Transcriptomic comparison of primary bovine horn core carcinoma culture and parental tissue at early stage

Sharadindu Shil1,2, R. S. Joshi3, C. G. Joshi1, A. K. Patel1, Ravi K. Shah1, Namrata Patel1, Subhash J. Jakhesara3, Sumuna Kundu3, Bhaskar Reddy4, P. G. Koringa3 and D. N. Rank2

1. Veterinary Officer (WBAH & VS), West Bengal Animal Resources Development Department, Bankura - 772 152, West Bengal, India; 2. Department of Animal Genetics & Breeding, College of Veterinary Sciences and Animal Husbandry, Anand Agricultural University, Anand, Gujarat, India; 3. Department of Animal Biotechnology, College of Veterinary Sciences and Animal Husbandry, Anand Agricultural University, Anand, Gujarat, India; 4. Hester Biosciences Limited, Ahmedabad, Gujarat, India; 5. Veterinary Officer, MVC Sarenga, Government of West Bengal, Bankura, West Bengal, India.

Corresponding author: D. N. Rank, e-mail: dnrank@gmail.com, SS: dr.sharadindu@gmail.com, RSJ: rsjoshi106@gmail.com, CGJ: cgjoshi@aua.in, AKP: amrutkpatel@gmail.com, RK: ravishah210@gmail.com, NP: namratapatel183@gmail.com, SJ: drsubhash81@gmail.com, SK: skundukaiti@gmail.com, BR: 24breddy@gmail.com, PGK: prakashkoringa@gmail.com

Received: 19-09-2016, Accepted: 29-11-2016, Published online: 13-01-2017

doi: 10.14202/vetworld.2017.38-55 How to cite this article: Shil S, Joshi RS, Joshi CG, Patel AK, Shah RK, Patel N, Jakhesara SJ, Kundu S, Reddy B, Koringa PG, Rank DN (2017) Transcriptomic comparison of primary bovine horn core carcinoma culture and parental tissue at early stage, Veterinary World, 10(1): 38-55.

Abstract

Aim: Squamous cell carcinoma or SCC of horn in bovines (bovine horn core carcinoma) frequently observed in Bos indicus affecting almost 1% of cattle population. Freshly isolated primary epithelial cells may be closely related to the malignant epithelial cells of the tumor. Comparison of gene expression in between horn’s SCC tissue and its early passage primary culture using next generation sequencing was the aim of this study.

Materials and Methods: Whole transcriptome sequencing of horn’s SCC tissue and its early passage cells using Ion Torrent PGM were done. Comparative expression and analysis of different genes and pathways related to cancer and biological processes associated with malignancy, proliferating capacity, differentiation, apoptosis, senescence, adhesion, cohesion, migration, invasion, angiogenesis, and metabolic pathways were identified.

Results: Up-regulated genes in SCC of horn’s early passage cells were involved in transporter activity, catalytic activity, nucleic acid binding transcription factor activity, biogenesis, cellular processes, biological regulation and localization and the down-regulated genes mainly were involved in focal adhesion, extracellular matrix receptor interaction and spliceosome activity.

Conclusion: The experiment revealed similar transcriptomic nature of horn’s SCC tissue and its early passage cells.

Keywords: cummerbund, gene ontology, primary culture, RNA-sequencing, squamous cell carcinoma of horn, transcriptome profiling.

Introduction

Cancer cell lines, in general, are used as a model in testing of anticancer drugs presently used [1,2] as well as in the development of new therapies [3,4]. There is no bovine cell line of squamous cell carcinoma (SCC) origin. This is probably the first ever attempt to develop a SCC cell line of bovine origin. The horn cancer-based cell line can be used as an in vitro model in cancer research to define potential molecular markers as well as for the screening and characterization of cancer therapeutics similar to human lung and breast cancer cell lines [5,6]. The results of the research in cancer cell lines can usually be extrapolated to in vivo tumors originated from squamous cells. Transcriptomic profiling of the initial passage cells and the SCC tissue was attempted in this study to confirm the initial passage cells represent the SCC tissue at molecular level.

Historically, in vitro cultures of SCC of horn (bovine horn core carcinoma [BHCC]) have been limited in availability and scope, compared to those from many other organs such as mammary tumors and endometrial cancer cell lines. Cell lines, those derived from metastases, do not span the range of most of cancer phenotypes, and in particular, are not representative of original SCC [7]. Furthermore, how extensively long-term culture alters the biological properties of cell lines are always of concern [8]. Adaptation of fresh cancerous tissue specimens which grow in vitro as primary cell cultures provides homogeneous cellular material, enriched in tumor cell component [7] and it also retains phenotypic, transcriptomics profile of the corresponding tissues from which they derive [8-10] at the first passages.
Usually, up regulations of genes are involved in proliferation and metabolism. Cellular activity within a tissue is evinced by the transcriptome at a specific time. Pathophysiology of complex diseases, like cancer, can be evaluated by an unbiased method like genome-wide expression studies [10]. RNA sequencing (RNA-Seq) analysis is an affordable accurate and comprehensive tool to analyze transcriptome of complementary DNAs (cDNA) using next generation sequencing (NGS), followed by mapping of reads onto the reference genome making it possible to identify introns, exons, their flanking regions and thus providing an opportunity to understand the complexity of eukaryotic transcriptome [11].

SCC of horn of bovines is a SCC of horn core mucosa with least known genetic landscape, reported only in Bos indicus. This causes heavy economic losses due to subsequent metastasis and death of animal. In India, approximately 1% of the cattle population is affected by this tumor [12], most commonly in working bullocks, sometimes in cows and rarely in bulls, buffaloes, sheep, and goats [13-16]. The incidence of SCC of horns is more frequent in Kankrej breed than other zebu cattle, crossbred or non-descript cattle [17]. From Sumatra [18], Brazil [19], and Iraq [20] few cases were reported. Till date, the comparison of gene expression profile between cell culture and parenteral tissue of SCC of horn of bovines has not been performed. The study was designed to compare gene expression profiles in SCC affected horn tissue and primary cell culture derived from that tumor using Ion Torrent PGM sequencing platform.

Materials and Methods

Ethical approval

Approval for research work granted vide approval no. IAEC: 155/2011 of College of Veterinary Science and animal Husbandry, Anand Agricultural University, Anand-388 001, Gujarat.

Tissue collection

Carcinomatous and normal horn core mucosa were collected during corrective surgery in RNA-later® (Thermo Fisher scientific, Massachusetts, USA) from clinically affected (left horn) and normal (right horn) horn of a Kankrej breed of bullock (age 7 years) from Rajkot, Gujarat, India. Necrotic tissues were not collected. Fresh tissues were cut into pea-sized segments and preserved in:

a. 10% neutral buffered formalin for histopathological studies
b. RNA-later® (Sigma-Aldrich, St. Louis, USA) for RNA extraction
c. Dulbecco’s modification of Eagle’s medium (DMEM) (50 ml) (Thermo Fisher Scientific, Massachusetts, USA) with penicillin-streptomycin (500 µl) (Thermo Fisher Scientific, Massachusetts, USA) + amphotericin-B (500 µl) (Thermo Fisher Scientific, Massachusetts, USA) and brought to lab at 0-4°C.

Histopathology

Horn SCC tissues were processed for histopathological studies and paraffin-embedded sections were cut at 5-6 µ thickness with section cutting machine (Leica, Germany) and stained with hematoxylin and cosin (H and E) [21]. The H and E stained sections were observed under light microscope and lesions were observed [21].

Cell culture

After removal of adipose tissue, tumor tissues (at 4°C) were mechanically minced in 1 mm² fragments. Then, the primary culture was established and incubated at 37°C and 5% CO₂ [21]. Similarly, tumor tissue explant culture was also performed by standard protocol [16]. DMEM and Ham’s F12 50/50 mix (DMEM-F12) medium was changed twice weekly and split ratio for cells was 1:3 when cells reached up to 90% confluence. Cell morphology was observed in contrast phase, at 40× magnification, by inverted microscope. The cells were sampled at intervals, resuspended in a freezing medium (80% DMEM, 10% fetal bovine serum, and 10% dimethyl sulfoxide), and stored at −80°C at every two passages for cryopreservation.

Differential trypsinization was used for removal of the fibroblasts which detached sooner than the tumor cells. Isolation of pure population of tumor cells was done by plating approximately 10,000 detached cells in 100 mm Petri dishes and following dilution cloning [22]. These isolated clones were used for RNA-Seq purposes.

Cell proliferation and doubling time assay

Two counts were performed for each passage, in triplicate. For doubling time analysis, plating of cells in triplicate onto 6-well plates at a concentration of 2.5 × 10⁵ cells/well in DMEM-F12 were done. After 24, 48 and 72 h, cells were collected after trypsinization and counted in a Neubauer chamber. Doubling time (in hour) was calculated as described in a previous study [23].

RNA isolation

TRIzol (Sigma-Aldrich, St. Louis, USA) method as per manufacturer’s instructions was used to isolate RNA from early passage cells of SCC of horns (pooled RNA of passage 2 and 3) and parental SCC tissue.

Preparation of sample and transcriptome procedure

All the protocols starting from mRNA isolation to library preparation were followed as per manufacturer’s instructions. The detailed protocol steps can be accessed from Ion Torrent’s “Ion Total RNA-Seq Kit” (Part No.: 4467098) using 316 chip.

