Vectorial Acylation in *Saccharomyces cerevisiae*

Zhiying Zou
Fumin Tong
Nils J. Færøgeman
Claus Børsting
Paul N. Black

See next page for additional authors

Follow this and additional works at: https://digitalcommons.unl.edu/biochemfacpub

Part of the Biochemistry Commons, Biotechnology Commons, and the Other Biochemistry, Biophysics, and Structural Biology Commons

This Article is brought to you for free and open access by the Biochemistry, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Biochemistry -- Faculty Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Authors
Zhiying Zou, Fumin Tong, Nils J. Færgeman, Claus Børsting, Paul N. Black, and Concetta DiRusso
Vectorial Acylation in *Saccharomyces cerevisiae*

Fat1p AND FATTY ACYL-CoA SYNTHETASE ARE INTERACTING COMPONENTS OF A FATTY ACID IMPORT COMPLEX*

Zhiying Zou, Fumin Tong, Nils J. Faergeman, Claus Børsting, Paul N. Black, and Concetta C. DiRusso

From the Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208

In *Saccharomyces cerevisiae* Fat1p and fatty acyl-CoA synthetase (FACS) are hypothesized to couple import and activation of exogenous fatty acids by a process called vectorial acylation. Molecular genetic and biochemical studies were used to define further the functional and physical interactions between these proteins. Multicopy extragenic suppressors were selected in strains carrying deletions in FAA1 and FAA4 or FAA1 and FAT1. Each strain is unable to grow under synthetic lethal conditions when exogenous long-chain fatty acids are required, and neither strain accumulates the fluorescent long-chain fatty acid C₁₈-BODIPY-C₁₂ indicating a fatty acid transport defect. By using these phenotypes as selective screens, plasmids were identified encoding FAA1, FAT1, and FAA4 in the fat1Δ faa1Δ strain and encoding FAA1 and FAT1 in the fat1Δ faa1Δ strain. Multicopy FAA4 could not suppress the growth defect in the fat1Δ faa1Δ strain indicating some essential functions of Fat1p cannot be performed by FAA4p. Chromosomally encoded FAA1 and FAT1 are not able to suppress the growth deficiencies of the fat1Δ faa1Δ and faa1Δ faa4Δ strains, respectively, indicating FAA1p and Fat1p play distinct roles in the fatty acid import process. When expressed from a 2^µ plasmid, Fat1p contributes significant oleoyl-CoA synthetase activity, which indicates vectorial esterification and metabolic trapping are the driving forces behind import. Evidence of a physical interaction between Fat1p and FACS was provided using three independent biochemical approaches. First, a C-terminal peptide of Fat1p deficient in fatty acid transport exerted a dominant negative effect against long-chain acyl-CoA synthetase activity. Second, protein fusions employing FAA1p as bait and portions of Fat1p as trap were active when tested using the yeast two-hybrid system. Third, co-expressed, differentially tagged Fat1p and FAA1p or FAA4p were co-immunoprecipitated. Collectively, these data support the hypothesis that fatty acid import by vectorial acylation in yeast requires a multiprotein complex, which consists of Fat1p and FAA1p or FAA4p.

Biological membranes are complex in both their protein and lipid compositions. This complexity is essential and contributes to the barrier function of the membrane and to selectively regulated transport of molecules into and out of the cell. Unlike hydrophilic molecules such as sugars and amino acids, hydrophobic fatty acids are able to dissolve in the membrane, and as a consequence, the processes governing their regulated movement across membranes are likely to be quite distinct. Recent investigations into the problem of fatty acid transport have intensified due to findings that exogenous fatty acids influence a number of important cellular functions, including signal transduction and transcriptional control. To date, several distinct membrane-bound and membrane-associated proteins have been identified as components of fatty acid import systems in eukaryotic cells. Most notable among these are fatty acid translocase (FAT) and fatty acyl-CoA synthetase (FACS) are hypothesized to couple import and activation of exogenous fatty acids by a process called vectorial acylation. Molecular genetic and biochemical studies were used to define further the functional and physical interactions between these proteins. Multicopy extragenic suppressors were selected in strains carrying deletions in FAA1 and FAA4 or FAA1 and FAT1. Each strain is unable to grow under synthetic lethal conditions when exogenous long-chain fatty acids are required, and neither strain accumulates the fluorescent long-chain fatty acid C₁₈-BODIPY-C₁₂ indicating a fatty acid transport defect. By using these phenotypes as selective screens, plasmids were identified encoding FAA1, FAT1, and FAA4 in the fat1Δ faa1Δ strain and encoding FAA1 and FAT1 in the fat1Δ faa1Δ strain. Multicopy FAA4 could not suppress the growth defect in the fat1Δ faa1Δ strain indicating some essential functions of Fat1p cannot be performed by FAA4p. Chromosomally encoded FAA1 and FAT1 are not able to suppress the growth deficiencies of the fat1Δ faa1Δ and faa1Δ faa4Δ strains, respectively, indicating FAA1p and Fat1p play distinct roles in the fatty acid import process. When expressed from a 2^µ plasmid, Fat1p contributes significant oleoyl-CoA synthetase activity, which indicates vectorial esterification and metabolic trapping are the driving forces behind import. Evidence of a physical interaction between Fat1p and FACS was provided using three independent biochemical approaches. First, a C-terminal peptide of Fat1p deficient in fatty acid transport exerted a dominant negative effect against long-chain acyl-CoA synthetase activity. Second, protein fusions employing FAA1p as bait and portions of Fat1p as trap were active when tested using the yeast two-hybrid system. Third, co-expressed, differentially tagged Fat1p and FAA1p or FAA4p were co-immunoprecipitated. Collectively, these data support the hypothesis that fatty acid import by vectorial acylation in yeast requires a multiprotein complex, which consists of Fat1p and FAA1p or FAA4p.

* This work was supported in part by National Institutes of Health Grant GM56840 (to P. N. B. and C. C. D.) and by American Heart Association Grant 0151215T (to C. C. D.). The costs of publication of this article were defrayed in part by the payment of page charges. This paper is available on line at http://www.jbc.org

¶ Supported by Predoctoral Fellowship Grant 2015228T from the New York State Affiliate of the American Heart Association.

‡ Supported by Postdoctoral Fellowship Grant 990/202/229T from the New York State Affiliate of the American Heart Association. Present address: Institute of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense, M, DK-5230, Denmark.

