Aging augments postischemic apoptosis via incomplete mechanisms. Our previous animal study suggests that in addition to proapoptotic effects, lncRNAs also exert antiapoptotic effects in cardiomyocytes. However, whether this unexpected phenomenon exists in humans is unknown. In the present study, we investigated the relationship between aging and apoptosis regulation in human blood samples and confirmed their role by utilizing the cardiomyocyte lines (AC16 cells). Human blood samples were collected from 20 pairs of older adult and young volunteers. Age-different apoptotic regulatory lncRNAs and miRNAs were identified by microarray and bioinformatics analysis. The results indicated that lncRNA (NONHSAT069381 and NONHSAT140844) and miRNA (hsa-miR-124-5p and hsa-miR-6507-5p) were increased in aging human blood, confirmed by both bioinformatics analysis and polymerase chain reaction (PCR). Overexpression of NONHSAT069381 in AC16 cells increased caspase-3 levels and increased cardiomyocyte apoptotic cell death (determined by TUNEL staining and caspase activity assays) after hypoxia/reoxygenation (H/R), while overexpression of NONHSAT140844 and miRNA (hsa-miR-124-5p and hsa-miR-6507-5p) were increased in aging human blood, confirmed by both bioinformatics analysis and polymerase chain reaction (PCR). Overexpression of NONHSAT069381 in AC16 cells increased caspase-3 levels and increased cardiomyocyte apoptotic cell death (determined by TUNEL staining and caspase activity assays) after hypoxia/reoxygenation (H/R), while overexpression of NONHSAT140844 increased X-chromosome-linked inhibitor of apoptosis protein (XIAP) content and decreased the myocardial apoptotic cell death. Furthermore, luciferase reporter assay revealed that hsa-miR-124-5p might be a mediator between NONHSAT069381 and mCASP3 and hsa-miR-6507-5p might be a mediator between NONHSAT140844 and mXIAP. Overexpression of hsa-miR-124-5p decreased caspase-3 levels and overexpression of hsa-miR-6507-5p decreased XIAP content in AC16 cells. We have found evidence that lncRNAs are important regulatory molecules in aging-mediated effects upon apoptosis. More interestingly, besides apoptosis-promoting effects, aging also inhibits myocardial apoptosis after H/R. This phenomenon also exists in the human cardiomyocyte line.

1. Introduction

Age is one of the most important risk factors for a wide range of diseases. Unfortunately, the overall increasing age of the world’s population is accompanied by the rise in diseases including cardiovascular and neurodegenerative diseases and cancer and immune disorders [1]. Given the recent lifestyle and diet changes in China, coronary heart disease (CHD) has been one of the leading causes of mortality and its incidence continues to climb annually. Due to technological advances in emergency percutaneous coronary intervention (PCI), early myocardial infarction (MI) mortality has decreased dramatically, but a significant number of MI patients develop heart failure after 5 years post-PCI [2, 3]. Interestingly, nearly all of these individuals are older adult patients.

Aging is an independent risk factor for ischemia-related heart failure, which promotes the continuous decline of cardiac function after ischemia. Apoptosis plays a vital role in heart failure development. In 2012, through a combination of small-scale clinical trials and animal experiments, we demonstrated aging may promote cardiac apoptosis, a significant cause of ischemia-induced heart failure [4]. Studies from other labs also reported that aging significantly promotes apoptosis [5, 6]. However, to date, the precise mechanisms linking aging to myocardial apoptosis remain unknown.
Our previous study indicated that aging augmented in vivo reactive oxygen species (ROS) and reactive nitrogen species (RNS) levels after ischemia/reperfusion (I/R) [7]. Liu et al. indicated that Omi/HtrA2 mRNA and protein expression in the myocardium of aging rats aggravated I/R injury by inducing apoptosis of myocardial cells [8]. This may be the mechanism by which aging promotes cardiomyocyte apoptosis. However, the above mechanism might not be “the core” of apoptosis-regulated effects of aging.

Long noncoding RNAs (lncRNAs) range from 200 bp to several kilobases in length and do not encode any protein [9]. Due to poor evolutionary conservation relative to the protein-coding regions of the genome, lncRNAs were once considered transcriptional noise or junk and have not been well studied historically. However, more in-depth research unveiled the important roles of lncRNAs in transcriptional, posttranscriptional RNA processing, translation, DNA methylation, and chromatin architecture [9–12]. Using mouse hearts, our previous study demonstrated that lncRNAs played vital roles in hypoxia-induced myocardial apoptosis [13]. More interestingly, our results indicated that in addition to apoptosis-promoting effects, lncRNAs also inhibited myocardial apoptosis by activating apoptosis-inhibiting factors.

