Corneal confocal microscopy: Recent progress in the evaluation of diabetic neuropathy

Nikolaos Papanas¹, Dan Ziegler²³*
¹Diabetes Clinic, Second Department of Internal Medicine, Democritus University of Thrace, Alexandroupolis, Greece; ²Institute for Clinical Diabetology, German Diabetes Center at Heinrich Heine University, Leibniz Center for Diabetes Research, and ³Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, University Hospital, Düsseldorf, Germany

Keywords
Corneal confocal microscopy, Diabetic polyneuropathy, Small fibers

*Correspondence
Dan Ziegler
Tel: +49-211-33820
Fax: +49-211-3382244
E-mail address: dan.ziegler@ddz.uni-duesseldorf.de

J Diabetes Invest 2015; 6: 381–389
doi: 10.1111/jdi.12335

INTRODUCTION
Chronic diabetic sensorimotor polyneuropathy (DSPN) is the most common diabetic complication involving the nervous system. Its diagnosis mainly rests on careful clinical examination including sensory and motor modalities, while new practical tests have been developed during the past 15 years to improve its diagnosis in clinical reality. In vivo corneal confocal microscopy (CCM) of the human eye is one of these new diagnostic modalities. It is best used in the expert setting, and enables early demonstration of nerve fiber loss. The aim of the present brief review was to discuss recent progress with CCM in the evaluation of DSPN.

Search Strategy
We carried out an electronic search through the PubMed, Embase and Google scholar databases up to 10 January 2015 using the following key words in various combinations: ‘complications,’ ‘cornea,’ ‘corneal confocal microscopy,’ ‘diabetes,’ ‘diabetic,’ ‘diagnosis,’ ‘neuropathy,’ ‘polyneuropathy’ and ‘small-fiber.’ Articles written in English were studied in full, whereas those written in other languages were only studied in abstract form.

Corneal Nerve Fibers and CCM
The cornea of the human eye harbors a multitude of nerve fibers originating from the ophthalmic division of the trigeminal nerve, and is organized in three main groups: the sub-basal plexus, the sub-epithelial plexus and the stromal nerves. Of these, it is the sub-basal nerve plexus lying underneath the basal epithelium that has received the most attention by CCM for the evaluation of diabetic neuropathy. In addition, corneal Langerhans cells, which represent antigen-presenting cells, have attracted some interest during the study of diabetic neuropathy by CCM.

In regard to the technique involved, CCM makes use of a light beam, which passes through an aperture and is appropriately focused by an objective lens into the examined cornea layer. At the same time, all light coming from other points is eliminated by a beam splitter and a photodetection device. Three methodological variants have been developed: the tandem scanning CCM (TSCM), the slit-scanning CCM (SSCM) and the more recent laser scanning CCM (LSCM). SSCM and LSCM have been used for the detection of corneal nerve pathology in diabetic patients with and without DSPN. The former enables rapid visualization of all points along the axis of a given slit. The latter has been used more recently, and employs a laser beam as a light source, offering higher resolution and clearer visualization of corneal epithelium and stroma. Even more recent technological progress in...
Role of CCM in the Assessment of Diabetic Neuropathy

The following parameters have been mainly used in the assessment of corneal nerve pathology: (i) corneal nerve fiber density (CNFD), defined as the total number of major nerves per mm²; (ii) corneal nerve fiber length (CNFL), defined as the total length of all nerve fibers and branches (mm/mm²); (iii) corneal nerve branch density (CNBD), defined as the number of branches emanating from major nerves per mm²; and (iv) corneal nerve fiber tortuosity (CNFTo), mathematically calculated as total nerve fiber curvature reflecting the variability of nerve fiber directions⁷. Importantly, these parameters, especially CNFL⁷, have now proved to be highly reproducible²⁰–²². More recently, Petropoulos et al.²³ have shown that manual CNFD and automated CNFL yielded the highest diagnostic performance for DSPN. An interesting novel parameter is tortuosity-standardized CNFL²⁴. With this approach, standardized CNFL shows higher correlations with established measures and risk factors for DSPN as compared with classical CNFL²⁴.

In CCM studies, diagnosis and staging of DSPN has rested on clinical examination, mainly neuropathic deficits, occasionally also nerve conduction studies (NCS)⁵,⁶,²⁵–³⁴. Other measures of DSPN have included intra-epidermal nerve fiber density (IENFD) and the Neuropad indicator test of sudomotor function⁵,²⁷,³²,³³. Of particular note, Halpern et al.³⁴ have recently shown in patients with type 1 diabetes that CNFL was diagnostically valid against various DSPN definitions, exhibiting the highest diagnostic performance against NCS criteria. Furthermore, CCM has been compared against measures of cardiac autonomic neuropathy (CAN)²⁷,³¹,³³. Other works have studied the association of CCM with diabetic retinopathy⁶–³⁹ and reduced corneal sensation⁵,⁸,²⁸,²⁹,³¹,³⁸.

We will now briefly discuss the role of CCM in several aspects related to diabetic neuropathies. Recent studies are summarized in Table 1. Earlier works have been reviewed in more detail previously⁷.

Role in Detecting DSPN

Given the fact that corneal nerve fiber pathology is more severe in the presence of DSPN⁵,⁷,⁸,²⁵–²⁸,³³, it has been suggested to use CCM for the diagnosis of this complication²⁴. Of particular note, CCM is sensitive enough to detect corneal nerve fiber perturbations as early as in recently diagnosed diabetes⁵ (Figure 1) and before clinical neuropathic deficits develop³³, encouraging the hope that this modality might prove useful for the earliest diagnosis of DSPN.

