Estimates of complex eigenvalues and an inverse spectral problem for the transmission eigenvalue problem

Xiao-Chuan Xu, Chuan-Fu Yang, Sergey A. Buterin and Vjacheslav A. Yurko

Abstract. This work deals with the interior transmission eigenvalue problem:

\[y'' + k^2 \eta(r) y = 0 \]

with boundary conditions

\[y(0) = 0 = y'(1) \frac{\sin k}{k} - y(1) \cos k, \]

where the function \(\eta(r) \) is positive. We obtain the asymptotic distribution of non-real transmission eigenvalues under the suitable assumption for the square of the index of refraction \(\eta(r) \). Moreover, we provide a uniqueness theorem for the case \(\int_0^1 \sqrt{\eta(r)} \, dr > 1 \), by using all transmission eigenvalues (including their multiplicities) along with a partial information of \(\eta(r) \) on the subinterval. The relationship between the proportion of the needed transmission eigenvalues and the length of the subinterval on the given \(\eta(r) \) is also obtained.

Keywords: Transmission eigenvalue problem, Scattering theory, Complex eigenvalue, Inverse spectral problem

2010 Mathematics Subject Classification: 35P25; 34L15; 34A55

1. Introduction and main results

Consider the interior transmission problem

\[y'' + k^2 \eta(r) y = 0, \quad 0 < r < 1, \quad y(0) = 0 = y'(1) \frac{\sin k}{k} - y(1) \cos k, \quad (1) \]

where the square of the index of refraction \(\eta(r) \) is a positive function in \(W^2_2[0,1] \) with the natural assumption \(\eta(1) = 1 \) and \(\eta'(1) = 0 \). The \(k^2 \)-values for which the problem (1) has a nontrivial solution \(y(r) \) are called transmission eigenvalues. The problem (1) appears in the inverse scattering theory for a spherically stratified medium, which consists in determining the function \(\eta(r) \) from transmission eigenvalues. To study the inverse spectral problem, one has to investigate the property of transmission eigenvalues, such as, the existence of real or non-real eigenvalues and their asymptotic distribution.
We introduce two key quantities. Denote
\[a := \int_0^1 \sqrt{\eta(r)} dr, \] (2)
which is explained physically as the time needed for the wave to travel from \(r = 0 \) to \(r = 1 \). Introduce the characteristic function
\[d(k) := y'(1, k) \frac{\sin k}{k} - y(1, k) \cos k, \] (3)
where \(y(r, k) \) is the solution of \(y'' + k^2 \eta(r) y = 0 \) with the initial conditions \(y(0, k) = 0 \) and \(y'(0, k) = 1 \). Obviously, the transmission eigenvalues coincide with the squares of zeros of \(d(k) \).

The problem (1) was first studied by McLaughlin and Polyakov [13], they showed that if \(a \neq 1 \) then there are infinitely many real eigenvalues \(\{ (k'_n)^2 \}_{n \geq n_0} \), which have the asymptotics
\[(k'_n)^2 = \frac{n^2 \pi^2}{(a - 1)^2} + \frac{1}{a - 1} \int_0^a q(x) dx + o(1), \quad n \to \infty, \] (4)
where \(q(x) \) is defined in (11). Some aspects of the asymptotics of large (real and non-real) transmission eigenvalues for the case \(a = 1 \) were discussed in [19].

In 2015, Colton and co-authors [6] studied the existence and distribution of the non-real transmission eigenvalues. They showed that if \(a \neq 1 \) and \(\eta''(1) \neq 0 \) (this assumption can be weakened [7]), then there exists infinitely many real and non-real transmission eigenvalues, moreover, the imaginary parts of the non-real eigenvalues go to infinite. In particular, they give an example to show the distribution of the transmission eigenvalues, which is
\[\eta(r) = \frac{16}{(r + 1)^2(r - 3)^2}. \]
It is easy to calculate \(\eta(1) = 1, \eta'(1) = 0 \) and \(\eta''(1) = 1 \neq 0 \). For this \(\eta(r) \), the distribution of the eigenvalues is shown numerically in the Figure 1 (see [6]).

From Figure 1, we see that the locations of the non-real zeros \(\{ x_n + iy_n \} \) of \(d(k) \) in the right half-plane seem to satisfy asymptotically a logarithmic curve \(y_n = \log(cx_n) \), where \(c \) may be some complex number. We will prove in theory that this is indeed true in the more general case (see Theorem 1.1).

For the inverse spectral problem, many scholars contribute a lot of works (see [15, 16, 18, 21] and the references therein). However, for the case \(a > 1 \) there are only a few results. It is known [5, 13] that the determination of \(\eta(r) \) on \([0, 1] \) with \(\eta(1) = 1 \) and \(\eta'(1) = 0 \) is equivalent to the determination of \(q(x) \) on \([0, a] \) defined in (11). McLaughlin and Polyakov [13] first showed that if \(a > 1 \) and \(\eta(r) \) is known a priori on a subinterval \([\varepsilon_1, 1] \) with \(\varepsilon_1 \) satisfying
\[\int_{\varepsilon_1}^1 \sqrt{\eta(r)} dr = \frac{a + 1}{2}, \] (5)
then $\eta(r)$ on $[0, \varepsilon_1]$ is uniquely determined by the transmission eigenvalues \(\{(k'_n)^2\}_{n \geq 1} \) satisfying (4), where \(\{(k'_n)^2\}_{n=1}^{m-1} \) may be non-real. In 2013, Wei and Xu [18] suggested to specify all transmission eigenvalues (including their multiplicities) and the norming constants, corresponding to the real eigenvalues, to obtain the unique determination of $\eta(r)$ on $[0, 1]$.

