The S229L Colon Tumor-associated Variant of DNA Polymerase β Induces Cellular Transformation as a Result of Decreased Polymerization Efficiency*

Antonia A. Nemec, Drew L. Murphy, Katherine A. Donigan, and Joann B. Sweasy

From the Departments of Therapeutic Radiology and Genetics, Yale University, New Haven, Connecticut 06520

Received for publication, January 14, 2014, and in revised form, March 19, 2014 Published, JBC Papers in Press, March 25, 2014, DOI 10.1074/jbc.M114.550400

Background: The POLB gene is mutated in 40% of human colorectal tumors. The S229L variant is a slow DNA polymerase that leads to the accumulation of BER intermediates and induces cellular transformation. The S229L variant transforms cells by inducing genomic instability. The mutations were not clustered in any specific region of the protein and were located in all four subdomains. Some of these nonsynonymous mutations are likely a significant contributor to cancer progression because the mutations are selected for with many of the mutations being identified in late stage tumors, and there were no corresponding mutations identified in the normal matched tissues (6). In fact, two variants identified in this screen were found to induce cellular transformation (7, 8).

In this study, we sought to determine whether the S229L variant identified in a stage 3 colorectal tumor could drive carcinogenesis. S229L is located in the palm domain and lies in a 8-kDa subdomain. The 8-kDa subdomain is responsible for the dRP lyase activity (5). The thumb subdomain binds the DNA, the palm subdomain contains the active site required for catalysis, and the fingers subdomain is responsible for selecting and binding nucleotides.

Pol β is mutated in 40% of human colorectal tumors (6). Our recent study identified 51 different nonsynonymous mutations in the POLB gene in a collection of 134 human colon tumors. The mutations were not clustered in any specific region of the protein and were located in all four subdomains. Some of these nonsynonymous mutations are likely a significant contributor to cancer progression because the mutations are selected for with many of the mutations being identified in late stage tumors, and there were no corresponding mutations identified in the normal matched tissues (6). In fact, two variants identified in this screen were found to induce cellular transformation (7, 8).

In this study, we sought to determine whether the S229L variant identified in a stage 3 colorectal tumor could drive carcinogenesis. S229L is located in the palm domain and lies in close proximity to the DNA, but is not near the active site of the protein. We found that the expression of S229L in mammalian cells induces genomic instability and cellular transformation. Biochemically, S229L has a reduced catalytic rate compared with WT Pol β and impaired BER capacity. In combination, our results suggest that the S229L variant results in aberrant BER and that S229L can act as a driver of tumorigenesis.

EXPERIMENTAL PROCEDURES

Plasmids and Cloning—The S229L variant of Pol β was generated using the Stratagene QuikChange® Site-directed Mutagenesis kit according to manufacturer’s instructions. pET28a rat WT Pol β containing a N-terminal His6 tag was used as a template for protein expression and biochemical stud-
ies. For cell culture experiments, the C-terminal hemagglutinin (HA)-tagged rat WT Pol β in the pRVTet retroviral vector was used as a template. The primers used for these reactions were purchased from Invitrogen, and the sequences are available upon request. Positive clones were confirmed by sequencing at the W. M. Keck facility and purified by polyacrylamide gel electrophoresis. 3C2M45 was used for kinetic studies. 45AG was used grown in DMEM supplemented with 10% FBS, 1% penicillin-streptomycin (Invitrogen), 1600 μg/ml G418, and 180 μg/ml hygromycin B (for selection of exogenous Pol β) at 37 °C in a 5% CO₂ humidified incubator as described previously (8).

Pre-steady-state Burst Assay—Radiolabeled 1-bp gapped DNA (300 nm 3C2M45) and Pol β (100 nM) were combined with the correct dNTP and 10 mM MgCl₂ in a rapid quench apparatus at 37 °C (KinTek Corporation) with the reactions quenched by the addition of 0.5 M EDTA. The reaction products were separated on a 20% denaturing polyacrylamide gels, visualized, and quantified using a Storm 860 PhosphorImager with ImageQuant software. WT data were fit to the burst equation,

$$[\text{product}] = A \left[\frac{(k_{\text{obs}})^2}{(k_{\text{obs}} + k_{s})^2} \right] \times \left(1 - e^{-k_{\text{obs}} + k_{s}t}\right) + \left[\frac{k_{\text{obs}}k_{s}}{(k_{\text{obs}} + k_{s})^2} \right]$$

(Eq. 1)

where A is the amplitude, k_{obs} is the observed rate constant of the exponential phase, and k_{s} is the steady-state rate constant of the linear phase (13).

