Insights into bovine endometritis with special reference to phytotherapy

Ritika Mandhwani¹, Anavil Bhardwaz², Sudarshan Kumar³, Madhu Shivhare¹ and Ranjit Aich²

1. Department of Veterinary Gynecology & Obstetrics, College of Veterinary Science, Mhow, Nanaji Deshmukh Veterinary Science University, Jabalpur-453446, Madhya Pradesh, India; 2. Department of Veterinary Biochemistry, College of Veterinary Science, Mhow, Nanaji Deshmukh Veterinary Science University, Jabalpur - 453446, Madhya Pradesh, India.

Corresponding author: Sudarshan Kumar, e-mail: drsudarshandogra@yahoo.com
Co-authors: RM: mandhwaniritika@gmail.com, AB: dranavil@gmail.com, MS: drmadhushivhare@gmail.com, RA: aich80@gmail.com

Received: 28-06-2017, Accepted: 01-12-2017, Published online: 29-12-2017
doi: 10.14202/vetworld.2017.1529-1532
How to cite this article: Mandhwani R, Bhardwaz A, Kumar S, Shivhare M, Aich R (2017) Insights into bovine endometritis with special reference to phytotherapy, Veterinary World, 10(12): 1529-1532.

Abstract

Postpartum reproductive disorders cause heavy economic losses in dairy sector. Uterine infections include endometritis, metritis, mucometra, and pyometra. Postpartum endometritis in dairy cows has been defined as inflammation of endometrium occurring 21 days or more after parturition without systemic signs of illness. The treatment of endometritis with antimicrobials has met with varying degrees of success, inconsistent recovery rate, high cost of treatment, milk disposal, emergence of microbial resistance, and reduced phagocytic activity of polymorphonuclear leukocytes. In our country, around 20,000 medicinal plant species have been recorded, but more than 500 traditional communities use about 800 plant species for curing different diseases. Many herbs such as garlic, neem, ashwagandha, and turmeric have been tried for the treatment of endometritis in cows with a good success.

Keywords: ashwagandha, bovine, endometritis, garlic, neem, phytotherapy, tulsi, turmeric.

Introduction

Postpartum reproductive disorders cause heavy economic losses in dairy sector. Uterine infections include endometritis, metritis, mucometra, and pyometra. Among all these uterine inflammatory diseases, endometritis is one of the major gynecological problems affecting reproductive efficacy and economy of milk production in dairy animals. Postpartum endometritis in dairy cows has been defined as inflammation of endometrium occurring 21 days or more after parturition without systemic signs of illness [1]. Clinically, it is characterized by the presence of pus flakes in the uterine discharge. The incidences of clinical and subclinical endometritis in crossbred cows have been reported to be 12% and 29.69%, respectively [2].

The treatment of endometritis with antimicrobials has met with varying degrees of success, inconsistent recovery rate, milk disposal, emergence of microbial resistance, and reduced phagocytic activity of polymorphonuclear leukocytes (PMN cells). The indiscriminate and prolonged use of antimicrobials in the absence of in vitro sensitivity tests has contributed to the emergence of resistant strains of bacteria [3].

Use of herbal medicine is becoming popular due to toxicity and side effects of allopathic medicine; hence, clinicians felt an urgent need to find out an alternative therapy for the treatment of uterine infections using immunomodulators and phytotherapeutic measures as a means of activation of natural defense mechanism in the uterus.

Certain plant products have been used as therapeutic agents and have recently become a subject of scientific investigations. The role of many medicinal herbs has been recognized to manage the infertility problem in the past few years. Many herbs such as garlic, neem, ashwagandha, turmeric, and tulsi have been tried for the treatment of endometritis in cows with a good success [4].

In our country, around 20,000 medicinal plant species have been recorded, but more than 500 traditional communities use about 800 plant species for curing different diseases [5].

Etiology and Pathogenesis

Uterine inflammation is a serious problem in breeding dairy cows worldwide causing considerable economic losses [6]. It is caused by microorganisms multiplying in the endometrium of the uterus. Opportunistic and pathogenic bacteria, that is, Escherichia coli, induce mainly cellular local immune response, manifested by leukocyte infiltration visible in a cytological examination. Opportunistic microorganisms in the uterus can secrete substances weakening local immune mechanisms in the endometrium allowing the inflammation to persist for a long time [7].

