ON MATRICES WITH DIFFERENT TROPICAL AND KAPRANOV RANKS

YAROSLAV SHITOV

Abstract. In this note, we generalize the technique developed in \cite{13} and prove that every $5 \times n$ matrix of tropical rank at most 3 has Kapranov rank at most 3, for the ground field that contains at least 4 elements. For the ground field either \mathbb{F}_2 or \mathbb{F}_3, we construct an example of a 5×5 matrix with tropical rank 3 and Kapranov rank 4.

Tropical mathematics deals with the tropical semiring, that is, the set \mathbb{R} of real numbers with the operations of tropical addition and tropical multiplication defined as $a \oplus b = \min\{a, b\}$ and $a \otimes b = a + b$, for all $a, b \in \mathbb{R}$. The connection between classical and tropical mathematics can be established with Maslov dequantization \cite{1, 2, 3}. The methods of tropical mathematics are important for different applications \cite{4, 5, 6}, and are helpful for the study of algebraic geometry \cite{7, 8}. The notion of the rank is very interesting in tropical mathematics \cite{4, 9, 10}, and, in contrast with the situation of matrices over a field, there are many different rank functions for tropical matrices \cite{4, 9, 10}. This note is devoted to the concepts of the tropical and Kapranov rank functions.

We will use the symbol \mathbb{F} to denote a field, and by \mathbb{F}^* we will denote the set of nonzero elements of \mathbb{F}. By a_{ij} we denote an entry of a matrix A, by $A^{(j)}$ the jth column of A, by $A_{(i)}$ the ith row, by A^\top the transpose of A. By $A[r_1, \ldots, r_k]$ we denote the submatrix formed by the rows of A with indexes r_1, \ldots, r_k, and by $A[r_1, \ldots, r_k|c_1, \ldots, c_l]$ the submatrix formed by the columns with indexes c_1, \ldots, c_l of $A[r_1, \ldots, r_k]$.

By $\mathbb{H}_\mathbb{F}$ we denote the field \cite{11} that consists of the formal sums of the form $a(t) = \sum_{e \in \mathbb{R}} a_e t^e$, where t is a variable, the coefficients $\{a_e\}$ belong to a field \mathbb{F}, and the support $E(a) = \{e \in \mathbb{R} : a_e \neq 0\}$ is a well-ordered subset of \mathbb{R} (that is, any nonempty set of $E(a)$ has the least element). The degree of a sum $a \in \mathbb{H}_\mathbb{F}$ is the exponent of its leading term, that is, $\deg a = \min E(a)$. The element $a_0 \in \mathbb{F}$ is called the constant term of a. We assume the degree of the zero element from $\mathbb{H}_\mathbb{F}$ to equal $+\infty$. The matrix that is obtained from $A \in (\mathbb{H}_\mathbb{F})^{m \times n}$ by entrywise application of the mapping \deg is denoted by $\deg A \in \mathbb{R}^{m \times n}$. Now we can define the notion of the Kapranov rank \cite{9} Corollary 3.4].

Definition 1. The Kapranov rank of a matrix $B \in \mathbb{R}^{m \times n}$ with respect to a ground field \mathbb{F} is defined to be

$$K_\mathbb{F}(B) = \min \left\{ \text{rank}(A) \left| A \in (\mathbb{H}_\mathbb{F})^{m \times n}, \deg A = B \right. \right\},$$

where rank is the classical rank function of matrices over the field $\mathbb{H}_\mathbb{F}$.

The tropical permanent of a matrix $B \in \mathbb{R}^{n \times n}$ is defined to be

$$\text{perm}(B) = \min \left\{ b_{1, \sigma(1)} + \ldots + b_{n, \sigma(n)} \right\},$$

(1)
where S_n denotes the symmetric group on \{1, \ldots, n\}. B is called tropically singular if the minimum in (I) is attained at least twice. Otherwise, B is called tropically non-singular.