In silico gene expression analysis

Sequence reads were generated from cDNA libraries of early passage cells and parental SCC horn tissue using Ion Torrent PGM chemistry using 316 chips [24]. Raw sequence reads (*.fastq files) were checked for quality control in FastQC v0.10.1. To avoid low quality data negatively influencing downstream analysis, the reads were trimmed and low quality sequences were filtered using PRINSEQ-lite.
version 0.20.2 with default parameters in Linux. This quality checked reads were aligned to the bosTau7.fa build of the cow genome (http://hgdownloadtest.cse.ucsc.edu/goldenPath/bosTau7/chromosomes/) using GMAP [25] and Samtools allowing for unique non-gapped alignments to the genome. The default parameters for the GMAP method were used.

The resultant *.sam files were converted to *.bam files with Samtools then *.sorted.bam files were used in Cufflinks v 2.2.1. The resulting Cufflinks assemblies of all samples were combined together using Cuffcompare v 2.2.1. The differential expression was calculated by Cuffdiff based on transcript abundances [26]. Cuffdiff v 2.2.1 was then employed on the combined transcripts to identify differentially expressed genes/transcripts.

RNA-Seq data normalization

The raw RNA-Seq read counts for cufflinks transcripts were first log, transformed at fragments per kilobase of exon per million reads mapped (FPKM) and then quantile normalized.

Functional annotation

The genes differentially expressed in SCC horn tissue and the short-term primary culture was selected for functional categorization. The comparisons between expressed genes which produced Cuffdiff output with “Q value” <0.01 and “OK” marked test status were considered to be differentially expressed. Gene ontology (GO) and pathway analyses of up and down-regulated genes by DAVID database [27] and PANTHER database [28] were done, respectively. Gene set analyses were done in terms of biological processes, molecular function, and cellular component. The list of differentially expressed genes having >5 FPKM value and log2 fold change value above 2 (based on FPKM ratio), p=0.05 and false discovery rate (FDR) value 5% were chosen.

Whole transcriptome analysis using NGS will identify several thousands of genes which are deregulated in number of cancer-related pathways. Since the depth of sequencing for each gene varies because of inherent methodology involved in NGS, it is globally accepted protocol to validate data obtained by this methodology via randomly selecting few of the genes through quantitative real-time polymerase chain reaction (PCR) [29,30]. Since it is practically impossible to validate all of the genes found in NGS-based study as well as it is economically non-feasible approach to study all identified genes, we have followed standard procedure to validate NGS data by selecting randomly selected sufficiently large set of transcripts and proved concordance of expression pattern using quantitative real-time PCR (Data not shown).

Results

Histopathology of SCC tissue

The tumor cells were tightly cohesive, featured with moderately high to abundant eosinophilic cytoplasm. The nucleus to cytoplasmic ratio was potentially increased with nuclei showing frequent prominent nucleoli. Mitotic activity was abundant including atypical forms such as ring and tripolar configurations. Intercellular bridges were focally present. Keratinization of individual epithelial cells (Figure-1a) and pleomorphic epithelial cells with enlarged nuclei (Figure-1b) were seen. Histopathology confirmed SCC of the horn core epithelium.

Isolation of SCC horn epithelial cells

Primary monolayer culture with finite mitotic lifespan (SCC early passage cells) was established from the bullock affected with SCC of horn (Figure-2) following the enzymatic disaggregation methods as described earlier [22]. By the first week, tumor cells were seen rounding up and growing throughout the T-25/T-75 flask (Figure-3) among the normal stromal fibroblasts that grew in parallel.

Growth curve and population doubling time analysis

Population doubling time ascertained around 28.1 h (Figure-4), and cell viability ranged from 85% to 94%. The culture success rate was 90%.

Transcriptomic comparison between SCC horn tissue and its early passage cells

The total number of genes differentially overexpressed in SCC horn tissue were 717 (8.40% of total genes expressed) compared to early passage cells; 150 genes (1.76% of total genes expressed) were differentially up-regulated which had more than 2-fold Log$_{2}$ value with maximum value of 6.03-fold change. There were 746 genes (8.74% of total genes expressed) which had differential over-expression in early passage cells than SCC horn tissue, 248 genes (2.90% of total genes expressed) had more than 2-fold Log$_{2}$ value with maximum Log$_{2}$ value 7.02. In this comparison, 5219 genes (~38% of total genes no., i.e., 14513 no.) showed no expression at the terms of FPKM in both the samples 1600 genes had more than 5 FPKM value in early passage cells.

Genes overexpressed in SCC early passage cells and SCC horn tissue

Density plot and dispersion plot were derived for this comparison, respectively. Density plot assessed the distributions of FPKM scores across samples. Among the differentially expressed genes maximum genes had FPKM value between Log$_{10}$ 0.2 and Log$_{10}$ 2. Distribution of genes in SCC horn tissue ranged from Log$_{10}$ 0.2 to Log$_{10}$ 3.7 and for early passage SCC cells, it was Log$_{10}$ 0.7 to Log$_{10}$ 3.7. Dispersion plot showed normal dispersion of genes across samples. N-Myc downstream regulated 1, integrin alpha 6, TP53 apoptosis effector (PERP), eukaryotic translation initiation factor 4 A1 (A1EIF4A1), desmoplakin, etc., genes were up-regulated (up-to 2-fold FPKM value) in SCC horn tissue compared to SCC early passage cells. Up-regulated genes (up to 2-fold FPKM value) in horn SCC early passage cells compared to parental tissue were coiled-coil domain containing 69 (CCDC69), CCDC94, Sec61 gamma subunit (SEC61G), Paladin,
Hedgehog (Hh) receptor patched homolog 1 (PTCH1), Armadillo repeat containing X-linked 2 and thioredoxin, etc.

GO category of the genes differentially expressed above 2 log2 fold change in SCC early passage cells compared to SCC horn tissue to be of calcium channel activity, calcium ion binding, protein phosphatase Type 2A activity and extracellular matrix (ECM) binding as per DAVID database (Table-1). The genes which were up-regulated in SCC horn tissue compared to its early passage cells showed major histocompatibility complex (MHC) Class I protein binding, MHC protein binding, procollagen proline 4-dioxygenase activity, peptidyl-proline dioxygenase activity, pro-collagen-proline dioxygenase activity, and protein disulfide isomerase activity.

The percentage of genes which showed up-regulation in SCC horn tissue than SCC early passage cells was 1.76%. Genes up-regulated (≥2-fold) in SCC horn tissue as compared to horn SCC early passage cells were involved in biogenesis, apoptotic response and response to stimulus in biological processes; structural molecular activity and translation regulator activity in molecular function; cell part, organelle and macromolecular complex in cellular component and the up-regulated genes (≥2-fold) in horn SCC early passage cells were involved in cellular process, metabolic process, biological regulation in biological processes; catalytic activity, enzyme regulator activity, binding in molecular function; membrane, extracellular region in cellular component as per PANTHER database.

There was no pathway in 5 FDR limit, but the lowest FDR value was found at transforming growth factor (TGF) beta signaling pathway and ribosomal pathway for differentially up-regulated genes in SCC early passage cells compared to SCC horn tissue in Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways (Table-2). Surprisingly, most of the genes which showed top fold change (within first 20) were not detected by DAVID during pathway analysis. Focal adhesion, ECM-receptor interaction, thyroid cancer, and pathways in cancer were shown by the genes which were up-regulated in SCC horn tissue than SCC early passage cells (Table-3).

Genes up-regulated in SCC early passage cells compared to SCC horn tissue were involved in fibroblast growth factor signaling pathway, wnt signaling pathway, vascular endothelial growth factor signaling pathway, apoptosis signaling pathway and p53 signaling, epidermal growth factor receptor, cell cycle,
inflammatory pathways mediated by chemokine and cytokine, etc., as per PANTHER database.

KEGG pathway of all genes, expressed in SCC early passage cells showed to be involved in focal adhesion, transforming growth factor TGF-beta signaling pathway, ubiquitin mediated proteolysis, pathways in cancer, prostate cancer mechanism within 5 FDR value (Table-4). KEGG pathways such as thyroid cancer, focal adhesion, small cell lung cancer, pathways in cancer, prostate cancer and spliceosome were shown to be involved when all the common genes (≥5 FPKM) between SCC horn tissue and SCC early passage cells compared in DAVID (Table-5). To unveil the genes involved in horn cancer pathogenesis, both in-vivo and in-vitro genes were mined from common pathways up to 5 FDR (Table-6).

Genes that were uniquely expressed in SCC early passage cells as compared to SCC horn tissue showed involvement in metabolic and cellular process in biological processes; binding, catalytic activity in molecular function; heterotrimeric G protein signaling G alpha pathway, Huntington disease, endothelin signaling pathway, angiogenesis, interleukin signaling pathway, etc., in pathway as per PANTHER database.

High proliferative and antiapoptotic potential are related to the up-regulation of growth hormone receptor and calmodulins [31]. The top 20 genes which were found to be up-regulated in SCC early passage cells in comparison to SCC horn tissue were investigated to have roles in other cancers as well as SCC in human and domestic animals (Table-7) [32-61] and vice versa (Table-8) [62-95].
In this study, we compared gene expression profiles of the two conditions, i.e., in vivo cancer tissue and in vitro cancer cells at their early passages. The growth and survival rate of SCC early passage cells were good and it grew for the first few
Table-4: KEGG pathway of all genes expressing ≥5 FPKM in SCC early passage cells.

