Abstract

Enhancement of human vision to get an insight to information content is of vital importance. The traditional histogram equalization methods have been suffering from amplified contrast with the addition of artifacts and a surprising unnatural visibility of the processed images. In order to overcome these drawbacks, this paper proposes interactive, mean, and multi-threshold selection criterion with plateau limits, which consist of histogram segmentation, clipping and transformation modules. The histogram partition consists of multiple thresholding processes that divide the histogram into two parts, whereas the clipping process nicely enhances the contrast by having a check on the rate of enhancement that could be tuned. Histogram equalization to each segmented sub-histogram provides the output image with preserved brightness and enhanced contrast. Results of the present study showed that the proposed method efficiently handles the noise amplification. Further, it also preserves the brightness by retaining natural look of targeted image.
Iterative Thresholded Bi-Histogram Equalization for Medical Image Enhancement

- Y. Kim. 1997, "Contrast enhancement using brightness preserving bi-histogram equalization", IEEE Transactions on Consumer Electronics, 43(1): 1-8
- Y. Wang, Q. Chen, B. Zhang, 1999, "Image enhancement based on equal area dualistic sub-image histogram equalization method", IEEE Transactions on Consumer Electronics, 45(1): 68 - 75
- S. Chen, A. Ramli, 2003, "Minimum mean brightness error bi-histogram equalization in contrast enhancement", IEEE Transactions on Consumer Electronics, 49(4): 1310–1319
- C. Ooi, N. Sia, P. Kong, H. Ibrahim, 2009, "Bi-Histogram Equalization with a Plateau Limit for Digital Image Enhancement", IEEE Transactions on Consumer Electronics, 55(4): 2072–2080
- S. Lim, N. Isa, C. Ooi, K. Toh, 2013, "A new histogram equalization method for digital image enhancement and brightness preservation", Signal, Image Video Processing.
- C. Zuo, Q. Chen, X. Sui, 2013, "Range Limited Bi-Histogram Equalization for image contrast enhancement", Optik, 124(5): 425–431
- K. Singh, R. Kapoor, 2014, "Image enhancement using Exposure based Sub Image Histogram Equalization", Pattern Recognition Letters, 36: 10–14.
- Ostu, N., 1979, "A threshold selection method from gray level histogram", IEEE Trans. System Man Cybernet, SMC-8: 62–66
- D. Menotti Gomes, 2008, "Contrast enhancement in digital imaging using histogram equalization", phd dissertation Federal University of Minas Gerais, Graduate Program in Computer Science.
- S. Yang, J. Oh, Y. Park, 2003, "Contrast Enhancement Using Histogram with Bin Underflow and Bin Overflow", Proceedings of ICIP 03, 1: 881 – 884.
- Q. Wang, R. Ward, 2007, "Fast Image/Video Contrast Enhancement Based on Weighted Thresholded Histogram Equalization", IEEE Transactions on Consumer Electronics, 53(2): 757–764
- T. Kim, J. Paik, 2008, "Adaptive contrast enhancement using gain-controllable clipped histogram equalization", IEEE Transactions on Consumer Electronics, 54(4): 1803–1810
- Kapur N., 1994, "Measures of Information and Their Applications", J. Wiley & Sons.
- R. Gonzalez, R. Woods, B. R. Masters, 2009, "Digital Image Processing", Third Edition, J. Biomed. Opt., 14(2): 029901
- T. Arici, S. Dikbas, Y. Altunbasak, 2009, "A histogram modification framework and its application for image contrast enhancement", IEEE Transactions on Image Processing, 1921–1935
- S. D. Chen, 2002, "A new image quality measure for assessment of histogram equalization-based contrast enhancement techniques", Digital Signal Processing, 22(4): 640–647
- Z. Wang, S. Member, A. C. Bovik, 2002, "A Universal Image Quality Index", 9(3): 81–84
- A. Grigoryan, M. Grigoryan, 2009, "Brief Notes in Advanced DSP Fourier Analysis with MATLAB", CRC Press.
- G. Simone, M. Pedersen, J. Hardeberg, 2012, "Measuring perceptual contrast in
digital images”, Journal of Visual Communication and Image Representation, 23(3): 491–506
- S. Chen, A. Ramli, 2003 ”Contrast enhancement using recursive mean-separate histogram equalization for scalable brightness preservation”, IEEE Transactions on Consumer Electronics, 49(4): 1301–1309
- M. Rabbani, Paul W. Jones, 1991 ”Digital Image Compression Techniques”, SPIE Publications.
- K. Sim, C. Tso, Y. Tan, 2007 ”Recursive sub-image histogram equalization applied to gray scale images”, Pattern Recognition Letters, 28(10): 1209–1221

Index Terms

Computer Science
Image Processing

Keywords

Bi-Histogram Equalization
contrast enhancement
Absolute mean brightness error
(AMBE)
Selection Brightness preserving with Plateau limit (ITSBPL)

Multi-Value Selection (MVBPL)

Mean Threshold Selection (MSBPL).