The flora of tidal forests – a rationalization of the use of the term ‘mangrove’

R.H. Mepham and J.S. Mepham
Department of Zoology, University of Natal, Pietermaritzburg

Introduction
Mangrove forests are generally considered to have discrete boundaries, and have long been regarded as having small specialized floras. Moreover, the term ‘mangrove forest’ has been widely, but only ostensibly, treated as if it were synonymous with the term ‘tidal forest’. However, our studies of Indo-West Pacific tidal forests, extending over a period of 29 years, have revealed the presence in them of more than 400 arborescent and 500 non-arborescent species (Appendices 1 & 2). This level of floristic diversity and the physical nature of some of the tidal basins prompts a re-evaluation of the mangrove concept. In view of the current surge of interest in mangrove vegetation, it seems appropriate to try to clarify the meaning of the term ‘mangrove’ and to remove some of the inconsistencies hitherto associated with its use.

The words ‘mangrove’ and ‘mangrove’ first came into English usage in the early 17th Century, c.1613, according to the Oxford English Dictionary. Earlier, in the Americas, the Spanish and Portuguese used the words ‘mangle’ and ‘mangue’, derived from an Haytian Arawak language, to refer to trees and shrubs of the genus Rhizophora. Later, in English, the word was modified to ‘mangrove’ and began to be applied to trees of other genera, e.g. Avicennia, Laguncularia and Pelliciera, which either grew with the rhizophoras or occupied the same type of habitat. A perusal of the literature indicates that by the middle of the 18th Century there was a widespread understanding that ‘mangroves’ were arborescent species forming forests in the tidal zones, and that such forests were best developed in the tropics.

Subsequently, it seems that British colonial administrators in India and S.E. Asia were primarily responsible for expanding the use of the word to describe two different things; tidal, forests and the individual plants that grow in them, and the word came to have this dual meaning. Recently, however, some authors (e.g. Macnae 1968; Chapman 1976) have advocated using two separate terms, ‘mangal’ to describe the forest formation and ‘mangrove’ to indicate individual plants. This follows Portuguese and French practice where the terms ‘mangal’ and ‘mangue’ and ‘paletuvier’ and ‘manglier’ are used respectively to denote the forest community and the individual plants. However, although this practice may seem desirable, the authors who suggested it were themselves far from consistent in the matter, and as the word ‘mangal’ is absent from the bulk of the English literature we do not advocate its use.

It is clear from the literature that many botanists take the view that a ‘mangrove’ forest can be defined simply on the basis of its containing ‘mangrove species’, but that it need
not be composed exclusively of such species. This would be acceptable if a satisfactory definition of a mangrove species were available, but it is not. Although the original meaning of the term was clear, referring to the species of a single genus (*Rhizophora*), the way in which the meaning was subsequently expanded to include species of other genera was both arbitrary and irrational. The question now arises as to what characteristics a plant must possess to qualify for the status of a mangrove.

Attempts to define a ‘mangrove species’

All recent interpretations of the term mangrove relate primarily to the tidal habitat of the species concerned, although secondary reference may be made to anatomical, morphological and physiological adaptations to that habitat. Attempts to define a mangrove as a particular type of plant, without reference to its habitat, have all been unsatisfactory because the features so often regarded as characteristic of mangroves are not exclusive to them and are therefore not truly diagnostic. Silt roots and pneumatophores are often better developed in seasonal swamp forest trees than in mangroves, while viviparity is neither exhibited by all mangroves nor exclusive to mangroves, and the same is true for the ability to secrete salt. Moreover, despite the fact that the IUCN Commission on Ecology’s, *World Working Group on Mangroves*, has recently stated that ‘the actual species usually listed (as mangroves) are derived by wide consensus’ (Saenger et al. 1983), this is in fact not so. Many authors are clearly uncertain as to whether or not they should designate a particular species a mangrove, and it is common to find that different authors claim that different numbers of mangrove species occur in the world, or even in their local regions. Walsh (1974), for example, puts the world total at 55, while Chapman (1976) considers there are as many as 90 species. Jones (1971) gives 27 mangrove species as being present in eastern Australia, while Bunt et al. (1982) using broader criteria, list 45 in the same region. Blasco et al. (1975) consider that there are ‘between 50 and 60’ species in India, while Rao & Sastry (1974) recognize more. The point here is that while new species are still being discovered in the tidal zone, not all botanists accept that these new species are mangroves. Views may be diametrically opposed, for example several authors have excluded the American species *Conocarpus erecta* from the mangrove category, e.g. Raumkaier (1934), while others have claimed that it is found exclusively in mangrove swamps, e.g. Walsh (1974), and neither view is correct. *Conocarpus erecta* is common in mangrove (tidal) swamps but not exclusive to them. This type of problem arises in part because authors are not fully acquainted with the ecology of a particular species.

Most modern authors, e.g. Chapman (1976), Bunt et al. (1982) and Saenger et al. (1983), admit the difficulties involved in defining a mangrove species, and since over the years it has proved impossible to define a mangrove in phenotypic terms it seems reasonable to conclude that the term is invalid in such a context. Today, most biologists concerned with mangroves claim to accept the view stated by Schimper (1891, 1898), and subsequently by several other authors, that mangrove forests are tidal forests. However, despite this they seem reluctant to take the pragmatic step of defining as a mangrove, any arborecent species growing in such a forest. To draw a parallel, it is a fact that if a species consistently grows in montane forest or dune forest its status as a ‘montane forest species’ or ‘dune forest species’ is unlikely to be challenged, but by contrast there can be no guarantee that a species which consistently grows in tidal swamps will be accepted as a mangrove.

While Bunt & Williams (1980) apparently accepted the implications of Schimper’s (1891) definition, they later qualified their view. For in 1982 (Bunt et al. 1982) they say they believe some degree of subjectivity is inevitable in defining a mangrove. They explain their new criteria of including a species as a mangrove if it is frequent in an area obviously subject to tidal inundation and grows in association with species whose ‘mangrove’ status has never been disputed. Essentially this means they regard a species as a mangrove if it grows among mangroves! But of course this still begs the question as to exactly what constitutes a mangrove.

The current situation wherein some species are classified as mangroves in a purely arbitrary way while others which seem equally well qualified, are not, is unacceptable. There must be some consistent rationale for using the term ‘mangrove’ and simply designating trees that grow in the tidal zone seems best. It would certainly simplify the situation if there were general acceptance of the view that any arborecent species was a mangrove when it was growing in a tidal area and not a mangrove when it was not. One could then say of a particular species that it was ‘a potential mangrove’ or ‘frequently a mangrove’. It would be easy to recognize a mangrove in the field and since it is more convenient to say ‘mangrove’ than ‘tree in the tidal zone’ the term would be genuinely useful. However, it would be a contradiction in terms to talk of the ‘inland occurrences of mangroves’. The following discussion, in support of this recommendation, examines some of the reasons why it appears impossible to unequivocally characterize a given species as a mangrove.

Are mangrove species confined to the tidal zone?

Some authors contend that ‘true’ mangroves are species which occur exclusively in the tidal zone and the IUCN *World Working Group on Mangroves* has recently listed 60 such species (Saenger et al. 1983). However, few if any arborecent species are in fact confined to the tidal zone. Of those listed by Saenger et al. (1983), some, such as *Excoecaria agallocha*, *Heritiera littoralis* and *Lumnitzera racemosa*, are important components of the Indo-Pacific strand flora and the latter two occur above high tide level in littoral woodlands from the shores of Africa to those of Polynesia. In addition *Excoecaria agallocha* occurs on hillsides up to 415 m (1,361 ft) in Fiji (Smith 1981), *Heritiera littoralis* grows in hill forests to 450 m (1,476 ft) in Sri Lanka (Trimen 1893) and *Lumnitzera littorea* reaches an elevation of 330 m (1,082 ft) in Sarawak (Browne 1955). Further, there are numerous well known and reliable accounts of species of *Avicennia*, *Bruguiera*, *Rhizophora* and *Sonneratia* growing naturally above high tide level. For example, *Avicennia germinans* grows on low coastal hills in El Salvador and *Avicennia marina* has been reported many miles inland and well above sea level in Natal and Papua (Molendke 1960a,b) and Western Australia (Beard 1967). *Rhizophora spp* are found inland along several rivers on the northern coast of South America, including the Para River in Brazil (Chapman 1976), and together with *Avicennia germinans* and *Laguncularia racemosa* they also occur away from the sea on several Caribbean islands, e.g. Barbuda (Stoddart et al. 1973) and Inagua (Lugo 1981). *Bruguiera gymnorrhiza*, *Rhizophora mucronata* and *Sonneratia alba* grow inland in Micronesia, in what Fosberg (1975) termed ‘mangrove depressions’, and (Brass 1938) recorded a species of *Sonneratia* 10 m above...
mean sea level in Papua.

One cannot therefore justify the view that mangrove species are confined to the tidal zone. To qualify this idea by suggesting that mangroves are species ‘virtually exclusive’ to the tidal zone, as many authors have, is still fraught with problems. Even with this modifier many of the most ‘popular’ and undisputed mangroves would have to be excluded from the category and some highly contentious species might have to be admitted to it, as will become apparent later. Are mangrove species confined to saline habitats?

Many botanists consider only those trees which grow in saline tidal forests to be mangroves but several difficulties arise with this interpretation, among them that of deciding where the saline zone ends. This is easy to see on a steep shore, but where the coast is a low lying wetland or a tropical estuary, it may be virtually impossible because of the existence of brackish transition zones.

In many parts of the world, where rivers drain per-humid highlands, the efflux of fresh water from the rivers is so great that with the flood tide, river water backs up and inundates adjacent low lying land. With the ebb tide, the flood drains away leaving the land dry again. Every day vast areas are subject to this type of fresh water tidal flooding in Borneo, the Malay Peninsula, Sumatra and New Guinea, and also in parts of West Africa and South America (see e.g. Corner 1978). In such places the water flooding the tidal zones grades from fully fresh inland, to highly saline at the coast, with broad brackish transition zones in between. Ebb and flow in the fresh water tidal zones is just as regular and real as if it occurred on a sea beach; spring and neap tide limits occur just as they do on any shore. Tall forests normally occupy the fresh water tidal zones and are in places fully contiguous through the brackish zones to the salt water swamp forests of the coast. Where there has been no disturbance, forest physiognomy is usually quite similar throughout.

