FLAG BOTT MANIFOLDS AND
THE TORIC CLOSURE OF A GENERIC ORBIT
ASSOCIATED TO A GENERALIZED BOTT MANIFOLD

SHINTARÔ KUROKI, EUNJEONG LEE, JONGBAEK SONG, AND DONG YOUP SUH

Abstract. To a direct sum of holomorphic line bundles, we can associate two fibrations, whose fibers are, respectively, the corresponding full flag manifold and the corresponding projective space. Iterating these procedures gives, respectively, a flag Bott tower and a generalized Bott tower. It is known that a generalized Bott tower is a toric manifold. However, a flag Bott tower is not toric in general but we show that it is a GKM manifold, and we also show that for a given generalized Bott tower we can find the associated flag Bott tower so that the closure of a generic torus orbit in the latter is a blow-up of the former along certain invariant submanifolds. We use GKM theory together with toric geometric arguments.

1. Introduction

A Bott tower $M_\bullet = \{M_j \mid 0 \leq j \leq m\}$ is a sequence of $\mathbb{C}P^1$-fibrations $\mathbb{C}P^1 \to M_j \to M_{j-1}$ such that M_0 is the projectivization of the sum of two complex line bundles over M_{j-1} where M_0 is a point which is introduced in [GK94]. Then each M_j is a complex j-dimensional nonsingular algebraic variety called the j-stage Bott manifold. Each Bott manifold M_j has a $(\mathbb{C}^*)^j$-action with which M_j becomes a toric manifold, i.e., a nonsingular toric variety.

One of the important properties of Bott manifold is its relation with Bott–Samelson variety. A Bott–Samelson variety is a nonsingular algebraic variety that appeared in many areas of mathematics, for instance algebraic geometry and representation theory. For a given complex semisimple Lie group G, each Bott manifold M_j has a $(\mathbb{C}^*)^j$-action with which M_j becomes a toric manifold, i.e., a nonsingular toric variety.

Recently, a generalized notion of Bott–Samelson variety, called flag Bott–Samelson variety, has been introduced in [FLS] which extends the rich connection between representation theory and algebraic geometry. It is shown in [GK94] and [Pas10] that every Bott–Samelson variety has a Bott manifold as its toric degeneration. This relation between a Bott–Samelson variety and a Bott manifold gives interesting results on algebraic representations of G in [GK94].

In this article, we define a flag Bott tower $F_\bullet = \{F_j \mid 0 \leq j \leq m\}$ to be a sequence of the full flag fibrations $F(\ell(n_j + 1)) \to F_j \to F_{j-1}$ where F_j is the flagification of a sum of $n_j + 1$ many complex line bundles over F_{j-1}. We call each F_j a flag Bott manifold. In [FLS], they construct a one-parameter family of complex structures on a flag Bott–Samelson variety which makes the flag Bott–Samelson variety into a flag Bott manifold, and this extends the known relation between Bott–Samelson varieties and Bott manifolds.

\textbf{Key words and phrases.} flag Bott tower, flag Bott manifold, generalized Bott manifold, GKM theory, toric manifold, blow-up.

2010 Mathematics Subject Classification. Primary 55R10, 14M15; Secondary 57S25, 14M25.

Kuroki was supported by JSPS KAKENHI Grant Number 17K14196. Lee was partially supported by IBS-R003-D1. Song was partially supported by the POSCO Science Fellowship of POSCO TJ Park foundation and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2018R1D1A1B07048480). Lee, Song, and Suh were partially supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (No. 2016R1A2B4010823).

1 More precisely, [GK94] provides a one-parameter family of complex structures on a Bott–Samelson variety which makes the Bott–Samelson variety into a Bott manifold. Besides, [Pas10] constructs a toric degeneration of a Bott–Samelson variety, i.e., there is a flat family X over \mathbb{C} such that $X(t)$ is isomorphic to the Bott–Samelson variety for all $t \in \mathbb{C} \setminus \{0\}$ and $X(0)$ is a Bott manifold.

1
One of the goals of this article is to study torus actions on flag Bott manifolds. In fact, the complex dimension of F_m is $\sum_{j=1}^{m} n_j(n_j + 1)/2$, but there is an effective action of complex torus H of dimension $\sum_{j=1}^{m} n_j$ on F_m. Hence a flag Bott manifold is not a toric manifold in general. With the restricted action of the compact torus T of dimension $\sum_{j=1}^{m} n_j$ on a flag Bott manifold F_m, we get the following result:

Theorem 1.1 (Theorem 3.6). Let F_m be an m-stage flag Bott manifold with the effective action of T. Then (F_m, T) is a GKM manifold.

Moreover the concrete information of the GKM graph of F_m is computed in Theorem 3.12.

On the other hand, Bott manifolds are an important family of toric manifolds because of the cohomological rigidity problem which asks whether toric manifolds are topologically classified by their cohomology rings. This question has the affirmative answers for some Bott manifolds (see [CM12], [Ish12], [Cho13], [CMM15]). Moreover, it also has the affirmative answer for some generalized Bott manifolds (see [MS08], [CMS10b], [CPS12]). Here, a generalized Bott tower $B_m = \{B_j \mid 0 \leq j \leq m\}$ is defined similarly to a Bott tower but the difference is that B_j is the projectivization of the sum of $n_j + 1$ many complex line bundles instead of two line bundles.

Even though generalized Bott towers and flag Bott towers are two different generalizations of Bott towers, there is an interesting relation between them. Namely, let B_m be a generalized Bott tower with bundle maps $\pi_j : B_j \to B_{j-1}$. Then we define the associated flag Bott tower F_m to B_m with bundle maps $p_j : F_j \to F_{j-1}$.

We remark that every flag Bott tower is a CP-tower, i.e., a sequence of an iterated complex projective space fibrations. A CP-tower is introduced in [KS14] and [KS15] as a more generalized notion than a generalized Bott tower.

The paper is organized as follows. In Section 2 we give an alternative description of a flag Bott manifold as the orbit space of the product of general linear groups under the action of the product of their Borel subgroups defined in (2.4); see Proposition 2.7.1. In doing so, each complex line bundle appearing in the construction of a flag Bott tower can be described in terms of characters of maximal tori of general linear groups. Then we can associate a sequence of integer matrices defined by the weights of the above mentioned characters to a flag Bott manifold as in Theorem 2.10. We also give an explicit description of the tangent bundles of a flag Bott manifold in Proposition 2.16 which will be used in the GKM description of a flag Bott manifold in Section 3.

In Section 3, we define the canonical torus action on a flag Bott manifold, and find an explicit description of the tangential representation at a fixed point in Proposition 3.5. We then see easily that every flag Bott manifold is a GKM manifold. Moreover an explicit description of the GKM graph of a flag Bott manifold is given in Theorem 3.12.

In Section 4, we define the associated flag Bott tower to a given generalized Bott tower. Then Proposition 4.11 gives the integer matrices corresponding to the associated flag Bott tower.

In Section 5, we study the relation between a generalized Bott manifold B_m and the closure X of a generic orbit of the associated flag Bott manifold F_m. This can be accomplished by calculating the fan of X in Theorem 5.4 using the axial functions of the GKM graph of F_m. Then we show that the toric variety X comes from a series of blow-up of B_m in Theorem 5.7.
Definition 2.1. A flag Bott tower \(F_* = \{ F_j \mid 0 \leq j \leq m \} \) of height \(m \), or an \(m \)-stage flag Bott tower, is a sequence,

\[
F_m \xrightarrow{p_m} F_{m-1} \xrightarrow{p_{m-1}} \cdots \xrightarrow{p_2} F_1 \xrightarrow{p_1} F_0 = \{ \text{point} \},
\]

of manifolds \(F_j = \mathcal{F}(\bigoplus_{k=1}^{m+1} \xi(j)_k) \) where \(\xi(j)_k \) is a holomorphic line bundle over \(F_{j-1} \) for each \(1 \leq k \leq n_j + 1 \) and \(1 \leq j \leq m \). We call \(F_j \) the \(j \)-stage flag Bott manifold of the flag Bott tower \(F_* \).

Here are some examples of flag Bott manifolds.

Example 2.2. (1) The flag manifold \(\mathcal{F}(\mathbb{C}^{n+1}) = \mathcal{F}(n+1) \) is a flag Bott tower of height 1. In particular, \(\mathcal{F}(2) = \mathbb{CP}^1 \) is a 1-stage flag Bott manifold.

(2) The product of flag manifolds \(\mathcal{F}(m_1+1) \times \cdots \times \mathcal{F}(m_n+1) \) is a flag Bott manifold of height \(m \).

(3) Recall from [GK94] that an \(m \)-stage Bott manifold is a sequence of \(\mathbb{C}P^1 \)-fibrations such that each stage is the projective bundle of the sum of two line bundles. When \(n_j = 1 \) for \(1 \leq j \leq m \), an \(m \)-stage flag Bott manifold is an \(m \)-stage Bott manifold.

Definition 2.3. Two flag Bott towers \(F_* \) and \(F'_* \) are isomorphic if there is a collection of (holomorphic) diffeomorphisms \(\varphi_j : F_j \to F'_j \) which commute with the maps \(p_j : F_j \to F_{j-1} \) and \(p'_j : F'_j \to F'_{j-1} \).

Remark 2.4. (1) One can define \(F_j \) to be \(\mathcal{F}(E_j) \) for some holomorphic vector bundle \(E_j \) over \(F_{j-1} \). However, since we want to consider torus actions on \(F_m \), we assume \(E_j \) to be a sum of holomorphic line bundles in Definition 2.1.

(2) Even though we are concentrating on full flag fibrations in this paper, one can also study other kinds of induced fibrations such as partial flag fibrations, isotropic flag fibrations, etc., which require further works. In [KKLS20], the authors study such iterated flag fibrations. \(\square \)

2.2. Orbit space construction of flag Bott manifolds. In this subsection, we consider an orbit space construction of a flag Bott tower in Proposition 2.1 using the complex Lie groups \(GL(n) := GL(n, \mathbb{C}) \) in order to consider the canonical action on it (see Subsection 3.1).

A flag Bott tower of height 1 is the flag manifold \(\mathcal{F}(n+1) \) which is the orbit space \(GL(n+1)/B_{GL(n+1)} \), where \(B_{GL(n+1)} \) is the set of upper triangular matrices in \(GL(n+1) \). To describe flag Bott manifolds of higher stages, we begin with a matrix \(A \) of size \((n+1) \times (n'+1)\) whose row vectors are \(a_1, \ldots, a_{n+1} \in \mathbb{Z}^{n'+1} \), i.e.,

\[
A = \begin{bmatrix}
a_1 \\
a_2 \\
\vdots \\
a_{n+1}
\end{bmatrix} =
\begin{bmatrix}
a_1(1) & a_1(2) & \cdots & a_1(n'+1) \\
a_2(1) & a_2(2) & \cdots & a_2(n'+1) \\
\vdots & \vdots & \ddots & \vdots \\
a_{n+1}(1) & a_{n+1}(2) & \cdots & a_{n+1}(n'+1)
\end{bmatrix} \in M_{n+1,n'+1}(\mathbb{Z}),
\]

which encodes a \(B_{GL(n'+1)} \)-action on \(GL(n+1) \) as follows. Let \(H_{GL(n+1)} \subset GL(n+1) \), respectively \(H_{GL(n'+1)} \subset GL(n'+1) \), be the set of diagonal matrices in \(GL(n+1) \), respectively \(GL(n'+1) \). Since the character group \(\chi(H_{GL(n'+1)}) \) is isomorphic to \(\mathbb{Z}^{n'+1} \), the matrix \(A \) gives a homomorphism \(H_{GL(n'+1)} \to H_{GL(n+1)} \) defined by

\[
h \mapsto \text{diag}(h^{a_1}, h^{a_2}, \ldots, h^{a_{n+1}}) \in H_{GL(n+1)}.
\]

Here, for \(h = \text{diag}(h_1, \ldots, h_{n'+1}) \in H_{GL(n'+1)} \) and \(a = (a_1, \ldots, a_{n'+1}) \in \mathbb{Z}^{n'+1} \), \(h^a := h^{a_1} \cdot \cdots \cdot h^{a_{n'+1}} \).

By composing the canonical projection \(\Upsilon : B_{GL(n'+1)} \to H_{GL(n'+1)} \) with the homomorphism 2.1, we define the homomorphism \(\Lambda(A) : B_{GL(n'+1)} \to H_{GL(n+1)} \) associated to the matrix \(A \in M_{n+1,n'+1}(\mathbb{Z}) \):

\[
\Lambda(A)(b) := \text{diag}(\Upsilon(b)^{a_1}, \Upsilon(b)^{a_2}, \ldots, \Upsilon(b)^{a_{n+1}}) \in H_{GL(n+1)} \quad \text{for } b \in B_{GL(n'+1)}.
\]

Now, let \(n_1, \ldots, n_m \in \mathbb{Z}_{>0} \). Then, for a given sequence of integer matrices

\[
A := (A^{(j)}_f)_{1 \leq f \leq m} \in \prod_{1 \leq f \leq m} M_{n_f,n_f+1}(\mathbb{Z}),
\]

flag Bott manifolds.
we define a right action Φ^A_ℓ of $\prod_{\ell=1}^j B_{GL(n_{\ell}+1)}$ on $\prod_{\ell=1}^j GL(n_{\ell} + 1)$ by

\[\Phi^A_\ell((g_1, g_2, \ldots, g_j), (b_1, b_2, \ldots, b_j)) = (g_1 b_1, (A_1^{(2)}(b_1))^{-1} g_2 b_2, (A_1^{(3)}(b_1))^{-1} (A_2^{(2)}(b_2))^{-1} g_3 b_3, \ldots, (A_1^{(j)}(b_1))^{-1} (A_2^{(j)}(b_2))^{-1} \cdots (A_{j-1}^{(j)}(b_{j-1}))^{-1} g_j b_j) \]

for $1 \leq j \leq m$, where $A_1^{(i)} := A_1^{(i)}(b_1)$ is the homomorphism $B_{GL(n_{\ell}+1)} \to H_{GL(n_{\ell}+1)}$ associated to the matrix $A^{(j)}_\ell$ as defined in (2.3) for $1 \leq \ell < j \leq m$.

Example 2.5. For $n_1 = 2$, $n_2 = 1$, $n_3 = 1$, consider the following matrices:

\[A^{(2)}_1 = \begin{bmatrix} c_1 & c_2 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad A^{(3)}_1 = \begin{bmatrix} d_1 & d_2 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad A^{(3)}_2 = \begin{bmatrix} f_1 & 0 \\ 0 & 1 \end{bmatrix}. \]

Then the right action of $B_{GL(3)} \times B_{GL(2)} \times B_{GL(2)}$ on $GL(3) \times GL(2) \times GL(2)$ in (2.4) is

\[(g_1, g_2, g_3) \cdot (b_1, b_2, b_3) = (g_1 b_1, \text{diag} \left(b_1^{(-c_1, -c_2, 1)} \right) g_2 b_2, \text{diag} \left(b_1^{(-d_1, -d_2, 0)} b_2^{(-f_1, 0, 1)} \right) g_3 b_3). \]

Lemma 2.6. The right action Φ^A_ℓ in (2.4) is free and proper for $1 \leq j \leq m$.

Proof. For $g := (g_1, \ldots, g_j) \in \prod_{\ell=1}^j GL(n_{\ell} + 1)$ and $(b_1, \ldots, b_j) \in \prod_{\ell=1}^j B_{GL(n_{\ell}+1)}$, the equality $g_1 = g_1 b_1$ implies that b_1 is the identity matrix since g_1 is invertible. Similarly, the equation $g_2 = (A_1^{(2)}(b_1))^{-1} g_2 b_2 = g_2 b_2$ gives that b_2 is the identity. Continuing in this manner, we conclude that the isotropy subgroup at g is trivial, which shows that the action Φ^A_ℓ is free.

To prove the properness of the action, it is enough to show that for every sequence $(g^r) := (g_1^r, \ldots, g_j^r)$ in $\prod_{\ell=1}^j GL(n_{\ell} + 1)$ and $(b^r) := (b_1^r, \ldots, b^r_j)$ in $\prod_{\ell=1}^j B_{GL(n_{\ell}+1)}$ such that both (g^r) and $(\Phi^A_\ell(g^r, b^r))$ converge, a subsequence of (b^r) converges (see Lec 3 Proposition 21.5). Note that for convergent sequences $(A^r) \to A$ and $(B^r) \to B$ in $GL(n_{\ell}+1)$, the sequence $(A^r B^r)$ also converges to AB since the multiplication map is continuous. Also for a convergent sequence $(A^r) \to A$ in $GL(n_{\ell}+1)$, we have that $A_{ij} = \lim_{r \to \infty}(A^r)_{ij}$. Since both sequences (g^r_1) and (g^r_2) converge, the sequence (b^r_2) also converges in $B_{GL(n_{\ell}+1)}$. Similarly, sequences $\left((A_1^{(2)}(b^r_1))^{-1} g_2^r b_2^r \right), (g_2^r)$ and (b_1^r) converge so that the sequence (b_2^r) also converges. By continuing this process, we show that the action Φ^A_ℓ is proper. \qed

For a complex manifold M with a free and proper action of a group G, the orbit space M/G is a complex manifold (see [Huy05 Proposition 2.1.13]). Hence by Lemma 2.6 the orbit space

\[F^\text{quo}_\ell(A) := \prod_{\ell=1}^j GL(n_{\ell} + 1)/\Phi^A_\ell \]

is a complex manifold, where Φ^A_ℓ is the action defined in (2.4).

For the remaining part of this subsection, we will prove that the orbit spaces $F^\text{quo}_\ell(A)$ are flag Bott manifolds. Since $\chi(\prod_{\ell=1}^j H_{GL(n_{\ell}+1)}) \cong \bigoplus_{\ell=1}^j \mathbb{Z}^{n_{\ell}+1}$, for each integer vector $(a_1, \ldots, a_j) \in \bigoplus_{\ell=1}^j \mathbb{Z}^{n_{\ell}+1}$ we can define a holomorphic line bundle over F^quo_ℓ as follows:

\[(g_1, \ldots, g_j, v) \cdot (b_1, \ldots, b_j) := \left(\Phi^A_\ell((g_1, \ldots, g_j), (b_1, \ldots, b_j)), b_1^{-a_1} \cdots b_j^{-a_j} v \right). \]

Proposition 2.7. $F^\text{quo}_\ell(A) := \{ F^\text{quo}_\ell(A) | 0 \leq j \leq m \}$ is a flag Bott tower of height m.

Definition 2.8. We say that a flag Bott tower F_\bullet is determined by a sequence of matrices $A = (A^j_{\ell})_{1 \leq \ell < j \leq m} \in \prod_{1 \leq \ell < j \leq m} M_{n_{\ell+1}, n_{j+1}}(\mathbb{Z})$ if F_\bullet is isomorphic to $F^\text{quo}_{\ell}(A) := \{ F^\text{quo}_\ell(A) | 0 \leq j \leq m \}$ as flag Bott towers.
Note that, in the next section, we will show that every flag Bott towers can be described as an orbit space, that is, every flag Bott tower is determined by a certain \mathcal{A} (see Theorem 2.10).

