Influence of augmented visual feedback on balance control in unilateral transfemoral amputees

K. Fuchs¹, T. Krauskopf¹, T. B. Lauck¹, L. Klein², G. W. Herget², V. Von Tscharner³, N. Stutzig⁴, T. Stieglitz⁵,⁶†, C. Pasluosta¹†*

S 1: EnHL of the amputated leg compared to the intact leg in anterior-posterior (left) and medio-lateral directions (right).

S 2: EnHL of the non-dominant leg compared to the dominant leg in anterior-posterior and medio-lateral directions.
Supplementary Table 1: Two-way mixed ANOVA of the sway area of the amputees and controls. Statistically significant values are displayed in bold font and marked with an asterisk (significance level $\alpha = 0.05$, p-value: * $p \leq 0.05$, ** $p \leq 0.01$, *** $p \leq 0.001$).

Main- and Interaction Effects	F-value	p<.05	p-value
Group	4.59	*	0.046
Condition	9.36	***	<0.001
Group x Condition	2.69		0.109

Supplementary Table 2: Two-way mixed ANOVA of the sway area ratio data normalized to the eyes open condition of the amputees and controls. Statistically significant values are displayed in bold font and marked with an asterisk (significance level $\alpha = 0.05$, p-value: * $p \leq 0.05$, ** $p \leq 0.01$, *** $p \leq 0.001$).

Main- and Interaction Effects	F-value	p<.05	p-value
Group	0.54		0.473
Condition	7.89	***	<0.001
Group x Condition	1.59		0.131

Supplementary Table 3: Pairwise t-test with Bonferroni-correction to test for significant difference between the sway area ratio data normalized to the eyes open condition in amputees and controls. Statistically significant values are displayed in bold font (significance level $\alpha = 0.05$).
Supplementary Table 4: Five-way mixed ANOVA of the EnHL data. Statistically significant values are displayed in bold font and marked with an asterisk (significance level $\alpha = 0.05$, p-value: * $p \leq 0.05$, ** $p \leq 0.01$, *** $p \leq 0.001$). Verification of the significant difference between original and surrogate data (signal), to confirm the non-random origin of the EnHL-values of the original signal.

Main- and Interaction Effects	F-value	p<.05	p-value
Signal	146.906	***	<0.001
Group	7.624	**	0.006
Direction	0.229		0.633
Leg	50.773	***	<0.001
Condition	47.380	***	<0.001
Signal x Group	0.228		0.633
Signal x Direction	0.104		0.747
Group x Direction	0.377		0.540
Signal x Leg	0.769		0.465
Group x Leg	56.865	***	<0.001
Direction x Leg	1.142		0.321
Signal x Condition	1.005		0.424
Group x Condition	5.539	***	<0.001
Direction x Condition	1.230		0.285
Leg x Condition	1.707	*	0.039
Signal x Group x Direction	0.458		0.499
Signal x Group x Leg	0.672		0.512
Signal x Direction x Leg	0.438		0.646
Group x Direction x Leg	0.057		0.945
Signal x Group x Condition	0.561		0.780
Signal x Direction x Condition	0.865		0.530
Group x Direction x Condition	2.065	*	0.047
Signal x Leg x Condition	0.784		0.681
Group x Leg x Condition	1.533		0.096
Direction x Leg x Condition	0.788		0.678
Signal x Group x Direction x Leg	0.084		0.919
Signal x Group x Direction x Condition	1.342		0.218
Signal x Group x Leg x Condition	0.684		0.785
Signal x Direction x Leg x Condition	0.654		0.813
Supplementary Table 5: Three-way mixed ANOVA of the original EnHL-values of the Amputees to test for significant differences between the leg, direction and condition. Statistically significant values are displayed in bold font and marked with an asterisk (significance level $\alpha = 0.05$, p-value: * $p \leq 0.05$, ** $p \leq 0.01$, *** $p \leq 0.001$).

Main- and Interaction Effects	F-value	p<.05	p-value
Direction	0.735	0.395	
Leg	42.431	***	<0.001
Condition	13.67	***	<0.001
Direction x Leg	0.142	0.868	
Direction x Condition	2.686	*	0.015
Leg x Condition	1.642	0.080	
Direction x Leg x Condition	0.353	0.977	

Supplementary Table 6: Three-way mixed ANOVA of the original EnHL-values of the Controls to test for significant differences between the leg direction and condition. Statistically significant values are displayed in bold font and marked with an asterisk (significance level $\alpha = 0.05$, p-value: * $p \leq 0.05$, ** $p \leq 0.01$, *** $p \leq 0.001$).

Main- and Interaction Effects	F-value	p<.05	p-value
Direction	0.045	0.832	
Leg	0.280	0.757	
Condition	8.833	***	<0.001
Direction x Leg	0.112	0.895	
Direction x Condition	0.833	0.526	
Leg x Condition	0.589	0.820	
Direction x Leg x Condition	1.025	0.422	
Supplementary Table 7: Pairwise t-test with Bonferroni-correction to test for significant difference between the EnHL-data of the different conditions in AP direction in amputees. Statistically significant values are displayed in bold font (significance level $\alpha=0.05$).

AP	D250	D250x2	D250x5	D500	D500x2	D500x5	EC	EO
D250x2	1.000	-	-	-	-	-	-	-
D250x5	1.000	1.000	-	-	-	-	-	-
D500	1.000	0.737	1.000	-	-	-	-	-
D500x2	1.000	0.191	1.000	1.000	-	-	-	-
D500x5	0.402	<0.001	0.002	0.079	0.450	-	-	-
EC	1.000	1.000	1.000	1.000	1.000	0.009	-	-
EO	1.000	0.682	1.000	1.000	1.000	1.000	-	-
VF	0.709	1.000	1.000	0.033	0.149	<0.001	1.000	0.211

Supplementary Table 8: Pairwise t-test with Bonferroni-correction to test for significant difference between the EnHL-data of the different conditions in ML direction in amputees. Statistically significant values are displayed in bold font (significance level $\alpha=0.05$).

ML	D250	D250x2	D250x5	D500	D500x2	D500x5	EC	EO
D250x2	1.000	-	-	-	-	-	-	-
D250x5	1.000	0.117	-	-	-	-	-	-
D500	1.000	1.000	1.000	-	-	-	-	-
D500x2	0.076	0.039	1.000	1.000	-	-	-	-
D500x5	0.001	<0.001	0.026	<0.001	1.000	-	-	-
EC	0.507	0.451	<0.001	0.038	0.001	<0.001	-	-
EO	1.000	1.000	1.000	1.000	0.234	0.001	0.982	-
VF	1.000	1.000	1.000	1.000	1.000	0.004	0.969	1.000