In the brackish transition zones of these estuarine forests, undisputed mangrove species grow amongst other species whose range extends farther upstream towards the fresh water tidal zones. For example, in western Malesia undisputed mangrove species of the genera Aegiceras, Brownlowia, Bruguiera, Camptostemon, Cynometra, Dolichandrone, Excoecaria, Heritiera, Nypa, Rhizophora, Scyphiphora, Sonneratia and Xylocarpus may all, though not necessarily in one locality, be found growing in association with species such as Barringtonia acutangula, Barringtonia conoides, Cerbera odollam, Croton heterocarpus, Ficus microcarpa, Fissistigma manubriatum, Gluta velutina, Horsfieldia irya, Inocarpus faigi, Intisia bijuga, Meropa angulata, Millettia hemsleyana, Ochnocharis borneensis, Ochnocharis javanica, Oncosperma filamentosum, Pandanus affinis, Pandanus helicopus, Pandanus rostratus, Palaquium obovatum, Podocarpus polystachyos, Polyalthia sclerocephala, Pterocarpus indicus, Sapium indicum, Scolopia macrophylla, Syzygium densiflorum, Tarenia fragrans and Vitex clarkeana, to name but a few. These latter species are all common in sites which are flooded by brackish water each day and one can reasonably ask why the former group are regarded as mangroves but the latter group as non-mangroves. If the criteria enunciated by Bunt et al. (1982) are applied they all qualify as mangroves. Moreover, several of these latter species, e.g. Barringtonia conoides and Pandanus helicopus, are more closely tied to tidal areas, and experience more frequent inundation, than many stands of undisputed mangrove species.

Farther upstream, members of the brackish transition group themselves enter zones where they grow amongst other species in fresh water tidal areas. While the number of species in mangrove forests is generally low it tends to increase wherever the influence of fresh water increases. Thus it is widely acknowledged that the landward fringe is floristically the richest part of any mangrove swamp (e.g. Merrill 1945; Macnae 1968) for this is where fresh water from the land seeps into the swamp soil. The extraordinary diversity of species seen in the fresh water reaches of tidal swamps in the ever-wet tropics may be seen simply as an extension of this phenomenon. Far more species can cope with waterlogged soils when salt is absent from the environment than when it is present. Hence where the adjacent lowland flora is very rich, as in Malesia, there are many lowland species which can invade the fresh water fringes of a swamp whether it is tidal or not. Many of these fresh water species have stilt roots or some other type of pneumatophore, and most occupy sites that are flooded every day. This situation is not unique to Malesia. Similar transition zones occur in estuaries in other parts of the world except that different spectra of fresh and brackish water species are involved. Should these species not also be regarded as mangroves since they grow in tidal forests? This is not a new idea. In a survey of Caribbean mangroves in 1945, Stehle recognized that fresh water tidal forests (dominated by Pterocarpus officinalis) constituted the climax mangrove community in the wettest parts of that region.

In wet transition zones such as these, can a line be drawn at which species shall cease to be called mangroves? Either a particular level of salinity will have to be chosen arbitrarily or the landward extent of a particular species or group of species will have to be taken to define the inner boundary of the mangrove, and this would almost certainly be equally arbitrary. Despite this, many foresters and botanists in S.E. Asia regard either the back or the front of the Nypa zone as the landward boundary of a mangrove swamp, but on what criteria their judgements are based is not clear. Some undisputed mangrove species (e.g. Sonneratia caseolaris) which grow to seaward of Nypa, often also grow behind it, and whatever criteria are used this fact must invalidate the choice of Nypa as a boundary species.

Another difficulty relevant to the choice of suitable boundary species is that although many species are confined to particular parts of the salinity gradient in one area, they may exhibit quite different salinity ‘preferences’ in other geographic regions. This is possibly because physiological races exist in these species which confer different abilities to tolerate salt upon different populations. Laguncularia racemosa, Lumnitzera spp. and Rhizophora mucronata provide good examples, but to take an extreme case, Nypa fruticans occurs at the seaward face of mangroves at some sites in the Pacific, e.g. at the mouth of the Talofofo River in Guam, but over most of its range it is restricted to brackish back swamp environments.

Yet another difficulty is that saline water penetrates farther inland in drought periods than in rainy periods. This phenomenon is most marked where rainfall is highly seasonal, e.g. in northern Australia, Gambia and India, but even in the ever-wet climate of the Malay Peninsula and Borneo, wells along the lowland rivers tend to become saline if rain does not fall in the highlands for periods as short as 2–3 weeks. Since such short droughts may occur more than once each year, it may be assumed that even here saline water penetrates extra far inland more than once a year. Thus the boundary of the saline zone is inconstant. Furthermore, several species would transcend any such boundary if it could be drawn.
Being fully facultative halophytes, they occur throughout the forests from fresh water to saline sea water. *Aegiceras corniculatum* is such a plant, but there are others, and indeed it seems that no mangrove is an obligate halophyte.

Finally, it may be pointed out that many undisputed mangroves have been found growing naturally in fresh water conditions. Thus it certainly cannot be said that mangrove species necessarily occupy saline habitats.

Is frequency of inundation a criterion for mangrove status?

On any shore (unless it coincides with an amphidromic point) the level reached by high water varies throughout the year. Theoretically the land reached by equinocial spring high tides is flooded only twice a year, and immediately to seaward of this there is always an area which is regularly, but very infrequently, tidal. Examination of the vegetation in this latter area on most shores indicates that the influence of the tides is sufficient for it to be considered part of the tidal zone. It would therefore seem straightforward to accept the tidal zone as extending between the lowest water of the lowest spring tide and the highest water of the highest spring tide. But the matter is not this easily settled because occasional events can cause even higher or lower tides. Storms often induce tidal surges and if these coincide with high spring tides, they may result in dramatic tidal rises. If such events were rare and occurred perhaps only once a century, one might be able to disregard them as thoroughly aberrant phenomena, but in most parts of the world they are more frequent than this and some enhanced tidal rises are experienced every year. Thus, their effect on the vegetation is continual and since their magnitude is unpredictable, it is impossible to delineate the limit of tidal flooding on sloping shores precisely. The effects of storm-induced tidal surges may be very far-reaching if the slope of the shore is gentle. In Riau Province in southeastern Sumatra for example, where the coastal plain is 100 km wide and slopes seaward with a mean average gradient of only 1:20,000, an extra rise in sea level of 1 m would cause water to flood 20 km farther inland. Coastal slopes this gentle are not uncommon and cyclonic storms frequently enhance tidal rises by well over 1 m. Twelve tropical cyclones occurred in the Moçambique Channel during the first four months of 1984, several of which caused tidal rises of this magnitude on the west coast of Malagasy and down the East African coast between Tanzania and Natal.

On seasonally arid coasts, transitional zones occur between tidal and non-tidal forests in many infrequently flooded landward areas. The landward fringes of tidal swamps in these regions are often dry for much of the year and although the soils may be saline, they are frequently aerated to depths of half a metre or more, and some fresh water percolates from the land. Few botanists doubt that mangroves occur in such irregularly tidal situations. For example, on the East African coast, *Avicennia marina*, *Bruguiera gymnorrhiza*, *Ceriops tagal* and *Lumnitzera racemosa* all occur in peripheral situations which are flooded only occasionally. In some sites, trees of the first two species are inundated less than once a year. However, these undisputed mangroves seldom grow in isolation on the tidal fringes and, between Transkei and Somalia, a good many trees and shrubs may be found in association with them on brackish soils poikilomarked by crab holes. In S.E. Africa these species include *Acacia karroo*, *Apodytes dimidiata*, *Barringtonia racemosa*, *Brachylaena discolor*, *Canthium inerme*, *Chrysanthemoides monilifera*, *Erythrina lysistemon*, *Ficus natalensis*, *Ficus sur*, *Garcinia livingstonei*, *Hibiscus tiliaeus*, *Minimusps caffra*, *Phoenix reclinata*, *Rapanea melanophloea*, *Schinus terebinthifolius*, *Syzygium cordatum*, *Syzygium guineense* and *Voacanga thouarsii*, while in Kenya, *Acacia zanzibarica*, *Dobera glabra*, *Ehretia petiolaris*, *Flacourtia indica*, *Hibiscus tiliaeus*, *Hyphaene parvula*, *Salvadora persica*, *Sideroxylon dyspyroides* and *Sterculia africana* may be found in these situations. Again, all these species qualify as mangroves if the criteria of Bunt *et al.* (1982) are applied. However, few people would consider them to be mangroves when found in the inland vegetational types of which they are more typical, which serves to emphasize the futility of thinking of mangroves in terms of particular species. Nevertheless it seems reasonable to say of these fringe species that they are ‘occasional or potential mangroves’, i.e. to acknowledge that they sometimes occur in the tidal zone.

Further, as Good (1974) pointed out while discussing the tropical strand flora, 'it is not easy to state which species properly compose that flora, because, among other things, there are so many borderline cases with the mangroves'. Throughout the world, where tidal swamps abut beach vegetation, there are innumerable cases of intergrading between the species of the swamp and those of littoral woodlands. Several widespread species are common in both habitats, e.g. *Cerbera manghas*, *Excoecaria agallocha*, *Heritiera littoralis* and *Lumnitzera racemosa* in the Indo-West Pacific. Other species occur principally in one habitat, but locally, may be important in the other. *Thespesia populnea*, for example, is found chiefly in littoral woodlands but in Saipan where the undisputed mangrove flora is depauperate and competition is consequently reduced, it is an important species in tidal forests. Moreover, several species from littoral woodlands have been grown successfully in experimental mangrove swamps, in sites receiving comparatively deep and regular inundation, e.g. *Terminalia catappa* and *Erythrina variegata* (Arroyo 1979). Clearly these species are also capable of growing as mangroves in the absence of competition.

Wherever the typical mangrove flora is depauperate, species from neighbouring habitats tend to move into the tidal areas and occupy niches elsewhere filled by undisputed mangroves. Thus in parts of the Ryu Kyu Archipelago, *Drypetes karapi­nensis* is a dominant tree both in the saline tidal forests and the adjacent lowland forests. In the tidal zone it grows together with undisputed mangroves and must surely be considered a mangrove itself. In high latitudes, e.g. on the southern coasts of Australia, where the undisputed mangroves are represented only by *Avicennia marina*, the invaders from the land are predominantly herbs and a low salt marsh vegetation develops over much of the tidal zone. However, even here some inland trees have entered the fringes of tidal swamps, e.g. *Melaleuca halmaturorum* and *Melaleuca ericifolia*.

Although many authors prefer not to regard fringe species as mangroves on the basis of their being only infrequently inundated, this appears to be unsound. Some, like *Barringtonia racemosa*, *Hibiscus tiliaeus*, *Phoenix reclinata* and *Voacanga thouarsii* also occur in situations where they are regularly inundated. *Hibiscus tiliaeus*, for example, occurs at the seaward face of tidal forests in several countries, including Transkei and south India. This plant cannot tolerate deep or prolonged inundation but it can grow very well where it is flooded shallowly every day. In any case, mere frequency of inundation would be a dubious criterion for deciding if plants were mangroves or not. Whatever frequency of inundation was chosen, a large number of fresh water tidal species would have to be admitted to the mangrove category,
while large stands of *Avicennia marina* and *Bruguiera gymnorrhiza* could not be regarded as constituting mangrove forests.

Should herbs and climbers be regarded as mangroves?

