Research on Construction Risks and Countermeasures of Concrete Dam

Hang Song¹, Dai Wang¹ and Wei-Jia Liu²*

Abstract

The harsh environment will reduce the interlayer bonding quality of mass concrete and cause plastic cracking. These defects will seriously affect the safety and durability of the structure. This study tested the layer state (water content and penetration resistance), interlayer mechanical properties, and early-age crack resistance of concrete to evaluate the impact of extreme weather on concrete interlayer properties and crack resistance. Furthermore, the interlayer splitting tensile strength of concrete under different treatment measures (covering insulation quilts and artificial grooves) was analyzed to find a method to reduce the construction risk of mass concrete. At the same time, the early-age crack resistance of concrete under different treatment measures (covering insulation quilts and adding PVA fibers) was evaluated. The results showed that the interlayer splitting tensile strength of concrete decreased by 50%, 40%, 29%, and 70%, respectively, compared with bulk concrete under extreme weather conditions (high temperature, strong winds, steep descent in temperature, and short-time heavy rainfall). Covering insulation quilts can reduce the construction risk of concrete under extreme weather conditions such as high temperature, strong winds and steep descent in temperature. This is mainly due to the fact that insulation quilt reduces the impact of the external environment on the concrete and effectively prevents the evaporation of moisture inside the concrete. In addition, covering insulation quilts can reduce the total cracking area of concrete under extreme weather conditions (strong winds and dry-heat, strong winds and cold waves, and short-time heavy rainfall) by 85–100%. At the same time, adding PVA fibers can inhibit the generation and expansion of micro-cracks on the concrete surface. This is due to the bridging and cracking resistance of PVA fibers.

Keywords: extreme weather, mass concrete, water content, interlayer splitting tensile strength, construction risk, crack resistance, low heat cement, PVA fibers

1 Introduction

Mass concrete is poured in layers, which leads to interlayer of concrete becoming a weak part. The deterioration of interlayer bonding properties will seriously affect the durability and stability of the structure. To ensure the safety of the structure, it is necessary to strictly control the interlayer bonding quality of mass concrete.

Interval time substantially impacts the interlayer bonding properties of mass concrete. Research showed that the compressive strength (Karimpour, 2010), interlayer splitting tensile strength (Xu, 2017), shear strength (Liu et al., 2018) and impermeability (Lou, 2015; Qian & Xu, 2018a) of concrete decreased with the extension of interval time. In addition, temperature, relative humidity, and wind speed are also the key factors affecting the construction quality of mass concrete. Xu et al. (2017) studied the effects of different wind speeds on the interlayer splitting tensile strength of concrete. The results revealed that a dry and windy environment substantially reduced the interlayer mechanical properties of concrete. Liu et al. (2021) investigated the effects of ambient temperature on the interlayer splitting tensile strength of concrete. The results showed that the interlayer splitting
tensile strength decreased with increased temperature. Ribeiro (2001) found that the interlayer bonding strength of concrete was reduced with a decrease in relative humidity. Moreover, it was found that low curing humidity also harmed the fracture properties of concrete (Mi et al., 2018, 2019). Niu et al. (2020) studied the effects of temperature and wind speed on the microstructure of layered concrete. The results showed that high temperatures and strong winds accelerated the evaporation of water on the surface of concrete, which led to a coarsening effect in the pore structure near the concrete layer. Further, the increase of harmful pores deteriorated the interlayer bonding properties of concrete.

The harsh environment can not only significantly decrease the interlayer properties of concrete, but also increase the risk of early-age cracking of concrete. Zhang et al. (2020) studied the influence of different wind speeds (0, 0.5, 1.0, and 1.5 m/s) and closed curing time (0, 3, 6, 9, 12, and 24 h) on the shrinkage rate of cement paste at early age. The results showed that for the specimens without sealing curing, the wind speed increased the dry shrinkage of cement paste. Wind speed could also reduce the tensile strength, cracking strain, and hydration degree of cement paste. In addition, sealing curing can significantly reduce the risk of early age cracking of cement paste in wind environment. Xin et al. (2020) studied the effect of cold wave on the crack resistance of medium-heat and low heat cement concrete by using the temperature stress testing machine. The results showed that cold wave increased the cracking risk of low-heat cement concrete. The countermeasures against plastic cracking of concrete are divided into two types: active measures and passive measures (Ghorchian et al., 2018). Active measures are based on scientific curing methods to reduce the water evaporation rate of concrete (ACI, 2007, 2008; Yalcinkaya & Yazici, 2017). Passive measures are to improve the crack resistance of concrete through fibers (Bertelsen et al., 2020; Lyu et al., 2021; Shen et al., 2019a), supplementary cementitious materials (Shen et al., 2019b; Wang et al., 2021) and super absorbent polymers (SAP) (Li & Dabarera, 2020; Lyu et al., 2020; Olivier et al., 2018; Snoeck & Pel, 2018).

The above research showed that the interval time and environmental factors had a negative impact on the interlayer properties and crack resistance of mass concrete. However, there are few reports about the risks of mass concrete construction under extreme environmental conditions. In recent years, global warming has led to more frequent extreme weather (Climate Change, 2021; Dunn et al., 2020; Spinoni & Barbosa, 2019), and it may be encountered during the construction of large projects. The layered construction of mass concrete will also face greater challenges.

