 (12.3397)	30.6306 (12.4953)	
21 d	29.8733 (12.1863)	30.4407 (12.4178)	
28 d	29.5020 (12.0349)	30.2523 (12.3409)	
42 d	28.7733 (11.7376)	29.8803 (12.1892)	
	36.5320 (14.7615)		
24 h	36.4668 (14.7351)	36.4994 (14.7483)	
2 d	36.4017 (14.7088)	36.4668 (14.7351)	
4 d	36.2718 (14.6564)	36.4018 (14.7089)	
7 d	36.0780 (14.5780)	36.3045 (14.6696)	
14 d	35.6296 (14.3969)	36.0789 (14.5784)	
21 d	35.1868 (14.2180)	35.8552 (14.4880)	
28 d	34.7495 (14.0413)	35.6333 (14.3984)	
42 d	33.8912 (13.6944)	35.1951 (14.2213)	

Data gap for PECsw.

Metabolites CGA 381318
Estimation of concentrations from other routes of exposure (Regulation (EU) N° 284/2013, Annex Part A, point 9.4)

Method of calculation	Expert judgment, based on vapour pressure, dimensionless Henry’s Law Constant and information on volatilisation from plants.

PEC

Maximum concentration	negligible
Ecotoxicology
Effects on birds and other terrestrial vertebrates (Regulation (EU) N° 283/2013, Annex Part A, point 8.1 and Regulation (EU) N° 284/2013, Annex Part A, point 10.1)

Species	Test substance	Time scale	End point	Toxicity (mg/kg bw per day)
Birds				
Bobwhite quail	Trifloxystrobin	Acute	LD₅₀	>2000
Mallard duck	Trifloxystrobin	Acute	LD₅₀	>2250
Bobwhite quail	Trifloxystrobin	Long-term	LD₅₀/10	200
Bobwhite quail	Trifloxystrobin	Long-term	NOEL	31 (320 ppm)
Mallard duck	Trifloxystrobin	Long-term	NOEL	500 ppm
Mammals				
Rat	Trifloxystrobin	Acute	LD₅₀	>5000
'Flint WG 50'	Acute	LD₅₀	>2000	
Rat	NOA 413161	Acute	LD₅₀	>2000
Rat	CGA 373466	Acute	LD₅₀	>2000
Rat	CGA 357261	Acute	LD₅₀	>2000
Rat	NOA 414412	Acute	LD₅₀	>2000
Rat	NOA 413163	Acute	LD₅₀	>2000
Rat	Trifloxystrobin	Long-term	BMDL₅	22

Endocrine disrupting properties (Annex Part A, points 8.1.5)
With regard to the endocrine disruption potential, as discussed in Section 2, it is unlikely that trifloxystrobin is an endocrine disruptor in mammals, however, no firm conclusion can be drawn regarding other non-target vertebrates.

Additional higher tier studies (Annex Part A, points 10.1.1.2):
- Terrestrial vertebrate wildlife (birds, mammals, reptile and amphibians) (Annex Part A, points 8.1.4, 10.1.3): [To provide available data]

* The applicant proposed the use of benchmark dose modelling (BMD) approach to estimate an appropriate dose to serve as chronic toxicity endpoint. The BMD is a model that estimates the benchmark doses (concentration or dose where a percentage of effect was observed).

Toxicity/exposure ratios for terrestrial vertebrates (Regulation (EU) N° 284/2013, Part A, Annex point 10.1)

Growth stage	Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
Screening Step (Birds)-worst case for all uses					
All	Small insectivorous bird	Acute	7.90	> 253	10
All	Small herbivorous bird	Acute	17.87	> 112	10
All	Small omnivorous bird	Acute	33.35	> 60	10
All	Small insectivorous bird	Long-term	1.95	15.9	5
All	Small herbivorous bird	Long-term	4.64	6.7	5
All	Small omnivorous bird	Long-term	8.35	3.7	5
Tier 1 (Birds) use on orchards three applications at 75 g a.s./ha					
BBCH 20 – 39	Small insectivorous/worm feeding species"thrush"	Long-term	0.11	271	5
BBCH 20 – 39	Small granivorous bird "finch"	Long-term	0.54	57	5
BBCH 20 – 39	Small insectivorous bird "tit"	Long-term	1.30	24	5
BBCH > 40	Small insectivorous/worm feeding species"thrush"	Long-term	0.06	542	5
BBCH > 40	Small granivorous bird "finch"	Long-term	0.27	114	5
Growth stage	Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
BBCH > 40	Small insectivorous bird "tit"	Long-term	1.30	24	5

Tier 1 (Birds) use on orchards three applications at 112.5 g a.s./ha

BBCH > 40	Small insectivorous/worm feeding species "thrush"	Long-term	0.09	361	5
BBCH > 40	Small granivorous bird "finch"	Long-term	0.41	76	5
BBCH > 40	Small insectivorous bird "tit"	Long-term	1.95	16	5

Tier 1 (Birds) use on grapes three applications at 125 g a.s./ha

BBCH 10 – 19	Small insectivorous species "Redstart"	Long-term	1.37	22.6	5
BBCH 10 – 19	Small granivorous bird "Finch"	Long-term	0.82	37.6	5
BBCH 10 – 19	Small omnivorous bird "lark"	Long-term	0.78	40.0	5
BBCH ≥20	Small insectivorous species "Redstart"	Long-term	1.18	26.3	5
BBCH 20-39	Small granivorous bird "Finch"	Long-term	0.68	45.6	5
BBCH 20-39	Small omnivorous bird "lark"	Long-term	0.64	48.1	5
BBCH ≥20	Small insectivorous species "Redstart"	Long-term	1.18	26.3	5
BBCH ≥40	Small granivorous bird "Finch"	Long-term	0.41	76.5	5
BBCH ≥40	Small omnivorous bird "lark"	Long-term	0.39	78.8	5

Ripening

BBCH ≥20	Frugivorous bird “Thrush/starling”	Long-term	1.72	18.1	5
BBCH ≥40	Small insectivorous species "Redstart"	Long-term	1.18	26.3	5
BBCH ≥40	Small granivorous bird "Finch"	Long-term	0.41	76.5	5
BBCH ≥40	Small omnivorous bird "lark"	Long-term	0.39	78.8	5

Tier 1 (Birds) use on strawberries two applications of 125 g a.s./ha

BBCH 10-39	Small omnivorous bird “lark”	Long-term	1.16	26.8	5
BBCH 61-89	Frugivorous bird “starling”	Long-term	1.42	21.8	5
BBCH 10-19	Small insectivorous bird “wagtail”	Long-term	1.20	25.9	5
BBCH ≥ 20	Small insectivorous bird “wagtail”	Long-term	1.03	30.1	5
BBCH ≥ 40	Small omnivorous bird “lark”	Long-term	0.47	66.5	5

Tier 1 (Birds) use on strawberries two applications of 150 g a.s./ha

BBCH 61-89	Frugivorous bird “starling”	Long-term	1.70	18.2	5
BBCH ≥20	Small insectivorous bird “wagtail”	Long-term	1.23	25.1	5
BBCH ≥40	Small omnivorous bird “lark”	Long-term	0.56	55.4	5

Higher tier (birds): Not required

Screening Step (Mammals)
Growth stage	Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
All	Small herbivorous mammal	Acute	25.6	> 196	10
All	Small herbivorous mammal	Long-term	8.62	2.6	5

Toxicity endpoint refinement (Mammals): A BMDL₃ value of 22 mg a.s./kg bw/day was used

Tier 1 (Mammals) use on orchards three applications at 75 g a.s./ha

Growth stage	Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
BBCH 20-40	Small herbivorous mammal	Long-term	3.11	7.1	5
BBCH 20-40	Large herbivorous mammal	Long-term	0.62	35.5	5
BBCH 20-40	Small omnivorous mammal	Long-term	0.34	64.7	5
BBCH ≥40	Large herbivorous mammal	Long-term	0.31	71.0	5
BBCH ≥40	Small omnivorous mammal	Long-term	0.16	137.5	5
BBCH ≥40	Small herbivorous mammal	Long-term	1.55	14.2	5
BBCH ≥40	Frugivorous mammal	Long-term	1.62	13.6	5

Tier 1 (Mammals) use on orchards three applications at 112.5 g a.s./ha

Growth stage	Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
BBCH ≥40	Small herbivorous mammal	Long-term	2.33	9.4	5
BBCH ≥40	Large herbivorous mammal	Long-term	0.46	47.8	5
BBCH 71-79	Small omnivorous mammal	Long-term	0.25	88.0	5
BBCH ≥40	Frugivorous mammal	Long-term	2.44	9.0	5