Proof of Proposition 2.7. By the definition of the action Φ_j^A, we have the following fibration structure:

$$GL(n_j + 1)/BGL(n_j + 1) \to F_j^{\text{quo}} \to F_{j-1}^{\text{quo}}.$$

Since $GL(n_j + 1)/BGL(n_j + 1) \cong F\ell(n_j + 1)$, the manifold F_j^{quo} is a $F\ell(n_j + 1)$-fibration over F_{j-1}^{quo}. For simplicity, let $\xi^{(j)} := \bigoplus_{k=1}^{n_j+1} \xi_{k,1}, \ldots, \xi_{k,n_j+1}$, where $\xi_{k,\ell}$ is the kth row vector of the matrix $A_{\ell}^{(j)}$ for $1 \leq \ell \leq j - 1$. Consider the map $\varphi_j : F_j^{\text{quo}} \to F\ell(\xi^{(j)})$ defined by

$$[g_1, \ldots, g_{j-1}, g_j] \mapsto ([g_1, \ldots, g_{j-1}], V_\bullet).$$

Here $V_\bullet = (V_1 \subset V_2 \subset \cdots \subset V_{n_j} \subset (\xi^{(j)})^{[g_1,\ldots,g_{j-1}]})$ is the full flag such that the vector space V_k is spanned by the first k columns of g_j. We claim that φ_j is a holomorphic diffeomorphism. First, we check that the map φ_j is well-defined. We observe that

$$[\Phi_j^A((g_1, \ldots, g_{j-1}, g_j), (b_1, \ldots, b_{j-1}, b_j)) \mapsto ([\Phi_{j-1}^A((g_1, \ldots, g_{j-1}), (b_1, \ldots, b_{j-1}))), V'_\bullet)$$

for $(b_1, \ldots, b_{j-1}, b_j) \in \prod_{\ell=1}^{j-1} BGL(n_{\ell} + 1) \times BGL(n_{j} + 1)$. Here $V'_\bullet = (V'_1 \subset V'_2 \subset \cdots \subset V'_{n_j} \subset (\xi^{(j)})^{[g_1,\ldots,g_{j-1}]})$ is the full flag whose vector space V'_k is spanned by the first k columns of the matrix $(A_{1}^{(j)}(b_1))^{-1} \cdots (A_{j-1}^{(j)}(b_{j-1}))^{-1} g_j$. Since we have

$$\left(A_{1}^{(j)}(b_1)\right)^{-1} \cdots \left(A_{j-1}^{(j)}(b_{j-1})\right)^{-1} v \sim v \quad \text{for} \quad v \in (\xi^{(j)})^{[g_1,\ldots,g_{j-1}]},$$

the map φ_j is well-defined. Here the equivalence relation \sim comes from the definition of the bundle $\xi^{(j)}$.

The inverse $F\ell(\xi^{(j)}) \to F_j^{\text{quo}}$ of φ_j is given by

$$([g_1, \ldots, g_j], V_\bullet) \mapsto [g_1, \ldots, g_{j-1}, g_j],$$

where g_j is the matrix such that the first k columns span the vector space V_k for $1 \leq k \leq n_j + 1$. Note that this map is again well-defined since $[g_1, \ldots, g_{j-1}, g_j] = [g_1, \ldots, g_{j-1}, g_j b_j]$ for $b_j \in BGL(n_j + 1)$. Hence the map φ_j is a diffeomorphism, and the result follows since φ_j commutes with bundle projection maps. □

Example 2.9. For $n_1 = 2, n_2 = 1, n_3 = 1$, let

$$A_1^{(2)} = \begin{bmatrix} c_1 & c_2 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, A_1^{(3)} = \begin{bmatrix} d_1 & d_2 & 0 \\ 0 & 0 & 0 \end{bmatrix}, A_2^{(3)} = \begin{bmatrix} f_1 & 0 \\ 0 & 0 \end{bmatrix}.$$

Let Φ_j^A be the right action of $\prod_{\ell=1}^3 BGL(n_{\ell} + 1)$ on $\prod_{\ell=1}^3 GL(n_{\ell} + 1)$ defined in (2.3) for $j = 1, 2, 3$. Then, by Proposition 2.7, the following flag Bott tower F_\bullet is isomorphic to $F_j^{\text{quo}}(\mathcal{A})$ as flag Bott towers.

$$\xi((d_1, d_2, 0), (f_1, 0)) \oplus \mathbb{C} \quad \xi(c_1, c_2, 0) \oplus \mathbb{C}$$

$$\downarrow \quad \downarrow$$

$$F_3 \quad F_2 \quad F_1 \quad F_0$$

The line bundle $\xi((d_1, d_2, 0), (f_1, 0))$ over F_2 is $(GL(3) \times GL(2)) \times \mathbb{C})/(BGL(3) \times BGL(2))$, where the right action of $BGL(3) \times BGL(2)$ is

$$(g_1, g_2, v) \cdot (b_1, b_2) := \left(\Phi_2^A((g_1, g_2), (b_1, b_2)), b_1^{-1} (d_1, d_2, 0) b_2^{-1} (f_1, 0) v\right).$$

□
2.3. Tautological filtration over a flag Bott manifold. In this subsection, we prove the following theorem that every flag Bott tower F_\bullet can be obtained by the orbit space construction as in Subsection 2.2.

Theorem 2.10. Let F_\bullet be a flag Bott tower of height m. Then there is a sequence of integer matrices $A = (A^{(j)}_{\ell,k})_{1 \leq \ell < j \leq m} \in \prod_{1 \leq \ell < j \leq m} \mathbb{M}_{n_j+1,n_{\ell+1}}(\mathbb{Z})$ such that F_\bullet is isomorphic to $F^{\text{quot}}_\bullet(A) := \{ F_j^{\text{quot}}(A) \mid 0 \leq j \leq m \}$ as flag Bott towers.

By the above theorem, for any flag Bott tower F_\bullet, there exists a set A satisfying that F_\bullet is determined by A (see Definition 2.8). To give a proof of Theorem 2.10, we begin with studying holomorphic line bundles over a flag Bott manifold. For $1 \leq j \leq m$, there is a universal or tautological filtration of subbundles

$$0 = U_{j,0} \subset U_{j,1} \subset U_{j,2} \subset \cdots \subset U_{j,n_j} \subset U_{j,n_j+1} = p_j^*\xi^{(j)}$$

on $F_j = \mathcal{F}\ell(\xi^{(j)})$, where we put $\xi^{(j)} := \bigoplus_{k=1}^{n_j+1} \xi_k$ for simplicity. Over a point $(p, V_\bullet) = (p, (V_0 \subset V_1 \subset \cdots \subset V_{n_j} \subset (\xi^{(j)})_{p_j}))$ of F_j for $p \in F_{j-1}$, the fiber of the subbundle $U_{j,k}$ is the vector space V_k of the flag V_\bullet for $1 \leq k \leq n_j + 1$. Hence we have the quotient line bundle $U_{j,k}/U_{j,k-1}$ over F_{j} for $1 \leq k \leq n_j + 1$. The following lemma states that using these line bundles, we can express any holomorphic line bundle over a flag Bott manifold.

Lemma 2.11. Let F_\bullet be a flag Bott tower. Then the set of line bundles

$$\{U_{j,k}/U_{j,k-1} \mid 1 \leq k \leq n_j + 1\} \cup \bigcup_{\ell=1}^{j-1} \{ p_{\ell}^* \circ \cdots \circ p_{\ell+1}^* (U_{\ell,k}/U_{\ell,k-1}) \mid 1 \leq k \leq n_{\ell+1} + 1\}$$

generates the Picard group $\text{Pic}(F_j)$ for $1 \leq j \leq m$.

Proof. Using the result [BTS2, Remark 21.18] on the cohomology ring of the induced flag bundle and an induction on the stage of F_\bullet, one can see that the degree 2 cohomology group $H^2(F_j; \mathbb{Z})$ is generated by the first Chern classes of line bundles

$$\{U_{j,k}/U_{j,k-1} \mid 1 \leq k \leq n_j + 1\} \cup \bigcup_{\ell=1}^{j-1} \{ p_{\ell}^* \circ \cdots \circ p_{\ell+1}^* (U_{\ell,k}/U_{\ell,k-1}) \mid 1 \leq k \leq n_{\ell+1} + 1\}$$

for $1 \leq j \leq m$. Therefore, any cohomology class of degree 2 can be obtained as the first Chern class of a tensor product of these line bundles. Hence it is enough to show that the cycle map $c_1 : \text{Pic}(F_j) \to H^2(F_j; \mathbb{Z})$ is an isomorphism. We recall that the cycle map $\text{Pic}(X) \to H^2(X; \mathbb{Z})$ is an isomorphism for a full flag manifold X. Also for the full flag bundle X over a smooth variety Y, if the cycle map for Y is an isomorphism, then the cycle map for X is also an isomorphism (see [PhM88, Example 19.1.11]). This proves that the cycle map $c_1 : \text{Pic}(F_j) \to H^2(F_j; \mathbb{Z})$ is an isomorphism for $1 \leq j \leq m$. \hfill \square

Lemma 2.12. For a sequence of integer matrices $A = (A^{(j)}_{\ell,k})_{1 \leq \ell < j \leq m} \in \prod_{1 \leq \ell < j \leq m} \mathbb{M}_{n_j+1,n_{\ell+1}}(\mathbb{Z})$, let $F^{\text{quot}}_\bullet := F^{\text{quot}}_\bullet(A)$ be the flag Bott tower defined as in 2.3. Then, the line bundle $U_{j,k}/U_{j,k-1} \to F^{\text{quot}}_j$ is isomorphic to the bundle $\xi_{(0,\ldots,0,e_k)} \to F^{\text{quot}}_j$ defined in 2.6.

Proof. From Proposition 2.7 that the j-stage flag Bott manifold F^{quot}_j is the induced flag bundle $\mathcal{F}\ell(\xi^{(j)})$ over F^{quot}_{j-1}, where $\xi^{(j)} = \bigoplus_{k=1}^{n_j+1} \xi_{(a^{(j)}_{k,1}, \ldots, a^{(j)}_{k,j-1})}$ and $a^{(j)}_{k,t}$ is the kth row vector of the matrix $A^{(j)}_{\ell,t}$ for $1 \leq \ell \leq j-1$. Consider a point $g = (g_1, \ldots, g_j)$ in F^{quot}_j. The structure of $\xi^{(j)}$ is $p_j^*(\xi^{(j)}) \to F^{\text{quot}}_{j-1}$, this point g can be considered as a full flag $V_\bullet = (V_1 \subset V_2 \subset \cdots \subset V_{n_j} \subset (\xi^{(j)})_{p_j(g)})$, where $\xi^{(j)}_{p_j(g)}$ is the fiber over $p_j(g)$. The fiber of $U_{j,k}$ at g is the vector space $V_k \subset (\xi^{(j)})_{p_j(g)}$ spanned by the first k column vectors $v_1, \ldots, v_k \in (\xi^{(j)})_{p_j(g)}$ of $g_j \in \text{GL}(n_j+1)$. Hence the fiber of $U_{j,k}/U_{j,k-1}$ at g is V_k/V_{k-1}, which is spanned by the vector $v_k \in (\xi^{(j)})_{p_j(g)}$. For an element $b = (b_1, \ldots, b_j) \in \prod_{\ell=1}^{j} B_{\text{GL}(n_j)}$, the kth column vector v^b_k of the last coordinate of $\Phi^A(g,b)$ is given by

$$v^b_k = \left((A^{(j)}_{\ell,k}(b_1))^{-1} \cdots (A^{(j)}_{j-1,k}(b_{j-1}))^{-1} v^b \right)(b_j)^{e_k} = b^{e_k} (A^{(j)}_{j,k}(b_1))^{-1} \cdots (A^{(j)}_{j-1,k}(b_{j-1}))^{-1} v^b k \sim b^{e_k} v^b k.$$

Here, the equivalence comes from 2.7. Hence the result follows. \hfill \square

Using the above two lemmas, we can prove Theorem 2.10.
Proof of Theorem 2.10. We prove the proposition using the induction argument on the height of a flag Bott tower. When the height is 1, then it is obvious that any full flag manifold can be described as the orbit space GL(n_j + 1)/B_{GL(n_j+1)}.

Assume that the theorem holds for flag Bott towers whose height is less than m. For a flag Bott tower F_\bullet of height m, by the induction hypothesis, we have a sequence of integer matrices $(A^{(j)}_\ell)_{1 \leq \ell < j \leq m-1} \in \prod_{1 \leq \ell < j \leq m-1} M_{n_j+1,n_{j+1}}(\mathbb{Z})$ such that $\{F_j | 0 \leq j \leq m-1\}$ is isomorphic to the orbit spaces $\{F^{\text{quo}}_j | 0 \leq j \leq m-1\}$ as flag Bott towers. To prove the claim, it is enough to find suitable integer matrices $A^{(m)}_1, \ldots, A^{(m)}_m$ such that $(A^{(j)}_\ell)_{1 \leq \ell < j \leq m}$ gives the flag Bott manifold F_m.

Let $F_m = \mathcal{F}_\ell \left(\bigotimes_{k=1}^{n_{m+1}} \xi_k^{(m)} \right)$, where $\xi_k^{(m)}$ is a holomorphic line bundle over F_{m-1}. Then, by the induction hypothesis, the $(m-1)$-stage flag Bott manifold F_{m-1} can be expressed as the orbit $\prod_{\ell=1}^{m-1} \text{GL}(n_\ell+1)/\Phi_\ell^{(m-1)}$. Hence, by Lemmas 2.11 and 2.12, there exists a suitable integer vector $(a^{(m)}_{k,1}, \ldots, a^{(m)}_{k,m-1}) \in \bigoplus_{\ell=1}^{m-1} \mathbb{Z}^{n_\ell+1}$ such that

$$\xi \left(a^{(m)}_{k,1}, \ldots, a^{(m)}_{k,m-1} \right) = \xi_k^{(m)} \quad \text{for } 1 \leq k \leq n_{m+1}.$$

Consider the integer matrix $A^{(m)}_\ell \in M_{n_{m+1},n_{\ell+1}}(\mathbb{Z})$ whose row vectors are $a^{(m)}_{1,\ell}, \ldots, a^{(m)}_{n_{\ell+1},\ell}$ for $1 \leq \ell \leq m-1$. Let F^{quo}_m be the flag Bott manifold determined by integer matrices $(A^{(j)}_\ell)_{1 \leq \ell < j \leq m}$. Then by Proposition 2.7 we have the following bundle map φ which is a holomorphic diffeomorphism:

$$\varphi: F^{\text{quo}}_m \rightarrow \mathcal{F}_\ell \left(\bigotimes_{k=1}^{n_{m+1}} \xi_k^{(m)}(a^{(m)}_{k,1}, \ldots, a^{(m)}_{k,m-1}) \right) = F_m. \quad \Box$$

Remark 2.13 (Description of F_m using compact Lie groups). Using the compact subgroups $U(n_j + 1) \subset \text{GL}(n_j + 1)$ and the compact maximal torus $T^{n_j+1} \subset H_{GL(n_j+1)}$ for $1 \leq j \leq m$, consider the orbit space:

$$\prod_{j=1}^{m} U(n_j+1) / \prod_{j=1}^{m} T^{n_j+1},$$

where the right action is defined by

$$(g_1, \ldots, g_m) \cdot (t_1, \ldots, t_m) = (g_1 t_1, (A_1^{(2)}(t_1))^{-1} g_2 t_2, (A_1^{(3)}(t_1))^{-1} (A_2^{(3)}(t_2))^{-1} g_3 t_3, \ldots, (A_1^{(m)}(t_1))^{-1} (A_2^{(m)}(t_2))^{-1} \cdots (A_{m-1}^{(m)}(t_{m-1}))^{-1} g_m t_m).$$

Then the above manifold is a compact manifold which is diffeomorphic to F_m since $U(n+1)/T^{n+1}$ is diffeomorphic to $\text{GL}(n+1)/B_{\text{GL}(n+1)}$. We will also use this description for F_m. \quad \Box

Remark 2.14. Let F_m be the m-stage flag Bott manifold defined by a sequence of integer matrices $A = (A^{(j)}_\ell)_{1 \leq \ell < j \leq m-1} \in \prod_{1 \leq \ell < j \leq m-1} M_{n_j+1,n_{j+1}}(\mathbb{Z})$. Every flag Bott manifold is a $\mathbb{C}P$-tower. Hence using Borel–Hirzebruch formula, the cohomology ring and the equivariant cohomology ring with respect to the torus action defined in Section 3.3 of F_m can be computed. The explicit formula is given in [KKLS20] in terms of A.

2.4. Tangent bundle of F_m. In this subsection, we study the tangent bundle of a flag Bott manifold using a principal connection of a principal bundle. For more details, see [Sp17] Chapter 8, Addendum 3]. For a principal H-bundle $\pi: P \rightarrow B$, the vertical subbundle V is defined to be $V := \{ v \in TP | \pi_* v = 0 \} \subset TP$. If we let $o_p: H \rightarrow H(p)$ be the orbit map which maps H onto its orbit through $p \in P$, then we have

$$V_p = (o_p)_* \text{Lie}(H).$$

A principal connection \mathcal{H} is a subbundle of TP such that for $p \in P$,

- $T_p P = V_p \oplus H_p$,
- $(\Phi_h)_* \mathcal{H}_p = \mathcal{H}_{h \cdot p}$ where Φ_h is the right action by $h \in H$, and
- \mathcal{H}_p varies smoothly with respect to $p \in P$.

Because of the first property of principal connection, we have that $\pi_*(\mathcal{H}_p) = T\pi(p)B$.

