Complex Network approach for detecting Tropical Cyclones

Shraddha Gupta · Niklas Boers · Florian Pappenberger · Jürgen Kurths

Abstract Tropical cyclones (TCs) are one of the most destructive natural hazards that pose a serious threat to society around the globe, particularly to those in the coastal regions. In this work, we study the temporal evolution of the regional weather conditions in relation to the occurrence of TCs using climate networks. Climate networks encode the interactions among climate variables at different locations on the Earth’s surface, and in particular, time-evolving climate networks have been successfully applied to study different climate phenomena at comparably long time scales, such as the El Niño Southern Oscillation, different monsoon systems, or the climatic impacts of volcanic eruptions. Here, we develop and apply a complex network approach suitable for the investigation of the relatively short-lived TCs. We show that our proposed methodology has the potential to identify TCs and their tracks from mean sea level pressure (MSLP) data. We use the ERA5 reanalysis MSLP data to construct successive networks of overlapping, short-length time windows for the regions under consideration, where we focus on the north Indian Ocean and the tropical north Atlantic Ocean. We compare the spatial features of various topological properties of the network, and the spatial scales involved, in the absence and presence of a cyclone. We find that network measures such as degree and clustering exhibit significant signatures of TCs and have striking similarities with their tracks. The study of network topology over time scales relevant to TCs allows us to obtain useful insights into the individual local signature of changes in the flow structure of the regional climate system.

Keywords Complex networks · extreme weather event · tropical cyclones · mean sea level pressure

1 Introduction

Complex networks are powerful tools used to study the collective behaviour of complex systems composed of many interacting dynamical units. A crucial step in this approach is that networks encode the underlying interaction structure of a complex system, allowing us to understand the intricate interplay between its structural and dynamical aspects (Boccaletti et al. 2006). They have found applications to the study of complex systems in various areas of science (Albert and Barabási 2002), e.g., the internet, ecological and neural networks, power grid systems, and science collaboration networks. In particular, the emergent property of synchronization in networked systems, arising due to a transfer of dynamical information according to the network topology, has been studied intensively (Arenas et al. 2008).

Over the last two decades, network theory has been successfully applied towards the understanding of complex climate phenomena (Tsonis and Roebber 2004).
In this paper, we study the topological and dynamical evolution of the regional weather conditions over a particular TC season. This involves the construction of climate networks over rather small spatial regions (TC basins), which evolve in time according to the time scale of the weather extreme, i.e., the underlying interaction structure of the meteorological fields cannot be considered as static. Evolving complex networks capture the mechanisms that contribute to the system’s evolution. They are of particular importance to study real-world networks (Albert and Barabási 2000), Barrat et al. 2004, Gross and Blasius 2005, Hlinka et al. 2014) which undergo structural changes (addition or deletion of nodes and connections) as the system dynamically evolves (such as growth or aging processes). They exhibit rich dynamics, such as, structure formation and evolving collective behaviour between some of the elements. Time-evolving complex networks have been used to investigate failure propagation in power-grids (Albert et al. 2004, Li et al. 2018), hierarchical structures in the brain (Strogatz, 2001, Zhou et al., 2006, Lehnertz et al. 2014), structural differences in the interconnectivity of the climate system between El Niño and La Niña conditions (Marwan et al. 2010), early-warning of El Niño events (Ludescher et al. 2014, 2013, Meng et al. 2017), transition of regional connectivity during the South American Monsoon onset (Ciemer et al. 2018), and the multiscale nature of Australian Summer Monsoon (ASM) development (Cheung and Ozturk 2020). In our work, we use networks constructed over overlapping short-length sliding time windows to compare the spatial patterns of the various topological properties, such as degree and clustering coefficient, and the spatial scales involved, for short time frames around the occurrence of individual TCs. Our analyses show that the regional system undergoes a characteristic spatial reorganization during a TC in such a way that the network measures are in close correspondence with the TC tracks. Finally, we confirm that our inferences hold true for different TC basins irrespective of the difference in their complexity of their dynamics.

In Sec. 2, we list the employed datasets, explain our choices of the spatial and temporal resolutions, and then outline our methodology. We then discuss our results in Sec. 3.
2 Data and Methodology

2.1 Reanalysis data

In this study, we use the state-of-the-art ERA5 reanalysis data for 3-hourly mean sea level pressure (MSLP) \cite{Hersbach2020} over the sea. As the TCs can undergo both a rapid intensification and weakening within a span of a few hours, the use of the 3-hourly temporal resolution ensures a high enough temporal autocorrelation. Moreover, as the TCs are short-lived, with a typical lifespan of \(\sim 3-10\) days, the sub-daily resolution adds more time points to the period in consideration. MSLP exhibits stronger variability at higher frequencies than sea surface temperatures (SSTs), which enhances its sensitivity towards cyclone signals and thereby increases the possibility of capturing TCs in MSLP networks for the duration of their lifetime. The entire availability period of the dataset is from 1950 to present, available at hourly resolution. We use the complete time period to compute the daily climatology. We remove the seasonal cycle from all time series of the dataset, by calculating the anomaly time series, i.e., subtracting the daily climatology of each day from all the hours of that day.