Several authors (e.g. Chapman 1976; Bunt *et al.* 1982) include some herbs and climbers in their lists of mangrove species and so apparently subscribe to the view that such plants should qualify for mangrove status. Non-arborescent species are more numerous than arborescent species in Indo-West Pacific tidal swamps, as is apparent from Appendix 2, and preliminary observations suggest that this is also true for tidal forests of the American-West African formation. However, as the original meaning of the term 'mangrove' applied to arborescent species and since the great majority of authors have accepted this convention, it seems better to refer to herbs and climbers that grow in tidal forests as 'mangrove associates'. The only difficulty here is that some species which most often grow as scendent shrubs occasionally grow into small trees and vice versa. In such cases there seems no reasonable alternative but to call the plants mangroves when they are arborescent. In temperate regions, the tidal zones tend to be occupied by herbaceous vegetation and in these latitudes they are traditionallly referred to as 'marshes' or 'salt marshes'. This terminology is so well established that it would surely be unwise to include herbaceous marsh vegetation in the mangrove category, for in this case one could make a case for calling all temperate salt marshes, mangroves. A separation on the basis of tropical and temperate formations could not be validly made because arborescent vegetation, comprising undisputed mangrove species, is widely distributed in the subtropics and enters temperate regions in S.E. Africa, Australia, New Zealand and Japan. In these latter places it is widely accepted that arborescent mangrove vegetation interdigitates with herbaceous salt marsh vegetation, as discussed by Chapman (1976).

Inconsistencies in categorizing species as mangroves

It is apparent from the literature that many authors have very subjective views as to which species are mangroves and which are not, and that their ideas often have little to do with whether or not the species concerned grow in tidal zones. Thus several authors have excluded the pan-tropical species *Hibiscus tiliaceus* from the mangrove category even though it can tolerate highly saline soils and is probably more consistently present in tidal forests than any other arborescent species. Indeed, it is hard to find a large tidal forest anywhere in the world which does not somewhere contain trees of *Hibiscus tiliaceus*, while, by contrast, no pan-tropical species of *Avicennia* or *Rhizophora* are currently recognized.

In some places where strongly seasonal climates prevail, e.g. on the Ganges and Irrawaddy Deltas, large areas of land are tidal only during the rainy seasons; the tidal zones retreating seawards during the dry seasons. Areas may be tidal for only half the year. In such places the forests tend to be considered as mangrove forests or not, depending upon what species they comprise. In Puerto Rico and Bangladesh there are places where *Rhizophora* spp. form riparian forests which are hardly flooded during the dry seasons. This implies that if regular flooding occurs only during the wet seasons, then, in these places, *Rhizophora* spp. must predominantly be trees of fresh water tidal swamps. Can a tree be a mangrove if it is flooded tidally only for part of the year, and then only by fresh water? People do not question the mangrove status of *Rhizophora* spp. since it was for this genus that the name was first coined, and so in this particular case the answer is yes. But this is not a unique case. Many species in monsoonal regions experience tidal flooding only by fresh water during the rainy seasons, e.g. *Amoora ciculata* on the Irrawaddy Delta. Paradoxically few authors would admit this species to the mangrove category.

Conclusion

In the past, use of the term 'mangrove' has been inconsistent and confusing. In consequence, we advocate either abandoning it altogether, or reserving it exclusively to designate arborescent species when they occur in the tidal zone. One could then speak of 'fresh water mangroves' or 'salty water mangroves', as the case might be, where such precision was required. Species such as *Rhizophora mucronata* and *Nypa fruticans* could then be said to exhibit high fidelity as mangroves, since they are seldom found outside the tidal zone, while others such as *Acacia karroo* and *Phoenix reclinata* could be said to be only occasional mangroves, since they rarely grow in the tidal zone. Between these two extremes there appears to be a whole range of arborescent species which exhibit between them, an almost continuously varying degree of association with the tidal zone. We would prefer to regard all these as mangroves, but only when they are growing under tidal influence.

When referring to the forest associations of the tidal zone in which these trees (mangroves) grow, we advocate the use of direct descriptions such as 'tidal forest' or 'brackish-water tidal forest', since these descriptions are unequivocal.

It seems reasonable to use the term 'mangrove associate' to designate non-arborescent plants when they are associated with mangroves in the tidal zone, as we have suggested. However, some authors have used this term in a variety of other ways, but chiefly to designate those arborescent species which, while they occur in tidal swamps, also have a wide distribution in non-tidal habitats. But, at the risk of being pedantic, this presumes that these authors can define a mangrove species *per se*, and we believe that we have shown that this has not yet been done. Thus we suggest that the term 'mangrove associate' not be applied to arborescent species.

Acknowledgements

We gratefully acknowledge the advice of Dr F. Getliffe-Norris (Natal) and Dr J.A. Jimenez (Costa Rica) who offered valuable comments on the manuscript, and Prof. O. Hilliard (Natal), Dr R.E. Holttum and Mr G. Lucas (Kew) who helped with some taxonomic matters associated with the preparation of the appendices.

References

ARROYO, C.A. 1979. Flora of the Philippines Mangrove. In: Proc. Symp. on Mangrove & Estuarine Vegetation in South East Asia, eds Srivastava, P.B.L., Ahmad, A.M., Dhanarajan, G. & Hamzah, I. Fac. Forestry, Univ. Malaysia, Selangor. BIOTROP Spec. Publ. 10. pp.33 – 44.

BEARD, J.S. 1967. An inland occurrence of mangrove. *West. Aust. Nat.* 10: 112 – 115.

BLASCO, F., CARATINI, C., CHANDA, S. & THANIKAI-MONI, G. 1975. Main characteristics of Indian mangroves. In: Proc. Int. Symp. Biology and Management of Mangroves, Vol.1, eds Walsh, G.E., Snedaker, S.C. & Teas, H.J. Univ. Florida, Gainesville. pp.71 – 87.

BRASS, L.J. 1938. Botanical results of the Archbold Expeditions. XI. Notes on the vegetation of the Fly and Wassi Kussa Rivers, British New Guinea. *J. Arnold. Arb.* 19: 175 – 190.
BROWNE, F.G. 1955. Forest Trees of Sarawak and Brunei, and their products. Govt. Printer, Kuching, Sarawak.

BUNT, J.S. & WILLIAMS, W.T. 1980. Studies in the analysis of data from Australian tidal forests ('Mangroves'). I. Vegetational sequences and their graphic representation. *Aust. J. Ecol.* 5: 385–390.

BUNT, J.S., WILLIAMS, W.T. & DUKE, N.C. 1982. Mangrove distributions in North-East Australia. *J. Biogeogr.* 9: 111–120.

CHAPMAN, V.J. 1976. Mangrove Vegetation. J. Cramer, Vaduz.

CORNER, E.J.H. 1978. The Freshwater Swamp-forest of South Johore and Singapore. Gdns. Bull. Suppl. No.1. Bot. Gdns Parks & Recreation Dept., Singapore. 266 pp.

FOSBERG, F.R. 1975. Phytogeography of Micronesian Mangroves. In: Proc. Int. Symp. Biology and Management of Mangroves, Vol.1, eds Walsh, G.E., Sneadker, S.C. & Teas, H.J. Univ. Florida, Gainesville. pp. 23–42.

GOOD, R. 1974. The Geography of Flowering Plants. Longmans, London. 557 pp.

JONES, W.T. 1971. The field identification and distribution of mangroves in eastern Australia. *Queensland Naturalist* 20: 35–51.

LUGO, A.E. 1981. The inland mangroves of Inagua. *J. Nat. Hist.* 15: 845–852.

MACNAE, W. 1968. A general account of the fauna and flora of mangrove swamps and forests in the Indo-West-Pacific region. *Adv. mar. Biol.* 6: 73–270.

MERRILL, E.D. 1945. Plant Life of the Pacific World. Macmillan, New York. 295 pp.

MOLDENKE, H.N. 1960a. Materials towards a monograph of the genus Avicennia. I. *Phytologia* 7: 179–232.

MOLDENKE, H.N. 1960b. Materials towards a monograph of the genus Avicennia. II. *Phytologia* 8: 35–51.

RAO, T.A. & SASTRY, A.K.R. 1974. Classification and distribution of Indian mangroves. *Indian Forest* 100: 438–452.

RAUNKAIER, C. 1934. The life-forms of plants and statistical plant geography. Oxford. 632 pp.

SAENGER, P., HEGERL, E.J. & DAVIE, J.D.S. 1983. Global Status of Mangrove Ecosystems. *The Environmentalist* 3, Suppl. 3, IUCN Commission on Ecology Paper No. 3. 88 pp.

SCHIMPER, A.F.W. 1891. Die Indo-Malayische Strandflora. Jena. 204 pp.

SCHIMPER, A.F.W. 1898. Pflanzengeographie auf physiologischen Grundlagen. Fischer, Jena. 877 pp.

SMITH, A.C. 1981. Flora Vitiensis Nova., Vol.2. Pacific Tropical Botanical Garden, Lawai, Kauai, Hawaii.

STEHLÉ, H. 1945. Forest types of the Caribbean Islands. I. *Caribb. Forest.* 6: Suppl. 1–16.

STODDART, D.R., BRYAN, G.W. & GIBBS, P.E. 1973. Inland mangroves and water chemistry, Barbuda, West Indies. *J. Nat. Hist.* 7: 33–46.

TRIMEN, H. 1889. Handbook to the Flora of Ceylon. Oxford.

WALSH, G.E. 1974. Mangroves: a review. In: Ecology of Halophytes, eds Reimold, R.J. & Queen, W.H. Academic Press, New York. pp. 51–174.

Notes on the Appendices

Families are arranged in alphabetical order. If a species occurs in tidal swamps in a given region its presence is designated by a number in the appropriate column. The number corresponds to the geographic region, as does the column. The regions used are:

1 = East Africa + shores of Red Sea and islands of Indian Ocean.

2 = The Indian Region including Sri Lanka + shores of the Arabian Sea and the Persian Gulf.

3 = S.E. Asia, from Burma to China, the Andaman + Nicobar Islands and Malesia including New Guinea.

4 = Australia + New Zealand.

5 = The islands of the Western Pacific including Taiwan, Japan, Fiji and Samoa.

If a species is naturalized in a region, this is indicated by an * at the appropriate place in the tables. Species marked 1° are present on the islands of the Indian Ocean but not on the African mainland. All species are rooted on the forest floor.

