A convergent finite element approximation for the quasi-static Maxwell–Landau–Lifshitz–Gilbert equations

Kim-Ngan Le † T. Tran †

May 5, 2014

Abstract

We propose a \(\theta\)-linear scheme for the numerical solution of the quasi-static Maxwell–Landau–Lifshitz–Gilbert (MLLG) equations. Despite the strong non-linearity of the Landau–Lifshitz–Gilbert equation, the proposed method results in a linear system at each time step. We prove that as the time and space steps tend to zero (with no further conditions when \(\theta \in (\frac{1}{2}, 1]\)), the finite element solutions converge weakly to a weak solution of the MLLG equations. Numerical results are presented to show the applicability of the method.

Key words: Maxwell–Landau–Lifshitz–Gilbert, finite element, ferromagnetism

AMS subject classifications: 65M12, 35K55

1 Introduction

The Maxwell–Landau–Lifshitz–Gilbert (MLLG) equations describe the electromagnetic behavior of a ferromagnetic material. In this paper, for simplicity, we suppose that there is a bounded cavity \(\tilde{D} \subset \mathbb{R}^3\) (with perfectly conducting outer surface \(\partial\tilde{D}\)) into which a ferromagnet \(D\) is embedded. We assume further that \(\tilde{D}\setminus\bar{D}\) is a vacuum.

We will consider the quasi-static case of the MLLG system. Letting \(D_T := (0, T) \times D\) and \(\tilde{D}_T := (0, T) \times \tilde{D}\), the magnetization field \(m : D_T \rightarrow \mathbb{S}^2\), where \(\mathbb{S}^2\) is the unit sphere in \(\mathbb{R}^3\), and the magnetic field \(H : \tilde{D}_T \rightarrow \mathbb{R}^3\) satisfy

\[
\begin{align*}
\dot{m}_t &= \lambda_1 m \times H_{\text{eff}} - \lambda_2 m \times (m \times H_{\text{eff}}) \quad \text{in } D_T, \\
\mu_0 H_t + \sigma \nabla \times (\nabla \times H) &= -\mu_0 \ddot{m}_t \quad \text{in } \tilde{D}_T,
\end{align*}
\]

*Supported by the Australian Research Council under grant number DP120101886

†School of Mathematics and Statistics, The University of New South Wales, Sydney 2052, Australia. Email: n.le-kim@student.unsw.edu.au, thanh.tran@unsw.edu.au
in which \(\lambda_1 \neq 0, \lambda_2 > 0, \sigma \geq 0, \) and \(\mu_0 > 0 \) are constants. Here \(\tilde{m} : \tilde{D}_T \to \mathbb{R}^3 \) is the zero extension of \(m \) onto \(\tilde{D}_T \), i.e.,

\[
\tilde{m}(t, x) = \begin{cases}
m(t, x), & (t, x) \in D_T \\
0, & (t, x) \in \tilde{D}_T \setminus D_T. \end{cases}
\]

For simplicity the effective field \(\mathbf{H}_{\text{eff}} \) is taken to be \(\mathbf{H}_{\text{eff}} = \Delta \mathbf{m} + \mathbf{H} \).

The system \((1.1) - (1.2)\) is supplemented with initial conditions

\[
m(0, .) = m_0 \text{ in } D \quad \text{and} \quad H(0, .) = H_0 \text{ in } \tilde{D}, \tag{1.3}
\]

and boundary conditions

\[
\partial_n m = 0 \text{ on } (0, T) \times \partial D \quad \text{and} \quad (\nabla \times \mathbf{H}) \times n = 0 \text{ on } (0, T) \times \partial \tilde{D}. \tag{1.4}
\]

The equation \((1.1)\) is the first dynamical model for the precessional motion of a magnetization, suggested by Landau and Lifshitz \[12\]. The existence and uniqueness of a local strong solution of \((1.1) - (1.4)\) is shown by Cimrak \[8\]. He also proposes \[7\] a finite element method to approximate this local solution and provides error estimation.

Gilbert introduces a different approach for description of damped precession in \[9\]:

\[
\lambda_1 \mathbf{m}_t + \lambda_2 \mathbf{m} \times \mathbf{m}_t = \mu \mathbf{m} \times \mathbf{H}_{\text{eff}}, \tag{1.5}
\]

in which \(\mu = \lambda_1^2 + \lambda_2^2 \). A proof of the equivalence between \((1.5)\) and \((1.1)\) can be found in \[13\]. It is easier to numerically solve \((1.5)\) than \((1.1)\) because the latter has a double cross term, namely \(\mathbf{m} \times (\mathbf{m} \times \mathbf{H}_{\text{eff}}) \).

Instead of solving \((1.1) - (1.4)\), Banas, Bartels and Prohl \[2\] propose an implicit nonlinear scheme to solve problem \((1.2) - (1.5)\), and prove that the finite element solution converges to a weak global solution of the problem. Their method requires a condition on the time step \(k \) and space step \(h \) (namely \(k = O(h^2) \)) for the convergence of the nonlinear system of equations resulting from the discretization.

Following the idea developed by Alouges and Jaison \[1\] for the Landau–Lifshitz–Gilbert (LLG) equation \((1.5)\), we propose a \(\theta \)-linear finite element scheme to find a weak global solution to \((1.2) - (1.5)\). We prove that the numerical solutions converge to a weak solution of the problem with no condition imposed on time step and space step as \(\theta \in (\frac{1}{2}, 1] \). It is required that \(k = o(h^2) \) when \(\theta \in [0, \frac{1}{2}) \), and \(k = o(h) \) when \(\theta = \frac{1}{2} \). The implementation aspect of the algorithm is reported in \[13\] where no convergence analysis is carried out.

The paper is organized as follows. Weak solutions of the MLLG equations are defined in Section \[2\]. We also introduce in this section the \(\theta \)-linear finite element scheme. Some technical lemmas are presented in Section \[3\]. In Section \[4\] we prove that the finite element solutions converge to a weak solution of the MLLG equations. Numerical experiments are presented in the last section.
2 Weak solutions and finite element schemes

Before presenting the definition of a weak solution to the MLLG equations, it is necessary to introduce some function spaces and to assume some conditions on the initial functions \(m_0 \) and \(H_0 \).

The function spaces \(H^1(D, \mathbb{R}^3) \) and \(H(\text{curl}; \tilde{D}) \) are defined as follows:

\[
H^1(D, \mathbb{R}^3) = \left\{ u \in L^2(D, \mathbb{R}^3) : \frac{\partial u}{\partial x_i} \in L^2(D, \mathbb{R}^3) \text{ for } i = 1, 2, 3. \right\},
\]

\[
H(\text{curl}; \tilde{D}) = \left\{ u \in L^2(\tilde{D}, \mathbb{R}^3) : \nabla \times u \in L^2(\tilde{D}, \mathbb{R}^3) \right\}.
\]

Here, for a domain \(\Omega \subset \mathbb{R}^3 \), \(L^2(\Omega, \mathbb{R}^3) \) is the usual space of Lebesgue squared integrable functions defined on \(\Omega \) and taking values in \(\mathbb{R}^3 \). Throughout this paper, we denote

\[
\langle \cdot, \cdot \rangle_{\Omega} := \langle \cdot, \cdot \rangle_{L^2(\Omega, \mathbb{R}^3)} \quad \text{and} \quad \| \cdot \|_{\Omega} := \| \cdot \|_{L^2(\Omega, \mathbb{R}^3)}.
\]

In order to define a weak solution of MLLG equations, we assume that the given functions \(m_0 \) and \(H_0 \) satisfy

\[
m_0 \in H^1(D, \mathbb{R}^3), \quad |m_0| = 1 \text{ a.e. in } D \quad \text{and} \quad H_0 \in H(\text{curl}; \tilde{D}). \tag{2.1}
\]

For physical reasons (see [10]), these initial fields must satisfy

\[
\text{div}(H_0 + \chi_D m_0) = 0 \text{ in } \tilde{D} \quad \text{and} \quad (H_0 + \chi_D m_0) \cdot n = 0 \text{ on } \partial \tilde{D}. \tag{2.2}
\]

Since equations (1.1) and (1.5) are equivalent (a proof of which can be found in [13]), instead of solving (1.1)–(1.4) we solve (1.2)–(1.5). A weak solution of the problem is defined in the following definition.

