Antimicrobial and Transconjugants Characteristics of Sul3 Positive Escherichia Coli Isolated from Animals in Nanning, Guangxi Province

Zheng Li
 Guangxi University

Yunru Chen
 Guangxi University

Geyin Zhang
 Guangxi University

Qingmei Li
 Guangxi University

Junying Sun
 Guangxi University

Yunqiao Yang
 Guangxi University

Hongbin Si (✉ shb2009@gxu.edu.cn)
 Guangxi Guangxi University

Research article

Keywords: sul3, multiple drug resistance, resistance gene, plasmid

DOI: https://doi.org/10.21203/rs.3.rs-72181/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Sulfonamides is the second most popular antibiotic in many countries, which leads to the widespread emergence of sulfonamides resistance. *Sul3* is a late sulfanilamide resistance gene, whose research is relatively little.

Result: 46 *sul3* positive *E. coli* strains were separated. A total of 12 ST types were observed, and 1 of those was previously unknown type. The ST350 is the most numerous type. All isolates were multidrug-resistant *E. coli*, with high antimicrobial rates to penicillin, ceftriaxone sodium, streptomycin, tetracycline, ciprofloxacin, gatifloxacin and chloramphenicol (100%, 73.9%, 82.6%, 100%, 80.4%, 71.7% and 97.8%), and with at least 3 resistance genes in addition to *sul3*. The plasmids transferred from 3 *sul3*-positive isolates to C600, the most of which brought 7 antibiotic resistance and increased resistance genes to C600. The transferred *sul3* gene and the plasmid that carries it could be stably inherited in the recipient bacteria for at least 20 days. Those plasmids had no effect on the growth of the recipient bacteria, but it would greatly reduce (at least 60 time) the in vitro competitiveness of the strains.

Conclusions: In Nanning, these *sul3*-positive *Escherichia coli* have strong antimicrobial resistance, and the plasmid carrying *sul3* has the ability to transfer multiple resistance genes, so long-term monitoring is necessary. Since the transferred plasmid will greatly reduce the in vitro competitiveness of the strain, we can consider limiting the spread of antimicrobial in this respect.

Background

The problem of bacterial resistance has a long history, and now it has become a medical problem which we cannot be ignored. Many resistances in bacteria is dominated by mobile genetic elements, including plasmids, integrons and transposons [1]. *Escherichia coli* is a common Gram-negative bacteria and one of the symbiotic bacteria in the intestines and environment of most livestock and poultry. But many studies [2, 3] have also shown that *E. coli* can cause a variety of diseases in humans and animal. And antibiotics have been used to treat bacterial infections and even used as feed additives to promote the growth of livestock and poultry for a long time [1, 4]. These used antibiotics are not completely absorbed or metabolized by the body[5]. After being discharged, these antibiotics can pollute and spread in the environment through a variety of ways, such as agricultural runoff, sewage discharge and nearby farm leaching[6]. As a result, many symbiotic bacteria such as *Escherichia coli* have to live in the environment which is containing antibiotics for a long time, and this kind of environment can provide appropriate selection pressure for the emergence and spread of multi-antibiotic-resistant bacteria and antibiotic-resistant genes.

Sulfonamide is an antibiotic which is not easy to degrade, have low soil adsorption rate and high mobility[7, 8]. It can inhibit bacterial growth and reproduction by competing for binding sites of P-aminobenzoic acid and dihydrofolate synthase (DHPS) [9]. Moreover, the sulfonamide has many advantages, such as wide range of use, low cost, a wide variety and etc. Since the first sulfonamide was
used in clinical practice in 1935, it has been one of the commonly used antimicrobials in the prevention and treatment of aquatic and livestock diseases[10, 11].

Sulfonamide resistance genes (including floP and sul) can encode a kind of DHPS with low affinity to sulfonamides, which makes bacteria grow and reproduce normally in the environment containing sulfonamides[12, 13]. At present, four kinds of sulfonamides resistant genes (sul1-4) have been found in plasmids. Sul1 and sul2 were discovered successively in 1985[14, 15]. Sul4 was recently found in swine in swiss [16]and was also found in type I integron transmission genes observed in Indus River sediments[9], but it has not been reported in clinical isolates[9]. Sul3 is a sulfanilamide drug-resistant gene type discovered in 2003[17]. Since its discovery, sul3 has been successively found in more and more regions, sources and strains[18–21], among which even have human-originated Escherichia coli [22].

Nanning is the capital of Guangxi Province, which is located in the southwest of China. The breeding industry that in Nanning is mainly composed of retail investors. The unreasonable use of antibiotics for livestock and poultry diseases, coupled with the lack of effective management measures, perpetuate the problem of bacterial resistance. The purpose of this study is to detect the antimicrobial, multi-locus sequence typing (MLST) and antimicrobial gene characteristics of sul3 positive E. coli from animals in Nanning area. At the same time, to evaluate the influence of sul3 positive bacteria on host bacteria after conjugation.

