The third virial coefficient of a two-component unitary Fermi gas across an Efimov-effect threshold

CHAO GAO*, SHIMEI ENDO and YVAN CASTIN

*Institute for Advanced Study, Tsinghua University, Beijing, 100084, China
Laboratoire Kastler Brossel, ENS-PSL, CNRS, UPMC-Sorbonne Universités, Collège de France, Paris, France

Abstract. – We consider a mixture of two single-spin-state fermions with an interaction of negligible range and infinite s-wave scattering length. By varying the mass ratio α across α_c ≃ 13.6069 one can switch on-and-off the Efimov effect. We determine analytically the third cluster coefficient of the gas. We show that it is a smooth function of α across α_c since, unexpectedly, the three-body parameter characterizing the interaction is relevant even on the non-Efimovian side α < α_c.

Introduction. – A powerful theory tool in the statistical physics of interacting quantum systems is the so-called cluster or virial expansion, where the thermodynamic potentials are expanded in powers of the small degeneracy parameter [1]. Whereas the second cluster coefficient b_2 had a known general expression since the 1930s [2], it has been a long-lasting challenge to determine the third cluster coefficient b_3 explicitly. Starting from the late 1950s, analytical results for b_3 have been obtained for the two-body hard-core model, the archetype of non-resonant interactions where the s-wave scattering length is at most of the order of the interaction range, in the form of expansions in powers of a small parameter λ/a [3] or a/λ [4], where λ is the thermal de Broglie wavelength.

Interest in b_3 was reactivated by recent experimental breakthrough with cold atoms: long-lived spin 1/2 Fermi gases can be prepared in the resonantly interacting regime (|α| ≫ interaction range) via Feshbach resonances [5]. This motivated numerical calculation of b_3 in the maximally interacting, unitary limit 1/α = 0, with the harmonic regulator technique of [6] as done in [7], or with diagrams [8]. Due to scaling invariance in the unitary limit, b_3 is just a number, and via a precise measurement of the gas equation of state [9,10], its predicted value was confirmed [10].

Physics is richer when the Efimov effect [11] sets in: the continuous scaling invariance is broken, there appears a length scale R_E characterizing the interaction, the three-body parameter, and there exists an infinite number of trimer states with an asymptotically geometric spectrum. The third cluster coefficient b_3 becomes a function of temperature. In a spinless bosonic gas with zero-range interactions, it was determined analytically [12]. Within the three-body hard-core model that fixes R_E [13], Quantum Monte Carlo simulations have confirmed this analytical prediction and have shown that the third order cluster expansion can provide a good description of the gas down to the liquid-gas transition [14], exemplifying its usefulness.

The problem is even more intriguing when a system parameter allows to switch on-and-off the Efimov effect, as in the two-component Fermi gas with adjustable mass ratio. For two identical fermions and a distinguishable particle, there is an Efimov effect if the fermion-other particle mass ratio α exceeds α_c = 13.6069 . . . [11,15]. Up to now, the calculation of b_3 is numerical and limited to α < α_c [16]. Strikingly it predicts that b_3 has an infinite derivative at α = α_c. As b_3 is a coefficient in the grand potential Ω, this would imply a singular derivative of Ω as a function of α, i.e. a first order phase transition, subsisting at arbitrarily low phase space density, i.e. at temperatures T arbitrarily higher than the Fermi temperature T_F, contrarily to common expectations for phase transitions. The present work determines b_3 analytically and solves this paradox.

The cluster expansion. – We consider a mixture of two fully polarized fermionic species, with single particle masses m_1 and m_2, with no intraspecies interaction and a purely s-wave interspecies interaction, of negligible range and infinite scattering length (unitary limit). At thermal equilibrium in a cubic box, the total pressure P admits in

PACS 67.85.d – Ultracold gases, trapped gases.
the thermodynamic limit the cluster expansion
\[\frac{P_{\lambda}^3}{k_B T} = \sum_{(n_1,n_2) \in \mathbb{N}^2} b_{n_1,n_2} z_1^{n_1} z_2^{n_2} \]
where \(z_i \) are fugacities \(\exp(\beta \mu_i) \), \(\lambda_c = [2\pi \hbar^2 / (m_r k_B T)]^{1/2} \) is the thermal de Broglie wavelength associated to the reduced mass \(m_r = m_1 m_2 / (m_1 + m_2) \) and temperature \(T \), \(\beta = 1 / (k_B T) \), \(\mu_i \) is the chemical potential of species \(i \), and \(\mathbb{N} \) is the set of all non-negative integers.

To determine the cluster coefficients \(b_{n_1,n_2} \) one can use the harmonic regulator trick [6]: one rather assumes that the system is at thermal equilibrium in an isotropic harmonic trap, with the same trap frequency \(\omega \) for the two species, and one considers the cluster expansion of \((-\Omega) / (k_B T Z_1)\) in powers of \(z_1 \) and \(z_2 \), with \(\Omega \) the grand potential and \(Z_1 \) the single-particle partition function in the trap. When \(\omega \to 0 \), the corresponding coefficients have a limit \(\tilde{B}_{n_1,n_2} \) that one can relate to \(b_{n_1,n_2} \) [6, 7, 16]:

\[\tilde{B}_{n_1,n_2} = \left(\frac{m_r}{n_1 m_1 + n_2 m_2} \right)^{3/2} b_{n_1,n_2} \]

We study \(B_{2,1} \) as a function of the mass ratio \(\alpha = m_1 / m_2 \).

Case \(\alpha < \alpha_c \): 0-parameter zero-range model. – The cluster coefficient \(B_{2,1} \) can be deduced from the partition functions of up to three bodies in the trap, that is from the \(n \)-body energy spectra for \(n \leq 3 \). In the unitary limit, the interspecies interaction is described by the Bethe-Peierls binary contact condition on the wavefunction, which leads to a separable three-body Schrödinger equation in internal hyperspherical coordinates [11] even in a harmonic trap [17–19]. The hyperangular part of the problem can be solved in position [11] or in momentum space [20]: the corresponding real eigenvalue \(s^2 \) (that will serve as a separability constant) obeys the transcendental equation \(\Lambda(s) = 0 \) of explicit expression [21] \(^1\)

\[\Lambda(s) = \cos \nu + \frac{1}{\sin \nu} \int_{-\nu}^{\pi+\nu} d\theta P_l(\cos \theta) \frac{\sin(s \theta)}{\sin(s \pi)} \]

with \(l \in \mathbb{N} \) the angular momentum, \(P_l \) a Legendre polynomial, \(\nu = \arcsin \left(\frac{\alpha}{\alpha_c} \right) \) the mass angle. We call \((u_{l,n})_{n \in \mathbb{N}} \) the positive roots of \(\Lambda_l \), sorted in increasing order. There is no complex root for \(\alpha < \alpha_c \). The hyperradial part of the wavefunction, after multiplication by \(R^2 \), solves an effectively bidimensional Schrödinger equation:

\[EF = -\frac{\hbar^2}{2M} \left(F'' + \frac{1}{R} F' \right) + \left(\frac{\hbar^2 s^2}{2MR^2} + \frac{1}{2} M \omega^2 R^2 \right) F \]

where \(s \) is any of the \(u_{l,n} \), \(M = 2m_1 + m_2 \) is the mass of two particles of species 1 and one particle of species 2, and the hyperradius \(R \) is the corresponding mass-weighted root-mean-square deviation of the positions of the three particles from their center of mass. Solving Eq.(4) with the usual boundary conditions that \(F(R) \) vanishes at zero and infinity gives

\[E = (s + 1 + 2q) \hbar \omega, \quad \forall q \in \mathbb{N} \]

The semi-infinite ladder structure of this spectrum, with equidistance \(2\hbar \omega \), reflects the existence of an undamped breathing mode of the trapped non-Efimovian unitary gas [23] related to its \(SO(2,1) \) dynamical symmetry [24].

Finally \(B_{2,1} \) is the \(\omega \to 0 \) limit of a series [7, 12] \(^2\):

\[B_{2,1} = \lim_{\omega \to 0} \sum_{(l,n,q) \in \mathbb{N}^3} (2l+1) \left[e^{-(u_{l,n}+1+2q) \hbar \omega} - e^{-(v_{l,n}+1+2q) \hbar \omega} \right] \]

with \(v_{l,n} = l + 2n + 1 \) the positive poles of \(\Lambda_l(s) \) [21]. The summation over \(q \) can be done, and even over \(n \) by inverse application of the residue theorem [12]:

\[B_{2,1} = -\frac{3}{2} \left(u_{1,0} - v_{1,0} \right) \int_0^{\infty} ds \frac{\ln \Lambda_l(i s)}{\sin \nu} \]

As shown in Fig. 1, the result agrees with the numerical evaluation of the series by [16]. The analytics however directly allows to see why \(B_{2,1} \) has an infinite derivative with respect to \(\alpha \) at \(\alpha = \alpha_c^- \): it suffices to isolate the contribution of the channel \((l, n) = (1, 0)\) in Eq.(6), the only one where \(u_{l,n} \) vanishes at \(\alpha = \alpha_c \), by the splitting

\[B_{2,1} = B_{2,1}^{(1,0)} + B_{2,1}^{(2,1)} \]

All the other channels have \(u_{l,n} \) over the figure range and give a smooth contribution to \(B_{2,1} \). On the contrary

\[B_{2,1}^{(1,0)} = \lim_{\omega \to 0} \sum_{q \in \mathbb{N}} \left[e^{-(u_{1,0}+1+2q) \hbar \omega} - e^{-(v_{1,0}+1+2q) \hbar \omega} \right] \]

and \(u_{1,0}, v_{1,0} \), a decreasing function of \(\alpha \), vanishes as \((\alpha_c - \alpha)^{1/2} \) since \(\Lambda_1(s) \) is even, so that \(\frac{d}{d\alpha} B_{2,1} \) diverges as \((\alpha_c - \alpha)^{-1/2} \).

Case \(\alpha > \alpha_c \): Efimov zero-range model. – We now assume that the mass ratio obeys \(\alpha_c < \alpha < 75.99449 \ldots \) [25], so that the Efimov effect takes place in the sector \(l = 1 \) only. The function \(\Lambda_{l=1}(s) \) has a pair of complex conjugate purely imaginary roots \(\pm s \) and we set

\[u_{1,0} = s = i |s| \]

\(|s| \) vanishes as \((\alpha - \alpha_c)^{1/2} \) and increases with \(\alpha \). The \(1/R^2 \) potential in Schrödinger’s equation (4) for \(F(R) \) becomes

\(^1\)There exists a less explicit hypergeometric expression for \(\Lambda_l \) [22].

