Dissipative soliton interaction in Kerr resonators with high-order dispersion

Andrei G. Vladimirov1, Mustapha Tlidi2, Majid Taki3

submitted: May 26, 2021

1 Weierstrass Institute
Mohrenstr. 39
10117 Berlin
Germany
E-Mail: andrei.vladimirov@wias-berlin.de

2 Département de Physique
Faculté des Sciences
Université Libre de Bruxelles (U.L.B.)
CP 231, Campus Plaine
B-1050 Bruxelles
Belgium
E-Mail: mtlidi@ub.ac.be

3 Université de Lille
CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules
F-59000 Lille
France
E-Mail: Abdelmajid.Taki@univ-lille.fr

No. 2843
Berlin 2021

2020 Mathematics Subject Classification. 78A60, 35Q55, 35Q60.
2010 Physics and Astronomy Classification Scheme. 42.60.Fc, 42.60.Lh, 42.60.Mi, 42.65.Sf, 42.65.Re.

Key words and phrases. Haus master equation, mode-locking, class B laser, multiscale method.

We also acknowledge the support from the Deutsche Forschungsgemeinschaft (DFG-RSF project No. 445430311), French National Research Agency (LABEX CEMPI, Grant No. ANR-11- LABX-0007) as well as the French Ministry of Higher Education and Research, Hauts de France council and European Regional Development Fund (ERDF) through the Contrat de Projets Etat-Region (CPER Photonics forSociety P4S). M. Tlidi is a Research Director at the Fonds National de la Recherche Scientifique (Belgium). A. Vladimirov and M. Taki acknowledge the support from Invited Research Speaker Programme of the Lille University.
Dissipative soliton interaction in Kerr resonators with high-order dispersion
Andrei G. Vladimirov, Mustapha Tlidi, Majid Taki

Abstract

We consider an optical resonator containing a photonic crystal fiber and driven coherently by an injected beam. This device is described by a generalized Lugiato-Lefever equation with fourth order dispersion. We use an asymptotic approach to derive interaction equations governing the slow time evolution of the coordinates of two interacting dissipative solitons. We show that Cherenkov radiation induced by positive fourth-order dispersion leads to a strong increase of the interaction force between the solitons. As a consequence, large number of equidistant soliton bound states in the phase space of the interaction equations can be stabilized. We show that the presence of even small spectral filtering not only dampens the Cherenkov radiation at the soliton tails and reduces the interaction strength, but can also affect the bound state stability.

1 Introduction

Optical frequency combs generated by micro-cavity resonators have revolutionized many fields of science and technology, such as high-precision spectroscopy, metrology, and photonic analog-to-digital conversion [13]. A particular interest is paid to the soliton frequency combs associated with the formation in the time domain of the so-called temporal cavity solitons – nonlinear localized structures of light, which preserve their shape in the course of propagation. Temporal dissipative solitons often called cavity solitons were reported experimentally in mode-locked lasers, micro-cavity resonators [19, 16], and in coherently driven fiber cavities [20].

In this work we consider a photonic crystal fiber cavity driven by a coherent injected beam. When operating close to the zero dispersion wavelength, high-order chromatic dispersion effects could play an important role in the dynamics of the system. Taking into account these effects together with spectral filtering the dimensionless model equation in the mean-field limit reads

\[
\partial_t U = S - (1 + i\theta)U + iU|U|^2 + (\delta + i) \partial^2_\tau U + \beta_3 \partial^3_\tau U + i \beta_4 \partial^4_\tau U,
\]

where \(U(\tau, t) \) is the complex electric field envelope, \(\tau \) is time and \(t \) is the slow time variable describing the number of round trips in the cavity. The parameter \(S \) measures the injection rate, \(\theta \) describes frequency detuning, second order dispersion and Kerr nonlinearity coefficients are normalized to unity, \(\beta_3 \) and \(\beta_4 \) are the third and fourth-order dispersion coefficients, respectively, and \(0 < \delta \ll 1 \) is the small spectral filtering coefficient (or in time domain dispersion of the losses) [41]. The optical losses are determined by the mirror transmission and the intrinsic material absorption. These losses are normalized to unity.

In the absence of high-order dispersion and spectral filtering, we recover from Eq. (1) the Lugiato-Lefever equation [21] which is a paradigmatic model to study temporal cavity solitons (see overview [11, 22]). It is widely applied to describe two important physical systems: passive ring fiber cavity

DOI 10.20347/WIAS.PREPRINT.2843 Berlin 2021
with coherent optical injection and driven optical microcavity used for frequency comb generation [15, 23, 26, 12]. The inclusion of the fourth-order dispersion allows the modulational instability to have a finite domain of existence delimited by two pump power values [40]. As a consequence, upper homogeneous steady state solution becomes modulationally stable and dark dissipative solitons sitting this solution can appear [39]. In the presence of third order dispersion bright and dark dissipative solitons become asymmetric and acquire an additional group velocity shift associated with this asymmetry [4, 38, 28, 42].

