Asset ownership indices are widely used as inexpensive proxies for consumption. We show that these indices can be augmented using dichotomous indicators for consumption, which are equally easy to obtain. Using multiple rounds of Living Standards Measurements Study surveys from Malawi, Uganda, Rwanda, Tanzania, and Ghana, we construct indices using different item subcategories and perform a meta-analysis comparing the indices to per capita consumption. The results show that the standard asset indices, derived from durable ownership and housing characteristic indicators, perform well in urban settings. Yet, in rural samples and when identifying the extreme poor, household rankings and poverty classification accuracy can be meaningfully improved by adding indicators of food and semi-durable consumption. We find small improvement from using national weights in urban samples but no improvement from using alternative construction methods. With most of Africa’s poor concentrated in rural areas, these are important insights.

JEL Codes: I32, O10

Keywords: asset index, consumption proxies, poverty targeting, proxy-means testing

1. INTRODUCTION

The state of poverty is commonly assessed in monetary terms using information on household consumption expenditures and auxiliary data on prices (Deaton, 2006; Ravallion, 2015; World Bank, 2015).\(^1\) However, frequent, reliable, and comparable information on consumption and prices is often hard to come by, especially in developing countries (Beegle et al., 2016). This has spawned a buoyant search for less costly alternatives to identify and target poor people (Sahn and Stifel, 2003; Rutstein and Johnson, 2004), to track progress on poverty (Sahn and Stifel, 2000; Christiaensen et al., 2012; Rutstein and Staveteig, 2014), or simply to control for or make inferences about the effect of socio-economic status (SES) and poverty on

\(^1\)For example, the first indicator of UN Sustainable Development Goal I “Ending Poverty” is “Eradicating extreme poverty for all people everywhere,” measured as “people living on less than $1.25 a day” (https://www.un.org/sustainabledevelopment/poverty/). Recently, non-monetary and multi-dimensional measures of poverty are often reported in conjunction (Ferreira and Lugo, 2013; Alkire and Santos, 2014; Beegle et al., 2016).

*Correspondence to: Diana K.L. Ngo, Department of Economics, Fowler Hall 223, Occidental College, 1600 Campus Road, Los Angeles, CA 90041, USA (dngo@oxy.edu).
non-monetary indicators of well-being such as education and health (Howe et al., 2009; Filmer and Scott, 2012).

These alternative indices are typically constructed from dichotomous indicators of asset ownership and housing characteristics (e.g. sanitation, electricity, and quality of floors). This makes them less demanding, less costly in terms of data collection and less prone to measurement error (Sahn and Stifel, 2003; Maitra, 2016). Weights are then derived to combine the indicators into a unitary asset index. Principal components and factor analysis are frequently used to do so, whereby the coefficients on the first component or factor are used as weights (Filmer and Pritchett, 2001; Sahn and Stifel, 2003; Rutstein and Johnson, 2004). However, other methods have also been proposed and validated. These include inverse frequency weighting (Morris et al., 2000) and threshold or item response models, which are based on the notion that the observed presence of an asset is linked to unobserved wealth (Ferguson et al., 2003; Baker and Kim, 2004; Maitra, 2016).

Asset indices have commonly been used to proxy for SES across a range of academic fields. They have been used in studies on education (Acham et al., 2012), the environment (Holmes, 2003; Caldas et al., 2007), and economics (Gunning et al., 2000; Simmons et al., 2009). They are also widely used in research on health determinants and inequalities (Wagstaff and Watanabe, 2003; Howe et al., 2008; Howe et al., 2009). Various studies report that, compared with measures of consumption, asset indices yield similar inferences about the extent to which inequalities in education, health, and fertility are related to SES (Morris et al., 2000; Filmer and Pritchett, 2001; Ferguson et al., 2003; Montgomery and Hewett, 2005; Filmer and Scott, 2012). Asset indices are also used in proxy means testing to target poor households for program support and have been shown to perform reasonably well in various settings (Coady et al., 2004; Gwatkin et al., 2005; Handa and Davis, 2006).

Despite their common usage, asset indices still have some important limitations. First, many asset indices have problems with clumping. They are often unable to distinguish among the poorest households, which do not own any of the included durables and housing variables (McKenzie, 2005; Vyas and Kumaranayake, 2006). This concern is particularly large in rural areas, making it difficult to target programs to poor households. For example, according to the Living Standards Measurement Studies, only 38 and 52 percent of the rural population own the most common durable good in Nicaragua in 1998 and in Malawi in 2004, respectively (Ngo, 2018). Thus, while asset indices work well on average for identifying poor households, there is considerable variation in targeting performance (Coady et al., 2004), and they tend to be less accurate at lower poverty lines (Handa and Davis, 2006).

Second, researchers and policy-makers are often directly interested in household consumption. It is the traditional metric to measure poverty and capture welfare (Meyer and Sullivan, 2003). While asset indices have been shown to be correlated with consumption, they typically do not yield the same ranking of households (Filmer and Scott, 2012). In some contexts, the correlation between asset indices and consumption is in fact low to moderate at best (Ngo, 2018), leading some researchers to conclude that they are poor proxies for consumption (Howe et al., 2009). Thus, when household consumption is the indicator of interest, using asset indices as proxy may induce mistargeting of programs or may generate inaccurate conclusions regarding inequality (Houweling et al., 2003; Lindelow, 2006; Wittenberg and Leibbrandt, 2017).
In this paper, we explore whether the correspondence between asset indices and consumption can be improved by using different combinations of items that also include indicators for consumption of semi-durables, staple foods, and non-staple foods. Intuitively, these items may increase the ability to discriminate among the poorest households if the demand for these goods is highly income elastic at the lower end of the distribution. The current practice of limiting the set of asset indicators to durables and housing characteristics has been largely motivated by the ready availability of this information in the Demographic and Health Surveys and not necessarily by strong theoretical reasons (Rutstein and Johnson, 2004; Gwatkin et al., 2007). Yet, there is little extra cost to expanding the information base with a limited number of yes/no questions that capture consumption of a series of food and semi-durable items. For example, questionnaires could be augmented by including questions such as “Did your household purchase any clothing in the past year?”.

We examine the possibility of including consumption indicators in various contexts and test their performance using several criteria. This is important because these indices are applied across a range of settings with different intended applications. As Diamond et al. (2016) highlight in their performance analysis of the Simple Poverty Score card, which applies the same nationally derived weights across settings within a country, performance consistency across settings cannot be assumed. Similarly, but even less commented on in the literature, is heterogeneity in prediction accuracy depending on the poverty level. Indicator combinations that perform well in identifying the extreme poor are not necessarily also powerful at identifying the moderate poor, and vice versa.

Specifically, we use thirteen surveys from the Living Standards Measurement Studies (LSMS) conducted at different times in Malawi, Uganda, Rwanda, Tanzania, and Ghana, and we systematically assess the performance of different indices in ranking households and classifying households as poor/non-poor within each sample. To do this, we generate indices using 27 different combinations of housing characteristics, durables, semi-durables, staple foods, and non-staple foods, using between 5 and 27 indicators in total for each combination.

For each combination, we use three methods to derive individual indicator weights, which differ in their intuitive appeal and implementation complexity. We then construct the indices within each sample separately and test how well they correspond to consumption, again within each sample, using rank correlation coefficients and accuracy measures for identifying both the extreme and moderate poor. We use the 10th and 40th percentile index scores as cutoffs, respectively, where the 40th percentile is the cut-off chosen by the World Bank for its shared prosperity indicator. We do this for national, urban, and rural samples and also compare the difference in performance when using nationally generated weights as opposed to rural- and urban-specific weights. We limit our analysis of the performance of these indices to comparisons within cross-sections, leaving applications to inter-temporal comparisons to future work.

Together, this yields a total of 5,265 permutations of variable combinations, construction methods, and samples. We perform a meta-analysis regression to examine whether the performance of currently popular sets of asset indices and construction methods can be improved upon, and if so, through which indicator combination and construction method, in which geographical settings (national, rural, urban),
and in which poverty contexts (extreme, moderate). Overall, the results confirm that the commonly used asset indices, consisting of indicators for the possession of durable assets and housing characteristics (about 15-20 indicator variables in total) and constructed using principal components analysis, can be effectively used as proxies for consumption (McKenzie, 2003; Filmer and Scott, 2012).

Yet, the results also show that when it comes to rural settings where the poor tend to be concentrated and when identifying the extreme poor, both in rural and national samples, performance can be improved at little extra cost by restricting the standard index (durable asset possessions and housing characteristics) to a subset of durable indicators (reflecting the five most common durables) and expanding the information base with a small set of indicator variables capturing the consumption of semi-durables and food. This consumption augmented asset index (consisting of only 5-10 more indicator variables—25 in total), increases the targeting accuracy in reaching the extreme poor on average by more than 10 percentage points. It also increases the rank correlation with consumption among rural households by 9 percentage points. Among urban samples, the augmented index offers no improvement over the standard asset index, and nationally generated weights tend to work slightly better.

The paper proceeds as follows. Section 2 motivates the use of consumption as the benchmark and the use of assets as a proxy. Section 3 introduces the data and discusses the procedure for generating the index permutations, the performance criteria, and the analytical strategy for the meta-analysis. Section 4 presents the findings, and Section 5 concludes.

2. Assets And Consumption

According to the 2001 World Development Report, “Consumption is conventionally viewed as the preferred welfare indicator, for practical reasons of reliability and because consumption is thought to better capture long-run welfare levels than current income” (World Bank, 2001, p. 17). This view continues to hold sway today. Nonetheless, multi-dimensional aspects of poverty are increasingly being recognized (Alkire and Santos, 2014) and SES is at times used instead of consumption (Sahn and Stifel, 2000; Bader et al., 2017). Yet, there remain conceptual issues in doing so that lead many to present these multi-dimensional measures as complements to consumption (Beegle et al., 2016). In using consumption as the benchmark, we follow the majority of the asset index literature, which developed and validated the methods against consumption (Morris et al., 2000; Filmer and Pritchett, 2001; Ferguson et al., 2003).

Measures of consumption are based on current household expenditures (monetary outflow) and derived following various adjustments. Specifically, outlays on durable goods are replaced with the flow value of the services from these goods; expenditures on investment items and cash gifts to outside entities are excluded; and home production and in-kind transfers of consumption goods are valued and included (Deaton and Zaidi, 2002; Meyer and Sullivan, 2003). Theoretically, consumption is thought to reflect long-run welfare since, with borrowing and saving, households can smooth their consumption in response to short-term shocks (Friedman, 1957). For practitioners, the monetary measure of consumption is
often considered to have clearer policy implications than the more complex concept of SES (Howe et al., 2009).