Therefore, this study focuses on the construction risks of mass concrete under extreme environmental conditions. Firstly, the concrete layer state and interlayer splitting tensile strength under extreme environments (high temperature, strong wind, steep descent of temperature, and short-time heavy rainfall) were tested. Secondly, the cracking risks of concrete under extreme weather (coupling of strong winds and dry-heat, strong winds and cold waves, and short-time heavy rainfall) were then investigated. Finally, effective measures were put forward to deal with construction risks under extreme weather conditions.

2 Experimental Procedure

2.1 Raw Materials

P•LH 42.5 low-heat Portland cement was used in the test, and the main performance indexes are shown in Table 1. The concrete mix proportion is shown in Table 2. Mix proportion LHP-1 was used for the concrete interlayer properties test. Mix proportion LHP-2 was used for the early-age crack resistance test of concrete.

Chinese standard GB/T 176-2008 specified the detection methods for the chemical composition of cement, such as silicon dioxide, which was determined by the potassium fluorosilicate volumetric method. The aluminum oxide content was determined by the copper sulfate back titration method. The iron oxide was determined by atomic absorption spectrometry.

Crushed basalt with a 5–20 mm particle size range was used as coarse aggregate. As fine aggregate, artificial sand (basalt) with an apparent density of 2780 kg/m³ was used. In addition, polycarboxylate superplasticizer and alkyl benzene sulfonate air-entraining agent were used in the test.

Modified polyvinyl alcohol (PVA) fiber was used in the experiment. The fiber length and diameter were 12 mm and 40 μm, respectively. The fiber content was 0.9 kg/m³.

2.2 Specimen Preparation

First, the concrete mixture was wet screened using a sieve with a diameter of 5 mm. Then, the screened mortar was packed into a 100 mm diameter cylinder and vibrated to compact. Finally, the specimens were put into the environmental chambers for water content and penetration resistance tests.

The splitting tensile specimens were created using 150 × 150 × 150 mm cube molds. First, the lower layer of concrete (height 75 mm) was poured. Then, it was placed in the preset environmental chambers (Table 3) for 6 h. Finally, specimens were taken out of environmental chambers and poured into the upper layer of concrete. The specimens were demoulded and cured in a standard curing room (20 ± 2 °C, RH ≥ 95%) for 28 days.
The concrete interlayer properties test environment was divided into four kinds: high temperature, strong winds, a steep temperature descent, and short-time heavy rainfall. The specific environmental parameters are listed in Table 3. In the high temperature environment, the temperature and relative humidity were set to 40 °C and 30%, respectively, for the interlayer properties tests. The test specimens were divided into three groups, namely, surface non-treated, covering insulation quilts, and artificial grooves. The thickness of insulation quilt was 20 mm (Fig. 1a). The diameter and depth of artificial grooves were 30 mm and 20 mm, respectively (Fig. 1b).

In the strong wind environment, the temperature and relative humidity were set to 20 °C and 30% for the interlayer properties tests. The grouping of specimens was the same as above. The wind speed on the surface of specimen was set at 13 m/s ± 0.5 m/s. Moreover, the environmental chamber controlled the temperature and humidity (Fig. 2b). The size of the environmental chamber was 6700 × 5500 × 2800 mm. The walk-in environmental chamber was independently developed by Tsinghua University.

The cooling rate was 2 °C/h. An artificial sprinkling was used to simulate short-time heavy rainfall. The depth of water accumulation on the concrete surface reached up to 30 mm within 3 h. The test environment for the concrete crack resistance at an early-age was divided into three types: the coupling of strong winds and dry-heat, strong winds and cold waves, and short-time heavy rainfall. The concrete slab cracking specimen size was 800 × 600 × 100 mm. The specimens were placed in the environmental chamber, which was preset with temperature and humidity (Table 3). In the test, the wind speed on the surface of specimen was set at 13 ± 0.5 m/s.

Moreover, the environmental chamber controlled the temperature and humidity (Fig. 2b). The size of the environmental chamber was 6700 × 5500 × 2800 mm. The walk-in environmental chamber was independently developed by Tsinghua University.

It should be noted that there is an obvious size effect between concrete specimens and mass concrete. When the size of concrete becomes larger, its compressive strength and tensile strength will decrease and eventually tend to be stable (Li et al., 2002). Although the strength of small specimens does not represent the real strength

Table 1	Properties of cement.	
Properties	Cement	Fly ash
Chemical composition (% by mass)		
SiO₂	23.24	50.6
Al₂O₃	4.07	27.1
Fe₂O₃	3.02	7.1
CaO	61.64	4.5
MgO	4.74	1.2
SO₃	2.05	0.3
Alkali content	0.45	–
Loss on ignition	1.08	–
Mineral composition (% by mass)		
C₃S	32.4	Vitreous body (54%)
C₂S	47.5	Quartz (26%)
C₃A	0.2	Mullite (17%)
C₄AF	14.6	Magnetite (1.8%)
Gypsum	3.5	Hematite (0.2%)
Physical properties		
Specific gravity (g/cm³)	3.20	1.8
Specific surface (m²/kg)	–	1390
Compressive strength (MPa)		
7 days	28 days	

Table 2	Mix proportion of concrete (kg/m³).						
Number	W/B	Cement	Fly ash	Artificial sand	Coarse aggregate	Superplasticizer	Air-entraining agent
LHP-1	0.48	100	123	1323	1.388	0.069	
LHP-2	0.50	173	93	1320	1.596	0.079	
of mass concrete, it can reflect the strength change law of mass concrete. In addition, the existing size effect model (Serra & Batista, 2017) can establish a quantitative relationship between the strength of concrete specimens of any size. Therefore, the test results of small-scale specimens under different environmental conditions can also be used to evaluate the real strength of mass concrete in practical engineering.