Circular Dichroism—Circular dichroism wavelength scans were performed with 1 μM Pol β protein in 10 mM K₃HPO₄ at 23 °C using the Chirascan circular dichroism spectrometer (Applied Photosystems). Ellipticity was measured in 0.5-nm steps from 185 to 290 nm. Thermal scans were also performed at a set wavelength of 222 nm with a 5 °C/min step from 4.5 to 62 °C. Three measurements were taken for each enzyme and averaged.

Preparation of MEF Extract—Extracts from Pol β⁺⁻ MEFS were collected as described previously (8). The extracts were aliquoted and flash frozen in liquid nitrogen. Protein concent-

Substrate	Sequence	Assay
45AG	5'-GCTGCCAGCCCGCTTCAACCGAC AAACCTGGATCCAAATCCCCTGCCGCC-3'	Gel mobility shift assay
3C2M45	3'-CCGGAGCTCCGCGCCAGGTTTACGTGCTAACCTGCGCCAGG-5'	Pre-steady-state kinetics; single-turnover kinetics
LPSD	5'-GACGTCACTACGCCCGATGCGCCACCCGGGTAC-3'	BER assay
S229L Pol β Variant Induces Cellular Transformation

Single-turnover Kinetic Assay—Radiolabeled gapped DNA (50 nM 3C2M45) was incubated with WT Pol β (500 nM active sites) as was determined by active site titration experiments. For S229L Pol β, 500 nM protein was sufficient to bind 95% of DNA as was determined by EMSA. The DNA/Pol β mixture was incubated with varying concentrations of dNTP (5–200 μM) as described previously (8). The concentration of extended product was plotted as a function of time, and the data were fit to a single-exponential curve to obtain the \(k_{obs} \) for each dNTP concentration. A secondary plot of \(k_{obs} \) for each dNTP concentration as a function of [dNTP] was fitted to a hyperbolic equation

\[
k_{obs} = \frac{k_{pol}[dNTP]}{K_{d(dNTP)} + [dNTP]}
\]

where \(k_{pol} \) is the rate of polymerization and \(K_{d(dNTP)} \) is the equilibrium dissociation constant for dNTP.

Cellular Transformation—The focus formation assay was conducted as in (7). Typically, cells grow in a monolayer. Once cells become transformed, they grow on top of each other forming foci. The presence of foci was also monitored by microscopic examination as described previously (7, 12). Anchorage-independent growth was assessed as described previously (12).

Proliferation—High passage C127 clones were plated at a density of 20,000 cells/60-mm dish. A replicate plate of each clone was counted every 24 h using an automated cell counter (Nexelcom) as described previously (11). Data were plotted as change in cell number/day (n = 3–4).

Chromosomal Aberrations—Pol β+/+ MEFs expressing either WT or S229L Pol β were plated overnight in 10-cm dishes (106 cells/dish). Colcemid (Invitrogen) was added to the cells (0.1 μg/ml, 3 h) to arrest cells in mitosis. Cells were trypsinized, collected by centrifugation, washed once with PBS, and resuspended in a hypotonic solution (0.56% KCl) for 30 min at 37 °C to lyse the cells. The cells were fixed using Carnoy’s fixative (75% methanol, 25% acetic acid) and dropped onto slides followed by staining with Giemsa, and well spread metaphases were identified under 100× objective (Zeiss). Images were taken using Spot Camera software (Diagnostic Instruments). Metaphase spreads were scored by eye for chromosomal fusions, breaks, and fragments. Scoring was performed blinded and validated by a second, independent person.

Statistics—Two-tailed t-tests and two-way analysis of variance were used as appropriate. Bonferroni’s post hoc test was used to determine significant differences between the means of each group. All statistics were performed using GraphPad Prism version 5 (GraphPad Software, San Diego, CA), and data are represented as mean ± S.E. of all replicates.

