New phenoxyacetohydrazones against Trypanosoma cruzi

Camila Capelini
Instituto Militar de Engenharia

Kátia de Souza
Instituto Militar de Engenharia

Juliana Barbosa
Fiocruz Minas: Fundacao Oswaldo Cruz Instituto Rene Rachou

Kelly Salomão
FIOCRUZ: Fundacao Oswaldo Cruz

Policarpo Junior
Fiocruz Minas: Fundacao Oswaldo Cruz Instituto Rene Rachou

Silvane Murta
Fiocruz Minas: Fundacao Oswaldo Cruz Instituto Rene Rachou

Solange Wardell
CHEMSOL

James Wardell
University of Aberdeen

Edson da Silva
FIOCRUZ: Fundacao Oswaldo Cruz

Samir Aquino Carvalho (✉ samircar@gmail.com)
FIOCRUZ: Fundacao Oswaldo Cruz https://orcid.org/0000-0002-8294-2901

Research Article

Keywords: Antitrypanosomal, N-Acylhydrazone, Phenoxyacetohydrazones, Chagas disease, Trypanosoma cruzi, Design, Synthesis, Structure-activity relationship

DOI: https://doi.org/10.21203/rs.3.rs-435568/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Herein, we reported the design, synthesis, antitrypanosomal and cytotoxic evaluation of a new phenoxyacetohydrazones series. All derivatives were assayed against bloodstream trypomastigote forms of *T. cruzi* (*Y* strain) and intracellular amastigotes using the model of L-929 cells infected with trypomastigotes of the *Tulahuen* strain. Compound (*E*-N-(3,4-dihydroxybenzylidene)-2-phenoxyacetohydrazide (11) showed an activity against trypomastigotes (IC$_{50}$/24 h = 10.3 µM) equivalent to that of benznidazole and with selectivity index (SI) = 46. Against infected cultures, (*E*-N-((5-nitrofuran-2-yl) methylene)-2-phenoxyacetohydrazide (19) was active at the nanomolar range (IC$_{50}$/96 h = 100 nM), being about 15-fold more active than the standard drug and with SI equal to 1000. Thus, derivatives 11 and 19 could be considered good prototype for the development of new candidates for Chagas disease therapy.

Introduction

Chagas disease is a parasitic illness resulting from infection by the hemoflagellate parasite *Trypanosoma cruzi*. It is endemic in 21 countries in Latin America and affects 6 to 7 million people worldwide, causing 10,000 deaths per year [1, 2]. It is estimated that 752,000 working days per year are lost due to premature deaths and US $1.2 billion in lost productivity in seven southernmost American countries. Brazilian absenteeism of workers affected by Chagas disease represented an estimated minimum loss of $5.6 million per year. Due to the migration of *T. cruzi*-infected people to other continents, Chagas disease is also reported in non-endemic regions, such as the European continent [3–5].

The treatment of Chagas disease is restricted to the nitro derivatives Nifurtimox and Benznidazole and both are effective in reducing the duration and clinical severity of the disease, being the second most used in the Brazilian context. The available chemotherapy is unsatisfactory as a result of severe side effects and restricted efficacy in the chronic phase of the disease [6–8].

The *N*-acylhydrazone (NAH) framework has a special advantage in medicinal chemistry, the presence of an imine vicinal group to the amide is unique characteristic to be explored by the insertion of groups linked to its surroundings, allowing the modulation of multiple targets described in bioactive compounds such as cysteinyl protease inhibitors [9–12]. Compound 1 showed excellent cruzain inhibitory activity (IC$_{50}$ = 200 nM) and a considerable *in vitro* potency against *T. cruzi* (IC$_{50}$ = 16.2 µM) [13]. Our group reported compound 2 containing a hydrazone-cathecol subunit which demonstrated a pharmacophoric character over *T. cruzi*, possibly interfering in the oxidative metabolism [14].

In our effort to develop new potent trypanocidal compounds, we constructed a new class of phenoxyacetohydrazones designed by molecular hybridization between a potent cruzain inhibitor represented by the 2-phenoxyacetamide derivative (1) (IC$_{50}$ = 200 nM) [13] and the 1,3,4-thiadiazole-2-arylhydrazone derivative (2) (IC$_{50}$ = 5.3 µM) [14]. The design concept of this compounds generates a NAH subunit (A, Fig. 1) with the aim to potentialize the cruzain inhibitor framework of (1) (B, Fig. 1) and
explore the introduction of a cathecol moiety (C, Fig. 1) a potential radical scavenger group [15]. The planned compounds were synthesized with substituents with different stereoelectronic properties attached to the phenyl subunit D (3–16) (Fig. 1) and heterocycles derivatives (17–19). Derivative (10) was planned due the ability of the o-hydroxybenzylidene N-acylhydrazone framework to form an electrophilic quinone methide intermediate that could interact with nucleophilic sites in target enzymes of T. cruzi, e.g. cysteine proteases [10]. We have elected two types of in vitro assays, the direct effect on bloodstream trypomastigote form after 24 h of treatment and the effect on the intracellular proliferation of amastigotes after 96 h. Benznidazole was used as a positive control against T. cruzi and the cytotoxicity was determined in mouse peritoneal macrophages (24 h) and mouse fibroblast L929 cells (96 h).

Results And Discussion

Chemistry

The synthetic route planned to achieve the NAH targets compounds (3-19) consists in three steps. To a suspension of phenol (20) and potassium carbonate in acetonitrile, was added methyl bromoacetate (21) and the reaction was warmed till reflux to furnish methyl 2-phenoxyacetate (22) in 96% yield [21]. The hydrazinolysis of the ester furnished the key N-acylhydrazide intermediate (23) in 95% yield [22]. Finally, the target compounds (3-19), were obtained by addition to carbonyl followed by the elimination of water between the N-acylhydrazide (23) and the corresponding aromatic aldehydes (Het/ArCHO) in water, using hydrochloric acid as catalyst described in Scheme 1 [17,23].

The HPLC and the ¹H NMR analysis was consistent with only one geometric isomer at the imine bond level, which X-ray diffraction data indicated as having the relative configuration (E) (Fig. 2), according to previous results [17, 24]. Phenoxyacetohydrazones NAH exists in equilibrium between the two stable conformers synperiplanar (sp) and antiperiplanar (ap) in DMSO solution. It is described that the signal from the imine hydrogen being more down shield matches the ap conformer [25].

Crystallography

The compound 3 was recrystallized from ethanol solution by slow evaporation at room temperature. Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre, deposit number 2050640. The angle between the two phenyl rings is 69.33(8)°. The geometry of the exo-C=N bond is (E), while the H and O1 atoms in the H1-N1-C8=O1 unit have a cis arrangement, which allows the formation of centrosymmetric dimers, formed from pairs of classical N1-H1—O1 hydrogen bonds. Additional contacts between molecules are generated from C-H—O hydrogen bonds and π(C=N)—π(Ph) stacking interactions.

