Gastrointestinal manifestations of long COVID: A systematic review and meta-analysis

Arup Choudhury, Raseen Tariq, Anuraag Jena, Elissa Kinzelman Vesely, Siddharth Singh, Sahil Khanna and Vishal Sharma

Abstract

Background: Prolonged symptoms after COVID-19 are an important concern due to the large numbers affected by the pandemic.

Objectives: To ascertain the frequency of gastrointestinal (GI) manifestations as part of long GI COVID.

Design: A systematic review and meta-analysis of studies reporting GI manifestations in long COVID was performed.

Data Sources and Methods: Electronic databases (Medline, Scopus, Embase, Cochrane Central Register of Controlled Trials, and Web of Science) were searched till 21 December 2021 to identify studies reporting frequency of GI symptoms in long COVID. We included studies reporting overall GI manifestations or individual GI symptoms as part of long COVID. We excluded pediatric studies and those not providing relevant information. We calculated the pooled frequency of various symptoms in all patients with COVID-19 and also in those with long COVID using the inverse variance approach. All analysis was done using R version 4.1.1 using packages ‘meta’ and ‘metafor’.

Results: A total of 50 studies were included. The frequencies of GI symptoms were 0.12 (95% confidence interval [CI], 0.06–0.22, $I^2 = 99\%$) and 0.22 (95% CI, 0.10–0.41, $I^2 = 97\%$) in patients with COVID-19 and those with long COVID, respectively. The frequencies of abdominal pain, nausea/vomiting, loss of appetite, and loss of taste were 0.14 (95% CI, 0.04–0.38, $I^2 = 96\%$), 0.06 (95% CI, 0.03–0.11, $I^2 = 98\%$), 0.20 (95% CI, 0.08–0.43, $I^2 = 98\%$), and 0.17 (95% CI, 0.10–0.27, $I^2 = 95\%$), respectively, after COVID-19. The frequencies of diarrhea, dyspepsia, and irritable bowel syndrome were 0.10 (95% CI, 0.04–0.23, $I^2 = 98\%$), 0.20 (95% CI, 0.06–0.50, $I^2 = 97\%$), and 0.17 (95% CI, 0.06–0.37, $I^2 = 96\%$), respectively.

Conclusion: GI symptoms in patients were seen in 12% after COVID-19 and 22% as part of long COVID. Loss of appetite, dyspepsia, irritable bowel syndrome, loss of taste, and abdominal pain were the five most common GI symptoms of long COVID. Significant heterogeneity and small number of studies for some of the analyses are limitations of the systematic review.

Keywords: abdominal pain, diarrhea, gastrointestinal symptoms, long COVID haulers, nausea, post-COVID syndrome, SARS-CoV-2, vomiting

Introduction

COVID-19 has brought forth a multitude of challenges to the health-care systems globally. Apart from the significant morbidity and mortality associated with COVID-19 during the initial phase, there is a growing recognition and concern about the long-term consequences of COVID-19. Described variously as ‘long COVID’, ‘post-COVID syndrome’, ‘COVID-19 sequelae’, and ‘long haulers’, these symptoms are associated with fatigue, dyspnea, gastrointestinal symptoms, cognitive impairment, and depression. Among these, gastrointestinal symptoms such as abdominal pain, nausea, and diarrhea are particularly common, affecting up to 40% of infected individuals.
COVID,’ ‘long-haul COVID’, and so on, the condition is not clearly characterized regarding the time of onset and the clinical manifestations.\(^1\) The WHO defines it as a constellation of symptoms which occur 3 months after COVID-19 and last for 2 months or more and do not have an alternative explanation.\(^2\) Centers for Disease Control and Prevention (CDC) has described this condition to occur even after 4 weeks of COVID-19.\(^3\) Typically the occurrence of fatigue, breathlessness, and cognitive dysfunction is considered the major manifestation of COVID-19 but the WHO definition also allows for gastrointestinal (GI) issues like diarrhea, constipation, acid reflux, abdominal pain, and altered smell/taste as a part of post-COVID-19 symptoms. The WHO definition is based on Delphi consensus while the CDC’s definition is based on input from a panel of provider and researcher experts.

GI and hepatic manifestations of acute COVID-19 are well recognized.\(^4,5\) The distribution of angiotensin converting enzyme 2 (ACE-2) receptors in the GI tract, systemic effects of the disease, and use of a multitude of the drugs are believed to result in these manifestations.\(^6\)

On the contrary, the GI manifestations of long COVID are not as well recognized. Certain GI symptoms including abdominal pain and diarrhea have been reported with long-COVID syndrome. However, there is a lack of a systematic analysis of the GI manifestations of long COVID and the implications for the patients, health-care workers, and institutions are unclear. It is also unclear as to how these manifestations may vary with respect to various definitions in vogue. These manifestations are, as of now, not included in the standard definition of long COVID. Since these manifestations are likely to affect the quality of life and may result in work-related absences, it is important to characterize the manifestations and their frequency. Therefore, we conducted a systematic review to assess the GI manifestation of ‘long COVID’ and the frequency of these manifestations.

Methods

Search strategy

The present systematic review and meta-analysis was conducted in accordance with the guidance provided by the PRISMA statement.\(^7\) We searched various electronic databases including Medline, Embase, Cochrane Central Register of Controlled Trials, Scopus, Science Citation Index Expanded, and Emerging Sources Citation Index from inception till 20 December 2021. The keywords used for the search were (‘Covid-19 OR SARS-CoV-2 OR coronavirus disease 2019’) AND (‘long covid OR postcovid OR long haul OR sequelae OR persistent symptoms’). Filters for human studies were applied to all database searches except for Cochrane Central Register of Controlled Trials. Results were limited to English language publications. The detailed search strategy is shown in Supplemental Appendix A. The results obtained from all the databases were combined and duplicate studies were removed. Two reviewers (RT and AC) separately screened the title and abstract to select any studies reporting on data about the GI manifestations or liver dysfunction. The studies selected for full-text screen were seen by two authors (SK and VS) for data extraction.

Inclusion criteria

We included studies reporting on frequencies of GI or hepatic manifestations as part of post-COVID/long-COVID syndrome in the adult population. We excluded (1) studies if the number of patients were less than 10, (2) studies reporting the frequency of long COVID in pediatric population as most studies on pediatric population also included multisystem inflammatory syndrome as post-COVID sequelae, (3) studies that report only the multisystem inflammatory syndrome, (4) studies that are non-English, and (5) studies that only report the frequency of changes in taste and smell sensation as part of long-COVID syndrome. We also excluded studies that did not report the relevant outcome data.

