A SEARCH FOR BINARY SYSTEMS AMONG THE NEAREST L DWARFS1

I. NEILL REID AND E. LEWITUS
Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218; inr@stsci.edu

P. R. ALLEN
Department of Astrophysics, Pennsylvania State University, 525 Davey Lab, University Park, PA 16801; pallen@astro.psu.edu

KELLE L. CRUZ2
Department of Astrophysics, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024; kelle@amnh.org

AND

ADAM J. BURGASSER
Massachusetts Institute of Technology, Kavli Institute for Astrophysics and Space Research, Building 37, Room 664B, 77 Massachusetts Avenue, Cambridge, MA 02139; ajb@mit.edu

Received 2006 March 10; accepted 2006 May 1

ABSTRACT

We have used the Near-Infrared Camera and Multi-Object Spectrometer NIC1 camera on the Hubble Space Telescope to obtain high angular resolution images of 52 ultracool dwarfs in the immediate solar neighborhood. Nine systems are resolved as binary, with component separations from 1.5 to 15 AU. Based on current theoretical models and empirical bolometric corrections, all systems have components with similar luminosities and, consequently, high mass ratios, \(q > 0.8 \). Limiting analysis to L dwarfs within 20 pc, the observed binary fraction is 12%–24%. Applying Bayesian analysis to our data set, we derive a mass-ratio distribution that peaks strongly at unity. Modeling the semi-major axis distribution as a logarithmic Gaussian, the best fit is centered at \(\log a_0 = 0.8 \) AU (\(<6.3\) AU), with a (logarithmic) width of \(<0.3\). The current data are consistent with an overall binary frequency of \(<24\%

Key words: binaries: visual — stars: low-mass, brown dwarfs

1. INTRODUCTION

Over the last 4 years we have been undertaking a census of the lower mass constituents of the immediate solar neighborhood (Reid & Cruz 2002), concentrating, in particular, on ultracool dwarfs (spectral types M7 and later) within 20 pc of the Sun (Cruz et al. 2003, 2006; I. N. Reid et al. 2006, in preparation). As part of that survey, we have compiled an all-sky catalog of 87 L dwarfs in 80 systems with formal distance estimates less than 20 pc. This sample offers an opportunity to investigate the statistical characteristics of the local L dwarf population.

Binarity is a key property of low-mass stars and brown dwarfs. Both the overall frequency of binary systems and the distribution of their properties (particularly mass ratios, \(q \), and separations, \(\Delta \)) have emerged as potential tests of various formation theories. Ultracool dwarfs have been the targets of numerous high-resolution imaging surveys, both using adaptive optics on ground-based telescopes and with the Hubble Space Telescope (HST). As summarized most recently by Burgasser et al. (2006), the results of those surveys indicate an observed frequency of \(<15\%; this compares with an overall binary frequency of \(30\%–40\%\) for M dwarfs (Fischer & Marcy 1992; Reid & Gizis 1997) and \(60\%–70\%\) for G dwarfs (Duquennoy & Mayor 1991). The overwhelming majority of ultracool binaries have small separations, \(\Delta < 15 \) AU. The nearest ultracool dwarfs are therefore the prime targets for multiplicity surveys, since they provide the optimal resolution in linear units. Those systems also provide the best sensitivities for detecting very low luminosity companions, although there is growing evidence for a tendency toward mass ratios close to unity among ultracool binaries.

We have been using the Near-Infrared Camera and Multi-Object Spectrometer (NICMOS) camera on HST to search for binary systems among the nearest L dwarfs. To date, we have acquired observations of 52 ultracool systems, of which 49 are classed as spectral type L and 3 as late-type M dwarfs; 9 are resolved as binaries, including the L/T system 2MASSW J22521073–1730134 (Reid et al. 2006, hereafter RLBC06). High spatial resolution images are available from the literature for a further four L dwarf systems within 20 pc. We present our observations in § 2, the characteristics of the candidate binaries are discussed in § 3, we consider the statistical properties of the full data set and the implications in § 4, and § 5 summarizes our results and conclusions.

2. OBSERVATIONS

The nearby late-M and L dwarfs imaged in this program were observed as part of a Cycle 13 HST SNAPSHOT program. Most of these systems have spectroscopic distance estimates, and while all were placed within 20 pc at the outset of our observational program, a handful have revised distances that lie beyond that limit. All targets were observed with the NIC1 camera and the F110W and F170M filters using the same exposure sequences. The observations in both filters consist of a pair of MULTIACCUM exposures, nodding 270° between the two exposures. The total exposure times are 284 s at F110W and 896 s in the F170M filter.
As discussed further in § 2.2, the combined data give limiting magnitudes of \(m_{110} \approx 21.9 \) and \(m_{170} \approx 20.0 \) mag (on a Vega magnitude system) for isolated point sources. Late-type T dwarfs have \((m_{110},m_{170})\) colors of \(~1.3\) mag; thus, the F110W data offer the highest sensitivity for the detection of faint companions to the targeted L dwarfs.

2.1. Identifying Binary Systems

The NICMOS data were processed through the standard HST pipeline, and we have analyzed the final mosaicked image using standard IRAF routines.\(^3\) The NIC1 data have a plate scale of 0.043 pixel\(^{-1}\), while the formal resolution of the HST data is 0.09 with the F110W filter and 0.14 with the F170M filter. Since the F110W images have both higher angular resolution and better sensitivity, we have concentrated on those data in our search for faint companions.

We have searched for potential binary companions using a variety of techniques. First, visual inspection of the images reveals a number of systems with obvious close companions. Second, we have used the imexam and daophot routines in IRAF to measure the point-spread function (PSF), searching for sources with broad full width at half-maxima (FWHMs) or unusual profiles. Finally, as is evident from the images of the candidate binaries, unresolved point sources possess a strong Airy disk, with the flux level rising to \(~10\)% of the peak flux at radial separations of 0.205 in the F110W data and 0.24 at F170M. This obviously affects the potential detection of companions at those radii.

