THE IMPACT OF ALTERNATIVE FORMS
OF BANK CONSOLIDATION ON CREDIT
SUPPLY AND FINANCIAL STABILITY

Emanuele Tarantino, Nicola Pavanini and Sergio
Mayordomo

FINANCIAL ECONOMICS
INDUSTRIAL ORGANIZATION
THE IMPACT OF ALTERNATIVE FORMS OF BANK CONSOLIDATION ON CREDIT SUPPLY AND FINANCIAL STABILITY

Emanuele Tarantino, Nicola Pavanini and Sergio Mayordomo

Discussion Paper DP15069
Published 19 July 2020
Submitted 13 July 2020

Centre for Economic Policy Research
33 Great Sutton Street, London EC1V 0DX, UK
Tel: +44 (0)20 7183 8801
www.cepr.org

This Discussion Paper is issued under the auspices of the Centre's research programmes:

- Financial Economics
- Industrial Organization

Any opinions expressed here are those of the author(s) and not those of the Centre for Economic Policy Research. Research disseminated by CEPR may include views on policy, but the Centre itself takes no institutional policy positions.

The Centre for Economic Policy Research was established in 1983 as an educational charity, to promote independent analysis and public discussion of open economies and the relations among them. It is pluralist and non-partisan, bringing economic research to bear on the analysis of medium- and long-run policy questions.

These Discussion Papers often represent preliminary or incomplete work, circulated to encourage discussion and comment. Citation and use of such a paper should take account of its provisional character.

Copyright: Emanuele Tarantino, Nicola Pavanini and Sergio Mayordomo

Electronic copy available at: https://ssrn.com/abstract=3661412
THE IMPACT OF ALTERNATIVE FORMS OF BANK CONSOLIDATION ON CREDIT SUPPLY AND FINANCIAL STABILITY

Abstract

Between 2009 and 2011, the Spanish banking system underwent a restructuring process based on consolidation of savings banks. The program's design allows us to study how alternative forms of consolidation affect credit supply and financial stability. Compared to bank business groups, we find that bank mergers' market power produces a contraction in credit supply, higher interest rates, but also a reduction in non-performing loans. We then estimate a structural model of credit demand and supply. We show that short-run welfare gains from improved financial stability outweigh losses from reduced credit supply, while small long-run cost efficiencies generate large welfare increases.

JEL Classification: N/A

Keywords: N/A

Emanuele Tarantino - etaranti@gmail.com
LUISS University, EIEF and CEPR

Nicola Pavanini - n.pavanini@tilburguniversity.edu
Tilburg University and CEPR

Sergio Mayordomo - sergio.mayordomo@bde.es
Banco de España

Acknowledgements

We are grateful to Roberto Blanco, Fabio Castiglionesi, Giacinta Cestone, Andreea Enache, Xavier Freixas, Ángel Gavilán, Mariassunta Giannetti, Tomohiro Hirano, Luigi Guiso, Marco Pagano, Ariel Pakes, Andrea Polo, Andrea Pozzi, Oliver Rehbein, Fabiano Schivardi, Michelle Sovinsky, Steve Tadelis, Elu von-Thadden, and Carlos Thomas. We also thank conference and seminar participants at the Banco de España, CEU (Budapest), EIEF, HSE (Moscow), LUISS, SKEMA, University of Zürich, UPF, and at the European Commission Economic Advisory Group on Competition Policy, MaCCI Summer Institute in Competition Policy (Mannheim), and Marco Fanno Alumni workshop. Tarantino gratefully acknowledges funding by the German Research Foundation (DFG) through CRC TR 224 (Project B2).
The Impact of Alternative Forms of Bank Consolidation on Credit Supply and Financial Stability ∗

Sergio Mayordomo
Banco de España

Nicola Pavanini
Tilburg University & CEPR

Emanuele Tarantino
LUISS, EIEF & CEPR

July 2020

Abstract

Between 2009 and 2011, the Spanish banking system underwent a restructuring process based on consolidation of savings banks. The program’s design allows us to study how alternative forms of consolidation affect credit supply and financial stability. Compared to bank business groups, we find that bank mergers’ market power produces a contraction in credit supply, higher interest rates, but also a reduction in non-performing loans. We then estimate a structural model of credit demand and supply. We show that short-run welfare gains from improved financial stability outweigh losses from reduced credit supply, while small long-run cost efficiencies generate large welfare increases.

* We are grateful to Roberto Blanco, Fabio Castiglionesi, Giacinta Cestone, Andreea Enache, Xavier Freixas, Ángel Gavilán, Mariassunta Giannetti, Tomohiro Hirano, Luigi Guiso, Marco Pagano, Ariel Pakes, Andrea Polo, Andrea Pozzi, Oliver Rehbein, Fabiano Schivardi, Michelle Sovinsky, Steve Tadelis, Elu von-Thadden, and Carlos Thomas. We also thank conference and seminar participants at the Banco de España, CEU (Budapest), EIEF, HSE (Moscow), LUISS, SKEMA, University of Zürich, UPF, and at the European Commission Economic Advisory Group on Competition Policy, MaCCI Summer Institute in Competition Policy (Mannheim), and Marco Fanno Alumni workshop. Tarantino gratefully acknowledges funding by the German Research Foundation (DFG) through CRC TR 224 (Project B2). The views expressed are those of the authors and do not necessarily reflect those of the Banco de España or the Eurosystem.

Electronic copy available at: https://ssrn.com/abstract=3661412
1. Introduction

In banking systems featuring many undiversified banks, fierce competition may induce these institutions to take on too much risk. If bad risks then translate into problematic loans, public intervention drawing on government funds and, hence, taxpayers’ money, may become necessary. A structural policy that is often considered by regulators to solve the problems of over-banked systems consists in fostering bank consolidation (Corbae and Levine, 2018). This recently happened in Europe, where, after the crisis, the banking sector of many countries was significantly affected by restructuring measures (European Commission, 2017). It also happened in the United States, where the Federal Deposit Insurance Corporation (FDIC) auction process was used after the crisis to resolve insolvent banks, equivalent to a regulator-induced consolidation process (Allen, Clark, Hickman, and Richert, 2019). Finally, it happened earlier in Japan, where after the non-performing loans (NPL) crisis of the late 1990s, the government injected public capital into the banking sector, and advised banks to do a merger (Hoshi and Kashyap, 2004).

Financial regulators’ case for bank mergers is supported by the presumption that consolidation makes troubled institutions more capable to absorb losses. However, the literature in financial economics has established that, after a merger, banks restrict their credit supply, especially at the expense of small and medium firms (SME) (see, among many others, Berger, Saunders, Scalise and Udell, 1998; Peek and Rosengren, 1998; Sapienza, 2002; Bonaccorsi di Patti and Gobbi, 2007; Degryse, Masschelein and Mitchell, 2011). Even though these costs could be compensated by the organizational and informational efficiencies produced by consolidation (Houston, James and Ryngaert, 2001; Focarelli and Panetta, 2003; Panetta, Schivardi and Shum, 2009; Erel, 2011), it is unclear what the overall effect of consolidation is for the economy.

We study how alternative forms of consolidation can differentially balance the benefits and the costs of integration. We compare traditional to bank business groups. In the latter, individual banks that remain legally independent delegate to a central unit some of their functions, such as risk management operations. Risk management requires large investments, thus the presence of a central unit allows banks to install information processing technologies that would not be feasible absent the deal. At the same time, business groups are less likely to give rise to market power than mergers, because sharing risk management does not necessarily translate into implementing the same lending policies. The risk management unit generates information on borrowers’ credit merit, but the use of that information may well differ across legally independent banks belonging to the same group. This makes coordination of lending policies more difficult than in a full-fledged merger.
The literature is silent regarding the quantification of the relative merits of different integration modes, and this is true not only in banking. With the exception of Gugler and Siebert (2007), who compare mergers and research joint ventures in the semiconductor industry, to our knowledge, there is no other study that deals with this question. This is unfortunate, especially because of the implications that banking consolidation programs have for taxpayers. However it is not surprising, given the challenges posed by the identification of the separate effects of alternative modes of integration on the exercise of market power and the production of efficiencies.

We fill this gap in the context of the Spanish savings banks sector restructuring program (the program from now on). In the years before the 2008 crisis head-to-head competition led savings banks to take poor investment choices, as exemplified by the hoarding of credit to the construction sector that ultimately led to a NPL problem. Between 2009 and 2011, the program led to a consolidation wave in the Spanish savings banks’ sector by which the number of these banks went from 37 to 12. Banks could choose to integrate doing a standard M&A or a business group, but the choice between the two modes was largely driven by regional politics considerations. It is not surprising then that M&A and business group banks were balanced with respect to pre-determined financial and economic characteristics, and that we can validate the common-trend assumption for our outcome variables.

Our empirical analysis documents a novel trade-off by comparing standard M&A to business group consolidation. On the one hand, M&A reduce credit quantity and increase interest rates. On the other hand, they significantly reduce the amount of NPL in the economy, and thus improve financial stability. These results are explained by the differential market power effect of M&A compared to business groups, and not by differences in the efficiencies produced by the two consolidation modes. Finally, we quantify the welfare effects of the program by means of a structural model, contributing to the recent literature applying equilibrium frameworks from empirical industrial organization to financial markets (Egan, Hortaçsu and Matvos, 2017; Crawford, Pavanini and Schivardi, 2018).

The program was prompted by European Union (EU) early 2009 decision to fund the bailout of Spanish savings banks. The government then gave troubled savings banks the possibility of obtaining public capital from a special fund in exchange of the submission of a consolidation plan, while the others could simply consolidate. Between November 2009 and December 2010, virtually all major savings banks performed an operation of consolidation. The value of the assets of these institutions amounted to about 1,300 billion Euro (BE), a figure comparable to the total value of US M&A transactions across
industries in 2009 and 2010 combined.\footnote{See \url{www.statista.com/statistics/420990/value-of-merger-and-acquisition-deals-usa/}.}

In our empirical analysis, we compare the credit supply and the credit performance of business groups and M&A banks, before and after the start of the restructuring program. Our testable prediction is that the market power effect is stronger for M&A. The crucial difference between M&A and business group banks is that the latter remained stand-alone legal entities. This makes the organizational structure of a business group less centralized than that of a M&A. Stein (2002) shows that the loan officer of a decentralized organization will rely more heavily on soft information when setting lending conditions, possibly impairing the coordination of credit policies that is fundamental for the exercise of market power.

Our main data source is the Banco de España Central Credit Register, which allows us to observe the stock of credit for the virtual universe of bank-firm relationships in Spain. We complement this information with bank-level data on the interest rate set by banks on newly issued loans together with banks’ and firms’ balance sheets. The final dataset we use for estimation has 543,154 firm-bank relationships and 396,534 non-financial corporations between November 2007 and November 2011.

Our first findings concern the differential effect of bank M&A and bank business groups on credit supply and the cost of credit. During the period between November 2009 and November 2011, the credit balance of a given firm dealing with a M&A bank reduced by 19.4\% when compared to that of a similar firm dealing with a business group bank, or about 45,000 euro per firm. For these results, we exploit the variation arising from the credit conditions applied to firms with the same size and within the same period, SIC-3 industry, and province. Bank fixed effects then absorb any other difference in savings banks characteristics before the program started. We then find that a loan of less than one million euro granted by a M&A bank is 17.8 basis points (bp) more expensive than a loan of similar size granted by a business group bank. In these specifications, we use time fixed effects to control for macroeconomic and aggregate shocks that affect credit demand or supply, and bank fixed effects to account for bank-specific shocks. Taken together, these results establish the effects produced by M&A market power on credit supply.

To determine the differential impact of M&A and bank business groups on financial stability, we study the selection of borrowers. We first construct the CoVaR (Adrian and Brunnermeier, 2016) of the Spanish banking system, which gives us the value at risk of the financial system conditional on a bank being under distress based on the evolution of its bond yields. We show that the increase of a given bank’s NPL ratio significantly increases the contribution of this institution to the risk of the banking system. We then find that, after the program started, M&A banks report less NPL than business group
banks. Specifically, the probability that, after the program, a firm credit turns out to be non-performing is about 3 percentage points (pp) less for M&A banks than for business group banks. For these results, we exploit variation coming from borrowers with the same size, SIC-3 industry and province. Thus, the credit supply contraction produced by M&A’s market power comes with an improvement in M&A banks’ selection of borrowers. Supporting this result, we find that the differential reduction in credit extended by M&A banks, as compared to business groups, was significantly larger for ex-ante risky firms.

Our findings are consistent with the results of a model of credit supply with selection building on Einav and Finkelstein (2011), by which we illustrate the trade-off triggered by market power between a reduction in credit supply and a better selection of borrowers. We capture a situation in which competition encourages banks to chase bad risk by assuming increasing average and marginal costs schedules, or advantageous selection. In this framework, moving from a competitive allocation to an allocation with market power causes a restriction of credit supply but also an improvement in borrowers’ selection (as captured by lower costs). The reason is that, in any allocation, the marginal borrower is worse than the inframarginal ones. Documenting this trade-off contributes to a growing literature studying the effects of imperfect competition in selection markets, both theoretically (Lester, Shourideh, Venkateswaran, and Zetlin-Jones, 2019) and empirically in insurance (Starc, 2014) and credit markets (Adams, Einav, and Levin, 2009; Einav, Jenkins, and Levin, 2012; Allen, Clark, and Houde, 2013). Relative to the extant empirical work, we are the first to provide evidence of the beneficial effect of a country-wide consolidation program on borrowers’ selection.

To quantify the impact of this trade-off on welfare, we develop and estimate an equilibrium model with borrowers’ demand for credit from differentiated banks and banks’ Bertrand-Nash competition on interest rates (see Crawford, Pavanini and Schivardi, 2018). We use the model’s estimates and equilibrium assumptions to simulate a scenario with M&A and business groups, and compare welfare (borrower surplus and bank profits) in the pre-program (benchmark) period and in the period with M&A and business groups. The counterfactual with M&A and business groups based on estimates obtained in the benchmark produces changes in quantity and price of credit that are quantitatively comparable to those we obtain in the reduced-form analysis. Moreover, savings banks marginal costs increase in the quantity of credit, which is consistent with banks’ marginal borrower being riskier than the infra-marginal ones in the benchmark.

²There is a long literature in industrial organization that uses pre-merger data to simulate the likely effects of mergers by using differentiated products models with price setting behavior – see, among others, Berry and Pakes (1993); Hausman, Leonard, and Zona (1994); Werden and Froeb (1994); Nevo (2000); and, more recently, Gowrisankaran, Nevo, and Town (2015).
We use the model to quantify the impact of the restructuring program on welfare and the profits related to banks’ new loan business. We distinguish between the short-run and the long-run effects of the restructuring program. In the short-run (that is, absent cost efficiencies), borrowers’ surplus decreases by about 55ME and total welfare remains fairly unchanged. To simulate the long-run effects of the restructuring program, we assume that savings’ banks marginal costs drop by around half of a standard deviation. We obtain that this small change in marginal costs produces a 906.98ME increase in borrower surplus and a 1,575.67ME increase in total welfare.

On top of the finance literature on bank mergers, and the industrial organization literature on selection markets, the paper is also related to the literature studying the link between bank competition and bank risk taking (e.g., Jayaratane and Strahan, 1996, and, more recently, Corbae and Levine, 2018, and Carlson, Correa, and Luck, 2020). We contribute to this debate by analyzing the relative impact of alternative forms of bank consolidation on credit supply and financial stability.

2. The savings banks’ sector restructuring program

Next, we first describe the main features of the savings banks’ sector restructuring program and then introduce a theoretical framework to develop our testable predictions.

2.1. Institutional setting

Early in 2009, fearing the contagion of other member states’ banking systems, the EU leaders agreed to transfer the European rescue program money directly to a fund set up by the Spanish government. Subsequently, the Royal Decree 9/2009 (Real Decreto-Ley 9/2009) of 26 June 2009 (the Law from now on) set up the fondo de reestructuración ordenada bancaria (FROB), endowing it with 9BE (Banco de España, 2017). The target of the government was the savings banks (cajas de ahorros) sector. As in other countries (see, e.g., European Commission, 2017), these banks played an important role supporting the economic development of local areas, in a context featuring the high representation of regional public authorities into their governing bodies.

By the end of 2009, savings banks’ assets represented about 40% of Spanish banking assets (European Commission, 2017). On the verge of the crisis, the sector was plagued by important structural problems. First, tough competition in a highly fragmented market, coupled with weak governance practices, often translated into poor investment choices.

