Ethnopharmacological survey among migrants living in the Southeast Atlantic Forest of Diadema, São Paulo, Brazil

Daniel Garcia1*, Marcus Vinicius Domingues1, Eliana Rodrigues2

Abstract

Background: Understanding how people of diverse cultural backgrounds have traditionally used plants and animals as medicinal substances during displacements is one of the most important objectives of ethnopharmacological studies. An ethnopharmacological survey conducted among migrants living in the Southeast Atlantic Forest remnants (Diadema, São Paulo, Brazil) is presented herein.

Methods: Ethnographical methods were used to select and interview the migrants, and botanical and zoological techniques were employed to collect the indicated resources.

Results: We interviewed five migrants who described knowledge on 12 animals and 85 plants. Only 78 plants were present in Diadema, they belong to 37 taxonomic families; 68 were used exclusively for medicinal purposes, whereas 10 were reported to be toxic and/or presented some restriction of use. These taxa were grouped into 12 therapeutic categories (e.g., gastrointestinal disturbances, inflammatory processes or respiratory problems) based on the 41 individual complaints cited by the migrants. While the twelve animal species were used by the migrants to treat nine complaints; these were divided into six categories, the largest of which related to respiratory problems. None of the animal species and only 57 of the 78 plant species analysed in the present study were previously reported in the pharmacological literature; the popular knowledge concurred with academic findings for 30 of the plants. The seven plants (Impatiens hawkeri W. Bull., Artemisia canphorata Vill., Equisetum arvensis L., Senna pendula (Humb. & Bonpl. ex Willd.) H.S. Irwin & Barneby, Zea mays L., Fevilleda passiflora Vell. and Croton fusescens Spreng) and the two animals (Attap sexdens and Periplaneta americana) that showed maintenance of use among migrants during their displacement in Brazilian territory, have not been studied by pharmacologists yet.

Conclusions: Thus, they should be highlighted and focused in further pharmacology and phytochemical studies, since the persistence of their uses can be indicative of bioactive potentials.

Background

Cultural mixing mediated by the migration of people around the world has generated increasing interest in recent years within the field of ethnopharmacology [1]. Medicinal plants have been used by human societies throughout history, also across geographical barriers [2]. The continuous use of certain plants and animals for medicinal purposes over time reflects their potential therapeutic value. Such substances become even more promising when they are persistently used by migrating human groups despite the considerable distances travelled and the consequent exposure to different cultures and vegetal resources. Numerous studies have collected information on medicinal plants from ethnic groups who migrated from Mexico to the U.S.A. [3,4]; from Haiti to Cuba [5]; from Africa to South America [6]; from Africa to Brazil [7]; from Colombia to London [8]; from Suriname to the Netherlands [9]; from Albania to southern Italy [10,11]; from Germany to eastern Italy [12]; and from Europe and Africa to eastern Cuba [1,13]. However, few studies have focused on migration within a country, such as that described by Rodrigues et al. [14] regarding migrants from northeastern Brazil who currently occupy the southeast.

* Correspondence: danielgarciafic@hotmail.com
1Department of Biology, Universidade Federal de São Paulo, Rua Arthur Ridel, 275 CEP, 09941-510, Diadema, S.P., Brazil
Full list of author information is available at the end of the article

© 2010 Garcia et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Brazil offers a favourable environment for studies focused on migration and medicinal plants/animals because it possesses a large area of 8,514,876.599 km\(^2\) and boasts high indices of cultural and biological diversity. Brazil is inhabited by rural and urban populations of 232 indigenous ethnic groups, 1,342 Quilombola groups (descendants of Afro-Brazilian people), and mestizo groups derived from the miscegenation of Indian, Black, European and Asiatic people. Brazil also houses 55,000 species of higher plants and almost 7% of global animal diversity was described (ca. 100,000 out of 1.5 million), though some estimates suggest that this number is significantly higher. Migration between regions of this country encourages contact with the rich biological and cultural diversity and allows interpersonal interactions that contribute to the transformation of local medicinal therapies.

According to Simões and Lino [20], the original Atlantic Forest covered approximately 1.3 million km\(^2\), spanning 17 Brazilian states from south to northeast; however, it currently covers only 14 states, and its area has been reduced to 65,000 km\(^2\). Despite considerable fragmentation, the Atlantic Forest still contains more than 20,000 plant species (8,000 endemic) and 1,361 animal species (567 endemic). It is the richest forest in the world in wood plants per unit area; the southern Bahia, for example, holds a record of 454 different species/ha [21].

The objective of this study was to perform an ethnopharmacological survey among migrants from northeastern and southeastern Brazil who currently live in Atlantic Forest remnants in the municipality of Diadema (São Paulo state, southeastern Brazil). We attempted to understand how the medicinal use of certain plant and animal changed as a result of the migrants’ contact with new therapies, diseases and natural resources found in Diadema. These findings were classified as either: maintenance, replacement, incorporation or discontinuation of plants/animals use.

These objectives are in agreement with several stated goals of ethnopharmacology, namely, to investigate how migration can influence knowledge of medicinal plants/animals, the extent to which displaced people incorporate new species into their therapeutic methods, and, in particular, why individuals sometimes persistently adhere to old customs, before or even after they are exposed to new possibilities. Therefore, we adopt the hypothesis that the use of plants/animals as medicines is influenced by migratory movements, and access to natural resources available in the municipality of Diadema.

Methodology

Fieldwork

One of the authors (D. Garcia) spent 14 months (September 2007 to November 2008) in the municipality of Diadema, São Paulo, SP, Brazil (23°41’10"S, 46°37’22"W) (Figure 1), selecting, observing and interviewing migrants living in the Atlantic Forest remnants. Diadema is located 16 kilometres from the capital São Paulo, covers an area of 30.65 km\(^2\), and is occupied by 394,266 inhabitants [15], most of whom are migrants from other regions of Brazil. The municipality has a literacy rate of 6.8% [22], and its Human Development Index is 0.79 [23]. The Atlantic Forest remnants found in this city are rich in plants that are either native or introduced by the influence of those migrants present both in urban and rural areas.

Migrants who had relevant knowledge regarding the use of plants and animals for medicinal purposes were selected for interviews following the purposive sampling method [24]. Thus, we sought information about the presence of migrants from herb traders, health care professionals, and some local prayer-makers. According to Bernard [24], this sampling is also known as judgment sampling, utilized during qualitative research in particular in those populations that are difficult to be localized, the researcher selects interviewees based on their trial that they meet the criteria for the study of the phenomenon of interest. After identifying potential interviewees, the researcher visited them to determine whether they did indeed possess knowledge on medicinal plants and whether they wanted to take part in this study. The ethnopharmacological study was approved by the Ethics Committee of Universidade Federal de São Paulo.
(UNIFESP’s Ethics Committee on Research 1969/07) and Conselho de Gestão do Patrimônio Genético (No. 02000.001 049/2008-71). The interviewees also signed consent forms granting permission to access their knowledge and collect botanical and zoological material.

Personal and ethnopharmacological data from the interviewees were obtained through informal and semi-structured interviews [24] that addressed the following topics: personal details and migration history (name, sex, age, religion, marital status, place of birth, migration, main occupation, grade of schooling) as well as ethnopharmacology (name of natural resource, use, part used, formula, route of administration, contraindications, dosages, restrictions of use). The author (D. Garcia) has visited each interviewee at least 12 times, in order to fill in the forms mentioned above, as well as to understand their processes of acquiring knowledge in depth.

Each medicinal plant was collected in the presence of the person who described it during the interviews, in accordance with the methods suggested by Lipp [25]. The plants’ scientific names were determined by specialists from the Instituto de Botânica do Estado de São Paulo (IB), and vouchers were deposited at the Herbário Municipal de São Paulo (PMSP). The animals collected were placed in glass vials containing 70% ethyl alcohol, and their subsequent identification and deposit were performed by zoologists from the Museum of Zoology, Universidade de São Paulo (MZUSP) and the Bioscience Institute from Universidade de São Paulo (IB-USP).

When interviewees cited plants and animals that were used only in their cities of origin, i.e., not available in Diadema, photos from the literature and other information (e.g., popular name, habits and habitat) were used to identify them to at least the genus level. These organisms are marked with asterisks throughout the text and in Table 1. The Herpetofauna of the Northeast Atlantic Forest [26] and The Herpetofauna of Caatingas and Altitudes Areas of the Brazilian Northeast [27] were used as identification guides. For plants, we also consulted Medicinal Plants in Brazil - Native and Exotic [28].

Database survey
For the plants and animals identified to the species level, we searched the bibliographic databases PUBMED [29] and SCIFINDER [30] to determine whether they had been targets of previous pharmacological studies. To determine the origin of each plant species, we consulted the Dictionary of Useful Plants: exotic and native [31].

Dynamics of use
During our field work, we made an effort to understand the dynamics of use for each resource and classified them into the following four categories: maintenance of use (resource used for the same purpose in the migrant’s city of origin and in Diadema), replacement (resources that were replaced when migrants arrived in Diadema because the original product was not available in Diadema or was less effective than the new resource), incorporation (resources used for the first time in Diadema to treat diseases common to larger cities, such as hypertension, diabetes and anxiety, which were not common in their homeland), and finally discontinued use (resources that are no longer used in Diadema, usually because they are not available).

