Gene polymorphisms associated with functional dyspepsia

Anastasia Kourikou, George P Karamanolis, George D Dimitriadis, Konstantinos Triantafyllou

Anastasia Kourikou, George D Dimitriadis, Konstantinos Triantafyllou, Hepatogastroenterology Unit, Second Department of Internal Medicine and Research Institute, Attikon University General Hospital, Medical School, Athens University, 12462 Haidari, Greece

George P Karamanolis, Academic Department of Gastroenterology, Laiko General Hospital, Medical School, Athens University, 11527 Athens, Greece

Author contributions: Kourikou A searched the literature, drafted and finally approved the manuscript; Karamanolis GP and Dimitriadis GD reviewed the draft and finally approved the manuscript; Triantafyllou K conceived the idea, reviewed the draft and finally approved the manuscript.

Conflict-of-interest statement: Authors have nothing to declare.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Correspondence to: Konstantinos Triantafyllou, Assistant Professor, Hepatogastroenterology Unit, Second Department of Internal Medicine and Research Institute, Attikon University General Hospital, Medical School, Athens University, Rimini 1, 12462 Haidari, Greece. ktriant@med.uoa.gr
Telephone: +30-210-5832087
Fax: +30-210-5326422

Received: February 23, 2015
Peer-review started: February 25, 2015
First decision: March 26, 2015
Revised: April 7, 2015
Accepted: May 21, 2015
Article in press: May 21, 2015
Published online: July 7, 2015

Abstract

Functional dyspepsia (FD) is a constellation of functional upper abdominal complaints with poorly elucidated pathophysiology. However, there is increasing evidence that susceptibility to FD is influenced by hereditary factors. Genetic association studies in FD have examined genotypes related to gastrointestinal motility or sensation, as well as those related to inflammation or immune response. G-protein b3 subunit gene polymorphisms were first reported as being associated with FD. Thereafter, several gene polymorphisms including serotonin transporter promoter, interleukin-17F, migration inhibitory factor, cholecystokinin-1 intron 1, cyclooxygenase-1, catechol-o-methyltransferase, transient receptor potential vanilloid 1 receptor, regulated upon activation normal T cell expressed and secreted, p22PHOX, Toll like receptor 2, SCN10A, CD14 and adrenoreceptors have been investigated in relation to FD; however, the results are contradictory. Several limitations underscore the value of current studies. Among others, inconsistencies in the definitions of FD and controls, subject composition differences regarding FD subtypes, inadequate samples, geographical and ethnical differences, as well as unadjusted environmental factors. Further well-designed studies are necessary to determine how targeted genes polymorphisms, influence the clinical manifestations and potentially the therapeutic response in FD.

Key words: Functional dyspepsia; Gene polymorphism; Genetic susceptibility; Pathophysiology

© The Author(s) 2015. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Functional dyspepsia is a common disorder with complex pathophysiology. Recent evidence has shown that certain gene polymorphisms might be implicated in its pathogenesis; however, results are inconsistent.
Further studies are required to develop new data that provide novel insights regarding the mechanisms of genetic susceptibility in functional dyspepsia.

Kourikou A, Karamanolis GP, Dimitriadis GD, Triantafyllou K. Gene polymorphisms associated with functional dyspepsia. World J Gastroenterol 2015; 21(25): 7672-7682 Available from: URL: http://www.wjgnet.com/1007-9327/full/v21/i25/7672.htm DOI: http://dx.doi.org/10.3748/wjg.v21.i25.7672

INTRODUCTION

Functional dyspepsia (FD) is a common clinical condition, up to 25% of the population experience symptoms, characterized by the presence of one or more of the following: epigastric pain or burning, postprandial fullness, early satiation, with no anatomical abnormality (detected by gastroscopy) to explain the symptoms. These symptoms should be present for the last three months with symptom onset at least six months before diagnosis. Functional dyspepsia is classified into postprandial distress syndrome (PDS) and epigastric pain syndrome (EPS); however, these two syndromes may overlap.[1-3]

While FD pathophysiology is not yet well elucidated,[4] several pathogenetic mechanisms have been proposed, including gastric motility and compliance dysfunctions (antral hypomotility, delayed or rapid gastric emptying, impaired gastric accommodation)[5-9], visceral hypersensitivity[10-14], and psychosocial disorders.[15-18]. Moreover, evidence from randomized controlled trials suggests that eradication of Helicobacter pylori (H. pylori) leads to relief of dyspeptic symptoms in some patients. At the same time, studies have failed to confirm a temporal correlation between H. pylori infection and FD or the relation between H. pylori and FD subgroups.[19-22]

There is growing evidence that susceptibility to functional gastrointestinal disorders is influenced by hereditary factors. Genetic association studies in patients with FD have investigated candidate genes associated with G protein functions, inflammation and immune response, gastrointestinal sensation and control of adrenergic, serotonergic and cholecystokininergic functions; however, studies have shown inconsistent results in different populations. The results of currently available studies are summarized in Tables 1 and 2.

The aim of this review is to provide insights and critical appraisal on the existing evidence of certain gene polymorphisms implicated in FD pathogenesis.

FAMILIAL AGGREGATION

Locke et al.[23] reported familial aggregation in adults with functional gastrointestinal disorders. Among 643 American subjects, the presence of a first-degree relative with abdominal pain or bowel problems was significantly associated with the diagnosis of either irritable bowel syndrome (OR = 2.3; 95% CI: 1.3-3.9) or dyspepsia (OR = 1.8; 95% CI: 1.05-3.0). Gathaiya et al.[24] showed that a positive family history of abdominal pain (OR = 4.7; 95% CI: 1.5-14.9; P = 0.008) and indigestion (OR = 3.4; 95% CI: 1-0.11-5; P = 0.04) were independently associated with FD raising the possibility of a genetic component in the disease, although shared environmental factors need to be considered. On the contrary, one study of 986 twin pairs in the United States showed a genetic contribution to gastro-esophageal reflux disease (GERD) and irritable bowel syndrome (IBS), but not to dyspepsia[25]. However, this study was limited by the inclusion of uninvestigated dyspeptics only.

GENE POLYMORPHISMS AND FUNCTIONAL GASTROINTESTINAL DISORDERS

Evidence suggests that alterations in the brain-gut axis functionality is the main mechanism related to motor disorders, visceral hypersensitivity and autonomic dysfunction.[26,27]. Several neurotransmitters such as serotonin 5-hydroxytryptamine (5-HT), substance P, VIP and CCK participate in the regulation of this axis. These mechanisms that affect both central and peripheral levels of brain-gut interaction may be influenced by genetic factors and some reports have suggested that genes and substances involved in the brain-gut axis might be the keys to unlock the mystery of IBS pathogenesis[27,28].

