FKBP-related ncRNA-mRNA axis in breast cancer

CURRENT STATUS: UNDER REVIEW

Hanchu Xiong
Zhejiang University
ORCiD: 0000-0001-6075-6895

Zihan Chen
Zhejiang university

Wenwen Zheng
Zhejiang University School of Medicine Second Affiliated Hospital

Jing Sun
Zhejiang University School of Medicine Second Affiliated Hospital

Qingshuang Fu
Ruian City People's Hospital

Rongyue Teng
Zhejiang University School of Medicine Sir Run Run Shaw Hospital

Jida Chen
Zhejiang University School of Medicine Sir Run Run Shaw Hospital

Shuduo Xie
Zhejiang University School of Medicine Sir Run Run Shaw Hospital

Linbo Wang
Zhejiang University

Xiao-Fang Yu
Zhejiang University

Jichun Zhou
jichun-zhou@zju.edu.cn Corresponding Author
ORCiD: 0000-0002-0727-4034

DOI:
SUBJECT AREAS

Oncology Cancer Biology

KEYWORDS

breast cancer; microRNA; long noncoding RNA; FK506-binding protein; bioinformatic analysis.
Abstract

Background Breast cancer (BC) is a disease with morbidity ranking the first of women worldwide. FK506-binding protein (FKBP) family has been demonstrated to possess various functions by interacting with different molecular targets in BC. However, a comprehensive ncRNA-mRNA regulatory axis of FKBP has not yet been reported. Methods FKBP related miRNAs were obtained from miRWalk database. Then, potential IncRNAs, transcription factors as well as mRNAs of screened differentially expressed miRNAs (DE-miRNAs) were analysed by using LncBase v.2, miRGen v3 and miRWalk database. Additionally, differential expression and prognostic analysis of IncRNAs were evaluated using TANRIC database. Next, GO annotation and KEGG pathway analysis were processed using DAVID database. Protein-Protein Interaction (PPI) network was established and hub genes were identified using STRING database. Finally, differential expression and prognostic analysis of hub genes were further conducted using UALCAN and bc-GenExMiner v4.2 database, respectively. Results Eleven DE-miRNAs, consisting of four FKBP4 related DE-miRNAs and seven FKBP5 related DE-miRNAs, were screened. 482 predicted IncRNAs were found for DE-miRNAs. Then, expression and prognostic results of nine of top twenty IncRNAs of BC were significantly identified. LINC00662 and LINC00963 expression were significantly associated with patients’ overall survival (OS). Then, nine potential upstream transcription factors were identified in motifs of DE-miRNAs. 320 target genes were identified for GO annotation and KEGG pathway analysis, which were mainly enriched in cysteine-type endopeptidase activity involved in apoptotic process. Construction and analysis in PPI network showed that RAB7A was selected as a hub gene with the toppest connectivity scores. Differential expression analysis of nine in top ten hub genes of BC were significantly identified. RAB7A and ARRB1 expression were significantly related with BC patients’ OS. Conclusions In current study, we firstly
established a predicted FKBP-related ncRNA-mRNA regulatory network, thus exploring a comprehensive interpretation of molecular mechanisms and providing potential clues in seeking novel therapeutics for BC. In the future, much more experiments should be conducted to verify our findings.

Background

Breast cancer (BC) is the most widespread and deadly non-cutaneous tumor in worldwide women[1]. Early detection and comprehensive treatments, which consist of surgery, radiation, chemotherapy, endocrine therapy and targeted therapy, have significantly improved the prognosis in BC patients. However, BC is a heterogeneous disease of various different genetical, pathological, and clinical subtypes[2]. Even though intensive efforts have been made in both basic researches and clinical studies, it’s still necessary to find more reliable markers to further improve therapeutics for BC patients.

FK506-binding protein (FKBP) family in Homo sapiens genomes has been found to target on various pathways in embryology, stress reaction, heart function, tumorigenesis and neuronal function[3]. In breast cancer, FKBP4 and FKBP5 are most extensively studied proteins among identified human FKBPs, which are demonstrated to interact with Hsp90 to affect steroid hormone receptor function[4]. MicroRNAs (miRNAs) are a cluster of small noncoding RNAs consisting of 20 to 24 nucleotides, regulating targeted gene expression by binding to several selective messenger RNAs (mRNAs) [5]. MiRNAs are also found to exert pivotal roles in the genesis and development of BC. For instance, the miRNA let-7’s ability to restrain the expression of metastatic genes could be compromised when long non-coding RNA (lncRNA) H19 expression is upregulated, leading to high expression of c-Myc and activating migration and invasion of BC cells[6]. Despite many researches on miRNA expression and function of BC have been conducted, a comprehensive analysis of FKBP-related ncRNA-mRNA regulatory network via clinical information of BC is still lacking.
Construction of predicted ncRNA-mRNA axis contributing to BC might unravel the potential molecular mechanisms underlying processes of miRNAs’ impact on BC.

Herein, a total of four FKBP4 related differentially expressed miRNAs (DE-miRNAs) and seven FKBP5 related DE-miRNAs were screened. Subsequently, expression and prognostic analytic result of nine of the top twenty lncRNAs in BC were significantly identified. LINC00662 and LINC00963 expression were significantly associated with patients’ overall survival (OS). Then, nine potential upstream transcription factors (TFs) were identified in motifs of DE-miRNAs. 320 target genes were selected for GO annotation and KEGG pathway analysis. Construction of Protein-Protein Interaction (PPI) network showed that RAB7A was recognized as a hub gene with the toppest connectivity scores. Differential expression analysis of nine in top ten hub genes of BC were significantly identified. RAB7A and ARRB1 expression were significantly associated with patients’ OS. Finally, a potential FKBP-related ncRNA-mRNA regulatory axis contributing to the onset and development in BC was successfully achieved.

Methods

Verification of FKBP4s Expression Levels

The mRNA expressions of twelve FKBP4s were further verified using GEPIA, which is a recently developed database for analyzing the RNA sequencing expression data of carcinoma and adjacent samples in the TCGA and the GTEx projects[7].

Screening of Potential miRNAs of FKBP4 and Targeted Genes of miRNAs

Both screened miRNAs of FKBP4 and FKBP5 and screened gene targets of miRNAs were conducted using miRWalk database, mainly using for experimentally verified miRNA-target interactions[8], specifically the screened miRNAs and genes were generated by intersection of miRDB and miRTarBase.
Screening Of Potential Lncrnas And Transcription Factors Of Mirnas

Predicted IncRNAs of screened miRNAs were all generated by using LncBase v.2, which is a tool used mainly for discovering the connection between miRNAs and IncRNAs[9]. The upstream TFs of screened miRNAs were analyzed by using miRGen v3, which is mainly conducted for discovering the connection between miRNAs and TFs[10].

Validation Of Lncrna Differential Expressions And Prognostic Functions

Both expression levels of top twenty IncRNAs in different subtypes and their prognostic roles of overall survival of BC patients were further validated by using The Atlas of ncRNA in Cancer (TANRIC), an open-access database for interactive exploration of IncRNAs of various cancer[11]. IncRNAs with |log2FC|>2 and P < 0.05 were regarded as statistically significant.

