A stepwise transition to telemedicine in response to COVID 19

Sabrina L Silver, DO, CAQSM
Assistant Program Director, Family Medicine Residency
Assistant Professor Department of Family Medicine
Uniformed Services University of the Health Sciences
Bethesda, MD

Meghan N Lewis, MD
Resident Physician, Family Medicine Residency Program
Eglin AFB, FL

Christy JW Ledford, PhD
Associate professor, Family Medicine
Uniformed Services University of the Health Sciences
Bethesda, MD

Word count: 1,661

Disclaimer. The views expressed within this publication represent those of the authors and do not reflect the official position of U.S. Air Force, Uniformed Services University of the Health Sciences, the U.S. Government, or the Department of Defense at large.

Acknowledgements: We thank the staff of the Military Primary Care Research Network, including Lauren Cafferty, Hannah Ledford, and Jeremy Jackson, for their support in data management and editorial assistance.

Funding Statement: No funding was sought or used in this collection or manuscript creation.

Conflict of interest: The authors declare no conflict of interest.
Abstract

Intro: With the emergence of COVID-19, many primary care offices closed their physical space to limit exposure. Despite decades of telemedicine in clinical practice, it is rare to find it used in small-metro and academic settings. Following the decision to limit face-to-face care, we tracked our practice’s transition to telemedicine.

Methods: This was a prospective quality improvement project following Plan-Do-Study-Act (PDSA) cycles to optimize the use of telemedicine (both telephone and video in this practice) encounters. Central to the PDSA cycles was the use of a post encounter questionnaire to track patient, appointment, and physician factors. Throughout the cycles, inferential statistics were used to inform process improvement.

Results: In cycle 2, a logistic regression model showed length of encounter, need for physical exam, and physician satisfaction correctly predicted a physician’s preferred medium ($\chi^2(3) = 40.56, p<.001$). In cycle 3 a chi-square test showed the reason for visit predicted the preferred medium ($\chi^2(4) = 47.30, p<.001$). In cycle 4, week of telemedicine, need for physical exam, length of encounter, and physician satisfaction predicted the preferred medium ($\chi^2(9) = 172.52, p < .001$).

Discussion: Using the variables that predicted preference for telemedicine, we were able to adjust our processes through PDSA cycles.

Conclusion: Early use of the PDSA cycle allows for informed quality improvement at the local level. Our findings highlight factors to consider when implementing telemedicine such as need for physical exam and type or length of encounter. Additionally, physician satisfaction can encourage use of telemedicine and tools for learning and practicing telemedicine should be available.
Introduction

The emergence of the novel coronavirus (COVID-19) drastically changed how we provide primary care. To avoid spreading the virus, many primary care clinics shuttered their physical offices and transitioned to telemedicine to protect their most vulnerable patients and staff from exposure.1-5

Before March 2020, some physicians embraced technology in their practices, but few utilized telemedicine to its fullest potential.6-8 Telemedicine is more than a simple switch from one communication medium to another; telemedicine leverages communication technology to assess and address patients’ acute and chronic concerns from a distance.9-12 Telemedicine encompasses a variety of communication media -- voice-only telephone calls, video consultations, and mobile application enabled interactions.

Despite decades of acknowledging the importance of telemedicine in clinical practice, its use is limited by physician, patient, and policy factors.12-15 Few physicians receive formal training in telemedicine, and there is a lack of readily available literature for learning such skills.16-19 Additionally, obstacles such as payment and malpractice coverage exist for most clinics. Our clinic, like many others in academic or rural settings, discovered a lack of access to adequate business infrastructure and technology that provided a unique challenge in the transition to telemedicine catalyzed by COVID-19.20-25

Following a decision to limit face-to-face clinical care, we recognized a need to document our clinic’s transition to telemedicine. The purpose of this project was to identify visit characteristics that are suitable for telemedicine; focusing on patient, appointment, and physician factors. In our practice, telemedicine encapsulates clinical medicine delivered by synchronous technology. This term is synonymous with “virtual visits,” specifically referring to conducting a
visit over the telephone (voice only) or using a cellular video platform such as Facetime or Google Duo (voice and face). The term telemedicine has been used throughout this paper to refer to this care delivery.

