Abstract

This paper contains the details of a distributed trust-aware recommendation system. Trust-based recommenders have received a lot of attention recently. The main aim of trust-based recommendation is to deal with the problems in traditional Collaborative Filtering recommenders. These problems include cold start users, vulnerability to attacks, etc. Our proposed method is a distributed approach and can be easily deployed on social networks or real life networks such as sensor networks or peer to peer networks.

1 Introduction

With the huge amount of growing information available these days, it is necessary to have some facilities to help users select the desired part of information they need. To satisfy this need, recommender systems have emerged, which mostly used collaborative filtering approach.

Traditionally, in a recommender system, we have a set of Users $U = \{u_1, \ldots, u_n\}$ and a set of items $I = \{i_1, \ldots, i_m\}$. Each user rates a set of items $RI_u = \{i_{u_1}, \ldots, i_{u_k}\}$. The recommender has the task to recommend some items for the given user u. Generally, Collaborative Filtering approaches for recommendations try to find users similar to u based on the similarity of other users’ ratings to the ratings of u. This is the primary approach used in recommendations. But users can also have relations with each other and each user can express a level of trust to other users (or users he knows). This relations form a social network called Web of Trust in the literature. This trust can be used to filter the recommendations based on other users’ preference list. The aim in this project is to investigate how to inject the concept of trust in recommendations.

The rest of this paper is organized as follows: In section 2 we discuss a little about the sources of trust and issues in trust based systems. In section 3, the problem will be formally defined. We also explain the motivations and challenges faced while dealing with the problem. Then, related works are discussed in section 4. We introduce our approach in section 5. The evaluation procedure is described in section 6. For this project we use a data set which will be described in section 7. Finally, we present the experimental results in section 8.

2 Trust: Where does trust values come from?

For trust to exist, there must be an expectation in our mind as to a person’s ability to carry out a dependent action, based upon a shared set of values. It’s unfair to trust that someone will fulfill your expectations if you don’t even know if you share common values. We trust people as long as they fulfill our expectations. When they do not, trust can evaporate quickly and take a much longer time to replace. Where do expectations come from? Expectations come from values. And where do values come from? We can imagine two types of sources for trust: explicit expression of trust, and implicit indication of trust. In some social networks, users explicitly indicate the users whom they trust (ePin-
In some of them, users can even express the level of trust they have on other users (FilmTrust\(^3\)). Recently, the popular social network Facebook has added the application named "cycle of trust" to its social network in which people can indicate which users they trust. As we’ve reviewed the trust networks, most of them just allow people to indicate whether they trust other users, or they don’t have any trust expressions for that user. Only a few of them (like FilmTrust) let users express fuzzy trust values.

Another source for trust is implicit trusts embedded in the social network:

- The link structure itself can show trust. When a Webpage has a permanent link to another Webpage, it could mean that the author of this page somehow trusts the author of the other page.
- In the context of WebPages, the number of page visits for a user \(U\)’s profile from user \(V\) can show the trust from \(V\) to \(U\).
- Profile similarity can also show trust. When two users have similar profiles, it means that they can trust each other. This way of inferring trust is always subject to the activity of malicious users.

2.1 Trust, Directed or Un-Directed?

From our point of view, trust is directed. Because you can trust somebody, while he/she does not trust you. So, this means that trust is different from friendship which is undirected. You can always trust somebody while he does not even know you. You trust him just because he is famous in a topic and his opinions are trusted for you. Notice that the implicit source of trust, in which we use profile similarity to infer trust, is an undirected source of trust. Because users with similar profiles trust each other, and there is no direction.

2.2 Trust, low Trust, and Distrust

There are different interpretations for real valued trusts. Mostly, in the literature, the consider the interval \([0,1]\) for trust. This means that trust value of 1 is full trust. There are two interpretations for low trust values. On one hand, some researchers consider low trust values (values close to zero) as little trust or "don’t know" expression. On the other hand, some researchers consider low values of trust as distrust. Both approaches have problems. In the first approach, we can not express distrust on users. In the second one, we expect distrust values to negatively affect the total trust. But positive values can not mathematically do that. So, the best choice is considering the interval \([-1,+1]\) for real trust values. Recently, there has been a work on propagation of trust and distrust ((Guha et al., 2004)), which I discussed about it in one the summaries. Propagation of distrust is an important issue which should be carefully considered.

2.3 Issues Affecting Trust

Generally trust in user \(u\) can depend on:

- Reference user \(v\). Trust in \(u\) can depend on the trust of user \(v\) (which we have trust to) in \(v\).
- Community based trust. A social network consists of different sub-communities. A user can be trusted and well reputed in a community, while distrusted in another community. For example as show in figure \([\text{Figure 1}]\) user \(u\) could be trusted in the left community, but distrusted in the right community of users.
- Another issue which can affect the trust is the topic. A user could be trusted in the network in which users rate movies, but the same user could be distrusted in the network in which users rate foods.

\(^2\)http://www.epinions.com
\(^3\)http://trust.mindswap.org/FilmTrust/
As the beginning steps of our research we just consider the first issue. So, we just consider the trust of u to v and transitivity of trust. We do not take into account the sub-community based or topic based trusts.

3 Problem Definition

Generally, We suppose that recommender systems take some queries as input, and the recommended items are the output to that query. Four different (but related) types of queries can be identified in a trust-based recommendation system:

1. Given a user and an item, predict the recommended rating of the user on that item.

2. For a given user, predict a set of most desired (recommended) items. This problem is somehow a general form of the first problem, but there could be different approaches for the two problems.

