Electrophysiological experiments in microgravity: lessons learned and future challenges

Simon L. Wuest1,2, Benjamin Gantenbein2, Fabian Ille2 and Marcel Egli3

Advances in electrophysiological experiments have led to the discovery of mechanosensitive ion channels (MSCs) and the identification of the physiological function of specific MSCs. They are believed to play important roles in mechanosensitive pathways by allowing for cells to sense their mechanical environment. However, the physiological function of many MSCs has not been conclusively identified. Therefore, experiments have been developed that expose cells to various mechanical loads, such as shear flow, membrane indentation, osmotic challenges and hydrostatic pressure. In line with these experiments, mechanical unloading, as experienced in microgravity, represents an interesting alternative condition, since exposure to microgravity leads to a series of physiological adaption processes. As outlined in this review, electrophysiological experiments performed in microgravity have shown an influence of gravity on biological functions depending on ion channels at all hierarchical levels, from the cellular level to organs. In this context, calcium signaling represents an interesting cellular pathway, as it involves the direct action of calcium-permeable ion channels, and specific gravitatic cells have linked graviperception to this pathway. Multiple key proteins in the graviperception pathways have been identified. However, measurements on vertebrae cells have revealed controversial results. In conclusion, electrophysiological experiments in microgravity have shown that ion-channel-dependent physiological processes are altered in mechanically unloaded conditions. Future experiments may provide a better understanding of the underlying mechanisms.

npj Microgravity (2018) 4:7; doi:10.1038/s41526-018-0042-3

INTRODUCTION

Living organisms strongly adapt to their daily mechanical load, and cells have shown responses to various mechanical stimuli in in-vitro experiments.1–7 However, it is still not fully understood how cells transform mechanical stimuli into biological responses. Among other mechanisms, mechanosensitive ion channels (MSCs) are thought to be key players (reviewed in refs. 3,5,7–10). Advances in electrophysiological experiments have shown that multiple mechanically induced physiological responses involve the activation of specific ion channels. However, the physiological function is not clear for many identified MSCs.7–13 Vice versa, multiple physiological functions are thought to rely on MSCs, but the pore-forming protein could not be identified.14 Various in-situ electrophysiological experiments have been developed to elucidate these unknowns. In this context, microgravity platforms have revealed interesting results: They allow for the study of biological processes in a mechanically unloaded condition. Furthermore, exposure to microgravity leads to a series of physiological adaption processes (reviewed in refs.15–17).

This review article outlines electrophysiological experiments performed in microgravity. After a general introduction to the mechanosensitivity of ion channels, various electrophysiological experiments conducted on multiple microgravity platforms are summarized. These experiments have shown an influence of gravity on all hierarchical levels of organization, from the cellular level to the organ. Furthermore, the gravitational effects on calcium signaling are discussed. The findings indicate that, despite the technical challenges, such experiments help to better understand how mechanical forces affects electrophysiological mechanisms.

MECHANOSensitivity of ion ChanNels

Patch clamping electromographically isolates an area of the cell’s membrane and enables electrophysiological recordings with high spatial resolution.18 Many MSCs have been discovered by aspiring a membrane patch with a glass micro-pipette and stretching it by suction (reviewed in ref. 19). MSCs (also referred as stretch activated channels) are characterized by their conformational change in response to mechanical load and the resulting transition into an open or closed state (reviewed in ref.20). MSCs are believed to play important roles in mechanosensitive pathways, allowing for cells to sense their mechanical environment (reviewed in refs.5,5,7–10).

Along with the increasing numbers of identified mechanosensitive ion channels,11,21,22 the elucidation of the physiological function of specific MSCs has also progressed. For instance, the bacterial large conductance mechanosensitive channel (MscL) and small conductance mechanosensitive channel (MscS) are activated by membrane tension just below rupture tension of the lipid bilayer. Thereby, they function as “pressure relieve valves” and protect the cell from lysis in case of extreme osmotic swelling, such as after rainfall.12,21 MEC-4 (a member of the DEG/ENaC family) was identified as a mechanotransducer in Caenorhabditis

1School of Engineering and Architecture, Institute of Medical Engineering, Space Biology Group, Lucerne University of Applied Sciences and Arts, Hergiswil, Switzerland and
2Institute for Surgical Technology and Biomechanics, Tissue and Organ Mechanobiology, University of Bern, Bern, Switzerland
Correspondence: Marcel Egli (marcel.egli@hslu.ch)

