Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Implementation of a real-time, data-driven online Epidemic Calculator for tracking the spread of COVID-19 in Singapore and other countries

Fook Fah Yap, Minglee Yong

PII: S2468-0427(21)00067-1
DOI: https://doi.org/10.1016/j.idm.2021.10.002
Reference: IDM 256

To appear in: Infectious Disease Modelling

Received Date: 2 September 2020
Revised Date: 29 September 2021
Accepted Date: 9 October 2021

Please cite this article as: Fah Yap F. & Yong M., Implementation of a real-time, data-driven online Epidemic Calculator for tracking the spread of COVID-19 in Singapore and other countries, Infectious Disease Modelling (2021), doi: https://doi.org/10.1016/j.idm.2021.10.002.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2021 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd.
Implementation of a Real-Time, Data-Driven Online Epidemic Calculator for Tracking the Spread of COVID-19 in Singapore and Other Countries

Fook Fah YAPa,* and Minglee YONGb

aNanyang Technological University, School of Mechanical and Aerospace Engineering, 50 Nanyang Ave, Singapore 639798, Singapore

bNanyang Technological University, National Institute of Education, 1 Nanyang Walk, Singapore 637616, Singapore

*Corresponding Author: Fook Fah Yap, mffyap@ntu.edu.sg
Abstract

While there are many online data dashboards on COVID-19, there are few analytics available to the public and non-epidemiologists to help them gain a deeper insight into the COVID-19 pandemic and evaluate the effectiveness of social intervention measures. To address the issue, this study describes the methods underlying the development of a real-time, data-driven online Epidemic Calculator for tracking COVID-19 growth parameters. From publicly available infection case and death data, the calculator is used to estimate the effective reproduction number, final epidemic size, and death toll. As a case study, we analyzed the results for Singapore during the “Circuit breaker” period from April 7, 2020 to the end of May 2020. The calculator shows that the stringent measures imposed have an immediate effect of rapidly slowing down the spread of the coronavirus. After about two weeks, the effective reproduction number reduced to about 1.0. Since then, the number has been fluctuating around 1.0 for more than a month.

The COVID-19 Epidemic Calculator is available in the form of an online Google Sheet and the results are presented as Tableau Public dashboards at www.cv19.one. By making the calculator readily accessible online, the public can have a tool to assess the effectiveness of measures to control the pandemic meaningfully.

Keywords: COVID-19; Reproduction number; Doubling time; Epidemic calculator; Singapore
Compliance with Ethical Standards - Declarations

Disclosure of potential conflicts of interest
The authors declare that they have no conflict of interest.

Ethics approval for research involving Human Participants
This research study did not involve collection of data from human participants. Ethics approval is not required.

Informed consent
Informed consent was not required since there were no individual participants in this study.

Data and/or Code availability
The data used in the calculations are publicly available and the sources are cited in the References section. The codes for the calculator can be downloaded from the website, www.cv19.one.

Authors' contribution statements
Conceptualization: Fook Fah YAP and Minglee YONG;
Methodology: Fook Fah YAP and Minglee YONG;
Formal analysis and investigation: Fook Fah YAP;
Writing - original draft preparation: Fook Fah YAP;
Writing - review and editing: Fook Fah YAP and Minglee YONG
Implementation of a Real-Time, Data-Driven Online Epidemic Calculator for Tracking the Spread of COVID-19 in Singapore and Other Countries

Abstract

While there are many online data dashboards on COVID-19, there are few analytics available to the public and non-epidemiologists to help them gain a deeper insight into the COVID-19 pandemic and evaluate the effectiveness of social intervention measures. To address the issue, this study describes the methods underlying the development of a real-time, data-driven online Epidemic Calculator for tracking COVID-19 growth parameters. From publicly available infection case and death data, the calculator is used to estimate the effective reproduction number, final epidemic size, and death toll. As a case study, we analyzed the results for Singapore during the “Circuit breaker” period from April 7, 2020 to the end of May 2020. The calculator shows that the stringent measures imposed have an immediate effect of rapidly slowing down the spread of the coronavirus. After about two weeks, the effective reproduction number reduced to about 1.0. Since then, the number has been fluctuating around 1.0 for more than a month.

