Spectral Theory for Systems of Ordinary Differential Equations with Distributional Coefficients

Rudi Weikard

University of Alabama at Birmingham

IWOTA 2019

Lisboa

26. July 2019
I am reporting on joint work with

- Kevin Campbell (UAB)
- Ahmed Ghatasheh (Ohio State at Marion)
- Minh Nguyen (UAB)
Introduction
Spectral theory and the Fourier transform

• To describe heat conduction Fourier (1822) considered the problem

\[\phi_t = \phi_{xx}, \quad \phi'(0, t) = \phi'(L, t) = 0, \quad \phi(x, 0) = \phi_0(x) \]

• Separating variables and introducing the separation constant \(\lambda \) leads the boundary value problem

\[-y'' = \lambda y, \quad y(0) = y'(L) = 0 \]

with eigenfunctions \(y_n = \cos(k_n x) \) and eigenvalues \(\lambda_n = k_n^2 = (n\pi/L)^2 \).

• Then

\[\phi_0(x) = \sum_{n=0}^{\infty} c_n \cos(k_n x) \]

for appropriate Fourier coefficients whenever \(\phi_0 \in L^2((0, L), dx) \).
Generalizations

• Sturm and Liouville (1830s)

\[-(py')' + vy = \lambda rf\]
Generalizations

- Sturm and Liouville (1830s)

\[-(py')' + vy = \lambda rf\]

- Krein (1952) treated $p = 1$, $v = 0$ but r a positive measure.
Generalizations

• Sturm and Liouville (1830s)

\[-(py')' + vy = \lambda rf\]

• Krein (1952) treated \(p = 1, \nu = 0 \) but \(r \) a positive measure.

• Savchuk and Shkalikov (1999) studied a Schrödinger equation with distributional potential \(\nu \).
Generalizations

- Sturm and Liouville (1830s)
 \[-(py')' + vy = \lambda rf\]

- Krein (1952) treated $p = 1$, $\nu = 0$ but r a positive measure.

- Savchuk and Shkalikov (1999) studied a Schrödinger equation with distributional potential ν.

- Eckhardt, Gesztesy, Nichols, and Teschl (2013) generalized further and developed a spectral theory for the equation
 \[-(p(y' - sy))' - sp(y' - sy) + vy = \lambda ry\]
 on an interval (a, b) when $1/p$, ν, s, and r are real-valued and locally integrable and $r > 0$.
• It is useful to note that any of these equations can be realized as a system:

\[Ju' + qu = \lambda wu \]

where \(u_1 = y, \ u_2 = p(y' - sy) \) and

\[
J = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \quad q = \begin{pmatrix} v & -s \\ -s & -1/p \end{pmatrix}, \quad \text{and} \quad w = \begin{pmatrix} r & 0 \\ 0 & 0 \end{pmatrix}.
\]
Hurdles to overcome

• The definiteness condition

\[Ju' + qu = 0 \text{ and } wu = 0 \text{ (or } \|u\| = 0) \text{ implies } u \equiv 0 \]

may not hold.
Hurdles to overcome

- The definiteness condition

\[Ju' + qu = 0 \text{ and } wu = 0 \text{ (or } \|u\| = 0) \text{ implies } u \equiv 0 \]

may not hold.

- The DE gives, in general, only relations not operators.
Hurdles to overcome

- The definiteness condition
 \[Ju' + qu = 0 \text{ and } wu = 0 \text{ (or } \|u\| = 0) \text{ implies } u \equiv 0 \]
 may not hold.

- The DE gives, in general, only relations not operators.
 - Consider graphs: \((u, f) \in T_{\text{max}} \text{ if and only if } u \in \text{BV}_{\text{loc}} \text{ and } Ju' + qu = wf\)
Hurdles to overcome

- The definiteness condition

\[Ju' + qu = 0 \text{ and } wu = 0 \text{ (or } \|u\| = 0) \text{ implies } u \equiv 0 \]

may not hold.

- The DE gives, in general, only relations not operators.
 - Consider graphs: \((u, f) \in T_{\text{max}}\) if and only if \(u \in \text{BV}_{\text{loc}}\) and
 \[Ju' + qu = wf \]
 - Fortunately, there is an abstract spectral theory for linear relations
 \(\text{(Arens 1961, Orcutt 1969)}.\)
Our goal: allowing for rougher coefficients

- u continuously differentiable, if q, w continuous.
Our goal: allowing for rougher coefficients

- u continuously differentiable, if q, w continuous.
- u absolutely continuous, if q, w locally integrable.
Our goal: allowing for rougher coefficients

- u continuously differentiable, if q, w continuous.
- u absolutely continuous, if q, w locally integrable.
- u bounded variation, if q, w distributions of order 0 (measures).
Our goal: allowing for rougher coefficients

- u continuously differentiable, if q, w continuous.
- u absolutely continuous, if q, w locally integrable.
- u bounded variation, if q, w distributions of order 0 (measures).
- If u were even rougher one can not define qu anymore.
Our goal: allowing for rougher coefficients

- u continuously differentiable, if q, w continuous.
- u absolutely continuous, if q, w locally integrable.
- u bounded variation, if q, w distributions of order 0 (measures).
- If u were even rougher one can not define qu anymore.
- In the presence of discrete components of q and w existence and uniqueness of solutions become an issue.
Hypotheses for this work

We consider the equation $Ju' + qu = wf$ posed on (a, b) and require the following:

- System size is $n \times n$.
- J is constant, invertible, and skew-hermitian.
- q and w are hermitian distributions of order 0 (measures).
- w non-negative (giving rise to the Hilbert space $L^2(w)$ with scalar product $\langle f, g \rangle = \int f^* wg$).
- Additional conditions to be discussed later (probably only technical).
Differential equations
Interpreting the differential equation

• Distributions of order 0 are, locally, measures. Positive distributions are positive measures.
Interpreting the differential equation

• Distributions of order 0 are, locally, measures. Positive distributions are positive measures.

• By Riesz’s representation theorem the antiderivative of any distribution of order 0 is a function of locally bounded variation and vice versa.
Interpreting the differential equation

- Distributions of order 0 are, locally, measures. Positive distributions are positive measures.

- By Riesz’s representation theorem the antiderivative of any distribution of order 0 is a function of locally bounded variation and vice versa.

- \(f \in L^2(w) \) implies \(f \in L^1_{\text{loc}}(w) \) and hence \(wf \) is again a distribution of order 0.
Interpreting the differential equation

• Distributions of order 0 are, locally, measures. Positive distributions are positive measures.

• By Riesz’s representation theorem the antiderivative of any distribution of order 0 is a function of locally bounded variation and vice versa.