Appendix 1

Arborescent species found growing in tidal zones in the Indo-West Pacific	Regional occurrence				
E. Afr.	India	S.E.A.	Aust.	W.Pac.	
(= potential mangroves)	1°	2	3	4	5

Acanthaceae

| Acanthus ebracteatus Vahl | 3 | 2 |
| Acanthus ilicifolius L. | 3 | 4 | 5 |

Aegialitidaceae

| Aegialitis annulata R.Br. | 3 | 4 |
| Aegialitis rotundifolia Roxb. | 5 |

Anacardiaceae

Buchanania lucida Bl.	3	
Campnosperma auriculata Hook. f.	3	
Campnosperma brevipedata Volkens	3	5
Campnosperma coriacea (Jack) H. Hallier	3	
Campnosperma minor Corner	3	
Draccontiumelium + mangiferum Bl.	3	
Gluta rehbo L.	3	
Gluta velutina Bl.	3	
Mangifera foetida Lour.	2	
Schinus terebinthifolius Raddi	1°	5*

Annocaceae

Fissistigma manubriatum (Hook.f. & Th.) Merrill	3
Polyalthia sclerophylla Hook.f. & Th.	3
Xylopia faxa Maingay	3

Antoniaceae

| Norrisia major Soler. | 3 |

Apocynaceae

Alstonia macrophylla	3	
Alstonia pneumatophora Backer ex den Berger	3	
Alstonia scholaris (L.) R.Br.	2	3
Alstonia spatulata Bl.	3	
Carissa bispinosa (L.) Desf. ex Brenan	1	
Carissa macrocarpa (Ecklon) A.DC.	1	
Cerbera floribunda K.Schum.	3	5
Arborescent species found growing in tidal zones in the Indo-West Pacific (= potential mangroves)	Regional occurrence
Cerbera manghas L.	E.Afr. 1 India 2
Cerbera odollam Gaertn.	S.E.A. 3 Aust. 4 W.Pac. 5
Dyera lowii Hook.f.	
Lepiognis trilocularis Mgf.	
Ochrosia oppositifolia (Lam.) K.Schum.	E.Afr. 2 India 2
Strophanthus cunningii A.D.C.	S.E.A. 3 Aust. 3 W.Pac. 4
Voacanga papuana K. Schum.	
Voacanga thouarsii Roemer & J.A. Schultes	

Aquifoliaceae

- Ilex cymosa Bl. 3

Araliaceae

- Schefflera odorata Merrill & Rolfe 3
- Schefflera umbelifera (Sonder) Baillon 1

Arecaceae

- Arenga microcarpa Beccari 3
- Borassus aethiopium Martelli 1
- Borassus flabellifer L. Cocos nucifera L. 2 3 5
- Corypha elata Roxb. 2 3
- Corypha utan Lam. 2 3
- Cyrtostachys lakk Beccari 3
- Hyphaene natalensis Kunze 1
- Hyphaene parvula Beccari 1
- Licuala spinosa Wurmb. 3
- Metroxyylon sagu Rottb. 3 5
- Nypa fruticans Wurmb. 2 3 4 5
- Oncosperma filamentosum Bl. 3
- Oncosperma hortidum (Griff.) Scheff. 3
- Phoenix paludosa Roxb. 2 3
- Phoenix pulchila Gaertn. 2
- Phoenix reclinata Jacq. 1
- Raphia australis Oberm. & Strey 1
- Salacca conferta Griff. 3

Avicenniaceae

- Avicennia alba Bl. 3 5
- Avicennia bananophora Stapf. & Mold. ex Mold. 4
- Avicennia eucalyptifolia Zipp. ex Miq. 3 4 5
- Avicennia lanata Ridley 3
- Avicennia marina (Forsk.) Vierh. 2 3 5

Bignoniaceae

- Dolichandrone spathacea (L.f.) K.Schum 2 3 4 5

Bischoffiaceae

- Bischofia javanica Bl. 3 5

Bombacaceae

- Camptostemon philippinensis (Vid.) Beccari 3
- Camptostemon schultzii Masters 3 4
- Neesa kostermansiana Soedamano 3
- Neesa malayana Bakh. 3

Bonnetiaceae

- Ploiarium alternifolium (Vahl) Melch. 3

Capparidaceae

- Capparis sepiaria L. 1

Casuarinaceae

- Cassurina equisetifolia L. 1 2 3 5
- Cassurina glauca Sieber ex Sprengel 4

Celastraceae

- Cassine viburnifolia (Juss.) Ding Hou 2 3
- Lophopetalum multiflorum Ridley 3
- Maytenus emarginata (Willd.) Ding Hou 2 3 4
- Maytenus procumbens (L.f.) Loes. 1
- Maytenus senegalensis (Lam.) Exell 1°
- Pouterickia verrucosa (E.Mey. & Sond.) Szyszyl. 1

Chrysobalanaceae

- Parinari corymbosum (Bl.) Miq. 3

Clusiaceae

- Calophyllum cholobtaches Laut. 5
- Calophyllum inophyllum L. 1° 2 3 5
- Calophyllum javanicum Miq. 3
- Calophyllum kunstleri King 3
| Arborescent species found growing in tidal zones in the Indo-West Pacific | Regional occurrence | | | |
|---|---|---|---|---|
| E.Afr. | India | S.E.A. | Aust. | W.Pac. |
| (= potential mangroves) | | | | |

- Calophyllum retusum
 - Wall. ex Planch. & Triana
- Calophyllum rupicolum Ridley
- Calophyllum scrophuliferum Vesque
- Calophyllum soulattri
 - Burm.
 - Ridley
- Genipa americana
- Gosseiella subtilinervis
 - F. Muell.
- Guettarda odorata
 - (Raf.) Kosterm.
- Mesua ferruginea
 - Pierre

Combretaceae

- Lumnitzera littorea
 - (Jack) Voigt
- Lumnitzera racemosa
 - Wild.
- Terminalia boivinii
 - Tul.
- Terminalia brasiilensis Exell
- Terminalia canaliculata Exell
- Terminalia catappa L.
- Terminalia phelocarpa
 - King
- Terminalia subacroptera
 - Domínguez
- Terminalia triptera
 - Stapf.

Compositae

- Brachylaena discolor
 - DC.
- Chrysanthemoides monilifera
 - Nordling
- Pluchea indica
 - Less.

Connaraceae

- Connarus salomonensis
 - Schellenberg

Cornaceae

- Aralienium pinnatifidum
 - Miq.

Dilleniaceae

- Dillenia biflora
 - (A. Gray) Mart. ex Dur. & Jacks
- Dillenia castaneaefolia
 - (Miq.) Dids
- Dillenia papyracea
 - Merrill
- Dillenia pulchella
 - (Jack) Gilg.
- Dillenia suffruticosa
 - (Griff.) Martelli

Dipterocarpaceae

- Varicaceae
 - paeoniaeflora
 - (Korth.) Bl.

Ebenaceae

- Diospyros ferrea
 - (Willd.) Bakh.
- Diospyros litiorea
 - (R. Br.) Kosterm.
- Diospyros inhaeacensis
 - F. White

Ehretiaceae

- Ehretia petiolaris
 - Lam.

Elaeocarpaceae

- Elaeocarpus griffithii
 - A. Gray
- Elaeocarpus longifolius
 - Bl.
- Elaeocarpus macrocarpus
 - (Turcz.) Merrill
- Elaeocarpus robustus
 - Roxb.
- Elaeocarpus sphaericus
 - (Gaertn.) K. Schum.

Erythroxylaceae

- Erythroxylum
cuneatum
 - (Miq.) Kurz

Euphorbiaceae

- Antidesma coriaceum
 - Tul.
- Baccaraeum bracteatum
 - A. Gray
- Bilimbiocarpus
tak-brai
 - (Bl.) J. J. Smith
- Bridelia micrantha
 - (Hochst.) Baillon
- Claroxyylon indicum
 - (Reinw. ex Bl.) Hasdk.
- Croton heterocarpus
 - M. A.
- Dimorphocalyx
murinus
 - Elms.
- Drypetes karpinensis
 - Pax. & Hoffm.
- Endospermum macrophyllum
 - (M. A.) Pax. & Hoffm.
- Excoecaria agallocha
 - L.
- Glochidion
titorale Bl.
- Glochidion mindorense
 - C. B. Rob.
- Glochidion perakensis
 - Hook.f.
- Glochidion
 - ramiflorum
 - Forst.
- Macaranga baccarioides
 - (J. Korth.) Bl.
- Macaranga capensis
 - (Baillon) Benth.
- Macaranga prunosa
 - (Miq.) M. A.
- Macaranga tanarius
 - (L.) M. A.
- Mallotus papillaris
 - (Blanco) Merril
- Mallotus
tiilifolius
 - (Bl.) M. A.
| Arborescent species found growing in tidal zones in the Indo-West Pacific | Regional occurrence | | | | |
|---|---|---|---|---|---|
| (= potential mangroves) | E. Afr. | India | S.E.A. | Aust. | W. Pac. |
| Neoscorthechia forbesii (Hook.f.) Pax. & S. Moore | 1 | 2 | 3 | 4 | 5 |
| Neoscorthechia sumatrensis S. Moore | 2 | 3 |
| Sapium indicum Wild. | 2 | 3 |
| Suregada multiflora (Juss.) Baillon | 2 | 3 |
| **Fagaceae** | | | | | |
| Lithocarpus benetttii (Miq.) Rehd. | 1 |
| Lithocarpus elegans (Bl.) Hatus. | 3 |
| **Flacourtiaiceae** | | | | | |
| Dovylis longispina (Harvey) Warb. | 1 |
| Flacourtia indica (N.L.Burm.) Merrill | 1 |
| Homalium foetidum (Roxb.) Benth. | 3 |
| Scolopia macrophylla (Wight & Arn.) Clos | 3 |
| Scolopia zeyheri (Nees) Harvey | 1 |
| **Gyrocarpaceae** | | | | | |
| Gyrocarpus americanus Jacq. | 3 | 5 |
| **Hernandiaceae** | | | | | |
| Hernandia nymphaefolia (Presl.) Kubitzki | 3 | 5 |
| **Hypericaceae** | | | | | |
| Cratoxylum arborescens (Vahl) Bl. | 3 |
| **Icacinaceae** | | | | | |
| Apodytes dimidiata E.Meyer ex Arn. | 1 |
| Stemorurus ammni (Kanehira) Sleumer | 5 |
| Urandra umbellata Pulle | 3 |
| **Ixonanthaceae** | | | | | |
| Ixonanthus reticulata Jack | 3 |
| **Lauraceae** | | | | | |
| Alseodaphne bancana Miq. | 3 |
| Cryptocarya depressa Warb. | 3 | 5 |
| Cryptocarya kurzii Hook.f. | 3 |
| Litsea cylindrocarpa Gamble | 3 |
| Litsea palustris Kosterm. | 3 |
| Notophoebe coriacea Kosterm. | 3 |
| **Lecythidaceae** | | | | | |
| Barringtonia acutangula (L.) Gaertn. | 2 | 3 | 4 |
| ssp. acutangula Payens | | | | | |

