An integrated analysis of key microRNAs, regulatory pathways and clinical relevance in bladder cancer

Dongyang Li¹
Xuanyu Hao²
Yongsheng Song¹

¹Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, People’s Republic of China; ²Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110022, People’s Republic of China

Objective: The aim of this study was to identify the key microRNAs (miRNAs) and their regulatory networks in bladder cancer (BC).

Materials and methods: Three miRNA and three gene expression microarray datasets were downloaded for analysis from Gene Expression Omnibus database. The differentially expressed miRNAs (DEMs) and differentially expressed genes (DEGs) were accessed by the use of GEO2R. Gene ontology process and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed by using the Database for Annotation, Visualization and Integrated Discovery program. Protein–protein interaction (PPI) and miRNA–mRNA regulatory networks were established by using the Search Tool for the Retrieval of Interacting Genes/Proteins and Cytoscape tool. Besides, the results and clinical significance were validated in The Cancer Genome Atlas (TCGA) dataset.

Results: A total of 18 significant DEMs, 121 upregulated DEGs and 199 downregulated DEGs were identified. Functional enrichment analysis showed that significant DEGs were related to cell cycle and MAPK pathway in BC. Key DEGs such as CDK1, CCNB1, VGL and PRKCA were found as the hub genes in PPI networks. TCGA analysis supported our results, and the miRNAs were correlated with the pathological stages and survival of BC patients.

Conclusion: In this study, we found 18 DEMs that may play key roles in the regulatory networks of BC. The higher expression of miR-99a, miR-100, miR-125b, miR-145, miR-214 and miR-487b or the lower expression of miR-138 and miR-200a can indicate poor survival in the prognosis of BC. Further experimental studies are required to test our results.

Keywords: microRNA, bladder cancer, bioinformatics, regulatory network

Introduction

Bladder cancer (BC) is the leading cause of death among urological cancers, with an estimated 81,190 new cancer cases and 17,240 deaths in the US in 2018.¹ Approximately 70% of BC is non-muscle-invasive bladder cancer (NMIBC) at first diagnosis; however, roughly 20% of NMIBC will progress to muscle-invasive BC (MIBC).² Owing to the aggressive metastasis and delayed diagnosis, the prognosis of MIBC is still poor.³ Although some conventional methods such as surgery and cytotoxic chemotherapy can be applied, the recurrence rate can be up to 70% within 2 years, which makes the treatment of BC unsatisfactory.⁴ The thorough understanding of molecular mechanism and biological markers can help in the early detection, risk stratification, appropriate therapeutic intervention and prognosis in patients with BC.

MicroRNA (miRNA) is a group of single-stranded short RNA molecules (generally 21 nucleotides) that take part in the posttranscriptional gene regulation.⁵ Emerging
evidence reveals that miRNAs are involved in the various stages such as tumor initiation, proliferation, migration and invasion.\(^6\)\(^7\) MiRNAs can also functionally act as oncogene or tumor suppressors.\(^8\) The detection technique of miRNA in serum, urine and biopsy specimen is available; therefore, miRNA is an attractive source of noninvasive biomarkers.\(^9\) The quantitative reverse transcription polymerase chain reaction (qRT-PCR), small RNA sequencing and microarray are widely applied in BC researches in the past decade. In addition, the utility of miRNA as diagnosis or prognosis markers has generated a great interest. However, the results of different studies are inconclusive due to the heterogeneous ethnicity, sample size, different sample types and less clinical parameters.

To the best of our knowledge, few studies have reported the miRNAs and miRNA–mRNA regulatory networks by integrating multiple microarray datasets. Therefore, a comprehensive analysis was administrated in this study to further elucidate the key miRNAs, regulatory pathways and clinical significance in BC.

Materials and methods

Microarray data

Three miRNA expression profiles (GSE36121, GSE39093 and GSE68594) and three gene expression profiles (GSE27448, GSE40355 and GSE52519) were obtained by the search of the Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo). The profiles based on BC cell lines or xenograft models were excluded; thus, only BC patients and healthy controls were included in this study. Table S1 lists the detailed characteristics of the profiles. Every included dataset from the abovementioned profiles contains at least 10 BC samples and normal bladder tissues (Table 1).

