Natural Phytotherapeutic Antioxidants in the Treatment of Mercury Intoxication-A Review

Velid Unsal

Mardin Artuklu University, High School of Health and Central Research Laboratory, Mardin, Turkey.

Abstract

Heavy metals taken into the organism can make the toxic effects on the metabolism in various ways. For example, they may interact with proteins to alter and inhibit their enzymatic and structural functions. Mercury is one of the toxic elements that are widely distributed in nature. Mercury toxicity poses a serious threat to human health. It is an element that causes oxidative stress to increase in individuals, leading to tissue damage. Oxidative stress is the result of the imbalance between the production of oxidative species and cellular antioxidant defense. Phyotherapy continues to play an important role in health care. Natural phytotherapeutic antioxidants, exhibit a broad sequence of biological impacts, including anti-oxidative stress, anti-aging, anti-toxicity and anticancer. Many studies have also shown that the phytotherapeutic agents play an important role in the removal of mercury from the tissue and in reducing oxidative stress. Our goal in this review was to investigate alternative ways of extracting the mercury in the tissue.

Introduction

Heavy metals do not just threaten us in our homes and in the streets. Heavy metal exposure is a serious hazard for people working in certain business lines. The definition of heavy metals is in fact used for metals with a density greater than 5 g/cm³. This group contains more than 60 metals including lead, cadmium, mercury, chromium, nickel iron, cobalt, copper and zinc. Free radical species are molecules that consistently occur in organisms and are regularly removed by the antioxidant defense system.

Phyotherapy is a natural treatment method that is benefited from the plants that gain importance in health field. It has an important place in the prevention or reduction of diseases. The reason for people's trust in phyotherapy is that plants are natural, unlike synthetic drugs. Numerous studies have been conducted with natural antioxidant plants. Exposure to mercury in vivo and in vitro increases ROS and RNS. Increased ROS and RNS at high concentrations can damage biomolecules. In recent years, the role of natural antioxidants in reducing ROS / RNS damage and their therapeutic potential has increased the interest of people in these. In addition, the absence of antioxidant structures causes an increase in ROS / RNS concentrations. Our purpose in this review is to discuss the role of natural antioxidants in reducing mercury damage.

Hg (Mercury)

Mercury (Hg) is a silver, fluid, bright, odorless heavy metal. The symbol is "Hg" and the atomic number is 80. The symbol Hg "hydrated silver" comes from the Latin term hydrargyrum. Mercury is a stable element with a valence of +2. Metallic or elemental mercury (Hg⁺) are the naturally occurring main forms of mercury. In nature, elemental mercury is found in the form of organic and inorganic compounds. The industry is mainly used in medical devices such as mercury fluorescent lamps, blood pressure monitors and thermometers used in many areas. It is widely used as filler material in dentistry, mine melting, cement making and paper production. In a study conducted in the United States, mercury was reported to be the third most common environmental metal. Mercury exposure can occur through respiration, feeding and food chain. Mercury is a heavy metal that is extremely toxic, which can have multiple adverse effects, and ultimately leads to cell death. Mercury, dysfunction in the skeleton of the cell and in the endoplasmic reticulum, significant cytoplasmic acidosis causes loss of mitochondrial function. Chemically, mercury and its compounds can be examined in 3 different categories, (As shown in Table 1). Elemental (metallic) Mercury; Elemental mercury may evaporate at room temperature. And steam is rapidly absorbed from the lungs and it spreads to the central nervous system. Inorganic mercurials include ammoniated mercury(C₂H₅HgN), mercuric chloride (HgCl₂), mercuric oxide (HgO), mercuric sulfide, mercuric iodide (Hgl₂) , and the phenylmercuric salts. (C₆H₅HgO₂) Organic mercurials include ethylmercury (C₂H₅Hg⁺), methylmercury (CH₃Hg⁺), thimerosal (merthiolate), and merbromin (C₉H₅BrHgNa₂O₆ -mercurochrome). Methyl and phenyl mercuric compounds, such as metallic mercury,
have the ability to cross the blood-brain and placental barrier. The lipophilic nature of the metallic mercury allows for distribution throughout the body.20,21

Table 1. Simple general informations about mercury

Mercury	Resources	Routes of Exposure	Excretion and excretion	Toxicity
Elemental Mercury	Gold mining, Dental amalgam, Thermometers, and other measuring instruments, volcanoes, Combustion	Inhalation	Urine and stool	Nervous system, Kidney, Lungs, Skin
Inorganic Mercury	Thiomersal, Cosmetics, Lambs, Photography, disinfectants	Digestion, Dermal	Urine	Nervous system, Kidney, Digestive system, Skin
Organic Mercury	Fishes, Fungicide	Digestion, parenteral, transplacental	Stool	Nervous system, Cardiovascular

Mercury toxicity manifests itself in various mechanisms

Respiratory system findings: In humans, acute and high levels of metallic mercury vapour have significant effects on the respiratory system. The most reported effects are cough, constriction with dyspnea, or burning sensation.23,24

Cardiovascular findings: Exposure to all conditions increases the heart rate and blood pressure.25,26

Gastrointestinal findings: The most obvious sign of mercury intoxication is the burning sensation of oral mucosa. Other gastrointestinal effects at high levels of acute exposures are abdominal pain and diarrhea.23,24,27,28

Renal findings: A sensitive target organ is the kidney in exposure to metallic mercury inhalation. Mercury has been found to cause nephrotic syndrome or tubular damage by tubular dysfunction. The cause of nephrotic syndrome due to mercury is an autoimmune reaction.23,24,29,30

Neurological system findings: In humans, adverse neurological effects have been reported following high concentration acute mercury vapor inhalation. Generally, perceptual, personal, conceptual, and motor confusion are reported. The most important symptoms are tremor, emotional tendency, insomnia, memory loss, neuromuscular changes (weakness, muscle atrophy and muscle withdrawal), headache and polynuropathy.23,31-35

Exposure to mercury compounds at an early stage causes long-lasting and permanent neurobehavioral and neurochemical irregularities. Like Parkinson’s disease and Alzheimer’s disease.36

The elimination of mercury from the body is very difficult. Following metallic mercury exposure, the elimination urine, feces and respiration.35-38

Experimental studies with neural cells in vitro have demonstrated that mercury induces glial cell reactivity (a distinctive feature of brain inflammation) and increases the expression of amyloid precursor protein.39

Endocrine findings: Thyroid function tests (TFTs) are thought to change levels. (Free-T3 and Free-T4). The most affected hormones by mercury are insulin, estrogen, testosterone and adrenaline.40-43

Dermatological findings: Acute and moderate exposure to elemental mercury vapor via inhalation results in erythematous and pruritic skin diseases.18,44,45 In people with tattoos containing red pigment of the origin of mercuric sulfur (cinnabar-vermilion, Chinese red), they may experience inflammation that is limited to this region within 6 months of tattooing.18,46

Inflammation findings: Inflammation caused by the influence of heavy inorganic mercury causes the tendency to bleed in gingiva and oral mucosa. It increases the salivary secretion, causing sensation of metallic taste in the mouth. Gingiva, a gray line is formed, especially when the oral hygiene is bad.29

Birth defects and reproductive system: There is also evidence that mercury poisoning leads to Young syndrome (bronchiectasis, low sperm count, impairs sperm quality.).47,49

It has been determined that all forms of the mercury can pass to the placenta at varying gauges50 Mercury exposure is dangerous for the baby, because the baby’s neurological tissues develop during early gestation.51

