Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company’s public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Systematic Review

Placental transfer and safety in pregnancy of medications under investigation to treat coronavirus disease 2019

Margaux Louchet, MD; Jeanne Sibiude, MD, PhD; Gilles Peytavin, PhD; Olivier Picone, MD, PhD; Jean-Marc Tréluyer, MD, PhD; Laurent Mandelbrot, MD

Introduction

The current coronavirus disease 2019 (COVID-19) pandemic is a global health emergency that affects all populations, including pregnant women. COVID-19 can result in maternal morbidity and mortality from pneumonia and acute respiratory distress syndrome (ARDS), similar to severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) infections and influenza. Studies on pregnancy complications are still lacking, although a high preterm birth rate has been reported. This is mostly caused by iatrogenic preterm birth owing to the diagnosis of COVID-19 principally preterm cesarean deliveries. Whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) directly contributes to spontaneous preterm birth or medical complications such as preeclampsia that require iatrogenic preterm birth is less clear. Perinatal transmission may occur but seems rare. There is little evidence of in utero or intrapartum exposure, because most antmiotic fluid, cord blood, neonatal plasma, and oropharyngeal and amniotic fluid, cord blood, neonatal immunoglobulins because the RT-PCR results were negative. In a Chinese report of 33 neonates born to women infected mothers in 2 studies, but these may be false-positive results for immunoglobulins because the RT-PCR results were negative. In a Chinese

OBJECTIVE: Treatment of coronavirus disease 2019 is mostly symptomatic, but a wide range of medications are under investigation against severe acute respiratory syndrome coronavirus 2. Although pregnant women are excluded from clinical trials, they will inevitably receive therapies whenever they seem effective in nonpregnant patients and even under compassionate use.

METHODS: We conducted a review of the literature on placental transfer and pregnancy safety data of drugs under current investigation for coronavirus disease 2019.

RESULTS: Regarding remdesivir, there are no data in pregnant women. Several other candidates already have safety data in pregnant women, because they are repurposed drugs already used for their established indications. Thus, they may be used in pregnancy, although their safety in the context of coronavirus disease 2019 may differ from conventional use. These include HIV protease inhibitors such as lopinavir/ritonavir that have low placental transfer, interferon that does not cross the placental barrier, and hydroxychloroquine or chloroquine that has high placental transfer. There are also pregnancy safety and placental transfer data for colchicine, steroids, oseltamivir, azithromycin, and some monoclonal antibodies. However, some drugs are strictly prohibited in pregnancy because of known teratogenicity (thalidomide) or fetal toxicities (renin-angiotensin system blockers). Other candidates including tocilizumab, other interleukin 6 inhibitors, umifenovir, and favipiravir have insufficient data on pregnancy outcomes.

CONCLUSION: In life-threatening cases of coronavirus disease 2019, the potential risks of therapy to the fetus may be more than offset by the benefit of curing the mother. Although preclinical and placental transfer studies are required for a number of potential anti-severe acute respiratory syndrome coronavirus 2 drugs, several medications can already be used in pregnant women.

Key words: coronavirus disease 2019, placenta, pregnancy, severe acute respiratory syndrome coronavirus 2

From the Assistance Publique-Hôpitaux de Paris, Service de Gynécologie-Obstétrique, Hôpital Louis Mourier, Colombes, France (Louchet, Sibiude, Picone, and Dr Mandelbrot); Inserm Infection, Antimicrobiens, Modelling, Evolution U1137, Paris, France (Sibiude, Picone, and Dr Mandelbrot); Université de Paris, Paris, France (Sibiude, Picone, Tréluyer, and Dr Mandelbrot); Fédération Hospitalo-Universitaire PREMA, Paris, France; Assistance Publique-Hôpitaux de Paris, Service de Pharmacologie-Toxicologie, Hôpital Bichat, Paris, France (Dr Peytavin); and Assistance Publique-Hôpitaux de Paris, URC/CIC Cochin-Necker, Paris, France (Tréluyer).

Received May 1, 2020; revised June 2, 2020; accepted June 7, 2020.

This paper is part of a supplement that represents a collection of COVID-related articles selected for publication by the editors of AJOG MFM without additional financial support.

The authors report no conflict of interest.

Corresponding author: Laurent Mandelbrot, MD. laurent.mandelbrot@aphp.fr

2589-9333/$36.00 © 2020 Elsevier Inc. All rights reserved. https://doi.org/10.1016/j.ajogmfm.2020.100159

2020 Elsevier Inc. All rights reserved.

ª 2589-9333/$36.00

2020 Elsevier Inc. All rights reserved.
Why was this study conducted?
Although pregnant women can be severely affected by coronavirus disease 2019 (COVID-19), they are generally excluded from clinical trials because of concern about fetal safety. We have data on transplacental transfer of drugs that are currently under investigation to treat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection.

Key findings
The medications considered to treat COVID-19 are repurposed drugs that are in use for other indications, most of which have data on placental transfer and pregnancy safety. Lopinavir and ritonavir, hydroxychloroquine or chloroquine, colchicine, steroids, oseltamivir, azithromycin, and some monoclonal antibodies can be used in pregnant women. Renin-angiotensin system blockers should not be used. Data are lacking for interleukin 6 (IL-6) inhibitors and remdesivir.

What does this add to what is known?
Some of the therapies considered for COVID-19 can be used in pregnant women, but there is a crucial need for research on placental transfer and safety of important investigational drugs including remdesivir.

Excluded from all clinical trials to date. Remdesivir, lopinavir/ritonavir, interferon, and hydroxychloroquine or chloroquine are under investigation in several large phase 3 trials, including the Discovery trial of the REACTing consortium and the World Health Organization worldwide open-label trial. These studies are multicenter, adaptive, randomized, open clinical trials on the safety and efficacy of treatments for hospitalized adults with COVID-19. Data on their use in pregnant women are already available for several of these drugs, including lopinavir/ritonavir studied in women living with HIV, interferon beta (in inflammatory diseases), chloroquine (in malaria prophylaxis), or hydroxychloroquine (in inflammatory diseases). However, for other drugs, there are no data of their use during pregnancy. This is the case with remdesivir, which is generally not considered in pregnant women because of its renal and liver toxicity profile.

Given the potential severity of COVID-19 in pregnant women, there is an urgent need to know which therapies may be used. Placental transfer for each medication is key background information, because the placenta is an active barrier that lets variable amounts of drugs cross into the fetal circulation. The objective of this study was to review the toxicity profiles in pregnancy and the placental transfer of medications under consideration as therapy against SARS-CoV-2.

Materials and methods
We conducted a review of the literature concerning the drugs investigated against SARS-CoV-2 in published or ongoing clinical studies worldwide, with a total of 502 clinical studies registered on the ClinicalTrials.gov website from March 01, 2020 to May 30, 2020. We described the characteristics of drugs based on the French national drug safety agency (ANSM) database (https://www.an.sm.sante.fr/) and the pharmacokinetic parameters using the PubChem database and the Human Metabolome Database. We searched pregnancy safety and placental passage data from the PubMed database with keywords pregnancy, placenta, fetus, or newborn for each individual study drug. In vitro efficacy of drugs was defined by their 50% effective concentration (EC50). Promising drugs with in vitro antiviral effect against SARS-CoV-2 of EC50 < 10 μM have been reported.

Results
For the principal medications currently under investigation against SARS-CoV-2, safety data in pregnant women, placental transfer, and neonatal outcome are summarized in the Table.

Azithromycin
Azithromycin is an antibiotic of the macrolide class. It has a molecular mass of 749 g/mol, is sparsely soluble in water, and has 20% protein binding. It has in vitro activity against Zika virus but has not proved significant efficiency against Ebola virus nor in decreasing the 90-day mortality in MERS infection in a retrospective cohort of 136 infected patients. Nevertheless, azithromycin has an in vitro EC50 of 2.12 μM and has been used in patients infected by SARS-CoV-2. The combination of azithromycin with hydroxychloroquine seemed to be more effective than hydroxychloroquine alone. Currently, several studies are underway to conclude on its effectiveness against COVID-19. The main toxicity in adults is QT interval prolongation and torsade de pointe.

Regarding pregnancy, azithromycin crosses the placental barrier in sheep and nonhuman primate models, with a maternal-fetal plasma concentration ratio of 3.2 after intravenous administration. Placental transfer in humans was lower in a clinical study and in the human ex vivo cotyledon perfusion model.