Definition 2. The tropical rank, trop(M), of a matrix $M \in \mathbb{R}^{p \times q}$ is the largest number r such that M contains a tropically non-singular r-by-r submatrix.

The following proposition follows directly from the definitions.

Proposition 3. The tropical and Kapranov ranks of a matrix remain unchanged after adding a fixed number to every element of some row or some column.

For a and b vectors from $(\mathbb{R} \cup \{+\infty\})^m$, we denote the set of all j that provide the minimum for \(\min_{j=1}^m \{a_j + b_j\}\) by $\Theta(a, b)$. The rows of a matrix $A \in \mathbb{R}^{m \times n}$ are called tropically linearly dependent (or simply tropically dependent) if there exists $\lambda \in \mathbb{R}^m$ such that $\Theta(\lambda, A^{(j)}) \geq 2$, for every $j \in \{1, \ldots, n\}$. In this case, λ is said to realize the tropical dependence of the rows of A. If the rows are not tropically dependent, then they are called tropically independent. The following theorem [12, Theorem 5.11] plays an important role for our considerations.

Theorem 4. The tropical rank of a matrix $A \in \mathbb{R}^{m \times n}$ equals the cardinality of the largest tropically independent family of rows of A.

The present note is devoted to the following question, asked by Develin, Santos, and Sturmfels.

Question 5. [9, Section 8, Question (6)] Is there a 5×5 matrix having tropical rank 3 but Kapranov rank 4?

Chan, Jensen, and Rubei [13, Corollary 1.5] have shown that trop$(A) = K_C(A)$, for every matrix $A \in \mathbb{R}^{5 \times 5}$. Therefore, they answer Question 5 in the most important case, the case when the Kapranov rank function is considered with respect to a ground field C. On the other hand, in the paper [9], where Question 5 was proposed, the Kapranov rank was understood with respect to an arbitrary ground field [9, Definition 3.9]. In our note, we consider the problem in the case of an arbitrary field, we generalize the technique developed in [13] and give a general answer for Question 5. For a field F satisfying $|F| \geq 4$ and a matrix $B \in \mathbb{R}^{5 \times 5}$ satisfying trop$(B) \leq 3$, we show that $K_F(B) \leq 3$. We provide examples of matrices C with tropical rank 3 satisfying $K_F(C) = 4$ if the field F is either \mathbb{F}_2 or \mathbb{F}_3. The following lemma is helpful to prove Lemma 6 which gives a generalization for the technique developed in [13] and holds for a more general class of ground fields.

Lemma 6. Let $|F| \geq 4$, $S \in \mathcal{H}_F^{2 \times 2}$. Then there exists $\xi \in F^*$ such that $\deg(\xi s_{11} + s_{12}) = \min\{\deg s_{11}, \deg s_{12}\}$, for $i \in \{1, 2\}$.

Proof. If $s_{ij} \neq 0$, we denote the coefficient of the leading term of s_{ij} by σ_{ij}. If $s_{ij} = 0$, we choose $\sigma_{ij} \in F^*$ arbitrarily. Now it remains to choose $\xi \in F \setminus \{0, -\frac{\sigma_{12}}{\sigma_{11}}, -\frac{\sigma_{22}}{\sigma_{21}}\}$. \(\square\)

Lemma 7. Let $|F| \geq 4$, let a matrix $A \in \mathcal{H}_F^{2 \times 2}$ be such that rank$(A) = 2$ and $\deg(a_{p1}a_{q2} - a_{q1}a_{p2}) = \min\{\deg a_{p1} + \deg a_{q2}, \deg a_{q1} + \deg a_{p2}\}$, for every different $p, q \in \{1, \ldots, 5\}$. Let also $B \in \mathbb{R}^{5 \times n}$, denote

$\Theta_{ij} = \Theta(\deg A^{(1)}, B^{(j)}), \Theta_{ij} = \Theta(\deg A^{(2)}, B^{(j)})$ for every $j \in \{1, \ldots, n\}$.

