The solution to the q-KdV equation

M. Adler∗ E. Horozov† P. van Moerbeke‡

October 15, 1997

Abstract: Let KdV stand for the Nth Gelfand-Dickey reduction of the KP hierarchy. The purpose of this paper is to show that any KdV solution leads effectively to a solution of the q-approximation of KdV. Two different q-KdV approximations were proposed, first one by E. Frenkel [7] and a variation by Khesin, Lyubashenko and Roger [10]. We show there is a dictionary between the solutions of q-KP and the 1-Toda lattice equations, obeying some special requirement; this is based on an algebra isomorphism between difference operators and D-operators, where \(Df(x) = f(qx) \). Therefore every notion about the 1-Toda lattice can be transcribed into q-language.

Consider the q-difference operators \(D \) and \(D_q \), defined by

\[
Df(y) = f(qy) \quad \text{and} \quad D_q f(y) := \frac{f(qy) - f(y)}{(q - 1)y},
\]

and the q-pseudo-differential operators

\[
Q = D + u_0(x)D^0 + u_{-1}D^{-1} + \ldots \quad \text{and} \quad Q_q = D_q + v_0(x)D_q^0 + v_{-1}(x)D_q^{-1} + \ldots
\]
The following q-versions of KP were proposed by E. Frenkel and a variation by Khesin, Lyubashenko and Roger, for $n = 1, 2, ...$:

\[
\frac{\partial Q}{\partial t_n} = [(Q^n)_+, Q] \quad \text{(Frenkel system)} \tag{0.1}
\]

\[
\frac{\partial Q_q}{\partial t_n} = [(Q^n_q)_+, Q_q], \quad \text{(KLR system)}
\tag{0.2}
\]

where $(\)_+$ and $(\)_-$ refer to the q-differential and strictly q-pseudo-differential part of $(\)$. The two systems are closely related, as will become clear from the isomorphism between q-operators and difference operators, explained below.

The purpose of this paper is to give a large class of solutions to both systems.

The δ-function $\delta(z) := \sum_{i \in \mathbb{Z}} z^i$; enjoys the property $f(\lambda, \mu)\delta(\lambda/\mu) = f(\lambda, \lambda)\delta(\lambda/\mu)$. Consider an appropriate space of functions $f(y)$ representable by “Fourier” series in the basis $\varphi_n(y) := \delta(q^{-n}x^{-1}y)$ for fixed $q \neq 1$,

\[
f(y) = \sum_{n} f_n \varphi_n(y);
\]

the operators D, defined by $Df(y) = f(qy)$, and multiplication by a function $a(y)$ act on the basis elements, as follows:

\[
D\varphi_n(y) = \varphi_{n-1}(y) \quad \text{and} \quad a(y)\varphi_n(y) = a(xq^n)\varphi_n(y).
\]

Therefore, the Fourier transform,

\[
f \mapsto \hat{f} = (\ldots, f_n, \ldots)_{n \in \mathbb{Z}},
\]

induces an algebra isomorphism, mapping D-operators onto a special class of Λ-operators in the shift $\Lambda := \left(\delta_{i, j-1}\right)_{i, j \in \mathbb{Z}}$, as follows:

\[
\sum_i a_i(y)D^i \mapsto \sum_i \text{diag}(\ldots, a_i(xq^n), \ldots)_{n \in \mathbb{Z}} \Lambda^i; \quad (0.3)
\]

conversely, any difference operator, depending on x, of the type (0.3) i.e., annihilated by $D - Ad_{\Lambda}$, where $(Ad_{\Lambda})a = \Lambda a\Lambda^{-1}$, maps into a D-operator. This is the crucial basic isomorphism used throughout this paper.
To the shift Λ and to a fixed diagonal matrix $\lambda = \text{diag}(\ldots, \lambda_{-1}, \lambda_0, \lambda_1, \ldots)$, we associate new operators
\[
\tilde{\Lambda} = -\lambda \Lambda \quad \text{and} \quad \tilde{\tilde{\Lambda}} = \tilde{\Lambda} + \lambda = -\lambda (\Lambda - 1).
\]
Observe that, under the isomorphism (0.3),
\[
D \mapsto -\Lambda, \quad (q-1)x \mapsto \tilde{\Lambda} \quad \text{and} \quad D_q \mapsto \tilde{\tilde{\Lambda}},
\]
upon setting $\lambda_n^{-1} = (1-q)xq^{n-1}$.

Defining the simple vertex operators
\[
X(t, z) := e^\sum_{i=1}^{\infty} t_i z^i e^{-\sum_{i=1}^{\infty} \frac{z^i}{i} \frac{\partial}{\partial t_i}}, \tag{0.4}
\]
we now make a statement concerning the so-called full one-Toda lattice; the latter describes deformations of of a bi-infinite matrix L, which is lower-triangular, except for a diagonal and a constant subdiagonal just above the main diagonal. The first formula (0.6) below gives a solution to the Frenkel system (Theorem 0.1), upon replacing $\tilde{\Lambda}$ by Λ, whereas the second formula (0.6) gives a solution to the KLR system (Theorem 0.2). Note, Theorem 0.1 is given for arbitrary $\lambda = (\ldots, \lambda_{-1}, \lambda_0, \lambda_1, \ldots)$. We shall need the well-known Hirota symbol for a polynomial p,

\[
p(\pm \tilde{\partial}) f \circ g := p \left(\pm \frac{\partial}{\partial y_1}, \pm \frac{1}{2} \frac{\partial}{\partial y_2}, \ldots \right) f(t+y)g(t-y) \bigg|_{y=0}.
\]

Note A_+ refers to the upper-triangular part of a matrix A, including the diagonal, and for $\alpha \in \mathbb{C}$, set $[\alpha] := (\alpha, \frac{1}{2} \alpha^2, \frac{1}{3} \alpha^3, \ldots) \in \mathbb{C}^\infty$.