Go Annotation And Kegg Pathway Analysis

To better understand those screened candidate targeted genes, DAVID database was used to perform GO annotation and KEGG pathway analysis. The top ten enriched GO items were all listed in Fig. S4A-S4C. BP analysis revealed that candidate targeted genes of screened DE-miRNAs were significantly enriched in negative regulation of cysteine-type endopeptidase activity involved in apoptotic process (Fig. S4A). As for CC analysis, genes were significantly enriched in protein complex, postsynaptic density and cytoplasmic vesicle membrane (Fig. S4B). MF analysis for these genes consisted of protein binding, zinc ion binding and cadherin binding involved in cell-cell adhesion (Fig. S4C). KEGG pathway analysis was further utilized for candidate targeted genes of screened DE-miRNAs. As shown in Table 7, candidate targeted genes of screened DE-miRNAs were markedly enriched in Axon guidance.
Table 7
The KEGG pathway analysis of DE-miRNAs related targeted genes

Term	Count	Genes	PValue	Benjamini	FDR
hsa04360:Axon guidance	6	ABLIM1, SEMA4G, PLXNA2, EFNA3, NTN1, EPHB2	0.0295	0.991709556	30.3503
hsa04971:Gastric acid secretion	4	ATP1B4, CALM3, SLC4A2, PLCB1	0.0775	0.998436226	62.28624
hsa04152:AMPK signaling pathway	5	PDPK1, SLC2A4, PFKFB3, SCD, PPP2R5E	0.0872	0.992305724	66.77845
hsa04960:Aldosterone-regulated sodium reabsorption	3	SGK1, PDPK1, ATP1B4	0.0989	0.984480772	71.56362

Establishment Of Protein-protein Interaction Network

To better understanding the relationship among targeted genes of miRNAs, the PPI network was established by using the STRING database[13]. PPI node pairs with the score > 0.4 were chosen for further analysis. The top ten hub genes were verified based on the node number in the PPI network.

Verification Of Hub Gene Differential Expressions

The mRNA expressions of hub genes in BC were further verified by using UALCAN (http://ualcan.path.uab.edu), which is an interactive online database to perform in-depth analyses of gene expression data from TCGA[14].

Verification Of Hub Gene Prognostic Roles

The prognostic results of potential hub genes in BC were analyzed by using bc-GenExMiner v4.2 (bcgenex.centregauducheau.fr), a statistical mining tool of published BC transcriptomic data from TCGA and GEO[15].

Statistical Analysis

Majority of the statistical analysis was done through the above-mentioned bioinformatic tools, and only lncRNAs or miRNAs or genes with |log2FC|>2 and P < 0.05 were regarded as statistically significant.

Results
Validation of Candidate DE-miRNAs

Firstly, GEPIA database was utilized to detect gene expressions of twelve FKBP family members. As shown in Fig. S1E and S1F, expression level of FKBP4 was significantly higher in BC tissues than that in adjacent tissues, while FKBP5 expression was significantly lower in BC tissues than that in adjacent tissues. Differential expression analysis of other genes showed no significant changes between BC and normal tissues (Fig. S1A-S1D and S1G-S1L). Then, to validate potential FKBP mRNA-miRNA regulatory axis in BC, miRWalk database was used to screen differentially expressed miRNAs of both BC samples and adjacent samples. As shown in Fig. 1A and 1B, eleven significantly DE-miRNAs (hsa-miR-423-5p, hsa-miR-3202, hsa-miR-4519, hsa-miR-6750-5p, hsa-miR-4740-5p, hsa-miR-4779, hsa-miR-377-5p, hsa-miR-510-5p, hsa-miR-3613-3p, hsa-miR-6086 and hsa-miR-7106-5p) were finally identified by intersection of miRDB and miRTarBase. These predicted target DE-miRNAs were also listed in Tables 1 and 2.

miRNA	RefseqID	GeneSymbol	Score	Position	Binding Site	Au	Me	N Pairings	TargetsMiRBase	TargetsMiRTarBase1
hsa-miR-423-5p	NM_002014	FKBP4	1	3'UTR	20,412,060	0.48	-4.529	17	LINK	MIR038093
hsa-miR-423-5p	NM_002014	FKBP4	1	3'UTR	28,792,901	0.37	-11.667	17	LINK	MIR038093
hsa-miR-3202	NM_002014	FKBP4	1	3'UTR	29,572,977	0.46	-7.861	15	—	MIR741143
hsa-miR-3202	NM_002014	FKBP4	1	3'UTR	20,472,062	0.47	-6.851	13	—	MIR741143
hsa-miR-4519	NM_002014	FKBP4	1	3'UTR	24,172,451	0.4	-6.2	14	—	MIR745785
hsa-miR-6750-5p	NM_002014	FKBP4	1	3'UTR	21,022,125	0.46	-10.109	20	—	MIR744571
Table 2
The predicted targeted DE-miRNAs of FKBP5

miRNA	RefseqID	GeneSymbol	Score	Position	Binding Site	Au	Me	N Pairings	Targets	Mirdb	Mirtarbase
hsa-miR-4740-5p	NM_001145775	FKBP5	1	3UTR	18,541,869	0.34	-16.423	14	--	Link	MIRT537338
hsa-miR-4779	NM_001145775	FKBP5	1	3UTR	30,823,098	0.56	-8.34	13	--	Link	MIRT452010
hsa-miR-4740-5p	NM_0041117	FKBP5	1	3UTR	16,961,711	0.34	-16.423	14	--	Link	MIRT537338
hsa-miR-4779	NM_0041117	FKBP5	1	3UTR	29,292,940	0.56	-8.34	10	--	Link	MIRT452010
hsa-miR-4740-5p	NM_001145776	FKBP5	1	3UTR	17,411,756	0.34	-16.423	14	--	Link	MIRT537338
hsa-miR-4779	NM_001145776	FKBP5	1	3UTR	29,742,985	0.56	-8.34	10	--	Link	MIRT452010
hsa-miR-377-5p	NM_001145777	FKBP5	0.96	3UTR	58,765,908	0.53	-10.729	14	--	Link	MIRT451979
hsa-miR-377-5p	NM_001145777	FKBP5	1	3UTR	12,801,301	0.73	-8.769	19	--	Link	MIRT451979
hsa-miR-510-5p	NM_001145777	FKBP5	1	3UTR	35,733,613	0.59	-5.227	15	--	Link	MIRT514719
hsa-miR-3613-3p	NM_001145777	FKBP5	1	3UTR	55,875,601	0.53	-21.723	11	--	Link	MIRT765989
hsa-miR-6086	NM_001145777	FKBP5	1	3UTR	64,156,458	0.46	-3.938	20	--	Link	MIRT451978
hsa-miR-6086	NM_001145777	FKBP5	1	3UTR	47,484,765	0.56	-5.694	16	--	Link	MIRT451978
hsa-miR-7106-5p	NM_001145777	FKBP5	1	3UTR	13,441,367	0.54	-3.938	18	--	Link	MIRT451992
hsa-miR-7106-5p	NM_001145777	FKBP5	1	3UTR	32,213,240	0.6	-8.574	18	--	Link	MIRT451992

Prediction Of De-mirnas Associated Lncrnas

Here, we first intended to identify candidate lncRNAs of DE-miRNAs by using LncBase v.2 database. The 20 most frequent lncRNAs (LINC00662, LRRC75A-AS1, LINC01002, KCNQ1OT1, RP11-15H20.6, ZNF213-AS1, LINC00963, AC007246.3, XLOC_013274, XIST, ERVK3-1, AC138035.2, RP11-34P13.13, LINC00960, FAM211A-AS1, AC013394.2, AC005154.6, ZNF561-AS1, XLOC_014159, XLOC_009145) for screened DE-miRNAs were presented in Fig. 1C. These predicted target DE-miRNAs associated IncRNAs were also listed in Table 3.

