Pre-hospital intercostal chest drains in South Africa: A modified Delphi study

Enrico Dippenaara,b,*, Lee Wallisa

a Division of Emergency Medicine, University of Cape Town, South Africa
b School of Allied Health, Anglia Ruskin University, United Kingdom

African relevance

- Prevalence of thoracic injury in Africa results in a large treatment burden.
- Life-threatening thoracic injuries should be treated appropriately in the first instance.
- The pre-hospital use of intercostal chest drains may aid mortality reduction in Africa.

Introduction

Trauma is one of the most common causes of death in low- and middle-income countries\cite{1,2}. Thoracic injury account for 20–25% of these deaths worldwide\cite{1,3–5}, either by blunt force or penetration to the thoracic cavity\cite{3}. A consequence of such injury can be the development of a pneumothorax and/or haemothorax\cite{5}, including under tension, where respiratory and cardiac function become so impaired that death may ensue if not treated and corrected emergently\cite{3,4}.

In KwaZulu-Natal, South Africa, 10.4% of trauma cases result in death\cite{6}. Chest injuries account for 27.4% of such deaths, with 88.8% of them being a result of penetrating trauma\cite{6}. A 2014 study in the same region found that in patients where an Intercostal Chest Drain (ICD) was indicated, 75% were from penetrating injury\cite{7}. Of the 1050 ICDs that were performed over a 4-year period, 32% were for haemopneumothorax, 30% for haemothorax, 25% for simple pneumothorax, 8% for tension pneumothorax, and 5% for open pneumothorax\cite{7}. Although no pre-hospital data currently exist on the need for ICDs, a trauma callout rate of almost 12/1000 population in KZN per year warrants the evaluation of this life saving procedure pre-hospital\cite{2}.

The indications for inserting an ICD are not clear cut as it relies on the size of the pneumothorax and/or haemothorax, its etiology, and the clinical presentation of the patient\cite{8}. A rapidly deteriorating
patient condition following a chest injury, causing respiratory and/or circulatory compromise, may be easier recognisable than the roughly 8% of cases that develop over time when observed in hospital [9]. ICD placement does not come without risk; with insertional, positional, and infective complications being the major categories [10]. Even in a major trauma centre with experienced clinicians, a complication rate of 19% was observed in KwaZulu-Natal [7]. In the Cape Town region of South Africa, although a lower complication rate was seen at 9.5%, this is still considered too high and a push for more training is recommended [11].

Pre-hospital healthcare is provided through various public and private Emergency Medical Services (EMS) in South Africa [12,13]. These services are staffed by emergency care personnel with varying capabilities as set by the Health Professions Council of South Africa (HPCSA) [14]: basic, intermediate, and advanced. From an intermediate level upwards, practitioners can perform a needle decompression to temporarily alleviate a tension pneumothorax [14]. The insertion of an ICD is regarded as the definitive care for such cases [15,16]; however, its use in the pre-hospital setting for the management of life-threatening situations has not been established. The aim of this study was to seek expert opinion and consensus on the placement of ICDs in the pre-hospital emergency care setting in South Africa.

Methods

We undertook a three-round modified Delphi study [17]. This approach was chosen to ascertain consensus based on expert opinion on the placement of ICDs pre-hospital, and has been used successfully in other areas of emergency medicine in South Africa [18,19]. Delphi studies allow for complex problems to be investigated through gathering expert opinion in a structured manner and facilitating the convergence of consensus [20,21].

The study was set in South Africa with an expert panel consisting of local emergency physicians and trauma surgeons (physician group), paramedics and emergency care practitioners (EMS group). Emergency physicians and trauma surgeons are experts based on the nature of their medical speciality and contact with patients having chest injuries. Paramedics and emergency care practitioners perform Advanced Life Support (ALS) within EMS with first-hand experience of chest trauma pre-hospitally.

The University of Cape Town Human Research Ethics Committee (HREC REF: 317/2012) approved this study. Invitations to eligible participants were sent out nationally to emergency physicians and trauma surgeons through practitioner databases. Invitations to paramedics and emergency care practitioners were sent out to all universities, government, and private colleges in South Africa having alumni they educated. Word-of-mouth and social media communications were also used to invite eligible participants. There was a total of 37 eligible experts that showed their willingness to take part (11 emergency physicians, 4 trauma surgeons, 7 paramedics, and 15 emergency care practitioners), with participation and consent kept confidential.

