The effectiveness of using lemon and orange essential oils as natural antimicrobials and antioxidants in beef burger
"The effectiveness of using lemon and orange essential oils a natural antimicrobials and antioxidants in beef burger"

ABSTRACT

The effectiveness of using lemon and orange essential oils a natural antimicrobials and antioxidants in beef burger

Healthier food products have become a key target for the food industry. Consumer’s demands for healthier meat and meat products are rapidly increasing world-wide.

In this study, we assessed chemical composition and antimicrobial activities of Sweet Orange (Citrus sinensis) and Lemon (Citrus limon) essential oils (OE and LE) with its preservative effect against pathogenic bacteria by the determination of agar well diffusion method and the minimum inhibitory concentrations (MICs).

In order to improve the functional value of meat product, application of orange or lemon essential oil (OE or LE) as promising cheap natural antimicrobial and antioxidant in beef burger was carried out. Chemical composition, quality properties and microbial analysis of the suggested beef burger as affected by adding OE or LE during freezing storage at -18°C for 90 days were studied. The addition of 0.5, 1 and 1.5% of OE and LE to the beef burger caused a reduction in thiobarbituric acid reactive substances, peroxide value, total volatile basic nitrogen and microbial count.

Sensory evaluation of beef burger treated with OE and LE showed that they were organoleptically acceptable in terms of color, taste, odour and tenderness, that in concentrations 0.5% and 1%, while the high concentration 1.5% was less acceptable, but it was not rejected at all.

Key Words: orange, lemon essential oil, Antimicrobial, Antioxidant, Beef burger.
Introduction

Method of preservation Meat is a necessary to transport meat without spoiling and loss of nutritional value for long distances. The addition of sodium nitrite, potassium nitrite, can be used to preserve the cured meat, but such chemical compounds have bad effects on human health (Nychas, et al 2008).

Consumers have become aware of the health problems (diseases related to oxidative stress) in recent years, which are caused by artificial chemical additives to processed foods. Natural additives as essential oils and their extracts can be used to reduce the use of chemical preservatives and their risks. Such materials can extend the shelf life of meat and their products and control or inhibit the microbial growth (Saricaoglu, and Turhan 2019). Orange (Citrus sinensis) and lemon (Citrus limon) oils are an essential oil produced by cells within the rind of an orange and lemon fruit. It is composed of mostly (greater than 90%) d-limonene, and is often used in place of pure d-limonene. D-limonene can be extracted from the oil by distillation. (Verzera, 2004).

The essential oils of citrus are excellent sources of natural antioxidants such as phenolic, flavonoids, alkaloids, tannins and phenolic acids. The TBA value is commonly used as an indicator of fat oxidation in meat products (Domínguez, 2019). Also, citrus essential oils have an antimicrobial activity. The most important component that have an antimicrobial effect were; Geraniol, Menthol, Cinnamal Alcohol, Linalool, Citronellol, Carvacrol, Cinnamaldehyde, Eugenol, Thymol, Estragol, Carvone and Chavicol (Sharma, et al., 2019).
Material and Methods

Material:

1- oils.

The essential oil of Sweet Orange (Citrus sinensis) and Lemon (Citrus limon) was purchased from Cato Aromatic for aromatic, medicinal and food products.

2- Ingredients used in the preparation of experimental samples of burger:

Six kilos of fresh meat, Soy protein concentrate, Salt and spices were purchased from the local market in Fayuom city.

Table (I) Suggested formula for beef burger:

Ingredients	%
Beef lean	80
Fat	15
Soy protein concentrate	10
Salt	1.5
Onion	1.0
Powdered spices mixture	0.2
Sodium pyrophosphate	0.3
Ice	1.0

*Powdered spices mixture contained; fennel, coriander, paprika, rosemary, black pepper, cloves and laurel leaves.
Beef burger preparation:

Fresh meat was mixed with the ingredients given in Table (I) minced beef meat was subdivided into eight equal parts and beef patties were prepared to provide eight treatment samples. control sample was formulated without any treatment. The samples were kept in a foam white trays covered with polyethylene sheets and stored at -18° C for further analysis at a periodicals of 15 days up to three-month storage. Beef burger formulated was divided into eight groups as follow:

- **Samples treatment 1 (T1):** treated with orange essential oil at a concentration of 0.5% Per 100 g of beef burger
- **Samples treatment 2 (T2):** treated with orange essential oil at a concentration of 1% Per 100 g beef burger
- **Samples treatment 3 (T3):** treated with orange essential oil at a concentration of 1.5% Per 100 g beef burger
- **Samples treatment 4 (T4):** treated with lemon essential oil at a concentration of 0.5% Per 100 g of beef burger
- **Samples treatment 5 (T5):** treated with lemon essential oil at a concentration of 1% Per 100 g beef burger
- **Samples treatment 6 (T6):** treated with lemon essential oil at a concentration of 1.5% Per 100 g beef burger
- **Samples treatment 7 (T7):** treated with sodium nitrite at a concentration of 200 Ppm (part per million) of beef burger.
- **Control:** be treated without lemon and orange oil, (as a control group)

All treatments are kept frozen. All chemical and microbiological tests are carried out on the treated samples at the beginning of the experiment (zero time) and every two weeks, for 90 days of frozen storage, taking into consideration the acceptable sensory test.

Analytical Methods:

A- Gross Chemical composition:

- Moisture content, crude Protein content, Fat content. Salt content and Ash were determination according to by A.O.A.C. (2012).

B- Quality indices

- The PH value and Total volatile nitrogen content were measured according to by A.O.A.C. (2012).
- Thiobarbituric acid (TBA) as a fat oxidation index was calculated directly from the sample as defined by the Pearson, (1976).
C- Microbiological examination:
Aerobic plate counts, *Staphylococcus aureus* and *Coliforms* group. in accordance with Difco manual (1998).

D- Sensory evaluation.
Sensory attributes i.e., after cooking, colour, taste, odour and tenderness of the beef burger samples were evaluated using a 1-10-point numerical scale; where ten corresponded to “the highest quality”, a score less than 4 indicate that the sample is "rejected" according to the method defined by Golk et al. (2008).

E-Statistical analysis.
All obtained data were subjected to the statistical analysis using SPSS version 19.0 software (SPSS, 2003. Statistical Package for Social Sciences. SPSS Inc., Chicago, IL, USA.), and Sigma plot 12.0 software programs.

RESULTS AND DISCUSSION

1- Chemical Composition Beef burger treated with different concentration of lemon and orange essential oils.

The contents of moisture, protein, fat, salt and ash were determined in beef burger treated with different concentration of lemon and orange essential oils, and the results are shown in Table 1. The moisture content of all samples is in agreement with the Egyptian standard specifications (E.S.S) (1688/2005) that stated the moisture content doesn’t exceed 60%. All of the treatments had significant differences in moisture content, with the exception of T7 (Beef burger treated with nitrite 200 ppm) which are consistent with each T1 (Beef burger treated with 0.5% orange essential oils) and control samples. These results are lower than those had been recorded by Maky, et al. (2020) who demonstrated that the mean value of moisture content in beef burger was 61.02%.

The mean values of protein % in the beef burger were 18±2.0, 19.5±2.5, 21.5±2.1, 21±2.0, 21.1±2.0, 21.5±2.1 and 20±2.0 for T1, T2, T3, T4, T5, T6 and T7 control, respectively (Table, 1). No significant differences between them, and all samples is in agreement with E.S.S (1688/2005), which limited protein was >15% in beef burger. These results are, to some
The effectiveness of using lemon and orange essential oils as natural antimicrobials and antioxidants in beef burger.

extent, in agreement with the data obtained by Edris, et al. (2012) and Maky, et al. (2020).

From Table (1), it was clear that the mean values of salt content in beef burger samples were range from 1.2 to 1.4 %, there are no significant differences between samples. The mean values of ash % in the examined samples were 2.7, 3.4, 2.9, 2.8, 2.9, 2.8, 2.7 and 2.4 % for T1, T2, T3, T4, T5, T6, T7 and control, respectively. There are significant differences between treatment T2 and other treatment samples. These results are lower than those recorded by Edris, et al. (2012) and Maky, et al. (2020), who denoted that the mean values of ash % in the examined beef burger samples were 4.0 and 3.36 %. Ashes are the complete minerals present in foods such as sodium, phosphorus and iron that can be added to meat as raw materials, salt and spices (Fernández-López et al., 2006).

