Occurrence of Amyotrophic Lateral Sclerosis in Type 1 Gaucher Disease

Lais M. Oliveira, MD,* Tara Rastin, MD,* Graeme A.M. Nimmo, MBBS, MSc, Jay P. Ross, BSc, Patrick A. Dion, PhD, Ming Zhang, PhD, Dayna-Lynn Nevy, MSc, CCGC, David Arkadir, MD, PhD, Marc Gotkine, MBBS, Carolina Barnett, MD, PhD, Christen L. Shoesmith, MD, Ari Zimran, MD, Ekaterina A. Rogaeva, PhD, Lorne Zinman, MD, MSc, Guy A. Rouleau, MD, PhD, Ziv Gan-Or, MD, PhD, Dominick Amato, MD, and Lorraine V. Kalia, MD, PhD

Neurol Genet 2021;7:e600. doi:10.1212/NXG.0000000000000600

Abstract

Objective
To report the association between type 1 Gaucher disease (GD1) and amyotrophic lateral sclerosis (ALS) in 3 unrelated families and to explore whether GBA variants influence the risk of ALS.

Methods
We conducted retrospective chart reviews of patients with GD1 or their family members diagnosed with ALS. To further investigate whether there is an association between ALS and GD, we performed exploratory analyses for the presence of GBA variants in 3 ALS cohorts from Toronto (Canada), Montreal (Canada), and Project MinE (international), totaling 4,653 patients with ALS and 1,832 controls.

Results
We describe 2 patients with GD1 and 1 obligate GBA mutation carrier (mother of GD1 patient) with ALS. We identified 0 and 8 GBA carriers in the Toronto and Montreal cohorts, respectively. The frequencies of GBA variants in patients with ALS in the Montreal and Project MinE cohorts were similar to those of Project MinE controls or Genome Aggregation Database population controls.

Conclusions
The occurrence of ALS in biallelic or monoallelic GBA mutation carriers described here, in addition to common pathogenic pathways shared by GD1 and ALS, suggests that GBA variants could influence ALS risk. However, analyses of GBA variants in ALS cohorts did not reveal a meaningful association. Examination of larger cohorts and neuropathologic studies will be required to elucidate whether patients with GD1 are indeed at increased risk for ALS.

*These authors contributed equally to this work (i.e., they are co–first authors).

From the Krembil Research Institute (L.M.O., L.V.K.), Toronto Western Hospital, University Health Network, Ontario; Djavad Mowafaghian Centre for Brain Health (T.R.), Division of Neurology, Department of Medicine, University of British Columbia, Vancouver; Mark Feedman and Judy Jacobs Program for Gaucher Disease (G.A.M.N., D. Amato, L.V.K.), Mount Sinai Hospital; Fred A. Litwin Family Centre for Genetic Medicine (G.A.M.N., D.-L.N.), Department of Medicine, Mount Sinai Hospital and Toronto General Hospital, University Health Network, University of Toronto, Ontario; Department of Human Genetics (J.P.R., P.A.D., G.A.R., Z.G.-O.), Montreal Neurological Institute and Hospital (J.P.R., P.A.D., G.A.R., Z.G.-O.), and Department of Neurology and Neurosurgery (P.A.D., G.A.R., Z.G.-O.), McGill University, Quebec; Tan Centre for Research in Neurodegenerative Diseases (M.Z., E.A.R., L.V.K.), University of Toronto, Ontario, Canada; Shanghai First Rehabilitation Hospital, Shanghai, China; Department of Neurology (D. Arkadir, M.G.), Hadassah Medical Center, Hebrew University, Jerusalem, Israel; Ellen and Martin Prosserman Centre for Neuromuscular Diseases (C.B.), Division of Neurology, Department of Medicine, Toronto General Hospital, University Health Network, University of Toronto, Ontario; London Health Sciences Centre (C.L.S.), London, Ontario, Canada; Gaucher Unit (A.Z.), Shaare Zedek Medical Center, Hadassah Medical School, Hebrew University, Jerusalem, Israel; Division of Neurology (L.V.K.), Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto; and Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (L.V.K.), Division of Neurology, Department of Medicine, Toronto Western Hospital, University Health Network, University of Toronto, Ontario, Canada.

