GTP Hydrolysis by Complexes of the Signal Recognition Particle and the Signal Recognition Particle Receptor

Timothy Connolly and Reid Gilmore

Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01655

Abstract. Translocation of proteins across the endoplasmic reticulum membrane is a GTP-dependent process. The signal recognition particle (SRP) and the SRP receptor both contain subunits with GTP binding domains. One GTP-dependent reaction during protein translocation is the SRP receptor–mediated dissociation of SRP from the signal sequence of a nascent polypeptide. Here, we have assayed the SRP and the SRP receptor for GTP binding and hydrolysis activities. GTP hydrolysis by SRP was not detected, so the maximal GTP hydrolysis rate for SRP was estimated to be <0.002 mol GTP hydrolyzed × mol of SRP⁻¹ × min⁻¹. The intrinsic GTP hydrolysis activity of the SRP receptor ranged between 0.02 and 0.04 mol GTP hydrolyzed × mol of SRP receptor⁻¹ × min⁻¹. A 40-fold enhancement of GTP hydrolysis activity relative to that observed for the SRP receptor alone was obtained when complexes were formed between SRP and the SRP receptor. GTP hydrolysis activity was inhibited by GDP, but not by ATP. Extended incubation of the SRP or the SRP receptor with GTP resulted in substoichiometric quantities of protein-bound ribonucleotide. SRP-SRP receptor complexes engaged in GTP hydrolysis were found to contain a minimum of one bound guanine ribonucleotide per SRP-SRP receptor complex. We conclude that the GTP hydrolysis activity described here is indicative of one of the GTPase cycles that occur during protein translocation across the endoplasmic reticulum.

The process of protein translocation can be divided into a series of reaction steps that together implement the selective transport of a polypeptide across the RER membrane. Proteins that contain RER-specific signal sequences are selected in an initial sorting reaction when the signal recognition particle (SRP) binds to the signal sequence as it emerges from the large ribosomal subunit (Walter and Blobel, 1981; Walter et al., 1981). The specificity of the sorting reaction in protein translocation is explained by the ability of SRP to discriminate between nascent chains that either contain or lack a RER signal sequence (Walter et al., 1981). The specificity of the sorting reaction in protein translocation is explained by the ability of SRP to discriminate between nascent chains that either contain or lack a RER signal sequence (Walter et al., 1981). The six protein subunits of SRP (72, 68, 54, 19, 14, and 9 kD) are organized into three functional domains by assembly onto the SRP (7SL) RNA (Siegel and Walter, 1985; Walter and Blobel, 1982; Walter and Blobel, 1983a). Nascent secretory chains that contain photoactivatable amino acid analogues can be cross-linked to the 54-kD subunit of SRP (Krieg et al., 1986; Kurzchalia et al., 1986). Based upon this finding, as well as upon experiments using subparticles derived from SRP, the signal sequence recognition domain of SRP was shown to consist of SRP54 and SRP19 (Siegel and Walter, 1988a,b). Targeting of the SRP-ribosome-nascent chain complex to the membrane is accomplished by interaction of SRP with the SRP receptor (Gilmore et al., 1982) or docking protein (Meyer et al., 1982), a heterodimeric protein consisting of 68-kD (SRα) and 30-kD (SRβ) subunits (Tajima et al., 1986). The signal sequence dissociates from SRP54 when the SRP-ribosome complex binds to the membrane bound SRP receptor (Gilmore and Blobel, 1983). Upon dissociation of the signal sequence from SRP, the nascent secretory polypeptide is inserted into a protein conducting channel in the membrane (Simon and Blobel, 1991).

The protein sequence of SRα, determined from canine and human cDNA clones (Hortsch et al., 1988; Lauffer et al., 1985), contains elements that are similar to the consensus motifs that comprise a GTP binding site (Connolly and Gilmore, 1989; Dever et al., 1987). Site-directed mutagenesis of SRα revealed that a functional GTP binding site in this subunit is essential for protein translocation across the endoplasmic reticulum (Rapiejko and Gilmore, 1992). SRP54 contains a GTP binding domain that is related to the
the SRP receptor. The SRP receptor-initiated dissociation of the SRP receptor. To begin to address such questions, we cerned the functional role of each of these GTP binding drolysis of protein-bound GTP (Connolly et al., 1991). The dissociation of the SRP-SRP receptor complex requires hy-
dropase GTP in the SRP-signal sequence displacement reaction (Connolly and Gilmore, 1989). Recently, sequence analysis of SRδ disclosed the presence of a GTP binding site (Ogg et al., 1992). Thus, the SRP and the SRP receptor contains three protein subunits (SRα, SRP54, and SRβ) that belong to the GTPase super-family. Several lines of experimental evidence suggest that the GTP binding and hydrolysis cycles of SRP54 and SRα regulate the affinity between the signal sequence, SRP, and the SRP receptor. The SRP receptor-initiated dissociation of the signal sequence from SRP is a GTP-dependent reaction (Connolly and Gilmore, 1989). The nonhydrolyzable GTP analogue guanylyl-5'-imidodiphosphate (GMPPNP) can replace GTP in the SRP-signal sequence displacement reaction (Connolly et al., 1991). However, SRP fails to dissociate from the membrane bound SRP receptor, demonstrating that dissociation of the SRP-SRP receptor complex requires hydrolysis of protein-bound GTP (Connolly et al., 1991). The latter observation suggests that a GTP hydrolysis cycle regulates the affinity between SRP and the SRP receptor.