Tier 1 (Mammals) use on strawberries two applications at 150 g a.s./ha

Growth stage	Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
BBCH ≥20	Small insectivorous mammal	Long-term	0.24	91.0	5
BBCH ≥40	Small herbivorous mammal	Long-term	3.68	6.0	5
BBCH ≥40	Large herbivorous mammal	Long-term	0.73	30.34	5
BBCH ≥40	Small omnivorous mammal	Long-term	0.39	55.8	5

Tier 1 (Mammals) use on strawberries two applications at 125 g a.s./ha

Growth stage	Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
BBCH 10-19	Small insectivorous mammal	Long-term	0.45	48.9	5
BBCH ≥40	Small herbivorous mammal	Long-term	3.06	7.2	5
BBCH ≥20	Small insectivorous mammal	Long-term	0.20	110	5
BBCH 10-39	Large herbivorous mammal	Long-term	1.52	14.5	5
BBCH ≥40	Large herbivorous mammal	Long-term	0.60	36.74	5
BBCH 10-39	Small omnivorous mammal	Long-term	0.83	26.5	5
BBCH ≥40	Small omnivorous mammal	Long-term	0.33	67.0	5

Tier 1 (Mammals) use on grapes three applications at 125 g a.s./ha
Growth stage

Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
Large herbivorous mammal “lagomorph”	Long-term	0.80	27.5	5
Small insectivorous mammal “shrew”	Long-term	0.50	43.9	5
Small herbivorous mammal “vole”	Long-term	5.18	4.3	5
Small omnivorous mammal “mouse”	Long-term	0.56	39.3	5
Large herbivorous mammal “lagomorph”	Long-term	0.66	33.5	5
Small insectivorous mammal “shrew”	Long-term	0.39	55.9	5
Small herbivorous mammal “vole”	Long-term	0.23	97.1	5
Small omnivorous mammal “mouse”	Long-term	4.30	5.1	5
Small herbivorous mammal “vole”	Long-term	2.59	8.5	5
Small omnivorous mammal “mouse”	Long-term	0.47	47.3	5
Small omnivorous mammal “mouse”	Long-term	0.27	7.1	5

Risk from bioaccumulation and food chain behaviour

Test substance	Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
Earthworm-eating birds	Long-term	1.38	23	5	
Earthworm-eating birds	Long-term	0.24	13	5	
Earthworm-eating birds	Long-term	0.09	36	5	
Earthworm-eating birds	Long-term	0.15	21	5	
Earthworm-eating mammals	Long-term	1.68	13	5	
Earthworm-eating mammals	Long-term	0.29	7.6	5	
Earthworm-eating mammals	Long-term	0.10	21	5	
Earthworm-eating mammals	Long-term	0.19	12	5	
Fish-eating birds	Long-term	0.11	284	5	
Fish-eating mammals	Long-term	0.10	226	5	

Higher tier : Not required

Risk from consumption of contaminated water: The worst case application rate was 150 g a.s./ha. When considering the ratio of application rate to toxicity endpoints for both birds and mammals (as described in EFSA bird and mammal guidance 2009) an assessment for drinking water is not required. For birds the toxicity endpoint is 31 mg a.s./kg bw/day and the ratio is 4.8. For mammals the toxicity endpoint is 22.0 mg a.s./kg bw/day and the ratio is 6.82. Both are under the trigger value of 3000.

Toxicity data for all aquatic tested species (Regulation (EU) N° 283/2013, Annex Part A, points 8.2 and Regulation (EU) N° 284/2013 Annex Part A, point 10.2)
Group	Test substance	Time-scale (Test type)	End point	Toxicity
Laboratory tests				
Fish				
O. mykiss	a.s.	96 hr (flow-through)	Mortality, LC₅₀	0.015 mg a.s./L (mm)
L. macrochirus	a.s. (≥ 96.0% purity)	96 hr (flow-through)	Mortality, LC₅₀	0.054 mg a.s./L (mm)
C. variegatus	a.s. (≥ 96.0% purity)	96 hr (flow-through)	Mortality, LC₅₀	0.078 mg a.s./L (mm)
O. mykiss	CGA 321113	96 hr (flow-through)	Mortality, LC₅₀	> 106 mg p.m./L (mm)
O. mykiss	NOA 413161	96 hr (static)	Mortality, LC₅₀	> 100 mg p.m./L (nom)
O. mykiss	CGA 357261	96 hr (semi-static)	Mortality, LC₅₀	0.9 mg p.m./L (mm)
O. mykiss	CGA 373466	96 hr (static)	Mortality, LC₅₀	> 200 mg p.m./L (nom)
O. mykiss	NOA 413163	96 hr (static)	Mortality, LC₅₀	> 100 mg p.m./L (nom)
O. mykiss	CGA 357262	96 hr (static)	Mortality, LC₅₀	> 5.51 mg p.m./L (mm)
O. mykiss	CGA 107170	96 hr (semi-static)	Mortality, LC₅₀	13.6 mg p.m./L (mm)
O. mykiss	"Trifloxystrobin WG 50"	96 hr (flow-through)	Mortality, LC₅₀	0.036 mg prep./L (mm) (0.018 mg a.s./L (mm))
Chronic fish studies				
O. mykiss	a.s.	Chronic (95 d ELS flow-through)	Swim up, NOEC EC₁₀ Survival at the end of the test	0.0043 mg a.s./L (mm)
			EC₂₀ Survival at the end of the test	0.0075 mg a.s./L (mm)
				0.0079 mg a.s./L (mm)
O. mykiss	CGA 321113	28 d (flow-through)	Mortality, growth, NOEC	≥ 100 mg p.m./L (nom)
Acute aquatic invertebrates				
D. magna	a.s. (≥ 96.0% purity)	48 h (flow-through)	Immobilization, EC₅₀	0.016 mg a.s./L (mm)
			> 0.0748 mg a.s./L (mm)	
D. magna	a.s. (≥ 96.0% purity)	48 h (flow-through)	Immobilization, EC₅₀	0.0253 mg a.s./L (mm)
P. acutus acutus	a.s.	96 h (flow-through)	Mortality, LC₅₀	> 0.31 mg a.s./L (mm)
C. virginica	a.s. (≥ 96.0% purity)	48h (flow-through)	Shell growth, mortality EC₅₀/ LC₅₀	0.035 >0.0748 mg a.s./L (mm)
D. magna	CGA 321113	48 h (static)	Immobilization, EC₅₀	> 100 mg p.m./L (nom)
D. magna	CGA 321113	48 h (static)	Immobilization, EC₅₀	38 mg p.m./L (nom)
D. magna	NOA 413161	48 h (static)	Immobilization, EC₅₀	> 100 mg p.m./L (nom)
D. magna	CGA 357276	48 h (static)	Immobilization, EC₅₀	0.514 mg p.m./L (nom)
D. magna	CGA 373466	48 h (static)	Immobilization, EC₅₀	> 100 mg p.m./L (nom)
Group	Test substance	Time-scale (Test type)	End point	Toxicity
------------------	--------------------	------------------------	--	---
D. magna	NOA 413163	48 h (static)	Immobilization, EC₂₀	> 100 mg p.m./L_(nom)
D. magna	NOA 409480	48 h (static)	Immobilization, EC₂₀	2.25 mg p.m./L_(nom)
D. magna	CGA 357262	48 h (static)	Immobilization, EC₂₀	>2.24 mg p.m./L_(nom)
D. magna	CGA 107170	48 h (static)	Immobilization, EC₂₀	22.7 mg p.m./L_(nom)
D. magna	“Trifloxystrobin WG 50”	48 h (static)	Immobilization, EC₂₀	0.010 mg prep./L_(nom) (0.0052 mg a.s./L_(nom))

Chronic invertebrate

| *D. magna* | a.s. | 21 d (flow-through) | Reproduction, NOEC bodyweight, F₁ generation EC₁₀ bodyweight, F₁ generation EC₂₀ | 0.00276 mg a.s./L 0.00328 mg a.s./L 0.00459 mg a.s./L_(nom) |