Definition 2.1. Let the initial data \((m_0, H_0) \) satisfy (2.1) and (2.2). Then \((m, H) \) is called a weak solution to (1.2)–(1.5) if, for all \(T > 0 \), there hold

1. \(m \in H^1(D_T, \mathbb{R}^3) \) and \(|m| = 1 \text{ a.e. in } D_T; \)
2. \(H, H_t, \nabla \times H \in L^2(\tilde{D}_T, \mathbb{R}^3); \)
3. for all \(\phi \in C^\infty(D_T) \) and \(\zeta \in C^\infty(\tilde{D}_T), \)

\[
\lambda_1 \langle m_t, \phi \rangle_{D_T} + \lambda_2 \langle m \times m_t, \phi \rangle_{D_T} = \mu \langle \nabla m, \nabla (m \times \phi) \rangle_{D_T} + \mu \langle m \times H, \phi \rangle_{D_T} \tag{2.3}
\]

and

\[
\mu_0 \langle H_t, \zeta \rangle_{\tilde{D}_T} + \sigma \langle \nabla \times H, \nabla \times \zeta \rangle_{\tilde{D}_T} = -\mu_0 \langle \tilde{m}_t, \zeta \rangle_{\tilde{D}_T}, \tag{2.4}
\]

where \(\mu = \lambda_1^2 + \lambda_2^2; \)}
4. In the sense of traces there holds

\[m(0, \cdot) = m_0, \quad (2.5) \]

5. For almost all \(T' \in (0, T) \),

\[\mathcal{E}(T') + \lambda_2 \mu^{-1} \| m_t \|_{D_{T'}}^2 + \lambda_2 \mu^{-1} \| H_t \|_{D_{T'}}^2 + 2 \mu_0^{-1} \sigma \| \nabla \times H \|_{D_{T'}}^2 \leq \mathcal{E}(0), \quad (2.6) \]

where

\[\mathcal{E}(T') = \| \nabla m(T') \|_{D}^2 + \| H(T') \|_{D}^2 + \lambda_2 \mu^{-1} \mu_0^{-1} \sigma \| \nabla \times H(T') \|_{D}^2. \]

We next introduce the \(\theta \)-linear finite element scheme which approximates a weak solution \((m, H)\) defined in Definition 2.1.

Let \(T_h \) be a regular tetrahedral partition of the domain \(\bar{D} \) into tetrahedra of maximal mesh-size \(h \), and let \(T_{h}|_D \) be its restriction to \(D \subset \bar{D} \). We denote by \(\mathcal{N}_h := \{ x_1, \ldots, x_N \} \) the set of vertices and by \(\mathcal{M}_h := \{ e_1, \ldots, e_M \} \) the set of edges.

To discretize the LLG equation (2.3), we introduce the finite element space \(\mathbb{V}_h \subset \mathbb{H}^1(D, \mathbb{R}^3) \) which is the space of all continuous piecewise linear functions on \(T_{h}|_D \). A basis for \(\mathbb{V}_h \) can be chosen to be \(\{ \phi_n \}_{1 \leq n \leq N} \), where \(\phi_n(x_m) = \delta_{n,m} \). Here \(\delta_{n,m} \) stands for the Kronecker symbol. The interpolation operator from \(\mathbb{C}^0(D, \mathbb{R}^3) \) onto \(\mathbb{V}_h \) is denoted by \(I_{\mathbb{V}_h} \),

\[I_{\mathbb{V}_h}(v) = \sum_{n=1}^{N} v(x_n)\phi_n(x) \quad \forall v \in \mathbb{C}^0(D, \mathbb{R}^3). \]

To discretize Maxwell’s equation (2.4), we use the space \(\mathbb{Y}_h \) of lowest order edge elements of Nedelec’s first family [14]. It is known [14] that \(\mathbb{Y}_h \) is a subspace of \(\mathbb{H}(\text{curl}; \bar{D}) \) and that the set \(\{ \psi_1, \ldots, \psi_M \} \) is a basis for \(\mathbb{Y}_h \) if it satisfies

\[\psi_q \in \{ \psi : \bar{D} \to \mathbb{R}^3 \mid \psi|_K(x) = a_K + b_K \times x, \ a_K, b_K \in \mathbb{R}^3, \forall K \in T_h \}, \]

\[\int_{e_p} \psi_q \cdot \tau_p \, ds = \delta_{qp}, \]

where \(\tau_p \) is the unit vector in the direction of edge \(e_p \). We also define the following interpolation operator \(I_{\mathbb{Y}_h} \) from \(\mathbb{C}^\infty(\bar{D}) \) onto \(\mathbb{Y}_h \),

\[I_{\mathbb{Y}_h}(u) = \sum_{q=1}^{M} u_q \psi_q \quad \forall u \in \mathbb{C}^\infty(\bar{D}, \mathbb{R}^3), \]

where \(u_q = \int_{e_q} u \cdot \tau_q \, ds \).

Fixing a positive integer \(J \), we choose the time step \(k \) to be \(k = T/J \) and define \(t_j = jk \), \(j = 0, \ldots, J \). For \(j = 1, 2, \ldots, J \), the functions \(m(t_j, \cdot) \) and \(H(t_j, \cdot) \) are approximated by \(\hat{m}^{(j)}_h \in \mathbb{V}_h \) and \(\hat{H}^{(j)}_h \in \mathbb{Y}_h \), respectively.
We define the space $W_h^{(j)}$ by

$$W_h^{(j)} := \left\{ w \in W_h \mid w(x_n) \cdot m_h^{(j)}(x_n) = 0, \ n = 1, \ldots, N \right\},$$

and denote

$$H_h^{(j+1/2)} := \frac{H_h^{(j+1)} + H_h^{(j)}}{2} \quad \text{and} \quad d_t H_h^{(j+1)} := k^{-1}(H_h^{(j+1)} - H_h^{(j)}).$$

Algorithm 2.1.

Step 1: Set $j = 0$. Choose $m_h^{(0)} = I_{V_h} m_0$ and $H_h^{(0)} = I_{V_h} H_0$.

