Molecular cloning and characterization of GuHMGR, an HMG-CoA reductase gene from liquorice (Glycyrrhiza uralensis)

Chunying MA¹, Chunsheng LIU²,³, Wenquan WANG (✉)²,³

¹ Key Laboratory of Regulation and Control of Crop Growth of Hebei Province, College of Agronomy, Agricultural University of Hebei, Baoding 071000, China
² School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China
³ The Engineering Research Center for Chinese Medicine Standardized Production of Educational Ministry, Beijing 100102, China

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2011

Abstract A full length cDNA encoding HMGR (designated as GuHMGR) was isolated from liquorice (Glycyrrhiza uralensis) based on degenerated PCR and genome walking. The full length cDNA of GuHMGR was 2330 bp with a 1518-bp open reading frame (ORF) encoding a 505-aa polypeptide. Bioinformatics analysis indicated that there were two trans-membrane domains in GuHMGR. A molecular model of tertiary structure showed that GuHMGR is a novel HMGR with a similar spatial structure to other plant HMGRs. The deduced polypeptide of GuHMGR has an isoelectric point (pI) of 6.41 and a calculated molecular weight of about 54.7 kDa. Sequence comparison and phylogenetic tree analysis showed that GuHMGR had the highest homology with HMGRs from Pisum sativum and Medicago truncatula, indicating that GuHMGR belongs to the plant HMGR group. Expression analysis showed the similar amount of transcript level of GuHMGR in roots and leaves, suggesting that this gene was expressed constitutively in plants. Therefore, this novel HMGR gene would possibly provide a new strategy for studying the glycyrrhizin metabolism at the molecular level in the future.

Keywords cloning, liquorice, glycyrrhiza uralensis, genome walker, HMG-CoA reductase

Introduction

Liquorice (Glycyrrhiza uralensis Fisch.), also known as GANCAO or TIANYAO in Chinese, is one of the many valuable medicinal plants for its great therapeutic effects. Usually, the roots and rhizomes of liquorice are used as sources of medicinal materials. Its major bioactive component is glycyrrhizin, which has the medicinal effects of anti-inflammation (Matsui et al., 2004) and hepatoprotection (Van Rossum et al., 1998; Shibata, 2000), etc. Glycyrrhizin also has antivirus effects, such as being anti-HIV (Ito et al., 1987) and against severe acute respiratory syndrome (SARS) associated coronavirus (Cinatl et al., 2003). In the meantime, glycyrrhizin is widely used in large quantities as a well-known natural sweetener and flavoring additive because of its sweet taste.

This many a day, glycyrrhiza plants used as medicinal materials were collected from wild resources. The ever-increasing demand of glycyrrhiza plants has resulted in a dramatic decline in the wild resource reserves and the meadow desertification by collecting the wild glycyrrhiza plants. In the past several decades, the glycyrrhiza plants have been cultivated as additional resources in order to increase the glycyrrhiza resources. However, the glycyrrhizin content is far lower from cultivated glycyrrhiza plants than from wild ones.

Glycyrrhizin belongs to triterpenoid saponin with a similar structure to terpenoid. All terpenoids are produced through a common biosynthetic pathway. Based on the previous studies (Hayashi et al., 2001; Jiang et al., 2006), the glycyrrhizin synthesis pathway of triterpenoid saponins is listed in Fig. 1. The series of enzyme catalyzed reactions suggested the glycyrrhizin biosynthesis pathway is a complex course. 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR), catalyzing the conversion of HMG-CoA to MVA, is considered as the first step in the MVA pathway in plants (Chappell, 1995). It is also considered a major rate-limiting
The glycyrrhizin biosynthesis pathway. HMG-CoA stands for 3-hydroxy-3-methylglutaryl coenzyme A, MVA for mevalonic acid, IPP for isopentenyl pyrophosphate, DMAPP for dimethylallyl pyrophosphate, GPP for geranyl pyrophosphate, and FPP for farnesyl pyrophosphate, respectively. HMGR, the enzyme that catalyzes the second biochemical reaction from HMG-CoA to MVA, represents 3-hydroxy-3-methylglutaryl-CoA reductase.