With mouse data, it can only be postulated that lncRNAs regulate apoptosis regulatory effects in vivo. However, the precise roles that lncRNAs in aging-related cardiomyocyte apoptosis play in humans remain uncertain. In our current study, we aim to (1) examine the effects of aging-related lncRNA on apoptosis in human cardiomyocyte lines, (2) analyze whether lncRNA has a bidirectional regulatory effect on cardiomyocyte apoptosis, and (3) explore the exact mechanism related to lncRNA affecting cardiomyocyte apoptosis.

2. Materials and Methods

2.1. Human Blood Sample Collection. We enrolled 40 healthy men (20 older adults and 20 young). All members of the older adult group met the following inclusion criteria: (1) above 65 years of age; (2) absence of any significant clinical symptoms (chest pain, chest tightness, dizziness, and nausea); (3) absence of diagnosed chronic diseases (for example, coronary heart disease, cerebrovascular disease, respiratory diseases, dyslipidemia, and diabetes); (4) absence of any previous surgeries (interventional therapies or surgical operation); (5) absence of any significant family medical history; (6) absence of tobacco and alcohol use; (7) blood pressure (BP) ≤ 150/90 mmHg at the time of enrollment; (8) absence of chronic medication use (aspirin, steroid hormone, and immunosuppression drugs); and (9) absence of autoimmune diseases (for example, rheumatic heart disease or vasculitis).

Inclusion criteria for the group of young men were the same as the older adult group, except that these men were all younger than 35 years old. Exclusion criteria for any patient in this study included major infection within the last 2 weeks.

All human sample harvests were carried out in accordance with the Declaration of Helsinki. The study protocol was approved by the institutional ethics committee in Beijing An Zhen Hospital, Capital Medical University. After full disclosure of the study’s purpose, nature, and inherent risk of participation, all subjects gave written informed consent prior to study inclusion.

2.2. lncRNA/miRNA Microarray. For Affymetrix microarray profiling, total RNA was isolated from 40 blood samples (20 older adult and young pairs) by TRIzol reagent (Invitrogen, Carlsbad, Canada), digested by DNase treatment, and purified with a RNeasy Mini Kit (Qiagen, Hilden, Germany), per manufacturer’s protocol. The amount and quality of RNA were determined by a UV-Vis Spectrophotometer (Thermo, NanoDrop 2000, USA) at 260 nm absorbance. The lncRNA and mRNA expression profiling was measured by GeneChip Human Clariom™ D Assay (Affymetrix GeneChip, Santa Clara, CA, USA), containing 134,700 gene-level probe sets. The microarray analysis was performed by Affymetrix Expression Console Software (version 4.0). Raw data (CEL files) were normalized at the transcript level using a robust multiarray average method (RNA workflow). Median summarizations of transcript expressions were calculated. Gene-level data were then filtered to include only those probe sets present in the “core” metatrace list representing RefSeq genes.

2.3. Bioinformatics Analysis

2.3.1. Significant Differential Gene Analysis. The random variance model (RVM) t-test was used to identify differentially expressed genes for the older adult and young groups. This model has more power than standard tests to detect large changes in expression, without increasing the rate of false positives. After using significant and false discovery rate (FDR) analyses, we selected the differentially expressed genes according to predefined P value thresholds (0.05). The results of differentially expressed genes were subjected to unsupervised hierarchical clustering (Cluster 3.0) and TreeView analysis (Stanford University, Stanford, CA).

2.4. ceRNA Network Construction. A competing endogenous RNA (ceRNA) network was constructed to discover the ceRNA mechanism based on the differentially expressed lncRNAs and miRNAs. RNA transcripts would combine with miRNAs by miRNA response element (MRE), so we could identify the competition relationship between RNA transcripts in the process of combining MRE by predicting MRE and computing free energy. First, in miRNA-mRNA and miRNA-lncRNA, the target relationships were predicted by target prediction database. Pearson’s correlation coefficient (PCC) between matched lncRNA-mRNA was computed based on their expression data. Then, the PCC between miRNA-mRNA and miRNA-lncRNA was computed. For a given lncRNA-mRNA pair, both mRNA and lncRNA were targeted by a common miRNA and coexpressed negatively with this miRNA. Finally, this miRNA-lncRNA was identified as competing triplets.