Regarding safety, most studies found no increase in major congenital malformations in the event of exposure during the first trimester (risk ratio [RR], 1.19; 95% confidence interval [CI], 0.98–1.44; 120 cases exposed) and no cardiac malformation (RR, 0.7; 95% CI, 0.4–1.3) if any macrolide is used during the first trimester. An association between prenatal macrolide exposure and pyloric stenosis has been reported, but remains controversial. A recent English cohort study reported an increased risk for fetal malformations when using macrolides during the first trimester of pregnancy (compared with the use of penicillin: RR, 1.55; 95% CI, 1.19–2.03) and in particular cardiovascular anomalies (RR, 1.62; 95% CI, 1.05–2.51) and genital anomalies, regardless of the trimester of exposure (RR, 1.58; 95% CI, 1.14–2.19).
Transplacental drug transfer	Study design	Main results	Safety in pregnant women and neonates	Study design	Main results
Azithromycin					
Sutton et al²⁶	In vivo^a	n=30 women Result: detectable in cord blood	Fan et al²⁷	Type of study: retrospective cohort study Population: exposed to macrolides, n=104 604 children Control group: exposed to penicillin	Exposed during the first trimester:
Major malformation (RR, 1.55; 95% CI, 1.19–2.03)					
Cardiovascular malformation (RR, 1.62; 95% CI, 1.05–2.51) Exposed in any trimester:					
Major malformation (RR, 1.13; 95% CI, 0.94–1.36)					
Genital malformation (RR, 1.58; 95% CI, 1.14–2.19)					
Heikkinen et al²⁸	Ex vivo^b Open circuit	n=21 term placentas Transplacental transfer rate^c: 2.6%	Lin et al²⁹	Type of study: retrospective cohort study Population: congenital malformation, heart defect (n=4132) and pyloric stenosis (n=735) Control group: infants without any malformation	Macrolides (without erythromycin):
Cardiac malformation (OR, 0.7; 95% CI, 0.4–1.3)					
Pyloric stenosis (OR, 1.7; 95% CI, 0.6–4.6)					
Almaramhy and Al-Zalabani³⁰	Type of study: meta-analysis of cohort studies Population: exposed to macrolides, n=739 children Control group: general population or unexposed women				Pyloric stenosis (OR, 1.47; 95% CI, 1.03–2.09; I², 29.3%)
Almaramhy and Al-Zalabani³⁰	Type of study: meta-analysis of case-control studies Population: exposed to macrolides, n=9000 Control group: general population or unexposed women				Pyloric stenosis (OR, 1.02; 95% CI, 0.66–1.58; I², 51.2%)
Bérand et al³¹	Type of study: retrospective cohort study Population: exposed to azithromycin at first trimester, n=120 Control group: children of unexposed women				Major malformation (RR, 1.19; 95% CI, 0.98, 1.44)

Louchet. Medication for coronavirus disease 2019 in pregnancy. AJOG MFM 2020.
Transplacental drug transfer	Study design	Main results	Safety in pregnant women and neonates	Study design	Main results
			Cooper et al32		
			Type of study: retrospective cohort		
			study		
			Population: exposed to macrolides		
			without erythromycin, n=621		
			Control group: general population		
Chloroquine			Law et al33		
			In vivo		
			n=19 women		
			F/M concentration ratio: Chloroquine: 110%		
			DECQ: 120%		
			Osadchy et al34		
			Type of study: analysis of 12 studies		
			Population: exposed to chloroquine or		
			hydroxychloroquine, n=588		
			Control group: rheumatic disease		
			unexposed patients		
			Notably, 5 studies with a total of		
			251 exposed children reported no		
			clinical visual abnormalities in any		
			case		
			Silva et al35		
			Type of study: retrospective cohort		
			study		
			Population: exposed women to		
			chloroquine for malaria, n=20		
			Control group: unexposed malarial		
			patient		
Colchicine			Amoura et al36		
			In vivo		
			n=1 woman		
			F/M concentration ratio: 15%		
			Diav-Citrin et al37		
			Type of study: prospective cohort		
			study		
			Population: Mediterranean fever/		
			Behcet’s exposed women, n=238		
			Control group: unexposed women		
Hydroxychloroquine			Cimaz et al40		
			Type of study: retrospective cohort		
			study		
			Population: exposed children, n=6		
			Control group: connectivitis		
			unexposed patients		
			Cimaz et al40		
			Type of study: retrospective cohort		
			study		
			Population: exposed children, n=6		
			Outcome: electroretinography results		
			Results were normal in all cases.		

Louchet. Medication for coronavirus disease 2019 in pregnancy. AJOG MFM 2020.
Transplacental drug transfer in humans and safety data in women and neonates exposed to medications used for the treatment of patients with coronavirus disease 2019 (continued)
Interferon beta (IFN-β)
Study design
Waysbort et al⁴¹
Duma et al⁴³
Pons et al⁴⁵
Interleukin inhibitors
Tocilizumab
Tada et al⁴⁶
Hoeltzenein et al⁴⁸
Transplacental drug transfer

Interleukin-1 inhibitors
No specific data on transplacental transfer in human
Ivermectin
Leflunomide
Lopinavir/ritonavir

Louchet. Medication for coronavirus disease 2019 in pregnancy. AJOG MFM 2020.
Transplacental drug transfer	Study design	Main results	Safety in pregnant women and neonates	Study design	Main results					
Ivanovic et al\(^5\)	In vivo\(^3\)	n=11 placentas Undetectable	Tookey et al\(^6\)	Type of study: Prospective HIV cohort study	Population: exposed to LPV/RIT, n=4864 pregnancies	Control group: pregnancy as the unit of observation	13% were at <37 weeks' gestation			
						2.5% were at <32 weeks' gestation				
						15% had birthweight of <2500 g				
						2.3% had birthweight of <1500 g				
						2.9% had ≥1 congenital abnormality				
Marzolini et al\(^4\)	In vivo\(^3\)	n=1 placenta Undetectable	Oseltamivir	Ex vivo\(^b\)	n=20 placentas Transplacental transfer rates\(^2\) of 12.39% (oseltamivir) and 10.17% (its metabolite)	Ehrenstein et al\(^5\)	Type of study: retrospective cohort study	Population: exposed to oseltamivir, n=1898 pregnancies	Control group: general population	After first-trimester exposure (n=449 pregnancies)
						Major malformation (OR, 0.94; 95% CI, 0.49–1.83)				
						Congenital heart defect (OR, 1.75; 95% CI, 0.51–5.98)				
						Chambers et al\(^5\)	Type of study: prospective cohort study	Population: exposed to oseltamivir, n=112 pregnancies	Control group: general population	Major birth defects (RR, 0.84; 95% CI, 0.19, 2.80)
						Spontaneous abortion: none reported				
						Preterm delivery (RR, 0.65; 95% CI, 0.26, 1.63)				
Ribavirin						Sinclair et al\(^5\)	Type of study: retrospective cohort study	Population: HCV-infected women treated with ribavirin in pregnancy, general population, n=272 pregnant women	Control group: MACDP	Direct exposure (n=133):
						Live birth: 85/134 (63.4%)				
						Miscarriage: 23/134 (17.2%)				
						Birth defects: 7/85 (8.2%) (95% CI, 3.4–16.2)				
						Indirect exposure (n=139)				
						Live birth: 95/134 (68.3%)				
						Miscarriage: 18/139 (12.9%)				
						Birth defects: 4/95 (4.2%) (95% CI, 1.2–10.4)				
Chloroquine and hydroxychloroquine

Chloroquine is an antimalarial drug derived from 4-aminoquinoline. Its molecular mass is 319.9 g/mol; it is lipophilic and has a protein binding of 50%. It has been reported to have antiviral properties in vitro. Chloroquine is able to inhibit influenza A in vitro but previous randomized trials in humans with influenza reported no efficacy vs placebo. Chloroquine has in vitro activity against coronaviruses by interfering with the glycosylation of the SARS-CoV-2 receptor angiotensin-converting enzyme 2 (ACE2) and reduces viral replication with an EC50 of 9.12 μM. It inhibits the replication of SARS-CoV-1 at the plasma concentrations conventionally used for malaria treatment. Recently, chloroquine has proved in vitro efficacy against SARS-CoV-2, blocking infection and virus replication with an EC50 of 9.12 μM. Chloroquine is under investigation in several clinical studies for the treatment of COVID-19.

Chloroquine cardiac toxicities include restrictive cardiomyopathy reported in several case reports and, in case of an overdose, the risk for hypotension and cardiac conduction disorder (prolongation of the QT space and enlargement of the QRS).

Concerning pregnant women, pharmacokinetic studies report an increase in clearance of chloroquine and its active metabolite desethylchloroquine (DECQ), especially in the second and third trimesters. Coadministration of azithromycin modestly decreases exposure to DECQ without modifying exposure to chloroquine. Its use in pregnant women could be responsible for ototoxicity reported in a small study (RR, 5.64; 95% CI, 1.17–27.3). Chloroquine crosses the placenta with a mean ratio of cord-to-maternal concentrations of 1.1 for chloroquine and 1.2 for DECQ. With regard to pregnancy outcomes including miscarriages, no increased risk has been reported. In humans, studies have not reported any teratogenic or fetotoxic effect in the event after in utero exposure; in particular, no risk for ocular damage in newborns was found in a meta-analysis of 588 infants.

Chloroquine cardiac toxicities include restrictive cardiomyopathy reported in several case reports and, in case of an overdose, the risk for hypotension and cardiac conduction disorder (prolongation of the QT space and enlargement of the QRS).