Step 2: Find $(v_h^{(j+1)}, H_h^{(j+1)}) \in W_h^{(j)} \times Y_h$ satisfying

$$\lambda_2 \left\langle \mathbf{v}_h^{(j+1)}, \mathbf{w}_h^{(j)} \right\rangle_D - \lambda_1 \left\langle \mathbf{m}_h^{(j)} \times \mathbf{v}_h^{(j+1)}, \mathbf{w}_h^{(j)} \right\rangle_D = - \mu \left\langle \nabla (\mathbf{m}_h^{(j)} + k \phi v_h^{(j+1)}), \nabla \mathbf{w}_h^{(j)} \right\rangle_D + \mu \left\langle H_h^{(j+1/2)}, \mathbf{w}_h^{(j)} \right\rangle_D \quad \forall \mathbf{w}_h^{(j)} \in W_h^{(j)},$$

and

$$\mu_0 \left\langle d_t H_h^{(j+1)}, \zeta_h \right\rangle_D + \sigma \left\langle \nabla \times H_h^{(j+1/2)}, \nabla \times \zeta_h \right\rangle_D = - \mu_0 \left\langle \mathbf{v}_h^{(j+1)}, \zeta_h \right\rangle_D \quad \forall \zeta_h \in Y_h.$$ \hspace{1cm} (2.8)

Step 3: Define

$$m_h^{(j+1)}(x) := \sum_{n=1}^{N} \frac{m_h^{(j)}(x_n) + k v_h^{(j+1)}(x_n)}{|m_h^{(j)}(x_n) + k v_h^{(j+1)}(x_n)|^2} \phi_n(x).$$

Step 4: Set $j = j + 1$, and return to Step 2.1 if $j < J$. Stop if $j = J$.

The parameter θ in (2.8) can be chosen arbitrarily in $[0, 1]$. The method is explicit when $\theta = 0$ and fully implicit when $\theta = 1.$

By the Lax–Milgram Theorem, for each $j > 0$ there exists a unique solution $(v_h^{(j+1)}, H_h^{(j+1)}) \in W_h^{(j)} \times Y_h$ of equations (2.8)–(2.9). Since $\left|m_h^{(j)}(x_n)\right| = 1$ and $v_h^{(j+1)}(x_n) \cdot m_h^{(j)}(x_n) = 0$ for all $n = 1, \ldots, N$, there holds

$$\left|m_h^{(j)}(x_n) + k v_h^{(j+1)}(x_n)\right| \geq 1.$$ \hspace{1cm} (2.10)

Therefore, the algorithm is well defined. There also holds $\left|m_h^{(j+1)}(x_n)\right| = 1$ for $n = 1, \ldots, N.$
3 Some technical lemmas

In this section we present some lemmas which will be used in the rest of the paper. We start by recalling the following lemma proved in [3].

Lemma 3.1. If there holds
\[
\int_D \nabla \phi_i \cdot \nabla \phi_j \, dx \leq 0 \quad \text{for all } i, j \in \{1, 2, \ldots, J\} \text{ and } i \neq j, \tag{3.1}
\]
then for all \(u \in \mathbb{V}_h \) satisfying \(|u(x_l)| \geq 1, l = 1, 2, \ldots, J \), there holds
\[
\int_D \left| \nabla I_h \left(\frac{u}{|u|} \right) \right|^2 \, dx \leq \int_D |\nabla u|^2 \, dx. \tag{3.2}
\]
Condition (3.1) holds if all dihedral angles of the tetrahedra in \(T_h \mid D \) are less than or equal to \(\pi/2 \); see [3]. In the sequel we assume that (3.1) holds.

The next lemma defines a discrete \(L^p \)-norm in \(\mathbb{V}_h \) which is equivalent to the usual \(L^p \)-norm.

Lemma 3.2. There exist \(h \)-independent positive constants \(C_1 \) and \(C_2 \) such that for all \(u \in \mathbb{V}_h \) there holds
\[
C_1 \|u\|_{L^p(\Omega)}^p \leq h^d \sum_{n=1}^N |u(x_n)|^p \leq C_2 \|u\|_{L^p(\Omega)}^p,
\]
where \(\Omega \subset \mathbb{R}^d, d=1,2,3. \)

A proof of this lemma for \(p = 2 \) and \(d = 2 \) can be found in [11, Lemma 7.3] or [6, Lemma 1.12]. The result for general values of \(p \) and \(d \) can be obtained in the same manner.

The following lemma can be proved by using the technique in [11, Lemma 7.3].

Lemma 3.3. There exists an \(h \)-independent positive constant \(C \) such that for each tetrahedron \(K \in T_h \) and \(v \in \mathbb{V}_h \) there holds
\[
||v(x) - v(x_i)|| \leq C h|\nabla v(x)| \quad \text{for all } x \in K,
\]
where \(\{x_i\}_{i=1,2,3} \) are the vertices of \(K \).

Finally the following lemma is elementary; the proof of which is included for completeness.

Lemma 3.4. The solutions \((m_h^{(j)}, v_h^{(j+1)}), j = 0, 1, \ldots, J, \) obtained from Algorithm 2.1 satisfy
\[
\left| m_h^{(j+1)}(x_n) - m_h^{(j)}(x_n) \right| \leq \left| v_h^{(j+1)}(x_n) \right| \quad \forall n = 1, 2, \ldots, N, \quad j = 0, \ldots, J. \tag{3.3}
\]
Proof. By using the definition of \(m_{h}^{(j+1)} \), the property \(m_{h}^{(j)}(x_n) \cdot v_{h}^{(j+1)}(x_n) = 0 \), and the identity

\[
|m_{h}^{(j)}(x_n) + k v_{h}^{(j+1)}(x_n)| = \sqrt{1 + k^2 |v_{h}^{(j+1)}(x_n)|^2}
\]

we obtain

\[
\frac{|m_{h}^{(j+1)}(x_n) - m_{h}^{(j)}(x_n)|^2}{k} = \frac{|m_{h}^{(j)}(x_n) + k v_{h}^{(j+1)}(x_n)|}{k} - \frac{|m_{h}^{(j)}(x_n)|}{k} = \frac{m_{h}^{(j)}(x_n)(1 - |m_{h}^{(j)}(x_n) + k v_{h}^{(j+1)}(x_n)|) + k v_{h}^{(j+1)}(x_n)|^2}{k^2 |m_{h}^{(j)}(x_n) + k v_{h}^{(j+1)}(x_n)|^2}
\]

\[
= \frac{2 + 2k^2 |v_{h}^{(j+1)}(x_n)|^2 - 2\sqrt{1 + k^2 |v_{h}^{(j+1)}(x_n)|^2}}{k^2 \left(1 + k^2 |v_{h}^{(j+1)}(x_n)|^2\right)}
\]

\[
= \frac{2\sqrt{1 + k^2 |v_{h}^{(j+1)}(x_n)|^2} - 1}{k^2 \sqrt{1 + k^2 |v_{h}^{(j+1)}(x_n)|^2}}.
\]

Using the fact that

\[
2 \leq \sqrt{1 + k^2 |v_{h}^{(j+1)}(x_n)|^2} + 1
\]

we deduce

\[
\frac{|m_{h}^{(j+1)}(x_n) - m_{h}^{(j)}(x_n)|^2}{k} \leq \frac{(\sqrt{1 + k^2 |v_{h}^{(j+1)}(x_n)|^2} + 1) (\sqrt{1 + k^2 |v_{h}^{(j+1)}(x_n)|^2} - 1)}{k^2}
\]

\[
= |v_{h}^{(j+1)}(x_n)|^2,
\]

proving the lemma.

In the following section, we show that our numerical solution converges to a weak solution of the problem \((1.2) - (1.5)\).