Table 3 Test environmental parameters and corresponding treatment measures.

Properties	Environmental conditions	Environmental parameters	Treatment measures	Number
Interlayer properties	High temperature	Temperature/°C 40, Relative humidity/% 30, Wind speed/(m/s) 0	Surface nontreatment A1, Covering insulation quilt A2, Artificial grooves A3	A1
Strong wind		Temperature/°C 27, Relative humidity/% 60, Wind speed/(m/s) 13	Surface nontreatment B1, Covering insulation quilt B2, Artificial grooves B3	B1
Steep descent of temperature	20–12 (Drop by 8 °C), 20–5 (Drop by 15 °C)	Temperature/°C 20–5, Relative humidity/% 30, Wind speed/(m/s) 0	Surface nontreatment C1, Covering insulation quilt C3	C1
Short-time heavy rainfall		Temperature/°C 20, Relative humidity/% 30, Wind speed/(m/s) 0	Covering insulation quilt D1, Drain off water D2, Surface nontreatment D3	D1

Early age crack resistance

Coupling condition of strong winds and dry-heat	Temperature/°C 40, Relative humidity/% 30, Wind speed/(m/s) 13	Treatment measures	Number	
Strong wind and cold wave	20–5 (Drop by 15 °C)	Temperature/°C 20–5, Relative humidity/% 30–85, Wind speed/(m/s) 13	Surface nontreatment –, Covering insulation quilt –, Add PVA fibers –	–
Short-time heavy rainfall	Temperature/°C 20, Relative humidity/% 30, Wind speed/(m/s) 0	Surface nontreatment –, Covering insulation quilt –, Add PVA fibers –	–	

Fig. 1a Covering insulation quilt; b Artificial grooves.
2.3 Experimental Methods

2.3.1 Test for Water Content and Penetration Resistance

The water content of mortar was measured by the TDR150 soil moisture rapid tester (Fig. 3a) produced by American Spectrum Company. The length of the probe is 3.8 cm. Take the average of three measured values as the test result.

The penetration resistance of mortar was tested in accordance with Chinese standard DL/T 5150-2017 (China Electric Power Press, 2017). Mortar penetration resistance was tested by the DL-ASTT automatic concrete setting time tester (Fig. 3b). The instrument was produced by China’s Zhoushan Daolong Technology Co., LTD.

2.3.2 Interlayer Splitting Tensile Strength Test of Concrete

The interlayer splitting tensile strength test of concrete was carried out in accordance with the Chinese standard DL/T 5150-2017 (China Electric Power Press, 2017). It needs to be explained that the interlayer refers to the interface between the upper and lower layers of concrete (Fig. 4). The specimen was split along the layer at a loading rate of 0.04–0.06 MPa/s. The calculation equation for concrete splitting tensile strength is as follows:
where f_{ts} is splitting tensile strength of concrete; P is failure load; A is cross-sectional area of the cube.

The specimen numbers were C0, (A1, A2, A3), (B1, B2, B3), (C1, C2, C3), and (D1, D2, D3). Group C0 represents bulk concrete, and the other groups represent concrete poured in layers. The average value of three specimens was taken as the test result.

2.3.3 Early-Age Crack Resistance Test

An early-age crack resistance test of concrete was carried out in accordance with the Chinese standard GB/T 50082-2009 (China Construction Industry Press, 2009). The cracking resistance of concrete at an early-age was tested by the plate cracking method. The size of the plate is $800 \times 600 \times 100$ mm. There are seven crack inducers in the mold. After pouring, specimens were put into the environmental chamber, which could set various parameters (see Table 3), then set the wind speed at 100 mm directly above the specimen to 13 m/s. In addition, the wind direction should be parallel to the surface of specimens and crack inducers. The length, width, and number of cracks were measured 24 h after the specimen was formed. Crack length was measured by steel ruler. Crack width was measured with a microscope with magnification of at least 40 times. The calculation of test results shall comply with the following provisions:

- The average cracking area of each crack has been calculated according to the following equation:

$$
a = \frac{1}{2N} \sum_{i=1}^{N} W_i \times L_i \tag{2}
$$

- The number of cracks per unit area has been calculated according to the following equation:

$$
b = \frac{N}{A} \tag{3}
$$

- The total cracking area per unit area has been calculated according to the following equation:

$$
c = a \times b \tag{4}
$$

where W_i denotes the maximum width (mm) of crack i; L_i is the length (mm) of crack i; N is the total number of cracks; A is the area of a flat plate (m2); a is the average cracking area of each crack (mm2/strip); b is the number of cracks per unit area (strip/m2); c is the total cracking area per unit area (mm2/m2). The average value of two specimens was taken as the test result.