Concerning pregnant women, pharmacokinetic studies report an increase in clearance of chloroquine and its active metabolite desethylchloroquine (DECQ), especially in the second and third trimesters. Coadministration of azithromycin modestly decreases exposure to DECQ without modifying exposure to chloroquine. Its use in pregnant women could be responsible for ototoxicity reported in a small study (RR, 5.64; 95% CI, 1.17–27.3). Chloroquine crosses the placenta with a mean ratio of cord-to-maternal concentrations of 1.1 for chloroquine and 1.2 for DECQ. With regard to pregnancy outcomes including miscarriages, no increased risk has been reported. In humans, studies have not reported any teratogenic or fetotoxic effect in the event after in utero exposure; in particular, no risk for ocular damage in newborns was found in a meta-analysis of 588 infants.
Hydroxychloroquine is also an antimalarial drug derived from 4-aminoquinoline with an anti-inflammatory action. It has a molecular mass of 335.9 g/mol, is lipophilic, and has a protein binding of 45%. It has indicated antiviral activity against SARS-CoV-2 in small in vitro studies and some antiviral activity against SARS-CoV-2 in a protein binding of 45%. It has indicated mass of 335.9 g/mol, is lipophilic, and has a molar mass of 335.9 g/mol, is lipophilic, and has a protein-binding rate of 85% to 92% in plasma concentrations. It has in vitro and in vivo efficiency against SARS-CoV-1 and MERS infections. It is considered as an option for COVID-19 treatment in several trials, although the first randomized, open-label, controlled study to be published reported no significant benefits of lopinavir/ritonavir.

The tolerability of lopinavir/ritonavir is poorer than of other HIV protease inhibitors, especially regarding digestive disorders and lipid abnormalities. In the randomized controlled trial from China in adults with severe COVID-19 infection, treatment (400 mg/100 mg twice a day) had to be stopped early for 13.8% (n=13) of patients because of adverse events (primarily gastrointestinal adverse events). This incidence of severe adverse events was higher than what was reported in HIV infection at the same dose. Lopinavir/ritonavir exposure increases plasma concentrations of CYP3A4 metabolized drug taken concurrently.

In pregnant women living with HIV, lopinavir/ritonavir was for several years the most widely used antiretroviral therapy, with a nucleoside reverse transcriptase backbone, and used as monotherapy (at 400 mg/100 mg, twice daily). During pregnancy, the clearance of the free form of lopinavir/ritonavir has not changed and experts do not recommend increasing the dosage of the drug (generally 400 mg of lopinavir/100 mg of ritonavir twice a day). Lopinavir/ritonavir crosses the placenta but poorly. Fetal transfer rates with perfused cotyledon model are around 20% to 25% and the level in cord blood is undetectable in studies with cord-to-mother ratios. This is caused by strong protein binding for protease inhibitors and to the efflux mechanism of the placental membrane transporters and in particular to P-glycoprotein.

Pregnancy outcomes were reported to be similar to those of control women living with HIV. There was no increase in the rate of congenital malformations after first-trimester exposure. A large randomized trial has reported a higher rate of preterm births in the groups treated with lopinavir/ritonavir-based antiretroviral treatment (ART) than monotherapy of zidovudine. This has already been described in a randomized trial comparing lopinavir/ritonavir-based ART with a combination of 3 nucleoside reverse transcriptase inhibitors.

In addition, several cases of lopinavir/ritonavir toxicity have been described in treated preterm infants, in particular signs suggesting adrenal insufficiency with hyponatremia and hyperkalemia. These undesirable effects led to an alert by the Food and Drug Administration (FDA) in 2011 to contraindicate this drug in premature babies.

Remdesivir
Remdesivir (GS-5734) is a prodrug of a nucleoside analog antiviral. It has a molecular mass of 602.9 g/mol with a protein-binding rate of 85% to 92% in animal studies. It is metabolized by the liver and has a renal and biliary excretion. Its water solubility is not yet available on the PubChem website. It is metabolized into its active form GS-441524. It competes with adenosine triphosphate and inhibits the viral RNA polymerase. Remdesivir was initially developed against Ebola virus, with efficacy in a clinical phase 3 trial. It has also been studied to treat MERS-CoV and SARS-CoV-1 infections. Its efficacy against SARS-CoV-2 has been proven in vitro with EC50 of 11.41 or 6.25 µM associated with emetine and in vivo in animals. Its mechanisms of action (shortening of the DNA chain or modification of excision activity) remain to be explained in detail. A number of clinical trials are underway to determine the efficacy and safety of remdesivir to treat COVID-19. Notably, 2 double-blinded randomized clinical trials have been published using an intravenous
loading dose of 200 mg followed by 100 mg daily for 10 days. Both indicated a reduction of time to clinical improvement. Similar results have been reported in its compassionate use for severely ill patients.

To date, tolerance data in humans are sparse. There is a risk for renal dysfunction and elevated liver enzymes, a possible effect on mitochondrial functions, and a case of cardiac arrest in a clinical trial on Ebola infection. Thus, investigators recommended biological monitoring of liver and kidney functions. Clinical trials on COVID-19 disease also report adverse effects with an incidence ranging from 21% to 66%. In a clinical study on the Ebola disease, 6 pregnant women who were treated with remdesivir had positive pregnancy tests, but these cases were not described. We found no study addressing the safety of remdesivir in pregnant women or its placental transfer. Considering its small molecular weight and its high protein-binding rate, we may expect that remdesivir crosses the placenta.

Other antiviral drugs

Several antiviral drugs commonly used in clinical practice have been proposed, although some in vitro studies of antiviral effects on SARS-CoV-2 replication failed to indicate an effect of oseltamivir, favipiravir, ribavirin or darunavir.

Oseltamivir is widely recommended to treat influenza in children or adults who are considered at risk for severe manifestations, including pregnant women. According to the ex vivo human placental perfusion, oseltamivir and its metabolite oseltamivir carboxylate cross poorly the placenta with transfer rates of 12.39% and 10.17%, respectively. Retrospective studies with large populations do not provide evidence of risk for any major congenital malformations or heart defects. No evidence of increased risk for preterm birth or small gestational age infants was reported in another prospective study. We did not find any information about pregnancy and zanamivir, which is another neuraminidase inhibitor.

Favipiravir is an antiviral drug approved in Japan and China for influenza which inhibits the RNA polymerase enzyme. It has indicated efficacy against Ebola virus in animals and humans. A potential synergistic benefit of favipiravir associated with oseltamivir has been described in influenza. Favipiravir is under investigation for treating SARS-CoV-2 in several clinical trials (NCT04310228, NCT04358549). We found no information about the use of favipiravir in pregnant women but caution is needed because of a warning by the Japanese drug agency on a teratogenic risk in preclinical animal studies.

The combination of interferon alpha and ribavirin (which is an antiviral mainly used to treat hepatitis C) is also under investigation in COVID-19, even though it has not been proven to reduce mortality for the treatment of MERS-CoV. In pregnant women, ribavirin is usually contraindicated because of its possible teratogenic role in the event of direct or indirect exposure (preconception or in the event of father’s treatment). There are some reassuring data, but the number of exposures is too small to conclude on safety.

Some HIV protease inhibitors are under consideration (NCT04252274), in addition to lopinavir discussed previously. Darunavir with a ritonavir boost has been the most widely used therapy for HIV in pregnant women in Europe and America for nearly a decade, and there are data from prospective cohort studies. There is no increase in the risk for congenital malformations. However, the use of boosted protease inhibitors has been associated with an increased risk for preterm delivery, although it is not clear whether the effect is related to any specific drug or other confounding factors. Nelfinavir is a selective inhibitor of HIV protease which has been reported to inhibit SARS-CoV replication in vitro. The placentental transfer of nelfinavir is low. There is no increase in the risk for congenital malformations.

Arbidol hydrochloride (umifenovir) is an immunomodulator and a broad-spectrum antiviral drug. Arbidol is able to block viral fusion against influenza viruses and has been reported to have antiviral activity in vitro against SARS-CoV. It has been reported to increase the effect of lopinavir/ritonavir treatment on SARS-CoV-2 excretion at 7 and 14 days in a retrospective cohort study (n=33 patients), but clinical outcomes have not yet been assessed. Comparison of arbidol with lopinavir/ritonavir or oseltamivir is under investigation in a randomized controlled phase 4 study (NCT04255017). A study reports its use, in association with other antiviral drugs, in 7 pregnant women with SARS-CoV-2 infection. We found no information on safety of umifenovir in pregnancy.

Clevudine (NCT04347915) is used in hepatitis B infection in Asian countries. We found no information on its safety profile in pregnancy or its placental transfer.

Other antiinfective drugs

Ivermectin, usually used to treat parasite infections, is currently under investigation in COVID-19 clinical trials (NCT04390022 and NCT04381884). Transplacental transfer has been proven in sheep with limited fetal exposure. Data on safety for pregnant women and neonates are sparse, and a recent meta-analysis has concluded to insufficient evidence for its safety profile in pregnancy. Nitazoxanide is another antiparasitic drug under consideration (NCT04343989) for which we found no specific data on specific use in pregnant women.

The FDA-approved antihelminthic drug niclosamide has indicated in vitro antiviral efficacy against SARS-CoV-2. As mentioned previously, the amebicide emetine inhibits SARS-CoV-2 replication and has been studied in association with remdesivir.