Data processing

We performed the comparison between the two groups of samples (BC versus normal prostate tissues) in each GEO dataset to identify differentially expressed genes (DEGs) and differentially expressed miRNAs (DEM). The comparison was launched by a Limma R package based on online program, GEO2R (http://www.ncbi.nlm.nih.gov/geo/geo2r). The adjusted \(P\)-value from the Benjamini–Hochberg method can correct the false-positive results, and the “adjusted \(P\)-value<0.05” and “\(|\log \text{FC}|>1\)” parameters were chosen as primary cutoff criteria to test the results. Among the DEMs from the four datasets, only those involved in two or more datasets could be considered the statistically significant DEMs.

Identification of miRNA targets

The MiRWalk 2.0 database provides a large collection of predicted and experimentally verified information about the binding targets of miRNAs.\(^10\) We downloaded the data of the significant DEMs and their target mRNAs from the MiRwalk 2.0 retrieval system, which was based on experimental literature reports. Despite the fact that validated target genes were from various disease models, the expression of those genes in BC might not be in consistent with other diseases. Hence, it is important to select the genes from the intersection between the significant DEM–mRNA intersection data and the DEGs from the three GEO datasets. These genes were finally defined as the significant DEGs.

Functional enrichment analysis

The Database for Annotation, Visualization and Integrated Discovery (DAVID) is an online platform that offers the functional annotation and analysis of enormous quantity of genes derived from various genomic resources.\(^11\) We used the DAVID database to conduct gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis on significant DEGs. The species was limited to homo sapiens, and the “adjusted \(P\)-value (from the Benjamini–Hochberg method)<0.05” was considered statistically significant.

Table 1 Characteristics of the microarray datasets from GEO database

Accession/ID	PMID	Platform	Number of BC tissues	Number of normal bladder tissues (control)	Gene/miRNA
GSE36121	22745731	GPL8227	n=16 (Ta–T1=13, T2–T4=3)	n=8	miRNA
GSE39093	23270926	GPL7886	n=10 (Ta–T1=5, T2–T4=5)	n=10	miRNA
GSE68594	26943042	GPL20120	n=33 (Ta–T1=18, T2–T4=15)	n=17	miRNA
GSE27448	21483740	GPL2895	n=10 (Ta–T1=6, T2–T4=4)	n=5	Gene
GSE40355	–	GPL13497	n=16 (Ta–T1=13, T2–T4=3)	n=8	Gene
GSE52519	–	GPL6884	n=9 (Ta–T1=3, T2–T4=6)	n=3	Gene

Abbreviations: BC, bladder cancer; GEO, Gene Expression Omnibus; miRNA, microRNA; PMID, PubMed ID.
Interaction and regulatory network establishment

The protein–protein interaction (PPI) was visualized, and its network was constructed by the use of Search Tool for the Retrieval of Interacting Genes/Proteins (STRING), whose database can collect and predict the interaction information from genomic context predictions, high-throughput laboratory experiments, co-expression, automated text mining and previous knowledge in databases. The data annotated from high-throughput laboratory experiments and previous knowledge in databases were imposed to access the more objective and reliable results, and the minimum interaction value was set at medium confidence (0.400).

The Targetscan (http://www.targetscan.org/) is a famous miRNA prediction database by searching for the presence of conserved 8mer, 7mer and 6mer sites that match the seed region of each miRNA. The miRanda algorithm from the “microRNA.org-Targets and Expression” is freely available and can be applied to the whole genome sequences using identified miRNA sequences. The two programs mentioned earlier were used to predict target mRNAs of the significant DEMs. We note that two miRNAs shared a common target mRNA; they might exist in a similar regulatory pathway. The miRNA–mRNA regulatory network was visualized by using Cytoscape 3.6.0.

Validation and survival analysis

The Cancer Genome Atlas (TCGA) database provides abundant clinical information from huge sample size. Therefore, the dataset “TCGA-BLCA (https://portal.gdc.cancer.gov)” was used to find if the significant DEMs were in correlation with survival outcome. The dataset contains 412 patients who were diagnosed as having BC in the period of 1999–2013. Among them, 304 patients are male, while 108 are female. As for the race, 327 BC patients are white, 44 are Asian and 23 are black or African-American, and 23 were not reported. Among the 404 clinical outcome events available, 227 patients were living and 177 were dead when the follow-up ended. We examined the significant DEMs’ expression, relationship with BC stages and survival. The “independent two-sample Student’s t-test” was applied to check the expression level, while the chi-square test was used on different stages. The Kaplan–Meier plots were constructed using Oncolnc. The “P-value<0.05” was considered statistically significant.

