Copper ferrites@reduced graphene oxide anode materials for advanced lithium storage applications

Junyong Wang, Qinglin Deng, Mengjiao Li, Kai Jiang, Jinzhong Zhang, Zhigao Hu & Junhao Chu

Copper ferrites are emerging transition metal oxides that have potential applications in energy storage devices. However, it still lacks in-depth designing of copper ferrites based anode architectures with enhanced electroactivity for lithium-ion batteries. Here, we report a facile synthesis technology of copper ferrites anchored on reduced graphene oxide (CuFeO$_2$@rGO and Cu/CuFe$_2$O$_4$@rGO) as the high-performance electrodes. In the resulting configuration, reduced graphene offers continuous conductive channels for electron/ion transfer and high specific surface area to accommodate the volume expansion of copper ferrites. Consequently, the sheet-on-sheet CuFeO$_2$@rGO electrode exhibits a high reversible capacity (587 mAh g$^{-1}$ after 100 cycles at 200 mA g$^{-1}$). In particular, Cu/CuFe$_2$O$_4$@rGO hybrid, which combines the advantages of nano-copper and reduced graphene, manifests a significant enhancement in lithium storage properties. It reveals superior rate capability (723 mAh g$^{-1}$ at 800 mA g$^{-1}$; 560 mAh g$^{-1}$ at 3200 mA g$^{-1}$) and robust cycling capability (1102 mAh g$^{-1}$ after 250 cycles at 800 mA g$^{-1}$). This unique structure design provides a strategy for the development of multivalent metal oxides in lithium storage device applications.

Rechargeable lithium-ion batteries (LIBs) with high energy density and power density have been widely used as energy storage devices$^{1-5}$. There is an increasing demand for LIBs with long-term stability, safety and low cost to meet future requirements for consumer electronics and electric vehicles6,7. Therefore, searching for new anode materials with ultrahigh theoretical capacity and remarkable electrochemical performance is urgently required8,9, due to the low theoretical capacity for the current commercial graphite anodes10. Considerable researches have been devoted to the design of transition metal oxides (TMOs) based electrodes including the binary, ternary, and complex metal oxides, for application in high-performance energy storage devices$^{11-18}$. Among TMOs, the ternary oxides with delafossite structure (ABO$_2$) and spinel structure (AB$_2$O$_4$) have unique layered crystal structures with three-dimensional diffusion pathways, which are benefit for lithium ion insertion and extraction$^{19-23}$. Recently, CuCo$_2$O$_4$ and ZnFe$_2$O$_4$ have been investigated as anode materials, which exhibit good reversible capacity and cyclability and guide the following study on the ternary oxide anode materials24,25.

Compared with them, copper ferrites including CuFeO$_2$ and CuFe$_2$O$_4$ have been considered as promising anode materials for the advantages of natural abundance, environmental friendliness, high specific and practical availability$^{26-39}$. The CuFeO$_2$ anode materials for LIBs was first reported by Lu's group in 201131. CuFeO$_2$ and graphene composites, which had a specific capacity of 670 mAh g$^{-1}$, were prepared by a low temperature hydrothermal method32. As the anode for LIBs, pure CuFeO$_2$ with different morphologies have been investigated$^{33-36}$. Carbon coated hollow CuFeO$_2$ spheres with specific capacity of 550 mAh g$^{-1}$ was obtained by a polymer-template hydrothermal growth method37. Polypyrrole-coated CuFeO$_2$ for LIBs with enhanced electrochemical performance was reported by the electrostatic spray deposition technique38. Unfortunately, the application of copper ferrites in LIBs have been impeded by the inherent sluggish kinetic and large volume expansion/contraction during cycling, which eventually leads to rapid capacity fading and poor cycling stability. Some strategies have been achieved to overcome these obstacles, such as downsizing crystal size39, designing various porous structures40, hierarchical structures$^{40-44}$.

Recently, the development of nanotechnology provides more approaches to manufacture optimized architecture for enhancing the electrochemical active of copper ferrites. The availability of small crystal size with high...
specific surface area and facile stress relaxation processes effectively facilitates the Li\(^+\) diffusion and makes high rate capability possible\(^{42-44}\). Furthermore, graphene with high surface area and great mechanical stiffness have been widely used for energy storage devices as a conductive additive to enhance the electrochemical reactions\(^{45-47}\). In particular, few-layered graphene (FLG) obtained from graphene oxide exhibits a high reversible capacity and excellent Columbic efficiency and very low cycle to cycle capacity fading\(^{48-51}\). The addition of graphene can not only increase electrode-electrolyte contact area and faster electrolyte access to active materials, but also mitigate the volume change and limit structure degradation during cycling\(^{52, 53}\). Moreover, the integration of metallic nanocrystals is a new strategy to address the weak charge transfer kinetics for high active surface/interface and robust stability\(^{40, 54, 55}\). Therefore, the design of hybrid architectures with improved capability and stability are highly necessary to achieve prominent performances for copper ferrites anodes.

Herein, we report an efficient and scalable hydrothermal method for synthesizing the copper ferrites@rGO composites (CuFeO\(_2\)@rGO and Cu/CuFe\(_2\)O\(_4\)@rGO) with boosted electrochemical performance. As illustrated in Fig. 1, the copper and iron ions could adsorb on the exposed GO surface owing to the oxygen-containing groups after being well dispersed in GO suspension. In the fabrication processes of CuFeO\(_2\)@rGO composites (Fig. 1a), the primary delafossite CuFeO\(_2\) nanocrystals are first formed in the NaOH solution, followed by the oriented attachment growth to construct the sheet-on-sheet CuFeO\(_2\)@rGO architecture. The synergistic effects of each component improve the capability of CuFeO\(_2\)@rGO electrode (587 mAh g\(^{-1}\) at 200 mA g\(^{-1}\) after 100 cycles). As shown in Fig. 1b, the Cu/CuFe\(_2\)O\(_4\)@rGO composite was obtained by means of the reducing and complexing characteristics of ethylene glycol (EG) and the stronger complexing ability of ethylenediamine (EN). In this reaction system, part of copper ions form CuFe-precursor combining with iron ions. The rest of copper ions were reduced to metallic copper through reacting with ethylene glycol and ethanediamine in the liquid solution. The similar mechanism for preparing spinel compound oxides by using non-stoichiometric ratio have been reported\(^{40, 41}\). Such a phase transformation leads to the well distribution of CuFe\(_2\)O\(_4\) and copper on the surface of rGO, while each of them is interconnected by graphene. It is anticipated that such Cu/CuFe\(_2\)O\(_4\)@rGO configuration can gain access to the following advantages: (i) a sufficient electrical contact for rapid electron transfer and a shorter channel for fast lithium ion transport, promoting the electrode reaction kinetic; (ii) large surface area ensures effective contact between the electrolyte and electrode, enhancing the electrochemical actively; (iii) available internal voids can buffer the volume change during lithiation/delithiation processes, increasing structural stability. Unsurprisingly, the as-built Cu/CuFe\(_2\)O\(_4\)@rGO electrode exhibited a remarkable rate capability (560 mAh g\(^{-1}\) at 3200 mA g\(^{-1}\)) and cycling stability (835.2 mAh g\(^{-1}\) over 100 cycles at 200 mA g\(^{-1}\)), indicating a promising prospect of application in high-end energy storage devices.

