Quasiparticle Self-Consistent GW-Bethe-Salpeter Calculations of the Low-Lying Excitations of the Photosystem II Reaction Center

Arno Förster* and Lucas Visscher

Theoretical Chemistry, Vrije Universiteit, De Boelelaan 1083, NL-1081 HV, Amsterdam, The Netherlands

E-mail: a.t.l.foerster@vu.nl

Abstract

The GW-Bethe-Salpeter Equation (BSE) method is promising for calculating the low-lying excited states of molecular systems. However, so far it has only been applied to rather small molecules, and in the commonly implemented diagonal approximations to the electronic self-energy it depends on a mean-field starting point. We describe here an implementation of the self-consistent and starting-point independent quasiparticle self-consistent ($qsGW$)-BSE approach which is suitable for calculations on large molecules. We herein show that self-consistency in the eigenvalues only leads to an unfaithful description of certain excitonic states for Chlorophyll dimers while the $qsGW$-BSE excitation energies are in excellent agreement with experiment. We use the new implementation to calculate the lowest excitation energies of the six chromophores of the photosystem II (PSII) reaction center (RC) with nearly 2000 correlated electrons in total. Primary charge separation in the PSII RC occurs along the D1 branch via initial formation of Chl$_{D1}^+$ -Pheo$_{D1}^-$ and subsequent hole transfer leading to P$_{D1}^+$ -Pheo$_{D1}^-$. We find the Chl$_{D1}^+$ -P$_{D1}^-$ charge transfer (CT) state to be lowest excited
state, but do not observe the \(\text{Chl}_{D1}^+ - \text{Pheo}_{D1}^- \) CT state at low energy. This is most likely to the neglect of the protein environment. Notwithstanding this discrepancy, our results are in closer agreement to experiment than the ones of previous calculations based on range-separated hybrid kernels which only predicted local excitations among the lowest excited states of the PSII RC.

1 Introduction

The absorption of photons by a molecule or a material upon interaction with electric radiation is a key process in the conversion of light into chemical or electrical energy. In the photosystem II (PSII) reaction center (RC), photons are captured by chromophoric complexes which then leads to the generation of free charge carriers.\(^1\) In the first step of this process an electron-hole pair is formed, where electron and hole are bound due to their Coulombic interaction.\(^2\) Such bound electron-hole states are commonly referred to as excitons and correspond to the energies of the absorbed photons.\(^3\) In the current work we look at the characterization of such low-lying excited states of the RC of PSII which is at the heart of photosynthetic function.\(^4\) The RC comprises six chlorin molecules, a "special pair",\(^5,6\) of two Chlorophyll \(a \) (chla) molecules (\(\text{P}_{D1} \) and \(\text{P}_{D2} \)), flanked by two more chla (\(\text{Chl}_{D1} \) and \(\text{Chl}_{D2} \)) and two Pheophytin (\(\text{Pheo}_{D1} \) and \(\text{Pheo}_{D2} \)) molecules, with around 2000 electrons in total. By now, it has been firmly established that the primary events of charge separation in PSII are determined by a complex interplay of all these six chromophores.\(^7\) Therefore, all six chromophores should ideally be treated on a quantum mechanical level and their couplings need to be taken into account.

In most current calculations of larger biomolecular complexes, one resorts to Hartree-Fock (HF)\(^8,9\) or Time-dependent (TD) Density Functional Theory (DFT) with a range-separated hybrid (RSH) exchange-correlation kernel.\(^7,10–14\) RSHs frequently offer good agreement with experiment for Chla monomers and dimers,\(^13,15,16\) but large deviations with respect to more advanced multi-configurational\(^10,17\) and wave-function based methods have also been ob-
To mitigate such errors, RSHs can be parametrized empirically for each system under investigation (as for example done in references in 19 and 20), but this makes them non-transferable and unreliable for general applications. More systematic parametrization procedures for range-separated functionals have been suggested as well 21–24 but these are labour-intensive and not readily available as ”black-box” procedures.

Turning to wave-function based methods for excited states, we find the second-order algebraic diagrammatic construction scheme (ADC(2)) 25,26 and coupled cluster 27–31 with approximate doubles (CC2) 32 easy to apply and reasonably cost-efficient. CC2 results are typically in good agreement with more involved methods like equation-of-motion (EOM) CC with singles and doubles (EOM-CCSD) or similarity-transformed (ST) EOM-CCSD. 33,34 For these methods we are aware of one study of a tetrameric model by Suomivuori et al. 38 using ADC(2) together with the spin-opposite-scaled 39 and reduced-virtual-space (RVS) 40 approximations. Unfortunately, they did not include the Pheophytin chromophores in their calculations, which are known to play a key role in the initial charge separation immediately after photoexcitation. 14,41,42 This is potentially possible, but we note that most applications of wave-function based methods 16,18,43,44 focus on single chromophores. Utilizing subsystem methods 45–51 the applicability of these methods can be extended. In this family of methods one describes the full RC by an effective Hamiltonian with a limited amount of levels for each chromophore. The information needed to build such an effective Hamiltonian are the monomeric excitation energies as well as the inter-monomeric couplings. These parameters can be computed in a first principles manner with various electronic structure methods 52–54. While the subsystem approach can be used with high-level monomer calculations, a drawback is that commonly used approximations to calculate the couplings between the chromophores are often not accurate enough. 15,40,55 In the current work we will therefore examine how large a system can be treated directly without having to resort to partitioning and subsystem methods. As the states of interest are the lowest energy ones, we thereby focus on a limited number of states, but describe them in a supermolecular fashion that fully accounts...
for all intermolecular couplings of the chromophores.

Our approach is based on the GW-BSE method that we will briefly summarize in the following. We first note that energy levels of the excitonic states correspond to the poles of the 2-particle generalized susceptibility. This quantity can be obtained from the interacting single-particle Green’s function G_1 and the electronic self-energy Σ, a non-local, non-Hermitian, and frequency dependent one-electron operator, via a Bethe-Salpeter equation (BSE). G_1 is obtained from a Dyson equation with Σ as its kernel, while Σ itself depends implicitly on the 2-particle Green’s function. As obtaining the full generalized susceptibility requires N^6 operations, it is advantageous to decouple the BSE from the Dyson equation for G_1. This is done by using an approximation to the self-energy which only depends on the density-density response. A popular example is the GW approximation (GWA), with the screened Coulomb interaction W calculated within the random phase approximation (RPA). Typically, the Dyson equation for G_1 is solved within the GWA first. Only afterwards, the non-interacting 2-particle Green’s function and the corresponding kernel in its zero-frequency limit are constructed and one solves for a few or all roots of the generalized susceptibility. If only a few excitonic states are needed, one may thereby use computationally efficient iterative diagonalization techniques. This procedure is known as the GW-BSE method and is increasingly applied to compute the lowest electronically excited states of molecular systems.

For such applications, the GW part is typically the computational bottleneck of a GW-BSE calculation. The issue has been addressed over the last years: Many implementations of G_0W_0 and evGW with reduced asymptotic scaling with system size have been developed, often producing results in excellent agreement with conventional GW implementations. Another issue is related to the common approximations in solving the GW equations. Typical calculations start from a Kohn–Sham (KS)-DFT or HF Green’s function followed by a perturbative update of the QP energies (G_0W_0). This procedure comes with the notable disadvantage that the outcome of such a calculation will heavily de-
pend on the choice of the underlying exchange-correlation (XC) functional. Achieving self-consistency in the eigenvalues only (evGW) can remove this dependence on the initial density functional approximation to a large extent but not completely.

Instead, one can also start from the full GW self-energy and take the Hermitian part only to arrive at a set of effective single-particle equations. In QP self-consistent GW (qsGW), then only the low-frequency limit of the self-energy is considered, and the non-interacting G_1 closest to the GW G_1 is selected. While this approach has been shown to be more accurate than $G_0 W_0$ and evGW for a wide range of molecular systems, qsGW has until now rarely been used in molecular calculations. With only a few exceptions, low-order scaling GW algorithms only target the screened Coulomb interaction, since this requires only evaluation of the diagonal elements of the self-energy. The computational cost for obtaining the full self energy is much larger, and most implementations therefore become inefficient if the full self-energy is required. To address this issue, we have recently presented a low-order scaling implementation of qsGW. In the present work, we combine it with an efficient solver for the BSE, resulting in a fast, low-scaling, and starting-point independent implementation of the GW-BSE approach.

The GW-BSE method has recently been shown to reproduce experimental low-lying excitation energies of Chls with high accuracy. So far, it has only been applied to monomeric models of PSII. In this work, we will first give a brief account of the (low-scaling) implementation of the GW-BSE approach in section 2. In section 3, we first contrast the qsGW method to evGW for monomers and then confirm the excellent agreement with experiment and other quantum chemical calculations for both methods. We then use the qsGW-BSE implementation to calculate the low-lying excitation of the hexameric complex. Finally, section 4 summarizes and concludes this work.
2 Theory

2.1 The GW-BSE formalism

The interacting \(n \)-particle Green’s functions corresponding to an \(N \)-electron system with ground state \(\Psi^{(N)}_0 \) are defined by

\[
G_n(1, \ldots 2n) = \left\langle \Psi^{(N)}_0 \right| \mathcal{T} \left[\hat{\psi}^\dagger(1) \hat{\psi}(2) \ldots \hat{\psi}^\dagger(2n-1) \hat{\psi}(2n) \right] \left| \Psi^{(N)}_0 \right\rangle . \tag{1}
\]

Here, \(\mathcal{T} \) is the time-ordering operator, \(\hat{\psi} \) is the field operator and a number \(1 = (r_1, \sigma_1, t_1) \) collects space, spin-and time indices. The relevant cases are \(n = 1, 2 \). For the \(n = 2 \) case, we further restrict ourselves to the excitonic part only with \(t_3 = t_4 \) and \(t_1 = t_2 \).

The single-particle Green’s function can be related to its non-interacting counterpart \(G_1^{(0)} \) by a Dyson equation

\[
G_1^{(0)}(1, 2) = G_1^{(0)}(1, 2) + G_1^{(0)}(1, 3) \Sigma(3, 4) G_1(4, 2) , \tag{2}
\]

in which the self-energy operator \(\Sigma \) appears. In the following, integration over repeated indices is implied. The generalized susceptibility is defined as

\[
L(1, 2, 3, 4) = iG_2(1, 2, 3, 4) - iG_1(1, 2) G_1(3, 4) , \tag{3}
\]

and fulfills a BSE,

\[
L(1, 2, 3, 4) = L^{(0)}(1, 2, 3, 4) + L^{(0)}(1, 2, 6, 5) I(5, 7, 6, 8) L(8, 2, 7, 4) , \tag{4}
\]

where

\[
L^{(0)}(1, 2, 3, 4) = -iG_1(1, 4) G_1(2, 3) \tag{5}
\]
and \cite{134}

\[
I(1, 2, 3, 4) = i \frac{\delta \Sigma(1, 3)}{\delta G_1(4, 2)}. \tag{6}
\]

The local Hartree kernel is obtained by approximating \(\Sigma\) with the Hartee potential,

\[
\Sigma_H(1, 2) = v_H(1)\delta(1, 2) = -i\delta(1, 2) \int d3 \ v_c(1, 3)G_1(3, 3^+) , \tag{7}
\]

where \(v_c\) is the Coulomb potential and \(1^+ = \lim_{\eta \to 0^+}(r_1, \sigma_1, t_1 + \eta)\). Applied to (6) this gives

\[
\frac{\delta}{\delta G_1(4, 2)} \int d3 \ v_c(1, 3)G_1(3, 3^+) = v_c(1, 2)\delta(3, 4)\delta(3, 2) , \tag{8}
\]

and inserting (8) into (4), one then obtains

\[
P(1, 2) = P^{(0)}(1, 2) + P^{(0)}(1, 3)v_c(3, 4)P(4, 2) , \tag{9}
\]

with

\[
P(1, 2) = L(1, 2^+, 1^+, 2) \tag{10}
\]

the \(v_c\)-reducible density-density response function in the RPA and

\[
P^{(0)}(1, 2) = -iG(1, 2)G(2, 1) . \tag{11}
\]

\(P\) is related to the screened Coulomb interaction \(W\) by\cite{67}

\[
W(1, 2) = v_c(1, 2) + v_c(1, 3)P(3, 4)v_c(4, 2) , \tag{12}
\]

which can be used to define the \(GW\) self-energy,

\[
\Sigma^{(GW)}(1, 2) = v_H(1, 2) + iG(1, 2)W(1^+, 2) . \tag{13}
\]
Equations (2), (9) and (11)–(13) constitute a self-consistent set of equations, usually referred to as the GW-approximation.

