Biophysical analysis of Arabidopsis protein-only RNase P alone and in complex with tRNA provides a refined model of tRNA binding

Franziska Pinker¹,²,⁺, Cédric Schelcher²,⁺, Pablo Fernandez-Millan¹, Anthony Gobert², Catherine Birck³, Aurélien Thureau⁴, Pierre Roblin⁴,⁵, Philippe Giegé²,§,* and Claude Sauter¹,§,*

¹Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR 9002, F-67000 Strasbourg, France
²Université de Strasbourg, CNRS, IBMP, UPR 2357, F-67084 Strasbourg, France
³Université de Strasbourg, CNRS, IGBMC, UMR 7104, F-67404 Illkirch, France
⁴Synchrotron SOLEIL, l’Orme des Merisiers Saint Aubin, F-91410, France
⁵URBIA-Nantes, INRA Centre de Nantes, 60 rue de la Géraudière, Nantes, F-44316, France
⁺,§contributed equally

*To whom correspondence should be addressed: Dr Philippe Giegé, tel: +33 367 155 363, email: philippe.giege@ibmp-cnrs.unistra.fr and Dr Claude Sauter, tel: + 33 388 417 102, fax: +33 388 602 218, email : c.sauter@ibmc-cnrs.unistra.fr

Running title: Biophysical analysis of PRORP2-tRNA complex

JBC keywords: Ribonuclease P (RNase P) / precursor tRNA (pre-tRNA) / RNA processing / small-angle X-ray scattering (SAXS) / X-ray crystallography

Other keywords: PRORP / pentatricopeptide repeat / tRNA maturation

ABSTRACT

RNase P is a universal enzyme that removes 5’ leader sequences from tRNA precursors. The enzyme is therefore essential for maturation of functional tRNAs and mRNA translation. RNase P represents a unique example of an enzyme that can occur either as ribonucleoprotein or as protein alone. The latter form of the enzyme called PRORP (PRotein-Only RNase P) is widespread in eukaryotes, in which it can provide organellar or nuclear RNase P activities. Here, we have focused on Arabidopsis nuclear PRORP2 and its interaction with tRNA substrates. Affinity measurements helped assess the respective importance of individual pentatricopeptide repeat motifs in PRORP2 for RNA binding. We characterized the PRORP2 structure by X-ray crystallography and by small-angle X-ray scattering (SAXS) in solution, as well as that of its complex with a tRNA precursor by SAXS. Of note, our study reports the first structural data of a PRORP-tRNA complex. Combined with complementary biochemical and biophysical analyses, our structural data suggest that PRORP2 undergoes conformational changes to accommodate its substrate. In particular, the catalytic domain and the RNA binding domain can move around a central hinge. Altogether, this work provides a refined model of the PRORP-tRNA complex that illustrates how protein-only RNase P enzymes specifically bind tRNA and highlights the contribution of protein dynamics to achieve this specific interaction.

INTRODUCTION

Transfer RNA maturation involves many post-transcriptional steps. Among them, 5’ leader sequences are removed by an endonuclease activity called RNase P (1). This processing step was assumed to be universally performed by ribonucleoprotein (RNP) particles, containing a ribozyme and up to 10 protein subunits, until the discovery of protein-only RNase P enzymes specifically bind tRNA and highlights the contribution of protein dynamics to achieve this specific interaction.

Contrary to initial
Biophysical analysis of PRORP2-tRNA complex

appreciations, PRORP enzymes are not restricted to organelles in few species (5). They are actually widespread in eukaryotes, occurring in mitochondria and/or chloroplasts as well as in nuclei in 4 out of 5 eukaryote supergroups (6). In some groups, i.e. in most Chloroplastida (Viridiplantae), Stramenopiles and Trypanosomatida, PRORP enzymes have seemingly entirely replaced ribonucleoproteins for RNase P activity, as experimentally shown for Arabidopsis thaliana (7), Chlamydomonas reinhardtii (8) and Trypanosoma brucei (9).

PRORP enzymes were also characterised in the moss Physcomitrella patens (10). Intriguingly, in this species, a nuclear PRORP is not essential although no recognizable ribonucleoprotein RNase P is present (6).Remarkably, the occurrence of PRORP and RNP RNase P appears mutually exclusive in compartments or in entire organisms (6). RNNPs or of PRORP might have been retained in specific cell compartments or entire organisms because they have different substrate spectra in vivo. Alternatively, in specific clades, RNNPs or PRORP might have evolved additional functions that cannot be held by the other type of enzyme.

The biochemical characterization of PRORP enzymes, their structure in solution (11), as well as the crystal structure of mitochondrial Arabidopsis and human PRORP enzymes (12-14) have revealed two-domains enzymes. They contain a C-terminal nuclease domain belonging to the NYN (N4BP1, YacP-like Nuclease) family (15) and a N-terminal pentatricopeptide repeat (PPR) domain (16,17) believed to be responsible for RNA binding and substrate specificity. These two main domains are bridged by a central zinc-binding domain (2). A comparative kinetic analysis of RNase P activities by PRORP and RNNPs has suggested that the two types of enzymes use different catalytic mechanisms (18). Remarkably, this comparative analysis also revealed that RNNPs are better catalysts than PRORP enzymes, at least in vitro. However, the identification of tRNA residues in contact with PRORP (11) and RNP RNase P (19) has suggested that RNNPs and PRORP use a similar strategy to recognize their substrates (11). Still, how this is achieved at the protein level remained unknown and the dynamics required for PRORP mode of action was unexplored (20).

In order to tackle these questions, we determined the crystal structure of Arabidopsis nuclear PRORP2 together with a SAXS model in solution, and explored the role of its PPR domain for substrate binding. We found that two particular PPR motifs are required for specific tRNA recognition by PRORP2. Furthermore, we studied the PRORP2-tRNA complex in solution by SAXS to establish an interaction model. Taken together, our results identify structural features in PRORP2 important for RNA binding process and suggest that the enzyme is flexible and undergoes conformational changes to perform its activity.

