The stellar halo and outer disk of M33

Alan W. McConnachie¹
alan@uvic.ca

Scott C. Chapman¹,²
schapman@submm.caltech.edu

Rodrigo A. Ibata³
ibata@astro.u-strasbg.fr

Annette M. N. Ferguson⁴
ferguson@roe.ac.uk

Mike J. Irwin⁵
mike@ast.cam.ac.uk

Geraint F. Lewis⁶
gfl@Physics.usyd.edu.au

Nial R. Tanvir⁷
nrt@star.herts.ac.uk

¹Department of Physics and Astronomy, University of Victoria, Victoria, B.C., V8P 1A1, Canada

²California Institute of Technology, Pasadena, CA 91125, U.S.A.

³Observatoire de Strasbourg, 11, rue de l’Universite, F-67000, Strasbourg, France

⁴Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ, U.K.

⁵Institute of Astronomy, Madingley Road, Cambridge, CB3 0HA, U.K.

⁶Institute of Astronomy, School of Physics, A29, University of Sydney, NSW 2006, Australia
ABSTRACT

We present first results from a Keck/DEIMOS spectroscopic survey of red giant branch (RGB) stars in M33. The radial velocity distributions of the stars in our fields are well described by three Gaussian components, corresponding to a candidate halo component with an uncorrected radial velocity dispersion of $\sigma \simeq 50\, \text{km}\,\text{s}^{-1}$, a candidate disk component with a dispersion $\sigma \simeq 16\, \text{km}\,\text{s}^{-1}$, and a third component offset from the disk by $\sim 50\, \text{km}\,\text{s}^{-1}$, but for which the dispersion is not well constrained. By comparing our data to a model of M33 based upon its HI rotation curve, we find that the stellar disk is offset in velocity by $\sim 25\, \text{km}\,\text{s}^{-1}$ from the HI disk, consistent with the warping which exists between these components. The spectroscopic metallicity of the halo component is $[\text{Fe/H}] \simeq -1.5$, significantly more metal-poor than the implied metallicity of the disk population ($[\text{Fe/H}] \simeq -0.9$), which also has a broader colour dispersion than the halo population. These data represent the first detections of individual stars in the halo of M33 and, despite being ~ 10 times less massive than M31 or the Milky Way, all three of these disk galaxies have stellar halo components with a similar metallicity. The color distribution of the third component is different to the disk and the halo, but is similar to that expected for a single, coeval, stellar population, and could represent a stellar stream. More observations are required to determine the true nature of this intriguing third kinematic component in M33.

Subject headings: galaxies: individual (M33/Triangulum) — Local Group — galaxies: stellar content — galaxies: structure

1. Introduction

M33, the Triangulum Galaxy ($1^h33^m51^s, 30^\circ39'36''$), is the third brightest Local Group galaxy, with an integrated luminosity of $M_V = -18.9$. It is a late-type spiral, Sc II-III, with two open spiral arms and no clear evidence of any bulge component (Bothun 1992; Minniti et al. 1993; McLean & Liu 1996). The overwhelming majority of light in M33 is distributed in an exponential disk component (de Vaucouleurs 1959), and the optical disk is tilted at nearly 30° to the strongly warped HI envelope (Rogstad et al. 1976). The mass-to-light ratio of its nucleus is small ($M/L < 0.4$), ruling out the presence of a supermassive black hole.
(Kormendy & McClure 1993; Lauer et al. 1998) like that implied to exist in the Milky Way (MW; Genzel et al. 1997) and M31 (Dressler & Richstone 1988; Kormendy 1988).

