Clark measures and de Branges–Rovnyak spaces in several variables

Aleksei B. Aleksandrov and Evgueni Doubtsov

St. Petersburg State University, St. Petersburg, Russia

ABSTRACT
Let \(D \) denote a finite product of \(B_{n_j} \), \(j \geq 1 \), and \(\partial D \) denote the distinguished boundary \(\partial B_{n_1} \times \partial B_{n_2} \times \cdots \times \partial B_{n_k} \). For a non-constant holomorphic function \(b : D \to B_1 \), we study the corresponding family of Clark measures on \(\partial D \). We construct a natural unitary operator from the de Branges–Rovnyak space \(\mathcal{H}(b) \) onto the Hardy space \(\mathcal{H}(\sigma_\partial) \). As an application, for \(D = B_n \) and an inner function \(I : B_n \to B_1 \), we show that the property \(\sigma_1[I] \ll \sigma_1[b] \) is directly related to the membership of an appropriate explicit function in \(\mathcal{H}(b) \).

1. Introduction

Let \(B_n \) denote the open unit ball of \(\mathbb{C}^n \), \(n \geq 1 \), and \(\partial B_n \) denote the unit sphere. We also use symbols \(\mathbb{D} \) and \(\mathbb{T} \) for the unit disc \(B_1 \) and the unit circle \(\partial B_1 \), respectively.

Given \(k \in \mathbb{N} \) and \(n_j \in \mathbb{N}, j = 1, 2, \ldots, k \), let
\[
D = D[n_1, n_2, \ldots, n_k] = B_{n_1} \times B_{n_2} \times \cdots \times B_{n_k} \subset \mathbb{C}^{n_1+n_2+\cdots+n_k}.
\]

Model examples of \(D \) are \(B_n \) and the polydisc \(\mathbb{D}^n \).
Let \(C(z, \zeta) = C_D(z, \zeta) \) denote the Cauchy kernel for \(D \). Recall that
\[
C_{B_n}(z, \zeta) = \frac{1}{(1 - \langle z, \zeta \rangle)^n}, \quad z \in B_n, \quad \zeta \in S_n.
\]

Let \(\partial D \) denote the distinguished boundary \(\partial B_{n_1} \times \partial B_{n_2} \times \cdots \times \partial B_{n_k} \) of \(D \). Then
\[
C_D(z, \zeta) = \prod_{j=1}^k \frac{1}{(1 - \langle z_j, \zeta_j \rangle)^{n_j}}, \quad z = (z_1, z_2, \ldots, z_k) \in D, \quad \zeta = (\zeta_1, \zeta_2, \ldots, \zeta_k) \in \partial D,
\]
where \(z_j = (z_{j,1}, z_{j,2}, \ldots, z_{j,n_j}) \in B_{n_j} \) and \(\zeta_j = (\zeta_{j,1}, \zeta_{j,2}, \ldots, \zeta_{j,n_j}) \in \partial B_{n_j} \).
The corresponding Poisson type kernel is given by the formula

$$P(z, \zeta) = \frac{C(z, \zeta)C(\zeta, z)}{C(z, z)}, \quad z \in \mathcal{D}, \quad \zeta \in \partial \mathcal{D}.$$

For $\mathcal{D} = B_n$, $P(\cdot, \cdot)$ is often called the Möbius invariant Poisson kernel; see [1] for further details.

Let $M(\partial \mathcal{D})$ denote the space of complex Borel measures on $\partial \mathcal{D}$. For $\mu \in M(\partial \mathcal{D})$, the Cauchy transform μ_+ is defined as

$$\mu_+(z) = \int_{\partial \mathcal{D}} C(z, \zeta) \, d\mu(\zeta), \quad z \in \mathcal{D}.$$

1.1. Clark measures

Given an $\alpha \in \mathbb{T}$ and a holomorphic function $b : \mathcal{D} \to \mathbb{D}$, the quotient

$$\frac{1 - |b(z)|^2}{|\alpha - b(z)|^2} = \text{Re} \left(\frac{\alpha + b(z)}{\alpha - b(z)} \right), \quad z \in \mathcal{D},$$

is positive and pluriharmonic. Therefore, there exists a unique positive measure $\sigma_\alpha = \sigma_\alpha[b] \in M(\partial \mathcal{D})$ such that

$$P[\sigma_\alpha](z) = \text{Re} \left(\frac{\alpha + b(z)}{\alpha - b(z)} \right), \quad z \in \mathcal{D}.$$

After the seminal paper of Clark [2], various properties and applications of the measures σ_α on the unit circle \mathbb{T} have been obtained; see, for example, reviews [3–6] for further references. Several results related to the Clark measures on the unit sphere ∂B_n, $n \geq 2$, are given in [7].

