AN OBSTRUCTION TO EMBEDDING 2-DIMENSIONAL COMPLEXES INTO THE 3-SPHERE

KAZUFUMI ETO, SHOSAKU MATSUZAKI, AND MAKOTO OZAWA

Abstract. We consider an embedding of a 2-dimensional CW complex into the 3-sphere, and construct its dual graph. Then we obtain a homogeneous system of linear equations from the 2-dimensional CW complex in the first homology group of the complement of the dual graph. By checking that the homogeneous system of linear equations does not have an integral solution, we show that some 2-dimensional CW complexes cannot be embedded into the 3-sphere.

1. Introduction

It is a fundamental problem to determine whether or not there exists an embedding from a topological space into another one. The Menger–Nöbeling theorem ([1, Theorem 1.11.4.]) shows that any finite n-dimensional CW complex can be embedded into the 2n + 1-dimensional Euclidian space \(\mathbb{R}^{2n+1} \). Kuratowski ([2]) proved that a 1-dimensional complex \(G \) cannot be embedded into \(\mathbb{R}^2 \) if and only if \(G \) contains the complete graph \(K_5 \) or the bipartite graph \(K_{3,3} \) as a subspace. One can consider two extensions of Kuratowski’s theorem, that is, to determine whether or not there exists an embedding from a 2-dimensional complex \(X \) into \(\mathbb{R}^3 \) or \(\mathbb{R}^4 \). In this paper, we consider the former case, namely, the embeddings of 2-dimensional complexes into \(\mathbb{R}^3 \), and give a necessary condition for a 2-dimensional complex, whose 1-skeleton is a closed 1-manifold, to be embeddable into \(\mathbb{R}^3 \). It is shown in [3] that the following algorithmic problem is decidable: given a 2-dimensional simplicial complex, can it be embedded in \(\mathbb{R}^3 \)? As a remark on the latter case, in general, it is known that the union of all \(n \)-faces of a \((2n + 2) \)-simplex cannot be embedded in \(\mathbb{R}^{2n} \) for any natural number \(n \) ([1, 1.11.F]).

Throughout this paper, we will work in the piecewise linear category. As a matter of convenience, we introduce the following complexes.

Definition 1.1 (Multibranched surface). Let \(S_n \) denote the quotient space obtained from a disjoint union of \(n \) copies of \(\mathbb{R}^2_+ = \{(x, y)|y \geq 0\} \subset \mathbb{R}^2 \) by gluing together along their boundary \(\partial \mathbb{R}^2_+ = \{(x, y)|y = 0\} \) for each positive integer \(n \).

A second countable Hausdorff space \(X \) is called a multibranched surface if \(X \) contains a disjoint union of simple closed curves \(l_1, \ldots, l_n \), each of which we call a branch, satisfying the following:

\[2010 \text{ Mathematics Subject Classification.} \ 57Q35 \text{ (Primary), 57N35 (Secondary).} \]

\[\text{Key words and phrases.} \ \text{embedding, CW complex, multibranched surface, 3-sphere, obstruction.} \]

The third author is partially supported by Grant-in-Aid for Scientific Research (C) (No. 26400097), The Ministry of Education, Culture, Sports, Science and Technology, Japan.
• For each point $x \in l_1 \cup \cdots \cup l_n$, there exists an open neighborhood U of x and a positive integer i such that U is homeomorphic to S_i.

• For each point $x \in X - (l_1 \cup \cdots \cup l_n)$, there exists an open neighborhood U of x such that U is homeomorphic to \mathbb{R}^2.

We call each component, which is denoted by e_i, of $X - (l_1 \cup \cdots \cup l_n)$ a sector.

Hereafter, we assume that a multibranched surface X is compact and all sectors of X are orientable.

