A Phylogeny of the Family Poritidae (Cnidaria, Scleractinia) Based on Molecular and Morphological Analyses

Yuko F. Kitano1,2, Francesca Benzoni3, Roberto Arrigoni3, Yoshihisa Shirayama1,4, Carden C. Wallace5, Hironobu Fukami2*

1 Seto Marine Biological Laboratory, Field Science and Education Center, Kyoto University, Shirahama, Wakayama, Japan, 2 Department of Marine Biology and Environmental Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan, 3 Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy, 4 Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa, Japan, 5 Museum of Tropical Queensland, Townsville, Queensland, Australia

Abstract

The family Poritidae formerly included 6 genera: Alveopora, Goniopora, Machadaporites, Porites, Poritipora, and Stylarea. Morphologically, the genera can be differentiated based on the number of tentacles, the number of septa and their arrangement, the length of the polyp column, and the diameter of the corallites. However, the phylogenetic relationships within and between the genera are unknown or contentious. On the one hand, Alveopora has been transferred to the Acroporidae recently because it was shown to be more closely related to this family than to the Poritidae by previous molecular studies. On the other hand, Goniopora is morphologically similar to 2 recently described genera, Machadaporites and Poritipora, particularly with regard to the number of septa (approximately 24), but they have not yet been investigated at the molecular level. In this study, we analyzed 93 samples from all 5 poritid genera and Alveopora using 2 genetic markers (the barcoding region of the mitochondrial COI and the ITS region of the nuclear rDNA) to investigate their phylogenetic relationships and to revise their taxonomy. The reconstructed molecular trees confirmed that Alveopora is genetically distant from all poritid genera but closely related to the family Acroporidae, whereas the other genera are genetically closely related. The molecular trees also revealed that Machadaporites and Poritipora were indistinguishable from Goniopora. However, Goniopora stutchburyi was genetically isolated from the other congeneric species and formed a sister group to Goniopora together with Porites and Stylarea, thus suggesting that 24 septa could be an ancestral feature in the Poritidae. Based on these data, we move G. stutchburyi into a new genus, Bernardpora gen. nov., whereas Machadaporites and Poritipora are merged with Goniopora.

Introduction

The family Poritidae Gray, 1842 is distributed throughout the tropics [1] and includes over 140 nominal species [2], some of which are among the major coral reef framework builders. The family formerly included 6 extant genera (currently Alveopora is not included), 3 of which are species-rich [1]—Porites Link, 1807 (73 species), Goniopora de Blainville, 1830 (31 spp.), and Alveopora de Blainville, 1830 (18 spp.)—and 3 are monospecific—Stylarea Milne Edwards & Haime, 1851, Poritipora Veron, 2000, and Machadaporites Nemésio, 2005. These last 3 species are rare or restricted to peculiar environmental conditions or have a limited geographic distribution. Conversely, the 3 major genera are common throughout the Indo-Pacific, with Porites extending into the Atlantic, from tropical to temperate regions. The biological, ecological and biometeorological studies such as climate change using Porites are well known [3–7], and this genus has been studied extensively at the molecular level in comparison with other coral genera [8–10] although it is still very difficult to divide Porites into discrete species in some cases (e.g., P. lutea and P. lobata) [9] due to the tiny but highly variable morphological characters used in the classification. In contrast, there are very few ecological and molecular studies of other Poritidae [11,12], with the exception of our recent work showing the phylogenetic relationships of several species of Goniopora [13]. There has been some dispute over the classification of genera in the Poritidae since the revision by Dana [14]. In particular, the position of Alveopora has been contentious [15]. Vaughan and Wells [16] reinstated Alveopora in the Poritidae because of its similarity to Goniopora in ecology and polyp behavior, although in listing the skeletal characteristics of the genus, Wells [17] qualified most as “except in Alveopora”. Alveopora may be confused with Goniopora in the field because the polyps of both genera have very long columns, a character not shared with other genera, and these are usually elongated, obscuring the skeleton. As Veron and Pichon [15] noted, Goniopora polyps have 24 tentacles whereas Alveopora polyps have 12 tentacles. Moreover, they state that “no east
Australian *Alveopora* shows any sign of having either of the patterns of septal fusion found in *Porites* or *Goniopora.* In support of this argument, recent molecular studies have indicated that *Alveopora* is genetically distant from *Porites* and *Goniopora* [18,19], although only a few specimens and species from each genus were analyzed in these studies. Based on the evidence from these published genetic works, *Alveopora* was transferred from the Poritidae to the Acroporidae Verrill, 1902 by Dai and Horng [20], albeit without any formal diagnosis or discussion. Recently the characters of *Alveopora* have been discussed in relation to the Acroporidae [21,22].

Goniopora is easily distinguishable from other genera in the Poritidae, with 3 septal cycles and 24 septa (vs. 2 septal cycles and 12 septa for *Porites, Alveopora, and Stylaraea*) and larger corallites [15]. *Machadopora* has 15–22 septa and hence fewer than *Goniopora* [23]. Poritidae skeletal morphology is quite similar to that of *Goniopora* due to the presence of 24 septa, but the former has smaller corallites and only 2 septal cycles [24]. *Stylaraea* is the only monospecific poritid genus to have been studied since its description. One ecological study [25] and a few morphological studies [26] have been reported for *Stylaraea*. *Stylaraea punctata* is possibly the smallest colonial zoanthellate scleractinian coral and has been reported as a broader [25]. This genus superficially resembles *Porites*, but is distinguished from it by reduced septation without the *Porites* pattern of fusion (e.g. septal triplet), and the absence of pali, although its phylogenetic position in the Poritidae has not been studied.

Recent molecular phylogenetic analyses of scleractinian corals [19,27–31] revealed that molecular-based phylogenetic relationships sometimes conflict with traditional macromorphology-based taxonomy. This indicates that the current, common identifying characters within a family or genus of scleractinian corals do not always reflect their phylogenetic relationships. One such inconsistency is seen in the relationship between Atlantic and Indo-Pacific Faviidae Gregory, 1900 [27] (but see [32] for the taxonomic revision). Despite such conflicts, there are also many cases in which molecular data are consistent with traditional taxonomy. Moreover, some morphological characters previously not considered key characters have been found to be effective as diagnostics for the phylogenetic relationships in several cases [32–34]. Overall, most molecular studies conclude that molecular analysis is useful in discerning the relationships of species or genera and inferring the phylogeny. Forsman et al. [9] investigated the molecular-based phylogenetic relationships among species of *Porites*, using mainly the entire internal transcribed spacer region (ITS) of the nuclear ribosomal DNA. Their results showed that most species of *Porites* were clearly distinguishable genetically, highlighting the usefulness of ITS markers in inferring relationships in *Porites* at the species level.

In this study, we assess the relationship of all 5 genera in the Poritidae with *Alveopora* to revise the taxonomy, and infer the morphological changes in the evolutionary lineage in this family, using both molecular and morphological analysis. Also to assess phylogenetic variation in the regional and species differences, the present study examines a large number of specimens collected with broad geographic ranges from mainly Japan water to the Indian Ocean, covering most of common species and some uncommon and rare species, together with the genetic data of *Porites* spp. from Forsman et al. [9].