The discovery of three GTP binding sites in SRP and the SRP receptor was unanticipated and raised questions concerning the functional role of each of these GTP binding sites. Speculation on this point has been hindered by a lack of sufficient data concerning the GTPase activity of SRP and the SRP receptor. To begin to address such questions, we have assayed purified preparations of SRP and SRP receptor for GTP binding and hydrolysis activities. These studies have established that the formation of a bimolecular complex of SRP and SRP receptor activates a GTP hydrolysis site. The GTP hydrolysis cycle that can be detected with SRP-SRP receptor complexes has a similar affinity for guanine ribonucleotides as the GTP binding site that was detected with in vitro protein translocation assays (Connolly and Gilmore, 1986; Rapiejko and Gilmore, 1992).

Materials and Methods
Preparation of SRP and the SRP Receptor
The triethanolamine buffer used for all preparative and analytical procedures was made as a 1 M stock solution, adjusted to pH 7.5 at 25°C with acetic acid and is abbreviated TEA. SRP and salt-extracted microsomal membranes (K-RM) were isolated from canine pancreas rough microsomal membranes using previously described methods (Walter et al., 1981). The concentration of the SRP was determined from the absorbance at 260 nm (Walter and Blobel, 1983a). SRP receptor was isolated from K-RM using a modification of a previous procedure (Gilmore and Blobel, 1983). Briefly, K-RM were adjusted to 0.25 M sucrose, 50 mM TEA, 100 mM KOAc, 1 mM DTT, and spotted onto polyethyleneimine (PEI) cellulose thin layer plates (J. T. Baker, Inc., Phillipsburg, NJ). GDP was resolved from GTP using 0.75 M K-HPO4, pH 3.3 as the solvent for the thin-layer chromatography (Der et al., 1986). The radioactivity in spots corresponding to GTP and GDP was quantitated using a Betagen Bioscope 630 Blot analyzer. The quantity of GTP hydrolyzed in a control assay lacking both SRP and SRP receptor was subtracted as background to determine the rate of protein-specific GTP hydrolysis. GTP hydrolysis rates were calculated from the linear phase of a GTP hydrolysis reaction when the percentage of GTP that had been hydrolyzed did not exceed 10%.

Dissociation constants for SRP-SRP receptor complexes were calculated from data obtained in GTP hydrolysis assays using a Scatchard analysis (Scatchard, 1949). The concentration of bound SRP was calculated for each concentration of added SRP using the following equation:

\[
(Vo - Vsa) \times SRT
\]

VsR-SA was estimated from data obtained in GTP hydrolysis assays using a Scatchard analysis (Scatchard, 1949). The concentration of bound SRP was calculated for each concentration of added SRP using the following equation:

\[
(Vo - Vsa) \times SRT
\]

VsR-SA was estimated from data obtained in GTP hydrolysis assays using a Scatchard analysis (Scatchard, 1949). The concentration of bound SRP was calculated for each concentration of added SRP using the following equation:

\[
(Vo - Vsa) \times SRT
\]

VsR-SA was estimated from data obtained in GTP hydrolysis assays using a Scatchard analysis (Scatchard, 1949). The concentration of bound SRP was calculated for each concentration of added SRP using the following equation:

\[
(Vo - Vsa) \times SRT
\]

VsR-SA was estimated from data obtained in GTP hydrolysis assays using a Scatchard analysis (Scatchard, 1949). The concentration of bound SRP was calculated for each concentration of added SRP using the following equation:

\[
(Vo - Vsa) \times SRT
\]

VsR-SA was estimated from data obtained in GTP hydrolysis assays using a Scatchard analysis (Scatchard, 1949). The concentration of bound SRP was calculated for each concentration of added SRP using the following equation:

\[
(Vo - Vsa) \times SRT
\]

VsR-SA was estimated from data obtained in GTP hydrolysis assays using a Scatchard analysis (Scatchard, 1949). The concentration of bound SRP was calculated for each concentration of added SRP using the following equation:

\[
(Vo - Vsa) \times SRT
\]

VsR-SA was estimated from data obtained in GTP hydrolysis assays using a Scatchard analysis (Scatchard, 1949). The concentration of bound SRP was calculated for each concentration of added SRP using the following equation:

\[
(Vo - Vsa) \times SRT
\]

