Domination number of graphs with minimum degree five*

Csilla Bujtás

Faculty of Mathematics and Physics, University of Ljubljana
Ljubljana, Slovenia
csilla.bujtas@fmf.uni-lj.si

Abstract

We prove that for every graph G on n vertices and with minimum degree five, the domination number $\gamma(G)$ cannot exceed $n/3$. The proof combines an algorithmic approach and the discharging method. Using the same technique, we provide a shorter proof for the known upper bound $4n/11$ on the domination number of graphs of minimum degree four.

Keywords: Dominating set, domination number, discharging method.
AMS subject classification: 05C69

1 Introduction

In this paper we study the minimum dominating sets in graphs of given order n and minimum degree δ. For the case of $\delta = 5$, we improve the previous best upper bound $0.344n$ by proving that the domination number γ is at most $n/3$. For graphs of $\delta = 4$, the relation $\gamma \leq 4n/11$ was proved by Sohn and Xudong [22] in 2009. Using a different approach, we provide a simpler proof for this theorem.

*Research supported by the Slovenian Research Agency under the project N1-0108
Standard definitions. In a simple graph G, the vertex set is denoted by $V(G)$ and the edge set by $E(G)$. For a vertex $v \in V(G)$, its closed neighborhood $N[v]$ contains v and its neighbors. For a set $S \subseteq V(G)$, we use the analogous notation $N[S] = \bigcup_{v \in S} N[v]$. The degree of a vertex v is denoted by $d(v)$, while $\delta(G)$ and $\Delta(G)$, respectively, stand for the minimum and maximum vertex degree in G. A set $D \subseteq V(G)$ is a dominating set if $N[D] = V(G)$. The minimum cardinality of a dominating set is the domination number $\gamma(G)$ of the graph. An earlier general survey on domination theory is [11], while two new directions were initiated recently in [6] and [5].

General upper bounds on $\gamma(G)$ in terms of the order and minimum degree. The first general upper bound on $\gamma(G)$ in terms of the order n and the minimum degree δ was given by Arnautov [2] and, independently, by Payan [20]:

$$\gamma(G) \leq \frac{n}{\delta + 1} \sum_{j=1}^{\delta+1} \frac{1}{j}.$$

(1)

We remark that a bit stronger general results were later published by Clark et al. [9] and Biró et al. [3]. On the other hand, already (1) implies the upper bound

$$\gamma(G) \leq n \left(\frac{1 + \ln(\delta + 1)}{\delta + 1} \right).$$

(2)

It was proved by Alon [1] that (2) is asymptotically sharp when $\delta \to \infty$.

Upper bounds for graphs of small minimum degrees. There are several ways to show that $\gamma(G) \leq n/2$ holds if $\delta(G) = 1$ (see [19] for the first proof). Blank [4], and later independently McCuaig and Shepherd [18] proved that $\gamma(G) \leq 2n/5$ is true if G is connected, $\delta(G) = 2$, and $n \geq 8$. For graphs G with $\delta(G) = 3$, Reed [21] proved the famous result that $\gamma(G) \leq 3n/8$. He also presented a connected cubic graph on 8 vertices for which the upper bound is tight.

In the same paper [21], Reed provided the conjecture that the upper bound can be improved to $\lceil n/3 \rceil$ once the connected cubic graph has an appropriately large order. It was disproved by Kostochka and Stodolsky [14] by constructing an infinite sequence of connected cubic graphs such that all

\[1\]There are seven small graphs, the cycle C_4 and six graphs with $n = 7$ and $\delta = 2$, which do not satisfy $\gamma(G) \leq 2n/5$.

of them have $\gamma(G) \geq (\frac{1}{3} + \frac{1}{69})n$. Later, in [15], the same authors proved that $\gamma(G) \leq \frac{4}{11}n = (\frac{1}{3} + \frac{1}{33})n$ holds for every connected cubic graph of order $n > 8$. However, it seems a challenging and difficult problem to close the small gap between $\frac{1}{3} + \frac{1}{69}$ and $\frac{1}{3} + \frac{1}{33}$.

For graphs of minimum degree 4, the best known upper bound is $\gamma(G) \leq \frac{4}{11}n$ that was established by Sohn and Xudong [22]. For the case of $\delta(G) = 5$, Xing, Sun, and Chen [23] proved $\gamma(G) \leq \frac{5}{14}n$ which was improved to $\gamma(G) \leq \frac{2671}{7766}n < 0.344n$ by the authors of [7]. It was also shown in [7] that for graphs of minimum degree 6, the domination number is strictly smaller than $n/3$. Note that similar upper bounds involving the girth and other parameters of the graph can be found in many papers, e.g. in [10, 12, 16, 17], while results for plane triangulations and maximal outerplanar graphs were established in [13] and [8].

Our approach. In the seminal paper [21] of Reed, the upper bound $3n/8$ was proved by considering a vertex-disjoint path cover with specific properties. Later, the same method (with updated conditions and thorough analysis) was used in [15, 22, 23] to establish results on cubic graphs and on graphs of minimum degree 4 and 5. In [7], we introduced a different algorithmic method that resulted in improvement for all cases with $5 \leq \delta \leq 50$. Here, we combine the latter approach with a discharging process. This allows us to prove that already graphs of minimum degree 5 satisfy $\gamma(G) \leq n/3$.

Residual graph. Given a graph G and a set $D \subseteq V(G)$, the residual graph G_D is obtained from G by assigning colors to the vertices and deleting some edges according to the following definitions:

- A vertex v is **white** if $v \notin N[D]$.
- A vertex v is **blue** if $v \in N[D]$ and $N[v] \not\subseteq N[D]$.
- A vertex v is **red** if $N[v] \subseteq N[D]$.
- G_D contains only those edges from G that are incident to at least one white vertex.

