Antimicrobial Resistance Profiling of Coagulase-Negative Staphylococci in a Referral Center in South Italy: A Surveillance Study

Daria Nicolosi, Diana Cinà, Concettina Di Naso, Floriana D’Angeli, Mario Salmeri and Carlo Genovese

1. INTRODUCTION

Staphylococci are non-spore-forming bacteria that are widespread in nature. Various species of *Staphylococcus* constitute the normal microbiota of humans and animals: they are found on the skin, on the mucous membranes of the upper respiratory tract and in the intestinal tract. The skin is frequently colonized by staphylococci, especially in humid areas: navel, armpits, groin, perineum, face, hands and scalp. The skin, either intact (through hair follicles or sweat ducts) or interrupted by lesions, represents a frequent entrance for staphylococci. Historically, Coagulase-Negative Staphylococci (CoNS) had been considered to be less pathogenic compared to coagulase-positive ones. However, numerous studies have reported that even coagulase-negative species are equally...
pathogenic [1, 2]. CoNS, as opportunists, are responsible for severe nosocomial and health-care related infections. They are capable of colonizing and infecting humans through different mechanisms, such as adherence, invasion, persistence and evasion of innate and adaptive immunity [3]. S. epidermidis is the most commonly isolated CoNS [4 - 7], followed by S. hominis [8 - 10], S. haemolyticus [11, 12] and S. capitis [13 - 15]. S. lugdunensis and S. saprophyticus are often responsible for septic arthritis [16 - 19] and uncomplicated urinary tract infections [20], respectively. The role of CoNS as pathogens has been demonstrated in human infections, particularly in patients with implanted devices, immunocompromised subjects and preterm infants. Virulence factors of these microorganisms are poorly defined and it is very difficult to determine the pathogenicity of clinical isolates [1]. Furthermore, several CoNS have shown resistance to different antibiotics and the treatment of infections has become very difficult [21 - 23]. Among CoNS, S. lugdunensis is the only species susceptible to a wide range of antimicrobials [24]. In addition, there are few recent data in the literature [25 - 28]. Accordingly, the aim of the present study was to investigate the etiology and the antibiotic-resistance profiles of CoNS isolated from hospital environments in South Italy.

2. MATERIALS AND METHODS

2.1. Study Design

The retrospective study was conducted in the National Reference and Specialization Hospitals “Garibaldi” (Catania, Italy) between January 2016 and October 2018. Patient epidemiological data were collected and the identification of bacterial strains provided by the hospital laboratory was confirmed at the Department of Biomedical and Biotechnological Sciences, University of Catania.

2.2. Specimen Collection

All specimens were collected in strict aseptic conditions, according to Guidelines of the Italian National Institute of Health – ISS [29]. Samples were expeditiously transported to the laboratory and processed without undue delay.

2.3. Microbiological Evaluation

Each sample was cultured into Columbia agar plates containing 5% defibrinated horse blood (bioMérieux) and incubated for 18-24 h at 37°C [30]. For S. lugdunensis isolation, the incubation time was prolonged (48 h) to obtain visible colonies [31]. Colonies in pure culture were identified by Gram staining, catalase and coagulase tests [32].

2.4. Bacteria Identification and Antimicrobial Susceptibility

Strains identification was performed through the Vitek 2 compact (bioMérieux) system using a GP ID card for Gram-positive bacteria. All the procedures were carried out according to the manufacturer’s instructions. The coagulase-negative Staphylococcus species isolated during the study are reported in Table 1. Antibiotic susceptibility tests were performed by determining the MIC using the broth microdilution method, according to the guidelines of the Clinical and Laboratory Standards Institute [33].

2.5. Statistical Analysis

A Chi-square test was used to study distribution and changes in resistance patterns. Statistical significance was determined if a two-tailed p-value was <0.0001.

3. RESULTS

3.1. Distribution of Clinical Isolates

In total, 828 CoNS were isolated from patients admitted to various wards at the hospital. The 828 CoNS isolated belonged to 12 different species (Table 1), and 89.7% of these strains were isolated from urine, sperm, vaginal swabs, endovascular catheter-associated infections, bladder catheters, blood cultures and bronchial-aspirates (Table 2). The other 10.3% were isolated from other patient samples (Table 2). Data analysis showed that the most frequently detected CoNS were S. haemolyticus, S. epidermidis and S. hominis. S. haemolyticus was mainly isolated from urine (94/390, 24%), whereas S. epidermidis and S. hominis were mainly isolated from blood cultures (94/247, 38% and 40/65, 62%, respectively). All other species accounted for only a small portion of the isolates investigated (126/828, 15%) (Table 2).