Materials and Methods

Collection

Most specimens (approximately 10 cm³ in size) were collected from 17 sites in Japan (Fig. 1). Additionally some samples were collected from Malaysia, and western Indian Ocean (Table 1). All Japanese sampling (AK, AM, AO, IK, IR, IS, KK, KS, MI, MO, OT, OU, SO, SR, SS, TN, TR; see Fig. 1) was performed in the frame of research projects by Japanese Society for Coral Taxonomy or by associate prof. H. Fukami at University of Miyazaki with sampling permission from each local government in Japan. Malaysia (PEN; see Fig. 1) sampling has taken place by local staffs in non-marine protected area, Songsong Island, under the permission of the research project by prof. Zulfigar Yasin and prof. Aileen Tan at Universiti Sains Malaysia. All western Indian Ocean sampling was also performed in the frame of research projects for which a sampling permission was delivered by local authorities and samples were shipped with CITiES permits. AD, BA, BU, DJ, and MU are all sites in Yemen (Fig. 1). There, sampling has taken place in several missions and regular sampling permits were issued by Yemen Environmental Protection Agency (EPA) in Sana’a. Moreover, EPA staff supervised the activities in the field at all times. MY is Mayotte Island (Fig. 1). Sampling permits were issued by the Direction de l’Agriculture et de la Foret de Mayotte, Service Environnement et Foret and by the Maritime Affairs Office. DJ are samples from Djibouti (Fig. 1) taken during the Tara Oceans expedition and the sampling permits were delivered by the Aménagement du Territoire et de l’Environnement de Djibouti. Photos of each specimen were taken in the field (particularly for living polyps) and the depth and habitat were recorded. After collection, a small piece of each specimen was removed for use in DNA extraction (see below), and the remaining sample was bleached to investigate the skeletal morphology for species identification.

Species identification

Species identification of *Goniopora* and *Alveopora* is difficult due to very limited skeletal characters and highly variable skeletal and polyp morphologies. The best solution to this common problem in the scleractinian corals is detailed analyses of the type material of each species [28,29]. In order to minimize the risk of misidentification in this study, we firstly made lists of characters for species identification for these two genera (Tables S1, and S2) using the original descriptions and related references [1,14,15,26,35–60]. These tables were used to identify our specimens to species, examining the skeletal morphology of each specimen using a VHX-1000 digital microscope (Keyence) or stereoscopic microscope. Traditionally, species identification of *Goniopora* and *Alveopora* is based on skeletal characters, but recently Veron and Pichon [15], Nishihira and Veron [59], and Veron [1] added polyp characters to support species identification. Therefore, we also considered polyp characters along with skeletal characters for species identification in this study. The skeletal specimens collected in Japan are retained at University of Miyazaki (MUFS) or Seto Marine Biological Laboratory (SMBL). Skeletal specimens collected in Malaysia are deposited at Universiti Sains Malaysia (MSL/USM), and skeletal specimens collected in western Indian Ocean are at University of Milano-Bicocca (UNIMIB).

Genetic analyses

A small sample (less than 1 cm³) of each specimen was put in CHAOS solution to dissolve the tissues or fixed in 99% ethanol. Total DNA was extracted from CHAOS solution using the phenol/chloroform extraction method [61], and from the coral
tissues preserved in ethanol using the DNeasy Blood & Tissue Kit (Qiagen). The barcoding region of the mitochondrial Cytochrome oxidase subunit I (COI) was amplified by the polymerase chain reaction (PCR) using the primers ZCO1 and ZCO1R [9]. The nuclear ribosomal ITS region (ITS) including the 3' end of the 18s rRNA, ITS-1, 5.8s, ITS-2, and the 5' end of the 28s rRNA was also amplified by PCR using the primers 1S and 2SS [62]. The PCR condition for these two markers was 94°C for 30 seconds followed by 30 or 35 cycles at 94°C for 30 seconds, 55°C or 60°C for 45 seconds, and 72°C for 90 seconds, with a final phase of 72°C for 5 minutes. For the mitochondrial region, PCR products were treated with Shrimp Alkaline Phosphatase (SAP) and Exonuclease I (ExoI) at 37°C for 40 minutes followed by 80°C for 20 minutes. The DNA sequences were then determined via a direct sequence method, using ABI3730 or ABI310 sequencer. PCR products of the nuclear marker were also directly sequenced, but when obtained sequences had more than double peaks in the chromatogram, they were sub-cloned into TA-vector (Promega) or TOPO10 (Invitrogen) and sequenced using ABI3730 or ABI310.

All DNA sequences obtained in this study were submitted to DDBJ (accession No. AB906942–AB907101, listed in Table 1).