—

3A complementary literature studies how bank mergers mediate the propagation of financial shocks (see, e.g., Petersen and Rajan, 1995; Scharfstein and Sunderam, 2016; Favara and Giannetti, 2017; Giannetti and Saidi, 2019). These effects are outside the scope of our analysis.

4See en.wikipedia.org/wiki/Fondo_de_Reestructuracion_Ordenada_Bancaria.
As of 2010, savings banks were exposed to the construction sector for a total of 217BE, of which about 100BE were problematic. Second, savings banks faced legal restrictions that complicated their access to capital markets. This meant that they could raise capital only by retaining earnings, and were thus highly dependant on the wholesale funding sector.

To address these issues, the Law gave troubled savings banks the possibility of obtaining public capital from FROB in exchange of the submission of a consolidation plan. Those that were not in financial difficulty could simply integrate. The restructuring program went fast, bringing the number of savings banks from 37 to 12 in the span of thirteen months (November 2009-December 2010). Moreover, the program featured full compliance, with savings banks accounting for 90% of the credit extended in the sector involved in an operation of consolidation between November 2009 and December 2010.

The Law allowed savings banks to consolidate either via a M&A or via a sistema institucionales de protección (SIP). SIP are a form of business group, featuring analogies and one crucial difference with respect to a standard M&A. We will start with the analogies. First, SIP banks were compelled to set up a new, central risk management system. Second, they were required to establish pacts of full mutual assistance on liquidity and solvency, and were responsible on a consolidated basis for the fulfilment of regulatory requirements. Third, the Law required that SIP last at least ten years, and produce the same efficiencies as M&A. Finally, SIP banks have access to consolidated information on the firms interacting with other savings banks in the same group, so do not need to tap this info from credit registry.

The key difference between M&A and SIP banks is that the latter remained separate legal entities. This means that the organizational structure of a SIP is less centralized than that of a M&A. In modern banking, lending conditions are automatically set by centralized softwares and risk management directives, with little discretion for loan officers. This description well reflects what happens within M&A banks. However, SIP banks’ legal independence may impair coordination of credit policies, due to the possibly different use of the credit-merit analyses produced by the risk management unit. Indeed, as shown by Stein (2002), the loan officer of a more decentralized structure will rely more heavily on soft information when setting borrower lending conditions.

5If the plan was approved by the Banco de España, FROB subscribed the capital of the new institution on a transitory basis. The recipients had to commit to buying back this capital as soon as possible.
6Table B.I reports the chronological list of the operations of consolidation (SIP and M&A) we consider in the empirical analysis.
7In the words of the Banco de España former deputy governor (Javier Aríztegui): “SIP are expected to produce the same organizational improvements, efficiencies, economies of scope, diversification, and quality as traditional M&A. They must do this within the same time period as a classic merger, and must put all the necessary efforts such that these results be perceived by the market as permanent” (December 2010).
We now describe how the restructuring program unfolded. The choice between M&A and SIP was critically influenced by regional politics considerations that are orthogonal to participating banks’ financial or economic characteristics. In the early phase of the program, all M&A took place between savings banks operating in the same region. Fearing the loss of control on banking activities, regional governments stood against across-region M&A (Banco de España, 2017). Countering these political initiatives, the Constitutional Court made clear that the program’s chief goal was to foster the stability of the financial system (Méndez Álvarez-Cedrón, 2011). The Banco de España, then, solicited remaining savings banks to form a SIP (Banco de España, 2017), which allowed them to consolidate and at the same time preserve legal independence.

Overall, all M&A happened between banks mainly operating within region and all SIP happened between banks mainly operating across regions. Yet, as we document below, there is considerable variation with respect to the extent to which M&A and SIP banks’ operations overlap at the province level before the program started. Moreover, there is no systematic evidence of assortative matching based on observable characteristics, or the political parties governing the regions of SIP banks. Two-thirds of SIP took place between savings banks whose main operations were in regions ruled by different parties.

In what follows, since the first merger after Royal Decree 9/2009 took place in November 2009, we will refer to this month as to the start of the program.

2.2. Market power, credit allocation and loan performance

In this section, we will use a setting that builds on Einav and Finkelstein (2011) to show that market power can produce a trade-off between the supply of credit and the selection of borrowers.\(^8\)

Assume that banks in the industry offer symmetric loans to borrowers, and that borrowers face a binary choice between taking the loan or not. We denote by \(q \in [0, 1]\) the fraction of borrowers (of given observable type) taking a loan, and by \(P(q)\) the cumulative distribution of borrowers’ willingness to pay, with \(P'(q) < 0\). Finally, assume that there is no fixed cost and that \(C(q)\) is the convex total cost curve of the industry. We then denote by \(MC(q) = C'(q)\) and \(AC(q) = C(q)/q\) the marginal cost and average cost curves, respectively.

A crucial difference between traditional markets and selection markets is that in the latter demand and cost are not independent objects. Specifically, the shape of the cost curve is driven by the selection of borrowers in the market. We assume that, by expanding their supply of loans \(q\), banks lend to borrowers with higher probability of

\(^8\)In this framework, banks can ration a firm only by adjusting the interest rate, not by rejecting firm’s application. In Section 7, we develop and estimate a full-fledged model of oligopolistic bank competition. There, we allow banks to reject a firm based on its observable degree of risk.
default. This means that an increase in q comes with a higher marginal cost and a lower profit margin.\footnote{In this context, this means that an expansion in loan supply disproportionally raises borrowing among firms with a greater probability of default. This increases the marginal cost and thus reduces the marginal profit of extending more credit. As discussed in Agarwal, Chomsisengphe, Mahoney, and Stroebel (2018), this could occur because forward-looking firms, who anticipate defaulting in the future, strategically increase their borrowing.} More formally, this is equivalent to assuming that the MC and AC schedules slope upward, $MC'(q), AC'(q) > 0$.\footnote{This is equivalent to assuming advantageous selection. Einav, Jenkins, and Levin (2012) find evidence of advantageous selection in subprime auto loan market, and Mahoney and Weyl (2017) use a model with advantageous selection in their calibrations. While our results would change if the marginal and cost curves slope downwards, the slope of these curves is a matter of empirical investigation. We assume here that it is increasing, and confirm this assumption in our reduced-form and structural analysis.}

Moreover, due to the assumption that $C(q)$ is convex, we have that $MC(q) > AC(q)$ for all $q \in [0, 1]$.

Figure 1: Demand-supply model

To study the impact of market power within this model, we compare the allocations with perfect competition and monopoly (for simplicity, we impose the linearity of demand and cost curves). Perfect competition means that banks expand their credit supply up to the value of q such that $P(q^c) = AC(q^c)$ (point C in Figure 1). This situation is meant to capture the stance of credit supply in Spain before the restructuring program, where a large number of undiversified banks competed chasing bad risk (e.g., the borrowers in the construction sector).

We then conjecture that the M&A wave brings the economy closer to the monopolistic outcome. Specifically, the monopoly allocation (M in Figure 1), given by the value of q such that $MR(q^m) = MC(q^m)$, where $MR(\cdot)$ denotes the marginal revenue curve, comes...
with lower supply of credit than with perfect competition, but also a better selection of borrowers, implying a reduction in the costs borne by banks.

Therefore, this simple setup delivers the following trade-off: on the one hand, we expect that M&A’s market power gives rise to a reduction in credit supply \(q \) and an increase in the interest rate \(P(q) \). On the other hand, we expect that the exercise of market power produces a reduction in costs, independently of any additional merger-related cost efficiencies. If consolidation were to produce such efficiencies, however, one should also expect a further reduction in \(AC \) and \(MC \) for any given \(q \). Thus, the empirical challenge is how to identify the separate effects on costs produced by market power and efficiencies.

To address this challenge, we note that, despite we do not expect SIP to generate a market power effect, they are designed to produce the same level of efficiencies as M&A. That is, M&A and SIP banks should be on the same cost curves so that, absent differences in market power, they deliver the same changes in costs. In the reduced form analysis, then, we estimate the differential impact of M&A and SIP on \(P(q) \), \(q \) and costs (proxied by NPL). By comparing M&A and SIP, we do two things. First, we identify the change in credit supply for given demand and cost. Second, we separately quantify the reduction in costs produced by M&A’s market power with respect to SIP. In the structural analysis, we use our model to quantify the effects of both market power and cost efficiencies.

3. Data and descriptive statistics

Our main data source is the Banco de España Central Credit Register, which collects and maintains information on the stock of credit supplied by Spanish banks. We aggregate the outstanding amount of firm credit with each bank at a monthly basis to obtain total credit (both drawn and undrawn in the case of credit lines). Data on the interest rate applied by banks to newly issued loans is obtained from the Banco de España supervisory data. Different from outstanding credit, interest-rate information is only available at bank-month level, with the possibility of distinguishing between distinct classes of loan size and maturity. We also have information on the volume of NPL reported by banks in relation to a given firm, but cannot distinguish the firm’s specific loan that then turns out to be problematic. Finally, we use balance-sheet information collected by the Banco de España in its role as a supervisory authority.

The dataset we use for the empirical analysis comprises information on a total of 543,154 firm-bank relationships and 396,534 non-financial corporations (307,658 in the pre-event period and 280,420 in the post period). The sample period goes from November 2007 to November 2011. We consider the savings banks that participated in a M&A or a SIP between November 2009 and December 2010, which account for about 40% of the
total credit in the economy. We then track the effects of these operations of consolidation between November 2009 and November 2011. Our sample period then ends in the semester preceding the one in which Spain received rescue packages to cope with the effects of the European sovereign debt crisis.

In what follows, we denote by \(j \) the group of banks that is part of a M&A or a SIP. The savings banks that participate in a M&A stop their individual activity at some point in time between November 2009 and December 2010, to operate as a single entity. SIP banks, instead, continued reporting individual information to the credit register until the end of our sample period. As a consequence, between November 2009 and November 2011, we take the group \(j \)-level information that is available for M&A, and aggregate the information on the savings banks that are part of each SIP (and that of M&A banks before they start to report information at the group level). In the period between November 2007 to November 2009, instead, to construct our variables at the level of group \(j \), we aggregate the information on the savings banks that will later be part of a M&A or a SIP.\(^{11}\)

3.1. Banks, firms and lending relationships

Table I gives the summary statistics related to the savings banks (Panel A) and firms (Panel B) in our dataset. We use these variables as controls in our regressions, and take their value in December 2008 for the period after the program started.

Confirming the high exposure to the real estate and the construction sectors, in Panel A we see that savings banks extended credit accounting for about one-third of the value of their assets to these two sectors only. Nevertheless, as of December 2008, the ratio of NPL over total credit was still relatively low, and equal to about 3.5% on average. We then use the variable Max(Market Share) to measure a savings banks' presence in local markets. To compute it, we take the maximum market share of each savings bank across provinces in December 2008, based on information on all active banks. While the average value of this variable is about 20%, we also have savings banks for which this variable takes a value as small as 1%. Finally, Panel B shows that the firms in our data are rather small, with average assets' value of about 2ME (which corresponds to the asset-based threshold for small firms according to the European Commission Recommendation 2003/361/EC, which we will use in what follows to distinguish between SME and large firms).

In Panels C and D, we report the characteristics of the bank-firm relationships in the two years before (Panel C) and the two years after (Panel D) the restructuring program started. The total volume of credit (in log and thousand euros) decreased more in the second period than in the first, and the volume of NPL increased over both periods.

\(^{11}\)More information on the construction of the dataset is available in Appendix A.
Table I: Summary statistics

Panel A: Banks

VARIABLES	Mean	Median	Standard Deviation	5th Percentile	95th Percentile	N
TA (BE)	28.4	13.10	47.60	1.56	175.00	37
Capital Ratio (%)	5.62	5.04	1.71	3.83	9.58	37
NPL (%)	3.61	3.47	1.49	1.65	6.36	37
Credit/Deposits	1.85	1.83	0.36	1.27	2.62	37
ROA (%)	0.49	0.41	0.22	0.24	0.96	37
(Credit to RE and Construction)/TA (%)	30.57	30.08	8.82	14.80	46.68	37
Max(Market Share) (%)	19.59	17.67	14.47	9.96	48.01	37

Panel B: Firms

VARIABLES	Mean	Median	Standard Deviation	5th Percentile	95th Percentile	N
TA (ME)	1.89	0.45	5.36	0.04	6.94	280,420
Total Liabilities/TA (%)	72.75	80.04	73.66	18.66	100.00	280,420
Liquid Assets/TA (%)	9.75	3.20	15.78	0.00	43.82	280,420
ROA (%)	4.35	5.53	18.61	-23.22	28.02	280,420

Panel C: Bank-Firm Relationships

VARIABLES	Mean	Median	Standard Deviation	5th Percentile	95th Percentile	N
ΔLog(Credit)	-0.36	-0.19	2.30	-4.74	4.65	421,991
NPL (%)	5.62	0.00	23.33	0.00	43.82	421,991

Panel D: Bank-Firm Relationships

VARIABLES	Mean	Median	Standard Deviation	5th Percentile	95th Percentile	N
ΔLog(Credit)	-0.49	-0.21	2.18	-4.39	3.89	370,551
NPL (%)	5.94	0.00	21.27	0.00	43.82	370,551

Notes: This table contains descriptive statistics (mean, median, standard deviation, 5th and 95th percentiles, and number of observations) for bank and firm characteristics (Panels A and B, respectively) as well as for firm-bank credit balances (Panels C and D). Bank information is at the level of individual savings banks. Both Panels A and B report the statistics as of December 2008. Panel C reports descriptive statistics on the change in the credit balance between November 2007 and November 2009 and the level of NPL for the whole sample of firm-bank pairs. Panel D does the same for the period between November 2009 and November 2011. For additional information on the construction of these variables, see the data appendix (in Appendix A).

3.2. The systemic impact of NPL

We will use the level of NPL to proxy the effects of M&A and SIP on banks’ costs. In turn, to establish the impact of NPL on financial stability, we use the CoVaR methodology (Adrian and Brunnermeier, 2016). Specifically, we adapt the methodology to measure the sensitivity of the Spanish banking system bond yields to the increase in the yields of the bonds issued by any single bank. The CoVaR we obtain then gives us the value at risk of the financial system conditional on a bank being under distress based on the evolution of its bond yields. We then test whether the ratio of NPL reported by a given bank affects the CoVaR estimated based on the contribution of that bank to the risk of the system. The CoVaR relies on the growth rate of the market value of total financial assets, however the savings banks in our sample are not listed, so we need to rely on information on bond yields. Appendix C provides a detailed description of the CoVaR methodology and how we implement it.
In Table II, we report the results of this analysis.

Table II: NPL and risk spillovers to the domestic banking sector

VARIABLES	$\Delta\text{CoVaR Mergers}$	$\Delta\text{CoVaR All}$	$\Delta\text{CoVaR All}$
NPL	0.023**	0.039***	0.053***
	[0.011]	[0.008]	[0.006]
Observations	519	519	1.052
R-squared	0.514	0.576	0.651
Bank FE	YES	YES	YES
Bank Controls	YES	YES	YES
Macro Variables	YES	YES	YES

Notes: The set of bank control variables includes: Log(TA), Capital Ratio, NPL, Credit/Deposits, ROA, (Credit to RE and Construction)/TA and (FROB funds)/TA (for information on the construction of these variables see the data appendix (in Appendix A)). The set of global control variables includes: the VIX index, the (log) changes in Spanish and European bank bond indices and the Spanish banks average bond yield. See Appendix C for a description of the CoVaR methodology and how we construct the dependent variables. Robust standard errors (in brackets) are clustered at year-month-bank level. One star denotes significance at the 10% level, two stars denote significance at the 5% level, and three stars denote significance at the 1% level. For additional information on these regressions and the methodology, please see Appendix C.

NPL are indeed important for the stability of the banking system. In columns (1) and (2), the explanatory variable is obtained based on the information on NPL of all the savings banks that merged between November 2009 and December 2010. The difference between these two columns concerns how we define the dependent variable and more specifically, the pool of banks we use in the estimation of the CoVaR. In column (1), we only consider the savings banks that merged between November 2009 and December 2010, whereas in column (2) we use all Spanish banks. In both columns we obtain a positive and significant coefficient. An increase in the NPL ratio of a given bank equal to the standard deviation of the NPL ratio of the banks in our sample would increase the contribution of this bank to the risk of the system by 0.12 pp. This increase represents 22% of the average CoVaR for the banks in our sample. Results in column (3) are obtained considering the volume of NPL of all Spanish banks (which explains the higher number of observations), and computing the CoVaR by relying on information related to all banks (as in column (2)). Results are fully consistent with those in columns (1) and (2). These results are in line with Mayordomo, Rodriguez-Moreno and Peña (2014), who show that the proportion of NPL and leverage have stronger impact on systemic risk than alternative sources of risk, such as derivatives holdings for the United States.

