Research

CapZ-lipid membrane interactions: a computer analysis
James Smith*, Gerold Diez, Anna H Klemm, Vitali Schewkunow and Wolfgang H Goldmann

Address: Friedrich-Alexander-University of Erlangen-Nuremberg Center for Medical Physics and Technology, Biophysics Group Henkestrasse 91, 91052 Erlangen, Germany
Email: James Smith* - jsmith@biomed.uni-erlangen.de; Gerold Diez - gdiez@biomed.uni-erlangen.de; Anna H Klemm - aklemm@biomed.uni-erlangen.de; Vitali Schewkunow - vschewkunow@biomed.uni-erlangen.de; Wolfgang H Goldmann - wgoldmann@biomed.uni-erlangen.de
* Corresponding author

Abstract

Background: CapZ is a calcium-insensitive and lipid-dependent actin filament capping protein, the main function of which is to regulate the assembly of the actin cytoskeleton. CapZ is associated with membranes in cells and it is generally assumed that this interaction is mediated by polyphosphoinositides (PPI) particularly PIP2, which has been characterized in vitro.

Results: We propose that non-PPI lipids also bind CapZ. Data from computer-aided sequence and structure analyses further suggest that CapZ could become partially buried in the lipid bilayer probably under mildly acidic conditions, in a manner that is not only dependent on the presence of PPIs. We show that lipid binding could involve a number of sites that are spread throughout the CapZ molecule i.e., alpha- and beta-subunits. However, a beta-subunit segment between residues 134–151 is most likely to be involved in interacting with and inserting into lipid membrane due to a slightly higher ratio of positively to negatively charged residues and also due to the presence of a small hydrophobic helix.

Conclusion: CapZ may therefore play an essential role in providing a stable membrane anchor for actin filaments.

Background

The actin cytoskeleton is a major component in determining and maintaining the shape of animal cells and is responsible for various motile phenomena. It is regulated by actin-binding proteins that are controlled by a variety of signalling molecules including the well-characterized polyphosphoinositides (PPIs). One of the capping proteins is the calcium-insensitive CapZ, which is regulated by phosphatidylinositol 4,5 bisphosphate (PIP2) [1-4]. This protein regulates the spatial and temporal growth of the actin filament by capping its barbed (and fast growing) end.

CapZ proteins have been isolated from various species, and sequence studies demonstrate extensive homology among Drosophila, Saccharomyces, Dictyostelium, Acanthamoeba, Caenorhabditis and vertebrates. The protein is composed of two subunits, labelled alpha and beta. The alpha-subunits range between 32 kDa and 36 kDa; the beta-subunits are generally smaller, ranging between 28 kDa and 32 kDa. To date, actin binding has only been ascribed to the beta-subunit [5], although both subunits are required for capping activity [6]. Although they show low sequence identity, alignments of the subunits reveal regions of functionally conserved residues, suggesting the
presence of common motifs or putative epitopes for inter-
molecular binding. A structural analogy between the
alpha- and beta-subunits was confirmed in a recent crys-
tallographic study of CapZ from chicken muscle that
revealed a striking resemblance in the fold of the two sub-
units [7].

Spatial and temporal localization studies in non-muscle
cells have not always produced a consistent picture: in one
case the distribution is nuclear, while chicken CapZ is
concentrated in epithelial cell-cell junction complexes.
Yeast capping proteins are found at the membrane in
regions generally rich in actin [8]. In muscle cells, CapZ is
present at the Z-line independently of actin and probably
binds to other protein partners in this region [9].

Here we report that CapZ has the potential to bind to lip-
ids (other than PIP2) and could therefore interact with, or
embed into, lipid regions consisting of phospholipids,
glycolipids, cholesterol and/or long-chain fatty acids. Our
computational analysis indicates that the C-terminal half
of CapZ beta-subunit could contribute to lipid interac-
tion/insertion. CapZ may therefore play an essential role
in providing a stable membrane anchor for actin fila-
ments.

Methods
The search for highly hydrophobic or amphipathic seg-
ments within the CapZ sequence includes the construc-
tion of plots of the average hydrophobicity and of the
average hydrophobic moment [10]. The normalized 'con-
sensus' scale of Eisenberg et al. [11] was taken as the
hydrophobicity scale for amino acids. The number of
amino acids examined together (also known as the win-
dow size) determined the type of segment under investi-
gation.