Received: 4 December 2017 Revised: 7 March 2018 Accepted: 7 March 2018
Published online: 29 March 2018

Published in cooperation with the Biodesign Institute at Arizona State University, with the support of NASA
elgans. External force activates mechanoreceptor currents in the touch receptor neurons. Similar, MSCs in the dorsal root ganglia of sensory neurons in vertebrates are activated by mechanical stimuli, thereby converting the mechanical stimuli into an electrical signal. Piezo2 and TRPA1 (transient receptor potential cation channel, first member in the ankyrin subfamily) are among the potential MSC candidates (reviewed in ref. 29). Additionally, in the inner ear of mammals, mechanically sensitive hair bundles protruding apically from hair cells transduce auditory and vestibular stimuli. Bundle deformation caused by sound-induced vibrations (auditory) or movement of the overlying otolithic membrane (vestibular) directly opens cation-permeable MSCs in the hair cell (reviewed in ref. 14). However, the pore-forming protein could not be fully identified.30 Currently, four eukaryotic channel families are thought to contain mechanosensitive members: the degenerin/epithelial sodium channels (DEG/ENaC), transient receptor potential channels (TRP), two-pore-domain potassium channels (K2P) and MscS-like channels (reviewed in refs.10,11). “MSCs are extremely diverse at a molecular level”19 and no “force-sensing domain” could be identified yet.21 For many MSCs it is unclear how the channel is coupled with the mechanical force, which is the subject of ongoing research. Some specific channels are thought to be linked either directly or indirectly to the cytoskeleton or the extracellular matrix. Other channels are believed to interact only with the surrounding lipids (reviewed in refs.19,21,31,32). For the latter channels, the channel-gating mechanism could be determined by the membrane properties, lipid mismatches and far-field tension (reviewed in ref. 19–21). The properties of the lipid bilayer are known to respond to various changing conditions such as temperature,23 deformation,34 pH,35 specific ions,46 and gravity.37

The physiological function of many ion channels that have been identified to be mechanosensitive is still unknown.11 To add further complexity, various MSC channels can be activated through multiple pathways (reviewed in46). TRPC1 (transient receptor potential channel 1), for instance, is thought to be activated by the depletion of intracellular calcium-stores (store-operated calcium influx), through interactions with inositol 1,4,5-trisphosphate receptors (IP3Rs) or mechanically (stretch activated; reviewed in ref. 38). Likewise, TRPV4 (transient receptor potential cation channel, the fourth member in the vanilloid subfamily) is activated in response to hypotonic environments, membrane stress and moderate heat (24–38°C; reviewed in ref. 39). One reason why the physiological function of many MSCs is unknown is because their mechanosensitivity has been detected in patch-clamping experiments with highly stressed plasma membranes.20 However, the cell membrane is thought to be relaxed under normal physiological conditions.30 Therefore, some channels that are considered to be MSCs might not belong to a physiological force-sensing system at all. Yet, some channels that are not considered to be MSCs are also known to be sensitive to membrane stretch. The voltage-dependent K+ channel (Kv), for instance, shows sensitivity to small mechanical perturbations of the membrane.41 Therefore, sensitivity to membrane tension could be a much more general property than commonly thought.21

Various experiments have been developed to determine the physiological function of MSCs, which have exposed cells to various mechanical loads in situ. In such electrophysiological experiments, cells have been exposed to cell stretch,42–46 shear flow,46–48 membrane indentation,49–51 osmotic challenges52,53 hydrostatic pressure54–56 and other loading conditions. In line with these experiments, mechanical unloading, as experienced in microgravity, represents an interesting condition, since exposure to microgravity leads to a series of physiological adaption processes (reviewed in refs. 13–17).

ELECTROPHYSIOLOGICAL EXPERIMENTS IN MICROGRAVITY

Effects at the cellular and tissue levels

A number of electrophysiological experiments have been conducted in microgravity conditions. They have demonstrated that microgravity influences biological functions depending on electrophysiological properties at all levels of the hierarchical organization, from the membrane to the whole system (Fig. 1).