Table (1) Chemical composition of beef burger treated with different concentration of lemon and orange essential oils.

Treatment	Moisture	Protein	Fat	Salt	Ash
T1: Beef burger treated with 0.5% orange essential oils	58.8 ± 0.0	18 ± 0.0	1.4 ± 0.0	2.74 ± 0.0	
T2: Beef burger treated with 1.0% orange essential oils	58.2 ± 0.0	19.5 ± 0.0	1.3 ± 0.0	3.46 ± 0.0	
T3: Beef burger treated with 1.5% orange essential oils	55.9 ± 0.0	21.5 ± 0.0	1.2 ± 0.0	2.90 ± 0.0	
T4: Beef burger treated with 0.5% lemon essential oils	57.4 ± 0.0	21 ± 0.0	1.2 ± 0.0	2.83 ± 0.0	
T5: Beef burger treated with 1.0% lemon essential oils	56.6 ± 0.0	21.1 ± 0.0	1.4 ± 0.0	2.90 ± 0.0	
T6: Beef burger treated with 1.5% lemon essential oils	55.1 ± 0.0	21.5 ± 0.0	1.3 ± 0.0	2.95 ± 0.0	
T7: Beef burger treated with 0.5% lemon and 1.0% orange essential oils	58.4 ± 0.0	21 ± 0.0	1.2 ± 0.0	2.44 ± 0.0	
Control	58.3 ± 0.0	20 ± 0.0	1.3 ± 0.0	2.70 ± 0.0	

E.S.S: F ≥ 60 ≤ 10 ≥ 20 - -
The effectiveness of using lemon and orange essential oils as natural antimicrobials and antioxidants in beef burger

essential oils, T5: Beef burger treated with 1.5% lemon essential oils, T7: Beef burger treated with 2% nitrite, ppm, C: Control beef burger without any addition. Values with different superscript letters in a column are significantly different (P≤0.05).

Keeping quality indices:

1-Hydrogen ion concentration (pH):

Changes in pH values in beef burger samples treated with different concentration of orange and lemon essential oils during freeze storage at -18±2°C for 90 days are presented in Figure (1). As shown from the Figure (1), the control sample has the lowest PH value (6.47±0.010) at zero day of storage, followed by the sample treated with lemon oil 1.0% and the value was 6.62±0.015. A slight increase occurred during the storage period by freezing, and it rose at the end of the 90 days to its maximum value, which is 6.98±0.03 for the sample treated with orange essential oil 1.5%, followed by the samples treated with lemon oil essential, the value was 6.89±0.010.

Figure (1) Hydrogen ion concentration (pH).

Total volatile basic nitrogen (TVBN).

TVBN changes of beef burger samples treated with different concentration of orange and lemon essential oils are illustrated in (Figure 2). At the beginning of storage period (zero day), there were no significant differences between the samples, as the value of TVN was...
The effectiveness of using lemon and orange essential oils as natural antimicrobials and antioxidants in beef burger

approximately 7 mg N/100gm this is an indication of good quality raw material used in this study, and it gradually increased during the storage period, so the highest value was 36.58±0.20 mg N/100gm for the control sample, followed by the samples treated with 0.5% lemon essential oil, 0.5% orange essential oil, 1.0% lemon essential oil, 1% orange essential oil and 1.5% lemon essential oil and the values were 27.66±0.30, 26.05±0.30, 24.75±0.25 and 19.34±0.15, respectively. The lowest value was 18.92±0.25 for samples treated with 1.5% orange essential oil. A level above 20 mg N/100 g of the sample is commonly considered spoiled minced meat (ESS 1694/2005) with respect to TVBN values as a spoilage index for meat products. At the end of the storage period, most of the samples did not conform to the ESS 1694/2005, with the exception of samples treated with both 1.5% orange and lemon essential oil. These results are, to some extent, in agreement with the data obtained by Ibrahim, (2018) who demonstrated that the addition of 1 or 2% orange or lemon peels to the beef burger caused a reduction in total volatile basic nitrogen TVBN values compared to the control samples during refrigeration storage at 4±1°C for 15 days.