4. Empirical framework

In this section, we develop the empirical strategy we will use to identify how differences in the market power effect of M&A and SIP affect the supply and the performance of
credit, controlling for other, informational or organizational efficiencies. Ideally, to identify
the effect of different integration modes on credit supply and performance, we would need
two groups of randomly selected banks: some that participate in M&A, some in SIP
and some that remain untreated. However, practically all savings banks participated in
the program, leaving us with two groups: M&A and SIP banks. The Spanish commercial
banks are not statistically nor economically comparable to the sample of savings banks,
being on average much larger, carrying different business models, and, more importantly,
being better capitalized and much less exposed to critical sectors like the real estate
industry. However, we will use these banks to document the separate effects of M&A and
SIP on credit supply and performance. We will also keep them in the structural analysis,
to study the impact of M&A and SIP on bank competition.

Below, we first discuss our identification strategy. Then, we establish the comparability
of M&A and SIP banks based on their financial and economic characteristics. Finally, we
validate the common-trend assumption for our three main variables of interest: quantity
of credit, interest-rate spreads and NPL. To conclude, we describe our main specifications.

4.1. Identification strategy

The empirical literature in banking has shown that M&A give rise to three separate
effects. First, they strengthen merging entities’ market power (A). The argument is
standard: after the M&A, by coordinating their lending policies, banks can afford a raise
in the interest rate they charge because part of the borrowers they lose will be served by
a merging partner.\footnote{In the industrial organization theoretical literature, this result has been proven in settings with
homogeneous and differentiated goods (e.g., Farrell and Shapiro, 1990, and Motta and Tarantino, 2018).}
Second, by consolidating their information processing technologies,
M&A produce efficiencies at the risk management stage (Panetta, Schivardi and Shum,
2009) (B).\footnote{The informational economies generated by the pooling of borrowers’ data are likely to be limited,
instead, due to the possibility to inspect a new borrower credit profile even absent the merger, on the
credit register of the Banco de España (see Pagano and Jappelli, 1993).}
Finally, M&A will also produce cost efficiencies related to, for example, the
reorganization of merging banks’ branches and employees (see, e.g., Houston, James and
Rynagert, 2001; Focarelli and Panetta, 2003; Erel, 2011) (C).

Our empirical strategy aims at identifying how (A) differences in the market power
of M&A and SIP affect credit supply and performance, controlling for (B) informational
and (C) organizational efficiencies. We then construct our tests as follows:

A. First, we conjecture that the market power effect is weaker for SIP than for M&A,
due to the more decentralized structure of SIP when compared to M&A (Stein,
2002). Supporting this presumption, Table B.II shows that there are significant
differences across banks belonging to the same SIP in terms of the decision on the loan application submitted by the same borrower over a given time period.15

B. Second, we expect that, absent differences in market power, SIP generate the same informational efficiencies as M&A. In Section 6.1 we provide evidence confirming the validity of this conjecture by exploiting heterogeneity in the presence of M&A and SIP banks at the province level.

C. Third, we limit to two years the time frame during which we study the effects of the program. Previous literature showed that the cost reductions of bank mergers can take from two to four years to come about (see, e.g., Focarelli and Panetta, 2003), whereas the market power effect occurs within a shorter period. As a consequence, our results are unlikely to be confounded by the impact of cost efficiencies.

To sum up, the empirical comparison between M&A and SIP will inform us about how the stronger market power of M&A differentially affects the stance of credit supply (price and quantity of credit) and the performance of credit (banks’ costs) as compared to SIP, controlling for the level of efficiencies generated by these two integration modes.

4.2. Comparability of M&A and SIP banks

A natural worry is that banks with different financial or economic characteristics self-select into M&A or SIP. In our empirical analysis, we do two things. First, we compare M&A and SIP banks along a set of observable characteristics that are likely to drive the decision to team up in an operation of consolidation, and show that there is no statistical difference across the banks in the two groups. As part of this analysis, we also show that there is considerable heterogeneity with respect to the province-level overlap of M&A and SIP banks. Second, we focus on the operations of consolidation that take place within thirteen months from the start of the restructuring program (i.e., up to December 2010). Our presumption is that it is difficult for a bank to optimally choose its merging partner(s) in such a time frame.

Financial and economic characteristics

In Table III, we compare M&A and SIP banks’ financial and economic characteristics as of December 2008. In Panel A we report the mean values of all savings banks’ characteristics. In Panel B, we compute the median values of the characteristics within each bank group j, and then average across M&A and SIP. For Panel C, instead, we compute the characteristics of the main savings bank of each group j, based on its total assets, and then average across the two groups. Finally, for15We cannot perform the same test for M&A banks, because, different from SIP banks, after consolidation they only report group-level information on credit to the credit registry.
Panel D we compute the dispersion of the characteristics of the savings banks averaged across the two groups. In the last column of each panel, we run a mean test on the difference of the values of the variables for M&A and SIP banks.

Table III: Comparability of M&A and SIP banks

VARIABLES	Panel A: All Savings Banks	Panel B: Median	Panel C: Main Bank	Panel D: Standard Deviation				
	Means	Difference	Means	Difference	Means	Difference	Means	Difference
NPL (%)	3.720	0.205	3.825	0.272				
	(0.525)		(0.648)					
TA (BE)	36.200	12.800	37.100	23.300				
	(16.600)		(18.500)					
Capital Ratio (%)	4.932	-0.956	5.004	-0.818				
	(0.596)		(0.594)					
ROA (%)	0.462	-0.051	0.413	-0.106				
	(0.076)		(0.060)					
Credit/Deposits	1.829	-0.030	1.808	-0.001				
	(0.126)		(0.142)					
(Credit to RE and Construction)/TA (%)	28.761	-2.801	28.392	-2.145				
	(3.105)		(3.028)					
Max(Market Share) (%)	17.107	-4.723	17.791	-3.184				
	(5.084)		(6.011)					
(FROB funds)/TA (%)	1.016	-0.099	1.115	0.099				
	(0.528)		(0.528)					

Notes: This table reports bank characteristics for M&A banks and SIP banks at December 2008 (i.e., one year before the bank consolidation process started). All the characteristics are in percentages but the size, which is in billions of euros, and the ratio of credit over deposits. In Panel A we report the average characteristics of the individual savings banks that are part of the consolidation process by type of bank. In Panel B we compare the two types of banks based on the median of each new institution, which are obtained based on the median of the savings banks within a group. In Panel C we compare the characteristics of the main saving bank within each new institution. In Panel D we compare the dispersion within the savings banks forming each new institution based on the standard deviation of each characteristic. The last column of each panel reports the difference between the values in bank characteristics across the two groups of banks, with the values in brackets reporting the robust standard errors associated with a test of difference in the means. One star denotes significance at the 10% level, two stars denote significance at the 5% level, and three stars denote significance at the 1% level. For additional information on the construction of these variables, see the data appendix (in Appendix A).

We find that there is no systematic evidence that the two groups of banks feature statistically significant differences in their financial or economic characteristics. Moreover, except for the value of total assets, which tends to be larger for M&A banks (but the difference is not statistically significant), the two groups also feature economically comparable values for all the variables we consider, including the ratio of
NPL over total loans, the exposure to the real estate and construction sector, and, importantly, bank capital. The same holds for the ratio of credit over deposits and market shares, which suggests two things. First, the savings banks in our sample featured similar business models and, second, they did not select for a M&A because of lack of market power in the baseline. Finally, since not all of the operations of consolidation were supported by FROB (see Table B.1), it is reassuring that the two groups are balanced with respect to the sums received from the public fund.

We also checked that M&A and SIP banks were balanced in terms of the risk perceived by bank investors, by comparing their pre-sample bond yields. We find that, as of December 2008, the difference in the bond yields of individual savings banks in the two groups was not statistically different from zero (specifically, the bond yield was 4.9% for M&A banks and 5.1% for SIP banks).

All this gives us confidence that there is no assortative matching based on observables across the banks in the two groups.

Geographic overlap of SIP and M&A banks In this section, we establish that there is considerable variation regarding the extent to which M&A and SIP banks overlap at the province level. We will use this source of heterogeneity in Section 6.1. There, we first show that our effects are due to differences in bank organization (SIP and M&A), and not to differences in the regional presence of M&A and SIP banks. Second, we show that there is no difference in the efficiencies produced by M&A and SIP when the capability to exercise market power is comparably small in the baseline.

In Figure 2, we distinguish between the provinces in which all M&A and SIP banks had a small market share when the program started (November 2009), and the provinces where they had larger market shares. In practice, we need a measure for how large a savings bank is compared to the other savings banks in the same province. We rank the Spanish provinces based on the value of the market share of the largest savings bank in each province, computed in terms of the volume of lending in November 2009. We then take the 25th percentile of this distribution, which corresponds to 13%. We classify a province as one in which M&A and SIP banks had comparably small market shares (light grey) if all of the M&A and SIP banks operating in that province had a market share smaller than 13%. For the provinces in which market shares are comparably large (in dark grey), instead, we require that at least one of the M&A and SIP banks had a market share above 13% and that the largest M&A and SIP bank was in the top 5 of all banks.

16 To define bank capital, we follow Jiménez, Ongena, Peydró, and Saurina (2014) and use the ratio between bank equity plus retained earnings over total assets.

17 As mentioned above, we performed similar comparisons between savings and commercial banks and found statistically significant differences across most of the dimensions we consider.
Figure 2: Geographical distribution of M&A and SIP

Notes: To construct the distribution of province-level largest market shares, we rank the Spanish provinces based on the market share of the largest savings bank in each province computed in terms of the volume of lending in November 2009. We then take the 25th percentile of this distribution, which corresponds to 13%. The provinces in light grey are those where the market shares of all M&A and SIP banks were smaller than 13% in November 2009. In the provinces in dark grey, instead, at least one of the M&A and SIP banks involved in the program had a market share above 13%, and the largest M&A and SIP bank was in the top 5 banks of the region. The remaining provinces are in intermediate grey.

4.3. Unconditional evidence

In Figure 3, we plot the pattern of our main outcome variables across four semesters before, and four semesters after the start of the program. We do this separately for the M&A and the SIP banks in our sample. Specifically, we plot: (i) the average change in the amount of outstanding credit granted to the universe of non-financial corporations (top-left panel); (ii) the average spread between nominal interest rates and the three-month Euribor (top-right panel); (iii) the value of the ratio between the volume of NPL and banks’ total assets (bottom panel).

These plots confirm that our main outcome variables satisfy the common trend property. They also provide unconditional evidence that is in line with our predictions, outlined above, on the relative effects of M&A and SIP (for the statistical significance of these effects, see Table B.III). In Appendix B, Tale B.IV reports the results of the multivariate tests of the parallel-trend assumption, and find results consistent with Figure 3.

In the top-left panel, the evolution of the new credit granted by M&A and SIP banks follows a comparable pattern before November 2009. In the two years before November 2009, M&A banks extend between 15BE and 20BE more credit than SIP banks. Starting from the second semester after November 2009, the sign of the difference reverts. By the end of the fourth semester after November 2009, M&A banks extend approximatively 10BE less credit than SIP banks. That the change in the differential effect starts one
Figure 3: Common trend property

Notes: The plots report the pattern of quantity of credit (top left), interest-rate spreads relative to 3-month Euribor (top right), and NPL over total loans (bottom) separately for M&A banks (grey line) and SIP banks (black line) in the time span ranging between 4 semesters before and 4 semesters after November 2009.

The pattern of interest-rate spreads in the top-right panel mirrors that of total credit. M&A and SIP banks’ spreads feature a common trend before November 2009. Moreover, M&A banks, on average, apply lower spreads than SIP banks before November 2009, and till the second semester after November 2009. Then, contemporaneously with the reversion in the patterns of total credit, it is SIP banks that apply cheaper average spreads.

Finally, we see a common trend in the pattern of the NPL reported by the savings banks in our sample during the two years before the program. Starting from the second semester after November 2009, the accumulation of NPL by M&A slows down significantly more than that of SIP banks. Finally, possibly because of the start of the European sovereign debt crisis, we observe a spike in the volume of M&A and SIP banks’ NPL in the fourth semester after the start of the program.

4.4. Empirical specifications

Consider bank \(j \) dealing with firm \(i \) at time \(t \). The baseline econometric model we use for the analysis of bank credit is:

\[
y_{jit} = \alpha(M&A_j \times Post_t) + \beta X_{jt-1} + \gamma Z_{it-1} + \zeta FROB_{jt} + \delta_{kmst} + \eta_j + \epsilon_{jit}. \tag{1}
\]
Depending on the specification we consider, we denote by y_{jit} either the growth rate of the (log) volume of total credit in the two years before and after the program started, or the quarterly average (log) volume of credit. This second variable is constructed as the average (log) volume of credit over every quarter between November 2007 and November 2009, and in the period spanning between the announcement of the consolidation (M&A or SIP) and November 2011.

$Post_t$ is the time dummy for the period after the start of the restructuring program. Since y_{jit} is either a two-year growth rate, or a quarterly average, $Post_t$ equals zero from November 2007 till November 2009 and one from November 2009 till November 2011. M&A$_j$ is a dummy that equals one if the bank participated in a M&A, 0 if SIP. α is the coefficient of interest. It captures how the program differentially affected the outcome variable for a M&A relative to a SIP. All the specifications are estimated including pre-determined control variables, X_{jt-1} and Z_{it-1}. Specifically, X_{jt-1} includes a bank’s total assets, capital ratio, NPL, volume of credit over deposits, profitability (ROA), market share, and exposure to the real estate and construction sector. Z_{it-1} includes firm leverage, liquidity, profitability (ROA), and total assets. The value of the variables in X_{jt-1} and Z_{it-1} is taken in 2006 for the period preceding the start of the program, and in 2008 for the period after the program started. Finally, FROB$_{jt}$ denotes the value of FROB’s capital injections received by bank j between 2009 and 2011.

To control for firm-specific shocks, we use industry (k), location (m), size (s), and time (t) fixed effects (δ_{kmsit}). This means that we exploit the variation arising from the credit conditions applied to firms with the same size and within the same period, SIC-3 industry, and province. To control for bank-specific shocks, instead, we include bank fixed effects (η_j), which absorb any difference in savings banks’ characteristics before the program started.

In our context, industry-location-size-time fixed effects are more appropriate to control for demand differences relative to firm-time fixed effects (Degryse, De Jonghe, Jakovljevic, Mulier and Schepens, 2019). By using the latter, we would restrict the sample of firms to consider only those that take credit from multiple banks during the sample period. We nevertheless study the robustness of our results to the inclusion of firm-time fixed effects, which absorb time-varying borrower-specific shocks to the demand for credit. In Appendix B, we also consider firm-bank fixed effects, by which the results arise from the selection of firms that had a previous relationship with the same bank before the start of the program.

Since the information on interest rates is collected at the bank-month level, we...
aggregate it by maturity and use the following model:

\[w_{jt} = \alpha (M&A_j \times \text{Post}_t) + \beta X_{jt-1} + \zeta \text{FROB}_{jt} + \eta_j + \tau_t + \iota_{jt}, \]
(2)

where \(w_{jt} \) denotes the spread between the nominal interest rate and the three-month Euribor. In this case, since the variable’s value is computed at the monthly level, \(\text{Post}_t \) is equal to zero from November 2007 and October 2009, and one from November 2009 to November 2011. Given the structure of information, the specification only includes bank controls \((X_{jt-1}) \) and no firm control. We also include bank fixed effects \((\eta_j) \) and monthly fixed effects \((\tau_t) \). For the analysis on interest rate spreads, in an alternative specification we exploit the information on loan maturity. There we augment the model in (2) by including maturity fixed effects.

For the analysis of NPL, we use:

\[z_{jit} = \alpha M&A_j + \beta X_{jt-1} + \gamma Z_{it-1} + \zeta \text{FROB}_{jt} + \delta_{kms} + \epsilon_{jit}. \]
(3)

The dependent variable is the proportion of NPL over total loans of a given firm \(i \) reported by a bank \(j \) in November 2011.

