Activation of subnanometric Pt on Cu-modified CeO₂ via redox-coupled atomic layer deposition for CO oxidation

Xiao Liu¹,², Shuangfeng Jia³, Ming Yang⁴,⁶, Yuanting Tang², Yanwei Wen², Shengqi Chu⁵, Jianbo Wang³, Bin Shan²✉ & Rong Chen¹✉

Improving the low-temperature activity (below 100 °C) and noble-metal efficiency of automotive exhaust catalysts has been a continuous effort to eliminate cold-start emissions, yet great challenges remain. Here we report a strategy to activate the low-temperature performance of Pt catalysts on Cu-modified CeO₂ supports based on redox-coupled atomic layer deposition. The interfacial reducibility and structure of composite catalysts have been precisely tuned by oxide doping and accurate control of Pt size. Cu-modified CeO₂-supported Pt sub-nanoclusters demonstrate a remarkable performance with an onset of CO oxidation reactivity below room temperature, which is one order of magnitude more active than atomically-dispersed Pt catalysts. The Cu-O-Ce site with activated lattice oxygen anchors deposited Pt sub-nanoclusters, leading to a moderate CO adsorption strength at the interface that facilitates the low-temperature CO oxidation performance.
The fuel economy of vehicles has been greatly improved with the development of turbocharged engines, exhaust heat recovery systems and hybrid powertrains1,2. Due to the much lower exhaust temperature in these vehicles, after-treatment catalysts must work efficiently at low temperatures for the recirculation usage of exhaust gas. The general consensus is that the next generation catalyst must be active in the sub 100 °C range to reduce or eliminate cold-start emissions3–5. To meet the requirement for >90% abatement of emissions (CO, HC, and NO\textsubscript{x}) at 150 °C3, the challenge is to develop highly efficient catalysts at low temperatures. Despite considerable progress made in low-temperature exhaust catalysts, such as Au nanoparticles and CeO\textsubscript{2}7,8, the harsh working environment of automotive catalysts would severely deteriorate the stability of such nanocatalysts. By far, Pt is still the most widely used catalyst component in the low-temperature exhaust catalysts, such as Au nanoparticles and sub-nanocatalysts with deposited Pt sub-nanoclusters. The Pt mass loading of Pt\textsubscript{1}/Ce is more than that of Pt\textsubscript{1}/CeCu, which is consistent with the 2097 cm-1 peak detected in the diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) spectrum of CO adsorption (Supplementary Fig. 4). Applying the same ALD process to Pt\textsubscript{1}/Ce Cu, the HAADF-STEM image of Pt\textsubscript{1}/CeCu also shows atomically dispersed Pt atoms in the Pt\textsubscript{1}/CeCu catalyst with the sequence MeCpPtMe\textsubscript{3}O\textsubscript{2–}+ as shown in Fig. 1d. However, the peak at 2097 cm-1 in the DRIFTS spectrum of CO adsorption on Pt\textsubscript{1}/Ce is greater than that of Pt\textsubscript{1}/Ce (Supplementary Fig. 4), which can be attributed to the larger Pt mass loading of Pt\textsubscript{1}/CeCu induced by surface Cu dopants. The numbers of Pt atoms per unit area are also consistent with that calculated by the Pt mass loading of Pt\textsubscript{1}/Ce Cu, subnanometric Pt clusters are observed in the HAADF-STEM images of Pt\textsubscript{1}/Ce Cu catalysts with the redox-coupled ALD (Fig. 1c, e), with mean particle sizes of 0.63 ± 0.18 and 0.75 ± 0.11 nm, respectively (Supplementary Fig. 5). The average distances of Pt clusters in a ceria nanorod are 0.63 ± 0.18 and 0.75 ± 0.11 nm, respectively (Supplementary Fig. 5). The average distances of Pt clusters in a ceria nanorod are 0.63 ± 0.18 and 0.75 ± 0.11 nm, respectively (Supplementary Fig. 5). The average distances of Pt clusters in a ceria nanorod are 0.63 ± 0.18 and 0.75 ± 0.11 nm, respectively (Supplementary Fig. 5).
which is due to the high dispersion and low crystallinity of Pt clusters. The presence of Cu in Pt\textsubscript{n}/CeCu catalyst was further confirmed by energy dispersive spectroscopy (EDS) (Supplementary Fig. 8). STEM-EDS elemental maps (Fig. 1f) were produced to study the distribution of Cu in the catalyst. Clearly, the concentrations of Cu dopants near the Pt clusters are higher than other regions, which is beneficial to tune the reducibility of the support near the interfaces and affect the activity of composite catalyst.

