Cardiovascular risk assessment in patients with rheumatoid arthritis using carotid ultrasound B-mode imaging

Ankush D. Jamthikar1 · Deep Gupta1 · Anudeep Puvvula2 · Amer M. Johri3 · Narendra N. Khanna4 · Luca Saba5 · Sophie Mavrogeni6 · John R. Laird7 · Gyan Pareek8 · Martin Miner9 · Petros P. Sfikakis10 · Athanasios Protegerou11 · George D. Kitas12 · Raghu Kolluri13 · Aditya M. Sharma14 · Vijay Viswanathan15 · Vijay S. Rathore16 · Jasjit S. Suri17

Received: 5 August 2020 / Accepted: 18 August 2020 / Published online: 28 August 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
Rheumatoid arthritis (RA) is a systemic chronic inflammatory disease that affects synovial joints and has various extra-articular manifestations, including atherosclerotic cardiovascular disease (CVD). Patients with RA experience a higher risk of CVD, leading to increased morbidity and mortality. Inflammation is a common phenomenon in RA and CVD. The pathophysiological association between these diseases is still not clear, and, thus, the risk assessment and detection of CVD in such patients is of clinical importance. Recently, artificial intelligence (AI) has gained prominence in advancing healthcare and, therefore, may further help to investigate the RA-CVD association. There are three aims of this review: (1) to summarize the three pathophysiological pathways that link RA to CVD; (2) to identify several traditional and carotid ultrasound image-based CVD risk calculators useful for RA patients, and (3) to understand the role of artificial intelligence in CVD risk assessment in RA patients. Our search strategy involves extensive searches in PubMed and Web of Science databases using search terms associated with CVD risk assessment in RA patients. A total of 120 peer-reviewed articles were screened for this review. We conclude that (a) two of the three pathways directly affect the atherosclerotic process, leading to heart injury, (b) carotid ultrasound image-based calculators have shown superior performance compared with conventional calculators, and (c) AI-based technologies in CVD risk assessment in RA patients are aggressively being adapted for routine practice of RA patients.

Keywords Arthritis · Rheumatoid · Atherosclerosis · Cardiovascular disease · Inflammation · Carotid artery diseases · Carotid intima-media thickness · Risk assessment

Introduction
Rheumatoid arthritis (RA) is a chronic inflammatory disease that not affects only synovial joints but also has several extra-articular involvements, including those related to the skin, eyes, heart, lungs, kidneys, and other organs [1, 2]. It affects ~1% of the global population, with a higher prevalence in females when compared with males [3, 4]. Cardiovascular disease (CVD) is a common manifestation in RA patients with a two- to three-fold higher risk of cardiovascular events and mortality compared with a normal population [5]. However, this increased risk is not entirely explained by conventional risk factors [6]. Current statistically derived CVD risk calculators use conventional risk factors alone [7–9], are not suitable for RA patients, and they either underestimate or overestimate the risk [10–12]. This may be because of the paradoxical behavior of some of the conventional risk factors such as body mass index, low-density lipoprotein, high-density lipoprotein, and total cholesterol in RA [13, 14]. Despite this lack of clarity, the guidelines by the European League Against Rheumatism (EULAR) recommend aggressive control of these conventional risk factors [15, 16]. Recent attempts were made to improve the CVD risk assessment in the RA population, including the development of “RA-specific risk factors” in the CVD risk calculators [17–20]. However, such calculators could not provide adequate improvement in risk...
prediction and reportedly still underestimated or overestimated CVD risk in RA patients [21, 22].

To provide a better CVD risk assessment in RA, a pathophysiological association between these diseases should be understood, as this would help in refining CVD risk predictors in RA patients [23]. Atherosclerosis, a common phenomenon in RA [24, 25], can be adequately monitored using imaging modalities such as magnetic resonance imaging [26], computed tomography [27], optical coherence tomography [28], and ultrasound [29]. Each of these imaging modalities offers unique information about morphological variations in atherosclerotic plaque. Ultrasound imaging, specifically in carotid arteries, is a comparatively low-cost, non-invasive, radiation-free, and easy-to-use imaging modality that is widely adopted in preventive cardiovascular and clinical vascular practices [29, 30]. The image-based phenotypes of carotid ultrasound, such as carotid intima-media thickness (cIMT) and carotid plaque, are considered surrogate markers of coronary artery disease and have been used for preventive CVD risk assessments in several studies [31–34]. These image-based phenotypes indicate the morphological variations in the atherosclerotic plaque and are associated with the inflammatory markers of RA [35–38]. Patients with RA have elevated cIMT and have more plaque area (PA) when compared with non-RA patients [39–41]. Thus, the inclusion of these image-based phenotypes in risk prediction models may improve the CVD risk assessments of RA patients. Recent studies have combined the effect of these image-based phenotypes with conventional risk factors, including pro-inflammatory markers like erythrocyte sedimentation rate (ESR), to perform CVD risk assessment [42–44]. Such integrated risk calculators have demonstrated better CVD risk stratification when compared to traditional CVD risk calculators in non-RA patients [42, 43, 45].

Besides these statistically derived CVD risk calculators, artificial intelligence (AI)-based techniques are also penetrating several medical imaging and risk assessment applications [46–54]. AI-based algorithms such as machine learning (ML) methods provide a better CVD risk assessment when compared with statistically derived conventional risk calculators [51, 55, 56]. So far, AI algorithms have been used for CVD risk assessment in the non-RA population, and their potential still needs to be evaluated in RA cohorts. However, AI is well adapted for RA screening and diagnosis [57–60]. This review provides an insight into how the AI-based algorithms can be used for CVD risk assessment in RA patients. There are three aims of this review: (1) to summarize the pathophysiological pathways that link RA with CVD; (2) to identify several traditional and carotid ultrasound image-based CVD risk calculators for RA patients, and (3) to provide an understanding of the role of artificial intelligence in CVD risk assessment in RA patients.

Search strategy

Figure 1 shows a flow diagram indicating the search strategy for this narrative review. To write a comprehensive narrative review, it is essential to select at least two credible databases that provide high-quality peer-reviewed articles [61]. This review is the outcome of several searches in the PubMed and Web of Science databases using keywords such as “cardiovascular diseases” AND “risk assessment” AND “rheumatoid arthritis,” “carotid atherosclerosis” AND “rheumatoid arthritis,” “non-invasive imaging” AND “rheumatoid arthritis,” “carotid ultrasound” AND “rheumatoid arthritis,” “carotid intima-media thickness” OR “carotid plaque” AND “inflammatory markers,” “carotid atherosclerosis” AND “erythrocyte sedimentation rate” OR “C reactive protein,” “machine learning” AND “rheumatoid arthritis,” and “machine learning” AND “cardiovascular risk assessment” AND “rheumatoid arthritis.” The availability of all these keywords in the abstract and the full text was investigated to select the relevant articles. Peer-reviewed articles published in the last 10 years were then given priority. Citations from the published articles were also shortlisted for this review. All these articles were subsequently filtered by the expert co-authors to select only those that met the objectives of this review, leading to 120 articles.

Pathophysiology of RA leading to CVD

The pathophysiological association between RA and CVD can be explained in two stages: (1) the role of traditional risk factors, and (2) direct vascular damage. Inflammation plays a pivotal role in both of these stages [24].

The role of traditional risk factors in the pathophysiology of RA-driven atherosclerotic CVD

The right-hand panel of Fig. 2 explains the pathophysiological association between RA and CVD via four pathways [I(a)–I(d)] governed by traditional risk factors such as hypertension, proatherogenic dyslipidemia, insulin resistance, and obesity. Patients with RA are generally found with pro-inflammatory cytokines such as interleukin (IL) 1, IL-6, and tumor necrosis factor α (TNF-α) [62]. These pro-inflammatory cytokines are found in the synovium, which triggers a systemic inflammatory response, and may result in damage to the vascular endothelial cells [62]. Nitric oxide (NO) and cyclooxygenase-1 are two essential components required...
to maintain the healthy endothelium, which is inhibited by TNF-α and IL-6, thereby resulting in endothelial cell damage [23, 62]. Inhibiting endothelial NO leads to arterial stiffness [63] and is further associated with an increase in peripheral vascular resistance (PVR) [64], thus leading to hypertension in RA patients. Additionally, several medications used to treat RA, such as disease-modifying antirheumatic drugs (DMARDs) leflunomide and cyclosporine, glucocorticoids, nonsteroidal anti-inflammatory drugs (NSAIDs), and cyclooxygenase II inhibitors (Cox IBs) may also be involved in the development of hypertension in RA patients [65, 66].

