Roles of Tumor Necrosis Factor-α and Tumor Necrosis Factor-α Receptor 2 in Inflammation-Related Diseases

Nazakat Hussain Memon a,b*, Maaz Khan c, Muhammad Raza Memon d, Abdul Hameed Lanjwani e, Farhatullah Kandhro f, Arshad Hussain Laghari a and Sadia Qamar Arain g

a Department of Biochemistry, Ghulam Muhammad Mahar Medical College and Hospital, Shaheed Mohtarma Benazir Bhutto Medical University Larkana, Sukkur, Sindh, Pakistan.

b College of Life Science, Neijiang Normal University, Neijiang 641000, Sichuan, PR China.

c Rehman Medical College (RMC), Peshawar, KPK, Pakistan.

d Sir Cowasjee Jehangir Institute of Psychiatry, Hyderabad, Pakistan.

e Department of Biochemistry, Chandka Medical College, Shaheed Mohtarma Benazir Bhutto Medical University Larkana, Sindh, Pakistan.

f Diagnostic & Research Laboratory, Department of Pathology, Liaquat University of Medical and Health Sciences Jamshoro, Sindh, Pakistan.

g Department of Biochemistry, The University of Modern Sciences, Tando Muhammad Khan, Sindh, Pakistan.

Authors’ contributions

This work was carried out in collaboration among all authors. Authors NHM and AHL developed the research conception and took the initiatives of this review, organizing relevant data, prepare to write and drafted the manuscript. Authors MK and MRM provides greater contribution towards collecting the material. Authors MK, SQA and AHL revised the review paper and agreed to be accountable for all aspects of the work. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JPRI/2021/v33i52A33579

Editor(s):

(1) Dr. S. Prabhu, Sri Venkateswara College of Engineering, India.

Reviewers:

(1) Bushra Jasim Mohammed, University of Baghdad, Iraq.

(2) Özlem Coşkun, Çanakkale Onskiz Mart University, Turkey.

Complete Peer review History, details of the editor(s), Reviewers and additional Reviewers are available here:

https://www.sdiarticle5.com/review-history/76883

Received 12 September 2021

Accepted 24 November 2021

Published 29 November 2021

ABSTRACT

The aim of the present review is to provide basic knowledge about the role of tumour necrosis factor-α 1 and tumor necrosis factor-α receptor 2 in neuro-inflammation diseases. We performed an open-ended, English restricted search of PubMed, Embase, PsychINFO, Web of Science, Scopus,
and the Cochrane Library for available literature from 24Feb. 2018–12 May 2021, using terms related to neuroinflammation, tumour necrosis factor-α, tumour necrosis factor II (TNFR-II), TNF-α and related diseases, TNFR-II and inflammation-related diseases, their relationships, and polymorphism. The main outcomes assessed were the presence of plaques and tangles, behaviour and cognition, reduction in brain tissue mass, and synaptic function the majority of studies were documented a beneficial effect in other areas, including the presence of plaques and tangles and synaptic function. The human studies were showed that TNF-αl was beneficial to Alzheimer's disease patients, with one being a small pilot study and the latter being an observational study, with a high risk of bias. It is concluded that the functions and mechanisms of TNF-α and TNFR-II in inflammation-related diseases will provide new viewpoints and theories in the development and treatment of these diseases. They play important roles in the pathogenesis of diseases induced by or related to inflammatory cytokines and signaling pathways.

Keywords: Genetic polymorphisms; inflammation-related diseases; tumor necrosis factor-α; tumor necrosis factor-α receptor 2.

1. INTRODUCTION

1.1 The Role of Neuroinflammation in Neurodegenerative Diseases

The brain is most precious organ of the body. The thoughts, emotions, and ability to reason as well as to communicate with the outside world are all in danger if something damages the brain. In 20th century, Life is stressful, because most people are struggling to keep up and are living with tiredness, anxiety, stress, depression, and sleeping problems as a result. Some people tip over the edge into mental health problems from attention deficit disorder to Alzheimer’s disease and other dementias. There has been a massive increase in the incidence of mental health problems in the world. Therefore, protecting the brain has become a priority.

Age-related cognitive declines have been linked to free radical-induced oxidative brain damage. This common enemy has been strongly implicated in a variety of diseases that wreak devastating damage on the brain and nerves, known as neurodegenerative diseases. The degeneration of the central nervous system has been characterized by chronic progressive loss of functions as well as structure of neuronal materials and resulted in mental and functional impairments [1]. However, the cause of neuronal degeneration remains unclear, but some reports indicated that the incidence of neurodegeneration, increases with age [2]. Those which affect elder individuals have caused the diseases such as Alzheimer’s disease, Motor neuron diseases multiple sclerosis, Amyotrophic lateral sclerosis, and Parkinson's disease (PD) [3,4].

1.2 Depression and Neuroinflammation

Normal aging has been related to enhancing the expression level of systemic inflammatory factors viz, pro-inflammatory cytokines [5,6]. In the brain, age-associated inflammation manifests initially as the chronic activation of parenchymal and perivascular macrophage, which expresses the pro-inflammatory cytokines as well as an increased number of astrocytes [7], that contribute to increasing the vulnerability of neuropsychiatric disorders [8]. In obese women, the inflammation state was linked with a higher concentration of pro-inflammatory cytokines, Interleukin 6 (IL-6), and adipokines C - reactive protein (CRP) [9]. These pro-inflammatory cytokines correlated with the symptoms of anxiety and depression [10]. Anxiety was alleviated with the surgical removal of fat tissue and reduction of inflammation [11]. In agreement with previous studies that the metabolic diseases (obesity, hypertension) have prevalent risk factors of cognitive dysfunction dementia, and depression [12,13], and there has increased risk of aging-related diseases that affect the neuroendocrine, cerebrovascular, cardiovascular and immune systems in patients suffering major depression [14,15].

