Introduction
Intra-thoracic arteriovenous malformations are uncommon. As the most reported localizations of AVM are the head (vein of Galen malformation), the abdomen (infantile hepatic hemangioma), the neck and extremities.\(^1\) Arterio venous malformation divided into congenital and acquired. The congenital forms are even more uncommon and patients present with variable symptoms that make the diagnosis more challenging.\(^2,3\) A congenital Aortocaval fistula from subclavian artery to the superior vena cava (SVC) may represent a subclass of this condition.

Case report
Our patient is full term to primigravida mother born by spontaneous vaginal delivery with good Apgar score and birth weight of 3.48 kg. Baby required no resuscitation. No risk factors for sepsis. Baby developed tachypnea at 2 hours of life, so shifted to Special care Baby Unit (SCBU). Examination revealed bruit over right subclavian area.

Echocardiography was done on day one of life and showed:

- Situs solitus, levocardia.
- The SVC was dilated and had high pulsatile flow.
- The RA and right ventricle (RV) were moderately dilated.
- Mildly Poor ventricular function, ejection fraction (EF) 51%.
- Mean pulmonary artery (MPA) was dilated (9.2 mm) and branches are normal.
- Pulmonary veins all present with normal drainage to left atrium (LA).
- There was a 3 mm patent ductus arteriosus (PDA) with mainly Rt to LT flow.
- Arch was left and the first branch was dilated. There was significant diastolic runoff in the transverse and descending aorta, no narrowing or sign of CoA.

Impression: Extra cardiac arteriovenous shunt, Right subclavian artery (SCA) to SVC

Baby started on anti failure medications. The baby deteriorated on day 2 of life, so incubated. Echo repeated with same findings plus newly developed pulmonary hypertension (Figure 1) (Figure 2).

Figure 1 Short axis view Echocardiography for the AV connection between the dilated SCA to Dilated SVC.

Baby started on anti failure medications. The baby deteriorated on day 2 of life, so incubated. Echo repeated with same findings plus newly developed pulmonary hypertension.\(^*\)

CT Angiography showed:

- Anomalous vessels connecting proximal right subclavian artery with superior vena cava, representing arteriovenous fistula.
- Cardiomegaly and right sided heart strains likely related to arteriovenous shunting.
Rare congenital fistula connection between right subclavian artery and superior vena cava presenting in neonate with congestive cardiac failure

Funding details
No funding agency.

Acknowledgements
None.

Conflict of interests
The author declares there is no conflict of interest.

References
1. Knudson RP, Alden ER. Symptomatic arteriovenous malformation in infants less than 6 months of age. Pediatrics. 1979;64(2):238-241.
2. Gutierrez FR, Monaco MP, Hartmann Jr AF, et al. Congenital arteriovenous malformations between brachiocephalic arteries and systemic veins. Chest. 1987;92(5):897-899.
3. Jabari S, Hartmann A, Cesnjevar R. A rare case of congenital thoracic arteriovenous fistula between the brachiocephalic truncus and the superior vena cava resulting in heart failure. Journal of Pediatric Surgery Case Reports. 2016;15:50–52.
4. Moore KL, Vediya T, Persaud N. The developing human. 7th ed. Saunders; 2003.
5. Hinrichsen KV. Human embryology: textbook and atlas of prenatal development of man. Berlin, Heidelberg: Springer-Verlag; 1990.
6. Takami T, Ohata K, Nishio A, et al. Histological characteristics of arterialized medullary vein in spinal dural arteriovenous fistulas related with clinical findings: report of five cases. Neurology India. 2006;54(2):202–204.
7. Massoud TF, Vinters HV, Chao KH, et al. Histopathologic characteristics of a chronic arteriovenous malformation in a swine model: preliminary study. AJNR Am J Neuroradiol. 2000;21(7):1268-1276.
8. Arkell DG, Lawson LJ. Subclavian-superior vena caval arteriovenous fistula. Vascular and Endovascular Surgery. 1977;11(2):94–98.
9. Balakrishnan PL, Guleserian KJ, Schuster J, et al. Congenital arteriovenous malformation between the subclavian artery and superior vena cava presenting in neonatal period. Pediatr Cardiol 2011;32(80):1204–1206.
10. Awasthy N, Tomar M, Radhakrishnan S, et al. Nonsurgical management of a congenital aortocaval fistula from right subclavian artery to superior vena cava along with SVC obstruction. Pediatr Cardiol. 2011;32(2):227–229.
11. Sapiere DW, Lobe TE, Swischuk LE, et al. Subclavian artery-to-innominate vein fistula presenting with congestive failure in a newborn infant. Pediatr Cardiol. 1983;4(2):155–157.
12. R Dogan, M Yilmaz, S Özktulu, et al. Congenital Subclavian Artery to Subclavian Vein Fistula Presenting with Congestive Heart Failure in an Infant. Pediatric Cardiology. 2000;21(3):269–270.
13. Tatum GH, Newman B, Ralphe JC. Neonatal congestive heart failure due to a subclavian artery to subclavian vein fistula diagnosed by noninvasive procedures. Congenit Heart Dis. 2006;1(3):120–123.
14. Sami Jabari, Robert Cesnjevar. A rare case of congenital thoracic arteriovenous fistula between brachiocephalic truncus and the superior vena cava resulting in heart failure. Journal of Pediatric Surgery Case Reports. 2016;15:50–52.

Citation: Al-Majrafi AS, Kalbani NKA, Ambusaidi F. Rare congenital fistula connection between right subclavian artery and superior vena cava presenting in neonate with congestive cardiac failure. J Pediatr Neonatal Care. 2018;8(3):148–149. DOI: 10.15406/jpnc.2018.08.00328