Mirage: a new iterative Map-Making code for CMB experiments

D. Yvon1,2 and F. Mayet1,3

1 CEA-CE Saclay, DAPNIA, Service de Physique des Particules, Bat 141, F-91191 Gif sur Yvette Cedex, France
2 Fédération de Recherche APC, Université Paris 7, Paris, France
3 LPSC Grenoble, CNRS/IN2P3 and Université J. Fourier, 53 avenue des Martyrs, F-38026 Grenoble cedex, France

January 12, 2005

Abstract. A major goal of CMB experiments is to obtain highly sensitive CMB maps in order to extract Spherical Harmonic Power Spectrum (SHPS) and cosmological parameters with unprecedented accuracy. We present a new map-making code (Mirage), based on a two-phase iterative algorithm, involving low frequency drift treatment, Butterworth high-pass filtering and conjugate gradient method. This work was strongly motivated by Archeops CMB experiment data analysis. We believe that Archeops was a good test bench for the future Planck Surveyor data analysis, and Mirage was designed in order to be used for Planck data processing with minimal work. A strong feature of Mirage is that it handles experimental problems in data, such as holes in data stream, bright sources, and galaxy side effects, without jeopardising speed. The other advantage is its processing speed, allowing to run Monte Carlo simulations of Archeops data processing on a single processor workstation overnight. Algorithms are explained. Systematic effects on SHPS are investigated on various simulated data, including typical Archeops observational systematics. The code is now available at http://www-dapnia.cea.fr/Telechargement/tel_mirage.php

Key words. Cosmic Microwave Background – Cosmology: Observations – Submillimetre

1. Introduction

Current and forthcoming CMB anisotropy experiments, both space borne (Planck1, MAP2) and balloon borne, e.g. Archeops3 [Benoït et al. 2003a, Benoït et al. 2003b, Benoït et al. 2003c], should allow for a major breakthrough towards the understanding of the early Universe, in particular through the estimation of cosmological parameters with unprecedented accuracy.

Amongst various steps of the CMB data analysis pipeline, from raw data treatment to angular power spectrum and eventually cosmological parameters extraction, the map-making phase enters as a crucial one, which should be handled with great care, in order not to induce systematics in the map, such as low frequency striping or galaxy side effects.

Most map-making methods rely on the assumption that the instrumental noise is gaussian, to assure that the “optimal” map is a maximum likelihood estimate4 and stationary, or at least piecewise stationary.

The basic formalism of map-making algorithm has already been described in great details (e.g. [Tegmark 1997, Hamilton 2003]). Basic relations are recalled hereafter for the reader’s convenience. Let m be the true sky convolved by the instrumental lobe, assumed to be symmetric, n the instrumental noise, A the pointing matrix, and eventually d the observed data stream. Sky patterns are stored in N_{pix} pixels. Assuming that the Time-Ordered Data (hereafter TOD) depends linearly on the map allows to write the fundamental relation as:

$$d = A m + n$$

As d and n involve N_{op} samples, the pointing matrix A is a $N_{op} \times N_{pix}$ matrix. The map-making method, if linear can be expressed (eq. 1) as : $s = W d$, where s is the reconstructed sky map and W is the matrix describing the linear method.

When computing the error map, one gets : $s - t = [W A - I] t + W n$ with I being the identity matrix. It can be underlined that the property $W A = I$ is highly desirable, because, if true, the method is unbiased and the error map does not depend on the sky signal.

This allows, given W and a reliable noise model, to statistically \textit{subtract} known noise contributions in the analysis.

The simplest map-making method is the \textit{coaddition}:

$$W_{coadd} = [A']^{-1} A$$

The operator A' projects the timeline onto the sky map pixels, the operator $A'A$ counts the sample directed toward each pixel. This method is very simple, fast, and satisfies the property $W_{coadd} A = I$ and has been shown to minimise the error map variance for white noise. Unfortunately, in most ex-
experiments, the noise is not observed to be white. Defining
N =< n n' > as the noise covariance matrix, it has been shown
in [Tegmark 1997] that the optimal method is given by
\[W = (A N^{-1} A)^{-1} A N^{-1} \]

(2)

This method satisfies the relation WA = I, mini-
mises the chi-squared noise towards the reconstructed map,
and is the maximum-likelihood estimate of true sky s
if the probability distribution of n is gaussian. It
has been shown in [Tegmark 1997] to be lossless, i.e. to
retain all CMB information initially contained in the time-
line. This algorithm (MADCAP [Borrill 1999]) has been
successfully applied to several CMB data sets, such as
COBE [Bennett et al. 1996], MAXIMA [Hanany et al. 2000]
or BOOMERanG [de Bernardis et al. 2000]. Nevertheless, in-
verting the full matrix scales like Npix^2, where Npix is the number
of pixels in the map, thus limiting the interest of this method to
rather small number of pixels in maps.