Certain gene polymorphisms encoding adrenergic, serotonergic and opioidergic receptors, as well as genes involving proteins with immunomodulatory and/or neuromodulatory features have been investigated in functional disorders[29,30]. These studies have highlighted the importance of G-protein beta 3 subunit gene (C825T), polymorphisms in the promoter region of the serotonin reuptake transporter gene, cholecystokinin receptor (CCKAR), and high-producer tumor necrosis factor genotype in IBS.[31]. Genetic variation in the NPSR1 gene, which encodes neuropeptide S receptor, affects children’s predisposition to recurrent abdominal pain (RAP), and the NPS-NPSR1 system which acts along the gut-brain axis to regulate inflammation, anxiety and nociception is suggested as a modulator of intestinal function that may influence individual risk for the development of functional gastrointestinal disorders.[32].

Candidate genotypes for FD have also been tested, leading to inconsistent results in different populations. GABARA6 genotypes have been associated with susceptibility to stress and gastric acid secretion. In a Chinese study, a positive correlation between...
G protein b3 subunit gene polymorphism (C825T)

G-proteins are important in stimulus-response coupling of almost 80% of membrane receptors that are linked to intracellular effector systems[34]. G-protein B3 (GNB3) subunit gene polymorphism (C825T) is related to alternative G-protein activity and signal transduction. The 825T allele is associated with enhanced G-protein activation, while the C allele is predictive of diminished G-protein activation[35,36]. Studies have shown an association between GNB3 status and depression[37], altered activation of α2-adrenergic receptors[36] and increased immune cell activation[38]. The altered signal transduction related to the CC or TT allele may contribute to the abnormalities in gastroduodenal sensory and motor function observed in FD.

Holtmann et al[39] suggested, for the first time, a role for the homozygous 825CC GNB3 genotype in dyspepsia in Caucasians. Blood donors with GABARA6 genotypes and functional heartburn provides an insight into the contribution of genetic factors to disease development[33].

### Table 1 Genetic association studies in functional dyspepsia involving gene polymorphisms related to gastrointestinal motility or sensation

| Ref. | Study origin | FD subjects/controls, n | Studied gene polymorphism | Disease association |
|------|--------------|-------------------------|---------------------------|--------------------|
| Holtmann et al[34] | United States | STUDY A: 67/259<br>STUDY B: 56/112 | GNB3 C825T (CC) | FD |
| Camilleri et al[40] | United States | 41/47 | GNB3 C825T (CC) or (TT) | Meal unrelated dyspepsia |
| van Lelyveld et al[41] | The Netherlands | 112/336 | GNB3 C825T 825T | FD |
| Tabara et al[42] | Japan | 89/94 | GNB3 C825T 825TT | FD in H. pylori (-) |
| Oshima et al[43] | Japan | 68/761 | GNB3 C825T 825TT | EPS |
| Shimpuku et al[44] | Japan | 74/64 | GNB3 C825T 825CC | PDS with impaired gastric emptying and feeling of hunger in FD |
| Park et al[45] | South Korea | 102/148 | GNB3 C825T 825CC | FD in children |
| Hwang et al[46] | South Korea | 112/269 | GNB3 C825T SERT-P(SLC6A4) | No association |
| Camilleri et al[47] | United States | 41/47 | SERT-P(SLC6A4) | No association |
| van Lelyveld et al[48] | The Netherlands | 112/336 | SERT-P(SLC6A4) | No association |
| Toyoshima et al[49] | Japan | 53/646 | SLC6A4-HTTLPR allele | PDS |
| Arisawa et al[50] | Japan | 225/172 | SERT-P(SLC6A4) | No association |
| Park et al[51] | South Korea | 102/148 | SERT-P(SLC6A4) | No association |
| Hwang et al[52] | South Korea | 112/269 | SLC6A4-HTTLPR (S/T) | Inverse association with EPS in H. pylori (+) |
| Arisawa et al[53] | Japan | 223/172 | Pri-microRNA-325 | FD |
| Camilleri et al[54] | United States | 41/47 | 5-HT1A, 5-HT2A, 5HT2C HTR3A C178T | No association |
| van Lelyveld et al[55] | The Netherlands | 112/336 | HTR3A C178T HTR3Ac-42T>GC | Severe FD |
| Mujakovic et al[56] | United States | 112/336 | HTR3Ac-42T>GC HTR3Ac-42T | No association |
| Tabara et al[57] | Japan | 91/93 | HTR2A C 102T | No association |
| Camilleri et al[58] | United States | 41/47 | α2a, α2c adrenoreceptor | No association |
| Hwang et al[59] | South Korea | 112/269 | α2a | No association |
| Camilleri et al[60] | United States | 41/47 | CCK1, CCK promoter | No association |
| Hwang et al[61] | South Korea | 112/269 | CCK1 intron 779 T>C | No association |
| Tabara et al[62] | Japan | 124/119 | CCK1 intron 1 | PDS in males |
| Tabara et al[63] | Japan | 109/98 | TRPV1 G315C 315CC 779T | Inverse association with FD, EPS, H. pylori (+) |
| Hwang et al[64] | South Korea | 112/269 | TRPV1 G945C 945CC | Inverse association with FD, EPS, PDS especially in H. pylori (+) |
| Arisawa et al[65] | Japan | 297/345 | SCN10A 3218CC 3218CC | Inverse association with FD |
| Arisawa et al[66] | Japan | 297/345 | SCN10A 3218CC 3218CC | Inverse association with FD, EPS, PDS especially in H. pylori (+) |
| Tabara et al[67] | Japan | 91/94 | COMT | FD |

FD: Functional dyspepsia; EPS: Epigastric pain syndrome; PDS: Postprandial distress syndrome.
Table 2  Genetic association studies in functional dyspepsia involving gene polymorphisms related to inflammation or immune response

| Ref.              | Study origin | FD subjects/controls, n | Studied gene polymorphism | Disease association                             |
|-------------------|--------------|-------------------------|---------------------------|-------------------------------------------------|
| Tahara et al.     | Japan        | 108/99                  | CD 14                     | No association                                  |
| Arisawa et al.    | Japan        | 90/188                  | MIF G173C 173C            | EPS, especially in *H. pylori* (+)              |
| Arisawa et al.    | Japan        | 90/188                  | IL-17A 17I7F              | No association                                  |
| Arisawa et al.    | Japan        | 90/188                  | G carrier                 | EPS in *H. pylori* (+)                          |
| Tahara et al.     | Japan        | 134/112                 | RANTES promoter C-28G     | Reduced risk for PDS, especially in *H. pylori* (+) |
| Tahara et al.     | Japan        | 111/106                 | TLR2 -196 to -174         | Inverse association with FD and PDS in *H. pylori* (+) |
| Tahara et al.     | Japan        | 111/106                 | MBL2                      | No association                                  |
| Tahara et al.     | Japan        | 89/95                   | C242T p22PHOX             | Inversely related to FD in *H. pylori* (+)      |
| Arisawa et al.    | Japan        | 87/185                  | COX-1                     | EPS in females                                  |
| Park et al.       | South Korea  | 89/190                  | NOS                       | FD                                              |