For convenience, let \mathbb{T} denote the product of compact tori $\prod_{j=1}^{m} T^{n_j+1}$. By Remark 2.13, an m-stage flag Bott manifold F_m can be described as the orbit of the right action in (2.9), i.e., $F_m = \prod_{j=1}^{m} U(n_j + 1)/\mathbb{T}$. Since \mathbb{T} acts freely on the space $\prod_{j=1}^{m} U(n_j + 1)$, we have the principal \mathbb{T}-bundle

\[(2.11) \quad \prod_{j=1}^{m} U(n_j + 1) \xrightarrow{\pi} F_m.\]

We describe the vertical subbundle \mathcal{V} of the above principal bundle (2.11). For $1 \leq j \leq m$, let $u(n_j + 1)$, respectively t^{n_j+1}, denote the Lie algebra of $U(n_j + 1)$, respectively $T^{n_j+1} \subset U(n_j + 1)$. For a point $g = (g_1, \ldots, g_m) \in \prod_{j=1}^{m} U(n_j + 1)$, define

\[(L_{g^{-1}})_* := (L_{g_1^{-1}})_* \times \cdots \times (L_{g_m^{-1}})_*: T_g \left(\prod_{j=1}^{m} U(n_j + 1) \right) \to \bigoplus_{j=1}^{m} u(n_j + 1),\]

where L_{g_j} is the left translation by g_j for $1 \leq j \leq m$. Then $(L_{g^{-1}})_*$ is an isomorphism, so that we have the trivialization:

\[
\prod_{j=1}^{m} U(n_j + 1) \times \bigoplus_{j=1}^{m} u(n_j + 1) \cong T \left(\prod_{j=1}^{m} U(n_j + 1) \right).
\]

For the principal bundle (2.11), it follows from (2.10) that the orbit map. For a given $\mathbf{s} = (\mathbf{s}_1, \ldots, \mathbf{s}_m) \in \bigoplus_{j=1}^{m} t^{n_j+1}$, take a path

\[\gamma: (-\varepsilon, \varepsilon) \to \prod_{j=1}^{m} T^{n_j+1}, \quad s \mapsto (t_1(s), \ldots, t_m(s))\]

such that $\gamma(0) = 1$, $t_j(s) \in T^{n_j+1}$ and $\frac{d}{ds} \gamma(s)|_{s=0} = \mathbf{t}$. For a point $g \in \prod_{j=1}^{m} U(n_j + 1)$ and $\mathbf{t} \in \mathbb{T}$, let $g \cdot \mathbf{t}$ denote the right action of \mathbb{T} in (2.9). Then we have the following:

\[(L_{g^{-1}})_*(o_g)_* \mathbf{t} = \frac{d}{ds} L_{g^{-1}}(g \cdot \gamma(s))|_{s=0} = \frac{d}{ds} \left(t_1(s), g_2^{-1}(A_1^{(2)}(t_1(s)))^{-1} g_2 t_2(s), \ldots, g_m^{-1}(A_1^{(m)}(t_1(s)))^{-1} \cdots (A_{m-1}^{(m)}(t_{m-1}(s)))^{-1} g_m t_m(s) \right)|_{s=0} \]

\[= \left(\mathbf{t}_1, \mathbf{t}_2 - A_{g_2^{-1}}(A_1^{(2)}(\mathbf{t}_1)), \ldots, \mathbf{t}_m - A_{g_m^{-1}}(A_1^{(m)}(\mathbf{t}_1) + \cdots + A_{m-1}^{(m)}(\mathbf{t}_{m-1})) \right).\]

Here $A_{g}(X) = g X g^{-1}$, i.e., the usual adjoint representation of $U(n_j + 1)$ on $u(n_j + 1)$. Therefore we see that the vertical subbundle \mathcal{V} is the image of the injective map:

\[
\prod_{j=1}^{m} U(n_j + 1) \times \bigoplus_{j=1}^{m} t^{n_j+1} \to \prod_{j=1}^{m} U(n_j + 1) \times \bigoplus_{j=1}^{m} u(n_j + 1),
\]

where $((g_1, \ldots, g_m); (\mathbf{t}_1, \mathbf{t}_2 - A_{g_2^{-1}}(A_1^{(2)}(\mathbf{t}_1)), \ldots, \mathbf{t}_m - A_{g_m^{-1}}(A_1^{(m)}(\mathbf{t}_1) + \cdots + A_{m-1}^{(m)}(\mathbf{t}_{m-1}))))$ maps to $(g_1, \ldots, g_m); (\mathbf{t}_1, \mathbf{t}_2 - A_{g_2^{-1}}(A_1^{(2)}(\mathbf{t}_1)), \ldots, \mathbf{t}_m - A_{g_m^{-1}}(A_1^{(m)}(\mathbf{t}_1) + \cdots + A_{m-1}^{(m)}(\mathbf{t}_{m-1}))))$.

Now we describe a principal connection. Let $\mathfrak{m}_j \subset u(n_j + 1)$ be the subspace of matrices with the zeros along the diagonal. Then \mathfrak{m}_j is invariant under the adjoint action of T^{n_j+1}, and $\mathfrak{m}_j \cap t^{n_j+1} = \{0\}$.

Proposition 2.15. At the point $e := (e, \ldots, e) \in \prod_{j=1}^{m} U(n_j + 1)$, choose the horizontal space $\mathcal{H}_e := \bigoplus_{j=1}^{m} \mathfrak{m}_j \subset \bigoplus_{j=1}^{m} u(n_j + 1)$. For a point $g = (g_1, \ldots, g_m) \in \prod_{j=1}^{m} U(n_j + 1)$, define $\mathcal{H}_g \subset T_g \left(\prod_{j=1}^{m} U(n_j + 1) \right)$ by

\[\mathcal{H}_g := \bigoplus_{j=1}^{m} (L_{g_j})_* \mathfrak{m}_j.\]

Then \mathcal{H} is a connection.
Proof. First we need to show that for each point \(g \in \prod_{j=1}^m U(n_j + 1) \), we have that \(\mathcal{H}_g \oplus \mathcal{V}_g = T_g(\prod_{j=1}^m U(n_j + 1)) \). We claim that \(\mathcal{V}_g \cap \mathcal{H}_g = \{0\} \). Suppose that \((o_g)_*\) is contained in \(\mathcal{H}_g \) for some \(t = (t_1, \ldots, t_m) \in \bigoplus_{j=1}^m T^{n_j+1} \). This implies that

\[
\left(t_1, t_2 - \text{Ad}_{g^{-1}} \left(A_2^{(1)}(t_1) \right), \ldots, t_m - \text{Ad}_{g^{-1}} \left(A_m^{(1)}(t_1) + \cdots + A_m^{(m-1)}(t_{m-1}) \right) \right) \in \bigoplus_{j=1}^m m_j.
\]

In particular, \(t_1 \in m_1 \), but it is also contained in \(t^{n_1+1} \). Since \(m_1 \cap t^{n_1+1} = \{0\} \), we have that \(t_1 = 0 \). Continuing in this manner we conclude that \(\mathcal{V}_g \cap \mathcal{H}_g = \{0\} \), and hence by the dimension reason, we have \(\mathcal{H}_g \oplus \mathcal{V}_g = T_g(\prod_{j=1}^m U(n_j + 1)) \).

Secondly, define the map \(\Phi_t : \prod_{j=1}^m U(n_j + 1) \to \prod_{j=1}^m U(n_j + 1) \) as the right translation by \(t \) as defined in (2.9). For an element \(t = (t_1, \ldots, t_m) \in \prod_{j=1}^m T^{n_j+1} \), we claim that \((\Phi_t)_* \mathcal{H}_g = \mathcal{H}_{\Phi_t(g)} \). For any \((x_1, \ldots, x_m) \in \prod_{j=1}^m U(n_j + 1) \), we have the following:

\[
(\Phi_t \circ L_g)(x_1, \ldots, x_m) = \Phi_t(g, x_1, \ldots, x_m) = g x_1 t_1, (A_1^{(2)}(t_1))^{-1} g x_2 t_2, \ldots, (A_1^{(m)}(t_1))^{-1} g x_m t_m
\]

This gives \((\Phi_t)_* \mathcal{H}_g = \mathcal{H}_{\Phi_t(g)} \) since \(m_j \) is invariant under the adjoint action of \(T^{n_j+1} \) for \(1 \leq j \leq m \).

Finally since the left multiplication varies smoothly with \((g_1, \ldots, g_m) \in \prod_{j=1}^m U(n_j + 1) \), this defines a connection. \(\square\)

As a corollary of Proposition 2.15 we have the following description of the tangent bundle of \(F_m \):

Proposition 2.16. The tangent bundle of \(F_m \) is isomorphic to

\[
\prod_{j=1}^m U(n_j + 1) \times_\mathbb{T} \bigoplus_{j=1}^m m_j,
\]

where the following elements are identified:

\[
(g_1, \ldots, g_m; X_1, \ldots, X_m) \sim (g_1, \ldots, g_m; (t_1, \ldots, t_m); \text{Ad}_{t_1^{-1}} X_1, \ldots, \text{Ad}_{t_m^{-1}} X_m)
\]

for \((t_1, \ldots, t_m) \in \mathbb{T}\). Here \((g_1, \ldots, g_m; (t_1, \ldots, t_m))\) as defined in (2.9).

Proof. Let \(\varphi : \prod_{j=1}^m U(n_j + 1) \times_\mathbb{T} \bigoplus_{j=1}^m m_j \to T F_m \) be the map defined by \(\varphi([g; X]) = ([g]; (\pi_* \circ (L_g)_*)(X)) \). We claim that the map \(\varphi \) is a bundle isomorphism. Because of the property of a principal connection and by the definition of \(\mathcal{H} \), we have that \((\pi_* \circ (L_g)_*)(X) \in T_{[g]} F_m \). It is enough to check that the map \(\varphi \) is well-defined. For \(t = (t_1, \ldots, t_m) \in \mathbb{T} \), an element \([\Phi_t(g); \text{Ad}_{t_1^{-1}} X_1, \ldots, \text{Ad}_{t_m^{-1}} X_m] \) maps to \([\varphi([\Phi_t(g)]), (\pi_* \circ (L_{\Phi_t(g)})_*)(\text{Ad}_{t_1^{-1}} X_1, \ldots, \text{Ad}_{t_m^{-1}} X_m)] \). From (2.12), we can see that

\[
(L_{\Phi_t(g)})(\text{Ad}_{t_1^{-1}} X_1, \ldots, \text{Ad}_{t_m^{-1}} X_m) = (\Phi_t)_* \circ (L_g)_*(X_1, \ldots, X_m).
\]

Because \(\pi \circ \Phi_t = \pi \), we have that \(\pi_* \circ (\Phi_t)_* = \pi_* \). This implies that the map \(\varphi \) is well-defined. \(\square\)

3. GKM descriptions of flag Bott manifolds

Let \(F_m \) be an \(m \)-stage flag Bott manifold. In Subsection 3.1 we define the canonical torus action on \(F_m \) and by studying this action more carefully, we conclude that a flag Bott manifold \(F_m \) is a GKM manifold with the canonical action in Theorem 3.6.
3.1. Torus actions. Let F_m be an m-stage flag Bott manifold. For $1 \leq j \leq m$, let $H = \prod_{j=1}^{m} H_{\text{GL}(n_j+1)}$ act on F_j by
\[(h_1, \ldots, h_m) \cdot [g_1, \ldots, g_j] := [h_1 g_1, \ldots, h_j g_j]\]
for $(h_1, \ldots, h_m) \in H$ and $[g_1, \ldots, g_j] \in F_j$. Then $F_j \to F_{j-1}$ is H-equivariant fiber bundle. For notational convenience, we write
\[n := n_1 + \cdots + n_m.\]
Therefore $\sum_{j=1}^{m} (n_j + 1) = n + m$. Let $T \subset H$ be the compact torus of real dimension $n + m$. Note that the torus H acts holomorphically but does not act effectively on F_m. If we write $h_j = \text{diag}(h_{j,1}, \ldots, h_{j,n_j+1}) \in \text{GL}(n_j + 1)$, the subtorus
\[H := \{(h_1, \ldots, h_m) \in H \mid h_{1,n_1+1} = \cdots = h_{m,n_m+1} = 1\} \cong (\mathbb{C}^*)^n\]
acts effectively on F_m. Let $T \subset H$ denote the compact torus of real dimension n. In this paper, we call the action of these tori the canonical $(T, H$ or $T)$-action on F_m. For a space X with a G-action, we write (X, G) for this G-space X when we need to emphasize the acting group.

Remark 3.1. The complex dimension of an m-stage flag Bott manifold F_m is $\frac{n_1(n_1+1)}{2} + \cdots + \frac{n_m(n_m+1)}{2}$ while the complex dimension of the torus H, which acts effectively on the manifold F_m, is $n = n_1 + \cdots + n_m$. They are equal if and only if $n_1 = \cdots = n_m = 1$, which is the case when a flag Bott manifold is a Bott manifold (see Example 2.2(3)). The highest dimension of a torus which can act on F_m effectively is studied in [Kur17].

Example 3.2. A 1-stage flag Bott manifold is the flag manifold $F_{\ell}(n+1) = \text{GL}(n+1)/B_{\text{GL}(n+1)}$. Then the canonical torus action of $H = H_{\text{GL}(n+1)}$ on the flag manifold $F_{\ell}(n+1)$ is the left multiplication.

It is well known that the fixed point set $F_{\ell}(n+1)^H$ can be identified with the symmetric group S_{n+1} (see [Ful97] Subsection 10.1]). For a given permutation $w \in S_{n+1}$, let \hat{w} denote the column permutation matrix, i.e., \hat{w} is an element in $\text{GL}(n+1)$ whose $(u(k), k)$-entries are 1 for $1 \leq k \leq n+1$, and all others are zero. For instance, the permutation $w = (231) \in S_3$ corresponds to the matrix
\[\hat{w} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \in \text{GL}(3).\]
Here we use the one-line notation, i.e., $w(1) = 2, w(2) = 3,$ and $w(3) = 1$. Then the fixed point set is $\{\hat{w} \in \text{GL}(n+1)/B_{\text{GL}(n+1)} \mid w \in S_{n+1}\}$. This property can be extended to the canonical action of H on F_m.

Proposition 3.3. Let F_m be an m-stage flag Bott manifold with the action of H. Then the fixed point set is identified with the product of symmetric groups $\prod_{j=1}^{m} S_{n_j+1}$. More precisely, for an element $(w_1, \ldots, w_m) \in \prod_{j=1}^{m} S_{n_j+1}$, the corresponding fixed point in F_m is $[\hat{w}_1, \ldots, \hat{w}_m]$, where $\hat{w}_j \in \text{GL}(n_j + 1)$ is the column permutation matrix of w_j.

3.2. Tangential representations of flag Bott manifolds. In this subsection, we study the tangential representations of a flag Bott manifold F_m at the fixed points corresponding to the (noneffective) canonical action of T in Proposition 3.5. Recall the definition of GKM manifolds from [GKM08] and [GZ01].

Definition 3.4. Let T be the compact torus of dimension n, t its Lie algebra, and M a compact manifold of real dimension $2d$ with an effective action of T. We say that a pair (M, T) is a GKM manifold if
\begin{enumerate}
\item the fixed point set M^T is finite,
\item M possesses a T-invariant almost-complex structure, and
\item for every $p \in M^T$, the weights $\{\alpha_{i,p} \in t^* \mid 1 \leq i \leq d\}$ of the isotropy representation $T_p M$ of T are pairwise linearly independent.
\end{enumerate}

By considering the effective canonical action of T on F_m, we will see that (F_m, T) is a GKM manifold in Theorem 3.6. For this, we first need to compute the tangential representations of a flag Bott manifold F_m at fixed points. From Proposition 2.16, the tangent bundle TF_m of a flag Bott manifold F_m is isomorphic to
\[\prod_{j=1}^{m} U(n_j+1) \times T \bigoplus_{j=1}^{m} m_j,\]
where $m_j \subset u(n_j + 1)$ is the subspace of matrices with the zero diagonals for $1 \leq j \leq m$. For an element $(\bar{w}_1, \ldots, \bar{w}_m) \in \prod_{j=1}^m \mathbb{G}_{n_j + 1}$, the corresponding fixed point in the flag Bott manifold F_m is $\bar{w} := (\bar{w}_1, \ldots, \bar{w}_m)$.

To describe the tangential representation $T_{\bar{w}}F_m$ of T, it is enough to find homomorphisms $f_j : T \to T^{n_j + 1}$ satisfying that for $1 \leq j \leq m$

$$[t_1 \bar{w}_1, \ldots, t_m \bar{w}_m; X_1, \ldots, X_m] = [\bar{w}_1, \ldots, \bar{w}_m; Ad_{f_1(t_1, \ldots, t_m)}X_1, Ad_{f_2(t_1, \ldots, t_m)}X_2, \ldots, Ad_{f_m(t_1, \ldots, t_m)}X_m].$$

Before computing the homomorphisms f_j, let us recall the adjoint action of T on m_j. Let $E_{(r,s)}$ be an element of $gl(n_j + 1)$ whose (r,s)-entry is 1 and all others are zero. Now we have $m_j \cong \text{span}_\mathbb{C}\{zE_{(r,s)} + (-\bar{z})E_{(s,r)} : z \in \mathbb{C}, 1 \leq s < r \leq n_j + 1\}$. We denote the standard basis of $\text{Lie}(T)^* \cong \mathbb{R}^{\sum_{j=1}^m (n_j + 1)}$ by

$$\{\varepsilon^*_1, \ldots, \varepsilon^*_1, \varepsilon^*_{n_1+1}, \ldots, \varepsilon^*_{m}, \ldots, \varepsilon^*_m, \varepsilon^*_{m,n_m+1}\}.$$

With respect to this basis, let A be the integer matrix of size $(n_j + 1) \times (n + m)$ whose row vectors $c_{j,1}, \ldots, c_{j,n_j+1}$ are weights of the holomorphic f_j, so that for an element $t \in T$,

$$f_j : t \mapsto \text{diag}(t^{c_{j,1}}, \ldots, t^{c_{j,n_j+1}}).$$

Since $Ad_{f_j(t)}E_{(r,s)} = t^{c_{j,r} - c_{j,s}}E_{(r,s)}$, using the weight vectors $\{c_{j,k}\}$, we can describe that

$$m_j \cong \bigoplus_{1 \leq r < s \leq n_j + 1} V(c_{j,r} - c_{j,s}),$$

where $V(c_{j,r} - c_{j,s})$ is the 1-dimensional T-representation with the weight $c_{j,r} - c_{j,s} \in \mathbb{Z}^{n_j + 1}$. For an integer matrix A, we define

$$V(A) := \bigoplus_{1 \leq r < s \leq n_j + 1} V(c_{j,r} - c_{j,s}).$$

Using this notation, we have the following proposition whose proof will be given at the end of this subsection.

Proposition 3.5. Let F_m be the m-stage flag Bott manifold determined by a set of integer matrices $(A^{(j)}_{i,j})_{1 \leq i \leq j \leq m-1} \in \prod_{1 \leq i < j \leq m-1} M_{n_j + 1, n_i + 1}(\mathbb{Z})$. Consider the (noneffective) canonical T-action on F_m. For a fixed point $\bar{w} = (\bar{w}_1, \ldots, \bar{w}_m) \in F_m$, the tangential T-representation is $T_{\bar{w}}F_m \cong \bigoplus_{j=1}^m m_j$, where

$$m_j \cong \bigoplus_{1 \leq i < j \leq m-1} \left(X^{(j)}_{i} X^{(j)}_{2} \cdots X^{(j)}_{j-1} B_j O \cdots O \right).$$

Here $X^{(j)}_i$ is the matrix of size $(n_j + 1) \times (n_i + 1)$ defined by

$$X^{(j)}_i \cong \sum_{1 \leq i < \cdots < i_r < j} (B_j A_{i_r}^{(j)} B_{i_{r-1}} \cdots B_{i_1} A_{i_1}^{(j)}) B_{\ell} + B_j A_{\ell}^{(j)} B_{\ell} \quad 1 \leq \ell < j \leq m,$$

and B_j is the row permutation matrix corresponding to w_j, i.e., $B_j = (\bar{w}_j)^T$. Furthermore, the weights of the isotropy representation of T on $T_{\bar{w}}F_m$ are pairwise linearly independent.

