Minimizing the Number of Independent Sets in Triangle-Free Regular Graphs

Jonathan Cutler
Montclair State University, cutlerjo@mail.montclair.edu

A. J. Radcliffe
University of Nebraska

Follow this and additional works at: https://digitalcommons.montclair.edu/mathsci-facpubs

Part of the Mathematics Commons

MSU Digital Commons Citation
Cutler, Jonathan and Radcliffe, A. J., "Minimizing the Number of Independent Sets in Triangle-Free Regular Graphs" (2018). *Department of Mathematics Faculty Scholarship and Creative Works*. 105. https://digitalcommons.montclair.edu/mathsci-facpubs/105

This Article is brought to you for free and open access by the Department of Mathematics at Montclair State University Digital Commons. It has been accepted for inclusion in Department of Mathematics Faculty Scholarship and Creative Works by an authorized administrator of Montclair State University Digital Commons. For more information, please contact digitalcommons@montclair.edu.
Minimizing the number of independent sets in triangle-free regular graphs

Jonathan Cutlera,*, A.J. Radcliffeb

a Department of Mathematical Sciences, Montclair State University, Montclair, NJ, United States
b Department of Mathematics, University of Nebraska-Lincoln, Lincoln, NE, United States

\textbf{Abstract}

Recently, Davies, Jenssen, Perkins, and Roberts gave a very nice proof of the result (due, in various parts, to Kahn, Galvin–Tetali, and Zhao) that the independence polynomial of a \(d\)-regular graph is maximized by disjoint copies of \(K_{d,d}\). Their proof uses linear programming bounds on the distribution of a cleverly chosen random variable. In this paper, we use this method to give lower bounds on the independence polynomial of regular graphs. We also give a new bound on the number of independent sets in triangle-free cubic graphs.

\section{1. Introduction}

Extremal problems involving the number of substructures of a graph of a given type have popped up in quite a few different contexts of late. One of the best known such results is due to Kahn \cite{Kahn} and Zhao \cite{Zhao}. We let \(\text{Ind}(G)\) be the set of independent sets in a graph \(G\). Their theorem bounds \(|\text{Ind}(G)| = |\text{Ind}(G)|\) for regular graphs.

\textbf{Theorem 1} (Kahn, Zhao). If \(G\) is a \(d\)-regular graph on \(n\) vertices, then

\[
\text{ind}(G) \leq (\text{ind}(K_{d,d}))^{1/2d}.
\]

One source for questions of this type is the field of statistical mechanics. For instance, the hard-core model on a graph \(G\) is a probability distribution on the independent sets of \(G\) in which an independent set \(I\) is chosen with probability proportional to \(\lambda^{|I|}\). Here \(\lambda > 0\) is a parameter called the fugacity. The normalizing factor is

\[
P_c(\lambda) = \sum_{I \in \text{Ind}(G)} \lambda^{|I|},
\]

known to graph theorists as the independence polynomial of \(G\) and to statistical physicists as the partition function of this hard-core model.

Kahn \cite{Kahn} in fact proved the analogue of \textbf{Theorem 1} for the independence polynomial of bipartite graphs with fugacity \(\lambda \geq 1\), i.e.,

\[
P_c(\lambda) \leq (\text{ind}(K_{d,d}))^{1/2d}.
\]

Galvin and Tetali \cite{GalvinTetali} extended Kahn's result to cover the case \(0 < \lambda < 1\). Finally, Zhao \cite{Zhao} proved the full theorem using a clever lifting argument.

*Corresponding author.
\E-mail addresses: jonathan.cutler@montclair.edu (J. Cutler), jamie.radcliffe@unl.edu (A.J. Radcliffe).

https://doi.org/10.1016/j.disc.2017.11.016

0012-365X/© 2017 Elsevier B.V. All rights reserved.
More recently, Davies, Jenssen, Perkins, and Roberts [3] gave an independent proof introducing an audacious new approach utilizing linear programming. Following Davies et al., we will derive bounds on \(P_G(\lambda) \) by considering the occupancy fraction, denoted \(\alpha_G(\lambda) \). This is the expected fraction of vertices of \(G \) belonging to a random independent set chosen according the hard-core model. More explicitly,
\[
\alpha_G(\lambda) = \frac{1}{n} \sum_{I \in \text{Ind}(G)} |I| |\lambda|^{||I||} = \frac{1}{n} \frac{\lambda P_G(\lambda)}{P(\lambda)}.
\]

Davies et al. [3] proved the following.