Consensus does not indicate a correct answer, but rather the convergence or divergence of opinion among experts [22,23]. There are two factors for consideration when setting a consensus threshold: the percentage of opinion allocations (how many participants need to agree on a statement) and the margin of the scale used (distribution on a Likert scale). There is no definite threshold for the percentage of allocations, which may vary from 55% to 100%, nor a set margin to correspond [24]. Depending on the needs of the investigation, sample size and level of expertise, these operators can be adjusted to fit. For this study, investigating a controversial topic with a heterogenic sample of experts, a lower percentage with a narrow scale margin for consensus was applied.

This study regarded consensus as 60% or more of the participants strongly agreeing (positive consensus), or strongly disagreeing (negative consensus), creating a narrow margin for consensus (Table 1). A distribution of 75% or more of participants that either showed overall agreement (or disagreement) were captured as a secondary trend measure which showed the tendency of the expert group.

Round 1

Following a search of the literature, the most common emerging themes were captured and formulated into a set of headings and subheadings (Table 2). Participants then contributed opinion statements to capture the attributes or issues they felt important under each heading; using an online survey over a five-week period with two follow-up reminders. When completed, the data collected underwent a desk-based thematic analysis to organise, synthesise, and describe the emerging themes. Themed text was transposed into neutral statements under each heading for use in the consecutive rounds.

Round 2

Statements were compiled in a survey format and sent out to participants for completion over a four-week period, including two reminders. They were asked to rate their level of agreement or disagreement with each statement using a 9-point Likert scale (from ‘strongly agree’ to ‘strongly disagree’). Data from this round were extracted from the survey platform and analysed using Microsoft Excel to determine participant agreement on each statement. Statements that received 60% or more participant allocations within the ‘strongly agree’ or ‘strongly disagree’ categories were considered as reaching consensus at this point.

Round 3

For statements that did not reach consensus in round 2, participants reviewed their scores against the distribution of the whole expert panel and were offered a chance to reconsider their view. A consensus and distribution analysis were conducted at the end of this concluding round using the same procedures as in round 2. The number of final participant allocations were tallied under each of the Likert scale categories as depicted in Table 1. Apart from the consensus determination, a distribution tendency was calculated as 75% or more of participant allocations distributed towards agreement or disagreement.

Results

Of the 37 eligible and interested experts, 16 (7 Physicians and 9 EMS) took part in round 1 by completing the survey (Table 3). These participants produced 123 statements spread across the seven headings (Appendix A). Round 2 was sent to all respondents (n = 16) and all non-respondents (n = 21) from round 1. There were 22 experts (8 Physicians and 14 EMS) who took part in round 2; the non-respondents (n = 15) were subsequently excluded from the process. These 22 participants were given the option in round 3 to review and reconsider their allocations. Nine participants (3 Physicians and 6 EMS) made changes to their original allocations.

Round 2 saw 21 (17%) of the 123 opinion statements reaching positive consensus (Appendix B), rising to 25 statements (20%) after round 3 (Table 4, Appendix C). There were no statements that reached negative consensus. In the end there were a further 32 statements (26%) that received a tendency toward agreement and 5 statements (4%) a tendency toward disagreement (Appendix D).

Discussion

The most important aspect of any invasive medical procedure is whether there is a need for it. ICDs have been used in the hospital setting for many years to manage both non- and life-threatening situations. However, their use in the pre-hospital setting is not well established. The aim of this study was to seek expert opinion and consensus on the placement of ICDs in the pre-hospital emergency care setting in South Africa. We undertook a three-round modified Delphi study [17]. This approach was chosen to ascertain consensus based on expert opinion on the placement of ICDs pre-hospital, and has been used successfully in other areas of emergency medicine in South Africa [18,19]. Delphi studies allow for complex problems to be investigated through gathering expert opinion in a structured manner and facilitating the convergence of consensus [20,21].

The study was set in South Africa with an expert panel consisting of local emergency physicians and trauma surgeons (physician group), paramedics and emergency care practitioners (EMS group). Emergency physicians and trauma surgeons are experts based on the nature of their medical speciality and contact with patients having chest injuries. Paramedics and emergency care practitioners perform Advanced Life Support (ALS) within EMS with first-hand experience of chest trauma pre-hospitally.

