Lentinan combined with cisplatin for the treatment of non-small cell lung cancer

Chencheng Zhao, PhDa,b,c, Haifei Yan, PhDa,b, Wentai Pang, PhDd, Tong Wu, BSd, Xianbin Kong, PhDb, Xiaojing Li, PhDd, Honggen Liu, PhDd, Linlin Zhao, PhDd, Feng Liang, MSb,d, Yingjie Jia, PhDa,*

Abstract

Background: A growing number of studies suggest that lentinan combined with cisplatin thoracic injection for the treatment of lung cancer is an effective combination of traditional Chinese and Western medicine, which has a continuous and beneficial effect on eliminating clinical symptoms and improving cachexia in lung cancer patients. However, whether this treatment is effective and safe for lung cancer patients or not, evidence supporting the effectiveness and safety of this treatment is still incomplete. Besides, there is lack of systematic review to assess the detailed situation (including risk of bias and methodology) of current related clinical studies.

Objective: This study aimed to evaluate the effectiveness and safety of lentinan combined with cisplatin thoracic injection in the treatment of lung cancer.

Methods: The major databases (Embase, PubMed, the Cochrane Library, China National Knowledge Infrastructure, Chinese Scientific Journals Database [VIP] Database, Chinese Biomedical Literature Service System [SinoMed], and Wanfang Database) were searched from inception to March 1, 2020. Randomized controlled trials (RCTs) of lentinan combined with cisplatin chest injection on patients with non-small cell lung cancer (NSCLC) were identified. Two assessors reviewed each trial independently. The methodological quality of the eligible studies was evaluated according to the Cochrane Collaboration’s tool for assessing risk of bias. Both the data extraction and the literature quality screening evaluation were conducted independently by 2 researchers.

Results: Totally 17 clinical RCTs were included in this study, involving 1390 patients. Meta-analysis results showed that the clinical efficacy (risk ratio [RR] = 1.34, 95% confidence interval [CI] 1.21–1.48), effective subgroup analysis (RR = 1.51, 95% CI 1.3–1.77), and quality of life (RR = 1.48, 95% CI 1.27–1.72), the differences are statistically significant. In terms of adverse reactions, mainly related to gastrointestinal reactions and bone marrow suppression, the incidence and degree of adverse reactions of lentinan combined with cisplatin thoracic injection group were lower than those of cisplatin thoracic injection group alone.

Conclusions: The current evidence prompted that Lentinan combined with cisplatin in thoracic injection might benefit patients with NSCLC on a certain extent; this systematic review revealed some definite conclusions about the application of Lentinan combined with cisplatin in thoracic injection for NSCLC. Due to the low methodological quality, high risk of bias, and inadequate reporting on clinical data, these results still require verification by a large number of well designed, heterogeneous RCT studies. More rigorous, multicenter, sufficient-sample, and double-blind RCTs are warranted.

Abbreviations: CNKI = China National Knowledge Internet, CR = complete response, KPS = Karnofsky Performance Status, LNT = Lentinan, NCCN = National Comprehensive Cancer Network, NSCLC = non-small cell lung cancer, PD = progressive disease, PR = partial response, RCTs = randomized controlled trials, SD = stable disease, SinoMed = Chinese Biomedical Literature Database.
1. Introduction

Lung cancer is a lung malignant tumor that originates in the trachea, bronchial mucosa, or glands, and has become the most common and frequent malignant tumor. NSCLC accounts for about 80% of all lung cancers, and about 75% of patients are in the middle and late stages when they are discovered, and the 5-year survival rate is very low. According to the latest global cancer statistics report in 2019, lung cancer is the malignant tumor with the highest incidence in the world\[1\] and one of the main causes of death of cancer patients. In China, the situation of lung cancer is also not optimistic, and the overall incidence rate ranks first.\[2\] At present, platinum-based combination chemotherapy is still the standard first-line treatment for lung cancer.\[3,4\] However, chemotherapy is often accompanied by serious toxic and side effects,\[5\] so looking for a drug that can both enhance the efficacy of chemotherapy and reduce the toxic and side effects of chemotherapy is one of the present research hotspots in the treatment of lung cancer.

