The application of ozonated water rearranges the *Vitis vinifera* L. leaf and berry transcriptomes eliciting defence and antioxidant responses

Ana Campayo1,2,5, Stefania Savoi3,5, Charles Romieu3, Alberto José López-Jiménez4, Kortes Serrano de la Hoz2, M. Rosario Salinas2, Laurent Torregrosa3,5 & Gonzalo L. Alonso1

Ozonated water has become an innovative, environmentally friendly tool for controlling the development of fungal diseases in the vineyard or during grape postharvest conservation. However, little information is currently available on the effects of ozonated water sprayings on the grapevine physiology and metabolism. Using the microvine model, we studied the transcriptomic response of leaf and fruit organs to this treatment. The response to ozone was observed to be organ and developmental stage-dependent, with a decrease of the number of DEGs (differentially expressed genes) in the fruit from the onset of ripening to later stages. The most highly up-regulated gene families were heat-shock proteins and chaperones. Other up-regulated genes were involved in oxidative stress homeostasis such as those of the ascorbate–glutathione cycle and glutathione S-transferases. In contrast, genes related to cell wall development and secondary metabolites (carotenoids, terpenoids, phenylpropanoids / flavonoids) were generally down-regulated after ozone treatment, mainly in the early stage of fruit ripening. This down-regulation may indicate a possible carbon competition favouring the re-establishment and maintenance of the redox homeostasis rather than the synthesis of secondary metabolites at the beginning of ripening, the most ozone responsive developmental stage.

Vitis vinifera encompasses most grapevine cultivars used for table grape and wine production. Unfortunately, this species is highly susceptible to a range of fungal diseases such as downy and powdery mildews and the grey mould, respectively caused by *Plasmopara viticola*, *Erysiphe necator* and *Botrytis cinerea*. Moreover, a complex group of pathogenic fungi that attacks perennial organs is responsible for the so-called grapevine trunk diseases. To overcome the negative impacts of these pathogens on plant development and fruit quality, and avoid excessive crop losses, viticulture needs to perform intense fungicide spraying programs, especially in hot and wet weather conditions. Even organic and biodynamic approaches largely require sulfur- and copper-based formulations that may be detrimental to the soil ecosystem in the long term. The ecological and environmental sustainability is an increasing concern for consumers and more generally for society.

One way to reduce the susceptibility of *V. vinifera* to pathogens is to breed new cultivars introgressing genetic traits of resistance from American and Asian *Vitis* spp. Several breeding programs are ongoing in Europe and abroad with an increment of new resistant genotypes available. In parallel to introducing new varieties, which is a long process and often not entirely accepted by the market, other strategies like the application of bioactive natural-derived products (silicons, laminarin, potassium phosphonates, analog of salicylic acid, phytomelatonin, etc.) that act as elicitors of plant biotic stress resistance2,3, or the use of ozone (O3) have been proposed as smart approaches to control fungal diseases. Indeed, when applied in aqueous solution, ozone has been shown to suppress spore germination of the esca-associated fungus *Phaeoacremonium aleophilum* and reduce fungal development by 50% on Cabernet Sauvignon cuttings3. The use of ozonated water in integrated vineyard pest

1Cátedra de Química Agrícola, E.T.S.I. Agrónomos y de Montes, Universidad de Castilla-La Mancha, Avda. de España s/n, 02071 Albacete, Spain. 2BetterRID (Better Research, Innovation and Development, S.L.), Carretera de Las Peñas (CM-3203), Km 3.2, Campo de Prácticas-UCLM, 02071 Albacete, Spain. 3AGAP, CIRAD, INRAe, Institut Agro-Montpellier SupAgro, Montpellier University, 34060 Montpellier, France. 4Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain. 5These authors contributed equally: Ana Campayo and Stefania Savoi. *email: laurent.torregrosa@supagro.fr
management appears to be as effective as traditional chemical treatments in reducing fungal populations on leaves and grape bunches. The efficiency of ozone is thought to lie in its oxidising potential, which translates into the ability to react with numerous cellular constituents hence a broad-spectrum antimicrobial action.

Its low persistence after application makes ozone particularly attractive from an environmental point of view. This triatomic molecule is highly unstable and spontaneously decomposes into oxygen without leaving hazardous residues, with a shorter half-life in water than in the gaseous state. In aqueous solution, ozone can be broken down via a chain reaction mechanism resulting in the production of reactive oxygen species (ROS), i.e. the hydroperoxide (HO₂.), superoxide (·O₂⁻) and hydroxyl (·OH) radicals and hydrogen peroxide (H₂O₂), all contributing to the high oxidising power of ozone.

Ozone enters plant tissues through the stomata, lenticels or physical breaks in the cuticle. Then it reacts with molecules present in the apoplastic fluid, cell wall and plasma membranes, where it decomposes to produce the ROS mentioned above. Under the oxidative stress induced by ozone and derived products, plants develop defence mechanisms at the genetic, transcriptional and biochemical level, which includes the synthesis of antioxidants such as ascorbate, glutathione, enzymes like superoxide dismutases, catalases and peroxidases, and secondary metabolites like carotenoids, terpenoids and phenolics. When the detoxification capacity of plant cells is overwhelmed, cellular damage can occur.

Most research about the effects of ozone on plants has focused on the physiological changes triggered by ozone as a pollutant. However, ozone applied in aqueous solution and in a timely manner is expected to interact with plants differently than in the gaseous state, with a sufficiently high phytotoxic threshold that allows its incorporation in irrigation and spraying treatments in different crop species. Unfortunately, literature concerning the effects of ozonated water on grapevine plants is scarce and almost exclusively dedicated to analysing its effect on microbial populations, except a few recent studies describing its impact on grape and wine composition.

The microvine is a convenient model plant for performing physiological studies in a semi-controlled environment. Carrying the Vviga1 mutation, microvines exhibit a continuous flowering, simultaneously displaying all the successive stages of fruit development on a single shoot. This model has already facilitated transcriptomics approaches of the circadian cycle, high-temperature stresses, metabolomics works surveying glycosylated aroma precursors, and several berry developmental studies.

In this study, this model allowed us to characterise the early transcriptional changes triggered in grapevine leaves and berries at different ripening stages after in planta sprayings of ozonated water solutions.