Plain lipid membranes and membranes of the human neuroblastoma cell line SH-SY5Y become more fluid (lower viscosity) with decreasing gravity during parabolic flights.37 By applying high electrostatic potentials across plain lipid membranes (>100 mV), current fluctuations can be induced (reviewed in refs.57). This membrane conductance was reduced at lower gravity levels (during parabolic flight). The authors speculated that the increased membrane fluidity in microgravity could accelerate the repair of membrane structure defects.38 In the same experiment, the electrical capacity of plain lipid vesicles was slightly higher in hypergravity and microgravity. However, the authors could not rule out that the effect was due to changes in membrane geometry.38

As discussed above, the properties of lipid membranes could directly affect the kinetics of ion channels (see section “Mechanosensitivity of ion channels”). One could therefore expect gravity to influence specific ion channels as well. An early experiment on liposome-reconstituted cardiac gap junctions did not show altered channel activity during parabolic flights.59 Later experiments showed that the open-state probability of pores isolated from Escherichia coli and incorporated into planar lipid bilayers decreased under microgravity and increased under hypergravity.60 Also, alamethicin, an artificial pore-forming polypeptide, shows reduced activity under microgravity and hypergravity.60–62

Furthermore, native oocytes from Xenopus laevis, as well as oocytes that overexpress epithelial sodium channels (ENaC), demonstrate reduced membrane conductivity under microgravity and increased conductivity under hypergravity (in parabolic flights).53,54 Ion channels are the key mediators of electric resting and action potentials (APs) in excitable cells. Neuronal cells (from the neuroblastoma cell line SH-SYSY) hyperpolarized under higher gravity and depolarized under microgravity (parabolic flights).65 Likewise, insect neurons (SF21) depolarized in microgravity (drop tower experiment).66 AP kinetics are gravity dependent as well. The AP propagation velocity appeared to decrease under microgravity conditions and increased under hypergravity conditions in intact earthworms and isolated axons of rats and earthworms.67 The frequency of spontaneously spiking neurons in leneches increased in microgravity during a drop tower experiment.67 In agreement, excitable tissue is affected by gravity as well. Spreading depression (SD) waves in neuronal tissue are depolarization waves that are followed by a refractory period. The velocity of SD waves of retinal eyecups from chickens was slower under microgravity and faster under hypergravity (parabolic flights and centrifuges).58–71 However, the SD waves were faster during a sounding rocket mission (TEXUS).68 The authors speculated that a possible adaptation effect from the launch could have been the reason for this disagreement.

Effects at the organ and system levels

Microgravity-induced effects have also been observed at the organ and systemic levels. Stimulating the posterior tibial nerve leads to involuntary and nearly instantaneous muscle contractions (neuromuscular reaction) of the soleus muscle.72,73 Experiments during parabolic flights “indicated that synaptic and axonal nerve conduction velocity, as well as axonal and spinal excitability are diminished with reduced gravitational forces […] and increased […] in hypergravity.”74 Kohn and Ritzmann reviewed the influence of gravity on neuromuscular systems in more detail.74

Electrophysiological experiments in microgravity
SL Wuest et al.
Effect of microgravity on cellular and organ functions that depend on ion channels. Gravity affects ion-channel-dependent physiological functions at all level of organization, from the membrane and the channels to the whole organism (left column). The middle column indicates microgravity induced effects and the right column indicate the specimen in which these effects have been observed. The images (left column) illustrate representative structures of microgravity exposed specimens.

Membranes	Microgravity	Tissue	Organ
Ion Channel	Becomes more fluid (lower viscosity)	Human neuroblastoma	Human neuroblastoma
	Reduced current fluctuations induce through high voltages (>100 mV)	Plain lipid membrane	Human
	Reduced open state probability of ion channels	Points from E. coli in planar lipid bilayer	Rat
		Alamethicin (pore-forming polypeptide)	Earthworm axon
		Xenopus laevis oocyte	Neurons in leech

GRavitational Effects on Calcium Signaling

Introduction to calcium signaling:

In the context of electrophysiological experiments performed in microgravity, calcium signaling represents an interesting pathway: (1) Calcium signaling involves the direct action of calcium-permeable ion channels. (2) Specific gravitactic cells have linked gravitropism to calcium signaling.