In recent years, TCM has gradually shown its unique advantages in the treatment of lung cancer.\[6-7\] TCM combined with radiotherapy and chemotherapy has become an effective method for the treatment of lung cancer, which can effectively prolong the survival period and improve the quality of life.\[8-11\] Modern studies have shown that lentinan is a key factor in regulating the body's immune system,\[11,12\] which not only enhances the killing effect of chemotherapeutic drugs on tumor cells and plays a sensitizing role,\[13\] but also can effectively inhibit tumor angiogenesis and suppression growth of tumors,\[14\] like Salvia Officinalis Extract and Bevasesomab,\[15,16\] thereby improving the quality of life of patients, prolonging survival, without any toxic and side effects, has become a more commonly used TCM anti-tumor drugs.\[17-19\]

1.1. Why it is important to do this review

At present, the clinical trials of lentinan combined with cisplatin in the treatment of lung cancer are increasing. Although the application of lentinan is a commonly used clinical practice, there is still uncertainty about its effects. Moreover, the intensity of evidence has been poor and there has been lack of systematic analysis to assess the effectiveness and safety of lentinan combined with cisplatin thoracic injection in the treatment of NSCLC from randomized controlled trials (RCTs).

Therefore, this study aims to evaluate objectively the effectiveness and safety of lentinan combined with cisplatin thoracic injection in the treatment of NSCLC by integrating the existing trials. This study aims to further improve and update the clinical data by collecting RCTs of lentinan combined with cisplatin thoracic injection in the treatment of lung cancer, using the method of meta-analysis, follow the evidence-based medicine model to systematically evaluate the efficacy and adverse reactions of lentinan combined with cisplatin thoracic injection in the treatment of NSCLC, provide evidence-based evidence for its clinical effectiveness and safety research, and provide reference for clinical treatment of lung cancer.

The article searches for relevant literature through a certain search strategy, extracts data and evaluates the quality of the finally included literature according to the inclusion and exclusion criteria, and finally uses Revman 5.3 software to perform statistical analysis on the collected information, and draw results and conclusions.

For the first time, this article systematically summarized the efficacy of lentinan combined with cisplatin pleural injection in the treatment of lung cancer, and subgroup analysis was carried out on cisplatin alone and cisplatin-containing regimen alone, which strongly confirmed the efficacy of lentinan in the treatment of lung cancer.

2. Methods

2.1. Registration

The study protocol has been registered on international prospective register of systematic review (PROSPERO). These records have been submitted for publication and are being assessed by the editorial team (Once the registration number is generated, the author contacts the editor). The procedure of this protocol will be conducted according to the Preferred Reporting Item for Systematic Review and Metaanalysis Protocols (PRISMA-P) guidance.\[20\]

2.2. Eligibility criteria

2.2.1. Types of studies. All the RCTs reporting the application of lentinan combined with cisplatin thoracic injection for the treatment of NSCLC were included. Studies irrelevant to RCTs or trials that participants, control measures, interventions, and outcomes did not meet the criteria were excluded.

2.2.2. Participants. All the participants enrolled in this study had to meet at least one of the current or past diagnostic criteria of NSCLC. The diagnostic criteria’s included “Lung cancer patients diagnosed by pathology or cytology” or “NCCN guidelines” or “relevant expert consensus.”\[21\]

2.2.3. Interventions. The experimental group was treated with lentinan combined with cisplatin thoracic injection, and cisplatin thoracic injection alone must be used in the control group.

2.2.4. Outcomes. The primary outcome measures will include first reference to the WHO solid tumor efficacy evaluation criteria: the efficacy indicators are divided into CR for the complete disappearance of all measurable lesions for at least 1 month; PR is the reduction in the product of the diameters of all measurable lesions ≥50%, maintained for >1 month; SD is the product of all measurable lesion diameters shrinking <50% or increasing <25%; PD is the product of all measurable lesion diameters ≥25% or new lesions appear. The effective rate is CR + PR/total number of cases × 100%. Secondly, Quality of life score (KPS score): improvement is a score increase of ≥10 points; decline is a score decrease of ≥10 points; stability is a score increase or decrease of <10 points. Thirdly, with reference to the
2.5. Risk of bias assessment

The methodological quality of the eligible studies was evaluated according to the Cochrane Collaboration’s tool for assessing risk of bias. The assessment details included: sequence generation, allocation concealment, blinding of participants and personnel, blinding of outcome assessors, incomplete outcome data, selective reporting, and other sources of bias. Each assessment was graded into 3 levels: “low risk” or “high risk” or “unclear risk.” A funnel plot was applied to evaluating publication bias of the included studies. For example, if the correct random method is applied, it should be evaluated as low risk, and if the random method is not used, it should be evaluated as high risk. For those that only mention the random method but do not record the random method in detail, it should be evaluated as unclear risk.