The putative mechanism related to depression and inflammation involved prominent pro-inflammatory cytokines, IL-6 and Interleukin 8 (IL-8), hyperglutamatergia, endothelial nitric-oxide synthase uncoupling, and oxidative stress [16]. However, the biological mechanism of depression was still unclear but conventional antidepressant treatments to one-third of depressed patients were unsuccessful, due to the inflammation that contributed to treatment resistance [17]. In addition, indirect proof of
neurovascular dysfunction has been found in major depressive disorder (MDD), which is a severe psychiatric illness and linked with enhancing the expression level of inflammatory markers in depression, periphery, and mortality [18,19]. Thereafter, inflammatory markers were recognized in neurodegenerative diseases such as adhesion molecules, MDD cover chemokines, and acute phase proteins [20].

1.3 Psychiatric Illness and Neuroinflammation

Biological abnormalities are highly recognized in patients with psychiatric disorders, the distinction between psychiatric illness fades and neurological. The separation of psychiatric and neurological disorders was supported by Descartes’s conception of the ‘mind’ as by the reproducibility of neuropsychological abnormalities and an ontologically distinct entity [21]. Since then, an expanding collection of reproducible biological causes, such as head trauma, neurosyphilis, demyelination stroke, tumor, and many other symptoms that overlapped with classic psychiatric disorders [22]. Recently, in patients with classical psychiatric disorders, both neuroinflammatory and immunological abnormalities have been documented.

Peripheral immune modulators can induce psychiatric symptoms in human and animal models. The pro-inflammatory Interleukin 1 beta (IL-1β) and tumor necrosis factor alpha (TNF-α) cytokines were injected in healthy animals with demonstrated ‘sickness behavior’ related to social withdrawal [23,24]. More than 45% of cancer patients treated with IFN-α and non-depressed hepatitis C were reported to develop depressive symptoms linked with increased serum IL-6 levels [25]. Medical conditions associated with immunological abnormalities and chronic inflammatory viz., rheumatoid arthritis, diabetes, obesity, multiple sclerosis, and malignancies have risk factors for bipolar disorder and depression [26]. The positive correlation between psychiatric illness and these medical conditions has suggested the presence of a widespread underlying inflammatory process that affects the brain and other organs [27] (Olawuyi and Raufu 2012).

Peripheral humoral and cellular immunological abnormalities are more widespread in psychiatric patients as compared to the healthy one. In both replication studies (n = 36 MDD, n = 43 healthy controls) and pilot (n = 34, major depressive disorder (MDD) and, comprising nine serum biomarkers which reported to distinguished MDD subjects from healthy controls with 81.3% and 91.7% sensitivity [28,29].

1.4 Role of Tumor Necrosis Factor in Neuroinflammation

The tumor necrosis factor (TNF) was initially discovered in 1975 by a team of scientists in the study of hemorrhagic necrosis [30]. It was named by its function which can lead to lysis in tumour cells. After its discovery, numerous studies have indicated that TNF is an important cytokine involved in pathological and physiological processes, especially associated with inflammation, such as acute inflammation, autoimmune disease, tumour-associated inflammation [31]. Tumor necrosis factor-alpha (TNF) is an extremely pleiotropic cytokine, which occurs in transmembrane and a soluble form. Tumor necrosis factor-alpha is mainly produced by immune cells upon contact with the danger-associated molecular patterns (DAMPs) or pathogen-associated molecular patterns (PAMPs) but can be induced in macrophages, microglia, endothelial cells, and lymphocytes [32]. It is a functional homotrimer transmembrane protein with a molecular weight of 26-kDa [33]. There are two forms of TNF-α in vivo, one is the membrane-bound form (mTNF-α) while another is the soluble form (sTNF-α) [34]. Therefore, TNF-α, a type II transmembrane protein in intracellular amino terminus, can activate signaling pathways as a membrane integrated protein or as a soluble cytokine released after proteolytic cleavage [35]. To be more precise, TNF-α is secreted into the extra cellular space by metalloproteinase TNF-α converting enzyme after expression. During the translocation, mTNF-α was shed into sTNF-α as a functional 17-kDa form [36]. Although TNF-α was described as an anti-tumorigenic cytokine in the beginning [30].

The major function of TNF-α is to initiate inflammatory responses via activating a variety of proinflammatory cytokines, matrix metalloproteinases, chemokines, and vascular endothelial adhesion molecules which are known to enhance inflammation [37]. The function of TNF-α is mediated by two receptors, such as TNF receptor 1 (TNFR1) and TNFR2. The extracellular domains of both TNF receptors have shared a common structure which is composed of 4 Cysteine-rich domains (CRDs). TNF and its receptors are name-giving for the
TNF superfamily (TNFSF) of ligands and the TNFSF ligand-binding receptors of the TNF receptor superfamily (TNFRSF) that included TNFR1 and TNFR2 as two distinct subgroups [38]. TNFR1 has a death domain in its cytoplasmic part and interacts with DD-containing proteins that enable the activation of cytotoxic signaling and proinflammatory pathways. In contrast, TNFR2 recruits the adapter protein TNF receptor-associated factor 2 (TRAF2) and activates the alternative nuclear factor kappa B (NFκB) pathway but the mechanism is still unclear [39]. TNFR-I and TNFR-II can activate different signaling pathways. The activation of TNFR-I signaling pathway induces the cascade related to apoptosis, the cell nature, and the condition of cell activation as well as the cell cycle [40]. However, TNFR-II signals trigger cell survival pathways predominantly in the stimulated T cells which as a source of cell proliferation [41]. Therefore, they are two distinct receptors and can be involved in different physiological or pathological processes. Moreover, increasing evidence has shown that activation of the TNF-α signaling pathway is associated with inflammatory diseases [42,43]. TNF fulfills manifold functions in a variety of immune regulatory processes that are the considerable relevance to pathophysiological situations arising from sterile tissue damage-induced inflammation or pathogen. Therefore, the current review aimed at a briefed summary of relationships between TNF-α and TNFR-II and related diseases or their genetic variations. Understanding these associations and possible functions of TNF-α and TNFR-II involved will promote future research on the molecular mechanism and treatment of diseases related to inflammatory diseases, including psychiatric disorders.