We have analyzed these data using the same techniques outlined in our discussion of the L/T binary, 2M2252–1730 (RLBC06). One of the sources observed in our program is 2M0825+2115. This L7.5 dwarf has previous HST observations with the Wide Field Planetary Camera 2 (Reid et al. 2001), which demonstrate that the image profile matches a single point source at optical wavelengths. We have therefore taken this object as the PSF template for the NIC1 observations.\(^4\) We have used the imshift IRAF routine to align the 2M0825 image with each of the other L dwarf targets, scaled the reference data to match the peak flux, and subtracted the 2M0825 data, leaving a “cleaned” image of the environs of the target. There are imperfections in most subtractions, since the NICMOS PSF profile changes on relatively short timescales, but none of the low-level residuals have profiles resembling a very faint companion.

Based on our analysis, 43 ultracool dwarfs show no significant evidence for binarity. Most have PSF profiles with FWHMs of 2.3–2.4 pixels (0.099–0.103). Three L dwarfs have slightly broader profiles: 2M1507–1627 and 2M1936–5502, with FWHM = 2.47 pixels (0.106), and 2M0036+1820, with FWHM = 2.56 (0.110). Subtracting the 2M0825 template PSF shows no evidence for the presence of a secondary component, and the broader profiles are probably an instrumental effect. Pertinent data for the unresolved ultracool dwarfs are given in Table 1. In most cases, the distance estimates rest on the Cruz et al. (2003) spectral type–\(M_f \) relation and therefore have uncertainties of \(~15\)%.

The remaining nine dwarfs observed in this program are identified as probable binaries. Figure 1 presents NICMOS F110W images of seven sources: higher resolution Advanced Camera for Surveys (ACS) images of the LHS 102BC (GJ 1001BC) system are discussed by Golimowski et al. (2004b), while images of the 2M2252 system are presented by RLBC06. Data for all the candidate binaries are given in Table 2. We discuss these systems in more detail in § 3.3.

2.2. Photometry

We have used two techniques to determine instrumental magnitudes from the NICMOS images. First, we used the phot routine in daophot to determine aperture photometry for well-isolated sources (the “single” objects and candidate binaries with separations exceeding 0.75). In these cases, we adopted an aperture size of radius 9 pixels (0.36). For the close binaries, we use a smaller aperture size, correcting to 9 pixel photometry using aperture corrections derived from measurements of 2M0825+2115. In the latter cases, we have also estimated the relative magnitudes of the two sources by measuring the peak flux of each component using the IRAF imexam profile-fitting routine; combining these data with aperture photometry of both components gives the magnitudes of the two components.

Our aperture photometry is tied to the Vega magnitude scale using the standard HST flux calibration and flux zero points of 1786 and 946 Jy at F110W and F170M, respectively. We have also used the results given by Schultz et al. (2005) to apply appropriate corrections to adjust our photometry to infinite aperture. The resultant magnitudes, \(m_{110} \) and \(m_{170} \), are listed in Tables 1 and 2. All of these dwarfs have \(JHK \) photometry from the Two Micron All Sky Survey (2MASS) database; indeed, we have used this photometry to derive color terms between the F110W/F170M and \(J/H \) magnitude systems (see RLBC06). The 2MASS data are also given in Tables 1 and 2, and we have used the relative magnitudes in the HST systems to estimate \(J \) and \(H \) magnitudes for the individual components of the candidate binary systems.

3. ULTRACOOL BINARIES

3.1. The Present Sample

We have identified nine ultracool dwarfs as probable binaries. Table 2 gives the observed properties for these systems, and Table 3 lists the intrinsic properties inferred for the individual components. We have computed luminosities for each component by applying \(J \)-band bolometric corrections as a function of spectral type. Figure 2 shows the basis for our calibration, plotting data for M, L, and T dwarfs from the analysis of Golimowski et al. (2004a). As discussed further in the following section, we estimate masses from the \(M_{\text{bol}} \) estimated using the models computed by Burrows et al. (1997).

The probable (or confirmed) binary systems are as follows:

LHS 102BC/GJ 1001BC: The companion to the nearby M3.5 dwarf LHS 102 was discovered originally by Goldman et al. (1999), and the L dwarf was itself revealed as double in NICMOS observations obtained as part of a snapshot survey of stars within 10 pc of the Sun (Golimowski et al. 2004b). The system is barely resolved with NICMOS, but the binary status was confirmed through optical observations with the ACS. This system is a classical ultracool binary, with near-equal-magnitude components. Golimowski et al. point out that the L dwarf appears inconsistent with the trigonometric parallax of \(104 \pm 11 \) mas cited by van Altena et al. (1995) for the primary, and they suggest that a distance closer to 15 pc is more plausible. New trigonometric parallax measurements are currently being undertaken by the Cerro Tololo Inter-American Observatory Parallax Investigation consortium, and we refer the interested reader to Golimowski et al. (2004b) for further discussion. It is clear that the system lies

3 IRAF is distributed by the National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation.

4 In RLBC06 we used our data for 2M0045+1634 as the template; this source is unresolved by NICMOS, and subtracting the 2M0825+2115 data shows no evidence for any significant residuals.
within 20 pc, and, for present purposes, we adopt the larger distance in computing the intrinsic parameters listed in Table 3.