Results
Isolates and MLST

From 2015 to 2017, 142 strains of Escherichia coli were detected from 150 bacteria samples of animal origin in Nanning, among which 46 strains carried sul3, accounting for 32.4% of the total number of Escherichia coli samples. The 46 strains of sul3 positive Escherichia coli were divided into 12 ST genotypes in total. Overall, ST350 was the dominant cluster (13, 28.2%), both it and ST156 were identified in chickens. ST10, ST746 and ST641 were detected among isolates from chickens (n = 2, 2, 1) and pig (n = 2, 3, 3). ST101 was identified in pigs(n = 2). ST2178 strains were almost detected in isolates of dogs. Finally, the sample of the unknown type is from pig (Table 1)(NOTE: Table 1 is longer than a page of A4, so we put it at the end of this document. You can put Table 1 at the end of this paragraph).
Isolates	Year	Source	ST type	Antibiotic resistance genes
EC001	2017	pig	641	tetA-tetM-TEM-flor-oqxA
EC029			641	rmxA-tetA-tetM-TEM-flor-oqxA
EC004	2017	pig	2178	tetA-CTX-MU-CTX-M9-flor-mcr-1-Sul2-FosA3
EC012	2178			aac(3)-II-tetA-tetM-TEM-mcr-1-oqxA-oqxB-Sul1-Sul2
EC026	10		1	aac(6')-Ib-tetA-flor-mcr-1-oqxA-Sul1-Sul2
EC041	10		1	aac(6')-Ib-tetA-CTX-MU-flor-oqxA-oqxB-Sul2
EC025	746			tetA-TEM-flor-oqxA-Sul1-Sul2
EC038	746			tetA-TEM-flor-oqxA-Sul1-Sul2
EC009	222			tetA-CTX-MU-CTX-M9-mcr-1-Sul2-FosA3
EC006	unknown			aac(3)-II-tetA-Sul2
EC022	chicken	350		tetA-tetM-TEM-CTX-MU-CTX-M9-qnrB-flor-oqxA-Sul2
EC028	10			rmxA-aac(6')-Ib-tetA-flor-mcr-1-oqxA-Sul2
EC027	156			aac(6')-Ib-aac(3)-II-tetA-tetM-TEM-CTX-MU-OXA-1-flor-oqxA-Sul1-Sul2
EC044	457			aac(3)-II-tetA-tetM-flor
EC042	dog	2178		tetA-CTX-MU-CTX-M9-flor-oqxA-Sul2-FosA3
EC043	2178			tetA-CTX-MU-CTX-M9-mcr-1-Sul2-FosA3
EC014	2016	pig	101	tetA-TEM-CTX-MU-flor-oqxA-oqxB-Sul2-FosA3
EC034			641	tetA-TEM-flor-oqxA-Sul1
EC039			746	rmxA-tetA-TEM-flor-Sul2
EC003	chicken	350		tetA-tetM-TEM-CTX-MU-CTX-M9-qnrB-flor-oqxA-Sul2
EC005			350	tetA-tetM-CTX-MU-CTX-M9-flor
EC013			350	tetA-tetM-CTX-MU-CTX-M9-flor
EC016			350	tetA-tetM-TEM-CTX-MU-CTX-M9-qnrB-flor-oqxA-Sul1-Sul2
EC018			350	tetA-tetM-TEM-CTX-MU-CTX-M9-qnrB-flor-Sul2
EC019			350	tetA-tetM-TEM-CTX-MU-CTX-M9-flor-oqxA-Sul2
EC023			350	tetA-tetM-TEM-CTX-MU-CTX-M9-qnrB-flor-oqxA-Sul2
Isolates	Year	Source	ST type	Antibiotic resistance genes
----------	------	--------	---------	----------------------------
EC036	350			tetA-tetM-CTX-MU-CTX-M9-qnrB-flor-oqxA-Sul1-Sul2
EC037	350			tetA-tetM-CTX-M9-qnrB-flor-oqxA-Sul1-Sul2
EC035	746			tetA-TEM-CTX-MU-flor-oqxA-Sul2
EC017	156			rmrB-aac(6’)-1b-aac(3)-Il-tetA-tetM-TEM–CTX-MU-OXA-1-flor-oqxA-oqxB-Sul1-Sul2
EC007	dog	950		tetA-tetM-TEM-CTX-MU-CTX-M9-flor-oqxA
EC040	dog	950		tetA-tetM-TEM-CTX-MU-qnrB-flor-oqxA-Sul2
EC011	457			aac(3)-Il-tetA-TEM-qnrB-flor-Sul2
EC021	457			aac(3)-Il-tetA-TEM-qnrB-flor-oqxA-Sul2
EC010	2178			tetA-TEM-CTX-MU-CTX-M9-flor-mcr-1-oqxA-Sul1-Sul2-FosA3
EC031	2015	pig	101	rmrB- tetA-TEM-qnrA-oqxA-Sul2
EC024	chicken	350		tetA-tetM-TEM-CTX-MU-CTX-M9-OXA-1-qnrB-flor-oqxA-Sul2
EC030	350			tetA-tetM-TEM-CTX-MU-CTX-M9-qnrB-flor-oqxA-Sul1-Sul2
EC032	350			aac(6’)-1b-tetA-tetM-TEM-CTX-MU-CTX-M9-qnrB-flor-oqxA-Sul1-Sul2
EC020	457			aac(3)-Il-tetA-tetM-TEM-qnrB-flor-oqxA-Sul2-marA
EC002	457			aac(3)-Il-tetA-tetM-TEM-qnrB-flor-oqxA-Sul2
EC008	641			tetA-TEM-flor
EC033	746			aac(3)-Il-tetB-TEM-CTX-MU-CTX-M9-OXA-1-flor-Sul2
EC045	10			tetM-TEM-CTX-MU-CTX-M9-flor-oqxA-Sul2-FosA3
EC046	23			aac(6’)-1b-tetA-tetM-CTX-MU-CTX-M9-OXA-1-flor-mcr-1-oqxA-oqxB-Sul1-FosA3
EC015	dog	2178		tetA-CTX-MU-CTX-M9-flor-mcr-1-Sul2-FosA3

Antibiotic Resistance And Resistance Gene

The results showed that 46 strains of *sul3* positive *Escherichia coli* were highly resistant to penicillin, ceftriaxone, streptomycin, tetracycline, ciprofloxacin, gatifloxacin and chloramphenicol, which were 100% (46/46), 73.9% (34/46), 82.6% (38/46), 100% (46 /46), 80.4% (37/ 46), 71.7% (33/46) and 97.8% (45/46),
Some strains were also resistant to amikacin and colistin (10.9%, 5/46), only sensitive to meropenem (Table 2).