Results

The balance in primary metabolites: an analytical tool to select RNA-Seq samples. At the beginning of ripening (BR), soft green berries were sampled while still in the lag phase with no visible anthocyanin accumulation in their skin. These berries just started to accumulate sugar while consuming malate (Fig. 1a). As expected, berries in the mid-ripening stage (MR) showed higher sugar concentrations (close to 1 M) and a lower amount of malic acid (Fig. 1a). Mature leaf samples (L) displayed a comparable amount of soluble sugars.
to BR, with a two-fold lower malate concentration, indicating strong differentiation between the source (leaves) and sink (berries) organs. Thanks to the measurements of sugars and acids, it was possible to gather synchronised samples26 for further RNA-Seq analysis with the aim to reduce biases in gene expression caused by the natural developmental asynchrony of grapevine berries and focus only on the early transcriptomic changes triggered by the ozonated water treatment. Indeed, biological triplicates were selected at the same sugar (glucose + fructose) concentrations for control (C) and ozonated water treatment (OW), namely 158 mM in L, 291 mM in BR, and 864 mM in MR (Fig. 1b). Malic and tartaric acids were 184 mEq and 255 mEq for L, 363 mEq and 120 mEq for BR, and 139 mEq and 103 mEq for MR (Fig. 1b), giving an average malate/tartrate ratio of 0.7, 3.0, and 1.3, respectively in L, BR and MR. No significant differences were found between conditions for sugar, acids and sample weight (Fig. 1b).

Transcriptomic overview in leaf and ripening berry. Principal component analyses were performed to visualise the global transcriptome trends (Fig. 2a–c). The first two principal components (PC1 + PC2) explained 65, 74, and 63% of the variance among samples in L, BR, and MR. C and OW samples were clearly resolved in BR, while the separation was less obvious in L and MR. The hierarchical clustering dendrogram showed the degree of similarity between the transcriptome profile of all the samples analysed (Fig. 2d). The most striking differences in the transcriptome were determined by the type of organ, i.e. leaf or berry, followed by the berry developmental stage. As before, the dendrogram showed that the C and OW BR samples grouped separately, while for L and MR the three OW replicates clustered conjointly, but one C sample was placed in a different branch than the other two.

Genes differentially expressed according to the ozone treatment were tested in the leaves and two berry developmental stages separately (Fig. 2e,f, and Supplementary Table S1). In L, the total number of DEGs was 191, with 84 up-regulated genes and 107 down-regulated. The most intense response to the treatment was observed in BR with 2006 DEGs, of which 1021 were up-regulated and 985 down-regulated. In MR, the treatment modulated the expression of 275 genes, with 207 up-regulated and 68 down-regulated. There were 43 commonly regulated DEGs between all the organs analysed, of which 40 up-regulated and 3 down-regulated. The DEGs commonly up-regulated in L, BR, and MR were mostly genes encoding heat shock proteins and chaperones, in addition to heat-stress transcription factor and galactinol synthase. Other genes among the up-regulated ones were a malate
dehydrogenase, an argonaute protein, a RuBisCO large subunit-binding protein, several peptidyl-prolyl cis–trans isomerases, a calcyclin-binding protein, a NAD transporter and a putative SERF-like protein. Conversely, in the commonly down-regulated DEGs, we observed an auxin transporter-like protein and a pectin methylesterase (Supplementary Table S1).

The lists of up- and down-regulated genes were separately screened for significant enrichment ($p < 0.001$) in Gene Ontology (GO) categories in the Biological Process (BP), Cellular Component (CC), and Molecular Function (MF). The down-regulated genes fell in a limited number of enriched categories: for example, in L there were two CC categories such as cell wall and external encapsulating structure, in BR only regulation of gene expression for the BP, while no categories were enriched in MR. Instead, a higher number of categories and subcategories were detected in the up-regulated genes (Fig. 3). In common to the three organs, several categories reported enrichment for protein folding and related categories, and response to a plethora of stresses including response to heat, response to hydrogen peroxide, response to reactive oxygen species, and response to oxidative stress (Fig. 3).

Up-regulation of heat-shock proteins and chaperones: a common response of leaves and berries. To prioritise the genes whose expression changed the most after a 90-min exposure to ozone, each list of DEGs was ranked according to their respective absolute changes in expression between C and OW (Supplementary Table S1). The overall reaction in both leaves and berries was primarily to activate rather than repress physiological processes. The highest number of genes up-regulated by the OW treatment belonged to heat shock proteins (HSPs) and chaperones, with 11 small HSP or HSP20 genes upregulated in L, 36 in BR and 28 in MR (Fig. 4). Among the HSP20 recently identified in grapevine, VviHSP20-09, VviHSP20-17, VviHSP20-22, VviHSP20-25, VviHSP20-27, VviHSP20-35, VviHSP20-36, VviHSP20-39, VviHSP20-42, and VviHSP20-44 were commonly highly up-regulated. Other HSPs of higher molecular weight such as HSP70 and HSP90 were up-regulated as well, together with a series of chaperones, such as the DNAJ homolog, calnexin and calreticulin (Fig. 4).

Interestingly, diverse heat-stress transcription factors (HSFs) were also modulated by the treatment: VviHSF-A6b was up-regulated in L, BR, and MR. VviHSF-A2 and VviHSF-B2a were up-regulated only in the berry (BR and MR). VviHSF-A3 was up-regulated in BR, VviHSF-B2b in MR, and VviHSF-A1b was the only gene down-regulated in BR. Moreover, the transcription factors multiprotein-bridging factor 1c and 1a (VviMBF1C, VviMBF1A) were up-regulated, with a noticeably strong activation of the first one in the berries. Lastly, as part of the stress response, two galactinol synthases (VviGOLS) were up-regulated in L, BR, and MR (Fig. 4).

Antioxidant homeostasis. Other categories of DEGs, identified mostly in BR, were related to the antioxidant homeostasis, which involves the scavenging of the reactive oxygen species (ROS). The ascorbate–glutathione cycle (AsA-GSH cycle) detoxifies ROS through the activity of ascorbate peroxidase (APX), monodehydroascorbate reductase (MDAR), dehydroascorbate reductase (DHR), and glutathione reductase (GR), requiring a pool of ascorbate, glutathione and NADPH. Here, one APX (Vitvi08g01143) in BR and one DHR (Vitvi13g00241) in L and BR were up-regulated (Fig. 5), indicating an enhanced turnover of the cycle under stress to scavenge O$_2$- generated H$_2$O$_2$ into water. Paradoxically, two isoenzymes encoding VTC2 (GDP-L-galactose phosphorylase), a regulatory step in AsA biosynthesis, were down-regulated in BR (Fig. 5).

