СВОБОДНОРАДИКАЛЬНАЯ АКТИВНОСТЬ В ПАТОГЕНЕЗЕ ОПУХОЛЕЙ ГОЛОВНОГО МОЗГА

А.В. ЩЕРИНА, К.Э. КРОЩИХИНА

Нижегородская государственная медицинская академия, пл. Минина и Пожарского, 10/1, 603005, г. Нижний Новгород, Российская Федерация

Цель исследования. Анализ свободнорадикальной активности опухолевой ткани и крови при злокачественных и доброкачественных новообразованиях головного мозга. Материалы и методы. Изучение свободнорадикальной активности включало в себя проведение количественного обнаружения методом индуцированной биохимилюминесценции на биохимилюминометре БХЛ-07, сопряженным с компьютером IBM. Статистическая обработка данных проводилась с использованием пакета Biostat 4.3. Объектом исследования стали кровь и послеоперационный материал опухолевых новообразований головного мозга 12 пациентов со злокачественными опухолями головного мозга (glioma, glioblastoma, astrocytoma), 7 пациентов с доброкачественными опухолями головного мозга (mенингиома, субэпендимома) до проведения лечения. В качестве контроля использовали ткань мозга лиц, погибших в результате травмы, и кровь от 10 практически здоровых людей. Также в качестве модели гипоксии изучали ткань головного мозга 7 лиц, погибших от сердечно-сосудистой недостаточности. Результаты. Свободнорадикальная активность в тканях опухоли значимо повышалась при злокачественных и доброкачественных новообразованиях головного мозга по сравнению с таковой у контрольной группы. Однако, при злокачественных новообразованиях уровень свободных радикалов в опухолевой ткани мозга гораздо выше (в 4,2 раза по сравнению с контролем), чем при доброкачественных – в 2,5 раз по сравнению с контролем. Свободнорадикальная активность плазмы крови значимо возрастала при злокачественных новообразованиях головного мозга по сравнению с практически здоровыми людьми и людьми с доброкачественными новообразованиями более, чем в 15 и 2,5 раз соответственно. Интересным результатом исследования стало то, что свободнорадикальная активность ткани головного мозга у лиц, погибших от сердечно-сосудистой недостаточности, у которых имела место хроническая гипоксия мозга достоверно выше, чем у лиц, погибших от травмы. Выводы. Определение свободнорадикальной активности крови может быть использовано в целях дифференциальной диагностики при доброкачественных и злокачественных новообразованиях головного мозга.

Ключевые слова: свободнорадикальная активность, метод индуцированной биохимилюминесценции, доброкачественные и злокачественные опухоли головного мозга, гипоксия, дифференциальная диагностика.
По данным Всемирной организации здравоохранения, на сегодняшний день ежегодно рак диагностируется у 14 миллионов человек, а количество смертей от этого заболевания составляет 8,2 миллиона в год. Предполагается, что заболеваемость раком значительно возрастет: к 2025 году эта цифра достигнет 19 миллионов в год, а к 2035 году – 24 миллиона случаев [1].

Очень важно различать доброкачественные и злокачественные опухоли, так как лечатся они по-разному, что особенно важно при опухолях головного мозга [2]. Первичные опухоли центральной нервной системы составляют около 2% всех опухолей и занимают 4 место в структуре онкологических смертности. Несмотря на все современные успехи нейрохирургии, развитие интраопериционной навигации, химио- и лучевой терапии, лечение первичных злокачественных опухолей головного мозга продолжает оставаться недостаточно эффективным. До брокачественные же опухоли головного мозга не представляют угрозы для жизни. Только некоторые из них удаляются хирургическим путем. Кроме того, при лечении доброкачественных новообразований практически никогда не используют химиотерапию или лучевую терапию. Данные о злокачественности опухоли появляются лишь после проведения иммуногистохимического анализа биопсийного или послеоперационного материала, осуществление которого требует значительного времени исполнения, является инвазивным и трудоемким методом диагностики. Достоверная информация о злокачественности или доброкачественности опухоли позволяет оптимизировать процесс лечения и существенно повысить его эффективность.

Нарушение свободнорадикальной активности при злокачественных новообразованиях имеет диагностический характер и повышение уровня свободных радикалов – один из пусковых механизмов канцерогенеза [3].