1.2. Model spaces and de Branges–Rovnyak spaces

Let Σ denote the normalized Lebesgue measure on $\partial \mathcal{D}$.

Definition 1.1: A holomorphic function $I : \mathcal{D} \to \mathbb{D}$ is called inner if $|I(\zeta)| = 1$ for Σ-a.e. $\zeta \in \partial \mathcal{D}$.

In the above definition, $I(\zeta)$ stands, as usual, for $\lim_{r \to 1^-} I(r\zeta)$. Recall that the corresponding limit exists Σ-a.e. Also, by the above definition, every inner function is non-constant.

Given an inner function I in \mathcal{D}, we have

$$P[\sigma_\alpha](\zeta) = \frac{1 - |I(\zeta)|^2}{|\alpha - I(\zeta)|^2} = 0 \quad \Sigma\text{-a.e.},$$

therefore, $\sigma_\alpha = \sigma_\alpha[I]$ is a singular measure. Here and in what follows, this means that σ_α and Σ are mutually singular; in brief, $\sigma_\alpha \perp \Sigma$.

Let $\mathcal{H} \text{ol}(\mathcal{D})$ denote the space of holomorphic functions in \mathcal{D}. For $0 < p < \infty$, the classical Hardy space $H^p = H^p(\mathcal{D})$ consists of those $f \in \mathcal{H} \text{ol}(\mathcal{D})$ for which

$$
\|f\|_{H^p}^p = \sup_{0 < r < 1} \int_{\partial \mathcal{D}} |f(r\zeta)|^p d\Sigma(\zeta) < \infty.
$$

As usual, we identify the Hardy space $H^p(\mathcal{D})$, $p > 0$, and the space $H^p(\partial \mathcal{D})$ of the corresponding boundary values.

For an inner function θ on \mathcal{D}, the classical model space K_θ is defined as

$$
K_\theta = H^2(T) \ominus \theta H^2(T).
$$

Clark [2] introduced and studied a family of useful unitary operators $U_\alpha : K_\theta \to L^2(\sigma_\alpha)$, $\alpha \in \mathbb{T}$.

For an inner function I in \mathcal{D}, there are several reasonable generalizations of K_θ. Consider the following direct analog of K_θ:

$$
I^*(H^2) = H^2 \ominus IH^2.
$$

For $\mathcal{D} = B_n$, it is shown in [7, Theorem 5.1] that Clark’s construction appropriately extends to $I^*(H^2)$ and also provides natural unitary operators $T_\alpha : I^*(H^2) \to L^2(\sigma_\alpha)$, $\alpha \in \mathbb{T}$.

Observe that

$$
C(\zeta, z) = (1 - I(z)\overline{I(\zeta)})C(\zeta, z) + \overline{I(z)}I(\zeta)C(\zeta, z) \in I^*(H^2) \oplus IH^2
$$

as functions of ζ. Therefore,

$$
K(z, \zeta) = (1 - I(z)\overline{I(\zeta)})C(z, \zeta)
$$

is the reproducing kernel for the Hilbert space $I^*(H^2)$ at $z \in \mathcal{D}$, that is,

$$
g(z) = \int_{\partial \mathcal{D}} g(w)K(z, w) d\Sigma(w), \quad z \in \mathcal{D},
$$

for all $g \in I^*(H^2)$.

Now, let $b : \mathcal{D} \to \mathbb{D}$ be an arbitrary non-constant holomorphic function. Direct inspection shows that the function

$$
k_b(z, w) = (1 - b(z)b(w))C(z, w)
$$

has the reproducing kernel properties. The corresponding Hilbert space $\mathcal{H}(b) \subset H^2$ is called a de Branges–Rovnyak space. In particular, $I^*(H^2) = \mathcal{H}(I)$ for an inner function I. Further details are given in [8, Chapter II] for \mathbb{D} in the place of \mathcal{D}.

