Dynamics of Glue-Balls in $N = 1$ SYM Theory

L. Bergamin
Technische Universität Wien
bergamin@tph.tuwien.ac.at

October 6, 2003

Abstract

The extension of the Veneziano-Yankielowicz effective Lagrangian with terms including covariant derivatives is discussed. This extension is important to understand glue-ball dynamics of the theory. Though the superpotential remains unchanged, the physical spectrum exhibits completely new properties.

1 Introduction

The low energy effective action of $N = 1$ SYM theory is written in terms of a chiral effective field $S = \varphi + \theta \psi + \theta^2 F$, which may be defined from the local source extension of the SYM action \cite{1,2,3,4}

$$S \propto \delta \delta J W[J,J], \quad e^{iW[J,J]} = \int D V e^{i \int d^4 x d^2 \theta (J + \tau_0) Tr W^\alpha W_\alpha + h.c.}. \quad (1)$$

With appropriate normalization S is equivalent to the anomaly multiplet $\bar{D}^\alpha V_{\alpha \dot{\alpha}} = D_\alpha S$. $J(x)$ is the chiral source multiplet, with respect to which a Legendre transformation can be defined \cite{3,4}. The resulting effective action is formulated in terms of the gluino condensate $\varphi \propto \text{Tr} \lambda \lambda$, the glue-ball operators $F \propto \text{Tr} F_{\mu \nu} F^{\mu \nu} + i \text{Tr} F_{\mu \nu} \tilde{F}^{\mu \nu}$ and a spinor $\psi \propto (\sigma^{\mu \nu} \lambda)_{\alpha} F_{\mu \nu}$. An effective Lagrangian in terms of this effective field S has the form \cite{1,2}

$$\mathcal{L}_{\text{eff}} = \int d^4 \theta K(S, \bar{S}) - \left(\int d^2 \theta S (\log \frac{S}{\Lambda^3} - 1) + h.c. \right). \quad (2)$$

The correct anomaly structure is realized by the superpotential and thus $K(S, \bar{S})$ is invariant under all symmetries. In ref. \cite{1} the explicit ansatz $K = k (SS)^{1/3}$ had been made, which leads to chiral symmetry breaking due to $\langle S \rangle = \Lambda^3$, but supersymmetry is not broken as φ and ψ acquire the same mass $m = \Lambda/k$.

1
2 Glue-balls and constraint Kähler geometry

Though the spectrum found in ref. [1] does not include any glue-balls, such fields do appear in F. However, they drop out in the analysis of [1], as F is treated as an auxiliary field. Indeed, the highest component of a chiral superfield is auxiliary in standard SUSY non-linear σ-models, i.e. there appear no derivatives acting onto this field and moreover its potential is not bounded from below, but from above. In case of the Veneziano-Yankielowicz Lagrangian the part depending on the auxiliary field reads

$$L_{aux} = k(\bar{\phi}\phi)^{\frac{2}{3}}F + \left(\frac{1}{3}\phi - \frac{2}{3}\bar{\phi}\frac{1}{3}F\bar{\psi}\psi - F\log\frac{\phi}{\Lambda^3} + h.c.\right),$$

and the supersymmetric spectrum is obtained, if and only if F is eliminated by the algebraic equations of motion that follow from (3). This leads to the unsatisfactory result that glue-balls cannot be introduced in a straightforward way (cf. also [5]) which, in addition, contradicts available lattice-data [6].

However, in the special case of $N = 1$ SYM the elimination of F is not consistent: If F is eliminated from (3), this implies that the theory must be ultra-local in the field F exactly, i.e. even corrections to the effective Lagrangian which are not included in (2) are not allowed to change the non-dynamical character of F. If this field would be related to the fundamental auxiliary field, this restriction would be obvious. But in $N = 1$ SYM the situation is different: S is the effective field from a composite operator and F is not at all related to the fundamental auxiliary field D. As a consequence, the restriction of ultra-locality on F leads to an untenable constraint on the physical glue-ball operators (for details we refer to [4, 7, 8]).

