Changes in intestinal microflora in digestive tract diseases during pregnancy

Min Jin · Dong Li · Rui Ji · Wen Liu · Xiaofei Xu · Yanqing Li

Received: 12 May 2019 / Accepted: 15 October 2019 / Published online: 27 November 2019
© The Author(s) 2019

Abstract

Purpose This study aimed to investigate the gut microbiome composition in pregnant women with digestive diseases to analyze the relationships between the microflora changes and digestive diseases during pregnancy.

Methods Fecal samples obtained from 71 pregnant women [six acute fatty liver (AF group), 21 constipation (C group), 24 excessive vomiting (V group) and 20 normal pregnancy (CP group)] and 26 non-pregnant (NP group) women were subjected to 16 s rRNA sequencing. Differential analysis of intestinal flora at the genera level was performed.

Results The relative abundance of Coprobacillus, Acinetobacter, Enterococcus, Weissella and Lysinibacillus was increased in the digestive diseases (AF, C and V) groups compared with CP group, whereas that of five common genera, including Terrisporobacter, Dysgonomonas, Adlercreutzia, Fusicatenibacter and Blautia, was decreased in digestive diseases groups. Additionally, in digestive diseases (AF, C and V) groups, the abundance of 13 common genera, such as Carnobacterium, Coprobacillus and Psychrobacter, was higher than NP group, whereas that of 27 common genera, such as Blautia and Terrisporobacter, was lower than NP group. About 69 genera were differentially abundant between AF and C groups; two genera (Aerococcus and Senegalimassilia) were identified between AF and V groups; moreover, total 63 genera were obtained between C and V groups.

Conclusion Our data revealed that the abundance of Acinetobacter, Enterococcus, Paenibacillus, Blautia and Collinsella might be associated with the digestive diseases during pregnancy. These findings further supported the idea that targeting the gut microbiota could be a new prevention or therapeutic approach for improving digestive diseases during pregnancy.

Keywords Digestive diseases · Pregnancy · Intestinal microflora · 16 s rRNA sequencing

Introduction

During pregnancy, the pregnant woman usually undergoes significant physiological changes so as to accommodate and nurture the developing fetus, and these changes can result in a diversity of symptoms [1, 2]. It has been reported that pregnancy is a challenging period for the gastroenterologist, and multiple gastrointestinal complaints such as nausea, vomiting, gastroesophageal reflux, heartburn and constipation may occur [3]. The prevalence of nausea ranges from 50 to 80% and of vomiting is 50% [4]. Hyperemesis gravidarum is a severe form of nausea and vomiting, which affects about 1.2% of pregnant women [5].

In addition to gastrointestinal disorders, pregnancy is also associated with increased liver metabolism, and 3–5% of pregnancies present abnormal liver functions [6]. Liver disease during pregnancy is non-negligible, which may be life threatening for mother, fetus and subsequently the surviving
child [7]. Acute fatty liver of pregnancy is an uncommon liver disease that occurs almost exclusively in the third trimester [8]. The reported incidence values for this disease are 1:7000–15,000 pregnancies [9, 10]. Acute fatty liver of pregnancy is a potentially fatal disease needing early diagnosis and intervention to prevent maternal and fetal mortality [6].

Growing evidences have shown that intestinal gut microbiota, a robust ecosystem inhabited by nearly 100 trillion bacteria, has an influence on intestinal physiological function and is involved in the life activities [11, 12]. For instance, chronic constipation, a prevalent functional gastrointestinal disorder, is demonstrated to be accompanied with intestinal dysbiosis [13]. Boursier et al. [14] recently reported that the severity of nonalcoholic fatty liver disease was implicated in gut dysbiosis and changes in metabolic function of the gut microbiota. However, there is presently little research about the changes in intestinal microbial communities in pregnant women with digestive diseases, and about how these changes affect the digestive system of patients.

In this study, we investigated the gut microbiome composition in fecal samples from pregnant women with digestive diseases, to analyze the relationships between the microflora changes and digestive diseases during pregnancy. The results may provide certain theoretical basis for safe, noninvasive diagnosis, treatment and intervention of digestive diseases during pregnancy.

Materials and methods

Sample collection

A total of 71 pregnant and 26 non-pregnant (NP group) women were involved in this study. Among the pregnant women, six cases had acute fatty liver (AF group), 21 cases had constipation (C group), 24 cases had excessive vomiting (V group) and 20 cases had normal pregnancy (CP group). The detailed information is listed in supplementary Table 1. Fecal samples were obtained from 97 women and stored at −80 °C within 2 h.

