Chapter 17

Hom-Lie Admissible Hom-Coalgebras and Hom-Hopf Algebras

Abdenacer Makhlouf and Sergei Silvestrov

Abstract The aim of this paper is to develop the coalgebra counterpart of the notions introduced by the authors in a previous paper, we introduce the notions of Hom-coalgebra, Hom-coassociative coalgebra and G-Hom-coalgebra for any subgroup G of permutation group S_3. Also we extend the concept of Lie-admissible coalgebra by Goze and Remm to Hom-coalgebras and show that G-Hom-coalgebras are Hom-Lie admissible Hom-coalgebras, and also establish duality correspondence between classes of G-Hom-coalgebras and G-Hom-algebras. In another hand, we provide relevant definitions and basic properties of Hom-Hopf algebras generalizing the classical Hopf algebras and define the module and comodule structure over Hom-associative algebra or Hom-coassociative coalgebra.

17.1 Introduction

In [4,7,8], the class of quasi-Lie algebras and subclasses of quasi-hom-Lie algebras and Hom-Lie algebras have been introduced. These classes of algebras are tailored in a way suitable for simultaneous treatment of the Lie algebras, Lie superalgebras, the color Lie algebras and the deformations arising in connection with twisted, discretized or deformed derivatives [5] and corresponding generalizations, discretizations and deformations of vector fields and differential calculus. It has been shown in [4,7–9] that the class of quasi-Hom-Lie algebras contains as a subclass on the one hand the color Lie algebras and in particular Lie superalgebras and Lie algebras, and

A. Makhlouf
Laboratoire de Mathématiques, Informatique et Applications, Université de Haute Alsace, 4, rue des Frères Lumière, 68093 Mulhouse, France
e-mail: Abdenacer.Makhlouf@uha.fr

S. Silvestrov
Centre for Mathematical Sciences, Lund University, Box 118, 221 00 Lund, Sweden
e-mail: ssilvest@maths.lth.se

S. Silvestrov et al. (eds.), Generalized Lie Theory in Mathematics, Physics and Beyond, 189
© Springer-Verlag Berlin Heidelberg 2009
on the other hand various known and new single and multi-parameter families of algebras obtained using twisted derivations and constituting deformations and quasi-deformations of universal enveloping algebras of Lie and color Lie algebras and of algebras of vector-fields. The main feature of quasi-Lie algebras, quasi-Hom-Lie algebras and Hom-Lie algebras is that the skew-symmetry and the Jacobi identity are twisted by several deforming twisting maps and also in quasi-Lie and quasi-Hom-Lie algebras the Jacobi identity in general contains six twisted triple bracket terms.

In the paper [12], we provided a different way for constructing Hom-Lie algebras by extending the fundamental construction of Lie algebras from associative algebras via commutator bracket multiplication. To this end we defined the notion of Hom-associative algebras generalizing associative algebras to a situation where associativity law is twisted, and showed that the commutator product defined using the multiplication in a Hom-associative algebra leads naturally to Hom-Lie algebras. We introduced also Hom-Lie-admissible algebras and more general G-Hom-associative algebras with subclasses of Hom-Vinberg and pre-Hom-Lie algebras, generalizing to the twisted situation Lie-admissible algebras, G-associative algebras, Vinberg and pre-Lie algebras respectively, and show that for these classes of algebras the operation of taking commutator leads to Hom-Lie algebras as well. We constructed also all the twistings so that the brackets $[X_1, X_2] = 2X_2$, $[X_1, X_3] = -2X_3$, $[X_2, X_3] = X_1$ determine a three-dimensional Hom-Lie algebra. Finally, we provided for a subclass of twistings, the list of all three-dimensional Hom-Lie algebras. This list contains all three-dimensional Lie algebras for some values of structure constants. The families of Hom-Lie algebras in these list can be viewed as deformations of Lie algebras into a class of Hom-Lie algebras. The notion, constructions and properties of the enveloping algebras of Hom-Lie algebras are yet to be properly studied in full generality. An important progress in this direction has been made in the recent work by D. Yau [14].

In the present paper we develop the coalgebra counterpart of the notions and results of [12], extending in particular in the framework of Hom-associative and Hom-Lie algebras and Hom-coalgebras, the notions and results on associative and Lie admissible coalgebras obtained in [2]. In Sect. 17.2 we summarize the relevant definitions of Hom-associative algebra, Hom-Lie algebra, Hom-Leibniz algebra, and define the notions of Hom-coalgebras and Hom-coassociative coalgebras. In Sect. 17.3, we introduce the concept of Hom-Lie admissible Hom-coalgebra, describe some useful relations between coproduct, opposite coproduct, the cocommutator defined as their difference, and their β-twisted coassociators and β-twisted co-Jacobi sums. We also introduce the notion of G-Hom-coalgebra for any subgroup G of permutation group S_3. We show that G-Hom-coalgebras are Hom-Lie admissible Hom-coalgebras, and also establish duality correspondence between classes of G-Hom-coalgebras and G-Hom-algebras. Section 17.4 is dedicated to relevant definitions and basic properties of the Hom-Hopf algebra which generalize the classical Hopf algebra structure. We also define the module and comodule structure over Hom-associative algebra or Hom-coassociative coalgebra.
17 Hom-Lie Admissible Hom-Coalgebras and Hom-Hopf Algebras

17.2 Hom-Algebra and Hom-Coalgebra Structures

A Hom-algebra structure is a multiplication on a vector space where the structure is twisted by a homomorphism. The structure of Hom-Lie algebra was introduced by Hartwig et al. [4]. In the following we summarize the definitions of Hom-associative, Hom-Leibniz, and Hom-Lie-admissible algebraic structures introduced in [12] and generalizing the well known associative, Leibniz and Lie-admissible algebras. By dualization of Hom-associative algebra we define the Hom-coassociative coalgebra structure.

17.2.1 Hom-Algebra Structures

Let \(K \) be an algebraically closed field of characteristic 0 and \(V \) be a linear space over \(K \).

Definition 17.1. A Hom-associative algebra \((V, \mu, \alpha) \) consisting of a linear space \(V \), a linear map \(\mu : V \otimes V \rightarrow V \) and a homomorphism \(\alpha \) satisfying

\[
\mu(\alpha(x) \otimes \mu(y \otimes z)) = \mu(\mu(x \otimes y) \otimes \alpha(z)).
\]

(17.1)

The Hom-associativity condition (17.1) may be expressed by the following commutative diagram.

\[
\begin{array}{ccc}
V \otimes V \otimes V & \xrightarrow{\mu \otimes \alpha} & V \otimes V \\
\downarrow{\alpha \otimes \mu} & & \downarrow{\mu} \\
V \otimes V & \xrightarrow{\mu} & V
\end{array}
\]

The Hom-associative algebra is unital if there exists a homomorphism \(\eta : K \rightarrow V \) such that the following diagrams are commutative

\[
\begin{array}{ccc}
K \otimes V & \xrightarrow{\eta \otimes id} & V \otimes V \\
\downarrow{\cong} & & \downarrow{\cong} \\
V \otimes K & \xleftarrow{id \otimes \eta} & V \otimes V \\
\end{array}
\]

In the language of Hopf algebra, a Hom-associative algebra \(\mathcal{A} \) is a quadruple \((V, \mu, \alpha, \eta) \) where \(V \) is the vector space, \(\mu \) is the Hom-associative multiplication, \(\alpha \) is the twisting homomorphism and \(\eta \) is the unit.