2.5. Real-Time RT-PCR. Real-time RT-PCR verified the differential expression of 12 genes detected by the lncRNA/miRNA Expression Microarray. It also assessed the lncRNA, miRNA, mCASp3, and mXIAP levels in AC16 cells. NCode™ miRNA RT-qPCR System from Invitrogen is an
example of a nondirect RT approach, requiring poly(A)-tail-
ing of miRNAs prior to the RT reaction. NCode™ miRNA
First-Strand cDNA Synthesis Kits were used for polyadenyla-
tion and cDNA synthesis of miRNA. Then, amplify the
miRNA of interest using qPCR primers and DNA polymer-
ase. Detection is through the binding of the SYBR® Green
dye to the amplified product. The PrimeScript™ RT Reagent
Kit with gDNA Eraser (Takara, Dalian, China) and gene-
specific primers or random primers were used to generate
cDNA of IncRNAs and miRNAs. Each real-time RT-PCR
reaction (in 20 μL) contained SYBR Green Real-Time PCR
Master Mix (TIAN-GEN), 0.5 μL primers, and 0.5 μL of tem-
pate cDNA. Cycling conditions comprised of an initial,
single cycle of 2 minutes at 94°C, followed by 40 cycles of
15 seconds at 94°C, 20 seconds at 63°C, and 30 seconds at
68°C. PCR amplifications were performed in three duplicates
for each sample. Gene expression levels were quantified rela-
tive to the expression of 18S using an optimized comparative
Ct (DDCt) value method.

2.6. Lentivirus Vector Construction. The lentiviral vectors for
lentivirus-mediated upregulation and downregulation of
gene (IncRNA NONHSAT069381, IncRNA NON-
HSAT140844, hsa-miR-124-5p, and hsa-miR-6507-5p)
expression were purchased from Oligobiobio Co., Ltd.
(Beijing, China). To construct lentivirus-mediated overexpres-
sion of IncRNA/miRNA, the full-length coding
sequences of human IncRNA/miRNA C-terminally tagged
with GFP or GFP alone (control) were cloned into the lenti-
virus vector. Empty vector lentivirus served as negative
control (NC) (termed overexpression/knockdown control
virus vector. Empty vector lentivirus served as negative
control (NC) (termed overexpression/knockdown control
virus). Similarly, to produce lentivirus-mediated silencing system targeting
human IncRNA/miRNA, a small interfering (5′-gctacagt-
caacagtgaag-3′) sequence was cloned into the lentivirus
knockdown vector.

2.7. Cell Culture and Transfection. Human adult ventricular
cardiomyocyte cell line AC16 was obtained from the Ameri-
can Type Culture Collection (ATCC; Manassas, VA, USA).
Cells were cultured in Dulbecco’s modified Eagle’s medium
(DMEM; Invitrogen, Carlsbad, CA, USA) containing 10%
fetal bovine serum (FBS; HyClone, Logan, UT, USA) and
1% penicillin/streptomycin in a humidified incubator with
5% CO2 at 37°C. In this study, overexpression (IncRNA
NONHSAT069381, IncRNA NONHSAT140844, hsa-miR-
124-5p, and hsa-miR-6507-5p) and knockdown (IncRNA
NONHSAT069381, IncRNA NONHSAT140844, hsa-miR-
124-5p, and hsa-miR-6507-5p) and their control lentiviruses
were used to infect AC16 cells. Fluorescence microscopy
monitored infection efficiency after 48 hours postlentivirus
infection.

2.8. Western Blot. AC16 cells were homogenized in an ice-
cold lysis buffer. After homogenization, the lysates were
centrifuged. The supernatant was saved and separated by
electrophoresis on SDS-PAGE and transferred onto polyvi-
nyldene difluoride-plus membranes. After blocking buffer,
the immunoblots were probed with anti-total caspase 3 (Cell
Signaling) (lot: GR3356520-3), anti-XIAP (lot: GR3298310-
4), and anti-actin (lot: GR333517-1) antibodies overnight at
4°C, followed by incubation with fluorescent-conjugated sec-
ondary antibodies at room temperature for 1 hour.

2.9. H/R Model-Induced Cardiomyocyte Apoptosis

2.9.1. Establishing In Vitro Cardiomyocyte H/R Model. Seven-
two hours after AC16 cell transfection, all groups were
were treated with hypoxia (95% N2 and 5% CO2) for 6 hours (via
Anaerobic Bag, Becton Dickinson and Inc., USA) and then
normoxia (74% N2, 21% O2, and 5% CO2) for 2 hours to sim-
ulate H/R.

2.10. TUNEL Staining. AC16 cells were cultured directly on
cover slips. TUNEL staining was performed per manufac-
turer’s instructions (In Situ Cell Death Protection Kit, Fluoro-
sresine, Roche, Indianapolis, IN). Total nuclei were stained
by DAPI (Vector Laboratories Inc., Burlingame, CA). Apo-
ptotic index (i.e., the number of positively stained nuclei/
total number of nuclei counted × 100%) was determined in a
blinded manner.

2.11. Caspase Activity. After 2 hours of reoxygenation, AC16
cells were homogenized in an ice-cold lysis buffer for 30
seconds (PRO 200 homogenizer). Homogenates were cen-
trifuged for 5 minutes at 10,000g at 4°C. Supernatants were
collected, and protein concentrations were measured using
the BCA method (Pierce Chemical, Rockford, IL). For each
well in a 96-well plate, the supernatant containing 200 mg
of protein was loaded and incubated with 25 mg Ac-
DEVD-pNA, Ac-IETC-pNA, or Ac-LEHD-pNA at 37
°C for
1.5 hours. pNA was cleaved from DEVD (by caspase-3,
BIOMOL), IETD (by caspase-8, BIOMOL), or LEHD (by
caspase-9, BIOMOL). Free pNA was quantified using a Spect-
ralMax Plus microplate spectrophotometer (Molecular
Devices, Sunnyvale, CA) at 405 nm. Changes in caspase
activity in I/R tissue samples were calculated and expressed
as nmole pNA/mg/h [13].

