Psoralen and ultraviolet A light (PUVA) are used to kill pathogens in blood products and as a treatment of aberrant cell proliferation in dermatitis, cutaneous T-cell lymphoma, and graft-versus-host disease. DNA damage is well described, but the direct effects of PUVA on cell signal transduction are poorly understood. Because platelets are anucleate and contain archetypal signal transduction machinery, they are ideally suited to address this. Lipidomics on platelet membrane extracts showed that psoralen forms adducts with unsaturated carbon bonds of fatty acyls in all major phospholipid classes after PUVA. Such adducts increased lipid packing as measured by a blue shift of an environment-sensitive fluorescent probe in model liposomes. Furthermore, the interaction of these liposomes with lipid order-sensitive proteins like amphipathic lipid-packing sensor 4-chloro-7-nitrobenzofurazan and α-synuclein was inhibited by PUVA. In platelets, PUVA caused poor membrane binding of Akt and Bruton’s tyrosine kinase effectors following activation of the collagen glycoprotein VI and thrombin protease-activated receptor (PAR) 1. This resulted in defective Akt phosphorylation despite unaltered phosphatidylinositol 3,4,5-trisphosphate levels. Downstream integrin activation was furthermore affected similarly by PUVA following PAR1 (effective half-maximal concentration (EC$_{50}$), 8.4 ± 1.1 versus 4.3 ± 1.1 μM) and glycoprotein VI (EC$_{50}$, 1.61 ± 0.85 versus 0.26 ± 0.21 μg/ml) but not PAR4 (EC$_{50}$, 50 ± 1 versus 58 ± 1 μM) signal transduction. Our findings were confirmed in T-cells from graft-versus-host disease patients treated with extracorporeal photopheresis, a form of systemic PUVA. In conclusion, PUVA increases the order of lipid phases by covalent modification of phospholipids, thereby inhibiting membrane recruitment of effector kinases.

Psoralen is a clinical strategy that prevents replication of DNA (3), explaining why photochemical reaction with DNA, PUVA photochemistry is not specific for this particular biologic target alone. In theory, photoexcited psoralens can be seen as ‘‘oncologic light’’ (5) where it prevents replication of potentially infectious pathogens transmitted from the donor to the blood product. In dermatology, PUVA is used to treat psoriasis, certain dermatoses, and cutaneous T-cell lymphoma (5). In these cases, the psoralen is administered topically or systemically following local or whole body UVA illumination. Treatment modalities are diverse and may differ by psoralen derivative and/or by doses of UVA light (6). Furthermore, PUVA is under clinical investigation for the treatment of multiple other diseases mostly involving uncontrolled cell proliferation (7). However, although broadly in medicine, the biochemical consequences of PUVA are poorly understood.

Psoralens are not clinically efficacious without UVA illumination, and despite its well documented photoreaction with DNA, PUVA photochemistry is not specific for this particular biologic target alone. In theory, photoexcited psoralens can react with many other common biomolecules. Therefore, the net effect of PUVA in a cellular milieu is unlikely to be restricted to consequences of its chemistry with solely DNA as was

References

1. The abbreviations used are: UVA, ultraviolet A; PUVA, psoralen and ultraviolet A light; GVHD, graft-versus-host disease; ECP, extracorporeal photopheresis; Btk, Bruton’s tyrosine kinase; Wt, wortmannin; NBD, 4-chloro-7-nitrobenzofurazan; 8-MOP, 8-methoxypsoralen; MeSADP, 2-(methylthio)adenosine 5-diphosphate; IANBD, NBD iodoacetamide; ESI, electron spray ionization; PiP$_2$, bispophorylated phosphatidylinositol; PLC, phospholipase C; PI, phosphatidylinositol; PS, phosphatidylserine; PC, phosphatidylcholine; ALPS, amphipathic lipid-packing sensor; GPVI, glycoprotein VI; PAR, protease-activated receptor; GP, generalized polarization; PIC3(4,5)P$_2$, phosphatidylinositol 3,4,5-trisphosphate; PI(4,5)P$_2$, phosphatidylinositol 4,5-bisphosphate; PH, pleckstrin homology; P-Akt, phosphorylated Akt; BMPC, peripheral blood mononuclear cell; AUC, area under the curve; EC$_{50}$, effective half-maximal concentration.

2. This work was supported by the Foundation for Research and Development of the Belgian Red Cross-Blood Service. The authors declare that they have no conflicts of interest with the contents of this article.

3. To whom correspondence should be addressed: Transfusion Research Center, Belgian Red Cross-Flanders, Ottergemsesteenweg 413, 9000 Ghent, Belgium. Tel.: 32-9-244-56-58; E-mail: hendrik.feyes@rodekruis.be.

4. From the †††Transfusion Research Center, Belgian Red Cross-Flanders, 9000 Ghent, Belgium, the †††Department of Hematology, Hospital Network Antwerp, 2000 Antwerp, Belgium, the †††Research Institute for Chromatography, 8500 Kortrijk, Belgium, the ††Blood Service of the Belgian Red Cross-Flanders, 2800 Mechelen, Belgium, the †Department of Public Health and Primary Care, KULeuven, 3000 Leuven, Belgium, and the †§Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium.

5. Psoralens are linear furanocoumarins. Their heterocyclic aromatic core reversibly intercalates in nucleic acid clefts of cell nuclei (1). Absorption of ultraviolet A (UVA)2 light excites the psoralen, supplying energy for covalent bond formation. When in the vicinity of nucleic acids, the reaction is primarily with pyrimidine moieties (2). This chemical addition is irreversible and prevents normal replication of DNA (3), explaining why severe photodermatitis occurs in sun-exposed skin that has been in contact with psoralen-producing plants. This bio-static photochemistry is utilized in a pathogen inactivation technology (Intercept Blood System, Cerus Corp., Concord, CA) for plasma and platelet concentrates in transfusion medicine (4) where it prevents replication of potentially infectious pathogens transmitted from the donor to the blood product. In dermatology, PUVA is used to treat psoriasis, certain dermatoses, and cutaneous T-cell lymphoma (5). In these cases, the psoralen is administered topically or systemically followed by local or whole body UVA illumination. Treatment modalities are diverse and may differ by psoralen derivative and/or by doses of UVA light (6). Furthermore, PUVA is under clinical investigation for the treatment of multiple other diseases mostly involving uncontrolled cell proliferation (7). However, although broadly applied in medicine, the biochemical consequences of PUVA are poorly understood.

6. Psoralens are not clinically efficacious without UVA illumination, and despite its well documented photoreaction with DNA, PUVA photochemistry is not specific for this particular biologic target alone. In theory, photoexcited psoralens can react with many other common biomolecules. Therefore, the net effect of PUVA in a cellular milieu is unlikely to be restricted to consequences of its chemistry with solely DNA as was.
Effects of Psoralen and UVA Light on Signal Transduction

We chose platelets as model cells to study this because they have no nucleus, are easily isolated from whole blood, and contain a complex signal transduction machinery exemplary of key signaling processes in most eukaryotic cells. Furthermore, recent work has shown that PUVA significantly affects platelet function in an in vitro model of hemostasis (23). Our data now show that PUVA can inhibit signal transduction in the phosphatidylinositol 3-kinase (PI3K) pathway by preventing efficient plasma membrane recruitment of crucial effector kinases such as Akt (alternative name, protein kinase B) and Bruton’s tyrosine kinase (Btk). Our findings are not restricted to platelets because T-lymphocytes in patient samples treated with ECP displayed attenuation of Akt phosphorylation as well.

