Anterior approach of the elbow for fixation of capitulum fractures

Dr. Pratik Sidhdhapuria, Dr. Shahrukhkhan Pathan and Dr. Vijay Chaudhary

DOI: https://doi.org/10.22271/ortho.2019.v5.i2h.59

Abstract

Objective: Fractures involving the capitellum can be treated surgically by excision of the fragment, or by reduction and internal fixation with headless screws. The lateral Kocher approach is the most common approach for open reduction. We believe that the anterior approach of the elbow, could be a valid technique for treating these fractures, as it does not involve the detachment of any muscle group or ligament, facilitating the recovery process.

Material and Method: 4 Patients with capitulum fracture admitted in NCH-Surat. As a primary treatment above elbow splint applied. X-ray and CT scan was done. Patient was operared via anterior approach and fracture was fixed with Herbert screws. Exposure, intraoperative blood loss, duration of surgery and any significant intraoperative events if any are noted. Stitches was removed on 12th post operative day and elbow mobilized according to fixation. Patient was followed up till 6 months and clinical and radiological examination was done.

Results: Anterior approach to capitulum provide good exposure. The patients showed favourable clinical progress at 6 months, respectively, with a mean extension/flexion movement arc of 0 to 135°. The patients showed radiological consolidation with no signs of osteonecrosis.

Conclusions: We believe that the anterior approach of the elbow is a technical option to consider for the open surgical treatment of a capitellum fracture, although further studies are needed to demonstrate its superiority and clinical safety compared to the classical lateral Kocher approach.

Keywords: Capitulum fracture, anterior approach, Kocher lateral approach, osteonecrosis

Introduction

Fractures involving the capitellum can be treated surgically by excision of the fragment, or by reduction and internal fixation with headless screws. The lateral Kocher approach is the most common approach for open reduction. We believe that the anterior approach of the elbow, could be a refined technique for treating these fractures, as it does not involve the detachment of any muscle group or ligament, facilitating the recovery process [1].

Material and Method

- Patients with capitellum fracture admitted in NCH, Surat.
- As a primary treatment above elbow splint applied.
- X-rays and CT scan was done. (figure 1)
- After informed written consent Patients was operated via anterior approach and fracture was fixed with Herbert screws.
Surgical Technique

The patient is positioned supine on the operating table, with arm in 90-degree abduction and supported by a forearm post. With the elbow in extension, the biceps tendon is located, and the line is drawn on the skin corresponding to the longitudinal axis that divides the cubital fossa into two medial and lateral halves. Another line is drawn that coincides with the flexion skin crease of the elbow. The lateral halves of this transverse line coincide with the diameter of the capitellum, and the medial half coincides with the axis of the trochlea. (Figure 2) [2].

Skin incision and superficial dissection

A transverse incision is made lateral to the midline. Cephalic vein and its tributaries should be moved laterally or medially (Figure 3). Once the anterior brachial fossa is opened, biceps brachii muscle can be seen. Underneath the biceps brachii muscle, the brachialis muscle is located. The musculocutaneous nerve was identified between the two muscles running obliquely [3].

Locating the radial tunnel

At this point we must locate the radial tunnel, which is the space between the brachioradialis muscle and the brachialis muscle. (Figure 4)

1. In some patients, we can identify a fatty plane through the fascia
2. In others, we can see a difference in volume
3. Identify a change in direction of the muscle fibers that indicates the radial tunnel

This step is the most difficult and probably the most important, because it determines that the radial nerve is located and handled correctly and that a true internervous approach is performed, with less bleeding and a lower risk of muscular denervation [4]. In addition, exposing the fracture will be easier, especially if distal extension is needed to treat an associated radial head fracture.

Exposing capitellar and radial head fractures: We position two retractors, one that retracts the mobile wad of Henry laterally (this muscle group will include the radial nerve and the recurrent radial artery) and the other retracts the brachialis muscle and the biceps tendon medially [3]. At the bottom of the approach we will be able to see the joint capsule. (Figure 5)

The joint capsule must be cut. The aim is to expose the capitellum without compromising the proximal periosteal flap, which is usually kept attached to the distal humerus thus providing blood supply and stability. Once the joint capsule is open, the capitellum is exposed, and with...
the elbow in a position of extension, it usually “reduces itself” to its approximate anatomical position. (Figure 6) [6].

Exposure, intraoperative blood loss, duration of surgery and any significant intraoperative events if any are noted and tabulated.

Elbow mobilized on 2nd postop day.

Stitches was removed on 12th postop day.

Discussion

Fracture of the capitulum humeri is often referred to as Mouchet’s fracture but Hahn published the first description of it in 1853 [6].