3.2. Trends of Antimicrobial Resistance in Coagulase-Negative Staphylococci

The antibiotic susceptibility profiles of CoNS are reported in Table 3. Of the species investigated, S. warneri demonstrated broad antimicrobial susceptibility. The other species showed a similar susceptibility profile except for quinupristin-dalfopristin (synercid). It is noteworthy that S. epidermidis and S. haemolyticus demonstrated the broadest degree of resistance to the antimicrobials investigated. S. hominis and S. simulans showed higher resistance to trimethoprim-sulfamethoxazole. Furthermore, elevated resistance to rifampicin was found for S. simulans, with respect to the other CoNS strains. For all the tested strains, no resistance was found for linezolid, teicoplanin and vancomycin.

Table 1. Coagulase-negative staphylococci isolated during the study.

Species	Number of Isolates	%
Staphylococcus haemolyticus	390	47.1
Staphylococcus epidermidis	247	29.8
Staphylococcus hominis	65	7.8
Staphylococcus warneri	32	3.9
Staphylococcus simulans	29	3.5
Table 2. Distribution of coagulase-negative staphylococci in clinical samples.

Species	Isolates	%
Staphylococcus lugdunensis	17	2.1
Staphylococcus capitis	14	1.7
Staphylococcus cohnii	10	1.2
Staphylococcus xylosus	9	1.1
Staphylococcus saprophyticus	6	0.7
Staphylococcus sciuri	5	0.6
Staphylococcus auricularis	4	0.5
TOTAL	828	100

Table 3. Antibiotic susceptibility patterns of coagulase-negative staphylococci.

No. of Isolates	Staphylococcus haemolyticus	Staphylococcus epidermidis	Staphylococcus hominis	Staphylococcus warneri	Staphylococcus simulans	Staphylococcus capitis	Staphylococcus xylosus	Staphylococcus saprophyticus	Staphylococcus sciuri	Staphylococcus auricularis
390	247	65	32	29	65	12	10	8	5	6
4. DISCUSSION

In the last few years, CoNS have emerged as important nosocomial pathogens and are exhibiting increasing virulence and resistance to many antibiotics [34, 35]. In this study, the antibiotic-resistance profiles of CoNS isolated from a hospital environment in South Italy were evaluated. Staphylococcus haemolyticus and Staphylococcus epidermidis were the most prevalent CoNS isolated from clinical samples. In addition, among the CoNS that were found, we observed differences in antimicrobial resistance. The strains did not exhibit any resistance to linezolid, an oxazolidinone antibacterial agent that inhibits protein synthesis [36]. However, in Italy, plasmidic cfr-mediated linezolid resistance has been reported for S. epidermidis [37]. No clinical isolate was resistant to the glycopeptides vancomycin and teicoplanin. The high susceptibility rate against these antibiotics could be due to the preferential use of linezolid by hospital clinicians [38]. The first two cases of glycopeptide-resistant CoNS strains were reported by Wilson et al. and Schwalbe et al. [39, 40]. In a one-year prospective control study conducted in an Italian University Hospital, Tacconelli et al. isolated nineteen strains resistant to teicoplanin and one strain resistant to both teicoplanin and vancomycin from 535 subjects with bacteremia. They verified that previous exposure to beta-lactams and glycopeptides, multiple hospitalizations and the concomitant presence of pneumonia were connected with the development of resistance to these antibiotics [41]. In recent years, a worldwide increase in the number of glycopeptide-resistant CoNS has been reported [42]. Sgarabotto et al. suggested the association synergic/vancomycin against multidrug-resistant CoNS. The combination of the two antibiotics avoids any side effects [43, 44]. Among the beta-lactams, the highest resistance rates were observed for ampicillin and penicillin, followed by amoxicillin-clavulanate, and oxacillin. In Italy, Arciola et al. determined the resistance patterns of 15 different species of CoNS isolated from orthopedic implants. The most prevalent species were S. hominis, S. haemolyticus, S. capitis, S. warneri and S. cohnii, with a resistance rate to penicillin between 51% and 66%. S. haemolyticus exhibited high resistance to oxacillin [45]. For the macrolides group, S. haemolyticus, S. epidermidis and S. hominis showed a high rate of erythromycin-resistance [26]. Within the quinolones, resistance to levofloxacin, ciprofloxacin and ofloxacin was found in about 50% of the clinical isolates. Ligozzi et al. demonstrated that norA-like genes played an important role in the resistance of CoNS to fluoroquinolones [46]. Resistance mechanisms to quinolones include mutations concerning CoNS resistance, it is possible to state that the isolation and antibiotic-resistance of coagulase-negative staphylococci is highly variable [49]. Regarding tetracycline, in our study, 24% of the strains exhibited resistance. The aminoglycoside gentamycin was tested against CoNS, with a resistance rate of 47%. For the lincosamides class, CoNS showed 28% resistance against clindamycin. Our data are consistent with a recent study by De Vecchi et al. [25], where there was a greater antibiotic resistance in S. haemolyticus than in S. capitis and S. warneri. However, it was not possible to compare our results with others obtained in the same geographical area, since any data regarding the frequency of isolation and antibiotic-resistance of coagulase-negative staphylococci in South Italy are available. From our results concerning CoNS resistance, it is possible to state that the antibiotics rifampicin, tetracycline, trimethoprim-sulfamethoxazole and, to a lesser extent, clindamycin could be used with a good success rate. The antibiotics synergic, linezolid, teicoplanin and vancomycin should be used only in cases
where the other antimicrobial agents are not effective.

