Plasmonic Pd Nanoparticle- and Plasmonic Pd Nanorod-Decorated BiVO₄ Electrodes with Enhanced Photoelectrochemical Water Splitting Efficiency Across Visible-NIR Region

Weiwei Yang¹,²,³, Yunjie Xiong¹,²,³, Liangliang Zou¹, Zhiqing Zou¹*, Dongdong Li¹, Qixi Mi³, Yanshan Wang¹ and Hui Yang¹,²*

Abstract

The photoelectrochemical (PEC) water splitting performance of BiVO₄ is partially hindered by insufficient photoresponse in the spectral region with energy below the band gap. Here, we demonstrate that the PEC water splitting efficiency of BiVO₄ electrodes can be effectively enhanced by decorating Pd nanoparticles (NPs) and nanorods (NRs). The results indicate that the Pd NPs and NRs with different surface plasmon resonance (SPR) features delivered an enhanced PEC water splitting performance in the visible and near-infrared (NIR) regions, respectively. Considering that there is barely no absorption overlap between Pd nanostructures and BiVO₄ and the finite-difference time domain (FDTD) simulation indicating there are substantial energetic hot electrons in the vicinity of Pd nanostructures, the enhanced PEC performance of Pd NP-decorated BiVO₄ and Pd NR-decorated BiVO₄ could both benefit from the hot electron injection mechanism instead of the plasmon resonance energy transfer process. Moreover, a combination of Pd NPs and NRs decorated on the BiVO₄ electrodes leads to a broad-band enhancement across visible-NIR region.

Keywords: Plasmonic Pd, BiVO₄, Photoelectrochemical water splitting, Surface plasmon resonance

Background

Solar hydrogen generation through photoelectrochemical (PEC) water splitting offers an efficient and sustainable solution to the global energy problem [1–5]. Recently, BiVO₄ has emerged as a promising material for PEC water splitting due to its photoactivity in visible light region [6]. However, BiVO₄ photoanodes suffer from rapid charge carrier recombination, slow water oxidation kinetics, and insufficient photoresponse in the spectral region with energy below the band gap of 2.4 eV [6], which limit its water splitting efficiency. Therefore, strategies such as doping [7–12], nanostructuring [13–18], and loading of oxygen evolution catalysts (OECs) [7, 9, 19, 20] have been adopted to improve the water splitting efficiency of BiVO₄.

As reported, several dopants, such as W, Mo, and P, are reported to improve the PEC performance of BiVO₄ [7–12]. Doped BiVO₄ exhibits the improved carrier density, enhanced conductivity, or even increased hole diffusion length, thus resulting in enhanced PEC properties. Furthermore, the short diffusion length of photoexcited charge carriers is the main reason for the dominant electron-hole recombination in the bulk of BiVO₄. To address this issue, the diffusion length for charge carriers can be shortened by nanostructuring, thereby reducing bulk recombination [13–18]. To increase the water oxidation kinetics, research efforts have been placed on the loading of the OECs on BiVO₄ [7, 9, 19, 20]. Among these OECs, the Co-Pi and FeOOH catalysts can lead to a negative-shift of onset potentials of water oxidation and effectively enhance the magnitude of photocurrent [7, 9, 19]. However, through these strategies, the enhanced photoactivity of BiVO₄ has only been achieved in the spectral region with energy above the band gap. To improve the PEC water splitting efficiency of BiVO₄ in the spectral...
region with energy below the band gap or even in the near-infrared (NIR) region, whose energy accounts for 56.3 % of that of the solar spectrum [21], still remains a big challenge.

Recently, a new approach involving metal nanostructures in enhancing the photoactivity of TiO$_2$ in the spectral region with energy below the band gap via plasmonic effect has received much attention [22–24]. Surface plasmon resonance (SPR) is an intrinsic property of metal nanostructures, in which the oscillation frequency is highly sensitive to their shape and size of the metal nanostructures as well as the dielectric constant of the surrounding environment [25–30]. The plasmonic metal nanostructures localize the optical energy by SPR and enhance the photoactivity of semiconductors through either near-field electromagnetic enhancement or hot electron injection [22–24]. For example, Hsu et al. reported that the performance of Au nanostructure-decorated TiO$_2$ nanowires for PEC water splitting was enhanced across entire UV-visible region [23]. Although an enhancement in the PEC water splitting efficiency was also observed on BiVO$_4$ electrodes with plasmonic metal nanostructures, such as Au and Ag [31–33], there are no reports that the photoactivity of BiVO$_4$ can be improved in the spectral region with energy below the band gap or even in the NIR region by exploiting plasmonic metal nanostructures.