Data analysis
The level of homogeneity between plant information provided by different migrants was calculated using the Informants’ Consensus Factor, Fic [32]. This term is calculated as $Fic = \frac{Nur - Nt}{(Nur - 1)}$, where Nur is the number of use reports from informants for a particular plant-usage category and Nt is the number of taxa or species used for that plant usage category across all informants. Values range between 0 and 1, with 1 indicating the highest level of informant consent. For instance, if certain taxa are consistently used by informants, then a high degree of consensus is reached and medicinal traditions are viewed as well-defined [33].

Results and Discussion
Migrant Interviews
Despite the fact that Diadema is composed by thousands of migrants, we observed that only a few have retained traditional knowledge pertaining to medicinal plants and animals. Some considerations should be made, in order to justify our decision of conducting a qualitative approach, in depth, with the sample of interviewees obtained during the two months prior to the start of the study. During this time we observed that in many cases, this knowledge has fallen into disuse because of: a) a cultural adaptation to the new city, b) the ease of conventional medical care, c) forest degradation, which restricts use of local plants and animals, furthermore d) many migrants have shown concern to participate in the study, since in the past they suffered persecution from government agencies and physicians, who eventually restrained their medical practice.

The five selected interviewees migrated from northeast and southeast Brazil and established themselves in Diadema in the 1940s. Three were born in the northeast: two in Pernambuco state (coded as PE1 and PE2) and one in Sergipe state (SE1). The two remaining migrants were born in the southeast: one in Minas Gerais state (MG1) and one in inland São Paulo state (SP1) (Figure 1). All interviewees were Catholic, married and retired, with the exception of PE1 and PE2 who sell medicinal plants. Their average age was approximately 68 years old (ranging from 53 to 80 years old), and their level of...
education was semi-illiterate to illiterate. They learned about the medicinal uses of plants and animals from their parents and grandparents (Brazilian natives, European and African descendants) in their homelands. All interviewees arrived in the city of Diadema as adults, and some had migrated through different regions of Brazil, accumulating knowledge on natural resources from human and biological sources. In Diadema, they acquired knowledge from neighbours, books, media (radio, television, magazines), and personal experiences.

Plants: dynamics of use

The migrants described their knowledge of 85 plant specimens. As can be seen in Table 2, 78 of them were available in Diadema and were collected, resulting in 65 plant species, the remaining 13 could only be identified to the generic level. The plants belong to 37 taxonomic families, with Asteraceae (16 species), Lamiaceae (8) and Euphorbiaceae (7) as the most common. Previous studies have shown that Asteraceae species are the group most commonly reported to have potential pharmacological properties, not only in the Atlantic Forest [34-36] but also in other Brazilian biomes such as the Amazon Forest [37] the pantanal wetlands [38] and the cerrado savannahs [39]. In a review focusing on plants with possible action/effects on the central nervous system that were indicated by 26 Brazilian indigenous peoples occupying different Brazilian biomes [14], Asteraceae was the second most commonly cited family. The same pattern has been detected in other countries, such as Mexico [40]. One factor that may explain the common use of this taxonomic family is the large number of species belonging to it - about 20,000 [41]. Asteraceae also has a wide geographical distribution, both in Brazil and throughout the world [42], which facilitates its use by various cultures.

From the 65 species identified, it was observed that 33 are native to Brazil while the other 32 are exotic, demonstrating the great floral diversity of the region, which was influenced by European and African people during the civilizing process in Brazil. Furthermore, of the 78 specimens recorded, 54% (42) are spontaneous or were already available in Diadema when interviewees arrived there, while 46% (36) were grown by the migrants, acquired in free markets, or brought from other regions of the country during migration. Below, we describe the four ‘dynamics of use’ categories observed during this study.

Maintenance of use

According to the interviewees, 68 of the 78 specimens cited in the present study, were used in their homelands

Table 1 The 12 animals indicated by migrant PE2, their popular and scientific names, complaints (part used), formula and route of administration

Popular name	Scientific name or only genus (family/class)	Complaint (part used) - formula - route of administration
1- Snake (cobra)*	Chronius sp., Laphys sp. (Colubridae/Reptilia)* or Bothrops sp. (Viperidae/Reptilia)*	Bronchitis (skin) - powder - ingested
2- Rattlesnake (cascavel)*	Crotalus cf. dunsus L. (Viperidae/Reptilia)*	Back pain (fat) - in natura - ingested
3- Cururu frog (sapo-cururu)*	Rhinella sp. (Bubonidae/Amphibia)*	Cancer of skin (whole animal) - in natura; tie it on the cancer for some time each day - topic
4- Alligator (jacaré)*	Crocodylus sp., Cayman sp. or Paleosuchus sp. (Alligatoridae/Reptilia)*	Apoplexy (skin) - syrup of skin powder - ingested
5- Turtle (tartaruga)*	Geocelone sp. (Testudinidae/Reptilia)*	Bronchitis and asthma - (turtleshell) - powder - ingested
6- Capybara (capivara)*	Hydrochaeris cf. hydrochaeris L. (Hydrochaeridae/Mammalia)*	Bronchitis and asthma - (skin) - powder - ingested
7- Iguana (iguana)*	Iguana sp. or Iguana cf. iguana L. (Iguanidae/Reptilia)*	Osteoporosis and rheumatism (bone) - powder - ingested
8- Ant (formiga)*	Atta sexdens L. (Formicidae/Insecta) Garcia 002	Epilepsy (anthill) - in natura - ingested
9- Cockroach (barata)	Periplaneta americana L. (Blattidae/Insecta) Garcia 002	Bronchitis and asthma (whole animal) - powder - ingested
10- Water cockroach (barata d’água)*	Abedus sp., Belostama sp. or Diplonychus sp. (Belostomatidae/Insecta)*	Bronchitis and asthma (whole animal) - powder - ingested
11- Lizard (calango)*	Placosaoma sp. (Gymnophthalmidae/Reptilia)*	Wounds in the body (skin) - powder - ingested
12- Armadillo-ball (tatu-bola)*	Tolypeutes sp. (Dasypodidae/Mammalia)*	Wounds in the body (skin) - powder - ingested

Marked by (*) the two animals whose use had been maintained, while 10, marked by (°) are those whose uses have fallen into disuse.

* Animals that couldn’t be collected because were not available in Diadema.
Table 2 The 78 plant specimens used by five Diadema’s migrants (MG1, SP1, PE1, PE2, SE1)*.

Popular(s) name(s) (migrant)	Specimen (family) Voucher	Origin - geographical distribution - cultivated (C) or spontaneous (S)	Use (part)	Formula and route of administration	Pharmacological studies
1-Alamanda-amarela (SE1, PE1)*	*Allamanda catharica L. (Apocynaceae) Garcia 076	Native - Brazilian territory (C)	Toxic (whole plant)	Any oral dose is dangerous	Healing activity [65]
2-Alecrim (MG1)*	Rosmarinus officinalis L. (Lamiaceae) Garcia 060	Exotic - all countries with temperate climate (C)	Muscle pain* (leaves)	Decoction - massage	Antibacterial effects [66], antimicrobial effect [67], anti-inflammatory and anti-tumor effects [68], cause reduction of reproductive fertility in male rats [69], antinociceptive effect [70], mosquito repellent activity [71], antidiabetic and antioxidant properties [72]
3-Alecrim-do-campo (SE1)*	Baccharis dracunculifolia DC (Asteraceae) Garcia 021	Native - central Brazil (S)	Soothing (aerial parts)	Smoking - inhalation	Bactericidal activity [73], cytotoxic [74], antiulcerogenic [75], antimicrobial and antifungal [76] and anti-inflammatory [77]
4-Alfavaca (SP1)*	Ocimum selloi Benth. (Lamiaceae) Garcia 033	Native - northeast to south Brazil (C)	Soothing (aerial parts)	Infusion - inhalation	Mosquito repellent activity [78]
5-Algodão (MG1)*	Gossypium sp. (Malvaceae) Garcia 066	No data (C)	Anti-inflammatory (leaves)	Infusion - inhalation	Not consulted
6-Algodão-do-mato (MG1, PE2)*	Asclepias curassavica L. (Apocynaceae) Garcia 037	Exotic - Brazilian territory (S)	Toxic* (whole plant)	Any oral dose is dangerous	Cancer and warts treatment [79] and poisoning [80]
7-Almeirão-boca-de-leão (SE1)*	Hypochoris sp. (Asteraceae) Garcia 009	No data (S)	Liver pain (leaves)	In natura - ingestion	Not consulted
8-Amendoin-bravo, burra-leiteira (MG1, SP1, SE1, PE1, PE2)*	Euphorbia heterophylla L. (Euphorbiaceae) Garcia 047	Native - Americas (S)	Toxic* (whole plant)	Any oral dose is dangerous	Cytotoxic properties [81]
9-Anador (SE1)*	Alternanthera sp. (Amaranthaceae) Garcia 039	No data (C)	Soothing, headache, pain in the body (leaves)	Infusion - ingestion	Not consulted
10-Amica (PE1)*	Porophyllum ruderale (Jacq.) Cass. (Asteraceae) Garcia 075	Native - Brazilian territory (S)	Muscle pain* (aerial parts)	Decoction - massage	Anti-inflammatory [82]
11-Aroeira (MG1)*	Schinus terebinthifolius Raddi (Anacardiaceae) Garcia 035	Native - northeast to south Brazil (S)	Diuretic (leaves)	Infusion - ingestion	Antifungal activity [83] and antibacterial [84]
12-Arruda (MG1, PE1, PE2)*	Ruta graveolens L. (Rutaceae) Garcia 028	Exotic - Brazilian territory (C)	Earache and conjunctivitis/stye* (leaves)	In natura - topical	Antifertility [85], fungicide [86], cytotoxic [87], abortive [88], anti-tumour [89], anti-inflammatory [90], antiarrhythmic [91] and antimicrobial [92]
13-Assa-peixe (MG1, SE1)*	Vernonia sp. (Asteraceae) Garcia 048	No data (S)	Bronchitis (leaves)	Infusion - ingestion	Not consulted