In G_D, we refer to the set of white, blue, and red vertices, respectively, by the notations W, B, and R. It is clear by definitions that $D \subseteq R$ and $W \cup B \cup R = V(G)$ hold. The **white-degree** $d_W(v)$ of a vertex v is the number
of its white neighbors in G_D. Analogously, we sometimes refer to the blue-degree $d_B(v)$ of a vertex. The maximum of white-degrees over the sets of white and blue vertices, respectively, are denoted by $\Delta_W(W)$ and $\Delta_W(B)$.

Observation 1. Let G be a graph and $D \subseteq V(G)$. The following statements are true for the residual graph G_D.

(i) If $v \in W$, then G_D contains all edges which are incident with v in G and, in particular, $N[v] \cap R = \emptyset$ and $d_W(v) + d_B(v) = d(v)$ hold.

(ii) If $v \in B$, then $d_W(v) = |W \cap N[v]| < d(v)$ and $d_B(v) = 0$.

(iii) If $v \in R$, then v is an isolated vertex in G_D.

(iv) If $\delta(G) = d$ and v is a white vertex with $d_W(v) = \ell < d$, then $d_B(v) \geq d - \ell$ holds in G_D.

(v) D is a dominating set of G if and only if $R = V(G)$ (or equivalently, $W = \emptyset$) in G_D.

(vi) If $D \subseteq D' \subseteq V(G)$ and a vertex v is red in G_D, it remains red in $G_{D'}$; if v is blue in G_D, then it is either blue or red in $G_{D'}$.

Structure of the paper. In the next section we prove the improved upper bound $n/3$ on the domination number of graphs with minimum degree 5. In Section 3, we consider graphs of minimum degree 4 and show an alternative proof for the theorem $\gamma \leq 4n/11$.

2 Graphs of minimum degree 5

Theorem 1. For every graph G on n vertices and with minimum degree 5, the domination number satisfies $\gamma(G) \leq \frac{n}{3}$.

Proof. Consider a graph G and a subset D of the vertex set $V = V(G)$. Let W, B, and R denote the set of white, blue, and red vertices respectively, in the residual graph G_D. Further, for the sets of blue vertices that have at least 5 white neighbors, or exactly 4, 3, 2, 1 white neighbors, we use the notations B_5, B_4, B_3, B_2, and B_1 respectively. A vertex is a blue leaf if it belongs to B_1. In the proof, a residual graph G_D is associated with the following value:

$$f(G_D) = 35|W| + 23|B_5| + 21|B_4| + 19|B_3| + 17|B_2| + 14|B_1|.$$

4
By Observation \[\mathbb{1}(v) \], \(f(G_D) \) equals zero if and only if \(D \) is a dominating set in \(G \). If \(G \) and \(D \) are fixed and \(A \) is a subset of \(V \setminus D \), we define

\[
s(A) = f(G_D) - f(G_{D \cup A})
\]

that is the decrease in the value of \(f \) when \(D \) is extended by the vertices of \(A \). We define the following property for \(G_D \):

Property 1. There exists a nonempty set \(A \subseteq V \setminus D \) such that \(s(A) \geq 105 \lvert A \rvert \).

Our goal is to prove that every graph \(G \) with \(\delta(G) = 5 \) and every \(D \subseteq V \) with \(f(G_D) > 0 \) satisfy Property 1. Once we do it, Theorem 1 will follow easily. In the continuation, we suppose that a graph \(G \) with minimum degree 5 and a set \(D \) with \(f(G_D) > 0 \) do not satisfy Property 1 and prove, by a series of claims, that this assumption leads to a contradiction.

Claim A. In \(G_D \), every white vertex \(v \) has at most two white neighbors, and every blue vertex \(u \) has at most three white neighbors.

Proof. First suppose that there is vertex \(v \in W \) with \(d_W(v) \geq 6 \). Choosing \(A = \{v\} \), the white vertex \(v \) becomes red in \(G_{D \cup A} \) that decreases \(f \) by 35. The white neighbors of \(v \) become blue or red which decreases \(f \) by at least \(6 \cdot (35 - 23) \). Hence, we have \(s(A) \geq 35 + 72 = 107 > 105 \lvert A \rvert \) complying with Property 1. This contradicts our assumption on \(G_D \) and implies that \(\Delta_W(W) \leq 5 \).

Now, suppose that \(\Delta_W(W) = 5 \) in \(G_D \). Let \(v \) be a white vertex with \(d_W(v) = 5 \) and consider \(A = \{v\} \). In \(G_{D \cup A} \), the vertex \(v \) becomes red and its white neighbors become blue (or red). Since each neighbor \(u \) had at most 5 white neighbors in \(G_D \) and at least one of them, namely \(v \), becomes red, \(u \) may have at most 4 white neighbors in \(G_{D \cup A} \). Therefore, \(s(A) \geq 35 + 5 \cdot (35 - 21) = 105 \lvert A \rvert \) holds which is a contradiction again.