• $f \in L^2(w)$ implies $f \in L^1_{\text{loc}}(w)$ and hence wf is again a distribution of order 0.

• $u \in \text{BV}_{\text{loc}}$ implies qu and wu are distributions of order 0.
Interpreting the differential equation

- Distributions of order 0 are, locally, measures. Positive distributions are positive measures.

- By Riesz’s representation theorem the antiderivative of any distribution of order 0 is a function of locally bounded variation and vice versa.

- $f \in L^2(w)$ implies $f \in L^1_{\text{loc}}(w)$ and hence wf is again a distribution of order 0.

- $u \in BV_{\text{loc}}$ implies qu and wu are distributions of order 0.

- Thus each term in

$$Ju' + qu = \lambda wu + wf$$

is a distribution of order 0.
Why balanced solutions?

We will look for solutions among the balanced solutions of locally bounded variation.

• If $F = tF^+ + (1 - t)F^-$ and $G = tG^+ + (1 - t)G^-$ for some fixed t

$$\int_{[x_1, x_2]} (F dG + G dF) = (FG) + (x_2) - (FG) - (x_1) + (2t - 1) \int_{[x_1, x_2]} (G^- - G^+) dF.$$
Why balanced solutions?

We will look for solutions among the balanced solutions of locally bounded variation.

- If $F = tF^+ + (1 - t)F^-$ and $G = tG^+ + (1 - t)G^-$ for some fixed t
 - $\int_{[x_1,x_2]} (FdG + GdF) = (FG)^+(x_2) - (FG)^-(x_1)$
 - $+ (2t - 1) \int_{[x_1,x_2]} (G^+ - G^-) dF$.

- We call $(F^+ + (1 - t)F^-)/2$ balanced.
Why balanced solutions?

We will look for solutions among the balanced solutions of locally bounded variation.

- If $F = tF^+ + (1 - t)F^-$ and $G = tG^+ + (1 - t)G^-$ for some fixed t
- $\int_{[x_1, x_2]} (FdG + GdF) = (FG)^+(x_2) - (FG)^-(x_1) + (2t - 1) \int_{[x_1, x_2]} (G^+ - G^-) dF$.
- The last term disappears unless F and G jump at the same place and if $t = 1/2$.
Why balanced solutions?

We will look for solutions among the balanced solutions of locally bounded variation.

- If $F = tF^+ + (1 - t)F^-$ and $G = tG^+ + (1 - t)G^-$ for some fixed t

 - $\int_{[x_1, x_2]} (FdG + GdF) = (FG)^+(x_2) - (FG)^-(x_1) + (2t - 1)\int_{[x_1, x_2]} (G^+ - G^-)dF$.

- The last term disappears unless F and G jump at the same place and if $t = 1/2$.

- We call $(F^+ + F^-)/2$ balanced.
Existence and uniqueness of solutions

• If Q or W have a jump at x the differential equation requires

$$J(u^+(x) - u^-(x)) + \left(\Delta_q(x) - \lambda \Delta_w(x)\right) \frac{u^+(x) + u^-(x)}{2} = \Delta_w(x) f(x)$$

where $\Delta_q(x) = q(\{x\}) = Q^+(x) - Q^-(x)$ (similar for w).
Existence and uniqueness of solutions

- If Q or W have a jump at x the differential equation requires

$$J(u^+(x) - u^-(x)) + (\Delta q(x) - \lambda \Delta w(x)) \frac{u^+(x) + u^-(x)}{2} = \Delta w(x)f(x)$$

where $\Delta q(x) = q(\{x\}) = Q^+(x) - Q^-(x)$ (similar for w).

- Equivalently, $B_+(\lambda, x)u^+(x) - B_-(\lambda, x)u^-(x) = \Delta w(x)f(x)$ where

$$B_\pm(x, \lambda) = J \pm \frac{1}{2}(\Delta q(x) - \lambda \Delta w(x)).$$
Existence and uniqueness of solutions

- If Q or W have a jump at x the differential equation requires

$$J(u^+(x) - u^-(x)) + (\Delta_q(x) - \lambda \Delta_w(x)) \frac{u^+(x) + u^-(x)}{2} = \Delta_w(x)f(x)$$

where $\Delta_q(x) = q(\{x\}) = Q^+(x) - Q^-(x)$ (similar for w).

- Equivalently, $B_+(\lambda, x)u^+(x) - B_-(\lambda, x)u^-(x) = \Delta_w(x)f(x)$ where

$$B_\pm(x, \lambda) = J \pm \frac{1}{2}(\Delta_q(x) - \lambda \Delta_w(x)).$$

- Unless $B_\pm(x, \lambda)$ are invertible the system does not have a unique solution.
Existence and uniqueness of solutions

• If Q or W have a jump at x the differential equation requires

\[J(u^+(x) - u^-(x)) + (\Delta_q(x) - \lambda \Delta_w(x)) \frac{u^+(x) + u^-(x)}{2} = \Delta_w(x)f(x) \]

where $\Delta_q(x) = q(\{x\}) = Q^+(x) - Q^-(x)$ (similar for w).

• Equivalently, $B_+(\lambda, x)u^+(x) - B_-(\lambda, x)u^-(x) = \Delta_w(x)f(x)$ where

\[B_\pm(x, \lambda) = J \pm \frac{1}{2}(\Delta_q(x) - \lambda \Delta_w(x)). \]

• Unless $B_\pm(x, \lambda)$ are invertible the system does not have a unique solution.

• Without an existence and uniqueness theorem there is no variation of constants formula.
Existence of solutions

- Consider $\lambda = 0$. The points where $B_{\pm}(x)$ are not invertible are discrete.
Existence of solutions

• Consider $\lambda = 0$. The points where $B_{\pm}(x)$ are not invertible are discrete.

• If there are only finitely many such points, a solution of $Ju' + qu = wf$ exists when

$$B\tilde{u} = F(f)$$

where

$$B = \begin{pmatrix}
-B_-(x_1)U_0(x_1) & B_+(x_1) & 0 & \cdots & 0 \\
0 & -B_-(x_2)U_1(x_2) & B_+(x_2) & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & 0 & -B_-(x_N)U_{N-1}(x_N) & B_+(x_N)
\end{pmatrix}$$

and the U_j is a fundamental system in (x_j, x_{j+1}).

Rudi Weikard (UAB) Spectral Theory 26. July 2019 14 / 28
Existence of solutions

- Consider $\lambda = 0$. The points where $B_{\pm}(x)$ are not invertible are discrete.