2.6. Data synthesis and statistical analysis

Statistical analyses were performed by RevMan 5.3 software provided by Cochrane Collaboration. Data were presented by risk ratio (RR) with its 95% confidence interval (CI) for dichotomous outcomes (total effective rate of NSCLC and total effective rate of KPS improvement and total incidence of adverse reactions). The I² test was calculated to determine the amount of heterogeneity. According to the results of the heterogeneity test, a fixed effect model (I² <50%) or a random effect model (P <0.05, I² >50%) was selected.

2.7. Sensitivity analysis and subgroup analysis

Sensitivity analysis or subgroup analysis was performed to analyse the heterogeneity or inconsistency among the studies and to explore potential sources of heterogeneity. We created a qualitative analysis when data extraction was insufficient.

2.8. Quality of evidence

The quality of evidence for each outcome was assessed according to the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) Handbook[23] by 2 reviewers (CZ and TW) independently. Any disagreements about assessments were resolved by a third reviewer. The scores of GRADE were downgraded based on 5 factors:

1. Risk of bias (if there were poor trials with a high risk of bias and sensitivity analysis results had poor robustness through excluding the poor trials, evidence rated down by 1 level. If the most domains had unclear methodological bias risk, evidence rated down by 1 level).
2. Inconsistency (Inconsistency was assessed according to the outcomes of the χ² test and I² statistic reported in the systematic reviews. If I² was >50%, P <.05, and the heterogeneity could not be explained by conducting subgroup analysis, the quality of evidence was downgraded).
3. Indirectness (if the participants, intervention, outcomes, or comparison had an indirect comparison in the study, evidence rated down by 1 level).
4. Imprecision (for dichotomous outcomes, if the number of events for each outcome was ≤300, evidence was downgraded. For continuous outcomes, if the number of events for each outcome was ≤400, evidence was downgraded).
5. Publication bias (publication bias was assessed by presenting funnel plot and conducting Egger test. A 2-tailed P value of <.05 was considered to indicate publication bias).
2.9. Communicate with the authors of the primary studies

Two reviewers (CZ and YJ) contacted the authors of the included primary studies for detailed information if the information in the original article did not provide.

3. Results

3.1. Study identification

The process of study selection and identification is shown in PRISMA Flow Diagram. A total of 326 Chinese literatures and 3 English literatures potentially relevant articles were initially screened in the electronic databases based on our literature searching strategy. After removing 222 duplicates, 107 articles were identified for further analysis. Through screening the titles and abstracts, 56 articles were excluded. A total of 26 full-text articles were retrieved for further assessment. Finally, 17 full-text articles were then assessed for eligibility (Fig. 1).

3.2. Study characteristics

The included studies were all in Chinese. They were first published in 2006 and latest in 2017. A total of 1390 patients with NSCLC were included in 17 studies. Among them, the
experimental group of 7 studies\(^{24–30}\) was the treatment of pleural injection of lentinan combined with cisplatin, the control group was the treatment of pleural injection of cisplatin alone; the experimental group of 10 studies\(^{30–36}\) was the treatment of pleural injection of lentinan combined with cisplatin. The control group was treated with cisplatin-containing regimen by intra-pleural injection, and the course of treatment was 2-6 cycles. The basic characteristics of the included studies are shown in Table 2.

3.3. Risk of bias within studies

Of the 17 studies included, 4 studies used the correct random method,\(^{26,27,32,34}\) which is low risk, and 8 studies only mentioned random and did not describe specific random methods.\(^{24,25,28,29,31,37–39}\) 5 studies did not mention whether it is random,\(^{30,33,35–37,40}\) which is an unclear risk. All 17 studies did not mention the allocation of hidden and blind methods, which is an unclear risk. No experimental design was available for 17 studies, so they were rated as unclear risk in selective reporting. No data were found to be incomplete in any of the 17 studies, which was rated as low risk (Fig. 2).