In this context, some works have examined the sensitivity and specificity of CCM for the detection of DSPN²⁸,³²,⁴⁰. Sensitivity and specificity are summarized in Table 2. Compared with IENFD, CNFD was more specific but less sensitive². Of note, Ahmed et al.⁴⁰ identified the two best diagnostic cut-off points: (i) CNFL ≤14.0 mm/mm² with 85% sensitivity, 84% specificity, positive likelihood ratio of 5.3 and negative likelihood ratio of 0.18; and (ii) CNFL ≥15.8 mm/mm² with 91% sensitivity, 93% specificity, positive likelihood ratio of 8.5 and negative likelihood ratio of 0.16⁴⁰.

Role in Staging for DSPN Severity

CCM parameters typically deteriorate progressively with increasing severity of neuropathy²⁵,³⁸,²⁵–²⁹,³³,³⁴,³⁷–⁴³. CNFD, CNBD and CNFL show a significant negative correlation with neuropathic deficits²⁷,²⁹,³⁴–³⁶ and Neuropad response³³,⁴⁷, as well as a positive correlation with upper and lower extremity nerve conduction velocities²⁵,²⁹,⁴⁸–⁵⁰. Edwards et al.⁴⁵ found that CNFL and CNBD most strongly correlated with NCS attributes and modestly with the other tests of neuropathy. There is also evidence for a negative correlation between corneal nerve fiber pathology and small-fiber dysfunction: impairment of pain/thermal perception²⁷,⁴⁸,⁴⁹ and diminution of axon reflex-mediated neurogenic vasodilatation in response to cutaneous heating (laser Doppler imaging flare [LDIFLARE])⁵⁰. In type 1 diabetes, every 1-mm/mm² reduction of CNFL was linked with a 0.61°C reduction of cold perception threshold and a 0.07-cm² reduction of the LDIFLARE area⁴⁹. Furthermore, a positive correlation between CNFD and IENFD has been found in some²⁷,³¹,⁵⁰, but not in all² studies.

Manifestation Patterns

Corneal nerve fiber pathology has been found to be symmetrical⁴⁶, similar to DSPN in general¹,², except in patients with very severe DSPN⁴⁶. In both diabetes types, corneal nerve fibers might be affected before DSPN becomes clinically manifest³⁵,³³,³⁵. In type 1 diabetes, CNFL even among patients without DSPN might be lower than among controls⁴³,⁵¹. Stem et al.⁴³ have carried out an interesting comparison between the two types of diabetes. In type 1 diabetes without DSPN, CNFL was significantly reduced compared with controls, whereas among patients with type 2 diabetes, only those with severe DSPN showed a significant reduction of CNFL compared with controls⁴³. Thus, it has been argued that CNFL might be reduced in type 1 diabetes earlier than in type 2 diabetes⁴³. A further interesting observation in recently diagnosed diabetic patients is that they frequently show abnormal CNFD with concomitant normal IENFD and vice versa, suggesting that small nerve fibers are not simultaneously affected in all organs⁵.

Role in Impaired Glucose Tolerance

An initial small series of subjects with small-fiber neuropathy showed perturbations in CNFL, CNFD, CNBD and CNFTo, but there were no differences in corneal parameters between subjects with and those without impaired glucose tolerance (IGT)²⁹. However, these observations were based on just eight IGT subjects²⁹. Indeed, a larger series including 37 subjects with IGT and 20 age-matched control subjects found that the former showed significant reductions in CNFD, CNBD, CNFL and IENFD along with other manifestations of predominantly small-fiber neuropathy.
Recent studies on corneal confocal microscopy for the evaluation of diabetic polyneuropathy