Antitrypanosomal activity
We started our analysis by evaluating the effect of the compounds against bloodstream trypomastigotes of *T. cruzi* (*Y* strain), a representative of Discrete Typing Unit (DTU) II. The *in vitro* screening using trypomastigote revealed 11, with an 3,4-dihydroxyphenyl group attached to the imine unit, as the most active compound with an IC$_{50}$/24 h= 10.3 µM, equivalent to benznidazole, the reference drug. In order to evaluate the contribution of its hydroxyl groups at C-3 and at C-4, we compared its activity with different analogues [4-OH (9); 3,4-OCH$_3$ (12); 3-OCH$_3$, 4-OH (13); 3-OH, 4-OCH$_3$ (14) and -O-CH$_2$O- (16)]. We observed an important decrease in the activity, indicating that the two hydroxyl groups in the catechol subunit present a pharmacophoric characteristic against *T. cruzi*.

Among the phenyl substituted derivatives, the most active four derivatives presented a hydroxyl group (9, 10, 11 and 13), three of them in the *para* position. An attractive bioprofile was also identified for 5-nitrofurane derivative (19), which showed an IC$_{50}$/24 h= 19.11 µM. The *para* substituted derivatives (4 - 9) presenting different electronic and lipophilic properties and the trisubstituted derivative (15) showed no trypanocidal activity, except for the 4-OH derivative (9) with an IC$_{50}$/24 h= 53.3 µM (Table 1).

Additionally, to expand this study, another strain of *T. cruzi* was employed, Tulahuen (DTU VI), considered susceptible to nitro derivatives. All phenoxyacetohydrazones were also evaluated on intracellular amastigote forms for *Tulahuen* strain (Table 1). The most active phenoxyacetohydrazone was 5-nitrofurane derivative (19), which showed an IC$_{50}$/96 h= 100nM, fifteen times more potent than Benznidazole. The *para* substituted compounds 4-9 and 17 and the disubstituted ones, 12-14 and 16, presented only moderated activity. The trisubstituted derivative (15) was inactive and o-OH derivative (10), planned to increase the interaction with nucleophilic sites in the cruzain, presented moderate activity (IC$_{50}$/96 h= 22.7 µM) (Table 1). Although the intracellular location of the amastigote form difficults the access of a given drug, in this study we observed that the best results were observed in amastigotes forms. The distinct behavior of the *Tulahuen* and *Y* parasites could be also due to intrinsic differences between both strains and to the time of treatment of the standardized protocols [19], requiring the assay with the intracellular form 96 h of contact with the drug.

The cytotoxic results of the most active compounds 11 for bloodstream trypomastigotes and 19 for intracellular amastigotes were determined and the selectivity indexes (SI) (LC$_{50}$ for cytotoxicity divided by IC$_{50}$ for antitrypanosomal activity) were 46 and 1000 respectively. In this context, the two compounds with SI ≥50 were considered as good candidates for subsequent studies on antitrypanosomal activity in a murine model [19,26].

Conclusions

We described here in the synthesis, antitrypanosomal and cytotoxic evaluation of new phenoxyacetohydrazones against both infective forms of *T. cruzi*, bloodstream trypomastigotes and intracellular amastigotes. The synthetic methodology practiced was reproducible, with global yields ranging from 43–74%. The assay against trypomastigote form of *T. cruzi* reported compound 11 (IC$_{50}$/24
h = 10.3 μM) equivalent to benznidazole with the selectivity index (SI) = 46. The assay against *T. cruzi*-infected cultures presented compound \(19\) (IC\(_{50}\)/96 h = 100 nM) with the selectivity index (SI) = 1000. Then phenoxyacetohydrazones derivatives \(11\) and \(19\) furnishes supporting data for forward *in vivo* studies of these compounds in pertinent animal models for Chagas disease.

Materials And Methods

General experimental details

Melting points were determined on a Buchi (B-545) and are uncorrected. The gas chromatography coupled to the mass detector (GC-MS) was performed using the Agilent chromatograph model 6890 with Agilent masses model 5973 at 70 eV. The fragmentation and molecular ion values were expressed in terms of mass/load (m/z). The Agilent column was used DB-5MS (5% diphenyl: 95% dimethylpolysiloxane). The chromatographic analyzes were performed by split injection method by using a ratio 10:1 and temperature ramp of 50°C to 325°C in the rate 10°C/min for 35 min with an initial flow rate of 0.5 ml/min. The spectra in the infrared (IV) region were obtained in a spectrophotometer from the Thermo Scientific brand, model Nicolet 6700 FTIR by ATR (Attenuated Total Reflectance). The absorption values were reported in wave number (\(\nu\)) whose unit is cm\(^{-1}\). \(^1\)H NMR and \(^{13}\)C NMR spectra were recorded at room temperature on a Bruker Avance 500 and BrukerAvance 400 spectrometers operating at 500 and 400MHz (\(^1\)H)/125 and 100MHz (\(^{13}\)C), respectively. Chemical shifts (\(\delta\)) are reported in parts per million (ppm) downfield from tetramethylsilane (TMS) used as an internal standard and coupling constant (\(J\)) values are given in Hertz (Hz). The chromatographic purity of the final products was determined by a Shimadzu (VP) apparatus with model LC-20ADXR pumps, DGU-20A5R degasser, CBM20A controller and SPD-M20A model photodiode array detector (DAD). Data acquisition and control were performed using Shimadzu Labsolutions. Chromatographic analyzes were monitored by scanning from 225 nm to 489 nm. In the analyzes, the mobile phase used as eluent (A) water, pH 5.8 adjusted with 0.025 Mol/L ammonium acetate, and eluent (B) methanol, isocratic elution for 70 minutes at 30 °C; the flow of the mobile phase was 1 mL/min and the volume injected was 1000 μL. The separation was obtained on a Supelcosil LC 18-3 reverse phase column, 200 x 4.6 mm, with a particle diameter of 5μm. The progress of all reactions was monitored by TLC (Thin Layer Chromatography) which was performed on 2.0-6.0 cm aluminum sheets precoated with silica gel 60 (HF254. Merck) to a thickness of 0.25 mm. The developed chromatograms were viewed under ultraviolet light (254 and 265 nm).

General procedures for the preparation of methyl phenoxyacetate (22)

To a suspension of \(20\) (0.07 mol; 1.0 eq.) and potassium carbonate (1.2 eq.) in 100 mL of acetonitrile was added slowly \(21\) (1.0 eq.). The reaction mixture was stirred under reflux for 4 h and after complete reaction was cooled and added distilled water until solubilized the mixture. The solution was extracted with ethyl acetate (3 x 50 mL) and the organic phase was dried over anhydrous Na\(_2\)SO\(_4\), filtered and concentrated in vacuo providing the ester used in the next step.
Methyl 2-phenoxyacetate 22. Light brown oil (AcOEt); MW: 166.17; 90% yield; IR (ATR. cm\(^{-1}\)): \(\nu_{\text{max}}\) 1758 and 1738 (C=O\(_{\text{ester}}\)); 1599 (C=C\(_{\text{Ar}}\)); 1494 (C-Hsp\(^2\)\(_{\text{Ar}}\)); 1200 and 1173 (C-O\(_{\text{ether}}\)); \(^1\)H NMR (400 MHz. DMSO-\(d_6\)): \(\delta\) 3.70 (3H; s; O-C\(_3\)H\(_3\)); 4.79 (2H; s; H2); 6.90 – 6.98 (3H; m; H6; H7; H8); 7.27 – 7.32 (2H; m; H-5; H9); \(^13\)C NMR (100 MHz. DMSO-\(d_6\)): \(\delta\) 51.7 (O-C\(_3\)H\(_3\)); 64.3 (C2); 114.3 (C5; C9); 121.1 (C7); 129.4 (C6; C8); 157.4 (C4); 169.2 (C1).