The spatial resolution of the MSLP dataset plays a significant role in the identification and tracking of TCs \cite{Kouroutzoglou2011}; the probability of detecting cyclones increases with an increase in the resolution of the dataset. We use a high spatial resolution of 0.75° \(\times\) 0.75°, which proves to be sufficient for our analysis. As the MSLP large-scale patterns are not so well determined by the land-sea boundary, and most TCs originate over the sea and dissipate shortly after landfall, we analyse the MSLP spatiotemporal dataset over the sea only. Furthermore, it should be noted that the MSLP over land is estimated by extrapolation of surface pressure in the models used in the ERA5 reanalysis and therefore may introduce artificial inconsistencies if compared to sea values. Our results in Sec. 3 show that the omission of land points does not affect the analysis of land-crossing cyclones (Figs. 2 and 3).

We generate TC tracks from the Best Tracks data available over the north Indian Ocean basin (entire availability period of 1982–2020, Indian Meteorological Department) and the north Atlantic Ocean basin (entire availability period of 1851–2019, HURDAT2, NOAA, \cite{Landsea2013}) to compare them with the results obtained from our analyses (See Data availability).

Fig. 1 Evolving networks for the Sep-Oct-Nov-Dec season. Networks are constructed over a time window of 10 days. Successive windows have 9 days of overlap.

2.2 Evolving networks

Functional network construction

In accordance with the idea of evolving networks, we divide the reanalysis data into overlapping short time windows and construct a climate network for each of these windows. The length of the time window is taken to be 10 days, which is of similar time scale as that of the lifespan of TCs, to capture the effect of TCs on the dynamical and structural evolution of the network better. The successive time windows have 9 days of overlap, i.e., the climate network evolves in daily steps (see Fig. 1).

Following the method of reconstruction of evolving climate networks, every node or spatial grid point of the TC basin is associated with a 3-hourly 10-day anomaly time series, i.e., 80 time points at each grid point. We employ the functional network representation \cite{Tsonis2004, Tsonis2006, Tsonis2008, Donges2010, Donges2009} of the multivariate datasets to encode the position of strong statistical linkages between every pair of involved time series. Under this framework, we first measure the link strength between every pair of nodes by calculating the Kendall’s \(\tau\) coefficient between the corresponding pair of time series at zero lag. It should be noted that a positive time lag may be used for TCs with a slower translation speed, such as those in the Atlantic Ocean, in which case the information transfer cannot be assumed to be instantaneous. We use Kendall’s \(\tau\) coefficient as it is known to perform better than other measures such as Pearson’s correlation coefficient for short time series \cite{Goswami2017}. We only take into account correlation values that are statistically significant at a confidence level of 0.05 and set all other values to zero. This gives a symmetric cross correlation matrix. We then construct the climate network \(A_{ij}(t)\) from the correlation matrix by considering the strongest 5% of the significant correlations. Thus, we obtain time-evolving climate networks \(A_{ij}(t)\) for each time window.
Network measures

We analyze the time variation of the topology of the interaction patterns in the regional climate system of the TC basin by using global and local network measures to characterize the climate networks (Donges et al. 2010; Yamassiki et al. 2008; Tsions and Swanson 2008; Boers et al. 2013). We adopt several commonly used network measures (Newman 2010; Albert and Barabasi 2002): degree, mean geographical link distance, and the local and global clustering coefficients.

The degree of a node in a network gives the number of connections it has to all other nodes:

\[k_i = \sum_{j=1}^{n} A_{ij} \]

where \(n \) is the total number of nodes in a network, and \(A_{ij} \) is the adjacency matrix, for which \(A_{ij} = 1 \) if there is a link between nodes \(i \) and \(j \) and \(A_{ij} = 0 \) otherwise. Regions with higher connectivity have larger values of \(k \), while regions of low \(k \) values are indicative of a small-scale atmospheric process and are often related to large topographic barriers (Malik et al. 2012; Boers et al. 2013; Stolbova et al. 2014).