Garcia et al. Journal of Ethnobiology and Ethnomedicine 2010, 6:29
http://www.ethnobiomed.com/content/6/1/29
Page 5 of 19
Table 2: The 78 plant specimens used by five Diadema’s migrants (MG1, SP1, PE1, PE2, SE1)*. (Continued)

No.	Specimen	Exotic/Local	Territory	Toxicity	Medicinal Use	Active Components
14	Avelóz (PE1, PE2)	Exotic - Brazilian territory (C)	Euphorbia tirucalli L. (Euphorbiaceae) Garcia 046	Toxic* (whole plant)	Earache (leaves)	Anti-tumour activity [93], cause eye injury [94] and effect against arthritis diseases [95]
15	Azaléia (PE1)	Toxic (whole plant)	Rhododendron simsii Planch. (Ericaceae) Garcia 043	Any oral dose is dangerous	Earache (leaves)	Antioxidative [96]
16	Bálsamo (MG1, SP1, PE1, PE2)	No data (C)	Sedum sp. (Crassulaceae) Garcia 038	Earache (leaves)	Earache (leaves)	Anti-ulcerogenic [97] and analgesic and anti-inflammatory [98]
17	Boldo-do-Chile, figatil (PE1, SE1)	Liver pain* (leaves)	Vernonia condensata Baker (Asteraceae) Garcia 001	Infusion - ingestion	Infusion - ingestion	Anti-hypertensive effects [99], antinociceptive [100], anti-amoebic activity [101] and hepatoprotector [102]
18	Brinco-de-princesa (SE1)	Sedative (flowers)	Alpinia zerumbet (Pers.) B.L. Burtt & R.M. Sm. (Zingiberaceae) Garcia 018	Sedative (flowers)	Sedative (flowers)	Antihypertensive effects [99], antinociceptive [100], anti-amoebic activity [101] and hepatoprotector [102]
19	Café (MG1)	Diabetes (ripe fruits)	Coffea arabica L. (Rubiaceae) Garcia 030	Infusion	Sinusitis (powder fruit)	Antioxidant [103]
20	Cana-do-brejo (SP1, PE2)	Laxative and rheumatism (leaves)	Costus spiralis (Jacq.) Roscoe (Costaceae) Garcia 019	Infusion or decoction - ingestion	Infusion or decoction - ingestion	Antiurolithiatic [104]
21	Cânfora (MG1, PE1, SE1)	Muscle pain (whole plant)	Artemisia canphorata Vill. (Asteraceae) Garcia 045	Decoction - massage	Decoction - massage	Anti-tumor activity [111]
22	Capim-limão (MG1, SE1, PE2)	Bronchitis* (leaves)	Cymbopogon citratus DC. - Stapf. (Poaceae) Garcia 026	Syrup - ingestion	Syrup - ingestion	Anti-inflammatory [105], larvicidal activity [106], antibacterial [107], antimalarial activity [108], insect repellent [109], hypoglycemic and hypolipidemic effects [110] and antimicrobial activity [92]
23	Capuchinha (SP1, MG1)	Ulcer and laxative (aerial parts)	Trapaonol majus L. (Tropaeolaceae) Garcia 057	Infusion or in natura - ingestion	Sedative (leaves)	Antitumor activity [111]
24	Carqueja (MG1)	Diabetes* (whole plant)	Baccharis trinera (Less) DC (Asteraceae) Garcia 027	Syrup - ingestion	Syrup - ingestion	Anti-inflammatory and analgesic activity [112], anti-inflammatory and analgesic activity [113], relaxant effect [114], anti-proteolytic and anti-hemorrhagic properties [115], antioxidative compounds [116], anti-diabetic activity [117] and for losing weight [118]
25	Carrapicho (SE1, MG1)		Acanthospermum australe (Loefl.) Kuntze (Asteraceae) Garcia 052			
26	Cavalinhina (MG1)	Diuretic (leaves)	Equisetum arvense L. (Equisetaceae) Garcia 051			
27	Cipó-cruz (SE1, PE2)		Serjania sp. (Sapindaceae) Garcia 012			
Table 2: The 78 plant specimens used by five Diadema’s migrants (MG1, SP1, PE1, PE2, SE1)*. (Continued)

No.	Plant Specimen	Scientific Name	Geographic Origin	Uses and Potential Activities			
28	Comigo-ninguém-pode (PE1)^a	Diefentachia sp. (Araceae)	Garcia 071	External allergies, wounds in the body and detoxifying (leaves)	Infusion - bath		
29	Dormideira (SE1)^b	Mimosa pudica L. (Fabaceae s.l.)	Garcia 069	Toxic (whole plant)	Any oral dose is dangerous	Not consulted	
30	Embaúba (MG1, SE1)^c	Cecropia pachystachya Tréc. (Cecropiaceae)	Garcia 068	Bronchitis* (powder fruit)	Syrup - ingestion	Treatment of respiratory diseases [128], antiulcerogenic activity [129], sedative and anticonvulsant effects [130], antiviral and antiherpes [131]	
31	Erva-cidreira (MG1, SE1, PE2)^d	Lippia alba (Mill.) N. E. Br. (Verbenaceae)	Garcia 005	Exotic - almost all Brazilian territory (S)	Expectorant* (aerial parts)	Infusion - inhalation	
32	Erva-de-bicho (SE1)^e	Ludwigia sp. (Onagraceae)	Garcia 078	No data (S)	Hemorrhoid (whole plant)	Decoction - bath	Not consulted
33	Erva-doce, funcho (MG1, SP1, PE1, PE2)^g	Foeniculum vulgare Mill. (Apiaceae)	Garcia 064	Exotic - Brazilian territory (C)	Sedative (whole plant)	Infusion - ingestion	Antimicrobial activity [132], anti-inflammatory, analgesic and antioxidant activities [133], acaricidal activity [134], antifungal effect [135], antithrombotic activity [136] and antirheumatic effect of the mosquito *Aedes aegypti* [137]
34	Eucalipto, vick (MG1^h, PE1ⁱ, PE2^j, SE1^k)	Eucalyptus globulus Labill. (Myrtaceae)	Garcia 055	Exotic (C)	Sinusitis* (leaves)	Infusion - inhalation	Antihyperglycemic actions [138], analgesic and anti-inflammatory effects [139], antimicrobial activity [140] and antibacterial effects [141]
35	Fedegoso (MG1)^l	Senna pendula (Humb. & Bonpl. ex Willd.) H.S. Irwin & Barneby (Fabaceae s. l.)	Garcia 034	Native - Brazilian territory (S)	Osteoporosis prevention (roots)	Medicinal wine - ingestion	No data found
36	Feijão-guandu (SP1)^m	Cajanus cajan (L.) Millsp. (Fabaceae s.l.)	Garcia 003	Exotic - Brazilian territory (C)	Bronchitis (leaves)	Infusion - ingestion or inhalation	Treatment of postmenopausal osteoporosis [142], antileishmanial and antifungal activity [143] and hypocholesterolemic effect [144]
37	Folha-santa, folha-da-fortuna (MG1, SP1, PE1)ⁿ	Bryophyllum pinnatum (Lam.) Oken (Crassulaceae)	Garcia 040	Exotic - Brazilian territory (C)	Lumbar pain* (leaves)	In natura - plaster	Antibacterial activity [145], anti-ulcer [146], antimicrobial [147], antinociceptive, anti-inflammatory and antidiabetic [148] and neurosedative and muscle relaxant activities [149]

^a Garcia et al. Journal of Ethnobiology and Ethnomedicine 2010, 6:29, http://www.ethnobiomed.com/content/6/1/29
Table 2: The 78 plant specimens used by five Diadema’s migrants (MG1, SP1, PE1, PE2, SE1)*. (Continued)