In the context of current and forthcoming experiments, for
which the data set are extremely large (Npix = 10^7, Nsp =
8 \times 10^8 for Archeops and Npix = 5 \times 10^7, Nsp = 10^9
for Planck), several map-making codes have been de-
veloped and published, involving either a direct (A N^{-1} A)
inversion (MADCAP [Borrill 1999]), or an iterative inver-
sion algorithm [Prunet 2000, Wright 1996, Natoli et al. 2001,
Doré et al. 2001, Dupac et al. 2002], FFT which scales only
as Nsp \log Nsp was the fundamental tool of these fast iterative
map-making algorithms [Wright 1996] and is used intensively
in Mirage. Recent implementations of some of the quoted al-
gorithms improve even more this scaling to Nsp \sim \log L where
L is the useful bandwidth of the noise, a constant factor.

The Mirage map-making presented in section 3 is based on
a two-phase iterative algorithm. To begin with, a quick estima-
tion of the sky map is evaluated in the first phase, in which the
low frequency drift is removed. This map is then used as an
input for the second phase, a conjugate gradient method.

2. Observational constraints

When applying a map-making method to real data, several
items must be carefully taken into account.
First, data streams do have holes that should be filled properly.
They may be induced by low level data treatment, such as
removal of glitches, i.e. high energy cosmic rays (mainly
protons) hitting the bolometer.
Instrumental noise in cryogenic experiments often presents
low frequency systematics whose knee frequency may exceed
the scanning frequency. As shown in the following simu-
lations, scan-synchronous low frequency systematics project
the map and cannot be minimised by the map-making
algorithm. With ring-based scanning strategies (Archeops,
Planck) annoying stripes show up on the sky maps.

These low frequency disturbances may be subtracted, if
they turn out to be correlated to some other instrumental or
observational data. If no useful decorrelation data is available
two options are then available (unless a better idea shows up) :
either to filter the data, suppressing the noise components along
with the signal at the corresponding scales in the sky map, or to
make a priori assumptions on the noise properties, and subtract
the best estimate of this noise component. In the case of the
MIRAGE algorithm, the filtering option has been chosen.

Then, the effect of the Galaxy must be taken into account. The
Galaxy is, with the planets, the brightest object of the sky.
When filtered, the rather large galactic signal, as compared to
the expected CMB one, induces ringing on the timelines that
distort the power spectrum at various angular scales.

As a matter of fact, Monte Carlo simulation is compulsory to
understand data analysis systematic and correct for its effect.
For instance, the MASTER method [Hivon et al. 2002] allows
to calibrate the unwanted effects on the CMB power spec-
trum, of either the instrumental noise, high-pass filtering or
any map-making induced alterations. This requires repetitive
Monte Carlo TOD simulations, followed by the map-making
of these data streams. Any useful map-making algorithm must
thus be fast enough to allow for massive Monte Carlo simu-
lations.

Next section presents the algorithm of the Mirage map-making
code.

3. Mirage algorithms

3.1. General design options

We decided to develop two separated Map making algorithms,
based on the same basic libraries and some specialised tools.
The first algorithm, named MirageDC, computes a sky map,
without filtering the timeline. If the data does not display low
frequency noise with knee frequency above the scanning (spin-
ning) frequency, this is the algorithm to use.
The second, named MirageAC, computes a sky map,
filtering the timeline using a parametrised Butterworth
[Horowitz and Hill] high-pass filter. As expected, the low fre-
quency features in the timeline and in the map are filtered out.
Both algorithms work in two steps. The first step is a fast esti-
mation of the sky map in order to minimise the work left to
the iterative optimisation, which is the time consuming step
of the process. The quick estimation map is thus saved and
feeds the second step, the iterative map optimisation, based on
a Conjugate Gradient iteror. The noise properties can be re-
liably extracted from the time ordered data, with no a priori.
When the noise spectrum is complex, with a strong low fre-
quency component, this two step method ensures faster and
smooth convergence of the algorithms. The optimised sky
map is saved, then subtracted from the input timeline: the best
estimate of the noise spectrum is computed from this noise
timeline and saved.

Finally speed was a constant concern in writing this code. The
code is not, by far fully optimised, but all algorithms used scale
with the samples number Nsp as Nsp \log Nsp or less, typical of
Fast Fourier Transforms. These codes have been optimised for
large sky coverage scanning strategies, such as Archeops and
Planck, and obviously account for large signals induced by the
Galaxy.
3.2. Gap filling