3. The user selects some attribute for the desired items, based on the values of those attributes the system recommends some items satisfying the attributes as much as possible (i.e. in a movie recommender system, trying to recommend action drama movies is an example of such a case).

4. Recommendation can also be used in email filtering. In this case, the recommender suggest which emails to read and which of them to filter. Its similar to spam filtering, but using the user data.

In this paper, we just consider the first type of queries which is basic and also well noticed in the literature as we discuss later. Now, it’s time to define the problem. The following paragraphs contain the formal definition of the problem, input to the system, and output shown to the user.

Basically, we have a set of users $U = \{u_1, \ldots, u_n\}$ and a set of items $I = \{i_1, \ldots, i_m\}$. Each user rates a set of items $RI_u = \{i_{u1}, \ldots, i_{uk}\}$. Each rating is a real number in $[0,1]$. Each user also has explicit trust expression about users $TU_u = \{u_{u1}, u_{ut}\}$. The trust values are also in range $[-1,1]$. In this scale, 1 means full trust, -1 means full distrust, and 0 means neutral. These trust information form a social network so called Web of trust, in which each trust expression corresponds to a weighted edge in the network.

For a given user u and an unrated item i, we seek to find the recommended (estimated) rating of the user u on this item i. The recommended rating should be estimated based on the information embedded in user ratings (the user preferences) and trust information. So, in the social network, we look for trusted users who already expressed a rating (preference) for the item, and aggregate these ratings to infer an estimated rating of the item for user u.

3.1 Motivation

With the huge amount of growing information available these days, it is necessary to have some facilities to help users select the desired part of information they need. To satisfy this need, recommender systems have emerged, which mostly used collaborative filtering approach. These recommenders still have some problems. A new user which has no rating can not use such a recommender system. Also collaborative recommender systems are subject to attacks by malicious users. So, the concept of trust has been exploited in recommenders to overcome these problems. Recently, many social networking services (like Facebook\footnote{http://www.facebook.com}) and even online marketing Websites (like eBay\footnote{http://www.ebay.com}) are using the concept of trust to rate users. Ebay has a global reputation system which users can exploit it to rate other users.

Now, if we have an automatic trust aware recommendation system, which exploits both trusts and preferences to infer a set of recommended items for a user, user can easily access the desired information he is looking for in the system.

There are also some intellectual challenges in this problem. How the trust propagates in the network? How can we infer indirect trusts? This is one of the challenges for this problem. There has been some works done in this topic. All of them have some problems. In the following sections we’ll discuss about it. Another challenge is how to combine the trust values and preference values. Also one important challenge is how to use trust values in model based recommendation. This is a big question which we will not consider now, and try to solve it in the
Three questions will be raised when we try to deal with this problem:

1. Which preferences (ratings) do we consider?
 - Which users do we consider?
 - Which paths to those users we consider?

2. What weight do we assign for the rating of each user?

3. How do we combine them into a recommendation?

To elaborate the questions, let’s look at an example. Suppose we have the following network as shown in figure 2:

In this network, we just show the ratings for item i_5. The rating is shown for the users which have expressed a rating on i_5. Now we want to find out the recommended rating on i_5 for user u. Let’s review the answers to the three questions above briefly. u has 3 direct neighbor out which only one neighbor (w) has expressed rating. So we consider w into account. Next, M has a neighbor (X) which has expressed rating. So we take X into account. V also has two neighbors (X and Z) which have expressed ratings. So totally we take $W, X, \text{and } Z$ into account. Notice that this is a naïve and graphical approach to figure out which users to consider. We’ll discuss the details of our approach to find the answer later in this proposal.

To answer the second question in this example, we should assign weights to each the three considered users ($W_x, W_w, \text{and } W_z$). In this step, we are not going to cover the solutions for this question. The general, the idea is to combine the preference similarity and trust information to infer an impact factor (weight) for each user.

The 3rd question deals with the combination of the ratings from selected users into a recommendation. One simple approach is to have a weighted sum of the ratings from users to get the estimated rating.

Now, we discuss about the approaches which could be used to answer the first question. First of all, we should figure out a method to propagate trust in the network to infer indirect trusts. There has been some works on this problem, but they all have some issues to be resolved. So the first thing to do to suggest a solution for question one is to figure out how trust propagates along the network. We are not going to the details of what we should do. But this is an important problem we should resolve as our first step. To deal with the first question, we can use three approaches:

1. **K-Nearest neighbor approach**

 In this approach, we have a fixed constant k, which shows the number of neighbors to be considered. We start from u and walk through edges between users to visit new users. We select the first k users which have already expressed ratings for the item we are looking for the rating. The visit could be done either depth-first or breadth-first. The depth-first search approach has obvious problems, since it usually ignores the closer neighbors of u. In the breadth-first approach, also we may loose some neighbors which are far from u in the network, but the path along u to that neighbor is almost fully trusted. What we can do is walk through the network until we reach a user which has expressed rating (This is the approach used in the example we discussed earlier). This approach
also could lead to some undesired situations as shown in figures 3 and 4.

2. Trusted users which are trusted above a threshold.

What we have in mind is to have a threshold for the inferred trust on the users we visit while we are walking through the network. We go deeper in the network until the trust on the user we are visiting drops below a certain threshold. Notice that we go deeper regardless of whether the user has express rating or not.

We should just figure out an appropriate way to infer indirect trust. There are some issues which should be considered:

- How does trust propagate along a path? Longer paths should have lower impact. This could be done by a damping factor?. Typical trust propagation just use the multiplication of trust values along the path.