2. MATERIALS AND METHODS

2.1 Literature Search

We performed an open-ended, English restricted search of Web of Science, PubMed, Embase, Scopus, PsychINFO, and the Cochrane Library for available literature from 24Feb. 2018 – 12 May 2021, using terms related to neuroinflammation, tumour necrosis factor-alpha, and tumour necrosis factor II (TNFR-II), association between TNF-α and related diseases and an association between TNFR-II and inflammation-related diseases, their relationships and polymorphism, and clinical implications and limitations.

2.2 Inclusion/exclusion Criteria

In this review, the selected studies were included with the following criteria: report original work, published in a peer-reviewed journal, research conducted on human participants or animal subjects. The animal studies were included non-transgenic or transgenic models of AD, or human participants which were diagnosed with AD through an administration of a TNF-α I or a genetic intervention leading to ablation of the TNF receptor (TNFR). In addition, case studies, and unpublished dissertations or theses, conferences, research protocols, cell cultures studies were excluded.

2.3 Quality Assessment of Methodology

The included studies were assessed by two blind, independent raters (J. E. and G. R.), with any discrepancies in ratings being resolved through discussion with an independent reviewer (R. G.).

3. RESULTS AND DISCUSSION

3.1 Association between TNF-α and Diseases

Inflammation is a physiological process, which repairs tissues in response to exogenous or endogenous aggressions, which may lead to detrimental consequences. As a protein involved in the inflammation process, TNF-α has been identified as a key role in inflammatory neurological disorders, such as elderly with increased risk of morbidity and mortality have had the higher TNF-α level compared with controls [44]. Moreover, as TNF-α can cause increased muscle catabolism, increased plasma TNF-α concentration is related to reduced physical performance, decreased muscle strength, and reductive muscle mass [45]. In patients with mild Alzheimer’s disease elevated plasma TNF-α levels were found when compared to healthy controls, suggesting the possible role of TNF-α in the pathophysiology of neurodegenerative disorders [46].

As for the mental diseases, available shreds of evidence also proposed a positive relationship between posttraumatic stress disorder (PTSD) and immune dysfunction which could be induced by TNF-α [47]. A study about subjects with PTSD in Croatia indicated middle-aged subjects with PTSD had shorter telomere length of peripheral blood mononuclear cells than their healthy counterparts because of changes in immune
activity such as increased levels of TNF-α, indicating changes of immune reactivity, including TNF-α production can affect mental health [48]. TNF-α is not only related to PTSD but is also associated with major depressive disorder (MDD). As a mental disease with an incidence of up to 20% in the general population, a meta-analysis reported a significantly increased TNF-α level in the subjects with MDD when compared with non-depressed controls. However, another study in MDD females aged from 20-55 years indicated there was no statistically significant difference of TNF-α level between depressive subjects and controls, resulting from the unstable of TNF-α [49]. Considering the contradictory reports on the relationship between TNF-α with depression, future studies should take possible mechanisms related to immune dysregulation and abnormal inflammatory response in the depression development consideration to clarify the role of TNF-α in depression. Moreover, TNF-α has been approved to collaborate with its receptors, such as TNFR-II, to affect the development of diseases [50].

3.2 Structure of TNFR-II and its Signaling

Although the affinities of both TNFR-I and TNFR-II for sTNF-α are very similar, unlike TNFRI with a cytoplasmic death domain in its structure, TNFR-II is unable to be active the apoptosis due to the lack of death domain [41]. Moreover, TNFR-II is mainly located on the plasma membrane in the epithelial cells, oligodendrocytes, myocytes, T lymphocytes, cardiomyocytes, or stem cells, whereas TNF-RI is detected in almost all kinds of cells and is typically localized in the Golgi apparatus [51]. Due to the different locations in vivo and different structures, TNF can result in inflammation and tissue injury by binding with TNFR-I, while increasing evidence has indicated its critical roles in inflammation-related processes via the activation of TNFR-II [52]. In general, TNFR-II is more efficiently activated by mTNF-α than by sTNF-α. Meanwhile, TNFR-II can co-stimulate and enhance their activation to T-cell receptor (TCR)-mediated signaling [Fig. 1] [53].