2MA0025+4759: Originally classed as L5 based on near-infrared data, optical spectra indicate a type of L4, consistent with a distance of 23 pc for a single dwarf. The *HST* observations resolve the system into two near-equal luminosity components, implying a distance of 31 ± 7 pc. The system has also been resolved in ground-based observations with the Keck Laser Guide Star AO system (M. Liu 2006, private communication). The 2MA0025+4759 system lies only ∼3.5 pc from HD 2057 (G171-58/G217-47), a solar-metallicity F8 dwarf (Carney et al. 1994) with a *Hipparcos* parallax placing it at a distance of 42 ± 2 pc. HD 2057 itself is likely a close binary (Latham et al. 2002; Balega et al. 2004). Based on matching Strömgren photometry against isochrones, Nordström et al. (2004) estimate an age of ∼1.1 Gyr for HD 2057, with an upper limit of 3.6 Gyr and no specified lower limit. S. Schmidt (2006, private communication) has corrected the mass function for HD 2057, with an upper limit of 3.6 Gyr and no specified lower limit. S. Schmidt (2006, private communication) has corrected the mass function for HD 2057. This would make it the widest known binary (Latham et al. 2002; Balega et al. 2004). Based on matching Strömgren photometry against isochrones, Nordström et al. (2004) estimate an age of ∼1.1 Gyr for HD 2057, with an upper limit of 3.6 Gyr and no specified lower limit. S. Schmidt (2006, private communication) has corrected the mass function for HD 2057. This would make it the widest known binary (Latham et al. 2002; Balega et al. 2004). Based on matching Strömgren photometry against isochrones, Nordström et al. (2004) estimate an age of ∼1.1 Gyr for HD 2057, with an upper limit of 3.6 Gyr and no specified lower limit. S. Schmidt (2006, private communication) has corrected the mass function for HD 2057. This would make it the widest known binary (Latham et al. 2002; Balega et al. 2004). Based on matching Strömgren photometry against isochrones, Nordström et al. (2004) estimate an age of ∼1.1 Gyr for HD 2057, with an upper limit of 3.6 Gyr and no specified lower limit. S. Schmidt (2006, private communication) has corrected the mass function for HD 2057. This would make it the widest known binary (Latham et al. 2002; Balega et al. 2004). Based on matching Strömgren photometry against isochrones, Nordström et al. (2004) estimate an age of ∼1.1 Gyr for HD 2057, with an upper limit of 3.6 Gyr and no specified lower limit. S. Schmidt (2006, private communication) has corrected the mass function for HD 2057. This would make it the widest known...
binary with an ultracool component, but the separation lies within the span of other binaries of comparable total mass (see Fig. 8 in Reid & Walkowicz 2006). Finally, strong lithium absorption is evident in the combined spectrum, indicating that both components are brown dwarfs with $M < 0.065 M_J$ (see S. Schmidt & K. L. Cruz 2006, in preparation, for further discussion). Matched against either the Burrows et al. (1997) or Baraffe et al. (1998) models, the absence of significant lithium depletion implies an age less than 1 Gyr, broadly consistent with the age estimated for HD 2057.

2M0147—4954: This dwarf was targeted for observation based on a preliminary spectral type of L0. We have since revised the classification to M8, pushing the system beyond the 20 pc limit even as a single dwarf; as a binary, with likely spectral types of M8 and L2, we estimate the distance as ~33 pc. The flux ratio of the components is similar to that in the 2M0429—3123 system, and the Burrows et al. (1997) models indicate a similar mass ratio.

2M0429—3123: This M7.5 dwarf was resolved originally by Siegler et al. (2005) using adaptive optics on the ESO Very Large Telescope. We estimate a distance of 11.5 pc based on the J magnitude of the primary (J_1) and the spectral type–M_J calibration from Cruz et al. (2003). There are no indications that the system is particularly young. Siegler et al. estimate a spectral type of L1 for the secondary.

2M0700+3157: This is the only L dwarf in the present sample with a direct trigonometric parallax measurement (Thorstensen & Kirkpatrick 2003). With $M_J < 14$, the secondary is probably spectral type ~L6.

2M0915+0422: This ultracool dwarf has been identified independently as a binary system through ground-based adaptive optics observations (M. Liu 2006, private communication). Like LHS 102BC, the two components are almost equal in magnitude and therefore have identical masses. Both components are likely to be brown dwarfs.
TABLE 2
OBSERVATIONAL DATA FOR CANDIDATE BINARIES

2MASS Name	Spectral Type	J (1 Gyr)	H (1 Gyr)	Ks (1 Gyr)	m110	m170	d (pc)	δ (arcsec)	θ	Notes and References
LHS 102B	M4	12.95	14.7	0.070	0.078	0.99	1.00			
LHS 102C	M4	13.00	14.8	0.069	0.078	0.99	1.00			
2M0025-4759A	M4	13.05	14.9	0.048a	0.049	0.99	1.00			
2M0025-4759B	M4	13.25	15.1	0.047b	0.049	0.99	1.00			
2M0147-4954A	M4	10.75	12.8	0.085	0.084	0.88	0.95			
2M0147-4954B	M4	12.10	14.0	0.075	0.080	0.87	0.95			
2M0429-3123A	M4	10.90	12.9	0.086	0.084	0.87	0.95			
2M0429-3123B	M4	12.10	14.1	0.075	0.080	0.87	0.95			
2M0700+3157A	M4	12.80	14.5	0.071	0.079	0.85	0.95			
2M0700+3157B	M4	14.00	15.5	0.060	0.075	1.0	1.0			
2M0915+0422A	M4	14.45	15.9	0.052	0.072	1.0	1.0			
2M0915+0422B	M4	14.45	15.9	0.052	0.072	1.0	1.0			
2M1707-0558A	M4	11.35	13.3	0.081	0.082	0.89	0.94			
2M1707-0558B	M4	13.10	14.9	0.072	0.077	0.87	0.95			
2M2152+0937A	M4	14.00	15.5	0.060	0.075	1.0	1.0			
2M2152+0937B	M4	14.05	15.55	0.060	0.075	1.0	1.0			
2M2252-1730A	M4	13.90	15.4	0.061	0.075	0.66	0.87			
2M2252-1730B	M4	14.90	16.6	0.040	0.065	0.66	0.87			

Notes.—Most J and H magnitudes for the individual components are based on deconvolving the 2MASS data using the HST flux ratios, with the K_σ band data based on the average colors for the spectral type. The exception is LHS 102, where the data are from Golimowski et al. (2004b). Distance estimates are computed from the (M_σ–spectral type) relation (Cruz et al. 2003) using data for the primary, except for LHS 102 (parallax estimate by Golimowski et al. 2004b) and 2M0700+31 (trigonometric parallax by Tinney et al. 2003). We adopt uncertainties of ±20% for the spectroscopic parallaxes.