Let \((V, \mu, \alpha, \eta) \) and \((V', \mu', \alpha', \eta') \) be two Hom-associative algebras. A linear map \(f : V \rightarrow V' \) is a morphism of Hom-associative algebras if

\[
\mu' \circ (f \otimes f) = f \circ \mu, \quad f \circ \eta = \eta' \quad \text{and} \quad f \circ \alpha = \alpha' \circ f.
\]

In particular, \((V, \mu, \alpha, \eta) \) and \((V', \mu', \alpha', \eta') \) are isomorphic if there exists a bijective linear map \(f \) such that

\[
\mu = f^{-1} \circ \mu' \circ (f \otimes f), \quad \eta = f^{-1} \circ \eta' \quad \text{and} \quad \alpha = f^{-1} \circ \alpha' \circ f.
\]
The tensor product of two Hom-associative algebras \((V_1, \mu_1, \alpha_1, \eta_1)\) and
\((V_2, \mu_2, \alpha_2, \eta_2)\) is defined in an obvious way as the Hom-associative algebra
\((V_1 \otimes V_2, \mu_1 \otimes \mu_2, \alpha_1 \otimes \alpha_2, \eta_1 \otimes \eta_2)\).

The Hom-Lie algebras were initially introduced in [4] motivated initially by examples of deformed Lie algebras coming from twisted discretizations of vector fields.

Definition 17.2. A **Hom-Lie algebra** is a triple \((V, [\cdot, \cdot], \alpha)\) consisting of a linear space \(V\), bilinear map \([\cdot, \cdot] : V \times V \to V\) and a linear space homomorphism \(\alpha : V \to V\) satisfying

\[
[x, y] = -[y, x] \quad \text{(skew-symmetry)}
\]

\[
\circ_{x,y,z} [\alpha(x), [y, z]] = 0 \quad \text{(Hom-Jacobi condition)}
\]

for all \(x, y, z\) from \(V\), where \(\circ_{x,y,z}\) denotes summation over the cyclic permutation on \(x, y, z\).

In a similar way we have the following definition of Hom-Leibniz algebra.

Definition 17.3. A **Hom-Leibniz algebra** is a triple \((V, [\cdot, \cdot], \alpha)\) consisting of a linear space \(V\), bilinear map \([\cdot, \cdot] : V \times V \to V\) and a homomorphism \(\alpha : V \to V\) satisfying

\[
[[x, y], \alpha(z)] = [[x, z], \alpha(y)] + [\alpha(x), [y, z]]. \quad (17.2)
\]

Note that if a Hom-Leibniz algebra is skew-symmetric then it is a Hom-Lie algebra.

17.2.2 Hom-Coalgebra Structures

Definition 17.4. A **Hom-coassociative coalgebra** is a quadruple \((V, \Delta, \beta, \varepsilon)\) where \(V\) is a \(K\)-vector space and

\[
\Delta : V \to V \otimes V, \quad \beta : V \to V \quad \text{and} \quad \varepsilon : V \to K
\]

are linear maps satisfying the following conditions:

(C1) \((\beta \otimes \Delta) \circ \Delta = (\Delta \otimes \beta) \circ \Delta\)

(C2) \((\text{id} \otimes \varepsilon) \circ \Delta = \text{id} \quad \text{and} \quad (\varepsilon \otimes \text{id}) \circ \Delta = \text{id}.

The condition (C1) expresses the Hom-coassociativity of the comultiplication \(\Delta\). Also, it is equivalent to the following commutative diagram:

\[
\begin{array}{ccc}
V & \xrightarrow{\Delta} & V \otimes V \\
\downarrow & & \downarrow \beta \otimes \Delta \\
V \otimes V & \xrightarrow{\Delta \otimes \beta} & V \otimes V \otimes V
\end{array}
\]

The condition (C2) expresses that \(\varepsilon\) is the counit which is also equivalent to the following commutative diagram:
17 Hom-Lie Admissible Hom-Coalgebras and Hom-Hopf Algebras

Let \((V, \Delta, \beta, \varepsilon)\) and \((V', \Delta', \beta', \varepsilon')\) be two Hom-coassociative coalgebras. A linear map \(f : V \rightarrow V'\) is a morphism of Hom-coassociative coalgebras if

\[
(f \otimes f) \circ \Delta = \Delta' \circ f \quad \text{and} \quad \varepsilon = \varepsilon' \circ f \quad \text{and} \quad f \circ \beta = \beta' \circ f.
\]

If \(V = V'\), then the previous Hom-coassociative coalgebras are isomorphic if there exists a bijective linear map \(f : V \rightarrow V\) such that

\[
\Delta' = (f \otimes f) \circ \Delta \circ f^{-1}, \quad \varepsilon' = \varepsilon \circ f^{-1} \quad \text{and} \quad \beta = f^{-1} \circ \beta' \circ f.
\]

In the sequel, we call Hom-coalgebra a triple \((V, \Delta, \beta)\) where \(V\) is a \(K\)-vector space, \(\Delta\) is a comultiplication not necessarily coassociative or Hom-coassociative, that is a linear map \(\Delta : V \rightarrow V \otimes V\), and \(\beta\) is a linear map \(\beta : V \rightarrow V\).

17.3 Hom-Lie Admissible Hom-Coalgebras

Let \(K\) be an algebraically closed field of characteristic 0 and \(V\) be a vector space over \(K\). Let \((V, \Delta, \beta)\) be a Hom-coalgebra where \(\Delta : V \rightarrow V \otimes V\) and \(\beta : V \rightarrow V\) are linear maps and \(\Delta\) is not necessarily coassociative or Hom-coassociative.

By a \(\beta\)-coassociator of \(\Delta\) we call a linear map \(c_{\beta}(\Delta)\) defined by

\[
c_{\beta}(\Delta) := (\Delta \otimes \beta) \circ \Delta - (\beta \otimes \Delta) \circ \Delta.
\]

Let \(S_3\) be the symmetric group of order 3. Given \(\sigma \in S_3\), we define a linear map \(\Phi_{\sigma} : V \otimes 3 \rightarrow V \otimes 3\) by

\[
\Phi_{\sigma}(x_1 \otimes x_2 \otimes x_3) = x_{\sigma^{-1}(1)} \otimes x_{\sigma^{-1}(2)} \otimes x_{\sigma^{-1}(3)}.
\]

Recall that \(\Delta^{op} = \tau \circ \Delta\) where \(\tau\) is the usual flip that is \(\tau(x \otimes y) = y \otimes x\).

