Socio-economic Analysis Based on Energy Input and Output of Mixed Cropping Systems of Bhabhar Region (Shiwalik Range of Kumaun Himalaya, India)

KIRTIKA PADALIA, S.S. BARGALI, KIRAN BARGALI and R.S. PARIHAAR

Department of Botany, D.S.B. Campus, Kumaun University, Nainital-263002, India.

Abstract
In the present study, the status of energy efficiency and economy of existing agroecosystems in the Shiwalik range of Kumaun Himalaya were assessed. A large number of plant species were cultivated/maintained by the local inhabitants to conserve the diversity in agroecosystems. Agriculture was the main source of economy of the villagers. The agroforestry system provides many ecological services to enhance the socio-economic condition of the farmers. In addition, home garden is another land use system, which is very common in the area. All collected data from agricultural (inputs and outputs) were calculated and converted to energy values by using constants. In the present study, average consumption of annual energy inputs in agroforestry system (103646 MJ/ha) was approximately three times more as compared to home gardens (43056 MJ/ha). Uses of chemical fertilizers and pesticides increased the inputs manifolds. Average annual energy outputs obtained from agroforestry system (434116 MJ/ha) which was seven times more to the home gardens (57008 MJ/ha). Energy output/input ratio in agroforestry varied from 2.26 to 9.06 while in home gardens range speckled between 1.20 and 1.47. In terms of monetary budget, annual return from agroforestry and home garden systems were ₹ 95077/ha and 4201/ha, respectively. From the present study, it can be concluded that agroecosystems provides the good monetary benefits and source of employment to the villagers. The possible benefits of agriculture are raising income and thus improving status of livelihoods in Bhabhar region of Kumaun Himalaya.
Introduction
In the Himalayan province, an ecosystem functioning as a self-governing entity of economic activity and is consisted of agroecosystem, forest ecosystem, households, livestock, and market support. Therefore, it is most important in a village ecosystem to observe the type and level of linkage in various components in order to harness the maximum benefits and proper management of the resource availability.

Uttarakhand is primarily an agricultural state and developed as ecological brand equity. This ecological brand owing to the tree stands that helps in several way like leaf litter from the tree enriches the organic carbon ultimately C/N ratio and maintain the soil fertility. In the Himalayan Mountains, agriculture is closely linked with animal husbandry and natural forests. There is an urgent need for intensified conservation efforts as well as growing products and generating services in agro-ecosystems. The high energy input is a major problem of an agroecosystems. In the assessment of energy budget, repeat crop failure and addition of inorganic fertilizers added the energy input in an agroecosystem. After the green revolution, the trend of agriculture inputs by chemicals was increased significantly. The farmers use abundant amount of chemical fertilizers, herbicides, pesticides etc in their crop land without taking the considerable level. By this act the crop increase many folds but the net cost of energy input has also increased simultaneously. To overcome this problem, as the agro-system overall is input intensive adaptation of traditional resource management practices such as agroforestry system may potentially provide options for improvement in livelihoods through lowering of energy inputs and simultaneous production of food, fodder, medicines and firewood as well as mitigation impact of climate change. The agroforestry is a dynamic, ecologically based natural resource management system that through the integration of trees/woody perennials in farms and rangelands diversifies and sustains production for increased social, economic and environmental benefits. In recent years, agroforestry is emerging as the promising land use option to sustain agricultural productivity and livelihoods of farmers along with mitigate the adverse impact of changing climatic conditions.

Various studies conducted in the Central Himalayan region revealed that the agriculture practices require massive consumption of forest resources. In plain district of the state, agriculture turns up as the major source of the economy and revenue. Therefore, present study is an attempt to analyze the agroecosystems of Kumaun Himalayan Bhabhar belt of Uttarakhand state with the objectives to assess the status, agrodiversity, energy and economic efficiency of agroecosystem and their management practices.

Material and Methods
Study Area
The Kumaun Himalayan Bhabhar region spread over a geographical area of 51125 km² (77°34’ to 81°02’ E longitude and 28°43 to 31°27’ N latitude). The present study was confined only in Nainital district because Bhabhar belt is only represented by this district. They constitute the foot of the Himalayas, where the streams descend on to the plains. The Sub-Himalayas geographically corresponds to the Siwalik range (or the Churia range in Nepal) - foothills ranging in elevation from 250-800 m. This zone is made up of 10-km thick succession of sandstone and mudstone shed from the Himalayan mountains, and deposited by rivers, especially since the Miocene (over the past 24 million years). Total four representative villages (30 families in each village) of Bhabhar belt i.e., Padampur (Village 1), Rampur, (Village 2), Fatehpur (Village 3) and Semalkhaliya (Village 4) were selected within 10-45 km radius from Haldwani in Nainital district from Bhabhar belt of Kumaun Himalaya.

Climate
The climate was monsoonal sub tropical and characterized by marked seasonality. The year can be divided into three seasons viz., (i) the summer season (April-June): experienced very hot and dry with the temperature reached beyond 42°C, (ii) the rainy season (July-September): where humidity soars up to 95%, make the weather very humid and (iii) the winter season (November-February): when the minimum temperature stoops down to 4°C with the dense fog where humidity level drops down to 57%. February constitute the transitional month between winter-summer and October between rainy-winter seasons.
Soil
Soil samples were collected randomly from the upper soil depth (0-15 cm). Soil samples were thoroughly mixed to form a composite sample for each village. The collected soils were packed separately in plastic bags and brought to the laboratory. The course materials (stones, roots and plant litters) were removed manually. The soil samples were air-dried to analyze the soil physico-chemical properties.

The soil texture was determined through the sieving of soil by different net size (sand 0.02-2.0 mm, silt 0.002-0.02 mm, clay< 0.002 mm). Moisture content was calculated on dry weight basis, water holding capacity (WHC), bulk density (bD) and porosity were estimated. Chemical properties of the soil i.e. pH, total organic carbon, total nitrogen and phosphorus were determined by the standard methods.

Methods
The information about the live stock, agricultural land, seeds, fertilizer, pesticides, animal dung, human-animal labour, fuel wood, fodder consumption and agricultural input/output of the households were collected through formal discussions with adult members or head of the family. The information was collected through a field survey using semi-structured interview schedules. 30 random households, as a representative in each village, were selected for the estimation of inputs/outputs from agroforestry system as well as home gardens. Estimates of food, fodder and fuel wood consumption and products supplied to/purchased from the market were derived based on seasonal observations. Durations of sedentary, moderate and heavy works by males and females in various activities and bullock power use were noted. All collected data from agricultural (inputs and outputs) were calculated and converted to energy values by using constants (Table 1). Standard energy values of various inputs and outputs used for budgeting were calculated.

Table 1: Energy coefficients of input and output used for calculation of energy budget

Category	Energy
Grains	16.2 MJ/kg
Pulses	17.0 MJ/kg
Oilseeds	23.07 MJ/kg
Potato	03.9 MJ/kg
Leafy vegetables	02.8 MJ/kg
Other vegetables	02.4 MJ/kg
Milk	04.2 MJ/kg
Green fodder	03.9 MJ/kg
Hay	14.5 MJ/kg
Straw	13.9 MJ/kg
Fuel wood	19.7 MJ/kg
Farmyard manure/compost	07.3 MJ/kg
Human labour	
Male Sedentary work	00.418 MJ/hr
Moderate work	00.488 MJ/hr
Heavy work	00.679 MJ/hr
Female Sedentary work	00.331 MJ/hr
Moderate work	00.383 MJ/hr
Heavy work	00.523 MJ/hr
One bullock-day	72.7 MJ/day

Results and Discussion
Human and Livestock Population
The village populations are the major consumers of the nutrients moving with foods cultivated within an agroecosystem. On an average of 88 families having 544 human populations having 6 family sizes reside in each village.