References.—(1) Golimowski et al. 2004b; (2) Cruz et al. 2006; (3) I. N. Reid et al. 2006, in preparation; (4) Cruz et al. 2003; (5) Siegler et al. 2005; (6) Thorstensen & Kirkpatrick 2003; (7) RLBC06.

TABLE 3
INFERRED PROPERTIES OF BINARY COMPONENTS

Name	M_2 (1 Gyr)	M_2bol (1 Gyr)	M_2 (3 Gyr)	M_2bol (3 Gyr)	q (1 Gyr)	q (3 Gyr)
LHS 102B	12.95	14.7	0.070	0.078	0.99	1.00
LHS 102C	13.00	14.8	0.069	0.078	0.99	1.00
2M0025+4759A	13.05	14.9	0.048a	0.049	0.99	1.00
2M0025+4759B	13.25	15.1	0.047b	0.049	0.99	1.00
2M0147-4954A	10.75	12.8	0.085	0.084	0.88	0.95
2M0147-4954B	12.10	14.0	0.075	0.080	0.87	0.95
2M0429-3123A	10.90	12.9	0.086	0.084	0.87	0.95
2M0429-3123B	12.10	14.1	0.075	0.080	0.87	0.95
2M0700+3157A	12.80	14.5	0.071	0.079	0.85	0.95
2M0700+3157B	14.00	15.5	0.060	0.075	1.0	1.00
2M0915+0422A	14.45	15.9	0.052	0.072	1.0	1.00
2M0915+0422B	14.45	15.9	0.052	0.072	1.0	1.00
2M1707-0558A	11.35	13.3	0.081	0.082	0.89	0.94
2M1707-0558B	13.10	14.9	0.072	0.077	0.87	0.95
2M2152+0937A	14.00	15.5	0.060	0.075	1.0	1.00
2M2152+0937B	14.05	15.55	0.060	0.075	1.0	1.00
2M2252-1730A	13.90	15.4	0.061	0.075	0.66	0.87
2M2252-1730B	14.90	16.6	0.040	0.065	0.87	0.95

Notes.—Bolometric corrections are based on data from Golimowski et al. (2004a), and masses are from the Burrows et al. (1997) set of theoretical models.

* The presence of strong lithium absorption in 2M0025+4759 implies that the age is less than 1 Gyr, and the masses and mass ratio listed are for an age of 0.5 Gyr.
2M1707–0558: This system was first resolved via ground-based observations with SpeX on the Infrared Telescope Facility by Burgasser et al. (2004). Originally classed as spectral type L1 based on the combined optical spectrum, McElwain & Burgasser (2006) have obtained resolved near-infrared spectroscopy of this system and derive spectral types of M9/L0 and ~L3. Their observations also confirm that the components have common proper motion.

2M2152+0937: This is another equal-luminosity/equal-mass ultracool binary. As with 2M0147–4954, the identification of this dwarf as a binary system removes it from the 20 pc sample.

2M2252–1730: This is one of the handful of L/T binary systems currently known. As discussed in RLBC06, the secondaries are noticeably fainter with respect to the primary in the F170M passband. Infrared spectroscopy confirms that this is due to the presence of significant methane absorption. Both components are likely to be of substellar mass.

In most of the observations, the targeted L dwarf is the only object visible in the NICMOS image. There are seven cases, however, where other point sources are visible in the ~10″ × 10″ NIC1 field of view. With one exception, these sources lie more than 2″ from the L dwarf and are either bright (J < 16) and detected in ground-based observations or extremely faint (J > 19). These candidate wide companions all have colors and magnitudes that are inconsistent with very low mass ultracool dwarfs.

The exception is 2M1705–0516. As Figure 1 shows, this L0.5 dwarf has a faint candidate companion at a separation of 1′.36 and P.A. = −5°. The object is unresolved (FWHM ~ 0″.10 at F110W) and has m110 = 18.00 and m170 = 16.76, corresponding to J ~ 17.4, (J − H) ~ 0.7. With a Galactic latitude of b ~ +20°, this is unlikely to be a reddened background source. The (J − H) colors are consistent with either a midtype M dwarf at a distance of 1–2 kpc or an early-type T dwarf which, at a distance of 19.5 pc, would have M_T ~ 16.0. At present, we cannot distinguish between these two possibilities. Follow-up imaging at a later epoch will confirm whether the candidate companion shares the proper motion of the putative primary. For current purposes, we treat 2M1705 as a single ultracool dwarf.

3.2. Observations of Additional Systems

Four L dwarfs from the 20 pc sample have been observed at high spatial resolution in the course of other binary search programs. These dwarfs are identified in Table 4, where we list relevant data:

DENIS-P J0205: One of the three L dwarfs discovered by the DENIS brown dwarf minisurvey (Delfosse et al. 1997), DENIS-P J0205 was identified as a binary by Koerner et al. (1999) based on K-band imaging with the Keck telescope. Bouy et al. (2005) have recently suggested that the brighter component is itself double and the system consists of two late-L dwarfs and a T dwarf.

SDSS 0423–0414: Originally identified from Sloan Digital Sky Survey (SDSS) observations, this dwarf was classed as type T0 based on its near-infrared spectrum (Geballe et al. 2002). Hawley et al. (2002) and Cruz et al. (2003) obtained optical spectra in the course of their surveys, and both class the dwarf as type L7.5. Burgasser et al. (2005) have resolved the discrepancy; NICMOS observations show that SDSS 0423 is an L/T binary, with properties similar to 2M2252–1730.

