A q-analog of Ljunggren’s binomial congruence

Armin Straub

Abstract. We prove a q-analog of a classical binomial congruence due to Ljunggren which states that

\[
\binom{ap}{bp} \equiv \binom{a}{b} \mod p^3
\]

modulo p^3 for primes $p \geq 5$. This congruence subsumes and builds on earlier congruences by Babbage, Wolstenholme and Glaisher for which we recall existing q-analogs. Our congruence generalizes an earlier result of Clark.

Résumé. to be added

Keywords: q-analogs, binomial coefficients, binomial congruence

1 Introduction and notation

Recently, q-analogs of classical congruences have been studied by several authors including (Cla95), (And99), (SP07), (Pan07), (CP08), (Dil08). Here, we consider the classical congruence

\[
\binom{ap}{bp} \equiv \binom{a}{b} \mod p^3
\]

which holds true for primes $p \geq 5$. This also appears as Problem 1.6 (d) in (Sta97). Congruence (1) was proved in 1952 by Ljunggren, see (Gra97), and subsequently generalized by Jacobsthal, see Remark 6.

Let $[n]_q := 1 + q + \ldots + q^{n-1}$, $[n]_q! := [n]_q[n-1]_q \cdots [1]_q$ and

\[
\binom{n}{k}_q := \frac{[n]_q!}{[k]_q![n-k]_q!}
\]

denote the usual q-analogs of numbers, factorials and binomial coefficients respectively. Observe that $[n]_1 = n$ so that in the case $q = 1$ we recover the usual factorials and binomial coefficients as well. Also, recall that the q-binomial coefficients are polynomials in q with nonnegative integer coefficients. An introduction to these q-analogs can be found in (Sta97).

We establish the following q-analog of (1):

\[
\binom{ap}{bp}_q \equiv \binom{a}{b}_q \mod p^3
\]

\[\text{†}\text{Partially supported by grant NSF-DMS 0713836.}\]
Theorem 1 For primes $p \geq 5$ and nonnegative integers a, b,
\[
\binom{ap}{bp}_q \equiv \binom{a}{b}_q q^{p^2} - \binom{a}{b+1}_q \frac{p^2 - 1}{2} (q^p - 1)^2 \mod [p]^3.
\] (2)

The congruence (2) and similar ones to follow are to be understood over the ring of polynomials in q with integer coefficients. We remark that $p^2 - 1$ is divisible by 12 for all primes $p \geq 5$.

Observe that (2) is indeed a q-analog of (1): as $q \to 1$ we recover (1).

Example 2 Choosing $p = 13$, $a = 2$, and $b = 1$, we have
\[
\binom{26}{13}_q = 1 + q^{169} - 14(q^{13} - 1)^2 + (1 + q + \ldots + q^{12})^3 f(q)
\]
where $f(q) = 14 - 41q + 41q^2 - \ldots + q^{132}$ is an irreducible polynomial with integer coefficients. Upon setting $q = 1$, we obtain $\binom{26}{13}_1 \equiv 2$ modulo 13^3.

Since our treatment very much parallels the classical case, we give a brief history of the congruence (1) in the next section before turning to the proof of Theorem 1.

2 A bit of history

A classical result of Wilson states that $(n - 1)! + 1$ is divisible by n if and only if n is a prime number.

“In attempting to discover some analogous expression which should be divisible by n^2, whenever n is a prime, but not divisible if n is a composite number”, (Bab19), Babbage is led to the congruence
\[
\binom{2p - 1}{p - 1} \equiv 1 \mod p^2
\] (3)
for primes $p \geq 3$. In 1862 Wolstenholme, (Wol62), discovered (3) to hold modulo p^3, “for several cases, in testing numerically a result of certain investigations, and after some trouble succeeded in proving it to hold universally” for $p \geq 5$. To this end, he proves the fractional congruences
\[
\sum_{i=1}^{p-1} \frac{1}{i} \equiv 0 \mod p^2,
\]
\[
\sum_{i=1}^{p-1} \frac{1}{i^2} \equiv 0 \mod p
\]
for primes $p \geq 5$. Using (4) and (5) he then extends Babbage’s congruence (3) to hold modulo p^3:
\[
\binom{2p - 1}{p - 1} \equiv 1 \mod p^3
\] (6)
for all primes $p \geq 5$. Note that (6) can be rewritten as $\binom{2p}{p} \equiv 2 \mod p^3$. The further generalization of (6) to (1), according to (Gra97), was found by Ljunggren in 1952. The case $b = 1$ of (1) was obtained by Glaisher, (Gla00), in 1900.
A \(q \)-analog of Ljunggren’s binomial congruence

In fact, Wolstenholme’s congruence (6) is central to the further generalization (1). This is just as true when considering the \(q \)-analogs of these congruences as we will see here in Lemma 5.

