Epidemiology of intestinal parasitic infections in Ethiopian children: A systematic review and meta-analysis

Zeleke Mekonnen
Jimma University

Yonas Alemu
Jimma University College of Public Health and Medical Sciences

Daniel Emana
Jimma University

Legese Chelkeba (✉ Legese.chelkeba@gmail.com)

Research article

Keywords: Prevalence, Intestinal parasites, Ethiopia, Meta-analysis

Posted Date: October 9th, 2019

DOI: https://doi.org/10.21203/rs.2.15732/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. [Read Full License]

Version of Record: A version of this preprint was published on January 28th, 2020. See the published version at https://doi.org/10.1186/s12889-020-8222-y.
Abstract

Background: Numerous studies have been carried out on assessing the prevalence of intestinal parasites infections (IPIs) among preschool and school age children in Ethiopia, however, there was no study to gather and systematically analyze this information for policy makers.

Methods: We searched Medline via PubMed, Scopus, Science Direct, Web of Science (ISI), and Google Scholar and local peer-reviewed journals published from inception to 2019 for studies describing prevalence of IPIs among preschool and school age children. We conducted meta-regression to understand the trend and the source of heterogeneity and pooled the prevalence using ‘metaprop’ command using STATA software (Intercooled, version 14, STATA Corp, College Station, TX).

Results: Eighty three (83) studies examining 56,786 fecal specimens were included. The prevalence of IPIs was 48% (95%CI: 42% to 53%) and showed a gradual, but significantly decreasing trends 17% (95% CI: 2.5% to 32%) for each consecutive 6 years) and was similar in males and females. The pooled prevalence in years 1997–2002, 2003–2008, 2009–2014 and >2014 was 71% (95% CI: 57% to 86%), 42% (95% CI: 27% to 56%), 48% (95% CI: 40% to 56%) and 42% (95% CI: 34% to 49%), respectively. Poly-parasitism was observed in 16% (95% CI: 13% to 19 %,) of children while, single parasite infection was observed in 36% (95% CI: 30% to 41%).

Conclusion: IPIs are highly prevalent and well distributed across the regional states of Ethiopia. Southern and Amhara regional states carry the highest burden. We observed a gradual, but significant decreasing trends in prevalence of IPIs among Ethiopian children over the last two decades.

Background

Parasitic infections caused by intestinal helminthes and protozoan are among the most prevalent infections in developing countries and carrying high burden of morbidity and mortality in these areas [1]. Specifically, economically disadvantaged children living in tropical and sub-tropical regions with a limited or no access to safe drinking water, inadequate sanitation, and substandard housing are the most affected ones [2]. Epidemiological evidence suggests that an estimated 3.5 billion people in the world, majorly children were infected with intestinal parasites caused by helminthes and protozoa [3]. Majority of the infections were due to Ascariasis, hookworm, and Trichiuriasis [4, 5]. More than 267 million preschool-age children and 568 million school-age children live in areas where these parasites are intensively transmitted [6]. Cryptosporidium species, Entamoeba histolytica and Giardia duodenalis were the most common protozoan infections in children under five years in sub-Saharan Africa [7].

The regional distribution and prevalence differences of IPIs among children are mainly due to differences in degree of fecal contamination of water and food, climatic, environmental and socio-culture [8–10]. The prevalence among under-five, preschool and school children were reported as 17.7% in Riyadh, Saudi Arabia[11], 52.8% in an urban slum of Karachi, Pakistan [12], 19.6% in Zambia [13] and 30% in Khartoum, Sudan [13]. In Ethiopia, prevalence varies across the regions in the country. For instance, the prevalence was 85.1% in Wondo Genet (Southern region) [14], 48.1% in Aynalem village (Tigray region) [15], 17.4% in Debre Birhan (Amhara region) [16], 26.6% in Hawassa (Southern region) [17], 24.3% in Wonji Shoa Sugar Estate (Oromia region) [18], 18.7% in Woreta (Amhara region) [19], 25.6% in Dembiya (Amhara region) [20] and 41.1% in Jimma town (Oromia region) [21].
School age children the most affected ones due to their dirty habits of playing or handling of infested soils, eating with soiled hands, unhygienic toilet practices, drinking and eating of contaminated water and food [22]. IPIs lead to malnutrition, mal-absorption, anemia, intestinal obstruction, mental and physical growth retardation, diarrhea, impaired work capacity, and reduced growth rate constituting important health and social problems [10, 18, 23, 24].

Numerous epidemiological studies have been performed on assessing the prevalence of intestinal parasite infections (IPIs) among children in Ethiopia, but there is lack of systematically gathered and analyzed information for policy makers. Therefore, the aim of this study was to provide a summary on prevalence, geographical distribution and trends of IPIs among preschool and school age children to forward possible recommendations for the policy makers to design new control, diagnosis and treatment strategies.

Methods

Search strategy and data extraction

We searched Medline via PubMed, Scopus, Science Direct, Web of Science and Google Scholar using searching terms “prevalence” OR “incidence” AND “intestinal parasite” OR “helminthes” OR “protozoa” AND “Ethiopia”. Searching was carried out on articles published from inception to 2019 and limited to English language and human studies. A manual search for additional relevant studies using references from retrieved articles and related systematic reviews was also performed to identify original articles we might have missed. Conference abstracts and unpublished studies were excluded. We did our analyses according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement [25] and guided by PRISMA checklists [Additional file 1]

Participants, inclusion and exclusion criteria

Two authors independently (LCH&DE) assessed the inclusion criteria and disagreement was solved by discussion. We included the studies if they met the following criteria: the study design was an observational study (prospective cohort, case-control, retrospective cohort, or cross-sectional) or controlled clinical trial of which documented the baseline prevalence or incidence of IPIs. We exclude studies reporting case reports, case series, studies that compared the sensitivity and specificity of different methods used for diagnosis of intestinal parasites and studies not reported either prevalence or incidence of IPIs as outcome of interest. We included all studies reported the prevalence or incidence of IPIs in preschool and/or school age children or both. The terms preschool and school age children were defined according to the original studies. Accordingly, preschool age children were defined as children of age below 5 years while, school age children were children of age 5 and above. Poly-parasitism was defined as concurrent infection with different species of intestinal parasites either helminthes or protozoa.

Data extraction and Quality assessment

The two authors (LCH and DE) defined protocol for data extraction and assessed them independent for eligibility and disagreements were resolved by discussion. We extracted information on name of the first author and year of publication, study design, population studied (preschool age children, school age children or both), gender, region & sites of study, Method(s) for identification of the parasites, total sample size and the number of the
positives (percentage). The Grading of Recommendation Assessment, development and Evaluation (GRADE) approach was used to assess the overall quality of evidence [26]. Accordingly, studies were given one point each if they had probability sampling, larger sample sizes of more than 200, and repeated detection. Publications with a total score of 3–4 points were considered as high quality, whereas 2 points represented moderate quality and scores of 0–1 represented low quality.

Statistical analysis

We used forest plots to estimate pooled effect size and effect of each study with their confidence interval (CI) to provide a visual summary of the data. A random-effects model was used in this meta-analysis because of anticipated heterogeneity. All reported P values were 2-sided and were statistical significant if P < 0.05. Statistical heterogeneity among studies was assessed as the P value (Cochran's Q statistic), where a P < 0.05 and I² ≤ of 25–50% were considered as low heterogeneity and I²>50% indicated substantial heterogeneity. We also used Begg's Funnel plot and Egger's regression test for evaluating the possibility of publication bias. A potential source of heterogeneity was investigated by subgroup and meta-regression analysis. The factors included were geographical regions and cities of Ethiopia, age of children (Preschool vs. school age children), and years of publication (1997–2002, 2003–2008, 2009–2014 and > 2014). We conducted meta-analysis using ‘metaprop’ command using STATA software, version 14, STATA Corp, College Station, TX.

