Cluster characters II: A multiplication formula
Yann Palu

To cite this version:
Yann Palu. Cluster characters II: A multiplication formula. 2011. hal-00369263v4

HAL Id: hal-00369263
https://hal.science/hal-00369263v4
Preprint submitted on 8 Jun 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Cluster characters II: A multiplication formula

Yann Palu

Abstract

Let \(\mathcal{C} \) be a Hom-finite triangulated 2-Calabi–Yau category with a cluster tilting object. Under some constructibility assumptions on \(\mathcal{C} \) which are satisfied for instance by cluster categories, by generalized cluster categories and by stable categories of modules over a preprojective algebra of Dynkin type, we prove a multiplication formula for the cluster character associated with any cluster tilting object. This formula generalizes those obtained by Caldero–Keller for representation finite path algebras and by Xiao–Xu for finite-dimensional path algebras. We prove an analogous formula for the cluster character defined by Fu–Keller in the setup of Frobenius categories. It is similar to a formula obtained by Geiss–Leclerc–Schröer in the context of preprojective algebras.

Introduction

In recent years, the link between Fomin–Zelevinsky’s cluster algebras [FZ02] and the representation theory of quivers and finite-dimensional algebras has been investigated intensely, cf. for example the surveys [BM06], [GLS08b], [Kel10]. In its most tangible form, this link is given by a map taking objects of cluster categories to elements of cluster algebras. Such a map was first constructed by P. Caldero and F. Chapoton [CC06] for cluster categories and cluster algebras associated with Dynkin quivers. Another approach, leading to proofs of several conjectures on cluster algebras in a more general context, can be found in [DWZ08], [DWZ10] (for proofs relying on the use of a Caldero–Chapoton map, see [Pla11], [Pla]).

The results of P. Caldero and B. Keller [CK08] yield two multiplication formulae for the Caldero–Chapoton map of cluster categories associated with Dynkin quivers. The first one categorifies the exchange relations of cluster variables and only applies to objects \(L \) and \(M \) such that \(\text{Ext}^1(L, M) \) is of dimension 1. The second one generalizes it to arbitrary dimensions, and yields some new relations in the associated cluster algebras. These relations very much resemble relations in dual Ringel–Hall algebras [Sch08, section 5.5]. Motivated by these results, C. Geiss, B. Leclerc and J. Schröer [GLS07] proved two analogous formulae for module categories over preprojective algebras. In this latter situation, the number of isomorphism classes of indecomposable objects is usually infinite. Generalizations of the first formula were proved in [CK06] for cluster categories associated with any acyclic quiver, and later in [Pal08] for Hom-finite 2-Calabi–Yau triangulated categories. A generalisation to the Hom-infinite case can be found in [Pla11], and a version for quantum cluster algebras in [Qin]. The first generalization of the second multiplication formula, by A. Hubery (see [Hub]), was based on the existence of Hall polynomials which he proved in the affine case [Hub10], generalizing Ringel’s result [Rin90] for Dynkin quivers. Staying close to this point of view, J. Xiao and F. Xu proved in [XX10] a projective version of Green’s formula [Rin96] and applied it to generalize the multiplication formula for acyclic cluster algebras. Another proof of this formula was found by F. Xu in [Xu10], who used the 2-Calabi–Yau property instead of Green’s formula. Our aim in this paper is to generalize the second multiplication formula to more general 2-Calabi–Yau
categories for the cluster character associated with an arbitrary cluster tilting object. This in particular applies to the generalized cluster categories introduced by C. Amiot [Ami09] and to stable categories of modules over a preprojective algebra.

Assume that the triangulated category C is the stable category of a Hom-finite Frobenius category E. Then C. Fu and B. Keller defined a cluster character on E, which "lifts" the one on C. We prove that it satisfies the same multiplication formula as the one proved by Geiss–Leclerc–Schröer in [GLS07].

The paper is organized as follows: In the first section, we fix some notations and state our main result: A multiplication formula for the cluster character associated with any cluster tilting object. In section 2, we recall some definitions and prove the ‘constructibility of kernels and cokernels’ in modules categories. We apply these facts to prove that:

- If the triangulated category has constructible cones (see section 1.4), the sets under consideration in the multiplication formula, and in its proof, are constructible.
- Stable categories of Hom-finite Frobenius categories have constructible cones.
- Generalized cluster categories defined in [Ami09] have constructible cones.

Thus, all of the Hom-finite 2-Calabi–Yau triangulated categories related to cluster algebras which have been introduced so far have constructible cones. Notably this holds for cluster categories associated with acyclic quivers, and for the stable categories associated with the exact subcategories of module categories over preprojective algebras constructed in [GLS08a] and [BIRS09]. In section 3, we prove the main theorem. In the last section, we consider the setup of Hom-finite Frobenius categories. We prove a multiplication formula for the cluster character defined by Fu–Keller in [FK10].

Contents

1. Notations and main result ... 2
2. Constructibility .. 5
3. Proof of theorem 1.1 .. 12
4. Fu–Keller’s cluster character ... 17
References ... 21

1. Notations and main result

Let k be the field of complex numbers. The only place where we will need more than the fact that k is an algebraically closed field is proposition 2.1 in section 2.1. See [Joy06, section 3.3] for an explanation, illustrated with an example, of the fact that the theory of constructible functions does not extend to fields of positive characteristic. Let C be a Hom-finite, 2-Calabi–Yau, Krull–Schmidt k-category which admits a basic cluster tilting object T. In order to prove the main theorem, a constructibility hypothesis will be needed. This hypothesis is precisely stated in section 1.3 and it will always be explicitly stated when it is assumed. Stable categories of Hom-finite Frobenius categories satisfy this constructibility hypothesis, cf. section 2.4, so that the main theorem applies to cluster categories (thanks to the construction in [GLSa, Theorem 2.1]), to stable module categories over preprojective algebras... Moreover, the main theorem applies to the generalized cluster categories of [Ami09], cf. section 2.5.

We let B denote the endomorphism algebra of T in C, and we let $F = C(T, ?)$ denote the covariant functor from C to $\text{mod}B$ co-represented by T. We denote the image in $Q(x_1, \ldots, x_n)$ of an object M in C under the cluster character associated with T (see [Pal08]) by X^T_M. Before recalling the formula for X^T_M, we need to introduce some notation. Let Q_T be the Gabriel quiver of B, and denote by $1, \ldots, n$ its vertices. For each vertex i, denote by S_i (resp. P_i) the corresponding simple (resp. projective) module. For any two finite-dimensional B-modules L
and N, define
\[
(L, N) = \dim \text{Hom}_B(L, N) - \dim \text{Ext}^1_B(L, N),
\]
\[
(L, N)_a = (L, N) - (N, L).
\]

As shown in [Pal08, Section 3], the form $(\cdot, \cdot)_a$ descends to the Grothendieck group $K_0(\text{mod } B)$ (that is, it only depends on the dimension vectors of L and N). Note that this would not be true for the form (\cdot, \cdot) in general, since B is quite often of infinite global dimension (see [KR07]). For a B-module L, the projective variety $\text{Gr}_x L$ is the Grassmannian of submodules of L with dimension vector $e \in K_0(\text{mod } B)$. For any object $X \in C$, there are triangles
\[
T_\beta \rightarrow T_\alpha \rightarrow X \rightarrow \Sigma T_\beta \quad \text{and} \quad \Sigma T_\delta \rightarrow X \rightarrow \Sigma^2 T_\gamma \rightarrow \Sigma^2 T_\delta,
\]
with $T_\alpha, \ldots, T_\delta$ in add T (see [KR07, Proposition 2.1]), which are triangulated analogues of projective presentations and injective copresentations respectively. The index and coindex of X (with respect to T) are the following classes in $K_0(\text{proj } B)$:
\[
\text{ind } X = \text{ind}_T X = [FT_\alpha] - [FT_\beta] \quad \text{and} \quad \text{coind } X = \text{coind}_T X = [FT_\beta] - [FT_\delta].
\]

For some properties of the index, see [Pal08], and for a more thorough study, see [DK08], [FK10] and [Pla, Section 4.2]. Then we have:
\[
X^T_M = e^{-\text{coind}_T} \sum_e \chi(\text{Gr}_e FM) \prod_{i=1}^n x^{(S, e)}_i,
\]
where the sum runs over all classes $e \in K_0(\text{mod } B)$. For any two objects L and M in C, and any morphism ε in $C(L, \Sigma M)$, we denote the isomorphism class of objects Y appearing in a triangle of the form
\[
M \rightarrow Y \rightarrow L \xrightarrow{\varepsilon} \Sigma M
\]
by $\text{mt}(\varepsilon)$ (the middle term of ε). Note that any two such objects Y are isomorphic.

1.1. X^T-stratification

Let L and M be objects in C. If an object Y of C belongs to the class $\text{mt}(\varepsilon)$ for some morphism ε in $C(L, \Sigma M)$, we let $\langle Y \rangle$ denote the set of all isomorphism classes of objects $Y' \in C$ such that:
- Y' is the middle term of some morphism in $C(L, \Sigma M)$,
- $\text{coind } Y' = \text{coind } Y$ and
- for all $e \in K_0(\text{mod } B)$, we have $\chi(\text{Gr}_e (FY')) = \chi(\text{Gr}_e (FY))$.

The equality of classes $\langle Y \rangle = \langle Y' \rangle$ yields an equivalence relation on the ‘set’ of middle terms of morphisms in $C(L, \Sigma M)$. Fix a set \mathcal{Y} of representatives for this relation. Further, we denote the set of all ε with $\text{mt}(\varepsilon) \in \langle Y \rangle$ by $C(L, \Sigma M)_{\langle Y \rangle}$, and the set of $\varepsilon' \in C(L, \Sigma M)$ such that $X^T_{\text{mt}(\varepsilon')} = X^T_{\text{mt}(\varepsilon)}$ by $\langle \varepsilon \rangle$. It will be proven in section 2.3 that if the cylinders of the morphisms $L \rightarrow \Sigma M$ are constructible with respect to T in the sense of section 1.3 below, then the sets $C(L, \Sigma M)_{\langle Y \rangle}$ are constructible, and the set \mathcal{Y} is finite.

Remark that if Y' belongs to $\langle Y \rangle$, then $X^T_M = X^T_{Y'}$. Hence the fibers of the map sending ε to $X^T_{\text{mt}(\varepsilon)}$ are finite unions of sets $C(L, \Sigma M)_{\langle Y \rangle}$. Therefore, the sets $\langle \varepsilon \rangle$ are constructible; we have
\[
C(L, \Sigma M) = \bigoplus_{\varepsilon \in \mathcal{R}} \langle \varepsilon \rangle
\]
for some finite set $\mathcal{R} \subset C(L, \Sigma M)$, and
\[
C(L, \Sigma M) = \bigoplus_{Y \in \mathcal{Y}} C(L, \Sigma M)_{\langle Y \rangle}
\]
is a refinement of the previous decomposition.