By considering the effective canonical action of T on F_m, the fixed point set is finite because of Proposition 3.3. Also the canonical action of T on F_m is holomorphic (see Subsection 3.1). As a corollary of Proposition 3.3 we have the following theorem.

Theorem 3.6. Let F_m be an m-stage flag Bott manifold with the effective canonical action of T. Then (F_m, T) is a GKM manifold.

Example 3.7. Suppose that the flag Bott manifold F_1 is $F(3)$. With the canonical action of the torus $T = (S^1)^3$, there are six fixed points $\{\bar{w} \mid w \in \mathbb{S}_3\}$. Let $\{\varepsilon_1^*, \varepsilon_2^*, \varepsilon_3^*\}$ be the standard basis of $\text{Lie}(S^1)^* \cong \mathbb{R}^3$. Consider an element \bar{w} in \mathbb{G}_3 corresponding to the permutation $w = (231) \in \mathbb{S}_3$. Then the row permutation matrix B is

$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix},$$

which is the transpose of the column permutation matrix \bar{w} in 3.2. Then we have the following tangential representation:

$$T_{\bar{w}}F_1 \cong m_1 \cong V(B) = V(\varepsilon_3^* - \varepsilon_2^*) \oplus V(\varepsilon_1^* - \varepsilon_3^*) \oplus V(\varepsilon_1^* - \varepsilon_2^*).$$

\[\square\]
Example 3.8. Consider a flag Bott tower F_2 of height 2 defined by the integer matrix $A_1^{(2)} = \begin{bmatrix} c_1 & c_2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$.

Then F_2 is a $\mathbb{C}P^1$-bundle over $F(3)$. The manifold F_2 has the action of $(S^1)^3 \times (S^1)^2$, and there are 12 fixed points $\{[\tilde{w}_1, \tilde{w}_2] \mid w_1 \in \mathbb{S}_3, w_2 \in \mathbb{S}_2\}$. Let $\{c_1, \epsilon_{1,1}, \epsilon_{1,2}, \epsilon_{1,3}, \epsilon_{2,1}, \epsilon_{2,2}\}$ be the standard basis of $\text{Lie}((S^1)^3 \times (S^1)^2)^* \cong \mathbb{R}^3 \oplus \mathbb{R}^2$. Consider the point $\tilde{w} = [\tilde{w}_1, \tilde{w}_2]$ where $w_1 = c$ and $w_2 = (21)$. Then the corresponding row permutation matrices are

$$B_1 = I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad B_2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

Hence the matrix $X_1^{(2)}$ is

$$X_1^{(2)} = B_2 A_1^{(2)} B_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} c_1 & c_2 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ c_1 & c_2 \end{bmatrix}.$$

The tangential representation at the point \tilde{w} can be computed as follows:

$$T_{\tilde{w}}F_2 = m_1 \oplus m_2 \cong V([I_3 O]) \oplus V \left([X_1^{(2)} B_2] \right)$$

$$= V \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \oplus V \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = V(\epsilon_{1,1} - \epsilon_{1,2}) \oplus V(\epsilon_{1,3} - \epsilon_{1,2}) \oplus V(\epsilon_{2,1} - \epsilon_{1,1}) \oplus V(\epsilon_{2,1} + c \epsilon_{2,2} + \epsilon_{3,1} - \epsilon_{3,2}).$$

Example 3.9. Consider a flag Bott tower of height 3 with $n_1 = 2$, $n_2 = 1$, and $n_3 = 1$ which is defined by

$$A_1^{(2)} = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad A_2^{(2)} = \begin{bmatrix} 3 & 4 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad A_3^{(2)} = \begin{bmatrix} 5 & 0 & 0 \end{bmatrix}.$$

Then the flag Bott manifold F_3 has the action of $(S^1)^3 \times (S^1)^2 \times (S^1)^2$, and the set of fixed points is $\{[\tilde{w}_1, \tilde{w}_2, \tilde{w}_3] \mid w_1 \in \mathbb{S}_3, w_2, w_3 \in \mathbb{S}_2\}$. Denote the standard basis of $\text{Lie}((S^1)^3 \times (S^1)^2 \times (S^1)^2) \cong \mathbb{R}^3 \oplus \mathbb{R}^2 \oplus \mathbb{R}^2$ by $\{c_1, \epsilon_{1,1}, \epsilon_{1,2}, \epsilon_{1,3}, \epsilon_{2,1}, \epsilon_{2,2}, \epsilon_{3,1}, \epsilon_{3,2}\}$. Consider the fixed point $\tilde{w} = [\tilde{w}_1, \tilde{w}_2, \tilde{w}_3]$ where $w_1 = (312)$, $w_2 = c$, and $w_3 = (21)$. The corresponding row permutation matrices are

$$B_1 = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \quad B_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad B_3 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

We have the following computations of $X_1^{(2)}, X_1^{(3)}, X_2^{(3)}$:

$$X_1^{(2)} = B_2 A_1^{(2)} B_1 = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix},$$

$$X_1^{(3)} = B_3 A_2^{(2)} B_2 A_1^{(2)} B_1 + B_3 A_1^{(2)} B_1 = \begin{bmatrix} 0 & 0 & 0 \\ 14 & 0 & 8 \end{bmatrix},$$

$$X_2^{(3)} = B_3 A_2^{(3)} B_2 = \begin{bmatrix} 0 & 0 \\ 5 & 0 \end{bmatrix}.$$

The tangential representation at the point \tilde{w} can be computed as follows:

$$T_{\tilde{w}}F_3 = m_1 \oplus m_2 \oplus m_3 \cong V([B_1 O O]) \oplus V \left([X_1^{(2)} B_2 O] \right) \oplus V \left([X_1^{(3)} X_2^{(3)} B_3] \right)$$

$$= V \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \oplus V \begin{bmatrix} 2 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 14 & 0 & 8 & 5 & 0 & 1 & 0 & 0 \end{bmatrix}$$

$$= V(\epsilon_{1,1}^2 - \epsilon_{1,3}^2) \oplus V(\epsilon_{1,2}^2 - \epsilon_{1,3}^2) \oplus V(\epsilon_{1,2}^2 - \epsilon_{1,1}^2) \oplus V(-2\epsilon_{1,1}^2 - \epsilon_{1,3}^2 + \epsilon_{2,2}^2) \oplus V(14\epsilon_{1,1}^2 + 8\epsilon_{1,3}^2 + 5\epsilon_{2,1}^2 + \epsilon_{3,1}^2 - \epsilon_{3,2}^2).$$

Before presenting the proof of Proposition 3.5, we give a lemma which is directly induced by the definition of $X_\ell^{(j)}$ in (3.6).
Lemma 3.10. The matrix $X_t^{(j)}$ satisfies the following equality.

$$X_t^{(j)} = B_j A_j^{(j-1)} X_t^{(j-1)} + B_j A_j^{(j-2)} X_t^{(j-2)} + \cdots + B_j A_j^{(1)} X_t^{(1)} + B_j A_j^{(0)} B_t.$$

Proof of Proposition 3.5. We first note that for any $t_j = \text{diag}(t_{j,1}, \ldots, t_{j,n_j+1}) \in T^{n_j+1} \subset U(n_j+1)$, we have that $\tilde{w}_j = \text{diag}(t_{j,w_j(1)}, t_{j,w_j(2)}, \ldots, t_{j,w_j(n_j+1)}) \in T^{n_j+1}$. Let \tilde{w}_j denote a homomorphism $T^{n_j+1} \to T^{n_j+1}$ defined by $\tilde{w}_j(t_j) := \tilde{w}_j^{-1} t_j \tilde{w}_j$. Then we have that

$$t_j \tilde{w}_j = \tilde{w}_j^{-1} t_j \tilde{w}_j = \tilde{w}_j \tilde{w}_j(t_j).$$

For the row permutation matrix $B_j = (\tilde{w})^T$, we have that $B_j (t_j, \ldots, t_{j,n_j+1})^T = (t_{j,w_j(1)}, \ldots, t_{j,w_j(n_j+1)})^T$. Hence B_j is the matrix for the homomorphism $\tilde{w}_j : T^{n_j+1} \to T^{n_j+1}$.

Consider the case when $j = 1$. Then we can get

$$[t_1 \tilde{w}_1, \ldots, t_m \tilde{w}_m; X_1, \ldots, X_m] = [\tilde{w}_1 \tilde{w}_1(t_1), t_2 \tilde{w}_2, \ldots, t_m \tilde{w}_m; X_1, \ldots, X_m] \quad \text{(by (3.7))}$$

(3.8)

$$= [\tilde{w}_1, \Lambda_1^{(2)}(\tilde{w}_1(t_1)) t_2 \tilde{w}_2, \Lambda_1^{(3)}(\tilde{w}_1(t_1)) t_3 \tilde{w}_3, \ldots, \Lambda_1^{(m)}(\tilde{w}_1(t_1)) t_m \tilde{w}_m; X_1, \ldots, X_m] \quad \text{(by (2.9))}$$

$$= [\tilde{w}_1, (\Lambda_1^{(2)} \circ \tilde{w}_1)(t_1) t_2 \tilde{w}_2, \ldots, (\Lambda_1^{(m)} \circ \tilde{w}_1)(t_1) t_m \tilde{w}_m; \text{Ad}_{\tilde{w}_1(t_1)} X_1, \ldots, X_m] \quad \text{(by (2.13)).}$$

Therefore the homomorphism $f_1 : \mathbb{T} \to T^{n_j+1}$ in (3.4) is given by $(t_1, \ldots, t_m) \mapsto \tilde{w}_1(t_1)$, and $m_1 \cong V([B_1 \ O \ \cdots \ O])$.

Hence the proposition holds for $j = 1$.

We continue the similar computation to (3.8) for the second coordinate as follows. For $t = (t_1, \ldots, t_m) \in \mathbb{T}$,

$$[t_1 \tilde{w}_1, t_2 \tilde{w}_2, t_3 \tilde{w}_3, \ldots, t_m \tilde{w}_m; X_1, \ldots, X_m]$$

$$= [\tilde{w}_1, (\Lambda_1^{(2)} \circ \tilde{w}_1)(t_1) t_2 \tilde{w}_2, (\Lambda_1^{(3)} \circ \tilde{w}_1)(t_1) t_3 \tilde{w}_3, \ldots, (\Lambda_1^{(m)} \circ \tilde{w}_1)(t_1) t_m \tilde{w}_m; \text{Ad}_{\tilde{w}_1(t_1)} X_1, \ldots, X_m] \quad \text{(by (3.8))}$$

(3.8)

$$= [\tilde{w}_1, (\Lambda_1^{(2)}(f_1(t)) t_2 \tilde{w}_2, \Lambda_1^{(3)}(f_1(t)) t_3 \tilde{w}_3, \ldots, \Lambda_1^{(m)}(f_1(t)) t_m \tilde{w}_m; \text{Ad}_{f_1(t)} X_1, \ldots, X_m] \quad \text{(by (3.7))}$$

$$= [\tilde{w}_1, \tilde{w}_2 f_2(t), \Lambda_1^{(2)}(f_1(t)) t_3 \tilde{w}_3, \ldots, \Lambda_1^{(m)}(f_1(t)) t_m \tilde{w}_m; \text{Ad}_{f_1(t)} X_1, \ldots, X_m] \quad \text{(by (2.13)).}$$

Continuing this process, we may assume that f_1, \ldots, f_{j-1} can be defined so that the following is satisfies for $j > 1$:

$$[t_1 \tilde{w}_1, \ldots, t_j \tilde{w}_j, \ldots; X_1, \ldots, X_j]$$

$$= [\tilde{w}_1, \ldots, \tilde{w}_{j-1}, \Lambda_j^{(j)}(f_j(t)) \Lambda_{j-1}^{(j)}(f_{j-2}(t)) \cdots \Lambda_1^{(j)}(f_1(t)) t_j \tilde{w}_j; \ldots, \text{Ad}_{f_1(t)} X_1, \ldots, \text{Ad}_{f_{j-1}(t)} X_{j-1}, X_j, \ldots].$$

We now define f_j. By considering $\Lambda_j^{(j)}(f_j(t)) \Lambda_{j-1}^{(j)}(f_{j-2}(t)) \cdots \Lambda_1^{(j)}(f_1(t)) t_j \tilde{w}_j$, we get the following:

$$\Lambda_j^{(j)}(f_j(t)) \Lambda_{j-1}^{(j)}(f_{j-2}(t)) \cdots \Lambda_1^{(j)}(f_1(t)) t_j \tilde{w}_j$$

$$= \tilde{w}_j \tilde{w}_j \Lambda_j^{(j)}(f_{j-1}(t)) \Lambda_{j-2}^{(j)}(f_{j-2}(t)) \cdots \Lambda_1^{(j)}(f_1(t)) t_j \quad \text{(by (3.7))}$$

$$= \tilde{w}_j \Lambda_j^{(j)}(f_{j-1}(t)) \Lambda_{j-2}^{(j)}(f_{j-2}(t)) \cdots \Lambda_1^{(j)}(f_1(t))(\tilde{w}_j(t_j)).$$

Therefore one can deduce that the map $f_j : \mathbb{T} \to T^{n_j+1}$ is given by

$$t = (t_1, \ldots, t_m) \mapsto (\tilde{w}_j \circ \Lambda_j^{(j)} \circ f_j(t)) \left(\tilde{w}_j \circ \Lambda_{j-2}^{(j)} \circ f_{j-2}(t)\right) \cdots \left(\tilde{w}_j \circ \Lambda_1^{(j)} \circ f_1(t)\right)(\tilde{w}_j(t_j)).$$
By considering the exponents of the map \(\hat{\omega}_j \circ A^{(j)}_\ell \circ f_\ell : T \to T^{n_j+1} \) for \(\ell = 1, \ldots, j-1 \), we get the following matrix of size \((n_j+1) \times ((n_1+1) + \cdots + (n_m+1))\):

\[
\begin{bmatrix}
B_j & \cdot & A^{(j)}_\ell & \cdot & \left[X_1^{(\ell)} X_2^{(\ell)} \cdots X_{\ell-1}^{(\ell)} B_\ell O \cdots O \right] \\
(n_j+1) & (n_j+1) & (n_1+1) & (n_1+1) & \cdots & \cdots & \cdots & \cdots \\
\end{bmatrix}
\]

\[
= \begin{bmatrix}
B_j A^{(j)}_\ell X_1^{(\ell)} & B_j A^{(j)}_\ell X_2^{(\ell)} & \cdots & B_j A^{(j)}_\ell X_{\ell-1}^{(\ell)} & B_j A^{(j)}_\ell B_\ell & O & \cdots & O
\end{bmatrix},
\]

Therefore it is enough to show that

\[
X_j^{(\ell)} = B_j A^{(j)}_\ell X_1^{(\ell-1)} + B_j A^{(j)}_\ell X_2^{(\ell-2)} + \cdots + B_j A^{(j)}_\ell X_{\ell-1}^{(\ell+1)} + B_j A^{(j)}_\ell B_\ell,
\]

which comes from Lemma 3.10. Hence we have the tangential \(T \)-representation as in the proposition.

Finally, we claim that the weights of the isotropy representation of \(T \) on \(T^w FM \) are pairwise linearly independent. For a fixed point \(w \), let \(c_1, c_2 \in \mathbb{Z}^n \) be weights of the tangential \(T \)-representation \(T^w FM \cong \bigoplus_{j=1}^{m_j} m_j \). Assume that the weight \(c_1 \) comes from \(m_j \), and \(c_2 \) comes from \(m_j \) for \(j_1 < j_2 \). Then by the description in (3.5), \(c_1 \) is a linear combination of \(\{\varepsilon_{j,k}^\ast \mid 1 \leq j \leq j_1, 1 \leq k \leq n_j+1\} \). Since \(c_2 \) has nonzero coefficients in \(\{\varepsilon_{j,k}^\ast \mid 1 \leq k \leq n_j+1\} \) and \(j_1 < j_2 \), two weights \(c_1 \) and \(c_2 \) are linearly independent. Suppose that both of two weights \(c_1 \) and \(c_2 \) come from \(m_j \). Then they have nonzero coefficients in \(\{\varepsilon_{j,k}^\ast \mid 1 \leq k \leq n_j+1\} \) which are determined by the permutation matrix \(B_j \) by (3.5). Hence they are linearly independent, so the result follows.

3.3. GKM graphs. In the previous subsection, we showed that a flag Bott manifold \((FM, T)\) is a GKM manifold. For a given GKM manifold \((M, T)\), one can define the following labeled graph \((\Gamma, \alpha)\); see [3GZ01] for more details.

Definition 3.11. Let \((M, T)\) be a GKM manifold. The GKM graph \((\Gamma, \alpha)\) consists of

- **vertices:** \(V(\Gamma) = M^T \),
- **edges:** \(e : v \to w \in E(\Gamma) \) if and only if there exists a \(T \)-invariant embedded 2-sphere \(X_e \) containing \(v, w \in M^T \), and
- **axial function:** for an edge \(e : v \to w \), the axial function \(\alpha \) maps an edge \(e \) to the weight of the isotropy representation \(T_e X_e \) of \(T \).

For an oriented edge \(e \) we write \(i(e) \), respectively \(t(e) \), the initial, respectively terminal, vertex of \(e \). Moreover we write \(\overline{e} \) for the oriented edge \(e \) with the reversed orientation. For \(v \in V(\Gamma) \) we set

\[
E(\Gamma)_v = \{ e \in E(\Gamma) \mid i(e) = v \}.
\]

For the GKM graph \((\Gamma, \alpha)\) associated to a GKM manifold \((M, T)\), a collection \(\theta = \{\theta_e\} \) of bijections

\[
\theta_e : E(\Gamma)_{i(e)} \to E(\Gamma)_{t(e)}, \quad e \in E(\Gamma)
\]

satisfying the following conditions can be determined naturally:

1. \((\theta_e)^{-1} = \theta_{\overline{e}} \) for \(e \in E(\Gamma) \),
2. \(\theta_e \) maps \(e \) to \(\overline{e} \) for \(e \in E(\Gamma) \), and
3. for \(e \in E(\Gamma) \) and \(e' \in E(\Gamma)_{i(e)} \), there exists \(c \in \mathbb{Z} \) such that \(\alpha(\theta_e(e')) = \alpha(e') + ca(e) \).

The collection \(\theta = \{\theta_e\} \) is called the connection.

In Subsection 3.2 we considered \(F_m \) with the noneffective canonical \(T \)-action, and expressed the tangential representation \(T^w FM \) in terms of the weights using the standard basis \(\{\varepsilon_{1,1}^\ast, \ldots, \varepsilon_{1,n_1+1}, \ldots, \varepsilon_{m,1}, \ldots, \varepsilon_{m,n_m+1}\} \) in (3.3). But in the GKM description, we need to consider the effective canonical \(T \)-action on \(F_m \). Therefore to consider the axial function with respect to \(T \)-action, we should put

\[
(3.9) \quad \varepsilon_{1,n_1+1}^\ast = \cdots = \varepsilon_{m,n_m+1}^\ast = 0
\]

in the formula of Proposition 3.5.

