On the L^p-distortion of finite quotients of amenable groups

Romain Tessera

Received: 20 August 2008 / Accepted: 25 June 2011 / Published online: 26 July 2011
© Springer Basel AG 2011

Abstract We study the L^p-distortion of finite quotients of amenable groups. In particular, for every $2 \leq p < \infty$, we prove that the ℓ^p-distortions of the groups $C_2 \wr C_n$ and $C_{2^n} \rtimes C_n$ are in $\Theta((\log n)^{1/p})$, and that the ℓ^p-distortion of $C_{2^n} \rtimes_A \mathbb{Z}$, where A is the matrix $\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$ is in $\Theta((\log \log n)^{1/p})$.

Keywords Distortion of Bilipschitz embeddings · Finite metric spaces · Isoperimetry · Isometric group actions · L^p-spaces

Mathematics Subject Classification (2000) 51F99 · 20F65

1 The main results

1.1 Distortion

Let us first recall some basic definitions.

Definition 1.1 Let $0 < R \leq \infty$. The distortion at scale $\leq R$ of an injection between two discrete metric spaces $F : (X, d) \to (Z, d)$ is the number (possibly infinite)
\[
\text{dist}_R(F) = \sup_{0 < d(x, y) \leq R} \frac{d(f(x), f(y))}{d(x, y)} \cdot \sup_{0 < d(x, y) \leq R} \frac{d(x, y)}{d(f(x), f(y))}.
\]

If \(R = \infty \), we just denote \(\text{dist}(F) \) and call it the distortion of \(F \).

- The \(\ell^p \)-distortion \(c_p(X) \) of a finite metric space \(X \) is the infimum of all \(\text{dist}_F \) over all possible injections \(F \) from \(X \) to \(\ell^p \).

Let \(G \) be a finitely generated group. Let \(S \) be a symmetric finite generating subset of \(G \). We equip \(G \) with the left-invariant word metric associated to \(S \): \(d_S(g, h) = |g^{-1}h|_S = \min\{n \in \mathbb{N}, g^{-1}h \in S^n\} \). Let \((G, S) \) denote the associated Cayley graph of \(G \): the set of vertices is \(G \) and two vertices \(g \) and \(h \) are joined by an edge if there is \(s \in S \) such that \(g = hs \). Note that the graph metric on the set of vertices on \((G, S)\) coincides with the word metric \(d_S \).

Let \(\lambda_{G, p} \) denote the regular representation of \(G \) on \(\ell^p(G) \) for every \(1 \leq p \leq \infty \) (i.e. \(\lambda_{G, p}(g)f(x) = f(g^{-1}x) \)). The \(\ell^p \)-direct sum of \(n \) copies of \(\lambda_{G, p} \) will be denoted by \(n\lambda_{G, p} \).

Our main results are the following theorems.

Theorem 1 Let \(m \) be an integer \(\geq 2 \). For all \(n \in \mathbb{N} \), consider the finite lamp-lighter group \(C_m \downarrow C_n = (C_m)^{C_n} \rtimes C_n \) equipped with the generating set \(S = ((\pm 1, 0), (0, \pm 1)) \), where \(1_0 \in (C_m)^{C_n} \) is the characteristic function of the singleton \(\{0\} \). For every \(2 \leq p < \infty \), there exists \(C = C(p, m) < \infty \) such that

\[
C^{-1}(\log n)^{1/p} \leq c_p(C_m \downarrow C_n, S) \leq C(\log n)^{1/p}.
\]

A different proof for \(p = 2 \) has been given very recently by Austin, Naor, and Valette [1], using certain irreducible representations of the lamplighter group. On the other hand, the lower bound was known (see [5], or Sect. 2).