Calcium (Ca\(^{2+}\)) is a ubiquitous intracellular signal responsible for controlling numerous cellular processes, including the cell cycle, proliferation, differentiation, apoptosis and cytoskeletal remodeling (reviewed in refs. 85, 86). The concentration of free Ca\(^{2+}\) in cytosol is tightly regulated by the combined action of channels, buffers, pumps and exchangers. \(^{87}\) At rest, the cytosolic Ca\(^{2+}\) concentration is around 100 nM. During Ca\(^{2+}\) signaling, the free Ca\(^{2+}\) in the cytosol transiently increases to roughly 1000 nM (reviewed in ref. 86). The principle Ca\(^{2+}\) sources during Ca\(^{2+}\) signaling are the extracellular environment and internal Ca\(^{2+}\) stores (primarily located in the endoplasmic or sarcoplasmic reticulum). Specific Ca\(^{2+}\)-permeable ion channels (transiently) open and allow Ca\(^{2+}\) ions to rush into the cytosol, along the electrochemical gradient (reviewed in ref. 87). From the inflowing Ca\(^{2+}\), only a very small quantity ends up as free Ca\(^{2+}\). Most of it is rapidly sequestered by Ca\(^{2+}\)-buffers and effectors (reviewed in ref. 87). Generally, Ca\(^{2+}\) ions quickly encounter a binding protein and do not diffuse far (around 0.1–0.5 μm). \(^{88,89}\) Therefore, Ca\(^{2+}\) signaling can be extremely localized (reviewed in ref. 89). Each cell type expresses a unique set of proteins to create a Ca\(^{2+}\) signaling system with different spatial and temporal properties (reviewed in refs. 86, 87). Since several Ca\(^{2+}\)-permeable ion channels have been shown to be sensitive to mechanical load, it is speculated that mechanical load could very well interfere with Ca\(^{2+}\) signaling. \(^{85}\)

Fig. 1 Effect of microgravity on cellular and organ functions that depend on ion channels.

Multiple measurements on brain activity (electroencephalography, EEG) have been conducted under reduced-gravity conditions on animals and human subjects. Rats showed reduced neuronal activity in the subthalamic cerebrovasodilator area, a key area in controlling cerebral blood flow, in low-gravity conditions (parabolic flight). \(^{75}\) Recordings of the slow cortical potential (SCP) during parabolic flights showed that the SCP shifted in a positive direction for 4 out of 9 subjects during microgravity. A negative shift during microgravity was recorded for 3 of the subjects, and a no significant reaction could be detected for 2 of the subjects. A positive shift of the DC potential indicates lower excitability of the central nervous system and inhibition of the cortical network. \(^{82}\) Another group also found a decrease in beta rhythms \((8–12 \text{ Hz})\) recorded in the eyes-closed state during microgravity. They interpreted this as a sign of increase in arousal due to the uncommon environment inflight. \(^{82}\) Another group also found a decrease in beta amplitude in microgravity on 9 subjects during parabolic flights, which indicated a lower arousal in microgravity. \(^{76}\) Marušič et al. reviewed the effects of various gravity levels on the brain (EEG recordings). \(^{83}\)

Several astronauts have experienced heart rhythm disturbances during space flight missions. However, it was not clear if these arrhythmias were caused by microgravity or a stressful psychologically situation (reviewed in ref. 84).
Calcium signaling in gravitaxis

Gravitransduction is linked to Ca²⁺ signaling in specific gravitactic organisms, such as *Euglena* and *Arabidopsis thaliana*. The unicellular algae *Euglena* migrate vertically in the water column to an optimal position. Besides being phototactic, *Euglena* show an evidently negative gravitaxis (swimming against the gravity vector). *Euglena* are slightly denser than their surrounding water. The gravity-induced pressure of the whole cell body activates specific Ca²⁺-permeable MSCs at the front end of the cell. A transient receptor potential-like (TRP) channel has been identified as the presumable MSC. The entering Ca²⁺ binds to a specific calmodulin, which then activates cAMP-producing adenylyl cyclase. The cAMP subsequently activates a specific protein kinase A, which is thought to phosphorylate proteins inside the flagellum, resulting in a corrected swimming direction (reviewed in refs. 96,97). Accordingly, *Euglena gracilis* showed a transient Ca²⁺ signal when going from lower to higher accelerations during parabolic flights. During a sounding rocket flight (MAXUS 3) with an inflight centrifuge, *Euglena longa* showed an intermediate Ca²⁺ fluorescence signal in microgravity. The signal increased steeply with increasing acceleration by centrifugation. Also, the unicellular algae *Astasia* showed an increase in Ca²⁺ signal upon acceleration and a decrease in microgravity conditions during a sounding rocket experiment (MAXUS 3). Gravitaxis of *Euglena* has been reviewed in detail by Häder et al.

