Cytotoxicity and anti-small cell lung cancer potential of 3-methoxy-5-nitrosalicylaldehyde: an analog for treatment of diabetes mellitus with considerable binding affinity to α-amylase enzyme

Hongqing Wen¹, Junyan Wang², Saad H. Alotaibi³

¹Department of PCCM, Xi'an No. 3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China
²Pre-test triage, The Fourth People's Hospital of Jinan, Jinan city, China
³Department of Chemistry, Turabah University College, Taif University, Taif, Saudi Arabia

Submitted: 10 February 2021; accepted: 16 June 2021
Online publication: 9 July 2021

Abstract

Introduction: α-Amylase inhibitors are present in plants and are thought to be produced by plants to strengthen their defenses against predators. They include plant components, polyphenolic compounds and glycoproteins with enzymatic inhibitory activity.

Material and methods: In this study, the inhibitory effect of metabolic enzyme was obtained, IC₅₀: 95.14 µM. The molecular docking investigation was performed as a versatile method for the evaluation of the biological activities of 3-methoxy-5-nitrosalicylaldehyde in the presence of α-amylase. The compound exhibited a considerable binding affinity to the enzyme with a docking score of −7.676 kcal/mol.

Results: The results of the molecular docking revealed that 3-methoxy-5-nitrosalicylaldehyde is able to construct hydrophobic contacts with crucial residues of the catalytic domain of the enzyme. According to these findings, the compound has the potential to be an inhibitor of α-amylase. The MTT test was used on normal (human umbilical vein endothelial cells (HUVECs)) and small cell lung cancer (SBC-3, DMS273, and DMS114) cell lines. 3-Methoxy-5-nitrosalicylaldehyde had high cell death and anti-small cell lung cancer effects against SBC-3, DMS273, and DMS114 cell lines. Among the above cell lines, the best result of anti-small cell lung cancer properties of the molecule was obtained in the cell line DMS273.

Conclusions: The results of this study indicated the excellent anti-small cell lung cancer potential of 3-methoxy-5-nitrosalicylaldehyde in in vitro conditions. After confirming the above results in the clinical trial research, this formulation may be administrated for the treatment of several types of small cell lung cancer in humans.

Key words: lung cancer, 3-methoxy-5-nitrosalicylaldehyde, α-amylase, diabetes, molecular modeling.

Introduction

Lung cancer begins when cells from structurally normal lung tissue multiply beyond need and control, forming a mass (tumor) in the lung. The mass formed here first grows in its environment, and in later stages it spreads to the surrounding tissues or to distant organs (liver, bone,
Lung cancer is a very common cancer. It is the cause of 12–16% of all cancers and 17–28% of cancer-related deaths. Moreover, it ranks first in cancer-related deaths in both men and women [1, 2]. Enzyme inhibition means reducing or blocking the action of an enzyme with a specific substrate, called an enzyme inhibitor, or its analogue. In modern times, besides pharmaceutical compounds, some natural compounds are marketed as enzyme inhibitors and these inhibitors exert their specific effects on enzyme inhibition in cells, bacteria, viruses and the human body [3, 4].

To control blood sugar within certain limits, diabetics avoid sugary foods and prefer starchy foods instead. High-carbohydrate diets contribute significantly to diabetes. Starch digestion is highly determinative of post-meal blood sugar level and also affects glucose metabolism. It has been suggested that hyperglycemia is an important factor leading to disruption of carbohydrate metabolism; therefore, delaying the rise in blood glucose is considered beneficial for alleviating insulin resistance and/or type 2 diabetes [5, 6]. In the gastrointestinal tract, starch is mainly digested by α-amylase in the small intestine into reducing sugars such as maltose, maltotriose and amylopectin. The reducing sugars are then hydrolyzed by α-glucosidase to produce glucose. Therefore, α-amylase is the key enzyme of starch hydrolysis and regulating enzyme activity with chemical and biological components is recommended in the prevention and treatment of hyperglycemia and the resulting metabolic disorder. α-Amylase has a very important role in the treatment of diabetes [7, 8]. Inhibition of this enzyme delays glucose secretion and absorption in the small intestine. In this event that takes place in the intestine, the level of hyperglycemia is reduced by delaying carbohydrate digestion by inhibitors of enzymes [9, 10].