This work reports that the enhancement of PEC water splitting efficiency can be effectively extended into the visible-NIR region by the combination of Pd nanoparticle (NPs) and nanorods (NRs) with BiVO$_4$ electrodes. The mechanisms of activity enhancement both in the visible and NIR regions have been discussed.

Methods
Preparation of BiVO$_4$ Electrodes
The BiVO$_4$ electrodes were prepared as previously reported procedure [19]. Solutions for electrodeposition were prepared by dissolving 10 mM Bi(NO$_3$)$_3$ (98 %, Alfa Aesar) in a solution of 35 mM VOSO$_4$ (97 %, Sigma Aldrich) at pH < 0.5 with HNO$_3$ (65 %, Acros Organics). Then 2 M CH$_3$COONa (≥99.0 %, Alfa Aesar) was added, raising the pH to ~5.1, which was then adjusted to pH 4.7 with a few drops of HNO$_3$. Acetate serves to stabilize other insoluble Bi (III) ions at pH 4.7. This mildly acidic pH condition must be used because at pH lower than 2 where Bi(III) is soluble, no film can be formed while at pH higher than 5, V (IV) precipitates from solution. A three-electrode cell was used for electrodeposition, with an fluorine-doped tin oxide (FTO, 8 Ω/□, Hartford Glass Co.) coated glass substrate as working electrode, a Ag/AgCl (4 M KCl) as reference electrode and a platinum foil as counter electrode. A potentiostat (Sloantron SI 1287) was used for electrodeposition. Deposition of amorphous Bi–V–O films was carried out potentiostatically at 1.9 V vs Ag/AgCl (4 M KCl) for 5 min at 70 °C (ca. 2 mA cm$^{-2}$).

Preparation of Pd Nanostructure-Decorated BiVO$_4$ Electrodes
Pd nanostructure-decorated BiVO$_4$ electrodes were prepared using an electrophoretic deposition process. A field of 15 V cm$^{-1}$ was applied to deposit Pd nanostructures using a FTO counter electrode held at positive potentials relative to the working electrode (BiVO$_4$ electrode). For the preparation process of Pd NP-decorated BiVO$_4$ (NP-BiVO$_4$) and Pd NR-decorated BiVO$_4$ (NR-BiVO$_4$) electrodes, the depositing time are 3 and 1 min, respectively. To prepare Pd NP- and NR-decorated BiVO$_4$ (NP-NR-BiVO$_4$) electrodes, Pd NPs were firstly deposited onto the surface of BiVO$_4$ for 30 s and then Pd NPs were deposited for 90 s. After this deposition process, Pd nanostructure-decorated BiVO$_4$ electrodes were rinsed by distilled water and then dried under atmospheric environment for 2 h.

Characterization
X-ray diffraction (XRD) was carried out using a Bruker AXS D8 Advance powder X-ray diffractometer with a Cu Kα ($\lambda = 1.5418$ Å) radiation source to confirm the purity and crystallinity of the prepared BiVO$_4$ electrodes. UV-vis spectra were obtained using a Cary 5000 UV-vis-NIR spectrophotometer in diffuse reflectance mode. Scanning electron microscopy (SEM) images were collected with a field-emission SEM (Hitachi Situation-4800). Elemental compositions were determined by Energy Dispersive X-
ray Spectroscopy (EDX) using the EDX detector on the Hitachi Situation-4800. Transmission electron microscopy (TEM) images were obtained with a JEOL 2100F at an accelerating voltage of 200 kV.

