JACOB'S LADDERS, CONJUGATE INTEGRALS, EXTERNAL MEAN-VALUES AND OTHER PROPERTIES OF A MULTIPLY π(T)-AUTOCORRELATION OF THE FUNCTION |ζ(1/2 + it)|^2

JAN MOSER

Abstract. In this paper we obtain a new class of transformation formulae (without an explicit presence of a derivative) for the integrals containing products of factors |ζ(1/2 + it)|^2 with respect to two components of a disconnected set on the critical line.

1. Introduction

1.1. In the work of reference [3] (comp. also [1] and [2]) we have introduced the following disconnected set

\[\Delta(n + 1) = \Delta(n + 1; T, U) = \bigcup_{k=0}^{n+1} [\phi_k^1(T), \phi_k^1(T + U)] \]

where

\[y = \frac{1}{2} \varphi(t) = \varphi_1(t); \quad \varphi_0^1(t) = t, \quad \varphi_1^1(t) = \varphi_1(t), \]

\[\phi_k^1(t) = \varphi_1[\varphi_1(t)], \ldots, \phi_k^1(t) = \varphi_1[\varphi_k^{-1}(t)], \quad t \in [T, T + U], \]

and \(\phi_k^1(t) \) stands for the \(k \)-th iteration of the Jacob's ladder

\[\varphi_1(t), \quad t \geq T_0[\varphi_1]. \]

The set (1.1) has the following properties

\[t \sim \phi_k^1(t), \quad \phi_k^1(T) \geq (1 - \epsilon)T, \quad k = 0, 1, \ldots, n + 1, \]

\[\phi_k^1(T + U) - \phi_k^1(T) < \frac{T}{2n + 5 \ln T}, \quad k = 1, \ldots, n + 1, \]

\[\phi_k^1(T) - \phi_k^{k+1}(T + U) > 0.18 \times \frac{T}{\ln T}, \quad k = 0, 1, \ldots, n, \]

\[U \in \left(0, \frac{T}{\ln^2 T} \right), \]

and, in the macroscopic domain, i. e. for

\[U \in \left[T^{1/3 + \epsilon}, \frac{T}{\ln^2 T} \right], \]

we have a more detailed information about the set (1.1), namely

\[||[\phi_k^1(T), \phi_k^1(T + U)]|| = \varphi_k^1(T + U) - \varphi_k^1(T) \sim U, \quad k = 1, \ldots, n + 1, \]

\[\varphi_k^1(T) - \varphi_k^{k+1}(T + U) \sim (1 - \epsilon) \frac{T}{\ln T}, \quad k = 0, 1, \ldots, n, \]

Key words and phrases. Riemann zeta-function.
where \(c \) is the Euler constant. We have that (see (1.3))
\[
\phi_{n+1}(T + U) - \phi_{1}(T + U) \prec \cdots \prec [\phi_{1}(T), \phi_{1}(T + U)] \prec [T, T + U],
\]
i. e. the segments are ordered from \([T, T + U]\) to the left.

Remark 1. The asymptotic behavior of the disconnected set (1.1) is as follows: if \(T \to \infty \) then the components of this set recede unboundedly each from other (see (1.3), (1.5)) and all together are receding to infinity. Hence, if \(T \to \infty \) then the set (1.1) behaves as an one-dimensional Friedman-Hubble expanding universe.

1.2. Next, we have shown (see [3]) that for the weighted mean-value of the integral
\[
\frac{1}{U} \int_{T}^{T+U} \prod_{k=0}^{n} \left| \frac{1}{2} + i \varphi_{1}^{k}(t) \right| dt, \quad U \in \left(0, \frac{T}{\ln^{2} T} \right)
\]
the following factorization formula
\[
g_{n+1} = \frac{1}{U} \int_{T}^{T+U} \prod_{k=0}^{n} \left| \frac{1}{2} + i \varphi_{1}^{k}(t) \right| dt \sim \prod_{l=1}^{s} \frac{1}{U} \int_{T}^{T+U} a_{n-1} \prod_{k=0}^{a_{n-1}} \left| \frac{1}{2} + i \varphi_{1}^{k}(t) \right| dt, \quad T \to \infty
\]
holds true for every fixed natural number \(n \) and for every proper partition (the partition \(n + 1 = a_{1} + a_{2} + \cdots + a_{s}, \quad a_{l} \in [1, n], \quad l = 1, \ldots, s, \) and
\[
g_{l} = \frac{U}{\varphi_{1}^{a_{l}}(T + U) - \varphi_{1}^{a_{l}}(T), \quad l = 1, \ldots, s,}
\]
\[
g_{n+1} = \frac{U}{\varphi_{1}^{n+1}(T + U) - \varphi_{1}^{n+1}(T)}.
\]