CO oxidation performance evaluation. CO oxidation tests were then performed to investigate catalytic activities of supported Pt catalysts. Figure 2a shows the CO conversion rates of prepared catalysts as a function of reaction temperature. Interestingly, Pt\textsubscript{n}/CeCu exhibits an onset of CO oxidation reactivity below the room temperature, and the \(T_{50} \) (50% CO conversion temperature) is decreased to 34 °C, which is much lower than that of Pt\textsubscript{n}/Ce (91 °C), Pt\textsubscript{n}/CeCu (116 °C), and Pt\textsubscript{n}/Ce (166 °C). The slightly shifts of CO conversion curves in cycling tests of Pt\textsubscript{n}/CeCu (Supplementary Fig. 9) indicate the structural stability of the constructed Pt/oxide interface, which can be attributed to the gas-phase based ALD method that has minimal detrimental effect on the surface structure of oxide supports35. The concentration of Cu dopants is kept low in Ce\textsubscript{0.99}Cu\textsubscript{0.01}O\textsubscript{2} to avoid the formation of CuO\textsubscript{x} species, and catalytic testing show that the contribution of our Ce\textsubscript{0.99}Cu\textsubscript{0.01}O\textsubscript{2} support to reactivity below 100 °C is negligible (Supplementary Fig. 10), in agreement with the comparable activity of Cu-doped CeO\textsubscript{2} catalyst in previous study41. It can be concluded that the enhanced activity of Pt\textsubscript{n}/CeCu originates from the highly dispersed Pt sub-nanoclusters and the synergy of introduced Cu dopants in the Ce\textsubscript{0.99}Cu\textsubscript{0.01}O\textsubscript{2} supports. In order to eliminate the effects of Pt’s mass loading for fair comparison, Pt\textsubscript{n}/CeCu was diluted by an appropriate amount of Ce\textsubscript{0.99}Cu\textsubscript{0.01}O\textsubscript{2}, and CO oxidation activity was determined. The catalyst still exhibits better low-temperature CO oxidation activity with a \(T_{50} \) of 54 °C after dilution (Supplementary Fig. 11). In addition, the effect of Cu dopants concentration was also investigated (Supplementary Fig. 12). The CO oxidation activities go down when Ce/Cu molar ratio increases to 95:5, in part due to the separated CuO\textsubscript{x} species that adversely affect the interfacial structures of composite catalysts (Supplementary Fig. 13). Furthermore, the intrinsic activities of synthesized catalysts have been evaluated by kinetic tests as shown in Fig. 2b. The calculated apparent
activation energy of Ptn/CeCu (39.49 kJ mol\(^{-1}\)) is much lower than that of Ptn/Ce (97.62 kJ mol\(^{-1}\)) and other two Pt single atoms catalysts. The reaction orders of CO and O\(_2\) over Ptn/CeCu are close to zero (Supplementary Fig. 14), which indicates the negligible competitive adsorption between CO and O\(_2\) during CO oxidation at the interfaces of Pt\(_n\)/Ce. The activation energy of Ce\(_{0.99}\)Cu\(_{0.01}\)O\(_2\) support is determined to be 77.60 kJ mol\(^{-1}\) (Supplementary Table 1), close to that in previous studies\(^{42}\). Cu dopants also cause the shift of reduction peaks of surface oxygen (250–550 °C) of CeO\(_2\) supports for Pt\(_n\)/Ce and Pt\(_n\)/CeCu (Supplementary Fig. 15), close to that in previous studies\(^{42,43}\).

Interfacial structures and activities investigations. The interfacial oxygen activation capability and CO adsorption strength were then determined to clarify the root cause of the superior low-temperature CO oxidation activity of Pt\(_n\)/CeCu. On one hand, the surface oxygen vacancies of catalysts were characterized by the concentrations of Ce\(^{3+}\) ([Ce\(^{3+}\)]) calculated based on two sets of peaks in the Ce 3d X-ray photoelectron spectroscopy (XPS) spectra as shown in Fig. 2c. The calculated [Ce\(^{3+}\)] of catalysts followed the order: Pt\(_n\)/CeCu > Pt\(_n\)/Ce > Pt\(_n\)/Ce > Pt\(_n\)/Ce, implying that Cu dopants can considerably increase the concentrations of surface oxygen vacancy, which is consistent with the O 1s XPS results (Supplementary Fig. 16 and Supplementary Table 2). In addition, Raman spectrum analysis shows that Pt\(_n\)/CeCu and Pt\(_n\)/CeCu catalysts have a stronger defect-induced vibration mode than Pt\(_n\)/Ce and Pt\(_n\)/Ce (Supplementary Fig. 17). The temperature-programmed reduction by hydrogen (H\(_2\)-TPR) has also been performed to investigate the surface reducibility of our prepared catalysts (Supplementary Fig. 18). The appearance of the reduction peak at 242 °C for Ce\(_{0.99}\)Cu\(_{0.01}\)O\(_2\) support can be assigned to the reduction of Cu–O–Ce species\(^{42,43}\). Cu dopants also cause the shift of reduction peaks of surface oxygen (250–550 °C) and bulk oxygen (about 710 °C) of CeO\(_2\) supports for Pt\(_n\)/Ce and Pt\(_n\)/Ce to low temperatures. The reducibility of surface oxygen follows the sequences of Pt\(_n\)/CeCu > Pt\(_n\)/CeCu > Pt\(_n\)/Ce > Pt\(_n\)/Ce, indicating that both Cu doping and change of Pt size can affect the surface reducibility of our prepared catalysts.