3.4. Meta-analysis

3.4.1. Clinical effect

Seventeen studies\(^{24–40}\) reported the clinical efficacy of lentinan combined with cisplatin in the thoracic cavity for the treatment of NSCLC patients. Heterogeneity analysis showed that the included studies had better homogeneity (\(I^2 = 0\%), P = 0.7\), a fixed-effects model was selected, and the results showed that (RR = 1.34, 95% confidence interval [CI] 1.21–1.48, \(Z = 5.79, P < .00001\)), indicating that the clinical efficacy of lentinan combined with cisplatin in thoracic injection was superior to that of cisplatin alone. Platinum injection into the chest, the difference was statistically significant (Fig. 3).

Included study	Sample size (n)	Intervention	Course of treatment (cycles)	Outcome assessment			
Experimental group	Control group	Age, y		Installation	Experimental group	Control group	
Ding et al, 2012\(^{24}\)	44/42	NR	IIIA-IV	LNT + NP	NP	2	(1) (2) (3)
Dai, 2014\(^{25}\)	34/34	25–78	IIIA-IV	LNT + GP	GP	2	(1) (2) (3)
Liu et al, 2017\(^{26}\)	36/36	NR	NR	LNT + cisplatin	Cisplatin	3	(1) (3)
Lu et al, 2012\(^{27}\)	24/28	32–70	NR	LNT + cisplatin	Cisplatin	4	(1) (2) (3)
Wu, 2015\(^{28}\)	126/105	NR	IIIB-V	LNT + GP	GP	2	(1) (2) (3)
Tang and Liu, 2019\(^{29}\)	32/32	32–75	IIIB-V	LNT + Cisplatin	Cisplatin	2	(1) (2) (3)
Zhang, 2016\(^{30}\)	70/70	60–85	III-V	LNT + GP/TP	GP/TP	6	(1) (2) (3)
Xu et al, 2017\(^{31}\)	29/29	20–80	NR	LNT + cisplatin	Cisplatin	4	(1) (2) (3)
Dai, 2019\(^{32}\)	26/26	43–75	NR	LNT + TP	TP	2	(1) (2) (3)
Li et al, 2019\(^{33}\)	30/22	43–81	IIIB-V	LNT + GP	GP	2	(1) (2) (3)
Li et al, 2009\(^{34}\)	31/31	38–69	NR	LNT + GP	GP	2	(1) (2) (3)
Wang, 2011\(^{35}\)	40/42	>18	NR	LNT + GP	GP	2	(1) (2) (3)
Wang and Jiang, 2014\(^{36}\)	40/40	NR	IV	LNT + GP/TP/DP	GP/TP/DP	4	(1) (2) (3)
Wang et al, 2006\(^{37}\)	42/39	>18	III-V	LNT + cisplatin	Cisplatin	2	(1) (2) (3)
Tong et al, 2011\(^{38}\)	27/23	38–75	NR	LNT + cisplatin	Cisplatin	2	(1) (2) (3)
Xiao et al, 2013\(^{39}\)	40/40	18–70	II-V	LNT + DP	GP	2	(1) (2) (3)

Fig. 2. Risk bias analysis.
3.4.4. Security. Among the 17 studies, safety mainly involved the intrathoracic injection of cisplatin (Fig. 5). Cisplatin is better. There was a statistically significant difference that (RR = 1.51, 95% CI 1.3–1.77, *P* < .00001). The efficiency of pleural injection of lentinan combined with cisplatin was higher than that of single injection. The difference was statistically significant (RR = 1.34, 95% CI 1.21–1.48, *P* < .0007) in the intrathoracic injection with cisplatin (Fig. 4).

3.4.2. Clinical effectiveness subgroup analysis.

Seventeen studies reported the clinical effectiveness of lentinan combined with cisplatin in the thoracic cavity for the treatment of NSCLC patients. According to the different interventions, a subgroup analysis was performed. In the case of cisplatin alone, the difference was statistically significant (RR = 1.48, 95% CI 1.27–1.72, *Z* = 5.07, *P* < .00001), indicating that the quality of life of patients treated with lentinan combined with cisplatin was higher than that of single injection. The difference was statistically significant (RR = 1.34, 95% CI 1.21–1.48, *P* < .0007) in the intrathoracic injection with cisplatin (Fig. 4).