Results

Literature searches and selection

We identified systematically 1,198 publications, of which 83 were eligible for inclusion in the final analyses. The details of our search strategy were depicted in Figure 1. Our initial research of electronic databases such as Medline via PubMed, Scopus, Science direct, Web of Sciences and Google scholar yielded 1195 articles and 3 articles manually from which 186 records remained after removing 1012 duplications. Up on screening the articles, 99 articles were further excluded; 90 were irrelevant because they were not specifically about preschool or school age children, 6 studies were about sensitivity and specificity of diagnosis of IPIs, 3 articles were review articles. Up on further access to the full texts of 87 articles, 4 were excluded for the following reasons; 2 were meta-analyses and 2 articles lacked outcome of interest. Finally, 83 published between 1997 and 2019 fulfilling the inclusion criteria were included in the final analyses.

The sample size of the included trials ranged from 100 [27] to 15455[28] with a total number of 56,786 participants [14, 16, 17, 21, 24, 27–40, 42–44, 46–63, 65–91, 93–107]. Most of the studies were reported from Amhara regional 33(40%) followed by Oromia region 21(25%). The rests were reported from South region 18(22%), Tigray region 9(11%), Benishangul-Gumuz region 1(1%) and Addis Ababa city 1(1%). With regard to the study design, majority of the studies were cross sectional in design (79 studies), 2 were controlled clinical trials, 2 were prospective follow up cohort studies and 1 was case-control. Sixty six studies were about IPIs in school age children, 13 were in preschool age children (under-five) and 4 were studies involved both preschool and school age children. According to our quality assessment criteria, 34 publications were of high quality with a score of 3, 12 had a score of 2 indicating moderate quality and the remaining 37 were of low quality with a score of zero or one [Table1 at the end of manuscript on page 26–31].

Prevalence estimate and heterogeneity analysis
A range of parasites were detected in the studies including *Ascaris lumbricoides*, *Hookworm*, *Trichuris trichiuria*, *Strongyloides stercoralis*, *Enterobius vermicularis*, *Schistosoma mansoni*, *Hymenolepsis nana*, *Taenia species*, *Giardia lamblia/intestinalis/duodenalis*, *Entamoeba histolytica/dispar* and *Cryptosporidium species*. A total of 27,354 of the 56,786 children examined during the period under review were infected with one or more species of intestinal parasites yielding an overall prevalence of 48% (95% CI: 42% to 53%) with substantial heterogeneity ($I^2 = 99.50\%$, regression coefficient: -0.23, 95% CI: -0.38 to -0.09, $p = 0.002$, Fig. 2). Subgroup analysis showed that the prevalence of IPIs was 56% (95% CI: 39% to 73%) in Southern region, 51% (95% CI: 43% to 58%) in Amhara region, 40% (95% CI: 31% to 50%) in Oromia region, 31% (95% CI: 27% to 35%) in Benishangul-Gumuz region, 41% (95% CI: 28% to 54%) in Tigray region and 23% (95% CI: 19% to 28%) in Addis Ababa city Fig. 3 and 4. The age related prevalence was 52% (95% CI: 46% to 58%) in school age children and 30% (95% CI: 18% to 34%) preschool age children ($p = 0.002$) as shown in Fig. 5.

The pooled prevalence of IPIs in year 1997–2002, 2003–2008, 2009–2014 and >2014 was 71% (95% CI: 57% to 86%), 42% (95% CI: 27% to 56%), 48% (95% CI: 40% to 56%) and 42% (95% CI: 34% to 49%), respectively [Fig. 6]. We did meta-regression analyses to search for the sources of heterogeneity. The results of the analyses showed that age (regression coefficient: 0.38, 95% CI: 0.15 to 0.60, $p = 0.002$) and year of publication (regression coefficient: -0.17, 95% CI: -0.32 to -0.02, $p = 0.023$) might be sources of heterogeneity, whereas we detected no significance difference in geographical distribution (regression coefficient: 0.025, 95% CI: -0.11 to 0.06, $p = 0.56$) as shown Fig. 7.

Prevalence of IPIs by area of residence, gender and poly-parasitism status

Thirteen studies (N = 12,356) reported the proportion of IPIs based on residence area. The pooled prevalence of overall IPI was not significantly differ between rural and urban areas; rural 22% (95% CI: 10% to 30%, Additional file 2) and urban 23% (95% CI: 14% to 32%, Additional file 3). Forty two studies (N = 36,218) had separate data on the prevalence of IPIs for males and females. The pooled prevalence for males was 24% (95% CI: 20% to 28%, Additional file 4) while, it was 22% (95% CI: 18% to 25%, Additional file 5) for females. Poly-parasitism was observed in 16% (95% CI: 13% to 19%, Additional file 6) of children and 36% (95% CI: 30% to 41%, Additional file 7) of children were infected with a single species of parasite.

Discussion

The essence of current systematic review and meta-analysis of IPIs data analysis among Ethiopian children was to support the efforts undertaken to control and eliminate neglected tropical diseases by nurturing or supplementing useful national epidemiological data. We hope that the findings of current study provide valuable information to the policy makers, National Health Bureau and other concerned bodies about national and regional distribution and their prevalence in Ethiopia. The pooled prevalence of IPIs in Ethiopian children was 48% (95% CI: 42 to 53%). The prevalence is higher in Southern (56%) and Amhara regions (51%) and lower in Addis Ababa city (23%). We observed a significant decrease in the prevalence of IPIs among children in Ethiopia over the last two decades (22 years). The burden of infection was higher among school age children compared to preschool age children (52% vs.30%, $p = 0.002$), however, it was similar in males and females as well as in urban and rural inhabitants. Poly-parasitism was observed in around 16% of children while, single infection was documented in 36% of the children participated in the study.
The overall pooled prevalence estimate (48%) observed in the present study is almost similar to the study from Nigeria (54.8%) [109], 50.5% Rwanda [110], 47.6% Afghanistan [111], 42.5% Syria [112] and 40.5% in Palestine [113]. However, the study is higher than 24.1% in Cameroon [114], 25.4% in Rwanda [115], in Iran 38% [116], 31.7%–37.2% in Turkey [117] and 26.5% in Egypt [118]. The difference might be attributed to socio-economic status, poor hygiene and sanitary facilities, weather, climate and environmental factors. For example, a study in Ethiopia showed that *Ascaris* infections were more common in children living in households with lower incomes (prevalence ratio = 6.68, 95% CI = 1.01–44.34) and that *Giardia* infections were more common in children living in households that used an unprotected water source (prevalence ratio = 1.95, 95% CI = 0.96–3.99) [32]. In addition, most Ethiopian communities have developed the habit of consuming uncooked meat, which might increase the risk of exposure to human helminthes. Many of population of Ethiopian where the studies were conducted involved in irrigation activities for the cultivation of vegetables during the dry season. This irrigation canals create media for the reproduction of vector snails, which might be the cause of the appearance of endemicity of Trematodes infections in the area. It might also be attributed to the specificity and sensitivity of the diagnostic methods employed by the individual studies.

The meta-regression of prevalence of IPIs over time showed significant decreasing trends in each 6-years block by 17% (95% CI: 2.5% to 32%) and this declined prevalence was probably due to socioeconomic development, improvement in sanitation and large-scale deworming programs. Many studies from around the world have reported a significant decreasing trend in the prevalence of overall IPIs in recent years, such as the global burden of disease study [5], study from Burkina Faso [119], Nepal [120], Brazil [121] and other from 43 Sub-Saharan [122]. Despite many initiatives and efforts to introduce mass deworming program and improvement in water quality and sanitation, IPIs are still prevalent and the decrease in trend is less than that of other countries (Ethiopia 42% in 2016–2019 vs. Nepal 20. 4% in 211–2015 and Brazil 23.8% in 2010–2011). This might be possibly due insufficient financial supports in implementation of the strategies that have been known to reduce the infection such as access to safe water supply, personal hygiene and sanitation, deworming and public health awareness. The funding supports so far in Ethiopia were from non-governmental organizations (NOGs) targeting research and short-term objectives and therefore, lacked sustainability. Once the project was finalized and left the country, reinfection would be possible. In addition, lack of political commitment, social and environmental factors might also contribute for the higher prevalence of IPIs in the country. Inadequate community involvement and ownership of control activities are also another possible reason.