Term	Count	FDR	%	p value
bta04510:Focal adhesion	48	4.06E-06	3.292181	3.33E-09
bta04810:Regulation of actin cytoskeleton	40	0.042391	2.743484	3.47E-05
bta04350:TGF-beta signaling pathway	22	0.0641	1.508916	5.25E-05
bta04512:ECM-receptor interaction	21	0.091836	1.440329	7.52E-05
bta04520:Adherens junction	18	0.596801	1.234568	4.90E-04
bta04120:Ubiquitin mediated proteolysis	28	0.923001	1.920439	7.59E-04
bta05010:Alzheimer's disease	30	2.493014	2.057613	0.002065
bta03010:Ribosome	19	3.36116	1.303155	0.002775
bta05200:Pathways in cancer	49	3.410855	3.360768	0.002838
bta05215:Prostate cancer	18	7.802359	1.234568	0.00663
bta05016:Huntington's disease	30	7.998577	2.057613	0.006803
bta04670:Leukocyte transendothelial migration	22	8.071079	1.508916	0.006867
bta04114:Oocyte meiosis	21	12.05085	1.440329	0.01046
bta00640:Propanoate metabolism	9	15.5853	0.617284	0.013778
bta03050:Proteasome	11	17.3639	0.754458	0.015496
bta04270:Vascular smooth muscle contraction	20	17.64442	1.371742	0.015771
bta04530:Tight junction	22	19.73693	1.508916	0.017843
bta03040:Spliceosome	22	19.73693	1.508916	0.017843
bta00112:ARVC	14	20.06711	0.960219	0.018174
bta05211:Renal cell carcinoma	14	20.06711	0.960219	0.018174
bta04540:Gap junction	16	20.36185	1.097394	0.018471
bta05212:Pancreatic cancer	14	24.78525	1.097394	0.018471
bta05012:Parkinson's disease	22	28.04137	1.508916	0.02699
bta05210:Colorectal cancer	16	31.81445	1.097394	0.030871
bta05414:Dilated cardiomyopathy	15	32.44796	1.371742	0.031584
bta04360:Axon guidance	20	32.68997	1.371742	0.031907
bta04110:Cell cycle	21	35.81972	1.440329	0.035663
bta05410:HCM	14	38.06963	0.960219	0.03942
bta04150:mtOR signaling pathway	11	39.72862	0.754458	0.040613
bta05222:Small cell lung cancer	15	40.92982	1.028807	0.042193
bta04720:Long-term potentiation	12	43.26753	0.823045	0.045355
bta04142:Lysosome	19	48.66196	1.303155	0.053134
bta05213:Endometrial cancer	10	55.76984	0.685871	0.064618
bta04666:Fc gamma R-mediated phagocytosis	15	59.04148	1.028807	0.070491
bta00520:Amino sugar and nucleotide sugar metabolism	9	60.46497	0.617284	0.073175
bta05220:Chronic myeloid leukemia	13	69.07887	0.891632	0.091639
bta00190:Oxidative phosphorylation	20	70.92517	1.371742	0.096207

Count denotes gene count. ARVC=Arrhythmogenic right ventricular cardiomyopathy, KEGG=Kyoto encyclopedia of genes and genomes, SCC=Squamous cell carcinoma, HCM=Hypertrophic cardiomyopathy, FPKM=Fragments per kilobase of exon per million, FDR=False discovery rate, ECM=Extracellular matrix.

passages without difficulties. The cellular compositions were homogeneous and were of morphological characteristics typical of squamous cell epithelium. These findings are more or less similar to previously described studies [31] that indicated that early passage cell cultures expressed genes similar to in vivo gene expression pattern. Hence, it could be used for in vitro investigation of transcriptomic alteration in cancers. Maximum value of differential gene expression in SCC early passage cells was 6.02-fold changes as compared to parental tissue. CCDC94 a dose-dependent modifier of the anti-apoptotic function of B-cell lymphoma 2 gene found to be up-regulated [96] in SCC early passage cells; PTCH1 overexpression might indicate invasive behavior of metastatic cells [97]; low Hh signaling [98] (Table-9). PTCH-1 overexpression in many epithelial-derived cancers correlates to overexpression of other “Hh pathway” members [99] and promotion of an alternate epidermal cell fate decision that potentiates SCC formation [100]. Netrin 4 overexpression might have control on reduced angiogenesis and metastasis [101]; high SATB homeobox 1 expression might have helped to promote cell cycle progression, proliferation, migration and increased invasive capability with strong expression of Vimentin (2750.61 FPKM) but low or lost E-cadherin (CDH1) expression - A pivotal event for epithelial to mesenchymal transition EMT [102]. EIF41A, X-linked gene overexpression along with EIF2A gene (fold change −0.56) downregulation shows improved cell proliferation as EIF2A gene is a negative regulator of protein translation, RPS7 gene overexpression (fold change −0.88) might have role in cancer cell cycle proliferation and cell cycle progression in BHCC early passage cells [103]. 14-3-3 gamma was not expressed in BHCC early passage cells denoting that 14-3-3 gamma might not have control on reduced angiogenesis and metastasis [101]; high SATB homeobox 1 expression might have helped to promote cell cycle progression, proliferation, migration and increased invasive capability with strong expression of Vimentin (2750.61 FPKM) but low or lost E-cadherin (CDH1) expression - A pivotal event for epithelial to mesenchymal transition EMT [102]. EIF41A, X-linked gene overexpression along with EIF2A gene (fold change −0.56) downregulation shows improved cell proliferation as EIF2A gene is a negative regulator of protein translation, RPS7 gene overexpression (fold change −0.88) might have role in cancer cell cycle proliferation and cell cycle progression in BHCC early passage cells [103]. 14-3-3 gamma was not expressed in BHCC early passage cells denoting that 14-3-3 gamma might not be working at transcriptional level, but 14-3-3 theta which was found to be increased (fold change 0.30) might had a positive effect on tumor cell adhesion and growth [104]. In correlation to that Stratifin or 14-3-3 sigma was not expressed in BHCC early passage cells...
cells. Cyclin D1 (FPKM in BHCC early passage cells is ~86) which usually acts as an active switch for regulation of continuous cell cycle progression, had almost same expression in two samples, revealing the possible cycle chain in between these key players. Phosphoserine phosphatase [105]; inorganic pyrophosphatase 2 subunit B, epsilon isoform (PPP2R5E) is a potential tumor suppressor gene [106], PP2, phosphatase 2 subunit B isoform alpha (PPP2R2A) is one of the four major Ser/Thr phosphatases and a key regulator of cellular growth and cancer development by antagonizing protein kinases in human cancers. Protein phosphatases are involved in the suppression of protein kinases and can play a regulatory role in cancer cells. It has been postulated that protein phosphatases are involved in the suppression of cellular growth and cancer development by antagonizing protein kinases in human cancers. Protein phosphatase 2 subunit B isofrom alpha (PPP2R2A) is one of the four major Ser/Thr phosphatases and is a potential tumor suppressor gene [106], PP2, regulatory subunit B, epsilon isoform (PPP2R5E)

Table-5: KEGG pathway of all common genes (≥5 FPKM) in between SCC horn tissue and SCC early passage cells.

Term	Count	FDR	%	p value
bta04510:Focal adhesion	32	2.52E-06	4.878049	2.12E-09
bta04810:Regulation of actin cytoskeleton	26	0.014261	3.963415	3.963415
bta04512:ECM-receptor interaction	15	0.027243	2.286585	2.30E-05
bta05200:Pathways in cancer	31	0.450733	4.72561	3.81E-04
bta05215:Prostate cancer	13	1.366685	1.981707	0.00115989
bta05412:ARVC	11	1.968263	1.676829	0.00167511
bta04670:Leukocyte transendothelial migration	15	2.062266	2.286585	0.001755881
bta04520:Adherens junction	11	2.482973	1.676829	0.002118237
bta04120:Ubiquitin mediated proteolysis	15	10.18146	2.286585	0.00915052
bta04530: Tight junction	14	11.1892	2.134146	0.009957604
bta03040:Spliceosome	14	11.1892	2.134146	0.009957604
bta04350: TGF-beta signaling pathway	10	21.36772	1.52439	0.020069312
bta05213: Endometrial cancer	7	35.30036	1.067073	0.036055226
bta05216: Thyroid cancer	5	40.50522	0.762195	0.049576494
bta05414: Dilated cardiomyopathy	9	41.73228	1.371951	0.049020477
bta03110: Lysine degradation	6	44.89775	0.914634	0.049576494
bta05211: Renal cell carcinoma	8	45.78755	1.219512	0.049576494
bta04540: Gap junction	12	47.42947	1.829268	0.052785299
bta04110: Cell cycle	9	48.09441	1.829268	0.052785299
bta05222: Small cell lung cancer	6	56.59508	1.371951	0.053801616
bta05010: Alzheimer's disease	14	53.2995	2.134146	0.062196631
bta05210: Colorectal cancer	9	56.59508	1.371951	0.067966842
bta03010: Ribosome	9	56.59508	1.371951	0.067966842
bta05410: HCM	8	61.65301	1.219512	0.077654962
bta04720: Long-term potentiation	7	64.27834	1.067073	0.083155068
bta04722: Neurotrophin signaling pathway	11	64.64354	1.676829	0.0839493

Count denotes gene count. HCM=Hypertrophic cardiomyopathy, FDR=False discovery rate, KEGG=Kyoto encyclopedia of genes and genomes, FPKM=Frags per kilobase of exon per million, SCC=Squamous cell carcinoma, TGF=Transforming growth factor, ARVC=Arrhythmogenic right ventricular cardiomyopathy

Table-6: Genes common in pathways up to 5 FDR between SCC horn tissue and SCC early passage cells.