No.	Specimen	Scientific Name	Native Range	Constituents and Uses	Extract Method
38	Gervão (MG1)	Stachytarpheta cayennensis (Rich.) Vahl (Verbenaceae)	Garcia 054, S	Laxative (aerial parts) Infusion or decoction - ingestion	Anti-inflammatory and anti-ulcerogenic properties [150] and hypoglycaemic constituents [151]
39	Goiaba (SE1)	Pсидium guajava L. (Myrtaceae) Garcia 058	Native - Mexico to Brazil (S)	Heartburn (leaves) Infusion or in natura - ingestion In natura - ingestion	Antibacterial activity [152-154] and hepatoprotective activity [155]
40	Guaco (PE1, PE2, SE1)	Mikania glomerata Spreng. (Asteraceae) Garcia 032	Native - northeast to southeast Brazil (S)	Bronchitis* (leaves) Syrup - ingestion	Analgesic and anti-inflammatory activities [156], bronchodilator activity [157] and antiophidian properties [158]
41	Guanxuma (SE1)	Sida rhombifolia L. (Malvaceae) Garcia 067	Exotic - Brazilian territory (S)	Sedative (aerial parts) Infusion - ingestion or inhalation	Cytotoxicity, antibacterial activity [159] and antioxidant [160]
42	Guiné (SE1)	Petiveria alliacea L. (Phytolaccaceae) Garcia 004	Native - north Brazil (S)	Sedative (aerial parts) Environment purifier - inhalation	Antimicrobial substance [161], antitoxic action [162], anti-inflammatory and analgesic effects [163], antibacterial and antifungal activity [164] and antioxidant [165]
43	Hortelá (MG1, PE1)	Mentha arvensis L. (Lamiaceae) Garcia 031	Exotic - Brazilian territory (C)	Bronchitis* (leaves) Syrup - ingestion	Antifungal property [166], vasodilatory actions [167], antioxidative activity [168], antibacterial properties [107] and insect repellents and fumigants [109]
44	Hortelá-grande (PE1)	Plectranthus amboinicus (Lour.) Spreng. (Lamiaceae) Garcia 073	Exotic - Brazilian territory (C)	For digestion and urine with blood (leaves) Infusion - ingestion	Scorpion venom antidote [169] and antimicrobial activity [92]
45	Impatiens (PE1)	Impatiens hawkeri W. Bull. (Balsaminaceae) Garcia 044	Exotic - Brazilian territory (C)	Toxic (whole plant) Cough (leaves) Syrup - ingestion	No data found
46	Jamaúba (PE1)	Synadenium grandiflorum Hook. F. (Euphorbiaceae) Garcia 074	Exotic - southeast to northeast Brazil (C)	Toxic (whole plant) Restricted use Stomach cancer (latex) Macerate - ingestion	Healing action and anti-hemorrhagic [170]
47	Jurubeba (MG1, SE1, PE2)	Solanum variabile Mart. (Solanaceae) Garcia 056	Exotic - southeast and south Brazil (S)	Sedative (leaves) Infusion - ingestion In natura - ingesting	Antiulcerogenic activity [171]
48	Limão (MG1)	Citrus aurantiifolia (Christm.) Swingle (Rutaceae) Garcia 063	Exotic - Brazilian territory (C)	Fever (leaves) Infusion - ingestion	Mosquito repellent activity [172]
49	Losna (SP1, SE1, PE2)	Artemisia absinthium L. (Asteraceae) Garcia 049	Exotic - Brazilian territory (S)	Laxative (aerial parts) Infusion - ingestion	Acaricidal properties [173], antifungal and antibacterial [174] and antioxidant activities [175]
50	Malva-branca (SE1)	Waltheria indica L. (Sterculiaceae) Garcia 077	Native - Brazilian territory (S)	Gingivitis* (leaves) Infusion - gargling	Anti-inflammatory activities [176]
Table 2: The 78 plant specimens used by five Diadema’s migrants (MG1, SP1, PE1, PE2, SE1)*. (Continued)

No.	Common Name (LB)	Scientific Name (Family)	Geographic Distribution	Medicinal Use	Product
51	Malva-de-cheiro (MG1)	Malva sylvestris L. (Malvaceae)	Exotic - south and southeast Brazil (S)	Bronchitis* (leaves)	Syrup - ingestion
52	Mamão-papaia (PE1)	Carica papaya L. (Caricaceae)	Exotic - Brazilian territory (C)	Bronchitis* (powder fruit)	Syrup - ingestion
53	Mandioca (SE1)	Manihot esculenta Crantz. (Euphorbiaceae)	Native - Brazilian territory (C)	conjunctivitis/sty* (dew on the leaves)	In natura - topic
54	Marajé (MG1)	Ocimum basilicum L. (Lamiaceae)	Exotic - Brazilian territory (C)	Bronchitis* (leaves)	Syrup - ingestion
55	Maravilha (SP1, PE2)	Mirabilis jalapa L. (Nyctaginaceae)	Native - Brazilian territory (C)	Healing wounds* (aerial parts)	Infusion - plaster
56	Mana-pretinha (MG1)	Solanum americanum L. (Solanaceae)	Native - Americas (S)	Sore throat* (aerial parts)	Infusion - gargle
57	Mentrasto (PE1)	Agenturn conyzoides L. (Asteraceae)	Native - southeast to northeast Brazil (S)	Bronchitis* (leaves)	Infusion - plaster
				Rheumatism* (whole plant)	Infusion - bath
58	Mentruz, erva-de-santa-maria (PE1, SE1)	Chenopodium ambrosioides L. (Chenopodiaceae)	Native - south and southeast Brazil (S)	Muscle pain (aerial parts)	Decoction - massage
				Lesions in bone (aerial parts)	In natura - plaster
				Worm* (aerial parts)	Infusion - ingestion
				Bronchitis (aerial parts)	Syrup - ingestion
59	Milho (SE1)	Zea mays L. (Poaceae)	Exotic - Brazilian territory (C)	Bronchitis (flowers)	Syrup - ingestion
				Blood purifier and diuretic (flowers)	Infusion - ingestion
60	Novalgina (MG1, SE1)	Achillea millefolium L. (Asteraceae)	Exotic - south and southeast Brazil (C)	Sedative (leaves)	In natura - ingestion
61	Pariparoba (MG1)	Piper umbellatum L. (Piperaceae)	Native - Tropical America (S)	Belly ache and liver pain (leaves)	Infusion - ingestion
				Antioxidant [199] and antifungal activity	No data found
62	Picão (MG1)	Callae sp. (Asteraceae)	No data (S)	Diuretic (leaves)	Infusion - ingestion
63	Picão-preto (MG1, PE1), Picão-branco (SP1)	Bidens pilosa L. (Asteraceae)	Native - tropical America (S)	Blood purifier (whole plant)	Infusion - ingestion
				Hypotensive effects [201], anti-inflamatory activity [202], anticancer and antipyretic activity [203], antimicrobial [204] and antitumor potential [205]	
				In natura - plaster	
				Medicinal wine - ingestion	
Table 2: The 78 plant specimens used by five Diadema’s migrants (MG1, SP1, PE1, PE2, SE1)*. (Continued)

No.	Plant name and species	Native territory	Use	Pharmacological data	
64-Pinhão-roxo (SP1)*	Jatropha gossypifolia L. (Euphorbiaceae) Garcia 017	Native - southeast to -northeast Brazil (S)	Laxative (powder fruit)	Antimalarial effects [206], hypotensive and vasorelaxant effects [207]	
65-Poejo (MG1, PE2)*	Mentha pulegium L. (Lamiaceae) Garcia 029	Exotic - Brazilian territory (C)	Bronchitis (leaves)	Larvicidal activity [208], acaricidal effects [209] and insecticidal properties [213]	
66-Pucunã (SE1)*	Faveillea passiflora Vell. (Cucurbitaceae) Garcia 022	Native - North and -southeast Brazil (S)	Toxic - abortive (seeds)	In natura - ingestion	No data found
67-Quebra-pedra (SP1, PE1, PE2, SE1)*	Phyllanthus carolinensis Walter (Euphorbiaceae) Garcia 024	Native - USA to Brazil (S)	Kidney stone* (aerial parts)	Infusion or decoction - ingestion	Antinociceptive action [211]
68-Quitoco (SE1)*	Plucheia sagittalis (Lam.) Cabrera (Asteraceae) Garcia 042	Native - south and -southeast Brazil (S)	Diuretic (aerial fruit)	Anti-inflammatory activity [212]	
69-Rubim (MG1, SP1)*	Leonurus sibiricus L. (Lamiaceae) Garcia 002	Exotic - Brazilian territory (C)	Healing wounds* (aerial parts)	In natura - plaster	Stimulating action on the uterus [213], analgesic and anti-inflammatory activity [214] and antibacterial activity [215]
70-Sabugueiro (MG1)*	Sambucus canadensis L. (Caprifoliaceae) Garcia 025	Native - Brazilian territory (S)	Bronchitis* (flowers)	Syrup - ingestion	Infectious diseases and antioxidant activity [216]
71-Salta-parreira (SE1)*	Jacaranda sp. (Bignoniaceae) Garcia 011	No data (S)	External allergies, wounds in the body and purifier (leaves)	Decoction - bath	Not consulted
72-Samba-caitá (SE1)*	Hyptis sp. (Lamiaceae) Garcia 041	No data (S)	Belly ache (leaves)	In natura - ingestion	Not consulted
73-Serralha (PE1)*	Sonchus oleraceus L. (Asteraceae) Garcia 016	Exotic - Brazilian territory (C)	Diabetes (leaves)	In natura - ingestion	Larvicidal potential [217]
74-Sete-sangria (MG1*, SP1*, SE1)*	Cuphea carthagenensis (Jacq.) J. F. Macbr. (Lythraceae) Garcia 007	Native - Brazilian territory (S)	Intestinal infections and heart problems* (aerial parts)	Infusion - ingestion	Antiinflammatory and antinociceptive activities [218], vasorelaxant properties [219], treat high levels of cholesterol and triglycerides [220]
75-Sofre-do-rim-queimado (MG1)*	Cassia sp. (Vitaceae) Garcia 053	No data (S)	Kidney stone (leaves)	Infusion - ingestion	Not consulted
76-Tanchagem (SP1, PE2)*	Plantago sp. (Plantaginaceae) Garcia 008	No data (S)	Anti-inflammatory - mouth and throat (leaves)	Decoction - gargling	Antitumor-promoting activity [221], antioxidant [222], antimicrobial and antifungal activities [223]
77-Vassourinha (SE1, PE2)*	Scopia dulcis L. (Scrophulariaceae) Garcia 014	Native - Brazilian territory (S)	Hip pain/kidneys (leaves)	Decoction - bath	
78-Velando (SE1)*	Croton jucundens Spreng. (Euphorbiaceae) Garcia 013	Native - Brazilian territory (S)	Inhibits the growth of skin stains/wounds in the body (resin)	In natura - topical	No data found