- How to aggregate the trusts among multiple paths toward a user. There has been some works in this area, but they have some fundamental problems. One issue we should consider in mind is that if we have for example two paths to the target user as shown in figure 5. In figure 5 one path is a fully trusted path, and the other path is almost not-trusted. The fully trusted path tells us that we can trust C, but the weakly trusted path will affect the total trust (which is not appropriate). So, our approach should be set in a way that these paths do not affect the total user very much.

3. Variance based approach

An interesting approach could be to consider all indirect neighbors of user u which have ratings for the item i until the variance among the ratings gets low enough (which means the recommendation would be confident enough). There are some issues in this approach. First of all, we can not just consider the variance in ratings, because there could be some distrusted neighbors which have ratings far from average. We should also take the trust into account. So, we should consider the variance in a measure which should be an aggregation among trust and rating. To have enough neighbors, we could also assign a minimum for the size of neighborhood. We should be really careful while using this approach. When we grow the size of neighborhood, it’s not necessary that the variance gets lower. But, maybe if we consider both trust and rating, since we assume the trust has normal distribution, we could get results.

The general question is: how to propagate trust? on one path or combining multiple paths? Should weakly trusted paths reduce the trust in a person even if there is a strongly trusted path to that same person? Considering just one path may cause losing a lot of information. So, we try to consider multiple paths leading to the target user. But, the question is how to combine them? As discussed above,
weakly trusted paths should not affect the total trust much. One idea for aggregation is using the maximum trusted path. There also has been a matrix based approach in a paper (Guha et al., 2004), in which they try to formalize the trust values in matrix. They use the matrix multiplication for trust propagation. The approach is really naive and needs a lot of enhancements to meet our requirements. Also it is really time consuming.

4 Related Works

Recently, there has been some works on trust propagation, and using trust information for recommendation. In the following subsection, we’ll review some of the most well known works.

4.1 Tidal Trust and its application in recommendation

The problem definition in Jennifer Golbeck’s PhD thesis (Golbeck, 2005) is the same as the problem we have in mind. She explains an algorithm named TidalTrust to infer trust and exploits it for recommendation. TidalTrust is a modified breadth-first search. The source’s inferred trust rating for the sink ($t_{source,sink}$) is a weighted average of the source’s neighbors’ ratings of the sink (see the formula). The source node begins a search for the sink. It polls each of its neighbors to obtain their rating of the sink. If the neighbor has a direct rating of the sink, that value is returned. If the neighbor does not have a direct rating for the sink, the neighbor queries all of its neighbors for their ratings, computes the weighted average as shown in formula, and returns the result. Each neighbor repeats this process, keeping track of the current depth from the source. Once a path is found from the source to the sink, a depth limit is set. Since the search is proceeding in a Breadth First Search fashion, the first path found will be at the minimum depth. The search will continue to find any other paths at the minimum depth. Once this search is complete, the trust threshold (max) is established by taking the maximum of the trust paths leading to the sink. With the max value established, each node completes the calculations of a weighted average by taking information from nodes that have rated at or above the max threshold. Those values are passed back to the neighbors who queried for them, until the final result is computed at the source.

$$t_{i,s} = \frac{\sum_{j \in adj(i)} t_{i,j} \geq \text{max} \cdot t_{j,s}}{\sum_{j \in adj(i)} t_{i,j} \geq \text{max}}$$

The “Recommended Rating” is personalized using the trust values for the people who have rated the film (the raters). The process for calculating this rating is very similar to the process for calculating trust ratings in TidalTrust. First, the system searches for raters that the source knows directly. If there are no direct connections from the user to any raters, the system moves one step out to find connections from the user to raters of path length 2. This process repeats until a path is found. The opinions of all raters at that depth are considered. Then, using TidalTrust, the trust value is calculated for each rater at the given depth. Once every rater has been given an inferred trust value, only the ones with the highest ratings will be selected; this is done by simply finding the maximum trust value calculated for each of the raters at the selected depth, and choosing all of the raters for which that maximum value was calculated. Finally, once the raters have been selected, their ratings for the movie (in number of stars) are averaged. For the set of selected nodes S, the recommended rating r from node s to movie m is the average of the movie ratings from nodes in S weighted by the trust value t from s to each node:

$$r_{s,m} = \frac{\sum_{j \in S} t_{s,j} r_{j,m}}{\sum_{j \in S} t_{s,j}}$$

One thing which should be mentioned about Golbeck’s work is ignoring the profile similarities among users and relying just on trust network.

4.2 Works done by Paolo Massa using MoleTrust trust metric

In Massa’s work during his PhD (Avesani et al., 2005)(Massa and Avesani, 2007a)(Massa and Avesani, 2007b), two matrices are given to the system as input data. The rating matrix ($N \times M$), and trust matrix ($N \times N$). He uses a trust propagation algorithm (MoleTrust) to infer the indirect trust values, and the trust matrix will be updated with inclusion of indirect trust values. Using the rating matrix and Pearson Correlation, he builds an $N \times N$ matrix for User Preference Similarity. He uses a snapshot of the dataset and performs the whole process of calculating the indirect trust values on that snapshot.

MoleTrust predicts the trust score of source user
on target user by walking the social network starting from the source user and by propagating trust along trust edges. Intuitively the trust score of a user depends on the trust statements of other users on her (what other users think of her) weighted by the trust scores of those users who issued the trust statements. The idea is that the weight by which the opinion of a user is considered depends on how much this user is considered trustworthy. Since every trust propagation starts from a different source user, the predicted trust score of a certain user A can be different for different source users. In this sense, the predicted trust score is personalized.

Basically, the MoleTrust trust metric can be modeled in 2 steps. Step 1 task is to remove cycles in the trust network and hence to transform it into a directed acyclic graph. Step 2 consists of a graph walk starting from source node with the goal of computing the trust score of visited nodes.