Свободнорадикальное окисление – важный и многогранный биохимический процесс превращений кислорода, липидов, нуклеиновых кислот, белков и других соединений под действием свободных радикалов, а перекисное окисление липидов – одно из его последствий.

Свободные радикалы представляют собой соединения, имеющие неспаренный электрон на наружной орбите и обладающие высокой реакционной способностью.

Активные формы кислорода – это целый ряд образующихся в организме промежуточных и побочных продуктов восстановления молекул кислорода, таких как супероксидный (O2·−), гидроксильный (OH·), пергидроксильный (HO2·), пероксильный (RO2·) и алкоксильный (RO·) радикалы, оксид азота (NO·), пероксинитрит (ONO2·), гипохлорит (HOCl), перекись водорода (H2O2) и др. [4].

Среди кислородных свободных радикалов отводят наиболее значительную роль супероксидному анион-радикалу (O2·−), так как считается, что именно он является родоначальником многих других активных форм кислорода.

Гидроксильный радикал (OH·). Одноэлектронное восстановление H2O2 приводит к образованию гидроксильных радикалов, обладающих чрезвычайно высокой реакционной способностью. Разложение H2O2 в присутствии ионов двухвалентного железа является основным путем образования OH· (реакция Фентона) [5]:

H2O2 + Fe2+ → Fe3+ + OH· + HO2−

Другой путь образования гидроксильного радикала – это реакция разложения гипохлорита, которая также протекает с участием Fe2+[6]:

HOCl + Fe2+ → HO· + Cl− + Fe3+

Установлено, что образование гидроксильного радикала возможно при разложении гипохлорита также и железонезависимым путем:

HOCl + O2→ HO· + Cl− + O2−

Обладая наиболее высоким в живой природе редокс-потенциалом (E0=+2.7В), и будучи вследствие этого чрезвычайно агрессивным, OH· оказывает действие практически на любую биологическую молекулу. Но наибольший ущерб клетке наносят его реакции с ДНК, белками и...
полиненасыщенными жирными кислотами внутриклеточных и плазматических мембран, что определяет сильнейшее мутагенное и цитотоксическое действие гидроксильного радикала [7].

Таким образом, свободнорадикальная активность является одним из пусковых механизмов формирования всех злокачественных новообразований. Мозг особо уязвим для свободных радикалов из-за его высокого потребления кислорода и высоких концентраций легко окисляющихся полиненасыщенных жирных кислот. Поэтому мозг наиболее подвержен окислительному повреждению [8].

Цель исследования
Анализ свободнорадикальной активности опухолевой ткани и крови при злокачественных и доброкачественных новообразованиях головного мозга.

Материалы и методы
Исследованы кровь и ткань опухолевых новообразований головного мозга 12 пациентов со злокачественными опухолями головного мозга (glioma, глиобластома, астроцитома) – 6 женщин и 6 мужчин в возрастной категории от 39 до 53 лет, 7 пациентов с доброкачественными опухолями головного мозга(менингиома, субэпендимома) – 3 женщины и 4 мужчины в возрасте от 37 до 59 лет, до проведения лечения. В качестве контроля использовали ткань мозга лиц, погибших в результате травмы (время смерти: до 10ч) – 7 человек (3 мужчин и 4 женщин в возрасте от 36 до 47 лет), и кровь от 10 практически здоровых людей (5 мужчин и 5 женщин в возрастной категории от 35 до 65 лет). Также в качестве модели гипоксии изучали ткань головного мозга от 7 лиц, погибших от сердечно-сосудистой недостаточности (4 женщины и 3 мужчины в возрасте от 48 до 64 лет).

Свободнорадикальную активность оценивали методом индуцированной биохемилюминесценции [9]. Метод биохемилюминесцентного анализа информативен, обладает высокой чувствительностью и может быть использован при выявлении предпатологического состояния и начальных стадий различных патологий при скрининговых профилактических обследованиях. Работа была выполнена на биохемилюминометре БХЛ-07, сопряженным с компьютером IBM. БХЛ-07 предназначен для регистрации световых потоков, возникающих в биологических образцах в результате протекания ферментативных и химических процессов.

