Minimal Length Effect on Thermodynamics and Weak Cosmic Censorship Conjecture in anti-de Sitter Black Holes via Charged Particle Absorption

Benrong Mua,* and Jun Taob†

aPhysics Teaching and Research section, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China and

bCenter for Theoretical Physics, College of Physical Science and Technology, Sichuan University, Chengdu, 610064, PR China

Abstract

In this paper, we investigate minimal length effects on the thermodynamics and weak cosmic censorship conjecture in a RN-AdS black hole via charged particle absorption. We first use the generalized uncertainty principle (GUP) to investigate the minimal length effect on the Hamilton-Jacobi equation. After the deformed Hamilton-Jacobi equation is derived, we use it to study the variations of the thermodynamic quantities of a RN-AdS black hole via absorbing a charged particle. Furthermore, we check the second law of thermodynamics and the weak cosmic censorship conjecture in two phase spaces. In the normal phase space, the second law of thermodynamics and the weak cosmic censorship conjecture are satisfied in the usual and GUP deformed cases, and the minimal length effect makes the increase of entropy faster than the usual case. After the charge particle absorption, the extremal RN-AdS black hole becomes non-extremal. In the extended phase space, the black hole entropy can either increase or decrease. When $T > 2P r_+$, the second law is satisfied. When $T < 2P r_+$, the second law of thermodynamics is violated for the extremal or near-extremal black hole. Finally, we find that the weak cosmic censorship conjecture is legal for extremal and near-extremal RN-AdS black holes in the GUP deformed case.

*Electronic address: benrongmu@cdutcm.edu.cn

†Electronic address: taojun@scu.edu.cn
I. INTRODUCTION

The classical theory of black holes predicts that nothing, including light, could escape from the black holes. However, Stephen Hawking first showed that quantum effects could allow black holes to emit particles [1]. Since then, people have begun to study the thermodynamic properties of black holes as a thermodynamic system, and have made a lot of achievements. For example, using the semiclassical method, Kraus and Wilczek have modeled Hawking radiation as a tunneling effect [2,3]. Hawking radiation related problems are studied in depth by using the null geodesic method and the Hamilton-Jacobi method [4–9]. Analogous to the four laws of thermodynamics, Bardeen et al. has proposed four laws for black holes [10]. The research on black holes and gravitational waves also has made important progress. The first gravitational wave signal GW150914 was directly detected on September 14, 2015. The signal confirms an important prediction of general relativity that there are binary black
hole systems in the universe, and they could combine to form a larger black hole \[^{11}\].

General relativity predicts that the final product of gravitational collapse is the singularity of spacetime. To avoid destructions caused by singularities, Penrose first proposed the weak cosmic censorship conjecture (WCCC) where naked singularities cannot be formed in a real physical process from regular initial conditions \[^{12}\]. In other words, the singularity is always hidden behind the horizon, and the observer at the infinite distance can never observe the existence of the singularity. To test the validity of the weak cosmic censorship conjecture, Wald first tried to overcharge/overspin an extremal Kerr-Newman black hole by throwing a test particle with charge/angular momentum into the event horizon \[^{13}\]. It was found that near-extremal charged/rotating black holes could be overcharged/overspun by absorbing test particles with charge/angular momentum \[^{14–17}\]. However, considering the back reaction and self-force effects, the study suggests that the weak cosmic censorship conjecture may be still satisfied \[^{18–23}\]. Since there is a lack of universal evidence for the weak cosmic censorship conjecture, its validity has been tested in various black holes \[^{24–31}\]. Recently, the validity of the weak cosmic censorship conjecture through absorption of charged particles in extended phase space has been tested in extended phase space, where the cosmological constant is treated as thermodynamic variables. The results showed that the first law of thermodynamics and the weak cosmic censorship conjecture are satisfied, while the second law of thermodynamics is violated for the extremal and near-extremal black holes \[^{32–37}\].

Since the singularity is a point where general relativity fails, we need a broader theory to describe the gravity and quantum behavior of black holes, especially the singularity of spacetime. On the other hand, various theories of quantum gravity, such as loop quantum gravity, string theory, quantum geometry and Doubly Special Relativity, imply the existence of a minimal observable length \[^{38–42}\]. The generalized uncertainty principle (GUP) \[^{43}\] is one of a simple way to realize this minimal observable length. The GUP can be derived from the deformed fundamental commutation relation \[^{44}\] :

\[
[X, P] = i\hbar \left(1 + \beta P^2\right),
\]

where \(\beta = \beta_0/m_p^2\) is some deformation parameter, \(\beta_0\) is a dimensionless number, and \(m_p\) is the planck mass. The minimal observable length is \(\Delta_{\text{min}} = \hbar \sqrt{\beta}\). The value range of \(\beta_0\) is constrained as \(1 \lesssim \beta_0 < 10^{36}\) \[^{45, 46}\]. For a review of GUP, see \[^{47}\]. GUP is one of the simplest models of effective quantum gravity, and many interesting results in the study of
black hole physics have been produced [48–59]. Specifically, the authors of [60] discussed the effect of quantum gravity on the weak cosmic censorship conjecture and showed that the second law of thermodynamics and the cosmic censorship conjecture are violated owing to the rainbow effect.

In this paper, we will discuss the effects of quantum gravity on black hole thermodynamics and the weak cosmic censorship conjecture in the framework of GUP. The rest of this paper is organized as follows. In section II, we derive the GUP deformed Hamilton-Jacobi equation for a particle in the RN-Ads spacetime and discuss its motion around the black hole horizon. In section III, the minimal length effect on the thermodynamics of the black hole is discussed in the extended phase space. In section IV, we investigate the minimal length effect on the validity of the weak cosmic censorship conjecture. We summarize our results in section V.

For simplicity, we set $G = \hbar = c = k_B = 1$ in this paper.

II. DEFORMED HAMILTON-JACOBI EQUATION IN A RN-ADS BLACK HOLE

In this section, we first review the thermodynamic properties of RN-AdS black holes. Then, the GUP deformed Hamilton-Jacobi equation is derived, and the motion of a charge particle near the horizon of the black hole is discussed.