Now, for a specified item \(i \), they use the following formula to calculate the predicted rating on it for the user \(a \):
\[
p_{a,i} = \bar{r}_a + \frac{\sum_{u=1}^{k} w_{a,u}(r_{a,i} - \bar{r}_a)}{\sum_{u=1}^{k} w_{a,u}}
\]

Neighbors can be taken from the User Similarity matrix or from the Estimated Trust matrix and the weights \(w_{a,u} \) are the cells in the chosen matrix. For example, in the first case, the neighbors of user \(i \) are in the \(i \)th row of the User Similarity matrix. They also mention that a combination of these two matrices can be used, but they don’t do that.

The main weakness we see in his approach is the time complexity of the algorithm he uses. \(N \) and \(M \) are large values and calculating the whole trust and similarity values are really time consuming. Moreover, they do not consider the smallness of the neighborhood of users which have expressed ratings for that item.

The experimental results show that the improvement of accuracy comparing to CF algorithms is not very much, but the coverage is improved by 20% in their algorithm. The reason for tiny improvement in accuracy could be ignoring the fact that the number of ratings for each item is very low in average.

The most interesting part of their approach is the improvement in coverage for cold start users. He does the whole task of the recommendation offline (meaning that they just use a snapshot of the network), and that’s the reason he used the smaller basic dataset, rather than the extended dataset because the time complexity is very large. It seems that his work is mostly for cold start user, and improving the coverage for them.

The final point we should mention is the similarity of MoleTrust and TidalTrust. Both algorithms follow the same idea, but with different approaches. Actually, our approach will also follow a similar idea but with a different approach to enhance the efficiency of trust calculation.

4.3 Advogato Trust Metric by Levien in UC Berkeley

The Advogato maximum flow trust metric has been proposed by Levien and Aiken (Levien and Aiken, 2002) in order to discover which users are trusted by members of an online community and which are not. Hereby, trust is computed by a centralized community server and considered relative to a seed of users enjoying supreme trust. However, the metric is not only applicable to community servers, but also to arbitrary agents which may compute personalized lists of trusted peers and not one single global ranking for the whole community they belong to. In this case, the agent itself constitutes the singleton trust seed.

The input for Advogato is given by an integer number \(n \), which is supposed to be equal to the number of members to trust, as well as the trust seed \(s \), being a subset of the entire set of users \(V \). The output is a characteristic function that maps each member to a Boolean value indicating trustworthiness.

Capacities \(C_V : V \to N \) are assigned to every community member \(x \in V \) based upon the shortest-path distance from the seed to \(x \). Hereby, the capacity of the seed itself is given by the input parameter \(n \) mentioned before, whereas the capacity of each successive distance level is equal to the capacity of the previous level \(l \) divided by the average outdegree of trust edges \(e \in E \) extending from \(l \). The trust graph obtained hence contains one single source, which is the set of seed nodes considered one single “virtual” node, and multiple sinks, i.e., all nodes other than those defining the seed. Capacities \(C_V(x) \) constrain nodes. In order to apply Ford-Fulkerson maximum integer network flow, the underlying problem has to be formulated as single-source/single-sink, having
capacities \(C_E : E \rightarrow N \) constrain edges instead of nodes. Hence, following algorithm is applied to the old directed graph \(G = (V, E, C_V) \), resulting in a new graph structure \(G' = (V', E', C_{E'}) \).

Eventually, trusted agents \(x \) are exactly those peers for which there is flow from “negative” nodes \(x^- \) to the super-sink. An additional constraint needs to be introduced, requiring flow from \(x^- \) to the super-sink whenever there is flow from \(x^- \) to \(x^+ \).

This approach is interesting. But it needs that we know the whole structure of the network, which is not feasible in real world networks. It cannot be run locally, because the transformation of the network needs the complete knowledge of the network.

4.4 AppleSeed Trust By Ziegler

This is the main work Ziegler has done in his PhD thesis (Ziegler, 2005). In contrast to Advogato, being inspired by maximum network flow computation, the basic intuition of Appleseed is motivated by spreading activation models.

The idea is similar to the idea for search in contextual graphs. Source node \(s \) to start the search from is activated through an injection of energy \(e \), which is then propagated to other nodes along edges according to some set of simple rules: all energy is fully divided among successor nodes with respect to their normalized local edge weight, i.e., the higher the weight of an edge \((x, y) \in E\), the higher the portion of energy that flows along that edge. Furthermore, supposing average outdegrees greater than one, the closer node \(x \) to the injection source \(s \), and the more paths leading from \(s \) to \(x \), the higher the amount of energy flowing into \(x \).

In the AppleSeed algorithm, they also have a decay factor \(d \). Hereby, let \(\text{in}(x) \) denote the energy influx into node \(x \). Parameter \(d \) then denotes the portion of energy \(\text{din}(x) \) that the latter node distributes among successors, while retaining \((1 - d)\text{in}(x)\) for itself.

One problem we see in this approach is that, they assume the trust to be additive. Suppose we want to compute the trust from source to target. There are many weakly trusted paths to target, which according to their algorithm sums up to high trust value. But, this is not intuitive.

4.5 The trust-based recommender proposed by researchers in ETHZ

This research (Walter et al., 2008) is the most recent work in this field. In this work, they present a model of a trust-based recommendation system on a social network. The idea of the model is that agents use their social network to reach information and their trust relationships to filter it. They investigate how the dynamics of trust among agents affect the performance of the system by comparing it to a frequency based recommendation system.