1.2. The variety $\text{rep}_d BQ$

Let V be a finite dimensional k-vector space. We denote by $\text{rep}_B'(V)$ the set of morphisms of k-algebras from B^op to $\text{End}_k(V)$. Since B is finitely generated, the set $\text{rep}_B'(V)$ is a closed subvariety of some finite product of copies of $\text{End}_k(V)$.

Let Q be a finite quiver, and let $d = (d_i)_{i \in Q_0}$ be a tuple of non-negative integers. A d-dimensional matrix representation of Q in $\text{mod}B$ is given by

- a right B-module structure on k^{d_i} for each vertex i of Q
- a B-linear map $k^{d_i} \to k^{d_j}$ for each arrow $\alpha : i \to j$ of Q.

Clearly, for fixed d, the d-dimensional matrix representations of Q in $\text{mod}B$ form an affine variety $\text{rep}_d BQ$ on which the group $\text{GL}(d) = \prod_{i \in Q_0} \text{GL}_{d_i}(k)$ acts by changing the bases in the spaces k^{d_i}. We write $\text{rep}_d BQ/\text{GL}(d)$ for the set of orbits.

1.3. Constructible cones

Let $\overrightarrow{A_4}$ be the quiver: $1 \to 2 \to 3 \to 4$. Let T, L and M be objects of \mathcal{C}. Let d_{max} be the 4-tuple of integers $(\dim FM, \dim FM + \dim FL, \dim FL, \dim F\Sigma M)$.

Let $\Phi_{L,M}$ be the map from $\mathcal{C}(L, \Sigma M)$ to

$$\bigoplus_{d \leq d_{\text{max}}} \text{rep}_d(\overrightarrow{BA_4})/\text{GL}(d)$$

sending a morphism ε to the orbit of the exact sequence of B-modules

$$\mathcal{C}(T, M) \xrightarrow{F_1} \mathcal{C}(T, Y) \xrightarrow{F_2} \mathcal{C}(T, L) \xrightarrow{F_3} \mathcal{C}(T, \Sigma M),$$

where $M \xrightarrow{\varphi} Y \xrightarrow{p} L \xrightarrow{\varepsilon} \Sigma M$ is a triangle in \mathcal{C}. The cylinders over the morphisms $L \to \Sigma M$ are constructible with respect to T if the map $\Phi_{L,M}$ lifts to a constructible map

$$\varphi_{L,M} : \mathcal{C}(L, \Sigma M) \to \bigoplus_{d \leq d_{\text{max}}} \text{rep}_d(\overrightarrow{BA_4})$$

(see section 2.1). The category \mathcal{C} is said to have constructible cones if this holds for arbitrary objects L, M and T.

1.4. Main result

Let f be a constructible function from an algebraic variety over k to any abelian group, and let C be a constructible subset of this variety. Then one defines “the integral of f on C with respect to the Euler characteristic” to be

$$\int_C f = \sum_{x \in f(C)} \chi(C \cap f^{-1}(x)) x,$$

cf. for example the introduction of [Lus97]. Our aim in this paper is to prove the following:

Theorem 1.1. Let T be any cluster tilting object in \mathcal{C}. Let L and M be two objects such that the cylinders over the morphisms $L \to \Sigma M$ and $M \to \Sigma L$ are constructible with respect to T. Then we have:

$$\chi(\mathcal{P}(L, \Sigma M)) X_L^T X_M^T = \int_{[\varepsilon] \in \mathcal{P}(L, \Sigma M)} X^T_{\text{mat}(\varepsilon)} + \int_{[\varepsilon] \in \mathcal{P}(M, \Sigma L)} X^T_{\text{mat}(\varepsilon)}.$$
where \([\varepsilon]\) denotes the class in \(\mathbb{P}C(L, \Sigma M)\) of a non zero morphism \(\varepsilon\) in \(C(L, \Sigma M)\).

The statement of the theorem is inspired from [GLS07], cf. also [XX10]. We will prove it in section 3. Our proof is inspired from that of P. Caldero and B. Keller in [CK08]. Note that in contrast with the situation considered there, in the above formula, an infinite number of isomorphism classes \(\text{mt}(\varepsilon)\) may appear.

2. Constructibility

2.1. Definitions

Let \(X\) be a topological space. A locally closed subset of \(X\) is the intersection of a closed subset with an open one. A constructible subset is a finite (disjoint) union of locally closed subsets. The family of constructible subsets is the smallest one containing all open (equivalently: closed) subsets of \(X\) and stable under taking finite intersections and complements. A function \(f\) from \(X\) to an abelian group is constructible if it is a finite \(\mathbb{Z}\)-linear combination of characteristic functions of constructible subsets of \(X\). Equivalently, \(f\) is constructible if it takes a finite number of values and if its fibers are constructible subsets of \(X\).

For an algebraic variety \(X\), the ring of constructible functions from \(X\) to \(\mathbb{Z}\) is denoted by \(CF(X)\). The following proposition will be used, as in [XX10], in order to prove lemma 2.4 of section 2.3.

Proposition 2.1. [Dim04, Proposition 4.1.31] Associated with any morphism of complex algebraic varieties \(f : X \rightarrow Y\), there is a well-defined push-forward homomorphism \(CF(f) : CF(X) \rightarrow CF(Y)\). It is determined by the property

\[
CF(f)(1\mathbb{Z})(y) = \chi(f^{-1}(y) \cap Z)
\]

for any closed subvariety \(Z\) in \(X\) and any point \(y \in Y\).

Let \(X\) and \(Y\) be algebraic varieties. A map \(f : X \rightarrow Y\) is said to be constructible if there exists a decomposition of \(X\) into a finite disjoint union of locally closed subsets \(X_i, i \in I\), such that the restriction of \(f\) to each \(X_i\) is a morphism of algebraic varieties. Note that the composition of two constructible maps is constructible, and that the composition of a constructible function with a constructible map is again a constructible function.

2.2. Kernels and cokernels are constructible

In section 2.1 of [Xu10], it is shown that the kernel and cokernel of a morphism of modules over a path algebra \(\mathbb{C}Q\) are constructible. In this section, we give direct proofs in the more general case where \(\mathbb{C}Q\) is replaced by a finite dimensional algebra \(B\).

Let \(L\) and \(M\) be two finite dimensional vector spaces over the field \(k\), of respective dimensions \(n\) and \(m\). Let \(N\) be a linear subspace of \(M\). Define \(E_N\) to be the set of all morphisms \(f \in \text{Hom}_k(L, M)\) such that \(\text{Im} f \oplus N = M\).

Lemma 2.2. The set \(E_N\) is a locally closed subset of \(\text{Hom}_k(L, M)\).

Proof. Let \((u_1, \ldots, u_n)\) be a basis of \(L\), and let \((v_1, \ldots, v_m)\) be a basis of \(M\) whose \(p\) first vectors form a basis of \(N\). Let \(r\) be such that \(r + p = m\). Let \(f : L \rightarrow M\) be a \(k\)-linear map,
and denote by $A = (a_{ij})$ its matrix in the bases (u_1, \ldots, u_n) and (v_1, \ldots, v_m). Denote by A_1 the submatrix of A formed by its first p rows and by A_2 the one formed by its last r rows. For $t \leq n$, let $P(t, n)$ be the set of all subsets of $\{1, \ldots, n\}$ of cardinality t.

The map f belongs to E_N if and only if:

a) There exists j in $P(r, n)$ such that the submatrix $(a_{ij})_{i \leq p, j \leq t}$ has a non-zero determinant and

b) if the last r entries of a linear combination of columns of A vanish, then the combination itself vanishes.

Condition b) is equivalent to the inclusion $\text{Ker}(A_{i}) \subseteq \text{Im}(A_{i}^t)$. Therefore, condition b) can be restated as condition b'):

b') For all $i_0 \leq p$, and all $i \in P(r + 1, n)$, the determinant of the submatrix of A obtained by taking lines in $\{i_0, p + 1, \ldots, m\}$ and columns in i vanishes.

Let Ω_j be the set of all maps that satisfy condition a) with respect to the index set j, and let F be the set of all maps that satisfy condition b'). For all $j \in P(r, n)$, the set Ω_j is an open subset of $\text{Hom}_k(L, M)$ and the set F is a closed subset of $\text{Hom}_k(L, M)$. Since we have the equality:

$$E_N = \bigcup_{j \in P(r, n)} \Omega_j \cap F,$$

the set E_N is locally closed in $\text{Hom}_k(L, M)$. \hfill \square

Let $\rightarrow A_2$ be the quiver: $1 \to 2$.

Lemma 2.3. Let B be a finite dimensional algebra, and let L and M be finitely generated B-modules of dimensions n and m respectively. The map c from $\text{Hom}_B(L, M)$ to $\prod_{d \leq m} \text{rep}_{(m,d)}(B \rightarrow A_2)/\text{GL}(m, d)$ which sends a morphism l to the orbit of the representation $M \xrightarrow{c} \text{Coker} l$ lifts to a constructible map from $\text{Hom}_B(L, M)$ to $\prod_{d \leq m} \text{rep}_{(m,d)}(B \rightarrow A_2)$.

Dually, the map from $\text{Hom}_B(L, M)$ to $\prod_{d \leq n} \text{rep}_{(d,n)}(B \rightarrow A_2)/\text{GL}(d, n)$ which sends a morphism l to the orbit of the representation $\text{Ker} l \xrightarrow{c} L$ lifts to a constructible map from $\text{Hom}_B(L, M)$ to $\prod_{d \leq n} \text{rep}_{(d,n)}(B \rightarrow A_2)$.

