A PROJECTIVE DESCRIPTION OF GENERALIZED GELFAND-SHILOV SPACES OF ROUMIEU TYPE

ANDREAS DEBROUWERE AND JASSON VINDAS

ABSTRACT. We provide a projective description for a class of generalized Gelfand-Shilov spaces of Roumieu type. In particular, our results apply to the classical Gelfand-Shilov spaces and weighted-L^∞ spaces of ultradifferentiable functions of Roumieu type.

1. Introduction

In general, there is no canonical way to find an explicit and useful system of seminorms describing a given inductive limit topology. However, in many concrete cases this is possible. For weighted (LB)-spaces of continuous and holomorphic functions, under quite general assumptions, the topology can be described in terms of weighted sup-seminorms. This problem of projective description goes back to the pioneer work of Bierstedt, Meise, and Summers [4] and plays an important role in Ehrenpreis’ theory of analytically uniform spaces [10, 2]. On the other hand, an explicit system of seminorms describing the topology of the space of ultradifferentiable functions of Roumieu type was first found by Komatsu [14]. His proof was based on a structural theorem for the dual space and the same method was later employed by Pilipović [15] to obtain projective descriptions of Gelfand-Shilov spaces of Roumieu type. Such projective descriptions are indispensable for achieving completed tensor product representations of various important classes of vector-valued ultradifferentiable functions of Roumieu type [6, 14, 16].

The aim of this article is to provide a projective description of a general class of Gelfand-Shilov spaces of Roumieu type. More precisely, let $(M_p)_{p\in\mathbb{N}}$ be a sequence of positive reals and let $V := (v_n)_{n\in\mathbb{N}}$ be a pointwise decreasing sequence of positive continuous functions on \mathbb{R}^d. We study here the (LB)-space $B^\{M_p\}_V(\mathbb{R}^d)$ consisting of all those $\varphi \in C^\infty(\mathbb{R}^d)$ such that

$$\sup_{\alpha \in \mathbb{N}^d} \sup_{x \in \mathbb{R}^d} \frac{h^{\|\alpha\|_M} |\partial^\alpha \varphi(x)| v_n(x)}{M_\alpha} < \infty$$

for some $h > 0$ and $n \in \mathbb{N}$. Under rather general assumptions on M_p and V, we shall give a projective description of the space $B^\{M_p\}_V(\mathbb{R}^d)$ in terms of Komatsu’s family \mathfrak{R} [14] and

2010 Mathematics Subject Classification. 46E10, 81S30.

Key words and phrases. Gelfand-Shilov spaces; Projective description; Short-time Fourier transform; Ultradifferentiable functions of Roumieu type.

A. Debrouwere gratefully acknowledges support by Ghent University, through a BOF Ph.D.-grant.

The work of J. Vindas was supported by Ghent University, through the BOF-grant 01N01014.
the maximal Nachbin family associated with \(V \). We mention that we have already studied the problem in \([8\), Prop. 4.16], but we will present here a new approach. Our arguments are based on the mapping properties of the short-time Fourier transform on \(\mathcal{B}_{v}^{(M_{p})}(\mathbb{R}^{d}) \) and the projective description of weighted \((LB)\)-spaces of continuous functions. We believe this is a transparent and flexible method. It has the advantage that one can work under very mild conditions on \(M_{p} \) and \(V \) and it avoids duality theory; in fact, our result can be employed to more easily study dual spaces, e.g., one might readily deduce structural theorems without a rather complicated dual Mittag-Leffler argument.

Our general references are \([3, 4]\) for weighted inductive limits of spaces of continuous functions, \([16]\) for Gelfand-Shilov spaces, and \([12]\) for time-frequency analysis (the short-time Fourier transform).

2. Weighted inductive limits of spaces of continuous functions

In this section we recall a result of Bastin \([1]\) concerning the projective description of weighted \((LB)\)-spaces of continuous functions. This result will play a key role in the proof of our main theorem.

Let \(X \) be a completely regular Hausdorff space. Given a non-negative function \(v \) on \(X \) we write \(C_{v}(X) \) for the Banach space consisting of all \(f \in C(X) \) such that

\[
\|f\|_{v} := \sup_{x \in X} |f(x)|v(x) < \infty.
\]

A (pointwise) decreasing sequence \(V = (v_{n})_{n \in \mathbb{N}} \) of positive continuous functions on \(X \) is called a decreasing weight system on \(X \). We define

\[
\mathcal{V}C(X) := \lim_{n \rightarrow \infty} C_{v_{n}}(X),
\]

a Hausdorff \((LB)\)-space. The maximal Nachbin family associated with \(V \), denoted by \(\mathcal{V} = \mathcal{V}(V) \), is given by the space of all non-negative upper semicontinuous functions \(v \) on \(X \) such that \(\sup_{x \in X} v(x)/v_{n}(x) < \infty \) for all \(n \in \mathbb{N} \). The projective hull of \(\mathcal{V}C(X) \) is then defined as

\[
C\mathcal{V}(X) := \lim_{v \rightarrow \mathcal{V}} C_{v}(X).
\]

