Equation of state for iridium at high pressures

K V Khishchenko1,2,3

1 Joint Institute for High Temperatures of the Russian Academy of Sciences, Izhorskaya 13 Bldg 2, Moscow 125412, Russia
2 Moscow Institute of Physics and Technology, Institutskiy Pereulok 9, Dolgoprudny, Moscow Region 141701, Russia
3 South Ural State University, Lenin Avenue 76, Chelyabinsk 454080, Russia

E-mail: konst@ihed.ras.ru

Abstract. An equation of state for iridium is proposed in a wide range of density and internal energies. The results of calculations using this equation of state are compared with the available experimental data for this metal at high pressures. The proposed equation of state can be used to simulate adiabatic processes in iridium under shock-wave loading.

1. Introduction
Equations of state (EOSs) of materials are required for hydrodynamic modeling of processes with high energy concentration [1–3]. Such processes take place, for example, during a high-speed collision of bodies [4–6], when a substance is exposed to intense laser radiation [7–10] or beams of high-energy particles [11–13], during an electric explosion of conductors [14–17]. The EOS essentially determines the correspondence of the results of numerical modeling to the physical characteristics of flows arising in the modeled process [2, 18, 19].

Iridium is a refractory metal with high hardness and corrosion resistance, which is used, in particular, to coat x-ray reflecting mirrors [20] and as a target material for the production of antiprotons [21]. The EOS for this metal in a wide range of pressures (P), specific volumes ($V = \rho^{-1}; \rho$ is the density) and internal energies (E) is necessary to simulate various processes under intense pulsed action, accompanied by the formation of shock waves.

In this work, an EOS for iridium is proposed in the form of a pressure function depending on the specific volume and internal energy. The calculation results are presented in comparison with the available experimental data in the high-pressure region.

2. EOS model
The EOS for matter is developed on the basis of the model [22–24], in which thermodynamic functions are related by the following general dependence:

$$P(V, E) = P_c(V) + \frac{\Gamma(V, E)}{V}[E - E_c(V)].$$

(1)

Here, E_c and P_c are internal energy and pressure at zero temperature, $T = 0$; Γ is the ratio of thermal pressure to thermal energy density.
The energy E_c on the cold compression curve for $V \leq V_{0c}$ (where V_{0c} is the specific volume of matter at $P = 0$ and $T = 0$) is given by a transcendental function:

$$E_c(V) = 3V_{0c} \left(\frac{a_0}{3} \ln \sigma_c - \sum_{i=1}^{\infty} \frac{a_i}{i} \sigma_c^{-i/3} + \sum_{i=1}^{\infty} \frac{b_i}{i} \sigma_c^{i/3} + \sum_{i=1}^{\infty} \frac{a_i}{i} - \sum_{i=1}^{\infty} \frac{b_i}{i} \right), \quad (2)$$

where $\sigma_c = V_{0c}/V$. This expression satisfies the following condition:

$$E_c(V_{0c}) = 0. \quad (3)$$

The value of the coefficient b_2 is selected from the model of an ideal fermion gas in the limit of high compression ratios:

$$b_2 = 3^{2/3} \pi^{-1} \frac{4^{4/3}}{Z^{5/3}} \frac{\alpha_0^2}{a_0^3} E^2 \frac{[A m_u V_{0c}]}{V_{0c}}^{5/3}, \quad (4)$$

where a_0 is the Bohr radius; E_H is the Hartree energy; m_u is the unified atomic mass unit; A is the relative atomic mass; Z is the atomic number. The values of the remaining coefficients b_1 and a_i in function (2) are determined from the requirement for a minimum root-mean-square deviation of cold pressure $P_c = -dE_c/dV$ from the results of calculations by the Thomas–Fermi model with quantum and exchange corrections [25] in a certain range of compression ratios when the conditions for pressure, bulk modulus $B_c = -VdP_c/dV$ and its derivative with respect to pressure $B'_c = dB_c/dP_c$ are met at $T = 0$ and $\sigma_c = 1$:

$$P_c(V_{0c}) = 0, \quad (5)$$
$$B_c(V_{0c}) = B_{0c}, \quad (6)$$
$$B'_c(V_{0c}) = B'_{0c}. \quad (7)$$

The energy E_c for $V > V_{0c}$ is given by an algebraic function:

$$E_c(V) = V_{0c} \left(\frac{a_m}{m} \sigma_c^m + \frac{a_n}{n} \sigma_c^n - \frac{a_m}{m} + \frac{a_n}{n} \right) + E_{sub}, \quad (8)$$

where E_{sub} is the sublimation energy at zero temperature. This relation satisfies condition (5). Conditions (3), (6) and (7) are required additionally. Taking this into account, two parameters (l and n) remain free in expression (8).

The thermal contribution to the EOS is determined by the coefficient Γ, which depends upon the specific volume and internal energy:

$$\Gamma(V, E) = \gamma_1 + \frac{\gamma_c(V) - \gamma_1}{1 + \sigma^{-2}(E - E_c(V))/E_a}, \quad (9)$$

where $\sigma = V_0/V$; V_0 is the specific volume of matter under normal conditions ($P = P_0$, $E = E_0$); γ_1 is a constant characterizing hot matter; γ_c is a function of the specific volume corresponding to the Grüneisen coefficient at zero temperature; E_a is the characteristic thermal energy that delimits the cases of hot and cold matter. Dependency $\gamma_c(V)$ is taken similarly to work [26]:

$$\gamma_c(V) = 2/3 + (\gamma_{0c} - 2/3) \frac{\sigma_n^2 + \ln^2 \sigma_m}{\sigma_n^2 + \ln^2 (\sigma/\sigma_m)}, \quad (10)$$

where γ_{0c} is the Grüneisen coefficient at $T = 0$ and $V = V_0$; σ_n and σ_m are free parameters.