Authors [Ref.]	n (DM/controls)	Main findings
Ziegler et al.\(^5\)	86 recently diagnosed T2DM/48	1) Reductions in T2DM vs controls: CNFL-MNF (\(P = 0.001\)), CNFD-MNF (\(P < 0.001\)), CNBD-MNF (\(P < 0.001\)), CNCP (\(P = 0.006\)), IENFD (\(P < 0.001\)), NCS (\(P < 0.001\)), QST (\(P < 0.001\)) and VR (\(P = 0.006\))
2) CNFD-MNF among T2DM: reduced below the 25th percentile in 21%
3) IENFD among T2DM: reduced below the 25th percentile in 14%
4) Vast majority of patients with abnormal CNF: concomitantly normal IENFD
5) Vast majority of patients with abnormal IENFD: concomitantly normal CNFD |
| Petropoulos et al.\(^23\) | 186/55 | 1) Increasing DSPN severity: significant reduction in manual and automated CNFD (\(P < 0.0001\)), CNBD (\(P < 0.0001\)), and CNFL (\(P < 0.00001\))
2) Manual and automated analysis: correlated for CNFD (\(r = 0.9, P < 0.0001\)), CNFL (\(r = 0.89, P < 0.0001\)) and CNBD (\(r = 0.75, P < 0.0001\))
3) Highest diagnostic performance: manual CNFD and automated CNFL |
| Edwards et al.\(^24\) | 231/61 | 1) Tortuosity standardized CNFL vs classical CNFL in DM: better in showing differences between DSPN and no DSPN
2) Tortuosity standardized CNFL in DM: 70.5 ± 27.3 (DSPN) vs 84.9 ± 28.7 mm/mm\(^2\) (no DSPN), \(P < 0.001\), ROC area under the curve = 0.67
3) Classical CNFL in DM: 15.9 ± 6.9 (DSPN) vs 18.4 ± 6.2 mm/mm\(^2\) (no DSPN), \(P = 0.004\), ROC area under the curve = 0.64
4) Tortuosity standardized CNFL vs classical CNFL: 94.3 ± 27.1 (DM without DSPN) vs 84.9 ± 28.7 mm/mm\(^2\) (controls) (\(P = 0.028\))
5) Classical CNFL: 20.1 ± 6.3 (DM without DSPN) vs 18.4 ± 6.2 mm/mm\(^2\) (controls) (\(P = 0.084\))
6) Tortuosity standardized CNFL vs classical CNFL in DM: stronger correlations with DSPN attributes
7) Tortuosity standardized CNFL vs classical CNFL in DM: stronger correlations with risk factors for DSPN |
| Halpern et al.\(^34\) | 89 T1DM/0 | 1) Comparable areas under the ROC curve for CNFL vs any of these DSPN (except for clinical definition)
2) DSPN definitions including NCS; optimal CNFL threshold 14 mm/mm\(^2\)
3) Clinical DSPN definition: optimal CNFL threshold 15.4 mm/mm\(^2\) |
| Maddaloni et al.\(^35\) | 36 T1DM/20 | 1) T1DM vs controls: 45.4 ± 20.2 vs 92.0 ± 22.7 fibers/mm\(^2\) (\(P < 0.001\)), more tortuous corneal nerve fibers (\(P = 0.022\)), 15.1 ± 3.5 vs 20.6 ± 5.0 beadings (\(P < 0.001\))
2) In T1DM, CAN vs no CAN: CNFD 32.8 ± 16.4 vs 51.7 ± 18.9 fibers/mm\(^2\) (\(P = 0.008\)), CNFL 5.5 ± 2.4 vs 9.2 ± 3.8 mm/mm\(^2\) (\(P = 0.005\))
3) In T1DM, NS differences between CAN vs no CAN: branching grade (1.4 ± 0.8 vs 1.9 ± 0.7, \(P = 0.06\)), nerve tortuosity (364 vs 64\%; \(P = 0.159\)), nerve beadings (148 ± 42 vs 153 ± 32, \(P = 0.719\)) |
| Zhivov et al.\(^39\) | 18 T2DM/20 | 1) Corneal sensation: 59 ± 18 mm in healthy volunteers and 43 ± 11 mm in T2DM (\(P < 0.001\))
2) Reductions in T2DM vs controls: component pixels (\(P < 0.001\)), skeleton pixels (\(P < 0.001\)), component ratio (\(P < 0.001\)), single nerve fibers (\(P < 0.001\)), single nerve fibers per component (\(P < 0.001\)), total fiber length (\(P < 0.001\)), CNFD (\(P < 0.001\)), connectivity points (\(P < 0.001\)), number of branches (\(P < 0.001\)), homogeneity of component pixels (\(P = 0.001\)) and average single fiber length (\(P = 0.08\))
3) T2DM: NS differences in the aforementioned CCM nerve parameters between patients with DR and those without DR |
| Stern et al.\(^43\) | 25 T1DM without DSPN and 18 T2DM with DSPN/9 | 1) Severe DSPN: lower CNFL vs controls (12.5 ± 6.1 mm/mm\(^2\) vs 20.7 ± 22 mm/mm\(^2\), \(P = 0.009\))
2) T1DM without DSPN: lower CNFL vs controls (15.1 ± 47 mm/mm\(^2\) vs 20.7 ± 22 mm/mm\(^2\), \(P = 0.033\)) |
| Petropoulos et al.\(^46\) | 111/47 | 1) CNFD, CNBD and CNFL: symmetrical pathology (except in patients with severe DSPN)
2) CNFD: significant (\(P < 0.001\)) reduction between controls and DM with increasing DSPN severity
3) CNBD: significant (\(P < 0.001\)) reduction between controls and DM with increasing DSPN severity
4) CNFL: significant (\(P < 0.001\)) reduction between controls and DM with increasing DSPN severity |
| Ishibashi et al.\(^47\) | 78 T2DM/28 | 1) DSPN vs no DSPN: reductions in CNFD (\(P < 0.001\)), CNFL (\(P < 0.001\)) and beading frequency (\(P < 0.0001\)) with increased CNFTo (\(P < 0.0001\))
2) Sudomotor function: negative correlations with CNFD (\(P < 0.002\)) and CNBD (\(P < 0.01\))
3) Sweat gland duct size: correlated with triglycerides (\(P < 0.02\)), uric acid (\(P < 0.01\)), CNBD (\(P < 0.03\)), sudomotor function (\(P < 0.03\)) and DSPN severity (\(P < 0.03\)) |
Table 1 | (Continued)