Being well separated from one another dissipative solitons can interact via their exponentially decaying tails and form bound states characterized by fixed distances between the solitons. This weak interaction can be strongly affected by different perturbations, such as periodic modulation [35, 41, 46] and high-order dispersions [30], which lead to the appearance of the so-called soliton Cherenkov radiation at the soliton tails [3]. Single soliton self-locking by Cherenkov radiation in a microring resonator with high order dispersions was studied in [34]. Soliton interaction in the presence of high-order dispersions was studied in several works in 1D [30, 28, 32, 31, 46, 42] and 2D settings [27]. However, they were either focused on the asymmetric soliton interaction in the presence of third-order dispersion or based mainly on the numerical calculation of the soliton interaction potential. Unlike these works, here we present an analytical theory of the interaction of two dissipative solitons of the Lugiato-Lefever equation with fourth-order dispersion term based on the asymptotic approach developed in [14, 18]. In this approach only a single complex number has to be calculated numerically that is the product of the Cherenkov radiation amplitudes for the soliton itself and the neutral mode of the adjoint operator obtained by linearization of the model equation on the soliton solution. Note that asymptotic method for estimation of the Cherenkov radiation amplitude was discussed in [3, 17]. Furthermore, we show that similarly to the case of the interacting oscillatory solitons [41], a small spectral filtering effect can strongly affect the interaction force and the stability properties of the bound soliton states.

2 Single peak dissipative soliton

Without high-order dispersion and spectral filtering terms, \(\beta_3 = \beta_4 = \delta = 0 \), Eq. (1) supports a single or multipeak dissipative solitons characterized by damped oscillatory tails [33]. Stable dissipative solitons have been found in a strongly nonlinear regime, where the modulational instability is subcritical, i.e., for \(\theta > 41/30 \). More precisely, they have been found in the pinning region, where the lower stationary homogeneous solution coexists with a periodic one. The number of dissipative solitons and their distribution in the cavity are determined by the initial conditions while their maximum peak power remains constant for fixed values of the system parameters [33]. Note that the stability an bifurcations of the soliton solutions of the Lugiato-Lefever model with small dissipation were studied analytically in a number of earlier works, see e.g. [29, 36, 8, 37].

For \(\theta > 41/30 \) Eq. (1) supports a single peak dissipative soliton solution in the form \(U(t, \tau) = U_0 + u_0(\tau) \), where \(I_0 = |U_0|^2 = \text{const} \) is the intensity of the stationary homogeneous solution of Eq. (1) and \(u_0(\tau) \) decays exponentially at \(\tau \rightarrow \pm \infty \). This solution persists also at sufficiently small \(\beta_3, \beta_4, \) and \(\delta \). It remains motionless for \(\beta_3 = 0 \) and becomes uniformly moving otherwise, \(U(t, \tau) = U_0 + u_0(\tau - vt) \). Asymptotic analytic theory of the asymmetric dissipative soliton interaction via Cherenkov radiation induced by the third-order dispersion coefficient \(\beta_3 \) was developed in [42]. Below we assume that only small fourth-order dispersion is present, \(\beta_3 = 0 \) and \(|\beta_4| \ll 1 \). In this case we consider only soliton solutions, which are invariant under the symmetry property of Eq. (1), \(\tau \rightarrow -\tau \). For these solutions the soliton velocity is equal to zero, \(v = 0 \). Note, that traveling localized solutions were reported in the undamped Lugiato-Lefever model [7] as well as in the parametrically
driven damped nonlinear Schrödinger equation [47].

The dispersion relation for the small amplitude waves is determined by substituting \(U(t, \tau) = U_0 + A_0 e^{i k \tau - i \lambda t} \) into Eq. (1) and linearizing the resulting equation at \(U = U_0 \). This yields

\[
\Lambda = -2U_0^2 + i \sqrt{(1 + \delta k^2)^2 - I_0^2 + k^2 - \beta_4 k^4}.
\]

The phase velocity of the dispersive waves \(V = \Re(\Lambda)/k \) is shown in Fig. 1(a) for positive (1(a)) and negative (1(b)) \(\beta_4 \), as a function of the wave number \(k \). Cherenkov radiation appears when the phase velocity \(V \) coincides with zero soliton velocity as shown in Fig. 1(a). It is seen from this figure that the Cherenkov radiation emitted from the soliton tail occurs only when \(\beta_4 \) is positive. Therefore, below we consider only the case of positive fourth-order dispersion coefficient \(0 < \beta_4 \ll 1 \) when the Cherenkov radiation is present. For negative \(\beta_4 \) the soliton interaction is only weakly affected by the small fourth-order dispersion term.