This study was approved by the medical ethics committee of Qilu Hospital of Shandong University. All participants had given the informed written consent prior to their participation.

Genome DNA extraction and amplicon generation

Total genome DNA was extracted from fecal samples using cetyltrimethylammonium bromide and sodium dodecyl sulfate method. Following concentration and purity monitoring on 1% agarose gels, DNA was diluted with sterile water to 1 ng/μL. The 16S rRNA amplicons covering variable region V4 were amplified using specific primer (16S V4: 515F-806R). PCR reaction was carried out with Phusion® High-Fidelity PCR Master Mix (New England Biolabs, Beverly, MA, USA). The PCR products were quantified with electrophoresis on 2% agarose gel, mixed in equidensity ratios and then purified by Qiagen Gel Extraction Kit (Qiagen, Hilden, Germany).

Library preparation and sequencing

Library was prepared using TruSeq® DNA PCR-Free Sample Preparation Kit (Illumina, San Diego, CA, USA) followed by quality evaluation on the Qubit® 2.0 Fluorometer and Agilent Bioanalyzer 2100 system. Library was finally sequenced on the Illumina HiSeq 2500 platform. The 250 bp paired-end reads were produced.

Paired-end reads assembly and quality control

Paired-end reads were merged using FLASH (V1.2.7) [15]. The raw tags were subjected to quality filtering to select the clean tags with high quality [16] using QIIME (V1.7.0) [17]. The clean tags were then mapped to the reference database (Gold database, http://drive5.com/uchime/uchime_download.html) using UCHIME algorithm [18], followed by removal of the chimera sequences [19] to identify the effective tags.

Operational taxonomic unit (OTU) clustering and annotation

Sequences were analyzed using Uparse software (Uparse V7.0.1001) [20]. Sequences with similarity of ≥ 97% were
assigned to the same OTUs. Representative sequences for
each OTU were selected for taxonomic information annota-
tion using Mothur method and the SSUrRNA database [21]
in SILVA [22].

Alpha diversity analysis

The abundance of OTUs was normalized using a standard of
sequence number corresponding to the sample with the least
sequence. The complexity of species diversity in the sample
was analyzed using alpha diversity via seven indices, including
Chao1, ACE, Shannon, Simpson, Goods_coverage, Observed
species and PD_whole_tree. The Chao1 and ACE estimator
were used to identify the community richness. Shannon and
Simpson indices were used to identify community diversity.
The Goods_coverage was used to characterize the sequencing
depth. PD_whole_tree index was used to identify phylogenetic
diversity.

Beta diversity analysis

The differences of samples in species complexity were evalu-
ated using beta diversity analysis. Beta diversity on unweighted
UniFrac was calculated using QIIME to construct unweighted
pair-group method with arithmetic means (UPGMA) sample
clustering tree. Clustering analysis was performed by principal
component analysis (PCA) using ade4 and ggplot2 packages
in R software (V2.15.3). Principal coordinate analysis (PCoA)
was conducted to get principal coordinates from complex mul-
tidimensional data, which were displayed by stat, WGCNA
and ggplot2 packages in R software (V2.15.3).

**Differential analysis of intestinal flora at the genera
level**

OTUs were filtered according to the OTU abundance using
QIIME [17] tool, and the OTUs with abundance less than
1/10000 (0.0001) were deleted in this analysis. Then, the
remaining OTUs were further screened based on their genus
information, and the OTUs that did not annotate to the genus
level were removed. Finally, 129 OTUs were obtained. The
difference analysis was performed with the edgeR package
in R. The OTU screening standard for significant difference
was \(p \) value < 0.05, and false discovery rate (FDR) was used
for \(p \) value adjustment.

Results

Sequencing data

After sequencing, the raw reads for all samples ranged from
54,075 to 99,209. The Q20 was more than 98% and Q30 was
more than 97% for all samples. After quality control, the effec-
tive tags ranged from 80.72 to 95.17%.