Another pathophysiological link between RA and CVD is proatherogenic dyslipidemia [67]. Nearly 55%–65% of RA patients have proatherogenic dyslipidemia [68]. In non-RA patients, increased CVD risk is associated with elevated levels of low-density cholesterol (LDL-c), total cholesterol, and reduced high-density lipoprotein cholesterol (HDL-c). However, in RA patients, low levels of total cholesterol (TC), low levels of LDL-c, and suppressed levels of HDL-c have been reported. This condition is known as “the lipid paradox” [14]. Highly suppressed HDL levels in RA patients are “proatherogenic” [14]. Furthermore, RA patients show high atherogenic index levels despite low lipid levels. The atherogenic index is calculated as a ratio of TC: HDL-c, and it may vary according to their levels [14]. Apolipoprotein B (Apo B) is a major apolipoprotein in LDL, and several studies have indicated an increase in the ratio of Apo B: Apo A in RA patients [14]. A combination of low TC, LDL-c, and suppressed HDL-c levels with a high atherogenic index and a high ApoB:ApoA ratio behaves as proatherogenic dyslipidemia [14, 69]. Long-standing proatherogenic dyslipidemia causes atherosclerosis and, eventually, CVD.

Rheumatoid cachexia is another important RA-specific characteristic that increases CVD risk [70]. It is characterized by significantly increased adiposity and reduced muscle mass while one maintains their bodyweight [71]. The pathophysiology [shown in “pathway-I (c)”] behind *R. cachexia* can be explained in two ways: (1) It is characterized by the reduction of muscle mass that is largely due to increased inflammatory cytokines (particularly TNF-α) by activating the transcriptional nuclear factor-kappa B cells (NF-kB) pathway and promoting the ubiquitin pathway, which causes catabolism/proteolysis (muscle protein breakdown) [72, 73]. (2) Central obesity or abdominal obesity is present in 20–57% of women and 80–90% of men. This causes visceral adiposity in RA, which has an additional adverse impact on CVD [74]. On the other hand, increased adiposity also induces the production of inflammatory cytokines in RA, which further worsens this
scenario [75]. This syndrome may be explained in the triad of increased adiposity reduced muscle mass and low body mass index (BMI).

Epidemiological studies have suggested a strong association between insulin resistance (IR), metabolic syndrome, and RA [76, 77] [shown in “pathway-I (d)” in the dark green-dotted box]. Inflammation plays a crucial role in these three conditions [78]. In patients with RA, IR serves as an independent prognostic risk factor that signifies the presence of subclinical atherosclerosis; it is determined by carotid intimal thickness (cIMT) and is measured by carotid ultrasonography [79]. Longstanding inflammation due to RA promotes oxidative stress, endothelial dysfunction, and atherosclerosis in this population [24].

Progression of atherosclerosis and direct vessel damage in RA

In RA, the activation of T-cells and mast cells increases the production of pro-inflammatory cytokines such as IL-1, IL-6, and TNF-α. These pro-inflammatory cytokines stimulate endothelial cells (ECs) and smooth muscle cells (SMCs) in subendothelium [80] (1) by expressing cell adhesion molecules such as vascular cell adhesion molecule 1 (VCAM) and the “intercellular adhesion molecule” (ICAM) [80] and (2) by producing chemokines, including monocyte chemoattractant protein (MCP) and macrophage colony-stimulating factor (M-CSF). The activation of endothelial cells allows the migration of LDL-c into the sub-endothelial layer, where
it becomes oxidized and triggers the inflammatory response for the recruitment of immune cells such as T lymphocytes and monocytes in the intimal layer. Once they enter the intimal layer, monocytes are transformed into macrophages, and they then take up the oxidized LDL-c to become foam cells. The completion of this complex process then leads to the formation of atherosclerotic plaque. Macrophages also trigger the migration of smooth muscle cells from tunica media to tunica intima and initiate their proliferation. The SMCs form a thin fibrous cap to prevent the encroachment of atherosclerotic plaque towards the lumen. However, over time, pro-inflammatory cytokines, enzymes, and free radicals cause fibrous cap erosion and make the plaque vulnerable for rupture. The amplification of the inflammatory response results in the acceleration of plaque formation, eventually leading to plaque rupture and thrombotic events, which damage the blood vessels. Pathway II of Fig. 2 represents this process.

Current conventional CVD risk prediction models for RA

Over the last decade, several CVD risk assessment calculators have been developed, very few of which are recommended by the cardiovascular risk management guidelines [9, 81, 82]. Some standard cardiovascular risk prediction algorithms are the Framingham risk score (FRS) [7], Systematic Coronary Risk Evaluation (SCORE) [8], American College of Cardiology/American Heart Association (ACC/AHA) risk score [9], World Health Organization (WHO) risk charts [83], and Reynolds’s risk score (RRS) [17]. These risk calculators use traditional risk factors such as patient demographics (age, gender, ethnicity), blood biomarkers (low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, and total cholesterol), behavioral markers (smoking and alcohol consumption), and physiological markers (height, weight, body mass index). All these risk calculators were initially developed for non-RA populations; therefore, when used in RA cohorts, CVD risk is substantially underestimated [10–12]. The use of traditional risk factors alone (while not considering RA-specific inflammatory markers) could be another reason for such underestimation. However, RRS included an RA-specific inflammatory marker called “high sensitivity C-reactive protein” (hs-CRP) [84] for CVD risk prediction but did not report any significant improvement in the CVD risk assessment [11]. Rajagopal et al. [85] also reported a small improvement in area under the curve (+0.006 in females and +0.004 in males) when C reactive protein (CRP) or erythrocyte sedimentation rate (ESR) was added to the FRS.

Over the past few years, several efforts have been made to improve the cardiovascular risk assessment in RA patients. The EULAR guidelines recommended the use of a modified SCORE (mSCORE) in RA patients positive with rheumatoid factor (RF) or anticitrullinated protein antibodies (ACPA) and RA duration of more than 10 years [16, 86]. Cox et al. [19, 20] developed the QRISK2 and QRISK3 algorithms, which use the presence of RA as a CVD risk predictor (hazard ratio = 1.23, 95% confidence interval 1.19–1.28). Solomon et al. [18] also developed an RA-specific CVD risk calculator (called expanded risk score or ERS) by including RA-specific biomarkers such as disease activity, disease duration, a modified health assessment questionnaire (HAQ) disability index, and daily prednisone use) with the traditional biomarkers used in the Cox-based model. The authors reported an improvement of ~4.8% in c-index when validating the risk score on the reserved dataset. Recently, Curtis et al. [87] also proposed a CVD risk prediction tool for RA patients by combining conventional and RA-specific risk factors. The authors predicted the risk of composite CVD events such as MI, stroke, and death during the follow-up period of 3 years. The area under the curve (AUC) for cardiovascular risk stratification for this model was 0.70.