By splitting the self-energy into Hermitian and anti-Hermitian part and discarding the latter one, we can restrict the solution of (2) to its QP part only. We then have an effective single-particle problem and restricting the self-energy further to its static limit and transforming to the molecular orbital basis $\{\phi_n\}_{n=1...N}$ (in which the single-particle Hamiltonian is diagonal), we arrive at

$$
\sum_m \left\{ (\epsilon_n - \epsilon_n^{QP}) \delta_{nm} + \frac{1}{2} \left[\Sigma^{(GW)}_{nm}(\epsilon_n) + \Sigma^{(GW)*}_{mn}(\epsilon_n) \right] \right\} \phi_n = 0 ,
$$

(14)

where the ϵ_n are the single-particle energies. Solving eqs. (9) and (11)–(14) self-consistently is known as the qsGW approximation within the RPA.

After solving the qsGW equations self-consistently, we can then use the zero-frequency limit of the self-energy (13) in (3) in (4). As it is typically done, we also set $\frac{\delta W}{\delta G} \approx 0$. This is referred to as the qsGW-BSE approach. After Laplace transformation to the complex frequency plane, eq. (4) can be transformed into an eigenproblem in a basis of particle-hole states whose solution provides the Lehmann representation of L (see for example ref. 137 or ref. 138 for detailed derivations),

$$
\begin{pmatrix}
A & B \\
-B & -A
\end{pmatrix}
\begin{pmatrix}
X \\
Y
\end{pmatrix}_S = \Omega_S
\begin{pmatrix}
X \\
Y
\end{pmatrix}_S .
$$

(15)

Ω_S is a neutral excitation energy, $(X, Y)^T_S$ contains the expansion coefficients of the corresponding eigenvector and for a closed-shell system the matrix elements of A and B are respectively defined as

$$
A_{ia,jb} = 2v_{cia,jb} - W(\omega = 0)_{ijab} + \delta_{ab}\delta_{ij}(\epsilon_i^{QP} - \epsilon_a^{QP}) ,
$$

$$
B_{ia,jb} = 2v_{cia,jb} - W(\omega = 0)_{ajib} ,
$$

(16)
where we have chosen to reserve the labels $i,j,...$ for occupied and $a,b,...$ for virtual orbitals. The QP energies entering the equations are the ones from (14).

2.2 Implementation

For our implementation of the qsGW methods we refer to our previous work.107,130,139 We expand single-particle Green’s functions and the self-energy in a basis of Slater type functions (primary basis) which is related to the MOs by

$$
\phi_i(r) = \sum_{\mu} c_{i\mu} \chi_{\mu}(r),
$$

while all quantities appearing in (12) are expanded in a basis of auxiliary fit functions (auxiliary basis). We then switch to the particle-hole basis to solve (15), whereby the matrix elements in (16) are expanded in the basis of MOs.

Since we do not use the screened interaction at zero frequency in our GW implementation, we calculate the zero-frequency component of P from the imaginary time representation of the polarizability by

$$
P(\omega = 0) = \frac{1}{2\pi} \int P(i\tau)d\tau,
$$

and we then use (12) to obtain $W(\omega = 0)$.

Replacing the matrix elements of the screened Coulomb interaction by the ones of the bare one in (16), and using the HF self-energy in (14), the TD-HF method is obtained. It is clear, that any solver which can be used to solve (15) in the TD-HF case, can also be used for GW-BSE. We use an extension of the Davidson algorithm140 originally proposed by Stratmann and Scuseria.73 It solves (14) by projecting the generalized problem

$$
(A - B)(A + B)(X + Y) = \Omega_S^2 (X + Y),
$$

9
on a sequence of orthonormal subspaces

\[\text{span} \left\{ b_1^{(n)}, \ldots, b_k^{(n)} \right\}, \]

(20)
in which (19) is solved. \(k \) denotes the size of the \(n \)th subspace and the \(b_k \) are linear combinations of particle-hole states. The vectors forming the subspace are then updated until the subspaces are converged. The procedure can be interpreted as an iterative optimization of the basis of particle-hole states, where the part which does not carry useful information (i.e. the particle-hole transitions which do not contribute to the low-lying excitons) is projected out.

The time-determining step in the diagonalization is the projection of the eigenproblem in the full space on the subspaces. The term containing the bare Coulomb potential is easily evaluated following the procedure in 141. For the matrix elements of the screened interaction in the \((n+1)\)th subspace iteration, we define a column in the subspace labeled by \(s_i, s_j, \ldots, s_a, s_b, \ldots \), respectively, as

\[(A \pm B)^{(n+1)}_{s_i s_a} = \sum_{s_j, s_b} \left\{ -W(\omega = 0)_{s_a s_b, s_j s_i} \mp W(\omega = 0)_{s_a s_j, s_b s_i} \right\} b^{(n)}_{s_i s_a}. \]

(21)

In the minus case, this is equivalent to the evaluation of the greater or lesser component of self-energy for a single imaginary time point. In the plus case, a similar algorithm can be used, but the resulting matrix needs to be antisymmetrized. We solve (21) in the basis of Slater functions and then transform to the subspace basis functions. For detailed working equations, we refer to appendix B.

A key element in our approach is to use Pair-atomic density fitting (PADF)107,142–146 to calculate the transformation from auxiliary basis to primary basis and back. In PADF, all the coefficients in the transformation matrix corresponding to auxiliary functions which are not centered on the same atoms as the primary basis functions are restricted to zero. While making the resulting basis transformation very efficient this also is an approximation which
does not necessarily conserve important properties of the original matrices, like for example positive definiteness of the Coulomb potential. These deficiencies can always be traced back to products of diffuse Slater functions which are difficult to expand in the auxiliary basis. To overcome these issues we introduce a projection technique to remove problematic linear dependencies from the primary basis which is described in appendix C.

3 Computational Details

All calculations have been performed with a locally modified development version of ADF2022.1. The GW implementation is the same as outlined in refs. 107, 130, 139, except for the modification outlined in appendix C. For the hexameric unit of PSII, we used the structure from ref. 12 which is based on the experimental structure at 1.9 Å resolution by Umena et al. and where the positions of the Hydrogen atoms have been optimized using a semi-empirical model with all other coordinates frozen. Structures of the subunits have been then cut out of the larger structures without further optimizations. The structures can be found in the supporting information.

The lowest 12 eigenstates of (19) for the hexameric complex have been calculated using the DZ (double-ζ) basis set and Normal numerical quality with 12 imaginary time and frequency points each. For systems with up to \(n = 4 \) chromophores, we always calculate the lowest 3\(n \) eigenstates of (19), using TZP (triple-ζ + polarization) as primary basis set, Good numerical quality and 16 imaginary time and frequency points each. We also benchmarked the basis set dependence of the GW-BSE calculations using the larger TZ3P and QZ6P basis sets for Chla monomers in section 4.2. All qsGW-BSE calculations reported in table 2 have been obtained with the veryGood auxiliary basis. This allows us to reliably compare excitation energies obtained with different primary basis sets. TZ3P and QZ6P contain \(f \)-functions for second-row atoms and for such basis sets, the Good auxiliary fit set is generally insufficient. In all calculations we terminate the sequence of subspace
iterations if all eigenvalues are converged within 10^{-5} Hartree (0.27 meV). In order to improve numerical stability and accelerate the convergence of the subspace iterations in the Davidson algorithm, we restrict the basis in which we solve the BSE to the subspace spanned by all particle-hole pairs with transition energies below 2 Hartree (1.5 Hartree for the tetramers). In agreement with earlier GW-BSE studies for such systems, we found this approximation to change the low-lying excitation energies by only around 10-20 meV compared to calculations including all particle-hole pairs.

We took into account scalar relativistic effects in the zeroth-order approximation. The threshold ϵ_s described in appendix C has been set to 5×10^{-3}. If not stated otherwise, in all $qsGW$ calculations we first perform a PBE0 calculation with 40 % exact exchange (PBEH40), which in our experience is a good preconditioner for $qsGW$ and leads to fast convergence. Aside from numerical inaccuracies, the final results are independent of this choice which we have verified in ref. and which we will verify also for the case of Chla in the next section. We also performed evGW calculations based on the LDA and PBEH40 functionals (evGW@LDA, evGW@PBEH40). We terminate the evGW calculations if the HOMO QP energy difference between two subsequent iterations falls below 3 meV. For $qsGW$, we terminate the calculations when the Frobenius norm of the difference between the density matrices of two subsequent iterations falls below 5×10^{-9}. In all KS calculations we set the threshold below which we set eigenvalues of the inverse of the overlap matrix to zero during the canonical orthonormalization procedure to 5×10^{-3}.

To compare our method to the RSH TD-DFT approach, we also performed calculations using the CAMY-B3LYP kernel using the TZP basis set and Good numerical quality. We thereby also investigated the effect of the protein matrix using the conductor like screening model (COSMO) as implemented in ADF. Following ref. we set the dielectric constant of the environment to a value of 4.0 which should approximately account for solvent and protein environment.
4 Results

![Different Chlorophyll a structures used in this work.](image)

4.1 Starting-point dependence

As discussed in the introduction, a major advantage of qsGW over evGW is that the former doesn’t depend on the choice of a DFT functional. To illustrate this, we report here vertical excitation energies (VEE) for qsGW and evGW for the M82 structure in figure 1 with four different starting points, LDA, PBE, HF and PBEH40. We thereby use a tighter convergence criterion of 1 meV for the HOMO QP energy for evGW than the default value. The results for the Q_y excitation are shown in table 1. The qsGW calculations converge to the same HOMO-LUMO gap within an accuracy of 10 meV within less than 10 iterations. This also results in Q_y excitation energies which are converged within 10 meV. The remaining differences are due to numerical noise in the imaginary frequency and time grids used in the GW calculations which then translates into uncertainties in the analytical continuation of the self-energy to the complex plane. The differences in the HOMO-LUMO gaps of the evGW calculations are much larger and differ by almost 300 meV between evGW@LDA and evGW@HF, which results in Q_y excitations energies differing by about 80 meV. This is the most extreme case, for starting points other than HF there are only very small differences between the different evGW results. This has already been observed in ref. 101. Also, the results are in good agreement with qsGW. However, since the computational overhead of a
qsGW calculation is negligible compared to evGW (5.79 vs. 5.67 core hours per iteration) and the number of iterations needed for convergence is essentially the same, there is little advantage to be gained by using evGW instead of the more robust qsGW approach.

Table 1: HOMO-LUMO gap, Value of the Q_y excitation for different starting points, number of iterations until convergence and time per GW iteration, measured in core hours, for qsGW and evGW. Calculations were performed on a 2.2 GHz intel Xeon (E5-2650 v4) node (broadwell architecture) with 24 cores and 128 GB RAM.

Method	gap [eV]	Q_y [eV]	n_I	t [h]	gap [eV]	Q_y [eV]	n_I	t [h]
LDA	4.499	1.752	9	5.79	4.405	1.764	9	5.67
PBE	4.501	1.745	10	-	4.417	1.837	9	-
PBEH40	4.493	1.760	8	-	4.476	1.772	7	-
HF	4.496	1.753	9	-	4.671	1.766	9	-

4.2 Basis Set Errors

Table 2: VEEs for M70 and M82 with different basis sets for qsGW-BSE and evGW@LDA-BSE. The values in the last row denote the differences in VEEs calculated with the TZP150 and QZ6P139 basis sets. All values are in eV.

Basis Set	M70 Q_y	M70 Q_x	M82 Q_y	M82 Q_x	M70 B	M82 B	M70 Q_y	M70 Q_x	M82 B	M82 B	
TZP	1.74	1.93	2.68	1.76	1.94	2.71	1.72	1.98	2.84	1.74	2.00
TZ3P	1.77	1.96	2.72	1.79	1.98	2.76	1.72	1.98	2.84	1.73	1.97
QZ6P	1.71	1.94	2.64	1.74	1.92	2.68	1.71	1.96	2.80	1.71	1.96
Δ_{TQ}	0.03	-0.01	0.04	0.02	0.02	0.03	0.01	0.02	0.04	0.03	0.04

Next, we investigate the dependence of the Q_y excitation energy on the basis set size. For GW calculations it is well known that individual QP energies converge slowly with respect of the size of the single-particle basis. In practice extrapolation techniques are needed to obtain converged results.160 For orbital energy differences which are entering the BSE, the situation is much better since the basis set error for the QP energies usually have the same sign.161 In Table 2 we compare the lowest excitation energies calculated with different basis
sets for the two different Chla monomers shown in figure [1]. For evGW and qsGW the QZ6P excitation energies are only slightly lower than the TZP ones, indicating that also with the smaller basis set the Q_y excitation energies are almost converged. These errors are certainly smaller than other sources of error in our calculations like inaccuracies of the computational methods to calculate the VEEs or error due to the employed structures. Therefore, to a very good approximation, we can ignore the basis set incompleteness error in all of the following TZP calculations.