Photoelectrochemical Measurements
All photoelectrochemical measurements were carried out in a 0.1-M potassium phosphate buffer (KPi) at pH = 7, using a three-electrode setup, with a Ag/AgCl (4 M KCl) as reference electrode and a platinum foil as counter electrode. Linear scanning voltammograms (LSVs) were obtained with a scan rate of 10 mV s\(^{-1}\). White-light photocurrent measurements were conducted under simulated AM 1.5G solar illumination with a Xe lamp coupled with a Newport Sol3A Class AAA solar simulator (94023A-SR3). The light intensity of the solar light simulator was calibrated to 100 mW cm\(^{-2}\) by the standard reference of a Newport 91150 silicon solar cell. Visible (400–800 nm, 98.7 mW cm\(^{-2}\)) and NIR (800–2000 nm, 363 mW cm\(^{-2}\)) light measurements were conducted with this Xe lamp couple with spectral filters. Monochromatic photocurrent measurements were conducted with this Xe lamp coupled with a set of monochromatic filters. The whole working electrode was illuminated through the back side of FTO glass. The potential vs Ag/AgCl (4 M KCl) can be converted against the reversible hydrogen electrode (RHE) using the following equation:

\[
E_{\text{vs RHE}} = E_{\text{vs Ag/AgCl}} + E_{\text{Ag/AgCl (ref)}} + 0.0591pH
\]

\[E_{\text{Ag/AgCl (ref)}} = 0.1976 \text{ V vs RHE at } 25^\circ C\]

Results and Discussion
Figure 1a shows XRD pattern of the BiVO\(_4\) film, which can be matched to monoclinic BiVO\(_4\) (JCPDS No. 14–0688). In addition, UV-vis absorption spectrum of the BiVO\(_4\) film was collected and its bandgap was estimated to be 2.5 eV, which agrees well with values for the bandgap of BiVO\(_4\) reported in the literature [19] (Fig. 1b).

Figure 2 shows SEM image and EDX maps of as-prepared NP-NR-BiVO\(_4\) composite film and TEM images of Pd nanostructures. SEM image demonstrates that the BiVO\(_4\) film is composed of grains with no obvious feature. Although no Pd NPs and NRs can be observed in the SEM image due to their small size (Fig. 2f, g), EDX maps clearly show that Pd element presents a uniform distribution on the surface of BiVO\(_4\) film, with the Pd/Bi weight percentage being 2.17%, indicating that Pd NPs and NRs are successfully decorated on the surface of BiVO\(_4\) film. EDX analyses for NP-BiVO\(_4\) and NR-BiVO\(_4\) electrodes show that the Pd/Bi weight percentages are 2.15 and 1.9%, respectively.

Figure 3a shows linear scanning voltammograms (LSVs) of NP-BiVO\(_4\) and bare BiVO\(_4\) electrodes recorded in 1-M KPi solution in the dark and under AM 1.5G illumination (100 mW cm\(^{-2}\)). The dark scans collected in the potential range between −0.4 and 0.8 V reveal a small background current of \(\sim 10^{-7}\) A/cm\(^2\). Under AM 1.5G illumination, NP-BiVO\(_4\) and bare BiVO\(_4\) electrodes show a steady increase in photocurrent with applied potential. Importantly, NP-BiVO\(_4\) electrodes exhibited substantially larger photocurrent density than bare BiVO\(_4\) electrodes. The photocurrent density is ca. 0.336 mA cm\(^{-2}\) at 0.6 V on NP-BiVO\(_4\) electrode, which is about 3.3 times higher than that on bare BiVO\(_4\) electrode. Furthermore, chronocoulometric curves were collected during a period of 1 h at 0.3 V under AM 1.5G illumination. As shown in Fig. 3b, during such a relatively long period, the enhancement is still noticeable, suggesting that the photoactivity of BiVO\(_4\) electrodes can be enhanced under simulated solar light illumination by decoration of Pd NPs on the surface.

Figure 3c shows LSVs of bare BiVO\(_4\) and NP-BiVO\(_4\) electrodes collected in the potential range from 0.2 to
1.4 V under dark condition. There is a decrease in current on NP-BiVO₄ electrode in the potential ranges between 1.1 and 1.4 V, which could rule out the catalytic effect of Pd NPs on water splitting. Such a current decrease could be ascribed to the fact that the coverage of Pd NPs on the surface of BiVO₄ reduces the interfacial surface area between BiVO₄ and the electrolyte, and thereby hindering the water oxidation.