Results

DEG/DEM identification

After compared with normal bladder tissues, the results of GEO2R analysis showed that there were totally 159 DEMs (Figure 1A), 4,013 upregulated DEGs (Figure 1B) and 4,236 downregulated DEGs (Figure 1C). Among them, 18 DEMs appeared in the results of two datasets at least, so they could be identified as significant DEMs. Interestingly, miR-145 was the only DEM in all three datasets simultaneously. The following DEMs were found in every two different datasets: miR-429, miR-487b, miR-494, miR-222, miR-335, miR-202, miR-212, miR-200a, miR-125b, miR-210, miR-214, miR-182, miR-99a, miR-100 and miR-138. Subsequently, we further compared clinical stages T2–T4 versus Ta–T1 and high histological grade versus low grade to identify DEMs which might be related to aggressive BC. Interestingly, only miR-601 and hsa-let-7c appeared in two dataset intersections (Figure S1).

Using the MiRWalk 2.0-validated-target miRNA-gene retrieval system, we got 9,053 candidate genes of the 18 significant DEMs. The intersection number of these candidate genes and the upregulated DEGs which appeared in two or more datasets was 121, while the intersection number of these candidate genes and the downregulated DEGs which appeared in two or more datasets was 199. Therefore, the 121 upregulated and the 199 downregulated genes were identified as the final sets of significant DEGs.

GO and pathway enrichment

The GO ontology contains three terms: cellular component, molecular function and biological process. The three terms mentioned earlier were used to identify the key biological functions. The results demonstrated that the most significant GO terms for upregulated significant DEGs were “nucleoplasm,” “protein binding” and “cell division.” Whereas for the downregulated significant DEGs, the terms “costamere,” “heparin binding” and “cell–matrix adhesion” turned to be important (Table 2).

Furthermore, the KEGG pathway analysis indicated that “cell cycle,” “MAPK signaling pathway,” “pathways in cancer” and “proteoglycans in cancer” pathways played an essential role in BC pathogenesis (Table 2).

PPI network

The PPI networks were established separately by the significant upregulated DEGs (Figure 2A) and significant downregulated DEGs (Figure 2B). As for the former, 64 nodes and 172 edges in total constituted the PPI network. As for the latter, the network was composed of 73 nodes and 80 edges.

In a single PPI network, the more edges a gene has, the more important role it plays (like a seed). We utilized the parameter “degree” to calculate edge counts of every single
gene in a PPI network. The top 5% degree genes are listed in Table 3, which were assessed as the hub genes.

MiRNA–mRNA regulatory network

As illustrated in Figure 3, the target genes were predicted using miRanda and miRTarbase, among which two or more miRNAs might target the same mRNA. For instance, both miR-92a and miR-145 had the interactions with cyclin-dependent kinase 4 (CDK4). There were 12 mRNA nodes that might interact with at least two miRNAs.

Validation and Kaplan–Meier curves

After comparing the expression level of miRNAs in the TCGA dataset, we found that 13 among the 18 significant DEMs were according to the results in GEO databases. In contrast, the expression of miR-92, miR-494, miR-429, miR-202 and miR-212 was not significantly different between BC samples and normal control bladder tissues. The relationship between miRNAs and the clinical TNM stages was also tested in the TCGA dataset by using chi-square analysis. The results of the significant DEMs are summarized in Table 4.

We subsequently drew Kaplan–Meier plots (Figure 4) based on the TCGA survival data. The plots indicated that eight significant DEMs, such as miR-99a, miR-100, miR-125b, miR-138, miR-145, miR-200, miR-214 and miR-487b, were found to be related to overall survival (OS) in BC patients. The higher expression of the abovementioned miRNAs meant the poor OS in patients with BC except miR-138 and miR-200a.

Discussion

In the current study, 18 significant DEMs, 121 upregulated DEGs and 199 downregulated DEGs were identified after integrating and screening multiple datasets. The results of
functional enrichment analysis indicated that the significant DEGs in BC were related to classical cancer pathways such as cell cycle and MAPK signaling pathways. The key DEGs such as CDK1, CCNB1, VCL and PRKCA were defined as the hub genes in the PPI networks. Significantly, most of the DEMs were correlated with tumor stages and OS in the TCGA datasets, which meant that the miRNAs have high clinical application value in the prognosis of BC.