Interferon

Interferons beta and lambda are both studied as COVID-19 therapy but most information concerns interferon beta. Interferon beta is a cytokine with antiviral, antiproliferative, and immunomodulatory activities. It is commonly used to treat multiple sclerosis. It is a glycoprotein that works after it has
attached to the cell membrane by triggering a cascade of intracellular signaling with, in particular, the induction of enzymes that could inhibit viral replication in infected cells. Interferon beta has been proposed as immune-modulatory treatment to control the massive inflammation resulting in lung injury in SARS-CoV-2 infection.

There is a long experience of safety and tolerability of interferon in nonpregnant adults and the most frequently reported adverse events are injection site reactions, asthenia, flu-like symptoms, headache, and lymphopenia.149

Pregnancy outcomes in women treated with interferon beta have been documented in prospective and retrospective pharmacovigilance studies on 1348 and 99,948 pregnant women, respectively.42,44,150 The prescribed subcutaneous doses ranged from 30 μg/0.5 mL per week to 30 μg/0.5 mL 3 times a week. These studies did not find an increased risk for miscarriage or congenital malformation associated with treatment with interferon beta. Other perinatal outcomes were not described. We did not find any study on the transplacental passage of interferon beta. However, interferons have high molecular weights and it has been reported that interferon alpha does not cross the placenta in humans, according to data from the ex vivo cotyledon perfusion model11,43 and neonatal cord blood samples.45 By analogy, we can assume that interferon beta does not cross the placent al barrier.

Convalescent plasma

Transfusion of immunoglobulins from patients who have recovered from the disease is a passive immunotherapy. Convalescent plasma transfusion has been previously described as a therapeutic option in the management of Ebola and previous coronavirus infections.151,152 It was not associated with a significant improvement in survival in Ebola patients153 but was useful in the treatment of SARS-CoV infection with a higher discharge rate (control group with usual care represented with 418 patients previously treated in the same center), especially if given at the early phase of the disease (n=80).154 There have been case reports on the use of convalescent plasma transfusion in association with supportive care and antiviral drugs.145,146 Recently, convalescent plasma has been approved by the FDA to treat critically ill patients with COVID-19144,149,150 and clinical trials are currently being conducted (NCT04321421, NCT04333555 [ongoing]). Previous studies included pregnant women with SARS-CoV-2 (n=1)155 and Ebola infection (n=8)156 but the authors recognized that pregnancy was incompletely recorded in the control group. Concerning transplacental transfer of immunoglobulins, it is well known that transfer of maternal immunoglobulin G (IgG) to the fetus plays an important role in preventing neonatal infections. Antibodies are transported across the placenta with mediation of the neonatal Fc receptor156 and transfer increases with gestational age, mostly in the third trimester.

Inactivated vaccines are also currently under investigation (NCT04352608). Safety in pregnant women has obviously not been assessed.

Immune modulators

The leading cause of mortality from COVID-19 is respiratory failure from severe acute respiratory syndrome. Accumulating evidence suggests that patients with severe COVID-19 have a cytokine storm, which is a hyper-inflam matory syndrome characterized by a fulminant and fatal hyper cytokinemias and multiorgan failure and previously described with SARS-CoV infection.157 Other approaches to anti-inflammatory therapy include cytokine blockers, steroids, and other potent anti inflammatory agents.

Interleukin 6 (IL-6) is a proinflammatory cytokine that participates in the cytokine storm which characterizes ARDS in COVID-19. Therefore, the following anti IL-6 therapies are being considered in COVID-19 pneumonia: tocilizumab (NCT04317092, NCT04331795, NCT04332913); and other antiinterleukin molecules such as clazakizumab (NCT04343989), levilimab (NCT04397562), olokizumab (NCT04380519), sarilumab (NCT04315298, NCT04321993, NCT04357808), and siltuximab (NCT04306368, NCT04329650). Tocilizumab is a humanized monoclonal antibody that binds to IL-6 receptors and inhibits the signal transmitted by the cytokine. Anti IL-6 therapy is usually used as an immunosuppressant in rheumatoid arthritis and its use requires monitoring of liver function. Tocilizumab crosses the placent al barrier and is found in cord blood assays (89% of maternal plasma dosage), plasma assays in newborns (78%), and breast milk (11%)46 with a peak in breast milk reached on the third day after injection.158 There does not seem to be an increased risk for congenital anomalies.47,48 but the interpretation of the data is difficult because there is often coexposure with methotrexate. In 2016, at the European Congress of Rheumatology, specialists recommended against tocilizumab in pregnancy judging the data insufficient in terms of fetal safety.159 Even fewer data are available regarding sarilumab/siltuximab. Similar to other IgG antibodies of the IgG1 subclass, they cross the placenta. Immune response may be impaired in infants with in utero exposure. A registry has been established to monitor outcomes after exposure to anti IL-6 monoclonal antibodies during pregnancy. Other antiinterleukin inhibitors (anti IL-1) that are also under investigation are canakinumab (NCT04362813) and anakinra (NCT04362813). A retrospective study on 31 exposed women has reported global sparse reassuring data with no neonatal infection but renal agenesis in 1 fetus after anakinra exposure.49

The sphingosine-1-phosphate receptor regulator fingolimod (FTY720) is an immune modulator which prevents lymphocytic contribution to autoimmune reaction. It also has been proposed in COVID-19 therapy (NCT04280588). Fingolimod has been widely used in severe multiple sclerosis. It is generally well tolerated and has a long-term safety profile (including infection or malignancy rates).160,161 but serious cardiac adverse effects have been reported in
patients at risk for heart failure. Data on the safety in pregnant women do not indicate any increase in major malformation rates among live births in comparison with the general population and the multiple sclerosis population (n=91 pregnancies and 75 live births). We found no data on placental transfer of fingolimod.

Baricitinib, a Janus kinase (JAK) and adaptor-associated kinase inhibitor, was found capable to reduce or interrupt the passage of the virus into target cells (endocytosis into pulmonary cell) and to inhibit the JAK1- and JAK2-mediated inflammatory effects, which may reduce the cytokine storm and inflammatory cascade activation in severe forms of COVID-19 (NCT04328480, NCT04326790). To date, it has not been proven to be effective as a treatment or prevention of COVID-19 disease. Baricitinib has been approved for the treatment of a variety of inflammatory diseases such as gout, familial Mediterranean fever, Behcet’s disease, and some dermatologic indications (chronic urticaria, cutaneous vasculitis, and psoriasis). Regarding pregnant women, colchicine is not contraindicated during pregnancy. Colchicine crosses the placenta. A meta-analysis reported no increase in the incidence of miscarriage or major fetal malformations in exposed women compared with nonexposed women with familial Mediterranean fever (4 studies and 554 pregnancies with colchicine exposure). However, in 1 retrospective study, there was an increased risk for preterm deliveries at ≤36 weeks’ gestation (15% [n=32/214] vs 5.9% [n=51/867]; P<.01) and a lower median birthweight in singleton full-term children (3090 g vs 3315 g; P<.01).

Leflunomide is an immune suppressor used in rheumatoid arthritis that is also under investigation for COVID-19 (NCT04361214). It is teratogenic in an animal model and thus is to be avoided if possible, although a small retrospective study reported no association with major congenital malformation after 5 cases of first-trimester exposure or adverse pregnancy outcomes after 15-second and third-trimester exposures. We found no data on placental transfer of leflunomide.

Additional immune therapies under investigation to treat the cytokine storm in COVID-19 include lenzilumab, which is a humanized monoclonal antibody that blocks the granulocyte-macrophage colony-stimulating factor (NCT04351152), and the human IgG1 monoclonal antibody gimsilumab (NCT04351243).

Colchicine is a powerful anti-inflammatory drug. It is under investigation in a simple, pragmatic randomized controlled trial for its immunomodulatory and anti-inflammatory effects, which may reduce the cytokine storm and inflammatory cascade activation in severe forms of COVID-19 (NCT04328480, NCT04326790). To date, it has not been proven to be effective as a treatment or prevention of COVID-19 disease. Colchicine has been approved for the treatment of various inflammatory diseases such as gout, familial Mediterranean fever, Behcet’s disease, and some dermatologic indications (chronic urticaria, cutaneous vasculitis, and psoriasis). Regarding pregnant women, colchicine is not contraindicated during pregnancy. Colchicine crosses the placenta. A meta-analysis reported no increase in the incidence of miscarriage or major fetal malformations in exposed women compared with nonexposed women with familial Mediterranean fever (4 studies and 554 pregnancies with colchicine exposure). However, in 1 retrospective study, there was an increased risk for preterm deliveries at ≤36 weeks’ gestation (15% [n=32/214] vs 5.9% [n=51/867]; P<.01) and a lower median birthweight in singleton full-term children (3090 g vs 3315 g; P<.01).