Linear stability of the dissipative soliton solution \(u_0(\tau) \) is determined by calculating the eigenvalue spectrum \(\lambda \) of the operator

\[
\hat{L}(u_0) = \hat{L}_0 + \hat{L}_1(u_0),
\]

obtained by linearization of Eq. (1) around the soliton solution. Here \(u_0 = \left(u_0^0, u_0^1 \right) \), \(\hat{L}_0 = \hat{L}(0) \) is the linear differential operator evaluated at the stationary homogeneous solution \(U = U_0 \):

\[
\hat{L}_0 = \left(\begin{array}{cc}
-1 - i \theta + 2iI_0^2 + (i + \delta) \partial_\tau^2 + i \beta_4 \partial_\tau^4 & iU_0^2 \\
-2iU_0^* u_0 - iU_0^* u_0^2 & -1 + i \theta - 2iI_0^3 - (i - \delta) \partial_\tau^2 - i \beta_4 \partial_\tau^4
\end{array} \right),
\]

and

\[
\hat{L}_1(u_0) = \left(\begin{array}{cc}
2iU_0^* u_0 + 2iU_0 u_0^* + 2i|u_0|^2 & 2iU_0^* u_0 + iU_0^* u_0^2 \\
-2iU_0^* u_0 - iU_0^* u_0^2 & -2iU_0^* u_0 + 2iU_0 u_0^* - 2i|u_0|^2
\end{array} \right).
\]

We have calculated numerically the soliton solution and the eigenvalue spectrum \(\lambda \) of the operator \(\hat{L}(u_0) \) by discretizing Eq. (1) on a uniform grid of 2000 points on the interval \(\tau \in [0, 80] \) with periodic boundary conditions. The result is shown in Fig. 2 for \(\beta_3 = \beta_4 = \delta = 0 \). The continuous spectrum lies on the line \(\Re(\lambda) = -1 \), while the discrete spectrum of the soliton is symmetric with respect to this line \(\beta_4 \). For the parameter values of Fig. 2 apart from two real eigenvalues: zero eigenvalue, \(\lambda = 0 \), associated with the translational symmetry of the Luglio-Lefever equation and symmetric one, \(\lambda = -2 \), soliton has two symmetric pairs of complex conjugated eigenvalues. The right pair of these complex eigenvalues is responsible for an Andronov-Hopf bifurcation taking place with the increase of the injection parameter \(S \). The decay rates of the soliton tails depend on the eigenvalues \(\mu \) satisfying the characteristic equation

\[
\beta_3^2 \mu^6 + 2 \beta_4 \mu^5 + \left[1 + \delta^2 + 2 \beta_4 (2I_0 - \theta) \right] \mu^4 + 2(2I - \theta - \delta) \mu^3 + \left[1 - I_0^2 + (2\theta - \theta^2) \right] \mu^2 + \left[1 - I_0^2 \right] \mu = 0. \tag{3}
\]

obtained by linearization of the Eq. (1) with \(\partial_t U = 0 \) at the homogeneous steady state solution \(U = U_0 \).

In the case when the high-order dispersion and spectral filtering are absent \(\beta_3 = \beta_4 = \delta = 0 \), Eq. (3) gives two pairs of complex conjugate eigenvalues:

\[
\mu_{1,2}^{(0)} = \pm \sqrt{\theta - 2I_0 + i \sqrt{1 - I_0^2}} \tag{4}
\]

and \(\mu_{1,2}^{(0)*} \), which determine the decay and oscillation rates of the soliton tails. For example, for \(S = 2.0 \) and \(\theta = 3.5 \) we have \(\mu_{1,2}^{(0)} = \pm (1.6837 + 0.275817i) \), which means that in the absence of high-order dispersions the soliton tail oscillations are strongly damped. This might explain the fact that
Without soliton Cherenkov radiation it is hardly possible to observe experimentally the formation of bound states with large distances between the solitons [20].