Despite these advantages, the construction of consumption measures also faces many challenges. These include the large expenses associated with consumption surveys, issues of measurement error, and difficulties generating comparable price deflators. However, given the continued salience of consumption in measuring poverty and the clear policy interest in garnering cheaper proxies for consumption, we use consumption as our relevant benchmark.

Asset indices have been advanced to proxy for consumption because of the similarities between the two (Filmer and Pritchett, 2001). Nonetheless, the measures differ conceptually for various reasons, such that perfect correspondence is not to be expected. First, the categories of items that are included are different. Asset indices are constructed from sets of durables and housing characteristics, a small subset of the items included in consumption aggregates. When food expenditure shares are large, which is often the case in low income settings, there is little overlap with the items measured in the asset indices (Howe et al., 2009).

Second, durables and housing characteristics are effectively public goods at the household level, while consumption measures are usually adjusted for household size, on a per capita basis or using other equivalence scales. Thus, the congruence between asset indices and consumption declines when economies of scale are important (Filmer and Scott, 2012).

Third, consumption is a flow while the components of asset indices are stocks. In examining the discrepancies between current income and current expenditures, Poterba (1991) shows that life-cycle behavior is important, resulting in the largest discrepancies for very young and very old households. Similarly, systematic differences are likely between consumption and asset indices, since durable goods are accumulated over time. Moreover, durables depreciate relatively slowly and are less sensitive to shocks than consumption when consumption smoothing is imperfect (Filmer and Pritchett, 2001).

Fourth, asset indices differ from consumption by directly measuring outcomes or observed deprivations. Households with the same monetary resources may vary in their abilities to translate those resources into outcomes or services due to differences in access to goods, housing markets, or credit (Perry, 2002; Alkire and Santos, 2014). Relatedly, some assets (such as piped water and electricity) are publicly provided by the government or other organizations. They are thus more correlated with regional factors and less indicative of household level differences in SES (Harttgen et al., 2013).

Despite these differences, assets indices and consumption are related, as both are functions of unobserved long-run wealth (Filmer and Pritchett, 2001). Moreover, there is some empirical overlap between the measures as the flow value of services from housing and durable goods is included in consumption. Thus, while recognizing that the measures have features that are conceptually distinct, the similarities suggest that when consumption is of direct interest but not available, asset indices can be used as empirical proxies for consumption. The primary purpose of this analysis, then, is to reduce the differences between the measures by increasing the empirical overlap in their underlying components.
Finally, we note that we limit our analyses to the problem of ranking households and identifying the poor within countries or settings, at a point in time. While there is widespread interest in tracking poverty over time and comparing populations more broadly, there are outstanding methodological issues associated with generating comparable asset indices that need to be addressed before attempting spatial and temporal comparisons. Specifically, the underlying components of the asset index may exhibit differential item functioning, representing different levels of economic status over time and in different areas. This may be due to differences in market availability or government provision, differences in relative prices of goods, differences in item vintage and quality, or differences in household preferences (Harttgen et al., 2013).

Without additional adjustment, an asset index generated within one sample is not comparable to one generated in another sample, even if the included items are identical. Some methods have been proposed to address these issues. Specifically, Sahn and Stifel (2000) address the issue by generating their asset weights using pooled data from multiple countries, where they draw from the most recent survey available in each country. They then apply these weights to all remaining surveys in their analysis. Young (2012) assumes that relative price differences can be addressed by conducting an analysis across a wide variety of products, stating that biases introduced by heterogeneous preferences can be removed by controlling for demographics in microdata regressions. Rutstein and Staveteig (2014) use a subset of assets, which they argue represent the same economic levels across time and space to rescale survey-specific indices onto a comparable scale. Ngo (2018) incorporates changes in asset prices to develop an index that allows for inter-temporal comparisons.

Though these various methods exist, they often rely on strong assumptions and continue to be actively researched and debated (Harttgen et al., 2013). Since these issues are outside of the scope of our current analysis, we limit all of our analyses to within-survey comparisons. While we pool data from multiple countries and years in the meta-analysis, we focus on the within-survey variation in index performance.

3. Material and Methods

The data used are household surveys from the LSMS. These are discussed first. We subsequently introduce the three factors that may affect the performance of asset indices: the sets of items included, the methods of constructing univariate indices once the items have been selected, and the samples within which the index weights are calculated. This is followed by a discussion of the criteria for assessing the performance of these indices and the method used for identifying systematic patterns in performance across surveys.

3.1. Data

To assess the performance of the different asset indices, we use data from 13 nationally representative LSMS surveys in 5 countries in Sub-Saharan Africa. While these methods are also applicable and relevant for countries in Asia and
parts of Latin America, Sub-Saharan Africa provides a natural region for initial analysis since it contains a large fraction of the world’s poor. Moreover, there is relatively low coverage of high-quality consumption data in most countries in Sub-Saharan Africa, as evidenced by the surveys analyzed by the World Bank’s PovCal application (Beegle et al., 2016).

The LSMS surveys all include extensive modules on consumption and expenditure, as well as modules on housing quality and durable goods ownership. This allows us to construct different asset indices for each household and compare their performance with respect to well-constructed aggregate consumption measures, all provided by the World Bank. The consumption measures account for spatial variation in prices.

The countries and survey years include Malawi (2004, 2010), Uganda (2005, 2009, 2010), Rwanda (2000, 2005, 2010), Tanzania (2008, 2010), and Ghana (1991, 1998, 2005). These are all low-income countries, with the exception of Ghana, which the World Bank classifies as lower-middle income. Sample sizes range from approximately 3,200 in Tanzania to approximately 14,300 in the last wave of the Rwandan data.

Although the data in the Tanzanian and Ugandan samples constitute a panel, we do not exploit the panel features in this analysis. We construct all indices separately for each survey-year combination. This allows the meaning of owning a television in Rwanda 2005 to differ from its meaning in Rwanda 2010, Uganda 2005, and all other samples.

3.2. Indicator Selection and Variable Combinations

Current asset indices are generally constructed from a short list of items, representing durable goods ownership and housing characteristics. Part of their appeal is the limited cost of collecting these data. We maintain the essence of this (a limited number of underlying indicator variables) but explore whether information on items from consumption categories that are plausibly strongly correlated with aggregate consumption can also be used, either on their own, in combination with each other or in combination with the durable goods and housing characteristic indicators. In particular, we select indicators from the following five categories: staple and non-staple food consumption, semi-durable household goods purchases, housing characteristics, and durable goods ownership.

Within these categories, we choose items that are both commonly and less commonly owned/bought to help classify households across the wealth distribution (McKenzie, 2003; Vyas and Kumaranyake, 2006). Including items that span the range of ownership levels is likely to increase the discriminatory power of the indices, since households that lack even the most common items are likely to be among the poorest households and households with less common items are likely to be among the richest households. While the LSMS surveys are broadly similar, the list of available items varies across countries and across waves within countries. Within each country, we limit our analysis to variables that are consistent across waves. We further try to use variables that are similar across countries. By way of example, Table 1 lists the items in each consumption category and the frequencies...
Category/Item	2000 National	2005 National	2010 National	2005 Urban	2005 Rural
Staples and starches					
Consumed sweet potato in past week	0.80	0.77	0.84	0.46	0.84
Consumed potato in past week	0.53	0.55	0.71	0.57	0.54
Consumed cassava in past week	0.53	0.49	0.59	0.27	0.54
Consumed sorghum in past week	0.53	0.24	0.26	0.18	0.26
Consumed maize in past week	0.52	0.54	0.79	0.31	0.58
Consumed plantain in past week	0.47	0.55	0.68	0.45	0.57
Consumed banana in past week	0.37	0.33	0.48	0.25	0.34
Consumed taro in past week	0.25	0.25	0.47	0.11	0.28
Consumed soy in past week	0.21	0.17	0.12	0.10	0.19
Consumed bean in past week	0.20	0.24	0.28	0.31	0.23
Consumed rice in past week	0.12	0.13	0.24	0.30	0.10
Consumed wheat in past week	0.06	0.02	0.10	0.00	0.03
Consumed yam in past week	0.03	0.02	0.11	0.01	0.03
Non-staple foods					
Consumed cooking oil in past week	0.22	0.31	0.46	0.51	0.27
Consumed beef in past week	0.05	0.04	0.05	0.15	0.02
Consumed fish in past week	0.02	0.01	0.04	0.05	0.01
Consumed fresh milk in past week	0.02	0.04	0.08	0.14	0.02
Consumed eggs in past week	0.02	0.01	0.02	0.05	0.01
Semi-durables					
Purchased clothes in past month	0.84	0.91	0.95	0.88	0.92
Purchased shoes in past month	0.56	0.77	0.93	0.83	0.75
Purchased soap in past month	0.32	0.30	0.40	0.49	0.27
Purchased toothpaste in past month	0.17	0.25	0.38	0.51	0.20
Purchased charcoal in past month	0.10	0.13	0.17	0.54	0.04
Category/Item	2000 National	2005 National	2010 National	2005 Urban	2005 Rural
--	---------------	---------------	---------------	------------	------------
Housing					
Low density housing (> 0.5 rooms/person)	0.71	0.71	0.81	0.79	0.70
House has toilet with pipes	0.52	0.59	0.74	0.75	0.55
High-quality roof: tiles	0.39	0.43	0.43	0.19	0.48
High-quality walls: baked bricks or mud	0.37	0.45	0.57	0.57	0.43
High-quality floors: concrete	0.13	0.13	0.17	0.45	0.07
Durables					
Owns at least one chair	0.84	0.89	0.89	0.77	0.91
Owns at least one table	0.49	0.58	0.62	0.69	0.55
Owns at least one bed	0.44	0.55	0.68	0.73	0.51
Owns at least one radio	0.27	0.47	0.60	0.51	0.46
Owns at least one cassette player	0.11	0.11	0.08	0.30	0.07
Owns at least one sofa	0.07	0.10	0.14	0.37	0.04
Owns at least one bicycle	0.07	0.13	0.13	0.10	0.14
Owns at least one shelf	0.02	0.02	0.03	0.07	0.01
Owns at least one wardrobe	0.02	0.08	0.10	0.26	0.05
Owns at least one television	0.02	0.02	0.06	0.13	0.00
Owns at least one sewing machine	0.01	0.02	0.02	0.02	0.02
Owns at least one refrigerator	0.01	0.01	0.01	0.06	0.00

Electronic copy available at: https://ssrn.com/abstract=3619346
with which they are consumed, purchased or owned, for the three Rwandan survey waves (2000, 2005, 2010) and by urban and rural locality for 2005.