Antimicrobial agents	The proportion (%) (Positive number /total)		
	R	I	S
penicillin	100(46/46)	0(0/46)	0(0/46)
ceftazidime	26.1(12/46)	13.0(6/46)	60.9(28/46)
ceftriaxone	73.9(34/46)	2.2(1/46)	23.9(11/46)
meropenem	0(0/46)	0(0/46)	100(46/46)
amikacin	10.9(5/46)	0(0/46)	89.1(41/46)
streptomycin	82.6(38/46)	13.0(6/46)	4.4(2/46)
tetracycline	100(46/46)	0(0/46)	0(0/46)
ciprofloxacin	80.4(37/46)	0(0/46)	19.6(9/46)
gatifloxacin	71.7(33/46)	17.4(8/46)	10.9(5/46)
chloramphenicol	97.8(45/46)	2.2(1/46)	0(0/46)
fosfomycin	21.7(10/46)	0(0/46)	78.3(36/46)
colistin	10.9(5/46)	8.7(4/46)	80.4(37/46)

In addition to sul3, 20 kinds of antimicrobial genes were detected, of which tetA (95.7%, 44 / 46), flor (89.1%, 41 / 46), oqxA (76.1%, 35 / 46), sul2 (80.4%, 37 / 46) were detected of rate higher, and strains carrying mcr-1 (21.7%, 10 / 46) were also detected, armA and SHV was not detected (Tables 1 and 3).
Table 3
Prevalence of antimicrobial-resistant genes in Sul3 positive E. coli

Drug-resistant genes	Positive prevalence (Positive number /total)
TEM	67.4% (31/46)
SHV	0.0% (0/46)
CTX-MU	60.9% (28/46)
CTX-M9	52.2% (24/46)
OXA-1	8.7% (4/46)
armA	0.0% (0/46)
rmtA	6.5% (3/46)
rmtB	4.3% (2/46)
aac(6')-1b	15.2% (7/46)
aac(3)-II	21.7% (10/46)
tetA	95.7% (44/46)
tetB	2.2% (1/46)
tetM	58.7% (27/46)
qnrA	2.2% (1/46)
qnrB	32.6% (15/46)
flor	89.1% (41/46)
mcr-1	21.7% (10/46)
oqxA	76.1% (35/46)
oqxB	10.9% (5/46)
Sul1	30.4% (14/46)
Sul2	80.4% (37/46)
FosA3	19.6% (9/46)

Transconjugants And Related Experiments

Three suspected transconjugants were successfully obtained through the conjugation experiment. After sul3 positive identification and ERIC-PCR (Fig. 1), the 3 suspected transconjugants were all the plasmid
strains obtained from the recipient bacteria (C600) (named as EC027/T, EC035/T and EC038/T according to the donor bacteria name)

In comparison with the recipient bacteria, the MIC of the maximum 7 antimicrobials in transconjugants (EC027/T) showed different degrees elevated, including penicillin, ceftazidime, streptomycin, amikacin, tetracycline, ciprofloxacin and chloramphenicol (Table 4). According to the detection results of resistance genes, in addition to sul3 gene, E027/T was detected with 6 new resistance genes, while E025/T and E038/T were 2 (Table 5). However, compared with the sensitivity changes of antibacterial drugs, we found that no corresponding resistance genes were detected in the chloramphenicol of streptomycin and chloramphenicol. The reasons for this phenomenon will be explained in our discussion. The plasmid stability experiment showed that the plasmid could be stably and continuously passed for at least 40 generations with strong stability (Fig. 2).

Antimicrobial agents	C600	EC027/T	EC035/T	EC038/T	EC027	EC035	EC038
penicillin	8	> 512	> 512	32	512	256	512
ceftazidime	1.25	10	1.25	1.25	80	1.25	1.25
streptomycin	16	256	128	128	> 512	128	512
amikacin	8	128	16	4	> 512	4	4
tetracycline	4	256	128	128	256	256	256
ciprofloxacin	< 0.25	64	< 0.25	< 0.25	128	32	32
chloramphenicol	32	128	128	256	512	256	512

Isolates	Positive resistance genes
EC027/T	OXA-1, sul3, tetM, flor, aac(6')-Ib, sul2, sul1
EC035/T	TEM, sul3, tetA
EC037/T	TEM, sul3, tetA

The Adaptive Cost Of Plasmid C600

The growth curves of the 3 transconjugants and the recipient bacteria showed that the transconjugants and the recipient bacteria had minor changes only during the logarithmic growth period, and the changes were not obvious after entering the stable period at 8 hours. It is indicating that the transconjugants had little influence on the growth of the recipient bacteria (Fig. 3).
n the competitive test, we observed that the competitive ability of the 3 transconjugants was significantly reduced compared with that of the recipient bacteria C600, among which the most obvious one was EC035/T (0.043), followed by EC027/T (0.058) and EC038/T (0.061) (Fig. 4).