In the present study, the frequency of isolation and the antibiotic-resistance of coagulase-negative staphylococci from the hospital environment were investigated; not a correlation with the different types of infections. Indeed, since CoNS are commonly present in the human skin and mucous membranes, in some cases, they could contaminate clinical specimens [50, 51]. It is well known that the differentiation between a pathogen and a contaminant is based on several clinical and microbiological factors. Accordingly, in the last few years, different clinical studies have provided guidelines to distinguish pathogenic strains from contaminants, to date, clear, definitive guidelines are still lacking [52]. Although the contamination of specimens is clinically relevant, in this context, we focused on the antibiotic-resistance of coagulase-negative staphylococci isolated from hospital samples. Therefore, we found that, among CoNS, S. haemolyticus and S. epidermidis are the most frequently isolated bacteria from clinical specimens in a single center in South Italy.

CONCLUSION

The comparative analysis of antibiotic resistance patterns of different CoNS revealed high resistance levels of these strains to the most common antibiotics used in clinical practice. Furthermore, the role of CoNS in the pathogenesis of infection should be assessed for each patient. Different antibiotics, including penicillins, cephalosporins, macrolides, tetracycline and aminoglycosides, have proven to be ineffective against several CoNS species. Hence, there is a need to find new effective antimicrobial drugs. In conclusion, our study could be viewed as the first step of a wider investigation that significantly contributes to the evaluation of the clinical importance of coagulase-negative staphylococci, in a small area of the South of Italy.

LIST OF ABBREVIATIONS

CoNS = Coagulase-negative Staphylococci;
MIC = Minimum Inhibitory Concentration.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

Not applicable.

HUMAN AND ANIMAL RIGHTS

Not applicable.

CONSENT FOR PUBLICATION

Not applicable.

AVAILABILITY OF DATA AND MATERIALS

The datasets generated during the current study are available from the corresponding author on a reasonable request.

FUNDING

None.

CONFLICT OF INTEREST

The authors declare no conflict of interest, financial or otherwise.

ACKNOWLEDGEMENTS

We wish to thank the Scientific Bureau of the University of Catania for language support.