All these RA-specific CVD risk scores reported a better risk assessment on the proprietary databases. Still, when compared with other risk calculators in different RA cohorts, these calculators have demonstrated mixed results [10–12]. Crowson et al. [11] reported an underestimation of CVD risk by FRS and RRS in 525 RA patients. The observed risk was twice the predicted risk. Furthermore, the authors did not report any improvement in cardiovascular risk prediction when CRP was added to their model. Arts et al. [10] investigated the roles of SCORE, FRS, RRS, and QRISK2 in 1050 RA patients. Out of these four models, SCORE, FRS, and RRS underestimated CVD risk in RA patients, whereas, the QRISK2 reported an overestimation. The AUC ranged between 0.78 and 0.80 for the four risk models. A similar study by Arts et al. [12] investigated the performance of the original, recalibrated, and improved version of SCORE calculators to predict the CVD risk in 1016 RA patients. The AUC values for these scores were 0.78 (95% CI 0.74–0.82), 0.78 (0.74–0.83), and 0.80 (0.75–0.84). All these three scores underestimated the CVD risk in RA patients. In short, even after the SCORE was redesigned using the RA-based risk factors, it did not result in an adequate CVD risk assessment. In another study by Crowson et al. [21] of 5638 RA patients, a CVD-risk prediction model was developed that reported better performance (AUC = 0.71) compared with conventional risk calculators such as FRS (AUC = 0.71), ACC/AHA (AUC = 0.72), SCORE (AUC = 0.70), and QRISK2 (AUC = 0.72). Furthermore, conventional risk calculators either overestimated or underestimated CVD risk in RA patients. Wahlin et al. [88] compared the expanded risk score, ACC/AHA risk score, and a modified version of ACC/AHA with a multiplier of 1.5 for a CVD risk assessment of
665 RA patients. The authors also reported an underestimation of CVD risk by all calculators. However, the discrimination ability was slightly better, since AUC for ERS-RA risk was 0.78 compared to AUC of 0.98 for two variants of ACC/AHA.

The overall trend of all these risk prediction algorithms, developed for general and RA cohorts, indicates a “poor CVD risk assessment” in patients with RA. One possible reason for such poor performance is the paradoxical behavior of some of the risk factors such as lipids and body mass index. Another potential reason for this outcome is the inclusion of risk factors that do not provide complete information about the CVD risk profile in RA patients [89]. Corrales et al. [89] indicated a high prevalence of carotid atherosclerosis plaque in patients with low-CVD risk. This observation demonstrated the limited ability of conventional risk factor-based algorithms to improve the CVD risk assessment process, which may be improved using imaging modalities. Therefore, there is still room to develop more accurate, automated, and reliable risk calculators for RA patients by exploring and including nontraditional risk factors such as genetic biomarkers, inflammatory biomarkers, or image-based atherosclerotic plaque phenotypes in the risk prediction algorithm.

Carotid ultrasound atherosclerosis imaging for CVD risk assessment in RA patients

Imaging modalities are becoming essential for the visualization of atherosclerotic plaque and CVD risk assessment in RA patients [90]. Non-invasive imaging modalities such as computed tomography, magnetic resonance imaging, ultrasound, and positron emission tomography are currently used to assess carotid atherosclerosis in RA patients [26]. MRI is used to measure the plaque composition, including calcification, lipid-rich necrotic core, and fibrous cap thickness [26]. Computed tomography is generally used to determine carotid artery stenosis [27]. F-fluorodeoxyglucose–positron emission tomography (FDG-PET) is a nuclear imaging modality that quantifies the inflammation in carotid atherosclerotic plaque [91]. Non-invasive carotid ultrasound is a commonly adopted imaging modality that can capture morphological variations in the atherosclerotic plaque quantified using (1) carotid intima-media thickness (cIMT), (2) carotid intima-media thickness variability (IMTV), and (3) plaque area [30]. When compared with other non-invasive counterparts, carotid ultrasound is less expensive and easier to use [30, 92]. Therefore, the scope of this review is restricted to the use of carotid ultrasound for CVD risk assessment in RA patients. The automated cIMT and carotid PA are considered surrogate markers of coronary artery disease and widely used for CVD/stroke risk assessment [31–34].

Several studies have shown a high prevalence of increased cIMT and carotid plaque in RA patients [39–41]. Studies have also demonstrated the significant association between these carotid atherosclerosis biomarkers and RA-specific markers of inflammation, such as ESR, CRP, and IL-6 [35–38]. Table 1 provides some of such studies that link both carotid atherosclerosis and RA, using two sets of biomarkers (i.e., image-based phenotypes and inflammatory biomarkers). One common observation from these studies is that patients with RA show an elevated cIMT and carotid plaque area compared with non-RA cohorts (row R2–R4 of Table 1) [39, 40, 93]. This association between carotid atherosclerosis and RA also seems independent of the three carotid artery segments (common carotid artery, carotid bulb, and internal carotid artery) from where the cIMT or plaque was measured [40, 93]. However, several studies have reported more aggressive atherosclerotic plaque formation in the carotid bulb segment when compared to other arterial segments [94]. The higher plaque prevalence in the carotid bulb is a consequence of turbulent blood flow and reduced shear stress, which leads to endothelial dysfunction [95, 96]. This observation of higher plaque in a bulb has also been confirmed in RA patients [40]. Figure 3 shows carotid ultrasound scans for RA (Fig. 3a, b) and non-RA patients (Fig. 3c, d). The left-hand side panel of Fig. 3a, c shows the raw carotid ultrasound scans measured using a B-mode ultrasound scanner.

Similarly, the right-hand side panels of Fig. 3b, d show the processed scans tracking morphological variations in the carotid atherosclerotic plaque for the quantification of cIMT and plaque area. The cIMT and plaque area are both greater in RA patients than in non-RA patients.

Another important observation from Table 1 is the significant association between carotid atherosclerotic biomarkers and RA-specific inflammatory markers, such as ESR, CRP, and IL-6 [37, 97]. ESR is a relatively inexpensive measure of inflammation in RA patients—therefore, several studies have used ESR for CVD risk assessment [98–100]. Some of such studies are listed in Table 2. All these studies indicated a substantially higher CVD event rate in patients with elevated ESR levels. Besides ESR, studies have also suggested the use of other popular RA-specific inflammatory markers such as CRP, or hsCRP, and IL-6 for the improvement in the CVD risk assessment [37, 85, 101, 102]. Furthermore, these RA-specific inflammatory markers are also associated with the annual progression of cIMT [38, 97, 103–105], which is a prominent surrogate marker of cardiovascular events. In a study with 30 RA patients, Kaseem et al. [37] demonstrated the association of ESR, CRP, and IL-6 with carotid atherosclerosis, with significant odds ratios ($p < 0.05$) of 1.50, 1.90, and 1.80, respectively.

The broad usage of carotid ultrasound-based phenotypes and their significant association with RA-specific
SN	First author (year)	C2	C3	C4	C5	C6	C7
R1	Rincon (2003) [35]	204	59.6 (For RA) and 59.7 (For Controls)	cIMT and presence CP	ESR and CRP	cIMT associated with ESR ($r=0.16$, $p=0.004$) and CRP ($r=0.13$, $p=0.02$)	cIMT and presence of CP are associated with ESR and CRP. cIMT increases by 0.005 mm for every one-unit increase in ESR.
R2	Carotti (2007) [39]	80 (40 with RA and 40 controls)	59.95 ± 11.93	cIMT and CP from CCA	TC, LDL-c, TG, BMI, RF, VAS, CRP	RA vs. Non-RA: cIMT = 0.83 ± 0.23 vs. 0.86 ± 0.22 mm and CP prevalence = 25% vs. 12.5%	Carotid atherosclerosis image-based phenotypes are significantly higher in RA patients than in the non-RA population.
R3	Kobayashi (2010) [40]	393 (195 with RA and 198 controls)	59.4 (RA) and 59.8 (controls)	cIMT and CP from CCA and ICA-bulb	HTN, BMI, DM, Smoking, FH,	RA vs. Non-RA: IMT in ICA-bulb = 1.16 vs. 1.02 mm and OR for CP = 2.41, 95% CI 1.26-4.61	RA was associated with high severity of atherosclerosis in carotid ICA-bulb than with CCA.
R4	Ristić (2010) [93]	74 (42 with RA and 32 controls)	45.3 ± 10 (RA) and 45.2 ± 9.8 (controls)	cIMT from CCA, bifurcation, and ICA	Age, BMI, Smoking, RF, ESR, duration of RA therapy	RA vs. Non-RA: cIMT_{CCA} = 0.671 vs. 0.621, cIMT_{BIF} = 0.889 vs. 0.804, cIMT_{ICA} = 0.577 vs. 0.535	Carotid IMT in RA patients was higher in three artery segments (CCA, BIF, ICA) when compared to controls. Also, cIMT is negatively correlated with RA inflammation treatment.
R5	Kaseem (2011) [37]	30	43.59 ± 7.2	cIMT and cIMTmax	CRP, ESR, IL-6	OR for carotid atherosclerosis: CRP = 1.90, ESR = 1.50, and IL-6 = 1.80, with $p < 0.05$	Inflammatory markers are significantly associated with carotid atherosclerosis.
R6	Rincon (2015) [38]	487	58.2	cIMT	ESR	OR for cIMT progression using ESR = 1.12 per 10 mm/h	ESR and ESR × CVD risk factor terms were significantly associated with cIMT progression.
R7	Corrales (2015) [89]	144	52.1 ± 5.7 with CP and 42.4 ± 9.5 without CP	CP	Age, TC, disease-modifying agents such as DMARDs	AUC for carotid plaque prediction in RA: using age = 0.807 ($p<0.0001$) and using TC = 0.679 ($p = 0.001$)	Prevalence of plaque = 37.5% with age > 49.5 years and TC > 5.4 mmol/L. The carotid plaque in RA patients can be well predicted using age and TC.
inflammatory markers has also enabled their inclusion in the CVD risk prediction calculators [42, 43, 54, 106]. Recently, several CVD/stroke risk prediction models have been developed that have combined the effect of conventional risk factors and the automated carotid atherosclerosis biomarkers [42, 43]. These risk prediction models reported a better performance in identifying high CVD risk patients compared with current standard-of-care risk calculators. However, such so-called integrated risk prediction models were developed for the general population. They were based on the annual progression rates of carotid atherosclerotic biomarkers and conventional risk factors [42–44]. Therefore, given the progression rates of cIMT and PA due to the RA-specific inflammatory markers, such models can be updated and might be useful for CVD risk assessment in RA patients.