On the other hand, in situ DRIFTS spectra of Pt\(_n\)/CeCu in Fig. 2d clearly show the loss of adsorbed CO molecules under He flow after CO exposure at the room temperature. The stretching signals of formed CO\(_2\) molecules under CO flow also decrease, which are related to the decreased CO adsorption signals (Supplementary Fig. 19). When the flow is switched from He to O\(_2\), the signal of adsorbed CO molecules is further weakened. The appearance of stretching bands of CO\(_2\) molecule at 2360 cm\(^{-1}\) and 2330 cm\(^{-1}\) suggests that the adsorbed CO molecules on Pt\(_n\)/CeCu can be further oxidized by activated O\(_2\) molecules at the interface, which is typical in Pt/Co\(_2\) catalysts\(^{45,46}\). In order to eliminate the effects of interfacial active oxygen, the in situ DRIFTS spectra of CO adsorption of Pt\(_n\)/CeCu after pretreatment under CO flow have been collected, which still show the loss of adsorbed CO molecules indicating weakened CO bonding strength on Pt clusters due to Cu dopants (Supplementary Fig. 20). As a
comparison, in situ DRIFTS spectra of Pt\textsubscript{5}/Ce (Supplementary Fig. 21) show that Pt sub-nanoclusters are poisoned by strongly adsorbed CO molecules. The temperature-programmed desorption of CO has also been performed to investigate the desorption behavior of CO on Pt\textsubscript{5}/CeCu and Pt\textsubscript{5}/Ce (Supplementary Fig. 22). The CO desorption found at \(-19 \) °C for Pt\textsubscript{5}/CeCu catalyst along with the formation of CO\textsubscript{2} can be attributed to the CO oxidation reaction at interfaces. The desorption temperature of CO on Pt\textsubscript{5}/CeCu is much lower than that on Pt\textsubscript{5}/Ce, indicating the weakening of interfacial CO adsorption by Cu dopants. Thus, the interfacial oxygen site of Pt\textsubscript{5}/CeCu is activated and CO adsorption strength at the interface is weakened, contributing to the unique interfacial structure and reducibility in the Pt sub-nanoclusters and Cu-doped CeO\textsubscript{2} support composites.

To further clarify the interfacial structures of supported Pt catalysts, X-ray absorption fine structure (XAFS) spectra tests were performed. The white line intensity of Pt L\textsubscript{III}-edge XANES spectra in Fig. 3a indicates that oxidized Pt species exist in all composite catalysts, qualitatively indicating electron transfer between Pt and oxide supports. The white line intensity of the catalysts follows the order: Pt\textsubscript{5}/CeCu > Pt\textsubscript{5}/Ce > Pt\textsubscript{5}/CeCu, implying that Pt single atoms transfer larger numbers of electrons to oxide supports than Pt sub-nanoclusters. Moreover, the white line intensities of Pt\textsubscript{5}/CeCu and Pt\textsubscript{5}/Ce are close to that of PtO\textsubscript{2}, indicating that the supported Pt single atoms are mainly in oxidized states. The white line intensity of Pt\textsubscript{5}/Ce is similar to that of Pt\textsubscript{5}/CeCu, implying that the valence states of Pt catalysts are dependent on the morphologies, which is consistent with the Pt 4f XPS analysis (Supplementary Fig. 23 and Supplementary Table 2). The Fourier transform extended X-ray absorption fine structure (EXAFS) spectra of Pt\textsubscript{5}/CeCu and Pt\textsubscript{5}/Ce in Fig. 3b show one prominent peak at about 1.7 Å, which is assigned to the formed Pt–O bond between Pt single atoms and oxide supports. The EXAFS spectra of Pt\textsubscript{5}/CeCu and Pt\textsubscript{5}/Ce exhibit a decrease in signal from the Pt–O contribution and very weak signal at the range of Pt–Pt bonds compared to Pt foil. The small Pt–Pt contribution can be attributed to the low crystallinity and high disorder of Pt atoms for the deposited Pt clusters at relatively low temperature as presented in the HADDF-STEM images, which agrees with previous reports20,40.

