Contents

Page	Title	Authors
405	COVID-19 and psychiatry training: A cross-national trainee perspective	Gnanavel S, Mathur R, Sharma P, Parmar A
411	Current and future of anterior cruciate ligament reconstruction techniques	Takahashi T, Watanabe S, Ito T
438	Weight regain after bariatric surgery: Promoters and potential predictors	Demerdash HM
455	Review of the effects of SARS-CoV2 infection and COVID-19 on common pediatric psychiatric illnesses	Balaram K, Ahmed M, Marwaha R
462	Maturation of robotic liver resection during the last decade: A systematic review and meta-analysis	Ishinuki T, Ota S, Harada K, Meguro M, Kawamoto M, Kutomi G, Tatsumi H, Harada K, Miyanishi K, Takemasa I, Ohyanagi T, Hui TT, Mizuguchi T
ABOUT COVER
Editorial Board Member of World Journal of Meta-Analysis, Melike Demir Doğan, BSc, MSc, PhD, Associate Professor, Nursing, Faculty of Health Sciences, Gumushane University, Gümüşhane 29100, Turkey. melekdm@gmail.com

AIMS AND SCOPE
The primary aim of World Journal of Meta-Analysis (WJMA, World J Meta-Anal) is to provide scholars and readers from various fields of clinical medicine with a platform to publish high-quality meta-analysis and systematic review articles and communicate their research findings online.

WJMA mainly publishes articles reporting research results and findings obtained through meta-analysis and systematic review in a wide range of areas, including medicine, pharmacy, preventive medicine, stomatology, nursing, medical imaging, and laboratory medicine.

INDEXING/ABSTRACTING
The WJMA is now abstracted and indexed in China National Knowledge Infrastructure (CNKI), China Science and Technology Journal Database (CSTJ), and Superstar Journals Database

RESPONSIBLE EDITORS FOR THIS ISSUE
Production Editor: Hua-Ge Yu; Production Department Director: Xiang Li; Editorial Office Director: Jin-Lei Wang.

NAME OF JOURNAL
World Journal of Meta-Analysis

ISSN
ISSN 2308-3840 (online)

LAUNCH DATE
May 26, 2013

FREQUENCY
Bimonthly

EDITORS-IN-CHIEF
Saurabh Chandan

EDITORIAL BOARD MEMBERS
https://www.wjgnet.com/2308-3840/editorialboard.htm

PUBLICATION DATE
October 28, 2021

COPYRIGHT
© 2021 Baishideng Publishing Group Inc

INSTRUCTIONS TO AUTHORS
https://www.wjgnet.com/bpg/gerinfo/204

GUIDELINES FOR ETHICS DOCUMENTS
https://www.wjgnet.com/bpg/gerinfo/287

GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH
https://www.wjgnet.com/bpg/gerinfo/240

PUBLICATION ETHICS
https://www.wjgnet.com/bpg/gerinfo/288

PUBLICATION MISCONDUCT
https://www.wjgnet.com/bpg/gerinfo/208

ARTICLE PROCESSING CHARGE
https://www.wjgnet.com/bpg/gerinfo/242

STEPS FOR SUBMITTING MANUSCRIPTS
https://www.wjgnet.com/bpg/gerinfo/239

ONLINE SUBMISSION
https://www.f6publishing.com

© 2021 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA
E-mail: bpgoffice@wjgnet.com https://www.wjgnet.com
Maturation of robotic liver resection during the last decade: A systematic review and meta-analysis

Tomohiro Ishinuki, Shigenori Ota, Kohei Harada, Makoto Meguro, Masaki Kawamoto, Goro Kutomi, Hiromi Tatsumi, Keisuke Harada, Koji Miyanishi, Ichiro Takemasa, Toshio Ohyanagi, Thomas T Hui, Toru Mizuguchi

ORCID number: Tomohiro Ishinuki 0000-0003-3225-9781; Shigenori Ota 0000-0003-3123-9172; Kohei Harada 0000-0002-3245-6980; Makoto Meguro 0000-0002-2800-6207; Goro Kutomi 0000-0003-4557-5128; Hiromi Tatsumi 0000-0002-9688-6154; Keisuke Harada 0000-0002-7497-6191; Koji Miyanishi 0000-0002-6466-3458; Ichiro Takemasa 0000-0003-1595-2453; Toshio Ohyanagi 0000-0001-8335-3087; Thomas T Hui 0000-0003-2717-3983; Toru Mizuguchi 0000-0002-8225-7461.

Author contributions: Ishinuki T and Ota S developed the study concept and designed the systematic review; Ishinuki T, Meguro M, and Ohyanagi T searched for and screened the articles; Kawamoto M, Harada K, and Tatsumi H assessed the articles for eligibility; Miyanishi K carried out the statistical analyses; Takemasa I supervised and audited the preparation of the manuscript; Hui TT and Mizuguchi T drafted the initial manuscript; Mizuguchi T finalized the manuscript; All of the authors reviewed and approved the final submitted manuscript.

