On the structure of the algebra generated by the non-commutative operator graph demonstrating superactivation for a zero-error capacity

G.G. Amosov* and I.Yu. Zhdanovskiy†2, 3

1Steklov Mathematical Institute of Russian Academy of Sciences
2Moscow Institute of Physics and Technology
3National Research University High School of Economics, Laboratory of Algebraic Geometry

December 8, 2015

Abstract

Recently M.E. Shirokov [1] introduced the non-commutative operator graph depending on the complex parameter θ to construct channels with positive quantum zero-error capacity having vanishing n-shot capacity. We study the algebraic structure of this graph. The relations for the algebra generated by the graph are derived. In the limiting case θ = ±1 the graph becomes abelian and degenerates into the direct sum of four one-dimensional irreducible representations of the Klein group.

1 Introduction

The superactivation of a quantum channel capacity was discovered in [2]. It appeared that the quantum capacity for a tensor product of two quantum channels may be positive while the quantum capacity of each of these channels is zero. In [3, 4] it was shown that a value of the quantum capacity is closely related to the so-called non-commutative graph of a quantum channel. The same phenomenon for the zero-error classical capacities was established in [5]. In [6, 7] some techniques for studying superactivation by means of non-commutative graphs was introduced. It allows to give low-dimensional examples of superactivation for a quantum capacity. In our paper we shall analyse the algebra generated by the non-commutative graph introduced in [1].

*gramos@mi.ras.ru
†ijdanov@mail.ru
2 Preliminaries

Denote $B(H)$ the algebra of all bounded operators and $\mathcal{S}(H)$ the convex set of quantum states (positive unit trace operators) in a finite-dimensional Hilbert state H. Let $\Phi : B(H_A) \to B(H_B)$ be a quantum channel, i.e. a completely positive trace-preserving linear map transmitting $\mathcal{S}(H_A)$ to the subset of $\mathcal{S}(H_B)$ in the Hilbert spaces H_A and H_B [8]. Then the dual map $\Phi^* : B(H_B) \to B(H_A)$ is defined by the formula

$$Tr(\rho\Phi^*(x)) = Tr(\Phi(\rho)x), \, \rho \in \mathcal{S}(H_A), \, x \in B(H_B).$$

The Stinespring theorem results in the representation of a channel Φ in the form

$$\Phi(\rho) = Tr_{H_E} V \rho V^*, \, \rho \in \mathcal{S}(H_A), \tag{1}$$

where H_E is a Hilbert space of the environment and $V : H_A \to H_B \otimes H_E$ is an isometry. The representation (1) allows to define a complementary quantum channel $\hat{\Phi} : \mathcal{S}(H_A) \to \mathcal{S}(H_E)$ by the formula [8, 9]

$$\hat{\Phi}(\rho) = Tr_{H_B} V \rho V^*, \, \rho \in \mathcal{S}(H_A). \tag{2}$$

Taking into account (1) it is possible to derive the Kraus representation

$$\Phi(\rho) = \sum_{k=1}^{\dim H_E} V_k \rho V_k^*, \, \rho \in \mathcal{S}(H_A), \tag{3}$$

where $\{V_k\}$ is a set of linear operators $V_k : H_A \to H_B$, $\sum_j V_k^* V_k = I_{H_A}$. Using (3) the complementary channel (2) can be represented as follows

$$\hat{\Phi}(\rho) = \sum_{j,k=1}^{\dim H_E} Tr[V_j \rho V_k]| j > < k|. \tag{4}$$

The non-commutative graph [3, 5] $\mathcal{G}(\Phi)$ of a quantum channel Φ is a closed linear span of the Kraus operators $\{V_j^* V_k\}_{j,k=1}^{\dim H_E}$. It follows from (1) that $\mathcal{G}(\Phi)$ is equal to the subspace $\hat{\Phi}^*(B(H_E))$. The operator space S is a non-commutative graph for some quantum channel iff $x \in S$ implies $x^* \in S$ and the identity operator $I \in S$ [3, 6]. In [1] the following operator graph was introduced

$$\begin{pmatrix}
 a & b & c\theta & d \\
 b & a & d & c/\theta \\
 c/\theta & d & a & b \\
 d & c\theta & b & a
\end{pmatrix} \tag{5}$$

for $\theta \in \mathbb{C}$, $|\theta| = 1$. The operator graph (5) is associated with pseudo-diagonal channels [10]

$$\Phi(\rho) = \sum_{j,k} c_{j,k} < \psi_j | \rho | \psi_k > | j > < k| \tag{6}$$

where $\{c_{ij}\}$ is a Gram matrix of a collection of unit vectors, $\{|\psi_i >\}$ is a collection of vectors in H such that $\sum_i |\psi_i > < \psi_i | = I$. Here we recover the structure of the algebra \mathcal{M}_θ generated by the graph (5) for any complex parameter $\theta \in \mathbb{C}$, $\theta \neq 0$.

\[2\]
3 The structure of the algebra \mathcal{M}_θ generated by the graph.

