Abstract—This article reviews the state of rapidly emerging terahertz hot-electron nanobolometers (nano-HEB), which are currently among of the most sensitive radiation power detectors at submillimeter wavelengths. With the achieved noise equivalent power close to 10^{-19} W/Hz$^{1/2}$ and potentially capable of approaching NEP ~ 10^{-20} W/Hz$^{1/2}$, nano-HEBs are very important for future space astrophysics platforms with ultralow submillimeter radiation background. The ability of these sensors to detect single low-energy photons opens interesting possibilities for quantum calorimetry in the mid-infrared and even in the far-infrared parts of the electromagnetic spectrum. We discuss the competition in the field of ultrasensitive detectors, the physics and technology of nano-HEBs, recent experimental results, and perspectives for future development.

Index Terms—Bolometers, infrared detectors, submillimeter wave devices, superconducting photodetectors.

I. INTRODUCTION

The desire for higher sensitivity detectors has always persisted as astronomical instrumentation evolved and more demanding space applications arose. Detection of faint fluxes of photons is achieved via either registering the average radiation power absorbed in a detector or by counting the average number of photons per second arriving at a detector. The latter scenario is more common for high-energy photon detection (X-ray, gamma-ray) where photons arrive infrequently. However, as the telescopes and space instruments improve, very low radiation backgrounds set the sensitivity limit, so the interest in long-wavelength single-photon detection grows.

The far-infrared (far-IR) including the THz region is a very important spectral range containing about 98% of all the photons existing in the Universe [1]. Because of the high opacity of the Earth’s atmosphere, the accessibility of this range from the ground is limited and the role of space borne instruments is very important [2]. The current trend is to pursue moderate resolution spectroscopy ($\Delta \nu / \nu \sim 1000$) of extragalactic lines using nearly zero-emission telescopes (cryogenically cooled primary mirror). This will demand detectors with exceptionally low Noise Equivalent Power (NEP), in the range 10^{-19}-10^{-20} W/Hz$^{1/2}$ [3-9] which is significantly smaller than that of the detectors operating on the recent generation of far-IR space instruments (bolometers with semiconductor NTD-Ge thermometer [10] and Ge-doped photoconductors [11, 12]; their best NEP = 10^{-17}-10^{-18} W/Hz$^{1/2}$).

In this paper we overview the state of one of the most promising detector approaches for achieving the new sensitivity goals for THz astrophysics -- the superconducting hot-electron nanobolometer (nano-HEB) [13, 14]. Bolometers relying on the weak thermal coupling between the absorber and the heat sink have been highly successful in sensitive far-IR instruments. They contributed to the accurate determination of the temperature of the Cosmic Microwave Background (CMB) [15] and to the detailed study of the anisotropy of the CMB [16]. The nano-HEB relies on the intrinsic weak coupling between the electrons and phonons in a metal absorber. The absorber is made from a superconducting material, which is biased so it is always partially resistive. Detected photons cause the temperature of the electrons to rise and the resistance to increase. This type of thermometer is often referred to as a Transition-Edge Sensor (TES) since it operates within the rather narrow temperature interval where the resistance of a superconducting sensor changes from zero to the normal metal value. In recent years, TES based bolometers played an important role as single-photon quantum calorimeters for X-ray spectroscopy [17] and for the secure quantum communication applications using near-IR single photons [18]. The nano-HEB extends the ability of bolometers to detect both small power and small amounts of energy potentially corresponding to single sub-THz photons.

The paper is organized as follows. First we discuss the far-IR backgrounds in space that eventually set the sensitivity requirements for an ideal detector (Sec. II). The physics and operational principles of the nano-HEB in the power detection and single-photon detection modes, and the model predictions are discussed in Section III. Section IV and V present the results on the power detection and single-photon detection correspondingly. In Section VI we describe other competing approaches to sensitive THz detectors. In Section VII we discuss possible ways for improvement of the nano-HEBs and Section VIII concludes the paper.

II. BACKGROUNDS AND NEP REQUIREMENTS

In contrast to the heterodyne sensors whose sensitivity is limited by zero-point energy [2, 19] the sensitivity of a direct detector is fundamentally limited only by the fluctuation of the energy in the radiation background seen by the detector. The lowest intensity thermal radiation backgrounds are found in
Prad has the spectral density of the radiation power $P(h) \propto h^2$ and the photon noise is given by
\[\text{NEP}_{ph} = \sqrt{P(h) \Delta f} / \sqrt{N \Delta f} \]
for an ideal single mode detector operating with a moderate resolution spectrometer ($\nu \Delta \nu = 1000$) and the rate of photon arrival N_{ph} corresponding to the background (dashes). The latter is less than 1000s^{-1} below $\nu = 300 \mu \text{m}$. The contributions of various radiation continua are calculated from the data of [23].

In the far-IR and mid-infrared (mid-IR) ranges, which are the focus of this paper, the backgrounds correspond to either the photon remnants of the Big Bang, the Cosmic Microwave Background (CMB) [20] or the interstellar dust emission, the Cosmic Infrared Background (CIB) [21-23]. The combination of these continua defines the irreducible noise associated with the fluctuation of the number of photons impinging an ideal detector with an optical bandwidth $\Delta \nu$.

A detector’s Noise Equivalent Power (NEP) is a measure of sensitivity and is defined as the radiation power detected with a 1-Hz signal bandwidth with the signal-to-noise ratio (SNR) equal to unity. A general expression for the NEP of the background limited photodetector (BLIP) can be found in, for example, [24]:
\[\text{NEP}_{ph}^2 = \frac{2}{\eta} \int P(v) h \nu \Delta f + 2 \int P(v) c^2 \Delta f / m U \nu^2, \]
where $P(v)$ is the spectral density of the radiation power incident on the detector, m is the number of polarizations, η is the detector quantum efficiency, and $U = A \Omega c^2$ is the beam throughput (Ω is the detector effective area, Ω is the solid angle within which the radiation is coming in). The second term of Eq. 1 is due to the bunching of photons when the number of photons per mode $n_{ph} = \left[\exp(h\nu/k_B T) - 1 \right]^{-1}$ is large. In astronomy, where the backgrounds are low, n_{ph} is significant only at millimeter waves [25]. In the infrared and visible, $n_{ph} < 1$ and the photon noise is given by
\[\text{NEP}_{ph}^2 = \frac{2}{\eta} \int P(v) h \nu \Delta f = \frac{2}{\eta} P_{rad} h \nu = \frac{2}{\eta} N_{ph}(\nu)^2 \]
assuming that the optical bandwidth $\Delta \nu = \nu_2 - \nu_1$ is narrow. Here P_{rad} is the incident optical power, N_{ph} is the photon arrival rate.

If the radiation background closely resembles the black body radiation spectrum (like, e.g., CMB) and the detector couples to just one radiation mode then $P_{rad} = h \nu \left[\exp(h\nu/k_B T) - 1 \right]$. For the typical conditions on recent space instruments for CMB studies where $\nu = 100-500$ GHz and $\Delta \nu / \nu \sim 0.3$ [10], the NEP_{ph} is in the range $10^{-18} - 10^{-17}$ W/Hz$^{1/2}$ for $T = 2.7$ K. In practice, even less sensitive detectors are sufficient compared to this idealized case since the non-zero emission of the relatively warm telescope mirror ($T_{tel} \sim 40$ K) contributes noticeably to the photon noise.

BLIP operation becomes more demanding when it comes to line spectroscopy with a moderate resolution $\nu / \Delta \nu \sim 1000$ corresponding to a typical width of Doppler-broadened submillimeter lines in extragalactic molecular clouds (see Fig. 1). Several infrared space missions (e.g., IRAS, ISO, Spitzer, Akari) featuring a cryogenically (≤ 6 K) cooled primary mirror for elimination of the thermal emission have been flown in past three decades. Several new far-IR mission concepts have been studied in recent years [5-9]. They all considered a far-IR moderate resolution spectrometer as one of the key instruments. A relatively near term realization of such a telescope will be the Japanese Space Infrared Telescope for Cosmology and Astrophysics (SPICA) with potentially two far-IR spectral instruments: an imaging Fourier Transform Spectrometer (FTS) called SAFARI [4] and a grating spectrometer BLISS [3].

