A novel culture method that sustains ERα signaling in human breast cancer tissue microstructures

CURRENT STATUS: POSTED

Ana Luísa Cartaxo
Instituto de Biologia Experimental e Tecnologica

Marta F Estrada
Instituto de Biologia Experimental e Tecnologica

Giacomo Domenici
Instituto de Biologia Experimental e Tecnologica

Ruben Roque
Instituto Portugues de Oncologia de Lisboa Francisco Gentil EPE

Fernanda Silva
CEDOC

Emilio J. Gualda
Institut de Ciencies Fotoniques

Pablo Loza-Alvarez
Institut de Ciencies Fotoniques

George Sflomos
Ecole Polytechnique Federale de Lausanne

Cathrin Brisken
Ecole Polytechnique Federale de Lausanne

Paula M. Alves
Instituto de Biologia Experimental e Tecnologica

Saudade André
Instituto Portugues de Oncologia de Lisboa Francisco Gentil EPE

Catarina Brito
iBET
anabrito@ibet.pt

Corresponding Author

ORCiD: https://orcid.org/0000-0002-8926-279X

DOI:
10.21203/rs.3.rs-20405/v1

SUBJECT AREAS
Cancer Biology Oncology

KEYWORDS
cancer, patient-derived tissue microstructures, 17-β-estradiol, estrogen receptor alpha, fulvestrant, encapsulation, alginate
Abstract

Background

Estrogen receptor α (ERα) signaling is a defining and driving event in most breast cancers; ERα is detected in malignant epithelial cells of 75% of all breast cancers (classified as ER-positive breast cancer) and, in these cases, ERα targeting is the main therapeutic strategy. However, the biological determinants of ERα heterogeneity and the mechanisms underlying therapeutic resistance are still elusive, hampered by the challenges in developing experimental models recapitulative of intra-tumoral heterogeneity and in which ERα signaling is sustained. Ex vivo cultures of human breast cancer tissue have been proposed to retain the original tissue architecture, epithelial and stromal cell components and ERα. However, loss of cellularity, viability and ERα expression are well-known culture-related phenomena.

Methods

BC samples were collected and brought to the laboratory. Then they were minced, enzymatically digested, entrapped in alginate and cultured for one month. The histological architecture, cellular composition and cell proliferation of tissue microstructures were assessed by immunohistochemistry. Cell viability was assessed by measurement of cell metabolic activity. The presence of ERα was accessed by immunohistochemistry and RT-qPCR and its functionality evaluated by challenge with 17β-estradiol and fulvestrant, respectively.

Results

We describe a strategy based on entrapment of breast cancer tissue microstructures in alginate capsules and their long-term culture under agitation, successfully applied to tissue obtained from 63 breast cancer patients. After one month in culture, the architectural features of the encapsulated tissue microstructures were similar to the original patient tumors: epithelial, stromal and endothelial compartments were maintained with an average of 97 of cell viability compared to day 0. In ERα-positive cases, fibers of collagen, the main extracellular matrix component in vivo, were preserved. ERα expression was retained at gene and protein levels and response to ERα stimulation and inhibition was observed at the level of downstream targets, demonstrating active ER signaling.
Conclusions
The proposed model system is a new methodology to study ex vivo breast cancer biology, in particular ERα signaling. It is suitable for interrogating the long-term effects of anti-endocrine drugs in a set-up that closely resembles the original tumor microenvironment, with potential application in pre- and co-clinical assays of ERα-positive breast cancer.

Background
Breast cancer (BC) is the most commonly diagnosed cancer among women worldwide (1). It is a heterogeneous disease with distinct biological features and clinical outcomes. Almost 75% of diagnosed BC express estrogen receptor-alpha (ERα), being classified as ERα-positive (ER+) BC (2). ERα acts as a ligand-dependent transcription factor for genes associated with cell survival, proliferation, and tumor growth (3). Therefore, targeting the ERα-signaling pathway is the main therapeutic strategy for the treatment of ER+ BCs. Nonetheless, the disease often progresses in 20% of the patients undergoing hormonal therapy due to intrinsic drug resistance (4). Thus, there is a need to select patients that would respond to endocrine therapy and to elucidate the molecular mechanisms behind endocrine resistance, as well as to identify biomarkers that predict drug response and resistance and novel therapeutic targets in resistant tumors.

When cultured in classical 2D monolayers, ER+ BC cell lines fail in recapitulating the typical intratumoral ERα heterogeneity (5) and, due to cell confluency, cannot be kept continuously for more than one week (6), hampering the possibility to perform cycles of drug treatment for more than one week. Only a few ERα + cell lines can generate xenografts in mice, requiring supplementation with estrogen (7). Recently, an estrogen supplementation-independent in vivo model was reported, based on intraductal implantation of ERα + tumor cells. The demonstration that the intraductal but not the mammary fat pad microenvironment favors epithelial malignant cells of the luminal subtype, consolidated the role of the tumor microenvironment (TME) in sustaining ERα + tumor cells (7).

Although there is a report showing that it is possible to propagate normal primary breast ERα + cells in 2D (8), there are no reports for ER + BC cell propagation. In fact, ER + BC cells cultured in 2D loose cellularity and ERα expression after a short culture period.
Ex vivo cultures have been explored to sustain ERα + malignant epithelial cells within the original BC microenvironment (9). Typically, these models retain tissue architecture and heterogeneity for short periods of time, around 3 to 4 days of culture (10,11). Naipal et al. reported extension of culture time up to 7 days by exploring dynamic culture conditions (12). Recently, Muraro et al. reported high cell viability and maintenance of ER expression up to 14 days in culture, when combining a collagen scaffold and a medium perfusion system (9). Nonetheless, this methodology supports BC tissue maintenance by taking advantage of collagen scaffolds, biologically active animal-derived biomaterials which bring variability, as well as environmental and ethical concerns (13).

Here, we hypothesized that retention of the original microenvironment would favor the maintenance of ER + BC phenotype and ERα signaling. We implemented an ex vivo strategy based on the encapsulation of tissue microstructures in alginate, an inert biomaterial, combined with dynamic culture, aiming to maintain the original tissue structure, cell populations and extracellular matrix (ECM). We have recently shown that alginate microencapsulation of cancer cell spheroids and TME cellular components promotes tumor-stromal crosstalk and retention of secreted ECM components towards reconstruction of TME features (14,15). Therefore, we reasoned that by using alginate encapsulation to promote the original TME retention, while resourcing to dynamic culture to guarantee efficient diffusion of nutrients and oxygen, tissue microstructures would retain architectural integrity and potentially ER signaling.

Methods

Ethics statement
BC samples were collected at the Lisbon Oncology Hospital (Instituto Português de Oncologia de Lisboa Francisco Gentil – IPOLFG). The use of patient material was approved by the IPOFLG ethics committee and all patients have signed an informed consent form to agree to donate the material for research purposes. All tissues were anonymized before transfer to the laboratory for further processing.