Theorem 2 Let \(m \) be an integer \(\geq 2 \). For all \(n \in \mathbb{N} \), consider the group \(BS_{m,n} = C_m^{C_n} \rtimes C_n \), where the element \(1 \in C_n \) acts by multiplication by \(m \) on \(C_m^{C_n} \). We consider the Cayley graph of this group associated with the generating set \(S = \{ (\pm 1, 0), (0, \pm 1) \} \). For every \(2 \leq p < \infty \), there exists \(C = C(p, m) < \infty \) such that

\[
C^{-1}(\log n)^{1/p} \leq c_p(BS_{m,n}, S) \leq C(\log n)^{1/p}.
\]

Theorem 3 For all \(n \in \mathbb{N} \), consider the group \(SOL_n = C_{n} \rtimes_A C_{o(A,n)} \), where \(A \) is a matrix of \(SL_2(\mathbb{Z}) \) with eigenvalues of modulus different from 1, e.g. the matrix \(\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \), and where \(o(A, n) \) denotes the order of \(A \) in \(SL_2(C_n) \). Equip this group with the generating set \(S = \{ (\pm 1, 0), (0, \pm 1) \} \). For every \(2 \leq p < \infty \), there exists \(C = C(p) < \infty \) such that

\[
C^{-1}(\log \log n)^{1/p} \leq c_p(SOL_n, S) \leq C(\log \log n)^{1/p}.
\]
1.2 About the constructions

We will say that map $F : G \rightarrow E$ from a group G to a Banach space is equivariant if it is the orbit of 0 of an isometric affine action of G on E. Let σ be such an action. The equivariance of $F(g) = \sigma(g)0$ implies that $\|F(g) - F(h)\| = \|F(g^{-1}h)\|$. Hence the distortion at scale $\leq R$ of F is just given by

$$dist_R(F) = \sup_{0 < |g| \leq R} \frac{|g|}{\|F(g)\|} \cdot \sup_{0 < |g| \leq R} \frac{\|F(g)\|}{|g|}.$$

Let us introduce some basic notation. If E_1 and E_2 are two normed spaces, we denote by $E = E_1 \oplus \ell^p E_2$ the direct sum of the two vector spaces E_1 and E_2 equipped with the norm $\|(x_1, x_2)\| = (\|x_1\|^p + \|x_2\|^p)^{1/p}$. If F_1 and F_2 respectively map a set X to E_1 and E_2, then the direct sum of these maps from X to E will be denoted by $F_1 \oplus \ell^p F_2$.

All the groups involved in the main theorems are of the form $G = N \rtimes A$ where A is a finite cyclic group. To prove an upper bound on $c_p(G)$, our general approach is to construct an embedding $F = F_1 \oplus \ell^p F_2$, where F_1 is the orbit of 0 of an affine action σ_1 of G, whose linear part is $K\lambda_{G,p}$ (for some $K \in \mathbb{N}$), and such that for $R = \text{Diam}(N)$, we have

$$\text{dist}_R(F_1) \approx (\log R)^{1/p}.$$

More precisely, for $F_{m,n}$ and $BS_{m,n}$ (resp. for $\text{SOL}_{A,n}$), we will need $K \approx \log(mn)$ (resp. $K \approx \log \log n$) copies of $\lambda_{G,p}$.

For $G = F_{m,n}$ or $BS_{m,n}$, we can take $F = F_1$ since $\text{Diam}(N) \approx \text{Diam}(G) \approx n$ (see Proposition 3.1). But, for $G = \text{SOL}_{A,n}$, we have $\text{Diam}(N) \approx \log n$, which can be much less than $\text{Diam}(G) \approx o(A, n)$. Hence, the solution in this case is to add some map $F_2 : G/N \approx C_\sigma(A,n) \rightarrow \ell^p$ with a bounded distortion (for instance, take the orbit of 0 under the action of $C_\sigma(A,n)$ on \mathbb{R}^2 such that 1 acts by rotation of center $o(A, n)$, 0) and angle $2\pi/o(A, n)$).

Note that Theorem 3 also holds for the group $C_n \rtimes_A \mathbb{Z}$, in which case we can take an action of \mathbb{Z} by translations on \mathbb{R} to embed the quotient with bounded distortion (i.e. for F_2).