Theorem 2 (Davies, Jenssen, Perkins, Roberts). For all \(d \)-regular graphs \(G \) and all \(\lambda > 0 \), it is the case that
\[
\alpha_G(\lambda) \leq \alpha_{K_{d+1}}(\lambda).
\]

Because \(\alpha_G(\lambda) \) is essentially the logarithmic derivative of \(P_G(\lambda) \), this is a strengthening of Theorem 1. The proof of Theorem 3 below shows how to use the occupancy fraction to bound the independence polynomial.

In this paper, we investigate lower bound analogues of Theorem 2. In Section 2, we give an example of the linear programming method by proving that for any \(d \)-regular graph, the occupancy fraction is bounded below by that of \(K_{d+1} \). As pointed out by Davies et al. [4], this result can also be deduced from the proof for the lower bound on \(\text{ind}(G) \) in graphs with maximum degree at most \(d \) proved by the authors in [2].

In the final section, we discuss a problem raised by Kahn [7], that of giving a lower bound on \(P_G(\lambda) \) for \(d \)-regular triangle-free graphs. We use the same occupancy fraction approach to give bounds in this case. In Zhao’s lovely survey article on this area [12, Problem 9.5], he proposes to study the general problem of finding the infimum and supremum of \(\text{ind}(G)^{1/n(\lambda)} \) over \(d \)-regular graphs not satisfying a given excluded subgraph condition.

When \(\lambda \) is large, the hard-core model is biased strongly towards large independent sets. Indeed,
\[
\lim_{\lambda \to \infty} \alpha_G(\lambda) = \frac{\alpha(G)}{n}, \tag{1}
\]
where \(\alpha(G) \) is the independence number of \(G \), and the ratio \(\alpha(G)/n \) is the independence ratio of \(G \). In Section 3, we focus on triangle-free cubic graphs. Here we are able to give a bound that is relatively good when \(\lambda = 1 \). We conjectured that the Petersen graph is extremal when \(\lambda = 1 \), which was recently proved by Perarnau and Perkins [8]. Indeed, they prove that the occupancy fraction for cubic triangle-free graphs is minimized by the Petersen graph for \(0 < \lambda \leq 1 \). This cannot be extended to all \(\lambda \) since the independence ratio for triangle-free cubic graphs is minimized by \(GP(7, 2) \), a generalized Petersen graph (see Staton [10]). In fact, we conjecture that for any \(\lambda \), \(P_G(\lambda) \) is minimized by either the Petersen graph or the generalized Petersen graph.

2. Lower bounds for the hard-core model on regular graphs

In this section, we present a proof of a best possible lower bound on the occupancy fraction for \(d \)-regular graphs. The proof we give serves as an introduction to the linear programming method of Davies et al. [3]. In a subsequent paper, Davies et al. [4] observe that this result follows relatively straightforwardly from a result of the current authors in [2]. Our proof appears at the end of this section after a number of lemmas concerning the linear programming approach.

Theorem 3. If \(G \) is a \(d \)-regular graph on \(n \) vertices and \(\lambda > 0 \), then
\[
\alpha_G(\lambda) \geq \alpha_{K_{d+1}}(\lambda).
\]

As a consequence, we have
\[
P_G(\lambda)^{1/n} \geq P_{K_{d+1}}(\lambda)^{1/(d+1)}.
\]

Equality is, in both cases, only achieved for \(G \) a disjoint union \(K_{d+1}s \).

Following Davies et al. [3], we will consider, for each vertex in \(V \), the probability that it belongs to, and the probability that it is covered by, a randomly chosen independent set. To be explicit, if \(I \) is an independent set, we say that \(v \in V(G) \) is occupied if \(v \in I \) and uncovered if \(I \cap N(v) = \emptyset \). If \(I \) is distributed according to the hard-core model, we write \(p_v \) for \(P(v \in I) \) and \(q_v \) for \(P(v \text{ is uncovered}) \). Note that both \(p_v \) and \(q_v \) are functions of \(\lambda \). Also, it is the case that \(p_v \leq q_v \) since \(\{ I \in \text{Ind}(G) : v \text{ is occupied} \} \subseteq \{ I \in \text{Ind}(G) : v \text{ is uncovered} \} \).