Table 3
lncRNA	miRNA
UCA1	hsa-miR-423-5p
KCNQ1OT1	hsa-miR-423-5p
FOXP4-AS1	hsa-miR-423-5p
AC068039.4	hsa-miR-423-5p
SNORA67	hsa-miR-423-5p
MALAT1	hsa-miR-423-5p
XLOC_014255	hsa-miR-423-5p
SPACA6P	hsa-miR-423-5p
AC004951.6	hsa-miR-423-5p
KCNQ1OT1	hsa-miR-3202
RP11-20D14.6	hsa-miR-3202
XIST	hsa-miR-3202
AC093642.3	hsa-miR-3202
XLOC_011789	hsa-miR-3202
LOC648987	hsa-miR-3202
GMDS-AS1	hsa-miR-3202
RP5-1085F17.3	hsa-miR-3202
LOC100190986	hsa-miR-3202
SNHG8	hsa-miR-3202
LINC00960	hsa-miR-3202
AC007255.8	hsa-miR-3202
APTR	hsa-miR-3202
XLOC_014159	hsa-miR-3202
APTR	hsa-miR-3202
APTR	hsa-miR-3202
RP11-140K17.3	hsa-miR-3202
GMDS-AS1	hsa-miR-3202
AC005154.6	hsa-miR-3202
KTN1-AS1	hsa-miR-3202
RP11-513I15.6	hsa-miR-3202
PCBP1-AS1	hsa-miR-3202
MIR503HG	hsa-miR-3202
AC007246.3	hsa-miR-3202
XXbac-BPG154L12.4	hsa-miR-3202
FAM201A	hsa-miR-3202
ZEB1-AS1	hsa-miR-3202
AC007246.3	hsa-miR-3202
TINCR	hsa-miR-3202
XLOC_010706	hsa-miR-3202
TINCR	hsa-miR-3202
AC007246.3	hsa-miR-3202
LINC01278	hsa-miR-3202
SLC25A25-AS1	hsa-miR-3202
RP11-388C12.8	hsa-miR-3202
AC007246.3	hsa-miR-3202
RP11-734K2.4	hsa-miR-3202
CTD-2284J15.1	hsa-miR-3202
MGC27345	hsa-miR-3202
AC007246.3	hsa-miR-3202
RP11-458F8.4	hsa-miR-3202
RP11-395P17.3	hsa-miR-3202
ZEB1-AS1	hsa-miR-3202
LINC00960	hsa-miR-3202
RP11-725P16.2	hsa-miR-3202
AC007246.3	hsa-miR-3202
MIR4697HG	hsa-miR-3202
RP11-545S15.3	hsa-miR-3202
RP11-197N18.2	hsa-miR-3202
XLOC_006242	hsa-miR-3202
KCNQ1OT1	hsa-miR-4519
RP11-539L10.3	hsa-miR-4519
RP11-539L10.3	hsa-miR-4519
XLOC_003870	hsa-miR-4519
CTC-459F4.3	hsa-miR-4519
LINC00663	hsa-miR-4519
AC025171.1	hsa-miR-4519
XLOC_013499	hsa-miR-4519
LINC00662	hsa-miR-4519
---------------	-------------
RP11-574K11.29	hsa-miR-4519
HNRNPU-AS1	hsa-miR-4519
RP11-93209.9	hsa-miR-4519
XLOC_011248	hsa-miR-4519
RP11-182L21.6	hsa-miR-4519
ERVK3-1	hsa-miR-6750-5p
XLOC_009783	hsa-miR-6750-5p
KCNQ1OT1	hsa-miR-6750-5p
CTD-2006C1.2	hsa-miR-6750-5p
CASC2	hsa-miR-6750-5p
LINC00960	hsa-miR-6750-5p
ERVK3-1	hsa-miR-6750-5p
CTC-241N9.1	hsa-miR-6750-5p
CTA-392E5.1	hsa-miR-6750-5p
ZNF213-AS1	hsa-miR-6750-5p
NDUFA6-AS1	hsa-miR-6750-5p
NEAT1	hsa-miR-6750-5p
RP5-1065J22.8	hsa-miR-6750-5p
GMDS-AS1	hsa-miR-6750-5p
ZNF213-AS1	hsa-miR-6750-5p
ERVK3-1	hsa-miR-6750-5p
C1QTNF9B-AS1	hsa-miR-6750-5p
LINC00662	hsa-miR-6750-5p
UCA1	hsa-miR-6750-5p
CTD-2017D11.1	hsa-miR-6750-5p
LOC100506639	hsa-miR-6750-5p
RP11-658F2.8	hsa-miR-6750-5p
RP11-440L14.1	hsa-miR-6750-5p
A1BG-AS1	hsa-miR-6750-5p
A1BG-AS1	hsa-miR-6750-5p
CTD-2017D11.1	hsa-miR-6750-5p
ARHGEF26-AS1	hsa-miR-6750-5p
XIST	hsa-miR-6750-5p
RP4-806M20.3	hsa-miR-6750-5p
XIST	hsa-miR-6750-5p
KCNQ1OT1	hsa-miR-6750-5p
RPS-890E16.2	hsa-miR-6750-5p
TMPO-AS1	hsa-miR-6750-5p
TMPO-AS1	hsa-miR-6750-5p
XLOC_006476	hsa-miR-4779
RP11-10L12.4	hsa-miR-4779
KCNQ1OT1	hsa-miR-4779
LINC00662	hsa-miR-4779
LINC00662	hsa-miR-4779
AC013394.2	hsa-miR-4779
RP11-111F5.4	hsa-miR-4779
AC013394.2	hsa-miR-4779
AC013394.2	hsa-miR-4779
CTC-459F4.3	hsa-miR-4779
RP11-111F5.4	hsa-miR-4779
GLIDR	hsa-miR-4779
AC005154.6	hsa-miR-4779
XLOC_007690	hsa-miR-4779
LINC01278	hsa-miR-4779
LINC00925	hsa-miR-4779
SH3BP5-AS1	hsa-miR-4779
RP11-111F5.4	hsa-miR-4779
RP11-440L14.1	hsa-miR-4779
LINC00925	hsa-miR-4779
RP11-440L14.1	hsa-miR-4779
IQCH-AS1	hsa-miR-4779
AC005154.6	hsa-miR-4779
IQCH-AS1	hsa-miR-4779
LOC100129917	hsa-miR-4779
CASC2	hsa-miR-4779
LBX2-AS1	hsa-miR-4779
LOC100190986	hsa-miR-4779
RP4-773N10.4	hsa-miR-4779
AC062029.1	hsa-miR-4779
TUG1	hsa-miR-3613-3p
---------	----------------
CTD-2574D22.4	hsa-miR-3613-3p
SNHG16	hsa-miR-3613-3p
XLOC_006058	hsa-miR-3613-3p
CTD-3220F14.1	hsa-miR-3613-3p
RP11-34P13.13	hsa-miR-3613-3p
LOC100506730	hsa-miR-3613-3p
LINC00963	hsa-miR-3613-3p
RP5-1085F17.3	hsa-miR-3613-3p
FGDS5-AS1	hsa-miR-3613-3p
RP11-159D12.2	hsa-miR-3613-3p
LINC01087	hsa-miR-3613-3p
LRRCC75A-AS1	hsa-miR-3613-3p
RP11-182L21.6	hsa-miR-3613-3p
CASC7	hsa-miR-3613-3p
CTC-444N24.11	hsa-miR-3613-3p
RP11-115C21.2	hsa-miR-3613-3p
NUTM2B-AS1	hsa-miR-3613-3p
LOC100190986	hsa-miR-3613-3p
LINC00963	hsa-miR-3613-3p
FAM201A	hsa-miR-3613-3p
TUG1	hsa-miR-3613-3p
RPARP-AS1	hsa-miR-3613-3p
AF127936.7	hsa-miR-3613-3p
ACC025335.1	hsa-miR-3613-3p
LINC00963	hsa-miR-3613-3p
BCYRN1	hsa-miR-3613-3p
LRRCC75A-AS1	hsa-miR-3613-3p
LOC284023	hsa-miR-3613-3p
XLOC_001417	hsa-miR-3613-3p
RP11-747H7.3	hsa-miR-3613-3p
RP11-705C15.3	hsa-miR-3613-3p
CTD-2044J15.2	hsa-miR-3613-3p
CTD-3074O7.12	hsa-miR-3613-3p
AC159540.1	hsa-miR-3613-3p
OIP5-AS1	hsa-miR-3613-3p
LINCC0342	hsa-miR-3613-3p
CTD-3092A11.2	hsa-miR-3613-3p
LINCC0038	hsa-miR-3613-3p
RP11-469M7.1	hsa-miR-3613-3p
U91328.19	hsa-miR-3613-3p
TUG1	hsa-miR-3613-3p
MGC27345	hsa-miR-3613-3p
XLOC_000441	hsa-miR-3613-3p
LRRCC75A-AS1	hsa-miR-3613-3p
CTD-2369P2.2	hsa-miR-3613-3p
LRRCC75A-AS1	hsa-miR-3613-3p
FLJ31306	hsa-miR-3613-3p
KB-1460A1.5	hsa-miR-3613-3p
LINCC00680	hsa-miR-3613-3p
ZNF213-AS1	hsa-miR-3613-3p
LINC01355	hsa-miR-3613-3p
LINC01002	hsa-miR-3613-3p
GLG1	hsa-miR-3613-3p
SNHG20	hsa-miR-3613-3p
RP11-513I15.6	hsa-miR-3613-3p
RP11-46C24.7	hsa-miR-3613-3p
LINCC00938	hsa-miR-3613-3p
FAM157C	hsa-miR-3613-3p
LOC648987	hsa-miR-3613-3p
AC083843.1	hsa-miR-3613-3p
NEAT1	hsa-miR-3613-3p
LRRCC75A-AS1	hsa-miR-3613-3p
RP11-361F15.2	hsa-miR-3613-3p
COX10-AS1	hsa-miR-3613-3p
RP5-1074L1.4	hsa-miR-3613-3p
RP5-1092A3.4	hsa-miR-3613-3p
CTD-3252C9.4	hsa-miR-3613-3p
LINC00657	hsa-miR-3613-3p
Gene Name	miRNA
----------------	----------
RP11-395B7.7	hsa-miR-3613-3p
RP11-798M19.6	hsa-miR-3613-3p
LINC00467	hsa-miR-3613-3p
RP11-206L10.5	hsa-miR-3613-3p
SNHG16	hsa-miR-3613-3p
XLOC_003416	hsa-miR-3613-3p
XLOC_007970	hsa-miR-3613-3p
RP11-6N17.4	hsa-miR-3613-3p
NUTM2B-AS1	hsa-miR-3613-3p
FLI10038	hsa-miR-3613-3p
LINC00467	hsa-miR-3613-3p
RP11-159D12.2	hsa-miR-3613-3p
XLOC 010212	hsa-miR-3613-3p
LRRCC75A-AS1	hsa-miR-3613-3p
LRRCC75A-AS1	hsa-miR-3613-3p
LINC00662	hsa-miR-3613-3p
CTC-273B12.8	hsa-miR-3613-3p
CTC-365E16.1	hsa-miR-3613-3p
AC005154.6	hsa-miR-3613-3p
ZNF674-A51	hsa-miR-3613-3p
FAM211A-AS1	hsa-miR-3613-3p
XLOC_008461	hsa-miR-3613-3p
LRRCC75A-AS1	hsa-miR-3613-3p
RP11-395P17.3	hsa-miR-3613-3p
LINC00963	hsa-miR-3613-3p
LRRCC75A-AS1	hsa-miR-3613-3p
LRRCC75A-AS1	hsa-miR-3613-3p
MIR17HG	hsa-miR-3613-3p
LINC00630	hsa-miR-3613-3p
PCAT7	hsa-miR-3613-3p
LRRCC75A-AS1	hsa-miR-3613-3p
RP11-282O18.3	hsa-miR-3613-3p
RP11-350F4.2	hsa-miR-3613-3p
CTC-273B12.8	hsa-miR-3613-3p
SLC25A25-A51	hsa-miR-3613-3p
SNHG16	hsa-miR-3613-3p
AC013994.2	hsa-miR-3613-3p
PCBP2-OT1	hsa-miR-3613-3p
AC011747.4	hsa-miR-3613-3p
LINC00662	hsa-miR-3613-3p
FAM211A-AS1	hsa-miR-3613-3p
RP11-159D12.2	hsa-miR-3613-3p
RP11-174G6.5	hsa-miR-3613-3p
LRRCC75A-AS1	hsa-miR-3613-3p
FAM211A-AS1	hsa-miR-3613-3p
SNHG3	hsa-miR-3613-3p
FAM211A-AS1	hsa-miR-3613-3p
LINC01125	hsa-miR-3613-3p
RP11-798M19.6	hsa-miR-3613-3p
MIR17HG	hsa-miR-3613-3p
AC016747.3	hsa-miR-3613-3p
PDXDC2P	hsa-miR-3613-3p
RP11-226L15.5	hsa-miR-3613-3p
AC005562.1	hsa-miR-3613-3p
ZNF213-AS1	hsa-miR-3613-3p
XLOC 009145	hsa-miR-3613-3p
LINC0052	hsa-miR-3613-3p
TMEM191C	hsa-miR-3613-3p
RP11-443B7.1	hsa-miR-3613-3p
LRRCC75A-AS1	hsa-miR-3613-3p
LINC01347	hsa-miR-3613-3p
XLOC 011248	hsa-miR-3613-3p
CKMT2-AS1	hsa-miR-3613-3p
LINC00662	hsa-miR-6086
LINC00662	hsa-miR-6086
LINC00662	hsa-miR-6086
KCNQ10T1	hsa-miR-6086
RP11-15H20.6	hsa-miR-6086