4 Existence of weak solutions

The next lemma provides a bound in the \(L^2\)-norm for the discrete solutions.
Lemma 4.1. The sequence \(\left\{ (m_h^{(j)}, v_h^{(j+1)}, H_h^{(j)}) \right\}_{j=0,1,...} \) produced by Algorithm 2.1 satisfies

\[
\mathcal{E}_h^{(j)} + C \sum_{i=0}^{j-1} k\|v_h^{(i+1)}\|^2_D + \lambda_2 \mu^{-1} \sum_{i=0}^{j-1} k\|d_t H_h^{(i+1)}\|^2_D \\
+ 2\mu_0^{-1} \sigma \sum_{i=0}^{j-1} k\|\nabla \times H_h^{(i+1/2)}\|^2_D \leq \mathcal{E}_h^0, \tag{4.1}
\]

where

\[
\mathcal{E}_h^{(j)} = \|\nabla m_h^{(j)}\|^2_D + \|H_h^{(j)}\|^2_D + \lambda_2 \mu^{-1}\|\nabla \times H_h^{(j)}\|^2_D,
\]

and

\[
C = \begin{cases}
\lambda_2 \mu^{-1}, & \theta \in \left[\frac{1}{2}, 1\right] \\
\lambda_2 \mu^{-1} - (1 - 2\theta)C_1 h^{-2}, & \theta \in \left[0, \frac{1}{2}\right),
\end{cases}
\]

in which \(C_1 \) is a positive constant which is independent with \(j, k \) and \(h \).

Proof. Choosing \(w_h^{(j)} = v_h^{(j+1)} \) in (2.8) and \(\zeta_h = H_h^{(j+1/2)} \) in (2.9), we obtain

\[
\lambda_2 \|v_h^{(j+1)}\|^2_D + k\theta \mu \|\nabla v_h^{(j+1)}\|^2_D = -\mu \left\langle \nabla m_h^{(j)}, \nabla v_h^{(j+1)} \right\rangle_D + \mu \left\langle H_h^{(j+1/2)}, v_h^{(j+1)} \right\rangle_D \tag{4.2}
\]

\[
\frac{\mu_0}{2} d_t \|H_h^{(j+1)}\|^2_D + \sigma \|\nabla \times H_h^{(j+1/2)}\|^2_D = -\mu_0 \left\langle v_h^{(j+1)}, H_h^{(j+1/2)} \right\rangle_D. \tag{4.3}
\]

Multiplying \(\mu_0^{-1} \) to both sides of (4.3) and adding the resulting equation to (4.2), we deduce

\[
\lambda_2 \|v_h^{(j+1)}\|^2_D + k\theta \mu \|\nabla v_h^{(j+1)}\|^2_D + \frac{\mu_0}{2} d_t \|H_h^{(j+1)}\|^2_D \tag{4.4}
\]

\[
+ \mu_0^{-1} \sigma \|\nabla \times H_h^{(j+1/2)}\|^2_D = -\mu \left\langle \nabla m_h^{(j)}, \nabla v_h^{(j+1)} \right\rangle_D.
\]

Since \(m_h^{(j)} + k v_h^{(j+1)} \in V_h \) and

\[
m_h^{(j+1)} = I_h \left(\frac{m_h^{(j)} + k v_h^{(j+1)}}{|m_h^{(j)} + k v_h^{(j+1)}|} \right),
\]

it follows from (2.10) and Lemma 3.1 that

\[
\|\nabla m_h^{(j+1)}\|^2_D \leq \|\nabla (m_h^{(j)} + k v_h^{(j+1)})\|^2_D.
\]

Equivalently, we have

\[
\|\nabla m_h^{(j+1)}\|^2_D \leq \|\nabla m_h^{(j)}\|^2_D + k^2 \|\nabla v_h^{(j+1)}\|^2_D + 2k \left\langle \nabla m_h^{(j)}, \nabla v_h^{(j+1)} \right\rangle_D. \tag{4.5}
\]
Equality (4.4) is used to obtain from (4.5) the following inequality
\[
\|\nabla m_h^{(j+1)}\|_D^2 \leq \|\nabla m_h^{(j)}\|_D^2 - k^2(2\theta - 1)\|\nabla v_h^{(j+1)}\|_D^2 - 2k_0\mu_0\|\nabla H_h^{(j+1/2)}\|_D^2
\]
\[
- k \rho_d \|H_h^{(j+1)}\|_D^2 - 2k_0\mu_0\|\nabla H_h^{(j+1)}\|_D^2.
\]
Hence,
\[
\|\nabla m_h^{(j+1)}\|_D^2 + \|H_h^{(j+1)}\|_D^2 + 2k_0\mu_0\|\nabla v_h^{(j+1)}\|_D^2 + 2k_0\mu_0\|\nabla \times H_h^{(j+1)}\|_D^2
\]
\[
+ k^2(2\theta - 1)\|\nabla v_h^{(j+1)}\|_D^2 \leq \|\nabla m_h^{(j)}\|_D^2 + \|H_h^{(j)}\|_D^2.
\] (4.6)

Next choosing \(\zeta_h = d_tH_h^{(j+1)}\) in equation (2.9), we obtain
\[
2k_0\|d_tH_h^{(j+1)}\|_D^2 + \sigma\|\nabla \times H_h^{(j+1)}\|_D^2 = \sigma\|\nabla \times H_h^{(j)}\|_D^2
\]
\[
- 2k_0\left\langle v_h^{(j+1)}, d_tH_h^{(j+1)} \right\rangle_D.
\]
The term \(-2k_0\left\langle v_h^{(j+1)}, d_tH_h^{(j+1)} \right\rangle_D\) can be estimated by
\[
-2k_0\left\langle v_h^{(j+1)}, d_tH_h^{(j+1)} \right\rangle_D \leq k_0\|v_h^{(j+1)}\|_D^2 + k_0\|d_tH_h^{(j+1)}\|_D^2.
\]
Therefore, we deduce
\[
k_0\|d_tH_h^{(j+1)}\|_D^2 + \sigma\|\nabla \times H_h^{(j+1)}\|_D^2 \leq \sigma\|\nabla \times H_h^{(j)}\|_D^2 + k_0\|v_h^{(j+1)}\|_D^2.
\] (4.7)

Multiplying \(\lambda_2\mu_1\mu_0^{-1}\) to both sides of (4.1) and adding the resulting equation to (4.6), we obtain
\[
\|\nabla m_h^{(j+1)}\|_D^2 + \|H_h^{(j+1)}\|_D^2 + \lambda_2\mu_1\mu_0^{-1}\|\nabla \times H_h^{(j+1)}\|_D^2
\]
\[
+ k\lambda_2\mu_1\|v_h^{(j+1)}\|_D^2 + k\lambda_2\mu_1\|d_tH_h^{(j+1)}\|_D^2 + 2k_0\mu_0^{-1}\sigma\|\nabla \times H_h^{(j+1/2)}\|_D^2
\]
\[
+ k^2(2\theta - 1)\|\nabla v_h^{(j+1)}\|_D^2 \leq \|\nabla m_h^{(j)}\|_D^2 + \|H_h^{(j)}\|_D^2 + \lambda_2\mu_1\mu_0^{-1}\|\nabla \times H_h^{(j)}\|_D^2.
\]
Replacing \(j\) by \(i\) in the above inequality and summing over \(i\) from 0 to \(j - 1\) yield
\[
\|\nabla m_h^{(j)}\|_D^2 + \|H_h^{(j)}\|_D^2 + \lambda_2\mu_1\mu_0^{-1}\sigma\|\nabla \times H_h^{(j)}\|_D^2 + \lambda_2\mu_1\mu_0^{-1}\|v_h^{(j+1)}\|_D^2
\]
\[
+ \lambda_2\mu_1\|d_tH_h^{(i+1)}\|_D^2 + 2\mu_0^{-1}\sigma\|\nabla \times H_h^{(i+1/2)}\|_D^2
\]
\[
+ k^2(2\theta - 1)\|\nabla v_h^{(i+1)}\|_D^2 \leq \|\nabla m_h^{0}\|_D^2 + \|H_h^{0}\|_D^2 + \lambda_2\mu_1\mu_0^{-1}\sigma\|\nabla \times H_h^{0}\|_D^2.
\] (4.8)
When $\theta \in \left[\frac{1}{2}, 1\right]$, the term $k^2(2\theta - 1) \sum_{i=0}^{j-1} \|\nabla v_h^{(i+1)}\|_D^2$ is nonnegative. Hence, from inequality (4.8) we obtain (4.1) where $C = \lambda_2 \mu^{-1}$. When $\theta \in [0, \frac{1}{2})$, using the inverse estimate we obtain