Go to Neurology.org/NG for full disclosures. Funding information is provided at the end of the article.

The Article Processing Charge was funded by the CIHR.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND), which permits downloading and sharing the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

Copyright © 2021 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.
Gaucher disease (GD) is a lysosomal storage disorder (LSD) caused by biallelic mutations in the GBA gene. GBA variants are also important risk factors for synucleinopathies, specifically Parkinson disease (PD) and dementia with Lewy bodies (DLB). Of interest, other LSD-related genes have been implicated in neurodegeneration. For instance, SMPD1 variants were recently associated with risk of PD. Although multiple pathways are involved in PD pathogenesis, the main mechanism thought to underlie the association between LSD and PD is dysfunction in the autophagy-lysosomal pathway (ALP).

Amyotrophic lateral sclerosis (ALS) is a motor neuron disease (MND) that also likely results from several pathogenic mechanisms, including ALP dysfunction. Recent case reports of patients diagnosed with both ALS and a LSD, such as Fabry disease or type 3 GD, raise the possibility that common lysosomal abnormalities may underlie the co-occurrence of these disorders. The aims of this study are (1) to report the association between type 1 GD (GD1) and ALS in 3 unrelated families and (2) to explore whether GBA variants increase the risk of developing ALS.

Glossary
AF = allele frequency; ALP = autophagy-lysosomal pathway; ALS = amyotrophic lateral sclerosis; DLB = dementia with Lewy bodies; GD = Gaucher disease; GD1 = type 1 GD; gnomAD = Genome Aggregation Database; LSD = lysosomal storage disorder; MND = motor neuron disease; PD = Parkinson disease; WES = whole-exome sequencing; WGS = whole-genome sequencing.

Standard Protocol Approvals, Registrations, and Patient Consents
Informed consent was obtained from case 1 and next of kin of case 3. Relatives of case 2 were not contactable, and thus, the case description was anonymized. Retrospective review of clinical data was conducted in accordance with the Helsinki Declaration. Informed consent for participation in the genetic study was obtained from the Toronto participants in accordance with the University of Toronto research ethics board (protocol #34754) and from the French-Canadian Montreal participants in accordance with the Montreal Neurological Institute and Hospital research ethics board (approval #2017-2740), affiliated with the McGill University Health Centre research ethics board.

Data Availability
All data relevant from case 1, case 3, and Project MinE are included in the article or uploaded as supplementary information. Anonymized data from case 2 may be shared by request from any qualified investigator.

Methods
Patients
Fifty-six patients with GD1 from the Mark Freedman & Judy Jacobs Program for Gaucher Disease at Mount Sinai Hospital (Toronto, Canada) underwent routine assessment by a neurologist (L.V.K.) between 2017 and 2020. One patient was diagnosed with ALS (case 1), and 1 patient had a first-degree relative with ALS (case 3). One GD1 patient with probable ALS (case 2) was identified at a medical center in Israel.

Genetic Analyses
We examined for GBA variants in 3 ALS cohorts: (1) 125 patients with ALS from Sunnybrook Health Sciences Centre (Toronto, Canada) who underwent whole-genome sequencing (WGS) at Genome Quebec (Montreal, Canada); (2) 162 French-Canadian patients with ALS who underwent whole-exome sequencing (WES) at the Montreal Neurological Institute (Montreal, Canada); and (3) 4,366 patients with ALS and 1,832 age- and sex-matched controls from the international Project MinE WGS data set. Only exons 1–9 were analyzed; exons 10 and 11 were not analyzed due to similarities to the pseudo-GBA gene and limitations regarding reliability of WGS or WES findings in these exons. Only nonsynonymous and loss-of-function GBA variants were analyzed. We used the legacy glucocerebrosidase protein sequence nomenclature to describe the variants. For details, see e-Methods (links.lww.com/NXG/A428).