Theorem 0.1. Given an integer $N \geq 2$, consider an arbitrary τ-function for the KP equation such that $\partial \tau / \partial t_i = 0$ for $i = 1, 2, 3, \ldots$ (N-KdV hierarchy). For a fixed λ, ν, $c \in \mathbb{C}^\infty$, the infinite sequence of τ-functions
\[
\tau_n := e^{\nu_n \sum_{i=1}^{\infty} t_i N} X(t, \lambda_n) \ldots X(t, \lambda_1) \tau(c + t), \quad \tau_0 = \tau(c + t), \quad \text{for } n \geq 0; \tag{0.1}
\]

τ_n for $n < 0$ is defined later in (3.3).
satisfies the 1-Toda bilinear identity for all $t, t' \in \mathbb{C}^\infty$ and all $n > m$:

$$\oint_{z=\infty} \tau_n(t - [z^{-1}])\tau_{m+1}(t' + [z^{-1}])e^{\sum_1^\infty (t_i - t'_i)z^i}z^{n-m-1}dz = 0.$$

The bi-infinite matrix (a full matrix below the main diagonal), where p_ℓ are the elementary Schur polynomials,

$$L = \sum_{\ell=0}^\infty \frac{p_\ell(\tilde{\partial})\tau_{n+2-\ell} \circ \tau_n}{\tau_{n+2-\ell}\tilde{\Lambda}^{1-\ell}}$$ \hspace{1cm} (0.5)

has the following properties:

(i) L^N satisfies the 1-Toda lattice

$$\frac{\partial L^N}{\partial t_n} = [(L^n)_+, L^N], \quad n = 1, 2, ...$$

(ii) L^N is upper triangular and admits the following expression in terms of $\tilde{\Lambda}$ and $\tilde{\Lambda}$:

$$L^N = \tilde{\Lambda}^N + \sum_{j=1}^N (\lambda_j + b_j)\tilde{\Lambda}^{p-1} + \left(\sum_{j=1}^{N-1} a_j + \sum_{1 \leq i \leq j \leq N-1} (\lambda_i + b_i)(\lambda_j + b_j)\right)\tilde{\Lambda}^{N-2}$$

$$+ ... + (\nu_{n+1} - \nu_n)_{n \in \mathbb{Z}} \tilde{\Lambda}^{0}$$

$$= \tilde{\Lambda}^N + \left(\sum_{j=1}^N b_j\right)\tilde{\Lambda}^{N-1}$$

$$+ \left(\sum_{j=1}^{N-1} a_j - \sum_{j=1}^{N-1} (b_N - b_i)\lambda_i + \sum_{1 \leq i \leq j \leq N-1} b_i b_j\right)\tilde{\Lambda}^{N-2} + ... \hspace{1cm} (0.6)$$

with

$$b_k = \frac{\partial}{\partial t_1} \log \frac{\tau(c + t - \sum_{i=k}^{k-1} [\lambda_i^{-1}])}{\tau(c + t - \sum_{i=1}^{k-1} [\lambda_i^{-1}])}, \quad a_k = \left(\frac{\partial}{\partial t_1}\right)^2 \log \tau \left(c + t - \sum_{i=1}^k [\lambda_i^{-1}]\right),$$

$$\hspace{1cm} (0.7)$$

in the expressions below, the coefficients of the $\tilde{\Lambda}$'s are diagonal matrices, whose 0th component is given by the expression appearing below; i.e., $\sum_{j=1}^N b_j$ stands for $\text{diag}(\sum_{j=1}^N b_j + n)_{n \in \mathbb{Z}}$.
for \(k \geq 1 \). These expressions for \(k \leq 0 \) will be given in (3.4) and (3.5).

In view of (0.6), the shift
\[
\Lambda : \; b_k \mapsto \Lambda b_k = b_{k+1} \quad \text{and} \quad a_k \mapsto \Lambda a_k = a_{k+1}
\]
corresponds to the following transformation,
\[
\Lambda : \; c \mapsto c - [\lambda_1^{-1}] \quad \text{and} \quad \lambda_i \mapsto \lambda_{i+1}.
\] (0.8)
Therefore, in order that \(L_N \) satisfies the form of the right hand side of (0.3), we must make \(c \) and \(\lambda_i \) depend on \(x \) and \(q \), such that the map \(\Lambda \) on \(a, b, \lambda \) corresponds to \(D \), in addition to the fact that all \(\lambda_i \) must tend to \(\infty \) simultaneously and \(c \) to \((x, 0, 0, ... \) when \(q \) goes to 1. So, \(c \) and \(\lambda \) must satisfy:
\[
\left\{
\begin{array}{l}
Dc(x) = c(x) - [\lambda_1^{-1}] \\
D\lambda_n = \lambda_{n+1} \\
\lim_{q \to 1} \lambda_i = \infty \\
\lim_{q \to 1} c(x) = \bar{x} := (x, 0, 0, ...);
\end{array}
\right.
\] (0.9)
its only solution is given by:
\[
\lambda_n^{-1} = (1 - q)xq^{n-1} \quad \text{and} \quad c(x) = \left(\frac{(1 - q)x}{1 - q}, \frac{(1 - q)^2x^2}{2(1 - q^2)}, \frac{(1 - q)^3x^3}{3(1 - q^3)}, ... \right),
\] (0.10)
and thus \(D^n c(x) = c(x) - \sum_1^n [\lambda_i^{-1}] \). With this choice of \(\lambda_n \),
\[
\frac{1}{(q-1)x} D \mapsto \tilde{\Lambda} \quad \text{and} \quad D_q := \frac{D - 1}{(q-1)x} \mapsto \tilde{\Lambda}. \] (0.11)
In analogy with (0.4), we define the simple \(q \)-vertex operators:
\[
X_q(x, t, z) := e^{xz} X(t, z) \quad \text{and} \quad \tilde{X}_q(x, t, z) := (e^{xz})^{-1} X(-t, z).
\] (0.12)
in terms of (0.4) and the \(q \)-exponential \(e^z_q := e^{\sum_{k=1}^{\infty} \frac{(1-q)k^k}{k(1-q^k)}} \). Therefore under the isomorphism (0.3), Theorem 0.1 can be translated into \(q \)-language, to read:
Theorem 0.2. Any KdV \(\tau \)-function leads to a \(q \)-KdV \(\tau \)-function \(\tau(c(x) + t) \); the latter satisfies the bilinear relations below, for all \(x \in \mathbb{R}, \ t, t' \in \mathbb{C}^\infty \), and all \(n > m \), which tends to the standard KP-bilinear identity, when \(q \) goes to 1:

\[
\oint_{z=\infty} D^n (X_q(x,t,z) \tau(c(x) + t)) D^{n+1} (\hat{X}_q(x,t',z) \tau(c(x) + t')) \, dz = 0
\]

\[
\longrightarrow \oint_{z=\infty} X(t,z) \tau(\bar{x} + t) \ X(t',z) \tau(\bar{x} + t') \, dz = 0
\]

\[(0.13) \]

Moreover, the \(q \)-differential operator \(Q^N_q \) has the form below and tends to the differential operator \(L^N \) of the KdV hierarchy, when \(q \) goes to 1:

\[
Q^N_q = D^N_q + \frac{\partial}{\partial t_1} \log \frac{\tau(D^N_c + t)}{\tau(c + t)} D_q^{N-1}
\]

\[
+ \left(\sum_{i=0}^{N-1} \frac{\partial^2}{\partial t_1^2} \log \tau(D^i c + t) \right)
\]

\[
- \sum_{i=0}^{N-2} \lambda_i+1 \left(\frac{\partial}{\partial t_1} \log \frac{\tau(D^N_c + t)}{\tau(D^{N-1}c + t)} - \frac{\partial}{\partial t_1} \log \frac{\tau(D^{i+1}c + t)}{\tau(D^i c + t)} \right)
\]

\[
+ \sum_{0 \leq i, j \leq N-2} \frac{\partial}{\partial t_1} \log \frac{\tau(D^{i+1}c + t)}{\tau(D^i c + t)} \frac{\partial}{\partial t_1} \log \frac{\tau(D^{j+1}c + t)}{\tau(D^j c + t)} D_q^{N-2} + ...
\]

\[(0.14) \]

M.A. and PvM thank Edward Frenkel for kindly discussing this problem during spring 1996. For a systematic study of discrete systems, see Kupershmidt \[11\] and Gieseker \[8\].

1 The KP \(\tau \)-functions and Grassmannians

KP \(\tau \)-functions satisfy the differential Fay identity for all \(y, z \in \mathbb{C} \), in terms of the Wronskian \(\{ f, g \} := f'g - fg' \), as shown in \[11\] \[14\]:

\[\{ \tau(t - [y^{-1}]), \tau(t - [z^{-1}]) \} \]
\[(y - z)(\tau(t - [y^{-1}])\tau(t - [z^{-1}]) - \tau(t)\tau(t - [y^{-1}]) - \tau(t)\tau(t - [z^{-1}]) = 0. \tag{1.1} \]

In fact this identity characterizes the \(\tau \)-function, as shown in [13]. We shall need the following, shown in [1]:

Proposition 1.1. Consider \(\tau \)-functions \(\tau_1 \) and \(\tau_2 \), the corresponding wave functions

\[\Psi_i = e^{\sum_{i \geq 1} t_i z^i} \tau_i(t - [z^{-1}]) = e^{\sum_{i \geq 1} t_i z^i} (1 + O(z^{-1})) \tag{1.2} \]

and the associated infinite-dimensional planes, as points in the Grassmannian \(\text{Gr} \),

\[\tilde{W}_i = \text{span}\left\{ \left(\frac{\partial}{\partial t_1} \right)^k \Psi_i(t, z) \right\} \text{ for } k = 0, 1, 2, ... \]

then the following statements are equivalent

(i) \(z \tilde{W}_2 \subset \tilde{W}_1 \);
(ii) \(z\Psi_2(t, z) = \frac{\partial}{\partial t_1} \Psi_1(t, z) - \alpha \Psi_1(t, z) \), \(\text{for some function } \alpha = \alpha(t); \)
(iii)

\[\{ \tau_1(t - [z^{-1}]), \tau_2(t) \} + z(\tau_1(t - [z^{-1}])\tau_2(t) - \tau_2(t - [z^{-1}])\tau_1(t)) = 0 \tag{1.3} \]

When (i), (ii) or (iii) holds, \(\alpha(t) \) is given by

\[\alpha(t) = \frac{\partial}{\partial t_1} \log \frac{\tau_2}{\tau_1}. \tag{1.4} \]