In order to compute a sky map, several variables are needed for each sample: the time (or sample number), the bolometer pointing Galactic latitude and longitude, and the bolometer signal, in physical unit on the sky. Most of the time the experiment provides also a quality indicator for the sample named flag. The flag is decoded according to the experiment: if the sample should not be kept, the pointing and bolometer signal are overridden to undefined value. Such undefined samples belong mostly to relatively short sets of data, but induce sharp discontinuities in the timelines that prevent to use Fast Fourier Transforms. To overcome this problem it is necessary to implement a gap filling algorithm that has to be fast and to preserve the spectrum of the timeline. Gap filling using linear prediction available in Numerical Recipes [Press et al.] provide satisfactory result, but scales as N_{gap}^2. Instead a simple mirroring technique has been chosen. Undefined bolometer signal samples are replaced by the mirror of the timeline taken at the last valid sample before the gap or the mirror of the timeline taken the first valid ample after the gap. Sharp discontinuity (step) between the last (first) filled sample and the following (preceding) timeline may then happen. Continuity is restored by adding to the filled samples a linear interpolation of the step amplitude. We then retain the mirror option of minimum variance after subtraction of the interpolation between the last valid sample before gap and the first valid ample after gap. The algorithm computation time scales linearly with the gap sample number. Additionally, using simulated noise timeline with spectrum of figure 2 with up to 20% undefined samples, the reconstructed noise spectrum after gap-filling was checked to be statistically compatible with initial noise spectrum, thus behaving satisfactory.

3.3. Conjugate Gradient Iterator.

The Map making equation written as $(A'N^{-1}A)\tau = A'N^{-1}d$, where τ is the vector of scanned sky pixels values to be computed, is a set of linear equations, with each observed pixel of the sky being a unknown. The Conjugate Gradient Method (CG) [Barrett et al.] is an iterative numerical method widely used for solving systems of linear equations. Following [Natoli et al. 2001], this method has been chosen. Computation speed is improved by two methods:

1) Given an estimated sky s_0 the map-making equation can be written as

$$(A'N^{-1}A)(\tau - s_0) = A'N^{-1}(d - s_0)$$

This variable change, suggested by [Doré et al. 2001], when used with a reasonable initial sky guess, remove most of the signal from the remaining timeline $D = d - A s_0$ (as s_0 being the timeline computed when the estimated sky s_0 is observed through the pointing matrix). It allows to cut the range of numbers involved in the computation thus improving numerical stability of the algorithm. It also minimises sharp transitions on the timeline data, when the line of sight crosses bright objects such as the Galaxy. D is now assumed to be dominated by noise and is used to compute the noise spectral density Σ. Assuming the noise is stationary, [Tegmark 1997] explains how to a very good approximation:

$$N^{-1}D = F'[\Xi^{-1}F(D)]$$

where $F[F']$ is the Fast Fourier Transform (antitransform). Computation time scales as $N_{\text{sp}}\log N_{\text{sp}}$ and the large Matrix N^{-1} does not need to be stored.

2) Convergence speed is improved by using a preconditioning matrix. A first choice of the preconditioning matrix is $P = [\text{diag}(A'N^{-1}A)]^{-1}$, where the diag operator reduces the $A'N^{-1}A$ to its diagonal part, which can be approximated by $P = \nu_{\text{noise}}(A'A)^{-1}$, square matrix whose diagonal element value P_{ii} is the noise variance divided by the number of measurements of the sky for the pixel i. The map making equation is solved in its final form:

$$P(A'N^{-1}A)(\tau - s_0) = PA'N^{-1}(d - s_0)$$

The CG method requires to provide the initial residual $A'N^{-1}(d - A s_0)$ and the operators working on the sky, P and $A'N^{-1}A$. Then a stopping criterion is required. If quick estimation algorithms are well designed, little work is left to the Conjugate Gradient optimization and we expect quick convergence. A first choice should be to stop the optimization when the optimization algorithm converges, limited by machine precision and often associated with small oscillations in the map residuals. But systematic errors on the Spherical Harmonic Power Spectrum (SHPS) due to sky pixelisation (Healpix pixel window functions, see sec. 5.1) turns out to be enhanced by the CG iterator and poor scanning strategy redundancy. This effect is difficult to correct for, if the iteration number changes from one timeline to an other. This is why we chose to stop the iteration at a predefined iteration number N_{iter}. In the following simulations we used $N_{\text{iter}} = 5$, as a working choice that minimizes computation time.

Given the pointing matrix A, operating A' and $A'N^{-1}$ scales as N_{sp}, and the CPU time used by this Conjugate Gradient iterator scales as $N_{\text{iter}}N_{\text{sp}}$, thus being very efficient.