It is known that \(\mathcal{V}C(X) \) and \(C\mathcal{V}(X) \) coincide algebraically and that these spaces even have the same bounded sets \([3\), Thm. 3, p. 113]. The problem of projective description in this context is to characterize the weight systems \(V \) for which the continuous inclusion \(\mathcal{V}C(X) \rightarrow C\mathcal{V}(X) \) is in fact a topological isomorphism. There is the following result due to Bastin:

Theorem 1 \([1]\). Let \(V = (v_{n})_{n \in \mathbb{N}} \) be a decreasing weight system on \(X \) satisfying condition \((V)\), i.e., for every sequence of positive numbers \((\lambda_{n})_{n \in \mathbb{N}} \) there is \(v \in \mathcal{V}(V) \) such that for every \(n \in \mathbb{N} \) there is \(N \in \mathbb{N} \) such that \(\inf\{\lambda_{1}v_{1}, \ldots, \lambda_{N}v_{N}\} \leq \sup\{v_{n}/n, v\} \). Then, \(\mathcal{V}C(X) \) and \(C\mathcal{V}(X) \) coincide topologically.

Remark 1. Bastin also showed that if for every \(v \in \mathcal{V}(V) \) there is \(\overline{v} \in \mathcal{V}(V) \cap C(X) \) such that \(v \leq \overline{v} \), then condition \((V)\) is also necessary for the topological identity \(\mathcal{V}C(X) = C\mathcal{V}(X) \). We mention that if \(X \) is a discrete or a locally compact \(\sigma\)-compact Hausdorff space then it is also sufficient to study \(\mathcal{V}C(X) \) and \(C\mathcal{V}(X) \) separately.
space, then every decreasing weight system \mathcal{V} on X satisfies the above condition [4, p. 112].

Remark 2. A decreasing weight system $\mathcal{V} = (v_n)_{n \in \mathbb{N}}$ is said to satisfy condition (S) (cf. [3]) if for every $n \in \mathbb{N}$ there is $m > n$ such that v_m/v_n vanishes at ∞. Every weight system satisfying (S) also satisfies (V), but the latter property also holds for constant weight systems (for which (S) obviously fails).

Let X and Y be completely regular Hausdorff spaces and let $\mathcal{V} = (v_n)_{n \in \mathbb{N}}$ and $\mathcal{W} = (w_n)_{n \in \mathbb{N}}$ be decreasing weight systems on X and Y, respectively. We denote by $\mathcal{V} \otimes \mathcal{W} := (v_n \otimes w_n)_{n \in \mathbb{N}}$ the decreasing weight system on $X \times Y$ given by $v_n \otimes w_n(x, y) := v_n(x)w_n(y)$, $x \in X, y \in Y$.

Remark 3. Let $\mathcal{V} = (v_n)_{n \in \mathbb{N}}$ and $\mathcal{W} = (w_n)_{n \in \mathbb{N}}$ be decreasing weight systems on X and Y, respectively. If both \mathcal{V} and \mathcal{W} satisfy (V), then also $\mathcal{V} \otimes \mathcal{W}$ satisfies (V).

Remark 4. Let $\mathcal{V} = (v_n)_{n \in \mathbb{N}}$ and $\mathcal{W} = (w_n)_{n \in \mathbb{N}}$ be decreasing weight systems on X and Y, respectively. Then, for every $u \in \overline{\mathcal{V}}(\mathcal{V} \otimes \mathcal{W})$ there are $v \in \overline{\mathcal{V}}(\mathcal{V})$ and $w \in \overline{\mathcal{V}}(\mathcal{W})$ such that $u \leq v \otimes w$.

3. Generalized Gelfand-Shilov spaces of Roumieu type

We now introduce the class of Gelfand-Shilov spaces of Roumieu type that we are interested in. They are defined via a decreasing weight system \mathcal{V} (on \mathbb{R}^d) and our aim is to give a projective description of these spaces in terms of Komatsu’s family \mathcal{R} (defined below) and the maximal Nachbin family associated with \mathcal{V}.

Let $(M_p)_{p \in \mathbb{N}}$ be a weight sequence, that is, a positive sequence that satisfies

$$\lim_{p \to \infty} \frac{M_p}{M_{p-1}} = \infty.$$

For $h > 0$ and a non-negative function v on \mathbb{R}^d we write $\mathcal{D}_{L_{v}^{\infty}}^{M_p,h}(\mathbb{R}^d)$ for the Banach space consisting of all $\varphi \in C^\infty(\mathbb{R}^d)$ such that

$$\|\varphi\|_{\mathcal{D}_{L_{v}^{\infty}}^{M_p,h}} := \sup_{\alpha \in \mathbb{N}^d} \sup_{x \in \mathbb{R}^d} \frac{|\partial^\alpha \varphi(x)|}{M_\alpha} v(x) < \infty,$$

where we write $M_\alpha = M_{|\alpha|}$, $\alpha \in \mathbb{N}^d$. Given a decreasing weight system $\mathcal{V} = (v_n)_{n \in \mathbb{N}}$, we define, as in the introduction,

$$\mathcal{B}_{\mathcal{V}}^{M_p}(\mathbb{R}^d) := \lim_{n \to \infty} \mathcal{D}_{L_{v_n}^{\infty}}^{M_p,1/n}(\mathbb{R}^d),$$

a Hausdorff (LB)-space.