For nonzero but sufficiently small fourth-order dispersion coefficient, $0 < \beta_4 \ll 1$, the eigenvalues of Eq. (3) are only slightly perturbed. However, in addition to (4) two more pairs of complex conjugate eigenvalues, $\mu_{3,4}$ and $\mu_{3,4}^*$, appear. For zero spectral filtering coefficient, $\delta = 0$, they are given by

$$
\mu_{3,4} = \pm i \sqrt{\frac{1}{2\beta_4} \left[1 + \sqrt{1 - 4\beta_4 \left(2I_0 - \theta + i \sqrt{1 - I_0^2} \right)} \right]}.
$$

(5)

It is seen that real (imaginary) parts of $\mu_{3,4}$ in Eq. (5) vanish (diverge) in the limit $\beta_4 \to 0$. When the spectral filtering coefficient is nonzero, $\delta > 0$, analytical expressions for the eigenvalues $\mu_{3,4}$ become very cumbersome. However, in the limit $\beta_4 = \mathcal{O}(\delta) \ll 1$ we get:

$$
\mu_{3,4} = \pm \sqrt{\frac{1 + \delta/\beta_4}{2 - I_0^2}} \left[\sqrt{1 + \delta/\beta_4} - \frac{\theta - 2I_0}{2} \right] + \mathcal{O}(\delta).
$$

(6)

Due to the presence of the eigenvalues $\mu_{3,4}$ and $\mu_{3,4}^*$, the tails of the soliton of Eq. (1) with $\beta_3 = 0$ and $0 < \beta_4 \ll 1$ become weakly decaying and fast oscillating, which favors the formation of soliton bound states, and can be referred to as the soliton Cherenkov radiation [3]. Note, that when β_4 is sufficiently small, the term δ/β_4 describing in Eq. (6) the contribution of spectral filtering into the real part of $\mu_{3,4}$ can lead to a considerable increase of the decay rate of the soliton tails without significant change of their oscillation frequency. For example, for $S = 2.0$, $\theta = 3.5$, $\beta_4 = 0.025$, and $\delta = 0.02$ we get $\mu_3 = -0.123 - 6.529i$, while for the same parameter set and $\delta = 0$ one obtains $\mu_3 = 0.063 - 6.528i$. Numerically calculated intensity profile of the soliton solution of Eq.

Figure 1: Phase velocity V of small dispersive waves with positive (a) and negative (b) fourth-order dispersion coefficient β_4, and $\beta_3 = 0$. Solid line corresponds to $\beta_4 = 0.025$ (a) and $\beta_4 = -0.025$ (b). Dashed line corresponds to $\beta_4 = 0$. The parameter values are $S = 1.8$, $\theta = 3.5$, and $\delta = 0.02$.

DOI 10.20347/WIAS.PREPRINT.2843
with small fourth-order dispersion coefficient $\beta_4 = 0.025$ is depicted in Fig. 3 together with the corresponding eigenvalue spectrum of the operator $\hat{L}(u_0)$ defined by Eq. (2).

Note, that the proof of the reflectional symmetry property of the discrete soliton spectrum with respect to the $\Re \lambda = -1$ line given in [5] is trivially generalized to the case when even high order dispersions are present. Nevertheless, the soliton spectrum shown in Fig. 3 does not possess this symmetry property due to the presence of nonzero spectral filtering coefficient $\delta = 0.02$. Furthermore, as it is seen from Fig. 3 for $\delta = 0.02$ real parts of the complex conjugate eigenvalues, responsible for the Andronov-Hopf bifurcation of the soliton, are shifted to the left from the imaginary axis as compared to those shown in Fig. 2 obtained for $\delta = 0$.

Sufficiently far away from the soliton core its trailing tail can be represented in the form

$$u_0(\tau) \sim a_3 e^{\mu_3 \tau} + a_4 e^{\mu_4 \tau}, \text{ when } \tau \to +\infty,$$

where the Cherenkov radiation amplitude a_3 is exponentially small in the limit $\beta_4 \to 0$ [3, 17], $a_4 = p_a a_3^*$, and for $\beta_4 = O(\delta) \ll 1$ we get

$$p_a = i \frac{1 - \sqrt{1 - T_0^2}}{A_0^2 \left(\frac{\delta}{\beta_4 \sqrt{1 - T_0^2}} + 1 \right)} + O(\delta),$$

where p_a is independent of β_4 at $\delta = 0$. Numerically for $S = 2.0, \theta = 3.5, \delta = 0.02, \text{ and } \beta_4 = 0.025$ we obtain $p_a \approx 0.0571 + 0.0833 i$.

3 Interaction between dissipative solitons

The study of weak dissipative soliton interaction in optical systems and, in particular, in the Lugiato-Lefever equation has a relatively long history [14, 18, 24, 25, 45, 9, 1, 10, 2, 6, 43, 44, 35]. Two or
more solitons will interact through their overlapping oscillatory tails when they are sufficiently close to one another. In what follows, we investigate the interaction between two dissipative solitons. We consider the limit of weak overlap when the solitons are well separated from each other and derive the interaction equations describing the slow time evolution of the soliton coordinates denoted by $\tau_{1,2}$. To this end, let us first rewrite Eq. (1) in a general form:

$$\partial_t U = \hat{F} U,$$

where $U = \begin{pmatrix} U \\ U^* \end{pmatrix}$, $\hat{F} U = \begin{pmatrix} \hat{f} U \\ \hat{f}^* U^* \end{pmatrix}$, and \hat{f} is the differential operator defined by the RHS of Eq. (1). We look for the solution of Eq. (9) in the form

$$U(\tau, t) = U_0 + u_1 + u_2 + \Delta u(\tau, t).$$

Here $u_{1,2} = u_0 (\tau - \tau_{1,2})$ are two unperturbed soliton solutions, with slowly evolving in time coordinates $\tau_{1,2} (\varepsilon t)$, $\Delta u(\tau, t) = O(\varepsilon)$ is a small correction to the superposition of two solitons, and small parameter ε describes the weakness of the overlap of the two solitons. Substituting Eq. (10) into the model equation (9) and collecting first order terms in ε we obtain the following linear inhomogeneous equation for $\Delta u = \begin{pmatrix} \Delta u \\ \Delta u^* \end{pmatrix}$:

$$\hat{L}(u_1 + u_2) \Delta u = -\partial_x u_1 \partial_x \tau_1 - \partial_x u_2 \partial_x \tau_2 - \hat{F}(u_1 + u_2),$$

where the linear operator $\hat{L}(u)$ is defined by Eq. (2). Due to the translational invariance of Eq. (1) this linear operator evaluated at the soliton solution u_0 has zero eigenvalue corresponding to the so-called translational neutral (or Goldstone) mode $v_0 = \begin{pmatrix} v_0 \\ v_0^* \end{pmatrix}$ with $v_0 = du_0/d\tau$, $\hat{L}(u_0) v_0 = 0$. The adjoint linear operator $\hat{L}^\dagger(u)$ obtained from $\hat{L}(u)$ by transposition and complex conjugation also has zero eigenvalue with the eigenfunction $w_0 = \begin{pmatrix} w_0 \\ w_0^* \end{pmatrix}$, which is referred below as the “adjoint
neutral mode", \(\hat{L}^\dagger(u_0) w_0 = 0 \). Below we will assume that \(w_0 \) satisfies the normalization condition
\(\langle w_0 \cdot u_0 \rangle = \int_{-\infty}^{\infty} \langle w_0 \cdot u_0 \rangle d\tau = 2 \int_{-\infty}^{\infty} \mathcal{R} (w_0^* u_0) d\tau = 1 \). Far away from the soliton core the asymptotic behavior of adjoint neutral mode is given by:

\[
w_0(\tau) \sim b_3 e^{\mu_3 \tau} + b_4 e^{\mu_4 \tau}, \quad \tau \to +\infty, \tag{12}\]

with \(b_4 = p_0 b_3 \), where asymptotic expression for \(p_0 \) coincides with that of \(p_a \) given by Eq. (9).

When the two interacting solitons are located sufficiently far away from one another the solvability conditions of Eq. (11) can be written as

\[
\partial_t \tau_{1,2} \approx G_{1,2}, \quad G_{1,2} = \left< w_{1,2} \cdot \hat{F}(u_1 + u_2) \right>, \tag{13}
\]

where we approximated the adjoint neutral modes of the operator \(\hat{L}^\dagger(u_1 + u_2) \) by the adjoint neutral modes \(w_{1,2} = w_0(\tau - \tau_{1,2}) \) of the operators \(\hat{L}^\dagger(u_{1,2}) \).

In order to derive the soliton interaction equations we need to calculate \(G_{1,2} \) in Eq. (13). To this end we split the integral in Eq. (13) into two parts and using the relations \(\hat{L}^\dagger(u_{1,2}) w_{1,2} = 0 \) together with the fact that \(u_1 \) and \(w_1 \) (\(u_2 \) and \(w_2 \)) are small for \(\tau \in [0, +\infty) \) (\(\tau \in (-\infty, 0) \)), where the origin of
Figure 5: A stable bound state of two dissipative solitons corresponding to a black point in Fig. 4, \(\delta = 0.02 \). (a) – intensity distribution, (b) – eigenvalue spectrum. Other parameter values are the same as for Fig. 4.