Gravity sensing is thought to be mediated by Ca²⁺ in higher plants as well. However, the molecular mechanisms are not well understood. Gravity stimulation by parabolic flight induced a delayed increase in cytosolic Ca²⁺ in *A. thaliana* seedlings. Isolated *A. thaliana* cells showed an increase in intracellular Ca²⁺ concentration under low gravity and a decrease under hypergravity (parabolic flight).

Calcium signaling in cells of vertebrates

Recordings of the intracellular concentrations of free Ca²⁺ in animal cells under various gravitational loads have revealed controversial results so far. The intracellular Ca²⁺ concentration of neuronal cells decreased under microgravity during a drop tower experiment. In contrast, the intracellular Ca²⁺ concentration increased in a human neuroblastoma cell line (SH-SYSY) under hypergravity and microgravity during a parabolic flight, which was believed to be due to a memory or hysteresis effect resulting from an increased Ca²⁺ concentration during the hypergravity phase. Still, recent data from the same human cell line (SH-SYSY, undifferentiated state) showed that intracellular Ca²⁺ concentration increased under lower gravity and decreased under higher gravity (parabolic flight). Furthermore, findings by our group have shown that a microgravity-induced shift in free Ca²⁺ is cell-cycle dependent in mammalian cells (parabolic flight; publication in preparation). In a pilot study on native *Xenopus laevis* oocytes, a Ca²⁺-dependent current tended to be smaller under microgravity than under 1 g conditions (parabolic flight).

CONCLUSION AND OUTLOOK

The results of the successful experiments suggest that gravity influences cellular and organ functions depending on ion channels. Generally speaking, it seems that the open-state probability of ion channels is lower and the kinetics is slower in low-gravity conditions. This could indicate that sensitivity to mechanical load could be a rather general property of ion channels. Since the channel-gating properties may be directly influenced by the membrane properties, which are also gravity dependent, the membrane might be the primary structure of a cellular gravity-sensitive system. How gravity affects Ca²⁺ signaling in animal cells remains unclear. Since several Ca²⁺-permeable ion channels are also mechanosensitive and Ca²⁺ signaling is involved in the graviperception of specific plants, gravity might interfere with Ca²⁺ signaling in non-specialized cells as well.

Many of the performed experiments have been "black box" experiments that did not allow mechanosensitive molecular identities to be identified. Recent advances in engineering (e.g., automation, micro technology, and fast data acquisition) and molecular biology (e.g., pharmaceutical substances, reporter dyes, siRNA and genetic manipulation) will provide a promising toolkit.
However, to date it is unclear whether cells sense microgravity directly or indirectly. In microgravity, all gravity-dependent physical processes are altered and thus, sedimentation (and buoyancy), hydrostatic pressure difference and convection are (almost) absent in a static cell culture system. This changes the microenvironment of a living cell, which might influence its normal behavior. In previous reviews on gravitational cell biology, scientists argued that nonspecialized cells are unable to sense unit gravity. At the cellular level, gravitational forces are much smaller than other forces such as electrical forces, thermal noise and chemical energies. Therefore, the response of microgravity exposed cells, must be the result of an altered microenvironment. However, in the light of the before discussed results, this view may have to be challenged. Almost instantaneously responses to microgravity observed on membranes, ion channels and isolated cells are unlikely to be triggered by reduced sedimentation or convection.

As discussed in this review, the sensitivity of ion channels to mechanical load may not be limited to MSCs but could be a rather general property. In fact, mechanosensitivity might be a general property at the molecular level. For instance, many of the enzymes and substrates involved in DNA synthesis, RNA processing, protein synthesis and glycolysis are only functional when immobilized on insoluble scaffolds (reviewed in refs. ,). Even the lifetime of non-covalent bonds decreases under force. Surprisingly, the molecular processes of microtubule self-organization in a cell-free system also appear to be gravity dependent. In conclusion, electrophysiological experiments in microgravity have shown that ion-channel-dependent physiological processes are altered in a mechanically unloaded condition. Future experiments shall be aimed at better understanding the underlying mechanisms.

