Transporting stochastic direct and indirect effects to new populations

Kara E. Rudolph*1, Jonathan Levy2, and Mark J. van der Laan2

1Department of Emergency Medicine, School of Medicine, University of California, Davis, Sacramento, California
2Division of Biostatistics, School of Public Health, University of California, Berkeley, California

Abstract

Transported mediation effects may contribute to understanding how and why interventions may work differently when applied to new populations. However, we are not aware of any estimators for such effects. Thus, we propose several different estimators of transported stochastic direct and indirect effects: an inverse-probability of treatment stabilized weighted estimator, a doubly robust estimator that solves the estimating equation, and a doubly robust substitution estimator in the targeted minimum loss-based framework. We demonstrate their finite sample properties in a simulation study.

Keywords: Causal inference; Mediation; Transportability; Generalizability; External validity; Instrumental variables; Targeted maximum likelihood estimation

1 Introduction

Often, an intervention, program, or policy that works in one place or population fails to replicate in another place or population [21] or can even have unintended harmful effects [6]. This is problematic from a public policy or public health perspective in that the goals of such interventions are to help—not harm, and problematic from a financial perspective in that limited resources may be not be spent optimally.

When such initiatives fail to replicate or have unintended effects in new populations, transportability theory and methods offer a chance to understand why. Transportability is the ability (based on identifying assumptions) to transport a causal effect from a source population to a new, target population, accounting for differences between the two populations.
(e.g., differences in compositional factors, treatment adherence, etc.) (16). Previous work developed estimators to transport total effects from a source to target population (20) or, similarly, to generalize effects from a sample to the population (4, 5, 13, 23).

In some cases, examining transportability of the total effect may shed light on reasons for lack of replication. However, in other cases, transporting the total effect may not identify the relevant differences and it may be beneficial to go further and examine transportability of the underlying mediation mechanisms. Although there has been work on the identification on transported indirect effects (2, 16), we are not aware of any previous work developing estimators for transporting mediation effects (direct and indirect effects) from a source to target population. Thus, we address this research gap by proposing several different estimators of stochastic direct and indirect effects: an inverse-probability of treatment stabilized weighted estimator, a doubly robust estimator that solves the estimating equation, and a doubly robust substitution estimator in the targeted minimum loss-based framework.

The paper is organized as follows. In Section 2, we introduce notation and the structural equations model generating our data. In Section 3, we define the parameters of interest, the transported stochastic direct and indirect effects, and give identification results. Sections 4, 5, and 6, detail an inverse-probability of treatment weighted estimator, an estimating equation estimator, and a targeted minimum loss-based estimator for estimating these transported stochastic direct and indirect effects. In Section 7, we present the results of simulation studies that demonstrates the relative performance of the aforementioned estimators in finite samples. Section 8 concludes.

2 Notation and structural equations model

The full data is generated by a structural equations model (SEM) (17, 26), which consists of the data generating process to which we would like to have access. The SEM first generates a random draw of a vector U of unknown measurements (15), where $U = (U_S, U_W, U_A, U_Z, U_M, U_Y) \sim P_U$. Then our variables are generated in the following time ordering:

$$
S = f_S(U_S)
$$
$$
W = f_W(U_W, S)
$$
$$
A = f_A(U_A, W, S)
$$
$$
Z = f_Z(U_Z, A, W, S)
$$
$$
M = f_M(U_M, Z, W, S)
$$
$$
Y = f_Y(U_Y, Z, W, M),
$$

where S is a binary indicator of site, W is a vector of covariates, A is a binary treatment, Z is a binary intermediate variable, M is a binary mediator, and Y is a binary or continuous outcome. The SEM generates the full data as $(U, O) \sim P_{UO} \in \mathcal{M}^F$, our full-data statistical model. If we had access to the SEM, we could generate potential (i.e., counterfactual) outcomes (14, 18), which define our causal parameters of interest. We observe data $O = (S, W, A, Z, M, S \times Y)$ for n participants, with the true distribution $O_1, ..., O_n \sim P_O \in \mathcal{M}$,
our observed data statistical model. Note, we will only observe the outcome, Y, for site $S = 1$.

We consider a structural causal model for these data aligned with our motivating example in which A is an instrumental variable (IV) \(\hat{I} \), which puts several restrictions on the statistical model, \mathcal{M}, where \mathcal{M} is the collection of probability distributions under which the causal quantities of interest are identified—we define and identify such quantities in the following section. The restrictions are: 1) A is randomly assigned (possibly conditional on \((W, S)\)), and 2) there is no direct effect of A on M or of A on Y—downstream effects of A only operate through Z (22). However, the methods we propose can be used in the more general case where A directly affects M and/or Y; we discuss such an extension in the appendix.

In our notation, we use lowercase letters to denote fixed, assignment values of variables and uppercase letters to denote observed values. We use subscripts for descriptive purposes—subscripts are not to be considered a variable. For instance, we use a capital letter in p_Y, the conditional density of Y, because it is a density of the random variable Y.

3 Parameters of interest

We consider two causal quantities of interest that we call transported stochastic direct and indirect effects. These causal quantities represent stochastic direct and indirect effects (22, 25) transported from a source population to a new, target population. Stochastic direct and indirect effects, also called randomized interventional direct and indirect effects (25), represent the 1) direct effect of A on Y not through M and the 2) indirect effect of A on Y through M. As has been described previously (19), one can consider versions of these effects that condition on Z and thus estimate the indirect pathway of A to M to Y, not through Z (27), or versions that marginalize over Z and thus estimate the combined indirect pathways of 1) A to Z to M to Y plus 2) A to M to Y (22, 25). Adhering to the IV constraints on our statistical model, no effect operates through pathway A to M to Y, so we focus herein on the versions of these effects that marginalize over Z. Previously, such a stochastic intervention on M has been defined (22, 25)

$$
\hat{g}_{M|a^*, W}(M \mid W) = \sum_z \Pr(M \mid Z = z, W)\Pr(Z = z \mid A = a^*, W).
$$

The subscript for $\hat{g}_{M|a^*, W}$ specifies that it is a conditional density of random variable M given random variable W, and value a^* for which a lower case letter indicates they are fixed and the same for all participants. Previously, the parameter of interest was defined as $\Psi^F(P_{UO}) = \mathbb{E}\left[Y_{a, g_{M|a^*, W}}\right]$ where the expectation is taken over the full data model and $Y_{a, g_{M|a^*, W}}$ is a potential outcome intervening on A to set it to a, and then downstream, intervening on M to set it to a random (i.e., stochastic) draw from the distribution of M defined by $g_{M|a^*, W}(M \mid W)$ (22). We wish to transport this parameter to a new site where the outcome was not observed ($S = 0$), and thus make the following modification:

$$
\Psi^F(P_{UO}) = \mathbb{E}\left[Y_{a, g_{M|a^*, W, s}} \mid S = 0\right]
$$

3
where

\[g_{M|a^*,W,s}^*(M \mid W) = \sum_z Pr(M \mid Z = z, W, S = s)Pr(Z = z \mid A = a^*, W, S = s), \]

and where we impose a certain \(a^* \) and a certain \(s \) in both the \(Z \) and \(M \) models. We note that \(g_{M|a^*,W,s}^*(M \mid W) \) represents any stochastic intervention, which can include stochastic draws from the true models, but can also include a data-dependent version, estimated from observed data distributions, which we denote \(\hat{g}_{M|a^*,W,s}^*(M \mid W) \).

The transported stochastic direct effect entails setting \(a^* \) to 0 and taking the difference in mean outcome between setting \(a \) to 1 and setting \(a \) to 0, denoted

\[\mathbb{E} \left[Y_{1,g_{M|0,W,s}^*} - Y_{0,g_{M|0,W,s}^*} \mid S = 0 \right] \]

and the transported stochastic indirect effect entails setting \(a = 1 \) and then taking the difference in mean outcome between setting \(a^* = 1 \) and \(a^* = 0 \), denoted

\[\mathbb{E} \left[Y_{1,g_{M|1,W,s}^*} - Y_{1,g_{M|0,W,s}^*} \mid S = 0 \right]. \]

4 Identifiability

To identify the stochastic direct effect and stochastic indirect effect we will need to impose additional assumptions on \(\mathcal{M}^F \) and \(\mathcal{M} \), listed below.

1. Positivity: For all \(S \) and \(W \) we need a positive probability of assigning any level of \(A \). For all combinations of \(S, W, \) and \(A = a \), we have a positive probability of any level of \(Z \). For \(S = 1 \) and all combinations of \(Z \) and \(W \) we need a positive probability of any level of the mediator, \(M \).

2. Common outcome model across sites: \(\mathbb{E} [Y \mid M, Z, W, S = 1] = \mathbb{E} [Y \mid M, Z, W, S = 0] \). The null hypothesis of a common outcome model may be tested nonparametrically \([12]\).

3. Sequential Randomization: \(Y_{am} \perp A \mid W, S \) and \(Y_{am} \perp M \mid W, Z, S \). This is akin to a two-time point longitudinal intervention where at the first time point, we statically intervene to set the treatment, \(A = a \), and at the second time point, we stochastically intervene on the mediator, \(M \).

Theorem 4.1. Given the above assumptions, we can establish the following identification:

\[
\Psi(P) = \Psi^F(P_{UX}) = \mathbb{E} \left[\mathbb{E} \left[\mathbb{E} g_{M|a^*,W,s} \mathbb{E} [Y \mid W, Z, M, S = 1] \mid W, Z \right] \mid W, a, S = 0 \right] \mid S = 0
\]

\[
= \mathbb{E} \left[\mathbb{E} \left[\sum_m \mathbb{E} Y \hat{g}_{M|a^*,W,s}(m \mid W) \mid M = m, W, Z, A = a, S = 1 \right] \mid A = a, W, S \right] \mid S = 0
\]

The proof is in the appendix.
5 Stabilized Inverse probability of treatment weighted estimator

First, we describe a stabilized inverse probability of treatment weighted (IPTW) estimator of $\Psi(P)$. The R code to implement this estimator is provided in the appendix. We describe model fitting using regression language for simplicity but note that machine learning can be used instead. We will use the knowledge of our smaller model, M, with restrictions detailed in Section 2, so do not include A in the regression model for M.

We use the weights

$$H(M, Z, A, W, S) = \frac{\hat{g}_{M|a^*, W, s}(M \mid W)p_Z(Z \mid A = a, W, S = 0) p_W(S = 0 \mid W) I(S = 1, A = a)}{p_M(M \mid Z, W, S = 1) p_Z(Z \mid A = a, W, S = 1) p_A(a \mid W, S = 1) p_W(S = 1 \mid W) P_S(S = 0)}. \tag{2}$$

$\hat{g}_{M|a^*, W, s}(M|W)$ is a data-dependent stochastic intervention on M, which can be estimated

$$\hat{g}_{M|a^*, W, s}(M|W) = \sum_{z=0}^{1} P(M = 1 \mid Z = z, W, S = s) P(Z = z \mid A = a^*, W, S = s). P(M = 1 \mid Z = z, W, S = s)$$

can be estimated using a logistic regression estimating the probability of $M = 1$ given Z, W, and S and thereby getting predicted probabilities for $M = 1$ setting $S = s$ and separately setting $Z = 1$ and $Z = 0$. $P(Z = z \mid A = a^*, W, S = s)$ can be estimated using a logistic regression estimating the probability of $Z = 1$ given A, W, and S and thereby getting predicted probabilities for $Z = 1$ and for $Z = 0$, setting $A = a^*$ and $S = s$ and using observed values for W. We note that marginalizing out Z introduces dependence on A.

The stabilized IPTW estimate of $\Psi(P)$ is the empirical mean of Y weighted by $\hat{H}_n(M, Z, A, W, S)$, stabilized by the empirical mean of $H(M, Z, A, W, S)$:

$$\hat{\Psi}_{IPTW}^{n} = \frac{\hat{H}_n(M_i, Z_i, A_i, W_i, S_i)Y_i}{\frac{1}{n} \sum_i \hat{H}_n(M_i, Z_i, A_i, W_i, S_i)}, \tag{3}$$

where \hat{H}_n is an approximation of $H(M, Z, A, W, S)$.

The standard error of the stabilized IPTW estimator is calculated as the sample standard deviation of the approximation of the IPTW influence curve of $\Psi(P)$, given by

$$IC(P) = \frac{\hat{H}_n(M_i, Z_i, A_i, W_i, S_i)}{\frac{1}{n} \sum_i \hat{H}_n(M_i, Z_i, A_i, W_i, S_i)} \left(Y_i - \frac{1}{n} \sum_i \hat{H}_n(M_i, Z_i, A_i, W_i, S_i)Y_i \right).$$

The stochastic direct effect (SDE) entails setting a^* to 0 and taking the difference in estimates between setting a to 1 and setting a to 0. The corresponding influence curve approximation is a difference of the influence curve approximation for the parameter defined by setting $a^* = 0, a = 1$ and the influence curve approximation for the parameter defined by setting $a^* = 0, a = 0$. The stochastic indirect effect (SIE) entails setting $a = 1$ and then taking the difference in estimates between setting $a^* = 1$ and $a^* = 0$. The corresponding influence curve approximation is again a difference of the two influence curve approximations (one for parameter defined by setting $a^* = 1, a = 1$ and the other for $a^* = 0, a = 1$). For each estimator, we used the sample standard deviation of their respective influence curve approximations, divided by \sqrt{n} for the standard error estimate.
6 Estimating equation estimator

Next, we describe two estimating equation (EE) estimators of \(\Psi(P) \): 1) one that incorporates the exclusion restrictions on our statistical model, \(M \), that there is no direct effect of \(A \) on \(M \) or of \(A \) on \(Y \), and 2) another that does not impose those restrictions. The R code to implement these estimators is provided in the appendix. We describe model fitting using regression language for simplicity but note that machine learning can be used instead.

6.1 Estimator incorporating exclusion restrictions

This EE estimator solves the efficient influence curve (EIC) equation of the parameter \(\Psi(P) \) for the restricted model where \(M \) and \(Y \) do not depend directly on \(A \). This EIC is given by

\[
D(P) = D_Y(P) + D_Z(P) + D_W(P), \quad \text{where}
\]

\[
D_Y(P) = (Y - \bar{Q}_Y(M, Z, W))
\]

\[
\times \hat{g}_{M|a, W, s}(M|W)p_Z(Z \mid A = a, W, S = 0)p_W(S = 0 \mid W)I(S = 1)
\]

\[
g_M(M \mid Z, W, S = 1)p_Z(Z \mid W, S = 1)p_W(S = 1 \mid W)P_S(S = 0),
\]

\[
D_Z(P) = (\bar{Q}_M(Z, W, S) - \bar{Q}_Z(a, W, S)) \frac{I(S = 0, A = a)}{p_A(a \mid W, S)p_S(S = 0)}, \quad \text{and}
\]

\[
D_W(P) = (\bar{Q}_Z(a, W, S) - \Psi(P)) \frac{I(S = 0)}{p_S(S = 0)} \quad \text{(notation is explained further below)}.
\]

We reiterate that this EIC is only efficient for model with the exclusion restrictions. We approximate \(D_Y(P) \) as follows. First, we estimate \(\mathbb{E}[Y \mid M, Z, W] \) as \(\bar{Q}_{Y,n}(M, Z, W) \), which can be calculated using predicted values from a regression of \(Y \) on \(M, Z, W \) among those with \(S = 1 \). \(p_Z(Z \mid W, S = 1) \) can be calculated \(p_Z(Z \mid W, S = 1) = \sum_{a=0}^{1} P(Z = 1 \mid A = a, W, S = 1)P(A = a \mid W, S = 1) \). Each of the remaining probabilities in \(D_Y(P) \) can be calculated using predicted probabilities from a logistic regression of the relevant conditional mean outcome models for \(M, Z \) and \(S \), as described in the stabilized IPTW estimator section.

Estimation of \(\hat{g}_{M|a, W, s}(M|W) \) is also described in the stabilized IPTW estimator section.

We next approximate \(D_Z(P) \). To do so, we apply the stochastic intervention on \(\bar{Q}_{Y,n}(M, Z, W) \) via the computation \(\bar{Q}_{M,n}(M, Z, W, S) = \mathbb{E}_{g_{M|a^*, W, s}}[\bar{Q}_{Y,n}(M, Z, W) \mid Z, W, S] \).

Specifically, we can generate predicted values of \(\bar{Q}_{Y,n}(1, Z, W) \) and \(\bar{Q}_{Y,n}(0, Z, W) \) and then marginalize over \(g_{M|a^*, W, s}(M|W): \sum_{m=0}^{1} \bar{Q}_{Y,n}(m, Z, W)g_{M|a^*, W, s}(m|W) \). Next, we estimate \(\bar{Q}_{Z,n}(a, W, S) \) by regressing \(\bar{Q}_{M,n}(Z, W, S) \) on \(A, W, \) and \(S \), and getting predicted values setting \(A = a \).

The estimate of \(\Psi(P) \) is obtained by solving \(\frac{1}{n} \sum_i \hat{D}_\Psi(O_i) = 0 \), where \(\hat{D}_{\Psi,n} \) is the EIC approximation as computed above. The variance of the EE estimate is the sample variance of the EIC approximation. The SDE, SIE, and their corresponding ICs and standard errors can be calculated as described in the stabilized IPTW estimator section. The conditions for consistency and asymptotic efficiency of this estimator are discussed in the appendix.
6.2 Estimator not imposing exclusion restrictions

This EE estimator solves the efficient influence curve (EIC) equation of the parameter \(\Psi(P) \) for the unrestricted model where \(M \) and \(Y \) may depend directly on \(A \). It will be inefficient under the restricted model where \(M \) and \(Y \) do not depend directly on \(A \). This EIC is given by

\[
D(P) = D_Y(P) + D_Z(P) + D_W(P), \quad \text{where} \\
D_Y(P) = (Y - Q_Y(M, Z, A, W)) \\
\times \frac{\hat{g}_{M|a^*, W, s}(M|W)p_Z(Z | A = a, W, S = 0)p_W(S = 0 | W)I(S = 1, A = a)}{g_M(M | Z, A, W, S = 1)p_Z(Z | A = a, W, S = 1)p_A(a | W, S = 1)p_W(S = 1 | W)P_S(S = 0)}, \\
D_Z(P) = (\hat{Q}_M(Z, A, W, S) - \hat{Q}_Z(a, W, S)) \frac{I(S = 0, A = a)}{p_A(a | W, S)p_S(S = 0)}, \quad \text{and} \\
D_W(P) = (\hat{Q}_Z(a, W, S) - \Psi(P)) \frac{I(S = 0)}{p_S(S = 0)} \quad (\text{notation is explained further below}).
\]

\[(5)\]

We approximate \(D_Y(P) \) as follows. First, we estimate \(\mathbb{E}[Y | M, Z, A, W] \) as \(\hat{Q}_{Y,n}(M, Z, A, W) \), which can be calculated using predicted values from a regression of \(Y \) on \(M, Z, A, W \) among those with \(S = 1 \). Each of the probabilities in \(D_Y(P) \) can be calculated using predicted probabilities from a logistic regression of the relevant conditional mean outcome models for \(M, Z, A, \) and \(S \). \(\hat{g}_{M|a^*, W, s}(M|W) \) can be estimated \(\hat{g}_{M|a^*, W, s}(M|W) = \sum_{z=0}^{1} P(M = 1|Z = z, A = a^*, W, S = s)P(Z = z|A = a^*, W, S = s) \).