![Fig. 1. T-cell receptor (TCR)-mediated signaling pathway](image-url)
TNFR-II gene, also known as CD120b, or TNF-R P75/80, comprises 9 introns and 10 exons in its sequence and sits on chromosome 1p36.3-p36.2 [54]. TNFR-II is a 74kDa type I transmembrane glycoprotein which can orchestrate the complex biological functions of TNF-α [53]. Initially, TNFR-II was thought to be the protein that mediates and supports the TNFR-I in the process named ligand passing [55]. However, after further clarification of characteristics in the signaling pathways activated by the binding of TNF-α and different receptors, TNFR-II was exhibited an enhanced ability to bind with mTNF-α as sTNF has a tight trimer structure which is unable to be released by the receptor. In the structure of TNFR-II, there is an intracellular domain that can recruit cytosolic proteins via the conformational changes induced by extracellular signals binding [56]. TNFR-associated factor 2 (TRAF2), with the ability to contact the TNFR-II directly, is one of the cytosolic proteins that recognized by the extracellular signal bound TNFR-II [57]. By recruitments of TRAF2, TNFR-II has the potential to activate cIAP1 and cIAP2 which are cellular inhibitors of apoptotic proteins [58]. In primary cells with expression of TNFR-II, although the specific role of cIAP1 in TNFR-II mediated signaling pathway, cIAP1 has been identified to regulate the duration of TNF signaling because of its ubiquitin-protein ligase activity [59]. However, the study indicated that only over-expressed TNFR-II can exhibit significant activation of NFκB while physiological levels of TNFR-II failed to induce NFκB activation [60]. Therefore, TNFR-II seems to be only a weak trigger for NFκB activity although it has a high combination ability with TRAF2. The contradiction between the low NFκB activation ability and the high TRAF2 binding capability of TNFR-II might result from the block of signals from the conventional TRAF2 binding site (T2bs-N) of a carboxyl-terminal TRAF2-binding site (T2bs-C) [61]. On the contrary, a study on the rip−/− mice (lacking RIPK1) indicated that TNFR-II can activate NFκB by mediating the degradation of IκBa [62]. Taken together, TNFR-II signaling induced by TNFR2 binding may result in NFκB activation in certain cell types. After NFκB activation, TNFR-II signaling can induce differentiation; cytokine production, apoptosis, as well as cell death in T lymphocytes via the NFκB transcribes [63]. The mechanism involved in the TNFR-II induced cell death might be related to necroptosis resulting from the prevention of phosphatidylinositol 3 kinase (PI3K) by TNFR2 activation [36]. Contrarily, TNFR-II has the potential to activate PI3K and Akt by the stimulation of epithelial/endothelial tyrosine kinase (Etk) to bring about cell proliferation and survival [64]. The role of TNFR-II in the immune system is reflected by a not so well characterized immature subpopulation of the myeloid cell, the myeloid-derived suppressor cells (MDSC) [65]. Both maturation and optimal suppression of MDSC appear to depend on activation of TNFR-II [50]. Due to the complexity in TNFR-II signaling pathways, a more understanding of TNFR-II could lead to discussing its beneficial implications.

3.3 Association between TNFR-II and Inflammation-related Diseases

As a critical protein in the TNF-α induced signaling pathway, increasing evidence has proved the relationship between TNFR-II and inflammation-related diseases. The previous study insisted TNFR-II was a more reliable biomarker of inflammation because of its higher stability than TNF-α [66]. For example, as the strong associations among obesity, inflammation, and vascular condition, TNFR-II was indicated to be related with coronary heart disease and other metabolic diseases [67,68]. Another study in 1300 non-diabetic subjects from the prospective Hong Kong Cardiovascular Risk Factor Prevalence Study (CRISPS) also indicated TNFR-II, together with adiponectin, had the potential to be a risk factor for the prediction of diabetes in the Chinese population [69]. Meanwhile, Wang et al. [70] analyzed the data from adult male mice with TNFR-II (−/−) and indicated that TNFR-II deficiency could exacerbate adiponectin expression suppression by enhancing a transcriptional factor ATF3, which might be a trigger of cardio diseases. Increased plasma TNFR-II levels were also associated with incident future intra-cerebral hemorrhage in Malmö Diet and Cancer Study (n=28 449) as its relationship with inflammation [71,51].

Not only the cardiovascular diseases and metabolic diseases, TNFR-II contributes to other inflammation-related diseases, such as cancer. The Previous study in vitro has demonstrated the significant association between TNFR-II with acute cellular rejection [72] and clear cell renal carcinoma (ccRCC) by its role in regulating cellular responses [51]. The study about the anti-inflammatory therapeutic potential of TNFR-II in mice had indicated that TNFR-II activation had the potential to be a therapeutic strategy in autoimmune arthritis as TNFR-II induced...
3.4 Polymorphisms of TNF-α and TNF-II and their Relationships with Inflammation-related Diseases

Many Studies described the different genetic variations of TNF-α have the potential to be involved in several inflammation-related diseases due to the changes in function or expression of TNF-α [80]. Plenty of studies about the genetic polymorphisms of TNF-II and ischemic heart disease (IHD) have stated the IHD risk was associated with TNF-α -328G/A (rs361525), -308G/A (rs1800629), -1031T/C (rs1799964), and other polymorphisms of TNF-α respectively [81,82]. Moreover, another study in human immunodeficiency (HIV)-hepatitis C (HCV) virus co-infected patients found the 238GG genotype of TNF-α promoter could be an independent factor on the development of liver cirrhosis [83]. A meta-analysis indicated TNF-α -857T/C polymorphism could be a possible risk factor to predict the susceptibility of hepatocellular cancer [84]. While TNF-α -850C/T genetic variation was shown to be increased the risk of AD [85].

As for psychosocial disease, the current study showed that the higher prevalence of the T allele of TNF-II rs1061622 was found in depressed female adolescents after the earthquake [86]. Previous studies have demonstrated that the frequency of the TNF-II rs1061622 G allele which was a functional amino acid substitution at codon 196 from methionine to arginine is associated with narcolepsy [87]. Moreover, there were increased frequencies of G allele or genotype of TNF-II rs1061622 patients with paranoid schizophrenia [88]. Furthermore, the same genetic variation has been explored in the feasible role in the diagnosis of non-small cell lung cancer (NSCLC) [89].

