INTRODUCTION

Molecular biology’s central dogma explains life using 3 macromolecules: Deoxyribonucleic acid (DNA)—the genetic material of almost all living organisms, which is transcribed to Ribonucleic acid (RNA), which transmits genetic information from DNA to the cytoplasm to be translated to amino acids and forms protein which is a sequence of amino acids that forms the structural and functional basis of every cell.\[1\]

For decades, RNA was thought to play a very minor role in gene expression by converting genetic information from DNA into functional proteins upon receiving an appropriate signal. In the late 1960s, a subset of RNAs was found to control gene expression by stating which genes should turn on and which should turn off.\[2\] These non-coding RNAs, rightly named because they do not code for a protein, are of distinct classes distinguished based on their function and origin. These include microRNA (miRNA), small temporal RNA (stRNA), short interfering RNA (siRNA), short hairpin RNA (shRNA), small nuclear RNAs (snRNA), small nucleolar RNAs (snoRNA), transfer RNAs (tRNA) and ribosomal RNAs (rRNA).\[3\]

MiRNAs and siRNAs are currently among the most studied small non-coding RNAs. Following completion of the Human Genome Project, it was found that there are about 1000 genes in humans that encode miRNAs, which account for approximately 3% of the human genome.\[4–6\] MiRNAs are critical in determining cellular fate as they regulate development, maturation, differentiation and apoptosis of the cell, cell signaling, cellular interactions and homeostasis. Alternatively, they also assume central importance in our understanding of many pathologic conditions such as carcinogenesis.\[7,8\] Small non-coding RNAs are thus at the forefront of modern biology, heralding in an era of RNomics (the study of small non-messenger RNA) and challenging a central dogma proposed by Francis Crick more than half a century ago.

HISTORY

Living cells arose on Earth around 3.5 billion years ago when spontaneous reactions occurred between molecules of which RNA (Ribonucleic acid) molecules were the prime players. With time, protein catalysts accumulated, thereby resulting in the evolution of more complex and efficient cells and eventually the DNA double helix molecule, being more stable, replaced RNA in order to store the larger amounts of genetic information needed by these cells. The RNA molecule remained an intermediary, connecting the DNA, having the genetic function, with the proteins, having the catalytic function.\[9\]

Coding RNAs

Based on their function, RNA molecules can be broadly classified into coding RNAs and non-coding RNAs. Coding RNAs are molecules that code for a particular protein. They are key players in protein transcription and translation. The gene that codes for the protein of interest is unwound and transcribed into a single-stranded RNA molecule, the messenger RNA (mRNA), so called because it carries the genetic information from the nucleus into the cytoplasm, where it is translated into a sequence of amino acids forming a polypeptide chain. However, it remained unclear as to what made the genes to be transcribed into a particular protein and
how the process was turned on and off in each cell.[1] Human

genome analysis has revealed that a very small portion of the
human genome is translated into functional proteins while the
majority (approximately 65\%) of the genome is transcribed
into RNAs, whose function is still not determined.[10]

Non-coding RNAs

Non-coding RNAs, unlike mRNAs, do not encode protein
but control various levels of gene expression.[11,12] Based
on their function, non-coding RNAs can be categorized
into housekeeping RNAs such as tRNAs, rRNAs, snRNAs
and snoRNAs and regulatory RNAs. Housekeeping RNAs
are usually constitutively expressed whereas regulatory
non-coding RNAs are produced only at certain stages of
cellular development and differentiation or in response to
external stimuli. Among the small regulatory RNAs, miRNAs
are the most phylogenetically conserved and function
post-transcriptionally to regulate physiological processes by
silencing the gene.[13-15]

Gene regulation

Genetic regulation is essential to development and is the
process that controls the differentiation of a single totipotent
cell into a functional, complex multicellular organism. An
interspecies variation, or more simply, what makes us human,
is not only the difference in the genetic makeup but also
the differences in gene regulation.[16] It is also the cause of
phenotypic variations among individuals of the same species
as well as the reason for disease processes when the regulation
is aberrant.