Figure (7) Total volatile basic nitrogen (TVBN), Thiobarbituric acid reactive substances (TBARS).

The TBARS method has been commonly used to assess the degree of lipid oxidation used during storage as a lipid oxidation index in meat products (Klangpetch et al., 2016). Data in Figure (7) show the changes
The effectiveness of using lemon and orange essential oils as natural antimicrobials and antioxidants in beef burger

in TBARS values of the prepared beef burger samples treated with different concentration of orange and lemon essential oils during freeze storage at \(-18 \pm 1^\circ C\) for 90 days. Results indicated that TBARS values for all treatment samples increased over the storage period. The values of samples on the zero day were approximately 0.157 (mg MDA kg\(^{-1}\) meat) and they gradually increased during the storage period by freezing, and after 60 days of storage, the control sample became unfit for consumption due to the increase in the value of TBARS to 1.32 (mg MDA kg\(^{-1}\) meat), followed by samples treated with sodium nitrite after 75 days of storage the value was 1.23 (mg MDA kg\(^{-1}\) meat), and at the end of the storage period, the value of TBARS increased to 0.938 (mg MDA kg\(^{-1}\) meat) in samples treated with 0.5% lemon oil.

All samples treated with orange and lemon essential oil in different concentrations at the end of the storage period were in compliance with the (ESS 1694/2005) for meat products, which recommended that the value of TBARS is less than 0.9 mg malonaldehyde/kg meat (MDA kg\(^{-1}\) meat).

It should be noted that samples with high concentration (1.5%) of orange and lemon essential oils showed good quality till 90 day freeze storage. The high efficiencies found in orange and lemon essential oil have verified the main function of these phenolic compounds as free radical scavengers and as primary, chain-breaking antioxidants (Hanan, et al., 2013 and Trabelsi, 2014). These findings are similar to that obtained by Klangpetch et al. (2016) who reported that TBARS values increased significantly in control sample (2.0 mg MDA/kg) but remained relatively...
low in lime peel treated samples with no substantial variations at all concentrations (sample of 1.0±0.1 mg MDA/kg).

Microbial Assessment of beef burger samples treated with different concentration of orange and lemon essential oils.

Total Aerobic bacterial count of beef burger samples treated with different concentration of orange and lemon essential oils.

Table (4) Total Aerobic bacterial count (cfu/g) of beef burger samples treated with different concentration of orange and lemon essential oils during storage period at \(-1^\circ\pm1^\circ\)C for \(4^\circ\) days.

Treatment	Storage period (day)								
	10	20	30	40	50	60	70	80	90
T1	\(\text{µ}10^{4}\pm\text{µ}10^{3}\)								
T2	\(\text{µ}10^{4}\pm\text{µ}10^{3}\)								
T3	\(\text{µ}10^{4}\pm\text{µ}10^{3}\)								
T4	\(\text{µ}10^{4}\pm\text{µ}10^{3}\)								
T5	\(\text{µ}10^{4}\pm\text{µ}10^{3}\)								
Control	\(\text{µ}10^{4}\pm\text{µ}10^{3}\)								
The effectiveness of using lemon and orange essential oils as natural antimicrobials and antioxidants in beef burger

T₁: Beef burger treated with 0.5% orange essential oils, T₂: Beef burger treated with 1% orange essential oils, T₃: Beef burger treated with 1.5% orange essential oils, T₄: Beef burger treated with 0.5% lemon essential oils, T₅: Beef burger treated with 1% lemon essential oils, T₆: Beef burger treated with 1.5% lemon essential oils, T₇: Beef burger treated with nitrite 200 ppm, C: Control beef burger without any addition. Values with different superscript letters in a column are significantly different (P≤0.05).

The results illustrated in Table (2) proved that the total Aerobic bacterial count (cfu/g) of beef burger samples treated with different concentration of orange and lemon essential oils decreased during freezing storage period (90 days). As for the beef burger samples treated with orange essential oils, the samples treated with the highest concentration of 1.5% had the lowest microbial counts, whether at zero days or at the end of the storage period the values were 2.0x10⁴±1.5x10³ and 1.0x10⁴±5.7x10² cfu/g respectively, compared to the other concentrations 0.5 and 1%, which the counts in the end of 90 days of storage were 1.0x10⁴±2.6x10³ and 2.1x10³±1.0x10² cfu/g respectively. Organ essential oils have strong antimicrobial activity against the most Gram-positive and Gram-negative bacteria (Trabelsi, 2014).

