Identification of β-Caryophyllene (BCP) in Aceh patchouli essential oil (PEO) using gas chromatography-mass spectrophotometry (GC-MS)

E Sufriadi1,2,4, H Melina3,4, A A Munawar4,5, S Muhammad3,4 and R Idroes2,6,*

1 Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
2 Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
3 Chemical Engineering Department, Faculty of Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
4 Atsiri Research Center (ARC) PUI Nilam Aceh, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
5 Agricultural Technology Department, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
6 Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia

*E-mail: rinaldi.idroes@unsyiah.ac.id

Abstract. This study aimed to determine the composition of β-Caryophyllene (BCP) content in patchouli oil from various regions in Aceh. The data from GC-MS analysis can also describe the type of BCP isomer most commonly found in Aceh patchouli. This research used Aceh Pogostemon cablin Benth patchouli oil from 17 different locations. Samples were analyzed using TSQ™ 9000 Triple Quadrupole GC-MS/MS (Thermo Scientific) with TraceGOLD TG-1MS GC Columns. The mean BCP retention time was 14.64 minutes, with a standard deviation (SD) of 0.16. Only one type of BCP compound isomer appeared, namely Bicyclo[7.2.0]undec-4-ene, 4,11,11-trimethyl-8-methylene-,[1R-(1R*, 4Z, 9S*)]. The results also showed that the average BCP level was 5.51%. Aceh patchouli contains a much higher BCP level than the minimum commercial target (3.4-3.5%). The MS spectrum data also showed a high similarity between the patchouli oil sample fragmentation and the compound library.

1. Introduction
Indonesia has great biodiversity provided by its vast forest [1]. It can produce endless resources of natural product which has benefit in the medicinal field [2], [3]. The natural products are easily found in the plant as a metabolite produced by itself [4]–[6] or by endophyte [7], [8]. The metabolite provides various medical activity to be antimicrobial [9], [10], antibacterial [11]–[13], antbiofilm [14], and antioxidant [15], [16].
BCP is one of the secondary metabolites found in many plants and essential oils such as copaiba, cannabis, rosemary, melissa, black pepper, cloves, and patchouli. BCP is classified into a bicyclic sesquiterpene compound. The sesquiterpene framework is made up of 15 carbon atoms and 24 hydrogen atoms. The compounds of the sesquiterpenes group generally have a straight, one-ring, or two-ring backbone like BCP. As BCP has these two rings, it is considered bicyclic. BCP is a sesquiterpene compound currently researched to determine its benefits in the medical and pharmaceutical fields. BCP has been extensively studied to treat several neurological diseases. More than 500 scientific publications have investigated this terpene's activity and found that it exhibits a protective role in several nervous system disorders, including pain, anxiety, seizures, depression, alcoholism, and Alzheimer's disease [17]–[19].

Among all BCP sources, patchouli is the great one that needs to be explored further. It is an endemic plant in Aceh and has been a livelihood source for the Acehnese farmers for more than a century [20]. The presence of BCP in each plant varies widely. In some plants, BCP is present as a major component, but it is minor in others.

Past research shows that BCP presence in patchouli is included in the minor category; however, it remains to be studied whether BCP benefits humans. Few studies specifically examine the pharmacological effects of patchouli BCP either in vitro or in vivo. However, before researching that, it is essential to study the real presence of BCP content in patchouli from various regions in Aceh.

IUPAC named the BCP compound \((1R, 4E, 9S)-4,11,11\text{-trimethyl-8-methylenebicycle}\[7.2.0\]undec-4-en\) with a molecular weight of 204 g/mol. Three types of BCP isomers are found in patchouli oil, namely (E)-β-caryophyllene, (E)-7-epi-β-caryophyllene, and (Z)-β-caryophyllene [21].

The purpose of this study was to determine the composition of BCP content in patchouli oil originating from various regions in Aceh. Analysis from the GC can also describe the type of BCP isomer most commonly found in Aceh patchouli.

2. Materials and methods
2.1. Materials and Samples.
This study used Aceh Pogostemon cablin Benth patchouli oil from 17 different locations. Seventeen patchouli oil samples were stored in glass bottles and then taken to the Laboratory of Chemical Instruments in the Faculty of Mathematics and Natural Sciences, Syiah Kuala University. Each sample is labeled N1 to N17 [22], [23].