If $|\Theta_{1j}| \geq 2$, $|\Theta_{2j}| \geq 2$, $|\Theta_{1j} \cup \Theta_{2j}| \geq 3$, for every j, then $K_F(B) \leq 3$.

Proof. We fix an arbitrary \(j \in \{1, \ldots, n\} \) and denote \(\theta_1 = \min_{i=1}^5 \{ \deg a_{i1} + b_{ij} \} \), \(\theta_2 = \min_{i=1}^5 \{ \deg a_{i2} + b_{ij} \} \). We assume without a loss of generality that \(1 \in \Theta_{1j} \), \(2 \in \Theta_{2j} \), and that both \(\Theta_1 \) and \(\Theta_2 \) have non-empty intersections with \(\{3, 4, 5\} \). These settings imply that

\[\min_{i=3}^5 \{ \deg \det A[1, i] + b_{ij} + b_{ij} \} = \min_{i=3}^5 \{ \deg \det A[2, i] + b_{ij} + b_{ij} \} = \theta_1 + \theta_2. \]

From Lemma 6 it then follows that there exist \(\xi, \eta, \zeta \in \mathbb{F}^s \) such that

\[\deg \left(\sum_{i=3}^5 \det A[1, i] t^{b_{ij} + b_{ij}} \xi_i \right) = \deg \left(\sum_{i=3}^5 \det A[2, i] t^{b_{ij} + b_{ij}} \xi_i \right) = \theta_1 + \theta_2. \]

Cramer’s rule then implies that the solution \((x_1, x_2)\) of

\[
\begin{cases}
 a_{11}t^{b_{1j}}x_1 + a_{21}t^{b_{2j}}x_2 = \sum_{i=3}^5 \xi_i a_{i1}t^{b_{ij}}, \\
 a_{12}t^{b_{1j}}x_1 + a_{22}t^{b_{2j}}x_2 = \sum_{i=3}^5 \xi_i a_{i2}t^{b_{ij}},
\end{cases}
\]

satisfies \(\deg x_1 = \deg x_2 = 0 \). We set \(c_{1j} = x_1t^{b_{1j}}, c_{2j} = x_2t^{b_{2j}}, c_{ij} = -\xi_t^{b_{ij}}, \) for \(\xi \in \{3, 4, 5\} \). The equations (3) imply that \(\sum_{i=3}^5 a_{1i}c_{ij} = \sum_{i=3}^5 a_{2i}c_{ij} = 0 \). Since \(j \in \{1, \ldots, n\} \) has been chosen arbitrarily, we can construct the matrix \(C \) such that \(B = \deg C \), and the rows \(\sum_{i=3}^5 a_{1i}C(i) \) and \(\sum_{i=3}^5 a_{2i}C(i) \) both consist of zero elements. From Definition it now follows that \(K_\mathbb{F}(B) \leq 3 \) \(\square \)

Lemma 8. Let the entries of a matrix \(B \in \mathbb{R}^{5 \times n} \) be nonnegative, every column of \(B \) contain at least three zeros. If \(|\mathbb{F}| \geq 4 \), then \(K_\mathbb{F}(B) \leq 3 \).

Proof. There exist different \(\eta, \zeta \in \mathbb{F} \setminus \{0, 1\} \). We set \(A = \left(\begin{array}{cc} 1 & 1 \\
 1 & \eta \end{array} \right) \in \mathbb{H}_\mathbb{F}^{2 \times 2} \). Now the result follows from Lemma 7 \(\square \)

Lemma 9. Let the entries of a matrix \(B \in \mathbb{R}^{5 \times n} \) be all nonnegative, and

\[
B = \begin{pmatrix}
 0 \ldots 0 & B_1 & B_2 & B_3 & B_4 \\
 0 \ldots 0 & B' \\
 \alpha_1 \ldots \alpha_p & \beta_1 \ldots \beta_q & \gamma_1 \ldots \gamma_r & 0 \ldots 0 \\
 v & 0 \ldots 0 & 0 \ldots 0 & 0 \ldots 0
\end{pmatrix},
\]

where \(v > 0, p > 0, q + r + s > 0 \), either \(B' \) or \((B_1| \ldots |B_4) \) consists of positive numbers, and the numbers \(\alpha_1, \ldots, \alpha_p, \beta_1, \ldots, \beta_q, \gamma_1, \ldots, \gamma_r \) are positive. If \(|\mathbb{F}| \geq 4 \) and \(\text{trop}(B) \leq 3 \), then \(K_\mathbb{F}(B) \leq 3 \).