For this analysis, we consider only the firms that have no credit with the savings banks in our sample during the two years before November 2009. As mentioned above, we cannot identify the specific loan facility that turns out to be non-performing. If we were to consider the firms with a relationship with a bank before November 2009, it could happen that some NPL reported after November 2009 is related to lending taken before that month.\(^{18}\) This explains why there is no \(\text{Post}_t \) dummy, and the use of industry-location-size fixed effects. The specification contains firm and bank controls \((Z_{it-1} \) and \(X_{jt-1}, \) respectively), and controls for the value of FROB contributions \((\text{FROB}_{jt}) \). In Appendix B, we will study the robustness of our results on NPL accumulation to the inclusion of firm fixed effects, and when considering the full sample of firms.

All models are estimated using OLS. For the models in (1) and (3), we cluster standard errors at the firm level. For the model in (2) we cluster standard errors at bank-type \((M&A, \text{SIP}) \) month level. In Appendix B, we report the results on total lending and NPL when the clustering is at the industry-province-size-bank level.

\(^{18}\)This approach also excludes the possibility that loan refinancing, or loans’ evergreening, impairs the interpretation of our analysis.
5. Empirical results

In this section, we establish the differential impact of M&A and SIP on bank credit, interest-rate spreads and the volume of NPL.

5.1. Supply of bank credit

To begin with, we study the differential effect of M&A and SIP on the supply of credit in the economy. Columns (1)–(3) and (5)–(7) of Table IV report the estimates of equation (1) using as dependent variable the growth rate of the (log of) credit granted by the savings banks in our sample. In columns (4) and (8), we consider the logarithm of the average credit granted by credit institutions over every quarter of the pre period, and between the announcement of the M&A or SIP and November 2011 for the post period. While columns (1), (4), (5) and (8) use the full sample of firms, in columns (2)-(3) and (6)-(7) we split the sample to consider only, in turn, SME and large firms.

VARIABLES	(1) All SME Large All (Avg Level)	(4) All SME Large All (Avg Level)	(5) All SME Large All (Avg Level)	(6) All SME Large All (Avg Level)	(7) All SME Large All (Avg Level)	(8) All SME Large All (Avg Level)		
Post x M&A	-0.194*** [0.024]	-0.194*** [0.024]	-0.173 [0.169]	-0.041*** [0.008]	-0.259*** [0.035]	-0.263*** [0.159]	-0.192 [0.008]	-0.054*** [0.035]
Observations	792,542	776,962	15,103	756,339	350,700	336,981	13,719	328,414
R-squared	0.118	0.119	0.221	0.477	0.493	0.496	0.445	0.720
Industry-Location-Size-Time FE	YES	YES	YES	YES	NO	NO	NO	NO
Bank FE	YES							
Firm-Time FE	NO	NO	NO	NO	YES	YES	YES	YES
Bank Controls	YES	YES	YES	YES	NO	NO	NO	NO

Notes: This table reports the results obtained from a series of regression analyses that relate the variation of credit balance (both drawn and undrawn) of a given firm in a bank before and after the beginning of the bank consolidation process (November 2009). In columns (1)–(3) and (5)–(7), the dependent variable is the change (log difference) in the credit balance before and after the beginning of the bank consolidation process that we date in November 2009. We consider the variation of credit between November 2007 and November 2009 for the pre-event and between November 2009 and November 2011 for the post-event period. In columns (4) and (8) we consider an alternative definition of the dependent variable: the logarithm of the average credit granted by credit institutions over every quarter of the pre-event period and over every quarter of the period spanning between the announcement of the merger and November 2011. In columns (1), (4), (5) and (8) we use the whole sample of firms whereas in columns (2) and (6) we restrict the sample to SME and the sample in columns (3) and (7) consists of large banks. The explanatory variable of interest is the interaction of a dummy variable that is equal to one if consolidation is a result of a standard M&A (and zero if consolidation takes place through a SIP) and a dummy variable that is equal one after November 2009. The set of control variables includes bank characteristics such as Log(TA), Capital Ratio, NPL, Credit/Deposits, ROA, (Credit to RE and Construction)/TA, Market Share, and (FROB funds)/TA. We also use the following firm characteristics as control variables: Total Liabilities/TA, Liquidity/TA, ROA, Log(TA). We saturate the different specifications with alternative sets of fixed effects as reported in the table. With industry-location-size-time fixed effects, splitting the full sample of firms in column (1) into SME and Large firms gives rise to additional singletons that we exclude from our regressions; thus, the sum of the observations in columns (2) and (3) does not equal the observations in column (1). The use of firm-time fixed effects implies that firm controls are not used in columns (5)–(8). Robust standard errors (in brackets) are clustered at firm level. One star denotes significance at the 10% level, two stars denote significance at the 5% level, and three stars denote significance at the 1% level. For additional information on the construction of all the variables, see the data appendix (in Appendix A).

Compared to SIP banks, M&A banks extend less credit after the start of the restructuring program. This result arises independently of whether we use industry-location-size-time fixed effects, or firm-time fixed effects to control for demand. Moreover, since we control for savings banks’ market shares before the program started, and include bank fixed effects, these results cannot hinge on baseline differences in
market power or other savings banks’ characteristics. Column (1) implies that, compared to SIP banks, M&A banks cut lending by 19.4% or about 45,000 euro per firm. Table B.V shows that the same results arise when using firm-bank fixed effects, and Table B.VI shows the robustness of the results when considering an alternative clustering.

Credit was cut more for SME than for large firms. This is intuitive, as SME firms are known to be more risky than their large counterparts (see European Banking Authority, 2016). This finding then contributes to explain the evidence in Banco de España (2016) that, as of 2011, the percentage of micro firms with financing constraints (26%) doubles that of large firms (13%).

Taken together, these results are consistent with the prediction that the market power effect is stronger for M&A than for SIP. Moreover, although our results are similar to those in the literature on bank mergers (e.g., Berger, Saunders, Scalise and Udell, 1998; Peek and Rosengren, 1998; Sapienza, 2002; Bonaccorsi di Patti and Gobbi, 2007; Degryse, Masschelein and Mitchell, 2011), we obtain them as the differential effect of mergers when compared to business groups.

5.2. Interest-rate spreads

In Table V, we run equation (2) using bank-month level information on newly issued loans’ interest rates. We report the results distinguishing by loan size (less than one million euro, and more than one million euro).

We find robust evidence in support of the prediction that, compared to SIP banks, M&A banks apply higher interest-rate spreads, especially on loans smaller than one million. As is commonly assumed (see, e.g., Banco de España, 2016), it is smaller firms that take loans of this size, implying that this result is fully consistent with the differential impact of M&A on credit. In columns (1) and (2), we perform an OLS regression in which we take a weighted average of the interest rate across three maturity buckets using as weights the new operations within each bucket (less than one year, between one and five years, and more than five years), so that the unit of observation is at bank-month level. In columns (3) and (4), we use the interest rate corresponding to each maturity bucket, so that the unit of observation is at the bank-month-maturity level, and estimate the coefficients of interest using a weighted OLS regression. The results do not change.

Back-of-the-envelope calculations based on the coefficient in column (1) suggest that a loan of less than one million euro granted by a M&A bank is 17.8 bp more expensive than that granted by a SIP bank after November 2009. Thus, the premium charged for this loan size by M&A banks corresponds to 5.3% of the average baseline spread with the
Table V: Interest-rate spreads

VARIABLES	(1) OLS, weighted average IR	(2) OLS, weighted average IR	(3) Weighted OLS, three maturity buckets	(4) Weighted OLS, three maturity buckets
Loans < 1ME	Loans > 1ME	Loans < 1ME	Loans > 1ME	
Post x M&A	0.178***	0.098*	0.253***	0.128
Bank FE	YES	YES	YES	YES
Time FE	YES	YES	YES	YES
Maturity FE	NO	NO	YES	YES
Bank Controls	YES	YES	YES	YES
Observations	586	586	1,751	1,387
R-squared	0.923	0.736	0.800	0.666
Robust standard errors (in brackets)	[0.034]	[0.058]	[0.039]	[0.087]

Notes: This table reports the results obtained from a regression analysis in which the dependent variable is the spread of the average monthly interest rate charged by a given credit institution \(j \) to new loans granted in month \(t \) to non-financial institutions over 3-month Euribor. The sample period spans from November 2007 to November 2011. The explanatory variable of interest is the interaction of two dummy variables: a dummy that is equal to one when consolidation takes place through a standard M&A (and zero if consolidation takes place through a SIP) and a dummy variable that is equal to one after November 2009. The set of control variables includes bank characteristics such as Log(TA), Capital Ratio, NPL, Credit/Deposits, ROA, (Credit to RE and Construction)/TA, and (FROB funds)/TA. In addition, we use bank and time fixed effects. The information on interest rates is available for different categories of loan maturity (less than 1 year, between 1 and 5 years, more than 5 years) and size (below and above 1 million euro) buckets. We perform two separate regression analyses depending on the size such that the coefficients in columns (1) and (3) are obtained using interest rates of loans with size below 1 million euro and those in columns (2) and (4) are obtained with loan sizes above 1 million euros. In columns (1) and (2) we perform an OLS regression in which the interest rate is the weighted average across the three maturity buckets, using as weights the new operations within each maturity bucket, so that the unit of observation is bank-month. In columns (3) and (4) we use the interest rate corresponding to each maturity bucket, such that the unit of observation is bank-month-maturity, and estimate the coefficient using a weighted OLS regression with the same controls and fixed effects used in columns (1) and (2) plus maturity fixed effects. Robust standard errors (in brackets) are clustered at the bank-type (SIP, M&A) month level. One star denotes significance at the 10% level, two stars denote significance at the 5% level, and three stars denote significance at the 1% level. For additional information on the construction of these variables, see the data appendix (in Appendix A).

3-month Euribor rate (3.3%).

These results are in line with the fall in credit documented in Table IV, and with the prediction on the stronger market power effect of M&A.

5.3 Impact on the stability of the banking system: evidence from NPL

To study the differential effect of M&A and SIP on financial stability we run equation (3) using information on the volume of savings banks’ NPL. Specifically, in columns (1)–(3) and (5)–(7) the dependent variable is the proportion of NPL over total loans related to a given firm \(i \) in a bank \(j \) in November 2011. In columns (4) and (8), we use as an alternative definition of the dependent variable the average proportion of NPL over every quarter of the pre period, and between the announcement of each M&A or SIP and November 2011 for the post period. As mentioned above, we consider the firms that have no credit with the banks in our sample during the two years before November 2009.

The results are in Table VI. M&A banks report less NPL than SIP banks. The estimate in column (1) implies that the probability that a firm credit turns out to be non performing is about 3 pp less for M&A banks than for SIP banks.\(^{19}\) Also in this case, the

\(^{19}\)We find the same results when standard errors are clustered at the industry-province-size-bank level.
Table VI: NPL accumulation

VARIABLES	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	All	SME	Large	All	SME	Large	All	SME
M&A	-0.027***	-0.027***	-0.028	-0.018***	-0.028***	-0.019***	-0.018***	-0.028***
	[0.004]	[0.004]	[0.020]	[0.003]	[0.005]	[0.004]	[0.005]	[0.019]
Observations	112,560	109,885	2,442	104,534	38,003	34,020	1,979	34,020
R-squared	0.221	0.222	0.409	0.237	0.725	0.699	0.699	0.803
Industry-Location-Size FE	YES	YES	YES	NO	NO	NO	NO	NO
Firm FE	NO	NO	NO	NO	YES	YES	YES	YES
Bank Controls	YES	YES						
Firms Controls	YES	YES	YES	YES	NO	NO	NO	NO

Notes: This table reports the results obtained from a regression analysis in which the dependent variable in columns (1)–(3) and (5)–(7) is the proportion of NPL over total loans of a given firm \(i\) in a bank \(j\) in November 2011. We restrict our sample to those bank-firm pairs with zero credit balance in November 2009 and the two years before to guarantee that the proportion of NPL in November 2011 results from credit originated after November 2009. In columns (4) and (8), instead, the dependent variable is defined as the average proportion of NPL over every quarter of the period spanning between the announcement of the consolidation (M&A or SIP) and November 2011. The explanatory variable of interest and the set of firm and bank control variables are the same as in Table IV. In columns (1), (4), (5) and (8) we use the whole sample of firms whereas in columns (2) and (6) we restrict the sample to SME and the sample in columns (3) and (7) consists of large firms. With industry-location-size fixed effects, splitting the full sample of firms in column (1) into SME and Large firms gives rise to additional singletons that we exclude from our regressions; thus, the sum of the observations in columns (2) and (3) does not equal the observations in column (1). The use of firm fixed effects implies that firm controls are not used in columns (5)–(8). Robust standard errors (in brackets) are clustered at firm level. One star denotes significance at the 10% level, two stars denote significance at the 5% level, and three stars denote significance at the 1% level. For additional information on the construction of these variables, see the data appendix (in Appendix A).

The result is essentially driven by the sample of SME. Since we compare M&A and SIP, and limit the post restructuring program period to two years, this effect is produced on top of any efficiency that can be generated absent market power.

This analysis then shows that the contraction of bank credit supply produced by the stronger market power effect of M&A comes with an improvement in M&A banks’ selection of borrowers, as proxied by credit performance. Confirming this interpretation, Section 6.3 shows that, after the program, M&A banks lend to safer firms than SIP banks.

These findings are new: compared to business groups, mergers can improve stability in the financial system. In Section 6.4 we show that the reduction in NPL reported by M&A banks is not accompanied by an increase in the NPL reported by the banks that are not involved in the program.

6. Analysis of the mechanisms

6.1. Organization, market power and efficiency: province-level variation

We first exploit the province-level heterogeneity in the overlap of M&A and SIP banks to develop two tests on the mechanisms driving our results. (Table B.VII), or when including firms with credit relationships before November 2009 (Table B.VIII).
Organizational and geographical differences

We now provide further evidence showing that our results are driven by differences in the organizational structure of M&A and SIP. Alternatively, they could be explained by differences in the ability to exercise market power at the local level, because M&A form within region and SIP across regions. We then run our empirical models on the sample of firms that operate in the provinces where there is no difference in the market share of M&A and SIP banks. Specifically, we consider those where they have comparably large market shares in November 2009. We require that at least one of the M&A and SIP banks had a market share above 13%, and the largest SIP and M&A bank was in the top 5 banks of that province (see Figure 2).

Table VII: M&A and SIP banks differences in organization and location

VARIABLES	(1)	(2)	(3)	(4)	(5)	(6)
	∆Log(Credit)	∆Log(Credit)	∆(%NPL)	∆(%NPL)	∆(%NPL)	∆(%NPL)
Post x M&A	-0.123***	-0.181***	0.006	-0.015		
	[0.037]	[0.056]	[0.006]	[0.009]	[0.008]	[0.017]
M&A	-0.021***	-0.032***	0.006	-0.015		
	[0.006]	[0.009]	[0.008]	[0.017]		
Observations	282,694	122,498	44,421	15,126	14,943	5,864
R-squared	0.111	0.490	0.206	0.723	0.305	0.726
Industry-Location-Size-Time FE	YES	NO	NO	NO	NO	NO
Industry-Location-Size FE	NO	NO	YES	NO	YES	NO
Firm-Time FE	NO	YES	NO	NO	NO	NO
Bank Controls	YES	YES	YES	YES	YES	YES
Firm Controls	YES	NO	YES	NO	YES	NO

Notes: This table reports the results obtained from a regression analysis in which the dependent variable in columns (1) and (2) is the change (log difference) in the credit balance of a given firm i in a bank j before and after the beginning of the bank consolidation process. In columns (3) to (6), the dependent variable is the proportion of NPL over total loans of a given firm i in a bank j in November 2011. In columns (3) to (6), we restrict our sample to those bank-firm pairs with zero credit balance in November 2009 and the two years before to guarantee that the proportion of NPL in November 2011 results from credit originated between November 2009 and November 2011. The results in columns (1)–(4) are obtained from the set of provinces in which the market shares of at least one of the M&A and SIP banks operating in that province is above the 25th percentile of the distribution of the maximum market shares at province level, and where the largest SIP and M&A bank was in the top 5 banks of that province in November 2009. The results in columns (5)–(6) are obtained from the set of provinces in which the market shares of all the banks operating in a given province is below the 25th percentile of the distribution of the maximum market shares at province level in November 2009. The explanatory variable of interest and the set of firm and bank controls are the same as in Table IV. The use of firm or firm-time fixed effects implies that firm controls are not used in columns (2), (4) and (6). Robust standard errors (in brackets) are clustered at firm level. One star denotes significance at the 10% level, two stars denote significance at the 5% level, and three stars denote significance at the 1% level. For additional information on the construction of these variables, see the data appendix (in Appendix A).