Proof. Let us prove the first assertion. We keep the notations of the proof of lemma 2.2. For a subset \mathfrak{I} of $\{1, \ldots, m\}$, let $N_{\mathfrak{I}}$ be the linear subspace of M generated by $(v_i)_{i \in \mathfrak{I}}$. Then $\text{Hom}_B(L, M)$ is the union of its intersections with each $E_{N_{\mathfrak{I}}}$ for $\mathfrak{I} \subseteq \{1, \ldots, m\}$. It is thus enough to consider the restriction of the map c to $E_{N_{\mathfrak{I}}}$, where $N_{\mathfrak{I}} \xrightarrow{\text{c}} M$ is a given linear subspace of M. Since the set E_N is the union of the locally closed subsets $\Omega_{\mathfrak{I}} \cap F$, for $\mathfrak{I} \in P(r, n)$, we can fix such a \mathfrak{I} and only consider the restriction of c to $\Omega_{\mathfrak{I}} \cap F$. Let f be a morphism in $\text{Hom}_B(L, M)$ and assume that f is in $\Omega_{\mathfrak{I}} \cap F$. Then the cokernel of the k-linear map f is N and the projection p_f of M onto N along $\text{Im} f$ is given by the $n \times p$ matrix $(1 - CD^{-1})$, where C is the submatrix $(a_{ij})_{i \leq p, j \leq t}$ and D is the submatrix $(a_{ij})_{i \geq p, j \leq t}$. Moreover, if we denote by $\rho^M \in \text{rep}_{p}(M)$ the structure of B-module of M, then the structure of B-module ρ of N induced by f is given by $\rho(b) = p_f \circ \rho^M(b) \circ i_N$, for all $b \in B$. \hfill \square

2.3. Constructibility of $\mathcal{C}(L, \Sigma M)(\mathcal{Y})$

Let k, C and T be as in section 1. Recall that B denotes the endomorphism algebra $\text{End}_k(T)$. This algebra is the path algebra of a quiver Q_T with ideal of relations I. Recall that we denote by $1, \ldots, n$ the vertices of Q_T.

Page 6 of 22
The following lemma is a particular case of [Dim04, Proposition 4.1.31], and was already stated in [XX10] for hereditary algebras.

Lemma 2.4. For any two dimension vectors \(e\) and \(d\) with \(e \leq d\), the function

\[
\mu_e : \text{rep}_d(Q_T, I) \to \mathbb{Z} \\
M \mapsto \chi(\text{Gr}_e M)
\]

is constructible.

Proof. Let \(\text{Gr}_e(d)\) be the closed subset of

\[
\text{rep}_d(Q_T, I) \times \prod_{i \in Q_0} \text{Gr}_e(k^{d_i})
\]

formed by those pairs \((\rho, W)\) for which the subspaces \(W_i \subseteq k^{d_i}, i \in Q_0\), form a subrepresentation. Apply proposition 2.1 to the first projection \(f : \text{Gr}_e(d) \to \text{rep}_d(Q_T, I)\) and remark that \(\mu_e = CF(f)(1_{\text{Gr}_e(d)})\).

\(\square\)

Corollary 2.5. Let \(L\) and \(M\) be objects in \(\mathcal{C}\), and let \(e \leq \dim FL + \dim FM\) be in \(K_0(\text{mod } B)\). Assume that the cylinders over the morphisms \(L \to \Sigma M\) are constructible. Then the function

\[
\lambda_e : \mathcal{C}(L, \Sigma M) \to \mathbb{Z} \\
\varepsilon \mapsto \chi(\text{Gr}_e F\text{mt}(\varepsilon))
\]

is constructible.

Proof. By our hypothesis, the map sending \(\varepsilon \in \mathcal{C}(L, \Sigma M)\) to the image of its middle term in \(\coprod_{\varepsilon} \text{rep}_d(Q_T, I)/GL(d)\), where the union is over the dimension vectors \(d\) not greater than \(\dim FL + \dim FM\), lifts to a constructible map from \(\mathcal{C}(L, \Sigma M)\) to \(\coprod \text{rep}_d(Q_T, I)\). The claim therefore follows from lemma 2.4.

\(\square\)

Let \(M \xrightarrow{i} Y \xrightarrow{p} L \xrightarrow{f} \Sigma M\) be a triangle in \(\mathcal{C}\), and denote by \(g\) the class of \(\text{Ker } F_i\) in the Grothendieck group \(K_0(\text{mod } B)\).

Lemma 2.6. We have:

\[
\text{coind } Y = \text{coind}(L \oplus M) - \sum_{i=1}^n \langle S_i, g \rangle a[P_i].
\]
Proof. Let $K \in C$ lift $\ker F_i$. Using respectively proposition 2.2, lemma 2.1.(2), lemma 7 and section 3 of [Pal08], we have the following equalities:

$$\coind Y = \coind L + \coind M - \coind K - \coind \Sigma K$$

$$= \coind(L \oplus M) + \ind K - \coind K$$

$$= \coind(L \oplus M) - \sum_{i=1}^{n} (S_i, FK)_a[P_i]$$

$$= \coind(L \oplus M) - \sum_{i=1}^{n} (S_i, g)_a[P_i].$$

Corollary 2.7. Let L and M be two objects such that the cylinders over the morphisms $L \to \Sigma M$ are constructible. The map $\lambda : \mathcal{C}(L, \Sigma M) \to K_0(\text{proj } B)$ which sends ϵ to the coindex (or to the index) of its middle term Y is constructible.

Proof. Note that g is at most the sum of the dimension vectors of FL and FM, so that by lemma 2.6 the map λ takes a finite number of values. By our hypothesis and lemma 2.3, there exists a constructible map:

$$\mathcal{C}(L, \Sigma M) \rightarrow \bigoplus_{d \leq \dim FM} \text{rep}_B'(k^d)$$

which lifts the map sending ϵ to the isomorphism class of the structure of B-module on $\ker F_i$. Moreover, the map sending a module ρ in $\bigcup_{d \leq \dim FM} \text{rep}_B'(k^d)$ to $\sum_{i=1}^{n} (S_i, \rho)_a[P_i]$ in $K_0(\text{proj } B)$ only depends on the dimension vector of ρ and thus is constructible. Therefore, the map λ is constructible.

Proposition 2.8. Let $L, M \in C$ be such that the cylinders over the morphisms $L \to \Sigma M$ are constructible. Then the sets $\mathcal{C}(L, \Sigma M)_{\langle Y \rangle}$ are constructible subsets of $\mathcal{C}(L, \Sigma M)$. Moreover, the set $\mathcal{C}(L, \Sigma M)$ is a finite disjoint union of such constructible subsets.

Proof. Fix a triangle $M \longrightarrow Y \longrightarrow L \longrightarrow \Sigma M$ in C. Then $\epsilon' \in \mathcal{C}(L, \Sigma M)$ is in $\mathcal{C}(L, \Sigma M)_{\langle Y \rangle}$ if and only if

- $\lambda(\epsilon') = \lambda(\epsilon)$ and
- For all $e \leq \dim FY$, $\lambda_e(\epsilon') = \lambda_e(\epsilon)$.

Therefore, the claim follows from corollary 2.5 and corollary 2.7.

2.4. Stable categories have constructible cones

In this section, we assume moreover that C is the stable category of a Hom-finite, Frobenius, Krull–Schmidt category E, which is linear over the algebraically closed field k. Our aim is to prove that such a category has constructible cones.

Let P denote the ideal in E of morphisms factoring through a projective-injective object. Let T, L and M be objects of the category C. Fix a k-linear section s of the projection $\text{Ext}^1_T(L, M) \longrightarrow \mathcal{C}(L, \Sigma M)$ induced by the canonical functor $E \longrightarrow \mathcal{C}$. Fix a conflation $M \longrightarrow IM \longrightarrow \Sigma M$ in E, with IM being projective-injective in E, and, for any ϵ in
\(\mathcal{C}(L, \Sigma M)\), consider its pull-back via \(s\varepsilon\):

\[
\begin{array}{ccc}
M & \xrightarrow{\iota} & Y \\
\downarrow & & \downarrow \\
IM & \xrightarrow{\varepsilon} & \Sigma M.
\end{array}
\]

Via \(\Pi\), this diagram induces a triangle \(M \xrightarrow{\iota} Y \xrightarrow{\varepsilon} L \xrightarrow{s\varepsilon} \Sigma M\) in \(\mathcal{C}\).

For any \(X \in \mathcal{E}\), we have a commutative diagram with exact rows:

\[
\begin{array}{cccccc}
0 & \longrightarrow & \mathcal{E}(X, M) & \overset{\mathcal{E}(X, \iota)}{\longrightarrow} & \mathcal{E}(X, Y) & \overset{\mathcal{E}(X, \varepsilon)}{\longrightarrow} & \mathcal{E}(X, L) \\
& & \downarrow & & \downarrow & & \downarrow \\
0 & \longrightarrow & \mathcal{E}(X, M) & \longrightarrow & \mathcal{E}(X, IM) & \longrightarrow & \mathcal{E}(X, \Sigma M).
\end{array}
\]

Fix \(X' \in \mathcal{E}\) and a morphism \(X' \rightarrow X\). Denote by \(\mathcal{C}\) the endomorphism algebra of \(X' \rightarrow X\) in the category of morphisms of \(\mathcal{E}\), and by \(\mathcal{D}'\) the set of dimension vectors \(d = (d_1, d_2, d_3, d_4)\) such that:

\[
\begin{align*}
d_1 &= \dim \mathcal{C}(T, M), \\
d_3 &= \dim \mathcal{C}(T, L), \\
d_2 &\leq d_1 + d_3 \text{ and } d_4 = \dim \mathcal{C}(T, \Sigma M).
\end{align*}
\]

Lemma 2.9. There exists a constructible map

\[
\mu : \mathcal{C}(L, \Sigma M) \longrightarrow \bigsqcup_{d \in \mathcal{D}'} \text{rep}_d \mathcal{C}_{\mathbb{A}_4}
\]

which lifts the map sending \(\varepsilon\) to the orbit of the matrix representation of \(\mathcal{C}_{\mathbb{A}_4}\) in \(\text{mod} \mathcal{C}\) given by:

\[
\begin{array}{cccc}
\mathcal{E}(X, M) & \xrightarrow{\mathcal{E}(X, \iota)} & \mathcal{E}(X, Y) & \xrightarrow{\mathcal{E}(X, \varepsilon)} & \mathcal{E}(X, L) \\
& & \downarrow & & \downarrow & & \downarrow \\
& & \mathcal{E}(X, IM) & \longrightarrow & \mathcal{E}(X, \Sigma M).
\end{array}
\]

Proof. By definition of a pull-back, the map \(\mathcal{E}(X, Y) \longrightarrow \mathcal{E}(X, IM) \oplus \mathcal{E}(X, L)\) is a kernel for the map \(\mathcal{E}(X, IM) \oplus \mathcal{E}(X, L) \longrightarrow \mathcal{E}(X, \Sigma M)\), with appropriate signs. Moreover, the morphism \(\mathcal{E}(X, M) \xrightarrow{\mathcal{E}(X, \iota)} \mathcal{E}(X, Y)\) is a kernel for \(\mathcal{E}(X, \varepsilon)\). Therefore, lemma 2.3 in section 2.2 applies and such a constructible map \(\mu\) exists.