\(^2\)Actually one calculates the difference between partition functions of unitary and non-interacting problems; still this directly gives \(B_{2,1} \) of the unitary gas since \(B_{2,1} \) is zero for the ideal gases; the contributions of the Laughlinian states (whose wavefunction vanishes when two particles are at the same point) cancel out in the difference; the \(v_{l,n} \) appear via the non-Laughlinian spectrum of the non-interacting three-body problem. Similarly, the contributions of the unphysical root \(s = 2 \) in the sector \(l = 0 \), which exists in both the unitary and non-interacting cases, automatically cancel out.
The third virial coefficient of a two-component unitary Fermi gas across an Efimov-effect threshold

attractive, which leads to a "fall to the center" [26] and to an unphysical continuous spectrum of bound states, forcing to modify the boundary condition at $R = 0$ [27]:

$$F(R) \equiv (R/R_t)^{|s|} - (R/R_t)^{-|s|} + O(R^2)$$ \hspace{1cm} (11)

To make evident that the third cluster coefficient now depends on one parameter, this length R_t called three-body parameter, we write it as $B_{2,1}$, that is with one overlining bar. In free space, Eq.(11) leads to a discrete infinite number of Efimov trimer states, with a purely geometric spectrum extending from $-\infty$ to 0. In any physical system, however, the interaction is not strictly zero range and the spectrum must be bounded from below [11]. One may expect that finite range effects then spoil the geometric nature of the spectrum for the more deeply bound trimers. However, for a narrow Feshbach resonance [21, 28], for momentum-space cut-off models of a Feshbach resonance [29, 30], and for the three-body hard core model [13], the spectrum is almost entirely geometric, at least when $|s|$ is not too large ($|s| \lesssim 1$), and becomes entirely geometric when $\alpha \to \alpha^+_c$, since the typical particle wavenumber times the interaction range tends to zero [21]. In what follows, we assume the bounded from below geometric free space spectrum:

$$\epsilon_q(0^+) \equiv \lim_{\omega \to 0} \epsilon_q(\omega) = -E_{\text{glob}} e^{-2\pi(1+q)/|s|}, \; \forall q \in \mathbb{N}$$ \hspace{1cm} (12)

The global energy scale E_{glob} can be calculated from a microscopic model for the interaction, as it was done in the above mentioned models. Here we take it as a parameter that solution of Eq.(4) with $\omega = 0$ and with the boundary condition (11) relates to R_t as:

$$E_{\text{glob}} = \frac{2\hbar^2}{MR_t^2} e^{|\ln \Gamma(1+s) - \ln \Gamma(1-s)|/s}$$ \hspace{1cm} (13)

with Γ the usual branch of the Γ function logarithm.

The contribution to $B_{2,1}$ of the channels $(i, n) \neq (1, 0)$ is unchanged since no Efimov effect occurs in these channels:

$$B_{2,1}^{(i, 0)}(1, 0) = B_{2,1}$$ \hspace{1cm} (14)

We calculate it as in [12], using Eq.(7) as it is for $l \neq 1$, while substituting $A_l(is)$ with $\sum_{q \in \mathbb{N}} \epsilon_q^{1/2} (1+\epsilon_q^{1/2})$ for $l = 1$. In the Efimovian channel $(i, n) = (1, 0)$, the spectrum is no longer given by Eq.(5), but by the solution of the transcendental equation deduced from [31] and rewritten in [12, 32] to match Eq.(12) in free space:

$$\ln \Gamma \left(\frac{1 + s - \epsilon_q/(\hbar \omega)}{2} \right) + s \ln \left(\frac{2\hbar \omega}{E_{\text{glob}}} \right) + (q + 1)\pi = 0$$ \hspace{1cm} (15)

so that the first identity in Eq.(9) is replaced by:

$$B_{2,1}^{(1, 0)} = \lim_{\omega \to 0} \sum_{q \in \mathbb{N}} \left[e^{-\beta \epsilon_q(\omega)} - e^{-\epsilon(v_{1,0} + 1 + 2q)/\beta \hbar \omega} \right]$$ \hspace{1cm} (16)

For a small enough non-zero ω, two classes emerge in the three-body spectrum: (i) negative eigenenergies, that are the equivalent of free space trimer energies, and (ii) positive eigenenergies, that are the equivalent of the free space continuum. The second class is a harmonic spectrum except for an energy dependent "quantum defect" $\Delta(\epsilon)$ [32]

$$\epsilon_q(\omega) = \frac{2q + \Delta(\epsilon_q(\omega)) + O(1/q)}{\hbar \omega q \to -\infty}$$ \hspace{1cm} (17)

where $q\omega$ is \approx fixed. By the reasoning of [12], we get:

$$B_{2,1}^{(1, 0)} = 3 \sum_{q \in \mathbb{N}} e^{-\beta \epsilon_q(0^+)} - 1$$

$$- \frac{3}{2} \int_{0}^{+\infty} d\epsilon \beta(\Delta(\epsilon) - (1 + v_{1,0})) e^{-\beta \epsilon}$$ \hspace{1cm} (18)

We obtained a new expression of the quantum defect3:

$$\Delta(\epsilon) = 2 + \frac{2}{\pi} \tan \left(\frac{|s|x}{2} \right) + 2 \left| \frac{|s|x}{2\pi} \right|$$ \hspace{1cm} (19)

3This expression and the one (C6) of [32] are equal, since their difference is a continuous function of x that vanishes at zero and has an identically zero derivative.

Fig. 1: Reduced third cluster coefficient $e^{\beta E_0} \bar{B}_{2,1}$ of a trapped two-component three-dimensional unitary Fermi gas in the zero trapping frequency limit, as a function of the mass ratio $\alpha = m_1/m_2$ of the two species (lower x-axis) or of the root $s = u_{1,0}$ of Λ_1 (upper x-axis), for various values of the three-body parameter R_t, and hence of the global energy scale E_{glob} of Eqs.(13,24). Here E_0 is the ground free-space three-body energy, a smooth function of α: for $\alpha \leq \alpha_c$, $E_0 = 0$; for $\alpha > \alpha_c$, $E_0 = -E_{\text{glob}} \exp(-2\pi/|s|)$ is the ground trimer energy and the factor $\exp(\beta E_0)$ ensures that the plotted quantity remains bounded. Curves from bottom to top for $\alpha \leq 15$: $\beta E_{\text{glob}} = 10^4$ (cyan), 3×10^3 (red), 10^3 (green), 3×10^2 (blue), 10^2 (violet), 10^1 (orange), 10^0 (magenta). The curves cross, which shows that $e^{\beta E_0} \bar{B}_{2,1}$ is not, at all fixed α, an increasing function of βE_{glob} (see inset in Fig. 2). Discontinuous black solid line: limit $\beta E_{\text{glob}} \to +\infty$, corresponding for $\alpha \leq \alpha_c$ to the genuine 0-parameter zero-range model studied numerically in [16] (black circles), and being, for $\alpha > \alpha_c$, identically equal to 3, the ground-trimer contribution. Vertical dotted line: critical mass ratio α_c where the Efimov effect sets in.
where $x = \ln(\epsilon/E_{\text{glob}})$. The nearest-integer function in the last term exactly compensates the jumps of the atan function when $\tan(|s|x)/2$ diverges, so as to render $\Delta(t)$ a smooth function of ϵ and of $|s|$. The corresponding values of $\hat{B}_{2,1}$ for $\alpha > \alpha_c$ are shown in Fig.1, after multiplication by a factor $e^{\beta E_{\text{glob}}}$, where $E_0 = \epsilon_{\text{glob}}(0^+)$ is the ground trimer energy, so as to absorb its contribution that becomes rapidly dominant and divergent for $k_B T < |E_0|$ [33]. The result depends on βE_{glob}, a parameter that must be $\gg 1$: our theory, being zero-range, requires that R_t, of order of the interaction range or effective range, as in the three-body hard core and narrow Feshbach resonance models respectively, is \ll the thermal de Broglie wavelength $\lambda_t = [2\pi h^2/(Mk_B T)]^{1/2}$. Clearly, there is a discrepancy of $\hat{B}_{2,1}(\alpha)$ and $\hat{B}_{2,1}(\alpha)$ at $\alpha \mp \pi$ at non-zero R_t. When $R_t \rightarrow 0 (E_{\text{glob}} \rightarrow +\infty)$ there is agreement at α_c, as seen by first taking the $s \rightarrow 0$ limit in Eq.(19),

$$
\Delta(\epsilon) \rightarrow \Delta_0(\epsilon) = 2 + \frac{2}{\pi} \frac{\ln(\epsilon/E_{\text{glob}})}{\pi} \tag{20}
$$

then taking the $R_t \rightarrow 0$ limit in Eq.(18)\footnote{One takes βt as integration variable and one expands the integrand in powers of $1/\ln(\beta E_{\text{glob}})$.}:

$$
\hat{B}^{(1,0)}(\alpha) = -\frac{3}{2} \int_0^{\infty} \frac{d\beta \Delta_0(\epsilon)}{\epsilon (1 + \epsilon_1,1) e^{-\beta \epsilon}} \tag{21}
$$

$$
\beta E_{\text{glob}} \rightarrow +\infty \frac{3}{2} \epsilon_1,1,1 \ln(\beta E_{\text{glob}}) + O\left(\frac{1}{\ln(\beta E_{\text{glob}})}\right)^2
$$

successfully collated with the $\epsilon_1,1,1 \rightarrow 0$ value of Eq.(9). The key point however is that this $R_t \rightarrow 0$ limit is in practice inaccessible, due to the very slow logarithmic convergence. We expect this problem to extend to $\alpha < \alpha_c$, which makes the strictly zero-range calculation of [16] not fully realistic. There also remains the puzzle of the diverging derivative of $\hat{B}_{2,1}(\alpha)$ with respect to α at $\alpha \mp \pi$. Both issues are solved in the next section.

Case $\alpha < \alpha_c$ revised: 1-parameter zero-range model. – We now see that a three-body parameter R_t must be introduced for $\alpha < \alpha_c$, i.e. even in the absence of Efimov effect, when α is close enough to α_c. The root $s = u_1,1 > 0$ then vanishes as $(\alpha - \alpha_c)/2$ and the centrifugal barrier in the hyperradial equation (4) weakens, so that the function $F(R)$, the eigenenergies E and the third cluster coefficient become increasingly sensitive to short distance physics of the interaction [30,34].

Assume that three-body physics inside the interaction range is described by an extra term $V(R)F$ compared to Eq.(4), e.g. a three-body hard core of radius b. Knowing that the relevant eigenenergies E are at most a few $k_B T$, and that $b \ll \lambda_t$, we can make the following reasonings.