Artificial intelligence in CVD/stroke risk assessment

Artificial intelligence (AI) is expeditiously changing the landscape of the global healthcare system and assisting the healthcare workforce in clinical decision-making [107]. Machine learning (ML) and deep learning (DL) are the two common branches of AI that have broad ranges of applications in almost every medical imaging sector (e.g., classification and plaque characterization for stroke risk assessment [47], thyroid cancer characterization [48], liver cancer diagnosis [49], prostate cancer diagnosis, ovarian cancer diagnosis [53], lung cancer detection [108], brain tumor classification [50], and heart disease prediction and disease classification [51, 52, 54]). During the recent global pandemic of coronavirus diseases 2019, AI is providing promising results in the diagnosis of patients with the help of several imaging techniques such as computed tomography [109] and X-rays [110].

Since this review is on CVD/stroke risk assessment, we have summarized several studies that have used ML-based algorithms for CVD/stroke risk assessment (Table 3). All of these studies follow a supervised learning approach in which the ML-based classifier is trained to identify the correct output labels using input risk factors or features and predefined gold standards or labels. Figure 4 shows the generalized framework of supervised ML-based CVD risk assessment. In the case of CVD risk assessment, the gold standard can be (1) the primary endpoints such as presence or absence of cardiovascular events, or (2) surrogate endpoints such as cIMT, PA, and CAC score, or a combination of these risk factors [51, 52, 54]. Several types of input features can be used to train the AI-based algorithms. They can be traditional risk factors, image-based phenotypes, grayscale image features, or statistically derived features. Once the offline ML classifier is trained using these features and gold...
standard, its coefficients are then used in the online ML system to predict the out risk labels. Online ML systems do not require a gold standard to make the final risk classification. All the studies provided in Table 3 used this approach for CVD risk assessment. Unlike ML-based algorithms, DL-based models, such as convolutional neural networks, do not require input features beforehand. Instead, such algorithms automatically learn their offline coefficients from the input image datasets [111].

Currently, AI-based techniques are used in the diagnosis of RA [57], the identification of RA disease severity [58], the classification of several RA synovial tissues [59], and mortality prediction due to RA [60]. Although ML-based algorithms are used in the RA field, no efforts have been made to assess the CVD risk in RA patients using such automated intelligence-based paradigms. ML-based algorithms have been used to perform CVD risk assessments in non-RA populations and reported a better performance in identifying high-risk CVD patients when compared with the current standard of care conventional risk calculators [51, 55, 56]. Patients with RA experience more atherosclerotic plaque in the carotid artery, which might lead to cardiovascular events [39–41]. In recent years several studies have demonstrated a better stroke risk assessment using ML-based strategies [29] and DL-based strategies [112]. Besides all these studies, attempts can be made to develop more accurate CVD risk prediction tools for RA patients using AI techniques. Figure 5 conceptualizes several components required for CVD risk assessment in RA patients. The AI-based CVD risk assessment for RA patients can be made possible by combining several types of risk factors, such as patients’ demographics, physiological parameters, behavioral risk factors, image-based phenotypes, and (most importantly) RA-specific inflammatory markers. This combined set of features can be used as inputs along with the gold standard to identify what CVD risk category RA patients belong to. As such, both ML and DL-based systems can be employed to performed CVD risk assessment in patients. Because of the significant association between carotid atherosclerosis and RA, researchers can conduct a pilot study with cIMT and plaque areas as the surrogate markers for CVD risk assessment.

Summary

In this review, we provided several pathophysiological pathways that highlight the role of cardiovascular and inflammatory risk factors in the progression of atherosclerosis and heart injury in RA patients. Furthermore, we also indicated an unmet need to look for new biomarkers to achieve a more accurate cardiovascular risk assessment in RA patients. Specifically, carotid ultrasound is a non-invasive and economical technique for preventive screening applications. The carotid atherosclerotic image-based biomarkers such as cIMT and plaque have a significant association with RA-specific inflammatory markers. Most of the current statistically derived cardiovascular risk calculators, developed for both RA and non-RA cohorts, either underestimate or overestimate the CVD risk in RA patients. Even after the inclusion of RA-specific inflammatory markers such as CRP, risk calculators reported little improvement in risk prediction. The accuracy of risk assessment can be improved using AI techniques. AI techniques are currently used for RA screening and not for CVD risk assessment in RA patients. However, they reported promising results of CVD risk assessment in non-RA cohorts. Thus, we believe that the development of AI-driven risk prediction models by combining traditional, image-based, and inflammatory risk factors is warranted to improve the CVD risk assessment in RA patients.
Table 2 Studies indicating the role of ESR in the risk of CVD and cardiovascular events

SN	First author (year)	N	FU (years)	Age	ESR (mm/h)	Events	Results	Summary
1	Andresdottir (2003) [99]	16,673	20	51.9 ± 8.8 (men)	Median ESR: 3 (men)	2893 CHD and 429 deaths due to cerebrovascular events	Hazard ratio for CHD = 1.57 (men) and 1.49 (women) due to ESR	ESR is a long-term predictor of CHD in men and women
2	Natali (2003) [100]	1995	~7.67	55 ± 10	8 (men) and 14 (women)	170	CC with atherosclerosis: 0.11, p < 0.0001 and OR = 1.72, p = 0.0008	ESR is associated with coronary atherosclerosis and is an independent predictor of cardiac deaths
3	Danesh (2004) [114]	6428	12	70.2 ± 9.7	7.4 ± 10.6 (patients)	2459 CHD and MI deaths	OR for CHD due to ESR = 1.30	CRP is moderate, and ESR is a poor predictor of CHD
4	Timmer (2005) [115]	346	7.4	58.8 ± 108 (ESR < 15 mm/h)	Median ESR = 8	87	The odds ratio for sudden death due to ESR = 3.3, p < 0.01	Elevated ESR with hyperglycemia are the predictors of mortality due to STEMI
5	Rajagopalan (2014) [85]	5300	2	59.7 ± 14.2	36.6 ± 24.6	328	Hazard ratio due to high ESR or CRP = 2.05	There was a small improvement in CVD prediction when ESR or CRP was added to the Framingham model

SN serial number, N number of patients, FU follow-up, CVD cardiovascular disease, CHD coronary artery disease, MI myocardial infarction, ESR erythrocyte sedimentation rate, CRP C reactive protein
Table 3 Machine learning-based CVD/stroke risk stratification in non-RA cohorts