BC shares many acknowledged pathways with other human cancers such as p53 and MAPK pathways. With the growing in-depth studies of BC, people have found a great deal of key molecules at gene, transcription regulation and protein interaction level. In these complicated processes, miRNAs nearly take part in all key cellular pathways because one miRNA can interact with many mRNAs and one mRNA can also interact with a lot of miRNAs. Intriguingly, miR-145 was the only one significant DEM that was identified in all three different datasets. We assumed that the source of heterogeneity might be ethnic and sample size. The expression level of miR-145 was higher in BC tissue and cell line than normal control.16,17 Minami et al18 reported that miR-145 could negatively regulate Warburg effect by silencing KLF4 and PTBP1. Long noncoding RNA (lncRNA) can also interact with miRNA in cancer pathways. LncRNA UCA-1 could negatively regulate Warburg effect by silencing KLF4 and PTBP1. Long noncoding RNA (lncRNA) can also interact with miRNA in cancer pathways. LncRNA UCA-1 could negatively regulate Warburg effect by silencing KLF4 and PTBP1. Long noncoding RNA (lncRNA) can also interact with miRNA in cancer pathways. LncRNA UCA-1 could negatively regulate Warburg effect by silencing KLF4 and PTBP1. Long noncoding RNA (lncRNA) can also interact with miRNA in cancer pathways. LncRNA UCA-1 could negatively regulate Warburg effect by silencing KLF4 and PTBP1. Long noncoding RNA (lncRNA) can also interact with miRNA in cancer pathways. LncRNA UCA-1 could negatively regulate Warburg effect by silencing KLF4 and PTBP1. Long noncoding RNA (lncRNA) can also interact with miRNA in cancer pathways. LncRNA UCA-1 could negatively regulate Warburg effect by silencing KLF4 and PTBP1. Long noncoding RNA (lncRNA) can also interact with miRNA in cancer pathways. LncRNA UCA-1 could negatively regulate Warburg effect by silencing KLF4 and PTBP1. Long noncoding RNA (lncRNA) can also interact with miRNA in cancer pathways.

Category	Description	Gene counts	Adjusted P-value	
Upregulated gene	GO:0005654, CC	Nucleoplasm	49	4.40E-09
	GO:0005634, CC	Nucleus	65	2.20E-06
	GO:0000777, CC	Condensed chromosome kinetochore	7	8.70E-04
	GO:0005819, CC	Spindle	8	9.30E-04
	GO:0030496, CC	Midbody	8	1.10E-03
	GO:0005515, MF	Protein binding	89	1.40E-06
	GO:0003682, MF	Chromatin binding	16	6.00E-06
	GO:0005524, MF	ATP binding	26	1.10E-03
	GO:0051301, BP	Cell division	19	1.40E-08
	GO:0007067, BP	Mitotic nuclear division	14	4.70E-06
	GO:0007062, BP	Sister chromatid cohesion	9	1.30E-04
	GO:0016925, BP	Protein sumoylation	8	3.00E-03
	GO:0007052, BP	Mitotic spindle organization	5	8.40E-03
	KEGG: hsa04110	Cell cycle	12	6.20E-08
Downregulated gene	GO:0043034, CC	Costamere	7	7.10E-06
	GO:0043034, CC	Focal adhesion	18	1.00E-04
	GO:0015629, CC	Actin cytoskeleton	12	1.60E-03
	GO:0005576, CC	Extracellular region	35	3.90E-03
	GO:0007062, CC	Extracellular exosome	51	4.30E-03
	GO:0008201, MF	Heparin binding	11	3.20E-03
	GO:0003779, MF	Actin binding	13	8.50E-03
	GO:0007160, BP	Cell–matrix adhesion	8	4.30E-02
	KEGG: hsa04110	MAPK signaling pathway	14	1.80E-03
	KEGG: hsa05200	Pathways in cancer	15	2.10E-02
	KEGG: hsa05205	Proteoglycans in cancer	10	3.80E-02

Abbreviations: BP, biological process; CC, cellular component; GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; MF, molecular function.
Figure 2 PPI network of DEGs.