Supported by Grants-in-Aid from JSPS KAKENHI, No. JP 20K10404 (to Mizuguchi T); the Hokkaido

Abstract

BACKGROUND
Minimally invasive hepatectomy techniques have developed rapidly since 2000.
INTRODUCTION

Surgery is a curative treatment for liver tumors[1]. The development of surgical devices has promoted minimally invasive surgery (MIS), including minimally invasive liver resection[2]. Therefore, the concept of ‘big surgeons, big incision’ has become a myth[3]. Minimal skin wounds are preferable, and patients who undergo laparoscopic liver resection (LLR) recover faster without somatic pain than those that undergo open liver resection[1,4].

MIS has significant clinical benefits, e.g., it results in faster recovery, less pain, and shorter hospital stays[5]. On the other hand, long operation times and the associated disadvantages of the MIS approach[4,5] have been overcome during the last 5 years. The other clinical outcomes of RLR are comparable to those of LLR. The cost and quality-of-life outcomes of RLR should be evaluated in future studies to promote its routine clinical use.

Pure laparoscopic liver resection (LLR) has become the primary approach for managing liver tumors and procuring donor organs for liver transplantation. Robotic liver resection (RLR) has emerged during the last decade. The technical status of RLR seems to be improving.

AIM

To conduct a systematic review and meta-analysis comparing the short-term clinical outcomes of LLR and RLR over two 5-year periods.

METHODS

A systematic literature search was performed using PubMed and Medline, including the Cochrane Library. The following inclusion criteria were set for the meta-analysis: (1) Studies comparing LLR vs RLR; and (2) Studies that described clinical outcomes, such as the operative time, intraoperative bleeding, intraoperative conversion rate, and postoperative complications.

RESULTS

A total of 25 articles were included in this meta-analysis after 40 articles had been subjected to full-text evaluations. The studies were divided into early (n = 14) and recent (n = 11) groups. In the recent group, the operative time did not differ significantly between LLR and RLR (P = 0.70), whereas in the early group the operative time of LLR was significantly shorter than that of RLR (P < 0.001).

CONCLUSION

The initial disadvantages of RLR, such as its long operation time, have been overcome during the last 5 years. The other clinical outcomes of RLR are comparable to those of LLR. The cost and quality-of-life outcomes of RLR should be evaluated in future studies to promote its routine clinical use.

Key Words: Hepatoclomapy; Laparoscopy; Robot; Operation time

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: A systematic review and meta-analysis comparing the clinical outcomes of laparoscopic liver resection (LLR) and robotic liver resection (RLR) was conducted. A total of 25 studies were included in the meta-analysis. In the recent studies, operative time did not differ significantly between LLR and RLR (P = 0.70), whereas in the early studies LLR was associated with significantly shorter operative times than RLR (P < 0.001). The initial disadvantages of RLR have been overcome during the last 5 years.

Citation: Ishinuki T, Ota S, Harada K, Meguro M, Kawamoto M, Kutomi G, Tatsumi H, Harada K, Miyaniishi K, Takemasa I, Ohyanagi T, Hui TT, Mizuguchi T. Maturation of robotic liver resection during the last decade: A systematic review and meta-analysis. World J Meta-Anal 2021; 9(5): 462-473

URL: https://www.wjgnet.com/2308-3840/full/v9/i5/462.htm
DOI: https://dx.doi.org/10.13105/wjma.v9.i5.462
Initially, LLR was reported to have various clinical benefits but result in longer operation times[4]. Robotic surgery has gained popularity since 2000[7]. Although robotic towers occupy space in the operating room, the skill of surgeons can be enhanced by robotic technology, such as "wristed instruments", "tremor cancellation", "enhanced dexterity", and "3D vision"[8,9]. These technologies are considered to reduce 93% of errors associated with human skill[8].

Total robotic liver resection (RLR) is limited to minor liver resection, which does not require the liver to be mobilized[10]. Furthermore, the robotic approach is only used for parenchymal dissection during laparoscopic surgery[11]. Therefore, the clinical outcomes of LLR and RLR should be similar[5,12]. We systematically reviewed the literature in which the clinical outcomes of LLR and RLR were compared. We divided the studies according to the year of publication to determine how the clinical outcomes of these techniques have changed over time. Early studies were defined as those published in 2016 or earlier. Recent studies were defined as those published in 2017 or later. We also examined the current status of RLR through a meta-analysis.