1.3. Next, by [3], (6.5), \(n + 1 \to k \), we have
\[
t - \varphi_{1}^{k} \sim k(1 - c)\pi(t), \quad k = 0, 1, \ldots, n
\]
where \(\pi(t) \) is the prime-counting function. Hence
\[
\frac{1}{2} + i \varphi_{1}^{k}(t) = \frac{1}{2} + it - i[t - \varphi_{1}^{k}(t)] \sim \frac{1}{2} + it - ik(1 - c)\pi(t), \quad k = 0, 1, \ldots, n.
\]

Remark 2. By (1.8) the arguments in the product (1.6) performs some complicated oscillations around the sequence
\[
\frac{1}{2} + it - ik(1 - c)\pi(t), \quad k = 0, 1, \ldots, n
\]
of the lattice points. Based on this, the integral (1.6) represents the multiple (for \(k \geq 2 \)) \(\pi(t) \)-autocorrelation of the function \(\left| \zeta \left(\frac{1}{2} + it \right) \right|^2 \), i. e. we have certain type of the complicated nonlinear and nonlocal interaction of the function \(\left| \zeta \left(\frac{1}{2} + it \right) \right|^2 \) with itself.
1.4. After this we turn back to the formula (1.7). This formula binds the corresponding set of integrals over the same segment \([T, T + U]\). However, the segment \([T, T + U]\) is only one component of the disconnected set \(\Delta(n + 1)\) (see (1.1)). This is the reason for the following.

Question. Is there some formula that binds the integral (1.6) with the integral of the type
\[
\int_{\varphi_1^{p(n)}(T)}^{\varphi_1^{p(n)}(T + U)} \prod_{k=0}^{n} \left| \zeta \left(\frac{1}{2} + i\varphi_1^k(u) \right) \right|^2 du, \quad 1 \leq p(n) \leq n,
\]
i. e. with the integral over the component
\([\varphi_1^{p(n)}(T), \varphi_1^{p(n)}(T + U)] \neq [T, T + U]\).

2. The main formula and its structure

2.1. We obtain the following theorem in the direction of our Question

Theorem. For every disconnected set
\(\Delta(2l) = \Delta(2l; T, U) = \bigcup_{k=0}^{2l} [\varphi_1^k(T), \varphi_1^k(T + U)]\), \(l = 1, \ldots, L_0\)
where \(L_0 \in \mathbb{N}\) is an arbitrary fixed number, and for every
\[
U \in \left(0, \frac{T}{\ln^2 T}\right]
\]
the following asymptotic transformation formula
\[
\int_{\varphi_1(T)}^{\varphi_1(T + U)} \prod_{k=0}^{l-1} \left| \zeta \left(\frac{1}{2} + i\varphi_1^k(u) \right) \right|^2 du_1 \sim \frac{\varphi_1^2(T + U) - \varphi_1^2(T)}{\varphi_1^2(T + U) - \varphi_1^2(T)} \int_{T}^{T + U} \prod_{k=0}^{l-1} \left| \zeta \left(\frac{1}{2} + i\varphi_1^k(t) \right) \right|^2 dt, \quad T \to \infty
\]
holds true.

Remark 3. We call the integrals that are bind by the formula (2.1) the conjugate integrals.

Let
\[
\frac{1}{2} + i\gamma, \quad \frac{1}{2} + i\gamma', \quad \gamma < \gamma'
\]
be consecutive zeros of the Riemann zeta-function lying on the critical line and \(l = 7, T = \gamma, U = \gamma' - \gamma\). Thus, for example, the following formula (see (2.1))
\[
\int_{\varphi_1^{14}(\gamma)}^{\varphi_1^{14}(\gamma)} \prod_{k=0}^{6} \left| \zeta \left(\frac{1}{2} + i\varphi_1^k(u) \right) \right|^2 du_7 \sim \frac{\varphi_1^{14}(T + U) - \varphi_1^{14}(T)}{\varphi_1^{14}(T + U) - \varphi_1^{14}(T)} \int_{\gamma}^{\gamma'} \prod_{k=0}^{6} \left| \zeta \left(\frac{1}{2} + i\varphi_1^k(t) \right) \right|^2 dt, \quad \gamma \to \infty
\]
holds true.

