Efficacy of Extracts of *Cyanthillium Cinereum*, *Khaya senegalensis* and *Lippia multiflora* on Candida Strains Isolated From Urine Samples in Benin (West Africa)

Brice Armand Fanou¹, Jean Robert Klotoe¹,²*, Victorien Dougnon¹, Phénix Assogba¹, Eric Agbodjento¹, Charles Hormel Koudokpon¹, Lauris Fah¹, Kévin Sintondji¹, Rodrigue Kpoze¹ and Frédéric Loko¹

¹ Research Unit in Applied Microbiology and Pharmacology of Natural Substances, Research Laboratory in Applied Biology, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, Abomey-Calavi, Benin, ² Normal High School of Natitingou, National University of Sciences, Technology, Engineering and Mathematics, Natitingou, Benin

The search for new bioactive molecules with antifungal properties to combat resistance to classical antifungals represents a great challenge. This study aimed to explore the virulence factors and resistance profile of Candida species isolated from urine samples in Benin and the in vitro efficacy of organic extracts of *Cyanthillium cinereum* (L.) H.Rob., *Lippia multiflora* Moldenke and *Khaya senegalensis* (Desv.) A.Juss. on the growth of these Candida spp. The study focused on Candida strains isolated from urine samples collected from patients admitted to the bacteriological analysis laboratories of hospitals in Southern Benin. The sensitivity of these strains to classical antifungal agents was determined by the simple diffusion method. Their pathogenicity was investigated via several virulence factors (gelatinase, hemolysin, hydrophobicity, adhesin, biofilm and lecithinase). The in vitro efficacy of the aqueous, ethanolic and hydro-ethanolic extracts of the plants on *Candida albicans* ATCC 90028 and on six clinical strains was evaluated by the method of determination of the inhibition diameters. The results obtained showed that 51 different Candida strains were isolated from the collected urine samples with a respective predominance of *Candida albicans* (52.94%) and *Candida glabrata* (17.64%) species. All identified species were sensitive to amphotericin B and nystatin but 20% are resistant to fluconazole and present 15 different resistance profiles. Six different virulence factors were identified with a high frequency of hydrophobicity (96.08%) and adhesin (94.12%). Antifungal tests revealed that at 100 mg/mL the plant extracts were active on the tested strains with better activity for *Cyanthillium cinereum* and *Khaya senegalensis*. *Cyanthillium cinereum*, *Khaya senegalensis* and *Lippia multiflora* showed antifungal activity on virulent Candida strains suggesting the possibility to explore them further for the discovery of new antifungal molecules.

Keywords: *Cyanthillium cinereum*, *Khaya senegalensis*, *Lippia multiflora*, antifungal susceptibility, virulence factors, Candida spp
1 INTRODUCTION

Candidiasis is the most frequent fungal infection in human pathology (1). Affecting millions of women each year, candidiasis is considered as a major public health problem (2). This benign affection has a very negative impact on life quality and high health costs (3). Fungal pathologies have various degrees of severity, ranging from superficial and benign infections to invasive and fatal infections (4). According to some epidemiological data, their incidence has increased in the last two decades due to the pathological state of immunocompromised patients, invasive medical procedures and therapy with broad spectrum antibiotics (5).

Candidiasis is caused by different species of Candida with Candida albicans as the main species isolated from infected patients. Its contamination is almost exclusively endogenous and its importance depends on the location of the responsible yeast species (5).

Urinary tract candidiasis is a most common nosocomial fungal infection worldwide (6). Usually asymptomatic, it is frequently seen in hospitalized patients and can be due to cystitis, pyelonephritis, prostatitis, epididymo-orchitis or disseminated candidiasis (7). Major risk factors include diabetes mellitus, use of broad-spectrum antibiotics, urinary tract obstruction, viral infections, admission to an intensive care unit, among others (7, 8). Candida albicans is the main cause of this nosocomial infection. Candida UTIs can be caused by hematogenous spread following candidemia, or by retrograde route via the urethra (9). The presence of Candida species in the urine of asymptomatic patients does not warrant antifungal therapy except for neutropenic patients, very low birth weight infants, and patients undergoing urologic procedures.

The management of urinary candidiasis is effectively done with fluconazole, which is the antifungal agent of choice for this type of nosocomial infection. However, amphotericin B or flucytosine can also be used for this purpose in rare cases (10, 11). In recent years, the increase in urinary tract candidiasis has led to the emergence of Candida species that are resistant to conventional antifungals (6). Thus, Candida glabrata, Candida krusei strains are increasingly associated with urinary candidiasis (12). Some authors had even reported cross-resistance of Candida albicans to itraconazole and fluconazole (13, 14). These Candida species have the potential to develop antifungal resistance either intrinsically or during treatment (13). The emergence of fungal infections is favored by several virulence factors responsible for the degree of pathogenicity of Candida species. Nowadays, the emergence of new resistant and virulent Candida species that are virtually untreatable has further highlighted this public health problem (16, 17).

Faced with this resistance observed nowadays to classical antifungal drugs, even those of last resort (fluconazole for example) used for the treatment of candidiasis, it is necessary to resort to safe and effective alternative solutions. The search for new bioactive molecules with antifungal properties to combat resistance to classical antifungals represents a great challenge for researchers in the field of biomedical research. The use of medicinal plants is the first reflex of most populations, especially those in developing countries, for socio-cultural and economic reasons, and is one of the most promising alternative solutions. Indeed, in recent years, scientific studies conducted on a large number of medicinal plants have identified about 7,000 natural bioactive compounds currently used in modern medicine, which increases the global market value of medicinal plant products (18). Over 90% of today’s therapeutic classes are derived from a prototype natural product, the discovery of which has led to significant changes in the practice of modern medicine (19, 20).

The flora of Benin (a West African country), rich in 2807 plant species, offers the possibility of using many medicinal plants in the treatment of various pathologies (21). Several plant species including Cyanthillium cinereum (L.) H.Rob., Khaya senegalensis (Desv.) A.Juss. et Lippia multiflora Moldenke are used in the management of candidiasis in Benin (22). However, very little scientific evidence exists on the efficacy of plants against Candida strains as well as on the resistance and virulence profiles of Candida strains.

This study aimed to explore the virulence factors and resistance profile of Candida species isolated from urine samples in Benin and the in vitro efficacy of organic extracts of Cyanthillium cinereum, Lippia multiflora and Khaya senegalensis on the growth of these Candida spp.