Since agricultural production is always a prime importance due to food security the agroecosystem
was traditional type and livestock play the major share in it31. The average live stock population was 198 constituted by 16.96% cow, 16.27% buffaloes, 10% goats, 7.21% bullocks and 49.02% hen (Table 2). Livestock considered as the resources asset, which provides labour, manure, milk, fuel etc. In addition, they also play a crucial role in enhancing social capital or neighborhood of the families by sharing by products. As the farmland systems are fragile and heavily depended on the energy input by naturally or artificially for the production1. Here, the livestock play a prominent role in recycling or transferring of nutrients through the forest to the farmland.

Table 2: Physiographic and demographic status of the villages

Parameter	Village 1	Village 2	Village 3	Village 4
Elevation (m)	424	424	424	345
Human Population	385	438	720	631
Men (%)	45.83	39.42	41.67	38.51
Women (%)	36.67	35.80	38.32	39.30
Children (%)≤12	17.50	24.78	20.01	22.18
Families	65	85	90	110
Average family size	5.92	5.15	8.00	5.70
Live-Stock population	164	104	234	291
Cow (%)	14.80	28.84	13.90	10.30
Buffaloes (%)	6.10	15.38	24.70	18.90
Bullocks (%)	4.90	7.00	8.00	08.93
Goats (%)	-	-	-	41.23
Hen (%)	74.07	48.00	53.40	20.60
Agriculture land (ha)	42.68	56.39	73.23	63.05
Actual cultivated land ha)	35.56	42.62	52.89	55.00

m=Meter, ha=Hectare

Soil

The soils were loam in texture (sand 37-60%, silt 29-34% and clay 11-29%) in all the studied villages. The range of bulk density and water holding capacity were 1.08 (Village 4) to 1.53 g/cm3 (Village 1) and 32.48 (Village 1) to 45.12% (Village 4), respectively (Table 3). Soil chemical properties (pH, C, N, P etc) are the most important among the factors that determine the nutrients supplying power of the soil32. The C and N concentration varied from 0.68 (Village 1) to 1.56% (Village 4) and 0.19 (Village 1) to 0.37 (Village 4), respectively. The range of phosphorus oscillated in between 0.008 (Village 2) and 0.015% (Village 4). The soil carbon(%) was low in village 2 and 3, medium in village 2 and high in village 4. Soil nitrogen (%) was low in village 1 and 3, medium in village 2 and high in village 4. The percentage of phosphorous was recorded low in village 2, medium in village 1 and 3 and high in village 4.

Land Cover/Land Use

The average geographical area of all the four villages was 58.83 ha and average actual cultivated area of the villages was 46.51 ha. Village 3 have the largest agriculture land holding (73.23 ha), which was about 31.11% of the total studied geographic area but village 4 contained largest area in actual cultivated land (55.0 ha) among all. This is due to the heavy commercialization of the agricultural land in the village 3. Agriculture was the characteristic and main economic feature of the villages. Villages were surrounded by the *Shorea robusta* forest. *Mangifera*
indica, Litchi chinensis, Tectona grandis and Populus sp. being the most dominant tree species in agroforestry system while Triticum aestivum and Oryza sativa were the most dominant species in grains, which were cultivated by the local community. The agroforestry systems maintain the diversity of plants in both at genetic and species levels, which influenced according to the land use patterns in agroecosystem. In Kumaun Himalayan region, total 5 land use systems, which were commonly practiced in this region while in the present study the village landscape could be divided into 6 land use types:

- Sole cropping system: Herbaceous crops
- Agri-horticulture systems: Herbaceous crops + fruit trees
- Agri-silviculture system: Herbaceous crops + fuel/ fodder/ timber trees
- Agri-horti-silviculture system: Herbaceous crops + fruit trees + fuel or fodder trees
- Agri-Silvi-pastoral system: Herbaceous crops + Trees + grasses
- Home garden: Herbaceous vegetable crops + fuel or fodder trees + multipurpose tree + ornamental plants + shrubs

Table 3: Physico-chemical properties of the soil (0-15 cm) across the sites

Parameters	Sites			
	Village 1	Village 2	Village 3	Village 4
Sand (%)	60.21±0.58	41.01±1.15	51.61±1.88	37.15±0.03
Silt (%)	28.67±0.59	32.59±1.88	30.56±0.69	34.20±0.02
Clay (%)	11.12±0.64	26.32±0.79	17.83±0.53	28.65±0.01
bD (g/cm³)	1.53±0.01	1.17±0.00	1.32±0.03	1.08±0.01
Porosity (%)	42.48±0.71	56.02±0.44	50.38±0.30	59.40±0.51
Void ratio	1.08±0.01	1.42±0.00	1.26±0.01	1.54±0.01
Moisture (%)	5.53±0.07	12.86±0.09	7.78±0.07	20.37±0.32
WHC (%)	32.48±0.76	43.92±0.56	38.23±0.59	45.12±0.03
Temp (°C)	22.21±0.01	21.20±0.00	21.45±0.05	20.87±0.02
pH	7.2±0.00	7.1±0.00	0.72±0.01	6.5±0.01
C (%)	0.68±0.02	1.03±0.04	0.82±0.04	1.56±0.03
N (%)	0.19±0.00	0.30±0.01	0.23±0.00	0.37±0.00
P (%)	0.01±0.00	0.008±0.00	0.010±0.01	0.015±0.00
C:N	3.58±0.01	3.43±0.03	3.57±0.02	4.22±0.02
SOM	1.17±0.01	1.78±0.04	1.41±0.04	2.69±0.03

bD=Bulk density, WHC=Water holding capacity, Temp=Temperature, C=Carbon, N=Nitrogen, P=Phosphorus, SOM=Soil organic matter

Floristic composition

Overall, total 114 plant species belonging to 46 families were recorded in agroecosystem of the villages including the surrounding area. The vegetation was constructed by the different form of vegetation viz., tree (17 species), shrub (8 species), herb (77 species) and climber (12 species). Out of the total plant species, 68% were cultivated, 27% were wild and 4% were occurred in both cultivated-wild form. The maximum number of species were fall under Fabaceae family (17 species) followed by Poaceae (11 species) and Cucurbitaceae (10 species). Out of 95 genera, the maximum number of species were recorded in genus Brassica (B. campestris, B. juncea, B. nigra, B. oleracea, B. rapa), followed by, Luffa, Mentha, Solanum and Vigna (3 species in each). The species richness of the present study was quite higher than the reported range (8-97) of the various workers in the Kumaun Himalayan region.
Cropping Systems
Basically the farming in this region preferred sole and mixed cropping. Under sole cropping only a single herbaceous crop cultivated without intercropping with others while in mixed cropping the farmers sowing the many crops into a same piece of land. Some patterns of mixed cropping, which are commonly adopted by the farmers in the studied area are given:

- Wheat + Pigweed + Pea + Mustard + Gram
- Wheat + Pigweed + Pea + Radish + Broad bean + Amaranthus
- Wheat + Finger millet + Gram + Sesame
- Paddy + Maize + Soybean + Raghi
- Paddy + Lobia + Black gram + Sugarcane
- Paddy + Pearl Millet + Horse gram + Cucurbits

Crop Husbandry and Agro-Diversity
Diversity is one of the dominant characteristics of the Himalayan agro-ecosystem, which provides specific ecological niche for producing specific food crops. Rice, maize, finger millet and black soya were the dominant rainy crops (Kharif crop), sown during June to August and harvested during October to December while wheat, rape seed, gram, pea and potato as winter crops (Rabi crop) harvested during February to May. Under Jayad crops, seasonal vegetable were cultivated. The vegetables grown during the winter season are considered under Jayad-rabi (August-January) and in summer season under Jayad-kharif (Feb-May). Kumaun Himalayan region is agriculturally rich with a large number of economically important cereal crops belonging to family Poaceae that serve as a staple food. Total 5 cereal, 2 pseudo-cereal, 2 millet crops, 13 pulse crops, 10 spice crops, 5 oil-yielding crops and 30 species of vegetables were prominent in the region including seasonal and regional vegetables (Table 4). In the present study, total numbers of cultivated crops were listed comparatively low in the earlier study for entire Kumaun Himalayan region and higher as reported by many researchers.