FD: Functional dyspepsia; EPS: Epigastric pain syndrome; PDS: Postprandial distress syndrome.

based groups of patients with dyspepsia showed an association between homozygous 825C carrier status and unexplained upper abdominal complaints (OR = 2.2, 95%CI: 1.4-3.3). Furthermore, Camilleri et al. showed that meal-unrelated dyspepsia was associated with the homozygous 825 T or C alleles of GNB3 protein in a United States community study. In this study, DNA was extracted from 41 dyspeptic patients and 47 healthy controls. Homozygous C genotype was identified in 67% of meal-unrelated dyspepsias vs 43% of controls, and homozygous T genotype in 20% of meal-unrelated dyspepsics and 3% of controls. On the other hand, a Japanese study with 89 dyspeptic and 94 asymptomatic individuals concluded that homozygous GNB3 825T status was associated with dyspepsia in the absence of *H. pylori* infection (CC vs TT, OR = 5.73, 95%CI: 1.27-25.82; CC vs others, OR = 3.08, 95%CI: 1.02-9.25 after adjustment for sex and age). van Lelyveld et al. reported that T allele carriers of GNB3 C825T polymorphism were associated with dyspepsia (OR = 1.60, 95%CI: 1.03-2.49) in a population study in the Netherlands that enrolled 112 FD patients and 336 sex- and age-matched controls. Furthermore, Oshima et al. showed that the homozygous 825T allele status influences the susceptibility to epigastric pain syndrome-like dyspepsia (OR = 2.00, 95%CI: 1.07-3.76, adjusted for gender and age) in a population of 68 dyspeptics and 761 controls. However, no significant relationship was found between GNB3 polymorphism and PDS-like symptoms. On the contrary, Shimpaku et al. detected a significant relationship (P = 0.045) between GNB3 825CC genotype and PDS in 74 FD patients with impaired gastric emptying compared to 64 controls. GNB3 825CC genotype was also significantly associated (P = 0.0485) with a feeling of hunger compared with the other GNB3 825T genotypes. Furthermore, Park et al. reported that the CC genotype of GNB3 C825T may be associated with FD and diarrhea-predominant IBS in Korean children. However, Hwang et al. found no association between this genotype and FD in another Korean study.

These contrasting observations might be explained by the different genotypic composition of populations in different countries and different racial groups. The frequency of 825TT allele seems to be higher in Japanese subjects than in Caucasians. In addition, the definition of FD or sample selection may also affect the outcome and may at least partially explain the differences detected in the aforementioned two Korean studies. Moreover, the effect of type II error cannot be excluded in relatively small sample sizes. Conclusively, even though the association between GNB3 C825T polymorphism and FD has been investigated by various studies, its role in FD pathogenesis is not yet clear.

**Genes of the serotonergic system**

**Serotonin transporter protein (SERT or SLC6A4):** Serotonin (5-HT) is a brain neurotransmitter linked to the development of migraine, depression and other neuropsychiatric disorders. 95% of the body’s serotonin is found in the gut, synthesized in enterochromaffin cells and this hormone affects motor and sensory functions in the GI tract due to seven subclasses of 5-HT receptors, differentiated on the basis of molecular mechanisms, structure and function. The action of 5-HT in the gut is terminated by reuptake via the 5-HT transporter (SERT) which is encoded by a single gene on chromosome 17q11 composed of 14 exons. There is a 44-bp insertion/deletion in the 5′-flanking promoter region which generates a short and a long allele. The short (S) allele of SERT gene has been implicated with lower transcriptional efficiency and lower reuptake of serotonin than the long allele (L).
Several studies have investigated the relationship between SERT polymorphisms and both behavioral and psychological disorders[51-55], and IBS[56-61]. Few studies have investigated the association between the SERT gene and FD. Among these studies, no significant association was detected in studies from the United States[40] and the Netherlands[42]. On the contrary, in a Japanese study[62] that included 53 dyspeptics and 646 controls, the SERT L carriers were at increased risk of PDS (OR = 2.32, 95%CI: 1.23-4.37) compared to the SS genotype, when adjusted for sex and age. However, in another larger Japanese study[63], neither SLC6A4 -185 A>C nor 463 G>T was associated with susceptibility to FD. However, the authors found that the rs5981521 T allele in pri-miR-325, targeting the SLC6A4 3’-untranslated region (UTR) was a risk factor for the development of FD, especially in H. pylori negative patients. This allele also interacts with SLC6A4 polymorphisms in increasing susceptibility to dyspepsia in Japan. At the same period, a study from Korea[45] showed that polymorphisms of the 5’-flanking controlled SERT gene linked polymorphic region (5HTTLPR) gene were not associated with FD in Korean children. In another Korean study[64] that recruited 112 FD patients and 269 controls, the frequency of S/S genotype of SLC6A4 5-HTTLPR polymorphism, was significantly lower than that of L/L + L/S genotype in FD compared to controls (P < 0.05). After stratification according to H. pylori infection status, the S/S genotype was protective for EPS subtype in H. pylori-positive patients compared to controls (adjusted OR 0.46; 95% CI 0.22-0.99; P = 0.048).

5-HT receptor genes: Of special interest among the seven subclasses of 5-HT receptors[65] is 5-HT3 receptor, as 5-HT3 receptor antagonism leads to a reduction in dyspeptic symptoms and anxiety relief. It is present in central nervous system and enteric neurons, as well as in the mucosal terminals of extrinsic primary afferents. Five different subunit genes have been identified for this receptor, termed A-E; the 5-HT3A subunit being the most important in the receptor formation[66].

Very few studies have investigated the association between genes controlling serotonergic functions and FD. Camilleri et al[46] found no association for 5-HT1A, 5-HT2A, 5-HT2C, while van Lelyveld et al[42] did not reveal any association between HTR3A C178T polymorphism and FD. In addition, Tahara et al[68] suggested that 5-HT2A receptor T102C polymorphism is unlikely to be associated with susceptibility to dyspeptic symptoms. On the contrary, a study in a Caucasian population of 592 dyspeptics[69] showed that HTR3A c.-42T allele carriers of HTR3A c.-42C>T Single Nucleotide Polymorphism were more prevalent in patients with severe dyspepsia (OR = 1.50, 95%CI: 1.06-2.20). This association appeared to be stronger in females (OR = 2.05, 95%CI: 1.25-3.39) and patients homozygous for the long (L) variant of the 5-HTTLPR genotype (OR = 2.00, 95%CI: 1.01-3.94); females with 5-HTTLPR LL genotype showed the strongest association (OR = 3.50, 95%CI: 1.37-8.90).