For $\alpha \in \mathbb{T}$, Sarason [8, Section III-7] introduced unitary operators

$$
U_{b,\alpha} : \mathcal{H}(b) \to H^2(\sigma_\alpha[b])
$$

and closely related partial isometries

$$
V_{b,\alpha} : L^2(\sigma_\alpha[b]) \to \mathcal{H}(b),
$$

where $\mathcal{H}(b) \subset H^2(\mathbb{D})$ is the de Branges–Rovnyak space generated by b, $H^2(\sigma_\alpha[b])$ is a Hardy type space. In the present paper, we construct analogous natural operators $U_{b,\alpha}$ and $V_{b,\alpha}$, $\alpha \in \mathbb{T}$, for a given non-constant holomorphic function $b : \mathcal{D} \to \mathbb{D}$; see Theorems 3.1 and 3.2.
1.3. Comparison of Clark measures

Sarason [8, Section III-11] argued with the help of $V_{b, \alpha}$ to compare Clark measures on the unit circle \mathbb{T}. To show that the operators $V_{b, \alpha}$ are useful in combination with appropriate results in several complex variables, we obtain the following comparison theorem for the Clark measures on the unit sphere ∂B_n.

Theorem 1.2: Let I be an inner function in B_n and let $b : B_n \to \mathbb{D}$, $n \geq 2$, be a non-constant holomorphic function. Let $\sigma = \sigma_{\alpha}[I]$ and $\mu = \sigma_{\alpha}[b]$, $\alpha \in \mathbb{T}$, be the corresponding Clark measures and let $K_w(\cdot) = K(\cdot, w)$, where $K(z, w)$ denotes the reproducing kernel for $I^*(H^2)$. Then the following properties are equivalent:

(i) $\sigma \ll \mu$ and $\frac{d\sigma}{d\mu} \in L^2(\mu)$;
(ii) the function

$$\frac{\alpha - b}{\alpha - I} K_w$$

is in the de Branges–Rovnyak space $\mathcal{H}(b)$ for all $w \in B_n$;
(iii) the function

$$\frac{\alpha - b}{\alpha - I} K_w$$

is in $\mathcal{H}(b)$ for some $w \in B_n$.

1.4. Organization of the paper

Auxiliary properties of Clark measures are obtained in Section 2. Operators $U_{b, \alpha}$ and $V_{b, \alpha}$ are constructed in Section 3. The final Section 4 is devoted to the proof of Theorem 1.2.

Theorem 1.2 was announced in extended abstract [9].

2. Cauchy integrals and Clark measures

The following lemma is a particular case of Exercise 1 from [10, Chapter 8].

Lemma 2.1: Let F be a holomorphic function on $\mathcal{D} \times \mathcal{D}$. If $F(z, \bar{z}) = 0$ for all $z \in \mathcal{D}$, then $F(z, w) = 0$ for all $(z, w) \in \mathcal{D} \times \mathcal{D}$.

The following key technical proposition is obtained in [7, Proposition 3.5] for $\mathcal{D} = B_n$.

Proposition 2.2: Let $b : \mathcal{D} \to \mathbb{D}$ be a holomorphic function and let $\sigma_{\alpha} = \sigma_{\alpha}[b]$, $\alpha \in \mathbb{T}$, be the corresponding Clark measure. Then

$$\int_{\partial \mathcal{D}} C(z, \zeta) C(\zeta, w) \, d\sigma_{\alpha}(\zeta) = \frac{1 - b(z)\overline{b(w)}}{(1 - \overline{\alpha}b(z))(1 - \alpha b(w))} C(z, w)$$

for all $\alpha \in \mathbb{T}$, $z, w \in \mathcal{D}$.
Proof: The equality
\[\int_{\partial D} P(z, \zeta) \, d\sigma_\alpha(\zeta) = \frac{1 - |\varphi(z)|^2}{|\alpha - \varphi(z)|^2}, \quad z \in D, \]
and the definition of \(P(z, \zeta) \) provide
\[\int_{\partial D} C(z, \zeta) C(\zeta, z) \, d\sigma_\alpha(\zeta) = \frac{1 - |\varphi(z)|^2}{|\alpha - \varphi(z)|^2} C(z, z), \quad z \in D. \]
It remains to apply Lemma 2.1. ■

For \(\mu \in M(\partial D) \), recall that \(\mu_+ \) denotes the Cauchy transform of \(\mu \).

