Reporting Summary

Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

- [] The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
- [] A statement of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
- [] The statistical test(s) used AND whether they are one- or two-sided
 - Only common tests should be described solely by name; describe more complex techniques in the Methods section.
- [] A description of all covariates tested
- [] A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
- [] A full description of the statistical parameters including central tendency (e.g. means) and dispersion (e.g. standard deviation) measures and sample size (n)
- [] For null hypothesis testing, the test statistic (e.g. F, t, r), with confidence intervals, effect sizes, degrees of freedom and P value noted
 - Give P values as exact values whenever suitable.
- [] For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
- [] For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
- [] Estimates of effect sizes (e.g. Cohen’s d, Pearson’s r), indicating how they were calculated

Software and code

Policy information about availability of computer code.

Data collection	Clinical data were collected and stored using QuesGen and REDCap databases
Data analysis	Bulk RNAseq: from differential expression:
	Following demultiplexing, sequencing reads were aligned with STAR to an index consisting of all transcripts associated with human protein coding genes (ENSEMBL v. 39), cytoplasmic and mitochondrial rRNA sequences, and the sequences of FIRC RNA standards. Samples retained in the dataset had a total of at least 50,000 counts associated with transcripts of protein coding genes. Differential expression analysis was performed using DESeq2, and including covariates for age and gender. Significant genes were identified using independent hypothesis-weighted Benjamini-Hochberg false-discovery rate (FDR) < 0.1.
	Classifier construction:
	To build gene expression classifiers that differentiated patients with sepsis from those with non-infectious critical illness, and distinguished viral from non-viral sepsis, we built a Support Vector Machine (SVM)-based classifier with the scikit-learn (v0.23.2) library's Python (v3.8.3). To build clinical variable classifiers, we tested three different machine learning methods. These included SVM using the e1071 package v1.7, random forest using the randomForest package v4.7, and regularized logistic regression using the glmnet package v4.1 in R v4.2.0.
	Pathogen detection:
	Detection of microbes averaged the open-source Deseq pipeline v.3.7 (https://czi.org/) which incorporates subtractive alignment of the human genome (NCBI/NCBI v38) using STAR (v2.5.3), quality and complexity filtering, and subsequent removal of cloning vectors and phix phage using Bowtie2 (v2.3.4), the identities of the remaining microbial reads are determined by querying the NCBI nucleotide (NT) database using GSNAP. Litrj the final steps of the Deseq pipeline.
	Background correction
	Negative control samples enabled estimation of the number of background reads expected for each taxon. A previously developed negative
binomial model (https://github.com/czbiohub/idseqr/) was employed to identify taxa with NT sequencing alignments present at an abundance significantly greater compared to negative water controls. This was done by modeling the number of background reads as a negative binomial distribution, with mean and dispersion fitted on the negative controls. For each taxon, we estimated the mean parameter of the negative binomial by averaging the read counts across all negative controls. We estimated a single dispersion parameter across all taxa, using the functions glm.nb() and theta.md() from the R package MASS (v7.3-51).

Code availability:
Code for differential gene expression, classifier development and pathogen detection can be found at: (https://github.com/lucile-n/plasma_classifiers).

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability
- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

[X] Life sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size	Samples were selected from an observational cohort. We used the RNASeqPower package for R to calculate the power of differential expression analysis, and determined that we had greater than 99% to detect a 2-fold change in expression at an FDR < 0.1 in our primary analysis.
Data exclusions	The main exclusion criteria for the cohort were: 1) exclusively neurological, neurosurgical, or trauma surgery admission, 2) goals of care decision for exclusively comfort measures, 3) known pregnancy, 4) legal status of prisoner, and 5) anticipated ICU length of stay < 24 hours. Enrollment in EARLI began in 10/2008 and continues.
Replication	All analyses were performed in a single cohort of patients. We have made a concerted attempt to clearly indicate the number of patients analyzed in each comparator group (Sepsis-BSI, Sepsis-non-BSI, Sepsis-suspected, No Sepsis) in the manuscript and figure legends. This is the first publicly available host/microbe sequencing dataset of sepsis patients, and there is therefore no dataset available for a replication analysis.
Randomization	N/A - observational study
Blinding	Investigators were blinded to group allocation during data collection. Investigators were blinded to any information about gene expression or metagenomic sequencing prior to chart review for sepsis adjudication. The sequencing and alignment pipeline did not have any information about the subject diagnosis.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
We conducted a prospective observational study of adults with acute critical illnesses admitted from the ED to the ICU at the University of California, San Francisco (UCSF) or Zuckerberg San Francisco General Hospital between 10/2010 and 01/2018. We studied patients who were enrolled in the longstanding Early Assessment of Renal and Lung Injury (EARLI) cohort. Detailed demographic and clinical characteristics of the cohort and analyzed patient groups are provided in Supplementary Table 1.