Lemma 4. In the hard-core model on \(G \) with fugacity \(\lambda > 0 \), we have
\[
(1) \quad p_v = \frac{1}{1+\lambda q_v} q_v, \quad \text{and} \quad (2) \quad \alpha_G(\lambda) = \frac{1}{n} \sum_{v \in V(G)} p_v.
\]
Proof. For (1), note that the conditional probability that \(v \) is occupied given that it is uncovered is \(\lambda/(1+\lambda) \). For the second part, simply write \(|I| = \sum_{v \in V(G)} 1(v \in I) \) and take expectations. \(\square \)

We will prove Theorem 3 by computing the occupancy fraction in two different ways, each based on the neighborhood of a uniformly randomly chosen vertex \(v \) in \(G \). In particular, we record the external influence of \(I \) on \(N(v) \).

Definition. Let \(I \in \text{Ind}(G) \) be chosen according to the hard-core model, and \(v \) be chosen uniformly from \(V(G) \), independently of \(I \). We define random variables

\[
U = U(v, I) = N(v) \setminus N(I \setminus N(v)), \quad \text{and} \quad H = H(v, I) = G[U].
\]

Thus, \(U \) is the subset of the neighborhood of \(v \) which is not covered by any vertex of \(I \) outside of \(N(v) \).

We define this triple because, conditioning on \(I \setminus N(v) \), we have that \(I \cap N(v) \subseteq U \) and, moreover, \(I \cap N(v) \) is distributed according to the hard-core model on \(H \) with fugacity \(\lambda \).

Lemma 5 (Davies et al.). In the hard-core model on a \(d \)-regular graph \(G \) with fugacity \(\lambda > 0 \) we have, with the notation above,

1. \(\alpha_C(\lambda) = \frac{\lambda}{1+\lambda} \mathbb{E} \left(\frac{1}{p_H(\lambda)} \right), \) and also
2. \(\alpha_C(\lambda) = \frac{\lambda}{1+\lambda} \mathbb{E}(q_v) = \frac{\lambda}{1+\lambda} \mathbb{E} \left(\frac{1}{p_H(\lambda)} \right). \)

Proof. Since \(v \) is uniformly distributed on \(V(G) \), Lemma 4 yields

\[
\alpha_C(\lambda) = \mathbb{E}(p_u) = \frac{\lambda}{1+\lambda} \mathbb{E}(q_v) = \frac{\lambda}{1+\lambda} \mathbb{E} \left(\frac{1}{p_H(\lambda)} \right).
\]

The final equality follows since \(v \) is uncovered precisely if \(I \cap N(v) = \emptyset \), and \(I \cap N(v) \) is distributed according to the hard-core model on \(H \).

For the second part, we pick a random vertex of \(V(G) \) by picking a uniformly random neighbor, say \(u \), of \(v \). Since \(G \) is regular, \(u \) is also uniformly distributed on \(V(G) \). Thus,

\[
\alpha_C(\lambda) = \mathbb{E}(p_u) = \frac{1}{d} \mathbb{E} \left(\frac{\lambda P_H'(\lambda)}{P_H(\lambda)} \right),
\]

since \(\mathbb{E}(\lambda P_H'(\lambda)/P_H(\lambda)) \) is the expected number of occupied neighbors of \(v \). \(\square \)

We will now find the minimum value of \(\mathbb{E}(1/P_H(\lambda)) \), where the distribution of \(H \) is no longer tied to that arising from some \(d \)-regular graph. Instead, the distribution of \(H \) will merely have to satisfy the very limited condition that the two expressions for \(\alpha \) in Lemma 5 agree. We let \(\mathcal{H} \) be the set of all graphs on at most \(d \) vertices, including the graph with empty vertex set. We say a random variable \(H \) with values in \(\mathcal{H} \) is neighborly if

\[
\frac{\lambda}{1+\lambda} \mathbb{E} \left(\frac{1}{P_H(\lambda)} \right) = \frac{\lambda}{d} \mathbb{E} \left(\frac{P_H'(\lambda)}{P_H(\lambda)} \right).
\]

Now we define

\[
\alpha_* = \frac{\lambda}{1+\lambda} \inf \left\{ \mathbb{E} \left(\frac{1}{P_H(\lambda)} \right) : H \text{ is a neighborly probability distribution on } \mathcal{H} \right\}.
\]

