Supplementary Online Content

Baye K, Hirvonen K. Evaluation of linear growth at higher altitudes. *JAMA Pediatr.* Published online August 24, 2020. doi:10.1001/jamapediatrics.2020.2386

eTable 1. Demographic and Health Survey Data
eTable 2. Summary Statistics, Full Sample
eFigure 1. Distribution of the Demographic Health Survey (DHS) Sample by Altitude
eAppendix 1. Immediate Causes of Undernutrition: Inadequate Dietary Intake and Disease
eTable 3. Measures of Inadequate Dietary Indicators
eFigure 2. The Number of People (in Millions) Residing Above 1,500 masl
eTable 4. Number of People (in Millions) Residing in ≥1,500 masl in 2010, by Region
eTable 5. Associations Between Altitude and Immediate Causes of Child Undernutrition
eAppendix 2. Ideal Home Environments
eTable 6. Number of Children Residing in Ideal Home Environment, by Country
eFigure 3. Kernel-Density Plot of the HAZ Distribution of Children Residing in the Ideal Home Environment Sample Compared With the WHO-2006 HAZ (Standard Normal) Distribution
eFigure 4. Distribution of the 'Ideal Home Environment' Sample by Altitude
eAppendix 3. Robustness to Using Binary Altitude Variable
eTable 7. Replicating Table 1 Using a Binary Altitude Variable That Obtains Value 1 if the Cluster Is Above 1,500 Meters and Zero Otherwise
eAppendix 4. Robustness to Controlling for Climate Factors
eTable 8. Regression Results for the (Unadjusted and Adjusted) Association Between Altitude and HAZ, After Controlling for Differences in Climatic Factors (Temperature and Rainfall)
eAppendix 5. Robustness to Controlling for Maternal Stature
eTable 9. Regression Results for the (Unadjusted and Adjusted) Association Between Altitude and HAZ, After Controlling for Differences in Maternal Height
eAppendix 6. Robustness to Restricting the Sample to Children Whose Mother Had Lived in the Same Location at Least Since the Conception
eTable 10. Regression Results for the (Unadjusted and Adjusted) Association Between Altitude and HAZ, After Restricting the Sample to Children Who Have Lived in the Same Location at Least Since the Conception
eAppendix 7. Robustness to Omitting Low Altitude Countries From the Sample
eTable 11. Regression Results for the (Unadjusted and Adjusted) Association Between Altitude and HAZ, After Restricting the Sample to Countries That Have Clusters Above 1,500 masl
eAppendix 8. Robustness to Excluding Each Country Individually From the Sample
eTable 12. Regression Results for the Adjusted Association Between Altitude and HAZ, Excluding Each Country Individually From the Sample
eAppendix 9. Robustness to Using Stunting as the Outcome Variable
eFigure 5. Stunting-Age Trajectories in <1,500 masl and ≥1,500 masl (N = 964,299)
eTable 13. Regression Results for the (Unadjusted and Adjusted) Association Between Altitude and Stunting (HAZ<-2)
eReferences

This supplementary material has been provided by the authors to give readers additional information about their work.
eTable 1: Demographic and Health Survey data: List of countries used in the analysis, sample sizes and altitude ranges by country

Country	Timing of the survey:	Sample size	Altitude:			
	First interview year	Last interview year		mean	minimum	maximum
Albania	2008	2009	1,452	432	-2	1,606
	2017	2018	2,446	293	-3	1,667
Angola	2015	2016	6,359	861	4	2,068
	2015	2016	1,581	1,286	537	2,331
Azerbaijan	2006	2006	3,815	281	-27	1,850
Bangladesh	1999	2000	5,427	18	2	247
	2004	2004	5,978	15	2	167
	2007	2007	5,349	14	2	137
	2011	2011	7,740	16	1	247
Benin	1996	1996	2,609	181	1	510
	2001	2001	4,463	159	1	540
	2011	2012	10,110	157	1	622
Bolivia	2008	2008	7,751	2,240	104	4,740
Burkina Faso	1993	1993	4,497	314	215	551
	1998	1999	4,582	306	221	521
	2003	2003	8,467	309	189	524
	2010	2010	6,259	308	203	559
	2010	2010	3,469	1,492	716	2,271
Burundi	2016	2017	6,019	1,511	775	2,572
	2000	2000	3,669	45	1	733
	2005	2005	3,569	51	3	733
	2010	2010	3,726	52	3	733
	2014	2014	4,317	49	-9	752
	2004	2004	3,250	676	13	2,011
	2011	2011	5,113	669	12	2,351
Central African Republic	1994	1995	2,389	521	357	1,063
	2014	2015	20,016	420	217	1,712
	2010	2010	15,714	772	-1	3,533
	2012	2012	2,439	428	12	1,610
Congo Democratic Republic	2007	2007	3,312	760	14	2,482
	2013	2014	8,195	700	12	2,422
	1994	1994	3,471	208	3	672
	1998	1999	1,569	185	3	612
	2011	2012	3,146	245	2	669
Dominican Republic	2007	2007	9,393	206	-37	1,598
	2013	2013	3,224	178	-12	1,538
Egypt	1992	1992	7,589	33	-43	273
	1995	1995	10,632	45	-41	444