Figure 1 illustrates the effect of the cold telescope on the radiation background seen by a single-mode detector pointed at some dark part of the sky with very low luminosity [22, 23]. The associated photon noise NEP_{ph} is very low ($10^{-19} - 10^{-20}$ W/Hz$^{1/2}$) throughout the entire far-IR and mid-IR parts of the spectrum. A radiatively cooled telescope ($T_{tel} \sim 30$ K) has NEP_{ph} that is several orders of magnitude higher above 1 THz than a telescope cooled to 5K. Interestingly, the low background condition affects the way a detector might (or should) operate given the very low arrival rate of the far-IR photons, N_{ph}. This rate remains under $\sim 1000 \text{sec}^{-1}$ from 1 THz to 30 THz. In this situation, an ideal detector should either have a time constant of the order of 100 ms or longer, or be able to detect individual THz photons with high fidelity. The situation is complicated by the fact that the background conditions vary across the sky so a detector capable of counting single photons under low optical loading may not be able to count the photons corresponding to a much more intense background if the detector maximum speed is insufficient. In this case some gradual transition to the power detection mode would be useful. The nano-HEB can operate in both photon-counting and power detection modes with high power and energy resolution, which makes it an interesting candidate for these future space THz applications. Both regimes of operation are discussed in the following sections.

III. CONCEPT AND UNDERLYING PHYSICS OF HOT ELECTRON BOLOMETERS

A. Brief history and outline of operation

Hot-electron bolometers (HEB) have been known for quite a while, since the first work on the InSb hot-electron heterodyne detector [26-28]. After the hot-electron effect was realized in superconducting (metal) film bolometers [29-31] interest in the HEBS grew due to the promise of achieving a low-noise THz heterodyne mixer with a large intermediate...
frequency (IF) bandwidth and low local oscillator (LO) power, unavailable with other detector technologies in early 90s [32]. Eventually, NbN HEB mixers became widespread and are now employed in many ground based, suborbital, and space instruments (see [19] in this issue for the review).

A millimeter-wave Nb direct detector HEB has been demonstrated for the first time in [33] but did not receive serious attention because of the lack of applications. Later, the NbN HEB detector has been found useful for short laser pulse detection [34, 35]. The extremely short electron-phonon (e-ph) relaxation time $\tau_{e-ph} \approx 10-20$ ps found only in thin NbN superconducting films [36] makes this material stand out among other superconducting materials, even those with similarly high critical temperature (e.g., in NbC with $T_C \approx 9$ K, $\tau_{e-ph} \approx 1$ ns [37, 38]).

In order to bypass the IF bandwidth limitation in widely used superconducting Nb, a nanobolometer version of the heterodyne detector was proposed in [39]. While Nb has a relatively long e-ph time, $\tau_{e-ph} \approx 1$ ns, use of non-superconducting contacts allows fast diffusion outward of thermal excitations (cooling) from the short bolometer (length $l \leq 1$ µm) and thermal response times as short as 20 ps have been achieved for heterodyne mixers [40, 41]. Similar enhancement of the IF bandwidth was also observed in NbC HEBs [37]. This is known as a diffusion-cooled bolometer.

The desire to achieve even faster detector response drove the interest in the HEB based on high-T_C superconductors (YBCO). Indeed, a number of results demonstrating fast detection of visible [42, 43], near-IR [44, 45], mid-IR [46], and far-IR [47] radiation have been reported, though the sensitivity was poor. This drawback was explained by the far-IR radiation have been reported, though the antenna through a capacitor [53].

Electron diffusion by making the device coupling to the antenna [53].

Fig. 2. Top: A cross-sectional view of the nano-HEB detector. A low-T_C TES device is fabricated on a solid dielectric substrate between superconducting contacts (S) preventing diffusion of the thermal energy. Far-IR radiation couples to the TES through a planar antenna or a waveguide. Bottom: The energy diagram showing the energy gap in the contacts that enables Andreev reflection. The energy gap in the TES is nearly zero since it operates in the resistive state.

In the following work [51, 52], experimental studies of such normal metal HEBs have been carried out proving the feasibility of low thermal energy fluctuation (TEF, or phonon noise) $\delta E_{TEF} \approx 10^{-18}$ W/Hz$^{1/2}$, which is of interest for astrophysics instruments for use in space. A change of the electron temperature T_e is read via a change of the tunnel current in an attached NIS junction. Several approaches to the readout have been discussed as well as the possibility of blocking the electron diffusion by making the device coupling to the antenna through a capacitor [53].

The superconducting HEB appears to offer better performance than the SNS HEB with its normal-metal absorber. The NIS tunnel junction readout of the normal-metal absorber has high impedance. Thus, it is hard to instrument with very low noise, and is difficult to form an array. The SQUID readout matches well to the superconducting HEB, and is compatible with producing a cryogenic multiplexed array. Moreover the SQUID readout has very low noise itself and also provides negative electro-thermal feedback (ETF), thus speeding up the thermal response [54].

Currently, the main interest for the direct detector HEB is in single-photon detection applications. In the visible and near-IR ranges, a ~ 10 µm × 10 µm HEB device can simultaneously be a good absorber of radiation with $\lambda \leq 1.5$ µm and still have a small enough size that the total energy fluctuation due to the detector noise $\delta E \approx \hbar c/\lambda$. This has been realized in a HEB TES based on W [18, 55, 56], Ti [57, 58], and Ir [59], and with some S-N bilayer materials [60, 61]. Such detectors can be useful for statistical discrimination of the number of simultaneously absorbed photons, which is important for realization of some Quantum Key Distribution (QKD) protocols in schemes for secure quantum communication using single photons. Another application is single photon calorimetry for astrophysics where the small δE allows for resolving a multicolor spectrum of the incident flux of photons without using any dispersive optics in front of the detector [62]. A recent Workshop on Single Photon Counting Detectors posted a large number of presentations featuring these HEB applications [63].

B. Concept of the nano-HEB

A review article [64] gives a good overview of the nonequilibrium (including hot-electron) superconducting detectors and is still current in many aspects. We set here a narrower goal to overview only the smallest HEB detector (often submicron) implementations – nano-HEBs – where the ultrasmall C_e and G_{e-ph} may result in record small δE_{TEF} and δE. Most of the practically important results have appeared after paper [64] was published.
The geometry of the TES nanobolometer is in Fig. 2. Superconducting HEBs have all the three critical functions of a bolometer – absorber, thermometer, and thermal conduction – integrated into a single element. The general nano-HEB device configuration is similar to what has been used in the SNS HEB [50] or in optical HEB [18, 55]. The role of superconducting contacts (S) is to create thermal barriers by means of Andreev reflection [65]. Compared to the SNS device, the nano-HEB uses a TES as a thermometer, that is, an additional NIS junction is not needed. Compared to the optical (large size) TES the nano-HEB pushes the fabrication limit and also enters the regime where the penetration of superconductivity from the contacts into the bolometer can affect the TES’s characteristics [66].

Since the HEB operates in the resistive state it has practically no superconducting gap and hot electrons are surrounded by an energy barrier of the contact Λ_{cont}. Only a tiny fraction of thermal electrons with energy exceeding Λ_{cont}

$$dn/n \approx \int_{\Lambda_{cont}}^{\infty} \frac{1}{\exp(\epsilon/k_B T) + 1} \, d\epsilon$$

can diffuse into the contacts and deposit energy there. The rest ($\epsilon < \Lambda_{cont}$) experience Andreev reflection, that is the process when an electron-like quasiparticle (qp) at the N-S boundary recombines with a hole-like quasiparticle moving in the opposite direction, to form a Cooper pair [65]. The pair carries electrical charge into the contacts whereas the energy flux is equal to zero.

