Paley-Wiener Isomorphism Over Infinite-Dimensional Unitary Groups

Oleh Lopushansky

Abstract. An analog of the Paley-Wiener isomorphism for the Hardy space with an invariant measure over infinite-dimensional unitary groups is described. This allows us to investigate on such space the shift and multiplicative groups, as well as, their generators and intertwining operators. We show applications to the Gauss-Weierstrass semigroups and to the Weyl–Schrödinger irreducible representations of complexified infinite-dimensional Heisenberg groups.

Mathematics Subject Classification. 46T12, 46G20.

Keywords. Hardy spaces of infinitely many variables, Harmonic analysis on infinite-dimensional groups, Symmetric Fock spaces.

1. Introduction

The work deals with the Hardy space H^2_χ of square-integrable \mathbb{C}-valued functions with respect to a probability measure χ over the infinite-dimensional unitary group $U(\infty) := \bigcup \{U(m) : m \in \mathbb{N}\}$, extended by unit \mathbb{I}, which irreducibly acts on a separable complex Hilbert space E with an orthonormal basis $\{e_m\}$. Here, $U(m)$ is the subgroup of unitary $m \times m$-matrices endowed with Haar’s measure χ_m.

In what follows, $U(\infty)$ is densely embedded via a universal mapping π into the space of virtual unitary matrices $\mathcal{U} = \lim\leftarrow U(m)$ defined as the projective limit under Livšic’s mappings $\pi^{m+1}_m : U(m + 1) \to U(m)$. The projective limit $\chi = \lim\leftarrow \chi_m$, such that each image-measure $\pi^{m+1}_m(\chi_{m+1})$ is equal to χ_m, is concentrated on the range $\pi(U(\infty))$ consisting of stabilized sequences (see [18,20]). The measure χ is invariant under right actions [20, n.4].
We refer to [5, 26] for applications of χ to stochastic processes. Needed properties of Hardy spaces H^2_χ can be found in [15]. Various cases of Hardy spaces in infinite-dimensional settings were considered in [9, 17].

Now, we briefly describe results. Using a unitarily weighted symmetric Fock space $(\Gamma_w, \langle \cdot | \cdot \rangle_w)$ with a canonical orthogonal basis of symmetric tensor products $\{e_i^{\otimes \lambda}\}$ of basis elements $\{e_m\} \subset E$ indexed by Young diagrams λ and normalized by measure χ, we find an orthogonal basis of polynomial $\{\phi_\lambda^n\}$ in H^2_χ such that the conjugate-linear mapping

$$\Phi : \Gamma_w \rightarrow H^2_\chi$$

is a surjective isometry with one-to-one correspondence $e_i^{\otimes \lambda} \mapsto \phi_\lambda^n$. This allows us to establish in Theorem 2 an integral formula for a Fock-symmetric F-transform

$$F : H^2_\chi \ni f \mapsto \hat{f} \in H^2_w$$

where the Hilbert space H^2_w, uniquely determined by Γ_w, consists of Hilbert–Schmidt analytic entire functions on E. Thus, the F-transform acts as an analog of the Paley-Wiener isomorphism over infinite-dimensional groups.

Furthermore, we investigate two different representations of the additive group $(E, +)$ over the Hardy space H^2_χ by shift and multiplicative groups. Theorem 3 states that the F-transform is an intertwining operator between the multiplication group M^\dagger_α on H^2_χ and the shift group T^\dagger_α on H^2_w. On the other hand, Theorem 4 shows that F is the same between the shift group T^\dagger_α on H^2_χ and the multiplication group M_α^\ast on H^2_w. Integral formulas describing interrelations between their generators are established. In Theorem 5 suitable commutation relations are stated.

Applications to the Gauss-Weierstrass-type semigroups on H^2_χ are shown in Theorem 6. Another application to linear representations of complexified infinite-dimensional Heisenberg groups on H^2_χ in a Weyl–Schrödinger form is given in Theorem 7.

Infinite-dimensional Heisenberg groups was considered in [16] by using reproducing kernel Hilbert spaces. The Schrödinger representation of infinite-dimensional Heisenberg groups on L^2_γ with respect to a Gaussian measure γ over a real Hilbert space is described in [3] (see also earlier publications [1, 2]).

In conclusion, we note that a motivation for this study was the following simple relations in the Hardy space H^2_χ over 1-dimensional group $U(1) = \{u = \exp(i\vartheta) : \vartheta \in [-\pi, \pi]\}$. In this case, $\{u^n : n \in \mathbb{Z}_+\}$ is an orthonormal basis and $\Gamma_w \simeq \ell^2$, since $\Phi^* f = (f_n) \in \ell^2$ for any $f \in H^2_\chi$ with Fourier coefficients $f_n = \int f(u)u^n du = \langle u^n | \Phi^* f \rangle_w$. While, $\hat{f}(x) = \int \hat{f}(u)\exp(x\bar{u})du = \sum f_nx^n/n! = \langle \varepsilon(x) | \Phi^* f \rangle_w$, where $\varepsilon(x) = \langle x^n/n! \rangle \in \ell^2$ for all $x \in \mathbb{C}$.

Moreover, the equalities $T^\dagger_\alpha \hat{f}(x) = \int \hat{f}(u)\exp((x + a)\bar{u})du = F(M^\dagger_\alpha f)(x)$ with $M^\dagger_\alpha f(u) = \exp(au)f(u)$ hold for all $x, a \in \mathbb{C}$. On the other hand, $(M_\alpha \hat{f})(x) = \exp(x\bar{a})\sum f_nx^n/n! = \sum (T^\dagger_\alpha f_n)x^n/n!$ with $T^\dagger_\alpha f_n = \sum_{k=0}^n (a^k/n! k^k f_{n-k}$. Hence,
The case H^2_χ over m-dimensional group $U(m)$ is similar with a proviso that the weighted Fock space Γ_w is normalized by $\| e_i^{\otimes \lambda} \|_w = (n+m-1)^{-1/2}$ where $n = |\lambda|$ is a homogeneity degree of the basis polynomial ϕ^λ_i in H^2_χ. Note that the normalization $\| e_i^{\otimes \lambda} \|_w = n!^{-1/2}$ with $n = |\lambda|$ leads to the case of Segal-Bargmann’s space H^2_γ with standard centered probability Gaussian measure γ on \mathbb{C}^m.