(i) At $R \ll \lambda_t$, one can obtain the behavior of $F(R)$ by a zero-energy calculation (neglecting the EF term) in free space (since the harmonic oscillator length is $\gg \lambda_t$). Due to $b \ll \lambda_t$ there exists a range $b \ll R \ll \lambda_t$ where one can also neglect $V(R)$. Then $F(R)$ is a superposition of the two particular solutions R^α and $R^{-\alpha}$, with relative amplitudes fixed by a length R_t that depends on microscopic details of $V(R)$, e.g. $R_t = b$ for the three-body hard core\footnote{If one sets $F(R) = R^\alpha \psi(r) = R^\alpha \exp(-\alpha r)$ then $F'' + F'/R - 2\beta F/R^2 = 4\epsilon_0^2 R^\alpha \psi''(r)$ so that $R_t^2 = a_{\text{eff}}$, where a_{eff} is the s-wave scattering “length” of a particle of mass M on the potential $v(r) = V(\rho^2)/2\epsilon^2$. We suppose here that $a_{\text{eff}} > 0$, e.g. because $V(R)$ is non-negative.}:

$$
F(R) \simeq \left\{ \begin{array}{ll}
\frac{R_t^\alpha}{R_t - b} & \text{for } R \leq b \\
(R/R_t) - b & \text{for } R \geq b
\end{array} \right. \tag{22}
$$

(ii) one can approach the same range $b \ll R \ll \lambda_t$ from large distances. The trapping potential and the EF term must now be kept, and $F(R)$ is the unique solution (up to normalisation) of Eq.(4) that does not diverge at infinity, a Whittaker function of R^2 divided by R [19]. Then at $R \ll \lambda_t$, $F(R)$ is also found to be a linear superposition of R^α and $R^{-\alpha}$, as it must be, with coefficients $A_{\text{d}}(E)$ that are known functions of E. Matching with Eq.(22) gives an implicit equation for E, as if Eq.(4) was subjected to the modified boundary condition at $R = 0 [18,35]$\footnote{For $s = 0$ this becomes $F(R) = \ln(R/R_t) + O(R^2 \ln R)$.}:

$$
F(R) = \left(\frac{R_t}{R_t} - b\right)^\alpha - (R/R_t) - b + O(R^2 - b) \tag{23}
$$

The third term in Eq.(23), coming from a property of the Whittaker function, is negligible as compared to the first one, and this model makes sense, for $s < 1$ i.e. $\alpha > 8.6185 ...$ Remarkably this reproduces the Efimov zero-range model (11) if one formally replaces s by $i|s|$. Then it is natural to extend the definition of E_{glob} to $\alpha < \alpha_c$\footnote{On a narrow resonance of Feshbach length R_t, one gets from [21] \cite{21}:

$$
\Delta E_{\text{glob}}(s) = \frac{1}{1 + s} \left(\frac{\Gamma(1+s)}{\Gamma(1-s)}\right)^1/2 \left(\frac{\beta E_{\text{glob}}}{MR_t^2}\right)^1/2 \tag{24}
$$

where the first factor is a smooth function of s, as its series expansion involves only even powers of s. The more common boundary condition $F(R = 0) = 0$, that led to the spectrum (5), is usually justified as follows: at $R = \lambda_t$, the $R^{-\alpha}$ term in (22) is negligible as compared to the R^α term in the zero-range limit $b \ll \lambda_t$, that is $\beta E_{\text{glob}} \gg 1$ as one expects $R_t \approx b$\footnote{In peculiar cases, known as three-body resonances, see [18,35], R_t/b can be arbitrarily large and βE_{glob} can remain finite in the zero-range limit. This is improbable here as there is already a two-body resonance.}:

$$
\beta E_{\text{glob}}(s) \approx (\lambda_t/R_t)^{-b} \approx (\beta E_{\text{glob}})^{-b} \ll 1 \tag{25}
$$

However this condition becomes more and more difficult to satisfy when $\alpha \rightarrow \alpha_c$, and it will be violated when

$$
\alpha > \frac{1}{\ln(b E_{\text{glob}})} \tag{26}
$$

\cite{p4}
This forces us to recalculate the third cluster coefficient with the boundary condition (23). From the implicit equation for the energy spectrum \((e_q(\omega))_{q \in \mathbb{N}} \):

\[
\frac{\Gamma(1 + s - E(\omega)/\hbar)}{\Gamma(1 - s - E(\omega)/\hbar)} = \left(\frac{E_{\text{glob}}}{2\hbar} \right)^s
\]

(27)

we recalculate the quantum defect as in [32], using the Euler reflection and Stirling formulas:

\[
\Delta(\epsilon) = 2 + \frac{2}{\pi} \log \frac{[\pi^{-1} \log(\beta E_{\text{glob}}/2)]}{\pi} \tan\left(\frac{\pi}{2}\right)
\]

(28)

When \(R_t \to 0 \), \(\beta E_{\text{glob}} \to +\infty \) and this reproduces the value \(1 + s \) of the quantum defect in Eq.(5). Eq.(28) only revises the contribution of the channel (1, 0), since the other channels have \(u_{t,n} > 1 \) for the values of \(\alpha \) in Fig. 1:

\[
\bar{B}_{2,1}^{(1,0)}(\alpha) \equiv \frac{3}{2} \int_0^{+\infty} \mathrm{d} \beta [\Delta(\epsilon) - (1 + v_{1,0})] e^{-\beta t}
\]

(29)

In Fig. 1 we plot for \(\alpha < \alpha_c \) the corresponding values of \(B_{2,1} \), for the same values of the parameter \(\beta E_{\text{glob}} \) as in the part \(\alpha > \alpha_c \) of the figure, leading to an apparently smooth connection at \(\alpha = \alpha_c \). The continuity of the connection could be expected from the fact that (i) the formal change \(s \to i|s| \) in Eq.(28) reproduces the value (19) of the quantum defect on the side \(\alpha > \alpha_c \) apart from the nearest-integer function which is irrelevant when \(|s| \to 0 \), and (ii) the Efimovian trimer spectrum has a vanishing contribution to \(B_{2,1} \) when \(\alpha \to \alpha_c^+ \).

Indeed \(B_{2,1}^{(1,0)}(\alpha) \) and \(B_{2,1}(\alpha) \) are smooth functions of \(\alpha \) at \(\alpha_c \) at fixed \(\beta E_{\text{glob}} \), since \(\Delta(\epsilon) \) is an even function of \(s \) and its series expansion only has even powers of \(s \):

\[
\Delta(\epsilon) \equiv \Delta_0(\epsilon) - \frac{x}{6} + \frac{x^2}{3} \pi^2 + 480 s^4 + O(s^6)
\]

(30)

where \(\Delta_0(\epsilon) \) is given by Eq.(20), \(x = \log(\epsilon/\beta E_{\text{glob}}) \), and \(s \) can be real or purely imaginary. Insertion in Eq.(29) leads to converging integrals over \(\epsilon \) and to an expansion of \(B_{2,1}^{(1,0)} \) with only even powers of \(s \):

\[
\bar{B}_{2,1}^{(1,0)}(\alpha) = \bar{B}_{2,1}^{(1,0)}(\alpha_c) - \frac{A}{4} \left(\pi^2 - 2A^2 + 4\zeta(3) \right) s^4 + O(s^6)
\]

(31)

where \(A = \log(\epsilon/\beta E_{\text{glob}}) \) and \(\gamma \approx 0.577 \) is Euler’s constant 10. Since \(s^2 \) is a smooth function of \(\alpha \) across \(\alpha_c \), so is \(B_{2,1} \).

\footnote{The ground state solution of this equation must be omitted, because it connects when \(\omega \to 0 \) to a bound state of energy \(-E_{\text{glob}} \) and spatial extension \(\approx R_t \), which cannot be faithfully described by our zero-range model when \(R_t \approx b \) (i.e. in the absence of three-body resonance) and indeed does not exist in the three-body hard-core or in the narrow Feshbach resonance model [21]. This is equivalent to the assumption in [16] of the absence of non-universal trimer states.}

\footnote{Exchange of Taylor expansion and integration is justified by the theorem of derivation under the integral, where \(x \) is the integration variable. For \(\alpha < \alpha_c \), one sets \(u(x, s) = \tan(sx)/2s \) and \(v(x, s) = \tan(sx)/2s \) and one fixes some \(\eta \in [0, 1] \). Then there exist positive numbers (\(A_n, B_n, C_n, D_n \) \(n \in \mathbb{N} \)) and \(G > 0 \) such that \(V(x, s) \in \mathbb{R} \times [0, \eta], \forall n \in \mathbb{N}: |\beta_n u(x, s)|, |\beta_n v(x, s)| \leq A_n |x|^{n+1}, |\beta_n u(x, s)|, |\beta_n v(x, s)| \leq B_n, u(x, s) \neq v(x, s), G > 0 \). Then there exist positive numbers (\(A_n, B_n, C_n, D_n \) \(n \in \mathbb{N} \)) and \(G > 0 \) such that \(V(x, s) \in \mathbb{R} \times [0, \eta], \forall n \in \mathbb{N}: |\beta_n u(x, s)| \leq A_n |x| + \)}
Eq. (31), combined with $\Lambda_1(s) = 0$, predicts how the first order derivative at α_c diverges when $\beta E_{\text{glob}} \to +\infty$:

$$\frac{d}{d\alpha} B_{2,1}(\alpha) \bigg|_{\beta E_{\text{glob}} \to +\infty} \sim C \ln(\beta E_{\text{glob}})$$

with $C \approx 0.0478243$

(32)

It also suggests an interesting scaling law close to α_c: keeping in the coefficients of the powers of s in (31) only the leading terms in $\ln(\beta E_{\text{glob}})$, one recovers, after multiplication of (31) by $\ln(\beta E_{\text{glob}})$, the following law when βE_{glob} tends to infinity at fixed $t \equiv s \ln(\beta E_{\text{glob}})$:

$$[\bar{B}_{2,1}(\alpha) - B_{2,1}(\alpha_c)] \ln(\beta E_{\text{glob}}) \left[\begin{array}{c} \frac{t}{\beta E_{\text{glob}} \to +\infty} \left(3 - \frac{3t/2}{\ln(t/2)} \right) \end{array} \right]$$

with no constraint on the side $\alpha < \alpha_c$, and with the constraint that $|t| < 2\pi$ on the side $\alpha > \alpha_c$, due to the occurrence of a pole at $t = 2\pi i$ in the quantum defect contribution and to a divergence of the ground trimer contribution for $|t| > 2\pi$. Eq. (33) is obtained by neglecting $\ln(\beta \epsilon)$ as compared to $\ln(\beta E_{\text{glob}})$ in (19.28), as $\beta \epsilon$ is typically unity in the integrals (18.29). In Fig. 2a we replotted the data of Fig. 1 after rescaling as in Eq. (33): the results are indeed almost aligned on a single scaling curve given by Eq. (33), the better the larger $\ln(\beta E_{\text{glob}})$ is. The 0-parameter zero-range theory prediction $-3t/2$, see dashed line, is only asymptotically equivalent to the correct law at $t \to +\infty$. The scaling law fully justifies the intuitive condition (26): the crossover from the 0- to the 1-parameter zero-range regime indeed occurs for $s \approx 1/\ln(\beta E_{\text{glob}})$.