Метод индуцированной перекисью водорода и сульфатом железа хемилюминесценции основан на том, что в представленной системе происходит каталитическое разложение перекиси водорода и ионами металла с переменной валентностью – двухвалентным железом: ROOH + Fe^{2+} \rightarrow RO’ + OH^- + Fe^{3+} (реакция Фентона). Образующиеся RO’ и OH вступают в реакцию активации свободнорадикального окисления в биологическом субстрате, что приводит к образованию неустойчивого тетраоксида, распадающегося с выделением кванта света, регистрируемого на БХЛ-07. На интенсивность процесса свечения оказывает влияние полный комплекс соединений, обладающих как оксидантным, так и прооксидантным действием.

Информативными показателями считаются Imax – максимальная интенсивность свечения исследуемой пробы, измеряемая в mV. Imax отражает свободнорадикальную активность образца (рис. 1).

Статистическая обработка данных проводилась с использованием пакета Biostat 4.3.

Результаты и их обсуждение
В ходе проведенного исследования было выявлено, что свободнорадикальная активность в тканях опухоли значимо повышалась при злокачественных и доброкачественных новообразованиях головного мозга по сравнению с таковой у контрольной группы. Однако, при злокачественных новообразованиях уровень свободных радикалов в опухолевой ткани мозга гораздо выше (в 4,2 раза по сравнению с контролем), чем при доброкачественных – в 2,5 раз по сравнению с контролем (рис. 2).
Интересным результатом исследования стало и то, что свободнорадикальная активность ткани головного мозга у лиц, погибших от сердечно-сосудистой недостаточности, у которых имела место хроническая гипоксия мозга достоверно выше, чем у лиц, погибших от травмы (рис. 2). Перекисное окисление активируется также в тканях, подвергшихся сначала ишемии, а затем реоксигенации, что происходит, например, при спазме коронарных артерий и последующем их расширении. Такая же ситуация возникает при образовании тромба в сосуде, питающем миокард. Формирование тромба приводит к окклюзии просвета сосуда и развитию ишемии в соответствующем участке миокарда (гипоксия ткани) [10]. Свободнорадикальная активность плазмы крови значимо возрастала при злокачественных новообразованиях головного мозга по сравнению с практически здоровыми людьми и людьми с доброкачественными новообразованиями более, чем в 15 и 2,5 раз соответственно (рис. 3).
Образование митохондриального супероксида и повышение уровня других активных форм кислорода при опухолевом процессе вызывает в организме состояние окислительного стресса [11]. Развитие бластоматозного процесса сопровождается повышением уровня су
пероксидного анион-радикала и других активных форм кислорода, развитием в организме состояния окислительного стресса [12]. Считается, что накопление супероксидного анион-радикала на ранних стадиях опухолевого роста способствует повреждению ДНК, росту числа мутаций, экспрессии некоторых генов и малигнизации клеток, изменению физико-химических свойств мембран, в том числе ядерной [13]. Существует гипотеза, предполагающая активное участие форм кислорода, в частности, супероксидного радикала и пероксида водорода в регуляции пролиферации клеток [14].

Таким образом, показано увеличение свободнорадикальной активности плазмы крови и опухолевой ткани при злокачественных новообразованиях головного мозга. Интенсификация процессов свободнорадикального окисления является наиболее важным повреждающим эффектом в процессе зарождения опухоли. Выделяют 2 пути активации свободнорадикального окисления при канцерогенезе:

1 путь. На фоне воспаления повышается синтез цитокинов, которые в соответствии с уровнем их активности генерируют высвобождение высокого урона оксида азота NO. Известно, что в очаге воспаления накапливается продукт частичного восстановления кислорода – супероксидный анион-радикал [15]. NO и супероксид-анион подвергаются быстрому радикаль – радикальному взаимодействию с образованием медиатора окислительного клеточного повреждения – пероксинитрита (рис. 4).

2 путь. Активные формы кислорода и свободные радикалы способны взаимодействовать с различными клеточными макромолекулами, такими как ДНК, белки и липиды мембран, что приводит к возникновению большого числа окисленных продуктов (рис. 5).
Рис. 4. Схема активации процессов свободнорадикального окисления у больных раком [15]

Рис. 5. Воздействие свободных радикалов и активных форм кислорода на белки, липиды и ДНК [16]

Выводы
1. Методом индуцированной биохимической люминесценции установлено, что свободнорадикальная активность опухолевых тканей и плазмы крови возрастала при опухолях головного мозга. При доброкачественных опухолях увеличение свободнорадикальной активности было менее значительным, чем при злокачественных.