Other antioxidant enzymes such as glutathione S-transferases (GSTs), catalases (CATs), peroxidases (PODs), superoxide dismutases (SODs) and redoxs (RXs) were modulated by the stress (Fig. 5). In particular, 9 GSTs were up-regulated (6 in BR and 5 in MR), while three were down-regulated in BR. Genes generally annotated...
Figure 4. Heat-shock proteins, chaperones and related transcription factors modulated by the ozonated water treatment in leaves (left column), berries at the beginning of ripening (middle column) and berries in mid-ripening (right column) are represented in heatmaps as \(\log_{2} FC(OW/C)\). Red and blue colours indicate up- or down-regulation, respectively. The coloured sidebar on the left displays the class of genes.
as CAT (3), POD (4), chaperone for SOD (1), and RX (19) were modulated by OW in the BR berry with some genes induced and others repressed.

Intense down-regulation of the cell wall-related genes and plasma membrane aquaporins. Ozonated water sprayed all over the plant surface strongly impacted the cuticle and cell wall-related genes of leaves and berries with more emphasis on the BR berry (Fig. 6). Six cuticle genes were down-regulated together with ten expansins, among which the most highly repressed were VviEXPA11, VviEXPA14, VviEXPA18, and VviEXPA19. Four cellulose synthases and ten xyloglucan endotransglucosylase / hydrolase genes were up-regulated, while seven cellulose synthase-like were down-regulated together with three pectate lyases and other pectinesterases.

Interestingly, four aquaporins were modulated by OW at the beginning of ripening: VviPIP1.1 and VviPIP2.3 located on the plasma membrane were down-regulated; on the contrary VviTIP2.1 and VviTIP3.1, whose localisation is the tonoplast, were up-regulated.

Secondary metabolism is affected only at the beginning of ripening. Antioxidant secondary metabolites like carotenoids, terpenoids and phenolic compounds can be synthesised in response to the stress. The expression level of several related genes was modulated by OW in BR berries, while no significant impact could be detected in L and MR (Fig. 7).

Genes involved in the early steps of carotenoid synthesis in grapevines such as a 15-cis-ζ-carotene isomerase (VviZISO1), a ζ-carotene desaturase (VviZDS1), a carotenoid isomerase (VviCISO1), and a lycopene β-cyclase (VviLBCY2) were down-regulated by OW in BR. Interestingly, a violaxanthin de-epoxidase (VviVDE2), involved in the violaxanthin and lutein epoxide (xanthophyll) cycles, was up-regulated. Carotenoids can be cleaved through carotenoid cleavage dioxygenases (CDD) to form volatile flavour and aroma compounds such as the C13-norisoprenoids (e.g. β-ionone and β-damascenone). The isoform VviCCD4b was up-regulated in BR, while VviCCD4a was down-regulated in MR. Lastly, neoxanthin and violaxanthin can also be cleaved by 9-cis-epoxycarotenoid dioxygenase (NCED) to form the hormone ABA; the three VviNCED were modulated with VviNCED1 up-regulated, while VviNCED2 and VviNCED3 were down-regulated together with a xanthoxin dehydrogenase (VviABA2) in BR.
Plant terpenoids are synthesised via the cytosolic MVA and the plastidial MEP pathways. In the MVA, one acetyl-CoA acetyltransferase (VviAATC) was down-regulated in ozonated BR, while a hydroxymethylglutaryl-CoA reductase (VviHMGR) was up-regulated. In the MEP, the genes encoding a 1-deoxy-D-xylulose-5-phosphate synthase (VviDXS), a geranylgeranyl pyrophosphate synthase (VviGGPPS), and a terpene synthase (VviTPS31) were down-regulated in BR. Several genes of the phenylpropanoid and flavonoid pathway were also differentially expressed by OW. In particular, two phenylalanine ammonia-lyases (VviPAL) and one trans-cinnamate-4-monooxygenase (VviC4H) were down-regulated in BR. In contrast, three caffeic acid 3-O-methyltransferases (VviCOMT) were differentially regulated with two genes down-regulated and one up-regulated. Other genes involved in the terminal steps of monolignol biosynthesis were also affected; namely, a cinnamoyl-CoA reductase (VviCCR) was down-regulated, while a cinnamyl alcohol dehydrogenase (VviCAD) up-regulated. In the same berries, two isoflavone reductases (VviIFR), implicated in the isoflavonoid phytoalexin branch pathway, were down-regulated. Lastly, the ozonation of MR berries only reduced the expression of a hydroxycinnamoyl-CoA: shikimate/quinate hydroxycinnamoyl-transferase (VviHCT) and a VviIFR. Regarding the flavonoid pathway, a flavanone 3-hydroxylase (VviF3H), a flavonoid 3′-hydroxylase (VviF3′Ha) and a leucoanthocyanidin dioxygenase (VviLD0X) were modulated by the stress in BR: the first one up-regulated, while the last two down-regulated. A caffeoyl shikimate esterase (VviCSE) and the VviF3′Ha were the only DEGs down-regulated in L. Lastly, relevant transcription factors, such as VviMYB5a, VviMYB5b, and VviMYBF1, controlling different branches of the flavonoid pathway, were down-regulated in BR.

Figure 6. Cell wall and growth-related genes modulated by the ozonated water treatment in leaves (left column), berries at the beginning of ripening (middle column) and berries in mid-ripening (right column) are represented in heatmaps as log2FC(OW/C). Red and blue colours indicate up- or down-regulation, respectively. The coloured sidebar on the left displays the class of genes. XTH: xyloglucan endotransglucosylase/hydrolase.
Discussion

Although the major use of ozone in agriculture lies in its antifungal activities, as confirmed in grapevine\(^{3,412}\), there is still a lack of information on how ozone can affect grapevine physiology and grape composition. Besides, the role of ozone in preventing or controlling infections of *Plasmopara viticola* and *Erysiphe necator*, the agents responsible for downy and powdery mildews in grapevine, has not yet been confirmed. Previous field experiments reported versatile impacts of ozonated water sprayings on the composition in phenolic and terpenoid compounds of grapes and resulting wines\(^{12–14,16}\). Such discrepancies suggest that more studies in controlled conditions (e.g. with potted plants grown in greenhouses) are needed to describe the molecular and biochemical changes induced by O\(_3\) in grapevine organs. Using the microvine model, this study represents the first transcriptomics analysis exploring the responses triggered by ozonated water spraying on grapevine leaves and fruits.