Figure 6: Unstable bound state of two dissipative solitons corresponding to a red point in Fig. 4, \(\delta = 0.02 \). (a) – intensity distribution, (b) – eigenvalue spectrum. Other parameter values are the same as for Fig. 4.
Finally, substituting into Eq. (15) the asymptotic relations (7) and (12) we obtain:

$$\frac{d}{dt}(\tau_2 - \tau_1) \approx -\frac{12}{\sqrt{\beta_4}} e^{-\gamma(\tau_2 - \tau_1)} \Re \left[\left(1 - i \frac{\delta}{3} \right) (a_3 b_3^* e^{-i\Omega(\tau_2 - \tau_1)} - p_0 p_0^* a_3 b_3 e^{i\Omega(\tau_2 - \tau_1)}) \right],$$

(16)

Figure 7: The same bound bound state as shown in Fig. 5 but calculated for $\delta = 0$. (a) – intensity distribution, (b) – eigenvalue spectrum. Bound state is unstable with respect to an Andronov-Hopf bifurcation.
\[
\frac{d(\tau_2 + \tau_1)}{dt} = 0,
\]

where \(\gamma = \Re(\mu_3) \approx \sqrt{\beta_4/2} \sqrt{(1 + \delta/\beta_4) - I_0^2}, \quad \Omega = -\Im(\mu_3) \approx 1/\sqrt{\beta_4} + \sqrt{\beta_4} (\theta - 2 I_0),\)

and the Cherenkov radiation coefficients \(a_3\) and \(b_3\) are exponentially small in the limit \(\beta_4 \to 0\). For \(S = 2.0, \theta = 3.5, \delta = 0.02, \beta_4 \approx 0.025\) numerically we get \(a_3 \approx -0.158 + 0.149i\) and \(b_3 \approx 0.017 + 0.136i\). Finally, neglecting \(O(\delta)\) terms and taking into account that in the leading order in \(\delta\) we have \(p_a = p_b \equiv p\), Eq. (16) can be rewritten in the form:

\[
\frac{d(\tau_2 - \tau_1)}{dt} \approx \frac{12}{\sqrt{\beta_4}} e^{-\gamma(\tau_2 - \tau_1)} |a_3 b_3| \left(|p|^2 - 1 \right) \cos [\Omega (\tau_2 - \tau_1) + \arg (b_3/a_3)].
\]

The RHS of Eq. (18) is plotted in Fig. 4, where the intersections of the black solid line with axis of abscissas correspond to the soliton bound states. Examples of stable and unstable soliton bound states calculated numerically are shown in Figs. 5 and 6 respectively, together with the most unstable eigenvalues of the operator \(\hat{L}\) evaluated on the bound state solutions.

Finally, in Fig. 7 we present the same soliton bound state as the one shown in Fig. 5 but calculated for \(\delta = 0\). It is seen that the eigenvalue spectrum of this state contains many discrete eigenvalues, which split from the continuous spectrum, and that it is oscillatory unstable due to the presence of two complex conjugate eigenvalues with positive real parts. Therefore, we can conclude that in the absence of spectral filtering the one-dimensional asymptotic equations (16)-(18) can be insufficient to describe the soliton interaction. The derivation of the interaction equations taking into account an Andronov-Hopf bifurcation of the soliton bound states in the presence of fourth-order dispersion is beyond the scope of this study. A related problem concerning the effect of oscillatory instability on the soliton interaction was studied in [41].

4 Conclusions

We have considered an all fiber photonic crystal cavity coherently driven by an injected field. The intracavity field inside the fiber experiences self-phase modulation, dispersion, optical injection, and optical losses. Its space-time evolution can be described by the Lugiato-Lefever equation with high order dispersion, where, in addition, we have taken into account small spectral filtering term. We have first discussed the properties of a single dissipative soliton and derived asymptotic expressions for the soliton Cherenkov radiation amplitudes. We have focused our analysis on the regime, where the forth order dispersion and the spectral filtering coefficients are small, \(0 < \beta_4, \delta \ll 1\). Second, we have investigated the interaction between two dissipative solitons in the case when they are well separated from each other. Assuming a weak overlap of soliton tails, we have established analytically the interaction law (Eqs. 18) governing the slow time evolution of the coordinates of two interacting solitons. We have shown that although the Cherenkov radiation due to the small fourth-order dispersion can strongly enhance the soliton interaction and thus lead to the formation of a large number of soliton bound states, in the absence of spectral filtering these states can be unstable with respect to an oscillatory instability even when single soliton is well below the Andronov-Hopf bifurcation threshold. This means that taking into consideration in the interaction equations additional degrees of freedom responsible for the Andronov-Hopf bifurcation (as it was done in Ref. [41]) can be necessary to describe the soliton interaction in the generalized Lugiato-Lefever model (1) with zero spectral filtering coefficient, \(\delta = 0\). On the other hand, the inclusion of small but sufficiently large spectral filtering, \(0 < \delta \ll 1\), allows to suppress the oscillatory instability and to keep the interaction equation one-dimensional.
References

[1] V. V. Afanasjev, B. A. Malomed, and P. L. Chu. Stability of bound states of pulses in the ginzburg-landau equations. Physical Review E, 56(5):6020, 1997.

