Розробка та дослідження мікропроцесорної системи автоматичного керування моношпального стрілочного переводу з лінійним двигуном індукторного типу та дискретним регулятором швидкості

Робота присвячена розробці мікропроцесорної системи автоматичного керування безредукторним регулюванням електроприводом стрілочного переводу моношпального типу на базі лінійного індукторного двигуна. Таке рішення дозволяє контролювати положення гостріків, здійснювати процес переводу з плавним доводом гостріків до рамної рейки, захищати елементи електродвигуна від перевантажень. Запропоновано структурну схему дискретного ПІД-регулятора швидкості, синтезованого в 2-зображенні та отримано діаграм розподілу його коефіцієнтів за методом Чина-Хронса-Ресвіка. Наведені результати комп’ютерного моделювання показали, що час переводу гостріків менший ніж 0,7 с при ставлені рівні задання швидкості як 0,2 і 0,3 м/с, що дозволяє реалізувати сучасні вимоги до стрілочних переводов зазначених типорозмірів транспорту. Бібл. 25, табл. 2, рис. 12.

Ключові слова: електропривод з лінійним індукторним двигуном, електромеханічна система, система керування, дискретний ПІД-регулятор швидкості.

Вступ. Транспортна система – це важлива складова економічного зростання національних економік світового господарства. Розвиток залізничних міжнародних транспортних мереж спрямований на інтеграцію товарообігу між Європейським Союзом (ЄС) і Україною. Тому впровадження транспортної інфраструктури України є одним з основних напрямів реалізації Національної транспортної стратегії України на період до 2030 року [1], яка закладає основу змін у транспортній галузі на наступні 8 років, а саме розвиток нових швидкісних міжнародних транспортних мереж сприяє на інтеграцію світового господарства. Розвиток залізничних міжнародних інфраструктур [2].

Невід’ємною частиною залізничної інфраструктури є стрілочні переводи. Розвиток іх систем автоматики та вдосконалення технологій обслуговування значною мірою сприяє підвищенню безпеки руху та покращенню економічних показників діяльності залізниць [3–5].

Світовими компаніями проводиться робота над створенням нових типів стрілочних переводов [6, 7], а саме до моношпального їх виконання. Загальна їх концепція, як для звичайного, так і високошвидкісного руху, зводиться до забезпечення максимальної надійності та безпеки, при яких витрати на поточне утримання мінімальні. Сучасні стрілочні переводи оснащені новими електродвигунами [7–10] та системами керування [4, 11].

Україні відсутність регульованих електропри-водів стрілочних переводов вимагає створення спеціалізованих електроприводов. Для підвищення їх ефективності є потреба створення нових типів електроприводів [12–14]. В [15] розглядались питання розвитку функціональності залізничного стрілочного переводу шляхом впровадження електроприводу з векторно-індукторним двигуном, що обгрунтовується спрошенням механічної частини стрілочного переводу шляхом заміни редуктора на кульково-гвинтову пару та зміцненні усієї кінематичної лінії стрілочного перево-ду на одній шпалі.

Заміна ротативних електродвигунів на лінійні надає ще більше спрошення конструкції, що забезпечує підвищення ККД, зниження втрат на обслуговування та підвищення надійності роботи стрілочных переводов. Відмінно особливістю таких двигунів є їх здатність до перетворення електричної енергії на механічні поступальні рухи виконуваних механізмів стрілочных переводов – гостріків і рухливих середніх індуктор без опосередкованої роботи без проміжних механічних перетворювачів. Електропривод з урахуванням лінійних електродвигунів електромагнітного типу (ЛДЕМТ) розглядався в [16]. Рациональність такого технічного рішення складається в запасі надлишку енергії, що має місце в кінці циклу роботи електроприводу стрілочного переводу для того, щоб в подальшому використовувати його на початку переміщення стрілки. Дана стаття присвячена вдосконаленню мікропроцесорної системи автоматичного керування безредукторним регулюванням електроприводом стрілочного переводу моношпального типу на базі лінійного двигуна індукторного типу для отримання заданої величини керування рухом гостріків та зменшення часу переводу стрілки.