Methods

With design and statistical support from our practice-based research network, this prospective quality improvement project followed Plan-Do-Study-Act (PDSA) cycles, to optimize the use of telemedicine encounters, at a family medicine residency clinic in a northwest Florida community-based hospital. The hospital is located in a small metro county as classified by the Centers for Disease Control and Prevention.26

The PDSA process involves continuous cycles of incremental change, assessment of progress toward the objective, and reflection on lessons learned.27 The project team maintained detailed field and process notes to document decision making and changes. Central to PDSA cycles was the use of a post-encounter questionnaire. Completed by family physicians immediately following telemedicine appointments, the questionnaire documented patient factors (age, sex), appointment factors (mode of visit, reason for visit [categorized in 1 of 4 options], number of reasons, length of appointment), and physician perceptions (need for a physical exam, physician satisfaction, preferred mode for visit). At the end of the questionnaire, we asked one open-ended item: “What do we need to know from this encounter that can inform decisions about telemedicine appointment processes?”

The previously adapted and validated physician version of the Patient Satisfaction Questionnaire (P-PSQ) measured physician satisfaction.28 The P-PSQ consists of five items measuring physicians’ satisfaction with 1) how well they addressed patient needs, 2) patient
involvement in the interaction, 3) adequacy of information given by physician, 4) satisfaction with emotional support given by physician, and 5) the interaction in general. Answers were given on Visual Analogue Scales ranging from 0 to 100. An overall satisfaction score was calculated by averaging responses to the questions. Internal reliability (Cronbach’s \(\alpha \)) of the P-PSQ in this project was 0.94.

From March 16 to June 12, 2020, 22 physicians completed 361 questionnaires. Throughout the cycles, ran inferential statistics to inform process improvement.

Results

Table 1 describes PDSA cycles conducted in the first 12 weeks of COVID response. Each cycle followed a PDSA process, which was informed by the physician experience surveys and process notes of the team. [Insert Table 1]

Table 2 presents the incremental, descriptive findings as they accumulated through each cycle. Across the cycles, mean physician satisfaction with telemedicine increased and physicians increasingly reported telephone as the preferred communication medium. [Insert Table 2]

At the end of Cycle 2, the logistic regression test showed length of encounter, need for physical exam, and physician satisfaction predicted a physician’s preferred medium. The model was significant, \(\chi^2(3)=40.56, p<0.001 \), and correctly predicted 74.7% of cases. Physicians preferred in-person clinical visits when the encounter was longer or they perceived the need for a physical exam. A one-way analysis of variance showed that at 14 minutes physicians preferred in-person visits. Physician satisfaction was not significant in the model.

By Cycle 3, preliminary review of open-ended feedback indicated that patient age was a likely determinant for physician preferred medium; a regression did not show this. A chi-square
test detected a significant relationship between reason for visit and preferred medium, \(\chi^2(4) = 47.30, p < 0.001 \). When the reason for the visit was to get imaging or lab results, physicians reported a preference of telephone in 90.3% of cases.

At the end of cycle 4, we ran a final regression to better understand physician’s preferred medium. For this test, we limited the sample to encounters with adults and collapsed age into two categories, younger than 65 or 65 and older. Table 3 shows the results of a logistic regression analysis identifying variables that are associated with preferring in-person encounter for the visit. Four variables were significantly associated with wellbeing in the final model: week into telemedicine implementation, perception that physical exam was critical, length of encounter, and physician satisfaction, \(\chi^2(9) = 172.52, p < 0.001 \). Two variables -- more weeks into telemedicine implementation and higher physician satisfaction -- were associated with preference for telephone as a medium. Perception of the critical role of physical exam and longer telemedicine encounters were associated with a preference for in-person clinical encounters.