Chandar et al. (2002) analyse the kinematics of stars clusters in M33, and find two distinct kinematic populations, which they argue represent a disk and halo population, although individual stars belonging to a halo component in M33 had not been directly observed. In a companion paper by A. Ferguson et al. in preparation (see also Ferguson et al. 2006), we present our wide field photometry of this galaxy taken with the Isaac Newton Telescope Wide Field Camera (INT WFC), and show that a low level stellar component dominates the radial profile of M33 at large radius, implying the presence of an extended stellar halo in M33. Unlike its massive neighbor, M31, there is no evidence of substructure in M33 to a surface brightness threshold of $\mu_V \approx 30$ mags sq.arcsec.

In this Letter, we present first results from a spectroscopic survey of red giant branch (RGB) stars in M33 using the DEep Imaging Multi-Object Spectrograph (DEIMOS) on Keck II (Faber et al. 2003). Section 2 describes our observations. Section 3 analyzes the radial velocity distributions in our fields. Section 4 analyzes the metallicities of our target stars, and Section 5 discusses our results and concludes. We assume a distance to M33 of 809 ± 24 kpc (McConnachie et al. 2004a, 2005).

2. Observations

Since 2002, our group has been conducting a spectroscopic survey of M31 using DEIMOS on Keck II (Ibata et al. 2004, 2005; McConnachie et al. 2004b; Chapman et al. 2005, 2006). In September – October 2005, we extended the scope of this survey to M33. The two fields analyzed here were taken at the end of the night at high airmass, during imperfect weather conditions. Their location relative to the disk of M33 can be seen in Figure 1, and are positioned $\sim 38'$ (9 kpc) along the southern major axis to study the kinematics of stars at the edge of the M33 disk. In the same way as our M31 study, we used the ‘mini-slitlet’ DEIMOS setup for these fields, which significantly increases the multiplexing capabilities of this instrument (Ibata et al. 2005; Chapman et al. 2006). Targets were selected from the INT survey using a color – magnitude box defined by $20.5 < i < 22.0$ and $1.0 < (V - i)_0 < 4.0$. Other targets brighter than $i = 22$ were automatically chosen to fill in the available space of the spectrograph detector.

The contours in Figure 1 show the expected mean stellar heliocentric radial velocities for a kinematic model of M33, based upon the HI rotation curve of M33 derived by Corbelli (2003) and shown in her Figure 5. We assume a stellar distribution in M33 described by
\[\rho(R, z) \propto \exp\left(-R/R_e\right) \exp\left(-z/z_e\right), \] with \(R_e = 5.8' \) (1.4 kpc; Regan \& Vogel 1994) and \(z_e = 0.2 \) kpc. Changing \(z_e \) within the range \([0, 1]\) kpc makes no significant difference to any of our results. Stars occupy circular orbits with \(v_z = 0 \) and \(v_R \) defined by interpolation of the HI rotation curve, linearly extrapolated beyond \(R = 77' \) (18 kpc) where necessary. The model is then corrected for the position angle (\(\theta \simeq 23^\circ \)) and inclination (\(i \simeq 54^\circ \)) of the stellar disk of M33. The mean velocity along any sight-line through the disk is calculated as \(\bar{v}_l = \int v \cdot \hat{L} \rho(R, z) \, dl / \int \rho(R, z) \, dl \), and corrected to the heliocentric frame. \(\hat{L} \) is a unit vector pointing along the direction of our line of sight.

The data were processed and reduced in the same way as the main M31 survey (Ibata et al. 2005; Chapman et al. 2006). Due to the generally poor observing conditions, the data analyzed here consist of 280 stars with a cross correlation coefficient \(> 0.02 \), a signal-to-noise (S/N) in the continuum \(> 2 \), a Tonry-Davis coefficient (Tonry \& Davis 1979) \(> 2 \), and a velocity error \(v_{err} < 25 \) km s\(^{-1} \) (\(v_{err} \simeq 10 \) km s\(^{-1} \)).