2. Свободнорадикальная активность в опухолевой ткани в том числе может быть обусловлена процессами гипоксии.

3. Определение свободнорадикальной активности крови может быть использовано в целях дифференциальной диагностики при доброкачественных и злокачественных новообразованиях головного мозга.

Конфликт интересов отсутствует.
Литература
1. Global battle against cancer won’t be won with treatment alone Effective prevention measures urgently needed to prevent cancer crisis // The International Agency for Research on Cancer Organization, World Health, Press release №224. Lyon/London. 2014. P. 630.
2. Чиссов В.И., Дарьялова С.Л. Онкология. М.: ГЭОТАРМедиа, 2007.
3. Воейков В.Л. Благотворная роль активных форм кислорода // Биохимия. 2004. №1. С. 27-38.
4. Владимиров Ю.А. Свободные радикалы в биологических системах // Соросовский образовательный журнал. 2000. Т. 6, №12. С. 1-2.
5. Владимиров Ю.А., Арчаков А.И. Перекисное окисление липидов в биомембранах. М.: Наука, 2003. С. 230-272.
6. Якутова Э.Ш., Дремина Е.С., Евгина С.А Образование свободных радикалов при взаимодействии гипохлорита с ионами железа // Биофизика, 2004. Т. 39, вып. 2. С. 275-279.
7. Melov S. Animal models of oxidative stress, aging and therapeutic antioxidant interventions // Int. J. Biochem. Cell Biol. 2003. Vol. 34. P. 1395-1400.
8. Боглырев А.А. Окислительный стресс в мозге // Соросовский образовательный журнал. 2001. Т. 7, №4. С. 21-28.
9. Кузьмина Е.И., Нелюбин А.С., Щеникова М.К. Применение индуцированной хемилюминесценции для оценки свободно-радикальных реакций в биологических субстратах // Межвузовский сборник биохимии и биофизики микроорганизмов. Горький; 1983. С. 179-183.
10. Северин Е.С. Биохимия: учебник для вузов. М., 2003. С. 429-431.
11. Morris G.E., Humphrey E.L., Fuller H.R. Naturally occurring plant polyphenols as potential therapies for inherited neuromuscular diseases // Future Medicinal Chemistry. 2013. №5(17). P. 2091-2101.
12. Miki J., Furusato B. et al. Identification of Putative Stem Cell Markers, CD 133, and CXCR_4, in hTERT – Immortalized Primary Nonmalignant and Malignant Tumor-Derived Human Prostate Epithelial Cell Lines and in Prostate Cancer Specimens // Cancer Research. 2007. Vol. 67. P. 3153-3161.
13. Меньщикова Е.Б., Ланкин В.З., Зенков Н.К. Окислительный стресс. Прооксиданты и антиоксиданты. М.: Слово, 2006. С. 553.
14. Меньщикова Е.Б., Зенков Н.К., Ланкин В.З. и др. Окислительный стресс: Патологические состояния и заболевания. Новосибирск: АРТА, 2008. С. 10-284.
15. Гущков Е.П., Шкурат Т.П., Вардуни Т.В., и др. Генетика окислительного стресса. Ростов н/Д: Изд-во СКНЦ ВЩ ЮФУ, 2009.

СВЕДЕНИЯ ОБ АВТОРАХ
Щерина А.В. – студентка 2 курса лечебного факультета ФГБОУ ВО НижГМА Минздрава России, г. Волгоград, Российская Федерация; SPIN 6390-0944, ORCID ID 0000-0002-2356-586X.
E-mail: ashcherina@yandex.ru

Крощихина К.Э. – студентка 3 курса медико-профилактического факультета ФГБОУВО НижГМА Минздрава России, г. Волгоград, Российская Федерация; SPIN 3396-3630, ORCID ID 0000-0001-7082-2980.
FREE RADICAL ACTIVITY IN PATHOGENESIS OF BRAIN TUMORS