Definition 17.5. A triple \((V, \Delta, \beta)\) is a Hom-Lie admissible Hom-coalgebra if the linear map

\[
\Delta_L : V \rightarrow V \otimes V
\]

defined by \(\Delta_L = \Delta - \Delta^{op}\), is a Hom-Lie coalgebra multiplication, that is the following condition is satisfied

\[
c_{\beta}(\Delta_L) + \Phi_{(213)} \circ c_{\beta}(\Delta_L) + \Phi_{(231)} \circ c_{\beta}(\Delta_L) = 0 \quad (17.3)
\]

where \((213)\) and \((231)\) are the two cyclic permutations of order 3 in \(S_3\).
Remark 17.1. Since $\Delta_L = \Delta - \Delta^{op}$, the equality $\Delta^{op}_L = -\Delta_L$ holds.

Lemma 17.1. Let (V, Δ, β) be a Hom-coalgebra where $\Delta : V \rightarrow V \otimes V$ and $\beta : V \rightarrow V$ are linear maps and Δ is not necessarily coassociative or Hom-coassociative, then the following relations are true

\[
\begin{align*}
\varepsilon_{\beta}(\Delta^{op}) &= -\Phi(13) \circ \varepsilon_{\beta}(\Delta) \\
(\beta \otimes \Delta^{op}) \circ \Delta &= \Phi(13) \circ (\Delta \otimes \beta) \circ \Delta^{op} \\
(\beta \otimes \Delta) \circ \Delta^{op} &= \Phi(13) \circ (\Delta^{op} \otimes \beta) \circ \Delta \\
(\Delta \otimes \beta) \circ \Delta^{op} &= \Phi(213) \circ (\beta \otimes \Delta) \circ \Delta \\
(\Delta^{op} \otimes \beta) \circ \Delta &= \Phi(12) \circ (\Delta \otimes \beta) \circ \Delta.
\end{align*}
\]

Lemma 17.2. The β-coassociator of Δ_L is expressed using Δ and Δ^{op} as follows:

\[
\varepsilon_{\beta}(\Delta_L) = \varepsilon_{\beta}(\Delta) + \varepsilon_{\beta}(\Delta^{op}) - (\Delta \otimes \beta) \circ \Delta^{op} - (\Delta^{op} \otimes \beta) \circ \Delta + \Phi(13) \circ (\Delta \otimes \beta) \circ \Delta^{op} + \Phi(13) \circ (\Delta^{op} \otimes \beta) \circ \Delta \\
= \varepsilon_{\beta}(\Delta) - \Phi(13) \circ \varepsilon_{\beta}(\Delta) - \Phi(213) \circ (\beta \otimes \Delta) \circ \Delta - \Phi(213) \circ (\Delta \otimes \beta) \circ \Delta + \Phi(213) \circ (\beta \otimes \Delta) \circ \Delta + \Phi(213) \circ (\Delta \otimes \beta) \circ \Delta \\
+ \Phi(231) \circ (\beta \otimes \Delta) \circ \Delta + \Phi(231) \circ (\Delta \otimes \beta) \circ \Delta.
\]

Proposition 17.1. Let (V, Δ, β) be a Hom-coalgebra. Then one has

\[
\varepsilon_{\beta}(\Delta_L) + \Phi(213) \circ \varepsilon_{\beta}(\Delta_L) + \Phi(231) \circ \varepsilon_{\beta}(\Delta_L) = 2 \sum_{\sigma \in \mathcal{S}_3} (-1)^{e(\sigma)} \Phi_\sigma \circ \varepsilon_{\beta}(\Delta)
\]

where $(-1)^{e(\sigma)}$ is the signature of the permutation σ.

Proof. By (17.10) and multiplication rules in the group \mathcal{S}_3, it follows that

\[
\begin{align*}
\Phi(213) \circ \varepsilon_{\beta}(\Delta_L) &= \Phi(213) \circ \varepsilon_{\beta}(\Delta) - \Phi(213) \circ \Phi(13) \circ \varepsilon_{\beta}(\Delta) \\
&= -\Phi(213) \circ \Phi(13) \circ (\beta \otimes \Delta) \circ \Delta - \Phi(213) \circ \Phi(12) \circ (\Delta \otimes \beta) \circ \Delta \\
&\quad + \Phi(213) \circ (\beta \otimes \Delta) \circ \Delta + \Phi(213) \circ (\Delta \otimes \beta) \circ \Delta \\
&= \Phi(213) \circ (\beta \otimes \Delta) \circ \Delta + (\Delta \otimes \beta) \circ \Delta
\end{align*}
\]

\[
\begin{align*}
\Phi(231) \circ \varepsilon_{\beta}(\Delta_L) &= \Phi(231) \circ \varepsilon_{\beta}(\Delta) - \Phi(13) \circ \Phi(231) \circ \varepsilon_{\beta}(\Delta) \\
&= -\Phi(231) \circ \Phi(13) \circ (\beta \otimes \Delta) \circ \Delta - \Phi(231) \circ \Phi(12) \circ (\Delta \otimes \beta) \circ \Delta \\
&\quad + \Phi(231) \circ (\beta \otimes \Delta) \circ \Delta + \Phi(231) \circ (\Delta \otimes \beta) \circ \Delta \\
&= \Phi(231) \circ (\beta \otimes \Delta) \circ \Delta + (\Delta \otimes \beta) \circ \Delta
\end{align*}
\]
After summing up the equalities (17.10), (17.12) and (17.13) the terms on the right hand sides may be pairwise combined into the terms of the form $(-1)^{\varepsilon(\sigma)} \Phi_{\sigma} \circ c_{\beta}(\Delta)$ with each one being present in the sum twice for all $\sigma \in S_3$.

Definition 17.5 together with (17.11) yields the following corollary.

Corollary 17.1. A triple (V, Δ, β) is a Hom-Lie admissible Hom-coalgebra if and only if
\[
\sum_{\sigma \in S_3} (-1)^{\varepsilon(\sigma)} \Phi_{\sigma} \circ c_{\beta}(\Delta) = 0
\]
where $(-1)^{\varepsilon(\sigma)}$ is the signature of the permutation σ.

17.3.1 G-Hom-Coalgebra Structures

In this section we introduce, as in the multiplication case, the notion of G-Hom-coalgebra where G is a subgroup of the symmetric group S_3.

Definition 17.6. Let G be a subgroup of the symmetric group S_3, A Hom-coalgebra (V, Δ, β) is called G-Hom-coalgebra if
\[
\sum_{\sigma \in G} (-1)^{\varepsilon(\sigma)} \Phi_{\sigma} \circ c_{\beta}(\Delta) = 0
\]
where $(-1)^{\varepsilon(\sigma)}$ is the signature of the permutation σ.

Proposition 17.2. Let G be a subgroup of the permutations group S_3. Then any G-Hom-Coalgebra (V, Δ, β) is a Hom-Lie admissible Hom-coalgebra.