Genotypes altering adrenergic and cholecystokininergic functions

Adrenergic agents, mainly α2 agents, affect motor and sensory function of the human gastrointestinal tract. Three α2 adrenoceptor (AR) subtypes have been identified: 2A, 2B and 2C. Prejunctural α2A- and α2C-adrenoreceptors contribute to a negative feedback regulation of norepinephrine release from sympathetic nerves. Genetic disorders of α2 mechanisms can influence functions such as intestinal motility and pain sensation, as well as anxiety and somatization[70,71].

Cholecystokinin (CCK) is a hormone secreted after meal ingestion and signals satiation through peripheral or central actions. CCK receptors found in the gastrointestinal tract and the central nervous system also influence gastric emptying and accommodation, while they regulate satiety via the same connections[72].

Camilleri et al[46] detected no association between polymorphisms of candidate genes for α2A, α2C adrenoceptors or CCK-1 receptors and CCK promoter with FD. In addition, Hwang et al[46], also found no significant association between ADRA2A- 1291C>G or CCK-1 intron 7797>C with dyspeptic symptoms. In contrast to the aforementioned observations, Tahara et al[73] suggested that Japanese male 779 T carriers of CCK-1 intron 1 are exposed to a higher risk of PDS.

Genes associated with inflammation or immune response

CD14: CD14 mediates the inflammatory response in the first line of host defense by recognition of Lipopolysaccharide, a main component of the outer cell wall of H. pylori[74]. Soluble CD14 levels tend to be higher in H. pylori positive than in H. pylori negative patients[75]. In addition, FD patients with extensive gastric mucosal inflammation accompanied by a high density of H. pylori show increased CD14 expression[76]. The TT genotype of the CD14 C-159T polymorphism has been related to high density of the CD14 receptor and high soluble CD14 levels[77]. Due to the important role of CD14 in inflammation, polymorphisms in the CD14 gene promoter may influence gastric inflammation and susceptibility to FD. Tahara et al[78] investigated the association between CD14 promoter C-159T polymorphism and FD among 108 dyspeptic and 99 non-dyspeptic Japanese individuals. They suggested that this CD14 polymorphism is not associated with dyspepsia, while there was a weak correlation between TT genotype and PDS in male patients. There has been no study so far in Caucasians investigating the association between CD14 gene polymorphisms and FD.
Macrophage migration inhibitory factor: Macrophage migration inhibitory factor (MIF), isolated from T lymphocytes, inhibits the random migration of macrophages.[79] MIF is an important regulator of innate immunity both directly and via stimulation of the expression of proinflammatory cytokines by immune cells.[80] Polymorphisms (G-173C and -794 CATT) identified in the MIF gene promoter, were correlated with alteration of MIF genes transcription levels in vitro. It seems that MIF also plays a significant role in inflammation related to H. pylori infection.[61] A study from Japan[82] examined the association between MIF gene polymorphisms and FD. Investigators showed that M1F-173C allele carriers were at significantly increased risk of developing epigastric pain syndrome; this association being more prominent in H. pylori infected subjects.

Interleukin-17: Interleukin-17 (IL-17) family members coordinate local tissue inflammation by inducing the release of proinflammatory and neutrophil-mobilizing cytokines. Furthermore, IL-17A and -17F function in a similar way: they are involved in the recruitment and activation of neutrophils[83]. On the basis of this pathophysiology, Arisawa et al[82] revealed that polymorphisms of the IL-17A and IL-17F genes were not related to FD susceptibility, overall. However, the IL-17F 7488T allele was positively associated with developing EPS in H. pylori infected subjects.

RANTES promoter: RANTES is a powerful chemotactic agent for T lymphocytes and monocytes[84] contributing to the inflammatory response in H. pylori gastritis.[65] The effect of RANTES promoter C-28G polymorphism on the risk of functional dyspepsia has been investigated in 134 dyspeptic and 112 non-dyspeptic Japanese subjects.[86] Although the frequency of RANTES promoter polymorphisms did not differ among dyspeptics and controls, overall, a significant association was revealed between G carriers and a reduced risk of PDS; this association being more prominent in H. pylori positive subjects.

Toll like receptor 2 and mannann-binding lectin genes: Toll like receptor 2 (TLR2) and mannann-binding lectin (MBL) protein play significant roles in innate immune system activation[87]. It was reported that TLR2 is expressed in gastric epithelial cells infected by H. pylori.[88] MBL activates complement and also functions as an opsonin.[89,90] The expression of MBL in the mucosa is up-regulated in H. pylori-related gastric mucosa inflammation[91] and two studies reported a possible association between MBL2 haplotype and susceptibility to H. pylori infection, as well as an increased risk of gastric malignancy.[92,93] With regard to FD, absence of the correlation between TLR2 -196 to -174 del and MBL2 codon 54 G/A polymorphisms and the syndrome has been shown in a Japanese population.[94] However, it was suggested that TLR2 -196 to -174 del carrier status, but not MBL2 codon 54 G/A, was inversely related to the risk of PDS in H. pylori-infected subjects.

C242T p22PHOX: Superoxide has been associated with the pathogenesis of H. pylori-related diseases through induction of inflammation. Nicotinamide adenine dinucleotide phosphate oxidase, a major source of superoxide plays a crucial role in H. pylori gastritis. Tahara et al[65] did not identify any significant association between C242T polymorphism of p22PHOX, an essential component of nicotinamide adenine dinucleotide phosphate oxidase and FD. However, C242T carriers were at lower risk of developing FD in the sub-group of H. pylori-infected patients.

Cyclooxygenase-1: Cyclooxygenase (COX) is the key enzyme in the conversion of arachidonic acid to prostaglandins (PGs), which are implicated in many physiological gastric processes and contribute to gastrointestinal integrity. There is only one study investigating COX-1 genotypes and dyspepsia. Arisawa et al[86] revealed that T-1676C polymorphism in the COX-1 gene promoter was significantly associated with the development of EPS in female subjects.