Following Komatsu [14], we denote by \mathcal{R} the set of all positive sequences $(r_j)_{j \in \mathbb{N}}$ which tend increasingly to infinity. For $r_j \in \mathcal{R}$ and a non-negative function v on \mathbb{R}^d we write $\mathcal{D}_{L_{v}^{\infty}}^{M_p,r_j}(\mathbb{R}^d)$ for the Banach space of all $\varphi \in C^\infty(\mathbb{R}^d)$ such that

$$\|\varphi\|_{\mathcal{D}_{L_{v}^{\infty}}^{M_p,r_j}} := \sup_{\alpha \in \mathbb{N}^d} \sup_{x \in \mathbb{R}^d} \frac{|\partial^\alpha \varphi(x)|}{M_\alpha} v(x) r_j < \infty.$$
Given a decreasing weight system \(\mathcal{V} \), we also introduce the space
\[
\mathcal{B}_\mathcal{V}^{(M_p)}(\mathbb{R}^d) := \lim_{r_j \to 0} \lim_{r_j \in \mathfrak{R}} \mathscr{D}_L^{M_p r_j}(\mathbb{R}^d).
\]

Lemma 1. Let \(M_p \) be a weight sequence and let \(\mathcal{V} = (v_n)_{n \in \mathbb{N}} \) be a decreasing weight system. Then, \(\mathcal{B}_\mathcal{V}^{(M_p)}(\mathbb{R}^d) \) and \(\mathcal{B}_\mathcal{V}^{(M_p)}(\mathbb{R}^d) \) coincide algebraically and the inclusion mapping \(\mathcal{B}_\mathcal{V}^{(M_p)}(\mathbb{R}^d) \to \mathcal{B}_\mathcal{V}^{(M_p)}(\mathbb{R}^d) \) is continuous.

Proof. It is obvious that \(\mathcal{B}_\mathcal{V}^{(M_p)}(\mathbb{R}^d) \) is continuously included in \(\mathcal{B}_\mathcal{V}^{(M_p)}(\mathbb{R}^d) \). For the converse inclusion, we define the following decreasing weight system \(\mathcal{W} \) on \(\mathbb{N}^d \) (endowed with the discrete topology)
\[
\mathcal{W} = (w_n)_{n \in \mathbb{N}}, \quad w_n(\alpha) := n^{-|\alpha|}, \quad \alpha \in \mathbb{N}^d.
\]
Now let \(\varphi \in \mathcal{B}_\mathcal{V}^{(M_p)}(\mathbb{R}^d) \) be arbitrary and define \(f(x, \alpha) = \partial^\alpha \varphi(x)/M_\alpha \) for \(x \in \mathbb{R}^d, \alpha \in \mathbb{N}^d \). By Remark [1] and [14, Lemma 3.4(ii)] we have that \(f \in \mathcal{C} \mathcal{V}(\mathcal{V} \otimes \mathcal{W})(\mathbb{R}^d \times \mathbb{N}^d) \). Since \(\mathcal{V} \otimes \mathcal{W} C(\mathbb{R}^d \times \mathbb{N}^d) = \mathcal{C} \mathcal{V}(\mathcal{V} \otimes \mathcal{W})(\mathbb{R}^d \times \mathbb{N}^d) \) as sets (cf. Section [2]), we obtain that \(f \in \mathcal{V} \otimes \mathcal{W} C(\mathbb{R}^d \times \mathbb{N}^d) \), which precisely means that \(\varphi \in \mathcal{B}_\mathcal{V}^{(M_p)}(\mathbb{R}^d) \).

The rest of this article is devoted to showing that, under suitable conditions on \(M_p \) and \(\mathcal{V} \), the equality \(\mathcal{B}_\mathcal{V}^{(M_p)}(\mathbb{R}^d) = \mathcal{B}_\mathcal{V}^{(M_p)}(\mathbb{R}^d) \) also holds topologically.

We will make use of the following two standard conditions for weight sequences:

(M.1) \(M_p^2 \leq M_{p-1} M_{p+1}, p \geq 1; \)
(M.2) \(M_{p+1} \leq C_0 H^p M_p, p \in \mathbb{N} \), for some \(C_0, H \geq 1 \).

We also need the associated function of the sequence \(M_p \) in our considerations, which is given by
\[
M(t) := \sup_{p \in \mathbb{N}} \frac{t^p M_0}{M_p}, \quad t > 0,
\]
and \(M(0) := 0 \). We define \(M \) on \(\mathbb{R}^d \) as the radial function \(M(x) = M(|x|), x \in \mathbb{R}^d \). The assumption (M.2) implies that \(M(H^k t) - M(t) \geq k \log(t/C_0), t, k \geq 0 [13, Prop. 3.4] \). In particular, we have that
\[
e^{M(t) - M(H^k t)} \leq 2C_0^{d+1}(1 + t^{d+1})^{-1}, \quad t \geq 0
\]
Given \(r_j \in \mathfrak{R} \) we denote by \(M_{r_j} \) the associated function of the weight sequence \(M_p \prod_{j=1}^{p} r_j \).