3.4. Classical "optimal" map-making : MirageDC

3.4.1. A fast timeline slow-drift substractor : SlopeKillerMask

The goal of the quick estimation algorithms is to provide quickly a rough but reliable estimation of the sky to feed the input of the Conjugate Gradient method. Quick maps have to be good enough to ensure that when subtracted from the timelines, the residual is dominated by noise. SlopeKillerMask assumes that the observing strategy describes large circles on the sky. In particular, this is the scanning strategy chosen by Archeops and Planck. The most dramatic noise effect on timeline is low frequency noise (see Figure 3b), and the Galaxy. In the following low frequency noise is assumed to have negligible power above the scanning (spinning) frequency. Then SlopeKillerMask masks Galactic signal, computes the low frequency component of the timeline, subtracts
it and then calculates the map by simple coaddition.
SlopeKillerMask first scans the timeline pointing, looking for
the maxima in Galactic latitude and store them in memory.
Data between these maxima are stored in set named Circles.
For each circle, samples pointing toward a bright region of the
galaxy are flagged and discarded: bright Galactic regions are
defined as brighter than a user chosen threshold (typically 5
MJ/st) at a wavelength of 100 µm using SFD Galactic model
[Finkbeiner et al. 1999]. We fit over the valid Bolometer sig-
nal sample values a straight line with time. The Offset is finally
stored as the value of the fitted line, in the middle of the circle.
This is a very robust estimation of the low frequency evolution
of the timeline, provided the data has been properly flagged
for glitches and cosmic rays, before the map-making process.
If not, this algorithm can be made insensitive to glitches, by
running the straight fit twice: after fitting the straightline, we
compute the variance of the timeline minus the fitted line. We
flag samples that are 5 standard deviations from the fit. Doing
so, we found that moderate and large amplitude glitches as well
as bright point sources were flagged with adequate efficiency.
We then computed once more the straight line fit, and store the
fitted value in the middle of the circle.
The list of Offset is then used to compute the estimated slow
drift component of the timeline by simple interpolation in the
list, and this slow drift timeline is subtracted from the bolome-
ter signal. A simple upgrade would subtract a spline function
of the offset list instead of interpolations. The resulting time-
line \(d_{\text{sub}} \) is then projected on the sky \(W_{\text{coor}} d_{\text{sub}} = s_0 \), giving
the fast rough estimation. Computation time scales as the time-
line sample number and is found to be negligible as compared
to the rest of the map-making process.

3.4.2. Iterative Optimisation

The iterative optimisation of the map is a straightforward use of
the Conjugate Gradient iterator described in sec. 3.3. It uses the
input timeline and the rough sky estimation to compute the op-
timised sky map. 5 Conjugate Gradient cycles are used, and the
residual modulus typically gets divided by 100. This is indeed
the time consuming step. It scales as \(N_{\text{iter}} N_p \log N_p \).

3.5. MirageAC

When low frequency noises happen to pollute data above the
scanning frequency, the SlopeKillerMask algorithm does not
produce adequate maps. MirageAC was designed to high-pass
filter the timeline, to suppress noise as well as signal under
the frequency cutoff. The fundamental building block of such
a method is a filtering tool. We chose to filter in the Fourier
space, taking care of edge effects, and used the gap filling soft-
ware to prepare the timelines. The main drawback of AC fil-
tering is related to the galaxy. The Galaxy center is very luminous
compared to the CMB. As expected, high-pass filtering induced
ringing around large features. The way out is to subtract overly
luminous object from the timeline before filtering. But large
low frequency noise prevents to make a good estimation of the
bright signal before filtering. We designed an iterative algo-

3.5.1. Quick map estimation: Rough Filtered
Map-Making

The input timeline is kept unmodified all along the process. A
copy of the input timeline is high-pass filtered, and projected
in a filtered sky map. The variance of the distribution of the
filtered sky map is computed outside the Galaxy. Filtered sky
map pixels are then saved above a threshold of 2.5 standard de-
viations in a bright object Map: \(s_B \).
Making an other copy of the input timeline, we first subtract the
timeline obtained by observing the bright object Map: \(A^T s_B \).
We filter the resulting timeline, project it, threshold it and add
the result to the bright object Map.
We loop on the process four times. Then in the last loop, we
do not threshold the filtered sky map, but we add it to the last
bright object Map to compute the Rough Filtered Map, with
noise.
This algorithm was shown to effectively remove low frequency
noise and suppress ringing effect on the timeline and computed
maps by a factor 20. Of course, the bright sky features (Galaxy)
are high-pass filtered too, in a way that depends of the scan-
ing strategy. If the scanning strategy is complex (Archeops),
the bias induced on the maps can only be studied through
simulations. This algorithm scales as \(N_p \log N_p \), (dominated
by the FFT transforms) and is thus significantly slower than the
SlopeKillerMask algorithm and follows the same scaling as the
iterative optimisation. An interesting alternative to this code is the filtering without ringing algorithm presented in
[Amblard & Hamilton 2003]. Tests need to be performed to
compare respective performances.

3.5.2. Iterative Optimisation in MirageAC

The iterative optimisation follows the same ideas. The Rough
Filtered Map is subtracted from a copy of the input timeline.
The resulting timeline, assumed to be dominated by noise is
processed by the Conjugate Gradient Iterator, that compute a
Correction Map. The optimised sky Map is the sum of the
Rough Filtered Map and the Correction Map.

4. Simulated timeline data

In order to test and optimize the map-making method, simula-
tion tools have been developed to generate realistic timelines.