RESULTS

S229L Pol β Is a Slow Polymerase—In an initial screen of Pol β variants identified in our original colon tumor study (6), S229L exhibited a decreased rate of catalysis compared with Pol WT in a primer extension assay (6). Pre-steady-state burst kinetics, using a 1-base pair gapped DNA substrate (Table 1), revealed that S229L does not display a biphasic burst that is typical of Pol β, suggesting that the kinetic pathway of S229L...
differs from that of WT (6) (Fig. 1). The rate-limiting step of WT Pol β is product release, and the lack of burst kinetics by S229L indicates that the rate-limiting step of the variant is chemistry or a step preceding chemistry. The decreased rate was not due to general changes in the structure or stability of the protein as both the global folding and melting temperature of the proteins were similar (Fig. 2).

S229L Pol β Binds DNA and dNTP with an Affinity Similar to WT, but Has a Defect in DNA Synthesis—To determine the biochemical mechanism underlying the slow rate of DNA synthesis by S229L Pol β/H9252, we first examined the ability of the protein to bind to a 1-base pair gapped DNA substrate (45AG) (Table 1) by EMSA. WT and S229L bound DNA with similar affinities (\(K_{D\text{DNA}}\) = 4.1 ± 0.8 nM and 4.1 ± 0.3 nM, respectively), indicating that DNA binding is not impaired and does not contribute to the DNA synthesis defect in S229L (Fig. 3 and Ref. 8).

The rate of polymerization (\(k_{pol}\)) and the apparent dNTP binding affinity (\(K_{d\text{dNTP}}\)) for both correct and incorrect nucleotides were determined using single turnover kinetics and the 3C2M45 DNA substrate (Fig. 4 and Table 1). These kinetic studies revealed that S229L binds both correct and incorrect dNTPs with affinity similar to that of WT (Table 2). However, there was a 4–5-fold reduction in the polymerization efficiency due to a decrease in the polymerization rate, \(k_{pol}\). This defect in polymerization accounts for the slowness of the S229L variant.

BER Is Slow in the Presence of S229L Leading to the Accumulation of BER Intermediates—Next, we assessed the capacity of the S229L Pol β variant to participate in BER, given its slow catalytic rate in our biochemical experiments. The LPSD DNA substrate (Table 1) was incubated with UDG to excise the uracil, followed by incubation for 0–60 s with Pol β/H9252 extract containing equally active amounts of purified WT or S229L Pol β enzyme. Although S229L was able to fill in the gap and remove the dRP group, forming an \(n+1\) extended product,
it did so at a slower rate than WT (Fig. 5, A and B). We subsequently performed clonogenic survival assays to assess whether S229L Pol β can participate in BER in vivo by expressing either WT or S229L in Pol β−/− MEFs. The data show that expression of S229L in Pol β−/− MEFs is able to rescue the cells from treatment with the alkylating agent MMS, but did not fully complement the BER defect of the Pol β-deficient MEFs compared with cells expressing WT Pol β (Fig. 5C). The lack of full complementation was not due to different levels of expression because Western blots showed that the two proteins are expressed at similar levels (Fig. 5D). To assess whether the slow rate of BER in S229L cells induced the accumulation of BER intermediates, we stably expressed either the S229L variant or WT in Pol β+/+ MEFs and performed an alkaline comet assay to quantify the amount of MMS-induced single-nucleotide gaps (SNGs) and single-strand breaks (SSBs). The Pol β+/+ MEF cell line was used because the S229L mutation is heterozygous and would normally be found with WT Pol β in a tumor. We used cells that expressed both WT and S229L Pol at equivalent levels meaning that the cells exhibited 1:1 levels of exogenous to endogenous expression of Pol β (Fig. 5D). Following a 30-min treatment with MMS, S229L-expressing cells had a significant increase in SNGs/SSBs compared with WT cells. Moreover, even after allowing cells to recover for 30 min, cells expressing the S229L variant still had significant levels of SNGs/SSBs (Fig. 5E). These data suggest that cells expressing

