Banach space valued H^p spaces with A_p weight

Sakin Demir
Agri Ibrahim Cecen University
Faculty of Education
Department of Basic Education
04100 Ağrı, Turkey
e-mail: sakin.demir@gmail.com
12.09.2022

Abstract

In this research we introduce the Banach space valued H^p spaces with A_p weight, and prove the following results:

Let \mathbb{A} and \mathbb{B} Banach spaces, and T be a convolution operator mapping \mathbb{A}-valued functions into \mathbb{B}-valued functions, i.e.,

$$Tf(x) = \int_{\mathbb{R}^n} K(x-y) \cdot f(y) \, dy,$$

where K is a strongly measurable function defined on \mathbb{R}^n such that $\|K(x)\|_{\mathbb{B}}$ is locally integrable away from the origin. Suppose that w is a positive weight function defined on \mathbb{R}^n, and that

(i) For some $q \in [1, \infty]$, there exists a positive constant C_1 such that

$$\int_{\mathbb{R}^n} \|Tf(x)\|_{\mathbb{B}}^q w(x) \, dx \leq C_1 \int_{\mathbb{R}^n} \|f(x)\|_{\mathbb{A}}^q w(x) \, dx$$

for all $f \in L^q_{\mathbb{A}}(\mathbb{R}^n)$.

2020 Mathematics Subject Classification: Primary 42B30 ; Secondary 42B20.
Key words and phrases:Banach space valued H^p with A_p weight.
There exists a positive constant C_2 independent of $y \in \mathbb{R}^n$ such that
\[\int_{|x| > 2|y|} \|K(x-y) - K(x)\|_{B} \, dx < C_2. \]
Then there exists a positive constant C_3 such that
\[\|Tf\|_{L^1_B(w)} \leq C_3 \|f\|_{H^1_A(w)} \]
for all $f \in H^1_A(w)$.

Let $w \in A_1$. Assume that $K \in L_{loc}(\mathbb{R}^n \setminus \{0\})$ satisfies
\[\|K \ast f\|_{L^2_B(w)} \leq C_1 \|f\|_{L^2_A(w)} \]
and
\[\int_{|x| \geq C_2|y|} \|K(x-y)-K(x)\|_{B} w(x+h) \, dx \leq C_3 w(y+h) \quad (\forall y \neq 0, \forall h \in \mathbb{R}^n) \]
for certain absolute constants C_1, C_2, and C_3. Then there exists a positive constant C independent of f such that
\[\|K \ast f\|_{L^1_B(w)} \leq C \|f\|_{H^1_A(w)} \]
for all $f \in H^1_A(w)$.

1 Introduction

Extending L^p spaces to Banach space valued L^p spaces first started with the work of A. Benedek et al [1]. J. Bourgain [2] extended some part of their results to a lattice with UMD-property. Later, the results of A. Benedek et al [1] have been reconstructed with a little more modern notations by J. L. Rubio de Francia et al [10].

Obviously, Banach space valued setting is more general than the usual structure because we have a Banach space norm instead of absolute value. When a theorem can be extended from L^p spaces to Banach space valued L^p spaces it becomes a much more powerful theorem than its initial version.

Let us first recall some basic definitions and theorems from Banach space valued L^p theory:
Let B be a Banach space, and $p < \infty$. By $L^p_B = L^p_B(\mathbb{R}^n)$ we denote the
Bochner-Lebesgue space consisting of all \mathcal{B}-valued (strongly) measurable functions f in \mathbb{R}^n such that

$$\|f\|_{L^p_B} = \left(\int_{\mathbb{R}^n} \|f(x)\|_B^p \, dx\right)^{1/p} < \infty.$$

For $p = \infty$, norm of an element of $L^{\infty}(\mathcal{B}) = L^{\infty}_B(\mathbb{R}^n)$ is

$$\|f\|_{L^{\infty}_B} = \text{ess sup} \|f(x)\|_B < \infty$$

and $L^{\infty}_B(\mathcal{B})$ denotes the space of all compactly supported members of $L^{\infty}(\mathcal{B})$. Let f be a locally integrable \mathcal{B}-valued function, and $1 \leq r \leq \infty$. We define the maximal functions

$$M_r f(x) = \sup_{x \in Q} \left(\frac{1}{|Q|} \int_Q \|f(y)\|_B^r \, dy\right)^{1/r}$$

and

$$f^r(x) = \sup_{x \in Q} \frac{1}{|Q|} \int_Q \|f(y) - f_Q\|_B \, dy,$$

where Q denotes an arbitrary cube in \mathbb{R}^n and f_Q is the average of f over Q, an element of \mathcal{B}.