In this paper, we will prove a new uniqueness theorem for the inverse spectral problem in the case $a > 1$ (see Theorem 1.2), by using the less known information on $\eta(r)$ and all eigenvalues (including real and non-real). Moreover, with the help of some ideas in [8, 10, 16], we give a relationship between the proportion of the needed eigenvalues and the length of the subinterval on the given $\eta(r)$ (see Theorem 1.3).

The main results in this article are as follows.

Theorem 1.1. Assume that $\eta \in W^{m+3}_2[0, 1]$ for some $m \in \mathbb{N}_0 := \{0\} \cup \mathbb{N}$. If $\eta(1) = 1$, $\eta^{(u)}(1) = 0$ for $u = 1, m + 1$ and $\eta^{(m+2)}(1) \neq 0$, then the non-real zeros of $d(k)$ in the right half-plane consist of two sequences \(\{k'_{n}\} \) having the following asymptotic behavior, when $n \to \infty$,

(i) $a \neq 1$

\[
k'_{n} = n\pi \pm \frac{i}{2} \log \left(\frac{4(2n\pi i)^{m+2}}{(\pm 1)^{m-1}\eta^{(m+2)}(1)} \right) + \alpha_{n}^{\pm}, \quad \alpha_{n}^{\pm} \in l^2 \quad \text{for} \quad a > 1,
\]

\[
k'_{n} = \frac{n\pi}{a} \pm \frac{i}{2a} \log \left(\frac{-4(2n\pi i)^{m+2}}{(\pm 1)^{m-1}\eta^{(m+2)}(1)} \right) + \beta_{n}^{\pm}, \quad \beta_{n}^{\pm} \in l^2 \quad \text{for} \quad a < 1.
\]

(ii) $a = 1$ and $\int_{0}^{1} q(x)dx \neq 0$

\[
k'_{n} = n\pi \pm \frac{i}{2} \log \left(\frac{-8(2n\pi i)^{m+1}\int_{0}^{1} q(s)ds}{(\pm 1)^{m+1}\eta^{(m+2)}(1)} \right) + \gamma_{n}^{\pm}, \quad \gamma_{n}^{\pm} \in l^2.
\]
Theorem 1.2. Under the assumptions in Theorem 1.1, if \(a > 1 \) and \(\eta(r) \) is known a priori on \([\varepsilon, 1] \) with \(\varepsilon \) satisfying

\[
\int_\varepsilon^1 \sqrt{\eta(r)} dr = \frac{a - 1}{2},
\]

then \(\eta(r) \) on \([0, 1] \) is uniquely determined by all zeros of \(d(k) \) (including multiplicity).

Remark 1.1. Eqs. (5) and (6) lead to \(\int_\varepsilon^{\varepsilon_1} \sqrt{\eta(r)} dr = 1 \), which implies \(\varepsilon > \varepsilon_1 \).

Let \(N(r) \) be the number of non-real zeros \(\{k_j\}_{j \geq 1} \) of the function \(d(k) \) in the disk \(|k| \leq r \), namely, \(N(r) := \#\{j : |k_j| \leq r\} \). It is known \([6, 7]\) that if \(a \neq 1 \) and \(\eta(r) \) is non-constant near \(r = 1 \) then

\[
N(r) = \frac{4r}{\pi} [1 + o(1)], \quad r \to +\infty.
\]

Let \(D \) be a subset of \(\{k_j\}_{j \geq 1} \), and denote \(N_D(r) := \#\{j : k_j \in D, |k_j| \leq r\} \).

Theorem 1.3. Assume that \(\eta \in C^2[0, 1] \) with \(\eta(1) = 1 \) and \(\eta'(1) = 0 \), and \(\eta(r) \) is non-constant near \(r = 1 \). If \(a > 1 \) and \(\eta(r) \) is known a prior on \([\varepsilon_2, 1] \) with \(\varepsilon_2 \) satisfying

\[
\int_{\varepsilon_2}^1 \sqrt{\eta(r)} dr = b, \quad b > \frac{a - 1}{2}
\]

then set \(\{k'_n\}_{n \geq n_0} \) satisfying (4) and the subset \(D \) satisfying \(N_D(r) = \frac{2\alpha r}{\pi} [1 + o(1)] \) as \(r \to +\infty \) with \(\alpha > a + 1 - 2b \) uniquely determine \(\eta(r) \) on \([0, 1] \).

Remark 1.2. By virtue of (7), we know that the value of \(\alpha \) is at most \(2 \). Since \(b > (a - 1)/2 \), we have \(a + 1 - 2b < 2 \). Thus the condition \(\alpha > a + 1 - 2b \) makes sense. Moreover, together with Theorems 1.2 and 1.3 we see that if the known subinterval of \(\eta(r) \) is a little bigger, then infinitely many eigenvalues can be missing for the unique determination of \(\eta(r) \).

2. Preliminaries

In this section, we provide some known auxiliary results. Using the Liouville transformation,

\[
x = \int_0^r \sqrt{\eta(\rho)} d\rho, \quad \varphi(x) := (\eta(r))^{\frac{1}{2}} y(r), \quad r = r(x),
\]

we can write the equation \(y'' + k^2 \eta(r) y = 0 \) with \(y(0, k) = 0 \) and \(y'(0, k) = 1 \) as

\[
\varphi''(x) + (k^2 - q(x)) \varphi(x) = 0, \quad \varphi(0) = 0, \quad \varphi'(0) = \eta(0)^{-\frac{1}{2}},
\]

where

\[
q(x) = \frac{\eta''(r)}{4(\eta(r))^2} - \frac{5}{16} \frac{(\eta'(r))^2}{(\eta(r))^3}.
\]
Using the transformation operator theory (see, e.g. [14]), we have
\[\eta(0)^\frac{1}{2} \varphi(x, k) = \frac{\sin(kx)}{k} + \int_0^x K(x, t) \frac{\sin(kt)}{k} dt, \tag{12} \]
where \(K(x, t) \) satisfies the following integral equation (see, e.g. [2])
\[
2K(x, t) = \int_{x-t}^{x+t} q(\tau) d\tau + \int_{x-t}^{x} q(\tau) d\tau \int_{\tau-t}^{\tau} K(\tau, s) ds \\
+ \int_{x-t}^{x-t} q(\tau) d\tau \int_{\tau-t}^{\tau} K(\tau, s) ds - \int_{x-t}^{x} q(\tau) d\tau \int_{x-t}^{x-t} K(\tau, s) ds, \tag{13}
\]
where \(0 \leq t \leq x \leq a \). In particular, \(2K(x, x) = \int_0^x q(s) ds \) and \(K(x, 0) = 0 \).