Remark 4. Nor the formula (2.2) for seven factors and \(U = \gamma' - \gamma\) is not accessible for the current methods in the theory of the Riemann zeta-function.
2.2. By the continuity of the function $\varphi_1(v)$ we have (see (2.1)) that if

$$u_l = \varphi_1(t), \ t \in [T, T + U]$$

then

$$\varphi_k(u_l) = \varphi_k[\varphi_1(t)] = \varphi^{k+1}(t) \in [\varphi_1^{k+1}(T), \varphi_1^{k+1}(T + U)].$$

Consequently, the product

$$\prod_{k=0}^{l-1} \left| \zeta \left(\frac{1}{2} + i \varphi_1^k(u_l) \right) \right|^2$$

corresponds to the disconnected set

$$\bigcup_{k=l}^{2l-1} [\varphi^k(T), \varphi^k(T + U)] = \Delta(l, 2l - 1),$$

and similarly the product

$$\prod_{k=0}^{l-1} \left| \zeta \left(\frac{1}{2} + i \varphi_1^k(t) \right) \right|^2$$

corresponds to the disconnected set

$$\bigcup_{k=0}^{l-1} [\varphi^k(T), \varphi^k(T + U)] = \Delta(0, l - 1),$$

where the sets (2.3), (2.4) are subsets of the set $\Delta(2l)$.

Next (comp. (1.3)), we have

(2.5) $\rho\{[\varphi^k(T), \varphi^k(T + U)]; [\varphi^{k+1}(T), \varphi^{k+1}(T + U)]\} > 0.17 \times \pi(T)$

where ρ represents the distance of corresponding segments.

Remark 5. The formula (2.1) controls a quasi-chaotic behavior of the values of the function $|\zeta (1/2 + it)|^2$ with respect to the disconnected set $\Delta(2l)$ in spite of big distances separating the components of the set $\Delta(2l)$ (see (2.5)).

3. Some external mean-values

3.1. Using the mean-value theorem on the left-hand side of (2.1) we obtain

(3.1) $$\frac{1}{U} \int_T^{T+U} \prod_{k=0}^{l-1} \left| \zeta \left(\frac{1}{2} + i \varphi_1^k(t) \right) \right|^2 \, dt \sim$$

$$\sim \frac{\{\varphi^1(T + U) - \varphi^1(T)\}^2}{\{\varphi^2(T + U) - \varphi^2(T)\}} \prod_{k=0}^{l-1} \left| \zeta \left(\frac{1}{2} + i \varphi_1^k(\alpha_l) \right) \right|^2$$

where (see the paragraph 2.2)

$$\alpha_l \in (\varphi^1(T), \varphi^1(T + U)), \ \alpha_l = \varphi^l(t_l),$$

i. e.

$$\varphi^k(\alpha_l) = \varphi^{k+1}(t_l) \in (\varphi_1^{k+1}(T), \varphi_1^{k+1}(T + U)).$$

Hence, by (3.1) and (3.2) we have the following
Corollary 1. There are the values
\[\tau_k = \tau_k(T, U, l) \in (\varphi_k^1(T), \varphi_k^1(T + U)), \quad k = l, \ldots, 2l - 1 \]
such that
\[
\frac{1}{U} \int_T^{T+U} \prod_{k=0}^{l-1} \left| \zeta \left(\frac{1}{2} + i \varphi_k^1(t) \right) \right|^2 dt \sim \frac{\varphi_1^1(T + U) - \varphi_1^1(T)}{\varphi_1^1(T + U) - \varphi_1^1(T)} U \prod_{k=0}^{2l-1} \left| \zeta \left(\frac{1}{2} + i \tau_k \right) \right|^2
\]
where
\[
U \in \left(0, \frac{T}{\ln^2 T} \right], \quad l = 1, \ldots, L_0, \quad T \to \infty.
\]

Remark 6. Since:
(a) the integral
\[
\int_T^{T+U} \prod_{k=0}^{l-1} \left| \zeta \left(\frac{1}{2} + i \varphi_k^1(t) \right) \right|^2 dt
\]
corresponds to the disconnected set \(\Delta(0, l - 1) \), (see (2.4)),
(b) the product
\[
\prod_{k=l}^{2l-1} \left| \zeta \left(\frac{1}{2} + i \tau_k \right) \right|
\]
corresponds to the disconnected set \(\Delta(l, 2l - 1) \), (see (2.3)),
(c) the sets \(\Delta(0, l - 1) \) and \(\Delta(l, 2l - 1) \) are separated by the big distance
\[
\rho \{ \Delta(0, l - 1); \Delta(l, 2l - 1) \} > 0.17 \times \pi(T)
\]
(see (2.3), (2.4)),
it is quite natural to call the right-hand side of the equation (3.3) the external mean-value of the integral on the left-hand side.

