Chlorella sp. Protective Effect on Acetaminophen-Induced Liver Toxicity in ICR Mice

Abstract

Background: A Chlorella sp. (CLC) has a health supplement in health effects including an ability to treat cancer. The Chlorella sp. Ability to reduce acetaminophen-induced liver injury is still unknown. The hepatoprotective function of CLC was determined in an APAP-induced liver injury mouse model. Methods: Male ICR mice were randomly divided into normal control, APAP, APAP + Sm (silymarin) and APAP + CLC (0.2%, 0.5% and 1%) groups. The glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), Albumin, and BUN plasma activities were detected using blood biochemistry assay. The hepatic tissue GOT, GPT, superoxide dismutase (SOD) and catalase (CAT) activity were also detected. Lipid peroxidation, MDA, protein expression levels were examined. Results: The results showed that the 1% CLC supplementation group and Silymarin (Sm) could significantly alleviate increased serum GOT, GPT and BUN, and the decreased serum Albumin. At the same time, the increased hepatic tissue GOT and GPT activities were alleviated as well as MDA. Enhanced SOD and CAT protein expression levels were increased in APAP-induced liver injury. Lipofuscin and hepatic veins cups disappeared in the Sm and 1% CLC supplementation groups shown with H&E staining. Conclusions: Therefore, CLC probably could develop hepatoprotective products against chemical-induced liver damage.

Keywords: Acetaminophen, catalase, Chlorella sp. crude lysate, glutamic oxaloacetic transaminase, glutamic pyruvic transaminase, hepatoprotective function, superoxide dismutase

Introduction

Microalgae are usually used as additives in food to enhance the nutritional value and improve the health of humans and animals because of their chemical composition and bioactive molecules. The high-protein content of microalgae is the major reason for the non-traditional source of protein. The microalgae amino acids synthesize essential amino acids in humans and animals and compare favorably with that of other food proteins. In addition, many valuable antioxidants are present in microalgae, e.g., chlorophyll, carotenoids, astaxanthin, lutein, and phycobiliproteins. A Chlorella sp. is a type of unicellular green algae, which is a popular food supplement or health food worldwide. Taiwan is one of the major producers of Chlorella-related products. Chlorella sp. has been reported to have certain beneficial physiological effects, such as antihypertensive, antioxidative, hypcholesterolemic, and antitumor activities in animal and human studies. However, the hepatoprotective activity of the extract derived from Chlorella sp. has not been extensively studied. Some reports indicated that Chlorella sp. is a good prophylactic-therapeutic agent against obesity-related complications. Acetaminophen, or N-acetyl-para-amino-phenol (APAP), is widely used analgesic-antiinflammatory drugs. Although they are considered safe drugs, they cause hepatic necrosis and renal failure when given in high doses. Increasing acute liver failure cases attributed to APAP use during the last two decades have been reported. Oxidative stress is reported to play a fundamental role in APAP-induced liver damage pathogenesis. The search for new bioactive products with antioxidant activities is necessary to overcome APAP-induced hepatic oxidative damage. Therefore, the present study was undertaken to evaluate the protective effect of the protein and antioxidant-enriched crude lysate from Chlorella sp. against APAP-induced liver injury in mice.

Jia-Ping Wu
Research Center for Healthcare Industry Innovation, National Taiwan University of Nursing and Health Sciences, Taipei City, Taiwan, Republic of China

Address for correspondence:
Dr. Jia-Ping Wu,
Research Center for Healthcare Industry Innovation, National Taiwan University of Nursing and Health Sciences, No. 365, Mingde Road, Beitou District, Taipei City 11219, Taiwan, Republic of China
E-mail: u9957853@cmu.edu.tw

How to cite this article: Wu JP. Chlorella sp. protective effect on acetaminophen-induced liver toxicity in ICR mice. Int J Prev Med 2020;11:111.
Wu: Hepatoprotective activity of Chlorella sp. on acetaminophen-induced injury

Materials and Methods

Microalgal strain, *Chlorella* sp., cultivation

Freshwater microalgae *Chlorella* sp. was originally obtained from the Taiwan Fisheries Research Institute collection (Pingtung, Taiwan).