4.3 Comparison to Experiment and different ab-initio Calculations

Table 3: VEEs for Chla calculated with different quantum chemical methods for two different gas-phase optimized structures and experimental reference data. All values are in eV.

Method	Q_y (eV)	Q_x (eV)	B (eV)	$\Delta Q_y - Q_x$ (eV)
exp. (VEE)	1.99	2.30	3.12	0.31
exp. (band max)	1.94	2.23	3.08	0.29
CAM-B3LYP-D3(BJ)/def2-TZVP optimized structure				
DLPNO-STEOM-CCSD	1.75	2.24	3.17	0.49
qsGW-BSE	1.97	2.29	3.15	0.32
evGW@PBEH40-BSE	1.98	2.29	3.15	0.31
evGW@LDA-BSE	1.94	2.20	3.01	0.26
CAMY-B3LYP-TD-DFT	1.94	2.23	3.08	0.29
B3LYP/def2-TZVP optimized structure				
evGW@LDA-BSE (ADF/TZP)	1.85	2.09	2.91	0.24
evGW@LDA-BSE (MOLGW/6-311++G(2d,2p))	1.85	2.13	2.91	0.28

We first assess the accuracy of qsGW-BSE by comparison to experimental gas-phase data for Chla by Gruber et al. [163]. For the comparison of the calculated excitation energies to experimental data, the vertical excitation energy (VEE) needs to be distinguished from the band maximum. The latter is directly obtained from experimental spectra, while the former corresponds to the poles of the generalized susceptibilities we are calculating here. To facilitate the comparison between the theoretical and experimental values we also list
the VEEs which have recently been extracted from the experimental spectrum by Sirohiwal et al.43 Different calculated values alongside the experimental values for Chla are shown in table 3. The domain based local pair-natural orbital164,165 (DLPNO)-STEOM-CCSD166–168 results are taken from ref. 43 while the evGW@LDA-BSE/6-311++G(2d,2p) results calculated using MOLGW169 are by Hashemi and Leppert.101 Two different, gas-phase optimized structures have been used: One has been optimized at the CAM-B3LYP-D3(BJ)/def2-TZVP level of theory by Sirohiwal et al.43 (referred to as St1 in the following), while the other has been optimized by Hashemi and Leppert using B3LYP/def2-TZVP (St2 in the following). For an unbiased comparison, it is important to use exactly the same structures in all calculations.

We performed evGW@LDA-BSE calculations for both structures. Our results for St1 are consistently around 0.1 eV lower than the ones for St2. This illustrates the large influence of small changes in structural parameters on the final excitation energies. We believe St1 to be more accurate, since dispersion interactions often play an important role for the structure of organic molecules and it is known that B3LYP usually does not describe them correctly.170 For St2, we can compare our herein calculated VEEs to the ones from Hashemi and Leppert calculated on the same level of theory. Except for the Q_x excitation energies which are slightly different (40 meV), we find perfect agreement between both implementations.

All evGW results agree very well with qsGW also for Chla. Interestingly, all GW-BSE and CAMY-B3LYP results for the St1 structure are in excellent agreement with the experimental values. For instance, the qsGW-BSE VEEs agree all with the experimental VEEs within 30 meV. On the other hand, DLPNO-STEOM-CCSD not only severely underestimates the Q_y excitation energy, but it also overestimates the gap between both Q-bands, ΔQ_y-Q_x, considerably. Considering this difference, we note that STEOM-CCSD is not necessarily a reliable reference for qsGW. In STEOM-CCSD, a much larger number of diagrams is considered in the single- and two-particle Green’s functions compared to \textit{GW}.171 QP approximations to \textit{GW} approximate the effect of these diagrams instead by neglecting the
vertex. The diagrams contained in GW are not a subset of the ones contained in EOM-CCSD but only of the ones contained in EOM-CCSDT. Accounting for triples (at least to some extent) is known to be of high importance for the reliable description of charged and neutral excitations. Consequently, STEOM-CCSD shows mean signed errors compared to EOM-CCSDT calculations of around 0.1 eV for a set of medium organic molecules, but errors can be as large as 0.5 eV in some cases. Moreover, apart from the neglect to triple excitations, the DLPNO approximation can also introduce some artifacts. The pairs which are treated on the CC level are selected based on an MP2 calculation which is not always reliable for systems with strongly screened electron-electron interactions.

Table 4: The two Q_y excitation energies for a Chla dimer. The gas-phase optimized structure and the RVS-LT-SOS-ADC(2) reference values have been taken from Suomivuori et al. All values are in eV.

kernel	Ω_1	Ω_2	Ω_3	Ω_4	Ω_5	Ω_6
evGW@LDA	1.87	1.88	1.90	1.90	2.72	2.75
evGW@PBEH40	1.92	1.95	2.09	2.11	2.84	2.93
qsGW	1.89	1.92	2.07	2.10	2.83	2.92
CAMY-B3LYP	2.12	2.15	2.29	2.32	2.63	2.76
RVS-LT-SOS-ADC(2)	2.04	2.06				
exp.					1.94	

In table 4 we also show GW-BSE results for a model of the Chla dimer. The gas-phase structure, optimized at the B3LYP-D3/def2-SVP level of theory, as well as the RVS-LT-SOS-ADC(2) results have been taken from ref. RVS-LT-SOS-ADC(2) slightly overestimates the excitation energies compared to the experimental band maxima reported in table 3, while the GW-BSE results are again in excellent agreement with these values. In contrast to the case of the Chla monomer, CAMY-B3LYP overestimates the VEEs by far. Also, all methods overestimate the experimental excitonic splitting of 10-20 meV. Most strikingly, the VEEs Ω_3 and Ω_4 of the BSE calculation based on evGW@LDA are almost 0.2 eV lower than the ones based on evGW@PBEH40, and in the former calculation, the four lowest excited states are almost degenerate. The character of these excitations are
Table 5: Characterization and comparison of the low-lying excited states of D108 calculated with $\text{evGW}@$LDA-BSE and $\text{evGW}@$PBEH40-BSE. The excitation energies $\Omega^{(0)}_S$ (in eV), the dominant coefficient of the corresponding eigenvector and the associated particle-hole transition, as well as the oscillator strength f.

$\Omega^{(0)}_S$	VEE	evGW@LDA character	weight	f	VEE	evGW@PBEH40 character	weight	f
$\Omega_1^{(0)}$	1.87	238 \rightarrow 240	0.49	0.08	1.92	238 \rightarrow 240	0.28	0.30
						237 \rightarrow 239		
$\Omega_2^{(0)}$	1.88	237 \rightarrow 240	0.22	0.14	1.95	238 \rightarrow 241	0.41	0.03
		237 \rightarrow 239	0.17			237 \rightarrow 239	0.34	
$\Omega_3^{(0)}$	1.90	236 \rightarrow 239	0.38	0.13	2.09	235 \rightarrow 239	0.53	0.04
$\Omega_4^{(0)}$	1.90	237 \rightarrow 240	0.37	0.00	2.11	236 \rightarrow 240	0.49	0.03
		235 \rightarrow 239	0.31					
$\Omega_5^{(0)}$	2.72	238 \rightarrow 239	0.51	0.37	2.84	238 \rightarrow 239	0.56	0.24
$\Omega_6^{(0)}$	2.75	237 \rightarrow 239	0.27	0.14	2.93	237 \rightarrow 240	0.31	0.20
		237 \rightarrow 242	0.24					

Figure 2: Selected valence single-particle KS orbitals for D108 calculated using LDA and PBEH40.

compared in more detail in table 5 with the corresponding KS single-particle orbitals shown in figure 2. Comparison of the most important contributions to the eigenvector $|\mathbf{X}, \mathbf{Y}\rangle^T_1$ already shows that $\text{evGW}@$LDA-BSE predicts the lowest excitation to be localized on the
PD1 fragment, while in the evGW@PBEH40-BSE calculation it is delocalised over both monomers with almost equal weights. Using evGW@LDA-BSE, the second excited state has a large contribution of a particle-hole transition located on PD1, while it is localized on PD2 using evGW@PBEH40-BSE. Also, the oscillator strengths in table 5 show that the different excitations differ substantially in their brightness. Together with the large difference in some of the VEEs, this shows that different KS starting points can lead to different excitations, even when the eigenvalues are updated self-consistently.

Table 6: Comparison of the Q_y excitation energies obtained with different methods and experimental values. All values are in eV.

	D108	D140	D164
evGW@LDA	1.68	1.71	1.78
evGW@PBEH40	1.69	1.77	1.71
qsGW	1.69	1.71	1.71
CAMY-B3LYP	1.93	1.95	1.94
exp.			1.94

Comparison to the results for the M78 and M82 models in table 2 shows, that the VEEs for the non-optimized structures are about 0.2 eV lower. Since the VEEs for M70 and M82 are more or less similar, it is also clear that this difference is not due to differences in the structural model. We observe the same for different non-geometry optimized dimers, whose VEEs are shown in table 6. Geometry optimization blueshifts the VEEs for D108 by around 0.2 eV with respect to the crystal structure. Comparison to the VEEs for the M70 and M82 dimers (D140 and D164) again reveal only small changes in the VEEs among adding or cutting off ligands. Taking into account the redshift due to the protein and solvent environment of around 0.12 eV, our calculations based on the crystal structure therefore underestimate the true excitation energies by around 0.2-0.25 eV. This is course not surprising, since it is known, that the direct use of crystal structures can yield substantial errors.

In contrast to the GW-BSE VEEs, the CAMY-B3LYP-TD-DFT results for the crystal
structures are in excellent agreement with the available experimental gas-phase data.\[159,163,170\] In light of the factors just discussed, the excellent agreement of the CAMY-B3LYP-TD-DFT calculations is most likely due to an overestimation of the true VEEs (as shown in tables [4] and [3]) which then cancels with the errors due to inadequate geometries.

Comparing the different \(GW\)-BSE methods, we find that \(\text{evGW@PBEH40}\) and \(\text{qsGW}\) are always in close agreement, while the \(\text{evGW@LDA-BE}\) VEEs are typically a little higher. Overall, the results are in qualitative agreement to each other for D140. For D164, the splitting between both \(Q_y\) VEEs (\(\Delta Q_y - Q_y\)) calculated using the \(\text{evGW@PBEH40}\) and \(\text{qsGW}\) kernels are in good agreement. The value of 30-4m meV aligns better with experimental observations\[177\] and also the calculations of Suomivuori et al.\[38\]. However, as for the calculations based on the geometry optimized structure, there is again a discrepancy between the \(\text{evGW-BSE}\) results obtained for the LDA and PBEH40 starting points. With \(\Delta Q_y - Q_y = 0.08\) eV, \(\text{evGW@LDA}\) considerably overestimates the excitonic splitting and also the VEEs based on the LDA starting point are much higher than with the PBEH40 starting point.

4.4 Excited States of the Photosystem II Reaction Center

Table 7: The lowest \(\text{qsGW-BSE}\) excited states of the hexameric chromophore complex in the RC of PSII. The excitation energies \(\Omega^{(0)}\) (in eV), the dominant coefficients of the corresponding eigenvectors, as well as the oscillator strength \(f\) are shown. The corresponding orbitals are shown in figure 4.

Character	VEE	transition	weight	\(f\)	
\(\Omega_1^{(0)}\)	Pheo\(_{D2}\) → Pheo\(_{D2}\)	1.89	948 → 954	0.51	0.24
\(\Omega_2^{(0)}\)	\(\text{P}_{D1}\) → Pheo\(_{D1}\)	1.91	946 → 953	0.51	0.28
\(\Omega_3^{(0)}\)	Pheo\(_{D1}\) → \(\text{P}_{D1}\)	1.96	947 → 952	0.46	0.17
\(\Omega_4^{(0)}\)	\(\text{P}_{D2}\) → \(\text{P}_{D2}\)	1.97	944 → 951	0.48	0.03

The most complete model of the PSII RC we consider in this work comprises six chromophores with 476 atoms in total. Its structure is shown in figure 3 together with the PBEH40/DZ frontier single-particle orbitals and the low-lying excitations are characterized.
Figure 3: Frontier single-particle KS orbitals (PBEH40/TZP) of the hexameric chromophore complex of the PSII RC.

in table 7. In our current implementation, using larger basis sets is complicated by the requirement to use large auxiliary fit sets which then leads to very large matrix representations of the RPA polarizability and the screened Coulomb interaction. As will be discussed in see section 4.5, storing them on disk and transferring them to the CPU is currently the bottleneck of our implementation. This complicates the calculation of the hexamer using the TZP basis set. Below, we will therefore also discuss results for tetramers for which the use of the TZP basis set was feasible.