Theorem 3.12. Let \(F_m \) be a flag Bott manifold with the effective canonical \(T \)-action. Then the GKM graph \((\Gamma, \alpha)\) of \((F_m, T)\) consists of

- **vertices:** \(V(\Gamma) = \prod_{j=1}^m \mathcal{S}_{n_j+1} \),
- **edges:** \(E(\Gamma) \) is the set of elements \(w = (w_1, \ldots, w_m) \) and \(w' = (w_1', \ldots, w_m') \) in \(V(\Gamma) \) such that \(w' = (w_1, \ldots, w_j(r,s), \ldots, w_m) \) for some transposition \((r,s) \in \mathcal{S}_{n_j+1} \), and
axial function: for \(w \) and \(w' \) as above such that \(r, s \in [n_j + 1] \), \(r > s \), then
\[
\alpha(w w') = \rho^{(j)}_k - \rho^{(j)}_s,
\]
where \(\rho^{(j)}_k \) is the \(k \)-th row of the matrix \([X^{(j)}_1 X^{(j)}_2 \cdots X^{(j)}_{j-1} B_j O \cdots O] \) for \(k \in [n_j + 1] \), the matrices \(X^{(j)}_k \) are as in (3.6) with the modification according to (3.9).

Proof. To find the GKM graph \(\Gamma \), we recall that the product \(\Gamma_1 \times \Gamma_2 \) of graphs \(\Gamma_1, \Gamma_2 \) consists of vertices \(V(\Gamma_1 \times \Gamma_2) := V(\Gamma_1) \times V(\Gamma_2) \) and edges \(E(\Gamma_1 \times \Gamma_2) \) such that \(e : (w_1, w_2) \to (w'_1, w'_2) \in E(\Gamma_1 \times \Gamma_2) \) if and only if either \(w_1 = w'_1 \) and \(w_2 = w'_2 \) or \(w_2 = w'_2 \) and \(w_1 = w'_1 \). We claim that the GKM graph \(\Gamma \) of \(F_m \) is the product of graphs \(\prod_{j=1}^m \Gamma_j \), where \(\Gamma_j \) is the GKM graph of \(F_{n_j} \).

By Proposition 3.3 we know that \(V(\Gamma) = V(\prod_{j=1}^m \Gamma_j) \). To find edges on the graph \(\Gamma \), we use an induction argument on the stage. When the stage is 1, then our claim obviously holds. Assume that the GKM graph of \(F_j \) is the product \(\prod_{\ell=1}^j \Gamma_\ell \) for \(1 \leq j \leq m-1 \). For \(w \in \mathcal{S}_{n_m+1} \), let \(s_w : F_{m-1} \to F_m \) be a section of the fibration \(F_m \to F_{m-1} \) defined by \([g_1, \ldots, g_{m-1}] \to [g_1, \ldots, g_{m-1}, w] \). Since the section \(s_w \) is \(T \)-equivariant, it produces the GKM graph of \(F_m \) in \(\Gamma \). Hence the section \(s_w \) gives edges \((w_1, \ldots, w_{m-1}, w) \to (w'_1, \ldots, w'_{m-1}, w) \) in \(\Gamma \) such that \((w_1, \ldots, w_{m-1}) \to (w'_1, \ldots, w'_{m-1}) \in \mathcal{E}(\prod_{j=1}^{m-1} \Gamma_j) \).

On the other hand, a fiber over each fixed point in \(F_{j-1} \) produces the GKM graph of \(F(\ell(n_j+1)) \). Therefore for \((w_1, \ldots, w_{m-1}) \in \mathcal{E}(\prod_{j=1}^{m-1} \Gamma_j) \), we have edges \((w_1, \ldots, w_{m-1}, w_m) \to (w_1, \ldots, w_{m-1}, w'_m) \) such that \(w_m \to w'_m \in E(\Gamma_m) \). Let \(\mathcal{N} \) be the real dimension of \(F_m \). Then we have that \(|E(\Gamma_v)| = N \) for every vertex \(v \in V(\Gamma) \) by the definition of GKM graph. The above constructions give exactly \(N \) many edges starting from a vertex \(v \), so we have that \(\Gamma = (\prod_{j=1}^{m-1} \Gamma_j) \times \Gamma_m \). By Proposition 3.3 we have the axial function as stated in the theorem.

As a direct consequence of Theorem 3.12 we get the following.

Corollary 3.13. The GKM graph \(\Gamma \) of \(F_m \) is combinatorially equivalent to the product \(\prod_{j=1}^m \Gamma_j \), where \(\Gamma_j \) is the GKM graph of \(F(\ell(n_j+1)) \).

Example 3.14. Consider \(F_1 = F(3) \) as in Example 3.7. At the point \([w]\) determined by \(w = (231) \in \mathcal{S}_3 \), we have that \(T_{[w]} F_1 \cong V(B) \), where \(B = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \). With the effective canonical torus action, the tangential representation is
\[
T_{[w]} F_1 \cong V(\varepsilon^*_2) \oplus V(\varepsilon^*_1) \oplus V(\varepsilon^*_1 - \varepsilon^*_2).
\]
We have an edge \((231) \to (132)\) in the GKM graph since \((132) = (231)(3,1)\) for the transposition \((3,1) \in \mathcal{S}_4\). Hence the axial function for the edge \((231) \to (132)\) is \(\varepsilon^*_1 - \varepsilon^*_2 \). One can do the similar computations for the other fixed points, and we have the GKM graph as in Figure 1(1). In the figure, parallel edges have the same axial functions.

Example 3.15. Let \(F_2 \) be the 2-stage flag Bott manifold defined by \(A_1(2) = \begin{bmatrix} c_1 & c_2 & 0 \\ 0 & 0 & 0 \end{bmatrix} \) as in Example 3.8. The 3-dimensional compact torus acts effectively on \(F_2 \). Let \(\{\varepsilon^*_{1,1}, \varepsilon^*_{1,2}, \varepsilon^*_{2,1}\} \) be the standard basis of \(\text{Lie}(S^1)^2 \times (S^1)^* \). Near the fixed point given by \((e, s_1) \in \mathcal{S}_3 \times \mathcal{S}_2 \), we have the tangental representation as follows:
\[
V(\varepsilon^*_{1,2} - \varepsilon^*_{1,1}) \oplus V(\varepsilon^*_{1,2}) \oplus V(\varepsilon^*_{1,1}) \oplus V(\varepsilon^*_{1,1} + c_2 \varepsilon^*_1 + c_2 \varepsilon^*_2 + \varepsilon^*_2).
\]
One can see that the induced subgraph \(\Gamma \), respectively \(\Gamma' \), whose vertex set is \(\mathcal{S}_3 \times \{ e \} \), respectively \(\mathcal{S}_3 \times \{ s_1 \} \), is the same as the GKM graph of \(F(3) \) with the action of the torus \(T^2 \) in Example 3.14. Therefore it is enough to consider the axial functions of edges of the form \(e_w := (w, e) \to (w, s_1) \) for \(w \in \mathcal{S}_3 \). By a similar computation to Example 3.14 we get the GKM graph of \(F_2 \) as in Figure 1(2) whose axial function for vertical edges is listed as follows,
\[
\alpha(e_{(123)}) = -c_1 \varepsilon^*_{1,1} - c_2 \varepsilon^*_{1,2} - \varepsilon^*_{2,1}, \quad \alpha(e_{(213)}) = -c_2 \varepsilon^*_{1,1} - c_1 \varepsilon^*_{1,2} - \varepsilon^*_{2,1},
\]
\[
\alpha(e_{(231)}) = -c_1 \varepsilon^*_{1,2} - \varepsilon^*_{2,1}, \quad \alpha(e_{(321)}) = -c_2 \varepsilon^*_{1,2} - \varepsilon^*_{2,1},
\]
\[
\alpha(e_{(312)}) = -c_2 \varepsilon^*_{1,1} - \varepsilon^*_{2,1}, \quad \alpha(e_{(321)}) = -c_1 \varepsilon^*_{1,1} - \varepsilon^*_{2,1}.
\]
Note that nontrivial coefficients of \(\varepsilon^*_{1,1} \) and \(\varepsilon^*_{1,2} \) shows that \(F_2 \) is a nontrivial \(\mathbb{C}P^1 \)-bundle over \(F(3) \).
Example 3.16. Consider the 3-stage flag Bott manifold F_3 as in Example 3.9. Let $\dot{w} = [\dot{w}_1, \dot{w}_2, \dot{w}_3]$ be a fixed point where $w_1 = (312) \in \mathcal{S}_3, w_2 = e \in \mathcal{S}_2,$ and $w_3 = (21) \in \mathcal{S}_2.$ For an edge $(w_1, w_2, w_3) \rightarrow (w_1, w_2, w_3(2, 1))$, the axial function is $\rho^{(3)}_k - \rho^{(3)}_1$ where $\rho^{(3)}_k$ is the kth row of the matrix

$$\begin{bmatrix} X^{(3)}_1 & X^{(3)}_2 & B_3 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 14 & 0 & 8 & 5 & 0 & 1 & 0 \end{bmatrix}.$$

Hence with the modification according to (3.9), the axial function is $14\varepsilon_{1,1} + 5\varepsilon_{2,1} + \varepsilon_{3,1}.$ \hfill \Box

Remark 3.17. Let F_\bullet be a flag Bott tower, and (Γ_j, α_j) the GKM graph of j-stage flag Bott manifold F_j. Then $(\Gamma_j, \alpha_j) \rightarrow (\Gamma_{j-1}, \alpha_{j-1})$ is a GKM fiber bundle, see [Sab09, Definition 2.3.5], induced from the fibration $F_j \rightarrow F_{j-1}$ for $1 \leq j \leq m.$ The module basis of GKM graph cohomology of GKM fiber bundle has been computed in [Sab09] and [GSZ12]. In the paper [KKLS20], we compute the equivariant cohomology rings of flag Bott manifolds by using the Borel–Hirzebruch formula.

4. Generalized Bott Manifolds and the Associated Flag Bott Manifolds

We begin this section by reviewing generalized Bott towers studied in [CMS10a, CMS10b] and studying their fans based on [CLS11, Section 7.3].

Definition 4.1. [CMS10a, Definition 6.1] A generalized Bott tower $B_\bullet = \{B_j \mid 0 \leq j \leq m\}$ of height m (or an m-stage generalized Bott tower) is a sequence,

$$B_m \xrightarrow{\pi_m} B_{m-1} \xrightarrow{\pi_{m-1}} \cdots \xrightarrow{\pi_2} B_2 \xrightarrow{\pi_2} B_1 \xrightarrow{\pi_1} B_0 = \{\text{a point}\},$$

of manifolds $B_j = \mathbb{P}(E^j_1 \oplus \cdots \oplus E^j_{n_j} \oplus \mathbb{C})$ where E^j_k is a holomorphic line bundle over B_{j-1} for $1 \leq k \leq n_j,$ \mathbb{C} is the trivial line bundle over $B_{j-1},$ and $\mathbb{P}(\cdot)$ stands for the projectivization of each fiber. We call B_j the j-stage generalized Bott manifold of a generalized Bott tower.

Example 4.2. (1) Every projective space $\mathbb{C}P^n$ is a generalized Bott tower of height 1.

(2) The product of projective spaces $\mathbb{C}P^{n_1} \times \cdots \times \mathbb{C}P^{n_m}$ is an m-stage generalized Bott manifold.

(3) When $n_j = 1$ for $1 \leq j \leq m,$ an m-stage generalized Bott manifold is an m-stage Bott manifold (see Example 2.2(3)). \hfill \Box

Recall from [Har77, Exercise II.7.9] that for each $1 \leq j \leq m,$ the set of isomorphic classes of holomorphic line bundles on B_{j-1} is isomorphic to $\mathbb{Z}^{j-1}.$ More precisely, for $1 \leq j \leq m,$ the homomorphism

$$\mathbb{Z}^{j-1} \rightarrow \text{Pic}(B_{j-1}), (a_1, \ldots, a_{j-1}) \mapsto (\eta^{a_1}_j) \otimes (\eta^{a_2}_j) \otimes \cdots \otimes (\eta^{a_{j-1}}_j).$$

![Figure 1. GKM graphs.](image-url)
Hence, we conclude that given a generalized Bott manifold \(B\) line bundle \(B\) is an isomorphism since \(\eta_j^j \circ \pi_{\ell+1}^{\ell+1} \circ \pi_{\ell}^{\ell+1}(\eta_j^j)\), for each \(1 \leq \ell \leq j - 2\). Therefore for each holomorphic line bundle \(E_k^j\) over \(B_{j-1}\), there exist integers \(a_{k,1}^j, \ldots, a_{k,j-1}^j\) such that
\[
E_k^j = (\eta_{j+1}^j)^{a_{k,1}} \otimes (\eta_{j+2}^j)^{a_{k,2}} \otimes \cdots \otimes (\eta_{j-1}^j)^{a_{k,j-1}}.
\]
Hence, we conclude that given a generalized Bott manifold \(B_{j-1}\), the collection of integers
\[
\{a_{k,\ell}^j \in \mathbb{Z} \mid 1 \leq k \leq n_j, \ 1 \leq \ell \leq j - 1\}
\]
determines \(B_j\).

In general, a projectivization of the sum of holomorphic line bundles over a toric variety is again a toric variety (see [CLS11, Section 7.3]). Hence, so is a generalized Bott manifold \(B_m\). To describe the fan of \(B_m\), we prepare the following matrix \(\Lambda\) of size \(n \times m\):
\[
\begin{pmatrix}
-1 & 0 & \cdots & 0 \\
a_1^j & -1 & 0 & \cdots \\
0 & a_2^j & -1 & 0 & \cdots \\
\vdots & \vdots & \ddots & \ddots & \ddots \\
0 & 0 & \cdots & a_{j-1}^j & -1 & 0 & \cdots \\
a_1^m & a_2^m & \cdots & a_{j-1}^m & a_{j}^m & \cdots & a_{m-1}^m & -1 \\
\end{pmatrix}
\]
\[
\text{for } 1 \leq \ell < j \leq m.
\]

Next, we define a set of vectors \(U := \{u_{k,j}^j \mid 1 \leq j \leq m, \ 1 \leq k_j \leq n_j + 1\}\) by
\[
u_{k,j}^j = \begin{cases}
\varepsilon_{j,k_j} & \text{if } 1 \leq k_j \leq n_j, \\
\text{the } j\text{-th column of } \Lambda & \text{if } k_j = n_j + 1,
\end{cases}
\]
where \(\varepsilon_{1,1}, \ldots, \varepsilon_{1,n_1}, \ldots, \varepsilon_{m,1}, \ldots, \varepsilon_{m,n_m}\) is the standard basis vector in \(\mathbb{R}^n = \mathbb{R}^{n_1 + \cdots + n_m}\). Now, we consider the following cones
\[
\sigma_{k_1, \ldots, k_m} := \text{Cone}(U \setminus \{u_{1,k_1}^1, \ldots, u_{n_m,k_m}^m\}) \subset \mathbb{R}_n,
\]
and one can see that the vectors of \(U \setminus \{u_{1,k_1}^1, \ldots, u_{n_m,k_m}^m\}\) form a \(\mathbb{Z}\)-basis of \(\mathbb{Z}^n \subset \mathbb{R}^n\). Hence \(\sigma_{k_1, \ldots, k_m}\) is a smooth cone of dimension \(n\).

Proposition 4.3. A fan \(\Sigma\) associated to \(B_m\) consists of the cones
\[
\sigma_{k_1, \ldots, k_m} := \left\{(k_1, \ldots, k_m) \in \prod_{j=1}^m [n_j + 1] \right\}
\]
and their faces.

Proof. We show the claim by the induction on the stage of a generalized Bott manifold. When \(m = 1\), we have \(u_{k,j}^1 = e_k\) for \(1 \leq k \leq n_1\) and \(u_{n_1+1,j}^1 = -1\). In this case, the fan \(\Sigma\) consists of the cones \(\{\sigma_{k_1} \subset \mathbb{R}^{n_1} \mid 1 \leq k_1 \leq n_1 + 1\}\) and their faces, which yields \(X_{\Sigma} \cong \mathbb{C}P^{n_1}\). Next, assuming that the claim holds for \((m - 1)\)-stage generalized Bott manifold \(B_{m-1}\), a successively application of the result [CLS11, Section 7.3], in particular [CLS11, Proposition 7.3.3 and Example 7.3.5], establishes that the claim holds for the \(m\)-stage generalized Bott manifold \(B_m\). \(\square\)

\footnote{Note that [CLS11] uses a different convention to construct iterated projective bundles. They put the trivial line bundle on the first, but we put it on the last when we sum up line bundles in the definition of generalized Bott manifolds.}
Remark 4.4. The fan Σ defined above is a simplicial fan whose underlying simplicial complex is the dual complex of the product $P := \prod_{j=1}^{n} \Delta^{n_j}$ of simplices. As a quasitoric manifold [DJ91] [BP15], the polytope together with the set \mathcal{U}, where we assign a facet
$$\Delta^{n_1} \times \cdots \times \Delta^{n_{j-1}} \times f_{k_j}^j \times \Delta^{n_j+1} \times \cdots \times \Delta^{n_m}$$
for some facet $f_{k_j}^j$ of Δ^{n_j} to the vector $u_{k_j}^j$ for $1 \leq k_j \leq n_j + 1$, form a characteristic pair which determines the given generalized Bott manifold. We refer the readers to [CMS10a] and [CMS10b] for more details.