To detect lipid membrane binding and hydrophobic
motifs, and potentially antigenic regions, a window size
of 11 residues was employed. The algorithm for detecting
putative lipid-binding hydrophobic polypeptide sequence segments discriminates between surface-seeking
and transmembrane regions. Computationally, this is per-
fomed by constructing and interpreting plots for the aver-
age hydrophobicity <H> and the average hydrophobic
moment <μH>, of selected polypeptide segments using a
normalized 'consensus' scale [11-13]. According to Eisen-
berg et al. [11], various regions in a polypeptide can be
divided by boundary lines, conditional on the values of
<H> and <μH>, giving three alpha-helical properties:
transmembrane, lipid surface-seeking and globular. In
general, transmembrane helical regions have a low <μH>
and high <H> whereas surface-seeking helical regions
have a high <μH> and average <H> [10]. In this work, we
used two ratios to assay for surface-seeking propensity, r_{sur-
face} and r_{transmembrane}, relating respectively to the transition from a globular to a surface-seeking property and from a globular
to a transmembrane property. These two ratios depend on
<μH> and <H>, where r_{surface} = <μH>/(0.603 - 0.392<H>)
and r_{transmembrane} = <H>/0.51. Three conditions exist, depending on the Eisenberg plot [11]: (1) if r_{surface} and r_{transmembrane} are both less
than or equal to 1.0, then the polypeptide region is glob-
ular; (2) if either r_{surface} or r_{transmembrane} is greater than 1.0 and the
other less than or equal to 1.0, then the larger ratio deter-
mines the characteristic property; (3) if both values are
greater than 1.0, then the region is said to be surface- seek-
ing.

An amphipathic helical region was defined by the simple
requirement for an effective interaction between an alpha-
helix and acidic lipids. The interaction motif is suitable for
amino acid segments with a length of 18 residues, which
would represent five complete turns of an ideal alpha-
helix. When projected on to a plane, the consecutive resi-
dues of an ideal helix are spaced with a periodicity of 3.6
at 100 degree intervals. For the amphipathic helical anal-
ysis, a matrix incorporating information about the distri-
bution of physico-chemically different residues was
employed. This matrix also included information regard-
ing amphipathic structure. This approach is based on a
previous treatment by Hazelrig et al. [14]. With an amino
acid window size of 18, the results were plotted above the
middle residue of the window.

Hydrophobic moments of alpha-helices and beta-strands
were calculated, assuming periodicities in the hydropho-
bicity of 3.6 and 2.0 residues, respectively. The entire pro-
cess yields several candidate sites that relate to sequence
and conformational motifs for each candidate protein
sequence. The two protein sequences used were obtained
from the NCBI database: residues 1 to 286 from the alpha-
subunit from NP006126, and residues 1 to 272 from the
beta-subunit from NP004921, both from Homo sapiens.
The lipid-binding properties of each candidate site can
subsequently be evaluated using a variety of in vitro tech-
niques.

Here, the experimentally-supported lipid-binding sites for
Homo sapiens CapZ correlated with regions in the high-res-
olution crystal coordinates obtained from Gallus gallus
and deposited in the Protein Data Bank (PDB code 1IZN).
Over the range of sequences used there was almost 100%
identity between the CapZ subunits from Homo sapiens
and Gallus gallus. Molecular visualisation software pack-
ages, SPDBV and PYMOL, were used to characterize the
secondary and tertiary structure, the solvent accessibility
and the electrostatic field potentials [15,16]. Electrostatic
calculations were performed using SPDBV using the Cou-
lomb method, with the dielectric constant for solvent set
at 80.0 and incorporating only charged residues.
Results

The secondary structure analysis of the CapZ sequence was started with the search for segments with maximum hydrophobic and amphipathic character. The most hydrophobic segments and the most amphipathic helical segments were found in the amino-terminal region of the protein between residues 113–130 and 225–242 both in the alpha-subunit and between residues 134–151 and 215–232 both in the beta-subunit.

Figures 1 and 2 represent the structure prediction plots calculated for the CapZ primary sequence residues 1–286 (for the alpha-subunit) and 1–272 (for the beta-subunit). The plots (a+b) of the \(r_{\text{rm}} \) and \(r_{\text{surf}} \) ratio profiles evaluate the hydrophobic or amphipathic alpha-helical stretches. For these calculations an amino acid window size of 11 was used. The plot in (c) represents the matrix calculations for an amphipathic alpha-helix motif. At a window size of 18 residues, the consensus score of the existing
sequence (continuous line) and the average consensus score of 400 sequence randomizations (dotted line) are plotted for every segment. For any segment, the standard deviation (SD) of the randomizations is denoted by a vertical bar in the SD, where factor Γ was greater than 3.0. The quantitative distribution of charged amino acids within 7-residue segments in (d) are marked by the continuous and discontinuous lines of positively and negatively charged residues.