To explore the possible reason for the enhanced PEC water splitting on the NP-BiVO₄ electrodes, chronoamperometric curves were collected for bare BiVO₄ and NP-BiVO₄ electrodes under a set of monochromatic light illumination in the visible region. Figure 4a shows the photocurrent response of PEC water splitting on BiVO₄ with and without the decoration of Pd NPs under 500 nm (60 mW cm⁻²) illumination, where the photocurrent on NP-BiVO₄ is ca. 4 times of that on pristine BiVO₄ electrode. The enhancement factor of photocurrent on the NP-BiVO₄ electrode as a function of excitation wavelength was imposed on the absorption spectrum of synthesized Pd NPs stock solution, as shown in Fig. 4b. It can be seen that the enhancement factor strongly depends on the excitation wavelength and that it exhibits a similar trend with Pd NPs absorption spectral feature. Since the Pd absorption spectrum is a consequence of the SPR of Pd NPs, the result suggests that the Pd SPR could be responsible for the observed photocurrent enhancement [24]. Additionally, the photoresponses of bare BiVO₄ and NP-BiVO₄ electrodes under NIR illumination are obtained and shown in Fig. 4c. The photocurrent collected from NP-BiVO₄ electrode slightly decreases in NIR region in comparison with BiVO₄ electrode. This result is reasonable since the SPR feature of Pd NPs is located at 573 nm, which is far away from NIR region, and the SPR excitation of Pd NPs cannot occur under NIR illumination.

To extend the photoresponse to NIR region for the PEC water splitting, Pd NRs were decorated on the surface of BiVO₄ because the SPR featured peak is located at ca.
900 nm (see Fig. 5a). Figure 5b–d displays the PEC properties of NR-BiVO$_4$ and bare BiVO$_4$ electrodes. As shown in Fig. 5b, the photocurrent density of NR-BiVO$_4$ electrode under AM 1.5G illumination decreased dramatically compared to bare BiVO$_4$ electrode. The photocurrent density on the NR-BiVO$_4$ and BiVO$_4$ electrodes at 0.6 V are 42 and 146 μA cm$^{-2}$, respectively. To reveal the plasmonic effect of Pd NRs on the photoresponse of BiVO$_4$ electrodes, photocurrent response for the NR-BiVO$_4$ and bare BiVO$_4$ electrodes was conducted under visible light and NIR light illumination, respectively. As shown in Fig. 5c, the photocurrent for the NR-BiVO$_4$ electrode obtained under visible light illumination greatly decreased relative to bare BiVO$_4$ electrode. Intriguingly, NR-BiVO$_4$ electrode exhibited much enhanced photoactivity under NIR light illumination, as shown in Fig. 5d, indicating that the SPR excitation of Pd NRs is responsible for the enhanced photoactivity of NR-BiVO$_4$ electrodes under NIR light illumination. To the best of our knowledge, this is the first report that the photoactivity of BiVO$_4$ for water splitting can be enhanced in the NIR region by loading plasmonic metal nanostructures [31–33]. As for the

![Fig. 4](image_url) I–t curves at 0.4 V for bare BiVO$_4$ and NP-BiVO$_4$ electrodes under a monochromatic light (500 nm) and c NIR light illumination. b Symbols: photocurrent enhancement for NP-BiVO$_4$ electrode as a function of excitation wavelength. Solid curve: absorption spectrum of the Pd NPs stock solution

![Fig. 5](image_url) a UV-vis absorption spectrum of Pd NR stock solution. PEC performance of bare BiVO$_4$ and NR-BiVO$_4$ electrodes: b LSVs in the dark and under AM 1.5G illumination; I–t curves at 0.4 V with c visible light and d NIR light illumination
photocurrent decrease under visible light and AM 1.5G illumination, it could be attributed to the fact that the presence of Pd NRs not only block the light absorption of BiVO\textsubscript{4} but reduce the interfacial surface area between BiVO\textsubscript{4} and the electrolyte, thus hindering the transfer of photoexcited holes into the interface between BiVO\textsubscript{4} and the electrolyte for water oxidation.