The prevalence of IPIs in school age children was (52%), which was significantly higher than in preschool age children (30%). This is similar to the study by Jayarani 2014 [123] and Workneh 2014 [45], but opposite to the study by Daryani 2017 [116]. School children carry the heaviest burden of the intestinal parasite associated morbidity due to their dirty habits of playing or handling of contaminated soils, eating with soiled hands, unhygienic toilet practices, drinking and eating of contaminated water and food [22] compared to preschool children who usually cared by families. The current control efforts in Ethiopia usually target school aged children, but a significant proportion of preschool age children (30% in this study) were also infected and can be source for the re-infection of treated school aged children. Therefore, it worthy revising the national control program based on regional and national prevalence which included preschool children and other population at risk.

In the present study, the prevalence of IPIs in females (22%) was similar to males (24%), which is similar to the study by Gelaw 2013 [47], but in contrast to study by Daryani 2017 [116] in Iran. In Iran, report indicated that more
females have (30.9%) have IPIs than males (16.5%). The difference might be due to cultural and behavioral difference between the two countries.

The distribution of IPIs in this study was relatively similar in both urban and rural areas. This might be due to absence of proper human waste disposal systems, the shortage of safe water supply, the social and poor environmental or personal hygiene in many unplanned urban areas in Ethiopia in addition to similarity of eating habit and life style of both urban and rural areas of the country. So far, reports from Africa and South Asia countries are conflicting. Some were reported higher infection rates of IPIs in rural areas compared to urban areas [124–128] and others reported higher rate of infections in urban children [129]. In fact, comparable data on IPIs in urban and rural settings are very limited. For instance, only 13 studies out of 83 studies included in this meta-analysis were reported prevalence of IPIs in both urban and rural areas and therefore, indicating more work to be done in the future to resolve this issue.

We estimated the geographical distribution and identified high risk areas that should be prioritized for mass drug administration (MDA) and other control interventions, which complement global efforts towards elimination of IPIs infections by 2020. In addition, this work also highlighted the need for survey in areas where data are not available such as Somalia region, Afar region, Harari, Dire Dawa city and Gambella region or scarce (Addis Ababa city and Benishangul-Gumuz region).

There are a few limitations of the present meta-analysis, which may affect the results. It is prudent to interpret the results of this study as 37(44.6%) of the included studies were low quality based on our quality assessment criteria. In all of studies included in this review, single stool sample examination were used despite multiple stool samples recommendation for standard diagnosis and therefore, possible underestimation of the prevalence. There is also substantial heterogeneity observed between the studies that affect the interpretation of the results. However, we did meta-regression analyses on various sources including geographical distribution, age category and year of publication. These might come from age category (P = 0.002) and year of publication (P = 0.023) but not from geographic distribution (p = 0.56).

Conclusions

IPIs are highly prevalent and well distributed across the regional states of Ethiopia. Southern and Amhara regional states carry the highest burden. Although school age children have higher prevalence of IPIs compared to preschool children, the prevalence is still unacceptably higher among preschool children. We observed a gradual, but significant decrease in prevalence of IPIs among Ethiopian children in the last two decades with no significant difference between males and females. The prevalence in the most recent six years was around 42% compared to 71% in the late 1990s. Place of residence has no effect on the burden of IPIs among Ethiopian children. About 16% of the children had concurrent poly-parasitism infections.

Abbreviations

IPIs, Intestinal parasite infections; MDA, mass drug administration; NGOs, non-governmental organizations; GRADE, Grading of Recommendations Assessment, Development and Evaluation; CI, confidence interval; PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-Analyses; STHs, soil-transmitted helminthes.
Declarations

Ethics approval and consent to participate: None applicable

Consent for publication: Not applicable.

Availability of data and materials: The datasets used and/or analyzed during the current study available from the corresponding author on reasonable request

Competing interests: The authors declare that they have no competing interests.

Funding: we did not receive any funding support for this work

Authors’ contributions: LCH and ZM conceived the study. LCH and YA extracted the data, and independently decided for inclusion or exclusion, and in events of disagreement, ZM helped to resolve. LCH and DE performed all the statistical analyses. LCH and YA prepared manuscript with the help from DE. All authors read and approved the final manuscript.

Acknowledgements: We thank Dr. Kefiyalew Getahun for his contribution in constructing geographical map of Ethiopia

Authors’ information:

Department of Clinical Pharmacy, School of Pharmacy, College Health Sciences, Jimma University, Jimma, Ethiopia

Legese Chelkeba (PhD, Associate Professor)

Department of Parasitology, School of Medical Laboratory Sciences, College Health Sciences, Jimma University, Jimma, Ethiopia

Zeleke Mekonnen (PhD, Professor)- Yonas Alemu² (MSc) and Daniel Emana (MSc, PhD student)

References

1. Houweling TA, Karim-Kos HE, Kulik MC, Stolk WA, Haagsma JA, Lenk EJ, et al. Socioeconomic inequalities in neglected tropical diseases: a systematic review. PLoS neglected tropical diseases. 2016;10(5):e0004546.
2. Harhay MO, Horton J, Olliaro PL. Epidemiology and control of human gastrointestinal parasites in children. Expert review of anti-infective therapy. 2010;8(2):219–34.

3. Brooker S, Kabaterine NB, Smith JL, Mupfasoni D, Mwanje MT, Ndayishimiye Os, et al. An updated atlas of human helminth infections: the example of East Africa. International journal of health geographics. 2009;8(1):42.

4. Haftu D, Deyessa N, Agedew E. Prevalence and determinant factors of intestinal parasites among school children in Arba Minch town, Southern Ethiopia. American Journal of Health Research. 2014;2(5):247–54.

5. Pullan RL, Smith JL, Jasrasaria R, Brooker SJ. Global numbers of infection and disease burden of soil transmitted helminth infections in 2010. Parasites & vectors. 2014;7(1):37.

6. WHO. Soil-transmitted helminth infections: fact sheets. 2019.

7. Wang H, Naghavi M, Allen C, Barber RM, Bhutta ZA, Carter A, et al. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. The lancet. 2016;388(10053):1459–544.

8. Kiani H, Haghighi A, Salehi R, Azargashb E. Distribution and risk factors associated with intestinal parasite infections among children with gastrointestinal disorders. Gastroenterology and hepatology from bed to bench. 2016;9(Suppl1):S80.

9. Forson AO, Arthur I, Olu-Taiwo M, Glover KK, Pappoe-Ashong PJ, Ayeh-Kumi PF. Intestinal parasitic infections and risk factors: a cross-sectional survey of some school children in a suburb in Accra, Ghana. BMC research notes. 2017;10(1):485.

10. Faria CP, Zanini GM, Dias GS, da Silva S, de Freitas MB, Almendra R, et al. Geospatial distribution of intestinal parasitic infections in Rio de Janeiro (Brazil) and its association with social determinants. PLoS neglected tropical diseases. 2017;11(3):e0005445.

11. AL-Megrin W. Risk factors among preschool children in Riyadh, Saudi Arabia. Res J Parasitol. 2015;10(1):31–41.

12. Mehraj V, Hatcher J, Akhtar S, Rafique G, Beg MA. Prevalence and factors associated with intestinal parasitic infection among children in an urban slum of Karachi. PloS one. 2008;3(11):e3680.

13. Mwale K, Siziya S. Intestinal infestations in under-five children in Zambia. International Journal of MCH and AIDS. 2015;4(2):40.

14. Nyantekyi LA, Legesse M, Belay M, Tadesse K, Manaye K, Macias C, et al. Intestinal parasitic infections among under-five children and maternal awareness about the infections in Shesha Kekele, Wondo Genet, Southern Ethiopia. Ethiopian Journal of Health Development. 2010;24(3).