Nitric oxide synthase: Nitric oxide (NO) is a major neurotransmitter that mediates gastric accommodation or relaxation and meal-induced satiety.[97] Therefore, it has been postulated that impairment of this system can lead to FD. There are three different NOS isoforms: neuronal NOS (nNOS), inducible (iNOS), and endothelial NOS (eNOS).[98] In the only available study of FD, Park et al[89] suggested that the genotype frequencies of eNOS and iNOS were not significantly different between FD patients and controls. However, the nNOS gene polymorphism was associated with susceptibility to FD and influences satiation in dyspeptics.

Catechol-o-methyltransferase gene: Catechol-o-methyltransferase (COMT) is an important enzyme in the brain-gut axis regulating pain sensitivity, and the presence of COMT gene val158met has been associated with dyspepsia[100].

Capsaicin/vanilloid receptor (transient receptor potential vanilloid 1 receptor) TRPV1 receptor is expressed in the gastrointestinal tract, and is a member of the sensory ion channel superfamily. Studies using capsaicin provide evidence that TRPV1 regulates gastrointestinal sensation. Capsaicin administration into the alimentary tract causes pain in humans[101] and mice[102]. Hammer et al[103] suggested that capsaicin application produces symptoms originating from the upper abdomen; being more severe in FD. Continuous capsaicin desensitization has also been reported to be beneficial in patients with FD[104]. Capsaicin suppresses gastrointestinal hyperalgesia by desensitization/inactivation and
downregulation of TRPV1\textsuperscript{105}, indicating that the up-regulation of TRPV1 may be implicated in the pathogenesis of FD.

G315C gene polymorphism alters TRPV1 protein levels and the variant 315C of TRPV1 G315C increases TRPV1 mRNA and protein expression and results in maximal response to capsaicin\textsuperscript{106}. However, a significant inverse association was detected between TRPV1 315CC genotype and FD, EPS, PDS and *H. pylori* positive FD in Japan\textsuperscript{107}. Furthermore, a significant inverse correlation between C carrier of TRPV1 945G>C polymorphism status and PDS has been detected and C/C genotype were at reduced risk of EPS\textsuperscript{46}.

**SCN10A**

Visceral hypersensitivity has been implicated in the pathogenesis of functional gastrointestinal disorders. C-fibers contribute to visceral sensory impulse transmission from the gastrointestinal tract to the central nervous system. SCN10A gene encodes the tetrodotoxin-resistant (TTX-r) sodium channel, Na(V) 1.8/SNS (sensory-neuron specific), which has been identified on C-fibers. Arisawa *et al*\textsuperscript{108} investigated the association between FD and SCN10A non-synonymous polymorphisms (2884 A>G, 3218 C>T and 3275 T>C) among 297 dyspeptics and 345 symptom-free controls. They concluded that subjects with the 2884 G allele, 3275 T allele and no 3218 T allele of SCN10A were at reduced risk of FD, for both the EPS and PDS subtypes, especially in *H. pylori*-negative patients.

**LIMITATIONS OF THE AVAILABLE STUDIES**

Genetic association studies in FD have yielded diverse and inconsistent results for the investigated candidate genes. These inconsistencies might be explained by subject composition differences and can be influenced by unadjusted environmental factors. In addition, the definition of FD has changed over time and FD patients were inconsistently defined. The selection procedure for controls is also questionable in functional disease. They concluded that subjects with the 2884 G allele, 3275 T allele and no 3218 T allele of SCN10A were at reduced risk of FD, for both the EPS and PDS subtypes, especially in *H. pylori*-negative patients.

**CONCLUSION**

Functional dyspepsia is a disorder with complex pathophysiology including gastrointestinal motor abnormalities, altered visceral sensation, psychosocial and genetic factors. Genetic factors may influence susceptibility to FD in the presence of exogenous factors, such as *H. pylori* infection. Studies investigating possible associations between FD and genotypes related to gastrointestinal motility and sensation, as well as to inflammation or immune response are limited by several caveats and they have reached inconclusive results. Properly designed, multicenter, adequately powered, worldwide conducted studies enrolling well defined disease subjects and controls are warranted to investigate potential associations between pre-specified gene polymorphisms and FD. The results of such studies may shed light on the pathogenesis of the syndrome and may potentially lead to genetic diagnostic tools and ultimately to novel therapeutic options for FD.

**REFERENCES**

1. Talley NJ, Zinsmeister AR, Schleck CD, Melton LJ. Dyspepsia and dyspepsia subgroups: a population-based study. *Gastroenterology* 1992; 102: 1259-1268 [PMID: 1551533]

2. Tack J, Talley NJ, Camilleri M, Holtmann G, Hu P, Malagelada JR, Stanghellini V. Functional gastroduodenal disorders. *Gastroenterology* 2006; 130: 1466-1479 [PMID: 16678560 DOI: 10.1053/j.gastro.2005.11.059]

3. Talley NJ. American Gastroenterological Association medical position statement: evaluation of dyspepsia. *Gastroenterology* 2005; 129: 1753-1755 [PMID: 16285970 DOI: 10.1053/j.gastro.2005.09.019]

4. Thumshirn M. Pathophysiology of functional dyspepsia. *Gut* 2002; 51 Suppl 1: i63-i66 [PMID: 12077069 DOI: 10.1136/gut.51.suppl_1.i63]

5. Karamanolis G, Caenepeel P, Arts J, Tack J. Association of the predominant symptom with clinical characteristics and pathophysiological mechanisms in functional dyspepsia. *Gastroenterology* 2006; 130: 296-303 [PMID: 16472585 DOI: 10.1053/j.gastro.2005.10.019]

6. Pilichiewicz AN, Horowitz M, Russo A, Maddox AF, Jones KL, Scheman M, Holtmann G, Feinle-Bisset C. Effects of Beeroast on proximal gastric volume, antropyloroduodenal motility and gastric emptying in healthy men. *Am J Gastroenterol* 2007; 102: 1276-1283 [PMID: 17378904 DOI: 10.1111/j.1572-0241.2007.01142.x]

7. Quarto AO, de Wit NJ, Lodder AC, Numans ME, Smout AJ, Hoes AW. Disturbed solid-phase gastric emptying in functional dyspepsia: a meta-analysis. *Dig Dis Sci* 1998; 43: 2028-2033 [PMID: 9753269 DOI: 10.1023/A:101803129779]

8. Delgado-Aros S, Camilleri M, Cremonini F, Ferber I, Stephens D, Burton DD. Contributions of gastric volumes and gastric emptying to meal size and postmeal symptoms in functional dyspepsia. *Gastroenterology* 2004; 127: 1683-1694 [PMID: 15578506 DOI: 10.1053/j.gastro.2004.09.006]

9. Tack J, Piessevaux H, Coulie B, Caenepeel P, Janssens J. Role of impaired gastric accommodation to a meal in functional dyspepsia. *Gastroenterology* 1998; 115: 1346-1352 [PMID: 9834261 DOI: 10.1016/S0016-5085(98)70102-5]