The concrete early-age cracking test under each environment was divided into three groups: surface non-treatment, covering insulation quilt, and adding PVA fibers. At the same time, the water content and penetration resistance of mortar were tested (Fig. 5).
3 Results and Discussion
3.1 Interlayer Properties of Concrete
The main purpose of this section is to improve the interlayer bonding strength of concrete under extreme environmental conditions. The interlayer bonding strength of concrete mainly depends on the chemical bonding force of cementitious materials and the degree of mutual embedding of aggregates. The research has shown that the interlayer bonding strength of concrete can be guaranteed by pouring the upper layer of concrete before the initial setting of the lower layer of concrete (Qian & Xu, 2018b). Due to construction efficiency and mechanical failure, if upper concrete cannot be poured before the initial setting of lower concrete, it is necessary to improve the interlayer bonding strength of concrete through artificial grooves.

3.1.1 High Temperature
3.1.1.1 Water Content and Penetration Resistance of Mortar
The water content and penetration resistance of mortar under high temperatures are shown in Fig. 6a and b, respectively. With the increase of age, the water content of mortar decreased gradually, while the penetration resistance increased continuously. There are two reasons for this phenomenon: (i) the hydration reaction of cement increases the strength of mortar while consuming part of water; and (ii) high-temperature accelerates the water evaporation rate and reduces the total water content (Joshaghani & Balapour, 2018).

The water content of mortar covered with an insulation quilt was closer to the designed water content (Fig. 6a). In addition, the penetration resistance of mortar developed slowly after being covered with an insulation quilt. For example, at 487 min after being placed in the environmental chamber for 6 h, the water content of mortar under three working conditions (surface nontreatment, covering insulation quilt, and artificial grooves) was 82.5, 106.8, and 88.2 kg/m³, which was 38%, 20%, and 34% lower than the designed water content (133 kg/m³), respectively. The penetration resistance of mortar under three working conditions (surface nontreatment, covering insulation quilt, and artificial grooves) was 17, 12, and 16 MPa, respectively. The results show that covering an insulation quilt can reduce the water loss of mortar and reduce the penetration resistance to a certain extent in a high-temperature environment. The reason is that the insulation quilt can reduce the influence of the external high-temperature environment on the mortar surface, effectively inhibiting the evaporation of water and slowing down the mortar setting rate.

3.1.1.2 Interlayer Splitting Tensile Strength
The splitting tensile strength of concrete under high temperatures is shown in Fig. 6. The splitting tensile strength of bulk concrete was 1.21 MPa. For the concrete types of A1 (surface nontreatment), A2 (covering insulation quilt), and A3 (artificial grooves), the interlayer splitting tensile strength was 0.60, 0.56, and 0.74 MPa respectively, which was 50%, 54%, and 39% lower than bulk concrete. This indicates that artificial grooves can slightly increase the interlayer splitting tensile strength of concrete under high-temperature conditions.

Under high-temperature conditions, the strengths of A1 (surface nontreatment) and A2 (covering insulation quilt) were both lower than bulk concrete (Fig. 7), which was mainly because the lower concrete had already initially set when the upper concrete
was poured (Fig. 6b). The interlayer splitting tensile strength of concrete could be improved by using artificial grooves. This may be because the artificial grooves increased the embedding degree between the upper and lower layers of concrete, thereby improving the interlayer bonding strength (Li et al., 2016). In addition, it has been reported that the interlayer bonding quality of concrete depends on the roughness of the lower layer of concrete (Santos & Silva, 2007). The artificial grooves increased the roughness of the lower layer of concrete, and then improved interlayer bonding strength.

3.1.2 Strong Wind

3.1.2.1 Water Content and Penetration Resistance of Mortar The water content and penetration resistance of the mortar under the strong wind environment condition are shown in Fig. 8a and b, respectively. As age increases, the water content of the mortar shows a gradual downward trend, while the penetration resistance continues to increase.

Compared with the other two working conditions, the water content of mortar covered with insulation quilt was higher and the penetration resistance was relatively lower. For example, when the age was 508 min (after being put into an environmental chamber for 6 h), the water content of mortar under the three working conditions (surface nontreatment, artificial grooves, and covering insulation quilt) was 83.3, 88, and 116.2 kg/m³, respectively, which was 37%, 34%, and 13% lower than the designed water content (133 kg/m³). The penetration resistance under the three working conditions (surface nontreatment, artificial grooves, and covering insulation quilt) was 34, 26.8, and 3.25 MPa, respectively. This indicated that covering insulation quilt was an effective moisturizing measure in a strong wind environment. It can prevent the water from evaporating outward and decrease the setting rate of mortar.

3.1.2.2 Interlayer Splitting Tensile Strength The splitting tensile strength of concrete under strong winds is shown in Fig. 9. The splitting tensile strength of bulk concrete was 1.21 MPa. For the concrete types of B1 (surface nontreatment), B2 (covering insulation quilt), and B3 (artificial grooves), the interlayer splitting tensile strength was 0.73, 1.19, and 1.20 MPa, which was 40%, 2%, and 1% lower than bulk concrete. It can be concluded that artificial grooves increased the embedding degree between the upper and lower layers of concrete, thereby improving the interlayer bonding strength.
cial grooves and covering insulation quilts can effectively improve the interlayer splitting tensile strength of concrete under strong wind conditions.

Moreover, B2 (covering insulation quilt) and B3 (artificial grooves) had the same strength (Fig. 9), which was mainly because the covering insulation quilt prevented the evaporation of water (Fig. 8a) and delayed the setting of concrete (Fig. 8b). The artificial groove improves the interlayer bonding strength by increasing the degree of embedding between the upper and lower layers of concrete.