The University of Cape Town Human Research Ethics Committee (HREC REF: 317/2012) approved this study. Invitations to eligible participants were sent out nationally to emergency physicians and trauma surgeons through practitioner databases. Invitations to paramedics and emergency care practitioners were sent out to all universities, government, and private colleges in South Africa having alumni they educated. Word-of-mouth and social media communications were also used to invite eligible participants. There was a total of 37 eligible experts that showed their willingness to take part (11 emergency physicians, 4 trauma surgeons, 7 paramedics, and 15 emergency care practitioners), with participation and consent kept confidential.

Consensus does not indicate a correct answer, but rather the convergence or divergence of opinion among experts [22,23]. There are two factors for consideration when setting a consensus threshold: the percentage of opinion allocations (how many participants need to agree on a statement) and the margin of the scale used (distribution on a Likert scale). There is no definite threshold for the percentage of allocations, which may vary from 55% to 100%, nor a set margin to correspond [24]. Depending on the needs of the investigation, sample size and level of expertise, these operators can be adjusted to fit. For this study, investigating a controversial topic with a heterogenic sample of experts, a lower percentage with a narrow scale margin for consensus was applied.

This study regarded consensus as 60% or more of the participants strongly agreeing (positive consensus), or strongly disagreeing (negative consensus), creating a narrow margin for consensus (Table 1). A distribution of 75% or more of participants that either showed overall agreement (or disagreement) were captured as a secondary trend measure which showed the tendency of the expert group.

Round 1

Following a search of the literature, the most common emerging themes were captured and formulated into a set of headings and subheadings (Table 2). Participants then contributed opinion statements to capture the attributes or issues they felt important under each heading; using an online survey over a five-week period with two follow-up reminders. When completed, the data collected underwent a desk-based thematic analysis to organise, synthesise, and describe the emerging themes. Themed text was transposed into neutral statements under each heading for use in the consecutive rounds.

Round 2

Statements were compiled in a survey format and sent out to participants for completion over a four-week period, including two reminders. They were asked to rate their level of agreement or disagreement with each statement using a 9-point Likert scale (from ‘strongly agree’ to ‘strongly disagree’). Data from this round were extracted from the survey platform and analysed using Microsoft Excel to determine participant agreement on each statement. Statements that received 60% or more participant allocations within the ‘strongly agree’ or ‘strongly disagree’ categories were considered as reaching consensus at this point.

Round 3

For statements that did not reach consensus in round 2, participants reviewed their scores against the distribution of the whole expert panel and were offered a chance to reconsider their view. A consensus and distribution analysis were conducted at the end of this concluding round using the same procedures as in round 2. The number of final participant allocations were tallied under each of the Likert scale categories as depicted in Table 1. Apart from the consensus determination, a distribution tendency was calculated as 75% or more of participant allocations distributed towards agreement or disagreement.

Results

Of the 37 eligible and interested experts, 16 (7 Physicians and 9 EMS) took part in round 1 by completing the survey (Table 3). These participants produced 123 statements spread across the seven headings (Appendix A). Round 2 was sent to all respondents (n = 16) and all non-respondents (n = 21) from round 1. There were 22 experts (8 Physicians and 14 EMS) who took part in round 2; the non-respondents (n = 15) were subsequently excluded from the process. These 22 participants were given the option in round 3 to review and reconsider their allocations. Nine participants (3 Physicians and 6 EMS) made changes to their original allocations.

Round 2 saw 21 (17%) of the 123 opinion statements reaching positive consensus (Appendix B), rising to 25 statements (20%) after round 3 (Table 4, Appendix C). There were no statements that reached negative consensus. In the end there were a further 32 statements (26%) that received a tendency toward agreement and 5 statements (4%) a tendency toward disagreement (Appendix D).

Discussion

The most important aspect of any invasive medical procedure is whether there is a need for it. ICDs have been used in the hospital setting for many years to manage both non- and life-threatening
The risk associated with ICD placement provides a counterbalance to its need. Every invasive procedure present with some degree of safety risk and it is the clinical rationale of risk vs benefit, based on the patient’s condition that determines its application. Most literature focus on the reduction of risk and mitigation of complications during ICD placement [28–30]. In South Africa the reported in-hospital complication rate is 10–20% [7,11], which raises concern regarding their use in an uncontrolled pre-hospital environment. The expert panel agreed that whomever inserts a pre-hospital ICD must be able to appropriately manage complications. Given the limited availability of emergency care resources in South Africa [2,13], there is a valid concern that the myriad of possible complications may not be manageable pre-hospital [29].