Results

PUVA Modifies Phospholipids by Covalent Adduct Formation—Adducts between nucleic acids and psoralens like amotosalen or 8-methoxypsoralen (8-MOP) are formed in nucleated cells, but chemistry with (phospho)lipids has been described as well (15, 24). Mass spectrometry of platelet membrane extracts confirmed that PUVA causes amotosalen-lipid adduct formation, which was not found in control cells that were incubated with this psoralen in the dark (Fig. 1, a and b). All major phospholipid classes were targeted (Fig. 1c) provided they contained acyl chains with unsaturated carbon bonds (19). Fragmentation MS/MS spectra allowed identification of the main adducts that formed, and Fig. 1d depicts exemplary MS/MS data for PS(18:0/20:4), bisphosphorylated phosphatidylcholine (P(18:1/18:1)) and their PUVA-dependent adducts.

PUVA Increases Lipid Order, Causing Inhibition of Protein Binding—Because photochemical addition of psoralens is to unsaturated carbon bonds, we hypothesized that PUVA causes changes in the order of lipid phases because this is typically controlled by acyl chain (un)saturation. To assess this, the environment-sensitive fluorescent probe NR12S (25, 26) was used in liposomes composed of PC(16:0/18:1). The emission peak of NR12S shifts blue in liquid-ordered liposomes, causing a rise in the generalized polarization (GP) value. In a validation experiment, this was demonstrated by addition of cholesterol, which is known to enhance lipid packing (Fig. 2a) (26). Ultraviolet A light treatment of amotosalen-containing liposomes caused apparent increases in lipid order similar to the addition of cholesterol, suggesting that phospholipid-amotosalen adducts tighten the acyl chain alignment.

Because disordered lipid microenvironmants are important for protein-membrane interaction (27, 28), two archetypical membrane-adhering protein sequences, ALPS and α-synuclein (29, 30), were investigated for binding to PUVA-treated liposomes. As expected, the ALPS peptide efficiently bound to increasing concentrations of dark-treated control liposomes enriched in PC(18:1/18:1) but not PC(16:0/18:1) (Fig. 2b) (29). However, when the former were PUVA-treated, subsequent ALPS binding was inhibited to levels similar to the negative control. In a similar experiment, PUVA caused a significant decrease in α-synuclein binding to PS- and PC(18:1/18:1)-containing liposomes (Fig. 2c). Collectively, these data show that PUVA increases lipid order in liposomes and inhibits efficient binding of lipid packing-sensitive protein sequences.

PLIVA Affects Akt and Btk Plasma Membrane Binding and Subsequent Signal Transduction—During platelet activation, essential interactions between membrane (phospho)lipids and cytoplasmic soluble proteins take place. These then relay signals to secondary messenger molecules, establishing successful primary hemostasis. Because PUVA affects protein interaction with model liposomes, we questioned whether this membrane binding of key cytoplasmic signaling proteins like Akt and Btk was intact in PUVA-treated platelets. To activate the initiating PI3K pathway in platelets, the collagen GPVI or the thrombin PAR1 was stimulated. Membrane binding of Akt and Btk was assessed by Western blotting of isolated membrane fractions. Significantly less Akt and Btk was found in PUVA versus paired untreated controls, pointing to defects in membrane binding in live cells as well (Fig. 3a). This defective binding moreover caused significant decreases in subsequent Akt phosphorylation, a major event in the PI3K signal transduction pathway (Fig. 3b) (31).

Binding of Akt and Btk to the activated membrane requires at least increased levels PI(3,4,5)P3, which is produced by phosphorylation of PIP2 by PI3K. Quantitative mass spectrometry on membrane extracts ruled out that PI(3,4,5)P3 formation is abnormal in PUVA-treated resting and activated platelets (Fig. 4a). Furthermore, the relative amount of PIP2-amotosalen adducts to total PIP2 was only 1.2%, confirming that direct effects on the PI3K substrate were unlikely to cause decreased Akt membrane recruitment and phosphorylation. Furthermore, signal transduction in the concurrent phospholipase C (PLC) pathway was not affected by PUVA because the level of pleckstrin phosphorylation (Fig. 4b) and calcium release (data not shown) were normal in response to GPVI and PAR1 stimulation. Of note, platelet activation by another thrombin ana-
logue that specifically targets PAR4 instead of PAR1 was not affected by PUVA and led to normal Akt phosphorylation (Fig. 4c). This is important because it demonstrates that the intrinsic potential to phosphorylate Akt is still present in PUVA-treated cells but depends on the kind of activatory input. Together, these data show that, despite generic adduct formation of psoralen with acyl chains, consequences for signal transduction are relatively selective and specific.

Platelet Integrin Activation Is Decreased by PUVA—Downstream of the investigated signaling circuit, platelets respond by activation of integrin \(\alpha_{IIb}\beta_3 \). Integrin activation of PUVA-treated platelets was investigated with flow cytometry using the conformation-sensitive monoclonal antibody PAC-1 (32). PUVA caused a significant decrease in integrin activation following stimulation with increasing doses of the thrombin PAR1 (effective half-maximal concentration \(\text{EC}_{50} \), 8.4 ± 1.1 \(\mu \text{M} \) versus 4.3 ± 1.1 \(\mu \text{M} \)) or the collagen GPVI (\(\text{EC}_{50} \), 1.61 ± 0.85 \(\mu \text{g/ml} \)) receptor agonists (Fig. 5, a and b). In line with the Akt phosphorylation data, activation through PAR4 was normal (\(\text{EC}_{50} \), 50 ± 1 \(\mu \text{g/ml} \)) (Fig. 5c). As a control, the plasma membrane expression levels of the receptors GPVI and PAR1 was determined in flow cytometry and found to be normal (Fig. 5d).

PUVA Decreases Phosphorylation of Akt in T-lymphocytes from GVHD Patients—As a model for PUVA treatment of nucleated human cells, leukocytes were isolated from healthy consenting volunteers. The T-lymphocytes were activated by anti-CD3/CD28 beads. The effect of PUVA on T-cell activation...
was determined for 8-MOP and amotosalen in a paired experiment. The data show that both psoralens dose-dependently inhibited phosphorylation of Akt (Fig. 6, a and b), which was not caused by immediate cell death (data not shown). The data show that amotosalen was more efficient than 8-MOP, requiring lower concentrations to achieve half-maximal inhibition. To confirm whether Akt activation is affected in clinically relevant tissue, buffy coat cells from GVHD patients enrolled in a clinical efficacy study were collected before and after ECP. In these samples, Akt activation in T-lymphocytes was also significantly decreased (Fig. 6, c and d). Together, these data show that PI3K-dependent signaling is affected by PUVA in cells other than platelets and in the clinical setting of ECP treatment.

