Electronic and Vibrational Properties of Fe2NiAl and Co2NiAl Full Heusler Alloys: A First-Principles Comparison

Olga Miroshkina 1, Vladimir Sokolovskiy 2, Vasiliy Buchelnikov 2, and Markus Gruner 2

1University of Duisburg-Essen
2Affiliation not available

October 30, 2023

Abstract

In this work, we report on a systematic first-principles study of the structural, electronic, vibrational and thermodynamic properties of the cubic Fe$_2$NiAl and tetragonally distorted Co$_2$NiAl full Heusler compounds. We discuss systematically the competition between the inverse Heusler structure and a T^p-type layered atomic ordering formed by the alternating planes of (Fe,Co) and Ni atoms in terms of the electronic and vibrational density of states.

Such an arrangement is predicted to be the ground state of Fe$_2$NiAl. For Co$_2$NiAl, layered ordering has slightly higher energy in comparison with the inverse one, however, we show that it might be stabilized at rather low temperatures.

Due to the broken symmetry, layered T^p-Fe$_2$NiAl possesses a large MAE of the same order as tetraenite FeNi - even in a phase with cubic lattice parameters, which makes a T^p-type layered order an interesting feature for rare-earth free permanent magnets in Heusler-type compounds.
Electronic and Vibrational Properties of Fe$_2$NiAl and Co$_2$NiAl

Full Heusler Alloys: A First-Principles Comparison

Olga N. Miroshkina1,2, Vladimir V. Sokolovskiy2, Vasiliy D. Buchelnikov2, and Markus E. Gruner1

1Faculty of Physics and Center for Nanointegration, CENIDE, University of Duisburg-Essen, 47048 Duisburg, Germany
2Faculty of Physics, Chelyabinsk State University, 454001 Chelyabinsk, Russia

We provide a comparative first-principles investigation of the structural, electronic, vibrational and thermodynamic properties of the full Heusler compounds, cubic Fe$_2$NiAl and tetragonally distorted Co$_2$NiAl. In both cases, we find the inverse Heusler structure to be in close competition with a layered arrangement of the elements, which breaks cubic symmetry and is accompanied by significant absolute values for the magnetocrystalline anisotropy energy. While for Fe$_2$NiAl the layered arrangement is predicted as a new ground state, we show evidence that it might become dynamically stable around room temperatures also for Co$_2$NiAl. We identify in both systems subtle differences in the electronic and vibrational density of states between the different structures, which might be related to their particular stability.

Index Terms—Density functional theory, Heusler alloys, magnetocrystalline anisotropy, vibrational densities of states

I. INTRODUCTION

Permanent magnets are of vital interest for modern industry since they are essential for the miniaturization of electronic devices, robotics, electrical vehicles, magnetic data storage and cooling technologies [1]–[10]. Nowadays, the most powerful commercial permanent magnets, such as (Nd,Pr)$_2$Fe$_{14}$B and Sm$_2$(Co,Cu,Fe,Zr)$_{17}$, are based on rare-earth elements, which are comparatively scarce and expensive. Therefore the search for rare-earth free permanent magnets is a central topic for modern materials science.

Among the distinguished candidates is tetratenite L$_1$-FeNi, whose magnetocrystalline anisotropy energy (MAE) of ≈ 1.1–1.3 MJ/m3 [11]–[13] approaches the order of Nd-Fe-B. Tetratenite is mainly found in meteorites [14], [15] according to the rather low order-disorder phase transition temperature (200 – 300 °C) leading to extremely slow atomic diffusion, which makes its synthesis very challenging on the large scale. However, L$_1$-FeNi can be grown as a thin film [16]–[20], whereas other current strategies also include the effect of doping, interstitials, pressure, or simultaneous application of stress and magnetic field under an inert atmosphere on the order-disorder transformation [21]–[24].