The bacterial agents commonly isolated from the uterus of postpartum cows are E. coli, Streptococcus spp., Trueperella pyogenes, Bacillus licheniformis, Prevotella spp., and Fusobacterium necrophorum. Studies to evaluate the appearance and odor of vaginal
mucus have shown that *T. pyogenes*, *Proteus* spp., and *E. necrophorum* are associated with purulent or mucopurulent discharge evident in the vaginal mucus while *T. pyogenes*, *E. coli*, and non-hemolytic *Streptococci* are associated with foul-smelling exudates [8].

Impaired immunity of the uterus is considered to be of a key problem in the development of postpartum uterine inflammation, which often persists for 60 days after parturition, negatively affecting reproductive parameters in cowherds [9].

The diameter of the uterine horns indicates the dynamics of uterine involution [10,11].

Diagnosis

Diagnosis can be done by transrectal palpation, vaginoscopy, ultrasonography, and endometrial biopsy, but the two most widely used methods are described.

White side test

In this test, cervical mucus is collected aseptically from the suspected animals and is boiled with an equal amount of 5% sodium hydroxide. The test is considered positive if the color turns into yellow. The intensity of color reaction depends on the number of leukocytes present in the uterine discharge.

Kumar [12] reported that the white side test had a significant positive correlation with pH, bacterial load in cervicovaginal mucus (CVM), and bacterial load in uterine flushing.

Uterine/endometrial cytology

Two methods are commonly used for uterine cytology: low-volume uterine lavage and cytobrush technique. Both the techniques are based on the percentage of neutrophils in samples obtained.

Ghasemi *et al.* [13] in their study of thirty postpartum cows (28 to 41 days in milk) without signs of clinical endometritis concluded that the endometrial cytobrush technique was successfully used to obtain material for both cytology and RNA extraction, and iIl8 gene expression may be useful to predict endometrial inflammation.

Honparkhe *et al.* [14] diagnosed subclinical endometritis in buffaloes on the basis of percentage of PMN cells (i.e., if ≥5%) in uterine cytobrush samples which was later confirmed by microbial assay and they concluded that the technique is an efficient and early diagnostic method for subclinical endometritis.

Natural Immunity: Uterine Defense Mechanism

Effective defense against reproductive tract invasion by environmental organisms is mediated by anatomical and functional barriers as well as nonspecific and specific immune responses [15]. The uterine defense mechanisms against contaminant microorganisms are maintained in several ways: anatomically, by the simple or pseudostratified columnar epithelium covering the endometrium; chemically, by mucus secretions from the endometrial glands; immunologically, through the action of polymorphonuclear inflammatory cells and humoral antibodies.

It is generally accepted that the cyclical pattern of steroid hormone concentration, characteristic for different stages of the estrous cycle, regulates the potential pathogenicity of microorganisms that contaminate the uterus postpartum. For example, the endometrium is more susceptible to infection under progesterone than estrogen dominance. Cattle are resistant to uterine infections when progesterone concentrations are basal and they are susceptible when progesterone concentrations are increased [16].

Current Therapeutic Measures

Immunomodulators

In the present scenario, parental and intrauterine treatments with various antibiotics give inconsistent results. Immunomodulators are considered as an alternative approach for treating uterine infections. These substances activate uterine defense mechanism and when infused into uterus initiate local immune system [15]. Some of the different immune modulators used in the treatment of endometritis are as follows:

- *E. coli* lipopolysaccharide
- Oyster glycogen
- Bacteria-free filtrate
- Serum, plasma, or hyperimmune serum
- Levamisole
- Leukotriene B4
- Granulocyte-macrophage colony-stimulating factor
- Human recombinant interleukin-8.

Phytotherapy

The use of herbal remedies for the treatment of livestock dates back to 5000 BC as depicted in *Nakula Samhita*, but this traditional system of medication has picked up importance in the recent years.