- If there are only finitely many such points, a solution of $Ju' + qu = wf$ exists when

\[B\tilde{u} = F(f) \]

where

\[
B = \begin{pmatrix}
-B_-(x_1)U_0(x_1) & B_+(x_1) & 0 & \cdots & 0 \\
0 & -B_-(x_2)U_1(x_2) & B_+(x_2) & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & 0 & -B_-(x_N)U_{N-1}(x_N) & B_+(x_N)
\end{pmatrix}
\]

and the U_j is a fundamental system in (x_j, x_{j+1}).

- One has to check whether $F(f) \in \text{ran } B$.

\[T_{\text{max}} = T^*_{\text{min}} \]
Maximal and minimal relation

- $\mathcal{T}_{\text{max}} = \{(u, f) \in L^2(w) \times L^2(w) : Ju' + qu =wf\}$
Maximal and minimal relation

- \(\mathcal{T}_{\text{max}} = \{(u, f) \in L^2(w) \times L^2(w) : Ju' + qu = wf\} \)

- \(\mathcal{T}_{\text{max}} = \{([u], [f]) \in L^2(w) \times L^2(w) : (u, f) \in \mathcal{T}_{\text{max}}\} \)

No technical conditions is needed for this result.
Maximal and minimal relation

- \(\mathcal{T}_{\text{max}} = \{(u, f) \in L^2(w) \times L^2(w) : Ju' + qu = wf\} \)
- \(\mathcal{T}_{\text{max}} = \{([u], [f]) \in L^2(w) \times L^2(w) : (u, f) \in \mathcal{T}_{\text{max}}\} \)
- \(\mathcal{T}_{\text{min}} \text{ and } \mathcal{T}_{\text{min}} \).

No technical conditions is needed for this result.
Maximal and minimal relation

- \(\mathcal{T}_{\text{max}} = \{(u, f) \in \mathcal{L}^2(w) \times \mathcal{L}^2(w) : Ju' + qu = wf\} \)
- \(\mathcal{T}_{\text{max}} = \{([u], [f]) \in \mathcal{L}^2(w) \times \mathcal{L}^2(w) : (u, f) \in \mathcal{T}_{\text{max}}\} \)
- \(\mathcal{T}_{\text{min}} \) and \(\mathcal{T}_{\text{min}} \).
- \(\mathcal{T}^* = \{(v, g) : \forall (u, f) \in T : \langle v, f \rangle = \langle g, u \rangle\} \).
Maximal and minimal relation

- \(T_{\text{max}} = \{ (u, f) \in L^2(w) \times L^2(w) : Ju' + qu = wf \} \)
- \(T_{\text{max}} = \{ ([u], [f]) \in L^2(w) \times L^2(w) : (u, f) \in T_{\text{max}} \} \)
- \(T_{\text{min}} \) and \(T_{\text{min}} \).
- \(T^* = \{ (v, g) : \forall (u, f) \in T : \langle v, f \rangle = \langle g, u \rangle \} \).
- \(T_{\text{min}}^* = T_{\text{max}} \)

No technical conditions is needed for this result.
Maximal and minimal relation

- \(\mathcal{T}_{\text{max}} = \{(u, f) \in L^2(w) \times L^2(w) : J u' + qu = wf\} \)
- \(T_{\text{max}} = \{([u], [f]) \in L^2(w) \times L^2(w) : (u, f) \in \mathcal{T}_{\text{max}}\} \)
- \(\mathcal{T}_{\text{min}} \) and \(\mathcal{T}_{\min} \).
- \(T^* = \{(v, g) : \forall (u, f) \in T : \langle v, f \rangle = \langle g, u \rangle\} \).
- \(T^*_{\text{min}} = T_{\text{max}} \)
- No technical conditions is needed for this result.
Approach to a proof

• To show $T_{\text{max}} \subset T_{\text{min}}^*$ is simply an integration by parts.
Approach to a proof

- To show $T_{\text{max}} \subset T^*_{\text{min}}$ is simply an integration by parts.
- For the converse two additional facts are required:

\[\int_{\xi_2}^{\xi_1} f^* \hat{w} v = \langle f, v \rangle = \langle u, g \rangle = \int_a^b u^* w g = \int_{\xi_2}^{\xi_1} f^* w v_1 = \int_{\xi_1}^{\xi_2} f^* w v_1\]
Approach to a proof

• To show $T_{\text{max}} \subset T_{\text{min}}^*$ is simply an integration by parts.

• For the converse two additional facts are required:
 • Given $g \in L^2(w)$ the DE $Jv' + qv = wg$ has a solution v_1.

 $\langle f, v \rangle = \langle u, g \rangle$ and partial integration give
 \[\int_{\xi_2}^{\xi_1} f \bar{\cdot} w v = \langle f, v \rangle = \langle u, g \rangle = \int_a^b u \bar{\cdot} w g = \int_{\xi_2}^{\xi_1} f \bar{\cdot} w v_1 \]

 $v - v_1 \in K_0$ and hence $Jv' + qv = wg$ on (ξ_1, ξ_2).

Approach to a proof

• To show $T_{\text{max}} \subset T_{\text{min}}^*$ is simply an integration by parts.

• For the converse two additional facts are required:
 • Given $g \in L^2(w)$ the DE $Jv' + qv = wg$ has a solution v_1.
 • Restrict to $[\xi_1, \xi_2]$ and define $K_0 = \{k : Jk' + qk = 0\}$ and $T_0 = \{([u], [f]) : Ju' + qu = wf, u(\xi_1) = u(\xi_2) = 0\}$. Then $\text{ran}(T_0) = L^2(w|_{[\xi_1, \xi_2]}) \ominus K_0$.

$\langle f, v \rangle = \langle u, g \rangle$ and partial integration give

$\int_{\xi_2}^{\xi_1} f^* \hat{\circ} wv = \langle f, v \rangle = \langle u, g \rangle = \int_a^b u^* wg = \int_{\xi_2}^{\xi_1} f^* wv_1 = \langle f, v \rangle$
Approach to a proof

• To show $T_{\text{max}} \subset T_{\text{min}}^*$ is simply an integration by parts.

• For the converse two additional facts are required:
 • Given $g \in L^2(w)$ the DE $Jv' +qv = wg$ has a solution v_1.
 • Restrict to $[\xi_1, \xi_2]$ and define $K_0 = \{ k : Jk' + qk = 0 \}$ and $T_0 = \{ ([u], [f]) : Ju' + qu = wf, u(\xi_1) = u(\xi_2) = 0 \}$. Then $\text{ran}(T_0) = L^2(w|_{[\xi_1, \xi_2]}) \ominus K_0$.

• Suppose $([v], [g]) \in T_{\text{min}}^*$ and $([u], [f]) \in T_0$, extend the latter to $([u], [f]) \in T_{\text{min}}$.