Immune system findings: Mercury compounds reduce the number of T lymphocytes. In addition, mercury exposure causes a decrease in T cell GSH content. Mercury is an immunotoxic agent.52,54

In the case of inorganic mercury exposure, elimination occurs via urine and faeces. Organic mercury compounds predominantly excrete in humans.11 Mercury, promotes the formation of reactive oxygen species (ROS) such as hydrogen peroxides.55,56

ROS (Reactive Oxygen species)

Free radicals are highly active atoms or molecules that can be produced in many physiological and pathological processes, carrying one or more unpaired electrons in their orbit. These highly unstable atoms or molecules tend to react with molecules in their environment and to share these electrons.57,58 Free radicals can be positively charged, negatively charged, or neutral and are most often formed by electron transfer in biological systems. The most important free radicals in biological systems are the oxygen radicals. In addition, another source of free radicals is the nitrogen molecule. There is no toxic effect of O₂, but it becomes free oxygen radicals during aerobic cell metabolism. By partial reduction of O₂, OH and O₂⁻ are formed.58,60

366 | *Advanced Pharmaceutical Bulletin*, 2018, 8(3), 365-376
Superoxide Radical (O$_2^-$)
Superoxide is the first radical to appear in living organisms. In almost all aerobic cells, reduction of oxygen by an electron takes place.61 The superoxide radical plays an important role in the formation of other reactive oxygen species, such as H$_2$O$_2$, HO$_2^-$ or 1O$_2$.58,62

The superoxide radical is produced either directly in mitochondria during oxidation or enzymatically by xanthine oxidase (XO), cytochrome p450 and other oxidases. Superoxide dismutase (SOD) enzyme or in H$_2$O$_2$ is spontaneously inactivated.63,64 Combined with superoxide (O$_2^-$) and the free radical NO$,^-$, comes the reactive nitrogen derivative ONOO$^-$ (Peroxynitrite). ONOO- has harmful effects on direct proteins.65

Hydroxyl radical (+OH)
The hydroxyl radical is the most reactive radical. It reacts with lipids, polypeptides, proteins, DNA and other molecules (such as thiamine and guanosine).62,66,67

Singlet oxygen (1O$_2$)
Singlet oxygen is a nonradical and induced status. Compared with other ROS, singlet oxygen is rather mild and non toxic for mammalian tissue.68 1O$_2$ is a cell signal and messenger; redox active agents regulate ion channel activity in animals and plants. In the human organism, singlet oxygen is both a signal and a weapon, with therapeutic potency against various pathogens such as microbes, viruses, and cancer cells.62

Hydrogen peroxide (H$_2$O$_2$)
There is no unpaired electron in the hydrogen peroxide molecule, and so it is not a radical. Hydrogen peroxide can be generated through a dismutation reaction from superoxide anion by superoxide dismutase (SOD)58,62,63

Enzymes such as amino acid oxidase (AAO) and xanthine oxidase (XO) also produce hydrogen peroxide from the superoxide anion. H$_2$O$_2$ is the least reactive molecule among ROS and is stable under physiological pH and temperature in the lack of metal ions. H$_2$O$_2$ can produce singlet oxygen thanks to react with superoxide anion or with HOCl or chloramines in living systems.62,68

Free radical species (ROS) affect important structures of cells such as proteins, carbohydrates, lipids, DNA and enzymes.58,69

Effects of ROS on lipids and proteins
Free radicals have to cross the cell membrane in order to interact with the cell components. Inasmuch as cell membranes are rich in polyunsaturated fatty acids (PUFAs) and cholesterol, they are easily affected by oxidant radicals.70

Free radicals move away the hydrogen atom from the fatty acid chain. Lipid peroxidation is oxidation of polyunsaturated fatty plural form with free radicals. The main primary products of lipid peroxidation are lipid hydroperoxides (LOOH). This peroxidation results in products such as MDA, 4-hydroxynoneal (HNA), 8-iso-prostaglandin F$_{2\alpha}$ (8-iso-PGF$_{2\alpha}$), alcohols, ethane and pentane. MDA is mutagenic since DNA can react with nitrogen bases.58,71 Additionally it is genotoxic and carcinogenic on cell cultures. Membrane damage caused by lipid peroxidation is irreversible. MDA is the most mutagenic product of lipid peroxidation. 4-HNE is the most toxic. 4-HNE is considered as the second toxic messengers of free radicals, one of the major generators of oxidative stress and a major lipid peroxidation product.58,70,72

8-Isoprostaglandin F$_{2\alpha}$ (8-iso-PGF$_{2\alpha}$), a major F$_2$-isoprostane, is biosynthesized in vivo through nonenzymatic free radical-catalysed peroxidation of arachidonic acid.21,22,58,70,73,74

Proteins are defined as the major targets of oxidative damage. The products of cellular metabolism or environmental induced ROS changes in the amino acids of proteins and cause loss of activity of protein function / enzymatic activity as well.75,76

Oxidative protein modifications may take place in different ways. ROS directly interacts with protein or Interaction of compounds such as carbohydrates, lipids, and nucleic acids with ROS can interact with proteins with the resulting products.77

In this way, reactive and non-protein compounds react with proteins to form a wide array of structures.78,79

Protein oxidation reactions are usually divided into modifying the protein construct and modifying the amino acid side chains.58,81 In addition to the modification of the protein in proteins, amino acid side chains are target for ROS. Sulfide containing amino acids in the structure are highly sensitive to cysteine and methionine.82 Aromatic structures are also the main targets for ROS. The oxidatively modified tyrosine, phenylalanine and tryptophan are usually oxidative damage a demonstration.76

Oxidation of lysine, arginine, proline or threonine may result in the formation of carbonyl derivatives.83,84 Protein carbonyls are among the most commonly used products for determination of the proteins of the oxides.58,85 Protein carbonyl levels area well-used marker for oxidative stress. The toxic effects of mercury can be prevented by antioxidant defense mechanisms to a certain extent.

Reactive nitrogen species (RNS)
NO reacts with the superoxide radical or molecular oxygen, leading to the formation of various reactive intermediates called reactive RNS. RNS consist of nitrite derivatives such as NO, NO$_2$ - and ONOO$^-$.86

Nitric oxide (NO$^+$)
Nitric Oxide (NO) is highly stable at high concentrations in an oxygen-free environment and stable at low concentrations in the presence of oxygen. NO is a signal molecule of low molecular weight known to be biologically active in mammalian cells. The NO radical is synthesized from L-arginine by nitric oxide synthase (NOS) enzyme catalysis in vascular endothelial cells.87

NO is an important effector and messenger molecule that plays a role in various biological processes such as immune response, smooth muscle tone, apoptosis,
angiogenesis and nervous system.88 In addition, NO is a molecule that regulates numerous pathological and physiological states.89 NO has very important physiological functions at low concentrations. NO binds with molecular oxygen to form nitrogen dioxide (NO2). Another important effect of NO is to produce a strong oxidant peroxynitrite (ONOO\textbullet).90 NO is a mediator with autocrine and paracrine effects in hemostatic events and in the defense mechanisms of the organism. The most important function of NO is to function in parallel with the effects of interleukin-1 (IL-1) and cytokines in various tissues of the body. It is produced by macrophages, neutrophils, hepatocytes and endothelial cells.91 However, at high concentrations it shows toxic effects on normal cells. Spontaneously decomposes to form nitrogen dioxide.92 In mammals, NO can be produced with three different isofoms of enzymes NO synthase. NOS enzymes are found in two basic isofoms. These; is called constitutive or structural (cNOS) and inducible (iNOS). Structural NOS enzymes have two isofoms, endothelial NOS (eNOS) and neuronal NOS (nOS), eNOS is located on the membrane and is synthesizing the endothelium-induced relaxation factor; nNOS produces NO2, the messenger molecule in the central nervous system and neurons. Structural NOS is Ca2+ dependent cofactor and produces small amounts of NO at intervals with low activity.93,94

