Designing Fe-based high entropy alloy – a machine learning approach

B Debnath¹, A Vinoth², M Mukherjee³ and S Datta²

¹Department of Automobile Engineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, INDIA
²Department of Mechanical Engineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, INDIA
³CSIR-Central Mechanical Engineering Research Institute, Durgapur 713209, West Bengal, INDIA

E-mail: dbodhisattwa@gmail.com

Abstract. High Entropy Alloys (HEAs) are constituted by at least five elements and can even increase to seven or eight different elements. Due to high entropy of mixing, the solid solutions of so many elements become stable and the tendency to form intermetallic compounds decrease. As a result, it is possible to develop alloys with high strength and high hardness using this approach. Changing the composition of such alloys, the mechanical properties of the alloy can be varied widely. In this work HEAs with high toughness are designed computationally using machine learning and artificial intelligence approaches. With so much potential in this new breed of alloys, iron-based alloys (having high iron content) is designed in the present work to reduce the cost of the alloy. Here we have used supervised machine learning technique to map the relation between composition and properties of HEA. Multi-objective optimization is employed to search suitable composition for Fe-based HEA having increased strength and ductility, which will lead to improved toughness of the alloy.

1. Introduction

High Entropy Alloys (HEAs) are a new breed of alloys that are much different than conventional alloys presently used. Their composition, number of constituting elements, formation process, characteristics (like yield strength, elongation, hardness, etc.) are much different than normal alloys. Moreover, since they are composed of 5 to 8 elements, which do not form intermetallic compounds and remain in stable solid solution due to their high entropy configuration, they can be easily varied in composition and concentration to obtain an alloy with the desired needs [1]. An alloy may have high hardness as well as good ductility, or, high ductility with high yield strength owing to its multiphase design structure [1-5]. The combinations are limitless, and this is attracting current researchers who are studying extensively in this field; but still only a small portion of such possibilities have been uncovered successfully [6].

Traditional lab experimentation can take up much time and resources, even more when there are so many constituents in HEAs. But with the advent of virtual simulations in different fields of study, artificial intelligence has successfully replaced most of the live experiments. Now proper results can be achieved in a short time through such methods, which can be even fine-tuned through optimization techniques [7-9]. Different types of computational procedures or algorithms are applied in different studies depending on the raw data, process objectives, and the end results; and based on these, effort and time spent for further lab analysis can be significantly reduced. Computational designs are the
formation of different algorithms and methods for various concerned problems [10-13]. Some methods like approximation algorithms can be used to compute large simulations, requiring fewer interactions to evaluate at any point [14]. Heuristic algorithms provide faster and efficient ways to solve a problem, but lack in accuracy, precision or optimality [15, 16]. Many such algorithms have been introduced and are used substantially in many interdisciplinary fields achieving outstanding results.

In this paper we have worked towards producing a mathematical model which can successfully arrange each composition element, in definite concentrations, ultimately defining the desired characteristics of yield strength, hardness, etc. We have formed a few such combinations while keeping high ductility as the common goal in all. In this type of study we have can follow some approaches, like a scientific approach, and a data driven approach. A scientific approach can deduce the model successfully for a smaller number of elements by applying the logic behind formulations and derivations to obtain the end model. But a data-driven approach or a statistical approach uses pre-recorded data and trends to fabricate the logic behind characteristics’ dependencies on element mixing entropies and features of each constituent [17, 18]. We have utilized Artificial Neural Network (ANN) to study these data virtually and map the relationship between inputs and outputs. The developed predictive models for the mechanical properties of the alloys are used as objective functions for multi-objective optimization using Genetic Algorithm (GA). In the present work alloys having a minimum 30% Fe content with optimum combination of mechanical properties are designed.

2. Database
A database is formed by observing numerous papers and about 600 HEAs are recorded, each with different compositions and different properties [19-41]. This gave an insight on the behavior of each element and their contributions to the end characteristics. From these observations a total of 13 elements, or input variables are chosen. The output variables or desired characteristics are taken as yield strength (YS), hardness (H), Young’s modulus (E) and %elongation (%El). The detail about the database is described in Table 1. This data set is used to develop the ANN models for the properties. These models correlate the input and output variables. For different output properties, each respective ANN model is developed which are used as objective functions for the multi-objective optimization later.