* their popular and scientific names, geographical origin and distribution, if cultivated or spontaneous, uses, parts utilized, formula, route of administration and pharmacological studies. Marked by (*) the 68 plants whose use had been maintained by the respective migrant, while 14, marked by (**) are those whose applications have been incorporated by migrants, finally, 3 (†) replacements. The matches between the uses proclaimed by the interviewees and pharmacological data have been posted by (*).
following the observation that both, the commercially available products and herbal source have similar effects, as reported by Pires [43].

Discontinued use

According to MG1, the following plants used in his homeland fell into disuse because they were not found in Diadema, although he tried to acquire them from local commercial sources: “quina”* (Strychnos cf. pseudoquina A. St. Hil - Loganiaceae), whose root is used to combat pain in the stomach and intestine; bark oil of “jatobá”* (Hymenaea cf. courbaril L. - Fabaceae s.l.), used for combat wounds; “batata-de-purga”* (Operculina cf. macrocarpa (L.) Urb - Convolvulaceae), whose tuber is ingested as a purgative and to clean the blood; bark and leaf of “jalapá”* (Mirabilis cf jalapa L. - Nyctaginaceae), used to clean the blood; tea of “jucno”* (Cyperus cf.esculentus L. - Cyperaceae), whose root is used for inflammation; bark or seed of “emburana”* (Amburana cf. cearensis - Fabaceae s.l.), used for migraine and sleeping; and bark of “angico”* (Anadenanthera cf. colubrina (Vell.) Brenan - Fabaceae s.l.), prepared as a tea for pain in the body and fever. These plants were not described in Table 2, since they could not be collected and identified as well.

Plants used for therapeutic purposes

Of the 78 plants, 10 carry some restrictions, as they can be toxic depending on the dose, route or part utilised (Table 2). The uses described in Table 2 are written just as they were reported by the interviewees. The 68 plants used exclusively for medicinal purposes were cited for 41 complaints, which were grouped into 12 functional categories according to bodily system, as detailed in Table 3. Thus, gastrointestinal disturbances include the following complaints (numbers of medicinal plants reported): endoparasitosis (1), ulcer (1), diarrhoea (1), bellyache (2), heartburn (1), intestinal infections (1), liver pain (3). This category also includes plants used to improve digestion (1), to treat tables of haemorrhoid (1), as laxatives (10) and to purify the stomach (2), comprising a total of 24 plants employed in 44 formulas.

The most relevant categories of use, measured by number of species employed, were gastrointestinal disturbances (30.8% of plants), inflammatory processes (24.4%) and respiratory problems (23.1%). As seen in Table 4, the group of illnesses representing immunological problems obtained the highest informant consensus factor value (Fic = 0.66), while the other categories presented Fic values lower than 0.5. These low values reflect the diversity of knowledge displayed by migrants, which can probably be attributed to different cultural influences during their migrations through Brazilian territory. Furthermore, the small number of interviewees may have resulted in low values of Fic.
The parts of the plants most often used in the formulas were leaves (45.4%) and other aerial parts (22.7%). The most common formula was the infusion (37.8%), followed by in natura (17.6%) and syrup (10.1%). The most cited route of administration was ingestion (51.3%), followed by inhalation (8.4%) and topical (3.4%).

Plants with restrictions on use and/or toxic

Among the 10 specimens with restrictions on use, 6 were designated as only toxic: “alamaanda-amarela” (Allamanda cathartica), “algodão-do-mato” (Asclepias curassavica L.), “amendoin-bravo/burra-leiteira” (Euphorbia heterophylla L.), “azaléa” (Rhododendron simsii), “comigo-ninguém-pode” (Dieffenbachia sp.) and “impatiens” (Impatiens hawkeri). The interviewees explained that depending on the dose, the latex of “alamaanda-amarela” and “amendoim-bravo” can cause discomfort or even blindness. According to Oliveira et al. [44], the leaves of Dieffenbachia picta Schott contain

Table 3	The 12 categories of use comprising the 41 complaints, their total and partial number of plants cited by the five migrants	
Category of use	Complaints (number of plants cited)	Total number of plants
1- Gastrointestinal disturbances	To combat worms (1), ulcer (1), diarrhea (1), bellyache (2), heartburn (1), intestinal infections (1), liver pain (3), to improve digestion (1), hemorrhoid (1), as laxative (10) and for stomach purify (2)	24
2- Inflammatory processes	As anti-inflammatory (3) and healing (6), to treat sty/conjunctivitis (2), inflammation in the mouth/throat (3), rheumatism (2), sinusitis (2) and gingivitis (1)	19
3- Respiratory problems	To combat cough (1), bronchitis (15) and as expectorant (2)	18
4- Anxiolytic/hypnotics	As sedative (11)	11
5- Osteomuscular problems	To ease back pain (1), muscles pain (6), hip pain (1), prevent osteoporosis (1) and to treat lesions in bone (1)	10
6- Dermatological problems	To combat external allergies (2), wounds in the body (5) and inhibits the growth of skin stains (1)	8
7- Genitourinary disturbances	As diuretic (5), to combat kidney stone (2) and treating urine with blood (1)	8
8- Endocrine system	To reduce cholesterol (1) and diabetes (3)	4
9- Cardiovascular problems	Treat heart problems (1) and as blood purifier (2)	3
10- Immunological problems	To combat breast cancer (1) and stomach cancer (1)	2
11- Analgesics	Earache (2)	2
12- Fever	To combat fever (1)	1
Total		110*

*Some plants have been cited for more than one complaint, so the total number of plants above (110) is higher than the ones indicated by the interviewees.

The parts of the plants most often used in the formulas were leaves (45.4%) and other aerial parts (22.7%). The most common formula was the infusion (37.8%), followed by in natura (17.6%) and syrup (10.1%). The most cited route of administration was ingestion (51.3%), followed by inhalation (8.4%) and topical (3.4%).

Plants with restrictions on use and/or toxic

Among the 10 specimens with restrictions on use, 6 were designated as only toxic: “alamaanda-amarela” (Allamanda cathartica), “algodão-do-mato” (Asclepias curassavica L.), “amendoin-bravo/burra-leiteira” (Euphorbia heterophylla L.), “azaléa” (Rhododendron simsii), “comigo-ninguém-pode” (Dieffenbachia sp.) and “impatiens” (Impatiens hawkeri). The interviewees explained that depending on the dose, the latex of “alamaanda-amarela” and “amendoim-bravo” can cause discomfort or even blindness. According to Oliveira et al. [44], the leaves of Dieffenbachia picta Schott contain

Table 4	Values of Informant consensus factor (Fic) for each category of use, considering the plants cited by the five Diadema’s migrants					
SN	Category of use	Plant specimen	% All Species	Use citation	% All use citation	Fic
1	Gastrointestinal disturbances	24	30.77	44	25.29	0.46
2	Inflammatory processes	19	24.36	28	16.09	0.44
3	Respiratory problems	18	23.07	31	17.82	0.43
4	Anxiolytic/hypnotics	11	14.10	19	10.92	0.44
5	Osteomuscular problems	10	12.82	13	7.47	0.25
6	Dermatological problems	8	10.26	11	6.32	0.3
7	Genitourinary disturbances	8	10.26	13	7.47	0.41
8	Endocrine system	4	5.13	5	2.87	0.25
9	Cardiovascular problems	2	2.56	4	2.30	0.66
10	Analgesics	3	3.84	3	1.72	0
11	Fever	1	1.28	1	0.57	0
calcium oxalate, which damages the oral mucosa and provokes pain and oedema, while the leaves of *Allamanda cathartica* contain cardiotoxic glycosides and induce intense gastrointestinal disturbances.