REFERENCES

[1] Méric G, Mageiros L, Pensar J, et al. Disease-associated genotypes of the commensal skin bacterium Staphylococcus epidermidis. Nat Commun 2018; 9(1): 5034. [http://dx.doi.org/10.1038/s41467-018-03768-7] [PMID: 30487573]

[2] Kini GD, Patel K, Parris AR, Tang JS. An unusual presentation of endocarditis caused by Staphylococcus warneri. Open Microbiol J 2010; 4: 103-5. [http://dx.doi.org/10.2174/1874285801004010103] [PMID: 21258573]

[3] Le KY, Park MD, Otto M. Immune Evasion Mechanisms of Staphylococcus epidermidis Biofilm Infection. Front Microbiol 2018; 9: 359. [http://dx.doi.org/10.3389/fmicb.2018.00359] [PMID: 29541068]

[4] Kleinschmidt S, Huygens F, Faagagui J, Rathnayake IU, Hafner LM. Staphylococcus epidermidis as a cause of bacteremia. Future Microbiol 2015; 10(11): 1859-79. [http://dx.doi.org/10.2217/fmb.15.98] [PMID: 26517189]

[5] Cherifi S, Byl B, Deplano A, et al. Genetic characteristics and antimicrobial resistance of Staphylococcus epidermidis isolates from patients with catheter-related bloodstream infections and from colonized healthcare workers in a Belgian hospital. Ann Clin Microbiol Antimicrob 2014; 13: 20. [http://dx.doi.org/10.1186/1476-0711-13-20] [PMID: 24899534]

[6] Sani NA, Sapri HF, Neo H, Hussin S. First report on the molecular epidemiology of Malaysian Staphylococcus epidermidis isolated from a university teaching hospital. BMC Res Notes 2014; 7: 597. [http://dx.doi.org/10.1186/1756-0500-7-597] [PMID: 25186825]

[7] Sabaté Cresó M, Harris LG, Thompson K, et al. Pathogenic Mechanisms and Host Interactions in Staphylococcus epidermidis Device-Related Infection. Front Microbiol 2017; 8: 1401. [http://dx.doi.org/10.3389/fmicb.2017.01401] [PMID: 28824556]

[8] Mendoza-Olazarán S, Morfin-Otero R, Rodríguez-Noriega E, et al. Microbiological and molecular characterization of Staphylococcus hominis isolates from blood. PLoS One 2013; 8(4):e59161. [http://dx.doi.org/10.1371/journal.pone.0059161] [PMID: 23585877]

[9] Frickmann H, Hahn A, Skusa R, et al. Comparison of the etiological relevance of Staphylococcus haemolyticus and Staphylococcus hominis. Eur J Clin Microbiol Infect Dis 2018; 37(8): 1539-45. [http://dx.doi.org/10.1007/s10096-018-3282-y] [PMID: 29777406]

[10] Szczuka E, Krzymińska S, Kaznowski A. Clonality, virulence and the occurrence of genes encoding antibiotic resistance among Staphylococcus warneri isolates from bloodstream infections. J Med Microbiol 2016; 65(8): 828-36. [http://dx.doi.org/10.1099/jmm.0.002837] [PMID: 27226348]

[11] Czekaj T, Ciszewski M, Szewczyk EM. Staphylococcus haemolyticus - an emerging threat in the twilight of the antibiotics age. Microbiology 2015; 161(11): 2061-8. [http://dx.doi.org/10.1099/mic.0.001787] [PMID: 26363644]

[12] Parashar S. Staphylococcus haemolyticus; A Nosocomial Pathogen Showing Higher Antimicrobial Resistance. Med Sci 2014; 3: 381-2. [http://dx.doi.org/10.1537/2249555x]

[13] Yamamoto K, Ohmagari T, et al. Population structure and antibiotic resistance of coagulase-negative staphylococci isolated from blood cultures in newborn infants, with a special focus on Staphylococcus capitis. Acta Paediatr 2017; 106(10): 1576-82. [http://dx.doi.org/10.1111/apa.13950] [PMID: 28631328]

[14] Gaglani B, Rahman M, Shah K. Septic arthritis of native hip joint by
Staphylococcus lugdunensis: A case report. Rev Soc Bras Med Trop 2018; 51(4): 554-6. [http://dx.doi.org/10.1590/0037-8682-0169-2017] [PMID: 30133645]

[17] Zaaroura H, Geffen Y, Bergman R, Avitan-Hersh E. Clinical and microbiological properties of Staphylococcus lugdunensis skin infections. J Dermatol 2018; 45(8): 899-904. [http://dx.doi.org/10.1111/1346-8138.14490] [PMID: 28987142]

[18] Heldt Manica LA, Cohen PR. Cutaneous Staphylococcus lugdunensis infection: an emerging bacterial pathogen. Dermatol Online J 2018; 24 : 13030/qt4sv3z6gk.