Особливістю стрілочних переводов такого типу є те, що завдяки унікальним властивостям конструкцій і можливостям систем керування, вони забезпечують високу точність позиціонування гостріків, незалежно від швидкості внутрішнього транспортної системи керування електроприводом стрілочного переводу моношпального типу з ЛДІТ, яка розглядався в [16]. Рациональність такого технічного рішення складається в запасі надлишку енергії, що має місце в кінці циклу роботи електроприводу стрілочного переводу для того, щоб в подальшому використовувати його на початку переміщення стрілки.

Таким чином, запропонований в статті шлях створення нової системи керування електроприводом стрілочного переводу є актуальним з точки зору надійності переходу до нової частини лінійної індукторних перевозвінок та вантажопотоку перевезень.

Таким чином, запропонований в статті шлях створення нової системи керування електроприводом стрілочного переводу є актуальним з точки зору надійності переходу до нової частини лінійної індукторних перевозвінок.

Метою статті є розробка мікропроцесорної системи автоматичного керування стрілочного переводу моношпального типу з лінійним двигуном індуктор-ного типу (ЛДІТ) та дискретним пропорційно-інтегрально-диференційним (ПІД) регулятором швидкості з налаштованими коефіцієнтами за методом Чина-Хронса-Ресвіка для забезпечення сучасних вимог безпеки руху.

Для досягнення намічені мети поставлені такі завдання:
- розробка системи автоматичного керування стрілочного перево-ду моношпального типу з ЛДІТ, яка дозволяє здійснювати процес переводу з плавним
доводом гостріків до рамної рейки, захист двигуна від перевантажень та контролю положення гостріків для швидкісних і високоскоростних залізниць електротранспорту;

- синтез дискретного ПІД-регулятора швидкості для електроприводу з двигуном індукторного типу, як елементу вдосконалення мікропроцесорної системи автоматичного керування стрічкового переведення для поліпшення його роботи в штатних режимах, так і в нестабільних режимах.

Матеріал досліджень. Функціональна схема електроприводу стрічкового переведення наведена на рис. 1, до складу якої входять три блоки: ЛДІТ, регулятор швидкості з силовим перетворювачем у складі блоку управління і датчик положення гостріків, який здійснює контроль за переміщенням гостріків та щільним приляганням їх до рамної рейки.

На рис. 2, а показано поперечний перетин ЛДІТ, який розміщений в шпалі як показано на рис. 2, б.

Рис. 1. Функціональна схема електроприводу стрічкового переведення з ЛДІТ

Рис. 2. Конструкція ЛДІТ (а) та розміщення його в одній шпалі (б):
1 – статор; 2 – полюси наконечники зовнішнього статора; 3 – полюси; 4 – якоря; 5 – котушки фаз; 6 – корпус

Лінійний електродвигун має чотири фази A, B, C, D та складається з двох статорів I (внутрішнього і зовнішнього), що дозволяє отримати мінімальний повітряний проміжок в міжзубціві зоні при незначних гарях машинах, зосереджуючи магнітний потік в зубціві зоні. Поочередне включення фаз електродвигуна (A, B, C, D) забезпечує рівномірний розподіл електромагнітної сили при русі якоря 4. При нарахуванні кількості котушок (фаз), можна, якщо необхідно, істотно понизити коливання сили, що діє на якор, під час його руху. Ще одна перевага такої конструкції індукторного двигуна – це відносно велика довжина якоря в порівнянні з електромагнітом, дозволяє легко реалізувати переміщення гостріків без зміни інших гаряків з媒ій двигуна.

Залежно від сигналу датчика положення гостріків, які встановлені на зовнішній стороні рамної рейки і забезпечують контроль за щільним приляганням до неї гостріка, силовий перетворювач, розташований у блоку управління і виконаний на базі польових або IGBT транзисторів, підключає котушку статора до джерела живлення. При цьому електродвигун здійснює перетворення електричної енергії в механічну, приводячи в рух якор.

Такий електродвигун вимагає іншої, ніж у ЛДЕМТ, системи автоматичного керування і, як наслідок, відмінного рішення, але забезпечує реверсну роботу без застосування додаткових пружин [16].