14
Gene	miRNA
XLOC_013274	hsa-miR-6086
CTC-559E9.6	hsa-miR-6086
LINC00662	hsa-miR-6086
LINC00662	hsa-miR-6086
CTC-260E6.6	hsa-miR-6086
XLOC_012370	hsa-miR-6086
ERVK3-1	hsa-miR-6086
LOC100129034	hsa-miR-6086
ZNF213-AS1	hsa-miR-6086
AC138035.2	hsa-miR-6086
RP11-15E18.1	hsa-miR-6086
RP11-222P7.2	hsa-miR-6086
TTN-AS1	hsa-miR-6086
RP11-34P13.13	hsa-miR-7106-5p
LOC100190986	hsa-miR-7106-5p
KCNQ1OT1	hsa-miR-7106-5p
ZNF561-AS1	hsa-miR-7106-5p
LINC00174	hsa-miR-7106-5p
AC138035.2	hsa-miR-7106-5p
LINC01002	hsa-miR-7106-5p
XLOC_013274	hsa-miR-7106-5p
CYP4F35P	hsa-miR-7106-5p
RP11-15H20.6	hsa-miR-7106-5p
C21orf15	hsa-miR-7106-5p
AC022007.5	hsa-miR-7106-5p
LINC00662	hsa-miR-7106-5p
LINC00662	hsa-miR-7106-5p
LINC00999	hsa-miR-7106-5p
CYP4F35P	hsa-miR-7106-5p
XLOC_006242	hsa-miR-7106-5p
AC138035.2	hsa-miR-7106-5p
LINC01001	hsa-miR-7106-5p
XLOC_008461	hsa-miR-7106-5p
RP11-15H20.6	hsa-miR-7106-5p
LINC00680	hsa-miR-7106-5p
FAM157C	hsa-miR-7106-5p
RP11-126K1.6	hsa-miR-7106-5p
CTBPI-AS2	hsa-miR-7106-5p
AP000251.3	hsa-miR-7106-5p
LINC01125	hsa-miR-7106-5p
AC009299.3	hsa-miR-7106-5p
AC009299.3	hsa-miR-7106-5p
XLOC_00852B	hsa-miR-7106-5p
XLOC_001223	hsa-miR-7106-5p
TCL6	hsa-miR-7106-5p
CTB-89H12.4	hsa-miR-7106-5p
AC004951.6	hsa-miR-7106-5p
RP11-15H20.6	hsa-miR-7106-5p
LOC100506730	hsa-miR-7106-5p
ASB16-AS1	hsa-miR-7106-5p
AC022007.5	hsa-miR-7106-5p
RP11-384K6.6	hsa-miR-7106-5p
LINC00963	hsa-miR-7106-5p
LINC01002	hsa-miR-7106-5p
TTN-AS1	hsa-miR-7106-5p
RP11-155G14.6	hsa-miR-7106-5p
LINC01061	hsa-miR-7106-5p
XLOC_009783	hsa-miR-7106-5p
PPP3CB-AS1	hsa-miR-7106-5p
LINC01000	hsa-miR-7106-5p
PPP3CB-AS1	hsa-miR-7106-5p
RP11-617F23.1	hsa-miR-7106-5p
ERVK3-1	hsa-miR-7106-5p
RP11-15H20.6	hsa-miR-7106-5p
AC003102.3	hsa-miR-7106-5p
CTC-365E16.1	hsa-miR-7106-5p
THUMPD3-AS1	hsa-miR-7106-5p
THUMPD3-AS1	hsa-miR-7106-5p
XLOC_006455	hsa-miR-7106-5p
Gene Symbol	miRNA Target
-------------	--------------
SPACA6P	hsa-miR-7106-5p
RP11-22P6.3	hsa-miR-7106-5p
RP11-983P16.4	hsa-miR-7106-5p
XLOC_010268	hsa-miR-7106-5p
RP11-206L10.9	hsa-miR-7106-5p
GABPB1-AS1	hsa-miR-7106-5p
THUMPD3-AS1	hsa-miR-7106-5p
LINC00662	hsa-miR-7106-5p
AC138035.2	hsa-miR-7106-5p
LINC01128	hsa-miR-7106-5p
LAMTOR5-AS1	hsa-miR-7106-5p
LINC01001	hsa-miR-7106-5p
RP11-81H3.2	hsa-miR-7106-5p
RP11-504P24.8	hsa-miR-7106-5p
RP11-347C12.10	hsa-miR-7106-5p
LAMTOR5-AS1	hsa-miR-7106-5p
XLOC_003662	hsa-miR-7106-5p
ASB16-AS1	hsa-miR-7106-5p
LINC01001	hsa-miR-7106-5p
RP11-573D15.2	hsa-miR-7106-5p
LINC00494	hsa-miR-7106-5p
KCNK15-AS1	hsa-miR-7106-5p
LINC00265	hsa-miR-7106-5p
LINC00494	hsa-miR-7106-5p
LINC00173	hsa-miR-7106-5p
XIST	hsa-miR-7106-5p
XLOC_013998	hsa-miR-7106-5p
RP11-395P17.3	hsa-miR-7106-5p
RP11-15H20.6	hsa-miR-7106-5p
LINC00174	hsa-miR-7106-5p
LAMTOR5-AS1	hsa-miR-7106-5p
RP11-498C9.15	hsa-miR-7106-5p
RP11-22P6.3	hsa-miR-7106-5p
LINC01002	hsa-miR-7106-5p
LINC00094	hsa-miR-7106-5p
AC016747.3	hsa-miR-7106-5p
CTD-307407.12	hsa-miR-7106-5p
PCBP1-AS1	hsa-miR-7106-5p
LINC00094	hsa-miR-7106-5p
LINC01002	hsa-miR-7106-5p
LINC00174	hsa-miR-7106-5p
XLOC_009145	hsa-miR-7106-5p
LINC01002	hsa-miR-7106-5p
GLG1	hsa-miR-7106-5p
ZNF561-AS1	hsa-miR-7106-5p
RP11-15H20.6	hsa-miR-7106-5p
LINC01002	hsa-miR-7106-5p
LINC00963	hsa-miR-7106-5p
RP11-34P13.13	hsa-miR-7106-5p
FAM83H-AS1	hsa-miR-7106-5p
LINC00649	hsa-miR-7106-5p
CTC-459F4.3	hsa-miR-7106-5p
SLC25A25-AS1	hsa-miR-7106-5p
RP11-616M22.7	hsa-miR-7106-5p
LINC00963	hsa-miR-7106-5p
RP11-513I15.6	hsa-miR-7106-5p
RP11-6N17.4	hsa-miR-7106-5p
NUTM2B-AS1	hsa-miR-7106-5p
RP11-284F21.10	hsa-miR-7106-5p
RP11-21L23.2	hsa-miR-7106-5p
XLOC_002996	hsa-miR-7106-5p
LINC01002	hsa-miR-7106-5p
XLOC_014159	hsa-miR-7106-5p
GNAS-AS1	hsa-miR-7106-5p
Validation Of Lncrnas Expression Levels And Prognostic Roles