Animals

Male ICR mice (4 weeks old; 20 ± 2 g) were obtained from the National Laboratory Animal Center (NLAC, Taipei, Taiwan). Mice were quarantined and acclimated for 1 week prior to experimentation. The animals were handled under standard laboratory conditions including a 12-h light/dark cycle in a temperature and humidity controlled room (at 22 ± 2°C and 60 ± 5% relatively humidity). Food (normal chow diet) and water were available *ad libitum*. Our Institutional Animal Care and Use Committee approved the protocols for this animal study. The animals were cared for in accordance with the institutional ethical guideline.

Experiments

The animals were randomly divided into 6 groups with each consisting of 6 mice. Mice groups and treatments are listed in Table 1. The group control served as the normal control and was given PBS buffer as a placebo by intraperitoneal injection (IP). The group control, APAP (Sigma-Aldrich), 0.1% silymarin (SM) (Sigma-Aldrich), 0.2%, 0.5%, and 1% CLC (*Chlorella* sp.), and animals were administered 200 mg/kg body weight of APAP dissolved in PBS buffer by IP twice a week for a period of 4 weeks. After APAP intoxication, group APAP served as the APAP negative control.

Blood biochemistry assay

The glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), blood urea nitrogen (BUN), and albumin activities in serum were measured to evaluate hepatotoxicity and renal toxicity. An autoanalyzer (DRI-CHEM 3500s; FUJIFILM, Kanagawa, Japan) was used in these experiments.

Hepatic tissue GOT, GPT, SOD, and CAT activity determination

GOT and GPT activities were measured according to the ELISA protocol of a commercially available kit (Cayman Chemical Company). The SOD activity was evaluated by using a tetrazolium salt for detection of superoxide radicals generated by xanthine oxidase and hypoxanthine. One unit of SOD is defined as the amount of enzyme needed to exhibit 50% dismutation of the superoxide radical. The SOD activity is standardized using the cytochrome c and xanthine oxidase coupled assay. The CAT activity was measured using H$_2$O$_2$ decomposition according to the Aebi. The final reaction mixture comprised 10 mM H$_2$O$_2$ in 50 mM phosphate buffer at pH 7.0. The decomposition of H$_2$O$_2$ was followed by spectrophotometry at 240 nm.

Table 1: Short names of experimental ICR mice groups and treatments

Group	Treatment	Diet	Short name
Normal control	PBS IP inject	Chow diet	control
APAP (negative control)	APAP IP inject	Chow diet	APAP
0.1% silymarin (positive control)	APAP IP inject	Chow diet containing 0.1% silymarin (w/w)	Sm+APAP
0.2% CLC	APAP IP inject	Chow diet containing 0.2% CLC (w/w)	0.2% CLC+APAP
0.5% CLC	APAP IP inject	Chow diet containing 0.5% CLC (w/w)	0.5% CLC+APAP
1% CLC	APAP IP inject	Chow diet containing 1% CLC (w/w)	1% CLC+APAP

Control=Group normal served as normal control with feeding chow diet and was given PBS buffer as placebo by IP twice a week for a period of 4 weeks. APAP=Group APAP served as negative control. APAP with feeding chow diet and was given 200 mg/kg body weight of APAP dissolved in PBS buffer by IP twice a week for a period of 4 weeks. SM+APAP=Group Sm+APAP served as positive control 0.1% silymarin with feeding chow diet containing 0.1% silymarin (w/w) and was given 200 mg/kg body weight of APAP dissolved in PBS buffer by IP twice a week for a period of 4 weeks. 0.2% CLC+APAP, 0.5% CLC+APAP, and 1% CLC+APAP=Group 0.2% CLC, 0.5% CLC, and 1% CLC of mice were fed chow diet containing 0.2%, 0.5%, and 1% CLC (w/w) individually and given 200 mg/kg body weight of APAP dissolved in PBS buffer by IP twice a week for a period of 4 weeks.

Hepatic tissue malondialdehyde, lipid peroxidation, and intermediate determination

The malondialdehyde (MDA) content (Ann Arbor, MI, USA), a measure of polyunsaturated fatty acids peroxidation, was assayed in the form of thiobarbituric acid-reactive substances. Briefly, a volume of 0.5 ml of liver homogenate was mixed with 3 ml of 1% H$_2$PO$_4$ (v/v) and 1 ml of 0.6% thiobarbituric acid (TBA, w/v), and then, heated to and maintained at 100°C for 40 min. The samples were allowed to reach room temperature, and 2 ml of butanol was added. After shaking vigorously with the vortex, the butanic phase was obtained by centrifugation at 3,000 × g for 10 min to determine the absorbance at 535 nm.

