Characterization of the complete mitogenome of *Gammarus lacustris* (G.O. Sars, 1863) (Amphipoda: Gammaridae) and its phylogenetic position within Amphipoda

Jiasheng Li\(^a\), Jianshe Zhou\(^b\), Shiyi Chen\(^a\), Haodi Shen\(^a\), Ying Peng\(^a\), Kun Zhang\(^a\), Wenhua Huang\(^a\), Xudong Liang\(^a\), Bingjian Liu\(^a\) and Chi Zhang\(^b\)

\(^a\)National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, China; \(^b\)Institute of Fisheries Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, P. R. China

ABSTRACT

Gammarus lacustris is native to the Qinghai-Tibet Plateau (QTP), widely distributed in alpine lakes. The complete mitochondrial DNA sequence of *G. lacustris* was 15,349 base pairs in length and comprised 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes, and 1 control region. The BI tree showed that *G. lacustris* was most closely related to *Gammarus duebeni*, and indicated that *Gammarus*, *Gmelinoides*, *Brachyurupus*, *Pallaseopsis*, and *Eulimnogammarus* evolved from a common ancestor. The mitogenome of *G. lacustris* provides new molecular data for further taxonomic and phylogenetic studies of Amphipoda.

ARTICLE HISTORY

Received 19 June 2021
Accepted 14 July 2021

KEYWORDS

Gammarus lacustris; mitochondrial genome; phylogenetic relationships
The BI tree indicated that *G. lacustris* shared a close relationship with *Gammarus duebeni* (Figure 1). In addition, *Gammarus* species together with *Gmelinoides fasciatus*, *Brachyuropus grewingkii*, *Pallaseopsis kessleri*, and *Eulimnogammarus vittatus* formed a clade, representing these species evolved from a common ancestor (Figure 1). The complete mitogenome of *G. lacustris* presents here provides valuable resources for investigating the phylogenetic relationships within Amphipoda.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

The present work was financially supported by Projects of Agricultural Intelligence Introduction of Tibet [2020WZ006]; National College Students’ Innovative Entrepreneurial Training Plan; College Students in Zhejiang Province Science and Technology Innovation Activities Plan; The national College of Life Science Competition.

ORCID

Kun Zhang http://orcid.org/0000-0001-6435-5386

Data availability statement

The genome sequence data that support the findings of this study are openly available in GenBank of NCBI at (https://www.ncbi.nlm.nih.gov/nuccore/MZ029704) under the accession number: MZ029704.

References

Bernt M, Donath A, Jühling F, Externbrink F, Florentz C, Fritzsch G, Pütz J, Middendorf M, Starlack PF. 2013. MITOS: improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol. 69(2): 313–319.

Clewing C, Wilke T, Ilge A, Albrecht C. 2016. Phylogenetic patterns of freshwater amphipods inhabiting the Tibetan Plateau. Crustac. 89(2): 239–249.

Cormier A, Wattier R, Teixeira M, Rigaud T, Cordaux R. 2018. The complete mitochondrial genome of *Gammarus roeselii* (Crustacea, Amphipoda): insights into mitogenome plasticity and evolution. Hydrobiologia. 825(1):197–210.

Hou Z, Li S. 2018. Four new *Gammarus* species from Tibetan Plateau with a key to Tibetan freshwater gammarids (Crustacea, Amphipoda, Gammaridae). ZooKeys, (747), 1.

Kalyaanamoorthy S, Minh BQ, Wong TK, Von Haeseler A, Jermiin LS. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 14(6):587–589.

Ronquist F, Huelsenbeck JP. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 19(12):1572–1574.

Shaw JC, Henriksen EH, Knudsen R, Kuhn JA, Kuris AM, Lafferty KD, Siwertsson A, Soldanová M, Amundsen PA. 2020. High parasite diversity in the amphipod *Gammarus lacustris* in a subarctic lake. Ecol Evol. 10(21):12385–12394.