Cell culture
MDA-MB-231 cell line was obtained from the American Type Culture Collection (ATCC). MDA-MB-231 cells were cultured in Dulbecco's Modified Eagle Medium (DMEM) high glucose and pyruvate medium
Penicillin/Streptomycin (P/S, Gibco) at 37 °C in 5% CO₂. Mycoplasma contamination was routinely checked.

Collection and processing of patient material

This study was elaborated on treatment-naïve patient-derived BC tissue (Table 1). Tumor samples were collected during surgery and immediately submerged in phenol red-free DMEM/F-12 (Gibco), supplemented with 1% (v/v) P/S (Gibco) and 10% (v/v) FBS (Gibco). Samples were kept at 4ºC and transported to the laboratory within 1 to 3 hours of surgery (Fig. 1A). Sixty-three BC samples were collected, with an average weight of 315 ± 225 mg (Figure S1).

The first 20 BC samples were used for optimization of the processing methodology. Tissue samples were mechanically dissociated with two surgical scalpels to obtain pieces of 1 to 2 mm of diameter. Subsequently, the minced tissue was resuspended in phenol red-free DMEM/F-12, HEPES medium (Gibco) containing 0.09 U/mL of Collagenase A (Roche), 30 U/mL of Benzonase (Merck Millipore), 10% (v/v) FBS (Gibco) and 1% (v/v) P/S (Gibco). Digestion was performed in an incubator at 37ºC, in a humidified atmosphere containing 5% CO₂. After 12–15 hours of enzymatic digestion, tumor fragments (tissue microstructures, average of 1 mm³) were sedimented by centrifugation at 100x g for 5 min at 4ºC and washed with Phosphate-Buffered Saline (PBS; Life Technologies) (Fig. 1A).

Clinico-pathological parameters	(n)	Percentage (%)
Tumor female samples	63	
Mean age at diagnosis	62 (42–87)	
Histological subtype		
Invasive ductal	33	54
Invasive lobular	9	15
Mix type	19	31
Tumor grade		
1	5	9
2	46	79
3	6	11
Tumor size		
pT1	36	60
pT2	20	33
pT3	5	7
Lymph node involvement status		
pN0	39	65
pN1	19	32
pN2	3	3
Tissue microstructure encapsulation and culture

Tissue microstructures were entrapped in alginate employing protocols previously developed by our team (15). Briefly, tissue microstructures were dispersed in 1 mL of 2% (w/v) of Ultrapure Ca\(^{2+}\) MVG alginate (UP MVG NovaMatrix, Pronova Biomedical, Oslo, Norway) dissolved in NaCl 0.9% (w/v). Encapsulation was performed using an electrostatic bead generator (Nisco VarV1, Zurich, Switzerland), with an air flow rate of 10 mL/h, at 5.3 V under air pressure of 1 bar, using a 1.1 mm nozzle. The resulting alginate droplets containing tissue micro fragments (1–2 fragments/droplet) were cross-linked in a 100 mM CaCl\(_2\)/10 mM HEPES (pH 7.4) solution for 10 min, washed three times in a 0.9% (w/v) NaCl solution and finally equilibrated in culture medium. Encapsulated tissue microstructures were then transferred into 6-well plates and placed under orbital shaking (100 rpm), in a humidified incubator, with 5% CO\(_2\). Encapsulated tissue microstructures cultures were maintained up to 30 days, with 50% medium exchange every 3–4 days (Fig. 1A). Cultures were maintained in human mammary epithelial cell (HMEC) culture medium: DMEM/F12 phenol red free with 1% P/S (v/v) solution (both from Life Technologies), 5 ng/mL Epidermal Growth Factor (EGF), 10 µg/mL Insulin, 0.5 µg/mL Hydrocortisone, 0.5 µg/mL Transferrin, 0.1 mM Isoprotenol, 0.1 mM Ethanolamine, 0.1 mM O-Phosphoethanolamine, 70 µg/mL Bovine Pituitary Extract (all reagents are from Sigma-Aldrich) and 100 µg/mL Primocin (InvivoGen Europe). Non-encapsulated tissue microstructures were maintained under the same culture conditions. Encapsulated tissue microstructures were assessed for cell viability, architecture, cell populations, ECM deposition, ER\(\alpha\) presence and signaling, as described below; the extent of assessment performed for each sample was determined by the initial sample size.

Cell viability assessment

Cell viability was correlated with resazurin reduction capacity (PrestoBlue™ Cell Viability Reagent, ThermoFischer Scientific), according to manufacturer’s instructions. Encapsulated and non-encapsulated samples were incubated for 1 hour with PrestoBlue reagent in culture medium, at 37°C, in a humidified atmosphere incubator, containing 5% CO\(_2\). Medium was sampled in quadruplicate and resazurin reduction evaluated by fluorescence detection (ext/em 560/590 nm) in a fluorimeter.
(Infinite® 200 PRO NanoQuant, Tecan Trading AG). Resazurin reduction was evaluated for 1 month, once a week. Data is represented as fold-change in resazurin reduction relative to the first week of the assay.

Histological and immunohistochemistry analysis

Samples were collected after 1 month of culture and alginate capsules were de-polymerized with 50 mM EDTA for 5 min at RT. De-encapsulated tissue microstructures were centrifuged at 300x g, 5 min at 4°C, washed with PBS, fixed with formol overnight at RT. For paraffin cell-block preparation, the cellular suspension was centrifuged for 5 min, at 1270x g, resuspended in 10% (v/v) buffered formalin (VWR BDH Chemicals, ref. 9713.9010) to which a drop of haematoxylin was added for specimen counterstain, and stored in a 1.5 mL microtube. The remaining supernatants were subjected to a second centrifugation, for 5 min, at 1990x g. The supernatant was discarded and four drops of liquefied HistoGel (Thermo Scientific, ref. HG-4000-012) were added to the pellet. After gentle homogenization with a Pasteur pipette and centrifugation for 2 min, at 1990x g, the sample was placed at -20°C for 5 min to solidify. The cone shape solidified sample was removed from the microtube, cut along the meridional section and placed in a biopsy cassette, which was then immersed in a container with buffered formalin to be included in paraffin. After processing, the samples were sectioned and stained with hematoxylin and eosin (H&E) (Dako CoverStainer for H&E equipment, Agilent, Santa Clara, CA, USA). Paraffin blocks were sectioned (3 µm) for H&E and immunohistochemical staining. Immunohistochemistry (IHC) was carried out using standard procedures implemented at IPOLFG; antigen retrieval was done using Cell Conditioning 1 (CC1, Ventana) and tissue staining was performed using an automated IHC/ISH slide staining Ventana BenchMark Ultra (all from Ventana Medical Systems, Inc). Antibodies and details on the protocol used are indicated in Table S1. Histologic analysis was performed by an expert breast pathologist.