If \(\Delta_W(W) \leq 4 \) and \(\Delta_W(B) \geq 6 \), let \(v \) be a blue vertex with \(d_W(v) \geq 6 \) and define \(A = \{v\} \) again. In \(G_D \), the vertex \(v \) belongs to \(B_5 \), while we have \(v \in R \) in \(G_{D \cup A} \) which causes a decrease of 23 in the value of \(f \). Each white neighbor \(u \) of \(v \) has at most four white neighbors in \(G_D \) and, therefore, \(u \in B_4 \cup B_3 \cup B_2 \cup B_1 \cup R \) in \(G_{D \cup A} \). Hence, we have \(s(A) \geq 23 + 6(35 - 21) = 107 > 105 \lvert A \rvert \), a contradiction to our assumption. Note that in the continuation, where we suppose \(\Delta_W(B) \leq 5 \), if a blue vertex loses \(\ell \) white neighbors in a step, it causes a decrease of at least \(2\ell \) in the value of \(f \).
Assume that $\Delta_W(W) = 4$ and $\Delta_W(B) \leq 5$ and let v be a white vertex with $d_W(v) = 4$ in G_D. Set $A = \{v\}$ and consider the decrease $s(A)$. As v turns to be red, this contributes by 35 to $s(A)$. The four white neighbors become blue (or red) and each of them has at most 3 white neighbors in G_{DUA}. Hence, the contribution to $s(A)$ is at least $4(35-19)$. Further, we have $d_W(u) \leq 4$ for each white vertex u from $N[v]$. This implies, by Observation (iv), that u has at least one blue neighbor in G_D the white-degree of which is smaller in G_{DUA} than in G_D. Even if some blue vertices from $N[N[v]]$ have more than one neighbor from $N[v]$, it remains true that the sum of the white-degrees over $B \cap N[N[v]]$ decreases by at least $d_W(v) + 1 = 5$. We may conclude $s(A) \geq 35 + 4(35 - 19) + 5 \cdot 2 = 109 > 105 |A|$.

Assume that $\Delta_W(W) \leq 3$ and $\Delta_W(B) = 5$ hold in G_D and v is a blue vertex with $d_W(v) = 5$. Let $A = \{v\}$ and consider the decrease $s(A)$. Since v belongs to B_5 in G_D and to R in G_{DUA}, this change contributes by 23 to $s(A)$. The five white neighbors of u become blue or red and belong to $B_3 \cup B_2 \cup B_1 \cup R$ in G_{DUA}. The contribution to $s(A)$ is not smaller than $5(35 - 19)$. By Observation (iv) and by $\Delta_W(W) \leq 3$, each white vertex has at least two blue neighbors in G_D. That is, each white neighbor has at least one blue neighbor that is different from v. As the five white vertices from $N(v)$ turn blue (or red) in G_{DUA}, the sum of the white-degrees over $B \cap (N[N[v]] \setminus \{v\})$ decreases by at least 5. We infer that $s(A) \geq 23 + 5(35 - 19) + 5 \cdot 2 = 113 > 105 |A|$ which is a contradiction again.

The next case which we consider is $\Delta_W(W) = 3$ and $\Delta_W(B) \leq 4$. Let v be a white vertex with $d_W(v) = 3$ and estimate the value of $s(A)$ for $A = \{v\}$. When D is replaced by $D \cup A$, vertex v is recolored red, the three white neighbors of v become blue or red and belong to $B_2 \cup B_1 \cup R$ in G_{DUA}. Additionally, each of the three white neighbors and also v itself has at least two blue neighbors. The decrease in their white-degrees contributes to $s(A)$ by at least $4 \cdot 2 \cdot 2$. Consequently, we have $s(A) \geq 35 + 3(35 - 17) + 16 = 105 |A|$ that is a contradiction.

The last case is when $\Delta_W(W) \leq 2$ and $\Delta_W(B) = 4$. We assume that v is a vertex from B_4 in G_D. Let $A = \{v\}$ and observe that v is recolored red and the white neighbors of v belong to $B_2 \cup B_1 \cup R$ in G_{DUA}. Since now we have $\Delta_W(W) \leq 2$ in G_D, each white vertex has at least three blue neighbors. Therefore, each white neighbor of v has at least two blue neighbors which are different from v. We conclude that $s(A) \geq 21 + 4(35 - 17) + 4 \cdot 2 \cdot 2 = 109 > 105 |A|$. This contradiction finishes the proof of Claim A. (c)
From now on we may suppose that $\Delta_W(W) \leq 2$ and $\Delta_W(B) \leq 3$ holds in the counterexample G_D. This implies that the graph $G_D[W]$, which is induced by the white vertices of G_D, contains only paths and cycles as components. Before performing a discharging, we prove some further properties of G_D.

Claim B. In $G_D[W]$, each component is a path P_1, P_2 or a cycle C_4, C_5, C_7 or C_{10}.

Proof. First, suppose that $P_j : v_1 \ldots v_j$ is a path component on $j \geq 3$ vertices in $G_D[W]$. Let us choose $A = \{v_2\}$. In $G_{D_0}A$ not only v_2 but also v_1 becomes red, while v_3 turns to be either a blue leaf or a red vertex. These changes contribute to $s(A)$ by at least $2 \cdot 35 + (35 - 14)$. By Observation $\blacksquare (iv)$, v_1, v_2, and v_3, respectively, have at least 4, 3, 3 blue neighbors in G_D. The decrease in their white-degrees contributes to $s(A)$ by at least 20. We may infer that $s(A) \geq 70 + 21 + 20 = 111 > 105 |A|$, a contradiction to our assumption.

We now prove that no cycle of length $3k$ occurs in $G_D[W]$. Assuming that a cycle $C_{3k} : v_1 \ldots v_3k v_1$ exists, all vertices of it can be dominated by the k-element set $A = \{v_3, v_6, \ldots, v_{3k}\}$. Then, in $G_{D_0}A$, all the $3k$ vertices are red and, by Observation $\blacksquare (iv)$, the sum of the white-degrees of the blue neighbors decreases by at least $3 \cdot 3k$. Consequently, we get the contradiction $w(A) \geq 35 \cdot 3k + 2 \cdot 9k = 123k > 105 |A|$.

Similarly, if we suppose the existence of a cycle $C_{3k+2} : v_1 \ldots v_{3k+2} v_1$ with $k \geq 2$ and define $A = \{v_3, v_6, \ldots, v_{3k}, v_{3k+2}\}$, the set A dominates all vertices. Since $k \geq 2$, the relation $s(A) \geq 35 \cdot (3k + 2) + 2 \cdot 3 \cdot (3k + 2) = 123k + 82 > 105(k + 1) = 105 |A|$ clearly holds and gives the contradiction.