Corollary 2.3: Let \(\varphi : D \to \mathbb{D}, d \geq 2 \), be a holomorphic function and let \(\sigma_\alpha = \sigma_\alpha[\varphi], \alpha \in \mathbb{T} \). Then
\[(\sigma_\alpha)_+(z) = \frac{1}{1 - \bar{\alpha} \varphi(z)} + \frac{\alpha \varphi(0)}{1 - \alpha \varphi(0)} \]
for all \(\alpha \in \mathbb{T}, z \in D \).

Proof: Apply Proposition 2.2 with \(w = 0 \). ■

3. Clark measures and de Branges–Rovnyak spaces

In this section, \(b : D \to \mathbb{D} \) is an arbitrary non-constant holomorphic function.

3.1. Unitary operators \(U_{b,\alpha} : \mathcal{H}(b) \to H^2(\sigma_\alpha[b]) \)

Fix an \(\alpha \in \mathbb{T} \). Let \(\sigma_\alpha = \sigma_\alpha[b] \) and let \(k_w(\cdot) = k_b(\cdot, w) \), where \(k_b(z, w) \) denotes the reproducing kernel for \(\mathcal{H}(b) \). Define
\[(U_{b,\alpha} k_w)(\cdot) = (1 - \bar{\alpha} b(w)) C(\cdot, w), \quad w \in D. \]

Let \(H^2(\sigma_\alpha) \) denote the closed linear span of the holomorphic polynomials or, equivalently, of \(C(\cdot, w), w \in D, \) in \(L^2(\sigma_\alpha) \). In other words, \(H^2(\sigma_\alpha) \) is the Hardy space generated by \(\sigma_\alpha \).

Theorem 3.1: For each \(\alpha \in \mathbb{T}, U_{b,\alpha} \) has a unique extension to a unitary operator from \(\mathcal{H}(b) \) onto \(H^2(\sigma_\alpha) \).

Proof: Fix an \(\alpha \in \mathbb{T} \). Applying Proposition 2.2, we obtain
\[
(U_{b,\alpha} k_w, U_{b,\alpha} k_z)_{L^2(\sigma_\alpha)} = \int_{\partial D} (1 - \bar{\alpha} b(w)) C(\zeta, w)(1 - \bar{\alpha} b(z)) C(z, \zeta) \, d\sigma_\alpha(\zeta) \\
= (1 - \bar{\alpha} b(w))(1 - \bar{\alpha} b(z)) \int_{\partial D} C(\zeta, w) C(z, \zeta) \, d\sigma_\alpha(\zeta)
\]
\[= (1 - b(z)b(w))C(z, w) \]
\[= k_b(z, w) = (k_w, k_z)_{\mathcal{H}(b)}. \]

So, \(U_{b,\alpha} \) extends to an isometric embedding of \(\mathcal{H}(b) \) into \(L^2(\sigma_\alpha) \). Since the linear span of the family \(\{k_w\}_{w \in \mathcal{D}} \) is dense in \(\mathcal{H}(b) \), the extension is unique. Finally, \(U_{b,\alpha} \) maps \(\mathcal{H}(b) \) onto \(H^2(\sigma_\alpha) \) by the definition of \(H^2(\sigma_\alpha) \).

3.2. Partial isometries \(V_{b,\alpha} : L^2(\sigma_\alpha [b]) \rightarrow \mathcal{H}(b) \)

Define
\[(V_{b,\alpha}g)(z) = (1 - \overline{\alpha}b(z))(g\sigma_\alpha)_+(z), \quad g \in L^2(\sigma_\alpha), \quad z \in \mathcal{D}. \] (1)

Theorem 3.2: For each \(\alpha \in \mathbb{T} \), formula (1) defines a partial isometry from \(L^2(\sigma_\alpha) \) into \(\mathcal{H}(b) \). The restriction of \(V_{b,\alpha} \) to \(H^2(\sigma_\alpha) \) coincides with \(U_{b,\alpha}^* \); in particular,
\[V_{b,\alpha}C(\cdot, w)(z) = (1 - \alpha b(w))^{-1}k_b(z, w), \] (2)

where \(k_b(z, w) \) denotes the reproducing kernel for \(\mathcal{H}(b) \).