As shown in ref. [2], the effective Lagrangian of [1] is not the most general expression compatible with all the symmetries, but the constant k may be generalized to a function $k(\frac{\partial^{3/2}}{\partial S^{1/2}}, \frac{\partial^{3/2}}{\partial \bar{S}^{1/2}})$. This non-holomorphic part automatically produces space-time derivatives onto the field F, which is most easily seen when $K(S, \bar{S})$ is rewritten in terms of two chiral fields [5]:

$$K(S, \bar{S}) \rightarrow K(\Psi_0, \Psi_1; \bar{\Psi}_0, \bar{\Psi}_1)$$

$$\Psi_0 = S^{\frac{1}{2}} = \phi^{\frac{2}{3}} + \frac{1}{3}\phi^{\frac{2}{3}}\theta\psi + \frac{1}{3}\theta^2(\phi^{\frac{2}{3}}F + \frac{1}{3}\phi^{\frac{2}{3}}\psi\psi),$$

$$\Psi_1 = \bar{D}^2\bar{\Psi}_0 = \frac{1}{3}(\bar{\phi}^{\frac{2}{3}}\bar{F} + \frac{1}{3}\bar{\phi}^{\frac{2}{3}}\bar{\psi}\bar{\psi}) - \frac{i}{3}\theta\sigma^\mu\partial_\mu(\bar{\phi}^{\frac{2}{3}}\bar{\psi}) - \theta^2\square\bar{\phi}^{\frac{1}{3}}.$$
As F appears as lowest component of $\bar{\Psi}_1$, the Lagrangian includes a kinetic term for that field. In contrast to the situation in \cite{1}, this is not inconsistent as the potential in F may include arbitrary powers in that field (instead of a quadratic term only) and can be chosen to be bounded from below (instead of above). This way the field F is promoted to a usual physical field. It has been shown in \cite{7} that there exist consistent models of this type. In \cite{8} these ideas have been applied to $N = 1$ SYM, leading to an effective action of that theory with dynamical glue-balls as part of the low-energy spectrum. Formally, the effective potential looks the same as in the case of Veneziano and Yankielowicz:

$$V_{\text{eff}} = -\tilde{g}_{\phi\bar{\phi}} F \bar{F} + \frac{1}{2} \tilde{g}_{\phi\bar{\phi}\bar{\phi}} F (\bar{\psi} \psi) + \frac{1}{2} \tilde{g}_{\phi\bar{\phi}\psi} F (\psi \bar{\psi}) + \frac{1}{4} \tilde{g}_{\phi\bar{\phi}\psi\bar{\phi}} (\bar{\psi} \psi)(\bar{\psi} \psi)$$

(7)

However, in contrast to \cite{1} the Kähler “metric”\footnote{This quantity is not equivalent to the true Kähler metric of the manifold spanned by Ψ_0 and Ψ_1, cf. \cite{8}.} is a function of ϕ and F, $\tilde{g}_{\phi\bar{\phi}} (\phi, F; \bar{\phi}, \bar{F})$. From eq. (7) the consistent vacua can be derived, for explicit expressions we refer to \cite{8}. The most important properties of the Lagrangian (2) with (4) are:

The effective potential is minimized with respect to all fields ϕ, ψ and F. Consequently, the dominant contributions that stabilize the potential must stem from the Kähler part, not from the superpotential: The superpotential is a holomorphic function in its fields and therefore its scalar part must have unstable directions. In the present context there exists no mechanism to transform these instabilities into stable but non-holomorphic terms.

Though the model has the same superpotential as the Lagrangian of ref. \cite{1} its spectrum is completely different: Chiral symmetry breaks by a vacuum expectation value (vev) of $\phi \propto \Lambda^3$, but this mechanism is more complicated than in \cite{1}. Any stable ground-state must have non-vanishing vev of F. But $\langle F \rangle$ is the order parameter of supersymmetry breaking and thus this symmetry is broken as well\footnote{The author of ref. \cite{2} concluded that this model cannot have a stable supersymmetric ground-state. This is in agreement with our results, as the model breaks down as $F \to 0$.}. ψ is a massless spinor, the Goldstino.