3.2. Next, by the similar way, we obtain the following

Corollary 2. There are the values
\[\tau_k = \tau_k(T, U, l) \in (\varphi_k^1(T), \varphi_k^1(T + U)), \quad k = 0, 1, \ldots, l - 1 \]
such that
\[
\frac{1}{U} \int_T^{T+U} \prod_{k=0}^{l-1} \left| \zeta \left(\frac{1}{2} + i \varphi_k^1(u) \right) \right|^2 du \sim \frac{\varphi_1^2(T + U) - \varphi_1^2(T)}{\varphi_1^2(T + U) - \varphi_1^2(T)} U \prod_{k=0}^{l-1} \left| \zeta \left(\frac{1}{2} + i \tau_k \right) \right|^2,
\]
where
\[
U \in \left(0, \frac{T}{\ln^2 T} \right] \cup \left(0, \frac{T}{\ln^2 T} \right), \quad l = 1, \ldots, L_0, \quad T \to \infty.
\]

Remark 7. The formula (3.4) gives us the second variant of the external mean-value theorem.
4. Other properties of the distribution of the values of \(|\zeta(\frac{1}{2} + it)| \) with respect to the disconnected set \(\Delta(2l) \)

4.1. Similarly to (3.3), (3.4), we obtain the following formula

\[
\prod_{k=0}^{l} \left| \zeta\left(\frac{1}{2} + i\tau_k\right) \right| \sim \frac{\varphi'_1(T + U) - \varphi'_1(T)}{\sqrt{\varphi'^2_1(T + U) - \varphi'^2_1(T)U}} \prod_{k=l}^{2l-1} \left| \zeta\left(\frac{1}{2} + i\tau_k\right) \right|,
\]

(4.1)

where \(\tau_k \in (\varphi'_k(T), \varphi'_k(T + U)), k = 0, 1, \ldots, 2l - 1 \).

Next, we obtain from (4.1) the following

Corollary 3.

\[
G^{(l)}_{0^{-1}} \left[\left| \zeta\left(\frac{1}{2} + i\tau_k\right) \right| \right] \sim \left\{ \frac{\varphi'_1(T + U) - \varphi'_1(T)}{\sqrt{\varphi'^2_1(T + U) - \varphi'^2_1(T)U}} \right\}^{1/l} G^{(2l-1)}_{l^{-1}} \left[\left| \zeta\left(\frac{1}{2} + i\tau_k\right) \right| \right], T \to \infty
\]

(4.2)

where the following symbols

\[
G^{(l)}_{0^{-1}} \left[\left| \zeta\left(\frac{1}{2} + i\tau_k\right) \right| \right] = \left\{ \prod_{k=0}^{l} \left| \zeta\left(\frac{1}{2} + i\tau_k\right) \right| \right\}^{1/l},
\]

(4.3)

\[
G^{(2l-1)}_{l^{-1}} \left[\left| \zeta\left(\frac{1}{2} + i\tau_k\right) \right| \right] = \left\{ \prod_{k=1}^{2l-1} \left| \zeta\left(\frac{1}{2} + i\tau_k\right) \right| \right\}^{1/l}
\]

stand for the geometric means.

4.2. Since (see (4.3))

\[
\frac{G^{(l)}_{0^{-1}}}{G^{(2l-1)}_{l^{-1}}} = G^{(l)}_{0^{-1}} \left[\frac{\left| \zeta\left(\frac{1}{2} + i\tau_{k+1}\right) \right|}{\left| \zeta\left(\frac{1}{2} + i\tau_k\right) \right|} \right],
\]

(4.4)

and we have for arithmetic and geometric means (for example)

\[
\bar{x}_A \geq \bar{x}_G; \bar{x}_A = \frac{1}{n} \sum_{i=1}^{n} x_i, \bar{x}_G = \sqrt{n} \prod_{i=1}^{n} x_i, x_i > 0.
\]

(4.5)