2. Hilbert–Schmidt Analyticity

Let E stand for a separable complex Hilbert space with scalar product $\langle \cdot | \cdot \rangle$ norm $\| \cdot \|$ and a fixed orthonormal basis $\{ e_k : k \in \mathbb{N} \}$. Denote by $E^{\otimes n}_{\text{alg}} = E \otimes \cdots \otimes E$ ($n \in \mathbb{N}$) its algebraic tensor power consisted of the linear span of elements $\psi_n = x_1 \otimes \cdots \otimes x_n$ with $x_i \in E$ ($i = 1, \ldots, n$). Set $x^{\otimes n} := x \otimes \cdots \otimes x$. The symmetric algebraic tensor power $E^{\otimes n}_{\text{alg}} = E \odot \cdots \odot E$ is defined to be the range of the projector $s_n : E^{\otimes n}_{\text{alg}} \ni \psi_n \mapsto x_1 \odot \cdots \odot x_n$ with $x_1 \odot \cdots \odot x_n := (n!)^{-1} \sum \sigma x_{\sigma(1)} \odot \cdots \odot x_{\sigma(n)}$ where $\sigma : \{ 1, \ldots, n \} \mapsto \{ \sigma(1), \ldots, \sigma(n) \}$ runs through all permutations. The symmetric algebraic Fock space is defined as the algebraic direct sum $\Gamma_{\text{alg}} = \bigoplus_{n \in \mathbb{Z}_+} E^{\otimes n}_{\text{alg}}$ with $E^{\otimes 0}_{\text{alg}} = \mathbb{C}$.

Let $E^{\otimes n}_{\text{h}} := E \otimes_h \cdots \otimes_h E$ be the completion of $E^{\otimes n}_{\text{alg}}$ by Hilbertian norm $\| \psi_n \|_h = \langle \psi_n | \psi_n \rangle_h^{1/2}$ with $\langle \psi_n | \psi'_n \rangle_h = \langle x_1 | x'_1 \rangle \cdots \langle x_n | x'_n \rangle$. Denote by $E^{\otimes n}_{\text{h}}$ the range of continuous extension of s_n on $E^{\otimes n}_{\text{h}}$. As usual, the symmetric Fock space is defined to be the Hilbertian direct sum $\Gamma_{\text{h}} = \bigoplus_{n \in \mathbb{Z}_+} E^{\otimes n}_{\text{h}}$.

Denote by $\lambda = (\lambda_1, \ldots, \lambda_m) \in \mathbb{Z}_+^m$ with $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_m$ a partition of $n \in \mathbb{N}$, that is, $n = |\lambda|$ where $|\lambda| := \lambda_1 + \cdots + \lambda_m$. Any λ may be identified with Young’s diagram of length $l(\lambda) = m$. Let \mathbb{Y} denote all diagrams and $\mathbb{Y}_n = \{ \lambda \in \mathbb{Y} : |\lambda| = n \}$. Assume that $\mathbb{Y}_0 = \{ \emptyset \in \mathbb{Y} : |\emptyset| = 0 \}$ and $l(\emptyset) = 1$. Let $\mathbb{N}_+^m := \{ t = (t_1, \ldots, t_m) \in \mathbb{N}^m : t_i \neq t_k, \forall i \neq k \}$. For each $\lambda \in \mathbb{Y}$ we assign the constant

$$C_{|\lambda|, l(\lambda)} := \frac{(l(\lambda) - 1)!|\lambda|!}{(l(\lambda) - 1 + |\lambda|)!} \leq 1. \quad (1)$$

The spaces $E^{\otimes n}_{\text{alg}}$ and Γ_{alg} may be generated by the basis of symmetric tensors

$$e_i^{\otimes \mathbb{Y}_n} = \bigcup \left\{ e_i^{\otimes \lambda_1} \odot \cdots \odot e_i^{\otimes \lambda_l(\lambda)} : (\lambda, t) \in \mathbb{Y}_n \times \mathbb{N}_+^l(\lambda) \right\},$$

$$e_i^{\otimes \mathbb{Y}} = \bigcup \left\{ e_i^{\otimes n} : n \in \mathbb{Z}_+ \right\} \quad \text{with} \quad e_i^{\otimes 0} = 1,$$
respectively. As is known [4, Sect. 2.2.2], norm of basis element in I_h is equal to
\[
\|e^{\odot \lambda}_i\|_{I_h}^2 = \frac{\lambda!}{|\lambda|!}, \quad \lambda! := \lambda_1! \cdots \lambda_n!.
\] (2)

Let us define a new Hilbertian norm on I_{alg} by the equality
\[
\| \cdot \|_{\text{w}} = \langle \cdot | \cdot \rangle_{\text{w}}^{1/2}
\]
where scalar product $\langle \cdot | \cdot \rangle_{\text{w}}$ is determined via the orthogonal relations
\[
\langle e^{\odot \lambda}_i | e^{\odot \lambda'}_{i'} \rangle_{\text{w}} = \begin{cases} C_{|\lambda|,|\lambda'|} \|e^{\odot \lambda}_i\|_{I_h}^2 : \lambda = \lambda' & \text{and } i = i', \\ 0 : \lambda \neq \lambda' & \text{or } i \neq i'. \end{cases}
\]
Denote by $E^{\odot n}_{\text{w}}$ and Γ_{w} the appropriate completions of $E^{\odot n}_{\text{alg}}$ and I_{alg}, respectively. For any $\iota \in N_+^{(\lambda)}$ there corresponds in $E^{\odot n}_{\text{w}}$ the d-dimension subspace with $d = C^{-1}_{|\lambda|,|\lambda'|}$, spanned by elements $\{ e^{\odot \lambda}_i : \lambda \in \mathbb{Y}_n \}$. The Hilbertian orthogonal sum
\[
\Gamma_{\text{w}} = \bigoplus_{n \in \mathbb{Z}_+} E^{\odot n}_{\text{w}}
\]
endowed with $\langle \cdot | \cdot \rangle_{\text{w}}$ we will call unitarily weighted symmetric Fock space.