Definitions

WHO defines long COVID as post-COVID-19 condition that occurs in individuals with a history of probable or confirmed SARS-CoV-2 infection, usually 3 months from the onset of COVID-19 with symptoms that last for at least 2 months and cannot be explained by an alternative diagnosis.\(^2\)

NICE/CDC describe ‘Post-COVID Condition’ as an umbrella term for the wide range of physical and mental health consequences experienced by
some patients who are present four or more weeks after SARS-CoV-2 infection, including by patients who had initial mild or asymptomatic acute infection. Supplemental Table 1 depicts the similarities and differences between the two definitions.

Data extraction

Data were extracted from the included studies by two reviewers (RT and AC) and any disagreement was resolved through discussion involving the other two reviewers (SK and VS). Extracted data included publication details (author and year), place and duration of study, total number of COVID patients, total number of long-COVID patients, total number of long COVID with GI symptoms, and their characteristics including age, gender, comorbidity severity of acute SARS-CoV-2 infection, and frequencies of various GI manifestation (nausea, vomiting, diarrhea, constipation, abdominal pain, loss of appetite, loss of taste, irritable bowel syndrome, dyspepsia). We also extracted the data on mean follow-up time, follow-up mode, term used to refer to long-term effects, total patients with resolution of symptoms, and average time to resolution of symptoms. We also extracted the data reporting the frequency of long COVID with respect to the underlying severity of COVID.

Results

Study selection

Of the 5804 records identified after database search, 2065 were duplicates. Of the 3739 titles which underwent initial screening, 3602 were removed for various reasons and eventually 137 articles underwent full-text screening. A total of 50 studies were included in the final analysis. Full PRISMA flowchart of study selection is depicted in Figure 1. Table 1 shows the details of the included studies with the study design, type of population, symptoms, duration, and the information provided. Supplemental Table 2 shows the excluded studies with reasons of exclusion.

Frequency of GI long COVID

The overall frequency of GI symptoms was reported in 14 studies involving 296,487 patients. The frequency of overall GI symptoms in patients with COVID-19 was 0.12 [95% confidence interval (CI), 0.06–0.22, \(I^2 = 99\% \)] (Figure 2). The frequency of GI symptoms in patients with long COVID was 0.22 (95% CI, 0.10–0.41, \(I^2 = 97\% \)) (Figure 2).

The frequency of GI long-COVID symptoms in patients with severe COVID-19 was 0.13 (95% CI, 0.04–0.34, \(F=99\% \)) (five studies, 19,067 patients) (Supplemental Figure 1). The frequency was 0.14 (95% CI, 0.05–0.34, \(F=98\% \)) in studies reporting mixed disease severity (severe as well as non-severe disease) (Supplemental Figure 1). Similarly, the frequency of GI manifestations in
patients having long COVID after severe COVID infection was 0.20 (95% CI, 0.12–0.32, $I^2 = 71\%$) (Supplemental Figure 2). The frequency of long GI COVID in patients having long COVID after mixed severe disease was 0.21 (95% CI, 0.05–0.56, $F = 97\%$) (Supplemental Figure 2).

We also assessed the frequency of GI manifestations as per the different definitions of long COVID. The frequency of GI manifestations in patients with COVID-19 as per WHO definition was 0.18 (95% CI, 0.08–0.36, $F = 99\%$) (Supplemental Figure 3). The frequency of GI manifestations in patients with long COVID as per WHO definition was 0.28 (95% CI, 0.15–0.46, $F = 97\%$) (Supplemental Figure 3). The frequency of GI manifestations in patients with COVID-19 as per NICE/CDC definition was 0.14 (95% CI, 0.06–0.28, $F = 99\%$) (Supplemental Figure 4). The frequency of GI manifestations in patients with long COVID as per NICE/CDC definition was 0.26 (95% CI, 0.11–0.50, $F = 96\%$) (Supplemental Figure 4).

Clinical manifestations of long COVID

The frequency of abdominal pain as a part of long GI COVID was 0.07 (95% CI, 0.04–0.12, $F = 98\%$) in patients with COVID-19 infection while it was 0.14 (95% CI, 0.04–0.38, $F = 96\%$) in patients having long COVID (Figure 3). The frequency of nausea/
vomiting as a part of long GI COVID was 0.06 (95% CI, 0.03–0.11, $I^2 = 98\%$) in patients with COVID-19 infection while it was 0.06 (95% CI, 0.01–0.21, $I^2 = 96\%$) in patients having long COV ID 13,18,19,23,30,38,40,43,50,53,60,61 (Figure 3). The frequency of loss of appetite as a part of long GI COVID was 0.09 (95% CI, 0.03–0.23, $I^2 = 99\%$) in patients with COVID-19 infection while it was 0.20 (95% CI, 0.08–0.43, $I^2 = 98\%$) in patients having long COVID 15,16,22,29,33,36,37,39,40,54,57,61,62 (Figure 3). The frequency of constipation as a part of long GI COVID was 0.09 (95% CI, 0.03–0.23, $I^2 = 99\%$) in patients with COVID-19 infection while it was 0.20 (95% CI, 0.08–0.43, $I^2 = 98\%$) in patients having long COVID 15,16,22,29,33,36,37,39,40,54,57,61,62 (Figure 3). The frequency of loss of taste as a part of long GI COVID was 0.10 (95% CI, 0.05–0.19, $I^2 = 97\%$) in patients with COVID-19 infection while it was 0.17 (95% CI, 0.10–0.27, $I^2 = 95\%$) in patients having long COVID 37–40,44,47,50,54,56,57,61,62 (Figure 3). The frequency of diarrhea as a part of long GI COVID was 0.05 (95% CI, 0.03–0.10, $I^2 = 99\%$) in patients with COVID-19 infection while it was 0.10 (95% CI, 0.04–0.23, $I^2 = 98\%$) in patients having long COVID 13–19,24,25,28,34–38,40,41,43,44,46,50,53,56,57,60,61,62 (Figure 3).