© 2020 American Medical Association. All rights reserved. 2
Country	Year1	Year2	Cases	Deaths	Deaths	Deaths
Egypt	2000	2000	10,553	42	-24	1,885
Egypt	2003	2003	5,346	36	-41	302
Egypt	2005	2005	12,218	42	-41	881
Egypt	2008	2008	9,839	39	-49	1,885
Ethiopia	2000	2000	8,824	1,806	185	3,425
Ethiopia	2005	2005	3,913	1,797	185	3,470
Ethiopia	2011	2011	9,397	1,628	-52	3,417
Ethiopia	2016	2016	8,855	1,584	180	3,455
Gabon	2012	2012	3,396	260	6	770
Ghana	1993	1993	1,931	172	-3	530
Ghana	1998	1998	2,796	180	0	601
Ghana	2003	2003	3,139	183	-3	530
Ghana	2008	2008	2,394	178	1	464
Ghana	2014	2014	2,670	172	1	556
Guatemala	2014	2015	11,744	1,208	5	3,331
Guinea	1999	1999	4,504	387	3	1,172
Guinea	2005	2005	2,651	441	3	1,131
Guinea	2012	2012	3,175	441	3	1,279
Guyana	2009	2009	1,562	85	1	925
Haiti	2000	2000	5,568	329	7	1,569
Haiti	2005	2006	2,499	319	4	1,788
Haiti	2012	2012	3,972	336	7	1,569
Haiti	2016	2017	5,613	293	2	1,607
Honduras	2011	2012	9,824	672	4	1,941
India	2015	2016	231,951	371	-4	5,951
Jordan	2002	2002	4,884	729	-372	1,560
Jordan	2007	2007	4,570	752	-372	1,560
Jordan	2012	2012	6,309	745	-372	1,560
Kenya	2003	2003	4,779	1,345	1	2,929
Kenya	2008	2009	5,191	1,218	3	3,560
Kyrgyz Republic	2012	2012	4,010	1,307	540	3,401
Lesotho	2004	2004	1,327	1,998	1,458	2,821
Lesotho	2009	2010	1,622	2,010	1,491	3,059
Lesotho	2014	2014	1,312	1,910	1,452	2,315
Liberia	2007	2007	4,374	137	6	682
Liberia	2013	2013	3,214	158	6	571
Madagascar	1997	1997	3,052	620	2	2,028
Madagascar	2008	2009	5,148	618	2	1,970
Malawi	2000	2000	9,411	841	49	1,833
Malawi	2004	2004	8,312	851	39	1,833
Malawi	2010	2010	4,612	839	36	1,795
Malawi	2015	2016	5,149	820	43	1,762
Mali	1995	1996	4,292	313	44	542
Mali	2005	2005	1,340	131	20	266
Mali	2012	2013	4,450	318	39	604
Moldova	2005	2005	1,340	131	20	266
Morocco	2003	2004	5,570	512	1	2,635
Country	Start Year	End Year	Start Population	End Population	Change	Matched Cases
--------------	------------	----------	------------------	----------------	--------	---------------
Mozambique	2011	2011	9,505	314	4	1,544
Myanmar	2015	2016	4,177	291	-7	1,800
Namibia	2000	2000	2,998	1,132	4	1,783
Namibia	2006	2007	3,686	1,151	4	1,965
Namibia	2013	2013	1,837	1,107	4	1,921
Nepal	2001	2001	6,216	825	64	4,416
Nepal	2006	2006	5,268	876	64	4,864
Nepal	2011	2011	2,346	907	65	3,203
Nepal	2016	2016	2,372	713	68	3,110
Niger	1998	1998	3,910	328	172	703
Nigeria	1990	1990	5,942	283	4	1,411
Nigeria	2003	2003	4,527	338	4	1,264
Nigeria	2008	2008	20,590	333	1	3,884
Nigeria	2013	2013	25,267	312	3	1,552
Pakistan	2017	2018	4,139	726	2	5,209
Peru	2000	2000	11,666	1,801	1	4,814
Peru	2003	2008	10,471	1,540	1	4,814
Peru	2009	2009	9,391	1,633	1	4,679
Rwanda	2005	2005	3,664	1,732	1,045	2,522
Rwanda	2010	2010	4,104	1,719	1,045	3,193
Rwanda	2014	2015	3,563	1,705	951	2,768
Senegal	1992	1993	4,598	29	3	257
Senegal	2005	2005	2,805	31	2	256
Senegal	2010	2011	3,723	33	3	257
Senegal	2012	2013	5,988	36	3	257
Sierra Leone	2008	2008	2,165	175	4	715
Sierra Leone	2013	2013	4,324	148	3	690
South Africa	2016	2016	4,113	994	13	1,764
Swaziland	2006	2007	2,029	683	111	1,429
Tajikistan	2012	2012	4,418	1,110	338	4,393
Tajikistan	2017	2017	5,881	906	298	3,875
Tanzania	1999	1999	2,511	790	13	2,148
Tanzania	2010	2010	6,629	897	4	2,509
Tanzania	2015	2016	9,901	961	6	2,602
Timor-Leste	2009	2010	7,810	537	3	1,995
Timor-Leste	2016	2016	5,909	473	-1	2,179
Togo	1998	1998	3,711	228	2	767
Uganda	2000	2001	5,201	1,285	628	3,573
Uganda	2006	2006	2,392	1,214	626	2,406
Uganda	2011	2011	2,065	1,193	625	2,310
Uganda	2016	2016	4,423	1,199	615	2,357
Yemen	2013	2013	13,624	1,402	1	3,091
Zambia	2007	2007	5,220	1,161	422	1,698
Zambia	2013	2014	11,576	1,171	372	1,698
Zimbabwe	1999	1999	2,680	1,082	413	1,595
Zimbabwe	2005	2006	4,012	1,051	330	1,761
Zimbabwe	2010	2011	4,213	1,082	383	1,857
Zimbabwe	2015	2015	4,957	1,101	229	1,754

aAll DHS surveys used in the analysis and shows the first and last interview year, the sample size (number of children under 5 for which height was recorded) and mean, minimum and maximum altitude.
eTable 2: Summary statistics, full sample