The metric of a Reissner-Nordström anti-de Sitter (RN-AdS) black hole in $(3+1)$ curved spacetime is given by

$$ds^2 = - h(r) dt^2 + \frac{1}{h(r)} dr^2 + r^2 (d\theta^2 + \sin^2 \theta d\varphi^2),$$

with the electromagnetic potential

$$A_\mu = \left(\frac{-Q}{r}, 0, 0, 0 \right),$$

where

$$h(r) = 1 - \frac{2M}{r} + \frac{Q^2}{r^2} + \frac{r^2}{l^2},$$

l is the AdS radius, and M and Q are the ADM mass and charge of the black hole, respectively. The AdS radius l is related to the cosmological constant as $\Lambda = -3/l^2$. The equation $h(r) = 0$ has two positive real roots r_+ and r_-, where the maximum root r_+ represents the radius of the event horizon. The mass of the RN-AdS black hole can be
expressed in terms of r_+

$$M = \frac{1}{2} \left[r_+ + \frac{r_+^3}{l^2} + \frac{Q^2}{r_+} \right]. \quad (5)$$

The Hawking temperature of the AdS-RN black hole is given by

$$T = \frac{\hbar'}{4\pi} = \frac{1}{4\pi r_+} \left(1 + \frac{3r_+^2}{l^2} - \frac{Q^2}{r_+^2} \right). \quad (6)$$

Moreover, the Bekenstein–Hawking entropy and electric potential are

$$S = \frac{A}{4} = \pi r_+^2, \quad \Phi = \frac{Q}{r_+} \quad (7)$$

where $A = 4\pi r_+^2$ is the horizon area.

As a stable thermodynamic system, black holes can be discussed in two phase spaces. In the normal phase where the cosmological constant is a constant, the state parameters satisfy the first law of thermodynamics

$$dM = TdS + \Phi dQ. \quad (8)$$

However, in contrast to the usual first law of thermodynamics, the VdP term is missing in the eqn. (8). Inspired by this, the cosmological constant can been taken as the pressure of the black hole $[61, 62]$. The expression between the cosmological constant and the pressure is given as follows

$$P \equiv -\frac{\Lambda}{8\pi} = \frac{3}{8\pi l^2}. \quad (9)$$

The first law of thermodynamics in extended phase space is the following

$$dM = TdS + \Phi dQ + VdP, \quad (10)$$

where the volume is

$$V = \frac{4}{3} \pi r_+^3. \quad (11)$$

The mass of the black hole M is defined as its enthalpy $[63, 64]$

$$M = U + PV. \quad (12)$$

In $[54]$, we have already derived the Hamilton-Jacobi equations for a scalar particle and a fermion in a curved spacetime background under an electric potential A_μ and showed that these Hamilton-Jacobi equations have the same form as follows:

$$(\partial^\mu I - qA^\mu) (\partial_\nu I - qA_\nu) + m^2 = 0, \quad (13)$$
where I is the action, A_μ is the electromagnetic potential, m and q are the mass and the charge of particle, respectively. In the RN-AdS metric (2), the Hamilton-Jacobi equation (13) reduces to

$$
- \frac{1}{h(r)} \left(\frac{\partial I}{\partial t} - qA_t \right)^2 + h(r) \left(\partial_r I \right)^2 + \frac{(\partial_\theta I)^2}{r^2} + \frac{(\partial_\phi I)^2}{r^2 \sin^2 \theta} + m^2 = 0. \tag{14}
$$

Taking into account the symmetries of the spacetime, we can employ the following ansatz

$$
I = -Et + W(r, \theta) + P_\phi \phi, \tag{15}
$$

where E and P_ϕ are the energy and the z-component of angular momentum of emitted particles, respectively. The magnitude of the angular momentum of the particle L can be expressed in terms of

$$
L^2 = P^2_\theta + \frac{P^2_\phi}{\sin^2 \theta}, \tag{16}
$$

where $P_\theta = \partial_\theta W$. Plugging the above separated action (15) and (16) into eqn. (14), we get

$$
E = q\Phi + \sqrt{\left[P^r (r_+) \right]^2 + \left(m^2 + \frac{L^2}{r^2} \right) h(r)}, \tag{17}
$$

where $P^r (r) = h(r) P_\theta (r) = h(r) \partial_r W$ is the radial momentum of the particle. Since the energy of the particle is required to be a positive value [65, 66], we choose the positive sign in front of the square root. P^r is finite and nonzero at event horizon $r = r_+$, which accounts for the Hawing radiation modeled as a tunneling process [67]. At the horizon $r = r_+$, the eqn. (17) reduces to

$$
E = q\Phi + | P^r (r_+) |. \tag{18}
$$

The above eqn. (18) relates the energy of the particle to the momentum and the potential energy near event horizon $r = r_+$.

To implement deformed fundamental commutation relation (1), one defines

$$
X_i = x_i, \quad P_i = p_i \left(1 + \beta p^2 \right) = p_i \left(\beta p^2 \right), \tag{19}
$$

where $p^2 = \sum_i p_i p_i$, $f(x) = 1 + x$ for the Brau reduction [68, 69]. The operators x_i and p_i are the conventional momentum and position operators satisfying

$$
[x_i, p_j] = i\hbar \delta_{ij}, \quad [x_i, x_j] = [p_i, p_j] = 0, \quad x_i = x_i \quad \text{and} \quad p_i = \frac{\hbar}{i} \frac{\partial}{\partial x_i}. \tag{20}
$$
Using the WKB method, the deformed Hamilton-Jacobi equation in the RN-AdS metric has been obtained \[69–71\]

\[
\frac{1}{h(r)} \left(\frac{\partial I}{\partial t} - q A_t \right)^2 - \chi f^2(\beta \chi) = m^2, \tag{21}
\]

where

\[
\chi = h(r) (\partial_r I)^2 + \frac{(\partial_\theta I)^2}{r^2} + \frac{(\partial_\phi I)^2}{r^2 \sin^2 \theta}. \tag{22}
\]