To obtain further insight into the spatial scales involved in the region during a cyclone, we calculate the mean geographical link distance \(L_i \) (Malik et al. 2012; Boers et al. 2013; Stolbova et al. 2014), which associates a spatial length scale with each node \(i \). The measure calculates the mean of the spatial distances of node \(i \) to all its connected neighbours \(j \), along the corresponding great-circles, i.e.,

\[L_i = \frac{1}{k_i} \sum_{j=1}^{n} L_{ij} A_{ij} \]

where \(L_{ij} \) is the great-circle distance between nodes \(i \) and \(j \) calculated using the Haversine formula for spherical Earth projected on to plane.

The clustering coefficient is the measure of the degree to which nodes in a network tend to cluster together. The local clustering coefficient \(C_i \) (Watts and Strogatz 1998) of a node \(i \) in a network quantifies how close its neighbours are to being a clique (i.e., a complete graph), that is, the average probability that a pair of node \(i \)'s neighbours, \(j \) and \(h \), are connected. Mathematically, we calculate the ratio of the links connecting the direct neighbours of node \(i \) to the number of all possible connections between them,

\[C_i = \frac{\sum_{j,h} A_{ij} A_{ih} A_{jh}}{k_i (k_i - 1)} \]

The local clustering coefficient, \(C_i \), measures control over flows between just immediate neighbours of a node (Newman 2010). It indicates spatial continuity in network.

The global clustering coefficient \(C \), also known as transitivity (Newman 2010), measures the average probability that two neighbours of a vertex are themselves neighbours for the whole network. It measures the density of triangles in the networks and is defined as the fraction of paths of length two in the network (triplet of nodes) that are closed. This is equivalent to the number of closed triplets over the total number of triplets. As a triangle graph includes three closed triplets, one centred on each node, the number of closed triplets is equal to thrice the number of triangles.

\[C = \frac{3 \times \text{the number of triangles}}{\text{number of all triplets}} \]

For an undirected network with an adjacency matrix \(A \), the global clustering coefficient is expressed as:

\[C = \frac{\sum_{i,j,k} A_{ij} A_{jk} A_{ki}}{\sum_i k_i (k_i - 1)} \]

and \(C = 0 \) when the denominator is zero. If \(C = 1 \), perfect transitivity occurs in the network, i.e., the components of the network are all cliques. The global clustering coefficient is of interest because a higher \(C \) than expected by chance indicates the formation of localized structures of high connectivity in a network, e.g., the presence of tightly knit groups characterized by a high density of ties in a social network.

Correction of boundary effects due to spatial embedding

As TCs are highly localized extreme weather events, the networks are constructed over areas of TC formation, i.e., TC basins, instead of taking the full globe into consideration to enable a detailed understanding of the regional weather system. As mentioned earlier, we only consider grid points at sea. Therefore, in addition to the boundaries of the TC basin, the coastlines also spatially confines the regional networks. However, the introduction of such spatial boundaries cuts links that would connect the considered region with outside regions. This artificially reduces the degree of the nodes and the number of long links, and also influences the spatial patterns of any other network measure. Boundary effects depend on the distribution of link lengths and on the network measures themselves. As more links are cut for nodes closer to the boundaries than nodes deep inside the region, the degree of the nodes near to the boundaries has a stronger reduction compared to the nodes in the interior. In the case of the clustering coefficient, which depends on topological paths of length three, it is seen that nodes along the boundaries tend to have a higher tendency to cluster, while...
for the mean geographical distance the effects of boundaries become more complex (see Fig. 1 in Supporting Information of Boers et al. 2013).

We adopt a correction procedure (Rheinwalt et al. 2012) for the network measures derived from the regional network to avoid any spurious conclusions arising solely from the spatial embedding (Barnett et al. 2007), due to spatial confinement of the network, as follows: We construct 1000 spatially embedded random networks (SERN) that preserve the node positions in space and the link probability depending on the spatial link lengths of the original network. Then, we calculate each network measure on all the SERN surrogates. We then estimate the boundary effects on the network measure by taking the average of that measure over the ensemble of surrogates. The corrected network measure is then obtained by dividing the network measure of the original network by the estimated boundary effects for that particular measure. As the corrected network measure gives the value of the network measure relative to the expected value of a SERN, it is dimensionless.

3 Results and Discussion

In this section, we show how TCs affect the topological properties of the constructed regional networks. We first use the methodology described in the previous section to study some recent TCs in the North Indian Ocean (NIO) basin which extends from 49.5°E to 100°E and from 34.5°N to 4.5°N. The NIO basin exhibits a unique bimodal TC season (Wahiduzzaman et al. 2017; Li et al. 2013; Vissa et al. 2013) in the monsoon transition periods – pre-monsoon (March-April-May; MAM) and post-monsoon (September-October-November-December; SOND) – which can be attributed to the annual cycle of the background vertical shear (Gray 1968; Camargo et al. 2007). We focus on TCs occurring in the SOND season over the last decade (2009-2018), which has comparatively higher TC frequency than that in the pre-monsoon season primarily due to the difference in mean relative humidity between the two periods (Li et al. 2013).