Given a weight w on \mathbb{R}^n, we denote by $L^p_B(w)$ the space of all functions satisfying

$$\|f\|_{L^p_B(w)} = \int_{\mathbb{R}^n} \|f(x)\|_B^p w(x) \, dx < \infty.$$

When $p = \infty$, $L^{\infty}_B(w)$ will be taken to mean $L^{\infty}_B(\mathbb{R}^n)$ and

$$\|f\|_{L^{\infty}_B(w)} = \|f\|_{L^{\infty}_B}.$$

2 Banach Space Valued H^p Spaces with A_p Weight

Analogous to the classical weighted Hardy spaces we can also define the weighted Hardy spaces $H^p_B(w)$ of \mathcal{B}-valued functions for $p > 0$. Let ϕ be a function in $\mathcal{S}(\mathbb{R}^n)$, the Schwartz space of rapidly decreasing smooth functions, satisfying $\int_{\mathbb{R}^n} \phi(x) \, dx = 1$. Define

$$\phi_t(x) = t^{-n} \phi(x/t), \quad t > 0, \quad x \in \mathbb{R}^n,$$
and the maximal function f^* by

$$f^*(x) = \sup_{t>0} \| f * \phi_t(x) \|_B.$$

Then $H^p_B(w)$ consists of those tempered distributions $f \in \mathcal{S}'(\mathbb{R}^n)$ for which $f^* \in L^p_B(w)$ with $\|f\|_{H^p_B(w)} = \|f^*\|_{L^p_B(w)}$.

As in the classical case these spaces can also be characterized in terms of atoms in the following way.

Definition 1. Let $0 < p \leq 1 \leq q \leq \infty$ and $p \neq q$ such that $w \in A_q$ with critical index q_w. Set $\lfloor \cdot \rfloor$ the integer function. For $s \in \mathbb{Z}$ satisfying $s \geq \lfloor n(q_w/p - 1) \rfloor$, a B-valued function a defined on \mathbb{R}^n is called a (p, q, s)-atom with respect to w if

(i) $a \in L^q_B(w)$ and is supported on a cube Q,

(ii) $\|a\|_{L^q_B(w)} \leq w(Q)^{1/q - 1/p},$

(iii) $\int_{\mathbb{R}^n} a(x) x^\alpha \, dx = 0$ for every multi-index α with $|\alpha| \leq s$.

The B-valued atom defined above is called (p, q, s)-atom centered at x_0 with respect to w (or $w - (p, q, s)$-atom centered at x_0), where x_0 is the center of the cube Q.

Lemma 1. Let a be any B-valued $w - (p, q, s)$-atom supported in a cube Q. Then we have

$$\int_Q \|a(x)\|^p_B w(x) \, dx \leq 1.$$

Proof. Let a be any B-valued $w - (p, q, s)$-atom. It is clear that $a \in L^p_B(w)$ and $\|a\|_{L^p_B(w)} \leq 1$, since by Hölder’s inequality

$$\int_Q \|a(x)\|^p_B w(x) \, dx \leq \|a^p\|_{L^r_B(w)} \left(\int_Q w(x) \, dx \right)^{1/r'}$$

$$= \|a\|_{L^p_B(w)}^p \cdot w(Q)^{1-p/q} \leq 1,$$

where $r = q/p$ and $1/r' = 1 - 1/r = 1 - p/q$.

□
Analog to the classical case $H^p_B(w)$ can be characterized by B-valued w–(p, q, s)-atoms.

We state the following few theorems without proof since their proofs are similar to the scalar case, i.e., one only needs to replace the absolute value with the B-norm in the proofs for classical cases.

Theorem 1. Let $w \in A_\infty$ and $0 < p \leq 1$. For each $f \in H^p_B(w)$, there exists a sequence of B-valued (p, ∞, N)-atoms with respect to w and a sequence $\{\lambda_i\}$ of real numbers with $\sum_j |\lambda_i|^p \leq C \|f\|_{H^p_B(w)}$ such that

$$f(x) = \sum_j \lambda_j a_j(x); \quad (\lambda_j \in \ell^p)$$

both in the sense of distribution and in the $H^p_B(w)$ norm.