To solve the deformed Hamilton-Jacobi equation (21), we plug the ansatz eqn. (15) into eqn. (21) and find that

\[
(E + q A_t)^2 = h(r) \chi f^2(\beta \chi) + m^2 h(r), \tag{23}
\]

where

\[
\chi = \frac{[P^r (r)]^2}{h(r)} + \frac{L^2}{r^2}. \tag{24}
\]

To relate E to $P^r (r)$, we might want to evaluate eqn. (23) at the horizon $r = r_+$. However, GUP is an effective model, which is untrustworthy around the Planck scale. The degrees of freedom within a few Planck lengths away from the horizon is usually transplanckian. Moreover, the effective number of these degrees of freedom is very small. Therefore, we evaluate eqn. (23) at the stretched horizon located at $r = r_+ + m_p$ instead of the horizon. We then find that

\[
E = P^r (r_+) f \left(\frac{\beta_0}{4\pi T} \frac{[P^r (r_+)]^2}{m_p} \right) + q \Phi. \tag{25}
\]

where we use eqn. (6) to express $h'(r_+)$ in terms of T. When $E < q \Phi$, the total energy of the RN-AdS black hole flows out the event horizon, and it means the superaddition has happened. When $E \geq q \Phi$, the total energy of the RN-AdS black hole flows in the event horizon. In this paper, we will study the minimal length effect on the thermodynamics of RN-AdS black holes in the $E \geq q \Phi$ case. When $\beta \to 0$, $f \left(\frac{\beta_0}{4\pi T} \frac{[P^r (r_+)]^2}{m_p} \right) \to 1$ and eqn. (25) reduces to eqn. (18).

III. MINIMAL LENGTH EFFECT ON THERMODYNAMICS OF A RN-ADS BLACK HOLE VIA CHARGED PARTICLE ABSORPTION

In this section, we use eqn. (25) to investigate minimal length effects on thermodynamics of a RN-AdS black hole in the normal and extended phase spaces via charged particle absorption. For the convenience of the later discussion, we first give the following formulas:
\[\frac{\partial h}{\partial r} \bigg|_{r=r_+} = 4\pi T, \]
\[\frac{\partial h}{\partial M} \bigg|_{r=r+} = \frac{2}{r_+}, \]
\[\frac{\partial h}{\partial Q} \bigg|_{r=r+} = \frac{2Q}{r_+^2} = \frac{2\Phi}{r_+}, \]
\[\frac{\partial h}{\partial P} \bigg|_{r=r+} = \frac{8\pi r_+^2}{3} - \frac{2V}{r_+}. \]

(26)

A. Normal Phase Space

When the black hole absorbs a charged particle with the mass \(m \), the energy \(E \) and the charge \(q \), only the mass \(M \) and charge \(Q \) of the black hole are varied due to the conservation law. Other thermodynamic variables of the RN-AdS black hole would change accordingly. To check whether the changes of the RN-AdS black hole thermodynamic variables obey the second law of thermodynamics in the normal phase space. The initial and final state of the RN-AdS black hole are represented by \((M, Q, r_+)\) and \((M + dM, Q + dQ, r_+ + dr_+)\), respectively, where \(dM \), \(dQ \) and \(dr_+ \) denote the increases of the mass, charge and radius of the RN-AdS black hole. The functions \(h(M + dM, Q + dQ, r_+ + dr_+) \) and \(h(M, Q, r_+) \) satisfy

\[h(M + dM, Q + dQ, r_+ + dr_+) = h(M, Q, r_+) + \frac{\partial h}{\partial M} \bigg|_{r=r_+} dM + \frac{\partial h}{\partial Q} \bigg|_{r=r_+} dQ + \frac{\partial h}{\partial r} \bigg|_{r=r_+} dr_+, \]

(27)

In the normal phase space, the black hole mass can be regarded as the internal energy. After the black hole absorbs the particle at the event horizon, the change of the internal energy and charge of the black hole satisfies the following relation:

\[dM = E \quad \text{and} \quad dQ = q. \]

(28)

For a test particle, it’s assumed that its energy \(E \) and charge \(q \) are small compared to the corresponding physical quantity of the black hole,

\[q = dQ \ll Q \quad \text{and} \quad E = dM \ll U. \]

(29)

When the black hole absorbs a charged particle, the mass \(M \) and charge \(Q \) are varied. The initial outer horizon radius \(r_+ \) moves to the final outer horizon radius \(r_+ + dr_+ \), which leads to

\[h(M, Q, r_+) = h(M + dM, Q + dQ, r_+ + dr_+) = 0 \]

(30)
From eqns. (26), (27) and (30), the infinitesimal changes in r_+, M and Q are related by
\[4\pi T dr_+ - \frac{2}{r_+} E + \frac{2\Phi}{r_+} q = 0. \] (31)
Combining eqn. (31) with eqns. (7) and (25), we get
\[dS = \frac{P^r (r_+) f \left(\frac{\partial h}{\partial T} \frac{[P^r(r_+)]^2}{m_p} \right)}{T} > 0. \] (32)
Since $f \left(\frac{\partial h}{\partial T} \frac{[P^r(r_+)]^2}{m_p} \right) > 0$, the minimal length effect does not the sign of dS, which shows that the second law of thermodynamics holds in the normal phase space. For the Brauer reduction with $f(x) = 1 + x$, the GUP effect makes the increase of the entropy faster than the usual case.