The category of durable goods includes furniture, appliances, vehicles, and communication devices, such as telephones and televisions. The quantity of each durable owned is included in some but not all surveys, so we use indicators for any ownership to be consistent across surveys. For Ghana, Uganda, and Malawi, which have less detailed asset ownership modules, we use all available items, retaining 11, 9, and 11 durables, respectively. For Rwanda and Tanzania, which include more extensive sets of durables, we include only the 12 most commonly owned items to maintain a short list for the analysis.

The housing category includes house ownership, land ownership, the quality of housing materials (e.g. iron roofs, concrete floors, and brick or concrete walls), the availability of toilets with piping, and an indicator for low density housing (more than 0.5 rooms per person). These items are comparable to those used in the DHS wealth index (Rutstein and Johnson, 2004.). When available, we use all 7 variables; for Rwanda, only 5 are available.

Within foods, we generate two categories. The first category is comprised of staples and other starches and includes foods such as maize, pulses, and rice. We include 10 to 13 items within the staples category. The second category is comprised of non-staple foods that are more expensive but consumed less frequently. We choose five items within the non-staples category that span a range of frequencies in the samples. The specific items include cooking oil, fish, milk, eggs, and an additional meat (chicken or beef). For each item, we generate a dichotomous variable to indicate whether or not households had consumed the item within the past week (either from home production or obtained through purchasing).

Within semi-durables, we include items related to clothing, personal hygiene, and fuel use. Examples include clothing, shoes, soap, toothpaste, toilet paper, kerosene, and charcoal. Again, we choose five items that span a range of frequencies in the samples and generate dichotomous variables to indicate whether or not households had purchased each item within the past month.

Table 1 shows that each category includes both common and uncommon items. For example, ownership levels for durables span from as high as 91 percent for chairs to as low as 0 percent for refrigerators in rural Rwanda, 2005. Frequency ranges are similarly wide in the other categories (except for non-staple food consumption). The frequency of occurrence typically increases between the 2000 and 2010 surveys, and it is typically higher in urban areas, especially for many durable goods and the quality of housing materials. For staples, however, the frequencies are often lower in urban areas. Overall, these differences suggest that especially in rural areas, the inclusion of food items (especially staple food items) may increase the discriminatory power of standard asset indices.

Finally, to reduce the large number of staple, food and durable goods indicators further, we also generate two subsets of these categories. The first subset uses the five most common indicators, under the rationale that the most common indicators provide the most information about the poorest households. The second subset uses the correlation structure of the variables to eliminate items that are highly correlated with one another under the rationale that highly correlated items add little additional discriminatory power. Specifically, the average correlation

© 2018 International Association for Research in Income and Wealth

Electronic copy available at: https://ssrn.com/abstract=3619346
between each item and other items in the category is calculated. The item with the highest average correlation is eliminated, and the procedure is repeated until five items remain. This process generally includes the most common item and the least common item among the list of retained items.

In total, we compare 27 alternative variable groupings for each sample. These groupings are detailed in Table 2. They include category-specific variables, combinations of common durables and each of the other category-specific variables (e.g. common durables and semi-durables), and combinations of common durables, housing, and each of the category-specific variables. These combinations include between 5 and 22 variables each. We also explore a combination of variables from all categories, with 25 to 27 items depending on the country. Finally, we compare these combinations to the standard asset index generated using all durables and housing variables, which contains 14 to 19 items depending on the country.

3.3. Construction Methods

Various methods exist to combine these different indicators into one univariate asset index, with two broad classes of asset indices: economic asset indices and statistical asset indices. Economic asset indices derive weights by regressing expenditure on the indicator variables (Stifel and Christiaensen, 2007). Applications include the Simple Poverty Scorecard developed by Microfinance Risk Management, L. L. C. and the Survey of Well-Being via Instant and Frequent Tracking developed by the World Bank. These have been widely used among microfinance institutions, NGOs, and agribusiness companies targeting the poor. Economic asset indices have the appeal of generating weights that can be interpreted as economic returns (Christiaensen et al., 2012; Beegle et al., 2016; Douidich et al., 2016). However, they cannot be estimated without some initial information on the consumption behavior of the study population. Relatedly, Ngo (2018) develops an asset index that does not require information on consumption but requires additional information on asset prices. These indices are therefore more demanding in terms of data requirements and not available in as many settings.

In this analysis, we focus on statistical asset indices, which derive weights from the statistical relations between the indicators and do not require any information on consumption. So far, within statistical asset indices, the use of different construction methods has not been found to have a significant effect on the performance of asset indices according to their correspondence with consumption or regarding conclusions about inequalities (Howe et al., 2008; Filmer and Scott, 2012). However, different methods yield different household rankings (Filmer and Scott, 2012), and this may be particularly important for our outcome criteria of identifying poor households. Moreover, alternative methods may differ more substantially when including new indicator categories. We compare the performance of three commonly used construction methods—inverse frequency weighting (INV), principal components analysis (PCA), and the dichotomous hierarchical ordered probit (DHP) method. The methods differ in their intuitive appeal, ease of use, and theoretical grounding.
TABLE 2
Variable Combinations (Rwandan Sample)

Variable Group	# of Items	Included Variables
Single categories and short lists		
Staples and other starches, full	13	Plantain, sweet potato, cassava, sorghum, wheat, yam, potato, taro, soy, banana, maize, rice, bean
Staples, list 1, most common	5	Sweet potato, potato, cassava, sorghum, maize
Staples, list 2, low correlation	5	Bean, cassava, rice, sorghum, wheat
Non-staple foods	5	Beef, fish, fresh milk, egg, cooking oil
Foods, full	18	Full list of staples and non-staples
Foods, list 1, most common	10	Non-staples and five most common staples
Foods, list 2, low correlation	10	Non-staples and five low correlation staples
Non-staple foods	5	Beef, fish, fresh milk, egg, cooking oil
Semi-durables	5	Clothes, shoes, toothpaste, soap, charcoal
Housing	5	Quality roof, low density housing, toilet, quality floor, quality walls
Durables, full	12	Sofa, fridge, radio, cassette player, television, sewing machine, bed, wardrobe, shelf, table, chair, bike
Durables, list 1, most common	5	Chair, table, bed, radio, cassette player
Durables, list 2, low correlation	5	Bike, chair, radio, sewing machine, television
Common durables and one other category		
Durables 1 and staples 1	10	Five most common durables, five most common staples
Durables 1 and staples 2	10	Five most common durables, five low correlation staples
Durables 1 and non-staples	10	Five most common durables, non-staples
Durables 1 and food 1	15	Five most common durables, five most common staples, non-staples
Durables 1 and food 2	15	Five most common durables, five low correlation staples, non-staples
Durables 1 and semi-durables	10	Five most common durables, semi-durables
Durables 1 and housing	10	Five most common durables, housing
Common durables, housing, and one other category		
Durables 1, housing, staples 1	15	Five most common durables, housing, five most common staples
Durables 1, housing, staples 2	15	Five most common durables, housing, five low correlation staples
Durables 1, housing, non-staples	15	Five most common durables, housing, non-staples
Durables 1, housing, food 1	20	Five most common durables, housing, five most common staples, non-staples
Durables 1, housing, food 2	20	Five most common durables, housing, five low correlation staples, non-staples
Durables 1, housing, semi-durables	15	Five most common durables, housing, semi-durables
All-category index		
Durables 1, housing, staples 1	25	Five most common durables, housing, five most common staples, non-staples, semi-durables
Durables 1, housing, staples 2	25	Five most common durables, housing, five low correlation staples, non-staples, semi-durables
Standard asset index		
Durables and housing	17	All durables, housing
The inverse frequency index was first proposed by Morris et al. (2000). It is based on the assumption that households that own or consume less common items, have higher levels of underlying wealth. Less frequently owned or consumed items (e.g., a car or meat, respectively) are often only owned/consumed by richer households as they are more expensive. Following this logic, the inverse of the frequency with which the item is observed in a sample can be used as a proxy for its price/value. Morris et al. (2000) found that, in samples of rural households in Northern Mali and Central Malawi, indices that used inverse frequency weighting correlated well with the total monetary value of the bundle of household assets observed in the survey. Inverse frequency weighting has since been used and validated in a multitude of settings (Subramanian et al., 2005; Yamamoto et al., 2010; Young et al., 2010).

More formally, the household index \(\text{INV}_i \) for household \(i \) is the weighted sum of the included indicator variables \(a_{ij} \) summed over the set of \(J \) variables. The weight for each indicator is given by the inverse of the sample mean of that indicator, \(w_j = 1/\bar{a}_j \).

\[
\text{INV}_i = \sum_{j=1}^{J} a_{ij} w_j
\]

(1)

The inverse frequency method has the advantage of being transparent. It is intuitive and straightforward to apply.

The second and most widely used construction method is principal components analysis (PCA) (Filmer and Pritchett, 2001). PCA is a statistical procedure used to reduce multidimensional data into a single index under the assumption that the included variables can be represented by a set of uncorrelated components. These components are ordered so that the first component explains the largest amount of variation in the original data; subsequent components are completely uncorrelated with previous components and explain a smaller amount of variation. Specifically, the weight for each principal component is given by the eigenvectors of the covariance matrix of the standardized data (Vyas and Kumaranayake, 2006). The index is then generated by summing across indicator variables using the weighting factors for the first principal component, \(w_j \), as the relevant weight for each asset. The mean and standard deviation of each indicator is given by \(\bar{a}_j \) and \(s_j \), respectively.

\[
\text{PCA}_i = \sum_{j=1}^{J} \frac{(a_{ij} - \bar{a}_j)}{s_j} w_j
\]

(2)

The procedure results in high weights for the items which are more unequally distributed between households (McKenzie, 2003) and high weights for the set of variables that are strongly correlated with each other (Lindelow, 2006). While PCA generates an index that accounts for a large share of the total variance in the data, the weights are not based on the economic or social value of the included items (Lindelow, 2006).
The third procedure is the method developed by Ferguson et al. (2003), who apply a random effects dichotomous hierarchical ordered probit model (DHP). The DHP method assumes that each item included in the index is associated with a threshold level of wealth. On average, households do not own/consume the item if their wealth is below the threshold; households own the item when their wealth is above the threshold. Specifically, household i's ownership of asset a_j is modeled as

$$a_{ij} = 0 \quad \text{if } -\infty < y_i \leq \tau_j + \epsilon_{ij}$$

(3)

$$a_{ij} = 1 \quad \text{if } \tau_j + \epsilon_{ij} < y_i \leq \infty$$

where y_i is the unobserved wealth, τ_j represents the threshold for item j, and ϵ_{ij} represents household-specific preferences for item j. Assuming that y_i and ϵ_{ij} are normally distributed, the threshold values are estimated using a random effects ordered probit model pooled across the included variables. Using the estimated thresholds, the index is constructed using the expected value of latent wealth conditional on observed item ownership following Bayes’ formula.

