Verifiable Quantum Advantage without Structure

Takashi Yamakawa (NTT Social Informatics Laboratories)
Mark Zhandry (NTT Research & Princeton University)
Can quantum computers offer a superpolynomial computational advantage?
Can such advantage be efficiently **verified**?
Is **structure** needed for quantum advantage?

Current state of complexity theory

\Rightarrow no unconditional results
Option 1: Oracle Separations

Classical algorithms

| \(A \) | \(f(x) \) | \(x \) |

Quantum algorithms

\[
|A\rangle = \sum_{x,y} \alpha_{x,y} |x,y \rangle f(x) \]

no structure = random oracle
Option 2: Conditional Separations

Prove advantage under some computational assumption

Our take: No structure

Structure

Unconditional $P \neq NP$
Symmetric crypto
Public key crypto
Isogenies
Factoring
Discrete log
Pairings
LWE

SKE \leftrightarrow RO \rightarrow classical PKE
[Impagliazzo-Rudich’89]
Verifiable

[Bernstein–Vazirani’92, Simon’94]: $\mathsf{BQP}^A \not\subseteq \mathsf{BPP}^A$

[Shor’94]: Factoring, discrete log

[Hallgren’02]: Pell’s eqns, principal ideal

[Babai-Beals-Seress’09]: Matrix group membership

[Brakerski-Christiano-Mahadev-Vazirani-Vidick’18]: from LWE

Structureless

[Raz-Tal’19]: $\mathsf{BQP}^A \not\subseteq \mathsf{PH}^A$

[Aaronson’09]: Fourier fishing

[Bremner-Jozsa-Shepherd’10, Aaronson-Arkhipov’11]: simulating quantum circuits

This work
All existing oracle-free advantage in NP relies on period-finding

All existing structure-less sources of advantage are sampling problems

[Aaronson-Ambanis’09]: under a plausible conjecture

\[0/1 \leftarrow |A\rangle \xrightarrow{\text{q queries}} \text{RO} \xrightarrow{\text{poly}(q)} \approx 0/1 \leftarrow S \]

S potentially computationally unbounded

Basically, random oracles shouldn’t help separating BQP from BPP
This work: verifiable quantum advantage without structure

Results: relative to random oracle with probability 1:

- \(\exists \) NP search problem in BQP \(\setminus \) BPP

- \(\exists \) OWF, CRHFs, signatures that are classically hard but quantumly easy

Assuming classically hard PKE, \(\exists \) PKE that is classically hard but quantumly easy

- \(\exists \) publicly verifiable proof of quantumness with minimal rounds

Under the AA conjecture, \(\exists \) certifiable randomness with minimal rounds

Can replace RO with SHA256 to obtain conjectured non-relativized versions
Our Construction
Random Subset of x-coordinates

Determined by querying random oracle
Random Subset of y-coordinates

Repeat for all coordinates
Questions:

- Why classically hard?
- Why quantumly easy?
- What code to use?
Why/when should it be classically hard?
Domain-constrained Linear Equations

[Ajta’96]: Random linear code + low L_2 norm (SIS)

[Applebaum-Haramaty-Ishai-Kushilevitz-Vaikuntanathan’17]

[Yu-Zhang-Weng-Guo-Li’17]: Random binary linear code
+ low Hamming weight

[Brakerski-Lyubashevsky-Vaikuntanathan-Wichs’18]

These seem likely to be (quantum) hard
Def: \(\text{Dist}(c, S_1 \times S_2 \times \ldots \times S_n) := \# \{ i : c_i \notin S_i \} / n \)

Def: \(C \) is list recoverable if \(\exists \delta, \varepsilon, \varepsilon' \) such that, if \(|S_1|, |S_2|, \ldots, |S_n| \leq 2^{n\varepsilon} \), then

\[
\# \{ c \in C : \text{Dist}(c, S_1 \times S_2 \times \ldots \times S_n) \leq \delta \} \leq 2^{n\varepsilon'}
\]

Examples:
- Folded Reed-Solomon [Guruswami-Rudra’05]
- Random Linear codes [Rudra-Wootters’17]

Thm: list recoverable \(\iff \) classically intractable

Concretely, \(\Pr[\text{poly}(n) \ \text{queries give solution}] \leq 2^{n\varepsilon'} \times 2^{-\delta n} \)

[Haitner-Ishai-Omri-Shaltiel’15]:
List recovery \(\rightarrow \) parallel hashing
Why/when should it be quantumly easy?
“Multiplying” quantum states
[Regev’05]
\[
\sum_x \alpha_x |x\rangle \times \sum_x \beta_x |x\rangle = \sum_x \alpha_x \beta_x |x\rangle
\]