2 MATERIAL AND METHODS

2.1 Isolation and Identification

Candida strains were isolated from urine samples collected from patients sent to the laboratory for urine cytobacteriological examinations + antibiotic susceptibility testing in various bacteriological analysis laboratories in hospitals in southern Benin. Each strain was identified according to the methodology described by Khan et al. (23) and Pandey et al. (24). For this purpose, macroscopic examination was performed on the strains obtained on Sabouraud agar supplemented with 0.5% chloramphenicol (SDA+C). The phenotypic identification of the strains was done based simultaneously on the aspects of the colonies obtained on the differential media ChromAgar and Tetrazolium Reduction Medium. The ability of yeast to produce germ tubes was studied by the blast test.

2.2 Identification by PCR

Candida spp. strains were also identified by restriction fragment length polymorphism (RFLP) PCR using the MspI restriction enzyme according to the methods of Dehghan et al. (25) and Hamzehee et al. (26).

2.2.1 DNA Extraction and PCR Reaction

DNA extraction was performed using 24 hours young colonies isolated on YEPD medium. The chloroform-phenol technique described by Silva et al. (27) has been used. The PCR was done in two steps: the first step consists in amplifying the ITS1 and ITS4 region named ITS1-ITS4 and the second was digesting the PCR product of the ITS region with restriction enzyme. For the first step, total DNA amplification was performed using the primer pair ITS1 (5’-TCCGTAGGTTAACCTCGGG-3’) and ITS4 (5’-
The reaction mixture, with a total volume of 25μL, consisted of 10μL of master mix (Invitrogen), 12μL of water without DNA, 1μL of each primer and 1μL of the DNA of the yeast to be identified. The PCR was performed in a thermal cycler (PeQlab, Germany) with the following amplification conditions: 1 cycle of DNA denaturation of 5 min at 95°C, followed by 35 hybridization cycles of 30s at 94°C, 1 min at 56°C and 1 min at 72°C and a final extension step at 72°C for 10 minutes. A positive and negative control consisting of respectively a reference strain of Candida albicans ATCC 90028 and DNase, RNase free water were used.

2.2.2 Digestion With Msp1 Enzyme and Electrophoresis
Each PCR product was then individually digested in an aliquot with the Msp1 enzyme (R0106S, England Biolabs). Indeed, 10U of Msp1 enzyme corresponding to approximately 1μL of enzyme was added to 20 μL of the PCR product contained in an aliquot with 9μL of a buffer solution making a final reaction volume of 30 μL. The mixture was incubated at 37°C for 30mn and then the PCR products (ITS) and digestion products were then migrated onto agarose gels prepared at 1.5% in 0.5x TBE buffer stained with ethidium bromide, through an electrophoresis chain for 30 minutes at 100V. The observed band patterns were then observed and the observed amplicon sizes for each strain were noted and used to differentiate Candida species (28). The ITS1-ITS4 region size were presented in Table 1.

2.3 Antifungal Susceptibility of Candida Strains
The susceptibility of isolates to antifungal agents was determined by the agar diffusion method (23, 29). The inhibition diameters were measured and interpreted to establish the resistance profile of each strain. A reference strain of C. albicans ATCC 90028 was used for quality assurance (Ref. 0264P Microbiologics, Paris, France). The antifungals used were Amphotericin B, Nystatin, Fluconazole, Ketoconazole, Clotrimazole and Itraconazole.

2.4 Research for Virulence Factors
Several virulence factors were investigated from the fungal suspensions prepared at approximately 10^7 UFC/ml (according to the method of Noumi et al. (30). Briefly, 2ml of sterile YEPD broth was inoculated with a young colony obtained on SDA + chloramphenicol agar and incubated at 30°C. After 18h of incubation, the culture was then centrifuged and washed twice with sterile PBS at 3000g for 5 minutes. After removing the supernatant from the last wash, 1ml of PBS was added to the pellet and resuspended by vortexing. The resulting fungal suspension was diluted to obtain a solution with an optical density between 0.4 and 0.5 corresponding to a cell concentration of about 10^7 CFU/ml. Hydrophobicity, stickiness, biofilm, lecithinase, gelatinase and hemolysin were the virulence factors investigated.

2.4.1 Hydrophobicity Activity
Method described by Zanni et al. (31) which consists of measuring the adhesion of yeast to hydrocarbons such as cyclohexane, was used to evaluate the hydrophobicity of the yeast cell surface (CSH). The Optical Densities of the fungal suspensions were read and adjusted between 0.4 and 0.5 (A0). Then, 200μl of each fungal suspension to be tested was transferred into two wells of a sterile microplate to which 60μl of cyclohexane (BDH Laboratories LTD, England) was added. In the two negative control wells, the Candida suspension was replaced by distilled water. The plate was shaken vigorously for 5 min and then allowed to stand for 20 min at room temperature in a hood. Finally, 100μl of the aqueous phases from the reaction between the fungal suspensions and cyclohexane were transferred to a new microplate and the optical densities (A1) read at 620nm with the plate reader. The percentage of cells adhering to the cyclohexane layer (%CSH) was determined by the following formula:

\[\text{% CSH} = \left(1 - \frac{A1}{A0}\right) \times 100 \]

The percentage of CSH was used to assess the importance of cell surface hydrophobicity following the criteria specified by El-Houssaini et al. (32).

2.4.2 Adhesin and Biofilm Activities
The power of adhesion to polystyrene and the ability of isolates to form a biofilm on it were evaluated in this study according to the method of Zanni et al. (31) modified. Thus, we had two sterile microplates (96 wells) (one for adhesion and the other for biofilm). One hundred microliquids of RPMI 1640 medium were transferred to the test and negative control wells of a sterile microplate. 100μL of fungal suspension and 100μL of PBS solution, were added to the test and two negative control wells respectively. The treated plates were incubated at 37°C for 2 hours.

The adhesion plate was removed and the wells were washed twice with PBS solution and then stained for 1 min with 100μL of 1% diluted crystal violet. The stained wells were then washed twice with PBS solution. The treated microplate was left at room temperature for 20 min and the wells were destained for 30 min with 100μL of alcohol-acetone mixture. The supernatants were transferred to a new microplate and their optical densities were read at 560nm with a microplate reader (Infinite F200 Pro, Tecan 504).

For the biofilm plate (the second microplate), the wells were washed every 24h of incubation with sterile PBS solution and RPMI medium renewed at each occasion. The incubation time was 66h. The last wash before staining was performed after the incubation time. The adhesion and biofilm formation powers of

Candida species	ITS1-ITS4 region	Base pair sizes after MSP1
Candida albicans	540	300-240
Candida glabrata	900	570-330
Candida krusei	510	260-250
the strains were determined from the optical densities read and then interpreted according to the criteria specified by Noumi et al. (30).