Algae

S. subspicatus	a.s.	72 h (static)	E_iC₅₀ E_iC₅₀ E_iC₁₀	0.0174 mg a.s./L_(nom) 0.0053 mg a.s./L_(nom) 0.0025 mg a.s./L_(nom)
P. subcapitata	CGA 321113	72 h (static)	E_iC₅₀ E_iC₅₀ NOEC	>100 mg p.m./L_(nom) >100 mg p.m./L_(nom) 18 mg p.m./L_(nom)
P. subcapitata	NOA 413161	72 h (static)	E_iC₅₀ E_iC₅₀ NOEC	>100 mg p.m./L_(nom) >100 mg p.m./L_(nom) 21 mg p.m./L_(nom)
P. subcapitata	CGA 357276	72 h (static)	E_iC₅₀/E_iC₅₀/ E_iC₅₀ NOEC	>5.86 mg p.m./L_(nom) 0.381 mg p.m./L_(nom)
P. subcapitata	NOA 413163	72 h (static)	E_iC₅₀ E_iC₅₀ NOEC	>100 mg p.m./L_(nom) >100 mg p.m./L_(nom) 45 mg p.m./L_(nom)
P. subcapitata	NOA 409480	72 h (static)	E_iC₅₀ E_iC₅₀/E_iC₅₀ NOEC	>2.02 mg p.m./L_(nom) 1.292 mg p.m./L_(nom) 1.06 mg p.m./L_(nom)
P. subcapitata	CGA 357262	72 h (static)	E_iC₅₀/E_iC₅₀/E_iC₅₀ NOEC	> 2.65 mg p.m./L_(nom) < 2.65 mg p.m./L_(nom)

Sediment-dwelling organisms
Peer review of the pesticide risk assessment of the active substance trifloxystrobin

www.efsa.europa.eu/efsajournal

Group	Test substance	Time-scale (Test type)	End point	Toxicity
C. riparius	a.s.	28 d (static)	Development and emergence, NOEC	0.21 mg a.s./L (im)
			Emergence EC$_{10}$	0.14 mg a.s./L
			Emergence EC$_{20}$	0.32 mg a.s./L
C. riparius	CGA 321113	28 d (static)	Development, Emergence NOEC	25 mg p.m./L (nom)

Higher plant

No data, not required

Potential endocrine disrupting properties (Annex Part A, point 8.2.3)

With regard to the endocrine disruption potential, as discussed in Section 2, it is unlikely that trifloxystrobin is an endocrine disruptor in mammals, however, no firm conclusion can be drawn regarding other non-target vertebrates.

Fish - acute; three species	a.s.	96 h LC$_{50}$ Mortality	0.0398 mg a.s./L with assessment factor of 100
Aquatic invertebrates - acute; singlespecies	a.s.	Geometric mean of EC$_{50}$ from one species Immobility/mortality	0.0128 mg a.s./L**, with assessment factor of 100
Acute toxic effects on tadpoles of Xenopus laevis	a.s.	48h LC$_{50}$ NOEC Mortality Behavioural effects	38.6 µg a.s./L 27.9µg a.s./L

*endpoint not suitable for calculating the geometric mean, as agreed at the peer review experts meeting (TC 147 (06 July 2017))

**endpoint derived from the geometric mean from two *Daphnia magna* studies.

nom – mononal concentration; im – initial measured concentration; mm – mean measured concentration
Bioconcentration in fish (Annex A, point 8.2.2.3)

Active substance	CGA 321113	NOA 413161	CGA 357261	CGA 373466	NOA 413163	CGA 357262	CGA 107170	CGA 357276	NOA 409480	CGA 381318	2-hydroxymethyl benzonitrile	
logP_{O/W}	4.5	2.2 at pH 5	-1.3 at pH 5	3.86	1.8 at pH 5	-3.0 at pH 6.7	5.39	2.55 (at 25°C & pH 7 (99.6% pure))	4.7	4.2	0.48 at pH 6.9	0.8
Steady-state bioconcentration factor (BCF) (total wet weight)	431	Not required	Data gap	Data gap	Not required	Data gap	Not required	Data gap	Data gap	Not required	Not required	
Uptake/depuration kinetics BCF (total wet weight/normalised to 5% lipid content)	Not available	Not required	Not available	Not available	Not available	Not available	Not required	Not available	Not required	Not required	Not required	
Annex VI Trigger for the bioconcentration factor	>1000	>1000	>1000	>1000	>1000	>1000	>1000	>1000	>1000	>1000	>1000	
Clearance time (days) (CT₅₀)	0.47 and 2.36 d for 0.16 and 1.6 μg a.s./L, respectively	Not required	Not available	Not required	Not available	Not required	Not available	Not available	Not available	Not required	Not required	
(CT₉₀)	1.57 and 7.83 d for 0.16 and 1.6 μg a.s./L, respectively	Not required	Not available	Not required	Not required							
Level and nature of residues (%) in organisms after the 14 day depuration phase	Active	CGA 321113	CGA 357261	CGA 373466	NOA 413163	CGA 357262	CGA 107170	CGA 357276	NOA 409480	CGA 381318	2-hydroxymethyl benzonitrile	
---	---	---	---	---	---	---	---	---	---	---	---	
<2%	Not required	Not required	Not available	Not required	Not available	Not available	Not available	Not available	Not required	Not required	Not required	

* based on total ^14C or on specific compounds
Toxicity/exposure ratios for the most sensitive aquatic organisms (Regulation (EU) N° 284/2013, Annex Part A, point 10.2)

Uses on pome fruits (apple, pear, quince)

FOCUSsw step 1-3 - TERs for trifloxystrobin for three applications of 75 g a.s./ha with a ten day spray interval (BBCH 31-89).

Scenario	PEC global max (µg L)	fish acute	fish chronic	Aquatic invertebrates	Aquatic invertebrates prolonged	Algae	Sed. dweller prolonged	Microcosm / Mesocosm
Focus step 1	13.47	1.11	0.32	0.39	0.2	1.29	10.4	
Focus step 2	North/South Europe	7.3*	2.05	0.59	0.71	0.38	2.39	--
Focus step 3	D3 ditch	5.819	2.58	0.74	0.89	0.47	2.99	--
	D4 pond	0.353	42.49	12.18	14.73	7.82	49.29	--
	D4 stream	6.046	2.48	0.71	0.86	0.46	2.87	--
	D5 pond	0.353	42.49	12.18	14.73	7.82	49.3	--
	D5 stream	6.101	2.46	0.7	0.85	0.45	2.85	--
	R1 pond	0.353	42.49	12.18	14.73	7.82	49.3	--
	R1 stream	4.701	3.19	0.91	1.11	0.59	3.7	--
	R2 stream	6.337	2.37	0.68	0.82	0.44	2.74	--
	R3 stream	6.651	2.26	0.65	0.78	0.41	2.61	--
	R4 stream	4.729	3.17	0.91	1.1	0.58	3.7	--

*single application worse case

FOCUSsw step 1-3 - TERs for trifloxystrobin for early application to pomme/stone fruit at three applications of 112.5 g a.s./ha with a ten day spray interval

Scenario	PEC global max (µg L)	fish acute	fish chronic	Aquatic invertebrates	Aquatic invertebrates prolonged	Algae	Sed. dweller prolonged	Microcosm / Mesocosm
Focus step 1	13.47	1.11	0.32	0.39	0.2	1.29	10.4	
Focus step 2	North/South Europe	7.3*	2.05	0.59	0.71	0.38	2.39	--
Focus step 3	D3 ditch	5.819	2.58	0.74	0.89	0.47	2.99	--
	D4 pond	0.353	42.49	12.18	14.73	7.82	49.29	--
	D4 stream	6.046	2.48	0.71	0.86	0.46	2.87	--
	D5 pond	0.353	42.49	12.18	14.73	7.82	49.3	--
	D5 stream	6.101	2.46	0.7	0.85	0.45	2.85	--
	R1 pond	0.353	42.49	12.18	14.73	7.82	49.3	--
	R1 stream	4.701	3.19	0.91	1.11	0.59	3.7	--
	R2 stream	6.337	2.37	0.68	0.82	0.44	2.74	--
	R3 stream	6.651	2.26	0.65	0.78	0.41	2.61	--
	R4 stream	4.729	3.17	0.91	1.1	0.58	3.7	--
Peer review of the pesticide risk assessment of the active substance trifloxystrobin

www.efsa.europa.eu/efsajournal

125

EFSA Journal 2017;15(10):4989

Focus step 1	15 µg/L	4.3 µg/L	5.2 µg/L	2.76 µg/L	17.4 µg/L	140 µg/L	NA µg/L	
	20.21	0.74	0.21	0.26	0.14	0.86	6.93	
Focus step 2	North/south Europe	10.95	1.37	0.7	0.47	0.25	1.59	12.8
Focus step 3	D3 ditch	8.729	1.72	0.49	0.6	0.32	1.99	--
	D4 pond	0.53	28.3	8.11	9.81	5.21	32.8	--
	D4 stream	9.197	1.63	0.47	0.57	0.3	1.89	--
	D5 pond	0.53	28.3	8.11	9.81	5.21	32.8	--
	D5 stream	9.695	1.55	0.44	0.54	0.28	1.79	--
	R1 pond	0.53	28.3	8.11	9.81	5.21	32.8	--
	R1 stream	7.094	2.11	0.61	0.73	0.39	2.45	--
	R2 pond	9.505	1.58	0.45	0.55	0.29	1.83	--
	R3 stream	10.016	1.5	0.43	0.52	0.28	1.73	--
	R4 stream	7.093	2.11	0.61	0.73	0.39	2.45	--