General procedure for the preparation of 2-phenoxyacetohydrazide (23)

To an ethanolic solution of 22 (0.06 mol; 1.0 eq.) was added slowly hydrazine hydrate 80% (aq.) (5.0 eq.) and the reaction mixture was stirred for 3 h under reflux. The mixture was cooled, the precipitate was collected by vacuum filtration, washed with cold ethanol and dried under vacuum.

2-phenoxyacetohydrazide (23). White crystal (EtOH); MW: 166.18; 95% yield; m.p. 113.5 – 114.2 °C; IR (ATR. cm\(^{-1}\)): \(\nu_{\text{max}}\) 3400 (N-H\(_2\)); 1598 (C=O\(_{\text{amide}}\)); 1496 (C=C\(_{\text{Ar}}\)); 1241 and 1069 (C-O\(_{\text{ether}}\)); \(^1\)H NMR (400 MHz. DMSO-\(d_6\)): \(\delta\) 4.33 (N-H\(_2\)); 4.47 (2H; s; H2); 6.94 – 6.97 (3H; m; H6; H7; H8); 7.27 – 7.31 (2H; m; H5; H9); 9.33 (1H; s; N-H); \(^13\)C NMR (100 MHz. DMSO-\(d_6\)): \(\delta\) 66.0 (C2); 114.5 (C6; C8); 121.0 (C7); 129.3 (C5; C9); 157.7 (C4); 166.5 (C1).

General procedure for the preparation of NAH (3-19)

To a solution of 23 (2.41 mmol; 1.0 eq.) in 30 mL of water, were added the corresponding aromatic aldehydes (2.43 mmol; 1.01 eq.) and hydrochloric acid in catalytic quantity. After the complete reaction, the mixture was cooled e the precipitate was collected by vaccum filtration and recrystallized in distilled water. The products were obtained in yields that varied 50-86%.

(E)-\(N\)’-Benzylidene-2-phenoxyacetohydrazide (3). White solid (H\(_2\)O); MW: 254.28; yield 80%; m.p. 156.2 – 157.0 °C; IR (ATR. cm\(^{-1}\)): \(\nu_{\text{max}}\) 1678 (C=O\(_{\text{amide}}\)); 1403 (C=C\(_{\text{Ar}}\)); 1259 (N=C); 1219 and 1086 (C-O\(_{\text{ether}}\)); \(^1\)H NMR (400 MHz. DMSO-\(d_6\)): \(\delta\) 4.66 and 5.14 (2H; s; H2); 6.92 – 7.01 (3H; m; H6; H7; H8); 7.27 – 7.35 (2H; m; H5; H9); 7.42 – 7.47 (3H; m; H13; H14; H15); 7.69 – 7.72 (2H; m; H12; H16); 8.02 and 8.34 (1H; s; H10); 11.57 and 11.60 (1H; s; N-H); \(^13\)C NMR (100 MHz. DMSO-\(d_6\)): \(\delta\) 64.4 and 66.3 (C2); 114.3 and 114.5 (C6; C8); 120.6 and 121.2 (C7); 126.8 and 127.0 (C12; C16); 128.7 (C13; C15); 129.3 and 129.4 (C5; C9); 129.8 and 130.1 (C14); 133.8 and 134.0 (C11); 143.7 and 147.8 (C10); 157.6 and 158.1 (C4); 164.2 and 168.9 (C1); HPLC-UV nm (%): 254 (100). ESI-MS: \(m/z\) 277.0947 [M+Na]\(^+\), calcd. for C\(_{15}\)H\(_{14}\)N\(_2\)NaO\(_2\): 277.0946.

(E)-\(N\)’-(4-Chlorobenzylidene)-2-phenoxyacetohydrazide (4). White solid (H\(_2\)O); MW: 288.73; yield 50%; m.p. 175.7 – 177.8 °C; IR (ATR. cm\(^{-1}\)): \(\nu_{\text{max}}\) 1677 (C=O\(_{\text{amide}}\)); 1401 (C=C\(_{\text{Ar}}\)); 1259 (N=C); 1218 and 1088 (C-O\(_{\text{ether}}\)); \(^1\)H NMR (400 MHz. DMSO-\(d_6\)): \(\delta\) 4.68 and 5.14 (2H; s; H2); 6.92 – 7.01 (3H; m; H6; H7; H8); 7.27 – 7.34 (2H; m; H5; H9); 7.49 – 7.52 (2H; m; H13; H15); 7.71 – 7.75 (2H; m; H12; H16); 8.02 and 8.35 (1H; s; H10); 11.73 (1H; s; N-H); \(^13\)C NMR (100 MHz. DMSO-\(d_6\)): \(\delta\) 64.5 and 66.3 (C2); 114.4 and 114.5 (C6; C8); 120.6 and 121.1 (C7); 128.5 and 128.6 (C13; C15); 128.8 and 128.8 (C12; C16); 129.3 and 129.4 (C5; C9);...
132.8 and 133.0 (C11); 134.2 and 134.5 (C14); 142.4 and 146.4 (C10); 157.6 and 158.0 (C4); 164.3 and 169.0 (C1); HPLC-UV nm (%): 254 (100); ESI-MS: m/z 311.0543 [M+Na]+, calcd. for C15H13ClN2NaO2: 311.0557.

(4E)-N-(4-Bromobenzylidene)-2-phenoxyacetohydrazide (5). White solid (H2O); MW: 333.18; yield 50%; m.p. 173.7 – 174.8 °C; IR (ATR. cm⁻¹): νmax 1677 (C=Oamide); 1398 (C=C); 1219 and 1068 (C-Oether); 1H NMR (400 MHz. DMSO-d6): δ 4.67 and 5.13 (2H; s; H2); 6.92 – 7.00 (3H; m; H6; H7; H8); 7.27 – 7.34 (2H; m; H5; H9); 7.62 – 7.68 (4H; m; H12; H13; H15; H16); 7.99 and 8.32 (1H; s; H10); 11.68 (1H; s; N-H); 13C NMR (100 MHz. DMSO-d6): δ 64.5 and 66.3 (C2); 114.4 and 114.6 (C6; C8); 120.6 and 121.1 (C7); 123.0 and 123.3 (C14); 128.7 and 128.9 (C13; C15); 129.3 and 129.4 (C5; C9); 131.7 and 131.7 (C12; C16); 133.2 and 133.3 (C11); 142.5 and 146.5 (C10); 157.6 and 158.0 (C4); 164.3 and 169.0 (C1); HPLC-UV nm (%): 254 (100); ESI-MS: m/z 355.0022 [M+Na]+, calcd. for C15H13BrN2NaO2: 355.0052.

