SPHERICAL HARMONICS

FENG DAI AND YUAN XU

Abstract. This is Chapter 1 of the book Approximation Theory and Harmonic Analysis on Spheres and Balls by the authors. It provides a self-contained introduction to spherical harmonics. The book will be published as a title in Springer Monographs in Mathematics by Springer in 2013. The table of contents of the book is attached at the end of this file.

In this chapter we introduce spherical harmonics and study their properties. Most of the material of this chapter, except the last section, is classical. We strive for a succinct account of the theory of spherical harmonics. After a standard treatment of the space of spherical harmonics and orthogonal bases in the first section, the orthogonal projection operator and reproducing kernels, also known as zonal harmonics, are developed in greater details in the second section, because of their central role in harmonic analysis and approximation theory. As an application of the addition formula, it is shown in the third section that there exist bases of spherical harmonics consisting of entirely zonal harmonics. The Laplace–Beltrami operator is discussed in the fourth section, where an elementary and self-contained approach is adopted. Spherical coordinates and an explicit orthonormal basis of spherical harmonics in these coordinates are presented the fifth section. These formulas in two and three variables are collected in the sixth section for easy reference, since they are most often used in applications. The connection to group representation is treated briefly in the seventh section. The last section deals with derivatives and integrals on the sphere. With the introduction of angular derivatives that are first-order differential operators acting on the large circles of intersections of the sphere and the coordinate planes, it is shown that the Laplace–Beltrami operator can be decomposed into second-order angular derivatives. These derivative operators will play an important role in approximation theory on the sphere. They are used to derive several integral formulas on the sphere.

1. Space of spherical harmonics and orthogonal bases

We begin by introducing some notation that will be used throughout this book. For \(x \in \mathbb{R}^d \), we write \(x = (x_1, \ldots, x_d) \). The inner product of \(x, y \in \mathbb{R}^d \) is denoted by \(\langle x, y \rangle := \sum_{i=1}^d x_i y_i \) and the norm of \(x \) is denoted by \(\|x\| := \sqrt{\langle x, x \rangle} \). Let \(\mathbb{N}_0 \) denote the set of nonnegative integers. For \(\alpha = (\alpha_1, \ldots, \alpha_d) \in \mathbb{N}_0^d \), a monomial \(x^\alpha \) is a product \(x_1^{\alpha_1} \cdots x_d^{\alpha_d} \), which has degree \(|\alpha| = \alpha_1 + \cdots + \alpha_d \).
A homogeneous polynomial P of degree n is a linear combination of monomials of degree n, that is, $P(x) = \sum_{|\alpha|=n} c_\alpha x^\alpha$, where c_α are either real or complex numbers. A polynomial of (total) degree at most n is of the form $P(x) = \sum_{|\alpha|\leq n} c_\alpha x^\alpha$. Let \mathcal{P}_n^d denote the space of real homogeneous polynomials of degree n and let Π_n^d denote the space of real polynomials of degree at most n. Counting the cardinalities of \[\{ \alpha \in \mathbb{N}_0^d : |\alpha| = n \} \quad \text{and} \quad \{ \alpha \in \mathbb{N}_0^d : |\alpha| \leq n \} \] shows that \[\dim \mathcal{P}_n^d = \binom{n + d - 1}{n} \quad \text{and} \quad \dim \Pi_n^d = \binom{n + d}{n}. \]

Let ∂_i denote the partial derivative in the i-th variable and Δ the Laplacian operator \[\Delta := \partial_1^2 + \cdots + \partial_d^2. \]

Definition 1.1. For $n = 0, 1, 2, \ldots$ let \mathcal{H}_n^d be the linear space of real harmonic polynomials, homogeneous of degree n, on \mathbb{R}^d, that is, \[\mathcal{H}_n^d := \{ P \in \mathcal{P}_n^d : \Delta P = 0 \}. \]

Spherical harmonics are the restrictions of elements in \mathcal{H}_n^d to the unit sphere. If $Y \in \mathcal{H}_n^d$, then $Y(x) = \|x\|^n Y(x')$ where $x = \|x\| x'$ and $x' \in S^{d-1}$. Strictly speaking, one should make a distinction between \mathcal{H}_n^d and its restriction to the sphere. We will, however, also call \mathcal{H}_n^d the space of spherical harmonics. When it is necessary to emphasize the restriction to the sphere, we shall use the notation $\mathcal{H}_n^d|_{S^{d-1}}$. In the same vein, we shall define $\mathcal{P}_n(S^{d-1}) := \mathcal{P}_n^d|_{S^{d-1}}$ and $\Pi_n(S^{d-1}) := \Pi_n^d|_{S^{d-1}}$.

Spherical harmonics of different degrees are orthogonal with respect to \begin{equation} \label{eq:orthogonal} \langle f, g \rangle_{S^{d-1}} := \frac{1}{\omega_d} \int_{S^{d-1}} f(x)g(x)d\sigma(x) \end{equation} where $d\sigma$ is the surface area measure and ω_d denotes the surface area of $S^{d-1},$ \begin{equation} \label{eq:omega} \omega_d := \int_{S^{d-1}} d\sigma = \frac{2\pi^{d/2}}{\Gamma(d/2)}. \end{equation}

Theorem 1.2. If $Y_n \in \mathcal{H}_n^d$, $Y_m \in \mathcal{H}_m^d$, and $n \neq m$, then $\langle Y_n, Y_m \rangle_{S^{d-1}} = 0$.

Proof. Let $\frac{\partial}{\partial r}$ denote the normal derivative. Since Y_n is homogeneous, $Y_n(x) = r^n Y_n(x')$, where $x = rx'$ and $x' \in S^{d-1}$, so that $\frac{\partial Y_n}{\partial r}(x') = n Y_n(x')$ for $x' \in S^{d-1}$ and $n \geq 0$. By Green’s identity, \[(n - m) \int_{S^{d-1}} Y_n Y_mD\sigma = \int_{S^{d-1}} \left(Y_m \frac{\partial Y_n}{\partial r} - Y_n \frac{\partial Y_m}{\partial r} \right) d\sigma = \int_{S^{d-1}} \left(Y_m \Delta Y_n - Y_n \Delta Y_m \right) dx = 0, \] since $\Delta Y_n = 0$ and $\Delta Y_m = 0$. \hfill \Box

Theorem 1.3. For $n = 0, 1, 2, \ldots$, there is a decomposition of \mathcal{P}_n^d, \begin{equation} \label{eq:decomposition} \mathcal{P}_n^d = \bigoplus_{0 \leq j \leq n/2} \|x\|^{2j}\mathcal{H}_{n-2j}^d. \end{equation} In other words, for each $P \in \mathcal{P}_n^d$, there is a unique decomposition \begin{equation} \label{eq:unique_decomposition} P(x) = \sum_{0 \leq j \leq n/2} \|x\|^{2j} P_{n-2j}(x) \quad \text{with} \quad P_{n-2j} \in \mathcal{H}_{n-2j}^d. \end{equation}
Proof: The proof uses induction. Evidently $P_0^d = H_0^d$ and $P_1^d = H_1^d$. Since $\Delta P_n^d \subset P_{n-2}^d$, $\dim H_n^d \geq \dim P_n^d - \dim P_{n-2}^d$. Suppose the statement holds for $m = 0, 1, \ldots, n-1$. Then $\|x\|^2 P_{n-2}^d$ is a subspace of P_n^d and it is isomorphic to P_{n-2}^d.

By the induction hypothesis, $\|x\|^2 P_{n-2}^d = \bigoplus_{j=0}^k \|x\|^{2j+2} H_{n-2-2j}^d$. Hence, by the previous theorem, H_n^d is orthogonal to $\|x\|^2 P_{n-2}^d$, so that $\dim H_n^d + \dim P_{n-2}^d \leq \dim P_n^d$. Consequently, $P_n^d = H_n^d \oplus \|x\|^2 P_{n-2}^d$.

Corollary 1.4. For $n = 0, 1, 2, \ldots$,

$$\dim H_n^d = \dim P_n^d \dim P_{n-2}^d = \binom{n + d - 1}{n} - \binom{n + d - 3}{n - 2},$$

where it is agreed that $\dim P_{n-2}^d = 0$ for $n = 0, 1$.

Corollary 1.5. For $n \in \mathbb{N}$, $\Pi_n(S^{d-1}) = P_n(S^{d-1}) \oplus P_{n-1}(S^{d-1})$ and

$$\dim \Pi_n(S^{d-1}) = \dim P_n^d + \dim P_{n-1}^d = \binom{n + d - 1}{n} + \binom{n + d - 2}{n - 1}.$$

Proof. By Theorem 1.3, $\Pi_n(S^{d-1})$ can be written as a direct sum of H_k^d for $0 \leq k \leq n$, which gives the stated decomposition by (1.3). Moreover,

$$\dim \Pi_n(S^{d-1}) = \sum_{k=0}^n \dim H_k^d = \sum_{k=0}^n (\dim P_k^d - \dim P_{k-2}^d)$$

by (1.5), which simplifies to (1.6).

The orthogonality and homogeneity define spherical harmonics.

Proposition 1.6. If P is a homogeneous polynomial of degree n and P is orthogonal to all polynomials of degree less than n with respect to $\langle \cdot, \cdot \rangle_{S^{d-1}}$, then $P \in H_n^d$.

Proof. Since $P \in P_n^d$, P can be expressed as in (1.4). The orthogonality then shows that $P = P_n \in H_n^d$.

Let $O(d)$ denote the orthogonal group, the group of $d \times d$ orthogonal matrices, and let $SO(d) = \{g \in O(d) : \det g = 1\}$ be the special orthogonal group. A rotation in \mathbb{R}^d is determined by an element in $SO(d)$.

Theorem 1.7. The space H_n^d is invariant under the action $f(x) \mapsto f(Qx)$, $Q \in O(d)$. Moreover, if $\{Y_\alpha\}$ is an orthonormal basis of H_n^d, then so is $\{Y_\alpha(Q\cdot)\}$.

Proof. Since Δ is invariant under the rotation group $O(d)$ (writing $\Delta = \nabla \cdot \nabla$ and changing variables), if $Y \in H_n^d$ and $Q \in O(d)$ then $Y(Qx) \in H_n^d$. That $\{Y_\alpha(Qx)\}$ is an orthonormal basis of H_n^d whenever $\{Y_\alpha(x)\}$ is follows from

$$\frac{1}{\omega_d} \int_{S^{d-1}} Y_\alpha(Qx)Y_\beta(x)d\sigma(x) = \frac{1}{\omega_d} \int_{S^{d-1}} Y_\alpha(x)Y_\beta(x)d\sigma(x) = \delta_{\alpha,\beta},$$

which holds under a change of variables since $d\sigma$ is invariant under $O(d)$.

Besides $\langle f, g \rangle_{S^{d-1}}$, another useful inner product can be defined on P_n^d through the action of differentiation. For $\alpha \in \mathbb{N}_0^d$, let $\partial^\alpha := \partial_1^{\alpha_1} \cdots \partial_d^{\alpha_d}$. Let $(a)_n := a(a+1) \cdots (a+n-1)$ be the Pochhammer symbol.