A comparison between the network measures before and during the Very Severe Cyclonic Storm (VSCS) Gaja, which was formed in the Bay of Bengal and later crossed the Indian peninsula into the Arabian Sea, is shown in Fig. 2. The degree, mean geographical distance and local clustering coefficient fields (Figs. 2(a)-2(c)) for the period Oct 29-Nov 7, 2018, demonstrate that there are no definite structures in their spatial distributions in the absence of a cyclone. However, in the presence of a TC, the network measures spatially organize themselves to exhibit definite patterns as shown in Figs. 2(d)-2(f) for the period Nov 10-19, 2018, when the TC occurred. The nodes along the TC track have a lower degree k than the surrounding regions. The spatial pattern for the mean geographical distance L is very similar to k. This is because the nodes containing the cyclone are only connected to each other and are no longer connected to non-cyclone nodes. As TCs are highly localized events, the area (number of nodes) affected by the cyclone is much less than that of the unaffected regions. These mesoscale convective systems reduce the values of both k and L in the affected regions compared to their surroundings. While shorter links constitute the cyclone regions as indicated by lower L values in Fig. 2(e), surrounding regions have higher L values as longer links connect the regions separated by the cyclone track. Therefore, the cyclone track separates a region of high connectivity into two. It should be noted that the mean geographical distances in Figs. 2(f) and Fig. 7 are dimensionless quantities because of the correction of bias due to spatial embedding, as mentioned in Sec. 2.2.

On the contrary, the local clustering coefficient field (Fig. 2(f)) is relatively high in the localized region containing the TC. Cyclone tracks have a striking connection with high clustering coefficient nodes. This indicates spatial continuity in the network along the track. The explanation for the increase in C_l with decreasing degree for nodes containing the cyclones is that these nodes tend to form a tightly-knit small group, with connections mostly within the group. Such a group becomes mostly detached from the rest of the network and tends to function on its own as an isolated small network and hence, has higher local clustering. This separates the dynamics of a TC from the rest of the region.

Network measures for various other TCs of the NIO basin like VSCS Luban and Titli in 2018 (Fig. 3), VSCS Vardah in 2016 which crossed the Indian peninsula and formed the Depression ARB 02 (Fig. 4), and the Extremely Severe Cyclonic Storm Megh and Deep depression BOB 03 in 2015 (Fig. 5), exhibit similar characteristic behaviour – lower degree and mean geographical distance, but higher clustering along the TC track – which further supports the arguments presented in the previous paragraphs.

Next, we construct a time series using the global clustering coefficient value, C, of each successive network for the TC season in consideration, against the date corresponding to the middle day of the network period. Fig. 6 shows the variation of C for daily evolving networks constructed over the 2018 SOND season of the NIO basin. We find that one or more TC events can be associated with networks having relatively high
Fig. 2 Comparison of degree [(a) and (d)], mean geographical distance [(b) and (e)] and local clustering coefficient [(c) and (f)] fields before and during Very Severe Tropical Cyclone Gaja (Nov 10-19, 2018). Figures in a given column have the same colour scale. (a)-(c) shows the network measures before the cyclone for the period Oct 29-Nov 7, 2018. (d)-(f) gives the network measures for the period Nov 10-19, 2018 during the cyclone. The TC tracks are represented by solid black circles whose sizes are scaled according to the cyclone intensity.

Fig. 3 (a) Degree, (b) mean geographical distance and (c) local clustering coefficient fields for network constructed over the period Oct 2-11, 2018, during Very Severe Tropical Cyclones Luban (Oct 6-15, 2018) in the Arabian Sea and Titli (Oct 8-12, 2018) in the Bay of Bengal. The TC tracks are represented by solid black circles whose sizes are scaled according to the cyclone intensity.

values of C. This indicates that the networks during TCs are more transitive due to the formation of localized structures of high connectivity. It should be noted that the choice of plotting C against the middle day of the network associates with it a temporal tolerance of ±5 days, due to the time span covered by each network.

