THE DUAL SPACE OF PRECOMPACT GROUPS

M. FERRER, S. HERNÁNDEZ, AND V. USPENSKIJ

ABSTRACT. For any topological group G the dual object \widehat{G} is defined as the set of equivalence classes of irreducible unitary representations of G equipped with the Fell topology. If G is compact, \widehat{G} is discrete. In an earlier paper we proved that \widehat{G} is discrete for every metrizable precompact group, i.e. a dense subgroup of a compact metrizable group. We generalize this result to the case when G is an almost metrizable precompact group.

1. Introduction

For a topological group G let \widehat{G} be the set of equivalence classes of irreducible unitary representations of G. The set \widehat{G} can be equipped with a natural topology, the so-called Fell topology (see Section 2 for a definition).

A topological group G is precompact if it is isomorphic (as a topological group) to a subgroup of a compact group H (we may assume that G is dense in H). If H is compact, then \widehat{H} is discrete. If G is a dense subgroup of H, the natural mapping $\widehat{H} \to \widehat{G}$ is a bijection but in general need not be a homeomorphism. Moreover, for every countable non-metrizable precompact group G the space \widehat{G} is not discrete [12, Theorem 5.1], and every non-metrizable compact group H has a dense subgroup G such that \widehat{G} is not discrete [12, Theorem 5.2]. (The Abelian case was considered in...
On the other hand, if \(G \) is a precompact metrizable group, then \(\hat{G} \) is discrete [12, Theorem 4.1]. (The Abelian case was considered in [2, 4]). The aim of the present paper is to generalize this result to the almost metrizable case: \(\hat{G} \) is discrete for every almost metrizable precompact topological group \(G \). A topological group \(G \) is \textit{almost metrizable} if it has a compact subgroup \(K \) such that the quotient space \(G/K \) is metrizable. According to Pasynkov’s theorem [1, 4.3.20], a topological group is almost metrizable if and only if it is feathered in the sense of Arhangel’skii.

We reduce the almost metrizable case to the metrizable case considered in [12, Theorem 4.1].

2. Preliminaries: Fell topologies

All topological spaces and groups that we consider are assumed to be Hausdorff. For a (complex) Hilbert space \(\mathcal{H} \) the unitary group \(U(\mathcal{H}) \) of all linear isometries of \(\mathcal{H} \) is equipped with the strong operator topology (this is the topology of pointwise convergence). With this topology, \(U(\mathcal{H}) \) is a topological group.

A \textit{unitary representation} \(\rho \) of the topological group \(G \) is a continuous homomorphism \(G \to U(\mathcal{H}) \), where \(\mathcal{H} \) is a complex Hilbert space. A closed linear subspace \(E \subseteq \mathcal{H} \) is an \textit{invariant} subspace for \(\mathcal{S} \subseteq U(\mathcal{H}) \) if \(ME \subseteq E \) for all \(M \in \mathcal{S} \). If there is a closed subspace \(E \) with \(\{0\} \subsetneq E \subseteq \mathcal{H} \) which is invariant for \(\mathcal{S} \), then \(\mathcal{S} \) is called \textit{reducible}; otherwise \(\mathcal{S} \) is \textit{irreducible}. An \textit{irreducible representation} of \(G \) is a unitary representation \(\rho \) such that \(\rho(G) \) is irreducible.

If \(\mathcal{H} = \mathbb{C}^n \), we identify \(U(\mathcal{H}) \) with the \textit{unitary group of order} \(n \), that is, the compact Lie group of all complex \(n \times n \) matrices \(M \) for which \(M^{-1} = M^* \). We denote this group by \(\mathbb{U}(n) \).
Two unitary representations $\rho : G \to U(\mathcal{H}_1)$ and $\psi : G \to U(\mathcal{H}_2)$ are equivalent if there exists a Hilbert space isomorphism $M : \mathcal{H}_1 \to \mathcal{H}_2$ such that $\rho(x) = M^{-1}\psi(x)M$ for all $x \in G$. The dual object of a topological group G is the set \hat{G} of equivalence classes of irreducible unitary representations of G.

If G is a precompact group, the Peter-Weyl Theorem (see [15]) implies that all irreducible unitary representation of G are finite-dimensional and determine an embedding of G into the product of unitary groups $U(n)$.