Proof: To prove that (i) \(\Rightarrow \) (ii), the inclusion \(z \tilde{W}_2 \subset \tilde{W}_1 \) implies \(z \tilde{W}_2^t \subset \tilde{W}_1^t \), where \(\tilde{W}_2^t = \tilde{W}_2 e^{-\sum t_i z^i}; \) it follows that

\[z\psi_2(t, z) = z(1 + O(z^{-1})) \in W_1^t \]

must be a linear combination, involving the operator \(\nabla = \frac{\partial}{\partial x} + z \) and the wave functions \(\Psi_i = e^{\sum_{i \geq 1} t_i z^i} \psi_i; \)

\[z\psi_2 = \nabla \psi_1 - \alpha(t) \psi_1, \text{ and thus } z\Psi_2 = \frac{\partial}{\partial t_1} \Psi_1 - \alpha(t) \Psi_1. \tag{1.5} \]
The expression (1.4) for $\alpha(t)$ follows from equating the z^0-coefficient in (1.5), upon using the τ-function representation (1.2). To show that (ii) \Rightarrow (i), note that

$$z\Psi_2 = \frac{\partial}{\partial t_1} \Psi_1 - \alpha_1 \Psi_1 \in W_1^0$$

and taking z-derivatives, we have

$$z \left(\frac{\partial}{\partial t_1} \right)^j \Psi_2 = \left(\frac{\partial}{\partial t_1} \right)^{j+1} \Psi_1 + \beta_1 \left(\frac{\partial}{\partial t_1} \right)^j \Psi_1 + \cdots + \beta_{j+1} \Psi_1,$$

for some $\beta_1, \ldots, \beta_{j+1}$ depending on t only; this implies the inclusion (i). The equivalence (ii) \iff (iii) follows from a straightforward computation using the τ-function representation (1.2) of (ii) and the expression for $\alpha(t)$. □

2 The full one-Toda lattice

For details on this sketchy exposition, see [3]. The one-Toda lattice equations

$$\frac{\partial L}{\partial t_n} = [(L^n)_+, L], \quad (2.1)$$

are deformations of an infinite matrix

$$L = \sum_{-\infty < i \leq 0} a_i \tilde{\Lambda}^i + \tilde{\Lambda}, \text{with } \tilde{\Lambda} := \lambda \Lambda = \varepsilon \Lambda \varepsilon^{-1}, \quad (2.2)$$

for diagonal matrices λ and ε, with non-zero entries, and diagonal matrices a_i, depending on $t = (t_1, t_2, \ldots)$. One introduces wave and adjoint wave vectors $\Psi(t, z)$ and $\Psi^*(t, z)$, satisfying

$$L \Psi = z \Psi \quad \text{and} \quad L^\top \Psi^* = z \Psi^*$$

and

$$\frac{\partial \Psi}{\partial t_n} = (L^n)_+ \Psi \quad \frac{\partial \Psi^*}{\partial t_n} = -((L^n)_+)\top \Psi^*. \quad (2.3)$$

The wave vectors Ψ and Ψ^* can be expressed in terms of one sequence of τ-functions $\tau(n, t) := \tau_n(t_1, t_2, \ldots), \quad n \in \mathbb{Z}$, to wit:

$$\Psi(t, z) = \left(e^{\sum_{i=1}^{\infty} t_i z^i} \psi(t, z) \right)_{n \in \mathbb{Z}} = \left(\frac{\tau_n(t - [z^{-1}])}{\tau_n(t)} e^{\sum_{i=1}^{\infty} t_i z^i \varepsilon_n z^n} \right)_{n \in \mathbb{Z}}.$$
\(\Psi^*(t, z) = \left(e^{-\sum_{i=1}^{\infty} i z^i} \psi^*(t, z) \right)_{n \in \mathbb{Z}} = \left(\frac{\tau_{n+1}(t + [z^{-1}])}{\tau_{n+1}(t)} e^{-\sum_{i=1}^{\infty} i z^i \varepsilon_n^{-1} z^{-n}} \right)_{n \in \mathbb{Z}} \)

(2.4)

It follows that, in terms of \(\chi(z) := (z^n)_{n \in \mathbb{Z}} \):

\[\Psi = e^{\sum_{i=1}^{\infty} i z^i} S \varepsilon \chi(z), \quad \text{with} \quad S = \sum_{\ell=0}^{\infty} p_n(\tilde{\partial}) \tau(t) \tilde{\Lambda}^{-n}, \]

\[\Psi^* = e^{-\sum_{i=1}^{\infty} i z^i} (S^\top)^{-1} \varepsilon^{-1} \chi(z^{-1}), \quad \text{with} \quad S^{-1} = \sum_{\ell=0}^{\infty} \tilde{\Lambda}^{-n} \Lambda p_n(\tilde{\partial}) \tau(t) \]

and thus,

\[L = S \tilde{\Lambda} S^{-1} \]

\[= \sum_{\ell=0}^{\infty} \frac{p_n(\tilde{\partial}) \tau_{n+2-\ell} \circ \tau_n}{\tau_{n+2-\ell} \tau_n} \tilde{\Lambda}^{-1-\ell} \]

\[= \tilde{\Lambda} + \left(\frac{\partial}{\partial t_1} \log \frac{\tau_{n+1}}{\tau_n} \right)_{n \in \mathbb{Z}} \tilde{\Lambda}^0 + \left(\left(\frac{\partial}{\partial t_1} \right)^2 \log \tau_n \right)_{n \in \mathbb{Z}} \tilde{\Lambda}^{-1} + ... \]

(2.5)

With each component of the wave vector \(\Psi \), we associate a sequence of infinite-dimensional planes in the Grassmannian \(Gr \)

\[W_n = \text{span}_\mathbb{C} \left\{ \left(\frac{\partial}{\partial t_1} \right)^k \Psi_n(t, z), \quad k = 0, 1, 2, ... \right\} \]

\[= e^{\sum_{i=1}^{\infty} i z^i} \text{span}_\mathbb{C} \left\{ \left(\frac{\partial}{\partial t_1} + z \right)^k \psi_n(t, z), \quad k = 0, 1, 2, ... \right\} \] \hspace{1cm} (2.6)

and planes

\[W^*_n = \text{span}_\mathbb{C} \left\{ \left(\frac{\partial}{\partial t_1} \right)^k \Psi_n^*(t, z), \quad k = 0, 1, 2, ... \right\} \]

which are orthogonal to \(W_n \) by the residue pairing

\[\oint_{z = \infty} f(z) g(z) \frac{dz}{2\pi iz}. \] \hspace{1cm} (2.7)

Note that the plane \(z^{-n}W_n \) has so-called virtual genus zero, in the terminology of [12]; in particular, this plane contains an element of order \(1 + O(z^{-1}) \).