The lowest two excited states are almost degenerate. The lowest one is a local Q_y excitation on Pheo$_{D2}$. This is expected, since the lowest VEE of the isolated Pheophytin chromophore has been predicted to be lower than the one of Chla. The following state has pronounced CT character and corresponds to the transfer of an electron from P$_{D1}$ to Pheo$_{D1}$. The third and fourth excited state are nearly degenerate as well, but their is a considerable gap of 50 meV between the second and the third excited state. These states correspond to CT from Pheo$_{D1}$ to P$_{D1}$ and again to a local excitation on P$_{D2}$.

This is interesting for many reasons: First, Frankcombe et al calculated the low-lying
excited states of the same hexameric complex without explicit consideration of the protein matrix as in our study, but they used TD-DFT with a RSH kernel. They did not find any low-lying CT state which could be related to charge separation, which is in clear disagreement with time-resolved spectroscopic experiments\cite{41,42} showing that the primary electron transfer in the RC occurs from an exciton localized on Chl_{D1} to Pheo_{D1}, followed by a transfer of the hole to P_{D1}. This would point to the mixing in of low-lying CT states with pronounced Chl_{D1}^+ -Pheo_{D1}^- and Chl_{D1}^+ -P_{D1}^- character in calculations of excitation energies. In our model calculations, we only find the second type of CT. Both Sirohiwal et al.\cite{7} and Tamura et al.\cite{14} identified also the first CT state in recent computational studies and both studies explicitly included the protein environment on a molecular mechanical level. In ref.\cite{7} it was found that the protein environment is exclusively responsible for the unidirectional CT along the D1 branch and the occurrence of the Chl_{D1}^+ -Pheo_{D1}^- state. Therefore, the absence of the explicit protein environment in our work is most likely the reason why we do not observe this particular CT state.

Table 8: The four lowest qsGW-BSE excited states of the T329 (Pheo_{D1}-Chl_{D1}-P_{D1}-P_{D2}) and T328 (Chl_{D1}-P_{D1}-P_{D2}-Chl_{D2}) models: The excitation energies $\Omega^{(0)}$ (in eV), the dominant coefficients of the corresponding eigenvectors, as well as the oscillator strength f are shown. The corresponding orbitals are shown in figure\cite{4}.

	T329	T328		
	VEE transition	weight	VEE transition	weight
$\Omega_1^{(0)}$	1.70 658 \rightarrow 663	0.67 0.33	1.73 664 \rightarrow 666	0.48 0.33
$\Omega_2^{(0)}$	1.75 659 \rightarrow 662	0.80 0.33	1.77 662 \rightarrow 665	0.36 0.36
$\Omega_3^{(0)}$	1.76 657 \rightarrow 661	0.53 0.02	1.81 663 \rightarrow 668	0.69 0.34
$\Omega_4^{(0)}$	1.79 656 \rightarrow 660	0.49 0.24	1.93 661 \rightarrow 667	0.79 0.23

Besides the neglect of the protein environment, the use of the DZ basis set is another weak point in the six-chromophore model. It is not unlikely that the lack of polarization functions favours local excitations and one might therefore expect that using a larger basis set the character of the excitations might be different. To check this, we report here the
results of calculations on tetrameric complexes using the much larger TZP basis set which we have already seen to give VEEs close to the complete basis set limit. The structures of these tetramers are shown in fig. 4 alongside with the relevant frontier single-particle orbitals. The model T328 abbreviates the complex Pheo$_{D1}$-Chl$_{D1}$-P$_{D1}$-P$_{D2}$ (since it contains 328 atoms) and T329 denotes the complex Pheo$_{D1}$-Chl$_{D1}$-P$_{D1}$-P$_{D2}$. The lowest four excitations for both systems are shown in table 8.

Similarly to the hexamer, the lowest excited state of T329 is a CT state from P$^{+}_{D2}$-Pheo$_{D1}^-$. Note, that the distinction between D1 and D2 is not necessarily meaningful in the absence of the explicit protein environment. Also, it was found in ref. 14 that an exciton can also form initially in the D2 branch which is then subsequently transferred to the D1 branch. Two aspects are of importance here: First, there is no indication of CT from Chl$_{D2}$ to Pheo$_{D1}$ among the first four excited states of T329, which also validates our results for the hexamer. We also repeated the calculations for T329 with the DZ basis set. With the much smaller basis set, the P$^{+}_{D2}$-Pheo$_{D1}^+$ CT is the energetically lowest state, followed by P$_{D2}^+$-Pheo$_{D1}^-$. Second, the P$_{D2}^+$-Pheo$_{D1}^-$ state is 30 meV lower in energy than the lowest excited state of
T328. The lowest two excited states of T328 are dominated by particle-hole transitions, with the hole located on the outer monomers (P$_{D1}$ and P$_{D1}$) and the particle located on the inner ones (Chl$_{D1}$ and Chl$_{D2}$), and the other way round for the next pair. This result is different from the one by Suomivuori et al. who found two of these excitations to be delocalized over the P$_{D1}$/P$_{D1}$ pair and the other two to be localized on Chl$_{D1}$ and Chl$_{D2}$, respectively. In conclusion, in the absence of the protein environment, the P$_{D1}$+/P$_{D2}$+-Pheo$_{D1}$ CT is the lowest excited state in the PSII RC, independent of the basis set.

4.5 Timings

Table 9: CPU times (in core hours) for the different steps of the qsGW-BSE calculations for D164 and T328. All calculations have been performed on an AMD Zen3 node with 64 CPUs and 256GB of memory. The GW and BSE timings are per iteration.

N$_{atoms}$	N$_{elec}$	N$_{bas}$	N$_{fit}$	N$_{roots}$	Iterations	CPU time			
					qsGW	BSE	GW	BSE	total
329	1318	4242	41835	12	10	15	445	425	9232
476	1896	3084	44646	12	8	15	148	117	3030

Finally, we briefly comment on the computational time needed to perform these calculations. The CPU times for the GW-BSE calculations for one of the tetramers and the hexamer are given in table 9. The calculation for the tetramer can be performed in around 7200 core hours, i.e. around 4-5 days on 64 cores. The qsGW part of the calculation is approximately as expensive as the BSE part per iteration. Even though the hexamer has around 50 % more electrons than the tetramer, the calculation is three times faster. This is mostly due to the fact that most basis functions decay very fast with the distance from the atomic centers, so that the overlap of most pairs of basis functions can be neglected. For larger calculations, the bottleneck of the computation is the number of auxiliary fit functions N$_{fit}$ (more than 40,000 for the tetramer). The large auxiliary fit sets are necessary to guarantee numerical stability in the PADF approach and also in related techniques which rely on sparse transformation between matrices in primary and auxiliary basis.
each imaginary time and frequency point, a matrix of size $N_{fit} \times N_{fit} \approx 14$GB needs to be stored. In case of T329, this amounts to almost 500 GB and if we were to double the system size, 2 TB of distributed memory would be needed. In our current implementation, we store these matrices on disk and transferring them to the CPU and back becomes very time-consuming.

5 Conclusions

We have calculated the low-lying excited states of the RC in PSII using qsGW-BSE. So far, GW-BSE calculations have been limited to rather small systems.87,94,101 We presented here a new implementation of the method which enables its routine application to much larger systems. As opposed to a recently developed simplified GW-BSE scheme,180 our implementation does not introduce any empirical approximations to the matrix elements of the BSE Hamiltonian. Provided a low-order scaling implementation of the GW method and iterative solver for large eigenproblems is available, the proposed algorithm is easy to implement.

We calculated the 12 lowest excited states of the complete complex of six chromophores in the PSII RC with almost 2000 correlated electrons on the DZ level. Owing to the small basis set, the calculation could be performed in less than 2 days on a single compute node. We have also calculated the 12 lowest excited states of a tetrameric complex with around 1300 correlated electrons with a TZ + polarization basis set. With around 6 days of wall time, the latter calculation is far more expensive, even though the system is 50 % smaller. Low-order scaling implementations like ours which rely on sparsity in the primary basis usually do not scale well with the size of the basis set. Finite basis set correction techniques for many-body perturbation theory might therefore be a promising solution to circumvent this problem.162,181–183 Applications to larger systems with polarized basis sets are currently complicated by the requirement to store large matrices on disk. This problem could be
overcome by using a very large number of nodes which would enable us to keep them in
direct memory.

qsGW-BSE is a theoretically more rigorous variant of the GW-BSE method than evGW-
BSE, since it is independent of a mean-field reference calculation. We have shown here
explicitly for Chla dimers that evGW-BSE might lead to different excitations for different
starting points. This is in contrast to the generally good agreement for monomers\cite{100} and can
be seen as a major shortcoming of evGW-BSE. We therefore conclude, that self-consistency
in the eigenfunctions is decisive for a reliable description of the low-lying excitonic states of
large chromophoric complexes. qsGW-BSE results are in good agreement with experimental
VEEs in the gas phase, provided an optimized geometry is employed. When crystal structures
are used, qsGW-BSE underestimates the true VEEs by about 0.2 eV.

In contrast to previous results on the RSH level for the full hexameric complex\cite{11}, qsGW-
BSE predicts many low-lying CT states even in the absence of the protein environment,
which is in line with experimental observations\cite{111,112,113}. However, our current calculations
do not fully agree with experiment and previous calculations. It is known,\cite{7,14,41,42} that the
primary charge separation in the PSII RC occurs along the D1 branch via the Chl\textsubscript{D1}+ -
Pheo\textsubscript{D1}- and Chl\textsubscript{D1}+ -P\textsubscript{D1}- CT states. In our calculations, the Chl\textsubscript{D1}+ -P\textsubscript{D1}- state is the
lowest one, but we could not identify the Chl\textsubscript{D1}+ -Pheo\textsubscript{D1}- state. This is most likely due
to the neglect of the protein environment which plays a crucial role in the functionality of
the PSII RC.\cite{7} To take the explicit protein environment into account, it would be highly
desirable to interface our code with a molecular mechanics code, along the lines of previous
GW-BSE implementations\cite{88,93,95,96}.

A Electrochromatic shifts

In this appendix, we quantify the electrochromatic shift of the excitation energies of two
monomeric and dimeric as well as one tetrameric model of the PSII RC due to solvent
Table 10: \(Q_y\) excitation for different Chla monomers and dimers calculated using TD-DFT@CAMY-B3LYP/TZP with and without implicit solvation. All values are in eV.

	exp.	M70	M82	D140	D164		
solv.	1.82	1.81	1.84	1.78	1.81	1.80	1.84
no solv.	1.94	1.98	1.99	1.93	1.95	1.94	1.96
diff.	0.12	0.17	0.15	0.15	0.14	0.14	0.12

	solv.	1.76	1.78	1.81	1.84
no solv.	1.90	1.92	1.95	2.00	
diff.	0.14	0.14	0.14	0.16	

effects and protein environment using a polarizable continuum model. The \(Q_y\) excitation energies calculated using CAMY-B3LYP-TD-DFT/TZP with and without implicit solvation are shown in table \([10]\). With in between 0.1 and 0.2 eV, the influence of the environment is not negligible. However, For the systems where we consider more than one excitation energy, all values are shifted by more or less the same amount, even though the results suggest that the environment reduces the excitonic splitting with respect to the vacuum. Our calculated electrochromatic shifts agree well with experimental values of about 0.12 eV.\([13]\) For the low-lying VEEs, the shifts are more or less independent of the employed model system and they are transferable to the other multichromophoric complexes as well.

B Calculating the BSE Hamiltonian

The most time-consuming step in the solution of the BSE is to build the matrix elements of the 2-particle Hamiltonian, eq. (21). Let us denote with the matrix \(K^{(\pm)}\), a column of \(A \pm B\) as defined in (21), in the primary basis.