The diagnosis of a major pneumothorax and/or haemothorax and the late stage of tension [3] can be done routinely based on clinical judgement [31], and the expert panel agreed. Pre-hospital providers in South Africa from intermediate level upwards are able to diagnose and treat a tension pneumothorax with a needle decompression [14]. It shows that such providers can use evidence-based guidelines to identify life-threatening instances where chest trauma has led to a major pneumothorax and/or haemothorax. It is common for an X-ray to be taken prior to ICD insertion in non-life-threatening cases, however, in an emergency this is often foregone in the interest of time [32]. It is agreed that confirmation of ICD placement should routinely be done to identify any potential complications following insertion.

In Italy and the UK, the use of a thoracostomy, with or without ICD insertion, has been successful pre-hospital in a physician-led service [5,27,28]. The South African EMS is unique as its providers, especially at advanced life support level, have substantially more trauma experience than high-income country EMS [2]. The scope of practice of these providers is amongst the most extensive in the world, including invasive procedures such as needle decompression, suturing, surgical cricothyroidotomy, and rapid sequence intubation [14]. Although the panel could not reach consensus on the skill level needed, they showed a positive agreement tendency that emergency care practitioner qualified individuals with formal training should be able to perform an ICD in selected circumstances. They also showed disagreement that only physicians should perform an ICD. Irrespective of the type of practitioner, the main determinant to reduce complications is that of experience and the maintenance of competence [31,33].

Table 1

9-point Likert-scale with consensus and distribution delineation.

≥ 60 %	≥ 75%	≥ 60%	≥ 75%					
Negative Consensus	Positive Consensus	Negative agreement distribution	Positive agreement distribution					
1	2	3	4	5	6	7	8	9
Strongly Disagree	Disagree	Neither	Agree	Strongly Agree				

Table 2

Emerging literature themes.

Theme headings and sub-headings
Need for procedure
Safety of procedure
Diagnosis of major pneumothorax, haemothorax
Effectiveness of procedure
Skill level required to perform procedure
Equipment required to perform procedure
Other consideration of procedure

Table 3

Expert panel engagement with Delphi rounds.

Expert panel contributions
Groups
Physicians
Trauma Surgeons
EMS
ECPs
Total:
The availability of appropriate resources is a major concern for pre-hospital EMS; and it is known that rural areas are substantially less resourced than urban areas [2,13]. Although the expert panel agreed that proper equipment (traditional or specially designed alternatives) should be readily available pre-hospital, pre-packed and compact enough to be deployed and used in tough conditions, the reality of an under-equipped and poorly stocked system does not make it possible. Clinical governance is also crucial to provide oversight as limited exposure and inexperienced clinicians are far more likely to have complications occur during ICD placement [7,11,33]. Other than closely checked groups like HEMS, this may not be possible for broader services.

The effectiveness of an ICD to relieve life-threatening circumstances is uncontested. It is widely regarded as the standard of care for chest injuries that result in a moderate to severe pneumothorax and/or haemothorax. The pre-hospital setting is uncontrolled and scarcely resourced, with skill competency and clinical governance that cannot be ensured. Without a proven need and a lack of clinical data, the introduction of ICDs pre-hospital is still open for debate.

Limitations

The success of this study and its use of the Delphi technique to reach consensus on some of the statements is subject to credibility, reliability, validity and transferability checking [34]. It is acknowledged that the expert panel was heterogeneously split between in- and pre-hospital professionals having different medical training (Physicians and EMS). It was, however, important for the richness of the research to approach both groups. Delphi panel sizes may vary from tens to hundreds and are dependent on participant availability and level of expertise required [24,35]. It was disheartening that only 22 of the potential 37 interested experts decided to take part, however, the composition of the panel was sufficiently strong to provide induction of the findings to the broader audience. Transposing the findings of this study into clinical practice will need further exploration and clinical trial.