The following statement is mainly contained in [3]:
Proposition 2.1. The following five statements are equivalent

(i) The 1-Toda lattice equations (2.1)

(ii) \(\Psi \) and \(\Psi^* \), with the proper asymptotic behaviour, given by (2.4), satisfy the bilinear identities for all \(t, t' \in C^\infty \)

\[
\oint_{z=\infty} \Psi_n(t,z)\Psi_{m}^*(t',z) \frac{dz}{2\pi iz} = 0, \quad \text{for all } n > m; \tag{2.8}
\]

(iii) the \(\tau \)-vector satisfies the following bilinear identities for all \(n > m \) and \(t, t' \in C^\infty \):

\[
\oint_{z=\infty} \tau_n(t-[z^{-1}])\tau_{m+1}(t'+[z^{-1}])e^{\sum_1^{\infty} (t_i-t'_i)z^i} z^{n-m-1}dz = 0; \tag{2.9}
\]

(iv) The components \(\tau_n \) of a \(\tau \)-vector correspond to a flag of planes in \(Gr \),

\[\supset W_{n-1} \supset W_n \supset W_{n+1} \supset \ldots \tag{2.10} \]

(v) A sequence of KP-\(\tau \)-functions \(\tau_n \) satisfying the equations

\[
\{\tau_n(t-[z^{-1}]), \tau_{n+1}(t)\} + z(\tau_n(t-[z^{-1}])\tau_{n+1}(t) - \tau_{n+1}(t-[z^{-1}])\tau_n(t)) = 0 \tag{2.11}
\]

Proof: The proof that (i) is equivalent to (ii) follows from the methods in [4, 14]. That (ii) is equivalent to (iii) follows from the representation (2.4) of wave functions in terms of \(\tau \)-functions. Finally, we sketch the proof that (ii) is equivalent to (iv). The inclusion in (iv) implies that \(W_n \), given by (2.6), is also given by

\[W_n = \text{span}_C \{\Psi_n(t,z), \Psi_{n+1}(t,z), \ldots\}; \]

Since each \(\tau_n \) is a \(\tau \)-function, we have that

\[
\oint_{z=\infty} \Psi_n(t,z)\Psi_{n-1}^*(t',z) \frac{dz}{2\pi iz} = 0,
\]

implying that, for each \(n \in \mathbb{Z} \), \(\Psi_{n-1}^*(t,z) \in W_n^* \). Moreover the inclusions \(\ldots \supset W_n \supset W_{n+1} \supset \ldots \) imply, by orthogonality, the inclusions \(\ldots \subset W_n^* \subset W_{n+1}^* \subset \ldots \), and thus

\[W_n^* = \{\Psi_{n-1}^*(t,z), \Psi_{n-2}^*(t,z), \ldots\}. \]
Since
\[W_n \subset W_m = (W_m^*)^\ast, \quad \text{all } n \geq m, \]
we have the orthogonality \(W_n \perp W_m^\ast \) by the residue pairing (2.7) for all \(n \geq m \), i.e.,
\[\oint_{z=\infty} \Psi_n(t, z) \Psi_{m-1}^\ast(t', z) \frac{dz}{2\pi i z} = 0, \quad \text{all } n \geq m. \]
Note (ii) implies \(W_m^\ast \subset W_n^\ast, \quad n > m \), hence \(W_n \subset W_m, \quad n > m \), yielding (iv). That (iv) \(\iff \) (v) follows from proposition 1.1, by setting \(\tau_1 := \tau_n \) and \(\tau_2 = \tau_{n+1} \). Then (v) is equivalent to the inclusion property
\[z(z^{-n-1}W_{n+1}) \subset (z^{-n}W_n), \quad \text{i.e. } W_{n+1} \subset W_n, \]
thus ending the proof of proposition 2.1.

For \(m = n - 2 \), \(t \mapsto t + [\alpha], \quad t' \mapsto t - [\alpha] \), the bilinear identity (2.8) yields
\[
0 = \left. \frac{\tau_n(t + [\alpha])\tau_{n-1}(t - [\alpha])}{\tau_n(t)\tau_{n-1}(t)} \oint_{z=\infty} \Psi_n(t + [\alpha], z)\Psi_{n-2}^\ast(t - [\alpha], z) \frac{dz}{z} \right. \\
= \frac{1}{\tau_n\tau_{n-1}} \sum_{j \geq 0} \alpha^j \left(p_{j+2}(\tilde{\partial}) - \frac{\partial}{\partial t_{j+2}} \right) \tau_n \circ \tau_{n-1} \\
= \sum_{j \geq 0} \alpha^j \left((L^{j+2})_{n-1,n-1} - \frac{\partial}{\partial t_{j+2}} \log \frac{\tau_n}{\tau_{n-1}} \right),
\]
from which the following useful formula follows:
\[
\frac{\partial}{\partial t_k} \log \frac{\tau_{n+1}}{\tau_n} = (L^k)_{nn}.
\tag{2.12}
\]

3 Proof of Theorems 0.1 and 0.2

At first, we exhibit particular solutions to equation (2.11), explained in [4].