Results
Patients
Case 1 was diagnosed with clinically probable laboratory-supported ALS. Case 2 presented with probable ALS, but ultimately developed clinically definite ALS. Case 3 was an obligate GBA mutation carrier who was also diagnosed with ALS. She was the mother of a patient with GD1 with PD. Clinical data and genetic investigations are described in table 1, figure e-1 and e-Results (links.lww.com/NXG/A428).

ALS Cohorts
We did not identify any patients with ALS with a GBA variant by WGS in the Toronto cohort. Eight patients in the French-Canadian ALS cohort were found to have one of the following GBA variants: E326K, T369M, N370S, and S52L (table 2). In 2 cases, there was a variant of uncertain significance in an ALS-related gene: (1) CCNF H69Y variant in a GBA T369M carrier and (2) DCTN1 G467A variant in a GBA E326K carrier. The frequency of GBA variants in the French-Canadian ALS cohort was similar to that of European population controls in the Genome Aggregation Database (gnomAD) database. Thirty-five GBA variants were identified in patients with ALS or controls from the Project MinE data set and were rare (table 3). The frequency of these GBA variants in ALS patients was similar to that of Project MinE or gnomAD population controls.
The allele frequency (AF) of N370S present in case 1, case 2, and the daughter of case 3 was 0.003 in the French-Canadian cohort (similar to the AF found in European gnomAD controls) and 0.002176 in ALS Project MinE patients (similar to the AF found in ALS Project MinE controls). W378G, c.84dupG, and P236T found in case 1, case 2, and the daughter of case 3, respectively, were not present in any of the ALS cohorts.

Discussion

Although the co-occurrence of GD1 with PD and the increased risk of PD among GBA mutation carriers are well established, the association of GD1 with ALS is rare. Of interest, 2 of 3 ALS cases reported here (1 patient with GD1 and 1 obligate GBA mutation carrier) have a family history of PD. Neurodegeneration in PD and ALS results from several shared mechanisms, including lysosomal dysfunction. Furthermore, a complex overlap between parkinsonian and motor neuron syndromes has long been appreciated with parkinsonism and ALS co-occurring within families or even within an individual patient. A genetic basis may underlie some cases of parkinsonism and ALS overlap, most notably nucleotide repeats in C9orf72 or ATXN2. Rare cases with both parkinsonism and ALS have been reported with mutations in DJ-1, TARDBP, or ANG.

One of the patients with ALS reported here (case 1) had GD1 due to W378G and N370S GBA mutations. N370S is one of...
was obtained from a study of over 400 patients with GD. Considering that ALS is approximately one hundred times less prevalent than PD, we expect that examination of much larger numbers of GD patients will be required to elucidate whether indeed there is a link between ALS and GD.

Acknowledgment
The authors thank the patients, the participants in each of the cohorts, the Project MinE GWAS Consortium, and the families for their involvement.

Study Funding
L.V. Kalia received support from Canadian Institutes of Health Research (CIHR) Clinician Scientist Award (MC2-157081). P.A. Dion received support from ALS Canada-Brain Canada Hudson Translational team grant and Radala Foundation. E.A. Rogaea received support from ALS Canada-Brain Canada. M. Zhang received support from Shanghai Puijiang Program (19PJ1410300) and Fundamental Research Funds for the Central Universities. Z. Gan-Or received support from Fonds de recherche du Québec—Santé (FRQS) Chercheurs-Boursiers Award, Parkinson Quebec, and Parkinson Canada Young Investigator Award.