VsR-SA was estimated from data obtained in GTP hydrolysis assays using a Scatchard analysis (Scatchard, 1949). The concentration of bound SRP was calculated for each concentration of added SRP using the following equation:

\[
(Vo - Vsa) \times SRT
\]
Results

SRP-SRP Receptor Complexes Hydrolyze GTP

SRP and the SRP receptor were incubated with GTP to determine whether either protein complex has an intrinsic GTPase activity. The GTP hydrolysis assays contained 1 µM [α-32P] GTP, based upon the previous observation that micromolar concentrations of GTP or Gpp(NH)p were sufficient for the guanine ribonucleotide-dependent dissociation of SRP from the signal sequence in a protein translocation reaction (Connolly and Gilmore, 1986; Rapiejko and Gilmore, 1992). As the intrinsic GTP hydrolysis rates of purified GTP binding proteins are often as low as 0.01 mol of GTP hydrolyzed × mol of protein−1 × min−1 (Bourne et al., 1990), the GTPase assay was designed to detect low hydrolysis rates when using 1 µM [α-32P] GTP as the substrate. Nikkol (0.05%) is present in the SRP storage buffer to stabilize SRP activity (Walter and Blobel, 1980), and is included here to stabilize SRP and to maintain the solubility of the SRP receptor. The signal recognition particle did not hydrolyze GTP at a rate that significantly exceeded the rate obtained with the assay buffer alone (Fig. 1). Several different SRP preparations were assayed for GTP hydrolysis activity and comparable results were obtained. The maximal GTP hydrolysis rate calculated from the data shown here is 0.002 mol GTP hydrolyzed × mol of SRP−1 × min−1. This value should be considered as a maximal estimate for the intrinsic GTP hydrolysis rate for SRP. Hydrolysis of GTP by the SRP receptor was quite low, yet readily detectable (Fig. 1). Several different SRP receptor preparations were assayed, and the intrinsic GTP hydrolysis rate ranged between 0.02 and 0.04 mol of GTP hydrolyzed × mol of SRP receptor−1 × min−1. The low intrinsic GTPase activity of the SRP and the SRP receptor suggest that the hydrolysis reactions catalyzed by these two GTPases are controlled by accessory factors.

High affinity SRP-SRP receptor complexes are formed by coincubation of the two proteins with Gpp(NH)p, but not GTP or GDP, suggesting that a GTPase cycle is initiated upon contact between SRP and the SRP receptor (Connolly et al., 1991). A significant enhancement of GTP hydrolysis activity was observed in an assay that contained 60 nM SRP and 15 nM SRP receptor (Fig. 1). Because SRP was present in a fourfold excess relative to the receptor in this experiment, the GTP hydrolysis activity was arbitrarily expressed with respect to the SRP receptor concentration.

GTP hydrolysis, but not GTPγS binding, by the heterotrimeric G protein G, is inhibited when the nonionic detergent Lubrol is present in assays at concentrations above the critical micelle concentration (Brandt et al., 1983; Brandt and Ross, 1985). In the case of G, the detergent inhibition of the GTPase activity was alleviated when the detergent concentration was reduced (Brandt and Ross, 1985). To determine whether the GTP hydrolysis rates determined here for SRP and SRP receptor were artificially low due to detergent inhibition, we reduced the concentration of Nikkol in the GTP hydrolysis assay. The critical micelle concentration for Nikkol is 7.1 × 10−4 M (0.0038%). The GTP hydrolysis rate for SRP was not enhanced when the Nikkol concentration was reduced to 0.002 %, a value that is almost twofold below the critical micelle concentration. Likewise, the GTP hydrolysis rate for the SRP receptor was not enhanced when the Nikkol concentration was reduced to 0.005 %. Based upon these results, we conclude that the low intrinsic rates of GTP hydrolysis for SRP and SRP receptor are not caused by detergent inhibition. However, we did observe a 5–10% increase in the hydrolysis rate when assays containing 60 nM SRP plus 10 nM SRP receptor contained 0.01% Nikkol instead of 0.1% Nikkol (data not shown). A further twofold reduction in the Nikkol concentration was accompanied by a reduction in GTP hydrolysis activity.