Cloning partial genomic sequence of GuHMGR
According to the conserved sequence of HMGR gene shared by other plant species, a pair of primers GuHMGRF1 (5'-TTCTTCTCCGTGCGTACTTTCT-3') and GuHMGRR1 (5'-GCTAGATCTGTTGATTTCTATG-3') were designed and synthesized. The predicted PCR product contained the terminal codon for the reverse primer in the position of 3' nontranslated region. PCR was carried out in a total volume of 20 µL reaction which contained 2 µL 10 × buffer (plus Mg²⁺), 1.6 µL 10 mM each of dNTPs, 0.4 µL 10 µM GuHMGRF1, 0.4 µL 10 µM GuHMGRR1, 1 µL genomic DNA and 0.1 µL Ex Taq DNA polymerase (TaKaRa, China). The thermal reactions were as follows: denaturation at 94°C for 3 min, followed by 40 cycles for 30 s at 94°C, 30 s at 53°C, and 2 min at 72°C, with a final extension at 72°C for 10 min. The amplified product was purified, ligated into pUCm-T vector and cloned into E. coli strain DH5α by sequencing.

Cloning of the full-length DNA sequence of GuHMGR
Based on the above partial DNA fragment of GuHMGR, genome walking was carried out to obtain the full gene sequence of GuHMGR. For that, in total, three 5' primers with reverse orientation were designed including GuHMGRSP1 (5'-CTTTTGTGGAGGCTCTCGGGAG-3'), SP2 (5'-GATGAGGGGAGACGGTGCCG-3') and SP3 (5'-GAGGAGAAATGGTCGACGAGAA-3'). The genome walking procedure was performed as the manufacturer's recommendation by using the GenomeWalker™ Universal Kit (TaKaRa, China). The amplified products were purified, ligated into pUCm-T vector and cloned into E. coli strain DH5α followed by sequencing. The full-length DNA of GuHMGR was obtained by assembling these two sequences derived from PCR and genome walking.

Cloning of partial cDNA sequence of GuHMGR
According to the full length DNA sequence of GuHMGR, a pair of primers GuHMGRF1 (5'-TCCTTCTCCGTGCGTACTTTCT-3') and GuHMGRR3 (5'-TTTTGATACCATGTTCATCCCCCAT-3') were designed and synthesized. RT-PCR was carried out to amplify the conserved fragment of HMGR gene from G. uralensis. The PCR reaction solution and the PCR course were similar to that used for cloning of the partial genomic sequence of GuHMGR, but the template was the transcribed cDNA from roots instead of the genomic DNA. The amplified product was purified, ligated into pUCm-T

Materials and methods

Plant materials

The perennial rhizomes of G. uralensis were collected from Inner Mongolia Autonomous Region, China and transplanted in a greenhouse located in Agricultural University of Hebei, China. Routine cultivation was conducted for normal growth of G. uralensis plants. One month later, the fresh tissues of G. uralensis were sampled for genomic DNA extraction, gene cloning and gene expression analysis.

Methods

Total DNA and RNA isolation
All tissue materials including leaves and roots were obtained from G. uralensis plants and then triturated by mortar and pestle in liquid nitrogen. Total RNA was isolated with cetyltrimethylammonium bromide (CTAB)-containing extraction buffer, essentially as described previously (Chang et al., 1993). Genomic DNA was extracted from leaves of G. uralensis using CTAB method with different ingredient concentrations. The RNA and DNA quality were determined by agarose gel electrophoresis and spectrophotometer analysis before use.

Cloning partial genomic sequence of GuHMGR
According to the conserved sequence of HMGR gene shared by other plant species, a pair of primers GuHMGRF1 (5'-TTCTTCTCCGTGCGTACTTTCT-3') and GuHMGRR1 (5'-GCTAGATCTGTTGATTTCTATG-3') were designed and synthesized. The predicted PCR product contained the terminal codon for the reverse primer in the position of 3' nontranslated region. PCR was carried out in a total volume of 20 µL reaction which contained 2 µL 10 × buffer (plus Mg²⁺), 1.6 µL 10 mM each of dNTPs, 0.4 µL 10 µM GuHMGRF1, 0.4 µL 10 µM GuHMGRR1, 1 µL genomic DNA and 0.1 µL Ex Taq DNA polymerase (TaKaRa, China). The thermal reactions were as follows: denaturation at 94°C for 3 min, followed by 40 cycles for 30 s at 94°C, 30 s at 53°C, and 2 min at 72°C, with a final extension at 72°C for 10 min. The amplified product was purified, ligated into pUCm-T vector and cloned into E. coli strain DH5α by sequencing.