If $\rho : G \to U(\mathcal{H})$ is a unitary representation, a complex-valued function f on G is called a function of positive type (or positive-definite function) associated with ρ if there exists a vector $v \in \mathcal{H}$ such that $f(g) = (\rho(g)v,v)$ (here (\cdot,\cdot) denotes the inner product in \mathcal{H}). We denote by P'_ρ the set of all functions of positive type associated with ρ. Let P_ρ be the convex cone generated by P'_ρ, that is, the set of sums of elements of P'_ρ.

Let G be a topological group, \mathcal{R} a set of equivalence classes of unitary representations of G. The Fell topology on \mathcal{R} is defined as follows: a typical neighborhood of $[\rho] \in \mathcal{R}$ has the form

$$W(f_1, \cdots, f_n, C, \epsilon) = \{[\sigma] \in \mathcal{R} : \exists g_1, \cdots, g_n \in P_\sigma \forall x \in C \, |f_i(x) - g_i(x)| < \epsilon \},$$

where $f_1, \cdots, f_n \in P_\rho$ (or $\in P'_\rho$), C is a compact subspace of G, and $\epsilon > 0$. In particular, the Fell topology is defined on the dual object \hat{G}. If G is locally compact, the Fell topology on \hat{G} can be derived from the Jacobson topology on the primitive ideal space of $C^*(G)$, the C^*-algebra of G [7, section 18], [3, Remark F.4.5].

Every onto homomorphism $f : G \to H$ of topological groups gives rise to a continuous injective dual map $\hat{f} : \hat{H} \to \hat{G}$. A mapping $h : X \to Y$ between topological
spaces is \textit{compact-covering} if for every compact set \(L \subseteq Y \) there exists a compact set \(K \subseteq X \) such that \(h(K) = L \).

\textbf{Lemma 2.1.} If \(f : G \to H \) is a compact-covering onto homomorphism of topological groups, the dual map \(\hat{f} : \widehat{H} \to \widehat{G} \) is a homeomorphic embedding.

\textit{Proof.} This easily follows from the definition of Fell topology. \hfill \Box

Let \(\pi \) be a unitary representation of a topological group \(G \) on a Hilbert space \(\mathcal{H} \). Let \(F \subseteq G \) and \(\epsilon > 0 \). A unit vector \(v \in \mathcal{H} \) is called \((F, \epsilon)\)-\textit{invariant} if \(\|\pi(g)v - v\| < \epsilon \) for every \(g \in F \).

A topological group \(G \) has \textit{property (T)} if and only if there exists a pair \((Q, \epsilon)\) (called a \textit{Kazhdan pair}), where \(Q \) is a compact subset of \(G \) and \(\epsilon > 0 \), such that for every unitary representation \(\rho \) having a unit \((Q, \epsilon)\)-invariant vector there exists a non-zero invariant vector. Equivalently, \(G \) has property (T) if and only if the trivial representation \(1_G \) is isolated in \(\mathcal{R} \cup \{1_G\} \) for every set \(\mathcal{R} \) of equivalence classes of unitary representations of \(G \) without non-zero invariant vectors [3, Proposition 1.2.3].

Compact groups have property (T) [3, Proposition 1.1.5], but countable Abelian precompact groups do not have property (T) [12, Theorem 6.1].

We refer to Fell’s papers [9, 10], the classical text by Dixmier [7] and the recent monographs by de la Harpe and Valette [13], and Bekka, de la Harpe and Valette [3] for basic definitions and results concerning Fell topologies and property (T).

\textbf{3. Almost metrizable groups}

If \(A \) is a subset of a topological space \(X \), the \textit{character} \(\chi(A, X) \) of \(A \) in \(X \) is the least cardinality of a base of neighborhoods of \(A \) in \(X \). (If this definition leads to a finite value of \(\chi(A, X) \), we replace it by \(\omega \), the first infinite cardinal, and similarly for
other cardinal invariants.) If A is a closed subset of a compact space X, the character $\chi(A, X)$ equals the pseudocharacter $\psi(A, X)$ – the least cardinality of a family γ of open subsets of X such that $\cap \gamma = A$. In particular, if A is a closed G_δ-subset of a compact space X, then $\chi(A, X) = \omega$.

If K is a compact subgroup of a topological group, then G/K is metrizable if and only if $\chi(K, G) = \omega$ [1, Lemma 4.3.19]. Let G be an almost metrizable topological group, \mathcal{K} the collection of all compact subgroups $K \subset G$ such that $\chi(K, G) = \omega$. Then for every neighborhood O of the neutral element there is $K \in \mathcal{K}$ such that $K \subset O$ [1, Proposition 4.3.11]. We now show that if G is additionally ω-narrow, then K can be chosen normal (in the algebraic sense). Recall that a topological group G is ω-narrow [1] if for every neighborhood U of the neutral element there exists a countable set $A \subset G$ such that $AU = G$.