FIGURE 4. S229L Pol β has a lower polymerization rate than WT. A and C, representative plots show the incorporation of dCTP opposite G for WT (A) or S229L (C) at 37 °C. A preincubated solution containing 500 nM Pol enzyme and 50 nM radiolabeled 3C2M45 DNA was combined with 10 mM MgCl2 and increasing concentrations of dCTP (0–1000 μM). Data were plotted as extended DNA formed versus time and fit to the single exponential equation to obtain the k_{obs} for each dCTP concentration. B and D, secondary plots of the k_{obs} versus dCTP concentration were fit to the hyperbolic equation to obtain k_{pol} and $K_d(dNTP)$ for WT (B) or S229L (D). Data are presented as mean ± S.E. (error bars; n = 2–4). Values are reported in Table 2.

TABLE 2

Single-turnover misincorporation opposite template G

Kinetic constants obtained from single-turnover misincorporation experiments are listed for each enzyme (± S.E. of the fit). Efficiency was calculated by dividing k_{pol} by K_d for each condition.

dNTP	Enzyme	k_{pol}	K_d	Efficiency	Fold changea	Fidelityb	Fold changec
dCTP	WT	32.4 ± 0.4	5.7 ± 0.4	5.7	5		
	S229L	4.2 ± 0.1	3.7 ± 0.9	1.1	3.1×10^{-4}	5	18,600
	WT	0.052 ± 0.002	170 ± 20	5.8 ± 10^{-5}	4	156,000	1
	S229L	0.0098 ± 0.0003	170 ± 20	3.6 ± 10^{-5}	4	114,000	1
	WT	0.0113 ± 0.0009	310 ± 60	1.0 ± 10^{-5}	4	5,560	1
	S229L	0.0025 ± 0.0001	250 ± 50	1.0 ± 10^{-5}	4	4,690	
dATP	WT	1.37 ± 0.05	1340 ± 90	2.4 ± 10^{-4}	4	10,000	1
	S229L	0.46 ± 0.04	1900 ± 300	2.4 ± 10^{-4}	4	4,500	

a Fold change in efficiency (WT/S229L).

b Fidelity = $\frac{efficiency_{correct}}{efficiency_{incorrect}}/efficiency_{incorrect}.$

c Fold change in fidelity (WT/S229L).
S229L Pol β Variant Induces Cellular Transformation

FIGURE 5. S229L has impaired BER activity and induces the accumulation of BER intermediates. A, the LPSD DNA substrate was treated with UDG and incubated with Pol β−/− extract containing purified WT or S229L protein. B, quantification of n+1 product is shown as a function of total DNA. Data are presented as mean ± S.E. (error bars; n = 3). C, clonogenic survival assays were conducted with Pol β−/− MEFs expressing either WT or S229L Pol β or empty vector. Data are plotted as mean ± S.E. (n = 3–4). D, Western blotting was performed of Pol β in cell lines. Representative Western blots show expression of S229L Pol β in Pol β−/− MEFs and Pol β−/− MEFs. Endogenous Pol β was used as a loading control in Pol β−/− MEFs. Tubulin was used as a loading control in the Pol β−/− MEFs. The ratios of exogenously expressed Pol β protein to loading control are shown below the images of the blots. E, Pol β−/− MEFs were left untreated or treated with 2 mM MMS for 30 min. Following MMS exposure, cells were allowed to recover for 0 or 30 min. Single-strand breaks were quantified by the alkaline comet assay. The percentage of tail DNA is plotted on the y axis. F, Pol β−/− MEFs were left untreated or treated with 2 mM MMS for 2 h. Following MMS exposure, cells were allowed to recover for 0 or 2 h, stained with γH2AX antibody, and analyzed by flow cytometry to assess the levels of double-strand breaks. *, **, and *** denote p < 0.05, 0.01, and 0.001, respectively, comparing S229L versus WT within the same treatment group. ∧∧ and ∧∧∧ denote p < 0.01 and 0.001, respectively, comparing the treatment group versus untreated cells.
S229L do not efficiently fill in the SNG that is generated after removal of the alkylated bases that are induced by treatment with MMS. Interestingly, S229L-expressing cells had significantly more SNGs/SSBs than WT under basal conditions, indicating that the presence of the S229L variant leads to incomplete repair of endogenous lesions.