Denote by \(\mathcal{D}\) the set of dimension vectors \(d = (d_1, d_2, d_3, d_4)\) such that:

\[
\begin{align*}
d_1 &= \dim \mathcal{C}(T, M), \\
d_3 &= \dim \mathcal{C}(T, L), \\
d_2 &\leq d_1 + d_3 \text{ and } d_4 = \dim \mathcal{C}(T, \Sigma M).
\end{align*}
\]

Proposition 2.10. There exists a constructible map

\[
\varphi : \mathcal{C}(L, \Sigma M) \longrightarrow \bigsqcup_{d \in \mathcal{D}} \text{rep}_d \mathcal{B}_{\mathbb{A}_4}
\]

which lifts the map sending \(\varepsilon\) to the orbit of the representation

\[
\begin{array}{cccc}
\mathcal{C}(T, M) & \xrightarrow{F_T} & \mathcal{C}(T, Y) & \xrightarrow{F_p} & \mathcal{C}(T, L) & \xrightarrow{F_{\varepsilon}} & \mathcal{C}(T, \Sigma M)
\end{array}
\]

Proof. Let \(T \rightarrow IT\) be an inflation from \(T\) to a projective-injective object in \(\mathcal{E}\). This inflation induces a commutative diagram \((*)\) of modules over the endomorphism algebra \(\mathcal{B}\).
of $T \mapsto IT$ in the Frobenius category of inflations of \mathcal{E}:

$$
\begin{align*}
\mathcal{E}(IT, M) &\longrightarrow \mathcal{E}(IT, Y) \longrightarrow \mathcal{E}(IT, L) \longrightarrow \mathcal{E}(IT, \Sigma M) \\
\mathcal{E}(T, M) &\longrightarrow \mathcal{E}(T, Y) \longrightarrow \mathcal{E}(T, L) \longrightarrow \mathcal{E}(T, \Sigma M).
\end{align*}
$$

The map which sends ε to the orbit of the diagram $(*)$ lifts to a constructible one. This is proved by repeating the proof of lemma 2.9 for the functor $\mathcal{E}(IT,U) \mapsto \mathcal{E}(T,U)$ instead of $U \mapsto \mathcal{E}(X,U)$ and using lemma 2.3 for \tilde{B}.

By applying lemma 2.3 to $\tilde{B} \otimes kA_4$, we see that the vertical cokernel of diagram $(*)$ is constructible as a $\tilde{B} \otimes kA_4$-module. Now the claim follows because the terms of the cokernel are B-modules and B is also the stable endomorphism algebra of $T \mapsto IT$ in the Frobenius category of inflations of \mathcal{E}.

2.5. **Generalized cluster categories have constructible cones**

Let (Q,W) be a Jacobi-finite quiver with potential W in kQ (cf. section 3.3 of [Ami09]), and let Γ be the Ginzburg dg algebra associated with (Q,W) (cf. section 4.2 of [Gin]). The perfect derived category $\text{per} \Gamma$ is the thick subcategory of the derived category $\mathcal{D}\Gamma$ generated by Γ. The finite dimensional derived category $\mathcal{D}_{\text{fd}} \Gamma$ is the full subcategory of $\mathcal{D}\Gamma$ whose objects are the dg modules whose homology is of finite total dimension. An object M belongs to $\mathcal{D}_{\text{fd}} \Gamma$ if and only if $\text{Hom}_{\mathcal{D}\Gamma}(P,M)$ is finite dimensional for each object P of $\text{per} \Gamma$.

Lemma [Keller–Yang]

- a) The category $\mathcal{D}_{\text{fd}} \Gamma$ is contained in $\text{per} \Gamma$.
- b) An object of $\mathcal{D}\Gamma$ belongs to $\mathcal{D}_{\text{fd}} \Gamma$ if and only if it is quasi-isomorphic to a dg Γ-module of finite total dimension.
- c) The category $\mathcal{D}_{\text{fd}} \Gamma$ is equivalent to the localization of the homotopy category $\mathcal{H}_{\text{fd}} \Gamma$ of right dg Γ-modules of finite total dimension with respect to its subcategory of acyclic dg modules.

Note that the previous lemma, taken from the appendix of [KY11], is stated above under some restrictions which do not appear there.

Recall that the generalized cluster category associated with (Q,W), defined in [Ami09], is the localization of the category $\text{per} \Gamma$ by the full subcategory $\mathcal{D}_{\text{fd}} \Gamma$. It is proved in [Ami09] that the canonical t-structure on $\mathcal{D}\Gamma$ restricts to a t-structure on $\text{per} \Gamma$. We will denote this t-structure by $(\text{per}^{\leq 0}, \text{per}^{\geq 0})$. Denote by \mathcal{F} the full subcategory of $\text{per} \Gamma$ defined by:

$$
\mathcal{F} = \text{per}^{\leq 0} \cap {}^\perp(\text{per}^{\leq -2}).
$$

Recall from [Ami09] that the canonical functor from $\text{per} \Gamma$ to \mathcal{C}_Γ induces a k-linear equivalence from \mathcal{F} to \mathcal{C}_Γ and that the functor $\tau_{\leq -1}$ induces an equivalence from \mathcal{F} to $\Sigma \mathcal{F}$.

Fix an object T in \mathcal{C}_Γ. Without loss of generality, assume that T belongs to \mathcal{F}. Note that the canonical cluster tilting object $\Gamma \in \mathcal{C}_\Gamma$ does belong to \mathcal{F}.

Lemma 2.11. Let X be an object of $\text{per} \Gamma$. If X is left orthogonal to $\text{per}^{\leq -3}$, which happens for instance when X is in \mathcal{F} or in $\Sigma \mathcal{F}$, then there is a functorial isomorphism

$$
\text{Hom}_{\text{per} \Gamma}(\tau_{\leq -1}T, X) \xrightarrow{\sim} \mathcal{C}_\Gamma(T, X).
$$
Proof. Let $X \in \text{per} \Gamma$ be left orthogonal to $\text{per} \leq -3$. By [Ami09, Proposition 2.8], we have $C_{\Gamma}(T, X) = \lim_{\to} \text{Hom}_{\text{per} \Gamma}(\tau_{\leq n} T, \tau_{\leq n} X)$. Moreover, for any n, we have

$$\text{Hom}_{\text{per} \Gamma}(\tau_{\leq n} T, \tau_{\leq n} X) = \text{Hom}_{\text{per} \Gamma}(\tau_{\leq n} T, X).$$

Let $n < -1$. The object $\tau_{[n+1,-1]} T$ belongs to $D_{\text{fd}}(\Gamma)$ and X belongs to $\text{per} \Gamma$, so that the 3-Calabi-Yau property (see [Kel08]) implies that the morphism space $\text{Hom}_{\text{per} \Gamma}(\Sigma^{-1} \tau_{[n+1,-1]} T, X)$ is isomorphic to the dual of $\text{Hom}_{\text{per} \Gamma}(X, \Sigma^2 \tau_{[n+1,-1]} T)$. This latter vanishes since X belongs to $\text{per} \leq -3$. The same argument shows that the space $\text{Hom}_{\text{per} \Gamma}(\tau_{[n+1,-1]} T, X)$ also vanishes. Therefore applying the functor $\text{Hom}_{\text{per} \Gamma}(?, X)$ to the triangle

$$\Sigma^{-1} \tau_{[n+1,-1]} T \longrightarrow \tau_{\leq n} T \longrightarrow \tau_{\leq -1} T \longrightarrow \tau_{[n+1,-1]} T,$$

yields an isomorphism $\text{Hom}_{\text{per} \Gamma}(\tau_{\leq n} T, X) \simeq \text{Hom}_{\text{per} \Gamma}(\tau_{\leq -1} T, X)$.

\[\text{Lemma 2.12.} \quad \text{Let } X, Y \in \text{per} \Gamma \text{ and assume that } X \text{ belongs to } \text{per} \leq -1. \text{ Then the functor } \tau_{\geq -2} \text{ induces a bijection } \text{Hom}_{\text{per} \Gamma}(X, Y) \simeq \text{Hom}_{D_{\text{fd}}(\Gamma)}(\tau_{\geq -2} X, \tau_{\geq -2} Y).\]

Proof. By assumption, X is left orthogonal to the subcategory $\text{per} \leq -3$. Therefore, the space $\text{Hom}_{\text{per} \Gamma}(X, Y)$ is isomorphic to $\text{Hom}_{\text{per} \Gamma}(X, \tau_{\geq -2} Y)$, and thus to $\text{Hom}_{\text{per} \Gamma}(\tau_{\geq -2} X, \tau_{\geq -2} Y)$. Since X and Y are perfect over Γ, their images under $\tau_{\geq -2}$ are quasi-isomorphic to dg modules of finite total dimension.

\[\text{Proposition 2.13.} \quad \text{Let } \Gamma \text{ be the Ginzburg dg algebra associated with a Jacobi-finite quiver. Then the category } D_{\text{fd}}(\Gamma) \text{ has constructible cones.}\]

Proof. We write n for the ideal of Γ generated by the arrows of the Ginzburg quiver, and p for the left adjoint to the canonical functor $H(\Gamma) \to D(\Gamma)$. Let L, M and T be dg modules of finite total dimension. Since $\text{Hom}_{D_{\text{fd}}(\Gamma)}(L, \Sigma M)$ is finite dimensional, there exists a quasi-isomorphism $M \xrightarrow{\sim} M'$, where M' is of finite total dimension and such that any morphism $L \to \Sigma M$ may be represented by a fraction:

$$L \xrightarrow{\Sigma M} \xrightarrow{\Sigma w} M'.