Then we obtain from (4.1)-(4.4) the formula

\[
\bar{G}^{(l)}_{0^{-1}} \left[\frac{\left| \zeta\left(\frac{1}{2} + i\tau_k\right) \right|}{\left| \zeta\left(\frac{1}{2} + i\tau_{k+1}\right) \right|} \right] \sim \left\{ \frac{\varphi'_1(T + U) - \varphi'_1(T)}{\sqrt{\varphi'^2_1(T + U) - \varphi'^2_1(T)U}} \right\}^{1/l} = \Omega_l.
\]

Next, from the inequality

\[
\bar{G}^{(l)}_{0^{-1}} > (1 - c)\Omega_l, T \to \infty
\]
we obtain that (see (4.5))

\[
1 \frac{1}{l} \left\{ \sum_{k=0}^{l-1} \left| \frac{\zeta \left(\frac{1}{2} + i \tau_k \right)}{\zeta \left(\frac{1}{2} + i \tau_{k+1} \right)} \right| \right\}_m > (1 - \epsilon) \Omega_l.
\]

The numbers \((\tau_0, \tau_1, \ldots, \tau_{l-1})\) may be ordered by \(l!\)-ways in the product

\[
\prod_{k=0}^{l-1} \left| \frac{\zeta \left(\frac{1}{2} + i \tau_k \right)}{\zeta \left(\frac{1}{2} + i \tau_{k+1} \right)} \right|,
\]

and the same holds for the sequence of numbers \((\tau_l, \ldots, \tau_{2l-1})\). Therefore we have \((l!)^2\) inequalities of the type (4.6). In this sense we use the symbol

\[
\left\{ \sum_{k=0}^{l-1} \left| \frac{\zeta \left(\frac{1}{2} + i \tau_k \right)}{\zeta \left(\frac{1}{2} + i \tau_{k+1} \right)} \right| \right\}_m, \quad m = 1, \ldots, (l!)^2.
\]

Hence, we obtain from (4.6) the following

Corollary 4. We have \((l!)^2\) inequalities

\[
1 \frac{1}{l} \left\{ \sum_{k=0}^{l-1} \left| \frac{\zeta \left(\frac{1}{2} + i \tau_k \right)}{\zeta \left(\frac{1}{2} + i \tau_{k+1} \right)} \right| \right\}_m > (1 - \epsilon) \left\{ \frac{\varphi^1_l(T + U) - \varphi^1_l(T)}{\sqrt{\varphi^2_l(T + U) - \varphi^2_l(T)U}} \right\}^{1/l},
\]

for \(\tau_0, \tau_1, \ldots, \tau_{2l-1}\), where

\[
m = 1, \ldots, (l!)^2, \quad l = 1, \ldots, L_0, \quad U \in \left(0, \frac{T}{\ln^2 T} \right], \quad l = 1, \ldots, L_0, \quad T \to \infty.
\]

Remark 8. There are certain multiplicative effects also in the genetics, among the polygenic systems, and consequently the geometric means is used there, see, for example, [4], pp. 336, 337. We also note that we have used the formula for multiplication of independent variables as a motivation for our paper [3].

5. **Remarks about essential influence of the Riemann hypothesis on the sequence** \(\left\{ \varphi^k_l(T + U) - \varphi^k_l(T) \right\}_{k=1}^{L_0} \)

5.1. Let us remind that in the macroscopic case (1.4) we have the asymptotic formula (see (1.5))

\[
\varphi^k_l(T + U) - \varphi^k_l(T) \sim U, \quad k = 1, \ldots, L_0.
\]

In connection with (5.1) we ask the question: what is the influence of the Riemann hypothesis on measures of the segments

\[[\varphi_1(T), \varphi_1(T + U)] \]

in the case (comp. (1.4))

\[
U \in (0, T^{1/3 - \epsilon_0}],
\]

for example, in the case \(\epsilon_0 = \frac{1}{12} \), i.e.

\[
U \in (0, T^{1/4}].
\]