By combining the results of HAADF-STEM images and EXAFS spectra, stable interface structures of Pt single atoms and Pt\textsubscript{5} clusters supported on CeO\textsubscript{2} (110) slabs (Pt\textsubscript{5}/Ce and Pt\textsubscript{5}/Ce) were constructed and optimized by density functional theory (DFT) calculations (Supplementary Figs. 24, 25). Pt\textsubscript{5}/CeCu and Pt\textsubscript{5}/CeCu models have an interfacial Cu dopant replacing a Ce atom (Supplementary Fig. 25). As shown in Fig. 3c, the calculated Bader charges47 of interfacial Pt atoms (Q\textsubscript{B}) show the same trend as the white line intensity that are related to electron transfer at the interface. Moreover, bond lengths between Pt atoms and interfacial oxygen (L\textsubscript{Pt–O}), and coordinate number of interfacial Pt atoms (CN\textsubscript{Pt–O}) also show the same trend as L\textsubscript{Pt–O} and CN\textsubscript{Pt–O} from the fitting data of EXAFS results (Supplementary Fig. 26 and Supplementary Table 3), validating the constructed models. The formation of Pt sub-nanoclusters on Pt\textsubscript{5}/CeCu and Pt\textsubscript{5}/Ce leads to lengthened Pt–O bonds and decreased CN\textsubscript{Pt–O}, which is associated with decreased electron transfer compared to Pt\textsubscript{5}/CeCu and Pt\textsubscript{5}/Ce. The relatively small CN\textsubscript{Pt–O} values of Pt\textsubscript{5}/Ce and Pt\textsubscript{5}/CeCu can be related to the highly catalytic activity compared with Pt\textsubscript{5}/Ce and Pt\textsubscript{5}/CeCu, respectively39.

CO oxidation mechanism studies. The adsorption energies of CO on the supported Pt single atom and cluster have been
calculated as shown in Supplementary Fig. 27. The top Pt atoms for both Pt5/Ce and Pt5/CuCe will be poisoned by CO molecule with overbinding that is consistent with our DRIFTS results, i.e.: some CO molecules remained after O2 flow was introduced (Fig. 2d). Therefore, we investigated the CO oxidation processes at the interface of catalysts based on the Mars-van Krevelen mechanism, where adsorbed CO molecules first react with interfacial lattice oxygen along creating an oxygen vacancy (Ov). The formation energies of Ov at the interface of our constructed interfaces of oxide slabs supported a larger Pt14 cluster have also been calculated (Supplementary Fig. 32), which exhibit the similar process of co-adsorbed CO and O2 molecules at interfaces containing an Ov show that Pt5/CeCu exhibits the highest activity with the lowest energy barrier of 0.53 eV (Supplementary Fig. 33). Therefore, both activated interfacial oxygen and moderate CO adsorption strength are keys to the excellent catalytic activity of Pt5/CeCu.

Discussion

Precisely controlled interfacial structures of Pt/CeO2 have been proposed by regulating oxide doping and Pt cluster size and employing the redox-coupled ALD method. Cu dopants have been introduced to modulate the surface reducibility of CeO2 support, which led to the formation of Cu2+ ions in the CeO2 lattice and helped create active Cu-O-Ce sites for tuning the interfacial structures and anchoring the Pt catalysts. The concentration of Cu dopants is kept low to avoid the segregation of CuO species that are unfavorable for the activity enhancement of supported Pt catalysts. The size of deposited Pt catalysts in the range of sub-nanometer clusters to single atoms are well controlled by our proposed ALD recipe, which can directly affect the coordination environment of interfacial Pt atoms. The supported Pt single atoms with larger coordination number of Pt-O show lower activity than sub-nanometric Pt clusters with smaller coordination number of Pt-O29,30. Compared with subnanometric Pt clusters on CeO2 supports, Cu dopants at the interfaces can not only activate the interfacial oxygen, but also weaken the adsorption of CO molecule at interfacial Pt atoms, which are the keys to promoting CO oxidation with lattice oxygen at room temperature in Pt/CeO2 catalysts45,46. The experimental evidence agrees well with our proposed catalytic reaction path at the interfacial sites following the Mars-van Krevelen mechanism based on DFT calculations. The resulting Pt sub-nanoclusters on Cu-doped CeO2 exhibit excellent activity with an onset of CO oxidation reactivity below room temperature. Our study lays the foundation for designing and preparing highly efficient Pt catalysts for low-temperature exhaust abatement.