RESULTS

Crystal and solution structure of Arabidopsis nuclear PRORP2

Crystallization conditions were extensively screened for different PRORP2 constructs, including catalytically impaired and shortened forms. Crystals were only obtained for the full-length wild-type PRORP2 (21). Their analysis led to the determination of the enzyme structure at a resolution of 3.05 Å (Figure 1A and Supplemental Table 1). As proposed based on sequence similarities with the organellar PRORP1 (2,11), PRORP2 adopts the same characteristic Λ-shape. The N-terminal arm consists of a PPR domain made of five PPR motifs, the C-terminal arm consists of the NYN metallonuclease domain, and a bipartite zinc-binding domain (ZBD) bridges the two arms together. The 27 first residues including the nuclear localization signal (NLS), as well as the 20 last amino acids including the 6-His affinity tag, were probably floppy in the crystal packing and could not be visualized in the electron density map. The two copies of PRORP2 present in the triclinic unit cell are very similar (rmsd = 0.85 Å, Supplemental Figure 1). As proposed based on sequence similarities with the organellar PRORP1 (2,11), PRORP2 adopts the same characteristic Λ-shape. The N-terminal arm consists of a PPR domain made of five PPR motifs, the C-terminal arm consists of the NYN metallonuclease domain, and a bipartite zinc-binding domain (ZBD) bridges the two arms together. The 27 first residues including the nuclear localization signal (NLS), as well as the 20 last amino acids including the 6-His affinity tag, were probably floppy in the crystal packing and could not be visualized in the electron density map. The two copies of PRORP2 present in the triclinic unit cell are very similar (rmsd = 0.85 Å, Supplemental Figure 1). They also superimpose well with PRORP2 monomers (average rmsd = 1.32 Å) recently described by Karasik et al. (22). As in the latter crystal structure determined concomitantly to ours in the same triclinic environment and in fairly similar crystallization conditions, we do not observe any cation bound to conserved aspartate residues in the catalytic site,
although we and Karasik et al. (22) show that, similar to PRORP1, Mg2+ ions are required for catalysis (Supplemental Figure 2). The full-length PRORP2 and a more compact form PRORP2xs were characterized in solution by SAXS as well (Figure 1C). Their gyration radii (Rg) of respectively 35 and 32 Å derived from the Guinier analysis are in good agreement with the value calculated from the crystal structure (29.5 Å) deprived of N- and C-terminal extensions (Supplemental Figure 3). Possible conformations of PRORP2 were explored by a normal mode analysis (NMA) and the model fitting best the SAXS data (Supplemental Figure 4) was extended to missing N- and C-regions and refined under SAXS constraints (Supplemental Figure 5). Figure 1C represents the resulting model showing the core of nuclear PRORP2 in solution. SAXS data on both PRORP1 and PRORP2 indicate that the structural organization of the enzyme with its central hinge between the catalytic domain and the ZBD introduces flexibility in its backbone and allows more open conformations than those observed in crystal structures (see Discussion and Supplemental Figure 4).

Defining conditions for a stable PRORP2-tRNA complex

A prerequisite for the characterization of the PRORP2-tRNA complex was to define buffer conditions compatible with various biochemical and biophysical analyses, and ensuring both protein and RNA stability. The effect of the salt concentration was tested on PRORP2 catalytic activity. Initial buffer conditions contained 250 mM NaCl to increase the solubility of the enzyme but it appeared to be detrimental to both crystallization (21) and activity. As shown in Supplemental Figure 6 the cleavage of pre-tRNA sharply decreases beyond 150 mM NaCl. The latter concentration was chosen in combination with 5 % glycerol (w/v) as a good compromise to maintain both PRORP2 monodispersity in solution and its activity.

Defining a compact but well-processed RNA substrate was another prerequisite, especially for SAXS or crystallography to avoid long and flexible extensions. We therefore gradually trimmed the leader sequence of our Arabidopsis pre-tRNA\textsubscript{Cys(GCA)} constructs from 51 down to 5 nucleotides (Supplemental Figure 7). The best compromise was obtained with the L5T0-tRNA\textsubscript{Cys} (i.e. with a leader sequence of 5 nucleotides, no trailer sequence and no added CCA) which proved to be fully cleaved and showed up as a single band on native gel. This is in agreement with the study by (22) showing that PRORP2 preferentially binds substrates with short 5’ leaders and 3’ trailers. L5T0 construct was selected for all subsequent analyses. In the same line, the short PRORP2xs construct was preferred over the full-length catalytic mutant to avoid long and flexible regions, and to facilitate SAXS modelling (Supplemental Figure 5).

PRORP2 affinity for pre-tRNA substrates

The experimental setup defined above was used to determine the affinity of Arabidopsis PRORP2 for pre-tRNA by several biophysical methods. Hence, a catalytically inactive mutant of PRORP2xs containing two alanines in place of two aspartates at positions 421 and 422 in the NYN domain (7) was used in combination with the L5T0 tRNA substrate. Isothermal titration calorimetry (ITC) revealed a first K\textsubscript{D} value of 1 µM for the interaction of PRORP2 with tRNA, with a ΔH of -3.9 \texttimes 104 cal.mol-1, a ΔS of -107 cal.mol-1.degree-1 and a stoichiometry of 0.4 (Figure 2A), thus suggesting that a proportion of either of the partners would not form a complex or that one of the partner (tRNA) partially oligomerizes as seen by SEC in similar conditions (data not shown). Subsequent dynamic light scattering (DLS) and size exclusion chromatography (SEC) measurements confirmed that the sample did not aggregate during the experiment. In order to confirm these results, the PRORP2-tRNA complex formation was also monitored by microscale thermophoresis (MST), using a tRNA\textsubscript{Cys} precursor labelled in 5’ with a fluorescent dye (Cy5). This revealed a K\textsubscript{D} of 1 µM with 95 % confidence limits, between 0.8 and 1.3 µM in triplicate experiments (Figure 2B). Finally, the PRORP2-tRNA complex was subjected to sedimentation velocity analytical ultracentrifugation (SV-AUC). Replicate analyses of titration series with a constant concentration of pre-tRNA\textsubscript{Cys} and increasing concentrations of PRORP2 yielded an estimated K\textsubscript{D} value of 1 µM.
Biophysical analysis of PRORP2-tRNA complex

[95% confidence limits, 0.4 µM, 2.3 µM] (Figure 2C), in good accordance with the values measured with MST and ITC. Altogether, results indicate a K_D value of the PRORP-tRNA complex in the micromolar range. This relatively low affinity suggests a transient interaction of PRORP enzymes with tRNA precursors, as expected for a maturation enzyme.

Relative importance of PPR motifs for interaction with tRNA

PRORP proteins belong to the huge family of pentatricopeptide repeat (PPR) proteins. These eukaryote specific RNA binding proteins are involved in a wide variety of post-transcriptional processes such as RNA editing, splicing or the maturation of transcript ends (16,23). They are composed of circa 35 amino-acids tandem repeats of degenerate primary sequences although bearing a conserved helix-turn-helix structure. The investigation of PPR protein mode of action has revealed that each PPR motif specifically interacts with a defined ribonucleotide. Some residues are particularly important to achieve this specificity, i.e. two residues located toward the start and at the end of PPR motifs, termed here positions 5 and 35, according to Cheng et al. (23). The nature of amino-acids at these positions defines a combinatorial code for RNA recognition by PPR motifs (24-26). The PPR domain of Arabidopsis PRORP2 is composed of 5 such motifs (PPR1-PPR5) (Supplemental Figure 8). Positions 5 and 35 of motifs PPR2 and PPR3 are particularly well conserved in plants, with the occurrences of a Q or a N at PPR2 position 5 and a N or a S at PPR2 position 35 as well as a T at PPR3 position 5 and a R at PPR3 position 35 in an alignment of 100 plant PRORP sequences (6). Shorter alignments are exemplarily shown in Supplemental Figures 8 and 9. Although the “PPR code” is not yet fully understood, (i.e. target RNAs cannot be predicted for many PPR proteins or motifs and the exact involvement of other residues besides positions 5 and 35 for specific RNA binding is not entirely known), the latest resources and knowledge on PPR RNA recognition (23) enable to predict that PRORP2 motif PPR2 would recognize a cytidine while motif PPR3 would recognize a purine. In contrast, no clear prediction can be made for PPR motifs 1, 4 and 5.

Accordingly, in order to test the relative importance of individual PPR motifs for PRORP function, presumably for substrate recognition, PRORP2 was mutated at positions 5 and 35 of its five PPR motifs. The nature of amino acids and mutations at these positions is indicated on Supplemental Figure 8. The five double mutants were expressed and purified to homogeneity. Solubility, stability and structural integrity of mutants were verified by DLS and SAXS. All mutants behaved similarly to the wild-type enzyme and its catalytically inactive version in solution (Supplemental Figure 10), except PPR4 variant which is unstable and prone to aggregation, especially upon RNA removal. Therefore, the latter mutant could only be used for cleavage assays at low concentration.