3.4.3. Quality of life.

Sixteen studies reported the quality of life of patients with NSCLC treated with lentinan combined with cisplatin in thoracic cavity, and analyzed by heterogeneity test: there was heterogeneity among the included studies (I² = 63%, *P* = .0003), using random-effects model, the results show that (RR = 1.48, 95% CI 1.27–1.72, *Z* = 5.07, *P* < .00001), indicating that the quality of life of lentinan combined with cisplatin is better. There was a statistically significant difference in the intrathoracic injection of cisplatin (Fig. 5).

4. Discussion

Practice has shown that the TCM has a definite cure for a variety of malignant tumors, and it has gradually become a recognized method of malignant tumor treatment. The treatment of cancer patients should be based on the overall grasp, taking into account the specimens, according to the patient’s own constitution to identify the disease and dialectical treatment, can effectively alleviate clinical symptoms, reduce the side effects of simple Western medicine treatment, prolong survival, and improve quality of life.

In this study, all published RCTs were collected and 17 clinical studies of lentinan combined with cisplatin thoracic injection in the treatment of lung cancer were obtained. Meta-analysis was used to systematically evaluate the efficacy of lentinan combined with cisplatin thoracic injection in the treatment of lung cancer. This study shows that the clinical efficacy of lentinan combined with cisplatin thoracic injection in the treatment of lung cancer patients is significantly higher than that of cisplatin thoracic injection alone, and can improve the quality of life of patients and reduce the incidence of bone marrow suppression and gastrointestinal reactions. Polysaccharide combined with chemotherapy can play a role in reducing toxicity and increasing efficacy, which can ensure the smooth progress of chemotherapy. Based on a detailed summary and analysis of the series of outcome indicators, this study also conducted a subgroup analysis of clinical effectiveness based on different interventions in the treatment group. The subgroup analysis strengthened the strength of the results.

The results of this study are consistent with previous related literature reports, but the results are more substantial and clinically practical, which can effectively guide clinical applications. Just like Raman-enhanced spectroscopy (RESpect) probe technology of Markus Ionization Chamber Detector, new technologies have the opportunity to be transformed into clinical practice. Later, we can further study the pathophysiological mechanism of lentinan, such as how to improve the patient’s immune function, how to improve the patient’s blood indicators, and so on.

5. Limitations

When formulating the criteria for literature inclusion and exclusion, this study clearly stipulated the years of inclusion of
Figure 4. Meta-analysis of the subgroup analysis of clinical efficacy of lentinan combined with cisplatin in the thorax.

Study or Subgroup	Experimental	Control	Weight	Risk Ratio M-H, Fixed, 95% CI	Risk Ratio M-H, Random, 95% CI
Chang XH2013	31 40	22 40	7.0%	1.41 [1.02, 1.95]	
Liu YF2017	24 36	15 36	4.8%	1.60 [1.02, 2.51]	
Lu JC2012	18 24	15 28	4.4%	1.40 [0.92, 2.12]	
Tang WP2010	29 32	20 32	6.4%	1.45 [1.08, 1.94]	
Tong WN2011	22 27	12 23	4.1%	1.56 [1.02, 2.40]	
Wang WW2006	21 43	13 39	4.3%	1.50 [0.88, 2.66]	
Xu H2017	20 29	11 29	3.5%	1.82 [1.07, 3.08]	
Subtotal (95% CI)	**230**	**227**	**34.6%**	**1.51 [1.30, 1.77]**	**1.51 [1.30, 1.77]**

Total events 165 108
Heterogeneity: *X*² = 9.5, df = 6 (*P* = 0.99), *I*² = 0%
Test for overall effect *Z* = 5.52 (*P* = 0.00001)

Figure 5. Meta-analysis of lentinan combined with cisplatin for intrathoracic injection in the treatment of non-small cell lung cancer patients.