[2] N. N. Akhmediev, A. Ankiewicz, and J. M. Soto-Crespo. Multisoliton solutions of the complex ginzburg-landau equation. Physical review letters, 79(21):4047, 1997.

[3] N. N. Akhmediev and M. Karlsson. Cherenkov radiation emitted by solitons in optical fibers. Phys. Rev. A, 51(3):2602–2607, 1995.

[4] N. N. Akhmediev, V. I. Korneev, and N. V. Mitskevich. Modulation instability of a continuous signal in an optical fiber taking into account third-order dispersion. Radiophysics and quantum electronics, 33(1):95–100, 1990.

[5] I. V. Barashenkov and Y. S. Smirnov. Existence and stability chart for the ac-driven, damped nonlinear schrödinger solitons. Physical Review E, 54(5):5707, 1996.

[6] I. V. Barashenkov, Y. S. Smirnov, and N. V. Alexeeva. Bifurcation to multisoliton complexes in the ac-driven, damped nonlinear schrödinger equation. Physical Review E, 57(2):2350, 1998.

[7] I. V. Barashenkov and E. V. Zemlyanaya. Travelling solitons in the externally driven nonlinear schrödinger equation. Journal of Physics A: Mathematical and Theoretical, 44:465211, 2011.

[8] I. V. Barashenkov, T. Zhanlav, and M. M. Bogdan. Proceedings of the fourth international workshop on nonlinear and turbulent processes in physics. In Proceedings of the Fourth International Workshop on Nonlinear and Turbulent Processes in Physics, pages 3–9. World Scientific, 1990.

[9] A. V. Buryak and N. N. Akhmediev. Stability criterion for stationary bound state of solitons with radiationless oscillating tails. Phys. Rev. E, 51:3572–3578, 1995.

[10] D. Cai, A. R. Bishop, N. Grenbech-Jensen, and B. A. Malomed. Bound solitons in the ac-driven, damped nonlinear schrödinger equation. Physical Review E, 49(2):1677, 1994.

[11] Y. K. Chembo, D. Gomila, M. Tlidi, and C. R. Menyuk. Theory and applications of the lugito-lefever equation. The European Physical Journal D, 71(7):198, 2017.

[12] Y. K. Chembo and C. R. Menyuk. Spatiotemporal lugito-lefever formalism for kerr-comb generation in whispering-gallery-mode resonators. Phys. Rev. A, 87:053852, 2013.

[13] T. Fortier and E. Baumann. 20 years of developments in optical frequency comb technology and applications. Communications Physics, 2(1):1–16, 2019.

[14] K. A. Gorshkov and L. A. Ostrovsky. Interactions of solitons in nonintegrable systems: direct perturbation method and applications. Physica D: Nonlinear Phenomena, 3(1-2):428–438, 1981.

[15] M. Haelterman, S. Trillo, and S. Wabnitz. Dissipative modulation instability in a nonlinear dispersive ring cavity. Optics communications, 91(5-6):401–407, 1992.

[16] T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg. Temporal solitons in optical microresonators. Nature Photonics, 8:145–152, 2014.
[17] V. I. Karpman. Radiation by solitons due to higher-order dispersion. *Phys. Rev. E*, 47:2073–2082, 1993.

[18] V. I. Karpman and V. V. Solov'ev. A perturbational approach to the two-soliton systems. *Physica D: Nonlinear Phenomena*, 3(3):487–502, 1981.

[19] T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky. Dissipative kerr solitons in optical microresonators. *Science*, 361(6402), 2018.

[20] F. Leo, S. Coen, P. Kockaert, S.-P. Gorza, P. Emplit, and M. Haelterman. Temporal cavity solitons in one-dimensional kerr media as bits in an all-optical buffer. *Nature Photonics*, 4:471–476, 2010.

[21] L. A. Lugiato and R. Lefever. Spatial dissipative structures in passive optical systems. *Phys. Rev. Lett.*, 58:2209, 1987.

[22] L. A. Lugiato, F. Prati, M. L. Gorodetsky, and T. J. Kippenberg. From the lugiato–lefever equation to microresonator-based soliton kerr frequency combs. *Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences*, 376(2135):20180113, 2018.

[23] L. Maleki, V. S. Ilchenko, A. A. Savchenkov, W. Liang, D. Seidel, and A. B. Matsko. High performance, miniature hyper-parametric microwave photonic oscillator. In *2010 IEEE International Frequency Control Symposium*, pages 558–563. IEEE, 2010.

[24] B. A. Malomed. Bound solitons in the nonlinear schrodinger/ginzburg-landau equation. In *Large Scale Structures in Nonlinear Physics*, pages 288–294. Springer, 1991.

[25] B. A. Malomed. Bound states of envelope solitons. *Physical Review E*, 47(4):2874, 1993.