KEGG pathway term	FDR	Genes
bta04510:Focal adhesion	2.5165E+00	TTN1, COL3A1, ITGB1, CTNNB1, MYL9, VCL, ACTG1, CDC42, ITGAV, ILK, COL6A2, COL6A1, THBS2, PIK3R2, FN1, ACTB, COL4A1, ACTN4, PPP1CB, FNBL, FNLA, LAMA4, PPP1CA, CCND1, ITGA6, ITGAV5, JUN, COL1A2, PDGFR, RAP1A, PDGFRB, COL1A1, CRK
bta04810:Regulation of actin cytoskeleton	0.142	RDX, PIP5K1A, ITGB1, MYL9, VCL, ACTG1, CDC42, ITGA6, EZR, GSN, ITGAV, MSN, FGFR2, FN1, APC, PIK3R2, ACTB, ACTN4, PPP1CB, ARCP1A, PPP1CA, ITGA6, ITGAV5, CFL1, PDGFB, PDGFRB, CRK, PIP4K2C
bta04512:ECM-receptor interaction	0.272	COL4A1, COL3A1, ITGB1, ITGB4, SDC1, LAMA4, ITGAV, CD44, ITGAV5, ITGAV6, COL6A2, COL1A2, COL6A1, COL1A1, THBS2, FN1
bta05200:Pathways in cancer	0.4507	HSP90A2B, TGF, MMP2, ITGB1, CTNNB1, CDC42, ITGAV, MYC, FGFR2, FN1, APC, PIK3R2, COL4A1, HSP90A1A1, EPS1A, CREBBP, SMAD4, CTNN1A1, STAT3, LAMA4, HSP90B2, CCND1, CDKNA1A, HIF1A, ITGAV6, NCOA4, JUN, PDGFRB, PDGFB, JAK1, CRK
bta05215:Prostate cancer	1.3666	HSP90A1B1, HSP90A1A1, CREBBP, CTNNB1, CCND1, HSP90B1, CDKNA1A, AT1F4, PDGFR, CREB3L2, CREB3L1, PDGFRB, PIK3R2
bta05412:ARVC	1.9682	ACTB, ACTG1, ACTN4, ITGAV6, ITGAV5, ITGAV, LMNA, DSP, G1A1, CTNN1A1, ITGB1, CTNNB1
bta04670:Leukocyte transendothelial migration	2.0622	ACTB, ACTN4, GNA2A, GNA1A, CTNN1A, MMP2, ITGB1, VCL, MYL9, CTNNB1, ACTG1, CDC42, EZR, RAP1A, MSN, PIK3R2
bta04520:Adherens junction	2.4829	ACTB, ACTG1, CDC42, PVR1, ACTN4, PTPFR, CREBBP, SMAD4, CTNN1A1, SNA1A2, VCL, CTNNB1

ARVC=Arrhythmogenic right ventricular cardiomyopathy, FDR=False discovery rate, KEGG=Kyoto Encyclopedia of Genes and Genomes, SCC=Squamous cell carcinoma, ECM=Extracellular matrix
Table 7: Functions of highly expressed genes in SCC early passage cells in comparison to SCC horn tissue.

Gene ID (ENSBTAG)	Gene title	Name	FPKM EP	FPKM HCT	Log₂ fold change	Roles and implications in cancer of human and other
00000002834	CCDC69	Coiled-coil domain containing 69	318.123	2.3446	+7.084	Expressed in various cancer cell lines such as HeLa, U2OS and MDA-MB-231, exogenous expression of CCDC69 in HeLa cells destabilized microtubules and disrupted the formation of bipolar mitotic spindles [32]
00000012830	CCDC94	Coiled-coil domain containing 94	842.151	10.503	+6.325	Avoids DNA damaging apoptosis in zebra-fish [33]
00000014971	SEC61G	Sec61 gamma subunit	4614.43	62.285	+6.211	Proto-oncogene required for tumor cell survival in GBM, involved in the cytoprotective ER stress-adaptive response to the tumor microenvironment [34]
00000008583	KIAA1274	Paladin	207.836	2.808	+6.209	Vascular-restricted expression in human brain, astrocytoma, and glioblastomas. Paladin expression is reactivated during pathological tumor angiogenesis in the adult [35]
00000048213	PTCH1	Hh receptor patched homolog 1, Uncharacterized protein	92.8954	1.2552	+6.209	Inversely correlated with the metastatic potential of colon cancer cell lines, high expression associated with low Hh signaling [36]
0000003183	NTN4	Netrin 4	123.963	2.010	+5.946	Anti angiogenic effect, over expression could decrease tumor growth [37]
00000010232	NDUFS5	NADH dehydrogenase (ubiquinone) Fe-S protein 5, 15 kDa (NADH-coenzyme Q reductase)	1206.46	24.433	+5.625	Highly expressed in endometrial cancer [38,85]
00000019417	ARM CX2	Armadillo repeat containing, X-linked 2	145.59	2.950	+5.624	Might have a role in tumor suppression, role in development and tissue integrity [39]
00000021158	SATB1	SATB homeobox 1	161.255	3.7353	+5.431	High levels of SATB1 expression facilitate CRC and are associated with poor prognosis, promotes breast cancer metastasis, EMT marker in prostrate cancer [40]
0000003130	CHRNA3	Cholinergic receptor, nicotinic, alpha 3 (neuronal)	1615.84	43.60	+5.211	Polymorphism associated with high chance for NSCLC [41,85]
00000017633	EIF1AX	Eukaryotic translation initiation factor 1A, X linked	509.347	13.759	+5.210	Mutation is having protective role in uveal melanoma, over expressed in metastatic prostate cancer [42,43]
00000002428	PPA2	Pyrophosphatase (inorganic) 2	255.495	6.903	+5.209	Significantly increased in LnMPCa tissues, supplies increased energy requirement in metastasis cells [44,45]
00000000753	PIAS4	Protein inhibitor of activated STAT, 4	582.593	17.174	+5.084	Necessary for proficient DNA repair of DSBs, promotes BRCA1 SUMOylation and DNA repair [46,47]
00000013081	PSPH	Phosphoserine phosphatase	516.471	17.942	+4.847	Up-regulated in CRC, increased expression in non-small-cell lung cancer corresponds to clinical response. Suppression inhibited proliferation, tumor formation of MDAMB-468 and MCF10 cells respectively [48,49]
00000002953	TXN	Thioredoxin	3783.39	136.25	+4.795	Promote cell growth, induces VEGF, PTEN, angiogenesis and inhibit apoptosis in tumor cells [50,51]

(Contd...)
Table-7: Continued...

Gene ID (ENSBTAG)	Gene title Name	FPKM EP	FPKM HCT	Log₂ fold change	Roles and implications in cancer of human and other
00000015522	MRPS31 Mitochondrial ribosomal protein S31	12.604	310.988	+4.624	Up-regulated in human breast cancer, CRC and found in 77% of all types of cancer [52,53,85]
00000045742	CSH12orf75 Chromosome 12 open reading frame 75	6.018	148.477	+4.624	Highly expressed in granulosa cells and membrane associated granulosa cells before ovulation in cattle [54]
0000009405	TRPC4 Transient receptor potential cation channel, subfamily C, member 4	2.091	51.582	+4.624	Highly expressed in NSCLC, LNCaP cells activating store operated channel calcium influx factor [55,56]
0000008636	PDE4B Phosphodiesterase 4B, cAMP-specific	1.6824	41.5034	+4.624	Highly expressed in diffuse large BCL, expression of it avoids CAMP mediated apoptosis. Induces angiogenesis and cell proliferation in lung cancer cell line [57,58]
0000008294	KCNJ2 Potassium inwardly-rectifying channel, subfamily J, member 2	1.4278	35.2224	+4.624	Expressed in medullloblastoma with poor clinical outcome, avoids apoptosis and induces cell proliferation in oral cancer also. Increased expression in papillary thyroid cancer [59-61]

Table-8: Functions of highly expressed genes in SCC horn tissue in comparison to SCC early passage cells.

