Estimation of Rectal Temperature of Goats Based on Surface Temperature

Jordânio Inácio Marques (jordanio.marques@ufma.br)
Federal University of Maranhao: Universidade Federal do Maranhao
https://orcid.org/0000-0002-7665-8218

Patrício Gomes Leite
Federal University of Maranhao: Universidade Federal do Maranhao

José Pinheiro Lopes Neto
Federal University of Campina Grande: Universidade Federal de Campina Grande

Dermeval Araújo Furtado
Federal University of Campina Grande: Universidade Federal de Campina Grande

Fernanda Fernandes de Melo Lopes
Paraiba Federal University: Universidade Federal da Paraiba

Valéria Peixoto Borges
Paraiba Federal University: Universidade Federal da Paraiba

Geovergue Rodrigues de Medeiros
Insa: Instituto Nacional do Semiárido

Washington da Silva Sousa
Federal University of Maranhao: Universidade Federal do Maranhao

Research Article

Keywords: Bland-Altman, concordance, thermal stress, thermography

DOI: https://doi.org/10.21203/rs.3.rs-570604/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Infrared thermography (IR) is a non-invasive tool with potential to indicate changes in the animal's thermal conditions in response to the thermally stressful environment. The objective of this study was to evaluate the application of IR to estimate the rectal temperature of crossbred goats of the Boer breed. Six male crossbred goats of the Boer breed were distributed in a completely randomized design and submitted to temperatures of 26, 30 and 34 °C and 68% relative humidity. Rectal temperature (RT) and thermograms data were collected from animals at each air temperature (AT) evaluated. In the thermograms, the temperatures of the ocular globe (PT), head (HT), shoulder (ST), hindquarter (HQ) and maximum infrared (IR_{Max}) temperatures of the animals' surfaces were collected. The correlation of PT, HT, ST, HQ and IR_{Max} data with RT was evaluated through the Pearson coefficient analysis and the concordance using Bland-Altman diagrams. With the exception of the IR_{Max} surface temperature, the others were adequate for the accurate estimation of RT, with PT standing out for presenting the highest correlation coefficient with RT (r = 0.951) and estimation errors varying in the range of ± 0.27 °C.

1. Introduction

The exploration of beef goats is a potential activity, especially in arid and semi-arid regions, because they are rustic animals and adapted to the specific climatic conditions of these regions. However, when they are exposed to high air temperatures, their production potential is reduced due to stimuli of the peripheral receptors and the corporeal nucleus that are sent to the specific centers of the hypothalamus for the activation of evaporative and non-evaporative cooling systems altering the operation of the appetite control center. The suppressive impulses transmitted to the center of the appetite cause a decrease in food intake. Thus, fewer substrates are available for enzymatic activities, hormone synthesis and heat production which helps to cool the body thus reducing animal production efficiency (Marai and Haeeb, 2010).

The evaluation of the thermal state of animals destined for commercial exploration is usually done by rectal thermometry, where it is adopted as the representative temperature of the body core and its increase indicates that the thermoregulatory mechanisms are not being efficient for the dissipation of metabolic heat produced, this method in most cases requires that the animals be handled directly by the experimenter. This method is laborious and may influence in the behavior animals, which in turn affects the thermoregulatory responses Kammersgaard et al. (2011). According to Kammersgaard et al. (2013) there are non-invasive methods that can be used to evaluate the thermal state of the animals, especially infrared (IR) thermography that has good precision and dispenses direct contact with the individuals, thus presenting a high potential both for the development of research as for the monitoring of animals at the farm.

The IR measures the thermal radiation of the animal's surface and translates this to surface temperature. Comparing the rectal and IR thermometry methods, the two are distinct not only in the technique, where the rectal thermometry is based on the transfer of conductive heat to the sensor, while the thermographic
equipment measures the radiation. In addition, thermography measures the temperature at the surface of
the body, which is constantly involved in heat exchanges with the environment, while temperature of the
rectal cavity depends on the thermal situation of the body core George et al. (2014).