3.1.3 Steep Descent of Temperature

3.1.3.1 Water Content and Penetration Resistance of Mortar

The water content and penetration resistance of mortar under a steep descent in temperature are shown in Fig. 10a and b. With the increase of age, the water content of mortar decreased gradually, while the penetration resistance increased continuously.

It can be seen from Fig. 10 that the water content of the mortar after covering an insulation quilt was lower than that of the other two working conditions, and the penetration resistance was relatively lower. For example, when the age was 560 min (after being put into the environmental chamber for 6 h), the water content of mortar under three working conditions was 105, 98.8, and 126.8 kg/m³ respectively, which was 21%, 26%, and 5% lower than the designed water content (133 kg/m³). The results showed that in a steep descent in temperature, the covering of an insulation quilt was an effective moisturizing measure, which can effectively prevent the influence of cold air on the interlayer properties of concrete.

3.1.3.2 Interlayer Splitting Tensile Strength

The splitting tensile strength of concrete under a steep descent in temperature is shown in Fig. 11. The splitting tensile strength of bulk concrete was 1.21 MPa. For the concrete types of C1 (the temperature decreased by 8 °C, surface non-treatment), C2 (the temperature decreased by 15 °C, surface non-treatment), and C3 (the temperature decreased by 15 °C, covering insulation quilt), the interlayer splitting tensile strength was 0.86, 0.58, and 1.14 MPa, which was 29%, 52%, and 6% lower than bulk concrete (C0). It is abun-

![Fig. 9 Effect of strong wind on interlayer splitting tensile strength of concrete.](image_url)

![Fig. 10 Effect of temperature steep descent on the state of mortar layer.](image_url)

(a) Water content

(b) Penetration resistance
dantly obvious that the interlayer splitting tensile strength deteriorates with the increases of temperature. Covering an insulation quilt can effectively avoid the influence of strong cooling weather on interlayer properties.

The strength of C3 (the temperature decreased by 15 °C, covering an insulation quilt) in a steep descent in temperature environment was close to that of bulk concrete (Fig. 11), which was mainly because covering an insulation quilt prevented the evaporation of water (Fig. 10a) and delayed the setting of concrete (Fig. 10b). The strength of C2 (the temperature decreased by 8 °C, surface nontreatment) was lower than that of C1 (the temperature decreased by 8 °C, surface nontreatment), which was mainly because the greater the temperature drop, the lower the water content of the concrete surface. The research showed that interlayer splitting tensile strength was related to the water content index of the lower layer of concrete. The interlayer splitting tensile strength decreases as the water content decreases (Xu et al., 2017).

3.1.4 Short-time Heavy Rainfall
3.1.4.1 Interlayer Splitting Tensile Strength The splitting tensile strength of concrete under short-time heavy rainfall is shown in Fig. 12. The splitting tensile strength of bulk concrete was 1.21 MPa. For the concrete types of D1 (covering insulation quilt), D2 (drain off water), and D3 (surface nontreatment), the interlayer splitting tensile strength was 0.80, 0.59, and 0.42 MPa, which decreased by 43%, 58%, and 70%, respectively, compared with that of C0 (bulk concrete). The main reason for the decrease in interlayer splitting tensile strength under the condition of heavy rainfall may be that the rain increased the water-binder ratio of the concrete, which made the pore structure near the concrete layer rough. Covering insulation quilts can effectively prevent the interlayer properties from being influenced by short-time heavy rainfall weather.

3.2 Crack Resistance of Concrete at Early-Age
3.2.1 Coupling Condition of Strong Wind, Dryness, and Heat
3.2.1.1 Water Content and Penetration Resistance of Mortar The water content and penetration resistance of mortar under the strong wind and dry heat coupling conditions are shown in Fig. 13a and b, respectively. With increasing age, the water content of mortar decreased gradually, while the penetration resistance increased continuously. The final (324 min) water content of mortar under three working conditions (surface nontreatment, covering insulation quilt and adding PVA fibers) was 78, 136, and 73 kg/m^3, which decreased by 63%, 38%, and 65% compared with initial water content, respectively. The final penetration resistance of mortar was 36, 29.4, and 33.4 MPa, respectively. This indicates that covering insulation quilts can effectively avoid water evaporation under conditions of strong wind and dry heat. At the same time, covering the insulation quilts can also decrease the setting rate of mortar. In addition, adding PVA fibers to the mortar cannot prevent the water evaporation, nor can it delay the setting and hardening process of concrete.

3.2.1.2 Crack Resistance Fig. 14 shows the cracking of concrete under strong wind and dry heat coupled conditions. The total cracking area per unit area can be used as the concrete crack resistance evaluation index. The total cracking areas per unit area of concrete under three working conditions (surface nontreatment, covering insulating
quilt, and adding PVA fibers) were 275, 42, and 65 mm²/m², respectively. This indicates that covering an insulation quilt can effectively prevent concrete from cracking. This was mainly due to the inhibition of evaporation by an insulation quilt (Fig. 13a). Furthermore, sufficient moisture prevented shrinkage cracks in concrete. In addition, the above results also indicated that the addition of PVA fibers could reduce the number and width of cracks (Bertelsen et al., 2020) (Table 4).

The average maximum crack widths of concrete under three working conditions were 0.14, 0.18, and 0.04 mm, respectively, which indicates that PVA fibers can effectively inhibit crack expansion. This is attributable to the ability of fibers to transfer stress from the weak parts.

![Fig. 13](image_url) Influence of strong wind, dryness, and heat coupled weather on the state of mortar layer.