Subsequently, TANRIC database was used to detect the top twenty IncRNAs expression levels. As shown in Fig. S2A-S2I, Nine of twenty IncRNAs were significantly increased or downregulated between BC tissues and normal tissues. Furthermore, the prognostic functions of twenty IncRNAs of BC were also analyzed. As shown in Fig. S3A and S3B, the higher expression of both LINC00662 and LINC00963 significantly indicated a worse prognosis in BC.

Identification Of Upstream Transcription Factors Of De-mirnas

In current study, prediction of upstream TFs of screened DE-miRNAs was used by miRGen v3 database. Nine TFs for DE-miRNAs and corresponding motifs were presented in Fig. 2A-2I, which were NRF1, ELK4, E2F3, NR2F1, ZEB1, ZNF263, ZFX, POU2F2, and IRF1. As shown in Fig. 2J, NRF1 and ELK4 were the two most frequent predicted TFs of DE-miRNAs. The frequency of predicted TFs was also listed in Table 4.

TF name	Num of binding sites
NRF1	5
ELK4	4
E2F3	2
NR2F1	1
ZEB1	1
ZNF263	1
ZFX	1
POU2F2	1
IRF1	1

Identification Of Downstream Targeted Genes Of De-mirnas

It is well-known that miRNAs play their biological roles mainly by directly targeting 3’ untranslated region of mRNA. Then, we verified the downstream targeted genes of candidate DE-miRNA through intersection of miRDB and miRTarBase on miRWalk database. 320 target genes were finally analyzed (Fig. 3A-3K) and listed in Table 5. Moreover, targeted gene counts for each DE-miRNA were simultaneously listed in Table 6.