Proof: For \(g(\zeta) = (1 - \alpha \overline{b(w)})C(\zeta, w) \) with \(w \in \mathcal{D} \), the definition of \(U_{b,\alpha} \) and Proposition 2.2 guarantee that
\[(U_{\alpha}^*g)(z) = (1 - \overline{\alpha}b(z))(g\sigma_\alpha)_+(z), \quad z \in \mathcal{D}. \] (3)

Therefore, (3) holds for all \(g \in H^2(\sigma_\alpha) \); hence, the restriction of \(V_{b,\alpha} \) on \(H^2(\sigma_\alpha) \) coincides with \(U_{b,\alpha}^* \). If \(h \in L^2(\sigma_\alpha) \) and \(h \perp H^2(\sigma_\alpha) \), then \((h\sigma_\alpha)_+ = 0 \). Therefore, \(V_{b,\alpha} \) maps \(L^2(\sigma_\alpha) \) into \(\mathcal{H}(b) \), as required.

3.3. Cauchy transforms of \(f\sigma_\alpha \) with \(f \in H^2(\sigma_\alpha) \)

The following proposition is probably of independent interest.

Proposition 3.3: Let \(\alpha \in \mathbb{T} \) and \(b : \mathcal{D} \rightarrow \mathbb{D} \) be a non-constant holomorphic function. Then \((f\sigma_\alpha)_+ \neq 0 \) for any \(f \in H^2(\sigma_\alpha) \setminus \{0\} \).

Proof: Let \(\alpha \in \mathbb{T} \) and \(f \in H^2(\sigma_\alpha) \setminus \{0\} \). Since \(k_b(z, \cdot) \in \overline{\mathcal{H}(b)} \) and \(U_\alpha = U_{b,\alpha} : \mathcal{H}(b) \rightarrow H^2(\sigma_\alpha) \) is unitary, we obtain
\[U_{\alpha}^*f(z) = \int_{\partial \mathcal{D}} U_{\alpha}^*f(\xi)k_b(z, \xi) \, d\Sigma(\xi) \]
\[= \int_{\partial \mathcal{D}} (1 - \overline{\alpha}I(z))f(\xi)C(z, \xi) \, d\sigma_\alpha(\xi) \]
\[= (1 - \overline{\alpha}I(z))(f\sigma_\alpha)_+(z) \]
for \(z \in \mathcal{D} \). Now, assume that \((f\sigma_\alpha)_+ \equiv 0 \). Then \(U_{\alpha}^*f \equiv 0 \), hence, \(f = 0 \). This contradiction ends the proof.
For an inner function b, it is natural to ask whether $U_{b,\alpha} : \mathcal{H}(b) \to L^2(\sigma_\alpha)$ is surjective or, equivalently, $H^2(\sigma_\alpha[b]) = L^2(\sigma_\alpha[b])$.

Corollary 3.4: Let $\alpha \in \mathbb{T}$ and $I : \mathcal{D} \to \mathbb{D}$ be an inner function. Then the following properties are equivalent:

(i) $U_{I,\alpha}$ maps $\mathcal{H}(b)$ onto $L^2(\sigma_\alpha)$;

(ii) if $f \in L^2(\sigma_\alpha)$ and $(f \sigma_\alpha)_+ \equiv 0$, then $f = 0$.

Proof: (ii) \Rightarrow (i) Assume that (i) does not hold, that is, $H^2(\sigma_\alpha) \neq L^2(\sigma_\alpha)$. Then the definition of $H^2(\sigma_\alpha)$ guarantees that there exists $f \in L^2(\sigma_\alpha) \setminus \{0\}$ such that

$$\int_{\partial \mathcal{D}} f(\zeta) \overline{C(\zeta, z)} \, d\sigma_\alpha(\zeta) = 0$$

for all $z \in \mathcal{D}$. In other words, $(f \sigma_\alpha)_+ \equiv 0$ and we arrive to a contradiction.

By Proposition 3.3, (i) implies (ii), hence, the proof is finished. ■

Remark 3.1: Corollary 3.4 reduces to Proposition 3.3 for $\mathcal{D} = B_n$. Indeed, we have $H^2(\sigma_\alpha[I]) = L^2(\sigma_\alpha[I])$ for any $\alpha \in \mathbb{T}$ and any inner function I in the unit ball B_n, $n \geq 1$; see [7]. However, this is not the case for many inner functions in the polydisc \mathbb{D}^n, $n \geq 2$.