§ To whom correspondence should be addressed: Center for Cardiovascular Sciences, Albany Medical College, 47 New Scotland Ave., Albany, NY 12208. Tel.: 518-262-6435; Fax: 518-262-8101; E-mail: dirusse@mail.amc.edu.

The abbreviations used are: FAT, fatty acid translocase; FATP, fatty acid transport protein; PBS, phosphate-buffered saline; C₁₈-BODIPY-C₁₂, 4,4-difluoro-5-methyl-4-bora-3a,4a-diaza-s-indacene-3-dodecanoic acid.
in turn generates a concentration gradient further driving the system. Overath and colleagues (5) coined the term “vectorial acylation” to describe this process at the time they identified the structural gene for the E. coli fatty acyl-CoA synthetase (fadD). This postulate was initially expanded by Freeman and Bennett (6) and subsequently by our laboratory (4, 12) as the underlying mechanism driving long-chain fatty acid transport in bacteria. Although at the time the model of vectorial acylation was proposed the bacterial fatty acid transporter FadL had not been identified, our subsequent studies have clearly shown that both FadL and fatty acyl-CoA synthetase are required for fatty acid transport in E. coli.

By using the yeast *Saccharomyces cerevisiae* as a model eukaryotic system, we have recently shown the fatty acyl-CoA synthetases Faa1p or Faa4p function in the fatty acid transport system presumably by activating exogenous fatty acids concomitant with transport (11). This finding presents somewhat of a conundrum as we have also shown that long-chain fatty acid import in yeast requires Fat1p, the yeast orthologue of the murine FATP1 (13). One of the central questions we are now faced with is to determine the mechanisms by which Fat1p and fatty acyl-CoA synthetase (Faa1p and/or Faa4p) work in concert to promote fatty acid import. A similar situation appears to be operational in murine adipocytes, where there are data supporting a functional association of mmFATP1 with fatty acyl-CoA synthetase (3, 15). We suggest vectorial acylation is one general mechanism of fatty acid import, which functions to promote the regulated import and metabolic trapping of exogenous long-chain fatty acids.

In our prior investigations into fatty acid import in yeast, we used reverse genetic approaches to demonstrate this process requires the yeast orthologue of murine FATP1 (Fat1p) and fatty acyl-CoA synthetase (Faa1p or Faa4p) (11, 13, 14). Despite the information gleaned from these studies, there are no data demonstrating these proteins function cooperatively in a physical complex, and there is no information as to whether there are additional proteins involved in mediating the regulated import of exogenous long-chain fatty acids. In the present work, we sought to identify additional components required for fatty acid transport and to confirm the importance of Fat1p and fatty acyl-CoA synthetase (Faa1p and Faa4p) by using a genetic approach. A valuable molecular-genetic method for the identification of participants in multicompartmental cellular processes is the selection of plasmid-encoded multicopy extragenic suppressors (16). The rationale behind this approach is that the altered phenotype resulting from a deficiency in one participant can be suppressed by overexpression of another participant required for the same process (16). In this manner, we sought to identify plasmid-encoded multicopy extragenic suppressors of the deficiency in fatty acid import caused by deletion of FAT1 and/or FAA1 and FAA4. We report that plasmids encoding Fat1p, Faa1p, and Faa4p were identified in a screen for multicopy extragenic suppressors of the transport and activation deficiency of a *faa1Δ faa4Δ* strain, and plasmids encoding only Fat1p and Faa1p were identified as multicopy extragenic suppressors of the transport deficiency of a *faa1Δ faa4Δ* strain. Additional biochemical evidence is provided demonstrating Fat1p and acyl-CoA synthetase interact in a physical complex. This work establishes for the first time a genetic, physical, and functional linkage between Fat1p and fatty acyl-CoA synthetase and substantiates the hypothesis that these proteins, perhaps exclusively, are required for long-chain fatty acid transport in yeast.

EXPERIMENTAL PROCEDURES

Strains, Media, and Materials—The *S. cerevisiae* strains used in this study are listed in Table I. The *fat1Δ*::G418 mutation was introduced by transformation of the strain of interest with linear DNA generated by amplification of the kanamycin resistance cassette (resulting in G418 resistance) using oligonucleotides complementary to both *FAT1* and the cassette as described (17). The oligonucleotide for the coding strand was 5′-CAGCTTCAGAAGGGCCAAGGCAAGGCAATGCTGGTTGGGCA- TAGGCGCAGTGTGGATCTG-3′, and the oligonucleotide for the template strand was 5′-CCACCTGTGACTTGATCGATCTGAAAA- CAAAACATCAGCAGCTGATCTCCGAC-3′. Chromosomal replacement of the native gene was confirmed by Southern analysis of chromosomal DNA from the transformants by comparison to DNA obtained from the parental strain. Yeast strains were transformed by the lithium acetate method (18).

YPD plates supplemented with 45 μM oleic acid and 100 μM oleic acid unless otherwise indicated. Growth in liquid culture and on plates was at 30 °C. YPD-Oleic acid extract, yeast peptone, and yeast nitrogen base were obtained from Sigma. *H*- or 13*C*-labeled fatty acids were from PerkinElmer Life Sciences and American Radiochemicals. C1-BODIPY-C12 was purchased from Molecular Probes. Enzymes required for all DNA manipulations were from Promega, Invitrogen, New England Biolabs, U. S. Biochemical Corp., or Roche Molecular Biochemicals. Anti-V5 antibody and anti-T7 antibodies were purchased from Invitrogen and Novagen, respectively. Anti-Pma1p was the gift of Dr. Gunther Daum (Technische Universität Graz, Graz, Austria).

Assessment of Fatty Acid Import Capacity—Yeast strains were rendered competent using lithium acetate as noted above, transformed with a yeast multicopy library in YEp24, and transformants selected on YNB containing the appropriate supplements but lacking uracil (19). Thirty thousand individual Ura+ transformants were selected from the library and were screened for growth following replica plating on YPD plates containing 45 μM oleic acid and 100 μM oleic acid unless otherwise indicated. Growth in liquid culture and on plates was at 30 °C. YPD-Oleic acid extract, yeast peptone, and yeast nitrogen base were obtained from Sigma. *H*- or 13*C*-labeled fatty acids were from PerkinElmer Life Sciences and American Radiochemicals. C1-BODIPY-C12 was purchased from Molecular Probes. Enzymes required for all DNA manipulations were from Promega, Invitrogen, New England Biolabs, U. S. Biochemical Corp., or Roche Molecular Biochemicals. Anti-V5 antibody and anti-T7 antibodies were purchased from Invitrogen and Novagen, respectively. Anti-Pma1p was the gift of Dr. Gunther Daum (Technische Universität Graz, Graz, Austria).