We also confirm our findings by applying the methodology to analyse TCs in the North Atlantic Ocean (NAO) TC basin during the months of August and September, when the peak of the hurricane season occurs there. We find that with the same choice of network window length and time lag as for the TCs in the NIO basin, similar observations in spatial patterns of degree, mean geographical distance, and local clustering coefficient can be made for Hurricane Irma, which occurred during Aug 30-Sep 13, 2017 (see Fig. 7). The network is constructed over a spatial region extending from 10°N to 42°N and from 42°W to 100°W for the period Sep 1-10, 2017. Therefore, despite the difference in basin properties between the NAO and the NIO basins, for example amongst others Sea Surface Temperature, a similar topological network evolution of the regions takes place during a TC. For a detailed analysis of Atlantic hurricanes, one may need to choose a longer time window.
Complex Network approach for detecting Tropical Cyclones

Fig. 4 (a) Degree, (b) mean geographical distance and (c) local clustering coefficient fields for network constructed over the period Dec 9-18, 2016, during Very Severe Cyclonic Storm Vardah (Dec 6-13, 2016) in the Bay of Bengal which crossed the Indian peninsula and formed Depression ARB 02 (Dec 17-18, 2016). The TC tracks are represented by solid black circles whose sizes are scaled according to the cyclone intensity.

Fig. 5 (a) Degree, (b) mean geographical distance and (c) local clustering coefficient fields for network constructed over the period Nov 3-12, 2015, during Extremely Severe Tropical Cyclones Megh (Nov 5-10, 2015) in the Arabian Sea and Deep Depression BOB 03 (Nov 8-10, 2015). The TC tracks are represented by solid black circles whose sizes are scaled according to the cyclone intensity.

Fig. 6 Global Clustering Coefficient (blue) for evolving networks of 2018 NIO TC post-monsoon (Sep-Oct-Nov-Dec) season plotted against the date corresponding to the middle day of the network period. Networks containing TC events show high global clustering coefficients.

Through the topological study of the evolution of climate networks over the TC basin, we hence see that the regional network topology undergoes a specific rearrangement during a TC. The above observations show that evolving climate networks are capable of capturing even weather extremes occurring over very short timescales like TCs.

4 Conclusions

The evolving climate networks approach has been very promising to study the impacts of long-lived extreme events such as strong El Niños, extreme monsoon rainfall, or volcanic eruptions, on the topology of climate interaction networks. In this work, we used this approach to demonstrate its potential to study the evolution of weather extremes occurring over very short time scales of only a few days. Through a spatio-temporal analysis of the TC basin, we extract insightful information about the underlying dynamical organization of the regional weather system during TCs.
We have investigated the temporal evolution of mean sea level pressure patterns by utilizing various topological properties of functional climate networks. We have employed sliding windows of 10 days, successively shifted by one day over the period of TC season – post-monsoon Sep-Oct-Nov-Dec cyclone season of north Indian Ocean basin, and the Aug-Sep season of the north Atlantic Ocean basin. We find that cyclone-affected regions exhibit an increase in the local clustering values C_i along with a decreasing degree k as compared to their surroundings, implying the formation of an almost isolated system within the network based on mean sea level pressure. The highly localized nature of these tropical storms leads to such a behaviour, as is evident from the lower values of mean geographical distance L along the nodes affected by the cyclone. We have uncovered that there is a close resemblance of cyclone tracks with high C_i nodes if the TC event occurs during the span of the network time window. Such networks also tend to have relatively high global clustering coefficient values. This indicates that the regions along the TC track are localized structures in the network with high connectivity, along which there is a continuous flow.

In conclusion, evolving climate networks can be used to study weather variability that occurs over much shorter, daily time scales, provided the length of the time window and the temporal resolution of the data is chosen in accordance to the weather phenomenon in consideration. Application of this approach over time scales relevant for TCs allowed us to gain deeper insights into the individual local signatures of changes in the flow structure of the regional weather system, in contrast to generic long-term topological changes reported in earlier works (Ozturk et al. 2018, 2019). This methodology using network-based indicators has a strong potential to detect cyclones and their tracks from MSLP outputs from models as well as other inputs. Further investigations involving network tools to analyse the topological changes in the various layers of the atmosphere during TCs using geopotential height, and the use of evolving network approach to study variability of teleconnections over decadal scales can be outlined as relevant topics for future research.

Data availability

The data/reanalysis that supports the findings of this study are publicly available online: ERA5 Reanalysis data (Hersbach et al. 2020), https://cds.climate.copernicus.eu/ last accessed on 2 Dec 2020; North Indian Ocean basin Best Track Data (1982-2020), http://www.rsmcnewdelhi.imd.gov.in/ last accessed on 12 Jan 2021; and Best Track Data Atlantic Hurricane Database (HURDAT2) 1851-2019 (Landsea and Franklin 2013), https://www.nhc.noaa.gov/data/#hurdat last accessed on 12 Jan 2021.