Example 4.5. Let B_* be a generalized Bott tower of height 3 with $n_1 = 2$, $n_2 = 1$, and $n_3 = 2$. The 2-stage generalized Bott manifold B_2 is a CP^1-fiber bundle over CP^2, and the 3-stage B_3 is a CP^2-fiber bundle over the manifold B_2. More precisely,

$$E_1^2 \oplus E_2^3 \oplus \mathbb{C} \quad E_1^2 \oplus \mathbb{C}$$

where \mathbb{C} is the trivial line bundle, and

$$E_2^3 = (\eta_1^3) \oplus a_{1,1}^3, \quad E_1^3 = (\eta_1^3) \oplus a_{1,2}^3 \oplus (\eta_2^3) \oplus a_{2,1}^3 \oplus a_{2,2}^3$$

for some integers $a_{1,1}^2, a_{1,1}^3, a_{1,2}^3, a_{2,1}^3, a_{2,2}^3$. Hence the matrix Λ of B_3 is

$$\Lambda = \begin{bmatrix}
-1 & 0 & 0 \\
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & a_{1,1}^2 & a_{1,2}^3 \\
a_{1,1}^3 & a_{1,2}^3 & -1 \\
0 & a_{2,1}^3 & a_{2,2}^3 \\
0 & a_{2,1}^3 & -1 \\
\end{bmatrix} = \begin{bmatrix}
0 & 0 \\
0 & 0 \\
a_{1,1}^2 & a_{1,2}^3 \\
a_{1,1}^3 & a_{1,2}^3 & -1 \\
0 & a_{2,1}^3 & a_{2,2}^3 \\
0 & a_{2,1}^3 & -1 \\
\end{bmatrix} = \begin{bmatrix}
u_1^3 & u_2^3 & u_3^3 \\
u_2^3 & u_3^3 \\
\end{bmatrix},$$

where $a_{1,1}^3 \in \mathbb{Z}$, $a_{1,1}^3 = (a_{1,1}^3, a_{2,1}^3) \in \mathbb{Z}^2$, and $a_{2,2}^3 = (a_{2,1}^3, a_{2,2}^3) \in \mathbb{Z}^2$. Moreover the fan Σ associated to B_3 consists of cones

$\text{Cone}(\varepsilon_{1,1}, \varepsilon_{1,2}, \varepsilon_{2,1}, \varepsilon_{3,1}, \varepsilon_{3,2}), \text{Cone}(\varepsilon_{1,1}, u_1^3, \varepsilon_{2,1}, \varepsilon_{3,1}, \varepsilon_{3,2}),$ \text{Cone}(\varepsilon_{1,1}, u_1^3, \varepsilon_{2,1}, \varepsilon_{3,1}, \varepsilon_{3,2})$

and their faces. \hfill \square

Definition 4.6. Let B_* be a generalized Bott tower determined by the block matrix Λ with entries a_{ij}^l as in (4.1). We call a flag Bott tower F_* is associated to B_* if it is determined by the set of integer matrices \{$A_{ij}^l \in M_{n_j+1, n_{j+1}}(\mathbb{Z}) \mid 1 \leq l \leq m \} \}$ where

$$A_{ij}^l = \begin{bmatrix}
a_{ij}^l & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
\end{bmatrix}^{n_j}_{1}.$$

Example 4.7. Let B_3 be the generalized Bott tower of height 3 in Example 4.5. The associated flag Bott manifold F_3 to B_3 is determined by the following integer matrices:

$$A_{1}^{(2)} = \begin{bmatrix}
a_{1,1}^2 & 0 & 0 \\
0 & 0 & 0 \\
\end{bmatrix}, \quad A_{1}^{(3)} = \begin{bmatrix}
a_{1,1}^3 & 0 & 0 \\
a_{2,1}^3 & 0 & 0 \\
0 & 0 & 0 \\
\end{bmatrix} \in M_{3,3}(\mathbb{Z}),$$

$$A_{2}^{(3)} = \begin{bmatrix}
a_{2,1}^3 & 0 & 0 \\
0 & 0 & 0 \\
\end{bmatrix} \in M_{3,3}(\mathbb{Z}), \quad A_{2}^{(3)} = \begin{bmatrix}
a_{1,2}^2 & 0 & 0 \\
0 & 0 & 0 \\
\end{bmatrix} \in M_{3,2}(\mathbb{Z}).$$
For a generalized Bott tower B_\bullet and its associated flag Bott tower F_\bullet, we have the following commutative diagram.

\[
\begin{array}{cccc}
F_m & \xrightarrow{p_m} & F_{m-1} & \leftarrow \ldots \leftarrow p_2 F_1 & \leftarrow p_1 F_0 & \leftarrow q_0 \text{ id } E_1 \\
\downarrow q_m & & \downarrow \pi_{m-1} & & \downarrow \pi_1 & & \downarrow \\
B_m & \xrightarrow{\pi_m} & B_{m-1} & \leftarrow \ldots \leftarrow \pi_2 B_1 & \leftarrow \pi_1 B_0 & \end{array}
\]

Indeed, the associated flag Bott tower F_\bullet can be constructed inductively as follows. For each $1 \leq j \leq m$, consider the following pull-back diagram.

\[
\begin{array}{ccc}
q_{j-1}^* E_j & \xrightarrow{\tilde{q}_{j-1}} & E_j \\
\downarrow & & \downarrow \\
F_{j-1} & \xrightarrow{q_{j-1}} & B_{j-1}
\end{array}
\]

By flagifying each fiber of the above bundles, we obtain the associated pull back diagram of flag bundles.

\[
\begin{array}{ccc}
F_j := F\ell(q_{j-1}^* E_j) & \xrightarrow{\tilde{q}_{j-1}} & F\ell(E_j) \\
\downarrow & & \downarrow \\
F_{j-1} & \xrightarrow{q_{j-1}} & B_{j-1}
\end{array}
\]

Then F_j is the total space of $F\ell(q_{j-1}^* E_j)$, and $q_j := s_j \circ \tilde{q}_{j-1}$. Here, the map $s_j : F\ell(E_j) \to \mathbb{P}(E_j)$ sends each fiberwise full flag $V_\bullet = (V_1 \subseteq V_2 \subseteq \cdots \subseteq V_m \subseteq (E_j)_p)$ to the element V_1 in $\mathbb{P}((E_j)_p)$ for $p \in B_{j-1}$.

5. Generic orbit closures in the associated flag Bott manifolds

For an m-stage generalized Bott manifold B_m, let F_m be its associated flag Bott manifold with the effective canonical action of H defined in Subsection 3.3. In this section, we study the closure of a generic orbit of the torus H in the associate flag Bott manifold F_m, and its relation with B_m in Theorem 5.7. For this, we first review combinatorics of permutohedral varieties.

5.1. Permutohedral varieties. The closure X_n of a generic orbit in the flag variety $F\ell(n+1)$ with the effective action of $(C^*)^n$ as in Example 5.2 is a toric variety called the permutohedral variety; see for instance [Kly85] and [Huh13]. In this subsection, we recall the fan $\Sigma_n \subset \mathbb{R}^n$ of the permutohedral variety. Note that the fan Σ_n is the normal fan of an n-dimensional permutohedron P_n with particular outward normal vectors. To be more precise, there is a bijection between the set $\Sigma_n(1)$ of rays and nonempty proper subsets of $[n+1]$

\[
\Sigma_n(1) \xrightarrow{1-1} \{ A \mid \emptyset \subsetneq A \subseteq [n+1] \}.
\]

For a nonempty proper subset A of $[n+1]$, the corresponding ray ρ_A is generated by

\[
u_A := \begin{cases}
\sum_{x \in A} \varepsilon_x & \text{if } n+1 \notin A, \\
- \sum_{x \in [n+1]\setminus A} \varepsilon_x & \text{otherwise},
\end{cases}
\]

where $\{\varepsilon_1, \ldots, \varepsilon_n\}$ is the standard basis vector of \mathbb{R}^n. Hence there are $2^{n+1} - 2$ many rays in Σ_n. The minimal generator in the intersection of a ray and the underlying lattice is called the ray generator. We note that u_A defined in (5.1) is the ray generator of ρ_A.
The maximal cones are indexed by proper chains of \(n \) nonempty proper subsets of \([n + 1]\). For a proper chain
\[
A_\bullet : \emptyset \subsetneq A_1 \subsetneq A_2 \subsetneq \cdots \subsetneq A_n \subsetneq [n + 1]
\]
of nonempty proper subsets, we have the corresponding maximal cone
\[
\text{Cone}(u_{A_1}, u_{A_2}, \ldots, u_{A_n}).
\]
Therefore the number of maximal cones is \((n + 1)!\).

Moreover we have a correspondence between the maximal cones in \(\Sigma_n \) and the elements of the symmetric group \(\mathfrak{S}_{n+1} \). For a permutation \(w = (w(1) \cdots w(n + 1)) \) in \(\mathfrak{S}_{n+1} \), we associate a maximal cone in \(\Sigma_n \) determined by the chain \(A_\bullet \), where
\[
A_k := \{w(n + 2 - k), \ldots, w(n + 1)\} \quad \text{for } 1 \leq k \leq n.
\]
This description is sometimes much convenient to see the combinatorics of \(\Sigma_n \). For instance, two maximal cones corresponding to permutations \(v \) and \(w \) in \(\mathfrak{S}_{n+1} \) are adjacent if and only if there exists \(i \in [n] \) such that \(v = w \cdot s_i \), where \(s_i \) is the transposition \((i, i + 1) \in \mathfrak{S}_{n+1} \).

Example 5.1. When \(n = 2 \), Figure 2(1) describes the maximal cones in \(\Sigma_2 \). Consider a permutation \((231) \in \mathfrak{S}_3 \). Then the corresponding chain \(A_\bullet \) defined in (5.3) is
\[
A_\bullet : \emptyset \subsetneq \{1\} \subsetneq \{1, 3\} \subsetneq \{1, 2, 3\}.
\]
Hence the permutation \((231)\) defines a maximal cone \(\text{Cone}(u_{\{1\}}, u_{\{1, 3\}}) \). As permutations \((231)\) and \((321)\) satisfy the relation \((231) = (321) \cdot s_1\), two maximal cones \(\text{Cone}(u_{\{1\}}, u_{\{1, 3\}}) \) and \(\text{Cone}(u_{\{1\}}, u_{\{1, 2\}}) \) are adjacent. Figure 2(2) describes the maximal cones in \(\Sigma_2 \).

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure2.png}
\caption{Fan \(\Sigma_2 \).}
\end{figure}

Remark 5.2. Let \(\Sigma'_n \subset \mathbb{R}^n \) be the fan of complex projective space \(\mathbb{C}P^n \) whose ray generators \(u_1, \ldots, u_{n+1} \) are given by
\[
u_k = \begin{cases}
\varepsilon_k & \text{if } 1 \leq k \leq n, \\
-\varepsilon_1 - \cdots - \varepsilon_n & \text{if } k = n + 1
\end{cases}
\]
Then the set of cones in \(\Sigma'_n \) can be identified with the set of nonempty proper subsets of \([n + 1]\). To be more precise, for any dimension \(d \) cone \(\tau \) in \(\Sigma'_n \), we have a subset \(\{i_1, \ldots, i_d\} \subset [n + 1] \) such that
\[
\tau = \text{Cone}(u_{i_1}, \ldots, u_{i_d}).
\]
It is well known that the fan \(\Sigma_n \subset \mathbb{R}^n \) of the permutahedral variety can be obtained from \(\Sigma'_n \) by star subdivisions of all cones of dimension grater than 0 in the decreasing order of the dimensions of the cones (see [Pro90]). Hence, the set of rays in the fan \(\Sigma_n \) corresponds bijectively to the set of all cones of dimension grater than 0 in \(\Sigma'_n \).
5.2. The main result on generic orbit closures in F_m. Consider the canonical effective H-action on F_m defined in Subsection 5.1. In order to consider the closure of a generic H-orbit in F_m, we first define a generic element in F_m. Let $g = (g_{ij})$ be an element in $GL(n+1)$. For an ordered sequence $1 \leq i_1 < i_2 < \cdots < i_k \leq n + 1$, we consider the Plücker coordinate

$$X_{i_1,\ldots,i_k}(g) := \det((g_{ip,p})_{1 \leq p \leq k}).$$

Definition 5.3. We call an element $g \in GL(n+1)$ generic if $X_{i_1,\ldots,i_k}(g)$ is nonzero for any $k \in \{n+1\}$ and ordered sequence $1 \leq i_1 < i_2 < \cdots < i_k \leq n + 1$. We call a point $[g_1,\ldots,g_m]$ in F_m is generic if $g_j \in GL(n_j + 1)$ is generic for $j = 1,\ldots,m$.

For example, $g = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ is not a generic element since $X_2(g) = 0$. But $g = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ is generic. The above definition of generic elements can be found in [FH91], [Kly95], and [Dab96]. It is not difficult to show that the genericity of a point $[g_1,\ldots,g_m]$ in F_m does not depend on the representative of a point.

A generic orbit in F_m is the H-orbit of a generic point. In Theorem 5.4 we give a relation between a generalized Bott manifold B_m and the closure of a generic orbit of H in its associated flag Bott manifold F_m, which extends the relation between $\mathbb{C}P^n$, as an 1-stage generalized Bott manifold, and the n-dimensional permutohedral variety (see Remark 5.2).

Theorem 5.4. Let B_m be an m-stage generalized Bott manifold determined by an integer matrix Λ as in (4.4) and let F_m be the associated m-stage flag Bott manifold. Then the closure of a generic orbit of H in the associated flag Bott manifold F_m is a nonsingular projective toric variety whose fan Σ is given as follows:

1. the rays are parametrized by the set

$$\{(\ell, A) \mid \emptyset \subsetneq A \subsetneq [n_\ell + 1], 1 \leq \ell \leq m\}.$$

For (ℓ, A) the corresponding ray is generated by the vector

$$u^\ell_A = \begin{cases} \sum_{x \in A} \varepsilon_{\ell,x} & \text{if } n_\ell + 1 \notin A, \\ -\sum_{x \in [n_\ell + 1] \setminus A} \varepsilon_{\ell,x} + \sum_{j=\ell+1}^m \sum_{k=1}^{n_j} a^j_{k,\ell} \varepsilon_{j,k} & \text{otherwise} \end{cases}$$

where $\{\varepsilon_{j,k}\}$ is the standard basis of the Lie algebra of the compact torus $T \subset H$ whose dual is the standard basis $\{\varepsilon^*_{j,k}\}$ of $\text{Lie}(T)^*$.

2. The maximal cones are indexed by the sequences of proper chains of subsets

$$\{(A^1_\bullet,\ldots,A^m_\bullet) \mid A^\bullet_\ell = (\emptyset \subsetneq A^1_\ell \subsetneq A^2_\ell \subsetneq \cdots \subsetneq A^n_\ell \subsetneq [n_\ell + 1], 1 \leq \ell \leq m\}.$$

For $(A^1_\bullet,\ldots,A^m_\bullet)$, the corresponding maximal cone is defined to be

$$\text{Cone}\left(\bigcup_{\ell=1}^m \{u^\ell_{A^1_\ell},\ldots,u^\ell_{A^n_\ell}\}\right).$$

The proof of Theorem 5.4 needs a series of lemmas, and will be given in the next subsection. The following corollary will play an important role in the proof of Theorem 5.7.

Corollary 5.5. For each $1 \leq \ell \leq m$ and a nonempty proper subset $\emptyset \subsetneq A \subsetneq [n_\ell + 1]$, we have the following relation:

$$u^\ell_A = \sum_{x \in A} u^\ell_{\{x\}}.$$

Furthermore, for $x \in [n_\ell + 1]$, the ray generator $u^\ell_{\{x\}}$ coincides with the ray generator u^ℓ_x in the fan Σ' of the generalized Bott manifold B_m. \hfill \Box

Proof. First we notice that $u^\ell_{\{x\}} = \varepsilon_{\ell,x} = u^\ell_x$ if $x \neq n_\ell + 1$. Hence we get the equality (5.4) when $n_\ell + 1 \notin A$. On the other hand, we have that

$$u^\ell_{\{n_\ell + 1\}} = -\sum_{x \in [n_\ell]} \varepsilon_{\ell,x} + \sum_{j=\ell+1}^m \sum_{k=1}^{n_j} a^j_{k,\ell} \varepsilon_{j,k} = u^\ell_{n_\ell + 1}.$$
When \(n_\ell + 1 \in A \), we get that
\[
\sum_{x \in A} u_\ell^x = u_\ell^{n_\ell + 1} + \sum_{x \in A \setminus \{n_\ell + 1\}} u_\ell^x \]
\[
= - \sum_{x \in \{n_\ell\}} \varepsilon_{\ell,x} + \sum_{j=\ell+1}^m \sum_{k=1}^{n_j} a^j_{k, \ell} \varepsilon_{j,k} + \sum_{x \in A \setminus \{n_\ell + 1\}} \varepsilon_{\ell,x} \\
= - \sum_{x \in \{n_\ell + 1\} \setminus A} \varepsilon_{\ell,x} + \sum_{j=\ell+1}^m \sum_{k=1}^{n_j} a^j_{k, \ell} \varepsilon_{j,k} \\
= u_\ell^A. \tag*{\square}
\]

Example 5.6. Let \(B_3 \) be a generalized Bott tower of height 3 as in Example 4.7 whose matrix \(\Lambda \) is given by
\[
\Lambda = \begin{bmatrix}
-1 & 0 & 0 \\
-1 & 0 & 0 \\
a^1_{1,1} & -1 & 0 \\
a^3_{1,1} & -1 & 1 \\
a^3_{3,2} & -1 & 1
\end{bmatrix}.
\]

Let \(F_3 \) be the associated flag Bott manifold, and let \(X \) be the closure of a generic orbit of the torus \((\mathbb{C}^*)^5\) on \(X \). Consider the ray generator \(u_{[3]}^{1} \). Then by Theorem 5.4, the vector \(u_{[3]}^{1} \) is
\[
\sum_{x \in \{3\} \setminus \{[3]\}} -\varepsilon_{1,x} + \sum_{j=2}^3 \sum_{k=1}^{n_j} a^j_{k, 1} \varepsilon_{j,k} = -\varepsilon_{1,1} - \varepsilon_{1,2} + a^2_{1,1} \varepsilon_{2,1} + a^3_{1,1} \varepsilon_{3,1} + a^2_{3,1} \varepsilon_{3,2},
\]
where \(\{\varepsilon_{1,1}, \varepsilon_{1,2}, \varepsilon_{2,1}, \varepsilon_{3,1}, \varepsilon_{3,2}\} \) is the standard basis of the Lie algebra of the compact torus contained in \((\mathbb{C}^*)^5\). With this standard basis, we have the following ray generators.

\[
\begin{align*}
 u_{[1]}^{1} &= (1, 0, 0, 0, 0), \\
 u_{[2]}^{1} &= (0, 1, 0, 0, 0), \\
 u_{[3]}^{1} &= - (-1, -1, a^2_{1,1}, a^3_{1,1}, a^2_{3,1}), \\
 u_{[1]}^{2} &= (1, 1, 0, 0, 0), \\
 u_{[1,3]}^{2} &= (0, -1, a^2_{1,1}, a^3_{1,1}, a^2_{2,1}), \\
 u_{[2,3]}^{2} &= - (-1, 0, a^2_{1,1}, a^3_{1,1}, a^2_{2,1}), \\
 u_{[1]}^{3} &= (0, 0, 1, 0, 0), \\
 u_{[3]}^{3} &= (0, 0, 0, 0, 0), \\
 u_{[1,2]}^{3} &= (0, 0, 0, 1, 0), \\
 u_{[2,3]}^{3} &= (0, 0, 0, 0, 1), \\
 u_{[1,3]}^{3} &= (0, 0, 0, 0, -1), \\
 u_{[2,3]}^{3} &= (0, 0, 0, -1, 0).
\end{align*}
\]

For a subset \(\{1, 3\} \subset [3] \), the ray generator \(u_{\{1,3\}}^{1} \) is \((0, -1, a^2_{1,1}, a^3_{1,1}, a^2_{3,1})\). Also, we have the following:
\[
\begin{align*}
 u_{\{1,3\}}^{1} &= (1, 0, 0, 0, 0) + (-1, -1, a^2_{1,1}, a^3_{1,1}, a^2_{3,1}) = u_{\{1\}}^{1} + u_{[3]}^{1}. \tag*{\square}
\end{align*}
\]

For a fan \(\Sigma \) and a cone \(\tau \in \Sigma \), we recall from [CLST11] Definition 3.3.17 the definition of star subdivision \(\Sigma^*(\tau) \) of \(\Sigma \) along \(\tau \). Let \(u_\tau = \sum_{\rho \in \tau \cap \Sigma} u_\rho \), where \(u_\rho \) is the ray generator of a ray \(\rho \). For each cone \(\sigma \in \Sigma \) containing \(\tau \), set
\[
\Sigma^*_{\sigma}(\tau) = \{ \text{Cone}(A) \mid A \subseteq \{u_\tau\} \cup \sigma(1), \tau(1) \not\subseteq A \}.
\]

Then the star subdivision \(\Sigma^*(\tau) \) is defined to be
\[
\Sigma^*(\tau) = \{ \sigma \in \Sigma \mid \tau \not\subseteq \sigma \} \cup \bigcup_{\tau \subseteq \sigma} \Sigma^*_{\sigma}(\tau).
\]

Hence the fan \(\Sigma^*(\tau) \) has one more ray generated by the vector \(u_\tau \).