Discussion

Despite its widespread clinical use, many aspects of PUVA’s mode of action have remained uncertain. Our data show for the first time that PUVA treatment specifically inhibits the PI3K-Akt pathway by interfering with efficient recruitment of effector kinases Akt and Btk to the activated plasma membrane in response to specific stimuli. Our model (Fig. 7) suggests that psoralen-phospholipid adduct formation in the plasma membrane prevents efficient interaction between effector proteins specifically interacting with microenvironments of decreased lipid packing harboring PI(3,4,5)P3.

Covalent binding of photoexcited psoralen to unsaturated fatty acids has been described before in cell-free test tubes and in cell extracts (19, 20, 24). Our mass spectra of PUVA-treated platelet extracts confirm covalent reaction with unsaturated acyl side chains. All investigated phospholipid classes formed adducts with the amotosalen, indicating no preference for the hydrophilic headgroup. Despite this seemingly unspecific photochemistry, signal transduction inhibition was remarkably specific for the PI3K pathway. Phosphorylation of Akt was decreased, but the concurrent PLC axis showed no defect even though both pathways utilize the same PI(4,5)P2 substrate. Furthermore, PI3K activity was not directly affected by the presence of free amotosalen and its adducts with PI(3,4,5)P3, levels were normal in response to platelet activation and because these particular adducts were not abundant. Consequently, specific modification of only inositides is not underlying the PI3K signal transduction defect.

Instead, PUVA inhibits normal plasma membrane recruitment of Akt and Btk in the presence of normal PI(3,4,5)P3 levels, suggesting that the interaction is dependent on auxiliary facilitators. Because unsaturated fatty acids are the prime target of PUVA chemistry, such facilitators thus require normal (levels of) fatty acyl unsaturations to fulfill their role. Plasma membrane binding of small effector kinases is well studied, and even
though it is assumed to be primarily between the PH domain sequence KXn(K/R)XR (33) and PI(3,4,5)P3, additional factors (in)directly support binding. For instance, the related PH domains of PLCδ1 and GRP1 are known to harbor amino acids that penetrate the inner hydrophobic core of the membrane (34, 35). Such membrane insertion often requires the targeted membrane compartment to be less tightly packed (29, 36). Now our data show that binding of packing-sensitive probes ALPS and α-synuclein to model bilayers is hampered by PUVA. This indicates that amino acid insertion into the membrane core facilitated by unsaturated phospholipids is inhibited by PUVA. We thus hypothesize that lipid packing is the additional factor that cooperatively strengthens Akt and Btk binding as suggested by the coincidence detection (37) hypothesis of PH domain interactions with the plasma membrane. Our data provide the first proof in live cells that the acyl side chain milieu of phospholipids co-determines binding success of major PH domain-containing effector kinases in the presence of normal PI(3,4,5)P3 levels.

The extent of Akt and Btk inhibition by PUVA, however, varies with the stimulus. Integrin α integrin activation was most affected following GPVI stimulation, less by PAR1, and not at all by PAR4. This shows that the defect is not restricted to either G-protein-coupled or immune receptor activation. It also means that the integrin conformational machinery is not affected directly by PUVA and able to respond normally if signals come in correctly from the upstream cue. How this variability in response is established, however, remains uncertain. Maybe the separate ligand-receptor circuits reside in plasma membrane microdomains of specific phospholipid composition (38) that is variably susceptible to modifications by PUVA. This follows the biochemical dogma of PI3K-dependent signaling stating that PI(3,4,5)P3 molecules are scaffolding molecules restricted in space and time for controlled signalosome construction (39). The experimental setting allows activation through a single receptor-ligand couple, resulting in a distinct identifiable signal. However, in a real life physiologic environment, multiple extracellular chemicals act in concert at varying concentrations in space and time. Therefore, the net effect of PUVA on the diverse tissues that are clinically treated is difficult to predict based on our findings. However, because many signaling pathways rely on membrane recruitment, the output of PUVA-treated tissue in response to physiologically relevant chemicals will be undoubtedly altered.

In platelets, this altered output presents as delayed thrombus formation on immobilized collagen in vitro (23). Experimental inhibition of PI(3,4,5)P3-dependent signaling in platelets indeed shows significant function defects for instance in mouse

FIGURE 3. PUVA treatment specifically affected PI3K signal transduction by impairing recruitment of Akt and Btk. α, platelets were activated via the collagen GPVI or the thrombin PAR1, and the membrane fraction was analyzed by Western blotting and densitometry. Antibodies to total Akt (Akt) or total Btk (Btk) were used. Loading was controlled by reprobing with anti-integrin αIIb. Molecular marker bands to the right (Akt) or in the middle (Btk) of the membrane represent molecular masses of 75 and 50 kDa. PUVA treatment versus control is indicated on top of the panels. The decrease in mean protein band density of PUVA-treated samples relative to untreated paired controls is shown in the bar graphs (mean with error bars representing S.D., n = 3). Null change is emphasized by the horizontal dashed line. b, whole lysates of activated platelets were analyzed by Western blotting and densitometry using antibodies to P-Akt. Loading was controlled by reprobing with total Akt (Akt). Molecular marker bands in the left lanes represent molecular masses of 75 and 50 kDa. To control for PI3K pathway specificity, paired experiments in the presence of 0.5 μM Wm were performed. The decrease in mean protein band density of the ratio of phosphorylated kinase to total kinase (mean with error bars representing S.D., n = 6) in PUVA-treated platelets relative to untreated paired control is shown in the bar graph. Null change is emphasized by the horizontal dashed line.
models of Akt isoform deficiency (31), PDK1 deficiency (40), or PI3K isoform deficiency (41). In human B-cell malignancy, Btk inhibition by ibrutinib is clinically successful but increases the risk of bleeding by platelet inhibition (42). Platelets are currently treated by PUVA in certain blood banks in Europe to prevent transmission of pathogens during transfusion. This treatment is possible because they do not contain a nucleus. Our findings have now revealed the mechanism of decreased function caused by side effects of PUVA and unrelated to DNA damage. The clinical consequences of transfusing psoralen-modified phospholipids are unknown but worthwhile investigating.