	N	mean	std. dev.	min	max
Locational characteristics:					
Altitude (in 1,000 masl) of the cluster	964,299	0.60	0.72	-0.37	5.95
Rural area (0/1)	964,299	0.70	0.46	0	1
Child’s characteristics:					
Height-for-age z-score	964,299	-1.41	1.74	-6	6
Age of child in months	964,299	28.65	17.17	0	59
Child is a boy (0/1)	964,299	0.51	0.50	0	1
Mother’s characteristics:					
Mother’s age in years	964,299	28.43	6.49	13	49
Mother’s education in single years	950,373	4.87	4.78	0	27
Water and sanitation:					
Improved water (piped, tube well & bottled/sachet) (0/1)	964,299	0.66	0.47	0	1
Improved latrine (flush toilet) (0/1)	964,299	0.29	0.45	0	1
Household wealth:					
Has electricity (0/1)	944,331	0.53	0.50	0	1
Has radio (0/1)	956,573	0.45	0.50	0	1
Has TV (0/1)	956,564	0.43	0.49	0	1
Has refrigerator (0/1)	920,687	0.23	0.42	0	1
Has bicycle (0/1)	940,054	0.34	0.47	0	1
Has motorcycle (0/1)	916,354	0.20	0.40	0	1
Has car (0/1)	912,985	0.07	0.26	0	1
Has improved floor material (0/1)	954,954	0.45	0.50	0	1

Note: (0/1) = binary variable.
eFigure 1: Distribution of the Demographic Health Survey (DHS) sample by altitude

Note: Data are number of children. Most children in the DHS sample reside below 500 masl while 106,441 children (11% of the full sample) reside above 1,500 masl. N = 964,299
Appendix 1: Immediate causes of undernutrition: inadequate dietary intake and disease

Inadequate dietary intake and disease are considered as the immediate causes of child undernutrition. As measures of inadequate dietary intake, we used exclusive breastfeeding (0–6 month old children), dietary diversity (6–23 m), and minimum meal frequency diet (6–23 m) as dependent variables. These dietary indicators were calculated following WHO guidelines: see eTable 3. Questions about child's dietary diversity were introduced in DHS phase–5 (roughly mid-2000s) and therefore the sample for this indicator is restricted to surveys that were based on phase 5 or a later questionnaire. Dietary diversity is based on caregiver's responses to yes/no questions about child's consumption of different food items in the last 24 hours. These food items are then grouped into seven food groups based on their nutritional qualities. A child who consumed from all seven food groups received a score 7, and a child that consumed only from one food group receives a score 1, and so on. These indicators were developed and validated to proxy diet quality and energy intake in children and have been consistently associated with child growth. To date, they are the best, mutually comparable, indicators recommended by the WHO that are available for almost all LMIC with a DHS.

To measure disease risk, we used incidence of diarrhoea, fever or cough in the 2 weeks preceding the interview. DHS data collect these data for all children 0–59 m.
eTable 3: Measures of inadequate dietary indicators

Indicator name	Definition
Exclusive breastfeeding under 6 months	Proportion of infants 0–5 months of age who are fed exclusively with breast milk.
Minimum dietary diversity	Proportion of children 6–23 months of age who receive foods from 4 or more food groups.
Minimum meal frequency	Proportion of breastfed and non-breastfed children 6–23 months of age who receive solid, semisolid, or soft foods (but also including milk feeds for non-breastfed children) the minimum number of times or more.

Source: WHO \(^3\).
eFigure 2: The number of people (in millions) residing above 1,500 masl

The map is based on Center for International Earth Science Information Network (CIESIN, Columbia University) data on population disaggregated by altitude. Countries with large populations residing above 1,500 masl are mainly located in Asia, sub-Saharan Africa and South and Central America.
eTable 4: Number of people (in millions) residing in ≥1,500 masl in 2010, by region

Region	N	%
World total	841.6	100%
Africa	287.5	34%
Eastern Africa	217.7	26%
Middle Africa	29.8	3.5%
Northern Africa	8.3	1.0%
Southern Africa	29.4	3.5%
Western Africa	2.2	0.3%
Americas	164.6	20%
Caribbean	1.2	0.1%
Central America	83.5	10%
Northern America	15.2	1.8%
South America	64.8	7.7%
Asia	375.6	45%
Central Asia	7.7	0.9%
Eastern Asia	177.9	21%
South-Eastern Asia	15.7	1.9%
Southern Asia	129.1	15%
Western Asia	45.2	5.4%
Europe	11.1	1.3%
Eastern Europe	3.1	0.4%
Northern Europe	0.1	0.0%
Southern Europe	5.4	0.6%
Western Europe	2.5	0.3%
Oceania	2.8	0.3%
Australia + New Zealand	0.1	0.0%
Melanesia	2.7	0.3%
Micronesia	0	0.0%
Polynesia	0	0.0%

High altitude populations are concentrated in East-Africa (26 %), Central and South America (18 %), and East and South Asia (36 %).