The COVID-19 Epidemic Calculator is available in the form of an online Google Sheet and the results are presented as Tableau Public dashboards at www.cv19.one. By making the calculator readily accessible online, the public can have a tool to assess the effectiveness of measures to control the pandemic meaningfully.

Keywords: COVID-19; Reproduction number; Doubling time; Epidemic calculator; Singapore
1. Introduction

As countries worldwide take drastic measures to contain the COVID-19 pandemic, people need to understand the effectiveness of such interventions. Making sense of epidemiological data can be challenging, given confusing and overlapping terminology. Raw data and statistics on infection numbers (e.g., Figure 1) do not directly help answer the following questions: (1) Are social distancing measures working? (2) How much longer does it take to flatten the curve? (3) What will be the final death toll? Data analysts in other disciplines such as social sciences, economics, and management could explore how epidemiological trends impact their own areas.

![Figure 1. Total Confirmed Cases in Singapore [1].](image)

This paper describes the methods underlying an online COVID-19 Epidemic Calculator for tracking and estimating COVID-19 growth parameters, including reproduction number, final epidemic size, and death toll. These methods are illustrated using the case example of Singapore. We demonstrate how the calculator can reveal the effect of imposing strict social distancing measures (“Circuit breaker”) from April 7, 2020 that is not apparent from just looking at infection numbers.

While our methodology is similar in certain aspects to several freely available software packages and programming codes for calculating the effective reproduction number (e.g. [21, 23, 24, 33]), we differ from those work because we implement real-time, data-driven calculations in the widely used Excel spreadsheet, with sub-minute execution time, even for calculating a 4-month, 100-country data set. Furthermore, this calculator is readily available as an online spreadsheet [30] to facilitate sharing and collaboration. The input data for the calculator is obtained from publicly available sources [2, 3, 31] and is automatically updated daily.

1.1 Introduction to terminology
Figure 2. Timeline of infection stages with typical parameter estimates for COVID-19 in Singapore.

Figure 2 identifies the different overlapping terms used in epidemiology and illustrates the timeline for the various stages of infection. These terms and variables will be used for calculating parameters that can help us understand and monitor the spread of the COVID-19 infection in a country. Exposed is the state at which an individual first becomes infected but is not yet contagious. The latent period is the time from being infected (exposed) to becoming contagious. An infected person can be contagious even before the onset of symptoms. Data suggests that some people could have infected others 1 to 3 days before they developed symptoms [10,11].

The incubation period is the time from exposed to the onset of symptoms. The mean incubation period for COVID-19 is estimated to be 5 days [4, 29]. The infectious period is the time between becoming contagious to the time of removal or recovery. Hence, it is the difference between the time of removal and the latent period ($T_{\text{removed}} - T_{\text{latent}}$).

In Singapore, the 14-day average time from the onset of symptoms to removal ranges from 1.5 to 6 days after the start of the Circuit breaker on April 7, 2020 (Figure 3).

The serial interval is the time when a secondary infection is generated. For COVID-19 in Singapore, the serial interval between transmission pairs ranges between 3 days and 8 days [5]. Other researchers have reported serial intervals within the same range [6,7,8, 29].
Figure 3. Average number of days from onset of symptoms to isolation for community unlinked cases in Singapore [1].

1.2 Critical parameters

The rate of infection growth in a population can be estimated using the effective reproduction number. The effective reproduction number is the number of secondary cases directly being infected by a primary case in a population. Social distancing measures should reduce the spread of infection and this would be reflected by a reduction in the effective reproduction number. Hence, monitoring the effective reproduction number over time will allow us to evaluate if social distancing measures or any other interventions are working. We will demonstrate how to estimate the effective reproduction number using a Bayesian approach. We will also show how to derive estimates of dates of actual symptom onset and dates of being exposed which are important for our estimation of the effective reproduction number.