OTU annotation

The top 10 maximum abundance of species in each group in
genus level is shown in Fig. 1a. *Bacteroides* had the highest
relative abundances in V, AF, CP and NP groups, and *Faec-
calibacterium* had the highest relative abundance in C group.
In order to compare the species content in different groups of
samples, the top 35 genera were selected for clustering analysis
based on the species annotation and abundance information of
samples at genus level. As shown in Fig. 1b, in the C group,
Faecalibacterium, *Bacteroides* and *Subdoligranulum* were the
dominant genera; in the V group, *Bacteroides*, *Faecalibacter-
tium* and unidentified *Enterobacteriaceae* were the primary
genera; in the AF group, *Bacteroides*, unidentified *Enterobac-
teriaeae* and *Faecalibacterium* were the dominant genera; in
the CP group, *Bacteroides*, *Faecalibacterium* and *Blautia* were
of higher abundance; meanwhile, in the NP group, the most
abundant sequences were related to *Bacteroides*, *Blautia* and
Faecalibacterium.

Alpha diversity analysis

The alpha diversity indexes, including observed species,
Chao1, Shannon, Simpson, ACE, Goods_coverage and PD_
whole_tree, for five groups are shown in Table 1. Generally,
the community richness, community diversity and phyloge-
netic diversity in AF and V groups were higher than those in
the other three groups. The rarefaction curve showed that the
curve of each group tended to flatten, indicating that increas-
ing sequencing depths did not help to discover new OTUs,
which was in accordance with the sequencing depth index
(Goods_coverage) as shown in Table 1.

Beta diversity analysis

PCoA analysis (unweighted UniFrac distance) showed that
the samples in the NP group tended to cluster together, and
samples in AF and V groups tended to cluster together
(PC1, which explained 36.64% of variation in the commu-
nity) (Fig. 2a). PCA revealed that the community structure
was distinct between NP and the other groups (PC1, which
explained 10.33% of variation in the community). Further-
more, the UPGMA clustering tree in phylum level was gener-
ated (Fig. 2b). In accordance with PCoA results, AF and V
groups were clustered together.
Differential analysis of intestinal flora at the genera level

The differential microorganisms in digestive diseases (AF, C and V) groups versus CP group, digestive diseases (AF, C and V) groups versus NP group and among digestive diseases groups (AF, C and V) were analyzed. The abundance of 13, 50 and 34 genera was increased in AF, V and C groups compared with CP group, respectively; inversely, a total of 5, 28 and 54 genera were reduced in AF, V and C groups compared with CP group. The heatmaps of three comparison groups are shown in Fig. 3a. In the three comparison groups, the abundance of five common genera, namely *Coprocola*, *Acinetobacter*, *Enterococcus*, *Weissella* and *Lysinibacillus*, was increased, while that of five common genera, namely *Terrisporobacter*, *Dysgonomonas*, *Adlercreutzia*, *Fusicatenibacter* and *Blautia*, was identified as decreasing (Fig. 3a, b).
There were 31, 47 and 48 genera which were increased among digestive diseases (AF, C and V) groups compared with NP group, respectively; in addition, 32, 45 and 56 genera were decreased in the above three comparison groups. The heatmaps of three comparison groups are shown in Fig. 4a. A total of 13 common genera such as *Carnobacterium*, *Coprobacillus*, *Caproiciproducens* and *Psychrobacter* were observed to be increasing, while 27 common genera such as *Novosphingobium*, *Dorea*, *Brevundimonas* and *Terrisporobacter* were identified to be decreasing (Fig. 4a, b).

Furthermore, in the AF group, the abundance of 38 genera was increased and 31 genera were decreased compared with C group. The relative abundances of *Aerococcus* and *Senegalimassilia* in AF group were reduced than V group. In the C group, an increased abundance of 23 genera and a decreased abundance of 40 genera were found than V group (Fig. 5).

Discussion

This study for the first time investigated the gut microbiome composition from pregnant women with digestive diseases by applying 16S rRNA gene sequencing. After analysis of the sequencing data, some differential genera were identified, which may serve as biomarkers of digestive diseases during pregnancy.

Acinetobacter is a gram-negative coccobacillus, which has emerged from a suspiciously pathogenic organism to an infectious agent important to hospitals around the world [23]. The species commonly cause nosocomial infections, but can also cause urinary tract and soft tissue infections [24]. *Enterococci* are gram-positive bacteria that usually inhabit the alimentary tract of humans [25]. Now enterococci have become common nosocomial pathogens, and enterococcal infections include surgical wound infection, hepatobiliary sepsis, urinary tract infections, bacteraemia and neonatal sepsis endocarditis [26]. *Lysinibacillus*, a ubiquitous gram-positive bacterium, is often regarded as environmental
contaminants and rarely associated with human disease [27]. Recently, a case of sepsis due to bacteremia from *Lysinibacillus* and *Paenibacillus* was reported [28]. Given the pathogenicity of the three genera, we speculated that their increase in digestive disease groups compared with CP group may be implicated in the digestive diseases during pregnancy.

