The Sparse Poisson Means Model

Ery Arias-Castro and Meng Wang

Department of Mathematics, University of California, San Diego

Abstract

We consider the problem of detecting a sparse Poisson mixture. Our results parallel those for the detection of a sparse normal mixture, pioneered by Ingster (1997) and Donoho and Jin (2004), when the Poisson means are larger than logarithmic in the sample size. In particular, a form of higher criticism achieves the detection boundary in the whole sparse regime. When the Poisson means are smaller than logarithmic in the sample size, a different regime arises in which simple multiple testing with Bonferroni correction is enough in the sparse regime. We present some numerical experiments that confirm our theoretical findings.

Keywords: Sparse Poisson means model, goodness-of-fit tests, multiple testing, Bonferroni’s method, Fisher’s method, Pearson’s chi-squared test, Tukey’s higher criticism, sparse normal means model.

1 Introduction

The Poisson distribution is well suited to model count data in a broad variety of scientific and engineering fields. In this paper, we consider a stylized detection problem where we observe \(n \) independent Poisson counts \(X_1, \ldots, X_n \) from a mixture

\[
X_i \sim (1 - \varepsilon) \text{Pois}(\lambda_i) + \frac{\varepsilon}{2} \text{Pois}(\lambda'_i) + \frac{\varepsilon}{2} \text{Pois}(\lambda''_i),
\]

where

\[
\lambda'_i = \lambda_i + \Delta_i, \quad \lambda''_i = \max(0, \lambda_i - \Delta_i), \quad \text{for some } \Delta_i > 0,
\]

and \(\varepsilon \in [0, 1] \) is the fraction of the non-null effects. All the parameters are allowed to change with \(n \). We are interested in detecting whether there are any non-null effects in the sample. Specifically, we know the null means, \(\lambda_1, \ldots, \lambda_n \), and our goal is to test

\[
H_0 : \varepsilon = 0 \quad \text{versus} \quad H_1 : \varepsilon > 0.
\]

Put differently, we want to address the following multiple hypotheses problem

\[
H_{0,i} : X_i \sim \text{Pois}(\lambda_i) \quad \text{versus} \quad H_{1,i} : X_i \sim (1 - \varepsilon)\text{Pois}(\lambda_i) + \frac{\varepsilon}{2}\text{Pois}(\lambda'_i) + \frac{\varepsilon}{2}\text{Pois}(\lambda''_i).
\]

We do assume that \(\varepsilon \) is the same for all \(i \), although this is done for ease of exposition.

This model may arise in goodness-of-fit testing for homogeneity in a Poisson process. Suppose we record the arrival time of alpha particles over a time period and we are interested in testing for uniformity. One way to do so is to partition the time period into non-overlapping intervals, and count how many particles arrived with each interval. These counts can be modeled by a Poisson distribution. For this problem, and any other discrete goodness-of-fit testing problems, one would
typically use Pearson’s chi-squared test, but we show that, under some mild conditions, this test is (grossly) suboptimal in the sparse regime where \(\varepsilon = \varepsilon_n = o(1/\sqrt{n}) \).

In another situation, we might be interested in detecting genes that are differentially expressed. Marioni et al. (2008) find that the variation of count data across technical replicates can be captured using a Poisson model when the over- (or under-) dispersion is not significant. Suppose we know the Poisson mean count for each gene expressed under normal conditions and want to detect a difference in expression under some other (treatment) condition.

In the model we consider here (1) the sparsity assumption is on the number of nonzero effects, which on average is \(n\varepsilon \). We assume that \(\varepsilon \to 0 \), so the number of nonzero effects is negligible compared to the number \(n \) of bins or genes being tested. And so there are some nonzero effects under the alternative, we assume throughout the paper that

\[
n\varepsilon \to \infty. \tag{4}
\]

We note that sparsity here has a different meaning from the use in the literature on sparse multinomials (Holst, 1972; Morris, 1975). We note that sparsity here has a different meaning from the use in the literature on sparse multinomials Holst (1972); Morris (1975), where the number of the bins is large so that some bins have small expected counts.

The Poisson sparse mixture model we consider here is analogous to the normal sparse mixture model pioneered by Ingster (1997) and Donoho and Jin (2004), where the normal location family \(\mathcal{N}(\lambda, \lambda) \) plays the role of the Poisson family \(\text{Pois}(\lambda) \). (We note that in the normal model, one can work with \(\mathcal{N}(\mu, 1), \mu = \sqrt{\lambda} \), without loss of generality, while such a reduction does not apply to the Poisson model.) Our results for the Poisson model are completely parallel to those for the normal model when the Poisson means are large enough that the normalized counts

\[
Z_i := \frac{(X_i - \lambda_i)}{\sqrt{\lambda_i}} \tag{5}
\]

are uniformly well-approximated by the standard normal distribution under the null. Specifically, we show that this is the case when

\[
\min_i \lambda_i \gg \log n. \tag{6}
\]

(For two sequences \((a_n), (b_n) \subset \mathbb{R}_+\), \(a_n \gg b_n \) means that \(a_n/b_n \to \infty \).) In particular, we show that multiple testing via the higher criticism, which Donoho and Jin (2004) developed based on an idea of J. Tukey, is asymptotically optimal to first order, just as in the normal model. To show this, we use care in approximating the tails of the Poisson distribution with the tails of the normal distribution. This is done by standard moderate deviations bounds.

When the Poisson means are smaller, by which we mean

\[
\max_i \lambda_i \ll \log n, \tag{7}
\]

we uncover a different regime where multiple testing via Bonferroni correction is optimal in the sparse regime. In this regime, the normal approximation to the Poisson distribution is not uniformly valid, and in fact not valid at all for those indices \(i \) for which \(\lambda_i \) remains fixed. We use large deviations bounds to control the tails of the Poisson distribution.

In any case, we assume that the expected counts are lower bounded by a positive constant, concretely

\[
\lambda_i \geq 1, \quad \forall i = 1, \ldots, n. \tag{8}
\]

This is to make the paper self-contained, and also because in practice it is common to pool together bins to make the expected counts larger than some pre-specified minimum.
The remainder of the paper is organized as follows. In Section 2, we derive information lower bounds under various conditions on the Poisson means. In Section 3, we study the Pearson’s chi-squared goodness-of-fit test and also the max test, which is closely related to multiple testing with Bonferroni correction, showing that none of them is optimal in all sparsity regimes. We then study the higher criticism and show that it is optimal in all sparsity regimes, matching the information bound to first-order. In Section 4, we show the result of some numerical simulations to accompany our theoretical findings. Section 7 is a discussion section. The proofs are gathered in Section 5. We then briefly touch on the one-sided setting in Section 6.

2 Information Bounds

We are particularly interested in regimes where the proportion of non-null effects tends to zero as the sample size grows to infinity, i.e. \(\varepsilon \to 0 \) as \(n \to \infty \). We follow the literature on the normal sparse mixture model (Cai et al., 2011; Donoho and Jin, 2004; Ingster, 1997). We parameterize \(\varepsilon = n^{-\beta} \), where \(\beta \in (0, 1) \) is fixed (9) and consider two regimes where the detection problem behaves quite differently: the sparse regime where \(\beta \in (1/2, 1) \) and the dense regime where \(\beta \in (0, 1/2) \). We then parameterize the Poisson means in (1) differently in each regime. When the \(\lambda_i \)'s are relatively large, we are guided by the correspondence between the normal model and the Poisson model via the normalized counts (5).

Suppose we know the fraction \(\varepsilon \) and all null and non-null Poisson rates. By the Neyman-Pearson fundamental lemma, the most powerful test for this simple versus simple hypothesis testing problem is the likelihood ratio test (LRT). Hence the performance of the LRT gives an information bound for this detection problem. We investigate this information bound by finding the conditions such that the risk (the sum of probabilities of type I and type II errors) of LRT goes to one as \(n \to \infty \).

We say a test is asymptotically powerful when its risk tends to zero and asymptotically powerless when its risk tends to one. All the limits are with respect to \(n \to \infty \).

2.1 Dense Regime

Guided by the correspondence with the normal model, in the dense regime where \(\beta < 1/2 \), we parameterize the effects as follows

\[
\Delta_i = n^s \cdot \sqrt{\lambda_i},
\]

where \(s \in \mathbb{R} \) is fixed. Define

\[
\rho_{\text{dense}}(\beta) = \frac{\beta}{2} - \frac{1}{4}.
\]

Proposition 1. Consider the testing problem (3) with parameterizations (9) with \(\beta < 1/2 \) and (10). All tests are asymptotically powerless if

\[
s < \rho_{\text{dense}}(\beta).
\]

The expert will recognize the perfect correspondence with the detection boundary for the dense regime in the two-sided detection problem in the normal model.
2.2 Sparse Regime

Guided by the correspondence with the normal model, in the sparse regime where \(\beta > 1/2 \), we start by parameterizing the effects as follows

\[
\Delta_i = \sqrt{2r \log n} \cdot \sqrt{\lambda_i},
\]

where \(r \in (0, 1) \) is fixed. Define

\[
\rho_{\text{sparse}}(\beta) = \begin{cases}
\beta - 1/2, & 1/2 < \beta \leq 3/4, \\
(1 - \sqrt{1 - \beta})^2, & 3/4 < \beta < 1.
\end{cases}
\]

Proposition 2. Consider the testing problem (3) with parameterizations (9) with \(\beta > 1/2 \) and (13) with (6). All tests are asymptotically powerless if

\[
r < \rho_{\text{sparse}}(\beta).
\]

Thus, Propositions 1 and 2 together show that, when (6) holds, meaning that \(\min_i \lambda_i \gg \log n \), the detection boundary for the Poisson model is in perfect correspondence with the detection boundary for the normal model.

When the null means \((\lambda_i : i = 1, \ldots, n) \) are smaller, a different detection boundary emerges in the sparse regime. To better describe the detection boundary that follows, we adopt the following parameterization

\[
\lambda'_i = \lambda_i^{1-\gamma} (\log n)^\gamma, \quad \lambda''_i = 0, \quad \text{where } \gamma > 0 \text{ is fixed}. \tag{16}
\]

Indeed, this particular case corresponds to \(\Delta_i = \lambda_i^{1-\gamma} (\log n)^\gamma \), and assuming the \(\lambda_i \)'s are smaller than \(\log n \) as we do, this implies that \(\lambda''_i = 0 \), as it cannot be negative.

Proposition 3. Consider the testing problem (3) with parameterizations (9) with \(\beta > 1/2 \) and (16) with (7) and (8). All tests are asymptotically powerless if \(\gamma < \beta \).

3 Tests

In this section we analyze some tests that are shown to achieve parts of the detection boundary. We find that the chi-squared test achieves the detection boundary in the dense regime, the test based on the maximum normalized count (which is closely related to multiple testing with Bonferroni correction) achieves the detection boundary in the very sparse regime, while multiple testing with the higher criticism achieves the detection boundary in all regimes.