Within the density fitting method, we expand products of atomic orbitals in a basis of auxiliary functions. To introduce the PADF variant of this technique, we label atomic orbitals as \(\mu, \nu, \kappa, \lambda\), auxiliary functions as \(\alpha, \beta, \gamma, \delta\) and atomic centers as \(A, B, C\ldots\). We also define the convention that \(\mu, \alpha \in A\), \(\nu, \beta \in B\), \(\kappa, \gamma \in C\) and \(\lambda, \delta \in D\), i.e. \(\mu\) and \(\alpha\)
are only labelling functions centered on atom A, and so on. The PADF expansion of the products of AOs can then be written as

\[
\chi_\mu(\mathbf{r})\chi_\nu(\mathbf{r}) = \begin{cases}
\sum_{\beta \in B} b_{\mu\nu,\beta} f_\beta(\mathbf{r}) + \sum_{\alpha \in A} b_{\nu\mu,\alpha} f_\alpha(\mathbf{r}) & A \neq B \\
\frac{1}{2} \left(b_{\nu\mu,\alpha} + b_{\mu\nu,\alpha} \right) f_\alpha(\mathbf{r}) & A = B ,
\end{cases}
\]

where the factor of $1/2$ in case $A = B$ is introduced to facilitate evaluation with the same algorithm while avoiding double counting. Let us write (21) in the primary basis as

\[
K^{(\pm)}_{\mu\nu} = -\sum_{\kappa\lambda} b_{\kappa\lambda} W(\omega = 0)_{\mu\kappa\nu\lambda} \pm W(\omega = 0)_{\nu\kappa\mu\lambda} .
\]

Inserting (22), the contribution to $K^{(\pm)}$ for all atom pairs (A,B) is

\[
K^{(\pm)AB} = K^{(\pm)AB, I} + K^{(\pm)AB, II} + K^{(\pm)AB, III} + K^{(\pm)AB, IV} ,
\]

where

\[
K^{(+)AB, III} = \left[K^{(+)AB, II} \right]^T \\
K^{(-)AB, III} = -\left[K^{(-)AB, II} \right]^T .
\]

In these and in the following quantities the matrices are restricted to the primary basis functions centered on the atoms denoted by the indices in the superscripts. Defining the intermediates

\[
I^{ABC}_{\mu\nu\gamma} = c_{\mu\nu\beta}^{AB} W(\omega = 0)_{\beta\gamma}^{BC} ,
\]

and

\[
F^{BAA}_{\nu\mu\alpha} = \sum_{\lambda} b_{\lambda\nu}^{DB} c_{\lambda\mu\alpha}^{DAA} .
\]
We can then write

\[K^{\pm,AC,I}_{\mu k} = \sum_{\nu \lambda} \sum_{\alpha \gamma} b^{DB}_{\lambda \nu} c^{DAA}_{\lambda \mu \alpha} W(\omega = 0)_{\alpha \gamma} c^{BCC}_{\nu \kappa \gamma} \]

\[= \sum_{\nu \alpha} F^{BAA}_{\nu \mu \alpha} I^{BCA}_{\nu \kappa \alpha} \]

\[K^{\pm,AC,II}_{\mu k} = \sum_{\nu \lambda} \sum_{\alpha \beta} b^{DB}_{\lambda \nu} c^{DAA}_{\lambda \mu \alpha} W(\omega = 0)_{\alpha \beta} c^{CBB}_{\kappa \nu \beta} \]

\[= \sum_{\nu \alpha} F^{BAA}_{\nu \mu \alpha} I^{CBA}_{\nu \kappa \alpha} \] (28)

\[K^{\pm,AC,IV}_{\mu k} = \sum_{\nu \lambda} \sum_{\delta \beta} b^{DB}_{\lambda \nu} c^{ADD}_{\mu \lambda \delta} W(\omega = 0)_{\delta \beta} c^{CBB}_{\kappa \nu \beta} \]

\[= \sum_{\lambda \delta} \sum_{\nu} b^{DB}_{\lambda \nu} I^{CBD}_{\nu \kappa \delta} b^{ADD}_{\mu \lambda \delta}, \]

where in the + case \(b \) is symmetric, and antisymmetric otherwise. These are the working equations with which (21) is implemented. They are similar to the ones for the self-energy, outlined in ref. [146].

C Elimination of diffuse functions from the primary basis

In addition to the usual canonical orthonormalization [156] during the SCF prior to the qsGW calculation we herein introduce an additional step in order to improve the numerical stability of our algorithm. To project out too diffuse functions from the primary basis we first diagonalize the overlap matrix of primary basis functions \(\mathbf{S} \),

\[\mathbf{S} = \mathbf{U}^T \mathbf{\Lambda} \mathbf{U}. \] (29)
We then remove a column u_i from the transformation matrix if the corresponding eigenvalue λ_i is smaller than some predefined threshold ϵ_s. We then define

$$V = UU^T,$$ \hspace{1cm} (30)

and use this projector to transform all matrices in the primary basis, the Green’s functions, the self-energy contributions as well as the matrices defined in (21) according to

$$K = V^TK'V,$$ \hspace{1cm} (31)

where K' would be the original exchange-like matrix in the primary basis including the diffuse part. This transformation is not necessary if a very large auxiliary basis set is used and is switched off in that case.

Acknowledgement

This research received funding (project number 731.017.417) from the Netherlands Organisation for Scientific Research (NWO) in the framework of the Innovation Fund for Chemistry and from the Ministry of Economic Affairs in the framework of the “TKI/PPS-Toeslagregeting”.

Supporting Information Available

All structures used in this work.

References

(1) Mirkovic, T.; Ostroumov, E. E.; Anna, J. M.; Van Grondelle, R.; Govindjee; Scholes, G. D. Light absorption and energy transfer in the antenna complexes of photo-
synthetic organisms. Chem. Rev. 2017, 117, 249–293.

(2) Croce, R.; van Amerongen, H. Light harvesting in oxygenic photosynthesis: Structural biology meets spectroscopy. Science (80-.). 2020, 369, eaay2058.

(3) Kasha, M.; Rawls, H. R.; El-Bayoumi, M. A. The Exciton Model In Molecular Spectroscopy. Pure Appl. Chem. 1965, 11, 371–392.

(4) Reimers, J. R.; Biczysko, M.; Bruce, D.; Coker, D. F.; Frankcombe, T. J.; Hashimoto, H.; Hauer, J.; Jankowiak, R.; Kramer, T.; Linnanto, J.; Mamedov, F.; Müh, F.; Rätsep, M.; Renger, T.; Styring, S.; Wan, J.; Wang, Z.; Wang-Otomo, Z. Y.; Weng, Y. X.; Yang, C.; Zhang, J. P.; Freiberg, A.; Krausz, E. Challenges facing an understanding of the nature of low-energy excited states in photosynthesis. Biochim. Biophys. Acta - Bioenerg. 2016, 1857, 1627–1640.

(5) Yin, S.; Dahlbom, M. G.; Canfield, P. J.; Hush, N. S.; Kobayashi, R.; Reimers, J. R. Assignment of the Qy, absorption spectrum of photosystem-i from thermosynechococcus elongatus based on CAM-B3LYP calculations at the PW91-optimized protein structure. J. Phys. Chem. B 2007, 111, 9923–9930.

(6) Renger, T.; Schlodder, E. Primary photophysical processes in photosystem II: Bridging the gap between crystal structure and optical spectra. ChemPhysChem 2010, 11, 1141–1153.

(7) Sirohiwal, A.; Neese, F.; Pantazis, D. A. Protein Matrix Control of Reaction Center Excitation in Photosystem II. J. Am. Chem. Soc. 2020, 142, 18174–18190.

(8) Kitagawa, Y.; Matsuda, K.; Hasegawa, J. Y. Theoretical study of the excited states of the photosynthetic reaction center in photosystem II: Electronic structure, interactions, and their origin. Biophys. Chem. 2011, 159, 227–236.
(9) Polyakov, I. V.; Khrenova, M. G.; Moskovsky, A. A.; Shabanov, B. M.; Nemukhin, A. V. Towards first-principles calculation of electronic excitations in the ring of the protein-bound bacteriochlorophylls. *Chem. Phys.* **2018**, *505*, 34–39.

(10) Reimers, J. R.; Cai, Z. L.; Kobayashi, R.; Rätsep, M.; Freiberg, A.; Krausz, E. Assignment of the Q-Bands of the Chlorophylls: Coherence Loss via Q x-Q y Mixing. *Sci. Rep.* **2013**, *3*, 2761.

(11) Frankcombe, T. J. Explicit calculation of the excited electronic states of the photosystem II reaction centre. *Phys. Chem. Chem. Phys.* **2015**, *17*, 3295–3302.

(12) Kavanagh, M. A.; Karlsson, J. K.; Colburn, J. D.; Barter, L. M.; Gould, I. R. A TDDFT investigation of the photosystem II reaction center: Insights into the precursors to charge separation. *Proc. Natl. Acad. Sci. U. S. A.* **2020**, *117*, 19705–19712.

(13) Sen, S.; Mascoli, V.; Liguori, N.; Croce, R.; Visscher, L. Understanding the Relation between Structural and Spectral Properties of Light-Harvesting Complex II. *J. Phys. Chem. A* **2021**, *125*, 4313–4322.

(14) Tamura, H.; Saito, K.; Ishikita, H. The origin of unidirectional charge separation in photosynthetic reaction centers: nonadiabatic quantum dynamics of exciton and charge in pigment-protein complexes. *Chem. Sci.* **2021**, *12*, 8131–8140.

(15) López-Tarifa, P.; Liguori, N.; Van Den Heuvel, N.; Croce, R.; Visscher, L. Coulomb couplings in solubilised light harvesting complex II (LHCII): Challenging the ideal dipole approximation from TDDFT calculations. *Phys. Chem. Chem. Phys.* **2017**, *19*, 18311–18320.

(16) Anda, A.; Hansen, T.; De Vico, L. Qy and Qx Absorption Bands for Bacteriochlorophyll a Molecules from LH2 and LH3. *J. Phys. Chem. A* **2019**, *123*, 5283-5292 Article.
(17) Cai, Z. L.; Crossley, M. J.; Reimers, J. R.; Kobayashi, R.; Amos, R. D. Density functional theory for charge transfer: The nature of the N-bands of porphyrins and chlorophylls revealed through CAM-B3LYP, CASPT2, and SAC-CI calculations. *J. Phys. Chem. B* **2006**, *110*, 15624–15632.

(18) Sirohiwal, A.; Neese, F.; Pantazis, D. A. How Can We Predict Accurate Electrochromic Shifts for Biochromophores? A Case Study on the Photosynthetic Reaction Center. *J. Chem. Theory Comput.* **2021**, *17*, 1858–1873.

(19) Saito, K.; Suzuki, T.; Ishikita, H. Absorption-energy calculations of chlorophyll a and b with an explicit solvent model. *J. Photochem. Photobiol. A Chem.* **2018**, *358*, 422–431.

(20) Shao, Y.; Mei, Y.; Sundholm, D.; Kaila, V. R. Benchmarking the Performance of Time-Dependent Density Functional Theory Methods on Biochromophores. *J. Chem. Theory Comput.* **2020**, *16*, 587–600.

(21) Stein, T.; Eisenberg, H.; Kronik, L.; Baer, R. Fundamental gaps in finite systems from eigenvalues of a generalized Kohn-Sham method. *Phys. Rev. Lett.* **2010**, *105*, 1–4.

(22) Refaely-Abramson, S.; Baer, R.; Kronik, L. Fundamental and excitation gaps in molecules of relevance for organic photovoltaics from an optimally tuned range-separated hybrid functional. *Phys. Rev. B - Condens. Matter Mater. Phys.* **2011**, *84*, 075144.

(23) Refaely-Abramson, S.; Sharifzadeh, S.; Govind, N.; Autschbach, J.; Neaton, J. B.; Baer, R.; Kronik, L. Quasiparticle spectra from a nonempirical optimally tuned range-separated hybrid density functional. *Phys. Rev. Lett.* **2012**, *109*, 226405.

(24) Kronik, L.; Stein, T.; Refaely-Abramson, S.; Baer, R. Excitation gaps of finite-sized systems from optimally tuned range-separated hybrid functionals. *J. Chem. Theory Comput.* **2012**, *8*, 1515–1531.
(25) Schirmer, J. Beyond the random-phase approximation: A new approximation scheme for the polarization propagator. *Phys. Rev. A* **1982**, *26*, 2395–2416.

(26) Schirmer, J.; Cederbaum, L. S.; Walter, O. New approach to the one-particle Green’s function for finite Fermi systems. *Phys. Rev. A* **1983**, *28*, 1237–1259.

(27) Coester, F. Bound states of a many-particle system. *Nucl. Phys.* **1958**, *7*, 421–424.

(28) Coester, F.; Kümmel, H. Short-range correlations in nuclear wave functions. *Nucl. Phys.*** **1960**, *17*, 477–485.

(29) Čížek, J. On the Correlation Problem in Atomic and Molecular Systems. Calculation of Wavefunction Components in Ursell-Type Expansion Using Quantum-Field Theoretical Methods. *J. Chem. Phys.* **1966**, *45*, 4256–4266.