Proof. The skew-symmetry follows straightaway from the definition. Take the set of conjugacy classes $\{gG \mid g \in I\}$ where $I \subseteq G$, and for any $\sigma_1, \sigma_2 \in I, \sigma_1 \neq \sigma_2 \Rightarrow \sigma_1 G \cap \sigma_2 G = \emptyset$. Then
\[
\sum_{\sigma \in S_3} (-1)^{\varepsilon(\sigma)} \Phi_{\sigma} \circ c_{\beta}(\Delta) = \sum_{\sigma_1 \in I} \sum_{\sigma_2 \in \sigma_1 G} (-1)^{\varepsilon(\sigma)} \Phi_{\sigma} \circ c_{\beta}(\Delta) = 0.
\]

The subgroups of S_3 are
\[
G_1 = \{Id\}, \quad G_2 = \{Id, \tau_{12}\}, \quad G_3 = \{Id, \tau_{23}\},
\]
\[
G_4 = \{Id, \tau_{13}\}, \quad G_5 = A_3, \quad G_6 = S_3,
\]
where A_3 is the alternating group and where τ_{ij} is the transposition between i and j.

We obtain the following type of Hom-Lie-admissible Hom-coalgebras:

- The G_1-Hom-coalgebras are the Hom-associative coalgebras defined above.
- The G_2-Hom-coalgebras satisfy the condition
\[
c_{\beta}(\Delta) + \Phi(12)c_{\beta}(\Delta) = 0.
\]
The G_3-Hom-coalgebras satisfy the condition
$$c_\beta(\Delta) + \Phi(23)c_\beta(\Delta) = 0.$$

The G_4-Hom-coalgebras satisfy the condition
$$c_\beta(\Delta) + \Phi(13)c_\beta(\Delta) = 0.$$

The G_5-Hom-coalgebras satisfy the condition
$$c_\beta(\Delta) + \Phi(213)c_\beta(\Delta) + \Phi(231)c_\beta(\Delta) = 0.$$

If the product μ is skewsymmetric then the previous condition is exactly the Hom-Jacobi identity.

The G_6-Hom-coalgebras are the Hom-Lie-admissible coalgebras. The G_2-Hom-coalgebras may be called Vinberg-Hom-coalgebras and G_3-Hom-coalgebras may be called preLie-Hom-coalgebras. The two classes define in fact the same class.

Definition 17.7. A Vinberg-Hom-coalgebra is a triple (V, Δ, β) consisting of a linear space V, a linear map $\mu : V \to V \times V$ and a homomorphism β satisfying
$$c_\beta(\Delta) + \Phi(12)c_\beta(\Delta) = 0.$$

Definition 17.8. A preLie-Hom-coalgebra is a triple (V, Δ, β) consisting of a linear space V, a linear map $\mu : V \to V \times V$ and a homomorphism β satisfying
$$c_\beta(\Delta) + \Phi(23)c_\beta(\Delta) = 0.$$

More generally, by dualization we have a correspondence between G-Hom-associative algebras introduced in [12] and G-Hom-coalgebras for a subgroup G of S_3. Let G be a subgroup of S_3 and (V, μ, α) be a G-Hom-associative algebra that is $\mu : V \otimes V \to V$ and $\alpha : V \to V$ are linear maps and the following condition is satisfied
$$\sum_{\sigma \in G} (-1)^{\varepsilon(\sigma)} a_{\alpha, \mu} \circ \Phi_\sigma = 0. \quad (17.15)$$

where $a_{\alpha, \mu}$ is the α-associator that is $a_{\alpha, \mu} = \mu \circ (\mu \otimes \alpha) - \mu \circ (\alpha \otimes \mu)$.

Setting
$$(\mu \otimes \alpha)_G = \sum_{\sigma \in G} (-1)^{\varepsilon(\sigma)} (\mu \otimes \alpha) \circ \Phi_\sigma$$

and
$$(\alpha \otimes \mu)_G = \sum_{\sigma \in G} (-1)^{\varepsilon(\sigma)} (\alpha \otimes \mu) \circ \Phi_\sigma$$

the condition (17.15) is equivalent to the following commutative diagram
By the dualization of the square one may obtain the following commutative diagram

\[
\begin{array}{c}
V \otimes V \otimes V \xrightarrow{(\mu \otimes \alpha)_G} V \otimes V \\
\downarrow (\alpha \otimes \mu)_G \quad \downarrow \mu \\
V \otimes V \xrightarrow{\mu} V
\end{array}
\]

where

\[
(\beta \otimes \Delta)_G = \sum_{\sigma \in G} (-1)^{\varepsilon(\sigma)} \Phi_\sigma \circ (\beta \otimes \Delta) \quad \text{and} \quad (\Delta \otimes \beta)_G = \sum_{\sigma \in G} (-1)^{\varepsilon(\sigma)} \Phi_\sigma \circ (\Delta \otimes \beta).
\]

The previous commutative diagram expresses that \((V, \Delta, \beta)\) is a \(G\)-Hom-coalgebra. More precisely we have the following connection between \(G\)-Hom-coalgebras and \(G\)-Hom-associative algebras.

Proposition 17.3. Let \((V, \Delta, \beta)\) be a \(G\)-Hom-coalgebra where \(G\) is a subgroup of \(S_3\). Its dual vector space \(V^*\) is provided with a \(G\)-Hom-associative algebra \((V^*, \Delta^*, \beta^*)\) where \(\Delta^*, \beta^*\) are the transpose maps.

Proof. Let \((V, \Delta, \beta)\) be a \(G\)-Hom-coalgebra. Let \(V^*\) be the dual space of \(V\) \((V^* = Hom(V, K))\).

Consider the map

\[
\lambda_n : (V^*)^n \longrightarrow (V^*)^n
\]

\[
f_1 \otimes \cdots \otimes f_n \longrightarrow \lambda_n(f_1 \otimes \cdots \otimes f_n)
\]

such that for \(v_1 \otimes \cdots \otimes v_n \in V^\otimes n\)

\[
\lambda_n(f_1 \otimes \cdots \otimes f_n)(v_1 \otimes \cdots \otimes v_n) = f_1(v_1) \otimes \cdots \otimes f_n(v_n)
\]

and set

\[
\mu := \Delta^* \circ \lambda_2 \quad \alpha := \beta^*
\]

where the star \(\ast\) denotes the transpose linear map. Then, the quadruple \((V^*, \mu, \eta, \alpha)\) is a \(G\)-Hom-associative algebra. Indeed, \(\mu(f_1, f_2) = \mu_G \circ \lambda_2(f_1 \otimes f_2) \circ \Delta\) where \(\mu_G\) is the multiplication of \(K\) and \(f_1, f_2 \in V^*\). One has

\[
\mu \circ (\mu \otimes \alpha)(f_1 \otimes f_2 \otimes f_3) = \mu(\mu(f_1 \otimes f_2) \otimes \alpha(f_3))
\]

\[
= \mu_G \circ \lambda_2(\mu(f_1 \otimes f_2) \otimes \alpha(f_3)) \circ \Delta
\]

\[
= \mu_G \circ \lambda_3(\mu(f_1 \otimes f_2 \circ \Delta) \otimes \alpha(f_3)) \circ \Delta
\]

\[
= \mu_G \circ (\mu_G \otimes id) \circ \lambda_3(f_1 \otimes f_2 \otimes f_3) \circ (\Delta \otimes \beta) \circ \Delta.
\]
Similarly
\[
\mu \circ (\alpha \otimes \mu)(f_1 \otimes f_2 \otimes f_3) = \mu_{G} \circ (id \otimes \mu_{G}) \circ \lambda_3 (f_1 \otimes f_2 \otimes f_3) \circ (\beta \otimes \Delta) \circ \Delta.
\]