3.1 The chi-squared test

We start by analyzing Pearson’s chi-squared test, which rejects for large values of

\[
D = \sum_{i=1}^{n} \frac{(X_i - \lambda_i)^2}{\lambda_i}. \tag{17}
\]

The rationale behind using this test is two-fold. On the one hand, \(D = \sum_i Z_i^2 \) — where the \(Z_i \)'s are defined in (5) — is the analog of the chi-squared test that plays a role in detecting a normal mean in the dense regime. On the other hand, this is one of the most popular approaches for goodness-of-fit testing if one interprets \(X_1, \ldots, X_n \) as the counts in a sample of size \(N \sim \text{Pois}(\sum_i \lambda_i) \) with values in \{1, \ldots, n\}.

Although we could state a more general result, we opt for simplicity and state a performance bound when the expected counts are not too small.
Proposition 4. Consider the testing problem (3) with (8), and let \(a_i = \Delta_i^2/\lambda_i \). Then chi-squared test is asymptotically powerful if

\[
\varepsilon \sum_i a_i \gg \sqrt{n} \quad \text{and} \quad \varepsilon \left(\sum_i a_i \right)^2 \gg \sum_i a_i^2,
\]

and asymptotically powerless if

\[
\varepsilon \sum_i a_i \ll \sqrt{n} \quad \text{and} \quad \varepsilon \sum_i a_i^2 = o(n) \quad \text{and} \quad \varepsilon \sum_i a_i^4 = o(n^2).
\]

From this, we immediately obtain the following result, which at once states that the chi-squared test achieves the detection boundary in the dense regime, and does not achieve the detection boundary in the sparse regime.

Corollary 1. Consider the testing problem (3) with the lower bound (8). In the dense regime, where \(\beta < 1/2 \) in (9) and under the parameterization (10), the chi-squared test is asymptotically powerful when \(s > \rho_{\text{dense}}(\beta) \) defined in (11). In the sparse regime, where \(\beta > 1/2 \) in (9) and under the parameterization (13), the chi-squared test is asymptotically powerless when \(r \) is constant.

Other classical goodness-of-tests include the (generalized) likelihood ratio \(G^2 \) test and the Freeman-Tukey test. Adapted to our context, the likelihood ratio \(G^2 \) test rejects for large values of

\[
G^2 = 2 \sum_{i=1}^{n} X_i \log \left(\frac{X_i}{\lambda_i} \right),
\]

while the Freeman-Tukey test rejects large values of

\[
H^2 = 4 \sum_{i=1}^{n} (\sqrt{X_i} - \sqrt{\lambda_i})^2.
\]

We did not investigate these tests in detail, but partial work suggests that they are (as expected) equivalent to the chi-squared in the regimes we are most interested in.

3.2 The max test

In analogy with the normal model, we consider the max test which rejects large values of

\[
M = \max_{i=1,\ldots,n} |Z_i|,
\]

where the \(Z_i \)'s are defined in (5).

Proposition 5. Consider the testing problem (3), parameterized by (9) and (13) with (6). When \(r > (1 - \sqrt{1-\beta})^2 \), the max test is asymptotically powerful.

Hence, the max test achieves the detection boundary (14) in the very sparse regime where \(\beta \in (3/4, 1) \). We speculate that, just as in the normal model, the max test does not achieve the detection boundary when \(\beta < 3/4 \).
The higher criticism test

In the normal model, Donoho and Jin (2004) advocate a test based on the normalized empirical process of the Z_i's. In our case, these variables are not identically distributed. It would make sense to convert these to P-values, then, and we will comment on that in Section 3.4. For now, we opt for the following definition

$$T^* = \sup_{z \in Z_n} T(z), \quad T(z) := \frac{\sum_i \left(1_{\{|Z_i| > z\}} - K_{\lambda_i}(z)\right)}{\sqrt{\sum_i K_{\lambda_i}(z)(1 - K_{\lambda_i}(z))}},$$

where

$$K_{\lambda}(z) := \mathbb{P}\left(|\Upsilon_{\lambda} - \lambda|/\sqrt{\lambda} > z\right), \quad Z_n = \{z \in \mathbb{N} : \sum_i K_{\lambda_i}(z)(1 - K_{\lambda_i}(z)) \geq \log n\}.$$

We consider the higher criticism test rejects for large values of T^*. This definition extends the higher criticism of Donoho and Jin (2004), in particular the variant HC+, to the case where the test statistics are not identically distributed under the null — and cannot be transformed to be so. The discretization of the supremum makes the control under the null particularly simple.

Proposition 6. Consider the testing problem (3), parameterized by (9) and (13) with (6). When $r > \rho_{\text{sparse}}(\beta)$, the higher criticism test is asymptotically powerful.

We speculate that, just as in the normal model, the higher criticism is also able to achieve the detection boundary in the dense regime.

Multiple testing: Fisher, Bonferroni and Tukey

We now take a multiple testing perspective. In multiple testing jargon, our null hypothesis H_0 is the complete null, since

$$H_0 = \bigcap_{i=1}^{n} H_{0,i}.$$

Several possible definitions for P-values are possible here. We define the P-value for the ith hypothesis testing problem as follows

$$p_i = G_{\lambda_i}(X_i), \quad G_{\lambda}(x) := \mathbb{P}(|\Upsilon_{\lambda} - \lambda| \geq |x - \lambda|).$$

There does not seem to be a consensus on the definition of P-value for asymmetric discrete null distributions (Dunne et al., 1996). We speculate that any reasonable definition leads to the same asymptotic results in our context. We note that the p_i’s are independent, but they are discrete, and therefore not uniformly distributed in $(0, 1)$ under the complete null. In fact, they are not even identically distributed unless the λ_i’s are all equal. That said, for each i, the null distribution of p_i stochastically dominates the uniform distribution.

Lemma 1. (Lehmann and Romano, 2005, Lem 3.3.1) For any $\lambda > 0$,

$$\mathbb{P}(G_{\lambda}(\Upsilon_{\lambda}) \leq u) \leq u, \quad \forall u \in (0, 1).$$

With P-values now defined, we can draw from the literature on multiple comparisons and make correspondences with the tests that we studied in the previous sections.
Fisher’s method

The chi-squared test is, in our context, intimately related to multiple testing with Fisher’s method, which rejects the complete null for large values of

\[- 2 \sum_{i=1}^{n} \log p_i.\] (25)

We speculate that, like Pearson’s chi-squared test, Fisher’s method achieves the detection boundary in the dense regime. We were able to prove it in the simpler one-sided setting. Details are postponed to Section 6.

Bonferroni’s method

The max test is, in turn, intimately related to multiple testing with Bonferroni’s method, which rejects the (complete) null for small values of

\[\min_{i=1,\ldots,n} p_i.\]

In fact, the two procedures are identical when the \(\lambda_i\)’s are all equal. One can show that Proposition 5 applies to the Bonferroni test also. Instead of formally proving this, we focus on complementing the lower bound established in Proposition 3.

Proposition 7. Consider the testing problem (3) with parameterizations (9) with \(\beta > 1/2\) and (16) with (7). When \(\gamma > \beta\), the Bonferroni test is asymptotically powerful.

We note that the same is true if we merely focus on the large \(Z_i\)’s, meaning, if we replace the two-sided P-values \(p_i\) with

\[p_i^{\text{one}} = G_{\lambda_i}^\text{one}(X_i), \quad \text{where} \quad G_{\lambda}^\text{one}(x) := \mathbb{P}(\Upsilon_{\lambda} \geq x).\] (26)

In fact, one cannot exploit the assumption that \(\lambda_i' = 0\) for all \(i\). Indeed, if we consider the test that rejects for large values of \(Y := \#\{i : X_i = 0\}\), it is asymptotically powerless. This follows from an application of Lemma 5. By a simple application of Lyapunov’s central limit theorem and (8), \(Y\) is asymptotically normal both under the null and the alternative. Moreover,

\[\mathbb{E}_0(Y) = \sum_i e^{-\lambda_i}, \quad \text{Var}_0(Y) = \sum_i e^{-\lambda_i}(1 - e^{-\lambda_i}) \geq (1 - e^{-1})ne^{-\text{max},\lambda_i} = n^{1+o(1)},\]

where we used (8) and (7), while

\[\mathbb{E}_1(Y) = \sum_i \left((1 - \varepsilon)e^{-\lambda_i} + \frac{\varepsilon}{2}e^{-\lambda_i'} + \frac{\varepsilon}{2} \right) \leq (1 - \varepsilon/2) \mathbb{E}_0(Y) + n\varepsilon/2 \leq \mathbb{E}_0(Y) + n^{1-\beta},\]

and, after some simple calculations using (8),

\[\text{Var}_0(Y) \leq \text{Var}_1(Y) \leq (1 - \varepsilon/2)^2 \text{Var}_0(Y) + n\varepsilon/2 \leq \text{Var}_0(Y) + n^{1-\beta}.\]

We can easily check that the conditions of Lemma 5 are satisfied when \(\beta > 1/2\).
Tukey’s higher criticism

This brings us back to the higher criticism, which is some sense is an intermediate method between Fisher’s and Bonferroni’s methods. Donoho and Jin (2004) attribute to Tukey the idea of testing the complete null based on the maximum of the normalized empirical process of the P-values, which equivalently leads to rejecting for larges values of

$$\max_{1 \leq i \leq n/2} \frac{\sqrt{n} (i/n - p(i))}{\sqrt{p(i)(1 - p(i))}}$$

where $p(1) \leq \cdots \leq p(n)$ are the sorted P-values. In our context where the P-values are close to, but not exactly uniformly distributed, we can show that the test based on (27) achieves the detection boundary when all the λ_i’s are equal. (Details are omitted.) When this is not so, we are not able to conclude that this is still the case.

4 Simulations

We present the result of some numerical experiments whose purpose is to see the behavior of the various tests in finite samples. So the asymptotic analysis is relevant, we chose to work with $n = 10^4$ and $n = 10^6$. In some bioinformatics/genetics applications, n could be in the millions. We compare the tests in terms of their power when the level is controlled at $\alpha = 0.05$ by simulation. (We generate the test statistic 500 times under the null and take the $(1 - \alpha)$-quantile as the critical value.) The power against a particular alternative is then obtained empirically from 200 repeats.