2M0746+2000: Lying at a distance of ~12 pc, this is the brightest L dwarf currently known. Reid et al. (2000) originally noted that the dwarf appeared to be overluminous, and high-resolution optical imaging with the Wide-Field Camera 2 on HST confirmed that the system is a near-equal-magnitude binary (Reid et al. 2001).

Kelu 1: The first isolated L dwarf to be discovered (Ruiz et al. 1997), trigonometric parallax measurements indicated that Kelu 1 was overluminous, but high-resolution follow-up observations with HST showed no evidence for binarity (Martin et al. 1999). Those initial observations, however, suffered from bad timing: Liu & Leggett (2005) have recently resolved the system using ground-based adaptive optics observations, as orbital motion has separated the components. Those observations also resolve a long-standing conundrum: Kelu 1 exhibits weak lithium absorption, implying that, as a single star, it had been caught just as lithium was being depleted; as a binary, these observations are explained due to dilution of the (full-strength) lithium line in component B by continuum from the higher mass component A. The inferred age for the system is <800 Myr.

All four of these L dwarfs are multiple systems, but this high proportion is not entirely surprising; three are among the brightest L dwarfs known (in apparent magnitude), while the fourth, SDSS 0423, has an unusual spectrum. Those properties are correlated directly with binarity, so it is not surprising that these systems were targeted through HST observations. We have therefore not included these systems in our analysis of binary frequency among L dwarfs. A further 31 L dwarfs with formal distances less than 20 pc currently lack high-resolution imaging data.

4. DISCUSSION

4.1. Companion Detection Limits

Our main goal is the detection of low-luminosity companions to these ultracool dwarfs. At small separations, the detection limit is set by the PSF of the primary; at larger separations, the limit primarily reflects the signal-to-noise ratio of the observations. Figure 3 presents azimuthally averaged radial profiles in both the F110W and F170M filters for a representative unresolved
ultracool dwarf, 2M0523−1403 (m_{110} = 13.66, m_{170} = 12.32; J = 13.12, H = 12.22); the top panels show the linear profiles (in counts s^{-1} pixel^{-1}), and the bottom panels plot more extended profiles in a logarithmic scale.

Figure 3 illustrates both the broader PSF in the F170M passband and the higher sensitivity of the F110W imaging. The faintest isolated sources detected in our data have peak count rates of ~0.12 counts s^{-1} pixel^{-1} in F110W and ~0.15 counts s^{-1} pixel^{-1} in F170M, corresponding to the dashed lines plotted in Figure 3 (bottom panels). These peak count rates correspond to magnitudes of m_{110} = 21.9 (J ~ 21.5) and m_{170} = 20.0 (H ~ 20.0) for point sources. Extremely cool brown dwarfs are expected to have neutral colors in (J − H) and are therefore easier to detect in the F110W passband.

The effective sky background increases, and the ability to detect a companion decreases correspondingly, within ~125 arcsec of the central star. As noted above, the typical FWHM of the F110W PSF is ~0.11 arcsec. Only equal-magnitude binaries, such as LHS 102BC, are detectable at such small separation. LHS 102BC is clearly elongated in our images but effectively marks the small-separation limit of our survey.

4.2. The L Dwarf Binary Frequency

Previous analyses of binarity in ultracool dwarfs (Reid et al. 2001; Gizis et al. 2003; Bouy et al. 2003; Burgasser et al. 2003; Siegler et al. 2005) are based on magnitude-limited samples. We can cast the present analysis in terms of a volume-limited sample, even though we have only observed a subset of that sample. The formal distance limit of the parent ultracool dwarf survey is 20 pc; 5 L dwarf binaries and 41 unresolved objects (including 2M1705−0516) have formal distance estimates within this limit, a binary fraction of 10.9%±4%, where the uncertainties are derived using the formalism outlined by Burgasser et al. (2003).

In most cases, however, the distances listed in Tables 1 and 2 are based on spectroscopic parallaxes; those estimates should be corrected for Malmquist bias in statistical analyses. The M_{J}−spectral type relation from Cruz et al. 2003 has a dispersion of ~0.35 mag; this corresponds to an absolute magnitude correction of ΔM_{J} = −0.12 mag, effectively reducing the limit in apparent distance to 19 pc. Five binaries and 38 single stars fall within this limit, giving an observed binary fraction of 11.6%±3% for the present sample. This result is formally lower than previous estimates (see Burgasser et al. 2006), although consistent within the (substantial) uncertainties.

4.3. Masses and Mass Ratios for the L Dwarf Binaries

Our observations measure luminosity ratios for ultracool binaries. Evolutionary effects complicate calculation of the corresponding mass ratios, since brown dwarfs cool and fade at rates that increase with decreasing mass. This is illustrated in Figure 4, where we plot (M_{bol}, mass) isochrones for low-mass star/brown dwarf models by Burrows et al. (1997) and Chabrier et al. (2000). Even though the latter “dusty” models (which do not extend below ~900 K or ~T6) are a poor match to the colors of late-type L and T dwarfs, the predicted bolometric magnitudes are in reasonable agreement with the Burrows et al. data set. The labeled horizontal lines mark the locations of the binary components listed in Tables 2 and 3, components with spectral types ranging from M7.5 for 2M0429A to ~T2 for 2M2252B.

Figure 4 clearly shows the strong age dependence of brown dwarf masses. Two further points can be made regarding mass ratios of L dwarf binaries. First, old systems must have high mass ratios; thus, a 5 Gyr old system with an M8 primary (comparable to 2M0429A) and a T2 secondary (like 2M2252B) has components of 0.07 and 0.085 M_{⊙}, and a mass ratio of q ~ 0.82. Second, at younger ages (τ ≤ 1 Gyr), the isochrones have similar slopes through the L dwarf regime in the (M_{bol}, mass) plane; this implies that q decreases with decreasing age. Thus, the same M8/T2 system has q ~ 0.5 at τ = 1 Gyr (0.04 and 0.08 M_{⊙}) and q ~ 0.38 at τ = 0.3 Gyr (0.06 and 0.023 M_{⊙}).