Deficient gap-filling by S229L Pol β could lead to the production of double-strand breaks (DSBs) if the replication fork collided with an unfilled gap. Therefore we estimated the levels of DSBs in the cells by quantifying γH2AX-positive cells by flow cytometry (Fig. 5F). After a 2-h treatment with MMS, cells expressing S229L had significantly more DSBs compared with WT cells. In addition, after a 2-h recovery period, there was no change in the amount of DSBs in the S229L-expressing cells that had delayed repair of the damage and/or continued to accumulate DSBs. Together, these data suggest that the slow catalytic rate of S229L impairs the ability of this variant to function in BER as efficiently as WT Pol β in vivo. The decrease in BER function induces the accumulation of BER intermediates, which could lead to genomic instability.

Expression of S229L Pol β Induces Chromosomal Aberrations—Pol β is the main polymerase involved in BER. S229L is a catalytically slow variant that performs BER, albeit with lower efficiency than WT Pol β. This defect in BER leads to the significant accumulation of BER intermediates (Fig. 5). We postulate that the inability of the slow S229L Pol β enzyme to fill the gaps in the DNA efficiently leads to chromosomal aberrations.

To test whether this was the case, we analyzed metaphase spreads for chromosomal aberrations in Pol β+/+ MEFs expressing either WT or the S229L variant (Fig. 5D). Cells expressing S229L exhibited significantly increased levels of chromosomal fragments, fusions, and breaks compared with WT, as shown in Fig. 6. These data suggest that the loss of catalytic activity and decreased ability of the S229L Pol β variant to efficiently fill gaps during BER induce genomic instability in cells.

S229L Induces Cellular Transformation—Given that genomic instability can lead to cellular transformation, we wished to determine whether expression of the S229L variant could induce cellular transformation. We expressed HA-tagged rat WT or S229L Pol β in C127 cells, a mouse mammary epithelial cell line, using a tetracycline (tet) off system. In this system, that C127 cells expressing exogenous WT Pol did not form foci (8). Another hallmark of cellular transformation is anchorage-independent growth. To determine whether expression of S229L induces anchorage-independent growth, we selected two clones (S229L25 and 31) and assayed for growth in soft agar. In both clones, we found that expression of S229L increased anchorage-independent growth (Fig. 7C). Under similar conditions, cells expressing exogenous WT Pol β do not induce anchorage-independent growth (8, 11). Cells expressing S229L also exhibit increased proliferation rates compared with their nonexpressing counterparts (Fig. 7D) and to cells expressing WT Pol β (11). To determine whether expression of S229L Pol β is required to maintain transformation, we turned off expression of exogenous Pol β by adding tet to the medium (Fig. 7A) and analyzed focus formation as described. Foci continued to form after expression was extinguished (Fig. 7E), indicating that cells are transformed through a heritable change that was induced by the expression of S229L.

DISCUSSION

The major cellular roles for Pol β include removal of the 5′-dRP group from the end of an SNG and filling in of the gap during BER. Mutations in the POLB gene that lead to a lack of or inefficient 5′-dRP removal or gap filling are likely to result in the accumulation of BER intermediates that lead to genomic instability and drive cancer. The S229L Pol β variant was identified in a stage 3 tumor in our screen of 134 human colorectal tumors (6). In total, 51 nonsynonymous mutations were identified in the POLB
gene in that screen. Nonsynonymous mutations are predicted to alter the local structure and/or function of the protein, and the POLB mutations we identified are likely to have been subject to positive selection, as suggested by the ratio of nonsynonymous to synonymous substitutions. In addition, there were no corresponding mutations found in normal matched tissues, and a significantly higher proportion of the tumor mutations was identified in later stage tumors ($p < 0.025$), suggesting that some of these mutations drive cancer progression. In the present study, we characterized the S229L variant and found that it induces cellular transformation via genomic instability that likely arises as a result of its failure to fill gaps in DNA completely, which leads to an accumulation of BER intermediates. Together, the data presented herein support the role of the S229L Pol β variant as a driver of tumorigenesis.