The objective of this study was to evaluate the application of IR to estimate the rectal temperature of
crossbred ¾ Boer + ¼ goats with no defined racial pattern.

2. Material And Methods

2.1. Animals and housing

Six male crossbred goats (¾ Boer breed and ¼ no defined racial pattern) were selected from breeding
herds suitable for meat production, with an average weight of 25.06 ± 4.43 kg and mean age of six
months. The animals were housed in metal stalls with dimensions of 1.15 × 0.50 × 0.84 m in length,
width and height, respectively, as detailed by Marques et al. (2018).

2.2. Experimental design

The animals were distributed in a completely randomized design with three treatments (air temperatures)
and six replicates (animals). The air temperatures used in the experiment were determined based on the
thermal comfort zone (ZCT) for goats mentioned by Souza et al. (2008), which is between 20 and 30°C,
with relative humidity of between 50 and 70%. Thus, the animals were submitted to the three different
average temperatures controlled: T26 = 26 ºC (thermal comfort zone), T30 = 30 ºC (temperature limit
between comfort zone and thermal stress) and T34 = 34 ºC (above ZCT), with relative humidity and wind
speed averages of 68% ± 4% and 1 m/s, respectively.

2.3. Experimental procedures

For each thermal condition studied, a period of five days was used to adapt the animals to the controlled
environment, as well as handling and feeding. Data were collected within 10 days for each treatment. In
the interval between treatments, the animals were exposed to the temperature and relative humidity of the
ambient air (with the open chamber) for the restoration of their physiological functions, for five days.

As suggested by Lopes Neto et al. (2018) and Marques et al. (2018), at each stage of study in the climatic
chamber, the animals were submitted to a cycle of 8/16 h (experimental air temperature / ambient air
temperature). The chamber was turned on each day at 7 a.m., allowing 1 h to stabilize the air temperature
and internal relative humidity. Following stabilization, the experimental period began at 8 a.m., with the
animals remaining inside the closed chamber until 4 p.m.

Animal feed and water were provided ad libitum. The feed supplied to the animals consisted of Tifton
hay (Cynodon dactylon (L) Pers), which was 43.0% of the total volume of the feed, as well as corn meal
(26.6%), molasses (2.5%) soybean oil (2.0%), mineral salt (1.5%) and calcitic limestone (0.4%), according
to the composition indicated by NRC (2007) and adopted by Maques et al. (2018).
2.4. Data collect

The thermograms and rectal temperature (RT) were acquired on the third, sixth and ninth days after the start of each experimental phase. The RT was taken manually by inserting a digital thermometer (Incoterm, Med flex, Digital Thermometer, Rio Grande do Sul, Brazil, variation of 32 ~ 43°C and accuracy of ± 0,20°C) ~ 2 cm in the rectum of each animal.

For the acquisition of the thermograms (Fig. 1A), a thermographic camera model Ti55FT (60 Hz, firmware version v.1.22, 320x240, accuracy ± 2°C, Fluke®, Washington, USA) was used. In the thermograms, was collected the mean infrared temperature of the ocular globe (PT) and of the skin surface were evaluated in the regions of the head (HT), shoulder (ST) and hindquarters (HQ) that were previously depilated, as shown in Fig. 1B. In addition to the mentioned temperatures, the maximum infrared temperature (IR_{\text{Max}}) of the animals' surface, identified in the lower region of the eye mucosa, was also evaluated.

Three thermograms of each animal were selected, obtained at each air temperature tested for the analysis of the regions under study. Emissivity was adjusted to 0.98, based on data for humans (Steketee, 1973), taking into account that the evaluated regions were absent of hair and that the characteristics of the skin are similar between humans and the animals evaluated. The distance to the targets was ~ 2 m, allowing a complete view of the animals, from the snout to the tail.