15. Asfaw ST, Giotom L. Malnutrition and enteric parasitoses among under-five children in Aynalem Village, Tigray. Ethiopian Journal of Health Development. 2000;14(1):67–75.

16. Zemene T, Shiferaw MB. Prevalence of intestinal parasitic infections in children under the age of 5 years attending the Debre Birhan referral hospital, North Shoa, Ethiopia. BMC research notes. 2018;11(1):58.
17. Mulatu G, Zeynudin A, Zemene E, Debalke S, Beyene G. Intestinal parasitic infections among children under five years of age presenting with diarrhoeal diseases to two public health facilities in Hawassa, South Ethiopia. Infectious diseases of poverty. 2015;4(1):49.

18. Degarege A, Erko B. Prevalence of intestinal parasitic infections among children under five years of age with emphasis on Schistosoma mansoni in Wonji Shoa Sugar Estate, Ethiopia. PloS one. 2014;9(10):e109793.

19. Mekonnen HS, Ekubagewargies DT. Prevalence and factors associated with intestinal parasites among under-five children attending Woreta Health Center, Northwest Ethiopia. BMC infectious diseases. 2019;19(1):256.

20. Gizaw Z, Adane T, Azanaw J, Addisu A, Haile D. Childhood intestinal parasitic infection and sanitation predictors in rural Dembiya, northwest Ethiopia. Environmental health and preventive medicine. 2018;23(1):26.

21. Beyene G, Tasew H. Prevalence of intestinal parasite, Shigella and Salmonella species among diarrheal children in Jimma health center, Jimma southwest Ethiopia: a cross sectional study. Annals of clinical microbiology and antimicrobials. 2014;13(1):10.

22. Nwosu A. The community ecology of soil-transmitted helminth infections of humans in a hyperendemic area of southern Nigeria. Annals of Tropical Medicine & Parasitology. 1981;75(2):197–203.

23. Dudlová A, JuriÅ¡ P, JuriÅ¡ová S, JarÄuÅ¡ka P, KrÄméry V. Epidemiology and geographical distribution of gastrointestinal parasitic infection in humans in Slovakia. Helminthologia. 2016;53(4):309–17.

24. Nguyen NL, Gelaye B, Aboset N, Kumie A, Williams MA, Berhanie Y. Intestinal parasitic infection and nutritional status among school children in Angolela, Ethiopia. Journal of preventive medicine and hygiene. 2012;53(3):157.

25. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Annals of internal medicine. 2009;151(4):264–9.

26. Atkins D, Eccles M, Flottorp S, Guyatt GH, Henry D, Hill S, et al. Systems for grading the quality of evidence and the strength of recommendations I: critical appraisal of existing approaches The GRADE Working Group. BMC health services research. 2004;4(1):38.

27. Fekadu D, Petros B, Kebede A. Hookworm species distribution among school children in Asendabo town, Jimma Zone, South West Ethiopia. Ethiopian Journal of Health Sciences. 2008;18(2).

28. Nute AW, Endeshaw T, Stewart AE, Sata E, Bayissasse B, Zerihun M, et al. Prevalence of soil-transmitted helminths and Schistosoma mansoni among a population-based sample of school-age children in Amhara region, Ethiopia. Parasites & vectors. 2018;11(1):431.

29. Alamir M, Awoke W, Feleke A. Intestinal parasites infection and associated factors among school children in Dagi primary school, Amhara National Regional State, Ethiopia. Health. 2013;5(10):1697.

30. Assefa T, Woldemichael T, Dejene A. Intestinal parasitism among students in three localities in south Wello, Ethiopia. Ethiopian Journal of Health Development. 1998;12(3):231-

31. Desalegn A, Mossie A, Gedefaw L. Nutritional iron deficiency anemia: magnitude and its predictors among school age children, southwest Ethiopia: a community based cross-sectional study. PloS one.
2014;9(12):e114059.

32. Fentie T, Erqou S, Gedefaw M, Desta A. Epidemiology of human fascioliasis and intestinal parasitosis among schoolchildren in Lake Tana Basin, northwest Ethiopia. Transactions of the Royal Society of Tropical Medicine and Hygiene. 2013;107(8):480–6.

33. Haileamlak A. Intestinal parasites in asymptotic children in Southwest Ethiopia. Ethiopian Journal of Health Sciences. 2005;15(2).

34. Alemu A, Atnafu A, Addis Z, Shiferaw Y, Teklu T, Mathewos B, et al. Soil transmitted helminths and Schistosoma mansoni infections among school children in Zarima town, northwest Ethiopia. BMC infectious diseases. 2011;11(1):189.

35. Amare B, Ali J, Moges B, Yismaw G, Belyhun Y, Gebretsadik S, et al. Nutritional status, intestinal parasite infection and allergy among school children in Northwest Ethiopia. BMC pediatrics. 2013;13(1):7.

36. Ayalew A, Debebe T, Worku A. Prevalence and risk factors of intestinal parasites among Delgi school children, North Gondar, Ethiopia. Journal of Parasitology and Vector Biology. 2011;3(5):75–81.

37. Legesse M, Erko B. Prevalence of intestinal parasites among schoolchildren in a rural area close to the southeast of Lake Langano, Ethiopia. Ethiop J Health Dev 18: 116. 2004;120.

38. Merid Y, Hegazy M, Mekete G, Teklemariam S. Intestinal helminthic infection among children at Lade Awassa Area, South Ethiopia. Ethiopian Journal of Health Development. 2001;15(1):31–8.

39. Tadesse G. The prevalence of intestinal helminthic infections and associated risk factors among school children in Babile town, eastern Ethiopia. Ethiopian Journal of Health Development. 2005;19(2):140–7.

40. Degarege A, Erko B. Association between intestinal helminth infections and underweight among school children in Tikur Wuha Elementary School, Northwestern Ethiopia. Journal of infection and public health. 2013;6(2):125–33.

41. Jamaneh L. Schistosomiasis mansoni and geo-helminthiasis in school children in the Dembia plains. Northwest Ethiopia. Ethiopian Journal of Health Development. 1998;12(3):237–44.

42. Jejaw A, Zemene E, Alemu Y, Mengistie Z. High prevalence of Schistosoma mansoni and other intestinal parasites among elementary school children in Southwest Ethiopia: a cross-sectional study. BMC public health. 2015;15(1):600.

43. King JD, Endeshaw T, Escher E, Alemtaye G, Melaku S, Gelaye W, et al. Intestinal parasite prevalence in an area of Ethiopia after implementing the SAFE strategy, enhanced outreach services, and health extension program. PLoS neglected tropical diseases. 2013;7(6):e2223.

44. Tulu B, Taye S, Amsalu E. Prevalence and its associated risk factors of intestinal parasitic infections among Yadot primary school children of South Eastern Ethiopia: a cross-sectional study. BMC research notes. 2014;7(1):848.
45. Workneh T, Esmael A, Ayichiluhm M. Prevalence of intestinal parasitic infections and associated factors among Debre Elias primary schools children, East Gojjam Zone, Amhara Region, North West Ethiopia. J Bacteriol Parasitol. 2014;15(1):1–5.

46. Erosie L, Merid Y, Ashiko A, Ayine M, Balihu A, Muzeyin S, et al. Prevalence of Hookworm infection and haemoglobin status among rural elementary school children in Southern Ethiopia. Ethiopian Journal of Health Development. 2002;16(1):113–5.

47. Gelaw A, Anagaw B, Nigussie B, Silesb B, Yirga A, Alem M, et al. Prevalence of intestinal parasitic infections and risk factors among schoolchildren at the University of Gondar Community School, Northwest Ethiopia: a cross-sectional study. BMC public health. 2013;13(1):304.

48. Jemaneh L. Soil-transmitted helminth infections and Schistosomiasis mansoni in school children from Chilga District, Northwest Ethiopia. Ethiopian journal of health sciences. 2001;11(2).