What happens on the side $\alpha > \alpha_c$, close to $|t| = 2\pi$? For $|t|$ fixed to a value $> 2\pi$, the ground-trimer contribution $3e^{-\beta E_0}$, where $E_0 = \epsilon_0(0^+)\epsilon$, rapidly diverges when $\beta E_{\text{glob}} \to +\infty$ and dominates all other contributions, so that the reduced cluster coefficient $e^{-\beta E_0} \bar{B}_{2,1}$ of Fig. 1 tends to three. However, before that, the reduced cluster coefficient exhibits as a function of α an interesting structure in Fig. 1, a sharp rise with a maximum, that corresponds to a neighbourhood of $|t| = 2\pi$ with a width $1/\ln(\beta E_{\text{glob}})$. This is revealed by the affine change of variable $u \equiv |t|/(2\pi) - 1/\ln(\beta E_{\text{glob}})$. When $\beta E_{\text{glob}} \to +\infty$ for fixed u, $\beta E_0 \to -e^u$, the ground-trimer contribution remains finite and, from dominated convergence theorem,

$$e^{-\beta E_0} \bar{B}_{2,1} \left[\begin{array}{c} \frac{u}{\beta E_{\text{glob}} \to +\infty} \left[e^{-e^u} \left[B_{2,1}(\alpha_c) + 3 \left(e^u - \frac{1}{2} \right) \right] \right] \\
+ \frac{3}{\pi} \int_0^{+\infty} d\beta e^{-\beta \epsilon} \atan \left(\frac{u - \ln(\beta \epsilon)}{\beta} \right) \end{array} \right]$$

where $B_{2,1}(\alpha_c) \approx 1.7153$ [16] is the prediction of the 0-parameter zero-range theory at α_c. As shown in Fig. 3b, the rescaled data of Fig. 1 nicely converge to this law.

REFERENCES

[1] K. Huang, Statistical Mechanics (Wiley, New York, 1963).
[2] E. Beth, G.E. Uhlenbeck, Physica III 78, 729 (1936); Physica IV 10, 915 (1937).
[3] P.C. Hemmer, Phys. Lett. 27A, 377 (1968); B. Jancovici, Phys. Rev. 178, 295 (1969); Phys. Rev. 184, 119 (1969); B. Jancovici, S. Merkuriev, Phys. Rev. A 12, 2610 (1975).
[4] T.D. Lee, C.N. Yang, Phys. Rev. 116, 25 (1959); A. Pais, G.E. Uhlenbeck, Phys. Rev. 116, 250 (1959); S.K. Adhikari, R.D. Amado, Phys. Rev. Lett. 27, 485 (1971); W.G. Gibson, Phys. Rev. A 6, 2460 (1972).
[5] K.M. O’Hara et al., Science 298, 2179 (2002); T. Bourdel et al., Phys. Rev. Lett. 91, 020402 (2003); C.A. Regal, M. Greiner, D.S. Jin, Phys. Rev. Lett. 92, 040403 (2004); M. Zwierlein et al., Phys. Rev. Lett. 92, 120403 (2004).
[6] A. Comtet, Y. Georgelin, S. Ouvry, J. Phys. A 22, 3917 (1989); J. McCabe, S. Ouvry, Phys. Lett. B 260, 113 (1990).
[7] Xia-Ji Liu, Hui Hu, P. D. Drummond, Phys. Rev. Lett. 102, 160401 (2009); Phys. Rev. A 82, 023619 (2010).
[8] D.K. Kaplan, Sichun Sun, Phys. Rev. Lett. 107, 030601 (2011); X. Leyronas, Phys. Rev. A 84, 053633 (2011).
[9] M. Horikoshi, S. Nakajima, M. Ueda, T. Mukaiyama, Science 327, 442 (2010); N. Navon, S. Nascimbène, F. Chevy, C. Salomon, Science 328, 729 (2010); Mark Ku, A. Sommer, L. Cheuk, M. Zwierlein, Science 335, 563 (2012).
[10] S. Nascimbène et al., Nature 463, 1057 (2010).
[11] V. Efimov, Sov. J. Nucl. Phys. 12, 589 (1971); V. Efimov, Nucl. Phys. A 210, 157 (1973); A. Bulgac, V. Efimov, Sov. J. Nucl. Phys. 22, 296 (1975).
[12] Y. Castin, F. Werner, Rev. can. phys. 91, 382 (2013).
[13] J. von Stecher, J. Phys. B 43, 101002 (2010).
[14] J. Piatecki, W. Krauth, Nature Comm. 5, 3503 (2014).

p-6

[14] For $s < 1/2$ they dominate over usual more usual (here neglected) energy corrections, due to the effect of a finite range b of the two-body interaction at the level of short-range two-body correlations (only involving pairs of close atoms), that vanish linearly in b [30]. From Eq. (29) for $R_t/\lambda_t \to 0$, $\bar{B}_{2,1} - B_{2,1} \sim -\frac{3}{2} (s + 1) \sin(\pi s)/\beta E_{\text{glob}}$ asymptotically equivalent to the correct law at $t \to +\infty$. These $1/\ln(\lambda_t/R_t)$ corrections arise from short-range three-body correlations, that is from triplets of close atoms [14]. As a consequence, for a given finite λ_t/R_t as in all realistic systems, the third virial coefficient reverts smoothly to its values deduced from the Efimov zero-range model above the threshold, precluding the unphysical first-order phase transition predicted by zero-range theory. Our predictions may be tested by measuring the equation of state of mixtures of fermionic cold atoms with a mass ratio $\alpha \approx 13.6$, such as 3He* and 40K.

Acknowledgments. – S.E. thanks JSPS for support.
The third virial coefficient of a two-component unitary Fermi gas across an Efimov-effect threshold

[15] D.S. Petrov, Phys. Rev. A 67, 010703 (2003); E. Braaten, H.-W. Hammer, Phys. Rep. 428, 259 (2006).
[16] K.M. Daily, D. Blume, Phys. Rev. A 85, 013609 (2012).
[17] F. Werner, Y. Castin, Phys. Rev. Lett. 97, 150401 (2006).
[18] F. Werner, Y. Castin, Phys. Rev. A 74, 053604 (2006); Y. Castin, F. Werner, chap. 5, The BCS-BEC Crossover and the Unitary Fermi Gas, LNIP 836, W. Zwerger ed. (Springer, Berlin, 2011).
[19] F. Werner, PhD thesis, Univ. Pierre et Marie Curie (Paris, 2008), tel.archives-ouvertes.fr/tel-00285587.
[20] R. Minlos, L. Faddeev, Sov. Phys. JETP 14, 1315 (1962).
[21] Y. Castin, E. Tignone, Phys. Rev. A 84, 062704 (2011).
[22] G. Gasaneo, J.H. Macek, J. Phys. B 35, 2239 (2002); M. Birse, J. Phys. A 39, L49 (2006).
[23] Y. Castin, Comptes Rendus Physique 5, 407 (2004).
[24] L.P. Pitaevskii, A. Rosch, Phys. Rev. A 55, R853 (1997).
[25] O. Kartavtsev, A. Malykh, Zh. Eksp. Teor. Phys. 86, 713 (2007).
[26] L. Landau, E. Lifshitz, Quantum Mechanics (Elsevier Science, Oxford, 2003).
[27] P. Morse, H. Feshbach, Methods of Theoretical Physics, vol. II, p. 1665 (Mc Graw-Hill, New York, 1953).
[28] L. Pricoupenko, Phys. Rev. A 82, 043633 (2010).
[29] M. Jona-Lasinio, L. Pricoupenko, Phys. Rev. Lett. 104, 023201 (2010).
[30] S. Endo, P. Naidon, M. Ueda, Phys. Rev. A 86, 062703 (2012).
[31] S. Jonsell, H. Heiselberg, C.J. Pethick, Phys. Rev. Lett. 89, 250401 (2002).
[32] F. Werner, Y. Castin, Phys. Rev. A 86, 053633 (2012).
[33] A. Pais, G.E. Uhlenbeck, Phys. Rev. 116, 250 (1959).
[34] A. Safavi-Naini, Seth T. Rittenhouse, D. Blume, H.R. Sadeghpour, Phys. Rev. A 87, 032713 (2013).
[35] Y. Nishida, D. Thanh Son, Shina Tan, Phys. Rev. Lett. 100, 090405 (2008).
[36] F. Werner, Y. Castin, Phys. Rev. A 86, 013626 (2012).
Le troisième coefficient du viriel d’un gaz unitaire de fermions à deux composantes à travers un seuil de l’effet Efimov

CHAO GAO∗, SHIMEI ENDO et YVAN CASTIN

∗Institute for Advanced Study, Tsinghua University, Beijing, 100084, Chine
Laboratoire Kastler Brossel, ENS-PSL, CNRS, UPMC-Sorbonne Universités, Collège de France, Paris, France

PACS 67.85.d – Gaz froids, gaz piégés.

Résumé – Nous considérons un mélange de deux espèces fermioniques à un seul état interne avec une interaction de portée négligeable et une longueur de diffusion infinie dans l’onde s. En faisant varier le rapport de masse α de part et d’autre de $\alpha_c \simeq 13,6069$, on peut activer ou désactiver l’effet Efimov. Nous déterminons analytiquement le troisième coefficient d’amas du gaz. Nous montrons qu’il s’agit d’une fonction lisse de α même en α_c, puisque, de façon inattendue, le paramètre à trois corps caractérisant l’interaction est pertinent et doit être introduit aussi du côté non efimovien $\alpha < \alpha_c$.

Introduction. – Un outil théorique puissant dans la physique statistique des systèmes quantiques en interaction est le concept de viriel, où les potentiels thermodynamiques sont développés en puissances du petit paramètre de dégénérescence [1]. Alors que le deuxième coefficient d’amas b_2 a une expression générale connue depuis les années 1930 [2], la détermination explicite du troisième coefficient d’amas b_3 a constitué un défi de longue haleine. À partir de la fin des années 1950, des résultats analytiques pour b_3 ont été obtenus pour le modèle d’une interaction de cœurs de deux corps, l’archétype des interactions non résonantes où la longueur de diffusion a dans l’onde s est au plus de l’ordre de la portée de l’interaction, sous la forme de développements en puissances d’un petit paramètre λ/a [3] ou a/λ [4], où λ est la longueur d’onde thermique de de Broglie.