MATERIALS AND METHODS

Literature search
The Preferred Reporting Items for Systematic Reviews And Meta-Analyses (PRISMA) statement guidelines were followed when obtaining and reporting the meta-analysis data[13]. The PICOS scheme was employed when reporting the inclusion criteria. A systematic literature search of PubMed and MEDLINE, including the Cochrane Library, was performed independently by two authors (Ishinuki T and Ota S). The search was limited to human studies whose findings were reported in English. No restriction was set with regard to the type of publication, the publication date, or publication status. Patients of any age or sex who underwent liver resection for any hepatic lesion were considered, as outlined in the PICOS scheme. The search strategy was based on different combinations of words for each database. For the PubMed database the following combination was used: ("hepatectomy"[MeSH Terms] OR "hepatectomy"[All Fields] OR ("liver"[All Fields] AND "resection"[All Fields]) OR "liver resection"[All Fields]) AND ("laparoscopie"[All Fields] OR "laparoscopy"[MeSH Terms] OR "laparoscopy"[All Fields]) AND ("robot"[All Fields] OR "robot s"[All Fields] OR "robotically"[All Fields] OR "robotics"[MeSH Terms] OR "robotics"[All Fields] OR "robotic"[All Fields] OR "robotization"[All Fields] OR "robotized"[All Fields] OR "robots"[All Fields]). For the MEDLINE database, including the Cochrane Library database, the following combination was used: #1. liver.mp. [mp=title, abstract, full text, caption text], #2. resection.mp. [mp=title, abstract, full text, caption text], #3. robot.mp. [mp=title, abstract, full text, caption text], #4. 1 and 2 and 3.

Selecting policy of the studies
The independent authors have read the primary studies searched in the database. Similar studies and unrelated studies were excluded. The inclusion criteria for the statistical analysis were following: (1) Studies comparing LLR and RLR; (2) Studies reporting at least one clinical result or variable; and (3) If any institution reported multiple studies, only the recent and the excellent study was selected. The policies of the exclusion were following: (1) The studies dealing with liver transplantation; (2) Reviews, opinions, comments, letters, and case reports; and (3) The studies were impossible to reproduce. The Cohen kappa statistic was used to quantify assess the agreement among the researchers.

PROSPERO was used for the protocol registration (#CRD42021234405).

Data extraction
The independent authors extracted the following initial data: (1) The name of authors, year, and quality of study; (2) The etiology of the disease; and (3) The period of the evaluations.

Bias assessment
The publication bias was assessed by the Newcastle–Ottawa Scale: NOS (http://www.ohri.ca/), as they included observational studies. The NOS consists of domains for the patient selection, comparability of study groups, and outcome
Table 1 Frequency of each type of liver resection in the studies published in 2016 or earlier

Ref.	Laparoscopic liver resection	Robotic liver resection								
	Seg	LLS	LH	RH	EH	Seg	LLS	LH	RH	EH
Berber et al[17], 2010	Case	12	11	6	3					
Ji et al[18], 2011	Case	9	7	3	1	1	4	6	2	1
Lai et al[19], 2011	Cohort	6	4	1	3					
Lai et al[20], 2012	Cohort	9	8	12	17	2	1			
Packiam et al[21], 2012	Case	18								
Troisi et al[9], 2013	Case	149	39	16	17	2	38	2		
Spampinato et al[22], 2014	Case	9	15	1	8	16	1			
Tranchart et al[23], 2014	Case	22	5	1	22	5	1			
Tsung et al[12], 2014	Case	72	21	36	21					
Wu et al[24], 2014	Case	28	31	8	2	8	24	7	12	1
Yu et al[25], 2014	Case	6	11							
Croner et al[26], 2016	Case	ND								
Kim et al[27], 2016	Case	ND								
Lai et al[28], 2016	Cohort	25	9	1	45	29	6	20	1	
Lee et al[29], 2016	Case	34	30	2	17	39	10	4		
Montalti et al[30], 2016	Case	72	36							

EH: Extended hemi-hepatectomy; LH: Left hepatectomy; LLS: Left lateral segmentectomy; ND: Not properly described; RH: Right hepatectomy; Seg: Segmentectomy.

The low risk of bias results in a score of 9 points. We considered studies that scored ≥ 7, 4-6, and < 4 to be high, moderate, and low quality, respectively[14].

Statistical analyses

RevMan software (version 5.3.; The Cochrane Collaboration) was used for the meta-analysis. For continuous variables, the differences between groups were compared using the inverse-variance method. On the other hand, dichotomous outcomes were compared using the Mantel-Haenszel method. The Egger’s test for publication bias was performed using EZR (version 1.54; https://www.softpedia.com/get/Science-CAD/EZR.shtml)[15].

The χ² test was used to evaluate heterogeneity, and the Cochran Q and F statistics were reported. The F value describes the percentage variation between studies in degrees of freedom. Low, moderate, and high heterogeneity were defined based on cut-off values of 25%, 50%, and 75%, respectively[16].

All results were considered significant at P values of < 0.05.

RESULTS

The PRISMA flow diagram for this study is shown in Figure 1. The database search for relevant studies resulted in 1,068 studies being identified. We excluded 922 studies because of duplication, and the titles and abstracts of the remaining 148 studies were screened. As a result, we reviewed 40 full-text articles to evaluate their eligibility further. We excluded 8 studies for which the outcome involved a non-target comparison, and 4 studies for which the data were not available. Finally, we included 28 studies in our meta-analysis.