This minimum is the optimal value of a linear program where the variables are the probabilities that the distribution of \(H \) assigns to graphs in \(\mathcal{H} \). We write \(p_H \) for these probabilities, and also set

\[
a_H = \frac{1}{P_H(\lambda)} \quad \text{and} \quad b_H = \frac{(1+\lambda)P_H'(\lambda)}{dP_H(\lambda)}.
\]

In standard form, the linear program is the following, which we refer to as LP\((d, \lambda)\).

\[
\alpha_* = \min \frac{\lambda}{2(1+\lambda)} \sum_{H \in \mathcal{H}} p_H(a_H + b_H) \quad \text{subject to}
\]

\[
\sum_{H \in \mathcal{H}} p_H = 1, \quad \sum_{H \in \mathcal{H}} p_H(a_H - b_H) = 0, \quad p_H \geq 0 \quad \text{for all } H \in \mathcal{H}.
\]
A number of times in this paper we use some basic facts about the solutions to linear programs and their duals. Firstly, if we can find feasible solutions to a program and its dual with matching objective values, both solutions are optimal. Secondly, there is a more subtle equivalent criterion for simultaneous optimality called complementary slackness. A pair of feasible solutions (one for the primal and one for the dual) satisfy complementary slackness if, for every matching pair of variable and constraint, either the constraint is tight or the variable is zero (or both). See the text of Chvátal [1] for more details.

We will compute the solution to LP(d, λ) by exhibiting a solution to the primal and a solution to the dual which have matching objective values. We will also verify uniqueness by using complementary slackness. We start by writing down the dual problem. It has two unbounded variables, A and B, corresponding to the equality constraints in the original program and an inequality corresponding to each variable.

$$
\alpha_\star = \max \frac{\lambda}{2(1 + \lambda)} A \text{ subject to } \quad A + B(a_H - b_H) \leq a_H + b_H \quad \text{for all } H \in \mathcal{H}.
$$

We will exhibit a dual feasible (A, B) whose dual objective value agrees with the primal objective value for the distribution (p_H) arising from taking $G = K_{d+1}$. To that end, we prove a lemma that describes the (A, B) that satisfy certain of the dual constraints with equality.

Lemma 6. Suppose that $A = A_K, B = B_K \in \mathbb{R}$ are such that the dual constraints $A + B(a_H - b_H) \geq a_H + b_H$ are satisfied with equality for H being the graph with no vertices (denoted \emptyset) and also for $H = K \neq \emptyset$. Then

$$
A_K = \frac{2b_K}{1 - a_K + b_K} = \frac{2}{1 + \frac{d}{2(1 + \lambda)} \frac{\mu(K)}{p(K)}} \quad \text{and} \quad B_K = 1 - A_K,
$$

where $p'(K) = \mathbb{P}(I \neq \emptyset)$ and $\mu(K) = \mathbb{E}|I|$ for I distributed according to $HC_K(\lambda)$.

Proof. Since $a_H = 1$ and $b_H = 0$, one of the equations that A and B satisfy is that $A + B = 1$. Substituting into the constraint corresponding to $H = K$ gives

$$
A_K = \frac{2b_K}{1 - a_K + b_K} = \frac{2}{1 + \frac{d}{2(1 + \lambda)} \frac{p(K)}{\mu(K)}} = \frac{2}{1 + \frac{d}{2(1 + \lambda)} \frac{\mu(K)}{p(K)}}. \quad \Box
$$

Lemma 7. With the notation of the previous lemma, if H and K are graphs on at most d vertices, then the following are equivalent.

1. $A_K + B_K(a_H - b_H) \leq a_H + b_H$.
2. $A_K \leq A_H$.
3. $\frac{p'(K)}{\mu(K)} \geq \frac{p'(H)}{\mu(H)}$.