Proof. The proof is by reductio ad absurdum.

1. We assume w.l.o.g. that \(B \) provides the minimal value of \(p + q + r + s \) over all matrices \(D \) of the form (4) that satisfy \(\text{trop}(D) \leq 3 \) and \(K_\mathbb{F}(D) > 3 \).

2. By \(m \) we denote the minimal element of the matrix \((B_1| \ldots |B_4)\). We add \(-m\) to every element of the first two rows of \(B \), \(m \) to every element of the first \(v \) columns. So by Proposition 8 we can assume without a loss of generality that \(B' \) consists of positive numbers and \(m = 0 \).

3. Let each of the matrices \(B_2 \) and \(B_3 \) contain a column without zeros (the numbers of these columns are denoted by \(j_1 \) and \(j_2 \)). Items 1 and 2 show that there exists \(j_3 \in \{1, \ldots, n\} \) such that either \(b_{1j_3} = 0, b_{2j_3} > 0 \) or \(b_{1j_3} > 0, b_{2j_3} = 0 \). Then we note that the matrix \(B[1, 2, 3, 4] \in \mathbb{H}_\mathbb{F}^{4 \times 2} \) is tropically non-singular. Definition 2 shows that the tropical rank of \(B \) is not less than 4, so we get a
contradiction. Thus we can assume without a loss of generality that every column of B_3 contains a zero element.

4. Theorem \ref{thm:main} implies that there exist $(\lambda_1, \lambda_2, \lambda_3, \lambda_5), (\mu_1, \mu_2, \mu_3, \mu_5) \in \mathbb{R}^4$ that realize the tropical dependence of the rows of $B[1, 2, 4, 5]$ and $B[1, 3, 4, 5]$, respectively. We denote $\Lambda = (\lambda_1, \lambda_2, +\infty, \lambda_4, \lambda_5)$ and $M = (\mu_1, +\infty, \mu_3, \mu_4, \mu_5)$, we then have that $\Theta(\Lambda, B^{(j)}) \geq 2$ and $\Theta(M, B^{(j)}) \geq 2$, for every $j \in \{1, \ldots, n\}$. From the equation \eqref{eq:lambda} it then follows that $\lambda_1 = \lambda_2 \leq \min\{\lambda_4, \lambda_5\}$, $\mu_3 = \mu_4 \leq \mu_5$, and $\mu_4 < \mu_1$. Now it is straightforward to check that $\Theta(\Lambda, B^{(j)}) \cup \Theta(M, B^{(j)}) \geq 3$, for every $j \in \{1, \ldots, n\}$. Finally, set $A = \left(\begin{smallmatrix} t^1 & t^2 & 0 & 0 \\ t^3 & 0 & t^4 & t^5 \\ 0 & 0 & \eta & 1 \end{smallmatrix}\right) \in \mathbb{H}_F^{5 \times 2}$, for some $\eta \in \mathbb{F} \setminus \{0, 1\}$. The application of Lemma \ref{lem:main} completes the proof. \hfill \Box

Now we can prove one of the main results of this note.

Theorem 10. Let $C \in \mathbb{R}^{5 \times n}$, $\text{trop}(C) \leq 3$, and $|\mathbb{F}| \geq 4$. Then $K_\mathbb{F}(C) \leq 3$.

Proof. 1. Theorem \ref{thm:main} implies that the rows of C are tropically dependent. Applying Proposition \ref{prop:main} we assume without a loss of generality that C consists of nonnegative numbers, and every column of C contains at least two zeros.