Both RNA and protein can be regulated to control the
amount of active gene product formed by epigenetic control,
chromatin remodeling through DNA modifications and
regulating the transcript. This can occur at the transcriptional
level, when the gene is transcribed to an RNA transcript; at
the translational level, when the gene encodes a protein; or the
post-transcription and post-translational level, after the gene
product is synthesized. Small non-coding regulatory RNAs
regulate post-transcriptional gene expression.[17]

Gene regulation can result in up-regulation or down-regulation
of the gene product. Down-regulating the formation of active
gene products or "turning off" the gene is called gene
silencing. RNA interference (RNAi) is a method of sequence
silencing that differs significantly from a variety of other
mechanisms in its mechanism of action.[25,26]

The first miRNA, lin-4 (abnormal cell L1Neage) was discovered
by Ambros and coworkers (1993) in \emph{C. elegans} as an
endogenous regulator of genes that regulate developmental
timing.[10] The second miRNA, let-7 (LETal), was discovered
7 years later and found to function similar to lin-4. Eventually,
two categories of small RNAs were established that regulated
gene expression: miRNAs, which regulate endogenous genes
and siRNAs, which defend genome integrity in response to
foreign or invasive nucleic acids such as viruses, transgenes
and transposons.[27,28]

Following the discovery of lin-4 and let-7, several hundreds of
miRNAs have been identified. Some miRNAs, such as let-7, are
highly conserved through evolution and are essential to many
biological processes, while the individuality of an organism
can be ascribed to lineage- and species-specific miRNAs.[29,30]
There are currently 1872 precursor and 2578 mature human
miRNA sequences listed in the miRNA registry (Sanger
miRBase release 20; http://www.mirbase.org/). Almost 60\%
of mammalian miRNAs are predicted targets of a relatively
small number of miRNAs, suggesting that a given miRNA
can silence many target genes. This is thought to be because
miRNA does not require perfect sequence complementarity
with its target mRNA.[31]

BIogenesis of miRNAs

miRNAs are produced through transcription of miRNA genes
in the nucleus known as miRNAs precursor genes (mir-gene).
The miRNA transcripts are then spliced and capped similar
to protein coding mRNA transcripts. These primary miRNAs
form a hairpin-shaped stem loop, prior to being processed
into pre-miRNAs. This processing is carried out by a
microprocessor complex that consists of Drosha (RNase
III endonuclease) and DiGeorge syndrome critical region
8 (DGCR8) or Pasha, which is an essential cofactor. This
miRNAs have been found to regulate almost all cellular functions including cell proliferation, growth, differentiation and apoptosis. They are thought to play a role in specifying tissue identity since they are involved in the process of differentiation into specific tissue. Thus, the expression of miRNA in a specific cell type can be a useful marker for identifying the particular cell type.[37]

Tooth development

Specific codes of miRNAs have been identified which regulate cell differentiation and are required for tooth patterning; size, shape and number determination.[38]
that were capable of differentiating aggressive from indolent chronic lymphocytic leukemia (CLL).[43]

Recent evidence indicates that miRNAs play an important role in p53 tumor suppressor pathways. He et al. found miR-34a, miR-34b and miR-34c to be closely linked to p53 status and oncogenic stress and DNA damage induced their expression.[44,45]

Oral cancer

miRNA profiling in head and neck squamous cell carcinomas (HNSCCs) revealed miR-451 to be a potential prognostic marker. miR-375 and miR-106b-25 cluster to be mediate the development and progression of HNSCC.[46] Kozaki et al. showed that miR-137 and miR-193a function as tumor suppressors and are silenced in oral carcinogenesis.[47] Wong et al. studied the expression patterns of miRNAs in squamous cell carcinoma of the tongue and found an over expression of miR-184 which was thought to have an oncogenic role by inducing proliferative and anti-apoptotic processes.[48,49]

Henson et al. found that the development and/or progression of oral squamous cell carcinoma are associated with the down-regulation of miR-100 and miR-125b and these miRNAs may be the reason for the low sensitivity to ionizing radiation.[50] Li et al. found that miR-21 was an independent prognostic indicator for tongue squamous cell carcinoma and played a role in its development by inhibiting apoptosis of cancer cells.[51]

Metastasis is a significant event in the progression of HNSCC and Liu et al. found miR-138 to act as a tumor suppressor which could be a potential target for therapy in patients with a risk of metastasis.[52]

Cervigne et al. found miRNA signatures that could potentially identify leukoplakias which are at a risk of malignant transformation. The expression of miR-21, miR-181b and miR-345 were found to be consistently increased and associated with increase in the severity of the lesion. Overexpression of these miRNAs was thought to play a major role in malignant transformation.[53]

miRNAs and viruses

RNA interference and gene silencing is an innate host cell mechanism to protect against viruses. Viruses, on the other hand, have evolved to bypass host interference by various mechanisms which include altering miRNA expression in the host cell in a way that promotes viral replication. Nef and rev are viral genes in the human immunodeficiency virus that suppress host silencing mechanisms.[54-56]

miRNAs in autoimmune diseases

miRNAs are found to regulate immune response, immune cell development and prevention of autoimmunity. A possible role has been suggested for miRNA in the development of autoimmune diseases such as Rheumatoid Arthritis (RA), Sjögren’s syndrome and Systemic Lupus Erythematosus (SLE). Distinctive miRNA expression patterns have been linked to salivary gland dysfunction in patients with Sjögren’s syndrome and these miRNAs can serve as potential biomarkers for the disease. Proteins such as Ago2, involved in the biogenesis of miRNAs, have been found to be targets of these autoantibodies.[57,58]

