The genomic analysis brings a new piece to the molecular jigsaw of idiopathic erythrocytosis

Antonella Zagaria1†, Francesco Tarantini1†, Paola Orsini1, Luisa Anelli1, Cosimo Cumbo1, Nicoletta Coccaro1, Giuseppina Tota1, Crescenzio Francesco Minervini1, Elisa Parciante1, Maria Rosa Conserva1, Immacolata Redavid1, Alessandra Ricco1, Immacolata Attolico1, Giorgina Specchia2, Pellegrino Musto1 and Francesco Albano1*

Abstract
Erythrocytosis is a clinical condition characterized by increased red cell mass, hemoglobin, and hematocrit values. A significant fraction of patients is described as having idiopathic erythrocytosis. We have previously demonstrated an association between erythrocytosis and the JAK2 GGCC_46/1 haplotype and CALR rs1049481_G allele. In the present study, we investigated genomic and clinical features of 80 erythrocytosis patients with the aim to provide useful information in clinical practice. Patients with idiopathic erythrocytosis could have a genomic germline background, eventually associated with somatic variants. Through association analysis, we show that male patients presenting with idiopathic erythrocytosis, and normal EPO levels could be the best candidates for the search for the JAK2 GGCC_46/1 haplotype and CALR rs1049481_G allele. Further studies are needed to confirm these findings and to depict detailed genomic and phenotypical characteristics of these patients.

Keywords: Erythrocytosis, Myeloproliferative neoplasms, SNPs, JAK2, EPO

To the editor,
Erythrocytosis is characterized by an erythrocyte count above the gender specific normal range and increased hemoglobin and hematocrit values [1]. Polycythemia vera (PV) accounts for most primary acquired erythrocytosis cases; the JAK2 V617F or JAK2 exon 12 variants are considered PV “driver” mutations. However, about 4% of PV cases lack a molecular marker [1, 2].

Although recent evidence has added useful information to define erythrocytosis [3, 4] a significant fraction of patients is described as affected by idiopathic erythrocytosis (IE), characterized by a genetic marker absence; the IE clinical management still represents an unmet need. We previously demonstrated an association between erythrocytosis and two single nucleotide polymorphisms (SNPs): JAK2 GGCC_46/1 and CALR rs1049481_G [5]. In this study, we investigated genomic and clinical features of a larger cohort of patients to unveil the IE molecular complexity (Additional file 1). Based on clinical and genomic data of a more extensive patient’s cohort, we suggest a hierarchical model in which male patients

†Antonella Zagaria and Francesco Tarantini contributed equally to this work
*Correspondence: francesco.albano@uniba.it
1 Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology and Stem Cell Transplantation Unit, University of Bari “Aldo Moro”, P2za G. Cesare, 11, 70124 Bari, Italy
Full list of author information is available at the end of the article
presenting with IE and normal erythropoietin (EPO) levels are the best candidates for the search for JAK2 and CALR SNPs. Furthermore, in this subset of patients, we identified additional mutations in genes commonly involved in clonal hematopoiesis (CH).

The JAK2 and CALR SNPs were genotyped in 80 cases (Additional file 2: Table S1) as previously described [5]. Fifty-three (66.3%) were positive and 27 (33.7%) negative for the JAK2 haplotype. Regarding CALR, 54 (67.5%) cases had at least one G allele.

The JAK2 SNP was associated with erythrocytosis, a significant difference in frequency being detected as compared to healthy European controls (p = 0.0011). The association was also demonstrated in terms of allelic frequency (p = 0.0019) and genotype distribution (p = 0.0035).

The simultaneous presence of both SNPs was observed in 38 (47.5%) cases compared to controls (137/503, 27.2%) (p = 0.0004). A significant association between SNPs and erythrocytosis was also observed in cases showing normal EPO (p = 0.0002).

Since both SNPs are in accordance with Hardy–Weinberg equilibrium in controls (p > 0.05), association analysis was performed between the SNPs investigated and erythrocytosis using the SNPassoc R package [6]. A significant association between JAK2 SNP and erythrocytosis risk was observed under the dominant model, with a 2.29-fold higher risk in people bearing at least one alternative allele compared to subjects having none (OR = 2.29; p = 0.0007576) (Table 1). Considering CALR, the presence of at least one G allele is associated with an increased risk under a log-additive model (0,1,2 G: OR = 1.37; p = 0.06609).