First of all we have, on the Riemann hypothesis, that (see [3], p. 300)

\[
\zeta \left(\frac{1}{2} + it \right) = O \left(t^{1/4+\epsilon} \right), \quad t \to \infty,
\]

we obtain that (see (4.5))

\[
(4.6)
\]

\[
1 \frac{1}{l} \left\{ \sum_{k=0}^{l-1} \left| \frac{\zeta \left(\frac{1}{2} + i \tau_k \right)}{\zeta \left(\frac{1}{2} + i \tau_{k+1} \right)} \right| \right\}_m > (1 - \epsilon) \Omega_l.
\]

\[
\prod_{k=0}^{l-1} \left| \frac{\zeta \left(\frac{1}{2} + i \tau_k \right)}{\zeta \left(\frac{1}{2} + i \tau_{k+1} \right)} \right|,
\]

and the same holds for the sequence of numbers \((\tau_l, \ldots, \tau_{2l-1})\). Therefore we have \((l!)^2\) inequalities of the type (4.6). In this sense we use the symbol

\[
\left\{ \sum_{k=0}^{l-1} \left| \frac{\zeta \left(\frac{1}{2} + i \tau_k \right)}{\zeta \left(\frac{1}{2} + i \tau_{k+1} \right)} \right| \right\}_m, \quad m = 1, \ldots, (l!)^2.
\]

Hence, we obtain from (4.6) the following

Corollary 4. We have \((l!)^2\) inequalities

\[
1 \frac{1}{l} \left\{ \sum_{k=0}^{l-1} \left| \frac{\zeta \left(\frac{1}{2} + i \tau_k \right)}{\zeta \left(\frac{1}{2} + i \tau_{k+1} \right)} \right| \right\}_m > (1 - \epsilon) \left\{ \frac{\varphi^1_l(T + U) - \varphi^1_l(T)}{\sqrt{\varphi^2_l(T + U) - \varphi^2_l(T)U}} \right\}^{1/l},
\]

for \(\tau_0, \tau_1, \ldots, \tau_{2l-1}\), where

\[
m = 1, \ldots, (l!)^2, \quad l = 1, \ldots, L_0, \quad U \in \left(0, \frac{T}{\ln^2 T} \right], \quad l = 1, \ldots, L_0, \quad T \to \infty.
\]

Remark 8. There are certain multiplicative effects also in the genetics, among the polygenic systems, and consequently the geometric means is used there, see, for example, [4], pp. 336, 337. We also note that we have used the formula for multiplication of independent variables as a motivation for our paper [3].

5. **Remarks about essential influence of the Riemann hypothesis on the sequence** \(\left\{ \varphi^k_l(T + U) - \varphi^k_l(T) \right\}_{k=1}^{L_0} \)

5.1. Let us remind that in the macroscopic case (1.4) we have the asymptotic formula (see (1.5))

\[
(5.1)
\]

\[
\varphi^k_l(T + U) - \varphi^k_l(T) \sim U, \quad k = 1, \ldots, L_0.
\]

In connection with (5.1) we ask the question: what is the influence of the Riemann hypothesis on measures of the segments

\[[\varphi_1(T), \varphi_1(T + U)] \]

in the case (comp. (1.4))

\[
U \in (0, T^{1/3 - \epsilon_0}],
\]

for example, in the case \(\epsilon_0 = \frac{1}{12} \), i.e.

\[
U \in (0, T^{1/4}].
\]

First of all we have, on the Riemann hypothesis, that (see [3], p. 300)

\[
(5.3)
\]

\[
\zeta \left(\frac{1}{2} + it \right) = O \left(t^{1/4+\epsilon} \right), \quad t \to \infty,
\]
(5.4) \[\zeta \left(\frac{1}{2} + it \right) = O \left(T^{\frac{1}{2 + \epsilon}} \right), \quad t \in [(1 - \epsilon)T, T + U] \]

(comp. (1.3) and [3], (6.17)). Next we obtain for (5.2) from our formula (see [2], (2.5))

\[\int_T^{T+V} \left| \zeta \left(\frac{1}{2} + it \right) \right|^2 dt \sim [\varphi_1(T + V) - \varphi_1(T)] \ln T, \quad V \in \left(0, \frac{T}{\ln T} \right), \]

by (5.4) that

\[\varphi_1^1(T + U) - \varphi_1^1(T) = O \left(\frac{U}{\ln T} T^{\frac{1}{2 + \epsilon}} \right), \]
\[\varphi_1^2(T + U) - \varphi_1^2(T) = O \left(\frac{U}{\ln^2 T} T^{\frac{1}{2 + 2\epsilon}} \right), \]
\[\vdots \]
\[\varphi_1^{L_0}(T + U) - \varphi_1^{L_0}(T) = O \left(\frac{U}{\ln^{L_0} T} T^{\frac{1}{L_0 + \epsilon}} \right). \]