We note that, for the higher criticism, we work with the P-values defined in (24) and their corresponding null distribution $F_i(t) := \mathbb{P}(G_{\lambda_i}(\Upsilon_{\lambda_i}) \leq t)$, that is,

$$\text{HC} = \max_{t \in T} \frac{\sum_{i=1}^{n} (1 \{p_i \leq t\} - F_i(t))}{\sqrt{\sum_{i=1}^{n} F_i(t)(1 - F_i(t))}}$$

where $T := \{ t \in (0, 1) : 1/n \leq F_i(t) \leq 1/2, i = 1, \ldots, n \}$. We note that (28) is a generalized form of Tukey’s higher criticism (27) for the case where p_i’s are not identically distributed. Thus we find (28) more natural than (23), but the two are very closely related and the latter is more easily amenable to mathematical analysis. In practice, we estimate F_i by simulation.

4.1 In the dense regime

In the dense regime, we have (9) with $\beta \in (0, 1/2)$ and the parameterization (2) with (10).

In the first set of experiments, we investigate how the test performance matches the theoretical information boundary (11). We set $n = 10^6$, all the λ_i’s equal to $\lambda_0 = 15 > \log(n) \approx 14$, and vary β in the range of $(0, 0.5)$ with 0.025 increments and s in the range of $[-0.5, 0]$ with 0.025 increments. When the λ_i’s are all equal, Bonferroni’s method is equivalent to the max test, and is therefore omitted. The results are summarized in Figure 1. We see that the phase transition phenomenon is clear. We can see the performance of the chi-squared test and Fisher’s method are similar and comparable with the higher criticism, and achieve the asymptotic detection boundary. As expected, the max test has hardly any power in the dense regime. We note that very similar trends are observed in the normal means model.

In the second set of experiments, we generate settings where the λ_i’s are different. We take $n = 10^4$ and fix $\beta = 0.2$, and the λ_i’s are generated iid from $\lambda_0 + \text{Exp}(\lambda_0)$, where $\text{Exp}(\lambda)$ denotes the exponential distribution with mean λ, and we let $\lambda_0 \in \{1, 10, 100\}$. The results are summarized
in Figure 2. We can see the chi-squared test and Fisher’s method perform similarly and are the best, closely followed by the higher criticism. The max test and the Bonferroni’s method perform similarly and poorly, as expected. The effect of λ_0 does not seem important.

![Figure 1: Simulation results in the dense regime, with $n = 10^6$ and all λ_i’s equal to $\lambda_0 = 15$. The blue line is the information boundary (11).](image1)

![Figure 2: Simulation results in the dense regime, with $n = 10^4$, $\beta = 0.2$, and the λ_i’s generated iid from $\lambda_0 + \text{Exp}(\lambda_0)$. The vertical dotted line is the detection threshold.](image2)
4.2 In the sparse regime

In the sparse regime, we have (9) with \(\beta \in (1/2, 1) \) and the parameterization (2) with (13). The experiments are otherwise parallel to those performed in the dense regime.

In the first set of experiments, we set \(n = 10^6 \), means all equal to \(\lambda_0 = 15 \), and vary \(\beta \) in the range \([0.5, 1]\) with increments of 0.025, and \(r \) in the range \([0, 1]\) with increments of 0.05. The results are summarized in Figure 3. While the chi-squared test is not competitive, as expected, we can see that the higher criticism has more power in the moderately sparse regime where \(\beta \in (0.5, 0.75) \), while the max test is clearly the best in the very sparse regime where \(\beta \in (0.75, 1) \). The asymptotic detection boundary is seen to be fairly accurate, although less so as \(\beta \) approaches 1, where the asymptotics take longer to come into effect. (For example, when \(n = 10^6 \) and \(\beta = 0.9 \), there are only \(n^{1-0.9} \approx 4 \) anomalies.) We note that very similar trends are observed in the normal means model.

In the second set of experiments, we set \(n = 10^4 \) and \(\beta = 0.6 \) (moderately sparse) or \(\beta = 0.8 \) (very sparse), and the \(\lambda_i \)'s are generated iid from \(\lambda_0 + \text{Exp}(\lambda_0) \), where \(\lambda_0 \in \{1, 10, 100\} \). The simulation results are reported in Figure 4 and Figure 5. We can see that the max test and Bonferroni’s method perform similarly, and dominate in the very sparse regime. The chi-squared test is somewhat better than Fisher’s method, and in some measure competitive in the moderately sparse regime, but essentially powerless in the very sparse regime. The higher criticism is the clear winner in the moderately sparse regime, as expected, and holds its own in the very sparse regime, although clearly inferior to the max test. Comparing the results for different \(\lambda_0 \), we may conclude that, in the sparse regime, smaller counts (i.e., small \(\lambda_0 \)) make the problem more difficult — at least in this finite sample setting.

![Figure 3: Simulation results in the sparse regime, with \(n = 10^6 \) and all \(\lambda_i \)'s equal to \(\lambda_0 = 15 \). The blue line is the information boundary (14). The dashed blue curve for the max test is the boundary that it can achieve.](image)

5 Proofs

For \(a, b \in \mathbb{R} \), let \(a \wedge b = \min(a, b) \) and \(a \vee b = \max(a, b) \). For two sequences of reals \((a_n)\) and \((b_n)\):
- \(a_n \sim b_n \) when \(a_n/b_n \to 1 \);
- \(a_n = o(b_n) \) when \(a_n/b_n \to 0 \);
- \(a_n = O(b_n) \) when \(a_n/b_n \) is bounded;
- \(a_n \asymp b_n \) when \(a_n = O(b_n) \) and \(b_n = O(a_n) \);
- \(a_n \ll b_n \) when \(a_n = o(b_n) \). Finally, \(a_n \approx b_n \) when \(|a_n/b_n| \vee |b_n/a_n| = O(\log n)^w \) for some \(w \in \mathbb{R} \). We use similar notation with a superscript \(P \) when...
Figure 4: Simulation results in the moderately sparse regime, with $n = 10^4$, $\beta = 0.6$, and the λ_i’s generated iid from $\lambda_0 + \text{Exp}(\lambda_0)$. The vertical dotted line is the detection threshold.

Figure 5: Simulation results in the very sparse regime, with $n = 10^4$, $\beta = 0.8$, and the λ_i’s generated iid from $\lambda_0 + \text{Exp}(\lambda_0)$. The vertical dotted line is the detection threshold.

the sequences (a_n) and (b_n) are random. In particular, $a_n = O_P(b_n)$ means that a_n/b_n is bounded in probability, i.e., $\sup_n P(|a_n/b_n| > x) \to 0$ as $x \to \infty$, and $a_n = o_P(b_n)$ means that $a_n/b_n \to 0$ in probability.

When X and Y are random variables, $X \sim Y$ means they have the same distribution. For a random variable X and distribution F, $X \sim F$ means that X has distribution F. For a sequence of random variables (X_n) and a distribution F, $X_n \sim F$ means that X_n converges in distribution to F. Everywhere, we identify a distribution and its cumulative distribution function. For a distribution F, $\bar{F}(x) = 1 - F(x)$ will denote its survival function. We say that an event E_n hold with high probability (w.h.p.) if $P(E_n) \to 1$ as $n \to \infty$.

We let P_0, E_0, Var_0 (resp. $P_{0,i}, E_{0,i}, \text{Var}_{0,i}$) and P_1, E_1, Var_1 (resp. $P_{1,i}, E_{1,i}, \text{Var}_{1,i}$) denote the probability, expectation and variance under the null (resp. null at observation i) and alternative (resp. alternative at observation i), respectively. Recall that Υ_λ denotes a random variable with the Poisson distribution with mean λ, denoted P_λ, so that for a set A, $P_\lambda(A) = P(\Upsilon_\lambda \in A)$.

5.1 Preliminaries

We state here a few results that will be used later on in the proofs of the main results stated earlier in the paper. We start with a couple of facts about the Poisson distribution.

The following are moderate deviation bounds for the Poisson distribution $\text{Pois}(\lambda)$ as $\lambda \to \infty$.
Lemma 2. Let \(a : (0, \infty) \to (0, \infty) \) be such that \(a(\lambda) \to \infty \) and \(a(\lambda)/\lambda \to 0 \) as \(\lambda \to \infty \). Then

\[
\lim_{\lambda \to \infty} \frac{1}{a(\lambda)} \log \mathbb{P} \left(\sum_{i=1}^{m+1} Y_i \geq m + \sqrt{ma(\lambda)} \right) = -\frac{1}{2}
\]

and

\[
\lim_{\lambda \to \infty} \frac{1}{a(\lambda)} \log \mathbb{P} \left(\sum_{i=1}^{m+1} Y_i \leq m - \sqrt{ma(\lambda)} \right) = -\frac{1}{2}.
\]

Proof. We focus on the first statement. Let \(m = [\lambda] \) and take \(Y_1, \ldots, Y_{m+1} \) iid Poisson with mean 1. Fixing \(\varepsilon \in (0, 1) \), we have

\[
\mathbb{P} \left(\sum_{i=1}^{m+1} Y_i \geq [\lambda] + \sqrt{ma(\lambda)} \right) \leq \mathbb{P} \left(\sum_{i=1}^{m+1} Y_i \geq m + \sqrt{ma(\lambda)} \right) \leq I + II,
\]

where

\[
I := \mathbb{P} \left(\sum_{i=1}^{m+1} (Y_i - 1) \geq (1 - \varepsilon)\sqrt{ma(\lambda)} \right), \quad II := \mathbb{P} \left(Y_{m+1} \geq \varepsilon\sqrt{ma(\lambda)} \right),
\]

where in the first inequality we used the fact that \(Y_\lambda \) is stochastically bounded from above by \(\sum_{i=1}^{m+1} Y_i \), and in the second inequality we used the union bound. By (Dembo and Zeitouni, 1998, Th 3.7.1),

\[
\frac{1}{a(\lambda)} \log I \to -\frac{(1 - \varepsilon)^2}{2}, \quad m \to \infty.
\]

And using the fact that \(\mathbb{P}(Y_1 \geq x)/\mathbb{P}(Y_1 = x) \to 1 \) as \(x \to \infty \), we have

\[
\log II = \log \mathbb{P} \left(Y_1 = [\varepsilon\sqrt{ma(\lambda)}] \right) + o(1) \sim -\varepsilon \sqrt{ma(\lambda)} \log \sqrt{ma(\lambda)}, \quad m \to \infty.
\]

Since \(a(\lambda) = o(m) \), we have that \(II = o(I) \), and conclude that

\[
\limsup_{\lambda \to \infty} \frac{1}{a(\lambda)} \log \mathbb{P} \left(\sum_{i=1}^{m+1} Y_i \geq m + \sqrt{ma(\lambda)} \right) \leq -\frac{(1 - \varepsilon)^2}{2},
\]

and because \(\varepsilon > 0 \) is arbitrary, we may take \(\varepsilon = 0 \) in this last display. The reverse inequality is proved similarly. \(\square \)

The following are concentration bounds for the Poisson distribution. For a real \(x \), let \([x] \) (resp. \(\lfloor x \rfloor \)) denote the smallest (resp. largest) integer greater (resp. smaller) than or equal to \(x \).