Definition 1.2 (Algebraic degree). Then we define the algebraic degree $ad_{e_i}(l_j)$ of an oriented sector e_i on an oriented branch l_j as

$$ad_{e_i}(l_j)[l_j] := (f_i)_*\left(\partial M_i \cap f_i^{-1}(l_j)\right)$$

in $H_1(l_j; \mathbb{Z})$, where M_i is the closure of e_i and $(f_i)_*$ is the induced homomorphism of an inclusion map $f_i : M_i \to X$. See Figure 1 for example.

![Figure 1](image1)

Figure 1. Counting the algebraic degree $ad_{e_i}(l_j)$

If a multibranched surface was embedded into the 3-sphere, then there is a possibility of several embeddings near branches for sectors depending on their circular permutations. See Figure 2 for example.

![Figure 2](image2)

Figure 2. Circular permutations of sectors

Definition 1.3 (Abstract dual graph). Suppose that we have fixed a circular permutation of sectors on each branch. Then we can construct a directed graph as follows. First we take a product $e_i \times [-1, 1]$ of each oriented sector e_i and put $e_i^\pm = e_i \times \{\pm 1\}$. Next we glue e_i^\pm along their boundaries depending on the circular permutation of sectors on each branch, and obtain closed surfaces denoted
by R_1, \ldots, R_t. Finally we construct the abstract dual graph whose vertex v_j corresponds to a closed surface R_j, and there is a directed edge e^+_i from v_k to v_j if and only if $e^+_i \subset R_j$ and $e^-_i \subset R_k$. See Figure 3.

![Figure 3. An abstract dual graph G_X of a multibranched surface X](image)

A multibranched surface X is said to be orientable if all closed surfaces R_1, \ldots, R_t are orientable.

Definition 1.4 (Algebraic degree matrix). Let G_X be an abstract dual graph of a multibranched surface X. Take a spanning tree T of G_X. Denote the sectors by e_1, \ldots, e_m which correspond to edges e^+_1, \ldots, e^+_m not belong to T. We define the $m \times n$ algebraic degree matrix $A_T = (a_{ij})$ by

$$a_{ij} := ad_{e_i}(l_j),$$

where m is the first Betti number of G_X and n is the number of branch of X.

Example 1.5. We regard the real projective plane as a multibranched surface $X = e^0 \cup e^1 \cup e^2$ as shown in Figure 4. Then the algebraic degree of e^2 on the branch $l = e^0 \cup e^1$ is $ad_{e^2}(l) = 2$, and the abstract dual graph G_X of X is a bouquet with a vertex v corresponding to $S^2 = e^2 \cup e^2$, and a loop $(e^2)^*$ corresponding to e^3. The spanning tree T is a single vertex v, and the algebraic degree matrix is $A_T = [2]$.

The following is a main theorem in this paper. By using this theorem, we will give critical examples in Section 3.

Theorem 1.6. Let X be a connected, compact, orientable, multibranched surface. If for each abstract dual graph G_X of X, one of the following conditions (1) and (2) holds, then X cannot be embedded into the 3-sphere S^3, where m is the first Betti number of G_X and n is the number of branch of X.

1. $m > n$.
2. $m \leq n$ and there exists a spanning tree T of G_X such that the greatest common divisor of all m-minor determinants of the algebraic degree matrix A_T.

Theorem 1.6 still holds even if we replace the 3-sphere with homology 3-spheres. All arguments used in the proof of Theorem 1.6 still work on homology 3-spheres since we have used only homological conditions of the 3-sphere.
Lemma 2.1. Let \(m, n > 0 \) and \(f : \mathbb{Z}^n \to \mathbb{Z}^m \) be a homomorphism presented by the \(m \times n \) matrix \(A \). Then the following are equivalent:

1. there is a homomorphism \(g : \mathbb{Z}^m \to \mathbb{Z}^n \) such that the map \(fg \) is the identity,
2. \(m \leq n \) and the general common divisor of the \(m \) minors of \(A \) is one.