(30) Čížek, J. On the Use of the Cluster Expansion and the Technique of Diagrams in Calculations of Correlation Effects in Atoms and Molecules. *Adv. Chem. Physics, Vol. XIV 1969*, XIV, 35–89.

(31) Paldus, J.; Čížek, J.; Shavitt, I. Correlation Problems in Atomic and Molecular Systems. IV. Extended Coupled-Pair Many-Electron Theory and Its Application to the BH3 Molecule. *Phys. Rev. A* **1972**, *5*, 50–67.

(32) Christiansen, O.; Koch, H.; Jørgensen, P. The second-order approximate coupled cluster singles and doubles model CC2. *Chem. Phys. Lett.* **1995**, *243*, 409–418.

(33) Stanton, J. F.; Bartlett, R. J. The equation of motion coupled-cluster method. A systematic biorthogonal approach to molecular excitation energies, transition probabilities, and excited state properties. *J. Chem. Phys.* **1993**, *98*, 7029–7039.

(34) Nooijen, M.; Bartlett, R. J. A new method for excited states: Similarity transformed equation-of-motion coupled-cluster theory. *J. Chem. Phys.* **1997**, *106*, 6441–6448.
(35) Nooijen, M.; Bartlett, R. J. Similarity transformed equation-of-motion coupled-cluster theory: Details, examples, and comparisons. *J. Chem. Phys.* **1997**, *107*, 6812–6830.

(36) Loos, P. F.; Lipparini, F.; Boggio-Pasqua, M.; Scemama, A.; Jacquemin, D. A Mountaineering Strategy to Excited States: Highly Accurate Energies and Benchmarks for Medium Sized Molecules. *J. Chem. Theory Comput.* **2020**, *16*, 1711–1741.

(37) Monino, E.; Loos, P. F. Spin-Conserved and Spin-Flip Optical Excitations from the Bethe-Salpeter Equation Formalism. *J. Chem. Theory Comput.* **2021**, *17*, 2852–2867.

(38) Suomivuori, C. M.; Winter, N. O.; Hättig, C.; Sundholm, D.; Kaila, V. R. Exploring the Light-Capturing Properties of Photosynthetic Chlorophyll Clusters Using Large-Scale Correlated Calculations. *J. Chem. Theory Comput.* **2016**, *12*, 2644–2651.

(39) Winter, N. O.; Hättig, C. Scaled opposite-spin CC2 for ground and excited states with fourth order scaling computational costs. *J. Chem. Phys.* **2011**, *134*, 184101.

(40) Send, R.; Kaila, V. R.; Sundholm, D. Reduction of the virtual space for coupled-cluster excitation energies of large molecules and embedded systems. *J. Chem. Phys.* **2011**, *134*, 214114.

(41) Groot, M. L.; Pawlowicz, N. P.; Van Wilderen, L. J.; Breton, J.; Van Stokkum, I. H.; Van Grondelle, R. Initial electron donor and acceptor in isolated Photosystem II reaction centers identified with femtosecond mid-IR spectroscopy. *Proc. Natl. Acad. Sci. U. S. A.* **2005**, *102*, 13087–13092.

(42) Romero, E.; Diner, B. A.; Nixon, P. J.; Coleman, W. J.; Dekker, J. P.; Van Grondelle, R. Mixed exciton-charge-transfer states in photosystem II: Stark spectroscopy on site-directed mutants. *Biophys. J.* **2012**, *103*, 185–194.

(43) Sirohiwal, A.; Berraud-Pache, R.; Neese, F.; Izsák, R.; Pantazis, D. A. Accurate Com-
putation of the Absorption Spectrum of Chlorophyll a with Pair Natural Orbital Coupled Cluster Methods. *J. Phys. Chem. B* **2020**, *124*, 8761–8771.

(44) Sirohiwal, A.; Neese, F.; Pantazis, D. A. Chlorophyll excitation energies and structural stability of the CP47 antenna of photosystem II: a case study in the first-principles simulation of light-harvesting complexes. *Chem. Sci.* **2021**, *12*, 4463–4476.

(45) Wesolowski, T. A.; Warshel, A. Frozen density functional approach for ab initio calculations of solvated molecules. *J. Phys. Chem.* **1993**, *97*, 8050–8053.

(46) Neugebauer, J.; Louwerse, M. J.; Baerends, E. J.; Wesolowski, T. A. The merits of the frozen-density embedding scheme to model solvatochromic shifts. *J. Chem. Phys.* **2005**, *122*, 094115.

(47) Gomes, S. P. A.; Jacob, C. R. Quantum-chemical embedding methods for treating local electronic excitations in complex chemical systems. *Annu. Reports Prog. Chem. - Sect. C* **2012**, *108*, 222–277.

(48) Manby, F. R.; Stella, M.; Goodpaster, J. D.; Miller, T. F. A simple, exact density-functional-theory embedding scheme. *J. Chem. Theory Comput.* **2012**, *8*, 2564–2568.

(49) Höfener, S.; Visscher, L. Calculation of electronic excitations using density embedding frozen-density embedding. *J. Chem. Phys.* **2012**, *137*, 204120.

(50) Raghavachari, K.; Saha, A. Accurate Composite and Fragment-Based Quantum Chemical Models for Large Molecules. *Chem. Rev.* **2015**, *115*, 5643–5677.

(51) Tölle, J.; Deilmann, T.; Rohl, M.; Neugebauer, J. Subsystem-Based GW / Bethe Salpeter Equation. *J. Chem. Theory Comput.* **2021**, *17*, 2186–2199.

(52) Neugebauer, J. Couplings between electronic transitions in a subsystem formulation of time-dependent density functional theory. *J. Chem. Phys.* **2007**, *126*, 134116.
(53) Höfener, S.; Visscher, L. Wave Function Frozen-Density Embedding: Coupled Excitations. *J. Chem. Theory Comput.* **2016**, *12*, 549–557.

(54) Leng, X.; Jin, F.; Wei, M.; Ma, H.; Feng, J.; Ma, Y. Electronic energy transfer studied by many-body Green’s function theory. *J. Chem. Phys.* **2019**, *150*, 164107.

(55) Frähmcke, J. S.; Walla, P. J. Coulombic couplings between pigments in the major light-harvesting complex LHC II calculated by the transition density cube method. *Chem. Phys. Lett.* **2006**, *430*, 397–403.

(56) Sham, L. J.; Rice, T. M. Many-particle derivation of the effective-mass equation for the wannier exciton. *Phys. Rev.* **1966**, *144*, 708–714.

(57) Hanke, W.; Sham, L. J., Many-Particle Effects in the Optical Excitations of a Semiconductor. *Phys. Rev. Lett.* **1979**, *43*, 387–390.

(58) Hanke, W.; Sham, L. J. Many-particle effects in the optical spectrum of a semiconductor. *Phys. Rev. B* **1980**, *21*, 4656–4673.

(59) Strinati, G. Application of the Green’s functions method to the study of the optical properties of semiconductors. *La Riv. Del Nuovo Cim. Ser. 3* **1988**, *11*, 1–86.

(60) Salpeter, E. E.; Bethe, H. A. A relativistic equation for bound-state problems. *Phys. Rev.* **1951**, *84*, 1232–1242.

(61) Gell-Mann, M.; Low, F. Bound states in quantum field theory. *Phys. Rev.* **1951**, *84*, 350–354.

(62) Kugler, F. B. Renormalization group approaches to strongly correlated electron systems. Ph.D. thesis, Ludwig-Maximilians-Universität München, 2018.

(63) Martin, R. M.; Reining, L.; Ceperley, D. M. *Interacting electrons*; Cambridge University Press, 2016.
(64) Rohringer, G.; Hafermann, H.; Toschi, A.; Katanin, A. A.; Antipov, A. E.; Katsnelson, M. I.; Lichtenstein, A. I.; Rubtsov, A. N.; Held, K. Diagrammatic routes to nonlocal correlations beyond dynamical mean field theory. Rev. Mod. Phys. 2018, 90, 25003.

(65) Petersilka, M.; Gossmann, U. J.; Gross, E. K. Excitation energies from time-dependent density-functional theory. Phys. Rev. Lett. 1996, 76, 1212–1215.

(66) Onida, G.; Reining, L.; Rubio, A. Electronic excitations: density-functional versus many-body Green’s-function approaches. Rev. Mod. Phys. 2002, 74, 601.

(67) Hubbard, J. The description of collective motions in terms of many-body perturbation theory. Proc. R. Soc. London. Ser. A. Math. Phys. Sci. 1957, 240, 539–560.

(68) Phillips, J. C. Generalized Koopmans’ theorem. Phys. Rev. 1961, 123, 420–424.

(69) Hedin, L. New method for calculating the one-particle Green’s function with application to the electron-gas problem. Phys. Rev. 1965, 139, A796.

(70) Onida, G.; Reining, L.; Godby, R. W.; Del Sole, R.; Andreoni, W. Ab initio calculations of the quasiparticle and absorption spectra of clusters: The sodium tetramer. Phys. Rev. Lett. 1995, 75, 818–821.

(71) Rohlfing, M.; Louie, S. G. Excitonic effects and the optical absorption spectrum of hydrogenated Si clusters. Phys. Rev. Lett. 1998, 80, 3320–3323.

(72) Rohlfing, M.; Louie, S. G. Electron-hole excitations and optical spectra from first principles. Phys. Rev. B 2000, 62, 1–18.

(73) Stratmann, R. E.; Scuseria, G. E.; Frisch, M. J. An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. J. Chem. Phys. 1998, 109, 8218–8224.
(74) Blase, X.; Attaccalite, C. Charge-transfer excitations in molecular donor-acceptor complexes within the many-body Bethe-Salpeter approach. *Appl. Phys. Lett.* **2011**, *99*, 12–14.

(75) Baumeier, B.; Andrienko, D.; Rohlfing, M. Frenkel and charge-transfer excitations in donor-acceptor complexes from many-body green’s functions theory. *J. Chem. Theory Comput.* **2012**, *8*, 2790–2795.

(76) Duchemin, I.; Deutsch, T.; Blase, X. Short-range to long-range charge-transfer excitations in the zincbacteriochlorin-bacteriochlorin complex: A bethe-salpeter study. *Phys. Rev. Lett.* **2012**, *109*, 1–6.

(77) Faber, C.; Boulanger, P.; Duchemin, I.; Attaccalite, C.; Blase, X. Many-body Green’s function GW and Bethe-Salpeter study of the optical excitations in a paradigmatic model dipeptide. *J. Chem. Phys.* **2013**, *139*, 194308.

(78) Baumeier, B.; Rohlfing, M.; Andrienko, D. Electronic excitations in push-pull oligomers and their complexes with fullerene from many-body Green’s functions theory with polarizable embedding. *J. Chem. Theory Comput.* **2014**, *10*, 3104–3110.

(79) Körbel, S.; Boulanger, P.; Duchemin, I.; Blase, X.; Marques, M.; Botti, S. Benchmark many-body GW and Bethe-Salpeter calculations for small transition metal molecules. *J. Chem. Theory Comput.* **2014**, *10*, 3934–3943.

(80) Boulanger, P.; Jacquemin, D.; Duchemin, I.; Blase, X. Fast and accurate electronic excitations in cyanines with the many-body bethe-salpeter approach. *J. Chem. Theory Comput.* **2014**, *10*, 1212–1218.

(81) Jacquemin, D.; Duchemin, I.; Blase, X. Benchmarking the Bethe-Salpeter Formalism on a Standard Organic Molecular Set. *J. Chem. Theory Comput.* **2015**, *11*, 3290–3304.
Blase, X.; Boulanger, P.; Bruneval, F.; Fernandez-Serra, M.; Duchemin, I. GW and Bethe-Salpeter study of small water clusters. *J. Chem. Phys.* 2016, *144*, 034109.

Ziaei, V.; Bredow, T. GW-BSE approach on S1 vertical transition energy of large charge transfer compounds: A performance assessment. *J. Chem. Phys.* 2016, *145*, 174305.

Hung, L.; Bruneval, F.; Baishya, K.; Öğüt, S. Benchmarking the GW Approximation and Bethe-Salpeter Equation for Groups IB and IIB Atoms and Monoxides. *J. Chem. Theory Comput.* 2017, *13*, 2135–2146.

Krause, K.; Klopper, W. Implementation of the Bethe-Salpeter equation in the TURBOMOLE program. *J. Comput. Chem.* 2017, *38*, 383–388.

Rangel, T.; Hamed, S. M.; Bruneval, F.; Neaton, J. B. An assessment of low-lying excitation energies and triplet instabilities of organic molecules with an ab initio Bethe-Salpeter equation approach and the Tamm-Dancoff approximation. *J. Chem. Phys.* 2017, *146*, 194108.

