Predicting postdischarge hospital-associated venous thromboembolism among medical patients using a validated mortality risk score derived from common biomarkers

Lindsey Snyder MD | Scott M. Stevens MD | Masarret Fazili MD | Emily L. Wilson MS | James F. Lloyd BS | Benjamin D. Horne PhD | Joseph Bledsoe MD | Scott C. Woller MD

Abstract

Background: Discharged medical patients are at risk for venous thromboembolism (VTE). It is difficult to identify which discharged patients would benefit from extended duration thromboprophylaxis. The Intermountain Risk Score is a prediction score derived from discrete components of the complete blood cell count and basic metabolic panel and is highly predictive of 1-year mortality. We sought to ascertain if the Intermountain Risk Score might also be predictive of 90-day postdischarge hospital-associated VTE (HA-VTE).

Methods: We applied the Intermountain Risk Score to 60,064 medical patients who survived 90 days after discharge and report predictiveness for HA-VTE. Area under the receiver operating curve analyses were performed. We then assessed whether the Intermountain Risk Score improved prediction of 2 existing VTE risk assessment models.

Results: The Intermountain Risk Score poorly predicted HA-VTE (area under the curve = 0.58; 95% confidence interval [CI], 0.56-0.60). Each clinical risk assessment model was superior to the Intermountain Risk Score (UTAH area under the curve, 0.63; Kucher area under the curve, 0.62; Intermountain Risk Score area under the curve, 0.58; P < .001 for each comparison). Adding the Intermountain Risk Score to these scores did not substantially improve the performance of either risk assessment model (UTAH + Intermountain Risk Score, 0.65; Kucher + Intermountain Risk Score, 0.64).

Conclusion: The Intermountain Risk Score demonstrated poor predictiveness for HA-VTE when compared to existing risk assessment models. Adding the Intermountain Risk Score to existing risk assessment models did not improve upon either risk assessment model alone to justify the added complexity.
1 | BACKGROUND

It is estimated that 8 million patients are hospitalized in the United States for a nonsurgical indication each year. The burden of hospital-associated venous thromboembolism (HA-VTE) is great, with 70%-80% of fatal pulmonary embolism (PE) events occurring among hospitalized medically ill patients. The rate of symptomatic VTE more than doubles over the first 21 days after hospital discharge, and while anticoagulant prophylaxis reduces the rate of VTE during hospitalization, uncertainty exists that anticoagulants continued following hospital discharge (referred to as extended-duration thromboprophylaxis) is best practice. Extended-duration thromboprophylaxis may reduce VTE following hospital discharge but is burdensome and carries a risk of bleeding. Randomized clinical trials of extended-duration thromboprophylaxis have returned mixed results, and a meta-analysis has demonstrated a thin margin between the rate of reduction of postdischarge VTE and the rate of bleeding complications with recent guidelines recommending against the routine use of extended-duration thromboprophylaxis. It was recently estimated that nearly 1 in 4 discharged medical patients may benefit from extended-duration thromboprophylaxis, while prospective randomized controlled trials have demonstrated the challenges associated with identifying these patients. In the Medically Ill Patient Assessment of Rivaroxaban Versus Placebo in Reducing Post-Discharge Venous Thromboembolism Risk (MARINER) trial, no significant reduction in VTE was realized upon randomization of discharged patients to receive extended-duration rivaroxaban thromboprophylaxis versus placebo. The Extended Prophylaxis for Venous Thromboembolism in Acutely Ill Medical Patients With Prolonged Immobilization (EXCLAIM) and Multicenter, Randomized, Parallel Group Efficacy and Safety Study for the Prevention of Venous Thromboembolism in Hospitalized Acutely Ill Medical Patients Comparing Rivaroxaban With Enoxaparin (MAGELLAN) trials demonstrated that extended-duration thromboprophylaxis reduced postdischarge VTE upon prescription of extended-duration thromboprophylaxis using enoxaparin and rivaroxaban, respectively, but this benefit was offset by an increase in bleeding events. Similarly, patients randomized to extended duration apixaban when compared with a shorter duration of enoxaparin in the Apixaban Dosing to Optimize Protection From Thrombosis (ADOPT) trial experienced an increase in bleeding rates. The mixed results from these studies may be attributable to the lack of an accurate means of best predicting those patients at highest risk for postdischarge VTE.