The use of steroids is still controversial for the treatment of SARS-CoV-2 infection. Methylprednisolone and dexamethasone are being studied in prospective randomized controlled trials (NCT04273321, NCT04325061, and NCT04329650). In addition, the glucocorticoid ciclesonide has indicated in vitro antiviral efficacy against SARS-CoV-2. In pregnant women, fluorinated glucocorticosteroids (usually betamethasone with 2 doses of 12 mg) are recommended in case of a high risk for preterm delivery to accelerate fetal lung maturation. Their placental transfer is high. In contrast, prednisone is inactivated by placental 11β-hydroxysteroid dehydrogenase and dexamethasone increase blood glucose level but are considered safe for pregnant women. Their clinical benefits have been proven in numerous studies including a meta-analysis of 18 trials and more than 3700 babies. Steroids reduce mortality (odds ratio [OR], 0.60; 95% CI, 0.48–0.75) and respiratory distress syndrome (OR, 0.53; 95% CI, 0.44–0.63), and they may also reduce the risk for severe intraventricular hemorrhage.

Medications modifying the renin-angiotensin-aldosterone system

Drugs that regulate the renin-angiotensin-aldosterone system have important potential to treat COVID-19. ACE was identified as a SARS-CoV receptor in 2004. Thus, ACE inhibitors are considered as a therapeutic approach to limit the endocytosis of the viral complex and thereby the number of cells infected with SARS-CoV-2. Losartan, an angiotensin II receptor blocker, is under investigation in patients with COVID-19 (NCT04318418). Another angiotensin receptor blocker, telmisartan, is also being studied (NCT04355936). In pregnancy, drugs that block the renin-angiotensin system can damage the fetal kidneys, leading to renal failure with oligohydramnios, deformations, and lung hypoplasia. These drugs modifying the renin-angiotensin cascade could also affect placental functions leading to growth retardation.

Other drugs with vascular impact

Sildenafil, a phosphodiesterase type 5 inhibitor, is a vasodilator used to treat erectile dysfunction and pulmonary arterial hypertension. It is under investigation in patients with COVID-19 (NCT04304313) because pulmonary hypertension is a complication of ARDS. In pregnant women, as in nonpregnant patients, the adverse effects are headache and visual disturbance. It crosses the
placenta at a high rate in ex vivo model,184 and thus, it is considered in antenatal care to prevent pulmonary hypertension in case of congenital diaphragmatic hernia.185 Sildenafil has also been studied for the prevention of fetal growth restriction in case of maternal vascular disease such as preeclampsia, and a meta-analysis has reported a significant increase in fetal weight at birth.186 No increases of neonatal death or congenital anomalies have been described in another meta-analysis.187 However, the Sildenafil Therapy in Dismal Prognosis Early-Onset Intrauterine Growth Restriction group which was gathered in 2011 to explore effects of sildenafil on fetal growth restriction recommended against the prescription of sildenafil.187,188

Bevacizumab (NCT04305106) is an anti–vascular endothelial growth factor antibody. It has been used in cases of ovarian cancer in pregnancy with no maternal and fetal adverse effects189 but it is still recommend to avoid its use.190 It has also been used during pregnancy to treat intravitreal hemorrhage with local injection191,192 with no pregnancy-related complications. We found no information on the placental transfer of bevacizumab.

Anticancer agents

Thalidomide is under consideration for COVID-19 (NCT04273529 and NCT04273581), but it is definitively contraindicated in pregnancy because of its proven teratogenicity.193,194 Another anticancer agent, plitidepsin, is also under investigation for COVID-19 (NCT04382066). There is no information on pregnancy use, but in view of its high molecular mass (1110 g/mol), we may expect that it would not cross the placenta.

The topoisomerase II blocker etoposide, which is proposed for a clinical study on COVID-19 (NCT04356690), has been reported in few case reports to treat gestational trophoblastic disease or malignant teratomas.195–197 Data on exposure during completed pregnancy are sparse198 and evidence of adverse effect is difficult to conclude because women received combinations of drugs. We found no data on placental transfer of etoposide.

Other approaches

A large variety of other drugs are also currently under consideration against SARS-CoV-2. Dapagliflozin is an anti-diabetic medication of the sodium-glucose cotransporter 2 inhibitor class which is under consideration to treat COVID-19–related respiratory failure, sepsis, and multiorgan failure in a clinical trial (NCT04350593). We found no specific data on its use during pregnancy.

Another therapeutic approach under investigation is the use of fetal-derived cells to reduce inflammation and fibrosis in COVID-19–related lung infection. The study registered as NCT04319731 is a pilot study of nebulized human amniotic fluid. Umbilical cord–derived mesenchymal stromal cells are used in several studies (NCT04333368, NCT04315987, NCT04288102). There is no data available on their safety in pregnancy.

Discussion

Among the medications under investigation to treat COVID-19, some already have sufficient safety data to allow their use in pregnant women. These include the HIV protease inhibitors such as lopinavir/ritonavir, interferon, and hydroxychloroquine. In addition, there are reassuring safety data for use of colchicine, steroids, oseltamivir, azithromycin, and to some extent monoclonal antibodies such as infliximab and tocilizumab. Some drugs are strictly prohibited in pregnancy because of known teratogenicity (thalidomide) or fetal toxicities (renin-angiotensin system blockers). Other candidates have insufficient pregnancy data, including IL-6 inhibitors, umifenovir, and favipiravir. Importantly, remdesivir remains an investigational drug with restricted use in the absence of preclinical data concerning pregnancy in view of its toxicity profile (hypotension during injection, renal and liver dysfunction). The range of medications under consideration to treat COVID-19 is rapidly evolving.

An unusual aspect of clinical trials on COVID-19 is the fact that most of the drugs under investigation are repurposed and thus are already used in pregnant women for their established indications. Because pregnant women are usually excluded from clinical trials, pregnancy follow-up data were obtained from off-label use. Although some follow-up data are obtained from structured cohort studies, most studies are from retrospective registers with limited endpoints and delayed and disparate collection of clinical data. Importantly, the doses used may differ and the diseases treated differ widely, so that drug toxicities may be quite different. This is of particular concern in patients with severe organ or multiorgan failure.

The use of medications in pregnancy must take into account a number of important issues. First, there is potential for increased toxicities to the patient herself and pharmacokinetic and pharmacodynamic differences with nonpregnant individuals. Physiological changes include increased volume of distribution, lower albumin concentrations, and hormone-induced susceptibility to hepatic toxicities.199 In addition, there may be an effect on placental functions and potential adverse pregnancy outcomes, such as abortion, fetal growth restriction, and preterm delivery. The most important are the potential risks for the fetus, such as teratogenicity, fetal toxicities, and long-term effect on the child’s health.

Clinical trials usually exclude pregnant women and newborns even when benefits are expected for this population type. This precautionary principle has been denounced as unjust.83 Pregnant women, according to the principle of autonomy, should be able to take responsibility and provide consent for participation in clinical trials, even for drugs with potential teratogenic risk.185 Excluding pregnant women from clinical trials usually prevents us from obtaining reliable safety data from the use of drugs during pregnancy. This makes it very difficult to take care of pregnant patients with the prescription of drugs without proof of efficacy or tolerance established during pregnancy. Thus, it seems that the benefits of
including pregnant patients in therapeutic trials would outweigh the risks.186

Knowledge about placental transfer should be available early enough in the process of drug evaluation to be able to move on to use in pregnant women without needless delays. Most medications cross the placenta, but the amount of placental transfer differs. Passive diffusion is the major mechanism of transplacental transfer and depends on pharmacokinetic parameters such as small molecular weight, high water solubility, polarity, and important protein-binding rate (>90%). The other important mechanism is active transport which depends on import or export protein transporters.201 Three types of studies have been developed to obtain information on fetal drug exposure. Placental transfer may be estimated by the concentration ratios between the umbilical cord blood and maternal blood at birth. However, these studies are based on a small number of patients. Preclinical studies on placental transfer are performed either in animals (but their placentas differ from the human hemochorial placenta) or in experimental models,187,188 including the ex vivo human cotyledon perfusion model.2–4 Physiologically based pharmacokinetic models have also been developed to predict fetal exposure to drugs.102

Because the available evidence suggests that there is little risk for vertical transmission of SARS-CoV-2, there is no need for antiviral therapies to cross the placenta. There is also no benefit to be expected from fetal exposure to immunomodulatory therapies. Thus, the optimal approaches to treating pregnant women with COVID-19 would theoretically be those with minimal fetal effect or minimal placental transfer.

The management of pregnant women with COVID-19 is essentially symptomatic. Therapies must be discussed, based on rapidly evolving data on the efficacy and safety in nonpregnant adults, also taking into account obstetrical and fetal consequences of such treatment and the consequences of lack of therapy. In severe cases, therapy should not be withheld solely because of pregnancy and should be discussed between obstetricians, intensive care and infectious disease specialists, and the patient and her partner.

REFERENCES

1. World Health Organization. Déclaration sur la deuxième réunion du Comité d’urgence du Règlement sanitaire international 2005 concernant la fièvre du nouveau coronavirus 2019 (2019-nCoV). 2020. Available at: https://www.who.int/fr/news-room/detail/30-01-2020-statement-on-the-second-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-outbreak-of-novel-coronavirus-(2019-ncov), Accessed April 1, 2020.

2. Dashapth P, Wong JJJ, Lim MXK, et al. Coronavirus disease 2019 (COVID-19) pandemic and pregnancy: what obstetricians need to know. Am J Obstet Gynecol 2020;222:521–31.