Garlic: Allium sativum

Historically, garlic has been used for centuries worldwide by various societies to combat infectious disease. Garlic can be provided in the form of capsules and powders as dietary supplements and thus differs from conventional foods or food ingredients. Louis Pasteur was the first to describe the antibacterial effect of onion and garlic juices. One of the active principles of freshly cut garlic homogenates is alliin, which has a variety of antimicrobial activities, and the antibiotic activity of 1 mg of alliin is equated to that of 15 IU of penicillin [17].

Sarkar *et al.* [18] evaluated the efficacy of garlic extract and prostaglandin F2α in the treatment of endometritis in cows. After treatment, there was a significant reduction in bacterial load whereas it was increased in control group. The estrual CVM turned clear in 70% animals treated with garlic extract. The overall conception rate was 50% in treated groups as compared to nil pregnancy in the control group.
Rahi [19] found 50% conception rate and 75% recovery rate of endometritis when treated with aqueous extract of garlic.

Neem: Azadirachta indica

Neem is the most commonly used traditional medicinal plant in India. Almost all parts of the neem plant are endowed with medicinal properties, and it has been demonstrated to exhibit immunomodulatory, anti-inflammatory, antifungal, antibacterial, antiviral, and antioxidant properties. Azadirachtin, found only in Azadirachta sp., is a complex triterpene. Of all of the limonoids in neem, azadirachitin and its 25 natural analogs are the most biologically active [20].

Kumar et al. [21] reported that the hydroalcoholic and hydroacetic extracts of the neem have potent immunomodulatory and therapeutic efficacy on endometritis in repeat breeding crossbred cows. In their study, a significant rise was found in total leucocyte count (TLC), PMN, and immunoglobulin concentration in both the treated groups.

Tulsi: Ocimum sanctum

O. sanctum L., known as “tulsi” in Hindi and “holy basil” in English, is an erect soft hairy aromatic herb or undershrub found throughout India. O. sanctum L. is held sacred by Hindus and is used as a medicinal plant in day-to-day practice for various ailments. In Ayurveda, tulsi has been well documented for its therapeutic potentials. Different parts of tulsi plant, for example, leaves, flowers, stem, root, and seeds, are known to possess therapeutic potentials and have been used by traditional medical practitioners as expectorant, analgesic, anticancer, antiasthmatic, antiemetic, diaphoretic, anti-diabetic, antifertility, hepatoprotective, hypotensive, hypolipidemic, antimicrobial, and antifungal activity against Aspergillus niger [22].

Eugenol is a phenolic compound and major constituent of essential oil extracted from different parts of tulsi plant. Eugenol is the most prominent phytoconstituent present in the tulsi plant, which may be responsible for antimicrobial activity [23].

Ashwagandha: Withania somnifera

Ashwagandha is an important herb in the ayurvedic and indigenous medicinal system for over 3000 years. It contains potentially active constituents such as Sitoindosides VII-X and Withaferin A. It is a sedative, diuretic, anti-inflammatory agent, is generally used for increasing energy and endurance, and acts as an adaptogen that exerts a strong immune-stimulatory and antistress effects [24].

Owis et al. [25] found the antibacterial activity of alcoholic extract made by ashwagandha roots against Salmonella typhimurium. Moreover, the extract did not induce lysis on incubation with human erythrocytes advocating their safety to the living cells.
Acknowledgments

The authors are thankful to Nanaji Deshmukh Veterinary Science University for providing infrastructural facility to review this study.

Competing Interests

The authors declared that they have no competing interests.