The validity of expressing the data with respect to the SRP receptor content was explored in more detail. The concentration dependence of SRP stimulation of the hydrolysis activity was determined in assays containing 15 nM SRP receptor (Fig. 2 A). The SRP concentration required for maximal stimulation of the GTP hydrolysis activity was dependent upon the SRP receptor concentration used for the experiment (data not shown). A saturation curve like that shown here is consistent with activation of a GTP hydrolysis site upon formation of a complex between SRP and the SRP receptor. The data in Fig. 2 A were analyzed as an equilibrium between uncomplexed SRP and SRP receptor and a hydrolytically active SRP-SRP receptor complex using the method of Scatchard (Scatchard, 1949). The experimental data could be adequately fit using a Kd of 15 nM for the forma-
Figure 3. The ionic strength dependence of GTP hydrolysis. (A) GTP hydrolysis assays containing 60 nM SRP and 10 nM SRP receptor were conducted as in Fig. 1 except that the KOAc concentration of the GTP hydrolysis buffer was adjusted to 50–400 mM as indicated. (B) GTP hydrolysis assays containing 15 nM SRP receptor plus the indicated concentration of SRP were conducted as in Fig. 1 except that the GTP hydrolysis buffer was adjusted to 150 mM KOAc (●). Aliquots of the hydrolysis reactions were removed at 5-min intervals during a 15-min assay to determine GTP hydrolysis rates. The experimental data in Fig. 2 A has been replotted for comparison (●). The inset in B is a Hill plot for SRP-SRP receptor complex formation at 150 mM KOAc. The parameter φ is the fractional saturation of SRP receptor with SRP, and this parameter was calculated as described in Materials and Methods.
Figure 4. Nucleotide dependence of the GTP hydrolysis reaction. (A) GTP hydrolysis assays of 37.5 nM SRP receptor (▲) or 15 nM SRP receptor plus 75 nM SRP (●) were conducted as in Fig. 1 except that the GTP concentration was varied between 0.2 and 5 μM. The GTP hydrolysis activity for SRP-SRP receptor complexes was calculated from a 15-min time point and is expressed as mol GDP × mol SRP -1 × min -1. GTP hydrolysis rates for the SRP receptor were calculated from samples removed at 10-min intervals during a 40-min time course and these hydrolysis rates are expressed as mol GDP × mol SRP -1 × 10 min -1. (B) Standard GTP hydrolysis assays containing 60 nM SRP, 15 nM SRP receptor, and 1 μM GTP were further supplemented with 0-10 μM GDP (■) or 0-25 μM ATP (●). The GTP hydrolysis activity of assays that did not contain competing ribonucleotide have been plotted at 0.02 μM. This value accurately reflects the 2% contamination of a GTP stock with GDP, but is an overestimate of the ATP contamination of the GTP stock.

The preceding experiments indicate that formation of an equimolar complex between SRP and the SRP receptor is a prerequisite for an active GTP hydrolysis cycle. Activation of a GTP hydrolysis cycle could occur either by increasing the hydrolysis rate of protein bound GTP or by increasing the rate of guanine nucleotide exchange (Bourne et al., 1990). We sought to determine whether either SRP or the SRP receptor binds GTP under the experimental conditions used for the GTP hydrolysis assay. Aliquots from a GTP hydrolysis assay containing [α-32P] GTP were collected on nitrocellulose filters and washed by vacuum filtration to remove unbound guanine ribonucleotide. When the SRP receptor was tested for GTP binding, we detected 5 fmol of bound guanine ribonucleotide per 150 fmol of SRP receptor after a 50-min incubation (Fig. 5). Substoichiometric quantities of bound GTP were also detected when SRP was assayed for GTP binding. After a 50-min incubation with GTP, 24 fmol of [α-32P] GTP were bound per 700 fmol of SRP. Two different explanations for substoichiometric binding of [α-32P] GTP to SRP and the SRP receptor were considered. The dissociation rate for GTP may be rapid enough to permit ribonucleotide dissociation during the time required to wash the nitrocellulose filters. Alternatively, SRP and the SRP receptor may not readily bind GTP in the absence of guanine nucleotide exchange proteins.

Hydrolysis reactions containing both SRP and SRP receptor were assayed to determine the rate and stoichiometry of nucleotide binding to SRP-SRP receptor complexes (Fig. 5). The quantity of bound guanine ribonucleotide increased rapidly during the first three min of a GTP hydrolysis reaction. A first order rate constant of 0.62 min -1 for binding of gua-
The Journal of Cell Biology, Volume 123, 1993

Discussion

Previous research from this laboratory demonstrated that GTP was required for the SRP receptor-mediated dissociation of SRP from the signal sequence of a nascent polypeptide (Connolly and Gilmore, 1989). Here, we have assayed SRP and the SRP receptor for GTP hydrolysis activity to gain insight into the functional significance of the GTP binding sites that have been detected in SRP54 and SRαL by protein sequence comparisons (Bernstein et al., 1989; Connolly and Gilmore, 1989; Römlisch et al., 1989). Several significant results were obtained from this analysis. Neither SRP nor the SRP receptor displayed robust GTP hydrolysis activities when assayed separately. Our maximal estimate for the intrinsic hydrolysis rate of the SRP (<0.002 min⁻¹) is comparable to the extremely low hydrolysis rates reported

Figure 5. Quantitation of bound guanine ribonucleotide to SRP and the SRP receptor by filtration through nitrocellulose filters. Guanine ribonucleotide binding assays were conducted as described in Materials and Methods. Note the compression of the abscissa after 10 min of the reaction.

Figure 6. Quantitation of protein bound ribonucleotide by gel filtration chromatography. (A) GTP hydrolysis assays were conducted as in Fig. 1. The individual assays contained (a) no additions, (b) 60 nM SRP, (c) 7.5 nM SRP receptor, (d-f) 60 nM SRP and 7.5 nM SRP receptor. After 10 min at 25°C, samples e and f were adjusted to 25 μM ATP (e) or 25 μM GTP (f). After a total incubation of 20 min, the assays were chilled on ice and protein bound ribonucleotides were separated from unbound ribonucleotides by gel filtration chromatography at 4°C (see Materials and Methods). Protein bound ribonucleotide was quantitated by scintillation counting. (B) The load and selected eluate fractions from a gel filtration column were analyzed by thin layer chromatography on PEI cellulose plates.

