ON THE MOTIVE OF ITO–MIURA–OKAWA–UEDA CALABI–YAU THREEFOLDS

ROBERT LATERVEER

ABSTRACT. Ito-Miura-Okawa-Ueda have constructed a pair of Calabi–Yau threefolds X and Y that are L-equivalent and derived equivalent, but not stably birational. We complete the picture by showing that X and Y have isomorphic Chow motives.

1. INTRODUCTION

Let $\text{Var}(k)$ denote the category of algebraic varieties over a field k. The Grothendieck ring $K_0(\text{Var}(k))$ encodes fundamental properties of the birational geometry of varieties. The intricacy of the ring $K_0(\text{Var}(k))$ is highlighted by the result of Borisov [2], showing that the class of the affine line $[\mathbb{A}^1]$ is a zero–divisor in $K_0(\text{Var}(k))$. Inspired by [2], Ito–Miura–Okawa–Ueda [6] exhibit a pair of Calabi–Yau threefolds X, Y that are not stably birational (and so $[X] \neq [Y]$ in the Grothendieck ring), but

$$([X] - [Y])[\mathbb{A}^1] = 0 \text{ in } K_0(\text{Var}(k))$$

(i.e., X and Y are “L-equivalent”, a notion studied in [8]).

As shown by Kuznetsov [7], the threefolds X, Y of [6] are derived equivalent. According to a conjecture of Orlov [10, Conjecture 1], derived equivalent smooth projective varieties should have isomorphic Chow motives. The aim of this tiny note is to check that such is indeed the case for the threefolds X, Y:

Theorem (=theorem 3.1). Let X, Y be the two Calabi–Yau threefolds of [6]. Then

$$h(X) \cong h(Y) \text{ in } \mathcal{M}_{\text{rat}}.$$

An immediate corollary is that if k is a finite field, then X and Y share the same zeta function (corollary 4.1).

Conventions. In this note, the word variety will refer to a reduced irreducible scheme of finite type over a field k. For a smooth variety X, we will denote by $A^j(X)$ the Chow group of codimension j cycles on X with \mathbb{Q}-coefficients.

The notation $A^j_{\text{hom}}(X)$ will be used to indicate the subgroups of homologically trivial cycles. For a morphism between smooth varieties $f : X \to Y$, we will write $\Gamma_f \in A^*(X \times Y)$ for the graph of f, and $\Gamma_f^t \in A^*(Y \times X)$ for the transpose correspondence.

The contravariant category of Chow motives (i.e., pure motives with respect to rational equivalence as in [12], [9]) will be denoted \mathcal{M}_{rat}.
2. THE CALABI–YAU THREEFOLDS

Theorem 2.1 (Ito–Miura–Okawa–Ueda [6]). Let \(k \) be an algebraically closed field of characteristic 0. There exist two Calabi–Yau threefolds \(X, Y \) over \(k \) such that

\[
[X] \neq [Y] \quad \text{in } K_0(\var(K)),
\]

but

\[
([X] - [Y])[\mathbb{A}^1] = 0 \quad \text{in } K_0(\var(K)).
\]

Theorem 2.2 (Kuznetsov [7]). Let \(k \) be any field. The threefolds \(X, Y \) over \(k \) constructed as in [6] are derived equivalent: there is an isomorphism between the bounded derived categories of coherent sheaves

\[
D^b(X) \cong D^b(Y).
\]

In particular, if \(k = \mathbb{C} \) then there is an isomorphism of polarized Hodge structures

\[
H^3(X, \mathbb{Z}) \cong H^3(Y, \mathbb{Z}).
\]

Proof. The derived equivalence is [7, Theorem 5]. The isomorphism of Hodge structures is a corollary of the derived equivalence, in view of [11, Proposition 2.1 and Remark 2.3]. \(\square \)

Remark 2.3. The construction of the threefolds \(X, Y \) in [6] works over any field \(k \). However, the proof that \([X] \neq [Y] \) uses the MRC fibration and is (a priori) restricted to characteristic 0. The argument of [7], on the other hand, has no characteristic 0 assumption.