The apparent paradox between hospitalized medical patients being disproportionately burdened by postdischarge HA-VTE and the "negative" clinical trials of extended-duration thromboprophylaxis may represent a limitation in the ability to identify a population of patients that would most benefit from chemoprophylaxis. Risk assessment models have been developed and variably validated to identify hospitalized medical patients at risk for VTE. However, these risk assessment models may not be precise enough to identify patients who would experience net benefit from extended-duration thromboprophylaxis. Efforts have been made to enhance the predictive accuracy of risk assessment models such as with the addition of biomarkers, like D-dimer testing but with limited success.

The Intermountain Risk Score is a mortality risk prediction tool derived in a general medical population. The score has been further refined and validated among outpatient, inpatient, cardiovascular, trauma, and other medical populations. Additional outcomes predicted by variations of the Intermountain Risk Score (IMRS) include heart failure, dementia, chronic cardiopulmonary disease, and stroke. Likewise, the longitudinal predictive value of the IMRS has been demonstrated with serial measurements at baseline and at 1 year of follow-up and shown to be independently prognostic for mortality and heart failure among initially hospitalized patients.

It is unknown if the IMRS may represent a novel tool to identify hospitalized medical patients at risk for the development of HA-VTE that may be candidates for extended-duration thromboprophylaxis. For this reason, we sought to test the predictive characteristics of the IMRS for 90-day postdischarge VTE (hereafter, HA-VTE) among hospitalized medical patients and determine the ability of the IMRS score to improve the performance of 2 existing clinical VTE risk assessment models.

2 | METHODS

2.1 | Study design and patient population

This retrospective cohort study analyzed patients including those from the Intermountain Healthcare Venous Thromboembolism Reduction
We compared the predictive scores from among several developed to aid in quantifying the risk of hospital-acquired VTE. We chose 2 VTE risk assessment models, the UTAH and Kucher scores. We elect to present the performance of the IMRS based on the last labs, as we believed that they would be more representative of the patient condition at the time of discharge (and because we observed no meaningful difference in the performance of the IMRS when comparing it was derived using first and last labs of hospitalization).

2.3 | Validated clinical VTE risk scores

We chose 2 VTE risk assessment models, the UTAH and Kucher scores from among several developed to aid in quantifying the risk of hospital-acquired VTE. We compared the predictive performance of the UTAH and Kucher risk assessment models with the IMRS individually and assessed the effect of combining the IMRS with each risk assessment model to measure their combined ability to predict HA-VTE. The UTAH score is a 4-element risk assessment model that incorporates the 4 risk factors of previous VTE, a cancer diagnosis, immobility (defined as an order in the patient’s chart for bedrest), and a peripherally inserted central venous catheterization line. Each risk factor is worth 1 point, and any value >0 indicates being at risk. The Kucher score incorporates 8 common risk factors that are weighted according to a point scale, with any value ≥4 indicating increased risk (Table 2).

2.4 | Statistical considerations

For the IMRS, UTAH, and Kucher scores, we computed the area under the receiver operating characteristic curve. We compared the area under the curve for the outcome of 90-day postdischarge VTE for the various scores using bootstrap methods and controlled for multiple comparisons using the false discovery rate. We also calculated the area under the curve for the IMRS plus the UTAH and Kucher scores (separately) and compared these results to the results of each score alone (Table 3). Finally, to aid in the visualization of the data we calculated the area under the curve for the IMRS plus the UTAH and Kucher scores (separately) and compared these results to the results of each score alone (Table 3).
relationship between the IMRS and probability of 90-day postdischarge VTE, a logistic regression was fit (adjusting for relevant covariates from Table 1 using backwards selection) and an effect plot for the IMRS was generated (Figure 3). All analyses were performed using R version 3.5.1.37