A.V. SHCHERINA, K.E. KROSHCHIKHINA

Nizhny Novgorod State Medical Academy,
10/1, Minin and Pozharsky sq., Nizhny Novgorod, 603005, Russian Federation

Aim. Analysis of free radical activity of neoplastic tissue and blood in malignant and benign neoplasms of the brain. Materials and Methods. Study of free radical activity included quantitative detection by a method of induced biochemiluminescence on the biochemiluminometer БХЛ-07, coupled with IBM computer. Statistical processing of the data was carried out using Biostat 4.3 program. The subject of the study was blood and postoperative material of brain neoplasms of 12 patients with malignant brain tumors (glioma, glioblastoma, astrocytoma), and of 7 patients with benign brain tumors (meningioma, subependymoma) taken before treatment. For control the brain tissue of individuals was used who died in result of trauma, and blood of 10 healthy people. As a model of hypoxia, the brain tissue of 7 individuals was studied who died from cardiovascular insufficiency. Results. Free radical activity was significantly higher in tissues of malignant and benign neoplasms of the brain in comparison with control group. However, the level of free radicals in tissue of malignant tumors was much higher (4.2 times that of control) than of benign tumors – 2.5 times that of control. Free radical activity of blood plasma in case of malignant neoplasms of the brain was 15 times that in practically healthy individuals and 2.5 times that in case of benign tumors. An interesting result of the study was the fact that free radical activity of brain tissue in people who died from cardiovascular failure and who had chronic brain hypoxia was significantly higher than in those who died from trauma. Conclusion. Determination of free radical activity of blood can be used for differential diagnosis of benign and malignant brain tumors.

Keywords: free radical activity, method of induced biochemiluminescence, benign and malignant brain tumors, hypoxia, differential diagnosis.

According to the data of the World Health Organization, at the present moment 14 mln individuals are diagnosed with cancer, and the mortality rate from this disease is 8.2 mln patients per years. Incidence of cancer is supposed to rise to 19 mln by 2025 and to 24 mln by 2035 [1].

It is very important to differentiate between benign and malignant tumors, since their treatment is different which is especially important in case of tumors of the brain [2]. Primary tumors of the central nervous system make about 2% of all tumors and are the 4th most common cause of death from oncologic diseases. Despite all modern achievements in neurosurgery, development of intraoperative navigation, chemo- and radiation therapy, treatment of primary malignant tumors of the brain still remains low-effective. Benign tumors of the brain do not present any threat to life. Only some of them are surgically removed. Besides, chemotherapy or radiation therapy are practically never used in treatment for benign neoplasms. Information about malignity of a tumor becomes evident only after immunohistochemical analysis of biopsy or postoperative material which is a time-consuming, invasive and labor-intensive diagnostic method. A reliable information about a malignant or benign character of tumor permits to optimize treatment and to significantly increase its effectiveness.

Alterations of free radical activity in malignant neoplasms are of a diagnostic sig-
Thus, free radical activity is one of triggering mechanisms for all malignant neoplasms. The brain is especially vulnerable to free radicals since it consumes much oxygen and contains high concentrations of readily oxidizable poly-unsaturated fatty acids. Therefore, the brain is susceptible to oxidative damage [8].

Aim of Research

Analysis of free radical activity of neoplastic tissue and blood in malignant and benign tumors of the brain.

Materials and Methods

The subject of the study was tissue of brain tumors and blood of 12 patients with malignant brain tumors (glioma, glioblastoma, astrocytoma) - 6 men and 6 women at the age from 39 to 53 years, and of 7 patients with benign brain tumors (meningioma, subependymoma) - 3 men and 4 women at the age from 37 to 59) taken before treatment. For control the brain tissue of individuals was used who died in result of trauma (the time of death: not more than 10 h) – 7 individuals (3 men and 4 women) at the age from 36 to 47, and blood from 10 healthy individuals (5 men and 5 women) at the age from 35 to 65 years). As a model of hypoxia, the brain tissue of 7 individuals was studied who died from cardiovacular failure (4 women and 3 men at the age from 48 to 64 years).