2.12. Luciferase Reporter Assay. The amplified human 3′-
untranslated repeat segments of genes (IncRNA NON-
HSAT069381, IncRNA NONHSAT140844, CASP3, and
XIAP) containing the predicted hsa-miR-124-5p/hsa-miR-
6507-5p binding site were inserted into psiCHECK-2 vectors
containing Renilla luciferase (Promega) to generate the wild
plasmid (caspase-3 wt, XIAP wt, IncRNA NONHSAT069381
wt, and IncRNA NONHSAT140844 wt) or mutant plasmid
(caspase-3 mut, XIAP mut, IncRNA NONHSAT069381
mut, and IncRNA NONHSAT140844 mut) construct. For
luciferase assays, 239T cells were seeded in 96-well plates
and transfected with pLuc-3′-untranslated repeat, 10 ng
Renilla, and the mimic/NC miRNA using Lipofectamine
2000 reagent (Invitrogen, Carlsbad, CA). Cells were collected
and analyzed using the Dual-Luciferase Reporter Assay Sys-
tem (Promega) after 48 hours. The luciferase activity values
were normalized relative to the Renilla luciferase internal
control. Successful transfection of all cell treatment groups was confirmed prior to biological testing. Each experiment was repeated three times in duplicate.

2.13. Statistical Analysis. The data was analyzed with Prism 5.0 (GraphPad Software, San Diego, CA, USA). All values in the text and figures are presented as mean ± SD. Statistical differences were determined by Student’s t-test for comparison between 2 groups and ANOVA followed by Bonferroni multiple comparison test for comparison among ≥3 groups. Probabilities of 0.05 or less were considered statistically significant.

3. Results

3.1. lncRNA/miRNA Profiles in Human Blood Samples. 40 blood samples were initially taken. Two blood samples (one old adult and one young) were excluded because of sample contamination. 38 blood samples were used in the final results. In general, 19 pairs of older adult and young people were healthy. Age and BMI were the major differences between them (Table 1).

lncRNA/miRNA microarray was conducted in nineteen pairs of human blood samples, with a total of 75,434 lncRNAs and 4012 miRNAs detected (Figures 1(a)–1(d)). Among them, 2835 lncRNAs and 119 miRNAs were found to be uniquely different between older adult and young blood samples. lncRNAs (NONHSAT069381 and NONHSAT140844) and miRNAs (hsa-miR-124-5p and hsa-miR-6507-5p) increase significantly with age (Figures 1(e)–1(h)). Using ceRNA network analysis, we investigated the relationship between aging-related lncRNAs and miRNAs (Figures 1(i) and 1(j)).

3.2. Bioinformatics Analysis Suggests the Relationship between lncRNAs, miRNAs, and mRNAs. The results of network analysis suggested that miRNAs may have synergistic effects on relative lncRNAs and mRNAs. We got all lncRNAs and miRNAs, which have significant relationship with aging and apoptotic factors. Within these RNAs, we selected 8 pairs of lncRNAs and miRNAs (a lncRNA and a relative miRNA as a pair) at random. The 8 pairs of RNAs met the following inclusion criteria: (1) aging resulted in increasing >1.2 or (2) aging resulted in decreasing <0.8. To confirm the microarray results, the 8 pairs were subjected to real-time RT-PCR. The results of real-time RT-PCR indicated that there are no significant aging-related differences in the 2 pairs. The expression levels of the other 6 pairs of genes were consistent with the microarray results (Figure 1(k)). Furthermore, the 6 pairs were subjected to functional experiments (apoptosis regulation). The results of functional experiments demonstrated that significant apoptosis-regulated effects may exist in the two groups of RNAs: (1) lncRNA NONHSAT069381, hsa-miR-124-5p, and mCASP3 and (2) lncRNA NONHSAT140844, hsa-miR-6507-5p, and mXIAP (Figures 1(i) and 1(j)). Functional experiments show that the remaining four lncRNAs and four miRNAs have no functional effects on apoptosis.