Blautia are gram-reaction-positive, non-motile bacteria that are obligate anaerobes, and most species of *Blautia* are isolated from the feces of humans and other mammals [29]. The *Blautia coccoides* is the dominant bacterium in the human intestine and accounts for approximately 20–30% of all bacteria in healthy person [30]. It has been reported that decreased relative abundance of the *Blautia* genus in the human gut is associated with malnutrition [31]. The gram-positive genus *Collinsella* contains three recognized species (*Collinsella stercoris*, *C. aerofaciens* and *C. intestinalis*), all of which are isolated from the feces of healthy human [32]. The relative abundance of *Blautia* and *Collinsella* decreased was related to digestive diseases during pregnancy, and *Blautia* and *Collinsella* might serve as novel biomarkers in diagnosis and treatment of digestive diseases.

We also compared the differential microorganisms among various digestive diseases groups. Interestingly, only two differential microorganisms were identified between AF and V groups, suggesting that there was no significant difference in intestinal flora between the AF group and V group. The underlying reason needs to be further explored. Members of *Paenibacillus* have been isolated from water, soil, diseased insect larvae and foods, presenting physiologically diverse characteristics [33]. Some *Paenibacillus* species, such as *Paenibacillus alvei*, *P. polymyxa* and *P. macerans*, are pathogenic, which have been isolated from patients suffering from sickle cell anemia, meningitis and wound infection [34]. In this study, the abundance of *Paenibacillus* was increased between AF versus V group and V versus C group, suggesting an increased expression trend from C to AF. We speculated that increased *Paenibacillus* in intestinal tract may indicate the severity levels of digestive diseases.

In conclusion, our study compared the differences between pregnancy with digestive diseases and normal pregnancy or non-pregnancy. The increase of *Acinetobacter*, *Enterococci* and *Paenibacillus*, and decrease of *Blautia* and *Collinsella* may be associated with the digestive diseases during pregnancy.

Acknowledgements This work was supported by the National Natural Science Foundation of China (No. 81700890) and Natural Science Foundation of Shandong Province (No. ZR2017BH115).

Author contribution YL, MJ and RJ conceptualized and designed the research. MJ, WL and XX were involved in acquisition of data. MJ, RJ and DL analyzed and interpreted the data. MJ and DL were involved in statistical analysis. MJ drafted the manuscript. YL revised the manuscript for important intellectual content.

Fig. 5 Visualized heatmaps of the differential microbiota (genus level) among acute fatty liver group (AF), constipation group (C) and excessive vomiting (V group). Red indicates high relative abundance, and green indicates low relative abundance.
Compliance with ethical standards