For example, suppose a household owns only a stove and a bicycle. For each wealth level, the model gives the conditional probability that the household will own a stove and a bicycle by comparing that wealth level to the relevant thresholds ($Pr(a_i|y_i)$). The model then computes the probability of having each level of wealth, conditional on observing ownership of a stove and a bicycle, using the distributional assumptions over y_i and Bayes’ formula:

$$Pr(y_i|a_i) = \frac{Pr(a_i|y_i) Pr(y_i)}{Pr(a_i)} = \frac{Pr(a_i|y_i) Pr(y_i)}{\int Pr(a_i|y_i) Pr(y_i) dy_i}$$

(4)

This produces a probability distribution for the household’s wealth conditional on its observed bundle. Finally, the index value is given by $DHP_i = E(y_i|a_i)$, the expected value of the predicted wealth distribution for that household.

Ferguson et al. (2003) show that the index performs well in matching income and expenditure using samples from Greece, Peru, and Pakistan. The method has been used to evaluate program targeting (Lozano et al., 2006; Gakidou et al., 2007; Lim et al., 2010) and to describe inequalities and risk factors for various health outcomes (Chatterji et al., 2008; Hall et al., 2009; Patel et al., 2011). Among the three construction methods applied here, the DHP method provides the most formal connection to economic theory, describing a specific relationship between underlying wealth and asset ownership. It can be rationalized under hierarchical preferences but is more computationally intensive than the alternatives (Ngo, 2012).

To date, the three construction methods have been primarily applied to indicators of asset ownership and housing characteristics. However, they can be readily extended to include dichotomous indicators for semi-durables and food consumption since the methods are statistical construction methods and mechanically make no distinction between the types of variables that are included.
3.4. Sample Weights

We also vary the samples that are used to calculate the weights when analyzing urban and rural areas. We test two strategies. The first generates weights (i.e. applies each method) using the entire national sample and applies these to the urban and rural subsamples; the second generates weights within the urban or rural subsamples. We do this to assess whether or not the indices are sensitive to different regional patterns of ownership/consumption since there are some concerns about asset indices being biased against rural areas (Rutstein and Staveteig, 2014; Wittenberg and Leibbrandt, 2017). We construct all indices separately by sample. For the urban-specific and rural-specific weights, this allows the meaning of owning a television in urban Rwanda 2005 to differ from its meaning in rural Rwanda 2005. Using nationally derived weights, television ownership is assumed to have the same meaning across urban and rural areas within each country-year.

3.5. Performance Criteria

To assess the performance of these different asset indices, we focus on ranking households and identifying poor households, using consumption as the empirical benchmark, as motivated above. As in most welfare analysis, we adjust consumption to account for household composition and size. Filmer and Scott (2012) compare various adult equivalence scales and find that the scaling parameter has little effect on the correlation between various asset indices and expenditures. We use the Oxford (or OECD) equivalence scale, which assigns a weight of 1 to the first adult, 0.7 to subsequent adults, and 0.5 to each child, where children are defined as household members under the age of 15.

We use three criteria to gauge performance: Spearman rank correlation coefficients, a measure of accuracy in identifying the extreme poor, and a measure of accuracy in identifying the moderate poor. We use rank correlation coefficients to assess the correspondence between household rankings derived from the benchmark and alternative indices. They are affected by correspondence, or lack thereof, across the whole distribution. To calculate the accuracy measures, poor households are identified as households whose expenditure is below a given relative poverty line, defining the extreme and moderate poor as the bottom 10 percent and 40 percent of the samples, respectively. We use relative poverty lines since the asset indices generate ordinal rankings.

We define accuracy as the fraction of households correctly classified as poor and non-poor, whereby the classifications based on per capita consumption yield the true poor and non-poor groups. This measure combines both the true positive rate, for those interested in ensuring that poverty programs reach the poor, and the true negative rate, for those interested in preventing program leakage to non-poor participants. Formally, this is the Rand accuracy (RA) measure for binary classification (Rand, 1971) applied to poverty classification:

\[RA = \frac{TP + TN}{TP + TN + FP + FN} \]

2The estimated $1.90-day poverty headcount rate for Sub-Saharan Africa is about 40 percent in 2013. The bottom 40 percent also corresponds to the population group tracked under the Shared Prosperity indicator of the World Bank (World Bank, 2015).

© 2018 International Association for Research in Income and Wealth
where \(m_{pov} \) captures the relative poverty line (10 percent and 40 percent), \(p_{Ci} \) and \(p_{Hi} \) denote whether or not household \(i \) is poor according to its consumption or proxy index, respectively, and \(R_{Ci} \) and \(R_{Hi} \) captures the household’s rank within the population.

Because we use relative poverty lines, it is possible to achieve high Rand accuracies by randomly classifying households as poor and non-poor. To see this, under a 10 percent relative poverty line, one would expect to correctly classify 82 percent of the sample (10 percent of the consumption poor, who make up 10 percent of the sample and 90 percent of the consumption non-poor, who make up 90 percent of the sample). Under a 50 percent relative poverty line, we would expect to correctly classify 50 percent of the sample.

To adjust for this, we use the adjusted Rand index (ARI) described by Hubert and Arabie (1985) to correct for chance classification. The ARI is defined as

\[
ARI = \frac{RA - E(RA)}{\max(RA) - E(RA)} = \frac{RA - [m_{pov}^2 + (1-m_{pov})^2]}{1 - [m_{pov}^2 + (1-m_{pov})^2]}
\]

capturing the improvement over random classification, normalized by the total possible improvement. The expected Rand accuracy under random classification, \(E(RA) \), is calculated as the sum of the true positive rate, \(m_{pov}^2 \), and the true negative rate, \((1-m_{pov})^2\), associated with random classification.

For example, an index which achieves a raw Rand accuracy of 91 percent under a 10 percent relative poverty line has a 9 percentage point gain over random classification (\(E(RA) = 82 \) percent) out of a possible 18 percentage points, giving it an ARI of 50 percent. If the index improves on random targeting, the ARI takes on a positive value. If it performs worse, its value is negative.

Within the literature on clustering and classification, the ARI is the preferred measure for comparing two partitions (Warrens, 2008; Steinley et al., 2016) and has been used extensively in various fields including psychology (Steinley et al., 2016), bioinformatics (Yeung and Ruzzo, 2001), and computer science and engineering (Park and Jun, 2009).

3.6. Meta-Analysis

Application of these methods and performance comparisons across different settings and periods (13 country-year combinations in five countries at national, urban, and rural levels) further enables us to begin to analyze whether there are any systematic patterns in the way the different features of the asset

\[
RA = \frac{\sum_{i=1}^{N} ((p_{Hi} = 1) \cap (p_{Ci} = 1)) \cup ((p_{Hi} = 0) \cap (p_{Ci} = 0))}{N}
\]

\[
p_{Ci} = 1 \text{ if } R_{Ci} \leq m_{pov}, \quad p_{Ci} = 0 \text{ if } R_{Ci} > m_{pov}
\]

\[
p_{Hi} = 1 \text{ if } R_{Hi} \leq m_{pov}, \quad p_{Hi} = 0 \text{ if } R_{Hi} > m_{pov}
\]
index (variable combination, construction method, sampling weights) affect the performance of these indices. While all five countries are from Sub-Saharan Africa, they cover a wide array of agro-ecological, socio-economic, and cultural settings. There are similarities in the included items\(^3\) but also notable differences.\(^4\) If, despite these differences, asset indices with certain features (e.g. those including food items) perform systematically better or worse, this would provide important insights to guide the construction and use of such indices in other settings.

To explore this, we first simply identify the top performing variable combinations in the national, urban, and rural samples according to our three performance criteria, restricting our analysis to indices constructed using national weights generated from PCA. This gives a sense of the performance of the different variable combinations and helps identify those that perform well without making any assumptions about similarities across samples. Second, to get a more systematic view and identify the difference in performance by indicator categories, construction methods, and sampling weights, we subsequently pool the samples and conduct a meta-regression.

Specifically, we perform a separate regression for each of the three criteria (correlation, ARI under a 10 percent poverty line, and ARI under a 40 percent poverty line) and examine how the different factors in constructing the indices affect the performance. For each criteria, we pool the scores for the 13 national samples and for all the 81 indices constructed within each sample (27 variable combinations and 3 construction methods). We then regress the performance score on indicators for each variable combination and construction method, including survey (country-by-year) dummies to capture differences in overall performance levels across time and space. The meta-regression thus calculates the within-survey differences between indices and averages these across all surveys, controlling for various dimensions of how the indices are constructed and allowing for statistical inference using a regression framework. We cluster standard errors by country. For the national samples, the regression is given by:

\[
\text{Score}_{v, m, c, t} = \beta_0 + \text{Var_combo}_v + \text{Method}_m + \text{Survey}_{c, t} + \epsilon_{v, m, c, t}
\]

where \(v\) indexes variable combinations, \(m\) indexes construction methods, \(c\) indexes countries, and \(t\) indexes survey waves. \(\text{Score}\) is the relevant performance criteria (correlation or accuracy measure), \(\text{Var combo}\) is a set of dummies for the combinations

\(^3\)First, as described above, we include many of the same items in the different variable categories. For example, the meat category within foods includes cooking oil, fish, milk, and eggs in all countries. We also restrict our analysis of durables to a similar number of items. Second, there are empirical similarities in the underlying consumption and ownership patterns in all the included countries. For example, the most common staples include maize and the most common durable goods include furniture and radios.