Cloning of the full-length DNA sequence of GuHMGR
Based on the above partial DNA fragment of GuHMGR, genome walking was carried out to obtain the full gene sequence of GuHMGR. For that, in total, three 5' primers with reverse orientation were designed including GuHMGRSP1 (5'-CTTTTGTGGAGGCTCTCGGGAG-3'), SP2 (5'-GATGAGGGGAGACGGTGCCG-3') and SP3 (5'-GAGGAGAAATGGTCGACGAGAA-3'). The genome walking procedure was performed as the manufacturer's recommendation by using the GenomeWalker™ Universal Kit (TaKaRa, China). The amplified products were purified, ligated into pUCm-T vector and cloned into E. coli strain DH5α followed by sequencing. The full-length DNA of GuHMGR was obtained by assembling these two sequences derived from PCR and genome walking.

Cloning of partial cDNA sequence of GuHMGR
According to the full length DNA sequence of GuHMGR, a pair of primers GuHMGRF1 (5'-TCCTTCTCCGTGCGTACTTTCT-3') and GuHMGRR3 (5'-TTTTGATACCATGTTCATCCCCCAT-3') were designed and synthesized. RT-PCR was carried out to amplify the conserved fragment of HMGR gene from G. uralensis. The PCR reaction solution and the PCR course were similar to that used for cloning of the partial genomic sequence of GuHMGR, but the template was the transcribed cDNA from roots instead of the genomic DNA. The amplified product was purified, ligated into pUCm-T
vector and cloned into *E. coli* strain DH5α followed by sequencing from the forward strands.

Generation of the full-length cDNA of GuHMGR

The full length cDNA sequence of *GuHMGR* was deduced based on the comparison between the partial cDNA *GuHMGR*, full length genomic DNA of *GuHMGR*, and the full-length cDNA of *Pisum sativum* L. (GenBank accession No. AF303583).

Bioinformatics analyses

The homologous genes of GuHMGR were identified by BLAST search in which the full length cDNA sequence was the query. The obtained sequences were then analyzed using bioinformatics tool at websites (http://www.ncbi.nlm.nih.gov/, http://www.expasy.org/). The deduced GuHMGR and other known plant HMGs retrieved from GenBank were aligned with DNASTar software.

Tissue expression pattern of GuHMGR

To investigate the *GuHMGR* expression pattern in different parts of *G. uralensis*, total RNA was extracted from taproots, lateral roots, old leaves and new leaves, respectively. Semiquantitative one-step RT-PCR was carried out according to the manufacturer’s instructions (TaKaRa, China). An aliquot of 20 µL reaction solution containing 2 µL 10 × buffer (without Mg²⁺), 1.2 µL 25 mM each of MgCl₂, 1.6 µL 10 mM each of dNTPs, 0.4 µL 10 µM GuHMGRF1, 0.4 µL 10 µM GuHMGRR1, 1 µL cDNA and 0.15 µL rTaq DNA polymerase (TaKaRa, China). The template was denatured at 94°C for 3 min, followed by 40 cycles of amplification (30 s at 94°C, 30 s at 53°C, 2 min at 72°C) and a final extension at 72°C for 10 min. The PCR results were determined by agarose gel electrophoresis.

Results

Cloning and characterization of the genomic DNA of GuHMGR

Using primers GuHMGRF1 and GuHMGRR1, a band of 2633 bp was specially amplified (Fig. 2A). Sequence analysis showed that it was highly homologous to HMGs in plant species. To obtain the full length of *GuHMGR* genomic sequence, genome walking was conducted in which three primers including SP1, SP2 and SP3 were then designed for the PCR amplification of the unknown 5′ region. A product of 437 bp was specially amplified (Fig. 2B). The genomic DNA of *GuHMGR* was then obtained by assembling the sequences of the 2633 bp and 437 bp.

Comparison between the *GuHMGR* genomic sequence and the cDNA of *Pisum sativum* showed that the genomic DNA contained two introns. The lengths of three exons were 1206 bp, 181 bp and 943 bp, respectively. The lengths of the two introns were 87 bp and 245 bp, respectively.