List of some most frequently used improved varieties of different crops and fruit trees are given in Table 5.

Table 4: Annual cropping system commonly adopted in the Bhabhar belt of Kumaun Himalaya

Botanical name	English name	Local name	Family name	Sowing time	Harvesting time	Category	
Avena sativa L.	Oat	Jai	Poaceae	Oct-Nov	Mar-Apr	R	
Hordeum vulgare L.	Barley	Jau	Poaceae	Oct-Nov	Mar-Apr	R	
Oryza sativa L.	Rice	Dhan	Poaceae	Jun-Jul	Oct-Nov	K	
Triticum aestivum L.	Wheat	Gehu	Poaceae	Oct-Nov	Mar-Apr	R	
Zea mays L.	Maize	Makka	Poaceae	May-Jun	Jul-Aug	K	
Amaranthus spp.	Amaranthus Chaulai	Amaranthaceae	Nov-Dec	Feb-Mar	R		
Fagopyrum esculentum Moench	Buckwheat	Ogal	Polygonaceae	Nov-Dec	Feb-Mar	R	
Eleusine coracana (L.) Gaertn.	Finger millet	Manduwa	Poaceae	Oct-Nov	Mar-Apr	R	
Pennisetum glaucum (L.) R.Br.	Pearl Millet	Bajra	Poaceae	Apr-May	Jul-Aug	JK	
Cajanus cajan (L.) Millsp.	Pigeon-pea	Arhar	Fabaceae	Jun-Jul	Sep-Oct	K	
Cicer arietinum L.	Gram	Chana	Fabaceae	Oct-Nov	Mar-Apr	R	
Glycine max (L.)	Soya	Soyabean	Fabaceae	Jun-Jul	Sep-Oct	K	
Crop Name	Common Name	Family	Harvest Period	Source			
-----------------------------------	-------------	---------------	----------------------	--------			
Merr.							
Glycine soja Siebold & Zucc.	Soybean	Fabaceae	Jun-Jul, Sep-Oct	K			
Lens culinaris Medikus	Lentil	Fabaceae	Jun-Jul, Sep-Oct	K			
Macrotyloma uniflorum (Lam.) Verdc.	Horse gram	Fabaceae	Apr-May, Sep-Oct	K			
Phaseolus lunatus L.	Lobia	Fabaceae	Jun-Jul, Sep-Oct	K			
Phaseolus vulgaris L.	Kidney bean	Fabaceae	Oct-Nov, Mar-Apr	R			
Pisum sativum L.	Garden pea	Fabaceae	Sep-Oct, Dec-Feb	JR			
Vicia faba L.	Broad bean	Fabaceae	Sep-Oct, Dec-Feb	JR			
Vigna mungo (L.) Happer	Black gram	Fabaceae	Jun-Jul, Oct-Nov	K			
Vigna radiata (L.) R. Wilczek	Green gram	Fabaceae	Jun-Jul, Oct-Nov	K			
Vigna unguiculata (L.) Walp.	Cow pea	Fabaceae	Jun-Jul, Oct-Nov	K			
Spice crops							
Allium sativum L.	Garlic	Liliaceae	Oct-Nov, Mar-Apr	R			
Brassica juncea (L.) Czern.	Mustard	Brassicaceae	Oct-Nov, Mar-Apr	R			
Capsium annum L.	Chilly	Solonaceae	Oct-Nov, Mar-Apr	R			
Cinnamomum tamala Nees.	Bay leaf	Lauraceae	Jun-Jul, Oct-Nov	R			
Cleome viscosa L.	Wild/Dog mustard	Cleomaceae	Aug-Sep, Nov-Dec	JR			
Coriandrum sativum L.	Coriander	Apiaceae	Oct-Nov, Mar-Apr	R			
Coriandrum sativum L.	Coriander	Apiaceae	Oct-Nov, Mar-Apr	R			
Curcuma domestica L.	Turmeric	Zingiberaceae	Mar-Apr, Sep-Oct	K			
Foeniculum vulgare Mill.	Fennel	Apiaceae	Oct-Nov, Mar-Apr	R			
Zingiber officinale Ros.	Ginger	Zingiberaceae	Mar-Apr, Sep-Oct	K			
Oil yielding crops							
Brassica compestris L.	Yellow mustard	Brassicaceae	Oct-Nov, Mar-Apr	R			
Brassica nigra L.	Mustard black	Brassicaceae	Oct-Nov, Mar-Apr	R			
Glycine max (L.) Merr.	Soya	Fabaceae	Jun-Jul, Sep-Oct	K			
Linum usitatissimum L.	Linseed	Linaceae	Oct-Nov, Mar-Apr	R			
Sesamum indicum L.	Sesame	Pedaliaceae	Oct-Nov, Mar-Apr	R			
Vegetable crops							
Abelmoschus esculentus (L.)	Ladyfinger	Malvaceae	Apr-May, Jun-Aug	K			
Moench							
Allium cepa L.	Onion	Liliaceae	Oct-Nov, Mar-Apr	R			
Allium sativum L.	Garlic	Liliaceae	Oct-Nov, Mar-Apr	R			
Amaranthus oleracea L.	Amaranth	Amaranthaceae	Oct-Nov, Dec-Jan	JR			
Benincasa hispida (Thund) Cogn.	Ash gaud	Cucurbitaceae	Mar-Apr, Jun-Aug	JK			
Brassica juncea (L.) Czern.	Mustard	Brassicaceae	Oct-Nov, Mar-Apr	R			
Brassica oleracea L.	Cabbage	Brassicaceae	Oct-Nov, Dec-Jan	JR			
Brassica rapa L.	Turnip	Brassicaceae	Oct-Nov, Dec-Jan	JR			
Chenopodium album L.	Pigweed	Chenopodiaceae	Oct-Nov, Dec-Jan	JR			
Plant Name	Common Name	Family	Season 1	Season 2	Season 3	Season 4	Region
----------------------------------	---------------------	--------------------	-----------	-----------	-----------	-----------	--------
Colocasia esculenta (L.)	Arum	Araceae	Mar-Apr	Nov-Dec	_	_	_
Schott	**Tham**	Araceae	Mar-Apr	Nov-Dec	_	_	_
Colocasia himalensis Royle.	Cucumber	Cucurbitaceae	Feb-Mar	May-Jun	_	_	_
Cucumis sativus L.	Kheera	Cucurbitaceae	_	_	_	_	_
Duchesne	**Pumpkin**	Cucurbitaceae	Mar-Apr	_	_	_	_
Daucus carota L.	Carrot	Apiaceae	Oct-Nov	_	_	_	_
Ipomoea batatas (L.) Lam.	Bottle gourd	Convolvulaceae	Oct-Nov	_	_	_	_
Lam.	**Musa paradisiaca* L.	Musaceae	_	_	_	_	_
Lagenaria siceraria Ser.	Lauki	Cucurbitaceae	Mar-Apr	Jun-Aug	_	_	_
R.	**Luffa acutangula* (L.)	Cucurbitaceae	Mar-Apr	Jun-Aug	_	_	_
Luffa cylindrica Mill.	Ghia torai	Cucurbitaceae	Mar-Apr	Jun-Aug	_	_	_
Lycopersicum esculentum L.	Tomato	Solanaceae	Oct-Nov	Dec-Feb	_	_	_
Lam.	**Momordica charantia* L.	Cucurbitaceae	Mar-Apr	Jun-Aug	_	_	_
Pisum sativum L.	Bitter gourd	Cucurbitaceae	Mar-Apr	_	_	_	_
R.	**Raphanus sativus* L.	Brassicaceae	Oct-Nov	Dec-Feb	_	_	_
Solanum melongena L.	Egg plant	Solanaceae	Mar-Apr	Jun-Aug	_	_	_
R.	**Solanum tuberosum* L.	Solanaceae	Oct-Nov	Mar-Apr	_	_	_
Spinacia oleracea L.	Spinach	Chenopodiaceae	Oct-Nov	Dec-Feb	_	_	_
Trichosanthes anguina L.	Snake gourd	Cucurbitaceae	Mar-Apr	Jun-Aug	_	_	_
Trichosanthes dioica Roxb.	Pointed gourd	Cucurbitaceae	Mar-Apr	Jun-Aug	_	_	_
Vicia faba L.	Broad bean	Fabaceae	Oct-Nov	Dec-Mar	_	_	_
R.	**Artocarpus heterophyllus* Lam.	Moraceae	_	_	_	_	_
Carica papaya L.	Papaya	Cariacae	_	_	_	_	_
R.	**Citrus limon* (L.)	Rutaceae	_	_	_	_	_
Citrus pseudolimon Tan. Burm.f.	Lemon	Rutaceae	_	_	_	_	_
Litchi chinensis Sonn.	Litchi	Sapindaceae	_	_	_	_	_
Mangifera indica L.	Mango	Anacardiaceae	_	_	_	_	_
R.	**Manilkara zapota* (L.)	Sapotaceae	_	_	_	_	_
Psidium guajava L.	Gauva	Myrtaceae	_	_	_	_	_
P. Royen	**Prunus persica* (L.)	Rosaceae	_	_	_	_	_
Stokes	Pineapple	Myrtaceae	_	_	_	_	_
V punica granatum L.	Pomegranate	Lythraceae	_	_	_	_	_