![Fig. 14](image_url) Crackling of concrete surface under the coupled conditions of wind, dry and heat.

Treatment measures	Average cracking area of each crack (mm²/strip)	Number of cracks per unit area (strip/m²)	Total cracking area per unit area (mm²/m²)	Average maximum crack width (mm)
Surface nontreatment	26.4	10.4	275	0.14
Covering insulation quilt	10.0	4.2	42	0.18
Add PVA fibers	7.8	8.3	65	0.04
such as cracks and pores in concrete, delaying the formation and development of cracks (Kim et al., 2008; Shi et al., 2018). Engineering practice has also verified the excellent performance of PVA fibers concrete. For example, Yang (2011) studied the application effect of PVA fibers in Xiluodu extra-high Arch Dam. The results showed that the addition of PVA fiber was beneficial to improve the crack resistance safety index of arch dam concrete. In addition, Liu & Zhang (2020) applied PVA fibers to the construction of the Suapiti Dam in Guinea based on the successful experience of the Xiluodu Arch Dam. The results showed that PVA fibers reduced the risk of concrete cracking at the bottom diversion hole.

3.2.2 Strong Wind and Cold Wave

3.2.2.1 Water Content and Penetration Resistance of Mortar

The water content and penetration resistance of mortar under strong wind and cold wave weather are shown in Fig. 15a and b, respectively. The water content of mortar decreased with the increase of age. The final (240 min) water content of mortar under three conditions (surface nontreatment, covering insulation quilt, and adding PVA fibers) was 118 kg/m3, 117 kg/m3, and 84 kg/m3, which decreased by 22%, 31%, and 43% compared with the initial water content, respectively. The final penetration resistance of mortar was 5.7, 3, and 17.3 MPa, respectively. This indicated that the addition of PVA fibers increased the evaporation rate of water. At the same time, the addition of PVA fibers also accelerated the setting rate of mortar. In addition, covering insulation quilts can delay the setting and hardening process of concrete (Table 5).

3.2.2.2 Crack Resistance

The cracking of concrete under the conditions of strong winds and cold waves is shown in Fig. 16. The total cracking area of concrete per unit area was 342, 0, and 81 mm2/m2 under three conditions (surface nontreatment, covering insulation quilts, and adding PVA fibers). This demonstrated that covering an insulation quilt can effectively avoid concrete cracking. This is attributed to the reason that an insulation quilt can keep the concrete temperature constant. Furthermore, the insulation quilt delayed the setting of concrete (Fig. 15b), so that the internal stress of concrete changed uniformly.

In addition, the average maximum crack width of concrete under the three working conditions was 0.11, 0.0, and 0.05 mm, respectively. The results show that both insulation quilts and PVA fibers can effectively inhibit the propagation of cracks.

![Graphs showing water content and penetration resistance](image)

(a) Water content (b) Penetration resistance

Fig. 15 The influence of strong wind and cold wave weather on the state of mortar layer.

Treatment measures	Average cracking area of each crack (mm2/strip)	Number of cracks per unit area (strip/m2)	Total cracking area per unit area (mm2/m2)	Average maximum crack width (mm)
Surface nontreatment	27.3	12.5	342	0.11
Covering insulation quilt	0.0	0.0	0.0	0.0
Add PVA fibers	12.9	6.3	81	0.05
3.2.3 Short-Time Heavy Rainfall

3.2.3.1 Crack Resistance
Fig. 17 shows a risk of concrete cracking under the condition of short-time heavy rainfall. The total cracking area of concrete per unit area was 29, 0, and 0 mm²/m² under three conditions (surface non-treatment, covering insulation quilts, and adding PVA fibers). The results showed that both covering an insulation quilt and adding PVA fibers could effectively avoid concrete cracking. Covering insulation quilts can prevent rainwater from penetrating the concrete. Furthermore, PVA fibers can play a role in bridging and cracking resistance (Table 6).

4 Conclusions

(1) The interlayer mechanical properties of concrete decreased significantly under extreme weather conditions (high temperature, strong wind, steep
descent in temperature, and short-time heavy rain-fall). Covering with an insulation quilt can improve the interlayer bonding strength of concrete. The reason is that an insulation quilt can reduce the impact of the external environment on concrete, thus reducing water evaporation and delaying the concrete setting rate. Furthermore, artificial grooves can strengthen interlayer bonding. This is mainly because the artificial grooves increase the roughness of the lower layer of concrete and improve the mutual embedding degree of the upper and lower layer of concrete. Therefore, the aforementioned treatment measures can be adopted according to weather conditions during the construction process to deal with construction risks.

(2) There is a risk of cracking in mass concrete under extreme weather conditions (coupling of strong winds and dry-heat, strong winds and cold waves, and short-time heavy rainfall). Covering with an insulation quilt can effectively prevent concrete cracking. It is mainly related to the fact that the insulation quilt hinders the water evaporation, resulting in an obvious decrease in the water loss shrinkage stress. In addition, the high water content makes the cement fully hydrated and improves the early tensile strength, which is conducive to the anti-cracking property of concrete at early-age.

(3) Adding PVA fibers can inhibit the generation and propagation of microcracks on the surface of the concrete. This is because PVA fibers can withstand some of the tensile stress caused by water loss and shrinkage and play a role in bridging and crack resistance. Therefore, the PVA fiber concrete can be applied to the key parts of the dam to improve the crack resistance of the dam concrete.