In the last case, consider a cycle $C_{3k+1} : v_1 \ldots v_{3k+1} v_1$ with $k \geq 4$ and set $A = \{v_3, v_6, \ldots, v_{3k}, v_{3k+1}\}$. In $G_{D_0}A$, every vertex from the cycle is red and, as before, one can prove that $s(A) \geq 35 \cdot (3k + 1) + 2 \cdot 3 \cdot (3k + 1) = 123k + 41 > 105(k + 1) = 105 |A|$. This contradiction finishes the proof of Claim B. \square

For $i = 0, 1, 2$, we will use the notation W_i for the set of white vertices having exactly i white neighbors in G_D. Note that W_0 consists of the vertices of the components of $G_D[W]$ which are isomorphic to P_1, while W_1 and W_2, respectively, contain the vertices from the P_2-components and the cycles of $G_D[W]$.

Claim C. No vertex from B_3 is adjacent to a vertex from W_0 in G_D.

Proof. In contrary, suppose that a vertex \(v \in B_3 \) has a neighbor \(u \) from \(W_0 \). Let \(A = \{v\} \) and denote by \(u_1 \) and \(u_2 \) the further two white neighbors of \(v \). In \(G_{D\cup A} \), we have \(v, u \in R \) and \(u_1, u_2 \in B_2 \cup B_1 \cup R \). This contributes to \(s(A) \) by at least \(19 + 35 + 2(35 - 17) = 90 \). By Observation \(iv \), the neighbors \(u, u_1 \) and \(u_2 \) have, respectively, at least 4, 2, 2 blue neighbors which are different from \(v \). As follows, \(s(A) \geq 90 + 2 \cdot 8 = 106 > 105 |A| \) must be true but this contradicts our assumption on \(G_D \). \(\square \)

We call a vertex from \(B_2 \) special, if it is adjacent to a vertex from \(W_0 \).

Claim D. No special vertex is adjacent to two vertices from \(W_0 \).

Proof. Suppose that a vertex \(v \in B_2 \) is adjacent to two vertices, say \(u_1 \) and \(u_2 \) from \(W_0 \). Then, we set \(A = \{v\} \) and observe that all the three vertices \(v, u_1 \) and \(u_2 \) are red in \(G_{D\cup A} \). By Claim C, all the blue neighbors of \(u_1 \) and \(u_2 \) are from \(B_2 \cup B_1 \) in \(G_D \) and, therefore, when the white-degree of these neighbors decreases by \(\ell \), the value of \(f \) falls by at least \((17 - 14) \ell = 3\ell \). Since, by Observation \(ii \), each of \(u_1 \) and \(u_2 \) has at least four blue neighbors, we have \(s(A) \geq 17 + 2 \cdot 35 + 3 \cdot 8 = 111 > 105 |A| \). This contradiction proves the claim. \(\square \)

Claim E. No special vertex is adjacent to a vertex from a \(C_4 \) or \(C_7 \).

Proof. Suppose first that a special vertex \(v \in B_2 \) is adjacent to \(u_1 \) which is from a 4-cycle component \(C_4 \): \(u_1u_2u_3u_4u_1 \) in \(G_D \). The other neighbor of \(v \) is \(u_0 \) which is from \(W_0 \). Let \(A = \{v, u_3\} \) and observe that all the six vertices \(v, u_0, u_1, u_2, u_3 \) and \(u_4 \) are red in \(G_{D\cup A} \). In \(G_D \), the white vertex \(u_0 \) has at least four blue neighbors which are different from \(v \) and, by Claim C, each of them belongs to \(B_2 \cup B_1 \); \(u_1 \) has at least two neighbors from \((B_3 \cup B_2 \cup B_1) \setminus \{v\} \); each of \(u_2, u_3 \) and \(u_4 \) has at least three neighbors from \((B_3 \cup B_2 \cup B_1) \setminus \{v\} \). Therefore, \(s(A) \geq 17 + 5 \cdot 35 + 4 \cdot 3 + 11 \cdot 2 = 226 > 105 |A| \), a contradiction.

The argumentation is similar if we suppose that a special vertex \(v \) is adjacent to \(u_0 \) from \(W_0 \) and to a vertex \(u_1 \) from the 7-cycle \(u_1 \ldots u_7 u_1 \). Here we set \(A = \{v, u_3, u_6\} \) and observe that \(s(A) \geq 17 + 8 \cdot 35 + 4 \cdot 3 + 20 \cdot 2 = 349 > 105 |A| \) that contradicts our assumption on \(G_D \). \(\square \)

Claim F. If \(v_1 \) and \(v_2 \) are two adjacent vertices from \(W_1 \), then at most one of them may have a special blue neighbor.

Proof. Assume to the contrary that \(v_1 \) is adjacent to the special vertex \(u_1 \), and \(v_2 \) is adjacent to the special vertex \(u_2 \). Denote the other neighbors of
and u_2 by x_1 and x_2, respectively. Hence, $v_1, v_2 \in W_1$, $u_1, u_2 \in B_2$ and $x_1, x_2 \in W_0$ hold in G_D. Consider the set $A = \{u_1, u_2\}$ and observe that all the six vertices become red in $G_{D \cup A}$. Further, for $i = 1, 2$, vertex x_i has at least four neighbors from $(B_2 \cup B_1) \setminus \{u_i\}$ and v_i has at least three neighbors from $(B_3 \cup B_2 \cup B_1) \setminus \{u_i\}$. Thus, $s(A) \geq 2 \cdot 17 + 4 \cdot 35 + 8 \cdot 3 + 6 \cdot 2 = 210 = 105 |A|$ and this contradiction proves the claim. (\square)

Having Claims A-F in hand, we are ready to prove that every G_D (where D is not a dominating set) satisfies Property 1. The last step of this proof is based on a discharging.