Source: Center for International Earth Science Information Network - CIESIN - Columbia University
eTable 5: Associations between altitude and immediate causes of child undernutrition

Dependent variable: child was exclusively breastfed	unadjusted	adjusted
age range: 0-6 mo	1.295***	1.023
	[1.188,1.410]	[0.932,1.122]
N = 78,234	N = 69,986	

Dependent variable: child achieved minimum dietary diversity	unadjusted	adjusted
age range: 6-23 mo	1.259***	0.975
	[1.124,1.411]	[0.924,1.030]
N = 234,547	N = 219,339	

Dependent variable: child achieved minimum meal frequency	unadjusted	adjusted
age range: 6-23 mo	1.382***	1.041
	[1.179,1.619]	[0.988,1.098]
N = 242,125	N = 213,990	

Dependent variable: child had diarrhoea	unadjusted	adjusted
age range: 0-59 mo	1.132***	0.916***
	[1.077,1.189]	[0.870,0.964]
N = 962,450	N = 848,942	

Dependent variable: child had fever	unadjusted	adjusted
age range: 0-59 mo	1.025	0.925***
	[0.964,1.090]	[0.886,0.965]
N = 954,544	N = 841,063	

Dependent variable: child had cough	unadjusted	adjusted
age range: 0-59 mo	1.178***	0.927***
	[1.101,1.261]	[0.891,0.965]
N = 962,381	N = 848,895	

Data are odds ratios from a logistic regression. The 95% confidence intervals (CI) are reported in brackets. Statistical significance denoted at * p < 0.05, ** p < 0.01, *** p < 0.001. The estimates in 'adjusted' column are based on adjusted regression that controls for child age (set of binary variables for each age-in-month) and sex, maternal age and education, household wealth and access to improved water and sanitation, binary variable capturing rural areas, and binary indicator variables capturing subnational regions (highest administrative unit in each country).
Appendix 2: Ideal Home Environments

To assess the validity of the WHO growth standards, Karra, Subramanian, Fink used DHS data from 63 countries (169 surveys) to identify children living in environments in which they were more likely to achieve their full genetic growth potential. The authors used six criteria for an 'Ideal home environment':

1) Children were single births;
2) Access to safe water and sanitation;
3) Household lived in a house with finished floors, owned a television, and a car;
4) Children were born to highly educated mothers (more than 13 years of schooling);
5) Children were born in hospitals; and
6) Children had received Bacillus Calmette–Guérin, first diphtheria, pertussis, and tetanus vaccinations.

Out of 878,249 children less than 5 years of age with recorded height in DHS surveys between 1990 and 2014, Karra et al identified 1,006 children who lived in ideal home environments. The authors then compared the height-for-age Z-score distribution of this sample of 1,006 children to the WHO growth standard. Children living in ideal home environments had very similar HAZ scores than the WHO reference sample (see eFigure 3 below). The mean HAZ score in the WHO reference sample is, by construction, 0 with SD = 1. The mean HAZ score in the ideal home environment sample was estimated as 0.043, not statistically different from zero (95% CI: -0.039; 0.125).

We replicated this analysis using updated DHS data until 2017. We restricted the sample to surveys that recorded altitude from 128 surveys administered in 55 countries that recorded altitude of the cluster. Out of 921,665 children, we identified 1,718 children (0.19%) who resided in an 'ideal home environment' as defined by Karra et al. eTable 6 shows the geographical distribution of these children. The empirical HAZ distribution of the children residing in ideal home environments (green solid line) is similar to the distribution of the WHO reference population (standard normal by construction). Using linear regression and controlling for country-year fixed effects, the mean was estimated as -0.091 (SD: 1.436, 95% CI: -0.163; -0.020). This mean is statistically different from zero at 95%-level, and lower what was estimated by Karra et al. Figure 4 in the main text suggest that HAZ<0 is driven by children residing at higher altitudes.

Finally, eFigure 4 below shows that, in line with the full DHS sample (see eFigure 1 above), more than half of the children living in ideal home environments were found residing below 500 masl.
eTable 6: Number of children residing in ideal home environment, by country

Country	N	%
Albania	34	1.98
Colombia	40	2.33
Congo Democratic Republic	5	0.29
Dominican Republic	356	20.72
Egypt	13	0.76
Ethiopia	1	0.06
Ghana	26	1.51
Guyana	5	0.29
Haiti	19	1.11
Honduras	112	6.52
India	149	8.67
Jordan	713	41.5
Kenya	14	0.81
Moldova	5	0.29
Morocco	6	0.35
Mozambique	1	0.06
Namibia	2	0.12
Nigeria	174	10.13
Peru	15	0.87
Sierra Leone	2	0.12
Tanzania	4	0.23
Timor-Leste	17	0.99
Uganda	3	0.17
Zambia	2	0.12
Total	**1,718**	**100**
eFigure 3: Kernel-density plot of the HAZ distribution of children residing in the ideal home environment sample compared with the WHO-2006 HAZ (standard normal) distribution

Note: N = 1,718; mean HAZ: -0.091 (SD: 1.503, 95%-CI: -0.163; -0.020).
eFigure 4: Distribution of the 'ideal home environment' sample by altitude

Note: N = 1,718.
eAppendix 3: Robustness to using binary altitude variable

In the main text, we used continuous altitude (in 1,000—masl) measure in our multivariable regression models (Table 1). This was motivated by the finding in Figure 2 according to which the relationship between altitude and HAZ was approximately linear through most part of the altitude distribution indicating no clear altitude threshold for rapid fall in HAZ. Consequently, the use of binary indicator would not be advised from a statistical point of view because it results in a loss of useful information and statistical power. However, our regression results are robust to measuring altitude using a binary variable that obtains value 1 if the cluster in which the child is located is $\geq 1,500$ meters and zero otherwise. According to the adjusted regression coefficient reported in eTable 7, high altitude (i.e., $\geq 1,500$ masl) residence is associated with a 0.179 (95%-CI: -0.235, to -0.123) unit lower child HAZ compared to low altitude residence (i.e., $<1,500$ masl), after adjusting for common risk factors.
eTable 7: Replicating Table 1 using a binary altitude variable that obtains value 1 if the cluster is above 1,500 meters and zero otherwise