Variables	Minimum	Maximum	Average
Inputs			
Al (wt%)	0	42.85	14.3783
Co (wt%)	0	33.30	16.5776
Cr (wt%)	0	25.00	16.5156
Cu (wt%)	0	25.00	8.1715
Fe (wt%)	0	34.88	19.3299
Mo (wt%)	0	20.00	0.2758
Mn (wt%)	0	33.30	2.8721
Ni (wt%)	0	38.46	18.3473
Ti (wt%)	0	26.67	1.9395
V (wt%)	0	26.60	1.1907
Si (wt%)	0	16.67	0.3815
Outputs			
Young’s Modulus (GPa)	136	230	186.90
Hardness (HV)	105	1050	464.38
Elongation (%)	0.24	77.80	23.0692
Yield Strength (MPa)	100	2877	954.63
3. Computational Methods

3.1. Artificial Neural Network (ANN) Modeling

ANN models are computer-based programs that are inspired by the human neural system. ANN studies the patterns and relationships in the input data and trains itself from experience. It is formed of a network of nodes, also called neuron; and each of these nodes are internally connected with weighted links arranged in layers [7, 8]. The weights are adjusted by the model itself as its training progresses. In this work we have used a feed forward multi-layered perceptron structure and this is trained with scale conjugate gradient back propagation algorithm. This algorithm contains several hidden layers each containing the nodes. The inputs pass through these layers as the different weights are multiplied with the inputs. This gives different outputs which are compared with preset preferred values, and the remaining errors are fed back into the model according to which the weights are adjusted to match the values as desired. This process repeats itself as the program continues to minimize the error and train itself [9, 10, 11].

3.2. Genetic algorithm based multi-objective optimization

Genetic algorithms are adaptive heuristic algorithms that are based on the idea of natural selection in genetics study. They are used in optimization techniques to generate high quality solutions towards the given search-space [13]. It simulates the process of natural selection, or, ‘survival of the fittest’ among the chosen inputs; and then continues the process with only those values which can adapt according to the simulation. Initially the population or values are computed arbitrarily. But then the fitness is defined and it selects the parents from the initial population. The second generation of population created by the parents are crossed over and mutation occurs. This finally determines the fittest population. These steps are repeated until the best individuals are obtained. In the case of multiple objectives, a negotiation is made between the best solutions for each case and those solutions, all of which can be considered optimum solution, are chosen as the final result. These values form a Pareto set, which can be plotted as a scatter graph to form a Pareto front [11, 18]. This graph shows all the optimum solutions for the multiple objectives selected.

4. Results and Discussions

Several multi-layer perceptron ANN models are developed using single hidden layer. The number of neurons were varied to find best models for mapping the correlations between the variables for all three properties. A couple of representative scatter-plots showing the predictions made by the ANN models are given in figure 1. It may be noted here that the database was generated from different sources, and in such cases the amount of noise in the data was expectedly quite high. In such situations the predictions made by the trained ANN models are acceptable.

The ANN models for Young’s modulus (E), hardness (H), yield strength (YS) and %elongation (%El) are used as objective functions for multi-objective optimization. The properties related to strength, viz. E, H and YS, are placed separately with ductility (%El) as objective functions for three different bi-objective optimizations. In each case one strength component with ductility is optimized for their expected conflicting nature for maximizing both the properties. The Pareto fronts generated due to the optimization are given as figure 2. As mentioned before, the Fe content of the alloys being designed through this process is restricted to 30 wt%, whereas the other alloying elements are allowed to be varied within the limits of the elements present in the database from which the ANN models are generated, as mentioned in table 1. The only constraint employed for the optimization process was that the summation of the weight percentages of the elements to be 100. The results show that the designed alloys could achieve quite high strength/hardness/modulus, but the ductility is quite low, less than 10% for all cases of optimization. This clearly shows that the presence of Fe to this extent (30%) will reduce the ductility and thus toughness of the alloy. But for alloys with such high strength, low
ductility is expected. The Fe content may be varied in future designs to find the optimum Fe content for achieving adequate ductility of the alloy.

Figure 1. Scatter plots showing the predictions of selected ANN models for (a) Young’s modulus and (b) Hardness.
Figure 2. Pareto fronts generated from the multi-objective optimization of (a) Young’s modulus and %elongation, (b) hardness and %elongation and (c) yield strength and %elongation.

The range of elements selected in all the non-dominated solutions for all three multi-objective optimizations are given in Table 2. It shows that for simultaneous optimization of E and %El, the preferred major elements in the alloy, other than Fe, are Mn, Mo, Co, Ni and Ti. A few more elements are also present with low amount. In case of improving H along with %El, the major elements are Mo, Cr, Co, Ni and Ti, and Fe of course. For the third and final optimization process, where Ys and %El have been optimized, the elements are found to be Fe, Ni, Cu, Si and Nb, with some amount of C. This shows that for achieving better combination of properties, the elements preferred are different for different combinations.