Nowadays, theoretical studies have become necessary part of the laboratory evaluation of chemical compounds. Such inquiry could give a more comprehensive insight into the biological activities and experimental results [11]. Molecular docking has drawn significant attention from biologists as performing docking calculations could provide the researchers a complete point of view on the biological activities of enzyme inhibitors [12]. This information can assist the researchers to understand the mechanisms in which the compounds and biological substances would interact with each other. Various parameters will be collected from the docking study, such as binding affinity and the features of interactions.

In the current study, the properties of 3-methoxy-5-nitrosalicylaldehyde against α-amylase enzyme inhibition and molecular docking of it were investigated. Also, we decided to survey the anti-small cell lung cancer potential of 3-methoxy-5-nitrosalicylaldehyde against small cell lung cancer cell lines including SBC-3, DMS273, and DMS114.

Material and methods

Materials

Antimycotic antibiotic solution, hydrolysate, dimethyl sulfoxide (DMSO), 4-(dimethylamino) benzaldehyde, Ehrlich solution, carbazole reagent, 2,2-diphenyl-1-picrylhydrazyl (DPPH), Dulbecco’s Modified Eagle Medium (DMED), borax-sulfuric acid mixture, and phosphate buffer solution (PBS) were all obtained from Sigma-Aldrich, USA.

α-Amylase assay

α-Amylase activity was determined by a method adapted from the work of Taha et al. [13]. Accordingly, α-amylase solution, phosphate buffer and starch from the given reaction components were incubated in an Eppendorf tube at 35°C for 10 min. 100 µl of dinitrosalicylic acid (DNS) was added to the reaction and the reaction mixture was boiled for 5 min to stop the reaction [14]. The reaction mixtures cooled to room temperature were diluted with 1000 µl of distilled water and absorbance measurements were performed at 540 nm. In order to determine the molar absorption coefficient, a standard maltose graph was drawn and the value was calculated as 0.0071 (µg/ml) –1 cm –1. One unit of enzyme activity was calculated as the amount of 1 µmol maltose released in 1 min under the reaction conditions [15].

Molecular docking study

The docking calculations were conducted to evaluate the chemical and biological activities of 3-methoxy-5-nitrosalicylaldehyde as an inhibitor for α-amylase. Acarbose was also considered to be a standard inhibitor for alpha-amylase. The structure of α-amylase (PDB ID: 1HNY) [16] at 1.8 Å resolution with the X-ray diffraction method was obtained from the Protein Data Bank (http://www.rcsb.org/pdb). The preparation of the raw structure of the enzyme was carried out using the protein preparation module of Schrödinger [17]. Two essential steps in protein preparation are the addition of hydrogen to the structure and removing unnecessary water molecules. The creation of an H-bond network was performed using the optimization step of the mentioned module. At the end of the preparation step, the structure was minimized utilizing the OPLS3e force field. The prepared structure was investigated for evaluation of the binding site of the enzyme using SiteMap of
Schrödinger [18]. In the next step, a grid box (20 × 20 × 20 Å³) was constructed around the predicted active site. The SDF forms of 3-methoxy-5-nitrosalicylaldehyde and acarbose were retrieved from the PubChem database and prepared with the LigPrep module of Schrödinger [19] to generate accurate molecular geometric and protonation states. Finally, the calculations of molecular docking were performed utilizing Glide of the Schrödinger Suite.

Determination of anti-small cell lung cancer activities of 3-methoxy-5-nitrosalicylaldehyde

In the present experiment, different small cell lung cancer cell lines, i.e., SBC-3, DMS273, and DMS114 cell lines, and also the human normal cell line (human umbilical vein endothelial cells (HUVECs)) were used to study the cytotoxicity and anticancer potential of small cell lung cancer towards 3-methoxy-5-nitrosalicylaldehyde using the common cytotoxicity test, i.e., MTT assay in vitro conditions.

For this purpose, each cell line was placed separately in T25 flasks with a complete culture medium (including DMEM (Dulbecco’s Modified Eagle Medium), 10% complementary bovine fetal serum, and 1% penicillin-streptomycin solution) and at 37°C in the incubator, cell culture was incubated with 5% CO₂. After obtaining 80% cell density, the sample was exposed to 1% trypsin-EDTA solution and after 3 min of incubation at 37°C in a cell culture incubator with 5% CO₂, and observation of cells removed from the bottom of the plate, the sample was centrifuged at 5000 rpm for 5 min. Then, the cell suspensions after adding trypan blue dye were counted by a neobar slide and a cytotoxicity test was performed by the MTT method [20].