TF name	Num of binding sites								
NRF1									
ELK4									
E2F3									
NR2F1									
ZEB1									
ZNF263									
ZFX									
POU2F2									
IRF1									
hsa-miR-423-5p	hsa-miR-3202	hsa-miR-6750-5p	hsa-miR-4740-5p	hsa-miR-4779	hsa-miR-377-5p	hsa-miR-510-5p	hsa-miR-3613-3p	hsa-miR-6086	hsa-miR-7160-5p
----------------	-------------	----------------	----------------	-------------	-------------	-------------	-------------	-------------	-------------
STRN4	GPR107	GNS	FKBp4	SCD	KIF21B	SEC24A	HTR3E	MPRIP	TFPi
GDF11	TORS1AIP2	ARL8B	PPIA	FKBp5	PLOLR2F	SLC4IP	CNOT6L	SAMD8	PAX2
ASPH	SET	SESN3	QSER1	H6PD	IQSEC3	RC3H1	MRPS16	CCNY	ARHGEF5
HNRNPUL1	RNF187	C5orf51	STRN4	STRN4	STRN4	STRN4	STRN4	STRN4	STRN4
NCS1	TBC1D2	FKBp4	MTSS1L	GNL3L	ARH1	SNIP1	IRGQ	VSIR	VSIR
FOXK1	CAPZB	NOVA2	PDK3	TMED4	PSCP1	PLCXD1	USB1	MSMO1	MSMO1
MNT	FKBp4	TNRC6B	ZNF570	VHL	FKBp5	DYSK2	ZNF835	PDE4A	PDE4A
ABC50	SOCS7	RAB7A	CLEC7A	FKBp5	DYSK2	ZNF835	PDE4A	PDE4A	PDE4A
ARBB2	MLEC	URM1	RBMS2	SELENOH	NECTIN1	TMEM30B	NECTIN1	NECTIN1	NECTIN1
KMT2B	TAOK1	SOX12	WDR26	ZNF410	CDADC1	TMEM63C	TMEM63C	TMEM63C	TMEM63C
SEPT9	URM1	EPHB2	PRRI14L	PDK3	PRX	CARYMT1	SLC25A34	SLC25A34	SLC25A34
HDGF	ZNF385A	SEMA4G	PPP2R5E	CARNMT1	PDE4A	SLC25A34	SLC25A34	SLC25A34	SLC25A34
MEGF8	OTUD7B	CBX2	ZNF451	RNF126	TRIM65	RNF126	TRIM65	TRIM65	TRIM65
ARHGD1	FAM131	CBX2	ZNF451	RNF126	TRIM65	RNF126	TRIM65	TRIM65	TRIM65
TMEM184B	SYT7	CD3E	WDR26	PDE7A	PDE7A	PDE7A	PDE7A	PDE7A	PDE7A
SHANK3	PTPA	FKBp5	TMEM33	CYP51A1	PDE7A	PDE7A	PDE7A	PDE7A	PDE7A
C2orf27	SH3PXD2A	MIDN	TMEM33	CYP51A1	PDE7A	PDE7A	PDE7A	PDE7A	PDE7A
PLCB1	SDK1	STMN1	CLEC7A	PDE7A	PDE7A	PDE7A	PDE7A	PDE7A	PDE7A
WIFKKN2	SGK1	STMN1	CNNM4	NOL9	CNNM4	NOL9	CNNM4	NOL9	NOL9
RNF165	FOXJ2	ATXN1L	NRXN3	CRIP1	NRXN3	CRIP1	NRXN3	CRIP1	CRIP1
SELENO	ATXN1L	ATXN1L	ZNF385A	ZNF587	ZNF587	ZNF587	ZNF587	ZNF587	ZNF587
PDPK1	SEMA4G	FKBp5	TMEM33	CYP51A1	PDE7A	PDE7A	PDE7A	PDE7A	PDE7A
SRM	ABLIM1	RBMS2	TMEM33	CYP51A1	PDE7A	PDE7A	PDE7A	PDE7A	PDE7A
NAV1	ZBTB7B	TMEM209	TMEM209	TMEM209	TMEM209	TMEM209	TMEM209	TMEM209	TMEM209
CALM3	FSTL4	TRIM67	SNX27	GLUL	ZNF329	ZNF329	ZNF329	ZNF329	ZNF329
CCNF	UBE2V1	TRIM67	SNX27	GLUL	ZNF329	ZNF329	ZNF329	ZNF329	ZNF329
MCRIP1	C6orf22	TRIM67	SNX27	GLUL	ZNF329	ZNF329	ZNF329	ZNF329	ZNF329
LASP1	DNAIC8	TRIM67	SNX27	GLUL	ZNF329	ZNF329	ZNF329	ZNF329	ZNF329
MED28	ELF2N2	RBMS2	SENP5	SLC25A45	SLC25A45	SLC25A45	SLC25A45	SLC25A45	SLC25A45
SOX12	CNNM4	RBMS2	SENP5	SLC25A45	SLC25A45	SLC25A45	SLC25A45	SLC25A45	SLC25A45
MAPK9	SLC26A9	ZNF500	ZNF500	ZNF500	ZNF500	ZNF500	ZNF500	ZNF500	ZNF500
MKNK2	SGRD1	NFIC	NFIC	NFIC	NFIC	NFIC	NFIC	NFIC	NFIC
STRIP2	TMEM167A	ITGA3	ITGA3	ITGA3	ITGA3	ITGA3	ITGA3	ITGA3	ITGA3
FKBp4	NAV2	PCYT1A	PCYT1A	PCYT1A	PCYT1A	PCYT1A	PCYT1A	PCYT1A	PCYT1A
RNF187	TSEN54	RNF24	RNF24	RNF24	RNF24	RNF24	RNF24	RNF24	RNF24
CPM	IP6K1	ATP1B1P	ATP1B1P	ATP1B1P	ATP1B1P	ATP1B1P	ATP1B1P	ATP1B1P	ATP1B1P
KDM5C	ANKRD45	FZD7	FZD7	FZD7	FZD7	FZD7	FZD7	FZD7	FZD7
PDAXK	GPR173	ZNF500	ZNF500	ZNF500	ZNF500	ZNF500	ZNF500	ZNF500	ZNF500
GPR173	FAM228A	GLC1	GLC1	GLC1	GLC1	GLC1	GLC1	GLC1	GLC1
MAFG	ZBTB33	SALL2	SALL2	SALL2	SALL2	SALL2	SALL2	SALL2	SALL2
ZBTB33	PLXNA2	SH3RF1	SH3RF1	SH3RF1	SH3RF1	SH3RF1	SH3RF1	SH3RF1	SH3RF1
NFAT5	POTEG	ZNF490	ZNF490	ZNF490	ZNF490	ZNF490	ZNF490	ZNF490	ZNF490
Gene									

TOMM20									
HOOK3									
ANKRD40									
PAX5									
FBXO45									
SLC35E2									
CAPZB									
TRAF3IP2									
PTK6									
TMEM120B									
KLHDC10									
RPH3A									
BRBP									
TYRO3									
SLC38A7									
PHC2									
PHACTR4									
PHF12									
RAB33B									
PFKFB3									
PRELP									
CCND3									
NUP43									
TNN11									
FOXP4									
ZNF317									
TMEM239									
GTPBP1									
CCL22									
HDAC5									
BTF3L4									
AMOTL1									
MINOS1-NBL1									
EFNA3									
ZNF674									
FNIP1									
PLAGL2									
ARRB1									
BVFS									
OPA3									
TGFBR3L									
SLC35F6									
KLC2									
ASB1									
RKP7A									
DNAL1									
GCCX									
SHISA6									
YWHAE									
TLCD2									
C11orf58									
PGAM5									
HECTK3									
NAV2									
SNX1									
ZCCHC2									
Owners									
Table 6
The predicted targeted gene count of each DE-miRNA

miRNA ID	Target gene count
hsa-miR-423-5p	35
hsa-miR-3202	49
hsa-miR-4519	5
hsa-miR-6750-5p	3
hsa-miR-4740-5p	3
hsa-miR-4779	18
hsa-miR-377-5p	10
hsa-miR-510-5p	14
hsa-miR-3613-3p	8
hsa-miR-6086	23
hsa-miR-7106-5p	152

Screening Of Hub Genes

Furthermore, we mapped these candidate targeted genes based on the STRING database (Fig. S5A). The top ten hub genes were shown in Fig. S5B, which were RAB7A, CAPZB, SH3RF1, EPHB2, ARRB1, RNF126, ASB1, NTN1, PO LR2F and SLC2A4.

Validation Of Hub Gene Expressions And Prognostic Roles
Using UALCAN database, we discovered that six of ten screened DE-miRNAs related hub genes were markedly upregulated in BC tissues than normal tissues. Three of ten screened DE-miRNAs related hub genes were significantly downregulated in BC tissues than normal tissues, whereas expression analysis of NTN1 showed no significant difference (Fig. 4A-4J). To further identify potential hub genes, the prognostic functions of these hub genes in BC were conducted using bc-GenExMiner v4.2 database. As shown in Fig. 4K and 4L, a higher expression of RAB7A significantly indicated a worse prognosis while a higher expression of ARRB1 indicated a better prognosis of BC patients.

According to the predicted above-mentioned interactions, FKBP4 and FKBP5 related IncRNA-miRNA-mRNA regulatory axis related with development of BC were finally realized as presented in Fig. S6.