Authors [Ref]	n (DM/controls)	Main findings
Dehghani et al.\(^{68}\)	147 T1DM/60	1) DSPN vs controls: significant \((P = 0.01)\) linear decline of CNFD, in association with age \((P = 0.04)\) and T1DM duration \((P = 0.03)\)
		2) DSPN: modest correlation between CNBD and peroneal conduction velocity \((r = 0.38, P = 0.05)\)
		3) DSPN: modest correlation between CNFL and CDT \((r = 0.40, P = 0.03)\)
Sivaskandarajah et al.\(^{49}\)	96 T1DM/64	1) In T1DM, DSPN vs no DSPN: lower CDT values \((P < 0.0001)\), smaller LDIFLARE areas \((P = 0.0002)\), and lower HRV values \((P < 0.0001)\)
		2) In T1DM, reduction of CNFL by every 1 mm/mm\(^2\): association with a 0.61°C lower CDT, a 0.07 cm\(^2\) lower LDIFLARE area, and a 1.78% lower HRV
		3) CNFL in T1DM: significant positive correlations with CDT \((P = 0.0002)\), LDIFLARE \((P = 0.0002)\) and HRV \((P < 0.0001)\)
		4) CNFD in T1DM: significant positive correlations with CDT \((P = 0.0002)\), LDIFLARE \((P = 0.0002)\) and HRV \((P = 0.003)\)
		5) CNBD in T1DM: significant positive correlations with CDT \((P = 0.0002)\), LDIFLARE \((P = 0.01)\) and HRV \((P = 0.001)\)
		6) CNFTo in T1DM: no association with small-fiber function
Dehghani et al.\(^{54}\)	0/64	1) Age: significant \((P = 0.02)\) linear CNFL reduction by 0.05 mm/mm\(^2\) per added year
		2) CNFL: NS change in over 36 months \((P = 0.41)\)
Pritchard et al.\(^{21}\)	242 T1DM (76 with DSPN, 166 without)	1) CNFL: lower in T1DM with DSPN \((14.0 \pm 6.4 \text{ mm/mm}^2)\) vs T1DM without DSPN \((19.1 \pm 5.8 \text{ mm/mm}^2)\) \((P < 0.0001)\)
		2) CNFL: lower in T1DM without DSPN \((19.1 \pm 5.8 \text{ mm/mm}^2)\) vs controls \((23.2 \pm 6.3 \text{ mm/mm}^2)\) \((P < 0.0001)\)
		3) CNBD: lower in T1DM with DSPN \((40.1 \pm 32.1 \text{ branches/mm}^2)\) vs T1DM without DSPN \((61.7 \pm 37.2 \text{ branches/mm}^2)\) \((P < 0.0001)\)
		4) CNBD: lower in T1DM without DSPN \((61.7 \pm 37.2 \text{ branches/mm}^2)\) vs controls \((83.5 \pm 45.8 \text{ branches/mm}^2)\) \((P = 0.001)\)
Asghar et al.\(^{52}\)	37 IGT/20	1) IGT vs controls: significantly increased NDS \((P < 0.001)\), McGill pain index \((P < 0.001)\), NDS \((P = 0.001)\), VPT \((P = 0.002)\), WDT \((P = 0.006)\) and CDT \((P = 0.03)\)
		2) IGT vs controls: reductions in IENFD \((P = 0.03)\), CNFD \((P < 0.001)\), CNBD \((P = 0.002)\) and CNFL \((P = 0.05)\)
Pritchard et al.\(^{55}\)	90 T1DM without DSPN	1) Development of DSPN after 4 years: associations with lower CNFL \((P = 0.041)\)
		2) Development of DSPN after 4 years: associations with longer T1DM duration \((P = 0.002)\), higher triglycerides \((P = 0.023)\), retinopathy \((P = 0.008)\), nephropathy \((P = 0.001)\), higher NDS \((P = 0.037)\), lower CDT \((P = 0.001)\), higher WDT \((P = 0.008)\), higher VPT \((P = 0.003)\), impaired monofilament response \((P = 0.003)\), NCS impairments \((P < 0.05)\)
		3) CNFL cut-off of 14.1 mm/mm\(^2\): 63% sensitivity and 74% specificity for the prediction of DSPN after 4 years
Azmi et al.\(^{56}\)	49 T1DM (18 CSII, 31 MDT/40)	T1DM CSII vs T1DM MDT: increase in CNFD \((P = 0.05)\), CNBD \((P = 0.006)\) and CNFL \((P = 0.003)\), NS difference in VPT, CDT, WDT, NCS or IENFD
Brines et al.\(^{57}\)	48 T2DM/55	ARA 290 vs placebo: improvement of neuropathic symptoms \((P = 0.037)\), increase in CNFD \((P = 0.02)\) and reduction in HbA1c \((P = 0.002)\)
Tavakoli et al.\(^{58}\)	34/18	1) CNFD (best cut-off <23.26 nerves per mm\(^2\)): 86% sensitivity and 78% specificity for the diagnosis of DAN \((\text{AUC} = 0.915, P = 0.0001)\)
		2) CNBD (best cut-off <19.53 branches per mm\(^2\)): 100% sensitivity and 56% specificity for the diagnosis of DAN \((\text{AUC} = 0.889, P = 0.0001)\)
		3) CNFL (best cut-off <4.78 mm/mm\(^2\)): 86% sensitivity and 78% specificity for the diagnosis of DAN \((\text{AUC} = 0.907, P = 0.0001)\)
		4) CNFD, CNBD, CNFL: significant \((P < 0.001)\) correlations with CASS and COMPASS

