Metformin versus sulphonylureas for new onset atrial fibrillation and stroke in type 2 diabetes mellitus: a population-based study

Jiandong Zhou¹ · Guoming Zhang² · Carlin Chang³ · Oscar Hou In Chou³,4 · Sharen Lee⁴ · Keith Sai Kit Leung⁵,6 · Wing Tak Wong⁷ · Tong Liu⁸ · Abraham Ka Chung Wai⁹ · Shuk Han Cheng⁹ · Qingpeng Zhang¹⁰ · Gary Tse⁸,11

Received: 18 July 2021 / Accepted: 18 December 2021 / Published online: 3 February 2022
© Springer-Verlag Italia S.r.l., part of Springer Nature 2022

Abstract
Aims To gain insights on the cardiovascular effects of metformin and sulphonylurea, the present study compares the rates of incident atrial fibrillation, stroke, cardiovascular mortality and all-cause mortality between metformin and sulphonylurea users in type 2 diabetes mellitus.

Methods This was a retrospective population-based cohort study of type 2 diabetes mellitus patients receiving either sulphonylurea or metformin monotherapy between January 1, 2000, and December 31, 2019. The primary outcome was new-onset AF or stroke. Secondary outcomes were cardiovascular, non-cardiovascular and all-cause mortality. Propensity score matching (1:2 ratio) between sulphonylurea and metformin users was performed, based on demographics, CHA-DS-VASc score, past comorbidities and medication use. Cox regression was used to identify significant risk factors. Competing risk analysis was conducted using cause-specific and subdistribution hazard models. Sensitivity analyses using propensity score stratification, high-dimensional propensity score and inverse probability of treatment weighting were conducted. Subgroup analyses were conducted for age and gender in the matched cohort.

Results A total of 36,228 sulphonylurea users and 72,456 metformin users were included in the propensity score-matched cohort. Multivariable Cox regression showed that sulphonylurea users had higher risks of incident AF (hazard ratio [HR]: 2.89, 95% confidence interval [CI]: 2.75–3.77; \(P < 0.0001\)), stroke (HR: 3.23, 95% CI: 3.01–3.45; \(P < 0.0001\)), cardiovascular mortality (HR: 3.60, 95% CI: 2.62–4.81; \(P < 0.0001\)) and all-cause mortality (HR: 4.35, 95% CI: 3.16–4.75; \(P < 0.0001\)) compared to metformin users. Similarly, significant results were observed using cause-specific and subdistribution hazard models. Sensitivity analysis using techniques based on the propensity score also yielded similar results.

Conclusions Sulphonylurea use was associated with higher risks of incident AF, stroke, cardiovascular mortality and all-cause mortality compared to metformin. Males and patients older than 65 years with sulphonylurea use were exposed to the highest risks.

Keywords Sulphonylurea · Metformin · Diabetes · Atrial fibrillation · Stroke · Big data

Background
Type 2 diabetes mellitus (T2DM) is one of the most prevalent chronic disorders around the world which leads to significant morbidity and mortality [1]. It is predicted that by 2040, T2DM would have a global prevalence of 600 million people [2, 3]. T2DM is associated with multisystem complications including atrial fibrillation (AF) and stroke [4]. The manifestations of metabolic syndrome transform the epicardial adipose tissue to cause fibrosis, resulting in atrial remodelling [5]. Furthermore, sympathetic activity is also increased in T2DM patients [6]. Hence, it has been reported that T2DM patients have a 40% increase in AF risk.
Sulphonylurea.

Insights on the cardiovascular effects of metformin and sulphonylurea users amongst T2DM patients to provide outcomes of new-onset AF and stroke between metformin [16]. The present study aims to compare the all-cause mortality or cardiovascular mortality compared to metformin [15]. However, some studies indicated that sulphonylurea does not increase adverse cardiovascular events and mortality [15]. Yet, the risk of hypoglycaemic events, which raises the risk of cardiovascular caused mortality and all-cause mortality amongst T2DM patients [13]. On the other hand, sulphonylurea is another commonly prescribed anti-diabetic agent for patients who are refractory to metformin [14]. Sulphonylurea is suspected to be associated with increases the risk of hypoglycaemic events, which raises the risk of adverse cardiovascular events and mortality [15]. However, some studies indicated that sulphonylurea does not increase all-cause mortality or cardiovascular mortality compared to metformin [16]. The present study aims to compare the outcomes of new-onset AF and stroke between metformin and sulphonylurea users amongst T2DM patients to provide insights on the cardiovascular effects of metformin and sulphonylurea.

Methods

Study design and population

This retrospective population-based cohort study received approval from the Joint Chinese University of Hong Kong—New Territories East Cluster Clinical Research Ethics Committee. The inclusion criteria were patients with T2DM between January 1, 2000, to December 31, 2019. Patients who received both sulphonylureas and metformin on follow-up, did not receive either sulphonylureas or metformin and those with prior AF or stroke (including ischemic stroke, hemorrhagic stroke, transient ischemic attack) were excluded. The patients were identified from the Clinical Data Analysis and Reporting System (CDARS). This territory-wide database centralizes patient information from affiliated local hospitals to establish comprehensive clinical and medical data, including demographics, past comorbidities, medications and laboratory data. The system has been previously used by both our team and other teams in Hong Kong [17].

Glycaemic control is essential to reduce the occurrence of AF and stroke in patients with T2DM [8, 11]. Yet, studies investigating the risk of new-onset AF and stroke in diabetic patients on different diabetes medications are scarce. Metformin is the first-line anti-diabetic drug treatment recommended by international guidelines, given its high efficacy and safety in ameliorating metabolic controls [12]. Metformin has been reported to reduce stroke severity, cardiovascular caused mortality and all-cause mortality amongst T2DM patients [13]. On the other hand, sulphonylurea is also another commonly prescribed anti-diabetic agent for patients who are refractory to metformin [14]. Sulphonylurea is suspected to be associated with increases the risk of hypoglycaemic events, which raises the risk of adverse cardiovascular events and mortality [15]. However, some studies indicated that sulphonylurea does not increase all-cause mortality or cardiovascular mortality compared to metformin [16]. The present study aims to compare the outcomes of new-onset AF and stroke between metformin and sulphonylurea users amongst T2DM patients to provide insights on the cardiovascular effects of metformin and sulphonylurea.