3. MAIN RESULT

Theorem 3.1. Let \(k \) be any field, and let \(X, Y \) be the two Calabi–Yau threefolds over \(k \) constructed as in [6]. Then

\[
h(X) \cong h(Y) \quad \text{in } \mathcal{M}_{\text{rat}}.
\]

Proof. First, to simplify matters, let us slightly cut down the motives of \(X \) and \(Y \). It is known [6] that \(X \) and \(Y \) have Picard number 1. A routine argument gives a decomposition of the Chow motives

\[
h(X) = \mathbb{1} \oplus \mathbb{1}(1) \oplus h^3(X) \oplus \mathbb{1}(2) \oplus \mathbb{1}(3),
\]

\[
h(Y) = \mathbb{1} \oplus \mathbb{1}(1) \oplus h^3(Y) \oplus \mathbb{1}(2) \oplus \mathbb{1}(3) \quad \text{in } \mathcal{M}_{\text{rat}},
\]

where \(\mathbb{1} \) is the motive of the point \(\text{Spec}(k) \). (The gist of this “routine argument” is as follows: let \(H \in A^1(X) \) be a hyperplane section. Then

\[
\pi^2_i := c_i H^{3-i} \times H \in A^3(X \times X), \quad 0 \leq i \leq 3,
\]

defines an orthogonal set of projectors lifting the Künneth components, for appropriate \(c_i \in \mathbb{Q} \). One can then define \(\pi^3_i = \Delta_X - \sum_i \pi^2_i \in A^4(X \times X) \), and \(h^3(X) = (X, \pi^3_X, 0) \in \mathcal{M}_{\text{rat}} \), and ditto for \(Y \).)

To prove the theorem, it will thus suffice to prove an isomorphism of motives

\[
h^3(X) \cong h^3(Y) \quad \text{in } \mathcal{M}_{\text{rat}}.
\]
We observe that the above decomposition (plus the fact that $H^*(h^3(X)) = H^3(X)$ is odd-dimensional) implies equality

$$A^*(h^3(X)) = A^*_{hom}(X),$$

and similarly for Y.

The rest of the proof will consist in finding a correspondence $\Gamma \in A^3(X \times Y)$ inducing isomorphisms

$$\Gamma_* : A^j_{hom}(X_K) \cong A^j_{hom}(Y_K) \quad \forall j,$$

for all field extensions $K \supset k$. By the above observation, this means that Γ induces isomorphisms

$$A^j(h^3(X)_K) \cong A^j(h^3(Y)_K) \quad \forall j,$$

which (as is well-known, cf. for instance [5, Lemma 1.1]) ensures that Γ induces the required isomorphism of Chow motives [1].

To find the correspondence Γ, we need look no further than the construction of the threefolds X, Y. As explained in [6] and [7], the threefolds X, Y are related via a diagram

$$\begin{array}{cccc}
D & \rightarrow & M & \leftarrow & E \\
\downarrow \pi_M & & \downarrow \rho_M & & \downarrow q \\
X & \hookrightarrow & Q & \rightarrow & F & \rightarrow & G & \leftrightarrow & Y
\end{array}$$

Here Q is a smooth 5-dimensional quadric, and G is a smooth intersection $G = \text{Gr}(2, V) \cap \mathbb{P}(W)$ of a Grassmannian and a linear subspace. The morphisms π and ρ are \mathbb{P}^1-fibrations. The morphisms π_M and ρ_M are the blow-ups with center the threefold X, resp. the threefold Y. The varieties D, E are the exceptional divisors of the blow-ups.

Lemma 3.2. Let Q and G be as above. We have

$$A^i_{hom}(Q) = A^i_{hom}(G) = 0 \quad \forall i.$$

Proof. It is well-known that a 5-dimensional quadric Q has trivial Chow groups. (Indeed, [3] Corollary 2.3) gives that $A^i_{hom}(Q) = 0$ for $i \geq 3$. The Bloch–Srinivas argument [1], combined with the fact that $H^3(Q) = 0$, then implies that $A^i_{hom}(Q) = 0.$

As $\pi : F \rightarrow Q$ is a \mathbb{P}^1-fibration, it follows that the variety F has trivial Chow groups. But $\rho : F \rightarrow G$ is a \mathbb{P}^1-fibration, and so G also has trivial Chow groups. \qed

The blow-up formula, combined with lemma [3.2], gives isomorphisms

$$i_*p^* : A^i_{hom}(X) \cong A^{i+1}_{hom}(M),$$

$$j_*q^* : A^i_{hom}(Y) \cong A^{i+1}_{hom}(M).$$
What’s more, the inverse isomorphisms are induced by a correspondence: the compositions

\[A_i^{\hom}(X) \xrightarrow{i^*p^*} A_{i+1}^{\hom}(M) \xrightarrow{p^*i^*} A_i^{\hom}(X), \]
\[A_i^{\hom}(Y) \xrightarrow{j^*q^*} A_{i+1}^{\hom}(M) \xrightarrow{q^*j^*} A_i^{\hom}(Y), \]
\[A_{i+1}^{\hom}(M) \xrightarrow{p^*i^*} A_i^{\hom}(X) \xrightarrow{i^*p^*} A_{i+1}^{\hom}(M), \]
\[A_{i+1}^{\hom}(M) \xrightarrow{q^*j^*} A_i^{\hom}(Y) \xrightarrow{j^*q^*} A_{i+1}^{\hom}(M), \]

are all equal to the identity [13, Theorem 5.3].