2.4.3 Lecithinase Activity
The production of phospholipase or lecithinase and gelatinase was investigated according to the methodology of El-Houssaini et al. (32) and that of Elavarashi et al. (33). 10μL of the prepared fungal suspension was seeded onto the agar and incubated at 37°C in the oven for 5–7 days. The presence of an opaque zone around the fungal colony indicates the production of lecithinase. The altering power of this enzyme (Pz) was evaluated according to the formula: Pz =D0/Dt Where, D0 = colony diameter and Dt = colony diameter + halo (large diameter). The different interpretations were made.

- A positive result means that the medium liquefies after cooling in the refrigerator.
- A negative result means that the medium solidifies after cooling

2.4.4 Gelatinase
Gelatinase production was demonstrated according to the method described by Elavarashi et al. (33). 4000μL of gelatin-enriched nutrient broth in a hemolysis tube, were seeded with a young colony of the strain to be studied previously isolated on YEPD medium. The inoculated tubes were incubated at room temperature (25°C) and the reactions were read every 24 hours for two weeks after 30 minutes of refrigeration at 4°C. A strain of Staphylococcus aureus was used as a positive control. A tube containing only the unseeded nutrient broth was used as a negative control.

- A positive result means that the medium liquefies after cooling in the refrigerator.
- A negative result means that the medium solidifies after cooling

2.4.5 Hemolysin
The investigation of hemolysin production by the strains was done by culturing them on 7% fresh blood (GSL) enriched agar medium (24, 32). Indeed, 10μL of the prepared fungal suspension was seeded on GSL medium and then incubated at 37°C for 48h in CO2 enriched atmosphere (5%). The presence of a greenish halo or white halo around the fungal colony shows the presence of hemolysin (alpha or beta respectively).

2.5 Antifungal Activity of Plant Extracts
2.5.1 Medicinal Plants
The medicinal plants used in this study were selected from an ethno pharmacological survey conducted in Benin on medicinal plants used in the traditional treatment of mycoses (22). These plants have been identified in the national herbarium of Benin at the University of Abomey-Calavi. These plants were collected in Houëto in the commune of Abomey-Calavi. Table 2 presents the plant material and the parts used.Three types of extracts (aqueous, hydroethanolic and ethanolic) were obtained following the protocol described by Klotoe et al. (34).

2.5.2 Phytochemical Screening of the Studied Plants
A qualitative screening of the three studied plants was carried out in order to assess the main chemical groups present according to the precipitation and colouring reactions described by Houghton and Raman (35). The main groups investigated were polyphenolic compounds (flavonoids, total phenols, tannins), anthocyanins, saponosides, reducing compounds, mucilages, and alkaloids. In the extracts produced, total polyphenols were quantified using the commercial Folin Ciocalteu reagent. Total polyphenol levels were determined using the equation from the calibration curve of gallic acid (0-200 μg/mL) taken as reference standard. Samples were prepared in triplicate for each analysis. Total polyphenol content was determined in mg gallic acid equivalent/g extract (mg GAE/g) by the formula used by Ahmed et al. (36):

\[
TPT = \frac{(X \times V)}{m}
\]

With TPT, the Total Polyphenol Content, X the Gallic Acid concentration in mg/mL; V the volume of extract used in mL and m the mass of the extract in grams.

2.5.3 Antioxidant Activity of the Extracts of the Studied Plants
The antioxidant activity of the extracts was evaluated by the DPPH free radical scavenging assay which is one of the most widely used methods for the evaluation of antioxidant activities of herbal extracts. DPPH (2,2- Diphenyl-1-picrylhydrazyl) is a stable purplish colored free radical that absorbs at 517 nm. In the presence of anti-free radical compounds, the DPPH radical is reduced and changes its color to yellow. The method adopted in this study is that of Klotoe et al. (34). Thus 100μL of different concentrations of each extract is added to 1900 μL of the ethanolic solution of DPPH (0.4 mg/mL). The blank is prepared by mixing 100μL of the extraction solvent with 1900 μL of the DPPH solution. After incubation in the dark for 1 hour at room temperature, absorbance readings were taken at 517 nm using a MINDRAY spectrophotometer (BA-88-A). The recorded optical densities were used to calculate the percentage of DPPH radical scavenging which is proportional to the antioxidant power of the sample. Vitamin C and BHT were used as reference standards. Samples were prepared in triplicate for each analysis. The percentage of DPPH radical scavenging was determined by the formula:

\[
P = \frac{Ab - Ae}{Ab} \times 100
\]

P: Percentage of trapping; Ab: Absorbance of blank; Ae: Absorbance of sample

Medicinal Plants	Botanical Family	Parts Used	Identification number
Cyanthillium cinereum (L.) H.Rob.	Compositae	Whole Plant	YH 361/HNB
Khaya senegalensis (Desv.) A.Juss.	Meliaceae	Bark	YH 362/HNB
Lippia multiflora Moldenke	Verbenaceae	Leafy stem	AA 6750/HNB

Table 2 | Different parts of the plants used and the identification numbers in the national herbarium.
2.5.4 Sensitivity of Candida Strains to Plant Extracts
For the sensitivity test, seven Candida strains isolate for urines were used. These were six clinical strains of Candida and a reference strain of Candida albicans ATCC 90028. A stock concentration of 100 mg/ml of each of the nine extracts were prepared and tested separately on the in vitro growth of a reference strain of Candida albicans ATCC 90028 by the diffusion method on Muëller-Hinton agar supplemented with 2% glucose and 0.5% Methylene Blue (MHGB) (37). The fungal suspensions were prepared with Yeast Extract Peptone Dextrose (YPD or YEPD) broth. After inoculating the agar with the fungal suspension, 100 μl of each type of extract from the three plants was sterilely transferred onto Whatman paper cut into small pieces and previously deposited on the agar surface. The same procedure was followed for distilled water and fluconazole (100μg/mL) which served as negative and positive controls respectively. After 24 hours of incubation, the diameters of inhibition observed around Whatman paper were measured and interpreted. The most active plant is the one whose extracts were active on the strain with the largest inhibition diameters. The most active plant extracts were thus identified and tested following the same process on previously characterized clinical Candida strains. The anti-candida activity of the extracts was tested on the majority resistance profiles of the three most isolated Candida species (Table 4).