Results and Discussion

The CuFeO\(_2\)@rGO composites. The crystalline phase and composition of as-synthesized CuFeO\(_2\)@rGO composites were investigated by XRD measurements. As shown in Fig. 2a, the single delafossite CuFeO\(_2\) phase (PDF# 39-0246) of CuFeO\(_2\)@rGO can be well observed in the scan range of 10–80°, which confirms the good crystallinity of the samples. For the pure CuFeO\(_2\), CuFeO\(_2\) is the predominating phase along with a weak impure peak located at around 38°, which may be related to CuO or 2H-CuFeO\(_2\). It is hard to determined due to its weak intensity. Pure CuFeO\(_2\) displays sharper and stronger diffraction peaks than CuFeO\(_2\)@rGO, suggesting the smaller crystallite size in CuFeO\(_2\)@rGO. The d-spacings of the (006) and (110) diffraction peaks indicate that lattice parameters of a = 0.3031 nm and c = 1.7141 nm for CuFeO\(_2\)@rGO sample. In comparison, pure CuFeO\(_2\)
has lattice parameter values of $a = 0.3027$ nm and $c = 1.7161$ nm. Raman spectroscopy was adopted to evaluate the graphitic quality, which cannot be detected by XRD data (Fig. 2b). There are three modes at around 105, 342 and 670 cm$^{-1}$, which correspond to E_u, E_g and A_1g of delafossite CuFeO$_2$. In addition, two well-resolved bands at 1360 and 1590 cm$^{-1}$ for CuFeO$_2$@rGO are attributed to the D band (k-point phonon of A_1g symmetry) and G band (E$_2g$ phonon of carbon) of graphene, respectively. Compared with GO ($I_D/I_G = 0.86$), the increased ratio of the D band to G band ($I_D/I_G = 0.97$) in CuFeO$_2$@rGO suggests the reduction of graphene, which can be ascribed to smaller but more numerous sp2 domains in carbon. Moreover, the presence of 2D band at 2694 cm$^{-1}$ and (D + G) band at 2953 cm$^{-1}$ in Fig. S1 manifests a substantial increase in the disorder degree in graphene sheets. The high ratio I_G/I_{2D} indicates the relatively thick graphene layers.

The specific surface area of as-prepared composites was calculated by the Brunauer-Emmett-Teller (BET) method. As shown in Fig. S2, the BET surface area of CuFeO$_2$@rGO is 14.63 m2 g$^{-1}$, which is very low specific surface area in comparison with graphene. It indicates that lots of the active surface of graphene have been covered by CuFeO$_2$ crystal with smaller specific surface area, which may not readily allow nitrogen molecules to get adsorbed onto them unlike pristine graphene. XPS measurements were conducted to detect the composition and chemical state of CuFeO$_2$@rGO. The full XPS spectrum (Fig. S3) reveals the presence of Cu 2p, Fe 2p, O 1s and C 1s, with no evidence of impurities. Figure 2d shows the high resolution XPS spectrum of Cu 2p. The dominant doublet peaks positioned at 932.1 and 952.1 eV are ascribed to Cu 2p$_{3/2}$ and Cu 2p$_{1/2}$ for Cu$^{+}$ from CuFeO$_2$. The shoulder peaks located at around 934.5 and 954.9 eV along with two satellite peaks at 943.1 and 961.9 eV correspond to Cu 2p$_{3/2}$ and Cu 2p$_{1/2}$ for Cu$^{2+}$, which should be caused by the easy oxidation of Cu in air atmosphere. The O 1s peak located at 530.8 eV (Fig. 2e) further confirms the formation of CuFeO$_2$, whereas the higher binding energy peak positioned at about 532.7 eV is attributed to the surface adsorbed hydroxyl oxygen. The high resolution XPS spectrum of the Fe 2p doublet (Fig. 2f) with two peaks located at 711.4 eV for Fe 2p$_{3/2}$ and 725.2 eV for Fe 2p$_{1/2}$, is characteristic of Fe$^{3+}$. In addition, the high resolution C 1s spectrum in Fig. 2c could be deconvoluted into four peaks at 284.8, 285.4, 286.5 and 288.2 eV, corresponding to C-C, C-O, C\equivO and COOH bonds, respectively. Note that the C-C bond is dominant in the C functional groups, which indicates the possibility of electronic conductivity improvement for CuFeO$_2$@rGO electrode.

The morphology and microstructure of the as-prepared CuFeO$_2$ and CuFeO$_2$@rGO were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Figure 3a reveals the large hexagonal platelet characteristic of 1–2 μm in diameter and 300–600 nm in thickness for bare CuFeO$_2$. Figure 3b–d show that the hexagonal CuFeO$_2$ crystals with the diameter of 200–400 nm and thickness of 40–60 nm are homogeneously anchored on the surface of graphene nanosheets for CuFeO$_2$@rGO. The reduced size of CuFeO$_2$ can be attributed to the functional groups of graphene nanosheets, which can not only restrict the size of CuFeO$_2$ but also act as nucleation centers to facilitate the formation of crystals. The smaller size of CuFeO$_2$ attached on graphene nanosheets is advantageous to facilitate the lithium ion diffusion and accommodation the large volume changes during cycling, resulting in better electrochemical performance for LIBs. In addition, the selected area electron diffraction (SAED) pattern (inset of Fig. 3c) shows a set of well-defined spots of the prepared CuFeO$_2$ on rGO. A magnified TEM image (Fig. 3e) clearly shows that the primary CuFeO$_2$ nanocrystals are formed on graphene, which further confirms the growth mechanism of CuFeO$_2$. The high-resolution TEM (HRTEM) image...
reveals clear lattice fringe spacing of 0.25 nm and 0.29 nm (Fig. 3f), which can be readily indexed to the (012) and (006) planes of the delafossite CuFeO$_2$ crystal, respectively.