On the other hand, from Eq.(1.2.9) in [14], we know that
\[C \leftrightarrow q \] if \(q \in C^m[0, a] \) then \(K_0(x, \cdot) \in C^{m+1}[-x, x] \) for each fixed \(x \in [0, a] \) (see Theorem 1.2.2 in [14]). It follows from [14] that if \(q(x) \) is smooth enough then
\[\frac{\partial^{2n} K(x, t)}{\partial t^{2n}} \bigg|_{t=0} = 0, \quad n \in \mathbb{N}_0. \tag{15} \]

By virtue of [9] and \(\eta(1) = 1 \) and \(\eta'(1) = 0 \), we have \(\varphi(a, k) = y(1, k) \) and \(\varphi'(a, k) = y'(1, k) \). Thus,
\[
y(1, k) = \frac{1}{\eta(0)^{\frac{1}{2}}} \left[\frac{\sin(ka)}{k} - \frac{\cos(ka)}{2k^2} \int_0^a q(s) ds + \int_0^a K_i(a, t) \frac{\cos(kt)}{k^2} dt \right], \tag{16}
\]
and
\[
y'(1, k) = \frac{1}{\eta(0)^{\frac{1}{2}}} \left[\frac{\cos(ka)}{k} + \frac{\sin(ka)}{2k^2} \int_0^a q(s) ds + \int_0^a K_x(a, t) \frac{\sin(kt)}{k} dt \right]. \tag{17}
\]

Denote \(K_1(t) := K_x(a, t) \) and \(K_2(t) := K_i(a, t) \). Using Eq.(13), by tedious calculation, we have
\[
K_1(t) = \frac{1}{4} \left[q \left(\frac{a + t}{2} \right) - q \left(\frac{a - t}{2} \right) \right] + \frac{1}{2} \int_{a-t}^{a} q(\tau) K(\tau, \tau + t - a) d\tau \\
- \frac{1}{2} \int_{a-t}^{a} q(\tau) K(\tau, a - t - \tau) d\tau + \frac{1}{2} \int_{a-t}^{a} q(\tau) K(\tau, a + t - \tau) d\tau, \tag{18}
\]
and
\[
K_2(t) = \frac{1}{4} \left[q \left(\frac{a + t}{2} \right) + q \left(\frac{a - t}{2} \right) \right] - \frac{1}{2} \int_{a-t}^{a} q(\tau) K(\tau, \tau + t - a) d\tau \\
+ \frac{1}{2} \int_{a-t}^{a} q(\tau) K(\tau, a - t - \tau) d\tau + \frac{1}{2} \int_{a-t}^{a} q(\tau) K(\tau, a + t - \tau) d\tau. \tag{19}
\]
To get Theorem 1.1, we introduce the following transcendental equation

$$z - \lambda \log z = w,$$

(20)

where \(\lambda\) is a constant. It is known (see, e.g. [9]) that Eq. (20) has a unique solution

$$z(w) = w + \lambda \log w + O\left(\frac{\log w}{w}\right)$$

(21)

for sufficiently large \(w\). We will transform the equation \(d(k) = 0\) to the equation with the form of (20), and then use (21) to obtain the asymptotics of non-real transmission eigenvalues. We also mention that this method, which can be used to obtain the asymptotics of non-real eigenvalues, was applied by some authors [17, 20].

For the inverse spectral problem, we shall use the following three lemmas.

Lemma 2.1. (See [11, p.28]) Let \(G(k)\) be analytic in \(\mathbb{C}_+ := \mathbb{C}_+ \cup \mathbb{R}\). Suppose that

(i) \(\log |G(k)| = O(k)\) for \(|k| \to \infty\) in \(\mathbb{C}_+ := \{k \in \mathbb{C} : \text{Im} k > 0\}\),

(ii) \(|G(x)| \leq C\) for some constant \(C > 0\), \(x \in \mathbb{R}\),

(iii) \(\lim_{r \to +\infty} \frac{\log |G(ir)|}{\tau} = A\).

Then, for \(k \in \mathbb{C}_+\), there holds

$$|G(k)| \leq C e^{A \text{Im} k}.$$

Lemma 2.2. (See [16]) For an arbitrary \(0 < b < \infty\) and \(p(\cdot) \in L^2[0, b]\), if \(\int_0^b p(x)\phi(x, k)\tilde{\phi}(x, k)dx = 0\) for all \(k > 0\), then \(p(x) = 0\) on the interval \([0, b]\), where \(\phi(x, k)\) and \(\tilde{\phi}(x, k)\) are defined by (10) corresponding to \(q\) and \(\tilde{q}\), respectively.

Lemma 2.3 (See Chapter IV of [12]). For any entire function \(g(k) \neq 0\) of exponential type, the following inequality holds,

$$\lim_{r \to \infty} \frac{N_g(r)}{r} \leq \frac{1}{2\pi} \int_0^{2\pi} h_g(\theta) d\theta,$$

where \(N_g(r)\) is the number of zeros of \(g(k)\) in the disk \(|k| \leq r\) \((r > 0)\) and \(h_g(\theta) := \lim_{r \to \infty} \frac{\log |g(re^{i\theta})|}{r}\) with \(k = re^{i\theta}\).