SN	First Author (Year)	N	Features types	TF Feature Selection	Classifier type	Gold standard	PE	Benchmarking	
1	Gastounioti (2015)	56	Kinematics features	1236	FDR, WRS, PCA	SVM	Follow-up data labels	ACC (88%)	Against kNN, PNN, DT, DA
2	Unnikrishnan (2016)	2406	CCVRFs	9	NA	SVM	Follow-up data labels	Se (68.2%), Sp (85.9%), AUC (0.71)	Against FRS
3	Venkatesh (2017)	6814	CCVRFs, image phenotypes, and serum biomarkers	735	MDMST	RF, Cox, LASSO-cox, AIC-Cox backward regression	Follow-up data labels	C-Index (0.81), BS (0.083)	Against FRS and PCRS
4	Banchhor (2017)	22	Texture-based and wall-based features	65	PCA	SVM	Carotid plaque burden	ACC (91.28%) AUC (0.91)	–
5	Araki (2017)	204	Image-based texture features	16	Statistical Test	SVM	LD-based risk labels	ACC (NW: 95.08% & FW: 93.47%)	–
6	Weng (2017)	378,256	CCVRFs	30	–	RF, LR, GBM, ANN	Follow-up data labels	AUC: 0.764	Against PCRS
7	Kakadiaris (2018)	6459	CCVRFs	9	–	SVM	Follow-up data labels	Se (86%), Sp (95%), AUC (0.92)	Against PCRS
8	Jamthikar (2019)	202	CCVRFs and CUS Image-based features	47	PCA polling	RF	Carotid stenosis surrogate endpoint of CVD	AUC of ML system=0.80 (95% CI 0.77–0.84)	–
9	Jamthikar (2020)	202	CCVRFs and CUS image-based features	19	SVM	SVM	Surrogate endpoint of CVD	AUC of ML system=0.88 (p<0.001)	Against 13 CCVRC
10	Jamthikar (2020)	202	CCVRFs and CUS image-based features	38	Logistic regression	RF	LD as surrogate endpoint of CVD	AUC for integrated ML system=0.99, p<0.001	–

SN serial num, **N** Number of patients, **CVD** cardiovascular disease, **CUS** carotid ultrasound, **LD** lumen diameter, **LR** logistic regression, **FDR** Fisher discriminant ratio, **WRS** Wilcoxon Rank-Sum, **PCA** principal component analysis, **DA** discriminant analysis, **MDMST** minimal depth of maximal subtree, **SVM** support vector machine, **GMM** Gaussian Mixture Model, **RBPNN** Radial Basis Probabilistic Neural Network, **DT** decision tree, **kNN** K-nearest neighbor, **NB** Naïve Bays, **FC** Fuzzy Classifier, **QNN** Quantum Neural Network, **MLP** Multilayer Perceptron, **RF** Random Forest, **SOM** Self Organization Map, **ANN** artificial neural network, **DWT** Discrete Wavelet Transform, **HoS** higher-order spectra, **CCVRFs** conventional cardiovascular risk factors, **ACC** accuracy, **Se** sensitivity, **Sp** specificity, **AUC** area under the curve, **BS** Brier Score, **IGR** information gain ranking, **DB** database, **CCVRC** conventional cardiovascular risk calculators, **PCRS** pooled cohort risk score, **FRS** Framingham risk score
Fig. 4 The generalized framework of supervised ML-based CVD risk assessment system. CVD cardiovascular disease, ML machine learning, AUC area under the curve
Fig. 5 AI framework for CVD risk assessment in RA patients. BMI body mass index, LDL low density lipoprotein, CVD cardiovascular disease, RA rheumatoid arthritis, CUSIP carotid ultrasound image-based phenotypes

Author contributions ADJ: Design of the manuscript, proofreading many iterations, researching PubMed and other research sites for article search. DG, PPS, AP, VV: Resources, imaging contribution and proofreading the manuscript. AP: Design of the rheumatoid arthritis component of the manuscript, proofreading many iterations, researching PubMed and other research sites for article search. AJ: Proofreading
and guidance of cardiology components of the manuscript. NNK: The vision of cardiac risk assessment and proofreading of the manuscript, final approval of the manuscript. LS: Design and support of radiology components such as CT and carotid ultrasound. SM: Proofreading and guidance of cardiac imaging components of the manuscript. JRL, GP, MM, AS, VR: Proofreading and guidance of cardiology and vascular components. GDK: Design and solid proofreading of the manuscript, especially the rheumatology component, revising it critically for important intellectual content, and final approval of the manuscript. RK: Vascular tissue characterization and proofreading of the manuscript. JSS: Principal Investigator-design, proofreading of the manuscript and management.

Compliance with ethical standards

Conflict of interest The author(s) declare that they have no competing interests.