Gui, X.; Holzer, C.; Klopper, W. Accuracy Assessment of GW Starting Points for Calculating Molecular Excitation Energies Using the Bethe-Salpeter Formalism. *J. Chem. Theory Comput.* 2018, *14*, 2127–2136.

Duchemin, I.; Guido, C. A.; Jacquemin, D.; Blase, X. The Bethe-Salpeter formalism with polarisable continuum embedding: Reconciling linear-response and state-specific features. *Chem. Sci.* 2018, *9*, 4430–4443.

Blase, X.; Duchemin, I.; Jacquemin, D. The Bethe-Salpeter equation in chemistry: Relations with TD-DFT, applications and challenges. 2018.

Holzer, C.; Klopper, W. Communication: A hybrid Bethe-Salpeter/time-dependent
density-functional-theory approach for excitation energies. *J. Chem. Phys.* **2018**, *149*, 101101.

(91) Sharifzadeh, S. Many-body perturbation theory for understanding optical excitations in organic molecules and solids. *J. Phys. Condens. Matter* **2018**, *30*, 153002.

(92) Holzer, C.; Klopper, W. Ionized, electron-attached, and excited states of molecular systems with spin-orbit coupling: Two-component GW and Bethe-Salpeter implementations. *J. Chem. Phys.* **2019**, *150*, 204116.

(93) Tirimbò, G.; Sundaram, V.; Çaylak, O.; Scharpach, W.; Sijen, J.; Junghans, C.; Brown, J.; Ruiz, F. Z.; Renaud, N.; Wehner, J.; Baumeier, B. Excited-state electronic structure of molecules using many-body Green’s functions: Quasiparticles and electron-hole excitations with VOTCA-XTP. *J. Chem. Phys.* **2020**, *152*, 114103.

(94) Liu, C.; Kloppenburg, J.; Yao, Y.; Ren, X.; Appel, H.; Kanai, Y.; Blum, V. All-electron ab initio Bethe-Salpeter equation approach to neutral excitations in molecules with numeric atom-centered orbitals. *J. Chem. Phys.* **2020**, *152*, 044105.

(95) Loos, P.-F.; Scemama, A.; Duchemin, I.; Jacquemin, D.; Blase, X. Pros and Cons of the Bethe-Salpeter Formalism for Ground-State Energies. *J. Phys. Chem. Lett.* **2020**, *11*, 3536–3545.

(96) Wang, X.; Tom, R.; Liu, X.; Congreve, D. N.; Marom, N. An energetics perspective on why there are so few triplet-triplet annihilation emitters. *J. Mater. Chem. C* **2020**, *8*, 10816–10824.

(97) Kehry, M.; Franzke, Y. J.; Holzer, C.; Klopper, W. Quasirelativistic two-component core excitations and polarisabilities from a damped-response formulation of the Bethe–Salpeter equation. *Mol. Phys.* **2020**, *118*, 1755064.
(98) Patterson, C. H. Excited states of molecular and crystalline acetylene: application of TDHF and BSE via density fitting methods. *Mol. Phys.* **2020**, *1–9*.

(99) Grupe, M.; Boden, P.; Di Martino-Fumo, P.; Gui, X.; Bruschi, C.; Israil, R.; Schmitt, M.; Nieger, M.; Gerhards, M.; Klopper, W.; Riehn, C.; Bizzarri, C.; Diller, R. Time-Resolved Spectroscopy and Electronic Structure of Mono- and Dinuclear Pyridyl-Triazole/DPEPhos-Based Cu(I) Complexes. *Chem. - A Eur. J.* **2021**, *27*, 15251–15270.

(100) Holzer, C.; Pausch, A.; Klopper, W. The GW/BSE Method in Magnetic Fields. *Front. Chem.* **2021**, *9*, 1–11.

(101) Hashemi, Z.; Leppert, L. Assessment of the Ab Initio Bethe - Salpeter Equation Approach for the Low-Lying Excitation Energies of Bacteriochlorophylls and Chlorophylls. *J. Phys. Chem. A* **2021**, *125*, 2163–2172.

(102) De Queiroz, T. B.; De Figueroa, E. R.; Coutinho-Neto, M. D.; Maciel, C. D.; Tapavicza, E.; Hashemi, Z.; Leppert, L. First principles theoretical spectroscopy of methylene blue: Between limitations of time-dependent density functional theory approximations and its realistic description in the solvent. *J. Chem. Phys.* **2021**, *154*, 044106.

(103) Yao, Y.; Golze, D.; Rinke, P.; Blum, V.; Kanai, Y. All-Electron BSE@ GW Method for K -Edge Core Electron Excitation Energies. *J. Chem. Theory Comput.* **2022**, *18*, 1569–1583.

(104) Wilhelm, J.; Golze, D.; Talirz, L.; Hutter, J.; Pignedoli, C. A. Toward GW Calculations on Thousands of Atoms. *J. Phys. Chem. Lett.* **2018**, *9*, 306–312.

(105) Fujita, T.; Noguchi, Y.; Hoshi, T. Charge-transfer excited states in the donor/acceptor interface from large-scale GW calculations. *J. Chem. Phys.* **2019**, *151*, 114109.
(106) Kim, M.; Martyna, G. J.; Ismail-Beigi, S. Complex-time shredded propagator method for large-scale GW calculations. *Phys. Rev. B* **2020**, *101*, 035139.

(107) Förster, A.; Visscher, L. Low-Order Scaling G0W0 by Pair Atomic Density Fitting. *J. Chem. Theory Comput.* **2020**, *16*, 7381–7399.

(108) Wilhelm, J.; Seewald, P.; Golze, D. Low-scaling GW with benchmark accuracy and application to phosphorene nanosheets. *J. Chem. Theory Comput.* **2021**, *17*, 1662–1677.

(109) Duchemin, I.; Blase, X. Cubic-Scaling All-Electron GW Calculations with a Separable Density-Fitting Space-Time Approach. *J. Chem. Theory Comput.* **2021**, *17*, 2383–2393.

(110) Fujita, T.; Noguchi, Y. Fragment-Based Excited-State Calculations Using the GW Approximation and the Bethe–Salpeter Equation. *J. Phys. Chem. A* **2021**, *125*, 10580–10592.

(111) Neuhauser, D.; Gao, Y.; Arntsen, C.; Karshenas, C.; Rabani, E.; Baer, R. Breaking the theoretical scaling limit for predicting quasiparticle energies: The stochastic GW approach. *Phys. Rev. Lett.* **2014**, *113*, 1–5.

(112) Vlček, V.; Rabani, E.; Neuhauser, D.; Baer, R. Stochastic GW Calculations for Molecules. *J. Chem. Theory Comput.* **2017**, *13*, 4997–5003.

(113) Vlček, V.; Li, W.; Baer, R.; Rabani, E.; Neuhauser, D. Swift GW beyond 10,000 electrons using sparse stochastic compression. *Phys. Rev. B* **2018**, *98*, 075107.

(114) Weng, G.; Vlček, V. Efficient treatment of molecular excitations in the liquid phase environment via stochastic many-body theory. *arXiv:2105.14374* **2021**, 1–9.

(115) Hybertsen, M. S.; Louie, S. G. First-principles theory of quasiparticles: Calculation of band gaps in semiconductors and insulators. *Phys. Rev. Lett.* **1985**, *55*, 1418–1421.
(116) Hybertsen, M. S.; Louie, S. G. Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies. Phys. Rev. B 1986, 34, 5390.

(117) Bruneval, F.; Marques, M. Benchmarking the starting points of the GW approximation for molecules. J. Chem. Theory Comput. 2013, 9, 324–329.

(118) Bruneval, F.; Hamed, S. M.; Neaton, J. B. A systematic benchmark of the ab initio Bethe-Salpeter equation approach for low-lying optical excitations of small organic molecules. J. Chem. Phys. 2015, 142, 244101.

(119) Knight, J. W.; Wang, X.; Gallandi, L.; Dolgounitcheva, O.; Ren, X.; Ortiz, J. V.; Rinke, P.; Körzdörfer, T.; Marom, N. Accurate Ionization Potentials and Electron Affinities of Acceptor Molecules III: A Benchmark of GW Methods. J. Chem. Theory Comput. 2016, 12, 615–626.

(120) Caruso, F.; Dauth, M.; Van Setten, M. J.; Rinke, P. Benchmark of GW Approaches for the GW100 Test Set. J. Chem. Theory Comput. 2016, 12, 5076–5087.

(121) Loos, P. F.; Comin, M.; Blase, X.; Jacquemin, D. Reference Energies for Intramolecular Charge-Transfer Excitations. J. Chem. Theory Comput. 2021, 17, 3666–3686.

(122) Hüser, F.; Olsen, T.; Thygesen, K. S. Quasiparticle GW calculations for solids, molecules, and two-dimensional materials. Phys. Rev. B - Condens. Matter Mater. Phys. 2013, 87, 1–14.

(123) Nakashima, T.; Raebiger, H.; Ohno, K. Normalization of exact quasiparticle wave functions in the Green’s function method guaranteed by the Ward identity. Phys. Rev. B 2021, 104, L201116.

(124) Faleev, S. V.; van Schilfgaarde, M.; Kotani, T. All-electron self-consistent GW approximation: Application to Si, MnO, and NiO. Phys. Rev. Lett. 2004, 93, 12–15.
(125) van Schilfgaarde, M.; Kotani, T.; Faleev, S. Quasiparticle self-consistent GW theory. *Phys. Rev. Lett.* **2006**, *96*, 226402.

(126) Kotani, T.; van Schilfgaarde, M.; Faleev, S. V. Quasiparticle self-consistent GW method: A basis for the independent-particle approximation. *Phys. Rev. B* **2007**, *76*, 165106.

(127) Ismail-Beigi, S. Justifying quasiparticle self-consistent schemes via gradient optimization in Baym-Kadanoff theory. *J. Phys. Condens. Matter* **2017**, *29*, 385501.

(128) Förster, A.; Visscher, L. Exploring the statically screened G3W2 correction to the GW self-energy: Charged excitations and total energies of finite systems. *Phys. Rev. B* **2022**, *105*, 125121.

(129) Kutepov, A. L. Self-consistent GW method: O(N) algorithm for polarizability and self energy. *Comput. Phys. Commun.* **2020**, *257*, 107502.

(130) Förster, A.; Visscher, L. Low-Order Scaling Quasiparticle Self-Consistent GW for Molecules. *Front. Chem.* **2021**, *9*, 736591.

(131) Luttinger, J. M.; Ward, J. C. Ground-state energy of a many-fermion system. II. *Phys. Rev.* **1960**, *118*, 1417–1427.

(132) Rohringer, G.; Valli, A.; Toschi, A. Local electronic correlation at the two-particle level. *Phys. Rev. B - Condens. Matter Mater. Phys.* **2012**, *86*, 125114.

(133) Romaniello, P.; Sangalli, D.; Berger, J. A.; Sottile, F.; Molinari, L. G.; Reining, L.; Onida, G. Double excitations in finite systems. *J. Chem. Phys.* **2009**, *130*, 1–11.

(134) Baym, G.; Kadanoff, L. P. Conservation laws and correlation functions. *Phys. Rev.* **1961**, *124*, 287–299.

(135) Layzer, A. J. Properties of the one-particle green’s function for nonuniform many-fermion systems. *Phys. Rev.* **1963**, *129*, 897–907.
(136) Sham, L. J.; Kohn, W. One-particle properties of an inhomogeneous interacting electron gas. *Phys. Rev.* **1966**, *145*, 561–567.

(137) Maggio, E.; Kresse, G. Correlation energy for the homogeneous electron gas: Exact Bethe-Salpeter solution and an approximate evaluation. *Phys. Rev. B* **2016**, *93*, 1–12.

(138) Sander, T.; Maggio, E.; Kresse, G. Beyond the Tamm-Dancoff approximation for extended systems using exact diagonalization. *Phys. Rev. B - Condens. Matter Mater. Phys.* **2015**, *92*, 1–14.

(139) Förster, A.; Visscher, L. GW100: A Slater-Type Orbital Perspective. *J. Chem. Theory Comput.* **2021**, *17*, 5080–5097.

(140) Davidson, E. R. The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices. *J. Comput. Phys.* **1975**, *17*, 87–94.

(141) Van Gisbergen, S. J.; Snijders, J. G.; Baerends, E. J. Implementation of time-dependent density functional response equations. *Comput. Phys. Commun.* **1999**, *118*, 119–138.

