Classifying superconductivity in compressed H₃S

E. F. Talantsev¹,²

¹M.N. Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, 18, S. Kovalevskoy St., Ekaterinburg, 620108, Russia
²NANOTECH Centre, Ural Federal University, 19 Mira St., Ekaterinburg, 620002, Russia
E-mail: evgeny.talantsev@imp.uran.ru

Abstract

The discovery of high-temperature superconductivity in compressed H₃S by Drozdov and co-workers (A. Drozdov, et. al., Nature 525, 73 (2015)) heralded a new era in superconductivity. To date, the record transition temperature of $T_c = 260$ K stands with another hydrogen-rich compound, LaH₁₀ (M. Somayazulu, et. al., arXiv:1808.07695) which becomes superconducting at pressure of $P = 190$ GPa. Despite very intensive first-principle theoretical studies of hydrogen-rich compounds compressed to megabar level pressure, there is a very limited experimental dataset available for such materials. In this paper, we analyze the upper critical field, $B_{c2}(T)$, data of highly compressed H₃S reported by Mozaffari and co-workers (S. Mozaffari, et. al., LA-UR-18-30460, DOI: 10.2172/1481108) by utilizing four different models of $B_{c2}(T)$. In result, we find that the ratio of superconducting energy gap, $\Delta(0)$, to the Fermi energy, ε_F, in all considered scenarios is $0.03 < \Delta(0)/\varepsilon_F < 0.07$, with respective ratio of T_c to the Fermi temperature, T_F, $0.012 < T_c/T_F < 0.039$. These characterize H₃S as unconventional superconductor and places it on the same trend line in T_c versus T_F plot, where all unconventional superconductors located.
Classifying superconductivity in compressed H$_3$S

I. Introduction

Experimental discovery a superconductivity above $T = 200$ K in highly compressed H$_3$S by Drozdov et al [1] is one of the most fascinating confirmation of the Bardeen-Cooper-Schrieffer (BCS) theory [2] and the phonon-mediated pairing scenario which can sustain superconductivity at such high temperature [3,4]. Moreover, recent experimental results on another hydrogen-rich compound of LaH$_{10}$ [5,6], further showed that BCS electron-phonon pairing mechanism works at much higher temperatures, and highest observed in experiment superconducting transition temperature, T_c, for LaH$_{10}$ compound is $T_c = 260$ K [6]. Historical aspects of the discovery, included the astonishing theoretical prediction of Ashcroft [7], and reviews of theoretical works in the field can be found elsewhere [8-13].

Most theoretical works [10,12,13-18] came to conclusion that H$_3$S is strong coupled superconductor with BCS ratio:

$$\frac{2\Delta(0)}{k_B T_c} = \alpha = 4.5 - 4.7$$

(1)

where $\Delta(0)$ is ground state of the superconducting energy gap, k_B is the Boltzmann constant. In contrast to this, our analysis [19] of experimental self-field critical current density, $J_c(sf,T)$ (reported by Drozdov and co-workers in [1]), showed that the BCS ratio (Eq. 1) for H$_3$S is more likely to be very close to the weak-coupling limit of 3.53, and we deduced value for $\Delta(0) = 28$ meV [19,20], while many theoretical works came to predicted values in the range of $\Delta(0) = 40$-45 meV. Modern spectroscopic techniques have been applied to H$_3$S [21], which confirmed theoretically calculated energy spectrum for energies above 70 meV.

In this paper, we analyse recently released experimental upper critical field, $B_{c2}(T)$, data [22] for highly compressed H$_3$S with the purpose to deduce the Fermi velocity, v_F, and Fermi energy, ε_F, for this material.
II. Description of models

In the Ginzburg-Landau theory, the upper critical field is given by following expression:

\[B_{c2}(T) = \frac{\phi_0}{2\pi \xi^2(T)} \] \hspace{1cm} (2)

where \(\phi_0 = 2.07 \times 10^{-15} \) Wb is flux quantum, and \(\xi(T) \) is the coherence length. There is a well-known BCS expression [2]:

\[\xi(0) = \frac{\hbar v_F}{\pi \Delta(0)} \] \hspace{1cm} (3)

where \(\hbar = h/2\pi \) is reduced Planck constant, and \(v_F \) is the Fermi velocity. Thus, from deduced \(B_{c2}(0) \) and \(T_c \) and assumed \(\alpha \) (Eq. 1), one can calculate the Fermi velocity, \(v_F \):