B. Extended Phase Space

In the extended phase space, the cosmological constant can be treated as the pressure of the black hole. So the initial and final state of the RN-AdS black hole are represented by (M, Q, P, r_+) and $(M + dM, Q + dQ, P + dP, r_+ + dr_+)$, respectively. The functions $h(M + dM, Q + dQ, P + dP, r_+ + dr_+)$ and $h(M, Q, P, r_+)$ satisfy
\[h(M + dM, Q + dQ, r_+ + dr_+) = h(M, Q, P, r_+) + \frac{\partial h}{\partial M} \bigg|_{r=r_+} dM + \frac{\partial h}{\partial Q} \bigg|_{r=r_+} dQ \]
\[+ \frac{\partial h}{\partial P} \bigg|_{r=r_+} dP + \frac{\partial h}{\partial r} \bigg|_{r=r_+} dr_+, \] (33)
In the extended phase space, the black hole mass can be regarded as the gravitational enthalpy which relates to the internal energy as eqn. (12). After the black hole absorbs a particle with the energy E and charge q at the event horizon, the change of internal energy and charge of the black hole satisfy
\[d(M - PV) = E \text{ and } dQ = q. \] (34)
The initial outer horizon radius r_+ moves to the final outer horizon radius $r_+ + dr_+$, which leads to
\[h(M, Q, P, r_+) = h(M + dM, Q + dQ, P + dP, r_+ + dr_+) = 0 \] (35)
From eqns. (26), (33) and (35), the infinitesimal changes in r_+, M, Q and P are related by
\[4\pi T dr_+ - \frac{2}{r_+} E - \frac{2P}{r_+} dV + \frac{2\Phi}{r_+} q = 0. \] (36)
Combining the eqn. (36) with eqns. (7) and (25), we get

\[
dS = \frac{P^r (r_+) f(\frac{\beta_0}{4\pi T} [P^r (r_+)]^2)}{T - 2P_{r_+}}.
\]

(37)

Since \(f(\frac{\beta_0}{4\pi T} [P^r (r_+)]^2) > 0 \), the minimal length effect changes the rate of \(dS \) without changing the sign of \(dS \). When \(T > 2P_{r_+} \), the sign of the denominator in eqn. (37) is always positive. It means that the second law is satisfied in the extended phase space when the black hole is far enough from extremity. When \(T < 2P_{r_+} \), the sign of the denominator in eqn. (37) is always negative. It implies that the second law of thermodynamics is not satisfied for the extremal or near-extremal black hole.

IV. MINIMAL LENGTH EFFECT ON WEAK COSMIC CENSORSHIP CONJECTURE IN A RN-ADS BLACK HOLE

In this section, we investigate the minimal length effect on the weak cosmic censorship conjecture by charge particle absorption in the normal and extended phase spaces. In the test particle limit, the black hole needs to start out close to extremal to have chance to become a naked singularity. So we assume that the initial RN-AdS black hole is a near-extreme black hole. Between two event horizons, there is one and only one minimum point at \(r = r_{\text{min}} \) for \(h'(r) = 0 \). In the near-extremal and extremal cases, the minimum value of \(h(r) \) is not greater than zero,

\[
\sigma \equiv h(r_{\text{min}}) \leq 0,
\]

(38)

where \(\sigma \equiv 0 \) corresponds to the extremal case. If there is a positive real root in the final state \(h(r_{\text{min}} + dr_{\text{min}}) = 0 \), the weak cosmic censorship conjecture is valid. Otherwise, the weak cosmic censorship conjecture is violated. Again, we first give the following partial derivative formulas:

\[
\begin{align*}
\frac{\partial h}{\partial r} &\bigg|_{r=r_{\text{min}}} = 0, \\
\frac{\partial h}{\partial M} &\bigg|_{r=r_{\text{min}}} = -\frac{2}{r}, \\
\frac{\partial h}{\partial Q} &\bigg|_{r=r_{\text{min}}} = \frac{2Q}{r_{\text{+}}^2}, \\
\frac{\partial h}{\partial P} &\bigg|_{r=r_{\text{min}}} = \frac{8\pi r^2}{3}.
\end{align*}
\]

(39)
A. Normal Phase Space

After absorbing a charged particle with the mass m, the energy E and the charge q, the physical parameters of the black hole change from the initial state (M, Q, r_+) to the final state $(M + dM, Q + dQ, r_+ + dr_+)$. The final state value of $h(r)$ at $r = r_{\text{min}} + dr_{\text{min}}$ is given by

$$h(M + dM, Q + dQ, r_{\text{min}} + dr_{\text{min}}) = \sigma + \frac{\partial h}{\partial M}|_{r = r_{\text{min}}} dM + \frac{\partial h}{\partial Q}|_{r = r_{\text{min}}} dQ + \frac{\partial h}{\partial r}|_{r = r_{\text{min}}} dr_+.$$

(40)

Using eqns. (28), (32) and (39), eqn. (40) reduces to

$$h(M + dM, Q + dQ, r_{\text{min}} + dr_{\text{min}}) = \sigma - \frac{P^r(r_+)}{4\pi T} \left[\frac{\beta_0}{m_p}\right]^2 f(\frac{P^r(r_+)}{m_p}) \frac{2Qq}{r_{\text{min}}} \left(\frac{1}{r_+} - \frac{1}{r_{\text{min}}}\right)$$

(41)

When the initial black hole is extremal RN-AdS black hole, $h(r) = 0$ has only one solution in this case, $r_+ = r_{\text{min}}$ and $\sigma = 0$. Therefore eqn. (41) reduces to

$$h(M + dM, Q + dQ, r_+ + dr_+) = -\frac{P^r(r_+)}{4\pi T} \left[\frac{\beta_0}{m_p}\right]^2 f(\frac{P^r(r_+)}{m_p}) \frac{1}{r_{\text{min}}}$$

(42)

which means that an extremal RN-AdS black hole becomes a non-extremal one after the absorption of a charged particle in the normal phase space.