BR berries appeared incredibly responsive to ozone exhibiting the highest number of DEGs. The intense transcriptomic reprogramming at the onset of ripening, largely documented in grapevine fruit\(^{28,29}\), has also been associated with ROS accumulation\(^{30}\), whose synthesis occurs most intensively during the night\(^{18}\). Due to the method of monitoring the development of the berries and their sampling, we can reasonably assume that BR berries were very close to the H\(_2\)O\(_2\) and catalase peaks that were spotted in non-developmentally synchronised fruits\(^{30}\). The intense transcriptomic changes described here showed that endogenous ROS production previously reported at the onset of ripening is actually far from saturating in standard conditions with no stress. The observed response can also be explained by the greater variety of reactive species formed from aqueous O\(_3\), including the more potent oxidant and chain-propagating hydroxyl radical\(^6\), which can differ from the ones endogenously produced. In fact, the endogenous ripening related ROS production does not result in the cell wall and growth inhibition, as this production is suspected to occur just before or at the inception of the second fruit growth phase. Indeed, recent physiological and transcriptomic works evidenced that the less harmful hydrogen peroxide (H\(_2\)O\(_2\)) accelerated ripening in Kyoho variety\(^{31,32}\). The genes suggested by the authors to induce the early ripening were associated with the oxidative stress, photosynthesis, cell wall deacetylation and degradation. More studies are needed to decipher the possible role of ozonated water in grape ripening, knowing that H\(_2\)O\(_2\) is only one of the ROS formed by the decomposition of ozone in aqueous solution\(^6\). Berry softening marks the onset of the massive import of sugars in grapevine. Surprisingly, *VviSWEET10*, which is implicated in the unloading of phloem sucrose inside the berry\(^{25}\), was up-regulated in BR (Supplementary Table S1) together with two TIPs, aquaporins of the vacuole. But the expression of *VviHT6*, the major sucrose transporter on the tonoplast, was not affected, leaving open the question of a possible enhancement of the ripening program under ozonated water. As ozone decomposition strongly depends on pH, its decay may be faster in the cell wall and cytoplasm than in the acidic vacuole of berries at the beginning of ripening\(^{35}\).

Figure 7. Secondary metabolites genes modulated by the ozonated water treatment in leaves (left column), berries at the beginning of ripening (middle column) and berries in mid-ripening (right column) are represented in heatmaps as log\(_2\)FC(O/W/C). Red and blue colours indicate up- or down-regulation, respectively. The coloured sidebar on the left displays the class of genes.
In our dataset based on developmentally synchronised berries, some cuticle related genes were down-regulated. The degradation of this protective barrier, which leads to greater penetration of ozone into the plant cells, has been reported in growing plants and postharvest fruits exposed to ozone. Moreover, key expansins involved in the cellular expansion and growth were down-regulated with pectate lyases, pectinesterases and cellulose synthase-like genes indicating an immediate multifaceted effect unsettling the cell-wall dynamics, further exacerbated by the down-regulation of two plasma membrane aquaporins suggesting a limited water influx. Although all point toward a decrease in cell expansion, we did not observe any specific phenotypes on leaf or grape development (data not shown) in the following weeks after the treatment. This might indicate that ozone triggers only a transitory inhibition of cell wall remodelling and expansion. However, ozone has been shown to modify the composition and mechanical properties of grape skin cell walls, affecting aroma and polyphenols extraction during winemaking. The lower anthocyanin extractability observed after spraying ozonated water on grapevines may originate from the down-regulation of genes encoding pectin-degrading enzymes detected in ozonated berries.

The first coordinated response to the ozonated treatment was the induction of a plethora of HSPs and other chaperones. HSPs are involved in the cellular response to a diverse array of stresses, including oxidative. They act mainly as molecular chaperones, participating in protein folding, assembly, translocation and degradation in many normal cellular processes and maintain proteins in their functional conformations under stress conditions, preventing their aggregation and denaturation, and assisting in protein refolding. The induction of HSP transcripts in plants fumigated with ozone was first described in parsley and then confirmed in other plants such as Arabidopsis thaliana and Medicago truncatula. Using proteomic approaches, the increased expression of these proteins under ozone stress was also detected in poplar, bean, maize and rice. The induction of HSPs is under the tight control of an HSF network, with significant players VviHSF-A2 and VviHSF-A6b already reported intensified in grapevine under ozone. Moreover, transgenic Arabidopsis thaliana plants constitutively expressing the transcriptional coactivator AahB/E1c showed enhanced tolerance to environmental stresses. Here these genes were strongly up-regulated, possibly cross-regulating several plant response mechanisms to various stresses.

Plants submitted to abiotic or biotic stresses typically produce ROS, triggering oxidative stress. AsA is the most abundant antioxidant in plant cells, found in all subcellular compartments, including the apoplast, and therefore representing the first line of defence against ozone. AsA can directly scavenge ozone and different ROS and, along with glutathione in the AsA-GSH cycle, is the primary H2O2 reducing substrate operating in cytosol, chloroplasts and mitochondria of plant cells. It has been shown that the antioxidant response to the stress is genotype-dependent, with grape varieties such as Touriga Nacional able to boost the cell redox-buffering capacity with the existing AsA and GSH pools, while other varieties, like Trincadeira, need to synthesise both metabolites because of its incapacity to keep the cellular redox state at working levels. Therefore, it is not surprising that VviVTC2, the central regulator of the AsA biosynthetic pathway, was down-regulated in BR, indicating a non-need for resynthesis but a buffering capacity of the microvine coping with oxidative stress. Similarly to our results, OsVTC2 was down-regulated in ozone-exposed rice, attributing the changes in total and reduced AsA concentration to AsA turnover rather than biosynthesis, with a parallel increase of VviDHAR levels increased in order to counterbalance reduced substrate availability. In addition, this alleged reduced availability of VviVTC2 in BR berry under ozone stress could indicate a switch from the Smirnoff-Wheeler (SW) pathway to the alternative AsA biosynthetic pathway, knowing that the first one supports AsA biosynthesis in immature berries, while the alternative synthesises AsA from a methyl derivative of D-galacturonic acid released during pectin degradation as fruits ripen. Given that GDP-D-mannose and GDP-L-galactose, intermediates of the SW pathway, are also precursors of the non-cellulosic components of the plant cell wall, we can speculate that the inhibition of enzymes involved in cell wall synthesis and growth would lead to AsA sparing and in turn to reduced AsA synthesis, materialised through the down-regulation of VviVTC2.