Gene ID (ENSBTAG)	Gene title Name	FPKM HCT	FPKM EP	Log₂ fold change	Roles and implications in cancer of human and other
00000000711	NDRG1 N-Myc downstream regulated 1	30.4749	2001.28	−6.03715	Regulated by androgens, acts as metastasis suppressor and negatively correlated with it, found to be down regulated in various cancers, prostate cancer [62,63]
00000017266	ITGA6 Integrin, alpha 6	21.8316	835.447	−5.2580	Prostate tumors persistently express ITGA6, linked to increased tumor cell invasion, migration, and metastasis. Increased adhesion in AML cells [64,65]
00000020097	PERP PERP, TP53 apoptosis effector	47.026	1624.07	−5.11001	Tumor suppressor. Loss induces tumorigenesis, cell survival, and desmosome loss by enhancing inflammatory set of genes in SCCs [66,67]
0000000132	EIF4A1 Eukaryotic translation initiation factor 4A1	54.0897	1613.66	−4.8988	Associated with highly metastasizing melanoma. Overexpression is an early marker for metastasizing hepatocellular carcinoma and NSCLC [68,69]
00000015106	DSP Desmoplakin	63.9491	1837.68	−4.8448	Loss of desmoplakin, a cell adhesion molecule, has been implicated in breast cancer metastasis [70]
00000047330	FABP5 Fatty acid binding protein 5 (psoriasis associated)	51.7861	1255.27	−4.5992	Involved in cell survival and growth, enhances cell proliferation and anchorage-independent growth in prostate and breast cancer cells [71,72]
00000012447	PPP1CB Protein phosphatase 1, catalytic subunit, beta isozyme	34.5396	764.459	−4.4681	Enhances proliferation and colony formation in leukemia cell line, expressed in SS cancer cell lines [73,74]
00000010365	SQRDL Sulphide quinone reductase-like (yeast)	57.2255	1206.17	−4.3976	Under expressed in ductal breast carcinoma, but down regulation reduce cell growth and induce apoptosis in breast cancer cell line [75,76]

EP=SCC early passage cells, HCT=SCC horn tissue, FPKM=FFPKM=Fragments per kilobase of exon per million.
Gene ID (ENSBTAG)	Gene title	Name	FPKM EP	Log₂ fold change	Roles and implications in cancer of human and other	
00000011969	HSPB1	Heat shock 27 kDa protein 1	137.28	−4.3349	Involved in DNA repair, recombination, anti-apoptotic activity in HeLa cells, in most of human cancers, high levels indicate presence of metastatic tissues. Low levels are associated with resistance [77,78]	
00000011488	PRPB8	PRPB pre-mRNA processing factor B homolog (S. cerevisiae)	230.594	11.6561	−4.3062	Associated with spliceosome pathway, tumor suppressor in myeloid malignancies [79,80]
00000012927	ALDOA	Aldolase A, fructose-bisphosphate, mRNA	1162.91	60.5281	−4.2639	Promote lung cancer metastasis, invasion capability [81,82]
00000015107	SLCA6A1	Solute carrier family 16, member 1 (monocarboxylic acid transporter 1)	465.287	28.411	−4.0336	Positively associated with cell survival, negatively with mir-124 in medulloblastoma [83]
00000021035	CTSK	Cathepsin K, mRNA	917.7	56.0406	−4.0334	Inconsistent expression in horn cancer tissue in bovine, involved in Hh signaling and pre-osteoclast to osteoclast differentiation in breast cancer [84,86]
00000010793	CCDC80	CCDC80, mRNA	393.218	24.1296	−4.0264	Tumor suppressor, down regulated in thyroid carcinomas [87]
00000013315	ATP5B	ATP synthase, H+ transporting, mitochondrial F1 complex, beta polypeptide, mRNA	853.925	53.4692	−3.9973	Overexpressed and associated with poor survival in breast cancer. High ATP5B mRNA expression in ovarian cancer was associated with worse OS [88]
00000003418	MSN	Moesin (MSN), mRNA	339.836	22.2957	−3.93	High levels associated with poor breast cancer survival, by increased metastasis, invasion and EMT changes [89]
00000008409	MYC	V-myc myelocytomatosis viral oncogene homolog (avian)	596.739	41.8222	−3.8347	Correlated with distant metastasis, aggressive breast cancer. Induces genome instability [90]
00000021523	STAT3	Signal transducer and activator of transcription 3 (acute-phase response factor), mRNA	566.044	39.895	−3.8266	Associated with increased angiogenesis, metastasis, immune signaling and inflammation in basal like breast cancers [91,92]
00000008611	IGFBP4	Insulin-like growth factor binding protein 4	627.819	44.5065	−3.8182	Antagonist of wnt beta catenin signaling pathway, higher in metastatic RCC. Increases invasion, cell proliferation in glioma [93,94]
00000007606	HNRNPU	Heterogeneous nuclear ribonucleoprotein U (scaffold attachment factor A), mRNA	386.733	28.0595	−3.7847	Involved in spliceosome pathway in causing prostate cancer [95]

Table-8: Continued...

expression are usually downregulated in cancer tissue and represses cell viability and growth promoting apoptosis in cells as a target of MicroRNA-23a (miR-23a) [107]. MiR-23a overexpression decreases PPP2R5E expression but as the cells were good and healthy by their phenotypes so we cannot support this hypothesis for our cell line. Glutaminase which indicates faster growth rate and change in Warburg effect [108] was increased (0.33-fold change) (not shown in table) in cells though, MYC oncogenic transcription factor expression in BHCC early passage cells was lower than BHCC tissue, and there was no expression of MiR-23a/b which are usually suppressed by MYC [109]. Solute carrier family 7A5, phosphoglycerate dehydrogenase decreased in cells, ACACA expression remained almost same, but ACLY expression was 1.5-fold lower in cells (Table-10). SERBP1 expression was also lower in cells by 1.5-fold. Moderate secretory carrier membrane proteins 3 expressions suggested a universal role in membrane traffic at the plasma membrane [110,111].

Cytoplasmic serine hydroxymethyltransferase 1 (SHMT1) and thymidylate synthase genes of the *de novo* thymidylate biosynthesis pathway were found to be increased in early passage cells than BHCC tissue, but SHMT2 was not expressed in cells [110,112,113]. Tumor protein 53-induced nuclear protein 1, apoptosis activating factor-1 was found to be increased in
Table 9: Expression of genes that are usually altered in cancer and involved in cancer pathways.

Official gene symbol	SCC horn tissue FPKM	SCC early passage cells FPKM	Log2 (fold change)	Official gene symbol	SCC horn tissue FPKM	SCC early passage cells FPKM	Log2 (fold change)	Official gene symbol	SCC horn tissue FPKM	SCC early passage cells FPKM	Log2 (fold change)
Tumor suppressor genes [114]											
TGFBR2	37.681	116.199	1.62466	TGFBR1	43.997	180.905	2.03972	TGFBR1	43.997	180.905	2.03972
TGFBR1	31.946	53.198	−0.62321	CTGF	1237.8	1486.66	0.26426	CTGF	1237.8	1486.66	0.26426
TGFBR2	37.681	116.199	1.62466	TERT	0	53.039	∞	TERT	0	53.039	∞
Apoptosis [114]											
CDKs [114]											
CDK16	59.044	58.262	−0.01924	CDC2	21.499	106.068	2.30264	CDC2	21.499	106.068	2.30264
Genes highly expressed in cell, tumor [114]											
NME1	20.3035	65.978		TNFAIP8L1	−0.03833	0.96166	18.0213	TNFAIP8L1	−0.03833	0.96166	18.0213
Genes expressed in immortal cell lines [114]											
CDC26	0	276.369	Infinity	MET	4.43146	18.2192	2.03961	MET	4.43146	18.2192	2.03961
Oncogenes [114]											
TPX2	109.221	354.565	1.6988	TPX2	109.221	354.565	1.6988	TPX2	109.221	354.565	1.6988
Gli pathway [114]											
SCAMP3	135.784	139.585	0.03983	SCAMP3	135.784	139.585	0.03983	SCAMP3	135.784	139.585	0.03983
NAMPT	19.696	69.401	1.81721	NAMPT	19.696	69.401	1.81721	NAMPT	19.696	69.401	1.81721
AKTIP	61.472	42.971	−0.5163	AKTIP	61.472	42.971	−0.5163	AKTIP	61.472	42.971	−0.5163
CTSC	337.90	48.657	−2.80156	CTSC	337.90	48.657	−2.80156	CTSC	337.90	48.657	−2.80156
LAMTOR5	65.978	203.589	1.62537	LAMTOR5	65.978	203.589	1.62537	LAMTOR5	65.978	203.589	1.62537
LAMTOR4	9.0	207.586	∞	LAMTOR4	9.0	207.586	∞	LAMTOR4	9.0	207.586	∞
aEBP1	269.61	95.0135	−1.50469	aEBP1	269.61	95.0135	−1.50469	aEBP1	269.61	95.0135	−1.50469
RPS6K4A	26.142	29.3143	0.165186	RPS6K4A	26.142	29.3143	0.165186	RPS6K4A	26.142	29.3143	0.165186
RPS6KB1	69.345	183.303	1.40236	RPS6KB1	69.345	183.303	1.40236	RPS6KB1	69.345	183.303	1.40236

(Contd...)
Table 9: Continued...

Official gene symbol	SCC horn tissue FPKM	SCC early passage cells FPKM	Log2 (fold change)	Official gene symbol	SCC horn tissue FPKM	SCC early passage cells FPKM	Log2 (fold change)
RPS6KC1	27.447	19.9144	−0.4628	FOXJ2	29.0679	29.878	0.039683
BCL2L13	12.845	118.832	3.20963	PRKAR1A	534.133	67.9277	−2.9753
Oncogenes [114]				PRKAR2A	141.262	62.2342	−1.18295
METTL13	8.588	35.31	2.03968	TGFBI	381.889	71.3708	−2.41975
PDGFRα	55.2793	12.8642	−2.10337	THBS2	295.379	41.8762	−2.81836
ARNTL	5.52379	39.7419	2.84693	CKAP2	70.1512	112.865	0.686055

Table 9: Official gene symbol, SCC horn tissue FPKM=FPKM of SCC horn tissue, SCC early passage cells FPKM=FPKM of SCC early passage cells, Log2 (fold change)=Log2 of fold change.

Table 10: Genes commonly deregulated in cancer.