In recent years, full Heusler alloys based on Ni [25], [26], Fe [26], [27], Co [26], [27], Rh, Au, and Mn [26] were considered for application as permanent magnets with a medium-range energy product. The advantages of Heusler alloys are their comparatively low price and flexibility in properties, which can be tuned by structural ordering, composition and various defects. Fe- and Co-based Heusler alloys were recently studied by Matsushita et al. in terms of whether one may obtain a large MAE in alloys that adopt a low symmetry tetragonal structure [27]. Among 30 considered compositions, the authors found 15, which undergo tetragonal distortion and have MAE from -12 MJ/m3 (Co$_2$PtAl) to $+5.19$ MJ/m3 (Fe$_2$PtGe). It was proposed in theoretical studies [27]–[30] that Fe$_2$NiAl possesses the inverse cubic structure (XA, Hg$_2$CuTi prototype), which confirms part of the experimental results [28], [31], while conflicting with others. Yin et al. [32] performed direct synthesis calorimetry of standard formation enthalpies and found that Fe$_2$NiAl crystallizes in a B2 structure in agreement with the high temperature phase diagram [33]. According to other studies, Fe-Ni-Al solid solutions are prone to a decomposition into two isomorphous body centered cubic (bcc) phases, consisting of Fe-rich particles (β-phase) and a weak-magnetic NiAl-based matrix (β_2-phase) [34], [35], and as a result of the decomposition, a miscibility gap appears on the phase diagram at lower temperatures [33], [36], [37]. Nevertheless, a subsequent heat treatment is found to improve the hard magnetic properties of Fe-Ni-Al [38]–[40].

The theoretical discussion of these full Heusler compounds mainly concentrates on the regular (L$_2$) and inverse (XA) structure. However, Neibecker et al. [41] recently suggested that layered crystal motives can be a strong competitor. This is corroborated by our recent efforts devoted to the first-principles study of structural stability and magnetic properties of these motifs in (Fe,Co)$_2$Ni$_{1+x}$Al$_{1-x}$ [42], [43]. In particular, we identified the T$_p$-layered structure with nearly cubic lattice parameters as a potential ground state for Fe-based alloys at the stoichiometric composition and small Ni-excess, whereas stoichiometric Co$_2$NiAl has in turn an inverse tetragonal structure with $c/a = 1.3$. Here T$_p$ is close in energy, becoming more favorable with Ni excess [43]. In this work, we provide a comparative analysis of the electronic, vibrational and thermodynamic properties of stoichiometric Fe$_2$NiAl and Co$_2$NiAl, which both were predicted to show a large MAE in their T$_p$ structures: easy-axis and as large as 1.05 MJ/m3 for Fe$_2$NiAl [42] and easy plane with a value of -2.2 MJ/m3 for Co$_2$NiAl [43].

II. DETAILS OF THE CALCULATIONS

Ground state properties of (Fe,Co)$_2$NiAl were calculated in the framework of density functional theory (DFT) using the plane-wave basis set and the projector augmented

Corresponding author: O. N. Miroshkina (email: olga.miroshkina@uni-due.de).
A. Structural and magnetic properties

An overview of the energetic order of the structural motifs in Fig. 1 as a function of an additional tetragonal distortion c/a is presented for both compositions in Fig. 2(a) and (c). One can see that the regular structure is comparatively far above the energy of the other structures for both Fe- and Co-based alloys, except for large tetragonal distortions. For Fe$_2$NiAl (Fig. 2(a)), the T^p structure with almost equal lattice parameters ($c/a \approx 0.99$) is identified as a potential ground state structure, while other structures are at least 15 meV/atom (as in case of $T^\#$) higher in energy. The energy curves of the inverse, T^p, T^c, and $T^\#$ structures have only one minimum corresponding to nearly cubic lattice parameters indicating the absence of martensitic phase transition for Fe$_2$NiAl. Contrary, a tetragonally distorted inverse (XA) structure is found to be a ground state of Co$_2$NiAl with $c/a = 1.29$. However, the layered T^p structure with $c/a = 1.35$ turns out to be a close competitor due to the small energy difference of ≈ 5 meV/atom between them.

The magnetization per formula unit (f.u.) for the two compounds is shown in panels (b) and (d) of Fig. 2. Fe$_2$NiAl offers a rather large magnetization in the order of $4.8 \mu_B$/f.u., being nearly the same for the inverse and T^p structure at $c/a = 1$, while there seems no clear trend regarding its dependence on a tetragonal distortion. Co$_2$NiAl has a considerably smaller moment of about $2.8 \mu_B$/f.u., as expected from the presence of two more d-electrons in the minority channel. Interestingly, the dependence of the magnetic moment curves on c/a is rather similar for the inverse and T^p, T^c, and $T^\#$ structures as opposed to the regular (L2$_1$) ordering.

All competitive structures under consideration are found to be stable with respect to decomposition into the primary phases of the constituting elements. This is demonstrated in Table I in terms of a negative formation energy $E_{\text{form}} = E_{\text{tot}} - (2E_X + E_{\text{Ni}} + E_{\text{Al}})$, where E_{tot} is the total energy of X$_2$NiAl ($X = \text{Fe and Co}$), E_X, E_{Ni}, and E_{Al} are the total energies of corresponding pure X, Ni, and Al in their bulk phases. In absolute numbers, the stability of Fe$_2$NiAl is
TABLE I

Structural properties of Fe$_2$NiAl and Co$_2$NiAl after full optimization of the lattice parameters and ionic positions. Data taken from Ref. [42], [43].