From Table (2), it was clear that as well as beef burger samples treated with lemon essential oils, samples treated with the highest concentration of 1.5% had the lowest microbial counts, whether at zero days (1.1x10⁴±3.6x10³) or at the end of the storage period (2.1x10³±1.7x10³), compared to the other concentrations 0.5 and 1%, which the counts in the end of storage period were 4.0x10³±2.0x10³ and 3.2x10³±2.0x10³ cfu/g respectively. There is antibacterial activity of the lemon essential oil against both Gram-positive and Gram-negative bacteria (Ali, 2018).

While the beef burger samples treated with nitrite salts (200 ppm) and the control sample (without any addition), the microbial counts were 8.5x10⁴±2.5x10⁴ and 8.1x10⁴±3.1x10⁴ cfu/g respectively, at zero day of storage and decreased during storage until it reached 2.7x10³±1.1x10³ and 1.3x10⁴±1.6x10³ cfu/g respectively, at the end of 90 days of storage. It is understood that microbial growth declines at around -18°C, but even at the lowest cold storage temperature, most bacteria are not killed (Ranken, 2000). All samples were in compliance with the
The effectiveness of using lemon and orange essential oils as natural antimicrobials and antioxidants in beef burger

Egyptian specifications (١٦٨٨/٩٠٥٠), which allow a total Aerobic bacterial count of beef burger was \(10^2\) cfu/g. The results in the presented study are consistent with that recorded by Mousa, et al., (٢٠١٤) who noticed that the total Aerobic bacterial count in beef burger samples, ranged from \(9.0 \times 10^9\) to \(4.39 \times 10^3\) cfu/g.

Total Coliforms count of beef burger samples treated with different concentration of orange and lemon essential oils.

Table (٣) Total Coliforms count (cfu/g) of beef burger samples treated with different concentration of orange and lemon essential oils during storage period at \(-18\pm1\)°C for ٩٠ days.

Treatment	Storage period (day)						
	٠	١٥	٣٠	٤٥	٦٠	٧٥	٩٠
T١	٤٥±١٠bc	٢٤±٤ghij	١٤±٩ijkl	٠	٠	٠	٠
T٢	٣٥±١٠cdef	٢٠±٢ghijk	١٣±٢jkl	٠	٠	٠	٠
T٣	٢٠±١٠ghijk	١٣±٢ghijk	٠	٠	٠	٠	٠
T٤	٤٥±١٠bc	٢٧±١٢efghi	١٠±٣hijk	٠	٠	٠	٠
T٥	٤٧±١٠cd	٢٣±٤ghijk	٠	٠	٠	٠	٠
T٦	٣٠±٥defg	١١±١jkl	٠	٠	٠	٠	٠
T٧	٤٤±١٤bc	٢٨±٨efgh	١٠،٧٨±٢٥hijk	٠	٠	٠	٠
Control	٩٠±٣٠a	٤٥±٥b	٣٩±٤cde	٠	٠	٠	٠
E.S.S	٢٠٧						

T١: Beef burger treated with ٠،٥% orange essential oils, T٢: Beef burger treated with ١،٠ % orange essential oils, T٣: Beef burger treated with ١،٥% orange essential oils, T٤: Beef burger treated with ٠،٥% lemon essential oils, T٥: Beef burger treated with ١،٠ % lemon essential oils, T٦: Beef burger treated with ١،٥% lemon essential oils, T٧: Beef burger treated with nitrite ٢٠٠ ppm, C: Control beef burger without any addition. Values with different superscript letters in a column are significantly different (P≤٠،٠٥).
The effectiveness of using lemon and orange essential oils as natural antimicrobials and antioxidants in beef burger

Coliforms is a group of organisms is often used as hygiene indicator organisms. Table (1) showed the total Coliforms count of beef burger samples treated with different concentration of orange and lemon essential oils during freezing storage period which decreased until it reached to zero before the end of the storage period.