We next approximate \(D_Z(P) \). To do so, we apply the stochastic intervention on \(\hat{Q}_{Y,n}(M, Z, A, W) \) via the computation \(\hat{Q}_{M,n}(Z, A, W, S) = \mathbb{E}_{\hat{g}_{M|a^*, W, s}}[\hat{Q}_{Y,n}(M, Z, A, W) | Z, A, W] \). Specifically, we can generate predicted values of \(\hat{Q}_{Y,n}(1, Z, A, W) \) and \(\hat{Q}_{Y,n}(0, Z, A, W) \) and then marginalize over \(\hat{g}_{M|a^*, W, s}(M|W) \): \(\sum_{m=0}^{1} \hat{Q}_{Y,n}(m, Z, A, W)\hat{g}_{M|a^*, W, s}(m|W) \). Next, we estimate \(\hat{Q}_{Z,n}(a, W, S) \) by regressing \(\hat{Q}_{M,n}(Z, A, W, S) \) on \(A, W, \) and \(S \), and getting predicted values setting \(A = a \).

The estimate of \(\Psi(P) \) is obtained by solving \(\frac{1}{n} \sum_i \hat{D}_n(O_i) = 0 \), where \(\hat{D}_n \) is the EIC approximation as computed above. The variance of the EE estimate is the sample variance of the EIC approximation. The SDE, SIE, and their corresponding ICs and standard errors can be calculated as described in the stabilized IPTW estimator section. The conditions for consistency and asymptotic efficiency of this estimator are discussed in the appendix.

7 Targeted minimum loss-based estimator

We now describe how to estimate \(\Psi(P) \) using targeted minimum loss-based estimation (TMLE). This estimation approach, which is just one of several TMLE approaches that could be used, uses sequential regression, updating the conditional outcome model at each stage to both solve the EIC equation while also lowering the empirical negative log-likelihood loss. The process is identical to a two time-point longitudinal intervention (10). Similar to
the EE estimator section, we describe two TMLE estimators of \(\Psi(P) \): 1) one that incorporates the exclusion restrictions on our statistical model, \(M \), that there is no direct effect of \(A \) on \(M \) or of \(A \) on \(Y \), and 2) another that does not impose those restrictions. We include R code for these estimators in the appendix. As in the previous sections, we describe model fitting using regression language for simplicity but note that machine learning can be used instead.

7.1 Estimator incorporating exclusion restrictions

This TMLE estimator solves the EIC equation of the parameter \(\Psi(P) \) for the restricted model where \(M \) and \(Y \) do not depend directly on \(A \).

Let \(\tilde{Q}_{Y,n}^{x}(M, Z, W) \) be an initial estimate of \(\tilde{E}[Y \mid M, Z, W] \). \(Q_{Y,n}^{0}(M, Z, W) \) can be estimated by predicted values from a regression of \(Y \) on \(M, Z, W \) among those with \(S = 1 \).

Next, we update that initial estimate using the weights

\[
H(M, Z, W, S) = \frac{\hat{g}_{M|a^*,W,s}(M|W) p_{Z}(Z \mid A = a, W, S = 0) p_{W}(S = 0 \mid W) I(S = 1)}{g_{M}(M \mid Z, W, S = 1) p_{Z}(Z \mid W, S = 1) p_{W}(S = 1 \mid W) P_{S}(S = 0)},
\]

which are approximated with \(\tilde{H}_{n}(M, Z, W, S) \). \(\tilde{Q}_{Y,n}^{0}(M, Z, W) \) is updated by performing a weighted parametric logistic regression of \(Y \) with \(\text{logit}(\tilde{Q}_{Y,n}^{0}(M, Z, W)) \) as an offset, intercept \(\epsilon_{Y,n} \), and weights \(\tilde{H}_{n}(M, Z, W, S) \). \(\epsilon_{Y,n} \) is the MLE fit of intercept \(\epsilon_{Y} \). The update is given by

\[
\tilde{Q}_{Y,n}^{x}(M, Z, W) = \tilde{Q}_{Y,n}^{0}(M, Z, W) \tilde{H}_{n}(M, Z, W, S).
\]

We then perform the stochastic intervention on \(\tilde{Q}_{Y,n}^{x}(M, Z, W) \) via the computation

\[
\tilde{Q}_{M,n}^{x}(Z, W, S) = \mathbb{E}_{g_{M|a^*,W,s}}[\tilde{Q}_{Y,n}^{x}(M, Z, W) \mid Z, W, S].
\]

This can be done by generating predicted values of \(\tilde{Q}_{Y,n}^{x}(1, Z, W) \) and \(\tilde{Q}_{Y,n}^{x}(0, Z, W) \) and then marginalizing over \(\hat{g}_{M|a^*,W,s}(M|W) = \sum_{m=0}^{1} \tilde{Q}_{Y,n}^{x}(m, Z, W) \tilde{H}_{n}(m, Z, W, S) \).

Next, we estimate \(\tilde{Q}_{Z,n}^{x}(a, W, S) \) by regressing \(\tilde{Q}_{M,n}^{x}(Z, W, S) \) on \(A, W, \) and \(S \), and getting predicted values setting \(A = a \). We then update this initial estimate using a second set of weights,

\[
H_{a}(a, W, S) = \frac{I(S = 0, A = a)}{P_{A}(A \mid W, S) P_{S}(S = 0)};
\]

in a weighted logistic regression of \(\text{logit}(\tilde{Q}_{M,n}^{x}(Z, W, S)) \) with \(\text{logit}(\tilde{Q}_{Z,n}^{x}(a, W, S)) \) as an offset, intercept \(\epsilon_{Z,n} \). \(\epsilon_{Z,n} \) is the MLE fit of intercept \(\epsilon_{Z} \). The updated estimate will be notated \(\tilde{Q}_{Z,n}^{x}(a, W, S) = \tilde{Q}_{Z,n}^{0}(a, W, S) \).

The empirical mean of \(\tilde{Q}_{Z,n}^{x}(a, W, S) \) among those for whom \(S = 0 \) is the TMLE estimate of \(\Psi(P) \). The influence curve approximation obtained by incorporating our updated model fits solves the empirical mean of the EIC equation (see Equation 6 in Section 6), replacing \(P \) with \(P_{n}^{*} \) defined by \(\tilde{Q}_{Y,n}^{x}(M, Z, W) \), \(\tilde{Q}_{M,n}(Z, W, S) \), \(\tilde{Q}_{Z,n}(a, W, S) \), our known \(P_{A}(A \mid W, S) \) and \(P_{S}(S = 0) \), our regression fit for \(P_{M}(M \mid Z, W, S) \), \(P_{Z}(Z \mid A, W, S) \) and \(P_{S|W}(S \mid W) \), and the empirical distribution as an estimate of \(P_{W}(W) \). We denote this EIC \(D_{n}^{*} \). The TMLE updating step also decreases the empirical loss of the model fits. The variance of the TMLE estimate is the sample variance of the EIC approximation. The SDE, SIE, and their corresponding ICs and standard errors can be calculated as described in the stabilized IPTW estimator section. The conditions for consistency and asymptotic efficiency of this estimator are discussed in the appendix.
7.2 Estimator not imposing exclusion restrictions

This TMLE estimator solves the EIC equation of the parameter $\Psi(P)$ for the unrestricted model where M and Y may depend directly on A. It will be inefficient under the restricted model where M and Y do not depend directly on A.

Let $\bar{Q}^0_{Y,n}(M, Z, A, W)$ be an initial estimate of $E[Y \mid M, Z, A, W]$. $\bar{Q}^0_{Y,n}(M, Z, A, W)$ can be estimated by predicted values from a regression of Y on M, Z, A, W among those with $S = 1$.

Next, we update that initial estimate using the weights, $H(M, Z, A, W, S)$, given in Equation 2, which are approximated with $\hat{H}_n(M, Z, A, W, S)$. $\bar{Q}^0_{Y,n}(M, Z, A, W)$ is updated by performing a weighted parametric logistic regression of Y with $\logit(\bar{Q}^0_{Y,n}(M, Z, A, W))$ as an offset, intercept ϵ_Y, and weights $\hat{H}_n(M, Z, A, W, S)$. $\epsilon_{Y,n}$ is the MLE fit of intercept ϵ_Y.

The update is given by $\bar{Q}^*_{Y,n}(M, Z, A, W) = \bar{Q}^0_{Y,n}(\epsilon_{Y,n})(M, Z, A, W)$.

We then perform the stochastic intervention on $\bar{Q}^*_{Y,n}(M, Z, A, W)$ via the computation $\bar{Q}^*_{M,n}(Z, A, W, S) = \mathbb{E}_{\hat{g}_{M|a^*,W,S}}[\bar{Q}^*_{Y,n}(M, Z, A, W) \mid Z, A, W, S]$. This can be done by generating predicted values of $\hat{Q}^*_{Y,n}(1, Z, A, W)$ and $\hat{Q}^*_{Y,n}(0, Z, A, W)$ and then marginalizing over $\hat{g}_{m|a^*,W,S}(M|W)$: $\sum_{m=0}^1 \hat{Q}^*_{Y,n}(m, Z, A, W)\hat{g}_{m|a^*,W,S}(m|W)$.

Next, we estimate $\bar{Q}^*_{Z,n}(a, W, S)$ by regressing $\hat{Q}^*_{M,n}(Z, A, W, S)$ on A, W, S, and getting predicted values setting $A = a$. The remainder of the steps for this TMLE are identical to those for the restricted TMLE in the above subsection.

8 Simulation

8.1 Overview

We compare finite sample performance of our three types estimators in estimating the transported SDE and transported SIE using simulation. For both TMLE and EE, we include the 1) versions that are efficient under the restricted model in which M and Y do not depend directly on A (henceforth TMLE efficient and EE efficient) and 2) versions that are more general in that they allow for the exclusion restriction not to hold but are inefficient under restricted model \mathcal{M} (henceforth TMLE general and EE general). We show estimator performance in terms of absolute bias, efficiency, 95% confidence interval (CI) coverage, root mean squared error (RMSE), and percent of estimates lying outside the bounds of the parameter space across 1,000 simulations. For calculating the efficiency and the 95% CI coverage, we use both the IC and 500 bootstrap replicates.

We consider two data-generating mechanisms (DGMs) within the structural causal model described in Section 2. The DGMs are detailed in Table 1 using the same notation as in Section 2.

8.2 Results

First, in Table 2 we show results under correct specification of all models for sample sizes of $N=5,000$, $N=500$, and $N=100$ using DGM 1. Results using alternative DGMs were similar and are shown in the appendix.
Table 1: Simulation data-generating mechanisms.

Data Generating Mechanism 1	Data Generating Mechanism 2
\(W_1 \sim \text{bernoulli} \)	\(W_1 \sim \text{bernoulli} \)
\(P(W_1 = 1) = 0.5 \)	\(P(W_1 = 1) = 0.5 \)
\(W_2 \sim \text{bernoulli} \)	\(W_2 \sim \text{bernoulli} \)
\(P(W_2 = 1) = \text{expit}(0.4 + 0.2W_1) \)	\(P(W_2 = 1) = \text{expit}(0.4 + 0.2W_1) \)
\(S \sim \text{bernoulli} \)	\(S \sim \text{bernoulli} \)
\(P(S = 1) = \text{expit}(3W_2 - 1) \)	\(P(S = 1) = \text{expit}(3W_2 - 1) \)
\(A \sim \text{bernoulli} \)	\(A \sim \text{bernoulli} \)
\(P(A = 1) = 0.5 \)	\(P(A = 1) = 0.5 \)
\(Z \sim \text{bernoulli} \)	\(Z \sim \text{bernoulli} \)
\(P(Z = 1) = \text{expit}(-0.1A - 0.2S + 0.2W_2 + 0.14AS + 0.2W_2S - 0.2AW_2S - 1) \)	\(P(Z = 1) = \text{expit}(-0.1A - 0.2S + 0.2W_2 + 0.14AS + 0.2W_2S - 0.2AW_2S - 1) \)
\(M \sim \text{bernoulli} \)	\(M \sim \text{bernoulli} \)
\(P(M = 1) = \text{expit}(1Z + 3ZW_2 + 0.2ZS - 0.2W_2S + 2W_2Z + 0.2S - 0.2ZW_2S - W_2 - 2) \)	\(P(M = 1) = \text{expit}(1Z + 3ZW_2 + 0.2ZS - 0.2W_2S + 2W_2Z + 0.2S - 0.2ZW_2S - W_2 - 2) \)
\(Y \sim \text{bernoulli} \)	\(Y \sim \text{bernoulli} \)
\(P(Y = 1) = \text{expit}(-6Z + 0.2ZW_2 + 2ZM + 2W_2M - 2W_2 + 4M + 1ZW_2M - 0.2) \)	\(P(Y = 1) = \text{expit}(\log(1.2) + \log(40)Z - \log(30)M - \log(1.2)W_2 - \log(40)W_2Z) \)

Table 2 shows that under correct parametric model specifications, all estimators result in consistent estimates with 95% CI coverage close to 95% for sample sizes of \(N=5,000 \) and \(N=500 \). Influence curve-based efficiency is close to 100% of the efficiency bound for both the efficient TMLE and EE estimators for all sample sizes. For the transported direct effect, efficiency is about 3 times the efficiency bound for the general TMLE and EE estimators and about 4 times the efficiency bound for the stabilized IPTW estimator. For the transported indirect effect, IC- and bootstrapped-based efficiencies are similar and close to the efficiency bound for the TMLE and EE estimators. The stabilized IPTW estimator has efficiencies about 70% larger than the efficiency bound. In the appendix, we review the theory underlying the empirical finding that the stabilized IPTW estimator is least efficient.

Performance of all estimators degrades with a smaller sample size of \(N=100 \). For this sample size, bias slightly increases, the estimates stray from the efficiency bound, and IC-based coverage generally decreases (though bootstrapping can recover some of this lost coverage by approximating the true variance of the estimator).
Table 2: Simulation results comparing estimators of the transported stochastic direct effect and transported stochastic indirect effect under DGM 1 and correct model specification for various sample sizes. 1,000 simulations. Estimation methods compared include stabilized inverse probability weighting estimation (IPTW), solving the estimating equation (EE), and targeted minimum loss-based estimation (TMLE). For TMLE and EE, we compare versions of the estimators that incorporate the exclusion restrictions in our statistical model (TMLE efficient, EE efficient) and versions that do not (TMLE general, EE general). Efficiency and 95% CI coverage are calculated separately using 1) the influence curve (IC) and 2) bootstrapping (boot). Bias and RMSE values are averages across the simulations.

Estimator	Bias	Efficiency	95% CI Coverage	RMSE	% Out of Bounds		
		IC	Boot				
Transported stochastic direct effect							
N=5000							
TMLE efficient	0.000	100.17	100.42	0.955	0.957	0.008	0
TMLE general	0.001	321.02	321.92	0.945	0.942	0.027	0
EE efficient	0.000	100.21	100.42	0.955	0.957	0.008	0
EE general	0.001	321.27	321.00	0.946	0.942	0.027	0
IPTW	0.000	412.67	388.11	0.954	0.945	0.033	0
N=500							
TMLE efficient	-0.004	120.17	105.16	0.946	0.957	0.028	0
TMLE general	-0.004	319.08	327.43	0.929	0.936	0.089	0
EE efficient	0.000	101.40	104.51	0.946	0.957	0.028	0
EE general	-0.004	321.97	316.56	0.947	0.935	0.088	0
IPTW	-0.001	428.43	419.16	0.951	0.942	0.110	0
N=100							
TMLE efficient	0.003	102.26	139.52	0.970	0.992	0.064	0
TMLE general	0.007	293.07	375.10	0.852	0.945	0.218	0
EE efficient	0.004	102.13	118.65	0.974	0.989	0.060	0
EE general	0.005	316.03	292.87	0.957	0.930	0.186	0
IPTW	0.009	442.80	456.03	0.909	0.922	0.267	0
Transported stochastic indirect effect							
N=5000							
TMLE efficient	0.000	99.98	100.46	0.942	0.942	0.004	0
TMLE general	0.000	101.75	101.99	0.942	0.942	0.004	0
EE efficient	0.000	100.01	100.46	0.942	0.942	0.004	0
EE general	0.000	101.69	101.95	0.942	0.943	0.004	0
IPTW	0.000	166.56	141.45	0.980	0.957	0.005	0
N=500							
TMLE efficient	-0.001	99.56	104.59	0.926	0.929	0.012	0
TMLE general	-0.001	101.74	106.99	0.928	0.935	0.012	0
EE efficient	-0.001	99.58	101.11	0.926	0.929	0.012	0
EE general	-0.001	101.94	103.39	0.932	0.930	0.012	0
IPTW	-0.001	177.68	156.98	0.948	0.936	0.018	0
N=100							
TMLE efficient	-0.003	93.01	132.95	0.878	0.944	0.033	0
TMLE general	-0.001	99.85	158.57	0.865	0.952	0.041	0
EE efficient	-0.003	93.03	113.13	0.878	0.924	0.033	0
EE general	-0.002	99.09	117.32	0.871	0.915	0.036	0
IPTW	0.002	167.51	206.17	0.812	0.867	0.062	0
Next, we show results under various model misspecifications in Table 3 for sample size N=5,000. We consider: 1) misspecification of the Y model, 2) misspecification of the Y and Z models, 3) misspecification of the Y and M models, 4) misspecification of the Y and S models, and 5) misspecification of the Z, M, and S models. We use DGM 2 for misspecification of the Y model and misspecification of the Y and M models. We use DGM 1 for misspecification of the Y and Z models, misspecification of the Y and S models, and misspecification of the Z, M, and S models. Full results for misspecified models under more DGMs and various sample sizes are shown in the appendix.

As derived from the robustness properties proven in the appendix, we expect the TMLE and EE estimators to be consistent if 1) the Y model is correctly specified or if 2) the Z, M, and S models are correctly specified. The stabilized IPTW estimator will be consistent only in the latter case: where the Z, M, and S models are correctly specified. Note that we assume A is randomly assigned, so we don’t examine misspecification of the A model. However, in cases where A is nonrandom, condition 2 above would change to require correct specification of the A, Z, M, and S models.

We see in Table 3 that, as expected, all estimators remain unbiased when the Y model is misspecified. Compared to the correctly specified case (Table 2, there is a slight reduction in efficiency, evidenced by efficiencies greater than 100% of the efficiency bound and slight overcoverage when using the IC as opposed to bootstrapping (Table 3).