Lemma 3. For \(x \geq 0 \), define \(h(x) = x \log(x) - x + 1 \), with \(h(0) = 0 \). Then, for any \(\lambda > 0 \),

\[
-\lambda h([x]/\lambda) - \frac{1}{2} \log([x]) - 1 \leq \log \mathbb{P} \left(\sum_{i=1}^{m+1} Y_i \geq \lambda \right) \leq -\lambda h(x/\lambda), \quad \forall x \geq \lambda,
\]

and

\[
-\lambda h([x]/\lambda) - \frac{1}{2} \log([x]) - 1 \leq \log \mathbb{P} \left(\sum_{i=1}^{m+1} Y_i \leq \lambda \right) \leq -\lambda h(x/\lambda), \quad \forall 0 \leq x \leq \lambda.
\]

Proof. The upper bounds result from a straightforward application of Chernoff’s bound. For the first lower bound, take \(x \geq \lambda \) and let \(m = [x] \). Then

\[
\log \mathbb{P} \left(\sum_{i=1}^{m+1} Y_i \geq \lambda \right) \geq \log \mathbb{P} \left(\sum_{i=1}^{m+1} Y_i = m \right) = \log \left(e^{-\lambda m} \frac{\lambda^m}{m!} \right) \geq -\lambda h(m/\lambda) - \lambda m - 1
\]

using the fact that \(m! \leq m^{m+1/2} e^{-m+1} \). The second lower bound is proved similarly. \(\square \)
The following is Berry-Esseen’s theorem applied to the Poisson distribution $\text{Pois}(\lambda)$ as $\lambda \to \infty$.

Lemma 4. There is a universal constant $C > 0$ such that

$$\sup_{x \in \mathbb{R}} \left| \mathbb{P}\left(\frac{\Upsilon_{\lambda} - \lambda}{\sqrt{\lambda}} \leq x \right) - \Phi(x) \right| \leq \frac{C}{\sqrt{\lambda}}.$$

Proof. Let $m = \lceil \lambda \rceil$ be the smallest integer greater than or equal to λ. It is enough to prove the result when $\lambda \geq 1$, in which case $1/2 \leq \lambda/m \leq 1$. Take Y_1, \ldots, Y_m are iid $\text{Pois}(\lambda/m)$, so that $\Upsilon_{\lambda} \sim \sum_{i=1}^{m} Y_i$. We have $E(Y_i) = \text{Var}(Y_i) = \lambda/m$ and $E(|Y_i - \lambda/m|^3) \leq E(\Upsilon^3_1) < \infty$. The result now follows by the Berry-Esseen theorem. \qed

The following lemma is standard, and appears for example in (Arias-Castro and Wang, 2013).

Lemma 5. Consider a test that rejects for large values of a statistic T_n with finite second moment, both under the null and alternative hypotheses. Then the test that rejects when $T_n \geq t_n := \mathbb{E}_0(T_n) + \frac{a_n}{2} \sqrt{\text{Var}_0(T_n)}$ is asymptotically powerful if

$$a_n := \frac{\mathbb{E}_1(T_n) - \mathbb{E}_0(T_n)}{\sqrt{\text{Var}_1(T_n)} \vee \text{Var}_0(T_n)} \to \infty. \quad (29)$$

Assume in addition that T_n is asymptotically normal, both under the null and alternative hypotheses. Then the test is asymptotically powerless if

$$\frac{\mathbb{E}_1(T_n) - \mathbb{E}_0(T_n)}{\sqrt{\text{Var}_0(T_n)}} \to 0 \quad \text{and} \quad \frac{\text{Var}_1(T_n)}{\text{Var}_0(T_n)} \to 1. \quad (30)$$

Finally, we state without proof the following simple result.

Lemma 6. The function $f(\beta) = (1 - \sqrt{1-\beta})^2 - (\beta - 1/2)$ is nonnegative and strictly increasing on $(3/4, 1)$.

5.2 Proof of Proposition 1

Here we use the second moment method without truncation, which amounts to proving that $\text{Var}_0(L) \to 0$, or equivalently, $\mathbb{E}_0(L^2) \leq 1 + o(1)$, where L is the likelihood ratio

$$L = \prod_{i=1}^{n} L_i,$$

where

$$L_i := \frac{(1 - \varepsilon)P_{\lambda_i}(X_i) + \frac{\varepsilon}{2} P_{\lambda'_i}(X_i) + \frac{\varepsilon}{2} P_{\lambda''_i}(X_i)}{P_{\lambda_i}(X_i)}. \quad (31)$$
We have $E_0(L^2) = \prod_{i=1}^n E_0(L_i^2)$, where
\[
E_0(L_i^2) = \sum_{x=0}^{\infty} \left[(1 - \varepsilon)P_{\lambda_i}(x) + \frac{\varepsilon}{2}P_{\lambda_i'}(x) + \frac{\varepsilon}{2}P_{\lambda_i''}(x) \right]^2 \frac{e^{-\lambda_i x}}{P_{\lambda_i}(x)}
\]
\[
= \sum_{x=0}^{\infty} \left[(1 - \varepsilon)e^{-\lambda_i x} + \frac{\varepsilon}{2}e^{-\lambda_i' x} + \frac{\varepsilon}{2}e^{-\lambda_i'' x} \right]^2 e^{-\lambda_i x}
\]
\[
= (1 - \varepsilon)^2 + 2(1 - \varepsilon)\varepsilon + \frac{\varepsilon^2}{4}e^{-2\lambda_i' + \lambda_i + \frac{\lambda_i'^2}{\lambda_i}} + \frac{\varepsilon^2}{4}e^{-2\lambda_i'' + \lambda_i + \frac{\lambda_i''^2}{\lambda_i}} + \frac{\varepsilon^2}{2}e^{-\lambda_i' - \lambda_i'' + \frac{\lambda_i'\lambda_i''}{\lambda_i}}
\]
\[
= 1 + \varepsilon^2 \left[(e^{n^2s} - 1) + (e^{-n^2s} - 1) \right]
\]
\[
= 1 + a_n, \quad \text{where } a_n := \varepsilon^2 \left[\cosh(n^2s) - 1 \right].
\]

In the third line we used the fact that $\sum_{x=0}^{\infty} \lambda^x/x! = e^\lambda$ for all $\lambda \in \mathbb{R}$, and in the fourth line we used (10). Condition (12) and the fact that $\beta < 1/2$ imply that $s < 0$, and a Taylor expansion gives $a_n \leq n^{-2\beta + 2s}$, eventually. We deduce that $E_0(L^2) \leq (1 + a_n)^n$, and the RHS tends to 1 when $na_n \to 0$, which is the case because of (12).

5.3 Proof of Proposition 2

We use the truncated second moment method of Ingster in the form put forth by Butucea et al. (2013). Define
\[
x_i = \lambda_i + \sqrt{2(1 + \eta)\log(n)}\sqrt{\lambda_i}, \quad y_i = \lambda_i - \sqrt{2(1 + \eta)\log(n)}\sqrt{\lambda_i},
\]
where $\eta > 0$ is chosen small enough that (33) and (34) hold simultaneously.

Define the truncated likelihood function,
\[
\tilde{L} = \prod_{i=1}^n L_i 1_{\{A_i\}}, \quad A_i := \{y_i \leq X_i \leq x_i\},
\]
where L_i is defined in (31). As in Butucea et al. (2013), it suffices to prove that
\[
E_0(\tilde{L}) \geq 1 + o(1) \quad \text{and} \quad E_0(\tilde{L}^2) \leq 1 + o(1).
\]

First moment. We have
\[
E_0(\tilde{L}) = \prod_{i=1}^n E_0(L_i 1_{\{A_i\}}) = \prod_{i=1}^n \mathbb{P}_1(A_i),
\]
with
\[
\mathbb{P}_1(A_i) = (1 - \varepsilon)P_{\lambda_i}(A_i^c) + \frac{\varepsilon}{2}P_{\lambda_i'}(A_i^c) + \frac{\varepsilon}{2}P_{\lambda_i''}(A_i^c).
\]

Applying Lemma 2, using (13) and the fact that $\lambda_i' \sim \lambda_i'' \sim \lambda_i \gg \log n$ because of (6), we get
\[
P_{\lambda_i}(A_i^c) \leq n^{-1 - \eta + o(1)}, \quad P_{\lambda_i'}(A_i^c) \lor P_{\lambda_i''}(A_i^c) \leq n^{-2(1 + \eta - \sqrt{\eta})^2 + o(1)},
\]
uniformly over $i = 1, \ldots, n$. Hence,
\[
\mathbb{P}_1(A_i) \geq 1 - a_n, \quad \text{for some } a_n \leq n^{-1 - \eta + o(1)} + \varepsilon n^{-2(1 + \eta - \sqrt{\eta})^2 + o(1)},
\]

14
which in turn implies
\[
\mathbb{E}_0(\tilde{L}) \geq (1 - a_n)^n.
\]
Using the expression for \(\varepsilon\), we have
\[
na_n \leq n^{-\eta+o(1)} + n^{1-\beta-(\sqrt{T+\eta}-\sqrt{T})^2+o(1)}.
\]
By (15) and Lemma 6, for any \(\beta \in (1/2, 1)\), we have \(r < \rho_\text{sparse}(\beta) \leq (1 - \sqrt{T-\beta})^2 \leq (\sqrt{T+\eta} - \sqrt{T-\beta})^2\), which in turn implies that \(1 - \beta - (\sqrt{T+\eta} - \sqrt{T})^2 < 0\). Therefore, \(na_n = (1)\), and so \(\mathbb{E}_0(\tilde{L}) \geq 1 - o(1)\).