As a demonstration, the as-prepared CuFeO$_2$ composites were employed as anodes for LIBs. The cyclic voltammetry (CV) analysis was applied to obtain the electrochemical details at a scan rate of 0.5 mV s$^{-1}$ within a voltage window of 0.02–3 V (vs. Li/Li$^+$). Figure 4a shows the 1st, 2nd, and 5th CV curves of CuFeO$_2$@rGO electrode. In the first cathodic process, two obvious peaks at about 0.86 and 0.75 V can be ascribed to the decomposition of electrolyte, the formation of solid electrolyte interface (SEI) layer on the electrode surface, as well as the irreversible reduction of CuFeO$_2$ ($\text{CuFeO}_2 + 4\text{Li}^+ + 4e^- \rightarrow \text{Cu} + \text{Fe} + 2\text{Li}_2\text{O}$). In the reversed anodic process, the broad oxidation peak centered at 1.78 V represents the reversible oxidation of metallic Cu and Fe ($\text{Cu} + 2\text{F} + \text{Li}_2\text{O} \leftrightarrow \text{Cu}_2\text{O} + \text{Fe}_2\text{O}_3 + 8\text{Li}^+ + 8e^-$) and Li$_2$O decomposition. In the subsequent cycles, the cathodic peak located at 0.87 V corresponds to the reduction of Cu$_2$O, Fe$_2$O$_3$ and the formation of SEI film31. The corresponding CV curves of CuFeO$_2$ are shown in Fig. S4. The only peak at about 0.73 V in the first cathodic process should be assigned to the reduction of CuFeO$_2$ and the irreversible reaction related to the decomposition of the electrolyte32. The different in the first discharge cycle between CuFeO$_2$ and CuFeO$_2$@rGO may be attributed to the synergistic effects of graphene62. Figure 4b shows the charge/discharge cycling of CuFeO$_2$@rGO electrode in the initial, second, twenty-fifth, fiftieth and hundredth cycles at the current density of 200 mA g$^{-1}$. It can be seen clearly that the voltage drops sharply from the open-circuit voltage to about 1.2 V during the first discharge cycle, which is corresponding to the beginning the insertion of Li$^+$ ions63. The discharge profile mainly consists of voltage plateau at about 1.2 V and 0.95 V, agreeing with the first CV curve. At about 0.8 V, the voltage starts dropping with a gentle sloping profile. The first charge cycle has no voltage plateau but a sloping profile that changes at about 1.5 V till about 2.3 V, before changing again. The second charge cycle is analogous to the first charge cycle, which indicates that similar electrochemical reactions are taking place in both cycles. The second discharge cycle has a very different profile in comparison with the first discharge cycle, indicating disparate electrochemical reactions. The voltage plateau originally seen at 1.2 V is no longer seen. The voltage drops slowly from 3 to 1 V, and then slopes downward till 0.02 V. Moreover, the initial discharge capacity of CuFeO$_2$@rGO (985 mAh g$^{-1}$) is remarkably higher than the theoretical capacity of CuFeO$_2$ (708 mAh g$^{-1}$), which have been found in other metal oxides$^{12, 13, 32, 47, 57}$. The higher initial discharge capacity may be ascribed to structural destruction upon Li insertion and irreversible reaction related to the decomposition of the electrolyte33. The different in the first discharge cycle between CuFeO$_2$ and CuFeO$_2$@rGO may be attributed to the synergistic effects of graphene62. The higher initial discharge capacity may be ascribed to structural destruction upon Li insertion and decomposition of the solvent in the electrolyte, subsequent formation of large area solid electrolyte interphase (SEI) layer and nano Cu and Fe in Li$_2$O matrix. The initial charge capacity of CuFeO$_2$@rGO is 730 mAh g$^{-1}$, yielding a coulombic efficiency of 74%. The formation of SEI layer on the surface of active materials has been recognized as the primary cause for irreversible capacity loss, including graphene (Fig. S5)$^{14, 66}$. Moreover, the high irreversible capacity loss can also be attributed to the volume variations, some undecomposed Li$_2$O phase, along with the irreversible reduction of active materials and electrolyte during the first discharge process$^{11, 16, 48}$. Notably, the curves are strongly overlapped for 25, 50 and 100 cycles, suggesting the good stability and reversibility of CuFeO$_2$@rGO electrode.

The galvanostatic charge/discharge (GCD) profiles at various rate and the corresponding comparison are shown in Fig. 4c and Fig. S6. One can see that the CuFeO$_2$@rGO electrode delivers discharge capacities of 1078, 561 and 406 mAh g$^{-1}$ at 50, 200 and 800 mA g$^{-1}$, respectively. In contrast, not only the initial capacity of bare CuFeO$_2$ electrode is lower than the CuFeO$_2$@rGO electrode, but there is also severe capacity fading in a reversible

Figure 3. (a) SEM image of CuFeO$_2$, inset shows the higher magnification. (b) SEM image of CuFeO$_2$@rGO, inset shows the higher magnification. (c, d) TEM images of CuFeO$_2$@rGO, inset of (c) shows the selected area electron diffraction (SAED) pattern. (e) High magnitude TEM image of CuFeO$_2$@rGO. (f) HRTEM image of CuFeO$_2$@rGO.
capacity of only 146 mAh g\(^{-1}\) at 200 mA g\(^{-1}\). It indicates that the introduction of graphene is beneficial for fast charge transfer and the electrode stable at high rate, leading to the enhancement of electrochemical capability. Fig. 4d shows the cycling performance of CuFeO\(_2@rGO\) and bare CuFeO\(_2\) electrodes at the current density of 200 mA g\(^{-1}\). The CuFeO\(_2@rGO\) electrode demonstrates excellent reversibility and cycling stability. A reversible capacity as high as 587 mAh g\(^{-1}\) is sustained after 100 cycles. It is worth noting that the capacity fading from the first to the tenth cycles can be ascribed to the complicated side-reactions and irreversible structure transformation\(^{67,68}\). However, in the case of bare CuFeO\(_2\), the reversible capacities seriously decline to 222 mAh g\(^{-1}\), which can be ascribed to the large volume expansion and mechanical stress during lithiation/delithiation processes\(^{31}\). Moreover, the CuFeO\(_2@rGO\) electrode exhibits a superior cycling capability and stability even at a high rate of 800 mA g\(^{-1}\) (400 mAh g\(^{-1}\) after 100 cycles) (Fig. S7). The significantly enhanced cycling performances are closely related to the sheet-on-sheet architecture of CuFeO\(_2@rGO\). Specifically, the small size of CuFeO\(_2\) along with the high surface area of graphene can provide more electrochemical reaction sites and suppress the aggregation of active materials to keep electrode structure stable\(^{69}\). Impressively, the CuFeO\(_2@rGO\) electrode exhibits robust rate capability (Fig. 4e). Upon cycling at various current densities of 50, 100, 200, 400, 800 mA g\(^{-1}\), the CuFeO\(_2@rGO\) electrode exhibits average discharge capacities of 720, 630, 538, 474, 406 mAh g\(^{-1}\), respectively. Furthermore, the discharge capacity could maintain a discharge capacity of 613 mAh g\(^{-1}\) when the rate is returned to 100 mA g\(^{-1}\). In contrast, the CuFeO\(_2\) electrode shows inferior rate capability, achieving mere 70 mAh g\(^{-1}\) at 800 mA g\(^{-1}\) and poor recovery (178 mAh g\(^{-1}\) at 100 mA g\(^{-1}\)).