Assessment of Fatty Acid Import Capacity—Fatty acid import was measured by the lithium acetate method (18).

TABLE 1

Yeast strains used in this study
Name
YB332
YB497
YB524
LS2020
YB525
LS2066
LS2067
LS2089
assessed using confocal laser scanning microscopy to detect accumulation of a tandem repeat of the long-chain fatty acyl analogue 4,4-difluoro-4'-methyl-4-bora-3a,4a-diaza-s-indacene-3,3-dodecane acid (C_{12}-BODIPY-
C_{12}) as described previously (13). Following growth under selective conditions, cells were harvested, washed with phosphate-buffered saline (PBS) and resuspended in 0.1 volume of PBS. All steps were performed at room temperature. Washed cells were incubated with 10 μM C_{60}-BODIPY-C_{12} for 60 s, washed with PBS containing 50 μM fatty acid-free bovine serum albumin (two times), PBS, resuspended in PBS, and visualized on an NORAN-OZ confocal laser scanning microscopy, interfaced with a Nikon Diaphot 200 inverted microscope equipped with a PlanApo ×60, 1.4 NA oil-immersion objective lens. The instrument settings for brightness, contrast, laser power, and slit size were optimized for each acyl-CoA synthetase activity as described (20). The reaction mixtures contained 200 mM Tris-HCl, pH 7.5, 2.5 mM ATP, 8 mM MgCl₂, 2 mM 2-mercaptoethanol, 10% glycerol, 0.01% Triton X-100, 0.5 mM phenylmethylsulfonyl fluoride, 4 μM peptatin A, and 8 μM leupeptin. The cells were lysed by vigorously vortexing the cell suspension containing glass beads for 1 min, 5 times at 0 °C. Samples were centrifuged at 13,000 rpm for 1 min at 4 °C, and supernatants were assayed for fatty acyl-CoA synthetase activity as described (20). The reaction mixtures contained 200 mM Tris- HCl, pH 7.5, 2.5 mM ATP, 8 mM MgCl₂, 2 mM EDTA, 5 mM 2-mercaptoethanol, 10% glycerol, 0.01% Triton X-100, 0.5 mM coenzyme A, and cell extract in a total volume of 0.5 ml. The reactions were initiated by the addition of coenzyme A, incubated at 30 °C for 20 min, and terminated by the addition of 2.5 ml of isopropl alcohol, n-heptane, 1 ml H₂SO₄ (40:10:1). The radioactive fatty acid was removed by organic extraction using n-heptane. Acyl-CoA formed during the reaction remained in the aqueous fraction and was quantified by scintillation counting. Protein concentrations in the cell extracts were determined using the Bradford assay for bovine serum albumin as a standard (21). The values presented represent the average from at least three independent experiments performed in duplicate. All experiments were subjected to analysis of variance (StatView, SAS Institute, Inc.).

Negative Dominance of Mutant Fat1p Over Fatty Acyl-CoA Synthetase—The sequence encoding the C-terminal 125 amino acids (residues 545–669) of Fat1p was cloned in-frame to the T7 epitope tag of the yeast expression vector YEpGALSET983 to generate YEpDB213. The resulting T7-Fat1p fusion was expressed under the control of the GAL10 promoter. To test for negative dominance, YEpDB213 was transformed into YB332 cells. Cells transformed with the vector (YEpGALSET983) served as a control. The cells were pre-grown in YNBD (without leucine and uracil) to a cell density of 0.1 A_{600} in 50 ml of YNB containing 2% galactose and 2% raffinose to induce expression of T7-Fat1p. When the density reached 1.0 A_{600}, cells were harvested by centrifugation, washed once in PBS, and resuspended in 1 ml of 1 M Tris, pH 8.0, 4 mM EDTA, 10% glycerol, 5 mM β-mercaptoethanol, 0.01% Triton X-100, 0.5 mM phenylmethylsulfonyl fluoride, 4 μM peptatin A, and 8 μM leupeptin. The cells were lysed by vortexing with glass beads and assayed for long-chain acyl-CoA synthetase activity as detailed above.

Two-hybrid Analysis of Fat1p and Faa1p—The yeast two-hybrid system was used to test Fat1p-Faa1p interaction (22). The bait plasmid vector was pGB4-5; the trap plasmid vector was pG4-5. The bait reporter plasmid was pSH18-34T. To generate the full-length Fat1p-bait fusion protein, the coding sequence of FAAl was amplified using the upstream primer 5'-AGACCATGATGTTTTGCACATATATACCG-
G-3' and the downstream primer 5'-AAATTGTCGCGGGCGACAGCG-
AACATTAACGCGC-3'. The amplified DNA fragment was cloned with NheI and NotI into pGB4-5 and pG4-5, respectively. For the trap plasmids, a single primer was used to amplify DNA at the 3' end of the gene including the termination codon encoding amino acid 669, 5'-GAACATCCTGAGAATTAAATTTGTTGTGC-3', whereas unique primers were used to amplify DNA at the 5' ends. These included 5'-TTTTTTAGGCGCATATACAAAGCAGCCTCGC-3' to generate peptide fragments from amino acids 544 to 669 of Fat1p (Fat1p600) and 5'-GAAGATGATTTCCGGGCAATACAAAGACG-3' to generate a peptide from amino acids 544 to 669 of Fat1p (Fat1p756). The amplified DNA fragments were digested with the appropriate restriction enzymes and ligated into pG4-5.