Discussion

Nowday, sulphonamides are rarely used to treat bacterial infections in humans in many regions, but they are still widely used in aquaculture, animal husbandry and veterinary because of the lower price[20]. Massive use plus great potential for penetrate into the environment. For these reasons, the concentration of sulfonamides becomes a priority for sewage treatment, rivers and water sources [20]. Sulfonamide-resistant genes (sul) have also spread widely for these reason. Analogously, with regard to the detection rate of sul, we compared several recent studies [23–26] found that the detection rate of sulfonamide-resistant genes was high and that the detection rate of sul1 and sul2 in sulfamine-resistant genes was generally higher than that of sul3. It was suggested that there may be more sulfamine-resistant bacteria in Nanning, and we should pay more attention to them.

After analyzing the genetic environment of sul gene, Jang et al. [20] said that compared with the other two genes, the diversity of adjacent genetic transfer elements and the resistance genes of sul3 were lower, and some sul3 even existed on chromosomes, which affected the transmission of sul3. But the studies also showed that [20, 47], sul3 is related to type I integron, and can replace sul1 to form atypical type I integron, which emphasize the potential for widespread in the future. This indicates that there is still a certain transmission problem of sul3 at present, but this problem may be solved over time. And in our study, the stability test showed that the transferred sul3 wild plasmid could inheritance in bacteria for a long time, it also indirectly reflects that sul3 has the potential for long-term transmission. In addition, studies have shown that[27, 28], sul3, tetQ, tetO and other sulfonamides and tetracycline resistance genes are significantly positively correlated with the content of Cu, Zn and other heavy metals (P < 0.05 or P < 0.01, r = 0.882–0.992), which indicates that heavy metals can help sul3 appear and there may be some heavy metal pollution in the Nanning’s farms.

The emergence of multidrug-resistant bacteria seriously affects the cure rate of bacterial infection diseases, becoming a potential threat to the health of human beings and livestock[29]. In the study, all the strains we tested showed multiple antibiotic resistance, which is possible because we tested the sul3-positive E. coli. Here we need to pay attention to the pathogenicity of these strains. Compare antibiotic resistance and resistance genes. In isolates strains, only quinolones and aminoglycosides had differences in the detection rate of resistance genes and antimicrobial resistance rate, similarly, no resistance genes associated with streptomycin and chloramphenicol were detected in conjugates, it suggests that there may be other related genes mediating the tolerance of the above-mentioned antimicrobials, which may be the efflux pump or the resistance genes of the relevant antimicrobials. Regarding the plasmids in these isolates, we cannot determine the type and quantity of these transfer plasmids, what we can confirm is that after acquiring the plasmid, there are several (at least 4) antibiotics resistance changes to the strains, and corresponding to the resistance genes tested. It indicates that the
transferred drug-resistant genes can be expressed by host cells, it may affect the effective use of antibiotics in Nanning.

And compared with other studies[29–31], the recombinant plasmid had no effect on the growth performance of the strain, just like the wild plasmid in this study, but the wild plasmids reduced the competitiveness of host bacteria in vitro to a greater extent. Although the types and quantities of drug-resistant genes studied are different, this also indicates that the adaptation cost of wild plasmids will bring greater adaptive cost to the recipient bacteria due to multiple drug-resistant genes or other unknown genes.

In the test, the diversity of each sul3 positive strain is low, but there are still more common types in ST typing. ST23, ST156 and ST10 were reported to be related to human [32–34], Among them, ST10 is the most common pedigree in human urine Escherichia coli isolates[32], and these reports also pointed out that these 3 types were also found in other E.coli strains. Although these 3 types were rarely detected in this study, it is still necessary to pay attention to the transmission between human and livestock.

Conclusion

Forty-six sul3 positive strains of E. coli carry multiple drug resistance gene and have serious drug resistance, sul3 wild plasmid can pass a variety of antibiotic resistance genes, enhancing receptor bacteria to antibiotics sensitivity, affect the strain of sports ability and the ability of biofilm formation, lower strain in vitro competition ability, in the future can be in nanning of the potential threat of antibiotic use

Methods

Isolation and identification of sul3 positive Escherichia coli

142 strains of Escherichia coli were identified from 150 samples of bacteria collected from farms and pet hospital in Nanning from 2015 to 2017. All the strains were identified by MaConkey's agar and Eosin methylene blue agar, and sequence detection with primers of 16 s rRNA and sul3 gene.

Each sample was cultured at 37°C for 16–18 h in McConkey medium and 18–24 h in Eosin methylene blue agar. DNA was extracted by boiling method. The primer of 16 s rRNA and sul3 is reference the previous description (Table 1). The PCR product were sent to the company for sequencing, and uploaded to NCBI for BLST confirmation of suspected isolates and sul3 carrier. The 30% glycerol sample (V/V) and DNA sample of sul3 positive E. coli were stored at -20 °C.

Mlst Typing Detection
A total of 46 strains of *sul3* positive *E. coli* were detected, PCR amplification was conducted using 7 pairs of primers (*adk, fumC, gyrB, icd, mdh, purA and recA*) (Table 6). The positive products were sent to the company for sequence determination, and the results were uploaded to the MLST website (https://pubmlst.org) to obtain the ST type. (NOTE: Table 6 is longer than a page of A4, so we put it at the end of this document. You can put Table 6 at the end of this paragraph)
Table 6
Primer sequences used in this study