Lemma 3.1. Let G be an ω-narrow almost metrizable group, \mathcal{N} the collection of all normal (= invariant under inner automorphisms) compact subgroups K of G such that the quotient group G/K is metrizable (equivalently, $\chi(K, G) = \omega$). Then for every neighborhood O of the neutral element there exists $K \in \mathcal{N}$ such that $K \subset O$.

Proof. Let $L \subset O$ be a compact subgroup of G such that the quotient space $G/L = \{xL : x \in G\}$ is metrizable. It suffices to prove that $K = \cap \{gLg^{-1} : g \in G\}$, the largest normal subgroup of G contained in L, belongs to \mathcal{N}.

There exists a compatible metric on G/L which is invariant under the action of G by left translations. To construct such a metric, consider a countable base U_1, U_2, \ldots of neighborhoods of L in G. We may assume that for each n we have $U_n = U_n^{-1} = U_nL$ and $U_{n+1}^2 \subset U_n$. Let $\gamma_n = \{gU_n : g \in G\}$. The open cover γ_n of G is invariant under left G-translations and under right L-translations, and γ_{n+1} is a barycentric refinement
of γ_n. The pseudometric on G that can be constructed in a canonical way from the sequence (γ_n) of open covers (see [8, Theorem 8.1.10]) gives rise to a compatible G-invariant metric on G/L. A similar construction was used in [1, Lemma 4.3.19].

If an ω-narrow group transitively acts on a metric space X by isometries, then X is separable [1, 10.3.2]. Thus $X = G/L$ is separable. Let Y be a dense countable subset of X. Then $K = \{g \in G : gx = x \text{ for every } x \in X\} = \{g \in G : gx = x \text{ for every } x \in Y\}$ is a G_δ-subset of L, hence $\chi(K, L) = \omega$. It follows that $\chi(K, G) \leq \chi(K, L)\chi(L, G) = \omega$ ([8, Exercise 3.1.E]).

4. Main theorem

Theorem 4.1. If G is a precompact almost metrizable group, then \widehat{G} is discrete.

Proof. Let ρ be an irreducible unitary representation of G. We must prove that $[\rho]$ is isolated in \widehat{G}. It suffices to find a discrete open subset $D \subset \widehat{G}$ such that $[\rho] \in D$.

Precompact groups are ω-narrow, so Proposition 3.1 applies to G. Let \mathcal{N}, as above, be the collection of all normal compact subgroups $K \subset G$ such that $\chi(K, G) = \omega$. Then \mathcal{N} is closed under countable intersections, and it follows from Proposition 3.1 that for every G_δ-subset A of G containing the neutral element there exists $K \in \mathcal{N}$ such that $K \subset A$. In particular, there exists $K \in \mathcal{N}$ such that K lies in the kernel of ρ. Let $D \subset \widehat{G}$ be the set of all classes $[\sigma] \in \widehat{G}$ such that K is contained in the kernel of σ. Then $[\rho] \in D$. It suffices to verify that D is open and discrete.

Step 1. We verify that D is open. Let \mathcal{R} be the set of equivalence classes of all finite-dimensional unitary representations (which may be reducible) of K without non-zero invariant vectors. Let τ_n be the trivial n-dimensional representation $1_K \oplus \cdots \oplus 1_K$ (n summands) of K, $n = 1, 2, \ldots$. In the notation of section 2, P_{τ_n} does not depend
on \(n \) and is the set of non-negative constant functions on \(K \). It follows that in the space \(\mathcal{S} = \mathcal{R} \cup \{ [\tau_n] : n = 1, 2, \ldots \} \), equipped with the Fell topology, the points \([\tau_n]\) are indistinguishable: any open set containing one of these points contains all the others. Since \(K \) has property (T), \([\tau_1] = [1_K]\) is not in the closure of \(\mathcal{R} \). Therefore \(\mathcal{R} \) is closed in \(\mathcal{S} \) and \(\mathcal{S} \setminus \mathcal{R} \) is open in \(\mathcal{S} \).