$$C_1 k^2 h^{-2}(2\theta - 1) \sum_{i=0}^{j-1} \|v_h^{(i+1)}\|_D^2 \leq k^2(2\theta - 1) \sum_{i=0}^{j-1} \|\nabla v_h^{(i+1)}\|_D^2,$$

(4.9)

where, C_1 is a positive constant which is independent with j, k and h. Hence, from inequality (4.8) we obtain (4.1) where $C = \lambda_2 \mu^{-1} - C_1 k h^{-2}(1 - 2\theta)$. This completes the proof of the lemma. \hfill \square

Remark 4.2. The constant C in the above lemma is positive when $\theta \in [1/2, 1]$. When $\theta \in [0, 1/2)$ the additional condition $k = o(h^2)$ assures us that C is positive when h and k are sufficiently small. This condition will be required later in the following lemma and theorem.

The discrete solutions $m_h^{(j)}$, $v_h^{(j+1)}$ and $H_h^{(j)}$ constructed via Algorithm 2.1 are interpolated in time in the following definition.

Definition 4.3. For each $t \in [0, T]$, let $j \in \{0, \ldots, J\}$ be such that $t \in [t_j, t_{j+1})$. We define for $t \in [0, T]$ and $x \in D$

$$m_{h,k}(t, x) := \frac{t-t_j}{k} m_h^{(j+1)}(x) + \frac{t_{j+1}-t}{k} m_h^{(j)}(x),$$

$$m_{h,k}^-(t, x) := m_h^{(j)}(x),$$

$$v_{h,k}(t, x) := v_h^{(j+1)}(x),$$

$$H_{h,k}(t, x) := \frac{t-t_j}{k} H_h^{(j+1)}(x) + \frac{t_{j+1}-t}{k} H_h^{(j)}(x),$$

$$\tilde{H}_{h,k}(t, x) := \frac{1}{2} \left(H_h^{(j+1)}(x) + H_h^{(j)}(x) \right),$$

and

$$H_{h,k}^-(t, x) := H_h^{(j)}(x).$$

The following lemma shows that $\{m_{h,k}\}$, $\{m_{h,k}^\prime\}$ and $\{v_{h,k}\}$ converge (up to the extraction of subsequences) as h and k tend to 0.

Lemma 4.4. Assume that h and k go to 0 with a further condition $k = o(h^2)$ when $\theta \in [0, \frac{1}{2})$ and no condition otherwise. There exist $m \in \mathbb{H}^1(D_T, \mathbb{R}^3)$ and
\(H \in \mathbb{H}^1(0, T, L^2(\tilde{D})) \) such that \(\nabla \times H \) belongs to \(L^2(\tilde{D}_T) \) and

\[
\begin{align*}
\mathbf{m}_{h,k} &\to \mathbf{m} \text{ strongly in } L^2(D_T), & \text{(4.10)} \\
\frac{\partial \mathbf{m}_{h,k}}{\partial t} &\rightharpoonup \mathbf{m}_t \text{ weakly in } L^2(D_T), & \text{(4.11)} \\
\mathbf{v}_{h,k} &\to \mathbf{m}_t \text{ weakly in } L^2(D_T), & \text{(4.12)} \\
\mathbf{m}_h &\to \mathbf{m} \text{ strongly in } L^2(D_T), & \text{(4.13)}
\end{align*}
\]

\[|\mathbf{m}| = 1 \text{ a.e. in } D_T, \]

\[
\begin{align*}
\mathbf{H}_{h,k} &\rightharpoonup \mathbf{H} \text{ weakly in } \mathbb{H}^1(0, T, L^2(\tilde{D})), & \text{(4.15)} \\
\nabla \times \mathbf{H}_{h,k} &\rightharpoonup \nabla \times \mathbf{H} \text{ weakly in } L^2(\tilde{D}_T), & \text{(4.16)} \\
\text{and } \nabla \times \mathbf{H}_{h,k} &\rightharpoonup \nabla \times \mathbf{H} \text{ weakly in } L^2(\tilde{D}_T). & \text{(4.17)}
\end{align*}
\]

\[\mathbf{v}_{h,k} \rightharpoonup \mathbf{m}_t \text{ weakly in } L^2(D_T), \]

Proof of (4.10) and (4.11):

Our goal is to prove that \(\{\mathbf{m}_{h,k}\} \) is bounded in \(\mathbb{H}^1(D_T, \mathbb{R}^3) \) and then use the Banach–Alaoglu Theorem. We note from Definition 4.3 that it suffices to prove that

\[\|\mathbf{m}^{(j)}\|_D \leq c, \]

\[\|\nabla \mathbf{m}^{(j)}\|_D \leq c, \]

where the generic constant \(c \) is independent of \(j, h, \) and \(k \). Indeed, it follows from Definition 4.3 and the Cauchy–Schwarz inequality that

\[\|\mathbf{m}_{h,k}\|_{D_T}^2 \leq ck \sum_{j=0}^{J-1} \left(\|\mathbf{m}^{(j+1)}\|_D^2 + \|\mathbf{m}^{(j)}\|_D^2 \right), \]

\[\|\partial t \mathbf{m}_{h,k}\|_{D_T}^2 \leq c \sum_{j=0}^{J-1} \left(\|\nabla \mathbf{m}^{(j+1)}\|_D^2 + \|\nabla \mathbf{m}^{(j)}\|_D^2 \right), \]

\[\left\| \frac{\partial \mathbf{m}_{h,k}}{\partial t} \right\|_{D_T}^2 = \sum_{j=0}^{J-1} k \left\| \frac{\mathbf{m}^{(j+1)} - \mathbf{m}^{(j)}}{k} \right\|_{D}^2. \]

In order to prove (4.18) we note that for every \(\mathbf{x} \in D \) there are at most 4 basis functions \(\phi_{n_1}, \phi_{n_2}, \phi_{n_3} \) and \(\phi_{n_4} \) being nonzero at \(\mathbf{x} \). This together with \(|\mathbf{m}^{(j)}_{h}(\mathbf{x}_{n_i})| = 1 \) and \(\sum_{i=1}^{4} \phi_{n_i}(\mathbf{x}) = 1 \) yields

\[|\mathbf{m}^{(j)}_{h}(\mathbf{x})|^2 = \left\| \sum_{i=1}^{4} \mathbf{m}^{(j)}_{h}(\mathbf{x}_{n_i})\phi_{n_i}(\mathbf{x}) \right\|^2 \leq 1. \]
This implies (4.18) with a constant $c = |D|^{1/2}$ where $|D|$ is the measure of the
domain D.

