Plump endothelial cells integrated into pre-existing venules contribute to the formation of ‘mother’ and ‘daughter’ vessels in pyogenic granuloma: possible role of galectin-1, -3 and -8

Enrique Arciniegas1, Luz Marina Carrillo1,2, Héctor Rojas3, Jacinto Pineda4, Richard Ramírez2, Oscar Reyes2, Marina Chopite2 and Albani Rocheta2

Abstract

Introduction: Pyogenic granuloma (PG) is a reactive inflammatory vascular lesion of the skin and mucous membranes, characterised by the presence of enlarged venules and seamed and seamless capillaries with plump endothelial cells (EC), and numerous macrophages. EC activation upregulates the synthesis of galectins and induces their translocation to the EC surface promoting angiogenesis and lymphangiogenesis, particularly galectin-1 (Gal-1), Gal-3 and Gal-8. However, the presence and distribution of Gal-1, -3 and -8, as well as their implications in the pathogenesis of PG, has not been considered.

Materials and methods: Eight biopsies from patients diagnosed with PG were selected. The presence of PECAM-1/CD31, IL-1β, VEGF-C, VEGFR-2, VEGFR-3, integrin β1, CD44, fibronectin and Gal-1, -3 and -8 was assessed by immunofluorescence staining using confocal laser scanning microscopy.

Results and Discussion: Immunostaining revealed that these molecules were present in the enlarged venules with plump ECs, in some macrophages and other immune cells. We propose that macrophages release VEGF-A and VEGF-C inducing VEGFR-2/VEGFR-3 expression and activation, leading macrophages to transdifferentiate into plump ECs that might integrate into pre-existing venules, contributing to the formation of enlarged venules with transluminal bridges and capillaries. EC activation, induced by certain cytokines, has been shown to stimulate galectin expression and changes in the cellular localisation through association and activation of specific EC surface glycoproteins. Therefore, it is plausible that Gal-1, -3 and -8, acting in a concerted manner, could be mediating the transdifferentiation of macrophages into plump ECs and facilitating their migration and incorporation into the new vessels.

Keywords
Pyogenic granuloma, plump endothelial cell, macrophage, venules, galectins, gal–glycan lattice

1Institute of Biomedicine, Central University of Venezuela, Caracas, Venezuela
2Autonomus Service Institute of Biomedicine, Caracas, Venezuela
3Institute of Immunology, Central University of Venezuela, Caracas, Venezuela
4Institute of Anatomy and Pathology, Central University of Venezuela, Caracas, Venezuela

Corresponding author:
Enrique Arciniegas, Instituto de Biomedicina, Universidad Central de Venezuela, Esquina de San Nicolas a Esquina de Providencia, San Jose, Distrito Capital, Caracas 1010, República Bolivariana de Venezuela.
Email: earciniegasbeta@yahoo.com

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
Scars, Burns & Healing

Introduction

Pyogenic granuloma (PG), also referred to as lobular capillary haemangioma, is a reactive inflammatory vascular lesion of the skin and mucous membranes that can equally affect both sexes and occurs at all ages. There is controversy concerning its nature. Some authors consider PG as a benign vascular tumour, while others define it as a reactive inflammatory lesion.\(^1-5\) PG is histologically characterised by the presence of enlarged venules with plump endothelial cells (ECs) or immature ECs, seamed and seamless capillaries arranged in a lobular pattern in the dermis, and numerous macrophages, which are frequently associated with angiogenesis.\(^1,3-6\) With respect to the presence of plump ECs and seamed and seamless capillaries, previous studies have shown an increased expression of vascular endothelial growth factor (VEGF) and bFGF limited to plump ECs with no lumen formation, many of them expressing PECAM-1/CD31.\(^7-9\) The same studies point to macrophages as the major source of synthesis and secretion of both angiogenic factors\(^7-9\) and that vascular growth observed would be associated with the activation of the vascular endothelial growth factor receptor-3 (VEGFR-3/Flt4).\(^7-9\) Equally well established is the important role during the early phase of inflammation and wound healing of activated macrophages as an important source of pro-inflammatory cytokines and growth factors such as IL-1\(\beta\), IL-1\(\alpha\), IL-6, IL-12, TNF\(\alpha\), VEGF-A, VEGF-C and bFGF\(^9,10\) and that overexpression of VEGF-C, the main ligand for VEGFR-3, would be involved in the recruitment, accumulation and transdifferentiation of macrophages into endothelial-like cells during inflammation.\(^11,12\) Other studies have suggested an important contribution of macrophage as endothelial progenitor during the lymphangiogenesis process.\(^13-18\) Although the plump ECs have been identified in PG, only its presence and localisation have been examined, while its progenitor and possible contribution to the formation of enlarged venules and capillaries have received little attention.

Equally, previous reports have suggested that EC activation upregulates the synthesis of galectins and induces their translocation to the EC surface promoting angiogenesis and lymphangiogenesis via association and activation of specific EC surface glycoproteins, particularly galectin-1 (Gal-1), Gal-3 and Gal-8.\(^27-34\)

Lay Summary

In this study, immunostaining of pyogenic granuloma (PG) tissue sections showed immunoreactivity for PECAM-1/CD31, IL-1\(\beta\), VEGF-C, VEGFR-2 and VEGFR-3, and galectin-1, -3 and -8 in enlarged venules with plump endothelial cells (ECs), as well as in some macrophages and other immune cells. Interestingly, enlarged and thin-walled transient vessels lined by PECAM-1/CD31 and VEGFR-2 immunopositive ECs that form from pre-existing normal venules in response to VEGF-A (called ‘mother’ vessels [MV]) and that undergo intraluminal bridging evolving into various types of capillaries (called ‘daughter’ vessels [DV]) have been observed in benign and malignant tumours, in physiological and pathological angiogenesis as well as in vascular malformations, suggesting an important role for VEGF-A and VEGFR-2 in such a process. However, it is not only the mechanisms by which the MVs evolve in different types of DVs that remains to be elucidated, but also whether the cells that form intraluminal bridges proceed from locally activated ECs or whether they are derived from bone marrow precursors or from resident macrophages.