Theorem 1.8. For $p, q \in P_n^d$, define a bilinear form

$$\langle p, q \rangle_\beta := \langle p(\partial)q, \rangle,$$

where $p(\partial)$ is the differential operator defined by replacing x^α in $p(x)$ by ∂^α. Then
1. $(p, q)_\partial$ is an inner product on \mathcal{P}_n^d;
2. the reproducing kernel of this inner product is $k_n(x, y) := \langle x, y \rangle^n / n!$; that is,

 \[\langle k_n(x, \cdot), p \rangle_\partial = p(x), \quad \forall p \in \mathcal{P}_n^d, \]

3. for $p \in \mathcal{P}_n^d$ and $q \in \mathcal{H}_n^d$,

 \[\langle p, q \rangle_\partial = 2^n \left(\frac{d}{2} \right)_n \langle p, q \rangle_{\mathbb{S}^{d-1}}. \]

Proof. Let $p, q \in \mathcal{P}_n^d$ be given by $p(x) = \sum_{|\alpha| = n} a_\alpha x^\alpha$ and $q(x) = \sum_{|\alpha| = n} b_\alpha x^\alpha$, where $a_\alpha, b_\alpha \in \mathbb{R}$. Then,

\begin{equation}
\langle p, q \rangle_\partial = \sum_{|\alpha| = n} a_\alpha \partial^\alpha \sum_{|\beta| = n} b_\beta x^\beta = \sum_{|\alpha| = n} \alpha! a_\alpha b_\alpha,
\end{equation}

which implies, in particular, that $\langle p, p \rangle_\partial > 0$ for $p \neq 0$. It follows then that $\langle \cdot, \cdot \rangle_\partial$ is an inner product on \mathcal{P}_n^d. By the multinomial formula, for $q_\alpha(x) = x^\alpha$, $|\alpha| = n$,

\begin{equation}
\langle k_n(x, \cdot), q_\alpha \rangle_\partial = \frac{1}{n!} \sum_{|\beta| = n} \binom{n}{\beta} x^{\beta} \partial^{\beta} y^\alpha = q_\alpha(x),
\end{equation}

which shows that $k_n(x, y)$ is the reproducing kernel with respect to $\langle \cdot, \cdot \rangle_\partial$.

We now prove item 3. Integrating by parts shows that

\[\int_{\mathbb{R}^d} \partial_s f(x) g(x) e^{-\|x\|^2/2} \, dx = -\int_{\mathbb{R}^d} f(x) (\partial_s g(x) - x_s g(x)) e^{-\|x\|^2/2} \, dx. \]

Since $p(\partial)q$ is a constant, using this integration by parts repeatedly shows that

\[\langle p, q \rangle_\partial = \frac{1}{(2\pi)^{d/2}} \int_{\mathbb{R}^d} p(\partial) q(x) e^{-\|x\|^2/2} \, dx = \frac{1}{(2\pi)^{d/2}} \int_{\mathbb{R}^d} q(x) (p(x) + s(x)) e^{-\|x\|^2/2} \, dx \]

where $s \in \Pi^d$. Since $q \in \mathcal{H}_n^d$ and $p \in \mathcal{P}_n^d$, switching to polar integral and using the orthogonality of \mathcal{H}_n^d, we obtain

\[\langle p, q \rangle_\partial = \frac{1}{(2\pi)^{d/2}} \int_0^\infty r^{2n+d-1} e^{-r^2/2} \, dr \int_{\mathbb{S}^{d-1}} q(x') p(x') d\sigma(x'). \]

Evaluating the integral in r and simplifying by (1.2) concludes the proof.

A large number of spherical harmonic polynomials can be defined explicitly through differentiation. Let us denote the standard basis of \mathbb{R}^d by

\[e_1 = (1, 0, \cdots, 0), e_2 = (0, 1, 0, \cdots, 0) \cdots, e_d = (0, \cdots, 0, 1). \]

Theorem 1.9. Let $d > 2$. For $\alpha \in \mathbb{N}_0^d$, $n = |\alpha|$, define

\begin{equation}
(1.9) \quad p_\alpha(x) := \frac{(-1)^n}{2^n (d-2)_n} \|x\|^{2|\alpha|+d-2} \partial^{\alpha} \left(\|x\|^{-d+2} \right).
\end{equation}

Then

1. $p_\alpha \in \mathcal{H}_n^d$ and p_α is the monic spherical harmonic of the form

\begin{equation}
(1.10) \quad p_\alpha(x) = x^\alpha + \|x\|^2 q_\alpha(x), \quad q_\alpha \in \mathcal{P}_{n-2}^d.
\end{equation}
2. \(p_\alpha \) satisfies the recurrence relation

\[
p_{\alpha+e_i}(x) = x_i p_\alpha(x) - \frac{1}{2n+d-2} \|x\|^2 \partial_i p_\alpha(x),
\]

\[
\Delta p_\alpha(x) = \frac{(-1)^n}{2n(d/2-1)n!} \|x\|^{2|\alpha|+d-2} \partial^{d} \Delta \{\|x\|^{-d+2}\} = 0.
\]

3. \(\{ p_\alpha : |\alpha| = n, \alpha_d = 0 \text{ or } 1 \} \) is a basis of \(\mathcal{H}^d_n \).

Proof. Taking the derivative of \(p_\alpha(x) \) gives immediately the recurrence relation (1.11). Clearly \(p_0(x) = 1 \). By induction, the recurrence relation shows that \(p_\alpha \) is a homogeneous polynomial of degree \(n \) and it is of the form (1.10). We now show that \(p_\alpha \) is a spherical harmonic. For \(g \in \mathcal{P}^d_n \) and \(\rho \in \mathbb{R} \), a quick computation using \(\sum_{i=1}^d x_i \partial_i g(x) = ng(x) \) shows that

\[
\Delta g = \rho(2n+\rho+d-2)\|x\|^{\rho-2}g + \|x\|^\rho \Delta g.
\]

In particular, setting \(n = 0 \) and \(g(x) = 1 \) gives \(\Delta(\|x\|^{-d+2}) = 0 \). Furthermore, setting \(g = p_\alpha \) and \(\rho = -2n-d+2 \in (1.12) \) leads to

\[
\Delta p_\alpha(x) = \frac{(-1)^n}{2n(d/2-1)n!} \|x\|^{2|\alpha|+d-2} \partial^{d} \Delta \{\|x\|^{-d+2}\} = 0.
\]

Thus, \(p_\alpha \in \mathcal{H}^d_n \). Since \(\|x\|^{2q(x)} \) is a linear combination of the monomials \(x^\beta \) with \(\beta_d \geq 2 \), by (1.10) and the linear independence of \(\{ x^\alpha : |\alpha| = n, \alpha_d = 0 \text{ or } 1 \} \), it follows that the elements in the set \(\{ p_\alpha : |\alpha| = n, \alpha_d = 0 \text{ or } 1 \} \) are linearly independent. The cardinality of the set is

\[
\dim \mathcal{P}^d_{n-1} + \dim \mathcal{P}^d_{n-2} = \binom{n+d-2}{d-2} + \binom{n+d-3}{d-2},
\]

which is, by a simple identity of binomial coefficients and (1.5), precisely \(\dim \mathcal{H}^d_n \). This completes the proof.

The right-hand side of (1.9) is called Maxwell’s representation of harmonic polynomials \((8, 10)\). The complete set of \(\{ p_\alpha : |\alpha| = n \} \) is necessarily linearly dependent by its cardinality. Moreover, by (1.9),

\[
p_{\alpha+2e_1} + \cdots + p_{\alpha+2e_d} = \frac{(-1)^n}{2n(d/2)n!} \|x\|^{2|\alpha|+d-2} \partial^{d} \Delta \{\|x\|^{-d+2}\} = 0,
\]

which gives \(\dim \mathcal{P}^d_{n-2} \) linearly dependent relations among \(\{ p_\alpha : |\alpha| = n \} \). The set \(\{ p_\alpha : |\alpha| = n \} \) evidently contains many bases of \(\mathcal{H}^d_n \). The basis in item three of Theorem 1.9 is but one convenient choice. The proof of Theorem 1.9 relies on the fact that \(\|x\|^{-d+2} \) is a harmonic function in \(\mathbb{R}^d \setminus \{0\} \) for \(d > 2 \). In the case of \(d = 2 \), we need to replace this function by \(\log \|x\| \). Since the case \(d = 2 \) corresponds to the classical Fourier series, we leave the analogue of Theorem 1.9 for \(d = 2 \) to the interested reader.

The basis \(\{ p_\alpha : |\alpha| = n, \alpha_d = 0 \text{ or } 1 \} \) of \(\mathcal{H}^d_n \) is not orthonormal. In fact, the elements of this basis are not mutually orthogonal. Orthonormal bases can be constructed by applying the Gram-Schmidt process. An explicit orthonormal basis for \(\mathcal{H}^d_n \) will be given in Section 5 in terms of spherical coordinates.
2. Projection operators and Zonal harmonics

Let $L^2(\mathbb{S}^{d-1})$ denote the space of square integrable functions on \mathbb{S}^{d-1}. Let
\[
\text{proj}_n : L^2(\mathbb{S}^{d-1}) \mapsto \mathcal{H}_n^d
\]
denote the orthogonal projection from $L^2(\mathbb{S}^{d-1})$ onto \mathcal{H}_n^d. If $P \in \mathcal{P}_n^d$ then $P = P_n + \|x\|^2Q_n$, where $P_n \in \mathcal{H}_n^d$ and $Q_n \in \mathcal{P}_n^{d-2}$, by (1.4), so that $\text{proj}_n P = P_n$. In particular, (1.11) shows that p_α defined in (1.9) is the orthogonal projection of the function $q_\alpha(x) = x^\alpha$; that is, $p_\alpha = \text{proj}_n q_\alpha$. This leads to the following:

Lemma 2.1. Let $p \in \mathcal{P}_n^d$. Then
\[
(2.1) \quad \text{proj}_n p = \sum_{j=0}^{\left\lfloor n/2 \right\rfloor} \frac{1}{4^j j! (-n + 2 - d/2)^j} \|x\|^{2j} \Delta^j p.
\]

Proof. By linearity, it suffices to consider p being $q_\alpha(x) = x^\alpha$. By Theorem 1.9, $\text{proj}_n q_\alpha(x) = p_\alpha(x)$, and the proof amounts to showing that $p_\alpha(x)$ defined in (1.9) can be expanded as in (2.1). We use induction on n. The case $n = 0$ is evident.
Assume that (2.1) has been established for $m = 0, \ldots, n$. Applying (2.1) to $q_\alpha(x)$, $|\alpha| = n$, it follows that
\[
\partial^\alpha \{\|x\|^{-d+2}\} = (-1)^n 2^n \left(\frac{d}{2} - 1\right)_n \|x\|^{-2n-d+2}
\]
\[
\times \sum_{j=0}^{\left\lfloor n/2 \right\rfloor} \frac{1}{4^j j! (-n + 2 - d/2)^j} \|x\|^{2j} \Delta^j \{x^\alpha\}.
\]
Applying ∂_i to this identity, we obtain
\[
\partial_i \partial^\alpha \{\|x\|^{-d+2}\} = (-1)^n 2^n \left(\frac{d}{2} - 1\right)_n (-2n - d + 2)\|x\|^{-2n-d+2}
\]
\[
\times \sum_{j=0}^{\left\lfloor (n+1)/2 \right\rfloor} \frac{1}{4^j j! (-n + 1 - d/2)^j} \|x\|^{2j} [x_i \Delta^j \{x^\alpha\}] + 2j \Delta^{j-1} \partial_i \{x^\alpha\}.
\]
The terms in the square brackets are exactly $\Delta^j \{x_i x^\alpha\}$ and the constant in front simplifies to $(-1)^{n+1} 2^{n+1} \left(\frac{d}{2} - 1\right)_{n+1}$, so that the equation (2.1) holds for $p(x) = x_i x^\alpha$. This completes the induction. \hfill \square

Definition 2.2. The reproducing kernel $Z_n(\cdot, \cdot)$ of \mathcal{H}_n^d is uniquely determined by
\[
(2.2) \quad \frac{1}{\omega_d} \int_{\mathbb{S}^{d-1}} Z_n(x, y)p(y) d\sigma(y) = p(x), \quad \forall p \in \mathcal{H}_n^d, \quad x \in \mathbb{S}^{d-1}
\]
and the requirement that $Z_n(x, \cdot)$ be an element of \mathcal{H}_n^d for each fixed x.

That the kernel is well defined and unique follows from the Riesz representation theorem applied to the linear functional $L(Y) := Y(x)$, $Y \in \mathcal{H}_n^d$, for a fixed $x \in \mathbb{S}^{d-1}$.