Estimating the time needed to flatten an epidemic curve is an important part of forecasting the scope of an infectious disease outbreak. When new cases are significantly reduced, social distancing restrictions can be relaxed and other less intrusive measures can be put in place. In this study, we will show how logistic and Gompertz models can be used for forecasting the future number of cases and deaths over time using only publicly available data. These numbers will allow us to gauge the vulnerability of the population and quantify the direct health impact of COVID-19.

Since these parameters could help non-epidemiologists understand the spread of COVID-19 in their countries and other countries and regions, the objective of this research study is to develop a readily available online COVID-19 Epidemic Calculator to provide estimates of the critical parameters described here. The interested public can access this online calculator to gain a deeper
insight into the COVID-19 pandemic and evaluate the effectiveness of a range of public health and social intervention measures.

2. Methodology

2.1 Method for calculating the effective reproduction number for estimating how fast COVID-19 is spreading in a country

Step 1: Deriving symptom onset dates from confirmation dates

The daily number of reported cases is partly dependent on the number of tests conducted, which may be variable due to factors such as testing capacity and the day of week. To account for this variation, we perform a running 7-day average of test cases. Other methods of applying a smoothing filter to the time series may be used if appropriate.

Another issue is the delay between the onset of symptoms and case confirmation (removal or isolation). Case onset dates can be derived if records of onset-to-confirmation dates are available for every individual (e.g. see Figure 3). Otherwise, case onset dates can be estimated by using the following procedure.

i) For each date, distribute case counts back in time according to a Poisson distribution with a mean of 3 days (symptom onset to removal) as illustrated in Figure 4.

![Figure 4. Distributing case counts back in time.](image)
ii) Sum the back distributed case counts for each date to derive the onset curve as shown in Figure 5.

Figure 5. The onset curve estimates the cases during the onset of symptoms.

iii) Distributing reported cases back in time and recreating the onset curve result in a “right-censored” time series. This means that there are onset cases close to the present date that are yet to be reported. We correct this by estimating the percentage of onset cases on Day \((t-a)\) that have not yet been reported by today (Day \(t\)). We can use the cumulative distribution function of the Poisson “onset-to-removed” distribution to adjust for the number of onset cases, thus removing right censoring.

\[
\text{Adjusted onset} = \frac{\text{Onset}}{P(\text{Delay} \leq \text{Days from present date})}
\] (1)

Consider an example illustrated in Figure 6. Three days ago, there were 470 reported onset cases. This represents the fraction of the actual number reported over the next 3 days. This fraction is equal to the value of the cumulative distribution function of our Poisson distribution at Day 3, which is 65%. Hence, the current count of onset on that day represents 65% of the actual total. After adjustment, the actual total is estimated to be \((1/0.65)\) of 470, which is 723. Figure 7 shows the adjusted onset curve.
Figure 6. Adjusting for right-censoring.

Figure 7. Onset numbers close to the present date are adjusted for right censoring.
Step 2: Deriving infection (exposed) dates from onset dates

A similar procedure as in Step 1 can be applied to the onset counts to derive the infection (exposed) time series. Figure 8 shows the adjusted exposed time series where the incubation period (from exposed to symptom onset) follows a Poisson distribution with a mean of 5 days.

![Adjusted Onset vs Adjusted Exposed](image)

Figure 8. The Adjusted Exposed curve is derived using a Poisson distribution with a mean incubation period of 5 days

Step 3: Estimating the effective reproduction number, $R(t)$

The basic reproduction number, R_0, is the expected number of infections directly generated by one case given that all individuals are equally susceptible. As the infection spreads, the susceptibility of the population decreases. The effective reproduction number, $R(t)$, is related to the basic reproduction number, R_0, by $R(t) = R_0 S(t)$, where $S(t)$ is the average susceptibility of the population. $R(t)$ is often used as an indicator of the effectiveness of interventions, such as social distancing measures, to contain the spread of a virus. If $R(t)$ is greater than 1.0, the infection is growing at an exponential rate. If $R(t)$ is at 1.0, the spread is sustained at a linear rate. If $R(t)$ is less than 1.0, the infection is spreading at a slower pace and will eventually die out.