Gene	Primer sequence (5'→3')	Product size (bp)	Annealing temp (°C)	References
16Sr RNA	F: AGAGTTTGATCCTGGGCTCAG	1466	55	[38]
	R: ACGGCTACCTTGTTACGACTT			
TEM	F: AGGAAGAGTATGATTCAACA	511	52.5	[38]
	R: CTCGTCGGTTGGTATGCG			
SHV	F: GGTATGCGTTATATCGCTGTG	56.5	1031	[38]
	R: TTAGCGTTGCAGTGCTGATCA			
CTX-M1	F: GGTATAAAAAATCCTGCTGCTC	864	56	[39]
	R: TTGGTGAAGATTTGTAGCGGC			
CTX-M9	F: ATGGTGACAAAGAGAGTGCA	870	50	[40]
	R: CCGTTGCGCGTGATTCTC			
CTX-MU	F: ATGTGCAGTACCAGTAAAGT	593	56	[41]
	R: TGGGTRAAGTARGTCACCAGA			
OXA-1	F: TTGAAGGAACTGAGGTG	651	54	[35]
	R: CCAAGTTTCTGTAAGTCG			
armA	F: AGGTTGTTCATCATTTCTGAG	591	55	[42]
	R: TCTCTTCCATTCCCTTCTCC			
rmtA	F: CTAGCGTCATCCTTCTTCTC	635	60	[43]
	R: TTTGCTTCCATGCCCTTGGC			
rmtB	F: ATCAACGTGCCCCTCACCTCC	631	61	[42]
	R: TTCCACGCCGCCTAAACT			
aac(6')-Ib	F: CAAGAGTCCGTACATCCATA	396	61	[44]
	R: ATGGAAGGTTAGGCATC			
aac(3')-II	F: ACTGTGATGGGATACGCGTC	237	60	[45]
	R: CTCCGTCAGCGTTTCAGCTA			
tetA	F: GCTACATCCTGCTTGCCTTC	210	60	[46]
Gene	Primer sequence (5'→3')	Product size (bp)	Annealing temp (°C)	References
--------	-------------------------	-------------------	---------------------	------------
R: CATAGATCGCCCCGAAGG	F: TTGGTTAGGGGAAGTGGTTTGG	659	65	[46]
R: GTAATGGGCAATACCAACCG				
tetB	F: GTGGGAAAAGTTGACGAG	406	55	[46]
R: CGTAAAGTTCGTCAACAC				
qnrA	F: CAAGAGGTATACTACGAG	628	67	[35]
R: AATCCGGCAGCATTATTCCTAC				
qnrB	F: ATGACGCCATTACGTGAAAA	562	57	[35]
R: GATCGCAATGTGTAAGTTT				
flor	F: GTCATTCCTACCTTTACCTAC	243	60	[47]
R: GACACCAGCAGGCACTACGAG				
mcr-1	F: ATGATGCAGCATACCTGTG	1626	65	[48]
R: TCAAGGGATGATGCGGTTT				
oqxA	F: GATCAGTCAAGGGATAGTTT	670	56	[49]
R: TACTCGCGGTTACTGATTTTA				
oqxB	F: TTTTCGCGGCGGAAAGTAC	512	68	[49]
R: CTCGGCCATTTTGGCGGTA				
sul1	F: GGCTGGATGTTATGCACTCA	263	64	[50]
R: CGAGACCAATAGCGGAAGC				
sul2	F: ACAGAAAGCTATGGCCTGTG	234	62	[50]
R: TTGCGTTGATACCGGACCAC				
sul3	F: CGTAATATAAACACCGGAT	326	55	[50]
R: CCAAGCCTGAATAAATCTCA				
fosA3	F: GCGTCAAGCCTGGCATTTT	258	55	[38]
R: GCCGTCAGGGTGAGAAA				
ERIC-2	AAGTAAGTGACTGGGTGGAGCG	Variable	50	[51]
Adk	F: CTCGACCATTAACCGTTCAG	739	55	[49]
Gene	Primer sequence (5’→3’)	Product size (bp)	Annealing temp (°C)	References
------	-------------------------	-------------------	---------------------	------------
R: CCAGATCAGCGCGAACTTCA	F: TCACAGGTGCGCCGCTTC	769	64	[49]
R: TCCCGGCAGATAAGCTGTGG				
FumC	F: ATCGGGCAGACAGGATGAC	816	66	[49]
R: GTCCATGTAGGCCCTTCAGG				
gyrB	F: CCGGCACAAGGCAAGAGATC	857	59.5	[49]
R: GGACGCAGCAGGATCTGGT				
lcd	F: GCCTTCAGGTTCAGAATCTCTCT	798	55	[49]
R: TTCTGGTCAAATGCAGTCAGG				
mdh	F: GCGCTGATGAAAGAGATGA	817	66	[49]
R: CATACGGTAAGCCACGCAGA				
PurA	F: CGCATCCGTCTTACCATCGACC	731	55	[49]
R: GTCGAAATCTACGGACCGGAAT				

Antibiotic Sensitivity Experiment

The minimum inhibitory concentration (MIC) of antimicrobial agents against sul3 positive *E. coli* was used by the broth dilution method recommended which was recommended by Clinical and Laboratory Standards Institut (CLSI). The tested antimicrobial agents included penicillin, ceftazidime, ceftriaxone, meropenem, amikacin, streptomycin, tetracycline, ciprofloxacin, gatifloxacin, chloramphenicol, fosfomycin and colistin. The results of antibiotic sensitivity were also judged according to the break-point standard established by CLSI. The *E. coli* of ATCC 25922 was used for the quality control of antibiotic sensitivity test.