Samples of beef burger treated with 1.5% orange essential oils had the lowest total Coliforms counts at zero days 20 ± 1 cfu/g, followed by beef burger samples treated with 1.5% lemon essential oils 30 ± 5 cfu/g. The counts decreased after 30 days of freezing storage to zero, while in the other treatments it reached zero after 45 days of storage by freezing. All samples were in agreement with the Egyptian specifications (١٩٨٨/٥٥٤٨) which allow a total coliform group count of beef burger was 1.1 cfu/g. There is a clear significant difference between the control sample and the other treatments, while there are no clear significant differences between the other treatments, and each other. These results are much lower than those recorded by Mousa, et al. (٢٠١٤) who denoted that the total Coliforms count of beef burger ranged from 9.0 X 10^2 to 1.98 X 10^3 with a mean value of 2.92 X 10^2 cfu/g.

Total Staphylococcus aureus count of beef burger samples treated with different concentration of orange and lemon essential oils.

Table (4) Total Staphylococcus aureus count (cfu/g) of beef burger samples treated with different concentration of orange and lemon essential oils during storage period at -18 ± 1°C for 90 days.

Treatment	Storage period (day)						
	0	15	30	45	60	75	90
T1	90 ± 2 ab	74 ± 1 bc de	34 ± 1 ghi j	18 ± 3 ijk	0	0	0
T2	84 ± 3 abc	77 ± 2 cde	42 ± 1 fgh	16 ± 3 ijk	0	0	0
T3	65 ± 5 cdde	41 ± 1 fgh	28 ± 4 ghikj	9 ± 4 lk	0	0	0
T4	73 ± 3 cbed	50 ± 1 efgh	31 ± 1 ghij	18 ± 3 ijk	0	0	0
T5	65 ± 5 cde	43 ± 1 fgh	24 ± 4 hijk	15 ± 5 jkl	0	0	0
The effectiveness of using lemon and orange essential oils as natural antimicrobials and antioxidants in beef burger

Treatment	Component %			
	Color	Taste	Odour	Tenderness
T₁	8.4 ± 1.22ab	7.6 ± 1.26b	7.7 ± 0.67ab	8.2 ± 1.13a
T₂	8.1 ± 1.36de	4.2 ± 1.4fg	3.1 ± 1.4jkl	3.1 ± 1.4ghj
Control	9.8 ± 3.1a	5.4 ± 4.7eå	5.4 ± 1.5cde	3.0 ± 1.5ghi

T₁: Beef burger treated with 0.5% orange essential oils, T₂: Beef burger treated with 1.0% orange essential oils, T₃: Beef burger treated with 1.5% orange essential oils, T₄: Beef burger treated with 0.5% lemon essential oils, T₅: Beef burger treated with 1.0% lemon essential oils, T₆: Beef burger treated with 1.5% lemon essential oils, T₇: Beef burger treated with nitrite 200 ppm, C: Control beef burger without any addition. Values with different superscript letters in a column are significantly different (P≤0.05).

Staphylococcus aureus can be responsible for food poisoning. And if it develops in large numbers, toxins may be left in the product that can withstand the heating process. Table (5) showed the total Staphylococcus aureus of beef burger samples treated with different concentration of orange and lemon essential oils during 90 days of freezing storage. As it is evident from the figure that the lowest count of Staphylococcus aureus was for samples of beef burger treated with lemon essential oil 1.5%, the count was 4.4 ± 4.16 cfu/g in zero day of storage. Followed by samples treated with 1.5% orange essential oil, the count was 6.5 ± 5.56 cfu/g during the same storage period. This may be due to the antimicrobial effect of orange and lemon essential oil (Ali, (2018); Edogbanya, et al., (2019) and Teneva, et al., (2019)). The control samples had the highest count of st. aureus (9.8 ± 3.1 cfu/g), followed by the samples treated with orange oil 0.5% (9.0 ± 3 cfu/g) at zero days. During storage by freezing, the counts decreased to zero before the end of the period. All samples are in compliance with the E.S.S. (1688/2005), which allow up to 100 cfu/g.

Sensory evaluation.

Table (5) Sensory evaluation of beef burger samples treated with different concentration of orange and lemon essential oils during storage period at -18±1°C for 90 days.