The data regarding the frequency of each type of liver resection in the selected studies are shown in Tables 1 and 2. Table 1 shows the data for the studies published in 2016 or earlier[9,12,17-30]. Table 2 shows the data for the studies published in 2017 or later[31-42]. No randomized controlled trials (RCT) comparing the clinical outcomes of LLR and RLR were identified. All of the selected publications related to observa-
Table 2 Frequency of each type of liver resection in the studies published in 2017 or later

Ref.	Laparoscopic liver resection	Robotic liver resection								
	Seg	LLS	LH	RH	EH	Seg	LLS	LH	RH	EH
Efanovet al[31], 2017	Cohort	ND	ND	ND	ND	ND	ND			
Magistriet al[32], 2017	Case	24	14	6	2	ND	ND			
Salloumet al[33], 2017	Case	ND	ND	ND	ND	ND	ND			
Fruscioneet al[34], 2019	Case	48	22	46	17	20	20			
Marinoet al[35], 2019	Cohort	20	20	14	14	ND	ND			
Huet al[36], 2019	Case	54	58	58	58	ND	ND			
Leeet al[37], 2019	Case	7	3	8	5	ND	ND			
Limet al[38], 2019	Case	ND	ND	ND	ND	ND	ND			
Wanget al[39], 2019	Case	29	19	48	44	48	44			
Chonget al[40], 2020	Case	47	40	3	1	34	39	12	6	
Mejiaet al[41], 2020	Case	ND	ND	ND	ND	ND	ND			
Rahimliet al[42], 2020	Case	ND	ND	ND	ND	ND	ND			

EH: Extended hemi-hepatectomy; LH: Left hepatectomy; LLS: Left lateral segmentectomy; ND: Not properly described; RH: Right hepatectomy; Seg: Segmentectomy.

![Figure 1 PRISMA flow diagram for this study.](image.png)
The types of liver resection performed did not differ significantly between the early (Table 1) and recent (Table 2) studies.

Frequency of Clavien-Dindo grade 3/4 complications

The data regarding complications of grade ≥ 3 according to the Clavien-Dindo (CD) classification are shown in Figure 2. There was no significant difference in the frequency of such complications between LLR and RLR in the early or recent studies. Scores of I^2 in both analyses were 0%, which indicated no heterogeneity. The funnel plots were shown in Supplementary Figure 1.

Intraoperative conversion rate

The data regarding the intraoperative conversion rate are shown in Figure 3. There was no significant difference in the intraoperative conversion rate between LLR and RLR in the early or recent studies. Score of I^2 in the early studies was 20% and the one in the recent studies was 44%. The heterogeneities were acceptable in both analyses. The funnel plots were shown in Supplementary Figure 2.

Intraoperative blood loss

The data regarding intraoperative blood loss are shown in Figure 4. Although LLR tended to cause less intraoperative blood loss than RLR in the early studies, no marked difference in intraoperative blood loss between LLR and RLR was seen in the recent studies. Scores of I^2 in the early and recent studies were 88% and 94%, respectively. Severe heterogeneities were observed in both the early and recent analyses. The funnel plots were shown in Supplementary Figure 3.

Operation time

The data regarding the operation time are shown in Figure 5. Although in the early studies the operation time of LLR was significantly shorter than that of RLR ($P < 0.0001$), there was no significant difference between the operation times of LLR and
Ishinuki T et al. Maturation of RLR: SA and MA

Figure 3 Intraoperative conversion rate. A: 2010-2016; B: 2017-2020.

RLR in the recent studies. Scores of I^2 in the early and recent studies were 81% and 93%, respectively. Severe heterogeneities were observed in both the early and recent analyses. The funnel plots were shown in Supplementary Figure 4.

Quality assessment of the bias

The quality assessment was conducted using the NOS score (Supplementary Table 1 and 2). There was no significant difference in the NOS score between the early and recent studies, although the quality of the studies varied. Summary of the publication bias in each analysis was shown in Supplementary Table 3.

DISCUSSION

MIS has become the standard approach for liver resection[1,4]. The initial disadvantages of RLR were that it involves large amounts of intraoperative blood loss and a long operation time. The recent studies examined in this review indicated that these initial disadvantages have been ameliorated. This finding strongly indicates that a new era of MIS may be upon us.

The CD classification is the standard grading system for surgical complications[43]. The definitions of the grades in the CD classification are based on how the complications are managed, e.g., with pharmacological interventions, surgical interventions, or intensive care. These are indirect signs of complications. Furthermore, the grading system is divided into 5 grades plus 2 sub-grades. We did not find any difference in the types of complications encountered according to the CD classification between LLR/RLR or the early/recent period. This may have been because the CD classification is not suitable for identifying differences between clinical studies due to its use of indirect definitions and a relatively large number of grades. Ideally, surgical complications should be analyzed based on direct symptoms of the actual complications and a simple grading system[44].