The TES itself absorbs the radiation as a normal metal. Since the sensor’s size is much less than the wavelength and the plasma frequency in metals is in the ultraviolet range, the electron motion, diffusion in such films, is roughly like that of the normal metal, as is the heat capacity, C_v. This is because there are few superconducting pairs very near T_c and the energy gap is small or zero, so diffusion is not impeded. In this case, the thermal healing length is $L_T = (D\tau_{e-ph})^{1/2} \sim 300 \mu m$ ($D \approx 1 \text{cm}^2/\text{sec}$ is the electron diffusivity in thin metal films which are usually disordered). This distance is quite large and weak e-ph relaxation cannot dominate unless the electron diffusion out the ends of the bolometer is prevented. The small device volume V will decrease G_{e-ph} proportionally as $C_v \sim V$. As the e-ph thermal conductance is made small, the rms contribution of the fundamental noise mechanism – the thermal energy fluctuation – also becomes small:

$$\text{NEP}_{\text{TEF}} = \frac{k_B T^2}{\Delta_{cont}}$$

where $\xi = 4$ if $T_s = T$, and $\xi = 2$ if $T_s >> T$ [67].

The intrinsic detector sensitivity expected for energy is given by the rms energy resolution, ΔE. This limiting sensitivity of the detector itself is set by the TEF due to phonon exchange between the detector and bath, in units of energy $\sim k_B T$. ΔE scales as

$$\Delta E = k_B T^2 C_v$$

with the prefactor κ determined by the relative contribution of the Johnson noise and by the strength of the electrothermal feedback (ETF) [68]. The sensitivity of the TES improves as T_C is reduced, but the time constant increases. Here the effect of the SQUID readout is very helpful. The SQUID can be voltage biased in series with the TES thus providing a negative ETF. This negative ETF gives a faster response, and also provides improved energy resolution [69].

C. Device size constraints

For single photon calorimetry and sensitive power detection in the far-IR and THz range, very small devices are needed, with volumes $\approx 10^{-2} \text{cm}^3$, compared to maybe $\geq 1 \mu \text{m}^3$ in the NIR. Thermalization processes must be carefully considered in designing the nanobolometer. The TES dimensions and materials and the contact material must be carefully chosen to ensure that the deposited energy thermalizes fully, only in the volume of the superconductor, and that this happens rapidly compared to the energy loss into the substrate via phonons. The lower limit on device length is imposed by two effects. First, the length of the TES should be larger than the coherence length in the normal metal, $\xi_d = (hD/4\pi k_B T)^{1/2}$, otherwise the difference between the critical temperatures of the microbridge and the superconducting contacts will be washed out by the proximity effect. At $T \approx 100 \text{ mK}$ and the electron diffusivity $D \approx 2 \text{ cm}^2/\text{s}$ (moderately impure film) this yields $l >> 2L_T = 100 \text{ nm}$. Second, if the length is too small, the hot quasiparticles generated by absorbed photons with energies greater than Λ_{cont} can escape from the TES before thermalization. The escape of the non-thermalized electrons would reduce the quantum efficiency of the detector at frequencies $\nu > \Lambda_{cont}/h$ and give variability of the response to monoenergetic photons. For $Nb\Lambda_{cont}/h$ corresponds to 360 GHz. One way of preventing deterioration of the spectral response at high frequencies is to make the length of the TES greater than the electron diffusion length at the contact energy gap $l_{e-e} = [(D\tau_{e-e})^{1/2} (\tau_{e-e})$ is the electron-electron inelastic
collision time). Taking $\tau_{e-ph}(\Delta_{coh}) \approx 10^{-11}$ s [70] we estimate this length to be of \sim 90 nm. Thus, if $l \sim 1$ μm these difficulties can be safely avoided. Even though the devices as short as 0.5 μm have been achieved [71], optical measurements have been only performed in HEB detectors with $l \geq 1$ μm [72-74]. The data have shown no signs of sensitivity degradation up to ~ 1 THz [72].

Impure superconducting films can still demonstrate good superconducting properties if the thickness is ≥ 10 nm. In this case, the bridge width, w, is defined by the requirement that $R_N = 50-100$ Ω to match the device with a planar antenna. For many materials this corresponds to a bridge area of roughly one square (ie: 1×1 μm2 for 0.1 K). The lateral size can be slightly reduced (by 1.5-2 times) if the detector works at 0.3 K (both L_T and $l_{e-ph} \sim T^{-1/2}$).

D. Thermal conductivity

Low thermal conductance G_{e-ph} is the key to achieving high sensitivity in nano-HEBs. Beside the small geometrical size, the device material plays an important role since it defines both the temperature dependence of G_{e-ph} and its prefactor which varies between different materials.

Relatively thin films are required for the HEB. The reason is twofold: a. smaller volume helps to increase the sensitivity b. larger sheet resistance provides a better impedance match between the bolometer and the antenna or waveguide at THz frequencies. In general, thin (thickness $d = 10-50$ nm) superconducting films are fairly disordered. Even if the material itself is pure, collisions of electrons with boundaries increases the resistivity in very thin layers.

The effect of the material on the temperature dependence of the thermal conductance G_{e-ph} comes through the e-ph time τ_{e-ph} whereas C_e is not usually affected. Since $C_e = \gamma T$ (γ is the Sommerfeld constant), the typical temperature dependence $\tau_{e-ph}(T) \sim T^n$ translates into $G_{e-ph}(T) \sim T^{n+1}$. Table I presents parameters of the available thin film superconducting materials whose T_C is below 0.5 K. Note that S-N bi-layer materials commonly used as TES thermometers are not very suitable for the far-IR HEBs since they cannot be made thin. As a result, both G_{e-ph} and C_e are large, and R_N is small and cannot be impedance matched to an antenna.

A detailed study of the e-ph relaxation in Ti [75] yielded some interesting details for the temperature dependence of G_{e-ph}.

![Figure 3. G_{e-ph} in several 25-40 nm thin large volume Ti films on sapphire and Si,N$_x$ (squares) and on naturally oxidized Si (circles) [75].](image)

Table I

Material	T_C (mK)	Substrate	X	J_1 (K m$^{-1}$)	$G_{e-ph}(T)$, pW/K	n	$G_{e-ph}(T)/100$ mK, W/(K m3)	Reference
Ti	359	Si,N$_x$/Si	310	950		3	3.1×10^5 [57]	
Ti	351	Si,N$_x$/Si	310	13300		2	8.2×10^5 [76]	
Ti	430	Sapphire	310	varies		3.4	4.0×10^5 [75, 77]	
Ti/Au	96.4	Si,N$_x$/Si	-	1500		3	5.4×10^5 [76]	
Ti/Pd	105	Si,N$_x$/Si	-	8.4		3	2.1×10^5 [60]	
W	80	Si	136	0.94		3	1.8×10^5 [55]	
W	95	Si	136	1200		3	1.9×10^5 [54]	
Hf	150	Sapphire	160	1.0×10^4	4	2.7	2.4×10^4 [77]	
Ir	114	Si	380	12		2.4	5.0×10^4 [59]	
Ti,N$_x$	51	Si	-	2.4		3	6.3×10^4 [77]	
Ti,N$_x$	52	Si	-	1.2		3	1.0×10^4 [78]	

n is the exponent in the temperature dependence $\tau_{e-ph}(T) \sim T^n$ and of its dependence on the substrate material (see Fig. 3). $G_{e-ph}(T)$ exhibited $n \approx 3.5$ for several Ti films deposited using different techniques. However, in the films grown on naturally oxidized Si n changes from 3.5 above 200 mK to $n = 2$ below 200 mK. This behavior finds a theoretical explanation in the framework of the Pippard’s model which takes into account interference of the bulk e-ph scattering and elastic electron scattering on vibrating impurities, defects, and boundaries [79, 80].

