Original Article

Point-A vs. volume-based brachytherapy for the treatment of cervix cancer: A meta-analysis

Varsha Hande a,b, Supriya Chopra a,1, Babusha Kalra a, May Abdel-Wahab b, Sadhana Kannan c, Kari Tanderup d, Surbhi Grover c,d, Eduardo Zubizarreta a, Jose Alfredo Polo Rubio b,c,⇑

a Department of Radiation Oncology, Advanced Centre for Treatment Research and Education in Cancer, Tata Memorial Centre, Homi Bha...
meta-analysis reported superior overall survival [HR 0.78 (95%CI 0.62–0.98)] and pelvic disease-free survival [HR of 0.75 (95%CI 0.62–0.90)], with lower toxicities for IGBT, compared to point-A BT [15].

Although IGBT transition has been recommended across guidelines, available supporting evidence are largely prospective studies with no comparator arms. There is only one ongoing phase III trial of point-A vs. volume-based BT [16]. Transition requires modification of workflows, access to scanners, specialized equipment (MR compatible applicators) and highly skilled staff [17,18]. Introduction of such treatment modalities requiring specialized equipment and incurring significant costs require detailed evaluations of effectiveness and affordability, especially since high incidence occurs in LMICs, where access to technology and MRI scanners is limited (e.g., 27–37 MRI units per million population in high-income countries compared to 0.24–2.6 units in LMICs) [19,20]. This led to significant efforts by healthcare organisations to support research on radiotherapy resource allocation [17,18,21–23].

The present meta-analysis was undertaken to pool available contemporary evidence and evaluate if management of locally advanced cervical cancers with IGBT improves outcomes.

Methods

Literature search for this study was performed in accordance to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) [26] statement, along with hand searches of reference sections of included studies.

Search strategy

PubMed/Medline, ScienceDirect, Web of Science, and Cochrane Reviews were searched in February 2019 and updated in April 2021 by the lead author (VH). A second search was done independently in February 2020 by another reviewer (BK). Search terms are provided in Supplementary Table A1. The search was restricted to studies published in English. Titles and abstracts were reviewed, and studies fulfilling selection criteria were included. Full texts were reviewed by three independent reviewers (VH, SC, BK), and discrepancies were discussed and resolved. All selected studies were included in the meta-analysis.

Article eligibility characteristics

Cohort, cross-sectional and clinical trial study designs (Phase II-III) published after 2000 (chemoradiation era) were included. Studies must have reported 3- or 5-year outcomes, with minimum 2-year follow-up. Required sample size was 50. However, articles with multiple patient group were included even if individual groups had n < 50. The following study designs were excluded: qualitative studies, reviews, abstracts, commentaries, and case reports. Studies not reporting EBRT, BT techniques or dose to point-A/ high-risk clinical target volumes were excluded.

Study population eligibility characteristics

Study samples of cervix carcinoma patients with squamous, adenocarcinoma or adeno-squamous histology were included. Other histologies (clear cell carcinoma, neuroendocrine cervix tumours, cervical sarcomas) were excluded. Studies of patients with human immunodeficiency virus infections were excluded.

Treatment eligibility characteristics

Treatment criteria for inclusion was optimal platinum-based chemo-radiotherapy and either high-dose rate (HDR) or pulsed-dose rate (PDR) BT. Treatments without chemotherapy, involving adjuvant chemotherapy or surgery were ineligible. Acceptable dose prescription modalities were point-A based (X-ray based or CT-based) or volume-based (3D CT-based or 3D MRI-based) BT.

Outcome measures

The primary outcome was DFS at three years (3yDFS). The secondary outcomes were LC at three years (3yLC), OS at three years (3yOS) and late grade 3 or grade 4 gastrointestinal and genitourinary toxicity. Outcomes should have been reported according to prescription type (point-A or volume-based), and as percentage or proportion of total sample. Results must have been reported by stage or as an aggregate of all stages combined.
Data analysis

Risk of bias assessment

Methodological Index for Non-Randomized Studies (MINORS) [27] was used for quality assessment of included studies. Studies were assessed for robustness of aims, patient inclusion criteria, data collection methods, endpoint evaluation, time and loss to follow-up and appropriateness of sample size. Thefollowing additional criteria were evaluated if studies were comparative: adequacy of the control group, comparison period, baseline characteristics and statistical analyses.