Statistical analysis and outcomes

The study outcomes were new-onset AF, new-onset stroke, cardiovascular mortality and all-cause mortality after the initiation of sulphonylurea or metformin treatment. Patients were followed up to the endpoints of new-onset AF/stroke, mortality or the study end (December 31, 2019). Hong Kong Death Registry, an official government registry that registered death records of the Hong Kong population, provided the mortality data. There was no adjudication of the outcomes, as this relied on the ICD-9 coding or record in the death registry. However, the coding was performed by the clinicians or administrative staff, who were not involved in this study.

Descriptive statistics were used to summarize the characteristics of the patient cohort. Mean (SD) was utilized to depict the continuous variables and presented count (%) were applied to illustrate categorical variables. A standardized mean difference (SMD) of no more than 0.2 between the treatment groups post-weighting was deemed balanced. Propensity score matching with a 1:2 ratio between users of sulphonylureas and metformin based on demographics, CHA-DS-VASc score and Charlson comorbidity index were also calculated. The detailed standard International Classification of Disease, Ninth Edition (ICD-9) codes to identity prior comorbidities and outcomes of new-onset AF or stroke are shown in Supplementary Table 1.

Different variability measures of fasting blood glucose and HbA1c were calculated, including standard deviation (SD), absolute successive variability score, percentage successive variability score, normalized score, normalized absolute successive variability score, normalized percentage successive variability score, coefficient of variation, SD/initial value and variability independent of mean. The detailed definitions of the calculations of these variability measures are provided in Supplementary Table 2. Lipid variability for low-density lipoprotein cholesterol (LDL), high-density lipoprotein cholesterol (HDL), total cholesterol (TC) and triglyceride was calculated using SD.

Different variability measures of fasting blood glucose and HbA1c were calculated, including standard deviation (SD), absolute successive variability score, percentage successive variability score, normalized score, normalized absolute successive variability score, normalized percentage successive variability score, coefficient of variation, SD/initial value and variability independent of mean. The detailed definitions of the calculations of these variability measures are provided in Supplementary Table 2. Lipid variability for low-density lipoprotein cholesterol (LDL), high-density lipoprotein cholesterol (HDL), total cholesterol (TC) and triglyceride was calculated using SD.

Univariable Cox regression was used to determine the significant risk factors and uncover the exposure effects of metformin and sulphonylurea on the adverse outcomes. Multivariable Cox models were employed with adjustments based on the significant confounding elements. Hazard ratios (HRs) with corresponding 95% confidence interval (CI) and P-value were reported. Cause-specific hazard models and subdistribution hazard models were conducted to further discern possible competing risks.

Other matching approaches are also tried to identify the treatment effects of metformin versus sulphonylureas.
This includes propensity score (PS) stratification [18], PS matching with inverse probability weighting (IPW) [19] and high-dimensional propensity score approach (HDPS) [20]. PS stratification splits the dataset into several strata based on the individual’s PS alone without reference to the treatment group. The treatment effect was then estimated within each stratum, and an overall estimated treatment effect was calculated by taking a weighted average across each stratum. IPW used the whole dataset, but reweighted individuals to increase the weights of those who received unexpected exposures. It effectively generated a pseudopopulation with a near-perfect covariate balance between treatment groups. IPW applied weights corresponding to 1/PS for patients in the treated cohort and [1/(1 − PS)] for those in the control cohort. The HDPS is an automated data-driven or empirical approach for deriving variables from administrative data for inclusion in propensity score models. Subgroup stratifications analyses were conducted for initial drug exposure age and gender in the matched cohort.

The two-tailed significance tests were regarded as significant if the P values were less than 0.05. There was no imputation performed for missing data. No blinding was performed for the predictor as the values were obtained from the electronic health records automatically. Data were analysed using RStudio software (version 1.1.456) and Python (version 3.6).

Results

Baseline characteristics

Initially, the cohort comprised 273,876 T2DM patients. Upon excluding patients that match the exclusion criteria (8809 patients with both medication use, 79,186 without either medication use and 10,946 patients with prior diagnosis of AF or stroke) yields a study cohort of 174,935 patients (Fig. 1). The cohort involved 46.61% males and had initial drug exposure at a mean age of 56.5 years. The two most common drug classes prescribed were sulphonylurea/metformin (59.1%) and DPP4 inhibitors/metformin (28.9%). The prescribed medication profile was strongly affected by age and gender, with sulphonylurea use higher in men and DPP4 inhibitors/metformin use higher in women.
64.5 years old [SD: 12.2]) after a mean follow-up duration of 3535.1 days (SD: 1250.4). Of these, 36,228 (20.7%) patients received sulphonylurea and 138,707 (79.3%) received metformin. Amongst this cohort, 10,925 patients developed new-onset AF (incidence ratio [IR] = 6.24%), 15,233 patients developed new-onset stroke (8.7%), 459 patients had cardiovascular mortality (IR = 0.26%), and 50,304 patients suffered from all-cause mortality (IR = 28.75%).

The comparisons of the baseline and clinical characteristics between T2DM patients with sulphonylurea and metformin monotherapy before and after propensity score matching are shown in Table 1. The baseline and clinical characteristics of T2DM patients stratified by new-onset AF or stroke outcomes are detailed in Supplementary Tables 3 and 4, respectively. The two groups showed a similar density of PS after matching (Supplementary Fig. 1). No significant baseline and clinical characteristics differences were observed between the two groups of patients.