2.5. Statistical analysis

The data were presented in box diagrams (boxplot). The normality of the data was verified using the Shapiro-Wilk test and, subsequently, the data were analyzed using the analysis of variance (ANOVA) and F test, using the ExpDes.pt package (Ferreira et al., 2013) of statistical software R version 3.4.1. The Tukey test was used to compare the averages, assuming a probability of error of 5% (P < 0.05).

The correlations between PT, HT, ST, HQ and IR_{\text{Max}} data with RT were analyzed using simple linear regressions, with a 95% confidence interval and by assessing the degree of elevation of Pearson's correlation coefficient.

The occurrence of agreement between the evaluated methods was verified using the t-test for paired samples (one sample t-test) (P < 0.05), applied in the differences between of the thermogram and RT measurements. In addition, Bland-Altman diagrams were generated in order to assess the differences between the compared methods, according to the increase in air temperature. The agreement limits were determined by calculating the average of the differences (bias, \(\bar{d} \)) and their standard deviation (\(Sd \)), these limits being calculated as follows: \(d \pm 1.96 \times Sd \). The possibility of occurrence of systematic and random errors in the prediction of RT by the IR method was evaluated, for this, the verification of the occurrence or not of significant bias correlation with the mean of their respective measures was performed.
3. Results

3.1. Physiological responses

The effect of increasing air temperature on the RT, PT, HT, ST, HQ and IR\textsubscript{Max} responses, respectively, is shown in Fig. 2. It can be observed a significant increase (P < 0.05) in all physiological responses as a function of elevation of the air temperature from 26 to 30 and subsequently to 34°C.

3.2. Correlation between of the methods

The correlations between the physiological response RT and the temperatures PT, HT, ST, HQ and IR\textsubscript{Max}, according to the elevation of the air temperature are presented in Fig. 3 with a confidence interval of 95%. All the evaluated responses had a significant positive correlation (P < 0.05) with the RT, with a Pearson correlation coefficient of 0.956, 0.904, 0.862, 0.824 and 0.951 for PT, HT, ST, HQ and IR\textsubscript{Max}, respectively. The physiological responses PT and IR\textsubscript{Max} as being the ones with the highest correlations with RT.

3.3. Agreement between of the methods

In Fig. 4, the relation of the discrepancies between the measurements obtained by the methods evaluated by applying the t test for paired samples is shown, where it can be seen that there was no agreement between the data obtained by rectal thermometry and the data obtained by thermography infrared, in the regions of the ocular globe (PT), the head (HT), the shoulder (ST), the hindquarter (HQ) and the maximum infrared temperature (IR\textsubscript{Max}), with a statistically significant difference (P < 0.05) between the methods, which presented bias equal to 2.03, 1.35, 1.39, 1.38 and 0.75, respectively, for the differences between RT and PT, HT, ST, HQ and IR\textsubscript{Max}.

Analyzing the spatial distribution of the points in the diagrams (Fig. 4) through the analysis of the correlation between the bias and the averages of the measures, it can be noted that in the cases of differences between RT-PT, RT-HT, RT-ST and RT-HT the correlation with their respective means are null, with the slope of the correlation line significantly equal to zero (P = 0.06, 0.81, 0.12 and 0.41, for the respective correlations), and it can be concluded that these biases are systematic. Therefore, although the measurements are not in agreement, the values of PT, HT, ST and HQ can be used to estimate the RT, as long as their values are added to their respective biases.

When analyzing the agreement between RT and IR\textsubscript{Max}, it is found that among the evaluated agreements, this is the one that presents the bias (difference between the measures) closest to zero (0.75), but it is also verified that the bias is correlated significantly (P < 0.05) with the averages of the measurements, thus, the difference observed between the values of RT and IR\textsubscript{Max} depends on the amount of data collected, which may lead to the occurrence of random errors and inaccuracies in the estimate of RT.