Data extraction

The following was extracted from included studies: publication details (author, publication year, country, study design, study population, sample size – overall, by stage), treatment details (EBRT dose, BT dose, BT technique [IC or IC-IS], BT dose prescription technique [point-A or volume-based], imaging modality used [X-Ray, CT or MRI], chemotherapy agents and schedule, tumour histology, technique [point-A or volume-based], imaging modality used [X-Ray, CT or MRI], chemotherapy agents and schedule, tumour histology, nodal staging [pelvic or para-aortic]) and outcomes (3 year LC, DFS, OS, toxicity). For each study, RT cumulative dose (EBRT and BT) was calculated using data accumulation formulae to determine equivalent dose in 2 Gy (EQD2) [28]. While final meta-analysis included all studies, additional sub-analysis was performed with studies administering EQD2 doses of at least 80 Gy (to point A or HRCTV). LC was defined across all studies as the proportion of patients who did not have local or primary relapse at three years from date of inclusion. Heterogeneity for DFS definition was noted across studies (Supplementary Table A2). For this meta-analysis, DFS definition used by most studies (proportion of patients from date of inclusion to date of disease relapse, censoring, last follow up or final analysis in case patient did not relapse) was chosen. DFS outcome was corrected by excluding “death due to other causes” and verified by contacting primary authors [5,10]. OS was defined as the proportion of patients alive three years after treatment. Late toxicity was defined as toxicity that persisted or appeared 90 days after treatment completion. It was reported as the proportion of patients with late-stage grade 3 and/or grade 4 gastrointestinal or genitourinary toxicity.

Statistical methods

Three-year DFS, LC, OS, and toxicity were noted for each study. If only 5-year outcomes were reported, 3-year outcomes were extrapolated from survival curves. All outcomes were treated as percentages (binary data). Data was input as proportions (numerator) and sample size (denominator). Total events were calculated from these proportions. Studies were classified according to BT prescription technique (point-A and volume-based) and subgroup meta-analysis was performed. A random-effects model was used to obtain combined effect sizes and to account for heterogeneity. Confidence intervals were calculated using exact binomial and score tests. Weighting was done using the inverse variance method. Forest plots were constructed according to BT prescription subgroups. Differences in subgroup outcomes were verified through regression analysis. Between-study variation was determined by the I^2 value. Funnel plots were constructed to depict publication bias. Sensitivity analysis was done for all outcomes to observe effects of each study on subgroup effect size (Supplementary Figure A1). P-values < 0.05 were considered statistically significant. All analyses were performed using STATA version 14 [29].

Results

The literature search identified 5322 studies. From these, 343 full-text studies were selected for review, and 319 were excluded (Supplementary Table A3). Thus, 24 studies [3,5,6,8-10,30-47] were included. Samples from three studies [30,31,45] were analysed as separate groups according to prescription types (point-A cohort and volume-based cohort), leading to 27 studies with 5488 patients (Fig. 1). Demographic characteristics of included studies are listed in Table 1. Eleven studies (1538 patients) were point-A based [30-32,34,39,41,42,45,46] and 16 studies (3950 patients) were volume-based [3,5,6,8-10,31,33,35-38,44,47].

Table 1

Demographic characteristics of included studies.