Inequality (4.19) is proved in Lemma 4.1. In order to prove inequality (4.20), we
note that Lemma 3.4 and Lemma 3.2 imply
\[
\|m_{h,k}^{(j+1)} - m_{h}^{(j)}\|_D \leq c \|v_h^{(j)}\|_D.
\]
By using this inequality, Lemma 4.1 and Remark 4.2 we deduce
\[
k \sum_{j=0}^{J-1} \left\| \frac{m_{h,k}^{(j+1)} - m_{h}^{(j)}}{k} \right\|_D^2 \leq c \sum_{j=0}^{J-1} \|v_h^{(j)}\|_D^2 \leq c.
\]

The Banach–Alaoglu Theorem implies the existence of a subsequence of \{\(m_{h,k}\)\}
which converges weakly to a function $m \in H^1(D_T)$ as k and h tend to zero. This
implies (4.10) and (4.11).

Proof of (4.12):

From (4.1) and and Remark 4.2 it is straightforward to show that \{\(v_{h,k}\)\}
is bounded in $L^2(D_T)$. Hence, there exists a subsequence of \{\(v_{h,k}\)\} which converges
weakly to a function v in $L^2(D_T)$. The problem reduces to proving that m_t equals
v in $L^2(D_T)$. In order to show this we choose for each $\psi \in L^2(D_T)$ a sequence
\{\(\psi_i\)\} $\in C_0^\infty(D_T)$ converging to ψ in $L^2(D_T)$ as i tends to infinity. We then have
\[
|\langle m_t - v, \psi \rangle_{D_T}| \leq |\langle m_t - v, \psi_i - \psi \rangle_{D_T}| + |\langle m_t - \partial m_{h,k}/\partial t, \psi_i \rangle_{D_T}|
+ |\langle \partial m_{h,k}/\partial t - v_{h,k}, \psi_i \rangle_{D_T}| + |\langle v_{h,k} - v, \psi_i \rangle_{D_T}|
\leq \| m_t - v \|_{D_T} \| \psi_i - \psi \|_{D_T} + |\langle m_t - \partial m_{h,k}/\partial t, \psi_i \rangle_{D_T}|
+ |\langle \partial m_{h,k}/\partial t - v_{h,k}, \psi_i \rangle_{D_T}||\psi_i||_{L^\infty(D_T)} + |\langle v_{h,k} - v, \psi_i \rangle_{D_T}|
=: T_1 + \cdots + T_4.
\]

By letting $h, k \to 0$ and then $i \to \infty$ we have $T_i \to 0$ for $i = 1, 2$ and 4. It remains to
show that $T_3 \to 0$. It is clear from the definition of $m_{h,k}^{(j+1)}$ in Algorithm 2.1 that
\[
\| m_{h,k}^{(j+1)}(x_n) - m_{h}^{(j)}(x_n) - k v_{h}^{(j+1)}(x_n) \| = \| m_{h}^{(j)}(x_n) + k v_{h}^{(j+1)}(x_n) \| - 1.
\]
It easily follows from \(|m_h^{(j)}(x_n)| = 1 \) and \(v_h^{(j+1)}(x_n) \cdot m_h^{(j)}(x_n) = 0 \) that

\[
|m_h^{(j)}(x_n) + kv_h^{(j+1)}(x_n)| \leq \frac{1}{2}k^2 |v_h^{(j+1)}(x_n)|^2 + 1.
\]

The above inequality and (4.13) yield

\[
\left| \frac{m_h^{(j+1)}(x_n) - m_h^{(j)}(x_n)}{k} - v_h^{(j+1)}(x_n) \right| \leq \frac{1}{2}k |v_h^{(j+1)}(x_n)|^2.
\]

By using Lemma 3.2 we deduce

\[
\left\| \frac{\partial m_{h,k}}{\partial t} - v_{h,k}(t) \right\|_{L^1(D)} \leq ck \|v_{h,k}(t)\|_{D}^2 \quad \text{for } t \in [t_j, t_{j+1}).
\]

Integrating both sides of this inequality with respect to \(t \) over an interval \([t_j, t_{j+1})\) and summing over \(j \) from 0 to \(J - 1 \) yield, noting the boundedness of \(\{\|v_{h,k}\|_{D}\} \),

\[
\left\| \frac{\partial m_{h,k}}{\partial t} - v_{h,k} \right\|_{L^1(D_T)} \leq ck \|v_{h,k}\|_{D_T}^2 \leq ck \to 0 \quad \text{as } h, k \to 0.
\]

Thus \(T_3 \to 0 \) as \(h, k \to 0 \) and \(i \to \infty \). It follows from (4.22) that

\[
\langle m_t - v, \psi \rangle_{D_T} = 0 \quad \forall \psi \in L^2(D_T).
\]

This proves (4.12).

Proof of (4.13):

It is clear from the definition of \(m_h^{-} \) and \(m_h \) that for \(t \in [t_j, t_{j+1}) \) there holds

\[
\left\| m_{h,k}(t) - m_h^{-}(t) \right\|_D = \left\| (t - t_j) \frac{m_h^{(j+1)} - m_h^{(j)}}{k} \right\|_D \leq k \left\| \frac{\partial (m_{h,k}(t_x))}{\partial t} \right\|_D.
\]

Integrating both sides of this inequality with respect to \(t \) over an interval \([t_j, t_{j+1})\) and summing over \(j \) from 0 to \((J - 1) \) yield

\[
\left\| m_{h,k} - m_h^{-} \right\|_{D_T} \leq k \left\| \frac{\partial m_{h,k}}{\partial t} \right\|_{D_T} \leq ck \to 0 \quad \text{as } h, k \to 0.
\]

The above result and (4.10) imply (4.13).

Proof of (4.14):

Using Lemma 3.3 and noting that \(|m_h^{(j)}(x_n)| = 1 \) for \(n = 1, \cdots, N \), we deduce

\[
\left| m_h^{(j)}(x) \right| - 1 \leq C h^2 \left| \nabla m_h^{(j)}(x) \right|^2 \quad \text{for all } x \in D.
\]
Integrating both sides of the above inequality on \([t_j, t_{j+1}) \times D\), using Lemma 4.1 and noting Remark 4.2, we obtain
\[
\int_{t_j}^{t_{j+1}} \int_D \left| 1 - |m_h^{(j)}(x)| \right|^2 \, dx \, dt \leq ch^2 \int_{t_j}^{t_{j+1}} \| \nabla m_h^{(j)} \|^2_D \leq ckh^2.
\]
Hence
\[
\int_{D_T} \left| 1 - |m_{h,k}^-| \right|^2 \, dx \, dt \to 0 \text{ as } h, k \to 0.
\]
We infer from (4.13) that
\[|m| = 1 \text{ a.e. in } D_T.\]

Proof of (4.15), (4.16) and (4.17):

By using the same arguments as above, we obtain these results, completing the proof of the lemma.

We are now able to prove the main result of this paper.