3 | RESULTS

Among the 60,064 patients that survived to 90 days, 55% were female and the mean age of the cohort was 61 ± 19 years. Among all patients the 90-day postdischarge VTE rate was 1.9% (1125/60,064). Postdischarge chemoprophylaxis was not routinely prescribed for any patients in this study. The IMRS was significantly higher (P < .001) in patients with HA-VTE than those without HA-VTE (14.2 [standard deviation 3.9] vs 13.0 [standard deviation 4.2]), and the results did not substantively differ when the IMRS was calculated on first or last labs of admission (data not shown). However, the IMRS was poorly predictive of VTE with an area under the curve of 0.58 (95% confidence interval [CI], 0.56-0.60). The area under the curve for the UTAH (0.63; 95% CI, 0.61-0.64) and Kucher (0.62; 95% CI, 0.60-0.64) scores were significantly higher than the area under the curve of the IMRS (P < .001 for both; Table 3, Figure 1).

Combining the IMRS with either the UTAH score or the Kucher score significantly improved on the performance of the IMRS alone for HA-VTE (P < .001 for both). The combination of the IMRS with

TABLE 2 Risk factors for risk assessment model

UTAH Score	Kucher Score	Components of the Intermountain Risk Score	
Prior VTE	1	Hematocrit, white blood cell count	
Cancer	1	Platelet count, mean platelet volume	
Immobility	1	Mean corpuscular volume	
PICC/central line	1	N/A	Mean corpuscular hemoglobin concentration
Thrombophilia	3		Red cell distribution width
Surgery within 1 mo	2		Sodium, potassium
BMI > 30	1	Bicarbonate, glucose	
Hormone Replacement or oral contraceptives	1		Calcium, creatinine
Age > 70 y	1	Age	

BMI, body mass index; N/A, not applicable; PICC, peripherally inserted central catheter; VTE, venous thromboembolism. Points to calculate the component factors of the risk scores (note that the fourth column is the Intermountain Risk Score independent of the UTAH and Kucher Scores).

*UTAH Score > 0 is at risk; Kucher score ≥ 4 is at risk.

TABLE 3 VTE risk score comparison

	AUC for combined score (95% CI)	AUC for single score (95% CI)	P value
IMRS + UTAH vs IMRS alone	0.65 (0.64-0.67)	0.58 (0.56-0.60)	<.001
IMRS + Kucher vs IMRS alone	0.64 (0.62-0.66)	0.58 (0.56-0.60)	<.001
IMRS + UTAH versus UTAH alone	0.65 (0.64-0.67)	0.63 (0.61-0.64)	.04
IMRS + Kucher vs Kucher alone	0.64 (0.62-0.66)	0.62 (0.61-0.64)	.16

AUC, area under the receiver operating characteristic curve; CI, confidence interval; IMRS, Intermountain Risk Score; VTE, venous thromboembolism.
the UTAH score marginally improved upon the UTAH score alone (0.65 vs 0.63; P = .04). However, the combination of the IMRS with the Kucher score did not significantly improve upon the area under the curve derived using the Kucher score alone (0.64 vs 0.62; P = .16; Figure 2). The effect of the IMRS on the probability of HA-VTE, based on a logistic regression adjusted for relevant covariates, is found in Figure 3.

4 | DISCUSSION

As a purely exploratory process given the impressive predictive-ness of the IMRS for mortality among various populations it was our hypothesis that the IMRS, a highly pragmatic tool that uses inexpensive and commonly available laboratory results, might identify medical patients at high risk for HA-VTE, and would be a simple way to improve the performance of existing risk assessment models to better select patients for extended duration thromboprophylaxis. Unfortunately, the IMRS did not accomplish this goal and was found to be a poor predictor of HA-VTE. While the IMRS was significantly higher among patients with HA-VTE and upon combination with the UTAH and Kucher scores, the magnitude of these improvements is unlikely to be clinically meaningful. A similar finding for the IMRS was made previously among heart failure patients in association with hospital readmission, which led to the derivation of a separate readmission IMRS.