ACKNOWLEDGEMENTS

We thank the Lucerne School of Engineering and Architecture (Switzerland) for sponsoring this publication. We also acknowledge Hansjörg Wyss Medical (USA) and Hansjörg Wyss for the financial support.

AUTHOR CONTRIBUTIONS

S.L.W.: Preparation of manuscript. B.G.: Figures, review of manuscript. F.I.: Review of manuscript. M.E.: Review of manuscript, funding.

ADDITIONAL INFORMATION

Competing interests: The authors declare no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

REFERENCES

1. Hamill, O. P. & Martinac, B. Molecular basis of mechanotransduction in living cells. Physiol. Rev. 81, 685–740 (2001).
2. Ingber, D. E. Tensegrity II. How structural networks influence cellular information processing. J. Cell Sci. 116, 1397–1408 (2003).
3. Wang, J. H. & Thompatty, B. P. An introductory review of cell mechanobiology. Biomech. Model. Mechanobiol. 5, 1–16 (2006).
4. Wang, J., Lu, D., Mao, D. & Long, M. Mechanomics: an emerging field between biology and biomechanics. Protein Cell 5, 518–531 (2014).
5. Eyckmans, J., Boudou, T., Yu, X. & Chen, C. S. A. Hitchiker’s guide to mechanobiology. Dev. Cell 21, 35–47 (2011).
6. Vogel, V. & Sheetz, M. Local force and geometry sensing regulate cell functions. Nat. Rev. Mol. Cell Biol. 7, 265–275 (2006).
7. Huang, H., Kamm, R. D. & Lee, R. T. Cell mechanics and mechanotransduction: pathways, probes, and physiology. Am. J. Physiol. Cell Physiol. 287, C1–C11 (2004).
8. Christensen, A. P. & Corey, D. P. TRP channels in mechanosensation: direct or indirect activation? Nat. Rev. Neurosci. 8, 510–521 (2007).
9. Ogneva, I. V. Cell mechanosensitivity: mechanical properties and interaction with gravitational field. Adv. Biores. Int. 2013, 598–641 (2013).
10. Kobayashi, T. & Sokabe, M. Sensing substrate rigidity by mechanosensitive ion channels with stretch fibers and focal adhesions. Curr. Opin. Cell Biol. 22, 669–676 (2010).
11. Arnadottir, J. & Chalfie, M. Eukaryotic mechanosensitive channels. Annu. Rev. Biophys. 39, 111–137 (2010).
12. Haswell, E. S., Phillips, R. & Rees, D. C. Mechanosensitive channels: what can they do and how do they do it? Structure 19, 1358–1369 (2011).
13. Cox, C. D., Babi, N. & Martinac, B. Bacterial mechanosensors. Annu. Rev. Physiol. 80, 71–93 (2018).
14. Gillespie, P. G. & Walker, R. G. Molecular basis of mechanosensory transduction. Nature 413, 194–202 (2001).
15. Williams, D., Kuipers, A., Mukai, C. & Thirsk, R. Acclimation during space flight: effects on human physiology. CMAJ 180, 1317–1323 (2009).
16. Blaber, E., Marcal, H. & Burns, B. P. Bioastronautics: the influence of microgravity on astronaut health. Astrobiology 10, 463–473 (2010).
17. Pietsch, J. et al. The effects of weightlessness on the human organism and mammalian cells. Curr. Mol. Med 11, 350–364 (2011).
18. Neher, E. & Sakmann, B. Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260, 799–802 (1976).
19. Sachs, F. & Morris, C. E. Mechanosensitive ion channels in nonspecialized cells. Rev. Physiol. Biochem. Pharmacol. 132, 1–77 (1998).
20. Sachs, F. Stretch-activated ion channels: what are they? Physiology 25, 50–56 (2010).
21. Anishkin, A., Loukin, S. H., Teng, J. & Kung, C. Feeling the hidden mechanical field between cells. Proc. Natl. Acad. Sci. USA 111, 7898–7905 (2014).
22. Gu, Y. & Gu, C. Physiological and pathological functions of mechanosensitive ion channels. Mol. Neurobiol. 50, 339–347 (2014).
23. Chang, G., Spencer, R. H., Lee, A. T., Barclay, M. T. & Rees, D. C. Structure of the Mscl homolog from Mycobacterium tuberculosis: a gated mechanosensitive ion channel. Science 282, 2220–2226 (1998).
24. Perozo, E., Cortes, D. M., Sompoppisut, P., Kloda, A. & Martinac, B. Open channel structure of Mscl and the gating mechanism of mechanosensitive channels. Nature 418, 942–948 (2002).
25. Sukharev, S. I., Blount, P., Martinac, B. & Kung, C. Mechanosensitive channels of Escherichia coli: the Mscl gene, protein, and activities. Annu. Rev. Physiol. 59, 633–657 (1997).
26. Sukharev, S., Betanzos, M., Chiang, C. S. & Guy, H. R. The gating mechanism of the large mechanosensitive channel MscL. Nature 409, 720–724 (2001).
27. Moe, P. C., Blount, P. & Kung, C. Functional and structural conservation in the mechanosensitive channel Mscl implicates elements crucial for mechanosensation. Mol. Microbiol. 28, 583–592 (1998).
28. O’Hagan, R., Chalfie, M. & Goodman, M. B. The MEC-4 DEG/ENaC channel of Caenorhabditis elegans touch receptor neurons transduces mechanical signals. Nat. Neurosci. 8, 43–50 (2005).
29. Hao, J., Bonnet, C., Amsalem, M., Ruel, J. & Delmas, P. Transduction and encoding sensory information by skin mechanoreceptors. Pflug. Arch. 467, 109–119 (2015).
30. Fettplace, R. is TMC1 the hair cell mechanotransducer channel? Biophys. J. 111, 3–9 (2016).
31. Hamill, O. P. Twenty odd years of stretch-sensitive channels. Pflug. Arch. 453, 333–351 (2000).
32. Hayakawa, K., Tatsumi, H. & Sokabe, M. Actin stress fibers transmit and focus force to activate mechanosensitive channels. J. Cell Sci. 121, 496–503 (2008).
33. Simon, S. A., Advani, S. & McIntosh, T. J. Temperature dependence of the repulsive pressure between phosphatidylcholine bilayers. Biophys. J. 69, 1473–1483 (1995).