The residue Ser-229 lies within the palm subdomain, which contains the active site that is responsible for catalysis. Although

FIGURE 7. S229L Pol β induces cellular transformation. A, representative Western blot shows expression of S229L Pol β in C127 clones. C127 cells were grown in the presence of tetracycline (T) to turn off expression of the exogenous Pol β; tetracycline was removed to induce expression (NT), and expression was extinguished by adding tetracycline back to the media (NT → T). Endogenous Pol β was used as a loading control. B, C127 cells expressing (NT; dashed lines) or not expressing (T; solid lines) exogenous S229L Pol β were stained at every fourth passage and analyzed for foci formation, a loss of contact-inhibited growth. C, clones 25 and 31 were assayed for growth in soft agar when expressing (NT; open bars) or not expressing (T; filled bars) exogenous S229L Pol β. D, cells were plated at a density of 20,000 cells/60-mm dish and were counted every day for 5 days. Data were plotted as change in cell number per day. *, **, and *** denote $p < 0.05$, 0.01, and 0.005, respectively. E, expression of S229L Pol β was extinguished by adding tet back to the medium (NT to T) at passage 24 (indicated by arrow). Foci were counted every fourth passage.
S229L Pol β Variant Induces Cellular Transformation

Ser-229 lies far from the active site, it is within close proximity (3.5 Å) to the template strand of DNA (templating base T-4). A nearby residue, Gly-231, lies within 2.8 Å of templating base T-5 and a previous study by our laboratory using molecular dynamics (8) suggested that when residue 231 was mutated from glycine to aspartic acid (G231D), there is a repulsion with the template strand of DNA that induces a distortion in the binding pocket of Pol β. This distortion in G231D prevents nucleotide binding and reduces the catalytic rate of the enzyme. Because the closely neighboring residues Ser-229 and Gly-231 are on a β-sheet adjacent to the template strand and both have decreased rates of catalysis, we hypothesized that the underlying biochemical mechanism would be similar. However, our data surprisingly revealed that S229L does not have a defect in binding of nucleotides and instead has a decreased polymerization rate that is independent of nucleotide binding. Thus, cellular transformation induced by the expression of these variants results from two entirely different biochemical mechanisms.

In vitro BER assays performed with cell extracts reveal that the gap-filling capability of S229L is disrupted. Expression of S229L in Pol β−/− MEFs is unable to fully complement the sensitivity to MMS treatment that is achieved by WT. The decreased observed catalytic rate for S229L most likely accounts for this phenotype. Patients who harbor this mutation in their tumor may be best treated with alkylating chemotherapies that are repaired by the BER pathway because the S229L variant is less capable of repairing the damage, leading to increased sensitivity of the cells in the tumor and increased cell death. This killing effect would be specifically potent for tumor cells and less harmful to normal cells, as S229L is not a known germ line variant of Pol β (17).

In the present study, we showed that expression of S229L induces cellular transformation and that this effect results from a heritable change because transformation continues even when S229L expression is extinguished. Cellular transformation is not due to overexpressing Pol β because cells expressing WT Pol β at similar levels did not exert this phenotype. In fact, because S229L exerts an effect in the presence of WT Pol β, it is likely that S229L acts in a dominant negative manner. S229L can bind DNA as tightly as WT and likely prevents WT Pol β from accessing gaps to which S229L is bound. This leads to the accumulation of BER intermediates which can be processed in an error-free manner by homology-directed repair, an error-prone manner, such as nonhomologous end joining, or can lead to cell death. We suggest that error-prone processing of the BER intermediates results in genomic instability that could confer a selective advantage to the cells. The cellular transformation we observe is likely not due to an increased frequency of point mutations, because the fidelity of the S229L is the same as for the WT polymerase. We point out that even though expression of S229L Pol β confers sensitivity to alkylating agents, treatment of cells harboring this variant with these types of drugs could drive carcinogenesis, especially if BER intermediates accumulate during the repair process.