LLR and RLR exhibited similar intraoperative conversion rates in both periods. The background data for each study varied, as they were all observational studies. The selection criteria for LLR and RLR were also unclear. Therefore, we could not conclude
Intraoperative blood loss. A: 2010-2016; B: 2017-2020.

Figure 4 Intraoperative blood loss. A: 2010-2016; B: 2017-2020.

which type of surgery was safer. The maximum intraoperative conversion rate of LLR was about 25% among the recent studies. The maximum intraoperative conversion rate of RLR was about 20% among the early studies, although the mean conversion rate was < 10% in both study periods. In future, these rates could be used as standard clinical goals in order to ensure that surgical quality is maintained.

In the early studies, LLR tended to result in less intraoperative blood loss than RLR, although no marked differences in intraoperative blood loss were seen between LLR and RLR in the recent studies. Several strategies can reduce blood loss during pneumoperitoneum, such as using the head-up position, inducing a high peritoneal pressure, reducing the intratracheal pressure to increase the respiration time, reducing the respiratory volume, using a low central venous pressure, and employing inflow blood control based on the Pringle maneuver[2,45,46]. In addition, it is easier to change the body positions of patients during LLR than during RLR, which could help to control bleeding from veins. Various hemostatic devices are available, such as ultrasonic dissectors, and various hemostatic surgical devices were used for RLR in the recent studies, which may have counteracted the positional disadvantages of RLR. In addition to technical improvements associated with experience, various surgical devices can be used to reduce blood loss during RLR.

In the early studies, the operation time of the RLR was longer than that of the LLR. This is reasonable because it takes time to install robotic towers for robotic procedures. However, the difference in the operation time between the surgical procedures disappeared in the recent studies. It could be that the surgeons became familiar with the robotic procedures, which reduced the time required to set up the robot. Visual support and human-error-canceling functions could also have reduced the operation time[8]. Therefore, the initial disadvantages of RLR have recently been ameliorated.

One advantage of RLR is that it can be used to approach the dorsal segment and caudate lobe of the liver[47,48]. In addition, RLR is superior to LLR for bile duct reconstruction[49]. Therefore, separate tumor location- and surgical procedure-dependent indications need to be developed for RLR and LLR. The differences in the cost and quality-of-life outcomes of RLR and LLR should also be elucidated in the future.

This study had several limitations. First, all of the included studies were observational studies, and no RCT were identified. In addition, the indications for each procedure were not described clearly. The number of subjects recruited for each study

Ishinuki T et al. Maturation of RLR: SA and MA

WJMA | https://www.wjgnet.com

469 | October 28, 2021 | Volume 9 | Issue 5
varied, as did the quality of each study. In addition, the clinical backgrounds of the studies differed. Although a few studies involved prospective protocols, at present there is no international registration system for such studies.

CONCLUSION

In conclusion, the initial disadvantages of RLR have been ameliorated. The clinical outcomes of LLR and RLR are comparable. Separate indications for each approach should be developed based on their cost and quality-of-life outcomes. A reliable international registration system for such cases needs to be established.

ARTICLE HIGHLIGHTS

Research background

Robotic liver resection (RLR) has emerged during the last decade. But the clinical outcome of the RLR has been debated.

Research motivation

Clinical outcomes among the laparoscopic liver resection (LLR) and RLR should be compared regarding merit and demerit.

Research objectives

The objective of this study was to conduct a systematic review and meta-analysis comparing the clinical outcomes of LLR and RLR over two 5-year periods.

Research methods

A systematic literature search was performed using PubMed and Medline, including the Cochrane Library.
The cost and quality-of-life outcomes of RLR should be evaluated in future studies to promote its routine clinical use.

REFERENCES

1. Meguro M, Mizuguchi T, Kawamoto M, Ota S, Ishii M, Nishidate T, Okita K, Kimura Y, Hirata K. Clinical comparison of laparoscopic and open liver resection after propensity matching selection. Surgery 2015; 158: 573-587 [PMID: 26120070 DOI: 10.1016/j.surg.2015.02.031]

2. Mizuguchi T, Kawamoto M, Nakamura Y, Meguro M, Hui TT, Hirata K. New technique of extracorporeal hepatic inflow control for pure laparoscopic liver resection. Surg Laparosc Endosc Percutan Tech 2015; 25: e16-e20 [PMID: 25533749 DOI: 10.1097/SLE.0b013e3182a4e055]

3. Ogiso S, Hatano E, Nomi T, Uemoto S. Laparoscopic liver resection: Toward a truly minimally invasive approach. World J Gastrointest Endosc 2015; 7: 159-161 [PMID: 25789085 DOI: 10.4253/wjge.v7.i3.159]

4. Mizuguchi T, Kawamoto M, Meguro M, Shibata T, Nakamura Y, Kimura Y, Furuhata T, Sonoda T, Hirata K. Laparoscopic heptectomy: a systematic review, meta-analysis, and power analysis. Surg Today 2011; 41: 39-47 [PMID: 2191689 DOI: 10.1007/s00595-010-4337-6]