Proof. For the first equivalence, note that the following are equivalent.

$$
A_K + B_K(a_H - b_H) \leq a_H + b_H \\
A_K + (1 - A_K)(a_H - b_H) \leq a_H + b_H \\
A_K(1 - a_H + b_H) \leq 2b_H \\
A_K \leq A_H.
$$

The second equivalence comes from the fact that $A_K = 1/(1 + \frac{d}{2(1 + \lambda)} \frac{p(K)}{\mu(K)})$ is a strictly decreasing function of $p'(K)/\mu(K)$. \quad \Box

Now we claim that $A = A_{K_d} = 2(1 + \lambda)/(1 + (d + 1)\lambda), B = B_{K_d} = (d - 1)/(1 + (d + 1)\lambda)$ are dual feasible and give the same dual objective value as arises in the primal problem from taking $(p_C) = (p_{K_{d+1}}^{K_{d+1}})$, the probability distribution arising from the graph K_{d+1}. Clearly this choice of A, B gives

$$
\alpha = \frac{\lambda}{2(1 + \lambda)} A_{K_d} = \frac{\lambda}{1 + (d + 1)\lambda} = \alpha(K_{d+1}).
$$

On the other hand all other dual constraints are satisfied. By Lemma 7, for all H with between 1 and d vertices, $A_K + B_K(a_H - b_H) \leq a_H + b_H$, since

$$
\frac{p'(K_d)}{\mu(K_d)} = \frac{1}{\mu(K)} \geq \frac{p'(H)}{\mu(H)}.
$$

Thus the minimum value of α is achieved for $G = K_{d+1}$. To prove uniqueness here we need only observe that the last inequality is only tight when H is also complete. Thus, by complementary slackness, no distribution (p_H) can be extremal unless it is supported on complete graphs H (and the zero vertex graph). In particular no graph G can be extremal unless p_C is supported on these. The following lemma characterizes such graphs.
Lemma 8. If \(G \) is \(d \)-regular, and for all independent \(I \subseteq V(G) \) and all \(v \in V \), we have \(H = H(v, I) \) complete (or \(\emptyset \)), then \(G \) is a disjoint union of \(K_{d+1} \).

Proof. Suppose \(G \) is not a disjoint union of \(K_{d+1} \). Then there exists a vertex \(v \) with non-adjacent neighbors \(u, w \). Set \(I = \{u, w\} \). Then \(H[I(u, w)] = E_2 \) and in particular \(H \) is neither \(\emptyset \) nor complete. \(\square \)

Proof of Theorem 3. Given a \(d \)-regular graph \(G \), consider the random variables \(U \) and \(H \) defined just before Lemma 5. Clearly, the distribution of \(H \) is neighborly and thus

\[
\alpha_G(\lambda) \geq \alpha_u = \alpha_{K_{d+1}}(\lambda).
\]

For the bound on the independence polynomial, note that

\[
\log P_G(\lambda) = \int_0^\lambda \frac{P_G'(t)}{P_G(t)} \, dt = n \int_0^\lambda \frac{\alpha_G(t)}{t} \, dt \geq n \int_0^\lambda \frac{\alpha_{K_{d+1}}(t)}{t} \, dt = \frac{n}{d+1} \log P_{K_{d+1}}(\lambda). \quad \square
\]

3. Minimizing the hard-core model for triangle-free cubic graphs

Before we focus on cubic triangle-free graphs, we begin with a brief discussion of \(d \)-regular triangle-free graphs. As Davies et al. [3] noted, the linear programming approach is simpler when \(G \) is triangle-free since the graph induced on \(N(v) \), for any \(v \), is empty. Where before we had to define both \(U \) and \(H = G[U] \), now \(U \), the set of uncovered neighbors of \(v \), always induces an empty graph. Thus, we need only keep track of how many neighbors of \(v \) are uncovered. Our approach will be to add further constraints to the linear program, thereby getting a better approximation to the actual minimum.

Pick an independent set \(I \) according to the hard-core model and a vertex \(v \) uniformly at random, independently of \(I \). Let \(Y \) be the number of uncovered neighbors of \(v \), so range\((Y) = \{0, 1, 2, \ldots, d\} \). The distribution of \(Y \) is specified by the \(d+1 \) values \(y_0, y_1, y_2, \ldots, y_d \), where \(y_i = P(Y = i) \).

The first constraint we add is the simple one that \(y_0 \geq \alpha \). This follows from the fact that any vertex in \(I \) must necessarily have all of its neighbors uncovered. Since, by Lemma 5,

\[
\alpha_G(\lambda) = \frac{\lambda}{d} \prod_{i=1}^{d} \frac{P_H'(\lambda)}{P_H(\lambda)} \quad \text{and} \quad \frac{P'_E(\lambda)}{P_E(\lambda)} = \frac{i(1+\lambda)^{i-1}}{(1+\lambda)^i} = \frac{i}{1+\lambda},
\]

the constraint can be written

\[
y_0 - \sum_{i=1}^{d} \frac{i\lambda}{d(1+\lambda)} y_i \geq 0.
\]

With only this constraint, we can prove the following theorem. We omit its proof because the result turns out to be rather weak, as will be discussed below.