ARA 290, a peptide derived from erythropoietin; AUC, area under the curve; CAN, cardiac autonomic neuropathy; CASS, composite autonomic scoring scale; CCM, corneal confocal microscopy; CDT, cooling detection threshold; CNBD, corneal nerve fiber branch density; CNFD, corneal nerve fiber density; CNFL, corneal nerve fiber length; CNFTo, corneal nerve fiber tortuosity; CNCP, corneal nerve connecting points; COMPASS, composite autonomic symptom scale; CSII, continuous subcutaneous insulin infusion; DAN, diabetic autonomic neuropathy; DR, diabetic retinopathy; DSPN, diabetic polyneuropathy; HbA1c, glycated hemoglobin; HRV, heart rate variability; IENFD, intra-epidermal nerve fiber density; IGT, impaired glucose tolerance; LDIFLARE, laser Doppler imaging flare; MDT, multiple daily insulin injections; MNEF, major nerve fibers; NCS, nerve conduction study; NDS, neuropathy disability score; NS, not significant; NSP, neuropathy symptom profile; QST, quantitative sensory testing; T1DM, type 1 diabetes mellitus; T2DM, type 2 diabetes mellitus; VPT, vibration perception threshold; VR, Valsalva ratio; WDT, warm detection threshold.
These findings add to the growing knowledge on the early beginning of neuropathy, as early as in prediabetes53. Natural History

In healthy individuals, age induced a slight but significant ($P = 0.02$) linear diminution of CNFL: this was calculated as a linear decrease by 0.05 mm/mm2 for every added year of age54. Despite this, however, CNFL remained fairly constant over 36 months54. In type 1 diabetes, after a 4-year follow up there was a significant reduction of CNFD in association with age ($P = 0.04$) and type 1 diabetes duration ($P = 0.03$)48. Impressively, small changes in corneal nerve fibers are indicative of clinical DSPN after 4 years in type 1 diabetes55: lower CNFL has been found to be associated with DSPN after 4 years ($P = 0.041$). A CNFL cut-off of 14.1 mm/mm2 could predict DSPN after 4 years with 63% sensitivity and 74% specificity55.

Effects of Therapeutic Interventions

There is evidence that CCM can objectify early nerve fiber improvements. In an observational study enrolling 25 diabetic patients with mild/moderate DSPN, improved cholesterol levels after 24 months were linked to significant improvements in CNFD, CNBD and CNFTo, and glycated hemoglobin reduction was significantly correlated with the increase in CNFD50. In another setting, simultaneous pancreas and kidney transplantation in patients with type 1 diabetes induced significant improvements in CNFD and CNFL at 6 months, as well as in CNFD, CNFL, CNBD at 12 months31,50. Among all diagnostic modalities investigated, only CCM showed improvement after 12 months55. Very recently, the effect of continuous subcutaneous insulin infusion on DSPN was compared with that of multiple insulin injections in type 1 diabetes56. After 24 months, significant increases in CNFD ($P = 0.05$), CNBD ($P = 0.006$) and CNFL ($P = 0.003$) were noted only in the group under continuous subcutaneous insulin infusion, despite suboptimal and comparable glycemic control in both treatment arms56. Arguably, the stability of glycemic control accomplished with continuous subcutaneous insulin infusion exerted a beneficial effect on small nerve fibers, and CCM was accurate enough to show this effect56. Brines et al.57 have shown that administration of ARA 290, a peptide derived from erythropoietin, for 28 days could significantly improve neuropathic symptoms ($P = 0.037$) and CNFD ($P = 0.02$) in type 2 diabetes.

Associations with Retinopathy and Corneal Sensation

Corneal nerve fiber pathology has been found to be associated with both the presence and severity of diabetic retinopathy (background vs proliferative retinopathy)36–38. Conversely, Zhivov et al.39 have reported no difference in corneal nerve morphology between patients with vs without diabetic retinopathy. Patients with DSPN frequently have reduced corneal sensation as well, and a positive correlation between CNFD and corneal sensation has been reported41. Tavakoli et al.8 have reawakened the interest in the immune component of DSPN by showing a significant increase of corneal Langerhans cells in diabetic patients as well as an inverse correlation between these cells and the clinical severity of DSPN. The authors’ interpretation was that the increase of Langerhans cells in early DSPN pointed to the role of immune mechanisms in the first steps of its pathogenesis, although other factors became later more decisive in advanced DSPN8.

Role in Detecting Autonomic Neuropathy

CCM parameters show a positive correlation with heart rate variability on deep breathing27,49. In type 1 diabetes, every 1-mm/mm2 reduction of CNFL has been reported to be linked with a reduction of heart rate variability by 1.78%49. In a study

Figure 1 | Corneal confocal microscopy showing the sub-basal nerve plexus. (a) Normal structure corneal nerve fibers in a healthy subject. (b) Loss of corneal nerve fibers in a recently diagnosed subject with type 2 diabetes.
comparing 36 type 1 diabetic patients with 20 age- and sex-matched controls, the former showed fewer (P < 0.001) and more tortuous corneal nerve fibers (P = 0.022), and fewer beadings (P < 0.001) than the latter. Among patients with type 1 diabetes, CNFD was significantly lower (P = 0.008) in the presence of CAN, and this difference remained significant after adjustment for age, sex, type 1 diabetes duration, insulin dosage and severity of DSPN. Similarly, CNFL was significantly lower in the presence of CAN (P = 0.005), and this difference remained significant after adjustment for type 1 diabetes duration, insulin dosage and severity of DSPN, but it lost significance after adjustment for age and sex. Tavakoli et al. have recently reported that CNFD, CNBD and CNFL yielded very high (86–100%) sensitivity and moderate to high specificity (56–78%) for the diagnosis of autonomic neuropathy (Table 1). Furthermore, these parameters showed significant (P < 0.001) correlations with the gravity of autonomic symptoms.