Discussion

It is widely acknowledged that there exist significant links between miRNA-mRNA regulatory axis and BC[16]. Recent studies have also suggested that IncRNAs could interact with other RNA transcripts via miRNA response element (MRE), which are proposed as the letters of a newfound RNA language[17]. For instance, IncRNA H19, transcriptional factor LIN28 as well as miRNA let-7 have been reported to form a double-negative regulatory network, which palys a pivotal role during the maintenance breast cancer stem cells[18]. FKBPs have long been regarded as important regulators of the response to immunosuppressants FK506 and as molecular chaperones binding to different cellular receptors or targets[19]. More lately, various evidence has suggested that this complicated protein family might also play their roles in carcinogenesis, progression and chemoresistance of cancers[20–22]. Nevertheless, to our knowledge, a comprehensive FKBP-related ncRNA-mRNA regulatory axis in BC has not been established so far. In current study, we performed a differential
expression analysis by using FKBPs mRNA data of GEPIA database. Four FKBPs related DE-miRNAs and seven FKBPs related DE-miRNAs were eventually identified. Previous studies have demonstrated that most of expression and function of DE-miRNAs in tumors that we verified were identical with present analytic results. For instance, miR-423-5p is significantly upregulated among hepatocellular carcinoma (HCC) and enhance the proliferative and metastatic capacity of HCC cells[23]; tissue-specific and plasma miR-3613-3p has been found as a promising predictor in different staging lung squamous cell cancer[24].

Subsequently, by integrating DE-mRNAs and targeted lncRNAs of DE-miRNAs, expression and prognostic analytic results of nine in top twenty lncRNAs of BC were significantly identified. LINC00662 and LINC00963 expression were significantly associated with patients’ OS, which were also identical with previous researches of various cancers. For instance, an investigation has lately demonstrated that high expression of LINC00662 contributed to malignant proliferation of acute myeloid leukemia cells through upregulating ROCK1[25]. Moreover, LINC00963 was found to facilitate osteosarcoma growth and progression via inhibiting miR-204-3p/FN1 axis[26].

Previous researches have suggested that the expression of miRNA could be modulated by TFs[27]. Therefore, we predicted nine TFs potentially regulating above-mentioned DE-miRNAs. Nuclear factor erythroid 2-like 1 (NRF1, including a short form Nrf1β/LCR-F1 and another long form TCF11)[28], was predicted as a TF potentially regulating expression of a relatively large proportion of screened DE-miRNAs. It has been demonstrated to act as an important player in regulating the expression and function of miRNAs. For example, a recent research has reported that NRF1 was participated in miR-219 signaling pathway, thereby inhibiting metastasis of BC cells[29]. Additionally, ETS-domain protein 4 (ELK4) was well elucidated to interact with miR-3188 in the development of atherosclerosis[30].
More researches on the functions of predicted TFs in BC are necessary to be further investigated.

Next, by integrating DE-mRNAs and targeted genes of DE-miRNAs, 320 candidate genes were identified. Subsequent GO and KEGG pathway analysis revealed that targeted genes were significantly enriched in cysteine-type endopeptidase activity involved in apoptotic process. A study performed by Siewiński et al. indicated that positive expression of high molecular weight cysteine proteinase inhibitor was observed on the tumor cell surface in serous and endometrioid metastatic ovarian cancer[31]. A plenty of investigations also suggested that apoptotic process correlated with BC[32–34], which further supported our current predicted findings.

Finally, PPI network was performed and top ten hub genes were verified. Moreover, differential expression analysis of these hub genes of BC were further conducted by using UALCAN database, including publicly available cancer OMICS data (TCGA and MET500). Inspiringly, most of these genes have been demonstrated to act as key regulators of BC. For instance, upregulated RAB7A was found correlated to poor prognosis of BC patients in this study, which is in accordance with the results of knockdown of RAB7A suppressing the proliferation and migration of BC cells[35]. In addition, analysis of hub genes’ prognostic functions also implied significant tumor suppressive effect of ARRB1 in BC, which is in accordance with research results of Son et al[36]. Based on above-mentioned findings, we established a predicted FKBP-related ncRNA-mRNA regulatory network, which could be very important for probing novel mechanisms and possible therapeutic targets of BC.

Conclusion

In current study, we firstly established a predicted FKBP-related ncRNA-mRNA regulatory network, thus exploring a comprehensive interpretation of molecular mechanisms and providing potential clues in seeking novel therapeutics for BC. In the future, much more
experiments should be conducted to verify our findings.

Abbreviations

BC breast cancer
FKBP FK506-binding protein
DE-miRNA differentially expressed miRNA
PPI protein-protein Interaction
OS overall survival
miRNA microRNA
mRNA messenger RNA
lncRNA long non-coding RNA
TF transcription factor
TANRIC The Atlas of ncRNA in Cancer
BP biological process
MF molecular function
CC cellular component
MRE miRNA response element
HCC hepatocellular carcinoma
NRF1 Nuclear factor erythroid 2-like 1
ELK4 ETS-domain protein 4

Declarations

Acknowledgments

We thank all authors for their critical reading and informative advice during the revision process. We apologize to all researchers whose relevant contributions were not cited due to space limitations.
Authors’ contributions
Writing—Original Draft Preparation, X.H.C. and C.Z.H.; Writing—Review & Editing, Z.W.W., S.J., F.Q.S. and Y.X.F.; Funding Acquisition & Supervision, T.R.Y., C.J.D., X.S.D., W.L.B. and Z.J.C.. All authors have reviewed the manuscript.

Funding
The work was supported by the National Natural Science Foundation of China (No. 81972453, No. 81972597, No. 81672729 and No. 81602471), Zhejiang Provincial Natural Science Foundation of China under Grants (No. LY19H160055, No.LY19H160059, No. LY18H160030, No. LY18H160005, LY20H160026). The work was sponsored by Zheng Shu Medical Elite Scholarship Fund.

Availability of data and materials
Not applicable.

Ethics approval and consent to participate
Not applicable.

Consent for publication
All authors have agreed to publish this manuscript.

Competing interests
The authors declare no conflict of interest.

References
1. Nagini S: Breast Cancer: Current Molecular Therapeutic Targets and New Players. Anti-cancer agents in medicinal chemistry 2017, 17(2):152-163.
2. Sachs N, de Ligt J, Kopper O, Gogola E, Bounova G, Weeber F, Balgobind AV, Wind K, Gracanin A, Begthel H et al: A Living Biobank of Breast Cancer Organoids Captures Disease Heterogeneity. Cell 2018, 172(1-2):373-386.e310.
3. Gharthey-Kwansah G, Li Z, Feng R, Wang L, Zhou X, Chen FZ, Xu MM, Jones O, Mu Y,
Chen S et al: Comparative analysis of FKBP family protein: evaluation, structure, and function in mammals and Drosophila melanogaster. BMC Dev Biol 2018, 18(1):7.

4. Ebong IO, Beilsten-Edmands V, Patel NA, Morgner N, Robinson CV: The interchange of immunophilins leads to parallel pathways and different intermediates in the assembly of Hsp90 glucocorticoid receptor complexes. Cell discovery 2016, 2:16002.

5. Loh HY, Norman BP, Lai KS, Rahman N, Alitheen NBM, Osman MA: The Regulatory Role of MicroRNAs in Breast Cancer. International journal of molecular sciences 2019, 20(19).

6. Xiong H, Zhao W, Wang J, Seifer BJ, Ye C, Chen Y, Jia Y, Chen C, Shen J, Wang L et al: Oncogenic mechanisms of Lin28 in breast cancer: new functions and therapeutic opportunities. Oncotarget 2017, 8(15):25721-25735.

7. Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z: GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic acids research 2017, 45(W1):W98-w102.

8. Sticht C, De La Torre C, Parveen A, Gretz N: miRWalk: An online resource for prediction of microRNA binding sites. PLoS One 2018, 13(10):e0206239.

9. Paraskevopoulou MD, Vlachos IS, Karagkouni D, Georgakilas G, Kanellos I, Vergoulis T, Zagganas K, Tsanakas P, Floros E, Dalamagas T et al: DIANA-LncBase v2: indexing microRNA targets on non-coding transcripts. Nucleic acids research 2016, 44(D1):D231-238.

10. Georgakilas G, Vlachos IS, Zagganas K, Vergoulis T, Paraskevopoulou MD, Kanellos I, Tsanakas P, Dellis D, Fevgas A, Dalamagas T et al: DIANA-miRGen v3.0: accurate characterization of microRNA promoters and their regulators. Nucleic acids
research 2016, 44(D1):D190-195.