Second moment. We have
\[
\mathbb{E}_0(\tilde{L}^2) = \prod_{i=1}^n \mathbb{E}_0(L_i^2 \mathbbm{1}_{\{A_i\}}) = 1
\]
where
\[
\mathbb{E}_0(L_i^2 \mathbbm{1}_{\{A_i\}}) = \sum_{y \leq x \leq x_i} \frac{[(1 - \varepsilon)P_{\lambda_i}(x) + \varepsilon P_{\lambda_i'}(x)]^2}{P_{\lambda_i}(x)}
\]
\[
= \sum_{y \leq x \leq x_i} (1 - \varepsilon)^2 P_{\lambda_i}(x) + \varepsilon(1 - \varepsilon)(P_{\lambda_i'}(x) + P_{\lambda_i''}(x)) + \frac{\varepsilon^2}{4} \frac{(P_{\lambda_i'}(x) + P_{\lambda_i''}(x))^2}{P_{\lambda_i}(x)}
\]
\[
\leq (1 - \varepsilon)^2 + 2\varepsilon(1 - \varepsilon) + \frac{\varepsilon^2}{4} \sum_{y \leq x \leq x_i} \frac{2[e^{-\lambda_i' x/y} x^2 + 2[e^{-\lambda_i'' x/y} x^2]}{e^{-\lambda_i y/x}}
\]
\[
= 1 - \varepsilon^2 + \frac{\varepsilon^2}{2} \sum_{y \leq x \leq x_i} 1 \left[e^{-2\lambda_i' / \lambda_i} \left(\lambda_i'^2 \right)^x + e^{-2\lambda_i'' / \lambda_i} \left(\lambda_i''^2 \right)^x \right]
\]
\[
\leq 1 + \frac{\varepsilon^2}{2} \left[e^{(\lambda_i' - \lambda_i)/\lambda_i} P_{\lambda_i'/\lambda_i}(\{0, x_i\}) + e^{(\lambda_i'' - \lambda_i)/\lambda_i} P_{\lambda_i''/\lambda_i}(\{y_i, \infty\}) \right]
\]
\[
\leq 1 + \frac{1}{2} \left[2 - 2r + n^{-2\beta+2r} \left[P_{\lambda_i'/\lambda_i}(\{0, x_i\}) + P_{\lambda_i''/\lambda_i}(\{y_i, \infty\}) \right] \right].
\]
In the third line we used the fact that \((a + b)^2 \leq 2a^2 + 2b^2\) for all \(a, b \in \mathbb{R}\).

Let \(\delta = \rho_\text{sparse}(\beta) - r\), which is strictly positive by (15)

Case 1. When \(\beta \leq 3/4, -2\beta + 2r = -1 - \delta\), and we can bound the 2nd term in (32) by \(n^{-1-\delta}\).

Case 2. When \(\beta > 3/4\), we distinguish two sub-cases. Let \(f\) be the function defined in Lemma 6. In the first case, \(\delta \geq 1/2\), in which case \(-2\beta + 2r = -1 - 2[\delta - f(\beta)] < -1\) for any \(\beta < 1\), so that we can bound the 2nd term in (32) by \(n^{-1-2[\delta - f(\beta)]}\). In the second case, \(\delta < 1/2\), so that \(f^{-1}(\delta)\) exists in \((3/4, 1)\). If \(\beta < f^{-1}(\delta)\), then \(f(\beta) < \delta\) and the same bound on the 2nd term in (32) applies. If \(\beta \geq f^{-1}(\delta)\), we have \(r = \rho_\text{sparse}(\beta) = \delta \geq \rho_\text{sparse}(f^{-1}(\delta)) - \delta = f^{-1}(\delta) - 1/2 > 1/4\). Fix \(\eta > 0\) small enough that
\[
f^{-1}(\delta) - 1/2 > (1 + \eta)/4.
\]
Since \(\lambda_i' \sim \lambda_i'' \sim \lambda_i \gg \log n\),
\[
\lambda_i'^2 / \lambda_i = \lambda_i + 2\sqrt{2r \log(n)} \sqrt{\lambda_i}(1 + o(1)) \quad \text{and} \quad \lambda_i''^2 / \lambda_i = \lambda_i - 2\sqrt{2r \log(n)} \sqrt{\lambda_i}(1 + o(1)).
\]
Hence,
\[
P_{\lambda_i'^2 / \lambda_i}(\{0, x_i\}) = n^{-2(\sqrt{r} - (1 + \eta)(2 \log(n))(1 + o(1))}
\]
\[
= n^{-2(\sqrt{r} - \sqrt{T+\eta})^2+o(1)}.
\]
and
\[
P_{\chi^r / \lambda_i}(y_i, \infty)) = P_{\chi^r / \lambda_i}\left(Z_i \geq (2\sqrt{r} - \sqrt{1 + \eta})\sqrt{2\log(n)(1 + o(1))}\right)
\]
\[
= n^{-(2\sqrt{r} - \sqrt{1 + \eta})^2 + o(1)},
\]

because of Lemma 2, and the fact that \(2\sqrt{r} > \sqrt{1 + \eta}\) by our choice of \(\eta\) in (33). We can thus bound on the 2nd term in (32) by
\[
n^{2r - 2\beta - (2\sqrt{r} - \sqrt{1 + \eta})^2 + o(1)}.
\]
When \(\eta = 0\), the exponent is equal to
\[
2r - 2\beta - (2\sqrt{r} - 1)^2 = -1 - 2(\beta - 1 + (1 - \sqrt{r})^2) < -1 - 2(\beta - 1 + (1 - \rho_{\text{sparse}}^1(\beta))^2) = -1.
\]
Hence, when \(\eta > 0\) is small enough,
\[
2r - 2\beta - (2\sqrt{r} - \sqrt{1 + \eta})^2 < -1.
\]

We conclude that \(E_0(\tilde{L}_i^2) \leq 1 + o(n^{-1})\), uniformly in \(i\), which implies that
\[
E_0(\tilde{L}^2) \leq (1 + o(n^{-1}))n = 1 + o(1).
\]

5.4 Proof of Proposition 3

The proof parallels that of Proposition 2. Here we define
\[
x_i = (1 + c)\frac{\log n}{\log(\zeta_i)}, \quad \zeta_i := \frac{\log n}{\lambda_i},
\]
where \(c\) is a small positive constant that will be chosen later on, and consider the following truncated likelihood
\[
\tilde{L} = \prod_{i=1}^n L_i 1_{\{A_i\}}, \quad A_i := \{X_i \leq x_i\}.
\]

First moment. Taking into account the fact that \(\lambda_i^r = 0\), it suffices to prove that
\[
P_{\lambda_i}(A_i^c) + \varepsilon P_{\lambda_i}(A_i^c) = o(1/n),
\]
uniformly over \(i = 1, \ldots, n\). Let \(h(t) = t \log t - t + 1\). There is \(t_0\) such that, for \(t \geq t_0\), \(h((1 + c/2) t) \geq (1 + c/2) t \log t\). Note that \(x_i / \lambda_i \geq \zeta_i / \log(\zeta_i) \geq \zeta_{\min} / \log(\zeta_{\min}) \to \infty\), eventually, since (7) implies \(\zeta_{\min} := \min_i \zeta_i \to \infty\). Hence, using Lemma 3, we get
\[
\log P_{\lambda_i}(A_i^c) \leq -\lambda_i h(x_i / \lambda_i) \leq -\lambda_i (1 + c/2) \frac{\zeta_i}{\log(\zeta_i)} \log \left(\frac{\zeta_i}{\log(\zeta_i)}\right) \leq -(1 + c/3) \log n,
\]
as soon as \(\zeta_{\min} / \log(\zeta_{\min})\) is large enough. This implies that \(\max_i P_{\lambda_i}(A_i^c) = o(1/n)\).

Note that \((\log n) / \lambda_i^r = \zeta_i^{1-\gamma}\). So we also have \(x_i / \lambda_i^r \geq \zeta_{\min}^{1-\gamma} / \log(\zeta_{\min}) \to \infty\) eventually, and using Lemma 3, we get
\[
\log P_{\lambda_i^r}(A_i^c) \leq -\lambda_i h(x_i / \lambda_i^r) \leq -\lambda_i (1 + c/2) \frac{\zeta_i^{1-\gamma}}{\log(\zeta_i)} \log \left(\frac{\zeta_i^{1-\gamma}}{\log(\zeta_i)}\right) \leq -(1 + c/3)/(1 - \gamma) \log n,
\]

16
as soon as \(c_{\text{min}}^{1-\gamma} / \log(\zeta_{\text{min}}) \) is large enough. Since \(\gamma < \beta \) by assumption, this implies \(\varepsilon \max_i P_{X_i}(A_i^2) = o(1/n) \).

Second moment. Taking into account the fact that \(\lambda_i'' = 0 \), it suffices to prove that
\[
\varepsilon^2 \left[e^{(\lambda_i' - \lambda_i'')^2 / \lambda_i} P_{X_i^2 / \lambda_i}([0, x_i]) + e^{\lambda_i} \right] = o(1/n),
\]
uniformly over \(i = 1, \ldots, n \). We quickly see that
\[
\varepsilon^2 e^{\lambda_i} \leq n^{-2\beta + 1/\zeta_{\text{min}}} = n^{-2\beta + o(1)} = o(1/n),
\]
since \(\beta > 1/2 \) is fixed. For the other term, we distinguish two cases.

Case 1. First, assume that \(\gamma < 1/2 \). Then
\[
\varepsilon^2 e^{(\lambda_i' - \lambda_i'')^2 / \lambda_i} P_{X_i^2 / \lambda_i}([0, x_i]) \leq \varepsilon^2 e^{\lambda_i^2 / \lambda_i} \leq n^{-2\beta + c_{\text{min}}^{2\gamma - 1}} = n^{-2\beta + o(1)} = o(1/n).
\]

Case 2. Now, assume that \(\gamma \geq 1/2 \). Then \(\lambda_i^2 / (\lambda_i x_i) \geq c_{\text{min}}^{2\gamma - 1} \log \zeta_{\text{min}} \to \infty \), so that applying Lemma 3, we get
\[
\log P_{X_i^2 / \lambda_i}([0, x_i]) \leq -\frac{\lambda_i^2}{\lambda_i} h(x_i \lambda_i / \lambda_i^2) = x_i \log(\lambda_i^2 / (\lambda_i x_i)) + x_i - \frac{\lambda_i^2}{\lambda_i},
\]
with
\[
x_i \log(\lambda_i^2 / (\lambda_i x_i)) \leq (1 + c)(\log n) \left[(2\gamma - 1) + \frac{\log \log \zeta_{\text{min}}}{\log \zeta_{\text{min}}} \right],
\]
so that
\[
\varepsilon^2 e^{(\lambda_i' - \lambda_i'')^2 / \lambda_i} P_{X_i^2 / \lambda_i}([0, x_i]) \leq \exp \left[-2\beta \log n - 2\lambda_i' + \lambda_i + x_i \log(\lambda_i^2 / (\lambda_i x_i)) + x_i \right]
\leq n^{-2\beta + (1 + c)(2\gamma - 1) + o(1)},
\]
uniformly over \(i = 1, \ldots, n \), since in addition to (35), we also have \(-2\lambda_i' + \lambda_i + x_i \leq x_i \leq (1 + c) \log n / \log \zeta_{\text{min}} = o(\log n) \). Since \(\gamma < \beta \), we may choose \(c > 0 \) small enough that \(-2\beta + (1 + c)(2\gamma - 1) < -1 \).