Future Perspectives
There has been considerable progress with CCM for the evaluation of DSPN, and more knowledge is still accumulating. Future improvements should be mainly pursued in the following areas.

Widespread Use of CCM
For the time being, CCM is mainly used in specialized centers. Given the evidence for its moderate to high sensitivity and specificity for the diagnosis of DSPN, it is reasonable that this modality could be of increased clinical utility, once technology and know-how become more widely available. Further arguments in favor of its wider availability include its non-invasive nature and the ability to repeat the examination for patient follow up.

Normative Database
Especially if CCM becomes more widely used, we need a database of normative values, similar to the one reported for IENFD. Such normal values are now for the first time becoming available, but their application in clinical practice is awaited.

Revisiting the Efficacy of Pathogenetic Treatments Through CCM
The effect of neuroprotective, disease-modifying agents on peripheral nerve structure can now be revisited utilizing CCM. This suggestion is based on the ability of CCM to visualize nerve fiber regeneration.

More Experience in Children and Adolescents
After the interesting pilot study by Sellers et al., additional experience in diabetic children and adolescents is highly welcome.

Technical Improvements in Automated Nerve Fiber Quantification and Image Analysis
Improved automated fiber measurement and wider-area image analysis are expected to increase accuracy and to enable the acquisition of more representative images.

CONCLUSIONS
There are now more than 10 years of experience with CCM for the evaluation of DSPN. The advantages of CCM include its non-invasive nature, its high reproducibility and its easy application for patient follow up. CCM opens new perspectives of studying the natural history of DSPN, staging nerve fiber pathology and documenting incipient nerve fiber regeneration after therapeutic intervention. Importantly, it is useful for the early detection of nerve pathology and high-risk foot with moderate to high sensitivity and specificity.

Based on this ample evidence, more widespread application of CCM for the evaluation of DSPN can be advocated. Such a broad utilization should serve both diagnostic and prognostic
purposes in terms of DSPN evaluation at baseline and/or after therapeutic interventions. Importantly, normal values for CCM parameters are now becoming available and need to be applied in practice. Finally, technical improvements in automated nerve fiber quantification and wider-area image analysis are more than welcome to increase diagnostic performance.

ACKNOWLEDGMENTS

N Papanas wrote the first draft of the manuscript; Dan Ziegler edited and provided valuable insight and critical comments. N Papanas and D Ziegler have been scientific advisory board members for TrigoCare International, distributor of Neuropad.