Other critical antioxidant enzymes such as CAT, POD, SOD, RX, and GST were modulated by the stress indicating an intense redox homeostatis activity to prevent damage from ozone and its by-products. In particular, the treatment induced the expression of six out of nine GSTs detected in BR berries. This elicitor effect was also observed in MR berries, confirming previous results in ozone-exposed Arabidopsis and rice seedlings. Thiols such as GSH are versatile targets for most oxidants, including ozone, so we hypothesise that GST transcript levels increased in order to counterbalance reduced substrate availability. In addition, this alleged reduced availability of GSH may have been enhanced in the BR berry by VviDHAR up-regulation. GSTs are also necessary for the transport of anthocyanins from the cytosol to the vacuole. Consequently, a strong correlation between these proteins and anthocyanin accumulation has been found in V. vinifera, indicating a possible involvement in the increased phenolic content under ozonated water treatments.

Although many secondary metabolites are important antioxidants whose synthesis is typically induced in plants as a defence mechanism against ozone, in the early transcriptional response to the ozonated water application their pathways were generally unaffected in leaves and mid-ripening berries, with some genes down-regulated in berries starting to ripen.

Carotenoids contribute to light harvesting and protect the photosynthetic membrane against photo-oxidative damage, not only by quenching the triplet states of chlorophyll but also by scavenging ROS. A possible impairment of carotenoid synthesis through the down-regulation of VviZISO1, VviZDS1, VviCISO1 and VviLCY2 in the early ripening berry seems counter-intuitive, however, similar observations were made in different rice genotypes. The regeneration of carotenoids and xanthophylls from their oxidised radicals relies on AsA and, in addition, the violaxanthin de-epoxidase enzyme requires AsA as a cofactor. Here, the higher expression of
Two-year-old ML1 microvines were grown in 3 L pots under semi-controlled conditions in a greenhouse (Montpellier SupAgro- INRAe campus, France) with day/night temperature 25/15 °C, 1 kPa of VPD, and 12 h photoperiod. Microvine ML1, which was obtained by L. Torregrosa17, complies with relevant institutional, national, and international guidelines and legislation. Plants were managed for eight months to achieve high growth and yield. Before treatment, plants were randomly divided into two groups: four plants for the control (C) and four plants for the ozonated water treatment (OW) (Fig. 8a). To have enough surface of each OW plant (Fig. 8b), the four C vines were sprayed with the same amount of Milli-Q water daily, whereas ozonated water was prepared and sprayed on the leaves once its ORP reached 1000 mV. The entire surface of each OW plant was sprayed with ozonated water for 30 min. The four C vines were sprayed with Milli-Q water at the same time of each ozonation event. The C and OW plants were taken to the greenhouse for the entire duration of the experiment (9 am–12 pm), all C and OW plants being managed in identical conditions. Plants were brought outside the greenhouse for the entire duration of the experiment (9 am–12 pm), all C and OW plants being managed in identical conditions. Ozonated water treatment and sampling.

Ozonated water treatment and sampling. Before treatment, plants were randomly divided into two groups: four plants for the control (C) and four plants for the ozonated water treatment (OW) (Fig. 8a). To have ventilation representative of field conditions and prevent off-target ozone diffusion, plants were brought outside the greenhouse for the entire duration of the experiment (9 am–12 pm), all C and OW plants being managed in the same environmental conditions. To avoid additional stress (e.g. excessive temperature or light exposure), the experiment was done in the morning at a time when the temperature was similar to that of the greenhouse (25 °C) and the plants were kept in the shade. In addition, the plants were maintained outside for about one hour prior to treatment to allow them to adapt to the outdoor environment. Ozonated water was prepared temporarily using an ozone generator (Cosemar Ozono S.L., Spain) connected to a sprayer containing Milli-Q water at a temperature of 15 °C and a conductivity of 18.2 μS/cm. A redox meter (PCE-228-R, PCE Ibérica S.L., Spain) was used to continuously measure the millivolt (mV) oxidation–reduction potential (ORP) of the aqueous solution. One hundred fifty mL of ozonated water (once its ORP reached 1000 mV) was sprayed on the entire surface of each OW plant (Fig. 8b). The four C vines were sprayed with the same amount of Milli-Q water used for the treatment. Immediately after the spraying, plants were enclosed in plastic bags to prevent drift and measurement artifacts.
avoid too rapid ozonated water evaporation (Fig. 8c), in an attempt to mimic field conditions where the spraying is usually carried out early in the morning, at low wind. Ninety minutes after the start of the treatment, 15 single individual green berries at the beginning of ripening (BR) (+ 3 days after softening), 15 single individual berries in the mid-ripening stage (MR) (+ 18 days after softening), and two adult leaves per plant (L) located between the 30th and 40th nodes were sampled for both C and OW. Single berry samples (pericarp and seeds) and leaves were wrapped separately in aluminium foils and immediately frozen in liquid N₂. Each sample was weighed and ground into liquid N₂ using a ball mill (Retsch, Germany). The resulting powder was stored at – 80 °C, and used for primary metabolites and RNA analyses.

Primary metabolites analysis. Sugars and acids were analysed by high-performance liquid chromatography (HPLC), according to Rienth et al. Briefly, 100 mg of leaf or berry frozen powder was 5 × diluted in HCl 0.25 N and left overnight at room temperature after shaking. Samples were then centrifuged at 15,000 g for 10 min, and a supernatant aliquot was diluted 10 × with a solution of H₂SO₄ 5 mM containing 600 µM acetic acid as internal standard, before injection into the HPLC system. The statistical analysis of the data was performed with SPSS statistics software (version 23.0 for Windows, Chicago, IL, USA). The mean values of the selected samples were compared using the independent samples t-test, and the differences were considered statistically significant when the p-value < 0.05.

RNA extraction and sequencing. Three samples per treatment (C and OW) and organ (L, BR and MR) were selected for individual RNA extraction and library preparation as described in Rienth et al. Samples were sequenced on an Illumina HiSeq3000 in paired-end mode, 2 × 150 bp reads, at the Genotoul platform of INRAe Toulouse (France).