Published in cooperation with the Biodesign Institute at Arizona State University, with the support of NASA npj Microgravity (2018) 7
46. Goldermann, M. & Hanke, W. Ion channel are sensitive to gravity changes. Microgravity Sci. Technol. 13, 35–38 (2001).

53. Phan, M. N. et al. Functional characterization of TRPV4 as an osmotically sensitive ion channel in porcine articular chondrocytes. Pflug. Arch. 460, 858–865 (2000).

58. Maimon, A., Melamed, D. & Itskovitch, E. Activation and inactivation of a non-selective cation conductance by local mechanical deformation of acutely isolated cardiac fibroblasts. Cardiovase Res 57, 793–803 (2003).

63. Clemo, H. F., Stambler, B. S. & Baumgarten, C. M. Persistent activation of a swelling-activated cation current in ventricular myocytes from dogs with tachycardia-induced congestive heart failure. Circ. Res. 83, 147–157 (1998).

68. Wright, M., Jobanputra, P., Bavington, C., Salter, D. M. & Nuki, G. Effects of intermittent pressure-induced strain on the electrophysiology of cultured human microvascular endothelial cells. Am. J. Physiol. Ren. Physiol. 287, F689–F695 (2004).

69. Meyerson, A. et al. The effects of changing gravity on the brain electrocortical activity. Brain Res 1051, 141–147 (2005).

70. Schneider, S. et al. What happens to the brain in weightlessness? A micro-encephalographic oscillations during the arrest reaction. Brain Res 104, 104–116 (2006).

71. Leroy, A. et al. Mu and alpha EEG rhythms during the arrest reaction in weightlessness. Acta Physiol. Scand. 180, 537–543 (2004).

72. Goldermann, M. & Hanke, W. Ion channel are sensitive to gravity changes. Microgravity Sci. Technol. 13, 35–38 (2001).

61. Hanke, W. Studies of the interaction of gravity with biological membranes using alamethicin doped planar lipid bilayers as a model system. Adv. Space Res. 17, 143–150 (1996).