When the Z, M, and S models are misspecified, the TMLE and EE estimators also remain unbiased, as expected, but the stabilized IPTW estimator is no longer consistent, resulting in 0% coverage of the transported SDE (Table 4). However, in this scenario, coverage of the TMLE and EE efficient estimators is anticonservative when using the IC, evidenced by efficiencies as low as 55% of the efficiency bound in for the transported SIE and coverage as low as 73%. This result is not unexpected—the EIC may no longer provide accurate inference under these misspecifications, because the misspecified models may bias the influence curve approximation. In this particular misspecified scenario, our influence curve approximation becomes a less variant mean-zero function of the observed data than our efficiency bound given by the true influence curve, causing poor coverage. In such instances of model misspecification, using the bootstrap can recover coverage (as long the fitting methods applied yield valid standard errors under the non-parametric bootstrap. For linear regressions, this is the case, but for data adaptive machine learning algorithms, such might not be the case (24)).

In the remaining model misspecifications shown in Table 3, none of the estimators are guaranteed to be unbiased. In the case where the Y and M models are misspecified, all three estimators perform poorly in estimating both the transported direct and indirect effects. Performances of the EE estimators are particularly poor in terms of bias and inefficiency. The marked inefficiency may be due, in part, to estimates lying outside the bounds of the parameter space. Indeed, we see that nearly 100% of the EE transported SDE estimates lie outside the parameter space. In contrast, even though the TMLE estimators solve the same influence curve, none of the TMLE estimates lie outside the parameter space, demonstrating its advantage as a substitution estimator.
Table 3: Simulation results comparing estimators of transported stochastic direct effect and transported stochastic indirect effect under various model misspecifications for sample size N=5,000. 1,000 simulations. Estimation methods compared include stabilized inverse probability weighting estimation (IPTW), solving the estimating equation (EE), and targeted minimum loss-based estimation (TMLE). For TMLE and EE, we compare versions of the estimators that incorporate the exclusion restrictions in our statistical model (TMLE efficient, EE efficient) and versions that do not (TMLE general, EE general). Bias and RMSE values are averages across the simulations. Efficiency and 95% CI coverage are calculated separately using 1) the influence curve (IC) and 2) bootstrapping (boot). The DGM used for each misspecification is noted below.

Estimator	Bias	Efficiency	95% CI Coverage	RMSE	% Out of Bounds		
	IC	Boot	IC	Boot			
Y model misspecified, DGM 2							
Transported stochastic direct effect							
TMLE efficient	0.000	191.06	118.82	0.999	0.965	0.014	0
TMLE general	0.000	354.81	288.79	0.984	0.954	0.035	0
EE efficient	0.000	240.26	126.67	0.999	0.968	0.015	0
EE general	0.000	374.95	291.49	0.992	0.957	0.035	0
IPTW	0.000	300.52	276.72	0.973	0.957	0.034	0
Transported stochastic indirect effect							
TMLE efficient	0.000	186.27	102.20	0.995	0.914	0.002	0
TMLE general	0.000	239.35	186.41	0.986	0.942	0.004	0
EE efficient	0.000	237.87	103.75	0.997	0.919	0.002	0
EE general	0.000	302.49	216.48	0.991	0.945	0.004	0
IPTW	0.000	223.45	174.48	0.988	0.941	0.003	0
Y and Z models misspecified, DGM 1							
Transported stochastic direct effect							
TMLE efficient	0.032	75.49	77.35	0.000	0.000	0.032	0
TMLE general	0.188	973.02	463.03	0.223	0.003	0.192	0
EE efficient	0.033	80.22	81.92	0.000	0.000	0.034	0
EE general	0.545	1,112.09	1,008.79	0.000	0.000	0.552	0
IPTW	0.108	700.28	456.29	0.574	0.204	0.115	0
Transported stochastic indirect effect							
TMLE efficient	-0.014	192.60	92.53	0.380	0.004	0.014	0
TMLE general	-0.040	492.45	143.03	0.185	0.000	0.040	0
EE efficient	0.018	307.60	121.67	0.767	0.029	0.019	0
EE general	0.066	911.65	686.60	0.447	0.231	0.072	0
IPTW	-0.031	439.30	160.87	0.430	0.004	0.031	0
Y and M models misspecified, DGM 2							
Transported stochastic direct effect							
TMLE efficient	-0.272	280.08	149.17	0.000	0.000	0.273	0
TMLE general	-0.272	698.69	321.77	0.147	0.001	0.276	0
EE efficient	-1.110	852.67	735.38	0.000	0.000	1.118	99.2
EE general	-1.111	1,093.33	877.83	0.000	0.000	1.121	98.4
IPTW	-0.236	589.90	284.02	0.090	0.000	0.240	0
Transported stochastic indirect effect							
TMLE efficient	0.104	249.26	173.89	0.000	0.000	0.106	0
TMLE general	0.103	370.51	279.70	0.036	0.016	0.106	0

Continued on next page
Table 3 – continued from previous page

Estimator	Bias	Efficiency	95% CI Coverage	RMSE	% Out of Bounds		
		IC	Boot	IC	Boot		
EE efficient	0.135	336.39	227.03	0.000	0.000	0.137	0
EE general	0.137	535.91	413.33	0.054	0.016	0.141	0
IPTW	0.061	279.01	200.78	0.197	0.090	0.063	0
Transported stochastic direct effect							
TMLE efficient	-0.164	285.91	168.14	0.000	0.000	0.165	0
TMLE general	-0.164	511.22	399.63	0.019	0.010	0.167	0
EE efficient	-0.220	415.64	191.91	0.000	0.000	0.220	0
EE general	-0.218	699.90	586.82	0.029	0.023	0.224	0
IPTW	-0.067	404.82	322.51	0.467	0.319	0.073	0
Transported stochastic indirect effect							
TMLE efficient	0.222	507.95	186.55	0.000	0.000	0.223	0
TMLE general	0.222	600.12	343.91	0.000	0.000	0.222	0
EE efficient	0.278	1,033.84	216.14	0.000	0.000	0.279	0
EE general	0.278	1,201.77	675.26	0.000	0.000	0.279	0
IPTW	0.278	520.31	337.87	0.000	0.000	0.278	0
Z, M, and S models misspecified, DGM 1							
Transformed stochastic direct effect							
TMLE efficient	0.000	98.78	100.01	0.956	0.960	0.008	0
TMLE general	0.001	228.37	231.43	0.939	0.941	0.020	0
EE efficient	0.000	98.80	100.03	0.956	0.960	0.008	0
EE general	0.001	228.50	203.24	0.966	0.942	0.018	0
IPTW	0.254	396.11	406.66	0.000	0.000	0.256	0
Transformed stochastic indirect effect							
TMLE efficient	0.001	54.95	100.51	0.727	0.938	0.010	0
TMLE general	0.001	129.68	136.04	0.879	0.920	0.014	0
EE efficient	0.000	54.95	100.46	0.732	0.939	0.010	0
EE general	0.001	130.08	137.03	0.891	0.930	0.014	0
IPTW	0.014	301.92	123.87	0.976	0.716	0.018	0

9 Conclusion

In this paper, we defined and identified parameters that transport stochastic direct and indirect mediating effects from a source population (\(S = 1 \)) to a new, target population (\(S = 0 \)). Identification of such parameters rely on the typical sequential randomization and positivity assumptions of other stochastic mediation effects \([22, 25, 27]\) as well as a common outcome model assumption, described previously for transport estimators \([20]\), which can be tested nonparametrically \([12]\). Such parameters enable the prediction of mediating effects in new populations based on data about the mediation mechanism in a source population and the differing distributions of compositional characteristics between the two populations. Thus, transport SDE and SIE parameters contribute to understanding the how and why interventions may work differently and/or have differing effects when applied to new populations.

We proposed three estimation approaches for such effects: a stabilized IPTW estimator, an estimating equation approach, and a TMLE approach. For the EE and TMLE approaches, we describe a version of each estimator that is efficient under a statistical model...
with exclusion restrictions such that A does not directly affect M or Y, and another version that is efficient under a statistical model without those restrictions such that A can directly affect M and Y. The EE and TMLE estimators solve the EIC for a particular statistical model, which results in double robustness, meaning that they are unbiased if one either consistently estimates the Y model or Z, M, S models. The TMLE estimator has the additional advantage of staying within the bounds of the parameter space by virtue of being a substitution estimator. We demonstrated the finite sample advantage of staying within the parameter bounds in a simulation study; in a particularly challenging scenario, nearly all of the EE estimates were outside of the parameter space but the TMLE estimates stayed within bounds. The simulation study also demonstrated that, as expected, the stabilized IPTW estimator is less efficient than the EE and TMLE estimators under correct model specification and in many scenarios where models are misspecified.

We also saw empirical evidence that, even in cases where robustness properties guarantee estimator consistency, the EIC may no longer provide accurate inference when models are misspecified. If parametric models are used, as in our simulation, the bootstrap can be used to recover appropriate coverage in such scenarios. However, the bootstrap is not an appropriate strategy if data-adaptive methods are used in model fitting. An alternative approach is to target the nuisance parameters of the IC (e.g., g_M, g_Z, g_S, etc.) in addition to the parameter of interest in a TMLE. Applying such extra targeting to TMLE estimators we describe here is an area for future work.

To facilitate use of these methods, we include commented R code for implementing them in the appendix.

The estimators we propose are limited in that they consider a stochastic intervention on mediator, M, that is assumed known and estimated from observed data. However, we plan to extend them to a true, unknown stochastic intervention in the future. Another limitation is that the parameters are only identified if one assumes a common outcome model across the source and target populations. There will be some research questions for which it is not possible to establish evidence for or against this assumption, as in questions about predicting a long-term outcome in a new population. However, when the research question instead focuses on establishing the extent to which mechanisms are shared across populations, and the full set of data $O = (S, W, A, Z, M, Y)$ is observed for both populations, one can empirically test whether there is evidence against such a shared outcome model.

In the main text, we focused on transporting mediation estimates where an instrument, A, was statically intervened on and mediator M was stochastically intervened on. Moreover, we were primarily concerned with a statistical model that imposed instrumental variable assumptions such as the exclusion restriction assumption. However, we describe how each estimator can be easily modified to accommodate statistical models that do not impose instrumental variable assumptions, allowing for a direct effect of A on M and of A on Y. Extending our proposed estimators for data generating mechanisms that do not include an intermediate variable, Z is straightforward. Thus, our transport mediation estimators can be applied to a wide-range of common data generating mechanisms.
References

[1] Angrist, J. D., Imbens, G. W. and Rubin, D. B. (1996) Identification of causal effects using instrumental variables. *Journal of the American statistical Association*, **91**, 444–455.

[2] Bareinboim, E. and Pearl, J. (2016) A general algorithm for deciding transportability of experimental results. *Journal of causal Inference*, **1**, 107–134.

[3] Benkeser, D., Carone, M., Laan, M. V. D. and Gilbert, P. (2017) Doubly robust non-parametric inference on the average treatment effect. *Biometrika*, **104**, 863–880.

[4] Cole, S. R. and Stuart, E. A. (2010) Generalizing evidence from randomized clinical trials to target populations: The actg 320 trial. *American journal of epidemiology*, **172**, 107–115.

[5] Frangakis, C. (2009) The calibration of treatment effects from clinical trials to target populations. *Clinical trials (London, England)*, **6**, 136.

[6] Kling, J. R., Liebman, J. B. and Katz, L. F. (2007) Experimental analysis of neighborhood effects. *Econometrica*, **75**, 83–119.

[7] van der Laan, M. (2016) A generally efficient targeted minimum loss based estimator. *U.C. Berkeley Division of Biostatistics Working Paper Series*, **343**. URL http://biostats.bepress.com/ucbbiostat/paper343.

[8] van der Laan, M. and Rose, S. (2011) *Targeted Learning*. New York: Springer.

[9] van der Laan, M. and Rubin, D. (2006) Targeted maximum likelihood learning. *U.C. Berkeley Division of Biostatistics Working Paper Series*. URL http://biostats.bepress.com/ucbbiostat/paper213.

[10] van der Laan, M. J. and Gruber, S. (2012) Targeted minimum loss based estimation of causal effects of multiple time point interventions. *The international journal of biostatistics*, **8**.

[11] Levy, J. (2019) Tutorial: Deriving the efficient influence curve for large models. *arXiv preprint arXiv:1903.01706*.

[12] Luedtke, A. R., Carone, M. and van der Laan, M. J. (2015) An omnibus nonparametric test of equality in distribution for unknown functions. *arXiv preprint arXiv:1510.04195*.

[13] Miettinen, O. S. (1972) Standardization of risk ratios. *American Journal of Epidemiology*, **96**, 383–388.

[14] Neyman, J. S. (1923) On the application of probability theory to agricultural experiments. essay on principles. section 9.(translated and edited by dm dabrowska and tp speed, statistical science (1990), 5, 465-480). *Annals of Agricultural Sciences*, **10**, 1–51.

[15] Pearl, J. (2009) *Causality*. Cambridge university press.
[16] Pearl, J. and Bareinboim, E. (2014) External validity: From do-calculus to transportability across populations. *Statistical Science*, 579–595.

[17] Pearl, J. et al. (2009) Causal inference in statistics: An overview. *Statistics surveys*, 3, 96–146.

[18] Rubin, D. B. (1974) Estimating causal effects of treatments in randomized and nonrandomized studies. *Journal of educational Psychology*, 66, 688.

[19] Rudolph, K. E., Goin, D. E., Paksarian, D., Crowder, R., Merikangas, K. R. and Stuart, E. A. (2018) Causal mediation analysis with observational data: Considerations and illustration examining mechanisms linking neighborhood poverty to adolescent substance use. *American journal of epidemiology*.

[20] Rudolph, K. E. and van der Laan, M. J. (2017) Robust estimation of encouragement-design intervention effects transported across sites. *Journal of the Royal Statistical Society Series B Statistical Methodology*, 79, 1509–1525.

[21] Rudolph, K. E., Schmidt, N. M., Crowder, R., Galin, J., Glymour, M. M., Ahern, J. and Osypuk, T. L. (2018) Composition or context: using transportability to understand drivers of site differences in a large-scale housing experiment. *Epidemiology*, 29, 199–206.

[22] Rudolph, K. E., Sofrygin, O., Zheng, W. and van der Laan, M. J. (2017) Robust and flexible estimation of data-dependent stochastic mediation effects: a proposed method and example in a randomized trial setting. *Epidemiologic Methods*, In Press.

[23] Stuart, E. A., Cole, S. R., Bradshaw, C. P. and Leaf, P. J. (2011) The use of propensity scores to assess the generalizability of results from randomized trials. *Journal of the Royal Statistical Society: Series A (Statistics in Society)*, 174, 369–386.

[24] Van Der Vaart, A. W. and Wellner, J. A. (1996) Weak convergence. In *Weak convergence and empirical processes*, 16–28. Springer.

[25] VanderWeele, T. J. and Tchetgen Tchetgen, E. J. (2017) Mediation analysis with time varying exposures and mediators. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 79, 917–938.

[26] Wright, S. (1921) Correlation and causation. *Journal of agricultural research*, 20, 557–585.

[27] Zheng, W. and van der Laan, M. (2017) Longitudinal mediation analysis with time-varying mediators and exposures, with application to survival outcomes. *Journal of Causal Inference*. 17
A Identifiability

To identify the stochastic direct effect and stochastic indirect effect we will need to impose additional assumptions on \mathcal{M}^F and \mathcal{M}, listed below.

1. Positivity: For all S and W we need a positive probability of assigning any level of A. For all combinations of $S, W,$ and $A=a$, we have a positive probability of any level of Z. For $S=1$ and all combinations of Z and W we need a positive probability of any level of the mediator, M.

2. Common outcome model across sites: $\mathbb{E}[Y | M, Z, W, S=1] = \mathbb{E}[Y | M, Z, W, S=0]$. The null hypothesis of a common outcome model may be tested nonparametrically \cite{12}.

3. Sequential Randomization: $Y_{am} \perp A | W, S$ and $Y_{am} \perp M | W, Z, S$. This is akin to a two-time point longitudinal intervention where at the first time point, we statically intervene to set the treatment, $A=a$, and at the second time point, we stochastically intervene on the mediator, M.

Theorem A.1.

\[
\Psi(P) = \Psi^F(P_{UX}) = \mathbb{E}\left[\mathbb{E}\left[\mathbb{E}[Y | M, Z, W, S=1] | W, Z \right] | W, a, S=0, S=0 \right]
\]

Proof:

\[
\Psi^F(P_{UX}) = \mathbb{E}\left[Y_{a,\hat{g}_M[a^*,W,s]} | S=0 \right]
\]

tower law $\mathbb{E}\left[Y_{a,\hat{g}_M[a^*,W,s]} | Z, A, W \right] | S=0$

assumption 2 $\mathbb{E}\left[\sum_m \mathbb{E}[Y_{am}\hat{g}_M[a^*,W,s] | M=m, Z, A, W, S=1] | S=0 \right]
\]

tower law $\mathbb{E}\left[\sum_m \mathbb{E}[Y_{am}\hat{g}_M[a^*,W,s] | M=m, Z, A, W, S=1] | A=a, W, S=0, S=0 \right]
\]

assumption 3 $\mathbb{E}\left[\sum_m \mathbb{E}[Y_{am}\hat{g}_M[a^*,W,s] | M=m, Z, A=a, W, S=1] | A=a, W, S=0, S=0 \right]
\]

The conditional expectations are well-defined due to assumption 1 above.
B Estimator derivations

B.1 Stabilized inverse probability of treatment weighted estimator

This estimator solves the estimating equation \(P_n \hat{H}_n(Y - \Psi_n) = 0 \), where \(\hat{H}_n(M, Z, A, W, S) \) is an estimate of the true \(H \) given by

\[
H(M, Z, A, W, S) = \frac{\hat{g}_{M|a^*, W, a}(M \mid W) p_Z(Z \mid A, W, S = 0) p_{S|W}(S = 0 \mid W) I(S = 1, A = a)}{p_M(M \mid Z, W, S) p_Z(Z \mid A, W, S) p_A(A \mid W, S) p_{S|W}(S \mid W) P_S(S = 0)}.
\]

(8)

To solve the estimating equation, we find an initial estimate, \(\Psi^0_n = P_n \hat{H}_n Y \), i.e., the standard unstabilized IPTW estimator.

\[
\Psi^1_n - \Psi^0_n = - \left(\frac{d}{d\Psi} P_n \hat{H}_n(Y - \Psi^0_n) \right)^{-1} P_n \hat{H}_n(Y - \Psi^0_n),
\]

where our stabilized estimator is then \(\Psi^{IPTW}_n = \Psi^1_n = P_n \hat{H}_n Y / P_n \hat{H}_n \).

B.1.1 Efficiency

Theorem B.1. Assume

1. A1: \(\|H - \hat{H}_n\|_{L^2(P_0)} = o_P(n^{-0.5}) \)

2. A2: \(\hat{H}_n \) and \(\hat{D}_n \) are in a \(P_0 \) Donsker class.

Let \(IC_{IPTW} \) be the true influence curve or \(H(Y - \Psi(P_0))/P_0 H = H(Y - \Psi(P_0)) \), noting \(P_0 H = 1 \) for the true \(H \). Then \(\sqrt{n}(\Psi^{IPTW}_n - \Psi(P_0)) \) converges in distribution to \(\sqrt{n} \) times the empirical mean of the true influence curve. In this case, our standard error times \(\sqrt{n} \) will converge to the standard deviation of \(IC_{IPTW} \).