*single application worse case

FOCUSsw step 1-3 - TERs for trifloxystrobin for late application to to pomme/stone fruit at three applications of 112.5 g a.s./ha with a ten day interval

Scenario	PEC global max (µg L)	fish acute	fish chronic	Aquatic invertebrates	Aquatic invertebrates prolonged	Algae	Sed. dweller prolonged	Microcosm / Mesocosm
	Oncorhynchus mykiss	Oncorhynchus mykiss	Daphnia magna	Daphnia magna	Scenedesmus subspicatus	Chironomus riparius		
	LC5 15 µg/L	NOEC 4.3 µg/L	EC50 5.2 µg/L	NOEC 2.76 µg/L	EC50 17.4 µg/L	EC10 140 µg/L	NOEC NA µg/L	
Focus step 1	15.16	0.99	0.28	0.34	0.18	1.14	9.23	
Focus step 2	North/south Europe*	5.9	2.54	1.31	0.88	0.47	2.9	23.73
Focus step 3	D3 ditch	4.134	3.63	1.04	1.26	0.67	4.2	--
	D4 pond	0.185	81.08	23.24	28.11	14.92	94	--
	D4 stream	4.055	3.7	1.06	1.28	0.68	4.3	--
	D5 pond	0.185	81.08	23.24	28.11	14.92	94.1	--
	D5 stream	4.468	3.36	0.96	1.16	0.62	3.9	--
Uses on vines

FOCUSsw step 1-3 - TERs for trifloxystrobin for aquatic organisms for late application to grapes at three applications of 125 g a.s./ha with a ten day spray interval.

Scenario	PEC global max (µg L)	fish acute	fish chronic	Aquatic invertebrates	Aquatic invertebrates prolonged	Algae	Sed. dweller prolonged	Microcosm / Mesocosm
				Oncorhynchus mykiss	Oncorhynchus mykiss			
		LC50 15 µg/L	NOEC 4.3 µg/L	EC50 5.2 µg/L	NOEC 2.76 µg/L	EC50 17.4 µg/L		
Focus step 1		13.63	1.1	0.32	0.38	0.2	1.27	10.27
Focus step 2	North/South Europe*	3.35	4.48	2.3	1.55	0.82	5.19	--
Focus step 3	D6 ditch	2.135	7.03	2.01	2.44	1.29	8.15	--
	R1 pond	0.0762	196.85	56.43	68.24	36.22	228	--
	R1 stream	1.555	9.65	2.77	3.34	1.77	11.2	--
	R2 stream	2.097	7.15	2.05	2.48	1.32	8.3	--
	R3 stream	2.2	6.82	1.95	2.36	1.25	7.9	--
	R4 stream	1.567	9.57	2.74	3.32	1.76	11.1	--

*single application worse case

Uses on strawberries

FOCUSsw step 1-3 - TERs for trifloxystrobin for aquatic organisms for two applications to strawberries at 125 g a.s./ha with a seven day spray interval.

Scenario	PEC global max	fish acute	fish chronic	Aquatic invertebrates	Aquatic invertebrates prolonged	Algae	Sed. dweller prolonged	Microcosm / Mesocosm
				Oncorhynchus mykiss	Oncorhynchus mykiss			
		LC50 15 µg/L	NOEC 4.3 µg/L	EC50 5.2 µg/L	NOEC 2.76 µg/L	EC50 17.4 µg/L		
Focus step 1		13.63	1.1	0.32	0.38	0.2	1.27	10.27
Focus step 2	North/South Europe*	3.35	4.48	2.3	1.55	0.82	5.19	--
Focus step 3	D6 ditch	2.135	7.03	2.01	2.44	1.29	8.15	--
	R1 pond	0.0762	196.85	56.43	68.24	36.22	228	--
	R1 stream	1.555	9.65	2.77	3.34	1.77	11.2	--
	R2 stream	2.097	7.15	2.05	2.48	1.32	8.3	--
	R3 stream	2.2	6.82	1.95	2.36	1.25	7.9	--
	R4 stream	1.567	9.57	2.74	3.32	1.76	11.1	--

*single application worse case
Peer review of the pesticide risk assessment of the active substance trifloxystrobin

www.efsa.europa.eu/efsajournal

FOCUS step 1

Oncorhynchus mykiss	Daphnia magna	Scenedesmus subspicatus	Chironomus riparius
LC50 15 µg/L	EC50 5.2 µg/L	EC50 17.4 µg/L	EC10 140 µg/L
NOEC 4.3 µg/L	NOEC 2.76 µg/L	NOEC 140 µg/L	NOEC NA µg/L

Focus step 2

North/South Europe*

Scenario	Oncorhynchus mykiss	Daphnia magna	Scenedesmus subspicatus	Chironomus riparius
	LC50 15 µg/L	EC50 5.2 µg/L	EC50 17.4 µg/L	EC10 140 µg/L
	NOEC 4.3 µg/L	NOEC 2.76 µg/L	NOEC 140 µg/L	NOEC NA µg/L

Focus step 3

D6 ditch 0.79 18.99 5.44 6.58 3.49 --
R2 stream 0.69 21.74 6.23 7.54 4.0 --
R3 stream 0.737 20.35 5.83 7.06 3.74 --
R4 stream 0.522 28.74 8.24 9.96 5.29 --

*single application worse case

FOCUSsw step 1-3 - TERs for trifloxystrobin for aquatic organisms for application to strawberries at two applications of 150 g a.s./ha with a seven day spray interval

Scenario	Oncorhynchus mykiss	Daphnia magna	Scenedesmus subspicatus	Chironomus riparius
	LC50 15 µg/L	EC50 5.2 µg/L	EC50 17.4 µg/L	EC10 140 µg/L
	NOEC 4.3 µg/L	NOEC 2.76 µg/L	NOEC 140 µg/L	NOEC NA µg/L

Focus step 1

Scenario	Oncorhynchus mykiss	Daphnia magna	Scenedesmus subspicatus	Chironomus riparius
	LC50 15 µg/L	EC50 5.2 µg/L	EC50 17.4 µg/L	EC10 140 µg/L
	NOEC 4.3 µg/L	NOEC 2.76 µg/L	NOEC 140 µg/L	NOEC NA µg/L

Focus step 2

North/South Europe*

Scenario	Oncorhynchus mykiss	Daphnia magna	Scenedesmus subspicatus	Chironomus riparius
	LC50 15 µg/L	EC50 5.2 µg/L	EC50 17.4 µg/L	EC10 140 µg/L
	NOEC 4.3 µg/L	NOEC 2.76 µg/L	NOEC 140 µg/L	NOEC NA µg/L

Focus step 3

D6 ditch 0.948 15.82 4.54 5.49 2.91 --
R2 stream 0.841 17.84 5.11 6.18 3.28 --
R3 stream 0.885 16.95 4.86 5.88 3.12 --
R4 stream 0.628 23.89 6.85 8.28 4.39 --

*single application worse case
FOCUSsw step 4
The risk assessment presented below deviates from the usual practice. PECsw were not calculated for the Step 4, instead, the RMS calculated the percentage of mitigation required to have a low risk considering the lower available RAC. A high risk was concluded for all scenarios for which a low risk could not be concluded considering the maximum mitigation allowed accounting for 95%. For the scenarios for which a mitigation is possible, the equivalent risk mitigation measure was reported. This approach was considered acceptable by the peer review in the specific case of trifloxystrobin and the representative uses under assessment.