Outcome predictors

Compared to metformin monotherapy users, the sulphonylurea monotherapy users had higher rates of new onset AF (before: 15.54 vs. 3.81%, SMD = 0.40; after: 15.54 vs. 5.44%, SMD = 0.33), stroke (before: 21.33 vs. 5.41%, SMD = 0.48; after: 21.33 vs. 6.8%, SMD = 0.43) and all-cause mortality (before: 71.94 vs. 17.47%, SMD = 1.31; after: 71.94% vs. 24.7%, SMD = 1.07) both before and after 1:2 PS matching. Cumulative incidence curves of new-onset AF, new-onset stroke, cardiovascular mortality and all-cause mortality, before and after 1:2 PS matching, stratified by sulphonylurea and metformin use, both show that metformin users were less likely to experience these adverse outcomes (Figs. 2 and 3).

Significant univariate predictors for all-cause mortality, cardiovascular mortality, new-onset AF and new onset stroke after 1:2 PS matching are shown in Table 2. Compared with metformin use, sulphonylurea use demonstrated adverse medication effects on cardiovascular mortality (HR: 3.78 [3.05, 4.68], \(P \) value < 0.0001), all-cause mortality (HR: 4.25 [4.17, 4.34], \(P \) value < 0.0001), new onset AF (HR: 2.84[2.73, 2.96], \(P \) value < 0.0001) and new onset stroke (HR: 3.18[3.07, 3.3], \(P \) value < 0.0001). The trend remained after PS matching and adjusting for significant demographics, CHA-DS-VASc score, past comorbidities and non-sulphonylurea/metformin medications in the multivariate Cox model. The trend that sulphonylurea was associated with higher risks of new-onset AF, new-onset stroke, cardiovascular mortality and all-cause mortality are consistent after matching via different propensity score matching approaches (Supplementary Table 5). The overall and annualized per-1000 incidence rates of new onset AF, new onset stroke, cardiovascular mortality and all-cause mortality in the matched cohort are presented in Supplementary Table 5.

In addition, the HRs of lipid profiles and their variability measures are summarized in Supplementary Table 7. The patients with higher variability of HDL were associated with higher risks of AF, while higher variability of LDL and TC was associated with higher risks of stroke. Furthermore, patients with higher variability of LDL, HDL and TC were subjected to higher risks of cardiovascular mortality and all-cause mortality.

Competing risk analysis

Cause-specific and subdistribution hazard models demonstrate that sulphonylurea users have an increased risk for cardiovascular mortality, all-cause mortality, new-onset AF and new-onset stroke in comparison with metformin users (HR > 1, \(P \) value < 0.0001) (Table 2). Correspondingly, the unbiased estimates of the cumulative incidence functions with competing risk analysis for cardiovascular mortality, all-cause mortality, new-onset AF and new-onset stroke stratified by sulphonylurea and metformin use before and after 1:2 PS matching is presented in Fig. 4.

Subgroup and sensitivity analyses

The subgroup analysis for new onset AF, new onset stroke, cardiovascular mortality and all-cause mortality stratified by initial drug exposure, age and gender is presented in Fig. 5A and B. Males and those older than 65 years old were exposed to higher adverse risks with sulphonylurea prescriptions.