Disclosure
L.M. Oliveira received funding for travel from Medtronic. T. Rastin has no disclosures. G.A.M. Nimmo received honoraria from Pfizer and Shire/Takeda and received consulting fees from Shire/Takeda. J.P. Ross received a doctoral student fellowship from the ALS Society of Canada and currently receives a Canadian Institutes of Health Research Frederick Banting & Charles Best Canada Graduate Scholarship (FRN 159279). P.A. Dion received funding from the International Essential Tremor Foundation and currently receives funding from ALS Canada, Brain Canada, and Radala Foundation. M. Zhang, D.-L. Nevay, D. Arkadir, and M. Gotkine have no disclosures. C. Barnett has been a consultant for Akcea, Takeda, and Alexion and received research grants from Octapharma and Grifols. C.L. Shoesmith serves as scientific advisory board member for Mitsubishi Tanabe Pharma Canada, serves as DSMB member for Orion, and serves as site principal investigator for clinical trials run by Biogen and AL-S Pharma. A. Zimran receives honoraria from Pfizer, Takeda, and BioEvents, receives consulting fees from Takeda, Prevail Therapeutics, AvroBio, and Insightec, and receives research grants from Sanofi/Genzyme, Takeda, Pfizer, and Centogene. E.A. Rogaea, L. Zinman, and G.A. Rouleau have no disclosures. Z. Gan-Or received consulting fees from Denali, Genzyme (now Sanofi), Inception Sciences (now Ventus), Idorsia, Lysosomal Therapeutics Inc., Prevail Therapeutics, Deerfield, Neuron23, and Handi Therapeutics. D. Amato received honoraria, served on advisory board, and received funding for travel from Actelion, Pfizer, Sanofi/Genzyme, and Shire/Takeda. L.V. Kalia served as site principal investigator for clinical trials run by ApoPharma, received educational grants from Allergan, and received honoraria from the NIH, Pfizer, and Shire/Takeda. Go to Neurology.org/NG for full disclosures.

Table 2 GBA Variants Identified in the Montreal French-Canadian ALS Cohort

Variant	dbSNP ID	No. of carriers	AF	AF in gnomAD
SS2L		1	0.003	9 × 10⁻⁶
E326K	rs2230288	3	0.009	0.012
T369M	rs75548401	3	0.009	0.009
N370S	rs76763715	1	0.003	0.002

Abbreviations: AF = allele frequency; ALS = amyotrophic lateral sclerosis = dbSNP = single nucleotide polymorphism database identification number; gnomAD = Genome Aggregation Database. Compared with European population controls.

the most frequent GBA mutations reported to be associated with increased PD risk. W378G is a French-Canadian founder GBA mutation more recently linked to GD1 and synucleinopathies when found in compound heterozygosity with N370S.14 Although case 1 did not have PD, there was a family history of PD and reported DLB (figure e-1, links.lww.com/NXG/A428). He was found to have a variant of uncertain significance in SQSTM1, but it did not segregate with the various neurodegenerative diseases in his family and therefore was not considered pathogenic. The increased risk of synucleinopathies with W378G and N370S raises the possibility of a synucleinopathy mimicking ALS in case 1 and possibly case 3. Lewy pathology can accompany typical MND pathology in patients with co-occurrence of ALS and parkinsonism15 and sometimes in patients with ALS without clinical parkinsonism.16 However, we did not find any definitive reports in the literature of Lewy pathology occurring in isolation (i.e., in the absence of MND pathology in both the brain and spinal cord) in patients presenting clinically with only ALS, without parkinsonian features. Yet, we cannot fully eliminate this possibility because we have no autopsy data for our patients.

Limitations of our study include the lack of neuropathologic data and lack of genetic data for ALS-related genes in 2 cases. In addition, genetic analyses only included exons 1–9 of the GBA gene and thus potentially excluded some GBA variants. This likely had a minimal effect on our results because mutations in the excluded exons in Europeans are rare.17 Identification of complex alleles was also limited with our genotyping methods.