A total of 15 COI and 26 ITS Goniopora sequences were taken from our previous study ([13], see Table S3). Also, a number of sequences were downloaded from GenBank/DDBJ and included in the molecular analyses. For COI analysis, 30 sequences from 18 species of Porites ([9], Table S3) were used. One sequence (AB441211 [19]) from Siderastrea siderea in the family Siderastreidae Vaughan an Wells, 1943, two sequences (AB441201–AB441202 [19]) from Galaxea fascicularis in the family Euphylliidae (Alloiteau, 1952), and two sequences (AB441216–AB441217 [19]) from Pocillopora spp. in the family Agariciidae Gray, 1847 (species name of AB441216 is registered as P. cactus in DDBJ, but it is revised P. decussata as the results of the reexamination of the skeleton). Also, in the family Acroporidae, four sequences (AF338425, AY451340–AY451342 [63,64]) from three species of Acropora, one sequence (AY903296 [65]) from Montipora cactus and one sequence (AY903295 [65]) from Acropora mallei were used. For ITS, 67 sequences from 18 species of Porites from previous study ([9], see Table S3) were used. Because there are many sequences of Porites for COI and ITS.
Family	Species	DNA sample ID	specimen ID	locality	Country	COI (accession No.)	ITS (accession No.)
Acroporidae	Montipora sp.	SR127	MUF5 YFK73	Shirahama	Japan	AB907075	-
Acroporidae	Astreopora sp.1	AO29	MUF5 YFK444	Amami-Oshima	Japan	AB907076	-
Acroporidae	Astreopora sp.1	AO109	MUF5 YFK485	Amami-Oshima	Japan	AB907077	-
Acroporidae	Astreopora sp.2	AO107	MUF5 YFK484	Amami-Oshima	Japan	AB907078	-
Acroporidae	Alveopora allingi	AO125	MUF5 YFK504	Amami-Oshima	Japan	AB907079	-
Acroporidae	Alveopora allingi	IR47	MUF5 YFK1060	Iriomote	Japan	AB907080	-
Acroporidae	Alveopora catalai	AO117	MUF5 YFK507	Amami-Oshima	Japan	AB907081	-
Acroporidae	Alveopora catalai	IR21	MUF5 YFK971	Iriomote	Japan	AB907082	-
Acroporidae	Alveopora excelsa	KS5	MUF5 YFK100	Kushimoto	Japan	AB907083	-
Acroporidae	Alveopora excelsa	OT26	MUF5 YFK303	Otsuki	Japan	AB907084	-
Acroporidae	Alveopora excelsa	AM2	MUF5 YFK365	Amakusa	Japan	AB907085	-
Acroporidae	Alveopora japonica	SO19	MUF5 YFK1112	Suo-Oshima	Japan	AB907086	-
Acroporidae	Alveopora japonica	IK26	MUF5 YFK226	Iki	Japan	AB907087	-
Acroporidae	Alveopora japonica	SR120	MUF5 YFK66	Shirahama	Japan	AB907088	-
Acroporidae	Alveopora japonica	AM7	MUF5 YFK366	Amakusa	Japan	AB907089	-
Acroporidae	Alveopora sp.	TN49	SMBL Cni10611	Tanegashima	Japan	AB907090	-
Acroporidae	Alveopora sp.	TN100	MUF5 YFK1035	Tanegashima	Japan	AB907091	-
Acroporidae	Alveopora spongiosa	AO126	MUF5 YFK510	Amami-Oshima	Japan	AB907092	-
Acroporidae	Alveopora spongiosa	SS15	MUF5 YFK218	Sesoko	Japan	AB907093	-
Acroporidae	Alveopora spongiosa	IR145	MUF5 HY11-40	Iriomote	Japan	AB907094	-
Acroporidae	Alveopora tizardi	SR50	MUF5 YFK326	Shirahama	Japan	AB907095	-
Acroporidae	Alveopora tizardi	SR115	MUF5 YFK58	Shirahama	Japan	AB907096	-
Acroporidae	Alveopora verrilliana	TR80	MUF5 YFK689	Nakano-shima	Japan	AB907097	-
Dendrophylliidae	Turbinaria peltata	SR5	MUF5 YFK126	Shirahama	Japan	AB907099	-
Dendrophylliidae	Turbinaria peltata	SR143	MUF5 YFK89	Shirahama	Japan	AB907100	-
Poritidae	Goniopora albicus	PEN1	MSL/USM/SS001	Songsong	Malaysia	AB906942	-
Poritidae	Goniopora albicus	PEN9	MSL/USM/SS009	Songsong	Malaysia	AB906943	-
Poritidae	Goniopora albicus	BA002	UNIMIB BA002	Bir Ali	Yemen	AB907026	AB906944
Poritidae	Goniopora albicus	DJ074	UNIMIB DJ074	Oblal W	Djibouti	AB906945	-
Poritidae	Goniopora burgosi	OT6	MUF5 YFK286	Otsuki	Japan	AB906946	-
Poritidae	Goniopora cf. cellulosa	TN29	MUF5 YFK248	Tanegashima	Japan	AB907029	AB906947-51
Poritidae	Goniopora cf. cellulosa	TN54	SMBL Cni10573	Tanegashima	Japan	AB907030	AB906952
Poritidae	Goniopora ciliatus	BA076	UNIMIB BA076	Bir Ali	Yemen	AB906953	-
Poritidae	Goniopora columna	IS1	MUF5 YFK351	Ishigaki	Japan	AB907031	AB906954
Poritidae	Goniopora columna	IS3	MUF5 YFK353	Ishigaki	Japan	AB907032	AB748660*
Poritidae	Goniopora djiboutiens	AK18	MUF5 YFK163	Akajima Island	Japan	AB907033	AB906955-6
Poritidae	Goniopora cf. fruticosa	TN12	MUF5 YFK263	Tanegashima	Japan	AB906957	-
Poritidae	Goniopora cf. fruticosa	TR1	MUF5 YFK643	Nakano-shima	Japan	AB906958	-
Poritidae	Goniopora cf. fruticosa	TR4	MUF5 YFK641	Nakano-shima	Japan	AB907034	AB906959
Poritidae	Goniopora cf. fruticosa	AO28	MUF5 YFK443	Amami-Oshima	Japan	AB907035	AB906960
Poritidae	Goniopora cf. fruticosa	AO87	MUF5 YFK458	Amami-Oshima	Japan	AB906961	-
Poritidae	Goniopora lobata	KK17	MUF5 YFK813	Kikai	Japan	AB907036	AB906962
Poritidae	Goniopora minor	AO135	MUF5 YFK513	Amami-Oshima	Japan	AB907037	AB906963
Poritidae	Goniopora minor	OU56	MUF5 YFK773	Oura bay	Japan	AB907038	AB906964
Poritidae	Goniopora minor	MI6	MUF5 KSMH20	Miyako	Japan	AB907039	AB906965
Poritidae	Goniopora minor	IR34	MUF5 YFK988	Iriomote	Japan	AB907040	AB906966
Poritidae	Goniopora minor	MY029	UNIMIB MY029	Ille Vert	Mayotte, France	-	AB906967
Family	Species	DNA sample ID	specimen ID	locality	Country	COI (accession No.)	ITS (accession No.)
-------------	--------------------------	---------------	-------------------	----------	---------	--------------------	---------------------
Poritidae	Goniopora norfolkensis	KK53	MUF5 YFK843	Kikai	Japan	AB906968	
Poritidae	Goniopora norfolkensis	AK2	MUF5 YFK159	Akajima Island	Japan	AB907040	AB906969
Poritidae	Goniopora norfolkensis	IS7	MUF5 YFK399	Ishigaki	Japan	AB907041	AB906970
Poritidae	Goniopora cf. norfolkensis	AK8	MUF5 YFK165	Akajima Island	Japan	AB907042	AB906971
Poritidae	Partitopora palliformis	IS27	MUF5 YFK940	Taketomi	Japan	AB907043	AB906972
Poritidae	Partitopora palliformis	IS48	MUF5 YFK959	Taketomi	Japan	AB907044	AB906973
Poritidae	Goniopora cf. pendulus	PEN29	MSL/USM/SS029	Songsong	Malaysia	AB906974	
Poritidae	Goniopora somaliensis	TR85	MUF5 YFK690	Nakanoshima	Japan	AB907045	AB906975
Poritidae	Goniopora somaliensis	KK50	MUF5 YFK841	Kikai	Japan	AB907046	AB906976
Poritidae	Goniopora somaliensis	OU29	MUF5 YFK764	Oura bay	Japan	AB906977	
Poritidae	Goniopora somaliensis	IR61	MUF5 YFK1074	Hatoma	Japan	AB907047	AB906978
Poritidae	Goniopora somaliensis	DJ019	UNIMIB DJ019	Ras Ali	Djibouti	AB907048	AB906979-80
Poritidae	Goniopora somaliensis	DJ073	UNIMIB DJ073	Obal W	Djibouti	AB906981	
Poritidae	Goniopora somaliensis	DJ198	UNIMIB DJ198	Ankali Outer	Djibouti	AB906982-3	
Poritidae	Goniopora cf. somaliensis	MY100	UNIMIB MY100	N’goudja inner barrier	Mayotte, France	AB907049	AB906984
Poritidae	Goniopora stokesi	BU034	UNIMIB BU034	Burum	Yemen	AB907050	AB906985
Poritidae	Goniopora stokesi	BU039	UNIMIB BU039	Burum	Yemen	AB907050	AB906986
Poritidae	Goniopora stokesi	BU063	UNIMIB BU063	Burum	Yemen	AB906987	
Poritidae	Machadoporites tantillus	AD068	UNIMIB AD068	Aden	Yemen	AB907051	AB906988
Poritidae	Machadoporites tantillus	BA032	UNIMIB BA032	Bir Ali	Yemen	AB907052	AB906989
Poritidae	Machadoporites tantillus	BA070	UNIMIB BA070	Bir Ali	Yemen	AB907053	AB906990
Poritidae	Machadoporites tantillus	BA099	UNIMIB BA099	Bir Ali	Yemen	AB907054	AB906991
Poritidae	Goniopora tenuidens	AM85	MUF5 YFK1157	Amakusa	Japan	AB907055	AB906992
Poritidae	Goniopora tenuidens	KS15	MUF5 YFK319	Kushimoto	Japan	AB907056	AB906993
Poritidae	Goniopora tenuidens	OT15	MUF5 YFK297	Otsuki	Japan	AB907057	AB906994
Poritidae	Goniopora tenuidens	OT18	MUF5 YFK298	Otsuki	Japan	AB907058	AB906995
Poritidae	Goniopora tenuidens	TN53	MUF5 YFK50	Tanegashima	Japan	AB907059	AB906996
Poritidae	Goniopora tenuidens	KK28	MUF5 YFK810	Kikai	Japan	AB906997	
Poritidae	Goniopora tenuidens	IS18	MUF5 YFK934	Taketomi	Japan	AB907060	AB906998
Poritidae	Goniopora sp.1	BA078	UNIMIB BA078	Bir Ali	Yemen	AB906999	
Poritidae	Goniopora sp.2	MU139	UNIMIB MU139	Al Mukallah	Yemen	AB907000	
Poritidae	Goniopora stutchbury	KS1	MUF5 YFK101	Kushimoto	Japan	AB907061	AB907001-3
Poritidae	Goniopora stutchbury	KS50	MUF5 YFK148	Kushimoto	Japan	AB907062	AB907004
Poritidae	Goniopora stutchbury	MO33	MUF5 YFK866	Miyazaki-Oshima	Japan	AB907005	
Poritidae	Goniopora stutchbury	MO99	MUF5 YFK1184	Kushima	Japan	AB907006	
Poritidae	Goniopora stutchbury	OY5	MUF5 YFK614	Oura bay	Japan	AB907007-10	
Poritidae	Goniopora stutchbury	OU40	MUF5 YFK768	Oura bay	Japan	AB907063	AB907011
Poritidae	Goniopora stutchbury	OU51	MUF5 YFK771	Oura bay	Japan	AB907012	
Poritidae	Goniopora stutchbury	SS21G	MUF5 YFK220	Sesoko	Japan	AB907064	AB907013
Poritidae	Goniopora stutchbury	PEN2	MSL/USM/SS002	Songsong	Malaysia	AB907065	AB907014
Poritidae	Goniopora stutchbury	PEN5	MSL/USM/SS005	Songsong	Malaysia	AB907015	
Poritidae	Goniopora stutchbury	PEN22	MSL/USM/SS002	Songsong	Malaysia	AB907016	
Poritidae	Goniopora stutchbury	SS21G	MUF5 YFK220	Sesoko	Japan	AB907064	AB907013
Poritidae	Stylaraea punctata	AK88	MUF5 YFK1239	Akajima	Japan	AB907066	AB907017
Poritidae	Stylaraea punctata	AK9	MUF5 YFK1240	Akajima	Japan	AB907067	AB907018
Poritidae	Stylaraea punctata	AK90	MUF5 YFK1241	Akajima	Japan	AB907068	AB907019
Poritidae	Stylaraea punctata	AK91	MUF5 YFK1242	Akajima	Japan	AB907069	AB907020
Poritidae	Stylaraea punctata	AK92	MUF5 YFK1243	Akajima	Japan	AB907070	AB907021
Poritidae	Stylaraea punctata	AK93	MUF5 YFK1244	Akajima	Japan	AB907071	AB907022
registered in GenBank, the sequences of representative species from each of the different phylogenetic groups reported by Forsman et al. [9], were selected for this study. Finally, as Fukami et al. [19] and Kitahara et al. [31] showed that the family Dendrophylliidae Gray, 1847 is genetically closely related to the family Poritidae, specimens of Turbinaria peltata (family Dendrophylliidae) from Japan were also sampled for this study.