2.5.5 Determination of the Minimum Inhibitory Concentration
The Minimum Inhibitory Concentrations (MIC50) of the effective extracts were determined following the methodology of Okou et al. (37) in 96-wells microplates. A stock solution of these extracts was prepared at a concentration of 100 mg/ml in distilled water. Fluconazole at 100mg/ml was used as the reference antifungal agent. 100μl of a fungal suspension made with Yeast Extract Peptone Dextrose (YEPD) (38) broth was placed in the first eight wells. The first two wells of the microplate served as positive control (YEPD broth with yeast) and reference (YEPD broth with yeast mixed with 100μl of fluconazole solution), respectively. The ninth well is the negative control containing only YEPD broth without yeast. Then, 100 μl of the stock extract solution was added to the third well. Five serial two-for-two dilutions were then performed starting from the third well to well 8 where the additional 100 μl was discarded. For each extract the same procedure was followed for six different Candida strains. The microplates were covered with aluminium foil and placed for 24 hours in an oven at 37°C. The MIC50 corresponds to the minimum concentration where 50% of the yeasts are inhibited (39). They were estimated by counting the number of yeast using the Malassez cell under a microscope with an with the X40 lens.

2.6 Data Processing and Statistical Analysis
Data were entered using Microsoft Excel 2010. Data analysis was done using Graph Pad Prism version 8. Quantitative variables are presented as mean and standard deviation. Qualitative variables are presented as percentages. Probit analysis was used for the determination of the IC50 and MIC of the most active extract. Student’s t test was used to compare the means. The significance level was set at 5%.

3 RESULTS

3.1 Isolation, Identification and Antibiogram of Candida Strains
A total of 51 Candida strains were isolated and identified from urine samples collected from patients sent to the laboratory for urine cytobacteriological examination. Figure 1 shows that Candida albicans (52.94%) was the most identified species, followed by Candida glabrata (17.64%). Figures 2, 3 show electrophoresis images of the PCR product of the ITS1-ITS4 region and the PCR product of the digestion of the DNA of Candida isolates, respectively.

The study on sensitivity of the isolated Candida to antifungal drugs showed that all the isolated species are sensitive to
amphotericin B and nystatin, two antifungal drugs of the polyene family and the most used against candidiasis. For the other antibiotics, namely, fluconazole, ketoconazole, clotrimazole and itraconazole, the Candida strains showed low levels of intermediate resistance. Only 3.70% of Candida albicans strains were resistant to clotrimazole. No Candida glabrata strains were resistant to any of the antibiotics tested but showed intermediate resistance levels of 22.22% to 55.55% to fluconazole, ketoconazole, clotrimazole and itraconazole. Eighty percent of Candida krusei strains were resistant to fluconazole (Table 3).

Table 4 show the antibiotic resistance profiles of Candida albicans, Candida glabrata, Candida krusei and Candida spp. strains. Candida albicans strains showed 8 different antibiotic resistance profiles, with the most dominant being AmB\(^5\) Nys\(^5\) Flu\(^5\) Ket\(^5\) Ctr\(^5\) Itr\(^1\). The other strains, notably Candida glabrata and Candida krusei, each showed 5 different antibiotic resistance patterns.

3.2 Research of Virulence Factors

The study of virulence factors showed that the majority of the isolated strains showed hydrophobicity (96.08%), hemolysin (90.20%) and adhesin (94.12%) activity. Of all the virulence factors investigated, only gelatinase was absent in Candida krusei strains. Regarding the hemolytic power of Candida isolated from urine, most strains can degrade haemoglobin. Both types of hemolysis (alpha hemolysis and beta hemolysis) were observed with a predominance of beta hemolysis in all strains (Table 5a). In addition, all Candida species showed lecithinase activity. Regarding the powers of adhesion, hydrophobicity and biofilm activity, Candida isolates were found to be highly adherent
TABLE 3 | Resistance profile of the isolated Candida strains to the tested antifungal agents.

Candida species	Numbers	Interpretation of inhibition diameters	AMB	NYS	FLU	KET	CLT	ITR
Candida albicans	27	Sensitive (%)	100	100	85.18	92.59	77.78	25.92
Candida glabrata	09	Intermediate (%)	0.00	0.00	14.81	7.41	18.52	24.07
Candida krusei	05	Resistant (%)	0.00	0.00	0.00	0.00	3.70	0.00
Candida spp.	10		0.00	0.00	0.00	0.00	0.00	0.00

AMB, Amphotericin B; NYS, Nystatin; FLU, Fluconazole; KET, Ketoconazole; CLT, Clotrimazole; ITR, Itraconazole.

TABLE 4 | Resistance profile of Candida strains to antifungal agents.

Profil	Candida albicans	Candida glabrata	Candida krusei	Candida spp.	
Profil 1	AmB S Nys S Flu S Ketr S Clt S Itr S	22.22	44.44	-	50.00
Profil 2	AmB S Nys S Flu S Ketr S Flu I	40.74	22.22	-	10.00
Profil 3	AmB S Nys S Flu S Ketr S Flu I	18.62	-	-	10.00
Profil 4	AmB S Nys S Flu S Ketr S Flu I	3.70	-	-	-
Profil 5	AmB S Nys S Flu S Ketr S Flu I	3.70	-	-	10.00
Profil 6	AmB S Nys S Flu S Ketr S Flu I	3.70	11.11	20.00	-
Profil 7	AmB S Nys S Flu S Ketr S Flu I	3.70	-	-	-
Profil 8	AmB S Nys S Flu S Ketr S Flu I	3.70	-	-	-
Profil 9	AmB S Nys S Flu S Ketr S Flu I	-	11.11	-	-
Profil 10	AmB S Nys S Flu S Ketr S Flu I	-	11.11	-	-
Profil 11	AmB S Nys S Flu S Ketr S Flu I	-	-	20.00	-
Profil 12	AmB S Nys S Flu S Ketr S Flu I	-	-	20.00	-
Profil 13	AmB S Nys S Flu S Ketr S Flu I	-	-	20.00	-
Profil 14	AmB S Nys S Flu S Ketr S Flu I	-	-	20.00	-
Profil 15	AmB S Nys S Flu S Ketr S Flu I	-	-	20.00	-

(AMB, Amphotericin B; NYS, Nystatin; FLU, Fluconazole; KET, Ketoconazole; CLT, Clotrimazole; ITR, Itraconazole; S, Sensitive; R, Resistant; I, Intermediate)

TABLE 5A | Frequency of Candida strains producing the virulence factors.