The frequency of constipation as a part of long GI COVID was 0.19 (95% CI, 0.05–0.55, $I^2 = 98\%$) in patients with COVID-19 infection (Figure 4). There was only one study reporting frequency of constipation in patients with long COVID.18,25,43,52 The frequency of dyspepsia as a GI manifestation of long COVID-19 was reported by three studies (910 patients of COVID-19).29,31,59 The frequency of dyspepsia after long COVID was 0.20 (95% CI, 0.06–0.50, $I^2 = 97\%$)29,52 (Figure 4). Only two studies reported frequency of dyspepsia in long COVID. Four studies (756 patients) reported the frequency of irritable bowel syndrome (IBS) after COVID-19 infection.18,25,46,59 The pooled rate of IBS after COVID-19 was 0.17 (95% CI, 0.06–0.37, $I^2 = 96\%$) (Figure 4). Only one study reported the frequency of IBS among patients with long COVID.18 Only a few studies reported GI symptoms at multiple time points during the follow-up (Supplemental Table 3).

A single study reported about 12 patients (11 males) showing cholangiopathic changes as delayed manifestation in patients who had recovered from severe COVID.26 This was characterized by both biochemical abnormality (elevated alkaline phosphatase) and radiological abnormality (changes in Magnetic resonance cholangiopancreatography). Another report suggested the presence of gastroparesis in 12 patients as confirmed by a positive gastric-emptying study done for suggestive symptoms.21

Heterogeneity

Since there was significant heterogeneity in overall estimates of GI manifestations in long COVID. We performed multiple subgroup analysis. Based on the duration of follow-up (<3 months, >3 months), there were no significant differences in frequency of GI symptoms between these two groups. The frequency of GI symptoms in studies reporting a follow-up of less than 3 months was 0.11 (95% CI, 0.02–0.38, $I^2 = 98\%$) while for studies with more than 3 months of follow-up it was 0.12 (95% CI, 0.06–0.22, $I^2 = 100\%$)13,14,27,28,39,40,42,45,48,49,51,55,59,60 (Supplemental Figure 5). Subgroup analysis on the basis of mode of follow-up suggested a slightly higher frequency of symptoms with telephonic follow-up [0.14 (95% CI, 0.06–0.31, $I^2 = 98\%$)] as compared to in person follow-up [0.04 (95% CI, 0.01–0.19, $I^2 = 98\%$)]13,14,27,28,39,40,42,45,48,49,51,55,59,60 (Supplemental Figure 6). The frequency of GI symptoms in America was 0.12 (95% CI, 0.03–0.36, $I^2 = 99\%$), in Europe was 0.07 (95% CI, 0.03–0.17, $I^2 = 97\%$) whereas only two studies reported frequencies from Asia and one from Africa (Supplemental Figure 7).13,14,27,28,39,40,42,45,48,49,51,55,59,60 On the basis of study type, the frequency of GI symptoms was 0.08 (95% CI, 0.02–0.26, $I^2 = 100\%$) for retrospective studies while it was 0.12 (95% CI, 0.06–0.24, $I^2 = 97\%$) for prospective studies 13,14,27,28,39,40,42,45,48,49,51,55,59,60 (Supplemental Figure 8).