Proof:

\[
\Psi^{IPTW}_n - \Psi(P_0) = \Psi^0_n + P_n \hat{D}_n - \Psi(P_0)
= \Psi^0_n + (P_n - P_0) \hat{D}_n + P_0 \hat{D}_n - \Psi(P_0)
\]

By A2 \(\sqrt{n}(P_n - P_0) \hat{D}_n \) converges in distribution to a normal distribution of mean 0 and variance equal to the true variance of \(IC_{IPTW} \). Thus, we must show \(\Psi^0_n + P_0 \hat{D}_n - \Psi(P_0) = o_P(1/\sqrt{n}) \) under A1.

\[
\Psi^0_n + P_0 \hat{D}_n - \Psi(P_0) = P_n \hat{H}_n Y - P_0 H Y + \frac{P_0 \hat{H}_n Y}{P_n \hat{H}_n} - \frac{P_n \hat{H}_n P_0 \hat{H}_n Y}{P_n \hat{H}_n}
= (P_n - P_0) \frac{\Psi^0_n}{P_n \hat{H}_n} + P_0(\hat{H}_n - H) Y + \frac{P_0 \hat{H}_n Y}{P_n \hat{H}_n} \left((P_0 - P_n) \hat{H}_n + P_0 (H - \hat{H}_n) \right)
= P_0(\hat{H}_n - H) Y + \frac{(P_0 - P_n) \hat{H}_n Y (P_0 - P_n) \hat{H}_n}{P_n \hat{H}_n} + \frac{P_0 \hat{H}_n Y}{P_n \hat{H}_n} P_0 (H - \hat{H}_n)
= P_0(\hat{H}_n - H) Y + \frac{(P_0 - P_n) \hat{H}_n Y ((P_0 - P_n) (\hat{H}_n - H) + H)}{P_n \hat{H}_n} + \frac{P_0 \hat{H}_n Y}{P_n \hat{H}_n} P_0 (H - \hat{H}_n)
\]

(9)
We can notice in Equation 9 that the first term is bounded above by $C\|\hat{H}_n - H\|_{L^2(P_0)}$ for some constant C. By A2, the second term is $o_P(1/\sqrt{n})$. By A1 the third term is also $o_P(1/\sqrt{n})$.

Theorem B.2. The IPTW estimator’s limiting variance under the assumptions of theorem B.1.1 is larger than that of the TMLE or EE under well-specified models, if the model is non-parametric. If we use the TMLE and EE incorporating the efficient influence curve for the restricted model, then these are even more efficient.

Proof:
Let’s assume the unrestricted model, M^{np}. We project the IPTW influence curve onto the tangent space subspace, $T_{Y\times S}$ consisting of $\{\gamma(O) | E[\gamma(O) | M, Z, A, W, S] = 0\}$ via the formula

$$\prod (IC_{\text{IPTW}}\|T_{Y\times S}) = IC_{\text{IPTW}}(O) - E[IC_{\text{IPTW}}(O) | M, Z, A, W, S] = D_Y^*(O)$$

Likewise we have $\prod (IC_{\text{IPTW}}(O)|T_Z) = E[IC_{\text{IPTW}}(O) | Z, A, W, S] - E[IC_{\text{IPTW}}(O) | A, W, S] = D_Z^*(O)$, where T_Z is the tangent space consisting of $\{\gamma(O) | E[\gamma(O) | A, W, S] = 0\}$. The empirical mean of $\prod (IC_{\text{IPTW}}(O)|T_S) = E[IC_{\text{IPTW}}(O) | W] - E[IC_{\text{IPTW}}(O) | W]$ is the empirical mean of $D_Y^*(O)$, the T_S component of the efficient influence curve for M^{np}. We have non-trivial projections of IC_{IPTW} onto T_M and T_A. Since the asymptotic variance of $IC_{\text{IPTW}}(O)$ is a sum of the variances of its orthogonal components, it must exceed that of the EE and TMLE estimators, and the proof is complete.

B.1.2 Robustness
The IPTW estimator requires all models for M, Z, A and S to be estimated at parametric rates in order to be consistent.

B.2 Estimating equation estimator

B.2.1 Derivation of efficient influence curve for model without exclusion restrictions
First we derive the efficient influence curve (EIC) for the less restricted case where A may directly affect M and Y. For more information on deriving an efficient influence curve in general, we refer the reader to a tutorial by Levy, 2019 (11). We will also allow our treatment mechanism not to be known, which will have no effect on the derivation but means that the EIC is applicable in situations when treatment is not randomly assigned.

Theorem B.3. Consider a non-parametric model or semiparametric model with one or both the treatment and mediator mechanisms known (mechanisms for A and M). Consider the parameter defined by

$$\Psi(P) = E\left[\sum_m E[Y_{\hat{g}_M(a, W, S)}(m) | W] | M = m, W, Z, A = a, S = 1 \right] | A = a, W, S] | S = 0$$
where the expectations are taken with respect to \(P \). Then the efficient influence curve is given by
\[
D^*(P)(O) = D_Y^*(P)(O) + D_Z^*(P)(O) + D_W^*(P)(O)
\]

where
\[
D_Y^*(P)(O) = (Y - \mathbb{E}[Y \mid M, Z, A, W]) \times \\
g_M^{a,W}(M \mid W)p_Z(Z \mid A, W, S = 0) p_{S\mid W}(S = 0 \mid W) I(S = 1, A = a) / g_M(M \mid Z, A, W, S) p_Z(Z \mid A, W, S) p_{A \mid W, S}(A \mid W, S) p_{S\mid W}(S \mid W) p_S(S = 0)
\]
\[
D_Z^*(P)(O) = (\bar{Q}_M(Z, A, W, S) - \bar{Q}_Z(a, W, S)) I(S = 0, A = a) / p_{A \mid W, S} p_S(S = 0)
\]
\[
D_W^*(P)(O) = (\bar{Q}_Z(a, W, S) - \Psi(P)) I(S = 0) / p_S(S = 0)
\]

Proof: The density factorizes as follows: \(p(O) = p_{Y \times S}(Y \times \gamma \mid M, Z, A, W, S)p_M(M \mid Z, A, W, S)p_Z(Z \mid A, Z, W, S)p_A(A \mid W, S)p_W(S \mid W) p_S(S) \)
This means \(p_{\gamma}(O) = p_{Y \times S}(Y \times \gamma \mid M, Z, A, W, S)p_{M,\gamma}(M \mid Z, A, W, S)p_{Z,\gamma}(Z \mid A, W, S)p_{A,\gamma}(A \mid W, S)p_{W,S}(W \mid S)p_S(S) \)

\[\frac{d}{de}(p_{\gamma}(Y \times S \mid M, Z, A, W, S)) \bigg|_{e=0} = (\gamma(0) - \mathbb{E}[\gamma(O) \mid M, Z, A, W, S]) p_{Y \times S}(Y \times S \mid M, Z, A, W, S) \quad (10) \]
\[\frac{d}{de}(p_{Z,\gamma}(Z \mid A, W, S)) \bigg|_{e=0} = (\mathbb{E}[\gamma(O) \mid Z, A, W, S] - \mathbb{E}[\gamma(O) \mid A, W, S]) p_{Z}(Z \mid A, W, S) \quad (11) \]
\[\frac{d}{de}(p_{W,S}(W \mid S)) \bigg|_{e=0} = (\mathbb{E}[\gamma(O) \mid W, S] - \mathbb{E}[\gamma(O) \mid S]) p_{W,S}(W \mid S) \quad (12) \]

Our estimand, which identifies our parameter of interest (see Section 3 of the main text) is given by
\[
\Psi(P) = \int y p_Y(y \mid m, z, a, w, s = 1) \bar{g}_{M,a,W,s}(m \mid a, w, s = 0) p_{W,S}(w \mid s = 0) dv(y, m, z, w)
\]

We then take the pathwise derivative for a path along score, \(\gamma \). We note that this derivative is unaffected by knowledge of the treatment mechanism, \(E[A \mid S, W] \), or the mediator mechanism, \(E[M \mid Z, A, W, S] \), due to the estimand not depending on these models as well as the fact that scores, \(\gamma_A \) and \(\gamma_M \) are orthogonal (have 0 covariance) to \(\gamma_Y, \gamma_Z, \gamma_W \) in the Hilbert Space \(L^2(P) \). This is why for a semi-parametric model where the treatment mechanism is known, the efficient influence curve will be the same as that for \(\mathcal{M}^{op} \).

\[\frac{d}{de}\Psi(P) \bigg|_{e=0} = \left[\frac{d}{de} \int y p_Y(y \mid m, z, a, w, s = 1) \bar{g}_{M,a,W,s}(m \mid a, w, s = 0) p_{W,S}(w \mid s = 0) dv(y, m, z, w) \bigg|_{e=0} \right] \]
\[+ \frac{d}{de} \int y p_Y(y \mid m, z, a, w, s = 1) \bar{g}_{M,a,W,s}(m \mid a, w, s = 0) p_{W,S}(w \mid s = 0) dv(y, m, a, z, w) \bigg|_{e=0} \]
\[+ \frac{d}{de} \int y p_Y(y \mid m, z, a, w, s = 1) \bar{g}_{M,a,W,s}(m \mid a, w, s = 0) p_{W,S}(w \mid s = 0) dv(y, m, a, z, w) \bigg|_{e=0} \]

The first term in (13)
\[
\frac{d}{de} \int \left(\left. g_{M|a^*, W,s} (m \mid w) p_Z (z \mid x = a, w, s = 0) p_{W \mid S} (w \mid s = 0) \right|_{e=0} \right) dv(y, m, z, w)
\]
\[
= \int \frac{d}{de} \left(\left. g_{M|a^*, W,s} (m \mid w) \right|_{e=0} \right) dv(y, m, z, w)
\]
\[
= \int \left(\left. g_{M|a^*, W,s} (m \mid w) \right|_{e=0} \right) dv(y, m, z, w)
\]
\[
\frac{I(s = 1, x = a)}{p_A (x \mid w, s)} \int_{e=0} p_{W \mid S} (w \mid s) p_S (s = 1) \int \left(\left. g_{M|a^*, W,s} (m \mid w) \right|_{e=0} \right) dv(y, m, z, w, s)
\]

where

\[
D_Y^*(P)(O) = (Y - E[Y \mid M, Z, A, W]) \frac{\hat{g}_{M|a^*, W,s} (M \mid W)}{g_M (M \mid Z, A, W, S)} p_Z (Z \mid A, W, S = 0) p_{S \mid W} (S = 0 \mid W) I(S = 1, A = a)
\]

The reader may notice \(D_Y^*(P)(O)\) is not a mean 0 function of \(Y \mid M, Z, W\) because it also depends on the variable, \(A\). Hence, it is not an element of the tangent space under the restricted model, \(\mathcal{M}\), that incorporates the instrumental variable exclusion restrictions as described in Section 2 of the main text, which is necessarily a proper subspace of \(L^2(P)\) for \(P \in \mathcal{M}^{\text{up}}\). Therefore, \(D_Y^*(P)(O)\) has an extra orthogonal component in addition to the efficient influence curve under \(\mathcal{M}\), making its variance necessarily bigger than the lower bound under model \(\mathcal{M}\). This is why the estimators using \(D_Y^*(P)(O)\) (the EE and TMLE estimators) are not asymptotically efficient for model, \(\mathcal{M}\) but are so for \(\mathcal{M}^{\text{up}}\).

The second term in [13]:

\[
\frac{d}{de} \int \left(\left. g_{M|a^*, W,s} (m \mid w) p_Z (z \mid x = a, w, s = 0) p_{W \mid S} (w \mid s = 0) \right|_{e=0} \right) dv(y, m, z, w)
\]
\[
= \int \frac{d}{de} \left(\left. g_{M|a^*, W,s} (m \mid w) \right|_{e=0} \right) dv(y, m, z, w)
\]
\[
= \int \left(\left. g_{M|a^*, W,s} (m \mid w) \right|_{e=0} \right) dv(y, m, z, w)
\]
\[
\frac{I(s = 1, x = a)}{p_A (x \mid w, s)} \int_{e=0} p_{W \mid S} (w \mid s) p_S (s = 1) \int \left(\left. g_{M|a^*, W,s} (m \mid w) \right|_{e=0} \right) dv(y, m, z, w, s)
\]

where

\[
D_Y^*(P)(O) = (Y - E[Y \mid M, Z, A, W]) \frac{\hat{g}_{M|a^*, W,s} (M \mid W)}{g_M (M \mid Z, A, W, S)} p_Z (Z \mid A, W, S = 0) p_{A \mid W, S} (A \mid W, S) p_{S \mid W} (S = 1 \mid W) p_S (s = 0) \int dP(o)
\]
We substitute
\[\tilde{Q}_M(z, x, w) = \mathbb{E}_{\hat{g}_{M|a^*, W,s}}(\mathbb{E}[Y \mid M, A, Z, W] \mid z, x, w, s = 1) \]
\[\tilde{Q}_Z(x, w, s) = \mathbb{E}_{P_{Z|A,W,S}}[\mathbb{E}_{\hat{g}_{M|a^*, W,s}}(\tilde{Q}_M(Z, A, W) \mid x, w, s)] \]
and since \(x \) represents the treatment, \(A \), in the integrals above, we get
\[
D^*_Z(P)(O) = (\tilde{Q}_M(Z, A, W) - \tilde{Q}_Z(A, W, S)) \frac{I(S=0, A=a)}{\rho_A(A|W,S)p_Z(S=0)}.
\]
The third term in [12] is the conditional expectation of the treatment mechanism given \(z, w, s \), and \(S, \delta \),
\[
\frac{d}{d\epsilon} \int yp y(y \mid m, z, a, w, s = 1) \hat{g}_{M|a^*, W,s}(m \mid w)p_Z(z \mid a, w, s = 0) p_{W|S,s}(w \mid s = 0) dw(y, m, z, w) \bigg| \epsilon = 0
\]
\[= \int yp y(y \mid m, z, w) \hat{g}_{M|a^*, W,s}(m \mid w)p_Z(z \mid a, w, s) \frac{d}{d\epsilon} p_{W|S,s}(w \mid s) \bigg| \epsilon = 0 \rho_Z(s) dv(y, m, z, w, s)
\]
\[= \int S(o) (\tilde{Q}_Z(x = a, w, s) - \Psi(P)) \frac{I(s = 0)}{\rho_Z(s = 0)} dP(o)
\]
\[= (\gamma, D^*_W)_{I^*_Z(P)} \]
where \(D^*_W(P)(O) = (\tilde{Q}_Z(A = a, W, S) - \Psi(P)) \frac{I(S=0)}{\rho_Z(S=0)} \)
Thus the efficient influence curve is the sum of its orthogonal components:
\[
D^*(P)(O) = D^*_Y(P)(O) + D^*_Z(P)(O) + D^*_W(P)(O)
\]

B.2.2 Derivation of efficient influence curve for model with exclusion restrictions

Next, we derive the EIC for the model that restricts \(A \) to affect \(M \) and \(Y \) only through \(Z \). Similar to the above subsection, we allow our treatment mechanism not to be known.

Theorem B.4. The efficient influence curve for our restricted model, where \(M \) and \(Y \) do not depend directly on \(A \), is given by
\[
D^*(P)(O) = D^*_{Y,r}(P)(O) + D^*_Z(P)(O) + D^*_W(P)(O)
\]
where
\[
D^*_{Y,r}(P)(O) = \left(y - \mathbb{E}[y \mid m, z, w] \right) \frac{\hat{g}_{M|a^*, W,s}(m \mid w)p_Z(z \mid a_0, w, s = 0)p_{S|W}(s = 0 \mid w)I(s = 1)}{g_{M,r}(m \mid z, w, s)p_{Z|W,S}(z \mid w, s)p_{S|W}(s \mid w)\rho_S(s = 0)}
\]

Proof:
We can note that our only task here is to project \(D^*_r(P) \), our component of the influence curve in \(T_Y \), onto the subspace of \(T_Y \) given by
\[
T_Y = \{ \gamma : \mathbb{E}(\gamma(O) \mid Y, S, M, Z, W, S) = 0, \mathbb{E}(\gamma(O))^2 < \infty \}.
\]
\(\rho_Y \) is the conditional density of \(y \) given \(m, z, w \) and \(p_{M,r} \) is the conditional density of \(m \) given \(z, w, s \) in the restricted model, i.e. we don’t put the instrument, \(a \), in
those conditional statements as that is the model assumption. We remind the reader that a "bar" signifies the variable and all past variables as in, $\bar{M} = m, z, x, w, s$.