For a near-extremal RN-AdS black hole, by introducing infinitesimal parameters ε, we can define the relationship between r_{min} and r_+ as follows:

$$r_{\text{min}} = r_+ (1 - \varepsilon)$$

(43)

where $\varepsilon \ll 1$. So σ is suppressed by ε in the near-extremal limit. Moreover, the second term of eqn. (41) is only suppressed by the test particle limit, and the third term is suppressed by both the near-extremal limit and the test particle limit, and hence can be neglected. Therefore, eqn. (41) leads to

$$h(M + dM, Q + dQ, r_+ + dr_+) = -\frac{P^r(r_+)}{4\pi T} \left[\frac{\beta_0}{m_p}\right]^2 f(\frac{P^r(r_+)}{m_p}) < 0.$$

(44)

which means that a near-extremal black hole stays near-extremal after the absorption of a charged test particle in the normal phase space. In the normal phase space, we find the weak cosmic censorship conjecture is legal for extremal and near-extremal RN-AdS black holes.
B. Extended Phase Space

In this section, we investigate the minimal length effect on the weak cosmic censorship conjecture via charged particle absorption in the extended phase space. After absorbing a charged particle, the physical parameters of the black hole change from the initial state \((M, Q, P, r_+)\) to the final state \((M + dM, Q + dQ, P + dP, r_+ + dr_+)\). The final state value of \(h(r)\) at \(r = r_{\text{min}} + dr_{\text{min}}\) is given by

\[
h(M + dM, Q + dQ, P + dP, r_+ + dr_+) = \sigma + \frac{\partial h}{\partial M}|_{r=r_{\text{min}}} dM + \frac{\partial h}{\partial Q}|_{r=r_{\text{min}}} dQ + \frac{\partial h}{\partial P}|_{r=r_{\text{min}}} dP + \frac{\partial h}{\partial r}|_{r=r_{\text{min}}} dr_+. \tag{45}
\]

Using eqns. (34), (37) and (39), eqn. (45) reduces to

\[
h(M + dM, Q + dQ, P + dP, r_+ + dr_+\) = \sigma - \frac{2TP^r(r_+)}{(T - 2PR_+) r_{\text{min}}} f\left(\frac{\beta m_p}{4\pi T} (p^r)^2\right) \frac{2Qq}{r_{\text{min}}} \left(\frac{1}{r_+} - \frac{1}{r_{\text{min}}}\right) - \frac{8\pi dP}{r_{\text{min}}} \left(r_+^3 - r_{\text{min}}^3\right). \tag{46}
\]

When the initial black hole is an extremal RN-Ads black hole, \(h(r) = 0\) has only one solution. In this case, \(r_+ = r_{\text{min}}, T = 0\), and \(\sigma = 0\). Therefore eqn. (46) reduces to

\[
h(M + dM, Q + dQ, P + dP, r_+ + dr_+) = 0, \tag{47}
\]

which means that an extremal RN-Ads black hole stays extremal state after the absorption of a charged particle.

For a near-extremal RN-Ads black hole, the second term of eqn. (46) is only suppressed by the test particle limit, however the third and fourth terms of eqn. (46) are suppressed by both the near-extremal limit and the test particle limit, and hence can be neglected. Therefore, eqn. (46) leads to

\[
h(M + dM, Q + dQ, P + dP, r_+ + dr_+) = \sigma - \frac{2TP^r(r_+)}{(T - 2PR_+) r_{\text{min}}} f\left(\frac{\beta m_p}{4\pi T} (p^r)^2\right) < 0. \tag{48}
\]

which means that a near-extremal black hole stays near-extremal after the absorption of charged test particle. In the extended phase space, we find the weak cosmic censorship conjecture is legal for extremal and near-extremal RN-Ads black holes.
V. CONCLUSION

In this paper, we investigated the minimal length effect on the weak cosmic censorship conjecture in a RN-AdS black hole via the charged particle absorption. We first introduced thermodynamics of RN-Ads black holes in the normal and extended phase space. Then, we employed GUP to investigate the effect of the minimal length on the Hamilton-Jacobi equation. Specifically, we derived the deformed Hamilton-Jacobi equation which has the same form both for scalar and fermionic particles, and used it to study the variations of the thermodynamic quantities of a RN-Ads black hole via absorbing a charged particle. Furthermore, we checked the second law of thermodynamics and the weak cosmic censorship conjecture in a RN-Ads black hole. In the normal phase space, the second law of thermodynamics is satisfied, and the GUP effect made the increase of entropy faster than the usual case. We found that the weak cosmic censorship conjecture is satisfied for the extremal and near-extremal RN-Ads black holes. After the charge particle absorption, an extremal RN-Ads black hole becomes non-extremal. In the extended phase space, where the cosmological constant is treated as pressure, the black hole entropy can either increase or decrease depending on the states of black hole. When $T > 2P r_+$, the second law is satisfied in the extended phase space. When $T < 2P r_+$, the second law of thermodynamics is not satisfied for the extremal or near-extremal black holes. Finally, we find that the weak cosmic censorship conjecture is legal for extremal and near-extremal RN-Ads black holes.

In [60], the second law of thermodynamics and the weak cosmic censorship conjecture of the RN rainbow black hole have been investigated. The authors considered only the normal phase space case. Different from [60], we have chosen another quantum gravity model, GUP, to study the second law of thermodynamics and the weak cosmic censorship conjecture in the normal and extended phase space. When $\beta \to 0$, $f(\frac{\beta_0}{4\pi T} \frac{[P^r(r_+)]^2}{m_p}) \to 1$ and the GUP deformed case reduces to the usual case, and our result is consistent with that in [27, 29, 34].

VI. ACKNOWLEDGEMENTS

We are grateful to Prof. P. Wang, Prof. H. Yang, Prof. D. Chen Dr. H. Wu for their useful discussions. This work is supported in part by NSFC (Grant No.11747171, 11005016, 11175039 and 11375121) and the Fundamental Research Funds for the Central Universi-
ties. Natural Science Foundation of Chengdu University of TCM (Grants nos. ZRYY1729 and ZRQN1656). Discipline Talent Promotion Program of /Xinglin Scholars(Grant no. QNXZ2018050) and the key fund project for Education Department of Sichuan (Grant no. 18ZA0173)

[1] S. W. Hawking, “Particle Creation by Black Holes,” Commun. Math. Phys. 43, 199 (1975) Erratum: [Commun. Math. Phys. 46, 206 (1976)]. doi:10.1007/BF02345020, 10.1007/BF01608497

[2] P. Kraus and F. Wilczek, “Self-interaction correction to black hole radiance,” Nucl. Phys. B 433, 403 (1995) doi:10.1016/0550-3213(94)00411-7 [gr-qc/9408003].