$\langle f, v \rangle = \langle u, g \rangle$ and partial integration give

$$\int_{\xi_2}^{\xi_1} f^* \overset{\cdot}{w} v = \langle f, v \rangle = \langle u, g \rangle = \int_a^b u^* wg = \int_{\xi_2}^{\xi_1} f^* w v_1 = \int_{\xi_2}^{\xi_1} f^* \overset{\cdot}{w} v_1$$

• $[v - v_1] \in K_0$ and hence $Jv' + qv = wg$ on (ξ_1, ξ_2).

Approach to a proof

• To show $T_{\text{max}} \subset T_{\text{min}}^*$ is simply an integration by parts.

• For the converse two additional facts are required:
 • Given $g \in L^2(w)$ the DE $Jv' + qv = wg$ has a solution v_1.
 • Restrict to $[\xi_1, \xi_2]$ and define $K_0 = \{k : Jk' + qk = 0\}$ and $T_0 = \{([u], [f]) : Ju' + qu = wf, u(\xi_1) = u(\xi_2) = 0\}$.
 Then $\text{ran}(T_0) = L^2(w_{|[\xi_1,\xi_2]}) \ominus K_0$.

• Suppose $([v], [g]) \in T_{\text{min}}^*$ and $([u], [f]) \in T_0$, extend the latter to $([u], [f]) \in T_{\text{min}}$.

• $\langle f, v \rangle = \langle u, g \rangle$ and partial integration give
 \[
 \int_{\xi_1}^{\xi_2} f^* \check{w} v = \langle f, v \rangle = \langle u, g \rangle = \int_a^b u^* wg = \int_a^b f^* wv_1 = \int_{\xi_1}^{\xi_2} f^* \check{w} v_1
 \]
Approach to a proof

- To show $T_{\text{max}} \subset T_{\text{min}}^*$ is simply an integration by parts.

- For the converse two additional facts are required:
 - Given $g \in L^2(w)$ the DE $Jv' + qv = wg$ has a solution v_1.
 - Restrict to $[\xi_1, \xi_2]$ and define $K_0 = \{k : Jk' + qk = 0\}$ and $T_0 = \{([u],[f]) : Ju' + qu = wf, u(\xi_1) = u(\xi_2) = 0\}$. Then $\text{ran}(T_0) = L^2(w|_{[\xi_1,\xi_2]}) \ominus K_0$.

- Suppose $([v],[g]) \in T_{\text{min}}^*$ and $([u],[f]) \in T_0$, extend the latter to $([u],[f]) \in T_{\text{min}}$.

- $\langle f, v \rangle = \langle u, g \rangle$ and partial integration give

$$
\int_{\xi_1}^{\xi_2} f^* \hat{w} v = \langle f, v \rangle = \langle u, g \rangle = \int_a^b u^* wg = \int_a^b f^* wv_1 = \int_{\xi_1}^{\xi_2} f^* \hat{w} v_1
$$

- $[v - v_1] \in K_0$ and hence $Jv' + qv = wg$ on (ξ_1, ξ_2).

Additional details on the needed facts

• Existence of solutions for $Ju' + qu = wg$ may be shown if g is in the range of T_{min}^*.

• On to Fact 2:
 • To show $\text{ran} T_0 \subset L^2(w|\xi_1,\xi_2) \ominus K_0$ is simply an integration by parts and the fact that elements of $\text{dom} T_0$ vanish at the endpoints.

• For the converse we need to construct a solution u of $Ju' + qu = wf$ if $f \in L^2(w|\xi_1,\xi_2) \ominus K_0$.

• This time $f \perp K_0$ allows to show existence of the sought solution.
Additional details on the needed facts

- Existence of solutions for $Ju' + qu = wg$ may be shown if g is in the range of T_{min}^*.

- On to Fact 2:

This time $f \perp K_0$ allows to show existence of the sought solution.
Additional details on the needed facts

• Existence of solutions for $Ju' + qu = wg$ may be shown if g is in the range of T^*_{min}.

• On to Fact 2:

• To show $\text{ran } T_0 \subset L^2(w_{\lfloor \xi_1, \xi_2 \rfloor}) \ominus K_0$ is simply an integration by parts and the fact that elements of $\text{dom } T_0$ vanish at the endpoints.
Additional details on the needed facts

• Existence of solutions for \(Ju' + qu = wg \) may be shown if \(g \) is in the range of \(T_{\min}^* \).

• On to Fact 2:

• To show \(\text{ran } T_0 \subset L^2(w|_{\xi_1,\xi_2}) \ominus K_0 \) is simply an integration by parts and the fact that elements of \(\text{dom } T_0 \) vanish at the endpoints.

• For the converse we need to construct a solution \(u \) of \(Ju' + qu = wf \) if \(f \in L^2(w|_{\xi_1,\xi_2}) \ominus K_0 \).
Additional details on the needed facts

- Existence of solutions for $Ju' + qu = wg$ may be shown if g is in the range of $T_{	ext{min}}^*$.

- On to Fact 2:

- To show $\text{ran } T_0 \subset L^2(w|_{[\xi_1, \xi_2]}) \ominus K_0$ is simply an integration by parts and the fact that elements of $\text{dom } T_0$ vanish at the endpoints.

- For the converse we need to construct a solution u of $Ju' + qu = wf$ if $f \in L^2(w|_{[\xi_1, \xi_2]}) \ominus K_0$.

- This time $f \perp K_0$ allows to show existence of the sought solution.
Spectral theory (expansion in eigenfunctions)
Extra conditions

- Set

\[\Lambda = \{ \lambda \in \mathbb{C} : \text{det}(J \pm \frac{1}{2}(\Delta_q(x) - \lambda \Delta_w(x))) = 0\} , \]

the bad set.
Extra conditions

- Set
 \[\Lambda = \{ \lambda \in \mathbb{C} : \det(J \pm \frac{1}{2}(\Delta_q(x) - \lambda \Delta_w(x))) = 0 \}, \]
 the bad set.

- \(\Lambda \cap \mathbb{R} = \emptyset \).
Extra conditions

- Set
 \[\Lambda = \{ \lambda \in \mathbb{C} : \det(J \pm \frac{1}{2}(\Delta_q(x) - \lambda \Delta_w(x))) = 0 \} \], the bad set.

- \(\Lambda \cap \mathbb{R} = \emptyset \).

- \(\Lambda \) discrete.
Boundary conditions

- Deficiency indices: \(n_\pm = \dim \{(u, \pm iu) \in T_{\text{max}}\} \).
Boundary conditions

- Deficiency indices: \(n_{\pm} = \dim \{(u, \pm iu) \in T_{\max}\} \).