Inspired by the facts that the NP-BiVO\textsubscript{4} and NR-BiVO\textsubscript{4} electrodes exhibit respectively enhanced PEC water splitting efficiency in the visible and NIR region, a combination of Pd NPs and Pd NRs with BiVO\textsubscript{4} electrodes was fabricated by decorating a mixture of Pd NPs and NRs onto the surface of BiVO\textsubscript{4} electrode. Figure 6 shows the PEC properties of NP-NR-BiVO\textsubscript{4} and bare BiVO\textsubscript{4} electrodes. As shown in Fig. 6a, NP-NR-BiVO\textsubscript{4} electrode exhibited an enhanced photocurrent density in the potential range from 0.0 to 0.8 V. Importantly, chronoamperometric curves collected under visible and NIR light illumination as shown in Fig. 6b, c demonstrate that the NP-NR-BiVO\textsubscript{4} electrode exhibited an enhanced PEC water splitting efficiency in both visible and NIR regions. Although the enhancement factors are not high enough, there must be an optimal loading for Pd NPs and NRs on the BiVO\textsubscript{4} to achieve much better PEC performance. Nevertheless, this study is beyond the scope of the current work.

There are three energy transfer mechanisms by which SPR can enhance the concentration of charge carriers in a nearby semiconductor and therefore increase the photocurrent in a PEC cell. These mechanisms include resonant photon scattering, plasmon resonance energy transfer (PRET), and hot electron injection. First, the mechanism of resonant photon scattering can be ruled out for Pd nanostructure-decorated-BiVO\textsubscript{4} electrodes containing Pd NPs with the diameter around 3.5 nm and...
Pd NRs with length and width of 11.8 and 1.3 nm, respectively, because it normally occurs in plasmonic metal nanostructures larger than 50 nm in size [34–36]. Second, the effect of PRET is normally observed at wavelengths where the plasmon resonance and semiconductor absorption overlap [37]. Whereas, the SPR feature of Pd NPs and NRs is located at 573 and 900 nm, respectively, indicating that there is barely no absorption overlap between Pd nanostructures and BiVO4 with an absorption band edge around 520 nm. Thus, the effect of PRET can also be ruled out for Pd nanostructure-decorated-BiVO4 electrodes. Third, the hot electron injection from plasmonic metal nanostructures into the conduction band of semiconductors is another possible process following the SPR excitation [38, 39]. Considering that the hot electrons accompany with an enhanced localized electric-field intensity in the vicinity of plasmonic metal nanostructures, the finite-difference time domain (FDTD) simulation was performed to calculate the spatial distribution of local electric-field intensity at the interface between Pd nanostructures and BiVO4 as a function of the wavelength of incident photons. Figure 7a, b shows typical FDTD simulation for Pd NP-BiVO4 and Pd NR-BiVO4 at excitation wavelengths of 500 and 900 nm, respectively. One can clearly observe that the electric-field intensity in the vicinity of Pd NP and Pd NR was greatly enhanced, indicating that there are substantial energetic hot electrons. Thus, in the present work, the hot electron injection mechanism could be the major contributor to the enhanced PEC performance of the Pd nanostructures decorated-BiVO4 electrodes in both visible and NIR regions. As schematically presented in Fig. 7c, under visible or NIR light illumination, Pd NP or NR acts as a sensitizer, absorbing resonant photons, generating the energetic hot electrons from the SPR excitation. Then, the hot electrons pass over the Schottky barrier at the Pd/BiVO4 interface and inject into the conduction band of BiVO4. Schottky barrier at the interface also helps the transferred hot electrons accumulate in the conduction band of BiVO4, preventing them from traveling back to the Pd nanostructures [32, 40].

Conclusions
The photoactivity of Pd NPs and NRs decorated BiVO4 electrodes for PEC water splitting can be effectively enhanced across the visible-NIR region. The enhanced photoactivity in both visible and NIR regions was ascribed to the hot electron injection upon SPR excitation of Pd NPs and NRs, respectively. The present work aimed at enhancing the photoactivity of BiVO4 electrodes and at extending from the visible to the NIR region inspired us to design other plasmonic metal nanostructure-decorated semiconductor photoelectrodes for more effective utilization of the solar spectrum.

Abbreviations
EDX, energy dispersive X-ray spectroscopy; FDTD, finite-difference time domain; LSVs, linear scanning voltammograms; NIR, near-infrared; NP-BiVO4, Pd NPs decorated BiVO4; NP-NR-BiVO4, Pd NPs and NRs decorated BiVO4; nanoparticles; NR-BiVO4, Pd NRs decorated BiVO4, nanorods; OECs, oxygen evolution catalysts; PEC, photoelectrochemical; PRET, plasmon resonance energy transfer; SEM, scanning electron microscopy; SPR, surface plasmon resonance; TEM, transmission electron microscopy; XRD, X-ray diffraction.