Although $R(t)$ cannot be measured directly, it can be estimated in different ways. We describe two methods that can be implemented in a spreadsheet without any programming codes.
Bayesian approach

The Bayesian approach allows us to continuously update our estimate of a set of parameters, Θ, as more data becomes available.

\[
P(\Theta|data) = \frac{P(data|\Theta) \cdot P(\Theta)}{P(data)}
\]

(2)

\(P(\Theta)\), the prior distribution, represents our prior estimates about the true value of Θ.

\(P(data|\Theta)\) is the likelihood distribution. It is also often written as \(L(\Theta|data)\) which means the probability of observing the data given Θ. For the method to work, it is necessary to calculate the likelihood distribution for all possible values of Θ.

\(P(data)\) is the model evidence and it is the same for all possible hypotheses (values of Θ) being considered.

\(P(\Theta|data)\) is the posterior distribution and represents our updated estimate of the value of Θ given the observed data.

The main objective of Bayesian inference is to calculate the posterior distribution of our parameters using our prior beliefs updated with our likelihood. From the posterior distribution, we can determine the most likely values of Θ given the observed data. Since we are usually only interested in relative probabilities of different hypotheses, \(P(data)\) can be left out of the calculation and we write the model form of Bayes’ theorem as

\[
P(\Theta|data) \propto P(data|\Theta) \cdot P(\Theta)
\]

(3)

where \(\propto\) means “proportional to”. For estimating \(R_t\), the Bayes’ theorem that we use is

\[
P(R_t|k_t) \propto P(k_t|R_t) \cdot P(R_t)
\]

(4)

where the data, \(k_t\), is the daily number of cases, and the parameter, \(R_t\), is the effective reproduction number.

Equation (4) is updated every day by using yesterday's posterior, \(P(R_{t-1}|k_{t-1})\), to be today's prior \(P(R_t)\). On day two, the equation becomes

\[
P(R_2|k_2) \propto P(k_2|R_2) \cdot P(k_1|R_1) \cdot P(R_1)
\]

(5)
So generally,

\[P(R_T|k_T) \propto P(R_1) \cdot \prod_{t=1}^{T} P(k_t|R_t) \] \(\text{(6)}\)

Assuming a uniform starting prior \(P(R_1)\), this reduces to:

\[P(R_T|k_T) \propto \prod_{t=1}^{T} P(k_t|R_t) \] \(\text{(7)}\)

Note that the posterior on any given day is equally influenced by the distant past as much as the recent day. This is fine if we are estimating a static parameter that does not change with time. However, the value of \(R_t\) is dynamic and is more closely related to recent values than older ones. To address this issue, we can adopt Systrom’s approach [21] of only incorporating the last \(m\) days of the likelihood function:

\[P(R_T|k_T) \propto \prod_{t=1}^{T} P(k_t|R_t) \] \(\text{(8)}\)

Bettencourt & Ribeiro’s likelihood function

To calculate the likelihood function \(\mathcal{L}(R_t|k_t) = P(k_t|R_t)\), we first assume that the number of new infections on any given day can be described by a Poisson probability distribution with a mean of \(\lambda\). The probability of seeing \(k\) new cases is

\[P(k|\lambda) = \frac{\lambda^k e^{-\lambda}}{k!} \] \(\text{(9)}\)

Bettencourt & Ribeiro [22] has derived an equation relating \(R_t\) to \(\lambda\).

\[\lambda = k_{t-1} e^{\gamma (R_{t-1})} \] \(\text{(10)}\)

where \(\gamma\) is the reciprocal of the serial interval (see Figure 2). Figure 9 shows the variation of \(\lambda\) with \(R_t\) for some values of \(k_{t-1}\).
Equations (9) and (10) allow us to reformulate the likelihood function as a Poisson distribution, parameterized by fixing k and varying R_t.

$$\mathcal{L}(R_t|k) = P(k|R_t) = \frac{\lambda^k e^{-\lambda}}{k!}$$ \hspace{1cm} (11)

Figure 10 shows that as k increases, the peak value of the likelihood function $\mathcal{L}(R_t|k)$ increases and the distribution becomes less spread out about. This means that as the number of infections increases the confidence of our R_t estimate should improve.
In evaluating the posteriors, it is more convenient to use the logarithm of the likelihood function.