(4E)-N-(4-Fluorobenzylidene)-2-phenoxyacetohydrazide (6). White solid (H2O); MW: 272.27; yield 50%; m.p. 155.7 – 159.3 °C; IR (ATR. cm⁻¹): νmax 1674 (C=Oamide); 1495 (C=C); 1220 (N=C); 1210 and 1086 (C-Oether); 1H NMR (400 MHz. DMSO-d6): δ 4.66 and 5.13 (2H; s; H2); 6.92 – 7.01 (3H; m; H6; H7; H8); 7.26 – 7.34 (4H; m; H5; H9; H13; H15); 7.74 – 7.80 (2H; m; H12; H16); 8.02 and 8.35 (1H; s; H10); 11.62 (1H; s; N-H); 13C NMR (100 MHz. DMSO-d6): δ 64.5 and 66.3 (C2); 114.4 and 114.5 (C6; C8); 115.7 and 115.9 (C13; C15; d; J_C-F = 6.1 Hz); 120.6 and 121.1 (C7); 129.3 and 129.4 (C5; C9); 130.5 and 130.6 (C11; d; J_C-F = 2.9 Hz); 142.5 and 146.7 (C10); 157.6 and 158.1 (C4); 161.7 and 164.2 (C14; d; J_C-F = 14.0 Hz); 164.2 and 169.0 (C1); HPLC-UV nm (%): 254 (100); ESI-MS: m/z 295.0830 [M+Na]+, calcd. for C15H13FN2NaO2: 295.0853.

(4E)-N-(4-Methoxybenzylidene)-2-phenoxyacetohydrazide (7). White solid (H2O); MW: 284.31; yield 80%; m.p. 136.1 – 138.3 °C; IR (ATR. cm⁻¹): νmax 1671 (C=Oamide); 1487 (C=C); 1245 (N=C); 1204 and 1031 (C-Oether); 1H NMR (400 MHz. DMSO-d6): δ 3.79 and 3.80 (1H; s; H17); 4.64 and 5.11 (2H; s; H2); 6.92 – 6.96 (2H; m; H13; H15); 6.99 – 7.02 (3H; m; H6; H7; H8); 7.27 – 7.34 (2H; m; H12; H16); 8.02 and 8.35 (1H; s; H10); 11.44 and 11.47 (1H; s; N-H); 13C NMR (100 MHz. DMSO-d6): δ 55.2 (C17); 64.5 and 66.3 (C2); 114.4 and 114.5 (C6; C8); 115.7 and 115.9 (C13; C15; d; J_C-F = 6.1 Hz); 120.6 and 121.1 (C7); 129.0 and 129.2 (C12; C16; d; J_C-F = 8.4 Hz); 129.3 and 129.4 (C5; C9); 130.5 and 130.6 (C11; d; J_C-F = 2.9 Hz); 142.5 and 146.7 (C10); 157.6 and 158.1 (C4); 161.7 and 164.2 (C14; d; J_C-F = 14.0 Hz); 164.2 and 169.0 (C1); HPLC-UV nm (%): 254 (100); ESI-MS: m/z 307.1038 [M+Na]+, calcd. for C16H16N2O3: 307.1053.

(4E)-N-(4-Nitrobenzylidene)-2-phenoxyacetohydrazide (8). White solid (H2O); MW: 299.28; yield 83%; m.p. 186.5 – 188.3 °C; IR (ATR. cm⁻¹): νmax 1676 (C=Oamide); 1587 and 1339 (Aryl-NO2); 1517 (C=C); 1256 (N=C); 1089 (C-Oether); 1H NMR (400 MHz. DMSO-d6): δ 4.71 and 5.19 (2H; s; H2); 6.94 – 7.02 (3H; m; H6; H7; H8); 7.27 – 7.35 (2H; m; H5; H9); 7.95 – 8.00 (2H; m; H12; H16); 8.12 and 8.45 (1H; s; H10); 8.26 – 8.31 (2H; m H13; H15); 11.90 (1H; s; N-H); 13C NMR (100 MHz. DMSO-d6): δ 64.5 and 66.3 (C2); 114.4 and...
114.6 (C6; C8); 120.7 and 121.2 (C7); 123.9 and 124.0 (C13; C15); 127.8 and 128.0 (C12; C16); 129.3 and 129.5 (C5; C9); 140.2 and 140.3 (C11); 141.3 and 145.3 (C10); 147.7 and 147.8 (C14); 157.6 and 158.0 (C4); 164.7 and 169.4 (C1); ESI-MS: m/z 322.0810 [M+Na]+, calcd. for C15H13N3NaO4; 322.0798.

(E)-N-(4-Hydroxybenzylidene)-2-phenoxyacetohydrazide (9). White solid (H2O); MW: 270.28; yield 50% (H2O); m.p. 215.9 – 216.7 °C; IR (ATR. cm⁻¹): νmax 3316 (O-H); 2988 (CH2sp3); 1672 (C=O-amide); 1604 (C=CAr); 1256 (N=Camine); 1245 and 1220 (C-O ether); 1H NMR (400 MHz. DMSO-d6): δ 4.62 and 5.09 (2H; t; H2); 6.82 (2H; dd; J= 8.6 Hz; H13; H15); 6.91 – 7.00 (3H; m; H6; H7; H8); 7.27 – 7.34 (2H; m; H5; H9); 7.53 (2H; dd; J= 8.6 Hz; H12; H16); 7.91 and 8.22 (1H; t; J= 2.0 Hz; H10); 9.91 (1H; s; O-H); 11.36 and 11.39 (1H; s; N-H); 13C NMR (100 MHz. DMSO-d6): δ 64.4 and 66.3 (C2); 114.3 and 114.5 (C6; C8); 115.5 and 115.6 (C13; C15); 120.6 and 121.1 (C7); 124.9 and 124.9 (C11); 128.5 and 128.8 (C12; C16); 129.3 and 129.4 (C5; C9); 140.4 and 148.1 (C10); 157.7 and 158.1 (C4); 159.2 and 159.4 (C14); 163.7 and 168.5 (C1); HPLC-UV nm (%): 254 (96.6); 274 (99.8); 292 (99.8); ESI-MS: m/z 293.0899 [M+Na]+, calcd. for C15H14N2NaO3: 293.0896.