\(^4\)First, items differ due to survey design. For example, some surveys list “furniture” as a durable good, while other surveys are more specific in including “beds,” “tables,” or “chairs.” Second, due to economic and cultural differences between the countries and over time, the same items may represent different levels of economic status due to differences in quality, preferences, or relative prices.
of included variables, \textit{Method} is a set of dummies for the construction method (INV, PCA, or DHP), and \textit{Survey} is a set of dummies for the country-years.

The regressions for the urban and rural samples are analogous but include an additional indicator for weighting samples, \textit{Weight}. Here, there are 162 indices within each sample, from 27 variable combinations, 3 construction methods, and 2 weighting types. The regressions for the urban and rural samples are given by

\begin{equation}
\text{Score}_{\text{mctw}} = \alpha_0 + \text{Var combo}_t + \text{Method}_m + \text{Survey}_{ct} + \text{Weight}_w + \mu_{\text{mctw}}
\end{equation}

where \(w \) indexes weighting types. \textit{Weight} is a set of dummies for national, urban-specific, or rural-specific weights. Again, we cluster standard errors by country.

For the national, urban, and rural samples, we repeat the analysis for the three different performance criteria, running a total of nine regressions.

4. Results

To provide a sense of the findings, Table 3 first lists the detailed results for Rwanda 2005.5 Relative to the other countries, the overall levels of index performance in Rwanda are moderate. This is followed by a discussion of the insights from the meta-regression analysis.

4.1. Rwanda 2005

Table 3 presents the results by variable combination and construction method for the national 2005 Rwandan sample.

A number of patterns emerge. First, asset indices can perform well, as demonstrated by the all-category asset index which records a correlation coefficient of 0.61 to 0.66 and an improvement in accuracy of 36 to 43 percent over random allocation in targeting the moderate poor and an improvement of 15 to 27 percent in targeting the extreme poor. This index is also among the best performing indices, and for most criteria and methods, it records an improvement over the standard index composed of the full set of durables and housing. It differs from the latter by using a smaller set of durables (only the five most common) and adding some indicators of staple, non-staple, and semi-durable consumption.

Second, there is considerable variation in performance depending on the variable combinations. Indices with more indicators tend to perform better on average, though adding indicators does not guarantee better performance. Much depends on the categories of variables included. Single food and housing category indices (which often have 5-10 indicators) tend to perform worst in this case. Yet, even on their own, and with a similar number of indicators, the semi-durable and the full durable indicator categories (5 and 12 indicators respectively), do well, with the exception of identifying the extreme poor using the full durable list.

5Among the countries analyzed, Rwanda has the median level of development (according to 2005 GDP per capita, World Development Indicators, https://databank.worldbank.org/data/home.aspx), and 2005 is the median year available for all the years included.
Method	Spearman Rank correlation coefficient	Adj. Rand Index, extreme poor (bottom 10%)	Adj. Rand index, moderate poor (bottom 40%)							
INV	PCA	DHP	INV							
Staples, full	13	0.13	-0.05	0.09	0.11	-0.08	0.11	0.16	0.05	0.14
Staples 1	5	-0.05	-0.09	-0.07	-0.04	-0.07	-0.07	0.06	0.04	0.08
Staples 2	5	0.15	0.18	0.14	-0.13	-0.67	-0.13	0.09	0.00	0.08
Non-staples	5	0.37	0.37	0.37	-2.63	-2.63	-2.63	0.06	0.06	0.06
Foods, full	18	0.32	-0.20	0.23	0.18	-0.08	0.17	0.22	0.02	0.21
Foods 1	10	0.29	0.28	0.19	0.12	-0.25	0.06	0.21	-0.03	0.17
Foods 2	10	0.31	0.35	0.30	0.06	-0.45	0.06	0.11	0.09	0.16
Semi-durables	5	0.59	0.60	0.59	0.15	0.15	0.15	0.23	0.23	0.22
Housing	5	0.38	0.49	0.39	-0.53	0.11	0.00	0.14	0.25	0.14
Durables, full	12	0.58	0.58	0.58	-0.69	-0.41	-0.69	0.34	0.32	0.34
Durables 1	5	0.51	0.49	0.45	-0.71	-0.71	-0.75	0.33	0.32	0.31
Durables 2	5	0.37	0.23	0.30	0.00	0.00	0.00	0.12	0.12	0.10
Common durables and one other category										
Durl, staples1	10	0.40	0.39	0.27	0.19	0.05	0.16	0.33	0.23	0.28
Durl, staples2	10	0.42	0.53	0.41	0.08	0.08	0.08	0.28	0.33	0.29
Durl, non-staples	10	0.57	0.58	0.54	-0.47	-0.47	-0.47	0.36	0.34	0.36
Durl, food1	15	0.51	0.54	0.40	0.22	0.05	0.17	0.36	0.26	0.33
Durl, food2	15	0.48	0.58	0.49	0.16	-0.01	0.16	0.30	0.32	0.32
Durl, semi-durables	10	0.64	0.64	0.61	0.18	0.18	0.18	0.39	0.38	0.38
Durl, house	10	0.54	0.60	0.50	0.07	0.21	0.04	0.34	0.36	0.36
Common durables, housing, and one other category										
Durl, house, staples1	15	0.52	0.58	0.40	0.25	0.07	0.22	0.36	0.29	0.35
Durl, house, staples2	15	0.50	0.62	0.49	0.19	0.14	0.21	0.31	0.34	0.35
Durl, house, non-staples	15	0.59	0.64	0.56	0.15	0.20	0.13	0.38	0.36	0.37
Durl, house, food1	20	0.58	0.61	0.49	0.26	0.08	0.25	0.40	0.29	0.38
Durl, house, food2	20	0.54	0.64	0.54	0.19	0.14	0.21	0.32	0.35	0.36
Durl, house, semi-durables	15	0.64	0.67	0.62	0.24	0.22	0.21	0.39	0.40	0.40
All-category index										
Durl, house, food1, semi-durables	25	0.66	0.66	0.61	0.27	0.15	0.27	0.43	0.36	0.43
Standard asset index										
Durables, housing	17	0.58	0.62	0.56	0.08	0.22	0.06	0.35	0.37	0.36
Performance of the asset indices improves when combining the short list of durables (the five most common ones) with any of the other categories (Table 3, common durables and one other category), but especially when combining the 5 most common durables with semi-durables or housing characteristics (still only 10 items in total). Combining all three (5 most common durables, housing characteristics, and semi-durable indicators—or 15 indicators) performs almost as well as the standard and all-category asset index. Adding food categories (all-category asset index) improves the performance in terms of identifying the poor (at least for the INV and DHP construction method).

Third, we do not find consistency in which construction method performs best. When taking the Spearman rank correlation coefficient as the criterion, the PCA construction method tends to do better. Within the ARI measures, there are sometimes moderate to larger differences between construction methods, particularly among the ARI for the extreme poor. The INV and DHP methods tend to perform similarly, while the PCA method differs more noticeably.

Fourth, compared to the national sample, the overall levels of performance across all criteria are higher in the urban sample (Appendix Table A.1) and lower in the rural sample (Appendix Table A.2).6 The pattern of performance across the different indicator categories in the urban sample is similar to the national sample and there is little variation in performance between national and urban weighting for most of the higher performing variable combinations. In the rural sample, with a correlation coefficient of 0.58 (rural weights), an ARI for the extreme poor of 0.24 (rural weights), and an ARI for the moderate poor of 0.38 (rural weights), the top performing variable combination is also the all-category index. A few other indices also perform better than the standard full asset index (durables, housing), especially when identifying the extreme poor and using rural instead of national weights. These include the 15 item combination of common durables, housing, and semi-durables and the 20 item combination of common durables, housing, and common foods. Within most variable combinations, the rural weights do better than the national weights, with larger differentials when examining the ARI for the extreme poor.

Finally, we note that across indices, construction methods and settings, the performance is lowest when identifying the extreme poor (bottom 10 percent). The fewer poor there are, the harder it becomes to identify them.7 In addition, since the potential gains in accuracy over random classification are small (18 percentage points over correctly classifying 82 percent of the population at random), it is difficult to achieve high ARIs even with relatively high raw accuracies. For example, raw accuracies of 0.85 and 0.90 are associated with ARIs of 0.15 and 0.44, respectively.

6Results are only presented for the PCA construction method.

7Incidentally, and in the same vein, the World Bank’s target of eradicating extreme poverty is in effect set at bringing the world’s headcount ratio of extreme poor (defined as living on less than $1.90-day (2011 PPP US$) to less than 3 percent, not zero.
4.2. Meta-Analysis

To determine whether the patterns identified in Rwanda 2005 are consistent across settings and periods, we conduct a meta-analysis. To give a sense of the findings, we first list the two best performing indices according to the correlation coefficient (Table 4) and the ARI (Table 5), for all countries, including the national samples from all years and the urban and rural samples from the first wave in each country. Appendix Tables A.3 and A.4 present the analogous results for the urban and rural samples from the second and third waves in each country. The all-category index frequently appears among the two highest performing indices across settings, periods, and performance criterion (correlation and ARI). When looking at correlations, the combination of common durables, housing, and semi-durables (dur1, house, semi-dur) also appears frequently among the top two, especially in Uganda, Rwanda, and Ghana, while indices using food variables on their own or in combination with common assets and housing also perform well in Malawi, Uganda, and Tanzania. In identifying both the extreme poor and moderate poor, combinations which include food variables (either staples, non-staples, or both) appear among the highest performers for many of the samples.

Table 6 presents the results of the full meta-analysis regression described in equations (7) and (8) above. The results from the meta-analysis are confirmed when doing the meta-analysis country by country. While we include all variable combinations in the regression, we only show the results for the top 10 performing combinations (as identified by the combinations that occurred most commonly in Table 4, Table 5, Appendix Table A.3, and Appendix Table A.4). The full meta-regression results are shown in Appendix Table A.5. The omitted categories are the standard asset indices (all durables and housing variables) and the PCA construction method. The omitted survey is Malawi 2004, where Malawi has the lowest 2005 GDP per capita. In the urban and rural analyses, the omitted weights are urban-specific and rural-specific weights, respectively. Negative coefficients indicate that the indicator combinations and construction methods underperform compared to these reference indices while positive coefficients measure potential gains in using alternative variables, construction methods, and sample weights.