Let $x = \sum e_k x_k$ be the Fourier series of $x \in E$ with coefficients $x_k = \langle x | e_k \rangle$. We assign to any $(\lambda, \iota) \in \mathbb{Y}_n \times N_+^{(\lambda)}$ the n-homogenous Hilbert–Schmidt polynomial defined via the Fourier coefficients
\[
x^{\lambda}_i := \langle x^{\odot n} | e^{\odot \lambda}_i \rangle_{\text{w}} = x^{\lambda_1}_{i_1} \cdots x^{\lambda_{|\lambda|}}_{i_{|\lambda|}}, \quad x \in E.
\]
Using the tensor multinomial theorem, we define in Γ_{w} the Fourier decomposition of exponential vectors (or coherent state vectors)
\[
\varepsilon(x) := \bigoplus_{n \in \mathbb{Z}_+} \frac{x^{\odot n}}{n!} = \bigoplus_{n \in \mathbb{Z}_+} \frac{1}{n!} \left(\sum_{k \in \mathbb{N}} e_k x_k \right)^{\odot n} = \bigoplus_{n \in \mathbb{Z}_+} \frac{1}{n!} \sum_{(\lambda, \iota) \in \mathbb{Y}_n \times N_+^{(\lambda)}} \frac{n!}{\lambda!} e^{\odot \lambda}_i x^{\lambda}_i
\] (3)
with respect to the basis $e^{\odot \mathbb{Y}}$. It is convergent in Γ_{w} in view of (1) and
\[
\| \varepsilon(x) \|_{\text{w}}^2 = \sum_{n \in \mathbb{Z}_+} \frac{1}{n!^2} \sum_{(\lambda, \iota) \in \mathbb{Y}_n \times N_+^{(\lambda)}} \left(\frac{n!}{\lambda!} \right)^2 \| e^{\odot \lambda}_i \|_{I_h}^2 \| x^{\lambda}_i \|_{\text{w}}^2
\]
\[
= \sum_{n \in \mathbb{Z}_+} \frac{1}{n!^2} \sum_{(\lambda, \iota)} \frac{n!}{\lambda!} C_{|\lambda|,|\lambda'|} \| x^{\lambda}_i \|_{\text{w}}^2 \leq \sum_{n \in \mathbb{Z}_+} \frac{1}{n!} \sum_{(\lambda, \iota)} \frac{n!}{\lambda!} | x^{\lambda}_i |^2
\]
\[
= \sum_{n \in \mathbb{Z}_+} \frac{1}{n!} \left(\sum_{k \in \mathbb{N}} | x_k |^2 \right)^n = e^{\|x\|^2}.
\] (4)
Particularly, (4) implies that the function $E \ni x \mapsto \varepsilon(x) \in \Gamma_{\text{w}}$ is entire analytic.
Definition 1. The space of \mathbb{C}-valued Hilbert–Schmidt entire analytic functions in variable $x \in E$, associating with the unitarily weighted symmetric Fock space Γ_w, is defined to be

$$H^2_w := \{ \psi^* (x) := \langle \varepsilon (x) | \psi \rangle_w : \psi \in \Gamma_w \}$$

with the norm $\| \psi^* \| = \| \psi \|_w$.

Every function ψ^* is entire analytic as the composition of $\varepsilon(\cdot)$ with $\langle \cdot | \psi \rangle_w$. The subspace in H^2_w of n-homogenous Hilbert–Schmidt polynomials is defined to be

$$H^2_w, n = \{ \psi^*_n (x) = \langle x \otimes n | \psi_n \rangle_w : \psi_n \in \mathcal{E} \otimes n \}.$$

Evidently, $H^2_w = \mathbb{C} \oplus H^1_w \oplus H^2_w \oplus \ldots$.

It is important that H^2_w is uniquely determined by Γ_w since $\{ \varepsilon (x) : x \in E \}$ is total in Γ_w. Similarly, for the subspace H^2_w, n which is uniquely determined by $\mathcal{E} \otimes n$, since $\{ x \otimes n : x \in E \}$ is total in $\mathcal{E} \otimes n$. The last totality follows from the polarization formula for symmetric tensor products

$$e^\otimes_\lambda \cdot a^\otimes_n = \frac{1}{2^n n!} \sum_{\theta_1, \ldots, \theta_n = \pm 1} \theta_1 \ldots \theta_n a^\otimes_n \quad \text{with} \quad a = \sum_{i=1}^{l(\lambda)} \theta_i e^\otimes_{\lambda_i}$$

which is valid for all $e^\otimes_\lambda \in e^\otimes_Y$ (see e.g. [11, Sect. 1.5]) Thus, the conjugate-linear isometries $\psi \mapsto \psi^*$ from Γ_w onto H^2_w and from $\mathcal{E} \otimes n$ onto H^2_w, n hold.

In conclusion, we can notice that every analytic function $\psi^* \in H^2_w$ determined by $\psi = \bigoplus \psi_n \in \Gamma_w$, ($\psi_n \in \mathcal{E} \otimes n$) has the Taylor expansion at zero

$$\psi^*(x) = \sum_{n \in \mathbb{Z}_+} \frac{1}{n!} \sum_{(\lambda, i) \in \mathbb{Y}_n \times N^{i(\lambda)}} \frac{\langle e^\otimes_{\lambda} | \psi_n \rangle_w}{\| e^\otimes_{\lambda} \|_w^2} x_1^{\lambda}, \quad x \in E$$

that follows from (3). The function ψ^* is entire Hilbert–Schmidt analytic [15, n.5].

Note that analytic functions of Hilbert–Schmidt types were also considered in [10,14,21]. More general classes of analytic functions associated with coherent sequences of polynomial ideals were described in [8].

3. Hardy Space Over $U(\infty)$

In what follows, we endow each group $U(m)$ with the probability Haar measure χ_m and assume that $U(m)$ is identified with its range with respect to the embedding $U(m) \ni u_m \mapsto \begin{bmatrix} u_m & 0 \\ 0 & 1 \end{bmatrix} \in U(\infty)$. The Livšic transform from $U(m+1)$ onto $U(m)$ is described in [18, Proposition 0.1] and [20, Lemma 3.1] as the surjective Borel mapping

$$\pi_m^{m+1} : u_{m+1} := \begin{bmatrix} z_m & a \\ b & t \end{bmatrix} \mapsto u_m := \begin{cases} z_m - [a(1 + t)^{-1} b] : t \neq -1 \\ z_m \\ z_m : t = -1. \end{cases}$$
The projective limit $\Omega := \lim U(m)$ under π_{m+1}^{m} has surjective Borel projections π_{m}: $\Omega \ni u \mapsto u_{m} \in U(m)$ such that $\pi_{m} = \pi_{m+1} \circ \pi_{m+1}$.

Consider a universal dense embedding $\pi: U(\infty) \hookrightarrow \Omega$ which to every $u_{m} \in U(m)$ assigns the stabilized sequence $u = (u_{k})$ such that (see [20, n.4])

$$\pi: U(m) \ni u_{m} \mapsto (u_{k}) \in \Omega, \quad u_{k} = \begin{cases} \pi_{k}^{m}(u_{m}) : k < m \\ u_{m} : k \geq m, \end{cases}$$

where $\pi_{k}^{m} := \pi_{k}^{1} \circ \cdots \circ \pi_{m-1}^{m}$ for $k < m$ and π_{k}^{m} is identity mapping for $k \geq m$. On its range $\pi(U(\infty))$, endowed with the Borel structure from Ω, we consider the inverse mapping

$$\pi^{-1}: \Omega \rightarrow U(\infty) \quad \text{where} \quad \Omega := \pi(U(\infty)).$$

The right action $\Omega \ni u \mapsto u.g \in \Omega$ with $g = (v, w) \in U(\infty) \times U(\infty)$ is defined by $\pi_{m}(u.g) = w^{-1}\pi_{m}(u)v$ where m is so large that $g = (v, w) \in (U(\infty) \times U(m)$.