Lemma 3.1. Particular solutions to equation
\[
\{\tau_1(t - [z^{-1}]), \tau_2(t)\} + z(\tau_1(t - [z^{-1}])\tau_2(t) - \tau_2(t - [z^{-1}])\tau_1(t)) = 0
\]
are given, for arbitrary \(\lambda \in \mathbb{C}^* \), by pairs \((\tau_1, \tau_2)\), defined by:

\[
\tau_2(t) = X(t, \lambda)\tau_1(t) = e^{\sum t_i \lambda_i} \tau_1(t - [\lambda^{-1}]), \tag{3.1}
\]
or

\[
\tau_1(t) = X(-t, \lambda)\tau_2(t) = e^{-\sum t_i \lambda_i} \tau_2(t + [\lambda^{-1}]). \tag{3.2}
\]

Proof: Using

\[e^{-\sum_{t=1}^{\infty} \frac{1}{n!} (\xi)^n} = 1 - \frac{\lambda}{z}, \]

it suffices to check that \(\tau_2(t)\) satisfies the above equation (2.11)

\[
e^{-\sum t_i \lambda_i} \left\{ \{\tau_1(t - [z^{-1}]), \tau_2(t)\} + z(\tau_1(t - [z^{-1}])\tau_2(t) - \tau_2(t - [z^{-1}])\tau_1(t)\right\} \]

\[
= e^{-\sum t_i \lambda_i} \left\{ \{\tau_1(t - [z^{-1}]), e^{\sum t_i \lambda_i} \right\} \tau_1(t - [\lambda^{-1}])
\]

\[
+ z(\tau_1(t - [z^{-1}])\tau_1(t - [\lambda^{-1}]) - (1 - \frac{\lambda}{z})\tau_1(t)\tau_1(t - [z^{-1}] - [\lambda^{-1}])
\]

\[= 0, \]

using the differential Fay identity (1.1) for the \(\tau\)-function \(\tau_1\); a similar proof works for the second solution, given by (3.2). \(\blacksquare\)

Proof of Theorems 0.1 and 0.2: From an arbitrary KdV \(\tau\)-function, construct, for \(\lambda, c, \nu \in \mathbb{C}^\infty\), the following sequence of \(\tau\)-functions, for \(n \geq 0\), as announced in Theorem 0.1:

\[
\tau_0(t) = e^{\nu_n \sum t_i N} \tau(c + t)
\]

\[
\tau_n = e^{\nu_n \sum t_i N} X(t, \lambda_n)\ldots X(t, \lambda_1)\tau(c + t)
\]

\[
= \frac{\Delta(\lambda_1, \ldots, \lambda_n)}{\prod_1^n \lambda_i^{-1}} e^{\nu_n \sum t_i N} \prod_{k=1}^n e^{\sum_{i=1}^n t_i \lambda_i k} \tau(c + t - \sum_{i=1}^n [\lambda_i^{-1}]),
\]

\[
\tau_{-n} = e^{\nu_{-n} \sum t_i N} X(-t, \lambda_{-n+1})\ldots X(-t, \lambda_0)\tau(c + t)
\]

\[
= \frac{\Delta(\lambda_0, \ldots, \lambda_{-n+1})}{\prod_1^n \lambda_{-i+1}^{-1}} e^{\nu_{-n} \sum_{i=1}^n t_i N} \prod_{k=1}^n e^{-\sum_{i=1}^n t_i \lambda_{-i+1}^{-1} k} \tau(c + t + \sum_{i=1}^n [\lambda_{-i+1}^{-1}])
\]

(3.3)
and so, each \(\tau_n \) is defined inductively by

\[
\tau_{n+1} = e^{(\nu_{n+1} - \nu_n) \sum_{i=1}^{\infty} t_i N} X(t, \lambda_{n+1}) \tau_n;
\]

thus by Lemma 3.1, the functions \(\tau_{n+1} \) and \(\tau_n \) are a solution of equation (v) of proposition 2.1. Therefore, by the same proposition 2.1, the \(\tau_n \)'s form a \(\tau \)-vector of the 1-Toda lattice. Since each \(\tau_n \), except for the exponential factor \(\exp(\nu_n \sum_{i=1}^{\infty} t_i N) \), has the property that \(\partial \tau_n / \partial t_i N = 0 \) for \(i = 1, 2, \ldots \), we have that

\[
z^N W_n \subset W_n;
\]

in particular, the representation

\[
W_n = \text{span}\{ \Psi_n(t, z), \Psi_{n+1}(t, z), \ldots \},
\]

which follows from the inclusion \(\cdots \subset W_n \supset W_{n+1} \supset \cdots \), implies that, since \(L \Psi = z \Psi \),

\[
z^N \Psi_k = \sum_{j \geq k} a_j \Psi_j = (L^N \Psi)_k,
\]

and thus \(L^N \) is upper-triangular. Multiplying \(\tau_n \) with the exponential factor \(\exp(\nu_n \sum_{i=1}^{\infty} t_i N) \), does not modify the wave function \(\Psi_n \), except for a factor, which is a function of \(z^N \) only.

Therefore, we conclude that the matrix \(L \), defined by (2.5), from the sequence of \(\tau \)-functions (3.3),

\[
L = \tilde{\Lambda} + \left(\frac{\partial}{\partial t_1} \log \frac{\tau_{n+1}}{\tau_n} \right)_{n \in \mathbb{Z}} + \left(\left(\frac{\partial}{\partial t_1} \right)^2 \log \tau_n \right)_{n \in \mathbb{Z}} \tilde{\Lambda}^{-1} + \ldots
\]

\[
= \tilde{\Lambda} + (\lambda_{n+1} + b_{n+1})_{n \in \mathbb{Z}} \tilde{\Lambda}^0 + (a_n)_{n \in \mathbb{Z}} \tilde{\Lambda}^{-1} + \ldots,
\]

satisfies the 1-Toda lattice equations, where

\[
b_{n+1} = \frac{\partial}{\partial t_1} \log \frac{\tau(c + t - \sum_{i=1}^{n+1} [\lambda_i^{-1}])}{\tau(c + t - \sum_{i=1}^{n} [\lambda_i^{-1}])}
\]