References

1. Smolen JS, Aletaha D, McInnes IB (2006) Rheumatoid arthritis. Lancet 388(10055):2023–2038. https://doi.org/10.1016/S0140-6736(16)30173-8
2. Cojocaru M, Cojocaru IM, Silosi I, Vrabie CD, Tanasescu R (2010) Extra-articular manifestations in rheumatoid arthritis. Maedica 5(4):286
3. Cross M, Smith E, Hoy D, Carloma L, Wolfe F, Vos T, Williams B, Gabriel S, Lassere M, Johns N (2014) The global burden of rheumatoid arthritis: estimates from the global burden of disease 2010 study. Ann Rheum Dis 73(7):1316–1322
4. van Vollenhoven RF (2009) Sex differences in rheumatoid arthritis: more than meets the eye. BMC Med 7(1):12
5. Crowson CS, Liao KP, Davis JM III, Solomon DH, Matteson EL, Knutson KL, Hlatky MA, Gabriel SE (2013) Rheumatoid arthritis and cardiovascular disease. Am Heart J 166(4):622–628 (e621)
6. del Rincón ID, Williams K, Stern MP, Freeman GL, Escalante A (2001) High incidence of cardiovascular events in a rheumatoid arthritis cohort not explained by traditional cardiac risk factors. Arthritis Rheum 44(12):2737–2745. https://doi.org/10.1002/1529-0131(200112)44:12<2737::AID-art4603.0.CO;2-%23
7. D’agostino RB, Vasan RS, Pencina MJ, Wolf PA, Cobain M, Lenfant C, Kannel WB (2008) General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation 117(6):743–753
8. Conroy R, Pyorälä K, Ae Fitzgerald, Sans S, Menotti A, De Backer G, De Bacquer D, Ducimetiere P, Jousilahti P, Lehto S (2003) Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. Eur Heart J 24(11):987–1003
9. Goff DC, Lloyd-Jones DM, Bennett G, Coady S, D’agostino RB, Gibbons R, Greenland P, Lackland DT, Levy D, O’Donnell CJ (2014) 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 63(25 Part B):2935–2959
10. Arts E, Popa C, Den Broeder A, Semb A, Toms T, Kitas G, Van Riel P, Fransen J (2014) Performance of four current risk algorithms in predicting cardiovascular events in patients with early rheumatoid arthritis. Ann Rheum Dis 74:668–74
11. Crowson CS, Matteson EL, Roger VL, Therneau TM, Gabriel SE (2012) Usefulness of risk scores to estimate the risk of cardiovascular disease in patients with rheumatoid arthritis. Am J Cardiol 110(3):420–424
12. Arts E, Popa C, Den Broeder A, Donders R, Sandoo A, Toms T, Rollefstad S, Ik Dahl E, Semb A, Kitas G (2015) Prediction of cardiovascular risk in rheumatoid arthritis: performance of original and adapted SCORE algorithms. Ann Rheum Dis 75:674–80
13. Escalante A, Haas RW, Del Rincón I (2005) Paradoxical effect of body mass index on survival in rheumatoid arthritis: role of comorbidity and systemic inflammation. Arch Intern Med 165(14):1624–1629
14. Urruela MA, Suarez-Almazor ME (2012) Lipid paradox in rheumatoid arthritis: changes with rheumatoid arthritis therapies. Curr Rheumatol Rep 14(5):428–437
15. Agca R, Heslinga SC, Rollefstad S, Heslinga M, McInnes IB, Peters MJL, Kvien TK, Dougados M, Radner H, Atzeni F, Primdahl J, Södergren A, Wallberg Jonsson S, van Rompay J, Zabalcz, Pedersen TR, Jacobsen L, de Vlam K, Gonzalez-Gay M, Semb AG, Kitas GD, Smolders YM, Szekanecz Z, Sattar N, Symmons DPM, Nurmohamed MT (2016) EULAR recommendations for cardiovascular disease risk management in patients with rheumatoid arthritis and other forms of inflammatory joint disorders: 2015/2016 update. Ann Rheum Dis. https://doi.org/10.1136/annrheumdis-2016-209775
16. Peters MJ, Symmons D, McCarey D, Dijkmans B, Nicola P, Kvien T, McInnes I, Haentzschel H, Gonzalez-Gay M, Provan S (2010) EULAR evidence-based recommendations for cardiovascular risk management in patients with rheumatoid arthritis and other forms of inflammatory arthritis. Ann Rheum Dis 69(2):325–331
17. Ridker PM, Buring JE, Rifai N, Cook NR (2007) Development and validation of improved algorithms for the assessment of global cardiovascular risk in women: the Reynolds Risk Score. JAMA 297(6):611–619
18. Solomon D, Greenberg J, Curtis J, Liu M, Farkouh M, Tsao P, Kremer J, Etzel CJ (2015) Derivation and internal validation of an expanded cardiovascular risk prediction score for rheumatoid arthritis: a Consortium of Rheumatology Researchers of North America Registry Study. Arthritis Rheumatol 67(8):1995–2003
19. Hippsilis-Cox J, Coupland C, Brindle P (2017) Development and validation of QRISK3 risk prediction algorithms to estimate future risk of cardiovascular disease: prospective cohort study. BMJ 357:1–12. https://doi.org/10.1136/bmj.j2099. https://qrisk.org/three
20. Hippsilis-Cox J, Coupland C, Vinogradova Y, Robon J, Minhas R, Sheikh A, Brindle P (2008) Predicting cardiovascular risk in England and Wales: prospective derivation and validation of QRISK2. BMJ 336(7659):1475–1482
21. Crowson CS, Rollefstad S, Kitas GD, Van Riel PL, Gabriel SE, Semb AG (2017) Challenges of developing a cardiovascular risk calculator for patients with rheumatoid arthritis. PLoS One 12(3):e0174656
22. Crowson CS, Gabriel SE, Semb AG, Van Riel PL, Karpouzas G, Dessein PH, Hitchon C, Pascaul-Ramos V, Kitas GD, Arthritis AT-ACCfR (2017) Rheumatoid arthritis-specific cardiovascular risk scores are not superior to general risk scores: a validation analysis of patients from seven countries. Rheumatology 56(7):1102–1110
23. Khanna NN, Jambhikar AD, Gupta D, Piga M, Saba L, Careassi C, Giannopoulos AA, Nicolaides A, Laird JR, Suri HS, Mavroogi S, Protogerou AD, Stikakis P, Kitas GD, Suri JS (2019) Rheumatoid arthritis: atherosclerosis imaging and cardiovascular risk assessment using machine and deep learning-based tissue characterization. Curr Atheroscler Rep 21(2). https://doi.org/10.1007/s11883-019-0766-x
24. Libby P (2008) Role of inflammation in atherosclerosis associated with rheumatoid arthritis. Am J Med 121(10):S21–S31
25. Gasparian AY, Stuvropoulos-Kalinoglou A, Mikhailidis DP, Toms TE, Douglas KM, Kitas GD (2010) The rationale for comparative studies of accelerated atherosclerosis in rheumatic diseases. Curr Vasc Pharmacol 8(4):437–449. https://doi.org/10.2174/157016110791330852
26. Skeoch S, Cristinaeche PH, Williams H, Pemberton P, Xu D, Sun J, James J, Yuan C, Hatauzaki T, Hockings P (2017) Imaging atherosclerosis in rheumatoid arthritis: evidence for increased prevalence, altered phenotype and a link between systemic and localised plaque inflammation. Sci Rep 7(1):1–12
27. Koellemay MJ, Nederkoorn PJ, Reitsma JB, Majoe CB (2004) Systematic review of computed tomographic angiography for assessment of carotid artery disease. Stroke 35(10):2306–2312
28. Boi A, Jamthikar AD, Saba L, Gupta D, Sharma A, Loi B, Laird JR, Khanna NN, Suri JS (2018) A survey on coronary atherosclerotic plaque tissue characterization in intravascular optical coherence tomography. Curr Atheroscler Rep 20(7):33
29. Jamthikar A, Gupta D, Khanna NN, Araki T, Saba L, Nicolaides A, Sharma A, Omerzu T, Suri HS, Gupta A, Mavrogeni S, Turk M, Laird JR, Protogerou AD, Sfikakis P, Kitas GD, Viswanathan V, Pareek G, Miner M, Suri JS (2019) A special report on changing trends in preventive stroke/cardiovascular risk assessment via B-mode ultrasonography. Curr Atheroscler Rep 21(7):25
30. Saba L, Jamthikar A, Gupta D, Khanna NN, Viskovic K, Suri HS, Gupta A, Mavrogeni S, Turk M, Laird JR, Pareek G, Miner M, Ajuluchukwu JNA, Sfikakis PP, Protogerou A, Kitas GD, Nicolaides A, Sharma A, Suri JS (2020) Integration of eGFR biomarker in image-based CV/stroke risk calculator: a south Asian-Indian diabetes cohort with moderate chronic kidney disease. Int Angiol. https://doi.org/10.23736/s0392-9590.20.04338-2
31. Polak JF, Pencina MJ, Pencina KM, O’Donnell CJ, Wolf PA, D’Agostino RB Sr (2011) Carotid-wall intima-media thickness and cardiovascular events. N Engl J Med 365(5):213–221. https://doi.org/10.1056/NEJMoa1012592
32. Lorenz MW, Sitzer M, Markus HS, Bots ML, Rosvall M (2007) Prediction of clinical cardiovascular events with carotid intima-media thickness: a systematic review and meta-analysis-response. Circulation 116(9):318
33. Stein JL, Korczak CE, Hurst RT, Lonn E, Kendall CB, Mohler ER, Najjar SS, Rembold CM, Post WS (2008) Use of carotid ultrasound to identify subclinical vascular disease and evaluate cardiovascular disease risk: a consensus statement from the American Society of Echocardiography Carotid Intima-Media Thickness Task Force endorsed by the Society for Vascular Medicine. J Am Soc Echocardiogr 21(2):93–111
34. Johri AM, Nambi V, Naqvi TZ, Feinstein SB, Kim ES, Park MM, Becher H, Sillesen H (2020) Recommendations for the assessment of carotid arterial plaque ultrasound by the characteristic of atherosclerosis and evaluation of cardiovascular risk: from the American Society of Echocardiography. J Am Soc Echocardiogr 33:917–933
35. del Rincón I, Williams K, Stern MP, Freeman GL, O’Leary DH, Escalante A (2003) Association between carotid atherosclerosis and markers of inflammation in rheumatoid arthritis patients and healthy subjects. Arthritis Rheumatol 48(7):1833–1840
36. Pope JE, Nevskaya T, Barra L, Farraga G (2016) Carotid artery atherosclerosis in patients with active rheumatoid arthritis: predictors of plaque occurrence and progression over 24 weeks. Open Rheumatol J 10:49
37. Kassem EM, Ghonimy R, Aedel M, El-Sharnoby G (2011) Non traditional risk factors of carotid atherosclerosis in rheumatoid arthritis. Egypt Rheumatol 33(3):113–119
38. Del Rincon I, Polak JF, O’Leary DH, Battafarano DF, Erikson JM, Restrepo JF, Molina E, Escalante A (2015) Systemic inflammation and cardiovascular risk factors predict rapid progression of atherosclerosis in rheumatoid arthritis. Ann Rheum Dis 74(6):1118–1123
39. Carotti M, Salaffi F, Mangiacotti M, Cerioni A, Giuseppeppi G, Grassi W (2007) Atherosclerosis in rheumatoid arthritis: the role of high-resolution B mode ultrasound in the measurement of the arterial intima-media thickness. Reumatismo 59:38–49
40. Kobayashi H, Jones JT, Polak JF, Blumenthal RS, Leffell MS, Szklo M, Petr M, Gelber AC, Post W, Bathon JM (2010) Increased prevalence of carotid artery atherosclerosis in rheumatoid arthritis is artery-specific. J Rheumatol 37(4):730–739
41. Schott LL, Kao AH, Cunningham A, Wildman RP, Kuller LH, Sutton-Tyrrell K, Wasko MC (2009) Do carotid artery diameters manifest early evidence of atherosclerosis in women with rheumatoid arthritis? J Womens Health (2002) 18(1):21–29. https://doi.org/10.1089/jwh.2008.0797
42. Viswanathan V, Jamthikar AD, Gupta D, Puvula A, Khanna NN, Saba L, Viskovic K, Mavrogeni S, Turk M, Laird JR, Pareek G, Miner M, Ajuluchukwu JNA, Sfikakis P, Protogerou A, Kitas GD, Nicolaides A, Sharma A, Suri JS (2020) Integration of eGFR biomarker in image-based CV/stroke risk calculator: a south Asian-Indian diabetes cohort with moderate chronic kidney disease. Int Angiol. https://doi.org/10.23736/s0392-9590.20.04338-2
43. Khanna NN, Jamthikar AD, Gupta D, Araki T, Piga M, Saba L, Carcassi C, Nicolaides A, Laird JR, Suri HS, Gupta A, Mavrogeni S, Protogerou AD, Sfikakis P, Kitas GD, Suri JS (2019) Effect of carotid image-based phenotypes on cardiovascular risk calculator: AECRS1.0. Med Biol Eng Comput 57(7):1553–1566
44. Khanna NN, Jamthikar AD, Araki T, Gupta D, Piga M, Saba L, Carcassi C, Nicolaides A, Laird JR, HS, Gupta A, Mavrogeni S, Kitas GD, Suri JS (2019) Nonlinear model for the carotid artery disease 10-year risk prediction by fusing conventional cardiovascular factors to carotid ultrasound image phenotypes: a Japanese diabetes cohort study. Echocardiography 36(2):345–361
45. Khanna NN, Jamthikar AD, Gupta D, Nicolaides A, Araki T, Saba L, Cuadrado-Godia E, Sharma A, Omerzu T, Suri HS, Gupta A, Mavrogeni S, Turk M, Laird JR, Protogerou AD, Sfikakis P, Kitas GD, Viswanathan V, Suri JS (2019) Performance evaluation of 10-year ultrasound image-based stroke/cardiovascular (CV) risk calculator by comparing against ten conventional CV risk calculators: a diabetic study. Comput Biol Med 105:125–143
46. Saba L, Biswas M, Kuppilli V, Godia EC, Suri HS, Edla DR, Omerzu T, Laird JR, Khanna NN, Mavrogeni S (2019) The present and future of deep learning in radiology. Eur J Radiol 114:10–24
47. Araki T, Jain PK, Suri HS, Londhe ND, Ikeda N, El-Baz A, Shrivastava VK, Saba L, Nicolaides A, Shafique S (2017) Stroke risk stratification and its validation using ultrasonic Echolucet Carotid Wall plaque morphology: a machine learning paradigm. Comput Biol Med 80:77–96
48. Acharya UR, Swapna G, Sree SV, Molinari F, Gupta S, Bardales RH, Witkowska A, Suri JS (2014) A review on ultrasound-based thyroid cancer tissue characterization and automated classification. Technol Cancer Res Treat 13(4):289–301
49. Saba L, Dey N, Ashour AS, Samanta S, Nath SS, Chakraborty M, Dey N, Ashour AS, Samanta S, Nath SS (2019) Automated stratification of liver disease in ultrasound: an online accurate feature classification paradigm. Comput Methods Progr Biomed 130:118–134. https://doi.org/10.1016/j.cmpb.2016.03.016
78. Natali A, Toschi E, Baldeweg S, Ciociaro D, Favilla S, Saccà L, Ferrannini E (2006) Clustering of insulin resistance with vascular dysfunction and low-grade inflammation in type 2 diabetes. Diabetes 55(4):1133–1140. https://doi.org/10.2337/diabetes.55.04.06.db05-1076