2 Upper bounds on the distortion

Let $1 \leq p \leq \infty$. Recall [9] that the left-ℓ^p-isoperimetric profile in balls of (G, S) is defined by

$$J_{G,S,p}(n) = \sup_{\text{Supp}(f) \subset B(1,n)} \frac{\|f\|_p}{\sup_{s \in S} \|\lambda(s)f - f\|_p},$$

where $B(1, n)$ denotes the open ball of radius n and center 1 in (G, S).
In [9], we provided a general construction of metrically proper affine isometric actions of an amenable group G on $\ell^p(G)$, whose compressions are related to the isoperimetric profile. Here, we will use the isoperimetric profile to produce upper bounds on the ℓ^p-distortion of finite groups.

On the other hand, as explained in [10], if $X = (G, d_S)$ is a Cayley graph, then the inequality $J_{p,S,G} \geq J$ for some non-decreasing function $J : \mathbb{R}_+ \to \mathbb{R}_+$ implies Property A(J,p) (see [10, Definition 4.1]) for the space X (if the group G is amenable, a standard average argument actually shows that this is an equivalence). So in a large extent, the results of the present paper are easy consequences of the method explained in [10].

A crucial remark is that $\mu_{G,S,p}$ is a local quantity, and hence behaves well under quotients. Namely, we recall the following easy fact.

Proposition 2.1 (for a proof, see [11, Proposition 4.5]) Let $\pi : G \to Q$ be a surjective homomorphism between two finitely generated groups and let S be a symmetric generating subset of G. Then

$$J_{G,S,p} \leq J_{Q,\pi(S),p}.$$

Our main technical tool is the following proposition, which is an analogue of [10, Proposition 4.5]. For the convenience of the reader, we give its relatively short proof in Sect. 4.

Theorem 4 Let $X = (G, S)$ be a finite Cayley graph such that $J_{G,S,p}(r) \geq J(r)$ when $r \leq R$, for some $R \leq \text{Diam}(G)/2$. Then, there exists an affine isometric action σ of G on such that

- the linear part of σ is the ℓ^p-direct sum of $K = [\log R]$ regular representations of G in $\ell^p(G)$.
- The orbit of 0 induces an injection $F : G \to \bigoplus_{k=0}^{K-1} \ell^p(G)$ such that

$$\text{dist}_R(F) \leq 2 \left(\frac{R}{2} \right)^{1/p} \left(\frac{t}{J(t)} \right)^p \int_0^t \frac{dt}{t} \right)^{1/p}.$$

In particular, if $J(t) = t/C$, then

$$\text{dist}_R(F) \leq 2C \left(2 \log(R/2) \right)^{1/p}.$$

Corollary 2.2 Assume that G_n has diameter n and that $J_{G,p}(t) \geq t/C$, then, $c_p(G_n) \leq 2C \left(2 \log(n/4) \right)^{1/p}$.

On the other hand, we have proved in [9] that the following finitely generated groups satisfy $J_p(t) \geq t/C$ for some $C < \infty$ and for all $1 \leq p < \infty$.

• the lamplighter group $L_m = C_m \rtimes \mathbb{Z}$;
• solvable Baumslag-Solitar groups $BS_m = \mathbb{Z}[1/m] \rtimes \mathbb{Z}$ for all $m \in \mathbb{N}$, where $n \in \mathbb{Z}$ acts by multiplication by m^n;
• polycyclic groups. Here, we will focus on the following example: $SOL_A = \mathbb{Z}^2 \rtimes_A \mathbb{Z}$ where A is a matrix of $SL_2(\mathbb{Z})$ with eigenvalues of modulus different from 1, e.g. the matrix $\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$.

Note that respectively $L_{m,n}$, $BS_{m,n}$ and $SOL_{A,n}$ are quotients of L_m, BS_m and SOL_A.

3 Proofs of the main theorems

3.1 Upper bounds

Thanks to Corollary 2.2, the upper bounds in Theorems 1, 2 and 3 follow from the following upper bounds on the diameters of the groups $L_{m,n}$, $BS_{m,n}$ and $SOL_{A,n}$ (for the latter, see the discussion in Sect. 1.2).