Periodontal disease

miRNAs have been shown to play a major role in regulating the immuno-inflammatory response. Xie et al. compared the miRNA profiles of inflamed and healthy gingival tissue and found 91 miRNAs up-regulated and 34 miRNAs down-regulated in the inflamed gingival tissue indicating a plausible relationship between periodontal inflammation and miRNAs. miRNAs may be involved in regulating toll-like receptors (TLRs) in periodontal inflammation.[59]

THE CLINICAL POTENTIAL OF MIRNAS: DIAGNOSTIC, PROGNOSTIC AND THERAPEUTIC IMPLICATIONS

The majority of miRNA are intracellular, but some miRNA exists in the extracellular compartment and are seen to be mediators of cell-cell communication. Extracellular miRNAs can be isolated from body fluids such as serum, plasma and saliva. They can act as potential biomarkers for the detection of various diseases.[60] Salivary miRNAs can be used clinically to detect oral cancer. Healthy saliva contains approximately 50 miRNAs. Two miRNAs in particular, miR-125a and miR-200a have been found exclusively in the saliva of oral cancer patients and are diagnostic markers of the disease.[61-63]

The presence of RNAases in body fluids precludes the existence of any intact RNA. Thus, it has been theorized and proven that miRNA exist extracellularly within small, cell-secreted vesicles called “exosomes.”[64] These vesicles can regulate intercellular communication and facilitate certain processes such as antigen presentation. Exosomes are present in body fluids that include plasma, blood, breast milk, saliva and urine and can have a potential role in immunotherapy and vaccination modalities and as a potential vector for gene therapy. Salivary exosomal miRNAs may be important not only as a diagnostic tool but can also provide information regarding the role of miRNAs in the pathophysiology of various salivary gland diseases.[64]

QUANTIFICATION

Microarrays and quantitative PCR (qPCR)-based methods are the major modalities used to profile miRNAs. Quantitative PCR methods are widely available, relatively inexpensive and allow for the measurements of minute quantities of
miRNAs. However, the primer design can influence the results. With microarray-based methods, it is difficult to detect different miRNAs at one time. Northern blotting, direct sequencing and ligation-based measurement can also be used.\[36]\[62\] In situ hybridization is a reliable method to localize and detect miRNAs in both frozen tissue and paraffin-embedded sections. To confirm the function of a specific miRNA, loss-of-function and gain-of-function approaches can be applied in vivo in mammals as well as in vitro in cultured cells.\[37]\[62\]

ACKNOWLEDGEMENTS

Department of Oral and Maxillofacial Pathology, Ragas Dental College and Hospitals.