In the classic Pippard model [81], effects of disorder on $G_{e-ph}(T)$ are described by a single parameter $q_T \ell$, ($q_T = k_T u / \hbar u$ is the wavevector of a thermal phonon, u is the sound velocity, ℓ is the electron mean free path due to scattering from impurities). The e-ph interaction is nonlocal and the characteristic size of the interaction region is of the order of $1/q_T \ell$. In the diffusive limit, $q_T \ell \ll 1$, a phonon interacts with an electron that diffuses over the interaction region. In this strong “dirty” limit the electron energy relaxation rate is mainly due to the interactions with transverse phonons [81, 82] and it strongly decreases with the disorder:

$$\frac{1}{\tau_{e-ph}} = 9.1 \frac{3\pi^2 \beta}{10} \frac{P_T}{(p_f u_t)^3}$$

where β is the coupling constant, P_T is the Fermi momentum, u_t is the transverse sound velocity, and a coefficient 9.1 describes the averaging over all electron states contributing to G_{e-ph} [38]. It turns out that in thin metallic films or nanowires, the transverse phonons also dominate in the opposite, quasiballistic case, $q_T \ell \gg 1$, in a wide temperature range $T \leq 100$ K, where the e-ph relaxation rate increases with temperature as T^4 [83]. For this reason, the dependences of the e-ph relaxation rate (close to T^4) widely observed at low temperatures may have nothing to do with the pure e-ph interaction, i.e., with the electron scattering on longitudinal phonons. In fact, such a dependence can originate due to the crossover from the T^2-dependence at $q_T \ell \gg 1$ to the T^4-
dependence at $q\ell \ll 1$ in the electron relaxation due to scattering on transverse phonons [84]. $G_{\text{e-ph}}(T)$ on sapphire or Si$_x$N$_y$ (see Fig. 3) is an example of such a crossover.

Many experiments with thin films of metallic alloys demonstrated the opposite tendency; the e-ph relaxation rate increases due to disorder, and $n=2$. This obvious contradiction with the Pippard model has been explained in [79, 80]. The destructive interference that leads to the Pippard’s condition takes place if all electron scatterers vibrate as host atoms. If vibrations of electron scatterers and host atoms are uncorrelated, the interference results in the enhancement of the e-ph interaction:

$$\frac{1}{\tau_{\text{e-ph}}} = 1.6\cdot b \frac{3\pi^2 \beta T^2}{(p_f\ell)(p_J u_J)}$$

(7)

where a coefficient b ($b_{\text{max}} = 0.25$) describes the difference in vibration of the electron scatterers and host atoms and a coefficient 1.6 is due the averaging over the electron ensemble. Disorder-enhanced e-ph interaction has been observed in a number of alloys (see [86] for a review) and disordered films (e.g., Nb [87]). In the light of [79, 80], the behavior of $G_{\text{e-ph}}$ on a SiO$_x$/Si substrate (see Fig. 3) may be explained by a combination of the effect given by Eqs. 6 and 7, where the T-term should be associated with the inelastic electron-boundary scattering at the Ti-substrate interface. While the interference theory [79, 80] provides a qualitative understanding of the effect of the substrate on e-ph relaxation, further research is necessary to reach quantitative agreement [86].

The agreement of $G_{\text{e-ph}}/V$ in real nano-HEBs on SiO$_x$/Si substrates [71, 85] with the data of Fig. 3 is good; typically $G_{\text{e-ph}}/V = 10^4$-10^5 W/(K m3) has been observed at 100 mK. From the practical prospective, sapphire or Si$_x$N$_y$ substrates are preferred since they provide much smaller $G_{\text{e-ph}}$ for the same temperature. W and Hf have a significantly lower Sommerfeld constant γ than other material; this is advantageous for achieving a small dE in single photon detection. The final choice is a subject of the availability of a reliable technology for fabrication of thin films with desired T_c and resistivity.

IV. POWER DETECTION MODE

A. Signal bandwidth and electrical noise

Recent work [85, 88] addressed the electrical noise in nano-HEBs. The usual understanding of the noise in a bolometer is that it consists of two nearly independent components: the TEF noise and the Johnson noise. The full expressions for them can be found in [89, 90]. The TEF noise is large at the bias points where the bolometer approaches the run-away condition: the point where a dissipation of the Joule power P_J cannot be removed by the thermal conductance mechanism. This is usually quantified by the dimensionless ETF loop parameter $L = dP_J/dP_C$ (in the case of HEB, P_C is the cooling power; due to the e-ph interaction in this case) which can be expressed through the parameters of the bias point [89]:

$$L = (dV/dI - R)/(dV/dI + R)$$

(8)

Fig. 4. IV characteristic and time constant for a 6μm x 0.4 μm x 40 nm Ti HEB device on SiO$_x$/Si substrate at 315 mK [85]. The inset shows the ETF effect on the time constant computed for different load resistors. The dashed line in the inset is a borderline between positive (above) and negative (below) ETF regimes.

If the bias circuit provides constant voltage then the current-voltage (IV) characteristic is N-shaped and stable (see Fig. 4; here the large bias range where the device resistance approaches R_L is not shown). From Eq. 8, $L > 1$ if $dV/dI < 0$, and $L < 1$ if $dV/dI > 0$, and $L = 1$ when $dV/dI = \infty$. If the circuit provides constant current (positive ETF for a TES) then the IV curve may become unstable when L approaches unity. Beyond that point the bolometer switches into the normal state irreversibly. Positive ETF is always present to some degree in heterodyne mixer HEBs where the GHz range IF amplifier introduces a large load impedance of 50 Ω. This mode is never used in the low temperature HEBs. The availability of SQUIDs with sufficiently large signal bandwidth and zero input impedance at low frequencies makes the nearly ideal voltage bias (negative ETF) always possible.

The ETF affects the bolometer speed so that the actual thermal relaxation occurs with the time constant τ^* which is different from $\tau_{\text{e-ph}}$ [89]:

$$\tau^* = \tau_{\text{e-ph}} \frac{dV/dI + R}{2R}$$

(9)

Here R_L is the total resistance of the bias resistor, of the residual resistance in the device, and of the wiring resistance included in series with the TES. For better stability, the goal is to keep R_L as low as possible.

Figure 4 illustrates the dependence of τ^* on the feedback conditions when R_L still must be taken into account. In this experiment [85], $R_L = 1.8 \Omega$ is used which is comparable with the device resistance R in some bias points. Compared to $\tau_{\text{e-ph}} \approx 4 \mu$s, τ^* increases at low biases and decreases at higher biases where the negative ETF becomes stronger ($L > 1$). A saturation is observed at $\tau^* = 3 \mu$s because of the SQUID bandwidth limit. An inset in Fig. 4 shows what would happen if R_L were smaller than 1.8 Ω. In this case, the transition from the positive ETF ($\tau^*/\tau_{\text{e-ph}} > 1$) to the negative ETF ($\tau^*/\tau_{\text{e-ph}} < 1$) could occur at smaller bias voltages, that is, mostly a...
negative ETF would take place everywhere.

This complex behavior for τ^* reflects in the output noise spectrum as well. The TEF noise roll-off with frequency is at the same cut-off point $(2\pi\tau^*)^{-1}$ as the bolometer responsivity. The Johnson noise by itself is white but the presence of the strong ETF introduces some correlation between the two mechanisms. As a result, the Johnson noise is suppressed wherever $L \gg 1$ (that is, within the bandwidth $\Delta f = (2\pi\tau^*)^{-1}$). It plays little role for the nano-HEBs as the typical SQUID amplifier noise $\sim 1 \text{pA/Hz}^{1/2}$ is usually higher.