Our findings also have consequences for other fields that commonly apply PUVA. The exact biochemical drivers of PUVA’s clinical success in skin pathologies or GVHD for instance remain poorly understood. We propose a substantial role for selective PI3K axis inhibition given the results of the

Effects of Psoralen and UVA Light on Signal Transduction

FIGURE 4. Formation of PI(3,4,5)P3, phosphorylation of Akt in response to PAR4 stimulation, and the phospholipase C pathway were not affected by PUVA. a, the amount of PI(3,4,5)P3(18:0/20:4) in platelet lipid extracts was determined by peak area (AUC) relative to that of the internal standard (AUC, IS). Platelets were activated via the collagen GPVI or the thrombin PAR1. Untreated controls (open bars) and PUVA-treated samples (closed bars) are shown. Resting platelets were incubated with vehicle only. Mean data and error bars representing S.D. are shown (n = 4), b, whole lysates of activated platelets were analyzed by Western blotting using antibodies to phosphorylated tyrosines (P-Tyr). Loading and specificity were controlled by reprobing with anti-pleckstrin (PLK) antibodies. Molecular marker bands in the left and right lanes represent molecular masses of 50 and 35 kDa. Paired control samples for resting platelets were incubated with the respective vehicle buffers. c, platelets were activated via the thrombin PAR4, and whole lysates were analyzed by Western blotting using antibodies to P-Akt. Loading was controlled by reprobing with total Akt (Akt). Molecular marker bands in the left lanes represent molecular masses of 75 and 50 kDa. To control for PI3K pathway specificity, paired experiments in the presence of 0.5 μM Wm were performed. The decrease in mean protein band density of the ratio of phosphorylated kinase to total kinase (mean data and error bars representing S.D., n = 3) in PUVA-treated platelets relative to untreated paired control is shown in the bar graph. Null change is emphasized by the horizontal dashed line.

In conclusion, our research shows that PUVA selectively inhibits recruitment of kinases Akt and Btk to activated plasma membranes. This suggests that unsaturations in the plasma membrane co-determine kinase-membrane binding. We furthermore propose that the variable susceptibility of ligand-receptor couples to PUVA contributes to complex rewiring of cell

NOVEMBER 18, 2016 • VOLUME 291 • NUMBER 47
JOURNAL OF BIOLOGICAL CHEMISTRY

NOVEMBER 18, 2016 • VOLUME 291 • NUMBER 47
JOURNAL OF BIOLOGICAL CHEMISTRY

ASBMB

JOURNAL OF BIOLOGICAL CHEMISTRY

24369
Effects of Psoralen and UVA Light on Signal Transduction

and tissue fate, explaining the complexity in output and in clinical success.

Experimental Procedures

Materials—Reagents were obtained from the following sources: wortmannin (Wm), anti-phosphorylated Akt (P-Akt) (clone D25E6), anti-total (pan) Akt (40D4), anti-total Btk (C82B8), phosphotyrosine monoclonal antibody (P-Tyr-102), and secondary peroxidase-labeled antibodies (Cell Signaling Technologies, Danvers, MA); thrombin receptor PAR1-activating hexapeptide SFLLRN, 4-chloro-7-nitrobenzofurazan (NBD) chloride, tris(2-carboxyethyl)phosphine, RPMI 1640 medium without phenol red, L-glutamine, 8-MOP, and interleukin-2 (IL2) (Sigma-Aldrich); thrombin receptor PAR4-activating hexapeptide AYPGKF (Anaspec, Waddinxveen, The Netherlands); Halt protease and phosphatase inhibitor mixture (Thermo Scientific, Waltham, MA); MeSADP (Santa Cruz Biotechnology, Dallas, TX); anti-pleckstrin antibody (ab17020) and human wild type α-synuclein (ab51188) (Abcam, Cambridge, UK); and NBD iodoacetamide (IANBD) and Dynabeads human T-activator CD3/C28 (Life Technologies). All phospholipids and cholesterol were purchased dissolved in chloroform (Avanti Polar Lipids, Alabaster, AL). ALPS peptide was custom-made (Proteogenix, Schiltigheim, France) and based on the first 38 amino acids of the GMAP210 protein (44) except for the N-terminal methionine, which was mutated to cysteine to allow targeted labeling with NBD. Ficoll-Paque Premium (d = 1.077 g/ml at 20 °C) was obtained from GE Healthcare. Blood group AB serum was provided by the Belgian Red Cross-Flanders blood bank. The environment-sensitive NR12S probe is a Nile Red derivative and a kind gift from Dr. Klymchenko (Strasbourg University, France) (25, 26).

PUVA Treatment—PUVA treatment of platelets, liposomes, and peripheral blood mononuclear cells (PBMCs) was with the Intercept Blood System pathogen inactivation technology using amotosalen or 8-MOP as the active photosensitizing psoralen. Ultraviolet A light in the wavelength range 320–400 nm was delivered to the samples in a closed and calibrated illumination device.

Platelet concentrates for transfusion were prepared from human voluntary whole blood donations using the standardized buffy coat method (45), which is by pooling of six buffy coats and resuspension in additive solution (SSP, Macopharma, Tourcoing, France) as described (23). To generate paired samples, two platelet concentrates were pooled, mixed, and split again in two equivalent volumes. One volume remained untreated (control), and the other was PUVA-treated in accordance with the instructions of the Intercept Blood System manufacturer (46, 47). For this, the platelet concentrate was transferred to an illumination bag while 17.5 ml of amotosalen (final 150 μM) solution was added followed by UVA illumination at a dose of 3.9 J/cm² for 260 s on average. Following overnight incubation on an orbital shaker at room temperature with a compound adsorption device to remove unreacted amotosalen and its photoproducts, platelet concentrates were trans-

![Diagram](https://example.com/diagram.png)
Effects of Psoralen and UVA Light on Signal Transduction

FIGURE 6. Phosphorylation of Akt was decreased after PUVA treatment of T-lymphocytes. a and b, dose escalations of 8-MOP (a) or amotosalen (AS) (b) were added to isolated PBMCs from healthy donors and subsequently illuminated with UVA light or not as indicated on top of each panel. The condition without psoralen contained vehicle solution and was used as a negative control. c and d, PBMCs were isolated from clinical buffy coat samples before (pre) and after (post) ECP treatment for GVHD. T-lymphocyte activation in the presence of 0.5 μM Wm was used to control for specificity of the PI3K axis. a–c, T-lymphocytes were activated by receptor ligation in the presence of IL2 followed by Western blotting of whole cell lysates. Antibodies to P-Akt were used, and membranes were reprobed for total Akt (Akt) to control for loading. Molecular marker bands in the left lanes represent molecular masses of 75 and 50 kDa. d, the mean decrease in the P-Akt over Akt signal ratio in samples post-ECP relative to pre-ECP is depicted (mean with error bars representing S.D., n = 3 different ECP treatments). Null change is emphasized by the horizontal dashed line.

ferred to a storage bag. Storage was under standard blood bank conditions. Experiments on platelets were performed 16–24 h after UVA illumination using low volume samples taken through sterile welded connections under a laminar flow hood.