3. Proofs

Proof of Theorem 1.1. Rewrite Eqs. (16) and (17) as

$$y(1, k) = \frac{\sin(ka)}{\eta(0)^{1/2}} k [1 + P_1(k)], \quad y'(1, k) = \frac{\cos(ka)}{\eta(0)^{1/2}} [1 + P_2(k)],$$

(22)

where

$$P_1(k) = -\frac{\cot(ka)}{2k} \int_0^a q(s)ds + \frac{1}{k \sin(ka)} \int_0^a K_1(t) \cos(kt)dt,$$

(23)
and

\[P_2(k) = \frac{\tan(ka)}{2k} \int_0^a q(s) ds + \frac{1}{k \cos(ka)} \int_0^a K_2(t) \sin(kt) dt. \quad (24) \]

By \[3\], we have

\[\eta(0)^2 d(k) = \frac{\sin{k}}{k} \cos(ka)[1 + P_2(k)] - \cos{k} \frac{\sin(ka)}{k} [1 + P_1(k)] \]

\[= \frac{\sin(k(1-a))}{2k}[2 + P_2(k) + P_1(k)] + \frac{\sin(k(1+a))}{2k}[P_2(k) - P_1(k)]. \quad (25) \]

Now we shall estimate \(P_2(k) - P_1(k) \) when \(|k| \to \infty \) in \(\mathbb{C} \). Since \(\eta \in W^{m+3}_{2}[0,1] \) with \(\eta^{(u)}(1) = 0 \) for \(u = 1, m+1 \) and \(\eta^{(m+2)}(1) \neq 0 \), it follows from \[11\] that \(q \in W^m_{2}[0,a] \) with \(q^{(u)}(a) = 0 \) for \(u = 0, m-1 \) and \(q^{(m)}(a) = \eta^{(m+2)}(1) = 0 \). Integrating by parts in \[23\] and \[24\] for \(m+1 \) times, and using \[15\], we have

\[\int_0^a K_1(t) \cos(kt) dt = \sin(ka) \sum_{u=0}^{s} \frac{K_1^{(2u)}(a)}{(-1)^u k^{2u+1}} + \cos(ka) \sum_{v=0}^{s} \frac{K_1^{(2v+1)}(a)}{(-1)^v k^{2v+2}} \quad (26a) \]

or

\[\int_0^a K_1(t) \cos(kt) dt = \sin(ka) \sum_{u=0}^{s} \frac{K_1^{(2u)}(a)}{(-1)^u k^{2u+1}} + \cos(ka) \sum_{v=0}^{s} \frac{K_1^{(2v+1)}(a)}{(-1)^v k^{2v+2}} \quad (26b) \]

and

\[\int_0^a K_2(t) \sin(kt) dt = \cos(ka) \sum_{u=0}^{s} \frac{K_2^{(2u)}(a)}{(-1)^u k^{2u+1}} + \sin(ka) \sum_{v=0}^{s} \frac{K_2^{(2v+1)}(a)}{(-1)^v k^{2v+2}} \quad (27a) \]

or

\[\int_0^a K_2(t) \sin(kt) dt = \cos(ka) \sum_{u=0}^{s} \frac{K_2^{(2u)}(a)}{(-1)^u k^{2u+1}} + \sin(ka) \sum_{v=0}^{s} \frac{K_2^{(2v+1)}(a)}{(-1)^v k^{2v+2}} \quad (27b) \]

where \(\varepsilon_j(k) (j = 1, 4) \) have the form of \(\int_0^a K_0(t) \sin(kt) dt \) or \(\int_0^a K_0(t) \cos(kt) dt \) with some \(K_0(\cdot) \in L^2(0,a) \). We only discuss the case \(m = 2s \), and the case \(m = 2s + 1 \) is similar. Note that \(\varepsilon_j(k) = o(e^{\Im(ka)}) \) as \(|k| \to \infty \) in \(\mathbb{C} \) (see
Substituting (31) into (30), we get, for the case $m \neq 0$,

$$P_2(k) - P_1(k) = \frac{1}{2k} \int_0^a q(s) ds [\tan(ka) + \cot(ka)] + \sum_{u=0}^s \frac{K_2^{2u}(a) + K_1^{2u}(a)}{(-1)^{u+1}k^{2u+2}}$$

$$+ \tan(ka) \sum_{v=0}^{s-1} \frac{K_2^{(2v+1)}(a)}{(-1)^v k^{2v+3}} - \cot(ka) \sum_{v=0}^{s-1} \frac{K_1^{(2v+1)}(a)}{(-1)^v k^{2v+3}}$$

$$+ \frac{\varepsilon_5(k)}{k^{2s+2}}, \quad |k| \to \infty, \quad k \in \mathbb{C}_\pm,$$

where $\mathbb{C}_\pm := \{ k \in \mathbb{C} : \pm \Im k > 0 \}$. Note that for $|k| \to \infty$ in \mathbb{C}_\pm,

$$\tan(ka) = \pm i + O(e^{-2a|\Im k|}), \quad \cot(ka) = \mp i + O(e^{-2a|\Im k|}).$$

Substituting (29) into (28), and observing that $\tan(ka) + \cot(ka) = 2 / \sin(2ka)$, we get

$$P_2(k) - P_1(k) = \frac{1}{2k} \int_0^a q(s) ds \frac{\tan(ka) + \cot(ka)}{2k \sin(2ak)} + \sum_{u=0}^s \frac{K_2^{2u}(a) + K_1^{2u}(a)}{(-1)^{u+1}k^{2u+2}}$$

$$\pm i \sum_{v=0}^{s-1} \frac{K_2^{(2v+1)}(a) + K_1^{(2v+1)}(a)}{(-1)^v k^{2v+3}} + O \left(\frac{e^{-2a|\Im k|}}{k^3} \right)$$

$$+ \frac{\varepsilon_5(k)}{k^{2s+2}}, \quad |k| \to \infty, \quad k \in \mathbb{C}_\pm.$$