Given that the formation of homodimers by Gal-1 and Gal-8 and pentamers by Gal-3 to generate gal–glycan lattices at the cell surface and in the extracellular space has been shown, it is possible that in PG tissue Gal-1, -3 and -8, through their binding partners, form a supramolecular structure at the surface of ECs and plump ECs, macrophages and in the extracellular space that might be mediating the transdifferentiation of macrophages into plump ECs and facilitating the migration and incorporation of these cells into the pre-existing venules, thus contributing to the formation of MVs and DVs.
Gal-1 is a prototypic member of the galectin family with a conserved carbohydrate recognition domain (CRD) that has affinity for multiple N-acetyllactosamine (LacNAc) disaccharides (Gal-GlNAc) present in N- and O-linked glycans. By association of their monomers, it can form homodimers through its C-terminal domain on the cell surface and in the extracellular space, which results in the formation of molecular complexes. This lectin participates in signalling pathways, regulating a variety of important biological responses including cell growth, proliferation, cell–cell and cell–matrix adhesion, cell differentiation, motility and cell death, and plays a critical role in the initiation and resolution of the inflammatory response, angiogenesis, fibrosis, and tumour development.

Gal-3 is a chimera type galectin that is composed of a C-terminal domain that binds to specific N- and O-glycan ligands, and an N-terminal domain which facilitates its multimerisation and generation of galectin–glycan (gal–glycan) lattices on the cell membrane and in the extracellular space controlling several cellular processes through specific signalling pathways; those processes include cell–cell adhesion, cell–matrix adhesion, proliferation, growth, differentiation, migration, inflammation, immune response, apoptosis, angiogenesis and tumour development.

Gal-8 is a tandem-repeat-type galectin that has two CRDs joined by a linker peptide. It appears to be one of the most prominent galectins detected in ECs. It plays an important role in the control of EC migration, capillary tube formation and in vivo angiogenesis and tumour growth. In addition, Gal-8 modulates lymphangiogenesis induced by VEGF-C in vivo and in vitro. Nevertheless, to the best of our knowledge, the presence and distribution of Gal-1, -3 and -8, as well as their implications in the pathogenesis of PG, has not been considered.

In view of the above considerations, the aim of this study was to examine not only the presence and localisation of the plump ECs in PG, but also establish its origin and contribution to the formation of enlarged venules and new capillaries.

Given that in human skin some galectins play a crucial role in diverse cutaneous disorders, we sought to determine whether Gal-1, -3 and -8 were present in PG. We also examined whether these galectins could generate gal–glycan lattices able to regulate the behaviour of the plump ECs through the interactions with platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31), VEGFR-2, VEGFR-3, CD44, integrin β1 and fibronectin (FN). All of them were considered as targets for these galectins as they contain N- and/or O-linked glycans in the extracellular domains.

Materials and methods

Skin biopsies

Eight biopsies from patients clinically and histopathologically (haematoxylin and eosin [H&E] staining) diagnosed with PG were retrieved from the files of the Section of Dermatopathology at the ASIB. Data regarding gender, age and site of lesion appear listed in Table 1. For the identification of collagen bundles, some histological sections were stained following Masson’s trichrome protocol. This study was approved by the Ethics Committee of the SAIB and performed according to the Declaration of Helsinki.

Indirect immunofluorescence staining of tissue sections

For immunohistochemistry purposes, paraffin-embedded skin tissue blocks were cut into sections each with a thickness of 4 µm. Paraffin sections were then set onto silanised slides (Dako Cytomation, Denmark), dewaxed in xylene, dehydrated through graded alcohol series (from 100 to 70%), then rehydrated in distilled water and equilibrated in phosphate-buffered saline (PBS) for 10
Before incubation with the primary antibodies, sections were blocked for 1 h in a humid chamber with PBS containing 2% BSA and 0.1% Tween 20, in order to prevent non-specific staining. Sections were then incubated with the primary antibodies diluted in PBS, 2% BSA, 0.1% Tween 20 (Table 2) overnight at 4 °C followed by incubation with anti-rabbit IgG Cruz Fluor 594 (Santa Cruz Biotechnology, Inc., Dallas, TX, USA) or anti-mouse IgG Cruz Fluor 488 (Santa Cruz Biotechnology, Inc., Dallas, TX, USA) diluted with PBS containing 2% BSA and 0.1% Tween20 for 30 min in the dark. Cell nuclei were counterstained with DAPI (4’,6-Diamidino-2-phenylindole) (Molecular Thermo-Fisher, Waltham, MA, USA) for 15 min in the dark. Finally, the sections were washed in PBS and coverslipped with mounting medium (IMMU-MOUNT, Shandon, Pittsburgh, PA, USA). All images were captured using a 1X81 Olympus inverted microscope with the Fluo View Confocal Laser Scanning configuration (CLSM) (Olympus America) equipped with software program FV10.ASW version 02.01.01.04 (Olympus Corporation). Image J software (NHI, Washington, DC, USA) was used for the processing of contrast and brightness.