Using the associativity and the commutativity of μ_{G}, the α-associator may be written as
\[
a_{\alpha, \mu} = \mu_{G} \circ (id \otimes \mu_{G}) \circ \lambda_3 (f_1 \otimes f_2 \otimes f_3) \circ ((\Delta \otimes \beta) \circ \Delta - (\beta \otimes \Delta) \circ \Delta).
\]

Then we have the following connection between the α-associator and β-coassociator
\[
a_{\alpha, \mu} = \mu_{G} \circ (id \otimes \mu_{G}) \circ \lambda_3 (f_1 \otimes f_2 \otimes f_3) \circ c_\beta (\Delta).
\]

Therefore if (V, Δ, β) is a G-Hom-coalgebra, then the (V^*, Δ^*, β^*) is a G-Hom-associative algebra.

Proposition 17.4. Let (V, μ, α) be a finite-dimensional G-Hom-associative algebra where G is a subgroup of S_3. Its dual vector space V^* is provided with a G-Hom-coalgebra (V^*, μ^*, α^*), where μ^*, α^* are the transpose maps.

Proof. Let $\mathcal{A} = (V, \mu, \alpha)$ be a n-dimensional Hom-associative algebra (n finite). Let $\{e_1, \cdots, e_n\}$ be a basis of V and $\{e_1^*, \cdots, e_n^*\}$ be the dual basis. Then $\{e_i^* \otimes e_j^*\}_{i,j}$ is a basis of $\mathcal{A}^* \otimes \mathcal{A}^*$. The comultiplication $\Delta = \mu^*$ on \mathcal{A}^* is defined for $f \in \mathcal{A}^*$ by
\[
\Delta(f) = \sum_{i,j=1}^{n} f(e_i \otimes e_j) e_i^* \otimes e_j^*.
\]

Set $\mu(e_i \otimes e_j) = \sum_{k=1}^{n} C_{ij}^k e_k$ and $\alpha(e_i) = \sum_{k=1}^{n} \alpha_i^k e_k$. Then $\Delta(e_i^*) = \sum_{j=1}^{n} C_{ij}^k e_i^* \otimes e_j^*$ and $\beta(e_i) = \alpha^*(e_i) = \sum_{k=1}^{n} \alpha_i^k e_k$.

The condition (17.14) of G-Hom-coassociativity of Δ, applied to any element e_k^* of the basis, is equivalent to
\[
\sum_{p,q,s,t=1}^{n} \sum_{\sigma \in G} (-1)^{\varepsilon(\sigma)} \left(\sum_{i,j=1}^{n} \alpha_i^p C_{ij}^s C_{pq}^t - \alpha_i^q C_{ij}^p C_{qt}^s \right) e_{\sigma^{-1}(p)}^{*} \otimes e_{\sigma^{-1}(q)}^{*} \otimes e_{\sigma^{-1}(s)}^{*} = 0.
\]

Therefore Δ is G-Hom-coassociative if for any $p,q,s,k \in \{1, \cdots, n\}$ one has
\[
\sum_{\sigma \in G} (-1)^{\varepsilon(\sigma)} \left(\sum_{i,j=1}^{n} \alpha_i^p C_{ij}^s C_{pq}^t - \alpha_i^q C_{ij}^p C_{qt}^s \right) = 0.
\]

The previous system is exactly the condition (17.15) of G-Hom-associativity of μ, written on $e_p \otimes e_q \otimes e_r$ and setting $p = \sigma(p'), q = \sigma(q'), s = \sigma(s')$.

Corollary 17.2. The dual vector space of a Hom-coassociative coalgebra $(V, \Delta, \beta, \varepsilon)$ is a Hom-associative algebra $(V^*, \Delta^*, \beta^*, \varepsilon^*)$, where V^* is the dual vector space and the star for the linear maps denotes the transpose map. The dual vector space of finite-dimensional Hom-associative algebra is a Hom-coassociative coalgebra.

Proof. It is a particular case of the previous Propositions ($G = G_1$).
17 Hom-Lie Admissible Hom-Coalgebras and Hom-Hopf Algebras

17.4 Hom-Hopf Algebras

In this section, we introduce a generalization of Hopf algebras and show some relevant properties of the new structure. We also define the module and comodule structure over Hom-associative algebra or Hom-coassociative coalgebra. For classical Hopf algebras theory, we refer to [1, 3, 6, 10, 11, 13]. Let \(K \) be an algebraically closed field of characteristic 0 and \(V \) be a vector space over \(K \).

Definition 17.9. A Hom-bialgebra is a quintuple \((V, \mu, \alpha, \eta, \Delta, \beta, \varepsilon) \) where

(B1) \((V, \mu, \alpha, \eta) \) is a Hom-associative algebra

(B2) \((V, \Delta, \beta, \varepsilon) \) is a Hom-coassociative coalgebra

(B3) The linear maps \(\Delta \) and \(\varepsilon \) are morphisms of algebras \((V, \mu, \alpha, \eta) \).

Remark 17.2. The condition (B3) could be expressed by the following system:

\[
\begin{align*}
\Delta(e_1) &= e_1 \otimes e_1 \quad \text{where } e_1 = \eta(1) \\
\Delta(\mu(x \otimes y)) &= \Delta(x) \bullet \Delta(y) = \sum_{i, j} \mu(x^{(1)} \otimes y^{(1)}) \otimes \mu(x^{(2)} \otimes y^{(2)}) \\
\varepsilon(e_1) &= 1 \\
\varepsilon(\mu(x \otimes y)) &= \varepsilon(x) \varepsilon(y)
\end{align*}
\]

where the bullet \(\bullet \) denotes the multiplication on tensor product and by using the Sweedler’s notation \(\Delta(x) = \sum_{i} x^{(i)} \otimes x^{(2)} \). If there is no ambiguity we denote the multiplication by a dot.