5. Swaid F, Geller DA. Minimally Invasive Primary Liver Cancer Surgery. Surg Oncol Clin N Am 2019; 28: 215-227 [PMID: 30851824 DOI: 10.1016/j.soc.2018.11.002]

6. Chua D, Syn N, Koh YX, Goh BKP. Learning curves in minimally invasive heptectomy: systematic review and meta-regression analysis. Br J Surg 2021; 108: 351-358 [PMID: 33779690 DOI: 10.1093/bjs/znaa118]

7. Buess GF, Schurr MO, Fischer SC. Robotics and allied technologies in endoscopic surgery. Arch Surg 2000; 135: 229-235 [PMID: 10668887 DOI: 10.1001/archsurg.135.2.229]

8. Moorthy K, Munz Y, Dossi A, Hernandez J, Martin S, Bello F, Rockall T, Darzi A. Dexterity enhancement with robotic surgery. Surg Endosc 2004; 18: 790-795 [PMID: 15216862 DOI: 10.1007/s00464-003-8922-2]

9. Troisi RI, Patrioli A, Montalti R, Casciola L. Robot assistance in liver surgery: a real advantage over a fully laparoscopic approach? Int J Med Robot 2013; 9: 160-166 [PMID: 23526589 DOI: 10.1002/rcs.1495]

10. Giuliani PC, Bianco FM, Daskalaki D, Gonzalez-Ciccarelli LF, Kim J, Benedetti E. Robotic liver surgery: technical aspects and review of the literature. Hepatobiliary Surg Nutr 2016; 5: 311-321 [PMID: 27500143 DOI: 10.21037/hbsn.2015.10.05]

11. Zhang L, Yuan Q, Xu Y, Wang W. Comparative clinical outcomes of robot-assisted liver resection vs laparoscopic liver resection: A meta-analysis. PLoS One 2020; 15: e0240593 [PMID: 33048989 DOI: 10.1371/journal.pone.0240593]

12. Tsung A, Geller DA, Sukato DC, Sabbaghian S, Tohme S, Steel J, Marsh W, Reddy SK, Bartlett DL. Robotic vs laparoscopic heptectomy: a matched comparison. Ann Surg 2014; 259: 549-555 [PMID: 24045442 DOI: 10.1097/SLA.0000000000000250]

13. Liberati A, Altman DG, Tetzlaff J,Mulrow C, Gøtzsche PC, Ioannidis JP, Altman DG, Moher D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. BMJ: 2009; 339: b2700 [PMID: 19621070 DOI: 10.1371/journal.pmed.1000100]

14. Islam MM, Iqbal U, Walther B, Atique S, Dubey NK, Nguyen PA, Poly TN, Masud JH, Li YJ, Shabbir SA. Benzodiazepine Use and Risk of Dementia in the Elderly Population: A Systematic Review and Meta-Analysis. Neuroepidemiology 2016; 47: 181-191 [PMID: 28013304 DOI: 10.1159/000454881]

15. Kanda Y. Investigation of the freely available easy-to-use software ‘EZr’ for medical statistics. Bone Marrow Transplantation 2013; 48: 452-458 [PMID: 23208313 DOI: 10.1038/bmt.2012.244]

16. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ 2003; 327: 557-560 [PMID: 12958120 DOI: 10.1136/bmj.327.7414.557]

17. Berber E, Akyildiz HY, Acejo F, Gunasekaran G, Chalikonda S, Fung J. Robotic vs laparoscopic resection of liver tumours. HPB (Oxford) 2010; 12: 583-586 [PMID: 20887327 DOI: 10.1111/j.1477-2578.2010.00234.x]

18. Ji WB, Wang HG, Zhao ZM, Duan WD, Lu F, Dong JH. Robotic-assisted laparoscopic anatomic heptectomy in China: initial experience. Ann Surg 2011; 255: 342-348 [PMID: 21135692 DOI: 21135692]
10.1097/SLA.00013e31811f4601

19 Lai EC, Tang CN, Yang GP, Li MK. Multimodality laparoscopic liver resection for hepatic malignancy--from conventional total laparoscopic approach to robot-assisted laparoscopic approach. *Int J Surg* 2011; 9: 324-328 [PMID: 21334468 DOI: 10.1016/j.ijsu.2011.02.004]

20 Lai EC, Tang CN, Li MK. Conventional laparoscopic and robot-assisted laparoscopic liver resection for benign and malignant pathologies: a cohort study. *J Robot Surg* 2012; 6: 295-300 [PMID: 22824669 DOI: 10.1007/s11701-011-0311-6]

21 Packiam V, Barlett DL, Tohme S, Reddy S, Marsh JW, Geller DA, Tsung A. Minimally invasive liver resection: robotic vs laparoscopic left lateral sectionectomy. *J Gastrointest Surg* 2012; 16: 2233-2238 [PMID: 23054901 DOI: 10.1007/s11605-012-2040-1]