Age range: 0–59 months		
	Unadjusted	Adjusted
Above 1,500 altitude	-0.286***	-0.179***
	[-0.386,-0.186]	[-0.235,-0.123]
N=964,299	N=850,681	

Age range: 0–5 months		
	Unadjusted	Adjusted
Above 1,500 altitude	-0.271***	-0.252***
	[-0.369,-0.173]	[-0.339,-0.164]
N=98,472	N=86,680	

Age range: 6–11 months		
	Unadjusted	Adjusted
Above 1,500 altitude	-0.276***	-0.207***
	[-0.395,-0.157]	[-0.290,-0.123]
N=105,197	N=93,354	

Age range: 12–23 months		
	Unadjusted	Adjusted
Above 1,500 altitude	-0.282***	-0.170***
	[-0.399,-0.164]	[-0.243,-0.096]
N=200,286	N=177,232	

Age range: 24–59 months		
	Unadjusted	Adjusted
Above 1,500 altitude	-0.291***	-0.164***
	[-0.394,-0.189]	[-0.220,-0.107]
N=560,344	N=493,415	

Data are regression coefficient with 95% CIs in brackets. Statistical significance denoted at * p < 0.05, ** p <0.01, *** p < 0.001. The estimates in 'unadjusted' column are based on unadjusted regression. The estimates in 'adjusted' column are based on adjusted regression that controls for child age (set of binary variables for each month) and sex, maternal age and education, household wealth and access to improved water and sanitation, binary variable capturing rural areas, and subnational region (highest administrative unit in each country) fixed effects.
eAppendix 4: Robustness to controlling for climate factors

Temperature and precipitation patterns differ in low and high altitude locations. For example, as altitude increases, average temperatures decrease. Our sub-national region fixed effects control for differences in climatic (and other) factors between sub-national regions. This leaves the possibility that climatic factors within sub-national regions are driving the association altitude and HAZ. To assess this possibility, we added additional controls to our main regression: average annual rainfall (in mm) in the cluster in 1981-2010 and average annual temperature (in C) in the cluster in 1981-2010. These climatic variables were calculated using University of East Anglia's (UEA) Climatic Research Unit (CRU) monthly climate data and linked to the DHS data using GPS coordinates. These climate data could not be linked to all surveys or DHS clusters because of missing GPS coordinates. As a result, we lose 6.5 percent of the sample. As shown in eTable 8, the results remained remarkably robust indicating that the association between altitude and child HAZ was not driven by differences in climatic factors in low and high altitude locations – if anything the association gets stronger in absolute terms when we control for differences in climatic factors.
eTable 8: Regression results for the (unadjusted and adjusted) association between altitude and HAZ, after controlling for differences in climatic factors (temperature and rainfall)

Age Range	Unadjusted	Adjusted
Altitude (1,000 masl)		
0–59 months	-0.130***	-0.207***
[0.182, 0.0775]	[-0.248, 0.166]	
N = 901,586	N = 804,979	
0–5 months	-0.113***	-0.196***
[-0.160, 0.0657]	[-0.271, 0.120]	
N = 92,157	N = 82,144	
6–11 months	-0.142***	-0.244***
[-0.197, 0.0867]	[-0.313, 0.176]	
N = 98,725	N = 88,588	
12–23 months	-0.142***	-0.231***
[-0.200, 0.0846]	[-0.276, 0.187]	
N = 187,702	N = 168,083	
24–59 months	-0.126***	-0.193***
[-0.182, 0.0698]	[-0.243, 0.144]	
N = 523,002	N = 466,164	

Data are regression coefficient with 95% CIs in brackets. Statistical significance denoted at * p < 0.05, ** p < 0.01, *** p < 0.001. The estimates in 'unadjusted' column are based on unadjusted regression. The estimates in 'adjusted' column are based on adjusted regression that controls for child age (set of binary variables for each month) and sex, maternal age and education, household wealth and access to improved water and sanitation, binary variable capturing rural areas, and subnational region (highest administrative unit in each country) fixed effects. Additional controls include average annual rainfall (in mm) in the cluster in 1981-2010 and average annual temperature (in C) in the cluster in 1981-2010. The sample is restricted to DHS surveys for which climate data could be linked to.
eAppendix 5: Robustness to controlling for maternal stature

Low maternal height is found to be a risk factor for linear growth faltering and adverse birth outcomes. It is possible that differences in maternal height could be a confounding factor that explains differences in child height between low and high altitude locations. However, maternal height captures both genetic and non-genetic factors. Controlling for genetic differences between low and high altitude locations is desirable but if maternal height was influenced by the environment (i.e., altitude) in which the mother herself grew up, then it is not clear whether we should control for maternal height in the multivariable regression model. More generally, including variables that could be considered themselves as outcome variables are labelled as 'bad controls' in the statistics literature because their inclusion blurs the interpretation of the coefficient on the main independent variable (here: altitude) (see Angrist and Pischke 2009, p. 64-68).