Theorem 4.5. Assume that \(h\) and \(k\) go to 0 with the following conditions

\[
\begin{cases}
 k = o(h^2) & \text{when } 0 \leq \theta < 1/2, \\
 k = o(h) & \text{when } \theta = 1/2, \\
 \text{no condition} & \text{when } 1/2 < \theta \leq 1.
\end{cases}
\]

Then the limits \((m, H)\) given by Lemma 4.4 is a weak solution of the MLLG equations (2.3)–(2.4).

Proof. For any \(\phi \in C^\infty(D_T)\), \(\zeta \in C^\infty(\tilde{D}_T)\), and \(t \in [t_j, t_{j+1})\), we define
\[
w_{h,k}(t, \cdot) := I_{V_h}(m_{h,k}^- \times \phi(t, \cdot)) \quad \text{and} \quad \zeta_h(t, \cdot) := I_{V_h}(\zeta(t, \cdot)).
\]

In equations (2.8) and (2.9), replacing \(w_h^{(j)}\) and \(\zeta_h\) by \(w_{h,k}(t)\) and \(\zeta_h(t)\), respectively, and using Definition 4.3, we rewrite (2.8)–(2.9) as
\[
-\lambda_1 \left\langle m_{h,k}^{-}(t) \times v_{h,k}(t), w_{h,k}(t) \right\rangle_D + \lambda_2 \left\langle v_{h,k}(t), w_{h,k}(t) \right\rangle_D \\
= -\mu \left\langle \nabla (m_{h,k}^- + k\theta v_{h,k}(t)), \nabla w_{h,k}(t) \right\rangle_D + \mu \left\langle \nabla \tilde{H}_{h,k}(t), w_{h,k}(t) \right\rangle_D,
\]
and
\[
\mu_0 \left\langle \frac{\partial \tilde{H}_{h,k}(t)}{\partial t}, \zeta_h(t) \right\rangle_{\tilde{D}} + \sigma \left\langle \nabla \times \tilde{H}_{h,k}(t), \nabla \times \zeta_h(t) \right\rangle_{\tilde{D}} = -\mu_0 \left\langle v_{h,k}(t), \zeta_h(t) \right\rangle_{\tilde{D}}.
\]
Integrating both sides of these equations with respect to t over an interval $[t_j, t_{j+1})$ and summing over j from 0 to $J - 1$ yield

$$- \lambda_1 \langle m_{h,k} \times v_{h,k}, w_{h,k} \rangle_{D_T} + \lambda_2 \langle v_{h,k}, w_{h,k} \rangle_{D_T}$$

$$= -\mu \langle \nabla (m_{h,k} + k \theta v_{h,k}), \nabla w_{h,k} \rangle_{D_T} + \mu \langle \widetilde{H}_{h,k}, w_{h,k} \rangle_{D_T}$$

(4.25)

and

$$\mu_0 \left\langle \frac{\partial H_{h,k}}{\partial t}, \zeta_h \right\rangle_{\bar{D}_T} + \sigma \left\langle \nabla \times \tilde{H}_{h,k}, \nabla \times \zeta_h \right\rangle_{\bar{D}_T} = -\mu_0 \langle v_{h,k}, \zeta_h \rangle_{\bar{D}_T}.$$

(4.26)

In order to prove that m and H satisfy (2.3) and (2.4), respectively, we prove that as h and k tend to 0 there hold

$$\langle m_{h,k} \times v_{h,k}, w_{h,k} \rangle_{D_T} \rightarrow \langle m \times m_t, m \times \phi \rangle_{D_T},$$

(4.27)

$$\langle v_{h,k}, w_{h,k} \rangle_{D_T} \rightarrow \langle m_t, m \times \phi \rangle_{D_T},$$

(4.28)

$$\langle \nabla m_{h,k}, \nabla w_{h,k} \rangle_{D_T} \rightarrow \langle \nabla m, \nabla (m \times \phi) \rangle_{D_T},$$

(4.29)

$$k \langle \nabla v_{h,k}, \nabla w_{h,k} \rangle_{D_T} \rightarrow 0,$$

(4.30)

$$\langle \widetilde{H}_{h,k}, w_{h,k} \rangle_{D_T} \rightarrow \langle H, m \times \phi \rangle_{D_T},$$

(4.31)

and

$$\left\langle \frac{\partial H_{h,k}}{\partial t}, \zeta_h \right\rangle_{\bar{D}_T} \rightarrow \langle H_t, \zeta \rangle_{\bar{D}_T},$$

(4.32)

$$\left\langle \nabla \times \tilde{H}_{h,k}, \nabla \times \zeta_h \right\rangle_{\bar{D}_T} \rightarrow \langle \nabla \times H, \nabla \times \zeta \rangle_{\bar{D}_T},$$

(4.33)

$$\langle v_{h,k}, \zeta_h \rangle_{\bar{D}_T} \rightarrow \langle m_t, \zeta \rangle_{\bar{D}_T}.$$

(4.34)

We now prove (4.27) and (4.30); the others can be obtained in the same manner.

Using the triangular inequality and Holder’s inequality, we estimate

$$I_{h,k} := \left| \langle m_{h,k} \times v_{h,k}, w_{h,k} \rangle_{D_T} - \langle m \times m_t, m \times \phi \rangle_{D_T} \right|$$

as follows:

$$I_{h,k} \leq \left| \langle m_{h,k} \times v_{h,k}, w_{h,k} - m_{h,k} \times \phi \rangle_{D_T} \right| + \left| \langle m_{h,k} \times v_{h,k}, (m_{h,k} - m) \times \phi \rangle_{D_T} \right|$$

$$+ \left| \langle (m_{h,k} - m) \times v_{h,k}, m \times \phi \rangle_{D_T} \right| + \left| \langle m \times (v_{h,k} - m_t), m \times \phi \rangle_{D_T} \right|$$

$$\leq \| m_{h,k} \|_{L^\infty(D_T)} \| v_{h,k} \|_{D_T} \| w_{h,k} - m_{h,k} \times \phi \|_{D_T}$$

$$+ \| m_{h,k} \|_{L^\infty(D_T)} \| v_{h,k} \|_{D_T} \| m - m_{h,k} \|_{L^\infty(D_T)} \| \phi \|_{L^\infty(D_T)}$$

$$+ \| m - m_{h,k} \|_{D_T} \| v_{h,k} \|_{D_T} \| \phi \|_{L^\infty(D_T)}$$

$$+ \| v_{h,k} - m_t \|_{D_T} \| \phi \|_{L^\infty(D_T)}$$

$$\leq c \left(\| w_{h,k} - m_{h,k} \times \phi \|_{D_T} + \| m - m_{h,k} \|_{D_T} + \| v_{h,k} - m_t \|_{D_T} \right).$$
where we have used (4.21) and Lemma 4.1 noting Remark 4.2. The interpolation operators I_{Vh} and I_{Yh} have the following properties (see e.g., [5] and [14])

$$\| \mathbf{m}_{h,k} - \mathbf{w}_{h,k} \|_{L^2([0,T],H^1(D))} \leq C h \| \mathbf{m}_{h,k} \|_{H^1(D_T)} \| \mathbf{\phi} \|_{W^{2,\infty}(D_T)},$$

$$\| \zeta(t) - \zeta_h(t) \|_D + \| \nabla \times (\zeta(t) - \zeta_h(t)) \|_D \leq C h \| \nabla^2 \zeta \|_D.$$

(4.35)

This implies

$$\lim_{k,h \to 0} I_{h,k} = 0,$$

proving (4.27).