Derivation of the first tier regulatory acceptable concentration (RAC)

Organism	Toxicity endpoint	Toxicity mg a.s/L	Trigger	RAC µg a.s/L
Oncorhynchus mykiss	LC50	0.015	100	0.15
Oncorhynchus mykiss	NOEC	0.0043	10	0.43
Daphnia magna	EC50	0.0052	100	0.052
Daphnia magna	NOEC	0.00276	10	0.276
Scenedesmus subspicatus	ErC50	0.0174	10	1.74

Mitigation required for aquatic organisms at FOCUS Step 4 using first tier RAC

FOCUS Crop	Scenario	1st Tier RAC with 95% Mitigation	Actual Mitigation Required for 1st Tier RAC (%)	Equivalent Buffer Zone required for Tier 1 RAC (m)
Pomme/stone fruit trees, three applications at 75 g a.s./L and a spray interval of ten days (BBCH 31-89)	D3-Ditch	HIGH RISK	99.1	
	D4-Pond	LOW RISK	85.3	25
	D4-Stream	HIGH RISK	99.1	
	D5-Pond	LOW RISK	85.3	25
	D5-Stream	HIGH RISK	99.1	
	R1-Pond	LOW RISK	88.3	30
	R1-Stream	HIGH RISK	98.9	
	R2-Stream	HIGH RISK	99.2	
	R3-Stream	HIGH RISK	99.2	
	R4-Stream	HIGH RISK	98.9	
Early application to pomme/stone fruit trees, three applications at	D3-Ditch	HIGH RISK	99.4	
	D4-Pond	LOW RISK	90.2	30
FOCUS Crop	Scenario	1st Tier RAC with 95% Mitigation	Actual Mitigation Required for 1st Tier RAC (%)	Equivalent Buffer Zone required for Tier 1 RAC (m)
-----------	----------	---------------------------------	--	----------------------------------
112.5 g a.s./L and a spray interval of ten days	D4-Stream	HIGH RISK	99.4	
	D5-Pond	LOW RISK	90.2	30
	D5-Stream	HIGH RISK	99.5	
	R1-Pond	LOW RISK	90.2	30
	R1-Stream	HIGH RISK	99.3	
	R2-Stream	HIGH RISK	99.5	
	R3-Stream	HIGH RISK	99.5	
	R4-Stream	HIGH RISK	99.3	
Late application to pomme/stone fruit trees, three applications at 112.5 g a.s./L and a spray interval of ten days	D3-Ditch	HIGH RISK	98.7	
	D4-Pond	LOW RISK	71.9	25
	D4-Stream	HIGH RISK	98.7	
	D5-Pond	LOW RISK	71.9	25
	D5-Stream	HIGH RISK	98.8	
	R1-Pond	LOW RISK	71.9	25
	R1-Stream	HIGH RISK	98.4	
	R2-Stream	HIGH RISK	98.8	
	R3-Stream	HIGH RISK	98.8	
	R4-Stream	HIGH RISK	98.4	
Late application to grapes, three applications at 125 g a.s./L and a spray interval of ten days	D6- Ditch	HIGH RISK	97.6	
	R1- Pond	LOW RISK	31.8	10
	R1- Stream	HIGH RISK	96.7	
	R2- Stream	HIGH RISK	97.5	
	R3- Stream	HIGH RISK	97.6	
	R4- Stream	HIGH RISK	96.7	
Application to strawberry, three applications at 125 g a.s./L and a spray interval of seven days	D6- Ditch	LOW RISK	93.4	25
	R2- Stream	LOW RISK	92.5	30
	R3- Stream	LOW RISK	92.9	30
	R4- Stream	LOW RISK	90.0	25
Application to strawberry, two	D6- Ditch	LOW RISK	94.5	30
Higher tier risk assessment

Derivation of the higher tier regulatory acceptable concentration (RAC)

Organism	Refinement	Toxicity	Toxicity	Trigger value	RAC
Three species of fish	Geometric mean	LC50	39.8	100	0.398
One species of aquatic invertebrate	Geometric mean	EC50	12.8	100	0.128
Daphnia magna	No refinement	NOEC	2.76	10	0.276
Scenedesmus subspicatus	No refinement	ErC50	17.4	10	1.74
Revised risk assessment
FOCUS step 4 higher tier with 95% mitigation

Mitigation for aquatic organisms at FOCUS Step 4 using a higher tier RAC

Applicant's GAP	Scenario	Higher Tier RAC (0.128) with 95% Mitigation	Actual Mitigation Required for Higher Tier RAC (%)	Equivalent Buffer Zone required for Higher Tier RAC (0.128 µg/L) (m)
	Early application to pome/stone fruit trees, three applications at 75 g a.s./L and a spray interval of ten days			
	D3-Ditch	HIGH RISK	97.8	
	D4-Pond	LOW RISK	63.7	16
	D4-Stream	HIGH RISK	97.9	
	D5-Pond	LOW RISK	63.7	16
	D5-Stream	HIGH RISK	97.9	
	R1-Pond	LOW RISK	63.7	16
	R1-Stream	HIGH RISK	97.3	
	R2-Stream	HIGH RISK	98.0	
	R3-Stream	HIGH RISK	98.1	
	R4-Stream	HIGH RISK	97.3	
	Early application to pome/stone fruit trees, three applications at 112.5 g a.s./L and a spray interval of ten days			
	D3-Ditch	HIGH RISK	98.5	
	D4-Pond	LOW RISK	75.8	18
	D4-Stream	HIGH RISK	98.6	
	D5-Pond	LOW RISK	75.8	18
	D5-Stream	HIGH RISK	98.7	
	R1-Pond	LOW RISK	75.8	18
	R1-Stream	HIGH RISK	98.2	
	R2-Stream	HIGH RISK	98.7	
	R3-Stream	HIGH RISK	98.7	
	R4-Stream	HIGH RISK	98.2	
	Late application to			
	D3-Ditch	HIGH RISK	96.9	
Applicant's GAP	Scenario	Higher Tier RAC (0.128) with 95% Mitigation	Actual Mitigation Required for Higher Tier RAC (%)	Equivalent Buffer Zone required for Higher Tier RAC (0.128 μg/L) (m)
---	-----------	---	---	--
pome/stone fruit trees, three applications at 112.5 g a.s./L and a spray interval of ten days	D4-Pond	LOW RISK	30.8	10
	D4-Stream	HIGH RISK	96.8	
	D5-Pond	LOW RISK	30.8	10
	D5-Stream	HIGH RISK	97.1	
	R1-Pond	LOW RISK	30.8	10
	R1-Stream	HIGH RISK	96.0	
	R2-Stream	HIGH RISK	97.0	
	R3-Stream	HIGH RISK	97.1	
	R4-Stream	HIGH RISK	96.0	
Late application to grapes, three applications at 125 g a.s./L and a spray interval of ten days	D6- Ditch	LOW RISK	94.0	25
	R1- Pond			
	R1- Stream	LOW RISK	91.8	25
	R2- Stream	LOW RISK	93.9	30
	R3- Stream	LOW RISK	94.2	30
	R4- Stream	LOW RISK	91.8	25
Two applications to strawberry at 125 g a.s./L and a spray interval of seven days	D6- Ditch	LOW RISK	83.8	9
	R2- Stream	LOW RISK	81.4	12
	R3- Stream	LOW RISK	82.6	12
	R4- Stream	LOW RISK	75.5	8
Two applications to strawberry at 150 g a.s./L and a spray interval of seven days	D6- Ditch	LOW RISK	86.5	12
	R2- Stream	LOW RISK	84.8	14
	R3- Stream	LOW RISK	85.5	14
	R4- Stream	LOW RISK	79.6	10

Metabolites
TERs for aquatic organisms at FOCUS Step 1

Test substance	Organism	Time scale	Toxicity end point mg p.m./L	PEC_{exp,max} Global max[µg L⁻¹]	TER	Trigger
CGA 357261	*O. mykiss*	Acute	0.9	26.2	34.4	100
CGA 357261	*D. magna*	Acute	0.00052*	26.2	0.02	100
CGA 357261	*S. subspicatus*	Chronic	0.0174*	13.6	93.6	100
CGA 107170	*O. mykiss*	Acute	13.6	145.35	156	100
CGA 107170	*D. magna*	Acute	22.7	145.35	0.12	10
CGA 107170	*S. subspicatus*	Chronic	0.012*	>200	1376	100
CGA 373466	*O. mykiss*	Acute	0.00052*	0.99	0.12	10
CGA 373466	*D. magna*	Acute	0.0174*	>100	688	100
CGA 373466	*S. subspicatus*	Chronic	0.012*	>100	688	100
CGA 357262	*O. mykiss*	Acute	>5.51	3.33	1654	100
CGA 357262	*D. magna*	Acute	>2.24	3.33	673	100
CGA 357262	*P. subcapitata*	Chronic	>2.65	3.33	795	10
CGA 321113	*O. mykiss*	Acute	>106	55.96	1894	100
CGA 321113	*D. magna*	Acute	38	55.96	679.1	100
CGA 321113	*P. subcapitata*	Chronic	>100	55.96	1786	10
CGA 321113	*C. riparius*	Chronic	19.78	55.96	353.8	10
CGA 357276	*O. mykiss*	Acute	0.0015*	0.17	8.8	100
CGA 357276	*D. magna*	Acute	0.514	0.17	3023	100
CGA 357276	*P. subcapitata*	Chronic	>5.88	0.17	34588	10
NOA 413161	*O. mykiss*	Acute	>100	145.35	688	100
NOA 413161	*D. magna*	Acute	>100	145.35	688	100
NOA 413161	*P. subcapitata*	Chronic	>100	145.35	688	10
NOA 413163	*O. mykiss*	Acute	>100	145.35	688	100
NOA 413163	*D. magna*	Acute	>100	145.35	688	10
NOA 413163	*P. subcapitata*	Chronic	>100	145.35	688	100
NOA 409480	*O. mykiss*	Acute	0.0015*	10.5	0.14	100
NOA 409480	*D. magna*	Acute	2.25	10.5	214.3	100
NOA 409480	*P. subcapitata*	Chronic	>2.02	10.5	192.4	10