Their model consists of Agents, objects, and profiles. When facing the purchase of an item, agents query their neighborhood for recommendations on the item to purchase. Neighbors in turn pass on a query to their neighbors in case that they cannot provide a reply themselves. In this way, the network replies to a query of an individual by offering a set of recommendations. One way to deal with these recommendations would be to choose the most frequently recommended item. However, because of the heterogeneity of preferences of agents, this may not be the most efficient strategy in terms of utility. Thus, they explore means to incorporate knowledge of trustworthiness of recommendations into the system.

They use the discrete values of 1 and -1 for agent’s ratings over items. They also use a naïve approach to propagate the trust in network to infer indirect trusts. They just multiply the trust values along the path between the source and target agent. We can identify two problems with this approach. First of all, in a path between the source and target agent, the edge closer to the source should have more impact on the indirect trust value. Second, what if there are multiple paths between source and target?

For deciding what items to recommend they find the probability for recommending each item among the set of selected items. Then they recommend each item with the probability associated with it. It seems a little weird to us to have different recommendations for an agent in two consecutive queries for recommendations. Also we believe user acceptance of this approach is not very good since they feel inconsistency among recommendations. What they do is that they find a probability for each item to be recommended. Then they sample a set of items to be
recommended from the whole items according to the probabilities associated with each item. Maybe explaining the probabilities of each item in a user friendly manner would be more appropriate.

5 Our Proposed Method

As discussed in previous section, there are some issues with each approach in literature which should be dealt in a smart way. We briefly review the problems with each approach in the following.

- **MoleTrust Used by Massa**
 - This approach works just on a snapshot of the network. So this approach can not catch the network evolution and updated in trust values.
 - The time complexity of this approach is very high. For each query, we have to multiply big matrices.

- **TidalTrust by Golbeck**
 - This approach also has the problem of time complexity. For each query, we should traverse a huge part of the network to find the appropriate node having the rating. The reason is that for each user and each item we have to look among the whole users at a certain depth of the network from user’s point of view.
 - In this approach, when we reach a node having the rating, we just consider the nodes at this depth. This is a very strict constraint, which may lead to have just one node having the rating (at that depth).

- **Advogato by Lenien**
 - The parameter n is an extra input which is hard to tune.
 - This approach just recommend which users to trust. There is no trust value associated with users.
 - We have to have a complete knowledge of the network to be able to assign the capacities for each query.

- **AppleSeed by Ziegle**
 - This approach assumes that trust is additive. This is an incorrect assumption. Suppose we want to compute the trust from source to target. There are many weakly trusted paths to target, which according to their algorithm sums up to high trust value. But, this is not intuitive.

- **The model proposed by researchers in ETHZ**
 - They do not consider a damping factor for trust along the path. This is also a problem with Massa’s approach and Golbeck’s Tidal Trust.
 - The way they output the result based on the probability of each item to be recommended is weird. User can not accept different result for the same query.

To deal with these issues and having an approach which has as few issues as possible, we propose a distributed approach which will be explained in the following paragraphs.

Generally, we use the following approach in our first project. The approach is in two steps:

1. We find the neighborhood of trusted users who have ratings for the item. This neighborhood contains users $U_n = \{u_1, ... u_k\}$, and for each user u_i, we have the inferred trust value t_i.

2. Now, we should aggregate the ratings from different users in neighborhood to find a recommended rating for the item

As discussed in related work section, the approaches used by Golbeck and Massa follow similar ideas. They just differ in minor details. What we have in mind is very similar to their idea. The essential consideration in this approach is locally feasibility of this approach. Let’s first explain the approach.

Suppose we have a user X and another user Y. We want to compute the trust from X to Y. Then we define $N_{(X,Y)} = \{i \in \text{direct neighbours of } X | trust_{(X,i)} > 0 \text{ and } i \text{ has trust values for } Y\}$. The constraint of trusts in neighbors to be positive is for distrust values. In our approach we try to also take distrust into account (Although our data set does not contain distrust values). Distrust propagation has received
very few attention in literature, and none of the approaches described in related works section consider distrust. For distrust propagation we just consider distrust to Y from trusted neighbors of X; because distrust values acquired by distrusted neighbors are meaningless.

Now, the trust value from X to Y would be:

\[
\text{trust}(X,Y) = \frac{\sum_{i \in N_{(X,Y)}} \text{trust}(X,i) \lambda \text{trust}(i,Y)}{\sum_{i \in N_{(X,Y)}} \text{trust}(X,i)}
\]

(1)

The damping factor \(\lambda\) penalizes the long paths to Y. At the beginning, only the trust values for direct links are set, and not all direct neighbors have trust values for Y.

So, what we do is, before asking the neighbors about their trust values on Y we do an iterative procedure to augment the network so that each user also has the indirect trust values. This procedure can be done periodically to maintain the network up to date. In each iterations, each user asks its direct neighbors for their most up to date neighborhood (both direct and indirect). Aggregating these trust values, the user will update its neighborhood to catch the most up to date changes in trust network. The trust from indirect neighbors will be gradually propagated in iterations.

To accomplish the above mentioned procedure, each node should keep track of its direct and indirect neighbors. Also it should store the pointer to node to which it has trust expressions. This needs some resource, which can be handled by applying threshold on trust of trusted users. The threshold could be a user defined threshold on the trust to neighbors. Since the information required for each node is around 3-4 bytes, the total extra resource required would be just a couple of megabytes, which is worth the advantage of being fast in responding.

After finding the trust values (which make take some iterations for convergence of the trust values), we have the whole indirect trust values. When a new direct trust value is inserted in to the network, the new trust value will be propagated through the network when updating the network in iterations. So, one important advantage of this algorithm is being adaptable to network evolution and new links and ratings in the network.