Lemma 2.3. In terms of an orthonormal basis $\{Y_j : 1 \leq j \leq \dim \mathcal{H}_n^d\}$ of \mathcal{H}_n^d,
\[
Z_n(x, y) = \sum_{k=1}^{\dim \mathcal{H}_n^d} Y_k(x) Y_k(y), \quad x, y \in \mathbb{S}^{d-1},
\]
and, despite (2.3), Z_n is independent of the particular choice of basis of \mathcal{H}_n^d.
Proof. Since \(Z_n(x, \cdot) \in \mathcal{H}^d_n\), it can be expressed as \(Z_n(x, y) = \sum_k c_k Y_k(y)\) where the coefficients are determined by (2.2) as \(c_k = Y_k(x)\). The uniqueness implies that \(Z_n\) is independent of the choice of basis. This can also be shown directly as follows. Let \(\mathcal{V}_n = \{Y_1, \ldots, Y_N\}\) with \(N = \dim \mathcal{H}^d_n\) and regard it as a column vector. Then \(Z_n(x, y) = [\mathcal{V}_n(x)]^\intercal \mathcal{V}_n(y)\). If \(\{Y'_j : 1 \leq j \leq N\}\) is another orthonormal basis of \(\mathcal{H}^d_n\), then \(\mathcal{V}'_n = Q \mathcal{V}_n\). Since the orthonormality of \(\{Y_j\}\) can be expressed as the fact that \(\frac{1}{\omega_d} \int_{S^{d-1}} Y_n(x) [\mathcal{V}_n(x)]^\intercal d\sigma(x)\) is an identity matrix, it follows readily that \(Q\) is an orthogonal matrix. Hence, \(Z_n(x, y) = [\mathcal{V}_n(x)]^\intercal Q^\intercal Q \mathcal{V}_n(y) = [\mathcal{V}'_n(x)]^\intercal \mathcal{V}'_n(y)\). □

The reproducing kernel is also the kernel for the projection operator.

Lemma 2.4. The projection operator can be written as

\[
\text{proj}_n f(x) = \frac{1}{\omega_d} \int_{S^{d-1}} f(y) Z_n(x, y) d\sigma(y).
\]

Proof. Since \(\text{proj}_n f \in \mathcal{H}^d_n\), it can be expanded in terms of the orthonormal basis \(\{Y_j, 1 \leq j \leq N_n\}\), \(N_n = \dim \mathcal{H}^d_n\), of \(\mathcal{H}^d_n\), where the coefficients are determined by the orthonormality,

\[
\text{proj}_n f(x) = \sum_{j=1}^{N_n} c_j Y_j(x) \quad \text{with} \quad c_j = \frac{1}{\omega_d} \int_{S^{d-1}} f(y) Y_j(y) d\sigma(y).
\]

If we pull out the integral in front of the sum, this is (2.4) by (2.3). □

Lemma 2.5. The kernel \(Z_n(\cdot, \cdot)\) satisfies the following properties:

1. For every \(\xi, \eta \in S^{d-1}\),

\[
\frac{1}{\omega_d} \int_{S^{d-1}} Z_n(\xi, y) Z_n(\eta, y) d\sigma(y) = Z_n(\xi, \eta).
\]

2. \(Z_n(x, y)\) depends only on \(\langle x, y \rangle\).

Proof. By Corollary 1.7, the uniqueness of \(Z_n(x, y)\) shows that \(Z_n(Qx, Qy) = Z_n(x, y)\) for all \(Q \in O(d)\). Since for \(x, y \in S^{d-1}\) there exists a \(Q \in SO(d)\) such that \(Qx = (0, \ldots, 0, 1)\) and \(Qy = (0, \ldots, 0, \sqrt{1 - \langle x, y \rangle^2}, \langle x, y \rangle)\), this shows that \(Z_n(x, y)\) depends only on \(\langle x, y \rangle\). □

From the second property of the lemma, \(Z_n(x, y) = F_n(\langle x, y \rangle)\), which is often called a zonal harmonic, since it is harmonic and depends only on \(\langle x, y \rangle\). We now derive a closed formula for \(F_n\), which turns out to be a multiple of the Gegenbauer polynomial, \(C^\lambda_n\), of degree \(n\) defined, for \(\lambda > 0\) and \(n \in \mathbb{N}_0\), by

\[
C^\lambda_n(x) := (\lambda)_n \frac{2^n}{n!} x^n \text{}_2F_1 \left(\frac{-n, 1-n}{1-n-\lambda}, \frac{1}{x^2} \right),
\]

where \(\text{}_2F_1\) is the hypergeometric function. The properties of the Gegenbauer polynomials are collected in Appendix B.

Theorem 2.6. For \(n \in \mathbb{N}_0\) and \(x, y \in S^{d-1}, d \geq 3\),

\[
Z_n(x, y) = \frac{n + \lambda}{\lambda} C^\lambda_n(\langle x, y \rangle), \quad \lambda = \frac{d-2}{2}.
\]
Proof. Let \(p \in \mathcal{H}_n^d \). By Theorem 1.8, \(p(x) = \langle k_n(x, \cdot), p \rangle_\omega \). For fixed \(x \), it follows from the same theorem that
\[
p(x) = \langle k_n(x, \cdot), p \rangle_\omega = \langle \text{proj}_n(k_n(x, \cdot)), p \rangle_\omega = \frac{2^n(d/2)_n}{\omega_d} \int_{S^{d-1}} \text{proj}_n[k_n(x, \cdot)](y)p(y)d\sigma(y).
\]
Since the kernel \(Z_n(\cdot, \cdot) \) is uniquely determined by the reproducing property, this shows that \(Z_n(x, y) = 2^n(d/2)_n \text{proj}_n[k_n(x, \cdot)](y) \). Since \(k_n(x, \cdot) \) is a homogeneous polynomial of degree \(n \) and, taking the derivative on \(y \), we have \(\Delta^j k_n(x, y) = \|x\|^{2j} k_{n-2j}(x, y) \), as is easily seen from \(\partial_j k_n(x, y) = x_j k_{n-1}(x, y) \). Lemma 2.1 shows, for \(x, y \in \mathbb{S}^{d-1} \), that
\[
Z_n(x, y) = 2^n \left(\begin{array}{c} d \end{array} \right)_n \text{proj}_n[k_n(x, \cdot)](y) = \sum_{j=0}^{[n/2]} \frac{(d/2)_n 2^{n-2j}}{j!(1-n-\lambda)_j} k_{n-2j}(x, y).
\]
Using the fact \(1/(n-2j)! = (-n)_{2j}/n! = 2^{2j}(-\frac{n}{2})_j(\frac{n+1}{2})_j/n! \), we conclude then
\[
Z_n(x, y) = \frac{n + \lambda (\lambda)_n 2^n}{\lambda n!} \sum_{j=0}^{[n/2]} \frac{(-\frac{n}{2})_j(\frac{n+1}{2})_j}{j!(1-n-\lambda)_j} (x, y)^{n-2j} \]
\[
= \frac{n + \lambda (\lambda)_n 2^n}{\lambda n!} (x, y)^n \binom{\frac{n}{2}}{\frac{n}{2}} F_1 \left(-\frac{n}{2}, \frac{n+1}{2}; 1 - n - \lambda; (x, y)^2 \right),
\]
from which the stated result follows from (2.6).

Let \(\{Y_i : 1 \leq i \leq \dim \mathcal{H}_n^d \} \) be an orthonormal basis of \(\mathcal{H}_n^d \). Then (2.7) states that
\[
\sum_{j=1}^{\dim \mathcal{H}_n^d} Y_j(x)Y_j(y) = \frac{n + \lambda}{\lambda} C_n^\lambda(\langle x, y \rangle), \quad \lambda = \frac{d-2}{2}.
\]
This identity is usually referred to as the addition formula of spherical harmonics, since for \(d = 2 \) it is the addition formula of the cosine function (see Section 6).

Corollary 2.7. For \(n \in \mathbb{N}_0 \) and \(x, y \in \mathbb{S}^{d-1}, d \geq 3 \),
\[
\text{(2.9)} \quad \|Z_n(x, y)\| \leq \dim \mathcal{H}_n^d \quad \text{and} \quad Z_n(x, x) = \dim \mathcal{H}_n^d.
\]
Proof. Set \(F_n(t) := \frac{n + \lambda}{\lambda} C_n^\lambda(t) \). By (2.7), \(Z_n(x, x) = F_n(1) \) is a constant for all \(x \in \mathbb{S}^{d-1} \). Setting \(x = y \) in (2.3) and integrating over \(\mathbb{S}^{d-1} \), we obtain
\[
F_n(1) = \frac{1}{\omega_d} \int_{\mathbb{S}^{d-1}} Z_n(x, x)d\sigma(x) = \frac{1}{\omega_d} \int_{\mathbb{S}^{d-1}} \sum_{k=1}^{\dim \mathcal{H}_n^d} Y_k^2(x)d\sigma(x) = \dim \mathcal{H}_n^d.
\]
This inequality follows from applying the Cauchy-Schwarz inequality to (2.3).

Because of the relation (2.7), the Gegenbauer polynomials with \(\lambda = \frac{d-2}{2} \) are also called ultraspherical polynomials. A number of properties of the Gegenbauer polynomials can be obtained from the zonal spherical harmonics. For example, the corollary implies that \(C_n^{\lambda}(1) = \frac{1}{n+\lambda} \dim \mathcal{H}_n^d \). Here is another example:
Corollary 2.8. For \(\lambda = \frac{d-2}{2} \), the Gegenbauer polynomials \(C_n^\lambda \) satisfy the orthogonality relation

\[
\frac{\omega_{d-1}}{\omega_d} \int_{-1}^{1} C_n^\lambda(t) C_m^\lambda(t)(1-t^2)^\frac{d-2}{2} \, dt = h_n^\lambda \delta_{m,n},
\]

where

\[
h_n^\lambda = \frac{\lambda}{n+\lambda} C_n^\lambda(1).
\]

Proof. Set again \(F_n(t) = \frac{\omega_{d-1}}{\omega_d} C_n^\lambda(t) \). Since \(Z_n(x, \cdot) \) and \(Z_m(x, \cdot) \) are orthogonal over \(S^{d-1} \), and by (A.5.1), their integrals can be written as an integral of one variable, we obtain

\[
\frac{\omega_{d-1}}{\omega_d} \int_{-1}^{1} F_n(t) F_m(t)(1-t^2)^\frac{d-2}{2} \, dt = \frac{1}{\omega_d} \int_{S^{d-1}} F_n(x,y) F_m(x,y) \, d\sigma(y)
\]

\[
= F_n(1) \delta_{m,n} = (\dim \mathcal{H}_n^d) \delta_{m,n},
\]

where the second line follows from (2.5) and Corollary 2.7.

The functions on \(S^{d-1} \) that depend only on \(\langle x, y \rangle \) are analogues of radial functions on \(\mathbb{R}^d \). For such functions, there is a Funk-Hecke formula given below.

Theorem 2.9. Let \(f \) be an integrable function such that \(\int_{-1}^{1} |f(t)|(1-t^2)^{(d-3)/2} \, dt \) is finite and \(d \geq 2 \). Then for every \(Y_n \in \mathcal{H}_n^d \),

\[
\int_{S^{d-1}} f(\langle x, y \rangle) Y_n(y) \, d\sigma(y) = \lambda_n(f) Y_n(x), \quad x \in S^{d-1},
\]

where \(\lambda_n(f) \) is a constant defined by

\[
\lambda_n(f) = \omega_{d-1} \int_{-1}^{1} f(t) \frac{C_n^{d-2}}{C_n^{d-2}(1)}(1-t^2)^{\frac{d-3}{2}} \, dt.
\]

Proof. If \(f \) is a polynomial of degree \(m \), then we can expand \(f \) in terms of the Gegenbauer polynomials

\[
f(t) = \sum_{k=0}^{m} \lambda_k \frac{k + \frac{d-2}{2}}{d-2} C_k^{\frac{d-2}{2}}(t).
\]

where \(\lambda_k \) are determined by the orthogonality of the Gegenbauer polynomials,

\[
\lambda_k = \frac{c_d}{C_k^{d-2}}(1) \int_{-1}^{1} f(t) C_k^{\frac{d-2}{2}}(t)(1-t^2)^{\frac{d-3}{2}} \, dt,
\]

and \(c_d^{-1} = \int_{-1}^{1} (1-t^2)^{\frac{d-2}{2}} \, dt = \omega_d/\omega_{d-1} \). From (2.7) and the reproducing property of \(Z_n(x,y) \), it follows that for \(n \leq m \)

\[
\frac{1}{\omega_d} \int_{S^{d-1}} f(\langle x, y \rangle) Y_n(y) \, d\sigma(y) = \lambda_n Y_n(x), \quad x \in S^{d-1}.
\]

Since \(\lambda_n/\omega_d = \lambda_n(f) \) by definition, we have established the Funk-Hecke formula (2.11) for polynomials, and hence, by the Weierstrass theorem, for continuous functions, and the function satisfying the integrable condition in the statement can be approximated by a sequence of continuous functions.
3. Zonal basis of spherical harmonics

In view of the addition formula of spherical harmonics, one may ask whether there is a basis of spherical harmonics that consists entirely of zonal harmonics. This question is closely related to the problem of interpolation on the sphere.