Our analyses of GBA variants among 4,653 patients with ALS and 1,832 controls did not support heterozygosity for a GBA variant (i.e., 1 mutant GBA allele) as a risk factor for ALS. In contrast, a strong association between GBA variants and PD was previously demonstrated in a study of 5,691 patients with PD and 4,898 controls.18 Co-occurrence of GD1 (i.e., 2 mutant GBA alleles) and ALS in our reported cases could be coincidental; however, a previous report of ALS in a patient with type 3 GD6 and the existence of common pathogenic pathways shared by GD and ALS suggest that GD could influence ALS risk. The association between GD1 and PD began with a suggestion from case reports, but definitive proof

References
1. Kalia LV, Koller WD, Schrag A, et al. Clinical and pathological features of parkinsonism associated with GD1. Neurology 2009;73:1530–1536.
2. He et al. A new risk factor for Parkinson disease: The GBA locus. Neurology 2010;75:423–426.
3. Kalia LV, Shalev A, Koller WD, et al. GD1: A new risk factor for Parkinson disease. Parkinsonism Relat Disord 2010;16:303–308.
4. Zhang X, Zhang Y, Lin L, et al. Increased risk of Parkinson disease among Chinese with GD1. Neurology 2011;76:1190–1193.
5. Zhang X, Zhang Y, Lin L, et al. Increased lifetime risk of Parkinson disease among Chinese with GD1. Neurology 2012;80:1076–1078.
6. Zhang X, Zhang Y, Lin L, et al. Increased lifetime risk of Parkinson disease among Chinese with GD1. Neurology 2013;81:1308–1313.
7. Zhang X, Zhang Y, Lin L, et al. Increased lifetime risk of Parkinson disease among Chinese with GD1. Neurology 2014;83:603–606.
8. Zhang X, Zhang Y, Lin L, et al. Increased lifetime risk of Parkinson disease among Chinese with GD1. Neurology 2015;85:630–633.
9. Zhang X, Zhang Y, Lin L, et al. Increased lifetime risk of Parkinson disease among Chinese with GD1. Neurology 2016;87:1084–1088.
10. Zhang X, Zhang Y, Lin L, et al. Increased lifetime risk of Parkinson disease among Chinese with GD1. Neurology 2017;89:1563–1568.
11. Zhang X, Zhang Y, Lin L, et al. Increased lifetime risk of Parkinson disease among Chinese with GD1. Neurology 2018;91:1208–1211.
12. Zhang X, Zhang Y, Lin L, et al. Increased lifetime risk of Parkinson disease among Chinese with GD1. Neurology 2019;92:1886–1890.
13. Zhang X, Zhang Y, Lin L, et al. Increased lifetime risk of Parkinson disease among Chinese with GD1. Neurology 2020;94:333–337.
14. Zhang X, Zhang Y, Lin L, et al. Increased lifetime risk of Parkinson disease among Chinese with GD1. Neurology 2021;96:822–826.
15. Zhang X, Zhang Y, Lin L, et al. Increased lifetime risk of Parkinson disease among Chinese with GD1. Neurology 2022;98:369–374.
| Variant | ID | AF cases | AF controls | AF in gnomAD (WGS)\(^{20}\) | AF in gnomAD (WES)\(^{20}\) |