Molecular phylogenetic analysis

Electropherograms and DNA sequences were checked and edited using Sequencher (Gene Code Co.) and SeqView 4.3.0 [66]. DNA sequences were aligned with MAFFT 7 [67] using the L-INS-i option. Then, all sites with indels and several sites with alignment ambiguities were excluded manually from the subsequent analyses. Two aligned DNA datasets (COI and ITS) used in this study are shown in supplementary information (Datasets S1, S2). Pairwise genetic distances were calculated as p-distance using MEGA 4.0.2 [68]. Phylogenetic trees were reconstructed by neighbor-joining (NJ) and maximum likelihood (ML). For NJ, PAUP* 4.0b10 [69] was used to infer the topologies for both COI and the ITS markers using Kimura 2-parameter model [70] and to conduct bootstrap analysis (1000 replicates). For ML, we assumed a model of nucleotide evolution obtained by using the Akaike Information Criterion (AIC) as implemented in MrModeltest 2.2 [71]. The most appropriate models of nucleotide evolution were TrN with invariant (I) and gamma (G) parameters (TrN+I+G) for the COI marker, and TrNef +I+G for ITS marker. PAUP* was used to reconstruct a best ML tree using a heuristic search and the tree-bisection-reconnection branch swapping method. GARLI (Genetic Algorithm for Rapid Likelihood Inference) 0.951 [72] was preferred to PAUP* for the bootstrap estimation as the former is less time consuming. Using GARLI, optimal ML topologies were searched with default setting using the models selected by MrModeltest (TrN+I+G for COI, TrNef +I+G for ITS) and bootstrap analyses (500 replicates) were conducted for each model. MrBayes 3.2.2 [73] was also used to conduct Bayesian analyses under the same models. Four parallel chains of 1–4×10^6 generations were run for each model. Trees were sampled every 100 generations, and the initial 25% of the total trees as burn-in were discarded. The remaining trees were pooled to produce a 50% majority rule consensus tree. The average standard deviation of split frequencies after 4×10^6 generations was 0.002069 for COI, and ones after 2.4×10^6 generations was 0.009909 for ITS. All topologies obtained in these analyses were quite similar, so that only the ML tree inferred using PAUP* is used in this study.

In addition, we combined COI and ITS data and analyzed them with same methods as each marker using the GTR+I+G model for the nucleotide substitution (the average standard deviation of split frequencies after 1.0×10^6 generations was 0.009909).

Nomenclature Acts

The electronic edition of this article conforms to the requirements of the amended International Code of Zoological Nomenclature, and hence the new names contained herein are available under that Code from the electronic edition of this article. This published work and the nomenclatural acts it contains have been registered in ZooBank, the online registration system for the ICZN. The ZooBank LSIDs (Life Science Identifiers) can be resolved and the associated information viewed through any standard web browser by appending the LSID to the prefix “http://zoobank.org/”. The LSID for this publication is: urn:lsid:zoobank.org:pub: 6975D790-3A4F-466A-ABFA-D922E6675B4B. The electronic edition of this work was published in a journal with an ISSN, and has been archived and is available from the following digital repositories: PubMed Central, LOCKSS.

Results

Species identification

Twenty samples of Alveopora and 58 samples of Goniopora were analyzed in this study (Table 1). Although a few species have species-specific polyps, such as Goniopora alicibius, polyp characters vary greatly in the field. For example, terete tentacles, a typical polyp character of G. tenuidens, are also seen in G. burgosi.

All 7 specimens of Stylararea punctata were found in very shallow water (1 m) on a sandy beach in Aakajima Island, Okinawa, Japan (Fig. 1). Notably, all of them were attached to dead coral skeletons of the genus Acropora. Their size is very small (less 1 cm) and they have only 5 or 6 corallites. Tentacle and septal numbers were both 12 in all of them (Fig. 2A–D).

Poritopsis paliformis Veron, 2000 has 24 septa with typically 2 septal cycles (long and short), 6 pali and no columnella reported in the literature [24]. Two samples we collected in Taketomi Island, Japan (first record in the Pacific Ocean) had no elongating polyps in the field and had a cellular appearance (Fig. 3A), which is a feature of P. paliformis, as shown in Veron [1,24]. The skeletal morphologies are also consistent in the literature, although the second cycle is not well developed in some corallites; however, many had 24 septa with 2 cycles (Fig. 3B). Therefore, we identified these 2 samples as P. paliformis. This species was described in Veron [1] without designating type material, and then it was redescribed [24] designating the holotype. However, the holotype of this species is not valid following ICZN [74], and the specimens listed in Veron [1] are regarded as part of the syntype series. Therefore,

Table 1. Cont.

Family	Species	DNA sample ID	specimen ID	locality	Country	COI (accession No.)	ITS (accession No.)
Poritidae	Stylararea punctata	AK101	MUF5 YFK1245	Akajima	Japan	AB907072	AB907023
Poritidae	Porites cf. lichen	SR128	MUF5 YFK74	Shirahama	Japan	AB907073	AB907024
Poritidae	Porites sp.	AK32	MUF5 YFK194	Akajima	Japan	AB907074	AB907025

Dash means no data.

Asterisk shows accession number referred from Kitano et al. [13]. Note that more than one ITS sequences were obtained by sub-cloning from a single specimen in several samples while ITS from other samples were determined by direct sequencing of PCR products. Museum abbreviations are as follows: MSL/USM: Universiti Sains Malaysia, MUF5: University of Miyazaki, Department of Fisheries Science (=Department of Marine Biology and Environmental Science), Japan, SMBL: Seto Marine Biological Laboratory, Kyoto University, Japan, and UNIMIB: University of Milano-Bicocca, Department of Biotechnology and Biosciences, Italy.

http://10.1371/journal.pone.0098406.t001

PLOS ONE | www.plosone.org 6 May 2014 | Volume 9 | Issue 5 | e98406
the holotype of this species listed in Veron [24] is to be considered a lectotype.