Multi-photon microscopy

Fibrillar Collagen was assessed by multi-photon microscopy. After 1 month in culture, encapsulated tissue microstructures were collected, fixed in PFA 4% (w/v) in PBS for 30 min, washed thrice with PBS and kept at 4°C until further analysis. Samples were imaged with two-photon-excited fluorescence
(TPEF), second harmonic generation (SHG) and infrared (IR) absorption in a home-made multiphoton microscope (16). The excitation laser was a Ti:Sapphire at 810 nm and the laser power, at entrance of the microscope, was of 40 mW. Initial tests performed with 100 mW resulted in no observable sample damage. The Illumination objective was an Olympus 25 × 1.05 W. The TPEF signal was collected through a photomultiplier tube (PMT) in backward direction (using a LP410 filter) while IR absorption and SHG (405/25 filter) were collected in forward direction through a Nikon 25 × 1.10 W objective, using a photodetector and a PMT respectively. During acquisition, 3–4 images were averaged to reduce noise.

Challenge with ERα agonist and antagonist
At day 28–30 of culture, encapsulated BC tissue microstructures were stimulated with 10 nM 17-β-estradiol (Sigma-Aldrich). Three days before 17-β-estradiol challenge, encapsulated tissue microstructures were washed thrice with PBS and were then kept in phenol red-free HMEC medium without insulin, hydrocortisone and EGF, which may trigger activation or phosphorylation of ER (17–22). Alternatively, a 50% culture medium exchange was performed by the time of 17- β-estradiol challenge. Control wells were also included, in which only ethanol (17- β-estradiol vehicle) was added to a final concentration of 0.001% (v/v). After 24 h of exposure, encapsulated tissue microstructures were collected and alginate dissolved (as described in Sect. 6 of Materials and Methods).

Encapsulated tissue microstructures were also challenged with an ER antagonist and degrader, fulvestrant (ICI182,720). For these experiments, 3–5 days after encapsulation, HMEC medium was supplemented with 1 µM fulvestrant (23,24) (Tocris Bioscience). Twice a week, half volume of culture medium was changed and fulvestrant was replenished to keep a constant concentration. After 2 weeks, samples were centrifuged at 300x g, 5 min at 4ºC, washed with PBS and processed for IHC (as detailed above) or RT-qPCR analysis. Samples for RT-qPCR were stored in RNAlater Stabilization Solution (Roche), according with the manufacturer's instructions, until further analysis.

Gene expression analysis
Tissue microstructures were thawed, total RNA was extracted in a tissue lyser (Precellys Evolution Homogenizer, Bertin Instruments) and purified using the RNAeasy Kit (Qiagen), according to the
manufacturer’s instructions. Reverse transcription was performed using Sensiscript RT kit (Qiagen), also according with the manufacturer’s instructions. qPCR was performed in triplicates, using the SYBR green I Master kit (Roche), in a LightCycler 480 II (Roche). Gene expression of the ER downstream target genes - ERα, pS2, AREG and PGR (25), and of two housekeeping genes, RPL22 (14) and 36B4 (25). Primer sequences are provided in Table S2. The MDA-MB-231 cell line was used as negative control because it is ERα and PR negative (26). Results are shown as fold change in mRNA amount compared to the vehicle control (CTRL), calculated according to the $2^{-\Delta\Delta Ct}$ method (27), considering a geometric mean between the 2 housekeeping genes used.

Statistical analysis
Statistical analysis was performed using GraphPad Prism version 6.0 (GraphPad Software). Data were analyzed as indicated in the figure legends. The Mann-Whitney test was performed to evaluate statistical difference between conditions. Data are presented as mean ± SD, unless otherwise specified.

Results
Alginate encapsulated tissue microstructures maintain parental tumor tissue characteristics for at least one month of culture
To establish an ER+ BC ex vivo model, we investigated the possibility of retaining the TME and consequently ERα signaling of patient-derived tissue microstructures immobilized within alginate capsules and cultured under agitation (Fig. 1A). Encapsulated tissue microstructures were cultured for up to 30 days, showing high cell viability, as indicated by maintenance of resazurin reduction capacity along culture time (97 ± 28% by the end of week 4, relatively to the beginning of the culture, Figure S2A). Moreover, detection of extracellular lactate in culture medium (data not shown), as an indicator of high metabolic activity (28) corroborated the high cell viability within the encapsulated tissue microstructures.

The original tumors were very heterogeneous, not only between but also within patients (Fig. 1B): tissue architecture varied in epithelial versus stromal content, cell organization and on the presence/absence of immune cells (CD45+ cells). A complete mixture of malignant epithelial cells and stromal cells was rarely observed. Instead, there were islets of tumor cells surrounded by
multiple stromal cells (Fig. 1B, upper panels). These histopathological characteristics were maintained in encapsulated tissue microstructures cultured for a month (Fig. 1B, lower panels). By day 30 of culture, E-cadherin, vimentin, CD31 and CD45 were immunohistochemically-detected (Fig. 2A). The detection of membranous E-cadherin indicated that carcinoma cells maintained the typical cell-cell adhesions and differentiated phenotype (29). On the other hand, vimentin detection confirmed the presence of stromal cells. CD45+ cells were also detected in 5 out of 8 cases evaluated (Fig. 2A). In two analyzed tissue microstructures, CD31 positivity confirmed the presence of endothelial cells (Fig. 2A). Absence of cells positive for the basal/myoepithelial marker p63 was observed similarly to the original tumors (Figure S2B). Ki67-positive cells were also detected at different levels, indicating the presence of proliferating cells even after one month of culture (Fig. 2B). Although at low levels, this is consistent with the parental tissues, where the median of proliferating cells was 20% (Q1 = 15; Q3 = 30). Second harmonic generation analysis (SHG) of encapsulated BC tissue microstructures revealed dense and organized/fibrillar collagen fibers in peripheral regions of the samples analyzed, surrounding areas of cellularity (Fig. 3). As a culture control, non-encapsulated tissue microstructures were cultured in parallel. A significant decrease in resazurin reduction ability after 3–4 weeks of culture was observed, suggesting a reduced cell viability of these cultures. Remarkably, cell viability was increased in encapsulated versus non-encapsulated tissue microstructures (Figure S2C).

Altogether, we were able to extend the lifespan of BC explant cultures for up to one month whilst maintaining tissue architecture, the different cell types of the BC microenvironment, and cell viability.

ER expression and functionality are maintained over 1 month of culture

After one month in culture, ERα+ carcinoma cells were detected in the encapsulated tissue microstructures by IHC analysis (Fig. 4A). When sample material was not sufficient for IHC evaluation, mRNA was quantified, relatively to MDA-MB-231, a human cancer cell line which does not express ERα nor PR (30) (Figure S3A). All samples presented higher mRNA level than MDA-MB-231 cells, indicating ERα gene expression after one month of culture (Figure S3B).