10. Merz H, Fullerton S, Nailboff B, Mayer EA. Symptoms and visceral perception in severe functional and organic dyspepsia. *Gut* 1998; 42: 814-822 [PMID: 9691920 DOI: 10.1136/gut.42.6.814]

11. Meairin F, Cucula M, Azpizor F, Malagelada JR. The origin of symptoms on the brain-gut axis in functional dyspepsia. *Gastroenterology* 1991; 101: 999-1006 [PMID: 1889724]

12. Camilleri M, Malagelada JR, Kao PC, Zinsmeister AR. Gastric and autonomic responses to stress in functional dyspepsia. *Dig Dis Sci* 1986; 31: 1169-1177 [PMID: 2945708 DOI: 10.1007/BF01296514]

13. Samsom M, Verbugen MA, vanBerge Henegouwen GP, Smout AJ. Abnormal clearance of exogenous acid and increased acid sensitivity of the proximal duodenum in dyspeptic patients. *Gastroenterology* 1999; 116: 515-520 [PMID: 10029608 DOI: 10.1016/S0016-
Farrer R, Vanheel H, Vanuytsel T, Masaoka T, Törnblom H, Simrén M, Van Oudenhove L, Tack JF. In functional dyspepsia, hypersensitivity to postprandial distention correlates with meal-related symptom severity. *Gastroenterology* 2013; 145: 566–573 [PMID: 23702005 DOI: 10.1053/j.gastro.2013.05.018]

Drossman DA, Creed FH, Olden KW, Svedlind J, Toner BB, Whitehead WE. Psychosocial aspects of the functional gastrointestinal disorders. *Gut* 1999; 45 Suppl 2: I25-I33 [PMID: 101136.gut.45.2008.125]

Drossman DA, Talley NJ, Leserman J, Olden KW, Barreiro MA. Sexual and physical abuse and gastrointestinal illness. Review and recommendations. *Ann Intern Med* 1995; 123: 782–794 [PMID: 7574197 DOI: 10.1053/aime.1995.0219]

Mak AD, Wu JC, Chan Y, Chan FK, Sung JJ, Lee S. Dyspepsia is strongly associated with major depression and generalized anxiety disorder - a community study. *Aliment Pharmacol Ther* 2012; 36: 800–810 [PMID: 22957985 DOI: 10.1111/apt.12036]

Koloski NA, Jones M, Kalantar J, Zuzovski J, Talley NJ. The brain–gut pathway in functional gastrointestinal disorders is bidirectional: a 12-year prospective population-based study. *Gut* 2012; 61: 1284–1290 [PMID: 22234979 DOI: 10.1136/gut.2011-304474]

Talley NJ, Hunt RH. What role does Helicobacter pylori play in dyspepsia and nonulcer dyspepsia? Arguments for and against H. pylori being associated with dyspeptic symptoms. *Gastroenterology* 1997; 113: S67–S77 [PMID: 9394764 DOI: 10.1016/S0001-506X(97)80016-9]

Minocha A, Mokshagundam S, Gallo SH, Rahal PS. Alterations in upper gastrointestinal motility in Helicobacter pylori-positive nonulcer dyspepsia. *Am J Gastroenterol* 1994; 89: 1797–1800 [PMID: 7942670]

Mearin F, de Ribot X, Balboa A, Salas A, Varas MJ, Cucala M, Bartolomé R, Armengol JR, Malageleda JR. Does Helicobacter pylori infection increase gastric sensitivity in functional dyspepsia? *Gut* 1995; 37: 47–51 [PMID: 7672680 DOI: 10.1136/gut.37.1.47]

Bercik P, De Giorgio R, Blennnerhassett P, Verdu EF, Barbara G, Collins SM. Immune-mediated neural dysfunction in a murine model of chronic Helicobacter pylori infection. *Gastroenterology* 2002; 123: 1205–1215 [PMID: 12360482 DOI: 10.1016/S0016-5077(02)00624-X]

Locke GR, Zinsmeister AR, Talley NJ, Fett SL, Melton LJ. Familial association in adults with functional gastrointestinal disorders. *Mayo Clin Proc* 2000; 75: 907–912 [PMID: 10994826 DOI: 10.4065/75.09.207]

Gathaiya N, Locke GR, 3rd, Camilleri M, Schleck CD, Zinsmeister AR, Talley NJ. Novel associations with dyspepsia: a community-based study of familial aggregation, sleep dysfunction and somatization. *Neurogastroenterol Motil* 2009; 21: 922–969 [PMID: 19496951 DOI: 10.1111/j.1365-2982.2009.01320.x]

Lembo A, Zaman M, Jones M, Talley NJ. Influence of genetics on irritable bowel syndrome, gastro-oesophageal reflux and dyspepsia: a twin study. *Aliment Pharmacol Ther* 2007; 25: 1343–1350 [PMID: 17509102 DOI: 10.1111/j.1365-2036.2007.03326.x]

Drossman DA, Morris CB, Hu Y, Toner BB, Diamant N, Leserman J, Schatzkin A, Talley NJ. A prospective assessment of bowel habit in irritable bowel syndrome in women: defining an altered constellation. *Gastroenterology* 2005; 128: 580–589 [PMID: 15765393 DOI: 10.1053/j.gastro.2004.12.006]

Fukudo S, Kanazawa M. Gene, environment, and brain-gut interactions in irritable bowel syndrome. *J Gastroenterol Hepatol* 2011; 26 Suppl 3: 110–115 [PMID: 21443722 DOI: 10.1111/j.1440-1746.2011.06363.x]

Saito YA, Petersen GM, Locke GR, Talley NJ. The genetics of irritable bowel syndrome. *Clin Gastroenterol Hepatol* 2005; 3: 1057–1065 [PMID: 16271334 DOI: 10.1016/S1542-3565(05)00184-9]

Adam B, Liebregts T, Holtmann G. Mechanisms of disease: genetics of functional gastrointestinal disorders—searching the genes that matter. *Nat Clin Pract Gastroenterol Hepatol* 2007; 4: 102–110 [PMID: 17268545 DOI: 10.1038/ncpgastro0717]
July 7, 2015 | Volume 21 | Issue 25

Kourikou A et al. PD gene polymorphisms of 5-HTT LPR and GNBeta3 C825T polymorphisms with irritable bowel syndrome. Neurogastroenterol Motil 2007; 19: 465-470 [PMID: 17564628 DOI: 10.1111/j.1365-2982.2007.00905.x]