Four specimens collected in the Gulf of Aden (Fig. 3EF), which is near the type locality of Machadoporites tantillus (Claereboudt & Al-Amri, 2004), were identified as M. tantillus because they are consistent with the original description of this species [23].

Diagnostic morphological characters among genera in the family Poritidae are summarized in Table 2.

COI phylogeny

We obtained 69 COI sequences from all 5 genera in the Poritidae with Alveopora, 3 sequences from Turbinaria peltata and Astreopora spp., and one from Montipora caverna (Table 1). A total of 473 positions were used (120 polymorphic sites with 109 informative sites) and no indels were observed. A phylogenetic tree was reconstructed using these data, including sequences from GenBank/DDBJ (see Methods). Siderastrea siderea was used as an outgroup, based on the phylogenetic position of the Scleractinia shown by Fukami et al. [19].
The COI phylogenetic tree showed that all 18 species of *Porites* are monophyletic. Moreover, the 13 *Goniopora* species we examined in this tree are also monophyletic, with the notable exception of *G. stutchburyi* (Fig. 4). This species and *Stylaraea punctata* are sister taxa (Fig. 2), and together they form a sister group to *Porites*. *Machadoporites tantillus* and *Poritipora paliformis* are nested within *Goniopora* (except *G. stutchburyi*). On the one hand, within the *Goniopora* phylogeny, *M. tantillus* forms a clade with the western Indian Ocean species *G. somaliensis* and *G. cf. somaliensis*. On the other hand, *P. paliformis* forms a clade with *G. minor* and *G. columna*, although *G. somaliensis* and *G. minor* are polyphyletic. Notably, all *G. somaliensis* from Japan are genetically distant from the *G. somaliensis* specimens from the western Indian Ocean. Uncorrected genetic p-distances between *G. stutchburyi* and *Porites* and between *G. stutchburyi* and the remaining *Goniopora* spp. were very similar (approximately 0.02).

All samples of *Alveopora* are genetically distant from all other poritids (p-distance 0.08–0.10), but closely related to the family Acroporidae (0.06). The phylogenetic position of *Alveopora* is unclear due to low bootstrap values, but it forms a sister group...
with *Astreopora* spp. In addition, sequences from *T. petiata* (family Dendrophylliidae) form a sister clade of all poritids except *Alveopora* and are positioned between *Alveopora* and the other poritids.

ITS phylogeny

We obtained a total of 84 sequences of ITS from all 5 genera in the Poritidae (Table 1). In this study, we excluded *Alveopora* from ITS analysis because ITS regions were highly variable between *Alveopora* and other genera and they were hardly aligned.

The phylogenetic relationships among *Porites*, *Goniopora*, *Stylaraea*, *Poritipora*, and *Machadoporites* were inferred using ITS (Fig. 5). The 68 *Porites* sequences from Forsman et al. [9] and 26 *Goniopora* sequences from Kitano et al. [13] were also added for this analysis (see Table S3). A total of 347 positions were used (108 polymorphic sites with 89 informative sites). This ITS tree also showed similar topology to the COI tree as described above. In particular, *Stylaraea punctata* and *G. stutchburyi* are sister taxa. *Poritipora parvisperforata* formed a clade with *G. minor* and *G. columna*. One specimen of *G. minor* in the *Poritipora* clade is from the western Indian Ocean and others are from Japan. *Machadoporites tantillus* formed a clade with *G. somaliensis* and another 3 species (*G. cf. somaliensis*, *G. sp.1*, and *G. sp.2*), all of which were collected from the western Indian Ocean. Other western Indian Ocean specimens (*G. albicusus*, *G. ciliatus*) and Malacca Strait specimens (*G. albicusus*, *G. pendulus*) were included in a major clade of *Goniopora* spp. Meanwhile, species relationships of *Goniopora* were less resolved because *Porites* and *Goniopora* have many indels in their rDNA sequences and phylogenetic information sites were largely excluded.

The tree using combined data of COI and ITS showed a similar topology to the one for ITS (Fig. S1).

Discussion

Phylogenetic relationships of *Goniopora*, *Stylaraea*, and *Porites*

Our molecular data showed that *Goniopora* can be divided into 2 distinct groups (Figs. 4, 5). One contains most *Goniopora* species together with *Machadoporites* and *Poritipora*, whilst the other is monospecific for *G. stutchburyi*. Moreover, *G. stutchburyi* is monophyletic with *Stylaraea punctata* and these 2 species form a sister group to all *Porites*. *Stylaraea punctata* also has very unique morphological characters among the zooxanthellate scleractinian corals, such as the smallest (less 1 cm) mature colony size with only 5 or 6 corallites and our observation of the release of zooxanthellate planulae from samples AK92 (maximum diameter 7.15 mm) and AK93 (4.00 mm), and 12 septa (=12 tentacles) without a specific septal pattern such as in *Porites* or *Goniopora*. Moreover, the calices of these species are devoid of pali. Thus, these features allow to distinguish *Stylaraea* from the other genera in this family. Although *Alveopora* can bear resemblance to *Stylaraea*, the two genera can be distinguished based on the caluma (not present or very weakly developed in *Alveopora* and star-like calume in *Stylaraea*). *Goniopora stutchburyi* has its own specific characters, such as coral which appear to have a smooth surface, dense septa and a calume composed of a star-shaped central rod (Figs. 2G, H). Thus, *G. stutchburyi* is easily distinguishable from all other congeneric species. Although the smooth appearance of the skeleton of this species and small calume size may lead to misidentification as *Porites*, *G. stutchburyi* can be differentiated from *Porites* on the basis of its septal number (24 vs. 12). Thus, morphologically, the only character shared by *S. punctata* and *G. stutchburyi* is a split-shaped granules if it develops the calume, which is absent in other congeneric species. Although the smooth appearance of the skeleton of this species and small calume size may lead to misidentification as *Porites*, *G. stutchburyi* can be differentiated from *Porites* on the basis of its septal number (24 vs. 12). Thus, morphologically, the only character shared by *S. punctata* and *G. stutchburyi* is a split-shaped granules if it develops the calume, which is absent in other congeneric species. Considering that molecular and morphological data agree in distinguishing *G. stutchburyi* from the other *Goniopora* species and *S. punctata*, we establish *Bernardpora* Kitano & Fukami gen. nov. (urn:lsid:zoobank.org:act:9C2FE523-A911-45AE-BC22-B52C8C60C40, also see below for details) and move *G. stutchburyi* into it. Comparison of diagnostic morphological characters between genera is summarized in Table 2.

Bernard [26] proposed that the septal formula of *Porites* derives from that of *Goniopora* by reduction of the third septal cycle, referring to the typical septal pattern of *Goniopora* as the gonioporoid pattern. Veron and Fichon [15] showed that *G. stutchburyi* typically has this septal pattern (Fig. 2G). In this study,

Genus	Calice diameter (mm)	Number of septa	Septal arrangement	Columella structure	References
Porites	0.5–2.2	12	Yes\(^1\)	Central rod (tubercle) with a star-shaped granules if it develops	[1,2,15,16,78]
Goniopora	1.0–10.0	24	Yes\(^3\)	Trabecular (fused septal dentations) if it develops	[1,2,15,16,26]
Stylaraea	<1	12	No	Central rod (tubercle) with a star-shaped granules	[1,15,46,78]
Poritipora	2.0–2.5	24	No\(^2\)	No	[1,24]
Machadoporites	1.5	15–22	No	No	[81]
This study					
Goniopora	1.0–10.0	12–24	Yes\(^3\)/No\(^2\)	Trabecular (fused septal dentations) if it develops	This study
Bernardpora gen. nov.	<2	24	Yes\(^3\)	Central rod (tubercle) with a star-shaped granules	This study

\(^1\) Specific septal pattern for *Porites*, \(^3\) 3rd septa turn into 2nd septa (=irregular reducing of gonioporoid pattern), \(^2\) Gonioporoid pattern.