Candida species	Numbers	Gelatinase	Hemolysis activity	Lecithinase activity					
			% α-Hemolysis	% β-Hemolysis	Total	% Low	% Moderate	% High	Total
Candida albicans	27	40.74	29.62	37.03	66.67	48.14	3.70	37.03	88.88
Candida glabrata	9	77.77	22.22	56.55	77.78	33.33	0.00	55.55	88.88
Candida krusei	5	0.00	20	60	100	40	0.00	60	100
Candida spp.	10	40.00	20	80	100	50	0.00	20	70

Total | 51 | 43.13% | 25.49 | 41.17 | 66.67 | 24 | 1.96 | 39.21 | 86.27 |

Bold values indicate Row (Frequency of Candida strains for each virulence factors), Column (Total of the frequency for each species).

(94.12%), hydrophobic (96.08%) and biofilm activity (90.20%). All Candida glabrata and Candida krusei strains were 100% hydrophobic and biofilm producer (Table 5b).

3.3 Phytochemical Screening and Total Polyphenol Content of the Plant Extracts Studied

The phytochemical analysis of the compounds of the three plants studied reveal the presence of several chemical compounds. These are tannins, flavonoids, anthocyanins, leuco anthocyanins, saponosides, reducing compounds, alkaloids, mucilages and sterols. These different data are presented in the table below. The sign (+) indicates a positive reaction and the sign (-) indicates a negative reaction (Table 6).

The results of the quantification of total polyphenols in the extracts produced are presented in Table 7. From this table it is to be noticed that the aqueous extracts of the studied plants presented a not significantly high content of total polyphenols.
TABLE 5B | Frequency of Candida strains producing the virulence factors (Second part).

Candida species	Numbers	Adhesin activity	Hydrophobicity activity	Biofilm activity									
	% Low	% Moderate	% High	Total	% Low	% Moderate	% High	Total	% Low	% Moderate	% High	Total	
Candida albicans	27	51.85	37.04	11.11	100	11.11	15.52	66.67	96.30	40.74	40.74	3.70	85.18
Candida glabrata	9	88.89	11.11	0.00	100	11.11	0.00	88.89	100	77.78	22.22	0.00	100
Candida krusei	5	80	20.00	0.00	100	0.00	20.00	80.00	100	100	0.00	0.00	100
Candida spp.	10	50.00	20.00	0.00	70.00	0.00	20.00	70.00	90.00	70.00	20.00	0.00	90.00
Total	51	60.78	27.45	5.88	94.12	7.84	15.67	72.55	90.08	58.82	29.41	1.96	90.20

Bold values indicates, second column (total numbers of candida strains); 6, 10 and 14 column (Total of the frequency for each species) respectively.

TABLE 6 | Phytochemical composition of the three plants used.

Chemical groups	Khaya senegalensis	Lippia multiflora	Cyantillium cinereum
Tanins	+	+	+
Catechic Tanins	–	–	+
Gallic tanins	+	+	–
Flavonoids	+	+	+
Anthocyanins	+	+	+
Leuco	+	+	–
Anthocyanins	+	–	+
Saponosids	+	+	–
Reducing compound	–	–	–
Sterols/torpenes	+	+	+
Muclages	+	–	–
Alkaloids	+	+	+

TABLE 7 | Polyphenol content of the different plant extracts.

Plants	Extracts	Polyphenol content (mgEAG/gMS)	Ecart type
Khaya Senegalensis	Aqueous	2692.23301	12.3570259
Hydro-ethanolic	2259.2233	38.444405	
Ethanolic	2170.87379	94.738575	
Lippia multiflora	Aqueous	2556.79612	128.377639
Hydro-ethanolic	2250	19.9088317	
Ethanolic	2550.48544	118.079967	
Cyanthillium cinereum	Aqueous	2289.80583	32.2600376
Hydro-ethanolic	2405.33981	73.4567239	
Ethanolic	2550.48544	118.079967	

The study of the sensitivity of the aqueous, hydro-ethanolic and ethanolic extracts of Cyantillium cinereum, Khaya senegalensis and Lippia multiflora on the reference strain of Candida albicans ATCC 90028 showed a good sensitivity of the extracts of Cyantillium cinereum and Khaya senegalensis. The largest inhibition diameters were obtained with the extracts of Cyantillium cinereum particularly the hydro-ethanolic (Figure 4).

Figure 5 shows the effect of aqueous, hydroethanolic and ethanolic extracts of Cyantillium cinereum on the in vitro growth of clinical strains of Candida isolated from urinary tract infections. From this figure, it appears that all the extracts were active on all the strains studied with variable inhibition diameters depending on the extract and the strain. The greatest diameters of inhibition were obtained with the aqueous extract of this plant on most of the strains except for the strains of Candida krusei k1 and Candida glabrata g1. Regarding Khaya senegalensis, these extracts were active on four different clinical strains (Candida krusei k1 and k2, Candida glabrata g1 and Candida albicans a1). The aqueous extract was more active. The hydro-ethanolic extract was not active on any Candida albicans strain and on the Candida glabrata g2 strain (Figure 6). The aqueous extracts of the two plants (Cyantillium cinereum and Khaya senegalensis) were used to determine the Minimum Inhibitory Concentrations (MIC50) on each clinical strain. The MIC50 obtained varied from one strain to another and according to plant. In general, Cyantillium cinereum presented the best anti-Candida activity (MIC50 low) compared to Khaya senegalensis (MIC50 high) (Table 9). The best anti-Candida activity of Cyantillium cinereum was obtained on Candida albicans a1 and Candida glabrata g1.

3.5 Antifungal Activity of Plant Extracts

TABLE 8 | Antioxidant activity of plant extracts expressed in IC50.

Plants	Extracts	IC50 (mg/mL)
Khaya Senegalensis	Aqueous	0.079
Hydro-ethanolic	0.036	
Ethanolic	0.017	
Lippia multiflora	Aqueous	0.0056
Hydro-ethanolic	0.0049	
Ethanolic	0.0042	
Cyanthillium cinereum	Aqueous	0.053
Hydro-ethanolic	0.016	
Ethanolic	0.053	

TABLE 9 | Frequency of Candida strains producing the virulence factors (Second part).