*Assuming 10 times higher toxicity than the parent compound

TERs for aquatic organisms at FOCUS Step 2 for individual metabolites
Test substance	Organism	Time scale	Toxicity end point (mg p.m./L)	PECsw, [µg L⁻¹]	TER	Trigger
CGA 357261	*Oncorhynchus mykiss*	Acute	0.9	7.73	116	100
CGA 357261	*Daphnia magna*	Acute	0.00052*	7.73	0.07	100
CGA 357261	*S. subspicatus*	Chronic	0.0174*	7.73	2.3	10
CGA 107170	*Oncorhynchus mykiss*	Acute	13.6	53.43	255	100
CGA 107170	*S. subspicatus*	Chronic	0.0174*	54.43	0.31	10
CGA 373466	*S. subspicatus*	Chronic	0.0174*	54.43	0.31	10
NOA 409480	*D. magna*	Acute	2.25	2.49	904	100
NOA 409480	*Oncorhynchus mykiss*	Acute	0.0015*	2.49	6.02	100
CGA 357276	*O. mykiss*	Acute	0.0015*	0.06	25	100

Assuming 10 times higher toxicity than the parent compound
Effects on bees (Regulation (EU) N° 283/2013, Annex Part A, point 8.3.1 and Regulation (EU) N° 284/2013 Annex Part A, point 10.3.1)

Species	Test substance	Time scale/type of endpoint	End point	Toxicity
Apis mellifera a.s.	Acute (48h)	Oral toxicity (LD₅₀)	> 110 µg a.s./bee	
Apis mellifera a.s.	Acute (48h)	Oral toxicity (LD₅₀)	> 200 µg a.s./bee	
Apis mellifera Flint (preparation)	Acute (48h)	Oral toxicity (LD₅₀)	> 187 µg prep./bee (> 95 µg a.s./bee)	
Apis mellifera Trifloxystrobin WG 50 W (preparation)	Acute (48h)	Oral toxicity (LD₅₀)	> 216 µg prep./bee (> 107.8 µg a.s./bee)	
Apis mellifera a.s.	Acute (48h)	Contact toxicity (LD₅₀)	> 100 µg a.s./bee	
Apis mellifera a.s.	Acute (48h)	Contact toxicity (LD₅₀)	> 200 µg a.s./bee	
Apis mellifera Flint (preparation)	Acute (48h)	Contact toxicity (LD₅₀)	> 200 µg prep./bee (> 102 µg a.s./bee)	
Apis mellifera Trifloxystrobin WG 50 W (preparation)	Acute (48h)	Contact toxicity (LD₅₀)	> 201 µg prep./bee (> 100 µg a.s./bee)	
Apis mellifera Preparation	Chronic	10 d-LC50	> 4.9 µg a.s./bee/day*	
Apis mellifera -	Bee brood development	NOEClarvae	Data gap	
Apis mellifera -	Sublethal effects on honeybees (i.e. HPG study)	Data gap	Data gap	

Potential for accumulative toxicity: no data

Potential for accumulative toxicity: no data

High tier studies (a semi-field study performed in line with OECD 75 and EPPO 170 and a brood feeding test in line with Oomen et al., 1992) were provided. On the basis of these studies the RMS concluded a low risk to honeybees for the representative uses of trifloxystrobin. It is, however, noted that these kind of studies are considered of limited use according to EFSA (2013).

Bee brood feeding test

A bee brood test was conducted in order to assess the effect of Trifloxystrobin WG 50 to honeybee brood. An untreated control and a toxic reference were included in the study. Three bee colonies were used per control, toxic reference and treatment group. Test item: 0.151 g test item (Trifloxystrobin WG 50 W), dissolved in 1 L commercial ready-to-use syrup (Apiinvert) per colony, equivalent to an active substance concentration of 0.075 g trifloxystrobin a.s./L. The egg termination rate in the test item treatment was higher (25.3%, 26.7% and 69.3%; average 40.4%) than that in the controls (6.7%, 10.7%, 29.3%; average 15.6%). This was not statistically significant, most likely due to high variation in both the test item treatment and controls. It cannot be assessed as to whether the egg mortality of 29.3% in one of the control replicates or the 69.3% in one of the test item treatment replicate is an outlier. Subsequently, a treatment-related effect cannot be confirmed nor excluded. Also for young larvae termination rate high variation between replicates were reported (control: 8.0, 12.7 and 76.7%; test item treatment: 3.3, 9.3 and 62%).

Semi-field test (Cage and tunnel test)

Trifloxystrobin WG 50 W: Effects on honey bee brood (*Apis mellifera* L.) under semi-field conditions - Tunnel test

To assess the potential effects of 'Trifloxystrobin WG 50 W' on honey bee colonies including brood
development, 401 g product in 400 L tap water/ha (corresponding to 200 g trifloxystrobin a.s./ha) for the test item, tap water for the control and Insegar for the reference item were applied to a highly bee-attractive crop in full bloom (i.e. Phacelia tanacetifolia) under semi-field (tunnel) conditions during bee-flight. No adverse effects on pupae or worker mortality, foraging activity, behaviour, nectar- and pollen storage and queen survival were observed. No effects on colony development, colony strength or bee brood were observed. The effects of the reference item Insegar on the bee brood were observed to be typical for the a.s. fenoxycarb in terms of occurrence and extent.

RMS comment
The study was performed in line with guideline OECD 75 and EPPO 170; all validity criteria were met. The study was performed under GLP compliance.

No treatment related effects were evident on mortality of worker bees, mortality of larvae/pupae, or the foraging activity of worker bees. A statistically non-significant increase in mean brood termination rate was noted. Further investigation of the data indicated that a large degree of variability was evident in the negative control and the treatment hives. The control hives exhibited termination rates from 4% to 32% whereas in the treatment hives, the termination rate was 12.4% to 47.6%. There were no discernible patterns of increased rate within the treatment replicates over the course of the study and therefore the RMS considers that the non-significant increase is not treatment related.

Statistically significant effects were evident in the positive control, indicating that the test system is sensitive to toxic insult. Therefore, the RMS considers that trifloxystrobin has no apparent detrimental effects on bee brood survival/development at the field rate of 200 g a.s./ha.

Field tests
None submitted

Risk assessment

Species	Test substance	Risk quotient	HQ/ETR	Trigger
Apis mellifera	a.s.	HQoral	<0.8	50
Apis mellifera	Trifloxystrobin WG 50 W (preparation)	HQoral	<1.4	50
Apis mellifera	a.s.	HQcontact	<0.8	50
Apis mellifera	Trifloxystrobin WG 50 W (preparation)	HQcontact	<1.5	50

In the absence of a suitable risk assessment scheme, a data gap was identified for a risk assessment for honeybees for trifloxystrobin and its pertinent metabolites in pollen and nectar in line with EFSA (2013)

Effects on other arthropod species (Regulation (EU) N° 283/2013, Annex Part A, point 8.3.2 and Regulation (EU) N° 284/2013 Annex Part A, point 10.3.2)

Laboratory tests with standard sensitive species

Species	Test Substance	End point	Toxicity
Typhlodromus pyri	‘Flint WG 50’	Mortality, LR₅₀	>375 g a.s./ha
		Reproduction, ER₅₀	>375 g a.s./ha
Aphidius colemani	‘Flint WG 50’	Mortality, LR₅₀	>500g a.s./ha
		Reproduction, ER₅₀	>500g a.s./ha
Aphidius rhopalosiphi	‘AE C656948 (Fluopyram) & Trifloxystrobin SC 250 + 250 g/L’	Mortality, LR₅₀	>787g a.s./ha*
		Reproduction, ER₅₀	>787g a.s./ha*

Additional species
Species	Test Substance	End point	Toxicity
Coccinella septempunctata	‘Flint WG 50’	Mortality, LR₅₀	>500 g a.s./ha
		Reproduction, ER₅₀	Interrupted dose response: >50 % effects at 250 g a.s./ha, study repeated⁸ < 50 % effects. < 50 % effects at 500 g a.s./ha[#]
Orius insidiosus	‘Flint WG 50’	Mortality, LR₅₀	<500 g a.s./ha
		Reproduction, ER₅₀	<500 g a.s./ha
Orius laevigatus	‘Flint WG 50’	Mortality, LR₅₀	21.2 g a.s./ha
		Reproduction, ER₅₀	>12.5 g a.s./ha
Poecilus cupreus	‘Flint WG 50’	Mortality, LR₅₀	>500 g a.s./ha
		Reproduction, ER₅₀	>500 g a.s./ha

[#] Repeat studies were conducted for both 250 and 500 g a.s./ha. After detailed consideration (see volume 3 CP dossier section B.9.6.2) the reproductive endpoint used in risk assessment is < 50 % effects at 500 g a.s./ha.