Following [18, n.3.1], [20, Lemma 4.8] via the Kolmogorov consistency theorem (see e.g. [19, Theorem 1], [24, Corollary 4.2]) we uniquely define on Ω the probability measure $\chi := \lim_{m} \chi_{m}$ such that each image-measure $\pi_{m+1}^{m}(\chi_{m+1})$ is equal to χ_{m}. For any Borel subset $A \subset \Omega$ we have $\pi_{m+1}^{m}(A) \subseteq (\pi_{m+1}^{m})^{-1}[\pi_{m}(A)]$, because $\pi_{m} = \pi_{m+1}^{m} \circ \pi_{m+1}$. It follows that $\chi_{m} \circ \pi_{m}(A) = \pi_{m+1}^{m}(\chi_{m+1}^{m+1}[\pi_{m}(A)] = \chi_{m+1}[\pi_{m+1}^{m+1}[\pi_{m}(A)] \geq (\chi_{m+1} \circ \pi_{m+1})(A)$. Hence, χ satisfies the condition

$$\chi(A) = \inf(\chi_{m} \circ \pi_{m})(A) = \lim \chi_{m}(A)$$

and therefore the projective limit $\lim \chi_{m}$ exists on Ω via the well known Prohorov theorem [6, Theorem IX.52]. Moreover, it is a Radon probability measure concentrated on Ω [24, Theorem 4.1]. By the known portmanteau theorem [13, Theorem 13.16] and Fubini’s theorem the invariance of Haar measures χ_{m} together with (7) yield the following invariance properties under the right action

$$\int f(u.g) \, d\chi(u) = \int f(u) \, d\chi(u), \quad g \in U(\infty) \times U(\infty), \quad f \in L_{\gamma}^{\infty},$$

$$\int f \, d\chi = \int d\chi(u) \int_{U(\infty)} f(u.g) \, d(\chi_{m} \otimes \chi_{m})(g),$$

where L_{χ}^{∞} stands for the space of all χ-essentially bounded complex-valued functions defined on Ω and endowed with norm $\|f\|_{\infty} = \sup_{u \in \Omega} |f(u)|$.

Let L_{χ}^{2} be the space of square-integrable \mathbb{C}-valued functions f on Ω with norm

$$\|f\|_{\chi} = \langle f \mid f \rangle_{\chi}^{1/2} \quad \text{where} \quad \langle f \mid f \rangle_{\chi} := \int f_{1} \bar{f}_{2} \, d\chi.$$
To given the E-valued mapping $\mathcal{U}_\pi \ni u \mapsto \pi^{-1}(u)e_1$, we can well-define the Borel χ-essentially bounded functions in the variable $u \in \mathcal{U}_\pi$,

$$\phi_k := \phi_{e_k}, \quad \phi_{e_k}(u) = \langle \pi^{-1}(u)e_1 \mid e_k \rangle, \quad k \in \mathbb{N},$$

which do not depend on the choice of e_1 in $\bigcup S(m)$ where $S(m)$ is the m-dimensional unit sphere in E [15, n.3]. The uniqueness of $\phi_x(u) = \langle \pi^{-1}(u)e_1 \mid x \rangle$ with $x \in E$ results from the total embedding $\pi: U(\infty) \ni \mathcal{U}_\pi$. From (6) it follows that $\pi^{-1} \circ \pi^{-1}_m$ coincides with the embedding $U(m) \ni U(\infty)$. Hence, by (7) and the portmanteau theorem there exist the limit

$$\int \phi_x \, d\chi = \lim_{m \to \infty} \int_{U(m)} \phi_x \, d(\chi_m \circ \pi_m) = \lim_{m \to \infty} \int_{U(m)} (\phi_x \circ \pi^{-1}_m) \, d\chi_m,$$

i.e., $\phi_x \in L^\infty_\chi$ for any $\phi_x(u) = \langle \pi^{-1}(u)e_1 \mid x \rangle$ with $x \in E$.

By formula (5) to every $\mathcal{e}_i^{\otimes \lambda} \in e^{\otimes Y_n}$ there uniquely corresponds the Borel function from L^∞_χ

$$\phi^\lambda_n(u) := \langle [\pi^{-1}(u)e_1]^{\otimes n} \mid \mathcal{e}_i^{\otimes \lambda} \rangle = \phi_{\mathcal{e}_1}^{\lambda_1}(u) \ldots \phi_{\mathcal{e}_m}^{\lambda_m}(u)$$

in the variable $u \in \mathcal{U}_\pi$. It follows that the orthogonal basis $e^{\otimes Y}$ of elements $e_i^{\otimes \lambda} = e_i^{\otimes \lambda_1} \otimes \ldots \otimes e_i^{\otimes \lambda_m}$, indexed by $\lambda = (\lambda_1, \ldots, \lambda_m) \in \mathcal{Y}$ and $i = (i_1, \ldots, i_m) \in \mathbb{N}^m$ with $m = l(\lambda)$, uniquely determines the systems of Borel χ-essentially bounded functions in the variable $u \in \mathcal{U}_\pi$,

$$\phi^\lambda_n = \bigcup \{ \phi^\lambda_i := \phi_{\mathcal{e}_1}^{\lambda_1} \ldots \phi_{\mathcal{e}_m}^{\lambda_m} : (\lambda, i) \in \mathcal{Y} \times \mathbb{N}^m, \ m = l(\lambda) \},$$

$$\phi^\lambda = \bigcup \{ \phi^\lambda_n : n \in \mathbb{Z}_+ \} \quad \text{with} \quad \phi^\emptyset_i \equiv 1.$$

Definition 2. The Hardy space H^2_χ is defined as the closed complex linear span of ϕ^λ endowed with L^2_χ-norm.

The following assertion is proved in [15, Theorem 3.2].