Hence the five mutant proteins were assayed for in vitro RNase P activity with two tRNACys precursors with leader sequences of either 5 or 51 nucleotides. The quantification of relative cleavages revealed that PPR mutants 1, 4 and 5 were as active as wild type PRORP2. However, activity decreased by 45 % (on average for the two tRNA substrates) in PPR2 mutant and by 91 % in PPR3 mutant (Figure 3A). This suggests that motifs PPR2 and 3 are the most important for substrate recognition by PRORP2 and in accordance with comparable results obtained for the organellar PRORP1 (27).

Still, RNase P cleavage experiments represent indirect evidence for PRORP binding to tRNA. We therefore analysed direct interaction between PPR mutants and RNA using SV-AUC to determine which PPR motifs are indeed involved in tRNA binding. For this, the PRORP2 PPR double mutants were further mutated in the catalytic site as described above to obtain catalytically inactive proteins enabling K_D measurements. The observed broad distributions of sedimenting species (between the faster tRNA component and the complex species) are characteristic of rapidly reversible systems, due to dynamically associating and dissociating events during sedimentation. The swfast isotherms were generated and analyzed to get the binding constants. The K_D of PPR5 mutant interaction with tRNACys was estimated to 0.9 µM.
Biophysical analysis of PRORP2-tRNA complex

[95% confidence limits, 0.7 µM, 1.1 µM] similar to wild type PRORP2 [95% confidence limits, 0.6 µM, 1.9 µM], whereas the K_D of PPR1 and PPR2 mutants were estimated to 2.2 µM [95% confidence limits, 1.7 µM, 3.0 µM] and 2 µM [95% confidence limits, 1.4 µM, 2.7 µM] respectively. For PPR3, no estimate of the K_D was possible due to the absence of complex formation in the experimental conditions (Figure 3B). The analysis of AUC data showed that K_D variations were not due to the aggregation or misfolding of PPR mutants. No data could be obtained for PPR4 mutant due to its instability at the concentrations required for AUC (see above).

Altogether, results indicate that motif PPR3 is the most important to form the PRORP2-tRNA complex. Mutations on PPR2 motif affects both catalysis and RNA binding, although to a lesser extent. PPR1 mutant is only moderately affected for RNA binding. This is probably because the mutation at position 35 introduces a negative charge that can interfere with RNA binding. Still, even though PPR1 mutant does not display a loss of RNase P activity, our data suggest that PPR1 motif is in the vicinity of the RNA, in accordance with previous work showing contacts between the N-terminal extremity of PRORP and tRNA (28). In contrast, PPR motifs 4 and 5 do not seem to be involved in RNA interaction since their mutations do not alter RNA binding and cleavage.

Modelling of PRORP2-tRNA complex based on SAXS data

The conditions defined to favour a stable PRORP2-tRNA interaction were used to study the PRORP2xs-L5T0 pre-tRNA complex by SAXS. For this purpose, PRORP2xs, pre-tRNAs and their complex were separated by analytical SEC just upstream of the SAXS cell. Because the three entities could hardly be resolved by SEC (Figure 4A) and because of the µM affinity of PRORP for tRNA, the SEC separation was carried out in the presence of 1.5 µM of free enzyme in the mobile phase to avoid complex dissociation. The complex was detected in the second part of the main scattering peak where the estimated Rg along data collection makes a plateau at ~ 34 Å (Figure 4B), i.e. a value 6 % larger than that observed for PRORP2xs alone (Supplemental Figure 3). The SAXS profile and the P(r) distribution are also clearly distinct from those obtained with the isolated enzyme (Supplemental Figure 3).

To build a model of the PRORP2-tRNA complex, an ensemble of data previously available and determined here were considered:

- Our previous footprinting analysis identified tRNA residues protected from RNase digestion and thus in contact with PRORP in the tRNA D and T loops (U16, G18, G19 and C56) (11).
- These residues and others that are universally conserved among canonical tRNAs (29) were mutated. For some of them, mutations resulted in a complete loss of RNase P activity, i.e. G18, C56 and R57 in the full length tRNA (11) as well as C56 and R57 in a minihelix corresponding to the tRNA acceptor domain (30).
- Mutations also showed that the anticodon domain of tRNAs is completely dispensable for RNase P activity (11,30).
- The PRORP2 catalytic pocket that includes D421 and 422 (and binds catalytic Mg (12)) must be next to tRNA positions -1 and +1.
- PPR mutagenesis and AUC data determined here suggest that PPR motifs 2 and 3 are involved in tRNA binding, accordingly at the opposite side of the acceptor arm, i.e. in the D and T loops.
- The PPR code predicts that motifs PPR2 and 3 should bind a cytidine and a purine, respectively. Best candidates are positions G18, G19, C56 and R57.

Taking in account these spatial criteria, a series of models of the complex was generated from the crystal structure of PRORP2 and the model of L5T0 pre-tRNA_Cys (prepared by homology modelling using Assemble (31) and based on E. coli tRNA_Cys (GCA) crystal structure, PDBid: 1U0B (32)). These models test different combinations of PPR / nucleotide interactions. Their theoretical scattering profiles were compared with experimental SAXS data to select the best model (i.e. with best goodness-of-fit or lowest Chi
Biophysical analysis of PRORP2-tRNA complex

value). Since PPR3 was found to be the most important for RNA interaction, models were first built with PPR3 interacting with either G18, G19 or R57. In the models involving G19 and R57, the orientation of the tRNA does not allow an additional interaction of PPR2 with a tRNA residue. In contrast, in the model involving PPR3 interaction with G18, PPR2 is close to C56. This model of the complex displayed in Figure 4 is the only one satisfying all distance criteria: (i) Motifs PPR2 and PPR3 binding 2 residues in the D/T loops of tRNA, (ii) nucleotides -1 and +1 in the vicinity of metal binding aspartates. Most importantly, this model also gives the best fit with SAXS experimental data (Chi of 2.4). Other combinations involving a single PPR interaction to bases G19, C56 or G57 lead to a reorientation of the tRNA with respect to PRORP2 and higher Chi values (ranging from 3.8 to 5.0), indicating that the shape of these models is less representative of the objects present in solution (Supplemental Figure 11).

In our model, the backbone conformation of D/T loops was essentially kept as in the E. coli template tRNA, but the nucleobases C56 and G18 were flipped in syn conformation to point toward the protein. Indeed, in the unprocessed pre-tRNA transcript, these bases are certainly unpaired to keep D/T loops flexible and accessible to modification enzymes and thus to PPR modules as well. For instance, tertiary interactions that stabilize mature tRNAs (29), i.e. the C56-G19 or the G18-Ψ55 interactions may hardly take place before PRORP binds pre-tRNA, since RNase P cleavage is one of the first step of pre-tRNA maturation after transcription (33). Among PRORP1 lysines shown in a recent mass spectrometry study to cross-link with the tRNA (28), the only two that are conserved in PRORP2 (K42 and K387, which are equivalent to K109 and K439 in PRORP1), are close to the tRNA backbone in our SAXS model of the complex. The comparison of the crystal structure and SAXS models of PRORP2 alone or complex with pre-tRNA suggests that the enzyme core is quite flexible with a main hinge between the zinc-binding and the catalytic domain. In particular, structural differences between free and complexed form of PRORP show that major conformational changes may take place upon binding of pre-tRNA. It appears that the plasticity of PRORP2 backbone allows opening of its Λ-shape and a rotation of the catalytic domain to accommodate tRNA substrates (Figure 5).