The Fig. 5 shows the analysis of agreement between the RT values and the PT, HT, ST and HQ data, added with their respective biases. It can be noted that the methods have strong concordances, with
biases values statistically equal to zero (P = 0.11, 0.37, 0.75 and 0.46, for PT, HT, ST and HQ, respectively) between the evaluated methods.

4. Discussion

When subjected to environments with air temperatures above the thermoneutral zone, homeothermic animals employ several thermoregulatory mechanisms to compensate for heat gain, per equivalent loss, and maintain internal body temperature within narrow limits of variation and achieve thermal equilibrium (McKinley et al., 2017). The present study shows that PT, HT, ST, HQ and IR_{Max} increased (P < 0.05) according to the elevation of the air temperature, suggesting that this fact is due to the significant increase (P < 0.05) in the body core representative temperature (RT) as a function of the heat generation due to the metabolic reactions and the reduction of the thermal gradient between the animal and the environment, which reduces the ability of the animals to dissipate heat in a sensitive way, being this a primary physiological mechanism responsible for the dissipation of body core heat through the bloodstream to the peripheries and subsequently to the environment (Rizzo et al., 2017).

In the three thermal conditions evaluated, it was possible to observe the higher surface temperature (IR_{Max}) in the inferior mucosal region of the animals' eyes, and this fact can be justified by the existence of thinner layers of skin and greater vascularization of this region, when compared to other evaluated regions (Rizzo et al., 2017). The areas around the eye, especially around the posterior border of the eyelid and lacrimal caruncle, have a rich capillary vascularization that responds sensitively to changes in blood flow resulting from changes in the internal temperature of the animal (Stewart et al., 2008).

All the surface temperatures evaluated (PT, HT, ST, HQ and IR_{Max}) correlated significantly (P < 0.05) with the rectal temperature showing that these are sensitive responses and can detect with a high degree of precision the changes in body core temperature of the goats when submitted to thermal stress conditions. In addition, based on the results presented in Fig. 3, it can be observed that the temperature of PT and IR_{Max} presented a higher correlation with RT than the other surface temperatures (HT, ST and HQ), with Pearson correlation coefficient of $r = 0.956$ and 0.951, respectively.

According to Steck et al. (2011) the replacement of the rectal thermometry method with non-invasive methods for the measurement of thermal stress is potentially beneficial, since it dispense the direct contact of the evaluator with the animal, avoiding external influences, which may mask the results. Based only on the analysis of the correlations we have that the RT of the goats can be measured accurately and remotely through the PT and IR_{Max} temperatures.

The correlation coefficient cannot be used alone to evaluate the relationship between two methods since it does not provide an indication of the equality discrepancy between the data values. Second, the correlation coefficient does not reveal information about the presence of a systematic difference between the methods (van Stralen et al., 2008).
The surface temperatures at the points collected did not show agreement with the RT, however with the exception of $I_{R_{\text{Max}}}$, it can be seen that the biases did not correlate significantly with the averages of the measurements and, despite significant differences between the methods evaluated (ie, PT, HT, ST and HQ did not reproduce values statistically equal to RT), they show the same behavior, keeping the error statistically constant, even with the increase in air temperature.

The RT can be estimated accurately, through the responses PT, HT, ST and HQ, as long as its measurements are increased by the respective biases, and the RT can be represented by any of the following mathematical expressions: $RT \cong PT + 2.03; RT \cong HT + 1.35; RT \cong ST + 1.39; \text{or } RT \cong HQ + 1.38$, with statistically insignificant mean errors. Also observing the limits of agreement between the RT measurements and the estimated averages based on surface temperatures, such estimates have a high level of precision, and there may be errors in estimates ranging from ± 0.27, ± 0.41, ± 0.47 and ± 0.55 °C, for PT, HT, ST and HT, respectively, highlighting the expression $RT \cong PT + 2.03$, as it has a smaller range of error variation.