The magnitude of the TEF noise i_{TEF} is described by the expression $i_{\text{TEF}} = \text{NEP}_{\text{TEF}} \cdot S_I$, where

$$S_I = \frac{\Delta I}{P_{\text{rad}}} = \frac{1}{2IR_L} \left(\frac{dV}{dt}/R - 1\right) \frac{1}{1 + (2\pi f \tau^*)^2}$$

(10)

is the detector current responsivity to the incident radiation power P_{rad} [89]. In the strong negative ETF limit, $L \gg 1$, Eq. 10 simplifies and $S_I \approx -1/V$. $i_{\text{TEF}}(f)$ rolls off with frequency until it crosses the white part of the noise spectrum (the SQUID noise, that is) (see Fig. 5). The difference between the TEF noise and the typical SQUID noise ($i_{\text{SQUID}} \sim 1 \text{pA/Hz}^{1/2}$) can be more than tenfold. This results in a large noise bandwidth of the detector within which the NEP is nearly constant:

$$\Delta f = \Delta f \left(\frac{i_{\text{TEF}}^2 + i_{\text{SQUID}}^2}{i_{\text{SQUID}}^2}\right) \sim \tau_{\text{e-ph}}$$

(11)

Figure 5 shows an example of the noise spectra measured in different bias points at 150 mK. Here $\tau^* \sim 100 \mu$s so the 70 kHz readout bandwidth was sufficient to trace to crossover between the ETF noise and the SQUID noise. Trace (a) corresponds to positive ETF, so $\tau^*/\tau \gg 1$ and the ETF noise cut-off occurs at ~ 300 Hz. Trace (b) corresponds to the situation when ETF does not affect τ^* so the cut-off of the ETF noise spectrum corresponds to $(2\pi\tau_{\text{e-ph}})^{-1}$. In both cases the electrical NEP_{el} defined as

$$\text{NEP}_{\text{el}}(f) = \sqrt{i_{\text{TEF}}^2(f) + i_{\text{SQUID}}^2} \sqrt{S_I(f)}$$

(12)

remains constant up to ~ 10 kHz where i_{SQUID} begins to dominate.

NEP_{el} usually agrees fairly well with NEP_{TEF}. Figure 6 shows a summary of the NEP_{TEF} as function of temperature along with the physical time constant measured using a short pulse from a 3-THz quantum cascade laser (QCL) and a very small bias current. Between 150 mK and 300 mK, $\tau_{\text{e-ph}}(T) \sim T^{-4}$ which agrees with the theory [91] prediction. The temperature dependence weakens below 100 mK, and correlates with the weakening of the temperature dependence of $G_{\text{e-ph}}$ on SiO$_2$/Si (see Fig. 3). Nevertheless, the very low $\text{NEP}_{\text{TEF}} = 1.5 \times 10^{-20} \text{W/Hz}^{1/2}$ has been determined at 50 mK. The corresponding $G_{\text{e-ph}} = 1.6 \text{fW/K}$, so spurious power as low as 0.01 fW would have a noticeable effect on the electron temperature.

B. Optical NEP

Optical NEP measurements of THz cryogenic direct detectors are absolutely critical but they are not very common. If the sensitivity is very high then it becomes very difficult to precisely attenuate the calibration signal generated at room temperature without affecting the detector by the high radiation background. The calibration signal carries its own photon noise (see Eq. 2) so its power should be constrained to not only avoid the detector saturation but also to make sure that the photon noise does not exceed the detector noise. For a detector with ultralow $\text{NEP} = 10^{-20} - 10^{-19} \text{W/Hz}^{1/2}$, the 1-THz signal with $P_{\text{rad}} = 0.1 - 10 \text{aW}$ will already induce significant photon noise. Producing this attowatt level of power is unprecedented and there is no proven recipe on how to build a stable calibration source for this.

Besides our work [73, 74], we are aware of only two reports [92, 93] describing the technique for calibration ultrasensitive detectors with $\text{NEP} \leq 10^{-18} \text{W/Hz}^{1/2}$. All three works use a cryogenic black body radiator with a band defining filter and some procedure for figuring out the amount of P_{rad} impinging on the detector.

In [73, 74], a single mode detector (see Fig. 7) was used. The NEP determination procedure consisted of the measurements of bias current I as function of the black body temperature T_{BB} varied in small 0.25 K steps and of the output system noise i_n. The HEB was integrated into a 500-800 GHz twin-slot antenna, which is a well known design fabricated using optical lithography. An elliptical Si lens makes the main lobe of the antenna diffraction limited, so only a single radiation mode couples to the HEB device. This makes the calculation of the P_{rad} rather straightforward:
\[P_{\text{rad}} = \frac{\text{Tr}(\nu)h \nu d\nu}{\int_0^\infty \exp(h\nu/k_BT_{BB})-1}. \] (13)

Here \(\text{Tr}(\nu) \) is the transmittance of the band limiting filter placed at the mK stage. Since \(T_{BB} = 1.5-5 \) K the radiation power follows the Wien’s law and the filter must have a very sharp lower frequency edge in order to eliminate any error due to the uncontrolled out of band leakage of the radiation. Free-standing metal mesh filters were used in [73] and a Frequency Selective Surface (FSS) filter [94] was used in [74].

From the initial part of the \(h(P_{\text{rad}}) \) dependence, the detector responsivity \(S_i \) was calculated (see Fig. 8). Then the small signal optical \(\text{NEP} \) was found as \(\text{NEP} = i_n(P_{\text{rad}}=0)/S_i \). One can see that saturation of \(\Delta I \) vs \(P_{\text{rad}} \) naturally occurs much sooner at 50 mK than at 355 mK. The output noise also behaves differently. Whereas \(i_n \) at 355 mK monotonically decreases with \(P_{\text{rad}} \), it exhibits a peak at 50 mK at \(P_{\text{rad}} \approx 10 \) fW. We speculate that the origin of this peak may be in the detection of the fluctuation of power in the impinging radiation. This photon shot noise \(\text{NEP}_{\text{ph}} \) increases with the radiation power. When the detector becomes sensitive enough to detect this fluctuation \((\text{NEP} \sim \text{NEP}_{\text{ph}}) \) the output noise-like signal increases as square root of \(P_{\text{rad}} \). Eventually, the output saturates, \(S_i \) drops, and the output noise decreases. This effect could not be seen at 355 mK since a much greater \(P_{\text{rad}} \sim 100 \) fW would be needed to make \(\text{NEP}_{\text{ph}} \) large enough to be detected. But at such high power the detector is already saturated.

In this experiment \(\text{NEP} = 3 \times 10^{-19} \) W/Hz\(^{1/2} \) was measured as the optical \(\text{NEP} \), which is one of the best numbers found in the literature to date. The quantum efficiency (optical coupling) \(\eta = 70-80 \% \) was determined from both the ratio of \(\text{NEP}_{\text{TEF}} \) and optical \(\text{NEP} \) [74] and from the shift of the current-voltage characteristics under optical pumping [73]. Additional improvements are possible by implementing an anti-reflection (AR) coating on the Si lens and by fixing the design of the overlap areas between NbTiN and Ti (see Fig. 7, more details in [73, 74]). In the future, more optical measurements are planned with the described devices especially at higher frequencies (several THz) for which spiral antenna coupled Ti HEBs are already available [73].

V. PROSPECTS FOR SINGLE-PHOTON DETECTION – MID-IR AND FAR-IR

A. Minimum detectable energy and energy resolution in HEB

The potential of the HEB for detection of single THz photons can be illustrated using the data of Fig. 6. Indeed, the energy resolution of a bolometer can be roughly estimated as

\[\delta E = \text{NEP}_{\text{TEF}} \sqrt{\tau_{\nu\nu}}. \] (14)

This is similar to Eq. 5. Figure 9 expresses the data of Fig. 6 in terms of \(\delta E \). One can see that \(\delta E/h \sim 1 \) THz might be possible even for this relatively large HEB device at low operating temperature \(\sim 50 \) mK. More detailed analysis of [95] based on the strong ETF limit model [69] gives:

\[\delta E_{\text{rms}} = 0.3 \sqrt{k_BT_{BB}^2C_r}, \] (15)

For the smallest devices of [71], this would result in \(\delta E_{\text{rms}}/h = \)
real quantum calorimetry providing useful energy resolution $\hbar \nu / \delta E \sim 10-100$. This may be an interesting opportunity for future searches for spectral signatures of Earth-like exoplanets using nulling interferometry in the mid-IR (e.g., TPF-I mission concept [96]). When the starlight is suppressed, a distant (~ 10 pc) planet would emit less than a photon per second in the 6-18 µm wavelength range corresponding to important life-tracing molecules [97]. The relatively large speed of the nano-HEB (~ 100 kHz, see discussion of the calorimeter bandwidth in Section VII) would provide sufficient dynamic range for such observations using photon counting.