62. Berridge, M. J., Bootman, M. D. & Roderick, H. L. Calcium signalling: dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell Biol. 4, 517–529 (2003).

63. Arrigo, C. E. et al. Hydrostatic pressure-regulated ion transport in bladder urothelial cells. Am. J. Physiol. Ren. Physiol. 285, F651–F663 (2003).

64. Otten, S. M., Stover, J. D. & Nagamoto, J. Examining the role of mechanosensitive ion channels in pressure mechanotransduction in rat bladder urothelial cells. Ann. Biomed. Eng. 39, 688–697 (2011).

65. Heimbuch, T. Lipid ion channels. Biophys. Chem. 150, 2–22 (2010).

66. Sieber, M., Kästner, M., Hanke, W., H. & Kohn, F. P. M. Conduction and capacity of planar lipid membranes under conditions of variable gravity. J. Biomed. Sci. 9, 6 (2001).

67. Claassen, D. E. & Spooner, R. S. Effects of microgravity on liposome-reconstituted cardiac gap junction channel activity. Biochem. Biophys. Res. Commun. 161, 358–362 (1989).

68. Goldermann, M. & Hanke, W. Ion channel are sensitive to gravity changes. Microgravity Sci. Technol. 13, 35–38 (2001).

69. Goldermann, M. & Hanke, W. Ion channel are sensitive to gravity changes. Microgravity Sci. Technol. 13, 35–38 (2001).
93. Daiker, V., Lebert, M., Richter, P. & Hader, D. P. Molecular characterization of a calmodulin involved in the signal transduction chain of gravitaxis in Euglena gracilis. *Planta* **231**, 1229–1236 (2010).

94. Tahedl, H., Richter, P., Lebert, M. & Hader, D. P. cAMP is involved in gravitaxis signal transduction of *Euglena gracilis*. *Microgravity Sci. Technol.* **11**, 173–178 (1998).

95. Daiker, V., Hader, D. P., Richter, P. R. & Lebert, M. The involvement of a protein kinase in phototaxis and gravitaxis of *Euglena gracilis*. *Planta* **233**, 1055–1062 (2011).

96. Hader, D.-P. et al. Investigation of gravitaxis and phototaxis in *Euglena gracilis*. In *Advances in Life Sciences* (eds Sinha, R., Sharma, N. K., & Rai, A. K.) 117–131 (IK International Publishing House, New Delhi, 2010).

97. Hader, D. P. & Hemmersbach, R. Gravitaxis in *Euglena*. *Adv. Exp. Med. Biol.* **799**, 237–266 (2017).

98. Richter, P. R., Schuster, M., Wagner, H., Lebert, M. & Hader, D. P. Physiological parameters of gravitaxis in the flagellate *Euglena gracilis* obtained during a parabolic flight campaign. *J. Plant Physiol.* **159**, 181–190 (2002).

99. Richter, P. R., Schuster, M., Meyer, I., Lebert, M. & Hader, D. P. Indications for acceleration-dependent changes of membrane potential in the flagellate *Euglena gracilis*. *Prototropa & Selaginella* **229**, 101–108 (2006).

100. Hader, D.-P. & Lebert, M. Mechanism of gravitactic signal perception and signal transduction of *Euglena gracilis*. *Microgravity News*, **14** (1998).

101. Richter, P., Lebert, M., Tahedl, H. & Hader, D. P. Calcium is involved in the gravitactic orientation in colorless flagellates. *J. Plant Physiol.* **158**, 689–697 (2001).

102. Plieth, C. Calcium: just another regulator in the machinery of life? *Ann Bot* **96**, 1–8 (2005).

103. Tabony, J., Glade, N., Papaseit, C. & Demongeot, J. Gravity dependence of microtubule self-organization is gravity-dependent. *Proc. Natl Acad. Sci. USA* **106**, 1055–1062 (2009).

104. Papaseit, C., Pochon, N. & Tabony, J. Microtubule self-organization is gravity-dependent. *Proc. Natl Acad. Sci. USA* **97**, 8364–8368 (2000).

105. Tabony, J., Glade, N., Papaseit, C. & Demongeot, J. Gravity dependence of microtubule self-organization. *J. Gravit. Physiol.* **9**, P245–P248 (2002).