49. Mahmud MA, Spigt M, Bezabih AM, Pavon IL, Dinant G-J, Velasco RB. Efficacy of handwashing with soap and nail clipping on intestinal parasitic infections in school-aged children: a factorial cluster randomized controlled trial. PLoS medicine. 2015;12(6):e1001837.

50. Mahmud MA, Spigt M, Mulugeta Bezabih A, Lopez Pavon I, Dinant G-J, Blanco Velasco R. Risk factors for intestinal parasitosis, anaemia, and malnutrition among school children in Ethiopia. Pathogens and global health. 2013;107(2):58–65.

51. Reji P, Belay G, Erko B, Legesse M, Belay M. Intestinal parasitic infections and malnutrition amongst first-cycle primary schoolchildren in Adama, Ethiopia. African journal of primary health care & family medicine. 2011;3(1).

52. Roma B, Worku S. Magnitude of Schistosoma mansoni and intestinal helminthic infections among school children in Wondo-Genet Zuria, southern Ethiopia. Ethiopian Journal of Health Development. 1997;11:125–30.

53. Wegayehu T, Adamu H, Petros B. Prevalence of Giardia duodenalis and Cryptosporidium species infections among children and cattle in North Shewa Zone, Ethiopia. BMC infectious diseases. 2013;13(1):419.

54. Adamu H, Endeshaw T, Teka T, Kifle A, Petros B. The prevalence of intestinal parasites in paediatric diarrhoeal and non-diarrhoeal patients in Addis Ababa hospitals, with special emphasis on opportunistic parasitic infections and with insight into the demographic and socio-economic factors. Ethiopian Journal of Health Development. 2006;20(1):39–46.

55. Belyhun Y, Medhin G, Amberbir A, Erko B, Hanlon C, Alem A, et al. Prevalence and risk factors for soil-transmitted helminth infection in mothers and their infants in Butajira, Ethiopia: a population based study. BMC public health. 2010;10(1):21.

56. Dejenie T, Asmelash T, Teferi M. Intestinal helminthes infections and re-infections with special emphasis on schistosomiasis mansoni in Waja, North Ethiopia. Momona Ethiopian Journal of Science. 2009;1(2).

57. Kidane E, Menkir S. Prevalence of intestinal parasitic infections and their associations with anthropometric measurements of school children in selected primary schools, Wukro Town, Eastern Tigray, Ethiopia: Haramaya University; 2012.
58. Legesse L, Erko B, Hailu A. Current status of intestinal Schistosomiasis and soil-transmitted helminthiasis among primary school children in Adwa Town, Northern Ethiopia. Ethiopian Journal of Health Development. 2010;24(3).

59. Mathewos B, Alemu A, Woldeyohannes D, Alemu A, Addis Z, Tiruneh M, et al. Current status of soil transmitted helminths and Schistosoma mansoni infection among children in two primary schools in North Gondar, Northwest Ethiopia: a cross sectional study. BMC Research Notes. 2014;7(1):88.

60. Alemayehu B, Tomass Z, Wadilo F, Leja D, Liang S, Erko B. Epidemiology of intestinal helminthiasis among school children with emphasis on Schistosoma mansoni infection in Wolaita zone, Southern Ethiopia. BMC public health. 2017;17(1):587.

61. Assefa A, Dejenie T, Tomass Z. Infection prevalence of Schistosoma mansoni and associated risk factors among schoolchildren in suburbs of Mekelle city, Tigray, Northern Ethiopia. Momona Ethiopian Journal of Science. 2013;5(1):174–88.

62. Dejenie T, Petros B. Irrigation practices and intestinal helminth infections in southern and central zones of Tigray. Ethiopian Journal of Health Development. 2009;23(1).

63. Gashaw F, Aemero M, Legesse M, Petros B, Teklehaimanot T, Medhin G, et al. Prevalence of intestinal helminth infection among school children in Maksegnit and Enfranz Towns, northwestern Ethiopia, with emphasis on Schistosoma mansoni infection. Parasites & vectors. 2015;8(1):567.

64. Jemaneh L. Intestinal helminth infections in school children in Adarkay District, Northwest Ethiopia, with special reference to schistosoma mansoni. Ethiop J Health Dev. 1997;11(3):289–94.

65. Mengist HM, Taye B, Tsegaye A. Intestinal parasitosis in relation to CD4+ T cells levels and anemia among HAART initiated and HAART naive pediatric HIV patients in a model ART center in Addis Ababa, Ethiopia. PloS one. 2015;10(2):e0117715.

66. Tekeste Z, Belyhun Y, Gebrehiwot A, Moges B, Workineh M, Ayalew G, et al. Epidemiology of intestinal schistosomiasis and soil transmitted helminthiasis among primary school children in Gorgora, Northwest Ethiopia. Asian Pacific Journal of Tropical Disease. 2013;3(1):61–4.

67. Terefe A, Shimelis T, Mengistu M, Hailu A, Erko B. Schistosomiasis mansoni and soil-transmitted helminthiasis in Bushulo village, southern Ethiopia. Ethiopian Journal of Health Development. 2011;25(1):46–50.

68. Wale M, Wale M, Fekensa T. The prevalence of intestinal helminthic infections and associated risk factors among school children in Lumame town, Northwest, Ethiopia. Journal of Parasitology and Vector Biology. 2014;6(10):156–65.

69. Aiemjoy K, Gebresillasie S, Stoller NE, Shiferaw A, Tadesse Z, Chanyalew M, et al. Epidemiology of soil-transmitted helminth and intestinal protozoan infections in preschool-aged children in the Amhara region of Ethiopia. The American journal of tropical medicine and hygiene. 2017;96(4):866–72.

70. Alemu M, Hailu A, Bugssa G. Prevalence of intestinal schistosomiasis and soil-transmitted helminthiasis among primary school children in Umolante district, South Ethiopia. Clin Med Res. 2014;3(6):174–80.
71. Begna T, Solomon T, Yohannes ZENEBE EA. Intestinal parasitic infections and nutritional status among primary school children in Delo-mena district, South Eastern Ethiopia. Iranian journal of parasitology. 2016;11(4):549.

72. Dejenie T, Asmelash T. Schistosomiasis mansoni among school children of different water source users in Tigray, Northern Ethiopia. Momona Ethiopian Journal of Science. 2010;2(1).

73. Teklemariam A, Dejenie T, Tomass Z. Infection prevalence of intestinal helminths and associated risk factors among schoolchildren in selected kebeles of Enderta district, Tigray, Northern Ethiopia. Journal of Parasitology and Vector Biology. 2014;6(11):166–73.

74. Firdu T, Abunna F, Girma M. Intestinal protozoal parasites in diarrheal children and associated risk factors at Yirgalem Hospital, Ethiopia: A case-control study. International scholarly research notices. 2014;2014.

75. Tefera E, Belay T, Mekonnen SK, Zeynudin A, Belachew T. Prevalence and intensity of soil transmitted helminths among school children of Mendera Elementary School, Jimma, Southwest Ethiopia. The Pan African Medical Journal. 2017;27.

76. Unasho A. An investigation of intestinal parasitic infections among the asymptomatic children in, Southern Ethiopia. International Journal of Child Health and Nutrition. 2013;2(3):212–22.

77. Yimam Y, Degarege A, Erko B. Effect of anthelminthic treatment on helminth infection and related anaemia among school-age children in northwestern Ethiopia. BMC infectious diseases. 2016;16(1):613.

78. Abdi M, Nibret E, Munshea A. Prevalence of intestinal helminthic infections and malnutrition among schoolchildren of the Zegie Peninsula, northwestern Ethiopia. Journal of infection and public health. 2017;10(1):84–92.

79. Abera A, Nibret E. Prevalence of gastrointestinal helminthic infections and associated risk factors among schoolchildren in Tilili town, northwest Ethiopia. Asian Pacific journal of tropical medicine. 2014;7(7):525–30.

80. Wegayehu T, Karim MR, Li J, Adamu H, Erko B, Zhang L, et al. Multilocus genotyping of Giardia duodenalis isolates from children in Oromia Special Zone, central Ethiopia. BMC microbiology. 2016;16(1):89.