Data analysis. Raw reads were trimmed for quality and length with Trimmomatic, version 0.38. Reads were aligned against the reference grapevine genome PN40024 12X, using the software Hisat2, version 2.1.0 with standard parameters, yielding an average of 25.3 M sequence per sample (Supplementary Table S2). Aligned reads were counted using the VCost.v3 annotation with HTSeq-count (version 0.9.1), in union mode, mRNA type, nonunique all, and stranded options. Only genes with RPKM > 1 were kept for further analysis (Supplementary Table S3). Differentially expressed genes (DEGs) (FDR < 0.05) were screened with the R package DeSeq2. Overrepresented gene categories were identified with the gProfiler web-server (version 101_eg48_p14_baf17f0) with a significance threshold of 0.001. PCA and dendogram figures were drawn with RStudio (package ggplot2). Heat map figures were drawn with RStudio (package pheatmap v1.0.12).

Data availability Raw transcriptomics reads have been deposited in NCBI Sequence Read Archive (http://www.ncbi.nlm.nih.gov/sra). The BioProject is PRJNA678610.

Figure 8. Experimental setup. (a) Microvine plants in the greenhouse; (b) ozonated water spraying treatment on plants showing different berry developmental stages; (c) microvine covered with a plastic bag immediately after the treatment.
References

1. Pagliarani, C. et al. The molecular priming of defense responses is differently regulated in grapevine genotypes following elicitor application against powdery mildew. *Int. J. Mol. Sci.* 21, 6776 (2020).

2. Zhao, D., Wang, H., Chen, S., Yu, D. & Reiter, R. J. Phytomelatonin: an emerging regulator of plant biotic stress resistance. *Trends Plant Sci.* 26, 70–82 (2021).

3. Pierron, R. J. G. et al. In vitro and in planta fungicide properties of ozonated water against the esca-associated fungus *Phaeoacremonium aleophilum*. *Sci. Hortic.* 189, 184–191 (2015).

4. Raio, A., Feliciani, A., Ferri, V. & Carboni, C. Integrated vineyard management trials using ozonated and electrolyzed water. *Infowine Internet J. Enol. Vitic.* 2(6), 1–6 (2016).

5. Khadre, M. A., Yousef, A. E. & Kim, J.-G. Microbiological aspects of ozone applications in food: a review. *J. Food Sci.* 66, 1242–1252 (2001).

6. Hoigné, J. Chemistry of aqueous ozone and transformation of pollutants by ozonation and advanced oxidation processes. In *Quality and Treatment of Drinking Water* (ed. Hruby, J.) 83–141 (Springer, 1998). https://doi.org/10.1007/978-3-540-88089-5_5

7. Forney, C. F. Postharvest response of horticultural products to ozone. In *Postharvest Oxidative Stress in Horticultural Crops* (ed. Hodges, D. M.) 13–43 (Food Products Press, 2003).

8. Heath, R. L. Modification of the biochemical ways of plants induced by ozone: What are the varied routes to change? *Environ. Pollut.* 155, 453–463 (2008).

9. Vassallo, F. & Schnitzler, J. P. Abiotic stresses and induced BVOCs. *Trends Plant Sci.* 15, 154–166 (2010).

10. Castagna, A. & Ranieri, A. Detoxification and repair process of ozone injury: from O2 uptake to gene expression adjustment. *Environ. Pollut.* 157, 1461–1469 (2009).

11. Graham, T., Zhang, P., Zheng, Y. & Dixon, M. A. Phytotoxicity of aqueous ozone on five grown nursery species. *HortScience* 44, 774–780 (2009).

12. Modelli, M. et al. Effects of treatments with ozonated water in the vineyard (cv Vermentino) on microbial population and fruit quality parameters. *BIO Web Conf.* 13, 04011 (2019).

13. Campayo, A. et al. Spraying ozonated water on Boral grapevines: effect on grape quality. *Food Res. Int.* 125, 108540 (2019).

14. Campayo, A., Serrano de la Hoz, K., García-Martínez, M. M., Salinas, M. R. & Alonso, G. L. Spraying ozonated water on Boral grapevines: effect on wine quality. *Biomolecules* 10, 213 (2020).

15. Campayo, A., Serrano de la Hoz, K., García-Martínez, M. M., Salinas, M. R. & Alonso, G. L. Novel endothera-based applications of ozonated water to Boral grapevines: effect on grape quality and allergy. *J. Agronomy* 10, 1218 (2020).

16. García-Martínez, M. M. et al. Oenological characteristics of *Vitis vinifera* L. Cabernet Sauvignon grapes from vineyards treated with ozonated water. *Aust. J. Grape Wine Res.* https://doi.org/10.1111/ajgw.12454 (2020).

17. Torregrosa, L., Rienth, M., Romieu, C. & Pellegrino, A. The microvine, a model for studies in grapevine physiology and genetics. *OENO One* 53, 373–391 (2019).

18. Rienth, M. et al. Is transcriptomic regulation of berry development more important at night than during the day? *PLoS ONE* 9, e88844 (2014).

19. Rienth, M. et al. Day and night heat stress trigger different transcriptomic responses in green and ripening grapevine (*Vitis vinifera*) fruit. *BMC Plant Biol.* 14, 108 (2014).

20. Rienth, M. et al. Differential mRNA translation in *Vitis vinifera* fruit. *BMC Plant Biol.* 16, 164 (2016).

21. Sánchez-Gómez, R. et al. The Microvine, a plant model to study the effect of grapevine shoot extract on the accumulation of glycosylated aroma precursors in grapes. *J. Sci. Food Agric.* 98, 3031–3040 (2018).

22. Sánchez-Gómez, R. et al. Behavior of glycosylated aroma precursors in Microvine grapefruits after guaiacol folic application. *Sci. Hort.* 246, e1–e8 (2019).

23. Bigard, A. et al. *Vitis vinifera* L. fruit diversity to breed varieties anticipating climate changes. *Front. Plant Sci.* 9, 455 (2018).

24. Bigard, A., Romieu, C., Sire, Y. & Torregrosa, L. *Vitis vinifera* L. diversity for cations and acidity is suitable for breeding fruits coping with climate warming. *Front. Plant Sci.* 11, 01175 (2020).

25. Savoi, S., Torregrosa, L. & Romieu, C. Transcripts repressed at the stop of poehloem unloading highlight the energy efficiency of sugar import in the ripening *V. vinifera* fruit. *IndoXiv* 2021.01.19.427234, https://doi.org/10.21201/2021.01.19.427234 (2021).