Let $H^{p,q,s}_B(w)$ denote the space consisting of tempered distributions admitting a decomposition

$$f(x) = \sum_j \lambda_j a_j(x); \quad (\lambda_j \in \ell^p),$$

where a_i’s are B-valued w–(p, q, s)-atoms and $\sum_i |\lambda_i|^p < \infty$. For fixed functions w and $f \in H^p_B(w)$, we also set

$$\mathcal{N}_{p,q,s}(f) = \inf_{\{\lambda_i\}} \left\{ \left(\sum_i |\lambda_i|^p \right)^{1/p} : f = \sum_i \lambda_i a_i \text{ is an atomic decomposition} \right\}. $$

Theorem 2. If both triples (p, q, N) and (p, q_2, N) satisfy the conditions in definition of B-valued w-atom, then

$$H^{p,q,N}_B(w) = H^{p,q_2,N}_B(w)$$

and, for all q, the gauges $\mathcal{N}_{p,q,N}(f)$ are equivalent.

Theorem 3. For $0 < p \leq 1 \leq q \leq \infty$ and $p \neq q$, every B-valued (p, q, N)-atom with respect to w is in $H^p_B(w)$, and its $H^p_B(w)$-norm is bounded by a constant independent of the atom.

Theorem 4. All spaces $H^{p,q,s}_B(w)$ coincide with $H^p_B(w)$ and $\mathcal{N}_{p,q,s}(f) \approx \|f\|_{H^p_B(w)}$ provided that the triple (p, q, s) satisfies the conditions in the definition of B-valued w-atom.
Definition 2. Let \(B \) be a Banach space. For \(0 < p \leq 1 \leq q \leq \infty \) and \(p \neq q \), let \(w \in A_q \) with critical index \(q_w \) and critical index \(r_w \) for the reverse Hölder condition. Set \(s \geq N, \epsilon > \max \{ sr_w(r_w - 1)^{-1}n^{-1} + (r_w - 1)^{-1}, 1/p - 1 \} \), \(a = 1 - 1/p + \epsilon \), and \(b = 1 - 1/p + \epsilon \). A \(B \)-valued \((p, q, s, \epsilon) \)-molecule centered at \(x_0 \) with respect to \(w \) (or \(w - (p, q, s, \epsilon) \)-molecule centered at \(x_0 \)) is a function \(M \in L^q_B(w) \) satisfying

(i) \(M(x) \cdot w(I^{x_0}_{|x-x_0|})^b \in L^q_B(w) \),

(ii) \(\| M \|^{a/b}_{L^q_B(w)} \cdot \| M(x) \cdot w(I^{x_0}_{|x-x_0|})^b \|^{1-a/b}_{L^q_B(w)} \equiv R_w(M) < \infty \),

(iii) \(\int_{\mathbb{R}^n} x^\alpha \, dx = 0 \) for every multi-index \(\alpha \) with \(|\alpha| \leq s \).

In the above definition \(R_w(M) \) is called the molecular norm of \(M \) with respect to \(w \) (or \(w \)-molecular norm of \(M \)). If \(w(x) \equiv \text{constant} \), then \(q_w = 1 \) and \(r_w = \infty \).

3 The Results

Let \(A \) and \(B \) be Banach spaces, and \(T \) be a convolution operator mapping \(A \)-valued functions into \(B \)-valued functions, i.e.,

\[
Tf(x) = \int_{\mathbb{R}^n} K(x - y) \cdot f(y) \, dy,
\]

where \(K \) is a strongly measurable function defined on \(\mathbb{R}^n \) such that \(\| K(x) \|_B \) is locally integrable away from the origin.

The following theorem is our first result:

Theorem 5. Let \(A \) and \(B \) be Banach spaces, and \(T \) be a convolution operator mapping \(A \)-valued functions into \(B \)-valued functions. Suppose that \(w \) is a positive weight function defined on \(\mathbb{R}^n \), and that

(i) For some \(q \in [1, \infty] \), there exists a positive constant \(C_1 \) such that

\[
\int_{\mathbb{R}^n} \| T f(x) \|_B^q w(x) \, dx \leq C_1 \int_{\mathbb{R}^n} \| f(x) \|_A^q w(x) \, dx
\]

for all \(f \in L^q_A(\mathbb{R}^n) \).
(ii) There exists a positive constant C_2 independent of $y \in \mathbb{R}^n$ such that

$$\int_{|x|>2|y|} \|K(x-y) - K(x)\|_B \, dx \leq C_2.$$

Then there exists a positive constant C_3 such that

$$\|Tf\|_{L^1_A(w)} \leq C_3 \|f\|_{H^1_A(w)}$$

for all $f \in H^1_A(w)$.