We explored using the IMRS to predict HA-VTE because it is based on ubiquitously available laboratory data and can be calculated without adding additional health care expense. Further, the data are easily integrated into computerized decision support systems (the IMRS is presently calculated automatically and displayed in our electronic medical record for every patient admitted to any of our 23 hospitals). While designed to predict mortality, the IMRS has shown surprising ability to predict outcomes in several disease states, such as heart failure, dementia, stroke, and trauma mortality. Unfortunately, this utility does not appear to extend to HA-VTE. This may be due to any one or a combination of several reasons. First, it is possible that predictiveness of the components of the CBC and BMP does not exist for the outcome of HA-VTE. However, there are several conditions for which the IMRS has shown to be predictive, as noted above. Second, because the weighting of the components of the CBC and BMP used in the IMRS are based on the outcome of 1-year mortality, these may differ when the outcome of interest is VTE. This raises the question of whether an IMRS derived specifically for the outcome of 90-day postdischarge VTE would perform better, a concept that may be worth future study.

Strengths of our study include that we have a robust data set of >60 000 discharged medical patients who survive to 90 days in which we can test our hypothesis. Likewise, we have experience in the assessment of the IMRS performance in different populations. We elected to include as our outcome VTE occurrence within the 90 days following hospital discharge (as opposed to including also patients who experienced thrombosis both during and following hospitalization). This is important given that few risk assessment models exist that have been assessed for predictiveness of postdischarge VTE at the exclusion of predicting VTE during hospitalization. A weakness of our study is that we compare our IMRS to the performance of 2 clinical risk assessment models that have
comparatively less external validation than others. However, a study comparing these risk assessment models has demonstrated that the UTAH score and Kucher score perform favorably when considered alongside the Padua and IMPROVE score risk assessment models. Also, while patients from 5 hospitals contributed to our data set, all hospitals reside in the Intermountain Healthcare network, and therefore our observations do not constitute external validation of the predictiveness of the IMRS that we observed. Finally, we cannot refute the possibility that by including only patients who survived to 90 days, we omitted some patients who died from VTE within 90 days of follow-up, which would have been of interest to include. However, we believe that if this had occurred, it would be rare and would not meaningfully impact our large data set.

We observed that the IMRS formerly derived to predict 1-year mortality is a poor predictor for 90-day HA-VTE, yet predictive of other important outcomes. We have formerly analyzed these laboratory-based variables for predictiveness as a parsimonious set of predictors of other outcomes such as 30-day rehospitalization. We suggest that a next step would be to explore other weightings and combinations of the components of the IMRS to generate a 90-day postdischarge HA-VTE-specific IMRS.

In conclusion, the IMRS is poorly predictive of HA-VTE. When compared to clinical risk assessment models, the UTAH and Kucher scores have significantly greater predictive ability than the IMRS, and combining IMRS elements into these scores did not meaningfully improve the performance.

RELATIONSHIP DISCLOSURE

Dr. Woller reports grants from Bristol Meyer Squibb, grants from Pfizer, outside the submitted work; and Co-Chair, American College of Chest Physicians, Guideline writing panel, Antithrombotic and Thrombolytic Therapy: American College of Chest Physicians Evidence-based Clinical Practice Guidelines, Living Guideline. Dr. Woller reports grants from Bristol Meyer Squibb, grants from Pfizer, outside the submitted work; and Co-Chair, American College of Chest Physicians, Guideline writing panel, Antithrombotic and Thrombolytic Therapy: American College of Chest Physicians Evidence-based Clinical Practice Guidelines, Living Guideline. Dr. Stevens reports grants from Bristol Meyer Squibb, grants from Pfizer, outside the submitted work; and Co-Chair, American College of Chest Physicians, Guideline writing panel, Antithrombotic and Thrombolytic Therapy: American College of Chest Physicians Evidence-based Clinical Practice Guidelines, Living Guideline. Dr. Horne reports other from CareCentra and Alluceo, grants from GlaxosmithKline, grants from Astra-Zeneca, outside the submitted work; and PI of grants involving clinical decision tools that were funded by Intermountain Healthcare’s Foundry innovation program, the Intermountain Research and Medical Foundation.

Dr. Bledsoe reports grants from Bristol Meyer Squibb, grants from Pfizer, personal fees from AMAG pharmaceuticals, outside the submitted work.