REFERENCES

1. Lodish HB, Zipursky SL, et al. Molecular Cell Biology. 4th ed. New York: W H Freeman; 2000.
2. Condorelli G, Dimmeler S. MicroRNAs: Components of an integrated system controlling cardiac development, physiology, and disease pathogenesis. Cardiovasc Res 2008;79:551-2.
3. Bahadori M. New Advances in RNAs. ArchIranMed 2008;11:435-43.
4. Mattick JS, Makunin IV. Small regulatory RNAs in mammals. Hum Molecular Genet 2005;14:R121-32.
5. Kim VN, Nam JW. Genomics of microRNA. Trends Genet 2006;22:165-73.
6. Saini HK, Griffiths-Jones S, Enright AJ. Genomic analysis of human microRNA transcripts. Proc Natl Acad Sci U S A 2007;104:17719-24.
7. Schickel R, Boyerinas B, Park SM, Peter ME. MicroRNAs: Key players in the immune system, differentiation, tumorigenesis and cell death. Oncogene 2008;27:5959-74.
8. Zhang W, Dahlberg JE, Tam W. MicroRNAs in tumorigenesis: A primer. Am J Pathol 2007;171:728-38.
9. Alberts BB, Lewis J, et al. Molecular Biology of the Cell. 3rd ed. New York: Garland Science; 1994.
10. Mattick JS, Makunin IV. Non-coding RNA. Hum Mol Genet 2006;15 Spec No 1:R17-29.
11. Ambros V. microRNAs: Tiny Regulators with Great Potential. Cell 2001;107:823-6.
12. Erdmann VA, Barciszewska MZ, Szymanski M, Hochberg A, de Groot N, Barciszewski J. The non-coding RNAs as riboregulators. Nucleic Acids Res 2001;29:189-93.
13. Szymanski M, Barciszewski J. Beyond the proteome: Non-coding regulatory RNAs. Genome Biol 2002;3:reviews0005.
14. Szymanski M, Erdmann VA, Barciszewski J. Noncoding regulatory RNAs database. Nucleic Acids Res 2003;31:429-31.
15. Zhao Y, Srivastava D. A developmental view of microRNA function. Trends Biochem Sci 2007;32:189-97.
16. Strachan T, Read AP. Human molecular genetics. 1st ed. New York: Wiley-Liss Bios Scientific Publishers, an imprint of Taylor and Francis Group; 1999.
17. Chen K, Rajewsky N. The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet 2007;8:93-103.
18. Hannon GJ. RNA interference. Nature 2002;418:244-51.
19. Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R. Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Develop 2006;20:515-24.
20. Hammond SM, Caudy AA, Hannon GJ. Post-transcriptional gene silencing by double-stranded RNA. Nat Rev Genet 2001;2:110-9.
21. Scherr M, Eder M. Gene silencing by small regulatory RNAs in mammalian cells. Cell Cycle 2007;6:444-9.
22. Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: Are the answers in sight? Nat Rev Genet 2008;9:102-14.
23. Garofalo M, Croce CM. microRNAs: Master regulators as potential therapeutics in cancer. Annu Rev Pharmacol Toxicol 2011;51:25-43.
24. Shukla GC, Singh J, Barik S. MicroRNAs: Processing, maturation, target recognition and regulatory functions. Mol Cell Pharmacol 2011;3:83-92.
25. Cheng JC, Moore TB, Sakamoto KM. RNA interference and human disease. Mol Genet Metab 2003;80:121-8.
26. Macfarlane LA, Murphy PR. MicroRNA: Biogenesis, function and role in cancer. Curr Genomics 2010;11:537-61.
27. Carthew RW, Sontheimer EJ. Origins and Mechanisms of miRNAs and sRNAs. Cell. 2009;136:642-55.
28. Zamore PD, Haley B. Ribonome: The big world of small RNAs. Science 2005;309:1519-24.
29. Kolokythas A, Miloro M, Zhou X. Review of microRNA deregulation in oral cancer. Part I. Oral Maxillofac Res 2011;2:e1.
30. De Mulder K, Berezikov E. Tracing the evolution of tissue identity with microRNAs. Genome Biol 2010;11:111.
31. Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009;19:92-105.
32. Shivasani RA. MicroRNAs: Regulators of gene expression and cell differentiation. Blood 2006;108:3646-53.
33. Berkhout B, Jeang KT. RISCy business: MicroRNAs, pathogenesis, and viruses. J Biol Chem 2007;282:26641-5.
34. He L, Hannon GJ. MicroRNAs: Small RNAs with a big role in gene regulation. Nat Rev Genet 2004;5:522-31.
35. Pushparaj PN, Aarathi JI, Manikandan J, Kumar SD. siRNA, miRNA, and shRNA: In vivo applications. J Dent Res 2008;87:992-1003.
36. Gu S, Kay MA. How do miRNAs mediate translational repression? Silence 2010;1:11.
37. Zhang C. MicroRNomics: A newly emerging approach for disease biology. Physiol Genomics 2008;33:139-47.
38. Cao H, Wang J, Li X, Florez S, Huang Z, Venugopalan SR, et al. MicroRNAs play a critical role in tooth development. J Dent Res 2010;89:779-84.