Proof. Given a ball $U = U(x_0; R)$ in \mathbb{R}^n with center x_0 and radius R, and denoting by \tilde{U} the double ball, $\tilde{U} = U(x_0; 2R)$, we first claim that

$$\int_{\mathbb{R}^n \setminus \tilde{U}} \|Tf(x)\|_B \, w(x) \, dx \leq C \|f\|_{L^1_A(w)}$$

for every $f \in L^1_A(w)$ supported in U such that $\int f(x) \, dx = 0$. But, for such a function f,

$$Tf(x) = \int_U \{K(x-y) - K(x-x_0)\} \cdot f(y) \, dy \quad (x \in \tilde{U})$$

and therefore

$$\int_{\mathbb{R}^n \setminus \tilde{U}} \|Tf(x)\|_B \, w(x) \, dx \leq \int \int_{|x-x_0| \geq 2R \geq |y-x_0|} \|\{K(x-y) - K(x-x_0)\} \cdot f(y)\|_B \, dy \, w(x) \, dx \leq C \int_{|y-x_0| < R} \|f(y)\|_A \, w(y) \, dy,$$

which proves our claim.

Let now a be an A-valued atom with supporting cube Q, and let U be the smallest ball containing Q, and \tilde{Q} as before. Then there exits a constant $C_1 > 0$ such that

$$\int_{\mathbb{R}^n \setminus \tilde{U}} \|Ta(x)\|_B \, w(x) \, dx \leq C_1.$$

On the other hand, since

$$\int_{\mathbb{R}^n} \|Ta(x)\|_B^q \, w(x) \, dx \leq C_2 \int_{\mathbb{R}^n} \|a(x)\|_A^q \, w(x) \, dx,$$
we have
\[
\int_{\mathbb{U}} \|Ta(x)\|_{Bw(x)} \, dx \leq C_3 \|a(x)\|_{L^2_A(w)} (C_n w(Q))^{1/q'} \\
\leq \text{Constant}.
\]

Our second result is the following:

Theorem 6. Let \(w \in A_1 \). Assume that \(K \in L_{\text{loc}}(\mathbb{R}^n \setminus \{0\}) \) satisfies
\[
\|K * f\|_{L^2_A(w)} \leq C_1 \|f\|_{L^2_A(w)}
\]
and
\[
\int_{|x| \geq C_2 |y|} \|K(x - y) - K(x)\|_{Bw(x + h)} \, dx \leq C_3 w(y + h) \quad (\forall y \neq 0, \forall h \in \mathbb{R}^n)
\]
for certain absolute constants \(C_1, C_2, \) and \(C_3 \). Then there exists a constant \(C \) independent of \(f \) such that
\[
\|K * f\|_{L^2_A(w)} \leq C \|f\|_{H^1_A(w)}
\]
for all \(f \in H^1_A(w) \).

Proof. Because of the atomic decomposition of a function in \(H^1_A(w) \), it suffices to show that
\[
\|K * a\|_{L^1_A(w)} \leq C
\]
for any \(B \)-valued \(w - (1, 2, 0) \)-atom \(a \) with constant \(C \) independent of the choice of \(a \). Let us first consider a weighted 1-atom \(a \) centered at 0 with support \(\text{supp}(f) \subset I_R \), we have
\[
\|a\|_{L^2_B(w)} \leq w(I_R)^{-1/2}
\]
and
\[
\int_{I_R} a(x) \, dx = 0.
\]
Thus, we have
\[
\int_{|x| \geq C_2 \sqrt{nR}} \| K \ast a(x) \|_{B} w(x) \, dx \\
= \int_{|x| \geq C_2 \sqrt{nR}} \left\| \int_{I_R} \{ K(x - y) - K(x) \} a(y) \, dy \right\|_{B} w(x) \, dx \\
\leq \int_{I_R} \| a(y) \|_B \, dy \int_{|x| \geq C_2 |y|} \| K(x - y) - K(x) \|_{B} w(x) \, dx \\
\leq C_3 \int_{I_R} \| a(y) \|_B w(y) \, dy \\
\leq C_3.
\]
Furthermore, we have by Schwarz’s inequality and the doubling condition,
\[
\int_{|x| < C_2 \sqrt{nR}} \| K \ast a(x) \|_{B} w(x) \, dx \leq \| K \ast a \|_{L^2_B(w)} \left(\int_{|x| < C_2 \sqrt{nR}} w(x) \, dx \right)^{1/2} \\
\leq C_1 \| a \|_{L^2_B(w)} w(C_2 \sqrt{n} I_R)^{1/2} \leq C.
\]
So in both cases for any B-valued $w - (1, 2, 0)$-atom a centered at the origin we have obtained
\[
\| K \ast a \|_{L^1_B(w)} \leq C.
\]
Let now a be a B-valued $w - (1, 2, 0)$-atom centered $x_0 \in \mathbb{R}^n$. Then $b(x) = a(x - x_0)$ is a B-valued $w_1 - (1, 2, 0)$-atom centered at 0, where $w_1(x) = w(x - x_0) \in A_1$. Furthermore, K satisfies
\[
\| K \ast b \|_{L^2_B(w_1)} \leq C_1 \| b \|_{L^2_B(w_1)}
\]
and
\[
\int_{|x| \geq C_2 |y|} \| K(x - y) - K(x) \|_{B} w_1(x) \leq C_3 w_1(y) \quad (\forall y \neq 0).
\]
Thus, we have as above
\[
\| K \ast b \|_{L^1_B(w_1)} \leq C.
\]
Hence, we obtain
\[
\| K \ast a \|_{L^1_B(w)} = \| K \ast b \|_{L^1_B(w_1)} \leq C
\]
as desired. \qed
4 An Application