Free radical activity was evaluated by a method of induced biochemiluminescence [9]. The method of biochemiluminescence is informative, highly sensitive and may as well be used for identification of prepathological conditions and initial stages of different pathologies in screening prophylactic examinations. The work was conducted on БХЛ-07 biochemiluminometer coupled with IBM computer. БХЛ-07 is designed for registration of light beams generated in enzymatic and chemical processes in biological material.

Method of chemiluminescence induced by hydrogen peroxide and ferric sulfate is based on the fact of catalytic dissociation of hydrogen peroxide by ions of metals with mixed valence – ferrous iron: ROOH + Fe^{2+} → RO’+ OH’ + Fe^{3+} (Fenton reaction).
Produced RO• and OH• enter reaction of activation of free radical oxidation in biological substrate with production of unstable tetraoxide that dissociates with emission of a quantum of light recorded on БХЛ-07. Intensity of luminescence is influenced by a full complex of compounds possessing both oxidant and prooxidant effect.

Informative parameters are Imax – maximal intensity of luminescence of the studied sample measured in mV. Imax reflects free radical activity of the sample (Fig. 1).

![Fig. 1. A kinetic curve of generation of induced chemiluminescence signal [9]](image)

Statistical processing of data was carried out using Biostat 4.3 program.

Results and Discussion

In the course of study it was found that free radical oxidation activity in tissues of malignant and benign neoplasms of the brain was reliably higher than in the control group. However, the level of free radicals in tissue of malignant tumor was much higher (4.2 times that in control) than in benign tumors – 2.5 that in control (Fig. 2).

![Fig. 2. Free radical activity of brain tumor tissue](image)

- Benign tumors of brain
- Hypoxia (brain tissue of individuals died from cardio-vascular diseases
- Malignant tumors of the brain

* - differences with parameters of the control group are reliable (p<0.05)
An interesting result of the study was the fact that free radical activity of the brain tissue of individuals who died from cardiovascular failure and who had chronic hypoxia of the brain, was reliably higher than in individuals who died from a trauma (Fig. 3). Activation of peroxide oxidation is observed in tissues that were at first exposed to ischemia and then to reoxygenation, as, for example, in case of spasm of coronary arteries with their subsequent dilation. A similar situation happens in case of formation of a thrombus in a vessel supplying blood to the myocardium. The formed thrombus occludes the lumen of the vessel and causes ischemia in a respective area of the myocardium (tissue hypoxia) [10]. Free radical activity of blood plasma reliably increased in case of malignant tumors of the brain in comparison with healthy individuals and individuals with benign tumors more than 15 and 2.5 times, respectively.

![Graph](image)

Fig. 3. Free radical activity of blood plasma in tumors of the brain

- Control (blood of practically healthy individuals)
- Benign tumors
- Malignant tumors

*- differences with parameters of the control group are reliable (p<0.05)

Formation of mitochondrial superoxide and increase in the level of other active forms of oxygen in neoplastic process evoke oxidative stress in an organism [11].

Development of blastomatous process is accompanied by increase in the level of superoxide anion-radical and other active forms of oxygen and by development of oxidative stress in an organism [12]. It is believed that accumulation of superoxide anion-radicals and other active forms of oxygen in early stages of tumor growth evokes damage to DNA, leads to increase in the number of mutations, to expression of some genes and malignization of cells, and to alteration of physico-chemical properties of membranes including nuclear membrane [13]. There exists a hypothesis that suggests participation of active forms of oxygen, in particular, of superoxide radical and hydrogen peroxide, in regulation of proliferation of cells [14].

Thus, increase of free radical activity is shown in blood plasma and tissue of malignant neoplasms of the brain.

Intensification of free radical oxidation processes produces the most important damaging effect in the process of initiation of tumor. There are two ways of activation of free radical oxidation in carcinogenesis:

1st way. Increase in synthesis of cytokines with the existence of inflammation, which, in accordance with the level of their activity, promote release of high level of NO which rapidly enters radical-radical interaction with the product of partial reduction of oxygen – superoxide anion-radical that ac-
cumulates in the inflammation focus [15]. The result of this reaction is formation of a mediator of oxidative cell damage – peroxynitrite (Fig. 4).

Fig. 4. A scheme of activation of free radical oxidation processes in patients with cancer [15]

2nd way. Interaction of active forms of oxygen and free radicals with different cell macromolecules, such as DNA, proteins and lipids of membranes, with the resultant production of high amounts of oxidized products (Fig. 5).