Generation of the full-length cDNA of GuHMGR and characterization of the deduced GuHMGR protein

The full length cDNA of *GuHMGR* was obtained based on the comparison between the partial cDNA *GuHMGR*, full length genomic DNA of *GuHMGR*, and the full-length cDNA of *Pisum sativum* L. (GenBank accession No. AF303583). Sequencing results showed that the *GuHMGR* was 2330 bp in length and contained a 1518 bp ORF, encoding a protein of 505 amino acids (Fig. 3), with an isoelectric point of 6.41. The calculated molecular weight of GuHMGR was about 54.7 kDa, which is similar to previously reported plant HMGs. The GuHMGR showed a homology with *Pisum sativum* HMGR (67.3), *Medicago truncatula* HMGR3 (65.3).

![Figure 2](image-url)

Figure 2 The PCR amplified pattern of the *GuHMGR* gene from *Glycyrrhiza uralensis* Fisch. A is 2633 bp conservative sequence of the *GuHMGR* gene using the primer pair (GuHMGRF1, GuHMGRR1); B is Genome walking products of the *GuHMGR* gene. M is Molecular weight marker DL2000; 1–4 represent 2633 bp conservative sequence of the *GuHMGR* gene, the first round PCR product of genome walking, the second round PCR product of genome walking, and the third round PCR product of genome walking respectively.
and HMGR2 (64.1) and HMGR1 (63.3), and *Litchi chinensis* HMGR (64.1) (Fig. 4).

Bioinformatic analysis of GuHMGR

Sequence comparisons by performing Blast Search in GenBank database (http://www.ncbi.nlm.nih.gov) and multiple alignment analysis revealed that GuHMGR had a high homology with many other plant HMGRs, such as *Pisum sativum* HMGR (PsHMGR), *Hevea brasiliensis* HMGR (HbHMGR), *Medicago truncatula* HMGR1-4 (MtHMGR), etc. The results suggested that GuHMGR belongs to the plant HMGR superfamily. Using TMHMM 2.0 (http://www.cbs.dtu.dk/services/TMHMM-2.0), two transmembrane regions were predicted with one located between Pro 20 and Leu 42 and the other located between Ile 63 and Ile 85 along the polypeptide chain. A likely signal peptide cleavage site between Ala 28 and Phe 29 was found using SignalP3.0 (http://www.cbs.dtu.dk/services/signalP/). To better characterize the GuHMGR protein, comparative 3-D modeling was performed by SWISS-MODEL (Schwede et al., 2003) with the HMGR from human as the template, the crystal structure of which has been elucidated (Fig. 5).

Tissue expression analysis

To investigate GuHMGR expression pattern in different tissues of *G. uralensis*, one-step RT-PCR analysis was performed using same amount of total RNA isolated from different tissues including old leaves, new leaves, the taproots and lateral roots as the templates and the HMGRF1 and HMGRR3 as the primers. The result showed that GuHMGR is expressed in all four tested tissues at similar transcription levels, suggesting that this gene is expressed in a constitutive pattern in plants (Fig. 6).

![Figure 3](http://www.ursalens.org/images/404/404_001.jpg)
Figure 3 The full-length cDNA sequence and deduced amino acid sequence of *G. uralensis* 3-hydroxy-3-methylglutaryl-CoA reductase (GuHMGR). The start codon (ATG) and the stop codon (TAA) are boxed.

Bioinformatic analysis of GuHMGR

Sequence comparisons by performing Blast Search in GenBank database (http://www.ncbi.nlm.nih.gov) and multiple alignment analysis revealed that GuHMGR had a high homology with many other plant HMGRs, such as *Pisum sativum* HMGR (PsHMGR), *Hevea brasiliensis* HMGR (HbHMGR), *Medicago truncatula* HMGR1-4 (MtHMGR), etc. The results suggested that GuHMGR belongs to the plant HMGR superfamily. Using TMHMM 2.0 (http://www.cbs.dtu.dk/services/TMHMM-2.0), two transmembrane regions were predicted with one located between Pro 20 and Leu 42 and the other located between Ile 63 and Ile 85 along the polypeptide chain. A likely signal peptide cleavage site between Ala 28 and Phe 29 was found using SignalP3.0 (http://www.cbs.dtu.dk/services/signalP/). To better characterize the GuHMGR protein, comparative 3-D modeling was performed by SWISS-MODEL (Schwede et al., 2003) with the HMGR from human as the template, the crystal structure of which has been elucidated (Fig. 5).