3. Calculation results

The shock compressibility of iridium was studied using conventional explosive devices up to pressures of 292 GPa [27, 28]. The use of special hemispherical explosive devices [29] made it possible to obtain a pressure of 617 GPa in iridium under shock loading [28].
Figure 1. Shock adiabat of iridium: line—the result of calculation according to the presented EOS; markers—experimental data (I1—[27]; I2—[28]).

Figure 2. Shock adiabat of iridium: the designations are the same as in figure 1.

Comparison of the calculated shock adiabat with data [27, 28] for iridium is illustrated in figures 1–3. Figure 3 also shows the calculated cold curve of the metal in comparison with the results of static compression experiments at room temperature [30].
Figure 3. Shock adiabat (H), cold curve (P_c) and room-temperature isotherm (P_r) of iridium: black solid and dash-dot lines—shock adiabat and cold curve calculated using the presented EOS; green dash-dot line—room-temperature isotherm [30]; markers—experimental data upon shock (I1—[27]; I2—[28]) and isothermal (I3—[30]) compression.

Analysis of figures 1–3 allows one to conclude that there is a fairly good description of the properties of iridium in the entire investigated range of velocities of the shock front and matter behind this front, pressures and compression ratios.

4. Conclusion
Thus, the developed equation of state for iridium is in good agreement with the experimental data available at high pressures. This equation of state can be used for numerical simulation of hydrodynamic processes in this material in shock waves.

Acknowledgments
This work is supported by the Russian Science Foundation (grant No. 19-19-00713).

References
[1] Zel’dovich Ya B and Raizer Yu P 1967 Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (New York: Academic Press)
[2] Bushman A V, Fortov V E, Kanel’ G I and Ni A L 1993 Intense Dynamic Loading of Condensed Matter (Washington: Taylor & Francis)
[3] Lomonosov I V and Fortova S V 2017 High Temp. 55 585–610
[4] Kanel’ G I 2020 High Temp. 58 500–65
[5] Khishchenko K V and Mayer A E 2021 Int. J. Mech. Sci. 189 105971
[6] Young J, Teixeira-Dias F, Azevedo A and Mill F 2021 Int. J. Mech. Sci. 192 106108
[7] Gus’kov S Yu, Krasyuk I K, Semenov A Yu, Stuchebryukhov I A and Khishchenko K V 2019 JETP Lett. 109 516–20
[8] Struleva E V, Komarov P S, Romashevskiy S A, Ovchinnikov M A and Ashitkov S I 2020 High Temp. 58 148–50
[9] Inogamov N A, Petrov Yu V, Khokhlov V A and Zhakhovskii V V 2020 High Temp. 58 632–46
[10] Semenov A Yu, Stuchebryukhov I A and Khishchenko K V 2021 Math. Montis. 50 108–18
[11] Gnyusov S F, Rotshtein V P, Mayer A E, Rostov V V, Gunin A V, Khishchenko K V and Levashov P R 2016 Int. J. Fract. 199 59–70
[12] Shilkin N S et al 2020 J. Phys.: Conf. Ser. 1556 012013
[13] Schoenberg K et al 2020 Phys. Plasmas 27 043103
[14] Kondratyev A M, Korobenko V N and Rakhal A D 2018 J. Exp. Theor. Phys. 127 1074–86
[15] Savvatimsky A I, Onufriev S V, Valyano G E, Kireeva A N and Patrikeev Yu B 2020 High Temp. 58 144–7
[16] Barengolts S A, Uimanov I V, Oreshkin V I, Khishchenko K V and Oreshkin E V 2021 J. Appl. Phys. 129 133301
[17] Aleksandrov V V et al 2021 Plasma Phys. Rep. 47 355–61
[18] Bushman A V, Fortov V E and Lomonosov I V 1993 J. Non-Cryst. Solids 156–158 631–8
[19] Fortov V 2016 Thermodynamics and Equations of State for Matter: From Ideal Gas to Quark–Gluon Plasma (Singapore: World Scientific Publishing)
[20] Ziegler E, Hignette O, Morawe Ch and Tucoulou R 2001 Nucl. Instrum. Methods Phys. Res. A 467–468 954–7
[21] Möhl D 1997 Hyperfine Interact. 109 33–41
[22] Khishchenko K V 2004 Tech. Phys. Lett. 30 829–31
[23] Khishchenko K V 2015 J. Phys.: Conf. Ser. 653 012081
[24] Khishchenko K V 2016 J. Phys.: Conf. Ser. 774 012001
[25] Kalitkin N N 1960 Zh. Eksp. Teor. Fiz. 38 1534–40
[26] Bushman A V, Zhermakletov M V, Lomonosov I V, Sutulov Yu N, Fortov V E and Khishchenko K V 1996 Zh. Eksp. Teor. Fiz. 109 1662–70
[27] Marsh S P (ed) 1980 LASL Shock Hugoniot Data (Berkeley, CA: University of California Press)
[28] Al’tshuler L V, Bakanova A A, Dudoladov I P, Dynin E A, Trunin R F and Chekin B S 1981 J. Appl. Mech. Tech. Phys. 22 145–69
[29] Al’tshuler L V, Trunin R F, Krupnikov K K and Panov N V 1996 Usp. Fiz. Nauk 166 575–81
[30] Yusenko K V, Khandarkhaeva S, Fedotenko T, Pakhomova A, Gromilov S A, Dubrovinsky L and Dubrovinskaia N 2019 J. Alloys Compd. 788 212–8