Remark 17.3. One can consider a more restrictive definition where linear maps \(\Delta \) and \(\varepsilon \) are morphisms of Hom-associative algebras that is the condition (B3) becomes equivalent to

\[
\begin{align*}
\Delta(e_1) &= e_1 \otimes e_1 \quad \text{where } e_1 = \eta(1) \\
\Delta(\mu(x \otimes y)) &= \Delta(x) \bullet \Delta(y) = \sum_{i, j} \mu(x^{(1)} \otimes y^{(1)}) \otimes \mu(x^{(2)} \otimes y^{(2)}) \\
\varepsilon(e_1) &= 1 \\
\varepsilon(\mu(x \otimes y)) &= \varepsilon(x) \varepsilon(y) \\
\Delta(\alpha(x)) &= \sum_{i} \alpha(x^{(1)}) \otimes \alpha(x^{(2)}) \\
\varepsilon \circ \alpha(x) &= \varepsilon(x)
\end{align*}
\]

Given a Hom-bialgebra \((V, \mu, \alpha, \eta, \Delta, \beta, \varepsilon) \), we show that the vector space \(\text{Hom}(V, V) \) with the multiplication given by the convolution product carries a structure of Hom-algebra.

Proposition 17.5. Let \((V, \mu, \alpha, \eta, \Delta, \beta, \varepsilon) \) be a Hom-bialgebra. Then the algebra \(\text{Hom}(V, V) \) with the multiplication given by the convolution product defined by

\[
f \ast g = \mu \circ (f \otimes g) \circ \Delta
\]

and the unit being \(\eta \circ \varepsilon \) is a Hom-associative algebra with the homomorphism map defined by \(\gamma(f) = \alpha \circ f \circ \beta \).
Proof. Let \(f, g, h \in \text{Hom}(V, V) \). Then
\[
\gamma(f) * (g * h) = \mu \circ (\gamma(f) \otimes (g * h)) \Delta
= \mu \circ (\gamma(f) \otimes (\mu \circ (g \otimes h) \circ \Delta)) \Delta
= \mu \circ (\alpha \otimes \mu) \circ (f \otimes g \otimes h) \circ (\beta \otimes \Delta) \Delta.
\]
Similarly
\[
(f \ast g) * \gamma(h) = \mu \circ (\mu \otimes \alpha) \circ (f \otimes g \otimes h) \circ (\Delta \otimes \beta) \Delta.
\]
Then, the Hom-associativity of \(\mu \) and the Hom-coassociativity of \(\Delta \) lead to the Hom-associativity of the convolution product. The unitality is as usual.

Definition 17.10. An endomorphism \(S \) of \(V \) is said to be an antipode if it is the inverse of the identity over \(V \) for the Hom-algebra \(\text{Hom}(V, V) \) with the multiplication given by the convolution product defined by
\[
f \ast g = \mu \circ (f \otimes g) \Delta
\]
and the unit being \(\eta \circ \varepsilon \).

The condition being antipode may be expressed by the condition:
\[
\mu \circ S \otimes \text{Id} \circ \Delta = \mu \circ \text{Id} \otimes S \circ \Delta = \eta \circ \varepsilon.
\]

Definition 17.11. A *Hom-Hopf algebra* is a Hom-bialgebra with an antipode.

Then, a Hom-Hopf algebra over a \(\mathbb{K} \)-vector space \(V \) is given by
\[
\mathcal{H} = (V, \mu, \alpha, \eta, \Delta, \beta, \varepsilon, S)
\]
where the following homomorphisms
\[
\mu : V \otimes V \to V, \quad \eta : \mathbb{K} \to V, \quad \alpha : V \to V
\]
\[
\Delta : V \to V \otimes V, \quad \varepsilon : V \to \mathbb{K}, \quad \beta : V \to V
\]
\[
S : V \to \mathbb{K}
\]
satisfy the following conditions:

1. \((V, \mu, \alpha, \eta)\) is a unital Hom-associative algebra.
2. \((V, \Delta, \beta, \varepsilon)\) is a counital Hom-coalgebra.
3. \(\Delta\) and \(\varepsilon\) are morphisms of algebras, which translate to
\[
\begin{aligned}
\Delta (e_1) &= e_1 \otimes e_1 \quad \text{where } e_1 = \eta (1) \\
\Delta (x \cdot y) &= \Delta (x) \bullet \Delta (y) = \sum_{(x)(y)} x^{(1)} \cdot y^{(1)} \otimes x^{(2)} \cdot y^{(2)} \\
\varepsilon (e_1) &= 1 \\
\varepsilon (x \cdot y) &= \varepsilon (x) \varepsilon (y)
\end{aligned}
\]
4. \(S\) is the antipode, so
\[\mu \circ S \otimes \text{Id} \circ \Delta = \mu \circ \text{Id} \otimes S \circ \Delta = \eta \circ \epsilon. \]

Remark 17.4. Let \(V \) be a finite-dimensional \(\mathbb{K} \)-vector space. If \(\mathcal{H} = (V, \mu, \alpha, \eta, \Delta, \beta, \epsilon, S) \) is a Hom-Hopf algebra, then

\[\mathcal{H}^* = (V^*, \Delta^*, \beta^*, \epsilon^*, \mu^*, \alpha^*, \eta^*, S^*) \]

is also a Hom-Hopf algebra.

17.4.1 Primitive Elements and Generalized Primitive Elements

In the following, we discuss the properties of primitive elements in a Hom-bialgebra.

Let \(\mathcal{H} = (V, \mu, \alpha, \eta, \Delta, \beta, \epsilon) \) be a Hom-bialgebra and \(e_1 = \eta(1) \) be the unit.

Definition 17.12. An element \(x \in \mathcal{H} \) is called primitive if \(\Delta(x) = e_1 \otimes x + x \otimes e_1 \).

Let \(x \in \mathcal{H} \) be a primitive element. The coassociativity of \(\Delta \) implies

\[(\beta \otimes \Delta) \circ \Delta(x) = \tau_{13} \circ (\Delta \otimes \beta) \circ \Delta(x) \]

where \(\tau_{13} \) is a permutation in the symmetric group \(S_3 \).

Lemma 17.3. Let \(x \) be a primitive element in \(\mathcal{H} \), then \(\epsilon(x) = 0 \).

Proof. By counity property, we have \(x = (\text{id} \otimes \epsilon) \circ \Delta(x) \). If \(\Delta(x) = e_1 \otimes x + x \otimes e_1 \), then \(x = \epsilon(x)e_1 + \epsilon(e_1)x \), and since \(\epsilon(e_1) = 1 \) it implies \(\epsilon(x) = 0 \).

Proposition 17.6. Let \(\mathcal{H} = (V, \mu, \alpha, \eta, \Delta, \beta, \epsilon) \) be a Hom-bialgebra and \(e_1 = \eta(1) \) be the unit. If \(x \) and \(y \) are two primitive elements in \(\mathcal{H} \). Then we have \(\epsilon(x) = 0 \) and the commutator \([x, y] = \mu(x \otimes y) - \mu(y \otimes x) \) is also a primitive element.

The set of all primitive elements of \(\mathcal{H} \), denoted by \(\text{Prim}(\mathcal{H}) \), has a structure of Hom-Lie algebra.