3. Kinematics

The top two panels of Figure 2 shows the heliocentric radial velocity (\(v_h \)) distributions in our two fields. The dashed lines indicate \(v_h = 0 \), and the dot-dashed lines indicate the systemic velocity of M33, \(v_h = -179 \) km s\(^{-1} \). The dot-dashed histograms show the expected heliocentric velocity distributions of the MW stars that lie in each field using the MW model of Robin et al. (2003), and which satisfy our selection criteria for M33 RGB stars. The histograms have been scaled to match the area of the DEIMOS fields. They show that any contribution from MW foreground stars at \(v_h < -80 \) km s\(^{-1} \) is small for the purposes of this Letter, and so this velocity cut is adopted in the following kinematic analysis. Stars with \(v_h > -80 \) km s\(^{-1} \) are predominantly MW foreground, and the small numbers we observe further suggest that the contamination at more negative velocity will be negligible.

The third panel of Figure 2 shows the velocity distributions of Fields 157 and 158 added together to boost statistics. We expect the main stellar components in M33 will be well fit by individual Gaussians, and any stellar halo component in M33 will have a velocity distribution centered on \(v_h = -179 \) km s\(^{-1} \). Since M33 is \(\sim 10 \) times less massive than M31, we expect that the M33 halo velocity dispersion will be \(\sim \sqrt{10} \) that of M31 (\(\sigma_{M31} \sim 145 \) km s\(^{-1} \); Chapman et al. 2006). The broad Gaussian overlaid in the third panel of Figure 2 represents a M33 halo component with a dispersion of \(\sigma = 50 \) km s\(^{-1} \), scaled to match the approximate number of stars observed. We also expect that the prominent peak of stars in these fields is due to the dominant disk of M33. Therefore, we have subtracted the halo Gaussian from the \(v_h \) distribution in the third panel and fitted a Gaussian to this peak,
centered at \(v_1 = -102 \pm 2 \text{ km s}^{-1} \) with an uncorrected dispersion \(\sigma_1 = 16 \pm 3 \text{ km s}^{-1} \) (corrected dispersion of \(\sim 12.5 \text{ km s}^{-1} \)). The residuals of this fit show a prominent grouping of stars at \(v \sim -150 \text{ km s}^{-1} \). We fit a third Gaussian to this feature, with a peak \(v_2 = -150 \pm 4 \text{ km s}^{-1} \) and a dispersion \(\sigma_2 = 10 \pm 4 \text{ km s}^{-1} \). The latter quantity is more poorly constrained than given by the formal error, however, as its dispersion is covariant with the dispersion of the disk and halo, which have been fitted independently. All 3 Gaussians and their summed total are overlaid in the third panel of Figure 2.

The fourth panel of Figure 2 shows the expected distribution of stars at the positions of Fields 157 and 158, for the model of M33 shown in Figure 1, combined with a halo model with a radial velocity dispersion of 50 km s\(^{-1}\). The radial velocity dispersion of the disk is set to 16 km s\(^{-1}\), to mimic our observations. The normalization of both components is chosen to approximately match the corresponding peaks in the data. A comparison between model and data shows (1) the peak at \(v_2 = -150 \text{ km s}^{-1} \) does not naturally arise as a result of our line-of-sight through the main M33 disk sampling stars at different circular velocities, (2) the stellar disk is offset in \(v_h \) from the HI disk by \(\sim 20 - 25 \text{ km s}^{-1} \), implying a deprojected offset of \(\sim 25 - 30 \text{ km s}^{-1} \). For comparison, the asymmetric drift between the stars and HI in the MW and M31 is of order 15 - 20 km s\(^{-1}\). Scaling for mass, the expected asymmetric drift in M33 is not likely to be more than \(\sim 10 \text{ km s}^{-1} \). We believe that the velocity offset between the two disks is due to differential warping, specifically that the HI disk is warping into our line-of-sight at large radius from M33. This has been implied, quite spectacularly, by Rogstad et al. (1976) (see their Figure 14), and is consistent with the magnitude of the velocity offset.