Since

\[T^{\frac{1}{L_0 + \epsilon}} = T^{\frac{1}{S \ln \ln T}} < T^{\frac{1}{\ln \ln T}}, \]

then by (5.4), (5.6) we obtain the following

Remark 9. On the Riemann hypothesis the following estimates hold true

\[U \in (0, T^{1/3 - \epsilon}] \Rightarrow \varphi_k^1(T + U) - \varphi_k^1(T) = O \left(\frac{U}{\ln^{\frac{1}{S \ln \ln T}}} \right), \quad k = 1, \ldots, L_0. \]

For example, if \(U = 1 \) then on Riemann hypothesis we have that

\[\varphi_k^1(T + 1) - \varphi_k^1(T) = O \left(\frac{U}{\ln^{\frac{1}{S \ln \ln T}}} \right), \quad k = 1, \ldots, L_0 \]

either for

\[L_0 = S = 10^{10^{10^{34}} \ln \ln

Page 8 of 11
Remark 10. In the general case we are able to guarantee only that
\[(5.8) \quad \varphi_1^1(T + 1) - \varphi_1^1(T) \in (0, T^{1/3 - \epsilon_0}], \quad \epsilon \leq \frac{\epsilon_0}{2}. \]

Hence, the comparison of (5.7), \(U = 1 \), with (5.8) shows the essential influence of the Riemann hypothesis on our subject.

6. The proof of Theorem

6.1. By using our formula (see [2], (9.1))
\[\tilde{Z}^2(t) = \frac{d\varphi_1(t)}{dt} \]
we obtain (see [12])
\[\int_T^{T+U} \prod_{k=0}^n \tilde{Z}^2[\varphi_1^k(t)]dt = \]
\[= \int_T^{T+U} \tilde{Z}^2[\varphi_1^0(t)] \tilde{Z}^2[\varphi_1^{n-1}(t)] \cdots \tilde{Z}^2[\varphi_1^1(t)] \tilde{Z}^2[t]dt = \]
\[= \int_T^{T+U} \tilde{Z}^2[\varphi_1^{n-1}(u_1)] \tilde{Z}^2[\varphi_1^{n-2}(u_1)] \cdots \tilde{Z}^2[\varphi_1^1(u_1)] \tilde{Z}^2[u_1] du_1 = \]
\[= \int_{\varphi_1^1(T)}^{\varphi_1^1(T+U)} \tilde{Z}^2[\varphi_1^{n-2}(u_1)] \cdots \tilde{Z}^2[\varphi_1^1(u_1)] \frac{d\varphi_1^1(u_1)}{du_1} du_1 = \]
\[= \int_{\varphi_1^1(T)}^{\varphi_1^1(T+U)} \tilde{Z}^2[\varphi_1^{n-1}(u_1)] \cdots \tilde{Z}^2[\varphi_1^0(u_1)] du_1, \quad l = 1, \ldots, n, \]
\[\text{i.e. the following formula} \]
\[(6.1) \quad \int_T^{T+U} \prod_{k=0}^n \tilde{Z}^2[\varphi_1^k(t)]dt = \int_{\varphi_1^1(T)}^{\varphi_1^1(T+U)} \prod_{k=0}^{n-l} \tilde{Z}^2[\varphi_1^k(u_1)] du_1, \quad l = 1, \ldots, n \]
holds true.

6.2. Let us remind that (see [3], (6.14))
\[\tilde{Z}^2(t) = \frac{Z^2(t)}{2\Phi'[\varphi(t)]} = \frac{|\zeta \left(\frac{1}{2} + it \right)|^2}{\{1 + O\left(\frac{\ln \ln t}{\ln t} \right) \ln t \}}, \]
\[t \in [T, T + U], \quad U \in \left(\frac{T}{\ln T} \right), \quad (\varphi_1^1(T), \varphi_1^1(T + U)) \subset (\varphi_1^{n+1}(T), T + U). \]
Putting (6.2) into (6.1) and using the mean-value theorem on both integrals in (6.1) we obtain the following formula (comp. [3], (6.17))

\[
\int_T^{T+U} \prod_{k=0}^n \left| \frac{1}{2} + i\varphi_k(t) \right|^2 dt \sim \ln^l T \int_{\varphi_1(T)}^{\varphi_1(T+U)} \prod_{k=0}^{n-1} \left| \frac{1}{2} + i\varphi_k(u) \right|^2 du, \quad l = 1, \ldots, n, \quad T \to \infty.
\]

(6.3)