We thus obtain a surjection $\text{Ext}^1_{D_{\text{fd}}(\Gamma)}(L, M') \to \text{Ext}^1_{D_{\text{fd}}(\Gamma)}(L, M)$. Fix a k-linear section s of this surjection. Choose m such that $M' n^m$ and $L n^m$ vanish. Then for the cone Y of any morphism from $\Sigma^{-1} M'$ to L, we have $Y n^m = 0$. For X being any one of L, M', Y we thus have isomorphisms

$$\text{Hom}_{D_{\text{fd}}(\Gamma)}(T, X) \simeq \text{Hom}_{H(\Gamma)}(p T, X) \simeq \text{Hom}_{H_{\text{fd}}(\Gamma)}(T', X)$$

where T' denotes the finite dimensional quotient of $p T$ by $(p T)n^m$. The category $H_{\text{fd}}(\Gamma)$ is the stable category of a Hom-finite Frobenius category. By section 2.4, the category $H_{\text{fd}}(\Gamma)$ has constructible cones: There exists a constructible map $\varphi_{L, M'}$ (associated with T') as in section 1.3. By composing this map with the section s, we obtain a map $\varphi_{L, M}$ as required.

\[\text{Proposition 2.14.} \quad \text{Let } \Gamma \text{ be the Ginzburg dg algebra associated with a Jacobi-finite quiver. Then the generalized cluster category } C_{\Gamma} \text{ has constructible cones.}\]
Proof. Let L and M be in \mathcal{C}_T. Up to replacing them by isomorphic objects in \mathcal{C}_T, we may assume that L belongs to ΣF and M to F. The projection then induces an isomorphism $\text{Hom}_{\text{per} \Gamma}(L, \Sigma M) \cong \mathcal{C}_T(L, \Sigma M)$. Let ε be in $\text{Hom}_{\text{per} \Gamma}(L, \Sigma M)$, and let $M \rightarrow Y \rightarrow L \xrightarrow{\varepsilon} \Sigma M$ be a triangle in $\text{per} \Gamma$. Let us denote the sets of morphisms $\text{Hom}_{\text{per} \Gamma}(,)$ by $(,)$. There is a commutative diagram

\[
\begin{array}{cccc}
\tau_{\leq -1} T, \Sigma^{-1} L & \rightarrow & \tau_{\leq -1} T, M & \rightarrow & \tau_{\leq -1} T, Y & \rightarrow & \tau_{\leq -1} T, L & \rightarrow & \tau_{\leq -1} T, \Sigma M \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \downarrow \\
\mathcal{C}_T(T, \Sigma^{-1} L) & \rightarrow & \mathcal{C}_T(T, M) & \rightarrow & \mathcal{C}_T(T, Y) & \rightarrow & \mathcal{C}_T(T, L) & \rightarrow & \mathcal{C}_T(T, \Sigma M),
\end{array}
\]

where the morphisms in the first two and in the last two columns are isomorphisms by lemma 2.11, and so is the middle one by the five lemma. Note that $\tau_{\leq -1} T$ belongs to ΣF, so that, by lemma 2.12, we have isomorphisms:

\[\text{Hom}_{\text{per} \Gamma}(L, \Sigma M) \cong \text{Hom}_{D_{\text{ad}}(\Gamma)}(\tau_{\geq -2} L, \tau_{\geq -2} \Sigma M)\]

and

\[\mathcal{C}_T(T, X) \cong \text{Hom}_{D_{\text{ad}}(\Gamma)}(\tau_{[-2, -1]} T, \tau_{\geq -2} X)\]

for $X \in \{\Sigma^{-1} L, M, L, \Sigma M\}$ and thus also for X being the middle term of any triangle in $\text{Ext}^1_{\text{per} \Gamma}(L, M)$. Let $\varepsilon \in \mathcal{C}_T(L, \Sigma M)$ and let $M \rightarrow Y \rightarrow L \xrightarrow{\varepsilon} \Sigma M$ be a triangle in \mathcal{C}_T. Let π be the morphism in $\text{Hom}_{D_{\text{ad}}(\Gamma)}(\tau_{-2} L, \tau_{-2} \Sigma M)$ corresponding to ε and let $\tau_{-2} M \rightarrow Z \rightarrow \tau_{-2} L \rightarrow \tau_{-2} \Sigma M$ be a triangle in $D_{\text{ad}}(\Gamma)$. Then the sequence obtained from $\Sigma^{-1} L \rightarrow M \rightarrow Y \rightarrow \Sigma M$ by applying the functor $\mathcal{C}_T(?)$ is isomorphic to the one obtained from $\Sigma^{-1} \tau_{-2} L \rightarrow \tau_{-2} M \rightarrow Z \rightarrow \tau_{-2} L \rightarrow \tau_{-2} \Sigma M$ by applying the functor $\text{Hom}_{D_{\text{ad}}(\Gamma)}(\tau_{[-2, -1]} T, ?)$. By proposition 2.13, the cylinders of the morphisms $L \rightarrow \Sigma M$ are constructible with respect to T. \hfill \square

3. Proof of theorem 1.1

Let T be a cluster tilting object of \mathcal{C}. Let L and M be two objects in \mathcal{C}, such that the cylinders of the morphisms $L \rightarrow \Sigma M$ and $M \rightarrow \Sigma L$ are constructible with respect to T. Let us begin the proof with some notations and some considerations on constructibility. Let ε be a morphism in $\mathcal{C}(L, \Sigma M)$ for some $Y \in \mathcal{C}$, and let $M \rightarrow Y' \xrightarrow{\varepsilon} L \rightarrow \Sigma M$ be a triangle in \mathcal{C}. The image of ε under $\varphi_{L,M}$ lifts the orbit of the matrix representation of A_4 in $\text{mod} B$ given by $F_M \xrightarrow{F_Y} F_Y' \xrightarrow{F_L} F_L \xrightarrow{F_M} F_M$ (the definition of the constructible map $\varphi_{L,M}$ is given in section 1.3). In all of this section, we will take the liberty of denoting by F_i, F_p and F_Y' the image $\varphi_{L,M}(\varepsilon)$. Denote by Δ the dimension vector $\dim F_L + \dim F_M$. For any object Y in \mathcal{C} and any non-negative e, f and g in $K_0(\text{mod} B)$, let $W_{L,M}(e, f, g)$ be the subset of

\[\mathbb{P} \mathcal{C}(L, \Sigma M)(Y) \times \prod_{d \leq \Delta} \prod_{i=1}^n \text{Gr}_{g_i}(k^{d_i})\]

formed by the pairs $([\varepsilon], E)$ such that E is a submodule of F_Y' of dimension vector g,

\[\dim(F_p)E = e \quad \text{and} \quad \dim(F_i)^{-1}E = f, \quad \text{where} \quad F_Y', F_i \quad \text{and} \quad F_p \quad \text{are given by} \quad \varphi_{L,M}(\varepsilon).\]

We let

- $W_{L,M}^Y(g)$ denote the union of all $W_{L,M}^Y(e, f, g)$ with $e \leq \dim F_L$ and $f \leq \dim F_M$ and
- $W_{L,M}^Y(e, f)$ denote the union of all $W_{L,M}^Y(e, f, g)$ with $g \leq \dim F_L + \dim F_M$.

Lemma 3.1. The sets $W_{L,M}^Y(e, f, g)$ are constructible.
Proof. Denote by Δ the dimension vector $\dim FL + \dim FM$, and fix a dimension vector g. Consider the map induced by φ_{LM} which sends a pair (ε, E) in $C(L, \Sigma M)_{(Y)} \times \prod_{d \leq \Delta} \prod_{c \in Q_0} \Gr_g(k^{d_c})$ to (F_i, Fp, FY', E). By our assumption, this map (exists and) is constructible. Therefore, the subset of $C(L, \Sigma M)_{(Y)} \times \prod_{d \leq \Delta} \prod_{c \in Q_0} \Gr_g(k^{d_c})$ formed by the pairs (ε, E) such that E is a submodule of FY' is a constructible subset. We denote by $V^Y_{LM}(g)$ this constructible subset. We thus have a constructible function $V^Y_{LM}(g) \rightarrow \mathbb{Z}^{2n}$ sending the pair (ε, E) to $(\dim (Fi)^{-1}E, \dim (Fp)E)$. This function induces a constructible function $\delta : W^Y_{LM}(g) \rightarrow \mathbb{Z}^{2n}$, and the set $W^Y_{LM}(e, f, g)$ is the fiber of δ above (e, f). \square

The fiber above the class $[\varepsilon]$ of the first projection $W^Y_{LM}(g) \rightarrow \mathbb{P}C(L, \Sigma M)_{(Y)}$ is $\{[\varepsilon]\} \times \Gr_g FY'$ and thus all fibers have Euler characteristics equal to that of $\Gr_g FY$. Therefore we have:

\[
\chi(W^Y_{LM}(g)) = \chi(\mathbb{P}C(L, \Sigma M)_{(Y)}) \chi(\Gr_g FY').
\]

Define $L(e, f)$ to be the variety $\mathbb{P}C(L, \Sigma M) \times \Gr_e FL \times \Gr_f FM$. Consider the following map:

\[
\prod_{Y \in Y} W^Y_{LM}(e, f) \xrightarrow{\psi} L(e, f)
\]

([\varepsilon], E) --> ([\varepsilon], (Fp)E, (Fi)^{-1}E).

By our assumption, the map ψ is constructible.

Let $L_1(e, f)$ be the subvariety of $L(e, f)$ formed by the points in the image of ψ, and let $L_2(e, f)$ be the complement of $L_1(e, f)$ in $L(e, f)$.

We can now start to compute:

\[
\dim C(L, \Sigma M)X_LX_M = \varepsilon^{-\coind(L\oplus M)} \sum_{e, f} \chi(L(e, f)) \prod_{i=1}^n \varepsilon^\chi(S_i, e+f)u_i
\]

\[
= \sum_{e, f} \chi(L_1(e, f)) \varepsilon^{-\coind(L\oplus M)} \prod_{i=1}^n \varepsilon^\chi(S_i, e+f)u_i
\]

\[
+ \sum_{e, f} \chi(L_2(e, f)) \varepsilon^{-\coind(L\oplus M)} \prod_{i=1}^n \varepsilon^\chi(S_i, e+f)u_i.
\]

Denote by s_1 (resp. s_2) the first term (resp. second term) in the right hand side of the last equality above. We first compute the sum s_1.

As shown in [CC06], the fibers of ψ over $L_1(e, f)$ are affine spaces. For the convenience of the reader, we sketch a proof. Let (ε, U, V) be in $L_1(e, f)$. Denote by Y the middle term of ε and by $\Gr_{U,V}$ the projection of the fiber $\psi^{-1}([\varepsilon], U, V)$ on the second factor $\Gr FY$. Let W be a cokernel of the injection of U in FM.

```
\begin{center}
\begin{tikzpicture}
  \node (v) at (0,0) {$V$};
  \node (w) at (-1,1) {$W$};
  \node (u) at (-1,0) {$U$};
  \node (x) at (0, 1) {$E$};
  \node (y) at (1,0) {$Y$};
  \node (fm) at (-2,0) {$FM$};
  \node (fy) at (-2,1) {$FY$};
  \node (fl) at (-2,2) {$FL$};
  \node (fsm) at (-2,3) {$F\Sigma M$};
  \draw[->] (v) -- (w) node [midway, left] {$\pi$};
  \draw[->] (w) -- (fm) node [midway, left] {};  \draw[->] (w) -- (fy) node [midway, left] {}; \draw[->] (fy) -- (fl); \draw[->] (fl) -- (fsm);  \draw[->] (v) -- (y) node [midway, right] {$\varphi$}; \draw[->] (u) -- (x) node [midway, right] {}; \draw[->] (x) -- (y) node [midway, right] {}; \draw[->] (y) -- (v) node [midway, right] {}; \draw[->] (u) -- (v) node [midway, right] {$\varphi$}; \draw[->] (u) -- (x) node [midway, right] {$\mu$}; \draw[->] (x) -- (y) node [midway, right] {$\nu$}; \end{tikzpicture}
\end{center}
```

Lemma 3.2. (Caldero–Chapoton) There is a bijection $\Hom_B(V, W) \rightarrow \Gr_{U,V}$.