Theorem 9. If \(G \) is a \(d \)-regular triangle-free graph, then

\[
\alpha(G) \geq y_0^* = \frac{\lambda(1+(i+1)\lambda)}{(1+\lambda)(1+\lambda)^{i+1} + \lambda(d+1+(d+i+1)\lambda)},
\]

where \(m_i \leq \lambda < m_{i-1} \) and

\[
m_i = \left(\frac{d}{i+1} \right)^{1/i} - 1.
\]

The bound that Theorem 9 gives is substantially weaker than the following bound of Shearer [9] on the independence ratio of triangle-free \(d \)-regular graphs.

Theorem 10 (Shearer). If \(G \) is a triangle-free \(d \)-regular graph, then \(\alpha(G)/n(G) \geq f(d) \), where \(f(d) \) is given by the recurrence

\[
f(0) = 1, \quad f(d) = \frac{1+(d^2-d)f(d-1)}{d^2+1}.
\]
Davies et al. [4] were able to use a different linear program to find a tight bound on $\alpha_G(\lambda)$ that, in fact, is not monotonic in λ. A clever choice of λ yields a bound on the independence ratio matching that of Shearer.

We now turn our attention to the cubic case. For this, we add a constraint that is a lower bound on p_3. Let T_3 be the first three levels of the infinite 3-regular tree (so that T_3 has ten vertices). Also, recall that $N^2(v) = \{x \in V(G) : d(x, v) = 2\}$ and $N^3(v) = \{x \in V(G) : d(x, v) \leq 2\}$.

Lemma 11. If G is a triangle-free cubic graph and Y is the number of uncovered neighbors of a uniformly chosen vertex with respect to an independent I chosen according to the hard-core model, then

$$P(Y = 3) \geq \frac{(1 + \lambda)^3}{P(T_3)}.$$

Proof. We first note that

$$P(Y = 3) = P(N^2(v) \cap I \subseteq N(v)).$$

This follows from the fact that all of v’s neighbors are uncovered if and only if $v \notin I$ and $N^2(v) \cap I = \emptyset$. Let $A = N^2[v] \cap I$ and $W = V(G) \setminus N^2[v]$. We will bound $P(A \subseteq N(v)|I \cap W)$. Since we have conditioned on $I \cap W$, we know that A is distributed as the hard-core model on $G' = G[N^2[v] \setminus N(I \cap W)]$, i.e., the graph on $N^2[v]$ after deleting vertices with neighbors in W. Hence,

$$P(A \subseteq N(v)|I \cap W) = \frac{(1 + \lambda)^3}{P(G')},$$

since there are precisely eight possible values for A and the generating function for their weights is $(1 + \lambda)^3$. It only remains to show that, for all λ, we have $P(G') \leq P(T_3)$. Note that there is a size-preserving injection from $\text{Ind}(G')$ to $\text{Ind}(T_3)$ and the result follows. \square

As observed by Davies et al., we can pick a uniformly random vertex of G by first picking a uniformly vertex v and then picking a uniformly random neighbor of v since G is regular. Thus,

$$EY = \frac{1}{n} \sum_{v \in V(G)} \sum_{u \in N(v)} q_{uv} = 3 \cdot \frac{1 + \lambda}{\lambda} \alpha.$$

So, we have the constraint $EY = 3\alpha(1 + \lambda)^{-Y}$. Of course, $\sum_{i=0}^3 y_i = 1$.

With our added constraints, the linear program becomes the following. We write Λ for $\frac{(1 + \lambda)^3}{P(T_3)}$.

Minimize $\quad y_1 + 2y_2 + 3y_3$

subject to $\quad \sum_{i=0}^3 y_i = 1$,

$\quad \sum_{i=0}^3 (i - 3(1 + \lambda)^{-i})y_i = 0$,

$\quad y_0 - \sum_{i=1}^3 \frac{\lambda^i}{3(1 + \lambda)} y_i \geq 0$,

$\quad y_0, y_1, y_2, y_3 \geq 0$.

Once again, our strategy will be to exhibit values for the y_is together with values for the dual program which satisfy complementary slackness.