(E)-N-(2-Hydroxybenzylidene)-2-phenoxyacetohydrazide (10). White solid (H2O); MW: 270.28; yield 77%; m.p. 172.6 – 174.9 °C; IR (ATR. cm⁻¹): νmax 1673 (C=O-amide); 1413 (C=CAr); 1219 (N=C); 1086 (C-O ether); 1H NMR (400 MHz. DMSO-d6): δ 4.69 and 5.10 (2H; t; H2); 6.85 – 6.91 (3H; m; H6; H7; H8); 6.93 – 7.02 (2H; m; H13; H15); 7.22 – 7.35 (4H; m; H5; H9; H14; H16); 7.52 (1H; d; J= 6.88 Hz; O-H); 7.71 (1H; d; J= 6.44 Hz; O-H); 8.32 and 8.57 (1H; s; H10); 11.49 (1H; s; N-H); 13C NMR (100 MHz. DMSO-d6): δ 64.5 and 66.2 (C2); 114.3 and 114.6 (C6; C8); 116.0 and 116.3 (C13); 118.5 and 119.2 (C15); 119.9 and 126.3 (C16); 120.6 and 121.2 (C7); 129.1 (C14); 129.3 and 129.4 (C5; C9); 131.1 and 131.4 (C11); 141.3 and 148.1 (C10); 156.4 and 157.3 (C12); 157.6 and 158.1 (C4); 164.1 and 168.6 (C1); HPLC-UV nm (%): 254 (99.5); ESI-MS: m/z 271.1075 [M+H]+, calcd. for C15H15N2O3: 271.1077; m/z 293.089428 [M+Na]+, calcd. for C15H14N2NaO3: 293.0896.

(E)-N-(3,4-Dihydroxybenzylidene)-2-phenoxyacetohydrazide (11). White solid (H2O); MW: 286.28; yield 50%; m.p. 129.9 – 133.2 °C; IR (ATR. cm⁻¹): νmax 3521 and 3257 (O-H); 1653 (C=Oamide); 1590 (C=CAr); 1299 (N=C); 1257 and 1062 (C-O ether); 1H NMR (400 MHz. DMSO-d6): δ 4.62 and 5.08 (2H; t; H2); 6.77 (1H; d; J= 8.1 Hz; H15); 6.89 – 7.00 (4H; m; H6; H7; H8; H16); 7.15 and 7.19 (1H; d; J= 2.0 Hz; H12); 7.27 – 7.34 (2H; m; H5; H9); 7.83 and 8.13 (1H; s; H10); 9.19 and 9.27 (1H; s; O-H); 9.40 (1H; s; O-H); 11.32 and 11.35 (1H; s; N-H); 13C NMR (100 MHz. DMSO-d6): δ 64.4 and 66.3 (C2); 112.6 and 112.6 (C15); 114.3 and 114.5 (C6; C8); 115.4 and 115.5 (C12); 120.0 and 121.1 (C7); 120.5 and 120.6 (C16); 125.3 and 125.4 (C11); 129.3 and 129.4 (C5; C9); 144.3 and 148.3 (C10); 145.5 and 145.6 (C13); 147.7 and 147.9 (C14); 157.7 and 158.1 (C4); 163.7 and 168.4 (C1); HPLC-UV nm (%): 254 (100); 274 (100); ESI-MS: m/z 309.0837 [M+Na]+, calcd. for C15H14N2NaO4 309.0845.

(E)-N-(3,4-Dimethoxybenzylidene)-2-phenoxyacetohydrazide (12). White solid (H2O); MW: 314.34; yield 53%; m.p. 153.6 – 155.2 °C; IR (ATR. cm⁻¹): νmax 1675 (C=Oamide); 1498 (C=CAr); 1406 (C-Hsp²Ar); 1262
(N=C); 1162 (C-O ether); 1H NMR (400 MHz. DMSO-d$_6$): δ 3.79 – 3.80 (6H; m; H17; H18); 4.65 and 5.14 (2H; s; H2); 6.91 – 7.03 (4H; m; H6; H7; H8; H15); 7.17 – 7.21 (1H; m; H16); 7.27 – 7.34 (3H; m; H5; H9; H12); 7.93 and 8.26 (1H; s; H10); 11.44 and 11.50 (1H; s; N-H); 13C NMR (100 MHz. DMSO-d$_6$): δ 55.3 and 55.4 (C17; C18); 64.5 and 66.3 (C2); 108.1 and 108.5 (C15); 111.3 and 111.4 (C12); 114.3 and 114.6 (C6; C8); 120.6 and 121.8 (C7); 121.1 and 121.1 (C16); 126.6 and 126.7 (C11); 129.3 and 129.4 (C5; C9); 143.7 and 148.0 (C10); 148.9 and 148.9 (C13); 150.5 and 150.7 (C14); 157.7 and 158.1 (C4); 163.9 and 168.8 (C1); HPLC-UV nm (%): 254 (100); 274 (100); ESI-MS: m/z 337.1185 [M+Na]+, calcd. for C$_{17}$H$_{18}$N$_2$NaO$_4$ 337.1158.

(±)-N-(4-Hydroxy-3-methoxybenzyldiene)-2-phenoxyacetohydrazide (13). White solid (H$_2$O); MW: 300.31; yield 5%; m.p. 156.3 – 158.7 °C; IR (ATR. cm$^{-1}$): ν_{max} 3200 (O-H); 1670 (C=Oamide); 1586 (C=C$_{Ar}$); 1511 (C=Hsp2$_{Ar}$); 1295 (N=C); 1240 and 1211 (C-O ether); 1H NMR (400 MHz. DMSO-d$_6$): δ 3.80 and 3.81 (3H; s; H17); 4.63 and 5.12 (2H; s; H2); 6.81 – 6.84 (1H; m; H15); 6.90 – 7.00 (3H; m; H6; H7; H8); 7.05 – 7.10 (1H; m; H12); 7.27 – 7.34 (3H; m; H5; H9; H16); 7.90 and 8.21 (1H; s; H10); 9.51 and 9.56 (1H; s; O-H); 11.38 and 11.43 (1H; s; N-H); 13C NMR (100 MHz. DMSO-d$_6$): δ 55.4 and 55.4 (C17); 64.5 and 66.3 (C2); 115.3 and 115.4 (C15); 114.3 and 114.6 (C6; C8); 108.9 and 109.4 (C12); 120.5 and 122.1 (C7); 121.1 and 121.2 (C16); 125.3 and 125.3 (C11); 129.3 and 129.4 (C5; C9); 144.1 and 148.3 (C10); 147.8 and 147.9 (C13); 148.7 and 149.0 (C14); 157.7 and 158.1 (C4); 163.7 and 168.6 (C1); HPLC-UV nm (%): 254 (98.2); 274 (98.6); ESI-MS: m/z 323.0996 [M+Na]+, calcd. for C$_{16}$H$_{16}$N$_2$NaO$_4$: 323.1002.

(±)-N-(3-Hydroxy-4-methoxybenzyldiene)-2-phenoxyacetohydrazide (14). White solid (H$_2$O); MW: 300.31; yield 60%; m.p. 143.9 – 145.9 °C; IR (ATR. cm$^{-1}$): ν_{max} 1678 (C=Oamide); 1496 (C=C$_{Ar}$); 1269 (N=C); 1254 and 1216 (C-O ether); 792 and 754 (Ar$_{mono}$); 1H NMR (400 MHz. DMSO-d$_6$): δ 3.80 (3H; s; H17); 4.63 and 5.09 (2H; s; H2); 6.91 – 7.04 (4H; m; H6; H7; H8; H15); 7.20 – 7.23 (1H; m; H12); 7.27 – 7.34 (3H; m; H5; H9; H16); 7.87 and 8.18 (1H; s; H10); 9.23 and 9.30 (1H; s; O-H); 11.38 and 11.42 (1H; s; N-H); 13C NMR (100 MHz. DMSO-d$_6$): δ 55.5 (C17); 64.4 and 66.3 (C2); 111.7 (C15); 112.1 and 112.2 (C12); 114.3 and 114.6 (C6; C8); 119.9 and 120.3 (C16); 120.6 and 121.1 (C7); 126.7 and 126.8 (C11); 129.3 and 129.4 (C5; C9); 144.0 and 147.9 (C10); 146.7 and 146.7 (C13); 149.5 and 149.8 (C14); 157.7 and 158.1 (C4); 163.8 and 168.6 (C1); HPLC-UV nm (%): 254 (100); 274 (100); ESI-MS: m/z 323.1022 [M+Na]+, calcd. for C$_{16}$H$_{16}$N$_2$NaO$_4$: 323.1002.