Risk of bias analysis

Few studies had concern regarding description of the selected sample with lack of clear details. Most of the studies had included appropriate statistical analysis and appropriate methods of assessment of GI symptoms as well as long COVID (Supplemental Table 4). Few studies did not clearly report the demographic information at the presenting site. On the contrary, almost all studies reported an appropriate sample frame to address the target population. As the Joanna Briggs Institute guidance suggests against using a score cutoff for quality assessment, we also did not score the studies. The visual impression of the funnel plots (Supplemental Figures 9 and 10) and the Egger test did not suggest any publication bias. The t statistic for the overall COVID analysis and long-COVID analysis was -0.78 ($p = 0.45210$ and -1.05 ($p = 0.3230$).
Authors	Year	Type	Country	Included patients	Total number of patients	Total number of patients with GI symptoms	Individual GI symptoms
Adame et al.	2021	Abstract	USA	All	Total: 101/long COVID 25	21	21 21 21 – – – – – – –
Akinci Ozyurek et al.	2021	Retrospective	Turkey	All	Total 315/long COVID 229	1	1 – – – – – – – – – – –
Anaya et al.	2021	Cross-sectional	Colombia	All	Total 100/long COVID 65	–	46 24 – – – – – – – – –
Areekal et al.	2021	Cross-sectional	India	Hospitalized	Total 335/long COVID 221	–	6 – – – – – – – – – – –
Augustin et al.	2021	Prospective	Germany	Non-hospitalized	Total 353/long COVID 123	–	4 – – – – – – – – – – –
Blackett et al.	2021	Retrospective	USA	Hospitalized	Total 147/long –	–	6 11 6 10 – – – – – – –
Blair et al.	2021	Retrospective	USA	All	Total 166/long COVID 118	–	4 2 3 – – – – – – – – –
Buttery et al.	2021	Cross-sectional	UK	All	Total 1865/long COVID –	–	– – – – – – – – – – –
Calogero et al.	2021	Abstract	USA	All	Total 12,224/long COVID –	–	– – – – – – – – – – –
Carrillo-Garcia et al.	2021	Retrospective	Spain	Hospitalized	Total 165/long COVID 109	–	– – – – – – – – – – –
Chevinsky et al.	2021	Retrospective	USA	Non-hospitalized	Total 74,446/long COVID 44,489	–	– 667 401 – – – – – – –
Chopra et al.	2021	Retrospective	India	Non-hospitalized	Total 57/long COVID 25	–	– 1 – – – – – – – – –
Dennis et al.	2021	Prospective	UK	All	Total 201/long COVID –	–	118 – – 108 – – – – –
Faruqui et al.	2021	Retrospective	USA	Hospitalized	Total 205/long COVID –	–	– – – – – – – – – – –
Faycal et al.	2021	Prospective	France	Non-hospitalized	Total 429/long COVID 175	12/175	– – – – – – – – – – –
Fernández-de-Las-Peñas et al.	2021	Prospective	Spain	Hospitalized	Total 1969/long COVID 1232	133	49 – – – – – – – – – – –
Galal et al.	2021	Cross-sectional	Egypt	Hospitalized	Total 430/long COVID 370	–	– – – – – – – – – – –
Galván-Tejada et al.	2020	Retrospective	Mexico	All	Total 141/long COVID –	–	– – – 22 – – – – – – –
Ghoshal et al.	2021	Prospective	Bangladesh and India	Hospitalized	Total 280/long COVID –	–	– – – – – – – – – – –
Gold et al.	2021	Prospective	Greece	All	Total 185/Long 56	–	– 7 – – – – – – – – –
Authors Year Type Country Included patients	Total number of patients	Total number of patients with GI symptoms	Individual GI symptoms	Age and sex	Follow-up time	Mode of follow-up	Term used
--	--------------------------	--	------------------------	-------------	----------------	-----------------	-----------
Adame et al. 13 2021 Abstract USA All Total: 101/long COVID 25	21 21 21 21 – – – – – –/F 20	60 days	In person	Long hauler			
Akinci Ozyurek et al. 14 2021 Retrospective Turkey All Total 315/long COVID 229	1 – – – – – – – – – – –/F 158	4 weeks	Telephone	Post-COVID syndrome			
Anaya et al. 15 2021 Cross-sectional Colombia All Total 100/long COVID 65	– 46 24 – – – – – – Median 49 years/F 53	Median 219 days	Survey	Post-COVID manifestation			
Areekal et al. 16 2021 Cross-sectional India Hospitalized Total 335/long COVID 221	– 6 – – – – – – – – – – –/F 161	4 weeks	Telephone	Post-COVID syndrome			
Augustin et al. 17 2021 Prospective Germany Non-hospitalized Total 353/long COVID 123	– 4 – – – – – – – – – – –/– 7 months	In person	-COVID syndrome				
Blackett et al. 18 2021 Retrospective USA Hospitalized Total 147/long –	– 6 11 6 10 – – – – – –/72	Median 106 days	In person	Post-COVID syndrome			
Blair et al. 19 2021 Retrospective USA All Total 166/long COVID 118	– 4 2 3 – – – – – – –/–	4 weeks	Telephone	Chronic COVID 19 syndrome			
Buttery et al. 20 2021 Cross-sectional UK All Total 1865/long COVID –	– – – – – – – – – – –/1440	12 weeks	Web based	Long COVID			
Calogero et al. 21 2021 Abstract USA All Total 12,224/long COVID –	– – – – – – – – – – –/–	Chart review	Symptoms after COVID-19				
Carrillo-Garcia et al. 22 2021 Retrospective Spain Hospitalized Total 165/long COVID 109	– – – – – – – – – – –/–	3 months	Telephone	Sequelae of COVID			
Chevinsky et al. 23 2021 Retrospective USA Non-hospitalized Total 74,446/long COVID 44,489	– – 667 401 – – – – – – – 31–120 days	Review	Post-COVID syndrome				
Chopra et al. 24 2021 Retrospective India Non-hospitalized Total 57/long COVID 25	– 1 – – – – – – – – – – –/–	30 days	Telephone	Long COVID			
Dennis et al. 25 2021 Prospective UK All Total 201/long COVID –	– 118 – – 108 – – – – – – Mean 44/142	4 weeks	In person	Post-COVID syndrome			
Faruqui et al. 26 2021 Retrospective USA Hospitalized Total 2047/long COVID –	– – – – – – – – – – –/–	Mean 58 years/– 118 days	Chart review	Late complication			
Faycal et al. 27 2021 Prospective France Non-hospitalized Total 429/long COVID 175	12/175 – – – – – – – – – – –/311	Median 41.6 years/F 311	30 days	Telephone	Persistent symptoms		
Fernández-de-Las-Peñas et al. 28 2021 Prospective Spain Hospitalized Total 1969/long COVID 1232	133 49 – – – – – – – – – – Mean 61 years/F 915	Mean 8.4 months/F 915	Telephone	Post-COVID syndrome			
Galal et al. 29 2021 Cross-sectional Egypt Hospitalized Total 430/long COVID 370	– – 157 – – – – – – – – Mean 37.4 years/F 176 days	In person	Post-COVID symptoms				
Galván-Tejada et al. 30 2020 Retrospective Mexico All Total 141/long COVID –	– – 22 – – – – – – – – Mean 36 days	Telephone	Persistent symptoms				
Ghoshal et al. 31 2021 Prospective Bangladesh and India Hospitalized Total 280/long COVID –	15 – – – – – – – – – 16 –/–	Mean 34.9 years/F 1 month	In person	Postinfectious symptoms			
Gold et al. 32 2021 Prospective Greece All Total 185/Long 56	– – 7 – – – – – – – –/–	Mean 37.4 years/F 274	In person	Post-COVID symptoms			