2.2. Instrumentation and chromatographic conditions
Samples were analyzed using the TSQ™ 9000 Triple Quadrupole GC-MS/MS (Thermo Scientific) with TraceGOLD TG-1MS GC Columns, equipped with a CombiPAL Autosampler (Basel, Switzerland), consisting of a split/splitless injector port and a mass spectrometer detector. The injection is carried out in splitless mode. The GC system is equipped with a DB-5 column (30m × 0.25mm × 0.25mm). The carrier gas is helium (1.0 mL/min). The oven temperature is programmed from 60 °C for 3 minutes in increments of 40 °C/minute to 300 °C. The chromatography process was finalized in 9 minutes. The mass detector is operated by an impact electron system at 70 eV. The signal is recorded and processed by GC/MS Data Analysis Software [24].

2.3. Determination of BCP in the sample
In this study, BCP analysis was performed by inserting a 1.0 ml syringe into the GC port, which is equipped with a 10 mL clear glass bottle with an 18 mm magnetic screw cap (Thermo Scientific).

3. Results and discussion
The chemical composition results in Aceh patchouli oil found that the average β-Caryophyllene (BCP) retention time was 14.64 minutes with a standard deviation (SD) of 0.16. This SD value shows that there is consistency in separating BCP analytes from various sources and locations of patchouli oil in Aceh.
This data is also supported by the type of BCP compound isomer that appears in only one type, namely Bicyclo [7.2.0] undec-4-ene, 4,11,11-trimethyl-8-methylene-, [1R-(1R*,4Z,9S*)] as shown in Table 1 [25].

Table 1. Retention time, the composition of BCP content in each patchouli oil sample, and the appearing compound.

Sample Code	Retention Time (min)	BCP Content (%)	Library Compound
N1	14.62	4.41	Bicyclo[7.2.0]undec-4-ene, 4,11,11-trimethyl-8-methylene-, [1R-(1R*,4Z,9S*)]
N2	14.63	4.68	
N3	14.61	4.74	
N4	14.63	4.94	
N5	14.41	4.56	
N6	14.58	3.20	
N7	14.54	3.17	
N8	14.17	2.18	
N9	14.77	8.59	
N10	14.76	7.79	
N11	14.73	5.92	
N12	14.77	5.90	
N13	14.76	7.00	
N14	14.74	8.50	
N15	14.70	6.87	
N16	14.69	7.02	
N17	14.79	4.20	
Avg	14.64	5.51	
SD	0.16	1.89	

Remark: N1 = Gunung Pudung, South Aceh; N2 = Pucok Krueng, South Aceh; N3= Alur Mas, South Aceh; N4 = Paya Dapur, South Aceh; N5 = Kluet Selatan, South Aceh; N6 = Menggamat, South Aceh; N7 = Lawe Sawah, South Aceh; N8 = Meukek South Aceh; N9 = Panga Aceh Jaya; N10 = Nisam Aceh Utara; N11 = Sungai Mas, Aceh Barat; N12 = Woyla, Aceh Barat; N13 = Sampoiniet, Aceh Jaya; N14 = Keumala, Pidie; N15 = Subulussalam Town; N16 = Subulussalam (drum); and N17 = Great Aceh.

The results also showed that the average BCP level was 5.51%. This value is commercially potential. The minimum target for patchouli oil is only around 3.4-3.5%, but patchouli oil from Aceh is much higher. The BCP content also found that the SD value reached 1.89, meaning that the distribution of BCP content between locations in Aceh was extensive, starting from 2.18% as the lowest to 8.59% as the highest [26].

The MS spectrum data also shows a high similarity between the patchouli oil sample fragmentation and the compound library. Even though the percentage of similarities is very high, the MS data is only a comparison with the library data. However, during injection, the internal standard is used for the target compound we are looking for, making the results more valid than relying solely on library data (Figure-1) [27, 28].
Figure 1. The MS fragmentation pattern of the N1 patchouli oil sample was compared with the compound fragmentation predicted by the compound library.

4. Conclusion
BCP found in various Aceh patchouli oils tended to contain the same isomer, namely Bicyclo [7.2.0] undec-4-ene, 4,11,11-trimethyl-8-methylene-, [1R- (1R *, 4Z, 9S *)]. Chemotaxonomy shows the similarity in patchouli's origin, but this assumption still needs to be validated by using reference material. Potentially, BCP's presence in Aceh patchouli oil is very potential because the average BCP content is 5.51%.