Candidates species	Numbers	Adhesin activity	Hydrophobicity activity	Biofilm activity
Khaya Senegalensis	27	51.85	37.04	11.11
Hydro-ethanolic	2259.2233	38.444405	128.377639	19.9088317
Ethanolic	2170.87379	94.738575	128.377639	19.9088317
Lippia multiflora	2556.79612	128.377639	128.377639	19.9088317
Hydro-ethanolic	2250	19.9088317	128.377639	19.9088317
Ethanolic	2550.48544	118.079967	118.079967	118.079967
Cyanthillium cinereum	2289.80583	32.2600376	32.2600376	32.2600376
Hydro-ethanolic	2405.33981	73.4567239	73.4567239	73.4567239
Ethanolic	2550.48544	118.079967	118.079967	118.079967

The present study is part of the search for new sources of bioactive molecules useful to fight resistance to classical
antifungal agents. It aimed at exploring the virulence factors and the resistance profile of Candida species isolated from urine samples in Benin and the in vitro efficacy of organic extracts of Cyantillium cinereum, Lippia multiflora and Khaya senegalensis on the growth of Candida spp. strains.

The search for Candida strains in urine samples from patients in South Benin resulted in the isolation of 51 different Candida species. Candida albicans (52.94%) was the most identified species followed by Candida glabrata (17.65%). The high proportion of Candida albicans species found in this study was also mentioned by several reports in the scientific literature (1, 40; 41) for candidasis in general and urinary candidiasis (6). Indeed, urinary tract candidiasis is known as the most frequent nosocomial fungal infection worldwide (42).

The study of the susceptibility of isolates to antifungal agents showed that all species were susceptible to amphotericin B and nystatin. This sensitivity of the strains to nystatin and amphotericin B obtained in the present study contrasts with the data reported by Ekpo et al. (43) related of Candida strains isolated from urine samples in Cameroon. These differences could be justified by the origin of the strains, the study area, self-medication and the misuse of chemicals against vaginal infections. However, variable levels of resistance have been obtained to other classical antifungal agents (fluconazole, ketoconazole, itraconazole, clotrimazole). Furthermore, the Candida species isolated presented different patterns of resistance to antifungal drugs. Similar data reported a variety of resistance of Candida strains to antifungal drugs (23, 44). Jensen et al. (45) explained that this observed resistance would be due to the induction of drug efflux pumps and sequestration of antifungal agents. The great variability of resistance to antifungal drugs could be linked to the inactivation of proteins essential to ergosterol biosynthesis, leading to ergosterol depletion (target of amphotericin B) and the formation of other sterols (46).

The search for some virulence factors showed that the Candida strains isolated from urine in this study possess...
several virulence factors such as hemolysin production, biofilm, adhesin, lecithinase, gelatinase and hydrophobicity activity. *Candida albicans* biofilm formation reflects a powerful resistance structure that is installed by many pathogens such as *Candida albicans* to resist antimicrobials (47, 48). According to Pandey et al. (24), the production of hydrolytic enzymes by *Candida albicans* would increase yeast adhesion. Lecithinase being a phospholipase, its activity by *Candida albicans* could destroy cell lipids, one of the main components of the membrane (49) and promote oxidative stress (50–52).

The antifungal tests carried out on the plants studied show a variable activity depending on the plant, the type of extract and the strain tested. Indeed, on *Candida albicans* ATCC 90028, *Cyantillium cinereum* and *Khaya senegalensis* were more active in inhibiting the growth of this strain. On clinical strains selected, the extracts of these plants showed anti-*Candida* activity depending of the plant. *Khaya senegalensis* presented a low activity anti-*Candida* (MIC 50 high) compared to *Cyantillium cinereum* (MIC 50 low). The best activity of *Cyantillium cinereum* was obtained on *Candida albicans* a1 and *Candida glabrata* g2. This antifungal activity would be related to the bioactive secondary metabolites such as flavonoids, tannins, coumarins, anthocyanins, leuco anthocyanins identified in the plant (53–56). Bellia and Ounis (57) report that alkaloids possess a broad spectrum of biological activities including antibiotic properties. However, the lowest anti-*Candida* activity of the *Khaya senegalensis* will be related of the resistance profile and pathogenicity of the tested strains.

The scientific data generated by the present study highlight the possibility of using the *Cyantillium cinereum* as probable sources of new bioactive molecules with anti-candida properties for an efficient fight against antifungal drugs resistance.

In conclusion, this study revealed that several *Candida* species are involved in urinary tract infections. The *Candida* species isolated from urine are all-sensitive to amphotericin B, nystatin, and show 15 different resistance profiles. These bacteria also possess several virulence factors, the most represented of which are adhesin, hydrophobicity and Biofilm. *In vitro* antifungal tests of aqueous, ethanolic and hydro-ethanolic extracts of *Khaya senegalensis*, *Cyantillium cinereum* and *Lippia multiflora* revealed a variation in antifungal power depending on the plant and the type of extract. *Cyantillium cinereum* have a good *in vitro* activity on the growth of clinical and virulent of *Candida* strains. These results permit new research perspectives on the mechanisms of action of the antifungal effect of the studied plants.

AUTHORS CONTRIBUTIONS

All authors have actively contributed to the manipulation and writing of this article.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

ETHICS STATEMENT

The studies involving human participants were reviewed and approved by Institutional Ethics Committee of Research Unit in
ACKNOWLEDGMENTS

The authors are grateful to the members of Research Unit in Applied Microbiology and Pharmacology of natural substances.

REFERENCES

1. Cassone A. Vulvovaginal Candida Albicans Infections: Pathogenesis, Immunity and Vaccine Prospects. BIOG.: Int J Obstet. Gy. (2015) 127:785–94. doi: 10.1111/1471-0528.12994

2. Gonçalves B, Ferreira C, Alves CT, Henriques M, Azeredo J, Silva S. Vulvovaginal Candidiasis: Epidemiology, Microbiology and Risk Factors. Crit Rev Microbiol (2016) 42:905–27. doi: 10.3109/1040841X.2015.1091805

3. Jacob L, John M, Kalder M, Kostev K. Prevalence of Vulvovaginal Candidiasis in Gynecological Practices in Germany: A Retrospective Study of 954,186 Patients. Carr Med Mycol. (2018) 4:6–13. doi: 10.18502/cmm.4.1.27

4. Kemaykin VM, Tabinbaev NB, Khudaibergenova MS, Olifirovich AA, Abdrahmanova LM, Denning DW, et al. An Estimate of Severe and Chronic Fungal Diseases in the Republic of Kazakhstan. J Fungi. (Basel). (2018) 4:34–42. doi: 10.3390/jof04010034

5. Hashemi SE, Shokohi T, Abastabar M, Aslani N, Ghadammazadeh M, Haghani I. Species Distribution and Susceptibility Profiles of Candida Species Isolated From Vulvovaginal Candidiasis. Emergence of C. lusitaniae. Carr Med Mycol. (2019) 5:26–31. doi: 10.18502/cmm.5.2.2062