Study	Country	Accrual Period	Study Type	No. of Groups	Type of BT	n	F/U#
Chatani 2014 (Group A)	Japan	1998–2009	Retrospective	2	Point A	98	36–84
Chatani 2014 (Group B)	Japan	1998–2009	Retrospective	2	Point A	120	36–84
Derks 2018 (Group 2D)	Netherlands	1997–2009	Retrospective	2	Point A	35	44 (6–166)
Derks 2018 (Group 3D)	Netherlands	2009–2016	Retrospective	1	Volume-based	91	35 (5–97)
Dracham 2018	India	2013–2015	Retrospective	1	Point A	210	37 (15–54)
Gill 2015	USA	2007–2013	Retrospective	1	Volume-based	128	24.4 (2.1–77.2)
Hallock 2011	Canada	2004–2008	Retrospective	1	Point A	57	22.6 (2.5–54.1)
Horeweg 2019	Netherlands	2008–2016	Retrospective	1	Volume-based	155	56.7 (27.8–79.3)
Horne 2018	USA	2007–2018	Retrospective	1	Volume-based	239	28.6 (12.7–53.8)
Kang 2010	Korea	2001–2005	Retrospective	1	Volume-based	97	41 (8–60)
Kawashima 2019	Japan	2012–2015	Retrospective	1	Volume-based	84	36 (2–62)
Kim 2018	Germany	2008–2013	Retrospective	1	Volume-based	128	44 (6–78)
Koh 2017	Singapore	2008–2014	Retrospective	1	Volume-based	95	29 (6–76)
Lindegaard 2013	Denmark	2005–2011	Retrospective	1	Volume-based	140	36 (6–78)
Mittal 2018	India	2014–2015	Retrospective	1	Point A	339	28 (4–45)
Murakami 2014	Japan	2008–2010	Retrospective	1	Volume-based	51	39.2 (24.3–52.0)
Parker 2009	UK	1999–2004	Retrospective	1	Volume-based	156	42
Potter 2011	Austria	2001–2008	Retrospective	1	Volume-based	1318	51 (20–64)
Potter 2021	-	2008–2015	Prospective	1	Volume-based	154	38 (6–60)
Rahshah 2015	Iran	2008–2015	Retrospective	1	Point A	170	37 (2–136)
Ribeiro 2016	Belgium	2002–2012	Retrospective	1	Volume-based	73	47 (2–169)
Sturdza 2016	-	1998–2013	Retrospective	1	Volume-based	172	35
Tharavichitkul 2012 (Group A)	Thailand	2004–2006	Prospective	2	Point A	350	35
Tharavichitkul 2012 (Group B)	Thailand	2004–2006	Prospective	2	Point A	188	35
Tiwari 2018	India	2014–2017	Retrospective	1	Volume-based	151	26 (9–41)
Wang 2017	China	2006–2014	Retrospective	1	Point A	73	32.4 (4.8–118.8)
Zolciak-Siwinska 2016	Poland	2010–2011	Retrospective	1	Volume-based	216	52 (37–63)

*multicentric accrual.
Table 2
Patient and treatment characteristics of included studies.

Study	Stage	EBRT (Gy)	Imaging	BT Technique	EQD2 (Gy)	OTT (days) Median (range)	Squamous, Adeno (%)	Node * (%)	3yLC (%)	3yDFS (%)	3yOS (%)	Toxicity Scoring System	GI Toxicity (%)	GU Toxicity (%)
Chatani Group A 2014	IB-IV	42	X-ray	IC	80.0	NR	89, 11	NR	86	70.5	NR	NCI-CTCAE 1.1	1.1	1.1
Chatani Group B 2014	IB-IV	52	X-ray	IC	77.0	NR	89, 11	NR	93	75.5	NR	NCI-CTCAE 1.7	1.7	1.7
Derks 2D 2018	IB-IVA	45	CT/MR	IC	74.0	47	89, 11	29	84	57	NR	CTCAE 4.0	11.4	5.7
Dracham 2018	II-III	46	CT	IC	74.5	NR	93, 7	22	90.5	80.9	84.2	CTCAE 3.0	4.2	0.9
Hallock 2011	II-IIIB	45	CT	IC	82.9	NR	74, 18	16	83	62	86	NR	NR	NR
Mittal 2018	IB-IIVA	45	X-ray, CT	IC*	84.0	63 (61–72)	93.5	23	89.5	71.9	76.2	NR	4.7	NR
Parker 2009	IB-IIVA	45	X-ray	IC	76.3	61 (45–94)	79, 17	39	70	NR	70	NCI-CTCAE 3.0	NR	4
Hallock 2011	II-IIIB	45	CT	IC	82.9	NR	74, 18	16	83	62	86	NR	NR	NR
Mittal 2018	IB-IIVA	45	X-ray, CT	IC*	84.0	63 (61–72)	93.5	23	89.5	71.9	76.2	NR	4.7	NR
Parker 2009	IB-IIVA	45	X-ray	IC	76.3	61 (45–94)	79, 17	39	70	NR	70	NCI-CTCAE 3.0	NR	4
Tharavichitkul Group A 2012	IB-IIVA	50	X-ray	IC	81.0	49	83, 14	NR	90.5	71.9	76.2	NR	4.7	NR
Tharavichitkul Group B 2012	IB-IIVA	50	X-ray	IC	82.0	49	72, 17	NR	90.5	71.9	76.2	NR	4.7	NR
Wang 2017	IB-IIVA	50.4	CT	IC	89.0	50 (26–87)	93, 5	15	79.5	66.5	64.9	CTCAE 3.0	4.1	2.7