DISCUSSION

Since the first descriptions of protein-only RNase P (3,4), crystal structures and biophysical studies of Arabidopsis and human PRORP revealed the functional organization and structural diversity of these enzymes (reviewed by Schelcher et al. (20)). Initial investigations of PRORP mode of action showed which tRNA residues are in contact with PRORP (11), but the way tRNA recognition is achieved by PRORP was unknown and no data was available on the structure of the PRORP-tRNA complex and on the dynamics of the enzyme. Mutagenesis of PPR motifs and the model derived from SAXS data acquired on the PRORP2-tRNA complex suggest that the sole PPR2 and 3 motifs of PRORP are involved in tRNA recognition. Besides PRORP, all characterized PPR proteins bind single stranded RNA (16) and the current trend is that tandem arrays of PPR motifs specifically bind unpaired RNA bases in a sequence specific manner (24). Since PRORP binds any tRNA of canonical structure, it was proposed that PRORP diverged from the general mode of action of PPR proteins and developed a specific RNA recognition mode based on structural features rather than on linear sequences (2,30). Our results suggest that this is not completely the case, at least for motifs PPR2 and 3 that appear to follow the canonical base recognition by PPR motifs. Indeed, PPR2 would recognise C56 and PPR3 a purine at the corner of the tRNA. This purine could be either G18 or G57, although our SAXS model indicates that G18 is closer from motif PPR3 and is thus more likely recognized by this motif when PRORP interacts with a full tRNA. However, in the context of a mini-helix mimicking the acceptor arm with a less constrained single-stranded T-loop region, as used by Brillante et al. (30), PPR3 might also be able to bind G57 while PPR2 interacts with C56.
In contrast motifs PPR4 and 5 do not seem to participate in tRNA binding and their function, beside maintaining the PPR architecture, remains elusive. They might be involved in the recognition of yet unidentified non-tRNA substrates of PRORP2. Alternatively, the role of these motifs might be to position PPR2/3 at the right distance from the active site of the NYN domain. The overall PRORP fold would then act as a ruler that selects the cleavage site with respect to tRNA corner held by PPR2/3. However, although positions 5 and 35 of PPR motifs are recognised as the most important for specific RNA binding, the functional relevance of other positions such as position 2, that was also proposed to be involved in RNA interaction, for PRORP / tRNA recognition remains unexplored.

In addition to PRORP RNA recognition process, we determined and compared the crystal and different solution models of PRORP2 in order to capture various conformations of PRORP and look at the conformational landscape of PRORP proteins. To explore possible domain reorientations, we performed a normal mode analysis (NMA) known to provide a good description of low-frequency collective motions in proteins (34). The comparison of NMA perturbed models with our SAXS data in solution suggests that both PRORP1 and PRORP2 can adopt a variety of conformations owing to the presence of a hinge between the catalytic NYN domain and the central zinc-binding domain. Related movements correspond to the opening of the S-shape of PRORP and the rotation of its catalytic domain around the central hinge (Supplemental Figure 3). Models were further refined against SAXS data with the genetic algorithm DADIMODO and led to an excellent fit for PRORP2xs, showing again multiple compatible conformations with a reorientation of the catalytic domain (Supplemental Figure 5). This adaptability is exemplified by the capacity of PRORP to cleave substrates such as tRNA\textsubscript{His} that has an 8 base pairs acceptor stem and can be processed by PRORP at position -1 and +1 (35) or by the cleavage of tRNA-like substrates as observed for mitochondrial nad6 and orf291 mRNAs (7,36). Overall, the intrinsic plasticity of PRORP2, which likely applies to all members of the PRORP family may be crucial to bind RNA substrates and to release matured RNA products. Such type of conformational adaptation has been observed in other monomeric tRNA binding enzymes. In the case of the human mitochondrial phenylalaninyl-tRNA synthetase, the crystal structure of the isolated enzyme revealed a very compact conformation. SAXS data on the complex with tRNA indicated a large rigid-body motion of the anticodon binding domain upon tRNA binding (37). Other examples concerned the bacterial elongation factor EF-Tu and the conformational transition following GTP hydrolysis that leads to ribosome translocation and EF-Tu release (38), the bacterial TruB which catalyzes pseudouridine formation at U55 in tRNA and undergoes a large rigid body displacement of its C-terminal region upon tRNA binding (39), or the archaeal O-Phosphoseryl-tRNA kinase (PSTK), the enzyme that phosphorylates Ser-tRNA\textsubscript{Sec} to produce O-phosphoseryl-tRNA\textsubscript{Sec} which displays a >60 Å movement of its C-terminal domain to bind the variable region of tRNA\textsubscript{Sec} (40). Large conformational movements thus seem to be a general feature to modulate the recognition, binding or release of tRNAs.

EXPERIMENTAL PROCEDURES

PRORP2 and tRNA purification

Expression of the full-length enzyme in the wild-type (PRORP2wt) and catalytically impaired (PRORP2mut) versions as well as of PPR mutants, and their purification by IMAC and SEC were performed as described by Pinker et al. (21). A more compact and catalytically inactive form (PRORP2xs) was designed and the region of PRORP2 cDNA coding for residues 25-516 was introduced in a pTYB1 plasmid (New England
Biophysical analysis of PRORP2-tRNA complex

Biolabs), to produce the protein fused in C-terminal to self-cleavable intein and chitin-binding domain. In both PRORP2mut and PRORP2xs two essential aspartate residues (421, 422) were mutated in alanines to inhibit the nucleolytic activity and facilitate the formation of stable complexes and PPR motifs were mutated to abolish RNA interaction. Mutations were introduced with the QuikChange (R) Site-Directed Mutagenesis kit (Stratagene) using PCR primers designed with the manufacturers qprimerdesign online tool.

The expression of PRORP2xs was performed in Escherichia coli BL21 (DE3) strain at 17°C in 2 l LB medium containing ampicillin and induced with IPTG. The cells harvested by centrifugation, resuspended in a buffer containing protease inhibitors (Sigma, catalogue No. S8830; one tablet per 100 ml), 50 mM HEPES–Na pH 7.5, 250 mM NaCl, 15 % (w/v) glycerol, 1 mM TCEP, and were disrupted by ultrasonication. Cell debris were removed by centrifugation and the supernatant applied onto a 50 ml chitin affinity column (New England Biolabs) equilibrated with the same buffer including 500 mM NaCl. To trigger intein cleavage and PRORP2xs release, 50 mM DTT was added to the buffer and the protein was incubated on the column for 16 h at 4°C. After elution, PRORP2xs was further purified by SEC on a Superdex 200 10/300 GL column (GE Healthcare) and stored in 50 mM HEPES–Na pH 7.5, 250 mM NaCl, 15 % (w/v) glycerol, 1 mM TCEP. To reduce NaCl concentration prior to complex formation this storage buffer was exchanged by ultrafiltration or dialysis with a buffer containing 150 mM NaCl, 30 mM HEPES–Na pH 7.5, 5 % (w/v) glycerol, 1 mM TCEP (buffer P). Sample quality was systematically assessed by SDS-PAGE and DLS as described previously (11,21).