The inspiring rate capability and cycling stability of CuFeO\(_2@rGO\) electrode originate from the sheet-on-sheet structure. In CuFeO\(_2\) electrode, limited by the inherent poor conductivity and sluggish ion transport of disconnected micron-grade crystals, the lithium ion cannot effectively diffuse to the active materials through electrolyte. In contrast, the interconnected CuFeO\(_2@rGO\) architecture with nanoscale CuFeO\(_2\) can shorten the Li\(^{+}\) diffusion path.

diffusion pathway for fast electron/ionic transportation. In addition, the conductive graphene boosts the electrical conductivity and the sufficient contact between electrolyte and active materials, promoting charge transfer at the electrode/electrolyte interface. To further understand the electrode kinetics mechanism of CuFeO$_2$@rGO and CuFeO$_2$, electrochemical impedance spectra (EIS) were carried out on the fresh cells from the open circuit voltage. The Nyquist plots are shown in Fig. 4f, all spectrum consist of a depressed semicircle and a straight line. The semicircle is related to charge transfer resistance whereas the line corresponds to solid state diffusion resistance. The spectra were fitted to an equivalent circuit consisting of resistances (both electrolyte R$_e$ and charge transfer R$_{ct}$), a constant phase element (CPE), a Warburg impedance (W$_s$), and an intercalation capacitance (C$_{int}$). W$_s$ is associated with the solid-state diffusion resistance. The values of the circuit elements shown in Table S1 (Supporting Information) confirm the easy lithiation kinetics of CuFeO$_2$@rGO electrode. Moreover, the sheet-on-sheet configuration with high surface area can offer more electrochemical reaction sites, which are benefit for the lithiation/delithiation reaction of active materials. The configuration also provides more volume to prevent the aggregation of active materials, ensuing a stable electrode structure. All the aforementioned factors contribute the remarkable electrochemical lithium storage properties of the CuFeO$_2$@rGO composites.

The Cu/CuFe$_2$O$_4$@rGO composites. The conductive additive has shown great success for promoting the capacity and stability of delafossite-type CuFeO$_2$ based anode. Such a strategy should be extended to spinel-type copper ferrite CuFe$_2$O$_4$ with higher theoretical capacity (895 mAh g$^{-1}$). However, the active materials could be separated from the add-in graphene for the weak interaction during high-rate cycling, which can be ameliorated by the combination with metal nanocrystals. In particular, metallic copper with high electrical conductivity has been proven to be an efficiently additive for advanced energy storage. Therefore, the Cu/CuFe$_2$O$_4$@rGO electrode is expected to constructed though a one-step hydrothermal approach, as shown in Fig. 1b. In this reaction process, ethylene glycol medium can act not only as a solvent, but also as a reductant to induce the incorporation of metallic Cu. Moreover, as a cosolvent, ethylenediamine has a stronger chelating ability for the release of isolated iron ions, which influences the crystal growth and generates the CuFe$_2$O$_4$. The integration of metal copper and graphene with CuFe$_2$O$_4$ nanocrystals can prevent the exfoliation of active materials and accelerate the transportation of electrons/ions. Thus, the prospection of higher capacity and high-rate performance for copper ferrites based lithium storage can be achieved.

The crystallographic structure of the as-fabricated Cu/CuFe$_2$O$_4$@rGO hybrid was analyzed by XRD technique. As shown in Fig. 5a, the strong diffraction peaks at around 43° and 51° can be assigned as the (111) and (200) peak of Cu (PDF# 04-0836), respectively. The other diffraction peaks can be indexed as spinel CuFe$_2$O$_4$ (PDF# 25-0283), which confirms the good crystallinity of the products. Moreover, Cu/CuFe$_2$O$_4$ and Cu/CuFe$_2$O$_4$@rGO show the similar lattice parameter values of a = b = c = 0.8373 nm. Raman spectroscopy was performed to analyze the coating conditions of rGO layer (Figs 5b and S8). The band at 665 cm$^{-1}$ corresponds to the A$_{1g}$ vibration of CuFe$_2$O$_4$. Compared with GO ($I_D/I_G = 0.86$), the increased D/G intensity ratio ($I_D/I_G = 0.94$) in Cu/CuFe$_2$O$_4$@rGO suggests the reduction of graphene. The presence of 2D band shows a substantial increase in the disorder degree of graphene with many layers. The specific surface area of Cu/CuFe$_2$O$_4$ composites show in Fig. 5c. The BET value of Cu/CuFe$_2$O$_4$ is 11.96 m2g$^{-1}$, similar to the other metal oxides with analogous morphology. The high specific surface area of Cu/CuFe$_2$O$_4$@rGO (161.39 m2g$^{-1}$) is mainly the contribution of graphene, which is connected to large SEI formation, extending up to very high capacity. XPS measurements were conducted to identify the chemical states of elements in the Cu/CuFe$_2$O$_4$@rGO composites.
further evaluate the composition of Cu/CuFe₂O₄@rGO composites. The survey XPS spectrum (Fig. 5c) clearly indicates the presence of Cu, Fe, O and C elements, consistent with the above XRD and Raman results. The high-resolution Cu 2p spectra (Fig. 5d) reveals Cu²⁺ 2p³/₂ and Cu²⁺ 2p₁/₂ binding energy peaks at 934.8 eV and 954.9 eV, respectively. The satellite peaks at 944 eV and 963 eV indicate the existence of metallic copper in Cu/CuFe₂O₄@rGO hybrid. From Fig. 5e, the peaks at 711.6 eV and 725.4 eV with an energy difference of 13.8 eV, are assigned to Fe³⁺ 2p³/₂ and Fe³⁺ 2p₁/₂, respectively. Moreover, the strong C 1s peak located at 284.5 eV is assigned to the graphitic carbon (C-C) of rGO whereas the weaker peak at 288.5 eV is related to the C in carboxyl (COOH) (Fig. 5f). The dramatic loss of oxygen-containing functional groups further indicates the deoxygenation process accompanying the reduction of GO, which is ascribed to the addition of reductive agent in the hydrothermal reaction.