Additional sensitivity analysis was conducted by calculating the number of prescriptions and cumulative exposure duration for metformin and sulphonylurea. The HRs of the number of prescriptions, as well as the drug exposure duration of sulphonylurea and metformin with the presentation of adverse events, were calculated (Supplementary Table 6). In addition, individual drugs in the class of sulphonylurea, including glimepiride, glibenclamide, gliclazide, glipizide, tolazamide, were associated with higher risks of adverse events, compared to metformin prescription (HR > 1, \(P < 0.05 \)) (Supplementary Table 8). Gliclazide, in particular, was associated with significantly higher risks of cardiovascular mortality (HR: 28.78 [23.51, 35.22], \(P \)
Characteristics	Before matching	SMD	After 1:2 matching	SMD
Outcomes	Sulphonylurea (N = 36,228) Mean(SD);Max;N or Count(%)	Metformin (N = 138,707) Mean(SD);Max;N or Count(%)	Sulphonylurea (N = 36,228) Mean(SD);Max;N or Count(%)	Metformin (N = 72,456) Mean(SD);Max;N or Count(%)
All-cause mortality	26,065(71.94) 24,239(17.47) 1.31*	26,065(71.94) 17,899(24.70) 1.07*		
Cardiovascular mortality	251(0.69) 208(0.14) 0.08	251(0.69) 126(0.17) 0.08		
New onset AF	5633(15.54) 5292(3.81) 0.40*	5633(15.54) 3947(5.44) 0.33*		
New onset stroke	7728(21.33) 7505(5.41) 0.48*	7728(21.33) 4932(6.80) 0.43*		
Demographics				
Male gender	17,522(48.36) 64,026(46.15) 0.04	17,522(48.36) 34,983(48.28) < 0.01		
Female gender	18,706(51.63) 74,681(53.84) 0.04	18,706(51.63) 37,473(51.71) < 0.01		
Baseline age, years	71.3(10.9);105.1;n = 36,228	63.0(11.9);104.1;n = 138,707	71.3(10.9);105.1;n = 36,228	71.1(10.7);99.5;n = 72,456
< 50	1350(3.72) 19,379(13.97) 0.37*	1350(3.72) 2699(3.72) < 0.01		
[50–60]	4738(13.07) 38,069(27.44) 0.36*	4738(13.07) 9462(13.05) < 0.01		
[60–70]	8094(22.34) 37,957(27.36)	8094(22.34) 16,212(22.37) < 0.01		
[70–80]	13,724(37.88) 32,263(23.25)	13,724(37.88) 27,557(38.03) < 0.01		
> 80	8325(22.97) 11,052(7.96)	8325(22.97) 16,526(22.80) < 0.01		
Past comorbidities				
CHA-DS-VASc score	2.1(1.3);7.0;n = 36,228	1.6(1.3);7.0;n = 138,707	2.1(1.3);7.0;n = 36,228	2.1(1.3);7.0;n = 72,456
Charlson score	2.9(1.3);15.0;n = 36,228	2.2(1.6);16.0;n = 138,707	2.9(1.3);15.0;n = 36,228	2.9(1.4);15.0;n = 72,456
Systemic embolism	9(0.02) 46(0.03) 0	9(0.02) 18(0.02) < 0.01		
Hypertension	9804(27.06) 25,562(18.42)	9804(27.06) 19,429(26.81) 0.01		
Heart failure	869(0.24) 2657(1.91)	869(0.24) 1723(2.37) < 0.01		
New coronary heart disease	60(0.17) 110(0.07) 0.03	60(0.17) 126(0.17) < 0.01		
Renal diseases	148(0.40) 1798(1.29)	148(0.40) 290(0.40) < 0.01		
Neurological diabetic complication	62(0.18) 402(0.28) 0.02	62(0.18) 131(0.18) < 0.01		
Osteoporosis	15(0.04) 53(0.03) < 0.01	15(0.04) 30(0.04) < 0.01		
Ophthalmic diabetic complication	189(0.52) 1466(1.05) 0.06	189(0.52) 376(0.51) < 0.01		
Liver diseases	56(0.15)	56(0.15) 112(0.15) < 0.01		
Ventricular tachy/ fibrillation	127(0.35)	127(0.35) 250(0.34) < 0.01		
Dementia	180(0.49)	180(0.49) 357(0.49) < 0.01		
Anemia	1534(4.23)	1534(4.23) 2985(4.11) 0.01		
AMI	499(1.37)	499(1.37) 995(1.37) < 0.01		
COPD	587(1.62)	587(1.62) 1161(1.60) < 0.01		
IHD	224(6.13) 7533(5.43) 0.03	224(6.13) 4428(6.11) < 0.01		
PVD	156(0.43) 640(0.46) < 0.01	156(0.43) 310(0.42) < 0.01		
Gastrointestinal bleeding	625(1.72)	625(1.72) 1234(1.70) < 0.01		
Malignancy	218(0.60) 755(0.54) 0.01	218(0.60) 436(0.60) < 0.01		
Obesity	113(0.31) 1046(0.75) 0.06	113(0.31) 226(0.31) < 0.01		
Medications				
Number of diabetes mellitus drugs	1.8(0.6);6.0;n = 36,228	1.8(0.6);6.0;n = 138,707	1.8(0.5);5.0;n = 72,456 0.05	
Number of cardiovascular drugs	1.9(1.2);5.0;n = 36,228	1.9(1.2);5.0;n = 138,707	1.9(1.2);5.0;n = 72,456 < 0.01	
ACEI/ARB	18,529(51.14)	18,529(51.14) 37,451(51.68) 0.01		
Beta blockers	14,309(39.49) 45,613(32.88)	14,309(39.49) 28,559(39.41) < 0.01		
Calcium channel blockers	18,428(50.86) 53,427(38.51)	18,428(50.86) 36,821(50.81) < 0.01		
Table 1 (continued)

Characteristics	Before matching	SMD	After 1:2 matching	SMD
Suflphonylurea (N = 36,228)				
Mean(SD);Max;N or Count(%)	Mean(SD);Max;N or Count(%)		Mean(SD);Max;N or Count(%)	
Metformin (N = 138,707)				
SD	0.16	15.739(21.72)	0.01	
Mean, mmol/L	0.04	17.046(23.52)	0.01	
Normalized absolute successive variability score	0.02	0.00	0.00	
Normalized percentage successive variability score	0.00	0.00	0.00	
SD/Initial	0.01	22.4(19.9);378.8;n = 31,839	0.05	

Laboratory tests

Characteristics

- Lymphocyte, × 10⁹/L
- Neutrophil, × 10⁹/L
- Platelet, × 10⁹/L
- Urea, mmol/L
- Creatinine, umol/L
- Total protein, g/L
- Alkaline phosphatase, U/L
- Aspartate transaminase, U/L
- Alanine transaminase, U/L
- Bilirubin, μmol/L
- Triglycerides, mmol/L
- Total cholesterol, mmol/L
- HDL, mmol/L
- NLR
- Fasting blood glucose, mmol/L
- HbA1c, %

Variability measurements: Glucose

- Absolute successive variability score
- Percentage successive variability score
- SD
- Mean, mmol/L
- Normalized absolute successive variability score
- Normalized percentage successive variability score
- SD/Initial

Notes

- Variability score
- Normalized
- Mean, mmol/L
- 24.0(4.4);21.2;n = 15,752
- 6.1(3.0);22.2;n = 58,148
- 6.1(3.0);22.2;n = 58,148
- 23.4(20.4);418.2;n = 15,751

Acta Diabetologica (2022) 59:697–709
Discussion

The main finding for the present study is that in comparison with metformin users, sulphonylurea users have a higher risk of new-onset AF, new-onset stroke, cardiovascular mortality and all-cause mortality. Males and those older than 65 years receiving sulphonylurea were amongst those at the highest risks of these outcomes.

Metformin and sulphonylurea are two of the most prescribed drugs for initial diabetic control. One of the reasons is that clinicians would prescribe less metformin in patients with chronic kidney disease, which is prevalent in Hong Kong and Asia [21]. Other reasons included the socioeconomic factors that sulphonylurea is more affordable per year [22]. However, it was uncertain whether the two drugs would have different clinical outcomes. In accord with the previous data, our data revealed that sulphonylurea would be more perilous to heart failure and cardiovascular mortality [23]. This is partly explained by the fact that metformin enhances insulin sensitivity while sulphonylurea acts by increasing endogenous insulin levels. As such, metformin use has been associated with fewer hypoglycaemic events compared to sulphonylurea [24, 25]. Besides increased cardiovascular mortality, the raise in all-cause mortality amongst sulphonylurea users may be due to drug-induced hyperinsulinemia. This is consistent with the findings in several studies from different parts of the world [26–28]. It has been proposed that hyperinsulinaemia would raise the risk of cancers risks by increasing mitogenesis [29]. There are reports demonstrating an

value < 0.0001) and all-cause mortality (HR: 10.56 [9.45, 11.80], P value < 0.0001).