(Continued)
Authors	Year	Type	Country	Included patients	Total number of patients	Total number of patients with GI symptoms	Individual GI symptoms					
Hossain et al.	2021	Prospective	Bangladesh	All	Total 2198/long COVID 356	–	–					
Islam et al.	2021	Cross-sectional	Bangladesh	All	Total 1002/long COVID 200	–	127					
Nayagam et al.	2021	Retrospective	UK	Hospitalized	Total 564/long COVID –	–	–					
Jones et al.	2021	Retrospective	UK	All	Total 3151/long COVID 310	–	196					
Kararsslan et al.	2021	Prospective	Turkey	Hospitalized	Total 300/long COVID 216	–	4					
Klein et al.	2021	Prospective	Israel	Mild	Total 103/long COVID 47	–	1					
Kozak et al.	2021	Retrospective	Canada	All	Total 223/long COVID 62	19	–					
Leth et al.	2021	Prospective	Denmark	Hospitalized	Total 49/long COVID 47	15	4					
Liang et al.	2020	Prospective	China	Hospitalized	Total 76/long COVID –	–	20					
Lombardo et al.	2021	Prospective	Italy	All	Total 303/long COVID 244	35	–					
Marasco et al.	2021	Prospective	Multi-center	Hospitalized	Total 489/long COVID –	–	37					
Messin et al.	2021	Retrospective	France	All	Total 74/long COVID 53	–	3					
Mohamed-Hussein et al.	2021	Cross-sectional	Egypt	All	Total 262/long COVID 157	123	–					
Noviello et al.	2021	Prospective	Italy	All	Total 164/long COVID –	–	29					
Rank et al.	2021	Prospective	Germany	Mild	Total 83/long COVID 51	–	–					
Rizvi et al.	2021	Retrospective	USA	Hospitalized	Total 17,462/long COVID –	404	214					
Saigal et al.	2021	Prospective	UK	Hospitalized	Total 643/long COVID –	54	–					
Scherlinger et al.	2021	Prospective	France	All	Total 755/long COVID 30	9	–					
Shang et al.	2021	Prospective	China	Severe	Total 796/long COVID 441	87	–					
Shoosangtrewijit et al.	2021	Prospective	Thailand	Hospitalized	Total 87/long COVID 87	11	–					
Authors	Year	Type	Country	Included	Total number of patients	Total number of patients with GI symptoms	Age and sex	Follow-up time	Mode of follow-up	Term used		
---------	------	------	---------	----------	--------------------------	--	------------	---------------	-----------------	------------		
Hossain et al.	2021	Prospective	Bangladesh	All	Total	2198/long COVID	356	Mean 38.7 years/F	607	12 weeks	Long COVID	
Islam et al.	2021	Cross-sectional	Bangladesh	All	Total	1002/long COVID	200	Mean 34.7 years/F	401	30 days	Survey	Long COVID
Nayagam et al.	2021	Retrospective	UK	Hospitalized	Total	564/long COVID	–	Mean 67.7 years/F	258	60 days	In person	Persistent symptoms
Jones et al.	2021	Retrospective	UK	All	Total	3151/long COVID	310	Mean 52.1 year/F	224	4 weeks	Online survey	Long COVID
Karaarslan et al.	2021	Prospective	Turkey	Hospitalized	Total	300/long COVID	216	Mean 53 year/F	121	–	Long COVID	
Klein et al.	2021	Prospective	Israel	Mild	Total	103/long COVID	47	Mean 35 years/F	39	–	Telephone	Long-lasting effect
Kozak et al.	2021	Retrospective	Canada	All	Total	223/long COVID	62	Mean 67.7 years/F	38	90 days	In person	Persistent symptoms
Leth et al.	2021	Prospective	Denmark	Hospitalized	Total	49/long COVID	47	Mean 58 years/F	28	1 month	Telephone	Persistent symptoms
Liang et al.	2020	Prospective	China	Hospitalized	Total	76/long COVID	–	Mean 41.3 years/F	55	6 months	Questionnaires	Persistent symptoms
Lombardo et al.	2021	Prospective	Italy	All	Total	303/long COVID	244	Median 53 years/F	165	Median 12.2 months	Phone	Long-term complication
Marasco et al.	2021	Prospective	Multi-center	Hospitalized	Total	489/long COVID	–	Median 58 years/F	67	Median 30 days	Questionnaires	Persistent symptoms
Messin et al.	2021	Retrospective	France	All	Total	74/long COVID	53	Mean 54.7 years/F	30	6 months	Telephone	Persistent symptoms
Mohamed-Hussein et al.	2021	Cross-sectional	Egypt	All	Total	262/long COVID	157	Mean 33 years/F	62	Mean 123 weeks	Questionnaires	Persistent symptoms
Noviello et al.	2021	Prospective	Italy	All	Total	164/long COVID	–	Mean 44.1 years/F	66	Median 4.8 months	Web based	Persistent symptoms
Rank et al.	2021	Prospective	Germany	Mild	Total	83/long COVID	51	Mean 50.6 years/F	18	6 months	Questionnaires	Persistent symptoms
Rizvi et al.	2021	Retrospective	USA	Hospitalized	Total	17,462/long COVID	404	Mean 66 years/F	336	–	Questionnaires	GI sequelae
Saigal et al.	2021	Prospective	UK	Hospitalized	Total	643/long COVID	–	Mean 62.3 years/F	245	Median 65 days	Virtual	Long COVID
Scherlinger et al.	2021	Prospective	France	All	Total	–/long COVID	30	Median 40 years/F	18	Median 152 days	Phone	Persistent symptoms
Shang et al.	2021	Prospective	China	Severe	Total	796/long COVID	441	Median 6 months	184	–	Postinfectious FGID	Sequelae of COVID
Shoosanglertwijit et al.	2021	Prospective	Thailand	Hospitalized	Total	–/long COVID	87	Median 6 months	2	–/–	Telephone	Postinfectious FGID
Table 1 (Continued)

Authors	Year	Type	Country	Included patients	Total number of patients	Total number of patients with GI symptoms	Individual GI symptoms
Salmon-Ceron et al.	2021	Prospective	France	All	Total –/long COVID 70	17	12
Suárez-Robles et al.	2020	Prospective	France	Hospitalized	Total –/long COVID 134	–	–
Taquet et al.	2021	Retrospective	UK	All	Total 273,618/long COVID 155,962	42,630	–
Tiwari et al.	2021	Cross-sectional	Nepal	Non-critical	Total 132/long COVID 66	–	1
Tosato et al.	2021	Cross-sectional	Italy	Hospitalized	Total 165/long COVID 137	–	32
Vayner et al.	2021	Abstract	USA	All	Total 90/long COVID –	–	–
Vélez et al.	2021	Retrospective	USA	All	Total 200/long COVID –	79	–
Weng et al.	2021	Prospective	China	Hospitalized	Total 117/long COVID –	52	17
Zhang et al.	2021	Retrospective	China	All	Total 2433/long COVID 1095	–	18
Zhou et al.	2021	Prospective	China	HCW	Total 15/long COVID 12	–	3

F, females; GI, gastrointestinal; HCW, health-care workers; IBS, irritable bowel syndrome; LOA, loss of appetite; LOT, loss of taste.

Discussion

While the clinical manifestations of acute COVID-19 are in the form of a systemic disease with pulmonary and extrapulmonary manifestations, the long-COVID syndrome has largely been described to have systemic, neuropsychiatric, pulmonary, and cardiac manifestations.\(^{63}\) In fact, initially the manifestations of long COVID including brain fog were met with a denial but now the syndrome is well recognized thanks to advocacy by the patients.\(^{64-66}\) However, the understanding of the entire spectrum of manifestations of long COVID is evolving. Multiple reports have ascribed various GI manifestations to long COVID; however, a systematic assessment of the GI manifestations and frequency has not been previously reported. In this systematic review of 50 studies, we found that loss of taste, loss of appetite, abdominal pain, nausea and vomiting, and diarrhea were encountered in a subset of patients while constipation was one of the most common manifestations. Overall, GI symptoms as part of long COVID occurred in around 12% of patients with acute COVID-19. Further, a significant number of patients developed dyspepsia and irritable bowel syndrome as sequelae to COVID-19. These findings would suggest that GI symptoms are an important accompaniment of long COVID. Our analysis suggests that the GI manifestations of long COVID are not related to severity of underlying COVID-19 and could occur in those with mild initial disease.