If our findings were driven by the geography of consolidation, and not by organizational differences, then we should observe no statistically significant differential effect of M&A on volume of credit and NPL. Table VII, instead, shows that the results we obtain on the growth rate of lending (columns (1) and (2)), and NPL growth (columns (3) and (4)), are comparable to those obtained in Tables IV and VI.

20As in our baseline specification, for the analysis of NPL we consider only the firms that have no credit with the banks in our sample during the two years before November 2009.
Impact on NPL absent market power in the baseline A conjecture supporting our identification strategy is that, absent market power, SIP and M&A banks generate the same level of efficiencies (thus producing similar effects on the volume of NPL). Then, we run equation (3) using data from those provinces where all M&A and SIP banks market share was smaller than 13% in November 2009. Since, as a result, these savings banks are relatively small in the baseline, even after a M&A, banks are unlikely to have strong market power. We again restrict the sample to consider only those firms that have no credit with the banks in our sample during the two years before November 2009.

The results of the analysis are in columns (5) and (6) of Table VII. There is no statistically significant difference in the volume of NPL reported by M&A and SIP banks when they are equally small in the baseline. The coefficients are also economically smaller than those in columns (3) and (4). These outcomes then fail to reject our assumption.

6.2. *Separate effects of M&A and SIP on credit supply and NPL*

Our empirical analysis has established the differential effects of M&A and SIP on credit supply and performance. In this section, we use information on commercial banks, which the Law left out of the program, to document the separate effects of each integration mode. The fact that the commercial banks were excluded from the restructuring program, and hence did not perform any form of integration, limits the threats to identification. Moreover, wherever possible, we use bank fixed effects to control for the baseline differences in the economic and financial characteristics of commercial and savings banks.

The results are in Table VIII. As in our main tables, we consider the differential growth rate of credit and NPL, and the average interest rates of commercial banks as compared to, separately, M&A and SIP banks.

As compared to commercial banks, we find significant evidence that M&A banks restrict credit supply after the program started, but also report less NPL. Confirming our findings in Tables IV–VI, these results are the consequence of the trade-off triggered by market power between a reduction in credit supply and an improved selection of borrowers. In line with the presumption that the market power effect is stronger for M&A than for SIP, we also find that, compared to commercial banks, SIP produce weaker differential effects on lending and no significant impact on spreads, but also a smaller reduction in NPL.

6.3. *Ex-ante risk taking*

We now show the consequences of the differences in the exercise of market power across M&A and SIP banks on the credit extended to firms with different degree of ex-ante risk.
Table VIII: Separate effects of M&A and SIP

VARIABLES	(1) ∆Log(Credit)	(2) ∆Log(Credit)	OLS Weighted average IR	(3) Three maturity buckets	(4) Weighted OLS	(5) ∆(% NPL)	(6) ∆(% NPL)	
Post x M&A	-0.232***	-0.335***	0.233***	0.208***	[0.019]	[0.024]	[0.047]	[0.069]
M&A								
Post x SIP	-0.023	-0.061**	0.044	-0.016	[0.019]	[0.025]	[0.044]	[0.057]
SIP								

Observations: 1,707,488, 1,204,581, 1,365, 3,562, 294,386, 168,442
R-squared: 0.139, 0.444, 0.785, 0.853, 0.186, 0.680

Notes: This table reports the results obtained from a regression analysis in which the dependent variable in columns (1) and (2) is the change (log difference) in the credit balance of a given firm i in a bank j before and after the beginning of the bank consolidation process. In columns (3) and (4), the dependent variable is the spread of the average monthly interest rate charged by a given credit institution j to new loans with size below 1ME granted in month t to non-financial institutions over 3-month Euribor. In columns (5) and (6), the dependent variable is the proportion of NPL over total loans of a given firm i in a bank j in November 2011. In column (3) we perform an OLS regression in which the interest rate is the weighted average across the three maturity buckets (less than 1 year, between 1 and 5 years, more than 5 years), using as weights the new operations within each maturity bucket, so that the unit of observation is bank-month. In column (4), we use the interest rate corresponding to each maturity bucket, such that the unit of observation is bank-month-maturity, and estimate the coefficient using a weighted OLS regression with the same controls and fixed effects used in column (3) plus maturity fixed effects. In columns (5) and (6), we restrict our sample to those bank-firm pairs with zero credit balance in November 2009 and the two years before to guarantee that the proportion of NPL in November 2011 results from credit originated between November 2009 and November 2011. The explanatory variable of interest and the set of firm and bank controls are the same as in Tables IV–VI. The use of firm or firm-time fixed effects implies that firm controls are not used in columns (2) and (5). Robust standard errors (in brackets) are clustered at firm level in columns (1)–(2) and (5)–(6), and at bank-type (SIP, M&A) month level in columns (3) and (4). One star denotes significance at the 10% level, two stars denote significance at the 5% level, and three stars denote significance at the 1% level. For additional information on the construction of these variables, see the data appendix (in Appendix A).

We classify firms as safe or risky based on the distance from default as resulting from a variation of Altman’s Z-score computed for Spanish firms (see Appendix A for details). We use the firm-level information in December 2006 and December 2008 to obtain the value of the risk indicators for the periods before and after the restructuring program, respectively. We then split the $Post_t \times M&A_j$ interaction to capture the separate contribution of safe and risky firms to the differential fall in the growth rate of lending produced by M&A with respect to SIP. Finally, the use of industry-location-risk-time fixed effects implies that our results are identified by comparing the firms with similar distance to default, obtaining credit in the same time period, and operating in similar industry and location.

Overall, the differential impact of M&A and SIP banks on the volume of NPL can be explained by a differential contraction in the credit supply to small, risky borrowers. Despite both safe and risky firms see their credit reduced after the program started (columns (1) and (4)), the differential effect of M&A and SIP banks on lending is economically larger for the sample of risky, small firms (columns (2) and (5)), and there is no evidence of credit contraction in the sample of large safe firms (columns (3) and...
Table IX: Banks’ risk taking

VARIABLES	(1) ΔLog(Credit)	(2) ΔLog(Credit)	(3) ΔLog(Credit)	(4) ΔLog(Credit)	(5) ΔLog(Credit)	(6) ΔLog(Amount)
	All	SME	Large	All	SME	Large
Post x M&A x Risky Firm	-0.215***	-0.209**	-0.405***	-0.315***	-0.308***	-0.411***
	[0.065]	[0.069]	[0.095]	[0.049]	[0.051]	[0.116]
Post x M&A x Safe Firm	-0.172*	-0.178*	0.173	-0.219**	-0.233***	0.108
	[0.091]	[0.094]	[0.141]	[0.074]	[0.075]	[0.172]
M&A x Risky Firm	0.017	0.013	0.139	0.061	0.054	0.161
	[0.048]	[0.047]	[0.166]	[0.059]	[0.057]	[0.147]
Observations	790,774	778,295	14,932	350,700	336,981	13,719
R-squared	0.062	0.062	0.265	0.493	0.496	0.446
Industry-Location-Risk-Time FE	YES	YES	YES	NO	NO	NO
Bank FE	YES	YES	YES	YES	YES	YES
Firm-Time FE	NO	NO	NO	YES	YES	YES
Bank Controls	YES	YES	YES	NO	NO	NO
Firm Controls	YES	YES	YES	YES	YES	YES

Notes: This table extends the analysis in Table IV to study the differential change in credit supply to safe and risky firms. The variables of interest in our analysis are: (i) the interaction of Post x M&A with a dummy variable that is equal one for safe firms, (ii) the interaction of Post x M&A with a dummy variable that is equal one for risky firms, and (iii) the interaction of the dummy variables denoting risky firms and M&A. Firms are classified as safe or risky based on a variation of an Altman’s Z-score for Spanish firms (see Appendix A). We use the information on December 2006 and December 2008 to obtain the firm risk indicators for the pre-event and post-event periods, respectively. In columns (1) and (4) we use the whole sample of firms, in columns (2) and (5) we use the sample of SME and in columns (3) and (6) the sample of large firms. The set of control variables are the same as in Table IV. The set of fixed effects we use prevents the estimation of other combinations or interactions of Post, M&A and the dummy variables denoting safe/risky firms. With industry-location-size-time fixed effects, splitting the full sample of firms in column (1) into SME and Large firms gives rise to additional singletons that we exclude from our regressions; thus, the sum of the observations in columns (2) and (3) does not equal the observations in column (1). Due to firm-time fixed effects, firm controls are not used in columns (4)–(6). Robust standard errors (in brackets) are clustered at firm level. One star denotes significance at the 10% level, two stars denote significance at the 5% level, and three stars denote significance at the 1% level. For additional information on the construction of these variables, see the data appendix (in Appendix A).

(6)). Finally, the fact that the coefficients on the M&A_j × Risky Firm interaction are never statistically significant means that there is no differential treatment of risky firms by M&A and SIP banks before the program.

6.4. Spillover effects

We now establish that the cut in the volume of lending extended by M&A banks, and the reduction in their volume of NPL, does not come with an increase in the NPL reported by the banks that did not participate in the program (which include all the commercial and cooperative banks and a small number of savings banks). If this were to happen, it would invalidate our conclusion that the program made the banking system more stable.

We then restrict the sample to consider only the banks that were not involved in the program, and use the Spanish credit register information on loan applications submitted to a bank by new borrowers. Specifically, in Table X we report the results of a regression where the dependent variable is a dummy equal to one if firm i’s loan is non-performing in any of the banks outside the program. The independent variable, instead, is a dummy

21 The difference in the coefficients on M&A_j × Risky Firm and M&A_j × Safe Firm is also statistically significant in columns (3)–(6).
that equals one if a M&A bank rejected firm \(i \)'s loan application in columns (1)-(3), and if a M&A or a SIP bank rejected firm \(i \)'s loan application in columns (4)-(6).

Table X: NPL spillover

VARIABLES	(1) All Exposed Firms	(2) Non-Exposed Firms	(3) Non-Exposed Firms	(4) All Exposed Firms	(5) Non-Exposed Firms	(6) Non-Exposed Firms
Loan Application Rejected by M&A Bank	-0.009	-0.024	-0.001	[0.017]	[0.026]	[0.024]
Loan Application Rejected by M&A or SIP Bank	-0.009	-0.022	0.006	[0.017]	[0.021]	[0.031]
Observations	13,823	7,425	5,619	13,823	10,404	2,777
R-squared	0.127	0.149	0.191	0.127	0.142	0.239
Industry-Location-Size FE	YES	YES	YES	YES	YES	YES
Average Bank Controls	YES	YES	YES	YES	YES	YES
Firm Controls	YES	YES	YES	YES	YES	YES

Notes: We study the performance of loans granted by all commercial banks and the few savings banks that did not participate in a SIP or a M&A to firms with loan applications rejected by any of the savings banks that did a M&A (columns (1)-(3)) and a M&A or a SIP (columns (4)-(6)). The analysis is conducted at the firm level. Hence, the dependent variable in columns (1)-(6) is a dummy variable that is equal to one when a loan of firm \(i \) is non-performing in November 2011 (conditional on being performing on November 2009). The explanatory variable in columns (1)-(3) is a dummy variable that is equal to one if a M&A bank rejected a loan to one or more savings banks that did a M&A and this application was rejected. In columns (4)-(6), instead, the dependent variable is a dummy variable that equals one if a M&A or a SIP bank rejected a loan to one or more savings banks that did a M&A or a SIP and this application was rejected. The set of firm-level control variables we use are the same as in Table IV, moreover we add industry-location-size fixed-effects and the average characteristics of the banks that do not participate in the consolidation process between November 2009 and November 2011, and to which firm \(i \) is exposed. In columns (1) (resp., (4)) we use all firms that applied for a loan to one or more savings banks that did a M&A (resp., a M&A or a SIP). In columns (2) (resp., (5)) we further restrict the sample to those firms that in November 2009 had a positive credit balance in the savings banks that did a M&A (resp., a M&A or a SIP), and in columns (3) (resp., (6)) we use only the firms with no credit exposure to M&A banks (resp., M&A or SIP banks). With industry-location-size-time fixed effects, splitting the full sample of firms in column (1) (resp., (4)) into Exposed and Non-Exposed firms gives rise to additional singletons that we exclude from our regressions; thus, the sum of the observations in columns (2) and (3) (resp., (5) and (6)) does not equal the observations in column (1) (resp., (4)). Robust standard errors (in brackets) are clustered at firm level. One star denotes significance at the 10% level, two stars denote significance at the 5% level, and three stars denote significance at the 1% level. For additional information on the construction of these variables, see the data appendix (in Appendix A).

We do not find any evidence that the firms rejected by the banks in the program then go to increase the volume of NPL reported by the credit institutions not involved in the restructuring program. In columns (1) and (4) we consider the full sample. In columns (2)-(3) and (5)-(6), we distinguish between exposed and non-exposed firms, where the latter are those with zero credit from M&A banks before the start of the program. Our results are robust to these checks.

7. Welfare analysis

We propose a structural analysis to quantify the welfare implications of our results on credit supply and performance. We develop and estimate an equilibrium model of borrowers’ demand for credit from differentiated banks. On the supply side, banks engage in Bertrand-Nash interest rate competition, and can reject borrowers whose observable risk is above a certain threshold. We use the model’s estimates and equilibrium assumptions for counterfactuals to simulate scenarios with M&A and SIP and compare welfare (borrowers’ surplus, banks’ profits) and stability (banks’ default probabilities) across scenarios.
7.1. Model

We take as unit of observation a bank \(j = 1, \ldots, J \) in a province \(m = 1, \ldots, M \) at a month \(t = 1, \ldots, T \). We assume that borrower \(i \)'s demand for loans is determined by the following indirect utility function:

\[
U_{ijmt} = \underbrace{X'_{jmt} \beta + \alpha P_{jt} + \xi_{jmt}}_{\equiv \delta_{jmt}} + \varepsilon_{ijmt},
\]

where \(X_{jmt} \) is a matrix of bank-province-month characteristics, \(P_{jt} \) is the average interest rate on that bank’s new loans in that month, \(\xi_{jmt} \) are unobserved (to the econometrician) bank-province-month attributes, and \(\varepsilon_{ijmt} \) are IID Type 1 Extreme Value shocks. We allow borrowers to select an outside option, whose indirect utility is normalized to zero, that we define as a set of small fringe banks.

Banks are differentiated firms that compete Bertrand-Nash on interest rates \(P_{jt} \) to attract borrowers, and also decide on rationing. Rationing in our context implies that each bank \(j \) at time \(t \) sets a threshold of expected default rate of borrowers defined as \(F_{jt} \), such that any borrower above that threshold cannot have access to credit. This threshold is a cutoff in the distribution of expected default rates \(F_{jt} \sim N(\mu_{Ft}, \sigma^2_{Ft}) \), which we assume follows a truncated normal distribution with lower bound at 0 and upper bound at 1. It reduces the “size of the market” (i.e. the number of potential borrowers that wouldn’t be rejected) for that specific bank-month combination. We use rationing to model the actual demand for credit that a bank can face, net of the rejections it makes. To keep the setting tractable, we do not however allow banks to compete on rationing or adjust it in the counterfactual scenarios.\(^{22}\)

In order to calculate the market shares of bank \(j \) in province \(m \) at time \(t \), we rank all banks according to their default threshold every month up to the threshold \(F_{jt} \), from the lowest for bank \(k \), and assume that default thresholds are public information, such that:

\[
F_{kt} < F_{k+1t} < \ldots < F_{jt}.
\]

In the spirit of Sovinsky Goeree (2008), the formula for bank \(j \)'s market share in

\(^{22}\)In practice, \(F_{jt} \) is computed based on NPL data, and is not allowed to change in the counterfactuals.
province \(m \) at time \(t \) can be defined as:

\[
S_{jmt} = \exp(\delta_{jmt}) \left[\frac{\Pr \left[F_{jt} \leq F_{kt} \right]}{1 + \sum_k \exp(\delta_{kmt})} + \sum_{\ell = k+1}^j \frac{\Pr \left[F_{\ell-1t} < F_{jt} \leq F_{\ell t} \right]}{1 + \sum_{k>\ell-1} \exp(\delta_{kmt})} \right]
\]

\[
= \frac{\exp(\delta_{jmt})}{\Phi \left(\frac{1 - \mu_{Ft}}{\sigma_{Ft}} \right) - \Phi \left(\frac{-\mu_{Ft}}{\sigma_{Ft}} \right) + \sum_{\ell = k+1}^j \Phi \left(\frac{F_{\ell t} - \mu_{Ft}}{\sigma_{Ft}} \right) - \Phi \left(\frac{F_{\ell-1t} - \mu_{Ft}}{\sigma_{Ft}} \right)}
\]

Banks’ equilibrium interest rates will be determined by maximizing expected profits:

\[
\Pi_{jt} = [1 + P_{jt} - MC_{jt}] Q_{jt},
\]

where \(Q_{jt} = \sum_m S_{jmt} M_{mt} \) is the quantity of loans granted by bank \(j \) at time \(t \), \(M_{mt} \) is the total potential amount that could be borrowed in a province-month combination, and \(MC_{jt} \) are expected marginal costs, which depend on the quantity of credit. Based on the first order condition from equation (7) with respect of \(P_{jt} \) we are able to back out the unobserved (to the econometrician) marginal costs, and express them as a function of quantities:

\[
1 + P_{jt} + \frac{Q_{jt}}{\partial Q_{jt}/\partial P_{jt}} = MC_{jt} = C_{0jt} + C_1 Q_{jt},
\]

where \(Q_{jt}/(\partial Q_{jt}/\partial P_{jt}) \) is the markup calculated based on the estimates from the demand model, \(C_1 \) captures the slope of the marginal cost curve, and \(C_{0jt} \) allows for heterogeneity across banks and months in marginal costs. As we will see, we obtain that marginal costs increase in the amount granted, reflecting the fact that the marginal borrower is riskier than the infra-marginal ones.