[3] P. Kraus and F. Wilczek, “Effect of selfinteraction on charged black hole radiance,” Nucl. Phys. B 437, 231 (1995) doi:10.1016/0550-3213(94)00588-6 [hep-th/9411219].

[4] S. Hemming and E. Keski-Vakkuri, “The Spectrum of strings on BTZ black holes and spectral flow in the SL(2,R) WZW model,” Nucl. Phys. B 626, 363 (2002) doi:10.1016/S0550-3213(02)00021-4 [hep-th/0110252].

[5] A. J. M. Medved, “Radiation via tunneling from a de Sitter cosmological horizon,” Phys. Rev. D 66, 124009 (2002) doi:10.1103/PhysRevD.66.124009 [hep-th/0207247].

[6] E. C. Vagenas, “Semiclassical corrections to the Bekenstein-Hawking entropy of the BTZ black hole via selfgravitation,” Phys. Lett. B 533, 302 (2002) doi:10.1016/S0370-2693(02)01695-7 [hep-th/0109108].

[7] M. Arzano, A. J. M. Medved and E. C. Vagenas, “Hawking radiation as tunneling through the quantum horizon,” JHEP 0509, 037 (2005) doi:10.1088/1126-6708/2005/09/037 [hep-th/0505266].

[8] S. Q. Wu and Q. Q. Jiang, “Remarks on Hawking radiation as tunneling from the BTZ black holes,” JHEP 0603, 079 (2006) doi:10.1088/1126-6708/2006/03/079 [hep-th/0602033].

[9] G. Q. Li, “Hawking radiation and entropy of a black hole in Lovelock-Born-Infeld gravity from the quantum tunneling approach,” Chin. Phys. C 41, no. 4, 045103 (2017). doi:10.1088/1674-1137/41/4/045103

[10] J. M. Bardeen, B. Carter and S. W. Hawking, “The Four laws of black hole mechanics,” Commun. Math. Phys. 31, 161 (1973). doi:10.1007/BF01645742
[11] B. P. Abbott et al. [LIGO Scientific and Virgo Collaborations], Phys. Rev. Lett. 116, no. 6, 061102 (2016) doi:10.1103/PhysRevLett.116.061102 [arXiv:1602.03837 [gr-qc]].

[12] R. Penrose, “Gravitational collapse: The role of general relativity,” Riv. Nuovo Cim. 1, 252 (1969) [Gen. Rel. Grav. 34, 1141 (2002)].

[13] R. Wald, “Gedanken experiments to destroy a black hole,” Ann. Phys. 82, 548 (1974) doi:10.1016/0003-4916(74)90125-0

[14] V. E. Hubeny, “Overcharging a black hole and cosmic censorship,” Phys. Rev. D 59, 064013 (1999) doi:10.1103/PhysRevD.59.064013 [gr-qc/9808043].

[15] T. Jacobson and T. P. Sotiriou, “Over-spinning a black hole with a test body,” Phys. Rev. Lett. 103, 141101 (2009) Erratum: [Phys. Rev. Lett. 103, 209903 (2009)] doi:10.1103/PhysRevLett.103.109903, 10.1103/PhysRevLett.103.141101 [arXiv:0907.4146 [gr-qc]].

[16] A. Saa and R. Santarelli, “Destroying a near-extremal Kerr-Newman black hole,” Phys. Rev. D 84, 027501 (2011) doi:10.1103/PhysRevD.84.027501 [arXiv:1105.3950 [gr-qc]].

[17] S. Isoyama, N. Sago and T. Tanaka, “Cosmic censorship in overcharging a Reissner-Nordström black hole via charged particle absorption,” Phys. Rev. D 84, 124024 (2011) doi:10.1103/PhysRevD.84.124024 [arXiv:1108.6207 [gr-qc]].

[18] S. Hod, “Weak Cosmic Censorship: As Strong as Ever,” Phys. Rev. Lett. 100, 121101 (2008) doi:10.1103/PhysRevLett.100.121101 [arXiv:0805.3873 [gr-qc]].

[19] E. Barausse, V. Cardoso and G. Khanna, “Test bodies and naked singularities: Is the self-force the cosmic censor?,” Phys. Rev. Lett. 105, 261102 (2010) doi:10.1103/PhysRevLett.105.261102 [arXiv:1005.5159 [gr-qc]].

[20] E. Barausse, V. Cardoso and G. Khanna, “Testing the Cosmic Censorship Conjecture with point particles: the effect of radiation reaction and the self-force,” Phys. Rev. D 84, 104006 (2011) doi:10.1103/PhysRevD.84.104006 [arXiv:1106.1692 [gr-qc]].

[21] P. Zimmerman, I. Vega, E. Poisson and R. Haas, “Self-force as a cosmic censor,” Phys. Rev. D 87, no. 4, 041501 (2013) doi:10.1103/PhysRevD.87.041501 [arXiv:1211.3889 [gr-qc]].

[22] M. Colleoni and L. Barack, “Overspinning a Kerr black hole: the effect of self-force,” Phys. Rev. D 91, 104024 (2015) doi:10.1103/PhysRevD.91.104024 [arXiv:1501.07330 [gr-qc]].

[23] M. Colleoni, L. Barack, A. G. Shah and M. van de Meent, “Self-force as a cosmic censor in the Kerr overspinning problem,” Phys. Rev. D 92, no. 8, 084044 (2015)
G. Z. Toth, “Test of the weak cosmic censorship conjecture with a charged scalar field and dyonic Kerr-Newman black holes,” Gen. Rel. Grav. 44, 2019 (2012) doi:10.1007/s10714-012-1374-z [arXiv:1112.2382 [gr-qc]].