5.5 Proof of Proposition 4

We have
\[
\mathbb{E}(\Upsilon_{\lambda}) = \lambda, \quad \text{Var}(\Upsilon_{\lambda}) = \lambda, \quad \mathbb{E}(\Upsilon_{\lambda} - \lambda)^3 = \lambda, \quad \mathbb{E}(\Upsilon_{\lambda} - \lambda)^4 = 3\lambda^2 + \lambda.
\]
Using this, for the Poisson model (1), we have
\[
\mathbb{E}_0(D) = n, \quad \mathbb{E}_1(D) = n + \varepsilon \sum_{i=1}^n \frac{\Delta_i^2}{\lambda_i}, \quad \text{Var}_0(D) = 2n + \sum_{i=1}^n \frac{1}{\lambda_i},
\]
and, after some simple but tedious calculations,
\[
\text{Var}_1(D) = \text{Var}_0(D) + \varepsilon R,
\]
where
\[
R = \sum_{i=1}^n \left[\frac{4\Delta_i^2}{\lambda_i} + \frac{7\Delta_i^2}{\lambda_i^2} + \frac{(1 - \varepsilon)\Delta_i^4}{\lambda_i^2} \right] \leq C \sum_{i=1}^n (a_i + a_i^2),
\]

17
for some universal constant $C > 0$, using (8). We have $\mathbb{E}_1(D) - \mathbb{E}_0(D) = \varepsilon \sum_{i=1}^n a_i$ and $\text{Var}_0(D) \lor \text{Var}_1(D) \leq 2n + \sum_{i=1}^n \frac{1}{\lambda_i} + C\varepsilon \sum_{i=1}^n (a_i + a_i^2)$. Because of (8), we have $\sum_{i=1}^n \frac{1}{\lambda_i} = O(n)$ and then, by (18), we have $\varepsilon \sum_{i=1}^n a_i \to \infty$. With this and the second part of (18), it becomes straightforward to see that the first part of Lemma 5 applies and we conclude that way.

We now prove that the chi-squared test is asymptotically powerless under (19). For one thing, this condition implies that $\text{Var}_1(D) \sim \text{Var}_0(D)$, based on (19) and the bound on R above, and also that $\mathbb{E}_1(D) - \mathbb{E}_0(D) \ll \sqrt{\text{Var}_1(D)} \lor \text{Var}_0(D)$. It therefore suffices to prove that D is asymptotically normal both under the null and under the alternative. We have $D = \sum_i Z_i^2$, where $Z_i^2 := (X_i - \lambda_i)^2/\lambda_i$, and these being independent random variables, it suffices to verify Lyapunov’s conditions. Some straightforward calculations yield

$$\mathbb{E}_0(Z_i^2 - \mathbb{E}_0(Z_i^2))^4 = \mathbb{E}_0(Z_i^2 - 1)^4 \leq C\left(1 + \frac{1}{\lambda_i} + \frac{1}{\lambda_i^2} + \frac{1}{\lambda_i^3}\right),$$

for some constant $C > 0$, and using (8), we get

$$\text{Var}_0(D)^{-2} \sum_{i=1}^n \mathbb{E}_0(Z_i^2 - 1)^4 = O(1/n^2)n = O(1/n) = o(1).$$

With some more work, and using (8), we also obtain

$$\mathbb{E}_1(Z_i^2 - \mathbb{E}_1(Z_i^2))^4 \leq C\left(1 + \varepsilon(a_i + a_i^2)\right),$$

for some constant $C > 0$, so that

$$\text{Var}_1(D)^{-2} \sum_{i=1}^n \mathbb{E}_1(Z_i^2 - \mathbb{E}_1(Z_i^2))^4 = O(1/n^2)\sum_{i=1}^n \left(1 + \varepsilon(a_i + a_i^2)\right) = o(1),$$

which is an immediate consequence of (19).

5.6 Proof of Proposition 5

When $r > (1 - \sqrt{1 - \beta})^2$, there exists a $\delta > 0$ such that $r > (\sqrt{1 + \delta} - \sqrt{1 - \beta})^2$. Define the threshold $c_n = \sqrt{2(1 + \delta)} \log(n)$. Under the null, by the union bound and Lemma 2, under (6),

\[\mathbb{P}_0(M \geq c_n) \leq \sum_{i=1}^n \mathbb{P}_0(|Z_i| \geq c_n) = n^{-\delta + o(1)} = o(1). \]

Under the alternative, define $I' := \{i : X_i \sim \text{Pois}(\lambda_i')\}$ and $p'_{i,n} = \mathbb{P}(Y_{\lambda_i'} \geq \lambda_i + c_n \sqrt{\lambda_i})$. By Lemma 2, we have

\[p'_n := \min_{i=1,\ldots,n} p'_{i,n} \geq n^{-(\sqrt{1+\delta} - \sqrt{\varepsilon})^2 + o(1)}. \]

We then derive the following

\[\mathbb{P}_1(M \geq c_n) \geq \mathbb{P}\left(\max_{i \in I'} Z_i \geq c_n \right) \]

\[= 1 - \mathbb{E}\left[\prod_{i \in I'} (1 - p'_n) \right] \]

\[\geq 1 - \mathbb{E}\left[(1 - p'_n)^{|I'|} \right] \]

\[\geq 1 - (1 - p'_n)^{\min_{i,n} \varepsilon/4} - o(1), \]

This shows the result.
where in the last line we used the fact that $|I'| \sim \text{Bin}(n, \varepsilon/2)$, so that $|I'| \geq n\varepsilon/4$ with probability tending to one. Since

$$(n\varepsilon)p_n' \geq n^{1-\beta-(\sqrt{1+\delta}-\sqrt{1-\beta})^2+o(1)} \to \infty, \quad n \to \infty,$$

because $r > (\sqrt{1+\delta} - \sqrt{1-\beta})^2$ by construction, we have $\mathbb{P}_1(M \geq c_n) \to 1$ as $n \to \infty$, as we needed to prove.

5.7 Proof of Proposition 6

We first control the size of the statistic T^* under the null. For each $z \in \mathbb{R}$, the variables $\mathbb{I}_{|Z_i| > z}, i = 1, \ldots, n$, are independent Bernoulli, with respective parameters $K_{\lambda_i}(z), i = 1, \ldots, n$. We can therefore apply Bernstein’s inequality, to get

$$\log \mathbb{P}_0 \left(\sum_i (\mathbb{I}_{|Z_i| > z} - K_{\lambda_i}(z)) > t\sigma(z) \right) \leq -\frac{\frac{1}{2}t^2}{1+\frac{3}{2}t/\sigma}, \quad \forall t \geq 0,$$

where $\sigma^2 := \sum_i K_{\lambda_i}(1 - K_{\lambda_i}(z))$. Choosing $t = 2\sqrt{\log n}$ and letting $z \in \mathbb{Z}_n$, so that $\sigma_z \geq \frac{1}{2}t$, the right-hand side is bounded by $-\frac{3}{8}\log n$. Thus, applying the union bound, we get

$$\mathbb{P}_0 \left(T^* > 2\sqrt{\log n} \right) \leq |\mathbb{Z}_n| n^{-6/5},$$

where $|\mathbb{Z}_n|$ is the cardinality of \mathbb{Z}_n. We now show that $|\mathbb{Z}_n|$ is subpolynomial in n. By Lemma 3, we have

$$K_{\lambda}(z) \leq e^{-\lambda h(1+z/\sqrt{\lambda})} + e^{-\lambda h(1-z/\sqrt{\lambda})},$$

where h is defined in that lemma, and extended as $h(t) = \infty$ when $t < 0$, so that this inequality is true for all $\lambda, z > 0$. Note that $h(1+t) = t^2/2 + O(t^3)$ when $t = o(1)$. Take $z_n = \sqrt{3}\log n$. Because of (6), uniformly in $i = 1, \ldots, n$, we have $K_{\lambda_i}(z_n) \leq n^{-3/2+o(1)}$, and in particular, $\sigma_{z_n}^2 \leq n^{-1/2+o(1)} < \log n$ eventually. Hence, by monotonicity, $z \leq z_n$ for all $z \in \mathbb{Z}_n$. In particular, $|\mathbb{Z}_n| \leq z_n$. Hence, we arrive at the conclusion that $\mathbb{P}_0(T^* > 2\sqrt{\log n}) = o(1)$.

Suppose we are now under the alternative. We focus on the case where $r < 1$, which is more subtle. Consider $z_n(q) = \lfloor 2q \log n \rfloor$, defined for any $q > 0$. By Lemma 2, when (6) and (13) hold, we have $K_{\lambda}(z_n(q)) = n^{-q+o(1)}$ uniformly over i. Hence,

$$p_{n,i}^0(q) := \mathbb{P}_0(|Z_i| > z_n(q)) = K_{\lambda_i}(z_n(q)) = n^{-q+o(1)},$$

uniformly over i. In particular, when $q \in (0, 1)$ is fixed, $\sigma_{z_n(q)}^2 = n^{1-q+o(1)} \geq \log n$, eventually, in which case $z_n(q) \in \mathbb{Z}_n$. Hence, for each fixed $q \in (0, 1)$, we have $T^* \geq T(z_n(q))$ for n large enough, and so it suffices to prove that, for some well-chosen q, $\mathbb{P}_1(T(z_n(q)) \leq 2\sqrt{\log n}) = o(1)$.

Assume $q > r$. By Lemma 2 again, this time under the alternative, and also assuming that (6) and (13) hold, then

$$K_{\lambda_i}(z_n(q)) = n^{-(\sqrt{q}-\sqrt{r})^2+o(1)},$$

uniformly over $i = 1, \ldots, n$. Hence,

$$p_{n,i}^1(q) := \mathbb{P}_1(|Z_i| > z_n(q)) = (1 - \varepsilon)K_{\lambda_i}(z_n(q)) + \frac{\varepsilon}{2} K_{\lambda_i}(z_n(q)) + \frac{\varepsilon}{2} K_{\lambda_i'}(z_n(q)) = p_{n,i}^0(q) + n^{-\beta-(\sqrt{q}-\sqrt{r})^2+o(1)}.$$
Therefore, under the null we have
\[P(\beta - 1/2 > 0) = O(1) \vee n^{-\beta + 3r + o(1)}. \]

By Chebyshev’s inequality, we have
\[\mathbb{P}_1(T(z_n(4r)) < 2\sqrt{\log n} \leq \frac{\text{Var}(T(z_n(4r)))}{(E_1(T(z_n(4r))) - 2\sqrt{\log n})^2} = O(1) \vee n^{-\beta + 3r + o(1)} \]
with
\[-1 - 2r + 2\beta < -1 - 2(\beta - 1/2) + 2\beta = 0 \text{ and } \beta + r - 1 < r + 1/2 + r - 1 < 0 \text{ since } r < 1/4.\]