Now we shall calculate $K_1^{(u)}(a) + K_2^{(u)}(a)$ for $u = 0, m$. Using (18) and (19), we have

$$K(t) := K_1(t) + K_2(t) = \frac{1}{2} q \left(t / 2 \right) + \int_t^a q(\tau) K(a + t - \tau) d\tau.$$

Since $q^{(u)}(a) = 0$ for $u = 0, m - 1$ and $q^{(m)}(a) = \eta^{(m+2)}(1) / 4 \neq 0$, we obtain

$$K^{(u)}(a) = 0, \quad u = 0, m - 1, \quad K^{(m)}(a) = \frac{q^{(m)}(a)}{2m+1} = \frac{\eta^{(m+2)}(1)}{2m+3}.$$
Similarly, one can get that for the case \(m = 2s + 1 \),

\[
P_2(k) - P_1(k) = \int_0^a q(s)ds \frac{k \sin(2ak)}{k \sin(2ak)} \pm i \left(\frac{(-1)^{m+2} \eta^{(m+2)}(1)}{2^{m+3}k^{m+2}} \right) \\
+ O \left(\frac{e^{-2a|\text{Im}k|}}{k^3} \right) + \frac{\varepsilon_5(k)}{k^{m+2}}, \quad |k| \to \infty, \quad k \in \mathbb{C}_\pm.
\] (32b)

Let \(k := \sigma + i\tau \), and consider the domain

\[
\mathbb{C}_\pm := \left\{ k \in \mathbb{C} : |\tau| \geq \frac{m+2-\epsilon}{2a} \log |\sigma|, 0 < \epsilon < 1 \right\} \quad \text{if} \quad a \neq 1.
\]

Substituting (32) into (25), we have that if \(a \neq 1 \) and \(|k| \to \infty \) in \(\mathbb{C}_\pm \), then, for the case \(m = 2s \),

\[
\eta(0)^{1/2}d(k) = \frac{\sin(k(1-a))}{k} \left[1 + O \left(\frac{1}{k} \right) \right] + \frac{\eta^{(m+2)}(1) \sin(k(1+a))}{(-1)^{m+1/2}2(2k)^{m+3}}[1 + \varepsilon_6(k)],
\]

and for the case \(m = 2s + 1 \),

\[
\eta(0)^{1/2}d(k) = \frac{\sin(k(1-a))}{k} \left[1 + O \left(\frac{1}{k} \right) \right] + i \frac{\eta^{(m+2)}(1) \sin(k(1+a))}{(-1)^{m+1/2}2(2k)^{m+3}}[1 + \varepsilon_6(k)],
\]

if \(a = 1 \), \(\int_0^1 q(s)ds \neq 0 \) and \(|k| \to \infty \) in \(\mathbb{C}_\pm \), then for the case \(m = 2s \),

\[
\eta(0)^{1/2}d(k) = \int_0^1 q(s)ds \left[1 + O \left(\frac{1}{k^2} \right) \right] + \frac{\eta^{(m+2)}(1) \sin(2k)}{(-1)^{m+1/2}2(2k)^{m+3}}[1 + \varepsilon_7(k)],
\]

and for the case \(m = 2s + 1 \),

\[
\eta(0)^{1/2}d(k) = \int_0^1 q(s)ds \left[1 + O \left(\frac{1}{k^2} \right) \right] + i \frac{\eta^{(m+2)}(1) \sin(2k)}{(-1)^{m+1/2}2(2k)^{m+3}}[1 + \varepsilon_7(k)],
\]

where

\[
\varepsilon_6(k) = c|k|^{m+1}e^{-2a|\text{Im}k|} + \varepsilon_5(k) = o(1), \quad |k| \to \infty, \quad k \in \mathbb{C}_\pm,
\] (35)

and

\[
\varepsilon_7(k) = c|k|^{m-1}e^{-2a|\text{Im}k|} + \varepsilon_5(k) = o(1), \quad |k| \to \infty, \quad k \in \mathbb{C}_\pm.
\] (36)

The remaining proof should be divided into six subcases: (i) \(a > 1 \) and \(m = 2s \); (ii) \(a > 1 \) and \(m = 2s + 1 \); (iii) \(a < 1 \) and \(m = 2s \); (iv) \(a < 1 \) and \(m = 2s + 1 \); (v) \(a = 1 \) and \(m = 2s \); (vi) \(a = 1 \) and \(m = 2s + 1 \). We only discuss the subcases (i) and (v) in details, and the other cases are similar and omitted.

Case (i): by virtue of (33a), we know that \(d(k) = 0 \) for \(|k| \to \infty \) in \(\mathbb{C}_\pm \) is equivalent to that

\[
2^{m+4}k^{m+2} \sin(k(1-a)) \left[1 + O \left(\frac{1}{k} \right) \right] = (-1)^{m+2} \eta^{(m+2)}(1) \sin(k(1+a))[1 + \varepsilon_6(k)].
\]
Clearly, the above sequences belong to the domain equivalent to that

\[\alpha \]

Taking (20) and (21) into account, we can obtain

\[k \]

more, where

\[\varepsilon \]

Taking logarithm on both sides of the above equation, we get that for sufficiently large \(n \in \mathbb{Z} \),

\[
\begin{cases}
 z - \frac{m + 2}{2} \log z = w_n, & w_n := n\pi i + \frac{1}{2} \log \left(\frac{2^{m+4}}{\eta(m+2)(1)} \right) + \varepsilon(k), \ Re z > 0, \\
 z + \frac{m + 2}{2} \log z = w_n, & w_n := n\pi i - \frac{1}{2} \log \left(\frac{2^{m+4}}{\eta(m+2)(1)} \right) + \varepsilon(k), \ Re z < 0,
\end{cases}
\]

where

\[
\varepsilon(k) = \pm \log(1 + \varepsilon_6(k)) \pm \log(1 + e^{2|\text{Re}z|(1-a)}) \pm \log(1 + e^{-2|\text{Re}z|(1+a)}) = o(1), \ |k| \to \infty, \ k \in \mathbb{C}_\pm.
\]