\[v_F = \frac{\pi}{2} \cdot \xi(0) \cdot \frac{\alpha \cdot k_B \cdot T_c}{\hbar}, \] \hspace{1cm} (4)

the Fermi energy, \(\varepsilon_F \):

\[\varepsilon_F = \frac{m^*_{e_f} v_F^2}{2}, \] \hspace{1cm} (5)

where \(m^*_{e_f} \) is effective mass (for H\textsubscript{3}S we used \(m^*_{e_f} = 2.76 \) \(m_e \) [10]), and the Fermi temperature, \(T_F \):

\[T_F = \frac{\varepsilon_F}{k_B}, \] \hspace{1cm} (6)

where \(k_B \) is Boltzmann constant.

One of conventional models to analyse \(B_{c2}(T) \) was given by Werthamer-Helfand-Hohenberg (WHH) [23,24]:

\[\ln \left(\frac{T}{T_c(B=0)} \right) = \psi \left(\frac{1}{2} \right) - \psi \left(\frac{1}{2} + \frac{\hbar \cdot D \cdot B_{c2}(T)}{2 \cdot \phi_0 \cdot k_B \cdot T} \right), \] \hspace{1cm} (6)

where \(D \) is the diffusion constant of the normal conducting electrons/holes, with two free fitting parameters of \(T_c(B=0) \) and \(D \). Baumgartner et al [25] proposed simple and accurate analytical expression for \(B_{c2}(T) \) within WHH model:

\[B_{c2}(T) = \frac{1}{0.693} \cdot \frac{\phi_0}{2 \pi \xi^2(0)} \cdot \left(1 - \frac{T}{T_c} \right) - 0.153 \cdot \left(1 - \frac{T}{T_c} \right)^2 - 0.152 \cdot \left(1 - \frac{T}{T_c} \right)^4 \] \hspace{1cm} (7)
where $\xi(0)$ and $T_c \equiv T_c(B=0)$ are two free fitting parameters. We will designate this model as B-WHH.

In addition, there are several analytical expressions which are in a wide use too [26-28]. For instance, there are classical two-fluid Gorter-Casimir model [29]:

$$B_{c2}(T) = \frac{\phi_0}{2\pi \xi^2(0)} \left(1 - \left(\frac{T}{T_c} \right)^2 \right)$$ \hspace{1cm} (8)

and Jones-Hulm-Chandrasekhar (JHC) model [30]:

$$B_{c2}(T) = \frac{\phi_0}{2\pi \xi^2(0)} \left(\frac{1 - \left(\frac{T}{T_c} \right)^2}{1 + \left(\frac{T}{T_c} \right)^2} \right)$$ \hspace{1cm} (9)

There is also a little-known equation from Gor’kov for $B_{c2}(T)$ [31] which was referred by Gor’kov as a good analytical interpolative approximation over the whole temperature range:

$$B_{c2}(T) = \frac{1}{1.77} \cdot \frac{\lambda(0)}{\xi(0)} \left(1.77 - 0.43 \cdot \left(\frac{T}{T_c} \right)^2 + 0.07 \cdot \left(\frac{T}{T_c} \right)^4 \right)$$ \hspace{1cm} (10)

where $B_c(T)$ is the thermodynamic critical field, and $\lambda(0)$ is the ground state London penetration depth. Eq. 8 was re-written by Jones et al [30] in following form:

$$B_{c2}(T) = \frac{1}{1.77} \cdot \frac{\phi_0}{2\pi \xi^2(0)} \left(1.77 - 0.43 \cdot \left(\frac{T}{T_c} \right)^2 + 0.07 \cdot \left(\frac{T}{T_c} \right)^4 \right) \left(1 - \left(\frac{T}{T_c} \right)^2 \right)$$ \hspace{1cm} (11)

We will designate Eq. 9 as G model.