Initially, 10,000 cells were implanted in cell culture plates and then the cells were treated at concentrations of 1-1000 µg/ml of 3-methoxy-5-nitrosalicylaldehyde. After 24 h, 20 µl of MTT dye was added to the wells and incubated for 5 h at 37°C with 5% CO₂. DMSO was then added to the wells to dissolve the formazan crystals and the absorbance rate of the wells at 570 nm was read by an ELISA reader (ELISA Teknika Oraganon reader, Netherlands) and the cell viability rate was computed by the formula below [20]: Cell viability (%) = (sample A/Control A) × 100.

After collecting data, Minitab statistical software was used for statistical analysis. Evaluation of cytotoxicity and anti-small cell lung cancer results in a completely randomized design and comparison of means was performed by the Duncan post-hoc test with a maximum error of 5%. To measure the percentage of cell survival in factorial experiments with the original design of completely randomized blocks and compare the means, the Duncan post-hoc test with a maximum error of 5% was used. The 50% cytotoxicity (IC₅₀) and 50% free radical scavenging (IC₅₀) were estimated with ED50 plus software (INER, V. 1.0). Measurements were reported as mean ± standard deviation.

Ethics statement

This research was approved by The Fourth People’s Hospital of Jinan animal ethical committee, Approval No. 2021-JNFH-0034.

Results and discussion

α-Amylase inhibition results

In this study, inhibition of metabolic enzyme was obtained, IC₅₀ = 95.14 µM (Figure 1). Glucosidase inhibitors are highly promising in the treatment of various diseases such as diabetes, viral infections and cancer metastasis, as well as being a very effective tool for understanding the mechanism of action of glucosidas [21]. Therefore, α-amylase has been the target enzyme for the design of drug molecules suitable for the treatment of diabetes, obesity, and hyperglycemia. Generally speaking, it is known that commercially available antidiabetic drugs are α-amylase inhibitors because they reduce postprandial hyperglycemia. Liminoids purified from Azadirachta indica for pancreatic α-amylase inhibition have also been reported to be used as antidiabetic drugs due to their potential therapeutic effects [22]. In addition, tetracyclic diterpenoid (also known as isosteviol) triazole derivatives obtained by acid hydrolysis of steviol glycoside extract, which is abundant in Stevia rebaudiana, are used as antitumor agents in the treatment of cancer. In addition to these, although it is known that disaccharides, iminosaccharides, carbasaccharides and thiosaccharides are among the inhibitors of glucosidas, there is still a need for the design and discovery of new inhibitor molecules with high specificity and efficacy [23]. Therefore, Balba et al. [24] synthesized diaryl derivatives of imidazole-thione and 1,2,4-triazole-thiol for inhibition of α-amylase
and α-glucosidase and examined the inhibition potentials of these molecules. Perion et al. [25] synthesized a 1,4,5-trisubstituted 1,2,3-triazole compound and investigated its effectiveness as a glycosidase inhibitor. Anand et al. [26] demonstrated the importance of pharmacophores in the treatment of many diseases of compounds containing a triazole structure in a study they carried out, and for this reason, the synthesis of triazole glycohybrid structures and their α-glucosidase inhibition potential were examined [27]. In addition, Balan et al. [28] reported that they synthesized 2-allyl amino 4-methylsulfanyl butyric acid as a new molecule for inhibition of α-amylase and α-glucosidase, and they carried out both molecular modeling studies and enzyme kinetic studies to evaluate the inhibitory potential of the said molecule. In a previous study, molecular modeling revealed the molecular basis of the specific binding of different α-amylase inhibitors obtained from the seeds of *Phaseolus vulgaris* and *Alpina nigra* to the active site of the enzyme [29–31].