Results

Identification of Multicopy Suppressors of Synthetic Lethality Imposed by Cerulenin on faa1Δ faa4Δ or faa1Δ fat1Δ Strains—When yeast cells are grown on media containing the fatty-acid synthase inhibitor cerulenin, they become auxotrophic for long-chain (C₁₆-C₁₈) fatty acids. Supplementation of the media with...
100 μM oleate is sufficient to restore growth to wild-type strains. However, cells carrying deletions in \(\text{FAT1} \) or \(\text{FAA1} \) and \(\text{FAA4} \) are not viable on media containing cerulenin despite the addition of fatty acids. For \(\text{fat1} \Delta \) strains, we have shown previously (13) this phenotype is due to a defect in the ability to import fatty acids and not due to depressed levels of long-chain fatty acyl-CoA synthetase activities. Strains carrying deletions in the genes encoding the fatty acyl-CoA synthetases \(\text{Faa1p} \) and \(\text{Faa4p} \) have a similar phenotype, which we hypothesize is due to a specific coupling between \(\text{Fat1p} \)-mediated fatty acid transport and \(\text{Faa1p} / \text{Faa4p} \)-mediated fatty acid activation (11). The esterification of the exogenous fatty acid to coenzyme A is required for all subsequent metabolic processes.

In an attempt to identify genes that could functionally replace \(\text{FAT1} \) or \(\text{FAA1} \) and \(\text{FAA4} \), we screened a yeast genomic multicopy library for clones, which suppressed the cerulenin-induced lethality of an \(\text{fat1} \Delta \) strain (deficient in long-chain fatty acyl-CoA synthetase activity) and an \(\text{fat1} \Delta \) strain (deficient in fatty acid import and with reduced long-chain fatty acyl-CoA synthetase activity). Primary transformants were selected on YNBD plates lacking uracil and subsequently were replica-plated to YNBD plates containing cerulenin and oleate. Plasmids were isolated from colonies that grew on the selective media, and the individual plasmid encoded suppressors verified by retransformation. The identities of the inserts were determined by restriction enzyme analysis and by sequencing using plasmid-specific primers flanking the site of insertion. In both screens, multiple isolates of each plasmid-borne suppressor were identified indicating all possible suppressing clones available in this genomic library had been identified (Table II). As expected, because both strains carried a deletion in \(\text{FAA1} \), most of the plasmids identified in either strain encoded the fatty acyl-CoA synthetase \(\text{Faa1p} \). A surprising result was that \(\text{FAT1} \) was identified at high frequency, whereas \(\text{FAA4} \) was identified in only two cases in the screen using the \(\text{faa1} \Delta \) strain. \(\text{FAA4} \) was not identified as a multicopy suppressor in the \(\text{faa1} \Delta \) strain. Subsequent analyses of the \(\text{faa1} \Delta \) strain transformed with a \(\text{YEp24} \) plasmid derivative encoding \(\text{Faa4p} \) (YEpDB133) verified this fatty acyl-CoA synthetase could not substitute for \(\text{FAA1} \) and \(\text{FAT1} \) in this strain. Three plasmids identified as multicopy suppressors using these screens were chosen for further characterization. They were YEpDB02 encoding \(\text{Faa1p} \), YEpDB133 encoding \(\text{Faa4p} \), and YEpDB17 encoding \(\text{Fat1p} \) (Table II; Fig. 1).

We noted that several plasmids isolated from the colonies listed in the “other” category in Table II did not confer the suppressor phenotype upon re-transformation. Therefore, we presume the phenotype was associated with an undefined chromosomally encoded suppressor.

The Multicopy Suppressors Alleviate Fatty Acid Import Defects—In an effort to determine whether fatty acid import was restored by the plasmid-encoded suppressors, we monitored the accumulation of the fluorescent fatty acid analogue C1-BODIPY-C12 using confocal laser scanning microscopy in wild-type strains and transformants of the \(\text{faa1} \Delta \) strain (11). As illustrated in Fig. 2, the accumulation of C1-BODIPY-C12 was restored in the \(\text{faa1} \Delta \) strain harboring \(\text{FAA1} \), \(\text{FAT1} \), or \(\text{FAA4} \) on a multicopy plasmid. These results point out that \(\text{FAA1} \) is a true multicopy suppressor. Only when expressed from a plasmid can \(\text{FAA1} \) compensate for deletions in \(\text{FAA1} \) and \(\text{FAA4} \). These data support the notion that \(\text{Fat1p} \) and \(\text{Faa1p} \) or \(\text{Faa4p} \) form a functional network facilitating the import and activation of exogenous fatty acids, and in wild-type cells each functions in a distinct yet coordinate manner. It is important to note that \(\text{FAA4} \) on a multicopy plasmid (YEpDB133) did not restore in C1-BODIPY-C12 accumulation in the \(\text{faa1} \Delta \) strain, whereas both \(\text{FAA1} \) and \(\text{FAT1} \) did (Fig. 2). These results indicated that \(\text{Faa1p} \), \(\text{Faa4p} \), and \(\text{Fat1p} \) have overlapping, yet distinct roles. Of particular importance was the finding that \(\text{Faa1p} \) and \(\text{Fat1p} \) appeared to be functionally linked. Table III summarizes both the phenotypes and fatty acid transport profiles of the mutant strains alone and transformed with the selected multicopy suppressor plasmids. These findings are consistent with data obtained on the mmFAT1 and fatty acyl-CoA synthetase, which are proposed to form a functional complex (15).

Table II

Table II	Characterization of plasmids encoding multicopy suppressors of strains deficient in fatty acid import and long-chain acyl-CoA synthetase activity			
Recipient strain	No. clones screened	No. colonies selected	ORF identified	Percentage of total selected
\(\text{faa1} \Delta \)	30,000	161	FAA1	76
\(\text{faa1} \Delta \)	40,000	90	FAA1	56

Transformants were initially selected as uracil prototrophs upon transformation with the yeast YEp24 chromosomal DNA library (19). Uracil prototrophs were replica-plated to YNBD containing 45 μM cerulenin and 100 μM oleate. Open reading frames (ORF) were identified by restriction enzyme analysis and DNA sequencing.