3. Rasmussen SA, Smulian JC, Lednicky JA, Wen TS, Jamieson DJ. Coronavirus disease 2019 (COVID-19) and pregnancy: what obstetricians need to know. Am J Obstet Gynecol 2020;224:415–26.

4. Schwartz DA, Graham AL. Potential maternal and infant outcomes from (Wuhan) coronavirus 2019-nCoV infecting pregnant women: lessons from SARS, MERS, and other human coronaviruses infections. Viruses 2020;12:194.

5. Siston AM, Rasmussen SA, Honie MA, et al. Pandemic 2009 influenza A(H1N1) virus illness among pregnant women in the United States. JAMA 2010;303:1517–25.

6. Egloff C, Vauloup-Fellous C, Picone O, Mandelbrot L, Roques P. Evidence and possible mechanisms of rare maternal-fetal transmission of SARS-CoV-2. J Clin Virol 2020;128:104447.

7. Chen H, Guo J, Wang C, et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. Lancet 2020;395:809–15.

8. Schwartz DA. An analysis of 38 pregnant women with COVID-19, their newborn infants, and maternal-fetal transmission of SARS-CoV-2: maternal coronavirus infections and pregnancy outcomes. Arch Pathol Lab Med 2020 [Epub ahead of print].

9. Chen S, Huang B, Luo DJ, et al. [Pregnancy with new coronavirus infection: clinical characteristics and placental pathological analysis of three cases]. Zhonghua Bing Li Xue Za Zhi 2020;49:418–23.

10. Kimberlin DW, Stagno S. Can SARS-CoV-2 infection be acquired in utero?: more definitive evidence is needed. JAMA 2020 [Epub head of print].

11. Zeng L, Xia S, Yuan W, et al. Neonatal early-onset infection with SARS-CoV-2 in 33 neonates born to mothers with COVID-19 in Wuhan, China. JAMA Pediatr 2020 [Epub ahead of print].

12. Peyronnet V, Sibiude J, Deruelle P, et al. [SARS-CoV-2 infection during pregnancy. Information and proposal of management care. CONOF]. Gynecol Obstet Fertil Senol 2020;48:426–43.

13. Chen S, Liao E, Cao D, Gao Y, Sun G, Shao Y. Clinical analysis of pregnant women with 2019 novel coronavirus pneumonia. J Med Virol 2020 [Epub ahead of print].

14. Sanders JM, Monogue ML, Jodlowicz T, Cutrell JB. Pharmacologic treatments for coronavirus disease 2019 (COVID-19): a review. JAMA 2020 [Epub ahead of print].

15. Henao Restrepo AM, Moorthy V, Preciziosi M-P. Public health emergency SOLIDARITY trial of treatments for COVID-19 infection in hospitalized patients. ISRCTN. Available at: http://www.isrctn.com/ISRCTN83971151, Accessed April 1, 2020.

16. Henao Restrepo AM, Moorthy V, Preciziosi M-P. Public health emergency SOLIDARITY trial of treatments for COVID-19 infection in hospitalized patients. ISRCTN. Available at: http://www.isrctn.com/ISRCTN83971151, Accessed April 1, 2020.

17. Noxure lve de l’essai clinique discovery. 2020. Available at: https://www.inserm.fr/actualites-et-evenements/actualites/covid-19-demarage-essai-clinique-discovery. Accessed April 1, 2020.

18. Henao Restrepo AM, Moorthy V, Preciziosi M-P. Public health emergency SOLIDARITY trial of treatments for COVID-19 infection in hospitalized patients. ISRCTN. Available at: http://www.isrctn.com/ISRCTN83971151, Accessed April 1, 2020.

19. Sibiude J, Mandelbrot L, Blanche S, et al. Association between prenatal exposure to antiretroviral therapy and birth defects: an analysis of the French perinatal cohort study (ANRS CO1/CO11). PLoS Med 2014;11: e1001635.

20. Tookey PA, Thorne C, van Wyk J, Norton M. Maternal and foetal outcomes among 4118 women with HIV infection treated with lopinavir/ritonavir during pregnancy: analysis of population-based surveillance data from the national study of HIV in pregnancy and childhood in the United Kingdom and Ireland. BMC Infect Dis 2016;16:65.

21. Retallack H, Di Lullo E, Arias C, et al. Zika virus cell tropism in the developing human brain and inhibition by azithromycin. Proc Natl Acad Sci USA 2016;113:14408–13.

22. Bosseboeuf E, Aubry M, Nhan T, et al. Azithromycin inhibits the replication of Zika virus. J Antivir Antiretrovir 2018;10:6–11.

23. Choy KT, Wong AY-L, Kaewpreeedeep P, et al. Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antiviral Res 2020;178:104786.

24. Jeon S, Ko M, Lee J, et al. Identification of antiviral drug candidates against SARS-CoV-2 from FDA-approved drugs. Antimicrob Agents Chemother 2020 [Epub ahead of print].

25. Touret F, Gilles M, Barral K, et al. In vitro screening of a FDA approved chemical library reveals potential inhibitors of SARS-CoV-2 replication. 2020. Available at: http://bionxl.org/lookup/doi/10.1101/2020.04.03.023846. Accessed April 20, 2020.

26. Sutton AL, Acosta EP, Larson KB, Kerstner-Wood CD, Tata AT, Biggio JR. Perinatal pharmacokinetics of azithromycin for cesarean
prophylaxis. Am J Obstet Gynecol 2015;212:812.e1–6.

27. Fan H, Gilbert R, O’Callaghan F, Li L. Associations between macrolide antibiotics prescribing during pregnancy and adverse child outcomes in the UK: population based cohort study. BMJ 2020;368:m331.

28. Heikkinen T, Laine K, Neuvonen PJ, Eklid U. The transferential transfer of the macrolide antibiotics erythromycin, roxithromycin and azithromycin. BJOG 2000;107:770–5.

29. Lim KJ, Mitchell AA, Yau WP, Louik C, Hernandez-Diaz S. Safety of macrolides during pregnancy. Am J Obstet Gynecol 2013;208:221.e1–8.

30. Almaramhy HH, Al-Zalaiban AH. The association of prenatal and postnatal macrolide exposure with subsequent development of infantile hypertrophic pyloric stenosis: a systematic review and meta-analysis. Ital J Pediatr 2019;45:20.

31. Bénard A, Sheehy O, Zhao JP, Nordeng H. Use of macrolides during pregnancy and the risk of birth defects: a population-based study. Pharmacoepidemiol Drug Saf 2015;24:1241–8.

32. Cooper WO, Ray WA, Griffin MR. Prenatal prescription of macrolide antibiotics and infantile hypertrophic pyloric stenosis. Obstet Gynecol 2002;100:101–6.

33. Law I, Lett KF, Hackett LP, et al. Transfer of chloroquine and desethylchloroquine across the placenta and into milk in Melanesian mothers. Br J Clin Pharmacol 2008;65:674–9.

34. Osadchy A, Ratnapalan T, Koren G. Occular toxicity in children exposed in utero to antimalarial drugs: review of the literature. J Rheumatol 2011;38:2504–8.

35. Silva VB, Sousa MA, Kuniyoshi IC, Aurélio FS, Sampaio AL, Oliveira CA. Risk of hearing alterations in newborns of mothers treated for malaria. Int Tinnitus J 2015;19:20.

36. Amoura Z, Schermann JM, Wechsler B, Zerah X, Goodeau P. Transplacental passage of colchicine in familial Mediterranean fever. J Rheumatol 1994;21:383.

37. Diav-Citrin O, Shechtman S, Schwartz V, et al. Pregnancy outcome after in utero exposure to colchicine. Am J Obstet Gynecol 2010;203:144.e1–6.

38. Costedoat-Chalumeau N, Amoura Z, Aymard G, et al. Evidence of transplacental passage of hydroxychloroquine in humans. Arthritis Rheum 2002;46:1123–4.

39. Costedoat-Chalumeau N, Amoura Z, Duhaup S, et al. Safety of hydroxychloroquine in pregnant patients with connective tissue diseases: a study of one hundred thirty-three cases compared with a control group. Arthritis Rheum 2003;48:3207–11.

40. Cimaz R, Brucato A, Meregalli E, Muscarà M, Sergi P. Electroretinograms of children born to mothers treated with hydroxychloroquine during pregnancy and breastfeeding: comment on the article by Costedoat-Chalumeau et al. Arthritis Rheum 2004;50:3056–7; author reply 3057–8.

41. Waysport A, Giroux M, Mansat V, Teixeira M, Dumas JC, Puel J. Experimental study of transplacental passage of alpha interferon by two assay techniques. Antimicrob Agents Chemother 1993;37:1323–7.

42. Hellwig K, Duarte Caron F, Wickleim EM, Bhatti A, Adorno A. Pregnancy outcomes from the global pharmacovigilance database on interferon beta-1b exposure. Ther Adv Neurol Disord 2020;13:1758286420971036.

43. Dumas JC, Giroux M, Teixeira MG, et al. Study of the transplacental transfer of interferon alfa-2a on the model of isolated perfused cotyledon [in French]. Therapie 1993;48:73–5.