Alloy	Struc.	a [Å]	c [Å]	c/a	E$_{form}$ [eV/f.u.]
Fe$_2$NiAl	Tp	5.752	5.789	0.992	-1.237
	inverse	5.759	5.738	1.000	-1.089
Co$_2$NiAl	Tp	5.141	6.914	1.345	-0.775
	inverse	5.206	6.728	1.292	-0.780

significantly higher against the decomposition into the pure element phases as compared to Co$_2$NiAl.

B. Electronic structure

According to the fundamental difference in lattice symmetry (cubic vs. tetragonal) Fe$_2$NiAl and Co$_2$NiAl naturally exhibit substantial differences in their electronic density of states (DOS), see Fig. 3. The detailed comparison of the DOS between the inverse and Tp structure for each compound in Fig. 3(a) and (d), exhibits that in case of Fe$_2$NiAl the reduced symmetry of the layered Tp with respect to the cubic XA arrangement also results in important modifications, notably the opening of a sharp pseudo-gap around -1.2 eV in the inverse structure, which is characterized by a tetrahedral coordination of Al with respect to the surrounding Ni. In the element-resolved DOS in Fig. 3(c), we observe – apart from the overall strong hybridization between Fe and Ni-d states – an increased hybridization between Ni-d and Al-,p as compared to the Tp-case, which contributes to the rather sharp definition of the edges of the pseudo-gap. In the lower symmetry of the Tp structure, degenerate states tend to split up, which leads to the filling of the gap in Fig. 3(b) by redistributing states from ≈ -1.4 eV in the majority and from ≈ -0.8 eV and ≈ -2.2 eV in the minority channel of inverse Fe$_2$NiAl. Eventually we also observe a widening of the deep minimum in the DOS around the Fermi-level in the Tp case, which might contribute to the particular stability of the structure although the value of the DOS directly at the Fermi level hardly differs between Tp and inverse Heusler structure.

In case of Co$_2$NiAl, the DOS is essentially almost for both Tp and inverse structures in the majority channel, while subtle but essential differences are visible for the spin-down states, see Fig. 3(d). This applies in particular to a sharp Fe-d-peak in the minority channel slightly below the Fermi-level, shown enlarged in the inset of Fig. 3(d). In the Tp-structure, this peak moves slightly closer to the Fermi energy, which leads to a high density of states at the highest occupied level, which is a disadvantage in terms of the band energy and a destabilizing feature for the lattice. One can also note the splitting in the minority Ni DOS into two peaks at -0.9 to -1.6 eV in the inverse case in Fig. 3(f), which, however, does not lead to the formation of a pseudogap due to the lower symmetry of the structure, which causes additional broadening of the peaks. Similar to Fe$_2$NiAl, the minimum in between is filled in the Tp structure in Fig. 3(e), mainly with Ni states which originate around -0.5 eV in Fig. 3(f).

C. Vibrational and thermodynamic properties

The VDOS as a fingerprint of the interatomic forces once again shows larger differences between the systems than between the structural motifs, as shown in Fig. 4(a) and (d). This is again to a large extend traced back to the significant tetragonal distortion of the Co-based system, which results in a characteristic broadening of the features, e.g., the sharp peak arising from vibrations of Al atoms around 10 THz, which occurs for Tp and inverse structure, see the element-resolved VDOS in Fig. 4(b,c,e,f). Nevertheless, Fig. 4(a) and (d) exhibit for both compositions subtle, but important differences in the VDOS between the two structural motifs. For Fe$_2$NiAl, a gap-like feature opens at 6.7 THz in Tp structure, leading to a redistribution of states to a new peak around 7.5 – 8 THz and towards the lower energy range between 2.5 and 4.5 eV, which is dominated by Ni-vibrations in Tp. In case of Co$_2$NiAl, we essentially observe a red-shift of the features in the energy range between 3 and 8 eV, which again results in a higher
Fig. 4. Total and element-resolved vibrational DOS of Fe$_2$NiAl (left column) and Co$_2$NiAl (right column) in T$_p$ and inverse structures. Comparison of the total VDOS for both compositions (top row) as well as the partial VDOS in T$_p$ (middle row) and inverse (bottom row) are presented.

contribution of T$_p$ in the lower energy range < 6 THz, arising from an increase in the Co-VDOS.