In this paper, we utilise Eq. 8 in a different way. If we take in account, the Ginzburg-Landau (GL) theory expressions:

$$B_{c2}(T) = \sqrt{2} \cdot \frac{\lambda(T)}{\xi(T)} \cdot B_c(T)$$ \hspace{1cm} (12)

we can conclude that the Gor’kov’s equation (Eq. 8) means that:

$$\kappa(T) = \frac{\lambda(T)}{\xi(T)} = \frac{1}{1.77} \cdot \frac{\lambda(0)}{\xi(0)} \left(1.77 - 0.43 \cdot \left(\frac{T}{T_c} \right)^2 + 0.07 \cdot \left(\frac{T}{T_c} \right)^4 \right)$$ \hspace{1cm} (13)

By utilising another GL theory expression:

$$B_{c2}(T) = 2 \cdot \left(\frac{\lambda(T)}{\xi(T)} \right)^2 \cdot \frac{B_{c2}(T)}{\ln(\kappa(T)) + 0.5} = \left(\frac{\lambda(T)}{\xi(T)} \right)^2 \cdot \frac{\phi_0}{2\pi \lambda^2(T)} = \left(\frac{\phi_0}{2\pi \lambda^2(T)} \right) \cdot \frac{\phi_0}{2\pi \lambda^2(T)}$$ \hspace{1cm} (14)

and BCS expression for $\lambda(T)$ for s-wave superconductor:
\[
\lambda(T) = \frac{\lambda(0)}{\left(1 - \frac{1}{2k_B T} \int_0^\infty \frac{de}{\cosh^2 \left(\frac{\sqrt{e^2 + \Delta(T)^2}}{2k_B T} \right)} \right)}^{1/2}
\]

where the temperature-dependent superconducting gap \(\Delta(T) \) equation can be taken from Gross et al [32]:

\[
\Delta(T) = \Delta(0) \cdot \tanh \left(\frac{\pi k_BT_c}{\Delta(0)} \cdot \sqrt{\eta \cdot \frac{\Delta C}{C} \cdot \left(\frac{T_c}{T} - 1 \right)} \right)
\]

where \(\Delta C/C \) is the relative jump in electronic specific heat at \(T_c \), and \(\eta = 2/3 \) for s-wave superconductors [32], one can obtain expression for the temperature dependent upper critical field:

\[
B_{c2}(T) = \frac{\phi_0}{2\pi \xi^2(0)} \left[\left(\frac{1}{T_c} \right)^2 + 0.7 \left(\frac{T}{T_c} \right)^4 \right]^{1/2} \cdot \frac{1}{1 - \frac{1}{2k_B T} \int_0^\infty \frac{de}{\cosh^2 \left(\frac{\sqrt{e^2 + \Delta(T)^2}}{2k_B T} \right)} \right]^{1/2}
\]

Thus, four fundamental parameters of superconductor, i.e. \(\xi(0), \Delta(0), \Delta C/C \) and \(T_c \), can be deduced by fitting experimental \(B_{c2}(T) \) data to Eq. 17. We need to clarify that \(\xi(0) \) determines absolute value of \(B_{c2}(0) \) amplitude, while \(\Delta(0) \) and \(\Delta C/C \) are deduced from the shape of \(B_{c2}(T) \) curve (which is the part of Eq. 17 in square brackets).

In this paper we fit experimental \(B_{c2}(T) \) data for compressed sulfur hydride to Eqs. 7, 9, and 11, 17 with the purpose to deduce/calculate fundamental superconducting parameters of this material.

III. Results and Discussions

Mozaffari et al [22] in their Fig. 1(a) defined two values for the upper critical field:

1. At the onset of superconductivity, which we will designate as \(B_{c2}(T) \) (in accordance with Mozaffari et al [22] definition).
2. At zero-resistance point, which we will designate as \(B_{c2,R=0}(T) \) for the clarity.
In Figs. 1-4 we show raw upper critical field data and data fits to four models:

Panel a: B-WHH model [24] (Eq. 7);
Panel b: JHC model [30] (Eq. 9);
Panel c: G model [31] (Eq. 11);
Panel d: this work model (Eq. 17).

In Figs. 1,2 we show results for Sample #1 compressed at $P = 150$ GPa. In Figs. 3,4 we show results for Sample #2 compressed at $P = 170$ GPa. In Figs. 1,3 we analysed $B_{c2,R=0}(T)$ data, and in Figs. 2,4 we analysed $B_{c2}(T)$ data. Results of all fits are presented in Table 1.

In general (Figs. 1-4, Table 1), we can conclude that all four models provide good fit quality, R, and deduced values of T_c and $\xi(0)$ for all four models are in reasonable agreement with each other. The most interesting thing we found is that fits to Eq. 17 reveal for all four $B_{c2}(T)$ datasets the value for superconducting energy gap of $\Delta(0) = 25$-28 meV which all are in excellent agreement with the value we deduced by the analysis of critical current densities in H$_3$S in our previous work [19], $\Delta(0) = 28$ meV. The latter was deduced for different H$_3$S sample [1] with $T_c = 203$ K, while in present work we analysed data for samples with lower T_c.

