Growth and yield of chili on post-mine sandpits treated by Arbuscular Micorhizal fungi and organic matter

To cite this article: C Hidayat et al 2018 IOP Conf. Ser.: Mater. Sci. Eng. 434 012110

View the article online for updates and enhancements.
Growth and yield of chili on post-mine sandpits treated by Arbuscular Micorhizal fungi and organic matter

C Hidayat*, Y Setiati and P Gustini

Agrotechnology Department, Faculty Science and Technology, UIN Sunan Gunung Djati Bandung, Bandung, Indonesia

*cephidayat62@uinsgd.ac.id

Abstract. Post mining soil with its low fertility can be used for crop cultivation through application of Arbuscular Micorhizal Fungi (AMF) and organic matter. The aim of the research was to know the effect of AMF and organic matter on the growth and yield of Chilli pepper (Capsicum annum L.) on post-mine sandpits soil. A field-polybag trial had been carried out using a randomized block design two factors with factorial pattern and three replications. The first factor was the type of AMF i.e. Glomus sp and Gigaspora sp each of 15 g polybag⁻¹. The second factor was the type of organic matter (chicken manure, Tithonia diversivolia compost, and guano each of 30 t ha⁻¹). The results showed there was interaction effect of AMF and organic material on root infection degree percentage and short root ratio. Application of T. diversivolia compost 30 t ha⁻¹ gave significant effect on plant height and fresh fruit weight. The experiment indicated that combination of Gigaspora and T. diversivolia compost equal to 30 t ha⁻¹ produced low root infection degree that can not be used to stimulate growth and yield of chilli crop. Only addition of T. diversivolia compost equal to 30 t ha⁻¹ can be used in crop cultivation on post-mine sandpits soil and need further for the success of AMF inoculation need to consider population size beside AMF species.

1. Introduction
Post-mine sandpits has limiting factors for plant cultivation. Ramadhan et al [1] found the top soil lost and remaining the sub soil with low C-organic (0,35%) and dominated with sand (75 %). Post mining soil with heavy metal has low AMF, decreased AMF spore number and mycorrhizal colonization [2], and resulting plant growth and microbial activity of soil microorganisms that are extremely reduced [3].

Application of AMF and organic matter is the key factors for the improvement of degraded soil. AMF is ubiquitous soil microorganism in nature and being a good biological “bacterial manure”[4] and associated with 250 000 plant species [5]. AMF inoculation significantly increased the acid phosphatase activity and the content of available phosphorus in the rhizosphere [4]. Compost addition stimulates soil microbial communities [6], plant performance and improved soil quality in post mine soil [7]. Addition of organic amendments in the degraded soils improved soil quality and net primary, including the mechanism of phosphorus release [8]. Plant grown in the compost amended substrate inoculated with AMF showed increased plant biomass [9].

In contrast with previous research which used perennial plant on post mine soil, in this study we used edible-annual crop, also utilized different AMF species with one of the organic matter source...
originated from weed. The aim of the research was to know the effect of AMF and organic matter on the growth and yield of *Capsicum annum* L. on post-mine sandpits soil.

2. Materials and method

A polybag-trial at 720 m a.s.l. and Am climate type according to Koppen Climate classification was carried out from December 2016 to July 2017. The materials used were post-mine sandpits soil from Ngamprah Batujajar (06.88956°S, 107.50721°E), AMF (*Glomus* sp. and *Gigaspora* sp.), EM, chili seed var Tanjung-2, chicken manure, *T. diversivolia* compost, and guano.