T. Y. Yu and W. Y. Wen, “Cosmic censorship and Weak Gravity Conjecture in the Einstein–Maxwell-dilaton theory,” Phys. Lett. B 781, 713 (2018) doi:10.1016/j.physletb.2018.04.060 [arXiv:1803.07916 [gr-qc]].

B. Liang, S. W. Wei and Y. X. Liu, “Weak cosmic censorship conjecture in Kerr black holes of modified gravity,” Mod. Phys. Lett. A 34, no. 05, 1950037 (2019) doi:10.1142/S0217732319500378 [arXiv:1804.06966 [gr-qc]].

B. Gwak, “Weak Cosmic Censorship Conjecture in Kerr-(Anti-)de Sitter Black Hole with Scalar Field,” JHEP 1809, 081 (2018) doi:10.1007/JHEP09(2018)081 [arXiv:1807.10630 [gr-qc]].

D. Chen, “Weak cosmic censorship conjecture in BTZ black holes with scalar fields,” arXiv:1812.03459 [gr-qc].

D. Chen, X. Zeng and W. Yang, “Thermodynamics and weak cosmic censorship conjecture in Reissner-Nordström anti-de Sitter black holes with scalar field,” arXiv:1901.05140 [hep-th].

Y. W. Han, X. X. Zeng and Y. Hong, “Thermodynamics and weak cosmic censorship conjecture of the torus-like black hole,” Eur. Phys. J. C 79, no. 3, 252 (2019) doi:10.1140/epjc/s10052-019-6771-y [arXiv:1901.10660 [hep-th]].

X. X. Zeng and H. Q. Zhang, “Thermodynamics and weak cosmic censorship conjecture in the Kerr-AdS black hole,” arXiv:1905.01618 [gr-qc].

B. Gwak, “Thermodynamics with Pressure and Volume under Charged Particle Absorption,” JHEP 1711, 129 (2017) doi:10.1007/JHEP11(2017)129 [arXiv:1709.08665 [gr-qc]].

D. Chen, “Thermodynamics and weak cosmic censorship conjecture in extended phase spaces of anti-de Sitter black holes with particles’ absorption,” Eur. Phys. J. C 79, no. 4, 353 (2019) doi:10.1140/epjc/s10052-019-6874-5 [arXiv:1902.06489 [hep-th]].

P. Wang, H. Wu and H. Yang, “Thermodynamics and Weak Cosmic Censorship Conjecture in Nonlinear Electrodynamics Black Holes via Charged Particle Absorption,” arXiv:1904.12365 [gr-qc].

W. Hong, B. Mu and J. Tao, “Thermodynamics and weak cosmic censorship conjecture
in the charged RN-AdS black hole surrounded by quintessence under the scalar field, arXiv:1905.07747 [gr-qc].

[36] X. X. Zeng, X. Y. Hu and K. J. He, “Weak cosmic censorship conjecture with pressure and volume in Gauss-Bonnet AdS black holes,” arXiv:1905.07750 [hep-th].

[37] X. X. Zeng and H. Q. Zhang, “Thermodynamics and weak cosmic censorship conjecture in Born-Infeld-anti-de Sitter black holes,” arXiv:1901.04247 [hep-th].

[38] P. K. Townsend, “Small Scale Structure of Space-Time as the Origin of the Gravitational Constant,” Phys. Rev. D 15, 2795 (1977). doi:10.1103/PhysRevD.15.2795

[39] K. Freese, M. Lewis and J. P. van der Schaar, “Observational tests of open strings in brane world scenarios,” JHEP 0307, 026 (2003) doi:10.1088/1126-6708/2003/07/026 [hep-ph/0211250].

[40] S. Das, S. Ghosh and D. Roychowdhury, “Relativistic Thermodynamics with an Invariant Energy Scale,” Phys. Rev. D 80, 125036 (2009) doi:10.1103/PhysRevD.80.125036 [arXiv:0908.0413 [hep-th]].

[41] K. Konishi, G. Paffuti and P. Provero, “Minimum Physical Length and the Generalized Uncertainty Principle in String Theory,” Phys. Lett. B 234, 276 (1990). doi:10.1016/0370-2693(90)91927-4

[42] T. Padmanabhan, S. Chakraborty and D. Kothawala, Gen. Rel. Grav. 48, no. 5, 55 (2016) doi:10.1007/s10714-016-2053-2 [arXiv:1507.05669 [gr-qc]].

[43] A. Kempf, G. Mangano and R. B. Mann, “Hilbert space representation of the minimal length uncertainty relation,” Phys. Rev. D 52, 1108 (1995) doi:10.1103/PhysRevD.52.1108 [hep-th/9412167].

[44] M. Maggiore, “The Algebraic structure of the generalized uncertainty principle,” Phys. Lett. B 319, 83 (1993) doi:10.1016/0370-2693(93)90785-G [hep-th/9309034].

[45] S. Das and E. C. Vagenas, “Universality of Quantum Gravity Corrections,” Phys. Rev. Lett. 101, 221301 (2008) doi:10.1103/PhysRevLett.101.221301 [arXiv:0810.5333 [hep-th]].

[46] B. Mu, H. Wu and H. Yang, “The Generalized Uncertainty Principle on the Presence of Extra Dimensions,” Chin. Phys. Lett. 28, 091101 (2011) doi:10.1088/0256-307X/28/9/091101 [arXiv:0909.3635 [hep-th]].

[47] S. Hossenfelder, “Minimal Length Scale Scenarios for Quantum Gravity,” Living Rev. Rel. 16, 2 (2013) doi:10.12942/lrr-2013-2 [arXiv:1203.6191 [gr-qc]].
[48] F. Scardigli, “Generalized uncertainty principle in quantum gravity from micro-black hole Gedanken experiment,” Phys. Lett. B 452, 39 (1999) doi:10.1016/S0370-2693(99)00167-7 [hep-th/9904025].

[49] P. S. Custodio and J. E. Horvath, “The Generalized uncertainty principle, entropy bounds and black hole (non)evaporation in a thermal bath,” Class. Quant. Grav. 20, L197 (2003) doi:10.1088/0264-9381/20/14/103 [gr-qc/0305022].