Theorem 1. The system of Borel functions ϕ^λ_n forms an orthogonal basis in H^2_χ such that

$$\|\phi^\lambda_i\|_\chi = C_{|\lambda|, l(\lambda)} \|e_i^{\otimes \lambda}\|_{\mathcal{H}}, \quad \lambda \in \mathcal{Y}, \quad i \in \mathbb{N}^{l(\lambda)}.$$

Define the subspace $H^{2,n}_\chi \subset H^2_\chi$ for any $n \in \mathbb{N}$ to be the closed linear span of the subsystem ϕ^λ_n. Theorem 1 implies that $H^{2,n}_\chi \perp H^{2,m}_\chi$ in L^2_χ for any $n \neq m$. This provides the orthogonal decomposition

$$H^2_\chi = \mathbb{C} \oplus H^{2,1}_\chi \oplus H^{2,2}_\chi \oplus \ldots.$$
4. Fock-Symmetric \mathcal{F}-Transform

The one-to-one correspondence $e_i^{\circ\lambda} \rightleftharpoons \phi_i^\lambda$ allows us to define via the change of orthonormal bases

$$\Phi: \Gamma_w \ni e_i^{\circ\lambda} \mapsto e_i^{\circ\lambda}\parallel e_i^{\circ\lambda}\parallel_w^{-1} \mapsto \phi_i^\lambda\parallel \phi_i^\lambda\parallel_\chi^{-1} \in H^2_\chi, \quad \lambda \in \mathbb{Y}, \quad i \in \mathbb{N}_s^{d(\lambda)}$$

the isometric conjugate-linear mapping $\Phi: \Gamma_w \rightarrow H^2_\chi$. The adjoint mapping $\Phi^*: H^2_\chi \rightarrow \Gamma_w$ is defined by $\langle \Phi e_i^{\circ\lambda} \mid f \rangle_\chi = \langle e_i^{\circ\lambda} \mid \Phi^* f \rangle_w$ with $f \in H^2_\chi$. The suitable Fourier decomposition has the form

$$\Phi \psi = \sum_{(\lambda,i) \in \mathbb{Y} \times \mathbb{N}_s^{d(\lambda)}} \hat{\psi}_{(\lambda,i)} \phi_i^\lambda\parallel \phi_i^\lambda\parallel_\chi^{-1}, \quad \hat{\psi}_{(\lambda,i)} := \langle e_i^{\circ\lambda} \mid \psi \rangle_w \parallel \phi_i^{\circ\lambda}\parallel_w^{-1}$$

for any $\psi \in \Gamma_w$. In particular, the equality $\Phi x = \sum x_k \phi_k$ is valid for all $x \in E$. This gives the equalities

$$\parallel \Phi x \parallel_\chi^2 = \sum |x_k|^2 = \parallel x \parallel^2, \quad x \in E.$$

Using this, we will examine the composition of Φ with the Γ_w-valued function $\varepsilon: E \ni x \mapsto \varepsilon(x)$. Its correctness justifies the following assertion that substantially uses the L^∞_χ-valued function

$$\phi_x: \mathbb{U}_\pi \ni u \mapsto (\Phi x)(u) = \sum x_k \phi_k(u)$$

which is linear in the variable $x \in E$.

Similarly to the known case of Wiener spaces, the function ϕ_x can be seen as a group analog of the Paley-Wiener map (see e.g. [12, n.4.4] or [23]).

Lemma 1. The composition $\Phi \varepsilon(x)$, which is understood as the function

$$[\Phi \varepsilon(x)](u): \mathbb{U}_\pi \ni u \mapsto \exp(\phi_x(u)),$$

takes values in L^∞_χ for all $x \in E$.

Proof. Applying Φ to the Fourier decomposition (3), we obtain

$$\Phi \varepsilon(x) = \sum_{n \in \mathbb{Z}_+} \frac{1}{n!} \sum_{(\lambda,i) \in \mathbb{Y} \times \mathbb{N}_s^{d(\lambda)}} \frac{n!}{\lambda!} x_i^\lambda \phi_i^\lambda = \sum_{n \in \mathbb{Z}_+} \frac{1}{n!} \left(\sum_{k \in \mathbb{N}} x_k \phi_k \right)^n = \exp(\phi_x).$$

It directly follows that $\parallel \Phi \varepsilon(x) \parallel_\infty \leq \exp \parallel \phi_x \parallel_\infty$. □

Theorem 2. For every $f = \sum f_n \in H^2_\chi$, $(f_n \in H^2_{\chi,n})$ the entire analytic function $\hat{f}(x) := \langle \varepsilon(x) \mid \Phi^* f \rangle_w$ in the variable $x \in E$ and its Taylor coefficients at origin have the integral representations

$$\hat{f}(x) = \int \exp(\hat{\phi}_x) f \, d\chi \quad \text{and} \quad d^n_0 \hat{f}(x) = \int \hat{\phi}_x^n f_n \, d\chi,$$

respectively. The mapping $\mathcal{F}: H^2_\chi \ni f \mapsto \hat{f} \in H^2_w$ (regarded as a Fock-symmetric \mathcal{F}-transform) provides the isometries

$$H^2_\chi \cong H^2_w \quad \text{and} \quad H^2_{\chi,n} \cong H^2_{w,n}.$$
Proof. First recall that the Γ_w-valued function $\varepsilon(\cdot)$ is entire analytic on E, therefore \hat{f} is the same, as the composition of $\varepsilon(\cdot)$ with $\langle \cdot | \Phi^* f \rangle_w$. Farther on, consider the Fourier decomposition with respect to the basis ϕ^λ,

$$f = \sum_{n \in \mathbb{Z}_+} f_n = \sum_{n \in \mathbb{Z}_+} \frac{\hat{f}_{\lambda,n} \bar{\phi}^\lambda}{\|\phi^\lambda\|_\chi} \phi^\lambda, \quad \hat{f}_{\lambda,n} = \frac{1}{\|\phi^\lambda\|_\chi} \int f \bar{\phi}^\lambda d\chi.$$

Applying Φ^* to f in this decomposition and substituting $\hat{f}_{\lambda,n}$ into \hat{f}, we obtain

$$\hat{f}(x) = \sum_{n \in \mathbb{Z}_+} \frac{1}{n!} \left(\sum_{(\lambda,\alpha) \in \mathbb{Y}_n \times N^l(\lambda)} \frac{n! \hat{f}_{\lambda,n} (e^{\odot \lambda} | e^{\odot \lambda})_w x^\lambda}{\|e^{\odot \lambda}\|_w} \right) f d\chi = \int \exp(\tilde{\phi}_x) f d\chi$$

where the last equality is valid by Lemma 1. It particularly follows that for $y = \alpha x$,

$$\hat{f}(y) = \int \exp(\tilde{\phi}_{\alpha x}) f d\chi = \sum \alpha^n \int \frac{\tilde{\phi}^n_x}{n!} f_n d\chi, \quad \alpha \in \mathbb{C}.$$

Differentiating \hat{f} at $y = 0$ and using the n-homogeneity of derivatives, we obtain

$$d^n_0 \hat{f}(x) = \frac{d^n}{d\alpha^n} \sum \alpha^n \int \frac{\tilde{\phi}^n_x}{n!} f_n d\chi \bigg|_{\alpha = 0} = \int \hat{\phi}_x^n f_n d\chi.$$

Finally, we notice that the isometry $H^2_\chi \simeq H^2_w$ holds, since the isometry Φ^* is surjective. In the case of polynomials we similarly get $H^2_{\chi,n} \simeq H^2_{w,n}$. □

Note that a different integral formula for analytic functions employing Wiener measures on infinite-dimensional Banach spaces was presented in [22].