As mentioned in the introduction, our arguments will rely on the mapping properties of the short-time Fourier transform, which we now introduce. The translation and modulation operators are denoted by \(T_x f = f(\cdot - x) \) and \(M_\xi f = e^{2\pi i \xi \cdot f} \), for \(x, \xi \in \mathbb{R}^d \).

The **short-time Fourier transform (STFT)** of a function \(f \in L^2(\mathbb{R}^d) \) with respect to a window function \(\psi \in L^2(\mathbb{R}^d) \) is defined as
\[
V_\psi f(x, \xi) := (f, M_\xi T_x \psi)_L^2 = \int_{\mathbb{R}^d} f(t) \overline{\psi(t - x)} e^{-2\pi i t \xi} dt, \quad (x, \xi) \in \mathbb{R}^{2d}.
\]
Hence that $\|V_{\psi}f\|_{L^2(\mathbb{R}^d)} = \|\psi\|_{L^2} \|f\|_{L^2}$. In particular, the mapping $V_{\psi} : L^2(\mathbb{R}^d) \to L^2(\mathbb{R}^d)$ is continuous. The adjoint of V_{ψ} is given by the weak integral

$$V_{\psi}^* F = \int \int_{\mathbb{R}^d} F(x, \xi) M_{t} T_{x} \psi d\xi d\xi, \quad F \in L^2(\mathbb{R}^d).$$

If $\psi \neq 0$ and $\gamma \in L^2(\mathbb{R}^d)$ is a synthesis window for ψ, that is $(\gamma, \psi)_{L^2} \neq 0$, then

$$(3.1) \quad \frac{1}{(\gamma, \psi)_{L^2}} V_{\gamma}^* \circ V_{\psi} = \text{id}_{L^2(\mathbb{R}^d)}.$$

We are interested in the STFT on the spaces $\mathcal{B}_{\nu}^{(M_p)}(\mathbb{R}^d)$ and $\tilde{\mathcal{B}}_{\nu}^{(M_p)}(\mathbb{R}^d)$. This requires to impose some further conditions on the weight system ν. Let A_p be a weight sequence with associated function A. A decreasing weight system $\nu = (v_n)_{n \in \mathbb{N}}$ is said to be A_p-admissible if there is $\tau > 0$ such that for every $n \in \mathbb{N}$ there are $m \geq n$ and $C > 0$ such that

$$v_m(x + y) \leq C v_n(x) e^{A(\tau y)}, \quad x, y \in \mathbb{R}^d.$$

We start with two lemmas. As customary [16], given two weight sequences M_p and A_p, we denote by $S_{(A_p)}^{(M_p)}(\mathbb{R}^d)$ the Gelfand-Shilov space of Beurling type. For the weight function $\nu = e^{A(\tau \cdot)}$ we use the alternative notation $\| \cdot \|_{S_{A_p}^{M_p}} = \| \cdot \|_{\mathcal{D}_{L^2}^{M_p}}$ so that the Fréchet space structure of $S_{(A_p)}^{(M_p)}(\mathbb{R}^d)$ is determined by this family of norms.

Lemma 2. Let M_p and A_p be weight sequences satisfying (M.1) and (M.2), let w and v be non-negative measurable functions on \mathbb{R}^d such that

$$(3.2) \quad v(x + y) \leq C w(x) e^{A(\tau y)}, \quad x, y \in \mathbb{R}^d,$$

for some $C, \tau > 0$, and let $\psi \in S_{(A_p)}^{(M_p)}(\mathbb{R}^d)$. Then,

$$V_{\psi} : \mathcal{D}_{L^2}^{M_p, h} \to C \otimes e^{M(\pi h \cdot / \sqrt{d})}(\mathbb{R}^d_{x, \xi})$$

is a well-defined continuous mapping.

Proof. Let $\varphi \in \mathcal{D}_{L^2}^{M_p, h}(\mathbb{R}^d)$ be arbitrary. For all $\alpha \in \mathbb{N}^d$ and $(x, \xi) \in \mathbb{R}^d$,

$$|\xi^\alpha V_{\psi} \varphi(x, \xi)| v(x)$$

$$\leq C (2\pi)^{-|\alpha|} \sum_{\beta \leq \alpha} \binom{\alpha}{\beta} \int \int_{\mathbb{R}^d} |\partial^\beta \varphi(t)| w(t) |\partial^\alpha - \beta \psi(t - x)| e^{A(\tau(t-x))} dt$$

$$\leq C' \|\varphi\|_{\mathcal{D}_{L^2}^{M_p, h}(\pi h)^{-|\alpha|} M_{\alpha}}.$$