Molecular docking results

The molecular docking study as a multifaceted analytical approach was used for the investigation of 3-methoxy-5-nitrosalicylaldehyde biological activities. Figure 2 shows the docking pose of the compound in the residues of the α-amylase, and the interactions between the ligand and enzyme are presented in Figure 3. As can be seen, Gin63 has created a hydrogen bond with the ligand. NH of Gin63 of the peptide backbone has constructed this H-bond with the oxygen of 3-methoxy-5-nitrosalicylaldehyde. This oxygen atom has emerged as a hydrogen bond acceptor, which means that Gin63 is a hydrogen bond donor. Although this residue is not from the catalytic domain of the enzyme, this hydrogen bond provides a strong binding affinity for the ligand. There are eight hydrophobic contacts between the ligand and residues of α-amylase. These residues are Trp58, Trp59, Tyr62, His101, Leu165, Asp197, Asp300, and His305. Asp 197 and Asp300 are two important residues of the α-amylase active site [32]. Creating hydrophobic contacts with these two residues is essential for this compound, as it can prove the inhibitory activity of 3-methoxy-5-nitrosalicylaldehyde. The parameters obtained from the docking calculations are presented in Table I. The docking score indicates the binding affinity of the ligand to the enzyme, which is the most important parameter [33]. 3-Methoxy-5-nitrosalicylaldehyde with a docking score of −7.676 kcal/mol has shown a remarkable binding affinity to the enzyme. This value is −7.481 kcal/mol for acarbose as a standard inhibitor of α-amylase. As can be clearly seen, the docking scores have a positive correlation with the IC₅₀ of the compounds. The binding energy between the binding partners is another important parameter. Glide ligand efficiency indicates this value. Some of the parameters are interaction related parameters, such as Glide Evdw and Glide Ecoul. The Glide Evdw and Glide Ecoul indicate Van der Waals energy and the Coulomb energy, respectively. The modified Coulomb-van der Waals interaction energy is shown with the Glide energy. The next parameter is Glide Emodel and is an indicator of the value of the interaction [34]. The first active site of the enzyme structure is presented in Figure 4. This site is the most drug-
Cytotoxicity and anti-small cell lung cancer potential of 3-methoxy-5-nitrosalicylaldehyde: an analog for treatment of diabetes mellitus with considerable binding affinity to α-amylase enzyme

Figure 3. Interactions of 3-methoxy-5-nitrosalicylaldehyde and α-amylase. Green dashed lines indicate the hydrogen bonds, and semicircles show the hydrophobic contacts.

Table I. Parameters obtained from the molecular docking calculations

Parameter	3-Methoxy-5-nitrosalicylaldehyde	Acarbose
IC₅₀ [µM]	95.14	254.06
Docking score [kcal/mol]	–7.676	–7.481
Glide ligand efficiency [kcal/mol]	–0.548	–0.170
Glide Eoul [kcal/mol]	–6.509	–30.778
Glide Evdw [kcal/mol]	–29.215	–39.502
Glide Emodel [kcal/mol]	–56.457	–104.911

Figure 4. First predicted active site of alpha amylase. Red areas are hydrogen acceptors, blue areas are hydrogen donors, and yellow areas are hydrophobic.
The cytotoxicity test is performing to ISO 10993-5 and its purpose is to determine. This test is performed according to specific wavelengths, the number of living cells amount of absorption with a spectrophotometer and is a measure of cell viability. By measuring the intensity of dye produced by the mitochondrial dehydrogenases in living cells produce NADH and NADPH, leading to an insoluble purple precipitate called formazan. This precipitate can be dissolved by isopropanol or dimethyl sulfoxide [38]. Dead cells, on the other hand, are unable to perform this conversion due to the inactivity of their mitochondria and therefore do not show a signal. In this method, dye formation is used as a marker for the presence of living cells. In recent years, MTT testing has been the most important measurement method to evaluate the toxicity and anti-cancer effects of molecules [39].

In the current research, the cytotoxicity of 3-methoxy-5-nitrosalicylaldehyde was explored by studying its interaction with normal (HUVEC) and common small cell lung cancer cell lines, i.e. SBC-3, DMS273, and DMS114 by MTT assay for 48 h. The interactions expressed as cell viability (%) were observed at different 3-methoxy-5-nitrosalicylaldehyde concentrations (0–1000 µg/ml) with the four cell lines which are shown in Table III and Figures 5–8.

In all cases, the % cell viability is reduced with increasing 3-methoxy-5-nitrosalicylaldehyde concentrations. The IC₅₀ values of 3-methoxy-5-nitrosalicylaldehyde against common small cell lung cancer cell lines, i.e. SBC-3, DMS273, and DMS114 cell lines were 198, 179, and 211 µg/ml, respectively (Table III and Figures 5–8).

Thus, the best cytotoxicity findings and anti-small cell lung cancer properties of the investigated molecule, 3-methoxy-5-nitrosalicylaldehyde, were observed in the case of the DMS273 cell line.