Competing Interests
The authors declare that they have no competing interests.

Authors’ Contributions
WWY carried out the experiments and drafted the manuscript. YJX participated in the experimental design and the statistical analysis. LLZ and ZQZ helped to revise the manuscript. DDL and QXM participated in the coordination and discussion of the study. YSW performed the FDTD simulation. Hui Yang supervised the whole work. All authors have read and approved the final manuscript.

Acknowledgements
We would like to thank the National Basic Research Program of China (973 Program) (2012CB932800) and the National Natural Science Foundation of China (21533005).

Author details
1Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China. 2University of Chinese Academy of Sciences, Beijing 100039, China. 3School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.

Received: 9 March 2016 Accepted: 18 May 2016

Published online: 04 June 2016

References
1. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–8
2. Zou ZG, Ye JH, Sayama K, Arakawa H (2001) Direct splitting of water under visible light illumination with an oxide semiconductor photocatalyst. Nature 414:625–627
3. Chen XB, Shen SH, Guo LJ, Mao SS (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110:6503–6570
4. Qiu YC, Leung S-F, Wei ZH, Lin QF, Zheng XL, Zhang YG, Fan ZY, Yang SH (2014) Enhanced charge collection for splitting of water enabled by an engineered three-dimensional nanoplate array. J Phys Chem C 118:22465–22472
5. Qiu YC, Leung SF, Zhang QP, Hua B, Lin QF, Wei ZH, Tsui KH, Zhang YG, Yang SH, Fan ZY (2014) Efficient photoelectrochemical water splitting with ultrathin films of hematite on threedimensional nanoporous structures. Nano Lett 14:2123–2129
6. Park Y, McDonald KJ, Choi K-S (2013) Progress in bismuth vanadate photoanodes for use in solar water oxidation. Chem Soc Rev 42:2321–2337
7. Zhong DK, Choi S, Gamelin DR (2011) Near-complete suppression of surface recombination in solar photoelectrolysis by “Co-Pi” catalyst-modified W: BiVO4. J Am Chem Soc 133:18370–18377
8. Ye H, Park HS, Bard AJ (2011) Screening of electrocatalysts for photoelectrochemical water oxidation on W-doped BiVO4 photocatalysts by scanning electrochemical microscopy. J Phys Chem C 115:12464–12470
9. Pilli SK, Furtak TE, Brown LD, Deutsch TG, Turner JA, Herring AM (2011) Cobalt-phosphate (Co-Pi) catalyst modified Mo-doped BiVO4 photoelectrodes for solar water oxidation. Energy Environ Sci 4:5028–5034
10. Ye H, Lee J, Jang JS, Bard AJ (2010) Rapid screening of BiVO4-based photocatalysts by scanning electrochemical microscopy (SCM) and studies of their photoelectrochemical properties. J Phys Chem C 114:3322–3328
11. Luo WJ, Yang ZS, Li ZS, Zhang YJ, Liu JG, Zhao ZQ, Yang ZQ, Yan SC, Yu T, Zou ZG (2011) Solar hydrogen generation from seawater with a modified BiVO4 photoanode. Energy Environ Sci 4:4046–4051
12. Jo WJ, Jang J, Kong K, Kang HJ, Kim JY, Jun H, Parmar KPS, Lee JS (2012) Phosphorus doping into monoclinic BiVO4 for enhanced photoelectrochemical water oxidation activity. Angew Chem Int Ed 51:3147–3151
13. McDonald KJ, Choi KS (2012) A new electrochemical synthesis route for a BiOCl electrode and its conversion to a highly efficient porous BiVO₄ photoanode for solar water oxidation. Energy Environ Sci 5:8553–8557.

14. Su J, Guo L, Yonaya S, Grimes CA (2010) Aqueous growth of pyramidal-shaped BiVO₄ nanowires and structural characterization: application to photoelectrochemical water splitting. Cryst Growth Des 10:856–861.

15. He HC, Berglund SP, Rettie AJE, Chemelewski WD, Xiao P, Zhang YH, Mullins CB (2014) Synthesis of BiVO₄ nanoflake array films for photoelectrochemical water oxidation. J Mater Chem A 2:9371–9379.