\[
\ln(L(R_t|k)) = k[\ln(k_t - 1) + \gamma(R_t - 1)] - k_t e^{\gamma(R_t - 1)} - \ln(k!)
\]

(12)

To perform the Bayesian update, we can do a sum of the log-likelihoods over the last \(m \) days and then exponentiate to get the likelihood. From equations (8) and (12),

\[
\ln(P(R_T|k_T)) = \left(\sum_{t=T-m}^{T} \ln(L(R_t|k_t)) \right) + \text{constant}
\]

\[
= \left(\sum_{t=T-m}^{T} k_t [\ln(k_t - 1) + \gamma(R_t - 1)] - k_t e^{\gamma(R_t - 1)} \right) + \text{constant}
\]

(13)
Figure 11. Variation of posterior $P(R_t | k)$ with R_t.

From the posterior distribution (Figure 11) we can also obtain the confidence interval for R_t.

2.2. Method for forecasting the final total number of cases and deaths

When the growth rate is slowing down ($R_t < 1$), we can project the final total cases and death counts by fitting publicly available data to a logistic model. The logistic model is often used to describe the shape of the cumulative epidemic curve (Figure 12) where the number of infected cases grow exponentially at first, then slows down, and finally flattens to a maximum limit. The final epidemic size can be estimated based on this slowing growth.

Figure 12. A logistic function. $L = 1$, $k = 1$, $x_0 = 5$.
Some research [e.g. 34-37] have also suggested that another parametric model that can be used for forecasting COVID-19 case or death count is the Gompertz function, defined as

\[C(t) = C_F \left(\frac{C_0}{C_F} \right)^e^{-\gamma t} \]

(14)

It is a special case of the generalised logistic function. The final value asymptote of the function is approached more slowly by the curve than the initial value asymptote, unlike the simple logistic function in which both asymptotes are approached by the curve symmetrically. For example, Figure 13 shows the cumulative death over time for a few countries that clearly illustrate the asymmetry.

![Figure 13. Cumulative COVID-19 death for Singapore, UK, Brazil and USA.](image)

To find the best curve fit to the data and an estimate for \(C_F \), we use the maximum likelihood method [15]. We assume that the number of reported cases, \(x_i \), at time, \(t_i \), follows the Poisson distribution and has a mean of \(\mu_i \), where \(\mu_i \) is the calculated number of cases at time, \(t_i \).

\[P(X_i = x_i) = \frac{\mu_i^x e^{-\mu_i}}{x_i!} \]

(15)
Then, the log-likelihood function to be maximized is

$$\sum_{i=0}^{n-1} -\mu_i + x_i \ln \mu_i$$ \hspace{1cm} (16)

We choose the parameter values for C_F and r that maximize the log-likelihood function. This can be done by using the Solver function in Excel. The parameter C_F is estimated over a rolling window of, say 60 days, to obtain a moving update. See Figure 20.

3. Results and Discussion

3.1 Evaluating the effectiveness of social distancing measures using effective reproduction number

Figure 14 shows the most likely values of R_t and the confidence interval over time for Singapore during the Circuit breaker period calculated using the Bayesian. The serial interval is assumed to be a Gamma distribution with a mean of 7 days and a mode of 4 days (standard deviation = 4.6 days). We can see that R_t changes with time and the confidence interval narrows with more data. The results generally agree with those calculated using the EpiEstim code (Figure 15) [23, 24].

Figure 14. Effective reproduction number R_t
The results clearly show that the Circuit breaker measures imposed from April 7, 2020 have an immediate effect of rapidly slowing down the spread of COVID-19. We can also see that R_t settled to around 1.0 after about two weeks. Since then, the infection rate has remained sustained for more than a month. Given that dormitory residents make up the majority of the infected individuals, it can be concluded that individuals continue to infect others with a reproductive ratio of approximately 1 to 1 in that setting during the Circuit Breaker period as depicted in Figure 16.
Figure 16. Effective reproduction number R_t started to rise again after the end of the circuit breaker in Singapore.