Corollary 5.7 says that the set of ray generators
\[
\bigcup_{\ell=1}^m \{ u^\ell_{\{x\}} \mid x \in [n_\ell + 1] \}
\]
can produce all other ray generators of the fan \(\Sigma \), which yields the following property.
Moreover, we have

\[\phi \]

For a cone \(\Sigma \) consisting of the cones \(\{ \sigma \in \Sigma | \sigma \subset \ker \phi \} \) and \(X_{\Sigma''} \) the corresponding toric variety. Then, the toric morphism \(\phi : X_{\Sigma} \rightarrow X_{\Sigma''} \) induced from \(\phi \) is an equivariant fiber bundle with fiber \(X_{\Sigma''} \) if and only if

1. there exists a lifting \(\hat{\Sigma} \subseteq \Sigma \) of \(\Sigma' \) such that \(\hat{\phi}_{\hat{\Sigma}} : N_{\hat{\Sigma}} \rightarrow N'_{\hat{\Sigma}} \) maps \(\hat{\sigma} \in \hat{\Sigma} \) bijectively to a cone \(\sigma' \in \Sigma' \),
2. \(\Sigma \) consists of cones \(\{ \hat{\sigma} + \sigma' | \hat{\sigma} \in \hat{\Sigma}, \sigma'' \in \Sigma'' \} \).

The fan \(\Sigma \) determined by the condition of Proposition 5.9.4 is called the join of \(\hat{\Sigma} \) and \(\Sigma'' \) and denoted by \(\Sigma = \hat{\Sigma} \cdot \Sigma'' \). We refer to [Ewa96, Chapter III.1, Chapter VI.6]. We need one more result to give a proof of Theorem 5.7.

Lemma 5.10. Let \(\Sigma_1 \) and \(\Sigma_2 \) be fans such that \(\Sigma_1(1) \cap \Sigma_2(1) = \emptyset \). Suppose that \(\tau \in \Sigma_1 \). Then

\[\Sigma_1^*(\tau) \cdot \Sigma_2 = (\Sigma_1 \cdot \Sigma_2)^*(\tau). \]

Here we denote the cone \(\tau + \{ 0 \} \) in \(\Sigma_1 \cdot \Sigma_2 \) by \(\tau \).

Proof. For a cone \(\tau \in \Sigma_1 \), we have that

\[\Sigma_1^*(\tau) \cdot \Sigma_2 = (\{ \sigma_1 \in \Sigma_1 | \tau \not\subseteq \sigma_1 \} \cdot \Sigma_2) \cup \bigcup_{\tau \subset \sigma_1} ((\Sigma_1)^*_{\sigma_1}(\tau) \cdot \Sigma_2). \]

\[(\Sigma_1 \cdot \Sigma_2)^*(\tau + \{ 0 \}) = \{ \sigma_1 + \sigma_2 \in \Sigma_1 + \Sigma_2 | \tau + \{ 0 \} \not\subseteq \sigma_1 + \sigma_2 \} \cup \bigcup_{\tau + \{ 0 \} \subseteq \sigma_1 + \sigma_2} (\Sigma_1 \cdot \Sigma_2)^*_{\sigma_1 + \sigma_2}(\tau + \{ 0 \}). \]

We note that by the definition of join of fans, we get

\[\{ \sigma_1 \in \Sigma_1 | \tau \not\subseteq \sigma_1 \} \cdot \Sigma_2 = \{ \sigma_1 + \sigma_2 \in \Sigma_1 + \Sigma_2 | \tau + \{ 0 \} \not\subseteq \sigma_1 + \sigma_2 \}. \]

Moreover, we have

\[\bigcup_{\tau + \{ 0 \} \subseteq \sigma_1 + \sigma_2} (\Sigma_1 \cdot \Sigma_2)^*_{\sigma_1 + \sigma_2}(\tau + \{ 0 \}) = \bigcup_{\tau \subseteq \sigma_1, \sigma_2 \in \Sigma_2} (\Sigma_1 \cdot \Sigma_2)^*_{\sigma_1 + \sigma_2}(\tau + \{ 0 \}). \]

Therefore to prove the lemma, it is enough to show that for any \(\sigma_1 \in \Sigma_1 \) satisfying \(\tau \subseteq \sigma_1 \), the following equality holds:

\[(\Sigma_1)^*_{\sigma_1}(\tau) \cdot \Sigma_2 = \bigcup_{\sigma_2 \in \Sigma_2} (\Sigma_1 \cdot \Sigma_2)^*_{\sigma_1 + \sigma_2}(\tau + \{ 0 \}). \]
We note that for \(\sigma_2 \in \Sigma_2 \),
\[
(5.6) \quad (\Sigma_1 \cdot \Sigma_2)_{\sigma_1 + \sigma_2}(\tau + \{0\}) = \{ \text{Cone}(B) \mid B \subseteq \{u_r\} \cup \sigma_1(1) \cup \sigma_2(1), \tau(1) \not\subseteq B \}.
\]

Suppose that \(A \subseteq \{u_r\} \cup \sigma_1(1) \) satisfying \(\tau(1) \not\subseteq A \). Then for a cone \(\sigma_2 \in \Sigma_2 \), \(\text{Cone}(A) + \sigma_2 \) is an element in \((\Sigma_1)_{\tau}^{*}(\tau + \{0\})\). Since \(\text{Cone}(A) + \sigma_2 = \text{Cone}(A \cup \sigma_2(1)) \) and \(\tau(1) \not\subseteq A \cup \sigma_2(1) \), the cone \(\text{Cone}(A) + \sigma_2 \) is an element in \((\Sigma_1 \cdot \Sigma_2)_{\sigma_1 + \sigma_2}(\tau + \{0\})\) by \((5.6) \).

Now, we consider \(\text{Cone}(B) \) in \((\Sigma_1 \cdot \Sigma_2)_{\sigma_1 + \sigma_2}(\tau + \{0\})\) for some \(\sigma_2 \in \Sigma_2 \). We set \(A := B \cap \{u_r\} \cup \sigma_1(1) \) and \(B' := B \cap \sigma_2(1) \). Since \(B \subseteq \{u_r\} \cup \sigma_1(1) \cup \sigma_2(1) \), we have \(\text{Cone}(B) = \text{Cone}(A) + \text{Cone}(B') \). Moreover, \(\text{Cone}(A) \in (\Sigma_1)_{\tau}^{*}(\tau) \), and \(\text{Cone}(B') \in \Sigma_2 \) since \(\text{Cone}(B') \) is a face of the cone \(\text{Cone}(B) \). Hence the equality \((5.5) \) holds, and we have proven the lemma.

Proof of Theorem 5.7. By Proposition 5.9, there exist liftings \(\tilde{\Sigma}_{n_1}', \ldots, \tilde{\Sigma}_{n_m}' \) of the fans \(\Sigma_{n_1}', \ldots, \Sigma_{n_m}' \) of complex projective spaces such that
\[
\Sigma' = \tilde{\Sigma}_{n_1}' \cdots \tilde{\Sigma}_{n_m}'.
\]
More precisely, the lifting \(\tilde{\Sigma}_{n_\ell}' \subset \mathbb{R}^{n} \) consists of the cones
\[
\text{Cone}(u_{1 \ell}^t, \ldots, u_{n_\ell}^t)
\]
and their faces. On the other hand, the fan \(\Sigma \) of the closure of a generic orbit in the associated flag Bott manifold also can be written by
\[
\Sigma = \tilde{\Sigma}_{n_1} \cdots \tilde{\Sigma}_{n_m},
\]
where \(\tilde{\Sigma}_{n_\ell} \) is a lifting of the fan \(\Sigma_{n_\ell} \) of the permutohedral variety whose maximal cones are given by
\[
\text{Cone}(u_{A_1^\ell}^t, \ldots, u_{A_n^\ell}^t)
\]
for a proper chain \(\emptyset \subset A_1^\ell \subset \cdots \subset A_n^\ell \subset [n_\ell + 1] \) of subsets.

By Lemma 5.10, the operations join and star subdivision commute each other. Hence it is enough to show that the star subdivisions of the fan \(\tilde{\Sigma}_{n_\ell}' \) along the cones \(\{ \text{Cone}(\{u_x^t \mid x \in A\}) \mid \emptyset \subset A \subset [n_\ell + 1] \} \) in the decreasing order of dimensions of cones agrees with the fan \(\tilde{\Sigma}_{n_\ell} \). We note that the fan \(\Sigma_n \) of the permutohedral variety can be obtained by star subdivisions of all the cones of dimension grater than 0 of the fan \(\Sigma_n \) of \(CP^n \) in the decreasing order of dimensions of cones (see Remark 5.2). Moreover, for \(1 \leq \ell \leq m \) and any nonempty proper subset \(\emptyset \subset \{x_1, \ldots, x_d\} \subset [n_\ell + 1] \), the following equalities hold by Corollary 5.5
\[
u_{[x_1, \ldots, x_d]}^t = \sum_{i=1}^d u_{x_i}^t = \sum_{i=1}^d u_{x_i}^t.
\]
Therefore the fan \(\tilde{\Sigma}_{n_\ell} \) is obtained from \(\tilde{\Sigma}_{n_\ell}' \) by star subdividing along the cones \(\{ \text{Cone}(\{u_x^t \mid x \in A\}) \mid \emptyset \subset A \subset [n_\ell + 1] \} \) in the given order, so the result follows.

Remark 5.11. In this paper, we concentrate on the closure of a generic torus orbit in the associated flag Bott manifold. Since the matrices for the associated flag Bott manifolds can have nonzero entries only on the first column, there are flag Bott manifolds which are not the associated flag Bott manifolds. The second and the fourth authors compute the fan of the closure of a generic torus orbit in any flag Bott manifold in [LS19].

Remark 5.12. There are several studies on the closures of non-generic torus orbits. For instance, [GS87] studied torus orbit closures in homgeneous manifolds \(G/P \) in terms of matroids, and, recently, [LM20] and [LMP] study torus orbit closures associated to Schubert varieties and Richardson varieties, respectively.

5.3. Proof of Theorem 5.4

For an \(m \)-stage flag Bott manifold \(F_m \), consider the effective canonical \(H \)-action. Each fiber of a bundle \(F_1 \to F_{j-1} \) has the restricted \((\mathbb{C}^*)^{n_j}\)-action, and its orbit closure of a generic point is the permutohedral variety \(X_{n_j} \). Therefore the closure of a generic orbit of the torus \(H \) in \(F_m \) has the structure of iterated permutohedral variety bundles. Hence, the following lemma is straightforward from the successive application of Proposition 5.9.
Lemma 5.13. Let F_m be the associated m-stage flag Bott manifold and X the closure of a generic orbit of the torus H in F_m. Let $\Sigma_n_1, \ldots, \Sigma_n_m$ be fans of permutohedral varieties X_n_1, \ldots, X_n_m, respectively. Then, there are liftings $\tilde{\Sigma}_n_1, \ldots, \tilde{\Sigma}_n_{m-1}$ such that

$$\Sigma = \tilde{\Sigma}_n_1 \cdot \ldots \cdot \tilde{\Sigma}_n_{m-1} \cdot \Sigma_m.$$

It remains to compute the primitive generators of rays in Σ. In general, a toric variety can be regarded as a GKM manifold with respect to the action of compact torus in the algebraic torus.

Remark 5.14. Two combinatoric objects, a smooth complete fan Σ and a GKM graph (Γ, α), of a toric variety are related by associating maximal cones in Σ with vertices of Γ, and cones of codimension 1 in Σ with edges of Γ. In particular, if Σ is an n-dimensional smooth fan, then an n-dimensional cone σ has n facets, say τ_1, \ldots, τ_n, which correspond to the outgoing edges, say e_1, \ldots, e_n, in Γ from the vertex corresponding to σ. Let ρ be a 1-dimensional cone in Σ, then $(n-1)$ many facets of σ contains ρ except one facet.

Regarding Σ be a fan in $\text{Lie}(T)$, the next Lemma [5.15] shows the relation between the ray generators of rays in Σ and the axial function $\alpha: E(\Gamma) \to \mathbb{Z}^*$.

Lemma 5.15. [BP15, Proposition 7.3.18] Let e_1, \ldots, e_n and ρ be as in Remark 5.14, and u_ρ the ray generator of ρ. Then the following system of equations holds:

$$\langle \alpha(e_i), u_\rho \rangle = \begin{cases} 1 & \text{if } i = 1, \\ 0 & \text{if } 2 \leq i \leq n. \end{cases}$$

In particular, given $\alpha(e_1), \ldots, \alpha(e_n)$, the vector u_ρ is uniquely determined. \hfill \Box

Lemma 5.15 says that the tangential representation at a fixed point determines the ray generator u_ρ of a 1-dimensional cone ρ contained in the a maximal dimensional cone σ corresponding to the given fixed point. The next lemma shows that u_ρ obtained in [5.15] is independent from the choice of a maximal dimensional cone containing ρ.

Lemma 5.16. The primitive generator u_ρ of an 1-dimensional cone ρ obtained from equations (5.7) is well-defined, i.e., it is independent of the choice of a maximal dimensional cone σ containing ρ.

Proof. Suppose that σ and σ' are two maximal cones containing ρ, whose facets are $\{\tau_i \mid 1 \leq i \leq n\}$ and $\{\tau'_i \mid 1 \leq i \leq n\}$, respectively. Here, we may assume that σ and σ' are adjacent, i.e., σ and σ' meet at a common facet, say $\tau_n = \tau'_n$, otherwise we choose a path of maximal cones connecting σ and σ', and apply the same argument.

By the correspondence between cones in a smooth complete fan and a GKM graph mentioned in Remark 5.14, we set up the following notation:

1. τ_1 and τ'_1: facets of σ and σ' which does not contain ρ, respectively;
2. e_1 and e'_1: edges in Γ corresponding to τ_1 and τ'_1, respectively.

We refer to Figure 3 for a 3-dimensional example.
Now, it is enough to show that u_ρ satisfies the following relations:

\[(5.8)\quad \langle \alpha(e_i^\prime), u_\rho \rangle = \begin{cases} 1 & \text{if } i = 1, \\ 0 & \text{if } 2 \leq i \leq n \end{cases}\]

For the given GKM graph (Γ, α) and the connection $\theta = \{\theta_e \mid e \in E(\Gamma)\}$, consider

\[\theta_{\epsilon_n} : \{e_1, \ldots, e_n\} \to \{e_1', \ldots, e_n'\}.\]

Since the closure $\overline{O(\rho)}$ of the orbit $O(\rho)$ is a toric subvariety of X_Σ, the subgraph by taking vertices corresponding to maximal cones containing ρ is indeed a GKM-subgraph, whose connection is inherited from the original one θ. Therefore θ_{ϵ_n} maps $\{e_2, \ldots, e_n\}$ bijectively to $\{e_2', \ldots, e_n'\}$. Hence we have that $\theta_{\epsilon_n}(e_1) = e_1'$.

For convenience, we assume that $\theta_{\epsilon_n}(e_i) = e_i'$ for $i = 1, \ldots, n$.

For $1 \leq i \leq n$, we have the relation

\[\alpha(e_i') = \alpha(e_i) + c_i \alpha(e_n),\]

for some $c_i \in \mathbb{Z}$. Hence the equations (5.7) become

\[\langle \alpha(e_i') - c_i \alpha(e_n), u_\rho \rangle = \begin{cases} 1 & \text{if } i = 1, \\ 0 & \text{if } 2 \leq i \leq n \end{cases}\]

which turn out to be the relations (5.8), because $\langle \alpha(e_n), u_\rho \rangle = 0$. Hence the result follows. \hfill \Box

Now we give a proof of Theorem 5.4. By Lemma 5.13, we know that the combinatorial structure of the fan Σ is given as in Theorem 5.4(2). Now it is enough to show that the ray generators are given as in Theorem 5.4(1).

For a given $1 \leq \ell \leq m$ and a nonempty proper subset A of $[n_\ell + 1]$, consider a ray $\rho^\ell(A)$ of Σ. To compute the ray generator of $\rho^\ell(A)$, it is enough to consider only one maximal cone containing $\rho^\ell(A)$ because of Lemma 5.16.

We note that there is one-to-one correspondence between the set of maximal cones in Σ and $\prod_{j=1}^{m} \mathfrak{S}_{n_j+1}$ as in (5.3). More precisely, for $(v_1, \ldots, v_m) \in \prod_{j=1}^{m} \mathfrak{S}_{n_j+1}$, we define

\[(5.9)\quad A_p^\ell := \{v(n_\ell + 2 - p), \ldots, v(n_\ell + 1)\} \quad \text{for } 1 \leq p \leq n_\ell, 1 \leq \ell \leq m.\]

Moreover, for a given maximal cone indexed by (v_1, \ldots, v_m), the adjacent maximal cones σ_d^ℓ are determined by permutations

\[(5.10)\quad (v_1, \ldots, v_{j-1}, v_j \cdot s_i, v_{j+1}, \ldots, v_m)\]

for $1 \leq i \leq n_j$ and $1 \leq j \leq m$.

From now on, set $A = \{x_1 < x_2 < \cdots < x_{n_\ell+1-d}\}$ and $[n_\ell + 1] \setminus A = \{y_1 < y_2 < \cdots < y_d\}$. Define a permutation $v_{\ell,A}$ to be

\[(5.11)\quad v_{\ell,A} = (y_1, y_2, \ldots, y_d, x_1, x_2, \ldots, x_{n_\ell+1-d}) \in \mathfrak{S}_{n_\ell+1}.\]

Also define $v := (v_1, \ldots, v_{\ell}, \ldots, v_m) \in \prod_{j=1}^{m} \mathfrak{S}_{n_j+1}$ by setting $v_\ell = v_{\ell,A}$ and $v_j = e \in \mathfrak{S}_{n_j+1}$ for $j \neq \ell$. Then using (5.9), the maximal cone σ_v indexed by v contains the ray ρ^ℓ_A. We note that among adjacent maximal cones indexed by permutations in (5.10), the maximal cone σ_d^ℓ is the unique maximal cone which does not contain the ray ρ^ℓ_A, because

\[v_\ell \cdot s_d = v_{\ell,A}(d, d+1) = (y_1 \cdots y_d, x_1, x_2, \cdots, x_{n_\ell+1-d}).\]

Because of Lemmas 5.13 and 5.14 it is enough to show that the vector

\[u_A^{\ell} = \begin{cases} \sum_{x \in A} \varepsilon_{\ell,x} & \text{if } n_\ell + 1 \notin A, \\ \sum_{x \in [n_\ell + 1] \setminus A} \varepsilon_{\ell,x} - \sum_{j=\ell+1}^{m} \sum_{k=1}^{n_j} \sigma_d^\ell_{\ell,j,k} & \text{otherwise} \end{cases}\]

in Theorem 5.4 satisfies the following equations:

\[\langle \alpha(e_j^\ell), u_A^{\ell} \rangle = \begin{cases} 1 & \text{if } j = \ell \text{ and } i = d, \\ 0 & \text{otherwise}, \end{cases}\]
where \(e_j^i \) is an edge of the GKM graph \(\Gamma \) of \(X \) corresponding to the facet \(\sigma_j \cap \sigma_i^j \) of the maximal cone \(\sigma_j \), and \(\alpha \) is the axial function \(\alpha : E(\Gamma) \to \mathbb{Z} \).