REFERENCES

1. Tesfaye S, Boulton AJ, Dyck PJ, et al. Diabetic neuropathies: update on definitions, diagnostic criteria, estimation of severity, and treatments. Diabetes Care 2010; 33: 2285–2293.
2. Ziegler D, Papanas N, Vinik AI, et al. Epidemiology of polyneuropathy in diabetes and prediabetes. Handb Clin Neurol 2014; 126: 3–22.
3. Papanas N, Ziegler D. New diagnostic tests for diabetic distal symmetric polyneuropathy. J Diabetes Complications 2011; 25: 44–51.
4. Papanas N, Ziegler D. New vistas in the diagnosis of diabetic polyneuropathy. Endocrine 2014; 47: 690–698.
5. Ziegler D, Papanas N, Zhivov A, et al. Early detection of nerve fiber loss by corneal confocal microscopy and skin biopsy in recently diagnosed type 2 diabetes. Diabetes 2014; 63: 2454–2463.
6. Al-Aqaba MA, Fares U, Suleman H, et al. Architecture and distribution of human corneal nerves. Br J Ophthalmol 2010; 94: 784–789.
7. Papanas N, Ziegler D. Corneal confocal microscopy: a new technique for early detection of diabetic neuropathy. Curr Diab Rep 2013; 13: 488–499.
8. Tavakoli M, Boulton AJ, Efron N, et al. Increased Langerhans cell density and corneal nerve damage in diabetic patients: role of immune mechanisms in human diabetic neuropathy. Cont Lens Anterior Eye 2011; 34: 7–11.
9. Jalbert I, Stapleton F, Papas E, et al. In vivo confocal microscopy of the human cornea. Br J Ophthalmol 2003; 87: 225–236.
10. Guthoff RF, Zhivov A, Stachs O. In vivo confocal microscopy, an inner vision of the cornea - a major review. Clin Experiment Ophthalmol 2009; 37: 100–117.
11. Cruzat A, Pavan-Langston D, Hamrah P. In vivo confocal microscopy of corneal nerves: analysis and clinical correlation. Semin Ophthalmol 2010; 25: 171–177.
12. Patel DV, McGhee CN. In vivo confocal microscopy of human corneal nerves in health, in ocular and systemic disease, and following corneal surgery: a review. Br J Ophthalmol 2009; 93: 853–860.
13. Zhivov A, Stachs O, Kraak R, et al. In vivo confocal microscopy of the ocular surface. Ocul Surf 2006; 4: 81–93.
14. Holmes TJ, Pellegrini M, Miller C, et al. Automated software analysis of corneal micrographs for peripheral neuropathy. Invest Ophthalmol Vis Sci 2010; 51: 4480–4491.
15. Hume DA, Lovblom LE, Ahmed A, et al. Higher magnification lenses versus conventional lenses for evaluation of diabetic neuropathy by corneal in vivo confocal microscopy. Diabetes Res Clin Pract 2012; 97: e37–e40.
16. Zhivov A, Guthoff R, Stachs O. On-line mapping of corneal structures with in vivo laser scanning microscopy. Klin Monbl Augenheilkd 2009; 226: 980–983.
17. Zhivov A, Blum M, Guthoff R, et al. Real-time mapping of the subepithelial nerve plexus by in vivo confocal laser scanning microscopy. Br J Ophthalmol 2010; 94: 1133–1135.
18. Allgeier S, Zhivov A, Eberle F, et al. Image reconstruction of the subbasal nerve plexus with in vivo confocal microscopy. Invest Ophthalmol Vis Sci 2011; 52: 5022–5028.
19. Edwards K, Pritchard N, Gosschalk K, et al. Wide-field assessment of the human corneal subbasal nerve plexus in diabetic neuropathy using a novel mapping technique. Cornea 2012; 31: 1078–1082.
20. Efron N, Edwards K, Roper N, et al. Repeatability of measuring corneal subbasal nerve fiber length in individuals with type 2 diabetes. Eye Contact Lens 2010; 36: 245–248.
21. Petropoulos IN, Manzoor T, Morgan P, et al. Repeatability of in vivo corneal confocal microscopy to quantify corneal nerve morphology. Cornea 2013; 32: e83–e89.
22. Hertz P, Bril V, Orszag A, et al. Reproducibility of in vivo corneal confocal microscopy as a novel screening test for early diabetic sensorimotor polyneuropathy. Diabet Med 2011; 28: 1253–1260.
23. Petropoulos IN, Alam U, Fadavi H, et al. Rapid automated diagnosis of diabetic peripheral neuropathy with in vivo corneal confocal microscopy. Invest Ophthalmol Vis Sci 2014; 55: 2071–2078.
24. Edwards K, Pritchard N, Vagenas D, et al. Standardizing corneal nerve fibre length for nerve tortuosity increases its association with measures of diabetic neuropathy. Diabet Med 2014; 31: 1205–1209.
25. Malik RA, Kallinikos P, Abbott CA, et al. Corneal confocal microscopy: a non-invasive surrogate of nerve fibre damage and repair in diabetic patients. Diabetologia 2003; 46: 683–688.
26. Kallinikos P, Berhanu M, O’Donnell C, et al. Corneal nerve tortuosity in diabetic patients with neuropathy. Invest Ophthalmol Vis Sci 2004; 45: 418–422.
27. Quattrini C, Tavakoli M, Jeziorska M, et al. Surrogate markers of small fiber damage in human diabetic neuropathy. Diabetes 2007; 56: 2148–2154.
28. Tavakoli M, Quattrini C, Abbott C, et al. Corneal confocal microscopy: a novel noninvasive test to diagnose and stratify the severity of human diabetic neuropathy. Diabetes Care 2010; 33: 1792–1797.
29. Tavakoli M, Marshall A, Pitceathly R, et al. Corneal confocal microscopy: a novel means to detect nerve fibre damage in idiopathic small fibre neuropathy. Exp Neurol 2010; 223: 245–250.

30. Tavakoli M, Kallinikos P, Iqbal A, et al. Corneal confocal microscopy detects improvement in corneal nerve morphology with an improvement in risk factors for diabetic neuropathy. Diabet Med 2011; 28: 1261–1267.

31. Tavakoli M, Mitu-Preterior M, Petropoulos IN, et al. Corneal Confocal Microscopy detects early nerve regeneration in diabetic neuropathy after simultaneous pancreas and kidney transplantation. Diabetes 2013; 62: 254–260.

32. Quattrini C, Tavakoli M, Kallinikos P, et al. Comparing skin biopsy with corneal confocal microscopy: diagnostic yield of nerve fibre density. Diabetologia 2010; 53(Suppl 1): A1114.

33. Tavakoli M, Quattrini C, Begum P, et al. Neuropad and corneal confocal microscopy: new indications for human diabetic neuropathy. Diabetologia 2010; 53(Suppl 1): A1112.

34. Halpern EM, Lovblom LE, Orlow S, et al. The impact of common variation in the definition of diabetic sensorimotor polyneuropathy on the validity of corneal in vivo confocal microscopy in patients with type 1 diabetes: a brief report. J Diabetes Complications 2013; 27: 240–242.

35. Maddaloni E, Sabatino F, Del Toro R, et al. In vivo corneal confocal microscopy as a novel non-invasive tool to investigate cardiac autonomic neuropathy in Type 1 diabetes. Diabet Med 2015; 32: 262–266.

36. Mocan MC, Durukan I, Irmek M, et al. Morphologic alterations of both the stromal and subbasal nerves in the corneas of patients with diabetes. Cornea 2006; 25: 769–773.

37. De Cillà S, Ranno S, Carini E, et al. Corneal subbasal nerves changes in patients with diabetic retinopathy: an in vivo confocal study. Invest Ophthalmol Vis Sci 2009; 50: 5155–5158.

38. Messmer EM, Schmid-Tannwald C, Zapp D, et al. In vivo confocal microscopy of corneal small fiber damage in diabetes mellitus. Graefes Arch Clin Exp Ophthalmol 2010; 248: 1307–1312.

39. Zivov A, Winter K, Hawakimyan M, et al. Imaging and quantification of subbasal nerve plexus in healthy volunteers and diabetic patients with or without retinopathy. PLoS One 2013; 8: e52157.