26. Shahroodi, R., Torregrosa, L., Savoi, S. & Romieu, C. First quantitative assessment of growth, sugar accumulation and malate breakdown in a single ripening berry. *OENO One* 54, 1077–1092 (2020).

27. Li, X.-R., Yu, Y.-H., Ni, P.-Y., Zhang, G.-H. & Guo, D.-L. Genome-wide identification of small heat-shock protein (HSP20) gene family in grape and expression profile during berry development. *BMC Plant Biol.* 19, 433 (2019).

28. Fasoli, M. et al. The grapevine expression atlas reveals a deep transcriptome shift driving the entire plant into a maturation program. *Plant Cell* 24, 3489–3505 (2012).

29. Fasoli, M. et al. Timing and order of the molecular events marking the onset of berry ripening in grapevine. *Plant Physiol.* 178, 1187–1206 (2018).

30. Pilati, S. et al. The onset of grapevine berry ripening is characterized by ROS accumulation and lipoxgenase-mediated membrane peroxidation in the skin. *BMC Plant Biol.* 14, 87 (2014).

31. Guo, D. L. et al. Hydrogen peroxide treatment promotes early ripening of Kyoho grape. *Aust. J. Grape Wine Res.* 25, 357–362 (2019).

32. Guo, D. L., Wang, Z., Pei, M.-S., Guo, L.-L. & Yu, Y.-H. Transcriptome analysis reveals mechanism of early ripening in Kyoho grape with hydrogen peroxide treatment. *BMC Genomics* 21, 784 (2020).

33. Gardoni, D., Vailati, A. & Canziani, R. Decay of ozone in water: A review. *Ozone Sci. Eng.* 34, 233–242 (2012).

34. Hodges, D. M. *Postharvest oxidative stress in horticultural crops* (CRC Press, 2003).

35. Dal Santo, S. et al. Genome-wide analysis of the expansin gene superfamily reveals grapevine-specific structural and functional characteristics. *PLoS ONE* 8, e62206 (2013).

36. Paissoni, M. A. et al. Impact of post-harvest ozone treatments on the skin phenolic extractability of red winegrapes cv Barbera and Nebbiolo (*Vitis vinifera* L.). *Food Res. Int.* 98, 68–78 (2017).

37. Ortega-Regules, A., Ros-Garcia, J. M., Bautista-Ortín, A. B., López-Roca, J. M. & Gómez-Plaza, E. Differences in morphology and composition of skin and pulp cell walls from grapes (*Vitis vinifera* L.): technological implications. *Eur. Food Res. Technol.* 227, 223 (2007).

38. Jacob, P., Hirt, H. & Bendahmane, A. The heat-shock protein/chaperone network and multiple stress resistance. *Plant Biotechnol. J.* 15, 405–414 (2017).

39. Wang, W., Vinocur, B., Shoseyov, O. & Altman, A. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. *Trends Plant Sci.* 9, 244–252 (2004).

40. Eckey-Kaltenbach, H., Kiefer, E., Grosskopf, E., Ernst, D. & Sandermann, H. Differential transcript induction of parsley pathogen-resistance proteins and of a small heat shock protein by ozone and heat shock. *Plant Mol. Biol.* 33, 343–350 (1997).

41. D’Haese, D., Horemans, N., De Coen, W. & Guisez, Y. Identification of late O2-responsive genes in *Phaeoacremonium aleophilum*. *Infowine Internet J. Enol. Vitic.* 2(6), 1–6 (2016).