Conflict of interest The authors declare that they have no conflicts of interest.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Soma-Pillay P, Catherine N-P, Tolpannen H, Mebazaa A (2016) Physiological changes in pregnancy. Cardiovasc J Afr 27(2):89
2. Gomes CF, Sousa M, Lourenço I, Martins D, Torres J (2018) Gastrointestinal diseases during pregnancy: what does the gastroenterologist need to know? Ann Gastroenterol 31(4):385
3. McCarthy FP, Lutomski JE, Greene RA (2014) Hyperemesis gravidarum: current perspectives. Int J Women’s Health 6:719
4. Matthews A, Haas DM, O’Mathúna DP, Dowswell T (2010) Interventions for nausea and vomiting in early pregnancy. Cochrane Database Syst Rev 8(9):CD007575
5. Einarson TR, Piwko C, Koren G (2013) Prevalence of nausea and vomiting of pregnancy in the USA: a meta-analysis. J Popul Ther Clin Pharmacol 20(2):e163
6. Hay JE (2008) Liver disease in pregnancy. Hepatology 47(3):1067–1076
7. Boregowda G, Shehata HA (2013) Gastrointestinal and liver disease in pregnancy. Best Pract Res Clin Obstet Gynaecol 27(6):835–853
8. Browning MF, Levy HL, Wilkins-Haug LE, Larson C, Shih VE (2006) Fetal fatty acid oxidation defects and maternal liver disease in pregnancy. Obstet Gynecol 107(1):115–120
9. Nelson DB, Yost NP, Cunningham FG (2013) Acute fatty liver of pregnancy: clinical outcomes and expected duration of recovery. Am J Obstet Gynecol 209(5):456.e1–456.e7
10. Allen AM, Kim WR, Larson JJ, Rosedahl JK, Yawn BP, McKeon K et al (2016) The epidemiology of liver diseases unique to pregnancy in a US community: a population-based study. Clin Gastroenterol Hepatol 14(2):287-94.e2
11. de Meij TG, de Groot EF, Eck A, Budding AE, Kneepkens CF, Bennin GA et al (2016) Characterization of microbiota in children with chronic functional constipation. PLoS ONE 11(10):e0164731
12. Simrén M, Barbara G, Flint HJ, Spijel BM, Spiller RC, Vanner S et al (2013) Intestinal microbiota in functional bowel disorders: a Rome foundation report. Gut 62(1):159–176
13. Cao H, Liu Y, An Y, Zhou G, Liu Y, Xu M et al (2017) Dysbiosis contributes to chronic constipation development via regulation of serotonin transporter in the intestine. Sci Rep 7(1):10322
14. Boursier J, Mueller O, Barret M, Machado M, Fizanne L, Araujo-Perez F et al (2016) The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota. Hepatology 63(3):746–775
15. Magóó T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27(21):2957–2963
16. Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon JJ, Knight R et al (2013) Quality-filtering vastly improves diversity estimates from Illuma amplicon sequencing. Nat Methods 10(1):57–59
17. Caporaso J, Kuczynski J, Stombaugh J, Bittinger K, Bushman F, Costello E et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336
18. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27(16):2194
19. Haas BJ, Gevers D, Earl AM, Feldgarden M, Ward DV, Giannoukos G et al (2011) Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res 21(3):494
20. Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10(10):996–998
21. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P et al (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41(Data-base issue):590–596
22. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73(16):5261
23. Fournier PE, Richet H, Weinstein RA (2006) The epidemiology and control of Acinetobacter baumannii in health care facilities. Clin Infect Dis 42(5):692–699
24. Wong D, Nielsen TB, Bonomo RA, Pantapalangkoor P, Luna B, Spellberg B (2017) Clinical and pathophysiologic overview of Acinetobacter infections: a century of challenges. Clin Microbiol Rev 30(1):409–447
25. Fisher K, Phillips C (2009) The ecology, epidemiology and virulence of Enterococcus. Microbiology 155(6):1749–1757
26. Poh C, Oh H, Tan A (2006) Epidemiology and clinical outcome of enterococcal bacteraemia in an acute care hospital. J Infect 52(5):383–386
27. Castagnola E, Fioredda F, Barretta M, Pescetto L, Garaventa A, Lanino E et al (2001) Bacillus sphaericus bacteremia in children with cancer: case reports and literature review. J Hosp Infect 48(2):142–145
28. Wenzler E, Kamboj K, Balada-Llasat J-M (2015) Severe sepsis and multiorgan failure: importance and applications of novel approaches to antibiotic development. Ther Adv Med Chem 6(2):261–274
29. Million M, Diallo A, Raoult D (2017) Gut microbiota and malnutrition. Nutrients 9(9):1102
30. Matsuki T, Watanabe K, Fujimoto J, Takada T, Tanaka R (2004) Use of 16S rRNA gene-targeted group-specific primers for real-time PCR analysis of predominant bacteria in human feces. Appl Environ Microbiol 70(12):7220–7228
31. Nagai F, Watanabe Y, Morotomi M (2010) Slackia piriformis sp. nov. and Collinsella tanakaei sp. nov., new members of the family Coriobacteriaceae, isolated from human faeces. Int J Syst Evol Microbiol 60(11):2639–2646
32. Duane L, Harjono I, Barns S, Launen L, Palleron N, Hägglom B (2002) PAH-degradation by Paeubacillus spp. and description of Paeubacillus naphthalenivorans sp. nov., a naphthalene-degrading bacterium from the rhizosphere of salt marsh plants. Int J Syst Evol Microbiol 52(1):131–139
33. Ko KS, Kim J-Y, Lee MY, Shin SY, Jung DS, Peck KR et al (2008) Paebacillus kongsisensis sp. nov., isolated from a patient. Int J Syst Evol Microbiol 58(9):2164–2168

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.