References

1. Sheldon, I.M., Lewis, G.S., LeBlanc, S. and Gilbert, R.O. (2006) Defining postpartum uterine disease in cattle. Theriogenology, 65: 1516-1530.
2. Pillai, V.V. (2012) Efficacy of simultaneous use of enrofloxacin and metronidazole in the treatment of endometritis in crossbred cattle - a field trial. JIVA, 10(2): 37-39.
3. Gupte, A.G. and Deopurkar, R.L. (1993) Microbiological study of gynecological infection in cattle. Indian J. Anim. Reprod., 14: 118-119.
4. Kumar, A. (2013) Evaluation of Immunomodulatory and Therapeutic Efficacy of Turmeric, Neem and Garlic on Endometritis in Repeat Breeding Crossbred Cows. M.V.Sc. Thesis (Veterinary Gynaecology and Obstetrics), G.B. Pant University of Agriculture and Technology, Pantnagar.
5. Kamboj, V.P. (2000) Herbal medicine and the mechanisms of infection and immunity in the female reproductive tract in cattle. Theriogenology, 63: 102-117.
6. Sheldon, I.M., Lewis, G.S., LeBlanc, S. and Gilbert, R.O. (2006) Defining postpartum uterine disease and the mechanisms of infection and immunity in the female reproductive tract in cattle. Reprod. Biol., 81: 1025-1032.
7. Cengić, B., Varatanović, N., Mutevelić, T., Katica, A., Mačo, N. and Ćutuk, A. (2012) Normal and abnormal uterine involution in cows monitored by ultrasound. Biotechnol. Anim. Husb., 28: 205-217.
8. Leutert, C., Suthar, V. and Heuwieser, W. (2013). Evaluation of transrectal examination of cervical diameter by palpation in dairy cows. J. Dairy Sci., 96: 1063-1070.
9. Kumar, S. (2010) Computation of Judicial Treatment of Endometritis Cows. Ph.D. Thesis (Animal Reproduction, Gynaecology and Obstetrics), Sher-e-Kashmir University of Agricultural Sciences and Technology, Jammu.
10. Ghasemi, F., Gonzalez-Canó, P., Griebel, P.J. and Palmer, C. (2012) Proinflammatory cytokine gene expression in endometrial cytobrush samples harvested from cattle with and without sub-clinical endometritis. Theriogenology, 78: 1538-1547.
11. Honparkhe, M., Ghuman, S.P.S., Singh, J., Dhinnda, S.S., Kumar, A., Chandra, M. and Brar, P.S. (2014). Diagnosing Sub-Clinical Endometritis Through Uterine Cytobrush Cytology and its Treatment with Proteolytic Enzymes in Buffaloes. In: 29th Annual Convention and National Symposium on Frontier Reproductive Biotechnologies for Enhancing Animal Fertility and Fecundity: Global perspective, 8-10, January 2014, Indian Society for Study of Animal Reproduction, Nagpur, Maharashtra. pp147.
12. Dhaliwal, G.S., Murray, R.D. and Woldehiwet, Z. (2001) Some aspects of immunology of the bovine uterus related to treatments for endometritis. Anim. Reprod. Sci., 67:135-152.
13. Leutert, C., Suthar, V. and Heuwieser, W. (2013). Evaluation of Immunomodulatory and Therapeutic Efficacy of Turmeric, Neem and Garlic on Endometritis in Repeat Breeding Crossbred Cows. M.V.Sc. Thesis (Veterinary Gynaecology and Obstetrics), G.B. Pant University of Agricultural and Technology, Pantnagar.
14. Devakumar, C. and Kumar, R. (2008) Total synthesis of Azadirachtin: A chemical odyssey. Curr. Sci. Ind., 95(5): 1-3.
15. Lewis, G.S. (2003) Steroidal regulation of uterine resistance to bacterial infection in livestock. Reprod. Biol. End., 1: 117-125.
16. Sarkar, P., Kumar, H., Rawat, M., Varshney, V.P., Goswami, T.K., Yadav, M.C. and Srivastava, S.K. (2006) Effect of administration of garlic extract and PGE2 on hormonal changes and recovery in endometritis cows. Asian. J. Anim., 19(7): 964-969.
17. Raji, S. (2011) Immunotherapeutic Effect of Ashwagandha and Garlic on Endometritis in Repeat Breeding Cows. M.V.Sc. Thesis (Veterinary Gynaecology and Obstetrics), G.B. Pant University of Agricultural Sciences and Technology, Pantnagar.
18. Singh, S. (2016) Phytotherapeutic Measures for Endometritis in Crossbred Cows. M.V.Sc. Thesis (Veterinary Gynaecology and Obstetrics), G.B. Pant University of Agricultural Sciences and Technology, Pantnagar.