The experiment used was randomized block design two factors with factorial pattern and three replication. The first factor was AMF namely: \(m_0 = \) without AMF inoculum, \(m_1 = 15 \) g *Glomus* sp polybag\(^{-1}\), \(m_2 = 15 \) g *Gigaspora* polybag\(^{-1}\). The second factor was manure namely: \(p_0 = \) without organic matter, \(p_1 = \) chicken manure 240 g polybag\(^{-1}\) (equivalent 30 t ha\(^{-1}\)), \(p_2 = T. diversivolia* compost 240 g polybag\(^{-1}\) (equivalent 30 t ha\(^{-1}\)), and \(p_3 = \) guano 240 g polybag\(^{-1}\) (equivalent 30 t ha\(^{-1}\)). Post mine-sandpits soil from 20 cm depth sieved and inserted in 40 cm x 60 cm polybags. All organic matter per treatment were applied 2 weeks before planting by mixing it with post-mining sandpits soil. *Glomus* sp. and *Gigaspora* sp. were applied at planting time of chili seeds. Basic fertilizations of Urea 0.402 g polybag\(^{-1}\), 0.0912 g TSP polybag\(^{-1}\) (50\% of recommended dosage), and 0.3192 g KCl polybag\(^{-1}\) were given 2 weeks before planting. Continued fertilization was given at 3 weeks after planting (WAP) and 7 WAP each of 30 percent at the recommended dosage. Pest and disease control was done by mechanical method and harvesting at 11 WAP.

The parameters observed were plant height measured at 2, 3, 4, and 5 WAP. Leaf width, shoot root ratio, and fresh chili fruit weight were measured at the time of harvest. To analyze the data, F test at 5 \% level was used and continued with Duncan Multi Range Test at 5 \% level.

3. Result and discussion

3.1. Root infection degree

The application of AMF and organic matter gave significant effect on root infection degree of chili. Inoculation of *Gigaspora* sp. with *T. diversivolia* compost and *T. diversivolia* without AMF showed the highest root infection degree, but categorized as low root infection degree (Table 1).

Treatments	Organic Matter	Root infection degree
AMF		
\(m_0 \)		0.00 a 0.00 a 10.0 a 2.00 a
\(m_1 \)		A A B B
\(m_2 \)		5.00 b 1.00 b 2.33 a 3.00 a
\(p_0 \)		B A AB B
\(p_1 \)		2.00 b 1.33 b 10.0 a 3.33 a
\(p_2 \)		A A B AB

Remarks: Numbers followed by same small letter (vertical) and same capital letter (horizontal) are not significantly different based on Duncan’s Multiple Range Test at 5\% level.

Root infection degree is depending on several factors. Soil texture determines the success of AMF infecting plant root. Sandy soil texture with large pore is suitable for *Gigaspora* which has large spore diameter. Data on Table 1 shows that *Gigaspora* inoculation along with organic matter resulted in higher root infection degree than *Glomus* plus organic matter. *T. diversivolia* compost had the highest C-organic than the other treatments. Organic matter provides a carbon source for AMF activity including infecting plant root especially *Gigaspora* that can live in sandy soil texture, but root
infection degree in this research was categorized as low related to a low number of AMF spores. At low population sizes, invader AMF will be easily outcompeted by native AM fungi [10].

3.2. Plant height
The inoculation of Glomus sp. and Gigaspora sp. had no effect on plant height from 2 - 5 WAP. On the other hand application of organic matter enhanced plant height starting from 3 WAP (Table 2).

Based on data from Table 1, AMF inoculation resulted in low root infection degree. With low root infection degree AMF, nutrients absorption could not be maximum causing any effect on plant height. Low soil nutrients made AMF suppressing plant growth by competing with the plant for nutrient [10], particularly when developing AMF create significant carbon sink for young plants [11]. Plant performance was depending on density of infective propagule [12].

Table 2. The effect of AMF and organic matter on plant height.

Treatments	Average of plant height (cm)			
	2 WAP	3 WAP	4 WAP	5 WAP
AMF	m₀	m₁	m₂	
	12.26 a	14.09 a	13.41 a	
Organic Matter	p₀	p₁	p₂	p₃
	12.36 a	13.84 a	13.97 a	12.84 a

Remarks: Numbers followed by same small letter are not significantly different based on Duncan’s Multiple Range Test at 5% level.