References
[1] Tallei T E, Pelealu J J, Pollo H N, Pollo G A V, Adam A A, Effendi Y, Karuniawan A, Rahimah S and Idroes R 2019 Ethnobotanical dataset on local edible fruits in North Sulawesi, Indonesia Data Br. 104681
[2] Earlia N, Muslem, Suhendra R, Amin M, Prakoeswa C R S, Khairan and Idroes R 2019 GC/MS Analysis of Fatty Acids on Plick U Oil and Its Pharmacological Study by Molecular Docking to Filaggrin as a Drug Candidate in Atopic Dermatitis Treatment Sci. World J. 2019 1–7
[3] Earlia N, Rahmad R, Amin M, Prakoeswa C, Khairan K and Idroes R 2019 The Potential Effect of Fatty Acids from Plick U on Epidermal Fatty Acid Binding Protein: Chromatography and Bioinformatic Studies Sains Malaysiana 48 1019–24
[4] Nuraskin C, Marlina, Idroes R, Soraya C and Djufri 2020 Identification of secondary metabolite of laban leaf extract (Vitex pinnata l) from geothermal areas and non-geothermal of agam mountains in Aceh Besar, Aceh province, Indonesia Rasayan J. Chem. 13 18–23

[5] Nuraskin C A, Marlina, Idroes R, Soraya C and Djufri 2019 Identification of Secondary Metabolite using Phytochemical and Infra-Radiation Test on the Leaves of Vitex pinnata found in the Seulawah Agam mountain region of Aceh Res. J. Pharm. Technol. 12 5247

[6] Paristiowati M, Moersilah M, Stephanie M M, Zulnanelis Z, Idroes R and Puspita R A 2019 Rosa sp and Hibiscus sabdariffa L extract in ethanol fraction as acid base indicator: Application of green chemistry in education J. Phys. Conf. Ser. vol 1402 (IOP Publishing) p 55041

[7] Tallei T E, Linelejan Y T, Umboh S D, Adam A A, Muslem and Idroes R 2020 Endophytic Bacteria isolated from the leaf of Langusei (Ficus minahassae Tesym. & De Vr.) and their antibacterial activities IOP Conf. Ser. Mater. Sci. Eng. 796 012047

[8] Zulfendi, Idroes R and Khairan 2019 Isolation and identification of Endophytic Fungus Fusarium sp from Agarwood (Aquilaria sp) population originated from the forest of Aceh Tamiang district, Indonesia IOP Conf. Ser. Mater. Sci. Eng. 523 12013

[9] Estevam E, Griffin S, Nasim J, Zielinski D, Aszyk J, Osowicka M, Dawidowska N, Idroes R, Bartoszek A and Jacob C 2015 Inspired by Nature: The Use of Plant-derived Substrate/Enzyme Combinations to Generate Antimicrobial Activity in situ Nat. Prod. Commun. 10 1733–8

[10] Ningsih D S, Idroes R, Bachtiar B M and Khairan 2019 The potential of five therapeutic medicinal herbs for dental treatment : A review IOP Conf. Ser. Mater. Sci. Eng. 523 12009

[11] Nuraskin C A, Marlina, Idroes R and Soraya C 2019 Activities inhibition methanol extract Laban Leaf(Vitex pinnata) on growth of bacteria S. mutans Atcc 31987 IOP Conf. Ser. Mater. Sci. Eng. 523

[12] Nuraskin C A, Marlina M, Idroes R, Soraya C and Djufri D 2020 Antibacterial Activity Tests of N-hexane, Ethyl Acetate, and Methanol Leaves (Vitex) Extract (pinnata) against Streptococcus mutans Open Access Maced. J. Med. Sci. 8 181–4

[13] Rahmad R, Earlia N, Nabila C, Inayati I, Amin M, Prakoeswa C R S, Khairan K and Idroes R 2019 Antibacterial cream formulation of ethanolic Pliek U extracts and ethanolic residue hexane Pliek U extracts against Staphylococcus aureus IOP Conf. Ser. Mater. Sci. Eng. 523 012011

[14] Pratiwi S U T, Lagendijk E L, de Weert S, Idroes R, Hertiani T and den Hondel C Van 2015 Effect of Cinnamomum burmannii Nees ex Bl. and Massoia aromatica Becc. Essential Oils on Planktonic Growth and Biofilm formation of Pseudomonas aeruginosa and Staphylococcus aureus In Vitro Int. J. Appl. Res. Nat. Prod. 8 1–13

[15] Suhartono E, Setiawan B, Santosa P B, Idroes R and Indrawan M S 2019 Estimation of leaf antioxidant activity using image processing Journal of Physics: Conference Series vol 1374 (IOP Publishing) p 12057

[16] Nasution R, Idroes R, Amna U and Al. E 2020 Sunscreen Activities of Bark Artocarpus heterophyllus against Ultraviolet Ray (Sun Protection Factor, SPF) in Lotion Formula Maced. J. Med. Sci.