Table 1 (continued)

Characteristics	Before matching	SMD	After 1:2 matching	SMD		
	Sulphonylurea (N = 36,228)	Metformin (N = 138,707)	Sulphonylurea (N = 36,228)	Metformin (N = 72,456)		
Coefficient of variability	20.2(12.2);110.9; n = 15,752	20.2(12.4);174.8; n = 58,148	0.01	20.2(12.2);110.9; n = 15,752	19.5(12.3);135.0; n = 31,839	0.06
Variability independent of mean	31.8(19.6);188.5; n = 15,752	31.8(19.9);323.1; n = 58,148	< 0.01	31.8(19.6);188.5; n = 15,752	30.6(19.7);227.8; n = 31,839	0.06
Variability measurements: HbA1c	37.6(21.9);92.3; n = 16,935	37.0(21.5);93.3; n = 60,447	0.03	37.6(21.9);92.3; n = 16,935	36.1(21.9);90.9; n = 33,644	0.07
Percentage successive variability score	28.4(20.4);90.9; n = 16,935	27.5(19.9);90.9; n = 60,447	0.04	28.4(20.4);90.9; n = 16,935	26.8(20.0);90.0; n = 33,644	0.08
SD	0.9(0.7);8.0; n = 16,934	0.9(0.7);19.3; n = 60,440	0.02	0.9(0.7);8.0; n = 16,934	0.9(0.7);18.5; n = 33,637	0.06
Mean, %	7.7(1.1);19.0; n = 16,935	7.8(1.2);20.3; n = 60,447	0.08	7.7(1.1);19.0; n = 16,935	7.6(1.1);20.3; n = 33,644	0.04
Normalized absolute successive variability score	4.8(2.7);15.4; n = 16,935	4.7(2.7);14.6; n = 60,447	0.05	4.8(2.7);15.4; n = 16,935	4.6(2.7);14.3; n = 33,644	0.07
Normalized percentage successive variability score	3.6(2.6);15.4; n = 16,935	3.5(2.5);16.2; n = 60,447	0.06	3.6(2.6);15.4; n = 16,935	3.5(2.6);13.4; n = 33,644	0.07
SD/Initial	12.2(9.9);121.4; n = 16,686	12.4(10.6);296.4; n = 59,678	0.01	12.2(9.9);121.4; n = 16,686	11.7(9.9);253.2; n = 33,191	0.05
Coefficient of variability	11.3(7.7);74.5; n = 16,934	11.4(8.1);166.2; n = 60,440	0.01	11.3(7.7);74.5; n = 16,934	10.8(7.7);137.8; n = 33,637	0.06
Variability independent of mean	16.0(11.1);109.8; n = 16,934	16.2(11.6);252.1; n = 60,440	0.01	16.0(11.1);109.8; n = 16,934	15.3(11.1);214.2; n = 33,637	0.06
Lipids						
SD of LDL	0.5(0.4);3.4; n = 6357	0.5(0.3);5.1; n = 23,852	0.04	0.5(0.4);3.4; n = 6357	0.5(0.3);3.0; n = 12,390	0.07
SD of HDL	0.1(0.1);1.2; n = 13,898	0.1(0.1);1.6; n = 54,920	0.07	0.1(0.1);1.2; n = 13,898	0.1(0.1);1.2; n = 28,779	0.06
SD of TC	0.6(0.4);8.3; n = 16,259	0.6(0.4);11.8; n = 62,537	0.02	0.6(0.4);8.3; n = 16,259	0.6(0.4);6.3; n = 32,886	0.06
SD of TG	0.6(0.9);28.0; n = 16,167	0.6(1.1);35.1; n = 62,344	0.06	0.6(0.9);28.0; n = 16,167	0.6(0.8);32.3; n = 32,815	0.02

a for SMD ≥ 0.2, AF Atrial fibrillation, AMI Acute myocardial infarction, COPD Chronic obstructive pulmonary disease, IHD Ischemic heart disease, PVD Peripheral vascular disease, TIA Transient ischemic attack, ACEI Angiotensin-converting enzyme inhibitors, ARB Angiotensin II receptor blockers, LDL low-density lipoprotein cholesterol, HDL High-density lipoprotein cholesterol, TG Triglycerides, SD Standard deviation.
increased risk of cancer in patients on sulphonylurea in comparison with metformin users [30]. Besides, sulphonylurea use was associated with higher risks of renal function decline and dementia [31–33] but similar pneumonia risk [34]. In particular, we identified that gliclazide increased the risks of cardiovascular mortality and increased the risks of causing all-cause mortality. A previous study suggested that gliclazide might increase the mortality risks compared to other sulphonylureas [35]. This raises the alarm bell regarding the safety concerns of gliclazide. Therefore, further research into the risks of gliclazide over other sulphonylureas on the other cardiovascular events is needed.

An abundance of evidence suggested strong associations between T2DM and AF occurrences [36]. This is not only because AF and T2DM have mutual risk factors such as atherosclerosis and hypertension; T2DM is also an independent risk factor for AF occurrence, as shown in the Framingham study [37]. Reasonable glycaemic control would, therefore, reduce the AF onset as well as lessen the mortality rate amongst patients with AF. Our results are in accord with Ostropolets et al., which reported lower risks of AF in metformin compared to sulphonylurea [38]. These authors reported a 16% reduction in AF risk, compared to a 65% reduction in our study. A possible explanation for the differences is that our study included metformin or sulphonylurea users who were also on other anti-diabetic medications, whereas Ostropolets et al. only included patients on monotherapy. Metformin has antioxidant and anti-inflammatory effects that reduce atrial fibrosis and remodelling [39–41]. Meanwhile, the impact of sulphonylurea on the AF onset was less well investigated. The sulphonylurea-induced potassium channel blockade is hypothesized to inhibit the ischemic preconditioning, shorten the action potential.