Throughout this subsection, we fix n, set $N = \dim \mathcal{H}_n^d$ and fix $\{Y_1, \ldots, Y_N\}$ as an orthonormal basis for \mathcal{H}_n^d. Let $\{x_1, \ldots, x_N\}$ be a collection of points on \mathbb{S}^{d-1}.

We let $M_1 := Y_1(x_1)$ and, for $k = 2, 3, \ldots, N$, define matrices

$$
M_k := \begin{bmatrix} Y_1(x_1) & \cdots & Y_1(x_k) \\ \vdots & \ddots & \vdots \\ Y_1(x_1) & \cdots & Y_1(x_k) \end{bmatrix}, \quad M_k(x) := \begin{bmatrix} M_{k-1} \quad Y_1(x) \\ \vdots \quad \vdots \\ Y_k(x_1), \ldots, Y_k(x_{k-1}) \end{bmatrix},
$$

The product of M_N and its transpose M_N^T can be summed on applying the addition formula (2.8), as $M_N^T M_N = [Z_n(x_i, x_j)]_{i,j=1}^N$, which shows, in particular,

$$\det[Z_n(x_i, x_j)]_{i,j=1}^N = (\det M_N)^2 \geq 0.$$

This motivates the following definition.

Definition 3.1. A collection of points $\{x_1, \ldots, x_N\}$ in \mathbb{S}^{d-1} is called a fundamental system of degree n on the sphere \mathbb{S}^{d-1} if

$$\det[C_n^\lambda((x_i, x_j))]_{i,j=1}^N > 0, \quad \lambda = \frac{d-2}{2}.$$

Lemma 3.2. There exists a fundamental system of degree n on the sphere.

Proof. The existence of a fundamental system follows from the linear independence of $\{Y_1, \ldots, Y_N\}$. Indeed, we can clearly choose $x_1 \in \mathbb{S}^{d-1}$ such that $\det M_1 = Y_1(x_1) \neq 0$. Assume that x_1, \ldots, x_k, $1 \leq k \leq N-1$, have been chosen such that $\det M_k \neq 0$. The determinant $\det M_{k+1}(x)$ is a polynomial of x and cannot be identically zero by the linear independence of $\{Y_1, \ldots, Y_{k+1}\}$, so that there is a $x_{k+1} \in \mathbb{S}^{d-1}$ such that $\det M_{k+1} = \det M_k(x_{k+1}) \neq 0$. In this way, we end up with a collection of points $\{x_1, \ldots, x_N\}$ on \mathbb{S}^{d-1} that satisfies $\det M_N \neq 0$, which implies $\det[C_n^\lambda((x_i, x_j))]_{i,j=1}^N = c_N(\det M_N)^2 > 0$, where $c_N = \lambda N!/(n+\lambda)^N$. □

The proof shows, in fact, that there are infinitely many fundamental systems. Indeed, regarding x_1, \ldots, x_N as variables, we say that $\det M_N$ is a $(d-1)N$-dimensional polynomial in these variables, and its zero set is an algebraic surface of $\mathbb{R}^{(d-1)N}$, which necessarily has measure zero.

Theorem 3.3. If $\{x_1, \ldots, x_N\}$ is a fundamental system of points on the sphere, then $\{C_n^\lambda(\langle \cdot, x_i \rangle) : i = 1, 2, \ldots, N\}$, $\lambda = \frac{d-2}{2}$, is a basis of $\mathcal{H}_n^d|_{\mathbb{S}^{d-1}}$.

Proof. Let $P_i(x) = \frac{n+\lambda}{\lambda} C_n^\lambda(\langle \cdot, x_i \rangle)$. The addition theorem (2.8) gives

$$P_i(x) = \sum_{k=1}^N Y_k(x_i) Y_k(x), \quad i = 1, 2, \ldots, N,$$

which shows that $\{P_1, \ldots, P_N\}$ is expressed in the basis $\{Y_1, \ldots, Y_N\}$ with transition matrix given by $M_N = [Y_k(x_i)]_{k,i=1}^N$. Since $\{x_1, \ldots, x_N\}$ is fundamental, the matrix is invertible, by (3.1). We can then invert the system to express Y_k as a linear combination of P_1, \ldots, P_N, which completes the proof. □
A word of caution is in order. The polynomial $C_n^\lambda((x, x_i))$ is, for $x \in S^{d-1}$, a linear combination of the spherical harmonics according to the addition formula. It is not, however, a homogeneous polynomial of degree n in $x \in \mathbb{R}^d$; rather, it is the restriction of the homogeneous polynomial $\|x\|^n C_n^\lambda((x/\|x\|, y_i))$ to the sphere. This is a situation in which the distinction between H_n^d and $H_n^d|_{S^{d-1}}$ is called for; see the discussion below Definition 1.1.

Fundamental sets of points are closely related to the problem of interpolation. Indeed, it can be stated as follows: for a given set of data $\{(x_j, y_j) : 1 \leq j \leq N\}$, $x_j \in S^{d-1}$ and $y_j \in \mathbb{R}$, there is a unique element $Y \in H_n^d$ such that $Y(x_j) = y_j$, $j = 1, \ldots, N$, if and only if the points $\{x_1, \ldots, x_N\}$ form a fundamental system on the sphere. Much more interesting and challenging is the problem of choosing points in such a way that the resulting basis of zonal spherical harmonics has a relatively simple structure.

A related result is a zonal basis for the space P_n of homogeneous polynomials of degree n and the space P_n^d of all polynomials of degree at most n.

Theorem 3.4. There exist points $\xi_{j,n} \in S^{d-1}$, $1 \leq j \leq r_n^d := \dim P_n^d$, such that

(i) $\{(x, \xi_{j,n}) : 1 \leq j \leq r_n^d\}$ is a basis for P_n^d of degree n.

(ii) For each polynomial $f \in P_n^d$, there exist polynomials $p_j : [-1, 1] \to \mathbb{R}$ for $1 \leq j \leq r_n^d$ such that

$$f(x) = \sum_{j=1}^{r_n^d} p_j(\langle x, \xi_{j,n} \rangle).$$

Proof. Following the proof of the existence of fundamental system of points, it is easy to see that there exist points $\xi_{j,n}$ such that $f(\xi_{j,n}) = 0$ if and only if $f = 0$ for all $f \in P_n^d$. For the proof of (i), we first deduce by the binomial formula that

$$f_{j,n}(x) := \langle x, \xi_{j,n} \rangle^n = \sum_{|\alpha|=n} \frac{n!}{\alpha!} r_{j,n}^\alpha x^\alpha, \quad 1 \leq j \leq r_n^d.$$

Let $f \in P_n^d$. Then $f(x) = \sum_{|\alpha|=n} a_\alpha x^\alpha$. By (1.8),

$$\langle f, f_{j,n} \rangle_{\partial} = n! \sum_{|\alpha|=n} a_\alpha \xi_{j,n}^\alpha = n! f(\xi_{j,n}),$$

which implies, by the choice of $\xi_{j,n}$, that $\langle f, f_{j,n} \rangle_{\partial} = 0$, $1 \leq j \leq r_n^d$, if and only if $f = 0$. Thus, $\{f_{j,n}\}^{-1} = \{0\}$. Since $f_{j,n} \in P_n^d$. This proves (i).

For the proof of (ii), let m be an integer, $0 \leq m \leq n - 1$, and let $f_{j,m,n} := \langle x, \xi_{j,n} \rangle^m$. For $f \in P_m^d$, it follows as above that $\langle f, f_{j,m,n} \rangle_{\partial} = m! f(\xi_{j,m})$, $1 \leq j \leq r_n^d$. Hence, if $\langle f, f_{j,m,n} \rangle_{\partial} = 0$ for $1 \leq j \leq r_n^d$, then $f(\xi_{j,m}) = (fg)(\xi_{j,m}) = 0$ for $1 \leq j \leq r_n^d$ and all $g \in P_{n-m}^d$, which implies by the choice of $\xi_{j,n}$ and the fact that $fg \in P_n^d$, that $fg = 0$ or $f = 0$. Consequently, $P_m^d = \mathrm{span}\{f_{j,m,n} : 0 \leq j \leq r_n^d\}$ for $0 \leq m \leq n$. Since $P_n^d = \sum_{m=0}^{n} P_m^d$, this proves (ii). \qed

4. **LAPLACE-BELTRAMI OPERATOR**

The operator in the section heading is the spherical part of the Laplace operator, which we denote by Δ_0. The operator Δ_0 plays an important role for analysis on the sphere. The usual approach to deriving this operator relies on an expression of the Laplace operator under a change of variables, which we describe first.
For $x \in \mathbb{R}^d$ let $x \mapsto u = u(x)$ be a change of variables that is a bijection, so that we can also write $x = x(u)$. Introduce the tensors

$$ g_{i,j} := \sum_{k=1}^{d} \frac{\partial x_k}{\partial u_i} \frac{\partial x_k}{\partial u_j} \quad \text{and} \quad g^{i,j} := \sum_{k=1}^{d} \frac{\partial u_i}{\partial x_k} \frac{\partial u_j}{\partial x_k}, \quad 1 \leq i, j \leq d, $$

and let $g := \det(g_{i,j})_{i,j=1}^d$. Then $(g_{i,j})^{-1} = (g^{i,j})$. A general result in Riemannian geometry, or a bit of tensor analysis, shows that the Laplace operator satisfies

$$ \Delta = \sum_{i=1}^{d} \frac{\partial^2}{\partial x_i^2} = \frac{1}{g} \sum_{i=1}^{d} \frac{\partial^2}{\partial u_i^2} \sqrt{g} g^{i,j} \frac{\partial}{\partial u_j}. \quad (4.1) $$

The Laplace–Beltrami operator, i.e., the spherical part of the Laplace operator, can then be derived from (4.1) by the change of variables $x \mapsto (r, \xi_1, \ldots, \xi_{d-1})$, where $r > 0$ and $\xi = (\xi_1, \ldots, \xi_{d-1}) \in S^{d-1}$. For this approach and a derivation of (4.1), see [10]. We shall adopt an approach that is elementary and self-contained.