Arborescent species found growing in tidal zones in the Indo-West Pacific	Regional occurrence				
(= potential mangroves)	E. Afr.	India	S.E.A.	Aust.	W. Pac.
Neoscorthechia forbesii (Hook.f.) Pax. & S. Moore	1	2	3	4	5
Barringtonia asiatica Payens	3				
Barringtonia conoidea Grifft.	3				
Barringtonia filirachis Payens	3				
Barringtonia integrifolia (Montr.) Schlechter	5				
Barringtonia niedenzuana (K.Schum.) Knuth	3	5			
Barringtonia papuana Laut.	3				
Barringtonia pterita Merrill	3				
Barringtonia procera (Miers) Knuth	3				
Barringtonia racemosa (L.) Sprengel	1	2	3	4	5
Barringtonia samoensis A.Gray	5				
Barringtonia scortechinii King	3				
Planchonia papuana Knuth	3				
Planchonia timorensis Bl.	3				
Leeaceae					
Leea indica (Burm.f.) Merrill	3				
Leguminosae — Caesalpinioideae					
Cassia alata L.	3	5			
Cassia bicapsularis L.	1				
Crudia cynometriodes Hosokawa	5				
Crudia wrayi Prain	3				
Cynometra bijuga Spanoghe	2	3	4		
Cynometra greenwayi Brenan	1				
Cynometra iripa Kostel.	2	3	4	5	
Cynometra ramiflora L.	2	3	4		
Dialium patens Baker Intsia bijuga	3				
Intsia retusa (Kurz.) Kostel.	1°	2	3	5	
Intsia retusa (Kurz.) Kuntze	3				
Leguminosae — Faboideae					
Desmodium umbellatum (Lour.) DC.	1°	2	3	4	5
Erythrina fusca Lour.	3	5			
Erythrina indica Lam.	2				
Erythrina lysistemmon Hutch.	1				
Erythrina orientalis (L.) Murr.	3				
Erythrina variegata L.	1	2	3	4	5
Inocarpus fagiferus (Parkinson) Fosb.	3	5			
Inocarpus papuam Kosterm.	3				
Millithea hemsleyana Prain	3				
Arborescent species found growing in tidal zones in the Indo-West Pacific	Regional occurrence				
---	------------------				
(= potential mangroves)	E. Afr.	India	S.E.A.	Aust.	W.Pac.
Pongamia pinnata (L.) Pierre	3	5			
Pterocarpus indicus Wild.	2	3	5		
Sesbania sesban (L.) Merrill	1				

Leguminosae — Mimosoideae

- *Acacia auriculiformis* A.Cunn. ex Benth. 3 4
- *Acacia farnesiana* (L.) Willd. 3*
- *Acacia karroo Hayne* 1
- *Acacia zanzibarica* (S. Moore) Taub. 1
- *Adenanthera pavonina* L. 2 3
- *Albizia forbesii Benth.* 1
- *Albizia retusa Benth.* 3
- *Leucaena leucocephala* (Lam.) de Wit 2* 5*
- *Prosopis juliflora* (Sw.) DC. 1* 2* 5*
- *Prosopis spicigera* L. 2

Lythraceae

- *Lagerstroemia ovalifolia* Teijsm. & Binn. 3
- *Pemphis acidula* J.R. & G.Forst. 1 2 3 4 5

Magnoliaceae

- *Talauma singapurensis* Ridley 3

Malvaceae

- *Hibiscus hamabo* Sieb. & Zucc. 1 2 3 4 5
- *Hibiscus tilcaceus* L. 1 2 3 4 5
- *Plagianthus divaricatus* J.R. & G.Forst. 4
- *Thespesia acutiloba* (E.G.Baker) Exell & Mendon. 1°
- *Thespesia lampas* (Cav.) Dalz & Gibson 1 2 3 4 5
- *Thespesia populnea* (L.) Solander ex Correa 2 5
- *Thespesia populneoides* (Roxb) Kostel. 1° 3 4

Melastomataceae

- *Ochthocharis borneensis* Bl. 3
- *Ochthocharis javanicus* Bl. 3

Meliaceae

- *Amoora cucullata* Roxb. 2 3
- *Amoora rubiginosa* Hiern 3
- *Chisochiton amabilis* (Miq.) C.DC. 3
- *Dysoxylum costulatum* Miq. 3
- *Xylocarpus australasicus* Ridley 3 4

Arborescent species found growing in tidal zones in the Indo-West Pacific	Regional occurrence				
(= potential mangroves)	E. Afr.	India	S.E.A.	Aust.	W.Pac.
Xylocarpus gangeticus Parkinson	2 3				
Xylocarpus granatum Koenig	1 2 3 4 5				
Xylocarpus mekongensis Pierre	2 3				
Xylocarpus moluccensis (Lam.) M.Roem.	1 2 3 4 5				

Moraceae

- *Artocarpus altilis* (Parkinson) Fosb. 3 5
- *Ficus ampeles* Burm.f. 5
- *Ficus aspera Forst.f.* 5
- *Ficus austrina* Corner 5
- *Ficus bambusifolia* Seem. 5
- *Ficus benguetensis* Merrill 5
- *Ficus caudicarpa* Miq. 2 3 5
- *Ficus craterostoma* Warb. 1
- *Ficus erinobotrya* Corner 5
- *Ficus fraseri Miq.* 4 5
- *Ficus habrophailla* G.Bennet ex Seem. 5
- *Ficus microcarpa* L.f. 2 3 5
- *Ficus mollifol F.Muell.* ex Benth. 3 4 5
- *Ficus nodosa* Teijsm. & Binn. 3 5
- *Ficus pritchardii Seem.* 5
- *Ficus ptilos Forst.f.* 5
- *Ficus retusa* L. 3
- *Ficus scabra* Forst.f. 3 5
- *Ficus septica* Burm.f. 3 4 5
- *Ficus sardaica* Bl. 3
- *Ficus sur* Forrsk. (syn. *Ficus capensis*) 1
- *Ficus sycamorus* L. 1
- *Ficus tinctoria* Forst.f. 2 3 5
- *Ficus trichopoda* Baker 1

Myoporaceae

- *Myoporum acuminatum* R.Br. 4
- *Myoporum bontiodes* A.Gray 5
- *Myoporum insulare* R.Br. 3 4

Myristicaceae

- *Gymnacranthera eugeniifolia* (A.DC.) Sinclair 3
- *Horsfieldia irya* (Gaertn.) Warb. 2 3 5
- *Horsfieldia polyantha* Warb. 3
- *Knema glaucescens* Jack 3
- *Knema intermedia* (Bl.) Warb. 3
- *Myristica elliptica* Hook.f. & Th. 3
- *Myristica guattariifolia* DC. 3
Arborescent species found growing in tidal zones in the Indo-West Pacific (= potential mangroves)

Species	E.Afr.	India	S.E.A.	Aust.	W.Pac.
Myristica holurungii	1	2	3	4	5
Warb.					
Myristica lowiana		3	5	3	5

Myrsinaceae

- *Aegiceras corniculatum* (L.) Blanco
- *Aegiceras floridum* Roemer & Schultes
- *Ardisia elliptica* Thunb.
- *Ardisia tuberculata* Wall.
- *Embelia ruminata* (E.Meyer ex A.D.C.) Mez.
- *Myrsidea umbellata* Martelli
- *Rapanea melanophloeos* (L.) Mez.

Myrtaceae

- *Eugenia capensis* (Ecklon & Zeyher) Harv. & Sond.
- *Eugenia pseudosubtilis* King
- *Leptospermum scoparium* J.R. & G.Forst.
- *Melaleuca acacioides* F.Muell.
- *Melaleuca cajuputi* Roxb.
- *Melaleuca ericifolia* Sm.
- *Melaleuca halmaturum* F.Muell. ex Miq.
- *Melaleuca leucadendron* L.
- *Melaleuca quinquenervia* (Cav.) S.T.Blake
- *Melaleuca squarrosa* Donn. ex Sm.
- *Melaleuca stenos-tachya* S.T.Blake
- *Melaleuca viridiflora* Solander ex Gaertn.
- *Osbornia octodonta* F.Muell.
- *Pseudoeugenia singapurenensis* King
- *Syzygium cordatum* Hochst.
- *Syzygium guineense* (Wild.) DC.
- *Syzygium incarnatum* (Elm.) Merrill & Perry
- *Syzygium leucocoxylon* Korth
- *Syzygium Muelleri* (Miq.) Miq.
- *Syzygium pachyphyl-lum* (Kurz) Merrill & Perry
- *Syzygium palemban-icum* Miq.

Naucleaceae

- *Mitragyna speciosa* Korth.
- *Nauclea maingayi* Hook.f.
- *Nauclea orientalis* L.
- *Nauclea subdita* (Miq.) Merrill
- *Nauclea calycina* Merrill

Pandanaceae

- *Pandanus affinis* Kurz
- *Pandanus atrocarpus* Griff.
- *Pandanus calathio-phorus* (Gaud. ex Hombr) Balfour f. ex Martelli
- *Pandanus cominsii* Hemsey
- *Pandanus compressus* Martelli
- *Pandanus dubius* Sprengel
- *Pandanus echinodermops* Holltum & St. John
- *Pandanus flavicarpus* B.C.Stone
- *Pandanus helicopus* Kurz
- *Pandanus kaernbachii* Warb.
- *Pandanus kanehira*e Martelli
- *Pandanus kirkii* Rendle
- *Pandanus malayanus* B.C.Stone
- *Pandanus nemoralis* Merrill & Perry
- *Pandanus novo-hibernicus* Martelli
- *Pandanus odoratis-simus* L.f.
- *Pandanus pedunculatus* R.Br.
- *Pandanus polyacris* Martelli
- *Pandanus polycephalus* Lam.
- *Pandanus rabiensis* Rendle
- *Pandanus rostratus* Martelli
- *Pandanus rubellus* B.C.Stone
- *Pandanus tectorius* Parkinson ex 'Z'
- *Pandanus thwaitesi* Martelli
| Arborescent species found | Regional occurrence | | | | |
|---|---|---|---|---|---|
| growing in tidal zones in the Indo-West Pacific | E. Afr. | S.E.A. | Aust. | W.Pac. |
| (= potential mangroves) | 1 | 2 | 3 | 4 | 5 |

Plantae							
Pandanus yvanii	Solms.	3					
Pittosporaceae							
Pittosporum ferrugineum	Aiton	3					
Podocarpaceae							
Podocarpus neriifolius	D. Don	3					
Podocarpus poly-stachyus	R. Br.	3					
Potaliaceae							
Fagraea blumei	G. Don	3					
Fagraea crenulata	Maingay ex Clarke	3					
Fagraea racemosa	Jack ex Wall.	3					
Proteaceae							
Helicia robusta	(Roxb.) R. Br.	3					
Rhamnaceae							
Colubrina asiatica	(L.) Brongn.	1	2	3	4	5	
Pallium ramossissimum	Poir.	5					
Rhizophoraceae							
Bruguiera cylindrica	(L.) Bl.	2	3	4			
Bruguiera exaristata	Ding Hou	3	4				
Bruguiera gymnorrhiza	(L.) Lam.	1	2	3	4	5	
Bruguiera hainesii	C. G. Rogers	3					
Bruguiera parviflora	(Roxb.) Wight & Arn. ex Griff.	2	3	4			
Bruguiera sexangula	(Lour.) Poir.	2	3	4	5		
Carallia brachiata	(Lour.) Merrill	3					
Ceriops decandra	(Griff.) Ding Hou	2	3	4			
Ceriops tagal (Perr.) var. tagal	C. B. Rob	1	2	3	4	5	
Ceriops tagal var. australis	C. T. White	3	4				
Gymnothrix axillaris	Bl.	3	5				
Peltacalyx axillaris	Korth.	3					
Kandelia candel (L.)	Druce	2	3	5			
Rhizophora apiculata	Bl.	2	3	4	5		
Rhizophora × lamarckii	Montr.		3	4	5		
Rhizophora mucronata	Lam.		1	2	3	4	5
Rhizophora samoensis	(Hochr.) Salvoza			5			
Rhizophora × selata	(Salvoza) Tomlinson			5			
Rhizophora stylosa	Griff.	3	4	5			
Arborescent species found growing in tidal zones in the Indo-West Pacific