All binaries in the current sample are field dwarfs. Consequently, the only direct means of constraining mass/age is the presence of lithium absorption. The object 2M0700+3157 is the only L dwarf with detected lithium absorption, indicating that both components have a mass below 0.065 M_{⊙} and an age less than ~1 Gyr. It is likely that the absence of other lithium detections reflects the relatively low signal-to-noise ratio of the optical spectra; nonetheless, the net result is that we have no direct age estimates for almost all of the sample.

Under these circumstances, we must use models to estimate the likely age distribution. Allen et al. (2005) have undertaken this type of calculation, basing their analysis on the Burrows et al. (1997) evolutionary models. The results depend on the star formation history adopted for the Galactic disk and, to a lesser extent on the absolute age estimates.

Table 4

Additional L Dwarf Binaries within 20 pc

2MASS Name	Spectral Type	d	δ	M_{J}	M_{bol}	M (1 Gyr)	M (3 Gyr)	q (1 Gyr)	q (3 Gyr)	Notes
2MASS J02052940−1159296	L7	19.8	0.51	13.10	14.6	1.0	1.0	1
A....	L7	13.85	15.35	0.062	0.075
B....	L7	13.85	15.35	0.062	0.075
2MASS J04234857−0414035	L7.5:T0	15.2	0.16	13.54	15.0	0.85	0.91	2
A....	L6	14.05	15.55	0.060	0.078
B....	T2	14.65	15.95	0.051	0.071
2MASS J07464256+000321	L0.5	12.2	0.22	11.31	13.25	0.97	0.98	3
A....	L0.5	11.9	13.85	0.076	0.081
B....	L2	12.3	14.15	0.074	0.079
2MASS J1305401−254106	L2	18.66	<0.3	12.06	13.65	0.90		4
A....	~L1.5	12.75	14.35	0.050				
B....	~L4	13.25	14.75	0.045				

Notes:— (1) DENIS-P J0205.4−1159; see Koerner et al. 1999. (2) SDDS J042348.57−041403.5; see Burgasser et al. 2005. (3) See Reid et al. 2001. (4) Kelu 1; see Liu & Leggett 2005. Bolometric corrections are based on the Golimowski et al. (2004a) BC relations in Burrows et al. (1997), except Kelu 1, where the masses are from Liu & Leggett (2005) for τ = 300 Myr.
extent, the form adopted for the underlying mass function. Figure 5 shows the predicted cumulative age distributions for L0, L5, and L6–L8 dwarfs for a constant star formation rate and a power-law mass function, \(\Psi(M) \propto M^{-1} \). The three distributions are very similar at young ages, with \(~30\%\) of each sample younger than \(~1\) Gyr. The curves diverge at larger ages, with an increasing fraction of older dwarfs at earlier spectral types. Thus, half of the local L0 dwarfs are expected to be younger than \(~3\) Gyr, while the 50th percentile mark is reached at age \(~1.7\) Gyr for L6–L8 dwarfs.

As a qualitative guide to the mass ratios of the binaries considered here, we have used the Burrows et al. (1997) mass-luminosity relations to estimate component masses for ages of \(\tau = 1 \) and \(3 \) Gyr. The exceptions are 2M0700 and Kelu 1, in which the presence of strong lithium absorption indicates ages less than \(~1\) Gyr. Those data, and the corresponding mass ratios, are listed in Tables 3 and 4. Under these assumptions, all systems have high mass ratios, \(q > 0.6 \) for \(\tau = 1 \) Gyr and \(q > 0.85 \) for \(\tau = 3 \) Gyr.

4.4. The Distribution of Mass Ratios and Separations

All of the L dwarf binaries listed in Tables 2 and 4 have components with relatively high flux ratios. The system 2M1707AB exhibits the largest magnitude difference, with \(\Delta J = 1.75 \) mag, and most systems have \(\Delta J < 0.4 \) mag. How do these flux ratios compare with the detection limits of the NICMOS observations?

Figure 6 plots the F110W PSF in magnitudes, scaling the measurements relative to the peak brightness. We mark the location of the ultracool companions listed in Tables 2 and 4. The dotted lines mark the effective detection limits spanned by the present set of NICMOS observations. It is clear that all of the detected companions are well above those limits. Moreover, as found in previous binary surveys, all of the detected companions lie at relatively small separations.

To set a rough mass scale for these comparisons, we have used the Burrows et al. (1997) models to predict flux ratios for a 0.07 \(M_\odot \) primary and companions with \(0.2 < q < 0.9 \) and \(\tau = 0.5, 1, \) and \(5 \) Gyr. We choose this value for the primary mass since Allen et al. (2005) estimate average masses of \(\langle M \rangle = 0.074 \, M_\odot \) for field L0 dwarfs, 0.067 \(M_\odot \) for L5, and 0.063 \(M_\odot \) for L6–L8. High-mass (long-lived) brown dwarfs (0.06–0.075 \(M_\odot \)) contribute disproportionately to the local L dwarf population. The resulting flux ratios, shown in Figure 6, suggest that we ought to be able to detect systems with mass ratios as low as \(q \sim 0.2 \) with the present set of NICMOS observations. As a guide, a \(q = 0.2 \)
The system comprises an M8 primary \((T_{\text{eff}} \approx 2440 \text{ K}, M_{\text{bol}} = 13.45)\) and a ~T7 secondary \((T_{\text{eff}} = 740 \text{ K}, M_{\text{bol}} = 18.4)\) at age 0.5 Gyr and a ~T1 primary \((1230 \text{ K}, 16.8)\) and room-temperature Y-type secondary \((350 \text{ K}, 21.8)\) at age 5 Gyr.