Ignoring normalization
Switch to Fourier Domain: Convolution

\[\sum_x \hat{\alpha}_x |x\rangle \quad * \quad \sum_y \hat{\beta}_y |y\rangle = \sum_{x,y} \hat{\alpha}_x \hat{\beta}_y |x + y\rangle \]
1. Construct separately:
\[
\left(\sum_x \hat{\alpha}_x |x\rangle \right) \otimes \left(\sum_y \hat{\beta}_y |y\rangle \right) = \sum_{x,y} \hat{\alpha}_x \hat{\beta}_y |x, y\rangle
\]

2. Add “in superposition”:
\[
\sum_{x,y} \hat{\alpha}_x \hat{\beta}_y |x, y\rangle \rightarrow \sum_{x,y} \hat{\alpha}_x \hat{\beta}_y |x, y, x + y\rangle
\]

3. Decode \(x + y \rightarrow (x, y) \) in reverse:
\[
\sum_{x,y} \hat{\alpha}_x \hat{\beta}_y |x, y, x + y\rangle \rightarrow \sum_{x,y} \hat{\alpha}_x \hat{\beta}_y |x + y\rangle
\]
* __________ = _______________
Example [Regev’05]:

Primal domain:

\[\alpha_x = \text{indicator for linear code } C \]

\[\beta_x \propto e^{-|x|^2 / \sigma^2} \]

Product \(\approx \) short vectors in \(C \)

aka SIS

quantum hardness of SIS

\[\Rightarrow \]

quantum hardness of LWE

Fourier domain:

\[\hat{\alpha}_x = \text{indicator for } C^\perp \]

\[\hat{\beta}_x \propto e^{-|x|^2 / (\sigma')^2} \]

Step 3 \(\approx \) bounded dist. decoding

aka LWE
Applying to our construction
\[\alpha_x = \text{indicator for } C \]

\[\beta_x = \text{indicator for valid coordinates} \]

Product = solutions to our problem
What is the decoding problem?
The dual code C^\perp
β_x for 1 dimension

Complex phase $|\cdot|^2 \approx 1/2$
\[x + y = \text{(dual codeword)} + \text{(random errors in } \approx \frac{1}{2} \text{ coordinates)} \]

Thm: Can decode efficiently \textbf{whp} if \(C^\perp \) is \textbf{list-decodable} for \(\frac{1}{2} + \varepsilon \) fraction of errors

Good news: Dual of Folded RS is another Folded RS, has essentially optimal list-decoding
Challenge: In general, “whp” decoding not good enough

Actual convolution theorem:

\[
\sum_{x,y} \hat{\alpha}_x \hat{\beta}_y |x + y\rangle \leftrightarrow \sqrt{N} \sum_x \alpha_x \beta_x |x\rangle
\]

Error terms in decoding naively get multiplied by exponential

[Regev’05]: error prob \(\ll N^{-1} \) \(\rightarrow \) still small after multiplying

Our work: error prob \(\gg N^{-1} \) \(\rightarrow \) delicate analysis needed
Applications
1. NP search problem in $\text{BQP} \setminus \text{BPP}$

$$R^O : \{0, 1\}^n \times \Sigma^n \to \{0, 1\}$$

$$R^O (x, w) := \begin{cases} 1 & \text{if } w \in C \land O(i||w_i) = x_i \forall i \\ 0 & \text{otherwise} \end{cases}$$
2. Classical/Quantum Separations for Crypto

\[
\text{OWF}^O : C \rightarrow \{0, 1\}^n
\]

\[
\text{OWF}^O(c) := O(1\|c_1) \parallel O(2\|c_2) \parallel \cdots \parallel O(n\|c_n)
\]
3. Proof of Quantumness
Def: Proof of Quantumness

[Brakerski-Christiano-Mahadev-Vazirani-Vidick’18]
Uniform (oracle-independent) adversaries

\[c \in C : O(i || c_i) = 0 \forall i \]

Oracle-dependent non-uniform adversaries

\[r \leftarrow \{0, 1\}^n \]

\[c \in C : O(r || i || c_i) = 0 \forall i \]

Thm ([Chung-Guo-Liu-Qian’20]): Salting defeats non-uniformity
4. Certifiable Randomness
Def: Certifiable Randomness
[Brakerski-Christiano-Mahadev-Vazirani-Vidick’18]
Uniform adversaries

\[c \in C : O(i || c_i) = 0 \forall i \]

Ext \((s, c)\)

Thm: AA conjecture \(\Rightarrow\) c has min-entropy
Uniform adversaries

$c \in C : O(i||c_i) = 0 \forall i$

Non-uniform adversaries

$r \leftarrow \{0, 1\}^n$

$c \in C : O(r||i||c_i) = 0 \forall i$

Problem: [Chung-Guo-Liu-Qian’20] naively requires large salts

$\text{Ext}(s, c)$

$\text{Ext}(s, c)$
Is it practical?
Thanks!