One problem with the calculation method is that it can only provide a good estimate for the reproduction number up to about one to two weeks before the current date. This is due to the time lag between infection and confirmation. As we get closer to the present day, the calculated mean value of R_t always tends to 1.

For example, suppose that today is April 10, 2020, and case data is only available up to this date. Figure 17(a) shows that the calculated R_t values after April 3 do not reflect the true values as shown in Figure 16.
Figure 17. (a) R_t tends to 1 as it approaches the current date (b) R_t adjusted by extrapolating next week’s cases from this week’s data.

Since the calculation cannot provide reliable estimates for current R_t based on real time data, it somewhat limits the metric's usefulness for tracking infection spread. To alleviate this limitation, we do an exponential regression on the latest week’s case data and project the trend forward by one week (Figure 18). The results, shown in Figure 17(b), give a much better estimate for the current values of R_t.

Figure 18. An exponential trend line is used to project new cases forward by one week.
R_t values also reflect the effectiveness of vaccination programmes and the rise of new variants. For example, Figure 19 shows the R_t history for Israel. Israel launched its COVID-19 vaccination campaign on 20 December, 2020. As of 1 June 2021, 60% of the population has had at least one dose. The Delta variant cases started to surge in June 2021 until social restriction measures were reinstated.

![Figure 19. Effective reproduction number for Israel](image)

3.2 How much longer does it take to flatten the curve? Forecasting final case and death counts.

Figure 20 shows the projected cases for Singapore calculated according to the method described in 2.2 and using a two-month data set.

![Figure 20. Projected cases for Singapore based on a two-month dataset](image)
Table 1. A comparison of the projected total deaths from the COVID-19 calculator as at July 25 2020, using data from the last two months, and the Institute for Health Metrics and Evaluation (IHME).

Country	D_0, initial death count on May 20 2020	Total death for Nov 1 2020 by Gompertz function fit	IHME projection for Nov 1 2020	Actual
Singapore	22	28	219,864 (141,969-284,123)	240,265
USA	97,222	186,285		240,265
UK	35,704	47,105	51,274 (48,025-60,078)	46,781
Brazil	18,894	134,781	177,235 (81,623-191,443)	160,104

Table 1 shows the 3-month forecasts for a few countries including Singapore and how they compare with the projections by the Institute for Health Metrics and Evaluation (IHME) [26] at University of Washington Medicine, and the actual death toll. The projections by the IHME are based on more complex analytics and consider factors such as changes in social distancing measures, diagnostic capability, and hospital capacity. Even though we did not directly account for these factors, our forecasts of the total number of deaths were within 20% of the actual numbers. This demonstrates concurrent validity of our model. Assuming current prevailing conditions in the populations, results from the COVID-19 Epidemic Calculator are likely to be realistic estimates. Our simpler model is more accessible to non-epidemiologists and data analysts in other fields who might want to incorporate it in their own analytics.

4. Conclusion

This paper describes the methods underlying the online COVID-19 Epidemic Calculator for tracking COVID-19 growth parameters. From publicly available data, the calculator is used to estimate the distributions at time of symptom-onset and infection, effective reproduction number, final epidemic size, and death toll for Singapore and other countries.

The calculator and the associated graphs clearly show that the Circuit breaker measures imposed from April 7, 2020 in Singapore had an immediate effect of rapidly slowing down the spread of the COVID-19. Additionally, the results also reveal that the effective reproduction number has
settled to around 1.0 after about two weeks. Since then, it has remained at that level for more than a month. This indicates that the infection rate among the dormitory residents is sustained and not likely to be reduced until this group become less susceptible.

The COVID-19 Epidemic Calculator is available in the form of an online spreadsheet [30] that imports daily infection data from publicly available sources [2, 3, 31]. The results are presented online as dashboards on Tableau Public [32] (Figure 21). It has the advantage of fast execution time without the need for any specialized software package or programming script. Users can also interact with the models by changing the parameters. Comparing over eighteen months of data with other similar work, our parameter estimates are in good agreement with those estimated using different models and software. By making the COVID-19 Epidemic Calculator readily accessible online, it is hoped that the public and interested analysts from non-epidemiological disciplines have the tool to assess our effort in fighting COVID-19 meaningfully.