Proof. By a direct calculation one has

\[
\Delta([x, y]) = \Delta(\mu(x \otimes y) - \mu(y \otimes x)) \\
= (e_1 \otimes x + x \otimes e_1) \bullet (e_1 \otimes y + y \otimes e_1) - (e_1 \otimes y + y \otimes e_1) \bullet (e_1 \otimes x + x \otimes e_1) \\
= e_1 \otimes \mu(x \otimes y) + y \otimes x \otimes y + \mu(x \otimes y) \otimes e_1 \\
- e_1 \otimes \mu(y \otimes x) - x \otimes y - y \otimes x - \mu(y \otimes x) \otimes e_1 \\
= e_1 \otimes (\mu(x \otimes y) - \mu(y \otimes x)) + (\mu(x \otimes y) - \mu(y \otimes x)) \otimes e_1 \\
= e_1 \otimes [x, y] + [x, y] \otimes e_1
\]

which means that \(\text{Prim}(\mathcal{H}) \) is closed under the bracket multiplication \([\cdot, \cdot] \).
We have seen in [12] that there is a natural map from the Hom-associative algebras to Hom-Lie algebras. The bracket \([x,y] = \mu(x \otimes y) - \mu(y \otimes x)\) is obviously skewsymmetric and one checks that the Hom-Jacobi condition is satisfied:

\[
\begin{align*}
& [\alpha(x), [y, z]] - [[x, y], \alpha(z)] - [\alpha(y), [x, z]] = \\
& \mu(\alpha(x) \otimes \mu(y \otimes z)) - \mu(\alpha(x) \otimes \mu(z \otimes y)) - \mu(\mu(y \otimes z) \otimes \alpha(x)) \\
& + \mu(\mu(z \otimes y) \otimes \alpha(x)) - \mu(\mu(x \otimes y) \otimes \alpha(z)) + \mu(\mu(y \otimes x) \otimes \alpha(z)) \\
& + \mu(\alpha(y) \otimes \mu(z \otimes x)) + \mu(\mu(x \otimes z) \otimes \alpha(y)) - \mu(\mu(z \otimes x) \otimes \alpha(y)) = 0
\end{align*}
\]

Remark 17.5. 1. In particular, a primitive element in \(\mathcal{H}\) satisfies the conditions

\[
\begin{align*}
\Delta(\beta \otimes \Delta) \circ \Delta(x) &= \tau_{13} \circ \Delta \circ (\Delta \otimes \beta) \circ \Delta(x) \quad (17.16) \\
\Delta^{op}(x) &= \Delta(x) \quad (17.17)
\end{align*}
\]

where \(\tau_{13}\) is a permutation in the symmetric group \(S_3\).

2. The condition (17.16) may be written

\[
(\Delta \otimes \beta) \circ \Delta(x) = \tau_{13} \circ (\beta \otimes \Delta) \circ \Delta(x).
\]

Proposition 17.7. Let \(\mathcal{H} = (V, \mu, \alpha, \eta, \Delta, \beta, \varepsilon)\) be a Hom-bialgebra and \(e_1 = \eta(1)\) be the unit. If \(x\) and \(y\) are two generalized primitive elements in \(\mathcal{H}\), then, we have \(\varepsilon(x) = 0\) and the commutator \([x, y] = \mu(x \otimes y) - \mu(y \otimes x)\) is also a generalized primitive element.

The set of all generalized primitive elements of \(\mathcal{H}\), denoted by \(G\text{Prim}(\mathcal{H})\), has a structure of Hom-Lie algebra.

Proof. Let \(x\) and \(y\) be two generalized primitive elements in \(\mathcal{H}\). In the following the multiplication \(\mu\) is denoted by a dot. The following equalities hold:

\[
\begin{align*}
(\Delta \otimes \beta) \circ \Delta(x \cdot y - y \cdot x) &= (\Delta \otimes \beta) \circ \Delta(x \cdot y) - (\Delta \otimes \beta) \circ \Delta(y \cdot x) \\
& = (\Delta \otimes \beta)(\Delta(x) \otimes \Delta(y)) - (\Delta \otimes \beta)(\Delta(y) \otimes \Delta(x)) \\
& = \Delta(x^{(1)}, y^{(1)}) \otimes \beta(x^{(2)}, y^{(2)}) - \Delta(y^{(1)}, x^{(1)}) \otimes \beta(y^{(2)}, x^{(2)}) \\
& = (x^{(1)}(1), y^{(1)}(1)) \otimes (x^{(1)}(2), y^{(1)}(2)) \otimes \beta(x^{(2)}, y^{(2)}) \\
& - (y^{(1)}(1), x^{(1)}(1)) \otimes (y^{(1)}(2), x^{(1)}(2)) \otimes \beta(y^{(2)}, x^{(2)}).
\end{align*}
\]

Then, using the fact that \(\Delta^{op} = \Delta\) for generalized primitive elements one has:
Therefore the antipode when it exists is unique.

\(H \) is another antipode of \(H \)

Let \(17.4.2 \) Antipode’s Properties

(1) We have \(\epsilon \) satisfies \(S \)

Proof. Since the antipode \(S \) is unique and we have \(\epsilon \), \(\epsilon \) is the inverse of the identity for the convolution product then \(S \) satisfies

\[
\epsilon(x)\eta(1) = \sum_{(x)} \mu(S(x^{(1)}) \otimes x^{(2)}) = \sum_{(x)} \mu(x^{(1)} \otimes S(x^{(2)})).
\] (17.21)

Proposition 17.8. The antipode \(S \) is unique and we have

- \(S(\eta(1)) = \eta(1) \).
- \(\epsilon \circ S = \epsilon \).

Proof. (1) We have \(S \ast \text{id} = \text{id} \ast S = \eta \circ \epsilon \). Thus, \((S \ast \text{id}) \ast S = S \ast (\text{id} \ast S) = S \).

If \(S' \) is another antipode of \(H \) then

\[
S' = S' \ast \text{id} \ast S' = S' \ast \text{id} \ast S = S \ast \text{id} \ast S = S.
\]

Therefore the antipode when it exists is unique.

(2) Setting \(e_1 = \eta(1) \) and since \(\Delta(e_1) = e_1 \otimes e_1 \) one has

\[
(S \ast \text{id})(e_1) = \mu(S(e_1) \otimes e_1) = S(e_1) = \eta(\epsilon(e_1)) = e_1.
\]

(3) Applying (17.19) to \(S \), we obtain \(S(x) = \sum_{(x)} S(x^{(1)})\epsilon(x^{(2)}) \).
Applying ε to (17.21), we obtain

$$
\varepsilon(x) = \varepsilon(\sum_{(x)} \mu(S(x^{(1)}) \otimes x^{(2)})).
$$

Since ε is a Hom-algebra morphism, one has

$$
\varepsilon(x) = \sum_{(x)} \varepsilon(S(x^{(1)})) \varepsilon(x^{(2)}) = \varepsilon(\sum_{(x)} S(x^{(1)}) \varepsilon(x^{(2)})) = \varepsilon(S(x)).
$$

Thus $\varepsilon \circ S = \varepsilon$.

17.4.3 Modules and Comodules

We introduce in the following the structure of module and comodule over Hom-associative algebras.