Volume-based studies

Horne 2018	IB1-IVA	NR	MR	IC-IS	83.7	51 (40–55)	81, 19	49	88	71	NR	NCI-CTCAE 8.8	3.3	
Derks 3D 2018	IB1-IVA	NR	MR	IC-IS	83.0	50 (43–78)	83, 16	43	90.4	80	74.8	CTCAE 3.0	3.6	0.8
Gill 2015	IB1-IVA	45	CT/MR	IC-IS	81.8	57 (46–91)	90,7	64	93.5	79.8	85.5	NR	NR	NR
Horeweg 2019	IB1-IVA	45	MR	IC-IS	83.8	42 (41–45.5)	81, 14	56	93.5	79.8	85.5	NR	NR	NR
Kage 2010	IB1-IVA	45	CT/MR	IC	81.8	57 (46–91)	90,7	64	93.5	79.8	85.5	NR	NR	NR
Kawashima 2019	IB1-IVA	50	CT	IC	73.4	NR	85, 15	33	89	81	94	CTCAE 4.0	5.5	NR
Kim 2018	IB1-IVA	45	MR	IC	90.4	56 (43–94)	82, 9	62	94.8	76.8	69.7	CTCAE 3.0	11	2
Koh 2017	IB1-IVA	51	CT	IC	80.0	NR	82, 11	NR	94.8	76.8	69.7	CTCAE 3.0	11	2
Lindegaard 2013	IB1-IVA	46	MR/CT	IC-IS	91.0	47 (36–70)	83, 12	50	91	79	NR	CTCAE 3.0	11	2
Murakami 2014	IB1-IVA	50	CT MR	IC	64.0	42 (36–67)	94, 6	22	91.7	85.3	82.4	NR	NR	NR
Potter 2011	IA-IVA	45	MR	IC	93.0	48	86, 9	62	95	75	68	LENT SOMA 8	5	
Potter 2021	IB-IVA	45	CT/MR	IC-IS	89.0	46 (42–50)	82, 14	52	92	72	81	LENT SOMA 7.6	6.5	
Ribeiro 2016	IB1-IVA	45	MR, CT	IC-IS	85.0	53.6 (41–65)	82, 11	54	96	73	NR	CTCAE 4.0	2	11
Sturdza 2016	IB1-IVA	46	MR, CT	IC-IS	83.0	NR	85, 9	40	91	74	NR	CTCAE 3.0	6.5	4.5
Tiwari 2018	IB1-IIIB	45	MR/CT	IC-IS	79.0	48 (33–76)	94, 5	50	88.7	82.2	NR	CTCAE 3.0	1.9	1.9
Zolciak-Siwinska 2016	IB1-IWA	45	CT	IC	88.0	NR	92, 5	23	NR	75	NR	LENT SOMA 4.2	3.3	

*% IC-IS.

*in months, median (minimum – maximum).
Point-A studies were published from 2009 to 2018, and volume-based studies were published between 2010 and 2021. Median accrual period for point-A patients was 2004 – 2009, and for volume-based patients, it was 2008 – 2011. Twenty-five studies were retrospective cohorts, and 2 reported prospective cohorts (Potter 2021 [3] and Tharavichitkul [45]). The proportion of prospectively enrolled patients was 23% for point-A studies and 33% for volume-based studies. Three studies [30,31,45] had comparative arms; 2 studies compared fractionation schedules [30,45] and 1 [31] compared patients with and without MRI guidance during BT. Treatment characteristics are summarized in Table 2. Mean EBRT dose was 47 Gy (range 42 Gy – 52 Gy). Twenty-five studies used cisplatin-based chemotherapy, one used carboplatin, and one did not report chemotherapy details. Following was the distribution of imaging modalities used for BT planning: X-ray (7 studies), CT (6 studies), MR (5 studies), CT and X-ray (1 study), CT and MR (8 studies). Mean cumulative EQD2 dose was 80 Gy (74 Gy – 89 Gy) to point-A for point-A studies and 83.3 Gy (64 Gy – 93 Gy) to CTVHR D90 for volume-based studies. Risk of bias in the included studies was low to moderate (supplementary Table A4). The results of individual study outcomes are provided in Table 2.

Disease-Free survival

Nineteen studies (4011 patients) reported a 3yDFS of 75% (95% CI 72%-78%). Seven were point-A studies (1193 patients) and 12 (2818 patients) were volume-based. Point-A 3yDFS was 68% (95% CI 61%–74%) and volume-based 3yDFS was 79% (95% CI 76%-82%) (Fig. 2), p = 0.001. Point A heterogeneity was $I^2 = 82\%$, $p < 0.05$ and volume-based heterogeneity was lower ($I^2 = 58\%$, $p = 0.01$). Between-group heterogeneity was considerable ($I^2 = 77\%$, $p < 0.01$).