(±)-2-phenoxy-N-(3,4,5-trimethoxybenzyldiene) acetohydrazide (15). White solid (H$_2$O); MW: 344.36; yield 86%; m.p. 162.2 – 163.1 °C; IR (ATR. cm$^{-1}$): ν_{max} 1679 (C=Oamide); 1411 (C=C$_{Ar}$); 1232 (N=C); 1227 and 1203 (C-O ether); 1H NMR (400 MHz. DMSO-d$_6$): δ 3.69 and 3.70 (3H; s; H18); 3.81 and 3.82 (6H; s; H17; H19); 4.66 and 5.15 (2H; s; H2); 6.91 – 7.02 (5H; m; H6; H7; H8; H12; H16); 7.27 – 7.35 (2H; m; H5; H9); 7.93 and 8.26 (1H; s; H10); 11.55 and 11.63 (1H; s; N-H); 13C NMR (100 MHz. DMSO-d$_6$): δ 55.8 (C17; C19); 60.0 (C18); 64.6 and 66.3 (C2); 104.1 and 104.2 (C12 and C16); 114.3 and 114.6 (C6; C8); 120.6 and 121.2 (C7); 129.3 and 129.4 (C5; C9); 129.4 and 129.5 (C11); 138.9 and 139.2 (C14); 143.5 and 147.8.
(E)-N’-(Benzo[d][1,3]dioxol-5-ylmethylene)-2-phenoxyacetohydrazide (16). White solid (H₂O); MW: 298.29; yield 84%; m.p. 198.9 – 200.8 °C; IR (ATR. cm⁻¹): νmax 1670 (C=Oamide); 1447 (C=CAr); 1250 (N=C); 1204 (C-Oether). ¹H NMR (400 MHz. DMSO-d₆): δ 4.64 and 5.11 (2H; s; H2); 6.08 and 6.09 (2H; s; H17); 6.92 – 7.00 (4H; m; H6; H7; H8; H13); 7.12 – 7.16 (1H; m; H16); 7.25 – 7.35 (3H; m; H5; H9; H12); 7.92 and 8.24 (1H; s; H10); 11.47 and 11.48 (1H; s; N-H). ¹³C NMR (100 MHz. DMSO-d₆): δ 64.5 and 66.3 (C2); 101.4 and 101.5 (C7); 105.0 and 105.1 (C15); 108.2 and 108.4 (C12); 114.4 and 114.5 (C6; C8); 120.6 and 121.1 (C7); 123.1 and 123.3 (C16); 128.3 and 128.4 (C11); 129.3 and 129.4 (C5; C9); 143.4 and 147.9 (C10); 147.6 (C13); 148.8 and 149.1 (C14); 157.6 and 158.1 (C4); 164.0 and 168.8 (C1); HPLC-UV nm (%): 254 (100); 274 (99.6); ESI-MS: m/z 321.0834 [M+Na]⁺, calcd. for C₁₆H₁₄N₂NaO₄: 321.0845.

(E)-2-Phenoxy-N’-(pyridin-4-ylmethylene) acetohydrazide (17). White solid (H₂O); MW: 255.27; yield 50%; m.p. 141.3 – 143.4 °C; IR (ATR. cm⁻¹): νmax 1676 (C=Oamide); 1598 (C=CAr); 1225 (N=C); 1089 (C-Oether). 816 (pyridin 4-sub). ¹H NMR (400 MHz. DMSO-d₆): δ 4.71 and 5.18 (2H; s; H2); 6.94 – 7.01 (3H; m; H6; H7; H8); 7.28 – 7.33 (2H; m; H5; H9); 7.63 – 7.68 (2H; d; j=5.8 Hz; H12; H15); 8.00 and 8.34 (1H; s; H10); 8.64 (2H; d; j=5.1 Hz; H13. H14); 11.86 and 11.88 (1H; s; N-H). ¹³C NMR (100 MHz. DMSO-d₆): δ 64.5 and 66.3 (C2); 114.4 and 114.6 (C6; C8); 120.7 and 121.2 (C7); 120.8 and 120.9 (C11); 129.3 and 129.5 (C5; C9); 141.0 and 145.4 (C10); 141.2 and 141.2 (C12; C15); 150.1 and 150.2 (C13; C14); 157.6 and 158.0 (C4); 164.7 and 169.4 (C1); HPLC-UV nm (%): 254 (100); 274 (100); ESI-MS: m/z 256.1100 [M+H]⁺, calcd. for C₁₆H₁₄N₃O₂: 256.1080; m/z 278.0920 [M+Na]⁺, calcd. for C₁₄H₁₃N₃NaO₂: 278.0899.

(E)-N’-(5-Bromothiophen-2-yl) methylene)-2-phenoxyacetohydrazide (18). White solid (H₂O); MW: 339.21; yield 81%; m.p. 151.8 – 154.1 °C; IR (ATR. cm⁻¹): νmax 1672 (C=Oamide); 1425 (C=CAr); 1221 (N=C); 1085 (C-Oether). ¹H NMR (400 MHz. DMSO-d₆): δ 4.64 and 5.02 (2H; s; H2); 6.89 – 7.00 (3H; m; H6; H7; H8); 7.25 – 7.34 (4H; m; H5; H9; H12; H13); 8.10 and 8.48 (1H; s; H10); 11.61 and 11.65 (1H; s; N-H). ¹³C NMR (100 MHz. DMSO-d₆): δ 64.2 and 66.3 (C2); 114.2 and 114.8 (C14); 114.3 and 114.6 (C6; C8); 120.7 and 121.2 (C7); 129.3 and 129.4 (C5; C9); 130.9 and 131.6 (C10 ou C13); 131.0 and 131.6 (C10 ou C13); 137.9 (C12); 140.5 and 140.6 (C11); 131.2 and 142.2 (C10); 157.6 and 157.9 (C4); 164.2 and 166.8 (C1); HPLC-UV nm (%): 254 (100); 274 (100); ESI-MS: m/z 360.9623 [M+Na]⁺, calcd. for C₁₃H₁₁BrN₂O₂S: 360.9616.