Deficiencies in Long-chain Acyl-CoA Synthetase Activity in \(\text{faa1} \Delta \) and \(\text{faa2} \Delta \) Strains Can Be Compensated by Multicopy \(\text{FAT1} \)—The identification of \(\text{FAT1} \) as a multicopy suppressor in experiments using the \(\text{faa1} \Delta \) and \(\text{faa2} \Delta \) strains demonstrated that in high copy \(\text{FAT1} \) alone as well \(\text{FAA1} \) alone could compensate for the defects with regard to importing exogenous long-chain fatty acids. These data imply that under these conditions \(\text{Fat1p} \) contributed an enzymatic activity to promote the unidirectional transport of exogenous long-chain fatty acids. Previously, we have shown that deletion of \(\text{FAT1} \) does not reduce long-chain fatty acyl-CoA synthetase activities measured using whole cell extracts, whereas deletion of \(\text{FAA1} \) and \(\text{FAA4} \) reduced these activities ~95% (Table IV) (11, 13). Likewise, when \(\text{FAT1} \) is cloned into a centromeric plasmid (a pRS316 derivative designated pDB102) (14) and transformed into the \(\text{faa1} \Delta \) strain, long-chain fatty acyl-CoA synthetase activities are not substan-
Fig. 1. ***FAA1, FAA4, and FAT1*** are multicopy suppressors of the synthetic lethality of *faa1Δ faa4Δ* and *faa1Δ fat1Δ*. Cells were streaked YNBD plates containing 100 μM oleate and 45 μM cerulenin, and the cultures were incubated for 48 h at 30 °C. The host strain was either YB525 (*faa1Δ faa4Δ*)/A or LS2086 (*faa1Δ fat1Δ*)/B carrying the vector, YEp24, or the plasmids encoding *FAA1* (YEpDB02), *FAA4* (YEpDB133), or *FAT1* (YEpDB17).

Fig. 2. Fatty acid import in the *faa1Δ faa4Δ* strain (A) and *faa1Δ fat1Δ* (B) containing the indicated multicopy suppressor plasmids monitored by following the accumulation of the fluorescent long-chain fatty acid C₁₂-BODIPY-C₁₂. Shown are the following: YEp24 (vector control), FAA1 on plasmid YEpDB02, FAA4 on plasmid YEpDB133, and FAT1 on plasmid YEpDB17.

Our laboratory and others (14, 24) have shown that Fat1p has intrinsic very long-chain (C₂₄–C₂₆) fatty acyl-CoA synthetase activity. Indeed, when we first characterized the FAT1 gene, we noted Fat1p shared similarities to the adenylation-forming family of enzymes, which includes the fatty acyl-CoA synthetases (13). We reasoned that when expressed from a high copy number plasmid, FAT1 would result in sufficient long-chain fatty acyl-CoA synthetase activity to promote growth of the *faa1Δ faa4Δ* and *faa1Δ fat1Δ* strains under the synthetic lethal conditions used in this study. To test this idea, we measured fatty acyl-CoA synthetase activities in total cell extracts from the parental strain and strains harboring the multicopy suppressor plasmids using oleate (C₁₈:₁) as a substrate (Table IV). Extracts prepared from the *faa1Δ faa4Δ* strain harboring YEpDB17 (encoding Fat1p) had ~4-fold higher oleoyl-CoA synthetase activity compared with the strain carrying the vector YEp24, which was 30% of the level obtained for the wild-type strain. This modest increase in oleoyl-CoA synthetase activity correlated with a 3-fold increase in protein level estimated using Western blot analysis of cellular extracts employing a Fat1p-specific antibody and analyzed using NIH Image analysis software. The same strain transformed with YEpDB02 and YEpDB133 (encoding Faa1p and Faa4p, respectively) had 10- and 2-fold oleoyl-CoA synthetase activities, respectively, compared with the same control cells. It is unclear why increased dosage of FAA4 had such a limited impact on total oleoyl-CoA synthetase activity. This may be due to protein instability as noted for the purified enzyme (26) or due to regulatory parameters poorly defined at the present time. In the case of the *faa1Δ fat1Δ* strain, we noted similar results. Most notable among these was the finding that YEpDB17 (FAT1) resulted in oleoyl-CoA synthetase activities, which were increased 6-fold over the same strain harboring the plasmid vector (Table IV).

As noted above, Fat1p has been shown to confer very long-chain fatty acyl-CoA synthetase activity. Therefore, we also measured fatty acyl-CoA synthetase activities in the same cell extracts from above using the very long-chain fatty acid, lignocerate (C₃₄:₀) as a substrate (Table IV). As expected, expression of FAT1 from YEpDB17 increased these activities just over 4-fold, whereas expression of FAA1 from YEpDB02 or FAA4 from YEpDB133 had no significant effect on total cellular very long-chain fatty acyl-CoA synthetase activities. Similar results were obtained for the *fat1Δ faa1Δ* and *fat1Δ* host strains (Table IV).

Fat1p and Fatty Acyl-CoA Synthetase Form a Physical Complex—In previous work, we provided independent evidence that Fat1p (13) and Faa1p or Faa4p (11) are each required for fatty acid import in yeast. The results of the multicopy suppressor analyses detailed above extended these results to include a functional dependence of fatty acid transport on both Fat1p and fatty acyl-CoA synthetase (Faa1p or Faa4p). Indeed, these data provided evidence suggesting Fat1p and Faa1p or Fat1p and Faa4p interact to coordinate fatty acid transport. The results from the multicopy suppressor screen are consistent with the notion that, at least in yeast, no other proteins participate in this process. Yet this experimental approach did not address whether Fat1p and fatty acyl-CoA synthetase form a physical complex. To address this question, we employed three different experimental strategies as follows: 1) negative dominance of mutant Fat1p over fatty acyl-CoA synthetase; 2) yeast two-hybrid analyses to investigate the hypothesized physical linkage between Fat1p and Faa1p or Faa4p; and 3) co-immunoprecipitation of Fat1p and a cognate fatty acyl-CoA synthetase.

Often when two proteins physically interact to form a functional complex, inactivation of one protein due to a mutation will result in a reduction in activity for the partner protein. This phenomenon is called negative dominance. Long-chain acyl-CoA synthetase activity in yeast is primarily contributed by Faa1p (~95%). Therefore, we reasoned that the overexpression of nonfunctional Fat1p would result in a reduction of long-chain acyl-CoA synthetase activity if the proteins physically interact to facilitate vectorial acylation. For these experiments, we expressed a peptide derived from Fat1p made up of the C-terminal 125 amino acids (residues 545–669; [Fat1p]₁²⁵).
This peptide derived from Fat1p was non-functional in transport and activation, yet when analyzed using SDS-PAGE it formed a dimer, which was stable to boiling, suggesting it might contain a protein-protein interaction domain (data not shown). The expression of T7Fat1p125C significantly reduced oleoyl-CoA synthetase activity (compared with vector control) (Fig. 3A). The reduction in activity was correlated with expression of the T7Fat1p125C peptide, detected using a Western blot following expression with anti-T7 antibodies (Fig. 3B). Under these conditions, the T7Fat1p125C peptide is expressed at levels nearly 10-fold higher than those expressed with vector control with stably expressed Fat1p (data not shown). These data are consistent with the proposal that Fat1p and fatty acyl-CoA synthetase form a functional complex.