40. Ahmed A, Brill V, Orszag A, et al. Detection of diabetic sensorimotor polyneuropathy by corneal confocal microscopy in type 1 diabetes: a concurrent validity study. Diabetes Care 2012; 35: 821–828.

41. Rosenberg ME, Tervo TM, Immonen U, et al. Corneal structure and sensitivity in type 1 diabetes mellitus. Invest Ophthalmol Vis Sci 2000; 41: 2915–2921.

42. Midena E, Brugin E, Ghirlanda A, et al. Corneal diabetic neuropathy: a confocal microscopy study. J Refract Surg 2006; 22(9 Suppl): S1047–S1052.

43. Stem MS, Hussain M, Lentz SI, et al. Differential reduction in corneal nerve fiber length in patients with type 1 or type 2 diabetes mellitus. J Diabetes Complications 2014; 28: 658–661.

44. Nitoda E, Kallinikos P, Pallikaris A, et al. Correlation of diabetic retinopathy and corneal neuropathy using confocal microscopy. Curr Eye Res 2012; 37: 898–906.

45. Edwards K, Pritchard N, Vagenas D, et al. Utility of corneal confocal microscopy for assessing mild diabetic neuropathy: baseline findings of the LANDMark study. Clin Exp Optom 2012; 95: 348–354.

46. Petropoulos IN, Alam U, Fadavi H, et al. Corneal nerve loss detected with corneal confocal microscopy is symmetrical and related to the severity of diabetic polyneuropathy. Diabetes Care 2013; 36: 3646–3651.

47. Ishibashi F, Kojima R, Kawasaki A, et al. Correlation between sudomotor function, sweat gland duct size and corneal nerve fiber pathology in patients with type 2 diabetes mellitus. J Diabetes Investig 2014; 5: 588–596.

48. Dehghani C, Pritchard N, Edwards K, et al. Natural history of corneal nerve morphology in mild neuropathy associated with type 1 diabetes: development of a potential measure of diabetic peripheral neuropathy. Invest Ophthalmol Vis Sci 2014; 55: 7982–7990.

49. Sivaskandarajah GA, Halpern EM, Lovblom LE, et al. Structure-function relationship between corneal nerves and conventional small-fiber tests in type 1 diabetes. Diabetes Care 2013; 36: 2748–2755.

50. Mehra S, Tavakoli M, Kallinikos PA, et al. Corneal confocal microscopy detects early nerve regeneration after pancreas transplantation in patients with type 1 diabetes. Diabetes Care 2007; 30: 2608–2612.

51. Pritchard N, Edwards K, Dehghani C, et al. Longitudinal assessment of neuropathy in type 1 diabetes using novel ophthalmic markers (LANDMark): study design and baseline characteristics. Diabetes Res Clin Pract 2014; 104: 248–256.

52. Asghar O, Petropoulos IN, Alam U, et al. Corneal confocal microscopy detects neuropathy in subjects with impaired glucose tolerance. Diabetes Care 2014; 37: 2643–2646.

53. Papanas N, Vinik AI, Ziegler D. Neuropathy in prediabetes: does the clock start ticking early? Nat Rev Endocrinol 2011; 7: 682–690.

54. Dehghani C, Pritchard N, Edwards K, et al. Morphometric stability of the corneal subbasal nerve plexus in healthy individuals: a 3-year longitudinal study using corneal confocal microscopy. Invest Ophthalmol Vis Sci 2014; 55: 3195–3199.

55. Pritchard N, Edwards K, Russell AW, et al. Corneal confocal microscopy predicts 4-year incident peripheral neuropathy in type 1 diabetes. Diabetes Care 2015; pii: dc142114. doi: 10.2337/dc14-2114.

56. Azmi S, Ferdousi M, Petropoulos IN, et al. Corneal confocal microscopy shows an improvement in small-fiber neuropathy in subjects with type 1 diabetes on continuous...
subcutaneous insulin infusion compared with multiple daily injection. *Diabetes Care* 2015; 38: e3–e4.

57. Brines M, Dunne AN, Van Velzen M, et al. ARA 290, a non-erythropoietic peptide engineered from erythropoietin, improves metabolic control and neuropathic symptoms in patients with type 2 diabetes. *Mol Med* 2014. doi: 10.2119/molmed.2014.00215.

58. Tavakoli M, Begum P, McLaughlin J, et al. Corneal confocal microscopy for the diagnosis of diabetic autonomic neuropathy. *Muscle Nerve* 2014. doi: 10.1002/mus.24553.

59. Lauria G, Bakkers M, Schmitz C, et al. Intraepidermal nerve fiber density at the distal leg: a worldwide normative reference study. *J Peripher Nerv Syst* 2010; 15: 202–207.

60. Tavakoli M, Ferdousi M, Petropoulos I, et al. Normative values for corneal nerve morphology assessed using corneal confocal microscopy: a worldwide normative dataset. *Diabetes Care* 2015; pii: dc142311. doi: 10.2337/dc14-2311.

61. Sellers EA, Clark I, Tavakoli M, et al. The acceptability and feasibility of corneal confocal microscopy to detect early diabetic neuropathy in children: a pilot study. *Diabet Med* 2013; 30: 630–631.

62. HJiang MS, Yuan Y, Gu ZX, et al. Corneal confocal microscopy for assessment of diabetic peripheral neuropathy: a meta-analysis. *Br J Ophthalmol* 2015; pii: bjophthalmol-2014-306038. doi: 10.1136/bjophthalmol-2014-306038.