- \(T \) is a self-adjoint restriction of \(T_{\max} \) if and only if \(T = \ker A \) and
Boundary conditions

- Deficiency indices: \(n_{\pm} = \dim\{(u, \pm iu) \in T_{\text{max}}\} \).

- \(T \) is a self-adjoint restriction of \(T_{\text{max}} \) if and only if \(T = \ker A \) and
 - \(A : T_{\text{max}} \to \mathbb{C}^{n_{\pm}} \) is linear and surjective.
Boundary conditions

- Deficiency indices: \(n_\pm = \dim \{(u, \pm iu) \in T_{\text{max}}\} \).

- \(T \) is a self-adjoint restriction of \(T_{\text{max}} \) if and only if \(T = \ker A \) and
 - \(A : T_{\text{max}} \to \mathbb{C}^{n_\pm} \) is linear and surjective.
 - \(T_{\text{min}} \subset \ker A \).

- Lagrange's identity: if \((u, f), (v, g) \in T_{\text{max}} \) then \((v^* Ju)' \) is a finite measure on \((a, b)\) and
 \[
 (v^* Ju)_- (b) - (v^* Ju)_+ (a) = \langle v, f \rangle - \langle g, u \rangle.
 \]
Boundary conditions

- Deficiency indices: \(n_{\pm} = \dim \{(u, \pm iu) \in T_{\text{max}}\} \).

- \(T \) is a self-adjoint restriction of \(T_{\text{max}} \) if and only if \(T = \ker A \) and
 - \(A : T_{\text{max}} \to \mathbb{C}^{n_{\pm}} \) is linear and surjective.
 - \(T_{\text{min}} \subset \ker A \).
 - \(A \mathcal{J} A^* = 0 \) (where \(\mathcal{J}(u, f) = (f, -u) \)).
Boundary conditions

• Deficiency indices: $n_{\pm} = \dim\{(u, \pm iu) \in T_{\text{max}}\}$.

• T is a self-adjoint restriction of T_{max} if and only if $T = \ker A$ and
 • $A : T_{\text{max}} \to \mathbb{C}^{n_{\pm}}$ is linear and surjective.

• $T_{\text{min}} \subset \ker A$.

• $A \mathcal{J} A^* = 0$ (where $\mathcal{J}(u, f) = (f, -u)$).

• $A_j(u, f) = \langle (v_j, g_j), (u, f) \rangle$ with $(v_j, g_j) \in D_i \oplus D_{-i}$.
Boundary conditions

- Deficiency indices: \(n_{\pm} = \text{dim}\{(u, \pm iu) \in T_{\text{max}}\} \).

- \(T \) is a self-adjoint restriction of \(T_{\text{max}} \) if and only if \(T = \ker A \) and
 - \(A : T_{\text{max}} \to \mathbb{C}^{n_{\pm}} \) is linear and surjective.
 - \(T_{\text{min}} \subset \ker A \).
 - \(A J A^* = 0 \) (where \(J(u, f) = (f, -u) \)).

- \(A_j(u, f) = \langle (v_j, g_j), (u, f) \rangle \) with \((v_j, g_j) \in D_i \oplus D_{-i} \).

- Lagrange’s identity: if \((u, f), (v, g) \in T_{\text{max}} \) then \((v^* Ju)' \) is a finite measure on \((a, b) \) and

\[
(v^* Ju)^-(b) - (v^* Ju)^+(a) = \langle v, f \rangle - \langle g, u \rangle.
\]
Boundary conditions

• Deficiency indices: \(n_{\pm} = \dim\{(u, \pm iu) \in T_{\text{max}}\} \).

• \(T \) is a self-adjoint restriction of \(T_{\text{max}} \) if and only if \(T = \ker A \) and
 • \(A : T_{\text{max}} \rightarrow \mathbb{C}^{n_{\pm}} \) is linear and surjective.
 • \(T_{\text{min}} \subset \ker A \).
 • \(A\mathcal{J}A^* = 0 \) (where \(\mathcal{J}(u, f) = (f, -u) \)).

• \(A_j(u, f) = \langle (v_j, g_j), (u, f) \rangle \) with \((v_j, g_j) \in D_i \oplus D_{-i}\).

• Lagrange’s identity: if \((u, f), (v, g) \in T_{\text{max}}\) then \((v^*Ju)'\) is a finite measure on \((a, b)\) and

\[
(v^*Ju)^-(b) - (v^*Ju)^+(a) = \langle v, f \rangle - \langle g, u \rangle.
\]

• \((u, f) \in \ker A\) if and only if \(0 = (g_j^*Ju)^-(b) - (g_j^*Ju)^+(a) = 0 \) for \(j = 1, \ldots, n_{\pm} \).
The resolvent and Green’s function

- If \([u, f] \in T_{\text{max}}\) and if the definiteness condition is violated, the class \([u]\) may have many balanced representatives in \(BV_{\text{loc}}\).

\[
\text{Define } E : T_{\text{max}} \to BV_{\text{loc}} : ([u], [f]) \mapsto u.
\]

\[
\text{Define } E_\lambda : L^2(w) \to BV_{\text{loc}} : f \mapsto E(u, \lambda u + f) \text{ where } u = R_\lambda f \text{ whenever } \lambda \in \rho(T) \text{ (will not distinguish below)}.
\]

Each component of \(f \mapsto (R_\lambda f)(x)\) is a bounded linear functional.

Green’s function:
\[
(R_\lambda f)(x) = \langle G(x, \cdot, \lambda) \ast f, w \rangle = \int G(x, \cdot, \lambda)wf.
\]
The resolvent and Green’s function

• If \([u, f] \in T_{\text{max}}\) and if the definiteness condition is violated, the class \([u]\) may have many balanced representatives in \(BV_{\text{loc}}\).

• However, there is a unique balanced representative \(u\) such that \(u(x_0)\) is perpendicular to \(N_0 = \{v(x_0) : Jv' + qv = 0 \& \ wv = 0\}\).
The resolvent and Green’s function

- If \([u, f]) \in T_{\text{max}}\) and if the definiteness condition is violated, the class \([u]\) may have many balanced representatives in \(BV_{\text{loc}}\).

- However, there is a unique balanced representative \(u\) such that \(u(x_0)\) is perpendicular to \(N_0 = \{v(x_0) : Jv' + qv = 0 \& vv = 0\}\).

- Define \(E : T_{\text{max}} \rightarrow BV_{\text{loc}} : ([u], [f]) \mapsto u\).
The resolvent and Green’s function

- If \(([u], [f]) \in T_{\text{max}}\) and if the definiteness condition is violated, the class \([u]\) may have many balanced representatives in \(BV_{\text{loc}}\).