Notice the following:

$$
\begin{align*}
p_{A \mid Y, S, r}(x \mid ys, m, z, w, s = 1) &= \frac{p_{A,r}(x, ys, m, z, w, s = 1)}{p_{O/A}(ys, m, z, w, s = 1)} \\
&= \frac{p_{Y,r}(y \mid m, z, w)p_{M,r}(m \mid z, w, s = 1)p_{\bar{Z}}(z, x, w, s)}{p_{Z/A}(z, w, s = 1)} \\
&= \frac{p_{\bar{Z}}(z, x, w, s = 1)}{p_{Z/A}(z, w, s = 1)}
\end{align*}
$$

(14)

$$
\begin{align*}
p_{A,Y, S, r}(x, ys \mid m, z, w, s = 1) &= \frac{p_{Y,r}(ys, x, m, z, w, s = 1)}{p_{M,r}(m, z, w, s = 1)} \\
&= \frac{p_{Y,r}(y \mid m, z, w)p_{\bar{Z}}(z, x, w, s = 1)}{p_{Z/A}(z, w, s = 1)}
\end{align*}
$$

(15)
Thus from (14) and (15)

$$\Pi(D^r_Y || Y_{r,r})$$

$$= \mathbb{E}(D^r_Y(O) | Y_S, M, Z, W, S) - \mathbb{E}(D^r_Y(O) | M, Z, W, S)$$

$$= \int (y - \mathbb{E}[y | m, z, w]) \times$$

$$\frac{\hat{g}_{M,a^*,W,a}(m | w)p_Z(z | a, w, s = 0)p_{S|W}(s = 0 | w)I(s = 1, x = a)}{g_{M,r}(m | z, w, s = 1)p_Z(z | a, w, s = 1)g_A(a | w, 1)p_{S|W}(1 | w)p_S(0)} p_{A|Y|S,r}(x | ys, m, z, w) d\nu(x)$$

$$- \int (y - \mathbb{E}[y | m, z, w]) \times$$

$$\frac{\hat{g}_{M,a^*,W,a}(m | w)p_Z(z | a, w, s = 0)p_{S|W}(s = 0 | w)I(s = 1, x = a)}{g_{M,r}(m | z, w, s = 1)p_Z(z | a, w, s = 1)g_A(a | w, 1)p_{S|W}(1 | w)p_S(0)} p_{A|Y|S,r}(x | ys, m, z, w) d\nu(x, ys)$$

remembering we are integrating with respect to x and all else is fixed in the first integral

All is fixed but x and ys in the second integral. Since I(s=1), ys = 1 and s = 1

$$= \int (y - \mathbb{E}[y | m, z, w]) \times$$

$$\frac{\hat{g}_{M,a^*,W,a}(m | w)p_Z(z | a, w, s = 0)p_{S|W}(s = 0 | w)I(s = 1, x = a)}{g_{M,r}(m | z, w, s = 1)p_Z(z | a, w, s = 1)g_A(a | w, 1)p_{S|W}(1 | w)p_S(0)} p_{A|Y|S,r}(x | ys, m, z, w, s = 1) d\nu(x)$$

$$- \int (y - \mathbb{E}[y | m, z, w]) \times$$

$$\frac{\hat{g}_{M,a^*,W,a}(m | w)p_Z(z | a, w, s = 0)p_{S|W}(s = 0 | w)I(s = 1, x = a)}{g_{M,r}(m | z, w, s = 1)p_Z(z | a, w, s = 1)g_A(a | w, 1)p_{S|W}(1 | w)p_S(0)} p_{A|Y|S,r}(x, ys | m, z, w, s = 1) d\nu(x, ys)$$

use (14) and (15) for the 1st and 2nd integrals respectively:

$$= \int (y - \mathbb{E}[y | m, z, w]) \times$$

$$\frac{\hat{g}_{M,a^*,W,a}(m | w)p_Z(z | a, w, s = 0)p_{S|W}(s = 0 | w)I(s = 1, x = a)}{g_{M,r}(m | z, w, s = 1)p_Z(z | a, w, s = 1)g_A(a | w, 1)p_{S|W}(1 | w)p_S(0)} p_{Z}(z, x, w, s = 1) d\nu(x)$$

$$- \int (y - \mathbb{E}[y | m, z, w]) p_{Y,r}(y | m, z, w) d\nu(y) \times$$

$$\frac{\hat{g}_{M,a^*,W,a}(m | w)p_Z(z | a, w, s = 0)p_{S|W}(s = 0 | w)I(s = 1, x = a)}{g_{M,r}(m | z, w, s = 1)p_Z(z | a, w, s = 1)g_A(a | w, 1)p_{S|W}(1 | w)p_S(0)} p_{Z}(z, w, s = 1) d\nu(x)$$

$$= (y - \mathbb{E}[y | m, z, w]) \times$$

$$\frac{\hat{g}_{M,a^*,W,a}(m | w)p_Z(z | a, w, s = 0)p_{S|W}(s = 0 | w)I(s = 1, x = a)}{g_{M,r}(m | z, w, s = 1)p_Z(z | a, w, s = 1)g_A(a | w, 1)p_{S|W}(1 | w)p_S(0)} p_{Z}(z, w, s = 1) d\nu(x)$$

And the proof is complete since the other components of the unrestricted model’s influence curve will remain the same. The reader may note that $p_{Z|W,S}(z | w, s) = p_{Z}(z | 1, w, s)g_A(1 | w, s) + p_{Z}(z | 0, w, s)g_A(0 | w, s)$, so we need not perform any additional regressions for this restricted model.

B.2.3 Robustness

Here we derive the remainder term for the EE estimator. We first form an initial estimate

$$\hat{\Psi}^0_n = \sum_{i=1}^{n} \frac{\mathbb{I} (S_i = 0)}{\sum_{i=1}^{n} \mathbb{I} (S = 0)} Q^0_{L_0,N}(A_i = a, W_i, S_i)$$

25
Then we update this estimate by adding the empirical mean of the approximated influence curve. If we call our approximated influence curve, \hat{D}_{EE}^n our estimating equation (EE) estimate is given by

$$\hat{\Psi}^1_n = \hat{\Psi}^0_n + \sum_{i=1}^n \hat{D}_{EE}^n(O_i)$$

This then leads to a second order expansion

$$\hat{\Psi}^1_n - \Psi(P_0) = (P_n - P_0)\hat{D}_{EE}^n(O) + R_2(P_n, P_0)$$

where $R_2(P_n, P_0) = \hat{\Psi}^0_n - \Psi(P_0) + P_0\hat{D}_{EE}^n(O)$.

The behavior of R_2 determines the robustness of our estimator and conditions under which we can guarantee consistency and efficiency [8, 9].

Theorem B.5.

$$R_2(P_n, P_0) = \int \frac{(\bar{Q}_Y(m, z, w) - \bar{Q}_Y(m, z, w))}{g(o)} f_{1,0} f_{2,0} f_{3,0} f_{4,0} f_{5,0} f_{6,0} f_{7,0}(o) dv(o)$$

$$= \int (\bar{Q}_Y(m, z, w) - \bar{Q}_Y,0(m, z, w)) \sum_{i=1}^6 (f_{i,0} - f_{i})(o) h_i(o)$$

Cauchy–Schwarz \leq k \sum_{i=1}^6 \|\bar{Q}_Y - \bar{Q}_Y,0\|_{L^2(P_0)} \|f_{i,0} - f_{i}\|_{L^2(P_0)}$$

Where we substituted the following: $f_{1,0}(o) = g_{M,0}(m \mid m, z, w)$, $f_{2,0} = p_{Z,0}(m \mid a, w, 1)$, $f_{3,0} = p_{Z,0}(m \mid a, w, 0)$, $f_{4,0} = p_{A,0}(x = a \mid w, 1)$, $f_{5,0} = p_{A,0}(x = a \mid w, 0)$, $f_{6,0} = p_{S,0}(s = 1 \mid w)$ and $f_{7,0} = p_{S,0}(s = 0 \mid w)$ and dropping the subscript, 0, indicates the estimated counterpart. h_i is a bounded function by the positivity assumption (see section 4) and thus the last inequality holds with a sufficiently large k.

26
\[
R_2 = \Psi_n - \Psi(P_0) + P_0 \left\{ \left(Y - \bar{Q}_Y(M, Z, W) \right) \frac{\hat{g}_{a*, W,S}(M \mid W)p_Z(Z \mid A, W, S = 0)p_{S|W}(S = 0 \mid W)I(S = 1, A = a)}{g_{M}(M \mid Z, W, S)p_Z(Z \mid A, W, S)p_{A}(A \mid W, S)p_{S|W}(S \mid W)P(S = 0)} \right\}
\]

\[
+ P_0 \left\{ \left(Q_{L_1}(Z, A, W) - Q_{L_0}(A, W, S) \right) \frac{I(S = 0, A = a)}{p_A(A \mid W, S)P(S = 0)} \right\}
\]

\[
\approx P_0 \left\{ \left(Y - \bar{Q}(M, Z, W) \right) \frac{\hat{g}_{a*, W,S}(M \mid W,S = 0)p_Z(Z \mid A, W, S = 0)p_{S|W}(S = 0 \mid W)I(S = 1, A = a)}{g_{M}(M \mid Z, W, S)p_Z(Z \mid A, W, S)p_{A}(A \mid W, S)p_{S|W}(S \mid W)P(S = 0)} \right\}
\]

\[
+ P_0 \left\{ \left(\bar{Q}_{L_1}(Z, A, W) - \bar{Q}_{L_0}(A, W, S) \right) \frac{I(S = 0, A = a)}{p_A(A \mid W, S)P(S = 0)} \right\}
\]

\[
= P_0 \left\{ \left(\bar{Q}_{Y,0}(M, Z, W) - \bar{Q}_Y(M, Z, W) \right) \frac{\hat{g}_{a*, W,S}(M \mid W,S = 0)p_Z(Z \mid A, W, S = 0)p_{S|W}(S = 0 \mid W)I(S = 1, A = a)}{g_{M}(M \mid Z, W, S)p_Z(Z \mid A, W, S)p_{A}(A \mid W, S)p_{S|W}(S \mid W)P(S = 0)} \right\}
\]

\[
+ P_0 \left\{ \left(Q_{L_1,0}(Z, A, W) - Q_{L_0,0}(A, W, S) \right) \frac{I(S = 0, A = a)}{p_A(A \mid W, S)P(S = 0)} \right\}
\]

The treatment mechanism (model for A) being well-specified makes term 4 disappear above. Clearly terms 3 and 5 only cancel if the models for M, Z and S also are well-specified.

Integrating terms 3 and 5, we get

\[
\int (\bar{Q}_{Y,0}(m, Z, W) - \bar{Q}_Y(m, Z, W)) \hat{g}_{a*, W}(m \mid Z) \frac{g_{M,0}(m \mid z, w, 1) p_{Z,0}(Z \mid a, w, 1) p_{Z}(Z \mid a, w, 0) p_{A}(A \mid w, 1) p_{S|W}(1 \mid w)P(s = 0)}{g_{M}(m \mid z, w, 1) p_{Z}(Z \mid a, w, 1) p_{Z}(Z \mid a, w, 0) p_{A}(A \mid w, 1) p_{S|W}(1 \mid w)P(s = 0)} \ dv(o)
\]

If we add fractions and put everything in one integral we have:

\[
\int (\bar{Q}_Y(m, z, w) - \bar{Q}_{Y,0}(m, z, w)) \frac{f_{1,0}f_{2,0}f_{3,0}f_{4,0}f_{5,0}f_{6,0}f_{7}(o) - f_{1}f_{2}f_{3}f_{4}f_{5}f_{6}f_{7}(o)}{g(o)} \ dv(o)
\]

\[
= \int (\bar{Q}_Y(m, z, w) - \bar{Q}_{Y,0}(m, z, w)) \sum_{i=1}^{6} (f_{i,0} - f_{i}) (o) h_i(o)
\]

By Cauchy-Schwarz

\[
\| \bar{Q}_Y - \bar{Q}_{Y,0} \|_{L^2(P_0)} \leq \sqrt{k} \sum_{i=1}^{6} \| f_{i,0} - f_{i} \|_{L^2(P_0)}
\]

h_i is a bounded function by the positivity assumption (see section 4) and thus the last inequality holds with a sufficiently large k, completing the proof.

We conclude that a product of $L^2(P_0)$ norms between the bias in estimating the outcome model and the bias of the regression models for $M \mid Z, W, S, Z \mid A, W, S, A \mid W, S$
and \(S \mid W \) must be such that the product converges to 0 in probability when multiplied by \(\sqrt{n} \). Also, \(\sqrt{n} \| \tilde{Q}_{L_1} - \tilde{Q}_{L_1,0} \|_{L^2 P_0} \| p_A - p_{A,0} \|_{L^2 P_0} \) must also converge to 0 in probability for the TMLE to be consistent and asymptotically linear with limiting variance that of the TMLE influence curve (efficient for the broader model including dependence of \(Y \) and \(M \) on \(A \)). Such conditions are guaranteed asymptotically when using the highly adaptive lasso to fit the regressions if the true regressions are of finite sectional variation norm and are left-hand continuous with right-hand limits \(\frown \).

To summarize, if the outcome model is misspecified then we need to correctly specify all the models \(M \mid Z, W, S, Z \mid A, W, S, A \mid W, S \) and \(S \mid W \) for the EE estimator to be consistent and asymptotically efficient. If we specify the outcome model correctly so that \(\sqrt{n} \| \tilde{Q}_Y - \tilde{Q}_{Y,0} \|_{L^2 (P_0)} \) converges to 0 in probability, then clearly term 1 disappears by the Cauchy-Schwarz inequality, and we have to consider term 2, which disappears if \(\sqrt{n} \| \tilde{Q}_{L_1} - \tilde{Q}_{L_1,0} \|_{L^2 P_0} \| p_A - p_{A,0} \|_{L^2 P_0} \) converges to 0 in probability. Thus if we correctly specify the regression, \(\tilde{Q}_{L_1} (Z, W) \mid A, W, S \), along with the regression for the outcome, then we need not specify any other model correctly to obtain a consistent estimator. If we correctly specify the outcome and misspecify the second regression, \(\tilde{Q}_{L_1} \mid A, W, S \), then we need to correctly specify the treatment mechanism in order to be consistent.

B.3 Targeted minimum loss-based estimator

B.3.1 Derivation of efficient influence curve

The derivations of the EICs for the less restricted and more restricted models are given in subsections [B.2.1](#) and [B.2.2](#).

B.3.2 Robustness

For our TMLE estimator: \(\Psi(P^*_n) - \Psi(P_0) = (P_n - P_0)D^*(P^*_n) + R_2(P^*_n, P_0) \) where \(P_0 \) is the true observed data generating distribution and \(P^*_n \) is the TMLE updated estimation of \(P_0 \). Since the empirical mean of \(D^*(P^*_n) \) = 0 by virtue of the TMLE algorithm, we have \(R_2(P^*_n, P_0) = \Psi(P^*_n) - \Psi(P_0) + P_0D^*(P^*_n) \). The robustness properties of the TMLE estimator are identical to the EE estimator, see Subsection [B.2.3](#).
C Simulation

Table 4: Simulation data-generating mechanisms.

W_1 ~ bernoulli	P(W_1 = 1) = 0.5
W_2 ~ bernoulli	P(W_2 = 1) = \text{expit}(0.4 + 0.2W_1)
S ~ bernoulli	P(S = 1) = \text{expit}(3W_2 - 1)
A ~ bernoulli	P(A = 1) = 0.5
Z ~ bernoulli	P(Z = 1) = \text{expit}(-3A + -0.2S + 2W_2 + 0.2AW_2 - 0.2AS + 0.2W_2S + 2AW_2S - 0.2)
M ~ bernoulli	P(M = 1) = \text{expit}(1Z + 6W_2Z - 2W_2 - 2)
Y ~ bernoulli	P(Y = 1) = \text{expit}(\log(1.2) + \log(40)Z - \log(30)M - \log(1.2)W_2 - \log(40)W_2Z)

Data Generating Mechanism 2

W_1 ~ bernoulli	P(W_1 = 1) = 0.5
W_2 ~ bernoulli	P(W_2 = 1) = \text{expit}(0.4 + 0.2W_1)
S ~ bernoulli	P(S = 1) = \text{expit}(3W_2 - 1)
A ~ bernoulli	P(A = 1) = 0.5
Z ~ bernoulli	P(Z = 1) = \text{expit}(-0.1A + -0.2S + 0.2W_2 + 5AW_2 + 0.14AS + 0.2W_2S - 0.2AW_2S - 1)
M ~ bernoulli	P(M = 1) = \text{expit}(1Z + 3ZW_2 + 0.2ZS - 0.2W_2S + 2W_2Z + 0.2S - 0.2ZW_2S - W_2 - 2)
Y ~ bernoulli	P(Y = 1) = \text{expit}(-6Z + 0.2ZW_2 + 2ZM + 2W_2M - 2W_2 + 4M + 1ZW_2M - 0.2)

Data Generating Mechanism 3

W_1 ~ bernoulli	P(W_1 = 1) = 0.5
W_2 ~ bernoulli	P(W_2 = 1) = \text{expit}(0.4 + 0.2W_1)
S ~ bernoulli	P(S = 1) = \text{expit}(3W_2 - 1)
A ~ bernoulli	P(A = 1) = 0.5
Z ~ bernoulli	P(Z = 1) = \text{expit}(-3A + 2S + 2W_2 + 0.2AW_2 - 0.2AS + 0.2W_2S + 2AW_2S - 0.2)
M ~ bernoulli	P(M = 1) = \text{expit}(3Z - 0.2ZW_2 + 0.2ZS - 0.2W_2S + 2W_2Z + 0.2S - 0.2ZW_2S - W_2 - 2)
Y ~ bernoulli	P(Y = 1) = \text{expit}(-6Z + 0.2ZW_2 + 2ZM + 2W_2M - 0.2W_2 + 4M + 1ZW_2M - 0.2)

DGM 1 is intended to break when Y and M models are misspecified, especially. DGM 2 is intended to break when Y and Z models are misspecified, especially. DGM 3 is intended to break when Y and S models are misspecified, especially.

Table 5: Simulation results comparing estimators of the transported direct and indirect effects for DGP 1 under well-specified models for sample sizes 100, 500 and 5000

Estimator	Bias	Efficiency	95%CI Cov	RMSE	% Out of Bds		
	IC Bootstrapping	IC Bootstrapping					
SDE_tmle_eff	0.015	86.77	161.49	0.807	0.959	0.114	0
SDE_EE_eff	0.016	86.77	129.06	0.812	0.919	0.112	0
SDE_tmle	0.028	201.37	292.39	0.82	0.941	0.252	0
SDE_EE	0.024	216.18	4222.44	0.923	0.924	0.210	0
SDE_iptw	0.039	301.76	305.12	0.906	0.906	0.273	0

Transport stochastic indirect effect

Estimator	Bias	Efficiency	95%CI Cov	RMSE	% Out of Bds		
SIE_tmle_eff	-0.005	103.450	52.71	0.833	0.961	0.044	0
SIE_EE_eff	-0.004	102.77	144.73	0.843	0.907	0.038	0

Continued on next page
Table 5 – continued from previous page

Estimator	Bias	Efficiency	95%CI	Cov	RMSE	% Out of Bds	
	IC	Bootstrapping	IC	Bootstrapping			
SIE_tmle	-0.007	126.57	545.44	0.791	0.948	0.056	0
SIE_EE	-0.004	118.11	158.02	0.829	0.910	0.039	0
SIE_iptw	-0.020	197.71	193.86	0.745	0.741	0.052	0
DGM 1, N=500							
Transport stochastic direct effect							
SDE_tmle_eff	0.0005	96.77	101.58	0.945	0.950	0.039	0
SDE_EE_eff	0.0005	96.81	101.20	0.946	0.948	0.039	0
SDE_tmle	0.0002	225.77	236.31	0.933	0.941	0.091	0
SDE_EE	0.0003	227.70	226.59	0.948	0.936	0.090	0
SDE_iptw	0.005	300.50	283.20	0.948	0.934	0.111	0
Transport stochastic indirect effect							
SIE_tmle_eff	0	101.96	110.93	0.938	0.940	0.008	0
SIE_EE_eff	0	102.35	107.99	0.939	0.939	0.008	0
SIE_tmle	0.0001	125.37	166.92	0.920	0.949	0.011	0
SIE_EE	0.0001	126.16	131.84	0.925	0.940	0.011	0
SIE_iptw	-0.003	243.47	211.11	0.894	0.874	0.015	0
DGM 1, N=5000							
Transport stochastic direct effect							
SDE_tmle_eff	-0.0001	100.39	100.59	0.949	0.949	0.013	0
SDE_EE_eff	-0.0001	100.39	100.59	0.948	0.949	0.013	0
SDE_tmle	0.001	227.08	227.72	0.96	0.959	0.028	0
SDE_EE	0.001	227.21	227.14	0.96	0.958	0.028	0
SDE_iptw	0.002	301.43	277.55	0.965	0.948	0.033	0
Transport stochastic indirect effect							
SIE_tmle_eff	-0.0001	101.12	101.44	0.932	0.924	0.002	0
SIE_EE_eff	-0.0001	101.23	101.43	0.932	0.925	0.002	0
SIE_tmle	-0.0001	130.34	131	0.939	0.940	0.003	0
SIE_EE	-0.0001	130.50	130.94	0.940	0.941	0.003	0
SIE_iptw	-0.0003	222.77	175.23	0.984	0.955	0.003	0

Table 6: Simulation results comparing estimators of the transported direct and indirect effects for DGP 1 under \(Z\), \(M\), and \(S\) models misspecified. For sample sizes 100, 500 and 5000.