In order to prove (4.30) we first note that

$$\| \nabla \mathbf{w}_{h,k} \|_{D_T} \leq \| \nabla (\mathbf{m}_{h,k} \times \mathbf{\phi} - \mathbf{w}_{h,k}) \|_{D_T} + \| \nabla (\mathbf{m}_{h,k} \times \mathbf{\phi}) \|_{D_T} \leq c h \| \mathbf{m}_{h,k} \|_{H^1(D_T)} \| \mathbf{\phi} \|_{W^{2,\infty}(D_T)} + \| \nabla \mathbf{m}_{h,k} \|_{D_T} \| \nabla \mathbf{\phi} \|_{L^\infty(D_T)} \leq c \| \mathbf{\phi} \|_{W^{2,\infty}(D_T)},$$

where we have used (4.35) and the boundedness of $\| \mathbf{m}_{h,k} \|_{H^1(D_T)}$. Now using Holder’s inequality we obtain

$$k \langle \nabla \mathbf{v}_{h,k}, \nabla \mathbf{w}_{h,k} \rangle_{D_T} \leq c k \| \nabla \mathbf{v}_{h,k} \|_{D_T} \leq c k h^{-1} \| \mathbf{v}_{h,k} \|_{D_T} \leq c k h^{-1} \| \mathbf{v}_{h,k} \|_{D_T} \leq c k h^{-1}$$

(4.36)

when $\theta \in [0,1/2]$. Therefore, under the assumption (4.24) there holds

$$k \langle \nabla \mathbf{v}_{h,k}, \nabla \mathbf{w}_{h,k} \rangle_{D_T} \to 0.$$

We now prove (2.5). Since $\mathbf{m}_0^h = I_{Vh}(\mathbf{m}_0)$, the sequence $\{\mathbf{m}_0^h\}$ converges to \mathbf{m}_0 in $L^2(D)$ as h tends to 0. Using the weak continuity of the trace operator we obtain that $\mathbf{m}(0, \cdot) = \mathbf{m}_0$ in the sense of traces.

Finally, applying weak lower semicontinuity of norms in inequality (4.1) we obtain the energy inequality (2.6), which completes the proof.

\[\square \]
5 Numerical experiments

In order to carry out physically relevant experiments, the initial fields \(m_0, H_0 \) must satisfy condition (2.2). This can be achieved by taking

\[
H_0 = H_0^* - \chi_D m_0,
\]

where \(\text{div} H_0^* = 0 \) in \(\tilde{D} \). In our experiment, for simplicity, we choose \(H_0^* \) to be a constant. We solve an academic example with \(D = \tilde{D} = (0,1)^3 \) and

\[
m_0(x) = \begin{cases}
(0,0,-1), & |x^*| \geq \frac{1}{2}, \\
(2x^*A, A^2 - |x^*|^2)/(A^2 + |x^*|^2), & |x^*| \leq \frac{1}{2},
\end{cases}
\]

\[
H_0^*(x) = (0,0,H_s), \quad x \in \tilde{D},
\]

where \(x = (x_1, x_2, x_3), x^* = (x_1-0.5, x_2-0.5, 0) \) and \(A = (1-2|x^*|)^4/4. \) The constant \(H_s \) represents the strength of \(H_0 \) in the \(x_3 \)-direction. We compute the experiments for \(H_s = 0, \pm 30, \pm 100 \) and \(\pm 1000 \). We set the values for the other parameters in (1.1) and (1.2) as \(\lambda_1 = \lambda_2 = \mu_0 = \sigma = 1. \)

The domain \(D \) is partitioned into uniform cubes with the mesh size \(h = 1/2^3 \), where each cube consists of six tetrahedra. We choose the time step \(k = 10^{-3} \) and the parameter \(\theta \) in Algorithm 2.1 to be 0.7. The construction of the basis functions for \(W_h^{(j)} \) and \(Y_h \) in this algorithm is discussed in [13]. At each iteration we need to solve a linear system of size \((2N + M) \times (2N + M) \), recalling that \(N \) is the number of vertices and \(M \) is the number of edges in the triangulation. The code is written in Fortran90.

The evolution of \(\|\nabla m_{h,k}\|_{\tilde{D}}, \|H_{h,k}\|_{\tilde{D}} \) and \(\|\nabla \times H_{h,k}\|_{\tilde{D}} \) are depicted in Figures 1, 2 and 3 respectively. Figure 4 shows that the solution satisfies condition (2.6) in Definition 2.1.

Remark 5.1. By the time this paper was written up, we learnt that Bañás, Page and Praetorius [4] independently solved a similar problem. They also used a linear scheme similar to our scheme, even though their variational formulation was different.

References

[1] F. Alouges. A new finite element scheme for Landau-Lifchitz equations. *Discrete Contin. Dyn. Syst. Ser. S*, 1(2):187–196, 2008.

[2] L. Bañás, S. Bartels, and A. Prohl. A convergent implicit finite element discretization of the Maxwell–Landau–Lifshitz–Gilbert equation. *SIAM J. Numer. Anal.*, 46(3):1399–1422, 2008.

[3] S. Bartels. Stability and convergence of finite-element approximation schemes for harmonic maps. *SIAM J. Numer. Anal.*, 43(1):220–238 (electronic), 2005.
Figure 1: Plot of $t \mapsto \|\nabla m_{h,k}(t)\|_D$.

Figure 2: Plot of $t \mapsto \|H_{h,k}(t)\|_{\tilde{D}}$.
Figure 3: Plot of $t \mapsto \| \nabla \times H_{h,k}(t) \|_{\tilde{D}}$.

Figure 4: Plot of $\log t \mapsto \mathcal{E}(t)$
[4] L. Bañas, M. Page, and D. Praetorius. A convergent linear finite element scheme for the Maxwell–Landau–Lifshitz–Gilbert equation. *Submitted*, 2012.

[5] D. Braess. *Finite Elements*. Cambridge University Press, Cambridge, third edition, 2007. Theory, fast solvers, and applications in elasticity theory, Translated from the German by Larry L. Schumaker.

[6] Z. Chen. *Finite Element Methods and Their Applications*. Scientific Computation. Springer-Verlag, Berlin, 2005.

[7] I. Cimrák. Error analysis of a numerical scheme for 3D Maxwell–Landau–Lifshitz system. *Math. Methods Appl. Sci.*, 30(14):1667–1683, 2007.

[8] I. Cimrák. Existence, regularity and local uniqueness of the solutions to the Maxwell–Landau–Lifshitz system in three dimensions. *J. Math. Anal. Appl.*, 329(2):1080–1093, 2007.

[9] T. Gilbert. A Lagrangian formulation of the gyromagnetic equation of the magnetic field. *Phys Rev*, 100:1243–1255, 1955.

[10] B. Guo and S. Ding. *Landau–Lifshitz Equations*, volume 1 of *Frontiers of Research with the Chinese Academy of Sciences*. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2008.

[11] C. Johnson. *Numerical Solution of Partial Differential Equations by the Finite Element Method*. Cambridge University Press, Cambridge, 1987.

[12] L. Landau and E. Lifschitz. On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. *Phys Z Sowjetunion*, 8:153–168, 1935.

[13] K.-N. Le and T. Tran. A finite element approximation for the quasi-static Maxwell–Landau–Lifshitz–Gilbert equations. *Submitted ANZIAM J*. 2012.

[14] P. Monk. *Finite Element Methods for Maxwell’s equations*. Numerical Mathematics and Scientific Computation. Oxford University Press, New York, 2003.