4.1. Input Sky Maps

A CMB temperature anisotropy map is generated using
CMBfast [Zaldarriaga et al. 2000] and Synfast
[Gorski et al. 1998] codes. For this tests, standard model
of Cosmology has been used, namely:
\[
\Omega_m = 1, \Omega_\Lambda = 0.7, \Omega_M = 0.026, \Omega_B = 0.04, h_{100} = 0.65
\]
A galactic map is generated using a galactic dust emissivity
model. The extrapolation model from [Finkbeiner et al. 1999]
is used, in particular their best fit model. This map is extrapolated from the 100 μm emission and 100 – 240 μm flux ratio maps from IRAS and COBE-DIRBE data. To take into account a finite instrumental resolution, the input map is convolved with Gaussian beam, assumed to be 10° FWHM. Optical frequency dependence of sky signal (dust, CMB, …) is integrated on optical filter assumed to be of top hat shape, with $\Delta f/f = 30\%$. Convolved CMB maps and galactic maps are then obtained and observed, given the pointing of the instrument, to obtain a signal only timeline.

Fig. 1. Mollweide projections of the two scanning strategies used in this study. Kiruna scanning strategy for the Archeops mission. a) The label Kiruna correspond to the theoretical sky coverage of a 25 hours Archeops Flight. This sky coverage is homogeneous with timelines cutting at large angle and no data hole. b) Sky coverage of the third Archeops Kiruna Scientific flight (KS3): a real life example.

4.2. Scanning strategies

Two scanning strategies are being used. Their Mollweide projections of sky coverage are shown on figure 1. The first one is a theoretical Kiruna 24 hour scanning strategy for the Archeops mission, limited to 9 \times 106 samples, to allow quick tests on our workstation. This is a best case sky coverage: homogeneous, with timelines cutting at large angle and no data hole. The second is a copy of an Archeops third Kiruna Scientific Flight (KS3) bolometer pointing file, including data holes, and inhomogeneous sky coverage, that is an example of real-life data.

4.3. Noise Models

Our models assume that noise properties are stationary. Noise timelines are then added to the signal only timeline to make the input timelines of the map making. Two kinds of noise spectra are being used:

- The first one is the classical 1/f and white noise spectrum parametrised as following:

$$N(\nu) = e_0 \times (1 + f_{\text{knee}}/f) \times f/(0.002f_{\text{knee}} + f)$$

where e_0 is the high frequency flat noise power spectrum density and f_{knee} is the 1/f knee frequency of the spectrum. The term $f/(0.002f_{\text{knee}} + f)$ has been added to avoid the divergence of the integral of the Noise Power Spectral density at zero frequency. In the following, this noise spectrum is used unless specified.

The second model shown on figure 2 uses the noise spectrum of what would be a strongly polluted experiment, displaying large and wide noise spikes, additional to moderate 1/f noise excess. This noise spectrum is used in simulation as tough test of the robustness of the algorithms presented in this paper.

Fig. 2. Noise spectrum of what would be a strongly polluted experiment, displaying large and wide noise spikes, additional to moderate 1/f noise excess. This noise spectrum is used in simulation as tough test of the robustness of the algorithms presented in this paper.

The Mirage code may then be tested with various physical inputs (CMB, galaxy), level of noise as well as various scanning strategies. The entire simulation tools are developed in C++ within the framework of SOPHYA [Ansari et al.].

4.4. Mirage algorithms working on simulated data

As a first test of systematics induced by our algorithms we compute noise free timelines by reading a Galaxy + CMB anisotropy sky map. We then process these timelines by Mirage algorithms and subtract the input sky map to produce difference maps. The results are shown at Figure 3. We see that SlopeKillerMask algorithm induces little distortion while MirageDC optimiser minimise somehow the galaxy brightest pixels. MirageAC quick estimation and optimiser do induce some residual ringing that distorts the galactic map, but this
ringing is small enough to allow CMB anisotropy C_l estimation, if we mask the galaxy area.

As a second test, Figure 4 shows Mollweide projections of sky maps computed by Mirage algorithms using noisy simulated timelines. Timelines have been generated using a Galaxy + CMB anisotropy map, $1/f$ and white noise. Mirage algorithms process these timelines and we subtract the input sky map to produce the difference maps shown. Figure 4a shows the difference map obtained if we use the simplest of all map-making algorithm: simple projection and averaging of measurements on sky pixels (coaddition) used on a timeline with noise knee frequency lower than the scanning redundancy frequency. The map is dramatically dominated by noise-induced lines following the scanning path named *stripes*. Figure 4b shows the difference map computed using the SlopeKillerMask algorithm to remove low frequency drifts followed by coaddition. SlopeKillerMask as well as MirageDC optimiser produce maps with no more stripping, and the noise level is lower where the scanning frequency shows higher redundancy. (Figure 4c et 4d are difference maps computed from a timeline with noise knee frequency above the scanning redundancy frequency. Figure 4c shows the optimised map computed by MirageDC. It shows strong pollution by striping, due to the low frequency noise synchronous with observations that project on the sky. Figure 4d shows difference map processed by the optimised MirageAC output map. Please note the change in scales, and the noise amplitude variation with the scanning strategy redundancy. To remove striping seen in Figure 4c, we chose a MirageAC high-pass filter cutting frequency of one tenth of the noise knee frequency. The striping is dramatically reduced, though still noticeable. Rising the high-pass frequency allows to suppress stripes completely but increases at the same time filtering of the underlying CMB signal. Thus the choice of the filter cutting frequency is a trade off.
5. Efficiency and systematic errors on SHPS induced by Mirage algorithms

All data presented in the following are simulations. This work follows [Hivon et al. 2002], and then [Amblard & Hamilton 2003] within the Archeops collaboration where biases on SHPS induced by coaddition-based algorithms are studied in details. In this paragraph we explain methods used within Mirage optimisation algorithms to minimise its systematical errors, we quantify the algorithms efficiencies and residual biases. The SHPS is calculated simply by computing the Y_{lm} transform of the analysed map using the AnaFast algorithm [Gorski et al. 1998] and then the Pseudo C_l. No attempt was made to de-correlate the C_l values due to the limited sky coverage.