Histopathology hematoxylin and eosin staining examination

Liver samples were dissected out and excised from experimental animals from each group, then washed with normal saline, fixed in 10% formalin, and processed for paraffin embedding following the microtome technique.
The sections were taken at 6 μ thickness, processed in alcohol-xylene series, and stained with hematoxylin and eosin (H and E stain). The sections were examined microscopically for the evaluation of histopathological changes.

Statistics

Data were compared with one-way analysis of variance test to evaluate differences among multiple groups. All results are expressed as the mean ± standard deviation (SD). *P < 0.05 or †P < 0.05 differences were considered statistically significant. A statistical analysis was performed using statistical software (SPSS, Chicago, IL, USA).

Results

Preparation of the crude lysate of a Chlorella sp. (CLC).

Chlorella sp. biomass chemical composition is shown and compared in Table 2. The main feature is the abundant protein content (50–55%). The crude protein, soluble carbohydrates, total fiber, fat, ashes, and nucleic acids obtained in the CLC biomass were 63.7 ± 2.1, 17.3 ± 1.1, 4.5 ± 0.6, 3.4 ± 0.6, 5.6 ± 0.7, and 1.4 ± 0.2 (g/100 g), respectively individually after ultrasonic extraction [Table 2]. The ultrasonic-extracted CLC biomass crude protein was 1.2 times higher than that of non-extracted biomass (P < 0.05). The CLC also contains a number of biologically active compounds such as chlorophylls (2093.7 ± 166.3 mg/100 g) and carotenoids (211.3 ± 19.7 mg/100 g) (P < 0.05) compared with non-extracted biomass. These compounds have free radical scavenging potential, i.e., antioxidative activity. The chlorophylls and carotenoids of CLC biomass both were increased 1.5 to 2.0-fold compared with that of non-extracted biomass (P < 0.05).

Chlorella sp. (CLC) supplementation effect on liver marker enzymes in serum after APAP-induced hepatotoxicity

The ICR mice were fed with a chow diet containing 0.2%, 0.5%, and 1% (w/w) of CLC and 0.1% SM to test feeding APAP toxicity. After 28 days, the ICR mice were sacrificed to determine the serum GOT, GPT, albumin, and BUN activities for evaluating the liver function [Figure 1]. As shown in Figure 1a, the average serum GPT level results in group 1% (w/w) of CLC and SM had significant differences compared between the group APAP-induced the hepatotoxicity (P < 0.05). At the same time, both of SM administration and 1% CLC supplementation could reduce the increases in serum GTP-induced by APAP treatment [Figure 1b]. The mice challenged with APAP for 4 weeks showed significant increases in serum GOT and GPT activities compared with those in the control indicating that APAP-induced the hepatotoxicity (P < 0.01) [Figure 1a and b]. However, APAP-induced the hepatotoxicity led serum albumin decreased compared with control (P < 0.01) [Figure 1c], once SM and 1% CLC supplementation had increased serum albumin (P < 0.01) compared with APAP-induced injury. The serum BUN levels after APAP-induced increased hepatotoxicity when compared with control (P < 0.01) [Figure 1c]. SM and 1% CLC among these groups were significantly reduced BUN activity compared with APAP-induced [Figure 1d]. Hence, 1% CLC in feed was selected to evaluate the Chlorella sp. supplementation effect against APAP-induced liver injury in the study.

Chlorella sp. (CLC) supplementation effect on hepatic tissue function markers, GOT, GPT, SOD, and CAT activity after APAP-induced hepatotoxicity

Overdosed APAP administration would induce oxidative stress in the liver because of hepatic function markers, GOT, and GPT, increased (P < 0.05) [Figure 2a and b], but decreased hepatic tissue, SOD, and CAT activities (P < 0.05) compared with control [Figure 2c and d]. In APAP-treated and SM administration, hepatic GOT and GPT activities were significantly reduced (P < 0.05) compared with APAP-treated. We also observed 1% CLC administration for APAP-induced hepatotoxicity was significantly reduced (P < 0.05). By contrast, hepatic tissue antioxidative enzymes and CAT activities were increased in SM and 1% CLC (P < 0.05), when compared with APAP-induced hepatotoxicity group [Figure 2d]. However, hepatic tissue antioxidative enzymes and SOD activities displayed no significant differences after CLC supplementation in APAP-induced oxidative stress [Figure 2c]. It is indicated that the low degree of