We would like to note that in the manuscript, we reference 2 prior studies which describe recruitment in detail: Auriemma, C. L. et al. Acute respiratory distress syndrome-attributable mortality in critically ill patients with sepsis. Intensive Care Med 46, 1222–1231 (2020). Agrawal, A. et al. Plasma angiopoietin-2 predicts the onset of acute lung injury in critically ill patients. Am J Respir Crit Care Med 187, 736–742 (2013).

We would also like to provide a more comprehensive description here:

If a patient met inclusion criteria for the EARLI cohort, then a study coordinator or physician obtained written informed consent for enrollment from the patient or their surrogate. Patients or their surrogates were provided with detailed written and verbal information about the goals of the study, the data and specimens that would be collected, and the potential risks to the subject. Patients and their surrogates were also informed that there would be no benefit to them from being enrolled in the study and that they may withdraw informed consent at any time during the course of the study. All questions were answered, and informed consent documented by obtaining the signature of the patient or their surrogate on the consent document.

Many critically ill patients are unconscious at the time of intensive care unit (ICU) admission due to their underlying illness and/or are endotracheally intubated for airway management or acute respiratory failure. The patients who are not unconscious are often in pain and may have acute delirium due to critical illness and/or medications. For these reasons, many subjects are unable to provide informed consent at the time of enrollment. Because this study could not practically be done otherwise and was deemed to be minimal risk by the UCSF IRB, if a patient was unable and a surrogate was not available to provide consent, patients were enrolled with waiver of initial consent, including the collection of biological samples.

Specifically, for subjects who were unable to provide informed consent at the time of enrollment, our study team was permitted to collect biological samples as well as clinical data from the medical record obtained prior to consent. Surrogate consent was vigorously pursued for all patients; moreover, each patient was regularly examined to determine if and when s/he was able to consent for him/herself, and the nursing and ICU staff were contacted daily for information about surrogates’ availability. For patients whose surrogates provided informed consent, follow-up consent was subsequently obtained from the patient if they survived their acute illness and regained the ability to consent. For subjects who died prior to the consent being obtained, a full waiver of consent was approved by the UCSF IRB for both cohort studies.

Lack of a surrogate to provide consent is common in critically ill patients. To address this, the UCSF IRB also approved a full waiver of consent for subjects who remained unable to provide informed consent and had no contactable surrogate identified within 28 days. Before utilizing this waiver, we made and documented at least three separate attempts to identify and contact the patient or surrogate over a month-long period. No personally identifiable information has been included as part of this manuscript for any enrolled patients.

Lastly, we would like to note that patients with more severe disease (e.g., mechanical ventilation, hypotension) were preferentially selected for inclusion, and thus our study population may not be representative of every patient transferred from the ED to ICU.
Clinical data

Clinical trial registration	N/A
Study protocol	N/A
Data collection	We studied patients who were enrolled in the Early Assessment of Renal and Lung Injury (EARU) cohort at the University of California, San Francisco (UCSF) and Zuckerberg San Francisco General Hospital between 10/2010 and 01/2018.
Outcomes	The primary outcome was diagnosis of sepsis using host +/- microbial metagenomics. Secondary outcomes included pathogen detection by metagenomics and host-based identification of viral sepsis.