Tissue expression analysis

To investigate GuHMGR expression pattern in different tissues of *G. uralensis*, the one-step RT-PCR analysis was performed using same amount of total RNA isolated from different tissues including old leaves, new leaves, the taproots and lateral roots as the templates and the HMGRF1 and HMGRR3 as the primers. The result showed that GuHMGR is expressed in all four tested tissues at similar transcription levels, suggesting that this gene is expressed in a constitutive pattern in plants (Fig. 6).
HMGR was studied initially in mammals because of its significant role in regulating the cholesterol biosynthesis (Goldstein and Brown, 1990). Subsequently, the HMGRs have been widely studied in plant species. In tomato, a HMGI::GUS reporter gene fusion was used to analyze the regulation of HMG1 gene expression which suggested that the role of HMG1 was to supply the MVA demand associated with cell division and growth (Jelesko et al., 1999).

Till now, only few glycyrrhizin biosynthetic genes have been successfully isolated from glycyrrhiza plants. An oxidosqualene cyclase cDNA encoding β-amyrin synthase, was isolated from cultured cells of Glycyrrhiza glabra.

Figure 4 Relationships between the primary amino acid sequences of HMGRs in plants.

Figure 5 The 3-D model of GuHMGR.

Figure 6 Expression profile of GuHMGR gene in new leaf, old leaf, taproot and lateral root.
(Hayashi et al., 2001). Two cDNAs of squalene synthase were isolated from *G. glabra* (Hayashi et al., 1999). Molecular cloning of 3-hydroxy-3-methylglutaryl coenzyme A reductase in *G. uralensis* provides a useful tool to elucidate the glycyrrhizin biosyntheses in glycyrrhiza plants. Further experiments are required to study the combined function of the glycyrrhiza gene in plant for glycyrrhizin biosyntheses.

In this paper, the full length genomic DNA sequence and cDNA of *GuHMGR* gene were cloned from *G. uralensis*. The deduced polypeptide of GuHMGRs share high identities with other plant HMGRs, such as HMGR from *Pisum sativum* and *Medicago truncatula*. This suggested that *GuHMGR*, the HMGR gene derived from glycyrrhiza plants possibly plays an important role in the biosynthesis in glycyrrhizin.

Usually root and rhizome are used as the sources of medicinal materials. But some reports suggest that other organs of the glycyrrhiza plants also contain the medicinal content such as glycyrrhizin. Hence, it is of great value to determine whether the *GuHMGR* expression is correlated with the glycyrrhizin content in different tissues of *G. uralensis*. In this study, the one-step RT-PCR analysis was performed using total RNA from different tissues, including old leaves, new leaves, the taproots and lateral roots with the primers HMGFR1 and HMGRR3. The results showed that *GuHMGR* was expressed in all four tissues, which suggested that the *GuHMGR* may be a constitutively expressed gene. However, the expression in roots was higher than that in leaves, corresponding with the fact that the roots are usually used as medicinal material and more glycyrrhizin is accumulated in roots than leaves. Further study will be undertaken to identify the functions of *GuHMGR* in improving glycyrrhizin biosynthesis based on bioengineering approach in the future.

Acknowledgements

This research was supported by the State Natural Sciences Foundation Projects (No. 30572328 and No. 30672615), and the Ministry of Science and Technology of the People’s Republic of China. It was also supported by the Province Natural Sciences Foundation Projects of Hebei (No. C2009000583).

References

Bach T J (1995). Some new aspects of isoprenoid biosynthesis in plants—a review. Lipids, 30(3): 191–202

Caeles C, Ferrer A, Balcells L, Hegardt F G, Boronat A (1989). Isolation and structural characterization of a cDNA encoding *Arabidopsis thaliana* 3-hydroxy-3-methylglutaryl coenzyme A reductase. Plant Mol Biol, 13(6): 627–638

Chang S J, Puryear J, Cairney J (1993). A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep, 11(2): 113–116

Chappell J (1995). Biochemistry and molecular biology of the isoprenoid biosynthetic pathway in plants. Ann Rev Plant Physiol Plant Mol Biol, 46(1): 521–547

Choi D, Ward B L, Bostock R M (1992). Differential induction and suppression of potato 3-hydroxy-3-methylglutaryl coenzyme A reductase genes in response to *Phytophthora infestans* and to its elicitor arachidonic acid. Plant Cell, 4(10): 1333–1344