4. CLINICAL IMPLICATIONS

It has been shown that before the development of AD pathology increase in synaptic function of glutamatergic neurons occurs that subsequently leading to deleterious effects on cognition. The administration of TNF-α-1 which was reported by Cavanagh et al., reduced the observed abnormalities, for this reason, treatment with TNF-α-1 is beneficial to patients in the initial stages of the disease.

5. STRENGTHS AND LIMITATIONS

The main strength of the current review was a broad range of studies were examined in all six databases. The main limitation of this review was, it was not possible to statistically analyze the results obtained from the included studies as the sample size was not stated in the vast majority of them. The conclusion was based on only descriptive and lack quantitative synthesis.
6. CONCLUSION

TNF-α and its receptors TNFR-II are important proteins that are involved in inflammatory process. They play important roles in the pathogenesis of diseases induced by or related to the inflammatory cytokines and signaling pathways. The understanding relationships, functions, and mechanisms of TNF-α and TNFR-II in inflammation-related diseases will provide new viewpoints and theories in the development and treatment of these diseases.

CONSENT

It is not applicable.

ETHICAL APPROVAL

It is not applicable.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Campbell IL, Krucker T, Steffensen S, Akwa Y, Powell HC, Lane T, Car DJ, Gold LH, Henriksen SJ, Siggins GR. Structural and functional neuropathology in transgenic mice with CNS expression of IFN-alpha. Brain Res. 1999;835(1):46-61.
2. Hof PR, Mobbs CV. Handbook of the neuroscince of aging; 2010: Academic Press.
3. Przedborski S, Vila M, Jackson-Lewis. Series Introduction: Neurodegeneration: what is it and where are we? The J Clin Invest. 2003;111(1):3-10.
4. Chen WW, Zhang X, Huang WJ. Role of neuroinflammation in neurodegenerative diseases. Molecular Medicine Reports. 2016;13(4):3391-3396.
5. Bruunsgaard, H., M. Pedersen, and B.K. Pedersen, Aging and proinflammatory cytokines. Current Opinion Hemat. 2001;8(3):131-136.
6. Fagiolo U, Cossarizza A, Scala E, Fanales- Belasio E, Ortolani C, Cozzi E, Monti D, Franceschi C, Paganelli R. Increased cytokine production in mononuclear cells of healthy elderly people. Eur J Immunol. 1993; 23(9):2375-8.
7. Johnson FA, Dawson AJ, Meyer RL. Activity-dependent refinement in the goldfish retinotectal system is mediated by the dynamic regulation of processes withdrawal: an in vivo imaging study. J Comp Neurol. 1999;406(4):548-62.
8. Capuron L, Su S, Miller AH, Bremner JD, Goldberg J, Vogt GJ, Maisano C, Jones L, Murrah NV, Vaccarino V. Depressive symptoms and metabolic syndrome: is inflammation the underlying link? Biol Psychiatry. 2008; 64(10):896-900.
9. Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and metabolic disease. Nat Rev Immunol. 2011;11(2):85-97.
10. Capuron L, Poitou C, Machaux-Tholilliez D, Frochot V, Bouililot JL, Basdevant A, Layé S, Clément K. Relationship between adiposity, emotional status and eating behaviour in obese women: role of inflammation. Psychol Med. 2011;41(7):1517-28.
11. Cancello R, Henegar C, Viguerie N, Taleb S, Poitou C, Rouault C, Coupaye M, Pelloux V, Hugol D, Bouililot JL, Bouloumié A, Barbatelli G, Cinti S, Svensson PA, Barsh GS, Zucker JD, Basdevant A, Langin D, Clément K. Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss. Diabetes. 2005;54(8):2277-86.
12. McCrimmon, R.J., C.M. Ryan, and B.M. Frier. Diabetes and cognitive dysfunction. The Lancet 2012;379(9833):2291-2299.
13. Sumaila I, Asumah MN, Dassah RB. Prevalence and associated risk factors of hypertension among Adults (40 years and above) in the Tano North District of the Ahafo region, Ghana. Asian J Med Health. 2021;19(10):40-54.
14. Wolkowitz OM, Epel ES, Reus VI, Mellon SH. Depression gets old fast: do stress and depression accelerate cell aging? Depress Anxiety. 2010;27(4):327-38.
15. Nmadu JM, Eze GP, Jr. Determinants of risk status of small scale farmers in Niger state, Nigeria. British J Eco Mang Trade. 2012;2(2):92-108.
16. Baune BT, Smith E, Reppermund S, Air T, Samaras K, Lux O, Brodaty H, Sachdev F, Trollor JN. Inflammatory biomarkers predict depressive, but not anxiety symptoms during aging: the prospective Sydney Memory and Aging Study.
with major depression, schizophrenia and autoantibody reactivity in serum of patients
Batra A, Buchkremer G, Schott K.
Laske C, Zank M, Klein R, Stransky E, Spectr. 2008;13(6):501
Inflammation, glutamate, and glia in brain. Nat Rev Neurosci. 2008;9(1): 46
when the immune system subjugates the inflammation to sickness and depression:
Johnson RW, Kelley KW. From Dantzer R
2009;66(5):407
mesolimbic connectivity. Biol Psychiatry.
in subgenual cingulate activity and
MA, Steptoe A, Critchley HD. Inflammation
Harrison NA, Brydon L, Walker C, Gray MA, Steptoe A, Critchley HD. Inflammation causes mood changes through alterations in subgenual cingulate activity and mesolimbic connectivity. Biol Psychiatry. 2009;66(5):407-14.
Dantzer R, O’Connor JC, Freund GG, Johnson KW. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci. 2008;9(1): 46-56.
McNally L, Bhagwagar Z, Hannestad J. Inflammation, glutamate, and glia in depression: a literature review. CNS Spectr. 2008;13(6):501-10.
Laske C, Zank M, Klein R, Stransky E, Batra A, Buchkremer G, Schott K. Autoantibody reactivity in serum of patients with major depression, schizophrenia and healthy controls. Psychiatry Res. 2008;158(1):83-6.
Raison CL, Miller AH. The evolutionary significance of depression in Pathogen Host Defense (PATHOS-D). Mol Psychiatry. 2013;18(1):15-37.
Benros ME, Nielsen PR, Nordentoft M, Eaton WW, Dalton SO, Mortensen PB. Autoimmune diseases and severe infections as risk factors for schizophrenia: a 30-year population-based register study. Am J Psychiatry. 2011;168(12):1303-10.
Steiner J, Bogerts B, Sarnyai Z, Walter M, Gos T, Bernstein HG, Myint AM. Bridging the gap between the immune and glutamate hypotheses of schizophrenia and major depression: Potential role of glial NMDA receptor modulators and impaired blood-brain barrier integrity. World J Biol Psychiatry. 2012;13(7):482-92.
Carswell EA, Old LJ, Kassel RL, Green S, Fiore N, Williamson B. An endotoxin-induced serum factor that causes necrosis of tumors. ProcNatlAcad Sci U S A. 1975;72(9): 3666-70.
Chu WM. Tumor necrosis factor. Cancer Lett. 2013;328(2):222-225.
Ramseyer VD, Garvin JL. Tumor necrosis factor-α: regulation of renal function and blood pressure. Am J Physiol Renal Physiol. 2013;304(10):F1231-42.
Speeckaert MM, Speeckaert R, Laute M, Vanholder R, Delanghe JR. Tumor necrosis factor receptors: biology and therapeutic potential in kidney diseases. Am J Nephrol. 2012;36(3):261-70.
Hehlgens T, Pfeffer K. The intriguing biology of the tumour necrosis factor/tumour necrosis factor receptor superfamily: players, rules and the games. Immunology. 2005;115(1):1-20.
Black RA, Rauch CT, Kozlosky CJ, Peschon JJ, Slack JL, Wolfson MF, Castner BJ, Stocking KL, Reddy P, Srinivasan S, Nelson N, Boiani N, Schooley KA, Gerhart M, Davis R, Fitzner JN, Johnson RS, Paxton RJ, March CJ, Cerretti DP. A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature. 1997;385(6618):729-33.
Lorenzen I, Trad A, Grötzinger J. Multimerisation of A disintegrin and metalloprotease protein-17 (ADAM17) is mediated by its EGF-like domain. BiochemBiophys Res Commun. 2011; 415(2):330-6.
Leung K. 99mTc-Type II tumor necrosis factor-Fc-interleukin-1 receptor antagonist fusion protein. 2013 May 1 [updated 2013 May 30]. In: Molecular Imaging and Contrast Agent Database (MICAD) [Internet]. Bethesda (MD): National Center for Biotechnology Information. (US);2004–2013.