The current risk response measures are more traditional and are still being used. In the future, it is intended to study the influence of nanomaterials on the interlayer properties and crack resistance of mass concrete. Moreover, the prediction model of interlayer bonding strength, including temperature, humidity, wind speed, and interference toughness can be developed in the future to accurately determine the construction risks of mass concrete.

Funding
This research was funded by the cultivating plan on Young Backbones Teachers of Colleges and Universities, Henan province (No. 2017GGJS1583) and Leading Academic Discipline Project of Zhengzhou University of Technology.

Data availability
The data presented in this study are available on request from the corresponding author.

Declarations

Competing interests
The authors declare no conflict of interest.

Author details
1 College of Civil Engineering, Zhengzhou University of Technology, Zhengzhou 450044, Henan, China. 2 State Key Laboratory of Hydrosience and Engineering, Tsinghua University, Beijing 100084, China.

Received: 20 October 2021 Accepted: 17 January 2022
Published online: 01 March 2022

References
ACI. (2007). 405.1, specifications for hot weather concreting (technical report). American Concrete Institute.
ACI. (2008). 405, specifying concrete (technical report). American Concrete Institute.
Bertelsen, I. M. G., Ottosen, L. M., & Fischer, G. (2020). Influence of fibre characteristics on plastic shrinkage cracking in cement-based materials: A review. Construction and Building Materials, 230, 116769. https://doi.org/10.1016/j.conbuildmat.2019.116769
B. China Construction Industry Press. (2009). Standard for test methods of long-term performance and durability of ordinary concrete; GB/T 50082–2009. China Construction Industry Press.
China Construction Industry Press. (2017). Test code for hydraulic concrete; DL/T 5150–2017. China Electric Power Press.
Climate Change 2021: the physical science basis. Working group I contribution to the sixth assessment report of the intergovernmental panel on climate change.
Dunn, R. J., Alexander, L. V., Donat, M. G., Zhang, X., Rador, M., Herold, N., Lippmann, T., Allan, R., Aguilar, E., Barry, A. A., & Brunet, M. (2020). Development of an updated global land in-situ-based dataset of temperature and precipitation extremes: HadEX3. Journal of Geophysical Research: Atmospheres. https://doi.org/10.1029/2019JD032263
Ghouchian, S., Wyrzykowski, M., Baquerizo, L., & Lura, P. (2018). Performance of passive methods in plastic shrinkage cracking mitigation. Cement and Concrete Composites, 91, 148–155. https://doi.org/10.1016/j.cemconcomp.2018.05.008
Jostaghani, A., & Balapour, B. (2018). Effect of controlled environmental conditions on mechanical, microstructural and durability properties of cement mortar. Construction and Building Materials, 164, 134–149. https://doi.org/10.1016/j.conbuildmat.2017.12.206
Karimpour, A. (2010). Effect of time span between mixing and compacting on roller compacted concrete (RCC) containing ground granulated blast furnace slag (GGBFS). Construction and Building Materials, 24, 2079–2083. https://doi.org/10.1016/j.conbuildmat.2010.04.054
Kim, J., Park, C. G., & Lee, S. W. (2008). Effects of the geometry of recycled PET fiber reinforcement on shrinkage cracking of cement-based composites. Composites Part B: Engineering, 39, 442–450. https://doi.org/10.1016/j.compositesb.2007.05.001
Li, L., & Dabarera, G. P. (2020). Time-zero and deformational characteristics of high performance concrete with and without superabsorbent polymers at early ages. Construction and Building Materials, 264, 120262. https://doi.org/10.1016/j.conbuildmat.2020.120262
Li, Q., Zhang, F., & Zhang, W. (2002). Fracture and tension properties of roller compacted concrete cores in uniaxial tension. Journal of Materials in Civil Engineering, 14(5), 366–373. https://doi.org/10.1061/(JASCE)0899–1561(2002)14:5(366)
Li, Z. H., Cui, Q. F., & Shi, K. L. (2016). Experimental research on the interface bonding performance of ECR-RC functionally gradient concrete. Concrete. https://doi.org/10.3969/j.issn.1002-3350.2016.11.005

Liu, B., & Zhang, R. J. (2020). Application of PVA fiber concrete in Souapiti dam. Water Power, 46(01), 49–52.

Liu, G. H., Lu, W. B., Leu, Y. D., Pan, W. N., & Wang, Z. Y. (2018). Interlayer shear strength of Roller compacted concrete (RCC) with various interlayer treatments. Construction and Building Materials, 166, 647–656. https://doi.org/10.1016/j.conbuildmat.2018.01.110

Liu, W. J., Fan, Q. X., Li, Q. B., Yang, N., Qiao, Y., & Hu, Y. (2021). Experimental research on the effect of different temperatures on the interlayer splitting tensile strength of concrete. Water Resources and Hydropower Engineering, 52, 200–206. https://doi.org/10.13928/j.cnki.wrhe.2021.02.022

Lou, Y. D. (2015). Study on the effects of layer processing on the layer adhesion properties of RCC. Master Thesis, Zhejiang University, Hangzhou, China.