⁸ Mixed active formulation; endpoint expressed as content of trifloxystrobin.

^{**} Study conducted according to tier 1 test design. However, following peer review meeting (TC 147) concerns were raised as the standard tier 1 species i.e. *Aphidius rhopalosiphi* was not tested. Therefore it was agreed this study would be treated as a tier II study in the risk assessment.

Extended laboratory tests, aged residue tests

Species	Life stage	Test substance, substrate	Time scale	Dose (g a.s./ha)^{1,2,3}	End point	% effect^{4,5,3}	ER₅₀
Typhlodromus pyri	Nymphs	‘Flint WG 50'	Extended study treated leaf discs for 7 days; 7 days fecundity phase	500	Mortality, Reproduction	< 50 % effects	>500
Orius laevigatus	*Orius* nymphs	‘Flint WG 50'	Aged residues on excised bean leaves 0, 14 and 30 DAT.	6 x 15.1 & 6 x 189	Mortality reproduction	DAT 14: 42, 14: 12, 14: 51	N/A
Species	Life stage	Test substance, substrate	Time scale	Dose (g a.s./ha)	End point	% effect[^3]	ER[^5] 6
--------	------------	--------------------------	------------	-----------------	-----------	-------------	-----------
Coccinella septempunctata	Second instar larvae	‘Flint WG 50’	Aged residues on potted grapevine plants 0, 14 and 28 DAT	3 x 38	Mortality	DAT 0: 13.0	N/A
				3 x 192	Reproduction	DAT 14: 4.6	
					Mortality	DAT 28: -6.5	
					Reproduction	DAT 0: 70.1	
						DAT 14: 29.0	
						DAT 28: -16.8	
						DAT 0: 13.0	
						DAT 14: 22.7	
						DAT 28: 0	
						DAT 0: 44.2	
						DAT 14: 44.2	
						DAT 28: -27.4	

[^1]: doses were for initial and aged residues
[^2]: units relate to g active substance/ha
[^3]: Control mortality was 82% in initial residue study (DAT 0) hence results were not valid and have been excluded
[^4]: Positive percentages indicate adverse effects
[^5]: Based on corrected mortality according to abbott 1924
[^6]: Based on corrected mortality and reproduction for DAT 14 and 30 Negative value indicates an increase compared with the control.

Risk assessment for vineyards at 125 g a.s./ha x 3 applications based on aged residue test

Species	ER[^2] (g a.s./ha)	In-field rate	Off-field rate[^1]
Orius laevigatus	>189 x 6	125 x 3	20.05 x 3

[^1]: Worse case drift rate at 3 metres and late season and 3D.
[^2]: six applications made after DAT 14 and 30 using corrected mortality and reproduction.

Semi-field tests

Additional data were supplied using semi-field aged residue studies with other formulations of Trifloxystrobin however as the ‘Flint WG 50’ formulation has been assessed these studies were not used in the risk assessment.

Field studies

A field study testing ‘Flint WG50’ and its effects on predatory mites (*T pyri* and *K aberrans*) was submitted. Briefly the study assessed 6 applications (50, 76, 101, 126, 151 and 189 g a.s./ha) with an 8-13 day interval this was described as the max in-field rate. The study then assessed 6 applications at 7.5 % of the max in-field rate. Applications were made in a vineyard and samples taken 5 days before treatment until 56 days after the last treatment. The mite density was assessed and there was a maximum of 34.3 and 36.5 % reduction compared to the control at the maximum and 7.5 % field rates respectively.

Additional specific test

None submitted.

Effects on non-target soil meso- and macro fauna; effects on soil nitrogen transformation (Regulation (EU) N° 283/2013, Annex Part A, points 8.4, 8.5, and Regulation (EU) N° 284/2013 Annex Part A, points 10.4, 10.5)

Test organism	Test substance	Application method of test a.s./OM[^1]	Time scale	End point	Toxicity
Earthworms					
Test organism	Test substance	Application method of test a.s./ OM1	Time scale	End point	Toxicity
---------------	----------------	-------------------------------------	------------	-----------	----------
Eisenia fetida	Trifloxystrobin a.s.	Quartz sand / 5% peat Mixed into soil	Chronic	Growth, reproduction,	NOECa 3.5mg a.s./kg d.w.soil
Eisenia fetida	‘Flint’ preparation	Quartz sand / 10% peat Mixed into soil	Chronic	Growth, reproduction,	NOECa 14mg a.s./kg d.w.soil
Eisenia fetida	CGA 357261	Quartz sand / 5% peat Mixed into soil	Chronic	Growth, reproduction,	NOECa 50mg metabolite/kg d.w.soil
Eisenia fetida	CGA 321113	Quartz sand / 10% peat Mixed into soil	Chronic	Growth, reproduction,	NOECa 50mg metabolite/kg d.w.soil
Eisenia fetida	CGA 373466	Quartz sand / 5% peat Mixed into soil	Chronic	Growth, reproduction,	NOEC 100mg metabolite/kg d.w.soil
Eisenia fetida	CGA 381318	Quartz sand / 10% peat Mixed into soil	Chronic	Growth, reproduction,	NOEC 100mg metabolite/kg d.w.soil
Eisenia fetida	NOA 413161	Quartz sand / 5% peat	Chronic	Growth, reproduction,	NOEC 100mg metabolite/kg d.w.soil
Eisenia fetida	NOA 413163	Quartz sand / 105% peat Mixed into soil	Chronic	Growth, reproduction,	NOEC 100mg metabolite/kg d.w.soil
Eisenia fetida	CGA 357276	Quartz sand / 5% peat Mixed into soil	Chronic	Growth, reproduction,	NOECa 25 mg metabolite /kg d.w.soil EC50 58.9 mg metabolite/kg d.w. soil EC20 >90 mg metabolite/kg d.w. soil
Eisenia fetida	NOA 409480	Quartz sand / 5% peat Mixed into soil	Chronic	Growth, reproduction,	NOECa 50mg metabolite /kg d.w.soil

Other soil macroorganisms
Test organism	Test substance	Application method of test a.s./ OM	Time scale	End point	Toxicity
Folsomia candida	‘Flint’ preparation	Quartz sand / 5% peat Mixed into soil	Chronic	Mortality, Reproduction	NOECa 249mg a.s./kg d.w.soil
Folsomia candida	CGA 357261	Quartz sand / 5% peat Mixed into soil	Chronic	Mortality, Reproduction	NOECa 50mg metabolite /kg d.w.soil
Folsomia candida	CGA 321113	Quartz sand / 10% peat Mixed into soil	Chronic	Mortality, Reproduction	NOECa 50 mg metabolite/kg d.w.soil EC10 207 mg metabolite/kg d.w. soil EC20 382 mg metabolite/kg d.w. soil
Folsomia candida	CGA 373466	Quartz sand / 5% peat Mixed into soil	Chronic	Mortality, Reproduction	NOEC 100mg metabolite /kg d.w.soil
Folsomia candida	NOA 413161	Quartz sand / 10% peat Mixed into soil	Chronic	Mortality, Reproduction	NOEC 10mg metabolite/kg d.w.soil
Folsomia candida	NOA 413163	Quartz sand / 5% peat Mixed into soil	Chronic	Mortality, Reproduction	NOEC 100mg metabolite/kg d.w.soil
Folsomia candida	CGA 35726	Quartz sand / 5% peat Mixed into soil	Chronic	Mortality, Reproduction	NOECa 50mg metabolite/kg d.w.soil
Hypoaspis aculeifer	‘Flint’ preparation	Quartz sand / 5% peat Mixed into soil	Chronic	Mortality, Reproduction	NOECa 249mg a.s./kg d.w.soil
Hypoaspis aculeifer	CGA 357261	Quartz sand / 5% peat Mixed into soil	Chronic	Mortality, Reproduction	NOECa 50mg metabolite/kg d.w.soil
Hypoaspis aculeifer	CGA 321113	Quartz sand / 5% peat Mixed into soil	Chronic	Mortality, Reproduction	NOECa 50mg metabolite /kg d.w.soil
Test organism	Test substance	Application method of test a.s./OM	Time scale	End point	Toxicity
-----------------------	----------------	-----------------------------------	------------	-------------------------	---
Hypoaspis aculeifer	CGA 373466	Quartz sand / 5% peat Mixed into soil	Chronic	Mortality, Reproduction	NOEC 100mg metabolite /kg d.w.soil
Hypoaspis aculeifer	NOA 413161	Quartz sand / 5% peat Mixed into soil	Chronic	Mortality, Reproduction	NOEC 100mg metabolite /kg d.w.soil
Hypoaspis aculeifer	CGA 357276	Quartz sand / 5% peat Mixed into soil	Chronic	Mortality, Reproduction	NOEC\(^a\) 50mg metabolite /kg d.w.soil

\(^a\)To indicate whether the test substance was oversprayed/to indicate the organic content of the test soil (e.g. 5 \% or 10 \%).