Although reported as toxic, the latex of two other plants can be used at low doses to treat breast and stomach cancer: “avelóz” (*Europhorbia tirucalli* L.) and “jar-naiuba” (*Syndenium grantii* Hook. F.), respectively. The sap of “embaúba” (*Cecropia pachystachya* Tréc.) was indicated as toxic, but its fruits are used to combat bronchitis. Finally, the seeds of “pucunã” (*Fevilia passiflora* Vell.) are toxic, being indicated as abortive. In a recent study, Rodrigues [45] also described plants with restrictions of use as reported by three Brazilian cultures: the Krahô Indians use two plants as abortives in a single prescription: “aprytytti” (*Acosmium dasycarpum* (Vogel) Yakovlev) and “ahkryt” (*Anacardium occidentale* L.) (Anacardiaceae); their barks are boiled, and the beverage is ingested in at dawn. It is an extremely bitter beverage, rich in tannin and therefore extremely astringent.

Pharmacological data

As can be seen in Table 2, 57 species (73.1%) were featured in previous pharmacological studies. For 30 of these species (52.6%), the uses cited by the migrants showed some similarity to the investigated effects/actions, demonstrating concordance between popular knowledge and academic science (marked with an asterisk in Table 2).

Animals used for therapeutic purposes and dynamics of use

From the five interviewees, only one (PE2) offered knowledge on the medicinal uses of 12 animals. They belong to four taxonomic classes: Reptilia (6 species), Insects (3), Mammalia (2) and Amphibia (1). However, the interviewee has used only two animals since he arrived in Diadema, the other ten animals fell into disuse because they are not available in this city. The two animals were collected, identified and deposited in the Museum of Zoology-USP: ant (*Atta sexdens* L.) and cockroach (*Periplaneta americana* L.). These species belong to the maintenance of use category (highlighted with □ in Table 1). The other ten species therefore belong to the discontinued use category (highlighted with ¤ in Table 1) which could not be collected. Their identifications were made by PE2 through consulting images from books (as described in Methodology). For three animals (snake, alligator and giant water bug) PE2 could only hesitantly confirm their identity, probably due to the great diversity of these animals in Brazil. Therefore, they are denoted in Table 1 as probably belonging to one of three possible genera.

The animals were used in 14 different medicinal formulas, with the skin most commonly used (33.3%), followed by whole animal (20.0%), bone (13.4%), fat (6.7%), rattle (6.7%), tooth (6.7%), ant hill (6.7%) and turtle shell (6.7%). Some studies conducted in Brazil show that concomitant data corroborate and sustain these uses [46-50]. The formulas were cited for the treatment of nine complaints, which were grouped into six functional categories, as shown in Table 5. The most commonly cited formula was powder (66.7%), followed by in natura (20%). The most frequent route of administration was ingestion (78.6%).

The most common complaint involved respiratory problems (58.4%; 7 animals) followed by central nervous system (8.3%), inflammatory processes (8.3%), dermatological problems (8.3%), analgesics (8.3%), cardiovascular problems (8.3%) as shown in Table 5. The high humidity of the region (with annual rainfall between 1,000 and 1,750 mm) [21] is known to lead to bronchitis, cough and asthma. This may explain why so many plants and animals were used to treat respiratory disturbances in Diadema, which has been shown in studies of the Sistema Único de Saúde [51] to be the second largest cause of death in Diadema - 14.4%.

Many animals have been used for medical purposes since antiquity [52-55]. Despite the existence of several ethnopharmacological studies suggesting the bioactive potential of Brazilian fauna [37,56-61], only marine animals have been investigated by chemical and pharmacological methods [62-64]. No pharmacological data was found in the literature for the five animals identified in the present study: rattlesnake (*Crotalus cf. durissus* L.), capybara (*Hydrochoerus cf. hydrochaeris* L.), iguana (*Iguana cf. iguana* L.), ant (*Atta sexdens* L.) and cockroach (*Periplaneta americana* L). The lack of information available on medicinal animal products leads us to conclude that this is a largely unexplored topic in Brazil and that future pharmacological studies should confirm the potential therapeutic value of these species.

Table 5 The 6 categories of use comprising the 9 complaints, their respective number of animals mentioned by the migrant PE2

Category of use	Complaints (number of animals)
1-Respiratory problems	bronchitis (7), asthma (4)
2-Central nervous system	epilepsy (1)
3-Inflammatory processes	rheumatism (1)
4-Dermatological problems	wounds in the body (1), skin cancer (1)
5-Analgesics	back pain (1)
6-Cardiovascular problems	treat heart problems (1), hemorrhage (1)
Total	**18***

* some animals have been cited for more than one complaint, so their total number above (18) is higher than the number of animals indicated: 12.
Conclusion
The migrant interviewees demonstrated knowledge about the medicinal and toxic properties of plants and animals available in the Atlantic Forest remnants of the municipality of Diadema. Migration contributed to the expansion of knowledge regarding the use of natural resources, especially through the processes of resource replacement and/or incorporation. Moreover, the maintenance of original uses of certain resources demonstrates their value in the migrants’ therapeutic practices.

The seven plants [Impatiens hawkeri W. Bull., Artemisia canphorata (Humb. & Bonpl. ex Willd.) H.S. Irwin & Barneby, Equisetum arvense L., Senna pendula (Humb. & Bonpl. ex Willd.) H.S. Irwin & Barneby, Zea mays L., Flevillea passiflora Vell. and Croton fuscescens Spreng] and the two animals (Atta sexdens and Periplaneta americana) that showed maintenance of use among migrants during their displacement in Brazilian territory, have not been studied by pharmacologists yet. These species should be highlighted in further investigations because the maintenance of use during human migrations can be indicative of bioactive potential.

This work also demonstrates the impossibility of sharing benefits related to property rights with cultures under certain circumstances, as the dynamic use of natural resources presents particularly varied influences. The interviewed migrants had passed through several Brazilian cities and were exposed to distinct vegetation and cultures. In this migration, they have passed on and incorporated knowledge in an intensive exchange where formulas and uses are mixed and re-invented as a result of contact between cultures.

Acknowledgements
We thank the interviewees for their hospitality, help, and mainly for providing us with information for the purpose of this study. We are grateful to Julino Assunção Rodrigues Soares Neto, Valéria Basti, Maria Conceição D. A. Fernandes. We also appreciate the help of FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo), FIC (Faculdade Integral Cantareira) and APF (Associação Fundo de Incentivo à Psicofarmacologia), Herbario Municipal de São Paulo (PMSP), which provided financial support which made this research possible. Finally, we thank Dr. Lucila Rossi and Prof. Dr. Hussam El Dine Zaher, for conducting the botanical and animal identification, respectively.

Author details
1 Department of Biology, Universidade Federal de São Paulo, Rua Arthur Ridel, 275 CEP, 09941-510, Diadema, S.P., Brazil. 2 Department of Psychology, Universidade Federal de São Paulo, Rua Botucatu, 862 - 1º andar - Edifício Biomédicas CEP 04023-062, São Paulo, S.P., Brazil.

Authors’ contributions
Author DG performed the fieldwork. Author MVD identified the animal specimens. Author ER supervised the research works. All authors drafted, wrote, read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 24 June 2010 Accepted: 29 October 2010 Published: 29 October 2010