Elements (wt%)	E and %El	H and %El	YS and %El
Al	1.96	1.96	0.01-0.02
C	0.01	0	2.62-9.59
Co	2.57-11.31	9.97-10.69	0.01
Cr	2.00-2.03	11.49-12.45	0.01
Cu	2.56-4.80	2.56	11.27-12.18
Fe	34.87	30.00	30.00
Mo	11.68-14.92	12.78-14.99	0.37-2.82
Mn	14.89-21.02	2.40	0.01-0.02
Ni	5.99-6.09	8.34-10.08	23.12-29.93
Ti	5.79-6.59	7.11-10.11	0.01-0.96
V	3.50	3.50	0.01
Nb	0	1.96	7.18-8.60
Si	3.84	3.84	15.58-16.65

5. Conclusion
The results achieved can push us to deduce certain conclusions:
 i. ANN models can be used successfully as objective functions.
 ii. The Pareto fronts show that for high Fe content the ductility of the alloy could not be much high (<10%).
 iii. The alloying elements preferred for the different alloys designed in the process differed from case to case, depending on the combination of conflicting mechanical properties considered for the optimization.

6. References
[1] Lim K R, Lee K S, Lee J S, Kim J Y, Chang H J and Na Y S 2017 Dual-phase high entropy alloys for high-temperature structural applications Journal of Alloys and Compounds 728 1235-8
[2] Fan J T, Xhang L J, Yu P F, Zhang M D, Liu D J, Zhou Z, Cui P, Ma M Z, Jing Q, Li G and Liu R P 2018 Improved the microstructure and mechanical properties of AlFeCoNi high-entropy alloy by carbon addition Materials Science & Engineering A 728 30–9
[3] Ghassemali E, Sonkusare R, Biswas K and Gurao N P 2017 In-situ study of crack initiation and propagation in a dual phase AlCoCrFeNi high entropy alloy Journal of Alloys and Compounds 710 539-46