All deduced $B_{c2}(0)$ values (Fig. 1-4) are well below Pauli limit of:

$$B_p(0) = \frac{2\Delta(0)}{g\mu_B} = 430 - 500 \; T \gg B_{c2}(0)$$

where $g = 2$ and $\mu_B = \frac{e\hbar}{2m_e}$ is the Bohr magneton. Following Gor’kov’s note [33], Eq. 18 means that the mean-free path, l, of the electrons is large compared with the coherence length:

$$l \gg \xi(T) > \xi(0) \sim 2.5 \; nm$$

(19)
Figure 1. Superconducting upper critical field, $B_{c2,R=0}(T)$, data (blue) for compressed H_3S Sample #1 at pressure $P = 150$ GPa (raw data are from Ref. 22). (a) Fit to B-WHH model [24] (Eq. 7), fit quality is $R = 0.9832$. (b) Fit to JHC model [30] (Eq. 9), fit quality is $R = 0.9785$. (c) Fit to G model [31] (Eq. 11), fit quality is $R = 0.9827$. (d) Fit to this work model (Eq. 17), fit quality is $R = 0.9832$.

- **(a) B-WHH fit**
 - $\xi(0) = 2.46 \pm 0.02$ nm
 - $T_c = 150 \pm 1$ K

- **(b) JHC fit**
 - $\xi(0) = 2.40 \pm 0.03$ nm
 - $T_c = 157 \pm 2$ K

- **(c) G fit**
 - $\xi(0) = 2.55 \pm 0.02$ nm
 - $T_c = 149 \pm 1$ K

- **(d) Eq. 17 fit**
 - $\xi(0) = 2.67 \pm 0.05$ nm
 - $T_c = 150 \pm 3$ K
 - $\Delta(0) = 26.1 \pm 3.6$ meV
 - $\Delta C / C = 1.7 \pm 0.4$
 - $2\Delta(0)/k_B T_c = 4.0 \pm 0.6$
Figure 2. Superconducting upper critical field, $B_{c2}(T)$, data (blue) for compressed $\mathrm{H}_3\mathrm{S}$ Sample #1 at pressure $P = 150$ GPa (raw data are from Ref. 22). (a) Fit to B-WHH model [24] (Eq. 7), fit quality is $R = 0.9850$. (b) Fit to JHC model [30] (Eq. 9), fit quality is $R = 0.9908$. (c) Fit to G model [31] (Eq. 11), fit quality is $R = 0.9806$. (d) Fit to this work model (Eq. 17); fit quality is $R = 0.9914$.

- **B-WHH fit**
 - $\xi(0) = 2.10 \pm 0.02$ nm
 - $T_c = 164.9 \pm 1.6$ K

- **JHC fit**
 - $\xi(0) = 2.06 \pm 0.01$ nm
 - $T_c = 172 \pm 2$ K

- **G fit**
 - $\xi(0) = 2.18 \pm 0.02$ nm
 - $T_c = 163 \pm 2$ K

- **Eq. 17 fit**
 - $\xi(0) = 2.21 \pm 0.03$ nm
 - $T_c = 171 \pm 4$ K
 - $\Delta(0) = 24.8 \pm 2.0$ meV
 - $\Delta G/C = 1.2 \pm 0.3$
 - $2\Delta(0)/k_B T_c = 3.4 \pm 0.3$
Figure 3. Superconducting upper critical field, $B_{c2,R=0}(T)$, data (blue) for compressed H$_3$S Sample #2 at pressure $P = 170$ GPa (raw data are from Ref. 22). (a) Fit to B-WHH model [24] (Eq. 7), fit quality is $R = 0.9901$. (b) Fit to JHC model [30] (Eq. 9), fit quality is $R = 0.9978$. (c) Fit to G model [31] (Eq. 11), fit quality is $R = 0.9879$. (d) Fit to this work model (Eq. 17); fit quality is $R = 0.9979$.