Antimicrobial Gene Detection

There were 24 antimicrobial genes, including the β-lactam (*TEM, CTX-M9, CTX-MU* and *OXA-1*), aminoglycosides (*armA, rmtA, rmtB, aac(6′)-Ib* and *aac(3′)-II*), tetracyclines (*tetA, tetB* and *tetM*), quinolones (*qnrA* and *qnrB*), sulfonamides (*Sul1* and *sul2*), and other classes (*flor, mcr-1, oqxA, oqxB*, and *fosA3*) (Table 6).
Conjugative Experiment

The conjugative experiment was conducted by filter membrane method. The *Escherichia coli* C600, which did not produce acid and has rifampicin resistance, was used as the recipient bacteria. And sul3-positive isolates were used as the donor bacteria. The transconjugants were screened from McConkey medium with a concentration of 6000 µg/mL sulfamethazine and 3500 µg/mL rifampicin.

The suspected transconjugants were subjected to PCR and antibiotics sensitivity tests to confirm whether the plasmid transfer was successful, and then ERIC-PCR was used to determine the correlation between the transconjugants and C600, with the ERIC-primers as described previously [35] (Table 1). It also detects whether other resistant genes are co-transmitted.

Growth Curve

We used absorbance method to observe the change of the growth status of transconjugants and C600, specific as follows. After shaking culture at 37°C overnight, the bacterial solution was added to fresh LB broth according to the ratio of 1:1000. A total of 16 time points, 3 ml was taken from each time point for OD$_{600}$ absorbance detection. The observation lasted for 24 hours and need repeated 3 times in parallel.

In Vitro Competitive Test

In vitro competition experiments refer to previous descriptions [36]. First, two kinds of bacteria were cultured to 0.5 McFarland, then took 100 µL for each mixed in a 1:1 ratio and added to 10 mL LB broth, and incubated for 16 h at 37°C, 220 r/min. After diluted 106 times, 100 µL bacterial solution was respectively coated with streptomycin 60 µg/mL LB agar and streptomycin free LB agar, and cultured overnight at 37°C. The total CFU and streptomycin resistant CFU were counted, and the competition index of without resistant CFU and streptomycin resistant CFU was calculated, and the parallel repetition was 3 times.

Plasmid Stability

According to the previous description of plasmid stability [37], the transconjugants was shaken in LB medium at 37°C for 12 h, and then inoculated in new LB medium and shaken at 37°C for 12 h again, repeat every 12 h. Each time was counted as one generation, and the procedure was repeated for 60 generations. Every 10 generations, part of the bacterial solution was diluted and coated with agar medium, 24 colonies of bacteria were randomly selected. DNA was extracted by boiling method. Then the PCR of *sul3* was performed to determine the positive rate of *sul3*.

Abbreviations
MIC
Minimum Inhibitory Concentration, CLSI: Clinical and Laboratory Standards Institute

Declarations

Ethics approval and consent to participate

All data were published with the written consent of the farmer and pet owner, and all experiments were conducted in accordance with the animal Ethics guidelines approved by the Experimental Animal Committee of Guangxi University.

Consent for publication

Not applicable

Availability of data and materials

The others datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Competing interests

The authors declare that they have no competing interests.

Funding

This study was funded by the Guangxi Major Project (Demonstration of Comprehensive Ecological Prevention and Control Technology for Major Livestock and Poultry Diseases, GuiKe AA17204057), National Natural Foundation of China (Differential proteomics analysis of the action Mechanism of calabash catechol on CTX-M and fosA3 Escherichia coli, 31760746), and Transformation and Application of Scientific and Technological Achievements in Guigang city (Application and Demonstration of Anti-Resistance Patented Technology in Prevention and Control of Bacterial Diseases in Selenium-rich pig Industry, 1829008). The funders had no role in study design, data collection, analysis and interpretation, decision to publish, or preparation of the manuscript.

Authors' contributions

ZL and HQ participated in research design, analysis and manuscript writing; GZ and YC participated in manuscript modification and sample testing; QL, JS and YY participated in experimental data sorting and recording

Acknowledgements

We would like to thank The Teacher of the College of Animal Husbandry and Medical Engineering of Henan Agricultural University gave us the C600
References

1. Tao R, Ying G, Su H, Zhou H, Sidhu JPS: Detection of antibiotic resistance and tetracycline resistance genes in Enterobacteriaceae isolated from the Pearl rivers in South China. ENVIRON POLLUT 2010, 158(6):2101-2109.

2. Kabir SML: Avian Colibacillosis and Salmonellosis: A Closer Look at Epidemiology, Pathogenesis, Diagnosis, Control and Public Health Concerns. INT J ENV RES PUB HE 2010, 7(1):89-114.

3. De Lorenzo C, de Andrade CP, Machado VSL, Bianchi MV, Rolim VM, Cruz RAS, Driemeier D: Piglet colibacillosis diagnosis based on multiplex polymerase chain reaction and immunohistochemistry of paraffin-embedded tissues. J VET SCI 2018, 19(1):27.

4. Franklin AM, Aga DS, Cytryn E, Durso LM, McLain JE, Pruden A, Roberts MC, Rothrock MJ, Snow DD, Watson JE et al: Antibiotics in Agroecosystems: Introduction to the Special Section. J ENVIRON QUAL 2016, 45(2):377-393.

5. Du J, Zhao H, Liu S, Xie H, Wang Y, Chen J: Antibiotics in the coastal water of the South Yellow Sea in China: Occurrence, distribution and ecological risks. SCI TOTAL ENVIRON 2017, 595:521-527.

6. Nnadozie CF, Odume ON: Freshwater environments as reservoirs of antibiotic resistant bacteria and their role in the dissemination of antibiotic resistance genes. ENVIRON POLLUT 2019, 254:113067.

7. Bílková Z, Malá J, Hrich K: Fate and behaviour of veterinary sulphonamides under denitrifying conditions. SCI TOTAL ENVIRON 2019, 695:133824.