L’intérêt porté à b_3 a été relancé par une récente perçée expérimentale dans le domaine des atomes froids : des gaz de fermions de spin $1/2$ à longue durée de vie peuvent désormais être préparés dans le régime d’interaction résonante (portée de l’interaction $\ll |a|$) au moyen de résonances de Feshbach [5]. Ceci a motivé le calcul numérique de b_3 dans la limite unitaire d’interaction maximale $1/a = 0$, avec la technique du régulateur harmonique de la référence [6] connue aussi dans [7], ou avec des diagrammes [8]. En raison de l’invariance d’échelle de la limite unitaire, b_3 n’est qu’un nombre et, grâce à une mesure précise de l’équation d’état du gaz [9,10], sa valeur prédite a été confirmée [10].

La physique est plus riche lorsque l’effet Efimov [11] entre en jeu, l’invariance d’échelle continue est brisée, il apparaît une échelle de longueur R_t caractérisant l’interaction, le paramètre à trois corps, et il existe une infinité d’états trimères avec un spectre d’énergie asymptotiquement géométrique. Le troisième coefficient d’amas b_3 se met à dépendre de la température. Dans un gaz de bosons sans spin avec des interactions de portée nulle, il a été déterminé analytiquement [12]. Dans le modèle d’une interaction de cœur dur à trois corps qui fixe R_t [13], les simulations de Monte-Carlo quantique ont confirmé cette prédiction analytique et ont montré que le développement en amas d’ordre trois peut fournir une bonne description du gaz jusqu’à la transition liquide-gaz [14], ce qui illustre son utilité.

Le problème est encore plus intéressant lorsqu’un paramètre du système permet d’activer et de désactiver l’effet Efimov, comme dans le cas du gaz de fermions à deux composantes dont le rapport de masse est ajustable. Pour deux fermions identiques et une particule distincte, il y a un effet Efimov si le rapport de masse fermion-autre particule est supérieur à $\alpha_c = 13,6069 \ldots$ [11,15]. Jusqu’à présent, le calcul de b_3 était numérique et limité à $\alpha < \alpha_c$ [16]. De manière surprenante, il prédisait que b_3 est de dérivée infinie en $\alpha = \alpha_c$. Comme b_3 est un coefficient du grand potentiel Ω, ceci impliquerait une dérivée singulière de Ω en fonction de α, c’est-à-dire une transition de phase du premier ordre, subsistant à une densité...
Chao Gao, Shimpei Endo et Yvan Castin

dans l’espace de phase arbitrairement basse, c’est-à-dire
des températures T arbitrairement plus élevées que la
température de Fermi T_F, contrairement aux attentes ha-
bilituelles pour les transitions de phase. Le présent travail
détermine b_3 analytiquement et résout ce paradoxe.

Le développement en amas. – Nous considérons
un mélange de deux espèces fermioniques entièrement po-
larisées, avec des masses de particules individuelles m_1 et
m_2, sans interaction intra-espèce et avec une interaction
inter-espèce purement dans l’onde s, de portée négligeable
et de longueur de diffusion infinie (limite unitaire). À
l’équilibre thermique dans une boîte cubique, la pres-
sion totale P admet dans la limite thermodynamique le
développement en amas

$$
P_{\alpha} = \sum \frac{b_{n_1,n_2}^3}{k_B T} z_{n_1}^2 z_{n_2}^2
$$

où z_i sont les fugacités $\exp(\mu_i)$, $\lambda_i = [2\pi \hbar^2/(m_i k_B T)]^{1/2}$
est la longueur d’onde thermique de i associée à
la masse réduite $m_i = m_1 m_2/(m_1 + m_2)$ et à la
temperatur T, $\beta = 1/(\k_B T)$, μ_i est le potentiel chimique
de l’espèce i et Λ est l’ensemble des entiers naturels.

Pour déterminer les coefficients d’amas b_{n_1,n_2}, on peut
utiliser l’astuce du régulateur harmonique [6] : on suppose
temporairement que le système est à l’équilibre thermique
dans un piège harmonique isotrope, avec la même pulsation
de piègeage ω pour les deux espèces, et on considère
le développement en amas de $(-\Omega)/(k_B T Z_1)$ en puissances de z_1 et z_2, avec Ω le grand potentiel et Z_1 la fonction de partition d’une particule seule dans le piège.

Lorsque $\omega \to 0$, les coefficients correspondants ont une
limite B_{n_1,n_2} que l’on peut résumer à b_{n_1,n_2} [6,7,16] :

$$
B_{n_1,n_2} = \left(\frac{m_r}{n_1 m_1 + n_2 m_2}\right)^{3/2} b_{n_1,n_2}
$$

Nous étudions $B_{2,1}$ en fonction du rapport de masse $\alpha = m_1/m_2$.

Cas $\alpha < \alpha_c$. – Le coefficient d’amas $B_{2,1}$ peut être déduit
des fonctions de partition d’au plus trois corps dans le
piège, c’est-à-dire des spectres d’énergie à n corps pour
$n \leq 3$. Dans la limite unitaire, l’interaction inter-espèce est décrite par la condition de contact binaire de Bethe-Peierls
sur la fonction d’onde, ce qui conduit à une équation de
Schrödinger à trois corps séparable en coordonnées hyper-
sphériques internes [11], même dans un piège harmonique
[17–19]. La partie hyperangulaire du problème peut être résolue dans l’espace des positions [11] ou dans l’espace des
impulsions [20] : la valeur propre réelle correspondante s^2
(qui jouera le rôle d’une constante de séparabilité) obéit à
l’équation transcendante $\Lambda_i(s) = 0$ d’expression explicite

$$
\Lambda_1(s) = \cos \nu + \frac{1}{\sin \nu} \int_{-\nu}^{\nu} \frac{d\theta}{\cos \theta} P_1 \left(\frac{\cos \theta}{\sin \nu} \sin(s \theta)\right) (3)
$$

avec $l \in \mathbb{N}$ le moment cinétique, P_l un polynôme de
Legendre, $\nu = \arcsin \frac{\omega}{\kappa}$ l’angle de masse. On appelle
$\{(\nu_l,\omega)\}_{l \in \mathbb{N}}$ les racines positives de Λ_1, rangées par ordre
croissant. Il n’y a pas de racine complexe pour $\alpha < \alpha_c$.

La partie hyperradielle de la fonction d’onde, après multipli-
cation par R^2, est solution d’une équation de Schrödinger
de manière effective bidimensionnelle :

$$
EF = -\frac{\hbar^2}{2M} \left(F'' + \frac{1}{} R F'\right) + \left(\frac{\hbar^2 s^2}{2 M R^2} + \frac{1}{2} \frac{\omega^2 R^2}{M} F\right)
$$

où s est l’une des racines $\nu_l, M = 2 m_1 + m_2$ est la
masse de deux particules de l’espèce 1 et d’une particule de
l’espèce 2, et l’hyperrayon R est l’écart quadratique moyen
correspondant, pondéré par les masses, des positions des
des trois particules à leur centre de masse. La résolution de
l’équation (4) avec les conditions aux limites habituelles selon
lesquelles $F(R)$ s’annule en zéro et à l’infini donne

$$
E = (s + 1 + 2q)\hbar \omega, \forall q \in \mathbb{N}
$$

La structure en échelle semi-infinie de ce spectre, avec
l’équidistance $2 \hbar \omega$ entre niveaux, reflète l’existence d’un
mode pulsant non amorti du gaz unitaire non Efimovien
piégé [23], lié à sa symétrie dynamique SSO(2,1) [24].

Enfin $B_{2,1}$ est la limite pour $\omega \to 0$ d’une série [7,12] 2 :

$$
B_{2,1} = \lim_{\omega \to 0} \sum_{l=0}^{\infty} \sum_{q \in \mathbb{N}} \left(e^{-\nu_l+1+2q}\hbar \omega\right) e^{-\nu_l} = \left(\nu_l+1+2q\hbar \omega\right)
$$

avec $\nu_l = l + 2 + n + 1$ les pôles positifs de $\Lambda(s)$ [21].

La sommation sur q peut se faire analytiquement, et même sur
n par application inverse du théorème des résidus [12] :

$$
B_{2,1} = \sum_{l \in \mathbb{N}} \left(l + \frac{1}{2}\right) \int_0^\infty \frac{dS}{\pi} \frac{\ln \Lambda_l(iS)}{\cos \nu}
$$

Comme le montre la figure 1, le résultat est en accord avec
l’évaluation numérique de la série par la référence [16].

L’analytique permet cependant directement de voir pour-
quoi $B_{2,1}$ est de dérivée infinie en $\alpha = \alpha_c$: il suffit d’isoler
la contribution de la voie $(l,n) = (1,0)$ dans l’équation (6),
la seule où $\nu_{l,n}$ s’annule en $\alpha = \alpha_c$, par la décomposition

$$
B_{2,1} = B_{2,1}^{(1,0)} + B_{2,1}^{(2,1)}
$$

1. Il existe une expression hypergéométrique moins explicite pour Λ_1 [22].

2. En fait, on calcule plutôt la différence entre les fonctions de
partition des problèmes unitaire et sans interaction ; néanmoins, ceci
donne directement $B_{2,1}$ du gaz unitaire puisque $B_{2,1}$ est nul pour un
gaz parfait : les contributions des états de Laughlin (dont la fonction
d’onde s’annule lorsque deux particules sont au même point) se compen-
sent dans la différence ; les $\nu_{l,n}$ apparaissent via le spectre non-
Laughlinien du problème à trois corps sans interaction. De même,
les contributions de la racine non physique $s = 2$ dans le secteur
$l = 0$, qui existe dans les deux cas unitaire et sans interaction, se
compensent automatiquement.

p-2
Le troisième coefficient du viriel d’un gaz unitaire de fermions à deux composantes à travers un seuil de l’effet Efimov

Toutes les autres voies conduisent à des $u_{l,n}>1$ sur l’intervalle de la figure et donnent une contribution lisse à $B_{2,1}$. Au contraire

$$B_{2,1}^{(1,0)} = \lim_{\omega \to 0} 3 \sum_{q \in \mathbb{Z}} \left[e^{-(u_{1,0}+1+2q)\beta E_H} - e^{-(v_{1,0}+1+2q)\beta E_H} \right]$$

et $u_{1,0}$, une fonction décroissante de α, s’annule comme $(\alpha_c - \alpha)^{1/2}$ puisque $L_1(s)$ est paire, de sorte que $\frac{d}{ds}B_{2,1}$ diverge comme $(\alpha_c - \alpha)^{-1/2}$.

Cas $\alpha > \alpha_c$: Modèle de portée nulle efimovien.