Using the reference index (standard asset index, PCA, national sample weights), overall performance levels are good, consistent with the first insight from the Rwanda 2005 results. In the national samples, correlations range from 0.42 (Ghana 1991) to 0.67 (Tanzania 2008), while the ARI values range from 0.25 (Ghana 1991) to 0.44 (Uganda 2005) for identifying the moderate poor and from 0.08 (Rwanda 2000) to 0.31 (Tanzania 2010) for identifying the extreme poor. This can be seen from looking across the coefficients on the constant and the country-year indicator variables (Appendix Table A.5). The indices perform generally worse in Ghana, the country with the highest 2005 GDP per capita. When using the reference index, performance is usually also better in the urban samples and

8The results are available from the authors upon request. Performing the meta-analysis country by country allows for greater flexibility in the coefficients across settings. Yet, it largely defeats the purpose of the meta-analysis, given that there are only two or three observations per country, making it hard to detect statistically significant results. Compared to the pooled meta-regression, we find very similar patterns but less statistical significance.
worse in the rural samples, compared with the national sample. This holds across countries. Finally, identifying the extreme poor proves the most challenging, making methods which improve performance there particularly attractive.

Turning to the performance of the different indicator combinations, the standard asset index (about 17 indicators consisting of all durables and housing characteristics with PCA) performs best in the urban sample (or at least as well as the all-category index and the common durable, housing, and semi-durable index). This holds across performance criteria and construction methods. This can be seen from the many negative signs on the coefficients across the different indices, which are often also statistically significant. Where the coefficient is positive (such as for the all-category index for the extreme poor), it is small and not statistically significant. These results provide support for the use of the standard asset index in

TABLE 4
Highest Performing Variable Combinations for Spearman Rank Correlations
First Highest Combination

Malawi
National, 2004 Foods (full)
National, 2010 Foods (full)
Rural, 2004 Foods (full)
Urban, 2004 Foods (full)
Uganda
National, 2005 All
National, 2009 All
National, 2010 All
Rural, 2005 All
Urban, 2005 Durl, house
Rwanda
National, 2000 Durl, house, semi-dur
National, 2005 Durl, house, semi-dur
National, 2010 All
Rural, 2000 Durl, house, semi-dur
Urban, 2000 Durl, house
Tanzania
National, 2008 All
National, 2010 All
Rural, 2008 Foods (full)
Urban, 2008 Durl, house
Ghana
National, 1991 Durl, house
National, 1998 Durl, house
National, 2005 Durl, house
Rural, 1991 All
Urban, 1991 Durl, house

Note: The relevant pool of indices included are constructed using national weights generated from PCA. The number 1 denotes a subset of five common variables, while the number 2 denotes a subset of five low correlation variables. “Dur, house” refers to the complete list of durable and housing variables. “All” refers to the combination of common durables, housing, semi-durables, common staple foods, and non-staples.

Electronic copy available at: https://ssrn.com/abstract=3619346
Table 5
Highest Performing Variable Combinations for Adjusted Rand Index

Country	Year	Region	Range	First Highest Combination	Value	Second Highest Combination	Value	Adjusted Rand Index, Extreme Poor (Bottom 10%)	Value
Malawi	2004	Rural	Durl, foodl	0.20	All	Foods (full)	0.20	0.38	
	2004	Rural	Foods (full)	0.17	All	Foods (full)	0.16	0.34	
	2005	Rural	Durl, foodl	0.31	All	Foods (full)	0.30	0.49	
	2005	Rural	Foods (full)	0.17	All	Foods (full)	0.16	0.34	
	2006	Rural	Durl, foodl	0.32	All	Foods (full)	0.30	0.47	
	2006	Rural	Foods (full)	0.17	All	Foods (full)	0.16	0.34	
	2007	Rural	Durl, foodl	0.33	All	Foods (full)	0.30	0.47	
	2007	Rural	Foods (full)	0.17	All	Foods (full)	0.16	0.34	
	2008	Rural	Durl, foodl	0.34	All	Foods (full)	0.30	0.47	
	2008	Rural	Foods (full)	0.17	All	Foods (full)	0.16	0.34	
	2009	Rural	Durl, foodl	0.35	All	Foods (full)	0.30	0.47	
	2009	Rural	Foods (full)	0.17	All	Foods (full)	0.16	0.34	
	2010	Rural	Durl, foodl	0.36	All	Foods (full)	0.30	0.47	
	2010	Rural	Foods (full)	0.17	All	Foods (full)	0.16	0.34	
	2011	Rural	Durl, foodl	0.37	All	Foods (full)	0.30	0.47	
	2011	Rural	Foods (full)	0.17	All	Foods (full)	0.16	0.34	
	2012	Rural	Durl, foodl	0.38	All	Foods (full)	0.30	0.47	
	2012	Rural	Foods (full)	0.18	All	Foods (full)	0.16	0.34	
	2013	Rural	Durl, foodl	0.39	All	Foods (full)	0.30	0.47	
	2013	Rural	Foods (full)	0.18	All	Foods (full)	0.16	0.34	
	2014	Rural	Durl, foodl	0.40	All	Foods (full)	0.30	0.47	
	2014	Rural	Foods (full)	0.19	All	Foods (full)	0.17	0.34	
	2015	Rural	Durl, foodl	0.41	All	Foods (full)	0.30	0.47	
	2015	Rural	Foods (full)	0.19	All	Foods (full)	0.17	0.34	
	2016	Rural	Durl, foodl	0.42	All	Foods (full)	0.30	0.47	
	2016	Rural	Foods (full)	0.19	All	Foods (full)	0.17	0.34	
	2017	Rural	Durl, foodl	0.43	All	Foods (full)	0.30	0.47	
	2017	Rural	Foods (full)	0.20	All	Foods (full)	0.18	0.34	
	2018	Rural	Durl, foodl	0.44	All	Foods (full)	0.30	0.47	
	2018	Rural	Foods (full)	0.20	All	Foods (full)	0.18	0.34	
	2019	Rural	Durl, foodl	0.45	All	Foods (full)	0.30	0.47	
	2019	Rural	Foods (full)	0.20	All	Foods (full)	0.18	0.34	

Note: The relevant pool of indices included are constructed using national weights generated from PCA. The number 1 denotes a subset of five common variables, while the number 2 denotes a subset of five low correlation variables. “Dur, house” refers to the complete list of durable and housing variables. “All” refers to the combination of common durables, housing, Semi-durables, common staple foods, and non-staples.
TABLE 6
META-ANALYSIS OF INDEX PERFORMANCE ACROSS COUNTRIES, YEARS, AND URBAN/RURAL LOCATION

National	Urban	Rural									
Rank	Adj. Rand Index	Rank	Adj. Rand Index	Rank	Adj. Rand Index						
Corr. b/se	Poverty Line	10% b/se	40% b/se	Corr. b/se	Poverty Line	10% b/se	40% b/se	Corr. b/se	Poverty Line	10% b/se	40% b/se
Top-performing variable combinations											
Foods (full)	-0.18	-0.01	-0.07	-0.28	-0.21*	-0.20	-0.03	0.04	0.01		
Corr. b/se	(0.09)	(0.04)	(0.05)	(0.11)	(0.06)	(0.08)	(0.06)	(0.02)	(0.04)		
Foods (short list 1)	-0.16	-0.05	-0.08	-0.28*	-0.27**	-0.21*	-0.04	-0.00	-0.01		
Corr. b/se	(0.06)	(0.04)	(0.05)	(0.09)	(0.05)	(0.07)	(0.06)	(0.03)	(0.05)		
Durables (full)	-0.05*	-0.26*	-0.04	-0.06*	-0.12*	-0.04*	-0.05	-0.29*	-0.04		
Corr. b/se	(0.02)	(0.07)	(0.02)	(0.02)	(0.04)	(0.01)	(0.02)	(0.07)	(0.02)		
Durables 1 and food 1	-0.09	0.04	-0.03	-0.22**	-0.14*	-0.17*	0.01	0.06*	0.03		
Corr. b/se	(0.04)	(0.02)	(0.03)	(0.05)	(0.03)	(0.04)	(0.02)	(0.01)	(0.02)		
Durables 1, semi-durables	-0.05	-0.04	-0.02	-0.15**	-0.02	-0.11**	-0.03	-0.07	-0.02		
Corr. b/se	(0.04)	(0.06)	(0.05)	(0.03)	(0.02)	(0.02)	(0.04)	(0.08)	(0.03)		
Durl, house, non-staples	-0.02	0.04*	0.00	-0.07*	0.01	-0.05*	0.01	0.04*	0.02		
Corr. b/se	(0.02)	(0.01)	(0.01)	(0.03)	(0.01)	(0.01)	(0.06)	(0.01)	(0.01)		
Durl, house, food 1	-0.03	0.06*	-0.01	-0.14**	-0.03	-0.10**	0.03	0.08**	0.03		
Corr. b/se	(0.02)	(0.02)	(0.01)	(0.02)	(0.01)	(0.01)	(0.02)	(0.02)	(0.01)		
Durl, house, food 2	-0.04	0.04*	-0.01	-0.17**	-0.01	-0.08**	-0.00	0.04*	0.01		
Corr. b/se	(0.03)	(0.01)	(0.02)	(0.03)	(0.02)	(0.02)	(0.02)	(0.01)	(0.01)		
Durl, house, semi-durables	0.00	0.04	0.01	-0.06	0.02	-0.03	0.02	0.04	0.02		
Corr. b/se	(0.03)	(0.02)	(0.02)	(0.03)	(0.02)	(0.02)	(0.02)	(0.01)	(0.01)		
All-category index (Durl, house, semi-durables, food 1)	0.04	0.11***	0.05	-0.06	0.02	-0.05	0.09***	0.12***	0.08**		
Corr. b/se	(0.03)	(0.01)	(0.02)	(0.04)	(0.02)	(0.03)	(0.01)	(0.01)	(0.01)		
Construction methods											
INV method	-0.05	-0.03	-0.03	-0.04*	-0.06	-0.03*	-0.04	-0.05	-0.03		
Corr. b/se	(0.03)	(0.03)	(0.02)	(0.01)	(0.02)	(0.01)	(0.03)	(0.04)	(0.02)		
DHP method	-0.05*	-0.02	-0.03	-0.04*	-0.05*	-0.04*	-0.02	-0.02	-0.02		
Corr. b/se	(0.02)	(0.03)	(0.02)	(0.01)	(0.02)	(0.01)	(0.02)	(0.04)	(0.02)		
Sample weights											
National weights	0.06*	0.03**	0.04*	-0.01	0.00	-0.00	0.00	(0.00)	(0.00)		
Corr. b/se	(0.01)	(0.01)	(0.01)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)		
Constant	0.52***	0.17**	0.33***	0.59***	0.34***	0.43***	0.39***	0.16**	0.25***		
Corr. b/se	(0.04)	(0.04)	(0.03)	(0.02)	(0.02)	(0.02)	(0.03)	(0.03)	(0.02)		
N	1053	1053	1053	2106	2106	2106	2106	2106	2106		

Note: *p < 0.05,** p < 0.01,** p < 0.001. All variable combinations are included, but only top-performing variable combinations are shown. The full regression is shown in Appendix Table A.5. The omitted variable group is all durable and housing variables. The omitted indices are constructed using within year national weights generated from PCA. A full set of country-by-year dummies is included, and the omitted survey is Malawi 2004. The number 1 denotes a subset of common variables, while the number 2 denotes a subset of low correlation variables. Standard errors are clustered by country.
urban settings to rank households and identify the poor. Deriving the weights from the national sample, instead of from the urban sample, can further improve the performance.