Hence

$$|V_{\psi} \varphi(x, \xi)| v(x) \leq C' \|\varphi\|_{\mathcal{D}_{L^2}^{M_p, h}} \inf_{p \in \mathbb{N}} \frac{M_p}{(\pi h |\xi| / \sqrt{d})^p} = C' M_0 \|\varphi\|_{\mathcal{D}_{L^2}^{M_p, h}} e^{-M(\pi h \xi / \sqrt{d})}.$$

\[\square\]
Lemma 3. Let M_p and A_p be weight sequences satisfying (M.1) and (M.2)', let w and v be non-negative measurable functions on \mathbb{R}^d satisfying \((3.2)\), and let $\psi \in S_{(A_p)}^{(M_p)}(\mathbb{R}^d)$. Then,
\[V^*_\psi : Cw \otimes e^{M(h \cdot)}(\mathbb{R}^{2d}) \to D_d^{M_p,h/(4Hd+1 \pi)}(\mathbb{R}^d) \]
is a well-defined continuous mapping.

Proof. Let $F \in Cw \otimes e^{M(h \cdot)}(\mathbb{R}^{2d})$ be arbitrary and set $k = h/(2Hd+1 \pi)$. For each $\alpha \in \mathbb{N}^d$, (we write $\| \cdot \|_{Cw \otimes e^{M(h \cdot)}} = \| \cdot \|$
\[
\sup_{t \in \mathbb{R}^d} |\partial^\alpha V^*_\psi F(t)|v(t)
\]
\[
\leq C \sum_{\beta \leq \alpha} \frac{\alpha}{\beta} \sup_{t \in \mathbb{R}^d} \int_{\mathbb{R}^{2d}} |F(x, \xi)|w(x)(2\pi|\xi|)^{|\beta|}|\partial^{\alpha-\beta} \psi(t-x)|e^{A(\tau(t-x))}dx d\xi
\]
\[
\leq CM_0^{-1} \|\psi\|_{S_{(A_p)}^{M_p,k}} \|F\| \frac{M_\alpha}{(k/2)^{|\alpha|}} \int_{\mathbb{R}^{2d}} e^{M(2\pi k \xi)-M(h \xi)}e^{A(\tau x)-A(Hd+1lx)}dx d\xi
\]
\[
\leq C^\prime \|F\| \frac{M_\alpha}{(h/(4Hd+1 \pi))^{\|\alpha\|}}.
\]
\[\square \]

Lemmas 2 and 3 yield the following corollary.

Corollary 1. Let M_p and A_p be weight sequences satisfying (M.1) and (M.2)'. Denote by X the Fréchet space consisting of all $F \in C(\mathbb{R}^{2d})$ such that
\[
\sup_{(x,\xi) \in \mathbb{R}^{2d}} |F(x, \xi)|e^{A(nx) + M(n^2)} < \infty
\]
for all $n \in \mathbb{N}$. Let $\psi \in S_{(A_p)}^{(M_p)}(\mathbb{R}^d)$. Then, $V_\psi : S_{(A_p)}^{(M_p)}(\mathbb{R}^d) \to X$ and $V^*_\psi : X \to S_{(A_p)}^{(M_p)}(\mathbb{R}^d)$ are well-defined continuous mappings.

We are now able to establish the mapping properties of the STFT on $B_{\psi}^{(M_p)}(\mathbb{R}^d)$. Given a weight sequence M_p with associated function M we define $V_{M_p} := (e^{M(\cdot/n)})_{n \in \mathbb{N}}$, a decreasing weight system on \mathbb{R}^d.

Proposition 1. Let M_p and A_p be weight sequences satisfying (M.1) and (M.2)', let $V = (v_n)_{n \in \mathbb{N}}$ be an A_p-admissible decreasing weight system, and let $\psi \in S_{(A_p)}^{(M_p)}(\mathbb{R}^d)$. The following mappings are continuous:
\[V_\psi : B_{\psi}^{(M_p)}(\mathbb{R}^d) \to V \otimes V_{M_p} C(\mathbb{R}^{2d}) \]
and
\[V^*_\psi : V \otimes V_{M_p} C(\mathbb{R}^{2d}) \to B_{\psi}^{(M_p)}(\mathbb{R}^d). \]
Assume that $S_{(A_p)}^{(M_p)}(\mathbb{R}^d) \neq \{0\}$. If $\psi \neq 0$ and $\gamma \in S_{(A_p)}^{(M_p)}(\mathbb{R}^d)$ is a synthesis window for ψ, the following reconstruction formula holds
\[
(3.3) \quad \frac{1}{(\gamma, \psi)^{2}} V^*_\psi \circ V_\psi = \text{id}_{B_{\psi}^{(M_p)}(\mathbb{R}^d)}.
\]
Proof. Since \mathcal{V} is A_p-admissible, the continuity of V_ψ and V_ψ^* follows directly from Lemmas 2 and 3 respectively. We now show (3.3). Let $\varphi \in L^p_{(M_p)}(\mathbb{R}^d)$ be arbitrary. As $V_\gamma^*(V_\psi \varphi)$ and φ are both $O(e^{A(r\gamma)})$-bounded continuous functions, it suffices to show that