Notes: (A) Upregulated DEGs; (B) downregulated DEGs.

Abbreviations: DEGs, differentially expressed genes; PPI, protein–protein interaction.
Ensembl gene ID	Gene symbol	Full gene name	Degree
ENSG00000170312	CDK1	Cyclin-dependent kinase 1	25
ENSG00000134057	CCNB1	Cyclin B1	21
ENSG00000072501	SMC1A	Structural maintenance of chromosomes 1A	16
ENSG00000117399	CDC20	Cell division cycle 20	14
ENSG0000035403	VCL	Vinculin	8
ENSG00000154229	PRKCA	Protein kinase C alpha	8
ENSG00000170345	FOS	Fos proto-oncogene, AP-1 transcription factor subunit	7
ENSG00000168610	STAT3	Signal transducer and activator of transcription 3	5

Abbreviation: PPI, protein–protein interaction.

Previously reported miRNAs, there are also some miRNAs not reported in BC such as miR-335, miR-125b, miR-494 and miR-487b. We found that the higher miR-125b and miR-487b expression suggested the poor survival based on 404 patients in TCGA. The mechanisms and in-depth pathways of these miRNAs should be investigated by experiments in the future.

By constructing the PPI network, we can recognize the key genes which miRNAs may interact with. Since the genes were filtered by the 18 significant DEMs’ potential targets, there were still 121 upregulated and 199 downregulated genes. Therefore, when it comes to all the 159 DEMs, the enormous and complicated miRNA–mRNA regulatory network can be imaginable. The hub genes of a network are always important like “seeds,” which connect the different signal pathways. In the current study, we identified several hub genes. Among the downregulated DEGs, the vinculin and protein kinase C alpha were identified. The vinculin was...
Table 4 Results of the significant DEM expression validation and the relationship with bladder cancer clinical stages in TCGA dataset

miRNA ID	Higher expression	P-value (t-test)*	Pathological stages	P-value (chi-square)
hsa-miR-145-3p	Normal	1.73e-06	Pathological T/N/M status	4.76e-04/8.19e-05/9.62e-04
hsa-miR-21-3p	Tumor	1.79e-04	Pathological M status	7.27e-03
hsa-miR-487b-3p	Normal	1.92e-11	Pathological T status	3.87e-03
hsa-miR-494-3p	–	–	Pathological T status	2.65e-02
hsa-miR-222-3p	Tumor	4.10e-02	Pathological M status	5.54e-03
hsa-miR-335-3p	Tumor	1.64e-06	–	–
hsa-miR-212-3p	–	–	Pathological T/M status	2.21e-03/1.60e-02
hsa-miR-200a-3p	Tumor	8.14e-05	Pathological T/M status	1.41e-03/2.73e-06
hsa-miR-210-3p	Tumor	3.43e-08	Pathological T/N status	3.01e-02/4.59e-03
hsa-miR-214-3p	–	–	Pathological T/M status	1.84e-07/1.74e-03
hsa-miR-182-3p	Tumor	1.59e-02	Pathological M status	2.34e-06
hsa-miR-100-3p	–	–	Pathological T status	4.15e-02
hsa-miR-145-5p	Normal	1.33e-04	Pathological T/N/M status	7.14e-03/1.79e-03/7.26e-05
hsa-miR-21-5p	Tumor	2.42e-06	Pathological M status	5.83e-06
hsa-miR-222-5p	Tumor	1.43e-02	–	–
hsa-miR-335-5p	Tumor	5.22e-05	Pathological M status	1.85e-02
hsa-miR-200a-5p	Tumor	7.68e-05	–	–
hsa-miR-125b-5p	Normal	4.25e-02	Pathological T/N/M status	3.26e-05/8.07e-04/5.08e-06
hsa-miR-214-5p	Tumor	9.80e-03	Pathological T/N/M status	5.29e-09/2.15e-03/5.31e-07
hsa-miR-182-5p	Tumor	1.03e-06	Pathological T/N/M status	6.18e-05
hsa-miR-99a-5p	Normal	1.94e-02	Pathological T/N/M status	1.63e-07/1.10e-03/4.17e-04
hsa-miR-100-5p	Normal	7.01e-04	Pathological T/N/M status	6.86e-04/6.83e-04/5.99e-07
hsa-miR-138-5p	Tumor	9.07e-03	Pathological T/N status	1.24e-02/3.73e-02

Note: *Independent two-sample Student’s t-test.