It follows from (20) and (21) and \(z = ik \) that

\[
k_n^\pm = n\pi i \pm \frac{i}{2} \log \left(\frac{4(2n\pi i)^{m+2}}{\eta(m+2)(1)} \right) + \alpha_n^\pm, \ \alpha_n^\pm = o(1), \ n \to \infty.
\]

Clearly, the above sequences belong to the domain \(\mathbb{C}_\pm \) for all large \(n \).

Substituting (38) into (26) and (27), we get that \(\varepsilon_j(k_n^\pm) e^{-a|\text{Im}k_n^\pm|} \in \ell^2 \) for \(j = 1, 4 \), which implies \(\varepsilon_8(k_n^\pm) \in \ell^2 \). It follows from (35) and (36) that \(\varepsilon_8(k_n^\pm) \in \ell^2 \).

Taking (20) and (21) into account, we can obtain \(\alpha_n^\pm \in \ell^2 \).

Case (v): by virtue of (34a), we know that \(d(k) = 0 \) for \(|k| \to \infty \) in \(\mathbb{C}_\pm \) is equivalent to that

\[
\int_0^1 q(s)ds \langle \eta(m+2)(1) \rangle^2 m^3 k^{m+1} (-1)^{m} = \sin(2k)[1 + \varepsilon_8(k)], \ |k| \to \infty, \ k \in \mathbb{C}_\pm,
\]

where \(\varepsilon_8'(k) = \varepsilon_8(k) + O(k^{-2}) \). Setting \(k = \frac{z}{i} \), we have \((-1)^{m} \langle \eta \rangle^2 (1)^{m+1} = (-1)^{m} \langle \eta \rangle^2 (1)^{m-1} = \frac{1}{4} \),

\[
\int_0^1 q(s)ds \langle \eta(m+2)(1) \rangle^2 m^4 z^{m+1} = [e^{2z} - e^{-2z}][1 + \varepsilon_8'(k)], \ |z| \to \infty, \ k \in \mathbb{C}_\pm,
\]

which implies that for sufficiently large \(n \in \mathbb{Z} \)

\[
\begin{cases}
 z - \frac{m + 1}{2} \log z = n\pi i + \frac{1}{2} \log \int_0^1 q(s)ds \langle \eta(m+2)(1) \rangle^2 + \varepsilon_8'(k), \ Re z > 0, \\
 z + \frac{m + 1}{2} \log z = n\pi i - \frac{1}{2} \log \int_0^1 q(s)ds \langle \eta(m+2)(1) \rangle^2 + \varepsilon_8'(k), \ Re z < 0.
\end{cases}
\]
It follows from (20) and (21) and $z = ik$ that for $n \to \infty$,

$$
\begin{align*}
\left\{ \begin{array}{l}
k_n^- = n\pi - \frac{i}{2} \log \left(\frac{\int_0^1 q(s)ds}{\eta^{(m+2)}(1)} \right) + \gamma_n^-,
\end{array} \right.
\end{align*}
$$

$$
\begin{align*}
k_n^+ = n\pi + \frac{i}{2} \log \left(-\frac{\int_0^1 q(s)ds}{\eta^{(m+2)}(1)} \right) + \gamma_n^+.
\end{align*}
$$

Using a similar argument, one gets $\gamma_n^+ \in l^2$.

Through similar arguments, one obtains asymptotics of other cases. The proof is finished.

Proof of Theorem 1.2. Since the function $d(k)$ is an entire function of k of order 1 and even with respect to k, by Hadamard’s factorization theorem,

$$
d(k) = \gamma E(k), \quad E(k) := k^{2s} \prod_{k_n \neq 0} \left(1 - \frac{k^2}{k_n^2} \right),
$$

where s is the multiplicity of the zero eigenvalue.

Using (2), (9) and (11), it can be verified that $\eta(r)$ is known a priori on $[\varepsilon, 1]$ with ε satisfying (6) is equivalent to that $q(x)$ is known a priori for $x \in \left[a + \frac{1}{2}, a \right]$. Let us prove that $q(x)$ on $[0, a]$ is uniquely determined by $E(k)$ and the known $q(x)$ on $\left[a + \frac{1}{2}, a \right]$. If it is true, then $\eta(r)$ on $[0, 1]$ with $\eta(1) = 1$ and $\eta'(1) = 0$ is uniquely determined by $E(k)$ and the known $\eta(r)$ on $[\varepsilon, 1]$. (See [13].)

Suppose that there are two functions q and \tilde{q} corresponding to the same $E(k)$ defined by (39). Let (a, φ) and $(\tilde{a}, \tilde{\varphi})$ be their corresponding quantities in (2) and (10). By virtue of (4) and $a > 1$, we obtain

$$
a = \tilde{a}.
$$

Denote

$$
g(k) := \int_0^{a+1} [\tilde{q}(x) - q(x)] \varphi(x, k) \tilde{\varphi}(x, k) dx.
$$

(40)

It follows from (12) that

$$
|g(k)| \leq M_0 e^{(1+a)|\text{Im}k|} \frac{1}{|k|^2} \quad \text{for some} \quad M_0 > 0.
$$

(41)

Since $q(x) = \tilde{q}(x)$ on $[a + \frac{1}{2}, a]$, together with (10), we get

$$
g(k) = \int_0^{a} [\tilde{q}(x) - q(x)] \varphi(x, k) \tilde{\varphi}(x, k) dx = \tilde{\varphi}'(a, k) \varphi(a, k) - \varphi(a, k) \varphi'(a, k).
$$