Chicken manure and T. diversifolia compost addition increased plant height due to its N content. Positive vegetative response to biochar application in disturbed mine substrate attributed to increased sorption [13] and nutrient bioavailability[14]. Organic matter added to sandy soil improved plant growth [9].

3.3. Plant height
Application of AMF and organic matter showed significant effect on shoot root ratio. The value of shoot root ratio varied from 3.03 to 13.27. Application of T. diversifolia compost significantly increased shoot root ratio when applied with Gigaspora sp. Meanwhile, when these AMF were applied together with the guano the shoot root ratio decreased (Table 3).

Table 3. The effect of AMF and organic matter on shoot root ratio.

Treatments	Average of shoot root ratio	Organic Matter		
	p₀	p₁	p₂	p₃
AMF	m₀	m₁	m₂	
	5.50 a	3.57 a	3.80 a	
Organic Matter	p₀	p₁	p₂	p₃
	A	A	A	A

Remarks: Numbers followed by same small letter (vertical) and same capital letter (horizontal) are not significantly different based on Duncan’s Multiple Range Test at 5% level.
AMF inoculation along with *T. diversivolia* compost produced the highest shoot root ratio (Table 3). This indicates that *Gigaspora* increased the absorption of N, P, and K contained in *T. diversivolia* compost. AMF has mycelium that makes soil contact area of the host plant roots is expanded, resulting in improvement of nutrient and water absorption of plant [15]. This result corresponds with Kinany [9] reporting that plantlet transplanted into compost amended substrate inoculated with AMF showed plant biomass increase. Plant shoot and root biomass were increased by AMF inoculation [12]. Organic matter according to Abbasi [16] plays an important role in P solubilization through chelation mechanisms resulting greater P available to be used by plants.

3.4. Fruit weight

AMF inoculation had no effect on fresh fruit weight, while application of organic matter, ie. chicken manure and *T. diversivolia* compost increased fresh fruit weight, but guano produced fresh fruit weight lower than control (Table 4).

Table 4. The effect of AMF and organic matter on fresh fruit weight and harvest index.

AMF	fresh fruit weight (g)
m₀	62.36 a
m₁	85.68 a
m₂	68.21 a
Organic Matter	
p₀	47.22 a
p₁	59.50 a
p₂	151.63 b
p₃	30.00 a

Remarks : Numbers followed by same small letter are not significantly different based on Duncan’s Multiple Range Test at 5% level

Data Table 4 shows that application of *T. diversivolia* compost gave the highest fresh fruit weight. It is related with Phosphorus as one of nutrients needed for fruit development. Phosphorus content in *T. diversivolia* compost (4.1 %) is higher than chicken manure (3.21%) so it can supply more for the plants. Guano has the highest P content (22 %), but P in guano is in the unavailable form. The positive effect of compost was approved by Hossein [17] who concluded that organic wasted provided essential plant nutrients and maintain soil fertility and stimulate crop growth and yield.

4. Conclusion

Inoculation of *Gigaspora* along with application of *T. diversivolia* compost 30 t ha⁻¹ produced low root infection degree implied to limited influence on plant growth and yield of *C. annuum* L. on post-mine sandpits. Addition of *T. diversivolia* compost equal to 30 t ha⁻¹ can be used in crop cultivation on post-mine sandpits soil and for the success of AMF inoculation need to consider population size beside AMF species.