Mindful of this conceptual ambiguity, we did not include maternal height as a control variable in the multivariable regression model reported in the main text. To explore sensitivity in this regard, we re-estimated the top panel of Table 1 ('All children') by adding maternal height to the regression model. eTable 9 shows that estimated coefficients were similar to those reported in Table 1 of the main text.
eTable 9: Regression results for the (unadjusted and adjusted) association between altitude and HAZ, after controlling for differences in maternal height

Age Range	Unadjusted	Adjusted	
	altitude (1,000 masl)		
0–59 months	-0.140***	-0.132***	
	[-0.189,-0.0902]	[-0.172,-0.0925]	
N=964,299	N=739,270		
0–5 months	-0.111***	-0.160***	
	[-0.155,-0.0674]	[-0.213,-0.107]	
N=98,472	N=74,987		
6–11 months	-0.147***	-0.172***	
	[-0.200,-0.0951]	[-0.217,-0.127]	
N=105,197	N=81,741		
12–23 months	-0.149***	-0.160***	
	[-0.204,-0.0944]	[-0.200,-0.121]	
N=200,286	N=154,437		
24–59 months	-0.140***	-0.113***	
	[-0.193,-0.0863]	[-0.162,-0.0632]	
N=560,344	N=428,105		

Data are regression coefficient with 95% CIs in brackets. Statistical significance denoted at * p < 0.05, ** p <0.01, *** p < 0.001. The estimates in ‘unadjusted’ column are based on unadjusted regression. The estimates in ‘adjusted’ column are based on adjusted regression that controls for child age (set of binary variables for each month) and sex, maternal age and education, household wealth and access to improved water and sanitation, binary variable capturing rural areas, and subnational region (highest administrative unit in each country) fixed effects. Additional controls include maternal height (in cm).
eAppendix 6: Robustness to restricting the sample to children whose mother had lived in the same location at least since the conception

Children’s heights in the DHS are measured at the time of the household interview. It could be that the location in which the child lived at the time of measurement was different to the location in which the child was born. Including these ‘migrant’ children in the sample could cause a bias to our ‘altitude deficit’ estimates if the altitude of the place of birth was different to the place of the DHS cluster in which the child resided at the time of the interview.

Fortunately, some DHS surveys collect information about the households’ recent migration history. More specifically, the questionnaire asks "How long have you been living continuously in (name of current city/town/village of residence)?". We have this information for 699,714 children. Using the child's current age and the response to this question, we calculated that about 73 percent of the children (for whom we have this information) were measured in the same location they were conceived in (i.e., the number of years in current location ≥ child's age in years +1 year). In eTable 10, we restricted the sample to these children whose mother had lived in the same location at least since the conception. We see that coefficients are very similar to those reported in the top panel of Table 1 ('All children').
Table 10: Regression results for the (unadjusted and adjusted) association between altitude and HAZ, after restricting the sample to children who have lived in the same location at least since the conception

Age Range	Unadjusted	Adjusted
Age range: 0–59 months		
Altitude (1,000 masl)	-0.123*** [-0.177,-0.069]	-0.179*** [-0.220,-0.137]
N=509,908	N=452,587	
Age range: 0–5 months		
Altitude (1,000 masl)	-0.108*** [-0.153,-0.063]	-0.171*** [-0.228,-0.114]
N=60,354	N=53,779	
Age range: 6–11 months		
Altitude (1,000 masl)	-0.124*** [-0.180,-0.067]	-0.204*** [-0.258,-0.150]
N=67,790	N=60,935	
Age range: 12–23 months		
Altitude (1,000 masl)	-0.126*** [-0.186,-0.065]	-0.180*** [-0.224,-0.136]
N=113,842	N=101,761	
Age range: 24–59 months		
Altitude (1,000 masl)	-0.125*** [-0.185,-0.064]	-0.173*** [-0.226,-0.120]
N=267,922	N=236,112	

Data are regression coefficient with 95% CIs in brackets. Statistical significance denoted at * p < 0.05, ** p <0.01, *** p < 0.001. The estimates in 'unadjusted' column are based on unadjusted regression. The estimates in 'adjusted' column are based on adjusted regression that controls for child age (set of binary variables for each month) and sex, maternal age and education, household wealth and access to improved water and sanitation, binary variable capturing rural areas, and subnational region (highest administrative unit in each country) fixed effects. The sample is restricted to children who have lived in the same location at least since the conception.
eAppendix 7: Robustness to omitting low altitude countries from the sample

We had 18 countries in our sample that have no DHS clusters in high altitude locations (i.e., ≥ 1,500 masl). We conducted a sensitivity test in which replicated the top panel of Table 1 reported in the main text but dropped these 18 countries from the sample. eTable 11 shows the results based on this sub-sample. The coefficients are similar to those reported in Table 1.
eTable 11: Regression results for the (unadjusted and adjusted) association between altitude and HAZ, after restricting the sample to countries that have clusters above 1,500 masl

Age range: 0–59 months	Unadjusted	Adjusted
Altitude (1,000 masl)	-0.163***	-0.165***
	[-0.224,-0.102]	[-0.208,-0.121]
N=782,509	N=688,492	

Age range: 0–5 months	Unadjusted	Adjusted
Altitude (1,000 masl)	-0.107***	-0.187***
	[-0.156,-0.058]	[-0.243,-0.131]
N=77,284	N=67,547	

Age range: 6–11 months	Unadjusted	Adjusted
Altitude (1,000 masl)	-0.144***	-0.214***
	[-0.203,-0.086]	[-0.264,-0.164]
N=83,662	N=73,748	

Age range: 12–23 months	Unadjusted	Adjusted
Altitude (1,000 masl)	-0.166***	-0.181***
	[-0.232,-0.099]	[-0.222,-0.140]
N=160,267	N=141,104	