5.1. Sky pixelisation systematic errors

In the following, the Healpix pixelisation [Gorski et al. 1998] have been widely used, as well as associated algorithms. The first systematic error to enter when a map is used as an intermediate step before computing C_l power spectrum is the well known "pixelisation" effect. Healpix pixelisation provides its analytically computed pixel window function that allows to correct the effect of finite map pixel size, in the evaluation of SHPS. It is found that an healpix resolution factor $N_{side} = 512$, ...
or larger, need to be used to compute SHPS with acceptable distortion up to $\ell = 600$. It turns out that the Conjugate Gradient optimiser manipulate data in the form of pixelised maps at each iteration. We observed that the pixel window effect is amplified when the number of iteration increases. The natural remedy would be to pixelised the sky at a higher resolution. But in real life data (Archeops), as well as for our simulations, increasing the healpix resolution factor at 1024 would result in a typical pixel measurement redundancy of one. The large sky coverage, associated to the short flight duration prevents us to use healpix resolution factor larger than 512. Therefore, in order to be able to correct for the effect of pixel window function, we decided to run the CG optimiser for a user-defined number of iteration. In the following all maps were pixelised using a resolution factor $N_{\text{side}} = 512$. We then compare the additional distortions induced by the algorithms.

5.2. MirageDC

5.2.1. Filtering function

In this paragraph, distortions induced by the MirageDC are estimated, when used to process noiseless timelines. The input timeline is prepared as following: The CMB map is observed using a Kiruna 24 Hours scanning. No noise is added. We run the MirageDC and get 3 maps, a simple coaddition, the SlopeKillerMask quick estimation, and the iteratively optimised maps. These are, as expected, so similar that they can only be compared through their SHPS. Figure 5 shows the SHPS of the input convolved CMB map, over the SHPS of the 2 output maps. No distortion is seen on the SHPS.

5.2.2. Noise suppression efficiency

The three above mentioned map making algorithms have all been tested and found to be linear with respect to their inputs. The simplest way to quantify the noise suppression efficiency is then to run the Mirage on Noise only timeline. As a matter of fact, the lowest the noise spectral amplitude, the better the suppression (and hence the algorithm). In order to compare the efficiency of different algorithms, we ran Mirage on Noise only timeline using 3 kinds of noise spectra and 2 kinds of scanning strategies. The noise labelled VLF is a $1/f$ + white noise with knee frequency of 0.1 Hz. The noise spectrum labelled LF is a $1/f +$ white noise with knee frequency of 5 Hz. Finally the bad noise spectrum is the one presented in figure 2. The computed SHPS are shown on figure 6. Since the noise spectra are very different in amplitude, and the scanning strategies are of very different redundancy and sky coverage, the Y axis amplitudes should not be compared between different windows. The relevant information is the relative efficiency of the various algorithms.

Figure 6 shows the most relevant results of these simulations. We see at figure 6 a) and b) that the simple coaddition is the worst of the algorithm. If noise excess happen only at very low frequency, a simple Slope Killer followed by a coaddition is very efficient at suppressing noise, and conjugate gradient iterative optimisation does not improve the results. If noise excess happens to have a knee frequency above the spinning frequency, MirageDC Conjugate Gradient optimisation significantly improves the results, for both scanning strategies. Finally if the noise spectrum display strong peaks spreaded all over the spectrum the CG optimisation stays the best of MirageDC algorithms.

Now if we look closely at the reconstructed SHPS spectrum by MirageDC CG algorithm, we notice that the spread in 3 lines of the SHPS is present, though at a much lower level than with simpler algorithms.