5. Exponential Creation and Annihilation Groups

Let us define the linear mapping $j_n : E^\odot_n \to E^\odot_n$ to be the continuous extension of identity mapping acting on the dense subspace $E^\odot_{n,\text{alg}} \subset E^\odot_{n,\text{alg}} \cap E^\odot_{h,\text{alg}}$. Such continuous extension j_n is a contractive injection with dense range. In fact, it suffices to expand elements from $E^\odot_{w,n} \cap E^\odot_{h,n}$ into the Fourier series with respect to orthogonal basis $e^{\odot \mathbb{Y}_n}$ and apply the inequality

$$\|e^{\odot \lambda}\|_w^2 = C_{|\lambda|,l(\lambda)} \|e^{\odot \lambda}\|_h^2 \leq \|e^{\odot \lambda}\|_h^2, \quad \lambda \in \mathbb{Y}_n$$

which follows from Theorem 1, taking into account the inequality (1). Using subsequently that $E^\odot_{h,n}$ is reflexive, we obtain that its adjoint operator
$j_n^*: E_w^{\odot n} \to E_w^{\odot n}$ is a contractive injection with dense range. Thus, the mapping j_n is also injective. Moreover, $E_h^{\odot n} \xrightarrow{j_n^*} E_w^{\odot n} \xrightarrow{j_n} E_h^{\odot n}$ forms a Gelfand triple. Particularly, the operator s_n possesses continuous extension on $E_w^{\odot n}$.

Using this, we consider the linear operator

$$s_{n/m} := s_n \circ (j_m \otimes j_{n-m})$$

defined to be $\phi_m \otimes \psi_{n-m} = s_{n/m}(\phi_m \otimes \psi_{n-m}) \in E_w^{\odot n}$ for all $\phi_m \in E_w^{\odot m}$, $\psi_{n-m} \in E_w^{\odot (n-m)}$.

Lemma 2. The mapping $s_{n/m}$ from $E_w^{\odot m} \otimes_h E_w^{\odot (n-m)}$ to $E_w^{\odot n}$ is a contractive injection with dense range.

Proof. Expand elements of $E_w^{\odot m} \otimes_h E_w^{\odot (n-m)}$ with respect to $e_i^\odot \otimes e_j^\odot$ for all $\lambda, \mu \in \mathbb{Y}$, $i \in \mathbb{N}(\lambda)$, $j \in \mathbb{N}(\mu)$ such that $|\lambda| = m$, $|\mu| = n - m$. Using (9), we have

$$||e_i^\odot \otimes e_j^\odot|| = ||e_i^\odot|| ||e_j^\odot|| \leq ||e_i^\odot|| ||e_j^\odot||_h = ||e_i^\odot \otimes e_j^\odot||_h.$$

As above, it implies that the mapping $j_m \otimes j_{n-m}: E_w^{\odot m} \otimes_h E_w^{\odot (n-m)} \to E_h^{\odot n}$ defined to be the continuous extension of identity mapping on $E_{\text{alg}}^{\odot m} \otimes_h E_{\text{alg}}^{\odot (n-m)}$, is a contractive injection. Using subsequently that $E_h^{\odot m} \otimes_h E_h^{\odot (n-m)}$ is reflexive, we get the Gelfand triple

$$E_w^{\odot m} \otimes_h E_w^{\odot (n-m)} \xrightarrow{s_{n/m}} E_h^{\odot n} \xrightarrow{j_n^*} E_w^{\odot n}$$

where injections are contractive and have dense ranges. \[\square\]

Lemma 3. The Γ_w-valued function, defined on $\{\varepsilon(x): x \in E\}$ by

$$T_\varepsilon(x) = \varepsilon(x + a),$$

has a unique linear extension $T_\varepsilon: \Gamma_w \ni \psi \mapsto T_\varepsilon \psi \in \Gamma_w$ such that

$$||T_\varepsilon \psi||_w^2 \leq \exp(||a||^2)||\psi||_w^2$$

and $T_{a+b} = T_a T_b = T_b T_a$ for all $a, b \in E$.

Proof. Let us define the creation operators $\delta_{a,n}^m: E_w^{\odot (n-m)} \to E_w^{\odot n}$ ($m \leq n$) as

$$\delta_{a,n}^m x^{\odot (n-m)} := s_{n/m} \left[a^{\odot m} \otimes x^{\odot (n-m)} \right] = \frac{(n-m)!}{n!} \frac{d^m(x+ta)^{\odot n}}{dt^m} \bigg|_{t=0}$$

for all $a, x \in E$. Note that the second equality in (10) follows from the binomial formula for symmetric tensor elements $(x+ta)^{\odot n} = \sum_{m=0}^{n} \binom{n}{m} (ta)^{\odot m} \otimes x^{\odot (n-m)}$. Put $\delta_{a,n}^0 = 1$. If $a = 0$ then $\delta_{0,n}^m = 0$. Summing over $n \geq m$ with coefficients $1/(n-m)!$, we get

$$\delta_a^m \varepsilon(x) = \frac{d^m \varepsilon(x+ta)}{dt^m} \bigg|_{t=0} = \bigoplus_{n \geq m} \frac{s_{n/m}[a^{\odot m} \otimes x^{\odot (n-m)}]}{(n-m)!}, \quad t \in \mathbb{C}. \tag{11}$$
This series is convergent, since by Lemma 2 and (4) the inequality
\[\|\delta_a^m \varepsilon(x)\|_w \leq \|a\|^m \left\| \bigoplus_{n \geq m} \frac{x^{\otimes(n-m)}}{(n-m)!} \right\|_w = \|a\|^m \|\varepsilon(x)\|_w \] (12)
holds. From (11) and the tensor binomial formula mentioned above it follows that
\[\bigoplus_{m=0}^n \frac{1}{m!} \delta_{a,n}^m x^{\otimes(n-m)} = \bigoplus_{m=0}^n \frac{a^\otimes m \otimes x^{\otimes(n-m)}}{m!(n-m)!} = \frac{(x+a)^\otimes n}{n!}. \]
Summing over \(n \in \mathbb{Z}_+ \) with coefficients 1/n! and using (11), we obtain
\[T_a \varepsilon(x) = \bigoplus_{n \in \mathbb{Z}_+} \sum_{m=0}^n \frac{1}{m!} \delta_{a,n}^m x^{\otimes(n-m)} = \sum_{m \in \mathbb{Z}_+} \frac{1}{m!} \bigoplus_{n \geq m} \delta_{a,n}^m x^{\otimes(n-m)} = \exp(\delta_a)\varepsilon(x). \]
The inequalities (4) and (12) yield \(\|T_a \varepsilon(x)\|_w^2 \leq \exp \left(\|a\|^2\right) \|\varepsilon(x)\|_w^2 \). Taking into account the totality of \{\varepsilon(x): x \in E\}, this inequality implies the required inequality on \(I_w \). It also follows that \(T_{a+b} = T_a T_b = T_b T_a \), since \(\delta_{a+b} = \delta_a + \delta_b \) for all \(a, b \in E \) by linearity of creation operators. This ends the proof. \(\square \)