Signal Transduction Analysis—Platelet samples were washed in Tyrode’s buffer (5 mM HEPES, pH 7.4, with 136.5 mM NaCl, 2.7 mM KCl, 11.9 mM NaHCO3, 0.4 mM Na2HPO4, 1 mM MgCl2, and 0.1% (w/v) n-glucose) as described (48). Washed platelets were rested for maximally 30 min at 37 °C prior to activation with the indicated agonists and incubation times. Activation through PARs for measurement of phosphorylation downstream of PI3K activation was in conjunction with 10 μM MeSADP. Activated platelets were lysed in ice-cold buffer (50 mM Tris, pH 8.0, with 100 mM NaCl, 0.5% (v/v) octylphenoxypolyethoxyethanol (Igepal-CA630), 0.4% (w/v) sodium dodecyl sulfate (SDS), 10 μM activated Na3VO4, and Halt protease mixture) and mixed. Separation of platelet membrane fractions was performed by ultracentrifugation as described by Badolli et al. (49). In brief, following platelet activation, the reaction was stopped by the addition of Halt protease mixture (final 2×). Four freeze/thaw cycles in liquid nitrogen were performed next. Lysates were centrifuged at 1500 × g for 10 min at 4 °C to precipitate poorly lysed cell remnants. The supernatant was centrifuged in an ultracentrifuge at 100,000 × g for 30 min at 4 °C. The supernatant contained the cytosolic fraction and was kept stored at –20 °C. The pellet, which contained the membrane fraction and cytoskeleton, was rinsed with 1 ml of ice-cold Tris-buffered saline (TBS) (pH 7.4; 25 mM Tris with 150 mM NaCl and 2 mM KCl) containing 1% (v/v) Triton X-100 and 2× (final concentration) Halt protease mixture before it was resuspended in 100 μl of the same buffer. These suspensions were again centrifuged at 15,000 × g for 10 min at 4 °C to precipitate the cytoskeleton. The supernatant contained the membrane fraction. Sample protein concentration was determined using a bicinchoninic acid kit (Thermo Scientific, Rockford, IL).

Platelet samples (membrane fraction or whole platelet lysates) were loaded on 4–15% polyacrylamide Tris-glycine TGX gels in reducing Laemmli sample buffer. Western blotting was onto precut nitrocellulose membranes. Primary and secondary antibodies to blotted targets were prepared in TBS with 0.1% (v/v) Tween 20 and 5% (v/v) skimmed milk. Reprobing of membranes was by incubation for 30 min at 60 °C in Western reproguing buffer (50 mM Tris, pH 7.0, 2.0% (w/v) SDS, and 100 mM β-mercaptoethanol). Bound antibody was detected with enhanced chemiluminescence and an automated imaging system (ChemiDoc MP) equipped with a charge-coupled device camera and analysis software (ImageLab v4.0.1) for densitometry (all reagents, hardware, and software from Bio-Rad).

Lipid Extraction and Lipid Sample Preparation—The solvents used for the lipid extraction and LC-MS separation were HPLC grade chloroform, ultra-LC-MS grade water, and ultra-LC-MS grade methanol (Biosolve, Valkenswaard, The Netherlands). Lipid extraction and the lipid sample preparation were performed as described (50) with minor modifications. In brief, three volumes of chloroform/methanol (1:2, v/v) were added to 1 volume of platelet suspension for extraction of neutral lipids. The samples were vortex-mixed followed by centrifugation at 13,000 × g for 2 min. The supernatant was transferred to an LC-MS vial and used as such for analysis of phospholipids and phospholipids in complex with amotosalen. Internal standards Pi(4,5)P2 (17:0/20:4) and Pi(3,4,5)P3 (17:0/20:4) were added at 5 μg/ml to the remaining pellet. A volume of 1365 μl of methyl tert-butyl ether, methanol, and 2 mM HCl (200:60:13, v/v/v) was used to resuspend the fraction followed by incubation for 15 min at room temperature with intermittent mixing. Next, 250 μl of 0.1 M HCl was added, vortex-mixed, and centrifuged at 6,500 × g for 2 min. The upper organic phase was transferred to a new tube, and 500 μl of prederivatization wash solution (lower phase of methyl tert-butyl ether, methanol, and 0.01 M HCl (100:30:25, v/v/v)) was added. The samples were again centrifuged at 6,500 × g for 2 min, and the upper phase was transferred for derivatization. To this, 50 μl of 2 M trimethylsilyldiazomethane in hexane was added and mixed for 10 min at room temperature followed by addition of 6 μl of glacial acetic acid (all Sigma-Aldrich) to stop the methylation reaction. Next, 500
μl of postderivation wash solution (upper phase of chloroform/methanol/water (120:60:45, v/v/v)) was added, vortex-mixed, and centrifuged for 5 min at 1,500 g. The upper phase was transferred to a high recovery glass vial and dried down in a centrifugal vacuum evaporator (MiVac duoconcentrator, Genevac, Ipswich, UK) at 37 °C. The dried sample was reconstituted in 50 μl of chloroform/methanol (1:2, v/v) before injection.

Analysis of (Phospho)lipids—Lipid analysis was based on high resolution liquid chromatography coupled to high resolution quadruple time-of-flight (TOF) mass spectrometry (51, 52). For lipidomics analyses, a 1290 Infinity LC system (Agilent Technologies, Waldbronn, Germany) was used. Lipid extracts were analyzed on an Acquity UPLC BEH Shield RP18 column (2.1 × 100 mm; 1.7 μm; Waters, Milford, MA) placed in a Polaratherm 9000 series oven (Selerity Technologies, Salt Lake City, UT) at 80 °C. Elution was carried out with a multistep gradient of mobile phase A (20 mM ammonium formate, pH 5.0) and mobile phase B (methanol) starting from 50% B to 70% B in 5 min followed by a slow gradient of 70–90% B in 30 min. Mobile phase B subsequently reached 100% in 0.1 min where it was maintained for an additional 5 min. The flow rate was 0.5 ml/min, and the injection volume was 10 μl for both positive and negative electron spray ionization (ESI) measurements. The whole system was allowed to re-equilibrate under starting conditions for 15 min. For measurement of derivatized phosphoinositides, elution was optimized using the same mobile phases at a flow rate of 1.0 ml/min, starting from 50% B to 85% B in 5 min followed by a very slow gradient of 85–90% B in 15 min. At the end of the analysis, mobile phase B reached 100% in 2 min where it was maintained for an additional 3 min. High resolution accurate mass measurements were obtained on an Agilent 6550 quadruple TOF mass spectrometer equipped with a dual Jetstream ESI source. The instrument was operated in both positive and negative ESI modes. Needle voltage was optimized to ±3.5 kV; the drying and sheath gas temperatures were set to 290 and 400 °C, respectively; and the drying and sheath gas flow rates were set to 13 and 12 liters/min, respectively. Data were collected in centroid mode from m/z 100 to 3,200 at an acquisition rate of two spectra/second in the extended dynamic range mode (2 GHz), offering an in-spectrum dynamic range of 10^5 and a resolution of ±20,000 full-width half-maximum in the lipid m/z range. MS/MS experiments were performed in targeted MS/MS mode. The quadrupole was operated at medium resolution, and the collision energy was fixed at either 20 or 35 eV. Study samples were analyzed in randomized
order. Samples were kept at 4 °C in the autosampler tray while waiting for injection.

Abundances (area under the curve (AUC)) of lipid species were extracted by the Find by Ion extraction algorithm in the MassHunter Qualitative Analysis 7.0 software package (Agilent Technologies) using predefined mass (10 ppm) and retention time extraction windows (15 s). The Agilent integrator was used with an absolute peak height cutoff of 1,000 counts.