5.2.3. Is MirageDC the final word?

As shown above MirageDC is found to be efficient. The worst the noise spectrum is, the more efficient is the algorithm compared to simpler algorithms. But, when the low frequency noise knee frequency happens to exceed the scanning strategy spin-
Fig. 6. SHPS computed from maps calculated with MirageDC and MirageAC algorithms. The timelines used included no signal, were generated from 3 different noise spectra, and projected on the sky following two scanning strategies called Kiruna and KS3 (See fig. 1). a) The black lines are computed by simple coaddition, the red is the result of SlopeKillerMask algorithm, the green is the output of iterative optimisation using Conjugate Gradient method. We see that for noise peaked at below scanning redundancy, both MirageDC algorithms do the job perfectly. For knee frequencies low frequency noise above the scanning frequency b), MirageDC optimiser improves the results compared to SlopeKillerMask algorithm as expected, but residual stripes in maps split the SHPS curve in 3 branches. c) and d) SHPS computed from MirageAC maps algorithms working on the same low frequency noise timelines. The black lines are computed by high-pass filtering and coaddition of the timelines, the red is the result of GalaxMapMak algorithm, the green is the output of iterative optimisation using Conjugate Gradient method. e) Mirage AC improve a lot the SHPS compared to b) and we notice that the 3 algorithms show very similar performances for low frequency dominated noise. But if the noise spectrum and/or the scanning strategy are more complex d), iterative optimisation of maps improves the noise rejection.

Though MirageDC mathematically solves the map-making problem by minimising the variance of noise in the map optimally, it is not satisfactory for the physicist, because the line pattern of the pseudo-\(C_l\) spectrum will be a big issue in our attempts to recover the primordial CMB SHPS at all multipoles. Some other input, prior or idea is required to improve our map-making process. Noticing that a strong low frequency noise will overwhelm the CMB SHPS at low frequency, we chose to high-pass filter the timelines, sacrificing the low multipole SHPS information, in order to remove the striping: this is MirageAC. The hope is to recover the high multipole SHPS information.
5.3. MirageAC

5.3.1. Filtering Function

For this test we use the same timelines as those prepared for sec. 5.2.1. We run the MirageAC, with high-pass cutting frequency of 0.3 Hz, and a 4 order Butterworth filter. (Figure 5b) presents the SHPS obtained from the 3 output maps as well as the SHPS computed from the coaddition of the same timeline. It can be seen that the 3 algorithms induce very similar systematics on SHPS. Systematics induced by high-pass filtering the timelines is significant at low multipole values, and need to be evaluated and corrected from simulations.

5.3.2. Noise Suppression efficiency

Map-making AC is used to process the same timelines as in sec. 5.3.1. Some results are presented on Figure 6c and 6d. We observed that when the 1/f + white noise knee frequency is lower or close to the High-Pass cutting frequency, Mirage AC efficiently suppress 1/f noise contribution to SHPS as expected. The 3 outputs maps provides the same SHPS spectrum even for LF noise, if the scanning strategy is homogeneous (Kiruna). But if the scanning strategy is inhomogeneous (e.g. Archeops), conjugate gradient optimisation does improves the result. Finally, if the noise spectrum is peaky, the Conjugate Gradient optimisation improves the result at high multipole values (6d). Archeops data analysis showed that MirageAC is very effective, when the noise spectrum rises at high frequencies: this happens when deconvolution of bolometers thermal constant low-pass filtering is necessary.

5.3.3. MirageAC and the Galaxy, validation of the method

The Galaxy is the largest and the brightest object of the Sky in the few 100 GHz bands. This reality induces two additional problems for evaluation of SHPS using maps of the sky. The easiest to understand is that after a large signal, any high-pass filter rings over some period of time. The ringing feature biases the map over an area that has to be masked before SHPS estimation. This effect was taken care from the start in the MirageAC algorithm.

The second effect is a bias in the noise spectrum evaluation [Amblard & Hamilton 2003]. The power radiated by the galaxy varies continuously as the scan moves through it. For noise estimation, the quick sky signal estimation is subtracted from the noise timeline. This sky signal estimation is pixelised with finite resolution, the same as the output maps \(N_{\text{side}} = 512\) for this work). When the scan crosses a quickly varying region of the galaxy, the timeline samples digitizes a fast changing signal, and the sky estimation averages this signal over the pixel size. When subtracted, the resulting timeline is contaminated by spurious bipolar features of pixel size, that consequently distorts the noise spectrum. This biased noise spectrum drives the Conjugate Gradient optimisation algorithm to minimise some of the CMB features. To correct this behavior, we state that the slope of Galactic signal is strongly correlated to the Galaxy intensity. Before computing the timeline noise spectrum, sky estimation subtracted, we erase the samples pointing toward a galactic area brighter that a threshold of 10 MJy/sr. The timeline is then restored with the gap-filling algorithm, and the corrected noise power spectrum is eventually computed.

A final test has eventually been performed to check for additional bias and validate Mirage AC. The simulated timelines were prepared, using for the sky signal the sum of a simulated CMB map and of the galaxy map observed with Archeops scanning pattern. Noise was generated using a 1/f + white noise spectrum. The same noise generation was used for the Sky + Noise1 (Signal) timeline and the noise only timeline Noise1. In addition, a second noise timeline Noise2 was generated with the same noise statistical properties. High-pass filter cutting frequency and slope were set at 0.3 Hz and 4 poles. In the output maps, the areas where IRAS 100 \(\mu\)m flux was larger than 3 MJ/sr have been put to zero.