Proposition 3.1 We have

(i) $\text{Diam}(L_{m,n}) \leq (m + 3)n$;
(ii) $\text{Diam}(BS_{m,n}) \leq (m + 1)n$;
(iii) Let $N_n \simeq C_2^n$ be the kernel of $SOL_A \to C_{o(A,n)}$. Then, with the distance on N_n induced by the word distance on SOL_A, we have $\text{Diam}(N_n) \leq c \log n$ for some $c = c(A) > 0$.

Proof For (i), see [8]. For (ii), note that every element of C_{m^n} can be written as

$$\sum_{i=0}^{n-1} a_i m^i = a_0 + m(a_1 + m(a_2 + \cdots \cdots)),$$

where $0 \leq a_i \leq m - 1$. Finally, (iii) follows from the following well-known lemma. □

Lemma 3.2 Let $N \simeq \mathbb{Z}^2$ be the kernel of $SOL_A \to \mathbb{Z}$. For all $r \geq 1$, denote by $B_{N,SOL_A}(r)$ (resp. $B_N(r)$), the ball of radius r for the metric on N induced by the word length on SOL_A (resp. for the usual metric on \mathbb{Z}^2). There exists some $\alpha = \alpha(A) < \infty$ such that

$$B_N(1, e^{r/\alpha}) \subset B_{N,SOL_A}(r) \subset B_N(1, e^{\alpha r}).$$

Proof Note that SOL_A embeds as a co-compact lattice in the connected solvable Lie group $G = \mathbb{R}^2 \rtimes_A \mathbb{R}$, such that N maps on a co-compact lattice of $\tilde{N} = \mathbb{R}^2$. Recall that the exponential radical $\text{Exp}(G)$ of a connected solvable Lie group G is a closed connected nilpotent normal subgroup satisfying, for all $r > 0$

$$B_{\text{Exp}(G)}(1, e^{r/\beta}) \subset B_G(r) \leq B_{\text{Exp}(G)}(1, e^{\beta r}),$$
for some $\beta > 0$ depending on a choice of left-invariant riemannian metrics on G and $\text{Exp}(G)$. The lemma follows from the observation [4,7] that \tilde{N} is the exponential radical of G ([4] was the first one to introduce and to study the exponential radical of a connected solvable Lie group, without actually naming it, and this was rediscovered by Osin [7]).

3.2 Lower bounds

To obtain the lower bound on the distortion, we will need the following notion of relative girth.

Definition 3.3 Let $\pi : G \to Q$ be a surjective homomorphism between two finitely generated groups and let S be a symmetric generating subset of G. Denote by $X = (G, S)$ and $Y = (Q, \pi(S))$. The relative girth $g(Y, X)$ of Y with respect to X is the maximum integer $n \in \mathbb{N}$ such that a ball of radius n in Y is isometric to a ball of radius n in X.

Recall [2] that the rooted binary tree T_n of depth n satisfies $c_p(T_n) \geq c(\log n)^{1/p}$ for all $2 \leq p < \infty$ and for some constant $c > 0$.

Proposition 3.4 We keep the notation of the previous definition. Assume that X contains a bi-Lipschitz embedded 3-regular tree. Then there exists some $c > 0$ such that $c_p(Y) \geq c(\log g(X, Y))^{1/p}$.

Proof The assumption implies that for every n, T_n embeds into X with uniform bi-Lipschitz constants. In particular, there is a constant C such that T_n maps into a ball of radius Cn. Suppose that n satisfies $Cn \leq g(X, Y)$, which means that the balls of radius Cn in X and Y are isometric. The proposition now clearly follows from Bourgain’s result.

On the other hand, the groups L_m, BS_m and $SOLA$ are solvable non-virtually nilpotent. Hence by [3], they admit a bi-Lipschitz embedded 3-regular tree (for the lamplighter, see also [6]). So to prove the lower bounds of Theorems 1, 2 and 3, we just need to find convenient lower bounds for the relative girths, which is done by the following proposition.

Proposition 3.5 We have

(i) $g(L_{m,n}, L_m) \geq n$;
(ii) $g(BS_{m,n}, BS_m) \geq n$;
(iii) $g(SOLA_{A,n}, SOLA_A) \geq c \log n$ for some $c = c(A) > 0$.