22 Spampinato MG, Coratti A, Bianco L, Caniglia F, Laurenzi A, Puleo F, Ettorre GM, Boggi U. Perioperative outcomes of laparoscopic and robot-assisted major hepatectomies: an Italian multiinstitutional comparative study. *Surg Endosc* 2014; 28: 2973-2979 [PMID: 24853851 DOI: 10.1007/s00464-014-3560-4]

23 Tranchart H, Ceribelli C, Ferretti S, Dagher I, Patriti A. Traditional vs robot-assisted full laparoscopic resection: a matched-pair comparative study. *J Surg Oncol* 2014; 38: 2904-2909 [PMID: 24984879 DOI: 10.1007/s00268-014-2679-8]

24 Wu YM, Hu RH, Lai HS, Lee PH. Robotic-assisted minimally invasive liver resection. *Asian J Surg* 2014; 37: 53-57 [PMID: 24642128 DOI: 10.1016/j.ajjsur.2014.01.015]

25 Yu YD, Kim KH, Jung DH, Namkoong JM, Yoon SY, Jung SW, Lee SK, Lee SG. Robotic vs laparoscopic liver resection: a comparative study from a single center. *Langenbecks Arch Surg* 2014; 399: 1039-1045 [PMID: 25366357 DOI: 10.1007/s00423-014-1238-y]

26 Croner RS, Perrakis A, Hohenberger W, Brunner M. Robotic liver surgery for minor hepatic resections: a comparison with laparoscopic and open standard procedures. *Langenbecks Arch Surg* 2016; 401: 707-714 [PMID: 27207697 DOI: 10.1007/s00423-016-1440-1]

27 Kim JK, Park JS, Han DH, Choi GH, Kim KS, Choi JS, Yoon DS. Robotic vs laparoscopic left lateral sectionectomy of liver. *Surg Endosc* 2016; 30: 4756-4764 [PMID: 26902613 DOI: 10.1007/s00464-016-4803-3]

28 Lai EC, Tang CN. Long-term Survival Analysis of Robotic Versus Conventional Laparoscopic Hepatexclysis for Hepatocellular Carcinoma: A Comparative Study. *Surg Endosc Laparosc Percutan Tech* 2016; 26: 162-166 [PMID: 27031650 DOI: 10.1097/SLE.0000000000000254]

29 Lee KY, Cheung YS, Chong CC, Wong J, Fong AK, Lai PB. Laparoscopic and robotic hepatectomy: experience from a single centre. *ANZ J Surg* 2016; 86: 122-126 [PMID: 26423216 DOI: 10.1111/ans.13339]

30 Montali R, Scuderi V, Patriti A, Vivarelli M, Troisi RI. Robotic vs laparoscopic resections of posterior-superior segments of the liver: a propensity score-matched comparison. *Surg Endosc* 2016; 30: 1004-1013 [PMID: 26123328 DOI: 10.1007/s00464-015-4284-9]

31 Efano M, Alikhanov R, Tsvirkun V, Kazakov I, Melekhina O, Kim P, Vankovich A, Grendal K, Berelavichus S, Khaltov V. Comparative analysis of learning curve in complex robot-assisted and laparoscopic liver resection. *HPB (Oxford)* 2017; 19: 818-824 [PMID: 28598982 DOI: 10.1016/j.hpb.2017.05.003]

32 Magistri P, Tarantino G, Guidetti C, Assirati G, Olivieri T, Ballarini R, Coratti A, Di Benedetto F. Laparoscopic vs robotic surgery for hepatocellular carcinoma: the first 46 consecutive cases. *J Surg Res* 2017; 217: 92-99 [PMID: 28641762 DOI: 10.1016/j.jss.2017.05.005]

33 Salloum C, Lim C, Lahat E, Gavara CG, Levesque E, Compagnon P, Azoulay D. Robotic-Assisted Versus Laparoscopic Left Lateral Sectionectomy: Analysis of Surgical Outcomes and Costs by a Propensity Score Matched Cohort Study. *World J Surg* 2017; 41: 516-524 [PMID: 27743071 DOI: 10.1007/s00268-016-3736-2]

34 Fruscione M, Pickens R, Baker EH, Cochran A, Khan A, Ocuin L, Ianniti DA, Vrochides D, Martinie JB. Robotic-assisted vs laparoscopic major liver resection: analysis of outcomes from a single center. *HPB (Oxford)* 2019; 21: 906-911 [PMID: 30617001 DOI: 10.1016/j.hpb.2018.11.011]

35 Marino MV, Shabat G, Guerrasi D, Gulotta G, Komorowski AL. Comparative Study of the Initial Experience in Performing Robotic and Laparoscopic Right Hepatexclysis with Technical Description of the Robotic Technique. *Dig Surg* 2019; 36: 241-250 [PMID: 29539603 DOI: 10.1159/000487666]