Lyu, Z. G., Shen, A. Q., & Meng, W. N. (2021). Properties, mechanism, and optimization of superabsorbent polymers and basalt fibers modified cementitious composite. Construction and Building Materials, 276, 122212. https://doi.org/10.1016/j.conbuildmat.2020.122212

Lyu, Z. H., Shen, A. Q., & Mo, S. X. (2020). Life-cycle crack resistance and micro characteristics of internally cured concrete with superabsorbent polymers. Construction and Building Materials, 259, 119794. https://doi.org/10.1016/j.conbuildmat.2020.119794

Mi, Z. X., Hu, Y., Li, Q. B., & An, Z. Z. (2018). Effect of curing humidity on the fracture properties of concrete. Construction and Building Materials, 169, 403–413. https://doi.org/10.1016/j.conbuildmat.2018.03.025

Mi, Z. X., Hu, Y., Li, Q. B., Gao, X. F., & Yin, T. (2019). Maturity model for fracture properties of concrete considering coupling effect of curing temperature and humidity. Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2018.11.127

Niu, X. J., Li, Q. B., Liu, W. J., & Hu, Y. (2020). Effects of ambient temperature, relative humidity and wind speed on interlayer proper-ties of concrete. Construction and Building Materials, 260, 119791. https://doi.org/10.1016/j.conbuildmat.2020.119791

Oliveir, G., Combrinck, R., & Kayondo, M. (2018). Combined effect of nano silica, super absorbent polymers, and synthetic fibres on plastic shrinkage cracking in concrete. Construction and Building Materials, 190, 46–56. https://doi.org/10.1016/j.conbuildmat.2018.10.102

Qian, P., & Xu, Q. J. (2018a). Influence of layer interface on mechanical and permeability properties of mortar. Journal of Hydrodynamic Engineering, 37, 1–12.

Qian, P., & Xu, Q. J. (2018b). Experimental investigation on properties of inter‑face between concrete layers. Construction and Building Materials, 174, 120–129. https://doi.org/10.1016/j.conbuildmat.2018.04.034

Ribeiro, A. C. B. (2001). Roller compacted concrete—tensile strength of horizontal joints. Materials and Structures, 34(2), 71–82. https://doi.org/10.1007/BF02482287

Santos, P., & Silva, V. D. (2007). Correlation between concrete-to-concrete bond strength and the roughness of the concrete surface. Construction and Building Materials, 21(6), 669–673. https://doi.org/10.1016/j.conbuildmat.2006.05.044

Serra, C., & Batista, M. B. (2017). Prediction of dam concrete compressive and splitting tensile strength based on wet-screened concrete test results. Journal of Materials in Civil Engineering, 29(10), 04017188. https://doi.org/10.1061/(ASCE)MT.1943-553X.0002012

Shen, D. J., Liu, C., & Feng, Z. Z. (2019b). Influence of ground granulated blast furnace slag on the early-age anti-cracking property of internally cured concrete. Construction and Building Materials, 223, 233–243. https://doi.org/10.1016/j.conbuildmat.2019.06.149

Shi, T., Zhu, M., Li, Z. K., & Gu, C. P. (2018). Review of research progress on carbon nanotubes modified cementitious composites. Acta Materiæ Compositæ Sinica, 35, 1033–1049. https://doi.org/10.1380/j.cnki.hfkxb.20180328003

Snoek, D., & Pel, L. (2018). Superabsorbent polymers to mitigate plastic drying shrinkage in a cement paste as studied by NMR. Cement and Concrete Composites, 93, 54–62. https://doi.org/10.1016/j.cemconcomp.2018.06.019

Spinoni, J., & Barbosa, P. (2019). A new global database of meteorological drought events from 1951 to 2016. Journal of Hydrology: Regional Studies, 22, 100593. https://doi.org/10.1016/j.jheur.2019.100593

Wang, L., Jin, M. M., & Wu, Y. H. (2021). Hydration, shrinkage, pore structure and fractal dimension of silica fume modified low heat Portland cement-based materials. Construction and Building Materials, 272, 121952. https://doi.org/10.1016/j.conbuildmat.2020.121952

Xin, J. D., Zhang, G. X., & Liu, Y. (2020). Environmental impact and thermal cracking resistance of low heat cement (LHC) and moderate heat cement (MHC) concrete at early ages. Journal of Building Engineering, 25, 100937. https://doi.org/10.1016/j.jobe.2020.101668

Xu, W. B. (2017). Control method of concrete layered construction based on water state in former layer. Ph.D. Thesis, Tsinghua University, Beijing, China.

Xu, W. B., Hu, Y., & Li, Q. B. (2017). Interlayer strength of hydraulic concrete and layer surface treatment improvement in Wudongde Dam. Journal of Tsinghua University (Science and Technology), 57, 845–850. https://doi.org/10.16511/j.cnki.qthxb.2017.22.002

Yalcınkaya, Ç., & Yazıcı, H. (2017). Effects of ambient temperature and relative humidity on early-age shrinkage of University with high-volume mineral admixtures. Construction and Building Materials, 144, 252–259. https://doi.org/10.1016/j.conbuildmat.2017.09.198

Yang, F. L. (2011). Test accuracy of improved PVA fibre blended concrete and its application in Jinping hydropower project. Yunnan Water Power, 2(705), 11–17.

Zhang, L. F., Qian, X. Q., & Li, J. Y. (2020). Effect of different wind speeds and sealed curing time on early-age shrinkage of cement paste. Construction and Building Materials, 235, 119366. https://doi.org/10.1016/j.conbuildmat.2020.11.1327

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Submit your manuscript to a SpringerOpen journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at ► springeropen.com