Molecular formulas, based on accurate mass, isotopic abundance, and spacing both in positive and negative ionization modes, were complemented with accurate mass database searching in an in-house-built database (populated with LIPID Metabolites And Pathways Strategy (MAPS) and Human Metabolome Database (HMDB) entries and theoretical lipid structures) and MS/MS measurement in both modes. Lipid fragmentation mechanisms and spectra in both positive and negative ionization modes were equal to those reported in the literature (52). Each lipid class displays characteristic fragment ions in positive and/or negative ESI mode. Other parameters such as lipid elution behavior and adduct formation interpretation further assisted in the identification. Regarding phosphoinositides, LC-MS cannot discriminate between Phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2), 3-(O-phosphoryl)-L-sphingoglycolipid 1,2-diacylglycerol (DAG), 1-alkyl-2-acetonyl-sn-glycero-3-phosphoethanolamine (AEPE), 1-alkyl-2-acetonyl-sn-glycero-3-phosphoethanolamine (AEPE), and 1-alkyl-2-acetonyl-sn-glycero-3-phosphoethanolamine (AEPE) without lipid-phosphorus (P) species.

Flow Cytometry—Membrane expression of activated integrin αIIbβ3 was analyzed with an acoustic focusing Attune flow cytometer (Life Technologies) using fluorescein-labeled PAC-1 monoclonal antibody (BD Biosciences). Platelets were incubated with 5% (v/v) PAC-1 and the indicated agonists or the respective vehicle buffer for 10 min at room temperature in HEPES-buffered saline, pH 7.4, with 1.0 mM MgSO4 and diluted a thousand-fold immediately before readout according to previously published work (56). Signals of the isotype antibody controls were used to set threshold gates including 0.5% of 10,000 negative events. A positive control was used with an absolute peak height cutoff of 1,000 counts.

Lipid Packing Analysis in Liposomes—Liposomes were prepared by mixing the (phospho)lipids from their stock solutions in chloroform and drying under nitrogen gas. Next, these were rehydrated in HKac buffer (50 mM HEPES, pH 7.2, with 120 mM potassium acetate, 1 mM MgCl2, and 1 mM dithiothreitol) followed by five freeze/thaw cycles in liquid nitrogen and a 37 °C water bath. The samples were sonicated for 15 min at room temperature in a bath at 80 kHz. Liposome preparations were kept under nitrogen gas to avoid oxidation and were prepared fresh for every experiment. UVA treatment was similar to that of platelet concentrates.

The order of lipid phases was analyzed using the environment-sensitive NR12S probe (25, 26). Probe and lipid concentrations were optimized first in separate validation experiments. First, liposomes of PC(16:0/18:1) with or without 35 mol % cholesterol containing 150 μM amotosalen were UVA-illuminated or not. Next, 50 μM of liposomes by lipid content were mixed with 0.1 μM NR12S and allowed to equilibrate for 7 min in the dark at room temperature. Fluorescence was measured in a fluorescence spectrophotometer (Tecan, Männedorf, Switzerland) at 580- and 620-nm emission wavelengths using 510-nm excitation filters. The emission peak of NR12S shifts blue when partitioned to lipid phases of increased order. The fluorescence intensities at each emission wavelength were used to calculate a GP value (57). This is a relative measure between +1 (most ordered) and −1 (least ordered).

Binding experiments of the peptidic lipid-packing sensors α-synuclein and ALPS were based on the work by Vanni et al. (29) and Pranke et al. (30). First, the peptides were covalently labeled with NBD to their N termini. α-Synuclein at 1 mg/ml was labeled by incubation with 0.5 mM NBD chloride in citrate buffer, pH 7.0, with 1 mM EDTA for 24 h in the dark at room temperature. The neutral pH renders the reaction specific for the peptide N terminus, avoiding labeling auxiliary amines in the amino acid sequence (58). The reaction mixture was then re-equilibrated to HEPES-buffered saline, pH 7.4, with 5 mM KCl and 1 mM MgSO4 by desalting column buffer exchange (Zeba Spin columns, Thermo Scientific). The ALPS peptide contained just one cysteine (at the N terminus) and was kept in a reducing environment (10-fold molar excess of tris(2-carboxyethyl)phosphine). Labeling was to that free N-terminal thiol using IANBD at a molar ratio of IANBD of 10:1 in HK buffer (50 mM HEPES, pH 7.2, with 120 mM potassium acetate) for 2 h at room temperature in the dark. The reaction mixture was dialyzed (membrane molecular weight cutoff, 2,000) to 4 liters of HK buffer during 24 h at 4 °C. The degree of labeling for both peptides was determined by optical absorbance at wavelengths for peptides and bound and free label.

Liposome (phospho)lipid composition was different in ALPS-NBD and α-synuclein-NBD binding experiments and was based on the literature (29). For ALPS-NBD binding, liposomes were composed of either 85 mol % PC(18:1/18:1) with 15 mol % glycerol(18:1/18:1) or 100 mol % PC(16:0/18:1) as a negative control. ALPS-NBD (0.17 μM) was added to a serial dilution of PUVA- or control-treated liposomes in HKac buffer. PUVA treatment was with 60 μM amotosalen, and unlabeled ALPS was used for background correction (F0). Fluorescence F (emission, 535 nm) was measured at 37 °C (excitation, 485 nm). Liposomes for binding experiments with α-synuclein-NBD contained either PC(18:1/18:1) with PS(18:1/18:1) or PC(16:0/18:1) with PS(16:0/18:1) always in a 1:1 molar ratio in the presence of 50 mol % cholesterol and 10 mol % egg PC (30). Incubation, readout, and analysis were the same as for ALPS-NBD except that PUVA treatment was with 150 μM amotosalen, and the peptide concentration was 0.25 μM. Both NBD-labeled peptides were not exposed to UVA light because binding experiments were performed after PUVA.

T-cell Activation—PBMCs were prepared by Ficoll gradient centrifugation ofuffy coats from healthy donors. Isolated PBMC preparations were washed three times in sterile phosphate-buffered saline, pH 7.4, by soft centrifugation to remove contaminating platelets. Finally, the cells were resuspended in
phenol red-free RPMI 1640 medium with 2 mM L-glutamine, 10 mM HEPES, and 10% (v/v) AB human serum and rested for 2 h at room temperature. The rested cells were resuspended to 40,000 leukocytes/μl in Tyrode’s buffer and mixed with 8-MOP or amotosalen in a final amount of 60 × 10^6 leukocytes. Following PUVA, T-cells were activated in Tyrode’s buffer with 2.5 × 10^6 CD3/CD28 human T-activator Dynabeads/10^6 leukocytes in the presence of 10 ng/ml IL2 for 30 min at 37 °C on a rotator. Cells were lysed with ice-cold lysis buffer and centrifuged at 20,000 × g for 3 min. Supernatant was analyzed by SDS-PAGE Western blotting in reducing sample buffer. Cell viability was unaltered by PUVA during the course of T-cell receptor activation as monitored by Sytox Green (Life Technologies) staining in flow cytometry.