Математичний опис та імітаційна модель ЛДІТ на основі рішення рівняння Лагранжа наведено в [17] та в нормальних форми Коші має вигляд:

$$\frac{di_A}{dt} = \frac{1}{\Psi_A} \left(U_A - r_A i_A - \frac{\partial \Psi(i, x)}{\partial x} v \right);$$

$$\frac{di_B}{dt} = \frac{1}{\Psi_B} \left(U_B - r_B i_B - \frac{\partial \Psi(i, x)}{\partial x} v \right);$$

$$\frac{di_C}{dt} = \frac{1}{\Psi_C} \left(U_C - r_C i_C - \frac{\partial \Psi(i, x)}{\partial x} v \right);$$

$$\frac{di_D}{dt} = \frac{1}{\Psi_D} \left(U_D - r_D i_D - \frac{\partial \Psi(i, x)}{\partial x} v \right);$$

$$\frac{dv}{dt} = F_v - F_m - \alpha x;$$

де U_A, U_B, U_C, U_D – напруги джерела живлення; r_A, r_B, r_C, r_D – опори; i_A, i_B, i_C, i_D – активні опори та струми відповідного фаз в статорі; $\Psi_A, \Psi_B, \Psi_C, \Psi_D$ – початкові значення відповідних фаз; x – переміщення якоря; F_m – сила опору; α – коефіцієнт тертя між направляючою і якорем; v – швидкість руху якоря m – маса якоря; F_v – сила руху електродвигуна.

Для підключення фаз двигуна до джерела живлення та регулювання на ній напруги необхідний електронний комутатор. Оскільки робота ЛДІТ не залежить від напрямку струму в фазі, то для комутації струму в ній зазвичай застосовується напівмостова схема [18]. Фрагмент схеми електронного комутатора (для фази A) наведено на рис. 3.
Фази \((A, B, C, D)\) включено між напівпровідниковими ключами (фаза \(A - VT1 - VT2\); фаза \(B - VT3 - VT4\); фаза \(C - VT5 - VT6\); фаза \(D - VT7 - VT8\), що працюють в режимі ШІМ залежно від положення гострят і напрямку їх руху. Захисні діоди (для фази \(A - VD1 - VD2\); для фази \(B - VD3 - VD4\); для фази \(C - VD5 - VD6\); для фази \(D - VD7 - VD8\) забезпечують протикання струму після закриття верхнього або нижнього ключів у фазах.

Для управління ЛДІТ був синтезований цифровий ПІД-регулювальник швидкості, який описується передаточною функцією:

\[
W_p(z) = K_p + \frac{T_i z}{z-1} + \frac{T_d}{T_d z},
\]

де \(K_p\) – коефіцієнт передачі пропорційної складової; \(K_i\) – коефіцієнт передачі інтегральної складової; \(K_d\) – коефіцієнт передачі диференціальної складової; \(T_i\) – період дискретності, с.

На підставі передавальної функції (2) отримано різницю рівняння, що описує алгоритм роботи дискретного ПІД-регулювальника:

\[
u[n] = K_p e[n] + K_i u[n-1] + T_i e [n] + \frac{K_d}{T_d} (e[n] - e[n-1]) =
\]

\[
= K_p e[n] + K_i u[n-1] + K_i T_i e[n] + K_d \frac{e[n]}{T_d} - e[n-1] + K_d u[n-1].
\]

За рівнянням (3) побудовано структурну схему, що наведена на рис. 4.

![Рис. 4. Структура дискретного ПІД-регулювальника](image)

Оскільки ЛДІТ описується нетривіальною функцією [17] то для налаштування коефіцієнтів ПІД-регулювальника стандартні методи, що застосовуються для налаштування лінійних об’єктів, не підходять [6, 19]. Тому їх розрахунок виконувався за методом Чина-Хронса-Ресвіка [20], що дозволяє отримати більші запаси стійкості ніж традиційний метод Цигера-Нікольса [21, 22].

За методом Чина-Хронса-Ресвіка для розрахунку коефіцієнтів ПІД-регулювальника спостерігається реакція об’єкту управління на ступінчастий сигнал задавання. Елементи об’єкта управління, що мають аперіодичну характеристику (рис. 5), апроксимуються послідовним з’єднанням аперіодичної ланки та ланки запинення.

![Рис. 5. Приклад кривої розгону об’єкту керування](image)

З рис. 5 видно, що для розрахунку коефіцієнтів ПІД-регулювальника за методом Чина-Ресвіка використовуються два параметри: \(a\) і \(L\). Їх розрахунок виконувався за умовами відсутності перерегулювання (CHR0%) та його наявності у 20% (CHR20%). Формули, за якими коефіцієнти \(K_p\), \(K_i\) та \(K_d\) розраховуються наведені у табл. 1.