Table 2: Chemical composition of a Chlorella sp. (CLC) biomass and its crude lysate
Constituent (g/100 g)
--
Crude protein (N=6.25)
Soluble carbohydrates
Total fiber
Fat
Ash
Nucleic acids
Pigments (mg/100 g)
Chlorophylls
Carotenoid

Each data indicates the mean SD from three independent determinations. *P<0.05 significant difference compared to non-extracted biomass. The Chlorella sp. biomass was harvested and spray-dried without extraction. The CLC was harvested and spray-dried with ultrasonic extraction.
CLC concentration not reflected on serum and tissue. On the contrast, the high degree levels defense for the APAP-induced oxidative stress by CLC were close with that by SM administration.

Chlorella sp. (CLC) supplementation effect on hepatic lipid peroxidation, malondialdehyde, after APAP-induced hepatotoxicity

Furthermore, we wanted to know the CLC supplementation effect on oxidative stress in ICR mice [Figure 2e]. Experimental animals treated with APAP caused a significant increase in the primary lipid peroxidation and MDA product levels in comparison to the normal control ($P < 0.05$). ICR mice supplemented with SM and 1% CLC showed significantly inhibited hepatic APAP-induced hepatotoxicity elevation ($P < 0.05$). These eliminated MDA levels by 1% CLC supplementation were statistically similar to the level in the SM treatment group.

Histopathological changes in Chlorella sp. (CLC) supplementation on liver tissue after APAP-induced hepatotoxicity

Histopathological examinations showed that the APAP administration section observed collagen released (black arrows); the liver tissue cross-sections revealed severe hepatocyte necrosis with inflammatory cell infiltrate (brown arrows) [Figure 2f]. Mice livers simultaneously administered with APAP after supplementation with 1% CLC revealed improved liver condition not showed the inflammatory cell infiltration. The minimal hepatocyte necrosis damage shown in 0.5% CLC and the situation was comparable to that of mice administrated with SM and 1% CLC. According to histopathological examinations, severe hepatic lesions induced by APAP were remarkably reduced by 1% CLC supplementation, which was in good consistency with the results found in liver marker enzymes in serum and hepatic oxidative stress and lipid peroxidation.

Discussion

The *Chlorella* sp. (CLC) is a protein-enriched powder containing around 65% of microalgae proteins. Marine macro- and microalgae-derived bioactive peptides have been widely applied for human nutrition and health. Marine-derived bioactive peptides have been identified as having antioxidant, antihypertensive, anticoagulant, or antimicrobial activities.[14-16] In the present study, the crude lysate of *Chlorella* sp. was prepared and used as a diet supplement to investigate the bioactivity functions on hepatoprotection. Significantly, different liver injury
in the mice administrated with APAP was found. However, the liver injury could be recovered by CLC supplementation added in the diet for mice. According to our knowledge, the Chlorella sp. crude extracts against the drug APAP-induced hepatotoxicity. The similar result in a rat model test has also been reported from the hot-water-extraction from C. vulgaris supplementation.\(^{[17]}\) There is a lack of study reports on the effects of Chlorella sp. supplementation on APAP-induced liver injury. Our current results showed that CLC supplementation is responsible for the increased resistance to oxidative stress induced by APAP. CLC supplementation could significantly alleviate the increased SOD and CAT activities in the APAP-treated mice. Oxidative stress was reported to play a fundamental role in the pathogenesis of APAP-induced liver damage.\(^{[18-20]}\) Lipid peroxidation, MDA, is one of the major outcomes of free radical-mediated injury that directly damages membranes and generates a number of secondary products.\(^{[21]}\) Antioxidant function and protection against lipid peroxidation are probably the most invoked mechanisms of protection by Chlorella sp. extracts.\(^{[22]}\) The antioxidant enzymes such as SOD and CAT are related to direct elimination of ROS to prevent and neutralize the free radical-induced damage.\(^{[23-25]}\) In APAP-induced hepatotoxicity, the balance between ROS production and these antioxidant defenses may be lost; oxidative stress results through a series of events deregulates the cellular functions leading to hepatic necrosis. According to the results, we proposed such oxidative liver injury induced by APAP could be reduced by CLC supplementation.
The potential antioxidant capacity of *Chlorella* sp. has been attributed to the effect of specific ingredients in *Chlorella* sp., such as chlorophylls and carotenoids compounds. The chlorophylls and carotene effect on ROS scavenging ability has been reported, with the theory that a few water-soluble or lipid-soluble ingredients of *Chlorella* sp. can decrease oxidative stress in vivo and ex vivo.[26] Chlorophyll is not only a benefit in treating liver recovery and ulcers but is also predicted to stimulate tissue growth because the chemical structure of chlorophyll is similar to that of hemoglobin.[27-30]