Proof. Define a free transitive action of $\text{Hom}_B(V, W)$ on $\text{Gr}_{U, V}$ in the following way: For any E in $\text{Gr}_{U, V}$ and any g in $\text{Hom}_B(V, W)$, define E_g to be the submodule of FY of elements of the form $i(m) + x$ where m belongs to FM, x belongs to E and $gpx = \pi m$. Note that E_g belongs to $\text{Gr}_{U, V}$ (since the kernel of i is included in U), that $E_0 = E$ and that $(E_g)_h = E_{g + h}$. This action is free: An element $i(m) + x$ is in E if and only if m is in U. This is equivalent to the vanishing of πm, which in turn is equivalent to px belonging to the kernel of g. This action is transitive: Let E and E' be in $\text{Gr}_{U, V}$. For any v in V, let $g(v)$ be $\pi (x' - x)$ where $x \in E$, $x' \in E'$ and $px = px' = v$. This defines a map $g : V \rightarrow W$ such that $E_g = E'$.

By lemma 3.2, we obtain the following equality between the Euler characteristics:

$$\sum_{\langle Y \rangle} \chi(W_{LM}^Y(e, f)) = \chi(L_1(e, f)),$$

which implies the equality

$$s_1 = \sum_{e, f, \langle Y \rangle} \chi(W_{LM}^Y(e, f)) x^{- \text{coind}(L \oplus M)} \prod_{i=1}^n x_i^{(S_i, e + f)_a}.$$

If the pair $(|e|, E)$ belongs to $W_{LM}^Y(e, f, g)$, then by [Pal08, lemma 5.1], we have

$$\sum_{i=1}^n (S_i, e + f)_a [P_i] - \text{coind}(L \oplus M) = \sum_{i=1}^n (S_i, g)_a [P_i] - \text{coind}(\text{mt}(\varepsilon))$$

and $\text{coind}(\text{mt}(\varepsilon)) = \text{coind} Y$ since the morphism ε is in $\text{C}(L, \Sigma M)_{\langle Y \rangle}$. Therefore,

$$s_1 = \sum_{e, f, g, \langle Y \rangle} \chi(W_{LM}^Y(e, f, g)) x^{- \text{coind}(L \oplus M)} \prod_{i=1}^n x_i^{(S_i, e + f)_a}$$

$$= \sum_{e, f, g, \langle Y \rangle} \chi(W_{LM}^Y(e, f, g)) x^{- \text{coind} Y} \prod_{i=1}^n x_i^{(S_i, g)_a}$$

$$= \sum_{g, \langle Y \rangle} \chi(W_{LM}^Y(g)) x^{- \text{coind} Y} \prod_{i=1}^n x_i^{(S_i, g)_a}$$

$$= \sum_{\langle Y \rangle} \sum_{g} \chi(\text{PC}(L, \Sigma M)_{\langle Y \rangle}) \chi(\text{Gr}_g FY) x^{- \text{coind} Y} \prod_{i=1}^n x_i^{(S_i, g)_a} \text{ by } (**$$

$$= \sum_{\langle Y \rangle} \chi(\text{PC}(L, \Sigma M)_{\langle Y \rangle}) X_Y.$$

We now consider the sum s_2. Recall that since C is 2-Calabi–Yau, there is an isomorphism

$$\phi_{L, M} : C(\Sigma^{-1} L, M) \rightarrow DC(M, \Sigma L).$$

We denote by ϕ the induced duality pairing:

$$\phi : C(\Sigma^{-1} L, M) \times C(M, \Sigma L) \rightarrow k$$

$$(a, b) \mapsto \phi_{L, M}(a)b.$$

Let $C_{e, f}(Y, g)$ consist of all pairs $((|\varepsilon|, U, V), (|\eta|, E))$ in $L_2(e, f) \times W_{ML}^Y(g)$ such that $\phi(\Sigma^{-1} \varepsilon, \eta) \neq 0$, $(F_i)^{-1} E = V$ and $(F_p)E = U$, where F_i, F_p are given by $\varphi_{M, L}(\eta)$. The set $C_{e, f}(Y, g)$ is constructible, by our assumption. Let $C_{e, f}$ be the union of all $C_{e, f}(Y, g)$, where Y runs through the set of representatives \mathcal{Y}, and g through $K_0(\text{mod } B)$. We then consider the
following two projections

\[
\begin{array}{ccc}
C_{e,f} & \xrightarrow{p_1} & C_{e,f}(Y, g) \\
L_2(e, f) & \xrightarrow{p_2} & W_{ML}^f(f, e, g).
\end{array}
\]

The aim of the next proposition is to show that the projections \(p_1 \) and \(p_2 \) are surjective, and to describe their fibers.

Let \(U \) be in \(\text{Gr}_e FL \), and \(V \) be in \(\text{Gr}_f FM \). Let \(U \xrightarrow{i_U} L \) and \(V \xrightarrow{i_V} M \) lift these two inclusions to the triangulated category \(C \). As in section 4 of [Pal08], let us consider the following two morphisms: \(\alpha \) from \(C(\Sigma^{-1}L, U) \oplus C(\Sigma^{-1}L, M) \) to \(C/(T) (\Sigma^{-1}V, U) \oplus (\Sigma^{-1}V, M) \oplus C/(\Sigma T)(\Sigma^{-1}L, M) \) and

\[
\alpha' : (\Sigma T)(U, \Sigma V) \oplus C(M, \Sigma V) \oplus (\Sigma^2 T)(M, \Sigma L) \rightarrow C(U, \Sigma L) \oplus C(M, \Sigma L)
\]

defined by:

\[
\alpha(a, b) = (a\Sigma^{-1}i_V, i_U a\Sigma^{-1}i_V - b\Sigma^{-1}i_V, i_U a - b)
\]

and

\[
\alpha'(a, b, c) = \left((\Sigma i_V)a + c i_U + (\Sigma i_V)b i_U, -c - (\Sigma i_V)b\right).
\]

Remark that the maps \(\alpha \) and \(\alpha' \) are dual to each other via the pairing \(\phi \). In the following lemma, orthogonal means orthogonal with respect to this pairing.

Proposition 3.3. [CK08, proposition 3] With the same notations as above, the following assertions are equivalent:

(i) The triple \(([\varepsilon], U, V) \) belongs to \(L_2(e, f) \).

(ii) The morphism \(\Sigma^{-1}\varepsilon \) is not orthogonal to \(C(M, \Sigma L) \cap \text{Im} \alpha' \).

(iii) There is an \(\eta \in C(M, \Sigma L) \) such that \(\phi(\Sigma^{-1}\varepsilon, \eta) \neq 0 \) and such that if

\[
L \xrightarrow{1} N \xrightarrow{p} M \xrightarrow{\eta} \Sigma L
\]

is a triangle in \(C \), then there exists \(E \in \text{Gr} FN \) with \((Fi)^{-1} E = V \) and \((Fp) E = U \).

Proof. Let us start with the equivalence of (i) and (ii). The same proof as that in [CK08, proposition 3] applies in this setup: Denote by \(p \) the canonical projection of \(C(\Sigma^{-1}L, U) \oplus C(\Sigma^{-1}L, M) \) onto \(C(\Sigma^{-1}L, M) \). Then, by [Pal08, lemma 4.2], assertion (i) is equivalent to \(\Sigma^{-1}\varepsilon \) not belonging to \(p(\text{Ker} \alpha) \). That is, the morphism \(\Sigma^{-1}\varepsilon \) is not in the image of the composition:

\[
q : \text{Ker} \alpha \rightarrow C(\Sigma^{-1}L, U) \oplus C(\Sigma^{-1}L, M) \rightarrow C(\Sigma^{-1}L, M).
\]

So (i) holds if and only if \(\Sigma^{-1}\varepsilon \) is not in the orthogonal of the orthogonal of the image of \(q \). The orthogonal of the image of \(q \) is the kernel of its dual, which is given by the composition:

\[
C(M, \Sigma L) \rightarrow C(U, \Sigma L) \oplus C(M, \Sigma L) \rightarrow \text{Coker} \alpha'.
\]

Therefore assertion (i) is equivalent to the morphism \(\Sigma^{-1}\varepsilon \) not being in the orthogonal of \(C(M, \Sigma L) \cap \text{Im} \alpha' \) which proves that (i) and (ii) are equivalent.

By [Pal08, lemma 4.2], a morphism in \(C(M, \Sigma L) \) is in the image of \(\alpha' \) if and only if it satisfies the second condition in (iii). Therefore (ii) and (iii) are equivalent. \(\square \)

A variety \(X \) is called an extension of affine spaces in [CK08] if there is a vector space \(V \) and a surjective morphism \(X \rightarrow V \) whose fibers are affine spaces of constant dimension. Note that extensions of affine spaces have Euler characteristics equal to 1.
Proposition 3.4. [CK08, proposition 4]

a) The projection $C_{e,f} \xrightarrow{p_1} L_2(e, f)$ is surjective and its fibers are extensions of affine spaces.

b) The projection $C_{e,f}(Y, g) \xrightarrow{p_2} W_{ML}(f, e, g)$ is surjective and its fibers are affine spaces.

c) If $C_{e,f}(Y, g)$ is not empty, then we have

$$\sum_{i=1}^{n} \langle S_i, e + f \rangle_a [P_i] - \text{coind}(L \oplus M) = \sum_{i=1}^{n} \langle S_i, g \rangle_a [P_i] - \text{coind} Y.$$

Proof. Let us first prove assertion a). The projection p_1 is surjective by the equivalence of i) and iii) in proposition 3.3. Let X be the fiber of p_1 above some $(\{\varepsilon\}, U, V)$ in $L_2(e, f)$. Let V be the set of all classes $[\eta]$ in $\mathbb{P}(\mathcal{C}(M, \Sigma L) \cap \text{Im } \alpha')$ such that $\phi(\Sigma^{-1} x, \eta)$ does not vanish. The set V is the projectivization of the complement in $\mathcal{C}(M, \Sigma L) \cap \text{Im } \alpha'$ of the hyperplane $\text{Ker } \phi(\Sigma^{-1} x, \eta)$. Hence V is a vector space. Let us consider the projection $\pi : X \rightarrow V$. This projection is surjective by [Pal08, lemma 4.2]. Let η represent a class in V, and let F_i, F_p be given by $\varphi_{ML}(\eta)$. Then the fiber of π above $[\eta]$ is given by the submodules E of FY such that $F^{-1} E = V$ and $(F p) E = U$. Lemma 3.2 thus shows that the fibers of π are affine spaces of constant dimension.