B. Experiments with “fauxtons”

Detection of single THz photons with HEBs has not been possible so far. However, recent work [98] simulated detection of THz photons using short microwave pulses (20 GHz) of equivalent energy (faux photons, or fauxtons). This test method allows for full control of the input amplitude (equivalent to the ‘fauston’ energy), as well as precise calibration of the coupling efficiency. It also avoids several issues associated with real optical experiments, including absorption of photons outside the active detector element and the loss of energy by the electron system before reaching a thermal distribution. The fauxton technique thus provides a lower bound on the achievable energy resolution in a real optical experiment.

The device studied had Ti dimensions of 4 µm x 0.35 µm x 70 nm and $T_C = 0.3$ K. The detector response was measured for 10^3 single-shot pulses for fauxton equivalent frequencies of $E_{\text{fauston}}/h = 50$ THz and 25 THz, as well as with no fauxtons. Figure 10 shows histograms of the number of detected pulses and their heights, for each fauxton frequency. Fitting these histograms to a Gaussian distribution, we found a total energy resolution $\delta E_{\text{FWHM}}/h = 2.36 \times 10^3$ THz. Subtracting the amplifier contribution, an intrinsic detector energy resolution of approximately $\delta E_{\text{FWHM}} = 23$ THz was found. This is close to the value predicted, 20 THz, due to ETF noise [98].

C. Detection of single 8-µm photons

The first detection of real 8-µm single-photons using a 6 µm x 0.4 µm x 20 nm HEB at 50-200 mK was reported in [85]. This was done using a pulsed QCL, which generated short (> 100 ns) optical pulses. Both the detector and the laser were inside a 4-K cryogenic shield in order to avoid any photons arriving from the warm surfaces. The detector was additionally shielded by a millikelvin enclosure. The lightpipe guiding the radiation included some absorbers and filters in order to adjust the pulse energy so the average number of detected photons per pulse was always less than 1. The device did not have any antenna or other means to couple to the radiation efficiently so the optical coupling was very poor.

Figure 11 shows the photon count statistics at 100 mK. The dark counts follow the Gaussian distribution and it has been verified that this is determined by an integral of detector noise over its spectral span. The photon number peaks follow the Poisson distribution $f(n, \mu) = \mu^n e^{-\mu}/n!$, where k is the number of simultaneously detected photons, $\mu = 0.33$ is the average number of photons per pulse. The energy interval between photon number peaks is $h \nu$ and the output is fairly linear so the energy resolution of the detector was found to be $h \nu \delta E_{\text{FWHM}} = 1.4$, that is $\delta E_{\text{FWHM}} = 27$ THz. This resolution remained unchanged from 50 mK to 150 mK and then degrades above ~ 200 mK, completely disappearing near T_C.

In the fauxton experiments, a similar δE_{FWHM} was found at 300 mK with a similar volume device. Since δE_{FWHM} should scale with temperature as $T^{3/2}$ (see Eq. 5), one can say that the...
energy resolution was noticeably worse with real 8-μm photons. There are several possible causes leading to degradation of δE_{FWHM}. One of the causes is apparent from Fig. 11 where the center of the peak corresponding to 0 photon number shifts up with laser power. It means that there are some low-energy excitations (either out-of-band photons emitted by the laser, or secondary photons downconverted in the substrate or electrodes, or non-thermal phonons or electrons generated outside the device) contributing to the count statistics [99]. This might also possibly lead to the widening of the photon number peaks. The magnetic field used in this experiment could be another factor degrading the energy resolution by means of widening the superconducting transition and thus nulling the effect of the negative ETF on δE [69].

VI. STATUS OF THE FIELD OF THE SENSITIVE THz DETECTORS

Besides the HEB, several other ultrasensitive detector concepts have been proposed and pursued in the recent decade with the goal to achieve the NEP $\sim 10^{-19}$ to 10^{-20} W/Hz$^{1/2}$ or single THz photon sensitivity. The motivation has been high but so has been the challenge. To date, the practically achieved NEP in space instruments (e.g., HFI bolometers on ESA’s Planck Surveyor mission) is of the order of 10^{-17} W/Hz$^{1/2}$ [10]. A two order of magnitude improvement can not be expected to be obtained easily and requires serious study of the unrealized potential of traditional far-IR detectors (bolometers) and the emerging detector approaches.

Significant progress has been made in improving the sensitivity of Si$_x$N$_y$ membrane supported bolometers. The main direction here is to make the suspending leg long and thin in order to reduce the thermal conductance. The recent advance in this technology toward higher sensitivity was a demonstration of a low thermal conductance ($G \approx 8$ fW/K at 60 mK) in a bolometer suspended on ~ 8 mm long Si$_x$N$_y$ beams [100]. The NEP$_{T,EB}$ limit derived from measuring G is 5×10^{-20} W/Hz$^{1/2}$. However, successful operation of an array of fully-functioning, optically coupled, SQUID-multiplexed detectors, with uniform electrical and noise characteristics, and meeting all the specifications including ultra–low NEP, remains to be demonstrated.

A similar development of a low-G TES for SPICA/SAFARI [92, 101] has resulted recently in the demonstration of an optical NEP below 10^{-18} W/Hz$^{1/2}$ [102, 103] The progress has been good and this development effort continues towards meeting the SAFARI’s sensitivity goals.

A superconducting kinetic inductance detector (KID) [82, 104, 105], where the high sensitivity is the result of a very low number of quasiparticles N_{qp} (=low generation-recombination noise), potentially can be very sensitive too. Its fundamental noise limit set by the quasiparticle generation-recombination noise is given by $\text{NEP}_{GR} = 2\Delta \sqrt{N_{qp}/\tau_{qp}}$ [104] (τ_{qp} is the quasiparticle life time, Δ is the energy gap in the detector material). From the physics perspective, this is a similar limit to that set by the TEF noise in bolometers except here the average energy of quasiparticles is Δ, not k_BT, and $\Delta >> k_BT$.

In principle, $\text{NEP} \sim 10^{-20}$ W/Hz$^{1/2}$ might be possible in an extreme situation when $N_{qp} \sim 100$ and $\tau_{qp} \sim 10$ ms. So far, KID detectors have been developed to the degree of the array demonstration on a ground based telescope [106] with the optical NEP $\approx 10^{-15}$ W/Hz$^{1/2}$. In lab experiments, a much better electrical $\text{NEP} \approx 4 \times 10^{-19}$ W/Hz$^{1/2}$ [107] has been derived from the noise measurement. A recent measurement of $N_{qp} = 3 \times 10^4$ and $\tau_{qp} \approx 2 \times 10^{-3}$ in an Al KID sample [108] also suggests a similar $\text{NEP}_{GR} = 2 \times 10^{-19}$ W/Hz$^{1/2}$ below 180 mK.

The THz superconducting tunnel junction (STJ) concept [109, 110] is based on a superconducting absorber integrated with an STJ and a sensitive RF single-electron transistor, which detects the quasiparticles generated by THz photons in the superconductor. It has not been brought to a practical demonstration yet.

Another concept using detection of small number of quasiparticles through the change of the charging energy of a small superconducting island has been proposed in [111]. It has demonstrated recently an electrical $\text{NEP} = 3 \times 10^{-18}$ W/Hz$^{1/2}$ [112].