11. Li J, Han L, Roebuck P, Diao L, Liu L, Yuan Y, Weinstein JN, Liang H: **TANRIC: An Interactive Open Platform to Explore the Function of IncRNAs in Cancer.** Cancer Res 2015, 75(18):3728-3737.

12. Huang da W, Sherman BT, Lempicki RA: **Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources.** Nat Protoc 2009, 4(1):44-57.

13. Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, Santos A, Doncheva NT, Roth A, Bork P et al: **The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible.** Nucleic acids research 2017, 45(D1):D362-d368.

14. Chandrashekar DS, Bashel B, Balasubramanya SAH, Creighton CJ, Ponce-Rodriguez I, Chakravarthi B, Varambally S: **UALCAN: A Portal for Facilitating Tumor Subgroup Gene Expression and Survival Analyses.** Neoplasia (New York, NY) 2017, 19(8):649-658.

15. Jezequel P, Frenel JS, Campion L, Guerin-Charbonnel C, Gouraud W, Ricolleau G, Campone M: **bc-GenExMiner 3.0: new mining module computes breast cancer gene expression correlation analyses.** Database : the journal of biological databases and curation 2013, 2013:bas060.

16. Zhu H, Dai M, Chen X, Chen X, Qin S, Dai S: **Integrated analysis of the potential roles of miRNA-mRNA networks in triple negative breast cancer.** Molecular medicine reports 2017, 16(2):1139-1146.

17. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP: **A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language?** Cell 2011, 146(3):353-358.

18. Peng F, Li TT, Wang KL, Xiao GQ, Wang JH, Zhao HD, Kang ZJ, Fan WJ, Zhu LL, Li M et
al: H19/let-7/LIN28 reciprocal negative regulatory circuit promotes breast cancer stem cell maintenance. Cell death & disease 2017, 8(1):e2569.

19. McKeen HD, Brennan DJ, Hegarty S, Lanigan F, Jirstrom K, Byrne C, Yakkundi A, McCarthy HO, Gallagher WM, Robson T: The emerging role of FK506-binding proteins as cancer biomarkers: a focus on FKBPL. Biochemical Society transactions 2011, 39(2):663-668.

20. Tong J, Shen Y, Chen X, Wang R, Hu Y, Zhang X, Zhang Z, Han L: FKBP3 mediates oxaliplatin resistance in colorectal cancer cells by regulating HDAC2 expression. Oncology reports 2019.

21. Zhang Y, Zhang D, Lv J, Wang S, Zhang Q: LncRNA SNHG15 acts as an oncogene in prostate cancer by regulating miR-338-3p/FKBP1A axis. Gene 2019, 705:44-50.

22. Zhu W, Li Z, Xiong L, Yu X, Chen X, Lin Q: FKBP3 Promotes Proliferation of Non-Small Cell Lung Cancer Cells through Regulating Sp1/HDAC2/p27. Theranostics 2017, 7(12):3078-3089.

23. Wu LM, Ji JS, Yang Z, Xing CY, Pan TT, Xie HY, Zhang F, Zhuang L, Zhou L, Zheng SS: Oncogenic role of microRNA-423-5p in hepatocellular carcinoma. Hepatobiliary & pancreatic diseases international : HBPD INT 2015, 14(6):613-618.

24. Pu Q, Huang Y, Lu Y, Peng Y, Zhang J, Feng G, Wang C, Liu L, Dai Y: Tissue-specific and plasma microRNA profiles could be promising biomarkers of histological classification and TNM stage in non-small cell lung cancer. Thoracic cancer 2016, 7(3):348-354.

25. Liu Y, Gao X, Tian X: High expression of long intergenic non-coding RNA LINC00662 contributes to malignant growth of acute myeloid leukemia cells by upregulating ROCK1 via sponging microRNA-340-5p. European journal of
26. Zhou Y, Yin L, Li H, Liu LH, Xiao T: The LncRNA LINC00963 facilitates osteosarcoma proliferation and invasion by suppressing miR-204-3p/FN1 axis. *Cancer biology & therapy* 2019, **20**(8):1141-1148.

27. Si W, Shen J, Du C, Chen D, Gu X, Li C, Yao M, Pan J, Cheng J, Jiang D et al: A miR-20a/MAPK1/c-Myc regulatory feedback loop regulates breast carcinogenesis and chemoresistance. *Cell death and differentiation* 2018, **25**(2):406-420.

28. Yuan J, Zhang S, Zhang Y: *Nrf1 is paved as a new strategic avenue to prevent and treat cancer, neurodegenerative and other diseases.* *Toxicology and applied pharmacology* 2018, **360**:273-283.

29. Xu Y, Luo Y, Liang C, Xing W, Zhang T: *A regulation loop between Nrf1alpha and MRTF-A controls migration and invasion in MDA-MB-231 breast cancer cells.* *International journal of molecular medicine* 2018, **42**(5):2459-2468.

30. Li N, Chen J, Zhao J, Wang T: *MicroRNA-3188 targets ETS-domain protein 4 and participates in RhoA/ROCK pathway to regulate the development of atherosclerosis.* *Die Pharmazie* 2017, **72**(11):687-693.

31. Siewinski M, Saleh Y, Popiela A, Ziolkowski P, Jelen M, Grybos M: *Expression of high molecular weight cysteine proteinase inhibitor in ovarian cancer tissues: regulation of cathepsin B expression by placental CPI.* *Biological chemistry* 2003, **384**(7):1103-1107.

32. Zhang YY, Shang XY, Hou XW, Li LZ, Wang W, Hayashi T, Zhang Y, Yao GD, Song SJ: Yuanhuatine from Daphne genkwa selectively induces mitochondrial apoptosis in estrogen receptor alpha-positive breast cancer cells in vitro. *Planta medica* 2019.

33. Raut GK, Chakrabarti M, Pamarthy D, Bhadra MP: *Glucose starvation induced*
upregulation of Prohibitin 1 via ROS generation causes mitochondrial
dysfunction and apoptosis in breast cancer cells. Free radical biology &
medicine 2019.

34. Lee J, Park SH, Lee J, Chun H, Choi MK, Yoon JH, Pham TH, Kim KH, Kwon T, Ryu HW et al: Differential effects of luteolin and its glycosides on invasion and
apoptosis in MDA-MB-231 triple-negative breast cancer cells. EXCLI journal
2019, 18:750-763.

35. Xie J, Yan Y, Liu F, Kang H, Xu F, Xiao W, Wang H, Wang Y: Knockdown of Rab7a
suppresses the proliferation, migration, and xenograft tumor growth of
breast cancer cells. Bioscience reports 2019, 39(2).

36. Son D, Kim Y, Lim S, Kang HG, Kim DH, Park JW, Cheong W, Kong HK, Han W, Park WY et al: miR-374a-5p promotes tumor progression by targeting ARRB1 in triple
negative breast cancer. Cancer letters 2019, 454:224-233.

Figures
Figure 1

Potential DE-miRNAs of FKBPs and DE-miRNAs associated IncRNAs predicted by miRWalk and LncBase v.2 database. (A) DE-miRNAs-FKBP4 regulatory axis constructed by using miRWalk; (B) DE-miRNAs-FKBP5 regulatory axis constructed by using miRWalk; (C) Pie chart of top20 predicted IncRNAs interacted with DE-miRNAs.
Figure 2

Prediction of transcription factors of DE-miRNAs. (A-I) Nine transcription factors for DE-miRNAs and corresponding motifs; (J) Pie chart of frequency of transcription factors.
Figure 3

Predicted targeted genes of DE-miRNAs performed by miRWalk database. (A-K)

Central blue dots are DE-miRNAs and surrounding yellow dots are potential target mRNAs.
Figure 4

Expression analysis and survival curves of hub genes of BC patients. (A-J)
Expression analysis of ten hub genes of BC patient tissues; (K-L) Survival curves in BC patients are plotted significantly correlated with RAB7A and ARRB1.

Supplementary Files

This is a list of supplementary files associated with the primary manuscript. Click to download.

supplementary material.docx