[50] G. Amelino-Camelia, M. Arzano, Y. Ling and G. Mandanici, “Black-hole thermodynamics with modified dispersion relations and generalized uncertainty principles,” Class. Quant. Grav. 23, 2585 (2006) doi:10.1088/0264-9381/23/7/022 [gr-qc/0506110].

[51] W. Kim, Y. W. Kim and Y. J. Park, “Entropy of a charged black hole in two dimensions without cutoff,” Phys. Rev. D 75, 127501 (2007) doi:10.1103/PhysRevD.75.127501 [gr-qc/0702018 [GR-QC]].

[52] M. S. Ma and H. H. Zhao, “Quantized space-time and its influences on some physical problems,” Chin. Phys. C 38, 045102 (2014) doi:10.1088/1674-1137/38/4/045102 [arXiv:1305.3363 [gr-qc]].

[53] B. Mu, P. Wang and H. Yang, “Minimal Length Effects on Tunnelling from Spherically Symmetric Black Holes,” Adv. High Energy Phys. 2015, 898916 (2015) doi:10.1155/2015/898916 [arXiv:1501.06025 [gr-qc]].

[54] B. Mu, P. Wang and H. Yang, “Covariant GUP Deformed Hamilton-Jacobi Method,” Adv. High Energy Phys. 2017, 3191839 (2017) doi:10.1155/2017/3191839 [arXiv:1408.5055 [gr-qc]].

[55] L. Chen and H. Cheng, “The tunneling radiation of a black hole with a \(f(R) \) global monopole under generalized uncertainty principle,” Gen. Rel. Grav. 50, no. 3, 26 (2018) doi:10.1007/s10714-018-2346-8 [arXiv:1607.07138 [hep-th]].

[56] S. Haldar, C. Corda and S. Chakraborty, “Tunnelling mechanism in non-commutative space with generalized uncertainty principle and Bohr-like black hole,” Adv. High Energy Phys. 2018, 9851598 (2018) doi:10.1155/2018/9851598 [arXiv:1705.08307 [gr-qc]].

[57] Y. C. Ong, “An effective black hole remnant via infinite evaporation time due to generalized uncertainty principle,” JHEP 1810, 195 (2018) doi:10.1007/JHEP10(2018)195 [arXiv:1806.03691 [gr-qc]].

[58] Y. C. Ong, “GUP-Corrected Black Hole Thermodynamics and the Maximum Force Conjecture,” Phys. Lett. B 785, 217 (2018) doi:10.1016/j.physletb.2018.08.065 [arXiv:1809.00442]
[59] H. Hassanabadi, E. Maghsoodi and W. S. Chung, “Analysis of black hole thermodynamics with a new higher order generalized uncertainty principle,” Eur. Phys. J. C 79, no. 4, 358 (2019). doi:10.1140/epjc/s10052-019-6871-8

[60] Y. Gim and B. Gwak, “Charged Black Hole in Gravity’s Rainbow: Violation of Weak Cosmic Censorship,” Phys. Lett. B 794, 122 (2019) doi:10.1016/j.physletb.2019.05.039 [arXiv:1808.05943 [gr-qc]].

[61] B. P. Dolan, “Pressure and volume in the first law of black hole thermodynamics,” Class. Quant. Grav. 28, 235017 (2011) doi:10.1088/0264-9381/28/23/235017 [arXiv:1106.6260 [gr-qc]].

[62] S. Gunasekaran, R. B. Mann and D. Kubiznak, “Extended phase space thermodynamics for charged and rotating black holes and Born-Infeld vacuum polarization,” JHEP 1211, 110 (2012) doi:10.1007/JHEP11(2012)110 [arXiv:1208.6251 [hep-th]].

[63] M. Cvetic, G. W. Gibbons, D. Kubiznak and C. N. Pope, “Black Hole Enthalpy and an Entropy Inequality for the Thermodynamic Volume,” Phys. Rev. D 84, 024037 (2011) doi:10.1103/PhysRevD.84.024037 [arXiv:1012.2888 [hep-th]].

[64] D. Kastor, S. Ray and J. Traschen, “Enthalpy and the Mechanics of AdS Black Holes,” Class. Quant. Grav. 26, 195011 (2009) doi:10.1088/0264-9381/26/19/195011 [arXiv:0904.2765 [hep-th]].

[65] D. Christodoulou, “Reversible and irreversible transforations in black hole physics,” Phys. Rev. Lett. 25, 1596 (1970). doi:10.1103/PhysRevLett.25.1596

[66] D. Christodoulou and R. Ruffini, “Reversible transformations of a charged black hole,” Phys. Rev. D 4, 3552 (1971). doi:10.1103/PhysRevD.4.3552

[67] R. Pellicer and R. J. Torrence, “Nonlinear electrodynamics and general relativity,” J. Math. Phys. 10, 1718 (1969). doi:10.1063/1.1665019

[68] F. Brau, “Minimal length uncertainty relation and hydrogen atom,” J. Phys. A 32, 7691 (1999) doi:10.1088/0305-4470/32/44/308 [quant-ph/9905033].

[69] X. Guo, P. Wang and H. Yang, “The classical limit of minimal length uncertainty relation: revisit with the Hamilton-Jacobi method,” JCAP 1605, no. 05, 062 (2016) doi:10.1088/1475-7516/2016/05/062 [arXiv:1512.03560 [gr-qc]].

[70] A. Kempf and G. Mangano, “Minimal length uncertainty relation and ultraviolet regulariza-
tion,” Phys. Rev. D 55, 7909 (1997) doi:10.1103/PhysRevD.55.7909 [hep-th/9612084].

[71] M. S. Berger and M. Maziashvili, “Free particle wavefunction in light of the minimum-length deformed quantum mechanics and some of its phenomenological implications,” Phys. Rev. D 84, 044043 (2011) doi:10.1103/PhysRevD.84.044043 [arXiv:1010.2873 [gr-qc]].