Discharging. First, we assign charges to the (non-red) vertices of G_D so that every white vertex gets 35, and every vertex from B_3, B_2, and B_1 gets 19, 17, and 14, respectively. Note that the sum of the charges equals $f(G_D)$. Then, every blue vertex, except the special ones, distributes its charge equally among the white neighbors. The exact rules are the following:

- Every vertex from B_3 gives $19/3$ to each white neighbor.
- Every non-special vertex from B_2 gives $17/2$ to each white neighbor.
- Every special vertex gives 14 to its neighbor from W_0, and gives 3 to the other neighbor.
- Every vertex from B_1 gives 14 to its neighbor.

After the discharging, every vertex from a P_1-component of G_D has a charge of at least $35 + 5 \cdot 14 = 105$. By Claim F, every P_2-component has at least four non-special blue neighbors and, therefore, its charge is at least $2 \cdot 35 + 4 \cdot 3 + 4 \cdot 19/3 = 321/3$. By Claim E, every C_4-component has at least $4 \cdot 35 + 12 \cdot 19/3 = 216$ and every C_7-component has at least $7 \cdot 35 + 21 \cdot 19/3 = 378$ as a charge. Finally, every C_5-component has $5 \cdot 35 + 15 \cdot 3 = 220$, and every C_{10}-component has $10 \cdot 35 + 30 \cdot 3 = 440$ after the discharging. Let the number of P_1, P_2, C_4, C_5, C_7, and C_{10}-components of $G_D[W]$ be denoted by p_1, p_2, c_4, c_5, c_7, and c_{10}, respectively, and let A be a minimum dominating set in $G_D[W]$. Then,

$$|A| = p_1 + p_2 + 2 c_4 + 2 c_5 + 3 c_7 + 4 c_{10}.$$
As $D \cup A$ is a dominating set in the graph G, we have $f(G_{D \cup A}) = 0$. Thus, $s(A) = f(G_D)$, and the discharging shows the following lower bound:

$$s(A) = f(G_D) \geq 105 p_1 + \frac{321}{3} p_2 + 216 c_4 + 220 c_5 + 378 c_7 + 440 c_{10}$$

$$\geq 105 (p_1 + p_2 + 2 c_4 + 2 c_5 + 3 c_7 + 4 c_{10}) = 105 |A|.$$

As it contradicts our assumption on G_D, we infer that every graph G with minimum degree 5 and every $D \subseteq V(G)$ with $f(G_D) > 0$ satisfy Property 1.

To finish the proof of Theorem 1, we first observe that $f(G_\emptyset) = 35 n$. Then, by Property 1, there exists a nonempty set A_1 such that $f(G_{A_1}) \leq f(G_\emptyset) - 105 |A_1|$. Applying this iteratively, at the end we obtain a dominating set $D = A_1 \cup \cdots \cup A_j$ such that

$$f(G_D) = 0 \leq f(G_\emptyset) - 105 |D| = 35 n - 105 |D|,$$

and we may conclude

$$\gamma(G) \leq |D| \leq \frac{35 n}{105} = \frac{n}{3}.$$

In a graph G, a set $X \subseteq V(G)$ is a 2-packing, if any two different vertices from X are at a distance of at least 3. The proof of Theorem 1 directly corresponds to an algorithm that outputs a dominating set of cardinality at most $n/3$. If G is 5-regular and X is a 2-packing in it, we may start the algorithmic process with choosing the vertices of X one by one. Hence, we conclude the following.

Corollary 1. If X is a 2-packing in a 5-regular graph G, then X can be extended to a dominating set D of cardinality at most $n/3$.

3 Graphs of minimum degree 4

In this section, we apply the previous approach for graphs of minimum degree four and get a shorter alternative proof for the following theorem which was first proved by Sohn and Xudong [22] in 2009.
Theorem 2. For every graph G on n vertices and with minimum degree 4, the domination number satisfies $\gamma(G) \leq \frac{4n}{11}$.

Proof. Consider a graph G of minimum degree 4 and let D be a subset of $V = V(G)$. Let W, B, and R denote the set of white, blue, and red vertices in G_D. The set of blue vertices that have at least 4 white neighbors is denoted by B_4 while, for $i = 1, 2, 3$, B_i stands for the set of blue vertices that have exactly i white neighbors. In the proof, a residual graph G_D is associated with the following value:

$$g(G_D) = 16|W| + 10|B_4| + 9|B_3| + 8|B_2| + 7|B_1|.$$

For a set $A \subseteq V \setminus D$, we use the notation

$$s(A) = g(G_D) - g(G_{D\cup A})$$

and define the following property for G_D:

Property 2. There exists a nonempty set $A \subseteq V \setminus D$ such that $s(A) \geq 44|A|$.

We now suppose for a contradiction that a residual graph G_D with $\delta(G) = 4$ and $g(G_D) > 0$ does not satisfy Property 2. We prove several claims for G_D and then get the final contradiction via performing a discharging.

Claim G. $\Delta_W(W) \leq 2$ and $\Delta_W(B) \leq 3$ hold.

Proof. All the following cases can be excluded:

- **Case 1.** $\Delta_W(W) \geq 5$
 Choose a white vertex v with $d_W(v) \geq 5$ and let $A = \{v\}$. In $G_{D\cup A}$, the white vertex v becomes red and its white neighbors become blue or red. This gives $s(A) \geq 16 + 5 \cdot (16 - 10) = 46 > 44 |A|$ which contradicts our assumption that G_D does not satisfy Property 2.