We can quantify our estimates of the underlying mass-ratio and separation distributions through the Bayesian analysis techniques described by Allen et al. (2005). Given a particular model for the companion distribution, we can use a disparate set of observations to derive the posterior distribution, \(P(D|\theta)\), the probability of the model given the data. By Bayes’s rule, the posterior distribution is the convolution of the likelihood distribution (the likelihood of the data given the model) and the prior distribution (the initial probability of the model).

Allen et al.’s (2005) analysis centers on the substellar mass function, but the same techniques can be used to probe the mass function of binary companions. Initial results are included in Burgasser et al.’s (2006) review, analyzing data from previous binary surveys (Koerner et al. 1999; Reid et al. 2001; Gizis et al. 2003; Close et al. 2003; Bouy et al. 2003; Siegler et al. 2005). In those calculations, the semimajor axis distribution is characterized...
as a Gaussian in $\log a$, with a central value a_0 and half-width σ_a, while the mass-ratio distribution is defined as a power-law index γ, for a binary fraction N. We follow the same approach here, adopting the posterior distribution from the analysis cited in Burgasser et al. (2006) as the prior distribution for our analysis.

Figure 7 shows the probability distributions derived for each parameter. Expressing a in astronomical units, the best-fit values are $\log a_0 = 0.8^{+0.06}_{-0.12}$, $\sigma_a = 0.28 \pm 0.4$, $\gamma = 3.6 \pm 1$, and $N = 24\% \pm 2\%$. This analysis reinforces the results outlined in Burgasser et al. (2006). The best-fit power-law index, γ, indicates a steep mass function for L dwarf companions, implying a mass-ratio distribution with a strong preference for equal-mass systems. The semimajor axis distribution peaks at ~ 6 AU, with the model predicting very few systems at separations either beyond ~ 20 AU or within ~ 1 AU.

Figure 8 compares the mass-ratio distribution and semimajor axis distribution derived from the present analysis (both the data and the best-fit model) against the results derived by Fischer & Marcy (1992) for M dwarfs and Duquennoy & Mayor (1991) for G dwarfs. Clearly, in both cases, the G dwarf distributions are radically different, while the M dwarf results are closer to our L dwarf analysis. At small separations, imaging data, even with HST, set weaker constraints, leading to the extended tail in the best-fit probability distribution of a_0. Maxted & Jeffries (2005) have argued that significant numbers of spectroscopic binaries remain hidden in L dwarf samples, although their hypothesis currently lacks substantial observational support. With that caveat, our analysis indicates an overall binary fraction of $\sim 24\%$, continuing the trend of decreasing binary frequency with decreasing mass.

5. SUMMARY

We have presented analysis of high spatial resolution NICMOS images of 52 ultracool dwarfs in the immediate solar neighborhood. Nine systems are resolved as binary, with component separations from 0.1 to 1.0 corresponding to linear separations between 1.5 and 15 AU. Based on current theoretical models and empirical bolometric corrections, all systems have high mass ratios; none include components with magnitude differences greater than 1.5 mag at J. This is consistent with previous surveys for ultracool binaries in the general field. The observed binary frequency, limiting analysis to stars with Malmquist-corrected distances within 20 pc, is 12%.\pm3%.

Following Allen et al. (2005) and Burgasser et al. (2006), we have used Bayesian analysis to quantify these results. We derive a mass-ratio distribution that peaks strongly at unity, and matching the semimajor axis distribution with a logarithmic Gaussian gives a best-fit value of $\log a_0 = 0.8$, or ~ 6.3 AU. Our analysis indicates that the current data are consistent with an overall L dwarf binary frequency of $\sim 24\%$.

The observations described in this paper are associated with HST program 10143, and those data were obtained via the Hubble Space Telescope data archive facilities maintained at the Space Telescope Science Institute. Support for this research was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. K. L. C. is supported by an NSF Astronomy and Astrophysics Postdoctoral Fellowship under award AST 04-01418. This publication makes use of data from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center and funded by the National Aeronautics and Space Administration and the National Science Foundation. The 2MASS data were obtained from the NASA/IPAC Infrared Science Archive, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA.

REFERENCES

Allen, P. R., Koerner, D. W., Reid, I. N., & Trilling, D. E. 2005, ApJ, 625, 385
Balega, I., Balega, Y. Y., Maksimov, A. F., Pluzhnik, E. A., Schertl, D., Shikhagocheva, Z. U., & Weigelt, G. 2004, A&A, 422, 627
Baraffe, I., Chabrier, G., Allard, F., & Hauschildt, P. 1998, A&A, 337, 403
Bouy, H., Brandner, W., Martin, E. L., Delfosse, X., Allard, F., & Basri, G. 2003, AJ, 126, 1526
Bouy, H., Martin, E. L., Brandner, W., & Bouvier, J. 2005, AJ, 129, 511
Burgasser, A. J., Kirkpatrick, J. D., Reid, I. N., Brown, M. E., Wisniewski, C. L., & Gizis, J. E. 2004, ApJ, 586, 512
Burgasser, A. J., McElwain, M. W., Kirkpatrick, J. D., Cruz, K. L., Tinney, C. G., & Reid, I. N. 2004, AJ, 127, 2856

Burgasser, A. J., Reid, I. N., Kirkpatrick, J. D., Leggett, S. K., Liebert, J., & Burrows, A. 2005, ApJ, 634, L177
Burgasser, A. J., Reid, I. N., Siegler, N., Close, L. M., Allen, P., Lowrance, P. J., & Gizis, J. E. 2006, in Planets and Protoplanets V, ed. B. Reipurth, D. Jewitt, & K. Keil (Tucson: Univ. Arizona Press), in press
Burrows, A., et al. 1997, ApJ, 491, 856
Carney, B. W., Latham, D. W., Laird, J. B., & Aguilar, L. A. 1994, AJ, 107, 2240
Chabrier, G., Baraffe, I., Allard, F., & Hauschildt, P. 2000, ApJ, 542, 464
Close, L. M., Siegler, N., Freed, M., & Biller. B. 2003, ApJ, 587, 407
Cruz, K. L., Reid, I. N., Liebert, J., Kirkpatrick, J. D., & Lowrance, P. J. 2003, AJ, 126, 2421
———. 2006, AJ, submitted

Fischer & Marcy (1992) for M dwarfs and Duquennoy & Mayor (1991) for G dwarfs. Clearly, in both cases, the G dwarf distributions are radically different, while the M dwarf results are closer to our L dwarf analysis. At small separations, imaging data, even with HST, set weaker constraints, leading to the extended tail in the best-fit probability distribution of a_0. Maxted & Jeffries (2005) have argued that significant numbers of spectroscopic binaries remain hidden in L dwarf samples, although their hypothesis currently lacks substantial observational support. With that caveat, our analysis indicates an overall binary fraction of $\sim 24\%$, continuing the trend of decreasing binary frequency with decreasing mass.

