Non-forward Balitsky-Kovchegov equation and Vector Mesons

Robi Peschanski1, Cyrille Marquet2 and Gregory Soyez3

1- Service de Physique Théorique - CEA/Saclay, 91191 Gif-sur-Yvette Cedex, FRANCE
2- RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973, USA
3- Physics Department, Brookhaven National Laboratory, Upton, NY 11973, USA

Considering the Balitsky-Kovchegov QCD evolution equation in full momentum space, we derive the travelling wave solutions expressing the nonlinear saturation constraints on the dipole scattering amplitude at non-zero momentum transfer. A phenomenological application to elastic vector meson production shows the compatibility of data with the QCD prediction: an enhanced saturation scale at intermediate momentum transfer.

1 Motivation

The saturation of parton densities at high energy has been mainly studied for the forward dipole-target scattering amplitude $T(r, q = 0, Y)$, where r, q, Y are, respectively, the dipole size, the momentum transfer and the total rapidity of the process. For instance, the corresponding QCD Balitsky-Kovchegov (BK) equation \cite{BK} has been shown to provide a theoretical insight on the “geometric scaling” properties \cite{geometric} of the related $\gamma^*\text{-proton}$ cross-sections. Indeed, it can be related to the existence of a scaling for $T(r, q = 0, Y) \sim T(r^2 Q^2(Y))$ where the saturation scale is $Q^2(Y) \sim \exp{cY}$ and the constant c can be interpreted as the critical speed of “travelling wave” solutions of the nonlinear BK equation \cite{travelling}. Our theoretical and phenomenological subjects are the extension of these properties to the non-forward amplitude $T(r, q \neq 0, Y)$, which is phenomenologically relevant for the elastic production of vector mesons in deep inelastic scattering.

2 BK equation in full momentum space

In order to study the properties of $T(r, q \neq 0, Y)$, one has first to deal with both conceptual and technical difficulties. It is known that the BK formalism has been originally derived in impact parameter b but then its validity especially at large b is questionable, since it leads to non physical power-law tails. Hence we start with the formulation of the BK equation in momentum q, which is more local but has a non-trivial nonlinear form \cite{local}. In fact, despite this problem, the general method of travelling wave solutions can be extended in the non-forward domain \cite{extended}. It consists in 3 steps: first, one solves the equation restricted to its linear
part which is related to the non-forward Balitsky Fadin Kuraev Lipatov (BFKL) equation \cite{7} for the dipole-dipole amplitude via factorisation and whose solution takes the form of a linear superposition of waves. Second, one finds that the nonlinearities act by selecting the travelling wave with critical speed c, in a way which, interestingly, is independent of the specific structure of the nonlinear damping terms. Third, one obtains after enough rapidity evolution, a solution which appears independent from initial conditions ($T_0 \sim r^{2\gamma_c}$), provided these are sharper than the critical travelling wave front profile $T \sim r^{2\gamma_c}$, with $\gamma_0 > \gamma_c$. Interestingly enough, QCD color transparency satisfies this criterium. Applying these general results on the non-forward case one finds the following QCD predictions, depending on the relative magnitude of three scales involved in the process, namely q, k_T^{-1} (the target size) and $k_P^{-1} \equiv r$ (the projectile i.e. dipole size).

- Near-Forward region $q \ll k_T \ll k_P$: $Q_s^2(Y) \sim k_T^2 \exp cY$
- Intermediate transfer region $k_T \ll q \ll k_P$: $Q_s^2(Y) \sim q^2 \exp cY$
- High transfer region $q \ll k_T \ll k_P$: No saturation.

Our main prediction is thus the validity of the forward travelling wave solution extended in the non-forward intermediate-transfer domain but with an enhanced saturation scale by the ratio q^2/k_T^2, where k_T is a typically small, nonperturbative scale. Hence we are led to predict geometric scaling properties with a purely perturbative initial saturation scale given by the transverse momentum. This saturation scale enhancement prediction is confirmed by numerical simulations of the BK solutions as shown in Fig.1.

3 QCD Saturation Model for Exclusive VM production

The differential cross-section for exclusive vector meson (VM) production at HERA, see Fig.2, can be theoretically obtained from the non-forward dipole-proton amplitude and from $\Phi_{V, T, L}^\gamma$, the overlap functions between the (longitudinal and transverse) virtual photon and

Figure 2: ρ (H1) and ϕ (ZEUS) differential cross-sections at $W = 75$ GeV
vector meson wave-functions [8]. For completion, we used two different VM wave-functions of the literature, without noticeable difference in our conclusions. One writes

\[
\frac{d\sigma_{T,L}^{\gamma^* p \rightarrow Vp}}{dq^2} = \frac{1}{16\pi} \left| \int d^2r \int_0^1 dz \, \Phi_{T,L}^V(z,r;Q^2,M_V^2) \, e^{-izq \cdot r} \, T(r,q,Y) \right|^2 ,
\]

Following theoretical prescriptions, we consider a forward dipole-proton amplitude \(\mathcal{N}_{11M} \) satisfactorily describing the total DIS cross-sections in a saturation model [9]. We just make the saturation scale varying with \(q^2 \), following the trend shown in Fig.1 and starting from the forward model one \(Q^2_s(Y) \), one writes

\[
T(r,q,Y) = 2\pi R_p^2 e^{-Bq^2} \mathcal{N}_{11M}(r^2 Q^2_s(Y,q)) ; \quad Q^2_s(q,Y) = Q^2_s(Y) (1 + c q^2) .
\]

The factor \(2\pi R_p^2 e^{-Bq^2} \) comes from the non-perturbative proton form factor. For clarity of the analysis, we considered only \(B \) and \(c \) as free parameters of the non-forward parametrisations, the others being independently fixed by the forward analysis.