6. Behzadi P, Behzadi E, Ranjbar R. Urinary Tract Infections and Candida Albicans. Cent. Eur J Urol. (2015) 68:96–101. doi: 10.5177/ejcu.2015.01.474

7. Odabasi Z, Mert A. Candida Urinary Tract Infections in Adults. World J Urol. (2020) 38:2699–707. doi: 10.1007/s00345-019-02991-5

8. Griffith N, Danziger L. Candida Auris Urinary Tract Infections and Possible Treatment. Antibiot. (Basel). (2020) 9:898. doi: 10.3390/antibiotics9120898

9. Poloni JAT, Rotta LN. Urine Sediment Findings and the Immune Response to Pathologies in Fungal Urinary Tract Infections Caused by Candida Spp. J Fungi. (Basel). (2020) 6:E245. doi: 10.3390/jof6040245

10. Malani AN, Kaufman CA. Candida Urinary Tract Infections: Treatment Options. Expert Rev Anti Infect Ther (2007) 5:277–84. doi: 10.1586/14787205.2.277

11. Thomas L, Tracy CR. Treatment of Fungal Urinary Tract Infection. Urol. Clin North Am (2015) 42:473–483. doi: 10.1016/j.uc.2015.05.010

12. Osaka K, Shimamura K, Yoshiha H, Fujiaiwa M, Arakawa S. Candida Urinary Tract Infection and Candida Species Susceptibilities to Antifungal Agents. J Antibi. (2013) 66:561–4. doi: 10.1038/ja.2013.68

13. Corsello S, Spinillo O, Onsengo G, Penna C, Guaschino S, Beltrame A, et al. An Epidemiological Survey of Vulvovaginal Candidiasis in Italy. Eur J Obstet Gynecol Reprod Biol. (2003) 103:66–72. doi: 10.1016/S0014-0735(03)00996-4

14. Sojkaova M, Liptajoova D, Borovsky M, Subik J. Plaunolactone and Itraconazole Susceptibility of Vaginal Yeast Isolates From Slovakia. Mycopathologia. (2004) 157:163–9. doi: 10.1007/s11046-004-0507-1

15. Khorasavi AR, Sharifzadeh A, Niakein D, Almaezi Z, Nasrabadhi GB. Chemical Composition, Antioxidant Activity and Antifungal Effects of Five Iranian Essential Oils Against Candida Strains Isolated From Urine Samples. J Mycol. Med. (2018) 28:355–60. doi: 10.1016/j.jmycmed.2018.01.005

16. Dabas PS. An Approach to Etiology, Diagnosis and Management of Different Types of Candidiasis. Journal of Yeast and Fungal Research (2013) 4:63–74.

17. Wang F-J, Dai Zhang Z-HL, Wu W-X, Bai H-H, Dong H-Y. Species Distribution and Susceptibility of Candida Albicans in China. Clin Med (2016) 128:1161–9. doi: 10.4103/0969-9198.181964

18. Arey Tarkang P, Joffre AA, Mercadet L, Joffre J, Cordeiro P, Deguenon ELM, et al. Yeast DNA Extraction by Boiling and Freeze-Thawing Without Using Chemical Reagents and DNA Purification. Braz Arch Biol Technol (2012) 55:319–27. doi: 10.1590/S1516-8915201200000020

19. Zahir RA, Himrat-Azmi WH. Distribution of Candida in the Oral Cavity and its Current Patient Perspectives Differentiation Based on the Internally Transcribed Spacer (ITS) Regions of rDNA. Wiley. Online Lib. (2013) 1:13–20. doi: 10.1002/tea.2937

20. ElFeky DS, Gohar NM, El-Seidi EA, Ezzat MM, Aboelew SH. Species Identification and Antifungal Susceptibility Pattern of Candida Isolates in Cases of Vulvovaginal Candidiasis. AJM. Elsevier. (2016) 52:269–77. doi: 10.1016/j.ajme.2015.10.001

21. Noumi E, Snoussi M, Noumi I, Saghrouni F, Aouni M, Valentin E. Phenotypic Characterization and Adhesive Properties of Vaginal Candida Spp. Strains Provided by the CHU Farhat Hached (Sousse, Tunisia). Rev Iberoam. Micol. (2015) 32:170–9. doi: 10.1610/jbam.2014.06.006

22. Zanni PCMD, Bonfim-Mendonça P, de S, Negri M, Nakamura SS, Donatti L, et al. Virulence Factors and Genetic Variability of Vaginal Candida Albicans Isolates From HIV-Infected Women in the Post-Highly Active Antiretroviral Era. Rev Do. Instituto. Medic. Trop São. Paulo. (2017) 59:1–10. doi: 10.1590/ 1987-9966201759004

23. El-Houssaini HH, Elnabawy OM, Nasser HA, Elkhatib WF. Correlation Between Antifungal Resistance and Virulence Factors in Candida Albicans Recovered From Vaginal Specimens. Microbial. Pathogen. (2019) 12:13–9.

24. Elavarasi E, Kindo AJ, Ranganathan S. Enzymatic and Non-Enzymatic Virulence Activities of Dendrophyes on Solid Media. J Clin Diag Res (2017) 31:11–23. doi: 10.7860/jcdr/2017/23147.9410

25. Klotoe J, Agbodjento E, Dougnov N, Yovo M, Tambou J, Deugnon ELM, et al. Exploration of the Chemical Potential and Antioxidant Activity of Some Plants Used in the Treatment of Male Infertility in Southern Benin. J Pharm Res Int (2020) 32:1–12. doi: 10.9734/jpir/2020/321430418

26. Houghton PJ, Raman A. Laboratory Handbook for the Fractionation of Natural Extracts. London, Thomson publishing (1998) p. 154–62.