Lemma 4.1. In the spherical–polar coordinates $x = r\xi$, $r > 0$, $\xi \in S^{d-1}$, the Laplace operator satisfies

$$ \Delta = \frac{\partial^2}{\partial r^2} + \frac{d-1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \Delta_0, \quad (4.2) $$

where

$$ \Delta_0 = \sum_{i=1}^{d-1} \frac{\partial^2}{\partial \xi_i^2} - \sum_{i=1}^{d-1} \sum_{j=1}^{d-1} \xi_i \xi_j \frac{\partial^2}{\partial \xi_i \partial \xi_j} - (d-1) \sum_{i=1}^{d-1} \xi_i \frac{\partial}{\partial \xi_i}. \quad (4.3) $$

Proof. Since $\xi \in S^{d-1}$, we have $\xi_1^2 + \ldots + \xi_{d-1}^2 = 1$. We evaluate the Laplacian Δ under a change of variables $(x_1, \ldots, x_d) \mapsto (r, \xi_1, \ldots, \xi_{d-1})$ under $x = r\xi$, which has inverse $\xi_1 = x_1/\|x\|, \ldots, \xi_{d-1} = x_{d-1}/\|x\|, r = \|x\|$. The chain rule leads to

$$ \frac{\partial}{\partial x_i} = \frac{1}{r} \frac{\partial}{\partial r} \xi_i \sum_{j=1}^{d-1} \xi_j \frac{\partial}{\partial \xi_j} + \xi_i \frac{\partial}{\partial \xi_i}, \quad 1 \leq i \leq d-1, $$$$ (4.4) $$

$$ \frac{\partial}{\partial x_d} = -\frac{x_d}{r^2} \sum_{j=1}^{d-1} \xi_j \frac{\partial}{\partial \xi_j} + \frac{x_d}{r} \frac{\partial}{\partial r}. $$

If we apply the product rule for the partial derivative on x_d, it follows that

$$ \Delta = \sum_{i=1}^{d-1} \left(\frac{1}{r} \frac{\partial}{\partial \xi_i} - \xi_i \frac{d-1}{r} \sum_{j=1}^{d-1} \xi_j \frac{\partial}{\partial \xi_j} + \xi_i \frac{\partial}{\partial r} \right)^2 $$

$$ + \xi_d^2 \left(-\frac{1}{r^2} \sum_{j=1}^{d-1} \xi_j \frac{\partial}{\partial \xi_j} + \frac{\partial}{\partial r} \right)^2 + (1 - \xi_d^2) \left(-\frac{1}{r^2} \sum_{j=1}^{d-1} \xi_j \frac{\partial}{\partial \xi_j} + \frac{1}{r} \frac{\partial}{\partial r} \right), $$

where we have used $x_d = r\xi_d$, from which a straightforward, though tedious, computation, and simplification using $\xi_1^2 + \ldots + \xi_{d-1}^2 = 1$, establishes (4.2) and (4.3). \(\square \)

The Laplace–Beltrami operator also satisfies a recurrence relation that can be used to derive an explicit formula for Δ_0 under a given coordinate system of S^{d-1}.

We write $\Delta_{0,d}$ instead of Δ_0 when we need to emphasize the dimension.
Lemma 4.2. Let $\Delta_{0,d}$ be the Laplacian–Beltrami operator for S^{d-1}. For $\xi = (\sqrt{1-t^2}\eta, t)$ with $-1 \leq t \leq 1$ and $\eta \in S^{d-2}$. Then

$$
\Delta_{0,d} = \frac{1}{1-t^2} \frac{\partial}{\partial t} \left((1-t^2)^{d-1} \frac{\partial}{\partial t} \right) + \frac{1}{1-t^2} \Delta_{0,d-1}.
$$

Proof. We work with the expression for $\Delta_{0,d}$ in (4.3) and make a change of variables $(\xi_1, \ldots, \xi_{d-1}) \mapsto (\eta_1, \ldots, \eta_{d-2}, t)$ defined by

$$
\xi_1 = \sqrt{1-t^2}\eta_1, \ldots, \xi_{d-2} = \sqrt{1-t^2}\eta_{d-2}, \quad \xi_{d-1} = t,
$$

where we have switched ξ_{d-1} and ξ_d for convenience. The chain rule gives

$$
\frac{\partial}{\partial \xi_i} = \frac{1}{\sqrt{1-t^2}} \frac{\partial}{\partial \eta_i}, \quad 1 \leq i \leq d-2, \quad \text{and} \quad \frac{\partial}{\partial \xi_{d-1}} = \frac{t}{1-t^2} \sum_{j=1}^{d-2} \eta_j \frac{\partial}{\partial \eta_j} + \frac{\partial}{\partial t},
$$

which can be used iteratively to compute $\Delta_{0,d}$ on writing (4.3) as

$$
\Delta_{0,d} = (1-t^2) \frac{\partial^2}{\partial \xi_{d-1}^2} + \sum_{i=1}^{d-2} \frac{\partial^2}{\partial \xi_i^2} - 2t \sum_{i=1}^{d-2} \xi_i \frac{\partial^2}{\partial \xi_i \partial \xi_{d-1}}
$$

$$
- \sum_{i=1}^{d-2} \sum_{j=1}^{d-2} \xi_i \xi_j \frac{\partial^2}{\partial \xi_i \partial \xi_j} - (d-1) \sum_{i=1}^{d-1} \frac{\partial}{\partial t}.
$$

A straightforward computation and another use of (4.3) then leads to

$$
\Delta_{0,d} = (1-t^2) \frac{\partial^2}{\partial t^2} - (d-1)t \frac{\partial}{\partial t} + \frac{1}{1-t^2} \Delta_{0,d-1},
$$

which is precisely (4.5). \qed

The formula (4.3) gives an explicit expression for Δ_0 in the local coordinates of S^{d-1}. An explicit formula for Δ_0 in terms of spherical coordinates will be given in Section 5.

Let $\nabla = (\partial_1, \ldots, \partial_d)$. The proof of Lemma 4.1 also shows that

$$
\nabla = \frac{1}{r} \nabla_0 + \xi \frac{\partial}{\partial r}, \quad x = r \xi, \quad \xi \in S^{d-1},
$$

where ∇_0 is the spherical gradient, which is the spherical part of ∇ and involves only derivatives in ξ. Its explicit expression can be read off from (4.4). We shall not need this expression and will be content with the following expression.

Corollary 4.3. Let $f \in C^2(S^{d-1})$. Define $F(y) := f(y/\|y\|)$, $y \in \mathbb{R}^d$. Then

$$
\Delta_0 f(x) = \Delta F(x) \quad \text{and} \quad \nabla_0 f(x) = \nabla F(x), \quad x \in S^{d-1}.
$$

The corollary follows immediately from (4.2) and (4.6), since $x/\|x\|$ is independent of r. The expressions in (4.7) show that Δ_0 and ∇_0 are independent of the coordinates of S^{d-1}. In fact, we could take (4.7) as the definition of Δ_0 and ∇_0.

The usual Laplacian Δ can be expressed in terms of the dot product of ∇, $\Delta = \nabla \cdot \nabla$, which can also be written—as is often in physics textbooks—as $\Delta = \nabla^2$. The analogue of this identity also holds on the sphere.

Lemma 4.4. The Laplace–Beltrami operator satisfies

$$
\Delta_0 = \nabla_0 \cdot \nabla_0.
$$
Proof. An application of (4.6) gives immediately
\[
\Delta = \nabla \cdot \nabla = \frac{1}{r^2} \nabla_0 \cdot \nabla_0 + \frac{1}{r} \nabla_0 \left(\xi \frac{\partial}{\partial r} \right) + \xi \frac{\partial}{\partial r} \left(\frac{1}{r} \nabla_0 \right) + \frac{\partial^2}{\partial r^2}.
\]
We note that \(\xi \cdot \nabla_0 f(\xi) = 0\), since \(\xi \in S^{d-1}\) is in the normal direction of \(\xi\) whereas \(\nabla_0 f(\xi)\), by (4.6), is on the tangent plane at \(\xi\). Hence, we see that
\[
\xi \frac{\partial}{\partial r} \left(\frac{1}{r} \nabla_0 \right) = -\frac{1}{r^2} \xi \cdot \nabla_0 + \frac{1}{r} \xi \cdot \nabla_0 \frac{\partial}{\partial r} = 0.
\]
Using (4.6), a quick computation gives \(\nabla_0 \cdot \xi = d-1\), so that by the product rule,
\[
\nabla_0 \left(\xi \frac{\partial}{\partial r} \right) = \nabla_0 \cdot \xi \frac{\partial}{\partial r} + \frac{\partial}{\partial r} \xi \cdot \nabla_0 = (d-1) \frac{\partial}{\partial r}.
\]
Consequently, we conclude that
\[
\Delta = \frac{\partial^2}{\partial r^2} + \frac{d-1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \nabla_0 \cdot \nabla_0.
\]
Comparing this with (4.2) completes the proof. \(\square\)

Our next result shows that the spherical harmonics are eigenfunctions of the Laplace-Beltrami operator.

Theorem 4.5. The spherical harmonics are eigenfunctions of \(\Delta_0\),
\[
\Delta_0 Y(\xi) = -n(n + d - 2)Y(\xi), \quad \forall Y \in \mathcal{H}_n^d, \quad \xi \in S^{d-1}.
\]

Proof. Let \(x = r\xi\), \(\xi \in S^{d-1}\). Since \(Y \in \mathcal{H}_n^d\) is homogeneous, \(Y(x) = r^n Y(\xi)\) and by (4.2),
\[
0 = \Delta Y(x) = n(n - 1)r^{n-2}Y(\xi) + (d-1)nr^{n-2}Y(\xi) + r^{n-2}\Delta_0 Y(\xi),
\]
which is (4.9) upon dividing by \(r^{n-2}\). \(\square\)

The identity (4.9) also implies that \(\Delta_0\) is self-adjoint, which can also be proved directly and will be treated in the last section of this chapter, together with a number of other properties of the Laplace-Beltrami operator.

5. **Spherical harmonics in spherical coordinates**

The polar coordinates \((x_1, x_2) = (r \cos \theta, r \sin \theta), \ r \geq 0, \ 0 \leq \theta \leq 2\pi\), give coordinates for \(S^1\) when \(r = 1\). The high-dimensional analogue is the spherical polar coordinates defined by
\[
\begin{align*}
&\begin{cases}
 x_1 = r \sin \theta_1 \
 x_2 = r \sin \theta_2 \
 \vdots \
 x_{d-1} = r \sin \theta_{d-2} \
 x_d = r \cos \theta_{d-1},
\end{cases} \quad \forall \theta_1, \ldots, \theta_{d-1} \\
&\theta_1, \ldots, \theta_{d-2} \in [0, 2\pi], \quad \theta_{d-1} \in [0, \pi],
\end{align*}
\]
where \(r \geq 0, 0 \leq \theta_i \leq 2\pi, 0 \leq \theta_i \leq \pi\) for \(i = 2, \ldots, d-1\). When \(r = 1\) these are the coordinates for the unit sphere \(S^{d-1}\), and they are in fact defined recursively by
\[
x = (\xi \sin \theta_{d-1}, \cos \theta_{d-1}) \in S^{d-1}, \quad \xi \in S^{d-2}.
\]
Let \(d\sigma = d\sigma_d\) be Lebesgue measure on \(S^{d-1}\). Then it is easy to verify that
\[
d\sigma_d(x) = (\sin \theta_{d-1})^{d-2} d\theta_{d-1} d\sigma_{d-1}(\xi).
\]
Since the Lebesgue measure of S^1 is $d\theta_1$, it follows by induction that

\begin{equation}
\int_{S^d-1} f(x) d\sigma_d(x) = \int_0^\pi \int_{S^{d-2}} f(\xi \sin \theta, \cos \theta) d\sigma_{d-1}(\xi) (\sin \theta)^{d-2} d\theta.
\end{equation}

The orthogonality (2.10) of the Gegenbauer polynomials can be written as

\begin{equation}
\int_0^\pi C_d^\lambda(\cos \theta) g_m(\cos \theta) (\sin \theta)^{d-2} d\theta = \frac{\sqrt{\pi} \Gamma\left(\frac{d+1}{2}\right)}{\Gamma\left(\frac{d-1}{2}\right)} h^\lambda_\alpha \delta_{m,n}, \quad \lambda = \frac{d-2}{2}.
\end{equation}

Together with (5.4), this allows us to write down a basis of spherical harmonics in terms of the Gegenbauer polynomials in the spherical coordinates.

Theorem 5.1. For $d > 2$ and $\alpha \in \mathbb{N}_0^d$, define

\begin{equation}
Y_\alpha(x) := [h_\alpha]^{-1} r^{|\alpha|} g_\alpha(\theta_1) \prod_{j=1}^{d-2} (\sin \theta_{d-j})^{\alpha_{d-j}} C_{\alpha_j}^\lambda(\cos \theta_{d-j}),
\end{equation}

where $g_\alpha(\theta_1) = \cos \alpha_{d-1} \theta_1$ for $\alpha_d = 0$, $\sin \alpha_{d-1} \theta_1$ for $\alpha_d = 1$, $|\alpha_j| = \alpha_j + \ldots + \alpha_{d-1}$, $\lambda_j = |\alpha_j^2|$ and $(d-j-1)/2$, and

\[[h_\alpha]^2 := b_\alpha \prod_{j=1}^{d-2} \alpha_j (2\alpha_j + 1) |\alpha_{d-j+1}/2| |\alpha_{d-j+1}| |\alpha_j|
\]

in which $b_\alpha = 2$ if $\alpha_{d-1} + \alpha_d > 0$, while $b_\alpha = 1$ otherwise. Then $\{Y_\alpha : |\alpha| = n, \alpha_d = 0, 1\}$ is an orthonormal basis of H_n^d, that is, $\langle Y_\alpha, Y_\beta \rangle_{S^d-1} = \delta_{\alpha,\beta} d$.