Another method, which has become standard to evaluate protein-protein interactions, is the yeast two-hybrid system. This system a third reporter plasmid contains the DNA-binding site of LexA in the promoter region driving expression of lacZ (encoding β-galactosidase), which is dependent on specific protein-protein interactions between the bait (bound to the DNA binding site) and the trap (fused to activation domain, which interacts with yeast RNA polymerase II). As shown in Table V, positive interactions between full-length Faa1p and either full-length Fat1p or two peptides carrying C-terminal fragments of Fat1p (Fat1p600C and Fat1p125C) were found when compared with the trap vector control alone. The peptide, which conferred negative dominance to fatty acyl-CoA synthetase activity (T7Fat1p125C) detailed above, also results in a positive interaction with Faa1p using the yeast two-hybrid system.

Additional evidence for specific protein-protein interactions between Fat1p and Faa1p or Faa4p was obtained using co-immunoprecipitation. As detailed under “Experimental Procedures,” Fat1p was tagged with a T7 epitope (T7Fat1p), and the fatty acyl-CoA synthetases were tagged with a V5 epitope (V5Faa1p and V5Faa4p). Following growth, extracts were prepared from cells expressing T7Fat1p and V5Faa1p or T7Fat1p and V5Faa4p and immunoprecipitated using anti-T7 or anti-V5 antibodies.

Table III
Characteristics of yeast strains with mutations in FAT1 and the FAA genes

Relevant genotype	Growth on YNBD-OLE-CER	Fatty acid transport capacity
Wild type	+	+
faa1Δ	+	+
faa4Δ	+	+
fat1Δ	+	+
faa1Δ faa4Δ	+	+
faa1Δ fat1Δ	+	+
faa4Δ fat1Δ	+	+
Multicopy suppressors	133.86 (42.56)	10.32 (2.97)
faa4ΔΔ YEp24	267.57 (29.05)	36.95 (2.88)
faa1Δ faa4ΔΔ YEp24	2,716.49 (310.61)	41.86 (3.89)
faa1Δ faa4Δ YEp133	480.54 (52.97)	35.99 (4.35)
faa1Δ faa4Δ YEp17	992.23 (102.84)	161.33 (25.59)
faa1Δ fat1Δ YEp2	1,019.75 (571.68)	26.38 (2.88)
faa1Δ fat1Δ YEp133	303.33 (65.44)	20.43 (2.12)
faa1Δ fat1Δ YEp17	1,549.73 (126.99)	26.38 (2.88)
faa1Δ YEp24	ND	18.77 (2.29)
faa1Δ YEp17	ND	175.50 (32.58)

a Growth was scored by comparison to the wild-type strain. 1, positive growth after 24 h; 2, growth between 24 and 48 h; 3, growth between 48 and 96 h; 4, no growth after 96 h at 30 °C.

b Fatty acid accumulation monitored using C1-BODIPY-C12, visualized using confocal microscopy and scored relative to the wild type: wild-type, ±; +, visible accumulation but down dramatically; −, no visible accumulation.

Table IV
Fatty acyl-CoA synthetase activities in yeast strains with mutations in FAA1, FAA4, and/or FAT1 alone and transformed with multicopy suppressor plasmids

Relevant genotype	Fatty acyl-CoA synthetase activity	
	C16:1 pmol/min/mg protein (± S.E.)	
	C24:0 pmol/min/mg protein (± S.E.)	
Wild type	3,388.96 (382.17)	41.29 (4.12)
faa1Δ	258.70 (36.36)	42.67 (5.49)
faa4Δ	866.58 (110.55)	43.42 (5.99)
faa1Δ	3,388.67 (358.26)	18.85 (2.37)
faa1Δ faa4Δ	190.90 (49.67)	25.11 (1.75)
faa1Δ fat1Δ	190.05 (34.80)	10.09 (2.60)
faa4Δ fat1Δ	626.03 (53.66)	16.69 (3.45)
faa1Δ faa4Δ faa1Δ	133.86 (42.56)	10.32 (2.97)
faa1Δ faa4Δ YEp24	267.57 (29.05)	36.95 (2.88)
faa1Δ faa4Δ YEp133	2,716.49 (310.61)	41.86 (3.89)
faa1Δ faa4Δ YEp17	480.54 (52.97)	35.99 (4.35)
faa1Δ faa4Δ YEp17	992.23 (102.84)	161.33 (25.59)
faa1Δ fat1Δ YEp2	1,019.75 (571.68)	26.38 (2.88)
faa1Δ fat1Δ YEp133	303.33 (65.44)	20.43 (2.12)
faa1Δ fat1Δ YEp17	1,549.73 (126.99)	26.38 (2.88)
faa1Δ YEp24	ND	18.77 (2.29)
faa1Δ YEp17	ND	175.50 (32.58)

a Data from at least three independent experiments performed in duplicate. ND, not determined.
The presence of the second protein in the complex was detected by Western blot analyses using the reciprocal antibody. The data presented in Fig. 4 showed that V5Faa1p and V5Faa4p are co-immunoprecipitated with T7Fat1p whether the precipitating antibody was anti-T7 directed against Fat1p or anti-V5 directed against one of the Faa proteins. In our control experiments using protein A-Sepharose beads alone (Fig. 4) or using an unrelated antibody (c-Myc) (not shown), we did not pull down the Fat1p-fatty acyl-CoA synthetase complex. Additionally, to test for nonspecific protein-protein interactions, we probed the immunocomplex using an antibody against Pma1p, an unrelated plasma membrane protein (25). No co-immunoprecipitation of Pma1p with Fat1p, Faa1p, or Faa4p was detected (Fig. 4). These data are in agreement with the results of the multicopy suppressor analysis, negative dominance, and yeast two-hybrid data presented above and fully support the notion that Fat1p and Faa1p or Faa4p form a physical complex, which we suggest is crucial to the process of vectorial esterification of exogenous long-chain fatty acids.