44. Coyle PK, Sinclair SM, Scheuerle AE, Thorp JM, Albano JD, Rametta MJ. Final results from the Betaseron (interferon beta-1b) Pregnancy Registry: a prospective observational study of birth defects and pregnancy-related adverse events. BMJ Open 2014;4:e004536.

45. Pons JC, Lebon P, Frydman R, Delfraissy JF. Pharmacokinetics of interferon-alpha in pregnant women and fetoplacental passage. Fetal Diagn Ther 1995;10:7–10.

46. Tada Y, Sakai M, Nakao Y, Maruyama A, Ono N, Koarada S. Placental transfer of tocilizumab in a patient with rheumatoid arthritis. Rheumatology (Oxford) 2019;58:1694–5.

47. Nakajima K, Watanebe O, Morizuki M, Nakasone A, Ishizuka N, Murashima A. Pregnancy outcomes after exposure to tocilizumab: a retrospective analysis of 61 patients in Japan. Mod Rheumatol 2016;26:667–71.

48. Hoeltzenbein M, Beck E, Flajwanski R, et al. Tocilizumab use in pregnancy: analysis of a global safety database including data from clinical trials and post-marketing data. Semin Arthritis Rheum 2016;46:238–45.

49. Youngstein T, Hoffmann P, Gül A, et al. International multi-centre study of pregnancy outcomes with interleukin-1 inhibitors. Rheumatology (Oxford) 2017;56:2102–8.

50. Nicolas P, Maia MF, Bassat Q, et al. Safety of oral ivermectin during pregnancy: a systematic review and meta-analysis. Lancet Glob Health 2020;8.e92–100.

51. Bénard A, Zhao JP, Shiui I, Collilla S. Leflunomide use during pregnancy and the risk of adverse pregnancy outcomes. Ann Rheum Dis 2018;77:500–9.

52. Bédard I, Gil S, Peytavin G, et al. Placental transfer of lopinavir/ritonavir in the ex vivo human cotyledon perfusion model. Am J Obstet Gynecol 2006;195:296–301.

53. Ivanovic J, Nicastri E, Anceschi MM, et al. Transplacental transfer of antiretroviral drugs and newborn birth weight in HIV-infected pregnant women. Curr HIV Res 2009;7:620–5.

54. Marzolini C, Rudin C, Decosterd LA, et al. Transplacental passage of protease inhibitors at delivery. AIDS Lond Engl 2002;16:889–93.

55. Huang H, Wang J, Li Q, et al. Transplacental transfer of oseltamivir phosphate and its metabolite oseltamivir carboxylate using the ex vivo human placenta perfusion model in Chinese Hans population. J Matern Fetal Neonatal Med 2017;30:1288–92.

56. Ehrenstein V, Kristensen NR, Monz BU, Clinch B, Kenwright A, Sørensen HT. Oseltamivir in pregnancy and birth outcomes. BMC Infect Dis 2018;18:15:59.

57. Chambers CD, Johnson D, Xu R, Luo Y, Jones KL; OTIS Collaborative, Research Group. Oseltamivir use in pregnancy: risk of birth defects, preterm delivery, and small for gestational age infants. Birth Defects Res 2019;111:1437–93.

58. Sinclair SM, Jones JK, Miller RK, Greene MF, Kwo PY, Maddrey WC. The Ribavirin Pregnancy Registry: an interim analysis of potential teratogenicity at the mid-point of enrollment. Drug Saf 2017;40:1205–18.

59. Russo FM, Conings S, Allegaert K, et al. Sildenafil crosses the placenta at therapeutic levels in a dually perfused human cotyledon model. Am J Obstet Gynecol 2018;219:619.e1–10.

60. Dunn L, Greer R, Flenady V, Kumar S. Sildenafil in pregnancy: a systematic review of maternal tolerance and obstetric and perinatal outcomes. Fetal Diagn Ther 2017;41:81–8.

61. Russo FM, Benachi A, Van Miegheem T, et al. Antenatal sildenafil administration to prevent pulmonary hypertension in congenital diaphragmatic hernia (SToP-PH): study protocol for a phase I/IIb placenta transfer and safety study. Trials 2018;19:524.

62. Tavares E, Fernandes K, Negrini R, Bernardo WM, Simões R, Pinto S. The effects of sildenafil in maternal and fetal outcomes in pregnancy: a systematic review and meta-analysis. PloS One 2019;14:e0219732.

63. Madrid PB, Panchal RG, Warren TK, et al. Evaluation of Ebola virus inhibitors for drug repurposing. ACS Infect Dis 2015;1:317–26.

64. Arabi YM, Deeb AM, Al-Hameed F, et al. Macrolides in critically ill patients with Middle East Respiratory Syndrome. Int J Infect Dis 2019;81:184–90.

65. Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020;323:1061–9.

66. Gautret P, Lagier JC, Parola P, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents 2020 [Epub ahead of print].

67. Kemp MW, Miura Y, Payne MS, et al. Maternal intravenous administration of azithromycin results in significant fetal uptake in a sheep model of second trimester pregnancy. Antimicrob Agents Chemother 2014;58:6581–91.

68. Acosta EP, Griggsby PL, Larson KB, et al. Transplacental transfer of azithromycin and its use for eradicating intra-amniotic ureaplasma infection in a primate model. J Infect Dis 2014;209:898–904.