(E)-N’-(5-Nitrofuran-2-yl) methylene)-2-phenoxyacetohydrazide (19). White solid (H₂O); MW: 289.24; yield 60%; m.p. 169.9 – 172.7 °C; IR (ATR. cm⁻¹): νmax 1695 (C=Oamide); 1587 (C=CAr); 1479 (C-Hsp²Ar); 1350 (Aryl-NO₂); 1239 (N=C); 1116 (C-Oether). ¹H NMR (400 MHz. DMSO-d₆): δ 4.72 and 5.12 (2H; s; H2); 6.91 – 7.01 (3H; m; H6; H7; H8); 7.25 – 7.33 (3H; m; H5; H9; H13); 7.78 – 7.81 (1H; m; H12); 7.97 and 8.32 (1H; s; H10); 11.99 (1H; s; N-H). ¹³C NMR (100 MHz. DMSO-d₆): δ 64.3 and 66.3 (C2); 114.4 and 114.6 (C6; C8); 114.5 and 114.8 (C13); 115.5 (C12); 120.8 and 121.3 (C7); 129.3 and 129.5 (C5; C9); 131.9 and 135.7...
(C10); 151.3 and 151.4 (C11); 151.7 and 151.9 (C14); 157.5 and 157.9 (C4); 164.9 and 169.3 (C1); HPLC-UV nm (%): 254 (98.1); 274 (98.3); ESI-MS: m/z 312.0577 [M+Na]^+, calcd. for C_{13}H_{11}N_{3}NaO_{5}: 312.0590.

Experimental procedure for biological activity

The use of animals in our trial was performed in accordance with the Brazilian Law 11.794/2008 and regulations of the National Council of Animal Experimentation Control under the license L038/2018 from the Ethics Committee for Animal Use of the Oswaldo Cruz Institute (CEUA/IOC). The assays were carried out using the bloodstream trypomastigotes of Y strain obtained from infected mice at peak parasitemia [16]. The stock solutions of the phenoxyacetohydrazones and Benznidazole were prepared in dimethyl sulfoxide, with the final concentration of the solvent never exceeding 1%, which has no deleterious effect on the parasite. The compounds were diluted, in series 1:2, in decreasing concentrations, with an initial concentration of 1 mM. The assays were performed with the parasites (5 x 10^6 cells/ml) incubated for 24 h at 37°C and 5% CO₂ atmosphere [17,18]. Untreated and Benznidazole-treated parasites were used as controls. The parasites were quantified in Neubauer's chamber. The results were analyzed by plotting % lysis of T. cruzi against the concentration of the test compound and activity of compounds was expressed as the IC_{50}/24 h corresponded to the concentration that led to 50% lysis of the parasite and are summarized in Table 1. Next, to evaluate the effects of the compounds on intracellular parasites, L929 fibroblasts (ATCC® CCL-1™) were infected with trypomastigotes of Tulahuen strain, expressing Escherichia coli β-galactosidase as reporter gene according to the method described previously [19]. Briefly, for the bioassay, 4,000 L929 cells were added to each well of a 96-well microtiter plate. After an overnight incubation, 40,000 trypomastigotes were added to the cells and incubated for 2 h. The culture was maintained for 48 h to establish the infection and then it was treated with the compounds at serial decreasing dilutions for further 96 h at 37°C. After this period the chlorophenol red-β-D-galactopyranoside (CPRG) reagent (Roche) was added in Nonidet P40 solution (Sigma-Aldrich) and the plate was incubated for another 18 h and the absorbance was measured at 570 nm. Controls with uninfected cells, untreated infected cells, and infected cells treated with benznidazole at 3.8 μM (positive control) or DMSO 1% were used. The results were expressed as the percentage of T. cruzi growth inhibition in compound-tested cells as compared to the infected cells and untreated cells. The IC_{50} values were calculated by linear interpolation. Quadruplicates were run in the same plate, and the experiments were repeated at least once. The active compounds were tested in vitro for the determination of cellular toxicity against uninfected L-929 cells and primary cultures of peritoneal macrophages obtained from Albino Swiss mice, using the AlamarBlue® dye [19]. The cells were exposed to compounds at increasing concentrations starting at IC_{50} value for T. cruzi. After 24 or 96 h of incubation, the AlamarBlue® was added and the absorbance at 570 and 600 nm was measured after 4-6 h for L-929 cells and after 2 h for peritoneal macrophages. The cell viability was expressed as the percentage of difference in the reduction between treated and untreated cells being the LC_{50} value, corresponding to the concentration that leads to lysis of 50% of the mammalian cells [20]. The selectivity index (SI) was determined based on the ratio of the LC_{50} value in the host cell and the IC_{50} value of the parasite. Quadruplicates were run in the same plate, and the experiments were repeated at least twice.
Declarations

Acknowledgments

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) – Finance Code 001. The authors also thank the National Crystallographic Service, Southampton, for the X-ray data collection and the Program for Technological Development of Tools for Health-PDTIS-FIOCRUZ for use of its facilities.

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary data

Supplementary data to this article can be found online at...

References

1. Dumonteil E and Herrera C. Ten years of Chagas disease research: Looking back to achievements, looking ahead to challenges. PLoS Negl Trop Dis. 2017;11:e0005422. https://doi.org/10.1371/journal.pntd.0005422.

2. World Health Organizayion. https://www.who.int/news-room/fact-sheets/detail/chagas-disease-(american-trypanosomiasis). Accessed Jan 18 2021.

3. Conteh L, Engels T, Molyneux DH. Socioeconomic aspects of neglected tropical diseases. Lancet. 2010;375(9710):239-247. https://doi.org/10.1016/S0140-6736(09)61422-7

4. Antinori S, Galimberti L, Bianco R, Grande R, Galli M, Corbellino M. Chagas disease in Europe: a review for the internist in the globalized world. Eur J Intern Med. 2017;43:6-15. https://doi.org/10.1016/j.ejim.2017.05.001

5. Requena-Méndez A, Aldasoro E, de Lazzari E, Sicuri E, Brown M, Moore DAJ, Gascon J, Muñoz J. Prevalence of Chagas disease in Latin-American migrants living in Europe: a systematic review and meta-analysis. PLoS Negl Trop Dis. 2015;9(2):e0003540. https://doi.org/10.1371/journal.pntd.0003540

6. Coura JR and de Castro SL. A Critical Review on Chagas Disease Chemotherapy. Mem Inst Oswaldo Cruz. 2002;97(1):3-24. https://doi.org/10.1590/S0074-02762002000100001

7. Patterson S and Wyllie S. Nitro drugs for the treatment of trypanosomatid diseases: past, present, and future prospects. Trends Parasitol. 2014;30(6):289-298. http://dx.doi.org/10.1016/j.pt.2014.04.003

8. Dias JCP, Ramos Jr NA, Gontijo ED, Luquetti A, Shikanai-Yasuda MA, Coura JR, Torres RM, Melo JRC, de Almeida EA, de Oliveira Jr W, Silveira AC, de Rezende JM, Pinto FS, Ferreira AW, Rassi A et al. Il
9. Thota S, Rodrigues DA, Pinheiro PSM, Lima LM, Fraga CAM, Barreiro EJ. N-Acylhydrazones as drugs. Bioorg Med Chem Lett. 2017;28(17):2797-2806. https://doi.org/10.1016/j.bmcl.2018.07.015