Fig. 5. Impact of free radicals and active forms of oxygen on proteins, lipids and DNA [16]

Conclusions

1. A method of induced biochemiluminescence showed increased free radical activity in tissues of brain tumors and in blood plasma. In tissues of benign tumors the increase in free radical activity was less significant than in that of malignant tumors.

2. Along with other mechanism, free radical activity in neoplastic tissue may be provoked by hypoxia.
3. Determination of free radical activity may be used in differential diagnosis of benign and malignant neoplasms of the brain.

References

1. Global battle against cancer won’t be won with treatment alone Effective prevention measures urgently needed to prevent cancer crisis. The International Agency for Research on Cancer Organization, World Health, Press release N 224, Lyon/London. 2014. P. 630.
2. Chissov VI, Daryalova SL. Onkologiya. M.: GEOTAR Media; 2007.
3. Voeikov VL. The Beneficial Role of Active Oxygen Forms. Biochemistry. 2004; 1:27-38(In Russ).
4. Vladimirov YuA. Free Radicals in Biological Systems. Soros Educational Journal. 2000; 6(12):1-2(In Russ).
5. Vladimirov YuA, Archakov AI. Perekisnoe okislenie lipidov v biomembranah. Moscow: Nauka; 2003. P. 230-72(In Russ).
6. Yakutova ESh, Dremina ES, Evgina SA. The formation of free radicals in the interaction of hypochlorite with iron ions. Biophysics. 2004; 39(2):275-9(In Russ).
7. Melov S. Animal models of oxidative stress, aging and therapeutic antioxidant intervention. Int J Biochem Cell Biol. 2003; 34:1395-400.
8. Boldyrev AA. Oxidative stress and the brain. Soros Educational Journal. 2001; 7(4):21-8(In Russ).
9. Kuzmina EI, Nelyubin AS, Shchennikova MK. Primenenie inducirovannoj hemilyuminescencii dlya ocenki svobodnoroikal'nyh reakcij v biologicheskih substratah. Gorky; 1983. P. 179-83(In Russ).
10. Severin ES. Biohimiya: Ucheb. dlya vuzov, 2003. P. 429-31(In Russ).
11. Morris GE, Humphrey EL, Fuller HR. Naturally occurring plant polyphenols as potential therapies for inherited neuromuscular diseases. Future Medicinal Chemistry. 2013; 5(17):2091-101.
12. Miki J, Furusato B, et al. Identification of Putative Stem Cell Markers, CD 133, and CXCR_4, in hTERT – Immortalised Primary Nonmalignant and Malignant Tumor_Derived Human Prostate Epithelial Cell Lines and in Prostate Cancer Specimens. Cancer Research. 2007; 67:3153-61.
13. Men'shchikova EB, Larkin VZ, Zenkov NK Okislitel'nyj stress. Prooksidanty i antioksidanty. M.: Slovo; 2006. P. 553.
14. Men'shchikova EB, Zenkov NK, Larkin V.Z. Okislitel'nyj stress: Patologicheskie sostoyaniya i zabolevaniya. Novosibirsk: ARTA, 2008. P. 10-284.
15. Okrut IE, Shakerova DA, Veselova TA. A change in the concentration of nitric oxide and the activity of free radical oxidation in the blood of patients with breast cancer. Bulletin of the Nizhny Novgorod University. N.I. Lobachevsky. 2011; 5(1):118-21(In Russ).
16. Guskov EP, Shkurat TP, Varduni TV, et al. Genetika okislitel'nogo stressa. Rostov n/D: Izd-vo SKNC VSHCH YUFU; 2009(In Russ).

INFORMATION ABOUT THE AUTHORS

Shcherina A.V. – 2nd-year student of the General Medicine Faculty of NizhSMA Ministry of Health of the Russian Federation; SPIN 6390-0944, ORCID ID 0000-0002-2356-586X.
E-mail: ashcherina@yandex.ru

Kroshchikhina K.E. – 3d-year student of the Medico-Prophylactic Faculty of NizhSMA Ministry of Health of the Russian Federation; SPIN 3396-3630, ORCID ID 0000-0001-7082-2980.