In conclusion, we have shown that the human colorectal tumor variant S229L induces cellular transformation via genomic instability resulting from its slow polymerase activity. Pol β is mutated in 40% of human colorectal tumors and can drive tumorigenesis through genomic instability (6, 8). In combination with our previous work on the identification and characterization cancer-associated variants of Pol β, our work suggests that Pol β functions as a tumor suppressor.

REFERENCES

1. Loeb, L. A., Springgate, C. F., and Battula, N. (1974) Errors in DNA replication as a basis of malignant changes. Cancer Res. 34, 2311–2321
2. Loeb, L. A. (2011) Human cancers express mutator phenotypes: origin, consequences and targeting. Nat. Rev. Cancer 11, 450–457
3. Barnes, D. E., and Lindahl, T. (2004) Repair and genetic consequences of endogenous DNA base damage in mammalian cells. Annu. Rev. Genet. 38, 445–476
4. Lindahl, T. (1993) Instability and decay of the primary structure of DNA. Nature 362, 709–715
5. Prasad, R., Beard, W. A., Strauss, P. R., and Wilson, S. H. (1998) Human DNA polymerase β deoxyribose phosphate lyase: substrate specificity and catalytic mechanism. J. Biol. Chem. 273, 15263–15270
6. Donigan, K. A., Sun, K. W., Nemec, A. A., Murphy, D. L., Cong, X., Northrup, V., Zelterman, D., and Sweasy, J. B. (2012) Human POLB gene is mutated in high percentage of colorectal tumors. J. Biol. Chem. 287, 23830–23839
7. Lang, T., Dalal, S., Chikova, A., DiMaio, D., and Sweasy, J. B. (2007) The E295K DNA polymerase β gastric cancer-associated variant interferes with base excision repair and induces cellular transformation. Mol. Cell. Biol. 27, 5587–5596
8. Nemec, A. A., Donigan, K. A., Murphy, D. L., Jaeger, J., and Sweasy, J. B. (2012) Colon cancer-associated DNA polymerase β variant induces genomic instability and cellular transformation. J. Biol. Chem. 287, 23840–23849
9. Murphy, D. L., Jaeger, J., and Sweasy, J. B. (2011) A triad interaction in the fingers subdomain of DNA polymerase β controls polymerase activity. J. Am. Chem. Soc. 133, 6279–6287
10. Lowy, D. R., Rands, E., and Scolnick, E. M. (1978) Helper-independent transformation by unintegrated Harvey sarcoma virus DNA. J. Virol. 26, 291–298
11. Donigan, K. A., Hile, S. E., Eckert, K. A., and Sweasy, J. B. (2012) The human gastric cancer-associated DNA polymerase β variant D160N is a mutator that induces cellular transformation. DNA Repair 11, 381–390
12. Sweasy, J. B., Lang, T., Starcevic, D., Sun, K. W., Lai, C. C., Dimaio, D., and Dalal, S. (2005) Expression of DNA polymerase β cancer-associated variants in mouse cells results in cellular transformation. Proc. Natl. Acad. Sci. U.S.A. 102, 14350–14355
13. Yamitch, J., Starcevic, D., Lauper, J., Smith, E., Shi, I., Rangarajan, S., Jaeger, J., and Sweasy, J. B. (2010) Hinge residue I174 is critical for proper dNTP selection by DNA polymerase β. Biochemistry 49, 2326–2334
14. Yamitch, J., Nemec, A. A., Kah, A., and Sweasy, J. B. (2012) A germline polymorphism of DNA polymerase β induces genomic instability and cellular transformation. PLoS Genet. 8, e1003052
15. Murphy, D. L., Kosa, J., Jaeger, J., and Sweasy, J. B. (2008) The Asp285 variant of DNA polymerase β extends mispaired primer termini via increased nucleotide binding. Biochemistry 47, 8048–8057
16. Dalal, S., Chikova, A., Jaeger, J., and Sweasy, J. B. (2008) The Leu22Pro tumor-associated variant of DNA polymerase β is dRP lyase deficient. Nucleic Acids Res. 36, 411–422
17. Yamitch, J., Speed, W. C., Straka, E., Kidd, J. R., Sweasy, J. B., and Kidd, K. K. (2009) Population-specific variation in haplotype composition and heterozygosity at the POLB locus. DNA Repair 8, 579–584