27. Ahmed R, Tariq M, Hussain M, Andleeb A, Masoud MS, Ali I, et al. Phenolic Contents-Based Assessment of Therapeutic Potential of Syzygium Cumini Leaves Extract. PloS One (2019) 14(8):e0221318. doi: 10.1371/journal.pone.0221318

28. Okou OC, Yapu SE, Kpouro KE, Babo GI, Monthau S, Djaman AJ. Évaluation De L’activité Antibiobactérienne Des Extraits De Feuilles De Solanum Torvum Swartz (Solanaceae) Sur La Croissance In Vitro De 3 Souches D’entrobactéries. J App. Biosci. (2018) 122:12–20. doi: 10.4314/jab.v122i18

29. Silva F, dos S, Landell MF, Paulino GVR, Coutinho HDM, Albuquerque UP. Antifungal Activity of Selected Plant Extracts Based on an Ethnoredirected Study. Acta Bot Bras (2020) 34:442–8. doi: 10.1590/0102-33062020ab00003
49. Nicolson GL, Malekhosseini S, Jamshidzade A, Zarei M, Jafarian H, et al. Antifungal Effect of Sesame Medicinal Herb on Candida Species: Original Study and Mini-Review. Braz J Pharm Sci (2019) 55. doi: 10.1590/ s2175-9790201900017479

50. Nakamura-Vasconcelos SS, Fiorini A, Zanni PD, Bonfim-Mendonça P, de S, Godoy JR, et al. Emergence of Candida Glabrata in Vulvovaginal Candidiasis Should be Attributed to Selective Pressure or Virulence Ability? Arch Gynecol Obstet. (2017) 296:519–26. doi: 10.1007/s00404-017-4465-y

51. Yano J, Sobel JD, Nyirjesy P, Sobel R, Williams VL, Yu Q, et al. (2019). Current Patient Perspectives of Vulvovaginal Candidiasis: Incidence, Symptoms, Management and Post-Treatment Outcomes. BMC Women’s Health 19: 1–8. doi: 10.1186/s12905-019-0748-8.

52. Koo H, Allan RN, Howlin RP, Stoodley P, Hall-Stoodley L. Targeting m-Mendocin to Restore Phospholipid Function in Cellular Aging and Cancer Using Oral Glycerolphospholipid Formulations With Fructooligosaccharides. Braz J Pharm Sci (2017) 53:2175–97902019000188

53. Jensen RH, Astvad KMT, Silva LV, Sanglard D, Jørgensen R, Nielsen KF, et al. Alterations in Phospholipid Signaling in Candida albicans In Vivo and in Candida Albicans Orchestrate by Multiple Genetic Alterations. J Antimicrob Chemother (2015) 70:2551–5. doi: 10.1093/jac/dkv140

54. Maraki S, Makromanolaki VE, Stafylaki D, Nioti E, Hamilos G, Kasimati A. Epidemiology and Antifungal Susceptibility Patterns of Candida Isolates From Greek Women With Vulvovaginal Candidiasis. Mycoses (2019) 62:692–7. doi: 10.1111/myc.12946

55. Jensen RH, Astvad KMT, Silva LV, Sanglard D, Jørgensen R, Nielsen KF, et al. Stepwise Emergence of Azoole, Echinocandin and Amphotericin B Multidrug Resistance In Vivo in Candida Albicans Orchestrate by Multiple Genetic Alterations. J Antimicrob Chemother (2015) 70:2551–5. doi: 10.1093/jac/dkv140

56. Nouraei S, Amir Ali Akbari S, Jorjani M, Alavi Majd H, Afrakhteh M, Ghafoorian A, et al. Comparison Between Fluconazole With Oral Protexin in the Treatment of Vulvovaginal Candidiasis. J Antimicrob Chemother (2017) 162:907–17. doi: 10.1093/jjcm/mzw886

57. Rahmouni M. Extraction Et Activité Biologique De Quelques Principes Actifs (Flavonoides) (PhD Thesis). Université Ahmed Draïa-Adrar (2019).

58. Sore H, Sonan S, Hlouz A. Antiplasmoidal Properties of Plants Isolated Flavonoids and Their Derivatives. Int J Herbal Med (2018) 6:43–56.

59. Belila S, Ounis Z. Contribution a L’étude Phytochimique Et Biologique Des Alcaloïdes De La Partie Ae Phytochimiques Des Plantes Médicinales Utilisées Dans La Prise En Charge Des Maladies Infantiles Au Sud-Bénin. Eur Sci J (2017) 13:471–88. doi: 10.19044/esj.2017.v13n3p471

60. Maraki S, Makromanolaki VE, Stafylaki D, Nioti E, Hamilos G, Kasimati A. Epidemiology and Antifungal Susceptibility Patterns of Candida Isolates From Greek Women With Vulvovaginal Candidiasis. Mycoses (2019) 62:692–7. doi: 10.1111/myc.12946

61. Ivanov AV, Bartosch B, Isaguliants MG. Oxidative Stress in Infection and Consequent Disease. Oxid Med Cell Longevity (2017) 2017:1–3. doi: 10.1155/2017/3496043

62. Nykiel-Szymańska J, Rożalska S, Bernat P, Slaba M. Assessment of Oxidative Stress and Phospholipids Alterations in Chloroacetanilides-Degrading Trichoderma Spp. Ecotoxicol. Environ Saf (2019) 184:1–9. doi: 10.1016/j.ecoenv.2019.109629

63. Pagbouh ED, Lawal OU, Ore ME. The Proximate, Mineral and Phytochemical Analysis of the Leaves of Ocimum Gratissimum L., Melantheria Scandens A. And Lea Guineensis L. And Their Medicinal Value. Int J Appl Biol Pharm Technol (2012) 3:15–22.

64. Kouchadré SA, Adjatin AR, Adomou AC, Dassou HG, Akoëgninou A. Phytochimiques Des Plantes Médicinales Utilisées Dans La Prise En Charge Des Maladies Infantiles Au Sud-Bénin. Eur Sci J (2017) 13:471–88. doi: 10.19044/esj.2017.v13n3p471

65. Belila S, Ounis Z. Contribution a L’étude Phytochimique Et Biologique Des Alcaloïdes De La Partie Ae Phytochimiques Des Plantes Médicinales Utilisées Dans La Prise En Charge Des Maladies Infantiles Au Sud-Bénin. Eur Sci J (2017) 13:471–88. doi: 10.19044/esj.2017.v13n3p471

66. Maraki S, Makromanolaki VE, Stafylaki D, Nioti E, Hamilos G, Kasimati A. Epidemiology and Antifungal Susceptibility Patterns of Candida Isolates From Greek Women With Vulvovaginal Candidiasis. Mycoses (2019) 62:692–7. doi: 10.1111/myc.12946

67. Belila S, Ounis Z. Contribution a L’étude Phytochimique Et Biologique Des Alcaloïdes De La Partie Ae Phytochimiques Des Plantes Médicinales Utilisées Dans La Prise En Charge Des Maladies Infantiles Au Sud-Bénin. Eur Sci J (2017) 13:471–88. doi: 10.19044/esj.2017.v13n3p471

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Fanou, Klotoe, Dougnon, Assogba, Agbodjento, Koudokpon, Fah, Sintondji, Kpoze and Loko. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.