$$
\int_{\mathbb{R}^d} V_\gamma^*(V_\psi \varphi)(t) \chi(t) dt = (\gamma, \psi)_{L^2} \int_{\mathbb{R}^d} \varphi(t) \chi(t) dt
$$

for all $\chi \in S_{(M_p)}(\mathbb{R}^d)$. Formula (3.1) implies that

$$
\int_{\mathbb{R}^d} V_\gamma^*(V_\psi \varphi)(t) \chi(t) dt = \int_{\mathbb{R}^d} \left(\int_{\mathbb{R}^d} \varphi(x, \xi) M_{-\xi} t_\gamma(x) dx d\xi \right) \chi(t) dt
$$

$$
= \int_{\mathbb{R}^d} \left(\int_{\mathbb{R}^d} \varphi(t) M_{-\xi} t_\psi(t) dt \right) V_{-\xi} \chi(x, -\xi) dx d\xi
$$

$$
= \int_{\mathbb{R}^d} V_{-\xi}^\ast(V_{\psi} \chi)(t) \varphi(t) dt
$$

$$
= (\gamma, \psi)_{L^2} \int_{\mathbb{R}^d} \varphi(t) \chi(t) dt,
$$

where the switching of the integrals is permitted because of Corollary 1 and the first part of this proposition. \qed

In order to show the analogue of Proposition 1 for $\mathcal{V}_\gamma (M_p)$, we need the following technical lemma.

Lemma 4. Let $\mathcal{V} = (v_n)_{n \in \mathbb{N}}$ be an A_p-admissible decreasing weight system. For every $v \in \mathcal{V}$ there is $\overline{v} \in \mathcal{V}$ such that $v(x + y) \leq \overline{v}(x)e^{A(\tau y)}$, $x, y \in \mathbb{R}^d$.

Proof. Find a strictly increasing sequence of natural numbers $(n_j)_{j \in \mathbb{N}}$ such that $v_{n_{j+1}}(x+y) \leq C_j v_{n_j}(x)e^{A(\tau y)}$, $x, y \in \mathbb{R}^d$, for all $j \in \mathbb{N}$ and some $C_j > 0$. Pick $C_j' > 0$ such that $v \leq C_j' v_{n_j}$ for all $j \in \mathbb{N}$. Set $\overline{v} = \inf_{j \in \mathbb{N}} C_j C_{j+1} v_{n_j} \in \mathcal{V}$. We have that

$$
v(x + y) \leq \inf_{j \in \mathbb{N}} C_j C_{j+1} v_{n_{j+1}}(x + y) \leq e^{A(\tau y)} \inf_{j \in \mathbb{N}} C_j C_{j+1} v_{n_j}(x) = \overline{v}(x)e^{A(\tau y)}.
$$

\qed

Proposition 2. Let M_p and A_p be weight sequences satisfying (M.1) and (M.2)', let $\mathcal{V} = (v_n)_{n \in \mathbb{N}}$ be an A_p-admissible decreasing weight system, and let $\psi \in S_{(M_p)}(\mathbb{R}^d)$. The following mappings are continuous:

$$
V_\psi : \mathcal{B}_{(M_p)}(\mathbb{R}^d) \to CV(\mathcal{V} \otimes \mathcal{V}_{(M_p)})_{(2d, \xi)}
$$

and

$$
V_\psi^* : CV(\mathcal{V} \otimes \mathcal{V}_{(M_p)})_{(2d, \xi)} \to \mathcal{B}_{(M_p)}(\mathbb{R}^d).
$$

Proof. Let $u \in CV(\mathcal{V} \otimes \mathcal{V}_{(M_p)})$ be arbitrary. By Remark 4 and Lemma 4.5(i) there is $v \in \mathcal{V}(\mathcal{V})$ and $r_j \in \mathfrak{R}$ such that $u \leq v \otimes e^{M_p r}$. According to [17, Lemma 2.3] there is $r_j' \in \mathfrak{R}$ such that $r_j' \leq r_j$ for j large enough and $r_j' \leq 2^{j+1} r_j'$ for all $j \in \mathbb{N}$.
the sequence $M_p \prod_{j=0}^{p} r_j$ satisfies (M.2)' Next, by Lemma [1] there is $\tau \in \mathcal{V}$ such that $v(x + y) \leq \tau(x)e^{A(\tau y)}$ for all $x, y \in \mathbb{R}^d$. Therefore, Lemma [2] implies that

$$V_\psi : D_{L_2}^{M_p, \frac{r_j}{\sqrt{d}}}(\mathbb{R}^d) \to C_\mathcal{V} \otimes e^{M_{r_j}}(\mathbb{R}^{2d})$$

is a well-defined continuous mapping. As the inclusion mapping $C_\mathcal{V} \otimes e^{M_{r_j}}(\mathbb{R}^{2d})$ is continuous, we may conclude that V_ψ is continuous. Similarly, by using Lemma [3] one can show that V_ψ^* is continuous.

We are ready to prove our main theorem.