To better understand why age and results as a reason for visit were not significant in the model, we tested individual relationships among model variables. An ANOVA revealed that encounters with patients 65 and older (mean = 17.11 minutes) were significantly longer than appointments with patients younger than 65 (mean = 14.51 minutes), \(F(1, 314) = 3.82, p = 0.05 \). Therefore, we expect length of the appointment in the model explains the age difference.

Similarly, chi-squares revealed that physician perception of not needing a physical exam was significantly associated with presenting results, \(\chi^2(1) = 22.52, p < 0.001 \), and with evaluating treatment, \(\chi^2(1) = 6.30, p < 0.05 \). Physician perception of needing a physical exam was significantly associated with an encounter for increased symptoms, \(\chi^2(1) = 42.17, p < 0.001 \).
Discussion

Using the variables that predicted telephone medium, we adjusted clinic processes throughout the PDSA cycles. While the influencing factors are somewhat intuitive, they ultimately served as the basis of a flow chart (Figure 1) developed for nurses, appointment line, and self-boking when we started to bring face-to-face care back to our clinic. Notably, patients age greater than 65 were preferentially booked into face-to-face appointments. Fortunately, by 12 weeks into the process, systematic changes had been implemented to limit patient exposure allowing us to balance the risk of face-to-face care with the risk of poor telephone communication. [Insert Figure 1]

The normative acceptance and familiarity of doing telemedicine influenced preference for telemedicine. Throughout the PDSA cycles, we made changes to help normalize telemedicine as a platform for care. In cycle 2, a telemedicine curriculum was provided to the physicians including learning points on HIPAA compliance, telephone communication skills, physical exam skills, and coding/payment. In cycle 3, a post telemedicine clinic huddle was implemented to discuss feedback from the day. These process improvements served to normalize telemedicine as a delivery of care model and to establish best practices. Despite these improvements, the use of video did not gain much traction in our resource limited practice (Table 2). We suspect this is related to the ease with which a telephone can be attained for providing care compared to the challenge of tracking down the one clinic-owned iPhone approved for video care.
Results should be interpreted through a communication theory lens. Findings align with the principles of the medium richness model,29 which provides a theoretical framework for what types of communication tasks should occur in person in contrast to within a mediated-environment. Physicians recognize the need for multiple cues, including physical presence, voice inflection, and body gestures,30 to address some patient complaints. When physicians can only use a lean medium, like telephone, some of the information cannot be transmitted and the communication will be less effective. Additionally, physicians recognized that task complexity31 is a determinant of effective telemedicine. Simple tasks such as lab results are a good fit for telephone, whereas undifferentiated concerns like joint pain are better evaluated face-to-face.

Physicians also recognized not only the information-carrying capacity, but the symbol-carrying capacity of the medium.32 Each channel inherently carries a symbolic message to the recipient. Although people historically associated mediated technologies as less personal,33 in times like COVID, patients may perceive that reaching out to them using technology is more considerate (as in Cycle 3).

Our study has several limitations. Responses only included physicians and excluded support staff. Furthermore, the project did not collect patient-oriented outcomes. We also recognize that this project did not address other common limitations to virtual care such as payment models and malpractice coverage that must be considered in telemedicine development. Future research should look at outcomes such as patient satisfaction or frequency of follow up, and it should include impact of established doctor-patient relationships on outcomes. More work is also needed to develop and test physician training in telemedicine and to better understand the role of specific telemedicine modalities in patient care. Specific to our site, the next PDSA cycle
is continued growth of hybrid (both telemedicine and face-to-face care) half-day templates and use of the developed algorithm.