The morphology and microstructure of Cu/CuFe₂O₄@rGO composites were examined by SEM and TEM. It can be seen from Fig. 6a and Fig. S10 that the as-prepared Cu/CuFe₂O₄ has a great irregular CuFe₂O₄ around large metallic copper crystals. The typical SEM images at different magnifications are shown in Fig. 6b and Fig. S11. It clearly reveals the uniform morphology over the whole surface of Cu/CuFe₂O₄@rGO, wherein graphene nanosheets have a mass of ultrafine nanoparticles evenly anchored on them. Notably, there is no large aggregations of CuFe₂O₄ and metallic copper or large vacancies in graphene nanosheets, exhibiting a better distribution and smaller size in comparison with Cu/CuFe₂O₄. The huge transformation of morphology between the two samples can be ascribed to the synergistic effects of graphene, EN and EG used in the hydrothermal reaction. Graphene can be decomposed by EN and reduced by EG, resulting in abundant active sites, which can control the crystal nucleation and growth of CuFe₂O₄ and Cu. In addition, the chelates of EG and the large surface areas of graphene can prevent the agglomeration during the particle growth process. The TEM images further confirm that graphene nanosheets are decorated by ultrafine nanoparticles with the diameter of 15–25 nm, which interconnected through rGO (Fig. 6c,d). The selected area electron diffraction (SAED, inset of Fig. 6c) shows the polycrystalline diffraction rings of Cu/CuFe₂O₄@rGO composites. The HRTEM images (Fig. 6e,f) recorded on two different parts further confirm the formation of Cu/CuFe₂O₄@rGO. The lattice fringes of 0.25 nm and 0.48 nm in Fig. 6e can be assigned to the (311) and (111) plane of CuFe₂O₄. The interplanar spacing of 0.21 nm and 0.30 nm in Fig. 6f can be assigned to the (111) plane of Cu and (220) plane of CuFe₂O₄. The high surface area of Cu/CuFe₂O₄@rGO combined with uniform distribution of metal copper and ultrafine CuFe₂O₄ is helpful for fast ion access, stable crystalline structure and efficient electrolyte penetration. Moreover, the hybrid system can promote the electrochemical activities and prevent the separation of CuFe₂O₄ during cycling, which can result in high-rate lithium storage performance.

The CV profiles of as-prepared CuFe₂O₄ based electrodes are shown in Fig. 7a and Fig. S12. For Cu/CuFe₂O₄@rGO electrode, the cathodic sharp peak located at around 0.5 V in the first cycle corresponds to the irreversible reduction of CuFe₂O₄ (CuFe₂O₄ + 8Li⁺ + 8e⁻ → Cu + 2Fe + 4Li₂O), as well as the growth of SEI layer. Two broad overlapping anodic peaks positioned at about 1.74 and 1.85 V can be attributed to the reversible oxidation of metallic Cu and Fe (Cu + 2Fe + 4Li₂O ↔ CuO + Fe₂O₃ + 8Li⁺ + 8e⁻), as well as the DEI decomposition. In subsequent cycles, the cathodic/anodic peaks at around 0.7 V/1.85 V can be observed, corresponding to the improved kinetics as well as the lithiation/delithiation reactions of CuO/Cu and Fe₂O₃/Fe. Note that the voltammograms are superimposable perfectly after the first cycle, as compared with Cu/CuFe₂O₄ and CuFe₂O₄.
suggesting better electrochemical reactivity and reversibility for Cu/CuFe₂O₄@rGO. The initial five voltage profiles of Cu/CuFe₂O₄@rGO electrode at 50 mA g⁻¹ and the corresponding comparison are shown in Fig. 7b and Fig. S13. The voltage drops sharply from the open-circuit voltage to about 0.85 V during the first discharge cycle for all electrodes. There is a voltage plateau at about 0.85 V, followed by a sloping profile till just above 0.02 V. The second discharge cycle had a different profile. The voltage dropped initially to about 1 V and has a small voltage plateau at around 0.95 V. At about 0.85 V, the voltage decreased steeply to 0.02 V. The charge cycles are similar and all has a sloping profile that changes at about 1.5 V till 2.3 V. Moreover, the Cu/CuFe₂O₄@rGO delivers an initial discharge and charge capacity of 1169 mAh g⁻¹ and 855 mAh g⁻¹ with a first coulombic efficiency of 73.1%, much higher than those for Cu/CuFe₂O₄ and CuFe₂O₄. The enhanced capacity is attributed to the contribution of graphene and metallic copper along with smaller crystal size, which can increase the utilization of active materials. The large irreversible capacity loss is likely ascribed to the consumption of Li⁺ to form an irreversible SEI layer and the reduction of CuFe₂O₄. Noticeably, smaller voltage hysteresis for Cu/CuFe₂O₄@rGO electrode manifests its better electrochemical stability. EIS were carried out on the fresh cells from the open circuit voltage to understand the kinetics of lithiation and delithiation and resistance to charge transfer. The typical Nyquist plots in which semicircles and Warburg line are present are shown in Fig. 7c along with the respective equivalent electrical circuits (the values of the circuit elements are shown in Table S2). The overall low impedance values imply the better reaction kinetics of Cu/CuFe₂O₄@rGO electrode. The availability of Cu/CuFe₂O₄@rGO with Cu and CuFe₂O₄ nanoparticles can effectively reduce the ion transport dimensions and enlarge the contact surface of electrode-electrolyte, resulting in improved electrochemical performance.