Figure 21. A visualization of the effective reproduction number for countries on a map. The size of each circle is proportional to the total number of infections. The color of the rings within a circle varies over time from red ($R > 0$) to white ($R = 0$) to blue ($R < 0$), reflecting the rate of growth of the virus.
References

1. COVID-19 Situation Report, Ministry of Health Singapore [Internet]. Available from https://covidsitrep.moh.gov.sg/

2. Our World in Data. Coronavirus Source Data [Internet]. https://ourworldindata.org/coronavirus-source-data

3. The COVID Tracking Project [Internet] https://covidtracking.com/api

4. Lauer, Stephen A., et al. "The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application." Annals of internal medicine (2020).

5. Pung, Rachael, et al. "Investigation of three clusters of COVID-19 in Singapore: implications for surveillance and response measures." The Lancet (2020).

6. Li, Qun, et al. "Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia." New England Journal of Medicine (2020).

7. Nishiura, Hiroshi, Natalie M. Linton, and Andrei R. Akhmetzhanov. "Serial interval of novel coronavirus (COVID-19) infections." International journal of infectious diseases (2020).

8. Du, Z., et al. "The serial interval of COVID-19 from publicly reported confirmed cases. medRxiv." DOI: https://doi.org/10.1101/2020.02.19 (2020).

9. Vink, Margaretha Annelie, Martinus Christoffel Jozef Bootsma, and Jacco Wallinga. "Serial intervals of respiratory infectious diseases: a systematic review and analysis." American journal of epidemiology 180.9 (2014): 865-875.

10. World Health Organization. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19) 16-24 February 2020 [Internet]. Geneva: World Health Organization; 2020 Available from: https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-finalreport.pdf

11. Wei WE, Li Z, Chiew CJ, Yong SE, et al. Presymptomatic Transmission of SARS-CoV-2 — Singapore, January 23–March 16, 2020. MMWR, 1 April 2020/69

12. Wu, Joseph T., Kathy Leung, and Gabriel M. Leung. "Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study." The Lancet 395.10225 (2020): 689-697.
13. Shi, Pengpeng, Shengli Cao, and Peihua Feng. "SEIR Transmission dynamics model of 2019 nCoV coronavirus with considering the weak infectious ability and changes in latency duration." medRxiv (2020).

14. Chen, Yi-Cheng, et al. "A Time-dependent SIR model for COVID-19 with Undetectable Infected Persons." arXiv preprint arXiv:2003.00122 (2020).

15. Ma, Junling. "Estimating Epidemic Exponential Growth Rate And Basic Reproduction Number." Infectious Disease Modelling (2020).

16. Abadie, Alberto, Paolo Bertolotti, and Ben Deane Arnab. "Epidemic Modeling and Estimation."

17. Wallinga, Jacco, and Marc Lipsitch. "How generation intervals shape the relationship between growth rates and reproductive numbers." Proceedings of the Royal Society B: Biological Sciences 274.1609 (2007): 599-604.

18. Wallinga, Jacco, and Peter Teunis. "Different epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures." American Journal of epidemiology 160.6 (2004): 509-516.

19. Feller, William. An introduction to probability theory and its applications. Vol. 1. John Wiley & Sons., 1968.

20. Butler, Ken, and Michael A. Stephens. "The distribution of a sum of independent binomial random variables." Methodology and Computing in Applied Probability 19.2 (2017): 557-571.

21. Kevin Systrom. “The Metric We Need to Manage COVID-19. Rt: the effective reproduction number” [Internet]. http://systrom.com/blog/the-metric-we-need-to-manage-covid-19/

22. Bettencourt, Luis MA, and Ruy M. Ribeiro. "Real time bayesian estimation of the epidemic potential of emerging infectious diseases." PLoS One 3.5 (2008).

23. Cori, Anne, et al. "A new framework and software to estimate time-varying reproduction numbers during epidemics." American journal of epidemiology 178.9 (2013): 1505-1512.