Proof. (1) \(\Rightarrow \) (2) By the assumption, \(f \) is injective and we have \(m \leq n \). Since the kernel \(K \) of \(g \) is a submodule of \(\mathbb{Z}^n \), it is free and there is an isomorphism from \(K \oplus \mathbb{Z}^m \) to \(\mathbb{Z}^n \) sending \((a, b) \in K \oplus \mathbb{Z}^m \) to \(a + f(b) \). Hence the matrix presenting this isomorphism contains \(A \) as a submatrix and its determinant is 1 or \(-1\). It follows that the general common divisor of the \(m \) minors of \(A \) must be one.

(2) \(\Rightarrow \) (1) Let \(D_1, \ldots, D_t \) be the \(m \) minors of an \(m \times n \) matrix \((X_{ij}) \) whose entries are indeterminants. Then we may regard them as maps sending an \(m \times n \) matrix \(B \) to an integer \(D_l(B) \) for each \(l \). By the assumption, there are integers \(c_1, \ldots, c_t \) satisfying \(c_1D_1(A) + \cdots + c_tD_t(A) = 1 \). Put \(\varphi = c_1D_1 + \cdots + c_tD_t \) be a map from \(\mathbb{Z}^{m \times n} \) to \(\mathbb{Z} \) and, for each \(k, l \), \(B_{kl} = (b_{ij}) \) an \(m \times n \) matrix where \(b_{kl} = 1 \), \(b_{il} = 0 \) if \(i \neq k \) and \(b_{ij} = a_{ij} \) if \(j \neq l \), where \(A = (a_{ij}) \). And put \(C \) be the transpose of an \(m \times n \) matrix \((\varphi(B_{kl})) \). Then \(CA = 1 \) and \(C \) presents an inverse map \(g \) of \(f \).

Proof of Theorem 1.6. Suppose that a connected, compact, orientable, multi-branched surface \(X \) can be embedded into the 3-sphere \(S^3 \). Then by regarding each component of \(S^3 - X \) as a vertex, and joining two vertices if the corresponding components are adjacent by a sector, we obtain a geometric dual graph for \(X \) in \(S^3 \). We note that each complementary region of \(S^3 - X \) has a connected boundary, and that the geometric dual graph is isomorphic to an abstract dual graph \(G_X \) of \(X \).

Take a spanning tree \(T \) of \(G_X \), and let \(e_1, \ldots, e_m \) be the sectors which correspond to edges \(e^*_1, \ldots, e^*_m \) not belong to \(T \). Take a meridian \(m_i \) \(e_i \) of \(e^*_i \), and let \(l_1, \ldots, l_n \) be the branches of \(X \).
Since each M_i is orientable, it holds that $[\partial M_i] + [f_i^{-1}(m_i)] = 0$ in $H_1(M_i - f_i^{-1}(G_X \cap X))$ and hence $(f_i)_*([\partial M_i] + [f_i^{-1}(m_i)]) = 0$ in $H_1(S^3 - G_X; \mathbb{Z})$. Therefore, we have
\[
\sum_{j=1}^{n} ad(e_i)(l_j)[l_j] + [m_i] = 0
\]
for $i = 1, \ldots, m$. This can be represented by the following matrix:
\[
A_T \left[\begin{array}{c} [l_1] \\ \vdots \\ [l_n] \end{array} \right] + \left[\begin{array}{c} [m_1] \\ \vdots \\ [m_m] \end{array} \right] = \left[\begin{array}{c} 0 \\ \vdots \\ 0 \end{array} \right]
\]
Since $\{[m_1], \ldots, [m_m]\}$ is a generator for $H_1(S^3 - G_X; \mathbb{Z})$, there exists an $n \times m$ matrix B such that:
\[
A_T B \left[\begin{array}{c} [m_1] \\ \vdots \\ [m_m] \end{array} \right] + \left[\begin{array}{c} [m_1] \\ \vdots \\ [m_m] \end{array} \right] = \left[\begin{array}{c} 0 \\ \vdots \\ 0 \end{array} \right]
\]
Thus, we have $A_T B = -E$ and by Lemma 2.1 $m \leq n$ and the general common divisor of the m minors of A_T is one. \qed

3. Critical multibranched surfaces

We say that a multibranched surface X is critical if X cannot be embedded into S^3 and for any $x \in X$, $X - x$ can be embedded into S^3. We note that any multibranched surface can be embedded into the 4-sphere S^4. It is well-known that a multibranched surface which is homeomorphic to a non-orientable closed surface is critical. This can be seen also by Example 1.5 and Theorem 1.6 in the case for the real projective plane.