5
[4] Zhou Y, Jin X, Zhang L, Du X and Li B 2018 A hierarchical nanostructured Fe34Cr34Ni14Al14Co4 high-entropy alloy with good compressive mechanical properties Materials Science & Engineering A 716 235–9
[5] Chen J, Zhou X, Wang W, Liu B, Lv Y, Yang W, Xu D and Liu Y 2019 A review on fundamental of high entropy alloys with promising high–temperature properties Journal of Alloys and Compounds 760 15-30
[6] Ye YF, Liu CT and Yang Y 2015 A geometric model for intrinsic residual strain and phase stability in high entropy alloys Acta Materialia. 94 152-61
[7] Shahani A R, Setayeshi S, Nodamaie S A, Asadi M A and Rezaie S 2009 Prediction of influence parameters on the hot rolling process using finite element method and neural network J. Mater. Process. Technol. 209 1920–35
[8] Anijdan M, Anijdan S H M and Bahrami 2004 A Prediction of mechanical properties of DIN1.4962 forged stainless steel by neural network Proc. 6th Symposium of Iron and Steel 350–9
[9] Datta S 2016 Materials design using computational intelligence techniques (USA: CRC Press)
[10] Hassoun M H 1995 Fundamentals of Artificial Neural Networks (Cambridge: MIT Press)
[11] Bishop C M 2006 Pattern Recognition and Machine Learning (Berlin: Springer)
[12] Datta S and Chattopadhyay P P 2013 Soft computing techniques in advancement of structural metals Materials Reviews 58 475-504
[13] Olden JD, Joy M K and Death R G An accurate comparison of methods for quantifying variable importance in artificial neural networks sing simulated data 2004 Ecol. Model. 178 389-397
[14] Datta S, Sil J and Banerjee M K Petri neural network model for the effect of controlled thermomechanical process parameters on the mechanical properties of HSLA steel 1999 ISIJ Int. 39 786-791
[15] Deb K and Gupta H 2005 Searching for robust pareto-optimal solutions in multi-objective optimization, evolutionary multi-criterion optimization (Berlin: Springer)
[16] Eiselt H A, Sandblom CL Heuristic Algorithms in: Integer Programming and Network Models (Berlin: Springer)
[17] Bhattacharya B, Hu Y and Shi Q 2009 Approximation Algorithms for a Network Design Problem (Berlin: Springer)
[18] Chen L, Wang P, Dong H, Shi F, Han J, Guo Y, Peter R N Childs, Xiao J and Wu C 2019 An artificial intelligence based data-driven approach for design ideation Journal of Visual Communication and Image Representation 61 10-22
[19] Datta S and Banerjee M K 2003 Kohonen network modeling of thermo-mechanically processed HSLA steel ISIJ Int. vol 44 846-851
[20] Joseph J, Hodgson P, Jarvis T, Wu X, Stanford N and Fabijanic D M 2018 Effect of hot isostatic pressing on the microstructure and mechanical properties of additive manufactured AlxCoCrFeNi high entropy alloys Materials Science & Engineering A 733 59–70
[21] Tsai C W, Chen Y L, Tsai M H, Yeh J W, Shun T T and Chen S W 2009 Deformation and annealing behaviors of high-entropy alloy Al0.5CoCrFeNi Journal of Alloys and Compounds 486 427–435
[22] Chung, Dukhyun, Ding, Zhaoyi, Yang and Yong 2019 Hierarchical eutectic structure enabling superior fracture toughness and superb strength in CoCrFeNiNb0.5 eutectic high entropy alloy at room temperature Advanced Engineering Materials 21(3) 1801060
[23] Tang W Y, Chuang M H, Chen H Y and Yeh J W 2009 Microstructure and mechanical performance of brand-new Al0.3CrFe1.5MnNi0.5 high-entropy alloys Advanced Engineering Materials 11(10) 788 – 794
[24] Niu P D, Li R D, Yuan T C, Zhu S Y, C Chen, Wang M B and Huang L 2019 Microstructures and properties of an equimolar AlCoCrFeNi high entropy alloy printed by selective laser melting Intermetallics 104 24–32
Gu J and Song M 2019 Annealing-induced abnormal hardening in a cold rolled CrMnFeCoNi high entropy alloy Scripta Materialia 162 345–9
Hou J, Zhang M, Ma S, Liaw P K, Zhang Y and Qia J 2017 Strengthening in Al0.25CoCrFeNi high-entropy alloys by cold rolling Materials Science & Engineering A 707 593–601
Jin X, Liang Y, Zhang L, Bi J, Zhou Y and Li B 2019 Back stress strengthening dual-phase AlCoCr2FeNi2 high entropy alloy with outstanding tensile properties Materials Science and Engineering: A 745 137–43
Gorse S, Nguyen MH, Senkov ON and Miracle DB 2018 Database on the mechanical properties of high entropy alloys and complex concentrated alloys Data in brief 21 2664-78
Park JM, Moon J, Bae JW, Kim DH, Jo YH, Lee S and Kim HS 2019 Role of BCC phase on tensile behavior of dual-phase Al0.5CoCrFeMnNi high-entropy alloy at cryogenic temperature Materials Science and Engineering: A 746 443–7
Li D, Gao M C, Hawk J A and Zhang Y 2019 Annealing effect for the Al0.3CoCrFeNi high-entropy alloy fibers Journal of Alloys and Compounds 778 23-29
Munitz A, Salhov S, Guttmann G, Derimow N and Nahmany M 2019 Heat treatment influence on the microstructure and mechanical properties of AlCrFeNiTi0.5 high entropy alloys Materials Science and Engineering: A 742 1-4
Abuzaid W and Sehitoglu H 2018 Plastic strain partitioning in dual phase Al13CoCrFeNi high entropy alloy Materials Science and Engineering: A 720 238-47
Yang Q, Tang Y, Wen Y, Zhang Q, Deng D and Nai X 2018 Microstructures and properties of CoCrCuFeNiMox high-entropy alloys fabricated by mechanical alloying and spark plasma sintering Powder Metallurgy 61(2), 15-22
Karati A, Guruvidyathri K, Harirhan V S and Murty B S 2019 Thermal stability of AlCoFeMnNi high entropy alloy Scripta Materialia 162 465–7
Wong S K, Shun T T, Chang C H and Lee C F 2018 Microstructures and properties of Al0.3CoCrFeNiMnx high-entropy alloys Materials Chemistry and Physics 210 146—151
Asghari-Rad P, Sathiymoorthi P, Bae JW, Moon J, Park JM, Zargaran A and Kim HS 2019 Effect of grain size on the tensile behavior of V10Cr15Mn5Fe35Co10Ni25 high entropy alloy Materials Science and Engineering: A 744 610-7
Jiao Q, Sim G D, Komarasamy M, Mishra R S, Liaw P K and El-Awady J 2018 A Thermomechanical response of single-phase face-centered cubic AlxCoCrFeNi high-entropy alloy microcrystals Materials Research Letters 5 300-306
Datta S and Chattopadhyay P P 2013 Soft computing techniques in advancement of structural Metals Int. Mater. Rev. 58 (8) 475–504
Deb K, 2001 Multiobjective Optimization using evolutionary algorithms (Chichester: JohnWiley & Sons Ltd.)
Chakraborti N 2004 Genetic algorithms in materials design and processing Int. Mater. Rev 49 246–260
Anderson J A 1995 An Introduction to Neural Networks (Cambridge MA: MIT Press)