The Journal of Cell Biology, Volume 123, 1993

Published November 1, 1993
for the Sec4 protein (Kabcenell et al., 1990) and the ras p21 protein (Gibbs et al., 1984). The intrinsic hydrolysis rate for the SRP receptor (0.02 min⁻¹) was lower than the value of 0.4 min⁻¹ reported for G₁ (Brandt and Ross, 1985), but comparable to rates reported for G₁ (Soneyer et al., 1984) and G₂ (Tamir et al., 1990). We were not able to detect a significant amount of protein bound ribonucleotide when the SRP receptor was incubated with GTP. For this reason, we cannot be certain that the GTPase activity displayed by our SRP receptor preparation was not due to a subpopulation of altered receptors or a protein contaminant. However, it should be noted that the low apparent Kₛₐ for GTP (15 μM) in the GTP hydrolysis assay may preclude detection of bound ribonucleotide to the SRP receptor using the nitrocellulose filtration method.

GTP binding proteins cycle between an active GTP-bound conformation and an inactive GDP-bound conformation (Milburn et al., 1990). The hydrolysis rate of GTP binding proteins is controlled by accessory proteins that catalyze guanine nucleotide exchange reactions or accelerate the hydrolysis of protein bound GTP (Bourne et al., 1990). Hence, the low hydrolytic activity of the SRP and the SRP receptor was not unexpected. Catalysis of the guanine ribonucleotide exchange reaction is the mechanism by which membrane bound hormone receptors accelerate the hydrolysis rate of signal transducing G-proteins (Gilman, 1987). The GTPase activating protein (GAP) preferentially interacts with the GTP-bound form of the ras p21 protein to stimulate hydrolysis of the protein bound GTP (Trahey and McCormick, 1987; Vogel et al., 1988). Accessory factors analogous to those identified for other GTP binding proteins are presumably required to initiate the GTP hydrolysis cycle for SRP and the SRP receptor. The observation that neither the SRP nor the SRP receptor bind stoichiometric quantities of GTP when tested separately suggests that the nucleotide binding sites in both proteins are either unoccupied, or is in the GDP-bound form in the absence of a guanine nucleotide exchange or release factor (GNRP). Based upon analogies to other GTP binding proteins, we propose that the GTP hydrolysis reactions catalyzed by SRP and SRP receptor are limited, at least in part, by the conditional binding of GTP to the guanine nucleotide binding sites. The initiation of a hydrolysis cycle upon combination of the two proteins strongly suggests that the conditional binding of GTP to at least one site is initiated upon formation of the SRP–SRP receptor complex. Hence, one of these proteins acts as a guanine nucleotide exchange factor for the other protein.

When SRP was added to hydrolysis assays containing SRP receptor, a saturable stimulation of GTP hydrolysis was observed. The hydrolysis activity was GTP specific as shown by the ability of GDP, but not ATP to act as a competitive inhibitor of the hydrolysis reaction. The results of the GTP hydrolysis assays were entirely consistent with the formation of a hydrolytically active bimolecular complex between SRP and SRP receptor. The conditional strength dependence of the hydrolysis assay matched the conditional strength dependence of the association between SRP and the membrane bound SRP receptor (Connolly et al., 1991; Walter and Blobel, 1983b). The reduced GTPase activity observed at physiological ionic strength should minimize translocation associated GTP hydrolysis activity by SRP and SRP receptor within the cell.

Ribonucleotide binding assays detected a single bound guanine nucleotide per SRP–SRP receptor complex during a GTP hydrolysis assay. However, the filter binding assays may underestimate the quantity of protein-bound ribonucleotide if dissociation of protein bound GTP or GDP occurs during washing of the nitrocellulose filter. These findings demonstrate that a minimum of one GTP binding site is hydrolytically active when the SRP–SRP receptor complex is formed. The experiments described in this manuscript do not allow us to determine which protein subunit (SRot, SR₁, or SRP54) contains the GTP binding site that is active during the GTP hydrolysis reaction. However, the minimal proteins required for the GTP hydrolysis activity of the SRP–SRP receptor complex can be defined by combining partially reconstituted ribonucleoproteins derived from the SRP with the SRP receptor. This experimental strategy has revealed that SRP54 plus the 7S RNA comprise the minimal RNP that can form a hydrolytically active complex when combined with the SRP receptor (Poritz et al., 1990; Miller et al., 1993).