Vandenabeele P, Declercq W, Beyaert R, Fiers W. Two tumour necrosis factor receptors: structure and function. Trends Cell Biol. 1995;5(10):392-9.

Pegoretti V, Baron W, Laman JD, Eisel ULM. Selective Modulation of TNF-TNFFRs Signaling: Insights for Multiple Sclerosis Treatment. Front Immunol. 2018;9:925.

Micheau O, Tschopp J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell. 2003;114(2):181-90.

Aggarwal BB. Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol. 2003;3(9):745-56.

Abdallah CG, Jackowski A, Sato JR, Mao X, Kang G, Cheema R, Coplan JD, Matthew SJ, Shungu DC. Prefrontal cortical GABA abnormalities are associated with reduced hippocampal volume in major depressive disorder. Eur Neuropsychopharmacol. 2015;25(8):1082-90.

O’Donovan A, Chao LL, Paulson J, Samuelson KW, Shigenaga JK, Grunfeld C, Weiner MW, Neylan TC. Altered inflammatory activity associated with reduced hippocampal volume and more severe posttraumatic stress symptoms in Gulf War veterans. Psychoneuroendocrinology. 2015;51:557-66.

Michaud M, Balardy L, Moulin G, Gaudin C, Peyrot C, Vellas B, Cesari M, Nourhashemi F. Proinflammatory cytokines, aging, and age-related diseases. J Am Med Dir Assoc. 2013;14(12):877-82.

Langen RC, Van Der Velden JL, Schols AM, Kelders MC, Wouters EF, Janssen-Heininger YM. Tumor necrosis factor-alpha inhibits myogenic differentiation through MyoD protein destabilization. FASEB J. 2004;18(2):227-37.

Fillit H, Ding WH, Buee L, Kalman J, Altstiel L, Lawlor B, Wolf-Klein G. Elevated circulating tumor necrosis factor levels in Alzheimer’s disease. NeurosciLett. 1991;129(2):318-20.

Jergović M, Tomičević M, Vidović A, Bendelka J, Savić A, Vojvoda V, Rac D, Lovrić-Cvar D, Rabatić S, Jovanović T, Sabioncello A. Telomere shortening and immune activity in war veterans with posttraumatic stress disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2014;54:275-83.