Таблиця 1

Метод	CHR0%	CHR20%
\(K_p\)	\(0,6a\)	\(0,5L\)
\(K_i\)	\(1,4L\)	\(0,47L\)

Розрахункові параметри ПІД-регулювальника корегувались вручну для покращення якості регулювання, оскільки аналітичні вирази грунтуються на спрошених моделях об’єкту і надають похибку. Підстроювані параметри регулювальників виконані за наступними правилами: збільшення пропорційного коефіцієнта \(K_p\) збільшує швидкодію і знижує запас стійкості; зменшення інтегральної складової \(K_i\) зменшує запас стійкості; зменшення стаїї інтеграції \(T_i\) зменшує запас стійкості; збільшення диференціальної складової \(K_d\) збільшує швидкодію.

Після підстроювання коефіцієнтів ПІД-регулювальників швидкості набирають вигляду, показаний на рис. 6.

![Рис. 6. Координати ПІД-регулювальника](image)

З рис. 6 видно, що усі коефіцієнти мають залежність від швидкості руху гострят, а саме: коефіцієнт пропорційної ланки \(K_p\) зростає від 0,25 до 1 при швидкості вище 0,3м/с; коефіцієнт інтегральної ланки \(K_i\) має різко спадаючу лінійну характеристику при маліх швидкостях руху до 0,08 м/с і змінюється в межах від 0,7 до 0,2; коефіцієнт диференціальної
ланки K_d має більш пологу характеристику і змінюється в межах від 0,3 до 0,5 при швидкості руху гостряків вище 0,2 м/с.

З урахуванням цього рис. 4 матиме вигляд, як наведено на рис. 7.

Розгорнута функціональна схема стрілочного переведу наведена на рис. 8, де відокремлено пунктиром ЛДІТ з датчиком положення гостряків, електронним комутатором (рис. 3), розподілювачем з перетворювачем імпульсів та регулятором швидкості (рис. 7), що входять до складу блоку управління.

Система управління стрілочного переведу моношпального типу розглядається як двоконтурна система підпорядкованого регулювання координат з ПІД-регулятором швидкості, яка спільно з ЛДІТ зведена до загальної імітаційної моделі у MATLAB [23, 24], з урахуванням усіх елементів, параметрів та зв’язків між ними на рис. 9, а на рис. 10 наведено схема механічної частини.

У зворотному зв’язку системи є блок навантаження $v = f(F_c)$, який відображає характеристику тертя [25], оскільки стрілочні переводи працюють за різних пого- дних умов під впливом випадкових факторів (опади, дощ, сніг, речовини, які висипаються з вагонів, тощо). Середні величини коефіцієнта тертя по поверхні рейка-подушка (сталь-сталь) наведені в табл. 2.

На рис. 11 та рис. 12 наведено перехідні процеси роботи електропривода стрілочного переведу, а саме переміщення гостряків та швидкості переведу з ПІД-регулятором швидкості з урахуванням нелінійної характеристики тертя при різних задаваннях швидкості руху гостряків.

Таблиця 2

Матеріали, що труся без змащення з ізоляцією	Коефіцієнт тертя в стані спокою і ковзання			
без змащення	змащено	без змащення	змашено	
рейка – подушка	0,8	0,5-0,4	0,15-0,3	0,05-0,18