To assess ERα function, encapsulated ER + BC tissue microstructures from 9 distinct patients were stimulated with 10 nM 17-b-estradiol for 24 hours and the mRNA levels of the ER target genes
evaluated: protein PS2 (also known as Trefoil Factor 1 -TFF1-, pS2), progesterone receptor (PGR) and amphiregulin (AREG) (25). AREG and PGR were upregulated upon challenging with 17-β-estradiol compared to vehicle-controls (mean fold increase in AREG and PGR expression of 3.4 ± 5.6 and 6.3 ± 11 respectively, Fig. 4B and Figure S3C). Strikingly, we detected a generalized upregulation of pS2 (in 7 out of 9 tissue microstructures), with a mean fold increase in gene expression of 45 ± 45, compared to the vehicle-treated control (Fig. 4B and Figure S3C). Two ER-negative BC tissue microstructures were also treated with 17-β-estradiol and no upregulation of ERα downstream genes was observed (Figure S3D). This data also indicates that the original phenotype is maintained in culture, and that absence of ERα expression is maintained during culture. A different set of 7 encapsulated ER+ BC tissue microstructures, that were maintained in HMEC medium until 17-b-estradiol challenge, showed a mild stimulation of ER target genes (on average, 2.3-, 1.8- and 1.2-fold increase relatively to vehicle control for pS2, PGR and AREG, respectively, Figure S3E).

To further confirm intact ERα signaling in encapsulated tissue microstructures, cultures were exposed to fulvestrant (or ICI182,720), a ER full antagonist (31) widely used in endocrine therapy (32), for 2 weeks. A generalized down regulation of AREG compared to vehicle controls was observed (Fig. 4C). In addition, for two samples, we also evaluated PGR and pS2 response and observed a strong reduction of mRNA levels compared to vehicle controls (Fig. 4D). Collectively, these results indicate that ERα is expressed in encapsulated tissue microstructures and can respond to stimulation and inhibition.

Discussion

ERα signaling is considered a defining and driving event contributing to ER+ BC carcinogenesis; ERα overexpression in primary tumors has been linked to disease progression, influencing patient survival (33–35). Nonetheless, approximately 50% of patients with ER+ BC fail to respond to endocrine therapy (36). Several reports have shown the intricate relation between response to therapy and TME components, such as fibroblasts (37–39) and ECM components (40,41). Therefore, it is paramount to define the biological determinants of ERα intra-tumoral heterogeneity and the mechanisms underlying therapeutic resistance. However, this knowledge has been hampered by the challenges in developing
experimental models recapitulative of intra-tumoral ERα heterogeneity and in which ERα signaling is sustained, essential to address long-term effects of tumor-stromal interactions in ERα signaling and drug response mechanisms against ER.

Here, we propose a culture strategy in which patient-derived tissue microstructures retain ERα + carcinoma cells for at least one month of culture; of note, these cells still respond to ER stimulation and inhibition, therefore constituting a functional ex vivo model of ER-positive BC. Tissue microstructures that were entrapped in alginate capsules and cultured under dynamic conditions maintained high cellularity, low levels of tumor cell proliferation, as reported for human ER + BC (42) and parental tissue architecture (including epithelial, stromal and endothelial cell compartments and deposited fibrillar collagen). Although all interrogation was limited to one month of culture, as we have not detected signs of explant decline in cell viability up to that timepoint, we conjecture that the lifespan of encapsulated tissue microstructures could be extended for even longer periods.

We hypothesized that using tissue microstructures within the millimeter size range would be more favorable to attain an accurate representation of intra-tumoral heterogeneity and TME, than more miniaturized ex vivo models. To overcome the major limitations of ex vivo cultures – the reduced lifespan and zonation due to diffusional gradients (43), we resourced to dynamic culture conditions. Agitation improves mass transfer, promoting nutrient and oxygen diffusion, reducing the formation of gradients typically observed for tissue microstructures within the above mentioned size range (44,45). Moreover, we encapsulated in alginate, a biocompatible, inert hydrogel (46) since it has defined composition and confers support and protection from agitation-induced shear stress (15,47,48). This contributes to the preservation of tissue architecture and cell viability, but also promotes the built-up of relevant cell microenvironment factors. In fact, we have previously shown that cells entrapped in alginate capsules, and cultured under agitation, accumulate secreted soluble factors (e.g., cytokines) and ECM components, promoting homotypic and heterotypic cellular crosstalk, cell migration and reconstruction of cancer-related microenvironments (14,15), such as an immunosuppressive microenvironment in a non-small cell lung cancer model (14). In terms of ECM components, we not only observed the maintenance of TME cellular components in the encapsulated
tissue microstructures, such as the stromal cells, which are involved in the secretion of collagen (49), but also ECM components as collagen fibers. These were detected by SHG microscopy, a technique broadly applied to BC tissue (50). In all the encapsulated tissue microstructures analyzed fibrillar collagen presence was observed. Increased collagen density has been shown to directly promote BC tumorigenesis (51). Moreover, collagen is strongly associated with mammographic density used as a measurement of risk of BC (52) and is responsible for drug resistance since it prevents the penetration of therapeutic agents, such as antibodies (53).

The preservation of tumor heterogeneity and TME are critical to closely mimic the in vivo situation (5,54). We observed a high degree of heterogeneity between distinct parental tissues - not only the levels of ER-positivity were different, but also the percentages and physical distribution of carcinoma and stromal cells - that were recapitulated in the derived tissue microstructures. In 5 out of 8 tissue microstructures, infiltrating immune cells were also detected, even after one month of culture, although in very low amounts. This is in accordance with the typically low frequency of immune cell infiltrates in ERα + tumors (55).

After 1 month in culture, p63 was not detected in tissue microstructures, in accordance with what is reported for luminal BC. In fact, the myoepithelial marker p63 is present in basal cells of a variety of healthy epithelial tissues (56), such as in normal breast tissue. However, its expression in BC is rare (57,58). On the other hand, tissue microstructures presented low levels of Ki-67; in fact, ERα-positive subtypes have lower proliferative indexes than other BC subtypes (59). The intrinsic low levels of proliferation and the reduced amount of patient tissue available to set-up tumor microtissue cultures, limit their application in high throughput assays.

The maintenance of ERα + cells in culture is a major accomplishment, as ERα ablation ex vivo has been a major issue in ER + BC research (60). The maintenance of ERα is pivotal for the study of the luminal A BC subtype, as cell proliferation is ER-dependent and targeted therapies typically rely on prolonged treatment with ERα antagonists (61). After one month in culture, we detected ERα + cells in the encapsulated tissue microstructures. ERα functionality was evaluated by challenging encapsulated tissue microstructures, with either activator (17-β-estradiol) or inhibitor (fulvestrant)
molecules. Our results show differential expression of PGR, AREG and pS2 in tissue microstructures originated from different ER + BC patients, suggesting that the model reflects inter-patient heterogeneity and differential reactivity and signaling activation in response to 17-β-estradiol challenge (5,62). pS2 is a well-known direct downstream ERα target, which is under the positive control of an ERE consensus sequence located 400 bp before transcription starting site (63). Our results show a higher upregulation of pS2 when comparing with AREG and PGR. In fact, it has been reported for the ERα + MCF-7 BC cell line that, upon estrogen exposure, pS2 expression strongly increases compared to PR, not only at mRNA but also at protein levels (64,65).