Nous supposons maintenant que le rapport de masse est tel que $\alpha_c < \alpha < 75.99449 \ldots$ [25], de sorte que l’effet Efimov n’a lieu que dans le secteur $l = 1$. La fonction $L_{l=1}$ possède une paire de racines imaginaires pures complexes conjuguées $\pm s$ et nous posons

$$u_{1,0} = s = i|s|$$

$|s|$ s’annule comme $(\alpha - \alpha_c)^{1/2}$ et est une fonction croissante de α. Le potentiel $1/R^2$ dans l’équation de Schrödinger (4) sur $F(R)$ devient attractif, ce qui conduit à une “chute vers le centre” [26] et à un spectre continu non physique d’états liés, ce qui oblige à modifier la condition aux limites en $R = 0$ [27]:

$$F(R) = \frac{1}{R} (F(R_\lambda)^{|s|} - (F(R_\lambda)^{-|s|} + O(R^2))$$

Pour mettre en évidence le fait que le troisième coefficient d’amas dépend maintenant d’un paramètre, à savoir cette longueur R_λ appelée paramètre à trois corps, nous l’écritrons comme $B_{2,1}$, c’est-à-dire avec une barre supérieure. Dans l’espace libre, l’équation (11) conduit à un nombre discret et infini d’états trimères d’Efimov, avec un spectre purement géométrique s’étendant de $-\infty$ à 0. Dans tout système physique, cependant, l’interaction n’est pas strictement de portée nulle et le spectre doit être borné inférieurement [11]. On peut s’attendre à ce que les effets de portée non nulle altèrent alors la nature géométrique du spectre pour les trimères les plus profondément liés. Cependant, pour une résonance de Feshbach étroite [21, 28], pour les modèles de résonance de Feshbach avec coupure dans l’espace des impulsions [29,30] et pour le modèle d’une interaction de cœur dur à trois corps [13], le spectre est presque entièrement géométrique, au moins lorsque $|s|$ n’est pas trop grand $(|s| \lesssim 1)$, et devient entièrement géométrique lorsque $\alpha \to \alpha_c^+$, puisque le produit du nombre d’onde typique des particules et de la portée de l’interaction tend vers zéro [21]. Dans ce qui suit, nous prenons donc dans l’espace libre le spectre géométrique borné inférieurement :

$$c_\omega(0^+) \equiv \lim_{\omega \to 0} c_\omega(\omega) = -E_{\text{glob}} e^{-2\pi(1+q)/|s|}, \quad \forall q \in \mathbb{N}$$

L’échelle d’énergie globale E_{glob} peut être calculée à partir d’un modèle microscopique pour l’interaction, comme cela a été fait dans les modèles mentionnés ci-dessus. Ici, nous la prenons comme un paramètre que la solution de l’Eq.(4) pour $\omega = 0$ avec la condition aux limites (11) relie à R_λ comme suit :

$$E_{\text{glob}} = \frac{2\hbar^2}{MR_\lambda^2} e^{[\ln \Gamma(1+s)-\ln \Gamma(1-s)])/s}$$

avec $\ln \Gamma$ la détermination habituelle du logarithme de la fonction Γ.

La contribution à $B_{2,1}$ des voies $(l,n) \neq (1,0)$ est inchangée car aucun effet Efimov ne s’y produit :

$$B_{2,1}^{(l,n)} = B_{2,1}^{(1,0)}$$

Nous la calculons comme dans [12], en utilisant l’Eq.(7) telle quelle pour $l \neq 1$, mais en remplaçant $\Lambda_l(iS)$ par...
S\(^2+\nu^2\alpha_0\lambda(I)\) pour \(l=1\). Dans la voie efimovienne \((l, n) = (1, 0)\), le spectre n’est plus donné par l’Eq.(5), mais par la solution de l’équation transcendante tirée de [31] et réécrite comme dans [12,32] pour redonner l’Eq.(12) dans l’espace libre :

\[
\ln \Gamma \left(\frac{1-s - \epsilon_q}{(\hbar \omega)} \right) + \frac{|s|}{2} \ln \left(\frac{2\hbar \omega}{E_{\text{glob}}} \right) + (q + 1) \pi = 0
\]

(15)
de sorte que la première identité dans l’Eq.(9) est remplacée par

\[
B^{(1,0)}_{2,1} = \lim_{\omega \to 0} 3 \sum_{q \in \mathbb{N}} \left[e^{-\beta \epsilon_q(\omega)} - e^{-(v_{1,0} + 1 + 2q)\beta \hbar \omega} \right]
\]

(16)

Pour une valeur de \(\omega\) non nulle suffisamment petite, deux classes d’énergies émergent dans le spectre à trois corps : (i) les énergies propres négatives, qui sont l’équivalent des énergies propres des trimères dans l’espace libre, et (ii) les énergies propres positives, qui sont l’équivalent du continuum dans l’espace libre. La seconde classe constitue un spectre harmonique à un “défaut quantique” dépendant de l’énergie près \(\Delta(\epsilon)\) [32] :

\[
\epsilon_q(\omega) = 2q + \Delta(\epsilon_q(\omega)) + O(1/q)
\]

(17)
où \(q\omega\) est fixé. Par le raisonnement de [12], on obtient

\[
B^{(1,0)}_{2,1} = 3 \sum_{q \in \mathbb{N}} \left[e^{-\beta \epsilon_q(0^+)} - 1 \right] - \frac{3}{2} \int_0^{+\infty} d\epsilon \beta \Delta(\epsilon) - (1 + v_{1,0}) e^{-\beta \epsilon}\]

(18)

Nous avons obtenue une nouvelle expression du défaut quantique

\[
\Delta(\epsilon) = 2 + \frac{2}{\pi} \arctan \left(\frac{\beta \epsilon}{\hbar} \right) + \frac{|s|x}{2\pi}
\]

(19)
où \(x = \ln(\epsilon/E_{\text{glob}})\). La fonction entier le plus proche dans le dernier terme compense exactement les sauts de la fonction atan lorsque \(\tan(|s|x/2)\) tend vers l’infini, de façon que \(\Delta(\epsilon)\) soit une fonction lisse de \(\epsilon\) et de \(|s|\).

Les valeurs correspondantes de \(B_{2,1}\) pour \(\alpha > \alpha_c\) sont représentées sur la figure 1, après multiplication par un facteur \(e^{\beta E_0}\), où \(E_0 = \epsilon_q(0^+)\) est l’énergie du trimère fondamental, de façon à absorber la contribution de cette dernière, qui devient rapidement dominante et divergente pour \(k_B T < |E_0|\) [33]. Le résultat dépend de \(\beta E_{\text{glob}}\), un paramètre qui doit être \(\gg 1\) : notre théorie, étant de portée nulle, requiert que \(R_T\), de l’ordre de la portée vraie de l’interaction ou de la portée effective, comme dans les modèles respectivement d’interaction de cœur dur à trois corps et de résonance de Feshbach étroite, soit \(\ll\) à la longueur d’onde thermique de de Broglie \(\lambda_T = [2\pi \hbar^2 / (Mk_B T)]^{1/2}\). Il est clair qu’il y a un écart entre \(B_{1,1}(\alpha)\) et \(B_{2,1}(\alpha)\) en \(\alpha^2\) par rapport à \(R_T\) non nul. Lorsque \(R_T \to 0\) \((E_{\text{glob}} \to +\infty)\) il y a accord en \(\alpha_c\), comme on le voit en prenant l’ordre de la portée la limite \(s \to 0\) dans l’Eq.(19),

\[
\Delta(\epsilon) \to \Delta_0(\epsilon) = 2 + \frac{2}{\pi} \arctan \left(\frac{\ln(\epsilon/E_{\text{glob}})}{\pi} \right)
\]

(20)
puis en prenant la limite \(R_T \to 0\) dans l’Eq.(18) :

\[
B^{(1,0)}_{2,1}(\alpha^+) = 3 \beta E_{\text{glob}} + \infty \int_0^{+\infty} d\epsilon \beta \Delta_0(\epsilon) - (1 + v_{1,0}) e^{-\beta \epsilon}
\]

\[
= - \frac{3}{2} \ln(\beta E_{\text{glob}}) + O\left(\frac{1}{\ln(\beta E_{\text{glob}})} \right)^2
\]

(21)

ce qui correspond exactement à la valeur de l’Eq.(9) pour \(v_{1,0} \to 0\). Le point essentiel est cependant que la limite \(R_T \to 0\) n’est en pratique jamais atteinte, en raison de la convergence logarithmique très lente. Nous nous attardons à ce que ce problème s’étend à \(\alpha < \alpha_c\), si bien que le calcul fait strictement à portée nulle dans [16] n’est pas entièrement réaliste. Il reste également le mystère de la dérivée infinie de \(B_{2,1}(\alpha)\) en \(\alpha = \alpha_c\). Ces deux problèmes sont résolus dans la section suivante.

Cas \(\alpha < \alpha_c\) revvisité : modèle de portée nulle à 1 paramètre. – Voyons maintenant qu’un paramètre à trois corps \(R_T\) doit être introduit pour \(\alpha < \alpha_c\), c’est-à-dire même en l’absence d’effet Efimov, lorsque \(\alpha\) est suffisamment proche de \(\alpha_c\). La racine \(s = v_{1,0} > 0\) s’annule alors comme \((\alpha_c - \alpha)^{1/2}\) et la barrière centrifuge dans l’équation hypperradiaire (4) s’atténue, de sorte que la fonction \(F(R)\), les énergies propres \(E\) et le troisième coefficient d’amplitude de plus en plus sensibles aux propriétés à courte distance de l’interaction [30,34].

Supposons que la physique à trois corps dans la portée de l’interaction soit décrite par un terme supplémentaire \(V(R)F\) dans l’Eq.(4), par exemple un cœur dur à trois corps de rayon \(b\). Sachant que les énergies propres pertinentes \(E\) valent au moins quelques \(k_B T\), et que \(b \ll \lambda_T\), nous pouvons faire les raisonnements suivants.

(i) en \(R \ll \lambda_T\), on peut obtenir le comportement de \(F(R)\) pour \(\alpha < \alpha_c\) comme variable d’intégration et on développe l’intégrale en puissances de \(1/\ln(\beta E_{\text{glob}})\).

\[
F(R) \sim \frac{(R/R_T)^s - (R/R_T)^{-s}}{(R/R_T)^s - (R/R_T)^{-s}}
\]

(22)

4. Pour ce faire, on prend \(\beta \epsilon\) comme variable d’intégration et on développe l’intégrale en puissances de \(1/\ln(\beta E_{\text{glob}})\).