Extracorporeal Photopheresis Samples—A patient enrolled in a clinical trial for ECP at the Hospital Network Antwerp (Belgium) for the treatment of chronic GVHD gave informed consent for sampling of cells from the buffy coat suspension before and after ECP. The study was approved by the hospital’s ethics committee (approval number 4591). The ECP procedure involved a leukapheresis (Spectra Optia, Terumo BCT, Lake-wood, CO) yielding a buffy coat cell suspension that was diluted with saline in an illumination bag to a final 300 g by mass. 8-MOP was added to a final concentration of 0.9 μM followed by illumination in a Macogenic G2 UVA (peak wavelength, 365 nm) illumination device (Macopharma), which delivered 2 or 2.5 J/cm² depending on the suspension’s hematocrit of <2% or ≥2%, respectively, for 10–15 min. Before and after illumination, 2-ml samples were taken aseptically from the bag for this study, and PBMCs were prepared followed by activation of T-cells as described above. A total of three independent ECP procedures were performed over a period of 2 months. Three technical replicates per sample series were performed to control for variation in SDS-PAGE Western blotting and densitometry.

Author Contributions—B. V. A. designed research, executed experiments, interpreted data, and assisted in writing the paper. R. D. executed experiments and interpreted data. R. t’K. and K. S. were responsible for mass spectrometry experiments and their data analysis and figure composition. P. Z. provided patient samples and essential patient data and interpreted data. P. V. provided essential tools and facilitated research. V. C. designed research, interpreted data, assisted in writing the paper, and managed the research team. H. B. F. designed research, interpreted data, wrote the paper, and managed research. All authors critically reviewed the manuscript and amended the text where deemed appropriate.

Acknowledgments—We thank Dr. Luk Cox and Dr. Idoya Lahortiga of Somersault1824 for scientific illustration, Davina Stabel and Dr. Jessy Lardon for help with patient sampling, Stijn De Waele and Dr. Bart Devreese for assistance with ultra centrifugation, Dr. Martine Jandrot-Perrus for supplying anti-GPVT monoclonal antibodies, Jonathan Vandenbussche for help with the lipidomics sample preparation and data processing and Dr. Pat Sandra for scientific support (both at Research Institute for Chromatography), and Dr. Andrey Klymchenko (Strasbourg University) for providing the NR12S environment-sensitive probe.

References

1. Cimino, G. D., Gamper, H. B., Isaacs, S. T., and Hearst, J. E. (1985) Psoralens as photoactive probes of nucleic acid structure and function: organic chemistry, photochemistry, and biochemistry. *Annu. Rev. Biochem.* 54, 1151–1193
2. Lai, C., Cao, H., Hearst, J. E., Corash, L., Luo, H., and Wang, Y. (2008) Quantitative analysis of DNA interstrand cross-links and monoadducts formed in human cells induced by psoralens and UVA irradiation. *Anal. Chem.* 80, 8790–8798
3. Pathak, M. A., and Fitzpatrick, T. B. (1992) The evolution of photochemotherapy with psoralens and UVA (PUVA): 2000 BC to 1992 AD. *J. Photochem. Photobiol. B* 14, 3–22
4. Lin, L., Cook, D. N., Wiesehahn, G. P., Alfonso, R., Behrman, B., Cimino, G. D., Corten, L., Damonte, P. B., Dikeman, R., Dupuis, K., Fang, Y. M., Hanson, C. V., Hearst, J. E., Lin, C. Y., Londe, H. F., Metchette, K., Nerio, A. T., Pu, J. T., Reames, A. A., Rheinschmidt, M., Tessman, J., Isaacs, S. T., Wollowitz, S., and Corash, L. (1997) Photochemical inactivation of viruses and bacteria in platelet concentrates by use of a novel psoralen and long-wavelength ultraviolet light. *Transfusion* 37, 423–435
5. Wolf, P. (2016) Psoralen-ultraviolet A endures as one of the most powerful treatments in dermatology: reinforcement of this ‘triple-product therapy’ by the 2016 British guidelines. *Br. J. Dermatol.* 174, 11–14
6. Ling, T. C., Clayton, T. H., Crawley, J., Exton, L. S., Goulden, V., Ibbotson, S., McKenna, K., Mohamed Mustapa, M. F., Rhodes, L. E., Sarkany, R., and Dawe, R. S. (2016) British Association of Dermatologists and British Photodermatology Group guidelines for the safe and effective use of psoralen-ultraviolet A therapy 2015. *Br. J. Dermatol.* 174, 24–55
7. Greinix, H. T., and Knobler, R. (eds) (2012) *Extracorporeal Photopheresis*, De Gruyter, Berlin
8. Waksvik, H., Brogger, A., and Stene, J. (1977) Psoralen/UVA treatment and chromosomes. I. Aberrations and sister chromatid exchange in human lymphocytes in vitro and synergism with caffeine. *Hum. Genet.* 38, 195–207
9. Edelson, R., Berger, C., Gasparro, F., Jegasothy, B., Heald, P., Wintroub, B., Vanderheid, E., Knobler, R., Wolf, K., Flewig, G., McKiernan, G., Christiansen, I., Oster, M., Honigsmann, H., Wilford, H., et al. (1987) Treatment of cutaneous T-cell lymphoma by extracorporeal photochemotherapy. Preliminary results. *N. Engl. J. Med.* 316, 297–303
10. van Iperen, H. P., Brun, B. M., Caffieri, S., Dall’Acqua, F., Gasparro, F. P., and Beijersbergen van Henegouwen, G. M. (1996) The lack of efficacy of 4,6,6′-trimethylangelicin to induce immune suppression in an animal model for photopheresis: a comparison with 8-MOP. *Photochem. Photobiol. Med.* 63, 577–582
11. Böhmer, F., Meffert, H., and Bauer, E. (1986) PUVA therapy damages prostatic and normal lymphoid cells within milliseconds. *Arch. Dermatol. Res.* 279, 16–19
12. Sanford, K. W., and Balogun, R. A. (2012) Extracorporeal photopheresis: clinical use so far. *J. Clin. Apher.* 27, 126–131
13. Del Fante, C., Galasso, T., Bernasconi, P., Scudeller, L., Ripamonti, F., Perotti, C., and Meloni, F. (2016) Extracorporeal photopheresis as a new supportive therapy for bronchiolitis obliterans syndrome after allogeneic stem cell transplantation. *Bone Marrow Transplant.* 51, 728–731
14. Laskin, J. D., Lee, E., Yurkow, E. J., Laskin, D. L., and Gallo, M. A. (1985) A possible mechanism of psoralen phototoxicity not involving direct interaction with DNA. *Proc. Natl. Acad. Sci. U.S.A.* 82, 6158–6162
15. Zarebska, Z. (1994) Cell membrane, a target for PUVA therapy. *J. Photochem. Photobiol. B* 23, 101–109
16. Beijersbergen van Henegouwen, G. M., Wijn, E. T., Schoonderwoerd, S. A., and Dall’Acqua, F. (1989) A method for the determination of PUVA-induced in vivo irreversible binding of 8-methoxypsoralen (8-MOP) to epidermal lipids, proteins and DNA/RNA. *J. Photochem. Photobiol. B* 3, 631–635
Effects of Psoralen and UVA Light on Signal Transduction

17. dos Santos, D. J., Saenz-Méndez, P., Eriksson, L. A., and Guedes, R. C. (2011) Properties and behaviour of tetracyclic allopсорalen derivatives inside a DPPC lipid bilayer model. *Phys. Chem. Chem. Phys.* **13**, 10174–10182