The supersymmetry breaking scenario is of essentially non-perturbative nature\footnote{The importance of such a breaking mechanism has been pointed out in \cite{4} already, but a concrete description was not yet found therein.}: it is not compatible with perturbative non-renormalization theorems, as the value of V_{eff} in its minimum and the vev of T^μ_ν are no longer

$$V_{\text{eff}} = -\tilde{g}_{\phi\bar{\phi}} F \bar{F} + \frac{1}{2} \tilde{g}_{\phi\bar{\phi}\bar{\phi}} F (\bar{\psi} \psi) + \frac{1}{2} \tilde{g}_{\phi\bar{\phi}\psi} F (\psi \bar{\psi}) + \frac{1}{4} \tilde{g}_{\phi\bar{\phi}\psi\bar{\phi}} (\bar{\psi} \psi)(\bar{\psi} \psi)$$

(7)

However, in contrast to \cite{1} the Kähler “metric”\footnote{This quantity is not equivalent to the true Kähler metric of the manifold spanned by Ψ_0 and Ψ_1, cf. \cite{8}.} is a function of ϕ and F, $\tilde{g}_{\phi\bar{\phi}} (\phi, F; \bar{\phi}, \bar{F})$. From eq. (7) the consistent vacua can be derived, for explicit expressions we refer to \cite{8}. The most important properties of the Lagrangian (2) with (4) are:

The effective potential is minimized with respect to all fields ϕ, ψ and F. Consequently, the dominant contributions that stabilize the potential must stem from the Kähler part, not from the superpotential: The superpotential is a holomorphic function in its fields and therefore its scalar part must have unstable directions. In the present context there exists no mechanism to transform these instabilities into stable but non-holomorphic terms.

Though the model has the same superpotential as the Lagrangian of ref. \cite{1} its spectrum is completely different: Chiral symmetry breaks by a vacuum expectation value (vev) of $\phi \propto \Lambda^3$, but this mechanism is more complicated than in \cite{1}. Any stable ground-state must have non-vanishing vev of F. But $\langle F \rangle$ is the order parameter of supersymmetry breaking and thus this symmetry is broken as well\footnote{The author of ref. \cite{2} concluded that this model cannot have a stable supersymmetric ground-state. This is in agreement with our results, as the model breaks down as $F \to 0$.}. ψ is a massless spinor, the Goldstino.

The supersymmetry breaking scenario is of essentially non-perturbative nature\footnote{The importance of such a breaking mechanism has been pointed out in \cite{4} already, but a concrete description was not yet found therein.}: it is not compatible with perturbative non-renormalization theorems, as the value of V_{eff} in its minimum and the vev of T^μ_ν are no longer
equivalent. In particular, the former can be negative, while the latter is positively semi-definite due to the underlying current-algebra relations. To our knowledge this is the first model, where this type of supersymmetry breaking has found a concrete description (cf. [7, 8] for details).

Any ground state with \(\langle \tilde{g}_{\varphi \bar{\varphi}} \rangle \neq 0 \) can be equipped with stable dynamics for \(p^2 < |\Lambda|^2 \). In the construction of concrete kinetic terms it is important to realize that \(\Xi \) may include expressions with explicit space-time derivatives. Again this is possible as \(F \) is not interpreted as an auxiliary field.

In summary, the Lagrangian of ref. [8] is the most general one, which can be formulated in terms of the effective field \(S \). Consistent ground-states can be found together with broken supersymmetry only. It would be interesting to compare these results with a different action, which has supersymmetric ground-states. But the "pièce de résistance" for such an action is the fact, that it cannot start from the effective field \(S \).

Acknowledgements

The author would like to thank U. Ellwanger, J.-P. Derendinger, E. Kraus, P. Minkowski, Ch. Rupp and E. Scheidegger for interesting discussions. This work has been supported by the Austrian Science Foundation (FWF) project P-16030-N08.

References

[1] G. Veneziano and S. Yankielowicz, Phys. Lett. B113, 231 (1982).
[2] G. M. Shore, Nucl. Phys. B222, 446 (1983).
[3] C. P. Burgess, J. P. Derendinger, F. Quevedo, and M. Quiros, Annals Phys. 250, 193 (1996).
[4] L. Bergamin, Eur. Phys. J. C26, 91 (2002).
[5] G. R. Farrar, G. Gabadadze, and M. Schwetz, Phys. Rev. D58, 015009 (1998). D. G. Cerdeno, A. Knauf, and J. Louis, hep-th/0307198 (2003).
[6] R. Peetz, F. Farchioni, C. Gebert, and G. Munster, hep-lat/0209065 (2002).
[7] L. Bergamin and P. Minkowski, hep-th/0205240 (2002).
[8] L. Bergamin and P. Minkowski, hep-th/0301155 (2003).