81. Abossie A, Seid M. Assessment of the prevalence of intestinal parasitosis and associated risk factors among primary school children in Chencha town, Southern Ethiopia. BMC Public Health. 2014;14(1):166.

82. Hailegebriel T. Prevalence of intestinal parasitic infections and associated risk factors among students at Dona Berber primary school, Bahir Dar, Ethiopia. BMC infectious diseases. 2017;17(1):362.

83. Alemu G, Aschalew Z, Zerihun E. Burden of intestinal helminths and associated factors three years after initiation of mass drug administration in Arbaminch Zuria district, southern Ethiopia. BMC infectious diseases. 2018;18(1):435.

84. Alemu A, Tegegne Y, Damte D, Melku M. Schistosoma mansoni and soil-transmitted helminths among preschool-aged children in Chuahit, Dembia district, Northwest Ethiopia: prevalence, intensity of infection and associated risk factors. BMC Public Health. 2016;16(1):422.
85. Alemu G, Abossie A, Yohannes Z. Current status of intestinal parasitic infections and associated factors among primary school children in Birbir town, Southern Ethiopia. BMC infectious diseases. 2019;19(1):270.

86. Bajiro M, Dana D, Ayana M, Emana D, Mekonnen Z, Zawdie B, et al. Prevalence of Schistosoma mansoni infection and the therapeutic efficacy of praziquantel among school children in Manna District, Jimma Zone, southwest Ethiopia. Parasites & vectors. 2016;9(1):560.

87. Amor A, Rodriguez E, Saugar JM, Arroyo A, López-Quintana B, Abera B, et al. High prevalence of Strongyloides stercoralis in school-aged children in a rural highland of north-western Ethiopia: the role of intensive diagnostic work-up. Parasites & vectors. 2016;9(1):617.

88. Gebretsadik D, Metaferia Y, Seid A, Fenta GM, Gedefie A. Prevalence of intestinal parasitic infection among children under 5 years of age at Dessie Referral Hospital: cross sectional study. BMC research notes. 2018;11(1):771.

89. Bekana T, Hu W, Liang S, Erko B. Transmission of Schistosoma mansoni in Yachi areas, southwestern Ethiopia: new foci. Infectious diseases of poverty. 2019;8(1):1.

90. Diro E, Lynen L, Gebregziabiher B, Assefa A, Lakew W, Belew Z, et al. Clinical aspects of paediatric visceral leishmaniasis in North-west Ethiopia. Tropical Medicine & International Health. 2015;20(1):8–16.

91. Birhanu M, Gedefaw L, Asres Y. Anemia among School-Age Children: Magnitude, Severity and Associated Factors in Pawe Town, Benishangul-Gumuz Region, Northwest Ethiopia. Ethiopian journal of health sciences. 2018;28(3):259–66.

92. Y Gh, Degarege A, Erko B. Prevalence of intestinal parasitic infections among children under five years of age with emphasis on Schistosoma mansoni in Wonji Shoa Sugar Estate, Ethiopia. PLoS One. 2014;9(10):e109793.

93. Leta GT, French M, Dorny P, Vercruysse J, Levecke B. Comparison of individual and pooled diagnostic examination strategies during the national mapping of soil-transmitted helminths and Schistosoma mansoni in Ethiopia. PLoS neglected tropical diseases. 2018;12(9):e0006723.

94. Mekonnen Z, Meka S, Ayana M, Bogers J, Vercruysse J, Levecke B. Comparison of individual and pooled stool samples for the assessment of soil-transmitted helminth infection intensity and drug efficacy. PLoS neglected tropical diseases. 2013;7(5):e2189.

95. Tefera E, Mohammed J, Mitiku H. Intestinal helminthic infections among elementary students of Babile town, eastern Ethiopia. Pan African Medical Journal. 2015;20(1).

96. Hailu T, Alemu M, Abera B, Mulu W, Yizengaw E, Genanew A, et al. Multivariate analysis of factors associated with Schistosoma mansoni and hookworm infection among primary school children in rural Bahir Dar, Northwest Ethiopia. Tropical diseases, travel medicine and vaccines. 2018;4:4.

97. Alemayehu B, Tomass Z. Schistosoma mansoni infection prevalence and associated risk factors among schoolchildren in Demba Girara, Damot Woide District of Wolaita Zone, Southern Ethiopia. Asian Pacific journal of tropical medicine. 2015;8(6):457–63.
98. Ali I, Mekete G, Wodajo N. Intestinal parasitism and related risk factors among students of Asendabo Elementary and Junior Secondary School South western Ethiopia. Ethiopian Journal of Health Development. 1999;13(2):157–62.

99. Jemaneh L. Intestinal helminth infections in schoolchildren in Gonder town and surrounding areas, Northwest Ethiopia. SINET: Ethiopian Journal of Science. 1999;22(2):209–20.

100. Debalk S, Worku A, Jahur N, Mekonnen Z. Soil transmitted helminths and associated factors among schoolchildren in government and private primary school in Jimma Town, Southwest Ethiopia. Ethiopian journal of health sciences. 2013;23(3):237–44.

101. Dejene T. Impact of irrigation on the prevalence of intestinal parasite infections with emphasis on schistosomiasis in Hintallo-Wejerat, North Ethiopia. Ethiopian Journal of Health Sciences. 2008;18(2).

102. Abera B, Alem G, Yimer M, Herrador Z. Epidemiology of soil-transmitted helminths, Schistosoma mansoni, and haematocrit values among schoolchildren in Ethiopia. The Journal of Infection in Developing Countries. 2013;7(03):253–60.

103. Kabeta A, Assefa S, Hailu D, Berhanu G. Intestinal parasitic infections and nutritional status of pre-school children in Hawassa Zuria District, South Ethiopia. African Journal of Microbiology Research. 2017;11(31):1243–51.

104. Shumbej T, Belay T, Mekonnen Z, Tefera T, Zemene E. Soil-transmitted helminths and associated factors among pre-school children in Butajira town, south-Central Ethiopia: a community-based cross-sectional study. PloS one. 2015;10(8):e0136342.

105. Tadege B, Shimelis T. Infections with Schistosoma mansoni and geohelminths among school children dwelling along the shore of the Lake Hawassa, southern Ethiopia. PloS one. 2017;12(7):e0181547.

106. Asemahagn MA. Parasitic infection and associated factors among the primary school children in Motta town, western Amhara, Ethiopia. American Journal of Public Health Research. 2014;2(6):248–54.

107. Teshale T, Belay S, Tadesse D, Awala A, Teklay G. Prevalence of intestinal helminths and associated factors among school children of Medebay Zana wereda; North Western Tigray, Ethiopia 2017. BMC research notes. 2018;11(1):444.

108. Samuel F. Status of soil-transmitted helminths infection in Ethiopia. Am J Health Res. 2015;3(3):170–6.

109. Karshima SN. Prevalence and distribution of soil-transmitted helminth infections in Nigerian children: a systematic review and meta-analysis. Infectious diseases of poverty. 2018;7(1):69.

110. Emile N, Bosco NJ, Karine B. Prevalence of intestinal parasitic infections and associated risk factors among Kigali Institute of Education students in Kigali, Rwanda. Tropical biomedicine. 2013;30(4):718–26.

111. Gabrielli A, Ramsan M, Naumann C, Tsogzolmaa D, Bojang B, Khoshal M, et al. Soil-transmitted helminths and haemoglobin status among Afghan children in World Food Programme assisted schools. Journal of helminthology. 2005;79(4):381–4.
112. Al-Kafri A, Harba A. Intestinal parasites in basic education pupils in urban and rural Idlb. J Lab Diag. 2009;5:2.

113. Mezeid N, Shaldoum F, Al-Hindi Al, Mohamed FS, Darwish ZE. Prevalence of intestinal parasites among the population of the Gaza Strip, Palestine. Prevalence of intestinal parasites among the population of the Gaza Strip, Palestine. 2014;60(4).