An interesting demonstration of the single THz photon sensitive detector has been made in [113, 114] (see [115] and references therein for an overview). The sensors were the quantum-dot structures with the single-electron transistor (SET) read-out. In [113], the absorption of a photon by the quantum dot initiates an electron transition across the magnetic-field-induced energy gap. This transition removes the Coulomb blockade for the other electron states that results in an electron current of 10^6-10^{12} electrons flowing through the quantum dot. At $T = 50$ mK, an effective NEP $\approx 10^{-22}$ W/Hz$^{1/2}$ was estimated from the dark count rate. Unfortunately, this sensor requires a very strong magnetic fields, ~ 4 T, and, therefore, that makes its use in space challenging. The same research group realized a double dot submillimeter detector without a magnetic field [114]. However, in that structure the electronic noise increases significantly, and the minimum achieved NEP was of the order of 10^{-17} W/Hz$^{1/2}$ at 70 mK. The work in this direction continues [116]. A particular interesting practical outcome has been the THz imaging of very cold samples using this photon counting device [117]. Relatively low radiation coupling efficiency (\sim few percent) in this promising detector is one of the factors which needs improvement.

Finally, a very recent development [93] concerns a Pb$_x$Sn$_{1-x}$Te(In) based photoconductive detector operating at 1.5 K. Preliminary measurements indicated the NEP as low as 6×10^{-20} W/Hz$^{1/2}$ at $\lambda = 350$ μm. Given the very early development phase of this detector, none of the issues related to detector array fabrication, detector radiation coupling, and readout have been addressed yet.

VII. ISSUES AND FUTURE DIRECTIONS

There are several current issues, which may lead to an immediate improvement of the nano-HEB detector characteristics. The most important is to achieve controllable tuning of the device critical temperature to a desired low
The corresponding absorber’s area was assumed to be 5-times of the wavelength. For optical HEBs the temperature increase due to the absorbed photon was assumed to be equal to the superconducting transition width. For optical HEBs the absorber’s area was assumed to be 5-times of the wavelength.

Two possible solutions are seen at the moment. One of them is to use films of TiN$_x$ [107] in which efficient spiral antennas are available up to 5-6 THz [122, 123]. Also, mid-IR ($\lambda \sim 10$ µm) antennas have been developed with some success over the past two decades [124-126]. The antenna issue is important since it actually hampers the improvement of the energy resolution in optical TES HEB. Antennas in the NIR are not yet well developed [125].

In the far-IR, the best way to optimize the calorimeter is to adjust its size (electron heat capacity) so the temperature rise caused by a photon drives the device electron temperature through its entire dynamic range that is the superconducting transition width δT_c. Using Eq. 15 and also assuming $T = 50$ mK, $\delta T_c = 10$ mK, energy resolution $h\nu/\delta E_{\text{FWHM}} \sim 100$ can be expected for an HEB device made from a 20-nm thick Ti film (see Fig. 12). The corresponding optimal device in-plane size is 2.5×2.5 µm even at $\lambda = 10$ µm, that is still smaller than the wavelength. The resolution increases at shorter wavelength as $\lambda^{1/2}$ but at some wavelength (around 10 µm) one needs to switch to the absorber coupling since the present broadband antennas become too lossy. The absorber area A then needs to be significantly greater than the wavelength (we assumed $A = 25A^2$) and the energy resolution thus degrades. It improves again in the visible (as λ^2) due to the smaller TES area one can use for visible photons, but the “antenna gap” in the mid-IR is a serious issue.

Another aspect in which the nano-HEB calorimeter differs from, e.g., the X-ray detector is the required response time. In the far-IR, the desired maximum count rate is much larger than the expected photon background, which is ≈ 100-1000 s$^{-1}$ (see Fig. 1), so that spectral lines that have much larger count rates can be recorded. Optimum energy resolution, or lower NEP, is achieved by cold operation, at e.g., 50 mK. Unfortunately, at this temperature the thermal response time with only phonon cooling may be too long (~ ms) even with the benefit of electrothermal feedback. We here outline a method to achieve the desired large count rates at 50 mK. We consider an additional cooling ‘path’, emission of thermal photons [127]. These photons are familiar as the Johnson noise of a resistor and can carry energy away from the hot electrons with $T_c > T$. Since $k_B T/h \approx 1$ GHz, the cooling power within the entire spectrum due to this mechanism is $P_c = (k_B T)^2 / h$. The corresponding electron-photon thermal conductance $G_{e-ph} = dP_c/dT = 2k_B T/h \approx 30$ fW/K. This compares to the e-ph thermal conductance of the smallest HEB [71] $G_{e-ph} = 0.1-1$ fW/K, and thus photon cooling gives a speedup factor up to two orders of magnitude compared to phonon cooling alone. This concept can indeed be instrumented, with careful rf design. Using photon cooling will bring the nano-HEB signal bandwidth to ~ 100 kHz at 50 mK. This is very similar to what the current phonon-cooled devices have at ~ 300 mK. Such a bandwidth is common in SQUID amplifiers and has been demonstrated also in the microwave SQUID readout [121].

VIII. CONCLUSIONS

In conclusion, the hot-electron nanobolometers have reached some maturity, which allow them to be considered as the detectors of choice for the most sensitive applications in the far-IR (e.g., moderate resolution spectroscopy in space).
This field is narrowly defined but the scientific pay-off and the interest are great. There are two missions in development requiring high-sensitivity detectors (SPICA and Millimetron) and the nano-HEB is already meeting the NEP requirements for one of the instruments planned (SAFARI). In the longer run, nano-HEBs can enable single-photon detection and calorimetry in the mid-IR and far-IR spectral ranges, which are unprecedented applications. Whereas the far-IR synthesis required for nano-HEBs, any breakthrough in optical coupling of optical radiation to a subwavelength detector may be interesting for single-molecule spectroscopy and free space quantum communication [128].

Beside the advance in fabrication techniques and material synthesis required for nano-HEBs, any breakthrough in optical antennas or in any other methods allowing for efficient coupling of optical radiation to a subwavelength detector would have an immediate impact on the application of HEBs at the short-wavelength mid-IR or NIR ranges. Since the radiation background at λ < 2 µm is very low, many interesting application ideas may emerge if a practical nano-HEB calorimeter becomes available.

ACKNOWLEDGMENT

Many colleagues have made critical contributions to the establishment the nano-HEBs through previous and current collaborations. We especially acknowledge Robin Cantor (STAR Cryoelectronics), Michael Gershenson (Rutgers University), David Olaya (National Institute of Standards and Technology), Sergey Pereverzev (Lawrence Livermore National Laboratory), Daniel Santavicca (Yale University), and Jian Wei (Peking University). We also thank our JPL colleagues Bruce Bumble, Peter Day, Dennis Harding, Jonathan Kawamura, Henry LeDuc, William McGrath, and Steve Monacos and Bertrand Delaet (CEA-LETI) for technical contributions at JPL, and Yale colleagues Faustin Carter and Luigi Fronzio, and Bertrand Reulet (Sherbrooke University) for technical contributions at Yale.