Results

Histopathological analysis of the PG tissues by Masson’s trichrome staining showed the presence of enlarged, thin-walled venules with some plump ECs in the dermis, some of these cells forming intraluminal bridges that divide the lumen into small channels and capillaries (Figure 1). Staining also revealed the presence of numerous capillaries lined by some plump ECs localised close to the enlarged venules, as well as the presence of some vascular structures known as glomeruloid bodies, numerous macrophages and other immune cells (Figure 1). They were all embedded in a collagen matrix (Figure 1).

In vivo PECAM-1/CD31 immunostaining

Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) is a transmembrane glycoprotein with proinflammatory and proangiogenic

Primary antibody	Host	Producer
PECAM-1/CD31	Mouse monoclonal	Santa Cruz Biotechnology, Inc., Dallas, TX, USA
IL-1β	Mouse monoclonal	Santa Cruz Biotechnology, Inc., Dallas, TX, USA
VEGFC	Mouse monoclonal	Santa Cruz Biotechnology, Inc., Dallas, TX, USA
VEGFR-2	Mouse monoclonal	Santa Cruz Biotechnology, Inc., Dallas, TX, USA
VEGFR-3	Mouse monoclonal	Santa Cruz Biotechnology, Inc., Dallas, TX, USA
Integrin β1	Mouse monoclonal	Santa Cruz Biotechnology, Inc., Dallas, TX, USA
CD44	Mouse monoclonal	Santa Cruz Biotechnology, Inc., Dallas, TX, USA
Fibronectin	Mouse monoclonal	Santa Cruz Biotechnology Inc. Dallas, TX, USA
Galectin-1	Mouse monoclonal	Santa Cruz Biotechnology, Inc., Dallas, TX, USA
Galectin-3	Mouse monoclonal	Santa Cruz Biotechnology, Inc., Dallas, TX, USA
Galectin-8	Mouse monoclonal	Santa Cruz Biotechnology, Inc., Dallas, TX, USA
activities that is highly expressed on the surface of ECs and lower levels on platelets and immune cells including monocytes, macrophages, and T and B cells. It contains seven N-linked glycans and interacts with VEGFR-2, VEGFR-3 and integrins. For these reasons, we examined the presence and distribution of this glycoprotein on the ECs of vessels of PG tissues. Immunolabelling analysed by CLSM showed that PECAM-1 was present in the enlarged venules with plump ECs, small channels and capillaries (Figure 2a). Interestingly, a strong PECAM-1 immunoreactivity was appreciable in the plump ECs that were close to and incorporated into the enlarged venules, forming intraluminal bridges, as well as in some macrophages and other immune cells (Figure 2a).

In vivo IL-1β and VEGF-C immunostaining

Because IL-1β promotes the EC activation during inflammation and angiogenesis by increasing expression of adhesion molecules on the surface of ECs and it regulates the expression of VEGF-C, we examined the presence and distribution of IL-1β and VEGF-C in the dermis of the PG tissues selected. Examination of the dermis revealed IL-1β and VEGF-C immunoreactivities localised in the enlarged venules with plump ECs and small channels and capillaries, as well as in some macrophages and other immune cells (Figure 2b and c).

In vivo VEGFR-2 and VEGFR-3 immunostaining

Considering that VEGF-C is a secreted glycoprotein that has an affinity for VEGFR-2 and VEGFR-3 and that both tyrosine kinase receptors contain N-linked glycans, we also examined the presence and distribution of VEGFR-2 and VEGFR-3 in the dermis of PG tissues. Immunostaining showed that both receptors were localised in the enlarged venules with plump ECs, small channels and capillaries, as well as in some macrophages and other immune cells (Figure 2d and e). Like PECAM-1, strong VEGFR-2 and VEGFR-3 immunoreactivity was detected in the plump ECs that were close to and incorporated into the enlarged venules, as well as in the plump ECs that were forming transluminal bridges, small channels and capillaries, and some macrophages and other immune cells (Figure 2d and e).

In vivo Gal-1, Gal-3 and Gal-8 immunostaining

To determine whether these galectins were present in the dermis of PG, tissue sections were also examined by immunofluorescence staining. Immunolocalisation revealed that Gal-1, Gal-3 and Gal-8 were present in the enlarged venules with plump ECs and small channels and capillaries, as well as in some macrophages and other immune cells (Figures 2f, 2g, 3a and 4a–c). Notably, an intensive cytoplasmic and cell membrane immunoreactivity for Gal-1, Gal-3 and Gal-8 was detected in the plump ECs that were close to and incorporated into the enlarged venules, as well as in the plump ECs, forming intraluminal bridges, small channels and capillaries, and some macrophages and immune cells (Figures 2f, 2g, 3a and 4a–c). In addition, a moderate immunoreactivity for these galectins was detected in fibrils and thin bundles of collagen and some elongated fibroblasts (Figure 4a–c). No immunoreactivity was detected when the primary antibodies were omitted or replaced with PBS (not shown).
In vivo CD44 immunostaining

Since CD44 is a glycosylated cell-surface receptor that has an N-terminal that contains N- and O-linked glycans\(^6\)\(^--\)\(^9\) and can interact with Gal-8 contributing to the resolution of inflammation,\(^70\) we also examined the presence and distribution of CD44 in the dermis of PG tissues selected. CD44 was observed in the enlarged venules with plump ECs, small channels and capillaries as well as in some macrophages and other immune cells and some fibroblasts and fibrils and collagen bands (Figure 3b).