5. Si l’on pose \(F(R) = R^{-s}g(r = R^2),\) on a \(F'' + F' / R - s^2 F / R^2 = 4s^2 R^{2s-2} g''(r)\) de sorte que \(R^2 = a_{\text{eff}},\) où \(a_{\text{eff}}\) est la
Le troisième coefficient du viriel d’un gaz unitaire de fermions à deux composantes à travers un seuil de l’effet Efimov

(ii) on peut approcher le même intervalle $b \ll R \ll \lambda_t$ en partant des grandes distances. Le potentiel de piégeage et le terme EF doivent maintenant être conservés, et $F(R)$ est l’unique solution de l’Eq.(4) qui ne diverge pas à l’infini (à un facteur de normalisation près), une fonction de Whittaker de R^2 divisée par $R[19]$. Alors, en $R \ll \lambda_t$, on trouve aussi que $F(R)$ est une combinaison linéaire de R^s et R^{-s}, comme elle doit l’être, mais avec des coefficients $A_{\pm}(E)$ qui sont des fonctions connues de E. Le nécessaire accord avec l’Eq.(22) conduit à une équation implicite sur E, comme si l’Eq.(4) était soumise à la condition aux limites modifiée en $R = 0$ [18,35]:

$$F(R) = (R/R_t)^s - (R/R_t)^{-s} + O(R^{2-s})$$ (23)

Le troisième terme de l’éq.(23), une propriété mathématique de la fonction de Whittaker, est négligeable par rapport au premier, et ce modèle a un sens, seulement pour $s < 1$ i.e. $\alpha > 8.6185$... De façon remarquable, ceci reproduit le modèle de portée nulle efimovien (11) si l’on remplace formellement s par $|s|$. Il est alors naturel d’étendre la définition de E_{glob} à $\alpha < \alpha_c$ comme suit:

$$E_{\text{glob}} = \begin{cases} \frac{\Gamma(1+s)}{\Gamma(1-s)} \frac{2\hbar^2}{MR_t^2} & s < 1 \\ \beta E_{\text{glob}} & s = 1 \\ \beta E_{\text{glob}}^{-s} & 1 < s < 1 \\ \beta E_{\text{glob}}^{-s} & s > 1 \end{cases}$$ (24)

où le premier facteur est une fonction lisse de α car son développement en série ne comporte que des puissances paires de s.

La condition aux limites $F(R = 0) = 0$, plus habituelle, qui a conduit au spectre (5), est généralement justifiée de la façon suivante: en $R \approx \lambda_t$, le terme R^{-s} de (22) est négligeable par rapport au terme R^s dans la limite de portée nulle $b \ll \lambda_t$, c’est-à-dire $\beta E_{\text{glob}} \gg 1$, puisqu’$s$ s’attend à ce que $R_t \approx b^{-s}$.

$$\frac{(\lambda_t/R_t)^{-s}}{(\lambda_t/R_t)^s} \approx (\beta E_{\text{glob}})^{-s} < 1$$ (25)

Cependant cette condition devient de plus en plus difficile à satisfaire lorsque $\alpha \to \alpha^<$, et elle sera violée lorsque

$$s \gtrsim \frac{1}{\ln(\beta E_{\text{glob}})}$$ (26)

Ceci nous oblige à recalculer le troisième coefficient d’amas avec la condition aux limites (23). À partir de l’équation

"longueur" de diffusion dans l’onde s d’une particule de masse M sur le potentiel $v(r) = V(r^{1/2})r^{-2+1/4(4\pi^2)}$. Nous supposons ici que $\alpha_{\text{eff}} > 0$, par exemple parce que $V(R)$ est positif.

6. Pour $s = 0$, ceci devient $F(R) = \ln(R/R_t) + O(R^2 \ln R)$. $R \to R_t$.
7. Sur une échelle étroite de longueur de Feshbach R_t, on tire de [21] $(\frac{m^2 R_t^2}{\pi E_{\text{glob}}}) = \frac{1}{\pi} \frac{\Gamma(1+2s)}{\Gamma(1+s)} \frac{f(\alpha)}{f(\alpha_{\text{c}})}$, avec $f(z) = \frac{\Gamma(z)}{\Gamma(z+s)} \frac{\Gamma(1+z+s)}{\Gamma(1+z)}$, $\alpha > 0$.
8. Dans des cas particuliers, connus sous le nom de résonances à trois corps, voir [18,35], R_t/b peut être arbitrairement grand et βE_{glob} peut rester fini dans la limite de portée nulle. Ceci est improbable ici car il y a déjà une résonance à deux corps.

implicite sur le spectre d’énergie $(\epsilon_{p}(\omega))_{\nu \in \mathbb{N}}$ [19]:

$$\frac{(1+s-E_{\text{glob}})/2}{(1-s-E_{\text{glob}})/2} = \left(\frac{E_{\text{glob}}}{2\hbar \omega}\right)^s$$ (27)

nous recalculons le défaut quantique comme dans [32], en utilisant la formule de réflexion d’Euler et la formule de Stirling:

$$\Delta(\epsilon) = 2 + \frac{2}{\pi} \tan\left(\frac{\pi}{2} \ln(\epsilon/E_{\text{glob}})\right) (28)$$

Quand $R_t \to 0$, $\beta E_{\text{glob}} \to +\infty$ et ceci reproduit la valeur $1 + s$ du défaut quantique dans l’Eq.(5). L’Eq.(28) ne change que la contribution de la voie (1,0), puisque les autres voies ont tous leurs valeurs de α de la figure 1:

$$B_{\text{2,1}}^{(1,0)} (\alpha) = -\frac{3}{2} \int_0^{+\infty} \frac{d\beta \Delta(\epsilon) - (1 + v_{1,0})e^{-\beta \epsilon}}{\beta E_{\text{glob}}}$$ (29)

Sur la figure 1 nous représentons pour $\alpha < \alpha_c$ les valeurs correspondantes de $B_{\text{2,1}}$, pour les mêmes valeurs du paramètre βE_{glob}, que dans la partie $\alpha > \alpha_c$ de la figure, ce qui conduit à un raccordement visiblement lisse en $\alpha = \alpha_c$. On pouvait s’attendre à la continuité du raccordement du fait que l’on change le formel $s \to |s|$ dans l’Eq.(29) reproduit l’expression (19) du défaut quantique du côté $\alpha > \alpha_c$, à partir la fonction entier le plus proche qui n’est de toute façon pas pertinente lorsque $|s| \to 0$, et (ii) le spectre des primères efimovien a une contribution à $B_{\text{2,1}}$ qui tend vers zéro lorsque $\alpha \to \alpha_c^+$. Et en effet, $B_{\text{2,1}}^{(1,0)}(\alpha)$ (et $B_{\text{2,1}}^{(1,0)}(\alpha)$) sont des fonctions lisses de α en α_c à βE_{glob}, fixé, puisque $\Delta(\epsilon)$ est une fonction paire de s et que son développement en série n’admet que des puissances paires de s:

$$\Delta(\epsilon) \approx \Delta_0(\epsilon) - \frac{x}{6} + \frac{x^3 - \pi^2 x}{360} + O(s^6)$$ (30)

où $\Delta_0(\epsilon)$ est donné par l’Eq.(20), $x = \ln(\epsilon/E_{\text{glob}})$ et s peut être réel ou imaginaire pur. Le report dans l’Eq.(29) conduit à des intégrales sur ϵ convergentes et à un développement de $B_{\text{2,1}}^{(1,0)}$ comportant uniquement des puissances paires de s:

$$B_{\text{2,1}}^{(1,0)}(\alpha) - B_{\text{2,1}}^{(1,0)}(\alpha_c) = -\frac{A}{4} s^2 + \frac{A(\pi^2 - 2A^2 - 4\zeta(3))}{480} s^4 + O(s^6)$$ (31)

où $A = \ln(\epsilon/\beta E_{\text{glob}})$ et $\gamma \approx 0.577$ est la constante d’Euler. Puisque s^2 est une fonction lisse de α en α_c, $B_{\text{2,1}}$ l’est aussi. L’Eq.(31), combinée à $\Lambda_1(s) = 0$, dit comment

9. La solution de cette équation d’énergie minimale doit être omise, car elle se raccorde quand $\omega \to 0$ à un état lié d’énergie $-E_{\text{glob}}$ et d’extension spatiale $\approx R_t$ qui ne peut pas être décrit fidèlement par notre modèle de portée nulle quand $R_t \approx b$ (c’est-à-
La dérivée première en α_c diverge lorsque $\beta E_{\text{glob}} \to +\infty$:

$$
\frac{d}{d\alpha} B_{2,1}(\alpha_c)_{\beta E_{\text{glob}} \to +\infty} = C \ln(\beta E_{\text{glob}}) \quad \text{où} \quad C \approx 0.0478243
$$

(32)

Elle conduit également à une loi d’échelle intéressante au voisinage de α_c : en ne gardant dans les coefficients des puissances de s dans (31) que les termes dominants en $\ln(\beta E_{\text{glob}})$, on obtient, après multiplication de (31) par $\ln(\beta E_{\text{glob}})$, la loi suivante lorsque βE_{glob} tend vers l’infini à $t = s \ln(\beta E_{\text{glob}})$ fixé :

$$
[B_{2,1}(\alpha) - B_{2,1}(\alpha_c)] \ln(\beta E_{\text{glob}}) \to_{\beta E_{\text{glob}} \to +\infty} \frac{3t}{2} \ln(\theta(t/2))
$$

(33)

sous contrainte sur le côté $\alpha < \alpha_c$, et avec la contrainte que $|t| < 2\pi$ sur le côté $\alpha > \alpha_c$ en raison de l’apparition d’un pôle en $t = 2\pi i$ dans la contribution du défaut quantique et d’une divergence de la contribution dutrimé fondamental pour $|t| > 2\pi$. L’Eq.(33) est obtenue en négligeant $\ln(\beta)$ par rapport à $\ln(\beta E_{\text{glob}})$ dans (19, 28), car β est typiquement de l’ordre de l’unité dans les intégrales (18, 29).

Nous reportons sur la figure 2a les données de la figure 1 après changement d’échelle comme dans l’Eq.(33) : les résultats se regroupent en effet presque sur une même courbe de loi d’échelle donnée par l’Eq.(33), d’autant mieux que $\ln(\beta E_{\text{glob}})$ est plus grand. La prédiction $-3t/2$ de la théorie à zéro paramètre, voir la ligne tirée, n’est équivalente à la loi correcte que pour $t \to +\infty$. La loi d’échelle trouvée justifie pleinement la condition intuitive (26) : le passage du régime de portée mille à 0 paramètre au régime de portée mille à 1 paramètre se produit effectivement pour $s \approx 1/\ln(\beta E_{\text{glob}})$.