Yet, meaningful improvements in performance can be obtained in other settings. In the national sample, this holds for identifying the extreme poor. There, targeting performance can be improved by an estimated 11 percentage points by using the all-category index. Targeting of the extreme poor can also be improved using other indices with 15 to 20 variables, such as those using common durables, housing characteristics, and either common staples or non-staples (an estimated improvement in targeting accuracy of 4 percentage points) or common foods (an estimated improvement in targeting accuracy of 6 percentage points). Using different indices did not lead to statistically significant improvements in the national sample for the other performance criteria or when using other construction methods (INV or DHP).

In rural settings, the all-category index outperforms the standard index for all performance criteria, by an estimated 9 points for ranking households, and by 12 percentage points and 8 percentage points for identifying the extreme and moderate poor, respectively (all statistically significant at the 1 percent level or higher). When it comes to identifying the extreme poor, other combinations of common durables, housing characteristics, and one other category (common staples, non-staples, or common foods) also outperform the standard index. There are no significant differences comparing across construction methods or when comparing national weights to rural weights.

5. CONCLUDING REMARKS

Collecting data to rank households and target the poorer segments of society is costly. Statistical asset indices, especially those using information on ownership of common durables and housing characteristics and constructed using principal components analysis, have been frequently used as alternatives to consumption measures. However, rankings have been found to differ compared with those obtained using consumption, which is still considered the benchmark. Moreover, asset indices often have difficulty distinguishing among the poorest households, particularly in rural areas, since many do not own any of the included durables and housing variables.

This paper systematically examines whether the performance of the standard asset indices can be improved upon by using dichotomous indicators of staple food, non-staple food, and semi-durable consumption, either on their own, or in combination with common durables. It does so by examining their performance in ranking households across the whole distribution and identifying extreme and moderately poor populations using 13 different survey waves in national, rural, and urban settings from 5 different African countries.

The following insights emerge. First, the use of asset indices constructed from dichotomous variables from a range of categories holds promise, often generating rank correlation coefficients in the 0.60 to 0.70 range and accuracy improvements on the order of 30 to 40 percent. This is consistent with previous literature.
validating proxies for consumption using a variety of performance criteria. This suggests that these methods can be used to rank households and target poverty programs in a range of contexts, including in urban and rural subsamples.

Second, the findings indicate that the standard asset indices combining durables and housing variables perform well. They perform at least as well and generally better than other variable combinations in urban samples when ranking households and identifying both the extreme and moderate poor and in national samples when ranking households and identifying the moderate poor. This suggests that durables and housing variables display good discriminatory power among households with slightly higher incomes.

Third, performance can be improved upon, however, in rural settings and in identifying the extreme poor in national settings by complementing the standard asset index with information on staple and non-staple foods and semi-durables. Such an all-category index yields an average improvement over the standard asset index of 9 points in the Spearman rank correlation across all households, and of 12 and 8 percentage points in identifying the extreme and moderate poor, respectively. These are meaningful improvements that come at little extra cost, especially in the African context where four in five of Africa's poor are still concentrated in rural areas (Beegle et al., 2016).

Fourth, decisions regarding construction and construction methods appear less important. Indices generated using PCA perform slightly better than the two other construction methods, but the differences are small and not always statistically significant. Similarly, weights can be generated from within a sample or from a larger representative sample without substantially altering index performance (except in the urban sample).

Overall, the results suggest that policy-makers and researchers who are interested in inexpensively identifying poor households should consider adding information on consumption to the information base included in standard asset indices. This is particularly relevant for those interested in identifying the extreme poor, and particularly in rural settings. Specifically, survey instruments can be designed to include yes/no indicators for a short list of variables from the categories of durable ownership, housing characteristics, staple food consumption, non-staple food consumption, and semi-durable consumption. The results suggest that including five commonly owned/consumed items within each category provides reasonable power to differentiate between households.

This modification could be implemented at reasonably low cost, since it requires information on a very small number of additional items and only on whether these have been consumed or not (not how much). Because a large share of the data collection cost consists of visiting the household (transport and search costs), the marginal cost of asking a few additional questions once there is very low. For a more detailed discussion of the trade-offs between gains in precision and data collection costs, see for example Fujii and van der Weide (2016).

Moreover, the proposed data collection efforts are feasible, since new data is abundant and new survey instruments are being contextualized to meet the goals of each study. For example, recently developed methods such as the Simple Poverty
Scorecard and the Survey of Well-Being via Instant and Frequent Tracking are used by microfinance institutions, NGOs, and businesses, and there is increased interest in low-cost randomized-controlled trials using shorter data collection instruments. Even more standardized, cross-country survey series continue to change constantly. For example, in the DHS instruments, there has been an increase in the number of durable ownership items included over time since the use of asset indices has become commonplace. In addition, new topic-specific modules are introduced and changed regularly, and countries often add context-specific questionnaires and items to match with their needs. These many efforts to collect better data are in line with the movement toward more frequent and more meaningful data collection efforts to promote evidence-based sustainable development (Millennium Development Goals Report, 2015).

In conclusion, this work adds to our understanding of the performance of asset indices and their ability to proxy for consumption, and it provides policy-relevant insights for ongoing data collection efforts. Additional research is necessary on the properties of asset indices, such as their performance in capturing changes in consumption over time, in a wider range of settings, across a broader range of poverty cut-offs, and using multiple performance criteria. With this ongoing research, the profession can further help refine practitioner guidelines on how to collect and combine inexpensive and reliable data to improve poverty analyses in developing countries.

REFERENCES

Acham, H., J. Kikafunda, M. Malde, W. Oldewage-Theron, and A. Egal, “Breakfast, Midday Meals and Academic Achievement in Rural Primary Schools in Uganda: Implications for Education and School Health Policy,” Food & Nutrition Research, 56, 1–2, 2012.

Alkire, S. and M. E. Santos, “Measuring Acute Poverty in the Developing World: Robustness and Scope of the Multidimensional Poverty Index.” World Development, 59, 251–74, 2014.

Bader, C., S. Bieri, U. Wiesmann and A. Heinimann, “Is Economic Growth Increasing Disparities? A Multidimensional Analysis of Poverty in the Lao PDR Between 2003 and 2013,” Journal of Development Studies, 53, 2067–85, 2017.

Baker, F. and S. Kim, Item Response Theory: Parameter Estimation Techniques (2nd ed.), Marcel Dekker Inc., New York, NY, 2004.

Beegle, K., L. Christiaensen, A. Dabalen and I. Gaddis, Poverty in a Rising Africa, World Bank, Washington DC, 2016.

Caldas, M., P. Walker, E. Arima, S. Perez, S. Aldrich and C. Simmons, “Theorizing Land Cover and Land Use Change: The Peasant Economy of Amazonian Deforestation,” Annuals of the Association of American Geographers, 97, 86–110, 2007.

Chatterji, S., P. Kowal, C. Mathers, N. Naidoo, E. Verdes, J. P. Smith and R. Suzman, “The Health of Aging Populations in China and India,” Health Affairs, 27, 1052–63, 2008.

Christiaensen, L., P. Lanjouw, J. Luoto and D. Stifel, “Small Area Estimation-Based Prediction Methods to Track Poverty: Validation and Applications,” Journal of Economic Inequality, 10, 267–97, 2012.

Coady, D., M. Grosh and J. Hoddinott, “Targeting Outcomes Redux,” World Bank Research Observer, 19, 61–85, 2004.

Deaton, A., “Measuring Poverty,” in A. V. Banerjee, R. Benabou, and D. Mookherjee (eds), Understanding Poverty, Oxford University Press, Oxford UK, 2006.

Deaton, A. and S. Zaidi, Guidelines for Construction Consumption Aggregates for Welfare Analysis, World Bank Publications, World Bank, Washington DC, 2002.
Diamond, A., M. Gill, M. A. Rebolledo Dellepiane, E. Skoufias, K. Vinha and Y. Xu. “Estimating Poverty Rates in Target Populations: An Assessment of the Simple Poverty Scorecard and Alternative Approaches,” World Bank Policy Research Working Paper No. 7793, Washington DC, 2016.

Doudich, M., A. Ezzrari, R. Van der Weide and P. Verme, “Estimating Quarterly Poverty Rates Using Labor Force Surveys: A Primer,” World Bank Economic Review, 30, 475–500, 2016.

Ferguson, B. D., A. Tandon, E. Gakidou, and C. J. L. Murray, “Estimating Permanent Income Using Indicator Variables,” in Health Systems Performance Assessment: Debates, Methods, and Empiricism. World Health Organization, Geneva, 2003.

Ferreira, F. H. and M. A. Lugo, “Multidimensional Poverty Analysis: Looking for a Middle Ground,” World Bank Research Observer, 28, 220–35, 2013.

Filmer, D. and L. Pritchett, “Estimating Wealth Effects without Expenditure Data—or Tears: An Application to Educational Enrollments in States of India,” Demography, 38, 115–32, 2001.

Filmer, D. and K. Scott, “Assessing Asset Indices,” Demography, 49, 359–92, 2012.

Friedman, M., A Theory of the Consumption Function, Princeton University Press, Princeton, NJ, 1957.

Fujii, T. and R. van der Weide “Is Predicted Data a Viable Alternative to Real Data?” World Bank Policy Research Working Paper No. 7841, World Bank, Washington, DC, 2016.