Treatment	Color	Taste	Odour	Tenderness
T₁	8,4 ± 1,77ab	7,6 ± 1,76b	7,7 ± 0,77ab	8,7 ± 1,73a
T₂	8,1 ± 1,36de	4,2 ± 1,4fg	3,1 ± 1,4jkl	3,1 ± 1,4ghj
Control	9,8 ± 3,1a	5,4 ± 4,7eå	5,4 ± 1,5cde	3,0 ± 1,5ghi
The effectiveness of using lemon and orange essential oils a natural antimicrobials and antioxidants in beef burger

Treatment	Values
T1	Beef burger treated with 1.0% orange essential oils
T2	Beef burger treated with 1.0% orange essential oils
T3	Beef burger treated with 1.5% orange essential oils
T4	Beef burger treated with 1.5% lemon essential oils
T5	Beef burger treated with 1.5% lemon essential oils
T6	Beef burger treated with 2.0% orange essential oils
T7	Beef burger treated with 2.0% orange essential oils
T8	Beef burger treated with nitrite (ppm)
C	Control beef burger without any addition

The results of the sensory properties analysis are presented in Table 1. The mean values of color, texture, odour and tenderness were evaluated. The values of samples treatment T1, T2 and T3 were ab, ac and bc respectively, where it was close to control sample 9 in color attribute, there was no significant difference (p≥0.05) among the samples. While there was significant difference (p≤0.05) between these treatment and other treatment i.e. T4, T5, T6 and T7, which the values were ac, bc and ab respectively. In taste attribute there was no significant difference (p≥0.05) among control and samples treatment T8, while there was significant difference (p≤0.05) among samples treatments T1 and T2 with T3, T4 and T5. All Samples treatment have an acceptable taste because they have values higher than c. Control and samples treatments T9, T1, T2 and T3 had the highest values of taste attribute (a, b, c, d, e, f and g respectively), while the lowest values were e, f, g and h respectively for samples treatments T4, T5 and T6 respectively.

In odour attribute, there was significant difference (p≤0.05) between samples treatments T1, T8 and control with other treatments. The highest values of odour attribute were ad, bc, cd, de and ef for control, T1, T2, T3 and T4, While the lowest values for samples treatment T8 and T9 (g, h and i).

Tenderness, there was significant difference (p≥0.05) between samples treatments T1, T2, T3 and control with other treatments. Control and samples treatments T9, T1, T2, T3 and T4 had the maximum values of a, b, c, d and e, f, while the minimum values of f, g and h.
The effectiveness of using lemon and orange essential oils as natural antimicrobials and antioxidants in beef burger

for sample treatments T5 and T6. The values of sensory attributes obtained were significantly similar with that reported by Ibrahim, et al. (2018).

Conclusion

Adding the essential oil of orange and lemon to the beef burger at concentrations of 0.5, 1, and 1.5% cause a decrease in the values of TVBN and TBA during the storage period for 90 days in freezing, compared to the high control values of these estimates due to the effect of these essential oils as a natural antioxidant.

Also, the addition of these essential oils in the same proportions led to a decrease in the microbial numbers of total aerobic count, coliform group and staphylococcus aureus count compared to the control, which had high values for these estimates due to the action of these essential oils as natural antimicrobials.
REFERENCES

Ali, H. K. (2018). Antimicrobial Inhibition Activity of Some Plant Oil Extracts (Syzygium aromaticum, Cinnamomum zeylanicum and Citrus limon). Journal of Biology, Agriculture and Healthcare. Vol.8, (12), 41-49.

AOAC (2012). Official Methods of Analysis of the Association of Analytical Chemists. 18th Ed., Washington, D.C., USA.

Difco manual (2012). Manual of dehydrated culture media and reagents for microbiological and clinical lab. 11th Ed. Difco lab. Detroit, Maryland, USA.

Domínguez, R., Pateiro, M., Gagaoua, M., Barba, F. J., Zhang, W., & Lorenzo, J. M. (2019). A comprehensive review on lipid oxidation in meat and meat products. Antioxidants, 8(1), 429.