Age range: 24–59 months	Unadjusted	Adjusted
Altitude (1,000 masl)	-0.174***	-0.147***
	[-0.241,-0.107]	[-0.198,-0.096]
N=461,296	N=406,093	

Data are regression coefficient with 95% CIs in brackets. Statistical significance denoted at * p < 0.05, ** p <0.01, *** p < 0.001. The estimates in 'unadjusted' column are based on unadjusted regression. The estimates in 'adjusted' column are based on adjusted regression that controls for child age (set of binary variables for each month) and sex, maternal age and education, household wealth and access to improved water and sanitation, binary variable capturing rural areas, and subnational region (highest administrative unit in each country) fixed effects. The sample is restricted to countries that have clusters above 1,500 masl.
eAppendix 8: Robustness to excluding each country individually from the sample

It is possible that our results are driven by one individual country characterized by high mean altitude and low mean HAZ. To explore this possibility, we ran 59 adjusted regressions based a sample of children 0-59 months of age. In each regression, we omitted one country from the sample to assess the sensitivity of our coefficients. eTable 12 shows that the coefficients remain remarkably similar across the 59 sub-samples indicating that our results are not driven by one individual country. The largest negative coefficient is obtained when India is omitted from the sample (-0.206) and smallest negative coefficient is obtained when Guatemala is omitted from the sample (-0.147).
eTable 12: Regression results for the adjusted association between altitude and HAZ, excluding each country individually from the sample

Country omitted	coefficient	95%-CI	N
Albania	-0.162***	-0.205,-0.119	849,229
Armenia	-0.162***	-0.205,-0.119	849,112
Angola	-0.163***	-0.206,-0.120	844,398
Azerbaijan	-0.163***	-0.206,-0.120	846,984
Bangladesh	-0.163***	-0.206,-0.120	845,353
Burkina Faso	-0.163***	-0.206,-0.120	826,933
Benin	-0.164***	-0.207,-0.121	833,521
Bolivia	-0.164***	-0.209,-0.120	842,934
Burundi	-0.162***	-0.206,-0.119	841,288
Congo Democratic Republic	-0.162***	-0.205,-0.119	839,194
Central African Republic	-0.163***	-0.205,-0.120	848,297
Cote d'Ivoire	-0.162***	-0.205,-0.120	842,526
Cameroon	-0.161***	-0.204,-0.118	842,350
Colombia	-0.158***	-0.202,-0.113	834,967
Dominican Republic	-0.162***	-0.205,-0.119	838,132
Egypt	-0.164***	-0.207,-0.121	812,761
Ethiopia	-0.165***	-0.210,-0.120	828,608
Gabon	-0.162***	-0.205,-0.120	847,309
Ghana	-0.163***	-0.205,-0.120	837,766
Guinea	-0.163***	-0.205,-0.120	840,415
Guatemala	-0.147***	-0.189,-0.105	839,106
Guyana	-0.162***	-0.205,-0.120	849,127
Honduras	-0.163***	-0.205,-0.120	850,681
Haiti	-0.157***	-0.201,-0.114	833,133
India	-0.206***	-0.231,-0.180	618,896
Jordan	-0.163***	-0.205,-0.120	850,681
Kenya	-0.162***	-0.205,-0.118	840,720
Cambodia	-0.163***	-0.206,-0.120	835,466
Comoros	-0.163***	-0.206,-0.120	848,254
Kyrgyz Republic	-0.164***	-0.207,-0.121	846,683
Liberia	-0.163***	-0.206,-0.120	843,113
Lesotho	-0.163***	-0.206,-0.120	846,501
Morocco	-0.163***	-0.207,-0.120	845,114
Moldova	-0.163***	-0.205,-0.120	849,344
Madagascar	-0.161***	-0.205,-0.118	842,493
Mali	-0.162***	-0.205,-0.119	830,686
Country omitted	coefficient	95%-CI	N
----------------	-------------	----------	---------
Myanmar	-0.162***	-0.205,-0.119	846,508
Malawi	-0.162***	-0.205,-0.118	832,652
Mozambique	-0.163***	-0.206,-0.120	841,176
Nigeria	-0.158***	-0.202,-0.114	800,572
Niger	-0.163***	-0.206,-0.120	846,773
Namibia	-0.163***	-0.206,-0.120	842,185
Nepal	-0.163***	-0.208,-0.118	840,698
Peru	-0.160***	-0.216,-0.103	819,169
Pakistan	-0.163***	-0.206,-0.120	847,284
Rwanda	-0.161***	-0.204,-0.118	839,379
Senegal	-0.163***	-0.206,-0.120	833,595
Swaziland	-0.163***	-0.206,-0.120	848,661
Chad	-0.162***	-0.205,-0.119	831,512
Togo	-0.163***	-0.206,-0.120	846,978
Tajikistan	-0.164***	-0.208,-0.120	840,570
Timor-Leste	-0.161***	-0.205,-0.118	837,018
Tanzania	-0.160***	-0.204,-0.117	832,561
Uganda	-0.161***	-0.204,-0.118	836,715
Yemen	-0.163***	-0.205,-0.120	850,681
South Africa	-0.162***	-0.205,-0.119	849,605
Zambia	-0.161***	-0.204,-0.118	833,906
Zimbabwe	-0.161***	-0.204,-0.117	835,019

Note: Sample of children 0-59 months of age. Data are regression coefficient. Statistical significance denoted at * p < 0.05, ** p < 0.01, *** p < 0.001. The estimates are based on adjusted regression that controls for child age (set of binary variables) and sex, maternal age and education, household wealth and access to improved water and sanitation, binary variable capturing rural areas, and subnational region (highest administrative unit in each country) fixed effects.
eAppendix 9: Robustness to using stunting as the outcome variable