39. Gangaraju VK, Lin H. MicroRNAs: Key regulators of stem cells. Nat Rev Mol Cell Biol 2009;10:116-25.
40. Hatfield S, Ruohola-Baker H. microRNA and stem cell function. Cell Tissue Res 2008;331:57-66.
41. Eskildsen T, Taipaleenmaki H, Stenvang J, Abdallah BM, Dziol N, Nossent AJ, et al. microRNAs-138 regulates osteogenic differentiation of human stromal (mesenchymal) stem cells in vivo. Proc Natl Acad Sci U S A 2011;108:6139-44.
42. Yang CS, Li Z, Rana TM. microRNAs modulate iPSC cell generation. RNA 2011;17:1451-60.
43. Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE, et al. A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 2005;353:1793-801.
44. Feng Z, Zhang C, Wu R, Hu W. Tumor suppressor p53 meets microRNAs. J Mol Cell Biol 2011;3:44-50.
45. He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, et al.
A microRNA component of the p53 tumour suppressor network. Nature 2007;447:1130-4.
46. Hui AB, Lenarduzzi M, Krushel T, Waldron L, Pintilie M, Shi W, et al. Comprehensive MicroRNA profiling for head and neck squamous cell carcinomas. Clin Cancer Res 2010;16:1129-39.
47. Kozaki K, Imoto I, Mogi S, Omura K, Inazawa J. Exploration of tumor-suppressive microRNAs silenced by DNA hypermethylation in oral cancer. Cancer Res 2008;68:2094-105.
48. Chen LH, Tsai KL, Chen YW, Yu CC, Chang KW, Chiou SH, et al. MicroRNA as a novel modulator in head and neck squamous carcinoma. J Oncol 2010;2010:135632.
49. Wong TS, Liu XB, Wong BY, Yuen AP, Wei WI. Mature miR-184 as potential oncogenic microRNA of squamous cell carcinoma of tongue. Clin Cancer Res 2008;14:2588-92.
50. Henson BJ, Battacharjee S, O’Dee DM, Feingold E, Gollin SM. Decreased expression of miR-125b and miR-100 in oral cancer cells contributes to malignancy. Genes Chromosomes Cancer 2009;48:569-82.
51. Li J, Huang H, Sun L, Yang M, Pan C, Chen W, et al. MiR-21 indicates poor prognosis in tongue squamous cell carcinoma as an apoptosis inhibitor. Clin Cancer Res 2009;15:3998-4008.
52. Liu X, Jiang L, Wang A, Yu J, Shi F, Zhou X. MicroRNA-138 suppresses invasion and promotes apoptosis in head and neck squamous cell carcinoma cell lines. Cancer Lett 2009;286:217-22.
53. Cervigne NK, Reis PP, Machado J, Sadikovic B, Bradley G, Galloni NN, et al. Identification of a microRNA signature associated with progression of leukoplakia to oral carcinoma. Hum Mol Genet 2009;18:4818-29.
54. Yeung ML, Bennasser Y, Myers TG, Jiang G, Benkirane M, Jeang KT. Changes in microRNA expression profiles in HIV-1-transfected human cells. Retrovirology 2005;2:81.
55. Ouellet DL, Plante I, Barat C, Tremblay MJ, Provost P. Emergence of a complex relationship between HIV-1 and the microRNA pathway. Methods Mol Biol 2009;487:415-33.
56. Westerhout EM, Ooms M, Vink M, Das AT, Berkhou B. HIV-1 can escape from RNA interference by evolving an alternative structure in its RNA genome. Nucleic Acids Res 2005;33:796-804.
57. Pauley KM, Cha S, Chan EK. MicroRNA in autoimmunity and autoimmune diseases. J Autoimmun 2009;32:189-94.
58. Alevizos I, Alexander S, Turner RJ, Illei GG. MicroRNA expression profiles as biomarkers of minor salivary gland inflammation and dysfunction in Sjogren’s syndrome. Arthritis Rheum 2011;63:535-44.
59. Xie YF, Shu R, Jiang SY, Liu DL, Zhang XL. Comparison of microRNA profiles of human periodontal diseased and healthy gingival tissues. Int J Oral Sci 2011;3:125-34.
60. Kosaka N, Iguchi H, Ochiya T. Circulating microRNA in body fluid: A new potential biomarker for cancer diagnosis and prognosis. Cancer Sci 2010;101:2087-92.
61. Kosaka N, Izumi H, Sekine K, Ochiya T. microRNA as a new immune-regulatory agent in breast milk. Silence 2010;1:7.
62. Etheridge A, Lee I, Hood L, Galas D, Wang K. Extracellular microRNA: A new source of biomarkers. Mutat Res 2011;717:85-90.
63. Park NJ, Zhou H, Elashoff D, Henson BS, Kastratovic DA, Abemayor E, et al. Salivary microRNA: Discovery, characterization, and clinical utility for oral cancer detection. Clin Cancer Res 2009;15:5473-7.
64. Michael A, Bajracharya SD, Yuen PS, Zhou H, Star RA, Illei GG, et al. Exosomes from human saliva as a source of microRNA biomarkers. Oral Dis 2010;16:34-8.