7.2. Estimation

We select the major (savings, cooperative and commercial) banks, compute the volume of credit that each of them lends as \(Q_{jmt} \), and then group the total volume of credit granted by all other (small) banks into a single outside option defined as \(Q_{0mt} = M_{mt} - \sum_j Q_{jmt} \).

We assume that the market share of the outside option also becomes bank \(j \) specific \(S_{j0mt} \), with a formula equivalent to equation (6). This captures the idea that borrowers above the threshold \(F_{jt} \) are not able to choose not to borrow, but are simply rejected by the bank. We also need this assumption in order to be able to do Berry (1994)’s inversion to estimate the demand model with instrumental variables based on the following equation:

\[
\ln(S_{jmt}) - \ln(S_{j0mt}) = X'_{jmt} \beta + \alpha P_{jt} + \xi_{jmt}.
\]
The specification includes various controls for bank size and profitability in X_{jmt}, and bank and province-month fixed effects. We use as instrument for interest rates P_{jt} the lagged values of NPL. This choice is in line with Egan, Hortaçsu, Matvos (2017), who use lagged charge-offs in their deposit demand estimation exercise. Like charge-offs, lagged NPL affect bank profitability, and thus loan rates. Based on the tests we perform, the instrument is relevant in the first stage, with the expected positive sign. It also satisfies the exclusion restriction, as past bank NPL are likely to be unobserved by borrowing firms. This guarantees that they are uncorrelated with bank attributes ξ_{jmt} observed by borrowers but unobserved by the econometrician.23 The sample we use for the estimation includes market shares in terms of loan volumes at the bank-province-month level, whereas bank characteristics and interest rates (measured as the spread between loan rates and the 3 months Euribor) are at the bank-month level. We use the information relative to the new loans extended by all savings banks and the largest commercial and cooperative banks, for a total of 68 banks across 50 provinces. Consistent with the reduced-form analysis, we focus on the 24 months between November 2007 and October 2009, that is, before the program started.

Table XI reports descriptive statistics for all variables used to in the structural analysis. On top of the variables defined above, D_{kt} denotes the bank’s default probability, constructed as the inverse of a distance to default.24

Estimation results are reported in Table XII. Assuming a 5% bank’s market share and a 5 percent loan rate (close to the average in the data), borrowers have a demand elasticity of around -2.05. We also find that borrowers tend to favor larger banks, in terms of assets, as well as lenders with a larger share of equity over total assets. Last, we estimate C_1 in equation (8) using a linear model and find that it is positive and highly statistically significant. In particular, one standard deviation increase in loan volume Q_{jt} corresponds to over 43 standard deviation increases in MC_{jt}. This means that, consistent with the assumption we make in Section 2.2, banks’ marginal-cost schedule is increasing.

7.3. Counterfactuals

We use our estimates from the demand and supply models to conduct two counterfactual experiments where we quantify the welfare effects of the restructuring

23To conduct the Hansen J statistic we use a second instrument (i.e., the NPL lagged two periods) which enables us to run the overindentification test.

24Following Laeven and Levine (2009), we compute D_{kt} at the bank-time level as $SD[ROA]/(Equity/Total assets + ROA)$, where $SD[ROA]$ is the standard deviation of ROA’s monthly value in the 12 months before t. We then windsorize its value between 0 and 1. Despite, technically, D_{kt} is not a probability of default, it is highly correlated with it: the average correlation between the value of D_{kt} and the bond yields of the savings banks in our sample (for which this information is available) is 0.52 between 09/2007 and 09/2011.
Table XI: Descriptives – Structural model

Variable	N	Mean	Standard Deviation	10th Percentile	Median	90th Percentile
Market Share (S_{jt})	45,061	2.34	4.01	7.02		
Total Loan Volume (M_{jt})	24	9,745.22	1,949.89	7,227.44	9,897.50	12,359.95
Loan Volume (Q_{jt})	1,632	143.31	232.41	5.75	48.89	404.31
Interest Rate (r_{jt})	1,632	5.45	1.05	4.01	5.57	6.74
Bank Default Prob (D_{jt})	1,632	3.52	5.92	1.68	2.80	4.99
Borrowers' Default (F_{jt})	1,632	2.70	2.01	0.72	2.21	5.49
Marginal Cost (MC_{jt})	1,632	1.03	0.01	1.01	1.03	1.04
Total Assets	1,632	36	74	3	11	80
Capital Ratio	1,632	6.21	2.04	4.04	5.64	9.20
ROA	1,632	0.41	0.28	0.13	0.36	0.78
Credit/Deposits	1,632	1.82	0.52	1.20	1.78	2.50
(Credit to RE and Construction)/TA	1,632	27.66	9.90	13.81	28.34	39.31
NPL	1,632	2.70	2.01	0.72	2.21	5.49

Notes: These descriptive statistics are for the main 68 banks in Spain, across 24 months between November 2007 and October 2009, and across 50 provinces. Interest Rate is in percentage points. Loan Volume is in millions of Euros. The definition of Bank Default is in footnote 15. Total Assets are in Euros. An observation is at the bank-province-month level for Market Share, at the month level for Total Loan Volume, and at the bank-month level for all other variables. For additional information on the construction of these variables, see the data appendix (in Appendix A).

Table XII: Demand estimation results

VARIABLES	Coefficient	Standard Error	t-Statistic	p-value
Interest Rate	-42.85**	(21.85)	-1.96**	0.05
Log of Total Assets	2.65***	(0.56)	4.75***	0.00
Capital Ratio (%)	18.66***	(5.30)	3.52***	0.00
ROA	2.97	(6.25)	0.47	0.64
Credit/Deposits	0.25*	(0.09)	2.78	0.01
(Credit to RE and Construction)/TA	-0.96	(0.73)	-1.32	0.19
Bank FE	Yes			
Province-Month FE	Yes			
N Obs	45,061			
R^2	0.480			

Notes: We use an instrumental variable regression model in which we instrument the interest rate with the NPL ratio lagged one month. The instrument is relevant (based on the Kleibergen-Paap rk LM statistic), and the Hansen J statistic fails to reject the exclusion restriction. Robust standard errors in brackets. One star denotes significance at the 10% level, two stars denote significance at the 5% level, and three stars denote significance at the 1% level. An observation is a bank-month-province. For additional information on the construction of these variables, see the data appendix (in Appendix A).

program. Specifically, we simulate the effects of M&A and SIP, as they actually would have later on happened, using data from the pre-restructuring program period. We do this because only during those months we are able to observe the separate interest rates

33
offered by the banks that will then do a M&A (after the actual mergers take place we can only observe one interest rate for each M&A group).

We define borrowers’ surplus at the province-month level as follows:

\[
E(CS_{mt}) = \frac{1}{\alpha} \log \left[\sum_k \exp(\delta_{kmt}) \Pr[F_{jt} \leq F_{kt}] (1 - D_{kt})
+ \sum_j \sum_{\ell=k+1}^j \sum_{k>\ell-1} \exp(\delta_{kmt}) \Pr[F_{\ell-1t} < F_{jt} \leq F_{\ell t}] (1 - D_{kt}) \right] + C,
\]

where \(C\) is a constant term derived from the functional form of the surplus equation that cancels out when we take the difference between baseline and counterfactual surplus. The novel feature of this surplus formula is the fact that we weight the mean utility that borrowers gain from each bank in their choice set by the survival probability of each bank \((1 - D_{kt})\). This captures the idea that higher stability, that is more solvent banks, can directly benefit borrowers’ surplus.

Short-run counterfactual scenario In the first counterfactual we run, we quantify the welfare implications of M&A’s market power in the short-run. We assume that neither a M&A nor a SIP produces efficiencies in the form of lower marginal costs. SIP banks set interest rates by maximizing the expected profits of each separate entity, similarly to banks that did not consolidate at all. M&A banks, instead, set loan interest rates by maximizing their joint expected profits. More specifically, if bank \(j\) merges with any bank \(k\), its expected profit function will become (the profit function of SIP banks is the same as in the benchmark):

\[
\Pi_{jt} = [1 + P_{jt} - MC_{jt}] Q_{jt} + \sum_{k\neq j} [1 + P_{kt} - MC_{kt}] Q_{kt},
\]

(10)

Each M&A bank then internalizes the effect of own credit supply onto the demand of other merging banks. This determines an upward pressure in interest rates relative to the benchmark: M&A banks understand that they can afford an increase in the interest rates they set because some of the borrowers will switch to a merging party.

Long-run counterfactual scenario In the second counterfactual experiment, we allow banks engaging in a M&A or SIP to generate cost efficiencies. In this way, we simulate a long-term beneficial effect of the consolidation process that can outweigh the market power effect. Notwithstanding the differences in M&A and SIP objective functions, we assume a reduction in consolidating banks bank-month specific component of marginal costs \(C_{0jt}\) in equation (8). Specifically, their overall marginal costs drop by around half.
of a standard deviation.

7.4. Results

Panel A of Table XIII reports the average percentage changes in interest rates, quantities, marginal costs, and bank expected profits for the banks engaging in M&A and SIP relative to the benchmark in both counterfactuals. Panel B, instead, reports the average results of the baseline and counterfactual levels of loan interest rates and quantities (i.e. volume of loans) at the bank-month level, as well as total lending volume (i.e. total quantity) at the monthly level. All our results relate to banks’ new loan business, which is the focus of our analysis.

Short-run results The counterfactual with no efficiencies generates on average an increase in interest rates, a decrease in quantities, and a rise in expected profits (Panel A). Although they are a direct consequence of M&A market power effect, these results are fairly in line with the reduced form results. Due to the increase in interest rates, after aggregating across banks, provinces and months, we find that total banks’ profits increase by 47.65ME. However, the increase in interest rates also makes borrowers worse off in the short run (Panel B). Aggregating across months, the total drop in borrower surplus amounts to 55.65ME. We then find a total welfare loss of 8ME. In the last row of Panel B we compute by how much banks’ solvency should increase to compensate for the loss in surplus caused by the increase in interest rates. We find that, for borrowers to be as well off as in the benchmark, M&A banks’ default probability would need to reduce by about half its standard deviation (1.13/2.01).

Long-run results We now discuss the effects of M&A and SIP on borrowers’ surplus and total welfare in the presence of cost efficiencies. Panel A, columns (2) and (3), documents that even for a small reduction in marginal costs consolidating banks substantially reduce their loan interest rates, on average by around 8%, and hence increase their supply of loans and expected profits. Specifically, aggregating across banks, provinces and months, the total increase in banks’ profits as a result of consolidation with cost efficiencies amounts to 668.69ME. Overall, borrowers are better off, due to the drop in interest rates, with an aggregate increase in borrower surplus of 906.98ME and in total welfare of 1,575.67ME (Panel B).
Table XIII: Counterfactual Outcomes

Panel A	Short run	Long run	
M&A Banks	M&A Banks	SIP Banks	
% Change Interest Rate	3.00	-8.03	-8.74
% Change Loan Volume	-5.10	2.00	6.96
% Change Marginal Costs	0.00	-0.64	-0.51
% Change Banks Profit	0.76	10.47	8.42

Panel B	M&A & SIP	M&A & SIP	
Baseline	Short run	Long run	
Interest Rate	5.45	5.48	5.20
Loan Volume	143.31	142.79	152.77
Total Loan Volume	9,745.22	9,709.94	10,388.57
% Change Borrower Surplus	-0.96	15.37	
% Change Total Welfare	-0.06	12.36	
Change in Bank Default Prob	-1.13	-	

Notes: Interest Rate is in percentage points. Loan Volume is in millions of euros. In Panel A all values are averages across bank-month level observations. In Panel B all values are averages across bank-month level observations (for Interest Rate and Loan Volume) and month level observations (for all other variables).

8. Conclusions

In 2009, the Spanish banking system underwent a restructuring process based on consolidation of savings banks. We exploit the institutional design of the program to study the relative impact of bank mergers and bank business groups on credit supply and financial stability. We unveil a new trade-off. On the one hand, compared to bank business groups, the market-power effect of bank mergers produces a reduction in credit supply and an increase in interest rates, especially to SME. On the other hand, market power causes a reduction in the volume of non-performing loans, thereby improving financial stability. To show that these results are not driven by differences in the efficiencies generated by mergers and business groups, we exploit the province-level variation in the overlap of M&A and SIP banks. Finally, we quantify the short-run and long-run welfare effects of the program by means of a structural model.

The validity of our analysis extends beyond the Spanish case. We already mentioned the American and Japanese restructuring measures in the introduction, and savings banks are widespread in Europe. As of 2009, the German savings banks sector represented about one third of the total banking assets (European Commission, 2017), and it landed into systemic problems during the crisis (International Monetary Fund, 2011). In Italy a number of savings banks needed help after the crisis, suffering problems from NPL accumulation. The claim of policy makers was, and still is, that consolidation can be a means to solve the problems resulting from excessive NPL stockpiling.25

25See, for example, “Banking union: prospects for integration and further consolidation,” by Pentti
We show that bank mergers can be effective in improving financial stability, especially as a remedy to crises produced by banks’ excessive risk taking. Our welfare analysis documents that short-run welfare gains from improved financial stability outweigh losses from reduced credit supply. In the long run, even small cost efficiencies generate substantial increases in borrower and total surplus.

References

[1] Adams, W., Einav, L., and Levin J., 2009. Liquidity Constraints and Imperfect Information in Subprime Lending. American Economic Review 99, 49–84.

[2] Adrian, T., and Brunnermeier, M. K., 2016. CoVaR. American Economic Review 106, 1705–1741.

[3] Agarwal, S., Chomsisengphet, S., Mahoney, N., and Stroebel, J., 2018. Do Banks Pass Through Credit Expansions to Consumers Who Want to Borrow?. Quarterly Journal of Economics 133, 129–190.

[4] Allen, J., Clark, R., Houde, J.-F., 2013. The Effect of Mergers in Search Markets: Evidence from the Canadian Mortgage Industry. American Economic Review 104, 3365–3396.

[5] Allen, J., Clark, R., Hickman, B., and Richert, E., 2019. Resolving Failed Banks: Uncertainty, Multiple Bidding & Auction Design. Bank of Canada Staff Working Papers.

[6] Banco de España, 2015. Nota Informativa Sobre Ayudas Públicas en el Proceso de Reestructuración del Sistema Bancario Español (2009-2015).

[7] Banco de España, 2016. Financing and Investment Decisions of Spanish Non-Financial Corporations. Chapter 2. Annual Report 2016.

[8] Banco de España, 2017. Informe Sobre la Crisis Financiera y Bancaria en España, 2008-2014.

[9] Berger, A. N., Saunders, A., Scalise, J., and Udell, G., 1998. The Effects of Bank Mergers and Acquisitions on Small Business Lending. Journal of Financial Economics 50, 187–229.

[10] Berry, S., 1994. Estimating discrete-choice models of product differentiation. Rand Journal of Economics 25, 242–262.