Abbreviations: DEMs, differentially expressed miRNAs; miRNAs, microRNAs; TCGA, The Cancer Genome Atlas.

Figure 4 (Continued)
reported as a potential prognostic biomarker and the target for prostate cancer cell migration.35 Whereas in the upregulated DEGs, the hub gene \textit{CDK1} and cyclin B1 are associated with cell cycle and proliferation.36 Within the miRNA–mRNA network, we constructed that the key mRNAs such as \textit{CDK6} and \textit{CDK4} were cell-cycle-related modulators, while \textit{BCL2L11} was related to autophagy and apoptosis.37 In conclusion, the miRNA regulatory network may provide potential targets for new drug development and treatment.

Although this study first investigated miRNAs’ regulatory role in BC by integrating multiple microarray profiles, some limitations should be clarified. First, the gender, races of BC patients, tumor stages or grades were different in the included datasets, which may cause heterogeneity. Second, the source of microarray is only tissue. Body fluids such as serum, urine, may contain circulating miRNAs, which are noninvasive to be applied in the clinical practice. Third, although our results were validated in TCGA dataset, the integrating analysis results were not validated by the experiments such as qRT-PCR and functional experiments in vitro. Further studies are required to validate our results by the experiments on larger sample sizes and clinical follow-up in different ethnicities.

Conclusion

In this study, we found a total of 18 DEMs which may play key roles in the pathways such as cell cycle and MAPK pathway in the regulatory networks of BC. The higher expression of miR-99a, miR-100, miR-125b, miR-145, miR-214 and miR-487b or the lower expression of miR-138 and miR-200a can indicate poor survival in the prognosis of BC. Further experimental studies are required to test our results.

Disclosure

The authors report no conflicts of interest in this work.

References

1. Siegel RL, Miller KD, Jemal A. Cancer statistics. \textit{CA Cancer J Clin.} 2018;68(1):7–30.
2. Park JC, Hahn NM. Bladder cancer: a disease ripe for major advances. \textit{Clin Adv Hematol Oncol.} 2014;12(12):838–845.
3. James ND, Hussain SA, Hall E, et al; BC2001 Investigators. Radiotherapy with or without chemotherapy in muscle-invasive bladder cancer. \textit{N Engl J Med.} 2012;366(16):1477–1488.
4. Goodison S, Rosser CJ, Urquidi V. Bladder cancer detection and monitoring: assessment of urine- and blood-based marker tests. Mol Diag Ther. 2013;17(2):71–84.

5. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–297.

6. Huang T, Alvarez A, Hu B, Cheng SY. Noncoding RNAs in cancer and cancer stem cells. Chin J Cancer. 2013;32(11):582–593.

7. Shi Z, Wei Q, Zhang M, She J. MicroRNAs in bladder cancer: expression profiles, biological functions, regulation, and clinical implications. Crit Rev Eukaryot Gene Expr. 2014;24(1):55–75.

8. Fabris L, Ceder Y, Chinnaiyan AM, et al. The potential of microRNAs as prostate cancer biomarkers. Eur Urol. 2016;70(2):312–322.

9. Fendler A, Stephan C, Yousef GM, Kristiansen G, Jung K. The translational potential of microRNAs as biofluid markers of urological tumours. Nat Rev Urol. 2016;13(12):734–752.

10. Dweep H, Gretz N. miRWalk2.0: a comprehensive atlas of microRNA-target interactions. Nat Methods. 2015;12(8):697.

11. Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44–57.

12. Szklarczyk D, Morris JH, Cook H, et al. The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res. 2017;45(Database issue):D362–D368.

13. Betel D, Koppal A, Agius P, Sander C, Leslie C. Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol. 2010;11(8):R90.

14. Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–2504.

15. Anaya J. OncoLnc: linking TCGA survival data to mRNAs, miRNAs, and lncRNAs. PeerJ Comput Sci. 2016;2:e67.

16. Fujii T, Shimada K, Tatsumi Y, et al. microRNA-145 promotes differentiation in human urothelial carcinoma through down-regulation of syndecan-1. BMC Cancer. 2015;15:818.