Study or Subgroup	Experimental	Control	Weight	Risk Ratio M-H, Random, 95% CI	Risk Ratio M-H, Fixed, 95% CI
Chang XH2013	31 40	22 40	7.8%	1.41 [1.02, 1.95]	
Dai D2014	22 34	16 34	5.1%	1.38 [0.89, 2.12]	
Dai XC2010	14 26	11 26	3.5%	1.27 [0.72, 2.28]	
Ding HN2012	31 44	29 42	9.5%	1.02 [0.77, 1.35]	
Li JZ2013	17 30	12 22	4.4%	1.04 [0.63, 1.70]	
Li ZY2009	20 31	31 31	3.6%	1.67 [1.00, 2.79]	
Wang JY2011	17 40	17 42	5.3%	1.05 [0.63, 1.76]	
Wang RR2014	13 40	12 40	3.8%	1.08 [0.65, 2.06]	
Wu XL2015	72 126	42 105	14.6%	1.43 [1.08, 1.89]	
Xiao XF2015	42 40	6 40	1.9%	2.00 [0.83, 4.81]	
Zhang H2016	47 70	42 70	13.4%	1.12 [0.87, 1.44]	
Subtotal (95% CI)	**481**	**452**	**65.4%**	**1.25 [1.10, 1.42]**	**1.25 [1.10, 1.42]**

Total events 265 199
Heterogeneity: *X*² = 7.29, df = 9 (*P* = 0.81), *I*² = 0%
Test for overall effect *Z* = 3.39 (*P* = 0.0007)

Total events 430 307
Heterogeneity: *X*² = 12.63, df = 16 (*P* = 0.70), *I*² = 0%
Test for overall effect *Z* = 5.79 (*P* = 0.00001)
Test for subgroup differences: *X*² = 3.55, df = 1 (*P* = 0.06), *I*² = 71.8%

Test for overall effect: *Z* = 5.07 (*P* = 0.00001)
the literature, the research object, and outcome indicators and other relevant conditions, which basically controlled the selection bias of this study. However, this study also has certain limitations. For example, most of the studies are based on small sample trials, and some of them have methodological problems. The conclusions obtained have limited reference value; the included studies are all positive results, and the possibility of publication bias cannot be completely ruled out. In addition, the quality of the studies included in the literature is not high, which affects the reliability of the above conclusions to varying degrees; all the included literature do not mention blinding, nor do they hide the distribution, and do not describe the loss of follow-up and withdrawal in detail. There are still some gaps in the requirements of syndrome medicine, which leads to the credibility of the research and the low quality of the literature. Based on this, in the future clinical trials, the research subjects should be randomly grouped correctly, and different interventions should be implemented in different groups to control the different effects. To the greatest extent possible to avoid the various biases that may occur in the design and implementation of clinical trials, balance confounding factors, improve the effectiveness of statistical tests, and thus improve the scientific nature of research.

6. Conclusion

Although there are some shortcomings in the literature included in this systematic review, the results show that lentinan combined with cisplatin pleural injection can effectively improve the clinical efficacy of lung cancer patients, and the safety is good. The pleural injection of lentinan combined with cisplatin has the effect of reducing toxicity and increasing efficacy, and has certain guiding significance for the clinical treatment of lung cancer. At the same time, it is recommended that researchers refer to this study with caution in contacting clinical practice and combine with the consensus of relevant guidelines to make comprehensive judgments.

In the current environment of precision medicine, precision and individualized treatment has become the mainstream direction of modern medicine development, further confirming the efficacy of Chinese medicine, laying the foundation for future clinical research, and providing references for doctors and patients to choose treatment. The clinical work and future research directions have important guiding significance. It is of great significance to enhance the efficacy of Chinese medicine, save more social resources, promote the promotion of Chinese medicine internationally, and improve the status of Chinese medicine in the field of lung cancer treatment. It is of great significance to narrow the gap with international modern medical research, and to further increase Chinese medicine in Africa. The share in the treatment of small cell lung cancer provides the basis and foundation.

6.1. Ethics and dissemination

This review does not require the ethical approval because there are no concerns about the patients’ privacy. The results of the meta-analysis will be reported according to the PRISMA extension statement and disseminated in a peer-reviewed journal.

Author contributions

Conceptualization: Chenchen Zhao, Haifeng Yan, Feng Liang, Yingjie Jia.
Data curation: Haifeng Yan, Tong Wu.