3.3. Gene Manipulation, Respectively, Altered NONHSAT069381 and NONHSAT140844 Expression in AC16 Cells, Modifying CASP3 and XIAP Level and Activity. To obtain direct evidence to support the relationship between these molecules, cultured AC16 cells were divided into four groups: (1) overexpression control (NONHSAT069381-overexpression control lentivirus), (2) overexpression...
Figure 1: Continued.
Figure 1: Continued.
(NONHSAT069381-overexpression lentivirus), (3) knockdown control (lncRNA NONHSAT069381 knockdown control lentivirus), and (4) knockdown (lncRNA NONHSAT069381 knockdown lentivirus). Transfection efficacy is reported in Figure 2(a). No significant efficacy difference existed among the four lentivirus-treated groups, but RT-PCR results indicated that NONHSAT069381 levels increased significantly in AC16 cells subjected to overexpression-encoding lentivirus treatment (Figure 2(c)). Conversely, the levels of NONHSAT069381 were significantly reduced in AC16 cells subjected to knockdown-encoding lentiviruses (Figure 2(d)). We analyzed the influence of lncRNA expression changes on related mRNAs in AC16 cells using Western blot. The results demonstrated that increased NONHSAT069381 levels resulted in significantly increased CASP3 levels and activity. Decreased NONHSAT069381 levels resulted in significantly decreased CASP3 level and activity (Figures 2(e) and 2(f)).

Cultured AC16 cells were divided into four groups: (1) overexpression control (NONHSAT140844-overexpression control lentivirus), (2) overexpression (NONHSAT140844-overexpression lentivirus), (3) knockdown control (lncRNA NONHSAT140844 knockdown control lentivirus), and (4) knockdown (lncRNA NONHSAT140844 knockdown lentivirus). Transfection efficacy is reported in Figure 2(b). We also explored the relationship between NONHSAT140844 and XIAP in the same way. The results showed that increased levels of NONHSAT140844 led to significantly increased XIAP level and activity. Decreased levels of NONHSAT140844 led to significantly decreased XIAP level and activity (Figures 2(g)–2(j)).

3.4. Gene Manipulation of NONHSAT069381 and NONHSAT140844, Modifying H/R-Induced Apoptosis in AC16 Cells. IncRNA (NONHSAT069381 and NONHSAT140844) expression was upregulated or downregulated by lentiviral vectors. The effects of gene manipulation upon AC16 cell apoptosis were assessed using TUNEL staining and caspase activity measurement. Compared with the control, a significant increment of total TUNEL-positive nuclei was observed in the NONHSAT069381 overexpression group (Figures 3(a) and 3(c)) and NONHSAT069381 downregulation decreased the H/R-induced cardiomyocyte apoptotic ratio (Figures 3(a) and 3(c)). The activities of caspase-3, caspase-8, and caspase-9 were determined as well. After H/R injury, compared with the control, the activities of three caspases in the NONHSAT069381 overexpression group were significantly increased, while the activities of three caspases in the NONHSAT069381 knockdown group were significantly decreased (Figures 3(d)–3(f)).

The results of the NONHSAT140844 group are the opposite. Compared to the control, the total TUNEL-positive nuclei of the NONHSAT140844 overexpression group was significantly reduced (Figures 3(b) and 3(g)) and downregulation of NONHSAT140844 increased the H/R-induced cardiomyocyte apoptotic ratio (Figures 3(b) and 3(g)). Moreover, the activities of three caspases were significantly decreased in the NONHSAT140844 overexpression group, while the activities of three caspases were significantly increased in the NONHSAT140844 knockdown group compared to the control after H/R injury (Figures 3(h)–3(j)). In summary, these results suggest that aging may regulate...

(k)
Figure 2: Continued.
post-H/R apoptosis via NONHSAT069381-CASP3 (increase) and NONHSAT140844-XIAP (decrease) pathway signaling.

3.5. lncRNA NONHSAT069381 Played a ceRNA Role in Regulating CASP3 Expression by Binding to hsa-miR-124-5p and lncRNA NONHSAT140844 Played a ceRNA Role in Regulating XIAP Expression by Binding to hsa-miR-6507-5p.

Further prediction of target genes of miRNA was performed by TargetScan (http://www.targetscan.org/vert_71/) and Miranda (http://www.microrna.org/microrna/home.do). We then conducted a luciferase reporter assay to validate the binding of miRNA (hsa-miR-124-5p, hsa-miR-6507-5p), lncRNA (NONHSAT069381, NONHSAT140844), and miRNA (CASP3, XIAP), hsa-miR-124-5p transfection significantly inhibited NONHSAT069381 and CASP3 luciferase activity (Figures 4(a) and 4(b)), while hsa-miR-6507-5p transfection significantly inhibited NONHSAT140844 and XIAP luciferase activity in 293T cells (Figures 4(c) and 4(d)).