(142) Krykunov, M.; Ziegler, T.; Van Lenthe, E. Hybrid density functional calculations of nuclear magnetic shieldings using slater-type orbitals and the zeroth-order regular approximation. *Int. J. Quantum Chem.* **2009**, *109*, 1676–1683.

(143) Merlot, P.; Kjærgaard, T.; Helgaker, T.; Lindh, R.; Aquilante, F.; Reine, S.; Pedersen, T. B. Attractive electron-electron interactions within robust local fitting approximations. *J. Comput. Chem.* **2013**, *34*, 1486–1496.

(144) Ihrig, A. C.; Wieferink, J.; Zhang, I. Y.; Ropo, M.; Ren, X.; Rinke, P.; Scheffler, M.; Blum, V. Accurate localized resolution of identity approach for linear-scaling hybrid
density functionals and for many-body perturbation theory. *New J. Phys.* 2015, 17, 093020.

(145) Wirz, L. N.; Reine, S. S.; Pedersen, T. B. On Resolution-of-the-Identity Electron Repulsion Integral Approximations and Variational Stability. *J. Chem. Theory Comput.* 2017, 13, 4897–4906.

(146) Förster, A.; Franchini, M.; van Lenthe, E.; Visscher, L. A Quadratic Pair Atomic Resolution of the Identity Based SOS-AO-MP2 Algorithm Using Slater Type Orbitals. *J. Chem. Theory Comput.* 2020, 16, 875 – 891.

(147) te Velde, G.; Bickelhaupt, F. M.; Baerends, E. J.; Fonseca Guerra, C.; van Gisbergen, S.; Snijders, J. G.; Ziegler, T. Chemistry with ADF. *J. Comput. Chem.* 2001, 22, 931–967.

(148) Baerends, E.; Ziegler, T.; Atkins, A.; Autschbach, J.; Baseggio, O.; Bashford, D.; Bérces, A.; Bickelhaupt, F.; Bo, C.; Boerrigter, P.; Cavallo, L.; Daul, C.; Chong, D.; Chulhai, D.; Deng, L.; Dickson, R.; Dieterich, J.; Ellis, D.; van Faassen, M.; Fan, L.; Fischer, T.; Förster, A.; Guerra, C. F.; Franchini, M.; Ghysels, A.; Giammona, A.; van Gisbergen, S.; Goez, A.; Götz, A.; Groeneveld, J.; Gritsenko, O.; Grüning, M.; Gusarov, S.; Harris, F.; van den Hoek, P.; Hu, Z.; Jacob, C.; Jacobsen, H.; Jensen, L.; Joubert, L.; Kaminski, J.; van Kessel, G.; König, C.; Kootstra, F.; Kovalenko, A.; Krykunov, M.; van Lenthe, E.; McCormack, D.; Michalak, A.; Mitoraj, M.; Morton, S.; Neugebauer, J.; Nicu, V.; Noodleman, L.; Osinga, V.; Patchkovskii, S.; Pavanello, M.; Peeples, C.; Philipsen, P.; Post, D.; Pye, C.; Ramanantoanina, H.; Ramos, P.; Ravenek, W.; Reimann, M.; Rodríguez, J.; Ros, P.; Rüger, R.; Schipper, P.; Schliens, D.; van Schoot, H.; Schreckenbach, G.; Seldenthuis, J.; Seth, M.; Snijders, J.; Solà, M.; Stener, M.; Swart, M.; Swerhone, D.; Tognetti, V.; te Velde, G.; Vernooijs, P.; Versluis, L.; Visscher, L.; Visser, O.; Wang, F.; Wesolowski, T.; van
Wezenbeek, E.; Wiesenekker, G.; Wolff, S.; Woo, T.; Yakovlev, A. ADF2022.1, locally modified development version. 2022.

(149) Umena, Y.; Kawakami, K.; Shen, J. R.; Kamiya, N. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9Å. *Nature* **2011**, *473*, 55–60.

(150) Van Lenthe, E.; Baerends, J. E. Optimized Slater-type basis sets for the elements 1–118. *J. Comput. Chem.* **2003**, *24*, 1142–1156.

(151) For instance, changing the cut-off for the inclusion of the particle-hole states from 1.5 to 2.0 Hartree changes each of the lowest three excitation energies of M74 by less than 10 meV.

(152) Van Lenthe, E.; Baerends, E. J.; Snijders, J. G. Relativistic regular two-component hamiltonians. *J. Chem. Phys.* **1993**, *99*, 4597.

(153) Van Lenthe, E.; Baerends, E. J.; Snijders, J. G. Relativistic total energy using regular approximations. *J. Chem. Phys.* **1994**, *101*, 9783–9792.

(154) Van Lenthe, E.; Snijders, J. G.; Baerends, E. J. The zero-order regular approximation for relativistic effects: The effect of spin-orbit coupling in closed shell molecules. *J. Chem. Phys.* **1996**, *105*, 6505–6516.

(155) Belić, J.; Förster, A.; Menzel, J. P.; Buda, F.; Visscher, L. Automated assessment of redox potentials for dyes in dye-sensitized photoelectrochemical cells. *Phys. Chem. Chem. Phys.* **2022**, *24*, 197–210.

(156) Klamt, A.; Schüürmann, G. COSMO: A new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. *J. Chem. Soc. Perkin Trans. 2* **1993**, 799–805.

(157) Klamt, A. Conductor-like screening model for real solvents: A new approach to the quantitative calculation of solvation phenomena. *J. Phys. Chem.* **1995**, *99*, 2224–2235.
(158) Klamt, A.; Jonas, V. Treatment of the outlying charge in continuum solvation models. *J. Chem. Phys.* **1996**, *105*, 9972–9981.

(159) Pye, C. C.; Ziegler, T. An implementation of the conductor-like screening model of solvation within the Amsterdam density functional package. *Theor. Chem. Acc.* **1999**, *101*, 396–408.

(160) Van Setten, M. J.; Caruso, F.; Sharifzadeh, S.; Ren, X.; Scheffler, M.; Liu, F.; Lischner, J.; Lin, L.; Deslippe, J. R.; Louie, S. G.; Yang, C.; Weigend, F.; Neaton, J. B.; Evers, F.; Rinke, P. GW100: Benchmarking G0W0 for Molecular Systems. *J. Chem. Theory Comput.* **2015**, *11*, 5665–5687.

(161) Stuke, A.; Kunkel, C.; Golze, D.; Todorović, M.; Margraf, J. T.; Reuter, K.; Rinke, P.; Oberhofer, H. Atomic structures and orbital energies of 61,489 crystal-forming organic molecules. *Sci. Data* **2020**, *7*, 1–11.

(162) Bruneval, F.; Maliyov, I.; Lapointe, C.; Marinica, M.-C. Extrapolating unconverged GW energies up to the complete basis set limit with linear regression. *J. Chem. Theory Comput.* **2020**, *16*, 4399–4407.

(163) Gruber, E.; Kjær, C.; Nielsen, S. B.; Andersen, L. H. Intrinsic Photophysics of Light-harvesting Charge-tagged Chlorophyll a and b Pigments. *Chem. - A Eur. J.* **2019**, *25*, 9153–9158.

(164) Riplinger, C.; Sandhoefer, B.; Hansen, A.; Neese, F. Natural triple excitations in local coupled cluster calculations with pair natural orbitals. *J. Chem. Phys.* **2013**, *139*, 134101.

(165) Riplinger, C.; Neese, F. An efficient and near linear scaling pair natural orbital based local coupled cluster method. *J. Chem. Phys.* **2013**, *138*, 034106.
(166) Dutta, A. K.; Neese, F.; Izsák, R. Towards a pair natural orbital coupled cluster method for excited states. *J. Chem. Phys.* **2016**, *145*, 034102.

(167) Dutta, A. K.; Nooijen, M.; Neese, F.; Izsák, R. Automatic active space selection for the similarity transformed equations of motion coupled cluster method. *J. Chem. Phys.* **2017**, *146*, 074103.

(168) Dutta, A. K.; Saitow, M.; Demoulin, B.; Neese, F.; Izsák, R. A domain-based local pair natural orbital implementation of the equation of motion coupled cluster method for electron attached states. *J. Chem. Phys.* **2019**, *150*, 164123.

(169) Bruneval, F.; Rangel, T.; Hamed, S. M.; Shao, M.; Yang, C.; Neaton, J. B. MOLGW 1: Many-body perturbation theory software for atoms, molecules, and clusters. *Comput. Phys. Commun.* **2016**, *208*, 149–161.

(170) Kruse, H.; Goerigk, L.; Grimme, S. Why the standard B3LYP/6-31G* model chemistry should not be used in DFT calculations of molecular thermochemistry: Understanding and correcting the problem. *J. Org. Chem.* **2012**, *77*, 10824–10834.

(171) Lange, M. F.; Berkelbach, T. C. On the Relation between Equation-of-Motion Coupled-Cluster Theory and the GW Approximation. *J. Chem. Theory Comput.* **2018**, *14*, 4224–4236.

(172) Ranasinghe, D. S.; Margraf, J. T.; Perera, A.; Bartlett, R. J. Vertical valence ionization potential benchmarks from equation-of-motion coupled cluster theory and QTP functionals. *J. Chem. Phys.* **2019**, *150*, 074108.

(173) Loos, P. F.; Scemama, A.; Blondel, A.; Garniron, Y.; Caffarel, M.; Jacquemin, D. A Mountaineering Strategy to Excited States: Highly Accurate Reference Energies and Benchmarks. *J. Chem. Theory Comput.* **2018**, *14*, 4360–4379.
(174) Mattuck, R. D. A Guide to Feynman Diagrams in the Many-body Problem, 2nd ed.; Dover Publications INC. New York, 1992.

(175) Nguyen, B. D.; Chen, G. P.; Agee, M. M.; Burow, A. M.; Tang, M. P.; Furche, F. Divergence of Many-Body Perturbation Theory for Noncovalent Interactions of Large Molecules. J. Chem. Theory Comput. 2020, 16, 2258–2273.

(176) Raszewski, G.; Diner, B. A.; Schlodder, E.; Renger, T. Spectroscopic properties of reaction center pigments in photosystem II core complexes: Revision of the multimer model. Biophys. J. 2008, 95, 105–119.

(177) Cox, N.; Hughes, J. L.; Steffen, R.; Smith, P. J.; William Rutherford, A.; Pace, R. J.; Krausz, E. Identification of the Qy excitation of the primary electron acceptor of photosystem II: CD determination of its coupling environment. J. Phys. Chem. B 2009, 113, 12364–12374.

(178) Dreuw, A.; Harbach, P. H.; Mewes, J. M.; Wormit, M. Quantum chemical excited state calculations on pigment-protein complexes require thorough geometry re-optimization of experimental crystal structures. Theor. Chem. Acc. 2010, 125, 419–426.

(179) Milne, B. F.; Toker, Y.; Rubio, A.; Nielsen, S. B. Unraveling the intrinsic color of chlorophyll. Angew. Chemie - Int. Ed. 2015, 54, 2170–2173.

(180) Cho, Y.; Bintrim, S. J.; Berkelbach, T. C. A simplified GW/BSE approach for charged and neutral excitation energies of large molecules and nanomaterials. J. Chem. Theory Comput. 2022,

(181) Bruneval, F. Optimized virtual orbital subspace for faster GW calculations in localized basis. J. Chem. Phys. 2016, 145, 234110.

(182) Riemelmoser, S.; Kaltak, M.; Kresse, G. Plane wave basis set correction methods for RPA correlation energies. J. Chem. Phys. 2020, 152, 1–13.
(183) Loos, P. F.; Pradines, B.; Scemama, A.; Giner, E.; Toulouse, J. Density-Based Basis-Set Incompleteness Correction for GW Methods. *J. Chem. Theory Comput.* **2020**, *16*, 1018–1028.

(184) Dekker, J. P.; Van Grondelle, R. Primary charge separation in photosystem II. *Photosynth. Res.* **2000**, *63*, 195–208.

(185) Tirimbò, G.; De Vries, X.; Weijtens, C. H.; Bobbert, P. A.; Neumann, T.; Coehoorn, R.; Baumeier, B. Quantitative predictions of photoelectron spectra in amorphous molecular solids from multiscale quasiparticle embedding. *Phys. Rev. B* **2020**, *101*, 035402.

(186) Löwdin, P. O. Group algebra, convolution algebra, and applications to quantum mechanics. *Rev. Mod. Phys.* **1967**, *39*, 259–287.
Graphical TOC Entry

Photosystem II reaction center

\[P_D^1 \rightarrow P_{D1}^+ \]

qsGW-BSE calculation
(~2000 electrons):
First CT state

\[\text{Pheo}_D \rightarrow \text{Pheo}_{D1} \]