References
1. Pieroni A, Vandebroek I: Traveling cultures and plants: the ethnobiology and ethnopharmacy of human migrations Berghahn Books: New York, 2007.
2. Pieroni A, Quave CL: Traditional pharmacopeias and medicines among Albanians and Italians in southern Italy: a comparison. J Ethnopharmacol 2005, 101:258-270.
3. Waldstein A: Mexican migrant ethnopharmacology: pharmacopoeia, classification of medicines and explanations of efficacy. J Ethnopharmacol 2006, 108:299-310.
4. Waldstein A: "Diaspora and Health? Traditional Medicine and Culture in a Mexican Migrant Community". Int Migr 2008, 46:95-117.
5. Volpato G, Godínez D, Breya A, Barreto A: Uses of medicinal plants by Haitian immigrants and their descendants in the Province of Camagüey, Cuba. J Ethnobiol Ethnomed 2009, 5:16.
6. Voeks RA: Traditions in transition: African diaspora ethnobotany in lowland South America. In Mobility and Migration in Indigenous Amazonia: Contemporary Ethnecological Perspectives. Edited by: Alexiades M. London: Berghahn, 2009:275-294.
7. Carney J, Voeks RA: Landscape legades of the African Diaspora in Brazil. Prog Hum Geog 2003, 27:6.
8. Ceuterick M, Vandebroek I, Tony B, Pieroni A: Cross-cultural adaptation in urban ethnobotany: the Colombian folk pharmacopoeia in London. J Ethnopharmacol 2008, 120:342-359.
9. van Andel, P. Westers: Why Surinamese migrants in the Netherlands continue to use medicinal herbs from their home country. J Ethnopharmacol 2010, 127:694-701.
10. Pieroni A, Nebel C, Quave CL, Munz H, Heinrich M: Ethnopharmacology of liakra, traditional weedy vegetables of the Arbëreshë of the Vulture area in southern Italy. J Ethnopharmacol 2002, 81:165-185.
11. Pieroni A, Quave CL, Nebel S, Heinrich M: Ethnopharmacy of ethnic Albanians (Arbëreshë) in northern Basilicata (southern Italy). Fitoterapia 2002, 73:217-241.
12. Pieroni A, Quave CL, Villanelli ML, Mangino P, Sabattini G, Santini L: Ethnopharmacognostic survey on the natural ingredients used in folk cosmetics, cosmeceuticals and remedies for healing skin diseases in the inland Marches, Central-Eastern Italy. J Ethnopharmacol 2004, 91:331-344.
13. Cano JH, Volpato G: Herbal mixtures in the traditional medicine of Eastern Cuba. J Ethnopharmacol 2004, 90:293-316.
14. Rodrigues E, Mendes FR, Negrí G: Plants indicated by Brazilian Indians to Central Nervous System disturbances: a bibliographical approach. Curr Med Chem 2005, 12:211-244.
15. IBGE. [http://www.ibge.gov.br/home/]
16. Instituto Socioambiental. [http://www.socioambiental.org/]
17. Fundação Cultural Palmares. [http://palmares.gov.br/]
18. Guilietti AM, Harley RM, Queiroz LP, Wanderley MGL, Van den Berg C: Biodiversidade e conservação das plantas no Brasil. Megadiversidade 2005, 1:52-61.
19. Marques AC, Lamas C.E: Taxonomia zoológica no Brasil: estado da arte, expectativas e sugestões de ações futuras. Papéis Avulsos de Zoologia 2005, 46:139-174.
20. Simões LL, Lino CF: Sustentável Mata Atlântica: a exploração de seus recursos florestais SENAC: São Paulo, 2004.
21. IBAMA. [http://www.ibama.gov.br/ecossistemas/mata_atlantica.htm].
22. Prefeitura de Diadema. [http://www.diadema.sp.gov.br/apache2-default/]
23. Atlas de Desenvolvimento Humano PNUD. [http://www.pnud.org.br/atlas/]
24. Bernard RH: Research methods in cultural anthropology Sage publications: London, 1988.
25. Lipp FJ: Methods for ethnopharmacological field work. J Ethnopharmacol 1989, 28:139-150.
26. Freitas MA, Silva TFS: A herpetofauna da Mata Atlântica nordestina. J Ethnopharmacol 2005, 101:258-270.
27. Freitas MA, Silva TFS: A herpetofauna das coisas e áreas de altitudes do nordeste Brasileiro USEB: Pelotas, 2005.
28. Lorenti H, Matos FJ, de A: Plantas medicinais do Brasil nativas e exóticas cultivadas Instituto Plantarum: São Paulo 2008.
29. PUBMED. [http://www.ncbi.nlm.nih.gov/pubmed].
30. SCIFINDER. [http://www.cas.org/products/sfacad/index.html].
31. Iorio M: Dicionário das plantas úteis do Brasil e das exóticas cultivadas Imprensa Nacional: Rio de Janeiro, 1926.
...
81. De Almeida Barbosa LC, de Alvaranga ES, Demuner AJ, Virtuoso LS, Silva AA: Synthesis of new phyto growth-inhibitory substituted aryl-p-benzoquinones. Chem Biodivers 2006, 3:553-567.

82. Souza MC, Sani AC, Ramos MF, Mendes-de-Lima OJ, Henriquez MG: Evaluation of anti-inflammatory activity of essential oils from two Asteraceae species. Pharmaceut 2004, 58:582-586.

83. Schmougr G, Mendonça-Filho RR, Alviano CS, Costa SS: Screening of antifungal agents using ethanol precipitation and bioautography of medicinal and food plants. J Ethnopharmacol 2005, 10:563-586.

84. De Linha MR, de Souza Luna J, dos Santos AF, de Andrade MC, Moreau N: Anti-bacterial activity of some Brazilian medicinal plants. J Ethnopharmacol 2006, 21:137-147.

85. Gandhi M, Lai R, Sankaranarayanan A, Sharma PLS: Post-coital fertility action of Ruta graveolens in female rats and hamsters. J Ethnopharmacol 1991, 34:49-59.

86. Oliveira A, Meepagala KM, Wedge DE, Harries D, Hale AL, Aholota G, Duke SO: Natural fungicides from Ruta graveolens L. leaves, including a new quinoline alkaloid. J Agric Food Chem 2003, 12:890-896.

87. Ivanova A, Mikhalova B, Nadjenski H, Tsvetkova I, Kostova I: Antimicrobial and cytotoxic activity of Ruta graveolens. Fitoterapia 2005, 3:344-347.

88. De Freitas TG, Augusto PM, Montanari T: Effect of Ruta graveolens L. on pregnant mice. Contraception 2005, 71:747-77.

89. Preethi K, Kuttan G, Kuttan R: Anti-tumour activity of Ruta graveolens extract. Asian Pac J Cancer Prev 2006, 7:439-443.

90. Raghav SK, Gupta B, Agrawal C, Goswami K, Das HR: Anti-inflammatory effect of Ruta graveolens L. in murine macrophage cells. J Ethnopharmacol 2006, 8:234-239.

91. Khori V, Nayeobour M, Semnani G, Golipour M, Marjani A: Prolongation of AV nodal refractoriness by Ruta graveolens in isolated rat hearts. Potential role as an anti-arrhythmic agent. Saudi Med J 2008, 29:357-363.

92. Nagoura JC, Dinze MFe, Lima EO: In vitro anti-amoebic activity of plants in Acute Ottin Externa. Braz J Otorhinolaryngol 2008, 74:118-124.

93. Valadez MC, Carrucha SG, Acorsi W, Queiroz ML: Euphorbia tirucalli L. modulates myelopoiesis and enhances the resistance of tumour-bearing mice. Int Immunopharmacol 2006, 6:294-299.

94. Shlamovitz GZ, Gupta M, Diaz JA: A case of severe keratoconjunctivitis from exposure to latex of Euphorbia tirucalli (Pencil Cactus). J Emerg Med 2007, 36:239-241.

95. Baní S, Kaul A, Khan B, Gupta VK, Satti NK, Suri KA, Ozi GN: Anti-arthritic activity of a biopolymeric fraction from Euphorbia tirucalli. J Ethnopharmacol 2007, 1:92-98.

96. Takahashi H, Hirata S, Minami H, Fukuyama Y: Triterpene and flavanone glycosides from Rhododendron simsin. Phytochemistry 2001, 56:875-879.

97. Frutusuo VS, Gurrjao MR, Cordeo RS, Martins MA: Analgesic and anti-ulcerogenic effects of a polar extract from leaves of Vernonia condensata. Planta Med 1994, 60:21-25.

98. Valverde AL, Cardoso GL, Pereira NA, Silva AJ, Kuster RM: Analgesic and antiinflammatory activities of vernoniaee B2 from Vernonia condensata. Phytother Res 2001, 15:263-264.

99. De Moura RS, Emilianio AF, de Carvalho LC, Souza MA, Guedes DC, Tano T, Resende AC: Antihypertensive and endothelium-dependent vasodilator effects of Alpinia zerumbet, a medicinal plant. J Cardiovasc Pharmacol 2005, 46:289-294.

100. De Araujo PF, Coelho-de-Souza AN, Morais SM, Ferreira SC, Leal-Cardoso JH: Antinociceptive effects of the essential oil of Alpinia zerumbet on mice. Phytomedicine 2005, 12:482-486.

101. Sawangaroen N, Phongpaichat S, Subhadhirasakul S, Visuthit M, Sriwuan N, Thammaphalar N: The anti-amoebic activity of some medicinal plants used by AIDS patients in southern Thailand. Parasitol Res 2006, 98:388-392.

102. Lin LY, Peng CC, Yeh WT, Wang HE, Yu TH, Peng HY: Alpinia zerumbet potentially elevates high-density lipoprotein cholesterol level in hamsters. J Agric Food Chem 2008, 25:4435-4443.

103. Bont D: Natural antioxidants. J Drugs Dermatol 2008, 7:7-12.

104. Araujo VT, Diogo DC, da Silva MM, Rappo LMT, Lapa AJ, Souccar C: Evaluation of the antiultravioletic activity of the extract of Costus spiralis Roscoe in rats. J Ethnopharmacol 1999, 63:198-193.

105. Palmieri MMB: Efeitos sobre o Sistema Nervoso Central de extratos de plantas popularmente citadas como anticonvulsivantes. MSc thesis Universidade Estadual Paulista, Ribeirão Preto, 2000.
Antinociceptive, anti-inflammatory and antidiabetic effects of aqueous extract of leaf extract in experimental animals. (Eucalyptus) are associated with pancreatic and extra-pancreatic effects.