Scientific Name	Regional occurrence
Palaquium xanthochymum (de Yr.) Pierre	E.Afr. 1, India 2, S.E.A. 3, Aust. 4, W.Pac. 5
Planchnonella densinervia (K.Krause) H.J.Lam	E.Afr. 1, India 2, S.E.A. 3, Aust. 4, W.Pac. 5
Planchnonella lingenssis (Burck) Pierre	E.Afr. 1, India 2, S.E.A. 3, Aust. 4, W.Pac. 5
Planchnonella obovata (R.Br.) Pierre	E.Afr. 1, India 2, S.E.A. 3, Aust. 4, W.Pac. 5
Sideroxylon inerme var. *diospyroides* (Baker) J.H. Hemsley	E.Afr. 1, India 2, S.E.A. 3, Aust. 4, W.Pac. 5
Planchonella densinervia (K.Krause) H.J.Lam	E.Afr. 1, India 2, S.E.A. 3, Aust. 4, W.Pac. 5
Planchonella lingenssis (Burck) Pierre	E.Afr. 1, India 2, S.E.A. 3, Aust. 4, W.Pac. 5
Planchonella obovata (R.Br.) Pierre	E.Afr. 1, India 2, S.E.A. 3, Aust. 4, W.Pac. 5
Sideroxylon inerme var. *diospyroides* (Baker) J.H. Hemsley	E.Afr. 1, India 2, S.E.A. 3, Aust. 4, W.Pac. 5
Premna acuminata R.Br.	E.Afr. 1, India 2, S.E.A. 3, Aust. 4, W.Pac. 5
Premna integrifolia L.	E.Afr. 1, India 2, S.E.A. 3, Aust. 4, W.Pac. 5
Premna obtusifolia R.Br.	E.Afr. 1, India 2, S.E.A. 3, Aust. 4, W.Pac. 5
Premna tahitensis Schau.	E.Afr. 1, India 2, S.E.A. 3, Aust. 4, W.Pac. 5
Sideroxylon inerme var. *diospyroides* (Baker) J.H. Hemsley	E.Afr. 1, India 2, S.E.A. 3, Aust. 4, W.Pac. 5
Planchonella densinervia (K.Krause) H.J.Lam	E.Afr. 1, India 2, S.E.A. 3, Aust. 4, W.Pac. 5
Planchonella lingenssis (Burck) Pierre	E.Afr. 1, India 2, S.E.A. 3, Aust. 4, W.Pac. 5
Planchonella obovata (R.Br.) Pierre	E.Afr. 1, India 2, S.E.A. 3, Aust. 4, W.Pac. 5
Sideroxylon inerme var. *diospyroides* (Baker) J.H. Hemsley	E.Afr. 1, India 2, S.E.A. 3, Aust. 4, W.Pac. 5

Appendix 2

Non-arborescent species found in tidal zones in the Indo-West Pacific region.

Scientific Name	Regional occurrence
Acanthus volubilis Wall.	E.Afr. 1, India 2, S.E.A. 3, Aust. 4, W.Pac. 5
Ruellia tuberosa L.	E.Afr. 1, India 2, S.E.A. 3, Aust. 4, W.Pac. 5
Carpobrotus dimidiatus (Haw.) L.Bolus	E.Afr. 1, India 2, S.E.A. 3, Aust. 4, W.Pac. 5
Carpobrotus rossii Schwartes	E.Afr. 1, India 2, S.E.A. 3, Aust. 4, W.Pac. 5
Disphyma blackii R.J.Chinnock	E.Afr. 1, India 2, S.E.A. 3, Aust. 4, W.Pac. 5
Lampranthus tegens (F.Muell.) N.E.Br.	E.Afr. 1, India 2, S.E.A. 3, Aust. 4, W.Pac. 5
Sesuvium portulacastrum L.	E.Afr. 1, India 2, S.E.A. 3, Aust. 4, W.Pac. 5
Tetragonia tetragonoides (Pallas) Kunze	E.Afr. 1, India 2, S.E.A. 3, Aust. 4, W.Pac. 5
Acanthaceae	1
Aizoaceae	2
Adinandra miquelii King	3
Althoffia pleiostigma Warb. ex K.Schum. & Laut.	3
Xiphospermum argenteum Kurz	3
Xiphospermum luteum (L.) Kosterm.	3
Urticaceae	4
*Wedd.	5

Verbenaceae

- *Clerodendrum inerme* (L.) Gaertn.
- *Premna integrifolia* L.
- *Premna obtusifolia* R.Br.
- *Premna tahitensis* Schau.
- *Teijmanniodendron holtrangii* (Warb.) Kosterm.
- *Vitex clarkeana* Gamble
- *Vitex cofassus* Reinw. ex Bl.
- *Vitex tangensis* Gurke
Non-arborescent species found in the tidal zones in the Indo-West Pacific region. (potential mangrove associates)

C = climber	Regional occurrence
+ = may also grow as an epiphyte	E.Afr. India S.E.A. Aust. W.Pac.

Anacardiaceae
- **C** Rhus nebulosa Schonl.
- **C** Cynanchum carnosum (R.Br.) Domin
- **C** Gymnanthera nitida R.Br.
- **C** Hoya angustifolia Elmer
- **C** Hoya merrillii Schlechter
- **C** Hoya ridleyi King & Gamble
- **C** Marsdenia thyrsiflora Hook.f.
- **C** Pentatropis capensis (L.f.) Bullock
- **C** Pentatropis spiralis Decne.
- **C** Sarcolobus carinatus Wall.
- **C** Sarcolobus globosus Wall.
- **C** Sarcolobus sulphureus Schlechter
- **C** Secamone delagoensis Schlechter
- **C** Secamone frutescens Decne.
- **C** Secamone gerrardii Harvey ex Benth.
- **C** Tylophora indica (Burm.f.) Merrill
- **C** Tylophora polyantha Volkens
- **C** Tylophora tenuissima (Roxb.) Wight & Arn. ex Wight
- **C** Barclaya motleyi Hook.f.
- **C** Batis argillicola van Royen
- **C** Batis maritima L.
- **C** Blechnum indicum Burm.f.
- **C** Blechnum orientale L.
- **C** Stenochlaena palastris (Burm.) Bedd.
- **C** Canna indica L.
Non-arborescent species found in the tidal zones in the Indo-West Pacific region. (potential mangrove associates)

Family	Species Name	Regional occurrence
Capparidaceae		E.Afr. 1 2 3 4 5
C	Capparis cordifolia Lam.	
C	Capparis tomentosa Lam.	
Caryophyllaceae	Sagina maritima G.Don	4*
Celastraceae	Capparis cordifolia Lam.	
Centrolepidaceae	Centrolepis polygyna (R.Br.) Hieron	4
Ceratophyllaceae	Ceratophyllum demersum L.	4
Chenopodiaceae	Atriplex cinerea Poir.	4
	Atriplex paludosa R.Br.	4
	Atriplex patula L. 1 4*	
	Atriplex semi-baccata R.Br. 4 5	
	Atriplex stipitata Benth.	4
	Atriplex stocksii Boiss	2
	Bassia astrocarpa F.Muell.	4
	Chenolea diffusa Thunb. 1	
	Chenopodium glaucum (R.Br.) Murr. & Thell. ex Thell.	4
	Enchylaena tomentosa R.Br.	4
	Hemichroa diandra R.Br. 4	
	Hemichroa pentandra R.Br.	4
	Maireana brevifolia (R.Br.) P.G. Wilson	4
	Maireana oppositifolia (F.Muell.) P.G. Wilson	4
	Rhagodia baccata (Labill.) Moq. 4	
	Salsola baryosma Dandy 2	
	Salsola kali L. 1 2 3 4 5	
	Suaeda fruticosa Forsk	
	Suaeda maritima (L.) Dumort. (inc. S. australis) 1* 2 3 4	
	Suaeda monoica Forsk	
	Thelephoton billardieri Moq.	4
	Threikeldia diffusa R.Br.	4
Combretaceae	Combretum tetralo-	3
Commelinaceae	Commelina benga-	1 2 3
	Commelina com-	5
	Commelina diffusa Burm.f. 1	
Compositae	Angianthus preis-	4
	Aster squamatus (Sprengel) Hieron 1	
	Baccharis halmifolia L. 4*	
	Blumea bifoliata (L.) DC. 2 3	
	Blumea diffusa R.Br. 4	
	Blumea mollis (D. Don) Merrill 1 2 3	
	Blumea obliqua (L.) Druce	2
	Conyza bonariensis (L.) Cronquist 1*	
	Conyza fiaribunda H.B.K. 1*	
	Cotula coronopifolia L. 1	
	Eclipta prostrata (L.) L. 1 4 5	
	Emilia baldwinii Fosberg	2
	Emilia sonchifolia ass. (L.) DC. 2 5	
	Euthulia conyzoides L. 1	
	Hypochoeris radicata L. 1* 4* 5*	
	Lactuca serriola L.	
	Mikania cordata (Burman) B.L. Robinson	1 3
	Nidorella auriculata DC. 1	
	Nidorella linifolia DC.	1
Non-arborescent species found in tidal zones in the Indo-West Pacific region.
(potential mangrove associates)

Species	Regional occurrence	C = climber	E.Afr.	India	S.E.A.	Aust.	W.Pac.
Senecio laetus Forst.f. ex Willd.	1 2 3 4 5	4	1	2	3	4	5
Sonduchus oleraceus L.	1 2 3 4 5	4*					
Wedelia biflora (L.) DC.	1 2 3 4 5						
Wedelia chinensis (Osbeck) Merrill	1 2 3 4 5						
Connaraceae							
Connarus ferrugineus Jack	1 2 3 4 5	3					
Connarus mono-carpus L.	1 2 3 4 5	2					
Connarus salomonensis Schellenb.	1 2 3 4 5	3 5					
Rourea mimosoides (Vahl) Planchon	1 2 3 4 5	3					
Rourea minor (Gaertn.) Alston	1 2 3 4 5	3					
Convolvulaceae							
Convolvulus jef-fery Verdc.	1 2 3 4 5	1					
Cressa cretica L.	1 2 3 4 5	1					
Falkia repens L.f.	1 2 3 4 5						
Ipomoea alba L.	1 2 3 4 5	2 3					
Ipomoea aquatica Forssk	1 2 3 4 5	3					
Ipomoea cairica (L.) Sw.	1 2 3 4 5	1 2 3					
Ipomoea campanulata L.	1 2 3 4 5	2 3					
Ipomoea congesta L.	1 2 3 4 5	1					
Ipomoea digitata L.	1 2 3 4 5	1					
Ipomoea mauritiana Jacq.	1 2 3 4 5	1* 2					
Ipomoea littoralis Bl.	1 2 3 4 5	1* 2					
Ipomoea macrantha Roemer &Schultes	1 2 3 4 5	2 3					
Ipomoea pes-caprae (L.) R.Br.	1 2 3 4 5	1 2 3 4 5					
Ipomoea wightii (Wall.) Choisy	1 2 3 4 5						
Sisctocarida tilifolia (Desr.) Hall.f.	1 2 3 4 5	1 2 3					
Wilsonia backhousei Hook.f.	1 2 3 4 5						
Wilsonia humilis R.Br.	1 2 3 4 5	4					
Wilsonia rotundifolia Hook.	1 2 3 4 5	4					
Costaceae							
Costus speciosus (Konig) Smith	1 2 3 4 5	5*					
Cucurbitaceae							
Alsomitra macro-carpa M.Roemer	1 2 3 4 5	3					
Melothria maderaspata (L.)Cogn.	1 2 3 4 5	1 2					
Melothria heterophylla Cogn.	1 2 3 4 5	2					
Momordica charantia L.	1 2 3 4 5	2					
Non-arborescent species found in tidal zones in the Indo-West Pacific region.							
(potential mangrove associates)