R=Rabi crop, K=Kharif crop, JR=Jayad rabi crop, JK=Jayad kharif crop
Table 5: List of some common cultivated crop varieties of Kumaun Himalayan Bhabhar belt

Species	English name	Hindi/Local name	Varieties name
Cereal crops	Maize	Makka	Sweta, Kanchan
	Rice	Dhan	Pant Dhaan-10 (PD-10), PD-12, PD-18, Pusa Sugandh-5
Wheat		Gehu	UP-2526, UP-2565, UP-2572, UP-2684, PBW-343, PBW-550, VL-2684
Raaghi		Mandwa	VL-Manduwa 149, VL-Manduwa 315, VL-Manduwa 324
Pulses crops	Chickpea	Arhar	PUSA-362, PG-186, PG-114, Suriya
	Lentil	Matar	PS-06, VL-507, Pant Mung-04, Pant Mung-05
	Pea	Matar	VL-7, VL-10, Arki, PS-1100, PSM-3
Soybean		Soya	PS-1347, PS-1225, PS-1092, PS-1241
Black gram		Urad	PU-40, PU-31, PU-35
Oil Yielding crops	Mustard	Sarson	Pant Pili Sarson-1, Uttara, PT-303
Fodder crops	Barseem	Barsim	Desi Miskavi
	Maize	Makka	African tall, J-1006
Fruit crops	Gooseberry	Aawla	Kanchan, Krishna, NA-6, NA-20
	Stone apple	Bael	NB-5, Pant Aparna, Pusa Urvashi
	Guava	Amrud	Sardar (L-49), Lalit, Shweta, Allahabad Safeda, Pant Prabhat
	Jackfruit	Kathal	-
	Lime	Nimbu	Kagzi, Vikram, Sai Sharbati,
	Lemon	Bada nimbu	Eureka, Kagzi Kalan, Pant Lemon-1
	Litchi	Litchi	Shahi, China, Rose scented, Dehradun, Calcuttia
	Mango	Aam	Bombay Green, Chausa, Dashehari, Langra, Mallik, Amrapali, Pusa Arunima, Pusa Surya
	Papaya	Papita	Pusa Delicious, Pusa Dwarf, Pant-1
	Peach	Aadu	Red June, Snow Queen, Red Heaven, Prabhat, Flora Red, Sharbati
	Pomegranate	Anar	Ganesh, Bhagwa,
Vegetable crops	Amaranthus	Chaulai	Pusa Kiran, Lal chaulai, Pusa Kirti
	Bitter gourd	Karela	Pusa Vishes, Pusa Hybrid-2
	Bottle gourd	Lauki	Pusa Hybrid 3, Pusa Summer, Pant Lauki-4, Pusa Santoshti, Pusa Sankar Lauki-2, Pant Sankar Lauki-1
	Brinjal	Baingan	Pant Riturai, Pusa Purple Cluster, Hisar Pragati, Pant Samrat, Pant Brinjal Hybrid1&4.
	Cabbage	Band gobi	Golden Acre, Pusa Aget, California Wonder
	Capsicum	Shimla	Pusa Deepti, Arka Basant, California wonder, Indra, Tanvi
	Cauliflower	Fool gobi	Pusa Paushja, Pusa Shubra, Pusa Snowball K-1
	Chilli	Mirch	Arka Sweta, Pusa Jwala, Pant C-1
	Cucumber	Kakadi	Parthenocarpic Khira-3, Pusa Sanyog, Pant Khira-1, Pant Sankar Khira-1
	French bean	Bean	Pant Bean-2, Contender, Pant Anupma
Onion Pyaaz Pusa White Flat, Pusa Ratnar, Punjab Selection, Bhima Kiran, Spinach Palak Pusa Harit, Pusa Bharati Pea Mater Pant Matar-2, Arkel, Pant Uihar, Pant Sabji Matar-4, Pant Sabji Matar-5 Potato Alu Kufri Jyoti, Kufri Himalini, Kufri Surya Pumpkin Kaddu Pusa Vishwas, Azad Pumpkin-1 Radish Muli Japanese White, Pusa Reshmi, Pusa Himani, Kashi Sweta Ridge gourd Torai Pusa Nasdar, Pant Torai-1 Tomato Tamatar Pusa Ruby, Pusa-120, Pusa Hybrid-2, Pant Bahar, Pant poly house tomato-1 Garlic Lehsun Pant Lohit, Yamuna Safed (G-1), (G-50), Yamuna Safed-4 (G-323) Coriander Dhania Pant Haritima, Multicut