Methods

Catalysts preparation. The CeO2 nanorod supports were prepared by hydrothermal method. In details, we first dissolved Ce(NO3)3·6H2O and NaOH (1.96 and 16.88 g, Sinopharm Chemical Reagent Co., Ltd) into 40 ml and 30 ml of deionized water, respectively. After both solutions were cooled down to room temperature, the NaOH solution was slowly dropped into the Ce(NO3)3·6H2O solution with continuously magnetic stirring. Then, the mixture solution was poured into a 100 ml Teflon bottle, which was subsequently sealed in a stainless steel vessel autoclave. The hydrothermal reaction was performed at 100 °C for 24 h. After centrifugation collection, repetitive wash and vacuum dry (80 °C), the CeO2 precursors were calcined at 500 °C for 4 h to obtain the final CeO2 nanorod supports. In order to tune the reducibility of CeO2 supports, Cu dopants were introduced by substituting part of Ce(NO3)3·6H2O with a certain amount of Cu(NO3)2·3H2O (Sinopharm Chemical Reagent Co., Ltd) before being dissolved into deionized water. The molar ratio of Ce and Cu was kept as 99:1. The finally obtained Cu-doped CeO2 nanorod support was denoted as Ce0.99Cu0.01O2. As a comparison, the Cu-doped CeO2 nanorod support with the Ce/Cu molar ratio of 95:5 was also prepared, which was denoted as Ce0.95Cu0.05O2.

The Pt single atoms and sub-nanoclusters were loaded on CeO2 and Ce0.99Cu0.01O2 nanorod supports via ALD method. The ALD processes were performed in a custom-made fluidized-bed reactor (AngstromBlock Scale-F015 ALD system) as described in our previous studies44,45. For each ALD process, about 200 mg nanorod supports were loaded in a designed holder, which were firstly fluidized by 200 mL min−1 of N2 at 150 °C for 30 min. The Pt single atoms were loaded on CeO2 and Ce0.99Cu0.01O2 nanorod supports after one cycle of Pt ALD with trimethyl(methylcyclopentadieny)platinum (Me3CpPtMe3, 98%, Sigma-Aldrich) and ultrahigh purity O2 as precursors. The Me3CpPtMe3 precursor, which was kept at 65 °C during Pt ALD, was introduced into the reactor at 150 °C with the pulse time and purge time of 100 s and 100 s. Then, the reactor was rapidly heated to 200 °C. 500 mL min−1 of O2 was subsequently introduced into the reactor with the pulse time and purge time of 600 and 200 s. For the preparation of Pt5/CeCu, one cycle of redox-coupled Pt ALD was performed. The processes of Pt precursor and O2 were the same as that of Pt single atom preparation. After the purge step of O2, 500 mL min−1 of ultrahigh purity H2 was

Fig. 4 Oxidation energetics of adsorbed CO molecules by interfacial oxyn1g of Pt5/Ce, Pt5/CeCu and Pt5/CeCu. Source data are provided as a Source Data file.
subsequently introduced into the reactor at 200 °C with the pulse time and purge time of 600 and 200 s.

Characterizations. The morphology of CeO2 nanorod supports was characterized by transmission electron microscopy (TEM, Tecnai G2 F30 electron microscope, FEI). The aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and energy dispersive spectroscopy (EDS) spectra were obtained on a JEOL JEM-ARM200F TEM. The X-ray diffraction (XRD) patterns were recorded by the PANalytical X’Pert Pro with a Cu Kα radiation source. The mass loading of Pt on catalysts was analyzed by inductively coupled plasma atomic emission spectrometer (ICP-OES) on Optima 4300 DV spectrometer. The Raman spectra were recorded on a Renishaw inVia Reflex in a range from 200 to 800 cm⁻¹ using an excitation laser line of 532 nm. The X-ray photoelectron spectroscopy (XPS) spectra were obtained with an AXIS-ULTRA DLD-600W XPS spectrometer in high vacuum environment (~10⁻7 Pa) after all samples are kept in the XPS chamber overnight, which were calibrated by the peak of C 1s at 284.8 eV.

The in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) spectra of CO on prepared catalysts were collected by wide band mercury cadmium telluride detector on the Nicolet i550 FTIR spectrometer (ThermoFisher Scientific). The Praying Mantis TM diffuse reflection accessory (Harrick Scientific Products Inc.) was used with ZnSe windows. The catalysts were first pretreated by 30 mL min⁻¹ of ultrahigh purity N2 at room temperature for 30 min. Then the background was collected. Then, the gas was switched to 30 mL min⁻¹ of 1% vol. CO balanced by N2. The CO DRIFTS spectra were collected after 10 min. In order to study the adsorption strength of CO on catalysts, the gas was subsequently switched to 30 mL min⁻¹ of ultrahigh purity He. The DRIFTS spectra of CO adsorption on catalysts were collected every 2 min. The temperature-programmed reduction (H2-TPR) was performed by a chemisorption analyzer (AMI-300 series, Altamira Instrument).