Such an increase in density at low energies is indicative of a softening of both structures, which also affects thermodynamic quantities, in particular an increase in lattice entropy, which might further stabilize the T$_p$ structure with increasing temperature. We therefore evaluated the free energy F in the harmonic approximation of the structures at finite temperatures in a similar fashion as in [42], taking into account the vibrational contributions derived within the harmonic approximation from the VDOS in Fig. 4 and the electronic contributions from the DOS in Fig. 3 in terms of the Sommerfeld expansion, while the magnetic free energy is neglected according to the rather high Curie-temperatures in these compounds [42], [43]. The difference in the free energies $\Delta F(T) = F_{T_p}(T) - F_{\text{inverse}}(T)$ for both compounds as a function of temperature T is presented in Fig. 5. For the Fe-based compound, the T$_p$ structure possesses lowest free energy already at $T = 0$ and improves its stability further in the entire temperature range. For Co$_2$NiAl, the inverse structure is favored below 300 K, while above the red-shifted VDOS causes a preference for T$_p$, which becomes more and more stable with increasing temperatures. This indicates a possibility for the synthesis of T$_p$ structures in both compounds under suitable annealing conditions.

IV. CONCLUSIONS

In this work, we compare the inverse Heusler structures with the recently suggested layered T$_p$ ordering in stoichiometric Fe$_2$NiAl and Co$_2$NiAl compounds in the framework of density functional theory. The layered atomic ordering turns out to be a promising candidate for the ground state of Fe$_2$NiAl, while it becomes stable at ambient condition in Co$_2$NiAl due to its advantage in lattice entropy. The stability of T$_p$ ordering in the two compounds is connected to subtle differences between characteristic features in the electronic and vibrational DOS.

Based on these findings, we expect that the layered T$_p$ ordering may be a strong competitor to the inverse (XA) structure also in other Heusler compounds with a similar valence electron concentration, regardless whether the system undergoes a martensitic transition to a tetragonal ground state. Due to the broken symmetry, layered T$_p$-Fe$_2$NiAl posseses a large MAE of the same order as tetrataenite FeNi – even in a phase with cubic lattice parameters, which makes a T$_p$-type layered order an interesting feature for rare-earth free permanent magnets in Heusler-type compounds.

ACKNOWLEDGMENT

This work was supported by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) within TRR 270 (Project-ID 405553726), Russian Science Foundation (RSF) project No. 17-72-20022 (structural and magnetic properties of Fe$_2$NiAl), and the Ministry of Science and Higher Education of the Russian Federation within the framework of the Russian State Assignment under contract No. 075-00992-21-00 (structural and magnetic properties of Co$_2$NiAl). Vibrational properties calculations were performed on the MagnitUDE high performance computing system of the University of Duisburg-Essen (DFG INST 20876/209-1 and 20876/243-1 FUGG).
REFERENCES

[1] P. Campbell, “Permanent magnet materials and their application,” 1996.

[2] D. Goll and H. Kronmüller, “High-performance permanent magnets,” Naturwissenschaften, vol. 87, no. 10, pp. 423–438, 2000.

[3] B. Bochenkov and S. Lutz, “A review of modern materials of permanent magnets,” in Proceedings, The 8th Russian-Korean International Symposium on Science and Technology, 2004. KORUS 2004., vol. 1. IEEE, 2004, pp. 201–203.

[4] R. Skomski and J. Coey, “Magnetic anisotropy—how much is enough for a permanent magnet?” Scr. Mater., vol. 112, pp. 3–8, 2016.

[5] R. Skomski, Permanent Magnets: History, Current Research, and Outlook. Cham: Springer International Publishing, 2016, pp. 359–395.

[6] K. Hono and H. Sepehri-Amin, “Prospect for HRE-free high coercivity Nd-Fe-B permanent magnets,” Scr. Mater., vol. 151, pp. 6–13, 2018.

[7] L. H. Lewis, A. Mubarok, E. Poirier, N. Bordeaux, P. Manchanda, J. Coey, “Perspective and prospects for rare earth permanent magnets,” Acta Materialia, vol. 154, pp. 289–294, 2018.

[8] J. Mohapatra and J. P. Liu, “Heavy rare earth free, free rare earth and rare earth free magnets—vision and reality,” Scr. Mater., vol. 154, no. 1, pp. 1–5, 2018.

[9] A. Kovacs, J. Fischbacher, M. Gusenbauer, H. Oezelt, C. H. Herper, O. Y. Vekilova, P. Nieves, S. Arapan, and T. Schrefl, “Computational design of rare-earth reduced permanent magnets,” Engin., vol. 6, no. 2, pp. 148–153, 2020.