42. Puchette, M. et al. Differential mRNA translation in *Medicago truncatula* accessions with contrasting responses to ozone-induced oxidative stress. *Mol. Plant* 5, 187–204 (2012).
43. Bohler, S. et al. A DIGE analysis of developing poplar leaves subjected to ozone reveals major changes in carbon metabolism. Proteomics 7, 1584–1599 (2007).
44. Torres, N. L. et al. Gel-based proteomics reveals potential novel protein markers of ozone stress in leaves of cultivated bean and maize species of Panama. Electrophoresis 28, 4369–4381 (2007).
45. Cho, K. et al. Integrated transcriptomics, proteomics, and metabolomics analyses to survey ozone responses in the leaves of rice seedlings. J. Proteome Res. 7, 2980–2998 (2008).
46. Guo, M. et al. The plant heat stress transcription factors (HSFs): structure, regulation, and function in response to abiotic stresses. Front. Plant Sci. 7, 114 (2016).
47. Rocheta, M., Becker, J. D., Coito, J. L., Carvalho, L. & Amâncio, S. Heat and water stress induce unique transcriptional signatures of heat-shock proteins and transcription factors in grapevine. Funct. Integr. Genomics 14, 135–148 (2014).
48. Pillet, J. et al. VvGOLS1 and VvHsfA2 are involved in the heat stress responses in grapevine berries. Plant Cell Physiol. 53, 1776–1792 (2012).
49. Suzuki, N. et al. Enhanced tolerance to environmental stress in transgenic plants expressing the transcriptional coactivator multigprotein bridging factor 1c. Plant Physiol. 139, 1313–1322 (2005).
50. Carvalho, L. C., Vidigal, P. & Amâncio, S. Oxidative stress homeostasis in grapevine (Vitis vinifera L.). Front. Environ. Sci. 3, 20 (2015).
51. Fichman, Y. & Mittler, R. Rapid systemic signaling during abiotic and biotic stresses: is the ROS wave master of all trades?. Plant J. 102, 887–896 (2020).
52. Conklin, P. L. & Barth, C. Ascorbic acid, a familiar small molecule intertwined in the response of plants to ozone, pathogens, and the onset of senescence. Plant Cell Environ. 27, 959–970 (2004).
53. Potters, G., De Gara, L., Asard, H. & Horemans, N. Ascorbate and glutathione: Guardians of the cell cycle, partners in crime?. Plant Physiol. Biochem. 40, 537–548 (2002).
54. Pandey, P., Singh, I., Achary, V. M. M. & Reddy, M. K. Redox homeostasis via gene families of ascorbate-glutathione pathway. Front. Environ. Sci. 3, 1–14 (2015).
55. Carvalho, L. C., Coito, J. L., Colaço, S., Sangiogo, M. & Amâncio, S. Heat stress in grapevine: the pros and cons of acclimation. Plant Cell Environ. 38, 777–789 (2015).
56. Smirnoff, N. Vitamin C: The metabolism and functions of ascorbic acid in plants. in Advances in Botanical Research (eds. Rébeillé, F. & Douce, R.) vol. 59 pp. 109–177 (Elsevier Ltd, 2011).
57. Frei, M., Tanaka, J. P., Chen, C. P. & Wissuwa, M. Mechanisms of ozone tolerance in rice: characterization of two QTLs affecting leaf bronzing by gene expression profiling and biochemical analyses. J. Exp. Bot. 61, 1405–1417 (2010).
58. Kubo, A., Saji, H., Tanaka, K. & Kondo, N. Expression of Arabidopsis cytosolic ascorbate peroxidase gene in response to ozone or sulfur dioxide. Plant Mol. Biol. 29, 479–489 (1995).
59. Yoshiida, S. et al. Cytosolic dehydroascorbate reductase is important for ozone tolerance in Arabidopsis thaliana. Plant Cell Physiol. 47, 304–308 (2006).
60. Chen, Z. & Gallie, D. R. Increasing tolerance to ozone by elevating foliar ascorbic acid confers greater protection against ozone than increasing avoidance. Plant Physiol. 138, 1673–1689 (2005).
61. Melino, V. J., Soole, K. L. & Ford, C. M. Ascorbate metabolism and the developmental demand for tartaric and oxalic acids in ripening grape berries. BMC Plant Biol. 9, 145 (2009).
62. Fenech, M., Amaya, L., Valpuesta, V. & Botella, M. A. Vitamin C content in fruits: biosynthesis and regulation. Front. Plant Sci. 9, 2006 (2019).
63. Tamaoki, M. et al. Transcriptome analysis of O$_3$-exposed Arabidopsis reveals that multiple signal pathways act mutually antagonistically to induce gene expression. Plant Mol. Biol. 53, 443–456 (2003).
64. Enami, S., Hoffmann, M. R. & Colussi, A. J. Ozone oxidizes glutathione to a sulfonic acid. Chem. Res. Toxicol. 22, 35–40 (2009).
65. Conn, S., Curtin, C., Bézier, A., Franco, C. & Zhang, W. Purification, molecular cloning, and characterization of glutathione S-transferases (GSTs) from pigmented Vitis vinifera L. cell suspension cultures as putative anthocyanin transport proteins. J. Exp. Bot. 59, 3621–3634 (2008).
66. Edige, R., McGarvey, D. J. & Truscott, T. G. The carotenoids as anti-oxidants—a review. J. Photochem. Photobiol. B 41, 189–200 (1997).
67. Müller-Moulé, P., Conklin, P. L. & Nyogi, K. K. Ascorbate deficiency can limit violaxanthin de-epoxidase activity in Arabidopsis leaves and functions independent of binding to PSII antennae. Plant Physiol. 135, 1584–1599 (2007).
68. Alborei, A. et al. Reactive oxygen species and transcript analysis upon excess light treatment in wild-type Arabidopsis thaliana vs a photosensitive mutant lacking zeaxanthin and lutein. BMC Plant Biol. 11, 62 (2011).
69. Vickers, C. E., Gershenson, J., Lerdau, M. T. & Loreto, F. A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nat. Chem. Biol. 5, 283–291 (2009).
70. Calafiore, C., Fares, S. & Loreto, F. Volatile organic compounds from Italian vegetation and their interaction with ozone. Environ. Pollut. 157, 1478–1486 (2009).
71. Martin, D. M. et al. Functional annotation, genome organization and phylogeny of the grapevine (Vitis vinifera) terpene synthase gene family based on genome assembly, FLcDNA cloning, and enzyme assays. BMC Plant Biol. 10, 1–22 (2010).
72. Battilana, J. et al. Functional effect of grapevine 1-deoxy-D-xylulose 5-phosphate synthase substitution K284N on Muscat flavour formation. J. Exp. Bot. 62, 5497–5508 (2011).
73. Velikova, V., Tsonov, T., Pinelli, P., Alessio, G. A. & Loreto, F. Localized ozone fumigation system for studying ozone effects on photosynthesis, respiration, electron transport rate and isoprene emission in field-grown Mediterranean oak species. Tree Physiol. 25, 1523–1532 (2005).
74. Booker, F. L. & Miller, J. E. Phenylpropanoid metabolism and phenolic composition of soybean [Glycine max (L.) Merr.] leaves following exposure to ozone. J. Exp. Bot. 49, 1191–1202 (1998).
75. Göring, A. S. et al. Deciphering the role of low molecular weight antioxidants in the sensitivity of Melissa officinalis L. to realistic ozone concentrations. Ind. Crops Prod. 150, 112369 (2020).
76. Isah, T. Stress and defense responses in plant secondary metabolites production. Biol. Res. 52, 39 (2019).
77. Caretto, S., Linsalata, V., Colella, G., Mita, G. & Lattanzio, V. Carbon fluxes between primary metabolism and phenolic pathway in plant tissues under stress. Int. J. Mol. Sci. 16, 26378–26394 (2015).
78. Rienth, M., Torregrosa, L., Ardisson, M., De Marchi, R. & Romieu, C. Versatile and efficient RNA extraction protocol for grapevine berry tissue, suited for next generation RNA sequencing. Aust. J. Grape Wine Res. 20, 247–254 (2014).
79. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
80. Canaguier, A. et al. A new version of the grapevine reference genome assembly (12x.v2) and of its annotation (VCost.v3). Genomics Data 14, 56–62 (2017).
83. Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).
84. Anders, S., Pyl, P. T. & Huber, W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).
85. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

Acknowledgements
We would like to thank Marc Farnos for plant management, Sylvain Santoni and Muriel Latreille for RNAseq library preparation.

Author contributions
A.C., S.S., C.R., K.S.D.L.H., M.R.S., L.T., and G.L.A. designed the experiment. C.R. and L.T. supervised the experiment. L.T. provided the plant material. A.C. and S.S. performed the plant experiment, metabolites and RNA extraction. S.S. carried out transcriptome data analysis. A.C. and S.S. interpreted the results and drafted the manuscript. C.R., A.J.L.J., K.S.D.L.H., M.R.S., L.T., and G.L.A. critically revised the manuscript. All authors read and approved the final manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41598-021-87542-y.

Correspondence and requests for materials should be addressed to L.T.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2021