Fig. 2 Cumulative incidence curves of new onset AF, new onset stroke, cardiovascular mortality and all-cause mortality stratified by sulphonylurea and metformin before 1:2 propensity score matching
Fig. 3 Cumulative incidence curves of new onset AF, new onset stroke, cardiovascular mortality and all-cause mortality stratified by sulphonylurea and metformin use after 1:2 propensity score matching.

Table 2 HRs (and 95% CIs) of sulphonylurea vs. metformin from univariable Cox model, multivariable Cox model, cause-specific and subdistribution hazard models for cardiovascular mortality, all-cause mortality, new onset AF and stroke before and after 1:2 propensity score matching.

Model	Outcome	Sulphonylurea vs. metformin (Before matching) HR [95% CI]	P value	Sulphonylurea vs. metformin (After 1:2 matching) HR [95% CI]	P value
Univariable Cox model	New onset AF	3.81[3.67, 3.96]	<0.0001***	2.84[2.73, 2.96]	<0.0001***
	New onset stroke	3.73[3.62, 3.85]	<0.0001***	3.18[3.07, 3.3]	<0.0001***
	Cardiovascular mortality	4.23[3.52, 5.09]	<0.0001***	3.78[3.05, 4.68]	<0.0001***
	All-cause mortality	6.44[6.33-6.55]	<0.0001***	4.25[4.17-4.34]	<0.0001***
Multivariable Cox model	New onset AF	2.60[2.51, 2.79]	<0.0001***	2.89[2.75, 3.77]	<0.0001***
	New onset stroke	3.1[2.5, 3.4]	<0.0001***	3.23[3.01, 3.45]	<0.0001***
	Cardiovascular mortality	2.42[1.93, 2.98]	<0.0001***	3.60[2.62, 4.81]	<0.0001***
	All-cause mortality	4.10[3.88, 4.35]	<0.0001***	4.35[3.16, 4.75]	<0.0001***
Cause-specific hazard model	New onset AF	5.58[5.34, 5.84]	<0.0001***	4.04[3.85, 4.24]	<0.0001***
	New onset stroke	5.93[5.73, 6.13]	<0.0001***	4.79[4.62, 4.97]	<0.0001***
	Cardiovascular mortality	6.73[5.58, 8.12]	<0.0001***	5.71[4.6, 7.09]	<0.0001***
	All-cause mortality	7.09[6.94, 7.23]	<0.0001***	4.77[4.67, 4.88]	<0.0001***
Subdistribution hazard model	New onset AF	4.98[4.1, 6.02]	<0.0001***	4.21[3.02, 5.11]	<0.0001***
	New onset stroke	4.85[3.25, 5.43]	<0.0001***	3.55[2.87, 4.53]	<0.0001***
	Cardiovascular mortality	5.43[4.44, 7.09]	<0.0001***	5.09[3.65, 6.88]	<0.0001***
	All-cause mortality	6.54[5.23, 7.1]	<0.0001***	4.54[3.55, 5.11]	<0.0001***

*for p ≤ 0.05, ** for p ≤ 0.01, *** for p ≤ 0.001, AF: Atrial fibrillation, HR: Hazard ratio, CI: Confidence interval, *a*adjusted for significant demographics, past comorbidities and non-sulphonylurea/metformin medications.
duration and increase the cardiac excitability, resulting in AF [42].

Metformin was also exemplified to have a lower risk of stroke onset compared to sulphonylurea. In fact, metformin can reduce stroke onset independent of its glycaemic control [43]. Metformin activation of the glial cells 5’ adenosine monophosphate-activated protein kinase (AMPK) has neuroprotective effects [44]. Similar to its effect on AF, metformin also demonstrates extra anti-inflammatory by activating the nuclear factor erythroid 2-related factor (Nrf2) pathways in neurons. It also has antioxidant effects by increasing glutathione and catalase levels [45]. In contrast, sulphonylurea-induced hypoglycaemia contributes to stroke occurrence. Hypoglycaemic events have been reported to increase stroke risk via pathways such as increased platelet activation, thrombotic and atherosclerotic cytokine release, and inflammation [46, 47]. Furthermore, sulphonylurea stimulates the release of atherogenic C-peptide [48]. Therefore, it is expectable that metformin has a more protective effect than sulphonylurea in terms of AF and stroke.

Limitations

There are some limitations in this study that should be acknowledged. Firstly, the data are from a single locality; hence, external validation is needed to explore the applicability of these findings onto other populations. Secondly, important clinical factors, such as the body mass index, smoking history and physical activity, are not routinely coded into the local health database, which are significant predictors for diabetes and the primary outcomes. Finally, given the retrospective nature, there is a lack of analysis of clinical outcomes during real-time follow-up. This study can only show the association between metformin and reducing AF and stroke outcomes but cannot demonstrate causality. There is a need for further studies to investigate the mechanism of how metformin exerts those additional protective effects compared to sulphonylurea.

Conclusions

Compared to metformin users, sulphonylurea use was significantly associated with higher risks of new onset AF, new onset stroke, cardiovascular mortality and all-cause mortality. Males and patients older than 65 years with sulphonylurea use were at the highest risks of these adverse events.
Fig. 5 A Subgroup analysis for the cumulative incidence curves of new onset AF, new onset stroke, cardiovascular mortality and all-cause mortality stratified by initial drug exposure age of sulphonylurea (Sul) and metformin (Met) prescription in the matched cohort.

B Subgroup analysis for cumulative incidence curves of new onset AF, new onset stroke, cardiovascular mortality and all-cause mortality stratified by gender and sulphonylurea (Sul) and metformin (Met) prescription in the matched cohort.
Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s00592-021-01841-4.