Peroxynitrite (OONO\textbullet)

Peroxynitrite is an important biological oxidant formed by the reaction of nitric oxide and superoxide radicals. Peroxynitrite can cause oxidative damage, nitration, and S-nitrosylation of biomolecules including proteins, lipids, and DNA. Peroxidation of lipids in the membrane distorts membrane integrity by reducing the fluidity, elasticity and permeability of the cell membrane. These radicals constantly increase the level of Ca2+ in the cell and cause cytotoxic effect on the cell by inhibition of mitochondrial respiration and electron transport chain, decrease of ATP production and activation of radical generating enzymes.95,96

Antioxidants

Although free radical reactions are necessary for the defense mechanism of neutrophil, macrophage and other immune system cells, they result in overproduction of free radicals, tissue damage and cell death. The half life of ROS is short. However, they initiate free radical chain reactions that cause tissue damage. For this reason, defensive mechanisms against oxidative damage triggered by free radicals act. These are preventive mechanisms, repair mechanisms, physical defenses and antioxidant defenses.97 Antioxidant defense is the prevention or delay of oxidation of oxidizing agents such as proteins, lipids, carbohydrates and DNA in living cells. The substances that play a role in this process are called 'antioxidants'.97,98 Enzymatic antioxidants are Superoxide dismutase (SOD), Catalase (CAT), Glutathione peroxidase (GSH-Px), Glutathione reductase (GR), Glutathione S-Transferase (GST). The SOD structure contains copper (Cu), zinc (Zn) and manganese (Mn). GSH-Px contains selenium ions. For this reason, these enzymes are called metalloenzymes.99,100 In contrast to the intracellular environment, E and C vitamins, transferrin, ceruloplasmin, albumin, bilirubin, β-carotene are responsible for the non-enzymatic antioxidant defense in the extracellular environment. In addition, E and C vitamins have antioxidant properties within the cell.38,65,72,101

Enzymatic antioxidants

Superoxide dismutase (SOD): By catalyzing the conversion of O2- radical to H\textsubscript{2}O\textsubscript{2}, protects the cells from harmful effects of O2- radical. It also inhibits lipid peroxidation. SOD plays a role in controlling the levels of O\textsubscript{2-} in the parts of the cell Superoxide dismutase activity varies with tissues. It is mainly intracellular and 10\% is located outside the cell.38,102,103

- **a. Copper and zinc containing (Cu-Zn SOD) dismutases (cytosolic SOD):** It contains copper and zinc in its active site. The enzyme is located in the cytoplasm of the cells. Cyanide is an inhibitor of this enzyme.104,105

- **b. Manganese superoxide dismutase (Mn SOD):** Mitochondrial Mn-SOD is a homotetramer containing one Manganese atom per subunit. Mn-SOD has the same reaction as Cu-Zn-SOD. However, it is a completely different enzyme in its structure. It contains Mn in its active site and is not stable. This form of SOD is not inhibited by cyanide.105

Catalase (CAT): Catalase is a hemoprotein that has four groups in its structure. Catalase converts hydrogen peroxide (H\textsubscript{2}O\textsubscript{2}) to water (H\textsubscript{2}O). Catalase's effect is similar to SOD.106 H\textsubscript{2}O\textsubscript{2} \textarrow{} H\textsubscript{2}O + 1/2O\textsubscript{2}

Glutathione peroxidase (GSH-Px): GSH-Px can be found in two forms, selenium-bound and selenium-bound. Selenium based group, reducing hydrogen peroxide and other organic peroxides. It consists of four members. These are GSH-Px1 (cellular- GSH-Px), GSH-Px2 (GSH-Px-gastrointestinal), GSH-Px3 (plasma-GSH-Px) and GSH Px4 (PH-GSH-Px), respectively.107 - GSH-Px1 or cellular GSH-Px (cGSH-Px), tetrameric in structure is a cytosolic enzyme. GSH-Px1 is active against organic hydroperoxides and H\textsubscript{2}O\textsubscript{2}.108 - GSH-Px 2, or gastrointestinal GSH-Px (GSH-Px-GI) found in the gastrointestinal tract, but not in the kidney, heart and lung.109 - GSH-Px 3, A glycoprotein isolated from the lipid portion of the plasma. It is found in the lung, plasma and other extracellular fluids.110 - GSH-Px 4 is expressed in the liver and gastrointestinal tract in humans. GSH-Px 4 or phospholipid GSH-Px (PH-GSH-Px) is found in cytosol, mitochondria and cell membrane. The enzyme reduces the phospholipid hydroperoxides to alcohols and protects the membrane against peroxidation in the absence of the most important antioxidant E vitamin.111
Glutathion S-transferaz (GST): Glutathion S-transferazlar (GST)’lar núcleofilik atakın glutation (GSH) tripeptitde elektrolofilik substratların kataliz reaksiyonlarına gider. Phase-II detoksifikasyonunun bir üyesi olabilir. İndirgenme, aktivasyon veya çevresel toksik stonların from merging with other macromolecules in the body and provides them to be removed without harming the cell components. Therefore, GSTs are one of a group of enzymes that are very important guardians.113 GSTs are divided into three families as mitochondrial, cytosolic and microsomal.114 Mercaptic acid plays an important role in the initial reactions of biosynthesis. The mercaptic acid formation process catalyzed by GSH-conjugation of GST is generally described as detoxication reactions. The ability to reduction feature GSTs protects membrane components from lipid peroxidation. In addition, 4-hydroxy alkenals, products of lipid peroxidation in aldehyde structure, are conjugated with GSH.115 GSTs, also considered as one of the natural protective systems, have an important role in the detoxification of electrophilic xenobiotics such as herbicides, pesticides, anticancer drugs, chemical carcinogens and environmental pollutants.116

Glutathione reductase (GR): Glutathione reductase is a non-enzymatic antioxidant that converts oxidized glutathione (GSSG) to reduced glutathione (GSH). GR uses NADPH as the coenzyme when performing catalysis.117 The physiological GSH-GSSG ratio in the cells is of great importance. In the absence of GCSS, the level of intracellular NADPH is reduced and GR is inactivated. As the intracellular level of GSSG increases due to the oxidative stress, GR re-activates.118

Nonenzymatic antioxidants
Nonenzymatic antioxidants: It is examined in two parts as natural antioxidants and synthetic antioxidants. This review will discuss natural antioxidants. For this reason, synthetic antioxidants were excluded from the discussion.119

Glutathione (GSH): GSH is made from three amino acids: glycine, cysteine and glutamic acid. This tripeptide exists in reduced (GSH) and oxidized (GSSG) forms. The relative amounts of every form determine the cellular redox status (GSH/GSSG ratio) which is often used as a sign of antioxidative capacity of cells. Glutathione (GSH) has vital importance in fighting oxidative stress. It is a strong free radical and reactive oxygen species scavenger.120,121

Vitamin E: Vitamin E has eight isoforms, α-, β-, γ-, and δ-tocopherol and α-, β-, γ-, and δ-tocotrienol. Vitamin E is a lipophilic radical-scavenging antioxidant.122