Official gene symbol	SCC horn tissue FPKM	SCC early passage cells FPKM	Log2 (fold change)
IPO7	330.60	70.3061	−2.2333
FKBP10	125.032	34.2715	−1.86721
PRC1	97.974	30.2115	−1.69731
FNDC3B	79.1106	25.3438	−1.64224
ILF3	79.5314	25.8148	−1.62332
ACLY	121.74	41.7097	−1.54534
ADAM12	69.750	29.6667	−1.23336
PSMB2	315.665	139.101	−1.1822
EIF2AK1	56.175	31.7431	−0.8348
NME1	264.99	163.488	0.69677
ADAM10	58.022	39.761	−0.54523
ANP32E	196.546	138.547	−0.50440
HRNRPL	43.4377	31.5166	−0.4628
FAM49B	148.32	107.624	−0.4627
EIF2S2	396.41	344.378	−0.2030
KDEL3R	213.373	202.472	−0.0756
SPP1	909.522	965.956	0.08684
UTP18	44.7713	50.2058	0.165273
ZBTB1	42.3114	49.9708	0.23228

Table 10: Genes commonly deregulated in cancer, SCC=Squamous cell carcinoma, FPKM=FPKM per kilobase of exon per million, TGF=Transforming growth factor.
BHCC early passage cells (>1-fold change) along with effector genes such as caspase 6 (CASP6) and caspase 9 (CASP9) (>2-fold change) but in contrast cytochrome C was not found to be expressed and the genes CASP3, CASP8 were not detected [114]. The above discussion denotes a number of key players in pathogenesis of SCC of horns in bovines which showed resemblance with human cancer studies in expression profiling.

Conclusion

The signaling pathway investigation in this first culture based approach revealed that many of the cancer-related pathways reported in the literatures for other carcinomas may also be held responsible for SCC of horn in bovines. Cells from bovine horn SCC surgical specimens may be adapted in vitro with high efficiency, independently from any clinicopathological characteristics.

Low-passage horn cancer cell lines would still closely reflect the phenotype of the horn cancer cells in vitro bypassing the obstacle for obtaining more detailed insights into the diversity of phenotypic and molecular changes occurring in horn cancer cells. Our result based on the pathway analysis suggested that primary culture of horn cancer in-vitro may serve as the model for SCC of horns in cattle.

This transcriptome-based approach demonstrates that epithelial cultures isolated from primary horn SCC retain complex characteristics of the malignant tissue. Thus, the opportunity for basic and clinical application of functional cells derived from SCC horn tissue, instead of a few immortal cell lines should not be missed.

Authors’ Contributions

SS: Carried out laboratory experiment and written manuscript as part of MVSc. in Animal Genetics and Breeding. RSJ: Helped in manuscript correction. CGJ: Conceptualized the project. AKP: Helped in bioinformatics work. SJJ: Helped in NGS work. SK: Helped in manuscript writing. BR: Helped in bioinformatics work. PGK: Helped in NGS work and sample collection. DNR: Helped in manuscript correction and improvement. All authors read and approved the final manuscript.

Acknowledgments

The authors sincerely acknowledge the help provided by Dr. M. G. Mardiya (Rajkot), Dr. Uday Koringa (Rajkot) during sample collection and Dr. J. V. Solanki (Anand) for valuable insights into the experiment. The authors thankfully acknowledge the funding provided by Anand Agricultural University under the project “Centre of Excellence in Animal Biotechnology” (B.H. 12928).

Competing Interests

The authors declare that they have no competing interests.

References

1. Yang, D.S. (2014) Novel prediction of anticancer drug chemosensitivity in cancer cell lines: Evidence of moderation by microRNA expressions. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEM Engineering in Medicine and Biology Society Annual Conference, 2014. p4780-4786.
2. Wei, W., Lii, Z., Chen, X. and Bi, F. (2014) Chemosensitivity of resistant colon cancer cell lines to lobaplatin, heptaplatin and dicyclotoplatin. Int. J. Clin. Pharmacol. Ther., 52(8): 702-707.
3. De la Cueva, A., Ramirez de Molina, A., Alvarez-Ayerza, N., Ramos, M.A., Cebrian, A., Del Pulgar, T.G. and Lacal, J.C. (2013) Combined 5-FU and ChoKalpha inhibitors as a new alternative therapy of colorectal cancer: Evidence in human tumor-derived cell lines and mouse xenografts. PLoS One, 8(6): e64961.
4. Giuffrida, D. and Rogers, I.M. (2010) Targeting cancer stem cell lines as a new treatment of human cancer. Rec. Patents Anti Cancer Drug Discov., 5(3): 205-218.
5. Supino, R., Binacchi, M., Capranico, G., Gambetta, R.A., Prosperi, E., Sala, E. and Zunino, F. (1993) A study of cross-resistance pattern and expression of molecular markers of multidrug resistance in a human small-cell lung-cancer cell line selected with doxorubicin. Int. J. Cancer, 54(2): 309-314.
6. Lefevre, D., Riou, J.F., Ahomadegbe, J.C., Zhou, D.Y., Benard, J. and Riou, G. (1991) Study of molecular markers of resistance to m-AMSA in a human breast cancer cell line. Decrease of topoisomerase II and increase of both topoisomerase I and acidic glutathione S transferase. Biochem. Pharmacol., 41(12): 1967-1979.
7. Cifola, I., Bianchi, C., Mangano, E., Bombelli, S., Frascati, F., Fasoli, E., Ferrero, S., Di Stifano, V., Zipeto, M.A., Magni, F., Signorini, S., Battaglia, C. and Perego, R.A. (2011) Renal cell carcinoma primary cultures maintain genomic and phenotypic profile of parental tumor tissues. BMC Cancer, 11(1): 244.
8. Craven, R.A., Stanley, A.J., Hanrahan, S., Dods, J., Unwin, R., Totty, N., Harnden, P., Eardley, I., Selby, P.J. and Banks, R.E. (2006) Proteomic analysis of primary cell lines identifies protein changes present in renal cell carcinoma. Proteomics, 6(9): 2853-2864.
9. Perego, R.A., Bianchi, C., Corizzatto, M., Eronzi, B., Torsello, B., Valsecchi, C., Di Fonzo, A., Cordani, N., Favini, P., Ferrero, S., Pittu, M., Sarto, C., Magni, F., Rocco, F. and Mocarelli, P. (2005) Primary cell cultures arising from normal kidney and renal cell carcinoma retain the proteomic profile of corresponding tissues. J. Proteome Res., 4(5): 1503-1510.
10. Bianchi, C., Bombelli, S., Raimondo, F., Torsello, B., Angeloni, V., Ferrero, S., Di Stefano, V., Chinello, C., Cifola, I., Invernizzi, L., Brambilla, P., Magni, F., Pittu, M., Zanetti, G., Mocarelli, P. and Perego, R.A. (2010) Primary cell cultures from human renal cortex and renal-cell carcinoma evidence a differential expression of two spliced isoforms of Annexin A3. Cell. Res., 41(12): 1967-1979.
11. Twine, N.A., Janitz, K., Wilkins, M.R. and Janitz, M. (2011) Whole transcriptome sequencing reveals gene expression and splicing differences in brain regions affected by Alzheimer’s disease. PLoS One, 6(1): e16266.
12. Naik, S.N., Balakrishna, C.R. and Randelia, H.P. (1969) Epidemiology of horn cancer in Indian zebu cattle: Breed incidences. Br. Vet. J., 125: 222-230.
13. Joshi, B.P., Soni, P.B., Fefar, D.T., Ghodasara, D.J. and...
Prajapati, K.S. (2009) Epidemiological and pathological aspects of horn cancer in cattle of Gujarat. Indian J. Field Vet., 5: 15-18.

14. Burggraaf, H. (1935) Kanker aan de basis van de hoorns bijzebus. T. Diergeneesk., 62: 1121-1136.

15. Rezende, A.M.L. and Naves, P.T. (1975) Horn core cancer in a zebu cow, imported to Brazil. Pesqui. Agropec. Bras. Ser. Vet., 10: 41-44.

16. Zubaidy, A.J. (1976) Horn cancer in cattle in Iraq. Vet. Pathol., 13: 435-454.

17. Kulkarni, H.V. (1953) Carcinoma of horn in bovines of Old Baroda state. Indian Vet. J., 29: 415-421.

18. Damodoran, S., Sundaranaraj, A. and Ramakrishnan, R. (1979) Horn cancer in bulls. Indian Vet. J., 56: 248-249.

19. Gupta, R.K., Sadana, J.R., Kuchroo, V.K., and Kalra, D.S. (1979) Horn cancer in an intact bull. Vet. Rec., 107: 312.

20. Chattopadhyay, S.K., Jandrotia, V.S. and Ramakumar Iyer, P.K.R. (1982) Horn cancer in sheep. Indian Vet. J., 59: 319-320.

21. Luna, L.G., editor. (1968) Pathology AFIo. Manual of Pathology, Blakiston Division, McGraw-Hill, New York.

22. Freshney, R.I. (2006) Basic principles of cell culture. Culture of Cells for Tissue Engineering. John Wiley & Sons, Inc., Hoboken, New Jersey. p3-21.

23. Roth, V. (2006) Available from: http://www.doubling-time.com/pcpu. Accessed on 18-12-2016.

24. Koringa, P.G., Jakhesara, S.J., Bhatt, V.D., Meshram, C.P., Patel, A.K., Fefar, D.T. and Joshi, C.G. (2013) Comprehensive transcriptome profiling of squamous cell carcinoma of horn in Bos indicus. Vet. Comp. Oncol. DOI: 10.1111/vco.12079.

25. Wu, T.D. and Watanabe, C.K. (2005) GMAP: A genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics, 21(9): 1859-1875.

26. Trapnell, C., Williams, B.A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M.J., Salzberg, S.L., Wold, B.J. and Pachter, L. (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol., 28(5): 511-515.