Authors' contributions JD, GZ, CC and OHIC carried out data analysis, data interpretation, statistical analysis, manuscript drafting and critical revision of manuscript. SL, KSKL, WTW, TL, AKCW and SHC were involved in project planning, data acquisition, data interpretation and critical revision of manuscript. QZ and GT took part in study conception, study supervision, project planning, data interpretation, statistical analysis, manuscript drafting and critical revision of manuscript.

Funding There is no funding for this project to declare.

Data availability The data will be available upon requests to the corresponding authors.

Declarations

Conflict of interest The authors have no conflicts of interest to declare.

Ethical approval This retrospective population-based cohort study received approval from the Joint Chinese University of Hong Kong—New Territories East Cluster Clinical Research Ethics Committee.

Consent for publication All authors have read and approved submission of the manuscript which has not been published and is not being considered for publication elsewhere in whole or part in any language.

References

1. Bertoni AG, Krop JS, Anderson GF et al (2002) Diabetes-related morbidity and mortality in a national sample of US elders. Diabetes Care 25(3):471–475
2. Osei K (2003) Global epidemic of type 2 diabetes: implications for developing countries. Ethn Dis 13(2 Suppl 2):S102–S106
3. Ogurtsova K, da Rocha Fernandes JD, Huang Y et al (2017) IDF Diabetes atlas: global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract 128:40–50
4. Lin PJ, Kent DM, Winn A et al (2015) Multiple chronic conditions in type 2 diabetes mellitus: prevalence and consequences. Am J Manag Care 21(1):e23–34
5. Watanabe H, Tanabe N, Watanabe T et al (2008) Metabolic syndrome and risk of development of atrial fibrillation: the Niigata preventive medicine study. Circulation 117(10):1255–1260
6. Huggett RJ, Scott EM, Gilbey SG et al (2003) Impact of type 2 diabetes mellitus on sympathetic neural mechanisms in hypertension. Circulation 108(25):3097–3101
7. Huxley RR, Filion KB, Konety S et al (2011) Meta-analysis of cohort and case-control studies of type 2 diabetes mellitus and risk of atrial fibrillation. Am J Cardiol 108(1):56–62
8. Seyed Ahmadi S, Svensson A-M, Pivodic A et al (2020) Risk of atrial fibrillation in persons with type 2 diabetes and the excess risk in relation to glycaemic control and renal function: a Swedish cohort study. Cardiovasc Diabetol 19(1):9
9. Paneni F, Beckman JA, Creager MA et al (2013) Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part I. Eur Heart J 34(31):2436–2443
10. Tesfamariam B, Brown ML, Cohen RA (1991) Elevated glucose impairs endothelium-dependent relaxation by activating protein kinase C. J Clin Invest 87(5):1643–1648
11. Zabala A, Darsalia V, Holzmann MJ et al (2020) Risk of first stroke in people with type 2 diabetes and its relation to glycaemic control: a nationwide observational study. Diabetes Obes Metab 22(2):182–190
12. American Diabetes A (2015) (7) Approaches to glycemic treatment. Diabetes Care 38:S41–S48
13. Whitlock RH, Houchin I, Komenda P et al (2020) A Safety comparison of metformin vs sulfonylurea initiation in patients with type 2 diabetes and chronic kidney disease: a retrospective cohort study. Mayo Clin Proc 95(1):90–100
14. Christensen DH, Rungby J, Thomsen RW (2016) Nationwide trends in glucose-lowering drug use, Denmark, 1999–2014. Clin Epidemiol 8:381–387
15. Douros A, Dell’Aniello S, Yu OHY et al (2018) Sulfonylureas as second line drugs in type 2 diabetes and the risk of cardiovascular and hypoglycaemic events: population based cohort study. BMJ 362:
16. Hemmingsen B, Schroll JB, Weterslev J et al (2014) Sulfonylurea versus metformin monotherapy in patients with type 2 diabetes: a Cochrane systematic review and meta-analysis of randomized clinical trials and trial sequential analysis. CMAJ Open 2(3):E162–1E175
17. Mui JV, Zhou J, Lee S et al (2021) Sodium-glucose cotransporter 2 (SGLT) inhibitors vs. dipeptidyl peptidase-4 (DPP4) inhibitors for new-onset dementia: a propensity score-matched population-based study with competing risk analysis. Front Cardiovasc Med 8:747620
18. Austin PC (2011) An introduction to propensity score methods for reducing the effects of confounding in observational studies. Multivariate Behav Res 46(3):399–424
19. Desai RJ, Franklin JM (2019) Alternative approaches for confounding adjustment in observational studies using weighting based on the propensity score: a primer for practitioners. BMJ 367:i5657
20. Schneeveis S, Rassen JA, Glynn RJ et al (2009) High-dimensional propensity score adjustment in studies of treatment effects using health care claims data. Epidemiology 20(4):512–522
21. Lee S, Zhou J, Wong WT et al (2021) Glycemic and lipid variability for predicting complications and mortality in diabetes mellitus using machine learning. BMC Endoer Disord 21(1):
22. Zhang L, Ji L, Guo L et al (2015) Treatment patterns and glycemic control in older adults with type 2 diabetes mellitus receiving only oral antidiabetes drugs in China. Diabetes Technol Ther 17(11):816–824
23. Roumie CL, Min JY, D’Agostino McGowan L et al (2017) Comparative safety of sulfonylurea and metformin monotherapy: the Niigata study. J Am Heart Assoc 6(4):871
24. Palmer SC, Mavridis D, Nicolucci A et al (2016) Comparison of clinical outcomes and adverse events associated with glucose-lowering drugs in patients with type 2 diabetes: a meta-analysis. JAMA 316(3):313–324
25. Bonds DE, Miller ME, Bergenstal RM et al (2010) The association between symptomatic, severe hypoglycaemia and mortality in type 2 diabetes: retrospective epidemiological analysis of the ACCORD study. BMJ 340:
26. Pyorala M, Miettinen H, Laakso M et al (2000) Plasma insulin and all-cause, cardiovascular, and noncardiovascular mortality: the 22-year follow-up results of the Helsinki Policemen Study. Diabetes Care 23(8):1097–1102
27. Reiff S, Fava S (2019) All-cause mortality in patients on sulphonylurea monotherapy compared to metformin monotherapy in a nation-wide cohort. Diabetes Res Clin Pract 147:62–66
28. Azoulay L, Sussia S (2017) Sulfonylureas and the risks of cardiovascular events and death: a methodological meta-regression analysis of the observational studies. Diabetes Care 40(5):706–714