A sub-analysis comparing 3yDFS for 15 studies (3515 patients) administering minimal EQD2 of 80 Gy (to point A or HRCTV was done. Overall 3yDFS was 73% (95% CI 69% – 76%). Six point A (983 patients) and 9 volume-based studies (2532 patients) reported 3yDFS of 64% (95% CI 59% – 70%), and 77% (95% CI 74% – 80%) respectively. This 13% difference was significant ($p < 0.001$). Within-group heterogeneity was similar among both groups ($I^2 = 64\%$, $p = 0.02$) and ($I^2 = 60\%$, $p = 0.01$). Between-group heterogeneity was higher ($I^2 = 78\%$, $p < 0.05$). (Supplementary Figure A2).

Local control

Twenty-four studies (4974 patients) reported 91% (95% CI 89%-92%) 3yLC. Eight point-A studies (1024 patients) 16 volume-based studies (3950 patients) reported 3yLC of 86% (95% CI 81%-90%) and 92% (91%-94%) respectively (Fig. 3), $p = 0.01$. Heterogeneity was higher for point-A studies ($I^2 = 75\%$, $p < 0.05$) compared to volume-based ($I^2 = 47\%$, $p = 0.02$). Between group heterogeneity was substantial ($I^2 = 67\%$, $p < 0.05$).

The sub-analysis of 16 studies (4015 patients) prescribing EQD2 ≥ 80 Gy reported 92% (95% CI 90% – 93%) 3yLC. Four
Point-A studies (567 patients) and 12 volume-based studies (3448 patients) reported 3yLC of 86% (95% CI 81% – 90%) and 93% (95% CI 92% – 94%) respectively, for which the 7% difference was significant ($p = 0.005$). Within-group heterogeneity was 45% for both subgroups ($p = 0.14$, $p = 0.04$). Between-group heterogeneity was 61% ($p < 0.05$). (Supplementary Figure A3).

Overall survival

Twenty-one studies (4536 patients) reported 3yOS of 76% (95% CI 73% – 80%). Nine point-A (1178 patients) and 12 volume-based (3358 patients) had 3yOS of 72% (95% CI 66–79%) and 79% (95% CI 75–83%) respectively (Fig. 4), $p = 0.125$. Heterogeneity was high both within subgroups ($I^2 = 83$, $p < 0.05$, $I^2 = 87$, $p < 0.05$) and overall ($I^2 = 86$, $p < 0.05$).

EQD2 ≥ 80 Gy sub-analysis included 15 studies (3932 patients) reporting 3yOS of 75% (95% CI 73% – 78%). Five point-A (721 patients) and 10 volume-based studies (3211 patients) reported 3yOS of 71% (95% CI 63% – 80%) and 77% (95% CI 73% – 81%) respectively, where the difference was not significant ($p = 0.255$). High heterogeneity was present both within groups ($I^2 = 84$, $p < 0.05$, $I^2 = 83$, $p < 0.05$) and overall ($I^2 = 85$, $p < 0.05$). (Supplementary Figure A4).

Gastrointestinal toxicity

Twenty-three studies (5050 patients) reported late-stage grade 3/4 gastrointestinal toxicity of 3% (95% CI 3% – 4%). Nine point-A (1389 patients) and 14 volume-based results (3661 patients) showed gastrointestinal toxicity of 3% (95% CI 2% – 4%) and 4% (95% CI 2% – 5%) respectively (Supplementary Figure A5), $p = 0.765$. Point-A heterogeneity was lower ($I^2 = 23$, $p = 0.24$) than volume-based heterogeneity ($I^2 = 78$, $p < 0.05$). Overall heterogeneity was $I^2 = 69$, $p < 0.05$.

Genitourinary toxicity

Seventeen studies (4074 patients) reported late-stage grade 3/4 genitourinary toxicity of 3% (95% CI 2% – 4%). Seven point-A (850 patients) and 10 volume-based studies (3224 patients) reported genitourinary toxicity of 2% (95% CI 1% – 3%) and 3% (95% CI 2% – 5%) respectively (Supplementary Figure A6), $p = 0.455$. Point-A heterogeneity was moderate ($I^2 = 45$, $p = 0.09$) compared to volume-based studies ($I^2 = 82$, $p < 0.05$). Overall heterogeneity was considerable ($I^2 = 77$, $p < 0.05$).