Vitamin C: Vitamin C is a potent antioxidant protecting the body against endogenous and exogenous oxidative challenges.123

Uric acid: Uric acid demonstrated its ability to scavenge reactive radicals resulting from harmful processes, such as autoxidation of hemoglobin, or peroxide generation by macrophages. It is an efficient scavenger of singlet oxygen, peroxyl and hydroxyl radicals and protects erythrocyte membrane from lipid peroxidation.124

Retinoids and carotenoids: Retinoids and carotenoids take place in the structure of lipids and cell membranes. In the singlet oxygen suppression to prevent the harmful effects of flavin and porphyrin, they work in preventing peroxide radicals.101

Discussion Plants are an exogenous source of antioxidants taken in the diet. It is believed that two thirds of the plant species in the world have medical prescription, and almost all of them have excellent antioxidant potential.125 Increased exogenous antioxidant supplementation or endogenous antioxidant defense has been found to be effective in combating undesirable effects of oxidative stress.126 The main natural antioxidants present in vitamins and protecting the human body from harmful free radicals are mainly vitamins (C, E and A vitamins), flavonoids, carotenoids and polyphenols.127 Phenolic compounds exhibit physiological properties such as anti-allergic, anti-atherogenic, anti-inflammatory, antioxidant, anticancer, antithrombotic, cardiovascular and vasodilatory effects.128-130 In addition, Fruits, spices and many medicinal herbs are rich sources of pharmacological properties. These agents have antioxidants, free radical scavengers and anti-toxic properties.6,23,131-132

As shown in Table 2, many natural antioxidants against mercury poisoning have been tested for detoxification.

Table 2. Some antioxidants used for treatment of mercury poisoning

Models	Study Design	Materials	Effect	Mechanisms and Conclusion	References
HgCl₂; (12 µmol kg⁻¹ b.w.)	Wistar albino rats	Curcumín-80 mg kg⁻¹ b.w., orally	MDA ↓, GSH-Px ↑, CAT ↑	Oxidative stress inhibitor.	133
HgCl₂; (1 mg/kg bw)	Wistar albino rats	Sodium selenite (0.25 mg/kg bw) and/or vitamin E (100 mg/kg bw)	CAT ↑, GSH-Px ↑, SOD ↑, MDA ↓	Sodium selenite and/or vitamin E could ameliorate the mercury induced testicular toxicity.	134
MeHgCl₂; (5 mg/kg bw/day)	Male albino rats	α-linolenic and α-eleostearic acid	SOD ↑, CAT ↑, GSH ↑, MDA ↓	Both are protective against mercury toxicity.	135

Advanced Pharmaceutical Bulletin, 2018, 8(3), 365-376 | 369
HgCl₂ (80 mg/L) | Wistar albino rats | Luteolin | MDA ↓; GSH ↑; GSH/GSGG↑ | Luteolin eliminates ROS and prevents the induction of HgCl₂ in antioxidant defenses. | 136

HgCl₂ (12 μmol/kg) | Sprague-dawley rats | Zingiber officinale | GSH-Px ↑; CAT↑, GSH-Px↑; SOD↑, MDA↓, GST↑ | Both are protective against inorganic mercury toxicity. | 137

HgCl₂ (5 mg kg⁻¹ b.w) | Wistar albino rats | Moringa oleifera oil | GSH-Px ↑; CAT↑, GSH↑, SOD↓, MDA↓, | Moringa oleifera oil and Coconut oil was ameliorated the HgCl₂ induced testicular toxicity. | 138

HgCl₂ (0.4 mg/kg b.w) | Wistar albino rats | Berberine | SOD↑, CAT↑↑, GSH↑↑; MDA↓ GR↑↑ | Berberine reduced HgCl₂-induced neurotoxicity. Berberine has a therapeutic potential as a neuroprotective agent. | 139

HgCl₂ (2 mg/kg) | Male Sprague-dawley rats | Rhubarb (1200 mg/kg), Anthraquinones (200 mg/kg), Total tannins (TT, 780 mg/kg) | GSH-Px ↑ | Rhubarb play a protective role against HgCl₂-induced acute renal failure. Rhubarb can be developed as an antidote. | 140

HgCl₂ (50 g/kg/b.w) | Wistar strain albino rats | Diallysulphide (DAS) | SOD↑, CAT↑↑, GSH-Px↑↑ | DAS shows antioxidant activity and plays a protective role against mercury-induced oxidative damage in the rat livers. | 141

HgCl₂ (5 mg/kg) | Wistar albino rats | Ginkgo biloba extract 150 mg/kg daily i.p. for 5 days | MDA↓, GSH↑ | Oxidative damage of HgCl₂ in brain, lung, liver and kidney tissues is protected by antioxidant Ginkgo biloba extract. | 142

HgCl₂ (5 mg/kg i.p) | Wistar albino rats | Aralia elata polysaccharide (100 mg/kg daily i.p) | CAT↑↑, SOD↓, MDA↓, GST↑↑, MPO↑↑ | Aralia elata polysaccharide may afford the protection against HgCl₂-induced cardiovascular oxidative injury in rats. | 143

HgCl₂ (4.0 mg/kg) | Male wistar rats | Eruca sativa 50, 100 and 200 mg/kg/b.w | GSH-Px ↑; CAT↑↑, GSH↑↑; SOD↓, GR↑↑, MDA (TBARS)↓ | E. sativa seeds to possess a potent antioxidant and renal protective activity and preclude oxidative damage inflicted to the kidney. | 144

HgCl₂ (0.8 g/kg) | Male wistar rats | Urtica dioica 1.5 ml UD/rat | GSH↑ | Fresh nettle leaves are a protective plant that can play a beneficial role in preventing Hg poisoning. | 145
References
The authors declare no conflict of interests.

Ethical Issues
Not applicable.

Conflict of Interest
The authors declare no conflict of interests.

References
1. Pham-Huy LA, He H, Pham-Huy C. Free radicals, antioxidants in disease and health. Int J Biomed Sci 2008;4(2):89-96.
2. Zahir F, Rizwi SJ, Haq SK, Khan RH. Low dose mercury toxicity and human health. Environ Toxicol Pharmacol 2005;20(2):351-60. doi: 10.1016/j.etap.2005.03.007
3. Sinclair AJ, Barnett AH, Lunee J. Free radicals and antioxidant systems in health and disease. Br J Hosp Med 1990;43(5):334-44.
4. Ciuman RR. Phytotherapeutic and naturopathic adjuvant therapies in otorhinolaryngology. Eur Arch Otorhinolaryngol 2012;269(2):389-97. doi: 10.1007/s00405-011-1755-z
5. Miliauskas G, Venskutonis PR, Van Beek TA. Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chem 2004;85(2):231-7. doi: 10.1016/j.foodchem.2003.05.007
6. Kalia AN. Text Book of Industrial Pharmacognosy. London: Oscar publication; 2005.
7. Omanwar S, Saidullah B, Fahim M. Molecular Basis for Mercury-Induced Alteration in Endothelial Function: NO and its Modulators. Cardiovasc Pharm Open Access 2015;4(5):167. doi: 10.4172/2329-6607.1000167
8. Hussain S, Atkinson A, Thompson SJ, Khan AT. Accumulation of mercury and its effect on antioxidant enzymes in brain, liver, and kidneys of mice. J Environ Sci Health B 1999;34(4):645-60. doi: 10.1080/03601239909373219
9. Phaniendra A, Jestadi DB, Periyasamy L. Free radicals: Properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem 2015;30(1):11-26. doi: 10.1007/s12291-014-0446-0
10. Pourmorad F, Hosseinimehr SJ, Shahabimajid N. Antioxidant activity, phenol and flavonoid contents of some selected Iranian medicinal plants. Afr J Biotechnol 2006;5(11):1142-5.
11. Todd GD, Wohlers D, Citra M. Agency for toxic substances and disease registry. Atlanta, GA: Toxicology profile for pyrethrins and...
pyrethroids. Department of Health and Human Services; 2003.