Observing the Bland-Altman diagram presented in Fig. 4E that deals with the analysis of agreement between the RT and $I_{R_{\text{Max}}}$ measurements, it can be seen that in the air temperatures between the range of 26 and 30°C the error value (difference) between the methods was approximately 0.7°C for both air temperatures, however when the air temperature increased to 34°C, the average error increased to 0.9°C, thus causing the significant correlation between the bias and the averages of the methods’ measures, which reflects in the consequent increase in the error between the readings, according to the elevation of the air temperature, being the $I_{R_{\text{Max}}}$ therefore, inadequate for the prediction of the RT of goats in conditions of thermal stress.

Conclusions

It is possible to estimate the rectal temperature (RT) of crossbred Boer goats accurately, based on the surface temperatures of the ocular globe (PT), head (HT), shoulder (ST) and hindquarter (HQ) of the animals, being the region most suitable for this, according to the results of the present research, the region of the ocular globe that presented Pearson's correlation coefficient of 0.956. Another fact that makes this estimate feasible is that although none of the surface temperatures have shown agreement with the RT, the error values in the estimates showed a statistically constant behavior (with the exception of $I_{R_{\text{Max}}}$), as the air temperature increased. Thus, it was possible to accurately estimate the RT values through the values of PT, HT, ST and HQ added to their respective biases, with PT also standing out in this criterion for presenting lower errors (± 0.27°C) in the estimates.

Declarations

Acknowledgment
To the National Council for Scientific and Technological Development (CNPq) for the scholarship granted and research funding Process N. 445393/2014-9.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Funding

National Council for Scientific and Technological Development (CNPq, Process N. 445393/2014-9).

Author information

Affiliations

Federal University of Maranhão, Department of Agricultural Engineering, Chapadinha, Maranhão, Brazil

Jordânio Inácio Marques, Patrício Gomes Leite & Washington da Silva Sousa

Federal University of Campina Grande, Department of Agricultural Engineering, Campina Grande, Paraíba, Brazil

José Pinheiro Lopes Neto & Dermeval Araújo Furtado

Federal University of Paraíba, Department of Agronomy, Areia, Paraíba, Brazil

Fernanda Fernandes de Melo Lopes & Valéria Peixoto Borges

National Semi-Arid Institute, Campina Grande, Paraíba, Brazil

Geovergue Rodrigues de Medeiros

Contributions

I hereby declare for all due purposes, that the authors JI Marques, and PG Leite were responsible for preparing the manuscript entitled “Estimation of rectal temperature of goats based on surface temperature”, effectively participating in the stages of project design, data collection, analysis of data and writing of the manuscript. The authors JP Lopes Neto, DA Furtado, FFM Lopes, and VP Borges provided guidance in all stages of the work and participated in the writing and revision of the manuscript. The authors GR Medeiros, and WS Sousa acted in revising the manuscript. All authors read and approved the manuscript.
Corresponding author

Correspondence to Jordânio Inácio Marques

Ethics declarations

Ethics approval

The methods used in this research were previously approved by the Ethics and Research Committee (CEP) of the Federal University of Campina Grande, Paraíba, Protocol CEP No 284-2015.

Conflict of interest

The authors declare no competing interests.