Cinaal J, Morgenstern B, Bauer G, Chandra P, Rabenau H, Doerr H W (2003). Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet, 361(9374): 2045–2046

Enjuto M, Balcells L, Campos N, Caeles C, Arré M, Boronat A (1994). *Arabidopsis thaliana* contains two differentially expressed 3-hydroxy-3-methylglutaryl-CoA reductase genes, which encode microsomal forms of the enzyme. Proc Natl Acad Sci USA, 91(3): 927–931

Goldstein J L, Brown M S (1990). Regulation of the mevalonate pathway. Nature, 343 (6257): 425–430

Hayashi H, Hirota A, Hiraoka N, Ikeshiro Y (1999). Molecular cloning and characterization of two cDNAs for *Glycyrrhiza glabra* squalene synthase. Biol Pharm Bull, 22(9): 947–950

Hayashi H, Huang P, Kirakosyan A, Inoue K, Hiraoka N, Ikeshiro Y, Kushiro T, Shibuya M, Ebizuka Y (2001). Cloning and characterization of a cDNA encoding β-amyrin synthase involved in glycyrrhizin and saponin biosyntheses in licorice. Biol Pharm Bull, 24(8): 912–916

Ito M, Nakashima H, Baba M, Pauwels R, De Clercq E, Shigeta S, Yamamoto N (1987). Inhibitory effect of glycyrrhizin on the in vitro infectivity and cytopathic activity of the human immunodeficiency virus [HIV (HTLV-III/LAV)]. Antiviral Res, 7(3): 127–137

Jeleško J G, Jenkins S M, Rodríguez-Concepción M, Gruissem W (1999). Regulation of tomato HMGR during cell proliferation and growth. Planta, 208(3): 310–318

Jiang J H, Kai G Y, Cao X Y, Chen F M, He D N, Liu Q (2006). Molecular cloning of a HMG-CoA reductase gene from *Eucommia ulmoides* Oliver. Biosci Rep, 26(2): 171–181

Learned R M, Fink G R (1989). 3-Hydroxy-3-methylglutaryl-coenzyme A reductase from *Arabidopsis thaliana* is structurally distinct from the yeast and animal enzymes. Proc Natl Acad Sci USA, 86(8): 2779–2783

Liao Z H, Tan Q M, Chai Y R, Zuo K J, Chen M, Gong Y F, Wang P, Pi Y, Tan F, Sun X F, Tang K X (2004). Cloning and characterisation of the gene encoding HMG-CoA reductase from Taxus media and its functional identification in yeast. Funct Plant Biol, 31: 73–81

Maldonado-Mendoza I E, Burnett R J, Nessler C L (1992). Nucleotide sequence of a cDNA encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase from *Catharanthus roseus*. Plant Physiol, 100(3): 1613–1614

Maldonado-Mendoza I E, Vincent R M, Nessler C L (1997). Molecular characterization of three differentially expressed members of the *Camptotheca acuminata* 3-hydroxy-3-methylglutaryl CoA reductase (HMGR) gene family. Plant Mol Biol, 34(5): 781–790

Matsui S, Matsumoto H, Sonoda Y, Ando K, Aizu-Yokota E, Sato T, Kasahara T (2004). Glycyrrhizin and related compounds down-regulate production of inflammatory chemokines IL-8 and eotaxin 1 in a human lung fibroblast cell line. Int Immunopharmacol, 4(13): 1633–1644

Park H, Denbow C J, Cramer C L (1992). Structure and nucleotide
sequence of tomato HMG2 encoding 3-hydroxy-3-methyl-glutaryl coenzyme A reductase. Plant Mol Biol, 20(2): 327–331
Schwede T, Kopp J, Guex N, Peitsch M C (2003). SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Res, 31(13): 3381–3385
Shen G A, Pang Y Z, Wu W S, Liao Z H, Zhao L X, Sun X F, Tang K X (2006). Cloning and characterization of a root-specific expressing gene encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase from Ginkgo biloba. Mol Biol Rep, 33(2): 117–127
Shibata S (2000). A drug over the millennia: pharmacognosy, chemistry, and pharmacology of licorice. Yakugaku Zasshi, 120(10): 849–862
Van Rossum T G J, Vulto, De Man R A, Brouwer J T, Schalm S W (1998). Glycyrrhizin as a potential treatment for chronic hepatitis C. Aliment Pharmacol Ther, 12(3): 199–205