The present study demonstrated the *Chlorella* sp. may have protective functions such as ROS scavenger, meaning that *Chlorella* sp. could be used as a therapeutic treatment for oxidative stress-induced liver diseases such as APAP hepatotoxicity. Therefore, *Chlorella* sp. lysate may be considered as a potential source of natural antioxidant with hepatoprotective activity. Further, detailed investigations on this microalgae strain are needed to identify and isolate the hepatoprotective components in the extract and to justify its use in the treatment of liver disorders.

Acknowledgments

This work was supported by a grant from the National Science Council, Republic of China.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

Received: 17 Oct 17 **Accepted:** 22 Apr 19 **Published:** 22 Jul 20

References

1. Bholia V, Swalaha FM, Nasr M, Bux F. Fuzzy intelligence for investigating the correlation between growth performance and metabolic yields of a *Chlorella* sp. exposed to various flue gas schemes. Bioreourc Technol 2017;243:1078-86.
2. Bagul SY, K Bharti R, Dhar DW. Assessing biodiesel quality parameters for wastewater grown *Chlorella* sp. Water Sci Technol 2017;76:719-27.
3. Tiron O, Bumbac C, Manea E, Stefanescu M, Nita Lazar M. Overcoming microalgae harvesting barrier by activated algae granules. Sci Rep 2017;7:4646.
4. Zakaria SM, Kamal SMM, Harun MR, Omar R, Siajam SI. Subcritical water technology for extraction of phenolic compounds from *Chlorella* sp. microalgae and assessment on its antioxidative activity. Molecules 2017;22:1105.
5. Sivaramakrishnan R, Incharoensakdi A. Enhancement of total lipid yield by nitrogen, carbon, and iron supplementation in isolated microalgae. J Phycol 2017;53:855-68.
6. Kim DY, Lee K, Lee J, Lee YH, Han JI, Park JY, et al. Acidified-flocculation process for harvesting of microalgae: Coagulant reutilization and metal-free-microalgae recovery. Bioresour Technol 2017;239:190-6.
7. Ramadass K, Megharaj M, Venkateswarlu K, Naidu R. Toxicity of diesel water accommodated fraction toward microalgae, Pseudokirchneriella subcapitata and *Chlorella* sp. MM3. Ecotoxicol Environ Saf 2017;142:538-43.
8. Nath A, Tiwari PK, Rai AK, Sundaram S. Microagal consortia differentially modulate progressive adsorption of hexavalent chromium. Physiol Mol Biol Plants 2017;23:269-80.
9. González-Sánchez A, Postern C. Fate of H2S during the cultivation of *Chlorella* sp. deployed for biogas upgrading. J Environ Manage 2017;191:252-7.
10. Zenooz AM, Ashitani FZ, Ranbar R, Nikbakht F, Bolouri O. Comparison of different artificial neural network architectures in modeling of *Chlorella* sp. flocculation. Prep Biochem Biotechnol 2017;47:570-7.
11. Luangpipat T, Chisti Y. Biomass and oil production by *Chlorella* vulgaris and four other microalgae - Effects of salinity and other factors. J Biotechnol 2017;257:47-57.
12. Kothari R, Pathak VV, Pandey A, Ahmad S, Srivastava C, Tyagi VV. A novel method to harvest *Chlorella* sp. via low cost bioflocculant: Influence of temperature with kinetic and thermodynamic functions. Bioreos Turk 2017;225:84-9.
13. Abdul HZ, Budin SB, Wen Jie N, Hamid A, Husain K, Mohamed J. Nephroprotective effects of zemunet Smith ethyl acetate extract against paracetamol-induced nephrotoxicity and oxidative stress in rats. J Zhejiang Univ Sci B 2012;13:176-85.