|---------|---------------------|----------|-------------|-----------------------------|-----------------------------|
| R463P | chr1:155204986:C:G | 0.0001145| 0 | NA | NA |
| D453V | chr1:155205016:T:A;rs771744004 | 0.0001145 | 0.0002729 | NA | 2.03282e-05 |
| D453H | chr1:155205017:C:G;rs77958429 | 0.0001145 | 0.0002729 | NA | 2.03283e-05 |
| D443N | chr1:155205047:C:T;rs75671029 | 0 | 0.0002729 | 0.00219709 | 0.000512291 |
| K425T | chr1:155205100:T:G | 0.0001145 | 0 | NA | NA |
| D409H | chr1:155205518:C:G;rs1064651 | 0.0001145 | 0 | 0.00025895 | 0.00126416 |
| R395C | chr1:155205560:G:A | 0.0001145 | 0 | NA | 4.06128e-06 |
| E388K | chr1:155205581:C:T;rs149171124 | 0.0005726 | 0.0002729 | 3.23039e-05 | 0.000178674 |
| N370S | chr1:155205634:C:T;rs76763715 | 0.002176 | 0.002186 | 0.0016507 | 0.00232286 |
| R359P | chr1:155206067:C:G | 0.0001145 | 0 | NA | NA |
| Q350H | chr1:155206093:C:G;rs761681845 | 0.000229 | 0 | 3.2329e-05 | 2.03041e-05 |
| R329C | chr1:155206158:G:A;rs374306700 | 0.0001145 | 0 | NA | 1.21818e-05 |
| E326K | chr1:155206167:C:T;rs2230288 | 0.01649 | 0.01528 | 0.012828 | 0.0106732 |
| A269T | chr1:155207209:C:T;rs368425393 | 0 | 0 | NA | 2.03287e-05 |
| T267I | chr1:155207214:G:A;rs199628072 | 0.0001145 | 0 | 0.000129232 | 5.2852e-05 |
| R262H | chr1:155207229:C:T;rs140955685 | 0.0001145 | 0 | 0.0008188 | 0.000290698 |
| F259L | chr1:155207237:T:G | 0.0001145 | 0 | NA | NA |
| H255Q | chr1:155207249:A:C;rs367968666 | 0.0003436 | 0 | 6.45995e-05 | 0.000239828 |
| S237F | chr1:155207304:G:A;rs755512507 | 0 | 0.0002734 | NA | 8.12942e-06 |
| F216Y | chr1:155207367:T:G;rs74500255 | 0 | 0.0002731 | 3.2306e-05 | 1.22561e-05 |
| Y212H | chr1:155207935:A:G;rs121908300 | 0.0001145 | 0 | NA | 4.06062e-06 |
| D140H | chr1:155208361:C:G;rs147138516 | 0.001038 | 0.0008228 | 9.72321e-05 | 0.000138342 |
| R131C | chr1:155208388:G:A;rs398123530 | 0.0001147 | 0 | NA | 4.0658e-06 |
| c.307+1G>T | chr1:155209676:C:A | 0.0001145 | 0 | NA | NA |
| T63R | chr1:155209679:G:C | 0.0001145 | 0 | NA | NA |
| R44C | chr1:155209737:A:T;rs1141812 | 0 | 0.0002731 | 6.46078e-05 | 8.53187e-05 |
| R39C | chr1:155209752:G:A;rs146774384 | 0.0001145 | 0 | 9.69681e-05 | 9.34336e-05 |
| Y22F | chr1:155209802:T:A | 0.0001145 | 0 | NA | NA |
| C18* | chr1:155209813:G:T | 0.0001145 | 0 | NA | NA |
| V15M | chr1:155209824:C:T | 0 | 0.0002729 | NA | NA |
| Q(-8)R | chr1:155210441:T:C | 0.000229 | 0.0002729 | NA | NA |
| V(-22)E | chr1:155210483:A:T | 0 | 0.0002729 | NA | NA |
| L(-25)S | chr1:155210492:A:G;rs1141802 | 0.0001145 | 0 | 6.45911e-05 | 3.66202e-05 |
| K(-27)R | chr1:155210498:T:C;rs150466109 | 0.0001145 | 0 | 0.0224392 | 0.00544965 |
| C(-29)S | chr1:155210505:A:T | 0.0001145 | 0 | NA | NA |