(42)

Note that Eq. (9) with $\eta(1) = 1$ and $\eta'(1) = 0$ implies that

$$
\varphi(a, k) = y(1, k) \quad \text{and} \quad \varphi'(a, k) = y'(1, k).
$$

(43)
It yields from (3) that
\[d(k) = \frac{\sin k}{k} \varphi'(a, k) - \varphi(a, k) \cos k = \frac{\sin k}{k} [\varphi'(a, k) - \varphi(a, k) k \cot k], \]
which implies
\[\varphi'(a, k) = \frac{k}{\sin k} d(k) + \varphi(a, k) k \cot k. \tag{44} \]
Together with (44) it follows from (42) that
\[g(k) = \frac{k}{\sin k} \left[\varphi(a, k) \tilde{d}(k) - \tilde{\varphi}(a, k) d(k) \right] \]
\[= \frac{k E(k)}{\sin k} \frac{\gamma \tilde{\gamma}}{\gamma \tilde{\gamma}} \left[\frac{\varphi(a, k)}{\gamma} - \frac{\tilde{\varphi}(a, k)}{\tilde{\gamma}} \right]. \]
Set
\[G(k) := \frac{g(k)}{E(k)} = \frac{k}{\sin k} \gamma \tilde{\gamma} \left[\frac{\varphi(a, k)}{\gamma} - \frac{\tilde{\varphi}(a, k)}{\tilde{\gamma}} \right]. \tag{45} \]
Observing that \(\frac{d(k)}{\gamma} = \tilde{d}(k) / \tilde{\gamma} \), one has
\[\frac{1}{\gamma} \left[\frac{\sin k}{k} \varphi'(a, k) - \varphi(a, k) \cos k \right] = \frac{1}{\tilde{\gamma}} \left[\frac{\sin k}{k} \tilde{\varphi}'(a, k) - \tilde{\varphi}(a, k) \cos k \right], \]
which implies
\[\frac{\varphi(a, n\pi)}{\gamma} - \frac{\tilde{\varphi}(a, n\pi)}{\tilde{\gamma}} = 0, \quad n = \pm 1, \pm 2, \ldots, \]
and so \(G(k) \) is an entire function of \(k \) from (45).

Due to (41), we know that \(G(k) \) satisfies the condition (i) in Lemma 2.1.

From (33) and (39) it follows that
\[E(\pm i\tau) = \frac{ce^{(a+1)\tau}}{\tau^{m+3}} [1 + o(1)], \quad c \neq 0, \quad \tau \to +\infty, \tag{46} \]
which implies from (41) and (45) that
\[|G(i\tau)| \leq C\tau^m, \quad \tau \to +\infty, \]
where \(m \geq 0 \) appears in Theorem 1.1. It yields \(\lim_{\tau \to +\infty} \log |G(i\tau)|/\tau := A \leq 0 \).

If we can prove \(|G(k)| \leq C \) for \(k \in \mathbb{R} \) (see (*) below), then it follows from Lemma 2.1 that for all \(k \in \mathbb{C}_+ \)
\[|G(k)| \leq C. \tag{47} \]
Note that \(G(k) \) is even, so Eq. (47) holds on the whole complex plane. This implies that \(G(k) \) is a constant from Liouville’s theorem. In addition, for the sequence \(\{ n\pi \}_{n \geq 1} \) there holds \(G(n\pi) \rightarrow 0 \) as \(n \to \infty \) (see (*) below). It follows that which deduces \(G(k) \equiv 0 \), which implies \(g(k) \equiv 0 \), and so \(q(x) = \tilde{q}(x) \) for \(x \in [0, a] \) by Lemma 2.2.
Now, we shall prove (*): $G(k)$ is bounded on \mathbb{R} and $G(n\pi)$ tends to zero as $n \to \infty$. Using (23), (24), (25) and (39), we get

$$E(k) = \frac{\sin(k(1-a))}{k\gamma\eta(0)^{1/4}} \left[1 + O\left(\frac{1}{k}\right) \right], \quad |k| \to \infty, \quad k \in \mathbb{R},$$

which implies $\gamma\eta(0)^{1/4}$ is uniquely determined by $E(k)$ if $a \neq 1$. Substituting (12) into (45), we have

$$G(k) = \frac{\tilde{\gamma}}{\eta(0)^{1/4}} \int_0^a \left(K(a,t) - \tilde{K}(a,t) \right) \sin(kt) dt. \quad (48)$$

Note that $G(k)$ is an entire function of k from the above argument, thus, zeros of $\sin k$ can not be poles of $G(k)$. Thus, it follows from (48) that

$$\int_0^a \left(K(a,t) - \tilde{K}(a,t) \right) \sin(n\pi t) dt = 0, \quad n = 0, \pm 1, \pm 2 \ldots \quad (49)$$

Letting $k \to n\pi$ in (48), we get from the L'Hospital principle that

$$G(n\pi) = \frac{\tilde{\gamma}}{\eta(0)^{1/4}} \int_0^a \left(K(a,t) - \tilde{K}(a,t) \right) t \cos(n\pi t) dt, \quad n = 0, \pm 1, \pm 2 \ldots \quad (49)$$

Thus, $G(k)$ is bounded on \mathbb{R} and $G(n\pi)$ tends to zero as $n \to \infty$ from (49). Therefore, we have finished the proof.