It is straightforward to check that the graph (5) is a linear envelope of the identity I and the following three matrices:

$$X = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \quad Y = \begin{pmatrix} 0 & 0 & \theta & 0 \\ 0 & 0 & 0 & 1/\theta \\ 1/\theta & 0 & 0 & 0 \\ 0 & \theta & 0 & 0 \end{pmatrix}, \quad Z = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$ (7)

The matrices (7) satisfy the relations

$$X^2 = Y^2 = Z^2 = I, \quad XZ = ZX, \quad YZ = ZY.$$ (8)

Let us consider the group G generated by formal variables x, y, z satisfying the relations: $x^2 = y^2 = z^2 = 1, xz = zx, yz = zy$. Note that adding to the last relations $xy = yx = z$ we obtain the Klein group. Consider the subalgebra $\mathcal{M}_\theta \subset \text{Mat}_4(\mathbb{C})$ generated by the matrices X, Y, Z. Thus, we have a well-defined morphism of algebras: $\phi_\theta : \mathbb{C}G \to \mathcal{M}_\theta$ defined by the rule: $x \mapsto X, y \mapsto Y, z \mapsto Z$. Also, the morphism ϕ_θ defines a 4-dimensional representation of the group G.

Theorem 1. We have the following statements:

- If $\theta \neq \pm 1$ then the algebra \mathcal{M}_θ is a direct sum of two matrix algebras of size 2. In this case $\dim_{\mathbb{C}} \mathcal{M}_\theta = 8$.
- If $\theta = \pm 1$ then the algebra \mathcal{M}_θ is isomorphic to the group algebra of the Klein group. In this case $\dim_{\mathbb{C}} \mathcal{M}_\theta = 4$.

Proof.

Consider a normal subgroup $P \triangleleft G$ of index 2 generated by the elements $g = xy$ and z. Note that we have the following relation: $xgx = g^{-1}$. Using the relations of the group G, we obtain that the group P is abelian. Hence, all irreducible representations of P are 1-dimensional. Any 1-dimensional representation is said to be a character of P. Thus, a dimension of irreducible representations of G is less or equal to 2. Let us describe characters of P. A character χ of P is a morphism: $\chi : P \to \mathbb{C} \setminus \{0\}$, $\chi(ab) = \chi(a)\chi(b)$, $a, b \in P$. The character χ is determined by two numbers $\chi(g) \in \mathbb{C} \setminus \{0\}$ and $\chi(z)$, $\chi(z)^2 = 1$. The last condition implies $\chi(z) = \pm 1$.

One can describe the standard construction of a G-representation V_χ induced by the character χ of P as follows. Consider a vector v such that $av = \chi(a)v, a \in P$. Also, we can consider a "formal" vector $x \cdot v$. Thus, the vector space generated by v and $x \cdot v$ is a space of V_χ. Elements of P act on V_χ by the rule: $av = \chi(a)v$. Using the relations $x^2 = 1$ and $xax = a^{-1}$, we get $a(x \cdot v) = x(axa \cdot v) = xa^{-1} \cdot v = \chi(a^{-1})x \cdot v = \chi^{-1}(a)x \cdot v$. It means that V_χ as representation of P is a direct sum of 1-dimensional representations corresponding to characters χ and χ^{-1}. The element x acts by the formula: $xv = x \cdot v$ and $xx \cdot v = x^2v = v$. Also, one can show that any 2-dimensional irreducible representation of G is induced by a character of P. Consider the
representation \(\phi_\theta \) of the group algebra \(\mathbb{C}G \) for \(\theta \neq \pm 1 \). In this case there are two irreducible submodules \(V_\chi \) and \(V_{-\chi} \) of representation \(\phi_\theta \), where characters \(\chi \) and \(-\chi \) are defined by rule: \(\chi(g) = \theta \) and \(-\chi(g) = -\theta \). Using the standard arguments, we get that the \(G \)-representation \(\phi_\theta \) is a direct sum \(V_\chi \oplus V_{-\chi} \). It means that if \(\theta \neq \pm 1 \) then algebra \(M_\theta \) is a direct sum of the matrix algebras of size 2. Thus, we get the first statement. In the case \(\theta = \pm 1 \), one can check that the representation \(\phi \) is a sum of four 1-dimensional representations.