$\xi(0) = 1.88 \pm 0.01$ nm,
$T_c = 182.5 \pm 0.9$ K

$\xi(0) = 1.79 \pm 0.01$ nm,
$T_c = 187.0 \pm 0.5$ K

$\xi(0) = 1.97 \pm 0.02$ nm,
$T_c = 182 \pm 1$ K

$\Delta(0) = 26.1 \pm 2.3$ meV,
$\Delta C / C = 1.2 \pm 0.1$,
$2\Delta(0)/k_B T_c = 3.3 \pm 0.3$
Figure 4. Superconducting upper critical field, $B_{c2}(T)$, data (blue) for compressed H$_3$S Sample #2 at pressure $P = 170$ GPa (raw data are from Ref. 22). (a) Fit to B-WHH model [24] (Eq. 7), fit quality is $R = 0.990$. (b) Fit to JHC model [30] (Eq. 9), fit quality is $R = 0.9978$. (c) Fit to G model [31] (Eq. 11), fit quality is $R = 0.9886$. (d) Fit to this work model (Eq. 17); fit quality is $R = 0.9981$.

Equations:

- **B-WHH fit**
 - $\xi(0) = 1.79 \pm 0.01$ nm
 - $T_c = 185.2 \pm 0.9$ K

- **JHC fit**
 - $\xi(0) = 1.68 \pm 0.01$ nm
 - $T_c = 189.0 \pm 0.5$ K

- **G fit**
 - $\xi(0) = 1.88 \pm 0.02$ nm
 - $T_c = 181.9 \pm 0.9$ K

- **Eq. 17 fit**
 - $\xi(0) = 1.86 \pm 0.10$ nm
 - $T_c = 190 \pm 4$ K
 - $\Delta(0) = 28.8 \pm 5.9$ meV
 - $\Delta C/C = 1.2 \pm 0.2$
 - $2\Delta(0)/k_BT_c = 3.5 \pm 0.7$
This is interesting result, if we take into account that H₃S is formed by chemical reaction which occurs within the diamond anvil volume:

\[3H_2S \rightarrow 2H_3S + S \] \hspace{1cm} (20)

and pure sulfur is always presented as post-reacted product in the studied sample.

However, Eq. 18 tells us that two phases, i.e. H₃S and S, are reasonably well separated from each other and there is a very low level of atomic disordering within superconducting H₃S phase, which has lattice parameter of \(a = 0.3092 \) nm [34].

The next step of the analysis is the comparison of \(v_F \), \(\varepsilon_F \), \(T_F \) values calculated directly by Eq. 3 (because fits to Eq. 17 provide both required quantities, i.e. \(\xi(0) \) and \(\Delta(0) \)) with \(v_F \) values calculated by Eq. 4 in assumption of two extreme coupling strength scenario of \(\alpha = 3.53 \) and \(\alpha = 4.70 \). Overall, deduced/calculated \(v_F \) for H₃S are in the range of \(v_F = (2.0 - 3.8) \times 10^5 \) m/s which equals to \(v_F \) of nickel and cobalt at normal conditions [35] and is approximately equal to the universal nodal Fermi velocity of the superconducting cuprates [36].

Table 1. Deduced parameters for H₃S superconductor. We assumed that electron effective mass in H₃S is \(m_{eff} = 2.76 \) \(m_e \) [10].