[11] Berry, S., and Pakes, A., 1993. Some Applications and Limitations of Recent Advances in Empirical Industrial Organization: Merger Analysis. American Economic Review 83, 247–52.

Hakkarainen (Member of the Supervisory Board of the ECB), 19 June 2018, and “Europe’s bank bosses see need for consolidation in sector,” Financial Times, 2 January 2018.
[12] Bonaccorsi di Patti, E., and Gobbi, G., 2007. Winners or Losers? The Effects of Banking Consolidation on Corporate Borrowers. Journal of Finance 62, 669–695.

[13] Climent-Serrano, S., 2013. La Reestructuración del Sistema Bancario Español tras la Crisis y la Solvencia de las Entidades Financieras. Consecuencias para las Cajas de Ahorros. Spanish Accounting Review 16, 136–146.

[14] Corbae, D., and Levine, R., 2018. Competition, Stability, and Efficiency in Financial Markets. Jackson Hole Symposium: Changing market Structure and Implications for Monetary Policy.

[15] Carlson, M., Correia, S., and Luck, S., 2020. The Effects of Banking Competition on Growth and Financial Stability: Evidence from the National Banking Era. Working Paper.

[16] Crawford, G. S., Pavanini, N., and Schivardi, F., 2018. Asymmetric Information and Imperfect Competition in Lending Markets. American Economic Review 108, 1659–1701.

[17] Degryse, H, De Jonghe, O., Jakovljevic, S., Mulier, K., and Schepens, G., 2019. Identifying Credit Supply Shocks with Bank-Firm Data: Methods and Applications. Journal of Financial Intermediation 40.

[18] Degryse, H, Masschelein, N., and Mitchell, J., 2011. Staying, Dropping or Switching: The Impact of Bank Mergers on SMEs. Review of Financial Studies 24, 1102–1140.

[19] Egan, M., Hortaçsu, A., and Matvos, G., 2017. Deposit Competition and Financial Fragility: Evidence from the U.S. Banking Sector. American Economic Review 107, 169–216.

[20] Einav, L., and Finkelstein, A., 2011. Selection in Insurance Markets: Theory and Empirics in Pictures. Journal of Economic Perspectives 25, 115–138.

[21] Einav, L., Jenkins, M., and Levin J., 2012. Contract Pricing in Consumer Credit Markets. Econometrica 80, 1387–1432.

[22] Erel, I., 2011. The Effect of Bank Mergers on Loan Prices: Evidence from the United States. Review of Financial Studies 24, 1068–1101.

[23] European Banking Authority, 2016. EBA report on SMEs and SME Supporting Factor.

[24] European Commission, 2017. Coping with the International Financial Crisis at the National Level in a European Context.

[25] Farrell, J., and Shapiro, C., 1990. Horizontal Mergers: An Equilibrium Analysis. American Economic Review 80, 107–126.

[26] Favara, G., and Giannetti, M., 2017. Forced Asset Sales and the Concentration of Outstanding Debt: Evidence from the Mortgage Market. Journal of Finance 72, 1081–1118.
[27] Focarelli, D., and Panetta, F., 2003. Are Mergers Beneficial to Consumers? Evidence from the Market for Bank Deposits. American Economic Review 93, 1152–1172.

[28] Giannetti, M., and Saidi, F., 2019. Shock Propagation and Banking Structure. Review of Financial Studies 32, 2499–2540.

[29] Gowrisankaran, G., Nevo, A., and Town, R., 2015. Mergers When Prices Are Negotiated: Evidence from the Hospital Industry. American Economic Review 105, 172–203.

[30] Gugler, K., and Siebert, R., 2007. Market Power Versus Efficiency Effects of Mergers and Research Joint Ventures: Evidence from the Semiconductor Industry. Review of Economics and Statistics 89, 645–659.

[31] Hausman, J., Leonard, G., and Zona, J. D., 1994. Competitive Analysis with Differentiated Products. Annales d’Économie et de Statistique 34, 159–80.

[32] Herrero-Batalla, T., and Teijeiro Pita da Veiga, L., 2013. La Reestructuración de las Cajas de Ahorros tras la Crisis. Cuadernos de Información Económica 229, 113–121.

[33] Hoshi, T., and Kashyap, A. K., 2004. Solutions to Japan’s Banking Problems: What Might Work and What Definitely Will Fail. Stigler Center Working Paper.

[34] Houston, J. F., James, C. M., and Ryngaert, M. D., 2001. Where do Merger Gains Come From? Bank Mergers from the Perspective of Insiders and Outsiders. Journal of Financial Economics 60, 285–331.

[35] International Monetary Fund, 2011. Germany: Financial Sector Stability Assessment. IMF Country Report, No.11/169.

[36] International Monetary Fund, 2012. Spain: The Reform of Spanish Savings Banks. IMF Country Report, No.12/141.

[37] Jayaratrane, J., and Strahan, P. E., 1996. The Finance-Growth Nexus: Evidence from Bank Branch Deregulation. Quarterly Journal of Economics 111, 639–670.

[38] Jiménez, G., Ongena, S., Peydró, J.-L., and Saurina, J., 2014. Hazardous Times for Monetary Policy: What do 23 Million Loans Say about the Impact of Monetary Policy on Credit Risk-taking? Econometrica 82, 463–505.

[39] Laeven, L., and Levine, R., 2009. Bank Governance, Regulation and Risk Taking. Journal of Financial Economics 93, 259–275.

[40] Lester, B., Shourideh, A., Venkateswaran, V., and Zetlin-Jones, A., 2019. Screening and Adverse Selection in Frictional Markets. Journal of Political Economy 127, 338–377.

[41] Mahoney, N., and Weyl, E. G., 2017. Imperfect Competition in Selection Markets. Review of Economics and Statistics 99, 637–651.
[42] Mayordomo, S., Rodriguez-Moreno, M., and Peña, J. I., 2014. Derivatives Holdings and Systemic Risk in the U.S. Banking Sector. Journal of Banking and Finance 45, 84–104.

[43] Mendoza Álvarez-Cedrón, J. M., 2011. Cajas de Ahorros: Nueva Normativa, Fundación Cajas Ahorros Confederada: Madrid.

[44] Motta, M., and Tarantino, E., 2018. The Effect of Horizontal Mergers, When Firms Compete in Prices and Investments. University of Mannheim Working Paper.

[45] Nevo, A., 2000. Mergers with Differentiated Products: The Case of the Ready-to-Eat Cereal Industry. Rand Journal of Economics 31, 395–421.

[46] Pagano, M., and Jappelli, T., 1993. Information Sharing in Credit Markets. Journal of Finance 48, 1693–1718.

[47] Panetta, F., Schivardi F., and Shum, M., 2009. Do Mergers Improve Information? Evidence from the Loan Market. Journal of Money, Credit and Banking 41, 673–709.

[48] Peek, J., and Rosengren, E. S., 1998. Bank Consolidation and Small Business Lending: It’s Not Just Bank Size that Matters. Journal of Banking and Finance 22, 799–819.

[49] Petersen, M. A., and Rajan, R. G., 1995. The Effect of Credit Market Competition on Lending Relationships. Quarterly Journal of Economics 110, 407–443.

[50] Sapienza, P., 2002. The Effects of Banking Mergers on Loan Contracts. Journal of Finance 57, 329–367.

[51] Scharfstein, D. S., and Sunderam, A., 2016. Market Power in Mortgage Lending and the Transmission of Monetary Policy. Harvard University Working Paper.

[52] Sovinsky Goeree, M., 2008. Limited Information and Advertising in the U.S. Personal Computer Industry. Econometrica 76, 1017–1074.

[53] Starc, A., 2014. Insurer Pricing and Consumer Welfare: Evidence from Medigap. Rand Journal of Economics 45, 198–220.

[54] Stein, J., 2002. Information Production and Capital Allocation: Decentralized versus Hierarchical Firms. Journal of Finance 57, 1891–1921.

[55] Werden, G. J., and Froeb, L. M., 1994. The Effects of Mergers in Differentiated Products Industries: Logit Demand and Merger Policy. Journal of Law, Economics, and Organization 10, 407–26.
A. For Online Publication – Data appendix

The information on loans is obtained from the Banco de España Central Credit Register (CCR). The CCR contains detailed monthly information on the credit position of each Spanish firm with each Spanish bank for all loans above 6,000 euros, including credit lines. Thus, we observe the virtual universe of bank exposures to non-financial corporations. For each loan, we know the size of the credit instrument, and other characteristics such as the maturity, creditworthiness or collateral. We aggregate the outstanding amount of credit of each firm in each bank at a monthly basis to obtain total credit (both drawn and undrawn in the case of credit lines).

Since the CCR reports the identifier of each bank and firm, we merge the loan-level data with the balance sheets of banks and firms. The data on banks is collected by the Banco de España in its role of banking supervisor. It is used to obtain proxies for bank size (logarithm of total assets), leverage (total liabilities over total assets), risk (NPL over total loans), liquidity (credit to deposits ratio), and profitability (ROA). The CCR is merged with the dataset of the Spanish non-financial firms that respond to the Integrated Central Balance Sheet Data Office Survey (CBI), which contains information from the accounts filed with the mercantile registries for more than 830,000 firms in 2006 and almost 850,000 firms in 2008 (as of the version of the dataset available in March 2020). This dataset also includes information on firms’ identifier, industry of operation, and other items of the balance sheet that enable us to obtain proxies for firms’ size, leverage and profitability (constructed analogously to those for the banks), liquidity (liquid assets over total assets) and risk (based on a Z-score whose construction we explain below). Moreover, we can identify each bank-firm relationship by aggregating loans within each bank-firm pair. This feature allows us to trace all the changes in credit flows between a given bank and a given firm over time. In addition, the dataset reports information on each bank-firm pair in which either firms have missed to pay back their debt obligations which enables us to compute the ratio of non-performing loans over total loans at bank-firm level. Finally, we use information on the FROB funds made available to each bank to assist with the restructuring, which are obtained from the FROB webpage.

An additional dataset we use consists of all the requests for information made by banks on firms’ credit situation to the Spanish CCR. Banks submit these requests when they receive a loan application by a firm to which they have no current exposures. This information enables us to identify firms that are seeking a bank loan as those that submit an application to a bank with which they have no outstanding credit balances. Importantly, given that the CCR contains information on the outstanding credit balances, we can infer whether or not the firm obtained the loan from either a new bank that requested information on the firm or from any other bank (including those with a previous positive exposure). We assume that the loan application is accepted when there is an increase in the outstanding credit balance between the month prior to the request for information and the following three months.

With all these sources of information, we build a panel of both real variables and credit data.\(^{26}\) We use the balance-sheet items of 37 savings banks that merged after November 2009 leading to 12 new institutions. Note that due to the restructuring program, the

\(^{26}\)Firm level variables and the log change in credit are winsorized such that we set the observations above (below) the 99% (1%) percentiles at the value of the 99% (1%) percentile.
individual savings banks that are part of standard M&As stop their individual activity at some point in time between November 2009 and November 2011 and start to operate as a single group. Thus, we need to aggregate in a similar way the credit institutions that are part of M&A and SIP, which continued reporting information at individual savings bank level until the end of our sample period. For this reason, we consolidate the information of savings banks that are part of the new credit institutions during the whole sample period. To this aim, we aggregate each balance-sheet item (total assets, total liabilities, total credit, NPL, total deposits and total income) of all credit institutions that are part of each new banking group and then obtain the corresponding ratio.

Finally, we describe the construction of the credit score we use in Table IX. The version of Altman’s Z-score we use was developed by Amat, Manini, and Renart (2017) for Spanish firms. It is obtained from the following specification:

\[
Z = -3.9 + 1.28 \times \frac{\text{Current Assets}}{\text{Current Liabilities}} + 6.1 \times \frac{\text{Net Worth}}{\text{Total Assets}} + 6.5 \times \frac{\text{Net Profit}}{\text{Total Assets}} + 4.8 \times \frac{\text{Net Profit}}{\text{Net Worth}}.
\]

We convert this score into a discrete variable that is equal to one if the firm is in the “distress” zone, which occurs when the resulting Z-score is negative, and zero otherwise.

A.1. Variable definition

Bank-level variables

- Capital Ratio: bank equity plus retained earnings over total assets.
- Credit/Deposits: volume of bank credit over volume of bank deposits.
- (Credit to RE and Construction)/TA: volume of bank credit to real estate and construction sectors over total assets.
- (FROB funds)/TA: funds made available by FROB to a savings bank relative to the savings bank’s total assets.
- M&A: dummy equal to one if consolidation takes place through a standard M&A and zero if consolidation takes place through a SIP.
- Market Share: ratio between the credit extended in a given province by a savings bank over the sum of credit extended by all savings banks in that province.
- Max(Market Share): the maximum market share of each savings bank across provinces in December 2008, computed using information on all active banks.
- NPL: the ratio of NPL over total loans.
- Post: dummy variable that is equal to one after the start of the restructuring program (November 2009) and zero beforehand. The exact timing depends on the definition of the dependent variable, as we explain in Section 4.4 and in the tables’ notes.

27See Amat, O., Manini, R., and Renart, M. A., 2017. Credit Concession Through Credit Scoring: Analysis and Application Proposal. Intangible Capital 13, 51–70.
• ROA: EBITDA over total assets.

• Total Assets (TA): bank total assets in billions of euros (BE).

Firm-level variables

• Liquidity/TA: value of firm liquid assets over total assets.

• Risky Firm: dummy equal to one if the Z-score constructed as in equation (11) is negative, and zero otherwise.

• ROA: EBITDA over total assets.

• Safe Firm: dummy equal to one if the Z-score constructed as in equation (11) is positive, and zero otherwise.

• Total Assets (TA): bank total assets in millions of euros (ME).

• Total Liabilities/TA: value of firm liabilities over total assets.

Bank-firm-level variables

• ∆ Log(Credit): change in the log value of credit balance between November 2007 and November 2009 (pre-event) and between November 2009 and November 2011 (post-event) for the firms with which the bank had a pre-existing credit exposure to the firm.

• Loan Application Rejected by M&A Bank: dummy equal to one if firm \(i \) applied for a loan to one or more savings banks that did a M&A and this application was rejected.

• Loan Application Rejected by M&A or SIP Bank: dummy equal to one if firm \(i \) applied for a loan to one or more savings banks that did a M&A or a SIP and this application was rejected.

• NPL: proportion of NPL in November 2011 based on firms that have no credit with the savings banks in our sample during the two years before November 2009.