Conclusion

Chest injuries sustained on a regular basis in South Africa have a mortality rate of 1 in 10. These patients are dealt with in the first instance by pre-hospital emergency care providers. Managing a patient with chest injuries is daunting, especially if there is progression to a life-threatening pneumothorax and/or haemothorax pre-hospital. Timely definitive care must be sought emergently in such instances, which is currently only available in-hospital. In cases where access to prompt definitive care is limited, it would be in the patient’s best interest to have, under select conditions, ICD placement available in the pre-hospital setting in South Africa.

Dissemination of results

The results of this study were shared by the distribution of a MSc research report to the University of Cape Town. Further sharing occurred to EMS stakeholders at an Emergency Care Society of South Africa conference during a research presentation.

Author contribution

Authors contributed as follow to the conception or design of the work; or the acquisition, analysis, or interpretation of data for the work; drafting the work or revising it critically for important intellectual content; and final approval of the version to be published: ED 60% and LW 40%. Both authors agreed to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.
Conflicts of interest

Prof Lee Wallis is an editor of the African Journal of Emergency Medicine. Prof Wallis was not involved in the editorial workflow for this manuscript. The African Journal of Emergency Medicine applies a double blinded process for all manuscript peer reviews. The authors declared no further conflict of interest.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.afjem.2019.01.003.