Pressure (GPa)	Raw data	Model	Deduced \(T_c \) (K)	Deduced \(\xi(0) \) (nm)	Assumed/deduced	\(\Delta C/ C \)	\(v_F \) (10⁵ m/s)	\(\Delta(0) / eV \)	\(\varepsilon_F / eV \)	\(\Delta(0)/\varepsilon_F \)	\(T_F / (10^3 K) \)	\(T_c / T_F \)
150	B-WHH	150 ± 1	2.46 ± 0.02	3.53	2.68 ± 0.03	22.8 ± 0.2	0.56 ± 0.01	0.040 ± 0.001	6.5 ± 0.2	0.023 ± 0.001	0.013 ± 0.001	
						4.70	3.57 ± 0.04	30.4 ± 0.04	1.00 ± 0.02	0.030 ± 0.001	11.6 ± 0.4	0.023 ± 0.001
150	JHC	157 ± 2	2.40 ± 0.03	3.53	2.74 ± 0.03	23.9 ± 0.4	0.59 ± 0.03	0.041 ± 0.002	6.8 ± 0.2	0.023 ± 0.001	0.013 ± 0.001	
						4.70	3.65 ± 0.05	31.8 ± 0.4	1.04 ± 0.02	0.030 ± 0.002	12.1 ± 0.5	0.023 ± 0.001
150	G	149 ± 1	2.55 ± 0.02	3.53	2.76 ± 0.03	22.7 ± 0.2	0.60 ± 0.01	0.038 ± 0.002	6.9 ± 0.2	0.021 ± 0.001	0.012 ± 0.001	
						4.70	3.68 ± 0.04	30.2 ± 0.3	1.06 ± 0.02	0.028 ± 0.001	12.3 ± 0.5	0.021 ± 0.001
150	Eq. 16	150 ± 3	2.67 ± 0.05	4.0 ± 0.6	3.33 ± 0.45	26.1 ± 3.6	0.87 ± 0.12	0.030 ± 0.004	10.1 ± 1.4	0.015 ± 0.002	0.012 ± 0.001	
					3.53	2.51 ± 0.03	25.1 ± 0.3	0.50 ± 0.01	0.051 ± 0.002	5.8 ± 0.2	0.029 ± 0.001	
$B_{c2}(T)$	B_{c1}	T_c	2.10 ± 0.02	4.70	3.35 ± 0.03	33.4 ± 0.3	0.88 ± 0.02	0.038 ± 0.002	10.2 ± 0.2	0.016 ± 0.001		
---	---	---	---	---	---	---	---	---	---	---		
B-WHH	165 ± 2	3.53	2.57 ± 0.03	26.2 ± 0.3	0.52 ± 0.01	0.050 ± 0.002	6.0 ± 0.2	0.029 ± 0.001				
JHC	172 ± 2	4.70	3.42 ± 0.03	34.8 ± 0.3	0.92 ± 0.02	0.038 ± 0.001	10.7 ± 0.2	0.016 ± 0.001				
G	163 ± 2	4.70	3.53	24.8 ± 0.3	0.52 ± 0.02	0.048 ± 0.002	6.0 ± 0.2	0.027 ± 0.001				

$B_{c2,001}(T)$	B_{c1}	T_c	1.87 ± 0.01	1.86 ± 0.01	3.30 ± 0.02	36.8 ± 0.1	0.85 ± 0.02	0.043 ± 0.002	9.9 ± 0.3	0.018 ± 0.001
B-WHH	182.5 ± 0.9	1.88 ± 0.01	3.53	2.50 ± 0.03	27.8 ± 0.1	0.49 ± 0.01	0.057 ± 0.002	5.7 ± 0.2	0.032 ± 0.002	
JHC	187.0 ± 0.5	4.70	3.32 ± 0.02	37.0 ± 0.2	0.87 ± 0.01	0.043 ± 0.001	10.0 ± 0.2	0.018 ± 0.001		
G	182 ± 1	4.70	3.53	28.4 ± 0.1	0.46 ± 0.01	0.062 ± 0.001	5.4 ± 0.1	0.035 ± 0.001		

| $B_{c2}(T)$ | B_{c1} | T_c | 1.97 ± 0.02 | 1.92 ± 0.05 | 3.3 ± 0.3 | 1.2 ± 0.1 | 2.4 ± 0.2 | 26.1 ± 2.3 | 0.44 ± 0.05 | 0.059 ± 0.006 | 5.0 ± 0.5 | 0.037 ± 0.004 |
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
| B-WHH | 185.2 ± 0.9 | 1.79 ± 0.01 | 3.53 | 2.40 ± 0.01 | 28.2 ± 0.1 | 0.45 ± 0.01 | 0.062 ± 0.001 | 5.3 ± 0.1 | 0.035 ± 0.001 |
| JHC | 189.0 ± 0.5 | 4.70 | 3.20 ± 0.01 | 37.5 ± 0.1 | 0.80 ± 0.02 | 0.047 ± 0.002 | 9.3 ± 0.2 | 0.020 ± 0.001 |
| G | 181.9 ± 0.9 | 4.70 | 3.30 ± 0.02 | 36.8 ± 0.1 | 0.85 ± 0.02 | 0.043 ± 0.002 | 9.9 ± 0.3 | 0.018 ± 0.001 |

Examination of the values in Table I led us to three important findings:

1. The ratio of the superconducting energy gap, $\Delta(0)$, to the Fermi energy, ε_F, in all considered scenarios (including direct deduction by Eq. 17) is within interval of $0.03 < \Delta(0)/\varepsilon_F < 0.07$. These values characterize H$_3$S material as an unconventional superconductor, by illustration, conventional niobium, Nb, has the ratio which is at least two orders of magnitude lower, i.e. $\Delta(0)/\varepsilon_F = 3 \times 10^{-4}$ [37].