As you can see, the idea is similar to idea used in TidalTrust and MoleTrust, but the approach to implement is more efficient so that the procedure can even be implemented in parallel. This idea is also very useful in peer to peer network. The efficiency we claim is on time efficiency. As stated by Massa, it took 7 days for him to perform the experiments, which is quite a long time for a real application. We believe by sacrificing some space, we could get much better time efficiency.

The most important motivation for using this approach is its application in distributed networks. In distributed networks, there is no central database to make the recommendation, and each user has local access to its neighbors only. So using an iterative approach to store the indirect neighbors makes a lot of sense in distributed network for efficiency. In other word, our approach is similar to Massa’s approach in the sense that it tries to compute the trust between all pairs. But unlike Massa’s approach, we do it in parallel, and store the trust values in distributed resources, rather than a central matrix.

To clarify our proposed method, let’s discuss an example. Suppose we have a trust network as shown in figure 6. The boxes in the figure show the neighborhood for each user. Each pair in the box shows a neighbor and the trust value for that neighbor. At the beginning, the neighborhood is just the direct neighbors. Running the first iteration, the neighborhoods would be updated as shown in figure 7. The pairs shown in red are the new trust values inserted in the network. Now, if we run the second iteration, we’ll get the network as shown in figure 8. The pairs in blue are trust values updated in this iteration. This is the final iteration, and running any more iteration will not change the network.

Now, having the enhanced network, to recommend a rating for an item a, we use the following procedure:

\[
N_{(X,a)} = \{i \in \text{members of neighbourhood who have ratings for item } a\}
\]

\[
\text{RecommendedRating}_{X,a} = \frac{\sum_{Y \in N_{X,a}} \text{trust}(X,Y) \times r_{Y,a}}{\sum_{Y \in N_{X,a}} \text{trust}(X,Y)}
\]

(2)
We can also define a confidence value, which shows how confidence we are for our rating as follows:

\[
\text{Confidence}_{X,a} = \frac{\text{Average}_{y \in N_{X,a}} \{\text{trust}(X,Y)\}}{\text{Variance}_{y \in N_{X,a}} \{r_{Y,a}\}}
\]

(3)

6 Evaluation

There is a general approach in recommendation which can be used in our approach. This approach is named "leave-one-out". In this approach, we omit one of the ratings from a user profile, and ask the system to predict the rating. Precision and recall can be used for accuracy of prediction.

Also the same approach can be used for trust propagation. We can just remove one trust expression (an edge in the graph), and ask the system to predict the trust value based on the rest of the network. The definition of precision is straightforward in this context.

For recall, notice that some preferences or trust values cannot be predicted. So the recall value is simply the fraction of trust values which can be predicted.

To have some works to compare our work with those, we will also implement the works done by Golbeck and Massa.
7 Data Set Specification

The dataset was crawled from Epinions website by Paolo Massa in his PhD thesis. The dataset contains

- 49,290 users who rated a total of
- 139,738 different items at least once, expressing
- 664,824 ratings.
- 487,181 issued trust statements.

According to the above statistics, we can infer the following results:

- Each user has 10 neighbors in average.
- Each user has expressed 15 ratings in average.
- Each item has around 5 ratings in average.

The first two results are reasonable. But, the third one is really surprising. It means that, on average, the neighborhood for each user for a specified item is at most 5 (ignoring the trust threshold for neighbors). This will cause problems for our approach. Since we are first building the neighborhood and then using the neighborhood to predict the rating, small neighborhoods cannot help us. They just increase the time complexity of our neighborhood building procedure. That’s the reason we proposed an iterative approach which leads to finding the indirect neighbors very fast.

8 Experiments with TidalTrust

We implemented the TidalTrust algorithm using Java 1.6. The DBMS we used is MySQL 4.1.16. While running the algorithm, we face some problems. In Golbeck’s algorithm we search the graph in a breadth first manner to find a user having the rating for the specified item. This user is at a depth \(d \). Now, if the depth is 1, the algorithm finds the result in about 150ms. But, as soon as for a recommendation query we need to go further in depth two, the running time would be around 5 seconds. This gets exponentially worse when \(d = 3 \). In this case it takes 15 minutes in average to compute the results, which is not acceptable. Obviously the problem would be worse for bigger values of \(d \). Apparently, one reason for this problem is Java, and how Java handles connection to database. (We even tried changing the database and working on SQLServer, but the problem got worse there).

But still, for the case \(d = 3 \), the algorithm needs around 50000 queries to database, which seems unacceptable for a single recommendation query for a pair of user and item. So, we designed a Cache, which cached each query to database. In this case after a while there was no need to access database; all we needed was already in the Cache. Notice that we could just turn cache off to directly communicate with database in each recommendation query. But for an experiment with more than 600000 pairs of \(\langle \text{user}, \text{item} \rangle \), it would take like one year. Even with using the cache, it took 72 hours of continuous running of the application with CPU usage of 50\%, and memory usage of 500MB.

In the following subsections, we first discuss some basic results. Then we evaluate the result with approaches presented in Golbeck and Massa’s works.

8.1 General results

Our data set just contains binary trust values. Since the TidalTrust does not have any damping factor, the recommended rating would be the average of ratings from users at a specified depth. So, the TidalTrust algorithm does not work properly in this data set. Also, the number of users having the rating at the specified depth is usually a percentage of the whole users having the rating, which leads to losing some information. Lacking the damping feature is a big issue in Golbeck’s work which can be resolved by applying damping factor.