Species	Regional occurrence	C = climber	E.Afr.	India	S.E.A.	Aust.	W.Pac.
C Zehneria mucronata (Bl.) Miq.	1 2 3 4 5						
Cymodoceaceae							
Amphibolis antarctica (Labill.) Sond. & Asch. ex Asch.	1 2 3 4 5	4					
Amphibolis griffithii (J.M.Black) den Hartog	1 2 3 4 5	4					
Cymodocea rotundata Ehrenb. & Hemp. ex Asch. & Schweinf.	1 2 3 4 5	5					
Cymodocea serrulata (R.Br.) Asch. & Magnus	1 2 3 4 5	4 5					
Halodule hawaiiana Doty & Stone	1 2 3 4 5	5					
Halodule pinnifolia (Miki) den Hartog	1 2 3 4 5	5					
Halodule univiris (Forssk) Asch	1 2 3 4 5	4 5					
Syringodium isoetifolium (Asch.)	1 2 3 4 5	5					
Thalassodendron ciliatum (Forsskal) den Hartog	1 2 3 4 5	5					
Cyperaceae							
Baumea juncea (R.Br.) Palla	1 2 3 4 5	4					
Bulbostylis barbata (Rottb.) C.B. Clarke	1 2 3 4 5	3					
Cladium filum (Labill.) R.Br.	1 2 3 4 5	4					
Cladium mariscus (L.) Pohl.	1 2 3 4 5	1					
Cyperus alternifolius L.	1 2 3 4 5	1 2 3 4 5					
Cyperus aquatilis R.Br.	1 2 3 4 5	3 4					
Cyperus arenarius Retz.	1 2 3 4 5	2					
Cyperus articulatus L.	1 2 3 4 5	1					
Cyperus cephalotes Vahl	1 2 3 4 5	2					
Cyperus compactus Retz.	1 2 3 4 5	1* 2 3 5					
Cyperus compressus L.	1 2 3 4 5	1 2 3 4 5					
Cyperus difformis L.	1 2 3 4 5	3 4 5					
Cyperus exaltatus Retz.	1 2 3 4 5	2					
Cyperus halpan L. (syn. C. haspen)	1 2 3 4 5	3					
Cyperus javanicus Houtt.	1 2 3 4 5	1 2 3 4 5					
Cyperus ligularis L.	1 2 3 4 5	1 2 3 4 5					
Cyperus malaccensis Lam.	1 2 3 4 5	5*					
Cyperus papyrus L.	1 2 3 4 5	1					

S.-Afr. Tydskr. Plantk., 1985, 51(2)
Non-arborescent species found in tidal zones in the Indo-West Pacific region. (potential mangrove associates)

C	Regional occurrence	1	2	3	4	5
C = climber	E.Afr.	India	S.E.A.	Aust.	W.Pac.	

Species	E.Afr.	India	S.E.A.	Aust.	W.Pac.
Cyperus pedunculatus (R.Br.) Kern	1	2	3	4	5
Cyperus polystachyos Rottb.	1	2	3	4	
Cyperus scaricosus R.Br.	2	3	4		
Cyperus stoloniferus Retz.	1°	2	3	4	
Cyperus textilis Thunb	1				
Cyperus vaginatus R.Br.	4				
Eleocharis capitate R.Br.	2				
Eleocharis dulcis (Burm.f.) Trin. ex Hensch.	1	2	3	4	5
Eleocharis genticulata (L.) Roemer & Schultes (doubtfully distinct from E. capitatea)	2	3	4		
Eleocharis spiralis (Rottb.) Roemer & Schultes	1	2	3	4	
Fimbristylis argentea (Rottb.) Vahl	2	3			
Fimbristylis caesia Miq.	3				
Fimbristylis cinnamomeorum (Vahl) Kunth	3				
Fimbristylis complanata (Retz.) Link	3				
Fimbristylis costiglumis Domi	4				
Fimbristylis cymosa R.Br. (syn. F. spathacea Roth.)	3	4	5		
Fimbristylis densa S.T.Blake	4				
Fimbristylis dichotoma (L.) Vahl	1	2	3		
Fimbristylis griffithii Boeck	2	3			
Fimbristylis microcarpa F.Muell.	3	4			
Fimbristylis nutans (Retz.) Vahl	2	3	4	5	
Fimbristylis obtusifolia (Lam.) Kunth	1				
Fimbristylis paniculiflora R.Br.	3	4	5		
Fimbristylis polytrichoides (Retz.) R.Br.	1	3	4		
Fimbristylis puncata R.Br.	4				
Fimbristylis semarangensis Ohwi	3				
Fimbristylis sericea R.Br.	3	4	5		

Non-arborescent species found in tidal zones in the Indo-West Pacific region. (potential mangrove associates)

C	Regional occurrence	1	2	3	4	5
C = climber	E.Afr.	India	S.E.A.	Aust.	W.Pac.	

Species	E.Afr.	India	S.E.A.	Aust.	W.Pac.
Fimbristylis sieberiana Kunth	1	2	3	4	
Fimbristylis thousarii (Kunth) Merrill	3				
Fimbristylis tristachya Thwaites	2				
Furena umbellata Rottb.	2	3	5		
Hypolytrum nembrosum (Vahl) Sprengel	3				
Juncellus laevigatus C.B.Clarke	1	2	3	5	
Lepironia articulata (Retz.) Domin	3	5			
Mapania cuspidata (Miq.) Uitsten	3	5			
Mapania macrocephala (Gauch.) K.Schum.	3	5			
Mapania lorea Uitsten	3				
Paramapania simplex (Ridley) Uitsten	3				
Rhynchospora corymbosa (L.) Britt.	2	3			
Rhynchospora pterocheta F.Muell.	4				
Rhynchospora rubra (Lour.) Makino	4				
Rhynchospora argosa (Vahl) Gale	3				
Schoenus nitens (R.Br.) Poir.	4				
Scirpodendron ghaeri (Gaertn.) Merrill	2	3	4	5	
Scirpus antarcticus L.	4				
Scirpus cernuus Vahl	1	3	4	5	
Scirpus lacustris L.	4				
Scirpus litoralis Schrad.	1	2	3	4	5
Scirpus maritimus L.	2	3	4	5	
Scirpus nodosus Rottb.	4				
Scleria angusta Nees	1				
Scleria corymbosa Roxb.	3				
Scleria papuana Kern	3				
Scleria parvula Steudel	3				
Scleria polycarpa Boeck	3	4	5		
Thoracostachyum buncanum (Miq.) Kurz	3				
Thoracostachyum sumatranaum (Miq.) Kurz	3				
Non-arborescent species found in tidal zones in the Indo-West Pacific region.
(potential mangrove associates)

Species	Regional occurrence			
	E.Afr.	S.E.A.	Aust.	W.Pac.

Dioscoraceae
- Dioscorea crinata
 Hook. f.
 1
- Dioscorea sylvestris
 Kunth
 1 2 3 5

Euphorbiaceae
- Synostemon bacciformis (L.)
 G.L. Webster
 1 2 3 3

Flagellariaceae
- Flagellaria indica
 L.
 3 4 5
- Flagellaria neo-caledonica
 Schlechter
 5

Frankeniaceae
- Frankenia pauciflora
 DC.
 4

Gentianaceae
- Centaurium pulchellum (Sw.)
 Druce
 4*
- Centaurium spicatum (L.)
 Fritsch
 4
- Selinum albidiflorum
 F.Muell.
 4

Goodeniaceae
- Selliera radicans
 Cav.
 4

Haloragidaceae
- Myriophyllum elatinoides
 Gaudich.
 4
- Myriophyllum sianense (Crab)
 Tard.-Blot
 3

Hanguanaceae
- Hanguana malayana
 (Jack) Merrill
 2 3 5

Heliconiaceae
- Heliconia indica
 Lam.
 3 5

Hemionitidaceae
- Pityrogramma calomelanos (L.)
 Link
 3

Hydrocharitaceae
- Enhalus aconoides
 (L.f.) L.C.Rich.
 1*
 2 3 4 5
- Halophila decipiens
 Ostenf.
 2 3 4 5
- Halophila minor
 (Zoll.) den Hartog
 1 2 3 4 5
- Halophila ovalis
 (R.Br.) Hook.f.
 1 2 3 4 5
- Halophila spinulosa
 (R.Br.) Asch.
 3 4
- Hydrola verticillata
 (L.f.) Royle
 1 2 3 4
- Thalassia hemprichii
 (Ehrenb.) Asch.
 1 2 3 4 5

Hydrocotylaceae
- Hydrocotyle capillaris F.Muell.
 4

Juncaceae
- Juncus maritimus
 Lam.
 1 2 4 5

Juncaginaceae
- Triglochin bulbosa L.
 1
- Triglochin microcorma R.Br.
 4
- Triglochin striata
 Ruiz & Pavon
 1 2 4

Lauraceae
- Cassytha filiformis
 L.
 1 2 3 4 5

Leguminosae — Caesalpinioideae
- Caesalpinia bondue
 L. syn. C. bonduecera Flemming
 1 2 3 4 5
- Caesalpinia crista L.
 syn. C. muga
 Aiton
 2 3 5

Leguminosae — Faboideae
- Abrs precatoria L.
 1 2 3 5
- Canavalia rosea
 (Sw.) DC.
 syn. C. maritima
 (Aublet) Thouars
 1 2 3 4 5
- Crotalaria microcorma
 Desv.
 3
- Crotalaria striata
 Roxb.
 3
- Dalbergia armata
 E.Meyer
 1
- Dalbergia beccarii
 Prain
 3
- Dalbergia candenatensis (Dennst.)
 Prain
 2 3 5
- Dalbergia obovata
 E.Meyer
 1
- Dalbergia palaensis
 Hosokawa
 5
- Dalbergia parviflora
 Roxb.
 3
- Dalbergia spinosa
 Roxb.
 2
- Derris heptaphylla
 (L.)
 Merrill
 3
- Derris malaccensis
 Prain
 3
- Derris trifoliata
 Lour.
 syn. D. uliginosa
 (Willd.) Benth.
 1 2 3 4 5
- Melilotus indica
 (L.) All.
 4*
- Mucuna gigantea
 DC.
 3 5
- Mucuna novo-guineensis
 Scheffer
 3
Non-arborescent species found in tidal zones in the Indo-West Pacific region.
(potential mangrove associates)