Edogbanya, P., Suleiman, M., Olorunmola, J., & Oijagbe, I. J. (2019). Comparative study on the antimicrobial effects of essential oils from peels of three citrus fruits. J Biol Med, 4, 49-54.

Edris, A., M. Hemmat, F. Shaltout, M. Elshater and F. Eman, 2016. Chemical profile of beef burger and beef luncheon. Benha Vet. Med. J., 33: 109-115.

ESS, (1694/2005): Egyptian standards for minced meat. Egyptian Organization for Standardization and Quality Control. Ministry of Industry. Cairo, Egypt.

Fernández-López, J., S. Jiménez, E. Sayas-Barberá, E. Sendra and J. Pérez-Alvarez, (2003). Quality characteristics of ostrich (Struthio camelus) burgers. Meat Sci., 69: 190-193.

Golk, V., Obuz, E., and Akkaya, L. (2008) Effects of packaging method and storage time on the chemical, microbiological, and sensory properties of Turkish pastirma dry cured beef product. Meat Science 80, 335-344.

Hanan H. A. and Dalia A. Z. (2013). Utilization of Fruit by-Product in Ground Meat Preservation. Food Science and Quality Management, 11:49-60.

Ibrahim, H. M., Hassan, I. M., and Hamed, A. A. (2018). Application of lemon and orange peels in meat products: Quality and safety. International Journal of Current Microbiology and Applied Sciences, 7(4), 2703-2723.
The effectiveness of using lemon and orange essential oils as natural antimicrobials and antioxidants in beef burger

Klangpetch, W., Phromsurin, K., Hannarong, K., Wichaphon, J. and Rungchang, S. (2016). Antibacterial and antioxidant effects of tropical citrus peel extracts to improve the shelf life of raw chicken drumettes. International Food Research Journal, 23(2): 700–707.

Maky, M. A., Sadek, M., Shanab, O., Mahmoud, H. A. M., & Rehan, I. F. (2020). Nutritional characterization of various classes of Egyptian beef luncheon. Journal of Advanced Veterinary and Animal Research, 7(2), 299–307.

Mousa, M. M., Ahmed, A. A., & El-Shamy, S. Y. (2014). Microbiological Criteria of Some Meat Products. Alexandria Journal for Veterinary Sciences, 4(1).

Nychas, G.J.E., P.N. Skandamis, C.C.A. Tassou and K.P. Koutsoumanis, (2008). Meat spoilage during distribution. J. Meat Sci., 78: 77–89.

Pearson, D. (1991). The chemical analysis of food. Churchill: New York, London, pp: 374–410. Cited from African Journal of Food Science, 3(1): 316–319.

Ranken, M.D. (2000). Hand Book of Meat Product Technology. Blackwell science. Led London.

Saricaoglu, F. T., and Turhan, S. (2015). Performance of mechanically deboned chicken meat protein coatings containing thyme or clove essential oil for storage quality improvement of beef suculs. Meat science, 108, 109.

Sharma, M., Koul, A., Sharma, D., Kaul, S., Swamy, M. K., & Dhar, M. K. (2014). Metabolic engineering strategies for enhancing the production of bio-active compounds from medicinal plants. In Natural Bio-active Compounds : Springer, Berlin, Germany (pp. 287-316).

SPSS (2003). Statistical package for social sciences, user's guide: Statistics. Version 11. SPSS Inc., Chicago, Il, USA.

Teneva, D., Denkova-Kostova, R., Goranov, B., Hristova-Ivanova, Y., Slavchev, A., Denkova, Z., & Kostov, G. (2019). Chemical composition, antioxidant activity and antimicrobial activity of essential oil from Citrus aurantium L. zest against some pathogenic microorganisms. Zeitschrift für Naturforschung C, 74(5-6), 105-111.

Trabelsi, D., Ammar, A. H., and Bouabdallah, F. (2014). Antioxidant and antimicrobial activities of essential oils and methanolic extracts of Tunisian citrus aurantium l. IOSR Journal of Environmental Science, Toxicology and Food Technology. Volume 8, (3), PP 18-27.

Verzera, A.; A. Trozzi; G. Dugo; G. Di Bella; A. Cotroneo (2004). "Biological lemon and sweet orange essential oil composition". Flavour and Fragrance Journal. 19 (1): 544–548.