Next, the formula (see [3], (3.1))

\[
\int_T^{T+U} \prod_{k=0}^n \left| \frac{1}{2} + i\varphi_k(t) \right|^2 dt \sim \{\varphi_1^{n+1}(T+U) - \varphi_1^{n+1}(T)\} \ln^{n+1} T;
\]

\[
\ln^{n+1} T = \ln^{(l-1)+1} T \ln^{(n-l)+1} T
\]

together with the formula (6.3) gives the following asymptotic equality

\[
\frac{\int_T^{T+U} \varphi_1^{n+1}(T+U) - \varphi_1^{n+1}(T)}{\int_T^{T+U} \varphi_1^{n+1-i}(T+U) / \varphi_1^{n+1-i}(T)} \sim \frac{\int_T^{T+U} \varphi_1^{n+1}(T+U) - \varphi_1^{n+1}(T)}{\int_T^{T+U} \varphi_1^n(T) / \varphi_1^{n+1}(T)}
\]

i. e.

\[
\{\varphi_1^{n+1}(T+U) - \varphi_1^{n+1}(T)\} \int_T^{T+U} \prod_{k=0}^{n-1} \left| \frac{1}{2} + i\varphi_k(t) \right|^2 dt \sim \int_T^{T+U} \prod_{k=0}^{n-l} \left| \frac{1}{2} + i\varphi_k(u) \right|^2 du \times
\]

\[
\times \int_{\varphi_1^{n+1-i}(T)}^{\varphi_1^{n+1-i}(T+U)} \prod_{k=0}^{l-1} \left| \frac{1}{2} + i\varphi_k(v) \right|^2 dv, \quad l = 1, \ldots, n, \quad T \to \infty.
\]

(6.5)

6.3. Next, in the case

\[
n - l = l - 1 \Rightarrow n = 2l - 1,
\]

we obtain that (see (6.4), (6.5))

\[
\left\{ \int_{\varphi_1(T)}^{\varphi_1(T+U)} \prod_{k=0}^{l-1} \left| \frac{1}{2} + i\varphi_k(u) \right|^2 du \right\}^2 \sim \{\varphi_1^{2l}(T+U) - \varphi_1^{2l}(T)\} \int_T^{T+U} \prod_{k=0}^{2l-1} \left| \frac{1}{2} + i\varphi_k(t) \right|^2 dt \sim \{\varphi_1^{2l}(T+U) - \varphi_1^{2l}(T)\}^2 \ln^{2l} T,
\]

i. e. the following formula holds true

\[
\int_{\varphi_1(T)}^{\varphi_1(T+U)} \prod_{k=0}^{l-1} \left| \frac{1}{2} + i\varphi_k(u) \right|^2 du \sim \{\varphi_1^{2l}(T+U) - \varphi_1^{2l}(T)\} \ln^l T.
\]

(6.6)
Consequently, we obtain from (6.6) by (6.4), in the case \(n = l - 1 \), the formula

\[
\int_{\varphi_1(T)}^{\varphi_1(T+U)} \prod_{k=0}^{l-1} \left| \frac{1}{2} + i \varphi_k^1(u_t) \right|^2 \, du_t \sim \\
\frac{\varphi_1^2(T+U) - \varphi_1^2(T)}{\varphi_1^2(T+U) - \varphi_1^2(T)} \int_T^{T+U} \prod_{k=0}^{l-1} \left| \frac{1}{2} + i \varphi_k^1(t) \right|^2 \, dt
\]

that verifies (2.1).

I would like to thank Michal Demetrian for his help with electronic version of this paper.

REFERENCES

[1] J. Moser, ‘Jacob’s ladders and the almost exact asymptotic representation of the Hardy-Littlewood integral’, Math. Notes 88, 414-422 (2010), arXiv: 0901.3937.
[2] J. Moser, ‘Jacob’s ladders, the structure of the Hardy-Littlewood integral and some new class of nonlinear integral equations’, Proc. Stek. Inst. 276, 208-221 (2011), arXiv: 1103.0359.
[3] J. Moser, ‘Jacob’s ladders, their interactions and the new class of integrals of the function \(|\zeta(\frac{1}{2} + it)|^2\)’, arXiv: 1209.4719.
[4] J. Nečas and I. Cetl, ‘General genetics’, SPN Praha (1979).
[5] E.C. Titchmarsh, ‘The theory of the Riemann zeta-function’ Clarendon Press, Oxford, 1951.