Drs. Fazili, Lloyd, Snyder and Wilson have nothing to disclose.

AUTHOR CONTRIBUTIONS

LS and SCW had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Concept, design, drafting of manuscript: LS, SCW, SMS, JFL, ELW, JRB, MF, and BDH. Manuscript critical review and refinement: LS, SCW, SMS, JFL, ELW, JRB, MF, and BDH. Statistical analysis: ELW, SCW, BDH, LS, and JFL.

ORCID

Scott C. Woller https://orcid.org/0000-0002-2522-2705

TWITTER

Scott C. Woller @SCWollerMD

REFERENCES

1. Anderson JRF, ZayaruznyM, HeitJA, FidanD, CohenAT. Estimated annual numbers of US acute-care hospital patients at risk for venous thromboembolism. Am J Hematol. 2007;82(9):777–82.
2. GoldhaberSZ, DunnK, MacDougalIRC. New onset of venous thromboembolism among hospitalized patients at Brigham and Women’s Hospital is caused more often by prophylaxis failure than by withholding treatment. Chest. 2000;118(6):1680–4.
3. SpyropoulosAC, Anderson JRF, FitzgeraldG, DecoususH, PiniM, ChongBH, et al. Predictive and associative models to identify hospitalized medical patients at risk for VTE. Chest. 2011;140(3):706–14.
4. GoldhaberSZ, LeizoroviczA, KakkarAK, HaasSK, MerliG, KnabbRM, et al. Apixaban versus enoxaparin for thromboprophylaxis in medically ill patients. N Engl J Med. 2011;365(23):2167–77.
5. CohenAT, SpiroTE, BüllerHR, HaskeII, HuD, HullIR, et al. Rivaroxaban for thromboprophylaxis in acutely ill medical patients. N Engl J Med. 2013;368(6):513–23.
6. CohenAT, HarringtonRA, GoldhaberSZ, HullRD, WiensBL, Golda, et al. Extended thromboprophylaxis with betrixaban in acutely ill medical patients. N Engl J Med. 2016;375(6):534–44.
7. SpyropoulosAC, AgenoW, AlbersGW, ElliottCG, HalperinJL, HiattWR, et al. Rivaroxaban for thromboprophylaxis after hospitalization for medical illness. N Engl J Med. 2018;379(12):1118–27.
8. HullRD, SchellongSM, TapsonVF, MonrealM, SamamaMM, NicolP, et al. Extended-duration venous thromboembolism prophylaxis in acutely ill medical patients with recently reduced mobility: a randomized trial. Ann Intern Med. 2010;153(1):8–18.
9. BajajNS, VaduganathanM, QamarA, GuptaK, GuptaA, GolwalaH, et al. Extended prophylaxis for venous thromboembolism after hospitalization for medical illness: a trial sequential and cumulative meta-analysis. PLoS Med. 2019;16(4):e1002797.
10. SchunemannHJ, CushmanM, BurnettAE, KahnSR, Beyrer-WestendorfJ, SpencerFA, et al. American Society of Hematology 2018 guidelines for management of venous thromboembolism: prophylaxis for hospitalized and nonhospitalized medical patients. Blood Adv. 2018;2(22):2198–225.
11. MiaoB, ChalupadiB, ClarkB, DescoteauxA, HuangD, IlhamS, et al. Proportion of US hospitalized medically ill patients who may qualify for extended thromboprophylaxis. Clin Appl Thromb Hemost. 2019;25:1076029619850897.
12. BarbarS, NoventaF, RossettoV, FerrariA, BrandoliniB, PerlatiM, et al. A risk assessment model for the identification of hospitalized medical patients at risk for venous thromboembolism: the Padua prediction score. J Thromb Haemost. 2010;8(11):2450–7.
13. CaprinJL. Individual risk assessment is the best strategy for thromboembolic prophylaxis. Dis Mon. 2010;56(10):552–9.
14. EichingerS, HeineG, JandeckLM, KyrlePA. Risk assessment of recurrence in patients with unprovoked deep vein thrombosis or pulmonary embolism: the Vienna prediction model. Circulation. 2010;121(14):1460–3.