- However, there is a unique balanced representative \(u\) such that \(u(x_0)\) is perpendicular to \(N_0 = \{v(x_0) : Jv' + qv = 0 \& \ wv = 0\}\).

- Define \(E : T_{\text{max}} \to BV_{\text{loc}} : ([u], [f]) \mapsto u\).

- Define \(E_\lambda : L^2(w) \to BV_{\text{loc}} : f \mapsto E(u, \lambda u + f)\) where \(u = R_\lambda f\) whenever \(\lambda \in \rho(T)\) (will not distinguish below).
The resolvent and Green’s function

• If \((u, f) \in T_{\text{max}}\) and if the definiteness condition is violated, the class \([u]\) may have many balanced representatives in \(BV_{\text{loc}}\).

• However, there is a unique balanced representative \(u\) such that \(u(x_0)\) is perpendicular to \(N_0 = \{v(x_0) : Jv' + qv = 0 \& \ wv = 0\}\).

• Define \(E : T_{\text{max}} \to BV_{\text{loc}} : ([u], [f]) \mapsto u\).

• Define \(E_\lambda : L^2(w) \to BV_{\text{loc}} : f \mapsto E(u, \lambda u + f)\) where \(u = R_\lambda f\) whenever \(\lambda \in \rho(T)\) (will not distinguish below).

• Each component of \(f \mapsto (R_\lambda f)(x)\) is a bounded linear functional.
The resolvent and Green’s function

• If \([u], [f]) \in T_{\text{max}}\) and if the definiteness condition is violated, the class \([u]\) may have many balanced representatives in \(\text{BV}_{\text{loc}}\).

• However, there is a unique balanced representative \(u\) such that \(u(x_0)\) is perpendicular to \(N_0 = \{v(x_0) : Jv' + qv = 0 \& \ wv = 0\}\).

• Define \(E : T_{\text{max}} \to \text{BV}_{\text{loc}} : ([u], [f]) \mapsto u\).

• Define \(E_{\lambda} : L^2(w) \to \text{BV}_{\text{loc}} : f \mapsto E(u, \lambda u + f)\) where \(u = R_{\lambda}f\) whenever \(\lambda \in \rho(T)\) (will not distinguish below).

• Each component of \(f \mapsto (R_{\lambda}f)(x)\) is a bounded linear functional.

• Green’s function: \((R_{\lambda}f)(x) = \langle G(x, \cdot, \lambda)^*, f \rangle = \int G(x, \cdot, \lambda)wf\).
Properties of Green’s function I

- The variation of constants formula: if $\lambda \not\in \Lambda$ and $x > x_0$

$$ (R_\lambda f)^-(x) = U^-(x, \lambda)(u_0 + J^{-1} \int_{(x_0, x)} U(\cdot, \lambda^*)wf) $$

where $u_0 = (R_\lambda f)(x_0)$ and $U(\cdot, \lambda)$ is a fundamental matrix with $U(x_0, \lambda) = I$.

Rudi Weikard (UAB) Spectral Theory 26. July 2019 23 / 28
Properties of Green’s function I

• The variation of constants formula: if \(\lambda \notin \Lambda \) and \(x > x_0 \)

\[
(R_\lambda f)^-(x) = U^-(x, \lambda)(u_0 + J^{-1} \int_{(x_0, x)} U(\cdot, \lambda)^* w f)
\]

where \(u_0 = (R_\lambda f)(x_0) \) and \(U(\cdot, \lambda) \) is a fundamental matrix with \(U(x_0, \lambda) = 1 \).

• Assume that \(f \) is compactly supported so that \(u \) satisfies the homogeneous equation near \(a \) and \(b \). Then \(u_0 \) has to be chosen so that
Properties of Green’s function I

• The variation of constants formula: if $\lambda \not\in \Lambda$ and $x > x_0$

$$(R_\lambda f)^-(x) = U^-(x, \lambda)(u_0 + J^{-1} \int_{(x_0, x)} U(\cdot, \lambda)^* w f)$$

where $u_0 = (R_\lambda f)(x_0)$ and $U(\cdot, \lambda)$ is a fundamental matrix with $U(x_0, \lambda) = 1$.

• Assume that f is compactly supported so that u satisfies the homogeneous equation near a and b. Then u_0 has to be chosen so that
 • $R_\lambda f$ is in $L^2(w)$ near both a and b,
Properties of Green’s function I

• The variation of constants formula: if $\lambda \not\in \Lambda$ and $x > x_0$

$$(R_\lambda f)^-(x) = U^-(x, \lambda)(u_0 + J^{-1}\int_{(x_0,x)} U(\cdot, \lambda)*wf)$$

where $u_0 = (R_\lambda f)(x_0)$ and $U(\cdot, \lambda)$ is a fundamental matrix with $U(x_0, \lambda) = I$.

• Assume that f is compactly supported so that u satisfies the homogeneous equation near a and b. Then u_0 has to be chosen so that
 • $R_\lambda f$ is in $L^2(w)$ near both a and b,
 • $R_\lambda f$ satisfies the boundary conditions (if any), and
Properties of Green’s function I

- The variation of constants formula: if $\lambda \not\in \Lambda$ and $x > x_0$

$$ (R_\lambda f)^-(x) = U^-(x, \lambda)(u_0 + J^{-1} \int_{(x_0, x)} U(\cdot, \bar{\lambda})^*wf) $$

where $u_0 = (R_\lambda f)(x_0)$ and $U(\cdot, \lambda)$ is a fundamental matrix with $U(x_0, \lambda) = I$.

- Assume that f is compactly supported so that u satisfies the homogeneous equation near a and b. Then u_0 has to be chosen so that
 - $R_\lambda f$ is in $L^2(w)$ near both a and b,
 - $R_\lambda f$ satisfies the boundary conditions (if any), and
 - $(I - P)u_0 = 0$ where P is the orthogonal projection onto N_0^\perp.

Properties of Green’s function I

• The variation of constants formula: if $\lambda \not\in \Lambda$ and $x > x_0$

\[
(R_\lambda f)^-(x) = U^-(x, \lambda)(u_0 + J^{-1}\int_{(x_0, x)} U(\cdot, \lambda)^*wf)
\]

where $u_0 = (R_\lambda f)(x_0)$ and $U(\cdot, \lambda)$ is a fundamental matrix with $U(x_0, \lambda) = \mathbb{I}$.