As shown in Fig. 7d, the Cu/CuFe₂O₄@rGO electrode shows an enhanced rate capability, with the average discharge capacity of 863 mAh g⁻¹ and 723 mAh g⁻¹ at rates of 50 mA g⁻¹ and 800 mA g⁻¹. Moreover, the capacity can recover to the initial value as long as the rate reverses back to low current density, highlighting the cycling durability. For comparison, the Cu/CuFe₂O₄ electrode delivers mere 100 mAh g⁻¹ at 800 mA g⁻¹ and exhibits poor recovery. To further evaluate the ultrafast electrochemical ability of Cu/CuFe₂O₄@rGO electrode, high-rate testing was conducted at even higher current densities from 50 mA g⁻¹ to 3200 mA g⁻¹ (Fig. 7e). Noticeably, the Cu/CuFe₂O₄@rGO electrode features a high-rate reversible capability as well as stability and the capacity maintains

Figure 7. (a) CV curves and (b) charge/discharge voltage profiles of Cu/CuFe₂O₄@rGO at 50 mA g⁻¹ for the initial five cycles. (c) Nyquist plots and equivalent circuit of Cu/CuFe₂O₄ and Cu/CuFe₂O₄@rGO. (d) Rate capabilities of Cu/CuFe₂O₄@rGO and Cu/CuFe₂O₄ at different current density. (e) Rate capabilities of Cu/CuFe₂O₄@rGO and Cu/CuFe₂O₄ at varying rate from 50 mA g⁻¹ to 3200 mA g⁻¹. (f) Cycling performance of Cu/CuFe₂O₄@rGO and Cu/CuFe₂O₄ at 200 mA g⁻¹ for 100 cycles. (g) Cycling performance of Cu/CuFe₂O₄@rGO at 800 mA g⁻¹ for 250 cycles, inset shows the schematic illustration of the half-cell structure during cycling. (h) Selected discharge voltage profiles of Cu/CuFe₂O₄@rGO at 800 mA g⁻¹.
above 560 mA h g$^{-1}$ at 3200 mA g$^{-1}$. For comparison, the Cu/CuFeO$_2$ electrode demonstrates much poor rate capability with negligible discharge capacity of 27 mA h g$^{-1}$ at 3200 mA g$^{-1}$. In particular, the Cu/CuFeO$_2$@rGO electrode can quickly recover to its original capacity or even higher (861.1 mA h g$^{-1}$ in the 40th cycle) when the rate abruptly switched to 100 mA g$^{-1}$, indicating the promising application for advanced energy storage. The significantly boosted rate capacity of Cu/CuFeO$_2$@rGO electrode is mainly induced by the synergistic effect of graphene sheets and small crystal. The conductive rGO and metallic copper enhance the electronic conductivity and shorten electronic/ionic transport length, resulting in better lithiation/delithiation reaction kinetics. Moreover, the large surface area of Cu/CuFeO$_2$@rGO provides more surface to the electrolyte and activation sites for electrochemical reactions. In addition, the large surface area can effectively buffer the large volume change during lithium reactions, ensuring a superior high-rate performance.

In addition to ultrahigh rate capability, the Cu/CuFeO$_2$@rGO electrode also possesses boosted cycling performance. As shown in Fig. 7f, the Cu/CuFeO$_2$@rGO electrode delivers a reversible capacity of 835.2 mA h g$^{-1}$ after 100 cycles at 200 mA g$^{-1}$, which is much higher than that for Cu/CuFeO$_2$ (235 mA h g$^{-1}$ after 100 cycles). It suggests the extraordinary cycling stability for the highly reversible Li$^+$ insertion/extraction kinetics. Furthermore, the long-term high-rate cycling performance of Cu/CuFeO$_2$@rGO was evaluated at 800 mA g$^{-1}$ for 250 cycles after being activated for 3 cycles at 50 mA g$^{-1}$ (Fig. 7g). An ultrahigh discharge capacity of 1102 mA h g$^{-1}$ is yielded even after 250 cycles, indicating the robust cyclability even under the long-term and fast discharge/charge cycling. Interestingly, there is a capacity increasing stage after a slow capacity decay, which has been reported for most transition metal oxides$^{46-57}$. Such an activation behavior for LIBs originates from the gradually emerging interfacial storage contribution, which can be attributed to the faradaic contribution of pseudo-capacitance and non-faradaic contribution of double-layer capacitance5. In addition, the reversible growth of a polymeric gel-like film around the active materials from electrolyte decomposition can be ascribed to the high surface area of graphene sheets and small crystal. The conductive rGO and metallic copper enhance the electronic conductivity and shorten electronic/ionic transport length, resulting in better lithiation/delithiation reaction kinetics. Furthermore, the large surface area can effectively buffer the large volume change during lithium reactions, ensuring a superior high-rate performance.

Methods

Fabrication of CuFeO$_2$@rGO. Graphene oxide (GO) was prepared using a modified Hummers method79. The CuFeO$_2$ nanosheets and reduced graphene composites were fabricated by a facile hydrothermal approach and subsequent calcination. In a typical procedure, 50 mg graphene nanosheets was first dissolved in 25 mL alcohol...
by mild sonication to form a uniform suspension. Subsequently, 1 mmol Fe(NO₃)₃·9H₂O and Cu(NO₃)₂·2.5H₂O were dissolved in 40 mL alcohol under constant magnetic stirring for 2h in a separate flask to achieve a clear and homogeneous solution. Then the two solutions were mixed and the pH of the mixture was adjusted to 12 by 6 M NaOH and 5 mL of ethylene glycol (EG) and 5 mL of anhydrous ethylenediamine (EN) were added separately to the solution and stirred vigorously for 30 min. The solution was subsequently transferred into a 100 mL autoclave and maintained at 180 °C for 12 h. The resulting product was centrifuged, washed with deionized water and absolute alcohol several times and dried in vacuum at 60 °C for 12 h. The solid product was treated in the tube furnace at 400 °C for 2h under a N₂ atmosphere. For comparison, bare Cu/CuFeO₂ was obtained by the similar procedures except for the absence of GO.

Fabrication of Cu/CuFeO₂@rGO. Briefly, 25 mL of graphene alcohol dispersion (2.5 mg mL⁻¹) was mixed with 40 mL of 1 mmol Fe(NO₃)₃·9H₂O and Cu(NO₃)₂·2.5H₂O alcohol solution under vigorous magnetic stirring at room temperature. Then, the pH of the mixture was adjusted to 12 by 6 M NaOH and 5 mL of ethylene glycol (EG) and 5 mL of anhydrous ethylenediamine (EN) were added separately to the solution and stirred vigorously for 30 min. The solution was subsequently transferred into a 100 mL autoclave and maintained at 180 °C for 12 h. The resulting product was centrifuged, washed with deionized water and absolute alcohol several times and dried in vacuum at 60 °C for 12 h. The solid product was treated in the tube furnace at 400 °C for 2h under a N₂ atmosphere. For comparison, bare Cu/CuFeO₂ was obtained by the similar procedures except for the absence of GO.

Characterization methods. The phase purity and crystal structure were characterized by X-ray diffraction (XRD) using a Bruker D8 diffractometer with Cu-Kα radiation. The morphology and microstructure were investigated by scanning electron microscopy (SEM, PHILIPS XL30TMP) and transmission electron microscopy (TEM, FEI Tecnai G20). Raman spectra were recorded using a HORIBA Jobin Yvon Raman spectrometer with the excitation laser of 632.8 nm at room temperature. X-ray photoelectron spectroscopy (XPS) was conducted on a RBD upgraded PHI-5000C ESCA system (Perkin-Elmer) with Mg-Kα radiation (hv = 1253.6 eV).