In Table 1 one displays the \(\chi^2/\text{points} \) obtained by a fit of \(\rho \) (47 data points) and \(\phi \) (34 points) total elastic production cross-sections and of \(\rho \) (50 data points) and \(\phi \) (70 points) differential cross-sections. The Table compares the saturation fits for fixed and \(q^2 \)-dependent scales, with a favour for the enhanced-scale model in the total. The model gives a comparable fit with a more conventional non-saturation model using a \(Q^2 \)-dependent slope \(B \propto M_V^2 + Q^2 \). Some of our results for the cross-sections are displayed in the figures. In Fig.2 one shows the results of the fit for \(\rho \)-production (H1) and \(\phi \)-production (ZEUS) differential cross-sections for a total \(\gamma^* - p \) energy \(W = 75 \text{GeV} \) and different \(Q^2 \) values. Let us finally present our predictions for the

Cross-sections	\(q^2 \)-Sat.	fixed-Sat.
\(\rho \), \(\sigma_{el} \)	1.156	1.732
\(\rho \), \(\frac{d\sigma}{dt} \)	1.382	1.489
\(\phi \), \(\sigma_{el} \)	1.322	2.247
\(\phi \), \(\frac{d\sigma}{dt} \)	1.076	0.931
Total	1.212	1.480

Table 1: Comparison of the \(\chi^2/\text{points} \)
DVCS cross-section, which is obtained without any free parameter from our analysis. In Fig. 3, they are compared with the available data and the agreement is good in the simple chosen parametrisation.

4 Conclusions

Let us summarize our new results

- **Saturation at non-zero transfer**: The Balitsky-Kovchegov QCD evolution equation involving full momentum transfer predicts (besides the known $q = 0$ case) saturation in the *intermediate* transfer range, namely for $Q_0 < q < Q$, where Q_0 (resp. Q) is the target (resp. projectile) typical scale.
 - **Characterisation of the universality class**: The universality class of the corresponding travelling-wave solutions is governed by a purely perturbative saturation scale $Q_s(Y) \equiv q^2 \Omega(Y)$, where $\Omega(Y) \sim e^{cY}$ is the same rapidity evolution factor as in the forward case. Consequently the *intermediate transfer* saturation scale gets enhanced by a factor q^2/Q_0^2.
 - **Phenomenology of Vector mesons**: The QCD predictions are applied in the experimentally accessible *intermediate transfer* range of vector meson production. The model uses an interpolation between the forward and non-forward saturation scale together with a parameter-frozen forward saturation model. It fits better the data on ρ (H1) and ϕ (ZEUS) cross-sections than for a non-enhanced saturation.
 - **Prospects**: The next phenomenological prospect is to add charm to the discussion, both with the modification of the forward case by including the charm contribution [10] and by also considering the production of Ψ mesons. On a theoretical ground, it would be interesting to go beyond the mean-field approximation of the BK equation.

References

[1] Slides: http://indico.cern.ch/contributionDisplay.py?contribId=75&sessionId=7&confId=9499
[2] I. Balitsky, *Nucl. Phys. B463* (1996) 99; *Phys. Lett. B518* (2001) 235;
Yu.V. Kovchegov, *Phys. Rev. D60* (1999) 034008; *Phys. Rev. D61* (2000) 074018.
[3] A.M. Stasto, K. Golec-Biernat and J. Kwiecinski, *Phys. Rev. Lett.* 86 (2001) 596;
C. Marquet and L. Schoeffel, *Phys. Lett.* B639 (2006) 471.
[4] S. Munier and R. Peschanski, *Phys. Rev. Lett.* 91 (2003) 232001; *Phys. Rev. D69* (2004) 034008; D70 (2004) 077503.
[5] C. Marquet and G. Soyez, *Nucl. Phys. A760* (2005) 208.
[6] C. Marquet, R. Peschanski and G. Soyez, *Nucl. Phys. A756* (2005) 399.
[7] L. N. Lipatov, Sov. Phys. JETP 63, 904 (1986) [Zh. Eksp. Teor. Fiz. 90, 1536 (1986)].
[8] C. Marquet, R. Peschanski and G. Soyez, Exclusive vector meson production at HERA from QCD with saturation, [hep-ph/0702171](http://arxiv.org/abs/hep-ph/0702171).
[9] E. Iancu, K. Itakura and S. Munier, *Phys. Lett.* B590 (2004) 199.
[10] K. Golec-Biernat and S. Sapeta, *Phys. Rev.* D74 (2006) 054032;
H. Kowalski, L. Motyka and G. Watt, *Phys. Rev.* D74 (2006) 074016;
G. Soyez, Saturation QCD predictions with heavy quarks at HERA, arXiv:0705.3672.

DIS 2007