27. Huang, D.W., Sherman, B.T. and Lempicki, R.A. (2008) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Prot., 4(1): 44-57.

28. Thomas, P.D., Kejarival, A., Guo, N., Mi, H., Campbell, M.J., Muruganjan, A. and Ulltisky, B.L. (2006) Applications for protein sequence–function evolution data: mRNA/protein expression analysis and coding SNP scoring tools. Nuc. Acids Res., 34: W645-W650.

29. Gao, J., Wu, H., Wang, L., Zhang, H., Duan, H., Lu, J. and Liang, Z. (2016) Validation of targeted next-generation sequencing for RAS mutation detection in FFPE colorectal cancer tissues: Comparison with Sanger sequencing and ARMS-Scorpion real-time PCR. BMC J. Med., 6(1): e009532.

30. Koringa, P.G., Jakhesara, S.J., Bhatt, V.D., Meshram, C.P., Patel, A.K., Fefar, D.T. and Joshi, C.G. (2016) Comprehensive transcriptome profiling of squamous cell carcinoma of horn in Bos indicus. Vet. Comp. Oncol., 14(2): 122-136.

31. Król, M., Polańska, J., Pawłowski, K.M., Turowksi, P., Skierski, J., Majewska, A., Ugorski, M., Morzy, R.E. and Motty, T. (2010) Transcriptomic signature of cell lines isolated from canine mammary adenocarcinoma metastases to lungs. J. Appl. Genet., 51(1): 37-50.

32. Pal, D., Wu, D., Haruta, A., Matsumura, F. and Wei, Q. (2010) Role of a novel coiled-coil domain-containing protein CCDC69 in regulating central spindle assembly. Cell Cycle, 9(20): 4177-4129.

33. Sorrells, S., Carbonneau, S., Harrington, E., Chen, A.T., Hast, B., Milash, B., Pyati, U., Major, M.B., Zhou, Y., Zon, L.I., Stewart, R.A., Look, A.T. and Jette, C. (2012) Cced9 protects cells from ionizing radiation by inhibiting the expression of p53. PLoS Genet., 8(8): e1002922.

34. Lu, Z., Zhou, L., Killela, P., Rasheed, A.B., Di, C., Poc, W.E., McLendon, R.E., Bigner, D.D., Nicchitta, C. and Yan, H. (2009) Glioblastoma proto-oncogene 6 required for tumor cell survival and response to endoplasmic reticulum stress. Cancer Res., 69(23): 9105-9111.

35. Wallgard, E., Nitzsche, A., Larsson, J., Guo, X., Dieterich, L.C., Dimberg, A., Olfsen, T., Pontén, F.C., Mäkinen, T., Kalén, M. and Helström, M. (2012) PALadin (X99384) is expressed in the vasculature and shifts from endothelial to vascular smooth muscle cells during mouse development. Dev. Dyn., 241(4): 770-786.

36. Wang, H., Ke, F. and Zheng, J. (2014) Hedgehog-glioma-associated oncogene homolog-1 signaling in colon cancer cells and its role in the celecoxib-mediated anti-cancer effect. Oncol. Lett., 8(5): 2203-2208.

37. Zhao, M., Tang, Q., Wu, W., Xia, Y., Chen, D. and Wang, X. (2014) miR-20a contributes to endothelialitis by regulating BTN4 expression. Mol. Biol. Rep., 41(9): 5793-5797.

38. Wang, L., McDonnell, S.K., Hebring, S.J., Cunningham, J.M., St. Sauver, J., Cerhan, J.R., Isaya, G., Schaid, D.J. and Thibodeau, S.N. (2008) Polymorphisms in mitochondrial genes and prostate cancer risk. Cancer Epidemiol. Biomarkers Prev., 17(12): 3558-3566.

39. Zeller, C., Dai, W., Steele, N.L., Siddiqi, A., Walley, A.J., Wilhelm-Benartzi, C.S.M., Rizzo, S., Van Der Zee, A., Plumb, J.A. and Brown, R. (2012) Candidate DNA methylation drivers of acquired cisplatin resistance in ovarian cancer identified by methylome and expression profiling. Oncogene, 31(42): 4567-4576.

40. Brocato, J. and Costa, M. (2015) SATB1 and 2 in colorectal cancer. Carcinogenesis, 36(2): 186-191.

41. Xiao, M., Chen, L., Wu, X. and Wen, F. (2014) The association between the rs6495309 polymorphism in CHRNA3 gene and lung cancer risk in Chinese: A meta-analysis. Sci. Rep., 4: 6372.

42. Ewens, K.G., Kanetsky, P.A., Richards-Yutz, J., Prurrazolla, J., Shields, C.L., Ganguly, T. and Ganguly, A. (2014) Chromosome 3 status combined with BAP1 and EIF1AX mutation profiles are associated with metastasis in uveal melanoma gene mutations associated with metastasis in UM. Invest. Ophthalmol. Visual Sci., 55(8): 5160-5167.

43. Chandra, U.R., Ma, C., Dhir, R., Bisceglia, M., Lyons-Weiler, M., Liang, W., Michalopoulos, G., Becich, M. and Monzon, F.A. (2007) Gene expression profiles of prostate cancer reveal involvement of multiple molecular pathways in the metastatic process. BMC Cancer, 7(1): 1.

44. Pang, J., Liu, W.P., Liu, X.P., Li, L.Y., Fang, Y.Q., Sun, Q.P., Liu, S.J., Li, M.T., Xu, Z.L. and Gao, X. (2009) Profiling protein markers associated with lymph node metastasis in prostate cancer by DIGE based proteomics analysis. J. Proteome Res., 9(1): 216-226.

45. Schönhöl, A.H. (2001) Role of serine/threonine protein phosphatase 2A in cancer. Cancer Lett., 170(1): 1-13.

46. Bartek, J. and Hodny, Z. (2010) SUMO boosts the DNA damage response barrier against cancer. Cancer Cell, 17(1): 9-11.

47. Wei, J., Costa, C., Ding, Y., Zou, Z., Yu, L., Sanchez, J.J., Qian, X., Chen, H., Gimenez-Capitan, A., Meng, F. and Moran, T. (2011) mRNA expression of BRCA1, PIAS1, and PIAS4 and survival after second-line docetaxel in advanced gastric cancer. J. Natl. Cancer Inst., 103(20): 1552-1556.

48. Jovov, B., Araujo-Perez, F., Sigel, C.S., Stratford, J.K., McCoy, A.N., Yeh, J.J. and Keku, T. (2012) Differential gene expression between African American and European American colorectal cancer patients. PloS One, 7(1): e30168.

49. Possemato, R., Marks, K.M., Shaul, Y.D., Pacold, M.E., Kim, D., Birsoy, K., Sethumadhavan, S., Woo, H.K., Jiang, H.G., Jha, A.K. and Chen, W.W. (2011) Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature, 476(7360): 346-350.
ifteen markers of mitochondrial biogenesis

Veterinary World, EISSN: 2231-0916 53

65. Cheng, I., Plummer, S.J., Neslund-Dudas, C., Klein, E.A.,
64. Yamakawa, N., Kaneda, K., Saito, Y., Ichihara, E. and
63. Ghalayini, M.K., Dong, Q., Richardson, D.R. and
62. Kovacevic, Z. and Richardson, D.R. (2006) The metastasis

Veterinary World, EISSN: 2231-0916 53

56. Zhang, Q., He, J., Lu, W., Yin, W., Yang, H., Xu, X. and
55. Abeele, F.V., Lemonnier, L., Thébault, S., Lepage, G.,
54. Christensson, L.K., Gunewardena, S., Hong, X.,
Spitschak, M., Baufeld, A. and Vanselow, J. (2013) Research resource: Preovulatory LH surge effects on follicular theca and granulosa transcripts. Mol. Endocrinol., 27(7): 1153-1171.

5. Abeece, F.V., Lemonnier, L., Thebault, S., Lepage, G.,
4. Parzy, J.B., Shuba, Y., Skryma, R. and Prevarska, R. (2004) Two types of store-operated Ca2+-channels with different activation modes and molecular origin in LNCaP human prostate cancer epithelial cells. J. Biol. Chem., 279(29): 30326-30337.

5. Zhang, Q., He, J., Lu, W., Yin, W., Yang, H., Xu, X. and
4. Parzy, J.B., Shuba, Y., Skryma, R. and Prevarska, R. (2004) Two types of store-operated Ca2+-channels with different activation modes and molecular origin in LNCaP human prostate cancer epithelial cells. J. Biol. Chem., 279(29): 30326-30337.

4. Parzy, J.B., Shuba, Y., Skryma, R. and Prevarska, R. (2004) Two types of store-operated Ca2+-channels with different activation modes and molecular origin in LNCaP human prostate cancer epithelial cells. J. Biol. Chem., 279(29): 30326-30337.

3. Zhang, Q., He, J., Lu, W., Yin, W., Yang, H., Xu, X. and
2. Wang, D. (2010) Expression of transient receptor potential channels, increases cisplatin-induced cell death in oral cancer.
Cell Cycle, 11(23): 4390-4401.

2. Wang, D. (2010) Expression of transient receptor potential channels, increases cisplatin-induced cell death in oral cancer.
Cell Cycle, 11(23): 4390-4401.

1. Cadenas, C., Franckenstein, D., Schmidt, M., Gehrmann, M.,
Hermes, M., Geppert, B., Schormann, W., Macceux, L.J.,
Schug, M., Schumann, A. and Wilhelm, C. (2010) Role of thioredoxin reductase 1 and thioredoxin interacting protein in prognosis of breast cancer. Breast Cancer Res., 12(3): 1.