Including *Poritipora* and *Machadoporites* as junior synonym.

doi:10.1371/journal.pone.0098406.t002
we proved that *G. stuchburyi* is a basal species of *Porites*, and our results strongly support Bernard’s hypothesis that *Porites* is derived from *Goniopora*-like morphologies. This conclusion is also supported by the fossil record: *Goniopora* extends back to the Cretaceous, but *Porites* only to the Eocene [16]. Thus, the presence of 24 septa would seem to be an ancestral feature in the Poritidae. The fact that taxa in the family Dendrophylliidae, the closest related outgroup of the Poritidae, have more than 24 septa would appear to support this.

According to Veron and Pichon [15] and Veron [1], *Goniopora burgosi* and *G. somalensis* are morphologically similar to *G. stuchburyi* in corallite size and height, respectively. Furthermore, *G. burgosi* appears to form only 12 septa as a third cycle of septa is reduced or absent in whole colonies, as is typical of *Porites* (*Goniopora* usually forms 24 septa). However, in our genetic analysis, *G. burgosi* and *G. somalensis* were included in the major *Goniopora* clade, and their phylogenetic position was distant from *Porites* even though they have fewer than 24 septa. The typical gonioporoid pattern was also observed in some colonies of *G. lobata* and *G. djohoiensis*, but they were not closely related to *G. stuchburyi*. These results suggest that each of these morphological characters alone (corallite size, depth, and septal formula) would not be sufficient to explain the species relationships in this genus.

Phylogenetic position of *Alveopora*

None of the 8 species of *Alveopora* we analyzed is closely related to *Goniopora*, despite the 2 genera having similar elongating polyps and tentacles. This suggests that the typically elongated polyps in these genera have appeared independently as result of convergent evolution. *Alveopora* is also genetically distant from *Porites*. Both genera have 12 tentacles (12 septa), but our genetic data indicate that this character is not synapomorphie, which is also supported morphologically by the difference in septal plan in both genera (spin-like for *Alveopora* and fused for *Porites*). Bernard [26] asserted that *Alveopora* did not belong to the Poritidae, and Veron and Pichon [15] also cast doubt on this classification. Along with our genetic data, the morphological differences between *Alveopora* and other genera in the Poritidae, which have previously been noted [15], support the hypothesis that *Alveopora* does not belong in the Poritidae. Wallace [21] also noted that *Alveopora* has the Acroporidae characteristic of synapticulothecate skeleton but does not have coenosteum. As reported by previous studies, the phylogenetic position of *Alveopora* is close to the Acroporidae [18,19,31,62]. The ITS of *Alveopora* is also very divergent, a characteristic shared by acroporids, but not observed in other families [62]. However, the phylogenetic position of *Alveopora* is still unclear because different topologies (forming a sister group with *Astreopora* or outside of *Astreopora*) were also obtained in COI (Fig. 4) and rDNA [62] trees. Our preliminary analyses of rDNA also showed that *Alveopora* was positioned outside of the *Astreopora* (data not shown). A complete evaluation of the phylogenetic position of *Alveopora* is outside the scope of this study. To perform such an evaluation, morphological comparison among all genera of Acroporidae would be necessary (Wallace et al., in preparation).

Phylogenetic relationships of the monospecific genera *Syltarea*, *Machadoporidae*, and *Poritipora*

Poritipora and *Machadoporidae* are found within the *Goniopora* lineage in all molecular phylogenetic trees. This is supported by morphology. *Machadoporidae* differs from *Goniopora* by having fewer septa (fewer than 24) and smaller calicles (<1.7 mm). However, some *Goniopora* species can have superficially similar characters. For example, *G. burgosi* has typically 12–15 septa, as shown in the original description [51], Fig. 3G). A similar pattern is also observed in *G. pendulus* (Fig. 3H). Moreover, the *G. minor* calicles were described as 1.5–2 mm in size in the original description [50]. Thus, characters such as “fewer than 24 septa,” and “small size calices” are not enough to separate *Machadoporidae* from *Goniopora*. In addition, *M. tantium* forms a clade with *G. somalensis* and other *Goniopora* species from the western Indian Ocean.

Similar to *Goniopora*, *Poritipora* has 24 septa, but the 2 genera can be distinguished by the difference in the number of septal cycles: 2 in *P. paliformis* and 3 in *Goniopora*. However, for several *Goniopora* species, primary and secondary cycles of septa are equal or subequal, such as in the case of *G. minor* (Fig. 3D). Therefore, the character “two cycles of septa” is not enough to separate *Poritipora* from *Goniopora*. In addition, *P. paliformis* forms a clade with *G. minor* and *G. columna*.

On the one hand, *Machadoporidae* and *Poritipora* are considered junior synonyms of *Goniopora* and their taxonomy is hence revised hereafter.

On the other hand, the type material of *P. paliformis* (Fig. 3C) and our samples (Fig. 3B) look similar to the type material of *G. minor* (Fig. 3D) shown in Crossland [50]. *Goniopora minor* has a similar size of corallites, 12 equally sized septa for the primary and secondary cycles, small or absent septa in tertiaries, and 4–6 pali. The development of the columella was described as “large,” but it is composed only of joined septa, which is the same pattern as that of *Poritipora*. Considering that most *G. minor* examined in this study (one colony of *G. minor* was genetically separated; Figs. 4 and 5) formed a clade with *P. paliformis* with little genetic difference, *P. paliformis* may be a morphological variant of *G. minor*.

Regional differences

Our specimens were collected mostly from Japanese waters, but some of them including *Machadoporidae* were collected from the western Indian Ocean and the Malacca Strait. Although several species from these regions, such as *G. albiconus* and *G. ciliatus*, were included in the clade with specimens collected from Japanese waters, 4 species, including *G. somalensis* from the western Indian Ocean, formed their own clade, whereas *G. somalensis* from Japanese waters was distant from the western Indian Ocean clade and included in a major clade of *Goniopora* spp. This suggests that morphological convergence may have occurred between the western Pacific and the western Indian Ocean populations of these species. Recently, Arrigoni et al. [75] showed that numerous cases of intraspecific divergence between Indian Ocean and Pacific Ocean populations were present in the families Merulinidae and Lobophylliidae. Moreover, Keshavmurthy et al. [76] reported that a widely distributed species, *Styllopora pistillata*, comprises 4 divergent clades corresponding to different regions, such as the western Pacific and the Red Sea, suggesting that their clades are
divergent at the species level. A similar observation on divergence was made with regard to the octocoral family Melithaeidae [77], indicating that species did not cluster according to their present morphological classification but instead clustered according to a biogeographical pattern such as the Indo-Pacific, Red Sea and Indian Ocean. Thus far, many studies of scleractinian corals have focused on higher level taxonomy and are based on material sampled from one or a few nearby Indo-Pacific regions. However, species-level analyses among regions are the next necessary step in the ongoing revolution in scleractinian taxonomy.

Taxonomic account

Below we propose the description of the new genus Bernardpora gen. nov. and the revised diagnosis of Goniopora, based on the original descriptions and subsequent information resulting from this study. See Table 1 for the museum abbreviations.

Family Poritidae Gray, 1847

Type genus: Porites Link, 1807

Diagnosis [1,16,60]: Massive, laminar or ramose colonies; corallites vary in size but usually small and mostly compacted closely without coenosteum, with one or two synaptyncular rings. Walls and septa are porous. Septa usually 12 to 24. Septa formed by 3 to 8 nearly vertical trabeculae, and innermost trabeculae of certain septa differentiated as pali.