Gray AM, Flatt PR:

Braga FG, Bouzada ML, Fabri RL, de O, Matos M, Moreira FO, Scio E,

Silva J, Abebeb W, Sousa SM, Duarte VG, Machado MIL, Matos FJA:

Tognolini M, Ballabeni V, Bertoni S, Bruni R, Impicciatore M, Barocelli E:

Lee HS:

Takahashi T, Kokubo R, Sakaino M:

Salari MH, Amine G, Shirazi MH, Hafezi R, Mohammadypour M:

Tiwari TN, Varma J, Dubey NK, Chansouria JP, Ali Z:

Rahim N, Gomes DJ, Watanabe H, Rahman SR, Chomvarin C, Endtz HP,

Islam ME, Haque ME, Mosaddak MA, Cytotoxicity and antibacterial activity of Sida rhombifolia (Malvaceae) grown in Bangladesh. Phytother Res 2003, 17:973-975.

Dhalwal K, Deshpaze YS, Purohit AP. Evaluation of in vitro antioxidant activity of Sida rhombifolia (L.) ssp. retusa (L.). J Med Food 2007, 10:683-688.

Von Szczepanski C, Zgorzelak P, Hoyer GA. Isolation, structural analysis and synthesis of an antimicrobial substance from Petiveria alliacea L. Arzneimittelforshung 1972, 22:1975-1976.

Malpezzi EL, Davino SC, Costa LV, Freitas JC, Gesbrecht AM, Roque NF: Antimicrobial action of extracts of Petiveria alliacea on sea urchin egg development. Braz J Med Biol Res 1994, 27:749-754.

Lopes-Martins RA, Pegoaro DH, Wosky R, Penna SC, Setei JA. The anti-inflammatory and analogic effects of a crude extract of Petiveria alliacea L. (Phytolaccaceae). Phytomedicine 2002, 9:245-248.

Kim S, Kubec R, Musah RA: Antibacterial and antifungal activity of sulfur-containing compounds from Petiveria alliacea L. J Ethnopharmacol 2006, 108:189-192.

Okada T, Tanaka K, Sato E, Okajima H: Antimicrobial activity of the new thiosulfinate derivative, S-benzyl phenylmethanethiosulfinate, from Petiveria alliacea L. Org Biomol Chem 2008, 21:1097-1102.

Tiwari TN, Varma J, Dubey NK, Chantrasri J, Ali Z. Pharmacological evaluation of some bioactive plant products on albino rats. Hindustan Antibiot Bull 1996, 40:38-41.

Runje I, Salikh MH, Mohamed S, Head RI, Ayewwardena MY: Vasorelaxation induced by common edible tropical plant extracts in isolated rat aorta and mesenteric vascular bed. J Ethnopharmacol 2006, 92:311-316.

Ka MH, Choi EJ, Chun HS, Lee KG. Antioxidative activity of volatile extracts isolated from Angelica tenuissimae roots, peppermint leaves, pine needles, and sweet flag leaves. J Agric Food Chem 2005, 53:4124-4129.

Uawongkul N, Chaveerach A, Thammasirirak S, Arkaravichien T, Chuachan C, Daduang S: Screening of plants acting against Heterometrus laoticus, a scorpion venom activity on fibroblast cell lysis. J Ethnopharmacol 2006, 16:391-397.
171. Antonio JM, Gacioso JS, Toma W, Lopez LC, Oliveira F, Brito AR: Antulcerogenic activity of ethanol extract of Solanum variabile (false "juruuba"). J Ethnopharmacol 2004, 93:83-88.

172. Das NG, Barah I, Talukdar PK, Das SC: Evaluation of botanicals as repellents against mosquitoes. J Vector Borne Dis 2003, 40:49-53.

173. Chaisson H, Bélanger A, Bostanian N, Vincent C, Poliquin A: Acaridical properties of Artemisia absinthium and Tanacetum vulgare (Asteraceae) essential oils obtained by three methods of extraction. J Econ Entomol 2001, 94:167-171.

174. Kordali S, Kotan R, Mavi A, Cakir A, Ala A, Yildirim A: Determination of the chemical composition and antioxidant activity of the essential oil of Artemisia dracunculus and of the antifungal and antibacterial activities of Turkish Artemisia absinthium, A. dracunculus, A. santonicum, and A. spicigera essential oils. J Agric Food Chem 2005, 30:9452-9458.

175. Lopes-Lutz D, Alviano DS, Alviano CS, Kolodziejczyk PP: Screening of chemical composition, antimicrobial and antioxidant activities of Asterisins essential oils. Phytochemistry 2008, 69:1732-1738.

176. Rao YK, Fang SH, Tzeng YM: Inhibitory effects of the flavonoids isolated from Waltheria indica by flow cytometry. J Ethnopharmacol 2003, 101:159-164.

177. Gaina C, Onyekwere C, Njoku C, Nwafor C: Screening of botanicals as repellents against mosquitoes. J Vector Borne Dis 2003, 40:49-53.

178. Talbourdet S, Sadick NS, Lazou K, Bonnet-Duquennoy M, Kurfurst R, Dufour D: Evaluation of the repellent properties of the volatile monoterpene citronellal against some weeds. Z Naturforsch 2006, 61:334-340.

179. Emeruwa AC: Antibacterial substance from plants in rats. J Med Food 2005, 8:353-544.

180. Moura AC, Silva EL, Fraga MC, Wanderley AG, Afiatpour P, Maia MB: Antinflammatory and chronic toxicity study of the leaves of Agarum conyzoides L. in rats. Phytochemistry 2005, 61:1231-1236.

181. Singh HP, Batish DR, Kaur S, Kohli RK, Arora K: Phytoxicity of the volatile monoterpene citronellal against some weeds. Z Naturforsch 2006, 61:334-340.

182. Chah KE, Eze CA, Emuoloso CE, Esmone CO: Antibacterial and wound healing properties of methanolic extracts of some Nigerian medicinal plants. J Ethnopharmacol 2006, 105:159-164.

183. Shi M, Chang L, Yau WC: Larvicidal activity of some crude extracts of the leaves of Sida acuta. J Vector Borne Dis 2003, 40:115-118.

184. Teva P, Assanou AO, Adjoue AB, Font-Aubi C, Loko H, Asszlan MA: Screening of botanicals as repellents against mosquitoes. J Vector Borne Dis 2003, 40:49-53.

185. Viyoch J, Pisutthanan N, Faikreua A, Nupangta K, Wangtorpol K, Ngokkuen J: Screening of botanicals as repellents against mosquitoes. J Vector Borne Dis 2003, 40:49-53.

186. Garcia et al: Anti-inflammatory and chronic toxicity study of the leaves of Agarum conyzoides L. in rats. Phytochemistry 2005, 61:1231-1236.
215. Ahmed F, Islam MA, Rahman MM: Antibacterial activity of Leonurus sibiricus aerial parts. Fitoterapia 2006, 77:316-317.
216. Holetz FB, Pessini GL, Sanches NR, Cortez DA, Nakamura CV, Filho BP: Screening of some plants used in the Brazilian folk medicine for the treatment of infectious diseases. Mem Inst Oswaldo Cruz 2002, 97:1027-1031.
217. Sharma P, Mohan L, Srivastava CN: Phytoextract-induced developmental deformities in malaria vector. Biovour Technol 2006, 97:1599-1604.
218. Schapoval EE, Vargas MR, Chaves CG, Birdi R, Zuanaazi JA, Henriques AT: Antiinflammatory and antinociceptive activities of extracts and isolated compounds from Stachytarpheta cayennensis. J Ethnopharmacol 1998, 60:53-59.
219. Schuldt EZ, Okless K, Simas ME, Farias MR, Ribeiro-De-Valle RM: Butanolic fraction from Cuphea carthagenensis Jacq McBride relaxes rat thoracic aorta through endothelium-dependent and endothelium-independent mechanisms. J Cardiovasc Pharmacol 2000, 35:234-239.
220. Biavatti MW, Farias C, Curtius F, Brasil LM, Hort S, Schuster L, Leite SN, Prado SR: Preliminary studies on Campomanesia xanthocarpa (Berg.) and Cuphea carthagenensis (Jacq.) J.F. Macbr. aqueous extract: weight control and biochemical parameters. J Ethnopharmacol 2004, 93:385-389.
221. Nishino H, Hayashi T, Arisawa M, Satomi Y, Iwashima A: Antitumor-promoting activity of scopadulcic acid B, isolated from the medicinal plant Scoparia dulcis L. Oncology 1993, 50:100-103.
222. Ratnasooriya WD, Jayakody JR, Premakumara GA, Ediriweera ER: Antioxidant activity of water extract of Scoparia dulcis. Fitoterapia 2005, 76:220-222.
223. Latha M, Ramkumar KM, Pari L, Damodaran PN, Rajeshkannan V, Suresh T: Phytochemical and antimicrobial study of an antidiabetic plant: Scoparia dulcis L. J Med Food 2006, 9:391-394.

doi:10.1186/1746-4269-6-29
Cite this article as: Garcia et al: Ethnopharmacological survey among migrants living in the Southeast Atlantic Forest of Diadema, São Paulo, Brazil. Journal of Ethnobiology and Ethnomedicine 2010 6:29.