Gakidou, E., S. Oza, C. V. Fuertes, A. Y. Li, D. K. Lee, A. Sousa, M. C. Hogan, S. Vander Hoorn, and M. Ezzati, “Improving Child Survival Through Environmental and Nutritional Interventions: The Importance of Targeting Interventions Toward the Poor,” Journal of American Medical Association, 298, 1876–87, 2007.

Gunning, J., J. Hoddinott, B. Kinsey, and T. Owens, “Revisiting Forever Gained: Income Dynamics in the Resettlement Areas of Zimbabwe, 1983–96,” Journal of Development Studies, 36, 131–54, 2000.

Gwatkin, D. R., A. Wagstaff, and A. S. Yazbeck, “What Did the Reaching the Poor Studies Find?” in D. R. Gwatkin, A. Wagstaff, and A. S. Yazbeck (eds), Reaching the Poor with Health, Nutrition and Population Services, World Bank, Washington, DC, 2005.

Gwatkin, D. R., S. Rutstein, K. Johnson, E. Suliman, A. Wagstaff, and A. Amouzou, Socio-Economic Differences in Health, Nutrition, and Population within Developing Countries. Washington, DC: World Bank, 2007.

Gwatkin, D. R., A. Wagstaff, and A. S. Yazbeck, “What Did the Reaching the Poor Studies Find?” in D. R. Gwatkin, A. Wagstaff, and A. S. Yazbeck (eds), Reaching the Poor with Health, Nutrition and Population Services, World Bank, Washington, DC, 2005.

Gwatkin, D. R., S. Rutstein, K. Johnson, E. Suliman, A. Wagstaff, and A. Amouzou, Socio-Economic Differences in Health, Nutrition, and Population within Developing Countries. Washington, DC: World Bank, 2007.

Hall, J. N., S. Moore, S. B. Harper, and J. W. Lynch, “Global Variability in Fruit and Vegetable Consumption,” American Journal of Preventive Medicine, 36, 402–9, 2009.

Hanna, S. and B. Davis, “The Experience of Conditional Cash Transfers in Latin America and the Caribbean,” Development Policy Review, 24, 513–36, 2006.

Hartgen, K., S. Klasen, and S. Vollmer, “An African Growth Miracle? Or: What do Asset Indices Tell Us About trends in economic performance?” Review of Income and Wealth, 59, S37–S61, 2013.

Holmes, C., “Assessing the Perceived Utility of Wood Resources in a Protected Area of Western Tanzania,” Biological Conservation, 111, 179–89, 2003.

Houweling, T., A. Kunst, and J. Mackenbach, “Measuring Health Inequality Among Children in Developing Countries: Does the Choice of Indicator of Economic Status Matter?” International Journal for Equity in Health, 2, 8–19, 2003.

Houweling, T., A. Kunst, and J. Mackenbach, “Measuring Health Inequality Among Children in Developing Countries: Does the Choice of Indicator of Economic Status Matter?” International Journal for Equity in Health, 2, 8–19, 2003.

Houweling, T., A. Kunst, and J. Mackenbach, “Measuring Health Inequality Among Children in Developing Countries: Does the Choice of Indicator of Economic Status Matter?” International Journal for Equity in Health, 2, 8–19, 2003.

Houweling, T., A. Kunst, and J. Mackenbach, “Measuring Health Inequality Among Children in Developing Countries: Does the Choice of Indicator of Economic Status Matter?” International Journal for Equity in Health, 2, 8–19, 2003.

Houweling, T., A. Kunst, and J. Mackenbach, “Measuring Health Inequality Among Children in Developing Countries: Does the Choice of Indicator of Economic Status Matter?” International Journal for Equity in Health, 2, 8–19, 2003.

Houweling, T., A. Kunst, and J. Mackenbach, “Measuring Health Inequality Among Children in Developing Countries: Does the Choice of Indicator of Economic Status Matter?” International Journal for Equity in Health, 2, 8–19, 2003.

Houweling, T., A. Kunst, and J. Mackenbach, “Measuring Health Inequality Among Children in Developing Countries: Does the Choice of Indicator of Economic Status Matter?” International Journal for Equity in Health, 2, 8–19, 2003.
McKenzie, D., *Measure Inequality with Asset Indicators*. Center for International Development, Harvard University, Cambridge, MA, 2003.

Meyer, B. D. and J. X. Sullivan, “Measuring the Well-Being of the Poor Using Income and Consumption,” *Journal of Human Resources*, 38, 1180–220, 2003.

Montgomery, M. and P. Hewett, “Urban Poverty and Health in Development Countries: Household and Neighborhood Effects.” *Demography*, 42, 397–425, 2005.

Morris, S., C. Carletto, J. Hoddinott, and L. Christiaensen, “Validity of Rapid Estimates of Household Wealth and Income for Health Surveys in Rural Africa,” *Journal of Epidemiology and Community Health*, 54, 381–87, 2000.

Ngo, D. K. L., “TVs, Toilets, and Thresholds: Measuring Wealth Comparably Using an Asset-Based Index,” *Northeast Universities Development Consortium Conference*, Hanover, NH, retrieved from https://www.dartmouth.edu/~neudc2012/docs/paper_193.pdf, 2012.

———. “A Theory-Based Living Standards Index for Measuring Poverty in Developing Countries,” *Journal of Development Economics*, 130, 190–202, 2018.

Park, H.-S. and C.-H. Jun, “A Simple and Fast Algorithm for K-medoids Clustering,” *Expert Systems with Applications*, 36, 3336–41, 2009.

Patel, V., S. Chatterji, D. Chisholm, S. Ebrahim, G. Gopalakrishna, C. Mathers, V. Mohan, D. Prabhakaran, R. D. Ravindran, and K. S. Reddy, “Chronic Diseases and Injuries in India,” *The Lancet*, 377, 413–28, 2011.

Perry, B., “The Mismatch Between Income Measures and Direct Outcome Measures of Poverty,” *Social Policy Journal of New Zealand*, 19, 101–27, 2002.

Poterba, J. M., “Is the Gasoline Tax Regressive?” *Tax Policy and the Economy*, 5, 145–64, 1991.

Rand, W. M., “Objective Criteria for the Evaluation of Clustering Methods,” *Journal of the American Statistical Association*, 66, 846–50, 1971.

Ravallion, M., *The Economics of Poverty: History, Measurement, and Policy*, Oxford University Press, Oxford, UK, 2015.

Rutstein, S. O. and K. Johnson, “The DHS Wealth Index,” DHS comparative reports No. 6, ICF International, Rockville, Maryland, 2004.

Rutstein, S. O. and S. Staveteig, “Making the Demographic and Health Surveys wealth index comparable,” DHS methodological reports No. 9, ICF International, Rockville, Maryland, 2014.

Sahn, D. E. and D. Stifel, “Poverty Comparisons Over Time and Across Countries in Africa,” *World Development*, 28, 2123–55, 2000.

———. “Exploring Alternative Measures of Welfare in the Absence of Expenditure Data,” *Review of Income and Wealth*, 49, 463–89, 2003.

Simmons, C., R. Walker, S. Perz, S. Aldrich, M. Caldas, R. Pereira, F. Leite, L. C. Fernandes, and E. Arima, “Doing If For Themselves: Direct Action Land Reform in the Brazilian Amazon.” *World Development*, 38, 429–44, 2009.

Steinley, D., M. J. Brusco, and L. Hubert, “The Variance of the Adjusted Rand Index,” *Psychological Methods*, 21, 261, 2016.

Stifel, D. and L. Christiaensen, “Tracking Poverty Over Time in the Absence of Comparable Consumption Data,” *World Bank Economic Review*, 21, 317–41, 2007.

Subramanian, S., S. Nandy, M. Irving, D. Gordon, and G. D. Smith, “Role of Socioeconomic Markers and State Prohibition Policy in Predicting Alcohol Consumption Among Men and Women in India: A Multilevel Statistical Analysis,” *Bulletin of the World Health Organization*, 83, 829–36, 2005.

United Nations, *The Millennium Development Goals Report*. United Nations, Washington, DC, 2015.

Vyas, S. and L. Kumaranayake, “Constructing Socio-Economic Status Indices: How to Use Principal Components Analysis,” *Health Policy and Planning*, 21, 459–68, 2006.

Wagstaff, A. and N. Watanabe, “What Difference does the Choice of SES Make in Health Inequality Measurement?” *Health Economics*, 12, 885–90, 2003.

Warrens, M. J., “On the Equivalence of Cohen’s Kappa and the Hubert-Arabie Adjusted Rand Index,” *Journal of Classification*, 25, 177–83, 2008.

Wittenberg, M. and M. Leibbrandt, “Measuring Inequality by Asset Indices: A General Approach with Application to South Africa,” *Review of Income and Wealth*, 63, 706–30, 2017.

World Bank, *World Development Report 2000–2001: Attacking Poverty*, World Bank, Washington, DC, 2001.

———. *A Measured Approach to Ending Poverty and Boosting Shared Prosperity—Concepts, Data and the Twin Goals*, World Bank, Washington, DC, 2015.
Yamamoto, S., V. Louis, A. Sie, and R. Sauerborn, “Household Risk Factors for Clinical Malaria in a Semi-Urban Area of Burkina Faso: A Case-Control Study,” Transactions of the Royal Society of Tropical Medicine and Hygiene, 104, 61–5, 2010.

Yeung, K. Y. and W. L. Ruzzo, “Principal Component Analysis for Clustering Gene Expression Data,” Bioinformatics, 17, 763–74, 2001.

Young, A., “The African Growth Miracle,” Journal of Political Economy, 120, 696–739, 2012.

Young, S. L., S. S. Khalfan, T. H. Farag, J. A. Kavle, S. M. Ali, H. Hajji, K. M. Rasmussen, G. H. Pelto, J. M. Tielsch, and R. J. Stoltzfus, “Association of Pica with Anemia and Gastrointestinal Distress Among Pregnant Women in Zanzibar, Tanzania,” American Journal of Tropical Medicine and Hygiene, 83, 144–51, 2010.

Supporting Information

Additional supporting information may be found in the online version of this article at the publisher’s web site:

Appendix A

Table A.1: Index performance by variable combination, Rwanda 2005, urban sample

Table A.2: Index performance by variable combination, Rwanda 2005, rural sample

Table A.3: Highest performing variable combinations for Spearman rank correlations, urban and rural samples from second and third waves

Table A.4: Highest performing variable combinations for adjusted Rand index, urban and rural samples from second and third waves

Table A.5: Meta-analysis of index performance across countries, years, and urban/rural location

© 2018 International Association for Research in Income and Wealth