Let us prove assertion b). Let $([\eta], E)$ be in $W_{ML}^Y(f, e, g)$. The fiber of p_2 above $([\eta], E)$ consists of the elements of the form $((\{\varepsilon\}, U, V), ([\eta], E))$ where U and V are fixed submodules given by $[\eta]$ and E, and $[\varepsilon] \in \mathbb{P}(\mathcal{C}(L, \Sigma M))$ is such that $\phi(\Sigma^{-1} x, \eta)$ does not vanish. Therefore the projection p_2 is surjective and its fibers are affine spaces.

To prove assertion c), apply [Pal08, lemma 5.1] and remark that if Y' belongs to $\langle Y \rangle$, then Y' and Y have the same coindex.

As a consequence, we obtain the following equalities:

$$\chi(C_{e,f}) = \chi(L_2(e, f)) \text{ and } \chi(C_{e,f}(Y, g)) = \chi(W_{ML}^Y(f, e, g)).$$

We are now able to compute s_2:

$$s_2 = \sum_{e,f} \chi(L_2(e, f)) \varepsilon^{- \text{coind}(L \oplus M)} \prod_{i=1}^{n} x_i^{(S_i, e + f)_a}$$

$$= \sum_{e,f} \chi(C_{e,f}) \varepsilon^{- \text{coind}(L \oplus M)} \prod_{i=1}^{n} x_i^{(S_i, e + f)_a} \text{ by 3.4 a)}$$

$$= \sum_{e,f,g,\langle Y \rangle} \chi(C_{e,f}(Y, g)) \varepsilon^{- \text{coind}(L \oplus M)} \prod_{i=1}^{n} x_i^{(S_i, e + f)_a}$$

$$= \sum_{e,f,g,\langle Y \rangle} \chi(W_{ML}^Y(f, e, g)) \varepsilon^{- \text{coind} Y} \prod_{i=1}^{n} x_i^{(S_i, g)_a} \text{ by 3.4 c)}$$

$$= \sum_{e,f,g,\langle Y \rangle} \chi(W_{ML}^Y(g)) \varepsilon^{- \text{coind} Y} \prod_{i=1}^{n} x_i^{(S_i, g)_a}$$

$$= \sum_{g,\langle Y \rangle} \chi(\mathbb{P}(M, \Sigma L)_{\langle Y \rangle}) \chi(\text{Gr}_g FY) \varepsilon^{- \text{coind} Y} \prod_{i=1}^{n} x_i^{(S_i, g)_a} \text{ by (**) }$$

$$= \sum_{\langle Y \rangle} \chi(\mathbb{P}(M, \Sigma L)_{\langle Y \rangle}) X_Y.$$
Gathering our results we have:

\[
\dim \mathcal{C}(L, \Sigma M)X_LX_M = s_1 + s_2 = \sum_{\langle Y \rangle} \chi(\mathcal{P}(L, \Sigma M)(\langle Y \rangle))X_Y + \sum_{\langle Y \rangle} \chi(\mathcal{P}(M, \Sigma L)(\langle Y \rangle))X_Y,
\]

which proves Theorem 1.1.

4. Fu–Keller’s cluster character

In this section, it is proven that the cluster character \(X'\) defined by C. Fu and B. Keller, in [FK10], satisfies a multiplication formula similar to that of [GLS07]. In the case of the categories \(\mathcal{C}_w\) of Geiss–Leclerc–Schröer, when \(T\) a reachable cluster-tilting object, this also follows from [GLSb, Theorem 4]. Note that the notations used in this section differ from those of [FK10].

Let \(k\) be the field of complex numbers and let \(\mathcal{E}\) be a \(k\)-linear Hom-finite Frobenius category with split idempotents. Assume that its stable category \(\mathcal{C}\) is 2-Calabi–Yau and that \(\mathcal{E}\) contains a cluster tilting object \(T\). Denote the endomorphism algebra \(\text{End}_{\mathcal{E}}(T)\) by \(A\) and recall that the algebra \(\text{End}_{\mathcal{C}}(T)\) is denoted by \(B\). The object \(T\) is assumed to be basic with indecomposable summands \(T_1, \ldots, T_n\) where the projective-injective ones are precisely \(T_{r+1}, \ldots, T_n\). For \(i = 1, \ldots, n\), we denote by \(S_i\) the simple top of the projective \(A\)-module \(\mathcal{E}(T, T_i)\). The modules in \(\text{mod} B\) are identified with the modules in \(\text{mod} A\) without composition factors isomorphic to one of the \(S_i\), \(r < i \leq n\).

4.1. Statement of the multiplication formula

We first recall the definition of \(X'\) from [FK10]. For any two finitely generated \(A\)-modules \(L\) and \(M\), put

\[
\langle L, M \rangle_3 = \sum_{i=0}^{3} (-1)^i \dim_k \text{Ext}^i_A(L, M).
\]

Proposition [Fu-Keller]: If \(L, M \in \text{mod} B\) have the same image in \(K_0(\text{mod} A)\), then we have

\[
\langle L, Y \rangle_3 = \langle M, Y \rangle_3
\]

for all finitely generated \(A\)-module \(Y\).

Therefore, the number \(\langle L, S_i \rangle_3\) only depends on the dimension vector of \(L\), for \(L \in \text{mod} B\). Put \(\langle \dim L, S_i \rangle_3 = \langle L, S_i \rangle_3\), for \(i = 1, \ldots, n\).

Recall that \(F\) is the functor \(\mathcal{C}(T, ?)\) from the category \(\mathcal{C}\) to \(\text{mod} B\). Denote by \(G\) the functor \(F^* \simeq \text{Ext}_F^1(T, ?)\). For \(a \in K_0(\text{proj} A)\), the notation \(\overline{x}^a\) stands for the product \(\prod x_i^{a_i}\), where \(a_i\) is the multiplicity of \([P_i]\) in \(a\).

Definition [Fu-Keller] For \(M \in \mathcal{E}\), define the Laurent polynomial

\[
X'_M = \sum_{e \in K_0(\text{mod} A)} \chi(\text{Gr}_e(GM)) \prod_{i=1}^{n} x_i^{-\langle e, S_i \rangle}.
\]

Note that the \(A\)-module \(GM\) does not have composition factors isomorphic to one of the \(S_i\), \(r < i \leq n\), so that the sum might as well be taken over the Grothendieck group \(K_0(\text{mod} B)\).
Theorem [Fu-Keller] The map $M \mapsto X'_M$ is a cluster character on E. It sends T_i to x_i, for all $i = 1, \ldots, n$.

For a class $\varepsilon \in \text{Ext}^1_E(L, M)$, let $\text{mt}(\varepsilon)$ be the (isomorphism class of any) middle term of a conflation which represents ε.

Theorem 4.1. For all $L, M \in E$, we have
\[
\chi(\text{PExt}^1_E(L, M))X'_LX'_M = \int_{[\varepsilon] \in \text{PExt}^1_E(L, M)} X'_{\text{mt}(\varepsilon)} + \int_{[\varepsilon] \in \text{PExt}^1_E(M, L)} X'_{\text{mt}(\varepsilon)}.
\]

The proof of this theorem is postponed to section 4.3. The next section is dedicated to proving that the map sending $[\varepsilon]$ to $X'_{\text{mt}(\varepsilon)}$ is "integrable with respect to χ".

4.2. Constructibility

Let L, M be objects in E. To any $\varepsilon \in C(L, \Sigma M)$ corresponds a class in $\text{Ext}^1_E(L, M)$. Given a conflation in this class, we denote by $\text{mt}(\varepsilon)$ the isomorphism class in E of its middle term. Note that this notation does not coincide with the one in section 1. Nevertheless, those two definitions yield objects which are isomorphic in C.

Lemma 4.2. The map $\lambda : C(L, \Sigma M) \longrightarrow K_0(\text{proj } A)$ which sends ε to the index of $\text{mt}(\varepsilon)$ is constructible.

Proof. Let $\varepsilon \in C(L, \Sigma M)$, and let $M \xrightarrow{i} Y \xrightarrow{p} L$ be a conflation whose class in $\text{Ext}^1_E(L, M)$ corresponds to ε. Let d be the dimension vector of $\text{Coker} E(T, p)$. By the proof of [FK10, lemma 3.4], we have
\[
\text{ind } Y = \text{ind } (L \oplus M) - \sum_{i=1}^n (d_i, S_i) \chi(P_i).
\]
Thanks to lemma 2.9 and lemma 2.3, the formula above shows that the map λ is constructible.

If an object Y belongs to $\text{mt}(\varepsilon)$ for some $\varepsilon \in \text{Ext}^1_E(L, M)$, we let $\langle \langle Y \rangle \rangle$ denote the set of all isomorphism classes of objects $Y' \in E$ such that:
- Y' is the middle term of some conflation in $\text{Ext}^1_E(L, M)$,
- $\text{ind } Y' = \text{ind } Y$ and
- for all $e \in K_0(\text{mod } B)$, we have $\chi(\text{Gr}_e GY') = \chi(\text{Gr}_e G Y)$.
We denote the set of all $\varepsilon \in C(L, \Sigma M)$ with $\text{mt}(\varepsilon) \in \langle \langle Y \rangle \rangle$ by $C(L, \Sigma M)_{\langle \langle Y \rangle \rangle}$. Note that the set $C(L, \Sigma M)_{\langle \langle Y \rangle \rangle}$ is a (constructible) subset of $C(L, \Sigma M)_{\langle Y \rangle}$.

As for proposition 2.8, the following proposition follows easily from corollary 2.5 and the previous lemma.

Proposition 4.3. The sets $C(L, \Sigma M)_{\langle \langle Y \rangle \rangle}$ are constructible subsets of $C(L, \Sigma M)$. Moreover, the set $C(L, \Sigma M)$ is a finite disjoint union of such constructible subsets.
This proposition shows that the right hand side in the multiplication formula of theorem 4.1 is well-defined.

4.3. Proof of theorem 4.1

The proof is essentially the same as that in section 3, where the use of [Pal08, lemma 5.1] is replaced by that of [FK10, lemma 3.4].