Arabidopsis mt-tRNA^{Cys(GCA)} L5T0 and L51T30 pre-tRNA cDNAs (with leader sequences of 5 or 51 nucleotides as well as trailer sequences of 0 or 30 nucleotides) were amplified from Arabidopsis seedlings total cDNA, cloned in pUC19 and transcribed in vitro by T7 RNA polymerase as described by Gobert et al. (11).

Determination of PRORP2 crystal structure

Determination and crystallographic analysis were performed as described by Pinker et al. (21). In brief, PRORP2 in buffer P was crystallised in 2 µl batch drops at 4°C by mixing (1:1 ratio) with a crystallant solution containing 200 mM sodium malonate pH 6, 20 % (w/v) PEG 3350. Diffraction data were collected at 100 K with a wavelength of 1 Å using a PILATUS 2M detector on the X06DA beamline at the Swiss Light Source (SLS synchrotron, Paul Scherrer Institute, Villigen, Switzerland). Search models for molecular replacement (MR) were derived from the structure of organellar PRORP1 (PDBid: 4G23) using MODELLER (41). MR search was performed with PHASER and the PHENIX package (42,43).

Models of single PRORP2 monomer were split in three domains (PPR, ZBD, NYN) and one copy of each was placed in the P1 unit cell. As the self-correlation function indicated the presence of two-fold non-crystallographic symmetry (NCS) the second molecule was localized using a second copy of the catalytic domain. Two complete copies of PRORP2 were then refined at 3.05 Å resolution using a maximum-likelihood target as implemented in PHENIX (42). NCS constraints between the two monomers were applied during refinement, as well as TLS model for atomic displacement parameters. Manual inspection and rebuilding were performed with COOT (44). The final structure (PDBid 5FT9) describes two monomers of PRORP2 including residues 28-515. N-terminal (1-27) and C-terminal (516-536) tails, and two loops (312-321, 499-514) are not visible in the electron density map. Data collection and refinement statistics are given in Supplemental Table 1.

Isothermal titration calorimetry

ITC was performed on a MicroCal ITC instrument (Malvern Instruments, Malvern, UK), at 20°C, with 187 µM PRORP2 in buffer P with 5 mM MgCl₂. 19 samples of 3 µl protein solution were injected with a 120 sec interval in the cell containing 280 µl of 22 µM L5T0 tRNA^{Cys} precursor dialysed in the same buffer. Data analysis was performed with the microcal Origin7 software.

Microscale thermophoresis
Biophysical analysis of PRORP2-tRNA complex

MST was performed with a Monolith NT 115 instrument (NanoTemper Technologies GmbH, Munich, Germany). 10 µl aliquots of a serial dilution of PRORP2 (188 µM to 6 nM) in buffer P with 5 mM MgCl₂ and 0.3 mg/ml BSA were added to 10 µl of a 100 nM solution of 5’ Cy5 labelled L5T0 tRNA Cys (IBA GmBH, Göttingen, Germany). The LED laser power was set to 20 % and the IR laser power to 40 % and the variation of fluorescence related to molecules and complexes mobility was monitored at 20°C according to manufacturer instructions. Data analysis was performed with the Monolith MO. Affinity analysis software.

Analytical ultracentrifugation
Sedimentation velocity experiments were performed in a Beckman Coulter proteomeLab XL-I instrument at 20°C and 50 000 RPM with absorbance detection. 400 µl of different ratios of PRORP2 and L5T0 tRNA Cys were prepared in buffer P with 5 mM MgCl₂. tRNA concentration was kept constant at 0.7 µM and protein was added to final concentrations varying from 0.25 µM to 10 µM. Samples of 0.7 µM tRNA alone and 10 µM PRORP2 alone were also measured. The fitting of data was performed using SEDFIT software (www.analyticalultracentrifugation.com/) and continuous sedimentation coefficient distribution model. The distributions obtained for each sample were integrated to determine the weight-average sedimentation coefficients EPT swfast (Effective Particle Theory with weight-average s-values of the fast component of the reaction boundary) as a function of protein concentrations and to generate swfast isotherms (isotherms of the fast boundary component of rapidly interacting systems based on Gilbert-Jenkins theory (45). The isotherms were loaded into SEDPHAT for fitting with the hetero-association model A+B ↔ AB to obtain an estimate of the K_D. In the analysis, s_A and s_B were fixed at the experimentally determined values for PRORP2 and tRNA respectively, whereas K_{AB} and s_{AB} were subject to optimization through nonlinear regression. The error surface projection analysis was exploited to determine the error intervals of the best-fit K_D values at a 95% confidence level. Buffer density, buffer viscosity and protein partial specific volumes were calculated using SEDNTERP software. The software GUSSI was used to plot and to integrate the sedimentation coefficient distributions, and to generate the isotherms (46).

RNase P activity assays
RNase P cleavage assays were performed with three replicates using 0.5 µM transcript and 0.15 µM PRORP2 protein in buffer containing 30 mM Tris-HCl pH 8, 40 mM NaCl, 4.5 mM MgCl₂, 20 µg.ml⁻¹ BSA and 100 nM DTT for 15 min at 25°C as described previously (4). RNA fragments were separated by denaturing PAGE, visualized by ethidium bromide staining and quantified as described (4).

Small angle X-ray scattering analysis
SAXS experiments were performed on the SWING beamline at Synchrotron SOLEIL (Saint-Aubin, France) as described previously (11). In brief, samples were loaded onto a size exclusion column (Bio SEC-3 with 150 Å pore size, Agilent Technologies) and SAXS measurements were performed throughout elution. A mix of 30 µl of 320 µM catalytically inactive PRORP2xs and 25 µl of 185 µM L5T0 pre-tRNA Cys in buffer P with 5 mM MgCl₂ was injected in the column equilibrated with buffer P, 5 mM MgCl₂ and supplemented with 1.5 µM PRORP2xs in order to prevent dissociation of partners during elution. PRORP2 and PRORP2xs were also characterized alone in buffer P. Data processing, interpretation, Rg evaluation over elution profiles were performed using Foxtrot (47) and data analysis (determination of Rg, dmax) with the ATSAS package (48). Based on a normal mode analysis (NMA) with ElNeMo (49) crystal structures of PRORP1 and 2 were perturbed to select models that better represented the SAXS profile of PRORP2 owing to a goodness-of-fit calculated with CRYSOL (50,51). Complete models of PRORP2 and PRORP2xs (including their respective N- and C-terminal extensions not described in the crystal structure) were generated under SAXS constraints using DADIMODO (52), a genetic algorithm-based refinement program. Models of PRORP2-tRNA complex were built with SASREF (53) under
SAXS constraints using this PRORP2xs solution structure with a flexible hinge between the zinc-binding and the catalytic domains, and taking into account distance restraints between above mentioned residues in PPR2-3 modules, the catalytic domain and nucleotides in the tRNA. SASREF models were manually inspected to remove steric clashes and adjusted in PyMOL using the SAXS plugin SASpy (54).