Table 1 shows the distribution of the depth at which we find a rating for that item. Depth=-1 means that we could not find any other ratings for that item. This is one potential drawback to creating recommendations based solely on relationships in the social network is that a recommendation cannot be calculated when there are no paths from the source to any people who have rated a movie. This case is rare, though, because as long as just one path can be found, a recommendation can be made. In the FilmTrust network, when the user has made at least one social connection, a recommendation can
be made for 95% of the user-movie pairs. But, as you can see in table 1, 24.35% of \(\text{user, rating}_c\) pairs were unique, and the algorithm was not able to recommend a rating for that pair, which is much worse than the case in FilmTrust network. This is so called the coverage of the ratings which can be predicted by the system (75.65%). We’ll discuss the coverage in detail later in this paper.

Also, this table can be some used to approximate the diameter of the network. According to this table most of the paths in the network are at most of length 5, which leads to a diameter of five. This diameter is less than the general diameter for social networks (6). This means that this network is a dense network. To clarify the implication of the diameter, we define a metric called max-depth. Max-depth is the maximum depth a user needs to investigate to find a rating for on the item it rates. Figure 9 shows the distribution of max-depth among users. This figure also shows that most users find the rating for an item in depth less than or equal to six.

As mentioned earlier, the nature of the TidalTrust will lead to losing some of the ratings for an item. Because all the ratings for an item are not at the same depth, and this leads to ignoring some of them. For each recommendation query, we define a rating-recall metric which is equal to the percentage of ratings for that item considered for the recommendation. Table 2 and figure 10 show the detailed distribution of the recall. According to the diagram, the average percentage of ratings considered to recommend a rating is 19.36% which is a pretty low percentage and shows information loss.

Table 1: Distribution of the depth the item is found for a simple query

Depth	Ratings
-1	157392
1	175124
2	208088
3	86190
4	17463
5	1960
6	130
7	15

Figure 9: The distribution of the max-depth among users.

Figure 10: The detailed distribution of the rating-recall. The average recall is 19.36%

8.2 Experimental Results for TidalTrust

As mentioned in Evaluation section, the main approach for evaluation the result is the "leave-one-out" method. In this case, for each rating expressed by a user, we’ll have an absolute error which is the difference between the actual rating and the recommended rating. Since the ratings are in range \([1..5]\), the absolute error value range from zero to 4.

Figure 11 shows the distribution of errors in TidalTrust Experiment. As shown in the diagram, most of errors are in range \([0..1]\) which looks like a promising result. But, as discussed in Golbeck’s thesis (Golbeck, 2005), this is just because of the nature...
of the social networks, in which people tend to rate items close to the average rating for that item.

Golbeck mentions that the point of the recommended rating is more to provide useful information to people who disagree with the average. In those cases, the personalized rating should give the user a better recommendation, because we expect the people they trust will have tastes similar to their own. The difference between the user’s actual rating and the average rating is called Δa. Users who disagree with average have large values of Δa for their rating. She also defines Δr as the difference between the actual rating and the recommended rating. As the base method, she uses Automatic Collaborative Filtering (ACF). So, she defines Δcf as the difference between a user’s actual rating of a film and the ACF calculated rating.

Defining a threshold on the Δa of ratings being considered in evaluation, we’ll get different sets of users to be considered in our evaluation. Golbeck compared three recommendation methods (TidalTrust, Simple Average, and ACF) considering these threshold as shown in figure 12 (taken from her thesis), TidalTrust works much better than the other two methods when the threshold (minimum Δa gets larger). These results are for the data set FilmTrust.

We applied the same evaluation metric for TidalTrust on our experiment. Figure 13 show the results of the experiments of TidalTrust on Epinions. Although, as mentioned before, TidalTrust on Epinions works more or less like averaging. But since it looses some of the ratings (which Golbeck claimed these items are far away from the user and should not be considering -without taking the trust value of the path into account-), we compared the two algorithms. As you can see in the figure, the difference between TidalTrust is very low on all thresholds. So TidalTrust does not work well on Epinions.

One point is that TidalTrust is an algorithm introduced for continuous trust values, not for binary trust values. But, even the algorithm introduced in (Golbeck, 2005) for binary trust values will work in the
Figure 13: The increase in Δ as the minimum Δa is increased. TidalTrust closely follows the Simple Average algorithm in Epinions data set same way. The problem with these approaches is not considering the damping of trust. They do not consider the length of the path from one user to another user.

Paolo Massa, who has his own trust based recommendation system (Massa and Avesani, 2007a), uses a somehow different approach for evaluation the recommendation. To decrease the influence of users with a lot of ratings on Mean Absolute Error (MAE), he uses Mean Absolute User Error (MAEU) metric. The idea is straightforward: we first compute the Mean Absolute Error for every single user independently and then we average all the Mean Absolute Errors related to every single user. In this way, every user has the same weight in the Mean Absolute User Error computation. This is really important since Epinions dataset contains a large share of cold start users (Massa and Avesani, 2007a).

Another important measure that is often not reported and studied in evaluation of RSs is coverage. Coverage simply refers to the fraction of ratings for which, after being hidden, the RS algorithm is able to produce a predicted rating. While the percentage of predictable ratings (ratings coverage) is an important measure, it suffers the same problem we highlighted earlier for Mean Absolute Error, it weighs heavy raters more. Following the same argument as before, Massa introduced also the users coverage, defined as the portion of users for which the RS is able to predict at least one rating (Massa and Avesani, 2007a).

A possibility given by a very large data set of ratings is to study performances of different RS techniques on different portions of the input data (called views). It is possible for example to compute MAE or Users coverage only on ratings given by users or items which satisfy a certain condition. The views Massa reported results about in his paper are the following: cold start users, who provided from 1 to 4 ratings; heavy raters, who provided more than 10 ratings; opinionated users, who provided more than 4 ratings and whose standard deviation is greater than 1.5; niche items, which received less than 5 ratings; controversial items, which received ratings whose standard deviation is greater than 1.5. They introduced these views because they are better able to capture the relative merits of the different algorithms in different situations (Massa and Avesani, 2007a).