Aiming to retain ERα + cells, we employed a culture medium enriched in molecules with reported ER stimulatory effects, such as insulin, hydrocortisone and EGF (17–22). 17-β-estradiol and EGF may also be produced by the breast fibroblasts present in culture (66–68). Our observation of reduced effects upon 17-β-estradiol stimulation in tissue microstructures cultured in complete medium compared with tissue microstructures cultured in depleted medium in the 3 days preceding stimulation, corroborates the presence of soluble ER activators in culture. Further studies are required to understand the signaling events that contribute to the maintenance of ERα signaling under the culture conditions here presented, which will potentially also contribute to further disclose its role in ER + BC.

Conclusions
Overall, we advocate a new methodology for ERα + BC TME modelling, in which the original cell populations, the native ECM and tissue architecture are maintained, and ER function sustained. This ex vivo culture system can contribute to the study of breast cancer biology, in particular ERα signaling and microenvironmental-driven molecular mechanisms. Moreover, due to the extended culture time, the system can be a useful tool to study novel anti-endocrine therapies and other therapeutic modalities.

Abbreviations
AREG: amphiregulin; BC: breast cancer; CTRL: control; ERα: estrogen receptor α; ER+ BC: estrogen receptor α-positive breast cancer; H&E: hematoxylin and eosin; IHC: immunohistochemistry; PRG: progesterone; SHG: second harmonic generation; TME: tumor microenvironment; TPEF: two-photon-
excited fluorescence,

Declarations

Ethics approval and consent to participate

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee. Informed consent was obtained from all individual participants included in the study. Anonymized patient tumor samples were obtained from the IPOLFG after institutional review board approval (UIC/1088).

Consent for publication

All authors have given consent for publication.

Availability of data and materials

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

Competing interests

The authors declare that they have no competing interests.

Funding

We acknowledge funding sources: Fundação para a Ciência e Tecnologia (FC) for the PhD fellowships SFRH/BD/52208/2013 and PD/BD/114047/2015; iNOVA4Health (UIDB/04462/2020), a program financially supported by FCT/Ministry of Education and Science, Portugal, through national funds and co-funded by FEDER under the PT2020 Partnership Agreement; “The Discoveries Centre for Regenerative and Precision Medicine” (European Commission Horizon 2020 Research and Innovation programme, under the Grant Agreement number 739572); iBETXplore starting grant (3D-ABC-PI-717); the Spanish Ministry of Economy and Competitiveness through the “Severo Ochoa” program for Centres of Excellence in R&D (SEV-2015-0522); Fundació Privada Cellex; Fundació Mir-Puig; Generalitat de Catalunya through the CERCA program”; European Commission Horizon 2020 LASERE LAB Europe (grant agreement 654148); the Biltema and ISREC Foundation; CANCERA-Paulssons.

Authors' contributions

ME, CBrisken, PMA, CBrito: study conceptualization. ALC, ME, GD, GS, CBrito: experimental design.
ALC, ME, GD, RR, FS, EG: data acquisition. ALC, ME, GD, EG, SA and CBrito: Data analysis. ALC, ME, GD, SA and CBrito: data interpretation. PLA, SA, PMA, CBrito: resources. ALC, ME and CBrito: Manuscript preparation. ALC, ME, GD, RR, FS, EG, PLA, GS, CBrisken, PMA, SA and CBrito: manuscript revision and editing. All authors read and approved the final manuscript.

Acknowledgments

We grateful acknowledge Dr Elizabeth Anderson for scientific advice and fruitful discussion. The Histopathology Unit at Instituto Gulbenkian Ciência, Oeiras, Portugal, is acknowledged for technical support.

References

1. Noone A, Cronin KA, Altekruse SF, Howlader N, Lewis R, Petkov VI, et al. Cancer incidence and survival trends by subtype using data from the Surveillance Epidemiology and End Results Program, 1992–2013. Cancer Epidemiol Biomarkers Prev. 2017;26(4):1–19.

2. Diaz Bessone MI, Gattas MJ, Laporte T, Tanaka M, Simian M. The Tumor Microenvironment as a Regulator of Endocrine Resistance in Breast Cancer. Front Endocrinol (Lausanne). 2019;10(August):1–10.

3. Rothenberger NJ, Somasundaram A, Stabile LP. The role of the estrogen pathway in the tumor microenvironment. Int J Mol Sci. 2018;19(2).

4. Murphy CG, Dickler MN. Endocrine resistance in hormone-responsive breast cancer: Mechanisms and therapeutic strategies. Endocr Relat Cancer. 2016;23(8):R337–52.

5. Martelotto LG, Ng CKY, Piscuoglio S, Weigelt B, Reis-filho JS. Breast cancer intra-tumor heterogeneity. Breast Cancer Res. 2014;16(R48):1–11.

6. Antoni D, Burckel H, Josset E, Noel G. Three-Dimensional Cell Culture: A Breakthrough in Vivo. Int J Mol Sci. 2015;16:5517–27.

7. Sflomos G, Dormoy V, Metsalu T, Jeitziner R, Battista L, Scabia V, et al. A Preclinical Model for ERα-Positive Breast Cancer Points to the Epithelial Microenvironment as
Determinant of Luminal Phenotype and Hormone Response. Cancer Cell. 2016;29(3):407–22.

8. Fridriksdottir AJ, Kim J, Villadsen R, Klitgaard MC, Hopkinson BM, Petersen OW, et al. Propagation of oestrogen receptor-positive and oestrogen-responsive normal human breast cells in culture. Nat Commun. 2015;6.

9. Muraro MG, Muenst S, Mele V, Quagliata L, Iezzi G, Tzankov A, et al. Ex-vivo assessment of drug response on breast cancer primary tissue with preserved microenvironments. Oncoimmunology. 2017;6(7):1-12.

10. Tanos T, Sflomos G, Echeverria PC, Ayyanan A, Gutierrez M, Delaloye J, et al. Progesterone / RANKL Is a Major Regulatory Axis in the Human Breast. Sci Transl Med. 2013;5(182):1-10.

11. van der Kuip H, Mürdter TE, Sonnenberg M, McCellan M, Gutzeit S, Gerteis A, et al. Short term culture of breast cancer tissues to study the activity of the anticancer drug taxol in an intact tumor environment. BMC Cancer. 2006;6:1-11.

12. Naipal KAT, Verkaik NS, Sánchez H, van Deurzen CHM, den Bakker MA, Hoeijmakers JHJ, et al. Tumor slice culture system to assess drug response of primary breast cancer. BMC Cancer. 2016;16(1):1-13.