4. Metallicities

Figure 3 shows the color - magnitude diagrams (CMDs) for the spectroscopically observed M33 RGB stars in Fields 157 and 158, divided by the radial velocity cuts indicated so as to kinematically separate the three candidate components as best as possible. Victoria - Regina isochrones from VandenBerg et al. (2005), with BVRI color - \(T_{\text{eff}} \) relations as described by VandenBerg & Clem (2003), corresponding to a 13 Gyr stellar population with metallicities of \([\text{Fe/H}] = -2.0, -1.3, -0.8 \) and \(-0.5\), are also overlaid.

The differences between the CMDs in Figure 3 are striking, and appear to validate our kinematic deconvolution. The candidate M33 halo stars are predominantly bluer and have a smaller color dispersion than the candidate disk stars, indicating a difference in the age and/or metallicity properties of the populations. Assuming both populations are 13 Gyr old implies a median photometric metallicity for the halo of \([\text{Fe/H}] = -1.3 \pm 0.1\), with
a dispersion of $\sigma_{[\text{Fe}/\text{H}]} = 0.21$. Given the small number of stars which contribute to this measurement, this is consistent with the Ferguson et al. (2006) metallicity measurement for the halo, of $[\text{Fe}/\text{H}] = -1.5 \pm 0.1$. The disk has an implied photometric metallicity of $[\text{Fe}/\text{H}] = -0.9 \pm 0.1$ and a broader dispersion of $\sigma_{[\text{Fe}/\text{H}]} = 0.35$. The median color (metallicity) of the ‘third component’ is similar to the disk, although its color dispersion is remarkably narrow ($\sigma_{[\text{Fe}/\text{H}]} = 0.15$). This population is difficult to isolate kinematically, and our sample could be contaminated by both of the other two components. However, the locus of its stars on the CMD does not clearly associate it with either the candidate disk or halo population, and is reminiscent of a CMD for a single stellar population. If this population was due to MW foreground contamination, we would not expect its stars to occupy so well defined a locus in this diagram. The most probable explanation is that these stars belong to a stellar stream. These stars do not, however, define a spatially obvious structure, but given our limited field size and that our choice of slitlet position will affect the spatial distribution, this test is inconclusive at best.

We calculate the spectroscopic metallicity of the halo stars by measuring the equivalent width of the CaT from stacked spectra, using an identical method to Ibata et al. (2005) and Chapman et al. (2006). We find that $[\text{Fe}/\text{H}] = -1.5 \pm 0.3$, in good agreement with the photometric measurement. The large uncertainty reflects the relatively low signal-to-noise of the stacked spectrum. We are unable to measure the metallicities of the other two components in this way, since their velocities cause the CaT to lie on top of strong sky lines which prevents accurate equivalent width measurements.

5. Discussion

M33 is considered an example of the quintessential disk galaxy, with no evidence for any bulge or spheroid component. However, the radial profile for M33 presented in Ferguson et al. (2006), based upon our INT-WFC observations, reveals for the first time the presence of a spatially extended, low density component. Using Keck/DEIMOS, we have identified a population of RGB stars which have velocities centered on the systemic velocity of M33 and which appear to have a large dispersion ($\sigma \sim 50 \text{ km s}^{-1}$). These stars are bluer than other RGB stars in M33, with a small color dispersion. Their average metallicity is $[\text{Fe}/\text{H}] \sim -1.5$, and we attribute them to the newly discovered halo component of M33. The haloes of the MW and M31 have similar metallicities to this (Eggen et al. 1962; Chapman et al. 2006; Kalirai et al. 2006), even although both these galaxies are ~ 10 times more massive than M33. It is important to emphasise that there is no evidence of a trend linking halo metallicity to galaxy mass or luminosity for the Local group galaxies, as has been suggested
from recent Hubble Space Telescope studies of galaxies within $\sim 10\text{Mpc}$ (Mouhcine et al. 2005a,b). Instead, all the large Local Group spiral galaxies appear to have very similar halo metallicities.