A \(q \)-analog of the congruence of Babbage has been found by Clark (Cla95) who proved that

\[
\binom{ap}{bp} \equiv \binom{a}{b} q^{p^2} \pmod{[p]_q^2},
\]

(7)

We generalize this congruence to obtain the \(q \)-analog (2) of Ljunggren’s congruence (1). A result similar to (7) has also been given by Andrews in (And99).

Our proof of the \(q \)-analog proceeds very closely to the history just outlined. Besides the \(q \)-analog (7) of Babbage’s congruence (3) we will employ \(q \)-analogs of Wolstenholme’s harmonic congruences (4) and (5) which were recently supplied by Shi and Pan, (SP07):

Theorem 3 For primes \(p \geq 5 \),

\[
\sum_{i=1}^{p-1} \frac{1}{i} \equiv -\frac{p-1}{2} (q-1) + \frac{p^2-1}{24} (q-1)^2 [p]_q \pmod{[p]_q^2}
\]

(8)

as well as

\[
\sum_{i=1}^{p-1} \frac{1}{i^2} \equiv -\frac{(p-1)(p-5)}{12} (q-1)^2 \pmod{[p]_q},
\]

(9)

This generalizes an earlier result (And99) of Andrews.

3 A \(q \)-analog of Ljunggren’s congruence

In the classical case, the typical proof of Ljunggren’s congruence (1) starts with the Chu-Vandermonde identity which has the following well-known \(q \)-analog:

Theorem 4

\[
\binom{m+n}{k}_q = \sum_j \binom{m}{j}_q \binom{n}{k-j}_q q^{j(n-k+j)}.
\]

We are now in a position to prove the \(q \)-analog of (1).

Proof of Theorem 1: As in (Cla95) we start with the identity

\[
\binom{ap}{bp}_q = \sum_{c_1 + \ldots + c_a = bp} p^{\sum_{i \leq a} (c_i - 1)} q^{p \sum_{i \leq a} c_i} \cdot \binom{p}{c_1}_q \binom{p}{c_2}_q \ldots \binom{p}{c_a}_q
\]

(10)

which follows inductively from the \(q \)-analog of the Chu-Vandermonde identity given in Theorem 4. The summands which are not divisible by \([p]_q^2\) correspond to the \(c_i \) taking only the values 0 and \(p \). Since each such summand is determined by the indices \(1 \leq j_1 < j_2 < \ldots < j_b \leq a \) for which \(c_i = p \), the total contribution of these terms is

\[
\sum_{1 \leq j_1 < \ldots < j_b \leq a} q^{p^2 \sum_{k=1}^{b} (j_k - 1) - p^2 (b)} = \sum_{0 \leq i_1 < \ldots < i_b \leq a-b} q^{p^2 \sum_{k=1}^{b} i_k} = \binom{a}{b}_q q^{p^2}.
\]
This completes the proof of (7) given in (Cla95).

To obtain (2) we now consider those summands in (10) which are divisible by \([p]_q^2\) but not divisible by \([p]_q^3\). These correspond to all but two of the \(c_i\) taking values 0 or \(p\). More precisely, such a summand is determined by indices \(1 \leq j_1 < j_2 < \ldots < j_b < j_{b+1} \leq a\), two subindices \(1 \leq k < \ell \leq b+1\), and \(1 \leq d \leq p-1\) such that

\[
c_i = \begin{cases}
 d & \text{for } i = j_k, \\
 p - d & \text{for } i = j_\ell, \\
 p & \text{for } i \in \{j_1, \ldots, j_{b+1}\}\setminus\{j_k, j_\ell\}, \\
 0 & \text{for } i \notin \{j_1, \ldots, j_{b+1}\}.
\end{cases}
\]

For each fixed choice of the \(j_i\) and \(k, \ell\) the contribution of the corresponding summands is

\[
\sum_{d=1}^{p-1} \binom{p}{d} \binom{p}{p-d} q^{p \sum_{j \leq i \leq a} (-1)^{c_i} \sum_{j \leq i < j \leq a} c_j}.
\]

which, using that \(q^p \equiv 1 \pmod{[p]_q}\), reduces modulo \([p]_q^3\) to

\[
\sum_{d=1}^{p-1} \binom{p}{d} \binom{p}{p-d} q^{p^2} = \binom{2p}{p}_q - [2]_{q^2}.
\]

We conclude that

\[
\binom{ap}{bp}_q = \binom{a}{b}_q \binom{b+1}{2} \binom{2p}{p}_q - [2]_{q^2} \pmod{[p]_q^3}.
\]

The general result therefore follows from the special case \(a = 2, b = 1\) which is separately proved next.