13. Campuzano S, Pelling AE. Scaffolds for 3D Cell Culture and Cellular Agriculture Applications Derived From Non-animal Sources. Front Sustain Food Syst. 2019;3(May):1-9.

14. Rebelo SP, Pinto C, Martins TR, Harrer N, Estrada MF, Loza-Alvarez P, et al. 3D-3-culture: A tool to unveil macrophage plasticity in the tumour microenvironment. Biomaterials. 2018;163:185–97.

15. Estrada MF, Rebelo SP, Davies EJ, Pinto MT, Pereira H, Santo VE, et al. Modelling the tumour microenvironment in long-term microencapsulated 3D co-cultures
recapitulates phenotypic features of disease progression. Biomaterials. 2016;78:50–61.

16. Mathew M, Santos SICO, Zalvidea D, Loza-Alvarez P. Multimodal optical workstation for simultaneous linear, nonlinear microscopy and nanomanipulation: Upgrading a commercial confocal inverted microscope. Rev Sci Instrum. 2009;80(7):1-11.

17. Kato S, Endoh H, Masuhiro Y, Kitamoto T, Uchiyama S, Sasaki H, et al. Activation of the Estrogen Receptor Through Phosphorylation by Mitogen-Activated Protein Kinase. Science (80-). 1999;270:102–6.

18. Moerkens M, Zhang Y, Wester L, van de Water B, Meerman JHN. Epidermal growth factor receptor signalling in human breast cancer cells operates parallel to estrogen receptor α signalling and results in tamoxifen insensitive proliferation. BMC Cancer. 2014;14(1):1-16.

19. Karmakar S, Jin Y, Nagaich AK. Interaction of glucocorticoid receptor (GR) with estrogen receptor (ER) α and activator protein 1 (AP1) in dexamethasone-mediated interference of ERα activity. J Biol Chem. 2013;288(33):24020–34.

20. Lanzino M, Morelli C, Garofalo C, Panno ML, Mauro L, Ando S, et al. Interaction between estrogen receptor alpha and insulin/IGF signaling in breast cancer. Curr Cancer Drug Targets. 2008;8(7):597–610.

21. Universi- JH, Chemistry HB. Ligand-independent activation of steroid hormone receptors. J Mol Med. 1998;469–79.

22. Chen D, Washbrook E, Sarwar N, Bates GJ, Pace PE, Thirunuvakarasu V, et al. Phosphorylation of human estrogen receptor α at serine 118 by two distinct signal transduction pathways revealed by phosphorylation-specific antisera. Oncogene. 2002;21(32):4921–31.

23. Dolfi SC, Jäger A V, Medina DJ, Haffty BG, Yang J, Hirshfield KM. Fulvestrant treatment
alters MDM2 protein turnover and sensitivity of human breast carcinoma cells to chemotherapeutic drugs. Cancer Lett. 2014;350(1-2):52-60.

24. Regan RMO, Osipo C, Ariazi E, Lee ES, Meeke K, Morris C, et al. Development and Therapeutic Options for the Treatment ofRaloxifene-Stimulated Breast Cancer in Athymic Mice. Cancer Ther Preclin. 2006;12(7):2255-64.

25. Domenici G, Aurrekoetxea-Rodríguez I, Simões BM, Rábano M, Lee SY, Millán JS, et al. A Sox2–Sox9 signalling axis maintains human breast luminal progenitor and breast cancer stem cells. Oncogene. 2019;38(17):3151–69.

26. Dai X, Cheng H, Bai Z, Li J. Breast Cancer Cell Line Classification and Its Relevance with Breast Tumor Subtyping. J Cancer. 2017;8.

27. Livak KJ, Schmittgen TD. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2^ΔΔCt Method. Methods. 2001;25(4):402–8.

28. Matthew G. Vander Heiden, Cantley LC, Thompson CB. Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation. Science (80-.). 2010;324(5930):1029–33.

29. Gloushankova NA, Rubtsova SN, Zhitnyak IY. Cadherin-mediated cell-cell interactions in normal and cancer cells. Tissue Barriers. 2017;5(3):1-15.

30. Dai X, Cheng H, Bai Z, Li J. Breast Cancer Cell Line Classification and Its Relevance with Breast Tumor Subtyping. J Cancer. 2017;8(16):3131–3141.

31. Osborne CK, Wakeling A, Nicholson RI. Fulvestrant: an oestrogen receptor antagonist with a novel mechanism of action. Br J Cancer. 2004;90:2–6.

32. Vergote I, Robertson JFR. Fulvestrant is an effective and well-tolerated endocrine therapy for postmenopausal women with advanced breast cancer: Results from clinical trials. Br J Cancer. 2004;90:S11-4.

33. Amir E, Miller N, Geddie W, Freedman O, Kassam F, Simmons C, et al. Prospective
Study Evaluating the Impact of Tissue Confirmation of Metastatic Disease in Patients With Breast Cancer. J Clin Oncol. 2020;30(6):587–92.

34. Burns KA, Korach KS. Estrogen receptors and human disease: an update. Arch Toxicol. 2016;86(10):1491–504.

35. Lindstro LS, Karlsson E, Wilking UM, Johansson U, Hartman J, Lidbrink EK, et al. Clinically Used Breast Cancer Markers Such As Estrogen Receptor , Progesterone Receptor , and Human Epidermal Growth Factor Receptor 2 Are Unstable Throughout Tumor Progression. J Clin Oncol. 2020;30(21).

36. Sheppard VB, Faul LA, Luta G, Clapp JD, Wang H, Isaacs C, et al. Frailty and Adherence to Adjuvant Hormonal Therapy in Older Women With Breast Cancer: CALGB Protocol 369901. J Clin Oncol. 2020;32(22).

37. Pontiggia O, Sampayo R, Raffo D, Motter A, Xu R, Bissell MJ, et al. The tumor microenvironment modulates tamoxifen resistance in breast cancer: A role for soluble stromal factors and fibronectin through β1 integrin. Breast Cancer Res Treat. 2012;133(2):459–71.

38. Brechbuhl HM, Finlay-schultz J, Yamamoto TM, Gillen AE, Cittelly DM, Tan AC, et al. Fibroblast subtypes regulate responsiveness of luminal breast cancer to estrogen. Clin Cancer Res. 2018;23(7):1710–21.

39. Morgan MM, Livingston MK, Warrick JW, Stanek EM, Alarid ET, Beebe DJ, et al. Mammary fibroblasts reduce apoptosis and speed estrogen-induced hyperplasia in an organotypic MCF7-derived duct model. Sci Rep. 2018;8(1):1–13.

40. Jansen MPHM, Foekens JA, Van Staveren IL, Dirkzwager-Kiel MM, Ritstier K, Look MP, et al. Molecular classification of tamoxifen-resistant breast carcinomas by gene expression profiling. J Clin Oncol. 2005;23(4):732–40.