\(^a\) corrected by factor of 2 due to lipophilic substance (log Pow > 2)

Higher tier testing (e.g. modelling or field studies)
No data

Nitrogen transformation	Test substance	Time scale	Endpoint	PECsoil max (mg/kg)	Low risk?
Trifloxystrobin	28 day	<25% effect at day 28 at 13.33mg a.s./kg d.w.soil	0.5	Yes	
Trifloxystrobin WG 50	28 day	<25% effect at day 28 at 2.67 mg product/kg d.w.soil (equivalent to 1.34 mg a.s./kg d.w.soil)	0.5 mg a.s./kg	Yes	
CGA 357276	N/A	<25% effect at 1.33mg metabolite/kg d.w.soil\(^a\)	0.022	Yes	
NOA 413163	N/A	<25% effect at 1.33mg metabolite/kg d.w.soil\(^a\)	0.5	Yes	
NOA 409480	N/A	<25% effect at 1.33mg metabolite/kg d.w.soil\(^a\)	0.036	Yes	
CGA 381318	N/A	<25% effect at 1.33mg metabolite/kg d.w.soil\(^a\)	0.5	Yes	
CGA 357261	42 day	<25% effect at day 42 at 3.35mg metabolite/kg d.w.soil	0.0042	Yes	
CGA 321113	28 day	<25% effect at day 28 at 3.26mg metabolite/kg d.w.soil	0.5	Yes	
CGA 373466	28 day	<25% effect at day 28 at 3.47mg metabolite/kg d.w.soil	0.5	Yes	
Toxicity/exposure ratios for soil organisms

Based on worst case GAP vineyards at 125 g a.s./ha x 3 applications

Test organism	Test substance	Time scale	Soil PEC\(^1\)	TER	Trigger
Eisenia fetida	Trifloxystrobin	Chronic	0.5	28	5
Eisenia fetida	‘Flint WG 50’	Chronic	0.5	7	5
Eisenia fetida	CGA 357261	Chronic	0.0042	11905	5
Eisenia fetida	CGA 321113	Chronic	0.5	100	5
Eisenia fetida	CGA 373466	Chronic	0.5	200	5
Eisenia fetida	CGA 381318	Chronic	0.5	200	5
Eisenia fetida	NOA 413161	Chronic	0.5	200	5
Eisenia fetida	NOA 413163	Chronic	0.5	200	5
Eisenia fetida	CGA 357276	Chronic	0.022	1136	5
Eisenia fetida	NOA 409480	Chronic	0.036	1389	5
Folsomia candida	‘Flint WG 50’	Chronic	0.5	498	5
Folsomia candida	CGA 357261	Chronic	0.0042	11905	5
Folsomia candida	CGA 321113	Chronic	0.5	100	5
Folsomia candida	CGA 373466	Chronic	0.5	200	5
Folsomia candida	NOA 413161	Chronic	0.5	20	5
Folsomia candida	NOA 409480	Chronic	0.036	692*	5
Folsomia candida	CGA 381318	Chronic	0.5	50*	5
Folsomia candida	NOA 413163	Chronic	0.5	200	5
Folsomia candida	CGA 357276	Chronic	0.022	2273	5
Hypoaspis aculeifer	‘Flint WG 50’	Chronic	0.5	498	5
Hypoaspis aculeifer	CGA 357261	Chronic	0.0042	11905	5
Hypoaspis aculeifer	CGA 321113	Chronic	0.5	100	5
Hypoaspis aculeifer	CGA 373466	Chronic	0.5	200	5
Hypoaspis aculeifer	NOA 413161	Chronic	0.5	200	5
Hypoaspis aculeifer	NOA 409480	Chronic	0.036	692*	5
Hypoaspis aculeifer	CGA 381318	Chronic	0.5	50*	5
Hypoaspis aculeifer	NOA 413163	Chronic	0.5	50*	5
Hypoaspis aculeifer	CGA 357276	Chronic	0.022	2273	5

\(^1\) Worst case initial PEC soil was used

\(^*\) Due to lack of data metabolite assumed to be ten times more toxic than parent.
Effects on terrestrial non target higher plants (Regulation (EU) N° 283/2013, Annex Part A, point 8.6 and Regulation (EU) N° 284/2013 Annex Part A, point 10.6)

Species	Test substance	ER_{50} (g/ha)\(^2\) vegetative vigour	ER_{50} (g/ha)\(^2\) emergence	Exposure\(^1\) (g/ha)\(^2\) <50% effect at maximum application rate	Trigger
Brassica oleracea, Daucus carota, Cucumis sativus, Lactuca sativa, Glycine max, Lycopersicon esculentum, Zea mays, Avena sativa, Lolium perenne Allium cepa	‘Flint WG 50’	>270 a.s.	>270 a.s.	150	Yes
Terrestrial non-target plants; 6 species: maize, green peas, oilseed rape, sugar beet, sunflower and wheat	‘Flint WG 50’	>250 a.s.	2000 a.s. pre emergence > 250 a.s. post emergence	150	Yes

Extended laboratory studies: None submitted.
Semi-field and field test: None submitted.

\(^1\) exposure based on maximum application rate (screening step).

\(^2\) units are expressed in terms of active substance.

Effects on biological methods for sewage treatment (Regulation (EU) N° 283/2013, Annex Part A, point 8.8)

Test type/organism	End point
Activated sludge	EC_{50} >100 mg a.s./L
Pseudomonas sp	No data

Monitoring data (Regulation (EU) N° 283/2013, Annex Part A, point 8.9 and Regulation (EU) N° 284/2013, Annex Part A, point 10.8)

Available monitoring data concerning adverse effect of the a.s.
No data
Available monitoring data concerning effect of the PPP.
No data

Definition of the residue for monitoring (Regulation (EU) N° 283/2013, Annex Part A, point 7.4.2)
Ecotoxicologically relevant compounds\(^1\)

Compartiment	Trifloxystrobin \(^2\)
Soil	Trifloxystrobin
Groundwater	Trifloxystrobin, open regarding CGA 357261, CGA 373466, NOA 409480, CGA 357276, CGA 381318
Surface water	Trifloxystrobin, open regarding CGA 357261, CGA 107170, CGA 373466, NOA 409480, CGA 357276, CGA 381318
Sediment	Trifloxystrobin, open regarding CGA 321113

\(^1\) metabolites are considered relevant when, based on the risk assessment, they pose a risk comparable or higher than the parent

Classification and labelling with regard to ecotoxicological data (Regulation (EU) N° 283/2013, Annex Part A, Section 10)

Substance

Trifloxystrobin
Harmonised classification according to Regulation (EC) No 1272/2008 and its Adaptations to Technical Process [Table 3.1 of Annex VI of Regulation (EC) No 1272/2008 as amended]⁶:

Peer review proposal⁷ for harmonised classification according to Regulation (EC) No 1272/2008:

Classification	Code
Aquatic Acute 1	H400
Aquatic Chronic 1	H410

The LC/EC₅₀ values for fish, aquatic invertebrates and algae are <1.0 mg trifloxystrobin/L. In addition, the NOEC values for fish and aquatic invertebrates are <0.1 mg trifloxystrobin/L and it is not readily biodegradable. Trifloxystrobin should therefore be classified as Acute category 1 and Chronic category 1.

The M-factor for acute toxicity is 100, based on the acute toxicity endpoint for aquatic invertebrates (5.2 µg a.s./L).

The M-factor for chronic toxicity is 10, based on the chronic toxicity endpoint for aquatic invertebrates (2.76 µg a.s./L).

‘Very toxic to aquatic life with long lasting effects’ (H410).

⁶ Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. OJ L 353, 31.12.2008, 1-1355.

⁷ It should be noted that harmonised classification and labelling is formally proposed and decided in accordance with Regulation (EC) No 1272/2008.