Persistence of Aflatoxin During the Fermentation of Soy Sauce

IL-YOUNG MAING,1 J. C. AYRES, AND P. E. KOEHLER
Food Science Department, University of Georgia, Athens, Georgia 30602

Received for publication 26 February 1973

Aflatoxin was produced by Aspergillus parasiticus NRRL 2999 but not by A. oryzae during fermentation of soy sauce. Little aflatoxin was degraded within 6 weeks unless Lactobacillus delbrueckii also was present.

Sudden outbreaks of “turkey X disease,” later considered to be aflatoxicosis, have been attributed to the toxic metabolites of Aspergillus flavus Link ex Fries (1). Strains of Aspergillus, e.g., A. oryzae, are popularly used in Asia in the manufacture of soy sauce as well as other varieties of fermented foods (4). Although a number of strains of A. oryzae have been shown not to produce aflatoxin (5), it is difficult to distinguish A. oryzae from A. flavus or A. parasiticus contaminants in substrates. Because both are widely distributed, either could be involved in an impure fermentation. Another microorganism, Lactobacillus delbrueckii, is commonly used with A. oryzae for producing soy sauce (4). Therefore, the research reported here was undertaken to determine whether an aflatoxin producing A. parasiticus strain could grow with A. oryzae and with L. delbrueckii in soybean koji, whether aflatoxin would be present in the final soy sauce, or whether aflatoxin appeared at some point during preparation, but then was degraded at a later stage in the process.

A. parasiticus NRRL 2999, A. oryzae NRRL 1988, and L. delbrueckii NRRL B-445 were obtained from the Northern Utilization Research and Development Div., U.S.D.A., Peoria, Ill.; aflatoxin standards were obtained from the Southern Utilization Research and Development Div., U.S.D.A., New Orleans, La. The procedure for soy sauce production cited by Hesseltine and Wang (6) was adopted, but was modified as indicated in Fig. 1.

Fernbach flasks (2.8 liters) were used instead of conventional open “koji” boxes to prevent undesirable contamination, and a clean room was utilized as an incubation chamber. The substrates were inoculated with 8 ml of a culture of A. oryzae NRRL 1988 (1 × 10⁴ spores/ml) and a 5-ml suspension of L. delbrueckii (1 × 10⁴ organisms/ml) into the flasks. Then they were stored at room temperature. To study aflatoxin production during the fermentation of soy sauce, a 2 × 10⁴ spores/ml suspension of A. parasiticus NRRL 2999 was added to the substrate immediately after inoculation with A. oryzae and L. delbrueckii. For the aflatoxin B₁ degradation study, an aqueous preparation of aflatoxin B₁ (5 µg/kg of substrate) and 0.5 M lactic acid (100 ml/kg of substrate) were introduced immediately after inoculation with A. oryzae and L. delbrueckii.

Extraction followed the Ass. of Official Analytical Chemists method suggested by Eppley (3). Soy sauce substrate (50 g) containing wheat, soybeans, and liquid (50 ml) was shaken vigorously with chloroform (50 ml) and decanted. The procedure was twice repeated and

400 G OF SOYBEANS
100 G OF WHEAT
SOAKED IN WATER
ROASTED FOR 10 H
DRAINED BEANS
LIGHTLY CRUSHED
MIXED IN 2.8-LITER FERNBACH FLASK
1.1 LITER OF WATER ADDED
AUTOCLAVED AT 121 C (15 LB/IN²) FOR 15 MIN
INOCULATED
INCUBATED FOR 7 DAYS AT 25 C
18 TO 20% SALT BRINE ADDED
AGED FOR 6 WEEKS
Fig. 1. Production of soy sauce.

1 Present address: Bundesanstalt für Fleischforschung, 8650 Kulmbach, West Germany.
A. parasiticus

A. parasiticus and L. delbrueckii

A. parasiticus, A. oryzae and L. delbrueckii

A. oryzae, L. delbrueckii and AFLATOXIN B1, LACTIC ACID

Fig. 2. Persistence of aflatoxin B1 during the production of soy sauce.
the three extracts were combined in a 500-ml Erlenmeyer flask. Aflatoxin determinations were then made using Silica gel-GHR-thin-layer chromatographic (TLC) plates developed in chloroform-acetone (97:3) for 45 min. Each sample was done in triplicate.

Production of aflatoxin. Data in Fig. 2 show the amount of aflatoxin in each sample during fermentation and throughout the processing of the koji into soy sauce. The sample containing only A. oryzae and lactic acid bacteria showed no production of aflatoxin during the entire fermentation period (sample I). Aflatoxin (8,500 µg/kg) production by A. parasiticus NRRL 2999 alone peaked after 1 week (sample II). Aflatoxin (7,000 µg/kg) was produced in the sample inoculated with A. parasiticus NRRL 2999 and L. delbrueckii (sample III). Lower quantities of toxin (2,100 µg/kg) were detected in sample IV after 1 week, i.e., koji inoculated with A. parasiticus, A. oryzae, and lactic acid bacteria.

Persistence of aflatoxin. Observations made with TLC plates indicated that aflatoxin degradation starts immediately after bringing in samples II, III, and IV. The TLC chromatograms of all three samples were nearly identical. No aflatoxin was detected in soy sauce containing only A. oryzae and L. delbrueckii (sample I). Sample II showed only 8% degradation of the aflatoxin in 6 weeks, whereas sample III showed 45% conversion. During this same time interval, there was 55% degradation of the toxin in sample IV. Acid production by L. delbrueckii may have catalyzed the conversion of aflatoxin B1 to B2a. Direct addition of aflatoxin B1 and lactic acid (sample V) to the fermentation medium resulted in conversion of aflatoxin B1 to derivatives comparable in Rf value to aflatoxin B2a, a comparatively nontoxic form (2). Lindenfelser and Ciegler (7) found the acid-catalyzed conversion of aflatoxin B1 to B2a if a sufficient amount of lactic acid was supplied. The mechanism of the reactions among participating organisms is not clear, but the degradation products from samples III, IV, and V show Rf values lower than those of aflatoxin B1 and B2 on TLC.

This investigation was supported by grant FD-00155-03 from the Office of Research and Training Grants, Food and Drug Administration.

LITERATURE CITED
1. Blount, W. P. 1961. Turkey X Disease. Turkeys. J. Brit. Turkey Fed. 9:52-77.
2. Ciegler, A., E. B. Lillehoj, R. E. Peterson, and H. H. Hall. 1966. Microbial detoxification of aflatoxin. Appl. Microbiol. 14:934-939.
3. Eppley, R. M. 1968. Screening method for zearalenone, aflatoxin and ochratoxin. J. Ass. Offic. Anal. Chem. 51:74.
4. Hesseltine, C. W. 1965. A millennium of fungi, food, and fermentation. Mycologia 57:149-197.
5. Hesseltine, C. W., O. L. Shotwell, J. J. Ellis, and R. D. Stubblefield. 1966. Aflatoxin formation by Aspergillus flavus. Bacteriol. Rev. 30:795-805.
6. Hesseltine, C. W., and H. L. Wang. 1967. Traditional fermented foods. Biotechnol. and Bioeng. 9:275-288.
7. Lindenfelser, L. A., and A. Ciegler. 1970. Studies on aflatoxin detoxification in shelled corn by ensiling. J. Agr. Food Chem. 18:440-464.