Theorem 3.1. Let X_1 be a multibranched surface with a single sector e_1 which is homeomorphic to a planar surface, and with a single branch l_1. Then X_1 cannot be embedded into S^3 if and only if $|ad_{e_1}(l_1)| \geq 2$. Moreover, if X_1 cannot be embedded into S^3, then it is critical.

Proof. First we observe that any abstract dual graph of X_1 is a bouquet. Since $\text{det}(A_T) = ad_{e_1}(l_1)$, by Theorem 1.6 X_1 cannot be embedded into the 3-sphere if $|ad_{e_1}(l_1)| \geq 2$. Conversely, if $|ad_{e_1}(l_1)| < 2$, then we can construct an embedding of X_1 into the 3-sphere.

Second we consider X_1 whose one point was removed. We glue a pair of branches with different orientations on the same side alternatively, and if a pair of branches with a same orientation remained, then we glue them on the different sides by going a long way round as shown in Figure 4. \qed

Theorem 3.2. Let X_2 be a multibranched surface obtained from sectors e_1, \ldots, e_n by gluing along branches l_1, \ldots, l_n as shown in Figure 6. Then X_2 is critical.

Proof. It follows by the following Lemma 3.3 that the closed surfaces obtained from all the parallel copies $e_i \times \{\pm 1\}$ of each sector e_i are connected, where $e_i \times \{\pm 1\}$ corresponds to v_i^{\pm}. This shows that any abstract dual graph G_{X_2} of X_2 is a bouquet.
Figure 5. Criticality of X_1

Figure 6. Sectors e_1, \ldots, e_n forming X_2

with n loops. Then a spanning tree T of G_{X_2} is a single vertex, and the $n \times n$ algebraic degree matrix A_T is:

$$
A_T = \begin{pmatrix}
0 & 1 & \cdots & \cdots & 1 \\
1 & 0 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & 1 \\
1 & \cdots & \cdots & 1 & 0
\end{pmatrix}
$$

Since $\det(A_T) = (-1)^{n+1}(n-1)$, we have $|\det(A_T)| = n - 1 \geq 2$. Hence by Theorem 1.6, X_2 cannot be embedded into the 3-sphere.
To show the criticality of X_2, we construct an embedding of X'_2 which is obtained from X_2 by removing e_n (Figure 7). Next we add e_n whose one point is removed to X'_2 (Figure 8). Then we have an embedding of X_2 whose one point is removed into the 3-sphere.

Figure 7. An embedding of X'_2 for $n = 6$

Figure 8. Embeddings of each sector of X_2 for $n = 6$

\[\square\]

Lemma 3.3. Let G be a bipartite graph with $2n$ vertices $\{v^+_1, \ldots, v^+_n\} \cup \{v^-_1, \ldots, v^-_n\}$ obtained by adding edges as follows. For each m in $\{1, \ldots, n\}$, choose a circular permutation $b_1, b_2, \ldots, b_{n-1}$ of $\{1, \ldots, n\} \setminus \{m\}$, and let $\{v^+_{b_1}, v^-_{b_2}\}, \{v^+_{b_2}, v^-_{b_3}\}, \ldots, \{v^+_{b_{n-1}}, v^-_{b_1}\}, \{v^+_{b_{n-1}}, v^-_{b_1}\}$ be edges of G. We add such edges for every m in $\{1, \ldots, n\}$. Then G is connected.
Proof. Suppose that G is disconnected, and let V_1 and V_2 be sets of vertices such that there is no edges connecting a vertex of V_1 with one of V_2. Put $V_i^\pm = V_i \cap \{v_1^\pm, \ldots, v_n^\pm\}$ for $i = 1, 2$.