12. Farina M, Avila DS, da Rocha JB, Aschner M. Metals, oxidative stress and neurodegeneration: A focus on iron, manganese and mercury. Neurochem Int 2013;62(5):575-94. doi: 10.1016/j.neuint.2012.12.006

13. Taylor JR. Disorders of the nervous system, principles and practice of environmental medicine. Tarcher AB, editor. New York: Plenum Medical Book Company; 1992

14. Tchounwou PB, Ayensu WK, Ninashvili N, Sutton D. Environmental exposure to mercury and its toxicopathologic implications for public health. Environ Toxicol 2003;18(3):149-75. doi: 10.1002/tox.10116

15. Patrick L. Mercury toxicity and antioxidants: Part I: Role of glutathione and alpha-lipoic acid in the treatment of mercury toxicity. Altern Med Rev 2002;7(6):456-71.

16. Vergilio CS, Carvalho CE, Melo EJ. Mercury-induced dysfunctions in multiple organelles leading to cell death. Toxicol In Vitro 2015;29(1):63-71. doi: 10.1016/j.tiv.2014.09.006

17. Horowitz Y, Greenberg D, Ling G, Lifshitz M. Acrodynia: A case report of two siblings. Arch Dis Child 2002;86(6):453.

18. Boyd AS, Seger D, Vannucci M, Langlely M, Abraham JL, King LE, Jr. Mercury exposure and cutaneous diseases. J Am Acad Dermatol 2000;43(1 Pt 1):81-90. doi: 10.1067/mdj.2000.106360

19. Graeme KA, Pollack CV, Jr. Heavy metal toxicity, part i: Arsenic and mercury. J Emerg Med 1998;16(1):45-56.

20. Genchi G, Sinicropi MS, Carocci A, Lauria G, Catalano A. Mercury exposure and heart diseases. Int J Environ Res Public Health 2017;14(1):pii: E74. doi: 10.3390/ijerph14010074

21. Visnjevec AM, Kocman D, Horvat M. Human mercury exposure and affects in Europe. Environ Toxicol Chem 2014;33(6):1259-70. doi: 10.1002/etc.2482

22. Guzzi G, La Porta CA. Molecular mechanisms triggered by mercury. Toxicology 2008;244(1):1-12. doi: 10.1016/j.tox.2007.11.002

23. Bluhm RE, Bobbitt RG, Welch LW, Wood AJ, Bonfiglio JF, Sarzen C, et al. Elemental mercury vapour toxicity, treatment, and prognosis after acute, intensive exposure in chloralkali plant workers. Part i: History, neuropsychological findings and chelator effects. Hum Exp Toxicol 1992;11(3):201-10. doi: 10.1177/096032719201100308

24. Haddad JK, Stenberg E, Jr. Bronchitis due to acute mercury inhalation. Report of two cases. Am Rev Respir Dis 1963;88:543-5. doi: 10.1164/arrd.1963.88.4.543

25. Soni JP, Singhania RU, Bansal A, Rathi G. Acute mercury vapor poisoning. Indian Pediatr 1992;29(3):365-8.

26. Fagala GE, Wigg CL. Psychiatric manifestations of mercury poisoning. J Am Acad Child Adolesc Psychiatry 1992;31(2):306-11. doi: 10.1097/00004583-19920300-00019

27. Fowler BA, Whittaker MH, Elnder CG. Mercury-induced renal effects. In Clinical Nephrotoxins. Boston: Springer; 2008.

28. Milne J, Christophers A, de Silva P. Acute mercurial pneumonitis. Br J Ind Med 1970;27(4):334-8.

29. Grandjean P. Health significance of metal exposures. In: Wallace RB, editor. Maxcy-rosenau-last Public Health & Preventive Medicine. USA: McGraw-Hill Companies; 2007.

30. Barr RD, Rees PH, Cordy PE, Kungu A, Woodger BA, Cameron HM. Nephrotic syndrome in adult africans in nairobi. Br Med J 1972;2(5806):131-4.

31. Adams CR, Ziegler DK, Lin JT. Mercury intoxication simulating amyotrophic lateral sclerosis. JAMA 1983;250(5):642-3.

32. Halle TJ. Diffuse lung disease caused by inhalation of mercury vapor. Am Rev Respir Dis 1969;99(3):430-6. doi: 10.1164/arrd.1969.99.3.430

33. Jaffe KM, Shurtleff DB, Robertson WO. Survival after acute mercury vapor poisoning: role of intensive supportive care. Am J Dis Child 1983;137(8):749-51. doi: 10.1001/archpedi.1983.02140340033008

34. George L, Scott FE, Cole D, Siracusa L, Buffett C, Hunter W, et al. The mercury emergency and hamilton school children: A follow-up analysis. Can J Public Health 1996;87(4):224-6.

35. McNutt, Marcia. "Mercury and health." (2013): 1430-1430. doi: 10.1126/science.1245924

36. Yorifuji T, Debes F, Weihe P, Grandjean P. Prenatal exposure to lead and cognitive deficit in 7- and 14-year-old children in the presence of concomitant exposure to similar molar concentration of methylmercury. Neurotoxicol Teratol 2011;33(2):205-11. doi: 10.1016/j.ntt.2010.09.004

37. Berkman B, Harootyan L, editors. Social Work and Health Care in an Aging Society: Education, Policy, Practice, and Research. Springer Publishing Company; 2003.

38. Gibson GG. Detoxication Mechanisms and the Role of Nutrition. In: Tarcher AB, editor. Principles and Practise of Environmental Medicine. New York: Plenum Medical Book Company; 1992.

39. Monnet-Tschudi F, Zurich MG, Boschat C, Corbaz A, Honegger P. Involvement of environmental mercury and lead in the etiology of neurodegenerative diseases. Rev Environ Health 2006;21(2):105-17.

40. Rice KM, Walker EM, Wu M, Gillette C, Blough ER. Environmental mercury and its toxic effects. J Prev Med Public Health 2014;47(2):74-83. doi: 10.3961/jpmph.2014.47.2.74

41. Barregard L, Hultberg B, Schutz A, Sallsten G. Enzymuria in workers exposed to inorganic mercury. Int Arch Occup Environ Health 1988;61(1-2):65-9.
Natural antioxidants against mercury poisoning: A Review