ACKNOWLEDGEMENTS
The authors thank Dr E. Ennifar and C. Da Veiga for assistance and advice during ITC analysis, teams of SWING beamline (SOLEIL synchrotron, Saint-Aubin, France) and X06DA beamline (Swiss Light Source, Villigen, Switzerland) for beamtime allocation and support during data collection, as well as Dr M. Meyer and B. Masquida for the collection of PRORP2 diffraction data. This work was supported by the French “Centre National de la Recherche Scientifique”, by the University of Strasbourg, an ANR Blanc research grant “PRO-RNase P” (ANR-11-BSV8-008-01/02) to PG and CS, by the LabEx consortium “MitoCross” in the frame of the French National Program “Investissement d’Avenir” (ANR-11-LABX-0057_MITOCROSS). The authors also acknowledge the support and the use of resources of Instruct, a Landmark ESFRI project, and of the French Infrastructure for Integrated Structural Biology (FRISBI, ANR-10-INSB-05).

CONFLICT OF INTEREST
The authors declare that they have no conflicts of interest with the contents of this article.

AUTHOR CONTRIBUTIONS
PG and CS designed and coordinated the experiments. FP, CeS, PFM, AG, CB, PR, PG and CS performed the experiments and the analysed results. PG and CS wrote the manuscript.

SUPPLEMENTAL INFORMATION
Supplemental information is available online.

REFERENCES
1. Altman, S. (2007) A view of RNase P. Mol Biosyst 3, 604-607
2. Pinker, F., Bonnard, G., Gobert, A., Gutmann, B., Hammani, K., Sauter, C., Gegenheimer, P. A., and Giegé, P. (2013) PPR proteins shed a new light on RNase P biology. RNA Biol 10, 1457-1468
3. Holzmann, J., Frank, P., Löffler, E., Bennett, K. L., Gerner, C., and Rossmanith, W. (2008) RNase P without RNA: identification and functional reconstitution of the human mitochondrial tRNA processing enzyme. Cell 135, 462-474
4. Gobert, A., Gutmann, B., Taschner, A., Gößringer, M., Holzmann, J., Hartmann, R. K., Rossmanith, W., and Giegé, P. (2010) A single Arabidopsis organellar protein has RNase P activity. Nat Struct Molec Biol 17, 740-744
5. Lai, L. B., Vioque, A., Kirsebom, L. A., and Gopalan, V. (2010) Unexpected diversity of RNase P, an ancient tRNA processing enzyme: Challenges and prospects. FEBS Lett 584, 287-296
6. Lechner, M., Rossmanith, W., Hartmann, R. K., Tholken, C., Gutmann, B., Giegé, P., and Gobert, A. (2015) Distribution of Ribonucleoprotein and Protein-Only RNase P in Eukarya. Mol Biol Evol 32, 3186-3193
7. Gutmann, B., Gobert, A., and Giegé, P. (2012) PRORP proteins support RNase P activity in both organelles and the nucleus in Arabidopsis. Genes Dev 26, 1022-1027
Biophysical analysis of PRORP2-tRNA complex

8. Bonnard, G., Gobert, A., Pinker, F., Arrivé, M., Salinas, T., and Giegé, P. (2016) A single gene encodes both organelles and nuclear RNase P enzymes in Chlamydomonas reinhardtii. *Plant J.* **87**, 270-280

9. Täschner, A., Weber, C., Buzet, A., Hartmann, R. K., Hartig, A., and Rossmannith, W. (2012) Nuclear RNase P of Trypanosoma brucei: A Single Protein in Place of the Multicomponent RNA-Protein Complex. *Cell Reports* **2**, 19-25

10. Sugita, C., Komura, Y., Tanaka, K., Kometani, K., Satoh, H., and Sugita, M. (2014) Molecular characterization of three PRORP proteins in the moss Physcomitrella patens: nuclear PRORP protein is not essential for moss viability. *PLoS One* **9**, e108962

11. Gobert, A., Pinker, F., Fuchs, O., Gutmann, B., Boutin, R., Roblin, P., Sauter, C., and Giegé, P. (2013) Structural insights into protein-only RNase P complexed with tRNA. *Nat Commun* **4**, 1353

12. Howard, M. J., Lim, W. H., Fierke, C. A., and Koutmos, M. (2012) Mitochondrial ribonuclease P structure provides insight into the evolution of catalytic strategies for precursor-tRNA 5' processing. *Proc Natl Acad Sci U S A* **109**, 16149-16154

13. Reinhard, L., Sridhara, S., and Hallberg, B. M. (2015) Structure of the nuclease subunit of human mitochondrial RNase P. *Nucleic Acids Res* **43**, 5664-5672

14. Li, F., Liu, X., Zhou, W., Yang, X., and Shen, Y. (2015) Auto-inhibitory Mechanism of the Human Mitochondrial RNase P Protein Complex. *Sci Rep* **5**, 9878

15. Anantharaman, V., and Aravind, L. (2006) The NYN domains: novel predicted RNAses with a PIN domain-like fold. *RNA Biol* **3**, 18-27

16. Giegé, P. (2013) Pentatricopeptide repeat proteins: a set of modular RNA-specific binders massively used for organelle gene expression. *RNA Biol* **10**, 1417-1418

17. Hammani, K., Bonnard, G., Bouchoucha, A., Gobert, A., Pinker, F., Salinas, T., and Giegé, P. (2014) Helical repeats modular proteins are major players for organelle gene expression. *Biochimie* **100**, 141-150

18. Pavlova, L. V., Gossringer, M., Weber, C., Buzet, A., Rossmannith, W., and Hartmann, R. K. (2012) tRNA Processing by Protein-Only versus RNA-Based RNase P: Kinetic Analysis Reveals Mechanistic Differences. *Chembiochem* **13**, 2270-2276

19. Reiter, N. J., Osterman, A., Torres-Larios, A., Swinger, K. K., Pan, T., and Mondragon, A. (2010) Structure of a bacterial ribonuclease P holoenzyme in complex with tRNA. *Nature* **468**, 784-789

20. Schelcher, C., Sauter, C., and Giegé, P. (2016) Mechanistic and structural studies of protein-only RNase P compared to ribonucleaseproteins reveal the two Faces of the same enzymatic activity. *Biomolecules* **6**, 30

21. Pinker, F., Giege, P., and Sauter, C. (2015) Crystallization and crystallographic analysis of an Arabidopsis nuclear proteinaceous RNase P. *Acta Crystallogr F Struc Biol Commun* **71**, 1372-1377

22. Karasik, A., Shankugnanathan, A., Howard, M. J., Fierke, C. A., and Koutmos, M. (2016) Nuclear Protein-Only Ribonuclease P2 Structure and Biochemical Characterization Provide Insight into the Conserved Properties of tRNA 5' End Processing Enzymes. *J Mol Biol* **428**, 26-40

23. Cheng, S., Gutmann, B., Zhong, X., Ye, Y., Fisher, M. F., Bai, F., Castliden, I., Song, Y., Song, B., Huang, J., Liu, X., Xu, X., Lim, B. L., Bond, C. S., Yiu, S. M., and Small, I. (2016) Redefining the structural motifs that determine RNA binding and RNA editing by pentatricopeptide repeat proteins in land plants. *Plant J* **85**, 532-547

24. Barkan, A., Rojas, M., Fujii, S., Yap, A., Chong, Y. S., Bond, C. S., and Small, I. (2012) A combinatorial amino acid code for RNA recognition by pentatricopeptide repeat proteins. *PLoS Genet* **8**, e1002910