In vivo integrin \(\beta_1\) immunostaining

Because integrin \(\beta_1\) contains N-linked glycans\(^71\)\(^,\)\(^73\) and is considered as binding partner for Gal-1,\(^35\)\(^,\)\(^73\) Gal-3,\(^37\)\(^,\)\(^74\)\(^--\)\(^76\) and Gal-8,\(^47\)\(^,\)\(^49\)\(^,\)\(^77\)\(^,\)\(^78\) we investigated the presence and distribution of integrin \(\beta_1\) in the

Figure 2. Immunostaining of PECAM-1/CD31, IL-1\(\beta\), VEGF-C, VEGFR-2, VEGFR-3, Gal-1 and Gal-3 in the dermis reticular of one biopsy of PG tissue (lower lip). Serial sections were stained for PECAM-1/CD31 (a), IL-1\(\beta\) (b), VEGF-C (c), VEGFR-2 (d), VEGFR-3 (e), Gal-1 (f) and Gal-3 (g). Enlargements show the corresponding immunoreactivities in the venules (V), small channels (asterisks), capillaries (C), plump ECs (arrowheads), macrophages (arrows) and immune cells (stars). Blue, DAPI. Scale bars: 30 µm; 15 µm. EC, endothelial cell; PG, pyogenic granuloma.
dermis of PG tissues. Immunostaining showed that this subunit was localised in the enlarged venules with plump ECs, small channels and capillaries (Figures 3c and 4a–c), as well as in some macrophages, immune cells, fibroblasts and collagen bands (Figure 3c).

In vivo FN immunostaining

We next examined the presence and distribution of FN, a glycoprotein that contains N-linked glycans and associates with Gal-1, Gal-3, Gal-8, and Gal-8. Examination of the dermis revealed that FN was localised in the enlarged venules with plump ECs, small channels and capillaries (Figure 3d). Moderate immunoreactivity was also observed in some fibroblasts and thin bundles of collagen and in the extracellular space (Figure 3d).

Discussion

In the present study, immunostaining of PG tissue sections showed immunoreactivity for PECAM-1/CD31, IL-1β, VEGF-C, VEGFR-2 and VEGFR-3 in enlarged venules with plump ECs, including those cells that were forming transmural bridges and dividing the lumen into small channels and capillaries, as well as in some macrophages and other immune cells. It is important to stress that this immunoreactivity increased in the plump ECs. Remarkably, studies conducted by Caramelo’s group in PG had revealed the presence of EC precursors or plump ECs without lumen formation that displayed increased expression of VEGF and immunoreactivity for PECAM-1/CD31, suggesting that early VEGF expression might act as angiogenic mediator and that the presence of local inflammatory cytokines such as IL-1β and TNFα in PG would explain the induction of VEGF in these cells. Other studies in PG report the presence of aggregates of capillaries and venules lined by ECs and plump ECs positive to CD31, CD34, CD105; ICAM-1 and VCAM-1. Of particular interest, studies in PG have also shown VEGF and bFGF upregulation, considering the macrophages as the major source of synthesis and secretion of both angiogenic factors. It is noteworthy that the angiogenesis observed in PG has been associated to the activation of Flt4/VEGFR3 and the nitric oxide signalling pathway. Likewise, overexpression of VEGF-C has been shown to induce enlargement of veins and venules positive for PECAM-1/VEGFR-2 in skin and mucous membranes.
Interestingly, enlarged and thin-walled transient vessels lined by PECAM-1/CD31 and VEGFR-2 immunopositive ECs that form from pre-existing normal venules in response to VEGF-A (called ‘mother’ vessels [MV]) and that undergo intraluminal bridging evolving into various types of capillaries (called ‘daughter’ vessels [DV]), have been observed in benign and malignant tumours, in physiological and pathological angiogenesis as well as in vascular malformations, suggesting an important role for VEGF-A and VEGFR-2 in such a process. However, it is not only the mechanisms by which the MVs evolve in different types of DVs that remains to be elucidated, but also whether the cells that form intraluminal bridges proceed from locally activated ECs or whether they are derived from bone marrow precursors or from resident macrophages. Of relevance, studies in vitro and in vivo have shown that over-expression of VEGF induces macrophages to transdifferentiate into EC progenitors or endothelial-like cells characterised by expression of VE-cadherin, CD31, CD105 and eNOS, which are able to incorporate in the newly formed vessels. In this context, other studies report that lymphatic EC progenitors derived from macrophages integrate into lymphatic endothelium. The same studies propose that the VEGF-C/VEGFR-3 signalling pathway could play a critical role in the early phase of transdifferentiation of macrophages and that the progenitors of the lymphatic ECs may originate from macrophages derived from bone marrow cells or resident macrophages that have been activated in situ. In line with these reports, contribution of lymphatic EC progenitors to lymphangiogenesis in human renal transplants has been shown, suggesting that these EC progenitors derive from macrophages expressing VEGFR-3 and incorporate into the newly growing lymphatic vessel.

Based on the above evidence and our observations, it is tempting to hypothesise that in response to inflammatory stimuli, for example upregulation of IL-1β, macrophage release VEGF-A and VEGF-C inducing VEGFR-2/VEGFR-3 expression, and that VEGF-C upregulation would provoke an increase in the activation of VEGFR-2 and VEGFR-3, generating an autocrine loop that would lead macrophages to transdifferentiate into plump ECs characterised by the expression of PECAM-1/CD31, VEGFR-2 and VEGFR-3. These plump ECs which might integrate into pre-existing venules contributing to the formation of enlarged venules with transluminal bridges (MVs) and capillaries (DVs) (Figure 5).