Conclusion

Early use of the PDSA cycle allows for informed quality improvement at the local level. Factors to consider when implementing telemedicine include length of visit (linked to patient age and type of visit) and need for physical exam. Additionally, physician satisfaction can encourage use of telemedicine and tools for learning and practicing telemedicine should be available.
References

1. WHO statement on cases of COVID-19 surpassing 100,000 [press release]. World Health Organization, March 7, 2020 2020.

2. NIH clinical trial of investigational vaccine for COVID-19 begins. National Institutes of Health. https://www.nih.gov/news-events/news-releases/nih-clinical-trial-investigational-vaccine-covid-19-begins. Published 2020. Updated March 16, 2020. Accessed March 26, 2020.

3. Garrett L. COVID-19: the medium is the message. Lancet. 2020;395(10228):942-943.

4. Shearn IT. COVID-19 Pandemic Pushes NJ to Step Up Reliance on Telemedicine. NJ Spotlight. https://www.njspotlight.com/2020/03/covid-19-pandemic-pushes-nj-to-step-up-reliance-on-telemedicine/. Published 2020. Accessed March 27, 2020.

5. Nasca TJ. ACGME Response to the Coronavirus (COVID-19). Accreditation Council for Graduate Medical Education. https://acgme.org/Newsroom/Newsroom-Details/ArticleID/10111/ACGME-Response-to-the-Coronavirus-COVID-19. Published 2020. Accessed March 27, 2020.

6. Phillips RL, Jr., Bazemore AW, DeVoe JE, et al. A Family Medicine Health Technology Strategy for Achieving the Triple Aim for US Health Care. Family medicine. 2015;47(8):628-635.

7. Neuhauser L, Kreps GL, Morrison K, Athanasoulis M, Kirienko N, Van Brunt D. Using design science and artificial intelligence to improve health communication: ChronologyMD case example. Patient education and counseling. 2013;92(2):211-217.

8. Klasnja P, Pratt W. Healthcare in the pocket: mapping the space of mobile-phone health interventions. Journal of biomedical informatics. 2012;45(1):184-198.
9. Sood S, Mbarika V, Jugoo S, et al. What is telemedicine? A collection of 104 peer-reviewed perspectives and theoretical underpinnings. *Telemed J E Health*. 2007;13(5):573-590.

10. Kosower E, Inkelis SH, Seidel JS. Telephone T.A.L.K.: a telephone communication program. *Pediatric emergency care*. 1991;7(2):76-79.

11. Reisman AB, Brown KE. Preventing communication errors in telephone medicine. *J Gen Intern Med*. 2005;20(10):959-963.

12. Peabody MR, Dai M, Turner K, Peterson LE, Mainous AG, 3rd. Prevalence and Factors Associated with Family Physicians Providing E-Visits. *Journal of the American Board of Family Medicine : JABFM*. 2019;32(6):868-875.

13. Santos MV, Oliveira DC, Novaes Mde A. A telehealth strategy for increasing adherence in the treatment of hypertension in primary care. *Telemed J E Health*. 2013;19(4):241-247.

14. Russo JE, McCool RR, Davies L. VA Telemedicine: An Analysis of Cost and Time Savings. *Telemed J E Health*. 2016;22(3):209-215.

15. Moore MA, Coffman M, Jetty A, Klink K, Petterson S, Bazemore A. Family Physicians Report Considerable Interest in, but Limited Use of, Telehealth Services. *Journal of the American Board of Family Medicine : JABFM*. 2017;30(3):320-330.

16. Bulik RJ, Shokar GS. Integrating telemedicine instruction into the curriculum: expanding student perspectives of the scope of clinical practice. *J Telemed Telecare*. 2010;16(7):355-358.

17. Brown SB, Eberle BJ. Use of the telephone by pediatric house staff: a technique for pediatric care not taught. *J Pediatr*. 1974;84(1):117-119.
18. Lamb MP. Telephone precepting: the development of a curriculum. *Teach Learn Med.* 2004;16(3):276-278.