DISCUSSION

When long-chain fatty acids are supplied in the growth media, *S. cerevisiae* transports these compounds into the cell by a process, which requires Fat1p and the fatty acyl-CoA synthetase Faa1p. Even though Fat1p and Faa4p have been suggested to be functionally redundant, previous results and those presented here show that Faa1p, rather than Faa4p, plays a more distinct role in fatty acid import (11, 26). Importantly, the experiments reported here provide substantial genetic and biochemical evidence that Fat1p and fatty acyl-CoA synthetase (Faa1p or Faa4p) form a physical complex required to facilitate fatty acid import. These data are consistent with the hypothesis that the fundamental mechanism driving the accumulation of exogenous fatty acids within the cell is vectorial acylation whereby exogenous fatty acids are metabolically trapped as acyl-CoA thioesters.

Until this time, the physical and functional association of FATP and fatty acyl-CoA synthetase has been inferential (3, 11, 15). The present studies indicate that in the natural environment when fatty acids are limiting as, for example, occurs during hypoxia, Fat1p and Faa1p are each required for fatty acid import. Whereas each protein fulfills a separate function, the activities are coordinated and facilitated by a physical interaction. The former conclusion is based on the observation that in single copy neither gene can substitute for the other. The distinct functions for Fat1p and Faa1p were apparent in enzymatic analyses of acyl-CoA synthetase specificity and activity and in our fatty acid transport studies. In multicopy, Faa1p can substitute for Fat1p, and in turn, Fat1p can substitute for Faa1p in potentiating fatty acid import. Thus the apparent increase in accumulation of C1-BODIPY-C12 when either of these genes is overexpressed appears related to the
essential role of long-chain fatty acyl-CoA synthetase activity in import and utilization rather than to a transport function per se. Thus utilization creates a diffusional gradient dependent upon the acyl-CoA synthetase Faa1p (and to a more limited extent Faa4p) but not Fat1p. The role of Fat1p in fatty acid import appears to be distinct from Faa1p and essential only at limiting fatty acid concentrations (≤500 μM) such as might occur when cells are growing under hypoxic conditions in the natural environment. We suggest this mechanism of fatty acid transport by vectorial acylation exemplifies a system common to eukaryotes including mammalian cells that functions through FATP and a cognate fatty acyl-CoA synthetase.

There is substantial data showing Fat1p plays a role in long-chain fatty acid import yet has intrinsic very long-chain (C22–C50) fatty acyl-CoA synthetase activity (14, 24). This presents somewhat of a dilemma. Our results are consistent with the notion that the specificity of the fatty acid import system in yeast is for long-chain fatty acids as opposed to very long-chain fatty acids. Addition of very long-chain fatty acids to the growth media of yeast strains defective in very long-chain fatty acid synthesis does not alleviate the growth defect, suggesting the very long-chain fatty acids cannot be trafficked from an exogenous source to the site of metabolic utilization (27). Yet Fat1p is a central component of the long-chain fatty acid import system in yeast, being required both under anaerobic conditions and under cerulenin-induced conditional lethality, where exogenous long-chain fatty acids are required for growth (14). We have provided evidence recently (28) that the very long-chain fatty acyl-CoA synthetase activity intrinsic to Fat1p can be distinguished from fatty acid import in specific mutant alleles of FAT1 with single amino acid substitutions. Additionally, the specificity of Fat1p-dependent import is for long-chain fatty acid substrates, whereas Fat1p-dependent fatty acyl-CoA synthetase activity is for very long-chain substrates (14, 24). The deletion of FAA1 encoding the major long-chain fatty acyl-CoA synthetase decreases fatty acid import nearly 3-fold; therefore, we suggest this enzyme is primarily responsible for activating fatty acids from an exogenous source and therefore contributes to the specificity of the import system (11).

The ability of FAT1 encoded within a high copy number episme to suppress the phenotype on YNBDB containing oleate and cerulien of a faa1Δ faa4Δ strain and the corresponding ability of plasmid-encoded Faa1p to suppress the same phenotype of the faa1Δ fat1Δ strain is consistent with a functional interrelationship between Fat1p and Faa1p in long-chain fatty acid import. However, multicopy suppression might also result from alterations in intracellular metabolism and regulation distinct from the coupled transport/activation process when fatty acid import or fatty acyl-CoA synthetase activity is highly elevated by comparison to activities contributed by a single copy of the native gene. As detailed in these studies, we did not observe oleoyl-CoA synthetase activities comparable with or exceeding wild-type levels for either strain expressing FAT1 or FAA1 in high copy. In the case of the faa1Δ faa4Δ strain (wild type for FAT1) transformed with YEpDB17 (FAT1), there was sufficient oleoyl-CoA synthetase activity (albeit only ~30% wild-type), which appeared to drive the coupled import/activation process. On the other hand in the faa1Δ fat1Δ strain transformed with YEpDB133 (FAA4), there was detectable oleoyl-CoA synthetase activity (~10% wild type), but this was not sufficient to overcome the block as a consequence of a deletion in FAT1. By comparison, the faa1Δ fat1Δ strain transformed with YEpDB02 (FAA1) had robust oleoyl-CoA synthetase activity (~12% wild type), which was sufficient to overcome the block due to the fat1Δ deletion. Therefore, we believe the suppression is caused by overexpression of one of the partners in the import process, Fat1p or Faa1p.

Although we did not identify new partners in the fatty acid trafficking pathway by selecting multicopy suppressors, these results are of particular significance because they confirmed by using a powerful genetic approach the importance of an interaction between Fat1p and Faa1p in fatty acid import. Indeed, with one note of caution based on the suppressors presumed to be chromosomally encoded, these studies indicate these two proteins may be the only components mediating this process in yeast. Our present results parallel the previous work of Schaffer and Lodish (3) that identified independent clones encoding murine FATP1 and a fatty acyl-CoA synthetase using a functional cloning strategy. Functional cloning requires, in essence, overexpression of the protein target in a manner analogous to our studies using multicopy suppression. The murine FATP1 and fatty acyl-CoA synthetase each were identified and shown to function to promote the accumulation of C17-BODIPY-C2 (3). By analogy, we have shown that Fat1p and Faa1p, when expressed from a 2-μm plasmid also function to promote the accumulation of C17-BODIPY-C15. The murine FATP1 also has intrinsic very long-chain acyl-CoA synthetase activity (29). Likewise, we and others (14, 24) have shown yeast Fat1p is a very long-chain acyl-CoA synthetase. Previously, we have shown (14) murine FATP1 complements the biochemical phenotypes associated with the fat1Δ strain in yeast indicating that the yeast and the mouse proteins are functionally equivalent. Collectively, these data support the notion that the fatty acid import mechanism working through Fat1p (or FATP) and fatty acyl-CoA synthetase is primarily through the esterification of the fatty acid with CoA, which results in metabolic trapping. Our working hypothesis is that Fat1p functions to increase fatty acid binding to the membrane, which in turn potentiates diffusion across the membrane. The fatty acid is subsequently metabolically activated concomitantly with abstraction from the membrane by the Faa1p-Fat1p complex thereby generating a concentration gradient, which further drives the import process.