Results from the plots in Figures 1 and 2(a–d) from residues 1–286 for the alpha-subunit and residues 1–272 for the beta-subunit indicate two possible lipid binding regions in each: residues 113–130 and 225–242, and residues 134–151 and 215–232, respectively. Secondary structure analysis points to alpha-helical structures. No transmembrane binding domain is discernible in the alpha-subunit; therefore, the polypeptide sequence represents a helical motif with more amphipathic character. If

Figure 2

Structure prediction plots for CapZ beta-subunit (residues 1–272) using matrix analyses according to Tempel et al. [10]. (A) Hydrophobicity, (B) Hydrophobic moment and (C) Probability of residues for CapZ beta-subunit. Secondary structures (D) were calculated according to Eisenberg et al. [11] using a window of 11 residues. The secondary structure analyses of 134–151 (IKKAGDGSKKIKGCWDSI) and 215–232 (RLVEDMENKIRSTLNEIY) are shown in (E) and (F), respectively. The two methods were carried out as follows: The 1st method relies only on the average amino acid composition of secondary structural segments (helix, sheet, coil) in a learning set of proteins, which showed an alpha-content of zero, beta-content of zero, and a coil-content of 100% for (E); and an alpha-content of 67.2% and beta-content of 32.8%, and coil-content of zero for (F). The 2nd method relies on composition fluctuations in the secondary structural segments (helix, sheet, coil) of a learning set of proteins, which showed an alpha-content of 16.4%, a beta-content of zero, and a coil-content of 83.6% for (E); and an alpha-content of 100%, beta- and coil-contents of zero, for (F) [27-28].
there were lipid binding, the expectation would be near-
parallel orientations of the alpha-helical axes with the
plane of the membrane, so that the hydrophobic/
uncharged amino acids of the alpha-subunit would inter-
act hydrophobically with lipid chains.

Specifically, the segment 113–130 in the alpha-subunit
shows a high ratio of positively and negatively charged
amino acids that form the hydrophilic side of the amphip-
athic helix. The hydrophobic helix shows seven non-polar
and three polar amino acids and would be poorly-
equipped for lipid binding/insertion. The segment 225–
242 in the alpha subunit, however, shows high contents
of positively and negatively charged and polar amino
acids, and could interact strongly with the hydrophilic
(and hydrogen-bonding) side of the opposite amphip-
athic helix. The hydrophobic side of the helix contains six
non-polar and one polar amino acid, including a strongly
hydrophobic amino acid (phenylalanine, F). This gives
this helix its predominantly amphipathic character. The
glutamic acids (deprotonated at pH 7.0) at positions 11
and 13 would seem to make the helix unsuitable for sur-
face binding to a negatively-charged lipid layer.

The segment 134–151 in the beta-subunit shows a slightly
higher ratio of positively to negatively charged amino
acids on the hydrophilic side of the short amphipathic helical region within the beta-strands, whereas the hydro-
phobic helical side contains seven non-polar and one
polar amino acid. This distribution of positively charged
amino acids would be more favourable for surface bind-
ing to negatively charged lipid layers. The segment 215–
232 in the beta-subunit shows a similar amphipathic charge distribution to segment 225–242 in the alpha-sub-
unit; however, the (negatively charged) glutamic acid at
position 7 probably makes any surface binding to lipid
unfavourable.

The recent crystal of CapZ shows two subunits that are
structurally analogous creating a pseudo-two-fold symme-
try perpendicular to the long axis of the molecule (Figure
3). Each subunit contains three domains and an addi-
tional carboxyl-terminal extension. Three anti-parallel helices (helices 1–3) that form the amino-terminal domain are in an up-down-up arrangement. The middle
domain is composed of four beta-strands (strands 1–4)
for the alpha-subunit and three (strands 1–3) for the beta-
subunit, containing two reverse turns. The carboxyl-termi-
nal domain comprises an anti-parallel beta-sheet formed
by five consecutive beta-strands (strands 5–9), flanked on
one side by a shorter amino-terminal helix (helix 4) and a
long carboxyl-terminal helix (helix 5). The beta-strands of
each subunit form a single 10-stranded anti-parallel beta-
sheet in the centre of the molecule. The sequence impli-
cated in lipid binding, amino acid residues 134–151 in
the beta-subunit, forms largely beta-sheet that is probably
flexible and solvent-accessible despite contributing resi-
dues to the strong dimer interface (for example, via lysine
136).