Table 3 shows the evaluation measures for different types of users introduced above.

The results of TidalTrust and MoleTrust should be almost the same. Theoretically, the idea being used in both algorithms is the same. But they use different approaches. In TidalTrust, the aim is to find the trust from the source user to the target user. To compute this trust value, TidalTrust uses a recursive approach: Starting from the source user (u), the trust to target user (v) is the weighted average of the trust of u's neighbors to v. On the other hand, in MoleTrust, we try to find trust values into all nodes in the network. The trust into the source (u) is 1. Then, we traverse the graph in a breadth first manner (level by level). Now, the trust into each node w (which lies in level i) is the weighted average of trust into its inlinks in level $i-1$. Comparing the recommendation systems based on these two approaches, the method is the same. But, there are some minor differences in how to select the neighbors. TidalTrust just considers the neighbors at a certain depth which leads to information loss in most cases. On the other hand, MoleTrust revises the network and considers the graph as some level of nodes starting from the source user. But generally, these two approaches work the same.

But, compare to what shown in Massa’s paper (Massa and Avesani, 2007a), the coverage for users and items are mostly lower in TidalTrust comparing to Massa’s work, except for controversial items. Ac-
ually the coverage for all user views in TidalTrust are close (because of the averaging nature of it), and so it doesn’t differentiate among different views.

One interesting point comparing the results of TidalTrust and Massa’s work is better errors in TidalTrust. The reason is maybe because most people tend to rate items close to the average.

An important issue existing in both TidalTrust and MoleTrust is the number of queries to the database for every single recommendation query. Table 4 shows the average queries required for each recommendation according to the depth d at which the item is found. As you can see in the table, the average number of queries to database is too much. This huge number of queries slow down the process of recommendation. Using our proposed method will help decrease the amount of queries.

Depth	Average Queries
1	95.0837
2	8169.4467
3	23148.7689
4	43042.2457
5	58528.1933
6	76093.8083
7	85910.6452
8	99066.7143
9	106309.0000

Table 4: Average queries required for each recommendation according to the depth d at which the item is found.

8.3 Experimental Results of our proposed method

To simulate the parallelism in our proposed method, we implemented User which can perform all tasks, and has access to only its neighbors. According to our method, we have to assign values to parameters. Trust threshold could be a user defined parameter. In our experiment we set it to 0.7. Damping factor λ is also set to 0.8.

Table 5 shows the comparison of different evaluation measures in TidalTrust and our proposed method. As we expected, the error is much less in our proposed method, since we use the information gathered from just trusted neighbors. But, the coverage is lower. Because we ignore many low trusted neighbors, the coverage will decrease. But this is the cost we pay to get better accuracy.

The rating-recall is almost the same. Because both approaches loose some information. But the loss in our approach is meaningful, since we get rid of non-trusted information.

Metric	TidalTrust	Our Algorithm
Error	0.92	0.54
Coverage	75.6%	31.2%
Rating-Recall	19.36%	11.43%

Table 5: Comparison of Evaluation measures in TidalTrust and our proposed algorithm

Finally, the average size of neighborhood 1663. So, on average we need to store the information for 1663 trusted neighbors, which is not a lot for users.

9 Conclusions

In this research project, we first reviewed existing methods for trust based recommendations. We then proposed a new method which is iterative and saves a lot of time sacrificing some resource. Our approach can be easily paralleled and used in distributed networks in which users have just local access to information.

References

[Avesani et al.2005] Paolo Avesani, Paolo Massa, and Roberto Tiella. 2005. Moleskiing.it: a trust-aware recommender system for ski mountaineering. *International Journal for Infonomics.*

[Golbeck2005] Jennifer Golbeck. 2005. *Computing and Applying Trust in Web-based Social Networks.* Ph.D. thesis, University of Maryland College Park.

[Guha et al.2004] R. Guha, R. Kumar, P. Raghavan, and A. Tomkins. 2004. Propagation of trust and distrust. In *International World Wide Web Conference (WWW2004).*

[Levien and Aiken2002] Levien and Aiken. 2002. Advocato’s trust metric. online at http://advogato.org/trust-metric.html.

[Massa and Avesani2007a] Paolo Massa and Paolo Avesani. 2007a. Trust-aware recommender systems. In *Proceeding of ACM Recommender Systems Conference,* Minneapolis, Minnesota, USA.

[Massa and Avesani2007b] Paolo Massa and Paolo Avesani. 2007b. Trust metrics on controversial users: balancing between tyranny of the majority and echo chambers. *Special Issue on Semantics of People and*
[Walter et al.2008] Frank Edward Walter, Stefano Battiston, and Frank Schweitzer. 2008. A model of a trust-based recommendation system on a social network. *Autonomous Agents and Multi-Agent Systems*, 16(1):57–74, February.

[Ziegler2005] Cai-Nicolas Ziegler. 2005. *Towards De-centralized Recommender Systems*. Ph.D. thesis, University of Freiburg.
Table 3: User Coverage, Rating Coverage, MAE, and MAUE on different views of the users and items

Views	Rating Cov.	User Cov.	MAE	MAUE
All	0.756	0.652	0.874	0.58
Cold Start	0.496	0.478	0.905	0.44
Heavy Raters	0.787	0.844	0.871	0.74
Opti. Rater	0.753	0.745	1.137	0.86
Niche Items	0.461	0.624	0.845	0.54
Cont. Items	0.853	0.795	1.714	1.35