The mechanisms behind the GI manifestations occurring as a part of post-COVID syndrome are
Authors Year Type Country Included	Age and sex	Follow-up time	Mode of follow-up	Term used
patients				
patients				
Total number of patients				
Included				
patients				
Total number of patients				
(with GI symptoms)				
Individual GI symptoms				
IBS				
LOA				
LOT				
Cholangiopathy				
Gastroparesis				
Dyspepsia				
Median 45 years/F 55	2 months	In person	Prolonged COVID symptoms	
58.53 years/F 72	3 months	Telephone	Residual symptoms	
46.3 years/ F152157	6 months	–	Long COVID	
36 years/F 28	2 months	Telephone or in person	Persistent symptoms	
73 years/F 53	25–109 days	–	Persistent symptoms	
49.5 years/–	1 months	Telephone	Residual symptoms	
46 years/F 60	6 months	Telephone	Post-COVID syndrome	
–/–	90 days	Telephone	Long-term sequelae	
Median 60 years/ F 1228	1 year	Telephone	Postinfectious symptoms	
Median 29 years/F 12	3 months	In person	Persistent symptoms	

not completely understood. The manifestations during acute COVID-19 are believed to be related to the increased expression of ACE-2 expression on the small bowel mucosa which may result in intestinal infection by the virus. Prolonged shedding of virions from the GI tract is recognized and could be responsible for some of the GI manifestations of long COVID.67 Interestingly, presence of coronavirus-like particles has been reported long back in patients with tropical sprue and the diarrhea was explained by enterocyte damage caused by the virus.68 It would be worthwhile to evaluate whether patients with diarrhea and IBS-like presentation after COVID-19 have enterocyte damage resulting from SARS-CoV-2 infection. Postinfectious IBS is a well-recognized condition and the occurrence of IBS after COVID-19 may also be similar to this variant of IBS.69

Gut microbiome profile might also have a role in long-term complications of COVID-19. The susceptibility of the microbiota to viral antigens as well as pro-inflammatory cytokines might have a crucial role in long GI manifestations. Patients with post-COVID-19 syndrome were found to have increased levels of *Ruminococcus gnavus* and *Bacteroides vulgatus* and decreased levels of *Faecalibacterium prausnitzii*.70 The same study also showed gut dysbiosis to have a role in neuropsychiatric as well as respiratory symptoms of post-acute COVID syndrome. However, it is unclear if the changes in gut microbiota play a role in causation of GI manifestations of long COVID. Also, the role of manipulation of gut microbiota profile in prevention or management of post-COVID GI manifestations is unclear.
The strengths of the study include we compiled all the data available on prevalence and symptomatology of GI long COVID for guiding clinicians in the pandemic. This would help define the contours of this new entity. We also compared the long-term outcomes after severe COVID-19 as compared to non-severe disease. There are certain limitations to the study. First, most of the included studies were retrospective. Second, the impact of various strains of SARS-CoV-2 on long COVID could not be analyzed as there were no strain-specific studies. Third, the symptoms were mainly subjective in patients with COVID-19 infection on follow-up. Further, a quantitative analysis could not be done for some symptoms (like constipation) because of the small number of reports. Also, most of the analyses demonstrated significant heterogeneity and although the subgroup analyses were performed, the heterogeneity was still significant.

Conclusion

In the present systematic review, GI symptoms as part of long COVID were seen in 12% of patients

Figure 3. Forest plots depicting the pooled frequencies of various GI symptoms (abdominal pain, diarrhea, nausea/vomiting, loss of appetite, loss of taste) in COVID 19 and long COVID, GI, gastrointestinal.

with acute COVID and 22% of long COVID. Loss of appetite, dyspepsia, irritable bowel syndrome, loss of taste, and abdominal pain were the five most common GI symptoms of long COVID. The odds of having GI manifestations of long COVID among patients with severe versus non-severe disease were not statistically different. Future studies should look at the societal impact, prevention, and treatment of long COVID including the GI manifestations.
Figure 4. Forest plots depicting the pooled frequencies of various GI manifestations (constipation, dyspepsia, and irritable bowel syndrome) in COVID 19 and long COVID. GI, gastrointestinal.
Declarations

Ethics approval and consent to participate
Not applicable because this is a systematic review of already published literature and no patients were recruited for this work.

Consent for publication
Not applicable.

Author contribution[s]
Arup Choudhury: Data curation; Validation; Writing – original draft.
Raseen Tariq: Data curation; Validation; Writing – original draft.
Anuraag Jena: Validation; Writing – review & editing.
Elissa Kinzelman Vesely: Data curation.
Siddharth Singh: Validation; Writing – review & editing.
Sahil Khanna: Conceptualization; Supervision; Validation; Writing – review & editing.
Vishal Sharma: Conceptualization; formal analysis; Methodology; Supervision; Writing – original draft; Writing – review & editing.

Acknowledgements
None.

Funding
The authors received no financial support for the research, authorship, and/or publication of this article.

Competing interests
The authors declare that there is no conflict of interest.

Availability of data and materials
The data used for the systematic review is from previously published works and is publicly available.

ORCID iDs
Sahil Khanna https://orcid.org/0000-0002-7619-8338
Vishal Sharma https://orcid.org/0000-0003-2472-3409

Supplemental material
Supplemental material for this article is available online.

References
1. Nabavi N. Long covid: how to define it and how to manage it. BMJ 2020; 370: m3489.
2. World Health Organization. A clinical case definition of post COVID-19 condition by a Delphi consensus, 6 October 2021, https://www. who.int/publications/i/item/WHO-2019-nCoV-Post_COVID-19_condition-Clinical_case_definition-2021.1 (2021, accessed 23 March 2022).
3. CDC. Long COVID or post-COVID conditions, https://www.cdc.gov/coronavirus/2019-ncov/long-term-effects/index.html (2021, accessed 23 March 2022).
4. Cheung KS, Hung IFN, Chan PPY, et al. Gastrointestinal manifestations of SARS-CoV-2 infection and virus load in fecal samples from a Hong Kong cohort: systematic review and meta-analysis. Gastroenterology 2020; 159: 81–95.
5. Kumar-M P, Mishra S, Jha DK, et al. Coronavirus disease (COVID-19) and the liver: a comprehensive systematic review and meta-analysis. Hepatol Int 2020; 14: 711–722.
6. Ni W, Yang X, Yang D, et al. Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19. Crit Care 2020; 24: 422.
7. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021; 372: n71.
8. Venkatesan P. NICE guideline on long COVID. Lancet Respir Med 2021; 9: 129.
9. Balduzzi S, Rücker G and Schwarzer G. How to perform a meta-analysis with R: a practical tutorial. Evid Based Ment Health 2019; 22: 153–160.
10. Suurmond R, van Rhee H and Hak T. Introduction, comparison, and validation of meta-essentials: a free and simple tool for meta-analysis. Res Synth Methods 2017; 8: 537–553.
11. Kuritz SJ, Landis JR and Koch GG. A general overview of Mantel-Haenszel methods: applications and recent developments. Annu Rev Public Health 1988; 9: 123–160.
12. Munn Z, Moola S, Lisy K, et al. Methodological guidance for systematic reviews of observational epidemiological studies reporting prevalence and cumulative incidence data. Int J Evid Based Healthc 2015; 13: 147–153.
13. Adame MJ, Nadda KM and Seashore J. Late sequelae of COVID-19 infection in patients without comorbidities. Am J Respir Crit Care Med 2021; 203: A3821.
14. Akinci Ozyurek B, Sahin Ozdemirel T, Akkurt ES, et al. What are the factors that affect post COVID 1st month’s continuing symptoms? Int J Clin Pract 2021; 75: e14778.