19. Caralis P. Teaching residents to communicate: the use of a telephone triage system in an academic ambulatory clinic. *Patient Educ Couns.* 2010;80(3):351-353.

20. Lowery CL, Bronstein JM, Benton TL, Fletcher DA. Distributing medical expertise: the evolution and impact of telemedicine in Arkansas. *Health Aff (Millwood).* 2014;33(2):235-243.

21. Greenhalgh T, Koh GCH, Car J. Covid-19: a remote assessment in primary care. *BMJ.* 2020;368:m1182.

22. Car J, Sheikh A. Telephone consultations. *BMJ.* 2003;326(7396):966-969.

23. Flannery MT, Moses GA, Cykert S, et al. Telephone management training in internal medicine residencies: a national survey of program directors. *Acad Med.* 1995;70(12):1138-1141.

24. Hannis MD, Hazard RL, Rothschild M, Elnicki DM, Keyserling TC, DeVellis RF. Physician attitudes regarding telephone medicine. *J Gen Intern Med.* 1996;11(11):678-683.

25. Toon PD. Using telephones in primary care. *BMJ.* 2002;324(7348):1230-1231.

26. Ingram DD, Franco SJ. 2013 NCHS Urban-Rural Classification Scheme for Counties. *Vital Health Stat 2.* 2014(166):1-73.

27. Leis JA, Shojania KG. A primer on PDSA: executing plan–do–study–act cycles in practice, not just in name. *BMJ Quality & Safety.* 2017;26(7):572.
28. Zandbelt LC, Smets EM, Oort FJ, Godfried MH, de Haes HC. Satisfaction with the outpatient encounter: a comparison of patients' and physicians' views. *J Gen Intern Med.* 2004;19(11):1088-1095.

29. Daft RL, Lengel RH. Organizational information requirements, media richness, and structural design. *Management Science.* 1986;32(5):554-570.

30. Daft RL, Lengel RH, Trevino LK. Message Equivocality, Media Selection, and Manager Performance: Implications for Information Systems. *MIS Quarterly.* 1987;11(3):354-366.

31. Sheer VC, Chen L. Improving Media Richness Theory. *Management Communication Quarterly.* 2004;18(1):76-93.

32. Sitkin S, Sutcliffe KM, Barrios-Choplin JR. A dual-capacity model of communication media choice in organizations. *Human Commun Res.* 1992;18(4):563-598.

33. Johnson MA. Public relations and technology: Practitioner perspectives. *Journal of Public Relations Research.* 1997;9(3):213-236.
| Plan (for delivery of care) | Do | Study (adjustments to data collection and results from data) | Act |
|---------------------------|----|--|-----|
| Pre-Cycle: COVID started and clinic responded by shutting down clinic, physicians forced to adapt |
| Mar 16-20 | COVID-19 concerns arise, need for decrease in face-to-face appointments to reduce patient and physician exposures, cleaning room times, and maintaining availability for patient care | Cancelling all face-to-face appointments and transitioning to telemedicine and ambulatory clinic | Transition normal clinic operations to telemedicine clinic staffed with 4 physicians per day |
| Mar 23-27 | 4 physicians per day. Normal operations fully shifted to only respiratory or telemedicine care | Started to discuss need for process improvement | Defined need for ability to gather data to assess feedback and areas of improvement from physicians regarding appropriateness of telemedicine appointments and process of mass-scheduling telemedicine care |
| Cycle 1: Started utilizing telemedicine care + data gathering about new clinic process and expanding telemedicine capabilities |
| Mar 30- Apr 3 | 4 physicians per day with 20 min appointments | Created physicians survey (v1) for use with telemedicine encounters. Incorporation of residents into telemedicine care to expand operations | Started survey collection | Need additional methods to provide full-scope telemedicine care including video capabilities. Small group of physicians self-trained on video telemedicine programs and options. |
| Apr 6-10 | 2 physicians per day with 20 min appointments | Developed ways to promote video telemedicine (Facetime, Google Duo with clinic iPhone). Researched methods for physician education about telemedicine care | Added video as an option to survey. Free text response question about telemedicine delivery experience | Need additional training of physicians administering telemedicine care |
Cycle 2: Telemedicine education + need for inclusion of chronic care