Plant Utilization Pattern of Associated Species in Agroecosystems
Scaling up agriculture potential is not much challenging task if provided agricultural extension efforts are directed with suitable site-specific agroforestry model as it supplies the resources in sustainable manner. Agriculture is heavily dependent on energy flows from uncultivated lands, which clearly indicated that this system is closed, self-contained and self-reliant. Total 44 plants, which were associated with the agroecosytems of the villages, were used by the local people to fulfill the daily requirements of fuel, fodder, fiber, fruit, medicine and timber etc (Table 6). These plant species belonging to 37 families in which Lamiaceae contributed the highest number of species (5) followed by Poaceae (4). In tree component, A. catechu and M. indica considered as the multipurpose trees by providing fuel wood, medicine and timber, G. optiva and F. glomerata as the best quality fodder, D. sissoo as the quality wood for house construction, Eucalyptus and Poplus sp. were the best quality trees for the commercial purpose. Out of 18 tree species, 8 species were found exclusively in wild, 6 species in agroforestry system and rest species were common to both wild and agroforestry system. Eleven types of fruit orchards (Table 4) were also found in the studied villages in which M. indica and L. chinensis were the dominant. Reduction of crop yields due to farm trees is reconciled with availability of fodder, fuelwood and other non-timber forest products near farm lands. Total 8 shrub species were associated with the agroecosystem in which only 2 species (H. rosa-sinensis and S. indicum) were cultivated and remaining was wild. L. camara and S. cordifolia were preferably used by the local people particularly in tomato cultivation as the supporting material. These species were also used as quality fuel due to their fast and easily burning properties. Several varieties of multipurpose herbs were also found in the studied villages such as aloe, mint, hemp, holi basil, opium, giloe etc. A total of 25 herb species (wild=15 and cultivated=10) and 3 climber species (wild=2 and common to both wild and agroforestry system=1) were utilized by the villagers for various purpose.

Table 6: Uses of some plant species associated with the agroecosystem

Botanical name	Common name	Hindi name	Family	Habitat	Uses
Acacia catechu (L.f.) Willd.	Cutch tree	Khair	Fabaceae	T/W	Com, Fo, Fu, Med, Ti
Adina cordifolia (Roxb.) Ridsdale	Yellow Teak	Haldhu	Rubiaceae	T/W	Fu, Ti
Aegle marmelos (L.) Corrêa	Stone Apple	Bael	Rutaceae	T/C	Ed, Med
Artocarpus heterophyllus Lam.	Jackfruit	Kathal	Moraceae	T/C	Ed, Fu
Azadirachta indica A. Juss.	Margosa	Neem	Meliaceae	T/W-C	Com, Med
Scientific Name	Common Name	Family	Type/Use		
---------------------------------	----------------------	-----------------	----------		
Cinnamomum tamala Nees.	Bay leaf	Lauraceae	T/W-C	Ed, Med, Sp	
Dalbergia sisso Roxb	Indian Rosewood	Papilionaceae	T/W-C	Fu, Ti	
Eucalyptus tereticornis Sm.	Eucalyptus	Myrtaceae	T/C	Com	
Ficus glomerata Roxb	Cluster-fig	Moraceae	T/W	Ed, Fo, Re	
Grewia optiva J.R.Drumm. ex Burret	Crossberry	Tiliaceae	T/W	Fo, Med	
Morus alba L.	Mulberry	Moraceae	T/C	Ed	
Phyllanthus officinalis L.	Emblic	Euphorbiaceae	T/C	Ed, Med, Re	
Populus deltoides W.Bartram ex Marshall	Popular	Salicaceae	T/C	Com	
Shorea robusta Roth	Sal	Dipterocarpaceae	T/W	Fu, Ti	
Syzygium jambolanum (Syzy)	Jambul	Myrtaceae	T/W-C	Ed, Fu	
Tamarindus indica L.	Tamarind	Caesalpiniaceae	T/W	Ed, Med	
Tectona grandis L.f.	Teak	Verbenaceae	T/W	Fu, Ti	
Zizyphus jujube Mill.	Jujube	Rhamnaceae	T/W	Ed, Fu	
Clerodendrum viscosum Vent.	Glory bower	Lamiaceae	S/W	Med	
Glycosmis pentaphylla (Retz.) DC	Orangeberry	Rutaceae	S/W	Ed, Med	
Hibiscus rosa-sinensis L.	Hibiscus	Malvaceae	S/C	Med, Or	
Lantana camara L.	Lantana	Verbenaceae	S/W	Com, Fu	
Murraya koenigii (L.)	Curry leaves	Rutaceae	S/W	Ed, Med	
Rosa sp	Wild rose	Rosaceae	S/W	Med, Or	
Sesamum indicum L.	Sesame,	Pedaliaceae	S/C	Ed, Med	
Sida cordifolia L.	Flannel weed	Malvaceae	S/W	Com, Med	
Ageratum conyzoides L.	Whiteweed	Asteraceae	H/W	Med	
Aloe barbadensis (L.) Burm.f.	Aloe	Liliaceae	H/C	Med	
Boerhavia diffusa L.	Tarvine	Nyctaginaceae	H/W	Med	
Cannabis sativa L.	Hemp	Cannabaceae	H/W	Med	
Commelina benghalensis L.	Spiderwort	Commelinaceae	H/W	Fo, Med	
Cymbopogon citrates (DC.) Stapf	Lemon grass	Poaceae	H/C	Med	
Cynodon dactylon (L.) Pers	Grass	Poaceae	H/W	Fo, Med, Re	
Cyperus rotundus L.	Grass	Poaceae	H/W	Fo, Med	
Euphorbia hirta L.	Asthma-plant	Euphorbiaceae	H/W	Med	
Impatien balsamina L.	Rose balsam	Balsaminaceae	H/W	Or	
Ipomoea purpurea (L.) Roth	Morning glory	Convolvulaceae	H/W	Med	
Mentha arvensis L.	Wild mint	Lamiaceae	H/C	Ed, Med	
Mentha piperita L.	Pipermint	Lamiaceae	H/C	Ed, Med	
Mentha spactica L.	Mint	Lamiaceae	H/C	Ed, Med	
Mimosa pudica L.	Touch me not	Mimosaceae	H/W	Med	
Musa paradisica L.	Banana	Musaceae	H/C	Ed, Re	
Ocimum sanctum L.	Holi basil	Lamiaceae	H/C	Re, Med	
Oxalis corniculata L.	Creeping woodsorrel	Oxalidaceae	H/W	Med	
Papaver somniferum L.	Opium	Papaveraceae	H/C	Med	
Polygonon nepalensis Meissn.	Smartweed	Polygonaceae	H/W	Med	
Saccharum officinarum L.	Sugar cane	Poaceae	H/C	Com, Ed, Re	
Solanum nigrum L.	Wonder berry	Solanaceae	H/W	Med	
Energy Budgets in Agroecosystems

The demand for bioenergy is accelerating drastically day by day due to huge increase in population pressure\(^\text{31}\). Average annual energy input consumption in agroforestry system (103,646 MJ/ha) was approximately three times more compared to home gardens (43,056 MJ/ha). The energy input in term of human and bullock labour is important in the agroecosystem of any region\(^\text{42}\). Among all the studied villages, consumption of human energy input was highest in village 4, which were 276 MJ/ha in agroforestry and 84 MJ/ha in home garden. Draught power consumption (582 MJ/ha in agroforestry system and 218 MJ/ha in home garden) was also highest in the same village. The major contribution of energy input via human and livestock in village 4 was due to the highest cultivated agriculture landholding and livestock population among all. Total seed input (agroforestry + home garden) was highest observed in village 2, which contributed about 36.80% of the total, probably due to the repeated crop failure as reported by the villagers (Table 7). The manure and chemical fertilizers increased the energy inputs in agroforestry systems as well as in home gardens. The consumption of annual energy input in the present study was higher than as reported by many researchers for Kumaun Himalayan region\(^\text{14,35,36}\) and less than as reported for Garhwal Himalaya\(^\text{43}\). Average annual energy output from agroforestry was 43,4117 MJ/ha compared to 57,008 MJ/ha in home garden. In a study 27,491 MJ/ha gross annual energy output was reported from agroecosystem\(^\text{35}\), which was very less compared to the present study due to the small landholdings.