References

[1] Kalyanaraman R, De Mello WF, Ravishankar M. Management of chest injuries – a 5-year retrospective survey. Injury 1998;29(6):443-4.
[2] Hardcastle TC, Oosthuizen G, Clarke D, Lutge E. Trauma, a preventable burden of disease in South Africa: review of the evidence, with a focus on KwaZulu-Natal. South African Heal Rev 2016:179-89.
[3] Roodenburg B, Roodenburg O. Chest trauma. Anaesth Intensive Care Med 2011;12(9):390-2.
[4] Fitzgerald M, Mackenzie CF, Marasco S, Hoyle R, Kossmann T. Pleural decompression and drainage during trauma reception and resuscitation. Injury 2008;39(1):9-20.
[5] Mistry N, Bloetman A, Roberts KJ. Chest decompression during the resuscitation of patients in prehospital traumatic cardiac arrest. Emerg Med J 2009;26(10):738-40.
[6] Moodley NB, Clarke D, Aldous C. An audit of traumarelated mortality in a provincial capital in South Africa. South African J Surg 2014;52(4):101-4.
[7] Kong YY, Oosthuizen GV, Sartorius B, Keene C, Clarke DL. An audit of the complications of intercostal chest drain insertion in a high volume trauma service in South Africa. Ann R Coll Surg Engl 2014;96(8):609-13.
[8] Ryan TM, Caputo ND, Lakdawala V, Jara F. Spontaneous resolution of a large pneumothorax. J Thorac Oncol 2008;3(4):471-2.
[9] Muckart DJJ, Luvuno FM, Baker LW. Penetrating injuries of the pleural cavity. Thorax 1984;39(10):789-93.
[10] Davies HE, Merchant S, McGown A. A study of the complications of small bore “Seldinger” intercostal chest drains. Respiriology 2008;13(4):603-7.
[11] Maritz D, Wallis L. Chest injuries: how well are we training our residents? Can J Surg 2002;45(5):276-80.
[12] Massarutti D, Trillò G, Berlot G, Tomasini A, Bacer B, D’Orlando L, et al. Simple thoracostomy in prehospital trauma management is safe and effective: a 2-year experience by helicopter emergency medical crews. Eur J Emerg Med 2006;13(5):276-80.
[13] Aylwin CJ, Brohi K, Davies GD, Walsh MS. Pre-hospital and in-hospital thoracostomy: indications and complications. Ann R Coll Surg Engl 2008;90(1):54-7.
[14] Keene C, Horvath T, Horvath B, Jara F. Stab to second intercostal space: a bubbling extrapleural wound. Emerg Med J 2007;24(4):220-4.
[15] Lee C, Revell M, Porter K, Steyn R. The prehospital management of chest injuries: a consensus statement. Faculty of Pre-hospital Care, Royal College of Surgeons of Edinburgh. Emerg Med J 2007;24:220-4.
[16] Kesieme EB, Dongo A, Ezemba N, Irekpita E, Kesieme C. Complications of tube thoracostomy: indications and complications. Pulm Med Tube Thoracostomy 2012:1-10.
[17] Day J, Boheva M. A generic toolkit for the successful management of delphi studies. Electron J Bus Res Methods 2005;3(2):103–16.
[18] Fontaine EJ, Page RD. Pneumothorax and insertion of a chest drain. Surgery 2011;29(5):244-6.
[19] Johnson G. Traumatic pneumothorax: is a chest drain always necessary? Emerg Med J 1996;13(3):173-4.
[20] Maritz D, Hodkinson P, Wallis L. Identification of performance indicators for emergency centres in South Africa: results of a Delphi study. Int J Emerg Med 2010;3(4):341-9.
[21] Yousuf MI. Using experts’ opinions through Delphi technique. Pract Assessment, Res Eval 2007;12(4):1-8.
[22] Stitt-godols WL, Crews TB. The Delphi technique: a research strategy for career and technical education. J Career Tech Educ 2004;20(2):55-67.
[23] Powell C. The Delphi technique: myths and realities. J Adv Nurs 2003;41(4):376-82.
[24] Stitt-godols WL, Crews TB. The Delphi technique: a research strategy for career and technical education. J Career Tech Educ 2004;20(2):55-67.
[25] Aylwin CJ, Brohi K, Davies GD, Walsh MS. Pre-hospital and in-hospital thoracostomy: indications and complications. Ann R Coll Surg Engl 2008;90(1):54-7.
[26] Keene C, Horvath T, Horvath B, Jara F. Stab to second intercostal space: a bubbling extrapleural wound. Emerg Med J 2007;24(4):220-4.
[27] Lee C, Revell M, Porter K, Steyn R. The prehospital management of chest injuries: a consensus statement. Faculty of Pre-hospital Care, Royal College of Surgeons of Edinburgh. Emerg Med J 2007;24:220-4.
[28] Kesieme EB, Dongo A, Ezemba N, Irekpita E, Kesieme C. Complications of tube thoracostomy: indications and complications. Pulm Med Tube Thoracostomy 2012:1-10.
[29] Day J, Boheva M. A generic toolkit for the successful management of delphi studies. Electron J Bus Res Methods 2005;3(2):103–16.
[30] Maritz D, Hodkinson P, Wallis L. Identification of performance indicators for emergency centres in South Africa: results of a Delphi study. Int J Emerg Med 2010;3(4):341-9.
[31] Wallis L, Carely S, Hodgetts CT. A procedure based alternative to the injury severity score for major incident triage of children: results of a Delphi consensus process. Emerg Med J 2006;23(4):291-5.
[32] HPCSA. Health Professions Council of South Africa Professional Board for Emergency Care Capabilities of Emergency Care Providers June 2016. [Internet]. [cited Jul 2018] Available from: http://www.hpcsa.co.za/Uploads/editor/UserFiles/downloads/emergency_care/CAPABILITIES_June_2016.pdf.
[33] Hasson F, Keeney S. Enhancing rigour in the Delphi technique research. Technol Forecast Soc Change 2011;78(9):1487-90.
[34] Hasson F, Keeney S. Enhancing rigour in the Delphi technique research. Technol Forecast Soc Change 2011;78(9):1487-90.
[35] Wallis L, Carley S, Hodgetts CT. A procedure based alternative to the injury severity score for major incident triage of children: results of a Delphi consensus process. Emerg Med J 2006;23(4):291-5.
[36] Cubasch Herbert, Degiannis E. The deadly dozen of chest trauma. CME 2004;22(7):369-72.
[37] Wallis L, Carley S, Hodgetts CT. A procedure based alternative to the injury severity score for major incident triage of children: results of a Delphi consensus process. Emerg Med J 2006;23(4):291-5.
[38] Wallis L, Carely S, Hodgetts CT. A procedure based alternative to the injury severity score for major incident triage of children: results of a Delphi consensus process. Emerg Med J 2006;23(4):291-5.
[39] Wallis L, Carely S, Hodgetts CT. A procedure based alternative to the injury severity score for major incident triage of children: results of a Delphi consensus process. Emerg Med J 2006;23(4):291-5.
[40] Wallis L, Carely S, Hodgetts CT. A procedure based alternative to the injury severity score for major incident triage of children: results of a Delphi consensus process. Emerg Med J 2006;23(4):291-5.