Formal analysis: Chenchen Zhao, Xiaojiang Li.
Funding acquisition: Feng Liang, Yingjie Jia, Linlin Zhao, Honggen Liu.
Investigation: Chenchen Zhao.
Methodology: Wentai Pang, Xianbin Kong, Honggen Liu.
Project administration: Chenchen Zhao, Feng Liang, Yingjie Jia.
Resources: Honggen Liu, Linlin Zhao.
Software: Chenchen Zhao, Honggen Liu.
Supervision: Xianbin Kong, Xiaojiali Li.
Validation: Haiyin Yan, Linlin Zhao.
Visualization: Chenchen Zhao, Feng Liang.
Writing – original draft: Chenchen Zhao, Tong Wu.
Writing – review & editing: Chenchen Zhao, Haiyin Yan, Feng Liang, Yingjie Jia.

References

[1] Bray F, Ferlay J, Soerjomataram I, et al. Global Cancer Statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68:39–88.
[2] Cao MM, Chen WQ. Epidemic situation and prevention and control status of malignant tumors in China. Chin J Clin Oncol 2019;46:145–9.
[3] National Comprehensive Cancer Network. Small Cell NSCLC (Version 2, 2020) [S]. Accessed November 15, 2019.
[4] National Comprehensive Cancer Network. Non-Small Cell NSCLC (Version 1.2020) [S]. Accessed November 06, 2019.
[5] Wang YT, Zhang R, Shen YJ, et al. Prediction of chemotherapy adverse reactions and mortality in older patients with primary lung cancer through frailty index based on routine laboratory data. Clin Interv Aging 2020;14:1187–97.
[6] Gao L, Hao CX, Zhang GL, et al. Huayu pill () promotes fluorescent doxorubicin delivery to tumors in mouse model of lung cancer. Chin Integr Med 2020.
[7] Liang YJ, Chen J, Yu B, et al. Baicalin, a Chinese Herbal Medicine, Inhibits the Proliferation and Migration of Human Non-Small Cell Lung Carcinoma (NSCLC) Cells, A549 and H1299, by Activating the SIRT1/AMPK Signaling Pathway. Medical science monitor: international medical journal of experimental and clinical research 2018;24.
[8] Sun LL, Lai HZ, Chen ZZ, et al. Modified Lujunzi decoction () alleviates chemotherapy-induced anorexia in advanced non-small cell lung cancer: a propensity score matched case-control study. Chinese journal of integrative medicine 2020.
[9] Xiao ZW, Hu LH, Lin JF, et al. Efficacy and safety of Jianpishengsu for chemotherapy-related fatigue in patients with non-small cell lung cancer: study protocol for a randomized placebo-controlled clinical trial. Trials 2020;21.
[10] Cheng FC, Huang JY, Wang ZC, et al. Xiao-qi-ping injection adjunct with platinum-based chemotherapy for advanced non-small-cell lung cancer: a systematic review and meta-analysis. BMC Complement Med Ther 2020;20:3.
[11] Wang XE, Wang YH, Zhou Q, et al. Immunomodulatory effect of Lentinan on aberrant T subsets and cytokines profile in non-small cell lung cancer patients. Pathol Oncol Res 2020;26:499–505.
[12] Zhang YR, Zhang M, Jiang YF, et al. Lentinan as an immunotherapeutic for treating lung cancer: a review of 12 years clinical studies in China. J Cancer Res Clin Oncol 2018;144:2177–86.
[13] Liu XD, Li M, Li WX, et al. Combined effect of lentinan and cisplatin on cytokines IL-6, TNF-α, and TGF-β in Tumor Therapy. International Journal of Polymer Science 2019;2019.
[14] Peng SM, Zhang GX, Kuai JJ, et al. Lentinan inhibits tumor angiogenesis via interferon and in a T cell independent manner. J Exp Clin Cancer Res 2018;37.
[15] Zare H. Effects of Salvia Officinalis extract on the breast cancer cell line. Sci Med J 2019:1: doi: 10.28991/SciMedj-2019-0101-4.
[16] Yavari K. Anti-angiogenesis therapy of cancer cells using 153Sm-Bevasiranib. In: The literature review. Sci Med J 2019:1.
[17] Wang H, Cai Y, Zheng Y, et al. Efficacy of biological response modifier lentinan with chemotherapy for advanced cancer: a meta-analysis. Cancer Med 2017;6: doi: 10.1002/cam4.1136.
[18] Li XJ, Jia YJ, Chen L. Clinical observation of chemotherapy combined with thoracic injection of lentinan in treatment of cancerous hydrothorax of patients with lung cancer. Zhongguo Zhong xi yi jie he za zhi