• Assume that f is compactly supported so that u satisfies the homogeneous equation near a and b. Then u_0 has to be chosen so that
 • $R_\lambda f$ is in $L^2(w)$ near both a and b,
 • $R_\lambda f$ satisfies the boundary conditions (if any), and
 • $(\mathbb{I} - P)u_0 = 0$ where P is the orthogonal projection onto N_0^\perp.

• This gives rise to a (rectangular) linear system

\[
F(\lambda)u_0 = \int \left[(b_-(\lambda)\chi_{(a, x_0)} + b_+(\lambda)\chi_{(x_0, b)})U(\cdot, \lambda)^*wf \right]
\]

Rudi Weikard (UAB) Spectral Theory 26. July 2019 23 / 28
Properties of Green’s function II

- F has a left inverse F^\dagger.

$$u_0 = \int (PF^\dagger b_-(\lambda)\chi_{(a,x_0)} + PF^\dagger b_+(\lambda)\chi_{(x_0,b)})U(\cdot, \overline{\lambda})^*wf.$$
Properties of Green’s function II

- F has a left inverse F^\dagger.

$$u_0 = \int (PF^\dagger b_-(\lambda) \chi_{(a,x_0)} + PF^\dagger b_+(\lambda) \chi_{(x_0,b)}) U(\cdot, \lambda^*)^* w_f.$$

- Define $M_\pm(\lambda) = PF(\lambda)^\dagger b_\pm(\lambda) \pm \frac{1}{2} J^{-1}$ and
Properties of Green’s function II

• F has a left inverse F^\dagger.

\[
 u_0 = \int (PF^\dagger b_-(\lambda)\chi_{(a,x_0)} + PF^\dagger b_+(\lambda)\chi_{(x_0,b)})U(\cdot, \bar{\lambda})^*wf.
\]

• Define $M_\pm(\lambda) = PF(\lambda)^\dagger b_\pm(\lambda) \pm \frac{1}{2} J^{-1}$ and

• $B_\pm = \{\int_{\text{right/left}} U(\cdot, \bar{\lambda})^*wf : f \in L^2(w)\}$.
Properties of Green’s function II

- F has a left inverse F^\dagger.

\[u_0 = \int \left(PF^\dagger b_-(\lambda) \chi_{(a,x_0)} + PF^\dagger b_+(\lambda) \chi_{(x_0,b)} \right) U(\cdot, \bar{\lambda})^* w f. \]

- Define $M_\pm(\lambda) = PF(\lambda)^\dagger b_\pm(\lambda) \pm \frac{1}{2} J^{-1}$ and

- $B_\pm = \{ \int_{\text{right/left}} U(\cdot, \bar{\lambda})^* w f : f \in L^2(w) \}$.

- $M_+ = M_-$ on $B_+ \cap B_-$.

Properties of Green’s function II

- F has a left inverse F^\dagger.

$$u_0 = \int (PF^\dagger b_-(\lambda) \chi(a,x_0) + PF^\dagger b_+(\lambda) \chi(x_0,b)) U(\cdot, \lambda)^* w f.$$

- Define $M_{\pm}(\lambda) = PF(\lambda)^\dagger b_{\pm}(\lambda) \pm \frac{1}{2} J^{-1}$ and

- $B_{\pm} = \{ \int_{\text{right/left}} U(\cdot, \lambda)^* w f : f \in L^2(w) \}$.

- $M_+ = M_-$ on $B_+ \cap B_-$.

- $M = M_{\pm}$ on $\text{span}(B_+ \cup B_-)$
Properties of Green’s function II

• F has a left inverse F^\dagger.

\[u_0 = \int (PF^\dagger b_-(\lambda)\chi_{(a,x_0)} + PF^\dagger b_+(\lambda)\chi_{(x_0,b)})U(\cdot, \lambda^*)wf. \]

• Define $M_\pm(\lambda) = PF(\lambda)^\dagger b_\pm(\lambda) \pm \frac{1}{2} J^{-1}$ and

• $B_\pm = \{ \int_{\text{right/left}} U(\cdot, \lambda^*)wf : f \in L^2(w) \}$.

• $M_+ = M_- \text{ on } B_+ \cap B_-.$

• $M = M_\pm \text{ on } \text{span}(B_+ \cup B_-)$

• On $\text{span}(B_+ \cup B_-)^\perp = N_0$ we set $M = 0.$
Properties of Green’s function III

Then

\[(R_\lambda f)(x) = U(x, \lambda) M(\lambda) \int_{(a,b)} U(\cdot, \bar{\lambda})^* w f\]

\[- \frac{1}{2} U(x, \lambda) J^{-1} \int_{(a,b)} \text{sgn}(\cdot - x) U(\cdot, \bar{\lambda})^* w f\]

\[+ \frac{1}{4} (U^+(x, \lambda) - U^-(x, \lambda)) J^{-1} U(x, \bar{\lambda})^* \Delta w(x) f(x)\]
Properties of Green's function III

• Then

\[(R_\lambda f)(x) = U(x, \lambda)M(\lambda) \int_{(a,b)} U(\cdot, \bar{\lambda})^* wf \]

\[- \frac{1}{2} U(x, \lambda)J^{-1} \int_{(a,b)} \text{sgn}(\cdot - x)U(\cdot, \bar{\lambda})^* wf \]

\[+ \frac{1}{4}(U^+(x, \lambda) - U^-(x, \lambda))J^{-1}U(x, \bar{\lambda})^* \Delta_w(x)f(x) \]

• $\Lambda \cap \mathbb{R}$ is empty.
Properties of Green’s function III

- Then

\[
(R_\lambda f)(x) = U(x, \lambda)M(\lambda) \int_{(a,b)} U(\cdot, \bar{\lambda})^*wf \\
- \frac{1}{2}U(x, \lambda)J^{-1} \int_{(a,b)} \text{sgn}(\cdot - x)U(\cdot, \bar{\lambda})^*wf \\
+ \frac{1}{4}(U^+(x, \lambda) - U^-(x, \lambda))J^{-1}U(x, \bar{\lambda})^*\Delta w(x)f(x)
\]

- \(\Lambda \cap \mathbb{R}\) is empty.

- The Fourier transform \((\mathcal{F}f)(\lambda) = \int_{(a,b)} U(\cdot, \bar{\lambda})^*wf\) is analytic on \(\mathbb{R}\).
Properties of Green’s function III

• Then

$$(R\lambda f)(x) = U(x, \lambda)M(\lambda) \int_{(a,b)} U(\cdot, \bar{\lambda})^*wf$$

$$- \frac{1}{2} U(x, \lambda)J^{-1} \int_{(a,b)} \text{sgn}(\cdot - x)U(\cdot, \bar{\lambda})^*wf$$

$$+ \frac{1}{4}(U^+(x, \lambda) - U^-(x, \lambda))J^{-1}U(x, \bar{\lambda})^*\Delta w(x)f(x)$$

• $\Lambda \cap \mathbb{R}$ is empty.