In conclusion, theoretical approaches are attractive methods for the evaluation of experimental studies. Due to the valuable information obtained from the molecular docking study, this method has gained considerable consideration. In this study, the potential of 3-methoxy-5-nitrosalicylaldehyde as an inhibitor of α-amylase was assessed using molecular docking calculations. The outcomes revealed that this compound has the ability to inhibit enzyme activity. This inhibitory activity could be attributed to the interactions of the compound with the crucial residues of the enzyme catalytic site. 3-Methoxy-5-nitrosalicylaldehyde was also assessed in biological applications such as cytotoxicity and anti-small cell lung cancer activities. 3-Methoxy-5-nitrosalicylaldehyde showed significant cytotoxic activities against common small cell lung cancer cell lines, i.e., SBC-3, DMS273, and DMS114 cell lines.

Table II. Residues of the first active site

Predicted residues of the first active site
Chain A
58, 59, 62, 63, 101, 151, 162, 163, 165, 195, 197, 198, 200, 201, 233, 234, 235, 299, 300

Variable	3-Methoxy-5-nitrosalicylaldehyde [µg/ml]
IC₅₀ against HUVEC	–
IC₅₀ against SBC-3	198 ±0
IC₅₀ against DMS273	179 ±0
IC₅₀ against DMS114	211 ±0
Cytotoxicity and anti-small cell lung cancer potential of 3-methoxy-5-nitrosalicylaldehyde: an analog for treatment of diabetes mellitus with considerable binding affinity to α-amylase enzyme

Acknowledgments
We acknowledge Taif University for Researchers Supporting Project (TURSP—number 2020/83), Taif University, Taif, Saudi Arabia.

Conflict of interest
The authors declare no conflict of interest.

References
1. Martin-Ucar A, Waller DA, Atkins JL, Swinson D, O’Byrne KJ, Peake MD. The beneficial effects of specialist thoracic surgery on the resection rate for non-small-cell lung cancer. Lung Cancer 2004; 46: 227-32.
2. Olak J, Colson Y. Gender differences in lung cancer: have we really come a long way, baby? J Thorac Cardiovasc Surg 2004; 128: 346-51.
3. Hamden K, Jaouadi B, Carreau S, et al. Therapeutic effects of soy isoflavones on alpha-amylase activity, insulin deficiency, liver-kidney function and metabolic disorders in diabetic rats. Nat Prod Res 2011; 25: 244-55.
4. Hansawasdi C, Kawabata J, Kasai T. alpha-amylase inhibitors from roselle (Hibiscus sabdariffa Linn.) tea. Biosci Biotechnol Biochem 2000; 64: 1041-3.
5. Akkarachiyasit S, Charoenlertrkul P, Yibchoke-anun S, Adisakwattana S. Inhibitory activities of cyanidin and its glycosides and synergistic effect with acarbose against intestinal alpha-glucosidase and pancreatic alpha-amylase. Int J Mol Sci 2010; 11: 3387-96.

Figure 5. Cytotoxic activities of 3-methoxy-5-nitrosalicylaldehyde towards HUVEC cell line

Figure 6. Anti-small cell lung cancer activities of 3-methoxy-5-nitrosalicylaldehyde towards DMS273 cell line

Figure 7. Anti-small cell lung cancer activities of 3-methoxy-5-nitrosalicylaldehyde towards SBC-3 cell line

Figure 8. Anti-small cell lung cancer activities of 3-methoxy-5-nitrosalicylaldehyde towards DMS114 cell line

6. Kotowaroo MI, Mahomoodally MF, Gurib-Fakim A, Subratty AH. Screening of traditional antidiabetic medicinal plants of Mauritius for possible alphaamylase inhibitory effects in vitro. Phytother Res 2006; 20: 228-31.
7. Hargrove JL, Greenspan P, Hartle DK, Dowd C. Inhibition of aromatase and alpha-amylase by flavonoids and proanthocyanidins from Sorghum bicolor bran extracts. J Med Food 2011; 14: 799-807.
8. Kim J, Hyun TK, Kim M. The inhibitory effects of ethanol extracts from sorghum, foxtail millet and proso millet on alpha-glucosidase and alpha-amylase activities. Food Chem 2011; 124: 1647-51.
9. Nickavar B, Amin G. Bioassay-guided separation of an alpha-amylase inhibitor anthocyanin from Vaccinium arctostaphylos berries. Z Naturforsch C 2010; 65: 567-70.
10. Hara Y, Honda M. The inhibition of alpha amylose by tea polyphenols. Agric Biol Chem 1990; 54: 1939-45.
11. Tormo MA, Gil-Exojo I, Romero de Tejada A, Campillo JE. Hypoglycaemic and anorexigenic activities of an alphaamylase inhibitor from white kidney beans (Phaseolus vulgaris) in wistar rats. Br J Nutr 2004; 92: 785-90.
12. Jhong CH, Riyaphan J, Lin SH, Chia YC, Weng CF. Screening alpha-glucosidase and alpha-amylase inhibitors from natural compounds by molecular docking in silico. BioFactors 2015; 41: 242-51.
13. Taha M, Baharudin MS, Ismail NH, et al. Synthesis, α-amylase inhibitory potential and molecular docking study of indole derivatives. Bioorganic Chem 2018; 80: 36-42.
14. Zhao Y, ve Truhlar DG. The M06 suite of density functionals for main group thermochemistry, thermochemical
kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four-M06 class functionals and 12-other functionals. Theor Chem Account 2007; 120: 215-24.