We also observe stars in the disk of M33. Their v_h distribution is well described by a Gaussian with an uncorrected dispersion of $\sigma \simeq 16\text{km\,s}^{-1}$, corresponding to a corrected dispersion of $\simeq 12.5\text{km\,s}^{-1}$. These stars are redder and have a broader color dispersion than the halo stars. The stellar disk is offset in v_h from the HI disk in our simple model by $\sim 20 - 25\text{km\,s}^{-1}$, which is fully consistent with the extreme warping of the HI disk implied by Rogstad et al. (1976).

Finally, we present evidence for a third kinematic feature in M33, revealed by the v_h distribution of the southern fields. The velocity dispersion of this component is not well constrained by our data. A comparison to our simple model of the disk of M33 shows that this feature does not arise as a result of our line-of-sight through M33 sampling stars at different circular velocities in the main disk. The locus of these stars in the CMD has a remarkably small color dispersion, reminiscent of a single stellar population and inconsistent with belonging to a foreground population. We believe the most likely explanation for this feature is that it is a stellar stream. However, more spectroscopic observations of fields at different locations around the disk of M33 are required before the true nature of this intriguing feature is revealed.

The data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation. We thank E. Corbelli for supplying us with her data for the HI rotation curve of M33, and the anonymous referee for constructive comments. AWM would like to thank J. Navarro and S. Ellison for financial support. AMNF is supported by a Marie Curie Excellence Grant from the European Commission under contract MEXT-CT-2005-025869. GFL acknowledges support through ARC DP0343508.
REFERENCES

Bothun, G. D. 1992, AJ, 103, 104

Chandar, R., Bianchi, L., Ford, H. C., & Sarajedini, A. 2002, ApJ, 564, 712

Chapman, S. C., Ibata, R., Lewis, G. F., Ferguson, A. M. N., Irwin, M., McConnachie, A., & Tanvir, N. 2005, ApJ, 632, L87

—. 2006, astro-ph/0602604

Corbelli, E. 2003, MNRAS, 342, 199

de Vaucouleurs, G. 1959, ApJ, 130, 728

Dressler, A. & Richstone, D. O. 1988, ApJ, 324, 701

Eggen, O. J., Lynden-Bell, D., & Sandage, A. R. 1962, ApJ, 136, 748

Faber, S. M., Phillips, A. C., Kibrick, R. I., Alcott, B., Allen, S. L., Burrous, J., Cantrall, T., Clarke, D., Coil, A. L., Cowley, D. J., Davis, M., Deich, W. T. S., Dietsch, K., Gilmore, D. K., Harper, C. A., Hilyard, D. F., Lewis, J. P., McVeigh, M., Newman, J., Osborne, J., Schiavon, R., Stover, R. J., Tucker, D., Wallace, V., Wei, M., Wirth, G., & Wright, C. A. 2003, in Instrument Design and Performance for Optical/Infrared Ground-based Telescopes. Edited by Iye, Masanori; Moorwood, Alan F. M. Proceedings of the SPIE, Volume 4841, pp. 1657-1669 (2003)., ed. M. Iye & A. F. M. Moorwood, 1657–1669

Ferguson, A., Irwin, M., Chapman, S., Ibata, R., Lewis, G., & Tanvir, N. 2006, astro-ph/0601121

Genzel, R., Eckart, A., Ott, T., & Eisenhauer, F. 1997, MNRAS, 291, 219

Ibata, R., Chapman, S., Ferguson, A. M. N., Irwin, M., Lewis, G., & McConnachie, A. 2004, MNRAS, 351, 117

Ibata, R., Chapman, S., Ferguson, A. M. N., Lewis, G., Irwin, M., & Tanvir, N. 2005, ApJ, 634, 287