Immunostaining also revealed that Gal-1, -3 and -8 were present in the ECs and plump ECs of the MVs and DVs, in some macrophages and other type of immune cells. Consistent with this, several in vitro and in vivo studies have shown that ECs synthesise Gal-1, -3 and -8 and that EC activation, induced by certain cytokines that are released from inflammatory and ECs at the sites of inflammation, stimulates galectin expression and induces changes in the cellular localisation through association and activation of specific EC surface glycoproteins. Similarly, studies on galectins and angiogenesis have suggested that Gal-1 can be synthesised or taken by activated ECs to promote angiogenesis in an autocrine or paracrine manner and that Gal-3 modulates angiogenesis mediated by VEGF and bFGF. Thus, the presence of Gal-1, -3 and -8, possibly stimulated by EC activation that has been...
induced by IL-1β, VEGF-A and VEGF-C, could be contributing to the generation of MVs and DVs with plump ECs in PG tissues.

Regarding the presence of Gal-1, -3 and -8 in some macrophages, it is well known that Gal-1 and Gal-3 are abundantly expressed and secreted by human monocytes and macrophages regulating its phenotype and functioning during acute and chronic inflammation and that Gal-3 modulates the production of some cytokines such as IL-1β and IL-5 in macrophages and increases the migration of monocytes and macrophages in the presence of FN, suggesting that Gal-3 can act as chemoattractant for monocytes, macrophages and ECs. Therefore, it is plausible that Gal-1, -3 and -8, acting in a concerted manner, could be mediating the transdifferentiation of macrophages into plump ECs and, in turn, facilitating the migration and incorporation of these cells into the new vessels, i.e. into MVs and DVs. Interestingly, previous studies have indicated that Gal-8, together with Gal-1 and Gal-3, modulates the invasive and migratory capacities of malignant cells.

With respect to the immunolocalisation of Gal-1, -3 and -8 in the cell membrane of the ECs and plump ECs as well as in some macrophages, several in vitro and in vivo studies have shown that EC activation, in addition to upregulating the synthesis of Gal-1, -3 and -8, also induces changes in its cellular localisation and distribution through its interaction with the N- and/or O-glycans residues of glycosylated molecules that are present on the surface of ECs or in the extracellular space, modulating the cell–cell and cell–matrix interactions through specific signalling pathways. In keeping with these observations, Gal-1 and Gal-3 interact with the N-linked glycans of VEGFR-2, while Gal-8 interacts with the N-glycans of VEGFR-2 and VEGFR-3, preventing the internalisation of both tyrosine kinase receptors and modulating their signalling pathways. Likewise, Gal-1, -3 and -8 have been reported to be able to interact with the N- and/or O-linked glycans of the cell surface glycoproteins CD44 and integrin β1 and with the extracellular matrix components collagen and FN, regulating cell attachment, spreading and migration. Importantly, many of the aforementioned molecules are recognised as binding partners of Gal-1, -3 and -8.

Given that Gal-1, -3 and -8, VEGFR-2, VEGFR-3, CD44, integrin β1 and PECAM-1/CD31 were immunolocalised in the reticular dermis, and

Figure 5. Macrophage transdifferentiate into plump endothelial cells that integrate into pre-existing venules contributing to the formation of enlarged venules with transluminal bridges (mother vessels) and capillaries (daughter vessels).
that the formation of homodimers by Gal-1 and Gal-8 and pentamers by Gal-3 to generate gal-glycan lattices at the cell surface and in the extracellular space has been shown, it is possible that in PG tissue, Gal-1, -3 and -8, through their binding partners, form a supramolecular structure at the surface of ECs and plump ECs, macrophages and in the extracellular space that might be mediating the transdifferentiation of macrophages into plump ECs and facilitating the migration and incorporation of these cells into the pre-existing venules, thus contributing to the formation of MVs and DVs.

Declaration of conflicting interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) received no financial support for the research, authorship, and/or publication of this article.