8. Chen J, Xie S: Overview of sulfonamide biodegradation and the relevant pathways and microorganisms. SCI TOTAL ENVIRON 2018, 640-641:1465-1477.

9. Sánchez-Osuna M, Cortés P, Barbé J, Erill I: Origin of the Mobile Di-Hydro-Pteroate Synthase Gene Determining Sulfonamide Resistance in Clinical Isolates. FRONT MICROBIOL 2019, 9.

10. B YLLA, B CWBA, B CWLA, C RJZ, D GZ, E SS, A LCC: Anthropogenic impacts on sulfonamide residues and sulfonamide resistant bacteria and genes in Larut and Sangga Besar River, Perak. SCI TOTAL ENVIRON 2019, 688:1335-1347.

11. Liao X, Li B, Zou R, Xie S, Yuan B: Antibiotic sulfanilamide biodegradation by acclimated microbial populations. APPL MICROBIOL BIOT 2016, 100(5):2439-2447.

12. O S: Resistance to trimethoprim and sulfonamides. VET RES 2001, 32(3-4).

13. Phuong Hoa PT, Nonaka L, Hung Viet P, Suzuki S: Detection of the sul1, sul2, and sul3 genes in sulfonamide-resistant bacteria from wastewater and shrimp ponds of north Vietnam. SCI TOTAL ENVIRON 2008, 405(1-3):377-384.

14. G S, S C, O S: Characterization of mutationally altered dihydropteroate synthase and its ability to form a sulfonamide-containing dihydrofolate analog. J BACTERIOL 1979, 137(1).

15. L S, P R, G S, O S: Site-specific recombination promotes linkage between trimethoprim- and sulfonamide resistance genes. Sequence characterization of dhfrV and sul1 and a recombination active locus of Tn21. Molecular & general genetics: MGG 1988, 213(2-3).
16. Razavi M, Marathe NP, Gillings MR, Flach C, Kristiansson E, Joakim Larsson DG: Discovery of the fourth mobile sulfonamide resistance gene. MICROBIOME 2017, 5(1).

17. Vincent P, Patrick B: A new sulfonamide resistance gene (sul3) in Escherichia coli is widespread in the pig population of Switzerland. ANTIMICROB AGENTS CH 2003, 47(3).

18. Tian XY, Zheng N, Han RW, Ho H, Wang J, Wang YT, Wang SQ, Li HG, Liu HW, Yu ZN: Antimicrobial resistance and virulence genes of Streptococcus isolated from dairy cows with mastitis in China. MICROB PATHOGENESIS 2019, 131:33-39.

19. Hammerum AM, Sandvang D, Andersen SR, Seyfarth AM, Porsbo LJ, Frimodt-Møller N, Heuer OE: Detection of sul1, sul2 and sul3 in sulphonamide resistant Escherichia coli isolates obtained from healthy humans, pork and pigs in Denmark. INT J FOOD MICROBIOL 2006, 106(2):235-237.

20. Jiang H, Cheng H, Liang Y, Yu S, Yu T, Fang J, Zhu C: Diverse Mobile Genetic Elements and Conjugal Transferability of Sulfonamide Resistance Genes (sul1, sul2, and sul3) in Escherichia coli Isolates From Penaeus vannamei and Pork From Large Markets in Zhejiang, China. FRONT MICROBIOL 2019, 10.

21. Guerra B, Junker E, Helmuth R: Incidence of the Recently Described Sulfonamide Resistance Gene sul3 among German Salmonella enterica Strains Isolated from Livestock and Food. Antimicrobial Agents and Chemotherapy 2004.

22. Grape M: Sulphonamide resistance gene sul3 found in Escherichia coli isolates from human sources. J ANTIMICROB CHEMOTH 2003, 52(6):1022-1024.

23. Yahiaoui M, Robin F, Bakour R, Hamidi M, Bonnet R, Messai Y: Antibiotic Resistance, Virulence, and Genetic Background of Community-Acquired Uropathogenic Escherichia coli from Algeria. MICROB DRUG RESIST 2015, 21(5):516-526.

24. Fazel F, Jamshidi A, Khoramian B: Phenotypic and genotypic study on antimicrobial resistance patterns of E. coli isolates from bovine mastitis. MICROB PATHOGENESIS 2019, 132.

25. Ombarak RA, Hinenoya A, Elbagory AM, Yamasaki S: Prevalence and Molecular Characterization of Antimicrobial Resistance in Escherichia coli Isolated from Raw Milk and Raw Milk Cheese in Egypt. J FOOD PROTECT 2018, 81(2):226-232.

26. Messaili C, Messai Y, Bakour R: Virulence gene profiles, antimicrobial resistance and phylogenetic groups of fecal Escherichia coli strains isolated from broiler chickens in Algeria. VET ITAL 2019, 55(1):35.

27. Ohore OE, Addo FG, Zhang S, Han N, Anim-Larbi K: Distribution and relationship between antimicrobial resistance genes and heavy metals in surface sediments of Taihu Lake, China. J ENVIRON SCI-CHINA 2019, 77(03):323-335.

28. He X, Xu Y, Chen J, Ling J, Li Y, Huang L, Zhou X, Zheng L, Xie G: Evolution of corresponding resistance genes in the water of fish tanks with multiple stresses of antibiotics and heavy metals. Elsevier Ltd 2017, 124.