114. Tchuenté L-AT, Ngassam RIK, Sumo L, Ngassam P, Noumedem CD, Nzu DDoL, et al. Mapping of schistosomiasis and soil-transmitted helminthiasis in the regions of centre, east and west Cameroon. PLoS neglected tropical diseases. 2012;6(3):e1553.

115. Staudacher O, Heimer J, Steiner F, Kayonga Y, Havugimana JM, Ignatius R, et al. Soil-transmitted helminths in southern highland Rwanda: associated factors and effectiveness of school-based preventive chemotherapy. Tropical Medicine & International Health. 2014;19(7):812–24.

116. Daryani A, Hosseini-Teshnizi S, Hosseini S-A, Ahmadpour E, Sarvi S, Amouei A, et al. Intestinal parasitic infections in Iranian preschool and school children: A systematic review and meta-analysis. Acta tropica. 2017;169:69–83.

117. Okyay P, Ertug S, Gultekin B, Onen O, Beser E. Intestinal parasites prevalence and related factors in school children, a western city sample-Turkey. BMC public health. 2004;4(1):64.

118. Monib M, Hassan A, Attia R, Khalifa M. Prevalence of intestinal parasites among children attending Assiut University Children's Hospital, Assiut, Egypt. J Adv Parasitol. 2016;3(4):125–31.

119. Ouermi D, Karou D, Ouattara I, Gnoula C, Pietra V, Moret R, et al. Prevalence of intestinal parasites at Saint-Camille medical center in Ouagadougou (Burkina Faso), 1991 to 2010. Medecine et sante tropicales. 2012;22(1):40–4.

120. Kunwar R, Acharya L, Karki S. Decreasing prevalence of intestinal parasitic infections among school-aged children in Nepal: a systematic review and meta-analysis. Transactions of The Royal Society of Tropical Medicine and Hygiene. 2016;110(6):324–32.

121. de Oliveira Serra A, Aparecida M, Chaves CdS, Coêlho B, Castelo Z, de Castro Rodrigues NL, et al. Comparison between two decades of prevalence of intestinal parasitic diseases and risk factors in a Brazilian urban centre. Interdisciplinary perspectives on infectious diseases. 2015;2015.

122. Karagiannis-Voules D-A, Biedermann P, Ekpo UF, Garba A, Langer E, Mathieu E, et al. Spatial and temporal distribution of soil-transmitted helminth infection in sub-Saharan Africa: a systematic review and geostatistical meta-analysis. The Lancet infectious diseases. 2015;15(1):74–84.

123. Jayarani K, SANDHYA-RANI T, Jayaranjani K. Intestinal parasitic infections in preschool and school going children from rural area in Puducherry. Current Research in Microbiology and Biotechnology. 2014;2(4):406–9.

124. Kattula D, Sarkar R, Ajjampur SSR, Minz S, Levecke B, Muliyil J, et al. Prevalence & risk factors for soil transmitted helminth infection among school children in south India. The Indian journal of medical research. 2014;139(1):76.
125. Oninla S, Owa J, Onayade A, Taiwo O. Intestinal helminthiases among rural and urban schoolchildren in South-Western Nigeria. Annals of Tropical Medicine & Parasitology. 2007;101(8):705–13.

126. Mareeswaran N, Savitha A, Gopalakrishnan S. Prevalence of intestinal parasites among urban and rural population in Kancheepuram district of Tamil Nadu. International Journal Of Community Medicine And Public Health. 2018;5(6):2585–9.

127. Lwanga F, Kirunda BE, Orach CG. Intestinal helminth infections and nutritional status of children attending primary schools in Wakiso District, Central Uganda. International journal of environmental research and public health. 2012;9(8):2910–21.

128. Agbolade OM, Agu NC, Adesanya OO, Odejayi AO, Adigun AA, Adesanlu EB, et al. Intestinal helminthiases and schistosomiasis among school children in an urban center and some rural communities in southwest Nigeria. The Korean journal of parasitology. 2007;45(3):233.

129. Phiri K, Whitty C, Graham S, Ssembatya-Lule G. Urban/rural differences in prevalence and risk factors for intestinal helminth infection in southern Malawi. Annals of Tropical Medicine & Parasitology. 2000;94(4):381–7.