Cultured AC16 cells were divided into four groups: (1) overexpression control (hsa-miR-124-5p-overexpression control lentivirus), (2) overexpression (hsa-miR-124-5p-overexpression lentivirus), (3) knockdown control (hsa-miR-124-5p knockdown control lentivirus), and (4) knockdown (hsa-miR-124-5p knockdown lentivirus). Firstly, no significant efficacy difference existed among the four lentivirus-treated groups, but RT-PCR results indicated that hsa-miR-124-5p levels increased significantly in AC16 cells subjected to overexpression-encoding lentivirus treatment (Figure 5(a)). Conversely, the levels of hsa-miR-124-5p decreased significantly in AC16 cells subjected to knockdown-encoding lentiviruses (Figure 5(a)). We used RT-PCR to assess the RNA expression of mCASP3 in AC16 cells overexpressed or knockdown hsa-miR-124-5p. The results indicated that increased hsa-miR-124-5p levels resulted in significantly decreased CASP3 activity, while decreased hsa-miR-124-5p levels resulted in significantly

![Figure 2: Gene transfection of lncRNA (NONHSAT069381 and NONHSAT140844) and altered resultant caspase-3 and XIAP activity. Transfection efficiency, 48 hours after lncRNA (a) NONHSAT069381 and (b) NONHSAT140844 overexpression (OE-069381/OE-140844) or knockdown (KD-069381/KD-140844) by lentiviral transfection of AC16 cells. Transfection efficiency indicated by concomitant contrast and fluorescence microscopy. Lentiviral vectors carried GFP gene. AC16 cells infected by lncRNA NONHSAT069381/NONHSAT140844-carrying lentivirus are identifiable by fluorescence microscopy 48 hours after infection. (c, d) The relative expression of NONHSAT069381 was measured by RT-PCR. (e, f) Representative immunoblots of caspase-3 from NONHSAT069381 overexpression or knockdown in AC16 cells. (g, h) The relative expression of NONHSAT140844 was measured by RT-PCR. (i, j) Representative immunoblots of XIAP from NONHSAT140844 overexpression or knockdown in AC16 cells. n = 6. *P < 0.05 versus overexpression/knockdown control (OE-Ctrl/KD-Ctrl).](image-url)
Figure 3: Continued.
increased CASP3 activity (Figure 5(b)). The results of the Western blot were consistent with RT-PCR (Figures 5(c) and 5(d)). Moreover, we measured the effects of hsa-miR-124-5p overexpression and knockdown on NON-HSAT069381 level. The results indicated whether overexpression or knockdown of hsa-miR-124-5p did not affect the level of NON-HSAT069381 significantly (Figure 5(e)).

Furthermore, cultured AC16 cells were divided into four groups: (1) overexpression control (hsa-miR-6507-5p-overexpression control lentivirus), (2) overexpression (hsa-miR-6507-5p-overexpression lentivirus), (3) knockdown control (hsa-miR-6507-5p knockdown control lentivirus), and (4) knockdown (hsa-miR-6507-5p knockdown lentivirus). The results of the hsa-miR-6507-5p group indicated that increased levels of hsa-miR-6507-5p led to a significantly decreased XIAP activity, and decreased levels of hsa-miR-6507-5p led to a significant increment in XIAP activity (Figures 5(f)–5(i)). Similarly, the overexpression and knockdown of hsa-miR-6507-5p did not change the level of NON-HSAT140844 in AC16 cells (Figure 5(j)). In summary, these results are consistent with and support the bioinformatics analysis findings.

4. Discussion

The increased mortality rate in the geriatric population related to cardiovascular disease suggests that cardiac aging itself may be a major risk factor for cardiovascular pathologies such as ischemic heart disease. However, the potential mechanisms were unclear. Apoptosis is a well-established cell death process after I/R injury. Previously, we demonstrated that cardiomyocyte apoptosis increases after ischemia-reperfusion and apoptosis contributes to heart failure [4, 7].

Our present study showed that lncRNAs (NON-HSAT069381 and NONHSAT140844) were increased in aging human blood, confirmed by both bioinformatics analysis and PCR. However, the precise roles that lncRNAs in aging-related cardiomyocyte apoptosis play in humans remain uncertain. Therefore, we further verified their role by utilizing cardiomyocyte lines (AC16 cells) and found that lncRNAs act as ceRNAs in the effects of aging-related cardiomyocyte apoptosis.

There have been some novel findings in our present study. First, our results indicated that lncRNAs played vital roles in hypoxia-induced myocardial apoptosis in the human
Second, we found that in addition to proapoptotic effects, lncRNAs also decreased the occurrence of myocardial apoptosis via antiapoptotic factors. We identified NONHSAT069381 and NONHSAT140844 as lncRNAs regulating apoptosis. Overexpression of NONHSAT069381 or knockdown of NONHSAT140844 augmented the myocardial apoptotic ratio after H/R, whereas overexpression of NONHSAT140844 or knockdown of NONHSAT069381 decreased the apoptotic ratio of cardiomyocytes. Lastly, we proved that lncRNA NONHSAT069381 played a ceRNA role in regulating mCASP3 expression by binding to hsa-miR-124-5p, while lncRNA NONHSAT140844 played a ceRNA role in regulating XIAP expression by binding to hsa-miR-6507-5p.