36 Hu M, Liu Y, Li C, Wang G, Yin Z, Lau WY, Liu R. Robotic vs laparoscopic liver resection in complex cases of left lateral sectionectomy. *Int J Surg* 2019; 67: 54-60 [PMID: 31121328 DOI: 10.1016/j.ijsu.2019.05.008]

37 Lee SJ, Lee JH, Lee YJ, Kim SC, Hwang DW, Song KB, Shin SH, Kwon JW, Park GS, Park YJ, Park KM. The feasibility of robotic left-side hepatectomy with comparison of laparoscopic and open approach: Consecutive series of single surgeon. *Int J Med Robot* 2019; 15: e1982 [PMID: 30636179 DOI: 10.1002/rcsr.20182]

38 Lim C, Salloum C, Tudisco A, Ricci C, Osseis M, Napoli N, Lahat E, Boggi U, Azoulay D. Short- and Long-term Outcomes after Robotic and Laparoscopic Liver Resection for Malignancies: A Propensity Score-Matched Study. *World J Surg* 2019; 43: 1594-1603 [PMID: 30760165 DOI: 10.1007/s00268-019-04927-x]

39 Wang ZZ, Tang WB, Hu MG, Zhao ZM, Zhao GD, Li CG, Tan XL, Zhang X, Lau WY, Liu R. Robotic vs laparoscopic hemihepatexclysis: A comparative study from a single center. *J Surg Oncol* 2019; 120: 646-653 [PMID: 31313324 DOI: 10.1002/jso.25640]

40 Chong CCN, Lok HT, Fung AKY, Fong AKW, Cheung YS, Wong J, Lee KF, Lai PBS. Robotic vs
laparoscopic hepatectomy: application of the difficulty scoring system. *Surg Endosc* 2020; 34: 2000-2006 [PMID: 31312961 DOI: 10.1007/s00464-019-06976-8]

41 Mejia A, Cheng SS, Vivian E, Shah J, Oduor H, Archarya P. Minimally invasive liver resection in the era of robotics: analysis of 214 cases. *Surg Endosc* 2020; 34: 339-348 [PMID: 30937618 DOI: 10.1007/s00464-019-06773-3]

42 Rahimli M, Perrakis A, Schellerer V, Gumbs A, Lorenz E, Franz M, Arend J, Negri VR, Croner RS. Robotic and laparoscopic liver surgery for colorectal liver metastases: an experience from a German Academic Center. *World J Surg Oncol* 2020; 18: 333 [PMID: 33353551 DOI: 10.1186/s12957-020-02113-1]

43 Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. *Ann Surg* 2004; 240: 205-213 [PMID: 15273542 DOI: 10.1097/01.sla.0000133083.54934.ac]

44 Ishii M, Mizuguchi T, Harada K, Ota S, Meguro M, Ueki T, Nishidate T, Okita K, Hirata K. Comprehensive review of post-liver resection surgical complications and a new universal classification and grading system. *World J Hepatol* 2014; 6: 745-751 [PMID: 25349645 DOI: 10.4254/wjh.v6.i10.745]

45 Otsuka Y, Katagiri T, Ishii J, Maeda T, Kubota Y, Tamura A, Tsuchiya M, Kaneko H. Gas embolism in laparoscopic hepatectomy: what is the optimal pneumoperitoneal pressure for laparoscopic major hepatectomy? *J Hepatobiliary Pancreat Sci* 2013; 20: 137-140 [PMID: 23001192 DOI: 10.1007/s00534-012-0356-0]

46 Pan XY, Wang JC, Lu XY, Chen JB, He W, Chen JC, Wang XH, Fu YZ, Xu L, Zhang YI, Chen MS, Lai RC, Zhou ZG. Intention to control low central venous pressure reduced blood loss during laparoscopic hepatectomy: a double-blind randomized clinical trial. *Surgery* 2020; 167: 933-941 [PMID: 32216964 DOI: 10.1016/j.surg.2020.02.004]

47 Zhao ZM, Yin ZZ, Meng Y, Jiang N, Ma ZG, Pan LC, Tan XL, Chen X, Liu R. Successful robotic radical resection of hepatic echinococcosis located in posteroinferior liver segments. *World J Gastroenterol* 2020; 26: 2831-2838 [PMID: 32550758 DOI: 10.3748/wjg.v26.i21.2831]

48 Vanbrugghe C, Farra R, Camerlo A. Robotic anatomical resection of segment 7 by caudate lobe approach for colorectal metastasis (with video). *Surg Oncol* 2021; 37: 101548 [PMID: 33773283 DOI: 10.1016/j.suronc.2021.101548]

49 Giulianotti PC, Sbrana F, Bianco FM, Addeo P. Robot-assisted laparoscopic extended right hepatectomy with biliary reconstruction. *J Laparoendosc Adv Surg Tech A* 2010; 20: 159-163 [PMID: 20201685 DOI: 10.1089/lap.2009.0385]