Let f be a measurable functions defined on \mathbb{R}, and for each $n \in \mathbb{Z}$ define the averaging operator

$$A_n f(x) = \frac{1}{2^n} \int_x^{x+2^n} f(y) \, dy.$$

Consider the variation operator

$$V f(x) = \left(\sum_{-\infty}^{\infty} |A_n f(x) - A_{n-1} f(x)|^s \right)^{1/s}$$

for $2 \leq s < \infty$.

Given a locally integrable function f we define the sequence-valued operator T as follows:

$$T f(x) = \{A_n f(x) - A_{n-1} f(x)\}_n$$

$$= \left\{ \int_{\mathbb{R}} \left(\frac{1}{2^n} \chi_{(-2^n,0)}(x-y) - \frac{1}{2^{n-1}} \chi_{(-2^{n-1},0)}(x-y) \right) f(y) \, dy \right\}_n$$

$$= \int_{\mathbb{R}} K(x-y) \cdot f(y) \, dy,$$

where K is the sequence-valued function

$$K(x) = \left\{ \frac{1}{2^n} \chi_{(-2^n,0)}(x) - \frac{1}{2^{n-1}} \chi_{(-2^{n-1},0)}(x) \right\}_{n \in \mathbb{Z}} = \{K_n(x)\}_{n \in \mathbb{Z}}.$$

It is clear that

$$\|T f(x)\|_{\ell^s(\mathbb{Z})} = V f(x).$$

It is proven in Lemma 1 of S. Demir [4] that K satisfies the D_r condition for $r \geq 1$. For $r = 1$ this condition is equivalent to Theorem 5 (ii) known as Hörmander condition with $\mathbb{B} = \ell^s(\mathbb{Z})$ for $s \geq 2$.

Also, Theorem 2 of S. Demir [4] shows that Theorem 5 (i) is satisfied for $1 \leq q < \infty$ with the absolute value as \mathbb{A}. This shows that Theorem 5 can be applied to $T f$, and thus for $s \geq 2$ there exists a positive constant C such that

$$\|T f\|_{L_{\ell^s(\mathbb{Z})}(w)} = \|V f\|_{L^1(w)} \leq C \|f\|_{H^1(w)}$$

for all $f \in H^1(w)$.

References

[1] A. Benedek, A. P. Calderón and R. Panzone, *Convolution operators on Banach space valued functions*, Proc. Nat. Acad. Sci. USA 48 (1962) 356-365.

[2] J. Bourgain, *Extension of a result of Benedek, Calderón and Panzone*, Ark. Mat. 22 (1984) 91-95.

[3] R. R. Coifman and C. Fefferman, *Weighted norm inequalities for maximal functions and singular integrals*, Studia Math. 51 (1974) 241-250.

[4] S. Demir, *Inequalities for the variation operator*, Bull. of Hellenic Math Soc. 64 (2020) 92-97.

[5] S. Demir, *Hₚ spaces and inequalities in ergodic theory*, Ph.D Thesis, University of Illinois at Urbana-Champaign, USA, May 1999.

[6] S. Demir, *Variational inequalities for the differences of averages over lacunary sequences*, New York J. Math. 28 1099-1111.

[7] J. Garcia-Cuerva, *Weighted Hₚ spaces*, Dissertations Math. 162 (1979) 1-63.

[8] J. Garcia-Cuerva and J. L. Rubio de Francia, *Weighted norm inequalities and related topics*, Mathematics Studies 116, North-Holland, Amsterdam, 1985.

[9] B. Muckenhoupt, *Weighted norm inequalities for the Hardy maximal function*, Trans. Amer. Math. Soc. 165 (1972) 207-226.

[10] J. L. Rubio de Francia, F. J. Ruiz and J. L. Torrea, *Calderón-Zygmund theory for operator-valued kernels*, Adv. Math. 62 (1986) 7-48.