Lindqvist D, Wolkowitz OM, Mellon S, Yehuda R, Flory JD, Henn-Haase C, Bierer LM, Abu-Amara D, Coy M, Neylan TC, Makotkine I, Reus VI, Yan X, Taylor NM, Marmar CR, Dhabhar FS. Proinflammatory milieu in combat-related PTSD is independent of depression and early life stress. Brain Behav Immun. 2014;42:81-8.

Grassi-Oliveira R, Brietzke E, Pezzi JC, Lopes RP, Teixeira AL, Bauer ME. Increased soluble tumor necrosis factor-alpha receptors in patients with major depressive disorder. Psychiatry Clin Neurosci. 2009;63(2):202-8.

Polz J, Remke A, Weber S, Schmidt D, Weber-Steffens D, Pierytga-Krieger A, Müller N, Ritter U, Mostböck S, Männel DN. Myeloid suppressor cells require membrane TNFR2 expression for suppressive activity. ImmunInflamm Dis. 2014;2(2):121-30.

Wang Y, Zhao J, Zhang Y, Lau WB, Jiao LY, Liu B, Yuan Y, Wang X, Tao L, Gao E, Koch WJ, Ma XL. Differential regulation of TNF receptor 1 and receptor 2 in adiponecin expression following myocardial ischemia. Int J Cardiol. 2013;168(3):2201-6.

Fuchs P, Strehl S, Dworzak M, Himmler A, Ambros PF. Structure of the human TNF receptor 1 (p60) gene (TNFR1) and localization to chromosome 12p13 [corrected]. Genomics. 1992;13(1):219-24.

Chen X, Oppenheim JJ. The phenotypic and functional consequences of tumour necrosis factor receptor type 2 expression on CD4(+) FoxP3(+) regulatory T cells. Immunology. 2011;133(4):426-33.

Benjafeld AV, Wang XL, Morris BJ. Tumor necrosis factor receptor 2 gene (TNFRSF1B) in genetic basis of coronary artery disease. J Mol Med (Berl). 2001;79(2-3):109-15.

Tartaglia LA, Pennica D, Goeddel DV. Ligand passing: the 75-kDa tumor necrosis factor (TNF) receptor recruits TNF for...
signaling by the 55-kDa TNF receptor. J Biol Chem. 1993;268(25):18542-8.

56. Ledgerwood EC, Pober JS, Bradley JR. Recent advances in the molecular basis of TNF signal transduction. Lab Invest. 1999;79(9):1041-50.

57. Fotin-Mleczek M, Henkler F, Samel D, Reichwein M, Hauser A, Parmryd I, Scheurich P, Schmid JA, Wajant H. Apoptotic crosstalk of TNF receptors: TNF-R2 induces depletion of TRAF2 and IAP proteins and accelerates TNF-R1-dependent activation of caspase-8. J Cell Sci. 2002;115(Pt 13):2757-70.

58. Rothe M, Sarma V, Dixit VM, Goeddel DV. TRAF2-mediated activation of NF-kappa B by TNF receptor 2 and CD40. Science. 1995;269(5229):1424-7.

59. Zhao Y, Conze DB, Hanover JA, Ashwell JD. Tumor necrosis factor receptor 2 signaling induces selective c-IAP1-dependent ASK1 ubiquitination and terminates mitogen-activated protein kinase signaling. J Biol Chem. 2007;282(11):7777-82.

60. Jupp OJ, McFarlane SM, Anderson HM, Littlejohn AF, Mohamed AA, MacKay RH, Vandenabeele P, MacEwan DJ. Type II tumour necrosis factor-alpha receptor (TNFR2) activates c-Jun N-terminal kinase (JNK) but not mitogen-activated protein kinase (MAPK) or p38 MAPK pathways. Biochem J. 2001;359(Pt 3):525-35.

61. Grech AP, Gardam S, Chan T, Quinn R, Gonzales R, Basten A, Brink R. Tumor necrosis factor receptor 2 (TNFR2) signaling is negatively regulated by a novel, carboxyl-terminal TNFR-associated factor 2 (TRAF2)-binding site. J Biol Chem. 2005;280(36):31572-81.

62. Mak TW, Yeh WC. Signaling for survival and apoptosis in the immune system. Arthritis Res. 2002; 4Suppl 3(Suppl 3):S243-52.

63. Pimentel-Muñoz FX, Seed B. Regulated commitment of TNF receptor signaling: a molecular switch for death or activation. Immunity. 1999;11(6):783-93.

64. Al-Lamki RS, Sadler TJ, Wang J, Reid MJ, Warren AY, Movassagh M, Lu W, Mills IG, Neal DE, Burge J, Vandenebeeke P, Pober JS, Bradley JR. Tumor necrosis factor receptor expression and signaling in renal cell carcinoma. Am J Pathol. 2010; 177(2):943-54.

65. Zhao X, Rong L, Zhao X, Li X, Liu X, Deng J, Wu H, Xu X, Erben U, Wu P, Syrbe U, Sieper J, Qin Z. TNF signaling drives myeloid-derived suppressor cell accumulation. J Clin Invest. 2012;122(11):4094-104.

66. Kronfol Z, Remick DG. Cytokines and the brain: implications for clinical psychiatry. Am J Psychiatry. 2000;157(5):683-94.

67. Das UN. Is obesity an inflammatory condition? Nutrition. 2001;17(11-12): 953-66.

68. Warner SJ, Libby P. Human vascular smooth muscle cells. Target for and source of tumor necrosis factor. J Immunol. 1989;142(1):100-9.

69. Shi I, Schulze MB, Manson JE, Rexrode KM, Stampfer MJ, Mantzoros C, Hu FB. A prospective study of soluble tumor necrosis factor-alph receptor II (sTNF-RII) and risk of coronary heart disease among women with type 2 diabetes. Diabetes Care. 2005;28(6):1376-82.