10. Ifa D, Rodrigues CR, de Alencastro RB, Fraga, CAM, Barreiro EJ. A Possible Molecular Mechanism for the Inhibition of Cysteine Proteases by Salicylaldehyde N-Acylhydrazones and Related Compounds. J Mol Struct: THEOCHEM. 2000;505(1-3):11–17. https://doi.org/10.1016/S0166-1280(99)00307-3

11. Serafim RAM, de Oliveira TF, Loureiro APM, Krogh R, Andricopulo AD, Dias LC, Ferreira EL. Molecular modeling and structure–activity relationships studies of bioisoster hybrids of N-acylhydrazone and furoxan groups on cruzain. Med Chem Res. 2017;26:760-769. https://doi.org/10.1007/s00044-016-1776-7

12. Vergara S, Carda M, Agut R, Yepes LM, Vélez ID, Robledo SM, Galeano WC. Synthesis, antiprotozoal activity and cytotoxicity in U-937 macrophages of triclosan–hydrazone hybrids. Med Chem Res. 2017;26:3262–3273. https://doi.org/10.1007/s00044-017-2019-2

13. Ferreira RS, Dessoy MA, Pauli I, Souza ML, Krogh R, Sales AIL, Oliva G, Dias LC, Andricopulo AC. Synthesis, Biological Evaluation, and Structure–Activity Relationships of Potent Noncovalent and Nonpeptidic Cruzain Inhibitors as Anti- Trypanosoma cruzi Agents. J Med Chem. 2014;57(6):2380-2392. https://doi.org/10.1021/jm401709b

14. Carvalho SA, Santa-Rita RM, de Castro SL, Fraga CAM. Synthesis and antitypanosomal profile of new functionalized 1,3,4-thiadiazole-2-arylhydrazone derivatives, designed as non-mutagenic megazol analogues. Bioorg Med Chem Lett. 2004;14(24):5967-5970. https://doi.org/10.1016/j.bmcl.2004.10.007

15. Tait A, Ganzerli S, Di Bella M. Synthesis And Free Radical Scavenging Activity of 4-(2H1,2,4-Benzothiadiazine-1, Idioxide-3-yi)-2,6-bis(1,1-dimethylethyl)phenols. Tetrah. 1996;52(38):12587-12596.

16. Salomão K, de Souza EM, Carvalho SA, da Silva EF, Fraga CAM, Barbosa HS, de Castro SL. In Vitro and In Vivo Activities of 1,3,4-Thiadiazole-2-Arylhydrazone Derivatives of Megazol against Trypanosoma cruzi. Antimicrob Agents Chemother. 2010;54(5):2023-2031. https://doi.org/10.1128/AAC.01241-09

17. Capelini C, Câmara VRF, Villar JDF, Barbosa JMC, Salomão K, de Castro SL, Junior PAS, Murta SMF, Couto TB, Lourenço, MCS, Wardell JL, Low JN, da Silva EF, Carvalho SA. Synthesis, antitypanosomal and antimycobacterial activities of coumarinic N-acylhydrazonic derivatives. Med Chem. 2020;16:1-8. doi:10.2174/1573406416666200121105215

18. Freitas RHCN, Barbosa JMC, Bernardino P, Sueth-Santiago V, Wardell SMSV, Wardell JL, Decoté-Ricardo D, Melo TG, da Silva EF, Salomão K, Fraga CAM. Synthesis and trypanocidal activity of novel pyridinyl-1,3,4-thiadiazole derivatives. Biomed Pharmacother. 2020;127:110162. https://doi.org/10.1016/j.biopharm.2020.110162
19. Romanha AJ, de Castro SL, Soeiro MNC, Lannes-Vieira J, Ribeiro I, Talvani A, Bourdin B, Blum B, Olivier B, Zani C, Spadafora C, Chiari E, Chatelain E, Chaves G, Calzada JE et al. In vitro and in vivo experimental models for drug screening and development for Chagas disease. Mem Inst Oswaldo Cruz. 2010;105(2):233-238. http://dx.doi.org/10.1590/S0074-02762010000200022

20. Jardim GAM, Reis WJ, Ribeiro MF, Ottoni FM, Alves RJ, Silva TL, Goulart MOF, Braga AL, Menna-Barreto RFS, Salomão K, de Castro SL, Silva-Júnior EN. On the investigation of hybrid quinones: synthesis, electrochemical studies and evaluation of trypanocidal activity. RSC Adv. 2015;5:78047-78060. https://doi.org/10.1039/C5RA16213K

21. Xu F, Wang Y, Luo D, Yu G, Wu Y, Dai A, Zhao Y, Wu J. Novel Trifluoromethyl Pyridine Derivatives Bearing a 1,3,4-Oxadiazole Moiety as Potential Insecticide. Med Chem Drug Disc. 2018;3:2795-2799. doi:10.1002/slct.201800123.

22. Kümmerle AE, Schmitt M, Cardozo SVS, Lugnier C, Villa P, Lopes AB, Romeiro NC, Justiniano H, Martins MA, Fraga CAM, Bourguignon J, Barreiro EJ. Design, Synthesis, and Pharmacological Evaluation of N-Acylhydrazones and Novel Conformationally Constrained Compounds as Selective and Potent Orally Active Phosphodiesterase-4 Inhibitors. J Med Chem. 2012;55(17):7525-7545. https://doi.org/10.1021/jm300514y.

23. Carvalho SA, Feitosa LO, Soares M, Costa TEMM, Henriques MG, Salomão K, de Castro SL, Kaiser M, Brun R, Wardell JL, Wardell SMSV, Trossini GH, Andricopulo AD, da Silva EF, Fraga CAM. Design and synthesis of new (E)-cinnamic N-acylhydrazones as potent antitrypanosomal agents. Eur J Med Chem. 2012;54:512-521. https://doi.org/10.1016/j.ejmech.2012.05.041.

24. Glidewell C, Low JN, Wardell JL. 2-Nitrobenzaldehyde 2-Iodobenzoylhydrazone. Acta Crystallogr Sect E Struct Rep Online. 2005;E61:o2438-o2440. https://doi.org/10.1107/S1600536805021355.

25. Palla G, Predieri G, Domiano P, Vignali C, Turner W. Conformational Behaviour and E/Z Isomerization of N-Acyl and N-Aroylhydrazones. Tetrah. 1986;42(13):3649-3654. https://doi.org/10.1016/S0040-4020(01)87332-4.

26. Carvalho SA, da Silva EF, Santa-Rita RM, de Castro SL, Fraga CAM. Synthesis and antitrypanosomal profile of new functionalized 1,3,4-thiadiazole-2-arylhydrazone derivatives, designed as non-mutagenic megazol analogues. Bioorg Med Chem Lett. 2004;14(24):5967-5970. https://doi.org/10.1016/j.bmcl.2004.10.007

Table

Due to technical limitations, the table is only available as a download in the supplementary files section.

Figures
Figure 1

Design of phenoxyacetohydrazone derivatives 3 - 19.
Figure 2

(A) ORTEP representation of compound 3 in the solid state: probability ellipsoids are drawn at the 50% level. (B) View of the conformation of compound 3 looking across the phenyl ring containing C13.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Table1.docx