69. Ooi EE, Chew JSW, Loh JP, Chua RCS. In vitro inhibition of human influenza A virus replication by chloroquine. Virol J 2006;3:39.
pregnant women and consequences for dose adjustment. Antimicrob Agents Chemother 2015;59:5727–35.
112. Cressey TR, Best BM, Achalapong J, et al. Reduced indinavir exposure during pregnancy. Br J Clin Pharmacol 2013;76:475–83.
113. Cecaldi PF, Gavard L, Mandelbrot L, et al. Functional role of p-glycoprotein and binding protein effect on the placental transfer of lopinavir/ritonavir in the ex vivo human perfusion model. Obstet Gynecol Int 2009;2009:726593.
114. Mandelbrot L, Duron D, Bellesa E, Peytavin G. Placental transfer of darunavir in an ex vivo human cotyledon perfusion model. Antimicrob Agents Chemother 2014;58:5617–20.
115. Fowler MG, Qin M, Fiscus SA, et al. Benefits and risks of antiretroviral therapy for perinatal HIV prevention. N Engl J Med 2016;375:1726–37.
116. Powis KM, K itch D, Ogwu A, et al. Association of prenatal and postnatal HIV infection among uninfected infants of HIV-infected mothers. JAMA 2011;306:7022–31.
117. Simon A, Warszawski J, Kariyawasam D, et al. Association of prenatal and postnatal HIV prevention. N Engl J Med 2016;375:e27–38.
118. Beigel JH, Tomashek KM, Dodd LE, et al. Remdesivir for treatment of Covid-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet 2020;395:1569–78.
119. Grein J, Ohmagari N, Shin D, et al. Compassionate use of remdesivir for patients with severe Covid-19. N Engl J Med 2020;382:2327–36.
120. Energy Market Authority of Singapore/204393/2016, Committee for Medicinal Products for Human Use (CHMP), Assessment report on Medicinal products under development for the treatment of Ebova: 2016.
121. Haut Conseil de la Santé Publique. Avis relatif à la prise en charge des cas confirmés d’infection au virus SARS-CoV-2. Available at: https://www.vie-publique.fr/sites/default/files/rapport/pdf/273958.pdf. Accessed May 1, 2020.
122. Jin Y, Yang H, Ji W, et al. Virology, epidemiology, pathogenesis, and control of COVID-19. Viruses 2020;12:372.
123. De Meyer S, Bojkova D, Cinatl J, et al. Lack of antiviral activity of darunavir against SARS-CoV-2. Int J Infect Dis 2020;97:7–10.
124. Bixler SL, Bocan TM, Wells J, et al. Efficacy of favipiravir (T-705) in nonhuman primates infected with Ebola virus or Marburg virus. Antiviral Res 2018;151:97–104.
125. Delang L, Abdelnabi R, Neyts J. Favipiravir as a potential countermeasure against neglected and emerging RNA viruses. Antiviral Res 2018;153:85–94.
126. Furuta Y, Komeno T, Nakamura T. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proc Jpn Acad Ser B Phys Biol Sci 2017;93:449–63.
127. Oesterlich L, Lüdtke A, Schild K, et al. Treatment of advanced Ebola virus infection with T-705 (favipiravir) in a small animal model. Antiviral Res 2014;105:13–17.
128. Kerber R, Lorenz E, Duraffour S, et al. Laboratory findings, compassionate use of favipiravir, and outcome in patients With Ebola virus disease. Russia, 2015-a retrospective observational study. J Infect Dis 2019;220:195–202.
129. Baz M, Carbononne J, Préau J, Boivin G. Combination therapy with oseltamivir and favipiravir delays mortality but does not prevent oseltamivir resistance in immunodeficient mice infected with pandemic A(H1N1) influenza virus. Vi rus 2018;10:610.
130. Wang Y, Fan G, Salam A, et al. Comparative effectiveness of combined favipiravir and oseltamivir therapy versus oseltamivir monotherapy in critically ill patients with influenza virus infection. J Infect Dis 2020;221:1688–98.
131. Hayden FG, Shindo N. Influenza virus polymerase inhibitors in clinical development. Curr Opin Infect Dis 2019;32:176–86.
132. Omran AS, Saad MM, Baig K, et al. Ribavirin and interferon alfa-2a for severe Middle East respiratory syndrome coronavirus infection: a retrospective cohort study. Lancet Infect Dis 2014;14:1090–5.
133. Arabi YM, Shalhoub S, Mandourah Y, et al. Ribavirin and interferon therapy for critically ill patients With Middle East respiratory syndrome: a multicenter observational study. Clin Infect Dis 2020;70:1837–44.
134. Roberts SS, Miller RK, Jones JK, et al. The Ribavirin Pregnancy Registry: Findings after 5 years of enrollment, 2003–2009. Birth Defects Res A Clin Mol Teratol 2010;89:551–9.
135. Sibiude J, Warszawski J, Tubiana R, et al. Premature delivery in HIV-infected women starting protease inhibitor therapy during pregnancy: role of the ritonavir boost? Clin Infect Dis 2012;54:1348–60.
136. Yamamoto N, Yang R, Yoshinaka Y, et al. HIV protease inhibitor nefavir inhibits replication of SARS-associated coronavirus. Biochem Biophys Res Commun 2004;318:719–25.
137. Khamitov RA, Loginova SL, Shchukina VS, Borisevich SV, Maksimov VA, Shuster AM. Antiviral activity of arbidol and its derivatives against the pathogen of severe acute respiratory syndrome in the cell cultures[in Russian]. Vopr Virusol 2008;53:9–13.
138. Deng L, Li C, Zeng Q, et al. Arbidol combined with LPV/r versus LPV/r alone against Corona Virus Disease 2019: a retrospective cohort study. J Infect 2020;81:e1–5.
139. Liu N, Xie H, Lin S, Huang J, Zhao J, Lin Q. Umifenovir treatment is not associated with improved outcomes in patients with coronavirus disease 2019: a retrospective study. Clin Microbiol Infect 2020;26:817–21.
140. Yu N, Li W, Kang Q, et al. Clinical features and obstetric and neonatal outcomes of pregnant patients with COVID-19 in Wuhan, China: a retrospective, single-centre, descriptive study. Lancet Infect Dis 2020;20:559–64.
141. Pérez R, Palma C, Núñez MJ, Cox J, Pharmacokinetics of ivermectin after maternal or fetal intravenous administration in sheep. J Vet Pharmacol Ther 2008;31:406–14.
142. Avonex. Highlights of prescribing information. 2020. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/103780s5204lbl.pdf. Accessed April 20, 2020.
143. Hellwig K, Geissbuehler Y, Sabidó M, et al. Pregnancy outcomes in interferon-beta-exposed patients with multiple sclerosis: results from the European interferon-beta Pregnancy Registry. J Neurool 2020;267:1715–23.
144. Wong HK, Lee CK. Pivotal role of convalescent plasma in managing emerging infectious diseases. Vox Sang 2020 [Epub ahead of print].
145. Marano G, Vaglio S, Pupella S, et al. Convalescent plasma: new evidence for an old therapeutic tool? Blood Transfus 2016;14:152–7.
146. van Griensven J, Edwards T, de Lamballe X, et al. Evaluation of convalescent plasma for Ebola virus disease in guinea. N Engl J Med 2016;374:33–42.
147. Cheng Y, Wong R, Soo YO, et al. Use of convalescent plasma therapy in SARS patients in hong Kong. Eur J Clin Microbiol Infect Dis 2005;24:44–6.
148. Zhang B, Liu S, Tan T, et al. Treatment with convalescent plasma for critically ill patients with Severe Acute Respiratory Syndrome Coronavirus 2 infection. Chest 2020 [Epub ahead of print].
156. Sinister NE. Placental transport of immunoglobulin G. Vaccine 2003;21:3365–9.
157. Channappanavar R, Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol 2017;39: 529–39.
158. Saito Y, Yakuwa N, Takai C, et al. Tocilizumab concentrations in maternal serum and breast milk during breastfeeding and a safety assessment in infants: a case study. Rheumatology (Oxford) 2018;57:1499–501.
159. Götestam Skorpen C, Høstebien M, Tincani A, et al. The EULAR points to consider for use of antirheumatic drugs before pregnancy, and during pregnancy and lactation. Ann Rheum Dis 2016;75:795–810.
160. Coni G, Hartung HP, Bakshe R, Williams IM, Wiendl H. Benefit-risk profile of sphingosine-1-phosphate receptor modulators in relapsing and secondary progressive multiple sclerosis. Drugs 2017;77:1755–68.
161. Saida T, Itoyama Y, Kikuchi S, et al. Long-term efficacy and safety of fingolimod in Japanese patients with relapsing multiple sclerosis: 3-year results of the phase 2 extension study. BMC Neurology 2017;17:17.
162. Gaisböhler Y, Vile J, Koren G, et al. Evaluation of pregnancy outcomes in patients with multiple sclerosis after fingolimod exposure. Ther Adv Neurol Disord 2018;11:1756286418804760.
163. Al-Salama ZT, Scott LJ. Baricitinib: a review. Journal of Translational Medicine 2018;16:165.
164. Al-Salama ZT, Scott LJ. Baricitinib exposure during pregnancy in rheumatoid arthritis. Ther Adv Drug Saf 2018;9:987.
165. Costanzo G, Firinu D, Losa F, Barca MP, Del Giacco S. Baricitinib exposure in pregnant women: a case report and literature review. Taiwan J Obstet Gynecol 2018;57:31–5.
166. Mahadevan U, Kane S, Sandborn WJ, et al. Contribution and limit of the model of perfused cotyledon double perfusion model. AIDS London 2018;32:2077–80.
167. Beran RG. The ethics of excluding women from a large healthcare database analysis. Autoimmun Rev 2020;19:102566.
168. DeFeo SJ, Vrieze S, Gurram D, Day RO. Use of colchicine in pregnancy: a systemic review and meta-analysis. Rheumatology (Oxford) 2018;57:382–7.
169. Petersen MC, Nation RL, Ashley JJ, McBride WG. The placental transfer of betamethasone. Eur J Clin Pharmacol 1980;18:245–7.
170. Ward RM. Drug therapy of the fetus. J Clin Pharmacol 1993;33:780–9.
171. Yang K. Placental 11 beta-hydroxysteroid dehydrogenase: barrier to maternal glucocorticoids. Rev Reprod 1997;2:129–32.
172. Crowley P. Prophylactic corticosteroids for preterm birth. Cochrane Database Syst Rev 2000;2:CD000065.
173. Chow JH, Mazzeffi MA, McCurdy MT. Angiotensin II for the treatment of COVID-19-Related vasodilatory shock. Anesth Analg 2020;13;101:2–5.
174. Kuhn JH, Li W, Choe H, Farzan M. Angiotensin-converting enzyme 2: a functional receptor for SARS coronavirus. Cell Mol Life Sci 2004;61:2738–40.
175. Vaduganathan M, Valley J, Dorsett JF, McMurray JJV, Pfeffer MA, Solomon SD. Renin-angiotensin-aldosterone system inhibitors in patients with Covid-19. N Engl J Med 2020;382:1653–9.
176. Nkansah D, Ghiels M, Skalnati S, Vanrenterghem Y, et al. Nkansah D, Ghiels M, Skalnati S, Vanrenterghem Y, et al. Good pregnancy outcome after prenatal exposure to bleomycin, etoposide and cisplatin for ovarian immature teratoma: a case report and literature review. Arch Gynecol Obstet 2008;277:75–8.
177. Ngan HYS, Tam KF, Lam KW, Chan KKL. Methotrexate, bleomycin, and etoposide in the treatment of gestational trophoblastic neoplasia. Obstet Gynecol 2006;107:1012–7.
178. Song Y, Wang Z, Hao Z, et al. Requirement for etoposide in the treatment of pregnancy related hemophagocytic lymphohistiocytosis: a multicenter retrospective study. Orphanet J Rare Dis 2019;14:50.
179. Sibiude J, Warszawski J, Tubiana R, et al. Liver enzyme elevation in pregnant women receiving antiretroviral therapy in the ANRS-French perinatal cohort. J Acquir Immune Defic Syndr 2019 May 1;81(8):83–94.
180. Faure-Bardon V, Mandelbrot L, Duro D, Dussaux C, Le M, Peytavin G. Placental transfer of eltegravir and cobicistat in an ex-vivo human cotyledon double perfusion model. AIDS Lond Engl 2018;32:321–5.
181. Gavard L, Beghin D, Forestier F, et al. Contribution and limit of the model of perfused cotyledon to the study of placental transfer of drugs. European Society for Antiretroviral Therapy (ESART) Conference 2018;18:151–5.
182. De Sousa Mendes M, Hirt D, Vinot C, et al. Prediction of human fetal pharmacokinetics using ex vivo human placenta perfusion studies and physiologically based models. Br J Clin Pharmacol 2016;81:646–57.