41. Sampayo RG, Toscani AM, Rubashkin MG, Thi K, Masullo LA, Violi IL, et al. Fibronectin
rescues estrogen receptor α from lysosomal degradation in breast cancer cells. J Cell Biol. 2018;217(8):2777–98.

42. Alco GUL, An ABG, Lu DSG, Pilanci KNUR, Tuzlali S, Ordu C, et al. Clinical and histopathological factors associated with Ki-67 expression in breast cancer patients. Oncol Lett. 2015;9:1046–54.

43. Davies EJ, Dong M, Gutekunst M, Närhi K, van Zoggel HJAA, Blom S, et al. Capturing complex tumour biology in vitro: histological and molecular characterisation of precision cut slices. Sci Rep. 2015;5(October):17187.

44. Mekala NK, Baadhe RR, Potumarthi R. Mass transfer aspects of 3D cell cultures in tissue engineering. Asia-Pacific J Chem Eng. 2014;9(3):318–29.

45. Rouwkema J, Koopman BFJM, Blitterswijk CAV, Dhert WJA, Malda J. Supply of nutrients to cells in engineered tissues. Biotechnol Genet Eng Rev. 2009;26(1):163–78.

46. Sun J, Tan H. Alginate-Based Biomaterials for Regenerative Medicine Applications. Materials (Basel). 2013;6:1285–309.

47. Wilson JL, Najia MA, Saeed R, McDevitt TC. Alginate Encapsulation Parameters Influence the Differentiation of Microencapsulated Embryonic Stem Cell Aggregates. Biotechnol Bioeng. 2014;111(3):618–31.

48. Miranda JP, Rodrigues A, Tostões RM, Sofia Leite HZ, Carrondo MJT, Alves PM. Extending Hepatocyte Functionality for Drug-Testing Applications Using High-Viscosity Alginate-Encapsulated Three-Dimensional Cultures in Bioreactors. Tissue Eng Part C Methods. 2010;16(6).

49. Kanta J. Collagen matrix as a tool in studying fibroblastic cell behavior. Cell Adhes Migr. 2015;9(4):308–16.

50. Tilbury K, Campagnola PJ. Applications of second-harmonic generation imaging microscopy in ovarian and breast cancer. Perspect Medicin Chem. 2015;7:21–32.
51. Provenzano PP, Inman DR, Eliceiri KW, Knittel JG, Yan L, Rueden CT, et al. Collagen density promotes mammary tumor initiation and progression. BMC Med. 2008;6:1-15.

52. Li T, Sun L, Miller N, Nicklee T, Woo J, Hulse-Smith L, et al. The association of measured breast tissue characteristics with mammographic density and other risk factors for breast cancer. Cancer Epidemiol Biomarkers Prev. 2005;14(2):343-9.

53. Netti PA, Berk DA, Swartz MA, Grodzinsky AJ, Jain RK. Role of Extracellular Matrix Assembly in Interstitial Transport in Solid Tumors. Cancer Res. 2000;60(9):2497-503.

54. Rijal G. Native-mimicking in vitro microenvironment: an elusive and seductive future for tumor modeling and tissue engineering. J Biol Eng. 2018;1-22.

55. Stanton SE, Disis ML. Clinical significance of tumor-infiltrating lymphocytes in breast cancer. J Immunother Cancer [Internet]. 2016;4(1):1-7. Available from: http://dx.doi.org/10.1186/s40425-016-0165-6

56. Wang X, Mori I, Tang W, Nakamura M, Nakamura Y, Sato M. p63 Expression in Normal, Hyperplastic and Malignant Breast Tissues. Breast cancer. 2002;9(3):0-3.

57. Ribeiro-silva A, Ramalho LNZ. The Relationship Between p63 and p53 Expression in Normal and Neoplastic Breast Tissue. Arch Pathol Lab Med. 2003;127(3):336-40.

58. Wang X, Mori I, Tang W, Nakamura M, Nakamura Y, Sato M. p63 Expression in Normal, Hyperplastic and Malignant Breast Tissues. Breast cancer. 2002;9(3):0-3.

59. Makki J. Diversity of breast carcinoma: Histological subtypes and clinical relevance. Clin Med Insights Pathol. 2015;8(1):23-31.

60. Kang KS, Morita I, Cruz A, Jeon YJ, Trosko JE, Chang CC. Expression of estrogen receptors in a normal human breast epithelial cell type with luminal and stem cell characteristics and its neoplastically transformed cell lines. Carcinogenesis. 1997;18(2):251-7.

61. Jia M, Dahlman-Wright K, Gustafsson JÅ. Estrogen receptor alpha and beta in health
and disease. Best Pract Res Clin Endocrinol Metab. 2015;29(4):557–68.

62. Lindstro LS, Yau C, Czene K, Thompson CK, Hoadley KA, Veer LJ Van, et al. Intratumor Heterogeneity of the Estrogen Receptor and the Long-term Risk of Fatal Breast Cancer. JNCI J Natl Cancer Inst. 2018;110(7):726–33.

63. Lin C-Y, Ström A, Vega VB, Kong SL, Yeo AL, Thomsen JS, et al. Discovery of estrogen receptor alpha target genes and response elements in breast tumor cells. Genome Biol. 2004;5(9):R66.

64. Kim J, Lee J, Jang SY, Kim C, Choi Y, Kim A. Anticancer effect of metformin on estrogen receptor-positive and tamoxifen-resistant breast cancer cell lines. Oncol Rep. 2016;35(5):2553–60.

65. Fleury L, Gerus M, Lavigne AC, Richard-Foy H, Bystricky K. Eliminating epigenetic barriers induces transient hormone-regulated gene expression in estrogen receptor negative breast cancer cells. Oncogene. 2008;27(29):4075–85.

66. Buchsbaum RJ, Oh SY. Breast cancer-associated fibroblasts: Where we are and where we need to go. Cancers (Basel). 2016;8(2):1–19.

67. Kurobe M, Furukawa S, Hayashi K. Synthesis and secretion of an epidermal growth factor (EGF) by human fibroblast cells in culture. Biochem Biophys Res Commun. 1985;131(3):1080–5.

68. Majety M, Pradel LP, Gies M, Ries CH. Fibroblasts influence survival and therapeutic response in a 3D co-culture model. PLoS One. 2015;10(6):1–18.

Supplementary Figure Captions

Figure S1: Sample weight.

Figure S2: Encapsulated BC tissue microstructures do not present myoepithelial markers and maintain high metabolic viability. **a** Metabolic activity was assessed along culture. **b** Immunohistochemistry analysis of p63 (myoepithelial cells) at one month of culture; (scale bar: 60 µm). **c** Metabolic activity was assessed in encapsulated and non-encapsulated tissue microstructures
derived from the same patients.