18. Dardare, N., and Platz, M. S. (2002) Binding affinities of commonly employed sensitizers of viral inactivation. *Photochem. Photobiol. Sci.* **1**, 661–664

19. Frank, S., Caffieri, S., Raffelli, A., Vedaldi, D., and Dall’Acqua, F. (1998) Characterization of psoralen-oleic acid cycloducts and their possible involvement in membrane photodamage. *J. Photochem. Photobiol. B* **44**, 39–44

20. Li, X. Y., and Eriksson, L. A. (2005) Photoreaction of skin-sensitizing trimethyl psoralen with lipid membrane models. *Photochem. Photobiol. Sci.* **81**, 1153–1160

21. Anthony, F. A., Laboda, H. M., and Costlow, M. E. (1997) Psoralen-fatty acid adducts activate melanocyte protein kinase C via a proposed mechanism for melanogenesis induced by 8-methoxypsoralen and ultraviolet A light. *Photoenerg. Photoinmunol. Photomed.* **13**, 9–16

22. Wolf, P., Nghiem, D. X., Walterscheid, J. P., Byrne, S., Matsumura, Y., Matsumura, Y., Bucana, C., Ananthaswamy, H. N., and Ulrich, S. E. (2006) Platelet-activating factor is crucial in psoralen and ultraviolet A-induced immune suppression, inflammation, and apoptosis. *Am. J. Pathol.* **169**, 795–805

23. Bigay, J., and Antonny, B. (2012) Curvature, lipid packing, and electrostatics of membrane organelles: defining cellular territories in determining specificity. *Dev. Cell* **23**, 886–895

24. Caffieri, S., Zarebska, Z., and Dall’Acqua, F. (1996) Psoralen photosensitization: damages to nucleic acid and membrane lipid components. *Acta Biochim. Pol.* **43**, 241–246

25. Klymchenko, A. S., and Kreder, R. (2014) Fluorescent probes for lipid rafts: from model membranes to living cells. *Nat. Rev. Mol. Cell Biol.* **15**, 9–16

26. Darwich, Z., Klymchenko, A. S., Kucherak, O. A., Richert, L., and Mély, T. G., and Sansom, M. S. (2011) Biophysical and computational studies of the phospholipase C-IIIa complex during platelet activation. *J. Cell Biol.* **193**, 853–866

27. Byrd, J. C., Brown, J. R., O’Brien, S., Barrientos, J. C., Kay, N. E., Reddy, N. M., Courte, S., Tam, C. S., Mulligan, S. P., Jaeger, U., Devereux, S., Barr, P. M., Furman, R. R., Kipps, T. J., Cymbalistta, F., et al. (2014) Brutininor versus ofatumumab in previously treated chronic lymphoid leukemia. *N. Engl. J. Med.* **371**, 213–222

28. Mischnik, M., Boyanova, D., Hubert, K., Geiger, J., Philipp, D., Dittrich, M., Wangsorch, G., Timmer, J., and Dandeker, T. (2013) A Boolean view separates platelet activatory and inhibitory signalling as verified by phosphorylation monitoring including threshold behaviour and integrin modulation. *Mol. Biosyst.* **9**, 1326–1339

29. Infante, C., Ramos-Morales, F., Fedrani, C., Bornens, M., and Rios, R. M. (1999) GMAP-210, a cis-Golgi network-associated protein, is a minus end microtubule-binding protein. *J. Cell Biol.* **145**, 83–98

30. Hardwick, J. (2008) Blood processing. *ISBT Sci. Ser.* **3**, 148–176

31. Ischi, I., and Lin, L. (2011) Pathogen inactivation of platelet and plasma blood components for transfusion using the INTERCEPT Blood System. *Transfus. Med. Hemother.* **38**, 19–31

32. Knutson, F., Alfonso, R., Dupuis, K., Mayaudon, V., Lin, L., Corash, L., and Högman, C. F. (2000) Photoinactivation of bacteria and HIV in buffy-coat-derived platelet concentrates under conditions that preserve in vitro platelet function. *Vox Sang.* **78**, 209–216

33. Cazenave, J. P., Olmman, P., Cassel, D., Eckly, A., Hechler, B., and Gachet, C. (2004) Preparation of washed platelet suspensions from human and rodent blood. *Methods Mol. Biol.* **272**, 13–28

34. Badolina, R., Banke, B. K., Dangelmaier, C., Chernoj, J., and Kunapuli, S. P. (2015) Gq-mediated Akt translocation to the membrane: a novel Gq-independent mechanism in platelets. *Blood* **125**, 175–184

35. Clark, J., Anderson, K. E., Juvv, V., Smith, T. S., Karpe, F., Wakelam, M. J., Stephens, L. R., and Hawkins, P. T. (2011) Quantification of PtdInsP3 molecular species in cells and tissues by mass spectrometry. *Nat. Methods* **8**, 267–272

36. Sanders, A., Pereia Ados, S., Vanhoenacker, G., David, F., and Sandra, P. (2010) Comprehensive blood plasma lipidomics by liquid chromatography/quadrupole-time-of-flight mass spectrometry. *J. Chromatogr. A* **1217**, 4087–4099

37. Fahy, E., Subramaniam, S., Murphy, R. C., Nishijima, M., Raetz, C. R., Shimizu, T., Spener, F., van Meer, G., Wakelam, M. J., and Dennis, E. A. (2009) Update of the LIPID MAPS comprehensive classification system for lipids. *J. Lipid Res.* **50**, suppl. S9–S14

38. Fahy, E., Subramaniam, S., Brown, H. A., Glass, C. K., Merrill, A. H., Jr., Murphy, R. C., Raetz, C. R., Russell, D. W., Seyama, Y., Shaw, W., Shimizu, T., Spener, F., van Meer, G., VanNieuwenhze, M. S., White, S. H., et al. (2005) A comprehensive classification system for lipids. *J. Lipid Res.* **46**, 839–861
55. Liebisch, G., Vizcaíno, J. A., Köfeler, H., Trötzmüller, M., Griffiths, W. J., Schmitz, G., Spener, F., and Wakelam, M. J. (2013) Shorthand notation for lipid structures derived from mass spectrometry. *J. Lipid Res.* **54**, 1523–1530

56. Goodall, A. H., and Appleby, J. (2004) Flow-cytometric analysis of platelet-membrane glycoprotein expression and platelet activation. *Methods Mol. Biol.* **272**, 225–253

57. Kaiser, H. J., Lingwood, D., Levental, I., Sampaio, J. L., Kalvodova, L., Rajendran, L., and Simons, K. (2009) Order of lipid phases in model and plasma membranes. *Proc. Natl. Acad. Sci. U.S.A.* **106**, 16645–16650

58. Bernal-Perez, L. F., Prokai, L., and Ryu, Y. (2012) Selective N-terminal fluorescent labeling of proteins using 4-chloro-7-nitrobenzofurazan: a method to distinguish protein N-terminal acetylation. *Anal. Biochem.* **428**, 13–15