Abbreviations: AF = allele frequency; ALS = amyotrophic lateral sclerosis; ID = variant identification; gnomAD = Genome Aggregation Database; NA = not available; WES = whole-exome sequencing; WGS = whole-genome sequencing.
Appendix

Authors

Name	Location	Contribution
Lais M. Oliveira, MD	Krembil Research Institute, Toronto Western Hospital, University Health Network, Ontario, Canada	Major role in the acquisition of data; analysis or interpretation of data; and drafting of the manuscript
Tara Rastin, MD	Djavid Mowafaghian Centre for Brain Health, Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, Canada	Major role in the acquisition of data; analysis or interpretation of data; and drafting of the manuscript
Graeme A.M. Nimmo, MBBS, MSc	The Fred A. Litwin Family Centre in Genetic Medicine, University Health Network & Mount Sinai Hospital, Toronto, Ontario, Canada	Major role in the acquisition of data; analysis or interpretation of data; and revision of the manuscript for content
Jay P. Ross, BSc	Department of Human Genetics, McGill University, Montreal, Quebec, Canada; Montréal Neurological Institute and Hospital, McGill University, Quebec, Canada	Major role in the acquisition of data; analysis or interpretation of data; and revision of the manuscript for content
Patrick A. Dion, PhD	Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada	Major role in the acquisition of data; analysis or interpretation of data; and revision of the manuscript for content
Ming Zhang, PhD	Shanghai First Rehabilitation Hospital, School of Medicine, Tongji University, China; Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Ontario, Canada; Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai, China; Institute for Advanced Study, Tongji University, Shanghai, China	Major role in the acquisition of data; analysis or interpretation of data; and revision of the manuscript for content
Dayna-Lynn Nevay, MSc, CCGC	The Fred A. Litwin Family Centre in Genetic Medicine, University Health Network & Mount Sinai Hospital, Toronto, Ontario, Canada	Major role in the acquisition of data; analysis or interpretation of data; and revision of the manuscript for content
David Arkadir, MD, PhD	Faculty of Medicine, Hebrew University of Jerusalem, Israel; Department of Neurology, Hadassah Medical Center, Jerusalem, Israel	Major role in the acquisition of data; analysis or interpretation of data; and revision of the manuscript for content
Marc Gotkine, MBBS	Faculty of Medicine, Hebrew University of Jerusalem, Israel; Department of Neurology, Hadassah Medical Center, Jerusalem, Israel	Major role in the acquisition of data; analysis or interpretation of data; and revision of the manuscript for content
Carolina Barnett, MD, PhD	Ellen & Martin Prosserman Centre for Neuromuscular Diseases, Division of Neurology, Department of Medicine, Toronto General Hospital, University Health Network, University of Toronto, Ontario, Canada	Major role in the acquisition of data; analysis or interpretation of data; and revision of the manuscript for content

Appendix (continued)

Name	Location	Contribution
Christen L. Shoesmith, MD	London Health Sciences Centre, London, Ontario, Canada	Major role in the acquisition of data; analysis or interpretation of data; and revision of the manuscript for content
Ari Zimran, MD	Gaucher Unit, Shaare Zedek Medical Center, Hebrew University and Hadassah Medical School, Jerusalem, Israel	Major role in the acquisition of data; analysis or interpretation of data; and revision of the manuscript for content
Ekaterina A. Rogaeva, PhD	Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Ontario, Canada	Major role in the acquisition of data; analysis or interpretation of data; and revision of the manuscript for content
Lorne Zimman, MD, MSc	Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada	Major role in the acquisition of data; analysis or interpretation of data; and revision of the manuscript for content
Guy A. Rouleau, MD, PhD	Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada	Major role in the acquisition of data; analysis or interpretation of data; and revision of the manuscript for content
Ziv Gan-Or, MD, PhD	Montreal Neurological Institute, McGill University, Quebec, Canada; Department of Human Genetics, McGill University, Montréal, Quebec, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada	Major role in the acquisition of data; analysis or interpretation of data; and revision of the manuscript for content
Dominick Amato, MD	Mark Freedman and Judy Jacobs Program for Gaucher Disease, Mount Sinai Hospital, Toronto, Ontario, Canada	Study concept or design; major role in the acquisition of data; analysis or interpretation of data; and revision of the manuscript for content
Lorraine V. Kalia, MD, PhD	Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Ontario, Canada; Division of Neurology, Department of Medicine, University of Toronto, Ontario, Canada; Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Division of Neurology, Department of Medicine, Toronto Western Hospital, University Health Network, Ontario, Canada	Study concept or design; major role in the acquisition of data; analysis or interpretation of data; and revision of the manuscript for content
References

1. Sidransky E, Lopez G. The link between the GBA gene and parkinsonism. *Lancet Neurol.* 2012;11(11):986-998.

2. Alcalay RN, Mallett V, Vanderperre B, et al. SMPD1 mutations, activity, and α-synuclein accumulation in Parkinson’s disease. *Mov Disord.* 2019;34(4):526-535.