70. Wang J, Al-Lamki RS. Tumor necrosis factor receptor 2: its contribution to acute cellular rejection and clear cell renal carcinoma. Biomed Res Int. 2013;2013:821310.

71. Woo YC, Tso AW, Xu A, Law LS, Fong CH, Lam TH, Lo SV, Wat NM, Cheung BM, Lam KS. Combined use of serum adiponectin and tumor necrosis factor-alpha receptor 2 levels was comparable to 2-hour post-load glucose in diabetes prediction. PLoS One. 2012;7(5):e36868.

72. Civic D, Scholes D, Ichikawa L, LaCroix AZ, Yoshida CK, Ott SM, Barlow WE. Depressive symptoms in users and non-users of depot medroxyprogesterone acetate. Contraception. 2000;61(6):385-90.

73. Lamontain V, Schmid T, Weber-Steffens D, Zeller D, Jenei-Lanzi J, Wajant H, Straub RH, Mänzel DN. Stimulation of TNF receptor type 2 expands regulatory T cells and ameliorates established collagen-induced arthritis in mice. Cell Mol Immunol. 2019;16(1):65-74.

74. Wang L, Yang D, Tian J, Gao A, Shen Y, Ren X, Li X, Jiang G, Dong T. Tumor necrosis factor receptor 2/AKT and ERK signaling pathways contribute to the switch from fibroblasts to CAFs by progranulin in microenvironment of colorectal cancer. Oncotarget. 2017;8(16):26323-26333.

75. Patel A, Siegel A, Zalcman SS. Lack of aggression and anxiolytic-like behavior in TNF receptor (TNF-R1 and TNF-R2)
deficient mice. Brain Behav Immun. 2010;24(8):1276-80.

76. Simen BB, Duman CH, Simen AA, Duman RS. TNFalpha signaling in depression and anxiety: behavioral consequences of individual receptor targeting. Biol Psychiatry. 2006; 59(9):775-85.

77. Gimsa U, Kanitz E, Otten W, Tuchscherer M, Tuchscherer A, Ibrahim SM. Tumour necrosis factor receptor deficiency alters anxiety-like behavioural and neuroendocrine stress responses of mice. Cytokine. 2012;59(1):72-8.

78. Rizavi HS, Ren X, Zhang H, Bhaumik R, Pandey GN. Abnormal gene expression of proinflammatory cytokines and their membrane-bound receptors in the lymphocytes of depressed patients. Psychiatry Res. 2016;240:314-320.

79. Moughrabi S, Evangelista LS, Habib SI, Kassabian L, Breen EC, Nyamathi A, Irwin M. In patients with stable heart failure, soluble TNF-receptor 2 is associated with increased risk for depressive symptoms. Biol Res Nurs. 2014;16(3):295-302.

80. Hajeer AH, Hutchinson IV. Influence of TNFalpha gene polymorphisms on TNFalpha production and disease. Hum Immunol. 2001;62(11):1191-9.

81. Bennet AM, van Maarle MC, Hallqvist J, Morgenstern R, Frostegård J, Wiman B, Prince JA, de Faire U. Association of TNF-alpha serum levels and TNFA promoter polymorphisms with risk of myocardial infarction. Atherosclerosis. 2006;187(2):408-14.

82. Hou L, Huang J, Lu X, Wang L, Fan Z, Gu D. Polymorphisms of tumor necrosis factor alpha gene and coronary heart disease in a Chinese Han population: interaction with cigarette smoking. Thromb Res. 2009; 123(6):822-6.

83. Corchado S, Márquez M, Montes de Oca M, Romero-Cores P, Fernández-Gutiérrez C, Girón-González JA. Influence of Genetic Polymorphisms of Tumor Necrosis Factor Alpha and Interleukin 10 Genes on the Risk of Liver Cirrhosis in HIV-HCV Coinfected Patients. PLoS One. 2013;8(6):e66619.

84. Wang P, Wang J, Yu M, Li Z. Tumor Necrosis Factor-α T-857C (rs1799724) Polymorphism and Risk of Cancers: A Meta-Analysis. Dis Markers. 2016;2016:4580323.

85. Perry RT, Collins JS, Wiener H, Acton R, Go RC. The role of TNF and its receptors in Alzheimer's disease. Neurobiol Aging. 2001;22(6):873-83.

86. Memon NH, Fan M, Lin J, Si YJ, Su M, Guo QW, Fang DZ. Reduced Recovery of Depression in Female T Allele Carriers of TNF-RII rs1061622 at Earlier Stage after Wenchuan Earthquake. Int J Environ Res Public Health. 2018;15(6):1075.

87. Hohjoh H, Terada N, Kawashima M, Honda Y, Tokunaga K. Significant association of the tumor necrosis factor receptor 2 (TNFR2) gene with human narcolepsy. Tissue Antigens. 2000;56(5):446-8.

88. Thabet S, Ben Nejma M, Zaafarane F, Gaha L, Ben Salem K, Romdhane A, Nour M, Jrad BB. Association of the Met-196-Arg variation of human tumor necrosis factor receptor 2 (TNFR2) with paranoid schizophrenia. J Mol Neurosci. 2011;43(3):358-63.

89. Guan X, Liao Z, Ma H, Qian J, Liu Z, Yuan X, Gomez D, Komaki R, Wang LE, Wei Q. TNFRSF1B +676 T>G polymorphism predicts survival of non-small cell lung cancer patients treated with chemoradiotherapy. BMC Cancer. 2011; 11:447.