The binding affinity of the hydrolysis site for GTP is roughly 10–100-fold lower than that reported for other GTP binding proteins including ras, G₁ (Brandt and Ross, 1985) and G₂ (Soneyer et al., 1984). The lower affinity of the hydrolysis site for GTP is probably due to differences in the precise architecture of the GTP binding site in SRα or SRP54. The GTP binding sites in SRot and SRP 54 contain threonine instead of an asparagine in the third (NKXD) consensus element of the GTP binding site. In the H ras p21 protein, the primary role of the asparagine residue in the NKXD motif is to stabilize the nucleotide binding site by forming hydrogen bonds with several different elements of the nucleotide binding site (Pai et al., 1990). Clearly, the corresponding threonine residue within SRot or SRP54 may only make a subset of the hydrogen bonds ascribed to the asparagine residue present in more typical GTP binding proteins. Conversion of the atypical threonine residue in SRα to an asparagine residue by site directed mutagenesis led to the production of an SRP receptor with a 50–100-fold reduced affinity for guanine ribonucleotides (Rapiejko and Gilmore, 1992). The apparent affinity of the GTP hydrolysis site for GDP (apparent Kₛₐ of 250 nM) was more than 10-fold higher than the apparent affinity for GTP (Kₛₐ of 3.2 μM). More importantly, the Kₛₐ for GTP and Kᵢ for GDP determined with the GTP hydrolysis assay were in good agreement with Kₛₐ and Kᵢ values obtained for the GTP-dependent insertion of nascent polypeptides into the endoplasmic reticulum (Connolly and Gilmore, 1986; Rapiejko and Gilmore, 1992).

The ribonucleotide hydrolysis assay developed here presumably monitors a specific portion of the protein translocation reaction. Most likely, the reaction phase that is observed is initiated upon contact between the SRP-ribosome complex and the membrane bound SRP receptor. Recent experimental data indicate that SRP-dependent reactions that precede SRP receptor contact are not GTP-dependent (Zopf et al., 1993; Rapiejko, P., and R. Gilmore, manuscript in preparation). Hence, GTP hydrolysis cycles involving both SRα and SRP54 may initiate upon contact between the SRP-ribosome complex and the SRP receptor. As shown previously, contact between SRP and SRP receptor initiates a guanine nucleotide exchange reaction that ultimately results in dissociation of the signal sequence from SRP54 (Connolly and Gilmore,
Based on the observation that point mutations in the GTP binding site of SRα block signal sequence dissociation from SRP54, we propose that binding of GTP to SRα is a prerequisite or a corequisite for GTP binding to SRP54 (Rapiejko and Gilmore, 1992; Rapiejko, P., and R. Gilmore, manuscript in preparation). Guanine ribonucleotide induced alterations in protein tertiary structure are believed to regulate the affinity between GTP binding proteins and downstream effector proteins (Bourne et al., 1990). Thus, binding of GTP to the G domain of SRP54 presumably reduces the affinity between the M-domain of SRP54 and the signal sequence. Experiments using nonhydrolyzable guanine nucleotides have shown that SRP-SRP receptor complexes are more stable when one or more of the GTP binding sites in the SRP-SRP receptor complex is occupied by the nonhydrolyzable GTP analogue Gpp(NH)p (Connolly et al., 1991). Formation of high affinity complexes between SRP and the SRP receptor is dependent upon a functional GTP binding site in SRα (Rapiejko and Gilmore, 1992) and requires the G-domain of SRP54 (Zopf et al., 1993). Taken together, these results suggest that the cyclic formation and dissociation of the SRP-SRP receptor complex probably involves two interlocking GTP hydrolysis cycles. In the context of a protein translocation reaction, GTP hydrolysis by the SRP-SRP receptor complex may be regulated by an auxiliary protein factor or GAP-like activity that monitors the successful insertion of the nascent polypeptide into the protein conducting channel in the ER (Simon and Blobel, 1991; Simon and Blobel, 1992). Recently, experimental data showing that a synthetic signal sequence can inhibit the GTP hydrolysis activity of SRP-SRP receptor complexes has been obtained (Miller et al., 1992).

To date, a function for the GTP binding site in the β subunit of the SRP receptor has not been proposed, due to a lack of data concerning the role of this subunit in the protein translocation reaction. Conceivably, the GTPase cycle of the β subunit might promote the cyclic assembly and disassembly of complexes between the SRP receptor and the SEC61 protein, as the latter polypeptide is believed to comprise the central core of the protein conducting channel (Görlich et al., 1992). Interestingly, the stoichiometry between membrane-bound ribosomes engaged in protein translocation and the SRP receptor is roughly 5:1 (Gilmore et al., 1982), suggesting that the SRP receptor may mediate ribosome targeting to a cluster of protein translocation channels. Further insight into the role of the three GTPases in SRP and the SRP receptor will be provided by the development of assay systems that incorporate additional components of the protein translocation machinery into reconstituted proteoliposomes.

This work was supported by National Institutes of Health Grant GM-35687 and was conducted during the tenure of an Established Investigatorship of the American Heart Association.

Received for publication 15 June 1993 and in revised form 26 August 1993.

References

Bernstein, H. D., M. A. Poritz, K. Strub, P. J. Hoben, S. Brenner, and P. Walter. 1989. The amino acid sequence of the 54 kDa subunit of the signal recognition particle suggests a model for signal sequence recognition. Nature (Lond.). 340:482–486.

Bourne, H. R., D. A. Sanders, and F. McCormick. 1990. The GTPase superfamily: a conserved switch for diverse cell functions. Nature (Lond.). 348:125–132.