Funnel plots (Supplementary Figure A7), secondary analysis of point-A versus MRI-based studies (Supplementary Figures A8, A9, and A10).
A10) and stage-wise results (Supplementary Table A5) are provided as supplementary material.

Discussion

Though IGBT confers excellent results [3,15,48], there is only one ongoing randomized trial comparing point-A and volume-based BT outcomes [16]. It is unlikely that level 1 evidence supporting IGBT will be accessible soon. Thus, synthesis of available evidence in the form of a meta-analysis may provide the best attestation supporting IGBT implementation in real world.

Kim et al. [48] conducted a meta-analysis of six cervix cancer studies assessing whether 3D-BT reduces toxicity and improves survival, compared to 2D-BT. Lower toxicity (HR 0.54, 95% CI 0.37–0.77), improved loco-regional recurrence-free survival (HR 0.61, 95% CI 0.40–0.93) and progression-free survival (HR 0.75, 95% CI 0.59–0.96) were reported for 3D-BT. Improvement in OS was not demonstrable. Suzumura et al. [15] conducted a meta-analysis with twenty studies demonstrating superior OS (HR 0.78, 95% CI 0.62–0.98), LC (HR 0.77, 95% CI 0.59–0.99), pelvic disease-free survival (HR 0.75, 95% CI 0.62–0.90), and lower grade 3–4 overall (9% lower, 95% CI 6% – 11%) and gastrointestinal toxicities (5% lower, 95% CI 2% – 8%) for 3D-BT. Metastasis-free survival and genitourinary toxicity demonstrated no differences.

The present meta-analysis examines cervix cancer patients treated with point-A versus volume-based BT and demonstrates improvements in 3yLC (6%) and 3yDFS (12%), favouring IGBT. Superior LC in IGBT was previously demonstrated [35,43] as IGBT and IC/IS allow for escalation of target doses [4,35,49]. While a consistent improvement in outcomes is reported in overall cohort or when limited to patients receiving optimal radiation doses, a lower LC benefit compared to DFS can be attributed to separate cohorts reporting each outcome. Alternatively, reduced pelvic nodal failure due to differences in adoption of diagnostic imaging between point-A and volume groups could be responsible. Improved pelvic control rates could have contributed to improved extra-pelvic disease control. Our meta-analysis differs from previous studies through its strict inclusion criteria, applied to reproduce the reality of clinical practice and allow for precise reflection of the differences in outcomes between subgroups.

Our analysis shows small and non-significant differences in toxicities between subgroups. While there was no statistical difference, the slight excess in toxicity from IGBT studies [9] may be attributed to rigorous toxicity reporting, and not necessarily from increased symptoms. Furthermore, larger irradiated volumes (e.g., in poor responders) could have contributed to toxicity. The proportion of patients with prospective morbidity assessment is higher in the volume-based group, which can lead to higher reported incidence, as compared to retrospective assessment.
Therefore, it should be interpreted favourably that the incidence of morbidity in the volume-based group is not significantly higher than the point-A group. A decrease in morbidity after IGBT introduction was reported in several mono-institutional cohorts [4,6,8,35,43] and may be likely when targets are not large. This is expected since average doses to OARs and irradiated volumes [4,33,49] significantly decrease for most patients who responded well to chemoradiation.

While this meta-analysis generates structured evidence, there are limitations. Firstly, included studies demonstrated some heterogeneity. Although this can be explained by differences in populations, methods, BT techniques and follow-up, effect size was affected. Second, we observed disparity in DFS definitions. We considered “any relapse” as DFS definition, but recent (especially IGBT) studies included “death due to other causes” within this definition. This bias was corrected by including the definition used by most studies. Authors of disparate studies were contacted, and corrected DFS values were obtained. Thirdly, stage-wise analysis was not feasible due to inadequate samples and non-reporting of stage-wise outcomes by individual studies. Furthermore, there will continue to be a population of good responders where point-A based approach may provide equivalent outcomes [51].

Based on our results, results of other meta-analyses, and multiple guidelines (ASTRO [13], ESGO-ESTRO [12], National Cancer Grid of India [14]), transition to IGBT from X-ray-based BT is advisable and renders superior outcomes. Volume-based BT improves LC and DFS, with no increase in late toxicity, and should be considered as preferred treatment for locally advanced cervical cancer. Nonetheless, this transition incurs additional costs, resources, training, and personnel [18]. Robust economic evaluation is needed to aid financial comprehension of this transition [52,53]. While studies have demonstrated IGBT cost-efficiency, these are mono-institutional, historical data comparisons, or cost recovery models [35,36]. Linkage with implementation programmes is crucial for wide-spread adoption of IGBT.