Proof. To see that Y_α is a homogeneous polynomial, we use, by (5.1), the relation $\cos \theta_k = x_{k+1}/\sqrt{x_1^2 + \ldots + x_{d-k+1}^2}$ for $1 \leq k \leq d-1$ to rewrite (5.6) as

\[Y_\alpha(x) = [h_\alpha]^{-1} g(x) \prod_{j=1}^{d-2} (x_j^2 + \ldots + x_{d-j}^2)^{\alpha_j/2} C_{\alpha_j}^\lambda(\sqrt{x_{d-j+1}^2 + \ldots + x_{d-j+1}^2})
\]

where $g(x) = \rho^{\alpha_{d-1}} \cos \alpha_{d-1} \theta_1$ for $\alpha_d = 0$, $\rho^{\alpha_{d-1}} \cos \alpha_{d-1} \theta_1$ for $\alpha_d = 1$, with $\rho = \sqrt{x_1^2 + x_2^2}$. Since $x_1 = \rho \sin \theta_1$ and $x_2 = \rho \cos \theta_1$ by (5.1), $g(x)$ is either real or the imaginary part of $(x_2 + ix_1)^{\alpha_{d-1}}$, which shows that it is a homogeneous polynomial of degree α_d in x. Since $C_n^\lambda(t)$ is even when n is even and odd when n is odd, we see that $Y_\alpha \in \mathcal{P}_n^d$. Using (5.4), we see that

\[\langle Y_\alpha, Y_{\alpha'} \rangle_{S^d-1} = \frac{h_\alpha^{-1} h_{\alpha'}^{-1}}{\omega_d} \int_0^{2\pi} g_\alpha(\theta_1) g_{\alpha'}(\theta_1) d\theta_1 \times \prod_{j=1}^{d-2} \int_0^\pi C_{\alpha_j}^\lambda(\cos \theta_{d-j}) C_{\alpha'_j}^\lambda(\cos \theta_{d-j}) (\sin \theta_{d-j})^{2\lambda_j} d\theta_{d-j}
\]

from which the orthogonality follows from the orthogonal of the Gegenbauer polynomials (5.4) and that of $\cos m\theta$ and $\sin m\theta$ on $[0,2\pi)$, and the formula for h_α follows from the normalization constant of the Gegenbauer polynomial. \qed
For $d = 2$ and the polar coordinates $(x_1, x_2) = (r \cos \theta, r \sin \theta)$, it is easy to see that $\nabla_0 = \partial_\theta$, where $\partial_\theta = \partial/\partial \theta$. Hence by (4.8), the Laplace-Beltrami operator for $d = 2$ is $\Delta_0 = \partial_\theta^2$. Using (4.5) iteratively, we see that the Laplace-Beltrami operator Δ_0 has an explicit formula in the spherical coordinates (5.1),

$$\Delta_0 = \frac{1}{\sin^{d-2} \theta_{d-1}} \frac{\partial}{\partial \theta_{d-1}} \left[\sin^{d-2} \theta_{d-1} \frac{\partial}{\partial \theta_{d-1}} \right]$$

$$+ \sum_{j=1}^{d-2} \frac{1}{\sin^2 \theta_{d-1} \cdots \sin^2 \theta_{j+1} \sin^{j-1} \theta_j} \frac{\partial}{\partial \theta_j} \left[\sin^{j-1} \theta_j \frac{\partial}{\partial \theta_j} \right].$$

6. Spherical harmonics in two and three variables

Since spherical harmonics in two and three variables are used most often in applications, we state their properties in this section.

6.1. Spherical harmonics in two variables. For $d = 2$, $\dim \mathcal{H}_n^2 = 2$. An orthogonal basis of \mathcal{H}_n^2 is given by the real and imaginary parts of $(x_1 + ix_2)^n$, since both are homogeneous of degree n and are harmonic as the real and imaginary parts of an analytic function. In polar coordinates $(x_1, x_2) = (r \cos \theta, r \sin \theta)$ of \mathbb{R}^2, this basis is given by

$$Y_n^{(1)}(x) = r^n \cos \theta, \quad Y_n^{(2)}(x) = r^n \sin \theta.$$

Hence, restricting to the circle S^1, the spherical harmonics are precisely the cosine and sine functions. In particular, spherical harmonic expansions on S^1 are the classical Fourier expansions in cosine and sine functions.

As homogeneous polynomials, the basis (6.1) is given explicitly in terms of the Chebyshev polynomials T_n and U_n defined by

$$T_n(t) = \cos n \theta \quad \text{and} \quad U_n(t) = \frac{\sin(n + 1) \theta}{\sin \theta},$$

which are related to the Gegenbauer polynomials: $U_n(t) = C_n^1(t)$ and

$$\lim_{\lambda \to 0^+} \frac{1}{\lambda} C_n^\lambda(x) = \frac{2}{n} T_n(x).$$

The basis in (6.1) can be rewritten then as

$$Y_n^{(1)}(x) = r^n T_n \left(\frac{x_1}{r} \right), \quad Y_n^{(2)}(x) = r^{n-1} x_2 U_{n-1} \left(\frac{x_1}{r} \right),$$

which shows explicitly that these are homogeneous polynomials since $r = \sqrt{x_1^2 + x_2^2}$ and both $T_n(t)$ and $U_n(t)$ are even if n is even, odd if n is odd.

When $d = 2$, the zonal polynomial is given by $T_n((x, y)) = \cos n(\theta - \phi)$ and the addition formula (2.8) becomes, by (6.1), the addition formula

$$\cos n \theta \cos n \phi + \sin n \theta \sin n \phi = \cos n(\theta - \phi).$$

The expression (4.2) of the Laplace operator in polar coordinates becomes

$$\Delta = \frac{d^2}{dr^2} + \frac{1}{r} \frac{d}{dr} + \frac{1}{r^2} \frac{d^2}{d\theta^2},$$

in particular, the Laplace–Beltrami operator on S^1 is simply $\Delta_0 = d^2/d\theta^2$.

$$\Delta_0 = \frac{1}{\sin^{d-2} \theta_{d-1}} \frac{\partial}{\partial \theta_{d-1}} \left[\sin^{d-2} \theta_{d-1} \frac{\partial}{\partial \theta_{d-1}} \right]$$

$$+ \sum_{j=1}^{d-2} \frac{1}{\sin^2 \theta_{d-1} \cdots \sin^2 \theta_{j+1} \sin^{j-1} \theta_j} \frac{\partial}{\partial \theta_j} \left[\sin^{j-1} \theta_j \frac{\partial}{\partial \theta_j} \right].$$
6.2. Spherical harmonics in three variables. The space \mathcal{H}_n^3 of spherical harmonics of degree n has dimension $2n + 1$. For $d = 3$ the spherical polar coordinates (6.3) are written as
\[
\begin{align*}
 x_1 &= r \sin \theta \sin \phi, \\
 x_2 &= r \sin \theta \cos \phi, \\
 x_3 &= r \cos \theta,
\end{align*}
\]
(6.3)
where $0 \leq \theta \leq \pi$, $0 \leq \phi < 2\pi$, $r > 0$.

The surface area of S^2 is 4π and the integral over S^{d-1} is parameterized by
\[
\int_{S^2} f(x) d\sigma = \int_0^\pi \int_0^{2\pi} f(\sin \theta \sin \phi, \sin \theta \cos \phi, \cos \theta) d\phi d\theta.
\]
(6.4)

The orthogonal basis (5.6) in spherical coordinates becomes
\[
\begin{align*}
 Y_{k,1}^n(\theta, \phi) &= (\sin \theta)^k C_{n-k}^{k+\frac{1}{2}}(\cos \theta) \cos k\phi, \quad 0 \leq k \leq n, \\
 Y_{k,2}^n(\theta, \phi) &= (\sin \theta)^k C_{n-k}^{k+\frac{1}{2}}(\cos \theta) \sin k\phi, \quad 1 \leq k \leq n.
\end{align*}
\]
(6.5)

Their $L^2(S^2)$ norms can be deduced from (5.6). This basis is often written in terms of the associated Legendre polynomials $P_n^k(t)$ defined by
\[
P_n^k(x) := (-1)^n(1 - x^2)^{k/2} \frac{d^k}{dx^k} P_n(x) = (2k - 1)!!(1 - x^2)^{k/2} C_{n-k}^{k+1/2}(x),
\]
where $P_n(t) = C_n^n(t)$ denotes the Legendre polynomial of degree n (see Appendix B for properties of P_n and P_n^k), and in terms of $\{e^{ik\phi}, e^{-ik\phi}\}$ instead of $\{\cos k\phi, \sin k\phi\}$. In this way an orthonormal basis of \mathcal{H}_n^3 is given by
\[
Y_{k,n}(\theta, \phi) = \frac{(2n + 1)(n - k)!}{(n + k)!} P_n^k(\cos \theta) e^{ik\phi}, \quad -n \leq k \leq n.
\]
(6.6)

The addition formula (2.8) then reads, assuming that x and y have spherical coordinates (θ, ϕ) and (θ', ϕ'), respectively,
\[
\sum_{k=-n}^n Y_{k,n}(\theta, \phi) Y_{k,n}(\theta', \phi') = (2n + 1) P_n(\langle x, y \rangle).
\]
(6.7)

In terms of the coordinates (6.3), the Laplace–Beltrami operator is given by
\[
\Delta_0 = \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2}
\]
(6.8)
as seen from (5.7).

7. Representation of the rotation group

In this section we show that the representation of the group $SO(d)$ in spaces of harmonic polynomials is irreducible.

A representation of $SO(d)$ is a homomorphism from $SO(d)$ to the group of nonsingular continuous linear transformations of $L^2(S^{d-1})$. We associate with each element $Q \in SO(d)$ an operator $T(Q)$ in the space of $L^2(S^{d-1})$, defined by
\[
T(Q)f(x) = f(Q^{-1}x), \quad x \in S^{d-1}.
\]
(7.1)

Evidently, for each $Q \in SO(d)$, $T(Q)$ is a nonsingular linear transformation of $L^2(S^{d-1})$ and T is a homomorphism,
\[
T(Q_1Q_2) = T(Q_1)T(Q_2), \quad \forall Q_1, Q_2 \in SO(d).
\]
Thus, T is a representation of $SO(d)$. Since $d\sigma$ is invariant under rotations, $\|T(Q)f\|_2 = \|f\|_2$ in the $L^2(S^{d-1})$ norm, so that $T(Q)$ is unitary.

A linear space \mathcal{U} is called invariant under T if $T(Q)$ maps \mathcal{U} to itself for all $Q \in SO(d)$. The null space and $L^2(S^{d-1})$ itself are trivial invariant subspaces. A representation T is called irreducible if it has only trivial invariant subspaces. The space \mathcal{H}^{d}_{n} is an invariant subspace of T in (7.1).

Let $T_{n,d}$ denote the representation of $SO(d)$ corresponding to T in the invariant subspace \mathcal{H}^{d}_{n}. We want to show that $T_{n,d}$ is irreducible.

Lemma 7.1. A spherical harmonic $Y \in \mathcal{H}^{d}_{n}$ is invariant under all rotations in $SO(d)$ that leaves x_d fixed if and only if

$$ Y(x) = c \|x\|^n C^n_d \left(\frac{x_d}{\|x\|} \right), \quad \lambda = \frac{d - 2}{2}, $$

where c is a constant.