Remarks: There are four extant genera in Family Poritidae, Porites, Goniopora, Stylarana and Bernardpora gen. nov. All are zooxanthellate corals. Porites is the only genus distributed throughout the tropics. Others are Indo-Pacific. Based on our results we confirm that the genus Alveopora does not belong to the same lineage as the family Poritidae. Although a full evaluation of the position of Alveopora is not completed yet, it is certain that Alveopora is closely related to other genera in the family Acroporidae ([20], this study).

Genus Porites Link, 1807

Type species: Porites polymorpha Link, 1807: 163 (= Madrepora porites Pallas, 1766:324–326, Neotype: MNHN Lamarck Collection No. 150 (figured in Jameson & Cairns, 2012, figs 4D, 5). This specimen is also the holotype of Porites clavata Lamarck, 1816 [78,80].

Generic synonymy [2,16,78]

- Neoporites Duchassaing & Michelotti, 1864: 97. Type species is not fixed.

- Cosmoporites Duchassaing & Michelotti, 1864: 99. Type species: Cosmoporites laevigata Duchassaing & Michelotti, 1864: 99. Holotype: unknown (figured in Duchassaing & Michelotti, 1864: 99, pl. x, figs. 12, 16. Bernard [79] described ‘the type specimen was not found by Count Peracca in the Turin Museum’)

- Synarnea Verrill, 1864: 42. Type species: Porites erosa Dana 1846: 565–566, pl. 55, fig. 8. Holotype: USNM 668

- Napopora Quelch, 1884:296. Type species: Napopora irregularis Quelch, 1884: 296–297. Holotype: NHMUK 86.12.9.302.

Diagnosis [1,16,78]: Colonies massive, ramose, laminar, or encrusting. Corallites are small, immersed, circular or polygonal. Calice diameter 0.5–2.2 mm. Septa are 12 in number, composed of 1 to 4 trabeculae. The typical formula of septal arrangement in this genus, with some of its variations, is seen. Pali are present, variable development in different species, usually 4–8 in number. Mural trabeculae always present. Columella trabeculae usually present with star-shaped granules. The wall is really simple, but the incipient synaptyncular, seen starting from the sides of septal granules, may become complete and form an inner synaptyncular wall.

Remarks: Distribution: Indo-Pacific and Atlantic [1]. Species number: 73[1,15]

Genus Goniopora de Blainville, 1830

Type species: Goniopora pedunculata Quoy & Gaimard, 1833:218–220, pl. 16, Figs. 9–11. The type specimen appears to be lost [15].

Generic synonymy [2,16,26]

- Rhodaraea Mile Edwards & Haime, 1849: 259. Type species: Astraea calcarulata, Lamarck 1816: 266. Holotype: unknown.

- Tichopora Quelch, 1886:188. Type species: Tichopora tenella Quelch, 1886: 189, pl. 11, figs. 1, 1a. Type specimens: NHMUK 86.12.9.342.

- Poritipora Veron, 2000:347. Type species: Poritipora poliformis Veron, 2000: 347. lectotype: MTQ G55857

- Calathisca Claereboudt & Al-Amri, 2004. Type species: Calathisca tantillus Claereboudt & Al-Amri, 2004 (This species is also type species of the genus Machadoporia). Holotype: SQCU040001.

- Machadoporia Nemésio, 2005. Type species: Calathisca tantillus Claereboudt & Al-Amri, 2004.

Revised diagnosis [1,16,26, this study]: Massive, columnar or ramose, rarely encrusting colonies. Corallites are circular or polygonal. Calice diameter 1–10 mm. Septa 24 in two or three cycles, or between 24 and 12 in two or three cycles, composed of 4 to 8 trabeculae. Pali and columella may develop. Columellae are composed of anastomosed septal dentations or arranged synaptyncular and fused inner ends of septa. Wall structure is synaptyncularlothecal. Polyps usually elongate during the day (note that G. poliformis does not elongate polyps during the day).

Remarks: Poritipora and Machadoporia are considered as junior synonyms of Goniopora. Distribution: Indo-Pacific [1]. Species number: 33 [1,15, this study].

Genus Stylarana Milne Edwards & Haime, 1831

Type species: Madrepora punctata Linnaeus, 1758:795. The specimen ZMB #956 may be Syntype [78] (examined).

Diagnosis: Stylarana is a monospecific genus with only known species, S. punctata. Therefore, the characters of this genus are those of S. punctata. Colonies are tiny (usually less than 10 mm in size) and from “cushion-shaped crusts” [46]. Calices are concave and around 1 mm diameters. Septal number is 12 (“2 cycles of 6 each” [15]) without specific septal pattern. Septa are composed of rows of star-shaped granules. Primary septa may reach to columellae. Columellae is composed of a star-shaped central rod such as Porites or Bernardpora. Wall structure is synaptyncularlothecal.

Remarks: Distribution: Indo-Pacific [1]. Species number: 1

Genus Bernardpora Kitano & Fukami gen. nov. urn:lsid:zoobank.org:act:9C2FE523-A491-45AE-BC22-B526CA68C040

Type species: Goniopora stutchburyi Wells, 1955: 11, pl. 1, figs 1–2; Holotype: MTQ G2931 (examined).

Diagnosis: Bernardpora is a monospecific genus with only known species, B. stutchburyi. Therefore, the characters of this genus are those of B. stutchburyi. Encrusting or sub-massive colonies.
Corallites round to polygonal and very shallow with smooth appearance. Calices are around 2 mm diameters. Septal number is mostly 24 with clear gonoporooid pattern shown in Bernard [26]. Septa are dense with up to seven multiple-spine-shaped septal teeth. Septal teeth closest to collumellae are indistinguishable from pale. Primaries and secondary septa nearly-reach to collumellae. Collumella is composed of a star-shaped central rod such as Stylarea and Porites. Wall structure is syncrystalothecal. Polyps elongate but very short during the day.

Remarks: Distribution: Indo-Pacific [1]. Species number: 1

Etymology: The generic name is in honor of the coral scientist Henry M. Bernard.

Supporting Information

Figure S1 Molecular phylogenetic relationships of genera of the Poritidae except of Alveopora based on combined COI+ITS sequences. Numbers on/below main branches show bootstrap values (>50%) in ML and NJ analyses, and Bayesian posterior probability (>0.5). Stars show specimens collected from western Indian Ocean, and triangles show ones collected from Malacca Strait. Sample codes or accession numbers are shown after species names (see Table 1, Table S3). Grey in color for Alveopora, green for Porites, purple for Stylarea, blue for ‘Poritopora’, and orange for ‘Machadoportopora’. Goniopora is shown by bars in black. Bernardopora is shown by bar in red.

Dataset S1 Nexus data file of the COI sequence alignments used for the analyses.

Dataset S2 Nexus data file of the ITS sequence alignments used for the analyses.

References

1. Veron JEN (2000) Corals of the world. Vol. 3. Townsville: Australian Institute of Marine Science. 489 p.
2. WoRMS Editorial Board (2015) World Register of Marine Species. Available from http://www.marinespecies.org
3. Lough JM, Barnes DJ (2000) Environmental controls on growth of the massive coral Porites. J Exp Mar Biol Ecol 245: 225–245.
4. Bessat F, Buigues D (2001) Two centuries of variation in coral growth in a massive Porites colony from Moorea (French Polynesia): a response of ocean-atmosphere variability from south central Pacific. Palaeogeogr Palaeoclimatol Palaeoecol 175: 381–392.
5. McClanahan TR, Weil E, Mazzar J (2009) Strong relationship between coral bleaching and growth anomalies in massive Porites. Glob Change Biol 15: 1084–1016.
6. Barshis DJ, Stillman JH, Toonen RJ, Smith LW, et al. (2010) Protein expression and genetic structure of the coral Porites compressa in Hapaa’s Coral Reefs 30: 133–142.
7. Hunter CL, Mordrun CW, Smith CM (1997). The utility of ITS sequences in assessing relationships among zoanthellae and corals. Proc 8th Int Coral Reef Symp 2: 1599–1602.
8. Foroushan Z, Bardasz DJ, Hunter CL, Toonen RJ (2009) Shape-shifting coral: Molecular markers show morphology is evolutionarily plastic in Porites. BMC Evol Biol 9: 45
9. Renzoni F, Stefani F (2012) Porites fontanesii, a new species of hard coral (Scleractinia, Poritidae) from the southern Red Sea, the Gulf of Tadjoura, and the Gulf of Aden. Zootaxa 3447: 56–62.
10. Heyward AJ (1983) Chromosomes of the coral Goniopora lutea (Anthozoa: Scleractinia). Hereditas 55: 109–121.
11. Peach MB, Hoegh-Guldberg O (1999) Sweeper polyps of the coral Goniopora tanalua (Scleractinia: Poritidae). Invertebr Biol 118: 1–7.
12. Kitanou YF, Ohsumi M, Uyeno D, Miyazaki K, Fukami H (2013) Phylogenetic and taxonomic status of the coral Goniopora stokesi and related species (Scleractinia: Poritidae) in Japan based on molecular and morphological data. Zool Stud 52: 25. http://dx.doi.org/10.1186/1810-522X-52-25