15. Anaya JM, Rojas M, Salinas ML, et al. Post-COVID syndrome. A case series and comprehensive review. Autoimmun Rev 2021; 20: 102947.

16. Areekal B, Sukumaran ST, Andrews AM, et al. Persistence of symptoms after acute COVID-19 infection—an experience from a tertiary care centre in South India. J Clin Diagn Res 2021; 15: LC05–LC08.

17. Augustin M, Schommers P, Stecher M, et al. Post-COVID syndrome in non-hospitalised patients with COVID-19: a longitudinal prospective cohort study. Lancet Reg Health Eur 2021; 6: 100122.

18. Blackett JW, Li J, Jodorkovsky D, et al. Prevalence and risk factors for gastrointestinal symptoms after recovery from COVID-19. Neurogastroenterol Motil 2022; 34: e001075.

19. Blair JE, Gotimukul A, Wang F, et al. Mild to moderate COVID-19 illness in adult outpatients: characteristics, symptoms, and outcomes in the first 4 weeks of illness. Medicine (Baltimore) 2021; 100: e26371.

20. Buttery S, Philip KEJ, Williams P, et al. Patient symptoms and experience following COVID-19: results from a UK-wide survey. BMJ Open Resp Res 2021; 8: e001075.

21. Calogero C, Chauhan K, Chalikonda, et al. S3282 evaluation of delayed gastric emptying in patients with a prior SARS-CoV-2 infection: a single center review. Am J Gastroenterol 2021; 116: S1352.

22. Carrillo-Garcia P, Garmentia-Prieto B, Cristofori G, et al. Health status in survivors older than 70 years after hospitalization with COVID-19: observational follow-up study at 3 months. Eur Geriatr Med 2021; 12: 1091–1094.

23. Chevinsky JR, Tao G, Lavery AM, et al. Late conditions diagnosed 1–4 months following an initial coronavirus disease 2019 (COVID-19) encounter: a matched-cohort study using inpatient and outpatient administrative data–United States, 1 March–30 June 2020. Clin Infect Dis 2021; 73(Suppl. 1): S5–S16.

24. Chopra N, Chowdhury M, Singh AK, et al. Clinical predictors of long COVID-19 and phenotypes of mild COVID-19 at a tertiary care centre in India. Drug Discov Ther 2021; 15: 156–161.

25. Dennis A, Wamil M, Alberts J, et al. Multiorgan impairment in low-risk individuals with post-COVID-19 syndrome: a prospective, community-based study. BMJ Open 2021; 11: e048391.

26. Faruqui S, Okoli FC, Olsen SK, et al. Cholangiopathy after severe COVID-19: clinical features and prognostic implications. Am J Gastroenterol 2021; 116: 1414–1425.

27. Faycal A, Ndoadoumgue AL, Selle B, et al. Prevalence and factors associated with symptom persistence: a prospective study of 429 mild COVID-19 Outpatients. Infect Dis Now 2022; 52: 75–81.

28. Fernández-de-Las-Peñas C, Martin-Guerrero J, Navarro-Pardo E, et al. Gastrointestinal symptoms at the acute COVID-19 phase are risk factors for developing gastrointestinal post-COVID symptoms: a multicenter study. Intern Emerg Med 2021; 17: 583–586.

29. Galal I, Hussein AARM, Amin MT, et al. Determinants of persistent post-COVID-19 symptoms: value of a novel COVID-19 symptom score. Egypt J Bronchology 2021; 15: 10.

30. Galván-Tejada CE, Herrera-Garcia CF, Godina-González S, et al. Persistence of COVID-19 symptoms after recovery in Mexican population. Int J Environ Res Public Health 2020; 17: 9367.

31. Ghoshal UC, Ghoshal U, Rahman MM, et al. Post-infection functional gastrointestinal disorders following coronavirus disease-19: a case-control study. J Gastroenterol Hepatol 2022; 37: 489–498.

32. Gold JE, Okey RA, Licht WE, et al. Investigation of long COVID prevalence and its relationship to Epstein-Barr virus reactivation. Pathogens 2021; 10: 763.

33. Hossain MA, Hossain KMA, Saunders K, et al. Prevalence of long COVID symptoms in Bangladesh: a prospective inception cohort study of COVID-19 survivors. BMJ Glob Health 2021; 6: e006838.

34. Islam MS, Ferdous MZ, Islam US, et al. Treatment, persistent symptoms, and depression in people infected with COVID-19 in Bangladesh. Int J Environ Res Public Health 2021; 18: 1453.

35. Nayagam JS, Jeyaraj R, Mitchell T, et al. Patterns and prediction of liver injury with persistent cholestasis in survivors of severe SARS-CoV-2 infection. J Infect 2021; 82: e11–e13.

36. Jones R, Davis A, Stanley B, et al. Risk predictors and symptom features of long COVID within a broad primary care patient population including
both tested and untested patients. *Pragmat Obs Res* 2021; 12: 93–104.

37. Karaarslan F, Demircioğlu Güneri F and Kardell S. Postdischarge rheumatic and musculoskeletal symptoms following hospitalization for COVID-19: prospective follow-up by phone interviews. *Rheumatol Int* 2021; 41: 1263–1271.

38. Klein H, Asseo K, Karsi N, et al. Onset, duration and unresolved symptoms, including smell and taste changes, in mild COVID-19 infection: a cohort study in Israeli patients. *Clin Microbiol Infect* 2021; 27: 769–774.

39. Kozak R, Armstrong SM, Salvant E, et al. Recognition of long-COVID-19 patients in a Canadian tertiary hospital setting: a retrospective analysis of their clinical and laboratory characteristics. *Pathogens* 2021; 10: 1246.