This suggests how to find a correspondence \(\Gamma \) doing the job. Let us define

\[\Gamma := \Gamma_q \circ \Gamma_j \circ \Gamma_i \circ \Gamma_p \text{ in } A^3(X \times Y). \]

Then we have (by the above) that

\[\Gamma^* \Gamma_* = \text{id}: A_i^{\hom}(X) \to A_i^{\hom}(X), \]
\[\Gamma_* \Gamma^* = \text{id}: A_i^{\hom}(Y) \to A_i^{\hom}(Y) \]

for all \(i \), and so there are isomorphisms

\[\Gamma_*: A_i^{\hom}(X) \to A_i^{\hom}(Y) \quad \forall i. \]

Given a field extension \(K \supset k \), the threefolds \(X_K, Y_K \) are related via a blow-up diagram as above, and so the same reasoning as above shows that there are isomorphisms

\[\Gamma_*: A_i^{\hom}(X_K) \to A_i^{\hom}(Y_K) \quad \forall i. \]

We have now established that \(\Gamma \) verifies (2), which clinches the proof.

\[\square \]

4. A COROLLARY

Corollary 4.1. Let \(k \) be a finite field, and let \(X, Y \) be the Calabi–Yau threefolds over \(k \) constructed as in [6]. Then \(X \) and \(Y \) have the same zeta function.

Proof. The zeta function can be expressed (via the Lefschetz fixed point theorem) in terms of the action of Frobenius on \(\ell \)-adic étale cohomology, hence depends only on the motive. \(\square \)

Remark 4.2. Corollary 4.1 can also be deduced from [4], where it is proven that derived equivalent varieties of dimension 3 have the same zeta function. The above proof (avoiding recourse to [7] and [4]) is more straightforward.

Acknowledgements. This note was written at the Schiltigheim Math Research Institute. Thanks to the dedicated staff, who provide excellent working conditions.
REFERENCES

[1] S. Bloch and V. Srinivas, Remarks on correspondences and algebraic cycles, American Journal of Mathematics Vol. 105, No. 5 (1983), 1235–1253,
[2] L. Borisov, Class of the affine line is a zero divisor in the Grothendieck ring, Journal of Alg. Geom. 27 no. 2 (2018), 203—209,
[3] H. Esnault, M. Levine and E. Viehweg, Chow groups of projective varieties of very small degree, Duke Math. Journal 87 No. 1 (1997), 29—58,
[4] K. Honigs, Derived equivalence, Albanese varieties, and the zeta functions of 3-dimensional varieties (with an appendix by J. Achter, S. Casalaina–Martin, K. Honigs and Ch. Vial), Proc. Amer. Math. Soc.,
[5] D. Huybrechts, Motives of derived equivalent $K3$ surfaces, Abhandlungen Math. Sem. Univ. Hamburg 88 no. 1 (2018), 201—207,
[6] A Ito, M. Miura, S. Okawa and K. Ueda, The class of the affine line is a zero divisor in the Grothendieck ring: via G_2-Grassmannians, arXiv:1606.04210,
[7] A. Kuznetsov, Derived equivalence of Ito–Miura–Okawa–Ueda Calabi–Yau 3-folds, Journal of the Math. Soc. Japan 70 no. 3 (2018), 1007—1013,
[8] A. Kuznetsov and E. Shinder, Grothendieck ring of varieties, D- and L-equivalence, and families of quadrics, Selecta Math. 24 no. 4 (2018), 3475—3500,
[9] J. Murre, J. Nagel and C. Peters, Lectures on the theory of pure motives, Amer. Math. Soc. University Lecture Series 61, Providence 2013,
[10] D. Orlov, Derived categories of coherent sheaves and motives, Uspekhi Mat. Nauk, 60 no. 6 (2005), 231—232, translation in Russian Math. Surveys 60 no. 6 (2005), 1242—1244,
[11] J. Ottem and J. Rennemo, A counterexample to the birational Torelli problem for Calabi–Yau threefolds, Journal of the London Math. Soc. 97 (2018), 427—440,
[12] T. Scholl, Classical motives, in: Motives (U. Jannsen et alii, eds.), Proceedings of Symposia in Pure Mathematics Vol. 55 (1994), Part 1,
[13] Ch. Vial, Algebraic cycles and fibrations, Documenta Math. 18 (2013), 1521—1553.

INSTITUT DE RECHERCHE MATHÉMATIQUE AVANCÉE, CNRS – UNIVERSITÉ DE STRASBOURG, 7 RUE RENÉ DESCARTES, 67084 STRASBOURG CEDEX, FRANCE.
E-mail address: robert.laterveer@math.unistra.fr