To give a simple example, consider the following inner function: $I(z) = z_1$, $z \in \mathbb{D}^n$, $n \geq 2$. We have

$$\sigma_\alpha = \delta_\alpha(\xi_1) \otimes m(\xi_2) \otimes \cdots \otimes m(\xi_n),$$

where m denotes the normalized Lebesgue measure on \mathbb{T}. For all $\alpha \in \mathbb{T}$, the space $H^2(\sigma_\alpha)$ is strictly smaller than $L^2(\sigma_\alpha)$.

4. Proof of Theorem 1.2

4.1. Auxiliary results and definitions

4.1.1. Pluriharmonic measures

A measure $\mu \in M(\partial \mathcal{D})$ is called pluriharmonic if the Poisson integral

$$P[\mu](z) = \int_{\partial \mathcal{D}} P(z, \zeta) \, d\mu(\zeta), \quad z \in \mathcal{D},$$

is a pluriharmonic function. Let $PM(\mathcal{D})$ denote the set of all pluriharmonic measures. Clearly, every Clark measure is an element of $PM(\mathcal{D})$.

4.1.2. Totally singular measures

By definition, the ball algebra $A(B_n)$ consists of those $f \in C(B_n)$ which are holomorphic in B_n. Let $M_0(S_n)$ denote the set of those probability measures $\rho \in M(S_n)$ which represent the origin for $A(B_n)$, that is,

$$\int_{S_n} f \, d\rho = f(0) \quad \text{for all } f \in A(B_n).$$

Elements of $M_0(S_n)$ are called representing measures.
Definition 4.1: A measure $\mu \in M(S_n)$ is said to be *totally singular* if $\mu \perp \rho$ for all $\rho \in M_0(S_n)$.

Proposition 4.2 ([11, Theorem 10]): Let $\mu \in PM(S_n)$. Then μ^s is totally singular.

Remark 4.1: For positive pluriharmonic measures, the above theorem was obtained in [12, Chapter 5, Section 3.3.3]. In fact, we will apply Proposition 4.2 to Clark measures, that is, to positive $\mu \in PM(S_n)$.

4.1.3. Henkin measures

Definition 4.3 (see [1, Section 9.1.5]): We say that $\mu \in M(S_n)$ is a *Henkin measure* if

$$\lim_{j \to \infty} \int_{S_n} f_j \, d\mu = 0$$

for any bounded sequence $\{f_j\}_{j=1}^\infty \subset A(B_n)$ with the following property:

$$\lim_{j \to \infty} f_j(z) = 0 \quad \text{for any } z \in B_n.$$

4.2. Proof of Theorem 1.2

We are given an inner function I in B_n and a non-constant holomorphic function $b : B_n \to \mathbb{D}$. Without loss of generality, assume that $\alpha = 1$. So, let $\sigma = \sigma_1[I]$, $\mu = \sigma_1[b]$ and $K_w = K(\cdot, w)$, where $K(z, w)$ denotes the reproducing kernel for $I^*(H^2) = \mathcal{H}(I)$. Applying formula (1) and property (2) with $b = I$, we obtain

$$\left(1 - b\right)(C(\cdot, w)\sigma)_+ = \frac{1 - b}{1 - I} V_I C(\cdot, w) = (1 - \overline{I(w)})^{-1} \frac{1 - b}{1 - I} K_w. \quad (4)$$

Now, we are in position to prove the theorem.

(i)⇒(ii) By the definition of V_b, we have

$$V_b \left(\frac{d\sigma}{d\mu} C(\cdot, w) \right) = (1 - b) \left(\frac{d\sigma}{d\mu} C(\cdot, w)\mu \right)_+ = (1 - b)(C(\cdot, w)\sigma)_+.$$

Since V_b maps into $\mathcal{H}(b)$, combination of the above property and (4) provides (ii).

(ii)⇒(iii) This implication is trivial.