40. Leth S, Gunst JD, Mathiasen V, et al. Persistent symptoms in patients recovering from COVID-19 in Denmark. *Open Forum Infect Dis* 2021; 8: ofab042.

41. Liang L, Yang B, Jiang N, et al. Three-month follow-up study of survivors of coronavirus disease 2019 after discharge. *J Korean Med Sci* 2020; 35: e418.

42. Lombardo MDM, Foppiani A, Peretti GM, et al. Long-term coronavirus disease 2019 complications in inpatients and outpatients: a one-year follow-up cohort study. *Open Forum Infect Dis* 2021; 8: ofab384.

43. Marasco G, Cremon C, Barbaro MR, et al. Prevalence of gastrointestinal symptoms in severe acute respiratory syndrome coronavirus 2 infection: results of the prospective controlled multinational GI-COVID-19 study. *Am J Gastroenterol* 2022; 117: 147–157.

44. Messin L, Puyraveau M, Benabdallah Y, et al. COVEVOL: natural evolution at 6 months of COVID-19. *Virus* 2021; 13: 2151.

45. Mohamed-Hussein AAR, Amin MT, Maklouf HA, et al. Non-hospitalised COVID-19 patients have more frequent long COVID-19 symptoms. *Int J Tuberc Lung Dis* 2021; 25: 732–737.

46. Noviello D, Costantino A, Muscatello A, et al. Functional gastrointestinal and somatoform symptoms five months after SARS-CoV-2 infection: a controlled cohort study. *Neurogastroenterol Motil* 2022; 34: e14187.

47. Rank A, Tzortzini A, Kling E, et al. One year after mild COVID-19: the majority of patients maintain specific immunity, but one in four still suffer from long-term symptoms. *J Clin Med* 2021; 10: 3305.

48. Rizvi A, Patel Z, Liu Y, et al. Gastrointestinal sequelae 3 and 6 months after hospitalization for coronavirus disease 2019. *Clin Gastroenterol Hepatol* 2021; 19: 2438–2440.e1.

49. Saigal A, Naidu S, Shah A, et al. S54 ‘Long-COVID’: the need for multi-disciplinary working. *Thorax* 2021; 76: A33–A34.

50. Scherlinger M, Felten R, Gallais F, et al. Refining “Long-COVID” by a prospective multimodal evaluation of patients with long-term symptoms attributed to SARS-CoV-2 infection. *Infect Dis Ther* 2021; 10: 1747–1763.

51. Shang YF, Liu T, Yu JN, et al. Half-year follow-up of patients recovering from severe COVID-19: analysis of symptoms and their risk factors. *J Intern Med* 2021; 290: 444–450.

52. Shooanglertwijit R, Pitisuttithum P, Patcharatrakul T, et al. Predictors of viral shedding in fecal samples among Coronavirus disease 2019 (COVID-19) patients and subsequent functional gastrointestinal disorders (FGIDs). *J Gastroenterol Hepatol* 2021; 36: 67–68.

53. Salmon-Ceron D, Slama D, De Broucker T, et al. Clinical, virological and imaging profile in patients with prolonged forms of COVID-19: a cross-sectional study. *J Infect* 2021; 82: e1–e4.

54. Suárez-Robles M, Iguaran-Bermúdez MDR, García-Klepizg JL, et al. Ninety days post-hospitalization evaluation of residual COVID-19 symptoms through a phone call checklist. *Pan Afr Med J* 2020; 37: 289.

55. Taquet M, Dercen Q, Luciano S, et al. Incidence, co-occurrence, and evolution of long-COVID features: a 6-month retrospective cohort study of 273,618 survivors of COVID-19. *PLoS Med* 2021; 18: e1003773.

56. Tiwari B, Ghimire M, Bhatta G, et al. Persistent symptoms in non-critical COVID-19 patients at two months follow-up in a district hospital: a descriptive cross-sectional study. *J Infect Dis* 2021; 22: 1840–1844.

57. Tosato M, Carfi A, Martis I, et al. Prevalence and predictors of persistence of COVID-19 symptoms in older adults: a single-center study. *J Am Med Dir Assoc* 2021; 22: 1840–1844.

58. Vayner Y, Lessen S, Shah R, et al. Residual symptom burden in adult COVID-19 survivors at one, three, and six months after COVID-19 illness. *Am J Respir Crit Care Med* 2021; 203: A3851.

59. Vélez C, Paz M, Silvernale C, et al. Factors associated with chronic de novo post-coronavirus disease gastrointestinal disorders...
in a metropolitan US county. Clin Gastroenterol Hepatol 2022; 20: e1488–e1492.

60. Weng J, Li Y, Li J, et al. Gastrointestinal sequelae 90 days after discharge for COVID-19. Lancet Gastroenterol Hepatol 2021; 6: 344–346.

61. Zhang X, Wang F, Shen Y, et al. Symptoms and health outcomes among survivors of COVID-19 infection 1 year after discharge from hospitals in Wuhan, China. JAMA Netw Open 2021; 4: e2127403.

62. Zhou Y, Zhang J, Zhang D, et al. Linking the gut microbiota to persistent symptoms in survivors of COVID-19 after discharge. J Microbiol 2021; 59: 941–948.

63. Mehandru S and Merad M. Pathological sequelae of long-haul COVID. Nat Immunol 2022; 23: 194–202.

64. Alwan NA. The teachings of Long COVID. Commun Med 2021; 1: 15.

65. McCorkell L, Assaf GS, Davis HE, et al. Patient-led research collaborative: embedding patients in the Long COVID narrative. Pain Rep 2021; 6: e913.

66. Callard F and Perego E. How and why patients made Long Covid. Soc Sci Med 2021; 268: 113426.

67. Wu Y, Guo C, Tang L, et al. Prolonged presence of SARS-CoV-2 viral RNA in faecal samples. Lancet Gastroenterol Hepatol 2020; 5: 434–435.

68. Baker SJ, Mathan M, Mathan VI, et al. Chronic enterocyte infection with coronavirus. One possible cause of the syndrome of tropical sprue? Dig Dis Sci 1982; 27: 1039–1043.

69. Settanni CR, Ianiro G, Ponziani FR, et al. COVID-19 as a trigger of irritable bowel syndrome: a review of potential mechanisms. World J Gastroenterol 2021; 27: 7433–7445.

70. Liu Q, Mak JWY, Su Q, et al. Gut microbiota dynamics in a prospective cohort of patients with post-acute COVID-19 syndrome. Gut 2022; 71: 544–552.