ORCID iD
Enrique Arciniegas https://orcid.org/0000-0001-6371-1561

References
1. Requena L and Sangueza OE. Cutaneous vascular proliferations. Part II. Hyperplasias and benign neoplasms. J Am Acad Dermatol 1997; 37(6): 887–920.
2. Yuan KY, Wing LY and Lin MT. Pathogenetic roles of angiogenic factors in pyogenic granulomas in pregnancy are modulated by female sex hormones. J Periodontol 2002; 73(7): 701–708.
3. Lin RL and Janniger CK. Pyogenic granuloma. Cuts 2004; 74(4): 229–233.
4. Kawachi NA. Comparative histopathological and immunohistochemically study of capillary hemangiomia, pyogenic granuloma and cavernous hemangiomia in the oral region: with special reference to vascular proliferation factors. Int J Oral Med Sci 2011; 9: 241–251.
5. Wollina U, Langner D, França K, et al. Pyogenic granuloma – a common benign vascular tumor with variable clinical presentation: new findings and treatment options. Maced J Med Sci 2017; 5(4): 423–426.
6. Bragado R, Bello E, Requena L, et al. Increased expression of vascular endothelial growth factor in pyogenic granulomas. Acta Derm Venereol 1999; 79(6): 422–425.
7. Yuan KY, Wing LY and Lin MT. The detection and comparison of angiogenesis - associated factors in pyogenic granuloma by immunohistochemistry. J Periodontol 2000; 71(5): 701–709.
8. Godfraind C, Calicchio ML and Kozakewich H. Pyogenic granuloma, an impaired wound healing process, linked to vascular growth driven by FLT4 and the nitric oxide pathway. Modern Pathology 2013; 26(2): 247–255.
9. Saaristo A, Veikkola T, Enholm B, et al. Adenoviral VEGF-C overexpression induces blood vessel enlargement, tortuosity, and leakiness but no sprouting angiogenesis in the skin or mucous membranes. FASEB J 2002; 16(2): 1041–1049.
10. Curiefen C, Wiegand S and Streitewin V. VEGFA stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. J Clin Invest 2004; 11379: 1040–1050.
11. Rehman J, Li J, Orschell CM, et al. Peripheral blood endothelial progenitor cells are derived from monocyte/macrophage and secrete angiogenic factors. Circulation 2003; 107:1164–1169.
12. Van D, Wang X, Li D, et al. Macrophages overexpressing VEGF, transdifferentiate into endothelial-like cells in vitro and in vivo. Biotechnol Lett 2011; 33(9): 1751–1758.
13. Kerjaschki D. Crucial role of macrophages in lymphangiogenesis. J Clin Invest 2005; 115(9): 2316–2319.
14. Ran S and Montgomery KE. Macrophage-mediated lymphangiogenesis: the emerging role macrophages as lymphatic endothelial progenitors. Cancers 2012; 4: 618–657.
15. Hall K, Volk-Draper LD, Flister MJ, et al. New model of macrophage acquisition of the lymphatic endothelial phenotype. PLoS ONE 2012; 7(3): e31794.
16. Novak ML and Koh TJ. Phenotypic transitions of macrophages orchestrate tissue repair. Am J Pathol 2013;183(5):1552–1363.
17. Corliss B, Azimi M, Munson J, et al. Macrophages: An inflammatory link between angiogenesis and lymphangiogenesis. Microcirculation 2016; 23(2): 95–121.
18. Kazemwadel J and Harvey NL. Lymphatic endothelial progenitor cells: origins and roles in lymphangiogenesis. Curr Op Immunol 2018; 55: 81–87.
19. Varricchi G, Granata F, Loffredo S, et al. Angiogenesis and lymphangiogenesis in inflammatory skin disorders. J Am Acad Dermatol 2013; 73: 144–153.
20. Witmer AN, van Blijswijk BC, Dai J, et al. VEGFR-3 in adult angiogenesis. J Pathol 2001; 195(4): 490–497.
21. Tammela T, Zarkada G, Wallgard E, et al. Blocking VEGF-3 suppresses angiogenic sprouting and vascular network formation, Nature 2008; 454(7294): 656–660.
22. Huggenberger R and Detmar M. The cutaneous vascular system in chronic skin inflammation. J Invest Dermatol Symp Proc 2011; 15(1): 24–32.
23. Nilsson F, Bahram F, Li X, et al. VEGF receptor -2/-3 heterodimers detected in situ by proximity ligation on angiogenic sprouts. EMBO J 2010; 29(8): 1377–1388.
24. Card CM, Yu SS and Swartz MA. Emerging roles of lymphatic endothelium regulating adaptive immunity. J Clin Invest 2014; 124(3): 943–952.
25. Dadyova N, Harris NC, Roufail S, et al. Differential receptor binding and regulatory mechanisms for the lymphangiogenic growth factors. Cytokine Growth Factor Rev 2013; 24: 547–558.
26. Wang Cha and Tsai S-I. The non-canonical role of vascular endothelial growth factor-C axis in cancer progression. Exp Biol Med 2015; 240(6): 718–724.
27. Rubinstein N, Llaregui JM, Toscano MA, et al. The role of galectin in the initiation, amplification and resolution of the inflammatory response. Tissue Antigens 2004; 64(1): 1–12.
28. Thijssen VL, Hulsmans S and Griffioen AW. The galectin profile of the endothelium: Altered expression and localization in activated and tumor endothelial cells. Am J Pathol 2008; 172(2): 545–553.
29. Liu FT and Rabinovich GA. Galectins: Regulators of acute and chronic inflammation. Ann N Y Acad Sci 2010; 1183: 158–182.
30. Thijssen VL, Rabinovich GA and Griffioen AW. Vascular galectins: regulators of tumor progression and targets for cancer therapies. Cytokine Growth Factor Rev 2013; 24: 547–558.
31. Compagno D, Jaworski FM, Gentilini L, et al. Galectins: Major signaling modulators inside and outside the cell. Curr Mol Med 2014; 14(5): 1–22.
32. Baum L. Galectins and immune responses-just how do they do those things they do? Annu Rev Immunol 2016; 34: 243–64.
33. Elola MT, Ferragut F, Méndez-Huergo SP, et al. Galectins: multitask signaling molecules linking fibroblast, endothelial and immune cell programs in the tumor microenvironment. *Cell Immunol* 2018; 333: 34–45.

34. Baum LG, Seilhamer JJ, Pang M, et al. Synthesis of an endogenu-sus lectin, galectin-1, by human endothelial cells is up-regulated by endothelial cell activation. *Glycogen* 1995; 12: 63–68.

35. Cambi I, Le Mercier M, Lefranc F, et al. Galectin-1: A small protein with major functions. *Glycobiology* 2006; 16(11): 137K–157K.

36. Sundhblad V, Morosi L, Geffner J, et al. Galectin-1: A jack-of-all-trades in the resolution of acute and chronic inflammation. *J Immunol* 2017; 199: 3721–3730.