Let L and M be two objects in \mathcal{E}. Let ϵ be a morphism in $\mathcal{C}(L, \Sigma M)_{\langle(Y)\rangle}$ for some $Y \in \mathcal{E}$, and let $M \xrightarrow{\sigma_1} Y' \xrightarrow{\sigma_2} L \xrightarrow{\psi} \Sigma M$ be a triangle in \mathcal{C}. Remark that, by section 2.4, the category \mathcal{C} has constructible cones. The image of $\Sigma \epsilon$ under $\varphi_{\Sigma L, \Sigma M}$ lifts the orbit of the matrix representation of A_4^γ in mod B given by $GM \xrightarrow{G_i} GY' \xrightarrow{G_p} GL \xrightarrow{G_\epsilon} G \Sigma M$. In all of this section, we will take the liberty of denoting by φ_{G_i}, G_p and GY' the image $\varphi_{\Sigma L, \Sigma M}(\Sigma \epsilon)$. Denote by Δ the dimension vector $\dim GL + \dim GM$. For any non-negative e, f and g in $K_0(\text{mod } B)$, let $W^Y_{LM}(e, f, g)$ be the subset of

$$\mathbb{P}C(L, \Sigma M)_{\langle(Y)\rangle} \times \prod_{d \leq \Delta} \prod_{i=1}^n \text{Gr}_\Sigma(k^{d_i})$$

formed by the pairs $([\epsilon], E)$ such that E is a submodule of GY' of dimension vector g, $\dim(Gp)E = e$ and $\dim(Gi)^{-1}E = f$. We let

- $W^Y_{LM}(g)$ denote the union of all $W^Y_{LM}(e, f, g)$ with $e \leq \dim GL$ and $f \leq \dim GM$ and
- $W^Y_{LM}(e, f)$ denote the union of all $W^Y_{LM}(e, f, g)$ with $g \leq \dim GL + \dim GM$.

Note that, by lemma 3.1, the sets $W^Y_{LM}(e, f, g)$ are constructible.

The fiber above the class $[\epsilon]$ of the first projection $W^Y_{LM}(g) \to \mathbb{P}C(L, \Sigma M)_{\langle(Y)\rangle}$ is $\{[\epsilon]\} \times \text{Gr}_\Sigma GY'$ and thus all fibers have Euler characteristics equal to that of $\text{Gr}_\Sigma GY$. Therefore we have:

$$\chi(W^Y_{LM}(g)) = \chi(\mathbb{P}C(L, \Sigma M)_{\langle(Y)\rangle})\chi(\text{Gr}_\Sigma GY).$$

Define $L(e, f)$ to be the variety $\mathbb{P}C(L, \Sigma M) \times \text{Gr}_e GL \times \text{Gr}_f GM$. Consider the following map:

$$\prod_{\langle(Y)\rangle} W^Y_{LM}(e, f) \xrightarrow{\psi} L(e, f)$$

$$([\epsilon], E) \longmapsto ([\epsilon], (Gp)E, (Gi)^{-1}E).$$

By lemma 2.9, the map ψ is constructible.

As in section 3, let $L_1(e, f)$ be the subvariety of $L(e, f)$ formed by the points in the image of ψ, and let $L_2(e, f)$ be the complement of $L_1(e, f)$ in $L(e, f)$.

Using the notations above, we have

$$\mathbb{P}C(L, \Sigma M)X^L_M X^M = \mathbb{P}^{\text{ind}(L \oplus M)} \sum_{e, f} \chi(L(e, f)) \prod_{i=1}^n x_i^{-(e+f,S_i)}.$$

For $j = 1, 2$, denote by σ_j the term

$$\mathbb{P}^{\text{ind}(L \oplus M)} \sum_{e, f} \chi(L_j(e, f)) \prod_{i=1}^n x_i^{-(e+f,S_i)}$$

so that $\mathbb{P}C(L, \Sigma M)X^L_M X^M = \sigma_1 + \sigma_2$.

We first compute the sum σ_1. As shown in [CC06], the fibers of ψ over $L_1(e, f)$ are affine spaces (see lemma 3.2). Therefore we have the following equality between Euler characteristics:

$$\sum_{(Y)} \chi(W_{LM}^Y(e, f)) = \chi(L_1(e, f)),$$

which implies the equality

$$\sigma_1 = \sum_{e,f,\langle\langle Y\rangle\rangle} \chi(W_{LM}^Y(e, f)) \mathbb{L}^{\text{ind}(L \oplus M)} \prod_{i=1}^n x_i^{-(e+f,S_i)_3}.$$

If the pair $([e], E)$ belongs to $W_{LM}^Y(e, f, g)$, then by [FK10, lemma 3.4], we have

$$\text{ind}(L \oplus M) - \sum_{i=1}^n (e + f, S_i)_3 P_i = \text{ind}(\text{mt}(\varepsilon)) - \sum_{i=1}^n (g, S_i)_3 P_i$$

and $\text{ind}(\text{mt}(\varepsilon)) = \text{ind} Y$ since the morphism ε is in $C(L, \Sigma M)(\langle\langle Y\rangle\rangle)$. Therefore,

$$\sigma_1 = \sum_{e,f,\langle\langle Y\rangle\rangle} \chi(W_{LM}^Y(e, f, g)) \mathbb{L}^{\text{ind}(L \oplus M)} \prod_{i=1}^n x_i^{-(e+f,S_i)_3}$$

$$= \sum_{e,f,\langle\langle Y\rangle\rangle} \chi(W_{LM}^Y(e, f, g)) \mathbb{L}^{\text{ind} Y} \prod_{i=1}^n x_i^{-(g,S_i)_3}$$

$$= \sum_{g,\langle\langle Y\rangle\rangle} \chi(W_{LM}^Y(g)) \mathbb{L}^{\text{ind} Y} \prod_{i=1}^n x_i^{-(g,S_i)_3}$$

$$= \sum_{\langle\langle Y\rangle\rangle} \sum_g \chi(\mathcal{P}(L, \Sigma M)(\langle\langle Y\rangle\rangle)) \chi(\text{Gr}_g GY) \mathbb{L}^{\text{ind} Y} \prod_{i=1}^n x_i^{-(g,S_i)_3} \text{ by } (**).$$

We now consider the sum σ_2. Recall that we denote by ϕ the duality pairing:

$$\phi : C(\Sigma^{-1} L, M) \times C(M, \Sigma L) \rightarrow k$$

$$(a, b) \mapsto \phi_{L,M}(a)b$$

induced by the 2-Calabi–Yau property of C.

Let $C_{e,f}(Y, g)$ consist of all pairs $((\langle e \rangle, U, V), (\langle g \rangle, E))$ in $L_2(e, f) \times W_{LM}^Y(g)$ such that $\phi(\Sigma^{-1} e, \eta) \neq 0$, $(G\eta)^{-1} E = V$ and $(G\pi) E = U$ (where $G\eta$ and $G\pi$ are given by $\varphi_{\Sigma M, \Sigma L}(\Sigma \eta)$). The set $C_{e,f}(Y, g)$ is constructible, by lemma 2.9. Let $C_{e,f}$ be the union of all $C_{e,f}(Y, g)$, where Y runs through a set of representatives for the classes $\langle\langle Y\rangle\rangle$, and g through $K_0(\text{mod} B)$. We then consider the following two projections

$$\xymatrix{ C_{e,f} \ar[r]^-{\rho_1} \ar[d]_-{\rho_2} & C_{e,f}(Y, g) \ar[d]^-{\rho_2} \\
 L_2(e, f) & W_{LM}^Y(f, e, g). }$$

As shown in section 3, the projections ρ_1 and ρ_2 are surjective. Moreover, by [FK10, lemma 3.4], if $C_{e,f}(Y, g)$ is not empty, then we have

$$\text{ind}(L \oplus M) - \sum_{i=1}^n (e + f, S_i)_3 P_i = \text{ind} Y - \sum_{i=1}^n (g, S_i)_3 P_i.$$
As a consequence, we obtain the following equalities:
\[\chi(C_{e,f}) = \chi(L_2(e,f)) \text{ and } \chi(C_{e,f}(Y,g)) = \chi(W_{ML}^Y(f,e,g)). \]

We are now able to compute \(\sigma_2 \):
\[
\sigma_2 = \sum_{e,f} \chi(L_2(e,f)) \llbracket \ind(L \oplus M) \rrbracket \prod_{i=1}^n x_i^{-(-e+f,S_i)}
\]
\[
= \sum_{e,f} \chi(C_{e,f}) \llbracket \ind(L \oplus M) \rrbracket \prod_{i=1}^n x_i^{-(-e+f,S_i)}
\]
\[
= \sum_{e,f,g,(\langle Y \rangle)} \chi(C_{e,f}(Y,g)) \llbracket \ind(L \oplus M) \rrbracket \prod_{i=1}^n x_i^{-(-e+f,S_i)}
\]
\[
= \sum_{e,f,g,(\langle Y \rangle)} \chi(W_{ML}^Y(f,e,g)) \llbracket \ind(Y) \rrbracket \prod_{i=1}^n x_i^{-(-g,S_i)}
\]
\[
= \sum_{g,(\langle Y \rangle)} \chi(W_{ML}^Y(g)) \llbracket \ind(Y) \rrbracket \prod_{i=1}^n x_i^{-(-g,S_i)}
\]
\[
= \sum \chi(\mathbb{P}C(M,\Sigma L)(\langle Y \rangle)) \chi(\text{Gr}_g GY) \llbracket \ind(Y) \rrbracket \prod_{i=1}^n x_i^{-(-g,S_i)}
\]

We thus have:
\[
\mathbb{P}C(L,\Sigma M) X' L X' M = \sigma_1 + \sigma_2
\]
\[
= \sum_{\langle Y \rangle} \chi(\mathbb{P}C(L,\Sigma M)(\langle Y \rangle)) X'_L + \sum_{\langle Y \rangle} \chi(\mathbb{P}C(M,\Sigma L)(\langle Y \rangle)) X'_M,
\]
which concludes the proof.

Acknowledgements. This article is part of my PhD thesis under the supervision of Bernhard Keller. I would like to thank him deeply for his outstanding supervision and for pointing out reference [Joy06] to me. I would like to thank Bernt Tore Jensen for his clear explanations on constructible sets and locally closed sets. The definition of a constructible map has been changed according to his remarks. Finally, I would like to thank the anonymous referee for his valuable comments which helped improve the exposition of the paper.

References
Ami09 Claire Amiot. Cluster categories for algebras of global dimension 2 and quivers with potential. Ann. Inst. Fourier (Grenoble), 59(6):2525–2590, 2009.
BIRS09 A. B. Buan, O. Iyama, I. Reiten, and J. Scott. Cluster structures for 2-Calabi-Yau categories and unipotent groups. Compos. Math., 145(4):1035–1079, 2009.
BM06 Aslak Bakke Buan and Robert Marsh. Cluster-tilting theory. In Trends in representation theory of algebras and related topics, volume 406 of Contemp. Math., pages 1–30. Amer. Math. Soc., Providence, RI, 2006.
CC06 Philippe Caldero and Frédéric Chapoton. Cluster algebras as Hall algebras of quiver representations. Comment. Math. Helv., 81(3):595–616, 2006.
CK06 Philippe Caldero and Bernhard Keller. From triangulated categories to cluster algebras. II. Ann. Sci. École Norm. Sup. (4), 39(6):983–1009, 2006.