Table 7: Comparative account of energy input and output (MJ/ha) in agroforestry systems of Kumaun Himalayan Bhabhar belt

Parameters	Village 1	Village 2	Village 3	Village 4				
	Agrofor	Home	Agrofor	Home	Agrofor	Home	Agrofor	Home
	System	Garden	System	Garden	System	Garden	System	Garden
Input								
Human labour	183	71	156	54	220	67	276	84
Drought power	291	72	436	145	436	144	582	218
Seeds	5164	1202	5875	1781	3440	787	2023	530
Manure	102,135	41,631	105,340	42,562	108,865	30,324	79,165	52,553
Total input	107,773	42,976	111,807	44,542	112,960	31,324	82,045	53,385
Out put								
Food grains	87,958	526	77,679	381	61,195	551	267,511	1651
Vegetables	-	28,504	-	24,504	-	19,496	-	25,925
By products	6439	8122	10,348	19,154	6745	11,777	786	19,161
Fuel wood	66,807	11,345	25,587	17,374	18,825	11,728	25,349	12,297
Grass fodder	82,277	2954	74,665	31,72	73,735	3226	22,344	6786
Total output	243,121	51,450	41,8563	64,854	330,647	46,178	74,4136	65,820
Net return	135,348	84,74	30,6755	20,042	217,687	14,854	66,4970	12,097
Output/ input ratio	2.26	1.20	3.74	1.45	2.93	1.47	9.06	1.23
At each studied village output/input ratio in agroforestry varied between 2.25 to 2.74, which was observed the same results (0.26 to 3.99) in another study44 for Himalaya, apart from village 4 (9.06), which was much greater than the reported range between 0.11 and 2.57 for agroforestry systems43,45,46 while in other study reported a little bit high range (1.57-4.14) for home garden system35. In the present study, the output-input ratio was varied of 2.25 to 9.06 in agroforestry. The agroecosystem studies in Central Himalaya indicated that agriculture in the area can be sustainable if pressure on forestland can be reduced. This could be achieved by reviving the support system and each hectare of agriculture land should be supported by 10-15 ha of forests38.

Among the cereal and pulse crops (6.69±1.57), the maximum seed output-input ratio (Table 8) was observed in wheat cultivation (11.95), which resulted in maximum benefits in terms of production followed by paddy (10.13). In the vegetable cultivation (8.10±2.23), green/fresh vegetable (11.97) maximized the production compared to tuber crops (4.23). In the fruit production (4.26±2.30), the highest ratio was recorded for jackfruit production (15.78), which resulted in high output (production) due to low input requirement followed by mango cultivation (2.39).

Table 8: Seed input and output (kg/ha) of some major crops cultivated in agroecosystem of Bhabhar belt

Parameters	Village 1	Village 2	Village 3	Village 4								
	Input	Output	Ratio									
Main cereal and pulse crops												
Finger millet	15	60	4	20	50	2.5	12	30	2.5	8	60	7.5
Maize	30	270	9	35	230	6.57	25	200	8	25	200	8
Paddy	65	650	10	70	600	8.57	55	500	9.09	70	900	12.86
Pea	18	40	2.22	20	60	3	15	40	2.67	20	70	3.5
Wheat	90	1250	13.89	150	1500	10	80	600	7.5	110	1800	16.36
Others	20	80	4	25	60	2.4	15	50	3.33	40	120	3
Average of cereal and pulse crops	±12.56	±195.80	±1.84	±20.80	±233.16	±1.36	±11.40	±103.20	±1.22	±15.56	±286.31	±2.14
Vegetable crops												
Fresh vegetables	7	120	17.14	10	100	10	8	70	10	120	12	
Tubers	15	60	4	20	75	3.75	12	50	4.17	30	150	5
Average of vegetable crops	±4.00	±30.00	±6.57	±5.00	±12.50	±3.12	±2.00	±10.00	±2.29	±10.00	±15.00	3.5
Fruit crops												
Mango	2000	2750	1.38	2500	4900	1.96	4000	10800	2.7	3200	11250	3.52
Litchi	1000	1200	1.1	1500	2400	1.6	1200	2100	1.75	2000	4800	2.4
Guava	800	1500	1.88	600	750	1.25	500	1000	2	700	2400	3.43
Papaya	800	1250	1.56	700	1250	1.79	200	600	3	400	800	2
Jack fruit	70	1050	15	40	525	13.13	60	1050	17.5	80	1400	17.5
Others	20	25	1.25	30	40	1.33	50	70	1.4	50	90	1.8
Average of fruit crops	781.67	1295.83	3.71	895	1644.17	3.51	1001.67	2603.33	4.73	1071.67	3456.67	5.11
fruit crops	±295.48	±357.91	±2.26	±389.29	±729.21	±1.93	±624.93	±1661.86	±2.57	±516.66	±1695.87	±2.49

*Fruit input is given in terms of fertilizers application
Monetary Budget in Agroecosystem

In terms of monetary budget (Table 9), the total input of the agroecosystem (agroforestry + home garden) was ₹28446/ha, in which agroforestry shared about 81% of the total input and remaining 19% of home garden. Human power (₹11926/ha) followed by manure (₹9200/ha) added the highest input in agroecosystem. The total output of the agroecosystem was estimated ₹127724/ha, in which ₹118135/ha was contributed by the agroforestry systems. Collectively (agroforestry + home garden), the maximum output obtained from the byproducts (fruit, milk, meat etc) i.e., about 60% of the total output followed by food grains. The total output from the agroforestry was recorded of ₹118135/ha.

Table 9: Comparative account of monetary budget ₹ in agroforestry and home garden in studied villages

Parameters	Village 1	Village 2	Village 3	Village 4				
Input	Agrofor. System	Home Garden						
Human labour	8750	2000	3904.5	1200	12250	1400	14700	3500
Drought power	1600	500	2400	1000	2400	1200	4800	1500
Seeds	3500	600	4550	400	2380	500	1500	450
Manure	8000	1600	9000	1700	9500	1200	3000	2800
Total Input	21850	4700	19855	4300	26530	4300	24000	8250
Output								
Food grains	25000	900	18000	720	22500	1350	54000	1750
Vegetables	840	660		440		1350		
By products	40850	3600	52570	7200	80790	4560	105180	6400
Fuel wood	4500	600	3000	870	2400	660	15000	750
Grass fodder	10500	1050	8750	1225	7000	980	22500	2450
Total out	80850	6990	82320	10675	112690	7990	196680	12700
Net return	59000	2290	62466	6375	86160	3690	172680	4450
Output/input ratio	3.70	1.49	4.15	2.48	4.25	1.86	8.20	1.54

The total net return was recorded ₹99278/ha in which agroforestry and home garden contributed about ₹95075 and 4201/ha, respectively. The net return from the Kumaun Himalayan homegarden systems was reported ₹15270/ha35, which was much higher than studied home garden in the present study. The similar results were reported by another study36, and reported the highest per ha annual productivity or income in agroforestry followed by the home gardens. The total output input ratio indicated that the agroforestry system (5.12) was more beneficial than the home garden (1.78) in Bhabhar belt though, home gardens support more plant diversity as compared to other systems47,48,49.