Proof of Theorem 1.3. By a similar argument to the proof of Theorem 1.2, we know that it is enough to show the function $g(k) \equiv 0$, where $g(k)$ is defined in (40) with $(a+1)/2$ replacing by $a-b$ (because now $q(x) = \tilde{q}(x)$ on $[a-b,a]$ from (8)). From (42) and (43), together with the boundary condition in (1), we get

$$g(k) = 0 \quad \text{for} \quad k \in D \cup \left\{ k_n' \right\}_{n \geq n_0}. \quad (50)$$

Since $|\text{Im}k| = r|\sin \theta|$, where $k = re^{i\theta}$, it follows from (41) with $a+1$ replacing by $2(a-b)$ that

$$h_g(\theta) := \lim_{r \to \infty} \frac{\log |g(re^{i\theta})|}{r} \leq 2(a-\beta)|\sin \theta|,$$

which implies

$$\frac{1}{2\pi} \int_0^{2\pi} h_g(\theta) d\theta \leq \frac{2(a-\beta)}{\pi} \int_0^{2\pi} |\sin \theta| d\theta = \frac{4(a-\beta)}{\pi}. \quad (51)$$

On the other hand, from (50) and (4) we have

$$N_g(r) \geq N_D(r) + \frac{2(a-1)r}{\pi} [1 + o(1)] = \frac{2(\alpha + a - 1)r}{\pi} [1 + o(1)], \quad r \to \infty.$$

It follows from Lemma 2.3 and (51) that if the entire function $g(k) \neq 0$ then

$$\frac{2(a + a - 1)}{\pi} \leq \lim_{r \to \infty} \frac{N_g(r)}{r} \leq \frac{1}{2\pi} \int_0^{2\pi} h_g(\theta) d\theta \leq \frac{4(a-\beta)}{\pi}.$$
which yields $\alpha \leq a + 1 - 2b$. However, now $\alpha > a + 1 - 2b$, it yields $g(k) \equiv 0$. The proof is complete. □

Acknowledgments. The author Xu was supported by Innovation Program for Graduate Students of Jiangsu Province of China (KYLX16_0412). The authors Xu and Yang were supported in part by the National Natural Science Foundation of China (11171152, 91538108 and 11611530682) and the Natural Science Foundation of Jiangsu Province of China (BK 20141392). The author Buterin was supported in part by by RFBR (Grants 15-01-04864). The authors Buterin and Yurko were supported by the Ministry of Education and Science of RF (Grant 1.1660.2017/PCh) and by RFBR (16-01-00015 and 17-51-53180).

References

[1] T. Aktosun, D. Gintides, V.G. Papanicolaou, The uniqueness in the inverse problem for transmission eigenvalues for the spherically symmetric variable-speed wave equation, Inverse Problems 27 (2011), 115004 (17pp).
[2] S.A. Buterin, C.-F. Yang, V.A. Yurko, On an open question in the inverse transmission eigenvalue problem, Inverse Problems 31 (2015), 045003 (8pp).
[3] S.A. Buterin, C.-F. Yang, On an inverse transmission problem from complex eigenvalues, Results. Math. 71(3) (2017), 859-866.
[4] L.-H. Chen, On the inverse spectral theory in a non-homogeneous interior transmission problem, Complex Variables and Elliptic Equations, 60 (2015), 707-731.
[5] D. Colton, Y.J. Leung, Complex eigenvalues and the inverse spectral problem for transmission eigenvalues, Inverse Problems 29 (2013), 104008 (6pp).
[6] D. Colton, Y.J. Leung, S.X. Meng, Distribution of complex transmission eigenvalues for spherically stratified media, Inverse Problems 31 (2015), 035006 (19pp).
[7] D. Colton, Y.J. Leung, The existence of complex transmission eigenvalues for spherically stratified media, Applicable Analysis 96 (2017), 39-47.
[8] R. del Rio, F. Gesztesy, B. Simon, Inverse spectral analysis with partial information on the potential, III. Updating boundary conditions, Internat. Math. Res. Notices, 15 (1997), 751-758.
[9] M.V. Fedoryuk, Asymptotics: Integrals and Series, Nauka, Moscow, 1987. (Russian)
[10] F. Gesztesy, B. Simon, Inverse spectral analysis with partial information on the potential, II. The case of discrete spectrum, Transactions of the American Mathematical Society, 452 (1999), 2765-2787.
[11] P. Koosis, The Logarithmic Integral I, Cambridge University Press, Cambridge, 1988.
[12] B. Levin, Distribution of zeros of entire functions, AMS Transl. vol.5, Providence RI 1980.
[13] J.R. McLaughlin and P.L. Polyakov, On the uniqueness of a spherically symmetric speed of sound from transmission eigenvalues, J. Diff. Equns. 107 (1994), 351-382.
[14] V. Marchenko, Sturm-Liouville Operators and Applications. Publisher Birkhäuser, Boston, 1986.
[15] J. Pöschel, E. Trubowitz, Inverse Spectral Theory, MA: Academic, Boston, 1987
[16] A.G. Ramm, Property C for ODE and applications to inverse problems, Fields Institute Communications, Providence, RI, 25, (2000), 15-75.
[17] S.A. Stepin, A.G. Tarasov, Asymptotic distribution of resonances for one-dimensional Schrödinger operators with compactly supported potential, Sbornik. Mathematics, 198 (2007), 87-104.
[18] G. Wei, H.-K. Xu, Inverse spectral analysis for the transmission eigenvalue problem, Inverse Problems 29 (2013), 115012 (24pp).

[19] X.-C. Xu, X.-J. Xu, C.-F. Yang, Distribution of transmission eigenvalues and inverse spectral analysis with partial information on the refractive index, Math. Meth. Appl. Sci. 39 (2016), 5330-5342.

[20] X.-C. Xu, C.-F. Yang, H.-Z. You, Inverse spectral analysis for Regge problem with partial information on the potential, Results. Math. 71 (2017), 983-996.

[21] C.-F. Yang, S.A. Buterin, Uniqueness of the interior transmission problem with partial information on the potential and eigenvalues, J. Diff. Eqns. 260 (2016), 4871-4887.