15. SamamaMM, DahloOE, QuinlanDJ, MismettiP, RosencherN. Quantification of risk factors for venous thromboembolism: a preliminary study for the development of a risk assessment tool. Haematologica. 2003;88(12):1410–21.

16. YaleSH, MedlinSC, LiangH, PetersT, GlurichJ, MazzaJJ. Risk assessment model for venothromboembolism in post-hospitalized patients. Int Angiol. 2005;24(3):250–4.

17. WollerSC, StevensSM, JonesJP, LloydJF, EvansRS, AstonVT, et al. Derivation and validation of a simple model to identify venous thromboembolism risk in medical patients. Am J Med. 2011;124(10):947–954.e2.

18. TapsonVF, DecoususH, Pinim, ChongBH, FroehlichJB, MonrealM, et al. Venous thromboembolism prophylaxis in acutely ill hospitalized medical patients: findings from the International Medical Prevention Registry on Venous Thromboembolism. Chest. 2007;132(3):936–45.

19. MahanCE, LiuY, TurpieAG, VuJT, HeddleN, CookRJ, et al. External validation of a risk assessment model for venous thromboembolism in the hospitalised acutely ill medical patient (VTE-VALOUR). Thromb Haemost. 2014;112(10):692–9.

20. KucherN, KooS, QuirozR, CooperJM, PaternoMD, SoukonnikovB, et al. CHA2DS2-VASc scores and Intermountain Mortality Risk Score enhances prognostication for mortality. PLoS ONE. 2013;8(7):e69160.

21. WollerSC, StevensSM, EvansRS, WrayDG, ChristensenJC, AstonVT, et al. Comparative practitioner metrics, and education improves thromboprophylaxis and reduces thrombosis. Am J Med. 2016;129(10):1124.e17–1124.e26.

22. WollerSC, StevensSM, EvansRS, WrayDG, ChristensenJC, AstonVT, et al. Electronic alerts to prevent venous thromboembolism among hospitalized patients. N Engl J Med. 2005;352(10):969–77.

23. EvansRS, LloydJF, AstonVT, TrippsJ, ElliottCG, et al. Computer surveillance of patients at high risk for and with venous thromboembolism. AMIA Annu Symp Proc. 2010;2010:217–21.

24. ZakaiNA, CallasPW, ReppAB, CushmanM. Venous thrombosis risk assessment in medical inpatients: validation of a thrombosis risk score. J Thromb Haemost. 2004;2(12):2156–61.

25. ZakaiNA, CallasPW, ReppAB, CushmanM. Venous thrombosis risk assessment in medical inpatients: the medical inpatients and thrombosis (MITH) study. J Thromb Haemost. 2013;11(4):634–41.

26. R Development Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2014;2014.

27. WollerSC, StevensSM, JonesJP, LloydJF, EvansRS, AstonVT, et al. Electronic alerts, comparative practitioner metrics, and education improve thromboprophylaxis and reduce venous thrombosis in community hospitals. Res Pract Thromb Haemost. 2018;2(3):481–9.

28. EvansRS, LloydJF, AstonVT, WollerSC, TrippsJ, ElliottCG, et al. Computer surveillance of patients at high risk for and with venous thromboembolism. AMIA Annu Symp Proc. 2010;2010:217–21.

29. HorneBD, JacobsV, MayHT, GravesKG, BunchTI. Augmented intelligence decision tool for stroke prediction combines factors from CHA2DS2-VASc and the Intermountain Risk Score for patients with atrial fibrillation. J Cardiovas Electrophysiol. 2019;30(9):1452–1461.

30. HorneBD, LappeDL, MuhlesteinJB, MayHT, RonnowBS, BrunisholzKD, et al. Repeated measurement of the Intermountain Risk Score enhances prognostication for mortality. PLoS ONE. 2013;8(7):e69160.

31. SnyderL, StevensSM, FaziliM, et al. CHA2DS2-VASc and the Intermountain Risk Score for patients with atrial fibrillation. J Cardiovasc Electrophysiol. 2019;30(9):1452–1461.