Sikander A, Rana SV, Sinha SK, Prasad KK, Arora SK, Sharma SK, Singh K. Serotonin transporter promoter variant: Analysis in Indian IBS patients and control population. J Clin Gastroenterol 2009; 43: 957-961 [PMID: 19687750 DOI: 10.1097/MCG.0b013e3181b7e8c]

Toyoshima F, Oshima T, Nakajima S, Sakurai J, Tanaka J, Tomita T, Hori K, Matsumoto T, Miwa H. Serotonin transporter gene polymorphism may be associated with functional dyspepsia in a Japanese population. BMC Med Genet 2011; 12: 88 [PMID: 21714874 DOI: 10.1186/1471-2350-12-88]

Arisawa T, Tahara T, Fukuyama T, Hayashi R, Matsunaga K, Hayashi N, Nakamura M, Toshikuni N, Shiroeda H, Shibata T. Genetic polymorphism of pri-microRNA 325, targeting SLC6A4 3'-UTR, is closely associated with the risk of functional dyspepsia in Japan. J Gastroenterol 2012; 47: 1091-1098 [PMID: 22438098 DOI: 10.1007/s00053-012-0576-1]

Hansen MB. Neurohumoral control of gastrointestinal motility. Physiol Rev 2003; 52: 1-30 [PMID: 12625803]

Talley NJ, Van Zanten SV, Saez LR, Dukes G, Perschy T, Heath M, Kleouidis C, Angel AW. A dose-ranging, placebo-controlled, randomized trial of alosetron in patients with functional dyspepsia. Aliment Pharmacol Ther 2001; 15: 525-537 [PMID: 11284782 DOI: 10.1046/j.1365-2036.2001.00941.x]

Rajkumar R, Mahesh R. The auspicious role of the 5-HT3 receptor in depression: a probable neuronal target? J Psychopharmacol 2010; 24: 455-469 [PMID: 20123937 DOI: 10.1177/0269881109348161]

Walstab J, Rappold G, Niesler B. 5-HT(3) receptors: role in disease and target of drugs. Pharmacol Ther 2010; 128: 146-169 [PMID: 20621123 DOI: 10.1016/j.pharmthera.2010.07.001]

Tahara T, Arisawa T, Shibata T, Nakamura M, Wang F, Hirata I, Nakano H. Serotonin-2A receptor gene T102C polymorphism in patients with dyspeptic symptoms. Hepatogastroenterology 2008; 55: 1921-1924 [PMID: 19102423]

Mujakovic S, ter Linde JJ, van Marrewijk CJ, Fransen GA, Onland-Moret NC, Laeijer RJ, Muris JW, Grobbée DE, Samsom M, Jansen JB, Knottnerus A, Nansens ME. Serotonin receptor 3A polymorphism c.-42C &gt; G; T is associated with severe dyspepsia. BMC Med Genet 2011; 12: 140 [PMID: 22014438 DOI: 10.1186/1471-2350-12-140]

Viramontes BE, Malcolm A, Camilleri M, Szarka LA, McKenzie S, Burton DD, Zinsmeister AR. Effects of an alpha(2)-adrenergic agonist on gastrointestinal transit, colonic motility, and sensation in humans. Am J Physiol Gastrointest Liver Physiol 2001; 281: G1468-G1476 [PMID: 11705752]

Small KM, McGraw DW, Liggett SB. Pharmacology and physiology of human adrenergic receptor polymorphisms. Annu Rev Pharmacol Toxicol 2003; 43: 381-411 [PMID: 12540746 DOI: 10.1146/annurev.pharmtox.43.100901.135823]

Feinle C, Meier O, Otto B, D’Amato M, Fried M. Role of duodenal lipid and cholecystokinin A receptors in the pathophysiology of functional dyspepsia. Gut 2001; 48: 347-355 [PMID: 11171824 DOI: 10.1136/gut.48.3.347]

Tahara T, Arisawa T, Shibata T, Nakamura M, Wang F, Yoshiooka D, Okubo M, Murayama N, Kamano T, Kamiya Y, Nakamura M, Fujita H, Nagasaka M, Iwata M, Takahama K, Watanabe H, Yamashita H, Nakano H, Hirata I. 779 TC of CCK-1 intron 1 is associated with postprandial syndrome (PDS) in Japanese male subjects. Hepatogastroenterology 2009; 56: 1245-1248 [PMID: 19769080]

Rietschel ET, Kirschke T, Schade FU, Mattat U, Schmidt G, Lopponow H, Ulmer AJ, Zähringer U, Seydel U, Di Padova F. Bacterial endotoxin: molecular relationships of structure to activity and function. FASEB J 1994; 8: 217-225 [PMID: 819492]

Karbhorker J, Yan Y, Niemela S, Valtonen J, Koistinen P, Joensuu T, Saikkku P, Karttunen R. Effect of CD14 promoter polymorphism and H. pylori infection and its clinical outcomes on circulating CD14. Clin Exp Immunol 2002; 126: 326-332 [PMID: 11985523 DOI: 10.1111/j.1365-2249.2002.01941.x]
leptin in children with chronic gastritis. Scand J Immunol 2006; 63: 131-135 [PMID: 16746012 DOI: 10.1111/j.1365-3083.2005.01719.x]

Bacarelli A, Hou L, Chen J, Lisowskaja J, El-Omar EM, Grillo P, Giacomini SM, Yaeger M, Bernig T, Zatonoki W, Fraumeni JF, Chanock SJ, Cho K. Helicobacter pylori infection and non-Hodgkin lymphoma: a population-based case-control study. Int J Cancer 2006; 119: 1970-1975 [PMID: 16721783 DOI: 10.1002/ijc.22075]

Scudiero D, Nardone G, Omodei D, Tatangelo F, Vitale DF, Salvatore F, Castaldo G. A mannose-binding lectin-defective haplotype is a risk factor for gastric cancer. Clin Chem 2005; 52: 1625-1627 [PMID: 16873315 DOI: 10.1373/clinchem.2006.071696]

Tahara T, Shibata T, Wang F, Yamashita H, Hirata I, Arisawa T. Genetic Polymorphisms of Molecules Associated with Inflammatory Responses, TRL2 and MBL2 Genes in Japanese Subjects with Functional Dyspepsia. J Clin Biochem Nutr 2010; 47: 217-223 [PMID: 21103030 DOI: 10.3164/jcbn.10-40]

Tahara T, Shibata T, Wang F, Nakamura M, Sakata M, Nakano H, Hirata I, Arisawa T. A genetic variant of the p22PHOX component of NADPH oxidase C242T is associated with reduced risk of functional dyspepsia in Helicobacter pylori-infected Japanese individuals. Eur J Gastroenterol Hepatol 2009; 21: 1363-1368 [PMID: 19531958 DOI: 10.1097/MEG.0b013e32832c8781]