We define the adjoint operators \(\delta_{a,n}^m: E_w^\otimes n \ni \psi \mapsto \delta_{a,n}^m \psi \in E_w^{\otimes(n-m)} \) as
\[\langle \delta_{a,n}^m x^{\otimes(n-m)} | \psi \rangle_w = \langle x^{\otimes(n-m)} | \delta_{a,n}^m \psi \rangle_w, \quad a, x \in E \]
for \(n \geq m \). It immediately follows that for every \(\psi_{n-m} \in E_w^{\otimes(n-m)} \) and \(x \in E \),
\[\langle \delta_{a,n}^m x^{\otimes n} | \psi_{n-m} \rangle_w = \langle x^{\otimes n} | \delta_{a,n}^m \psi_{n-m} \rangle_w = \langle x^{\otimes n} | a^{\otimes m} \otimes \psi_{n-m} \rangle_w = (x | a)^m \langle x^{\otimes(n-m)} | \psi_{n-m} \rangle_w \] (13)
Using \(\delta_{a,n}^m \), we can uniquely define a \(I_w \)-valued function \(T_a^* \) by the equalities
\[T_a^* \varepsilon(x) = \exp(\delta_a^*)\varepsilon(x) = \sum_{m \in \mathbb{Z}_+} \frac{\delta_{a,n}^m \varepsilon(x)}{m!}, \quad \delta_{a}^m \varepsilon(x) := \bigoplus_{n \geq m} \frac{\delta_{a,n}^m x^{\otimes n}}{n!} \] (14)
for all \(a, x \in E \). Taking into account Lemma 3, we obtain the following claim.

Lemma 4. The \(I_w \)-valued function \(T_a^* \), defined by (14), possesses a unique linear extension \(T_a^*: I_w \ni \psi \mapsto T_a^* \psi \in I_w \) such that
\[\|T_a^* \psi\|_w^2 \leq \exp(\|a\|^2) \|\psi\|_w^2 \]
and \(T_{a+b}^* = T_a^* T_b^* = T_b^* T_a^* \) for all \(a, b \in E \).

Definition 3. We will call the \(I_w \)-valued functions \(T_a \) and \(T_a^* \) in variable \(a \in E \) the exponential creation and annihilation groups, respectively.
6. Intertwining Properties of \mathcal{F}-Transform

Let us define on the space H_χ^2 the multiplicative group $M_\Delta^1: E \ni a \mapsto M_\Delta^1$ to be

$$M_\Delta^1 f(u) = \exp[\overline{\phi}_a(u)] f(u), \quad f \in H_\chi^2, \quad u \in \mathcal{U}_\pi.$$

It can be considered as a linear representation of the additive group $(E, +)$. By Lemma 1 the function $u \mapsto \exp[\overline{\phi}_a(u)]$ with a fixed a belongs to L_χ^∞. Hence, M_Δ^1 is continuous on H_χ^2. The generator of the 1-parameter group $C \ni t \mapsto M_{ta}^1$ coincides with the operator of multiplication by the L_χ^∞-valued function

$$\overline{\phi}_a: \mathcal{U}_\pi \ni u \mapsto \overline{\phi}_a(u) \text{ where } dM_{ta}^1 / dt|_{t=0} = \overline{\phi}_a.$$

The continuity of $E \ni a \mapsto \exp(\overline{\phi}_a)$ implies that this 1-parameter group M_{ta}^1 is strongly continuous on H_χ^2. As a consequence, its generator $(\overline{\phi}_a f)(u) = \overline{\phi}_a(u) f(u)$ with domain $\mathcal{D}(\overline{\phi}_a) = \{ f \in H_\chi^2 : \overline{\phi}_a f \in H_\chi^2 \}$ is closed and densely-defined. As well, its power $\overline{\phi}_a^m$ defined on $\mathcal{D}(\overline{\phi}_a^m) = \{ f \in H_\chi^2 : \overline{\phi}_a^m f \in H_\chi^2 \}$ for any $m \in \mathbb{N}$ is the same (see, e.g. [7] for details).

The additive group $(E, +)$ may be also linearly represented on H_χ^2 as the shift group

$$T_a \widehat{f}(x) = \widehat{f}(x + a), \quad f \in H_\chi^2, \quad x, a \in E.$$

The directional derivative on the space H_χ^2 along a nonzero $a \in E$ coincides with the generator of the 1-parameter shift subgroup $C \ni t \mapsto T_{ta}$, that is,

$$\mathfrak{d}_a \widehat{f} = \lim_{t \to 0} t^{-1} (T_{ta} \widehat{f} - \widehat{f}) \quad \text{with domain} \quad \mathcal{D}(\mathfrak{d}_a) := \{ \widehat{f} \in H_\chi^2 : \mathfrak{d}_a \widehat{f} \in H_\chi^2 \}.$$

Note that the 1-parameter shift group T_{ta}, which is intertwined with M_{ta}^1 by the \mathcal{F}-transform

$$T_{ta} \widehat{f}(x) = \int \exp[\overline{\phi}_{x + ta}] f \, d\chi = \int \exp(\overline{\phi}_x) M_{ta}^1 f \, d\chi, \quad (15)$$

is strongly continuous on H_χ^2. Since $\mathcal{D}(\mathfrak{d}_a^m)$ contains all polynomials from H_χ^2, each operator \mathfrak{d}_a^m with domain $\mathcal{D}(\mathfrak{d}_a^m) = \{ \widehat{f} \in H_\chi^2 : \mathfrak{d}_a^m \widehat{f} \in H_\chi^2 \}$ is closed and densely-defined. From (15) it directly follows

$$\mathfrak{d}_a^m \widehat{f}(x) = \int \exp(\overline{\phi}_x) M_{ta}^1 f \, d\chi = \int \exp(\overline{\phi}_x) \overline{\phi}_a^m f \, d\chi \quad (16)$$

for all $f \in \mathcal{D}(\overline{\phi}_a^m)$ and $x \in E$. On the other hand, by Theorem 2 we have

$$T_a \widehat{f}(x) = \langle T_a \varepsilon(x) \mid \Phi^* f \rangle = \langle \varepsilon(x) \mid T_a^* \Phi^* f \rangle = \int \exp(\overline{\phi}_x) \Phi T_a^* \Phi^* f \, d\chi. \quad (17)$$

Theorem 2 together with (15) and (17) imply that M_{ta}^1 is connected with the exponential annihilation group T_a^* by the intertwining operator Φ. This can be written as $M_{ta}^1 = \Phi T_a^* \Phi^*$. Thus, the \mathcal{F}-transform serves as an intertwining
operator for the groups M^\dagger_a on H^2_χ. Moreover, using (15), (16) and (17), we obtain
\[
d^m T_a f(x)/dt^m |_{t=0} = \langle \varepsilon(x) | \delta_a^m \Phi^* f \rangle_w = \delta_a^m \hat{f}(x).
\]
As a result, we have proved the following statement.