Now, assume that \(r \geq 1/4, \) which together with \(r > \rho_{\text{sparse}}(\beta) \) and \(r \geq 1/4 \) implies that \(r > (1 - \sqrt{1 - \beta})^2, \) which in turn forces \(1 - \beta - (1 - \sqrt{r})^2 > 0. \) Take \(r < q < 1 \) such that \(1 - \beta - (\sqrt{q} - \sqrt{r})^2 > 0. \) Then
\[E_1(T(z_n(q))) = n^{1-\beta-(\sqrt{q} - \sqrt{r})^2+o(1)} \]
and
\[\text{Var}_1(T(z_n(q))) = n^{1-\beta-(\sqrt{q} - \sqrt{r})^2+o(1)}. \]

Thus, by Chebyshev’s inequality,
\[\mathbb{P}_1(T(z_n(q)) < 2\sqrt{\log n} \leq \frac{\text{Var}(T(z_n(q)))}{(E_1(T(z_n(q))) - 2\sqrt{\log n})^2} = n(\sqrt{q} - \sqrt{r})^2-1+\beta+o(1) = o(1). \]

5.8 Proof of Proposition 7

Consider the situation under the null. Because of Lemma 1, we have
\[\min_i p_i \geq \min_i u_i, \quad u_1, \ldots, u_n \overset{iid}{\sim} \text{Unif}(0, 1). \]

Therefore, under the null we have \(\mathbb{P}_0(\min_i p_i \leq \omega_n/n) = o(1) \) for any sequence \(\omega_n = o(1) \). Take \(\omega_n = 1/\log n. \)
Under the alternative, let \(I' = \{ i : X_i \sim \text{Pois}(\lambda'_i) \} \). Note that \(\lambda_i h(X_i/\lambda_i) \geq \log(n/\omega) \) implies

\[
p_i = P(\Upsilon_{\lambda_i} \geq X_i|X_i) \leq \frac{\omega_n}{n},
\]

where the equality is due to the fact that, necessarily, \(X_i \geq 3\lambda_i \) eventually, and the inequality comes from Lemma 3. Thus, defining \(q_i = P(\lambda_i h(\Upsilon_{\lambda_i}/\lambda_i) \geq \log(n/\omega_n)) \), we arrive at

\[
P_1(\min_i p_i > \omega_n/n) \leq P(\min_{i \in I'} p_i > \omega_n/n) \\
\leq E\left[\prod_{i \in I'} (1 - q_i) \right] \\
\leq (1 - q_{\min})^{n/4},
\]

where \(q_{\min} := \min_{i=1,\ldots,n} q_i \), and in the last line we used the fact that \(|I'| \sim \text{Bin}(n, \varepsilon/2) \), so that \(|I'| \geq n\varepsilon/4 \) with probability tending to one. Note that

\[
q_i = P(\Upsilon_{\lambda'_i} \geq b_i), \quad b_i := \lambda_i h^{-1}\left(\frac{\log(n/\omega_n)}{\lambda_i}\right),
\]

where for \(t \geq 0 \), \(h^{-1}(t) \) is defined as the unique \(x \geq 1 \) such that \(h(x) = t \). Notice that \(h^{-1}(t) \sim t/\log t \) when \(t \to \infty \). Let \(\zeta_i = \log n/\lambda_i \), so that \(\zeta_{\min} := \min_i \zeta_i \to \infty \) when (7) holds. We have

\[
b_i/\lambda_i \sim \log n/(\lambda'_i \log \zeta_i) = \zeta_i^{1-\gamma}/\log \zeta_i \geq \zeta_{\min}^{1-\gamma}/\log \zeta_{\min} \to \infty.
\]

Therefore, applying the first lower bound in Lemma 3, we get

\[
\log q_i \geq -\lambda'_i h\left(\frac{b_i}{\lambda'_i}\right) - \frac{1}{2} \log [b_i] - 1 \sim -b_i \log(b_i/\lambda'_i) \sim \frac{\log n}{\log \zeta_i} \log(\zeta_i^{1-\gamma}) = -(1 - \gamma) \log n,
\]

uniformly over \(i = 1, \ldots, n \) because \(\min_i(b_i/\lambda'_i) \to \infty \). In particular, \(q_{\min} \geq n^{\gamma-1+o(1)} \), implying that \(n \varepsilon_{q_{\min}} \geq n^{-\beta+o(1)} \to \infty \), because \(\gamma > \beta \) by assumption. We conclude that \(P_1(\min_i p_i > \omega_n/n) = o(1) \), as we needed to prove.

6 The one-sided setting

Up until now, we considered a two-sided setting, partly motivated by the important example of goodness-of-fit testing, where Pearson’s chi-squared test is omnipresent. Simpler is a one-sided setting, where instead of (1) we have

\[
X_i \sim (1 - \varepsilon) \text{Pois}(\lambda_i) + \varepsilon \text{Pois}(\lambda'_i), \quad (36)
\]

together with \(\lambda'_i = \lambda_i + \Delta_i \) and \(\varepsilon \in [0, 1] \), and address the problem (3) in this context. Such a model may be relevant in some image processing applications where the goal is to detect an anomaly in the form pixels with higher-intensity.

6.1 Dense Regime

In the dense regime where (9) holds with \(\beta < 1/2 \), we consider the same parameterization (10). Define

\[
\rho_{\text{dense}}(\beta) = \beta - \frac{1}{2}, \quad (37)
\]
Proposition 8. Consider the testing problem (3) in the one-sided setting (36), with parameterizations (9) with $\beta < \frac{1}{2}$ and (10). All tests are asymptotically powerless if

$$s < \rho_{\text{dense}}^{\text{one}}(\beta).$$

The proof is parallel to that of Proposition 1 — in fact simpler — and is omitted. We note that this detection boundary is in direct correspondence with that in the normal model (Cai et al., 2011).

In the one-sided setting, the chi-squared test does not achieve the detection boundary. However, its one-sided version does. Indeed, consider the test that rejects for large values of

$$\sum_{i=1}^{n} \frac{X_i - \lambda_i}{\sqrt{\lambda_i}}.$$

Proposition 9. Consider the testing problem (3) in the one-sided setting (36), with (8), and let $a_i = \Delta_i / \sqrt{\lambda_i}$. The test based on (39) is asymptotically powerful if (18) holds. In particular, with parameterization (9) with $\beta < \frac{1}{2}$ and (10), the test is asymptotically powerful when $s > \rho_{\text{dense}}^{\text{one}}(\beta)$.

The proof is parallel to, and in fact much simpler than, that of Proposition 4, and is omitted.

All the arguments are simpler in the one-sided setting, so much so that we are able to analysis Fisher’s method. In the one-sided setting, instead of (24), define the P-values as in (26). Note that Lemma 1 still applies.

Proposition 10. Consider the testing problem (3) in the one-sided setting (36), with (8), and let $a_i = \Delta_i / \sqrt{\lambda_i}$. Fisher’s test (based on (25)) is asymptotically powerful if

$$\varepsilon \sum_i (a_i \wedge 1) \gg \sqrt{n}.$$

In particular, with parameterization (9) with $\beta < \frac{1}{2}$ and (10), Fisher’s test is asymptotically powerful when $s > \rho_{\text{dense}}^{\text{one}}(\beta)$.

To streamline the proof, which is somewhat long and technical, we implicitly focused on the most interesting case where the a_i’s are bounded, but this is not intrinsic to the method. In fact, the test has increasing power with respect to each a_i. The technical proof is detailed in Section 6.3.

6.2 Sparse Regime

In the sparse regime, the same results apply. In particular, the detection boundary described in Propositions 2 and 3 applies. The max test — now based on $\max_i Z_i$ — and Bonferroni’s method achieve the detection boundary in the very sparse regime ($\beta > 3/4$). The higher criticism is now based on

$$T^* = \sup_{x \in X_n} T(x), \quad T(x) := \frac{\sum_i \left(1 \{X_i > x\} - G_{\lambda_i}(x)\right)}{\sqrt{\sum_i G_{\lambda_i}(x) (1 - G_{\lambda_i}(x))}},$$

with definition (26) and

$$X_n = \{x \in \mathbb{N} : \sum_i G_{\lambda_i}(x) (1 - G_{\lambda_i}(x)) \geq \log n\},$$

and it achieves the detection boundary over the whole sparse regime ($\beta > 1/2$). The technical arguments are parallel, and in fact simpler, and are omitted.
6.3 Proof of Proposition 10

Let V be the statistic (25). We seek to apply Lemma 5, which is based on the first two moments, under the null and under the alternative. In what follows, $\lambda \geq 1$ and $\lambda' = \lambda + a \sqrt{\lambda}$ with $0 < a \leq 1$ for some constant $C > 0$.

Difference in means. For $\lambda > 0$, $g_\lambda(x) = \mathbb{P}(Y_\lambda = x)$, $G_\lambda(x) = \mathbb{P}(Y_\lambda \geq x)$, and $F_\lambda(X) = -2 \log G_\lambda(X)$. We have

$$E_\lambda(F_\lambda) = -2 \sum_{x \geq 0} [\log G_\lambda(x)] g_\lambda(x) = 2 \sum_{x \geq 1} [\log G_\lambda(x - 1) - \log G_\lambda(x)] G_\lambda(x),$$

using the fact that $g_\lambda(x) = G_\lambda(x) - G_\lambda(x + 1)$ and $G_\lambda(0) = 1$. A similar expression holds for $E_{\lambda'}(F_\lambda)$, and combined, we get

$$E_{\lambda'}(F_\lambda) - E_\lambda(F_\lambda) = 2 \sum_{x \geq 1} [\log G_\lambda(x - 1) - \log G_\lambda(x)] [G_{\lambda'}(x) - G_\lambda(x)].$$