Arisawa T, Tahara T, Shibata T, Nagasaka M, Nakamura M, Kamiya Y, Fujita H, Yoshioka D, Arima Y, Okubo M, Hirata I, Nakano H. Genetic polymorphisms of cyclooxygenase-1 (COX-1) gene. Int J Mol Med 2006; 104: 110 [PMID: 18385826 DOI: 10.3164/jcn.2008015]

Bloom BR, Bennett B. Mechanism of a reaction in vitro associated with delay-type hypersensitivity. Science 1966; 153: 80-82 [PMID: 5938421 DOI: 10.1126/science.153.3731.80]

Calandra T, Echtenacher B, Roy DL, Pugin J, Metz CN, Hüfner L, Heumann D, Männel D, Busch R, Glaser M. Protection from septic shock by neutralization of macrophage migration inhibitory factor. Nat Med 2000; 6: 164-170 [PMID: 10655104 DOI: 10.1038/72262]

Xia HH, Lam SK, Huang XR, Wong WM, Leung SY, Yuan ST, Lan HY, Wong BC. Helicobacter pylori infection is associated with increased expression of macrophage migratory inhibitory factor–by epithelial cells, T cells, and macrophages—in gastric mucosa. J Infect Dis 2004; 190: 293-302 [PMID: 15216464 DOI: 10.1086/421915]

Arisawa T, Takeda K, Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity. J Clin Biochem Nutr 2000; 2: 293-302 [PMID: 11256742 DOI: 10.1093/hmg/ddg009]

Kawaguchi M, Adachi M, Oda N, Kobuk F, Huang SK. IL-17 cytokine family. J Allergy Clin Immunol 2004; 114: 1265-1273; quiz 1274 [PMID: 15577820 DOI: 10.1016/j.jaci.2004.10.019]

Schall TJ, Bacon K, Toy JK, Goeddol DV. Selective attraction of monocytes and T lymphocytes of the memory phenotype by cytokine RANTES. Nature 1990; 347: 669-671 [PMID: 1699315 DOI: 10.1038/347669a0]

Kikuchi T, Kato K, Ohara S, Sekine H, Arikawa T, Suzuki T, Noguchi K, Saito M, Saito Y, Nagura H, Toyota T, Shimosegawa T. The relationship between persistent secretion of RANTES and residual infiltration of eosinophils and memory T lymphocytes after Helicobacter pylori eradication. J Pathol 2000; 192: 243-250 [PMID: 11004702 DOI: 10.1002/1096-9896(2000)9999]

Tahara T, Shibata T, Yamashita H, Hirata I, Arisawa T. The Role of RANTES Promoter Polymorphism in Functional Dyspepsia. J Clin Biochem Nutr 2009; 45: 235-240 [PMID: 19794934 DOI: 10.3164/jcbn.09-31]

Akira S, Takeda K, Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2001; 2: 675-680 [PMID: 11477402 DOI: 10.1038/36069]

Ding SZ, Torok AM, Smith MF, Goldberg JB. Toll-like receptor 2-mediated gene expression in epithelial cells during Helicobacter pylori infection. Helicobacter 2005; 10: 193-204 [PMID: 15904477 DOI: 10.1111/j.1365-2635.2005.00311.x]

Turner MW, Hamvas RM. Mannose-binding lectin: structure, function, genetics and disease associations. Rev Immunogenet 2000; 2: 305-322 [PMID: 11256742]

Super M, Thiel S, Lu J, Levinsky RJ, Turner MW. Association of low levels of mannann-binding protein with a common defect of opsonisation. Lancet 1989; 2: 236-1239 [PMID: 2573758 DOI: 10.1016/S0140-6736(89)91849-7]

Bak-Romaniszyn L, Czyżyszki M, Szemraj J, St Swierzko A, Zeman K, Kuhlurzynski A, Planeta-Malecka I. Mannann-binding lectin in children with chronic gastritis. Scand J Immunol 2006; 63: 131-135 [PMID: 16746012 DOI: 10.1111/j.1365-3083.2005.01719.x]

Bacarelli A, Hou L, Chen J, Lisowskaja J, El-Omar EM, Grillo P, Giacomini SM, Yaeger M, Bernig T, Zatonoki W, Fraumeni JF, Chanock SJ, Cho K. Helicobacter pylori infection and non-Hodgkin lymphoma: a population-based case-control study. Int J Cancer 2006; 119: 1970-1975 [PMID: 16721783 DOI: 10.1002/ijc.22075]

Scudiero D, Nardone G, Omodei D, Tatangelo F, Vitale DF, Salvatore F, Castaldo G. A mannose-binding lectin-defective haplotype is a risk factor for gastric cancer. Clin Chem 2005; 52: 1625-1627 [PMID: 16873315 DOI: 10.1373/clinchem.2006.071696]

Tahara T, Shibata T, Wang F, Yamashita H, Hirata I, Arisawa T. Genetic Polymorphisms of Molecules Associated with Functional Dyspepsia. J Clin Biochem Nutr 2010; 47: 217-223 [PMID: 21103030 DOI: 10.3164/jcbn.10-40]

Tahara T, Shibata T, Wang F, Nakamura M, Sakata M, Nakano H, Hirata I, Arisawa T. A genetic variant of the p22PHOX component of NADPH oxidase C242T is associated with reduced risk of functional dyspepsia in Helicobacter pylori-infected Japanese individuals. Eur J Gastroenterol Hepatol 2009; 21: 1363-1368 [PMID: 19531958 DOI: 10.1097/MEG.0b013e32832c8781]

Arisawa T, Tahara T, Shibata T, Nagasaka M, Nakamura M, Kamiya Y, Fujita H, Yoshioka D, Arima Y, Okubo M, Hirata I, Nakano H. Genetic polymorphisms of cyclooxygenase-1 (COX-1) gene. Int J Mol Med 2006; 104: 110 [PMID: 18385826 DOI: 10.3164/jcn.2008015]
Arisawa T, Tahara T, Shiroeda H, Minato T, Matsue Y, Saito T, Fukuyama T, Otsuka T, Fukumura A, Nakamura M, Shibata T. Genetic polymorphisms of SCN10A are associated with functional dyspepsia in Japanese subjects. *J Gastroenterol* 2013; **48**: 73-80

Ghorbani S, Nejad A, Law D, Chua KS, Amichai MM, Pimentel M. Healthy control subjects are poorly defined in case-control studies of irritable bowel syndrome. *Ann Gastroenterol* 2015; **28**: 87-93

**P- Reviewer**: van Langenberg DR, Wittmann T  **S- Editor**: Qi Y
**L- Editor**: Webster JR  **E- Editor**: Wang CH