for \(n \geq 1 \)

\[
= \frac{\partial}{\partial t_1} \log \frac{\tau(c + t - [\lambda_1^{-1}])}{\tau(c + t)}, \quad \text{for } n = 0,
\]

\[
= \frac{\partial}{\partial t_1} \log \frac{\tau(c + t + \sum_{i=0}^{n+1} [\lambda_i^{-1}])(1 - \delta_{-1, n})}{\tau(c + t + \sum_{i=0}^{n+1} [\lambda_i^{-1}])}, \quad \text{for } n \leq -1. (3.4)
\]
\[a_n = \frac{\partial^2}{\partial t^2} \log (\tau(c + t - \sum_{1}^{n}[\lambda_i^{-1}])) \text{ for } n \geq 1 \]
\[= \frac{\partial^2}{\partial t^2} \log (\tau(c + t)) \text{ for } n = 0 \]
\[= \frac{\partial^2}{\partial t^2} \log (\tau(c + t + \sum_{0}^{n+1}[\lambda_i^{-1}])) \text{ for } n \leq -1, \quad (3.5) \]

confirming (0.7). Using the fact that, in view of (2.12), the diagonal terms of \(L^N \) are given by
\[\frac{\partial}{\partial t} \log \left(\frac{\tau_{n+1}}{\tau_n} \right) = \nu_{n+1} - \nu_n, \]
and the fact that
\[\tilde{\Lambda}^n = (\tilde{\Lambda} + \lambda)^n = \tilde{\Lambda}^n + \left(\sum_{1}^{n} \lambda_i \right) \tilde{\Lambda}^{n-1} + \left(\sum_{1 \leq i \leq j \leq n-1} \lambda_i \lambda_j \right) \tilde{\Lambda}^{n-2} + ..., \]
one finds that the upper-triangular matrix \(L^N \) has the following expression:
\[L^N = \tilde{\Lambda}^N + \sum_{1}^{N} (\lambda_j + b_j) \tilde{\Lambda}^{N-1} + \left(\sum_{0}^{N-1} a_j + \sum_{1 \leq i \leq j \leq N-1} (\lambda_i + b_i)(\lambda_j + b_j) \right) \tilde{\Lambda}^{N-2} + ... \]
\[= \tilde{\Lambda}^N + \left(\sum_{1}^{N} b_j \right) \tilde{\Lambda}^{N-1} + \left(\sum_{0}^{N-1} a_j - \sum_{1 \leq i \leq j \leq N-1} (b_N - b_i) \lambda_i + \sum_{1 \leq i < j \leq N-1} b_ib_j \right) \tilde{\Lambda}^{N-2} + ... \quad (3.6) \]
in terms of \(b_k \) and \(a_k \) defined in (0.7), thus proving Theorem 0.1.

To prove Theorem 0.2, note at first:
\[\prod_{k=m+2}^{n} (-\lambda_k)^i \prod_{k=m+2}^{n} e^{-\sum_{i=1}^{n} \frac{1}{z} (\lambda_k)} = \frac{z^{n-m-1}}{\prod_{k=m+2}^{n} (\lambda_k)} \prod_{k=m+2}^{n} \left(1 - \frac{\lambda_k}{z} \right) \]
\[= \prod_{k=m+2}^{n} \left(1 - \frac{z}{\lambda_k} \right) \]
\[\prod_{k=m+2}^{n} e^{-\sum_{i=1}^{\infty} \frac{1}{i} \left(\frac{z}{k} \right)^i} = \frac{e^{x z q^n}}{e^{x z q^{m+1}}} = D^n e^{x z} D^{m+1} \left(e^{x z} \right)^{-1}. \]

The function \(\tau_n \), defined in Theorem 0.1, satisfies the bilinear identity of Theorem 0.1; therefore, using (3.3) and the above in the computation of \(\tau_n(t - [z^{-1}]) \), the following relations hold, up to a multiplicative factor depending on \(\lambda \) and \(\nu \):

\[
\alpha(\lambda, \nu) \int_{z=\infty} \tau_n(t - [z^{-1}]) \tau_{m+1}(t' + [z^{-1}]) e^{\sum_{i=1}^{\infty} (t_i - t_i') z_i} z^{n-m} \frac{dz}{z} = \int_{z=\infty} \tau(c(x) + t - [z^{-1}]) - \sum_{i=1}^{n} (\lambda_i - 1) \tau_{N} c(x) + t' + \sum_{i=1}^{m+1} (\lambda_i - 1) \]

\[
\prod_{k=m+2}^{n} \left(1 - \frac{z}{\lambda_k} \right) e^{\sum_{i=1}^{\infty} (t_i - t_i') z_i} \frac{dz}{z} = \int_{z=\infty} D^n (X_q(x, t, z) \tau(c(x) + t)) \ D^{m+1} \left(\tilde{X}_q(x, t', z) \tau(c(x) + t') \right) dz = 0.
\]

When \(q \rightarrow 1 \), the second expression above tends to the standard KP-bilinear equation, upon using (0.10). Moreover, one checks by induction, using the first three terms in the expression for \(L \) and (2.12), that \((L^N)_+ \) for \(N = 1, 2, 3, ... \) has the \(q \)-form (0.3). Also, note that \(a_k \) and \(b_k \) can be expressed in terms of the \(D \)-operator, using (0.7); to wit:

\[
b_k = \frac{\partial}{\partial t_1} \log \frac{\tau(D^k c + t)}{\tau(D^{k-1} c + t)}, \quad a_k = \left(\frac{\partial}{\partial t_1} \right)^2 \log \tau(D^k c + t).
\]