2. The most straightforward way to see our conclusion that H$_3$S is unconventional superconductor is to add T_c and T_F data for H$_3$S on the plot of T_c versus T_F where other
superconductors are shown. In this plot (Fig. 5) (data in Fig. 5 were adopted from Uemura [38], Ye et al [39], Qian et al [40], and Hashimoto et al [41]) all unconventional superconductors are located within a narrow band of $0.01 < T_c/T_F < 0.05$. We note that Uemura [38] stated that there is the upper limit for $T_c/T_F = 0.05$ for all known superconductors. In all considered scenarios, H$_3$S has ratios within interval of $0.012 < T_c/T_F < 0.039$ (Fig. 5 and Table 1). It is clearly visible in Fig. 5 that H$_3$S is in the same band where all unconventional superconductors, particularly heavy fermions and cuprates, are. In this regard, H$_3$S is located just above Bi-2223 phase. In this regard, H$_3$S is the material which is located at the position where majority of others unconventional superconductors placed.

![Figure 5](image_url)

Figure 5. A plot of T_c versus T_F obtained for most representative superconducting families. Data was taken from Uemura [38], Ye et al [39], Qian et al [40], and Hashimoto et al [41].

3. We also can see that despite of very different assumptions and varieties of the upper critical field data definition, the Fermi velocity is within reasonably narrow interval of $v_F = (2.1-3.7) \times 10^8$ m/s. This value is about two times lower than v_F of alkali metals at normal
conditions [35,37] and it approximately equals to the universal nodal Fermi velocity of the superconducting cuprates [36]. This is another manifestation that H$_3$S should be classified as unconventional superconductor.

Even though the original paper from Drozdov et. al. [1] stated that H$_3$S is conventional superconductor, and this point of view was very quickly widely accepted by the scientific community [3], we must note that at that time there were no available experimental data which supported this point of view. One of prerequisites of phonon mediated mechanism in H$_3$S is the strong-coupling electron-phonon interaction (references on original papers can be found in Ref. 13), which we cannot confirm neither by the analysis of experimental critical current densities [20], nor by the analysis of experimental upper critical field data presented herein. Instead our analysis gives clear evidence that H$_3$S is weak-coupled superconductor, with the ratio:

$$3.3 \pm 0.3 < \frac{2\Delta(0)}{k_BT_c} < 4.0 \pm 0.6 \quad (21)$$

and average value of

$$\frac{2\Delta(0)}{k_BT_c} = 3.55 \pm 0.31 \quad (22)$$

which is remarkably closed to weak-coupling limit of BCS theory of 3.53. Average absolute value of the ground state superconducting energy gap is:

$$\Delta(0) = 26.5 \pm 1.7 \, meV \quad (23)$$

This value is in a very good agreement with $\Delta(0) = 27.8$ meV which we deduced in our previous paper by the analysis of critical current density in H$_3$S [19] for sample with $T_c = 203$ K.

IV. Conclusion

In this paper, we analysed the upper critical field data for compressed H$_3$S which were recently released by Los-Alamos Laboratory [22]. Result of our analysis showed that
compressed H$_2$S should be classified as another member of unconventional superconductor family.

Acknowledgement

Author thanks Ratu Mataira-Cole (University of Wellington, New Zealand) for reading, commenting and editing the manuscript. Author thanks financial support provided by the state assignment of FASO of Russia (theme “Pressure” No. AAAA-A18-118020190104-3) and by Act 211 Government of the Russian Federation, contract No. 02.A03.21.0006.

References

[1] A.P. Drozdov, M. I. Eremets, I. A. Troyan, V. Ksenofontov, S. I. Shylin, *Nature* **525**, 73 (2015).

[2] J. Bardeen, L. N. Cooper, J. R. Schrieffer *Phys. Rev.* **108**, 1175 (1957).

[3] I. I. Mazin, *Nature* **525**, 40 (2015).

[4] N. Bernstein, C. S. Hellberg, M. D. Johannes, I. I. Mazin, M. J. Mehl, *Physical Review B* **91**, 060511 (2015).

[5] A. P. Drozdov, V. S. Minkov, S. P. Besedin, P. P. Kong, M A. Kuzovnikov, D. A. Knyazev, M I. Eremets, arXiv:1808.07039 (2018).