Brandt, D. R., and E. M. Ross. 1985. GTPase activity of the stimulatory GTP-binding regulatory protein of adenylyl cyclase. G, Accumulation and metabolism of enzyme-nucleotide intermediates. J. Biol. Chem. 260:266–272.

Brandt, D. R., and E. M. Ross. 1986. Catecholamine-stimulated GTPase cycle. Multiple sites of regulation by β-adrenergic receptor and Mg2+ studied in recombinant receptor-G vesicles. J. Biol. Chem. 261:1656–1664.

Brandt, D. R., T. Azano, S. S. Pedersen, and E. M. Ross. 1983. Reconstitution of catecholamine-stimulated guanosine triphosphatase activity. Biochemistry. 22:4357–4362.

Connolly, T., and R. Gilmore. 1986. Formation of a functional ribosome-membrane junction during protein translocation. J. Cell Biol. 103:2253–2261.

Connolly, T., and R. Gilmore. 1989. The signal recognition particle receptor mediates the GTP-dependent displacement of the signal sequence from the nascent polypeptide. Cell. 57:599–610.

Der, C., T. Finkel, and G. M. Cooper. 1986. Biological and biochemical properties of human ras genes mutated at codon 61. Cell. 44:167–176.

Dever, T. E., M. J. Gilnias, and W. C. Merrick. 1987. GTP-binding proteins: three consensus sequence elements with distinct spacing. Proc. Natl. Acad. Sci. USA. 84:1814–1818.

Gibbs, J. B., J. S. Sigal, M. Poc, and E. M. Scolnick. 1984. Intrinsic GTPase activity distinguishes normal and oncogenic ras p21 molecules. Proc. Natl. Acad. Sci. USA. 81:5704–5708.

Gilmore, A. G. 1987. G protein. Annu. Rev. Biochem. 56:615–649.

Gilmore, R., and G. Blobel. 1983. Transient involvement of the signal recognition particle and its receptor in the procysnor membrane prior to protein translation. Cell. 35:677–685.

Gilmore, R., P. Walter, and G. Blobel. 1982. Protein translocation across the endoplasmic reticulum. II. Isolation and characterization of the signal recognition particle receptor. J. Cell Biol. 95:470–477.

Görlich, D., S. Prehn, E. Hartmann, K.-U. Kalies, and T. A. Rapoport. 1992. A mammalian homologue of Sec61p and ECoyp is associated with ribosomes and nascent polypeptides during translation. Cell. 71:489–503.

High, S., N. Flint, and B. Dobberstein. 1991. Requirements for the membrane insertion of signal-anchor type proteins. J. Cell Biol. 113:25–34.

Hoffman, K., and R. Gilmore. 1988. Guanosine triphosphate promotes the post-translational integration of opsin into the endoplasmic reticulum. J. Biol. Chem. 263:4381–4385.

Hortsch, M., S. Labeit, and D. J. Meyer. 1988. Complete DNA sequence coding for human docking protein. Nucleic Acids Res. 16:361–362.

Kabesch, C. J., L. Goud, J. K. Northup, and P. J. Novick. 1990. Binding and hydrolysis of guanine nucleotides by Sec4p, a yeast protein involved in the regulation of vesicular traffic. J. Biol. Chem. 265:9366–9372.

Kriegl, U. C., P. Walter, and A. E. Johnson. 1986. Photorecognition of the signal sequence of nascent preprolactin to the 54 kDa polypeptide of the signal recognition particle. Proc. Natl. Acad. Sci. USA. 83:8604–8608.

Kurczahlia, T. V., M. Wiedmann, A. Sa. Girshovich, E. S. Bochkareva, H. Brandt, and T. A. Rapoport. 1986. The signal sequence of preprolactin interacts with the 54 kDa polypeptide of the signal recognition particle. Nature (Lond.). 320:634–636.

Lauffer, L. P., D. Garcia, R. N. Harkins, L. Couchen, A. Ulrich, and P. Walter. 1985. Topology of signal recognition particle receptor in endoplasmic reticulum membrane. Nature (Lond.). 318:334–338.

Meyer, D. I., E. Krause, and B. Dobberstein. 1982. Secretory protein translocation across membranes—the role of the ‘docking protein’. Nature (Lond.). 297:647–650.

Milburn, M. V., L. Tong, A. M. deVos, A. Brugner, Z. Yamaizumi, S. Nishiama, and S.-H. Kim. 1990. Molecular switch for signal transduction: Molecular differences between active and inactive forms of the protooncoprotein ras proteins. Science (Wash. DC). 247:934–945.

Miller, J. D., H. Wilhelm, L. Giersch, R. Gilmore, and P. Walter. 1993. GTP binding and hydrolysis by the 54 kDa subunit of the signal recognition particle during initiation of protein translocation. Nature (Lond.). In press.

Ogg, S. C., J. M. Nunnari, J. D. Miller, and P. Walter. 1992. The role of GTP in protein targeting to the endoplasmic reticulum. In Membrane Biogenesis and Protein Targeting. W. Neupert and R. Lill, editors. Elsevier Science Publishers, New York. 129–135.