The dual program is

Maximize $\quad S - \Lambda B$

subject to $\quad S - 3M - A \leq 0$,

$\quad S + \left(1 - \frac{3}{1 + \lambda}\right)M + \frac{\lambda}{3(1 + \lambda)} A \leq 1$,

$\quad S + \left(2 - \frac{3}{(1 + \lambda)^2}\right)M + \frac{2\lambda}{3(1 + \lambda)} A \leq 2$,

$\quad S + \left(3 - \frac{3}{(1 + \lambda)^3}\right)M + \frac{3\lambda}{3(1 + \lambda)} A - B \leq 3$,

$\quad A, B \geq 0$.

The solution to the primal linear program is as follows.

\[
\begin{align*}
 y_0^* &= \frac{\lambda(1 + 2\lambda)}{1 + 6\lambda + 6\lambda^2} + \frac{\lambda^3(1 + \lambda)^2}{(1 + 6\lambda + 6\lambda^2)p(T_3)}, \\
 y_1^* &= -\frac{1 + \lambda + 2\lambda^2}{1 + 6\lambda + 6\lambda^2} + \frac{(1 + 7\lambda + 9\lambda^2 + \lambda^3)(1 + \lambda)^2}{(1 + 6\lambda + 6\lambda^2)p(T_3)}, \\
 y_2^* &= \frac{2(1 + \lambda)^2}{1 + 6\lambda + 6\lambda^2} - \frac{(2 + 14\lambda + 21\lambda^2 + 8\lambda^3)(1 + \lambda)^2}{(1 + 6\lambda + 6\lambda^2)p(T_3)}, \\
 y_3^* &= \frac{(1 + \lambda)^3}{p(T_3)}.
\end{align*}
\]

Each of the \(y_i^*\)s is non-negative for all \(\lambda \geq 0\). This is obvious for \(y_0^*\) and \(y_1^*\); for \(y_2^*\) and \(y_3^*\) we verify that for each, written as a rational function with denominator \((1 + 6\lambda + 6\lambda^2)p(T_3)\), the numerator has all nonnegative coefficients. The optimal dual solution is

\[
\begin{align*}
 S^* &= \frac{3(1 + \lambda)(1 + 2\lambda)}{1 + 6\lambda + 6\lambda^2}, \\
 M^* &= \frac{(1 + \lambda)^3}{1 + 6\lambda + 6\lambda^2}, \\
 A^* &= \frac{3\lambda^2(1 + \lambda)}{1 + 6\lambda + 6\lambda^2}, \\
 B^* &= \frac{3\lambda^2}{1 + 6\lambda + 6\lambda^2}.
\end{align*}
\]

We observe that we have equality in all constraints in both linear programs. Hence, complementary slackness yields that these are each optimal solutions to the corresponding programs. This is summarized in the following theorem.

Theorem 12. If \(G\) is a triangle-free cubic graph on \(n\) vertices, then the hard-core model on \(G\) with fugacity \(\lambda\) satisfies

\[
\alpha \geq y_0^* = \frac{\lambda(1 + 2\lambda)}{1 + 6\lambda + 6\lambda^2} + \frac{\lambda^3(1 + \lambda)^2}{(1 + 6\lambda + 6\lambda^2)p(T_3)}.
\]

Proof. The solution \(\alpha_*\) of the minimization problem above is attained for the solution (2). Moreover, since one of our constraints is of the form \(y_0 \geq \alpha\), and this constraint is satisfied with equality, we have \(\alpha_* = y_0^*\). \(\square\)

Corollary 13. If \(G\) is a triangle-free cubic graph on \(n\) vertices, then for any \(\lambda_0 \geq 0\),

\[
\frac{1}{n} \log P_c(\lambda_0) \geq \int_0^{\lambda_0} \frac{y_0^*}{\lambda} d\lambda.
\]

In particular,

\[
\text{ind}(G)^{1/n} \geq 1.538339.
\]

Proof. We have, as in the proof of Theorem 3,

\[
\log P_c(\lambda) \geq \int_0^\lambda \frac{\alpha(t)}{t} dt = n \int_0^\lambda \frac{y_0^*}{t} dt.
\]

Numerical integration up to \(\lambda = 1\) gives the second inequality. \(\square\)

Unfortunately, in contrast to the result of Davies et al. and our result from Section 2, we do not determine the extremal graph for the occupancy fraction. It should be noted that, in a recent paper, Davies et al. [4] give a lower bound on the independence number of triangle-free graphs of given maximum degree \(d\) that is asymptotically correct as \(d \to \infty\). For \(d = 3\) and \(\lambda = 1\), their bound is

\[
P_c(1)^{1/n} \geq \exp \left\{ \frac{W(3 \log 2)^2 + 2W(3 \log 2)}{6} \right\} = 1.516712 \ldots,
\]

where \(W\) is the Lambert \(W\) function.