Estimator	Bias	Efficiency	95%CI	Cov	RMSE	% Out of Bds	
	IC	Bootstrapping	IC	Bootstrapping			
DGM 1, N=100							
Transport stochastic direct effect							
SDE_tmle_eff	0.029	60.77	125.16	0.529	0.879	0.139	0
SDE_EE_eff	0.029	60.38	121.08	0.539	0.873	0.134	0
SDE_tmle	0.026	87.39	167.61	0.609	0.922	0.177	0
SDE_EE	0.029	93.83	134.66	0.693	0.878	0.159	0
SDE_iptw	0.027	182.41	172.73	0.867	0.836	0.209	0
Transport stochastic indirect effect							
SIE_tmle_eff	-0.009	54.10	200.16	0.616	0.932	0.076	0
SIE_EE_eff	-0.010	56.47	166.06	0.626	0.919	0.075	0
SIE_tmle	-0.012	69.12	244.45	0.572	0.923	0.089	0

Continued on next page
Table 6 – continued from previous page

Estimator	Bias	Efficiency	95% CI Cov	RMSE	% Out of Bds		
	IC	Bootstrapping	IC	Bootstrapping			
SIE_EE	-0.010	77.87	172.43	0.669	0.912	0.079	0
SIE_iptw	-0.007	120.77	112.76	0.833	0.856	0.055	0

DGM 1, N=500

Transport stochastic direct effect

Estimator	Bias	Efficiency	95% CI Cov	RMSE	% Out of Bds		
	IC	Bootstrapping	IC	Bootstrapping			
SDE_tmle_eff	-0.005	53.490	100.99	0.643	0.879	0.064	0
SDE_EE_eff	-0.005	53.66	98.63	0.643	0.879	0.063	0
SDE_tmle	-0.007	91.11	141.58	0.747	0.895	0.092	0
SDE_EE	-0.006	97.42	125.71	0.843	0.920	0.078	0
SDE_iptw	0.012	149.01	144.41	0.957	0.935	0.087	0

Transport stochastic indirect effect

Estimator	Bias	Efficiency	95% CI Cov	RMSE	% Out of Bds		
	IC	Bootstrapping	IC	Bootstrapping			
SIE_tmle_eff	0.001	64.72	97.48	0.826	0.948	0.019	0
SIE_EE_eff	0.0002	65.52	95.96	0.839	0.952	0.018	0
SIE_tmle	-0.0004	96.56	142.93	0.797	0.932	0.027	0
SIE_EE	-0.001	101.28	118.11	0.889	0.951	0.023	0
SIE_iptw	-0.0002	142.27	134.94	0.910	0.895	0.028	0

DGM 1, N=5000

Transport stochastic direct effect

Estimator	Bias	Efficiency	95% CI Cov	RMSE	% Out of Bds		
	IC	Bootstrapping	IC	Bootstrapping			
SDE_tmle_eff	-0.0001	48.68	93.50	0.677	0.942	0.019	0
SDE_EE_eff	-0.0002	48.71	93.31	0.676	0.938	0.019	0
SDE_tmle	-0.0001	94.62	150.35	0.768	0.947	0.030	0
SDE_EE	-0.0002	94.81	124.45	0.854	0.948	0.025	0
SDE_iptw	0.014	138.90	132.79	0.923	0.912	0.031	0

Transport stochastic indirect effect

Estimator	Bias	Efficiency	95% CI Cov	RMSE	% Out of Bds		
	IC	Bootstrapping	IC	Bootstrapping			
SIE_tmle_eff	0.0001	61.13	77.84	0.875	0.947	0.006	0
SIE_EE_eff	0.0001	61.18	75.11	0.888	0.945	0.005	0
SIE_tmle	0.0002	94.19	117.94	0.885	0.955	0.008	0
SIE_EE	0.0001	94.53	10	0.941	0.957	0.007	0
SIE_iptw	0.002	128.26	123.34	0.949	0.937	0.009	0

Table 7: Simulation results comparing estimators of the transported direct and indirect effects for DGP 1 under Y and S models misspecified. For sample sizes 100, 500 and 5000.
Table 7 – continued from previous page

Estimator	Bias	Efficiency	95% CI	Cov	RMSE	% Out of Bds	
		IC Bootstrapping	IC Bootstrapping				
DGM 1, N=500							
Transport stochastic direct effect							
SDE_tmle_eff	0.11	140.17	175	0.528	0.577	0.149	0
SDE_EE_eff	0.141	294.11	171.95	0.577	0.546	0.172	0
SDE_tmle	0.120	254.54	308.58	0.524	0.571	0.212	0
SDE_EE	0.141	454.66	307.74	0.514	0.475	0.235	0
SDE_iptw	0.173	236.52	255.31	0.477	0.521	0.213	0
Transport stochastic indirect effect							
SIE_tmle_eff	0.026	290.33	468.23	0.429	0.673	0.040	0
SIE_EE_eff	0.013	638.03	393.79	0.826	0.664	0.034	0
SIE_tmle	0.022	384.49	542.07	0.606	0.803	0.039	0
SIE_EE	0.013	739.29	525.56	0.810	0.728	0.041	0
SIE_iptw	0.024	409.12	449.20	0.666	0.693	0.036	0
DGM 1, N=5000							
Transport stochastic direct effect							
SDE_tmle_eff	0.045	226.69	190.97	0.717	0.512	0.054	0
SDE_EE_eff	0.078	519.45	183.26	0.910	0.064	0.083	0
SDE_tmle	0.051	490.16	587.79	0.854	0.924	0.093	0
SDE_EE	0.082	803.98	652.80	0.860	0.834	0.118	0
SDE_iptw	0.124	390.64	378.85	0.244	0.164	0.135	0
Transport stochastic indirect effect							
SIE_tmle_eff	0.036	332.17	319.04	0.074	0.106	0.037	0
SIE_EE_eff	0.028	883.10	278.05	0.554	0.129	0.029	0
SIE_tmle	0.035	410.83	458.58	0.136	0.157	0.037	0
SIE_EE	0.027	1059.64	688.37	0.740	0.391	0.031	0
SIE_iptw	0.028	380.58	339.93	0.173	0.171	0.030	0

Table 8: Simulation results comparing estimators of the transported direct and indirect effects for DGP 1 under well-specified models under the Y and Z models misspecified. For sample sizes 100, 500 and 5000.

Estimator	Bias	Efficiency	95% CI	Cov	RMSE	% Out of Bds	
		IC Bootstrapping	IC Bootstrapping				
DGM 1, N=100							
Transport stochastic direct effect							
SDE_tmle_eff	0.195	92.71	116.32	0.395	0.524	0.222	0
SDE_EE_eff	0.216	113.89	117.45	0.453	0.469	0.241	0
SDE_tmle	0.076	261.30	292.91	0.824	0.865	0.323	0
SDE_EE	0.082	326.80	293.93	0.921	0.874	0.321	0.100
SDE_iptw	0.040	271.53	271.20	0.892	0.889	0.281	0
Transport stochastic indirect effect							
SIE_tmle_eff	-0.025	155.53	155.39	0.740	0.688	0.055	0
SIE_EE_eff	-0.018	181.09	119.44	0.794	0.665	0.046	0
SIE_tmle	-0.023	167.73	219.28	0.664	0.756	0.069	0
SIE_EE	-0.016	219.30	160.33	0.733	0.671	0.060	0
SIE_iptw	-0.017	180.22	176.80	0.818	0.803	0.048	0
DGM 1, N=5000							
Transport stochastic direct effect							
SDE_tmle_eff							
SDE_EE_eff							
SDE_tmle							
SDE_EE							
SDE_iptw							

Continued on next page
Table 8 – continued from previous page

Estimator	Bias	Efficiency	95%CI Cov	RMSE	% Out of Bds		
	IC	Bootstrapping	IC	Bootstrapping			
Transport stochastic direct effect							
SDE_tmle_eff	0.182	102.42	114.90	0.016	0.032	0.188	0
SDE_EE_eff	0.203	112.52	107.23	0.009	0.006	0.208	0
SDE_tmle	0.041	322.39	327.28	0.930	0.924	0.144	0
SDE_EE	0.039	334.96	319.05	0.942	0.929	0.138	0
SDE_iptw	0.006	278.81	276.85	0.936	0.929	0.115	0
Transport stochastic indirect effect							
SIE_tmle_eff	-0.006	200.08	124.34	0.903	0.808	0.011	0
SIE_EE_eff	-0.003	212.20	126.88	0.926	0.843	0.010	0
SIE_tmle	-0.002	241.17	229.07	0.883	0.872	0.016	0
SIE_EE	-0.003	283.03	231.65	0.892	0.862	0.017	0
SIE_iptw	-0.003	216.89	203.55	0.921	0.899	0.014	0

DGM 1, N=5000

Estimator	Bias	Efficiency	95%CI Cov	RMSE	% Out of Bds		
	IC	Bootstrapping	IC	Bootstrapping			
Transport stochastic direct effect							
SDE_tmle_eff	0.181	104.08	117.69	0	0	0.181	0
SDE_EE_eff	0.202	111.38	105.15	0	0	0.202	0
SDE_tmle	0.050	327.02	332.07	0.782	0.791	0.064	0
SDE_EE	0.047	328.78	317.31	0.805	0.793	0.061	0
SDE_iptw	0.014	275.20	271.82	0.948	0.941	0.036	0
Transport stochastic indirect effect							
SIE_tmle_eff	-0.003	179.01	95.78	0.965	0.718	0.004	0
SIE_EE_eff	-0.0004	181.99	101.47	0.994	0.923	0.002	0
SIE_tmle	0.001	222.07	192.19	0.975	0.948	0.004	0
SIE_EE	0	247.54	198.36	0.987	0.946	0.004	0
SIE_iptw	0	195.39	170.37	0.975	0.954	0.004	0

Table 9: Simulation results comparing estimators of the transported direct and indirect effects for DGP 1 under Y and M models misspecified. For sample sizes 100, 500 and 5000.

Estimator	Bias	Efficiency	95%CI Cov	RMSE	% Out of Bds		
	IC	Bootstrapping	IC	Bootstrapping			
DGM 1, N=100							
SDE_tmle_eff	-0.133	245.31	239.69	0.782	0.837	0.283	0
SDE_EE_eff	-1.216	1,423.80	1,532.61	0.895	0.890	1.984	51.100
SDE_tmle	-0.213	429.80	338.75	0.718	0.790	0.418	0
SDE_EE	-1.259	1,611.01	1,632.61	0.953	0.949	2.078	56.300
SDE_iptw	-0.187	1,098.72	320.43	0.893	0.818	0.382	0
DGM 1, N=500							
SIE_tmle_eff	-0.001	233.32	208.17	0.735	0.712	0.141	0
SIE_EE_eff	0.075	394.06	367.59	0.834	0.830	0.215	0.700
SIE_tmle	-0.044	166.40	205.14	0.539	0.575	0.139	0
SIE_EE	0.018	382.64	295.24	0.664	0.627	0.227	1.300
SIE_iptw	-0.038	199.78	157.01	0.653	0.563	0.134	0
DGM 1, N=5000							
SDE_tmle_eff	-0.260	303.14	180.27	0.482	0.163	0.272	0
Continued on next page							
Table 9 – continued from previous page

Estimator	Bias	Efficiency	95%CI Cov	RMSE	% Out of Bds		
		IC	Bootstrapping	IC	Bootstrapping		
SDE_EE_eff	-1.181	1,040.61	1,021.97	0.080	0.066	1.272	76.400
SDE_tmle	-0.309	670.04	318.17	0.823	0.439	0.349	0
SDE_EE	-1.238	1,290.55	1,219.61	0.360	0.305	1.354	77.100
SDE_iptw	-0.267	732.08	298.20	0.916	0.505	0.304	0

Transport stochastic indirect effect

Estimator	Bias	Efficiency	95%CI Cov	RMSE	% Out of Bds		
		IC	Bootstrapping	IC	Bootstrapping		
SIE_tmle_eff	0.095	305.14	220.10	0.712	0.467	0.108	0
SIE_EE_eff	0.137	442.19	306.25	0.806	0.424	0.156	0
SIE_tmle	0.060	334.84	297.52	0.892	0.808	0.094	0
SIE_EE	0.112	591.83	473.35	0.965	0.828	0.163	0
SIE_iptw	0.045	316.22	259.63	0.926	0.814	0.075	0

DGM 1, N=5000

Transport stochastic direct effect

Estimator	Bias	Efficiency	95%CI Cov	RMSE	% Out of Bds		
		IC	Bootstrapping	IC	Bootstrapping		
SDE_tmle_eff	-0.272	280.08	149.17	0	0	0.273	0
SDE_EE_eff	-1.110	852.67	735.38	0	0	1.118	99.210
SDE_tmle	-0.272	698.69	321.77	0.147	0.001	0.276	0
SDE_EE	-1.111	1,093.33	877.83	0	0	1.121	98.410
SDE_iptw	-0.236	589.90	284.02	0.090	0	0.240	0

Transport stochastic indirect effect

Estimator	Bias	Efficiency	95%CI Cov	RMSE	% Out of Bds		
		IC	Bootstrapping	IC	Bootstrapping		
SIE_tmle_eff	0.104	249.26	173.89	0	0	0.106	0
SIE_EE_eff	0.135	336.39	227.03	0	0	0.137	0
SIE_tmle	0.103	370.51	279.70	0.036	0.016	0.106	0
SIE_EE	0.137	535.91	413.33	0.054	0.016	0.141	0
SIE_iptw	0.061	279.01	200.78	0.197	0.090	0.063	0

Table 10: Simulation results comparing estimators of the transported direct and indirect effects for DGP 1 under the Y model misspecified. For sample sizes 100, 500 and 5000.

Estimator	Bias	Efficiency	95%CI Cov	RMSE	% Out of Bds
		IC	Bootstrapping	IC	Bootstrapping
DGM 1, N=100					

Transport stochastic direct effect

Estimator	Bias	Efficiency	95%CI Cov	RMSE	% Out of Bds		
		IC	Bootstrapping	IC	Bootstrapping		
SDE_tmle_eff	0.045	157.49	170.41	0.872	0.893	0.143	0
SDE_EE_eff	0.050	232.07	170.51	0.894	0.872	0.149	0
SDE_tmle	0.010	282.59	314.26	0.876	0.912	0.273	0
SDE_EE	0.022	355.18	289.81	0.950	0.902	0.258	0
SDE_iptw	0.014	297.66	306.32	0.897	0.909	0.267	0

Transport stochastic indirect effect

Estimator	Bias	Efficiency	95%CI Cov	RMSE	% Out of Bds		
		IC	Bootstrapping	IC	Bootstrapping		
SIE_tmle_eff	-0.019	161.13	174.95	0.722	0.777	0.046	0
SIE_EE_eff	-0.019	177.84	127.50	0.751	0.710	0.044	0
SIE_tmle	-0.020	175.47	241.36	0.638	0.742	0.055	0
SIE_EE	-0.017	211.04	162.19	0.705	0.668	0.051	0
SIE_iptw	-0.018	202.31	200.29	0.764	0.749	0.051	0

DGM 1, N=500

Transport stochastic direct effect

Estimator	Bias	Efficiency	95%CI Cov	RMSE	% Out of Bds		
		IC	Bootstrapping	IC	Bootstrapping		
SDE_tmle_eff	0.013	185.58	128.33	0.983	0.918	0.053	0
SDE_EE_eff	0.014	240.63	137.63	0.990	0.915	0.056	0
SDE_tmle	-0.0001	339.55	291.55	0.975	0.939	0.112	0

Continued on next page
Table 10 – continued from previous page

Estimator	Bias	Efficiency	95%CI Cov Bootstrapping	RMSE	% Out of Bds		
		IC	IC Bootstrapping				
SDE_EE	0.002	370.42	288.90	0.988	0.939	0.112	0
SDE_iptw	0.005	299.38	283.42	0.957	0.943	0.108	0

Transport stochastic indirect effect

Estimator	Bias	Efficiency	95%CI Cov Bootstrapping	RMSE	% Out of Bds		
		IC	IC Bootstrapping				
SIE_tmle_eff	-0.002	217.44	131.94	0.930	0.880	0.010	0
SIE_EE_eff	-0.003	251	128.78	0.926	0.842	0.010	0
SIE_tmle	-0.003	255.86	222.71	0.883	0.879	0.015	0
SIE_EE	-0.004	308.32	222.67	0.885	0.833	0.016	0
SIE_iptw	-0.002	249.26	214.45	0.905	0.889	0.015	0

DGM 1, N=5000

Transport stochastic direct effect

Estimator	Bias	Efficiency	95%CI Cov Bootstrapping	RMSE	% Out of Bds		
		IC	IC Bootstrapping				
SDE_tmle_eff	-0.0002	191.06	118.82	0.999	0.965	0.014	0
SDE_EE_eff	-0.0004	240.26	126.67	0.999	0.968	0.015	0
SDE_tmle	0	354.81	288.79	0.984	0.954	0.035	0
SDE_EE	-0.0002	374.95	291.49	0.992	0.957	0.035	0
SDE_iptw	-0.0001	300.52	276.72	0.973	0.957	0.034	0

Table 11: Simulation results comparing estimators of the transported direct and indirect effects for DGP 2 under well-specified models for sample sizes 100, 500 and 5000.