42. Barregard L, Lindstedt G, Schutz A, Sallsten G. Endocrine function in mercury exposed chloralkali workers. Occup Environ Med 1994;51(8):536-40.
43. Karpathios T, Zervoudakis A, Theodoridis C, Vlachos P, Apostolopoulou E, Fretzayas A. Mercury vapor poisoning associated with hyperthyroidism in a child. Acta Paediatr Scand 1991;80(5):551-2.
44. Risher JF, Amler SN. Mercury exposure: Evaluation and intervention the inappropriate use of chelating agents in the diagnosis and treatment of putative mercury poisoning. Neurotoxicology 2005;26(4):691-9. doi: 10.1016/j.neuro.2005.05.004
45. Foulds DM, Copeland KC, Franks RC. Mercury poisoning and acrodermatitis. Am J Dis Child 1987;142(2):124-5. doi: 10.1001/archpedi.1987.04460020014006
46. Davis RG. Hazards of tattooing: Report of two cases of dermatitis caused by sensitization to mercury (cinnabar). U S Armed Forces Med J 1960;11:261-80.
47. Hendry WF, A'Hern RP, Cole PJ. Was young's syndrome caused by exposure to mercury in childhood? BMJ 1993;307(6919):1579-82.
48. Ghaffari MA, Motalgh B. In vitro effect of lead, silver, tin, mercury, indium and bismuth on human sperm creatine kinase activity: A presumable mechanism for men infertility. Iran Biomed J 2011;15(1-2):38-43.
49. Martinez CS, Torres JG, Pecanha FM, Anselmo-Franci JA, Vassallo DV, Salaices M, et al. 60-day chronic exposure to low concentrations of hgcl2 impairs sperm quality: Hormonal imbalance and oxidative stress as potential routes for reproductive dysfunction in rats. PLoS One 2014;9(11):e111202. doi: 10.1371/journal.pone.0111202
50. Steffek AJ. Effects of elemental mercury vapor exposure on pregnant Sprague-Dawley rats. J Dent Res 1987;66(1):239.
51. Vimy MJ, Takahashi Y, Lorscheider FL. Maternal-fetal distribution of mercury (203hg) released from dental amalgam fillings. The American journal of physiology 1990;258(4Pt 2):R939-45. doi: 10.1152/ajpregu.1990.258.4.R939
52. Shenker BJ, Rooney C, Vitale L, Shapiro IM. Immunotoxic effects of mercuric compounds on human lymphocytes and monocytes. I. Suppression of t-cell activation. Immunopharmacol Immunotoxicol 1992;14(3):539-53. doi: 10.3109/089223979209005410
53. Shenker BJ, Guo TL, Shapiro IM. Mercury-induced apoptosis in human lymphoid cells: Evidence that the apoptotic pathway is mercurial species dependent. Environ Res 2000;84(2):89-99. doi: 10.1006/ers.2000.4078
54. Gardner RM, Nyland JF. Immunotoxic Effects of Mercury. In: Environmental Influences on the Immune System. Vienna: Springer; 2016.
55. Miller DM, Lund BO, Woods JS. Reactivity of hgl(iii) with superoxide: Evidence for the catalytic dismutation of superoxide by Hg(II). J Biochem Toxicol 1991;6(4):293-8.
56. Jagadeesan G, Sankarsami Pillai S. Hepatoprotective effects of taurine against mercury induced toxicity in rats. J Environ Biol 2007;28(4):753-6.
57. Knight JA. Review: Free radicals, antioxidants, and the immune system. Ann Clin Lab Sci 2000;30(2):145-58.
58. Unsal V, Belge-Kurutas E. Experimental hepatic carcinogenesis: Oxidative stress and natural antioxidants. Open Access Maced J Med Sci 2017;5(5):686-91. doi: 10.3889/oamjms.2017.101
59. Dayem AA, Choi HY, Kim JH, Cho SG. Role of oxidative stress in stem, cancer, and cancer stem cells. Cancers (Basel) 2010;2(2):859-84. doi: 10.3390/cancers2020589
60. Seifried HE, Anderson DE, Fisher EI, Milner JA. A review of the interaction among dietary antioxidants and reactive oxygen species. J Nutr Biochem 2007;18(9):567-79. doi: 10.1016/j.jnutbio.2006.10.007
61. Halliwell B. Free radicals and antioxidants: A personal view. Nutr Rev 1994;52(8 Pt 1):253-65.
62. Lee J, Koo N, Min DB. Reactive oxygen species, aging, and antioxidative nutraceuticals. Compr Rev Food Sci Food Saf 2004;3(1):21-33. doi: 10.1111/j.1541-4337.2004.tb00058.x
63. Vallyathan V, Shi X. The role of oxygen free radicals in occupational and environmental lung diseases. Environ Health Perspect 1997;105 Suppl 1:165-77.
64. Parke DV, Sapota A. Chemical toxicity and reactive oxygen species. Int J Occup Med Environ Health 1996;9(4):331-40.
65. Gutteridge JM, Halliwell B. Antioxidants: Molecules, medicines, and myths. Biochem Biophys Res Commun 2010;393(4):561-4. doi: 10.1016/j.bbrc.2010.02.071
66. Fridovich I. Fundamental aspects of reactive oxygen species, or what's the matter with oxygen? Ann N Y Acad Sci 1999;893:13-8.
67. McCord JM. The evolution of free radicals and oxidative stress. Am J Med 2000;108(8):652-9.
68. Stief TW. The physiology and pharmacology of singlet oxygen. Med Hypotheses 2003;60(4):567-72.
69. Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn Rev 2010;4(8):118-26. doi: 10.4103/0973-7847.70902
70. Ayala A, Munoz MF, Arguelles S. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev 2014;2014:360438. doi: 10.1155/2014/360438
71. Esterbauer H, Eckl P, Orntr A. Possible mutagens derived from lipids and lipid precursors. Mutat Res 1990;238(3):223-33.
72. Belge Kurutas E, Senoglu M, Yuksel KZ, Unsal V, Altun I. Oxidative/nitrative stress in patients with modich changes: Preliminary controlled study, Spine (Phila Pa 1976) 1976;20(14):1101-7. doi: 10.1097/brs.0000000000000737
73. Basu S. Radioimmunoassay of 8-isoprostaglandin f2alpha: An index for oxidative injury via free radical catalyzed lipid peroxidation. Prostaglandins Leukot Essent Fatty Acids 1998;58(4):319-25.

74. Halliwell B. Free radicals and antioxidants - quavado? Trends Pharmacol Sci 2011;32(3):125-30. doi: 10.1016/j.tips.2010.12.002

75. Stadtman ER, Levine RL. Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids 2003;25(3-4):207-18. doi: 10.1007/s00726-003-0011-2

76. Grune T, Reinheckel T, Davies KJ. Degradation of oxidized proteins in mammalian cells. FASEB J 1997;11(7):526-34.

77. Davies MJ. Singlet oxygen-mediated damage to proteins and its consequences. Biochem Biophys Res Commun 2003;305(3):761-70.

78. Levine RL. Carbonyl modified proteins in cellular regulation, aging, and disease. Free Radic Biol Med 2002;32(9):790-6.

79. Grune T, Klotz LO, Gieche J, Rudeck M, Sies H. Protein oxidation and proteolysis by the nonradical oxidants singlet oxygen or peroxynitrite. Free Radic Biol Med 2001;30(11):1243-53.

80. Dean RT, Fu S, Stocker R, Davies MJ. Biochemistry and pathology of radical-mediated protein oxidation. Biochem J 1997;324 (Pt 1):1-18.

81. Stadtman ER, Levine R. Protein oxidation. Ann NY Acad Sci 2000;899(1):191-208. doi: 10.1111/j.1749-6632.2000.tb06187.x

82. Paulsen CE, Carroll KS. Cysteine-mediated redox signaling: Chemistry, biology, and tools for discovery. Chem Rev 2013;113(7):4633-79. doi: 10.1021/cr300163e

83. Shringarpure R, Grune T, Davies KJ. Protein oxidation and 20s proteasome-dependent proteolysis in mammalian cells. Cell Mol Life Sci 2001;58(10):1442-50. doi: 10.1007/pl00000787

84. Shringarpure R, Davies KJ. Protein turnover by the proteasome in aging and disease. Free Radic Biol Med 2002;32(11):1084-9.