- **Case 2.** $\Delta_W(W) = 4$
 Consider a white vertex v with $d_W(v) = 4$ and set $A = \{v\}$. In $G_{D\cup A}$, the vertex v becomes red and its white neighbors become blue or red. Since each white neighbor u had at most four white neighbors in G_D, u may have at most three white neighbors in $G_{D\cup A}$. Therefore, $s(A) \geq 16 + 4 \cdot (16 - 9) = 44 |A|$, a contradiction.
Case 3. $\Delta_W(W) \leq 3$ and $\Delta_W(B) \geq 5$

Let v be a blue vertex with $d_W(v) \geq 5$ and define $A = \{v\}$ again. In G_D, the vertex v belongs to B_4, while we have $v \in R$ in $G_{D \cup A}$. Further, since $\Delta_W(W) \leq 3$, each white neighbor u of v has at most three white neighbors in G_D and $u \in B_3 \cup B_2 \cup B_1 \cup R$ in $G_{D \cup A}$. As follows, $s(A) \geq 10 + 5(16 - 9) = 45 > 44|A|$ that is a contradiction to our assumption.

Case 4. $\Delta_W(W) = 3$ and $\Delta_W(B) \leq 4$

First remark that, by the condition $\Delta_W(B) \leq 4$, if a blue vertex loses ℓ white neighbors in a step, then $g(G_D)$ decreases by at least ℓ. Select a white vertex v with $d_W(v) = 3$ and let $A = \{v\}$. In $G_{D \cup A}$, vertex v becomes red and its three white neighbors become blue or red having at most 2 white neighbors. By Observation 1 (iv), each of v and its white neighbors has at least one blue neighbor in G_D. Thus, we get $s(A) \geq 16 + 3(16 - 8) + 4 \cdot 1 = 44|A|$ which is a contradiction.

Case 5. $\Delta_W(W) \leq 2$ and $\Delta_W(B) = 4$

Here, we choose a vertex v from B_4 and define $A = \{v\}$. First, observe that v belongs to B_4 in G_D and to R in $G_{D \cup A}$. In G_D, v has four white neighbors which become blue or red and belong to $B_2 \cup B_1 \cup R$ in $G_{D \cup A}$. By Observation 1 (iv) and by $\Delta_W(W) \leq 2$, each white neighbor has at least one blue neighbor that is different from v. Therefore, $s(A) \geq 10 + 4(16 - 8) + 4 \cdot 1 = 46 > 44|A|$ that is a contradiction again. This finishes the proof of the claim. (\blacksquare)

In the continuation, we suppose that $\Delta_W(W) \leq 2$ and $\Delta_W(B) \leq 3$ hold in the counterexample G_D and, therefore, the graph $G_D[W]$, which is induced by the white vertices of G_D, consists of components which are paths and cycles. We prove some further properties for G_D.

Claim H. In $G_D[W]$, each component is a path P_1, P_2 or a cycle C_4 or C_7.

Proof. Assume that there is a path component $P_j: v_1 \ldots v_j$ of order $j \geq 3$ in $G_D[W]$. We set $A = \{v_2\}$ and observe that both v_1 and v_2 become red and v_3 belongs to $B_1 \cup R$ in $G_{D \cup A}$. This contributes to $s(A)$ by at least $2 \cdot 16 + (16 - 7)$. By Observation 1 (iv), v_1, v_2, and v_3, respectively, have at least 3, 2, 2 blue neighbors in G_D. The decrease in their white-degrees contributes to $s(A)$ by at least $7 \cdot 1$. Then, we get $s(A) \geq 32 + 9 + 7 = 48 > 44|A|$, a contradiction.

12
Now, assume that a cycle \(C_{3k} : v_1 \ldots v_{3k}v_1 \) exists in \(G_D[W] \) and set \(A = \{v_3, v_6, \ldots, v_{3k}\} \). In \(G_{D\cup A} \), all the 3k vertices of the cycle are recolored red and, by Observation 2(ii), the sum of the white-degrees of the blue vertices decreases by at least \(2 \cdot 3k \). Consequently, we get the contradiction \(w(A) \geq 16 \cdot 3k + 6k = 54k > 44 |A| \). A similar argumentation can be given if the cycle is \(C_{3k+2} : v_1 \ldots v_{3k+2}v_1 \), where \(k \geq 1 \), and \(A = \{v_3, v_6, \ldots, v_{3k}, v_{3k+2}\} \). Here, \(|A| = k+1 \) and we get \(s(A) \geq 16 \cdot (3k+2) + 2 \cdot (3k+2) = 54k + 36 > 44k + 44 = 44 |A| \) that is a contradiction. For the case when the cycle is of order 3k+1, we suppose \(k \geq 3 \) and obtain a contradiction as follows. Let \(C_{3k+1} : v_1 \ldots v_{3k+1}v_1 \) and let \(A \) be the \((k+1)\)-element dominating set \(\{v_3, v_6, \ldots, v_{3k}, v_{3k+1}\} \). We get \(s(A) \geq 16 \cdot (3k+1) + 2 \cdot (3k+1) = 54k + 18 > 44k + 44 = 44 |A| \) since \(k \geq 3 \) is supposed. This finishes the proof of Claim H. (□)

Claim I. No vertex from \(B_3 \) is adjacent to any vertices from \(W_0 \) in \(G_D \).