We claim that for every irreducible unitary representation \(\sigma \) of \(G \) the class of the restriction \(\sigma|_K \) belongs to \(\mathcal{S} \). In other words, the claim is that \(\sigma|_K \) is trivial if it admits a non-zero invariant vector. Let \(V \) be the (finite-dimensional) space of the representation \(\sigma \). For \(g \in G \) and \(x \in V \) we write \(gx \) instead of \(\sigma(g)x \). The space \(V' = \{ x \in V : gx = x \text{ for all } g \in K \} \) of all \(K \)-invariant vectors is \(G \)-invariant. Indeed, if \(x \in V' \), \(g \in G \) and \(h \in K \), then \(g^{-1}hx = x \) because \(g^{-1}h \in K \) and \(x \) is \(K \)-invariant. It follows that \(hgx = gx \) which proves that \(gx \in V' \). Since \(\sigma \) is irreducible, either \(V' = \{0\} \) or \(V' = V \). Accordingly, either \(\sigma|_K \) admits no non-zero invariant vectors or else is trivial.

We have just proved that the restriction map \(r : \hat{G} \to \mathcal{S} \) is well-defined. Clearly \(r \) is continuous, and therefore \(D = r^{-1}(\mathcal{S} \setminus \mathcal{R}) \) is open in \(\hat{G} \).

Step 2. We verify that \(D \) is discrete. Let \(p : G \to G/K \) be the quotient map. Then \(D \) is the image of the dual map \(\hat{p} : \widehat{G/K} \to \hat{G} \). According to [12, Theorem 4.1], the dual space of a metrizable precompact group is discrete. Thus \(\widehat{G/K} \) is discrete. Since \(p \) is a perfect map, it is compact-covering, and Lemma 2.1 implies that \(\hat{p} : \widehat{G/K} \to \hat{G} \) is a homeomorphic embedding. Therefore, \(D = \hat{p}(\widehat{G/K}) \) is discrete. \(\square \)

References

[1] A. Arhangel’skii and M. Tkachenko, *Topological groups and related structures*, Atlantis Press, Amsterdam – Paris, 2008.
[2] L. Außenhofer, Contributions to the Duality Theory of Abelian Topological Groups and to the Theory of Nuclear Groups, Dissertation. Tübingen 1998; Dissertationes Mathematicae (Rozprawy Matematyczne) CCCCLXXXIV, Polska Akademia Nauk, Instytut Matematyczny, Warszawa, 1999.

[3] B. Bekka, P. de la Harpe and A. Valette, Kazhdan’s Property (T), Cambridge U. Press, Cambridge, 2008.

[4] M. J. Chasco, Pontryagin duality for metrizable groups, Arch. Math. 70, 22-28 (1998).

[5] W. W. Comfort, S. U. Raczkowski, F. J. Trigos-Arrieta, The dual group of a dense subgroup, Czechoslovak Math. Journal 54 (129), 509–533 (2004).

[6] D. Dikranjan, D. Shakhmatov, Quasi-convex density and determining subgroups of compact Abelian groups, J. Math. Anal. Appl. 363, No. 1, 42-48 (2010).

[7] J. Dixmier, Les C∗-algèbres et leurs représentations, Gauthier-Villars, Paris 1969.

[8] R. Engelking, General Topology, revised and completed edition, Heldermann Verlag, Berlin, 1989.

[9] J. M. G. Fell, The dual spaces of C∗-algebras, Trans, Amer. Math. Soc. 94, 365–403 (1960).

[10] J. M. G. Fell, Weak containment and induced representations of groups, Canad. J. Math. 14, 237–268 (1962).

[11] M. V. Ferrer and S. Hernández, Dual topologies on groups. Topology and Applications, to appear.

[12] M. V. Ferrer, S. Hernández, and V. Uspenskij, Precompact groups and property (T), arXiv:1112.1350

[13] P. de la Harpe and A. Valette, La propriété (T) pour les groupes localement compacts, Astérisque 175, Soc. Math. France, 1989.

[14] S. Hernández, S. Macario, F. J. Trigos-Arrieta, Uncountable products of determined groups need not be determined, J. Math. Anal. Appl. 348, No. 2, 834–842 (2008)

[15] K. H. Hofmann and S. A. Morris, The Structure of Compact Groups: A Primer for Students - a Handbook for the Expert. De Gruyter Studies in Mathematics. Berlin-New York. 2006.

Universitat Jaume I, Instituto de Matemàtiques de Castellón, Campus de Riu Sec, 12071 Castellón, Spain.
E-mail address: mferrer@mat.uji.es

Universitat Jaume I, INIT and Departamento de Matemáticas, Campus de Riu Sec, 12071 Castellón, Spain.
E-mail address: hernande@mat.uji.es

Department of mathematics, 321 Morton Hall, Ohio University, Athens, Ohio 45701, USA
E-mail address: uspenski@ohio.edu