79. Pamuk ON, Unlü E, Ca?ir N (2006) Role of insulin resistance in increased frequency of atherosclerosis detected by carotid ultrasonography in rheumatoid arthritis. J Rheumatol 33(12):2447–2452

80. Libby P (2006) Inflammation and cardiovascular disease mechanisms. Am J Clin Nutr 83(2):456S–460S

81. Duerden M, O’Flynn N Qureshi N (2015) Cardiovascular risk assessment and lipid modification: NICE guideline. British J GenPract 65(636):378–380

82. Anderson TJ, Grégoire J, Pearson GJ, Barry AR, Couture P, Lagrand WK, Visser CA, Hermens WT, Niessen HWM, Rajagopalan V, Alemao E, Kawabata H, Solomon D (2014) Management of dyslipidemia for the prevention of cardiovascular disease in the adult. Can J Cardiol 32(11):1263–1282. https://doi.org/10.1016/j.cjca.2016.07.510

83. Mendis S, Lindholm LH, Mancia G, Whithworth J, Alderman M, Lim S, Heagerty T (2007) World Health Organization (WHO) and International Society of Hypertension (ISH) risk prediction charts: assessment of cardiovascular risk for prevention and control of cardiovascular disease in low and middle-income countries. J Hypertens 25(8):1578–1582

84. Lagrand WK, Visser CA, Hermens WT, Niessen HWM, Verheugt FWA, Wolbink G-J, Hack CE (1999) C-reactive protein as a cardiovascular risk factor. Circulation 100(1):96–102. https://doi.org/10.1161/01.CIR.100.1.96

85. Rajagopalan V, Alemao E, Kawabata H, Solomon D (2014) SAT0069 performance of the Framingham Cardiovascular risk prediction model with and without C-reactive protein or erythrocyte sedimentation rate in RA: analysis of US electronic medical records database. Ann Rheum Dis 73(Suppl 2):615

86. van der Heijde D, Ramiro S, Landewe R, Baraliakos X, Van den Bosch F, Sepriano A, Regal A, Cuijpers A, Daghi?ruhd H, Dougamod S (2017) 2016 update of the ASAS-EULAR management recommendations for axial spondyloarthritis. Ann Rheum Dis 76(6):978–991

87. van der Heijde D, Ramiro S, Landewe R, Baraliakos X, Van den Bosch F, Sepriano A, Regal A, Cuijpers A, Daghi?ruhd H, Dougamod S (2017) 2016 update of the ASAS-EULAR management recommendations for axial spondyloarthritis. Ann Rheum Dis 76(6):978–991

88. van der Heijde D, Ramiro S, Landewe R, Baraliakos X, Van den Bosch F, Sepriano A, Regal A, Cuijpers A, Daghi?ruhd H, Dougamod S (2017) 2016 update of the ASAS-EULAR management recommendations for axial spondyloarthritis. Ann Rheum Dis 76(6):978–991

89. van der Heijde D, Ramiro S, Landewe R, Baraliakos X, Van den Bosch F, Sepriano A, Regal A, Cuijpers A, Daghi?ruhd H, Dougamod S (2017) 2016 update of the ASAS-EULAR management recommendations for axial spondyloarthritis. Ann Rheum Dis 76(6):978–991

90. Fent GJ, Greenwood JP, Plein S, Buch MH (2017) The role of non-invasive cardiovascular imaging in the assessment of cardiovascular risk in rheumatoid arthritis: where we are and where we need to be. Ann Rheum Dis 76(7):1169