Kalirai, J. S., Gilbert, K. M., Guhathakurta, P., Majewski, S. R., Ostheimer, J. C., Rich, R. M., Cooper, M. C., Reitzel, D. B., & Patterson, R. J. 2006, astro-ph/0605170

Kormendy, J. 1988, ApJ, 325, 128
Kormendy, J. & McClure, R. D. 1993, AJ, 105, 1793

Lauer, T. R., Faber, S. M., Ajhar, E. A., Grillmair, C. J., & Scowen, P. A. 1998, AJ, 116, 2263

McConnachie, A. W., Irwin, M. J., Ferguson, A. M. N., Ibata, R. A., Lewis, G. F., & Tanvir, N. 2004a, MNRAS, 350, 243

—. 2005, MNRAS, 356, 979

McConnachie, A. W., Irwin, M. J., Lewis, G. F., Ibata, R. A., Chapman, S. C., Ferguson, A. M. N., & Tanvir, N. R. 2004b, MNRAS, 351, L94

McLean, I. S. & Liu, T. 1996, ApJ, 456, 499

Minniti, D., Olszewski, E. W., & Rieke, M. 1993, ApJ, 410, L79

Mouhcine, M., Ferguson, H. C., Rich, R. M., Brown, T. M., & Smith, T. E. 2005a, ApJ, 633, 821

Mouhcine, M., Rich, R. M., Ferguson, H. C., Brown, T. M., & Smith, T. E. 2005b, ApJ, 633, 828

Regan, M. W. & Vogel, S. N. 1994, ApJ, 434, 536

Robin, A. C., Reylé, C., Derrière, S., & Picaud, S. 2003, A&A, 409, 523

Rogstad, D. H., Wright, M. C. H., & Lockhart, I. A. 1976, ApJ, 204, 703

Tonry, J. & Davis, M. 1979, AJ, 84, 1511

VandenBerg, D. A., Bergbusch, P. A., & Dowler, P. D. 2005, astro-ph/0510784

VandenBerg, D. A. & Clem, J. L. 2003, AJ, 126, 778

This preprint was prepared with the AAS LaTeX macros v5.2.
Fig. 1.— A tangent plane projection of RGB stars in M33 with $I < 22$, from our INT WFC survey (Ferguson et al. 2006). The locations of the Keck/DEIMOS fields are indicated. Contours show the mean heliocentric radial velocity of a model M33 disk, based upon the Corbelli (2003) HI rotation curve.
Fig. 2.— First and second panels: heliocentric radial velocity distributions for our M33 fields. The dashed lines represent zero velocity, and the dot-dashed line represents the systemic velocity of M33, \(v_h = -179 \) km s\(^{-1}\). The dot-dashed histograms show the heliocentric velocity distribution of the expected MW foreground stars in each field, from the MW model by Robin et al. 2003, which satisfy our color selection criteria. These histograms have been scaled to match the area of the DEIMOS fields, and the small number of stars at \(v_h > -80 \) km s\(^{-1}\), which are most likely foreground, suggest that contamination at more negative velocity will be negligible. Third panel: Same as first two panels, except now the two fields have been added together to boost statistics. Three Gaussian velocity distributions and their summed total are overlaid. See text for details. Fourth panel: the expected heliocentric radial velocity distribution of stars in our fields, using our M33 disk model and an additional Gaussian component, representing a smooth stellar halo.
Fig. 3.— CMDs of spectroscopically observed RGB stars from Fields 157 and 158, selected to satisfy the velocity cuts indicated ($\sigma_1 = 16 \text{ km s}^{-1}$, $\sigma_2 = 10 \text{ km s}^{-1}$). These velocity cuts predominantly sample stars which belong to the candidate halo (left panel), disk (middle panel) and the ‘third component’ (right panel). Victoria – Regina isochrones (VandenBerg et al. 2005), corresponding to 13 Gyr old stars and with metallicities of [Fe/H] = -2.0, -1.3, -0.8 and -0.5, are overlaid.