The Encyclopedia of DNA Elements (ENCODE) Project Consortium indicated that more than 28,000 lncRNAs were transcribed in the whole human genome [14]. The functions of most lncRNAs remain unidentified. Furthermore, almost all studies related to lncRNAs and cardiomyocyte apoptosis, including our previous studies, have been performed in vitro or in animal models. The characteristics of lncRNAs in humans/the human cardiomyocyte line with respect to aging-related apoptosis remain unknown. To our knowledge, this is the first time lncRNA NONHSAT069381 and NONHSAT140844 have been correlated with aging and apoptosis in the human cardiomyocyte line.
Figure 5: Continued.
NONHSAT140844 increased downstream XIAP activity. Our results indicate that in addition to apoptosis-promoting effects, lncRNAs also inhibited the occurrence of myocardial apoptosis via apoptosis-inhibiting factors. It suggests that aging exacerbated the bidirectional regulatory effects on myocardial apoptosis, which could both promote and retard apoptosis, ultimately maintaining the balance between proapoptosis and antiapoptosis.

Additionally, increasing experimental evidence supports that lncRNA functions as competitive endogenous RNA (ceRNA), which compete for miRNA to upregulate the expression of a target gene [23]. The ceRNA hypothesis may provide new insights into the function of a large amount of uncharacterized lncRNAs. The present study suggests that both NONHSAT069381 and CASP3 interact with hsa-miR-124-5p, suggesting that NONHSAT069381 regulates CASP3 expression by competing to bind to hsa-miR-124-5p. It is the same in regard to NONHSAT140844. NONHSAT140844 regulates the expression of XIAP by competing to bind to hsa-miR-6507-5p.

Almost all age-related apoptosis studies, including our previous study, demonstrated aging augmented postischemia apoptosis. However, our previous data suggests that aging may also reduce apoptosis through lncRNA, an unknown pathway in mouse cardiomyocytes. The present study confirmed that in addition to apoptosis-promoting effects, aging also inhibits cardiomyocyte apoptosis after H/R. It is the first report to our knowledge of an age-mediated antiapoptotic cardiac effect in the human cardiomyocyte line.

5. Conclusion

In summary, we have provided evidence that lncRNA may both promote and inhibit cardiomyocyte apoptosis after
hypoxia or ischemia. NONHSAT069381/hsa-miR-124-5p/CASP3 and NONHSAT140844/hsa-miR-6507-5p/XIAP may be important regulatory axes in aging-mediated effects upon apoptosis. In addition, the apoptosis regulatory effects of aging are complex. The high burden of comorbidities is also an important factor in the clinical setting.

5.1. Limitation. This study aimed at elucidating the changes of IncRNA and miRNA in cardiomyocytes after aging and their potential regulatory functions in apoptosis. Through the above experiments, we can clarify the relationship between human aging and myocardial apoptosis. However, it is difficult to obtain human myocardium of different ages. Therefore, we innovatively employed a “bridge” study model to find aging-related IncRNA and miRNA in human blood and then verify the apoptosis-regulating function of aging-related IncRNA and miRNA in human cardiomyocyte cell lines. In addition, BMI was different between the older adult group and the young group. However, the size of difference seems clinically irrelevant. Although the above methods cannot fully confirm the effect of human aging on cardiomyocyte apoptosis, it indirectly reflects the regulatory effect of human myocardial aging on apoptosis.

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Acknowledgments

We are grateful to Dr. Wei Ping Tang (Cnkngbio Company Ltd., Beijing, China) for bioinformatics assistance. This work was supported by the National Natural Sciences Foundation of China (NSFC) (grants #81971302 and #81771494 (both to Qian Fan)).

References

[1] B. J. North and D. A. Sinclair, “The intersection between aging and cardiovascular disease,” *Circulation research*, vol. 110, no. 8, pp. 1097–1108, 2012.

[2] L. H. Curtis, M. A. Greiner, B. G. Hammill et al., “Early and long-term outcomes of heart failure in elderly Persons, 2001-2005,” *Archives of internal medicine*, vol. 168, no. 22, pp. 2481–2488, 2008.

[3] L. H. Curtis, D. J. Whellan, B. G. Hammill et al., “Incidence and prevalence of heart failure in elderly Persons, 1999-2003,” *Archives of internal medicine*, vol. 168, no. 4, pp. 418–424, 2008.

[4] M. Liu, P. Zhang, M. Chen et al., “Aging might increase myocardial ischemia/reperfusion-induced apoptosis in humans and rats,” *Age (Dordrecht, Netherlands)*, vol. 34, no. 3, pp. 621–632, 2012.