Tables

Table 1 Characteristics of the 83 eligible studies of intestinal parasite infections in Ethiopia
No.	Study design	Population	Male	Female	Study site(s)Region	Methods	No. sample	No. positive (%)	Quality assessment
rege [40]	Cross-sectional	School children	187	216	Tikur Wuha, Gojam, Amhara region	Kato-Katz	403	235 (58.3%)	2
2017	Cross-sectional	School children	207	201	Zegie Peninsula, Gojam, Amhara region	Formalin-ether	408	282 (69.1%)	3
a [79]	Cross-sectional	School children	193	192	Bahir Dar, Amhara region	Formal-ether	385	170 (44.2 %)	3
yehu [53]	Cross-sectional	School children	191	193	Girar Jarso and Dera, North Shewa, Oromia Region	Direct and formalin-ether and modified Ziehl-Neelsen	384	81 (21.1%)	2
e [35]	Cross-sectional	School children	218	187	Gondar town, Amhara region	Direct, formal-ether and Kato-Katz	405	92 (22.7 %)	3
v [47]	Cross-sectional	School children	170	134	University of Gondar Community School, Amhara region	Direct and formalin-ether	304	104 (34.2%)	3
ñie [81]	Cross-sectional	School children	191	209	Gamo Gofa Zone, South region	Direct and formol-ether	400	324 (81.0%)	3
ñwos [59]	Cross-sectional	School children	139	122	Gorgora and Chuahit towns, Gondar, Amhara region	Direct, formal-ether and Kato-Katz	261	174 (66.7%)	2
ñ [20]	Cross-sectional	Preschool children	106	119	Dembiya, Gondar Zone, Amhara region	Direct and formalin-ether and modified Ziehl-Neelsen	225	58 (25.8%)	3
yehuet [80]	Cross-sectional	Both	154	132	Holetta, Sendafa and Chancho, Oromia region	PCR	312	48 (16.8%)	2
n [77]	Cross-sectional	School children	187	216	Tikur Wuha Elementary School, Amhara region	formol-ether and Kato-Katz	403	235 (58.3%)	3
gebriel [82]	Cross-sectional	School children	177	182	Dona Berber, Bahir Dar, Amhara region	Formal-ether	359	235 (65.5%)	3
å [83]	Cross-sectional	School children	196	195	Arbaminch Zuria, South region	Formal-ether	391	182 (46.5%)	2
å [85]	Cross-sectional	School children	180	171	Birbir town, Gamo Gofa, South region	Direct and formalin-ether	351	95 (27.1%)	3
nnen [19]	Cross-sectional	Preschool children	152	158	Woreta health center, Gondar, Amhara region	Direct and Kato-Katz	310	58 (18.70%)	3
[42]	Cross-sectional	School children	228	232	Mizon-Aman town Bench Maji, South region	Direct and formalin-ether and Kato-Katz	460	353 (76.7 %)	3
å [84]	Cross-sectional	Preschool children	183	218	Dembiya District, Gondar, Amhara region	Kato-Katz	401	141 (35.2 %)	3
ayehu	Cross-sectional	School	287	216	Wolaita Zone, Kato-Katz and	503	363 (72.2%)	3	
Study/Region	Type	Participants	Positive	Percentage	Percent Positive	Reference			
--------------	------	--------------	----------	------------	-----------------	-----------			
South region	Cross-sectional	School children	255	295	365(66.4%)	[60]			
Jimma town, Oromia region	Cross-sectional	School children	238	262	Kato-Katz	[86]			
Rural area of Bahir Dar, Amhara region	Cross-sectional	School children	225	171	Formol ether	[87]			
Ten zones of the Amhara region	Cross-sectional	School children	7418	8037	Formol ether	[28]			
Debre Birhan hospital, North Shewa, Amhara region	Cross-sectional	School children	238	262	Jimma, Oromia region	[28]			
Rural area of Gomma, Jimma, Oromia region	Cross-sectional	Preschool children	118	118	Kato-Katz	[16]			
Debre Birhan hospital, North Shewa, Amhara region	Cross-sectional	Preschool children	133	99	Direct and the formol-ether	[88]			
Adare Hospital and Millennium Health Centre, Hawassa, South region	Cross-sectional	Preschool children	81	77	Kato-Katz and formol-ether	[17]			
Guma and YachiYisa in Gomma, Jimma, Oromia region	Cross-sectional	School children	172	145	University of Gondar and formol-ether	[89]			
Khasay Abera Humera hospitals, Amhara region	Cross-sectional	Preschool children	85	37	Direct, formol-ether and Kato-Katz	[90]			
Pawe Town, Benishangul-Gumuz	Cross-sectional	School children	194	228	Direct	[91]			
Lake Tana Basin, Amhara region	Cross-sectional	School children	361	159	Region	[32]			
GonchaSisoEnese, Gojam, Amhara region	Cross-sectional	Preschool children	NA	NA	Formol-ether	[69]			
Jimma town, Jimma, Oromia	Cross-sectional	School children	271	315	Direct and formol-ether	[31]			
Wonji Shoa Sugar, Oromia region	Cross-sectional	Preschool children	195	179	Kato-Katz	[492]			
53 schools of Amhara region	Cross-sectional	School children	NA	NA	Kato-Katz	[93]			
South Gondar, Amhara region	Cross-sectional	Both	1130	1228	Formol-ether	[43]			
[94]	Clinical trial	School children	NA	NA	14 schools of Jimma town, Oromia region	Kato-Katz	840	437 (52%)	3
[49]	Clinical trial	School children	152	217	Mekele University, Tigray region	Direct, formal-ether and Kato-Katz	369	267 (73%)	3
[50]	Cross-sectional	School children	288	312	Mekele, Tigray	Direct, formal-ether and Kato-Katz	600	421 (72%)	3
[75]	Cross-sectional	School children	282	433	Mendera, Jimma, Oromia region	McMaster	715	346 (48.4%)	2
[95]	Cross-sectional	School children	364	280	Babble town, Harrerge, Oromia region	McMaster	644	89 (13.8%)	2
[24]	Cross-sectional	School children	341	323	Angolela Woreda, Amhara region	Formol-ether	664	202 (30.4%)	3
[96]	Cross-sectional	School children	186	223	Bahir Dar, Amhara region	Formol-ether	409	237 (58%)	2
[21]	Cross-sectional	School children	114	146	Jimma Health Center, Jimma, Oromia region	Direct and formol-ether	260	129 (49.6%)	3
[34]	Cross-sectional	School children	157	162	Zarima town, Gonder, Amhara region	Direct and Kato-Katz	319	263 (82.4%)	2
[97]	Cross-sectional	School children	201	183	Demba Girara, Wolaita, South region	Direct and Kato-Katz	384	328 (85.4%)	1
[98]	Cross-sectional	School children	161	121	Asendabo Town, Jimma, Oromia region	Direct and Kato-thick	282	243 (86.2%)	0
[71]	Cross-sectional	School children	251	241	Birbir, Bale Zone, Oromia region	Direct and formol-ether	492	131 (26.6%)	0
[76]	Cross-sectional	School children	189	217	Gedeo, Wolaita and Kambata and Amaro, South region	Direct	406	170 (41.9%)	0
[55]	Follow up cohort	Preschool children	NA	NA	Butajira town, South region	Formol-ether	905	44 (4.9%)	3
[44]	Cross-sectional	School children	172	168	Delo-Mena, Bale Zone, Oromia region	Direct and formol-ether	340	89 (26.2%)	1
[46]	Cross-sectional	School children	NA	NA	Boloso Sorie, South region	Formol-ether	421	292 (69.4%)	1
[39]	Cross-sectional	School children	271	144	Babile town, Harrerge, Oromia region	Formal ether	415	113 (27.2%)	0
[54]	Cross-sectional	Preschool children	149	147	Police hospital, Armed Forces General hospital, and Tikur Anbessa Hospital, Addis Ababa	Direct, formol-ether and Modified Ziehl-Neelsen	296	69 (23.3%)	0
[99]	Cross-sectional	School children	439	439	Gonder town, Gonder, Amhara region	Kato-Katz	878	437 (49.7%)	0
[62]	Cross-sectional	School children	1012	998	Central Tigray, Tigray region	Direct	2000	571 (28.6%)	0
[72]	Cross-sectional	School children	319	303	Tigray, Tigray region	Kato-Katz	622	165 (26.5%)	0
Study	Design	Group	Sample Size	Positive	Prevalence	n			
-------	--------	-------	-------------	----------	------------	---			
tekyi [14]	Cross sectional	Preschool children	140	288	245 (85.1%)	1			
see [58]	Cross sectional	School children	167	381	263 (69%)	0			
eb [67]	Cross sectional	School children	218	419	282 (67.3%)	1			
a [61]	Cross sectional	School children	267	457	109 (23.9%)	0			
lke [100]	Cross sectional	School children	161	366	166 (45.4%)	1			
ie [101]	Cross sectional	School children	481	800	285 (35.6%)	0			
lu [27]	Cross sectional	School children	63	100	66 (66%)	0			
almak [33]	Cross sectional	Preschool children	487	924	530 (57.4%)	1			
teh [48]	Cross sectional	School children	282	687	470 (68.4%)	1			
[74]	Case-control	Both	135	230	74 (32.2%)	1			
[68]	Cross sectional	School children	206	402	219 (54.5%)	1			
miamir [73]	Cross sectional	School children	252	480	199 (41.5%)	0			
w [36]	Cross sectional	School children	358	704	562 (79.8%)	2			
l [38]	Cross sectional	School children	479	150	139 (92.7%)	0			
a [30]	Cross sectional	School children	479	698	304 (43.3%)	0			
[52]	Cross sectional	School children	352	520	465 (89.4%)	1			
i [102]	Cross sectional	School children	397	772	401 (51.5%)	3			
ie [57]	Cross sectional	School children	177	384	233 (60.7%)	0			
r [29]	Cross sectional	School children	192	399	311 (77.9%)	0			
a [103]	Cross sectional	Preschool children	NA	587	301 (51.3%)	1			
dbej	Cross Preschool	165	377	104 (27.6%)	3				
Sectional	Cross sectional	School children	Region	Method	Prevalence	Comments			
-----------	----------------	----------------	--------	--------	------------	----------			
[104]		Finchawa and Tullo, South region	Formol-ether	374	254(67.9%)	3			
alem [106]	Cross sectional	Motta, Gojam, Amhara region	Direct and formal-ether	358	245(68.4%)	0			
[105]		Adama town, Oromia region	Kato-Katz	358	127 (35.5%)	1			
el [108]	Cross sectional	Ambo town, Oromia region	Formol-ether	375	47(12.6%)	3			
de [107]	Cross sectional	Medebay Zana, Tiray region	Kato-Katz	410	52(12.7%)	1			
te [66]	Cross sectional	Gorgora, Amhara region	Kato-Katz	326	110(36.8%)	2			

Abbreviations: NA, not available; PCR, Polymerase chain reaction

Figures
Figure 1

Flow diagram showing the selection process
Figure 2

Begg's funnel plot and Egger test for heterogeneity of intestinal parasite infections among Ethiopian children
Figure 3

Regional distribution of intestinal parasite infections in Ethiopian children from 1997-2019
Figure 4

Forest plot showing the geographic distribution of intestinal parasite infections in Ethiopia Children
Figure 5

Forest plot showing age related distribution of intestinal parasite infections in Ethiopia children
Figure 6
Forest plot showing trend of intestinal parasite infections in Ethiopia children
Figure 7

Meta regression result of A. the geographic distribution B. the distribution by age C. distribution by year of publication of Intestinal parasite infections among Ethiopian children

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Additionalfiles.docx