[10] J. Coey, “Perspective and prospects for rare earth permanent magnets,” Engin., vol. 6, no. 2, pp. 119–131, 2020.

[11] J. Paulevé, A. Chambrod, K. Krebs, and A. Bourret, “Magnetization curves of Fe–Ni (50–50) single crystals ordered by neutron irradiation with an applied magnetic field,” Journal of Applied Physics, vol. 39, no. 2, pp. 980–984, 1968.

[12] M. Mizuguchi, T. Kojima, M. Kotsugi, T. Koganezawa, K. Osaka, and K. Takenaka, “Artificial fabrication and order parameter estimation of L1₀-ordered FeNi thin film grown on a AuNi buffer layer,” J. Magn. Soc. Jpn., vol. 35, no. 4, pp. 370–373, 2011.

[13] E. Poirier, F. E. Pinkerton, R. Kubic, R. K. Mishra, N. Bordeaux, A. Mubarok, L. H. Lewis, J. I. Goldstein, R. Skomski, and K. Barmak, “Intrinsic magnetic properties of L1₀ FeNi obtained from meteorite NWA 6259,” Journal of Applied Physics, vol. 117, no. 17, p. 17E318, 2015.

[14] J. Cui, M. Kramer, L. Zhou, F. Liu, A. Gabay, G. Hadjipanayis, B. Balasubramanian, and D. Sellmyer, “Current progress and future challenges in rare-earth-free permanent magnets,” Acta Materialia, vol. 158, pp. 118–137, 2018.

[15] L. H. Lewis, A. Mubarok, E. Poirier, N. Bordeaux, P. Manchanda, A. Kashyap, R. Skomski, J. Goldstein, F. Pinkerton, R. Mishra et al., “Inspired by nature: investigating tetrataenite for permanent magnetic applications,” J. Phys. Condens. Mat., vol. 26, no. 6, pp. 064213, 2014.

[16] E. Lima Jr and V. Drago, “A new process to produce ordered Fe₂₅₀Ni₂₅₀ tetrataenite,” Phys. Stat. Sol. (A), vol. 187, no. 1, pp. 119–124, 2001.

[17] T. Shima, M. Okamura, S. Mitani, and K. Takashani, “Structure and magnetic properties of L1₀-ordered FeNi films prepared by alternate monatomic layer deposition,” J. Magn. Magn. Mater., vol. 310, no. 2, pp. 2213–2214, 2007.

[18] A. Makino, P. Sharma, K. Sato, A. Takeuchi, Y. Zhang, and K. Takenaka, “Artificially produced rare-earth-free cosmic magnetic,” Sci. Rep., vol. 5, no. 1, pp. 1–8, 2015.

[19] S. Goto, H. Kura, E. Watanebe, Y. Hayashi, H. Yanagihara, Y. Shimada, M. Mizuguchi, K. Takenashi, and E. Kita, “Synthesis of single-phase L1₀Fe₃Ni₄ magnet powder by nitrogen insertion and topotactic extraction,” Sci. Rep., vol. 7, no. 1, pp. 1–7, 2017.

[20] G. Giannopoulos, G. Baruca, A. Kaidatzis, V. Psycharis, R. Salikhov, M. Farle, E. Koulostafakis, D. Niarchos, A. Mehta, M. Scuderi et al., “L₁₀Fe₁₅Ni₁₅ films on Au-Cu-Ni buffer-layer: a high-throughput combinatorial study,” Sci. Rep., vol. 8, no. 1, pp. 1–9, 2018.

[21] L.-Y. Tian, H. Levnávické, O. Eriksson, K. Kokko, Á. Nagy, E. K. Dèlczez-Czirájk, and L. Vitos, “Density functional theory description of the order-disorder transformation in Fe₁₁Ni₁₁,” Sci. Rep., vol. 9, no. 1, pp. 1–7, 2019.

[22] L.-Y. Tian, O. Eriksson, and L. Vitos, “Pressure effect on the order-disorder transformation in L₁₀Fe₁₁,” Sci. Rep., vol. 10, no. 1, pp. 1–7, 2020.

[23] M. Maitá, J. McDonald, R. Barua, B. Lejeune, X. Zhang, G. Stephen, A. Fisher, D. Heiman, I. Soldatov, R. Schäfer et al., “Creating, probing and confirming tetragonality in bulk FeNi alloys,” Acta Materialia, vol. 196, pp. 776–789, 2020.