[19] Carter GP, Usher JE, Da Silva AG, et al. Genomic analysis of multi-resistant Staphylococcus capitis associated with neonatal sepsis. Antimicrob Agents Chemother 2018; 62(11): e00898-18. [http://dx.doi.org/10.1128/AAC.00898-18] [PMID: 30150477]

[20] Genovese C, Davinelli S, Mangano K, et al. Effects of a new combination of plant extracts plus d-mannose for the management of uncomplicated recurrent urinary tract infections. J Chemother 2018; 30(2): 107-14. [http://dx.doi.org/10.1007/s10528-017-0331-2] [PMID: 29078739]

[21] Diekema DJ, Pfaller MA, Schmitz FJ, et al. Epidemiology of methicillin-resistant Staphylococcus hominis (MRSHo): low clonality and reservoirs of SCCmeC structural elements. PLoS One 2011; 6(7):e21940.

[22] Bouchami O, Ben Hansen A, de Lencastre H, Mitragot M. Molecular epidemiology of methicillin-resistant Staphylococcus hominis (MRSHo): low clonality and reservoirs of SCCmeC structural elements. PLoS One 2011; 6(7):e21940. [http://dx.doi.org/10.1371/journal.pone.0021940] [PMID: 21760926]

[23] McHardy IH, Veltman J, Hindler J, Bruxvoort K, Carvalho MM, et al. Comparison of a PCR-method that recognizes the presence of ica and coagulase-negative staphylococci: pathogenesis, occurrence of antibiotic resistance genes with two classic phenotypic methods. J Biomed Mater Res A 2011; 98A(4): 743-9. [http://dx.doi.org/10.1002/jbm.a.30552] [PMID: 16270350]

[24] Nicola N, Capri V, Genovese C, Tempera G, Mattina R, Pignatello S. Performance Standards for Antimicrobial Susceptibility Testing: Twenty-Fifth Informational Supplement. CLSI Document M100-S26, Clinical and Laboratory Standards Institute 2016.

[25] Aqvavilla R, D’Angeli F, Malfa GA, et al. Antibacterial and anti-biofilm activities of walnut pellicle extract (Juglans regia L.) against coagulase-negative staphylococci. Nat Prod Res 2019; 1-6. [http://dx.doi.org/10.1080/17468441.2019.1650352] [PMID: 31397177]

[26] Nicola N, Cupri S, Genovesi C, Tempere G, Martina R, Pignatello R. Nanotechnology approaches for antibacterial drug delivery: Preparation and microbiological evaluation of fusogenic liposomes carrying fusidic acid. Int J Antimicrob Agents 2015; 45(6): 622-6. [http://dx.doi.org/10.1016/j.ijantimicag.2015.01.016] [PMID: 25816970]

[27] Tian Y, Li T, Zhu Y, Wang B, Zou X, Li M. Mechanisms of linezolid resistance in staphylococci and enterococci isolated from two teaching hospitals in Shanghai, China. BMC Microbiol 2014; 14: 292. [http://dx.doi.org/10.1186/1286-0142-9-25] [PMID: 25420718]

[28] Brcinanci A, Motroni G, Mingoia M, Valarde PE, Giovanetti E. Stability of the cargo regions of the cfr-carrying, multiresistance plasmid pPS01 from Staphylococcus epidermidis. Int J Med Microbiol 2010; 306(6): 717-21. [http://dx.doi.org/10.1016/j.ijmm.2010.02.002] [PMID: 20791479]

[29] Biavasco F, Vignarelli C, Valarde PE. Glycopeptide resistance in coagulase-negative staphylococci. Eur J Clin Microbiol Infect Dis 2000; 19(6): 403-17. [http://dx.doi.org/10.1007/s000960000299] [PMID: 10947214]

[30] Wilson AP, O’Hare MD, Felthamming D, Grünberg RN. Detection of biofilm of coagulase-negative staphylococci. Lancet 1986; 2(8513): 973. [http://dx.doi.org/10.1016/S0140-6736(86)90227-T] [PMID: 2877149]