Let $A = (V, \mu, \alpha)$ be a Hom-associative K-algebra, an A-module (left) is a triple (M, f, γ) where M is K-vector space and f, γ are K-linear maps, $f : M \to M$ and $\gamma : V \otimes M \to M$, such that the following diagram commutes:

$$
\begin{array}{ccc}
V \otimes V \otimes M & \xrightarrow{\mu \otimes f} & V \otimes M \\
\downarrow \alpha \otimes \gamma & & \downarrow \gamma \\
V \otimes M & \xrightarrow{\gamma} & M
\end{array}
$$

The dualization leads to comodule definition over a Hom-coassociative coalgebra.

Let $C = (V, \Delta, \beta)$ be a Hom-coassociative coalgebra. A C-comodule (right) is a triple (M, g, ρ) where M is a K-vector space and g, ρ are K-linear maps, $g : M \to M$ and $\rho : M \to M \otimes V$, such that the following diagram commutes:

$$
\begin{array}{ccc}
M & \xrightarrow{\rho} & M \otimes V \\
\downarrow \rho & & \downarrow \rho \otimes \Delta \\
M \otimes V & \xrightarrow{\rho \otimes \beta} & M \otimes V \otimes V
\end{array}
$$

Remark 17.6. A Hom-associative K-algebra $\mathcal{A} = (V, \mu, \alpha)$ is a left \mathcal{A}-module with $M = V$, $f = \alpha$ and $\gamma = \mu$. Also, a Hom-coassociative coalgebra $C = (V, \Delta, \beta)$ is a right C-comodule with $M = V$, $g = \beta$ and $\rho = \Delta$. The properties of modules and comodules over Hom-associative algebras or Hom-coassociative algebras will be discussed in a forthcoming paper.

17.4.4 Examples

The classification of two-dimensional Hom-associative algebras, up to isomorphism, yields the following two classes. Let $B = \{e_1, e_2\}$ be a basis where $\eta(1) = e_1$ is the unit.
1. The multiplication μ_1 is defined by $\mu_1(e_1 \otimes e_i) = \mu_1(e_i \otimes e_1) = e_i$ for $i = 1, 2$ and $\mu_1(e_2 \otimes e_2) = e_2$, and the homomorphism α_1 is defined, with respect to the basis B, by $\left(\begin{array}{cc} a_1 & 0 \\ a_2 & a_1 \\ \end{array} \right)$.

2. The multiplication μ_2 is defined by $\mu_2(e_1 \otimes e_i) = \mu_2(e_i \otimes e_1) = e_i$ for $i = 1, 2$ and $\mu_2(e_2 \otimes e_2) = 0$, and the homomorphism α_2 is defined, with respect to the basis B, by $\left(\begin{array}{cc} a_1 & 0 \\ a_2 & a_1 \\ \end{array} \right)$.

The Hom-bialgebras corresponding to the Hom-associative algebra defined by μ_1 and α_1 are given in the following table:

	Comultiplication	Co-unit	homomorphism
1	$\Delta (e_1) = e_1 \otimes e_1$	$\varepsilon (e_1) = 1$	$\left(\begin{array}{c} b_1 \\ 0 \end{array} \right)$
	$\Delta (e_2) = e_2 \otimes e_2$	$\varepsilon (e_2) = 1$	$\left(\begin{array}{c} b_3 \\ b_2 \\ \end{array} \right)$
2	$\Delta (e_1) = e_1 \otimes e_1$	$\varepsilon (e_1) = 1$	$\left(\begin{array}{c} b_1 \\ b_3 \\ \end{array} \right)$
	$\Delta (e_2) = e_1 \otimes e_2 + e_2 \otimes e_1 - 2e_2 \otimes e_2$	$\varepsilon (e_2) = 0$	$\left(\begin{array}{c} b_1 \\ b_2 \\ \end{array} \right)$
3	$\Delta (e_1) = e_1 \otimes e_1$	$\varepsilon (e_1) = 1$	$\left(\begin{array}{c} b_1 \\ b_1 - b_3 \\ \end{array} \right)$
	$\Delta (e_2) = e_1 \otimes e_2 + e_2 \otimes e_1 - e_2 \otimes e_2$	$\varepsilon (e_2) = 0$	$\left(\begin{array}{c} b_2 \\ b_3 \end{array} \right)$

Only Hom-bialgebra (2) carries a structure of Hom-Hopf algebra with an antipode defined, with respect to a basis B, by the identity matrix.

Remark 17.7. There is no Hom-bialgebra associated to the Hom-associative algebra defined by the multiplication μ_2 and any homomorphism α_2.

Acknowledgements This work was supported by the Swedish Foundation for International Cooperation in Research and Higher Education (STINT), the Crafoord Foundation, the Royal Physiographic Society in Lund, the Royal Swedish Academy of Sciences, the Swedish Research Council and European Erasmus program.

References

1. Drinfel’d V. G.: *Hopf algebras and the quantum Yang–Baxter equation*, Soviet Math. Doklady 32, 254–258 (1985)
2. Goze M., Remm E.: *Lie-admissible coalgebras*, J. Gen. Lie Theory Appl. 1, no. 1, 19–28 (2007)
3. Guichardet A.: *Groupes quantiques*, InterEditions / CNRS Editions, Paris (1995)
4. Hartwig J. T., Larsson D., Silvestrov S. D.: *Deformations of Lie algebras using σ-derivations*, J. Algebra 295, 314–361 (2006)
5. Hellström L., Silvestrov S. D.: *Commuting elements in q-deformed Heisenberg algebras*, World Scientific, Singapore (2000)
6. Kassel C.: *Quantum groups*, Graduate Text in Mathematics, Springer, Berlin (1995)
7. Larsson D., Silvestrov S. D.: *Quasi-hom-Lie algebras, Central Extensions and 2-cocycle-like identities*, J. Algebra 288, 321–344 (2005)
8. Larsson D., Silvestrov S. D.: Quasi-Lie algebras, in “Noncommutative Geometry and Representation Theory in Mathematical Physics”, Contemp. Math. 391, Amer. Math. Soc., Providence, RI, 241–248 (2005)
9. Larsson D., Silvestrov S. D.: Quasi-deformations of $sl_2(F)$ using twisted derivations, Comm. Algebra 35, 4303–4318 (2007)
10. Majid S.: Foundations of quantum group theory, Cambridge University Press, Cambridge (1995)
11. Makhlouf A.: Degeneration, rigidity and irreducible components of Hopf algebras, Algebra Colloquium 12(2), 241–254 (2005)
12. Makhlouf A., Silvestrov S. D.: Hom-algebra structures, J. Gen. Lie Theory, Appl. 2(2), 51–64 (2008)
13. Montgomery S.: Hopf algebras and their actions on rings, AMS Regional Conference Series in Mathematics 82, (1993)
14. Yau D.: Enveloping algebra of Hom-Lie algebras, J. Gen. Lie Theory Appl. 2(2), 95–108 (2008)