Claim 3.4. $|V_1^+| = |V_1^-|$ and $|V_2^+| = |V_2^-|$.

Proof. For $v_m^+ \in V_2^+$, consider a circular permutation of $\{1, \ldots, n\}\backslash\{m\}$. Then each vertex of V_1^+ is connected with distinct vertices of V_1^- and hence $|V_1^+| \leq |V_1^-|$. The converse holds by the same argument. □

Claim 3.5. $v_m^+ \in V_1^+$ if and only if $v_m^- \in V_1^-$

Proof. Suppose that $v_m^+ \in V_1^+$ and $v_m^- \in V_2^-$. Consider a circular permutation of $\{1, \ldots, n\}\backslash\{m\}$. Then $|V_1^+ \backslash\{v_m^+\}| < |V_1^-|$ and hence there exists an edge from a vertex of V_2^+ to one of V_1^-. This contradicts the supposition. □

Without loss of generality, we may assume that $v_1^+ \in V_1^+$. Considering a circular permutation of $1, \ldots, n-1$, by Claim 3.4, $v_1^+, v_1^-, v_2^+, \ldots, v_{n-1}^+ \in V_1$. Moreover, considering a circular permutation of $2, \ldots, n$, by Claim 3.4, $v_n^+, v_n^- \in V_1$. This is a contradiction. □

Theorem 3.6. Let X_3 be a multibranched surface obtained from sectors e_1, \ldots, e_n by gluing along branches l_1, \ldots, l_n, where $n \geq 2$, $k_i \geq 1$, $k_1k_2k_3 \cdots k_n \geq 3$ as shown in Figure 9. Then X_3 is critical.

![Figure 9. Sectors e_1, \ldots, e_n forming X_3](image)

Proof. It can be observed that any abstract dual graph G_{X_3} of X_3 is a bouquet with n loops. Then a spanning tree of G_{X_3} is a single vertex, and the $n \times n$ algebraic degree matrix A_T is:

$$A_T = \begin{pmatrix}
k_1 & -1 & 0 & \cdots & \cdots & 0 \\
0 & k_2 & -1 & 0 & \ddots & \vdots \\
\vdots & 0 & k_3 & -1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & \ddots & -1 \\
-1 & 0 & \cdots & \cdots & k_{n-1} & 0 \\
\end{pmatrix}$$

Since $\det(A_T) = k_1k_2k_3 \cdots k_n - 1 \geq 2$, by Theorem 1.6, X_3 cannot be embedded into the 3-sphere.

To show the criticality of X_3, we construct an embedding of X_3' which is obtained from X_3 by removing e_n (Figure 10). Next we add e_n whose one point is removed.
to \(X'_3 \) (Figure 11). Then we have an embedding of \(X_3 \) whose one point is removed into the 3-sphere.

\[\square \]

4. Problems

At the time of writing, we could not find an example of a connected, compact, orientable, multibranched surface which does not satisfy both conditions (1) and (2) of Theorem 1.6 but cannot be embedded into the 3-sphere. Thus the following problem remains open.

Problem 4.1. Does the converse of Theorem 1.6 hold?
In the proof of Theorem 3.1, 3.2 and 3.6 we have shown that any abstract dual graph of the multibranched surface is a bouquet. It seems that this follows from the criticality of the multibranched surface, and we would raise the following problem.

Problem 4.2. Is any abstract dual graph of a critical multibranched surface a bouquet?

References

1. R. Engelking, *Dimension Theory*, North-Holland, Amsterdam (1978).
2. K. Kuratowski, *Sur le problème des courbes gauches en topologie*, Fund. Math. 15 (1930) 271–283.
3. J. Matoušek, E. Sedgwick, M. Tancer, U. Wagner, *Embeddability in the 3-sphere is decidable*, SOCG’14 Proceedings of the thirtieth annual symposium on Computational geometry, ACM (2014) 78–84.