Estimator	Bias	Efficiency	95%CI Cov Bootstrapping	RMSE	% Out of Bds
		IC	IC Bootstrapping		
DGM 2, N=100					

Transport stochastic direct effect

Estimator	Bias	Efficiency	95%CI Cov Bootstrapping	RMSE	% Out of Bds		
		IC	IC Bootstrapping				
SDE_tmle_eff	0.003	102.26	139.52	0.970	0.992	0.064	0
SDE_EE_eff	0.004	102.13	118.65	0.974	0.989	0.060	0
SDE_tmle	0.007	293.07	375.10	0.852	0.945	0.218	0
SDE_EE	0.005	316.03	292.87	0.957	0.930	0.186	0
SDE_iptw	0.009	442.80	456.03	0.909	0.922	0.267	0

Transport stochastic indirect effect

Estimator	Bias	Efficiency	95%CI Cov Bootstrapping	RMSE	% Out of Bds		
		IC	IC Bootstrapping				
SIE_tmle_eff	-0.003	93.01	132.95	0.878	0.944	0.033	0
SIE_EE_eff	-0.003	93.03	113.13	0.878	0.924	0.033	0
SIE_tmle	-0.001	99.85	158.57	0.865	0.952	0.041	0
SIE_EE	-0.002	99.09	117.32	0.871	0.915	0.036	0
SIE_iptw	0.002	167.51	206.17	0.812	0.867	0.062	0

DGM 2, N=500

Transport stochastic direct effect

Estimator	Bias	Efficiency	95%CI Cov Bootstrapping	RMSE	% Out of Bds		
		IC	IC Bootstrapping				
SDE_tmle_eff	-0.0003	101.37	105.16	0.946	0.957	0.028	0
SDE_EE_eff	-0.0003	101.40	104.51	0.946	0.957	0.028	0
SDE_tmle	-0.004	319.08	327.43	0.929	0.936	0.089	0
SDE_EE	-0.004	321.97	316.56	0.947	0.935	0.088	0
SDE_iptw	-0.001	428.43	419.16	0.951	0.942	0.110	0

Continued on next page
Table 11 – continued from previous page

Estimator	Bias	Efficiency	95% CI	Cov	RMSE	% Out of Bds
	IC Bootstrapping	IC Bootstrapping				
Transport stochastic indirect effect						
SIE_tmle_eff	-0.001	99.56	104.59	0.926	0.929	0.012
SIE_EE_eff	-0.001	99.58	101.11	0.926	0.929	0.012
SIE_tmle	-0.0005	101.74	106.99	0.928	0.935	0.012
SIE_EE	-0.0005	101.94	103.39	0.932	0.930	0.012
SIE_iptw	-0.0005	177.68	156.98	0.948	0.936	0.018
DGM 2, N=5000						
Transport stochastic direct effect						
SDE_tmle_eff	-0.0003	100.17	100.42	0.955	0.957	0.008
SDE_EE_eff	-0.0003	100.21	100.42	0.955	0.957	0.008
SDE_tmle	0.001	321.02	321.92	0.945	0.942	0.027
SDE_EE	0.001	321.27	321	0.946	0.942	0.027
SDE_iptw	0.0002	412.67	388.11	0.954	0.945	0.033
Transport stochastic indirect effect						
SIE_tmle_eff	-0.0001	99.98	100.46	0.942	0.942	0.004
SIE_EE_eff	-0.0001	100.01	100.46	0.942	0.942	0.004
SIE_tmle	-0.0001	101.75	101.99	0.942	0.942	0.004
SIE_EE	-0.0001	101.69	101.95	0.942	0.943	0.004
SIE_iptw	0	166.56	141.45	0.980	0.957	0.005

Table 12: Simulation results comparing estimators of the transported direct and indirect effects for DGP 2 under Z, M, and S models misspecified. For sample sizes 100, 500 and 5000.

Estimator	Bias	Efficiency	95% CI	Cov	RMSE	% Out of Bds
	IC Bootstrapping	IC Bootstrapping				
DGM 2, N=100						
Transport stochastic direct effect						
SDE_tmle_eff	0.001	90.70	108.20	0.918	0.988	0.062
SDE_EE_eff	0.001	90.72	108.25	0.918	0.988	0.062
SDE_tmle	0.007	191.08	235.80	0.861	0.956	0.141
SDE_EE	0.004	207.43	191.55	0.957	0.951	0.121
SDE_iptw	0.206	367.51	375.66	0.729	0.756	0.345
Transport stochastic indirect effect						
SIE_tmle_eff	0.002	51.42	132.19	0.575	0.927	0.082
SIE_EE_eff	0.002	51.31	128.88	0.577	0.920	0.080
SIE_tmle	0.002	96.11	158.41	0.721	0.892	0.099
SIE_EE	0.002	109.50	151.53	0.779	0.897	0.098
SIE_iptw	-0.054	537.90	138.25	0.886	0.846	0.110
DGM 2, N=500						
Transport stochastic direct effect						
SDE_tmle_eff	0.0002	99.14	105.22	0.946	0.969	0.028
SDE_EE_eff	0.0002	99.14	105.22	0.946	0.969	0.028
SDE_tmle	-0.002	222.27	220.01	0.941	0.947	0.061
SDE_EE	-0.002	224.49	199.30	0.971	0.952	0.055
SDE_iptw	0.247	396.13	428.63	0.385	0.423	0.273
Transport stochastic indirect effect						

Continued on next page
Table 12 – continued from previous page

Estimator	Bias	Efficiency	95% CI Cov	RMSE	% Out of Bds		
		IC Bootstrapping	IC Bootstrapping				
SIE_tmle_eff	-0.0004	51.46	110.33	0.622	0.934	0.032	0
SIE_EE_eff	-0.0005	51.46	109.03	0.625	0.933	0.032	0
SIE_tmle	0.001	110.16	133.88	0.850	0.921	0.044	0
SIE_EE	0.0003	114.19	136.01	0.871	0.926	0.047	0
SIE_iptw	0.005	389.26	142.21	0.972	0.943	0.044	0

| DGM 2, N=5000 |

Transport stochastic direct effect

Estimator	Bias	Efficiency	95% CI Cov	RMSE	% Out of Bds		
		IC Bootstrapping	IC Bootstrapping				
SDE_tmle_eff	0	98.78	100.01	0.956	0.960	0.008	0
SDE_EE_eff	0	98.80	100.03	0.956	0.960	0.008	0
SDE_tmle	0.001	228.37	231.43	0.939	0.941	0.020	0
SDE_EE	0.001	228.50	203.24	0.966	0.942	0.018	0
SDE_iptw	0.254	396.11	406.66	0	0	0.256	0

Transport stochastic indirect effect

Estimator	Bias	Efficiency	95% CI Cov	RMSE	% Out of Bds		
		IC Bootstrapping	IC Bootstrapping				
SIE_tmle_eff	0.0005	54.95	100.51	0.727	0.938	0.010	0
SIE_EE_eff	0.0004	54.95	100.46	0.732	0.939	0.010	0
SIE_tmle	0.001	129.68	136.04	0.879	0.920	0.014	0
SIE_EE	0.001	130.08	137.03	0.891	0.930	0.014	0
SIE_iptw	0.014	301.92	123.87	0.976	0.716	0.018	0

Table 13: Simulation results comparing estimators of the transported direct and indirect effects for DGP 2 under \(Y \) and \(S \) models misspecified. For sample sizes 100, 500 and 5000.

Estimator	Bias	Efficiency	95% CI Cov	RMSE	% Out of Bds
		IC Bootstrapping	IC Bootstrapping		
DGM 2, N=100					

Transport stochastic direct effect

Estimator	Bias	Efficiency	95% CI Cov	RMSE	% Out of Bds		
		IC Bootstrapping	IC Bootstrapping				
SDE_tmle_eff	-0.048	198.25	193.84	0.963	0.921	0.146	0
SDE_EE_eff	-0.102	315.28	200.46	0.946	0.875	0.181	0
SDE_tmle	-0.057	317.69	365.58	0.819	0.880	0.245	0
SDE_EE	-0.102	554.59	425.87	0.960	0.811	0.340	1.100
SDE_iptw	0.054	332.61	378.44	0.844	0.870	0.249	0

Transport stochastic indirect effect

Estimator	Bias	Efficiency	95% CI Cov	RMSE	% Out of Bds		
		IC Bootstrapping	IC Bootstrapping				
SIE_tmle_eff	0.142	362.76	392.68	0.589	0.652	0.200	0
SIE_EE_eff	0.189	708.70	403.57	0.940	0.517	0.246	0
SIE_tmle	0.118	368.02	420.49	0.606	0.748	0.201	0
SIE_EE	0.184	749.61	475.97	0.944	0.682	0.267	0
SIE_iptw	0.182	384.16	427.11	0.513	0.627	0.244	0

DGM 2, N=5000

Transport stochastic direct effect

Estimator	Bias	Efficiency	95% CI Cov	RMSE	% Out of Bds		
		IC Bootstrapping	IC Bootstrapping				
SDE_tmle_eff	-0.162	309.07	214.95	0.395	0.121	0.170	0
SDE_EE_eff	-0.219	453.68	234.34	0.553	0.029	0.227	0
SDE_tmle	-0.173	519.71	423.35	0.712	0.599	0.206	0
SDE_EE	-0.226	758.85	619.39	0.817	0.613	0.281	0
SDE_iptw	-0.069	429.11	376.48	0.942	0.794	0.118	0

Transport stochastic indirect effect

Estimator	Bias	Efficiency	95% CI Cov	RMSE	% Out of Bds		
		IC Bootstrapping	IC Bootstrapping				
SIE_tmle_eff	0.220	529.14	274.22	0.016	0.012	0.222	0
SIE_EE_eff	0.277	1,080.48	309.93	0.203	0.006	0.280	0

Continued on next page
Table 13 – continued from previous page

Estimator	Bias	Efficiency	95% CI Cov	RMSE	% Out of Bds		
	IC	Bootstrapping	IC	Bootstrapping			
SIE_tmle	0.213	600.82	434.83	0.060	0.052	0.219	0
SIE_EE	0.278	1,253.70	726.29	0.442	0.132	0.292	0
SIE_iptw	0.273	544.21	457.14	0.022	0.031	0.278	0

DGM 2, N=5000

Transport stochastic direct effect

Estimator	Bias	Efficiency	95% CI Cov	RMSE	% Out of Bds		
	IC	Bootstrapping	IC	Bootstrapping			
SDE_tmle_eff	-0.164	285.91	168.14	0	0	0.165	0
SDE_EE_eff	-0.220	415.64	191.91	0	0	0.22	0
SDE_tmle	-0.164	511.22	399.63	0.019	0.010	0.167	0
SDE_EE	-0.218	699.90	586.82	0.029	0.023	0.224	0
SDE_iptw	-0.067	404.82	322.51	0.467	0.319	0.073	0

Transport stochastic indirect effect

Estimator	Bias	Efficiency	95% CI Cov	RMSE	% Out of Bds		
	IC	Bootstrapping	IC	Bootstrapping			
SIE_tmle_eff	0.222	507.95	180.55	0	0	0.223	0
SIE_EE_eff	0.278	1,033.84	216.14	0	0	0.279	0
SIE_tmle	0.222	600.12	343.91	0	0	0.222	0
SIE_EE	0.278	1,201.77	675.26	0	0	0.279	0
SIE_iptw	0.278	520.31	337.87	0	0	0.278	0

Table 14: Simulation results comparing estimators of the transported direct and indirect effects for DGP 2 under Y and Z models misspecified. For sample sizes 100, 500 and 5000.

Estimator	Bias	Efficiency	95% CI Cov	RMSE	% Out of Bds
	IC	Bootstrapping	IC	Bootstrapping	
DGM 2, N=100					

Transport stochastic direct effect

Estimator	Bias	Efficiency	95% CI Cov	RMSE	% Out of Bds		
	IC	Bootstrapping	IC	Bootstrapping			
SDE_tmle_eff	0.028	73.84	84.89	0.881	0.976	0.053	0
SDE_EE_eff	0.031	81.31	95.66	0.884	0.969	0.058	0
SDE_tmle	0.146	892.01	513.89	0.914	0.847	0.360	0
SDE_EE	0.576	1,247.94	1,341.48	0.935	0.923	0.966	24.300
SDE_iptw	0.105	878.55	480.40	0.945	0.856	0.326	0

Transport stochastic indirect effect

Estimator	Bias	Efficiency	95% CI Cov	RMSE	% Out of Bds		
	IC	Bootstrapping	IC	Bootstrapping			
SIE_tmle_eff	-0.046	165.05	120.15	0.815	0.728	0.086	0
SIE_EE_eff	-0.029	249.13	155.58	0.819	0.747	0.105	0
SIE_tmle	-0.068	413.29	276.43	0.799	0.695	0.132	0
SIE_EE	-0.003	724.66	686.48	0.825	0.837	0.467	5
SIE_iptw	-0.069	644.23	139.24	0.770	0.529	0.104	0

DGM 2, N=500

Transport stochastic direct effect

Estimator	Bias	Efficiency	95% CI Cov	RMSE	% Out of Bds		
	IC	Bootstrapping	IC	Bootstrapping			
SDE_tmle_eff	0.031	74.57	78.71	0.647	0.693	0.038	0
SDE_EE_eff	0.033	79.85	84.01	0.658	0.697	0.040	0
SDE_tmle	0.179	1,002.95	559.87	0.991	0.735	0.224	0
SDE_EE	0.555	1,171.51	1,116.10	0.584	0.545	0.626	6.800
SDE_iptw	0.103	740.10	476.14	0.995	0.851	0.164	0

Transport stochastic indirect effect

Estimator	Bias	Efficiency	95% CI Cov	RMSE	% Out of Bds		
	IC	Bootstrapping	IC	Bootstrapping			
SIE_tmle_eff	-0.015	200.43	101.69	0.960	0.728	0.019	0
SIE_EE_eff	0.017	329.17	147.24	0.993	0.808	0.026	0
SIE_tmle	-0.040	469.27	531	0.853	0.667	0.064	0
SIE_EE	0.075	931.81	763.34	0.909	0.817	0.156	0.200

Continued on next page
Table 14 – continued from previous page

Estimator	Bias	Efficiency	95%CI Cov	RMSE	% Out of Bds		
		IC	Bootstrapping	IC	Bootstrapping		
SIE_iptw	-0.033	518.39	166.53	0.729	0.519	0.041	0
DGM 2, N=5000							

Transport stochastic direct effect

Estimator	Bias	Efficiency	95%CI Cov	RMSE	% Out of Bds
SDE_tmle_eff	0.032	75.49	77.35	0	0
SDE_EE_eff	0.033	80.22	81.92	0	0
SDE_tmle	0.188	973.02	463.63	0.223	0.003
SDE_EE	0.545	1,112.09	1,008.79	0	0
SDE_iptw	0.108	700.28	456.29	0.574	0.204

Transport stochastic indirect effect

Estimator	Bias	Efficiency	95%CI Cov	RMSE	% Out of Bds
SIE_tmle_eff	-0.014	192.60	92.53	0.380	0.004
SIE_EE_eff	0.018	307.60	121.67	0.767	0.029
SIE_tmle	-0.040	492.45	143.03	0.185	0
SIE_EE	0.066	911.65	686.60	0.447	0.231
SIE_iptw	-0.031	439.30	160.87	0.430	0.004

Table 15: Simulation results comparing estimators of the transported direct and indirect effects for DGP 2 under Y and M models misspecified. For sample sizes 100, 500 and 5000.

Estimator	Bias	Efficiency	95%CI Cov	RMSE	% Out of Bds
		IC	Bootstrapping	IC	Bootstrapping
DGM 2, N=100					

Transport stochastic direct effect

Estimator	Bias	Efficiency	95%CI Cov	RMSE	% Out of Bds
SDE_tmle_eff	0.028	122.23	210.47	0.825	0.985
SDE_EE_eff	0.055	561.86	1131.74	0.905	0.998
SDE_tmle	0.034	797.09	552.54	0.834	0.825
SDE_EE	0.026	1,816.94	1828.34	0.974	0.972
SDE_iptw	0.028	639.31	509.92	0.872	0.851

Transport stochastic indirect effect

Estimator	Bias	Efficiency	95%CI Cov	RMSE	% Out of Bds
SIE_tmle_eff	-0.030	283.99	172.61	0.842	0.780
SIE_EE_eff	-0.030	534.83	549.34	0.885	0.908
SIE_tmle	-0.030	252.15	207.16	0.686	0.734
SIE_EE	0.034	517.82	503.88	0.839	0.830
SIE_iptw	-0.021	268.93	186.20	0.692	0.769

DGM 2, N=5000 |

Transport stochastic direct effect

Estimator	Bias	Efficiency	95%CI Cov	RMSE	% Out of Bds
SDE_tmle_eff	0.038	79.10	179.89	0.506	0.918
SDE_EE_eff	0.077	208.62	728.54	0.299	0.970
SDE_tmle	0.033	1,209.81	582.41	0.991	0.968
SDE_EE	0.077	1,870.98	1,799.55	0.987	0.990
SDE_iptw	0.022	737.59	523.97	0.989	0.963

Transport stochastic indirect effect

Estimator	Bias	Efficiency	95%CI Cov	RMSE	% Out of Bds
SIE_tmle_eff	-0.036	213.86	103.92	0.525	0.230
SIE_EE_eff	-0.018	252.81	228.74	0.395	0.324
SIE_tmle	-0.035	290.63	159.72	0.681	0.399
SIE_EE	-0.017	354.25	346.99	0.588	0.565
SIE_iptw	-0.029	157.96	135.95	0.537	0.425

DGM 2, N=5000 |

Continued on next page
Table 15 – continued from previous page

Estimator	Bias	Efficiency	95%CI	Cov RMSE	% Out of Bds
	IC Bootstrapping	IC Bootstrapping			
Transport stochastic direct effect					
SDE_tmle_eff	0.039	72.52	169.93	0.039	0.211
SDE_EE_eff	0.074	116.09	615.71	0.073	0.715
SDE_tmle	0.040	1,191.15	425.74	1	0.780
SDE_EE	0.077	1,623.22	1278.49	0.955	0.889
SDE_iptw	0.026	710.95	429.68	0.992	0.874
Transport stochastic indirect effect					
SIE_tmle_eff	-0.037	130.59	63.97	0.002	0.037
SIE_EE_eff	-0.020	126.70	105.49	0.178	0.129
SIE_tmle	-0.036	176.50	85.45	0.005	0.037
SIE_EE	-0.020	164.23	147.83	0.232	0.206
SIE_iptw	-0.030	134.37	83.04	0	0.031

Table 16: Simulation results comparing estimators of the transported direct and indirect effects for DGP 2 under Y model misspecified. For sample sizes 100, 500 and 5000.

Estimator	Bias	Efficiency	95%CI	Cov RMSE	% Out of Bds
	IC Bootstrapping	IC Bootstrapping			
DGM 2, N=100					
SDE_tmle_eff	0.016	117.52	135.93	0.928	0.991
SDE_EE_eff	0.017	134.03	127.09	0.971	0.994
SDE_tmle	-0.005	437.29	464.11	0.856	0.888
SDE_EE	0.003	510.08	415.06	0.971	0.887
SDE_iptw	-0.004	437.59	450.42	0.892	0.911
DGM 2, N=500					
SIE_tmle_eff	-0.015	154.70	134.11	0.741	0.759
SIE_EE_eff	-0.016	158.75	111.49	0.752	0.711
SIE_tmle	-0.013	170.37	205.62	0.649	0.798
SIE_EE	-0.015	185.12	139.18	0.700	0.667
SIE_iptw	-0.004	166.40	199.63	0.795	0.857
DGM 2, N=5000					
SIE_tmle_eff	-0.001	119.51	107.23	0.981	0.978
SIE_EE_eff	-0.001	122.98	106.84	0.990	0.978
SIE_tmle	-0.002	527.31	463.49	0.974	0.950
SIE_EE	-0.0005	539.36	468.44	0.981	0.957
SIE_iptw	-0.001	429.84	422.32	0.959	0.951
DGM 2, N=5000					
SIE_tmle_eff	0.0002	207.64	113.29	0.993	0.962
SIE_EE_eff	0.0003	204.81	112.47	0.993	0.962
SIE_tmle	-0.0001	243.79	185.49	0.979	0.951
SIE_EE	-0.0001	240.52	177.94	0.978	0.944
SIE_iptw	0.0003	177.08	158.06	0.969	0.953
DGM 2, N=5000					
SIE_tmle_eff	-0.0003	111.40	100.18	0.963	0.936
Continued on next page					
Table 16 - continued from previous page

Estimator	Bias	Efficiency	95%CI	Cov	RMSE	% Out of Bds	
		IC	Bootstrapping	IC	Bootstrapping		
SDE_EE_eff	-0.0003	111.55	100.18	0.968	0.937	0.009	0
SDE_tmle	0.002	508.10	414.57	0.984	0.947	0.034	0
SDE_EE	0.002	508.50	414.73	0.984	0.947	0.034	0
SDE_iptw	0.002	413.87	389.34	0.958	0.946	0.032	0

Transport stochastic indirect effect

Estimator	Bias	Efficiency	95%CI	Cov	RMSE	% Out of Bds	
		IC	Bootstrapping	IC	Bootstrapping		
SIE_tmle_eff	-0.0001	195.72	101.34	0.999	0.941	0.004	0
SIE_EE_eff	-0.0001	189.44	101.82	0.999	0.942	0.004	0
SIE_tmle	-0.0002	231.77	163.22	0.992	0.954	0.006	0
SIE_EE	-0.0002	220.13	155.51	0.993	0.958	0.005	0
SIE_iptw	-0.0002	166.19	141.12	0.981	0.951	0.005	0

Table 17: Simulation results comparing estimators of the transported direct and indirect effects for DGP 3 under well-specified models for sample sizes 100, 500 and 5000.