References

[1] M F Ramadhan, C Hidayat and S Hasani 2015 Pengaruh aplikasi ragam bahan organik dan FMA terhadap pertumbuhan dan hasil tanaman cabai (Capsicum annum L.) varietas Landung padxa tanah pasca galian C.j Agro 2(2)

[2] M Zarei , S Konig, S Hempel, M Khayam, Nekoueic, Gh Savaghebia and F Buscot 2008 Community structure of arbuscular mycorrhizal fungi associated to Veronica rechingeri at the Anguran zinc and lead mining region *Environ. Pollutan* 156(3) pp. 1277–1283

[3] R Basanta, A De Varennes and M Díaz-raviña 2017 Microbial community structure and
biomass of a mine soil with different organic and inorganic treatments and native plants J. Soil Sci. Plant Nutr. 17(4) pp. 839–852

[4] S Li, Y Bi, W Kong, H Yu, Q Lang and Y Miao 2015 Effects of Arbuscular Mycorrhizal Fungi on Ecological Restoration in Coal Mining Areas Russ. J. Ecol. 46(5) pp. 431–437

[5] D J Smith, S E and Read 2008 Mycorrhizal symbiosis. 3rd edition in Academic Press.

[6] D R Carlson J, Saxena J, Basta N, Hundal L and Busalacchi D 2015 Application of organic amendments to restore degraded soil: effects on soil microbial properties Environ. Monit. Assess. 187 pp. 1–15

[7] J Kohler and F Caravaca 2014 Selection of Plant Species – Organic Amendment Combinations to Assure Plant Establishment and Soil Microbial Function Recovery in the Phytostabilization of a Metal-Contaminated Soil Water, Air, Soil Pollut. 225 pp. 1–13

[8] Larney F J and Angers D A 2012 The role of organic amendments in soil reclamation: A review Canadian Journal of Soil Science 92(1) 19–38

[9] El Kinany S, Achbani E, Faggroud M, Ouahmane L, El Hilali R, Haggoud A and Bouamri R 2018 Effect of organic fertilizer and commercial arbuscular mycorrhizal fungi on the growth of micropropagated date palm cv Feggouss Journal of the Saudi Society of Agricultural Sciences

[10] F J Hart MM 2012 Using arbuscular mycorrhizal fungi to improve the nutrient quality of crops; nutritional benefits in addition to phosphorus Sci. Hortic. (Amsterdam). 148 pp. 206–214

[11] B M Ohowski, K Dunfield, J N Klironomos and M M Hart 2018 Plant response to biochar, compost, and mycorrhizal fungal amendments in post-mine sandpits Restor. Ecol. 26(1), pp. 63–72

[12] M V Janoušková, Martina, Karol Krak, Cameron Wagg, Helena Štorchová and Petra Caklová 2013 Effects of Inoculum Additions in the Presence of a Preestablished Arbuscular Mycorrhizal Fungal Community Appl. Environ. Microbiol. 79 (20) pp. 6507–6515

[13] P A Fellet G, Marchiol L and Delle Vedove G 2011 Application of biochar on mine tailings: effects and perspectives for land reclamation Chemosphere 83 pp. 1262–1267

[14] C S Xu G, Wei L L, Sun J N and Shao HB 2013 What is more important fo renhancing nutrient bioavailability with biochar application into a sandy soil: direct or indirect mechanism? Ecol. Eng. 52 pp. 119–124

[15] P Fokoma, R, Adamou S, Teugwa, M C, Begoude Boyo gueno AD, Nana W L, Ngonkeu M E L, Tchameni N S, Nwaga D, Tsala Ndzomo G and Amvam Zollo 2012 Glomalinrelated soil protein, carbon, nitrogen and soil aggregate stability as affected by land use variation in the humid forest zone of south Cameroon Soil Tillage Res. 120 pp. 69–75

[16] M K Abbasi, N Musa and M Manzoor 2015 Mineralization of soluble P fertilizers and insoluble rock phosphate in response to phosphate-solubilizing bacteria and poultry manure and their effect on the growth and P utilization efficiency of chilli (Capsicum annuum L.) Biogeosciences 12(201) pp. 4607–4619

[17] M Z Hossain, P V F Niemisdorff and J Heß 2017 Effect of Different Organic Wastes on Soil Properties and Plant Growth and Yield: a Review Environ. Sci. 48(4) pp. 224–237