1. Cadenas, C., Franckenstein, D., Schmidt, M., Gehrmann, M.,
Hermes, M., Geppert, B., Schormann, W., Macceux, L.J.,
Schug, M., Schumann, A. and Wilhelm, C. (2010) Role of thioredoxin reductase 1 and thioredoxin interacting protein in prognosis of breast cancer. Breast Cancer Res., 12(3): 1.

Available at www.veterinaryworld.org/Vol.10/January-2017/8.pdf
81. Chang, Y.C., Jan, Y.H., Chan, Y.C., Yang, Y.F., Su, C.Y., Lai, T.C., Liu, Y.P. and Hsiao, M. (2013) Identification of ALDOA as a new Lung adenocarcinoma predict gene involve cancer metabolism and tumor metastasis. FASEB J., 27(1_MeetingAbstracts): 58-61.

82. Migneco, G., Menezes, D.W., Chiavarina, B., Cros, R.C., Pavlides, S., Pestell, R.G., Fatatis, A., Flomenberg, N., Tsirigos, A., Howell, A. and Martinez-Outschoorn, U.E. (2010) In-habitic cancer associated fibroblasts promote breast cancer tumor growth, without a measurable increase in angiogenesis: Evidence for stromal-epithelial metabolic coupling. Cell Cycle, 9(12): 2412-2422.

83. Li, K.K.W., Pang, J.C.S., Ching, A.K.K., Wong, C.K., Kong, X., Wang, Y., Zhou, L., Chen, Z. and Ng, H.K. (2009) miR-124 is frequently down-regulated in medulloblastoma and is a negative regulator of SLC16A1. Hum. Pathol., 40(9): 1234-1243.

84. Tripathi, A.K., Koringa, P.G., Jakshearsa, S.J., Ahir, V.B., Ramani, U.V., Bhatt, V.D., Sajnani, M.R., Patel, D.A., Joshi, A.J., Shankmuga, S.J. and Rank, D.N. (2012) A preliminary sketch of horn cancer transcriptome in Indian zebu cattle. Gene, 493(1): 124-131.

85. Uhlen, M., Oksvold, P., Fagerberg, L., Lundberg, E., Tripathi, A.K., Koringa, P.G., Jakhesara, S.J., Ahir, V.B., Migneco, G., Menezes, D.W., Chiavarina, B., Cros, R.C., Chang, Y.C., Jan, Y.H., Chan, Y.C., Yang, Y.F., Su, C.Y., Johansson, H., Shoshan, M. and Lundqvist, E.A. (2013) Metabolic markers GAPDH, PKM2, ATP5B and BEC-index in advanced serous ovarian cancer. BMC Clin. Pathol., 13(1): 1.

86. Das, S., Samant, R.S. and Shevde, L.A. (2011) Hedgehog signaling induced by breast cancer cells promotes osteoclastogenesis and osteolysis. J. Biol. Chem., 286(11): 9612-9622.

87. Ferraro, A., Schepsis, F., Leone, V., Federico, A., Borbone, E., Pallante, P., Berlingieri, M.T., Chiapetta, G., Monaco, M., Palmieri, D. and Chiarotti, L. (2013) Tumor suppressor role of the CL2/DRO1/CCDC80 gene in thyroid carcinogenesis. J. Clin. Endocrinol. Metab., 98(7): 2834-2843.

88. Hjerpe, E., Brage, S.E., Carlsson, J., Stolt, M.F., Schvedins, K., Johansson, H., Shoshan, M. and Lundqvist, E.A. (2013) Metabolic markers GAPDH, PNM2, ATP5B and BEC-index in advanced serous ovarian cancer. BMC Clin. Pathol., 13(1): 1.

89. Li, X., Roslan, S., Johnstone, C.N., Wright, J.A., Bracken, C.P., Anderson, M., Bert, A.G., Selth, L.A., Anderson, R.L., Goodall, G.J. and Gregory, P.A. (2014) MiR-200 can repress breast cancer metastasis through ZEB1-independent but moesin-dependent pathways. Oncogene, 33(31): 4077-4088.

90. Singhi, A.D., Mathews, A.C., Jenkins, R.B., Lan, F., Fink, S.R., Narras, H., Wang, R., Fetting, J.H., Hicks, J., Sukumar, S. and De Marzo, A.M. (2012) MYC gene amplification is often acquired in lethal distant breast cancer metastases of unamplified primary tumors. J. Clin. Oncol., 30(20): 2507-2517.

91. Rokavec, M., Öner, M.G., Li, H., Jackstadt, R., Jiang, L., Lodygin, D., Kaller, M., Horst, D., Ziegler, P.K., Schвитальта, S. and Slotta-Huspenina, J. (2014) IL-6R/IL-6 signal pathway and its involvement in EMT and invasion. J. Neuro Oncol., 120(1): 121-132.

92. Kong, X., Wang, Y., Zhou, L., Chen, Z. and Ng, H.K. (2009) Glycolytic cancer associated fibroblasts promote breast cancer tumor growth, without a measurable increase in angiogenesis: Evidence for stromal-epithelial metabolic coupling. Cell Cycle, 9(12): 2412-2422.

93. Wu, F., Cheng, C., Wang, Z., Xiao, X., Zeng, H., Xing, S., Chen, X., Wang, J., Li, S., Zhang, Y. and Xiang, W. (2015) SATB1 overexpression regulates the development and progression in bladder cancer through EMT. PLoS One, 10(2): e0117581.

94. Cheng, Y., Liu, W., Sun, H., Gao, X., and Yin, Y. and Lu, Q. (2013) miR-196a targets netrin 4 and regulates cell proliferation and migration of cervical cancer cells. Biochem. Biophys. Res. Commun., 440(4): 582-588.

95. Liu, X., Liu, Q., Fan, Y., Wang, S., Liu, X., Zhu, L., Wang, Z., Hou, J., Lu, L., Qi, Z., Sun, J., Gao, W., Meng, J., Wang, Y., Sun, H., Gu, X., and Yin, Y. (2013) Small ribosomal protein subunit S7 suppresses ovarian tumorigenesis through regulation of the PI3K/AKT and MAPK pathways. PLoS One, 8(11): e79117.

96. Yu, C., Luo, Q., Gu, B., Khudhair, N., Gu, X., Zang, Y., Wang, C., Zhang, N., Li, Q. and Gao, X. (2014) Molecular network including elF1AX, RPS7, and 14-3-3y regulates protein translation and cell proliferation in bovine mammary epithelial cells. Arch. Biochem. Biophys., 566: 142-155.

97. Bachelor, M.A., Lu, Y. and Owens, D.M. (2011) L-3-Phosphoserine phosphatase (PSPH) regulates cutaneous squamous cell carcinoma proliferation independent of L-serine biosynthesis. J. Dermatol. Sci., 63(3): 164-172.

98. Cheng, Y., Liu, W., Kim, S.T., Sun, J., Lu, L., Sun, J., Zheng, S.L., Isaacs, W.B. and Xu, J. (2011) Evaluation of PPP2R2A as a prostate cancer susceptibility gene: A comprehensive germline and somatic study. Cancer Genet., 204(7): 375-381.

99. Liu, X., Liu, Q., Fan, Y., Wang, S., Liu, X., Zhu, L., Liu, M. and Tang, H. (2014) Downregulation of PPP2R2E expression by miR-23a suppresses apoptosis to facilitate the growth of gastric cancer cells. FEBS Lett., 588(17): 3160-3169.

100. Erickson, J.W. and Cerione, R.A. (2010) Glutaminase: A hot spot for regulation of cancer cell metabolism? Oncotarget, 1(8): 734-740.

101. Niison, J.A. and Cleveland, J.L. (2003) Myc pathways provoking cell suicide and cancer. Oncogene, 22(56): 9007-9021.

102. Lu, Y., Yi, Y., Liu, P., Wen, W., James, M., Wang, D. and You, M. (2007) Common human cancer genes discovered by integrated gene-expression analysis. PLoS One, 2(11): e1149.

103. Woeller, C.F., Anderson, D.D., Szebenyi, D.M. and D.D. (2011) L-3-Phosphoserine phosphatase (PSPH) regulates cutaneous squamous cell carcinoma proliferation independent of L-serine biosynthesis. J. Dermatol. Sci., 63(3): 164-172.
Stover, P.J. (2007) Evidence for small ubiquitin-like modifier-dependent nuclear import of the thymidylate biosynthesis pathway. *J. Biol. Chem.*, 282(24): 17623-17631.

Anderson, D.D., Woeller, C.F. and Stover, P.J. (2007) Small ubiquitin-like modifier-1 (SUMO-1) modification of thymidylate synthase and dihydrofolate reductase. *Clin. Chem. Lab. Med.*, 45(12): 1760-1763.

Fernández-Chacón, R. and Südhof, T.C. (2000) Novel SCAMPs lacking NPF repeats: Ubiquitous and synaptic vesicle-specific forms implicate SCAMPs in multiple membrane-trafficking functions. *J. Neurosci.*, 20(21): 7941-7950.

Vogelstein, B. and Kinzler, K.W. (2004) Cancer genes and the pathways they control. *Nat. Med.*, 10(8): 789-799.

Dawany, N.B., Dampier, W.N. and Tozeren, A. (2011) Large-scale integration of microarray data reveals genes and pathways common to multiple cancer types. *Int. J. Cancer*, 128(12): 2881-2891.