25. Takenaka, M., Zehrmann, A., Brennicke, A., and Graichen, K. (2013) Improved computational target site prediction for pentatricopeptide repeat RNA editing factors. *PLoS One* **8**, e65343
Biophysical analysis of PRORP2-tRNA complex

26. Yagi, Y., Hayashi, S., Kobayashi, K., Hirayama, T., and Nakamura, T. (2013) Elucidation of the RNA recognition code for pentatricopeptide repeat proteins involved in organelle RNA editing in plants. *PLoS One* **8**, e57286

27. Imai, T., Nakamura, T., Maeda, T., Nakayama, K., Gao, X., Nakashima, T., Kakuta, Y., and Kimura, M. (2014) Pentatricopeptide repeat motifs in the processing enzyme PRORP1 in Arabidopsis thaliana play a crucial role in recognition of nucleotide bases at TpsiC loop in precursor tRNAs. *Biochem Biophys Res Commun* **450**, 1541-1546

28. Chen, T. H., Tanimoto, A., Shkriabai, N., Kvaratskhelia, M., Wysocki, V., and Gopalan, V. (2016) Use of chemical modification and mass spectrometry to identify substrate-contacting sites in proteinaceous RNase P, a tRNA processing enzyme. *Nucleic Acids Res* **44**, 5344-5355

29. Giegé, R. (2008) Toward a more complete view of tRNA biology. *Nat Struct Mol Biol* **15**, 1007-1014

30. Brillante, N., Gossringer, M., Lindenhofe, D., Toth, U., Rossmanith, W., and Hartmann, R. K. (2016) Substrate recognition and cleavage-site selection by a single-subunit protein-only RNase P. *Nucleic Acids Res* **44**, 2323-2336

31. Jossinet, F., Ludwig, T. E., and Westhof, E. (2010) Assemble: an interactive graphical tool to analyze and build RNA architectures at the 2D and 3D levels. *Bioinformatics* **26**, 2057-2059

32. Hauenstein, S., Zhang, C. M., Hou, Y. M., and Perona, J. J. (2004) Shape-selective RNA recognition by cysteinyl-tRNA synthetase. *Nat Struct Mol Biol* **11**, 1134-1141

33. Hopper, A. K., Pai, D. A., and Engelke, D. R. (2010) Cellular dynamics of tRNAs and their genes. *FEBS Lett* **584**, 310-317

34. Tama, F., and Sanejouand, Y. H. (2001) Conformational change of proteins arising from normal mode calculations. *Protein Eng* **14**, 1-6

35. Placido, A., Sieber, F., Gobert, A., Gallerani, R., Giegé, P., and Marechal-Drouard, L. (2010) Plant mitochondria use two pathways for the biogenesis of tRNAHis. *Nucleic Acids Res* **38**, 7711-7717

36. Fujii, S., Suzuki, T., Giegé, P., Higashiyma, T., Koizuka, N., and Shikanai, T. (2016) The Restorer-of-fertility-like 2 pentatricopeptide repeat protein and RNase P are required for the processing of mitochondrial orf291 RNA in Arabidopsis. *Plant J* **86**, 504-513

37. Klipcan, L., Moor, N., Finarov, I., Kessler, N., Sukhanova, M., and Safro, M. G. (2012) Crystal structure of human mitochondrial Phers complexed with tRNA(Phe) in the active "open" state. *J Mol Biol* **415**, 527-537

38. Polekhina, G., Thirup, S., Kjeldgaard, M., Nissen, P., Lippmann, C., and Nyborg, J. (1996) Helix unwinding in the effector region of elongation factor EF-Tu-GDP. *Structure* **4**, 1141-1151

39. Pan, H., Agarwalla, S., Moustakas, D. T., Finer-Moore, J., and Stroud, R. M. (2003) Structure of tRNA pseudouridine synthase TruB and its RNA complex: RNA recognition through a combination of rigid docking and induced fit. *Proc Natl Acad Sci U S A* **100**, 12648-12653

40. Sherrer, R. L., Araiso, Y., Aldag, C., Ishitani, R., Ho, J. M., Soll, D., and Nureki, O. (2011) C-terminal domain of archival O-phosphoseryl-tRNA kinase displays large-scale motion to bind the 7-bp D-stem of archival tRNA(Sec). *Nucleic Acids Res* **39**, 1034-1041

41. Fiser, A., and Sali, A. (2003) Modeller: generation and refinement of homology-based protein structure models. *Methods Enzymol.* **374**, 461–491

42. McCoy, A. J., Grosse-Kunstleve, R. W., Adams, P. D., Winn, M. D., Storoni, L. C., and Read, R. J. (2007) Phaser crystallographic software. *J. Appl. Crystallogr.* **40**, 658-674

43. Adams, P. D., Afonine, P. V., Bunkoczi, G., Chen, V. B., Davis, I. W., Echols, N., Headd, J. J., Hung, L. W., Kapral, G. J., Grosse-Kunstleve, R. W., McCoy, A. J., Moriarty, N. W., Oeffner, R., Read, R. J., Richardson, D. C., Richardson, J. S., Terwilliger, T. C., and Zwart, P. H. (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. *Acta Crystallogr D Biol Crystallogr* **66**, 213-221
44. Emsley, P., and Cowtan, K. (2004) Coot: model-building tools for molecular graphics. *Acta Cryst. D* 60, 2126–2132
45. Schuck, P. (2010) Sedimentation patterns of rapidly reversible protein interactions. *Biophys J* 98, 2005-2013
46. Brautigam, C. A. (2015) Calculations and Publication-Quality Illustrations for Analytical Ultracentrifugation Data. *Methods Enzymol* 562, 109-133
47. David, G., and Perez, J. (2009) Combined sampler robot and high-performance liquid chromatography: a fully automated system for biological small-angle X-ray scattering experiments at the Synchrotron SOLEIL SWING beamline. *J. Appl. Cryst.* 42, 892-900
48. Konarev, P., Petoukhov, M., Volkov, V., and Svergun, D. (2006) ATSAS 2.1 : a program package for small-angle scattering data analysis. *J Appl Crystallogr* 39, 277-286
49. Suhre, K., and Sanejouand, Y. H. (2004) ElNemo: a normal mode web server for protein movement analysis and the generation of templates for molecular replacement. *Nucleic Acids Res* 32, W610-614
50. Svergun, D. (1992) Determination of the regularization parameter in indirect-transform methods using perceptual criteria. *J Appl Crystallogr* 25, 495-503
51. Svergun, D. I., Barberato, C., and Koch, M. H. J. (1995) CRYSOL – a Program to Evaluate X-ray Solution Scattering of Biological Macromolecules from Atomic Coordinates. *J. Appl. Crystallogr.* 28, 768-773
52. Evrard, G., Mareuil, F., Bontems, F., Sizun, C., and Pérez, J. (2011) DADIMODO: a program for refining the structure of multidomain proteins and complexes against small-angle scattering data and NMR-derived restraints. *J. Appl. Cryst.* 44, 1264-1271
53. Petoukhov, M. V., and Svergun, D. I. (2005) Global rigid body modeling of macromolecular complexes against small-angle scattering data. *Biophys J* 89, 1237-1250
54. Panjkovich, A., and Svergun, D. I. (2016) Deciphering conformational transitions of proteins by small angle X-ray scattering and normal mode analysis. *Phys Chem Chem Phys* 18, 5707-5719
Biophysical analysis of PRORP2-tRNA complex

FIGURE LEGENDS

Figure 1. Crystal and solution structures of A. thaliana nuclear PRORP2.
(A) Side view in cartoon representation illustrating the overall organization of PRORP2. The enzyme is composed of two major domains, the N-terminal PPR domain made of five PPR motifs (PPR 1-5 shown in violet, red, orange, yellow and green, respectively) and the C-terminal metallonuclease domain (in blue), linked together by a zinc-binding module (in cyan).
(B) Bottom view highlighting the residues characterized by mutagenesis in this work. Corresponding side chains in PPR motifs (positions 5 and 35) are depicted as sticks, as well as the two aspartates converted in alanines in the catalytically inactive mutant.
(C) Solution model including flexible N- and C-terminal regions invisible by crystallography obtained under SAXS constraints. The theoretical SAXS profile is overlaid on experimental data. The Guinier plot is given in the inset. All molecular representations were prepared with PyMOL (version 1.7, Schrödinger, LLC).