Pai, E. F., U. Kreisel, G. A. Petsko, R. S. Goody, W. Kabach, and A. Wittinghofer. 1990. Refined crystal structure of the triphosphate conformation of H-ras p21 at 1.35 A resolution: implications for the mechanism of GTP hydrolysis. EMBO (Eur. Mol. Biol. Organ.) J. 9:2351–2359.

Portz, M. A., H. D. Bernstein, K. Strub, D. Zopf, H. Wilhelm, and P. Walter. 1990. An E. coli ribonucleoprotein containing 4.5 S RNA resembles mammalian signal recognition particle. Science (Wash. DC). 250:1111–1117.

Rapiejko, P., and R. Gilmore. 1992. Protein translocation across the ER requires a functional GTP binding site in the α subunit of the signal recognition particle.
particle receptor. *J. Cell Biol.* 117:493–503.

Römisch, K., J. Webb, J. Herz, S. Prehn, R. Frank, M. Vingron, and B. Dobberstein. 1989. Homology of the 54K protein of signal recognition particle, docking protein and two *E. coli* proteins with putative GTP-binding domains. *Nature (Lond.)*. 340:478–482.

Scatchard, G. 1949. The attraction of proteins for small molecules and ions. *Annu. NY Acad. Sci.* 51:660–672.

Siegel, V., and P. Walter. 1985. Elongation arrest is not a prerequisite for secretory protein translocation across the microsomal membrane. *J. Cell Biol.* 100:1913–1921.

Siegel, V., and P. Walter. 1988a. Binding sites of the 19-kDa and 68/72-kDa signal recognition particle (SRP) proteins on SRP RNA as determined by protein–RNA "footprinting." *Proc. Natl. Acad. Sci. USA.* 85:1801–1805.

Siegel, V., and P. Walter. 1988b. Each of the activities of signal recognition particle (SRP) is contained within a distinct domain: analysis of biochemical mutants of SRP. *Cell.* 52:39–49.

Simon, S. M., and G. Blobel. 1991. A protein-conducting channel in the endoplasmic reticulum. *Cell.* 65:371–380.

Simon, S. M., and G. Blobel. 1992. Signal peptides open protein-conducting channels in *E. coli*. *Cell.* 69:677–684.

Sunyer, T., J. Codina, and L. Birnbaumer. 1984. GTP hydrolysis by pure N,, the inhibitory regulatory component of adenylyl cyclases. *J. Biol. Chem.* 259:15447–15451.

Tajima, S., L. Lauffer, V. L. Rath, and P. Walter. 1986. The signal recognition particle receptor is a complex that contains two distinct polypeptide chains. *J. Cell Biol.* 103:1167–1178.

Tamir, A., A. B. Fawzi, and J. K. Northup. 1990. Unique guanine nucleotide binding properties of the human placental GTP-binding protein G,.* *Biochemistry.* 29:6947–6954.

Trahey, M., and F. McCormick. 1987. A cytoplasmic protein stimulates normal N-ras p21 GTPase, but does not affect oncogenic variants. *Science (Wash. DC).* 238:542–545.

Vogel, U. S., R. A. F. Dixon, M. D. Schaber, R. E. Diehl, M. S. Marshall, E. M. Scolnick, I. S. Sigal, and J. B. Gibbs. 1988. Cloning of bovine GAP and its interaction with oncogenic ras p21. *Nature (Lond.)*. 335:90–93.

Walter, P., and G. Blobel. 1980. Purification of a membrane-associated protein complex required for protein translocation across the endoplasmic reticulum. *Proc. Natl. Acad. Sci. USA.* 77:7112–7116.

Walter, P., and G. Blobel. 1981. Translocation of proteins across the endoplasmic reticulum. III. Signal recognition protein (SRP) causes signal sequence-dependent and site-specific arrest of chain elongation that is released by microsomal membranes. *J. Cell Biol.* 91:557–561.

Walter, P., and G. Blobel. 1982. Signal recognition particle contains a 7S RNA essential for protein translocation across the endoplasmic reticulum. *Nature (Lond.)*. 299:691–698.

Walter, P., and G. Blobel. 1983a. Disassembly and reconstitution of signal recognition particle. *Cell.* 34:525–533.

Walter, P., and G. Blobel. 1983b. Subcellular distribution of signal recognition particle and 7S-RNA determined with polypeptide-specific antibodies and complementary DNA probe. *J. Cell Biol.* 97:1693–1699.

Walter, P., I. Ibrahimi, and G. Blobel. 1981. Translocation of proteins across the endoplasmic reticulum. I. Signal recognition protein (SRP) binds to in-vitro-assembled polysomes synthesizing secretory protein. *J. Cell Biol.* 91:545–550.

Zopf, D., H. D. Bernstein, and P. Walter. 1993. GTPase domain of the 54-kD subunit of the mammalian signal recognition particle is required for protein translocation but not for signal sequence binding. *J. Cell Biol.* 120:1113–1121.