15. Alqahtani AS, Hidayathulla S, Rehman MT, et al. Alfaamylase and alpha-glucosidase enzyme inhibition and antioxidant potential of 3- oxolupenal and katoic acid isolated from Nuxia oppositifolia. Biomolecules 2019; 10: 61.

16. Brayer GD, Luo Y, Withers SG. The structure of human pancreatic α-amylase at 1.8 Å resolution and comparisons with related enzymes. Protein Sci 1995; 4: 1730-42.

17. “Schrödinger Release 2020-4: Protein Preparation Wizard; Epik, Schrödinger, LLC, New York, NY 2016; Impact, Schrödinger, LLC, New York, NY 2016; Prime, Schrödinger, LLC, New York, NY 2020.”

18. Poustforoosh A, Hashemipour H, Tüzün B, Pardakhty A, Mehrabani M, Nematollahi MH. Evaluation of potential anti-RNA-dependent RNA polymerase (RdRp) drugs against the newly emerged model of COVID-19 RdRP using computational methods. Biophys Chem 2021; 272: 106564.

19. “Schrödinger Release 2020-4: LigPrep, Schrödinger, LLC, New York, NY 2020.”

20. Dou L, Zhang X, Zangeneh MM, Zhang Y. Efficient biogenesis of Cu2O nanoparticles using extract of Camellia sinensis leaf: evaluation of catalytic, cytotoxicity, antioxidant, and anti-human ovarian cancer properties. Bioorg Chem 2020; 106: 104468.

21. Channar PA, Saeed A, Larik FA, et al. Design and synthesis of 2,6-di(substituted phenyl)thiazolo[3,2-b]-1,2,4-oxidant, and anti-human ovarian cancer properties. Food Res Int 2018; 116: 447-54.

22. Brayer GD, Luo Y, Withers SG. The structure of human pancreatic α-amylase at 1.8 Å resolution and comparisons with related enzymes. Protein Sci 1995; 4: 1730-42.

23. Sangami S, Manu M. Synthesis of Green Iron Nanoparticles using Laterite and their application as a Fenton-like catalyst for the degradation of herbicide Ametryn in water. Environ Technol Innov 2017; 8: 150-63.

24. Beheshikhoo N, Kouhbanani MA, Savardashkati A, et al. Green synthesis of iron oxide nanoparticles by aqueous leaf extract of Daphne mezerium as a novel dye removing material. Appl Phys A 2018; 124: 363-9.

25. Oganesvan G, Galstyan A, Mnatsakanyan V, et al. Phenolic and flavonoid compounds of Ziziphora clinopodioi-des. Chem Nat Prod Res 2015; 71: 37-45.

26. Kumar P, Duhan M, Kadyan K, Sindhu J, Kumar S, ve Sharma H. Synthesis of novel inhibitors of α-amylase based on the thiaolizidine-4-one skeleton containing a pyrazole moiety and their configurational studies. Med Chem Comm 2017; 8: 1468-76.

27. Subhani S, Jayaraman A, Jamil K. Homology modelling and molecular docking of MDR1 with chemotherapeutic agents in non-small cell lung cancer. Biomed Pharmacother 2015; 71: 37-45.

28. Türe A, Kahraman DC, Cetin-Atalay R, Helvacoğlu S, Charehzas M, Küçükgüzeli I. Synthesis, anticancer activity, toxicity evaluation and molecular docking studies of novel phenylaminopyrimidines – (thio)urea hybrids as potential kinase inhibitors. Comput Biol Chem 2019; 78: 227-41.

29. Li ZL, Fan C, Chen SL, Song YF, Yang YL, Wang SL. Synthesis of darirestat as an aldose reductase inhibitor. J Shenyang Pharm Univ 2014; 31: 521-5.