17. Avgeris M, Mavridis K, Tokas T, Stravodimos K, Fragoulis EG, Avgeris N. Uncovering the clinical utility of miR-143, miR-145 and miR-224 for predicting the survival of bladder cancer patients following treatment. Carcinogenesis. 2015;36(5):528–537.

18. Minami K, Taniguchi K, Sugito N, et al. MiR-145 negatively regulates Warburg effect by silencing KLF4 and PTBP1 in bladder cancer cells. Oncotarget. 2017;8(20):33064–33077.

19. Xue M, Pang H, Li X, Li H, Pan J, Chen W. Long non-coding RNA urothelial cancer-associated 1 promotes bladder cancer cell migration and invasion by way of the has-miR-145-5p/PTEN pathway. Cancer Sci. 2016;107(3):371–378.

20. Lei M, Xie W, Sun E, et al. microRNA-21 regulates cell proliferation and migration and cross talk with PTEN and p53 in bladder cancer. DNA Cell Biol. 2015;34(4):626–632.

21. Zhang L, Xu J, Yang G, Li H, Guo X. miR-202 inhibits cell proliferation, migration, and invasion by targeting EGFR in human bladder cancer. Oncol Res. Epub 2018 Jan 3.

22. Zhang Q, Wang W, Xu W, et al. Genetic variations in the 3'-untranslated regions of genes involved in the cell cycle and apoptosis pathways affect bladder cancer risk. Cancer Genomics Proteomics. 2018;15(1):51–72.

23. Zeng LP, Hu ZM, Li K, Xia K. miR-222 attenuates cisplatin-induced cell death by targeting the PPG2R2A/Akt/mTOR Axis in bladder cancer cells. J Cell Mol Med. 2016;20(3):559–567.

24. Yang J, Liu Y, He A, et al. Hsa-miR-429 promotes bladder cancer cell proliferation via inhibiting CDKN2B. Oncotarget. 2017;8(40):68721–68729.

25. Huang C, Zeng X, Jiang G, et al. XIAPI BIR domain suppresses miR-200a expression and subsequently promotes EGFR protein translation and anchorage-independent growth of bladder cancer cells. J Hematol Oncol. 2017;10(1):6.

26. Yang X, Shi L, Yi C, Yang Y, Chang L, Song D. MiR-210-3p inhibits the tumor growth and metastasis of bladder cancer via targeting fibroblast growth factor receptor-like 1. Am J Cancer Res. 2017;7(8):1738–1753.

27. Wang J, Zhang X, Wang L, et al. MicroRNA-214 suppresses oncogenesis and exerts impact on prognosis by targeting PDRG1 in bladder cancer. PLoS One. 2015;10(2):e0118086.

28. Papadopoulos EI, Scorilas A. Cisplatin and paclitaxel alter the expression pattern of miR-143/145 and miR-183/96/182 clusters in T24 bladder cancer cells. Clin Transl Sci. 2015;8(6):668–675.

29. Tsai TF, Lin IF, Chou KY, Lin YC, Chen HE, Hwang TI. miR-99a-5p acts as tumor suppressor via targeting to mTOR and enhances RAD001-induced apoptosis in human urinary bladder urothelial carcinoma cells. Onco Targets Ther. 2018;11:239–252.

30. Morais DR, Reis ST, Viana N, et al. The involvement of mir-100 in bladder urothelial carcinogenesis changing the expression levels of mRNA and proteins of genes related to cell proliferation, survival, apoptosis and chromosomal stability. Cancer Cell Int. 2014;14(1):119.

31. Yang R, Liu M, Liang H, et al. miR-138-5p contributes to cell proliferation and invasion by targeting Survivin in bladder cancer cells. Mol Cancer. 2016;15(1):82.

32. Li DY, Hao XY, Ma TM, Dai HX, Song YS. The prognostic value of platelet-to-lymphocyte ratio in urological cancers: a meta-analysis. Sci Rep. 2017;7:15387.

33. Li D, Hao X, Li J, et al. Dose-response relation between dietary inflammatory index and human cancer risk: evidence from 44 epide-miologic studies involving 1,082,092 participants. Am J Clin Nutr. 2018;107(3):371–388.