References

1. Ferreira, E.B.; Cavalcanti, P.P.; Nogueira, D.A., 2013. ExpDes.pt: Experimental Designs package (Portuguese). R package version 1.1.2.
2. George, W.D., Godfrey, R.W., Ketting, R.C., Vinson, M.C., Willard, S.T., 2014. Relationship among eye and muzzle temperatures measured using digital infrared thermal imaging and vaginal and rectal temperatures in hair sheep and cattle. Journal of Animal Science, 92: 4949-4955.
3. Kammersgaard, T.S., Malmkvist, J., Pedersen, L.J., 2013. Infrared thermography—a non-invasive tool to evaluate thermal status of neonatal pigs based on surface temperature. Animal, 7: 2026-2034.
4. Kammersgaard, T.S., Pedersen, L.J., Jorgensen, E., 2011. Hypothermia in neonatal piglets: interactions and causes of individual differences. Journal of Animal Science, 89: 2073-2085.
5. Lopes Neto, J.P., Marques, J.I., Furtado, D.A., Lopes, F.F. de M., Borges, V.P., Araújo, T.G.P., 2018. Pupillary stress index: A new thermal comfort index for crossbred goats. Revista Brasileira de Engenharia Agrícola e Ambiental, 22: 866-871.
6. Marai, I.F.M., Haeeb, A.A.M., 2010. Buffalo's biological functions as affected by heat stress — A review. Livestock Science, 127: 89-109.
7. Marques, J.I., Lopes Neto, J.P., Nascimento, J.W.B., Talieri, I.C., Medeiros, G.R., Furtado, D.A., 2018. Pupillary dilation as a thermal stress indicator in boer crossbred goats maintained in a climate chamber. Small Ruminant Research, 158: 26-29.
8. McKinley, M., Trevaks, D., Weissborn, F., McAllen, R., 2017. Interaction between thermoregulation and osmoregulation in domestic animals. Revista Brasileira de Zootecnia, 46: 783-790.
9. National Research Council – NRC 2007. Nutrient requeriments of small ruminants: sheep, goats, cervids, and new world camelids. Washington, DC.
10. Rizzo, M., Arfuso, F., Alberghina, D., Giudice, E., Gianesella, M., Piccione, G., 2017. Monitoring changes in body surface temperature associated with treadmill exercise in dogs by use of infrared methodology. Journal of Thermal Biology, 69: 64-68.
11. Souza, B.B., Souza, E.D., Silva, R.M.N., Cezar, M.F., Santos, J.R.S., Silva, G.A., 2008. Respostas fisiológicas de caprinos de diferentes grupos genéticos no semi-árido paraibano. Ciência e Agrotecnologia, 32: 314-320.

12. Steck, L.N., Sparrow, E.M., Abraham, J.P., 2011. Non-invasive measurement of the human core temperature. International Journal of Heat and Mass Transfer, 54: 975-982.

13. Steketee, J., 1973. Spectral emissivity of skin and pericardium. Physics in Medicine & Biology, 18: 686-694.

14. Stewart, M., Stafford, K.J., Dowling, S.K., Schaefer, A.L., Webster, J.R., 2008. Eye temperature and heart rate variability of calves disbudded with or without local anaesthetic. Physiology & Behavior, 93: 789-797.

15. van Stralen, K.J., Jager, K.J., Zoccali, C., Dekker, F.W., 2008. Agreement between methods. Kidney International, 74: 1116-1120.

Figures

Figure 1

(A) Thermogram of one of the animals evaluated; and a (B) Experimental configuration of the collection points of the animal's surface temperatures, which are: ocular globe (PT), head (HT), shoulder (ST), hindquarters (HQ) and maximum infrared temperature (IRMax).
Figure 2

Effect of air temperature on physiological responses: (A) rectal temperature - RT; (B) ocular globe temperature - PT; (C) head temperature - HT; (D) shoulder temperature - ST; (E) hindquarters temperature - HQ; and (F) maximum infrared temperature - IRMax; SE: standard error; and SD: standard deviation.
Correlation between of the rectal temperature (RT) and: (A) temperature of the ocular globe (PT); (B) head temperature (HQ); (C) shoulder temperature (ST); (D) hindquarters temperature (HQ); and (E) maximum infrared temperature (IRMax).

Figure 3
Figure 4

Analysis of agreement between rectal temperature data (RT) and: (A) ocular globe temperature (PT); (B) head temperature (HT) (C) shoulder temperature (ST); (D) hindquarter temperature (HQ); and (E) temperature maximum infrared (IRMax); SD: standard deviation.
Figure 5

Agreement between rectal temperature (RT) and: (A) ocular globe temperature (PT); (B) head (HQ); (C) shoulder (ST); and (D) hindquarters (HQ), added of their respective biases; SD: standard deviation.