85. Suzuki YJ, Carini M, Butterfield DA. Protein carbonylation. Antioxid Redox Signal 2010;12(3):323-5. doi: 10.1089/ars.2009.2887

86. Herec-Pagliai C, Kotecha S, Shuker DE. Analytical methods for 3-nitrotyrosine as a marker of exposure to reactive nitrogen species: A review. Nitric Oxide 1998;2(5):324-36. doi: 10.1006/nixo.1998.0192

87. Moncada S, Palmer RM, Higgs EA. Nitric oxide: Physiology, pathophysiology, and pharmacology. Pharmacol Rev 1991;43(2):109-42.

88. Kolb-Bachofen V, Kuhn A, Suschek CV. The role of nitric oxide. Rheumatology 2006;45(suppl_3):iii17-9. doi: 10.1093/rheumatology/ke1287

89. Sahni S, Hickok JR, Thomas DD. Nitric oxide reduces oxidative stress in cancer cells by forming dinitrosyliron complexes. Nitric Oxide 2018;76:37-44. doi: 10.1016/j.niox.2018.03.003

90. Marletta MA. Nitric oxide synthase structure and mechanism. J Biol Chem 1993;268(17):12231-4.

91. Sharma JN, Al-Omran A, Parvathy SS. Role of nitric oxide in inflammatory diseases. Inflammopharmacology 2007;15(6):252-9. doi: 10.1007/s10787-007-0013-x

92. Greenwald RA. Oxygen radicals, inflammation, and arthritis: Pathophysiological considerations and implications for treatment. Semin Arthritis Rheum 1991;20(4):219-40.

93. Forstermann U, Sessa WC. Nitric oxide synthases: Regulation and function. Eur Heart J 2012;33(7):829-37, 37a-37d. doi: 10.1093/eurheartj/ehr304

94. Andrew PJ, Mayer B. Enzymatic function of nitric oxide synthases. Cardiovasc Res 1999;43(3):521-31.

95. Beckman JS, Crow JP. Pathological implications of nitric oxide, superoxide and peroxynitrite formation. Biochem Soc Trans 1993;21(2):330-4.

96. Ischiropoulos H, Zhu L, Beckman JS. Peroxynitrite formation from macrophage-derived nitric oxide. Arch Biochem Biophys 1992;298(2):446-51.

97. Blokhina O, Virolainen E, Fagerstedt KV. Antioxidants, oxidative damage and oxygen deprivation stress: A review. Ann Bot 2003;91 Spec No:179-94.

98. Bowler C, Montagu MV, Inzé D. Superoxide dismutase and stress tolerance. Annu Rev Plant Biol 2003;43(1):83-116. doi: 10.1146/annurev.pp.43.060192.000503

99. Mruk DD, Silvestrini B, Mo MY, Cheng CY. Antioxidant superoxide dismutase - a review: Its function, regulation in the testis, and role in male fertility. Contraception 2002;65(4):305-11.

100. Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG. Selenium: Biochemical role as a component of glutathione peroxidase. Science 1973;179(4761):588-90.

101. Sies H, Berndt C, Jones DP. Oxidative stress. Annu Rev Biochem 2017;86:715-48. doi: 10.1146/annurev-biochem-061516-045037

102. Brennan LA, Kantorow M. Mitochondrial function and redox control in the aging eye: Role of MsrA and other repair systems in cataract and macular degenerations. Exp Eye Res 2009;88(2):195-203. doi: 10.1016/j.exer.2008.05.018

103. Panz T, Wojcik R, Krukar-Baster K. Activity of superoxide dismutase obtained from senile cataract lens - effect of diabetes mellitus. Acta Biochim Pol 2008;55(4):821-3.

104. Foresman EL, Miller FI, Jr. Extracellular but not cytosolic superoxide dismutase protects against oxidant-mediated endothelial dysfunction. Redox Biol 2013;1:292-6. doi: 10.1016/j.redox.2013.04.003

105. Li Y. Antioxidants in Biology and Medicine. New York: Nova Science Publishers, Inc; 2011.

106. Johansen JS, Harris AK, Rychly DJ, Ergul A. Oxidative stress and the use of antioxidants in diabetes: Linking basic science to clinical practice.
Natural antioxidants against mercury poisoning: A Review

Cardiovasc Diabetol 2005;4:5. doi: 10.1186/1475-2840-4-5

107. Imai H, Nakagawa Y. Biological significance of phospholipid hydroperoxide glutathione peroxidase (PHGPX, GPX4) in mammalian cells. Free Radic Biol Med 2003;34(2):145-69.

108. Brigelius-Flohe R, Maiorino M. Glutathione peroxidases. Biochim Biophys Acta 2013;1830(5):3289-303. doi: 10.1016/j.bbagen.2012.11.020

109. Knappen MF, Zusterzeel PL, Peters WH, Steegers EA. Glutathione and glutathione-related enzymes in reproduction. A review. Eur J Obstet Gynec Reprod Biol 1999;82(2):171-84.

110. Avisar N, Ornt DB, Yagil Y, Horowitz S, Watkins RH, Kerl EA, et al. Human kidney proximal tubules are the main source of plasma glutathione peroxidase. Am J Physiol 1994;266(2 Pt 1):C367-75. doi: 10.1152/ajpren.1994.266.2.C367

111. Halliwell B, Gutteridge JMC. Free Radicals in Biology and Medicine. USA: Oxford University Press; 2015.

112. Hayes JD, Flanagan JU, Jowsey IR. Glutathione transferases. Annu Rev Pharmacol Toxicol 2005;45:51-88. doi: 10.1146/annurev.pharmtox.45.120403.095875

113. Armstrong RN. Structure, catalytic mechanism, and evolution of the glutathione transferases. Chem Res Toxicol 1997;10(1):2-18. doi: 10.1021/tr960072x

114. Mannervik B, Board PG, Hayes JD, Listowsky I, Pearson WR. Nomenclature for mammalian soluble glutathione transferases. Methods Enzymol 2005;401:1-8. doi: 10.1016/s0076-6879(05)01001-3

115. LeBlanc GA, Dauterman WA. Conjugation and elimination of toxicants. In: Hodgson E, Smart RC, editors. Introduction to biochemical toxicology. 3rd ed. New York: Wiley; 2001.

116. Gyamfi MA, Ohtani, II, Shinno E, Aniya Y. Inhibition of glutathione S-transferases by thonningianin A, isolated from the african medicinal herb, thonningia sanguinea, in vitro. Food Chem Toxicol 2004;42(9):1401-8. doi: 10.1016/j.fct.2004.04.001

117. Couto N, Wood J, Barber J. The role of glutathione reductase and related enzymes on cellular redox homeostasis network. Free Radic Biol Med 2016;95:27-42. doi: 10.1016/j.freeradbiomed.2016.02.028

118. Candas M, Sohal RS, Radyuk SN, Klichko VI, Orr WC. Molecular organization of the glutathione reductase gene in drosophila melanogaster. Arch Biochem Biophys 1997;339(2):323-34. doi: 10.1006/abbi.1996.9872

119. Nimse SB, Pal D. Free radicals, natural antioxidants, and their reaction mechanisms. Rec Adv 2015;5(35):27986-8006. doi: 10.1039/C4RA13315C