The total amount of CO which was supported by quartz wool in a U-type quartz tube reactor, which was pretreated using 30 mL min⁻¹ of Ar at 100 °C for 30 min. The feed was switched to 30 mL min⁻¹ of 10% vol. H2 balanced with Ar, when the catalyst was cooled down to room temperature. Then, the reactor was heated to 800 °C with a ramp rate of 5 °C min⁻¹ and thermal conductivity detector was utilized to monitor the signal of H2 consumption.

The temperature-programmed desorption of CO (CO-TPD) was performed by the VDSorb-91x chemisorption analyzer. 100 mg of the catalyst was supported by quartz wool in a U-type quartz tube reactor. After being pretreated using 50 mL min⁻¹ of He at 200 °C for 30 min, the catalyst was cooled down to 100 °C by liquid nitrogen trap under He flow. The catalyst was exposed to 50 mL min⁻¹ of 10 vol. % CO balanced by He for 30 min, then the feed was switched to He to purge the catalyst until the baseline was stable. CO-TPD curves were obtained under the He flow by using the AMETEK quadrupole mass spectrometer to monitor the signal of CO (m/z = 28) and CO2 (m/z = 44), when the reactor was heated to 600 °C with a ramp rate of 5 °C min⁻¹.

The X-ray absorption fine structure (XAFS) spectra were obtained at the 11W1 beamline of Beijing synchrotron radiation facility. The incident photon beam was directed onto a U-shaped quartz tube reactor which was extended X-ray absorption fine structure (EXAFS) reference sample of CeO2 nanorod supports. Catalysts with different Pt loadings were fitted by the Pt foil and PtO2 phases in the Debye–Scherer equation. 49

Activity evaluation. The CO oxidation activity evaluation of catalysts was performed by the VDSorb-91x chemisorption analyzer. 50 mg of catalysts without any pre-treatments were packed between quartz wool in a U-type quartz tube reactor. The feed gas of the feed gas was 100 mL min⁻¹ which was a mixture of CO (1% vol.), O2 (10% vol.) and N2. The temperature of reactor was linearly heated from ~20 to 200 °C with a ramp rate of 2 °C min⁻¹. The analysis of outlet gas mixture was performed by a chemisorption analyzer (AMI-300 series, Altamira Instrument). 50

where \(\rho_{\text{Pt}} \) and \(\rho_{\text{PtO2}} \) are the partial pressure of CO in the outlet gas mixture before CO oxidation, after the total conversion of CO and at a reaction temperature \(T \), respectively. \(\rho_{\text{Pt}}^{\text{start}} \) and \(\rho_{\text{Pt}}^{\text{end}} \) were calibrated by the portable emission analyzer (MEXA-584L, Horiba). The kinetics tests were performed with CO conversion below 15% to eliminate the thermal and diffusion effects. The inert quartz was used to dilute the catalysts to make sure the appropriate CO conversion. The turnover frequency (TOF) of catalysts at a reaction temperature \(T \) was tested by decreasing the mass of catalysts, which was calculated by

\[
\text{TOF} = \frac{\rho_{\text{Pt}} \times \rho_{\text{CO}}}{n_{\text{Pt}}} \times 100\% \text{ s}^{-1} \text{ mol}^{-1},
\]

where \(p, V, R \) and \(w_{\text{CO}_2} \) were the pressure of feed gas (101325 Pa), the flow rate of feed gas (1.67 × 10⁻⁴ m³s⁻¹), universal gas constant (8.314 mol⁻¹ s⁻¹ K⁻¹) and vol. percentage of CO (1%), respectively. \(n_{\text{Pt}} \) was the mole mass of Pt in catalysts determined by ICP-OES method. According to the slope of the Arrhenius plots, the activation energies \(E_a \) of catalysts were calculated.

DFT calculations. Spin-polarized calculations were carried out based on DFT with the Vienna Ab initio Simulation Package (VASP) using the Perdew–Burke–Ernzerhof (PBE) functional.51 The ionic cores were described by projector augmented wave (PAW). In order to correct the on-site Coulomb and exchange interactions, PBE+U method with U = 5.0 eV was applied to describe Cu 4f orbital.52,53 The energy cutoff of plane wave basis was set to 400 eV. The convergence criterion of atomic structural optimization was 0.005 eV Å⁻¹. The CeO2 (110) slab was built with vacuum layer thicknesses larger than 15 Å to avoid the interaction between two periodic slabs. The Brillouin zone was sampled at the Γ point. The climbing image nudged elastic band (CI-NEB)57 method with six intermediate images was used to calculate the minimum energy paths of CO oxidation at the interfaces of Pt/CeO2 catalysts.

Data availability The source data underlying Figs. 2-4 and Supplementary Figs. 2-4, 7-23, 25, 26, 31 are provided as a Source Data file. Extra data are available from the corresponding authors upon request.