MirageAC processed the 3 optimised maps. In order to test for additional bias in map-making, we first subtract from Signal Map the Noise1 map, and compute the SPHS. Though unrealistic in real life, this is a tough test of the method bias, because we expect to recover input signal without noise nor distortion. Figure 7 shows the results: black dots are the “CMB only” SHPS, processed with MapMaKAC, pixelised at same resolution, and with the same sky coverage. Red dots are the recovered SHPS. Green triangles show the SHPS of the Noise1 map, divided by 10. We see that the recovered SHPS follows closely the CMB SHPS with a small excess at multipoles larger that 400. Blue triangles presents rebinned Signal Map SHPS, SHPS of “Noise2” map subtracted.
6. Conclusion

Two algorithms have been developed in order to optimise the sky maps computed from noisy timelines. Conjugate Gradient optimisation is efficient at minimising noise in timeline. CG is effective on timelines displaying complex noise spectrum and inhomogeneous sky coverage. If data is contaminated by low frequency systematics with a knee frequency larger then the scanning frequency, MirageDC, though being effective at reducing noise on the SHPS, does not succeed in removing stripes on the computed maps. This problem is shared by all “Optimal” map-making software [Borrill 1999, Prunet 2000, Wright 1996, Natoli et al. 2001]. The MirageAC algorithm does the job beautifully, at the cost of suppressing the power spectrum at low multipoles. This effect must be corrected using Monte Carlo simulations. In this way, MirageAC can be seen as an improvement of the MASTER map-making method [Hivon et al. 2002] (high-passed coadded timeline), with optimal processing of medium and high frequency noise features (lines and bumps in noise spectrum).

Both algorithms proved to handle experimental data efficiently, including data holes and bright objects, and to be of very low cost in CPU time. Mirage does not support nor needs parallel processing. On a single processor Compaq Alpha 667 MHz workstation, MirageDC processes a 10^7 samples timeline in 20 s for the quick estimation, and 40 s per CG iteration. Mirage (AC algorithm) has been used for a second estimation of Archeops CMB power spectrum using a cross-spectrum method [Tristram et al. 2004].

Acknowledgements. The authors wish to thank, the ARCHEOPS collaboration for using, criticising and motivating the development of Mirage software, C. Magneville and the SOPHIA team for discussions and providing support on the mathematical libraries used by Mirage, J.-Ch.Hamilton, J.-P. Pansart, C. Yece, J. Rich, R.Teyssier, J. Macias-Perez, M. Tristram, P.-X. Désert and the referee for meticulously reading and commenting this manuscript. O. Doré and J.-Ch. Hamilton for introducing us to the subject in the early times of this work.

References

A. Amblard and J. -Ch. Hamilton 2003, Astron. Astrophys. 417, 1189
R. Amari et al., http://www.sophya.org
R. Barrett et al., Template for the solution of Linear Systems: Building Blocks for Iteratives Methods, see also http://www.netlib.org/templates/Templates.html

C. L. Bennett et al. 1996, Astrophys. J. Letters 464, L1
A. Benoît et al. 2003a, Astron. Astrophys. 399, 25
A. Benoît et al. 2003b, Astron. Astrophys. 399, 19
A. Benoît et al. 2003c, astro-ph/0306222, submitted to A&A
J. Borrill, astro-ph/9911389, to be published in Proceedings of the 5th European SGICray MPP Workshop, see also http://www.nersc.gov/borrill1/cmb/madcap.html
P. de Bernardis et al. 2000, Nature 404, 955
O. Doré et al. 2001, Astron. Astrophys. 374, 358, see also http://ulysses.iap.fr/cmbsoft/mapcumba/
X. Dupac et al. 2002, Mon. Not. R. Astron. Soc. 330, 497
D. P. Finkbeiner et al. 1999, Astrophys. J. 524, 867, see also http://astro.ph/berkeley.edu/davis/dust/
K. M. Gorski, E. Hivon & B. Wandelt 1998, Proceed. of the MPA/ESO Conf. on Evolution of Large-Scale Structure: from Recombination to Garching, 2-7 August 1998, eds. A.J. Banday, R.K. Sheth and L. Da Costa, astro-ph/9812350, see also http://www.eso.org/science/healpix
J.-Ch. Hamilton 2003, C.R. Physique 4, 871-879
S. Hanany et al. 2000, Astrophys. J. 545, L5
E. Hivon et al. 2002, Astrophys. J. 567, 2
P. Horowitz and W. Hill, The Art of Electronics, Cambridge University Press, 2nd Edition, p. 269
P. Natoli et al. 2001, Astronomy and Astrophysics 372, 346
W. Press et al., Numerical Recipes in C : The Art of Scientific Computing, Cambridge University Press
S. Prunet 2000, astro-ph/0006052
M. Tegmark 1997, Phys. Rev D 56, 4514; Astrophys. J. Letters 480, L87
M. Tristram et al. 2004, astro-ph/0408358, to appear in the proceedings of 39th Rencontres de Moriond (Apr. 2004)
E. L. Wright 1996, astro-ph/9612006
M. Zaldarriaga et al. 2000, Astrophys. J. Suppl. Series 129, 431