The results presented in the main text focused on mean HAZ scores. However, the altitude deficit also exists if we used stunting (HAZ<-2) as the outcome variable. eFigure 5 shows how stunting rates are higher among children residing in high altitudes (≥1,500 masl) populations compared to children residing in lower altitudes (<1,500 masl). According to eTable 13, a 1,000—masl increase in altitude is associated with a 4.6 %-point increase in stunting prevalence in children 0-59 months. Of note is that the estimated altitude deficit was negligible for children 0-5 months of age in the unadjusted regression (including eFigure 5) but the estimate increased substantially when we controlled for differences in socio-economic characteristics in the adjusted model.
eFigure 5: Stunting-age trajectories in <1,500 masl (gray line) and ≥1,500 masl (red line) (N = 964,299)

Note: See Figure 1 in the main text.
eTable 13: Regression results for the (unadjusted and adjusted) association between altitude and stunting (HAZ <- 2)

Age range: 0-59 months	Unadjusted	Adjusted
Altitude (1,000 masl)	0.0333***	[0.019, 0.048]
	0.0464***	[0.034, 0.059]
N	964,299	850,681

Age range: 0-5 months	Unadjusted	Adjusted
Altitude (1,000 masl)	0.00793	[-0.000, 0.016]
	0.0341***	[0.020, 0.048]
N	98,472	86,680

Age range: 6-11 months	Unadjusted	Adjusted
Altitude (1,000 masl)	0.0220***	[0.011, 0.033]
	0.0472***	[0.032, 0.062]
N	105,197	93,354

Age range: 12-23 months	Unadjusted	Adjusted
Altitude (1,000 masl)	0.0357***	[0.020, 0.051]
	0.0509***	[0.037, 0.064]
N	200,286	177,232

Age range: 24-59 months	Unadjusted	Adjusted
Altitude (1,000 masl)	0.0386***	[0.022, 0.055]
	0.0463***	[0.032, 0.061]
N	560,344	493,415

Note: Data are regression coefficient with 95% CIs in brackets. Statistical significance denoted at * p < 0.05, ** p < 0.01, *** p < 0.001. The estimates in 'unadjusted' column are based on unadjusted regression. The estimates in 'adjusted' column are based on adjusted regression that controls for child age (set of binary variables for each month) and sex, maternal age and education, household wealth and access to improved water and sanitation, binary variable capturing rural areas, and subnational region (highest administrative unit in each country) fixed effects.
eReferences

1. Black R, Allen L, Bhutta Z, et al. Maternal and Child Undernutrition Study Group: Maternal and child undernutrition 1-maternal and child undernutrition: global and regional exposures and health consequences. The Lancet. 2008;371:243-260.

2. UNICEF. The State of the World's Children 1998. New York: Oxford University Press; 1998.

3. WHO. Indicators for assessing infant and young child feeding practices: part 1: definitions: conclusions of a consensus meeting held 6-8 November 2007 in Washington DC, USA. Geneva: World Health Organization (WHO); 2008.

4. Daelmans B, Dewey K, Arimond M. New and updated indicators for assessing infant and young child feeding. Food and Nutrition Bulletin. 2009;30(2_suppl2):S256-S262.

5. Working Group on Infant Young Child Feeding Indicators. Developing and validating simple indicators of dietary quality and energy intake of infants and young children in developing countries: summary of findings from analysis of 10 data sets. Washington D.C.: Food and Nutrition Technical Assistance Project (FANTA); 2006.

6. Arimond M, Ruel MT. Dietary diversity is associated with child nutritional status: evidence from 11 demographic and health surveys. The Journal of Nutrition. 2004;134(10):2579-2585.

7. Krasevec J, An X, Kumapley R, Bégin F, Frongillo EA. Diet quality and risk of stunting among infants and young children in low-and middle-income countries. Maternal & child nutrition. 2017;13:e12430.

8. WHO, UNICEF. Global Nutrition Monitoring Framework: operational guidance for tracking progress in meeting targets for 2025. Geneva: World Health Organization (WHO); 2018.

9. Center for International Earth Science Information Network - CIESIN - Columbia University. National Aggregates of Geospatial Data Collection: Population, Landscape, And Climate Estimates, Version 3 (PLACE III). Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC); 2012.

10. Karra M, Subramanian S, Fink G. Height in healthy children in low-and middle-income countries: an assessment. The American Journal of Clinical Nutrition. 2016;105(1):121-126.

11. Royston P, Altman DG, Sauerbrei W. Dichotomizing continuous predictors in multiple regression: a bad idea. Statistics in medicine. 2006;25(1):127-141.

12. Harris I, Jones PD, Osborn TJ, Lister DH. Updated high-resolution grids of monthly climatic observations—the CRU TS3. 10 Dataset. International journal of climatology. 2014;34(3):623-642.
13. Subramanian S, Ackerson LK, Smith GD, John NA. Association of maternal height with child mortality, anthropometric failure, and anemia in India. *JAMA.* 2009;301(16):1691-1701.

14. Addo OY, Stein AD, Fall CH, et al. Maternal height and child growth patterns. *The Journal of Pediatrics.* 2013;163(2):549-554. e541.

15. Silventoinen K. Determinants of variation in adult body height. *J Biosoc Sci.* 2003;35(02):263-285.

16. Angrist JD, Pischke J-S. *Mostly harmless econometrics: an empiricist's companion.* Princeton: Princeton University Press; 2009.