Comments on “Consensus and Cooperation in Networked Multi-Agent Systems”¹

PAVEL CHEBOTAREV,² Member IEEE

Key words: consensus algorithms, cooperative control, flocking, graph Laplacian, networked multi-agent systems

The objective of this note is to give several comments regarding the paper [1] published in the Proceedings of the IEEE and to mention some closely related results published in 2000 and 2001. I will focus on the graph theoretic results underlying the analysis of consensus in multiagent systems.

As stated in the Introduction of [1], “Graph Laplacians and their spectral properties [...] are important graph-related matrices that play a crucial role in convergence analysis of consensus and alignment algorithms.” In particular, the stability properties of the distributed consensus algorithms

\[\dot{x}_i(t) = \sum_{j \in N_i} a_{ij}(t)(x_j(t) - x_i(t)), \quad i = 1, \ldots, n \tag{1} \]

for networked multi-agent systems are completely determined by the location of the Laplacian eigenvalues of the network. The convergence analysis of such systems is based on the following lemma [1, p. 221]:

Lemma 2: (spectral localization) Let \(G \) be a strongly connected digraph on \(n \) nodes. Then \(\text{rank}(L) = n - 1 \) and all nontrivial eigenvalues of \(L \) have positive real parts. Furthermore, suppose \(G \) has \(c \geq 1 \) strongly connected components, then \(\text{rank}(L) = n - c \).

Here, \(L \) is the Laplacian matrix of \(G \), i.e., \(L = D - A \), where \(A \) is the adjacency matrix of \(G \), and \(D \) is the diagonal matrix of vertex out-degrees.

I would like to make four comments regarding this lemma.

1. The last statement of the lemma is wrong. Indeed, recall that the strongly connected components (SCC’s) of a digraph \(G \) are its maximal strongly connected subgraphs. Let, for example, \(G \) be a converging tree (in-arborescence), i.e., a directed tree having a node \(r \) (a root) such that all nodes can be linked to \(r \) via directed paths (for \(r \) itself it is a path of length 0). Then \(G \) has \(c = n \) strongly connected components, so Lemma 2 yields that \(\text{rank}(L) = n - c = 0 \). But in fact, \(\text{rank}(L) = n - 1 \). To make the last statement of Lemma 2 valid, one should additionally require that all the SCC’s of \(G \) are disjoint.

2. In [1], the proof of the rank property (the first statement of Lemma 2) is attributed to [3]. Let me note that the general problem of finding \(\text{rank}(L) \) for digraphs was solved earlier in [2]. More specifically, by Proposition 11 of [2], for any digraph \(G \), \(\text{rank}(L) = n - d \), where \(d \) is the so-called in-forest dimension of \(G \), i.e., the minimum possible number of converging trees in a spanning converging forest of \(G \). Furthermore, it was shown (Proposition 6) that the in-forest dimension of \(G \) is equal to the number of its sink SCC’s (the SCC’s having no edges directed outwards) and that the in-forest dimension of a strongly connected digraph is one (Proposition 7)³. A corrected version of the above Lemma 2 immediately follows as a special case.

3. Remark 1 given after Lemma 2 says: “Lemma 2 holds under a weaker condition of existence of a directed spanning tree for \(G \).” Here, by Lemma 2 the authors presumably mean the conclusion that \(\text{rank}(L) = n - 1 \) and by a directed tree they mean a converging tree. Next, they note that such a weaker condition has appeared in several papers published in 2003 and 2005. Let us observe that the existence of a spanning converging tree for \(G \) is tantamount to \(d = 1 \), so this statement follows from Proposition 11 of [2].

¹ Manuscript received August 14, 2008; revised January 22, 2010. Date of current version June 18, 2010. Digital Object Identifier: http://dx.doi.org/10.1109/JPROC.2010.2049911.

² The author is with the Institute of Control Sciences, Russian Academy of Sciences, 65 Profsoyuznaya Street, Moscow 117997, Russia (e-mail: chv@member.ams.org; upi@ipu.ru).

³ These results have also been presented in [4].
For the study of alignment algorithms for arbitrary digraphs, it is important to observe that the statement of Lemma 2 that “all nontrivial eigenvalues of L have positive real parts” holds true for any digraphs [5, Proposition 9], and not only for strongly connected digraphs or digraphs with spanning converging trees.