Que se passe-t-il du côté $\alpha > \alpha_c$ près de $|t| = 2\pi$? Pour $|t|$ fixé à une valeur $> 2\pi$, la contribution dutrimé fondamental $3e^{-\beta E_0}$, où $E_0 = e_0(0^+)$, diverge rapidement lorsque $\beta E_{\text{glob}} \to +\infty$ et domine toutes les autres contributions, de sorte que le coefficient d’amas réduit $e_0^{\beta E_{\text{glob}}} B_{2,1}$ de la figure 1 tend vers trois. Cependant, avant cela, le coefficient d’amas réduit présente en fonction de α une structure intéressante sur la figure 1, une augmentation rapide avec atteinte d’un maximum, qui se situe sur un voisinage de $|t| = 2\pi$ de largeur 1/ln(βEglob). Ceci est mis en évidence par le changement de variable affine $u = |t|/(2\pi) - 1/\ln(\beta E_{\text{glob}})$. Lorsque $\beta E_{\text{glob}} \to +\infty$ à u

est justifié par le théorème de dérivation sous le signe intégral, où x est la variable d’intégration. Pour $\alpha < \alpha_c$, on pose $u(x,s) = \text{th}(\pi s x)/s$ et $v(x,s) = \tan(\pi s x)/s$ et on choisit $\eta = 0, 1$. Il existe alors des nombres positifs $(A_{\alpha, 0, n} C_{\alpha, 0, n}) > 0$ tels que $v(x,s) \in E \times [0, \eta]$, $v(x,s) \in N : |\partial^n u(x,s)| \leq A_{\alpha, x,s} |x|^{n+1}$, $|\partial^n v(x,s)| \leq B_{n, u(x,s)} x^{n+2} v(x,s)^2 \geq C > 0$. Pour $\alpha > \alpha_c$, on pose $u(x,s) = x \sin(x) - x \sin(\pi|x|)/|x|^2$ et $v(x,s) = (\cos(\pi|x|) - \cos(|x|))|x|^2$ et on choisit $\eta = 0$. Il existe alors des nombres positifs $(A_{\alpha, 0, n} C_{\alpha, 0, n}) > 0$ tels que $v(x,s) \in [0, \eta]$, $\forall n \in N : |\partial^n u(x,s)| \leq A_{\alpha, x,s} |x|^{n+2}$, $|\partial^n v(x,s)| \leq C_n + D_n x |x|^{2+\eta}$, $|v(x,s)| \geq G$. Les fonctions u et v apparaissent dans $\partial^n A_\alpha$ sous la forme $(v(u - u_0)/v u^2 + v^2)$ pour $\alpha < \alpha_c$, et dans $\partial^n A_\alpha$ sous la forme u/v pour $\alpha > \alpha_c$. Alors $|\partial^n A_\alpha|$ et $|\partial^n A_\alpha|$ sont majorées par des polynômes en $|x|$ uniformément en s ou $|s|$ $\forall n \in N^*$.

![Figure 2: Analyse en loi d’échelle de la figure 1 pour α proche de α_c dans la limite $\beta E_{\text{glob}} \to +\infty$. (a) À valeur fixée de $t = s\ln(\beta E_{\text{glob}})$: les résultats s’approchent de la loi (33) (trait plein noir), à condition que $|t| < 2\pi$ sur le côté $\alpha > \alpha_c$. Courbes de haut en bas : $\beta E_{\text{glob}} = 10^2$ (cyan), 10^3 (violet). Ligne tirée : prédiction de la théorie à 0 paramètre $-3t/2$. (b) Du côté $\alpha > \alpha_c$, à valeur fixée de $u = |t|/(2\pi) - 1/\ln(\beta E_{\text{glob}})$: les résultats se rapprochent de la loi (34) (trait plein noir), qui reproduit la structure piquée qu’on observe sur la figure 1. De bas en haut pour $u < -0.6$: valeurs de βE_{glob} listées dans la légende de la figure 1, dans le même ordre et avec les mêmes couleurs. Encart : compte tenu des Eqs.(9,18,19), l’Eq.(34) prise pour $u = |\ln(\beta E_0)|$ donne aussi la limite de $e_0^{\beta E_0} B_{2,1}$ lorsque $\alpha \to \alpha_c^-$ à $k_BT/|E_0|$ fixé.](image-url)
fixé, $\beta E_0 \to -e^u$, la contribution du trûtement fondamental reste finie et, compte tenu du théorème de convergence dominée, on a

$$
eq
abla_{2,1}(\alpha_c) \approx \frac{1}{16\pi^2} \int_0^{\infty} \frac{e^{-\pi t}}{\pi e^t - \frac{1}{2}} \, dt.$$

où $B_{2,1}(\alpha_c) \approx 1.7155$ [16] est la prédiction de la théorie de portée nulle à 0 paramètre en α_c. Comme le montre la figure 2b, les données rééchelonnées de la figure 1 convergent bien vers cette loi.

Conclusion. — Par rapport à la théorie de portée nulle habituelle, nous avons trouvé des corrections de l’ordre de $1/\ln(\lambda/R_t)$ au troisième coefficient du viriel d’un gaz unitaire de fermions à deux composantes, près et en dessous du seuil de l’effet Efimov, à une distance $\alpha_c - \alpha$ variant comme $1/\ln(\lambda/R_t)^2$, où R_t est un paramètre à trois corps et λ_t une longueur d’onde thermique de de Broglie ; ces corrections en $1/\ln(\lambda/R_t)$ proviennent de corrélations à trois corps à courte distance, c’est-à-dire de triplets d’atomes proches. Par conséquent, pour une valeur finie et donnée de λ/R_t, dans un système réaliste, le troisième coefficient du viriel se raccorde de manière lisse à ses valeurs prédites par le modèle efimovien de portée nulle au-dessus du seuil, ce qui supprime la transition de phase non physique du premier ordre présente dans la théorie de portée nulle. Nos prédictions peuvent être testées en mesurant l’équation d’état des mélanges d’atomes froids fermioniques ayant un rapport de masse $\alpha \approx 13.6$, comme le mélange $^3\text{He}^* + ^{40}\text{K}$.

Remerciements. — S.E. remercie la JSPS pour son soutien financier.

Références

[1] K. Huang, Statistical Mechanics (Wiley, New York, 1963).
[2] E. Beth, G.E. Uhlenbeck, Physica III 8, 729 (1936); Physica IV 10, 915 (1937).
[3] P.C. Hemmer, Phys. Lett. 27A, 377 (1968); B. Jancovici, Phys. Rev. 178, 295 (1969); Phys. Rev. 184, 119 (1969); B. Jancovici, S. Merkuriev, Phys. Rev. A 12, 2610 (1975).
[4] T.D. Lee, C.N. Yang, Phys. Rev. 116, 25 (1959); A. Pais, G.E. Uhlenbeck, Phys. Rev. 116, 250 (1959); S.K. Adhikari, R.D. Amado, Phys. Rev. Lett. 27, 485 (1971); W.G. Gibson, Phys. Rev. A 6, 2469 (1972).
[5] K.M. O’Hara et al., Science 298, 2179 (2002); T. Bourdel et al., Phys. Rev. Lett. 91, 020402 (2003); C.A. Regal, M.

Greiner, D.S. Jin, Phys. Rev. Lett. 92, 040403 (2004); M. Zwierlein et al., Phys. Rev. Lett. 92, 120403 (2004).

[6] A. Comtet, Y. Georgelin, S. Ouvry, J. Phys. A 22, 3917 (1989); J. McCabe, S. Ouvry, Phys. Lett. B 260, 113 (1999).

[7] Xia-Ji Liu, Hui Hu, P. D. Drummond, Phys. Rev. Lett. 102, 160401 (2009); Phys. Rev. A 82, 023619 (2010).

[8] D.K. Kaplan, Sichun Sun, Phys. Rev. Lett. 107, 030601 (2011); X. Leyronas, Phys. Rev. A 84, 053633 (2011).

[9] M. Horikoshi, S. Nakajima, M. Ueda, T. Mukaiyama, Science 327, 442 (2010); N. Nasonine, S. Nascimbène, F. Chevy, C. Salomon, Science 328, 729 (2010); Mark Ku, A. Sommer, L. Cheuk, M. Zwierlein, Science 335, 563 (2012).

[10] S. Nascimbène et al., Nature 463, 1057 (2010).

[11] V. Efimov, Sov. J. Nucl. Phys. 12, 589 (1971); V. Efimov, Nucl. Phys. A 210, 157 (1973); A. Bulgac, V. Efimov, Sov. J. Nucl. Phys. 22, 296 (1975).

[12] Y. Castin, F. Werner, Rev. can. phys. 91, 382 (2013).

[13] J. von Stecher, J. Phys. B 43, 101002 (2010).

[14] S. Piatecki, W. Krauth, Nature Comm. 5, 3503 (2014).

[15] D.S. Petrov, Phys. Rev. A 67, 010703 (2003); E. Braaten, H.-W. Hammer, Phys. Rep. 428, 259 (2006).

[16] K.M. Daily, D. Bürme, Phys. Rev. A 85, 013609 (2012).

[17] F. Werner, Y. Castin, Phys. Rev. Lett. 97, 150401 (2006).

[18] F. Werner, Y. Castin, Phys. Rev. A 74, 053604 (2006); Y. Castin, F. Werner, chap. 5, The BCS-BEC Crossover and the Unitary Fermi Gas, LNIP 836, W. Zwerger éd. (Springer, Berlin, 2011).

[19] F. Werner, thèse de doctorat, Université Pierre et Marie Curie (Paris, 2008), tel.archives-ouvertes.fr/tel-00285587.

[20] R. Minlos, L. Faddeev, Sov. Phys. JETP 14, 1315 (1962).

[21] Y. Castin, E. Tignone, Phys. Rev. A 84, 062704 (2011).

[22] G. Gasanov, J.H. Macek, J. Phys. B 35, 2239 (2002); M. Bürse, J. Phys. A 39, L49 (2006).

[23] Y. Castin, Comptes Rendus Physique 5, 407 (2004).

[24] L.P. Pitaevskii, A. Rosch, Phys. Rev. A 55, 8583 (1997).

[25] O. Kartavtsev, A. Malykh, Zh. Eksp. Teor. Phys. 86, 713 (2007).

[26] L. Landau, E. Lifshitz, Quantum Mechanics (Elsevier Science, Oxford, 2003).

[27] P. Morse, H. Feshbach, Methods of Theoretical Physics, vol. II, p. 1665 (Mc Graw-Hill, New York, 1953).

[28] L. Pricoupenko, Phys. Rev. A 82, 043633 (2010).

[29] M. Jona-Lasinio, L. Pricoupenko, Phys. Rev. Lett. 104, 023201 (2010).

[30] S. Endo, P. Naidon, M. Ueda, Phys. Rev. A 86, 062703 (2012).

[31] S. Jonsell, H. Heiselberg, C.J. Pethick, Phys. Rev. Lett. 89, 250401 (2002).

[32] F. Werner, Y. Castin, Phys. Rev. A 86, 053633 (2012).

[33] A. Pais, G.E. Uhlenbeck, Phys. Rev. 116, 250 (1959).

[34] A. Safavi-Naini, Seth T. Rittenhouse, D. Blume, H.R. Saadhpour, Phys. Rev. A 87, 032713 (2013).

[35] Y. Nishida, Dam Thanh Son, Shina Tan, Phys. Rev. Lett. 100, 090405 (2008).

[36] F. Werner, Y. Castin, Phys. Rev. A 86, 013626 (2012).