37. Pasmazi E, Papadionysiou C, Monastirli A, et al. Galectin-1 in dermatology: Current knowledge and perspectives. *Acta Dermato-Venereol* 2019; 28: 27–31.

38. Liu FT, Hsu DK, RI Zuberi, et al. Expression and function of galectin-3, a beta-galactoside-binding lectin, in human monocytes and macrophages. *Am J Pathol* 1995; 147(4): 1016–1028.

39. Nangia-Makker P, Honjo Y, Sarvis R, et al. Galectin-3 induces endothelial cell morphogenesis and angiogenesis. *Am J Pathol* 2000; 156(3): 899–909.

40. Vinik Y, Shatz-Azoulay H and Zick Y. Molecular mechanisms underlying the role of galectin-8 as a regulator of cancer growth and metastasis. *Trends in Glycoscience Glycotechnology* 2018; 30(172): SE119–SE128.

41. Elola MT, Ferragut F, Méndez-Huergo SP, et al. Galectins: Multitask signaling molecules linking fibroblast, endothelial and immune cell programs in the tumor microenvironment. *Cell Immunol* 2018; 333: 34–45.

42. Baum LG, Seilhamer JJ, Pang M, et al. Synthesis of an endogenu-sus lectin, galectin-1, by human endothelial cells is up-regulated by endothelial cell activation. *Glycogen* 1995; 12: 63–68.

43. Cambi I, Le Mercier M, Lefranc F, et al. Galectin-1: A small protein with major functions. *Glycobiology* 2006; 16(11): 137K–157K.

44. Thijssen VL, Barkan B, Shoji H, et al. Tumor cells secrete galectin-1 to enhance endothelial cell activity. *Cancer Res* 2010; 70(15): 6216–6224.

45. McLeod K, Walker JT and Hamilton DW. Galectin-3 regulates proangiogenic properties of endothelial cells through modulation of cell-cell and cell-matrix interactions. *Am J Physiol Cell Physiol* 2010; 299(6): C1468–C1484.

46. Romero LI, Zhang DN, Herron GS, et al. Interleukin-1 induces major phenotypic changes in human skin microvascular endothelial cells. *Cell Physiol 1997; 175(1): 84–92.

47. Thijssen VL, Barkan B, Shoji H, et al. Tumor cells secrete galectin-1 to enhance endothelial cell activity. *Cancer Res* 2010; 70(15): 6216–6224.

48. DiMaio TA, Schef EA, et al. Galectin-1 regulates proangiogenic properties of endothelial cells through modulation of cell-cell and cell-matrix interactions. *Am J Physiol Cell Physiol* 2010; 299(6): C1468–C1484.

49. Troncoso MF, Ferragut F, Bacigalupo ML, et al. Galectin-8: A positive regulator of leukocyte recruitment in the inflamed microcirculation. *J Immunol* 2017; 198(11): 4458–4469.

50. Troncoso MF, Ferragut F, Bacigalupo ML, et al. Galectin-8: A positive regulator of leukocyte recruitment in the inflamed microcirculation. *J Immunol* 2017; 198(11): 4458–4469.

51. Leppänen VM, Tvorogov D, Kisko K, et al. Structural and mechanistic insights into VEGF receptor 3 ligand binding and activation. *Proc Natl Acad Sci USA* 2010; 107(6): 2425–2430.

52. McLeod K, Walker JT and Hamilton DW. Galectin-3 regulation of wound healing and fibrotic processes: Insights for chronic skin wound therapeutics. *J Cell Commun Signal* 2018; 12(1): 281–287.

53. Levy Y, Arbel-Goren R, Hadari YR, et al. Galectin-8 functions as a matricellular modulator of cell adhesion. *J Biol Chem* 2001; 276(33): 31285–31295.

54. Zick Y, Eisenstein M, Goren RA, et al. Role of galectin-8 as a modulator of cell adhesion and cell growth. *Glycogen* 2004; 19(7–9): 371–376.

55. Delgado V, Nugnes LG, Colombo LL, et al. Modulation of galectin-3, a beta-galactoside-binding lectin, in human mono-cytes and macrophages. *Am J Pathol* 1995; 147(4): 1016–1028.

56. Sebban LE, Ronen D, Levartovsky D, et al. The involvement of galectin-8 as a regulator of cancer growth and metastasis. *Cell Physiol 1997; 175(1): 84–92.

57. Nangia-Makker P, Honjo Y, Sarvis R, et al. Galectin-3 induces endothelial cell morphogenesis and angiogenesis. *Am J Pathol* 2000; 156(3): 899–909.

58. Thijssen VL, Barkan B, Shoji H, et al. Tumor cells secrete galectin-1 to enhance endothelial cell activity. *Cancer Res* 2010; 70(15): 6216–6224.

59. McLeod K, Walker JT and Hamilton DW. Galectin-3 regulation of wound healing and fibrotic processes: Insights for chronic skin wound therapeutics. *J Cell Commun Signal* 2018; 12(1): 281–287.

60. Levy Y, Arbel-Goren R, Hadari YR, et al. Galectin-8 functions as a matricellular modulator of cell adhesion. *J Biol Chem* 2001; 276(33): 31285–31295.

61. Zick Y, Eisenstein M, Goren RA, et al. Role of galectin-8 as a modulator of cell adhesion and cell growth. *Glycogen* 2004; 19(7–9): 371–376.