Two graphs provide some support that our bound is not far from being optimal. For the Petersen graph, the left hand side of (3) is at most 1.54199, whereas our bound gave 1.538339. One might even be tempted to think that the Petersen graph is the extremal graph for the occupancy fraction for all \(\lambda\). However, this cannot be true as a result of Staton [10] yields that a related graph, the generalized Petersen graph \(GP(7, 2)\) (see Fig. 1), has a smaller independence ratio and hence, by (1), has smaller occupancy fraction for large \(\lambda\).
Theorem 14 (Staton). If G is a triangle-free cubic graph on n vertices, then
\[\frac{\alpha(G)}{n} \geq \frac{5}{14} = \frac{\alpha(\text{GP}(7, 2))}{n(\text{GP}(7, 2))}. \]

We therefore make the following conjecture.

Conjecture. If G is a triangle-free cubic graph on n vertices and $\lambda > 0$, then
\[\alpha_G(\lambda) \geq \min \{ \alpha_{\text{GP}(5, 2)}(\lambda), \alpha_{\text{GP}(7, 2)}(\lambda) \}, \]
where $\text{GP}(5, 2)$ is the Petersen graph. Moreover,
\[P_G(\lambda)^{1/n} \geq \min \{ P_{\text{GP}(5, 2)}(\lambda)^{1/10}, P_{\text{GP}(7, 2)}(\lambda)^{1/14} \}. \]

This conjecture has been proved for $\lambda \leq 1$ by Perarnau and Perkins [8] with $\text{GP}(5, 2)$ the unique minimizer. Note that neither half of the conjecture implies the other.

Acknowledgments

The first author was sponsored by the National Security Agency under Grant H98230-15-1-0016. The United States Government is authorized to reproduce and distribute reprints notwithstanding any copyright notation herein. The second author was sponsored by the Simons Foundation under Grant 429383.

References

[1] Vašek Chvátal, Linear Programming, in: A Series of Books in the Mathematical Sciences, W. H. Freeman and Company, New York, 1983, p. xiii+478.
[2] Jonathan Cutler, A.J. Radcliffe, The maximum number of complete subgraphs in a graph with given maximum degree, J. Combin. Theory Ser. B 104 (2014) 60–71.
[3] Ewan Davies, Matthew Jenssen, Will Perkins, Barnaby Roberts, Independent sets, matchings, and occupancy fractions, J. Lond. Math. Soc. (2) 96 (2017) 47–66.
[4] Ewan Davies, Matthew Jenssen, Will Perkins, Barnaby Roberts, On the average size of independent sets in triangle-free graphs, Proc. Amer. Math. Soc. 146 (2018) 111–124.
[5] David Galvin, Prasad Tetali, On weighted graph homomorphisms, in: Graphs, Morphisms and Statistical Physics, in: DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 63, Amer. Math. Soc., Providence, RI, 2004, pp. 97–104.
[6] Jeff Kahn, An entropy approach to the hard-core model on bipartite graphs, Combin. Probab. Comput. 10 (3) (2001) 219–237.
[7] Jeff Kahn, personal communication.
[8] Guillem Perarnau, Will Perkins, Counting independent sets in cubic graphs of given girth, 2016, arXiv:1611.01474.
[9] James B. Shearer, A note on the independence number of triangle-free graphs. II, J. Combin. Theory Ser. B 53 (2) (1991) 300–307.
[10] William Staton, Some Ramsey-type numbers and the independence ratio, Trans. Amer. Math. Soc. 256 (1979) 353–370.
[11] Yufei Zhao, The number of independent sets in a regular graph, Combin. Probab. Comput. 19 (2) (2010) 315–320.
[12] Yufei Zhao, Extremal regular graphs: independent sets and graph homomorphisms, Amer. Math. Monthly 124 (2017) 827–843.