To improve the accuracy of the test, several covariates were incorporated; the association became stronger after adjustment for the presence of CALR rs1049481_G as a categorical variable, as well as gender, and EPO level (Table 1). The erythrocytosis risk is higher when the three covariates are introduced simultaneously (OR = 3.13, p = 0.000051; Table 1). Considering patients with normal EPO levels, all observed associations between JAK2 SNP and erythrocytosis under the dominant model were strengthened (with CALR rs1049481_G as covariate: OR = 2.75, p = 0.0001381; with gender: OR = 3.11, p = 0.0000522).

Next generation sequencing (NGS) analysis was performed on 44 patients; 34/44 (77%) sequenced cases with the JAK2 haplotype showed at least one allele G of CALR rs1049481. Overall, 22 genetic variants affecting 7 genes (ASXL1, TET2, DNMT3A, JAK2, KIT, RUNX1, ANKRD26) were detected in 17/44 cases (38.6%) (Fig. 1A). ASXL1 was the most frequently mutated gene (6/44, 14%) (Fig. 1A, B). Two non-canonical JAK2 variants were identified (Additional file 3: Table S2), already described in few patients with haematologic neoplasms [7].

Recent evidence suggests that germline predisposition factors could have a role in the development of myeloproliferative neoplasms [3, 8–10]. Based on the integration of genomic data, clinical features, and statistical methodology, we have attempted to refine the typical characteristics of patients presenting with IE. The median age of our

Table 1 Associations between JAK2 GGCC_46/1 haplotype and erythrocytosis cases

SNP	Genotype	Control (503)	Case (80)	p-value	AIC
rs3780367		HWE = 0.6868	HWE = 0.4974		
	T/T	271 (53.9%)	27 (33.8%)		
	T/G	192 (38.2%)	43 (53.8%)		
	G/G	40 (8%)	10 (12.5%)		

Genetic inheritance model	OR (95% CI)	p-value	AIC
Codominant	2.23 (1.33, 3.74)	0.0036866	461.1
Dominant	2.29 (1.4, 3.76)	0.0007576	458.9
Recessive	1.65 (0.79, 3.46)	0.1991234	468.6
Overdominant	1.88 (1.17, 3.03)	0.0089603	463.4
log-Additive	1.75 (1.23, 2.47)	0.0019041	460.6

Adjustment by single covariates	OR (95% CI)	p-value	AIC
CALR rs1049481_G (yes/no)	2.3 (1.4, 3.78)	0.0007354	459.5
Gender	2.62 (1.54, 4.43)	0.000255	362.9
Epo level	2.73 (1.59, 4.68)	0.000153	417.1

Adjustment by multiple covariates	OR (95% CI)	p-value	AIC
Sex-Epo level and CALR rs1049481_G (yes/no)	3.13 (1.76, 5.5)	0.000051	331.9
Fig. 1 A Oncoprint visualization of all genetic variants identified by targeted NGS analysis in 44 erythrocytosis cases. SNP: single nucleotide polymorphism. B Maps of the mutations on linear proteins of the most mutated genes in all sequenced cases. Green dots stand for missense mutations, while black dots indicate frameshift mutations. The height of the bar depends on the number of cases bearing each variant. HARE-HTH: HB1, ASXL, restriction endonuclease H-TH domain (12–83); ASXH: Asx homology domain (234–362); PHD: PHD domain of transcriptional enhancer, Asx (1480–1539); PWWP: Pro-Trp-Trp-Pro domain (291–374); DNA_methylase: C-5 cytosine-specific DNA methylase (634–767); Tet_JBP: Oxygenase domain of the 2OGFeDO superfamily (1290–1905). C Diagnostic approach to erythrocytosis patients. PV: polycythemia vera, BOM: bone marrow biopsy.
patients with typical CH genes mutations was 52 years (only 2 patients were > 60 years). Therefore, such mutations cannot be attributed to an aging-related CH [11].