Acknowledgements We are grateful to Bedartha Goswami, Yang Liu and Abhirup Banerjee for valuable discussions. We would like to thank Linus Magnusson, David Richardson and Rebecca Emerton from ECMWF, Reading, UK, for providing us with useful insights into the different datasets and critical comments. This work is part of the Climate Advanced Forecasting of sub-seasonal Extremes (CAFE) project which has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 813844. N.B. acknowledges funding by the Volkswagen foundation. The network measures have been computed using the efficient Python module, graph-tool (Peixoto 2014), freely available at https://graph-tool.skewed.de/ which can be redistributed and/or modified under the terms of the GNU Lesser General Public License, version 3 or above.

Competing interests The authors declare no competing interests.

Correspondence and requests for materials should be addressed to S.G.
References

Boccaletti S, Latora V, Moreno Y, Chavez N, Hwang DU (2006) Complex networks: Structure and dynamics. Physics Reports 424(4):175-308, DOI https://doi.org/10.1016/j.physrep.2005.10.009, URL http://www.sciencedirect.com/science/article/pii/S037015730500462X

Albert R, Barabási AL (2002) Statistical mechanics of complex networks. Rev Mod Phys 74:47-97, DOI 10.1103/RevModPhys.74.47, URL https://link.aps.org/doi/10.1103/RevModPhys.74.47

Arenas A, Díaz-Guilera A, Kurths J, Moreno Y, Zhou C (2008) Synchronization in complex networks. Physics Reports 469(3):93-153, DOI 10.1016/j.physrep.2008.09.002

Tsonis A, Roebber P (2004) The architecture of the climate network. Physica A: Statistical Mechanics and its Applications 333:497-504, DOI https://doi.org/10.1016/j.physa.2003.10.045, URL http://www.sciencedirect.com/science/article/pii/S0378437103009646

Tsonis AA, Swanson KL, Roebber PJ (2006) What Do Networks Have to Do with Climate?. Bulletin of the American Meteorological Society 87(5):585-595, DOI 10.1175/BAMS-87-5-585

Tsonis AA, Swanson KL (2008) Topology and predictability of el niño and la niña networks. Phys Rev Lett 100:228,502, DOI 10.1103/PhysRevLett.100.228502, URL https://link.aps.org/doi/10.1103/PhysRevLett.100.228502

Donges JF, Zou Y, Marwan N, Kurths J (2010) Backbone of the climate network. EPL (Europhysics Letters) 87, DOI 10.1209/0295-5075/87/48007

Yamasaki K, Gozolchiani A, Havlin S (2008) Climate networks around the globe are significantly affected by el niño. Phys Rev Lett 100:228,501, DOI 10.1103/PhysRevLett.100.228501, URL https://link.aps.org/doi/10.1103/PhysRevLett.100.228501

Donges JF, Zou Y, Marwan N, Kurths J (2009) Complex networks in climate dynamics. The European Physical Journal Special Topics 174:157-179, DOI 10.1140/epjst/e2009-01098-2, URL https://doi.org/10.1140/epjst/e2009-01098-2

Ludescher J, Gozolchiani A, Bogachev MI, Bunde A, Havlin S, Schellnhuber HJ (2013) Improved el niño forecasting by cooperativity detection. Proceedings of the National Academy of Sciences 110(29):11,742-11,745, DOI 10.1073/pnas.1309353110, URL https://www.pnas.org/content/110/29/11742.full.pdf

Ludescher J, Gozolchiani A, Bogachev MI, Bunde A, Havlin S, Schellnhuber HJ (2014) Very early warning of next el niño. Proceedings of the National Academy of Sciences 111(6):2064-2066, DOI 10.1073/pnas.1320058111, URL https://www.pnas.org/content/111/6/2064

Meng J, Fan J, Ashkenazy Y, Havlin S (2017) Percolation framework to describe el niño conditions. Chaos: An Interdisciplinary Journal of Nonlinear Science 27(3):035,807, DOI 10.1063/1.4975766, URL https://doi.org/10.1063/1.4975766

Malik N, Bookhagen B, Marwan N, Kurths J (2012) Analysis of spatial and temporal extreme monsoonal rainfall over south asia using complex networks. Climate Dynamics 39:971-987, DOI 10.1007/s00382-011-1156-4, URL https://link.aps.org/doi/10.1063/1.5004480

Stolbova V, Martin P, Bookhagen B, Marwan N, Kurths J (2014) Topology and seasonal evolution of the network of extreme precipitation over the indian subcontinent and sri lanka. Nonlinear Processes in Geophysics 21(4):901-917, DOI 10.5194/npg-21-901-2014, URL https://npg.copernicus.org/articles/21/901/2014/

Boers N, Rheinwalt A, Bookhagen B, Barbosa HMJ, Marwan N, Marengo J, Kurths J (2014) The south american rainfall dipole: A complex network analysis of extreme events. Geophysical Research Letters 41(20):7397-7405, DOI https://doi.org/10.1002/2014GL061829, URL https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2014GL061829