2. Let the minimal element of the ith row of C is h_i. For every $i \in \{1, \ldots, 5\}$, we add $(-h)$ to every entry of the ith row of C, and we denote the matrix obtained by B. Every row of B now contains at least one zero. By item 1, the entries of B are nonnegative, and every column of B contains at least two zeros.

3. By Proposition \ref{prop:main} we have that $K_\mathbb{F}(B) = K_\mathbb{F}(C)$, $\text{trop}(B) \leq 3$.

4. If every column of B contains at least three zeros, then Corollary \ref{cor:main} implies that $\text{trop}(B) \leq 3$. So we can further assume without a loss of generality that $b_{11} = b_{21} = 0$, and the elements b_{31}, b_{41}, b_{51} are positive. The three cases are possible.

Case 1. Let some column of $B[3, 4, 5]$ contain exactly one zero entry. We assume without a loss of generality that $b_{32} = 0, b_{42} > 0, b_{52} > 0$. Assume $b_{i'j'} = 0, b_{i''j''} > 0$ for some $i', i'' \in \{4, 5\}, j' \in \{1, \ldots, n\}$. By item 2, there exists $j'' \in \{1, \ldots, n\}$ such that $b_{i''j''} = 0$. We note that the matrix $B[2, 3, 4, 5][1, 2, j', j'']$ is tropically non-singular, that is, $\text{trop}(B) \geq 4$, so we get a contradiction.

Thus we see that for every $j \in \{1, \ldots, n\}$, it holds that either $b_{4j} = b_{5j} = 0$ or $b_{4j}, b_{5j} > 0$. So we can see that B satisfies the assumptions of Lemma \ref{lem:main} up to permutations of rows and columns.

Case 2. Assume that some column of $B[3, 4, 5]$ contains exactly two zero entries, and no column of $B[3, 4, 5]$ contains exactly one zero entry. In this case, B satisfies the assumptions of Lemma \ref{lem:main} up to permutations of its columns.

Case 3. Finally, we assume that for every $j \in \{1, \ldots, n\}$, it holds that either $b_{3j} = b_{4j} = b_{5j} = 0$ or $b_{3j}, b_{4j}, b_{5j} > 0$. Let us consider the set G of all $j \in \{1, \ldots, n\}$ such that the elements b_{3j}, b_{4j}, b_{5j} are not all equal. If G is empty, then the last three rows of B coincide, so from Proposition \ref{prop:main} and Corollary \ref{cor:main} it follows that $K_\mathbb{F}(B) \leq 3$.

If G is non-empty, then we denote $m = \min\{b_{3g}, b_{4g}, b_{5g}\}$. We then add $-m$ to every entry of the jth column of B (j runs over $\{1, \ldots, n\}$), we also add m to every element of the first two rows of B. We note that the matrix obtained satisfies the conditions of Corollary \ref{cor:main}, or Case 1, or Case 2 up to permutations of its columns. By Proposition \ref{prop:main} the matrix obtained has the same tropical and Kapranov ranks as B.

In any of the Cases 1–3, we see that $K_F(B) \leq 3$. The proof is complete. \hfill \Box

Now let us show that the condition $|F| \geq 4$ is necessary in the formulation of Theorem 10.

Example 11. Let

$$B = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 \end{pmatrix}, \quad D = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 \end{pmatrix}.$$

Then $\text{trop}(B) = 3$, $K_{F_3}(B) = K_{F_2}(D) = 4$.

Proof. By Definition 2, we have straightforwardly $\text{trop}(B) = 3$. Note that if a matrix $C \in \text{H}_{F_3}^{5 \times 5}$ satisfies $D = \deg C$, then $\deg \det C[1,2,3,5][1,2,3,5] = 0$, so that $K_{F_3}(D) \geq 4$. On the other hand, the matrix D contains repeating rows, thus $K_{F_2}(D) = 4$.