We hypothesize that a degree of genomic instability could create a “fertile ground” for the development of erythrocytosis, characterized by a high prevalence of additional mutations in typical CH genes. Furthermore, association analysis builds a sort of genomic hierarchy, prioritizing the presence of JAK2 GGCC_46/1 over the CALR rs1049481_G allele. Finally, male patients with IE and normal EPO levels are more likely to benefit from the analysis of both JAK2 and CALR SNPs to better define the challenging diagnostic process of IE (Fig. 1C). Further studies are needed to confirm these findings and to depict detailed characteristics of IE patients.

Abbreviations
PV: Polycythemia vera; IE: Idiopathic erythrocytosis; SNP: Single nucleotide polymorphism; EPO: Erythropoietin; CH: Clonal hematopoiesis; NGS: Next generation sequencing.

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/s40164-022-00301-1.

Additional file 1. Methods.
Additional file 2: Table S1. Biological and clinical characteristics of cases analyzed in the present study.
Additional file 3: Table S2. Variants identified by NGS analysis in 44 erythrocytosis cases.

Acknowledgements
This work was supported by “Associazione Italiana contro le Leucemie (AIL)-BARI”.

Author contributions
Conception and design of the study: AZ, FT and FA. Acquisition of data and/or analysis and interpretation of data: PO, AZ, FT, LA, CC, IR, CFM, NC, GT, RR, IA, EP, MRC, GS, PM and FA. Drafting of the manuscript: FA. All authors revised the manuscript for important intellectual content. All authors read and approved the final manuscript.

Funding
Not applicable.

Availability of data and materials
The sequence data from this study have been submitted to the National Center for Biotechnology Information (NCBI) Short Read Archive (https://www.ncbi.nlm.nih.gov/sra/) under accession number PRJNA609847.

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Emergency and Organ Transplantation (D.E.T.O.), Hematol-
ogy and Stem Cell Transplantation Unit, University of Bari “Aldo Moro”; P.Zza G.
Cesare, 11, 70124 Bari, Italy. 2School of Medicine, University of Bari “Aldo Moro”;
70124 Bari, Italy.

Received: 1 June 2022 Accepted: 20 August 2022
Published online: 28 August 2022

References
1. Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391–405.
2. Storlazzi CT, Albano F, Locunsole C, Lonoce A, Funes S, Guastadisegni MC, et al. t(3;12)(q26;q14) in polycythemia vera is associated with upregulation of the HMGA2 gene. Leukemia. 2006;20:2190–2.
3. Galiperti J, Kristan A, Kunec T, Zupan IP, Debeljak N. Erythrocytosis: genes and pathways involved in disease development. Blood Transfus. 2021;19:518–32.
4. Ölcaydu D, Harutyunyan A, Jäger R, Berg T, Gisslinger B, Pabinger I, et al. A common JAK2 haplotype confers susceptibility to myeloproliferative neoplasms. Nat Genet. 2009;41:450–4.
5. Anelli L, Orsini P, Zagaria A, Minervini A, Coccaro N, Parciante E, et al. Erythrocytosis with JAK2 GGCC_46/1 haplotype and without JAK2 V617F mutation is associated with CALR rs1049481_G allele. Leukemia. 2020;35:619–22.
6. González JR, Armengol L, Solé X, Guinó E, Mercader JM, Estivill X, et al. SNPassoc: an R package to perform whole genome association studies. Bioinformatics. 2007;23:644–5.
7. Cumbo C, Tarantini F, Zagaria A, Anelli L, Minervini CF, Coccaro N, et al. Clonal hematopoiesis at the crossroads of inflammatory bowel diseases and hematological malignancies: a biological link? Front Oncol. 2022;12:873896.
8. Bento C. Genetic basis of congenital erythrocytosis. Int J Lab Hematol. 2018;40:62–7. https://doi.org/10.1111/ijl.12828.
9. Camps C, Petousi N, Bento C, Cario H, Copley RR, Mc Mullin MF, et al. Gene panel sequencing improves the diagnostic work-up of patients with idiopathic erythrocytosis and identifies new mutations. Haematologica. 2016;101:1306–18.
10. Wouters HJCM, Mulder R, van Zeventer IA, Schuringa JJ, van der Klaauw MM, van der Harst P, et al. Erythrocytosis in the general population: clinical characteristics and association with clonal hematopoiesis. Blood Adv. 2020;4:6353–63.
11. Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG, et al. Age-related clonal hematopoiesis associated with adverse outcomes ABSTRACT. N Engl J Med. 2014;370:2488–98.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.