24. Epiforecasts [Internet]. https://epiforecasts.io/covid/

25. Muniz-Rodriguez, Kamalich, et al. "Epidemic doubling time of the COVID-19 epidemic by Chinese province." medRxiv (2020).

26. Institute for Health Metrics and Evaluation (IHME) COVID-19 Projections [Internet]. https://covid19.healthdata.org/
27. Yang, Zifeng, et al. "Modified SEIR and AI prediction of the epidemics trend of COVID-19 in China under public health interventions." *Journal of Thoracic Disease* 12.3 (2020): 165.

28. Dietz, Klaus. "The estimation of the basic reproduction number for infectious diseases." *Statistical methods in medical research* 2.1 (1993): 23-41.

29. Bi, Qifang, et al. "Epidemiology and transmission of COVID-19 in 391 cases and 1286 of their close contacts in Shenzhen, China: a retrospective cohort study." *The Lancet Infectious Diseases* (2020).

30. COVID-19 Epidemic Calculator [Internet].
 https://1drv.ms/x/s!AqPZ6X_dB4uSkOFgz-viKTJyxCD2wA?e=yI5HT6

31. Data on the geographic distribution of COVID-19 cases worldwide [Internet].
 https://www.ecdc.europa.eu/en/publications-data/download-todays-data-geographic-distribution-covid-19-cases-worldwide

32. Global Covid19 Reproduction Number and Doubling Time Tracker [Internet].
 http://www.cv19.one

33. Boelle, Pierre-Yves, and Thomas Obadia. "R0: estimation of R0 and real-time reproduction number from epidemics." *R package version 1.2 6* (2015). [Internet].
 https://cran.r-project.org/web/packages/R0/index.html

34. Torrealba-Rodríguez, O., R. A. Conde-Gutiérrez, and A. L. Hernández-Javier. "Modeling and prediction of COVID-19 in Mexico applying mathematical and computational models." *Chaos, Solitons & Fractals* (2020): 109946.

35. Díaz Pérez, Francisco Javier & Chinarro, David & Pino, Mª & Mouhaffel, Adib. (2020). Growth forecast of the covid-19 with the gompertz function, Case study: Italy, spain, Hubei (China) and South Korea. *International Journal of Advanced Engineering Research and Science*. 7. 67-77. 10.22161/ijaers.77.8.

36. Levitt, M., Scaiewicz, A. & Zonta, F. (2020). Predicting the Trajectory of Any COVID19 Epidemic From the Best Straight Line. medRxiv.
 https://doi.org/10.1101/2020.06.26.20140814

37. Ohnishi, Akira, Yusuke Namekawa, and Tokuro Fukui. "Universality in COVID-19 spread in view of the Gompertz function." medRxiv (2020).
Implementation of a Real-Time, Data-Driven Online Epidemic Calculator for Tracking the Spread of COVID-19 in Singapore and Other Countries

Fook Fah YAPa,* and Minglee YONGb

aNanyang Technological University, School of Mechanical and Aerospace Engineering, 50 Nanyang Ave, Singapore 639798, Singapore

bNanyang Technological University, National Institute of Education, 1 Nanyang Walk, Singapore 637616, Singapore

*Corresponding Author: Fook Fah Yap, mffyap@ntu.edu.sg
Compliance with Ethical Standards - Declarations

Disclosure of potential conflicts of interest
The authors declare that they have no conflict of interest.

Ethics approval for research involving Human Participants
This research study did not involve collection of data from human participants. Ethics approval is not required.

Informed consent
Informed consent was not required since there were no individual participants in this study.

Data and/or Code availability
The data used in the calculations are publicly available and the sources are cited in the References section. The codes for the calculator can be downloaded from the website, www.cv19.one.

Authors’ contribution statements
Conceptualization: Fook Fah YAP and Minglee YONG;
Methodology: Fook Fah YAP and Minglee YONG;
Formal analysis and investigation: Fook Fah YAP;
Writing - original draft preparation: Fook Fah YAP;
Writing - review and editing: Fook Fah YAP and Minglee YONG