REFERENCES

[1] A. W. Blain, I. Smail, R. J. Ivison, J.-P. Kneib, and D. T. Frayer, "Submillimeter galaxies," *Physics Reports*, vol. 369, pp. 111–176, 2002.
[2] J. Zmuidzinas and P. L. Richards, "Superconducting detectors and mixers for millimeter and submillimeter astrophysics," *Proceedings of the IEEE*, vol. 92, pp. 1597-1616, 2004.
[3] C. M. Bradford and T. Nakagawa, "The future is BLISS - sensitive far-IR spectroscopy on SPICA and SAFIR," *New Astronomy Reviews*, vol. 50, pp. 221-227, 2006.
[4] B. Swinyard, T. Nakagawa, and S. Consortium, "The space infrared telescope for cosmology and astrophysics: SPICA A joint mission between JAXA and ESA," *Experimental Astronomy*, vol. 23, pp. 193-219, Mar 2009.
[5] D. Lester, J. Budinoff, and C. Lillie, "Large infrared telescopes in the exploration era: SAFIR," *Proceedings of SPIE*, vol. 6687, pp. 66870M, 2007.
[6] D. T. Leisawitz, T. Abel, R. J. Allen, D. J. Benford, A. Blain, C. Bombardelli, D. Calzetti, M. J. DiPirro, P. Ehrenfreund, N. J. E. II, J. Fischer, M. Harwit, T. T. Hyde, M. J. Kuchner, J. A. Leitner, E. C. Lorenzini, J. C. Mather, K. M. Menten, J. Samuel H. Moseley, L. G. Mundy, T. Nakagawa, D. A. Neufeld, J. C. Pearson, S. A. Rinehart, J. Roman, S. Satyapal, R. F. Silverberg, H. P. Stahl, M. R. Swain, T. D. Swanson, W. A. Traub, E. L. Wright, and H. W. Yorke, "SPECs: the kilometer-baselet far-IR interferometer in NASA's space science roadmap," *Proceedings of SPIE*, vol. 5487, pp. 1527-1537, 2004.
[7] P. F. Goldsmith, M. Bradford, M. Dragovan, C. Paine, C. Satter, B. Langer, H. Yorke, K. Hufnberger, D. Benford, and D. Lester, "CALISTO: the cryogenic aperture large infrared space telescope observatory," *Proceedings of SPIE*, vol. 7010, pp. 701020-16, 2008.
[8] F. P. Helmhich and R. J. Ivison, "FIR—A far-infrared interferometer," *Experimental Astronomy*, vol. 23, pp. 245-276, 2009.
[9] W. Wild, N. S. Kardashev, S. F. Likachev, N. G. Babakin, V. Y. Arkhipov, I. S. Vinogradov, V. V. Andreyanov, S. D. Fedorchuk, N. V. Myshonkova, Y. A. Alexandrov, I. D. Novokov, G. N. Goltsman, A. M. Cherepashchuk, B. M. Shustov, A. N. Vystavkin, V. P. Koshelets, V. F. Vdovin, T. de Graauw, F. Helmich, F. van der Tak, R. Shipman, A. Baryshev, J. R. Gao, P. Khosropanah, P. Roelfsema, P. Barthel, M. Spansel, M. Mendez, T. Klampfl, F. Israel, M. Hogerheijde, P. van der Werf, J. Cernicharo, J. Martin-Pintado, P. Planesas, J. D. Gallego, G. Beaudin, J. M. Krieg, M. Gerin, L. Pagani, P. Saraceno, A. M. Di Giorgio, R. Cerulli, R. Orfei, L. Spinoglio, L. Piazza, R. Liseik, V. Belitsky, S. Cherednichenko, A. Poglitsch, W. Raab, R. Guesten, B. Klein, J. Stutzki, N. Honingh, A. Benz, A. Murphy, N. Trappe, A. Raisanen, and C. Millimetron, "Millimetron—a large Russian-European submillimeter space observatory," *Experimental Astronomy*, vol. 23, pp. 221-244, Mar 2009.
[10] M. Yun, J. W. Beeman, R. Bhatia, J. J. Bock, W. Holmes, L. Hustead, T. Koch, J. L. Mulder, A. E. Lange, A. D. Turner, and L. Wild, "Bolometric detectors for the Planck surveyor," *Proceedings of SPIE*, vol. 4855, pp. 136-147, 2003.
[11] H. Takahashi, H. Shibai, M. Kawada, T. Hirao, T. Watabe, Y. Tsuduku, H. Nagata, H. Usuno, Y. Hibi, S. Hirooka, T. Nakagawa, H. Kaneda, S. Matsuura, T. Kii, S. i. Makiuti, Y. Okamura, Y. Doi, H. Matsuo, N. Hirokawa, M. Fujimura, and M. Noda, "FIS: far-infrared surveyor on board ASTRO-F (IRIS)," *Proceedings of SPIE*, vol. 4013, pp. 47-58, 2000.
[12] S. E. Church, M. J. Griffin, M. C. Price, P. A. R. Ade, R. J. Emery, and B. M. Swinyard, "Performance characteristics of doped-Ga photoconductors for the Infrared Space Observatory Long Wavelength Spectrometer," *Proceedings of SPIE*, vol. 1946, pp. 116-125, 1993.
[13] B. S. Karasik, W. R. McGrath, H. G. LeDuc, and M. E. Gershenson, "A hot-electron direct detector for radioastronomy," *Superconductor Science & Technology*, vol. 12, pp. 745-747, Nov 1999.
[14] B. S. Karasik, W. R. McGrath, M. E. Gershenson, and A. V. Sergeev, "Photon-noise-limited direct detector based on disorder-controlled electron heating," *Journal of Applied Physics*, vol. 87, pp. 7586-7588, May 2000.
[15] J. C. Mather, "Nobel lecture: From the big bang to the nobel prize and beyond," *Reviews of Modern Physics*, vol. 79, pp. 1331-1348, Oct-Doc 2007.
[16] P. de Bernardis, P. A. R. Ade, J. J. Bock, J. R. Bond, J. Borrill, A. Boscaleri, K. Coke, B. P. Grill, G. De Gasperis, P. C. F. Farese, P. G. Ferreira, K. Ganga, M. Giacometti, E. Hivon, V. V. Hristov, A. Iacoangeli, A. H. Jaffe, A. E. Lange, A. D. Turner, and L. Martinis, "Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination," *Applied Physics Letters*, vol. 83, pp. 791-793, Jul 2003.
[17] L. Pagani, P. Saraceno, A. M. Di Giorgio, R. Cerulli, R. Orfei, L. Spinoglio, L. Piazza, R. Liseik, V. Belitsky, S. Cherednichenko, A. Poglitsch, W. Raab, R. Guesten, B. Klein, J. Stutzki, N. Honingh, A. Benz, A. Murphy, N. Trappe, A. Raisanen, and C. Millimetron, "Millimetron—a large Russian-European submillimeter space observatory," *Experimental Astronomy*, vol. 23, pp. 221-244, Mar 2009.
[18] K. D. Irwin and G. C. Hilton, "Transition-edge sensors," in *Cryogenic Particle Detection*. vol. 99, ed Berlin: Springer-Verlag Apr 2000.
[19] C. Groppi and J. H. Kawamura, "Coherent detector arrays for THz applications," *IEEE Transactions on Terahertz Science and Technology*, this issue.
[20] A. A. Penzias and R. W. Wilson, "A measurement of excess antenna temperature at 4080 Mc/s," *Astrophysical Journal Letters*, vol. 142, pp. 419-421, Jul 1965.
Boris S. Karasik received his BS degree in physics from Petrozavodsk State University (1979) and a PhD in physics from Moscow State Pedagogical University (1988).

He participated in many Russian, US, and European projects on hot-electron device physics and applications. He joined Jet Propulsion Laboratory (JPL), California Institute of Technology, in 1995 as a Member of Technical Staff and is currently a Principal Research Technologist. He has some 135 journal and conference publications and 6 patents. He is a recipient of several NASA and JPL awards and certificates of recognition for technical achievements. He is a member of the American Physical Society and of Sigma Xi.

Andrei V. Sergeev received his BS and MS degrees in physics from Moscow Institute of Physics and Technology (MIPT) in 1978 and 1980, respectively. He received Ph.D. from Moscow State Pedagogical University in theoretical solid state physics in 1987.

His research interests are concentrated in the areas of quantum kinetics and transport in nanostructures and modeling of nanodevices and nanosensors. Specific research topics include hot-electron nano-detectors, single-photon counters, nanocalorimeters, wide-band mixers, quantum-dot detectors, solar cells. His design of advanced devices is based on multi-scale modeling, which includes the quantum transport, hydrodynamic transport, and Monte-Carlo simulations. He has published 95 scientific papers in refereed journals. Presently, he is with the University at Buffalo SUNY.

Daniel E. Prober received a BS in physics from Brandeis University, Waltham, MA in 1970 and MS (1971) and PhD (1975) in physics from Harvard University, Cambridge, MA.

He has been a faculty member at Yale University, New Haven, CT since 1975, as Assistant Professor progressing through Professor of Applied Physics and Physics in 1986, and department chair of Applied Physics, 2003-9. He has received two Fulbright Fellowships, and the NASA Technical Innovation Award with colleagues at JPL for the Superconducting Hot-electron Bolometer. He is a Fellow of the American Physical Society.