Proof. Assume for a contradiction that a vertex \(v \in B_3 \) has a neighbor \(u_0 \) from \(W_0 \). Let \(A = \{v\} \) and denote by \(u_1 \) and \(u_2 \) the further two white neighbors of \(v \). In \(G_{D\cup A} \), \(v, u_0 \in R \) and \(u_1, u_2 \in B_2 \cup B_1 \cup R \). This change contributes to \(s(A) \) by at least \(9 + 16 + 2(16-8) = 41 \). By Observation 1(iv), the neighbors \(u_0, u_1 \) and \(u_2 \) have, respectively, at least 3, 1, 1 blue neighbors which are different from \(v \). Therefore, \(s(A) \geq 41 + 5 \cdot 1 = 46 > 44 |A| \) should be true but this contradicts our assumption on \(G_D \). (□)

As follows, the vertices from \(W_0 \) may be adjacent only to some vertices from \(B_2 \cup B_1 \). We call a vertex from \(B_2 \) special, if it is adjacent to a vertex from \(W_0 \).

Claim J. No special vertex is adjacent to two vertices from \(W_0 \).

Proof. Suppose that a vertex \(v \in B_2 \) is adjacent to two vertices, say \(u_1 \) and \(u_2 \) from \(W_0 \). We set \(A = \{v\} \) and observe that all the three vertices \(v, u_1 \) and \(u_2 \) are red in \(G_{D\cup A} \). By Observation 1(iv), each of \(u_1 \) and \(u_2 \) has at least three blue neighbors different from \(v \). This yields \(s(A) \geq 8 + 2 \cdot 16 + 6 \cdot 1 = 46 > 44 |A| \) that contradicts our assumption on \(G_D \). (□)

Claim K. No special vertex is adjacent to a vertex from a \(C_4 \) or \(C_7 \).

Proof. If a special vertex \(v \) is adjacent to a vertex \(u_0 \) from \(W_0 \) and to a vertex \(u_1 \) from a 4-cycle component \(C_4 : u_1u_2u_3u_4u_1 \) of \(G_D[W] \), then we set \(A = \{v, u_3\} \) and observe that \(v, u_0, u_1, u_2, u_3 \) and \(u_4 \) turn red in \(G_{D\cup A} \). In \(G_D \), the vertices \(u_0, u_1, u_2, u_3 \) and \(u_4 \), respectively, have at least 3, 1, 2, 2,
2 neighbors from \((B_3 \cup B_2 \cup B_1) \setminus \{v\}\). Thus, \(s(A) \geq 8 + 5 \cdot 16 + 10 \cdot 1 = 98 > 44 |A|\), a contradiction. Similarly, if we suppose that a special vertex \(v\) is adjacent to \(u_0\) from \(W_0\) and to a vertex \(u_1\) from the 7-cycle \(u_1 \ldots u_7u_1\), we set \(A = \{v, u_3, u_6\}\) and conclude that \(s(A) \geq 8 + 8 \cdot 16 + 16 \cdot 1 = 152 > 44 |A|\) that contradicts our assumption on \(G_D\). \(\Diamond\)

Claim L. If \(v_1\) and \(v_2\) are two adjacent vertices from \(W_1\), then at most one of them may have a special blue neighbor.

Proof. Assume to the contrary that \(v_1u_1, v_2u_2 \in E(G)\) such that \(u_1\) and \(u_2\) are special vertices in \(G_D\), and let \(x_1\) and \(x_2\) be the further white neighbors of \(u_1\) and \(u_2\). Hence, we have \(v_1, v_2 \in W_1, u_1, u_2 \in B_2\), and \(x_1, x_2 \in W_0\) in \(G_D\). Consider the set \(A = \{u_1, u_2\}\) and observe that all the six vertices \(v_1, v_2, u_1, u_2, x_1, x_2\) become red in \(G_D \cup A\). For \(i = 1, 2\), by Claim I and Observation \(\Box\) \((iv)\), the vertex \(x_i\) has at least three neighbors from \((B_2 \cup B_1) \setminus \{v\}\) and \(v_i\) has at least two neighbors from \((B_3 \cup B_2 \cup B_1) \setminus \{v\}\). This implies the contradiction \(s(A) \geq 2 \cdot 8 + 4 \cdot 16 + 10 \cdot 1 = 90 > 44 |A|\). \(\Box\)

Discharging. Applying Claims G–L, we now perform a discharging and prove that \(G_D\) satisfies Property 1. We assign charges to the (non-red) vertices of \(G_D\) so that every white vertex gets 16, and every vertex from \(B_3, B_2\), and \(B_1\) gets 9, 8, and 7, respectively. We remark that the sum of these charges equals \(g(G_D)\). Then, every blue vertex, except the special ones, distributes its charge equally among the white neighbors as follows:

- Every vertex from \(B_3\) gives 3 to each white neighbor.
- Every non-special vertex from \(B_2\) gives 4 to each white neighbor.
- Every special vertex gives 7 to its neighbor from \(W_0\), and gives 1 to the other neighbor.
- Every vertex from \(B_1\) gives 7 to its neighbor.

After the discharging, every vertex from a \(P_1\)-component of \(G_D[W]\) has a charge of at least \(16 + 4 \cdot 7 = 44\). By Claim L, every \(P_2\)-component has at least three non-special blue neighbors and, therefore, its charge is at least \(2 \cdot 16 + 3 \cdot 1 + 3 \cdot 3 = 44\). By Claim K, every \(C_4\)-component has at least \(4 \cdot 16 + 8 \cdot 3 = 88\) and every \(C_7\)-component has at least \(7 \cdot 16 + 14 \cdot 3 = 154\) as a charge. Let the number of \(P_1\), \(P_2\), \(C_4\), and \(C_7\)-components of \(G[W]\)
be denoted by p_1, p_2, c_4, and c_7, respectively, and let A be a minimum dominating set in $G[W]$. Then,
\[|A| = p_1 + p_2 + 2c_4 + 3c_7. \]
As $D \cup A$ is a dominating set in the graph G, we have $g(G_{D\cup A}) = 0$. Thus, $s(A) = g(G_D)$, and the discharging proves the following lower bound:
\[s(A) = g(G_D) \geq 44 p_1 + 44 p_2 + 88 c_4 + 154 c_7 \]
\[\geq 44 (p_1 + p_2 + 2 c_4 + 3 c_7) = 44 |A|. \]
As it contradicts our assumption on G_D, we infer that every graph G with minimum degree 4 and every $D \subseteq V(G)$ with $g(G_D) > 0$ satisfy Property 2.