29. Cheng P, Li F, Liu R, Yang Y, Xiao T, Ishfaq M, Xu G, Zhang X: Prevalence and molecular epidemiology characteristics of carbapenem-resistant Escherichia coli in Heilongjiang Province, China. INFECT
30. Wang C, Fang R, Zhou B, Tian X, Zhang X, Zheng X, Zhang S, Dong G, Cao J, Zhou T: Evolution of resistance mechanisms and biological characteristics of rifampicin-resistant Staphylococcus aureus strains selected in vitro. *BMC Microbiol* 2019, **19**(1).

31. Sun J, Chen C, Cui C, Zhang Y, Liu X, Cui Z, Ma X, Feng Y, Fang L, Lian X *et al.*: Plasmid-encoded tet(X) genes that confer high-level tigecycline resistance in *Escherichia coli*. *NAT Microbiol* 2019, **4**(9):1457-1464.

32. Yamaji R, Friedman CR, Rubin J, Suh J, Thys E, McDermott P, Hung-Fan M, Riley LW: A Population-Based Surveillance Study of Shared Genotypes of *Escherichia coli* isolates from Retail Meat and Suspected Cases of Urinary Tract Infections. *MSPHERE* 2018, **3**(4).

33. Guillouzouic A, Caroff N, Dauvergne S, Lepelletier D, Perrin Guyomard A, Kempf I, Reynaud A, Corvec S: MLST typing of *Escherichia coli* isolates overproducing AmpC β-lactamase. *J Antimicrob Chemother* 2009, **63**(6):1290-1292.

34. Corvec S, Crémet L, Leprince C, Dauvergne S, Reynaud A, Lepelletier D, Caroff N: Epidemiology of *Escherichia coli* clinical isolates producing AmpC plasmidic β-lactamase during a 5-year period in a French teaching Hospital. *Diagn Micro Infect Dis* 2010, **67**(3):277-281.

35. 2012.

36. Wang C, Fang R, Zhou B, Tian X, Zhang X, Zheng X, Zhang S, Dong G, Cao J, Zhou T: Evolution of resistance mechanisms and biological characteristics of rifampicin-resistant *Staphylococcus aureus* strains selected in vitro. *BMC Microbiol* 2019, **19**(1).

37. Li X, Mu X, Zhang P, Zhao D, Ji J, Quan J, Zhu Y, Yu Y: Detection and characterization of a clinical *Escherichia coli* ST3204 strain coproducing NDM-16 and MCR-1. *Infect Drug Resist* 2018, **11**:1189-1195.

38. 2017.

39. Eckert C, Gautier V, Arlet G: DNA sequence analysis of the genetic environment of various blaCTX-M genes. *J Antimicrob Chemother* 2006, **57**(1):14-23.

40. Du J, Li P, Liu H, Lu D, Liang H, Dou Y: Phenotypic and molecular characterization of multidrug resistant Klebsiella pneumoniae isolated from a university teaching hospital, China. *PLOS One* 2014, **9**(4):e95181.

41. Pagani L, Amico ED, Migliavacca R, Andrea MMD, Giacobone E, Amicosante G, Romero E, Rossolini GM: Multiple CTX-M-Type Extended-Spectrum β-Lactamases in Nosocomial Isolates of Enterobacteriaceae from a Hospital in Northern Italy. *J Clin Microbiol* 2003:4264-4269.

42. 2013, **29**(02):138-141.

43. Yamane K, Doi Y, Yokoyama K, Yagi T, Kurokawa H, Shibata N, Shibayama K, Kato H, Arakawa Y: Genetic Environments of the rmtA Gene in *Pseudomonas aeruginosa* Clinical Isolates. *Antimicrob Agents Chem* 2004:2069-2074.

44. 2012.
45. Ng LK, Martin I, Alfa M, Mulvey M: Multiplex PCR for the detection of tetracycline resistant genes. MOL CELL PROBE 2001, 15(4):209-215.

46. Khan SA, Sung K, Nawaz MS: Detection of aacA-aphD, qacEδ1, marA, floR, and tetA genes from multidrug-resistant bacteria: Comparative analysis of real-time multiplex PCR assays using EvaGreen® and SYBR® Green I dyes. MOL CELL PROBE 2011, 25(2-3):78-86.

47. Ye H, Li Y, Li Z, Gao R, Zhang H, Wen R, Gao GF, Hu Q, Feng Y: Diversified mcr-1-Harbouring Plasmid Reservoirs Confer Resistance to Colistin in Human Gut Microbiota. MBIO 2016, 7(2):e177.

48. Messai Y, Iabadene H, Benhassine T, Alouache S, Tazir M, Gautier V, Arlet G, Bakour R: Prevalence and characterization of extended-spectrum β-lactamases in Klebsiella pneumoniae in Algiers hospitals (Algeria). PATHOL BIOL 2008, 56(5):319-325.

Figures

Figure 1

The ERIC-PCR result of 3 transconjugants and C600 Note: 1-3 for transconjugants EC027/T, EC035/T and EC038/T, 4 for C600, The band size and combination of the 3 transconjugants were consistent with that of C600, indicating that these transconjugants and C600 were homologous strains.
Figure 2

Stability test of sul3 positive wild plasmid The positive rate of sul3 remained above 70% when the transconjugants were passed on to the 20th day (40 generations), indicating that the sul3 plasmid could be inherited stably for a long time in the transconjugants.
Figure 3

Growth curves for 3 transconjugants and C600. There was no overall significant difference between the growth curve of zygons and the growth curve of C600 (red) (P > 0.05).
Figure 4

The competitive index of extracorporeal competition. The competition index indicated that the ratio of CFU of the streptomycin resistant strain to the CFU of the sensitive strain and the ratio of the three zygons were all less than 0.06, indicating that the competition ability of the transconjugants in vitro was greatly reduced.