Proof. If Y is invariant under rotations that fix x_d and is a homogeneous polynomial of degree n, then it can be written as

$$ Y(x) = \sum_{0 \leq j \leq n/2} b_j x_d^{n-2j}(x_1^2 + \ldots + x_{d-1}^2)^j = \sum_{0 \leq j \leq n/2} c_j x_d^{n-2j} \|x\|^{2j}. $$

where the second equal sign follows from expanding $(\|x\|^2 - x_d^2)^j$ and changing the order of summation. Since Y is harmonic, computing $\Delta Y(x) = 0$ shows that c_j satisfies the recurrence relation

$$ 4(j + 1)(n - j - 1)c_{j+1} + (n - 2j)(n - 2j - 1)c_j = 0. $$

Solving the recurrence equation for c_j we conclude that

$$ Y(x) = c_0 \sum_{0 \leq j \leq n/2} \left(\frac{-j}{j!(1 - n - d - 2)} \right) x_d^{n-2j} \|x\|^{2j}. $$

Consequently, (7.2) follows from the formula (??) for Gegenbauer polynomials. Since the function Y in (7.2) is clearly invariant under all rotations that fix x_d and we have just shown that it is harmonic, the proof is complete. \qed

Theorem 7.2. The representation $T_{n,d}$ of $SO(d)$ on \mathcal{H}^{d}_{n} is irreducible.

Proof. Assume that \mathcal{U} is an invariant subspace of \mathcal{H}^{d}_{n} and \mathcal{U} is not a null space. Let $\{Y_j : 1 \leq j \leq M\}$, $M \leq \dim \mathcal{H}^{d}_{n}$, be an orthonormal basis of \mathcal{U}. Following the proof of Lemma 2.5, there is a polynomial $F(t)$ of one variable such that $\sum_{j=1}^{M} Y_j(x)Y_j(y) = F(\langle x, y \rangle)$. In particular, setting $y = e_d = (0, \ldots, 0, 1)$ shows that $F(\langle x, e_d \rangle)$ is in \mathcal{H}^{d}_{n} and it is evidently invariant under rotations in $SO(d)$ that fix x_d. Hence, by Lemma 7.1 $F(\langle x, e_d \rangle) = c \|x\|^n C^n_d (\frac{x_d}{\|x\|})$. In particular, this shows that $\|x\|^n C^n_d (\frac{x_d}{\|x\|}) \in \mathcal{U}$. On the other hand, let \mathcal{U}^\perp denote the orthogonal complement of \mathcal{U} in \mathcal{H}^{d}_{n}. If $f \in \mathcal{U}^\perp$ and $g \in \mathcal{U}$, then $(T(Q)f, g)_{S^{d-1}} = (f, T(Q^{-1})g)_{S^{d-1}} = 0$, which shows that \mathcal{U}^\perp is also an invariant subspace of \mathcal{H}^{d}_{n}. Applying the same argument as for \mathcal{U} shows that $\|x\|^n C^n_d (\frac{x_d}{\|x\|}) \in \mathcal{U}^\perp$, which contradicts to $\mathcal{U} \cap \mathcal{U}^\perp = \{0\}$. Thus, \mathcal{U} must be trivial. \qed
8. Angular derivatives and the Laplace–Beltrami operator

Consider the case \(d = 2 \) and the polar coordinates \((x_1, x_2) = (r \cos \theta, r \sin \theta)\). Let \(\partial_r = \partial / \partial r \) and \(\partial_\theta = \partial / \partial \theta \), while we retain \(\partial_1 \) and \(\partial_2 \) for the partial derivatives with respect to \(x_1 \) and \(x_2 \). It then follows that

\[
\partial_1 = \cos \theta \partial_r - \frac{\sin \theta}{r} \partial_\theta, \quad \partial_2 = \sin \theta \partial_r + \frac{\cos \theta}{r} \partial_\theta.
\]

From these relations it follows easily that the angular derivative \(\partial_\theta \) can also be written as \(\partial_\theta = x_1 \partial_2 - x_2 \partial_1 \) and the operator \(\Delta_0 \) is \(\Delta_0 = \partial_\theta^2 \). We introduce angular derivatives in higher dimensions as follows.

Definition 8.1. For \(x \in \mathbb{R}^d \) and \(1 \leq i \neq j \leq d \), define

\[
D_{i,j} := x_i \partial_j - x_j \partial_i = \frac{\partial}{\partial \theta_{i,j}},
\]

where \(\theta_{i,j} \) is the angle of polar coordinates in the \((x_i, x_j)\)-plane, defined by \((x_i, x_j) = r_{i,j}(\cos \theta_{i,j}, \sin \theta_{i,j})\), \(r_{i,j} \geq 0 \) and \(\theta \leq \theta_{i,j} \leq 2\pi \).

By its definition with partial derivatives on \(\mathbb{R}^d \), \(D_{i,j} \) acts on \(\mathbb{R}^d \), yet the second equality in (8.1) shows that it acts on the sphere \(S^{d-1} \). Thus, for \(f \) defined on \(\mathbb{R}^d \),

\[
(D_{i,j}f)(\xi) = D_{i,j}[f(\xi)], \quad \xi \in S^{d-1},
\]

where the right-hand side means that \(D_{i,j} \) is acting on \(f(\xi) \).

Since \(D_{i,i} = -D_{i,j} \), the number of distinct operators \(D_{i,j} \) is \(\binom{d}{2} \). The operator \(\Delta_0 \) can be decomposed in terms of them.

Theorem 8.2. On \(S^{d-1} \), \(\Delta_0 \) satisfies the decomposition

\[
\Delta_0 = \sum_{1 \leq i < j \leq d} D_{i,j}^2.
\]

Proof. Let \(F(x) = f\left(\frac{x}{\|x\|} \right) \). A straightforward computation shows that

\[
\sum_{1 \leq i < j \leq d} D_{i,j}^2 F(x) = (\Delta F)(x) - \frac{1}{\|x\|^2} \sum_{i=1}^d \sum_{j=1}^d x_i x_j \frac{\partial^2 F}{\partial x_i \partial x_j} - d - 1 \sum_{i=1}^d \frac{\partial F}{\partial x_i}.
\]

Consequently, restricting to \(S^{d-1} \) and comparing with (4.3), (8.3) follows. \(\square \)

Let \(Q_{i,j,\theta} \) denote a rotation by the angle \(\theta \) in the \((x_i, x_j)\)-plane, oriented so that \((x_i, x_j) = (s \cos \theta, s \sin \theta)\). Then \(T(Q_{i,j,\theta}) \), defined in (7.1), maps \(f \) into \(T(Q_{i,j,\theta})f(x) = f(Q_{i,j,-\theta}x) \). Written explicitly, for example, for \((i, j) = (1, 2)\), we have

\[
T(Q_{1,2,\theta}f)(x) = f(x_1 \cos \theta + x_2 \sin \theta, -x_1 \sin \theta + x_2 \cos \theta, x_3, \ldots, x_d).
\]

Then \(D_{i,j} \) is the infinitesimal operator of \(T(Q) \),

\[
\frac{dT(Q_{i,j,\theta})}{d\theta} \bigg|_{\theta=0} = x_i \frac{\partial}{\partial x_j} - x_j \frac{\partial}{\partial x_i} = D_{i,j},
\]

where the first equality follows from (8.4). The infinitesimal operator plays an important role in representation theory; see, for example, [12].

The operators \(D_{i,j} \) will play an important role for approximation theory on the sphere. We state several more properties of these operators.
Lemma 8.3. For $1 \leq i < j \leq d$, the operators $D_{i,j}$ commute with Δ_0. In particular, $D_{i,j}$ maps \mathcal{H}^d_n to itself.

Proof. By symmetry, we only need to show only that $D_{1,2}$. Let $[A,B] = AB - BA$ denote the commutator of A and B. A quick computation shows that

$$[\partial_j, D_{k,l}] = \delta_{j,k} \partial_l - \delta_{j,l} \partial_k, \quad [x_i, D_{k,l}] = \delta_{i,k} x_l - \delta_{i,l} x_k,$$

from which it is easy to see that, for $1 \leq i < j \leq d$, $1 \leq k < l \leq d$, we have

$$[D_{i,j}, D_{k,l}] = -\delta_{i,k} D_{j,l} + \delta_{i,l} D_{j,k} + \delta_{j,k} D_{i,l} - \delta_{j,l} D_{i,k}.$$

Using (8.6), a simple computation shows that $[D_{1,2}, D^2_{1,2}] = -(D_{1,1} D_{2,2} + D_{2,1} D_{1,2})$ and $[D_{1,2}, D^2_{2,1}] = D_{1,2} D_{2,1} + D_{2,1} D_{1,2}$, so that $[D_{1,2}, D^2_{k, l}] = 0$ for $l \geq 2$. Moreover, by (8.6), $[D_{1,2}, D^2_{k, l}] = 0$ whenever $3 \leq k < l \leq d$. Summing over (k, l) for $1 \leq k < l \leq d$ then proves $[D_{1,2}, \Delta_0] = 0$. □

Proposition 8.4. For $f, g \in C^1(\mathbb{S}^{d-1})$ and $1 \leq i \neq j \leq d$,

$$\int_{\mathbb{S}^{d-1}} f(x) D_{i,j} g(x) d\sigma(x) = -\int_{\mathbb{S}^{d-1}} D_{i,j} f(x) g(x) d\sigma(x).$$

Proof. By the rotation invariance of the Lebesgue measure $d\sigma$, we obtain, for every $\theta \in [-\pi, \pi]$,

$$\int_{\mathbb{S}^{d-1}} f(x) g(Q_{i,j,-\theta} x) d\sigma(x) = \int_{\mathbb{S}^{d-1}} f(Q_{i,j,\theta} x) g(x) d\sigma(x).$$

Differentiating both sides of this identity with respect to θ and evaluating the resulting equation at $\theta = 0$ leads to, by (8.5), the desired equation (8.7).

The equation (8.7) allows us to define distributional derivatives $D^r_{i,j}$ on \mathbb{S}^{d-1} for $r \in \mathbb{N}$ via the identity, with $g \in C^\infty(\mathbb{S}^{d-1})$,

$$\int_{\mathbb{S}^{d-1}} D^r_{i,j} f(x) g(x) d\sigma(x) = (-1)^r \int_{\mathbb{S}^{d-1}} f(x) D^r_{i,j} g(x) d\sigma(x).$$

Summing (8.8) with $r = 2$ over $i < j$ and applying (8.3), it follows immediately that Δ_0 is self-adjoint, which can also be deduced from Theorem 4.5.

Corollary 8.5. For $f, g \in C^2(\mathbb{S}^{d-1})$,

$$\int_{\mathbb{S}^{d-1}} f(x) \Delta_0 g(x) d\sigma = \int_{\mathbb{S}^{d-1}} \Delta_0 f(x) g(x) d\sigma.$$

The spherical gradient ∇_0 is a vector of first order differential operator on the sphere, which can be written in terms of $D_{i,j}$ as follows.

Lemma 8.6. For $f \in C^1(\mathbb{S}^{d-1})$ and $1 \leq j \leq d$, the j-th component of $\nabla_0 f$ satisfies

$$(\nabla_0)_j f(\xi) = \sum_{1 \leq i \leq d, i \neq j} \xi_i D_{i,j} f(\xi), \quad \xi \in \mathbb{S}^{d-1}.$$

Furthermore, for $f, g \in C^1(\mathbb{S}^{d-1})$, the following identity holds:

$$\nabla_0 f(\xi) \cdot \nabla_0 g(\xi) = \sum_{1 \leq i < j \leq d} D_{i,j} f(\xi) D_{i,j} g(\xi), \quad \xi \in \mathbb{S}^{d-1}.$$
By the chain rule, recalling (8.2) if necessary, we have
\[(\nabla_0)_j f(\xi) = \frac{\partial}{\partial x_j} F(\xi) = \partial_j f - \xi_j \sum_{i=1}^d \xi_i \partial_i f \]
which gives (8.9) since \(D_{i,j} f = 0 \). (8.11) means that
\[\nabla_0 f(\xi) = \nabla f(\xi) - \xi(\xi \cdot \nabla f). \]
Since \(\xi \cdot \nabla_0 f(\xi) = 0 \), using (8.11) and the definition of \(D_{i,j} \), it follows that
\[\nabla_0 f \cdot \nabla_0 g = \nabla_0 f \cdot \nabla g = \sum_{j=1}^d \partial_j f \partial_j g - \sum_{j=1}^d \sum_{i=1}^d \xi_i \xi_j \partial_i f \partial_j g = \sum_{i,j} D_{i,j} f(\xi) D_{i,j} g(\xi), \]
where the second equality uses \(\|\xi\| = 1 \). \qed

As an application, we state an integration by parts formula on the sphere.