Received: 1 February 2020; Accepted: 4 August 2020; Published online: 25 August 2020

References

1. Host, R., Moinian, P., Fried, M. & Bogi, B. Exhaust system thermal management: a process to optimize exhaust enthalpy for cold start emissions reduction. SAE Tech. Pap. 2017, 01–0141 (2017).

2. Getsoian, A., Theis, J. R., Paxton, W. A., Lance, M. J. & Lambert, C. K. Remarkable improvement in low temperature performance of model three-way catalysts through solution atomic layer deposition. Nat. Catal. 2, 614–622 (2019).

3. Lambert, C. K. Current state of the art and future needs for automotive exhaust catalysis. Nat. Catal. 2, 554–557 (2019).

4. Lee, J., Theis, J. R. & Kyriakidou, E. A. Vehicle emissions trapping materials: successes, challenges, and the path forward. Appl. Catal. B: Environ. 243, 397–414 (2019).

5. Nie, L. et al. Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation. Science 358, 1419–1423 (2017).

6. Zammit, M. et al. Future Automotive Aftertreatment Solutions: The 150 °C Challenge Workshop Report (US Department of Energy, 2013).

7. Min, B. K. & Friend, C. M. Heterogeneous gold-based catalysis for green chemistry: low-temperature CO oxidation and propane oxidation. Chem. Rev. 107, 2709–2724 (2007).

8. Xie, X. W., Li, Y., Liu, Z. Q., Haruta, M. & Shen, W. J. Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature 458, 746–749 (2009).

9. Wang, A. Y. & Olsson, L. The impact of automotive catalytic action on the United Nations sustainable development goals. Nat. Catal. 2, 566–570 (2019).

10. Tauster, S. J., Fung, S. C. & Garten, R. L. Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide. J. Am. Chem. Soc. 100, 170–175 (1978).

11. Farrauto, R. J., Deeba, M. & Alerasool, S. Gasoline automobile catalysis and its historical journey to cleaner air. Nat. Catal. 2, 603–613 (2019).

12. Vayssilov, G. N. et al. Support nanostructure boosts oxygen transfer to catalytically active platinum nanoparticles. Nat. Mater. 10, 310–315 (2011).

13. Kopelent, R. et al. Catalytically active and spectator Ce3+ in ceria-supported inorganic nanocrystals. Angew. Chem. Int. Ed. 54, 8728–8731 (2015).

14. Liu, L. Q. et al. Low-temperature CO oxidation over supported Pt, Pd catalysts: Particular role of FeO2 support for oxygen supply during reactions. J. Catal. 274, 1–10 (2010).

15. Liu, L. C. & Corma, A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 118, 4981–5079 (2018).

16. Gargiglino, M. et al. Control of metal nanocrystal size reveals metal-support interface role for ceria catalysts. Science 341, 771–773 (2013).