Family	Species	Regional occurrence			
Leguminosae — Mimosoideae		E.Afr.	S.E.A.	Aust.	W.Pac.
C Acacia kraussiana		1			
C Entada phaseoloides	Merrill	3	5		
C Entada purseaetha	DC.	1			
Lemnaceae					
Lema minor		3			
Spirodela polyrhiza	(L.) Schleiden	2	3		
Lilaceae					
C Gloriosa superba L.		1	2	3	
Lycopodiaceae					
Lycopodium cernuum L.		3			
Malpighiaceae					
C Tristellaia australis	A.Rich.	3	5		
Malvaceae					
Hibiscus surattensis L.		1			
Plagianthus spicatus	(Hook.) Benth.				
Marantaceae					
Clinoxyne dichotoma	Sahb.	3			
Donax canniformis	K.Schum.	3			
Melastomataceae					
C Medinilla scandens	King	3			
Moraceae					
C Cardiogynne africana	Bur.	1			
C Ficus globosa Bl.		3			
C Ficus microcyce	Ridley	3			
Myrsinaceae					
C Moesa insularis	Gillespie				
Najadaceae					
Najas browniana	A.B.Rendle	3			
Najas marina L.		1	2	3	
Nepenthaceae					
C Nepenthes mirabilis	Druce	3			
Nyctaginaceae					
C Pisonia aculeata L.		1	2	3	
Nymphaeaceae					
Nymphaea capensis	Thunb.	1			4
Nymphaea gigantea	Hook.	3	4		
Nymphaea stellata	Willd.	2	3		

Non-arborescent species found in tidal zones in the Indo-West Pacific region.
(potential mangrove associates)

Family	Species	Regional occurrence				
C = climber		E.Afr.	S.E.A.	Aust.	W.Pac.	
+ = may also grow as an epiphyte		1	2	3	4	5

Nymphaea violacea
Lehmann

Oleaceae

| C Jasminum bifarium | Wall. | 3 | 5 |

Oleandraceae

+ Nephrolepis exaltata Schott
+ Nephrolepis obliterata (R.Br.) Carr

1°

Onagraceae

Ludwigia adenocaps (L.) Hara

1 | 2 | 3 | 4

Orchidaceae

C Arachnis flos-aeris Reichb.f.
C Arachnis hookeriana Reichb.f.
C Arachnis maingai Schlechter
Eulophia keithii Ridley
+ Pholidota imbricata (Roxb.) Lindl.
+ Platylepis glandulosus (Lindl.) Reichb.f.
+ Pomotoca stamens (Rolfe ex Downie) Summerh.
C Renanthera histriomis Reichb.f.
C Thrixpernum amplexicaule (Bl.) Reichb.f.

Parkeriaceae

Ceratopteris thalictroides (L.) Brongn.

1° | 2 | 3 | 5

Passifloraceae

C Passiflora foetida L.

3*

Periploaceae

C Ficus marigosa obovata Wall.

2 | 3 | 5

Plantaginaceae

Plantago coronopus L.
Plantago lanceolata L.

4*

Plumbaginaceae

Limonium austral (R.Br.) Kuntze
Limonium binervosum (G.E.Smith)
C.E.Salmon
Limonium ptiloacton (Boiss.) Kuntze

4*
Non-arborescent species found in tidal zones in the Indo-West Pacific region.
(potential mangrove associates)

Species	C = climber	Regional occurrence
Limonium salicornea (F. Mull.) Kuntze		E.Afr. 1, 4, 5
Poaceae (Gramineae)		India 2, 3
Aeluropus lagopoides (L.) Trin.	1	S.E.A. 3
Agrostis billardieri R. Br.	2	Aust. 4
Apaloda mutica L.	3	W. Pac. 5
Brachiaria mutica (Forssk.) Stapf		
Capillipedium parviflorum (R. Br.) Stapf		
Cenchrus biflorus Roxb.	1	
Cenchrus ciliaris L.	2	
Chloris barbata (L.) Sw.	3*	
Coelachne pulchella R. Br.	3	
Coelachne similicissuscula (Wight & Arn.) Munro ex Benth.	4	
Coelorachis glandulosa Stapf ex Ridley	5	
Coix lacryma-jobi L.	6	
Cymbopogon validus Stapf ex Burtt Davy	7	
Cynodon dactylon (L.) Pers.	8	
Dactylolcentium aegyptium (L.) Beauv.	9	
Dactylolcentium geminatum Hackel	10	
Digitaria ciliaris (Retz.) Koeler	11	
Digitaria dispar Henrard	12	
Digitaria litoralis Stent	13	
Digitaria violascens Link	14	
Diplachne fusca (L.) P. Beauv.	15	
Distichlis distichophylla (Labill.) Fassett	16	
Echinochloa colona (L.) Link	17	
Echinochloa crus-galli (L.) P. Beauv.	18	
Echinochloa haploclada Stapf	19	
Echinochloa stagnina (Retz.) Beauv.	20	
Eriachne pallescens R. Br.	21	

Non-arborescent species found in tidal zones in the Indo-West Pacific region.
(potential mangrove associates)

Species	C = climber	Regional occurrence
Eriochloa procrea (Retz.) Hubbard		E.Afr. 1
Heteropogon contortus (L.) Beauv. ex Roemer & Schultes	2	
Hordeum marimum Hudson		S.E.A. 3
Hymenachne acutigluma (Steudel) Gilliland	4*	
Ischaemum muticum L.	5	
Ischaemum polystachyum J. & C. Presl.	6	
Leersia hexandra Sw.	7	
Leptochloa chinensis (L.) Nees	8	
Leptochloa polyostachya Benth.	9	
Lepturus repens (G. Forst.) R. Br.	10	
Loliurn lalaceum (Bory & Chaub.) Hand.	11	
Miscanthus floridulus (Labill.) Warb. ex Schum. & Laut.	12	
Myriostachya wightiana (Nees ex Steudel) Hook. f.	13	
Panicum deustum Thunb.	14	
Panicum humidonum Buch.-Ham. ex Hook. f.	15	
Panicum paludosum Roxb.	16	
Panicum pinnifolium Chiov.	17	
Panicum repens L. Paraphioles incurva (L.) C. E. Hubbard	18	
Paspalum conjunctum Bergius	19	
Paspalum distichum L. syn. P. vaginatum Sw.	20	
Pennisetum polystachyon (L.) J. A. & J. H. Schultes	21	
Periballia minuta (L.) Asch. & Graebn.	22	
Phragmites australis (Cav.) Trin. ex Steudel	23	
Phragmites japonica (Trin.) Steudel	24	
Phragmites karka (Retz.) Trin. ex Steudel	25	
Non-arborescent species found in tidal zones in the Indo-West Pacific region. (potential mangrove associates)

C = climber	Regional occurrence				
+ = may also grow as	E.Afr.	India	S.E.A.	Aust.	W.Pac.

Porteresia coarctata (Roxb.) Tateoka
- **Polygonaceae**
- **E. Afr.** 2
- **India** 3
- **S.E.A.** 4
- **Aust.** 5

Saccharum arundinaceum Retz.
- **C = climber**
- **Regional occurrence**

| + = may also grow as | E.Afr. | India | S.E.A. | Aust. | W.Pac. |

Portulaca oleracea L.
- **C = climber**
- **Regional occurrence**

Polygonaceae

| + = may also grow as | E.Afr. | India | S.E.A. | Aust. | W.Pac. |

Spartina maritima Potamogeton pectinatus C.E.Hubbard
- **C = climber**
- **Regional occurrence**

Posidoniaceae

| + = may also grow as | E.Afr. | India | S.E.A. | Aust. | W.Pac. |

Pteridaceae

| + = may also grow as | E.Afr. | India | S.E.A. | Aust. | W.Pac. |

Rhamnaceae

| + = may also grow as | E.Afr. | India | S.E.A. | Aust. | W.Pac. |

Rubiaceae

| + = may also grow as | E.Afr. | India | S.E.A. | Aust. | W.Pac. |
Non-arborescent species found in tidal zones in the Indo-West Pacific region. (potential mangrove associates)

Species	C = climber	Regional occurrence			
+ may also grow as an epiphyte	E.Afr.	India	S.E.A.	Aust.	W.Pac.

C Gynochthodes sublanceolata Miq. 3
C Lecananthus eburneus Jack 3
C + Lucinaea morinda DC. 3
C Morinda umbellata L. 3
C Randia longifolia Lam. 3
C Tarenna junodii (Schinz) Bremek. 1
C Uncaria acida Roxb. 3
C Uncaria attenuata Korth. 3
C Uncaria pedicellata Roxb. 3
C Uncaria scleropetra Roxb. 3

N.B. some authorities place Uncaria in Naucleaceae.

Ruppiaceae
Ruppia maritima L. 1 2 3 4 5
Ruppia spiralis L. ex Dumort. 1 3 4

Salicorniaceae
Arthrocnemum arbusculum (R.Br.) Moq. 4
Arthrocnemum glaucum (Del.) Ung.-Sternb. 1
Arthrocnemum halecenmoides Nees 4
Arthrocnemum indicum (Willd.) Moq. 1 2 3
Arthrocnemum leiochachyum Benth. 4
Halocnemum strobi- lacerum (Pallas) M.Bieb. 1 2
Halopeplis perfoliata (Forrsk.) Bunge ex Schweinf. 1 2
Salicornia blackiana Ulbrich 4
Salicornia brachiata Roxb. 2
Salicornia meyerana Moss 1
Salicornia pachystachya Bunge ex Ung.-Sternb. 1
Salicornia quinqueflora Bunge ex Ung.-Sternb. 3 4 5
Sarcornia natalensis (Bunge ex Ung.-Sternb.) A.J.Scott 1
Non-arborescent species found in tidal zones in the Indo-West Pacific region. (potential mangrove associates)

Species	Regional occurrence	C = climber	+ = may also grow as
Poikilospermum suaveolens (Bl.)	E.Afr. 1	S.E.A. 2	Aust. 3
An epiphyte			W.Pac. 4
Verbenaceae			
Cayratia carnosa			
Gagnepain			
Cayratia trifolia			
Columella trifolia			
Cayratia maculata			
Rhoicissus digitata			
Rhoicissus tonentosa			
Rhoicissus demissa			
Vitis jurcata			
Xyridaceae			
Xyris complanata			
Xyris indica			
Xyris pauciflora			

Non-arborescent species found in tidal zones in the Indo-West Pacific region. (potential mangrove associates)

Species	Regional occurrence	C = climber	+ = may also grow as
Zanichelliaceae			
Zanichella palustris			

Zingiberaceae

Species	Regional occurrence	C = climber	+ = may also grow as
Alpinia purpurata			
Alpinia zerumbet			

Zosteraceae

Species	Regional occurrence	C = climber	+ = may also grow as
Heterozostera tasma			

Zygophyllaceae

Species	Regional occurrence	C = climber	+ = may also grow as
Nitraria schoberi			
Tribulus cistoides			

Zygophyllum albus