З отриманих графіків перехідних процесів встановлено, що ПІД-регулятор підтримує задану швидкість руху гостряків 0,2 м/с (рис. 11) і 0,3 м/с (рис. 12), що дозволяє контролювати положення гостряків. Також забезпечує процес переведу з плавним доведом гостряків до рамної рейки, що підтверджується кривими швидкості в кінці процесу переведу від $t > 0,6$ с.
Висновки.
1. Запропоновано та досліджено мікропроцесорну систему автоматичного керування стрілочного переводу моношпального типу з ПІД-регулятором швидкості, що дозволило поліпшити якість динаміки його роботи.
2. На основі аналітичних методів з-передоверення синтезовано дискретний ПІД-регулятор швидкості та розроблено його імітаційну модель з урахуванням розподілу коефіцієнтів ПІД регулятора в залежності від відстані руху до 0,08 м/с і змінюється в межах від 0,7 до 0,2; яка підтвердила різко зростає від 0,25 до 1 при швидкості вище 0,6 м/с; коефіцієнт інтегральної ланки має різко спадаючу лінійну характеристику при малих швидкостях руху до 0,08 м/с і змінюється в межах від 0,7 до 0,2; коефіцієнт диференціальної ланки має найбільш низьку значення при швидкості руху гостріків до 0,2 м/с.
3. Методом Чина-Хронса-Ресвіка отримано діаграми розподілу коефіцієнтів ПІД регулятора в залежності від швидкості руху якоря: коефіцієнт диференціальної ланки різко зростає від 0,25 до 1 при швидкості вище 0,3 м/с; коефіцієнт інтегральної ланки має різко спадаючу характеристику при малій швидкості руху до 0,08 м/с і змінюється в межах від 0,7 до 0,2; коефіцієнт диференціальної ланки має найбільш низьку значення при швидкості руху гостріків до 0,2 м/с.
4. На основі дослідження перехідних процесів переміщення гостріків показана можливість реалізації безударного доводу їх до рамної рейки, що підтверджується кривими швидкості в кінці процесу переведення стрілки, які прямою до 0 та можливість отримання часу переведення гостріків менш ніж за 0,7 с при сталому рівні задавання швидкості 0,2 і 0,3 м/с руху якоря для ЛДІТ.

Конфлікт інтересів. Автори статті заявляють про відсутність конфлікту інтересів.

СПИСОК ЛІТЕРАТУРИ
1. Про схвалення Національної транспортної стратегії України на період до 2030 року: розпорядження Кабінету Міністрів України від 30 травня 2018 р. № 430-р. Режим доступу: https://zakon.rada.gov.ua/show/430-2018-%D1%80 (Дата звернення: 14.02.2022).
2. Підвід, інфраструктура України. Інформація про українські залізниці. Режим доступу: https://mtu.gov.ua/content/informaciya-pro-ukrainski-zaliznitsi (Дата звернення: 14.02.2022).
3. Бруйковський С.Г., Маслій Ар.С., Маслій Ан.С. Перспективи модернізації електроприводів стрілочних переводів. Електромеханічні і енергосберігаючі системи, 2013, № 2 (22), С. 124-127. Режим доступу: http://smne.khu.edu.ua/files/EES_2_2013(22)_Part_2.pdf (Дата звернення: 14.02.2022).
4. Kande M., Isaksson A., Thottappillil R., Taylor N. Rotating Electrical Machine Condition Monitoring Automation – A Review. Machines, Oct. 2017, vol. 5, no. 4, р. 24. doi: https://doi.org/10.3390/machines5040024.
5. Bennent S.D., Goodall R.M., Dixon R., Ward C.P. Improving the reliability and availability of railway track switching by analysing historical failure data and introducing functionally redundant subsystems. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, Sep. 2017, vol. 232, no. 5, pp. 1407-1424. doi: https://doi.org/10.1177/0954409717727879.
6. Rasmussen P.O. Design and Advanced Control of Switched Reluctance Motors. Institut for Energiteknik, Aalborg University, 2002. 274 p.
7. Design of High-Speed Railway Turnouts. Southwest Jiao Tong University Press. Published by Elsevier Inc. 2015. Режим доступу: https://www.xnjdcbs.com/upfile/file/201705/14937827805937.pdf (Дата звернення: 14.02.2022).
8. Arslan B., Tiryaki H. Prediction of railway switch point failures by artificial intelligence methods. Turkish Journal of Electrical Engineering & Computer Sciences, Mar. 2020, vol. 28, no. 2, pp. 1044-1058. doi: https://doi.org/10.3906/elk-1906-66.
9. Sezen S., Karakas E., Yilmaz K., Ayaz M. Finite element modeling and control of a high-power SRM for hybrid electric vehicle. Simulation Modelling Practice and Theory, Mar. 2016, vol. 62, pp. 49-67. doi: https://doi.org/10.1016/j.simpat.2016.01.006.
10. Дорохін Б.П., Сержук Т.Н. Введення нових типів двигунів стрілочних електроприводів. Електромагнітна сутність та безпека на залізницях, 2013, № 6, С. 71-84. Режим доступу: http://ecsr.ditl.edu.ua/article/view/51291 (Дата звернення: 14.02.2022).
11. Fathy Abouzeid A., Guerrero J.M., Endemaño A., Muniategui I., Ortega D., Larrazabal I., Britz F. Control strategies for induction motors in railway traction applications. Energies, Feb. 2020, vol. 13, no. 3, art. no. 700. doi: https://doi.org/10.3390/en13030700.
12. Lagos R.F., San Emeterio A., Vinolas J., Alonso A., Aizpun M. The influence of track elasticity when travelling on a railway turnout. Proceedings of the Second International Conference on Railway Technology: Research, Development and Maintenance, 2014, р. 11. doi: https://doi.org/10.4203/crp.104.208.
13. Kuznetsov B.I., Nikitina T.B., Kolomiets V.V., Bovdui I.V. Improving of electromechanical servo systems accuracy. Electrical Engineering & Electromechanics, 2018, no. 6, pp. 33-37. doi: https://doi.org/10.20998/2074-272X.2018.6.04.
Чернігівський В. Г., Юсько А. П., Любавській Б. Г., Мілосеред В. М., Сапелюк В. О., Федоров М. І. Лабораторний стенд для вивчення параметрів рухомих резонансних систем. Наукові записки Полтавського державного технічного університету. 2022, № 4, c. 10-14. DOI: https://doi.org/10.15407/techned2020.05.010