Theorem 2. Let M_p and A_p be weight sequences satisfying (M.1) and (M.2)' such that $S^{(M_p)}_{(A_p)}(\mathbb{R}^d) \neq \{0\}$ and let $\mathcal{V} = (v_n)_{n \in \mathbb{N}}$ be an A_p-admissible decreasing weight system satisfying (V). Then, $B^{(M_p)}_{\mathcal{V}}(\mathbb{R}^d)$ and $B^{(M_p)}_{\mathcal{V}}(\mathbb{R}^d)$ coincide topologically.

Proof. By Lemma [1] it suffices to show that the inclusion mapping $\iota : B^{(M_p)}_{\mathcal{V}}(\mathbb{R}^d) \to B^{(M_p)}_{\mathcal{V}}(\mathbb{R}^d)$ is continuous. Since M_p satisfies (M.2)', the decreasing weight system $\mathcal{V}_{(M_p)}$ satisfies (S) and thus condition (V) (see Remark [2]). Hence Proposition [1] and Remark [3] imply that $V \otimes \mathcal{V}_{(M_p)} C(\mathbb{R}^{2d}) = \mathcal{V}(V \otimes \mathcal{V}_{(M_p)})(\mathbb{R}^{2d})$ topologically. Choose $\psi, \gamma \in S^{(M_p)}_{(A_p)}(\mathbb{R}^d)$ such that $(\gamma, \psi)_{L^2} = 1$. By (3.3) the following diagram commutes

$$
\begin{array}{ccc}
B^{(M_p)}_{\mathcal{V}}(\mathbb{R}^d) & \to & C\mathcal{V}(V \otimes \mathcal{V}_{(M_p)})(\mathbb{R}^{2d}) = V \otimes \mathcal{V}_{(M_p)} C(\mathbb{R}^{2d}) \\
\iota \downarrow & & \downarrow V_\psi^* \\
B^{(M_p)}_{\mathcal{V}}(\mathbb{R}^d) & & \\
\end{array}
$$

Propositions [1] and [2] imply that V_ψ and V_ψ^* are continuous, whence ι is also continuous.

Remark 5. Let M_p and A_p be weight sequences satisfying (M.1) and (M.2)' such that $S^{(M_p)}_{(A_p)}(\mathbb{R}^d) \neq \{0\}$. By applying Theorem [2] to $\mathcal{V} = \mathcal{V}_{(A_p)}$ (and using Lemma 4.5(i)), we obtain the well known projective description of the classical Gelfand-Shilov space $S^{(M_p)}_{(A_p)}(\mathbb{R}^d)$ of Roumieu type [15] Lemma 4).

We end this article by stating an important particular case of Theorem [2]. Given a non-negative function ω on \mathbb{R}^d, we define

$$D^{(M_p)}_{L_2} \mathcal{V}(\mathbb{R}^d) := \lim_{h \to 0^+} D^{M_p, h}_{L_2} \mathcal{V}(\mathbb{R}^d), \quad \tilde{D}^{(M_p)}_{L_2}(\mathbb{R}^d) := \lim_{r_j \to 0^+} D^{M_p, r_j}_{L_2}(\mathbb{R}^d).$$

Theorem 3. Let M_p and A_p be weight sequences satisfying (M.1) and (M.2)' such that $S^{(M_p)}_{(A_p)}(\mathbb{R}^d) \neq \{0\}$ and let ω be a positive measurable function on \mathbb{R}^d such that

$$\omega(x + y) \leq C\omega(x)e^{A(\tau y)}, \quad x, y \in \mathbb{R}^d,$$

for some $C, \tau > 0$. Then, $D^{(M_p)}_{L_2} \mathcal{V}(\mathbb{R}^d)$ and $\tilde{D}^{(M_p)}_{L_2}(\mathbb{R}^d)$ coincide topologically.
Proof. We may assume without loss of generality that \(\omega \) is continuous (for otherwise we may replace \(\omega \) with the continuous weight \(\tilde{\omega} = \omega \ast \varphi \), where \(\varphi \in \mathcal{D}(\mathbb{R}^d) \) is non-negative and satisfies \(\int_{\mathbb{R}^d} \varphi(t)\,dt = 1 \), since \(\mathcal{D}^{(M_p)}_{L^\infty(\mathbb{R}^d)}(\mathbb{R}^d) = \mathcal{D}^{(M_p)}_{L^\infty(\mathbb{R}^d)}(\mathbb{R}^d) = \widetilde{\mathcal{D}}^{(M_p)}_{L^\infty(\mathbb{R}^d)}(\mathbb{R}^d) \) topologically). We set \(\mathcal{V} = (\omega)_{\alpha \in \mathbb{N}} \) and notice that \(\mathcal{V} \) satisfies (\(V \)) (see Remark \(\mathcal{V} \)). Hence, by Theorem \(\mathcal{V} \) we find that \(\mathcal{D}^{(M_p)}_{L^\infty(\mathbb{R}^d)}(\mathbb{R}^d) = \widetilde{\mathcal{B}}^{(M_p)}_{\mathcal{V}}(\mathbb{R}^d) \) topologically. The result now follows from the fact that \(\overline{\mathcal{V}}(\mathcal{V}) = \{ \lambda \omega : \lambda > 0 \} \) and, thus, \(\widetilde{\mathcal{B}}^{(M_p)}_{\mathcal{V}}(\mathbb{R}^d) = \widetilde{\mathcal{D}}^{(M_p)}_{L^\infty(\mathbb{R}^d)}(\mathbb{R}^d) \) topologically.