17. Gänzler, A. M. et al. Tuning the Pt/CeO2 interface by in situ variation of the Pt particle size. ACS Catal. 8, 4800–4811 (2018).
18. Lykhach, Y. et al. Counting electrons on supported nanoparticles. Nat. Mater. 15, 284–289 (2016).
19. Benyia, A. & Higashi, S. Towards dense single-atom catalysts for future automotive applications. Nat. Catal. 2, 590–602 (2019).
20. Qiao, B. T. et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 3, 634–641 (2011).
21. Bruix, A. et al. Maximum noble-metal catalysis in catalytic materials: atomically dispersed single-atom platinum. Angew. Chem. Int. Ed. 53, 10525–10530 (2014).
22. Chen, Y. et al. Identifying size effects of Pt as single atoms and nanoparticles supported on FeOx for the water-gas shift reaction. ACS Catal. 8, 859–868 (2018).
23. Qiao, B. T. et al. Ferric oxide-supported Pt subnano clusters for preferential oxidation of CO in H2-rich gas at room temperature. ACS Catal. 4, 2113–2117 (2014).
24. Stephens, I. E. L., Elias, J. S. & Shao-Horn, Y. The importance of being together. Science 350, 164–165 (2015).
25. Ding, K. L. et al. Identification of active sites in CO oxidation and water-gas shift over supported Pt catalysts. Science 350, 189–192 (2015).
26. Jones, J. et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 353, 150–154 (2016).
27. Feng, Y. X. et al. Correlating DFT calculations with CO oxidation reactivity on Ga-doped PtO/CeO2 single-atom catalysts. J. Phys. Chem. C. 122, 22460–22468 (2018).
28. Li, P. et al. In situ formation of isolated bimetallic PtRe sites of single-dispersed Pt on CeO2 for low-temperature CO oxidation. ACS Appl. Mater. Interfaces 10, 38134–38140 (2018).
29. Ke, J. et al. Strong local coordination structure effects on subnanometer PtOx clusters over CeO2 nanowires probed by low-temperature CO oxidation. ACS Catal. 5, 5164–5173 (2015).
30. Wang, H. et al. Surpassing the single-atom catalytic activity limit through paired Pt-O-Pt ensemble built from isolated Pt, atoms. Nat. Commun. 10, 3808 (2019).
31. DeRita, L. et al. Structural evolution of atomically dispersed Pt catalysts dictates reactivity. Nat. Mater. 18, 746–751 (2019).
32. Therrien, A. J. et al. An atomic-scale view of single-site Pt catalysis for low-temperature CO oxidation. Nat. Catal. 1, 192–198 (2018).
33. Liu, L. et al. Determination of the evolution of heterogeneous single metal atoms and nanoclusters under reaction conditions: which are the working catalytic sites? ACS Catal. 9, 10626–10639 (2019).
34. Liu, X. et al. Oxide-nanotrap-anchored platinum nanoparticles with high activity and sintering resistance by area-selective atomic layer deposition. Angew. Chem. Int. Ed. 56, 1648–1652 (2017).
35. Liu, X. et al. Bifunctional CO oxidation over Mn-mullite anchored Pt subnanoclusters via atomic layer deposition. Chem. Sci. 9, 2469–2473 (2018).
36. Wang, C. L. et al. Water-mediated Mars-von Krevlen mechanism for CO oxidation on ceria-supported single-atom Pt1 catalyst. ACS Catal. 7, 887–891 (2017).
37. Zhang, L. et al. In situ characterization of single-atom Pt catalysts supported on ceria. Nat. Commun. 10, 4280 (2019).
38. Liu, X. et al. Crystal plane effect of ceria on supported copper oxide cluster catalyst for CO oxidation: importance of metal-support interaction. ACS Catal. 9, 1383–1395 (2019).
39. Safonova, O. V. et al. Elucidating the oxygen activation mechanism on ceria-supported copper-oxo species using time-resolved X-ray absorption spectroscopy. ACS Catal. 10, 4692–4701 (2020).
40. Pereira-Hernández, X. J. et al. Tuning Pt–CeO2 interactions by high-temperature vapor-phase synthesis for improved reducibility of lattice oxygen. Nat. Commun. 10, 1358 (2019).
41. Safonova, O. V. et al. Elucidating the oxygen activation mechanism on ceria-supported copper-oxo species using time-resolved X-ray absorption spectroscopy. ACS Catal. 10, 4692–4701 (2020).
42. Lei, J. et al. In situ formation of isolated bimetallic PtCe sites of single-dispersed Pt on CeO2 for low-temperature CO oxidation. ACS Catal. 10, 3537–3541 (2020).
43. Tu, X. et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 3, 634–641 (2011).
44. Feng, Y. X. et al. Correlating DFT calculations with CO oxidation reactivity on Ga-doped PtO/CeO2 single-atom catalysts. J. Phys. Chem. C. 122, 22460–22468 (2018).
45. Lei, J. et al. In situ formation of isolated bimetallic PtCe sites of single-dispersed Pt on CeO2 for low-temperature CO oxidation. ACS Appl. Mater. Interfaces 10, 38134–38140 (2018).
46. Ke, J. et al. Strong local coordination structure effects on subnanometer PtOx clusters over CeO2 nanowires probed by low-temperature CO oxidation. ACS Catal. 5, 5164–5173 (2015).
47. Wang, H. et al. Surpassing the single-atom catalytic activity limit through paired Pt-O-Pt ensemble built from isolated Pt, atoms. Nat. Commun. 10, 3808 (2019).
48. Mars, P. & van Krevlen, D. W. Oxidations carried out by means of vanadium oxide catalysts. Chem. Eng. Sci. 3, 41–59 (1954).
49. Ravel, B. & Newville, M. J. ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. Spectrochim. Acta Part B 59, 537–541 (2004).
50. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 57, 358–365 (1998).
51. Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).
52. Kresse, G. & Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).
53. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
54. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).
55. Anisimov, V. I., Zaanen, J. & Andersen, O. K. Band theory and Mott insulators: Hubbard U instead of Stoner. Phys. Rev. B 44, 943–954 (1991).
56. Nolan, M., Parker, S. C. & Watson, G. W. The electronic structure of oxygen vacancy defects at the low index surfaces of ceria. Surf. Sci. 595, 223–232 (2005).
57. Henkelman, G. & Jónsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978–9985 (2000).

Acknowledgements
This work was supported by the National Natural Science Foundation of China (Grants No. 11074028, 11329101, 11225205, 11135002, 11175003, and 11104005). The authors thank Abhaya Datye and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-020-18076-6.

Correspondence and requests for materials should be addressed to B.S. or R.C.

Peer review information Nature Communications thanks Abhaya Datye and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless noted otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020, corrected publication 2020