• The Fourier transform $(\mathcal{F}f)(\lambda) = \int_{(a,b)} U(\cdot, \bar{\lambda})^*wf$ is analytic on \mathbb{R}.

• Last two terms of $R\lambda f$ are also analytic on \mathbb{R}.
Properties of Green’s function III

• Then

\[(R_\lambda f)(x) = U(x, \lambda)M(\lambda) \int_{(a,b)} U(\cdot, \lambda^*)wf\]
\[- \frac{1}{2} U(x, \lambda) J^{-1} \int_{(a,b)} \text{sgn}(\cdot - x) U(\cdot, \lambda^*)wf\]
\[+ \frac{1}{4}(U^+(x, \lambda) - U^-(x, \lambda)) J^{-1} U(x, \lambda^*) \Delta_w(x)f(x)\]

• \(\Lambda \cap \mathbb{R}\) is empty.

• The Fourier transform \((\mathcal{F}f)(\lambda) = \int_{(a,b)} U(\cdot, \lambda^*)wf\) is analytic on \(\mathbb{R}\).

• Last two terms of \(R_\lambda f\) are also analytic on \(\mathbb{R}\).

• All singularities and hence all spectral information is contained in \(M\).
The M-function

- M is analytic away from \mathbb{R} and Λ
The M-function

- M is analytic away from \mathbb{R} and Λ
- $\text{Im } M / \text{Im } \lambda \geq 0$
The M-function

- M is analytic away from \mathbb{R} and Λ
- $\text{Im } M / \text{Im } \lambda \geq 0$
- Λ is a discrete set

\[M(\lambda) = A\lambda + B + \int \left(\frac{1}{t - \lambda} - \frac{t}{t^2 + 1} \right) \nu(t) \]

where $\nu = N'$ and N a non-decreasing matrix.
The M-function

- M is analytic away from \mathbb{R} and Λ
- $\text{Im } M / \text{Im } \lambda \geq 0$
- Λ is a discrete set
- Such a function cannot have isolated singularities (except removable ones).
The M-function

- M is analytic away from \mathbb{R} and Λ
- $\text{Im } M / \text{Im } \lambda \geq 0$
- Λ is a discrete set
- Such a function cannot have isolated singularities (except removable ones).
- M is a Herglotz-Nevanlinna function

$$M(\lambda) = A\lambda + B + \int \left(\frac{1}{t - \lambda} - \frac{t}{t^2 + 1} \right) \nu(t)$$

where $\nu = N'$ and N a non-decreasing matrix.
The Fourier Transform

- \((\mathcal{F}f)(\lambda) = \int U(\cdot, \lambda)^*wf\) if \(f \in L^2(w)\) is compactly supported and \(\lambda \notin \Lambda\).
The Fourier Transform

- \((\mathcal{F}f)(\lambda) = \int U(\cdot, \lambda)^*wf\) if \(f \in L^2(w)\) is compactly supported and \(\lambda \notin \Lambda\).

- Restricting to \(\mathbb{R}\): \(\mathcal{F}f \in L^2(\nu)\) extend by continuity to all of \(L^2(w)\).
The Fourier Transform

• \((\mathcal{F} f)(\lambda) = \int U(\cdot, \lambda) \ast wf\) if \(f \in L^2(w)\) is compactly supported and \(\lambda \not\in \Lambda\).

• Restricting to \(\mathbb{R}\): \(\mathcal{F} f \in L^2(\nu)\) extend by continuity to all of \(L^2(w)\).

• \(\mathcal{H}_\infty = \{ f : (0, f) \in T \}\) is the kernel of \(\mathcal{F}\). \(\mathcal{H}_0 = L^2(w) \ominus \mathcal{H}_\infty\).
The Fourier Transform

• \((\mathcal{F}f)(\lambda) = \int U(\cdot, \lambda)^* w f \) if \(f \in L^2(w) \) is compactly supported and \(\lambda \notin \Lambda \).

• Restricting to \(\mathbb{R} \): \(\mathcal{F}f \in L^2(\nu) \) extend by continuity to all of \(L^2(w) \).

• \(\mathcal{H}_\infty = \{ f : (0, f) \in T \} \) is the kernel of \(\mathcal{F} \). \(\mathcal{H}_0 = L^2(w) \ominus \mathcal{H}_\infty \).

• \((\mathcal{G}\hat{f})(x) = \int U(x, \cdot) \nu \hat{f} \) if \(\hat{f} \in L^2(\nu) \) is compactly supported.
The Fourier Transform

- $(\mathcal{F}f)(\lambda) = \int U(\cdot, \lambda)^*wf$ if $f \in L^2(w)$ is compactly supported and $\lambda \notin \Lambda$.

- Restricting to \mathbb{R}: $\mathcal{F}f \in L^2(\nu)$ extend by continuity to all of $L^2(w)$.

- $\mathcal{H}_\infty = \{ f : (0, f) \in T \}$ is the kernel of \mathcal{F}. $\mathcal{H}_0 = L^2(w) \ominus \mathcal{H}_\infty$.

- $(\mathcal{G}\hat{f})(x) = \int U(x, \cdot)\nu\hat{f}$ if $\hat{f} \in L^2(\nu)$ is compactly supported.

- $\mathcal{F} \circ \mathcal{G} = 1$ and $\mathcal{G} \circ \mathcal{F}$ is the projection onto \mathcal{H}_0.
The Fourier Transform

- \((\mathcal{F}f)(\lambda) = \int U(\cdot, \overline{\lambda})^* \nu f\) if \(f \in L^2(\nu)\) is compactly supported and \(\lambda \not\in \Lambda\).

- Restricting to \(\mathbb{R}: \mathcal{F}f \in L^2(\nu)\) extend by continuity to all of \(L^2(\nu)\).

- \(\mathcal{H}_\infty = \{f : (0, f) \in T\}\) is the kernel of \(\mathcal{F}\). \(\mathcal{H}_0 = L^2(\nu) \ominus \mathcal{H}_\infty\).

- \((\mathcal{G}\hat{f})(\chi) = \int U(\chi, \cdot)\nu \hat{f}\) if \(\hat{f} \in L^2(\nu)\) is compactly supported.

- \(\mathcal{F} \circ \mathcal{G} = 1\) and \(\mathcal{G} \circ \mathcal{F}\) is the projection onto \(\mathcal{H}_0\).

- \((u, f) \in T\) if and only if \((\mathcal{F}f)(t) = t(\mathcal{F}u)(t)\).
Thank you