Discussion
Recently, it has been reported that when gelsolins (cal-
cium-dependent actin-binding proteins) are presented
with high lipid concentrations they can bind as many as
ten PtdIns(4,5)P_2 molecules [17]. The value of the molar
ratio between gelsolin and PtdIns(4,5)P_2 has been conten-
tious, complicated by differences between studies in the
state or presentation of the lipid. However, when pre-
seated as a minor component with other lipids (i.e. chol-
esterol), one PtdIns(4,5)P_2 binds one gelsolin, close to
the physiological situation of 0.3–1.5%, which then
allows it to associate with the plasma membrane [18].

Furthermore, it has been reported that polyporphospho-
inositides (PPI) form aggregates within the bilayer under
the influence of certain proteins [19] and there may be
many possible modes of binding to PPI and other lipids.
The finding that several sites within gelsolin can be cross-
linked to PPI analogues would seem to support this view
[20]. Together with our present data, indicating that CapZ
could bind non-PPI lipids with high affinity, it seems
likely that CapZ may bind up to four PtdIns(4,5)P_2, if they
are available, through direct hydrogen-bonding interac-
tions with the binding sites; however at lower
PtdIns(4,5)P_2 concentrations these sites may be occupied
by other lipids. This is in agreement with observations by
differential scanning calorimetry, film balance and spec-
troscopy, which have shown that proteins require a net
negative charge created by lipids other than PPIs, a hydro-
phobic interface or indeed PPI for membrane interaction/
insertion [17].

CapZ has been found to be associated with both mem-
branes and actin filaments in activated macrophages and
platelets [21,22]. This is a surprise since PtdIns(4,5)P_2 has
been assumed to be the binding partner of CapZ and yet
this lipid dissociates the CapZ-actin complex [23,24]. It is
possible that the binding sites for the CapZ-actin complex
in macrophages and platelet membranes are lipids other
than PPIs and that these do not dissociate the complex. It
has been reported that binding of gelsolin or indeed fil-
amin (a dimeric actin cross-linking protein) to phosphati-
dylglycerol/ phosphatidylcholine small unilaminar vesicles
does not inhibit the nucleation of actin polymer-
ization or cross-linking.

This work raises the possibility that CapZ not only binds
to the lipid surface, but also becomes partially embedded
within the lipid bilayer due to the residues 134–151 of its
beta-subunit. Previous studies have indicated that various
peptides derived from PPI-binding regions of, for example gelsolin, Arp2/3, talin etc. have this capacity in isolation [25]. The authors have also found that such peptides can incorporate into phosphatidylglycerol/phosphatidylcholine small unilamellar vesicles in the absence of PPIs [25]. The importance of hydrophobic interactions between these proteins and PPIs has been suggested by molecular dynamics studies in which the PPIs are to some extent pulled out from the bilayer [26].

In conclusion, a number of sites in CapZ have been proposed to bind lipids and these tend to be located in linker regions between the discrete domains of the protein. The main sites appear to be in the linker regions, 134–151 and 215–232 in the beta-subunit and secondary sites have been identified within the alpha-subunit. We suggest further that the first region 134–151 in the beta-subunit becomes inserted between lipid heads and perhaps into the core of a lipid bilayer.

Figure 3
The four predicted lipid-binding sites of CapZ alpha- and beta-subunits. The coordinates of CapZ (PDB 1IZN) are displayed with the alpha-subunit shown in pink and the beta-subunit in blue. The predicted lipid-binding sites are coloured as follows: Green for the amphipathic helical regions (residues 225–242) in the alpha-subunit and (residues 215–232) in the beta-subunit; red for the amphipathic helical region in alpha-subunit (residues 113–130) and also for the putative lipid membrane inserting region within the beta-subunit (residues 134–151).
Acknowledgements

This work was funded by the Deutsche Forschungsgemeinschaft (DFG; Ia258/1-1 to WHG) and North Atlantic Treaty Organization (NATO; CLG 978417 to WHG). We thank Drs. G. Isenberg and M. Tempel for valuable discussions.