\[
\text{Lemma 5} \quad \text{For primes } p \geq 5,
\]

\[
\binom{2p}{p}_q \equiv [2]_{q^2} - \frac{p^2 - 1}{12} (q^p - 1)^2 \pmod{[p]_q^3}.
\]

\[
\text{Proof: Using that } [an]_q = [a]_q [n]_q \text{ and } [n + m]_q = [n]_q + q^n [m]_q \text{ we compute}
\]

\[
\binom{2p}{p}_q = \frac{[2p]_q [2p-1]_q \cdots [p+1]_q}{[p]_q [p-1]_q \cdots [1]_q} = \frac{[2]_{q^p}}{[p-1]_q} \prod_{k=1}^{p-1} \left([p]_q + q^p [p-k]_q \right).
\]
A q-analog of Ljunggren’s binomial congruence

which modulo $[p]_q^3$ reduces to (note that $[p - 1]_q!$ is relatively prime to $[p]_q^3$)

$$[2]_{q^p} \left(q^{(p-1)p} + q^{(p-2)p} \sum_{1 \leq i \leq p-1} [i]_q [i]_q + q^{(p-3)p} \sum_{1 \leq i < j \leq p-1} [i]_q [j]_q \right).$$

(12)

Combining the results (8) and (9) of Shi and Pan, (SP07), given in Theorem 3, we deduce that for primes $p \geq 5$,

$$\sum_{1 \leq i < j \leq p-1} \frac{1}{[i]_q [j]_q} \equiv \frac{(p - 1)(p - 2)}{6} (q - 1)^2 \mod [p]_q.$$ (13)

Together with (8) this allows us to rewrite (12) modulo $[p]_q^3$ as

$$[2]_{q^p} \left(q^{(p-1)p} + q^{(p-2)p} \left(-\frac{p - 1}{2}(q^p - 1) + \frac{p^2 - 1}{24}(q^p - 1)^2 \right) + \right.$$

$$\left. + q^{(p-3)p} \frac{(p - 1)(p - 2)}{6} (q^p - 1)^2 \right).$$

Using the binomial expansion

$$q^{mp} = (q^p - 1 + 1)^m = \sum_k \binom{m}{k} (q^p - 1)^k$$

to reduce the terms q^{mp} as well as $[2]_{q^p} = 1 + q^p$ modulo the appropriate power of $[p]_q$ we obtain

$$\binom{2p}{p}_q \equiv 2 + p(q^p - 1) + \frac{(p - 1)(5p - 1)}{12}(q^p - 1)^2 \mod [p]_q^3.$$ (14)

Since

$$[2]_{q^p} \equiv 2 + p(q^p - 1) + \frac{(p - 1)p}{2}(q^p - 1)^2 \mod [p]_q^3$$

the result follows.

\[\square\]

Remark 6 Jacobsthal, see (Gra97), generalized the congruence (1) to hold modulo p^{3+r} where r is the p-adic valuation of

$$ab(a - b) \binom{a}{b} = 2a \binom{a}{b + 1} \binom{b + 1}{2}.$$ (15)

It would be interesting to see if this generalization has a nice analog in the q-world.

Acknowledgements

Most parts of this paper have been written during a visit of the author at Grinnell College. The author wishes to thank Marc Chamberland for his encouraging and helpful support. Partial support of grant NSF-DMS 0713836 is also thankfully acknowledged.
References

[And99] George E. Andrews. q-analogs of the binomial coefficient congruences of Babbage, Wolstenholme and Glaisher. *Discrete Math.*, 204(1):15–25, 1999.

[Bab19] C. Babbage. Demonstration of a theorem relating to prime numbers. *The Edinburgh Philosophical Journal*, 1:46–49, 1819.

[Cla95] W. Edwin Clark. q-analogue of a binomial coefficient congruence. *International Journal of Mathematics and Mathematical Sciences*, 18(1):197–200, 1995.

[CP08] Robin Chapman and Hao Pan. q-analogues of Wilson’s theorem. *Int. J. Number Theory*, 4(4):539–547, 2008.

[Dil08] Karl Dilcher. Determinant expressions for q-harmonic congruences and degenerate Bernoulli numbers. *Electron. J. Combin.*, 15(1), 2008.

[Gla00] J.W.L. Glaisher. Residues of binomial-theorem coefficients with respect to p^3. *Quart. J. Math.*, Oxford Series 31, 110-124, 1900.

[Gra97] Andrew Granville. Arithmetic properties of binomial coefficients I: Binomial coefficients modulo prime powers. *CMS Conf. Proc.*, 20:253–275, 1997.

[Pan07] Hao Pan. A q-analogue of Lehmer’s congruence. *Acta Arith.*, 128(4):303–318, 2007.

[SP07] Ling-Ling Shi and Hao Pan. A q-analogue of Wolstenholme’s harmonic series congruence. *Amer. Math. Monthly*, 114(6):529–531, 2007.

[Sta97] Richard P. Stanley. *Enumerative Combinatorics, Volume 1*. Cambridge University Press, 1997.

[Wol62] J. Wolstenholme. On certain properties of prime numbers. *The Quarterly Journal of Pure and Applied Mathematics*, 5:35–39, 1862.