120. Meister A, Anderson ME. Glutathione. Annu Rev Biochem 1983;52:711-60. doi: 10.1146/annurev.bi.52.070183.003431

121. Schmitt B, Vicenzi M, Garrel C, Denis FM. Effects of N-acetylcyesteine, oral glutathione (GSH) and a novel sublingual form of gsh on oxidative stress markers: A comparative crossover study. Redox Biol 2015;6:198-205. doi: 10.1016/j.redox.2015.07.012

122. Niki E. Role of vitamin e as a lipid-soluble peroxyl radical scavenger: In vitro and in vivo evidence. Free Radic Biol Med 2014;66:3-12. doi: 10.1016/j.freeradbiomed.2013.03.022

123. Carr AC, Maggini S. Vitamin C and immune function. Nutrients 2017;9(11): pii: E1211. doi: 10.3390/nu9111211

124. Pisoschi AM, Pop A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur J Med Chem 2015;97:55-74. doi: 10.1016/j.ejmech.2015.04.040

125. Krishnaiah D, Sarbatly R, Nithyanandam R. A review of the antioxidant potential of medicinal plant species. Food Bioprod Process 2011;89(3):217-33. doi: 10.1016/j.fbp.2010.04.008

126. Kasote DM, Hegde MV, Kalyare SS. Mitochondrial dysfunction in psychiatric and neurological diseases: Cause(s), consequence(s), and implications of antioxidant therapy. Biofactors 2013;39(4):392-406. doi: 10.1002/biof.1093

127. Gulcin I. Antioxidant activity of food constituents: An overview. Arch Toxicol 2012;86(3):345-91. doi: 10.1007/s00204-011-0774-2

128. Manach C, Mazur A, Scalbert A. Polyphenols and prevention of cardiovascular diseases. Curr Opin Lipidol 2005;16(1):77-84.

129. Parr AJ, Bolwell GP. Phenols in the plant and in man. The potential for possible nutritional enhancement of the diet by modifying the phenols content or profile. J Sci Food Agric 2000;80(7):985-1012. doi: 10.1002/(SICI)1097-0010(20000515)80:7<985::AID-JSFA572>3.0.CO;2-7

130. Manach C, Williamson G, Morand C, Scalbert A, Remesy C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr 2005;81(1 Suppl):230s-42s. doi: 10.1093/ajcn/81.1.230S

131. Ansar S, Ibqal M. Protective effect of diallysulphide against mercuric chloride-induced hepatic injury in rats. Hum Exp Toxicol 2016;35(12):1305-11. doi: 10.1177/0960327116629723

132. Unsal V, Kurutas EB, Güngör M, Emrah AM. Role of protective Pelargonium Sidoides root extract and Curcumin on Mushroom poisoning: An Experimental study in rats. Int J Phytomedicine 2017;9(2):261-6. doi: 10.5138/ijpm.2018.9.2.0205

133. Agarwal R, Goel SK, Behari JR. Detoxification and antioxidant effects of curcumin in rats experimentally exposed to mercury. J Appl Toxicol 2010;30(5):457-68. doi: 10.1002/jat.1517

134. Kalender S, Uzun FG, Demir F, Uzunhisarcıklı M, Aslantuğ A. Mercuric chloride-induced testicular toxicity in rats and the protective role of sodium
selenite and vitamin e. *Food Chem Toxicol* 2013;55:456-62. doi: 10.1016/j.fct.2013.01.024

135. Pal M, Ghosh M. Studies on comparative efficacy of α-linolenic acid and α-oleostearic acid on prevention of organic mercury-induced oxidative stress in kidney and liver of rat. *Food Chem Toxicol* 2012;50(3-4):1066-72. doi: 10.1016/j.fct.2011.12.042

136. Zhang H, Tan X, Yang D, Lu J, Liu B, Baiyun R, et al. Dietary luteolin attenuates chronic liver injury induced by mercuric chloride via the Nrf2/Nf-κB/P53 signaling pathway in rats. *Oncotarget* 2017;8(25):40982-93. doi: 10.18632/oncotarget.17334

137. Joshi D, Srivastav SK, Belemkar S, Dixit VA. *Zingiber officinale* and 6-gingerol alleviate liver and kidney dysfunctions and oxidative stress induced by mercuric chloride in male rats: A protective approach. *Biomed Pharmacother* 2017;91:645-55. doi: 10.1016/j.biopha.2017.04.108

138. Abarikwu SO, Benjamin S, Ebah SG, Obilor G, Agbam G. Oral administration of moringa oleifera oil but not coconut oil prevents mercury-induced testicular toxicity in rats. *Andrologia* 2017;49(1). doi: 10.1111/and.12597

139. Abdel Moneim AE. The neuroprotective effect of berberine in mercury-induced neurotoxicity in rats. *Metab Brain Dis* 2015;30(4):935-42. doi: 10.1007/s11011-015-9652-6

140. Gao D, Zeng LN, Zhang P, Ma ZJ, Li RS, Zhao YL, et al. Rhubarb anthraquinones protect rats against mercuric chloride (HgCl$_2$)-induced acute renal failure. *Molecules* 2016;21(3):298. doi: 10.3390/molecules21030298

141. Koh SH, Kwon H, Park KH, Ko JK, Kim JH, Hwang MS, et al. Protective effect of diallyl disulfide on oxidative stress-injured neurally differentiated PC12 cells. *Brain Res Mol Brain Res* 2005;133(2):176-86. doi: 10.1016/j.molbrainres.2004.10.006

142. Sener G, Sehirli O, Tozan A, Velioglu-Ovunc A, Gedik N, Omurtag GZ. Ginkgo biloba extract protects against mercury(II)-induced oxidative tissue damage in rats. *Food Chem Toxicol* 2007;45(4):543-50. doi: 10.1016/j.fct.2006.07.024

143. Zhang J, Lu S, Wang H, Zheng Q. Protective role of aralia elata polysaccharide on mercury(II)-induced cardiovascular oxidative injury in rats. *Int J Biol Macromol* 2013;59:301-4. doi: 10.1016/j.ijbiomac.2013.04.047

144. Sarwar Alam M, Kaur G, Jabbar Z, Javed K, Athar M. Eruca sativa seeds possess antioxidant activity and exert a protective effect on mercuric chloride induced renal toxicity. *Food Chem Toxicol* 2007;45(6):910-20. doi: 10.1016/j.fct.2006.11.013

145. Siouda W, Abdennour C. Can urtica dioica supplementation attenuate mercury intoxication in wistar rats? *Vet World* 2015;8(12):1458-65. doi: 10.14202/vetworld.2015.1458-1465

146. Jagadeesan G, Shakeela EV. Antioxidative and free radical scavenging properties of piper cubeba (piperaceae) in mercury intoxicated mice, *mus musculus*. *Am J Pharm Health Res* 2016;4(6):23-35.

147. Sugunavarman T, Ganesan J, Sampillai SS. Tribulus terrestris extract protects against mercury-induced oxidative tissue damage in mice. *J Ecobiotechnol* 2010;2(1):59-65.

148. Varadharajan, Vanithasri, and Jagadeesan Ganesan. "Restoration of Antioxidant Activity by N-acetylcysteine and Gallic Acid on Kidney Tissue of Mercuric Chloride Intoxicated Wistar Rats.” *Int J Appl Biol Pharm 4.4* (2013): 302-307.

149. Tan X, Liu B, Lu J, Li S, Baiyun R, Lv Y, et al. Dietary luteolin protects against hgcl2-induced renal injury via activation of nrf2-mediated signaling in rat. *J Inorg Biochem* 2018;179:24-31. doi: 10.1016/j.jinorgbio.2017.11.010