Electrochemical measurements. The electrochemical measurements were recorded using coin-type 2032 cells. Working electrodes were prepared by pasting homogeneous slurries consisting of the active material (70 wt%), acetylene black (20 wt%), and polyvinylidine fluoride binder (10 wt%) dissolved in N-methyl-2-pyrrolidone onto pure Cu foil, followed by vacuum dried at 100 °C for 12 h. The coated Cu foil was punched into disks and used as the working electrodes. The cells were assembled using lithium metal as the counter/reference electrode, celgard 2400 polypropylene film as the separator in an Ar-filled glovebox (O₂ and H₂O contents <1 ppm). The electrolyte was 1 M LiPF₆ dissolved in a mixture of ethylene carbonate, dimethyl carbonate, and diethyl carbonate (1:1:1, in vol%). The electrochemical performances of the cells were evaluated by galvanostatic charge/discharge (GCD) on a Land CT 2001A battery tester within a voltage range of 0.02–3 V (vs. Li/Li⁺). Cyclic voltammetry (CV) was conducted on a CHI-660D electrochemical workstation with a scan rate of 0.5 mV s⁻¹ within a voltage window of 0.02–3 V (vs. Li/Li⁺). Electrochemical impedance spectroscopy (EIS) was performed within a frequency range of 100 kHz to 0.01 Hz by applying a sine wave with amplitude of 5 mV.

References

1. Armand, M. & Tarascon, J. M. Building better batteries. *Nature* **451**, 652–657 (2008).
2. Yang, X., Zhu, J., Qiu, L. & Li, D. Bioinspired Effective Prevention of Restacking in Multilayered Graphene Films: Towards the Next Generation of High-Performance Supercapacitors. *Adv. Mater.* **23**, 2833–2838 (2011).
3. Reddy, M. V., Subba Rao, G. V. & Chowdari, B. V. R. Metal Oxides and Oxysalts as Anode Materials for Lithium-Ion Batteries. *Chem. Rev.* **113**, 5364–5457 (2013).
4. Huang, G. et al. Metal Organic Frameworks Route to In Situ Insertion of Multiwalled Carbon Nanotubes C₅O₂ Polyhedra Anode Materials for Lithium-Ion Batteries. *ACS nano* **9**, 1592–1599 (2015).
5. Srivastava, M. et al. Recent advances in graphene and its metal-oxide hybrid nanostructures for lithium-ion batteries. *Nanoscale* **7**, 4820–4868 (2015).
6. Yang, Y. et al. Rational material design for ultrafast rechargeable lithium-ion batteries. *Chem. Soc. Rev.* **44**, 5926–5940 (2015).
7. Li, F., Ran, J., Jaroniec, M. & Qiao, S. Z. Solution combustion synthesis of metal oxide nanomaterials for energy storage and conversion. *Nanoscale* **7**, 17590–17610 (2015).
8. Chu, S. & Majumdar, A. Opportunities and challenges for a sustainable energy future. *Nature* **488**, 294–303 (2012).
9. Goodenough, J. B. & Park, K. S. The Li-Ion Rechargeable Battery: A Perspective. *J. Am. Chem. Soc.* **135**, 1167–1176 (2013).
10. Tarascon, J. M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. *Nature* **414**, 359–367 (2011).
11. Ma, J. J. et al. Porous carbon-coated Cu₅O₃O₆ concave polyhedrons derived from metal-organic frameworks as anodes for lithium-ion batteries. *J. Mater. Chem. A* **3**, 12038–12043 (2015).
12. Hu, J. K. et al. Dual-template ordered mesoporous carbon/Fe₃O₄ nanowires as lithium-ion battery anodes. *Nanoscale* **8**, 12958–12969 (2016).
13. Xu, Y. T. et al. Graphene oxide nano-sheets wrapped Cu₆O microspheres as improved performance anode materials for lithium ion batteries. *Nano Energy* **11**, 38–47 (2015).
14. Bai, J. et al. Unusual Formation of ZnCo₂O₄, 3D Hierarchical Twin Microspheres as a High-Rate and Ultralong-Life Lithium-Ion Battery Anode Material. *Adv. Funct. Mater.* **24**, 3012–3020 (2014).
15. Wu, Y. Z. et al. Maghemite Nanoparticles on Electrospun CNFs Template as Prospective Lithium-Ion Battery Anode Material. *Electrochimica Acta* **113**, 1–9 (2014).
16. Reddy, M. V. et al. Molten salt synthesis of ZnO, Fe₃O₄, and Fe₂O₃ and its electrochemical performance. *Electrochimica Acta* **118**, 75–80 (2014).
17. Reddy, M. V. et al. Molten Salt Synthesis and Its Electrochemical Characterization of Co₃O₄ for Lithium Batteries. *Electrochem. Solid State Lett.* **14**, A79–A82 (2011).
18. Das, B., Reddy, M. V. & Chowdari, B. V. R. Li-storage of Fe₃O₄/C composite prepared by one-step carbothermal reduction method. *J. Alloys and Compounds* **565**, 90–96 (2013).
19. Wang, J. Y. et al. Electronic transitions of the transparent delafossite-type CuGa₁₋ₓCrₓO₂ system: first-principles calculations and temperature-dependent spectral experiments. *J. Mater. Chem. C* **5**, 183–191 (2017).
et al. | Template Free Facile Molten Synthesis and Energy Storage Studies on MCo2O4 (M = Mg, Mn) as Anode for Lithium-Ion Batteries. J. Appl. Electrochem. 51, 1432–1440 (2011).

49. Goh, B. M. et al. Filling the Voids of Graphene Foam with Graphene Eggshell for Improved Lithium-Ion Storage. ACS Appl. Mater. Interfaces 6, 9835–9841 (2014).

50. Petnikota, S. et al. MgO-Decorated Few-Layered Graphene as an Anode for Li-Ion Batteries. ACS Appl. Mater. Interfaces 7, 2301–2309 (2015).

51. Petnikota, S. et al. Phosphonate-mediated Assembly of Molybdenum Disulfide Nanosheets for Li-Ion Batteries: A Versatile Strategy for High-Performance Anode Materials. RSC Adv. 5, 2013–2020 (2015).

52. Wu, Z. S. et al. Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 1, 107–131 (2012).

53. Bonaccorsi, E. et al. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347, 1246501 (2015).

54. Chi, C. et al. Amorphous Cu-added/SnO2/Ni/CNFs composite webs as anode materials with superior lithium-ion storage capability. RSC Adv. 5, 41210–41217 (2015).