[6] M. Somayazulu, M. Ahart, A. K. Mishra, Z. M. Geballe, M. Baldini, Y. Meng, V. V. Struzhkin, R. J. Hemley, arXiv:1808.07695 (2018).

[7] N. W. Ashcroft, *Phys. Rev. Lett.* **21**, 1748 (1968).

[8] M. I. Eremets and A. P. Drozdov, *Phys.-Usp.* **59**, 1154 (2016).

[9] I. Troyan, et. al., *Science* **351**, 1303 (2016).

[10] A. P. Durajski, *Sci. Rep.* **6**, 38570 (2016).

[11] M. Einaga, et. al. *Japanese Journal of Applied Physics* **56**, 05FA13 (2017).
[12] H. Liu, I. I. Naumov, R. Hoffmann, N. W. Ashcroft, R. J. Hemley, *Proc. Natl. Acad. Sci. U. S. A.* **114**, 6990 (2017).

[13] L. P. Gor'kov, V. Z. Kresin, *Rev. Mod. Phys.* **90**, 011001 (2018).

[14] E. J. Nicol, J. P. Carbotte, *Phys. Rev. B* **91**, 220507(R) (2015).

[15] I. Errea, et. al., *Phys. Rev. Lett.* **114**, 157004 (2015).

[16] T. Jarlborg, A. Bianconi, *Scientific Reports* **6**, 24816 (2016).

[17] A. P. Durajski, R. Szczesniak, arXiv:1609.06079 (2016).

[18] A. P. Durajski, R. Szczęśniak, L. Pietronero, *Annalen der Physics* **528**, 358 (2016).

[19] E. Talantsev, W. P. Crump, J. G. Storey, J. L. Tallon *Annalen der Physics* **529**, 1600390 (2017).

[20] E. Talantsev, W. P. Crump, J. L. Tallon, *Annalen der Physics* **529**, 1700197 (2017).

[21] F. Capitani, et. al., *Nature Physics* **13**, 859 (2017).

[22] S. Mozaffari, et. al., *Los Alamos National Laboratory*, Report LA-UR-18-30460 (2018); DOI: 10.2172/1481108.

[23] E. Helfand, N. R. Werthamer, *Phys. Rev.* **147** 288 (1966).

[24] N. R. Werthamer, E. Helfand and P. C. Hohenberg, *Phys. Rev.* **147**, 295 (1966).

[25] T. Baumgartner, M. Eisterer, H. W. Weber, R. Fluckiger, C. Scheuerlein, L. Bottura, *Supercond. Sci. Technol.* **27**, 015005 (2014).

[26] F. Yuan, et. al. *New Journal of Physics* **20**, 093012 (2018).

[27] B. Pal, et. al. *Supercond. Sci. Technol.* **32** 015009 (2019).

[28] E. Talantsev, W. P. Crump, J. O. Island, Y. Xing, Y. Sun, J. Wang, J. L. Tallon *2D Materials* **4**, 025072 (2017).

[29] C. J. Gorter, H. Casimir, On supraconductivity I *Physica* **1**, 306-320 (1934).

[30] C. K. Jones, J. K. Hulm, B. S. Chandrasekhar, *Rev. Mod. Phys.* **36**, 74 (1964).

[31] L. P. Gor'kov, *Soviet Physics JETP* **10**, 593 (1960).
[32] F. Gross, B. S. Chandrasekhar, D. Einzel, K. Andres, P. J. Hirschfeld, H. R. Ott, J. Beuers, Z. Fisk, J. L. Smith, Z. Phys. B - Condensed Matter 64, 175 (1986).

[33] L. P. Gor'kov, Soviet Physics JETP 17, 518 (1963).

[34] M. Einaga, et. al., Nature Physics 12, 835 (2016).

[35] D. Gall, J. Appl. Phys. 119, 085101 (2016).

[36] X. J. Zhou, Nature 423, 398 (2003).

[37] N. W. Aschroft, N. D. Mermin, Solid State Physics (Harcourt College Publishing, 1976) ISBN: 0030839939.

[38] Y. J. Uemura, J. Phys.: Condens. Matter 16 S4515 (2004).

[39] J. T. Ye, Y. J. Zhang, R. Akashi, M. S. Bahramy, R. Arita, Y. Iwasa, Science 338, 1193 (2012).

[40] T. Qian, et. al., Phys. Rev. Lett. 106, 187001 (2001).

[41] K. Hashimoto, et. al., Science 336, 1554 (2012).