Many agree that excision of the fragment is the best treatment for patients in which the fragment involves merely a thin segment of cartilage, or a small segment of cartilage and its underlying subchondral bone, or when there is a comminuted fracture with several small fragments [4].

But diversity of opinion lies to the treatment of fractures with a large fragment

Treatment of fracture with large fragment:

1. Manipulative reduction under general anaesthesia: should always be tried before open reduction is undertaken. (DePalma 1970, Watson-Jones 1976). To obtain perfect reduction by closed means is, however, very difficult. Many have abandoned this method because of consistent failure [8].

2. Early excision of the capitular fragment: simple and definite procedure with a short postoperative immobilization period. However, it can lead to valgus deformity and lateral instability in the elbow joint. Excision of the fragment leaves a raw bone surface which increases the risk of developing capsular adhesions and restricted mobility Watson-Jones (1976) [9].

3. Open reduction with or without internal fixation: Technically difficult and that a perfect reduction is mandatory. Reduction can also lead to avascular necrosis of the fragment Judet & Raynal (1957) [10].

Table 1: Lateral (Kocher’s) Approach Vs Anterior Approach

Lateral (Kocher’s) approach	Anterior approach
Most commonly used, Conventional	Newer
Involves Osteotomy	Does not involve the detachment of any muscle group or ligament
And therefore, longer recovery time	Therefore, easy rehabilitation and early recovery
Screw may be positioned in antero-posterior direction	Direct visualization of fracture fragment
	Trochlear extension is easy
Results
Anterior approach to capitellum provide good exposure to the elbow joint.
No wound complications were found.
The patients showed favourable clinical progress at 6 months,
respectively, with a mean extension/flexion movement arc of 5 to 135°.
The patients showed radiological consolidation with no signs of osteonecrosis.

Table 2: Results of Patients

Patients	Intraop blood loss	Duration of surgery	Remarks (if any)	Rom At 6 months follow up
1	60mL	45 mins		5° to 130°
2	65mL	60 mins	guide-pin was broken in olecranon process	5° to 130°
3	70mL	50 mins		0° to 135°
4	70mL	50 mins		5° to 130°

Fig 10: Capitulum fracture united with Herbert screw

Fig 11: Postoperative range of motion

Conclusions
We believe that the anterior approach of the elbow is a technical option to consider for the open surgical treatment of a capitellum fracture.
Learning curve is easy but care must be taken for neurovascular structures although further studies are needed to demonstrate its superiority and clinical safety compared to the classical lateral Kocher approach.

References
1. Ruchelsman D, Tejwani N, Kwon Y, Egol K. Coronal plane partial articular fractures of the distal humerus: Current concepts in management. J Am Acad Orthop Surg. 2008; 16:716-28.
2. Mighell M, Virani M, Shannon R, Echols E, Badman B, Keating C. Large coronal shear fractures of the capitellum and trochlea treated with headless compression screws. J Shoulder Elbow Surg. 2010; 19:38-45.
3. McKee MD, Jupiter JB, Banberger HB. Coronal shear fractures of the distal end of the humerus. J Bone J Surg A. 1996; 78:49-54.
4. Grantham SA, Norris TR, Bush DC. Isolated fracture of the humeral capitellum. Clin Orthop Relat Res. 1981; 161:262-9.
5. Haraldsson S. On osteochondrosis deformas juvenilis capituli humeri including investigation of intra-osseous vasculature in distal humerus. Acta Orthop Scand Suppl. 1959; 38:1-232.
6. Haraldsson S. The intra-osseous vasculature of the distal end of the humerus with special reference to capitulum; preliminary communication. Acta Orthop Scand. 1957; 27:81-93.
7. Kimball JP, Glowczewskie F, Wright TW. Intraosseous blood supply to the distal humerus. J Hand Surg Am. 2007; 32:642-6. http://dx.doi.org/10.1016/j.jhsa.2007.02.019
8. Koslowsky TC, Zilieken C, Dargel J, Thelen U, Burkhart KJ, Heck S et al. Reconstruction of a Bryan and Morrey type I capitellar fracture in a sawbone model with four different fixation devices: an experimental study. Injury. 2012; 43(3):381-5.
9. Elkkowitz SJ, Polatsch DB, Egol KA, Kummer FJ, Koval KJ. Capitellum fractures: a biomechanical evaluation of three fixation methods. J Orthop Trauma. 2002; 16(7):503-6.
10. Sano S, Rokkaku T, Saito S, Tokunaga S, Abe Y, Moriya H. Herbert screw fixation of capitellar fractures. J Shoulder Elb Surg. 2005; 14(3):307-11.