In that case, the summands are positive, since $\log G_\lambda(x - 1) \geq \log G_\lambda(x)$ by monotonicity of G_λ, and $G_{\lambda'}(x) \geq G_\lambda(x)$ by the fact that $Y_{\lambda'}$ stochastically dominates Y_λ when $\lambda' > \lambda$. To get a lower bound, we may thus restrict the sum to any subset of x’s, and we choose $x \in I_\lambda := [\lambda, \lambda + \sqrt{\lambda}]$. Since $\lambda \geq 1$, $I_\lambda \neq \emptyset$. Moreover,

$$\frac{1}{C_0} \leq G_\lambda(x) \leq C_0, \quad \forall x \in I,$$

for some universal constant $C_0 > 1$. This is a direct consequence of Lemma 4 when $\lambda \geq \lambda_0$ for some large-enough constant λ_0, and otherwise, it comes from the fact that $G_\lambda(x) > 0$ for all pairs (λ, x) such that $\lambda < \lambda_0$ and $x \in I_\lambda$, which is a finite set of pairs. We also have

$$\frac{1}{C_1 \sqrt{\lambda}} \leq g_\lambda(x) \leq \frac{C_1}{\sqrt{\lambda}}, \quad \forall x \in [\lambda - 1, \lambda + \sqrt{\lambda}],$$

for a numeric constant $C_1 > 1$. Indeed, by Stirling’s formula, we have $g_\lambda(x) \asymp x^{-1/2} \exp(-\lambda h(x/\lambda))$, where we recall that $h(x) = x \log x - x + 1$, and we have $x^{-1/2} \asymp \lambda^{-1/2}$, and also $\lambda h(x/\lambda) \asymp 1$, uniformly over $x \in I_\lambda$. We also have

$$\frac{g_\nu(x)}{g_\lambda(x)} \geq \frac{1}{C_2}, \quad \forall x \in I, \quad \forall \nu \in [\lambda, \lambda'],$$

for a numeric constant $C_2 > 1$. Indeed,

$$\frac{g_\nu(x)}{g_\lambda(x)} \geq \exp \left[- \nu + \lambda + \lambda \log(\nu/\lambda) \right] = \exp \left[- \frac{1}{2} \frac{(\nu - \lambda)^2}{\lambda} + O\left(\frac{(\nu - \lambda)^3}{\lambda^3}\right) \right] \geq \exp \left[- \frac{1}{2} a^2 + O(a^3/\sqrt{\lambda}) \right],$$

which is bounded from below when a is bounded from above. Using the fact that $\partial_x G_\lambda(x) = g_\lambda(x - 1)$, by the mean-value theorem, we also have $G_{\lambda'}(x) - G_\lambda(x) = (\lambda' - \lambda) g_{\lambda_x}(x)$, for some $\lambda_x \in [\lambda, \lambda']$, which together with the last two bounds implies that

$$G_{\lambda'}(x) - G_\lambda(x) \geq a/C_3, \quad \forall x \in I_\lambda,$$
Lemma 7

Note that for a numeric constant $C_3 > 1$. Gathering all these results, we derive

$$\mathbb{E}_\lambda(F'_\lambda) - \mathbb{E}_\lambda(F_\lambda) \geq 2 \sum_{x \in I_\lambda \cap \mathbb{Z}} \log \left[1 + \frac{1}{C_0 C_1 \sqrt{\lambda}} \right] \frac{a}{C_3} \geq \frac{a}{C_4},$$

for another constant $C_4 > 1$, because $|I_\lambda \cap \mathbb{Z}| \approx \sqrt{\lambda}$.

Variance. When $X \sim g_\lambda$, $G_\lambda(X)$ stochastically dominates $U \sim \text{Unif}(0, 1)$, and because $t \to (\log t)^2$ is decreasing on $(0, 1)$, we have

$$\mathbb{E}_\lambda(F'_\lambda^2) \leq C_5 := 4 \mathbb{E}[(\log U)^2] < \infty.$$

Let $R_{\lambda, \lambda'}(X) = g_\lambda(X) / g_\lambda(X)$. We have

$$\mathbb{E}_\lambda(F'_\lambda^2) = \mathbb{E}[F'_\lambda^2 R_{\lambda, \lambda'}] \leq 2 \mathbb{E}(F'_\lambda^2) + \mathbb{E}[F'_\lambda^2 R_{\lambda, \lambda'} 1\{R_{\lambda, \lambda'} > 2\}].$$

Note that $R_{\lambda, \lambda'}(x) > 2$ if, and only if, $x > x_+ := (\Delta + \log 2) / \log(1 + \Delta / \lambda)$. Hence,

$$\mathbb{E}[F'_\lambda^2 R_{\lambda, \lambda'} 1\{R_{\lambda, \lambda'} > 2\}] = \sum_{x \geq x_+} [\log G_\lambda(x)]^2 g_\lambda(x).$$

Lemma 7 (Bohman’s inequality, as in Sec 35.1.8 of DasGupta (2008)). For any $\lambda > 0$,

$$\mathbb{P} \left(\chi_\lambda \geq x \right) \geq \tilde{\Phi} \left(\frac{x - \lambda}{\sqrt{\lambda}} \right), \quad \forall x \in \mathbb{N}.$$

This lemma, together with Mills ratio, yields

$$\sum_{x \geq x_+} [\log G_\lambda(x)]^2 g_\lambda(x) = O(1) \sum_{x \geq x_+} \left(\frac{x - \lambda}{\sqrt{\lambda}} \right)^4 x^{-1/2} \exp[-\lambda h(x / \lambda)],$$

since, for any $x \geq x_+$, $\frac{x - \lambda}{\sqrt{\lambda}} \geq t_+ := \frac{2x - \lambda}{\lambda} \times 1/a \geq 1$. We learn in (Shorack and Wellner, 1986, Prop 1, p. 441) that $h(1 + t) \geq \frac{1}{2} t^2 (1 + \frac{1}{2} t)^{-1}$ for all $t \geq 0$. Hence,

$$\lambda h(x / \lambda) \geq \frac{(x - \lambda)^2}{2 \lambda} \geq \left(\frac{x - \lambda}{\sqrt{\lambda}} \right)^4 x^{-1/2} \exp[-\lambda h(x / \lambda)],$$

Thus

$$\sum_{x \geq x_+} \left(\frac{x - \lambda}{\sqrt{\lambda}} \right)^4 x^{-1/2} \exp[-\lambda h(x / \lambda)] \leq \sum_{x \leq 4 \lambda} \left(\frac{x - \lambda}{\sqrt{\lambda}} \right)^4 x^{-1/2} \exp \left[-\frac{(x - \lambda)^2}{4 \lambda} \right] + \sum_{x > 4 \lambda} \left(\frac{x - \lambda}{\sqrt{\lambda}} \right)^4 x^{-1/2} \exp \left[-\frac{3}{4} (x - \lambda) \right].$$

The first sum is bounded by

$$\lambda^{-1/2} \sum_{t=t_+}^{[3 \sqrt{\lambda}]} \sum_{x=[\lambda + (t+1) \sqrt{\lambda}]} \frac{(t + 1)^4}{t \leq t_+} e^{-t^2/4} \leq \sum_{t=t_+} \sum_{x=[\lambda + t \sqrt{\lambda}]} (t + 1) e^{-t^2/4} = o(1).$$

The second sum is bounded by

$$\lambda^{-5/2} \sum_{x > 4 \lambda} (x - \lambda)^4 e^{-\frac{3}{4} (x - \lambda)} = \lambda^{-5/2} \sum_{x > 3 \lambda} x^4 e^{-\frac{3}{4} x} \leq C_6,$$
for a numeric constant \(C_6 \), since \(\lambda \geq 1 \). We conclude that
\[
E_{\lambda'}(F^2_{\lambda}) \leq C_7,
\]
for some numeric constant \(C_7 \).

Conclusion. Since the test has increasing power with respect to each \(a_i \), we may assume that \(a_i \leq 1 \) for all \(i \). Let \(F_{\lambda_i} = -2 \log G_{\lambda_i}(X_i) \) and notice that \(V = \sum_i F_{\lambda_i} \) is our test statistic. We have
\[
E_1(V) - E_0(V) = \sum_i \left[E_1(F_{\lambda_i}) - E_0(F_{\lambda_i}) \right] = \varepsilon \sum_i \left[E_{\lambda_i'}(F_{\lambda_i}) - E_{\lambda_i}(F_{\lambda_i}) \right] \geq \varepsilon \sum_i \frac{a_i}{C_4},
\]
and
\[
\text{Var}_0(V) \leq \sum_i \text{E}_{\lambda_i}(F^2_{\lambda_i}) \leq nC_5,
\]
as well as
\[
\text{Var}_1(V) \leq \sum_i \text{E}_1(F^2_{\lambda_i}) \leq \sum_i \text{E}_{\lambda_i'}(F^2_{\lambda_i}) \leq nC_7.
\]
By Lemma 5, we conclude that the test is asymptotically powerful when
\[
\varepsilon \sum_i a_i \gg \sqrt{n}.
\]

7 Discussion

We drew a strong parallel between the Poisson means model and the normal means model. The correspondence is in fact exact when all the \(\lambda_i \)'s are at least logarithmic in \(n \). When the \(\lambda_i \) are smaller, we uncovered a new detection boundary in the sparse regime. We studied the chi-squared test, the max test and the higher criticism, which are shown here to have similar properties as in the normal model. Motivated by the higher criticism, we also advocated a multiple testing approach to Poisson means model, and studied emblematic approaches such as Fisher’s and Bonferroni’s methods, which are indeed shown to achieve the detection boundary in some regime/model. An open direction might be to adapt the method of Meinshausen and Rice (2006) for estimating the number of non null effects in the Poisson means model.

Acknowledgements

This work was partially supported by a grants from the US National Science Foundation (NSF) (DMS 1120888 and 1223137).

References

Arias-Castro, E. and M. Wang (2013). Distribution-free tests for sparse heterogeneous mixtures. Preprint arXiv:1308.0346.

Butucea, C., Y. I. Ingster, et al. (2013). Detection of a sparse submatrix of a high-dimensional noisy matrix. *Bernoulli* 19(5B), 2652–2688.

Cai, T. T., X. J. Jeng, and J. Jin (2011). Optimal detection of heterogeneous and heteroscedastic mixtures. *J. R. Stat. Soc. Ser. B Stat. Methodol.* 73(5), 629–662.

DasGupta, A. (2008). *Asymptotic theory of statistics and probability.* Springer.
Dembo, A. and O. Zeitouni (1998). *Large deviations techniques and applications* (Second ed.), Volume 38. New York: Springer-Verlag.

Donoho, D. and J. Jin (2004). Higher criticism for detecting sparse heterogeneous mixtures. *Ann. Statist*. 32(3), 962–994.

Dunne, A., Y. Pawitan, and L. Doody (1996). Two-sided p-values from discrete asymmetric distributions based on uniformly most powerful unbiased tests. *Statistician* 45(4), 397–405.

Holst, L. (1972). Asymptotic normality and efficiency for certain goodness-of-fit tests. *Biometrika* 59, 137–145.

Ingster, Y. I. (1997). Some problems of hypothesis testing leading to infinitely divisible distributions. *Math. Methods Statist.* 6(1), 47–69.

Lehmann, E. L. and J. P. Romano (2005). *Testing statistical hypotheses* (Third ed.). Springer Texts in Statistics. New York: Springer.

Marioni, J. C., C. E. Mason, S. M. Mane, M. Stephens, and Y. Gilad (2008). Rna-seq: an assessment of technical reproducibility and comparison with gene expression arrays. *Genome research* 18(9), 1509–1517.

Meinshausen, N. and J. Rice (2006). Estimating the proportion of false null hypotheses among a large number of independently tested hypotheses. *Ann. Statist.* 34(1), 373–393.

Morris, C. (1975). Central limit theorems for multinomial sums. *Ann. Statist.* 3, 165–188.

Shorack, G. R. and J. A. Wellner (1986). *Empirical processes with applications to statistics*. New York: John Wiley & Sons Inc.