34. Mearini E, Poli G, Cochetti G, Boni A, Egidi MG, Brancosini S. Expression of urinary miRNAs targeting NLRs in inflammasomes in bladder cancer. Onco Targets Ther. 2017;10:2665–2673.

35. Ai J, Jin T, Yang L, et al. Vinculin and filamin-C are two potential prognostic biomarkers and therapeutic targets for prostate cancer cell migration. Oncotarget. 2017;8(47):82430–82436.

36. Harley ME, Allan LA, Sanderson HS, Clarke PR. Phosphorylation of Mel-1 by CDK1-cyclin B1 initiates its Cdc20-dependent destruction during mitotic arrest. EMBO J. 2010;29(14):2407–2420.

37. Dai Y, Grant S. BCL2L11/Bim as a dual-agent regulating autophagy and apoptosis in drug resistance. Autophagy. 2015;11(2):416–418.
Supplementary materials

Table S1 Detailed information of patients in each included GEO datasets

Accession/ID	Ethnic group	Number of males/females	Range of age (years)	Number of BC tissues with different histological grades	Number of NMIBC/MIBC tissues
GSE36121	Caucasian	22/2	47–80	G1: 3, G2: 6, G3: 7	NMIBC: 13, MIBC: 3
GSE39093	Chinese Han	10/0	55–73	NR	NMIBC: 5, MIBC: 5
GSE68594	Caucasian	39/5	36–86	G1: 4, G2: 14, G3: 15	NMIBC: 18, MIBC: 15
GSE27448	Caucasian	15/0	44–86	G1: 0, G2: 3, G3: 7	NMIBC: 6, MIBC: 4
GSE40355	NR	20/2	47–80	G1: 3, G2: 6, G3: 7	NMIBC: 13, MIBC: 3
GSE52519	NR	11/1	43–77	G1: 0, G2: 4, G3: 5	NMIBC: 3, MIBC: 6

Abbreviations: BC, bladder cancer; GEO, Gene Expression Omnibus; MIBC, muscle-invasive bladder cancer; NMIBC, non-muscle-invasive bladder cancer; NR, not reported.

Figure S1 Venn diagram of DEMs (A: Ta–T1 vs T2–T4; B: G3 vs G1) in different datasets.

Notes: (A) GSE36121: hsa-miR-135b, hsa-miR-508, hsa-miR-7, hsa-miR-21, hsa-miR-615, hsa-miR-124, hsa-miR-106b, hsa-miR-98, hsa-miR-132, hsa-miR-30e, hsa-miR-130a, hsa-miR-193a, hsa-miR-582, hsa-miR-151, hsa-let-7c. GSE39093: hsa-miR-1308, hsa-miR-192, hsa-miR-574, hsa-miR-720, hsa-miR-92b. GSE68594: hsa-let-7b, hsa-let-7c, hsa-let-7d, hsa-let-7l, hsa-let-7i, hsa-miR-155, hsa-miR-196, hsa-miR-429, hsa-miR-579. (B) GSE36121: hsa-miR-1224-5p, hsa-miR-1225-5p, hsa-miR-1228, hsa-miR-125a-3p, hsa-miR-134, hsa-miR-135a, hsa-miR-135b, hsa-miR-146a, hsa-miR-150, hsa-miR-188-5p, hsa-miR-192, hsa-miR-193a-3p, hsa-miR-194, hsa-miR-197, hsa-miR-21, hsa-miR-224, hsa-miR-31, hsa-miR-345, hsa-miR-362-5p, hsa-miR-363, hsa-miR-371-5p, hsa-miR-423-5p, hsa-miR-508b-5p, hsa-miR-518c, hsa-miR-532-3p, hsa-miR-574-5p, hsa-miR-575, hsa-miR-582-5p, hsa-miR-598, hsa-miR-601, hsa-miR-622, hsa-miR-629, hsa-miR-663, hsa-miR-671-5p, hsa-miR-7, hsa-miR-801, GSE68594, hsa-let-7d, hsa-let-7l, hsa-let-7i, hsa-miR-122a, hsa-miR-184, hsa-miR-196a1, hsa-miR-196a2, hsa-miR-203, hsa-miR-206, hsa-miR-223, hsa-miR-34a, hsa-miR-595, hsa-miR-601, hsa-miR-611-P.

Abbreviations: DEMs, differentially expressed miRNAs; miRNAs, microRNAs.