The present work demonstrates for the first time a physical interaction between Fat1p and Faa1p or Faa4p. In each series of experiments (i.e., negative dominance, two-hybrid analyses, and co-immunoprecipitation), the full-length proteins and C-terminal peptides of Fat1p resulted in positive interactions. One outcome from these experiments suggests the protein-protein interaction domain of Fat1p is localized at least in part to the C-terminal 125 residues. At present, we have no data localizing an interaction domain within Faa1p or Faa4p. Those experiments are currently underway.

Fatty acid transport in S. cerevisiae is tightly coupled to utilization and is primarily dependent upon the products of two genes, Fat1p and Faa1p. These proteins function in concert to couple fatty acid import to fatty acid activation and metabolic utilization, a process first described in bacteria as vectorial acylation. Due to the functional conservation of these proteins in higher eukaryotes, yeast provides a valuable, genetically tractable model system useful to further elucidate the mechanisms that underpin fatty acid import in eukaryotic systems.

Acknowledgments—We thank the members of the AMC FATT laboratory for many fruitful discussions during the course of this study.

REFERENCES
1. Abumrad, N. A., el-Maghrabi, B. R., Amri, M. E. Z., Lopez, E., and Grimaldi, P. A. (1993) J. Biol. Chem. 268, 17655–17668
2. Abumrad, N. A., Coburn, C., and Ibrahim, A. (1999) Biochim. Biophys. Acta 1441, 4–13
3. Schaffer, J. E., and Lodish, H. F. (1994) Cell 79, 427–436
4. DiRusso, C. C., and Black, P. N. (1999) Mol. Cell. Biochem. 192, 41–52
16422

Vectorial Acylation via Fatty Acid Import-Activation Complex

5. Klein, K., Steinberg, R., Fiethen, B., and Overath, P. (1971) *Eur. J. Biochem.* **19**, 442–450
6. Frerman, F. E., and Bennett, W. (1973) *Arch. Biochem. Biophys.* **159**, 434–443
7. Harman, C. M., Loos, P., Beth, A. H., and Abumrad, N. A. (1991) *J. Membr. Biol.* **121**, 261–268
8. Schaffer, J. E., and Lodish, H. F. (1995) *Trends Cardiovasc. Med.* **4**, 218–224
9. Stahl, A., Hirsch, D. J., Gimeno, R. E., Punreddy, S., Ge, P., Watson, N., Patel, S., Koller, M., Raimondi, A., Tartaglia, L. A., and Lodish, H. F. (1999) *Mol. Cell* **4**, 299–308
10. Hamilton, J. A., Johnson, R. A., Corkey, B., and Kamp, F. (2001) *J. Mol. Neurosci.* **16**, 99–108
11. Færgeman, N. J., Black, P. N., Zhao, X. D., Knudsen, J., and DiRusso, C. C. (2001) *J. Biol. Chem.* **276**, 37051–37059
12. Azizan, A., Sherin, D., DiRusso, C. C., and Black, P. N. (1999) *Arch. Biochem. Biophys.* **365**, 299–306
13. Færgeman, N. J., DiRusso, C. C., Elberger, A., Knudsen, J., and Black, P. N. (1997) *J. Biol. Chem.* **272**, 8531–8538
14. DiRusso, C. C., Connell, E. J., Færgeman, N. J., Knudsen, J., Hansen, J. K., and Black, P. N. (2000) *Eur. J. Biochem.* **267**, 4422–4433
15. Gargiulo, C. E., Suhlsatz-Kreuper, S. M., and Schaffer, J. E. (1999) *J. Lipid Res.* **40**, 881–892
16. Rhine, J. (1991) *Methods Enzymol.* **194**, 239–251
17. Guldener, U., Heck, S., Fielder, T., Beinhauer, J., and Hegemann, J. H. (1996) *Nucleic Acids Res.* **24**, 2519–2524
18. Geitz, R. D., Schiestl, R. H., Willems, A. R., and Woods, R. A. (1995) *Yeast* **11**, 355–360
19. Carlson, M., and Botstein, D. (1982) *Cell* **28**, 145–154
20. Black, P. N., Zhang, Q., Weimar, J. D., and DiRusso, C. C. (1997) *J. Biol. Chem.* **272**, 4896–4903
21. Bradford, M. M. (1976) *Anal. Biochem.* **72**, 248–254
22. Bartel, P. L., Fields, S., and Bartel, P. (1997) *The Yeast Two Hybrid System*, Oxford University Press, Oxford, UK
23. Kaiser, C., Michaelis, S., and Mitchell, A. (1994) *Methods in Yeast Genetics*, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
24. Watkins, P. A., Lu, J. F., Steinberg, S. J., Gould, S. J., Smith, K. D., and Braiterman, L. T. (1998) *J. Biol. Chem.* **273**, 18210–18219
25. Bagnat, M., Chang, A., and Simons, K. (2001) *Mol. Biol. Cell* **12**, 4129–4138
26. Knoll, L. J., Schall, O. F., Suzuki, I., Gokel, G. W., and Gordon, J. I. (1995) *J. Biol. Chem.* **270**, 20090–20097
27. Schneider, R., Hitomi, M., Ivessa, A. S., Fasch, E. V., Kohlwein, S. D., and Tartakoff, A. M. (1996) *Mol. Cell. Biol.* **16**, 7161–7172
28. Zou, Z., DiRusso, C. C., Curnacta, V., and Black, P. N. (2002) *J. Biol. Chem.* **277**, 31062–31071
29. Coe, N. R., Smith, A. J., Frohnert, B. I., Watkins, P. A., and Bernlohr, D. A. (1999) *J. Biol. Chem.* **274**, 36300–36304
30. Johnson, D. R., Knoll, L. J., Levin, D. E., and Gordon, J. I. (1994) *J. Cell Biol.* **127**, 751–762
31. Duronio, R. J., Knoll, L. J., and Gordon, J. I. (1992) *J. Cell Biol.* **117**, 515–529