Conclusion

These results can be used to inform healthcare systems of the incremental benefits of IGBT for treatment of cervical cancer; and for international development agencies in designing appropriate technical assistance to countries in need.

Disclaimer

Views expressed in this article are authors’ own and not an official position of any institution or funder.

Conflicts of interest statement

None.

Source of support

Professor Chopra acknowledges grant support from IAEA through Coordinated Research Project no. E33042 for this research.

Data sharing statement

This is not an IPD based meta-analysis; however, information on data handling over and above included in methodology can be obtained by contacting corresponding authors.
Point-A vs. Volume-based brachytherapy

[23] Abdel-Wahab M, Gower S, Zubizarreta EH, Polo Rubio JA. Addressing the burden of cervical cancer through IAEA global brachytherapy initiatives. Brachytherapy 2020;19:850–6.

[24] World Health Organisation (2016) UN Joint Global Programme on Cervical Cancer Prevention and Control [Internet], UN Task Force. Available from: https://www.who.int/ncds/un-task-force/un-joint-action-cervical-cancer-leafer.pdf

[25] World Health Organization, Global strategy to accelerate the elimination of cervical cancer as a public health problem. Geneva; 2020. Licence: CC BY-NC-SA 3.0 IGO.

[26] Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Internat J Surg 2021;88. 105906.

[27] Slim K, Nini E, Forestier D, Kwiatkowski F, Panis Y, Chipponi J. Methodological index for non-randomized studies (MINORS): development and validation of a new instrument. ANZ J Surg 2003;73:712–6.

[28] EMBRACE Collaborative Group. Physical-Biological Documentation of Gynaecological HDR BT 2017.

[29] StataCorp. Stata statistical software: Release 14. College Station, TX: StataCorp LP.; 2015.

[30] Chatani M, Tsuboi K, Yagi M, Fujisawa K, Tachimoto R. Radiation therapy for carcinoma of the uterine cervix: comparison of two brachytherapy schedules. J Radiat Res 2014;55:748–53.

[31] Derks K, Steenhuysjen JLG, Berg HAVD, Houterman S, Cnossen J, Haaren PV, et al. Impact of brachytherapy technique (2D versus 3D) on outcome following radiotherapy of cervical cancer. J Contemp Brachytherapy 2018:10:17–25.

[32] Dracham CB, Mahajan R, Rai B, Elangovan A, Bhattacharya T, Ghoshal S. Toxicity and clinical outcomes with definitive three-dimensional conformal radiotherapy (3DCRT) and concurrent cisplatin chemotherapy in locally advanced cervical carcinoma. Jpn J Clin Oncol 2018;49:146–52.

[33] Gill BS, Kim H, Housser C, Kelley JL, Staniaszek J, et al. Computed tomography-planned high-dose-rate brachytherapy for treating cervical cancer: the University of Pittsburgh experience. Int J Radiat Oncol Biol Phys 2015;91:540–7.

[34] Hallock A, Sury K, Batchelor D, VanderSpek L, Yuen J, Hammond A, et al. An early report on outcomes from computed tomographic-based high-dose-rate brachytherapy for locally advanced cervix cancer: A single institution experience. Pract Radiat Oncol 2011;1:173–81.

[35] Horne 2D, Karukonda P, Kalash R, Edwards RP, Kelley JL, Comerci JT, et al. Single-institution experience in 3D MRI-based brachytherapy for cervical cancer for 239 women: can dose overcome poor response? Int J Radiat Oncol Biol Phys 2019;104:157–64.

[36] Kang H-C, Shin KH, Park S-Y, Kim J-Y. 3D CT-based high-dose-rate for cervical cancer: clinical impact on late rectal bleeding and local control. Radiother Oncol 2010;97:507–13.

[37] Kang H-C, Shin KH, Park S-Y, Kim J-Y. CT-based high-dose-rate for cervical cancer: the University of Pittsburgh experience. Int J Radiat Oncol Biol Phys 2019;104:157–64.

[38] Koh V, Choo BA, Lee KM, Tan TH, Low JH, Ng SYJ, et al. Feasibility study of toxicity outcomes using GEC-ESTRO contouring guidelines on CT based instead of MRI-based planning in locally advanced cervical cancer patients. Brachytherapy 2017;16:126–32.