Proposition 8.7. For \(f, g \in C^1(S^{d-1}) \),
\[\int_{S^{d-1}} f(x) \nabla_0 g(x) d\sigma = -\int_{S^{d-1}} (\nabla_0 f(x) - (d-1)xf(x)) g(x) d\sigma. \]
Furthermore, for \(f \in C^2(S^{d-1}) \) and \(g \in C^1(S^{d-1}) \),
\[\int_{S^{d-1}} \nabla_0 f \cdot \nabla_0 g d\sigma = -\int_{S^{d-1}} \Delta_0 f(x) g(x) d\sigma. \]

Proof. Using the expression (8.11) and applying (8.7), we obtain
\[\int_{S^{d-1}} f(x)(\nabla_0)_j g(x) d\sigma = \sum_{1 \leq i \leq d, i \neq j} \int_{S^{d-1}} x_i f(x) D_{i,j} g(x) d\sigma \]
\[= -\sum_{1 \leq i \leq d, i \neq j} \int_{S^{d-1}} D_{i,j} (x_i f(x)) g(x) d\sigma. \]
By the chain rule, recalling (8.2) if necessary, we have \(D_{i,j} (x_i f(x)) = x_i D_{i,j} f - x_j f(x) \). Hence we obtain
\[\int_{S^{d-1}} f(x)(\nabla_0)_j g(x) d\sigma = -\int_{S^{d-1}} \left(\sum_{1 \leq i \leq d, i \neq j} x_i D_{i,j} f(x) - (d-1) f(x) \right) g(x) d\sigma, \]
which gives the \(j \)-th component of (8.13). Equation (8.14) follows immediately from (8.10), (8.7) and (8.3). \qed

9. Notes

Spherical harmonics appear in many disciplines and in many different branches of mathematics. Many books contain parts of the theory of spherical harmonics. Our treatment covers what is needed for harmonic analysis and approximation theory in this book. Below we comment on some books that we have consulted.

A classical treatise on spherical harmonics is [8], a good source for classical results. A short but nice expository is [9], which was later expanded into [10]. The reference book [5] contains a chapter on spherical harmonics. A rich resource for spherical harmonics in Fourier analysis is [11]. Applications to and connections
with group representation are studied extensively in [12]; see also [7]. For their role in the context of orthogonal polynomials of several variables, see [4] as well as [5]. The book [1] contains a chapter on spherical harmonics in light of special functions. The theory of harmonic functions is treated in [3], including material on spherical harmonics. The book [6] deals with spherical harmonics in geometric applications. Finally, the recent book [2] provides an introduction to spherical harmonics and approximation on the sphere from the perspective of applications in numerical analysis.

Aside from their role in representation theory, the operators $D_{i,j}$ do not seem to have received much attention in analysis. Most of the materials in Section 8 have not previously appeared in books. These operators play an important role in our development of approximation theory on the sphere.

References

[1] R. Askey, G. Andrews and R. Roy, Special Functions, Encyclopedia of Mathematics and its Applications 71, Cambridge University Press, Cambridge, 1999.
[2] K. Atkinson and W. Han, Spherical harmonics and approximation on the unit sphere: An introduction, Lecture Notes in Math. 2044, Springer, 2012.
[3] S. Axler, P. Bourdon, and W. Ramey, Harmonic function theory, Springer, New York, 1992.
[4] C. F. Dunkl and Y. Xu, Orthogonal polynomials of several variables, Cambridge Univ. Press, 2001.
[5] A. Erdélyi, W. Magnus, F. Oberhettinger and Tricomi, F. G., Higher transcendental functions, McGraw-Hill, New York, 1953.
[6] H. Groemer, Geometric applications of Fourier series and spherical harmonics, Cambridge University Press, New York, 1996.
[7] S. Helgason, Groups and geometric analysis, Academic Press, New York, 1984.
[8] E. W. Hobson, The theory of spherical and elliptical harmonics, Chelsea Publishing Co., New York, 1955.
[9] C. Müller, Spherical harmonics. Lecture Notes in Math. No. 17, Springer-Verlag, New York, 1966.
[10] C. Müller, Analysis of spherical symmetries in Euclidean spaces, Springer, New York, 1997.
[11] E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Univ. Press, Princeton, 1971.
[12] N. J. Vilenkin, Special functions and the theory of group representations, American Mathematical Society Translation of Mathematics Monographs 22, American Mathematical Society, Providence, RI, 1968.
Approximation Theory and Harmonic Analysis on Spheres and Balls

F. Dai and Y. Xu
Springer Monographs in Mathematics, Springer, New York 2013.

Table of Contents

Section	Page
Preamble	xvii
1 Spherical Harmonics	
1.1 Space of spherical harmonics and orthogonal bases	1
1.2 Projection operators and Zonal harmonics	7
1.3 Zonal basis of spherical harmonics	11
1.4 Laplace-Beltrami operator	14
1.5 Spherical harmonics in spherical coordinates	17
1.6 Spherical harmonics in two and three variables	19
1.6.1 Spherical harmonics in two variables	19
1.6.2 Spherical harmonics in three variables	20
1.7 Representation of the rotation group	22
1.8 Angular derivatives and Laplace-Beltrami operator	23
1.9 Notes	27
2 Convolution and Spherical Harmonic Expansion	29
2.1 Convolution and translation operators	29
2.2 Fourier orthogonal expansions	33
2.3 The Hardy-Littlewood Maximal function	37
2.4 Spherical harmonic series and Cesàro means	40
2.5 Convergence of Cesàro means: further results	43
2.6 highly localized kernels	44
2.7 Notes and further results	50
3 Littlewood-Paley Theory and Multiplier Theorem	53
3.1 Analysis on homogeneous spaces	53
3.2 The Littlewood-Paley theory on the sphere	56
3.3 The Marcinkiewitz multiplier theorem	64
3.4 The Littlewood-Paley inequality	67
3.5 The Riesz transform on the sphere	71
3.5.1 Fractional Laplace-Beltrami operator and Riesz transform	71
3.5.2 Proof of Lemma 3.5.2	74
3.6 Notes and further results	78
4 Approximation on the Sphere	79
4.1 Approximation by trigonometric polynomials	80
4.2 Modulus of smoothness on the unit sphere	85
4.3 A key lemma	89
4.4 Characterization of best approximation	93
4.5 K-functionals and Approximation in Sobolev space	95
4.6 Computational examples	97
Section	

4.7	Other moduli of smoothness
4.8	Notes and further results
5	Weighted Polynomial Inequalities
5.1	Doubling weights on the sphere
5.2	A maximal function for spherical polynomials
5.3	Marcinkiewicz-Zygmund inequalities
5.4	Further inequalities between sums and integrals
5.5	Nikolskiĭ and Bernstein inequalities
5.6	Notes and further results
6	Cubature Formulas on Spheres
6.1	Cubature formulas
6.2	Product type cubature formulas on the sphere
6.3	Positive Cubature formulas
6.4	Area-regular partitions of S^{d-1}
6.5	Spherical designs
6.6	Notes and further results
7	Harmonic Analysis Associated to Reflection Groups
7.1	Dunkl operators and h-spherical harmonics
7.2	Projection operator and intertwining operator
7.3	h-harmonics for a general finite reflection group
7.4	Convolution and h-harmonic series
7.5	Maximal function and multiplier theorem
7.6	Maximal function for Z_d^d invariant weight
7.7	Notes and further results
8	Boundedness of Projection Operator and Cesàro Means
8.1	Boundedness of Cesàro means above the critical index
8.2	A multiple Beta integral of the Jacobi polynomials
8.3	Pointwise estimate of the kernel functions
8.4	Proof of the main results
8.5	Lower bound for generalized Gegenbauer expansion
8.6	Notes and further results
9	Projection Operators and Cesàro Means in L^p Spaces
9.1	Boundedness of projection operators
9.2	Boundedness of Cesàro means in L^p spaces
9.2.1	Proof of Theorem 9.2.1
9.2.2	Proof of Theorem 9.2.2
9.3	Local estimates of the projection operators
9.3.1	Proof of Theorem 9.1.2, case I: $\gamma < \sigma_\kappa - \frac{d-2}{2}$
9.3.2	Proof of Theorem 9.1.2, case 2: $\gamma = \sigma_\kappa - \frac{d-2}{2}$
9.4	Notes and further results
10	Weighted Best Approximation by Polynomials
10.1	Moduli of smoothness and best approximation
10.2	Fractional powers of spherical h-Laplacian
10.3	K-functionals and best approximation

99 99 101 105 111 114 118 124 126 105 132 135 140 144 151 155 156 160 166 168 172 179 186 189 189 191 198 200 204 211 213 213 217 218 222 225 226 234 239 241 241 245 248
Section	Title	Page
10.4	Equivalence of the first modulus with K-functional	250
10.5	Equivalence of the second modulus with K-functional	254
10.6	Further properties of moduli of smoothness	261
10.7	Notes and further results	262
11	Harmonic Analysis on the Unit Ball	265
11.1	Orthogonal structure on the unit ball	265
11.2	Convolution and orthogonal expansions	272
11.3	Maximal functions and multiplier theorem	276
11.4	Projection operators and Cesàro means on the ball	280
11.5	Near best approximation operators and highly localized kernels	283
11.6	Cubature formulas on the unit ball	286
11.6.1	Cubature formulas on the ball and on the sphere	287
11.6.2	Positive cubature formulas and MZ inequality	288
11.6.3	Product type cubature formulas	290
11.7	Orthogonal structure on spheres and on balls	292
11.8	Notes and further results	294
12	Polynomial Approximation on the Unit Ball	297
12.1	Algebraic polynomial approximation on the interval	298
12.2	First modulus of smoothness and K-functional	303
12.2.1	Projection from sphere to ball	303
12.2.2	Modulus of smoothness	305
12.2.3	Weighted K-functional and the equivalence	307
12.2.4	Main theorems	309
12.2.5	The moduli of smoothness on $[-1,1]$	311
12.2.6	Computational examples	312
12.3	The second modulus of smoothness and K-functional	313
12.3.1	Analogue of the Ditzian-Totik K-functional	314
12.3.2	Direct and inverse theorems by K-functional	319
12.3.3	Analogue of Ditzian-Totik modulus of smoothness on \mathbb{B}^d	320
12.3.4	Equivalence of $\omega(f, t)_p$ and $K_{r,\varphi}(f, t)_p$	323
12.4	Third modulus of smoothness and K-functional	326
12.5	Comparisons of three moduli of smoothness	328
12.6	Notes and further results	329
13	Harmonic Analysis on the Simplex	333
13.1	Orthogonal structure on the simplex	333
13.2	Convolution and orthogonal expansions	337
13.3	Maximal functions and multiplier theorem	340
13.4	Projection operator and Cesàro means	344
13.5	Near best approximation operators and highly localized kernels	351
13.6	Weighted best approximation on the simplex	354
13.7	Cubature formulas on the simplex	356
13.7.1	Cubature formulas on the simplex and on the ball	357
13.7.2	Positive cubature formulas and MZ inequality	357
13.7.3	Product type cubature formulas	359
13.8	Notes and further results	360
14	Applications	361
14.1 Highly localized tight polynomial frames on the sphere 362
14.2 Nodes distribution of positive cubature formulas 369
14.3 Positive definite functions on the sphere 373
14.4 Asymptotics for minimal discrete energy on the sphere 381
14.5 Computerized tomography 388
14.6 Notes and further results 396

A Distance, Difference and Integral Formulas 401
A.1 Distance on spheres, balls and simplexes 401
A.2 Euler angles and rotations 403
A.3 Basic properties of difference operators 404
A.4 Cesàro means and Difference operators 406
A.5 Integrals over spheres and balls 409

B Jacobi and Related Orthogonal Polynomials 413
B.1 Jacobi polynomials 413
B.2 Gegenbauer polynomials 416
B.3 Generalized Gegenbauer polynomials 418
B.4 Associated Legendre polynomials 419
B.5 Estimates of normalized Jacobi polynomials 419

References 425
Index 433
Symbol Index 437