Tuberculosis associated thrombocytopenic purpura: effectiveness of antituberculous therapy

Raphael Borie,1 Claire Fieschi,2 Eric Oksenhendler,2 Lionel Galicier2
1Department of Pneumology A, Hospital Bichat, Assistance Publique, Hôpitaux de Paris, Paris, France
2Department of Clinical Immunology, Hospital St Louis, Assistance Publique, Hôpitaux de Paris, Paris, France

Abstract

Association of immune thrombocytopenic purpura and tuberculosis is a rare condition. In 5 patients presenting with this association, anti-tuberculous therapy was effective on both tuberculosis and immune thrombocytopenic purpura and ITP were concomitant. In one case (patient 3), chest radiography abnormalities were detected four months after the diagnosis of thrombocytopenia. For each patient, ITP diagnosis was based on a platelet count below 30×10^9/L and normal bone marrow examination. No patient had splenomegaly. Other secondary forms of ITP were excluded. All patients responded to high-dose intravenous immunoglobulin (HD-IVig) as in most cases of ITP; however, none had complete and sustained response. In 3 patients, platelet counts remained below 30×10^9/L despite corticosteroid and HD-IVig. These patients had partial response to danazol or vincristine. Mycobacterium tuberculosis was identified in culture in 3 patients. Histological examination of an adenopathy confirmed the diagnosis in the 2 others. Each strain of Mycobacterium tuberculosis was sensitive to conventional therapy. All patients completed treatment and were considered to be cured for tuberculosis. Within two months of anti-tuberculous therapy, all 5 patients were in ITP complete response and were off specific therapy for thrombocytopenia. Patient 2 required corticosteroid for three months for associated hemolytic anemia.

Introduction

Immune thrombocytopenic purpura (ITP) is characterized by a low platelet count associated with the presence of platelet autoantibodies. The diagnosis of ITP remains a diagnosis of exclusion, and a bone marrow examination should be performed in patients with atypical features. In 5-10% of cases, ITP is associated with chronic infection (HIV, HCV), systemic autoimmune disorders, lymphoproliferative disorders, and primary immunodeficiency. In adults, ITP is usually chronic (i.e. more than six months in duration).1 The response to treatment is defined as an increase in platelet count above 50×10^9/L, with at least a 2-fold increase in the initial value and remission is considered if platelet count reaches 150×10^9/L.2

We describe 5 cases of the association of tuberculosis and ITP and the effectiveness of anti-tuberculous therapy (ATT) on both tuberculosis and thrombocytopenia (Figure 1).

Case Reports

Patients were 3 men and 2 women (Table 1). Median age was 38 years. Major symptoms were pulmonary symptoms in 3 cases and bleeding in 2 cases. However, thrombocytopenia was symptomatic in 4 patients. In 4 of the 5 cases, clinical manifestations of tuberculosis is a well known cause of ITP and tuberculosis.1 Autoimmune disorders and lymphoproliferative diseases, that may cause ITP, are by themselves or when treated, immunosuppressive conditions.1 None of our patients had such an etiology.

Disseminated tuberculous infection may cause peripheral or central thrombocytopenia. Tuberculous splenic abcess is rare but a possible cause of hypersplenism and peripheral thrombocytopenia. None of our patients had splenomegaly. All patients had bone marrow aspiration to confirm peripheral thrombocytopenia, while bone marrow involvement of tuberculosis may provoke central thrombocytopenia. Hemophagocytic lymphohistiocytosis is an uncontrolled activation of T cells and macrophages, and an overproduction of inflammatory cytokines responsible for thrombocytopenia and anemia. It has been previously described secondary to tuberculosis.1 However, bone marrow aspirate excluded this diagnosis.

Appearance of thrombocytopenia after treatment of tuberculosis is classically induced by rifampicin and recovered after stopping rifampicin.2 On the contrary, development of tuberculosis after long-term steroid treatment is not uncommon while steroids are immunosuppressive. One of our patients (case 3) had received corticoid before the diagnosis of tuberculosis was made. At first she was asymptomatic and chest radiography was considered as normal. But four months later, she was coughing and dyspneic; chest radiography revealed abnormalities and Ziehl coloration of the sputum was positive for BAAR. The short
course of steroids (less than a month) and the brief period between steroid treatment and the discovery of radiographic abnormalities suggest that active tuberculosis was already present when steroids were prescribed and that the treatment only favored progression of tuberculosis. In all other cases, active tuberculosis and thrombocytopenia were concomitant.

The pathophysiology of thrombopenia in tuberculosis remains unanswered. This is a rare condition, estimated to occur in less than 1% of cases of tuberculosis. *Mycobacterium tuberculosis* may share antigene with platelet leading to antiplatelet antibody formation. Specific HLA presentation of tuberculosis could also lead to antiplatelet immunity response in some patients. However, only one patient developed an auto-antibody. In this case, these were anti-hemagglutin antibodies revealed with Coombs testing. None of our patients tested positive for antinuclear antibodies.

Tuberculosis is a rare but curative cause of thrombocytopenia. Thrombocytopenic patients, and particularly chronic and hard to treat ITP, should benefit from tuberculosis depistage. In cases of tuberculosis associated ITP, recurrence of thrombocytopenia is frequent in the first two months, and patients may benefit from close observation leading to a continuation of ITP specific therapy.
References

1. Cines DB, Blanchette VS. Immune thrombocytopenic purpura. N Engl J Med 2002; 346: 995-1008.
2. Cines DB, Bussel JB. How I treat idiopathic thrombocytopenic purpura (ITP). Blood 2005;106:2244-51.
3. Al-Moamary MS, Black W, Bessuille E, Elwood RK, Vedal S. The significance of the persistent presence of acid-fast bacilli in sputum smears in pulmonary tuberculosis. Chest 1999;116:726-31.
4. Madkaikar M, Ghosh K, Jijina F, Gupta M, Rajpurkar M, Mohanty D. Tuberculosis and immune thrombocytopenia. Haematologica 2002;87: ELT38.
5. Ghobrial MW, Alborno MA. Immune thrombocytopenia: a rare presenting manifestation of tuberculosis. Am J Hematol 2001;67:139-43.
6. Tsuru K, Kojima H, Mitoro A, Yoshiji H, Fujimoto M, Uemura M, et al. Immune thrombocytopenic purpura associated with pulmonary tuberculosis. Intern Med 2006;45: 739-42.
7. Brastanios PK, Swanson JW, Torbeson M, Sperati J, Karakousis PC. Tuberculosis-associated haemophagocytic syndrome. Lancet Infectious Disease 2006;6:447-54.
8. Kant S, Natu NK, Mahajan V. Rifampicin, ethambutol and pyrazinamide-induced thrombocytopenia. Int J Clin Pharmacol Ther 2008;46: 440-2.