3. Senkevich K, Gan-Or Z. Autophagy lysosomal pathway dysfunction in Parkinson’s disease; evidence from human genetics. *Parkinsonism Relat Disord.* 2020;73:60-71.

4. Hardiman O, Al-Chalabi A, Chio A, et al. Amyotrophic lateral sclerosis. *Nat Rev Dis Prim.* 2017;3(1):1-19.

5. Beer AM, Cooper-Knock J, Fletcher S, Brown-Wright SH, Nandakumar TP, Shaw PJ. Case report of concurrent Fabry disease and amyotrophic lateral sclerosis supports a common pathway of pathogenesis. *Amyotroph Lateral Scler Front Degener.* 2016;17(7-8):614-616.

6. Pozzilli V, Giona F, Ceccanti M, et al. A case of motor neuron involvement in Gaucher disease. *Mol Genet Metab Rep.* 2019;21:100540.

7. van der Spek RAA, van Rheenen W, Pulit SL, et al. The project MinE databrowser: bringing large-scale whole-genome sequencing in ALS to researchers and the public. *Amyotroph Lateral Scler Front Degener.* 2019;20(5-6):432-440.

8. Project MinE ALS Sequencing Consortium. Project MinE: study design and pilot analyses of a large-scale whole-genome sequencing study in ALS. *Mov Dioud Clin Pract.* 2018;5(6):575-585.

9. Braga-Neto P, Pedroso JL, Felício AC, et al. SCA2 presenting as an ataxia-parkinsonism-motor neuron disease syndrome. *Anq Neuropsiquiatr.* 2011;69(2B):405-406.

10. Hanagasi HA, Giri A, Kartal E, et al. A novel homozygous DJ1 mutation causes parkinsonism and ALS in a Turkish family. *Parkinsonism Relat Disord.* 2016;29:117-120.

11. Mosca L, Lunetta C, Tarlazini C, et al. Wide phenotypic spectrum of the TARDBP gene: homozygosity of A382T mutation in a patient presenting with amyotrophic lateral sclerosis, Parkinson’s disease, and frontotemporal lobar degeneration, and in neurologically healthy subject. *Neurobiol Aging.* 2012;33(8):1846.e1-1846.e4.

12. van Es MA, Diekstra FP, Veldink JH, et al. A case of ALS-FTD in a large FALS pedigree with a K17I ANG mutation. *Neurology.* 2009;72(3):287-288.

13. Ruskey JA, Zhou S, Santiago R, et al. The GBA p.Tyr379Gly mutation is a probable French-Canadian founder mutation causing Gaucher disease and synucleinopathies. *Clin Genet.* 2018;94(3-4):339-345.

14. Klos KJ, Josephs KA, Parisi JE, Dickson DW. Alpha-synuclein immunohistochemistry in two cases of co-occurring idiopathic Parkinson’s disease and motor neuron disease. *Mov Dioud.* 2005;20(11):1515-1520.

15. Ayaki T, Ito H, Komure O, et al. Multiple proteinopathies in familial ALS cases with optineurin mutations. *J Neuropathol Exp Neurol.* 2018;77(2):128-138.

16. Krohn L, Ruskey JA, Rudakou U, et al. GBA variants in REM sleep behavior disorder: a multicenter study. *Neurology.* 2020;95(8):e1008-e1016.

17. Karczewski KJ, Francioli LC, Tiao G, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. *Nature.* 2020;581(7809):434-443.