Boers N, Goswami B, Rheinwalt A, Bookhagen B, Hoskins B, Kurths J (2019) Complex networks reveal global pattern of extreme-rainfall teleconnections. Nature 566, DOI 10.1038/s41586-018-0872-x

Cheung K, Ozturk U (2020) Synchronization of extreme rainfalls during the australian summer monsoon: Complex network perspectives. Chaos: An Interdisciplinary Journal of Nonlinear Science 30(6):063,117, DOI 10.1063/1.5144150, URL https://doi.org/10.1063/1.5144150 https://doi.org/10.1002/2016GL070692

Boers N, Bookhagen B, Marwan N, Kurths J, Marengo J (2013) Complex networks identify spatial patterns of extreme rainfall events of the south american monsoon system. Geophysical Research Letters 40(16):4386-4392, DOI https://doi.org/10.1002/grl.50681, URL https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/grl.50681

Ciencera C, Boers N, Barbosa H, Kurths J, Ramming A (2018) Temporal evolution of the spatial covaribility of rainfall in south america. Climate Dynamics 51, DOI 10.1007/s00382-017-3929-x

Emerton R, Cloke H, Ficchi A, Hawker L, de Wit S, Speight L, Prudhomme C, Rundell P, West R, Neal J, Cunl J, Harrigan S, Titley H, Magnusson L, Pappenberger F, Klagman N, Stephens E (2020) Emergency flood bulletins for cyclones idai and kenneth: A critical evaluation of the use of global flood forecasts for international humanitarian preparedness and response. International Journal of Disaster Risk Reduction 50:101,811, DOI https://doi.org/10.1016/j.ijdrr.2020.101811, URL https://www.sciencedirect.com/science/article/pii/S2212420920313133

Faxl D, Boers N, Rheinwalt A, Goswami B, Kurths J (2016) The size distribution of spatiotemporal extreme rainfall clusters around the globe. Geophysical Research Letters 43(18):9939-9947, DOI https://doi.org/10.1002/2016GL070692, URL https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2016GL070692

Ozturk U, Marwan N, Korup O, Saito H, Agarwal A, Grossman MJ, Zaiki M, Kurths J (2018) Complex networks for tracking extreme rainfall during typhoons. Chaos: An Interdisciplinary Journal of Nonlinear Science 333:497–504, DOI https://doi.org/10.1016/j.physa.2018.09.086

Copernicus.org/articles/21/901/2014/
Barrat A., Barthélemy M., Vespignani A. (2004) Weighted evolving networks: Coping with topological and weight dynamics. Phys Rev Lett 92:228701, DOI 10.1103/PhysRevLett.92.228701. URL https://link.aps.org/doi/10.1103/PhysRevLett.92.228701

Gross T., Blasius B. (2008) Adaptive coevolutionary networks: a review. Journal of The Royal Society Interface 5(20):259–271, DOI 10.1098/rsif.2007.1229, URL https://royalsocietypublishing.org/doi/abs/10.1098/rsif.2007.1229

Hlinka J., Hartman D., Jajcay N., Vejmelka M., Donner R., Marwan N., Kurths J. (2014) Regional and inter-regional effects in evolving climate networks. Nonlinear Processes in Geophysics 21(2):451–462, DOI 10.5194/npg-21-451-2014. URL https://npg.copernicus.org/articles/21/451/2014/

Albert R., Albert I., Nakano G. (2004) Structural vulnerability of the north american power grid. Phys Rev E 69:026113, DOI 10.1103/PhysRevE.69.026113, URL https://link.aps.org/doi/10.1103/PhysRevE.69.026113

Li L., Zeng T., Cai L., Wang Y., Li Y. (2018) The local-world evolving network model for power grid considering different voltage levels. In: The 11th IET International Conference on Advances in Power System Control, Operation and Management (APSCOM 2018), pp 1–4, DOI 10.1049/cp.2018.1781

Strogatz S. (2001) Exploring complex networks. Nature 410:268–276, DOI 10.1038/3506260a

Zhou C., Zemanová L., Zamora G., Hilgetag CC., Kurths J. (2006) Hierarchical organization unveiled by functional connectivity in complex brain networks. Phys Rev Lett 97:238103, DOI 10.1103/PhysRevLett.97.238103, URL https://link.aps.org/doi/10.1103/PhysRevLett.97.238103

Lehnertz K., Aumann G., Bialonski S., Dickten H., Geier C., Porz S. (2014) Evolving networks in the human epileptic brain. Physica D: Nonlinear Phenomena 267:7–15, DOI https://doi.org/10.1016/j.physd.2013.06.009, URL https://www.sciencedirect.com/science/article/pii/S0167279913001825, evolving Dynamical Networks