[5] M. Pollack and C. Leeuwenburgh, “Aptosis and aging: role of the mitochondria,” *The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences*, vol. 56, no. 11, pp. B475–B482, 2001.

[6] A. J. Boyle, H. Shih, J. Hwang et al., “Cardiomyopathy of aging in the mammalian heart is characterized by myocardial hypertrophy, fibrosis and a predisposition towards cardiac apoptosis and autophagy,” *Experimental Gerontology*, vol. 46, no. 7, pp. 549–559, 2011.

[7] Q. Fan, M. Chen, X. Fang et al., “Aging might augment reactive oxygen species (ROS) formation and affect reactive nitrogen species (RNS) level after myocardial ischemia/reperfusion in both humans and rats,” *Age (Dordrecht, Netherlands)*, vol. 35, no. 4, pp. 1017–1026, 2013.

[8] X. Liu, J. Lei, K. Wang et al., “Mitochondrial Omi/HtrA2 promotes caspase activation through cleavage of HAX-1 in aging heart,” *Rejuvenation Research*, vol. 20, no. 3, pp. 183–192, 2017.

[9] M. C. Costa, A. L. Letiño, and F. J. Enguita, “Noncoding transcriptional landscape in human aging,” *Current Topics in Microbiology and Immunology*, vol. 394, pp. 177–202, 2016.

[10] J. Kim, K. M. Kim, J. H. Noh, J. H. Yoon, K. Abdelmohsen, and M. Gorospe, “Long noncoding RNAs in diseases of aging,” *Biochimica et Biophysica Acta*, vol. 1859, no. 1, pp. 209–221, 2016.

[11] H. Wang, Y. Bei, J. Shi, J. Xiao, and X. Kong, “Non-coding RNAs in cardiac aging,” *Cellular Physiology and Biochemistry*, vol. 36, no. 5, pp. 1679–1687, 2015.

[12] G. Barry, B. Guennewig, S. Fung, D. Kaczorowski, and C. S. Weickert, “Long non-coding RNA expression during aging in the human subependymal zone,” *Frontiers in Neurology*, vol. 6, p. 45, 2015.

[13] X. Chun Yang, D. Hui Zhao, W. Bond Lau et al., “IncRNA ENSMUST00000134285 increases MAPK11 activity, regulating aging-related myocardial apoptosis,” *The Journals of Gerontology: Series A*, vol. 73, no. 8, pp. 1010–1017, 2018.

[14] M. Huarte, “The emerging role of IncRNAs in cancer,” *Nature Medicine*, vol. 21, no. 11, pp. 1253–1261, 2015.

[15] A. Abbate, G. G. Biondi-Zoccai, and A. Baldi, “Pathophysiological role of myocardial apoptosis in post-infarction left ventricular remodeling,” *Journal of Cellular Physiology*, vol. 193, no. 2, pp. 145–153, 2002.

[16] K. Xing, X. Fu, L. Jiang et al., “Cardioprotective effect of anisodamine against myocardial ischemia injury and its influence on cardiomyocytes apoptosis,” *Cell Biochemistry and Biophysics*, vol. 73, no. 3, pp. 707–716, 2015.

[17] C. Sun, H. Liu, J. Guo et al., “MicroRNA-98 negatively regulates myocardial infarction-induced apoptosis by down-regulating Fas and caspase-3,” *Scientific reports*, vol. 7, no. 1, article 7578, p. 7460, 2017.

[18] X. Zhou, B. Chang, and Y. Gu, “MicroRNA-21 abrogates palmitate-induced cardiomyocyte apoptosis through caspase-3/NF-kB signal pathways,” *Anatolian journal of cardiology*, vol. 20, no. 6, pp. 336–346, 2018.

[19] Y. Zhang, J. Fang, and H. Ma, “Inhibition of miR-182-5p protects cardiomyocytes from hypoxia-induced apoptosis by targeting CIAPIN1,” *Biochemistry and Cell Biology*, vol. 96, no. 5, pp. 646–654, 2018.

[20] S. Fulda and D. Vucic, “Targeting IAP proteins for therapeutic intervention in cancer,” *Nature reviews Drug discovery*, vol. 11, no. 2, pp. 109–124, 2012.
[21] Q. L. Deveraux, R. Takahashi, G. S. Salvesen, and J. C. Reed, “X-linked IAP is a direct inhibitor of cell-death proteases,” *Nature*, vol. 388, no. 6639, pp. 300–304, 1997.

[22] J. C. Wilkinson, E. Cepero, L. H. Boise, and C. S. Duckett, “Upstream regulatory role for XIAP in receptor-mediated apoptosis,” *Molecular and Cellular Biology*, vol. 24, no. 16, pp. 7003–7014, 2004.

[23] D. W. Thomson and M. E. Dinger, “Endogenous microRNA sponges: evidence and controversy,” *Nature Reviews. Genetics*, vol. 17, no. 5, pp. 272–283, 2016.