So, the expression for \(Q_N^q \) in Theorem 0.2 follows at once from (3.4). The fact that

\[-\lambda_1 \frac{\partial}{\partial t_1} \log \frac{\tau(D^{i+1} c + t)}{\tau(D^i c + t)} \rightarrow \frac{\partial^2}{\partial x^2} \log \tau(\bar{x} + t)\]

implies that all terms in (0.10) vanish in the limit \(q \rightarrow 1 \), except for the term \(\sum_{i=0}^{N-1} \frac{\partial^2}{\partial t_1} \log \tau(D^i c + t) \); so we have that

\[
\lim_{q \rightarrow 1} Q_N^q = \left(\frac{\partial}{\partial x} \right)^N + N \frac{\partial^2}{\partial x^2} \log \tau(\bar{x} + t) \left(\frac{\partial}{\partial x} \right)^{N-2} + ..., \]

thus ending the proof of theorem 0.2.
4 Examples and vertex operators

The isomorphism (0.3) enables one to translate every 1-Toda statement, having the form (0.3) into a D or D_q statement. Also every τ-function of the KdV hierarchy leads automatically to a solution of q-KdV. For instance, by replacing $t \mapsto c(x) + t$ in the Schur polynomials, one finds q-Schur polynomials. The latter were obtained by Haine and Iliev [9] by using the q-Darboux transforms; the latter had been studied by Horozov and coworkers in [5, 6].

The n-soliton solution to the KdV (for $N = 2$) (for this formulation, see [4]),

$$\tau(t) = \det \left(\delta_{i,j} - \frac{a_j}{y_i + y_j} e^{-\sum_{k, \text{odd}} \tau_k (y_i^k + y_j^k)} \right)_{1 \leq i,j \leq n},$$

leads to a q-soliton by the shift $t \mapsto c(x) + t$, with $c(x)$ as in (0.8), namely

$$\tau(x,t) = \det \left(\delta_{ij} - \frac{a_j}{y_i + y_j} e^{-\sum_{k=1}^{\infty} \tau_k (y_i^k + y_j^k)} \right)_{1 \leq i,j \leq n}.$$

Moreover the vertex operator for the 1-Toda lattice is a reduction of the 2-Toda lattice vertex operator (see [2]), given by

$$X(t,y,z) = -\chi^*(z) X(-t,z) X(t,y) \chi(y) = \frac{z}{y - z} e^{\sum_{i=1}^{\infty} t_i (y^i - z^i)} e^{-\sum_{i=1}^{\infty} (y^i - z^i) \frac{1}{\omega^i} \frac{\partial}{\partial t^i} \left(\frac{y^n}{z^n} \right)}_{n \in \mathbb{Z}} ;$$

in particular, if τ is a 1-Toda vector, then $a\tau + bX(t,y,z)\tau$ is a 1-Toda vector as well. Using the dictionary, this leads to q-vertex operators

$$X_q(x,t;y,z) = e_q^{xy} (e_q^{xz})^{-1} e^{\sum_{i=1}^{\infty} t_i (y^i - z^i)} e^{-\sum_{i=1}^{\infty} (y^i - z^i) \frac{1}{\omega^i} \frac{\partial}{\partial t^i}} \quad \text{for } q\text{-KP},$$

and, for any Nth root ω of 1,

$$X_q(x,t;z) = e_q^{x\omega z} (e_q^{xz})^{-1} e^{\sum_{i=1}^{\infty} t_i z^i (\omega^i - 1)} e^{-\sum_{i=1}^{\infty} z^{-i} (\omega^{-i} - 1) \frac{1}{\omega^i} \frac{\partial}{\partial t^i}} \quad \text{for } q\text{-KdV},$$

having the typical vertex operator properties.
References

[1] M. Adler and P. van Moerbeke: Birkhoff strata, Bäcklund transformations and limits of isospectral operators, Adv. in Math., 108 140–204 (1994).

[2] M. Adler and P. van Moerbeke: The spectrum of coupled random matrices, preprint (1997).

[3] M. Adler and P. van Moerbeke: The full one-Toda lattice, preprint (1997).

[4] M. Adler, T. Shiota and P. van Moerbeke: A Lax representation for the vertex operator and the central extension, Comm. Math. Phys. 171, 547–588, (1997).

[5] B. Bakalov, E. Horozov and M. Yakimov: Bispectral algebras of commuting ordinary differential operators, Comm. Math. Phys., to appear.

[6] B. Bakalov, E. Horozov and M. Yakimov: General methods for constructing bispectral operators, Phys. Letters A, 222 59–66 (1996).

[7] E. Frenkel: Deformations of the KdV hierarchy and related soliton equations, Int. Math. Res. Notices, 2 55–76 (1996).

[8] D. Gieseker: The Toda hierarchy and the KdV hierarchy, preprint, alg-geom/9509006.

[9] L. Haine and P. Iliev: The bispectral property of a q-deformation of the Schur polynomials and the q-KdV hierarchy, J. of Phys. A; math.and gen, (1997), to appear.

[10] B. Khesin, V. Lyubashenko and C. Roger: Extensions and contractions of the Lie algebra of q-Itodifferential symbols on the circle, J. of functional analysis, 143 55–97 (1997).

[11] B. A. Kupershmidt: Discrete Lax equations and differential-difference calculus, Astérisque, 123 (1985).

[12] G. Segal, G. Wilson: Loop groups and equations of KdV type, Publ. Math. IHES 61, 5–65 (1985).
[13] K. Takasaki, T. Takebe: *Integrable hierarchies and dispersionless limit*, Reviews in Math. Phys. 7, 743–808 (1995).

[14] P. van Moerbeke: Integrable foundations of string theory, in Lectures on Integrable systems, Proceedings of the CIMPA-school, 1991, Ed.: O. Babelon, P. Cartier, Y. Kosmann-Schwarzbach, World scientific, pp 163–267 (1994).