91. Yoon HE, Kim Y, Kim SD, Oh JK, Chung Y-A, Shin JS, Yang CW, Seo SM (2018) A pilot trial to examine the changes in carotid arterial inflammation in renal transplant recipients as assessed by 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography computed tomography (PET/CT). Ann Transplant 23:412–421. https://doi.org/10.12659/AOT.909212

92. Viswanathan V, Jhamthikar AD, Gupta D, Shanu N, Puvvula A, Khanna NN, Saba L, Omerzum T, Viskovic K, Mavrogeni S, Turk M, Laird JR, Pareek G, Miner M, Sfikakis PP, Protegore A, Kitas GD, Joshi SCS, Fiscian H, Folson AA, Wu DH, Ruzsa Z, Nicolaides A, Sharma A, Bhatt DL, Suri JS (2020) Low-cost preventive screening using carotid ultrasound in patients with diabetes. Front Biosci (Landmark Ed) 25:1132–1171

93. Ristić G, Leśpir T, Glišić B, Stanisavljević D, Vojvodić D, Petronijević M, Stefanović D (2010) Rheumatoid arthritis is an independent risk factor for increased carotid intima-media thickness: impact of anti-inflammatory treatment. Rheumatology 49(6):1076–1081

94. Viswanathan V, Jhamthikar AD, Gupta D, Puvvula A, Khanna NN, Saba L, Viskovic K, Mavrogeni S, Laird JR, Pareek G, Miner M, Sfikakis PP, Protegore A, Kitas GD, Nicolaides A, Sharma A, Suri JS (2020) Does the carotid bulb offer a better 10-year CVD/stroke risk assessment compared with the common carotid artery?: a 1516 ultrasound scan study. Angiology. https://doi.org/10.1177/0003319720941730

95. Lind L, Gigante B, Borne Y, Mälarstig A, Sundström J, Årnö J, Ingelsson E, Baldassarre D, Tremoli E, Veglia F (2020) The plasma protein profile and cardiovascular risk differ between intima-media thickness of the common carotid artery and the bulb: a meta-analysis and a longitudinal evaluation. Atherosclerosis 295:25–30

96. Gregg S, Li TY, Hētu M-F, Pang SC, Ewart P, Johri AM (2018) Relationship between carotid artery atherosclerosis and bulb geometry. Int J Cardiovasc Imaging 34(7):1081–1090

97. Okazaki S, Sakaguchi M, Miwa K, Furukado S, Yamagami H, Yagita Y, Mochizuki H, Kitagawa K (2014) Association of interleukin-6 with the progression of carotid atherosclerosis: a 9-year follow-up study. Stroke 45(10):2924–2929. https://doi.org/10.1161/strokeaha.114.005991

98. Yayan J (2012) Erythrocyte sedimentation rate as a marker for coronary heart disease. Vasc Health Risk Manag 8:219

99. Andresdottir MB, Sigfusson N, Sigvaldason H, Gudnason V (2003) Erythrocyte sedimentation rate, an independent predictor of coronary heart disease in men and women: the Reykjavik Study. Am J Epidemiol 158(9):844–851. https://doi.org/10.1093/aje/kwg222

100. Natali A, L’Abbate A, Ferrannini E (2003) Erythrocyte sedimentation rate, coronary atherosclerosis, and cardiac mortality. Eur Heart J 24(7):639–648

101. Xie D, Hu D, Zhang Q, Sun Y, Li J, Zhang Y (2016) Increased high-sensitivity C-reactive protein, erythrocyte sedimentation rate and lactic acid in stroke patients with internal carotid artery occlusion. Arch Med Sci 12(3):546–551. https://doi.org/10.5114/aoms.2014.478779

102. Eftekhaari TE (2012) ESR rate can be a marker for coronary artery disease. Vasc Health Risk Manag 8:669–670. https://doi.org/10.2147/VHRM.S39006

103. Sander D, Schulze-Horn C, Bickel H, Gnahm H, Bartels E, Conrad B (2006) Combined effects of hemoglobin A1c and C-reactive protein on the progression of subclinical coronary atherosclerosis: the INVADE study. Stroke 37(2):351–357

104. van der Meer IM, de Maat MP, Hak AE, Kiliaan AJ, Del Sol AL, van der Kuip DA, Nijhuis RL, Hofman A, Witteman JC (2002) C-reactive protein predicts progression of atherosclerosis measured at various sites in the arterial tree: the Rotterdam Study. Stroke 33(12):2750–2755

105. Toprak A, Kandavar R, Toprak D, Chen W, Srinivasan S, Xu JH, Anwar A, Berenson GS (2011) C-reactive protein is an independent predictor for carotid artery intima-media thickness
114. Danesh J, Wheeler JG, Hirschfield GM, Eda S, Eiriksdottir G, Svanteson M, Rollefstad S, Kløw NE, Hisdal J, Ikdahl E, Semb Skandha S, Gupta S, Saba L, Koppula V, Suri JS (2020) Ultra-
113. Biswas M, Kuppili V, Saba L, Edla DR, Suri HS, Sharma A, Ilyas M, Rehman H, Naït-Ali A (2020) Detection of Covid-19 from chest X-ray images using artificial intelligence: an early review. arXiv preprint arXiv:200405436
112. Biswas M, Kuppili V, Saba L, Edla DR, Suri HS, Sharma A, Cuadrado-Godia E, Laird JR, Nicolaides A, Suri JS (2019) Deep learning fully convolution network for lumen characterization in diabetic patients using carotid ultrasound: a tool for stroke risk. Med Biol Eng Comput 57(2):543–564
111. Svanström M, Rollefstad S, KIsw NE, Hidal J, Ikdahal E, Semb AG, Haig Y (2017) Associations between coronary and carotid artery atherosclerosis in patients with inflammatory joint diseases. RMD Open 3(2):e000544. https://doi.org/10.1136/rmdopen-2017-000544
110. Nambi V, Chambless L, Folsom AR, He M, Hu Y, Mosley T, Volcik K, Boerwinkle E, Ballantyne CM (2010) Carotid intima-media thickness and presence or absence of plaque improves prediction of coronary heart disease risk: the ARIC (Atherosclerosis Risk In Communities) study. J Am Coll Cardiol 55(15):1600–1607
109. Li L, Qin L, Xu Z, Yin Y, Wang X, Bai J, Lu Y, Fang Z, El-Baz A, Suri JS (2011) Lung imaging and computer aided diagnosis. CRC Press, Boca Raton
108. Gastounioti A, Makrodimitris S, Golemati S, Kadoglou NP, Lia-
107. Jamthikar A, Gupta D, Khanna NN, Saba L, Laird JR, Suri JS (2020) Cardiovascular/stroke risk prevention: a new machine learning framework integrating carotid ultrasound image-based phenotypes and its harmonics with conventional risk factors. Indian Heart J. https://doi.org/10.1016/j.ihj.2020.06.004
Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Affiliations

Ankush D. Jamthikar1 · Deep Gupta2 · Anudeep Puvvula2 · Amer M. Johri3 · Narendra N. Khanna4 · Luca Saba5 · Sophie Mavrogeni6 · John R. Laird7 · Gyan Pareek8 · Martin Miner9 · Petros P. Sfikakis10 · Athanasios Protogerou11 · George D. Kitas12 · Raghu Kolluri13 · Aditya M. Sharma14 · Vijay Viswanathan15 · Vijay S. Rathore16 · Jasjit S. Suri17

Ankush D. Jamthikar
ankush.jamthikar1992@gmail.com
Deep Gupta
der.deepgupta@gmail.com
Anudeep Puvvula
dr.anudeeppuvvula@gmail.com
Amer M. Johri
johria@queensu.ca
Narendra N. Khanna
drnnkhanna@gmail.com
Luca Saba
lucasabamd@gmail.com
Sophie Mavrogeni
somai3@otenet.gr
John R. Laird
lairdjr@ah.org
Gyan Pareek
gyan_pareek@brown.edu
Martin Miner
martin_miner@brown.edu
Petros P. Sfikakis
psfikakis@med.ouoa.gr
Athanasios Protogerou
aprotog@med.ouoa.gr
George D. Kitas
kitas@dgh.nhs.uk
Raghu Kolluri
kolluri.raghu@gmail.com

© Springer