The correlation interpreted that the energy budget of an agroecosystem depends appreciably upon the soil properties (Table 10). The crop production showed highly positive significant correlated with the silt (r=0.923), feasibility of moisture content (r=0.989), carbon (r=0.992) and nitrogen (r=0.965) of the soil while highly negative significant correlation with soil pH (r=-0.974) because all these soil parameters make the soil productive and enhance the crop production50,51,52,53,54,55.

Constrains in agriculture

- According to the present scenario, farmers have abandoned their traditional seeds and practices and found themselves dependent on the government and private sector to provide them necessary inputs such as seeds and manure.
- Animal husbandry, once an integral and valued part of agriculture, is relegated to secondary importance as chemical fertilizers replaced...
the dung manure, machines replaced draught power and cattle are kept seen only as factories for milk or meat production.

- Farmers prefer a crop if it provides them a good monetary returns though it may involve a great deal of labor. On the other hand, wheat and paddy require very low input cost hence their output-input ratio is higher than other cash crops but the actual amount realized is of course lesser than that of other cash crops. It was observed that paddy is more profitable than wheat because fertilizer requirement of paddy was less as compared to wheat. After the green revolution the use of chemical fertilizers did catch up fast in Uttarakhand especially in Tarai and Bhabhar region. The farmers have resorted to the practice of using chemical fertilizers (i.e. mainly urea and DAP) and pesticides in a big way to increase the crop yield and profits. The authors were unable to find anyone household which was not using any chemical fertilizer in their farms. Farmers are not bothered about its harmful impacts because they are getting good monetary returns.

Table 10: Correlation between soil components and the total energy input-output in agriculture of all villages

Site	Sand	Silt	Clay	bD	Mo	Po	WHC	Temp	pH	C	N	P	Input	Output
Site 1														
Sand	-0.724													
Silt	0.773	-0.994**	1											
Clay	0.707	-0.999**	0.990*	1										
bD	-0.787	0.993**	-0.990**	-0.992**	1									
Mo	0.774	-0.930	0.962*	0.918	-0.917	1								
Po	0.787	-0.993**	0.990**	0.992**	-1.000**	0.917	1							
WHC	0.716	-0.995**	0.981*	0.997**	-0.994**	0.892	0.994**	1						
Temp	-0.854	0.967*	-0.969*	-0.964*	0.990**	-0.889	-0.990**	-0.973*	1					
pH	-0.767	0.748	-0.813	-0.726	0.740	-0.938*	-0.740	-0.686	0.724	1				
C	0.812	-0.892	0.935*	0.877*	-0.987**	0.994**	0.987**	0.849*	-0.869	-0.967*	1			
N	0.765	-0.969*	0.988*	0.961*	-0.958*	0.992**	0.958*	0.942*	-0.930*	-0.886	0.974*	1		
P	0.581	-0.261	0.364	0.229	-0.268	0.590	0.268	0.181	-0.282	-0.832	0.669	0.483	1	
Input	-0.833	0.339	-0.434	-0.310	0.397	-0.575	-0.397	-0.294	0.468	0.763	-0.661	-0.498	-0.884	1
Output	0.822	-0.877	0.923*	0.861	-0.874	0.989*	0.874	0.833	-0.859	-0.974*	0.992**	0.965*	0.693	-0.687

*Correlation is significant at 0.05 and ** at 0.01 level, bD=Bulk density, Mo=Moisture, Po=Porosity, WHC=Water holding capacity, Temp=Temperature, C=Carbon, N=Nitrogen, P=Phosphorus

Conclusion

In conclusion, the present study reflects that the farming systems of this region is traditional, sustainable and is seemed quite well. The high level of crop diversity in agroforestry systems were maintained by the farmers through the crop rotation. Agroforestry systems also provide many ecosystem services in a low expenditure with environmental benefits (sequestration of carbon and mitigate the impact of climate change). Therefore, it is recommended from the present study that farmers of the Bhabhar Region of Kumaun Himalaya should preferred agroforestry systems to enhance the socio-economic status of their livelihood.

Acknowledgement

We are sincerely acknowledged the Head, Department of Botany, D.S.B. Campus, Kumaun University, Nainital for providing necessary facilities to conduct this research work successfully. We are very much thankful to the villagers for their support during the data collection.
References

1. Singh V, Shiva V, Bhatt, VK. Agroecology: Principles and operationalisation of sustainable mountain agriculture. Navdanya publication, New Delhi; 2014: pp 64.

2. Tripathi RS, Sah VK. Material and energy flows in high-hill, mid-hill and valley farming systems of Garhwal Himalaya. Agri Ecosys Environ; 2001; 86(1): 75–91.

3. Mittal SS, Tripathi G, Sethi D. Development strategy for the hill districts of Uttarakhand, working Paper No. 217, Indian Council for Research on International Economic Relations; 2008.

4. Monika, Shankhwar AK, Tamta P, Singh V, Prasad R. Litter decomposition dynamics in Foothills Agroforestry System of Indian Himalayan Shivalik Range. Ind J Agroforest; 2017; 19(1): 75-78.

5. Bijalwan A, Shankhwar AK, Dobriyal MJR, Verma P. “Wood is Good”: A way forward for climate change mitigation. Int J Curr Microbiol Appl Sci; 2017; 6(11): 5460-5465.

6. Parihaar RS. Carbon stock and carbon sequestration potential of different land-use systems in Hills and Bhabhar belt of Kumaun Himalaya. Ph.D thesis, Kumaun University, Nainital, India. 2016.

7. Jeet I, Pandey PC, Singh GD, Shankhwar AK. Influence of organic and inorganic sources of nutrients on growth and yield of rice in Tarai region of Uttarakhand. Ann Agr Res New Ser; 2014; 35(2): 176-182.

8. Arora VPS, Bargali SS, Rawat JS. Climate change: challenges, impacts, and role of biotechnology in mitigation and adaptation. Prog Agri; 2011; 11: 8–15.

9. Raj A, Jhariya MK, Bargali SS. Bund based agroforestry using Eucalyptus species: A review. Curr Agr Res J; 2016; 4(2): 48–158.

10. Singh L, Ghosh L, Bargali SS, Saxena RR. Response of paddy planted under Butea monosperma trees in Chhattisgarh. Int J Ecol Environ Sci; 2008; 34(1): 63–66.

11. Bargali SS, Bargali K, Singh L, Ghosh, Lakhera ML. Acacia nilotica based traditional agroforestry system: effect on paddy crop and management. Curr Sci; 2009; 96(4): 581–587.

12. Parihaar RS, Bargali K, Bargali SS. Diversity and uses of ethno-medicineal plants associated with traditional agroforestry systems in Kumaun Himalaya. Ind J Agr Sci; 2014; 84(12): 1470–1476.

13. Kittur B, Bargali SS. Perspectives of agroforestry: Present and future facets. J Prog Agr; 2013; 4(2): 91–94.

14. Padalia K, Bargali SS, Bargali K. Present scenario of agriculture and its allied occupation in a typical hill village of central Himalaya, India. Ind J Agr Sci; 2017; 87(1): 132–141.

15. Nair PKR. Perspectives: the coming age of agroforestry. J Sci Food Agr; 2007; 87: 1613–1619.

16. Mishra A, Swamy SL, Bargali SS, Singh AK. Tree growth, biomass and productivity of wheat under five promising clones of Populus deltoids. Int J Ecol Environ Sci; 2010; 36(2-3): 167–174.

17. Rai SC. Energetic of cropping pattern: A case study from the Central Himalaya. Int J Ecol Environ Sci; 1993; 19: 25–23.

18. Maikhuri RK, Rao KS, Saxena KG. Traditional crop diversity for sustainable development of Central Himalayan agroecosystems. Int J Sus Dev World Eco; 1996; 3(3): 8–31.