14. Ahmed MB, Khater MR. Evaluation of the protective potential of *Ambrosia* maritima extract on acetaminophen-induced liver damage. J Ethnopharmacol 2001;75:169-74.
15. Zhang Y, Lou JX, Hu XY, Yang F, Hong S, Lin W. Improved prescription of taoechengqu-tang alleviates D-galactosamine acute liver failure in rats. World J Gastroenterol 2016;22:2558-65.
16. Hwang HJ, Kim IH, Nam TJ. Effect of a glycoprotein from *Hizikia fusiformis* on acetaminophen-induced liver injury. Food Chem Toxicol 2008;46:3475-81.
17. Bajt ML, Farhood A, Lemasters JJ, Jaeschke H. Mitochondrial bax translocation accelerates DNA fragmentation and cell necrosis in a murine model of acetaminophen hepatotoxicity. J Pharmacol Exp Ther 2008;324:8-14.
18. Jaeschke H, Knight TR, Bajt ML. The role of oxidantstress and reactive nitrogen species in acetaminophen hepatotoxicity. Toxicol Lett 2003;144:279-88.
19. Jaeschke H, McGill MR, Ramachandran A. Oxidantstress, mitochondria, and cell death mechanisms in drug-induced liver injury: Lessons learned from acetaminophen hepatotoxicity. Drug Metab Rev 2012;44:88-106.
20. Kao CY, Chen TY, Chang YB, Chiu TW, Lin HY, Chen CD, et al. Utilization of carbon dioxide in industrial flue gases for the cultivation of microalgae *Chlorella* sp. Bioreos Turk 2014;166:485-93.
21. Larson AM, Polson J, Fontana RJ, Davern TJ, Lalani E, Hynan L, et al. Acetaminophen-inducedacute liver failure: Results of a United States multicenter, prospective study. Hepatology 2005;42:1364-72.
22. McGill MR, Sharpe MW, Williams CD, Taha M, Curry SC, Jaeschke H. The mechanism underlying acetaminophen-induced hepatotoxicity in humans and mice involves mitochondrial damage and nuclear DNA fragmentation. J Clin Invest 2012;122:1574-83.
23. Yuan HD, Jin GZ, Piao GC. Hepatoprotective effects of an active part from *Artemisia sacorum* Lede. against acetaminophen-induced toxicity in mice. J Ethnopharmacol 2010;127:528-33.
24. Fan X, Bui L, Zhu L, Yang L, Zhang X. Marinealgae-derived bioactive peptides for humannutrition and health. J Agri Food Chem 2014;62:9211-22.
25. Ramachandran A, Lebofsky M, Weinman SA, Jaeschke H. The impact of partial manganese superoxide dismutase
(SOD2)-deficiency on mitochondrial oxidant stress, DNA fragmentation and liver injury during acetaminophen hepatotoxicity. Toxicol Appl Pharmacol 2011;251:226-33.

26. Ko SC, Kim D, Jeon YJ. Protective effect of a novel antioxidative peptide purified from a marine Chlorella ellipsoidea protein against free radical-induced oxidative stress. Food Chem Toxicol 2012;50:2294-302.

27. Li L, Li W, Kim YH, Lee YW. Chlorella vulgaris extracta meliorates carbon tetrachloride-induced acute hepatic injury in mice. Exp Toxicol Pathol 2013;65:73-80.

28. Mladenović D, Radosavljević T, Ninković M, Vucević D, Jesić-Vukićević R, Todorović V. Liver antioxidant capacity in the early phase of acetaminophen-induced liver injury in mice. Food Chem Toxicol 2009;47:866-70.

29. Morris HJ, Almarales A, Carrillo O, Bermúdez RC. Utilisation of chlorella vulgaris cell biomass for the production of enzymatic protein hydrolysates. Bioreourc Technol 2008;99:7723-9.

30. Pang HY, Chu VC, Chen SJ, Chou ST. Hepatoprotection of chlorella against carbon tetrachloride-induced oxidative damage in rats. In Vivo 2009;23:747-54.