[39] Mittal P, Chopra S, Pant S, Mahantshetty U, Engineer R, Ghosh J, et al. Standard chemoradiation and conventional brachytherapy for locally advanced cervical cancer: is it still applicable in the era of magnetic resonance-based brachytherapy? J Glob Oncol 2018;1:1–9.

[40] Murakami N, Kasamatsu T, Wakita A, Nakamura S, Okamoto H, Inaba K, et al. CT based three dimensional dose-volume evaluations for high-dose-rate intracavitary brachytherapy for cervical cancer. BMC Cancer 2014;14.

[41] Parker K, Gallop-Evans E, Hanna L, Adams M. Five years’ experience treating locally advanced cervical cancer with concurrent chemoradiotherapy and high-dose-rate brachytherapy: results from a single institution. Int J Radiat Oncol Biol Phys 2009;74:140–6.

[42] Rakhsha A, Yousefi Kashi AS, Hoseini SM. Evaluation of survival and treatment toxicity with high-dose-rate brachytherapy with cobalt 60 in carcinoma of cervix. Iran J Cancer Prev 2015;8:e3573.

[43] Ribeiro I, Janssen H, De Brabantere M, Nulens A, De Bal D, Vergote I, et al. Long term experience with 3D image guided brachytherapy and clinical outcome in cervical cancer patients. Radiother Oncol 2016;120:447–54.

[44] Sturda A, Pötter R, Fokdal LU, Haie-Meder C, Tan LT, Mazeron R, et al. Image guided brachytherapy in locally advanced cervical cancer: Improved pelvic control and survival in RetroEMBRACE, a multicenter cohort study. Radiother Oncol 2016;120:426–33.

[45] Tharavichitkul E, Kluin P, Lorvidhaya V, Chakrabhandu S, Pukanapaharn N, et al. The effects of two HDR brachytherapy schedules in locally advanced cervical cancer treated with concurrent chemoradiation: a study from Chiang Mai, Thailand. J Radiat Res 2012;53:281–7.

[46] Wang W, Hou X, Yan J, Shen J, Lie X, Sun S, et al. Outcome and toxicity of radical radiotherapy or concurrent Chemoradiotherapy for elderly cervical cancer women. BMC Cancer 2017;17.

[47] Zolcak-Siwinska A, Gruszczynska E, Bijk M, Jonska-Gmyrek J, Dabkowski M, Staniszek J, et al. Computed tomography-planned high-dose-rate brachytherapy for treating uterine cervical cancer. Int J Radiat Oncol Biol Phys 2016;96:87–92.

[48] Kim YJ, Kang H-C, Kim YS. Impact of intracavitary brachytherapy technique (2D versus 3D) on outcomes of cervical cancer: a systematic review and meta-analysis. Strahlenther Onkol 2020.

[49] Tanderup K, Nielsen SK, Nyyang G-B, Pedersen EM, Rahi L, Aagaard T, et al. From point A to the sculpted pear: MR image guidance significantly improves tumour dose and sparing of organs at risk in brachytherapy of cervical cancer. Radiother Oncol 2010;94:173–80.

[50] Chopra S, Gupta S, Kannan S, Doria T, Engineer R, Mangaj A, et al. Late toxicity after adjuvant conventional radiation versus image-guided intensity-modulated radiotherapy for cervical cancer (PARCER); A randomized controlled trial. J Clin Oncol 2021;39:3682–92.

[51] Gupta A, Dey T, Rai B, Oinam AS, Gy S, Ghoshal S. Point-based brachytherapy in cervical cancer with limited residual disease: A low-and middle-income country experience in the era of magnetic resonance-guided adaptive brachytherapy. JCO Global Oncol 2021;7:1602–9.

[52] Chakraborthy S, Mahantshetty U, Chopra S, Lewis S, Hande V, Gudi S, et al. Income generated by women treated with magnetic resonance imaging-based brachytherapy: A simulation study evaluating the macroeconomic benefits of implementing a high-end technology in a public sector healthcare setting. Brachytherapy 2017;16:981–7.

[53] Kim H, Rajagopalan MS, Berival S, Huq MS, Smith KJ. Cost-effectiveness analysis of 3D image-guided brachytherapy compared with 2D brachytherapy in the treatment of locally advanced cervical cancer. Brachytherapy 2015;14:29–36.