19. Semwal RL, Maikhuri RK. Structure and functioning of traditional hill agroecosystems of Garhwal Himalaya. Biol Agric Hortic; 1996; 13: 267–289.

20. Maikhuri RK, Rao KS, Semwal RL. Changing scenario of Himalayan agroecosystems: loss of agrobiodiversity, an indicator of environmental change in Central Himalaya, India. The Environmental; 2001; 21: 23–39.

21. Pande PC, Vibhuti, Awasthi P, Bargali K, Bargali SS. Agro-Biodiversity of Kumaun Himalaya, India: A Review. Curr Agri Res J; 2016; 4(1): 16–34.

22. Sorkhabi R. Geologic formation of the Himalaya. The Himalayan Journal, 2010: pp 66. https://www.himalayanclub.org/hj/66/9/geologic-formation-of-the-himalaya/
23. Misra R. Ecology Workbook. Oxford and IBH Publishing Company, Calcutta; 1968.
24. Walkley A, Black A. An experiment of Degtjareff methods for determining soil organic matter and a proposed modification of the chronic acid titration methods. Soil Sci.; 1934; 37: 29–38.
25. Peach K, Tracy MV. Modern methods of plant analysis. Springer-Verlag Berlin, Heidelberg; 1956.
26. Olsen SR, Cole CV, Watanabe FS, Dean LA. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. U.S. Dept. of Agriculture, Washington, D.C.; 1954.
27. Bargali SS, Singh SP, Shrivastava SK, Kolhe SS. Forestry plantations on rice bunds: Farmers’ perceptions and technology adoption. Int Ric Res Notes; 2007; 32(2): 40–41.
28. Pandey K, Bargali SS, Kolhe SS. Adoption of technology by rural women in rice based agroecosystem. Int Ric Res Notes; 2011; 36: 1–4.
29. Mitchell R, An analysis of Indian agroecosystems, Interprint, New Delhi; 1979.
30. Singh V, Joshi NK. Traditional Ecological Knowledge of Mountain People: Foundation for Sustainable Development in the Hindu Kush-Himalayan Region, V. Daya Publications, New Delhi; 2010; pp 72–91.
31. Shankhwar AK, Srivastava RK. Biomass production through grey water fertigation in Eucalyptus hybrid and its economic significance. Environ Prog Sustain Energy; 2015; 34(1): 222–226.
32. Kizilkaya R, Dengiz O. Variation of land use and land cover effects on some soil physico-chemical characteristics and soil enzyme activity. Zemdirbyste; 2010; 97(2):15–24.
33. Padalia K. Dynamics of soil microbial biomass carbon and nitrogen under different cropping systems of Kumaun Himalaya. Ph.D thesis, Kumaun University, Nainital, India, 2017.
34. Bargali K., Parihaar R.S., Bargali S.S. Traditional agroforestry systems practiced in Kumaun Himalaya, India. Proceedings of climate change: Social-Economic and Environment Issues-Problem and Challenges; 2015: pp 241- 254.
35. Bargali K., Karki H., Vibhuti., Bargali S.S. Contribution of homegarden agroforestry in livelihood of rural farmers in Kumaun Himalaya. Bionatur; 2018; 38(1): 34–47.
36. Parihaar R.S., Bargali K., Bargali S.S. Status of an indigenous agroforestry systems: A case study in Kumaun Himalaya, India. Ind J Agr Sci; 2015; 85(3): 442–447.
37. Verma P., Bijalwan A., Shankhwar A.K., Dobriyal M.J.R, Jacob V., Rathauae S. Scaling up an Indigenous Tree (Gmelina arborea) based Agroforestry Systems in India. Int J Sci Qual Anal; 2017; 3(6): 73-77.
38. Ralhan P.K., Negi G.C.S., Singh S.P. Structure and function of the agroforestry system in the Pithoragarh district of Central Himalaya: an ecological viewpoint. Agr Ecosys Environ; 1993; 35: 283–296.
39. Singh L., Ghosh L., Bargali S.S., Saxena R.R. Influence of naturally occurring trees on field bunds and their impact on yield parameters of paddy crop. Range Mang Agrofor; 2008; 29(2): 134–137.
40. Bargali S.S., Singh S.P, Pandya K.S. Effects of Acacia nilotica on gram crop in a traditional agroforestry system of Chhattisgarh plains. Int J Ecol Environ Sci; 2004; 30(4): 363–368.
41. Raisingam L. Ethnobotanical studies on the wild edible plants of Irula tribes of Pillur Valley, Combatore district, Tamil Nadu, India. Asian Pac J Trop Biomed; 2012; 1493-1497.
42. Gairola J., Todaria N.P. The status of Women in subsistence agriculture in Garhwal Himalaya, India. Mt Res Dev; 1997; 17(2): 169–170.
43. Nautiyal S., Maikhuri R.K., Semwal R.L., Rao K.S., Saxena K.G. Agroforestry systems in the rural landscape – a case study in Garhwal Himalaya, India. Agroforest Syst; 1998; 41: 151–165.
44. Singh G.S., Rao K.S., Saxena K.G. Energy and economic efficiency of the mountain farming system: a case study in the northwestern Himalaya. J Sustain Agr; 1997; 9: 25-49.
45. Bagwari H.K., Todaria N. Resource use pattern and agroecosystem functioning in Rawanganga micro-watershed in Garhwal Himalaya, India. J Agric Dev Trop Subtrop; 2011; 112(2): 101–112.
46. Upadhyay S., Sahu S.K., Panda G.K.,
Upadhyay V.P. Linkages between agriculture and forest: Case study from three tribal villages located in a biosphere reserve of India. *Geo Eco Trop*; 2012; **36**: 39–48.

47. Vibhuti., Bargali K., Bargali S.S. Effects of homegarden size on floristic composition and diversity along an altitudinal gradient in Central Himalaya, India. *Curr Sci*; 2018; **114**(12): 2494–2503.

48. Bargali K. Traditional home garden as a sustainable ecosystem for maintenance of biodiversity: a case study from Kumaun Himalaya, India. *J Biodivers*; 2016; **7**(2): 88–100.

49. Bargali K. Comparative participation of rural women in agroforestry home gardens in Kumaun Himalaya, Uttarakhand, India. *Asian J Agr Ext Soc Econ Sociol*; 2015; **6**(1): 16–22.

50. Bargali S.S., Singh, R.P., Joshi M. Changes in soil characteristics in eucalypt plantations replacing natural broad leaved forests. *J Veg Sci*; 1993; **4**: 25–28.

51. Bargali S.S., Singh S.P., Singh R.P. Pattern of weight loss and nutrient release in decomposing leaf litter in an age series of eucalypt plantations. *Soil Biol Biochem*; 1993; **25**: 1731–1738.

52. Bargali S.S. Efficiency of nutrient utilization in an age series of Eucalyptus tereticornis plantations in the *tarai* belt of Central Himalaya. *J Trop Forest Sci*; 1995; **7**(3): 383–390.

53. Bargali S.S. Weight loss and nitrogen release in decomposing wood litter in an age series of eucalypt plantation. *Soil Biol Biochem*; 1996; **28**: 699–702.

54. Padalia K., Bargali S.S., Bargali K., Khuibe K. Microbial biomass carbon and nitrogen in relation to cropping systems in Central Himalaya, India. *Curr Sci*; 2018; (In Press).

55. Bargali K., Manral V., Padalia K., Bargali S.S., Upadhyay, V.P. Effect of vegetation type and season on microbial biomass carbon in Central Himalayan forest soils, India. *Catena*; 2018; **171**: 125–135.