In Section II.C of [1], a discrete-time counterpart of the consensus algorithm (1) is considered

$$x_i(k+1) = x_i(k) + \varepsilon \sum_{j=1}^{n} a_{ij} (x_j(k) - x_i(k)), \quad i = 1, \ldots, n,$$

where $\varepsilon > 0$ is the step size. In the matrix form, (2) is represented as follows:

$$x(k+1) = P x(k),$$

where $P = I - \varepsilon L$ is referred to in [1] as the Perron matrix with parameter ε of G.

The matrices $P = I - \varepsilon L$ were studied in [2] and [5]; in particular, (i) of Lemma 3 in [1] actually coincides with Proposition 12 of [2].

Finally, let me mention a few additional results [2, 5] that are applicable to the analysis of consensus algorithms (1) and (3) and flocking algorithms. In the general case where the primitivity of a stochastic matrix P is not guaranteed and the sequence P, P^2, P^3, \ldots may diverge, the long-run transition matrix $P^\infty = \lim_{m \to \infty} m^{-1} \sum_{k=1}^{m} P^k$ is considered. P^∞ always exists and, by the Markov chain tree theorem [6, 7], it coincides with the normalized matrix \overline{J} of maximal in-forests of G. \overline{J} is the eigenprojector of L; by Proposition 11 of [2], rank(\overline{J}) = d, where d is the in-forest dimension of G. The columns of \overline{J} span the kernel (null space) of L; as a result, they determine the main properties of the trajectories of (1) and the flocking trajectories [8] in the general case. The elements of \overline{J} were characterized in graph theoretic terms in Theorems 2‘ and 3 of [2]; a finite algebraic method for calculating \overline{J} was proposed in [5] (see also [4]).

Thus, [2, 5, 4] published before the recent avalanche of papers on distributed consensus algorithms ([2] and [5] were sent to J.A. Fax in 2001 and a reference to [4] was sent to R. Olfati-Saber apropos of Lemma 2 in 2003, both on their requests) contained the basic graph theoretic results needed for the analysis of these algorithms. A number of related theorems were proved in [9] and [10]. Some of these results were surveyed in [11].

REFERENCES

[1] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and cooperation in networked multi-agent systems,” Proc. IEEE. vol. 95, pp. 215–233, Jan. 2007.
[2] R. P. Agaev and P. Yu. Chebotarev, “The matrix of maximum out forests of a digraph and its applications,” Automation and Remote Control, vol. 61, pp. 1424–1450, Sep. 2000.
[3] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of agents with switching topology and time-delays,” IEEE Trans. Autom. Control, vol. 49, no. 9, pp. 1520–1533, Sep. 2004.
[4] P. Chebotarev and R. Agaev, “Forest matrices around the Laplacian matrix,” Linear Algebra and Its Applications, vol. 356, pp. 253–274, 2002.
[5] R. P. Agaev and P. Yu. Chebotarev, “Spanning forests of a digraph and their applications,” Automation and Remote Control, vol. 62, pp. 443–466, Mar. 2001.
[6] A. D. Wentzell and M. I. Freidlin, “On small random perturbations of dynamical systems,” Russian Mathematical Surveys, vol. 25, no. 1, pp. 1–55, 1970.
[7] T. Leighton and R. L. Rivest, “The Markov chain tree theorem,” Computer Science Technical Report MIT/LCS/TM–249, Laboratory of Computer Science, MIT, Cambridge, MA, 1983.
[8] J. J. P. Veerman, G. Lafferriere, J. S. Caughman, and A. Williams, “Flocks and formations,” J. Statistical Physics, vol. 121, no. 5–6, pp. 901–936, 2005.
[9] R. Agaev and P. Chebotarev, “On the spectra of nonsymmetric Laplacian matrices,” Linear Algebra and Its Applications, vol. 399, pp. 157–168, 2005.
[10] R. Agaev and P. Chebotarev, “Which digraphs with ring structure are essentially cyclic?” Advances in Applied Mathematics, vol. 45, pp. 232–251, 2010.
[11] P. Yu. Chebotarev and R. P. Agaev, “Coordination in multiagent systems and Laplacian spectra of digraphs,” Automation and Remote Control, vol. 70, pp. 469–483, Mar. 2009.