Date	Physicians per day	Actions	Began activities	Based on free text responses of reason for visit, a needs assessment of missing aspects of care showed a need to perform chronic care and annual wellness visits. Began reaching out to patients with chronic diseases.
Apr 13-17	2 physicians per day with 20 min appointments	Offered video telemedicine as method of providing care. Created telemedicine curriculum for resident education	Began to more closely track free text response of reason for visit on survey.	Need for assistance with scheduling appointments more appropriately (i.e., chronic disease needs longer appointment; lab call back, annual workplace physicals can be shorter). Need assistance with patient intake questions to improve efficiency.
Apr 20-24	2 physicians per day with 20 min appointments	Telemedicine curriculum disseminated to all residents	Defined 5 categories in which to characterize reason for encounter on survey. Noted appointment length influenced recommended type of care.	

Cycle 3: Implementing chronic disease + need for efficiency

Date	Physicians per day	Actions	Added activities	With increasing number of telemedicine appointments per day, need assistance with efficiency of encounters.	
Apr 27-May 1	2 physicians per day with adjusted appointment template*	Created 30 min appts for future appointments (chronic disease management), continued 20 min appointments for acute complaints, and 10 min appts for annual workplace physical and result callbacks, based on data from surveys	Added free text question for curriculum feedback to survey.	Free text responses often requested communication and physical exam skills.	Provided feedback directly from curriculum on communication and telemedicine physical exam skills.
May 4-8	3-4 physicians per day with adjusted appointment template*	Added targeted chronic disease care and provided documentation templates. Paired technician** with physician to help with 'intake' information to run encounters more efficiently			
May 11-15	3-4 physicians per day with adjusted appointment template*	Attempted to collect patient medical history via patient portal platform to allow techs to update patient intake	Patient portal platform was exceedingly difficult to use and never took off, some free text responses showed appreciation for tech doing intake.	Need for coordinated communication between technician**, admin staff, and physician. Encouraged daily 'huddles' between technician** and doc.	
Date	Description	Action	Notes		
------------	--	--	--		
May 18-22	3-4 physicians per day with adjusted appointment template*	Implemented telemedicine care huddles at end of day for all techs and physicians	Continued to have free text feedback on appropriateness of appointments. Need to communicate with nurses as they are the ones booking appointments in the acute COVID transition phase. Invited nurses to daily huddle.		
May 25-29	3-4 clinicians per day with adjusted appointment template*	Nurses attend huddle	Results began to show factors that made an appropriate telemedicine appointment (results only, age <65, physical exam not needed). Need increased F2F clinic appointments.		
Jun 1-5	3-4 physicians doing telemedicine care per day with adjusted appointment template*. 2-4 physicians F2F encounters	Increased F2F care with 20 min appointments.	Results continue to show same factors that made an appropriate telemedicine appointment (results only, age <65, physical exam not needed). Need for better integration of F2F and telemedicine. Need to have flowsheet for RN, appointment line, and Tricare online self-book for which patients to book F2F vs telemedicine.		
June 8-12	3-4 physicians per day doing telemedicine care with adjusted appointment template*. 2 physicians per PM doing F2F. 1 physician per AM doing hybrid (telemedicine and F2F)	Created half day clinics templated for telemedicine care and F2F care. Flowsheet for RNs and appointment line	Survey collection concluded. Need to continue development of hybrid clinic.		