16. Yoon H, Mait MG, Choi MY, Kim SK, Park H, Al-Deab SS, Swihart MT, Yarin AL, Yoon SS (2015) Nanotextured pillars of electrospayed bismuth vanadate for efficient photoelectrochemical water splitting. Langmuir 31:3727–3737.

17. Rao PM, Cai LL, Liu C, Cho IS, Lee CH, Weisse JM, Yang PD, Zheng XL (2014) Simultaneously efficient light absorption and charge separation in WO₃/BiVO₄ core/shell nanowire photoanode for photoelectrochemical water oxidation. Nano Lett 14:1099–1105.

18. Su JZ, Guo LJ, Bao NZ, Grimes CA (2011) Nanostructured WO₃/BiVO₄ heterojunction films for efficient photoelectrochemical water splitting. Nano Lett 11:1928–1933.

19. Seabold JA, Choi K-S (2012) Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxohydroxide oxygen evolution catalyst. J Am Chem Soc 134:2186–2192.

20. Wang LE, Li RG, Zhu J, Shi YJ, Han JF, Zong X, Li C (2012) Photocatalytic water oxidation on BiVO₄ with the electrocatalyst as an oxidation cocatalyst: essential relations between electrocatalyst and photocatalyst. J Phys Chem C 116:5082–5089.

21. Cho S, Lee MJ, Kim MS, Lee S, Kim YK, Lee DH, Lee CW, Cho KH, Chung JH (2008) Infrared plus visible light and heat from natural sunlight participate in the expression of MMPs and type I procollagen as well as infiltration of inflammatory cell in human skin in vivo. J Dermatol Sci 50:123–133.

22. Zhang ZH, Zhang LB, Hedhili MN, Zhang HN, Wang P (2013) Plasmonic gold nanocrystals coupled with photocatalytic crystal on TiO₂ nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting. Nano Lett 13:14–20.

23. Pu YC, Wang G, Chang KD, Ling Y, Lin YK, Fitzmorris BC, Liu CM, Lu X, Tong Y, Zhang JZ, Hsu YJ, Li Y (2013) Au nanostructure-decorated TiO₂ nanowires exhibiting photocactivity across entire UV-visible region for photoelectrochemical water splitting. Nano Lett 13:3727–3737.

24. Ingram DB, Linic S (2011) Water splitting on composite plasmonic-metal/semiconductor photoelectrodes: evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface. J Am Chem Soc 133:5022–5025.

25. Xu Z, Lin YY, Yin M, Zhang HF, Cheng CW, Lu LF, Xue XZ, Fan HL, Chen XY, Li DD (2015) Understanding the enhancement mechanism of surface plasmon-mediated photoelectrochemical water splitting: a case study on Au nanoparticle decorated TiO₂ nanotubes. Adv Mater Interfaces 2:1500169.

26. Jain PK, El-Sayed MA (2008) Noble metal nanoparticle pairs: effect of medium for enhanced nanosensing. Nano Lett 8:4347–4352.

27. Malinsky MD, Kelly KL, Schatz GC, Van Duyne RP (2011) Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with anilinethiol self-assembled monolayers. J Am Chem Soc 132:1471–1482.

28. Haes AJ, Van Duyne RP (2002) A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J Am Chem Soc 124:10596–10604.

29. Xiong YJ, Wiley BB, Chen JY, Li ZY, Yin YD, Xia YN (2005) Corrosion-based synthesis of single-crystal Pd nanobows and nanocages and their surface plasmon properties. Angew Chem Int Ed Engl 44:7913–7917.

30. Liu YT, Xu Z, Yin M, Fan HW, Cheng WJ, Lu LF, Song Y, Ma J, Zhu XF (2015) Enhanced photoelectrocatalytic performance of alpha-Fe₂O₃ thin films by surface plasmon resonance of Au nanoparticles coupled with surface passivation by atom layer deposition of Al₂O₃. Nanoscale Res Lett 10:374.

31. Zhang LW, Lin CY, Valer VV, Reisner E, Steiner U, Baumberg JJ (2014) Plasmonic enhancement in BiVO₄ photonic crystals for efficient water splitting. Small 10:3970–3978.

32. Zhang LW, Herrmann LO, Baumberg JJ (2015) Size dependent plasmonic effect on BiVO₄ photoanodes for solar water splitting. Sci Rep 5:16660.