Marwan N., Donges J., Radebach T., Kurths J. (2010) Evolving climate networks. In: International Symposium on Nonlinear Theory and its Applications NOLTA2010, Krakow, Poland, pp 3–6, DOI 10.34385/proc.44.A1L2-A2

Hersbach H., Bell B., Berrisford P., Hirahara S., Horányi A., Muñoz-Sabater J., Nicolas J., Peubey C., Radu R., Schepers D., Simmons A., Soci C., Abdalla S., Abellan X., Balsamo G., Bechtold P., Biavati G., Bidlot J., Bonavita M., De Chiara G., Dhilip G., Dee D., Diamantakis M., Dragani R., Flemming J., Forbes R., Fuentes M., Geer A., Haimberger L., Healy S., Hogan R.J., Holm E., Janisková M., Keeley S., Laloyaux P., Lopez P., Lupu C., Radu G., de Rosnay P., Rozum I., Vamborg F., Villaume S., Thépaut JN. (2020) The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730):1999–2049, DOI https://doi.org/10.1002/qj.3803, URL https://rmons.onlinelibrary.wiley.com/doi/abs/10.1002/qj.3803

Kouroutzoglou J., Flócas H., Simmonds I., Keay K., Hatzaki M. (2011) Assessing characteristics of mediterranean explosive cyclones for different data resolution. Theoretical and Applied Climatology 105:263–275, DOI 10.1007/s00704-010-0390-8

Landsea CW., Franklin JL. (2013) Atlantic hurricane database uncertainty and presentation of a new database format. Monthly Weather Review 141(10):3576–3592, DOI 10.1175/MWR-D-12-00254.1, URL https://journals.ametsoc.org/view/journals/mwre/141/10/mwr-d-12-00254.1.xml

Goswami B., Schultz P., Heinke Z., Marwan N., Bodirsky B., Loß-Marken, H. (2011) Inferring interdependencies from short time series. Proceedings of the Conference on Perspectives in Nonlinear Dynamics - 2016 1:51–60, DOI 10.29195/lasa.01.01.0021, URL https://www.lasa.ac.in/article/fulltext/conf/01/01/0051-0050

Newman M. (2010) Networks: An Introduction. Oxford University Press

Watts DJ., Strogatz S. (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440–442, DOI 10.1038/30918, URL https://doi.org/10.1038/30918

Rheinwalt A., Marwan N., Kurths J., Werner P., Gersten-Garbe F. (2012) Boundary effects in network measures of spatially embedded networks. EPL (Europhysics Letters) 100(2):28002, DOI 10.1209/0295-5075/100/28002, URL https://doi.org/10.1209/0295-5075/100/28002

Barnett L., Di Paolo E., Bullock S. (2007) Spatially embedded random networks. Phys Rev E 76:056115, DOI 10.1103/PhysRevE.76.056115, URL https://link.aps.org/doi/10.1103/PhysRevE.76.056115

Wahiduzzaman M., Oliver E., Wotherpoon J., Holbrook NJ. (2017) A climatological model of north indian ocean tropical cyclone genesis, tracks and landfall. Climate Dynamics 49:2585–2603, DOI 10.1007/s00382-016-3461-4, URL https://doi.org/10.1007/s00382-016-3461-4

Li Z., Yu W., Li T., Mutv, V., Tangang F. (2013) Bimodal character of cyclone climatology in the bay of bangladesh modulated by monsoon seasonal cycle. Journal of Climate 26(3):1033 – 1046, DOI 10.1175/JCLI-D-11-00627.1, URL https://journals.ametsoc.org/view/journals/jcli/26/3/jcli-d-11-00627.1.xml

Vissa N., Satyanarayana A., Prasad Kumar B. (2013) Intensity of tropical cyclones during pre- and post-monsoon seasons in relation to accumulated tropical cyclone heat potential over bay of bengal. Natural Hazards 68, DOI 10.1007/s11069-013-0625-y

Gray W. (1968) Global view of the origin of tropical disturbances and storms. Monthly Weather Review 96(10):669 – 700, DOI 10.1175/1520-0493(1968)096<669_gvotoo_2.0.co;2, DOI 10.1175/1520-0493(1968)096<669_gvotoo_2.0.co;2, URL https://journals.ametsoc.org/view/journals/mwre/96/10/mwr-d-12-00254.1.xml

Camargo S., Emanuel K., Sobel A. (2007) Use of a genesis potential index to diagnose enso effects on tropical cyclone genesis. Journal of Climate 20(19):4819 – 4834, DOI 10.1175/2007JCLI4282.1.xml, URL https://journals.ametsoc.org/view/journals/jcli/20/19/jcli4282.1.xml