Proof The only non-trivial case, (iii), follows from Lemma 3.2.

4 Proof of Theorem 4

Let f_0 be the dirac at 1, and for every integer $1 \leq k \leq K$, choose a function $f_k \in \ell^p(G)$ such that
the support of f_k is contained in the ball $B(1, 2^k)$,
\(\| f_k \|_p \geq J(2^k) \)
\(\sup_{s \in S} \| \lambda(s) f_k - f_k \|_p \leq 1 \)

For all $v = (v_k)_{1 \leq k \leq K} \in K \ell^P(G)$ and all $g \in G$, define

$$
\sigma(g)v = \bigoplus_k (\lambda(g)v_k + F_k)
$$

where

$$
F_k(g) = \left(\frac{2^k}{J(2^k)} \right) (f_k - \lambda(g) f_k).
$$

Now consider the map $F = \bigoplus \ell^P F_k : G \to K \ell^P(G)$. For all $g \in G$, we have

$$
\| F(g) \|_p \leq \left(\sum_{k=0}^{K} \left(\frac{2^k}{J(2^k)} \right)^p \| \lambda(g) f_k - f_k \|_p^p \right)^{1/p}
\leq \left(\sum_{k=0}^{K} \left(\frac{2^k}{J(2^k)} \right)^p \right)^{1/p}
\leq |g|_S \left(\int_1^{Diam(G)/2} \left(\frac{t}{J(t/2)} \right)^p \frac{dt}{t} \right)^{1/p}
= 2^{2/p} |g|_S \left(\int_1^{Diam(X)/4} \left(\frac{t}{J(t)} \right)^p \frac{dt}{t} \right)^{1/p}.
$$

On the other hand, since f_k is supported in $B(1, 2^k)$, if $|g|_S \geq 2.2^k$, then the supports of f_k and $\lambda(g) f_k$ are disjoint. Thus,

$$
\| F(g) \|_p \geq \| F_k(g) \|_p
= 2^{1/p} \frac{2^k}{J(2^k)} \| f_k \|_p
\geq 2^{1/p} 2^k,
$$

whenever $d_S(x, y) \geq 2.2^k$. To conclude, we have to consider the case when $g \in S \setminus \{1\}$. But as f_0 is a dirac at 1, $\| F(g) \|_p \geq 1$. So we are done. \(\square \)
References

1. Austin, T., Naor, A., Valette, A.: The euclidean distortion of the lamplighter group. Discret. Comput. Geom. 44(1), 55–74 (2010)
2. Bourgain, J.: The metrical interpretation of superreflexivity in Banach spaces. Israel J. Math. 56(2), 221–230 (1986)
3. De Cornulier, Y., Tessera, R.: Quasi-isometrically embedded trees. Geom. Topol. 12, 461–473 (2008)
4. Guivarc’h, Y.: Sur la loi des grands nombres et le rayon spectral d’une marche aléatoire. In: Conference on Random Walks (Kleebach, 1979) (French), Astérisque, 74(3), Soc. Math. France, Paris, pp. 47–98 (1980)
5. Lee, J.R., Naor, A., Peres, Y.: Trees and Markov convexity. Geom. Funct. Anal. (GAFA) 18(5) (2009)
6. Lyons, R., Pelmante, R., Peres, Y.: Random walks on the lamplighter group. Ann. Probab. 24(4), 1993–2006 (1996)
7. Osin, D.V.: Exponential radical of solvable Lie groups. J. Algebra 248, 790–805 (2002)
8. Parry, W.: Growth series of some wreath products. Trans. Am. Math. Soc. 331(2), 751–759 (1992)
9. Tessera, R.: Asymptotic isoperimetry on groups and uniform embeddings into Banach spaces. (To appear in Comment. Math. Helv)
10. Tessera, R.: Quantitative property A, Poincaré inequalities, L^p-compression and L^p-distortion for metric measure spaces. Geom. Dedicata 136, 203–220 (2008)
11. Tessera, R.: Isoperimetric profile and random walks on locally compact solvable groups. (arXiv:0706.4257)