(iii)⇒(i) By assumption, we are given a point $w \in B_n$ and a function $q = q_w \in L^2(\mu)$ such that

$$\left(1 - \overline{I(w)}\right)^{-1} \frac{1 - b}{1 - I} K_w = V_b q = (1 - b)(q\mu)_+.$$

The above property and (4) guarantee that

$$(C(\cdot, w)\sigma - q\mu)_+ = 0.$$

Hence,

$$C(w, \cdot)\sigma - \tilde{q}\mu$$
is a Henkin measure. Thus, by the Cole–Range Theorem (see [13] or [1, Theorem 9.6.1]),
there exists a representing measure ρ such that $C(\cdot, w)\sigma - q\mu \ll \rho$; in particular,

$$C(\cdot, w)\sigma - q\mu^s \ll \rho \quad \text{for some } \rho \in M_0(S_n). \quad (5)$$

Recall that σ is a singular measure. Therefore, σ and μ^s are totally singular by Proposition 4.2. Hence,

$$C(\cdot, w)\sigma - q\mu^s \text{ is totally singular.}$$

Combining this observation and (5), we conclude that

$$\sigma = \frac{q}{C(\cdot, w)} \mu^s.$$

In particular, $\sigma \ll \mu$ and $\frac{d\sigma}{d\mu} \in L^2(\mu)$, as required. The proof of Theorem 1.2 is finished.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

The research on Sections 2 and 3 was supported by Russian Science Foundation (grant No. 20-61-46016); the research on Sections 1 and 4 was supported by Russian Science Foundation (grant No. 19-11-00058).

ORCID

Aleksei B. Aleksandrov http://orcid.org/0000-0002-4871-9351

Evgueni Doubtsov http://orcid.org/0000-0001-6648-4026

References

[1] Rudin W. Function theory in the unit ball of \mathbb{C}^n. New York-Berlin: Springer-Verlag; 1980. (Grundlehren der Mathematischen Wissenschaften; 241).

[2] Clark DN. One dimensional perturbations of restricted shifts. J Analyse Math. 1972;25: 169–191. Available from: http://dx.doi.org/10.1007/BF02790036.

[3] Garcia SR, Ross WT. Model spaces: a survey. In: Invariant subspaces of the shift operator. Providence (RI): American Mathematical Society; 2015. p. 197–245. (Contemporary Mathematics; 638). Available from: https://doi.org/10.1090/conm/638/12811.

[4] Matheson A, Stessin M. Applications of spectral measures. In: Recent advances in operator-related function theory. Providence, RI: American Mathematical Society; 2006. p. 15–27. (Contemporary Mathematics; 393). Available from: https://doi.org/10.1090/conm/393/07367.

[5] Poltoratski A, Sarason D. Aleksandrov-Clark measures. In: Recent advances in operator-related function theory. Providence, RI: American Mathematical Society; 2006. p. 1–14. (Contemporary Mathematics; 393). Available from: http://dx.doi.org/10.1090/conm/393/07366.

[6] Saksman E. An elementary introduction to Clark measures. In: Girela Álvarez D, González Enríquez C (editors), Topics in complex analysis and operator theory. Málaga: Univ. Málaga; 2007. p. 85–136.

[7] Aleksandrov AB, Doubtsov E. Clark measures on the complex sphere. J Funct Anal. 2020;278(2):108314. 30pp. Available from: https://doi.org/10.1016/j.jfa.2019.108314.
[8] Sarason D. Sub-Hardy Hilbert spaces in the unit disk. New York: John Wiley & Sons, Inc.; 1994. (University of Arkansas Lecture Notes in the Mathematical Sciences; 10). A Wiley-Interscience Publication.

[9] Aleksandrov AB, Doubtsov E. Comparison of Clark measures in several complex variables. In: Abakumov E. et al. (editors), Extended abstracts fall 2019. (Trends in Mathematics; 12). Springer Nature; 2021. p. 9–16. Available from: https://doi.org/10.1007/978-3-030-74417-5_2.

[10] Krantz SG. Function theory of several complex variables. 2nd ed. Pacific Grove (CA): Wadsworth & Brooks/Cole Advanced Books & Software; 1992. (The Wadsworth & Brooks/Cole Mathematics Series).

[11] Dubtsov ES. Singular parts of pluriharmonic measures. J Math Sci. 1997;85(2):1790–1793.

[12] Aleksandrov AB. Function theory in the ball. In: Khenkin GM, Vitushkin AG (editors), Several complex variables II. Encyclopaedia of mathematical sciences. Vol. 8. Berlin: Springer-Verlag; 1994. p. 107–178. Available from: https://doi.org/10.1007/978-3-642-57882-3_3

[13] Cole B, Range RM. A-measures on complex manifolds and some applications. J Funct Anal. 1972;11:393–400.