[31] Schwalbe RS, Stapleton JT, Gilligan PH. Emergence of vancomycin resistance in coagulase-negative staphylococci. N Engl J Med 1987; 316(15): 927-31. [http://dx.doi.org/10.1097/00005150-198704090-00019] [PMID: 3165100]

[32] Taconelli E, Tombarello M, Donati KG, et al. Glycopeptide resistance among coagulase-negative staphylococci that cause bacteremia: epidemiological and clinical findings from a case-control study. Clin Infect Dis 2001; 33(10): 1628-35. [http://dx.doi.org/10.1086/323276] [PMID: 11595984]

[33] Meher H, Jahanbakhsh R, Shakeri F, et al. Investigation of glycopeptide susceptibility of coagulase-negative staphylococci (CoNS) from a tertiary care hospital in Gorgan, northern Iran. Arch Pediatr Infect Dis 2017; 5(37264).

[34] Venkatesh MP, Placencia F, Weisman LE. Coagulase-negative staphylococcal infections in the neonate and child: an update. Semin Pediatr Infect Dis 2006; 17(3): 120-7. [http://dx.doi.org/10.1016/j.spid.2006.06.005] [PMID: 16934706]

[35] Lázaro R, Camps A, Santamaria J, Placencia F. Susceptibility of coagulase-negative staphylococci to linezolid. J Antimicrob Chemother 2007; 60(2): 240-4. [http://dx.doi.org/10.1093/jac/dkm232] [PMID: 17748157]

[36] Talukdar A, Therese KL, Ali HN. Mutations within the Quinolone Resistance Determining Region in fluoroquinolone-resistant Staphylococcus epidermidis. J Antimicrob Chemother 2008; 62(1): 125-30. [http://dx.doi.org/10.1093/jac/dkn324] [PMID: 18346771]

[37] Aricó CA, Campoccia D, Baldaassari L, et al. Detection of biofilm formation in Staphylococcus epidermidis from implant infections. Comparison of a PCR-method that recognizes the presence of ica genes with two classic phenotypic methods. J Biomed Mater Res A 2006; 76(2): 425-30. [http://dx.doi.org/10.1002/jbm.a.30552] [PMID: 16270350]

[38] Maro L, Liliana G, Anna B, Annarita M. Intrinsic role of coagulase-negative staphylococci norA-like efflux system in fluoroquinolone resistance. AIMS Microbiol 2017; 3(4): 908-14. [http://dx.doi.org/10.3934/microbiol.2017.3.908] [PMID: 28921497]

[39] Szczuka E, Jabłońska L, Kaznowski A. Coagulase-negative staphylococci: pathogenesis, occurrence of antibiotic resistance genes and in vitro effects of antibacterial agents on biofilm-growing bacteria. J Med Microbiol 2016; 65(12): 1405-13. [http://dx.doi.org/10.1099/jmm.0.000372] [PMID: 27902368]

[40] Osman K, Alvarez-Ordóñez A, Ruiz L, et al. Antimicrobial resistance and virulence characterization of Staphylococcus aureus and
coagulase-negative staphylococci from imported beef meat. Ann Clin Microbiol Antimicrob 2017; 16(1): 35.
[http://dx.doi.org/10.1186/s12941-017-0210-4] [PMID: 28486995]

[50] Asaad AM, Ansar Qureshi M, Mujeeb Hasan S. Clinical significance of coagulase-negative staphylococci isolates from nosocomial bloodstream infections. Infect Dis (Lond) 2016; 48(5): 356-60.
[http://dx.doi.org/10.3109/23744235.2015.1122833] [PMID: 26666168]

[51] Morioka S, Ichikawa M, Mori K, Kurai H. Coagulase-negative staphylococcal bacteraemia in cancer patients. Time to positive culture can distinguish bacteraemia from contamination. Infect Dis (Lond) 2018; 50(9): 660-5.
[http://dx.doi.org/10.1080/23744235.2018.1451917] [PMID: 29544362]

[52] Fowler ML, Zhu C, Byrne K, et al. Pathogen or contaminant? Distinguishing true infection from synovial fluid culture contamination in patients with suspected septic arthritis. Infection 2017; 45(6): 825-30.
[http://dx.doi.org/10.1007/s15010-017-1051-y] [PMID: 28766274]

© 2020 Nicolosi et al.
This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: (https://creativecommons.org/licenses/by/4.0/legalcode). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.