Estimator	Bias	Efficiency	95%CI	Cov	RMSE	% Out of Bds
		IC	Bootstrapping	IC	Bootstrapping	
DGM 3, N=100						
Transport stochastic direct effect						
SDE_tmle_eff	-0.020	93.10	158.60	0.823	0.955	0.115
SDE_EE_eff	-0.017	93.22	113.95	0.828	0.986	0.099
SDE_tmle	-0.030	126.80	239.56	0.809	0.951	0.199
SDE_EE	-0.020	139.54	141.15	0.890	0.875	0.140
SDE_iptw	-0.043	346.24	324.14	0.840	0.871	0.327
Transport stochastic indirect effect						
SIE_tmle_eff	0.011	90.59	159.14	0.803	0.929	0.114
SIE_EE_eff	0.008	90.40	159.14	0.809	0.905	0.104
SIE_tmle	0.018	90.81	173.84	0.742	0.907	0.152
SIE_EE	0.009	95.89	173.84	0.782	0.886	0.107
SIE_iptw	0.085	154.04	133.33	0.634	0.603	0.192
DGM 3, N=500						
Transport stochastic direct effect						
SDE_tmle_eff	-0.002	99.42	106.45	0.931	0.948	0.043
SDE_EE_eff	-0.002	99.45	106.04	0.931	0.947	0.043
SDE_tmle	-0.003	168.58	169.76	0.933	0.939	0.080
SDE_EE	-0.003	177.72	170.88	0.960	0.941	0.085
SDE_iptw	0.042	466.12	416.46	0.773	0.780	0.194
Transport stochastic indirect effect						
SIE_tmle_eff	-0.0005	100.48	107.39	0.928	0.937	0.045
SIE_EE_eff	-0.0005	100.48	106.91	0.927	0.937	0.045
SIE_tmle	-0.001	107.84	116.48	0.926	0.937	0.050
SIE_EE	-0.001	108.51	114.77	0.930	0.938	0.048
SIE_iptw	-0.007	174.62	163.60	0.941	0.944	0.062
DGM 3, N=5000						
Transport stochastic direct effect						
SDE_tmle_eff	-0.001	100.04	126.93	0.941	0.962	0.015
SDE_EE_eff	-0.0005	100.02	113.84	0.943	0.955	0.014
SDE_tmle	0.001	214.33	238.29	0.961	0.965	0.032

Continued on next page
Table 17 – continued from previous page

Estimator	Bias	Efficiency	95%CI	Cov	RMSE	% Out of Bds
	IC	Bootstrapping IC	Bootstrapping			
SDE_EE	0.003	215.45	222.18	0.964	0.964	0.031 0
SDE_iptw	0.006	475.36	466.38	0.934	0.937	0.059 0

Transport stochastic indirect effect

Estimator	Bias	Efficiency	95%CI	Cov	RMSE	% Out of Bds
SIE_tmle_eff	0	100.07	118.92	0.939	0.938	0.015 0
SIE_EE_eff	-0.002	100.07	100.78	0.940	0.936	0.014 0
SIE_tmle	-0.004	108.04	125.46	0.938	0.946	0.016 0
SIE_EE	-0.005	108.09	108.55	0.944	0.944	0.014 0
SIE_iptw	-0.001	147.09	123.72	0.967	0.942	0.016 0

Table 18: Simulation results comparing estimators of the transported direct and indirect effects for DGP 3 under Z, M, and S models misspecified. For sample sizes 100, 500 and 5000.

Estimator	Bias	Efficiency	95%CI	Cov	RMSE	% Out of Bds
	IC	Bootstrapping IC	Bootstrapping			

DGM 3, $N=100$

Transport stochastic direct effect

Estimator	Bias	Efficiency	95%CI	Cov	RMSE	% Out of Bds
SDE_tmle_eff	-0.013	71.12	119.65	0.744	0.896	0.097 0
SDE_EE_eff	-0.013	71.11	119.59	0.745	0.896	0.097 0
SDE_tmle	-0.011	95.20	159.52	0.781	0.942	0.124 0
SDE_EE	-0.012	95.46	131.92	0.844	0.920	0.106 0
SDE_iptw	-0.110	196.15	206.68	0.877	0.889	0.200 0

Transport stochastic indirect effect

Estimator	Bias	Efficiency	95%CI	Cov	RMSE	% Out of Bds
SIE_tmle_eff	0.005	29.99	132.19	0.390	0.899	0.050 0
SIE_EE_eff	0.005	30.01	131.03	0.389	0.898	0.050 0
SIE_tmle	0.003	38.27	150.41	0.438	0.915	0.054 0
SIE_EE	0.005	38.70	132.89	0.468	0.901	0.051 0
SIE_iptw	-0.045	85.72	97.43	0.533	0.574	0.060 0

DGM 3, $N=500$

Transport stochastic direct effect

Estimator	Bias	Efficiency	95%CI	Cov	RMSE	% Out of Bds
SDE_tmle_eff	-0.002	69.65	106.13	0.796	0.955	0.042 0
SDE_EE_eff	-0.003	69.61	106.09	0.797	0.954	0.042 0
SDE_tmle	-0.002	95.76	142.10	0.792	0.934	0.057 0
SDE_EE	-0.002	95.89	121.23	0.868	0.946	0.048 0
SDE_iptw	-0.096	198.50	194.22	0.761	0.755	0.120 0

Transport stochastic indirect effect

Estimator	Bias	Efficiency	95%CI	Cov	RMSE	% Out of Bds
SIE_tmle_eff	-0.001	27.56	106.69	0.371	0.930	0.023 0
SIE_EE_eff	-0.0004	27.57	106.65	0.368	0.930	0.023 0
SIE_tmle	-0.001	37.31	113.59	0.464	0.930	0.024 0
SIE_EE	-0.0004	37.46	108.94	0.489	0.933	0.023 0
SIE_iptw	-0.055	71.87	65.11	0.036	0.042	0.057 0

DGM 3, $N=5000$

Transport stochastic direct effect

Estimator	Bias	Efficiency	95%CI	Cov	RMSE	% Out of Bds
SDE_tmle_eff	-0.0004	66.47	110.54	0.804	0.962	0.013 0
SDE_EE_eff	-0.0005	66.45	110.18	0.805	0.961	0.013 0
SDE_tmle	-0.0004	93.90	152.31	0.802	0.966	0.018 0
SDE_EE	-0.0005	93.90	125.67	0.890	0.963	0.015 0

Continued on next page
Table 18 – continued from previous page

Estimator	Bias	Efficiency	95% CI	Cov	RMSE	% Out of Bds	
		IC	Bootstrapping	IC	Bootstrapping		
SDE_iptw	-0.101	187.34	181.99	0.002	0.001	0.103	0
SIE_tmle_eff	-0.0002	26.08	109.30	0.382	0.937	0.007	0
SIE_EE_eff	-0.0002	26.090	106.07	0.385	0.940	0.007	0
SIE_tmle	-0.0002	35.98	113.49	0.497	0.929	0.007	0
SIE_EE	0.0001	36	107.81	0.491	0.949	0.007	0
SIE_iptw	-0.057	61.10	53.42	0	0	0.058	0

Transport stochastic indirect effect

Table 19: Simulation results comparing estimators of the transported direct and indirect effects for DGP 3 under Y and S models misspecified. For sample sizes 100, 500 and 5000.

Estimator	Bias	Efficiency	95% CI	Cov	RMSE	% Out of Bds	
		IC	Bootstrapping	IC	Bootstrapping		
DGM 3, N=100							
SDE_tmle_eff	-0.213	74.55	170.93	0.230	0.654	0.266	0
SDE_EE_eff	-0.254	88.47	125.74	0.115	0.274	0.279	0
SDE_tmle	-0.180	119.92	267.80	0.519	0.819	0.297	0
SDE_EE	-0.238	150.22	177.67	0.453	0.574	0.284	0
SDE_iptw	-0.210	308.35	290.33	0.788	0.862	0.328	0
SIE_tmle_eff	0.124	43.16	103.06	0.274	0.492	0.185	0
SIE_EE_eff	0.164	53.82	41.56	0.194	0.120	0.193	0
SIE_tmle	0.120	44.87	109.68	0.273	0.478	0.186	0
SIE_EE	0.162	58.43	54.32	0.226	0.178	0.192	0
SIE_iptw	0.113	146.94	107.72	0.513	0.500	0.173	0
DGM 3, N=500							
SDE_tmle_eff	-0.142	93.50	153.26	0.236	0.334	0.160	0
SDE_EE_eff	-0.197	202.02	148.83	0.287	0.284	0.219	0
SDE_tmle	-0.136	204.33	296.39	0.477	0.717	0.195	0
SDE_EE	-0.191	371.54	301.70	0.301	0.280	0.260	0
SDE_iptw	-0.164	329.74	244.23	0.727	0.501	0.197	0
SIE_tmle_eff	0.124	43.16	103.06	0.274	0.492	0.185	0
SIE_EE_eff	0.164	53.82	41.56	0.194	0.120	0.193	0
SIE_tmle	0.120	44.87	109.68	0.273	0.478	0.186	0
SIE_EE	0.162	58.43	54.32	0.226	0.178	0.192	0
SIE_iptw	0.113	146.94	107.72	0.513	0.500	0.173	0
DGM 3, N=5000							
SDE_tmle_eff	-0.056	203.22	244.19	0.477	0.548	0.065	0
SDE_EE_eff	-0.070	875.83	342.74	0.962	0.596	0.082	0
SDE_tmle	-0.062	518.76	616	0.813	0.889	0.111	0
SDE_EE	-0.074	1,340.79	935.49	0.862	0.865	0.162	0
SDE_iptw	-0.099	417.60	429.88	0.620	0.669	0.118	0

Transport stochastic indirect effect

Continued on next page
Table 19 – continued from previous page

Estimator	Bias	Efficiency	95%CI	Cov	RMSE	% Out of Bds	
	IC	Bootstrapping	IC	Bootstrapping			
SIE_tmle_eff	0.125	147.45	105.41	0	0	0.126	0
SIE_EE_eff	0.133	67.89	35	0	0	0.134	0
SIE_tmle	0.122	158.62	145.54	0	0	0.124	0
SIE_EE	0.133	74.73	47.12	0	0	0.134	0
SIE_iptw	0.129	157.15	126.67	0	0	0.130	0

Table 20: Simulation results comparing estimators of the transported direct and indirect effects for DGP 3 under Y and Z models misspecified. For sample sizes 100, 500 and 5000.

Estimator	Bias	Efficiency	95%CI	Cov	RMSE	% Out of Bds
	IC	Bootstrapping	IC	Bootstrapping		
Transport stochastic direct effect						
DGM 3, N=100						
SDE_tmle_eff	-0.155	79.58	135.64	0.422	0.658	0.195
SDE_EE_eff	-0.150	117.23	136.56	0.580	0.714	0.188
SDE_tmle	0.005	264.09	290.02	0.806	0.874	0.287
SDE_EE	0.028	380.69	299.92	0.939	0.880	0.292
SDE_iptw	0.002	280.33	287.94	0.867	0.883	0.272
Transport stochastic indirect effect						
DGM 3, N=500						
SIE_tmle_eff	0.047	111.60	126.11	0.640	0.639	0.086
SIE_EE_eff	0.038	170.70	110.67	0.863	0.755	0.070
SIE_tmle	0.046	120.45	151.05	0.626	0.640	0.094
SIE_EE	0.032	195.13	146.58	0.691	0.639	0.088
SIE_iptw	0.030	151.98	140.84	0.760	0.809	0.076
Transport stochastic direct effect						
DGM 3, N=5000						
SDE_tmle_eff	-0.103	111.77	124.79	0.307	0.383	0.112
SDE_EE_eff	-0.106	158.80	114.52	0.526	0.266	0.114
SDE_tmle	0.116	397.58	376.82	0.799	0.735	0.192
SDE_EE	0.120	481.43	371.48	0.942	0.746	0.191
SDE_iptw	0.090	339.25	328.30	0.812	0.776	0.161
Transport stochastic indirect effect						
DGM 3, N=5000						
SIE_tmle_eff	-0.002	141.83	125.67	0.977	0.954	0.022
SIE_EE_eff	0.0002	214.39	101.32	0.993	0.953	0.018
SIE_tmle	-0.004	151.37	186.26	0.892	0.923	0.035
SIE_EE	-0.004	269.77	193.99	0.973	0.938	0.036
SIE_iptw	-0.002	148.16	139.08	0.935	0.921	0.026
Transport stochastic direct effect						
DGM 3, N=5000						
SDE_tmle_eff	-0.098	105.11	103.48	0	0	0.099
SDE_EE_eff	-0.104	144.61	97.28	0	0	0.104
SDE_tmle	0.128	387.96	351.80	0.210	0.178	0.135
SDE_EE	0.127	440.62	351.63	0.282	0.183	0.134
SDE_iptw	0.095	334.43	309.47	0.343	0.296	0.102
Transport stochastic indirect effect						
SIE_tmle_eff	-0.005	122.10	87.11	0.939	0.826	0.007
SIE_EE_eff	-0.001	180.44	76.76	1	0.932	0.005

Continued on next page
Estimator	Bias	Efficiency	95% CI	Cov	RMSE	% Out of Bds	
	IC	Bootstrapping	IC	Bootstrapping			
SIE_tmle	-0.014	143.41	146.80	0.602	0.626	0.017	0
SIE_EE	-0.005	230.11	164.35	0.992	0.931	0.011	0
SIE_iptw	-0.005	121.01	114.92	0.881	0.859	0.009	0

Table 20: Simulation results comparing estimators of the transported direct and indirect effects for DGP 3 under Y and M models misspecified. For sample sizes 100, 500 and 5000.

Estimator	Bias	Efficiency	95% CI	Cov	RMSE	% Out of Bds	
	IC	Bootstrapping	IC	Bootstrapping			
SIE_tmle	-0.014	143.41	146.80	0.602	0.626	0.017	0
SIE_EE	-0.005	230.11	164.35	0.992	0.931	0.011	0
SIE_iptw	-0.005	121.01	114.92	0.881	0.859	0.009	0

Estimator	Bias	Efficiency	95% CI	Cov	RMSE	% Out of Bds	
	IC	Bootstrapping	IC	Bootstrapping			
SIE_tmle	-0.001	108.17	131.11	0.573	0.583	0.196	0
SIE_EE	0.0071	203.97	155.45	0.656	0.628	0.197	0.100
SIE_tmle	0.109	109.89	121.39	0.533	0.512	0.204	0
SIE_EE	0.082	207.74	164.23	0.622	0.575	0.211	0.100
SIE_iptw	0.094	192.23	119.34	0.644	0.562	0.183	0

Table 21: Simulation results comparing estimators of the transported direct and indirect effects for DGP 3 under Y and M models misspecified. For sample sizes 100, 500 and 5000.
Table 21 – continued from previous page

Estimator	Bias	Efficiency IC	95% CI Cov IC	RMSE Bootstrapping	% Out of Bds	Cov Bootstrapping
SIE_iptw	-0.015	129.58	120.45	0.862	0.825	0.023

Table 22: Simulation results comparing estimators of the transported direct and indirect effects for DGP 3 under Y model misspecified. For sample sizes 100, 500 and 5000.

Estimator	Bias	Efficiency IC	95% CI Cov IC	RMSE Bootstrapping	% Out of Bds	Cov Bootstrapping
DGM 3, N=100						
Transport stochastic direct effect						
SDE_tmle_eff	-0.067	114.03	177.02	0.731	0.893	0.158
SDE_EE_eff	-0.095	153.08	160.44	0.766	0.817	0.161
SDE_tmle	0.019	189.07	312.17	0.598	0.876	0.314
SDE_EE	-0.063	335.43	258.40	0.857	0.854	0.335
SDE_iptw	-0.015	349.83	326.79	0.868	0.883	0.306
Transport stochastic indirect effect						
SIE_tmle_eff	0.093	107.56	142.73	0.533	0.582	0.200
SIE_EE_eff	0.094	172.64	120.52	0.612	0.562	0.185
SIE_tmle	0.101	109.75	138.89	0.516	0.532	0.203
SIE_EE	0.096	180.93	132.24	0.604	0.545	0.193
SIE_iptw	0.083	159.86	136.27	0.648	0.589	0.183
DGM 3, N=500						
Transport stochastic direct effect						
SDE_tmle_eff	-0.007	147.33	140.13	0.954	0.949	0.054
SDE_EE_eff	-0.025	215.05	133.32	0.971	0.923	0.056
SDE_tmle	0.066	411.77	462.31	0.607	0.674	0.238
SDE_EE	-0.025	729.40	644.29	0.992	0.752	0.314
SDE_iptw	0.042	463.89	418.71	0.768	0.756	0.200
Transport stochastic indirect effect						
SIE_tmle_eff	-0.009	113.07	157.65	0.898	0.955	0.060
SIE_EE_eff	0.004	270.99	147.05	0.985	0.959	0.058
SIE_tmle	-0.005	126.18	184.44	0.896	0.958	0.068
SIE_EE	0.003	293.04	190.52	0.970	0.950	0.074
SIE_iptw	-0.005	176.15	164.44	0.937	0.944	0.066
DGM 3, N=5000						
Transport stochastic direct effect						
SDE_tmle_eff	-0.0002	147.13	118.60	0.984	0.947	0.015
SDE_EE_eff	-0.001	250.94	124.08	0.992	0.950	0.014
SDE_tmle	0.006	574.32	554.59	0.925	0.910	0.076
SDE_EE	-0.002	716.64	643.04	0.947	0.910	0.087
SDE_iptw	0.004	470.22	463.33	0.903	0.915	0.063
Transport stochastic indirect effect						
SIE_tmle_eff	0.0001	130.82	108.84	0.984	0.952	0.014
SIE_EE_eff	0.001	220.90	108.07	1	0.939	0.015
SIE_tmle	-0.0001	146.59	126.90	0.955	0.939	0.017
SIE_EE	0.001	240.50	147.62	0.999	0.938	0.020
SIE_iptw	-0.0001	149.24	124.84	0.964	0.940	0.017