Table S1 Summary of the diagnostic morphological characters for species identification of the genus Goniopora. Original descriptions are shown in bold.

Table S2 Summary of the diagnostic morphological characters for species identification of the genus Alveopora. Original descriptions are shown in bold.

Table S3 List of poritid samples and accession numbers for COI and ITS, referred from previous study.

Acknowledgments

We thank the member of Japan Society for Coral Taxonomy, and KeiichiNomura, Kenji Iwao, Dr. KazuhikoSakai, Fumihito Iwase, Dr. Tohru

Author Contributions

Conceived and designed the experiments: YK, HF. Performed the experiments: YK. Analyzed the data: YK. Contributed reagents/materials/analysis tools: YK, HF, FB, RA, CW, YS. Wrote the paper: YK, HF, FB.
Benzoni F, Stefani F, Stolarski J (2012) Systematics of the coral *Pandacora* molecular and morphological evidences. Contrib Zool 76: 35–54.

Benzoni F, Stefani F, Pichon M, Galli P (2010) The name game: morpho-molecular species boundaries in the genus *Pandacora* (Cnidaria, Scleractinia). Zooj Jar Linn 160: 421–456.

Benzoni F, Arrigoni R, Stefani F, Stolarski J (2012) Systematics of the coral genus *Goniastrea* (Cnidaria, Anthozoa, Scleractinia) and description of a new family through combined morphologic and molecular analyses. System Biodivers 10: 417–433. DOI: 10.1080/14772001.2012.744969.

Kitahara MV, Cairns SD, Stolarski J, Blair D, Miller DJ, (2010) A molecular species boundaries in the genus *Goniopora*, (Cnidaria, Anthozoa, Scleractinia) and description of a new family through combined morphologic and molecular analyses. System Biodivers 10: 417–433. DOI: 10.1080/14772001.2012.744969.

Budd AF, Fukuji K, Smith ND, Knowlton N (2012) Taxonomic classification of the reef coral family Musidae (Cnidaria: Anthozoa: Scleractinia). Zooj Linn Soc Lond 446: 1–46.

Budd AF, Stolarski J (2009) Searching for new morphological characters in the systematics of scleractinian reef corals: comparison of septal teeth and granules between Atlantic and Pacific Massinidae. Acta Zoologa 90: 142–165.

Budd AF, Stolarski J (2011) Coraline wall and septal microstructure in *Goniopora*, (Cnidaria, Anthozoa, Scleractinia) based on mitochondrial COI barcode sequence data. PLoS ONE 5: e114490. DOI:10.1371/journal.pone.0011490.

Budd AF, Fukuji K, Smith ND, Knowlton N (2012) Taxonomic classification of the reef coral family Musidae (Cnidaria: Anthozoa: Scleractinia). Zool J Linn Soc Lond 446: 1–46.

Veron JEN (1990) New Scleractinia from Japan and other Indo-West Pacific countries. Galaxea 9: 95–173.

Nishihira M, Veron JEN (1993) Herbmatyic Corals of Japan. Tokyo: Kaitusha.440 p. (in Japanese)

Wallace CC, Felegara I, Muir PR, Harrison PL (2009) Recent and fossil corals of Moreton Bay, S.E. Queensland. Mem Queensl Mus 54: 1–118.

Fukuji K, Budd AF, Levitan DR, Jara J, Kersanach R, et al. (2004) Geographic differenced in species boundaries among members of the *Montastrea annularis* complex based on molecular and morphological markers. Evolution 58: 324–337.

Wei NWV, Wallace CC, Dai CF, Pillay KRM, Chen CA (2006) Analyses of the Ribosomal Internal Transcribed Spacers (ITS) and the 5.8S Gene indicate that extremely high rDNA heterogeneity is a unique feature in the scleractinian coral genus *Acropora* (Scleractinia, Acroporidae). Zool Stud 45: 404–418.

van Oppen MJH, Catmull J, McDonald BJ, Hidlop NR, Hugerman PJ, et al. (2002) The mitochondrial genome of *Acropora tenuis* (Cnidaria, Scleractinia) contains a large group I intron and a candidate control region. J Mol Evol 55: 1–13.

Shearer TL, Coffroth MA (2008) DNA barcoding: barcoding corals: limited by interspecific divergence, not intraspecific variation. Mol Ecol Resour 8: 247–253.

Tseng C-C, Wallace CC, Chen CA (2005) Mitogenomic analysis of Montipora cactus and *Anastrepspora matthai* (cnidaria; scleractinia; acroporidae) indicates an unequal rate of mitochondrial evolution among Acroporidae corals. Coral Reefs 24: 502–506.

Gross C, Guindon S, Gascuel O (2010) SeaView version 4: a multiphletical graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27: 221–224.

Katoh K, Standley DM (2011) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30: 772–780.

Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24: 1596–1599.

Swofford DL (2002) PAUP*. Phylogenetic analysis using parsimony (*and other methods), version 4.0b10. Sinauer Associates, Sunderland, MA.

Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16: 111–120.

Nylund JAA (2004) MrModeltest v2. Program developed by the author. Evolutionary Biology Centre, Uppsala University.

Zwickl DJ (2008) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Ph.D. dissertation, The University of Texas at Austin.

Rouquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, et al. (2012) MrBayes 3.2: efficient bayesian phylogenic inference and model choice across a large model space. Syst Biol 61: 539–542.

ICZN (2011) Coral taxon names published in ‘Corals of the world’ by J.E.N. Veron (2000); potential availability confirmed under Article 86.1.2. Bull Zool Nomencl 60: 162–166.

Arrigoni R, Stefani F, Pichon M, Galli P, Benzioni F (2012) Molecular phylogeny of the robust clade (Faviidae, Mussidae, Merulinidae, and Pectiniidae): an Indian Ocean perspective. Mol Phylogenet Evol 65: 183–193.

Keshavmurthy S, Yang S-Y, Alamaru A, Chuang Y-Y, Pichon M, et al. (2013) Analyses of the mitochondrial genome of *Acropora tenuis* (Cnidaria, Anthozoa, Scleractinia) and description of a new genus and new species of *Acropora*. Zool Stud 52: 375–387.

Claereboudt MR, Al-Amri IS (2004) Molecular phylogeny of the ciliate *Calathiscus tantillus* (Ciliophora, Hypotrichida). Mol Phylogenet Evol 30: 594–600.

Jameson SC, Cairns SD (2012) Neotypes for *Goniopora*. Proc Biol Soc Wash 125: 1–17.

van Oppen MJH, Catmull J, McDonald BJ, Hidlop NR, Hugerman PJ, et al. (2002) The mitochondrial genome of *Acropora tenuis* (Cnidaria, Scleractinia) contains a large group I intron and a candidate control region. J Mol Evol 55: 1–13.