© Springer
29. Belfiore A, Malaguarnera R (2011) Insulin receptor and cancer. Endocr Relat Cancer 18(4):R125–R147
30. Soranna D, Scotti L, Zambon A et al (2012) Cancer risk associated with use of metformin and sulfonylurea in type 2 diabetes: a meta-analysis. Oncologist 17(6):813–822
31. Singh S, Loke YK, Furberg CD (2011) Long-term use of thiazolidinediones and the associated risk of pneumonia or lower respiratory tract infection: systematic review and meta-analysis. Thorax 66(5):383–388
32. Hung AM, Roumie CL, Greevey RA et al (2013) Kidney function decline in metformin versus sulfonylurea initiators: assessment of time-dependent contribution of weight, blood pressure, and glycemic control. Pharmacoepidemiol Drug Saf 22(6):623–631
33. Orkhay AR, Cho K, Cormack J et al (2017) Metformin vs sulfonylurea use and risk of dementia in US veterans aged >/=65 years with diabetes. Neurology 89(18):1877–1885
34. Gorricho J, Garjon J, Alonso A et al (2017) Use of oral antidiabetic agents and risk of community-acquired pneumonia: a nested case-control study. Br J Clin Pharmacol 83(9):2034–2044
35. Cho E-H, Han K, Kim B et al (2020) Gliclazide monotherapy increases risks of all-cause mortality and has similar risk of acute myocardial infarction and stroke with glimepiride monotherapy in Korean type 2 diabetes mellitus. Medicine 99(29):e21236–e21236
36. Sun Y, Hu D (2010) The link between diabetes and atrial fibrillation: cause or correlation? J Cardiovasc Dis Res 1(1):10–11
37. Benjamin EJ, Levy D, Vaziri SM et al (1994) Independent risk factors for atrial fibrillation in a population-based cohort. The Framingham Heart Study JAMA 71(11):840–844
38. Ostropolets A, Elias PA, Reyes MV et al (2021) Metformin is inhibitory to inflammatory responses and nuclear factor-kappaB in human vascular wall cells. Arterioscler Thromb Vasc Biol 26(3):611–617
39. Isoda K, Young JL, Zirlik A et al (2006) Metformin inhibits pro-inflammatory responses and nuclear factor-kappaB in human vascular wall cells. Arterioscler Thromb Vasc Biol 26(3):611–617
40. Ren H, Shao Y, Wu C (2020) Metformin alleviates oxidative stress and enhances autophagy in diabetic kidney disease via AMPK/SIRT1-FoxO1 pathway. Mol Cell Endocrinol 500:1
41. Xie F, Xu S, Lu Y et al (2021) Metformin accelerates zebrafish heart regeneration by inducing autophagy. NPJ Regen Med 6(1):62
42. Leonard CE, Hennessy S, Han X et al (2017) Pro- and antiarrhythmic actions of sulfonylureas: mechanistic and clinical evidence. Trends Endocrinol Metab 28(8):561–586
43. Jia J, Cheng J, Ni J et al (2015) Neuropharmacological actions of metformin in stroke. Curr Neuropharmacol 13(3):389–394
44. Jin Q, Cheng J, Liu Y et al (2014) Improvement of functional recovery by chronic metformin treatment is associated with enhanced alternative activation of microglia/macrophages and increased angiogenesis and neurogenesis following experimental stroke. Brain Behav Immun 40:131–142
45. Ashabi G, Khalaj L, Khodagholi F et al (2015) Pre-treatment with metformin activates Nrf2 antioxidant pathways and inhibits inflammatory responses through induction of AMPK after transient global cerebral ischemia. Metab Brain Dis 30(3):747–754
46. Joy NG, Tate DB, Younk LM et al (2015) Effects of acute and antecedent hypoglycemia on endothelial function and markers of atherothrombotic balance in healthy humans. Diabetes 64(7):2571–2580
47. Razavi Nematollahi L, Kitabchi AE, Stentz FB et al (2009) Pro-inflammatory cytokines in response to insulin-induced glycemic stress in healthy subjects. Metabolism 58(4):443–448
48. Marx N, Walcher D, Raichle C et al (2004) C-peptide colocalizes with macrophages in early arteriosclerotic lesions of diabetic subjects and induces monocyte chemotaxis in vitro. Arterioscler Thromb Vasc Biol 24(3):540–545

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Authors and Affiliations

Jiandong Zhou1 · Guoming Zhang2 · Carlin Chang3 · Oscar Hou In Chou3,4 · Sharen Lee4 · Keith Sai Kit Leung5,6 · Wing Tak Wong7 · Tong Liu8 · Abraham Ka Chung Wai9 · Shuk Han Cheng9 · Qingpeng Zhang10 · Gary Tse8,11

1 Nuffield Department of Medicine, University of Oxford, Oxford, UK
2 Emergency Department, Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, Fujian, China
3 Department of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China
4 Diabetes Research Unit, Cardiovascular Analytics Group, UK-China Collaboration, Hong Kong, China
5 Aston Medical School, Aston University, Birmingham, UK
6 Emergency Medicine Unit, Li Ka Shing, Faculty of Medicine, The University of Hong Kong, Hong Kong, China
7 School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
8 Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
9 School of Biomedical Sciences, City University of Hong Kong, Kowloon City, Hong Kong, China
10 School of Data Science, City University of Hong Kong, Kowloon City, Hong Kong, China
11 Kent and Medway Medical School, Canterbury, UK