Figure 2. Titration of PRORP2 interaction with tRNA.
(A-C) The interaction of a catalytically inactive PRORP2 with a L5T0 tRNA_Cys precursor having 5 nucleotides long leader sequence was monitored by (A) isothermal titration calorimetry (ITC), (B) microscale thermophoresis (MST) and (C) analytical ultracentrifugation (AUC). In the ITC plot, the slope of the tangent indicates the affinity constant. MST experiments were performed with 52 nM of Cy5 fluorescent RNA. For the MST plot, the normalized fluorescence (Thermophoresis) of all MST traces are plotted against the concentration of PRORP2 in nM shown on a log scale. Red, blue and grey indicate three replicate experiments. In the AUC plot, different colours indicate the particular concentrations of PRORP2 and/or RNA in the respective AUC experiments. The star indicates signals for PRORP2 alone, the cross for RNA alone and the arrow for PRORP2-pre-tRNA_Cys complexes. K_D values that could be derived from the three biophysical approaches are indicated in the respective panels.

Figure 3. PRORP2 PPR motifs 2 and 3 are required for pre-tRNA substrate binding.
(A) RNase P in vitro cleavage assays were performed with Arabidopsis wild-type PRORP2 (WT) as well as with double mutants modified at positions 5 and 35 of the respective PPR motifs (PPR1-PPR5) and tRNA_Cys precursors with either 5 nucleotides leader sequences (upper panel) or with 51 nucleotides leader sequences (lower panel), – indicate reactions with RNA alone. PRORP cleavage products were separated on 17 % denaturing PAGE and quantified with ImageJ. Numbers indicate percentages of cleavage as defined by Gobert et al. 2013. Values were normalized so that 100 correspond to cleavage observed for wild-type PRORP2. The molecular weights of markers (M) are given in ribonucleotides.
(B) Analytical ultracentrifugation sedimentation plots of catalytically inactive WT PRORP2 and PPR mutants in complex with tRNA_Cys precursors having 5 nucleotides long leader sequences. Different colours indicate the particular concentrations of PRORP2 isoforms and/or RNA in the respective experiments. Red dotted lines indicate signals for PRORP2 alone, blue dotted lines for RNA alone and purple dotted lines for PRORP2-tRNA_Cys complexes. K_D values that could be derived for the different complexes are indicated in the respective panels.
Biophysical analysis of PRORP2-tRNA complex

Figure 4. SAXS based model of PRORP2 in complex with a pre-tRNA substrate.

(A) SEC elution profiles (Bio SEC-3/150Å HPLC column) obtained with L5T0 pre-tRNA (green chromatogram, injection: 0.2 nmole, peak elution time: 12.5 min), PRORP2xs (blue, injection: 0.9 nmole, peak elution time: 11.9 min), the complex formed during an ITC titration (orange, injection: 20 µl of ITC mix, peak elution time: 12.0 min) or a 2:1 PRORP2xs:L5T0 mix (red, injection: 0.6:0.3 nmole, peak elution times: 11.9, 12.3 min). This illustrates the difficulty to stabilize the complex and to get it separated from individual partners.

(B) Evolution of X-ray scattering intensity I(0) (blue plot) and gyration radius Rg (red plot) along the SEC elution of the complex in a mobile phase supplemented with PRORP2xs to minimize the dissociation of the complex. A dataset of 240 SAXS images was collected in the 10-18 min window symbolized by the blue arrow. SAXS images (frames 112-130) were averaged in the region indicated by the green bar where Rg~34 Å, leading to the profile shown in (C).

(C) Best solution model of the complex obtained under distance (PPR2 and 3 interacting with C56 and G18, respectively) and SAXS constraints. The theoretical SAXS profile (green curve) is overlaid on experimental data (blue dots). The Guinier plot is given in the inset. Alternative possibilities leading to higher Chi values are shown in Supplemental Figure 11. The zoom on the right highlights the proximity of residues 5 and 35 of PPR motifs 2 and 3 (analysed by mutagenesis) with tRNA residues C56 and G18 at the corner of the tRNA (see open blue arrow).

Figure 5. Domain reorientation in PRORP2.

Comparison of structures of PRORP2 in solution, in the crystal and in solution in complex with a pre-tRNA substrate (Left, Middle, Right) highlights the movement of the catalytic domain with respect to the PPR domain and the zinc-binding domain. The three models have been superimposed according to the latter two domains and are shown in two perpendicular views: from the side and from the inner region of the Λ shape facing the RNA substrate. In solution the catalytic domain in the free and complexed with PRORP2 undergoes a 52° and 23° rotation compared to its position in the crystal structure, illustrating the flexibility of the hinge region and the structural plasticity of PRORP2. The characterization of PRORP1 in solution (see Supplemental Figure 4) shows a similar behaviour and suggests that this may be a general property of PRORP enzymes.
Figure 1
Biophysical analysis of PRORP2-tRNA complex

Figure 2

A

![Graph showing the relationship between PRORP2/pre-tRNA molar ratio and Kcal/mole of PRORP2. The curve indicates K_D ≈ 1 µM.]

B

![Graph showing thermophoresis with K_D ≈ 1 µM.]

C

![Graph showing sedimentation coefficients (C(s)) and S20,w values with different concentrations of PRORP2 and pre-tRNA. Each concentration is represented by a different color, and K_D ≈ 1 µM is indicated.]

Figure 2
Biophysical analysis of PRORP2-tRNA complex

Figure 3
Biophysical analysis of PRORP2-tRNA complex

Figure 4

Figure 5
Biophysical analysis of Arabidopsis protein-only RNase P alone and in complex with tRNA provides a refined model of tRNA binding
Franziska Pinker, Cédric Schelcher, Pablo Fernández-Millán, Anthony Gobert, Catherine Birck, Aurélien Thureau, Pierre Roblin, Philippe Giegé and Claude Sauter

J. Biol. Chem. published online July 10, 2017

Access the most updated version of this article at doi: 10.1074/jbc.M117.782078

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC’s e-mail alerts

Supplemental material:
http://www.jbc.org/content/suppl/2017/07/10/M117.782078.DC1

This article cites 0 references, 0 of which can be accessed free at
http://www.jbc.org/content/early/2017/07/10/jbc.M117.782078.full.html#ref-list-1