62. Delgado V, Nugnes LG, Colombo LL, et al. Modulation of endothelial cell migration and angiogenesis: a novel function for the “tandem-repeat” lectin galectin-8. *FASEB J* 2011; 25: 242–254.

63. Troncoso MF, Ferragut F, Bacigalupo ML, et al. Galectin-8: A matricellular lectin with key roles in angiogenesis. *Glycobiology* 2014; 24(10): 907–914.

64. Cattaneo V, Tribulatti MV, Carabelli L, et al. Galectin-8 elicits pro-inflammatory activities in the endothelium. *Glycobiology* 2014; 24(10): 966–973.

65. Vinik Y, Shatz-Azoulay H and Zick Y. Molecular mechanisms underlying the role of galectin-8 as a regulator of cancer growth and metastasis. *Trends in Glycoscience Glycotechnology* 2018; 30(172): SE119–SE128.

66. Delgado V, Nugnes LG, Colombo LL, et al. Modulation of endothelial cell migration and angiogenesis: a novel function for the “tandem-repeat” lectin galectin-8. *FASEB J* 2011; 25: 242–254.

67. Troncoso MF, Ferragut F, Bacigalupo ML, et al. Galectin-8: A matricellular lectin with key roles in angiogenesis. *Glycobiology* 2014; 24(10): 907–914.

68. Johnson P and Ruffell B. CD44 and its role in inflammation and inflammatory diseases. *Inflamm Allergy Drug Targets* 2009; 8(3): 208–220.

69. Ponta H, Sherman L and Herrlich PA. CD44 is a multidomain signalling platform that integrates extracellular cues with growth factor and cytokine signals. *Adv Cancer Res* 2014; 125: 223–244.

70. Sebban LE, Ronen D, Levartovsky D, et al. The involvement of CD44 and its novel ligand galectin-3 in apoptotic regulation of autoimmun e inflammation. *J Immunol* 2007; 179: 1225–1235.

71. Chammas R, Veiga SS, Travasso LR, et al. Functionally distinct roles for glycosylation of alpha and beta integrin chains in cell-matrix interactions. *Proc Natl Acad Sci U S A* 1993; 90(5): 1795–1799.
76. Fortuna-Costa A, Gomes MA, Kozlowski EO, et al. Extracellular galectin-3 in tumor progression and metastasis. *Front Oncol* 2014; 4: 138.

77. Hadari YR, Arbel-Goren R, Levy Y, et al. Galectin-8 binding to integrins inhibits cell adhesion and induces apoptosis. *J Cell Sci* 2000; 113: 2385–2397.

78. Carcamo C, Pardo E, Oyanadel C, et al. Galectin-8 binds specific beta1 integrins and induces polarized spreading highlighted by asymmetric lamellipodia in Jurkat T cells. *Exp Cell Res* 2006; 312: 374–386.

79. Pankov R and Yamada KM. Fibronectin at a glance. *J Cell Sci* 2002; 115: 3861–3863.

80. Levy Y, Arbel-Goren R, Hadari YR, et al. Galectin-8 functions as a matrixcellular modulator of cell adhesion. *J Biol Chem* 2001; 276(33): 31285–31295.

81. Pettersson A, Nagy JA, Brown LF, et al. Heterogeneity of the angiogenic response induced in different normal adult tissues by vascular permeability factor/Vascular Endothelial Growth Factor. *Lab Invest* 2000; 80(1): 99–115.

82. Nagy JA, Chang SH, Shih SC, et al. Heterogeneity of the tumor vasculature. *Semin Thromb Hemost* 2010; 36(3): 321–331.

83. Nagy JA and Dvorak HF. Heterogeneity of the tumor vasculature: the need for new tumor blood vessel type-specific targets. *Clin Exp Metastasis* 2012; 29(7): 657–662.

84. Bousseau S, Vergori L, Soleti R, et al. Glycosylation as new pharmacological strategies for diseases associated with excessive angiogenesis. *Pharmacol. Ther* 2018; 191: 92–122.

85. Dvorak HF. Tumors: wounds that do not heal—a historical perspective with a focus on the fundamental roles of increased vascular permeability and clotting. *Semin Thromb Hemost* 2019; 45(6): 576–592.

86. Kerjaschki D, Huttary N, Raab I, et al. Lymphatic endothelial progenitor cells contribute to the novo lymphangiogenesis in human renal transplants. *Nature Med* 2006; 12(2): 230–234.

87. Markowska AI, Jefferies KC and Panjwai N. Galectin-3 protein modulates cell surface expression and activation of vascular endothelial growth factor receptor 2 in human endothelial cells. *J Biol Chem* 2011; 286(34): 29913–29921.

88. D’Haene N, Sauvage S, Maris C, et al. VEGFR1 and VEGFR2 involvement in extracellular galectin-1- and galectin-3-induced angiogenesis. *PLoS One* 2013; 8(6): e67029.

89. Camby I, Belot N, Rorive S, et al. Galectins are differentially expressed in supratentorial pilocytic astrocytomas, astrocytomas, anaplastic astrocytomas and glioblastomas, and significantly modulate tumor astrocyte migration. *Brain Pathol* 2001; 11(1): 12–26.

How to cite this article

Arciniegas E, Carrillo LM, Rojas H, Pineda J, Ramírez R, Reyes O, Chopite M and Rocheta A. Plump endothelial cells integrated into pre-existing venules contribute to the formation of ‘mother’ and ‘daughter’ vessels in pyogenic granuloma: possible role of galectin-1, -3 and -8. *Scars, Burns & Healing*, Volume 6, 2020. DOI: 10.1177/2059513118986687.