5. SUMMARY

We have presented analysis of high spatial resolution NICMOS images of 52 ultracool dwarfs in the immediate solar neighborhood. Nine systems are resolved as binary, with component separations from 0.1 to 1.0 corresponding to linear separations between 1.5 and 15 AU. Based on current theoretical models and empirical bolometric corrections, all systems have high mass ratios; none include components with magnitude differences greater than 1.5 mag at J. This is consistent with previous surveys for ultracool binaries in the general field. The observed binary frequency, limiting analysis to stars with Malmquist-corrected distances within 20 pc, is 12%.\pm3%.

Following Allen et al. (2005) and Burgasser et al. (2006), we have used Bayesian analysis to quantify these results. We derive a mass-ratio distribution that peaks strongly at unity, and matching the semimajor axis distribution with a logarithmic Gaussian gives a best-fit value of $\log a_0 = 0.8$, or ~ 6.3 AU. Our analysis indicates that the current data are consistent with an overall L dwarf binary frequency of $\sim 24\%$.
Dahn, C. C., et al. 2002, AJ, 124, 1170
Deacon, N. R., Hambly, N. C., & Cooke, J. A. 2005, A&A, 435, 363
Delfosse, X., et al. 1997, A&A, 327, L25
Duquennoy, A., & Mayor, M. 1991, A&A, 248, 485
Fischer, D. A., & Marcy, G. W. 1992, ApJ, 396, 178
Geballe, T. R., et al. 2002, ApJ, 564, 466
Gizis, J. E. 2002, ApJ, 575, 484
Gizis, J. E., Reid, I. N., Knapp, G. R., Liebert, J., Kirkpatrick, J. D., Koerner, D. W., & Burgasser, A. J. 2003, AJ, 125, 3302
Goldman, B., et al. 1999, A&A, 351, L5
Golimowski, D. A., et al. 2004a, AJ, 127, 3516
———. 2004b, AJ, 128, 1733
Hawley, S. L., et al. 2002, AJ, 123, 3409
Kendall, T. R., Delfosse, X., Martin, E. L., & Forveille, T. 2004, A&A, 416, L17
Kirkpatrick, J. D., et al. 2000, AJ, 120, 447
Koerner, D. W., Kirkpatrick, J. D., McElwain, M. W., & Bonaventura, N. R. 1999, ApJ, 526, L25
Latham, D. W., Stefanik, R. P., Torres, G., Davis, R. J., Mazeh, T., Carney, B. W., Laird, J. B., & Morse, J. A. 2002, AJ, 124, 1144
Liu, M. C., & Leggett, S. K. 2005, ApJ, 634, 616
Martin, E. L., Brandner, W., & Basri, G. 1999, Science, 283, 1718
Maxted, P. F. L., & Jeffries, R. D. 2005, MNRAS, 362, L45
Mazeh, T., Goldberg, D., Duquennoy, A., & Mayor, M. 1992, ApJ, 401, 265
McElwain, M. W., & Burgasser, A. J. 2006, AJ, submitted
Ménard, F., Delfosse, X., & Monin, J.-L. 2002, A&A, 396, L35
Nordström, B., et al. 2004, A&A, 418, 989
Reid, I. N., & Cruz, K. L. 2002, AJ, 123, 2806 (Paper I)
Reid, I. N., & Gizis, J. E. 1997, AJ, 113, 2246
Reid, I. N., Gizis, J. E., Kirkpatrick, J. D., & Koerner, D. W. 2001, AJ, 121, 489
Reid, I. N., Kirkpatrick, J. D., Gizis, J. E., Dahn, C. C., Monet, D. G., Williams, R. J., Liebert, J., & Burgasser, A. J. 2000, AJ, 119, 369
Reid, I. N., Lewitus, E., Burgasser, A. J., & Cruz, K. L. 2006, ApJ, 639, 1114 (RLBC06)
Reid, I. N., & Walkowicz, L. 2006, PASP, 118, 671
Ruiz, M. T., Leggett, S. K., & Allard, F. 1997, ApJ, 491, L107
Schultz, A., et al. 2005, NICMOS Instrument Handbook, Ver. 8 (Baltimore: STScI)
Siegler, N., Close, L. M., Cruz, K. L., Martin, E. L., & Reid, I. N. 2005, ApJ, 621, 1023
Thorstensen, J. R., & Kirkpatrick, J. D. 2003, PASP, 115, 1207
Tinney, C. G., Burgasser, A. J., & Kirkpatrick, J. D. 2003, AJ, 126, 975
van Altena, W. F., Lee, J. T., & Hoffleit, E. D. 1995, The General Catalogue of Trigonometric Stellar Parallaxes (4th ed.; New Haven: Yale Univ. Obs.)
Vrba, F. J., et al. 2004, AJ, 127, 2948
Wilson, J. C., Miller, N. A., Gizis, J. E., Skrutskie, M. F., Houck, J. R., Kirkpatrick, J. D., Burgasser, A. J., & Monet, D. G. 2003, in IAU Symp. 211, Brown Dwarfs, ed. E. Martin (San Francisco: ASP), 197