[26] A. B. Matsko, A. A. Savchenkov, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki. Mode-locked kerr frequency combs. *Optics letters*, 36(15):2845–2847, 2011.

[27] C. Milián, Y. V. Kartashov, D. V. Skryabin, and L. Torner. Clusters of cavity solitons bounded by conical radiation. *Physical Review Letters*, 121(10):103903, 2018.

[28] C. Milián and D. V. Skryabin. Soliton families and resonant radiation in a micro-ring resonator near zero group-velocity dispersion. *Opt. Express*, 22:3732–3739, 2014.

[29] K. Nozaki and N. Bekki. Low-dimensional chaos in a driven damped nonlinear schrödinger equation. *Physica D: Nonlinear Phenomena*, 21(2-3):381–393, 1986.

[30] M. Olivier, V. Roy, and M. Piché. Third-order dispersion and bound states of pulses in a fiber laser. *Optics Letters*, 31:580–582, 2006.

[31] P. Parra-Rivas, D. Gomila, P. Colet, and L. Gelens. Interaction of solitons and the formation of bound states in the generalized lugiato-lefever equation. *The European Physical Journal D*, 71(7):198, 2017.

[32] P. Parra-Rivas, E. Knobloch, D. Gomila, and L. Gelens. Dark solitons in the lugiato-lefever equation with normal dispersion. *Physical Review A*, 93(6):063839, 2016.

[33] A. J. Scroggie, W. J. Firth, G. S. McDonald, M. Tlidi, R. Lefever, and L. A. Lugiato. Pattern formation in a passive kerr cavity. *Chaos, Solitons & Fractals*, 4(8-9):1323–1354, 1994.
[34] D. V. Skryabin and Y. V. Kartashov. Self-locking of the frequency comb repetition rate in microring resonators with higher order dispersions. *Optics express*, 25(22):27442–27451, 2017.

[35] J. M. Soto-Crespo, N. N. Akhmediev, P. Grelu, and F. Belhache. Quantized separations of phase-locked soliton pairs in fiber lasers. *Optics Letters*, 28:1757–1759, 2003.

[36] M. Taki, K. H. Spatschek, J. C. Fernandez, R. Grauer, and G. Reinisch. Breather dynamics in the nonlinear schrödinger regime of perturbed sine-gordon systems. *Physica D: Nonlinear Phenomena*, 40(1):65–82, 1989.

[37] G. Terrones, D. W. McLaughlin, E. A. Overman, and A. J. Pearlstein. Stability and bifurcation of spatially coherent solutions of the damped-driven nls equation. *SIAM Journal on Applied Mathematics*, 50(3):791–818, 1990.

[38] M. Tlidi, L. Bahloul, L. Cherbi, A. Hariz, and S. Coulibaly. Drift of dark cavity solitons in a photonic-crystal fiber resonator. *Physical Review A*, 88(3):035802, 2013.

[39] M. Tlidi and L. Gelens. High-order dispersion stabilizes dark dissipative solitons in all-fiber cavities. *Optics letters*, 35(3):306–308, 2010.

[40] M. Tlidi, A. Mussot, E. Louvergneaux, G. Kozyreff, A. G. Vladimirov, and M. Taki. Control and removal of modulational instabilities in low-dispersion photonic crystal fiber cavities. *Optics letters*, 32(6):662–664, 2007.

[41] D. Turaev, A. G. Vladimirov, and S. Zelik. Long-range interaction and synchronization of oscillating dissipative solitons. *Phys. Rev. Lett.*, 108:263906, 2012.

[42] A. G. Vladimirov, S. V. Gurevich, and M. Tlidi. Effect of cherenkov radiation on localized-state interaction. *Physical Review A*, 97(1):013816, 2018.

[43] A. G. Vladimirov, G. V. Khodova, and N. N. Rosanov. Stable bound states of one-dimensional autosolitons in a bistable laser. *Physical Review E*, 63(5):056607, 2001.

[44] A. G. Vladimirov, J. M. McSloy, D. V. Skryabin, and W. J. Firth. Two-dimensional clusters of solitary structures in driven optical cavities. *Physical Review E*, 65(4):046606, 2002.

[45] S. Wabnitz. Suppression of interactions in a phase-locked soliton optical memory. *Optics letters*, 18(8):601–603, 1993.

[46] Y. Wang, F. Leo, J. Fatome, M. Erkintalo, S. G. Murdoch, and S. Coen. Universal mechanism for the binding of temporal cavity solitons. *Optica*, 4(8):855–863, 2017.

[47] E. V. Zemlyanaya and I. V. Barashenkov. Traveling solitons in the damped-driven nonlinear schrödinger equation. *SIAM Journal on Applied Mathematics*, 64(3):800–818, 2004.