References

1. Isenberg G, Aebi U, Pollard TD: An actin-binding protein from Acanthamoeba regulates actin filament polymerization and interactions. Nature 1980, 288:455-459.
2. Kilimann MW, Isenberg G: Actin filament capping protein from bovine brain. EMBO J 1982, 1:889-894.
3. Hartmann H, Noegel AA, Eckerskorn C, Rapp S, Schleicher M: Calcium-dependent F-actin capping proteins. Cap32/34, a Capping Protein from Dictostyelium discoideum, does not share sequence homologies with known Actin-Binding Proteins. J Biol Chem 1989, 264:12639-12647.
4. Nachmis VS, Pollard TD, Casella JF: Cap Z, a calcium insensitive capping protein in resting and activated human fibroblasts. FEBS Lett 1996, 378:258-262.
5. Hug C, Miller TM, Torres MA, Casella JF, Cooper JA: Identification and Characterization of an Actin-Binding Site of Cap Z. J Cell Biol 1992, 116:923-931.
6. Kim K, Yamashita A, Maeda K, Maeda Y: Crystal structure of CapZ: structural basis for actin filament barbed end capping. EMBO J 2003, 22:1529-1538.
7. Amatruda JF, Cooper JA: Purification, Characterization and Immunofluorescence Localization of Saccharomyces cerevisiae Capping Protein. J Cell Biol 1992, 117:1067-1076.
8. Schafer DA, Krushunova YO, Schroer TA, Cooper JA: Differential localization and sequence analysis of capping protein beta-subunit isoforms of vertebrates. J Cell Biol 1994, 127:453-465.
9. Tempel M, Goldmann WH, Isenberg G, Sackmann E: Interaction of the 47-kDa talin fragment and the 32-kDa vinculin fragment with acidic phospholipids: a computer analysis. Biophys J 1995, 69:228-241.
10. Eisenberg D, Schwaz E, Komaromy M, Wall R: Analysis of membrane and surface protein sequences with the hydrophobic moment plot. J Mol Biol 1984, 179:125-142.
11. Deber DM: The Hydrophobicity Threshold for Peptide Insertion into Membranes. Current Topics in Membranes 2002, 52:465-479.
12. Kyte J, Doolittle RF: A simple method for displaying the hydrophilic character of a protein. J Mol Biol 1982, 157:105-132.
13. Hazlerig JB, Jones MK, Segrest JP: A mathematically defined motif for the radial distribution of charged residues on apoprotein amphipathic i-helices. Biophys J 1993, 64:1827-1832.
14. Guex N, Peitsch MC: SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 1997, 18:2714-2723.
15. DeLano WL: The PyMOL Molecular Graphics System San Carlos, CA: DeLano Scientific, 2002.
16. Tuominen EJ, Holopainen JM, Chen J, Prestwich GD, Bachiller PR, Kinnunen PKJ, Janmey PA: Fluorescent phosphoinositide derivatives reveal specific binding of gelsolin and other actin regulators to proteins to mixed lipid bilayers. Eur J Biochem 1999, 263:85-92.
17. Mere J, Chahinian A, Maciver S, Fattoum A, Bettache N, Benyamin Y, Roustan C: Gelsolin binds to phosphoinositide-free lipid vesicles and simultaneously to actin microfilaments. Biochem J 2005, 386:47-56.
18. Gambhir A, Hangras-Mihalyne G, Zaitseva I, Cafiso DS, Wang J, Murray D, Pentyla SN, Smith SO, McLaughlin S: Electrostatic sequestration of PI(3,4,5)P(3) on phospholipid membranes by basic/ aromatic regions of proteins. Biophys J 2004, 86:2188-2207.
19. Feng L, Mejillano M, Yin HL, Stossel TP: Thrombin receptor ligation and activated Rac uncaps actin filament barbed ends through phosphoinositide synthesis in permeabilized human platelets. Cell 1995, 82:643-653.
20. Hartwig JH, Chambers KA, Stossel TP: Association of gelsolin with actin and cell membranes of macrophages and platelets. J Cell Biol 1989, 108:467-479.
21. Janmey PA, Stossel TP: Modulation of gelsolin function by phosphatidylinositol 4,5-bisphosphate. Nature 1987, 325:362-364.
22. Janmey PA, Iida K, Yin HL, Stossel TP: Polyphosphoinositide micelles and polyphosphoinositide-containing vesicles dissociate endogenous gelsolin-actin complexes and promote actin assembly from the fast-growing end of actin filaments blocked by gelsolin. J Biol Chem 1987, 262:12228-12236.
23. Scott DL, Diez G, Goldmann WH: Protein-Lipid Interactions: Correlation of a predictive algorithm for lipid-binding sites with three-dimensional structural data. Theoretical Biology and Medical Modelling 2006, 3:17.
24. Liepina I, Czaplewski C, Janmey PA, Liwo A: Molecular dynamics study of a gelsolin-derived peptide binding to a lipid bilayer containing phosphatidylinositol 4,5-bisphosphate. Biopolymers 2003, 71:49-70.
25. Eisenhader E, Imperiale F, Argos P, Frommel C: Prediction of secondary structural content of proteins from their amino acid composition alone. I. New analytic vector decomposition methods. Proteins: Structure, function, design 1996, 25(N2):157-168.
26. Eisenhader F, Frommel C, Argos P: Prediction of secondary structural content of proteins from their amino acid composition alone. II. The paradox with secondary structural class. Proteins: Structure, function, design 1996, 25(N2):169-179.