F2F = Face-to-Face appointment

*Adjusted appointment templates = 10 minutes for annual workplace physical and results call back; 20 minutes for acute complaints; 30 minutes for future and chronic disease management

**Technicians = certified medical assistants who perform patient intake. In the telemedicine setting, they performed review of medical history, medications, and appropriate screenings as they would in a F2F encounter.
Table 2. Descriptive data as it accumulated through each cycle

Cycle	Cumulative data points through cycle	Mode of visit	Mean number of reasons for visit	Mean length of visit in minutes	Physician perception of need for physical exam	Physician satisfaction	Physician recommended ideal visit type	
1	n = 49	Telephone	46 (93.9%)	1.14 (sd .41)	14.35 (sd 6.65)	Yes 20 (40.8%)	76.78 (sd 21.25)	Telephone 18 (36.7%) In person 31 (63.3%) Video 0
2	n = 135	Telephone	124 (93.9%)	1.36 (sd .72)	14.39 (sd 7.07)	Yes 59 (44%)	78.94 (sd 18.65)	Telephone 55 (40.7%) In person 75 (55.6%) Video 1 (0.7%)
3	n = 229	Telephone	212 (95.9%)	1.33 (sd .69)	14.69 (sd 7.15)	Yes 91 (40.3%)	79.55 (sd 17.58)	Telephone 97 (42.4%) In person 107 (46.7%) Video 12 (5.2%)
4	n = 361	Telephone	329 (91.1%)	1.32 (sd .69)	14.88 (sd 8.69)	Yes 146 (40.9%)	80.07 (sd 16.84)	Telephone 164 (45.4%) In person 159 (44.0%) Video 16 (4.4%)
Table 3. Summary of logistic regression analysis for variables predicting physician preference for in-person visit as compared to telemedicine encounter (n = 278)

	Step 1		Step 2		Step 3		Step 4	
	β	(95% CI)	β	(95% CI)	β	(95% CI)	β	(95% CI)
Week of telemedicine	.88***	(.81, .96)	.84**	(.75, .94)	.84**	(.75, .94)	.85**	(.75, .95)
implementation								
Patient age ≥ 65	1.43	(.71, 2.89)	.59	(.23, 1.51)	.48	(.18, 1.26)	.46	(.17, 1.26)
Type of visit:								
- Routine visit type	1.41	(.30, 6.57)	.98	(.14, 6.82)	.83	(.11, 6.21)	.76	(.10, 5.63)
- Evaluate new symptom	1.63	(.38, 6.93)	1.63	(.28, 9.59)	1.55	(.25, 9.49)	1.55	(.25, 9.49)
visit								
- Increase of symptoms	5.21*	(1.26, 21.57)	2.03	(.35, 11.81)	1.98	(.33, 11.90)	2.04	(.34, 12.33)
visit								
- Results visit	.47	(.10, 2.27)	.68	(.11, 4.41)	.75	(.11, 5.01)	.72	(.11, 4.84)
Physical exam critical	34.69***	(15.19, 79.22)	31.78***	(13.80, 73.20)	23.87***	(10.17, 56.03)		
to encounter								
Length of encounter	1.07*	(1.01, 1.13)	1.07*	(1.01, 1.13)				
Physician satisfaction	.97**	(.94, .99)						

Note: $R^2 = .23$ for Step 1, $\Delta R^2 = .35$ for Step 2 ($p < .001$), $\Delta R^2 = .02$ for Step 3 ($p < .05$), $\Delta R^2 = .02$ for Step 4 ($p < .01$). **$p < .01$, ***$p < .001$
Figure 1 (included as separate file)

Title: Flow chart created for use by booking staff

Legend: This flow chart was created in cycle 4 based on feedback from nurses to help facilitate appropriate appointment booking. The basis of the flowchart was data collected in the physician survey and analyzed weekly.
Figure 1

Is the patient asking for lab or rad results?

Yes: Virtual

No: Is the patient >65?

Yes: F2F

No: Does the patient’s complaint require a physical exam? (i.e. MSK, rash, abdominal pain)

Yes: F2F

No: Virtual