We can see that there is a gap in dimension of the algebras \(M_\theta \) in the case \(\theta = \pm 1 \). We can change this situation as follows. We will construct a family of algebras \(A_\theta \) that the representation \(\phi_\theta \) is a direct sum \(V_\chi \oplus V_{-\chi} \). It means that if \(\theta \neq \pm 1 \) then algebra \(M_\theta \) is a direct sum of the matrix algebras of size 2. Thus, we get the first statement. In the case \(\theta = \pm 1 \), one can check that the representation \(\phi \) is a sum of four 1-dimensional representations.

Let us show that a dimension of the algebra \(A_\theta \) is equal to 8. Actually, one can show that if \(\theta \neq \pm i \) the algebra \(A_\theta \) has the following basis: \(1, g, g^2, g^3, x, xg, xg^2, xg^3 \), where \(g = xy \). In the case \(\theta = \pm i \) one can show that the algebra \(A_\theta \) has the basis: \(1, g, x, z, xg, xz, gz, xgz \). Thus, in the case \(\theta \neq \pm 1 \), \(\psi \) is bijective, hence, \(\psi \) is isomorphism.

Consider the case \(\theta = \pm 1 \). In this case we have the relation: \(g + g^{-1} = \pm 2z \). Thus, \((g + g^{-1})^2 = 4z^2 = 4 \). And, hence, we obtain the following relation:

\[
(g^2 - 1)^2 = 0.
\] (9)

Consider the ideal \(J \) of the algebra \(A \) generated by \(g^2 - 1 \). One can see that \(J \) has the following basis \(g^2 - 1, x(g^2 - 1), g(g^2 - 1), xg(g^2 - 1) \). Also, consider \(J^2 = \langle t_1t_2, t_1 \in J \rangle \). Using the relation (9), we get \(J^2 = 0 \). The ideal satisfying this property is said to be a radical. Therefore, the algebra \(A_\theta \) for \(\theta = \pm 1 \) has a 4-dimensional radical. One can check that \(\psi(J) = 0 \).

\[\square\]

4 Conclusion

We have found the general features of the algebra generated by the non-commutative operator graph playing an important role in quantum information theory. We have presented only a
sketch of the theory. We are planning to continue the study in the future to discover the algebraic nature of the quantum superactivation.

Acknowledgments

The authors are grateful to A.S. Holevo for kind attention to the work and many useful remarks. Theorem 1 was proved by G.G. Amosov, Theorem 2 was proved by I.Yu. Zdanovsky. The work of G.G. Amosov is supported by Russian Science Foundation under grant No 14-21-00162 and performed in Steklov Mathematical Institute of Russian Academy of Sciences. The work of I.Yu. Zhanovskiy is supported by RFBR, research projects 13-01-00234 and 14-01-00416, and was prepared within the framework of a subsidy granted to the HSE by the Government of the Russian Federation for the implementation of the Global Competitiveness Program.

References

[1] M.E. Shirokov, Quantum Information Processing, 14:8 3057-3074 (2015)
[2] G. Smith, J. Yard, Science, 321, 1812 (2008); arXiv:0807.4935
[3] R. Duan, arXiv: 0906.2527 (2009).
[4] T.S. Cubitt, J. Chen, A.W. Harrow, arXiv:0906.2547 (2009).
[5] R. Duan, S. Severini, A. Winter, IEEE Trans. Inf. Theory, 59:2, 1164-1174 (2013); arXiv:1002.2514
[6] M.E. Shirokov, T.V. Shulman, Comm. Math. Phys., 335:3, 11591179 (2015); arXiv:1309.2610
[7] M.E. Shirokov, T.V. Shulman, Problems Inform. Transmission. 50:3, 232-246 (2014); arXiv:1312.3586
[8] A.S. Holevo, Quantum systems, channels, information. A mathematical introduction, Berlin, DeGruyter, 2012.
[9] A.S. Holevo, Probability Theory and Applications, 51:1, 134-143 (2006); arXiv:quant-ph/0509101.
[10] T.S. Cubitt, M.B. Ruskai, G. Smith, J. Math. Phys., 49:2 (2008) 102104; arXiv:0802.1360