To prove the claim, we separate cases as \(j < \ell, j = \ell, \) and \(j > \ell \).

Case 1 \(j < \ell \). By Theorem 3.12, the axial functions of the edge \(\alpha(e_j^i) \) is a linear combination of \(\varepsilon_{1,1}^j, \ldots, \varepsilon_{1,n_1}^j, \ldots, \varepsilon_{j,1}^j, \ldots, \varepsilon_{j,n_j}^j \). On the other hand, since \(u_A^j \) is a linear combination of \(\varepsilon_{\ell,1}, \ldots, \varepsilon_{\ell,n_\ell}, \ldots, \varepsilon_{m,1}, \ldots, \varepsilon_{m,n_m} \) and \(j < \ell \), their pairings always vanish.

Case 2 \(j = \ell \). By Theorem 3.12, the axial functions of the edge \(\alpha(e_j^i) \) is a linear combination of \(\varepsilon_{1,1}^j, \ldots, \varepsilon_{1,n_1}^j, \ldots, \varepsilon_{\ell,1}, \ldots, \varepsilon_{\ell,n_\ell}, \ldots, \varepsilon_{m,1}, \ldots, \varepsilon_{m,n_m} \). More precisely, we have that

\[
\alpha(e_j^i) = (\varepsilon_{\ell,v_\ell A(i+1)})^* - (\varepsilon_{\ell,v_\ell A(i)})^* + \text{other terms},
\]

where ‘other terms’ are the terms of \(\varepsilon_{p,k} \) for \(p < \ell \) and \(v_\ell A \) is a permutation defined in (5.11). Since the vector \(u_A^j \) is a linear combination of \(\varepsilon_{\ell,1}, \ldots, \varepsilon_{\ell,n_\ell}, \ldots, \varepsilon_{m,1}, \ldots, \varepsilon_{m,n_m} \), we have

\[
\langle \alpha(e_j^i), u_A^i \rangle = \langle (\varepsilon_{\ell,v_\ell A(i+1)})^*, u_A^i \rangle - \langle (\varepsilon_{\ell,v_\ell A(i)})^*, u_A^i \rangle.
\]

Because of the definition of the permutation \(v_\ell A \), we have that \(v_\ell A(i) \in A \) if and only if \(i \geq d + 1 \). Therefore for the case when \(n_\ell + 1 \not\in A \), we have that the value \(\langle (\varepsilon_{\ell,v_\ell A(i)})^*, u_A^i \rangle \) equals to 0 if \(i \leq d \), and 1 otherwise. Also for the case when \(n_\ell + 1 \in A \), we get that the pairing \(\langle (\varepsilon_{\ell,v_\ell A(i)})^*, u_A^i \rangle \) is -1 if \(i < d \) and 0 otherwise.

By applying (5.12) for \(n_\ell + 1 \not\in A \), we have the following:

\[
\langle \alpha(e_j^i), u_A^i \rangle = \begin{cases}
0 - 0 = 0 & \text{for } 1 \leq i < d, \\
1 - 0 = 1 & \text{for } i = d, \\
1 - 1 = 0 & \text{for } d < i \leq n_\ell.
\end{cases}
\]

Similarly, when \(n_\ell + 1 \in A \), we get the following:

\[
\langle \alpha(e_j^i), u_A^i \rangle = \begin{cases}
-1 - (-1) = 0 & \text{for } 1 \leq i < d, \\
0 - (-1) = 1 & \text{for } i = d, \\
0 - 0 = 0 & \text{for } d < i \leq n_\ell.
\end{cases}
\]

Case 3 \(j > \ell \). The matrix \(X_j^{(\ell)} \) in Proposition 3.5 is

\[
X_j^{(\ell)} = \sum_{\ell < i_1 < \cdots < i_r < j} (B_J A_{i_r}^{(j)})(B_J A_{i_{r-1}}^{(i_r)}) \cdots (B_J A_{i_1}^{(i_2)}) B_{J} + B_J A_{\ell}^{(j)} B_{\ell}.
\]

Since \(v_j = e \) for \(j \neq \ell \), the matrix \(X_j^{(\ell)} \) can be written by

\[
X_j^{(\ell)} = \left(\sum_{\ell < i_1 < \cdots < i_r < j} A_{i_r}^{(j)} A_{i_{r-1}}^{(i_r)} \cdots A_{i_1}^{(i_2)} + A_{\ell}^{(j)} \right) B_{\ell}.
\]

By Proposition 4.6, the matrix \(A_i^{(j)} \) has nonzero entries only on the first column. The matrix \(B_{\ell} \) is the row permutation matrix corresponding to \(v_\ell A \), so that \(B_{\ell} \) is the column permutation matrix corresponding to \(v_\ell A \). Hence by multiplying the matrix \(B_{\ell} \) on the right, the matrix \(X_j^{(\ell)} \) has nonzero entries only on the \(y_1 \)th column.

Subcase 1 \(n_\ell + 1 \not\in A \). Since the matrix \(X_j^{(\ell)} \) has nonzero entries only on the \(y_1 \)th column, we have that

\[
\langle \alpha(e_j^i), u_A^i \rangle = 0 \text{ for all } j > \ell.
\]

Subcase 2 \(n_\ell + 1 \in A \). For a pair \((p,j)\) such that \(\ell < p < j \leq m \), the matrix \(X_p^{(j)} \) has nonzero entries only on the first column. For simplicity, for \(\ell < p < j \), denote the \((i,1)\)-entry of \(X_p^{(j)} \) by \(x_p^{(j)} \).
Similarly, denote the \((i, y_j)\)-entry of \(X_{\ell}^{(j)}\) by \(x_{\ell,i}^{(j)}\). Then we have the following:

\[
\langle \alpha(e_1^j), u_A^{\ell} \rangle = \left(x_{\ell,i}^{(j)} - x_{\ell,i+1}^{(j)} \right) (\varepsilon_{\ell,y_1})^{*} + \sum_{p=\ell+1}^{j-1} (x_{p,i+1}^{(j)} - x_{p,i}^{(j)})(\varepsilon_{p,1})^{*} + (\varepsilon_{j,i+1})^{*} - (\varepsilon_{j,i})^{*} + u_A^{\ell}
\]

\[
= \left(x_{\ell,i}^{(j)} - x_{\ell,i+1}^{(j)} \right) (\varepsilon_{\ell,y_1})^{*} - (\varepsilon_{\ell,y_1} + \cdots + \varepsilon_{\ell,y_m})
\]

\[
+ \sum_{p=\ell+1}^{j-1} (x_{p,i+1}^{(j)} - x_{p,i}^{(j)})(\varepsilon_{p,1})^{*} + (\varepsilon_{j,i+1})^{*} - (\varepsilon_{j,i})^{*} + \sum_{p=\ell+1}^{m} a_{k,p}^{j} \varepsilon_{p,k}
\]

\[
= (-1)(x_{\ell,i}^{(j)} - x_{\ell,i+1}^{(j)}) + \sum_{p=\ell+1}^{j-1} (x_{p,i+1}^{(j)} - x_{p,i}^{(j)})(a_{1}^{p}) + (a_{i+1}^{j} - a_{i}^{j}).
\]

To show the above pairing vanishes, it is enough to show that

\[
x_{\ell,i}^{(j)} = \sum_{p=\ell+1}^{j-1} x_{p,i+1}^{p} a_{1}^{p} + a_{i}^{j}
\]

which comes from the definition of \(X_{\ell}^{(j)}\):

\[
X_{\ell}^{(j)} B_{\ell}^{-1} = \sum_{\ell<i_1<\cdots<i_r<j} A_{i_1}^{(j)} A_{i_1-1}^{(j)} \cdots A_{i_r}^{(j)} + A_{i}^{(j)}
\]

\[
= X_{\ell-1}^{(j)} A_{\ell}^{(j-1)} + \cdots + X_{\ell+2}^{(j)} A_{\ell+1}^{(j+2)} + X_{\ell+1}^{(j)} A_{\ell+1}^{(j+1)} + A_{\ell}^{(j)}
\]

\[
= \sum_{p=\ell+1}^{j-1} X_{\ell}^{(p)} A_{\ell}^{(p)} + A_{\ell}^{(j)}.
\]

Hence we have \(\langle \alpha(e_1^j), u_A^{\ell} \rangle = 0\) for all \(j > \ell\).

Now we prove the smoothness. Since the permutohedral variety \(X_n\) is nonsingular (see [Dal96 Corollary of Theorem 3.3]), for a proper chain \(\emptyset \subset A_1 \subset \cdots \subset A_n \subset [n+1]\) of nonempty proper subsets of \([n+1]\), we have that

\[
(5.13) \quad \det[u_{A_1} \ u_{A_2} \cdots u_{A_n}] = \pm 1.
\]

To show that a generic torus orbit closure is smooth, it is enough to show that every maximal cone in \(\Sigma\) is smooth. For a maximal cone indexed by \((A_1^{*}, \ldots, A_m^{*})\), consider the matrix whose column vectors are the corresponding ray generators:

\[
(5.14) \quad \begin{bmatrix} u_{A_1}^{1} & \cdots & u_{A_1}^{m} \cdots u_{A_1}^{m} & \cdots & u_{A_m}^{m} \cdots u_{A_m}^{m} \end{bmatrix}.
\]

Then the matrix \((5.14)\) is a block lower triangular matrix whose sizes of blocks are \(n_1, \ldots, n_m\). Moreover, the determinant of the matrix in \((5.14)\) is

\[
\det \left(\begin{bmatrix} u_{A_1}^{1} & \cdots & u_{A_1}^{m} \end{bmatrix} \right) \cdots \det \left(\begin{bmatrix} u_{A_2}^{1} & \cdots & u_{A_2}^{m} \end{bmatrix} \right) \cdots \det \left(\begin{bmatrix} u_{A_m}^{1} & \cdots & u_{A_m}^{m} \end{bmatrix} \right) = \pm 1
\]

by \((5.13)\). Here \(\{u_{A_1}^{1}, \ldots, u_{A_1}^{m}\}\) is the set of ray generators of the maximal cone in the fan of \(X_{\ell}\) indexed by the proper chain \(\emptyset \subset A_1^{1} \subset \cdots \subset A_{n_\ell}^{1} \subset [n_\ell+1]\) for \(1 \leq \ell \leq m\). This proves that the closure of a generic torus orbit in the associated flag Bott manifold is smooth.

References

[BP15] Victor M. Buchstaber and Taras E. Panov, *Toric topology*, Mathematical Surveys and Monographs, vol. 204, American Mathematical Society, Providence, RI, 2015.

[BT82] Raoul Bott and Loring W. Tu, *Differential forms in algebraic topology*, Graduate Texts in Mathematics, vol. 82, Springer-Verlag, New York-Berlin, 1982.

[Cho15] Suyoung Choi, *Classification of Bott manifolds up to dimension 8*, Proc. Edinb. Math. Soc. (2) **58** (2015), no. 3, 653–659.

[CLS11] David A. Cox, John B. Little, and Henry K. Schenck, *Toric varieties*, Graduate Studies in Mathematics, vol. 124, American Mathematical Society, Providence, RI, 2011.
[CM12] Suyoung Choi and Mikiya Masuda, Classification of Q-trivial Bott manifolds, J. Symplectic Geom. 10 (2012), no. 3, 447–461.

[CMM15] Suyoung Choi, Mikiya Masuda, and Satoshi Murai, Invariance of Pontrjagin classes for Bott manifolds, Algebr. Geom. Topol. 15 (2015), no. 2, 965–986.

[CMS10a] Suyoung Choi, Mikiya Masuda, and Dong Youp Suh, Quasitoric manifolds over a product of simplices, Osaka J. Math. 47 (2010), no. 1, 109–129.

[CMS10b] _____, Topological classification of generalized Bott towers, Trans. Amer. Math. Soc. 362 (2010), no. 2, 1097–1112.

[CP12] Suyoung Choi, Seonjeong Park, and Dong Youp Suh, Topological classification of quasitoric manifolds with second Betti number 2, Pacific J. Math. 256 (2012), no. 1, 19–49.

[Dah96] Romuald Dabrowski, On normality of the closure of a generic torus orbit in G/P, Pacific J. Math. 172 (1996), no. 2, 321–330.

[DJ91] Michael W. Davis and Tadeusz Januszkiewicz, Convex polytopes, Coxeter orbifolds and torus actions, Duke Math. J. 62 (1991), no. 2, 417–451.

[Ewa96] Günter Ewald, Combinatorial convexity and algebraic geometry, Graduate Texts in Mathematics, vol. 168, Springer-Verlag, New York, 1996.

[FH91] Hermann Flaschka and Luc Haine, Torus orbits in G/P, Pacific J. Math. 149 (1991), no. 2, 251–292.

[FLS] Naoki Fujita, Eunjeong Lee, and Dong Youp Suh, Algebraic and geometric properties of flag Bott–Samelson varieties and applications to representations, arXiv:1805.01664.

[Ful97] William Fulton, Young tableaux, London Mathematical Society Student Texts, vol. 35, Cambridge University Press, Cambridge, 1997, With applications to representation theory and geometry.

[GK94] Michael Grossberg and Yael Karshon, Bott towers, complete integrability, and the extended character of representations, Duke Math. J. 76 (1994), no. 1, 23–58.

[GKM98] Mark Goresky, Robert Kottwitz, and Robert MacPherson, Equivariant cohomology, Koszul duality, and the localization theorem, Invent. Math. 131 (1998), no. 1, 25–83.

[GS87] Izrail’ Moiseevich Gel’fand and Vera V. Serganova, Combinatorial geometries and the strata of a torus on homogeneous compact manifolds, Uspekhi Mat. Nauk 42 (1987), no. 2(254), 107–134, 287.

[GSZ12] Victor W. Guillemin, Silvia Sabatini, and Catalin Zara, Cohomology of GKM fiber bundles, Journal of Algebraic Combinatorics 35 (2012), no. 1, 19–59.

[GZ01] Victor W. Guillemin and Catalin Zara, I-skeleta, Betti numbers, and equivariant cohomology, Duke Math. J. 107 (2001), no. 2, 283–349.

[Har77] Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977, Graduate Texts in Mathematics, No. 52.

[Huh14] June Huh, Rota’s conjecture and positivity of algebraic cycles in permutohedral varieties, ProQuest LLC, Ann Arbor, MI, 2014, Thesis (Ph.D.)–University of Michigan.

[Huy05] Daniel Huybrechts, Complex geometry, Universitext, Springer-Verlag, Berlin, 2005, An introduction.

[Ish12] Hiroaki Ishida, Filtered cohomological rigidity of Bott towers, Osaka J. Math. 49 (2012), no. 2, 515–522.

[KKLS20] Shizuo Kaji, Shintarô Kuroki, Eunjeong Lee, and Dong Youp Suh, Generic torus orbit closures in flag Bott manifolds, Proceedings of the Steklov Institute of Mathematics on toric varieties and flag manifolds, Proceedings of the Steklov Institute of Mathematics 208 (1995), 124–145.

[KL14] Shintarô Kuroki and Dong Youp Suh, Complex projective towers and their cohomological rigidity up to dimension six, Proc. Steklov Inst. Math. 286 (2014), no. 1, 285–307.

[KLS15] _____, Cohomological non-rigidity of eight-dimensional complex projective towers, Algebr. Geom. Topol. 15 (2015), no. 2, 769–782.

[Kur17] Shintarô Kuroki, Flagified Bott manifolds and their maximal torus actions, RIMS Kôkyûroku (2017), no. 2016, 154–160.

[Lee13] John M. Lee, Introduction to smooth manifolds, second ed., Graduate Texts in Mathematics, vol. 218, Springer, New York, 2013.

[LLM02] Venkatramani Lakshmibai, Peter Littelmann, and Peter Magyar, Standard monomial theory for Bott-Samelson varieties, Compositio Math. 130 (2002), no. 3, 293–318.

[LM20] Eunjeong Lee and Mikiya Masuda, Generic torus orbit closures in Schubert varieties, J. Combin. Theory Ser. A 170 (2020), 105143.

[LMP] Eunjeong Lee, Mikiya Masuda, and Seonjeong Park, Toric Bruhat interval polytopes, arXiv:1904.10187.

[LS19] Eunjeong Lee and Dong Youp Suh, Generic torus orbit closures in flag Bott manifolds, Proceedings of the Steklov Institute of Mathematics 305 (2019), 149–160.

[Mas08] Mikiya Masuda and Dong Youp Suh, Classification problems of toric manifolds via topology, Toric topology, Contemp. Math., vol. 460, Amer. Math. Soc., Providence, RI, 2008, pp. 273–286.

[Oda78] Tadao Oda, Torus embeddings and applications, Tata Institute of Fundamental Research Lectures on Mathematics and Physics, vol. 57, Tata Institute of Fundamental Research, Bombay; by Springer-Verlag, Berlin-New York, 1978, Based on joint work with Katsuya Miyake.
[Pas10] Boris Pasquier, Vanishing theorem for the cohomology of line bundles on Bott–Samelson varieties, J. Algebra 323 (2010), no. 10, 2834–2847.

[Pro90] C. Procesi, The toric variety associated to Weyl chambers, Mots, Lang. Raison. Calc., Hermès, Paris, 1990, pp. 153–161.

[Sab09] Silvia Sabatini, The topology of gkm spaces and gkm fibrations, Ph.D. thesis, Massachusetts Institute of Technology, 2009.

[Spi79] Michael Spivak, A comprehensive introduction to differential geometry. Vol. I, second ed., Publish or Perish, Inc., Wilmington, Del., 1979.

Faculty of Science, Department of Applied Mathematics, Okayama University of Science, 1-1 Ridai-cho Kita-ku Okayama-shi Okayama 700-0005, JAPAN

E-mail address: kuroki@xmath.ous.ac.jp

Center for Geometry and Physics, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea

E-mail address: eunjeong.lee@ibs.re.kr

School of Mathematics, KIAS, 85 Hoegiro Dongdaemun-gu, Seoul 02455, Republic of Korea

E-mail address: jongbaek@kias.re.kr

Department of Mathematical Sciences, KAIST, 291 Daehak-ro Yuseong-gu, Daejeon 34141, Republic of Korea

E-mail address: dysuh@kaist.ac.kr