Assume that a matrix $A' \in \text{H}_{F_3}^{5 \times 5}$ satisfies $B = \deg A'$. Without a loss of generality it can be assumed that $a'_{ij} = t^{b_{ij}}$, for every pair (i,j) satisfying $4 \in \{ i,j \}$. Note that if $\det A'[p,q,4,5][p,q,4,5] = 0$ holds for every $p,q \in \{1,2,3\}$, then the entries a_{pq} have the -1 as their constant terms, and in this case $\deg \det A'[1,2,3,5][1,2,3,5] = 0$. Therefore, we see that $K_{F_3}(B) \geq 4$. On the other hand, we can set $a_{ij} = t^{b_{ij}}$, for every $(i,j) \in \{1,2,3,4,5\} \setminus \{(4,2),(4,3)\}$, and $a_{42} = a_{43} = 2 + 2t$, and note that the row $A_{(2)} + A_{(3)} + A_{(4)}$ is zero, and $\deg A = B$. Definition 1 shows therefore that $K_{F_3}(B) = 4$. \hfill \Box

Now we can give a general answer for Question 5.

Theorem 12. A 5×5 tropical matrix B with tropical rank 3 and Kapranov rank 4 does exist if and only if the ground field contains at most three elements.

Proof. Follows directly from Theorem 10 and Example 11. \hfill \Box

I am grateful to my scientific advisor Professor Alexander E. Guterman for constant attention to my work.

References

1. G. L. Litvinov, "Maslov dequantization, idempotent and tropical mathematics: A brief introduction", *Journal of Mathematical Sciences*, **140**(3)(2007), 426–444.
2. G. Litvinov, V. Maslov, "Correspondence principle for idempotent calculus and some computer applications", *Idempotency*, J. Gunawardena (ed.), Cambridge University Press, Cambridge, 1998, 420–443.
3. V. P. Maslov, "On a new principle of superposition for optimization problems", *Russian Mathematical Surveys*, **42**(3)(1987), 43–54.
4. M. Akian, S. Gaubert, A. Guterman, "Linear independence over tropical semirings and beyond", *Contemporary Mathematics*, AMS, **495**(2009), 1–38.
5. F. Baccelli, G. Cohen, G.J. Olsder, J.P. Quadrat, "Synchronization and Linearity", Wiley, 1992.
6. B. Heidergott, G.J. Olsder, J. van der Woude, "Max Plus at Work: Modeling and Analysis of Synchronized Systems: A Course on Max-Plus Algebra and Its Applications", Princeton Univ. Press, 2006.
7. M. Einsiedler, M. Kapranov, D. Lind, "Non-Archimedean amoebas and tropical varieties", *J. Reine Angew. Math.*, **601**(2006), 139–157.
[8] G. Mikhalkin. Amoebas of algebraic varieties and tropical geometry, Different faces of geometry, Int. Math. Ser. (N. Y.), 3, Kluwer, Plenum, New York, 2004, 257–300.

[9] M. Develin, F. Santos, B. Sturmfels, "On the rank of a tropical matrix", Discrete and Computational Geometry (E. Goodman, J. Pach and E. Welzl, eds.), MSRI Publications, Cambridge Univ., Press, 2005, 213–242.

[10] L. B. Beasley, A. E. Guterman, "Rank inequalities over semirings", J. Korean Math. Soc. 42(2)(2005), 223–241.

[11] B. Poonen, "Maximally complete fields", Enseign. Math., 39(1-2)(1993), 87–106.

[12] Z. Izhakian, "Basics of linear algebra over the extended tropical semiring", Contemp. Math., 495(2010), 173–191.

[13] M. Chan, A. N. Jensen, E. Rubei, "The 4 × 4 minors of a 5 × n matrix are a tropical basis", Linear Algebra Appl., 435(7)(2011), 1598–1611.

YAROSLAV SHITOV

Moscow State University, Leninskie Gory, 119991, GSP-1, Moscow, Russia
E-mail address: yaroslav-shitov@yandex.ru