[17] Machado K da C, Islam M T, Ali E S, Rouf R, Uddin S J, Dev S, Shilpi J A, Shill M C, Reza H M, Das A K, Shaw S, Mubarak M S, Mishra S K and Melo-Cavalcante A A de C 2018 A systematic review on the neuroprotective perspectives of beta-caryophyllene Phyther. Res. 32 2376–88

[18] Johnson S A, Rodriguez D and Alred K 2020 A Systematic Review of Essential Oils and the Endocannabinoid System: A Connection Worthy of Further Exploration Evidence-based Complement. Altern. Med. 2020

[19] Kumar V, Shriram V, Bhagat R, Khare T, Kapse S and Kadoo N 2019 Phytochemical profile, antioxidant, anti-inflammatory, and anti-proliferative activities of Pogostemon deccanensis essential oils 3 Biotech 9 0
[20] Sufriadi E, Aisyah Y, Harahap F, Fernando Y and Mardina V 2020 A method for aseptic culture of bud explants Pogestemon cablin benth Var Tapak Tuan, Aceh, Indonesia IOP Conf. Ser. Mater. Sci. Eng. 725

[21] van Beek T A and Joulain D 2018 The essential oil of patchouli, Pogostemon cablin: A review Flavour Fragr. J. 33 6–51

[22] Xavier-Junior F H, Maciuk A, Rochelle Do Vale Morais A, Alencar E D N, Garcia V L, Tabosa Do Egito E S and Vauthier C 2017 Development of a Gas Chromatography Method for the Analysis of Copaiba Oil J. Chromatogr. Sci. 55 969–78

[23] De Almeida Borges V R, Ribeiro A F, De Souza Anselmo C, Cabral L M and De Sousa V P 2013 Development of a high performance liquid chromatography method for quantification of isomers β-caryophyllene and α-humulene in copaiba oleoresin using the Box-Behnken design J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 940 35–41

[24] Lucca L G, de Matos S P, Borille B T, Dias D de O, Teixeira H F, Veiga V F, Limberger R P and Koester L S 2015 Determination of β-caryophyllene skin permeation/retention from crude copaiba oil (Copaifera multijuga Hayne) and respective oil-based nanoemulsion using a novel HS-GC/MS method J. Pharm. Biomed. Anal. 104 144–8

[25] Judzentiene A, Budiene J, Butkiene R, Kupcinskiene E, Laffont-schwob I, Masotti V, Judzentiene A, Budiene J, Butkiene R, Kupcinskiene E and Laffont-schwob I 2018 Caryophyllene Oxide-rich Essential Oils of Lithuanian Artemisia campestris ssp. campestris and Their Toxicity To cite this version: HAL Id: hal-01926030 NPC Natural Product Communications Caryophyllene Oxide-rich Essential Oils of Lithuanian Nat. Prod. Commun. 5 1981–4

[26] Chen M, Zhang J, Lai Y, Wang S, Li P, Xiao J, Fu C, Hu H and Wang Y 2013 Analysis of Pogostemon cablin from pharmaceutical research to market performances Expert Opin. Investig. Drugs 22 245–57

[27] El-Zaiat H M and Abdalla A 2019 Potentials of patchouli (Pogostemon cablin) essential oil on ruminal methanogenesis, feed degradability, and enzyme activities in vitro Environ. Sci. Pollut. Res. 26 30220–8

[28] Munawar AA, von Hörsten D, Wegener JK, Pawelzik E, Mörlein D 2016 Rapid and non-destructive prediction of mango quality attributes using Fourier transform near infrared spectroscopy and chemometrics. Eng Agric Environ Food. 9(3):208–215.

Acknowledgement
The first author (E.S.) would like to thank: (1) LPPM Universitas Syiah Kuala for funding and support this project research; Graduate School of Mathematics and Applied Science (DMAS) at Universitas Syiah Kuala for the assistance and support that has been given to me, especially to the Head of Study Program and all the Advisors; and (3) Atsiri Research Center (ARC) PUI Nilam Aceh, Universitas Syiah Kuala which has facilitated this research work.