55. Wang, Q. et al. Synthesis of Li–Cu2O–CuO composite nanorods with high-performance anode material for lithium-ion batteries. Adv. Mater. Interfaces 6, 10884–10896 (2016).

56. Kim, M. C. et al. Cubic and octahedral Cu2O nanocrystals as anodes for lithium-ion batteries. J. Mater. Chem. A 3, 23003–23010 (2015).

57. Yuan, W. Y., Yuan, J., Xie, J. L. & Li, C. M. Polymer-Mediated Self-Assembly of TiO2@Cu2O Core-Shell Nanowire Array for Highly Efficient Photocatalytic Water Oxidation. ACS Appl. Mater. Interfaces 8, 6082–6092 (2016).

58. Reddy, M. V. et al. Evaluation of undoped and M-doped TiO2 with M = Sn, Fe, Ni/Nb, Zr, V, and Mn for lithium-ion battery applications prepared by the molten-salt method. RSC Adv. 5, 29335–29344 (2015).

59. Liu, M. M., Lu, Y. Z. & Chen, W. PdAg Nanorings Supported on Graphene Nanosheets: Highly Methanol-Tolerant Cathode Electrocatalyst for Alkaline Fuel Cells. Adv. Funct. Mater. 23, 1289–1296 (2013).

60. Qin, Q. Z. Nanocrystalline transition metal ferrite thin films prepared by an electrochemical route for Li-ion batteries. J. Electrochem. Soc. 158, 1265–1269 (2011).
62. Zhang, Y. et al. Graphene-Rich Wrapped Petal-Like Rutile TiO2 tuned by Carbon Dots for High-Performance Sodium Storage. *Adv. Mater.* **28**, 9391–9399 (2016).

63. Reddy, M. V., Prithvi, G., Loh, K. P. & Chowdari, B. V. R. Li Storage and Impedance Spectroscopy Studies on Co3O4, CoO, and CoN for Li-Ion Batteries. *ACS Appl. Mater. Interfaces* **6**, 680–690 (2014).

64. Reddy, M. V., Wen, B. L. W., Loh, K. P. & Chowdari, B. V. R. Energy Storage Studies on InVO3 as High Performance Anode Material for Li-Ion Batteries. *ACS Appl. Mater. Interfaces* **5**, 7777–7785 (2013).

65. Cheria, C. T. et al. Zn2SnO4 Nanowires versus Nanoplates: Electrochemical Performance and Morphological Evolution during Li-Ion Cycling. *ACS Appl. Mater. Interfaces* **5**, 6054–6060 (2013).

66. Reddy, M. V., Rao, G. V. S. & Chowdari, B. V. R. Nano-\((V_{1-x}Sb_x)O_2\): a high capacity, high rate anode material for Li-ion batteries. *J. Mater. Chem.* **21**, 10003–10011 (2011).

67. Xu, S. M. et al. α-Fe2O3 multi-shelled hollow microspheres for lithium ion battery anodes with superior capacity and charge retention. *Energy Environ. Sci.* **7**, 632–637 (2014).

68. Zhang, X., Qian, Y. T., Zhu, Y. C. & Tang, K. B. Synthesis of Mn2O3 nanomaterials with controllable porosity and thickness for enhanced lithium-ion batteries performance. *Nanoscale* **6**, 1725–1731 (2014).

69. Xia, L. et al. Flexible SnO2/N-Doped Carbon Nanofiber Films as Integrated Electrodes for Lithium-Ion Batteries with Superior Rate Capacity and Long Cycle Life. *Small* **12**, 853–859 (2016).

70. Reddy, M. V., Rao, G. V. S. & Chowdari, B. V. R. Long-term cycling studies on \(4\) V-cathode, lithium vanadium fluorophosphate. *J. Power Sources* **195**, 5768–5774 (2010).

71. Reddy, M. V., Rao, G. V. S. & Chowdari, B. V. R. Preparation and Characterization of LiNi0.5Co0.5O2 and LiNi0.5Co0.4Al0.1O2 by Molten Salt Synthesis for Li Ion Batteries. *J. Phys. Chem. C* **111**, 11712–11720 (2007).

72. Zhao, N. et al. One-pot synthesis of uniform Fe2O3 nanocrystals encapsulated in interconnected carbon nanospheres for superior lithium storage capability. *Carbon* **57**, 130–138 (2013).

73. Wang, R. et al. A novel method to enhance the conductance of transitional metal oxide electrodes. *Nanoscale* **6**, 3791–3795 (2014).

74. Reddy, M. V., Rajesh, M., Adams, S. & Chowdari, B. V. R. Effect of Initial Reactants and Reaction Temperature on Molten Salt Synthesis of CuCo2O4 and Its Sustainable Energy Storage Properties. *ACS Sustainable Chem. Eng.* **4**, 3076–3086 (2016).

75. Sun, C., Rajasekhar, S., Goodenough, J. B. & Zhou, F. Monodisperse Porous LiFePO4 Microspheres for a High Power Li-Ion Battery Cathode. *J. Am. Chem. Soc.* **133**, 2132–2135 (2011).

76. Wang, J. J. & Sun, X. L. Olivine LiFePO4: the remaining challenges for future energy storage. *Energy Environ. Sci.* **8**, 1110–1138 (2015).

77. Zhang, Y. et al. Nitrogen-Doped Graphene Ribbon Assembled Core–Sheath MnO@Graphene Scrolls as Hierarchically Ordered 3D Porous Electrodes for Fast and Durable Lithium Storage. *Adv. Funct. Mater.* **26**, 7754–7765 (2016).

78. Liu, R. et al. High interfacial lithium storage capability of hollow porous Mn2O3 nanostructures obtained from carbonate precursors. *Carbon* **51**, 5728–5731 (2015).

79. Chen, J. et al. High-yield preparation of graphene oxide from small graphite flakes via an improved Hummers method with a simple purification process. *Carbon* **81**, 826–834 (2015).

Acknowledgements

This work was financially supported by Major State Basic Research Development Program of China (Grant No. 2013CB922300), Natural and Science Foundation of China (Grant Nos 61674057, 11374097, 61376129, 61504156, and 61227902), Projects of Science and Technology Commission of Shanghai Municipality (Grant Nos 15JC1401600 and 14XD1401500), and the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning.

Author Contributions

J.W., Q.D. and M.L. analysed data and prepared the manuscript. K.J., J.Z. helped conduct the characterization experiments. The project was initiated and conceptualized by Z.H. and J.C. All authors reviewed the manuscript.

Additional Information

Supplementary information accompanies this paper at doi:10.1038/s41598-017-09214-0

Competing Interests: The authors declare that they have no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.