Figure S3: ER-negative breast cancer encapsulated tissue microstructures do not respond to 17-b-estradiol challenging.
- **a** Hematoxylin and eosin staining and immunohistochemistry for ER of MDA-MB-231 (ER- cell line) cells cultured in 2D (scale: 200 µm).
- **b** *ERα* gene expression in encapsulated microstructures cultured for one month relatively to MDA-MB-231 cells.
- **c** Encapsulated tissue microstructures were cultured for three days in depleted medium before stimulation with 17-b-estradiol; expression of ER downstream target genes was assessed by RT-qPCR (amphiregulin - *AREG*, progesterone receptor - *PGR* and protein PS2 - *pS2*, N=9) - quantitative evaluation of data shown in Figure 3b).
- **d** ER-negative BC encapsulated tissue microstructures cultured in complete medium were challenged with 17-b-estradiol and expression of ER downstream target genes were assessed by RT-qPCR (*AREG, PGR, pS2*, N=2).
- **e** Encapsulated tissue microstructures cultured in complete medium were challenged with 17-b-estradiol and ER downstream targets were assessed by RT-qPCR (*AREG, PGR* and *pS2*, N=7). Data are shown as fold-change in gene expression upon 17-β-estradiol challenge relatively to vehicle-exposed control. Data are shown as fold change in gene expression upon 17-b-estradiol challenge relatively to vehicle-exposed control (CTRL). Statistical analysis was performed by the Mann-Whitney test (*p-value<0.05).

Figures
Figure 1

Alginate encapsulated tissue microstructures maintained parental tumor architecture. a
Experimental workflow for the establishment of long-term cultures of BC patient-derived tissue microstructures: samples were collected at the hospital and brought to the laboratory within 1-3 hours of surgery. Tissue samples were mechanical processed and subjected to mild enzymatic digestion. The obtained BC tissue microstructures were encapsulated in alginate and cultured for up to one month. Along culture, tissue microstructures were interrogated: cell viability assessment, immunohistochemistry analysis (IHC), Second Harmonic Generation (SHG) microscopy and estrogen receptor α (ER) stimulation and inhibition were performed. b Hematoxylin and eosin of biopsy (top row) and corresponding encapsulated microstructures at one month of culture (bottom row) (scale: 200 μm).
Figure 1

Alginate encapsulated tissue microstructures maintained parental tumor architecture. a
Experimental workflow for the establishment of long-term cultures of BC patient-derived tissue microstructures: samples were collected at the hospital and brought to the laboratory within 1-3 hours of surgery. Tissue samples were mechanical processed and subjected to mild enzymatic digestion. The obtained BC tissue microstructures were encapsulated in alginate and cultured for up to one month. Along culture, tissue microstructures were interrogated: cell viability assessment, immunohistochemistry analysis (IHC), Second Harmonic Generation (SHG) microscopy and estrogen receptor α (ER) stimulation and inhibition were performed. b Hematoxylin and eosin of biopsy (top row) and corresponding encapsulated microstructures at one month of culture (bottom row) (scale: 200 μm).
Alginate encapsulated tissue microstructures maintained cell populations and contain proliferating cells. a Immunohistochemistry analysis of: E-cadherin (epithelial cells); vimentin (stromal cells); CD45 (immune cells); CD31 (endothelial cells) at one month of culture b Immunohistochemistry analysis of Ki-67 (cell proliferation) of encapsulated microstructures at one month of culture (scale bars: 200 µm for low magnification and 100 µm for high magnification).
Alginate encapsulated tissue microstructures maintained cell populations and contain proliferating cells. a Immunohistochemistry analysis of: E-cadherin (epithelial cells); vimentin (stromal cells); CD45 (immune cells); CD31 (endothelial cells) at one month of culture. b Immunohistochemistry analysis of Ki-67 (cell proliferation) of encapsulated microstructures at one month of culture (scale bars: 200 µm for low magnification and 100 µm for high magnification).
Encapsulated tissue microstructures maintained collagen fibrillar structures Second Harmonic Generation (SHG) microscopy at one month of culture: yellow – Two-Photon Excitation Microscopy (TPEF); blue - collagen fibers (scale bar: 50 µm).
Figure 3

Encapsulated tissue microstructures maintained collagen fibrillar structures Second Harmonic Generation (SHG) microscopy at one month of culture: yellow - Two-Photon Excitation Microscopy (TPEF); blue - collagen fibers (scale bar: 50 µm).
Figure 4
Estrogen Receptor α (ER) expression and functionality are maintained in alginate encapsulated tissue microstructures up to 1 month of culture. a Immunohistochemistry detection of ER in biopsy (top row) and encapsulated tissue microstructures culture for a month (bottom row) (scale bars: 200 µm for low magnification and 100 µm for high magnification). b Encapsulated tissue microstructures were cultured for 3 days in depleted medium and stimulated with 17-b-estradiol; expression of ER downstream target genes was assessed by RT-qPCR (amphiregulin - AREG, progesterone receptor - PGR and protein PS2 - pS2, N=9). Data are shown as fold change in gene expression upon 17-b-estradiol challenge relatively to vehicle-exposed control (CTRL). c,d Encapsulated tissue microstructures were cultured for 3-5 days in complete medium, before challenge with fulvestrant; ER downstream targets were assessed by RT-qPCR (AREG, PGR and pS2, N=5). Data are shown as fold change in gene expression upon fulvestrant challenge relatively to vehicle-exposed control. Statistical analysis was performed by the Mann-Whitney test (*p-value<0.05).
Figure 4

Estrogen Receptor α (ER) expression and functionality are maintained in alginate encapsulated tissue microstructures up to 1 month of culture. a Immunohistochemistry detection of ER in biopsy (top row) and encapsulated tissue microstructures culture for a month (bottom row) (scale bars: 200 µm for low magnification and 100 µm for high magnification). b Encapsulated tissue microstructures were cultured for 3 days in depleted medium and stimulated with 17-b-estradiol; expression of ER downstream target genes was assessed by RT-qPCR (amphiregulin - AREG, progesterone receptor - PGR and protein PS2 - pS2, N=9). Data are shown as fold change in gene expression upon 17-b-estradiol challenge relatively to vehicle-exposed control (CTRL). c,d Encapsulated tissue microstructures were cultured for 3-5 days in complete medium, before challenge with fulvestrant; ER downstream targets were assessed by RT-qPCR (AREG, PGR and pS2, N=5). Data are shown
as fold change in gene expression upon fulvestrant challenge relatively to vehicle-exposed control. Statistical analysis was performed by the Mann-Whitney test (*p-value<0.05).

Supplementary Files
This is a list of supplementary files associated with this preprint. Click to download.

Supplementary Tables.docx
FigureS2_10302020.pdf
FigureS3_10302020.pdf
FigureS1_10302020.pdf
FigureS2_10302020.pdf
FigureS3_10302020.pdf
FigureS1_10302020.pdf
Supplementary Tables.docx