2. Віруховський С. Г., Карпенко Н. П., Любавський Б. Г., Мильський А. С., Мілосеред В. М., Федоров М. І. Аналіз резонансних характеристик рухомих систем та вплив різних параметрів на їхній рух. Наукові записки Полтавського державного технічного університету. 2022, № 4, c. 10-14. DOI: https://doi.org/10.15407/techned2020.05.010

3. Віруховський С. Г., Карпенко Н. П., Любавський Б. Г., Мильський А. С., Мілосеред В. М., Федоров М. І. Аналіз резонансних характеристик рухомих систем та вплив різних параметрів на їхній рух. Наукові записки Полтавського державного технічного університету. 2022, № 4, c. 10-14. DOI: https://doi.org/10.15407/techned2020.05.010
19. Kuznetsov B.I., Nikitina T.B., Bovdui I.V. Multiobjective synthesis of two degree of freedom nonlinear robust control by discrete continuous plant. *Technical Electrodynamics*, 2020, no. 5, pp. 10-14. https://doi.org/10.15407/techned2020.05.010.

20. Chien-Hrons-Rewiski Autotuning Method. Available at: https://www.mstarrlabs.com/control/zmrule.html (Accessed 14 February 2022).

21. Ziegler-Nichols Tuning Rules for PID. Available at: https://www.mstarrlabs.com/control/zmrule.html (Accessed 14 February 2022).

22. Huba M., Chamraz S., Bistak P., Vrancic D. Making the PI and PID Controller Tuning Inspired by Ziegler and Nichols Precise and Reliable. *Sensors*, 2021, vol. 21, no. 18, art. no. 6157. doi: https://doi.org/10.3390/s21186157.

23. Chernykh I.V. Modelirovanie elektrotekhnicheskikh ustroystv v MATLAB. *SimPowerSistems i Simulink* [Modeling of Electrical Devices in MATLAB. SimPowerSistems and Simulink]. Moscow, DMK Press Publ., 2007, 288 p. (Russ).

24. Balamurugan S., Umarani A. Study of Discrete PID Controller for DC Motor Speed Control Using MATLAB. 2020 *International Conference on Computing and Information Technology (ICCIT-1441)*, 2020, pp. 1-6. doi: https://doi.org/10.1109/ICCIT-144147971.2020.9213780.

25. Yuan Z., Wu M., Tian C., Zhou J., Chen C. A Review on the Application of Friction Models in Wheel-Rail Adhesion Calculation. *Urban Rail Transit*, 2021, vol. 7, no. 1, pp. 1-11. doi: https://doi.org/10.1007/s40864-021-00141-y.

How to cite this article:

Buriakovsky S.G., Asmolova L.V., Maslii An.S., Maslii Ar.S., Obruch I.V. Development and study of a microprocessor automatic control system for a mono-switch tie type with a linear inductive electric motor and a discrete speed controller. *Electrical Engineering & Electromechanics*, 2022, no. 5, pp. 3-9. doi: https://doi.org/10.20998/2074-272X.2022.5.01.