Electronic copy available at: https://ssrn.com/abstract=3661412
B. For Online Publication – Additional tables and figures
Table B.I: Overview of the restructuring program

Date	Merging parties	New bank	Type	FROB	# Regions
November 2009	Caja Castilla la Mancha, Caja Castur	Cajastur	SIP	0	2
March 2010	Caixa Sabadell, Caixa Terrasa, Caixa Manlleu	Unnim	M&A	380	1
March 2010	Catalunya Caixa, Caixa Tarragona, Caixa Mauresa	Catalunya Caixa	M&A	1,250	1
March 2010	Caja España, Caja Duero, Caixa Burgos	Ceiss	M&A	525	1
April 2010	Caja Navarra, Caja Canarias, Caja Burgos	Banca Cívica(*)	SIP	977	3
May 2010	Unicaja, Caja Jaén	Unicaja	M&A	0	1
May 2010	La Caixa, Caixa Girona	La Caixa	M&A	0	1
June 2010	Caja Murcia, Caixa Penedés, Sa Nostra, Caja Granada	BMN	SIP	915	4
June 2010	Caja Madrid, Bancaja, Caja Ávila, Caja Segovia, Caja Rioja, Caja Laietana, Caja Insular de Canarias,	Bankia	SIP	4,465	6
June 2010	Caixa Galicia, Caixanova, Novacaixagalia	Novacaixagalia	M&A	1,162	1
July 2010	CAI, Caja Círculo de Burgos, Caja Badajoz	Caja 3	SIP	0	3
July 2010	Bilbao Bizkaia Kutxa, CajaSur	Bilbao Bizkaia Kutxa	SIP	800	2

Notes: The table uses information from International Monetary Fund (2012), Banco de España (2015), Banco de España (2017). (*): Banca Cívica later acquired Caja Sol-Caja Guadalajara in December 2010.
Table B.II: Evidence of un-coordinated lending conditions across SIP banks

	Rejected Application
Bank1	0.200*
	[0.117]
Bank2	0.252*
	[0.131]
Bank3	0.065
	[0.117]
Bank4	0.038**
	[0.016]
Bank5	.
Bank6	.
Observations	1,005
R-squared	0.884
Bank-Firm FE	YES

Notes: In this table, we test whether savings banks within a given SIP have similar lending policies after forming the group. We restrict our sample to savings banks that merged through SIPs and to the period that spans from November 2009 to November 2011. Our dependent variable is a dummy variable that is equal to one if a given savings bank has requested information on a firm during the previous period and there is not a later increase in the firm-bank credit balance, which can be interpreted as a rejection of a loan application. The dependent variable is equal to zero when the request of information is followed by an increase in the firm-bank credit balance, which can be interpreted as a successful credit application. We regress this variable on dummy variables for each specific savings bank and on SIP group-firm fixed effects. The use of these fixed effects allows us to control for the common treatment of a given firm within the SIP group, such that if all savings banks treat the firm “loan application” in the same way, the individual savings bank dummy variables should not be statistically significant. Note that due to the use of these fixed effects, our sample is restricted to those observations for which two savings banks within a given SIP group request information on the same firm during the period under consideration. Given that each SIP involves a different number of savings banks, to guarantee confidentiality, we just report the coefficient with lowest p-value within each SIP. A significant coefficient would support the statement that savings banks within a given SIP apply different lending policies to the same firm. Our sample consists of six SIP but due to the lack of observations on common requests of information within each SIP, we can only estimate the coefficients for four of the six SIP in our sample. One star denotes significance at the 10% level, two stars denote significance at the 5% level, and three stars denote significance at the 1% level.
Table B.III: Comparison between M&A and SIP trends

Panel A: M&A

	Credit (BE)	Interest Rate Spread (%)	NPL (%)
Pre Mean	79.33	0.90	1.49
Standard Deviation	4.45	0.36	0.98
Post Mean	32.15	2.20	3.10
Standard Deviation	23.00	0.59	0.39
Difference	-47.18***	1.30***	1.61***

Panel B: SIP

	Credit (BE)	Interest Rate Spread (%)	NPL (%)
Pre Mean	61.00	1.19	1.87
Standard Deviation	8.13	0.41	1.21
Post Mean	34.63	2.03	4.32
Standard Deviation	10.27	0.17	0.91
Difference	-26.38***	0.84***	2.45***

Panel C: Comparison M&A – SIP

	Credit (BE)	Interest Rate Spread (%)	NPL (%)
Difference	-20.80***	0.45***	-0.84***

Notes: Panel A compares the average credit, interest rates and NPL of savings banks that did a M&A before and after November 2009 based on the same semi-annual information used in Figure 3. We report the semi-annual mean and standard deviation for each subperiod and the difference of the two means. Panel B is analogous to Panel A but using savings banks that were part of SIP during the bank consolidation period. Panel C reports the difference between the last rows of Panel A and Panel B, which corresponds to the difference in differences mean. One star denotes significance at the 10% level, two stars denote significance at the 5% level, and three stars denote significance at the 1% level. For additional information on the construction of these variables, see the data appendix (in Appendix A).
VARIABLES	(1)	(2)	(3)	(4)
	∆Log(Amount)	∆Log(Amount)	OLS, weighted average IR	Weighted OLS, three maturity buckets
M&A	-0.036	0.044	-0.061	-0.005
	[0.022]	[0.033]	[0.043]	[0.032]
Observations	421,991	194,865	299	895
R-squared	0.109	0.492	0.860	0.799
Industry-Location-Size FE	YES	NO	NO	NO
Firm FE	NO	YES	NO	NO
Time FE	NO	NO	YES	YES
Maturity FE	NO	NO	NO	YES
Bank Controls	YES	YES	YES	YES
Firm Controls	YES	NO	NO	NO

Notes: Columns (1) and (2) report the results obtained from a regression analysis in which the dependent variable is the variation in the credit balance (both drawn and undrawn) of a given firm i in a bank j between November 2007 and November 2009 (i.e., before the beginning of the restructuring program). The dependent variable in columns (3) and (4) is the spread of the average monthly interest rate charged by a given credit institution j to new loans with size below 1 million euro granted at month t to non-financial institutions over 3-month Euribor. More specifically, in column (3) the interest rate is obtained as the weighted average across three maturity buckets (less than 1 year, between 1 and 5 years, more than 5 years), using as weights the new operations within each maturity bucket, such that the unit of observation is bank-month. In column (4) we use the interest rate corresponding to each maturity bucket, such that the unit of observation is bank-month-maturity and estimate the coefficients using a weighted OLS regression instead of the standard OLS regression we run in columns (1)–(3). The set of control variables in columns (1) and (2) includes the bank and firm characteristics in Table IV whereas in columns (3) and (4) we just use the bank characteristics (as listed in Table IV). We saturate the different specifications with alternative set of fixed effects: in column (1), we use industry-location-size-time fixed effects whereas in column (2) we use firm fixed effects. The specifications in column (3) and (4) include year-month fixed effects, and in column (4) we also add maturity fixed effects. The use of firm or time fixed effects implies that firm controls are not used in columns (2)–(4). Standard errors, in brackets, are clustered at firm level in columns (1) and (2) and at bank level in columns (3) and (4). One star denotes significance at the 10% level, two stars denote significance at the 5% level, and three stars denote significance at the 1% level. For additional information on the construction of these variables, see the data appendix (in Appendix A).
VARIABLES	(1)	(2)	(3)
Post x M&A	-0.194*****	-0.259*****	-0.145*****
	[0.024]	[0.035]	[0.017]
Observations	792,542	350,700	527,614
R-squared	0.118	0.493	0.543
Industry-Location-Size-Time FE	YES	NO	NO
Bank FE	YES	YES	NO
Firm-Time FE	NO	YES	NO
Firm-Bank FE	NO	NO	YES
Time FE	NO	NO	YES
Bank Controls	YES	YES	YES
Firm Controls	YES	NO	YES

Notes: This table is analogous to Table IV, with the only difference that in column (3) we use a different specification of fixed effects. Specifically, columns (1) and (2) correspond to columns (1) and (5) of Table IV, respectively, and are included for comparability. Instead, in column (3) we use firm-bank and time fixed effects. The use of firm fixed effects or firm-time fixed effects implies that firm controls are not used in column (2). Robust standard errors in brackets are clustered at firm level. One star denotes significance at the 10% level, two stars denote significance at the 5% level, and three stars denote significance at the 1% level. For additional information on the construction of these variables, see the data appendix (in Appendix A).
VARIABLES	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Post x M&A	-0.194***	-0.194***	-0.173	-0.041***	-0.259***	-0.263***	-0.192	-0.054***
	[0.022]	[0.022]	[0.154]	[0.011]	[0.036]	[0.037]	[0.157]	[0.017]
Observations	792,542	776,962	15,103	756,339	350,700	336,981	13,719	328,414
R-squared	0.118	0.119	0.221	0.477	0.493	0.496	0.445	0.720
Bank FE	YES	YES	YES	YES	NO	NO	NO	NO
Industry-Location-Size-Time FE	YES	YES	YES	YES	NO	NO	NO	NO
Firm-Time FE	NO	NO	NO	NO	YES	YES	YES	YES
Bank Controls	YES							
Firm Controls	YES	YES	YES	YES	NO	NO	NO	NO

Notes: This table is analogous to Table IV, with the only difference that robust standard errors in brackets are clustered at industry-location-size-time-bank level. With industry-location-size-time fixed effects, splitting the full sample of firms in column (1) into SME and Large firms gives rise to additional singleton that we exclude from our regressions; thus, the sum of the observations in columns (2) and (3) does not equal the observations in column (1). The use of firm-time fixed effects implies that firm controls are not used in columns (5)-(8). One star denotes significance at the 10% level, two stars denote significance at the 5% level, and three stars denote significance at the 1% level. For additional information on the construction of these variables, see the data appendix (in Appendix A).
Table B.VII: NPL – Clustering at the industry-province-size-bank level

VARIABLES	(1) All SME Large All (Avg Level)	(2) All SME Large All (Avg Level)	(3) All SME Large All (Avg Level)	(4) All SME Large All (Avg Level)	(5) All SME Large All (Avg Level)	(6) All SME Large All (Avg Level)	(7) All SME Large All (Avg Level)	(8) All SME Large All (Avg Level)
M&A	-0.027*** [-0.004]	-0.027*** [-0.004]	-0.028 [-0.020]	-0.018*** [-0.003]	-0.024*** [-0.005]	-0.024*** [-0.006]	-0.028 [-0.020]	-0.017*** [-0.004]
Observations	112,560 109,885 2,442	104,534	38,003	36,024	1,979	34,020		
R-squared	0.221	0.222	0.409	0.237	0.724	0.726	0.698	0.803
Industry-Location-Size FE	YES YES YES YES	NO NO NO NO NO	NO NO NO NO NO	YES YES YES YES YES				
Firm FE	NO NO NO NO YES	YES YES YES YES YES	YES YES YES YES YES	YES YES YES YES YES	YES YES YES YES YES	YES YES YES YES YES	YES YES YES YES YES	YES YES YES YES YES
Bank Controls	YES YES YES YES	YES YES YES YES YES	YES YES YES YES YES	YES YES YES YES YES	YES YES YES YES YES	YES YES YES YES YES	YES YES YES YES YES	YES YES YES YES YES
Firm Controls	YES YES YES YES	YES YES YES YES YES	YES YES YES YES YES	YES YES YES YES YES	YES YES YES YES YES	YES YES YES YES YES	YES YES YES YES YES	YES YES YES YES YES

Notes: This table is analogous to Table VI, with the only difference that robust standard errors in brackets are clustered at industry-location-size-time-bank level. With industry-location-size fixed effects, splitting the full sample of firms in column (1) into SME and Large firms gives rise to additional singletons that we exclude from our regressions; thus, the sum of the observations in columns (2) and (3) does not equal the observations in column (1). The use of firm fixed effects implies that firm controls are not used in columns (5)–(8). One star denotes significance at the 10% level, two stars denote significance at the 5% level, and three stars denote significance at the 1% level. For additional information on the construction of these variables, see the data appendix (in Appendix A).
Table B.VIII: NPL – Sample with all firms

VARIABLES	(1)	(2)	(3)	(4)
Post x M&A	-0.021**	-0.022**	-0.007	-0.043***
	[0.009]	[0.009]	[0.068]	[0.006]
Observations	792,542	776,962	15,103	756,339
R-squared	0.132	0.131	0.301	0.160
Industry-Location-Size-Time FE	YES	YES	YES	YES
Bank FE	YES	YES	YES	YES
Bank Controls	YES	YES	YES	YES
Firm Controls	YES	YES	YES	YES

Notes: This table is analogous to Table VI, with two differences. The first concerns the dependent variable. In columns (1) - (3), it is defined as the difference between the log of NPL between November 2009 and November 2007 for the pre-period and between November 2011 and November 2009 for the post period. In column (4) we consider an alternative definition, as given by the log of the average NPL over every quarter of the pre-event period and over every quarter of the period spanning between the announcement of the merger and November 2011 for the post period. The second is that we use the full sample of firms, so that the number of observations is the same as in Table IV, columns (1) - (4). With industry-location-size-time fixed effects, splitting the full sample of firms in column (1) into SME and Large firms gives rise to additional singletons that we exclude from our regressions; thus, the sum of the observations in column (2) and (3) does not equal the observations in column (1). One star denotes significance at the 10% level, two stars denote significance at the 5% level, and three stars denote significance at the 1% level. For additional information on the construction of these variables, see the data appendix (in Appendix A).
C. For Online Publication – Construction of the CoVar regression

We measure the marginal contribution of each credit institution to the risk of the system based on the CoVaR (i.e., the value at risk (VaR) of the financial system conditional on an institution being under distress) of Adrian and Brunnermeier (2016). This measure relies on the growth rate of the market value of total financial assets, which is defined as the growth rate of the product of the market value of a given institution \(i\) and its ratio of total assets to book equity. However, the shares of the savings banks involved in the restructuring program of the Spanish banking system over the period 2009–2011 were not listed. For this reason, we estimate a type of CoVaR measure based on bonds issued by Spanish banks. These issuances are collected in a proprietary dataset at the Banco de España.\(^{28}\) Thus, we adapt the CoVaR to measure the sensitivity of a representative Spanish banking system bond yield to the increase of the bonds yields of each specific credit institution. We first use quantile regressions at the percentiles 50 and 90 to estimate the following equations using weekly data:\(^{29}\)

\[
X_{i}^{j} = \alpha_{i} + \gamma_{i} M_{t-1} + \varepsilon_{i}^{j}
\]

\[
X_{t}^{\text{system}} = \alpha_{\text{system}i} + \beta_{\text{system}i} X_{i}^{j} + \gamma_{\text{system}i} M_{t-1} + \varepsilon_{\text{system}i}^{j}
\]

where \(X_{i}^{j}\) is the percentage change of institution \(j\) average bond yield which is obtained as a weighted average of the yields at a given week \(t\) of all individual outstanding bonds issued by institution \(j\). \(X_{t}^{\text{system}}\) is the percentage change of the bond index yield. This yield is just the equally weighted average of the average of yields of all institutions excluding institution \(j\). We consider two alternative measures of the system bond yield. First, we consider the average yield obtained from the the bonds issued by the savings banks used in our previous analyses. Second, we consider the average yield of a wider sample of banks, which consists of all Spanish banks with outstanding bonds during the period November 2007–November 2011. \(M_{t-1}\) is a set of state variables that includes the VIX, the percentage change in one-year Spanish sovereign bond, the spread of 12-month Euribor over 1-year sovereign bond, the slope (10-year minus 1-year sovereign bonds), and the differential of 10-year BBB corporate bond index minus 10-year sovereign bond.

We replace the coefficients obtained from equations (C.1) and (C.2) using quantile regressions, in the following equations to obtain VaR and CoVaR at level \(q\)% as follows:

\[
\text{VaR}_{i}^{j}(q) = \hat{\alpha}_{q}^{j} + \hat{\gamma}_{q}^{j} M_{t-1}
\]

\[
\text{CoVaR}_{i}^{j}(q) = \hat{\alpha}_{\text{system}i}^{j} + \hat{\beta}_{\text{system}i}^{j} \text{VaR}_{i}^{j}(q) + \hat{\gamma}_{\text{system}i}^{j} M_{t-1}
\]

\\
\(^{28}\)We verify that all securities in Dealogic are part of our sample, which in addition contains some others that are not in Dealogic. The sample of bonds used to estimate the CoVaR consists of those securities for which we have information on their yields in Datastream. This information is available for 32 out of 37 credit institutions that are used in our sample. In total, we use information on 372 senior unsecured bonds for which daily yields are available. Moreover, for some tests, we extend our sample with the issuances of 13 additional Spanish banks and savings banks.

\(^{29}\)The 90th percentile is associated to a higher risk than that of the 50th percentile, given that the higher the increase in bond yields, the higher the increase in the risk of that bond.
Then, we obtain the marginal contribution of a given institution j to the overall risk of the system, which is denoted by ΔCoVaR_j^t, as the difference between CoVaR_j^t conditional on the distress of institution j (i.e., $q=0.9$) and the CoVaR_j^t of the “normal” state of that institution (i.e., $q=0.5$):

$$\Delta \text{CoVaR}_j^t(90\%) = \text{CoVaR}_j^t(90\%) - \text{CoVaR}_j^t(50\%)$$ \hspace{1cm} (C.5)

The CoVaR is estimated on a weekly basis and we convert it to a monthly frequency by taking the maximum of the weekly CoVaRs within a given month. After estimating the monthly $\Delta \text{CoVaR}_j^t(90\%)$ for each institution, we perform a regression analysis in which the dependent variable is the ΔCoVaR of a given institution j in a given month t ($\Delta \text{CoVaR}_j^t(90\%)$) and regress it on the ratio of NPL of institution j plus a series of individual bank (X_{jt}) and global (W_t) control variables:

$$\Delta \text{CoVaR}_j^t(90\%) = \alpha_j + \beta \text{NPL}_{jt-1} + \delta X_{jt-1} + \eta W_{t-1} + \epsilon_{jt}$$ \hspace{1cm} (C.6)

where α_j denotes the use of bank fixed effects and X_{jt} refers to the use of monthly bank characteristics such as size (logarithm of total assets), leverage (total liabilities over total assets), risk (ratio of NPL), liquidity (credit over deposits), profitability (ROA), and FROB funds made available to each bank (relative to total assets). The set of global control variables includes: VIX index, (log) changes in Spanish and European bank bond indices and Spanish banks average bond yield.