Remark 6. Theorem \(\mathcal{X} \) was already shown in [9] Thm. 4.17] under much more restrictive conditions on \(M_p \) and \(A_p \) and with a more complicated proof.

In [7] Thm. 5.9] we have shown that, if \(M_p \) satisfies (M.1) and (M.2) (cf. [13]), the space \(\mathcal{S}^{(M_p)}_{\chi(p)}(\mathbb{R}^d) \) is non-trivial if and only if \((\log p)^p \prec M_p \) (the latter means, as usual, that \(M_p^{1/p} / \log p \to \infty \)). Hence, we obtain the ensuing corollary.

Corollary 2. Let \(M_p \) be a weight sequence satisfying (M.1) and (M.2) such that \((\log p)^p \prec M_p \) and let \(\omega \) be a positive measurable function on \(\mathbb{R}^d \) such that

\[
\omega(x + y) \leq C \omega(x)e^{\tau|y|}, \quad x, y \in \mathbb{R}^d,
\]

for some \(C, \tau > 0 \). Then, \(\mathcal{D}^{(M_p)}_{L^\infty(\mathbb{R}^d)}(\mathbb{R}^d) \) and \(\widetilde{\mathcal{D}}^{(M_p)}_{L^\infty(\mathbb{R}^d)}(\mathbb{R}^d) \) coincide topologically.

References

[1] F. Bastin, On bornological \(C(V,X) \) spaces, Arch. Math. 53 (1989), 394–398.
[2] C. A. Berenstein, M. A. Dostal, Analytically uniform spaces and their applications to convolution equations, Lecture Notes in Math., vol. 256, Springer-Verlag, Berlin and New York, 1972.
[3] K. D. Bierstedt, An introduction to locally convex inductive limits, in: Functional analysis and its applications (Nice, 1986), pp. 35–133. World Sci. Publishing, Singapore, 1988.
[4] K. D. Bierstedt, R. Meise, W. H. Summers, A projective description of weighted inductive limits, Trans. Amer. Math. Soc. 272 (1982), 107–160.
[5] A. Debrouwere, H. Vernaeve, J. Vindas, Optimal embeddings of ultradistributions into differential algebras, Monatsh. Math., in press, doi:10.1007/s00605-017-1066-6.
[6] A. Debrouwere, J. Vindas, Solution to the first Cousin problem for vector-valued quasianalytic functions, Ann. Mat. Pura Appl. 196 (2017), 1983–2003.
[7] A. Debrouwere, J. Vindas, On the non-triviality of certain spaces of analytic functions. Hyperfunctions and ultrahyperfunctions of fast growth, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A. Math. RACSAM, in press, doi:10.1007/s13398-017-0392-9.
[8] A. Debrouwere, J. Vindas, On weighted inductive limits of spaces of ultradifferentiable functions and their duals, preprint, [arXiv:1710.03731](https://arxiv.org/abs/1710.03731).
[9] P. Dimovski, B. Prangoski, J. Vindas, On a class of translation-invariant spaces of quasianalytic ultradistributions, Novi Sad J. Math. 45 (2015), 143–175.
[10] L. Ehrenpreis, Fourier analysis in several complex variables, Interscience Tracts in Math., no. 17, Wiley, New York, 1970.
[11] I. M. Gelfand, G. E. Shilov, Generalized functions. Vol. 2: Spaces of fundamental and generalized functions, Academic Press, New York-London, 1968.
[12] K. Gröchenig, Foundations of time-frequency analysis, Birkhäuser Boston, Boston, MA, 2001.
[13] H. Komatsu, Ultradistributions I. Structure theorems and a characterization, J. Fac. Sci. Tokyo Sect. IA Math. 20 (1973), 25–105.
[14] H. Komatsu, *Ultradistributions III. Vector valued ultradistributions and the theory of kernels*, J. Fac. Sci. Univ. Tokyo Sect. IA Math. **29** (1982), 653–717.

[15] S. Pilipović, *Characterization of bounded sets in spaces of ultradistributions*, Proc. Amer. Math. Soc. **120** (1994), 1191–1206.

[16] S. Pilipović, B. Prangoski, J. Vindas, *On quasianalytic classes of Gelfand-Shilov type. Parametrix and convolution*, J. Math. Pures Appl., in press, doi:10.1016/j.matpur.2017.10.008.

[17] B. Prangoski, *Laplace transform in spaces of ultradistributions*, Filomat **27** (2013), 747–760.

Department of Mathematics, Ghent University, Krijgslaan 281, 9000 Gent, Belgium

E-mail address: Andreas.Debrouwere@UGent.be

Department of Mathematics, Ghent University, Krijgslaan 281, 9000 Gent, Belgium

E-mail address: jasson.vindas@UGent.be