To prove Theorem 2, we observe that $g(G_\emptyset) = 16n$ and, by Property 2, there exists a set A_1 such that $g(G_{A_1}) \leq g(G_\emptyset) - 44 |A_1|$. As G_{A_1} also satisfies Property 2, we may continue the process if $g(G_{A_1}) > 0$, and at the end we obtain a dominating set $D = A_1 \cup \cdots \cup A_j$ such that
\[g(G_D) = 0 \leq g(G_\emptyset) - 44 |D| = 16 n - 44 |D|. \]
Consequently,
\[\gamma(G) \leq |D| \leq \frac{16 n}{44} = \frac{4}{11} n \]
holds for every graph G of minimum degree 4.

\section{Concluding remarks}

Theorem 1 shows that $\gamma(G) \leq n/3$ holds for every graph with minimum degree at least 5. However, I do not believe that this upper bound is tight over the class of graphs with $\delta(G) \geq 5$. Examples with $\gamma/n > 1/4$ can possibly be found among larger graphs via computer search or large constructions, but it seems that $\delta(G) \geq 5$ and $n \leq 12$ together implies $\gamma(G) \leq n/4$ that is quite far from the proved $n/3$-upper bound.

Unfortunately, Theorem 2 does not seem sharp either. However, here we have 4-regular examples where the quotient γ/n equals 1/3 that is relatively close to the proved upper bound 4/11. The smallest such 4-regular graph is $G = K_6 - M$ that is obtained from the complete graph K_6 by the deletion of a perfect matching. Then, we have $\gamma(G) = 2 = n/3$. One may guess that this is the sharp upper bound for graphs of minimum degree 4 or, at least, it is true under the following stronger condition:
Conjecture 1. There exists a constant n_0 such that for every connected 4-regular graph G of order $n > n_0$, we have $\gamma(G) \leq \frac{n}{3}$.

References

[1] N. Alon, Transversal numbers of uniform hypergraphs, Graphs Combin. 6 (1990) 1–4.

[2] V. I. Arnautov, Estimation of the exterior stability number of a graph by means of the minimal degree of the vertices (Russian), Prikl. Mat. i Programmirovanie 11 (1974) 3–8.

[3] Cs. Biró, É. Czabarka, P. Dankelmann, L. Székely, Remarks on the domination number of graphs, Bull. Inst. Combin. Appl. 64 (2012) 73–83.

[4] M. M. Blank, An estimate of the external stability number of a graph without suspended vertices (in Russian), Prikl. Mat. i Programmirovanie 10 (1973) 3–11.

[5] B. Brešar, T. Gologranc, M. Milanič, D. F. Rall, R. Rizzi, Dominating sequences in graphs, Discrete Math. 336 (2014) 22–36.

[6] B. Brešar, S. Klavžar, D. F. Rall, Domination game and an imagination strategy, SIAM J. Discrete Math. 24 (2010) 979–991.

[7] Cs. Bujtás, S. Klavžar, Improved upper bounds on the domination number of graphs with minimum degree at least five, Graphs Combin. 32 (2016) 511–519.

[8] C. N. Campos, Y. Wakabayashi, On dominating sets of maximal outerplanar graphs, Discrete Appl. Math. 161 (2013) 330–335.

[9] W. E. Clark, B. Shekhtman, S. Suen, D. C. Fisher, Upper bounds for the domination number of a graph, Congr. Numer. 132 (1998) 99–123.

[10] S. Dantas, F. Joos, C. Löwenstein, D. S. Machado, D. Rautenbach, Domination and total domination in cubic graphs of large girth, Discrete Appl. Math. 174 (2014) 128–132.

[11] T. W. Haynes, S. T. Hedetniemi, P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
[12] M. A. Henning, I. Schiermeyer, A. Yeo, A new bound on the domination number of graphs with minimum degree two, Electron. J. Combin. 18 (2011) #P12.

[13] E. L. King, M. J. Pelsmajer, Dominating sets in plane triangulations, Discrete Math. 310 (2010), 2221–2230.

[14] A. V. Kostochka, B. Y. Stodolsky, On domination in connected cubic graphs, Discrete Math. 304 (2005), 45–50.

[15] A. V. Kostochka, B. Y. Stodolsky, An upper bound on the domination number of n-vertex connected cubic graphs, Discrete Math. 309 (2009) 1142–1162.

[16] D. Král, P. Škoda, J. Volec, Domination number of cubic graphs with large girth, J. Graph Theory 69 (2012) 131–142.

[17] C. Löwenstein, D. Rautenbach, Domination in graphs of minimum degree at least two and large girth, Graphs Combin. 24 (2008) 37–46.

[18] W. McCuaig, B. Shepherd, Domination in graphs with minimum degree two, J. Graph Theory 13 (1989) 749–762.

[19] O. Ore, Theory of Graphs, American Mathematical Society, Providence, R.I., 1962.

[20] C. Payan, Sur le nombre d’absorption d’un graphe simple, Cahiers Centre Études Recherche Opér. 17 (1975) 307–317.

[21] B. Reed, Paths, stars and the number three, Combin. Probab. Comput. 5 (1996) 277–295.

[22] M. Y. Sohn, Y. Xudong, Domination in graphs of minimum degree four, J. Korean Math. Soc. 46 (2009) 759–773.

[23] H.-M. Xing, L. Sun, X.-G. Chen, Domination in graphs of minimum degree five, Graphs Combin. 22 (2006) 127–143.