Theorem 3. For every $f \in H^2_\chi$ the following equalities hold,
\[
T_a \mathcal{F}(f) = \mathcal{F}(M^\dagger_a f), \quad M^\dagger_a f = \Phi T_a^* \Phi^* f, \quad a \in E.
\]
Moreover, for every $f \in \mathcal{D}(\tilde{\delta}_a^m)$ ($m \in \mathbb{N}$) and a nonzero $a \in E$,
\[
\delta_a^m \hat{f}(x) = \langle \varepsilon(x) | \delta_a^m \Phi^* f \rangle_w = \int \exp(\tilde{\phi}_x) \tilde{\delta}_a^m f d\chi, \quad x \in E.
\]

Let us consider on H^2_w the multiplicative group with a nonzero $a \in E$,
\[
M_a \cdot \hat{f}(x) = \hat{f}(x) \exp(x | a), \quad \hat{f} \in H^2_w.
\]
The generator on H^2_w of the appropriate 1-parameter subgroup $\mathbb{C} \ni t \mapsto M_a^t$ is
\[
dM_{ta}^t/dt|_{t=0} = \langle \cdot | a \rangle := a^*, \quad a \in E.
\]
Hence, it coincides with the following linear operator of multiplication
\[
(a^* \hat{f})(x) = \langle x | a \rangle \hat{f}(x) \quad \text{with domain} \quad \mathcal{D}(a^*) = \{ \hat{f} \in H^2_w : a^* \hat{f} \in H^2_w \}.
\]
Its power a^{*m} is densely-defined on $\mathcal{D}(a^{*m}) = \{ \hat{f} \in H^2_w : a^{*m} \hat{f} \in H^2_w \}$ which contains all polynomials from H^2_w.

Using Lemma 3 we can represent the additive group $(E, +)$ over the space H^2_χ by the shift group
\[
T_a^\dagger = \Phi T_a \Phi^* \quad \text{with the generator} \quad \delta_a^\dagger = \Phi \delta_a \Phi^*
\]
defined on $\mathcal{D}(\delta_a^\dagger) = \{ f \in H^2_\chi : \delta_a^\dagger f \in H^2_\chi \}$. This means that T_a^\dagger is connected via the intertwining operator Φ with the exponential creation group T_a.

Theorem 4. For every $f \in H^2_\chi$ the following equality holds,
\[
M_a \cdot \mathcal{F}(f) = \mathcal{F}(T_a^\dagger f), \quad a \in E,
\]
that is, the \mathcal{F}-transform is an intertwining operator for the groups $M_a \cdot$ on H^2_w and T_a^\dagger on H^2_χ. Moreover, for every $f \in \mathcal{D}(\delta_a^{*m}) = \{ f \in H^2_\chi : \delta_a^{*m} f \in H^2_\chi \}$ ($m \in \mathbb{N}$) and a nonzero $a \in E$,
\[
(a^{*m} \hat{f})(x) = \langle \varepsilon(x) | \delta_a^{*m} \Phi^* f \rangle_w = \int \exp(\tilde{\phi}_x) \delta_a^{*m} f d\chi, \quad x \in E.
\]

Proof. The equality (13) yields $\langle x | a \rangle^m \psi_{n-m}^*(x) = \langle \delta_a^{*m} x^{\otimes n} | \psi_{n-m} \rangle_w$ for all $n \geq m$. By Theorem 2 for any $f = \sum_n f_n \in H^2_\chi$ there exists a unique
\[\psi = \bigoplus_n \psi_n \] in \(\Gamma_w \) with \(\psi_n \in E^\infty_n \) such that \(\Phi^* f = \psi \) and \(f_n = \psi_n^* \). Summing over all \(m \in \mathbb{Z}_+ \) and \(n \geq m \) and using (14), we obtain that
\[
M_a^* \hat{f}(x) = \exp(x | a) \langle \varepsilon(x) | \Phi^* f \rangle_w = \sum_{m \in \mathbb{Z}_+} \frac{\langle x | a \rangle^m}{m!} \sum_{n \geq m} \psi^*_{n-m}(x) = \langle T_a^* \varepsilon(x) | \Phi^* f \rangle_w = \langle \varepsilon(x) | T_a \Phi^* f \rangle_w.
\]
By Theorem 2 and Lemma 3 it follows that the equalities
\[
M_{ta}^* \hat{f}(x) = \langle \varepsilon(x) | T_{ta} \Phi^* f \rangle_w = \int \exp(\phi_x) T_{ta} \hat{f} \, d\chi, \quad t \in \mathbb{C}
\]
hold for all \(\hat{f} \in H_w^2 \). On the other hand, the equalities (14) and (19) yield
\[
\frac{d^m M_{ta}^* \hat{f}(x)}{dt^m} \bigg|_{t=0} = \int \exp(\phi_x) \frac{d^m T_{ta}^*}{dt^m} \bigg|_{t=0} \hat{f} \, d\chi = \int \exp(\phi_x) \delta_t^{1m} \hat{f} \, d\chi
\]
for all \(f \in \mathcal{D}(\delta_a^{1m}) \). This in turn yields (18).

\[
\square \]

7. Commutation Relations

Describe the commutation relations between \(M_a^\dagger \) and \(T_b^\dagger \) on the Hardy space \(H^2_\chi \).

Theorem 5. For any nonzero \(a, b \in E \) the commutation relations
\[
M_a^\dagger T_b^\dagger = \exp(a | b) T_b^\dagger M_a^\dagger, \quad (\phi_a \delta_b^\dagger - \delta_b^\dagger \phi_a) f = \langle a | b \rangle f
\]
hold, wherein \(f \) belongs to the dense subspace \(\mathcal{D}(\phi_b^\dagger) \cap \mathcal{D}(\delta_a^{12}) \subset H^2_\chi \).

Proof. Let us prove that the following equalities hold,
\[
T_a M_b = \exp(a | b) M_b, \quad (\phi_a b^* - b^* \phi_a) \hat{f} = \langle a | b \rangle \hat{f}
\]
where \(\hat{f} \in \mathcal{D}(b^*2) \cap \mathcal{D}(\phi_a^\dagger) \). First property follows from the direct calculations:
\[
M_b T_a \hat{f}(x) = \exp(x | b) (a \hat{f} + a), \quad T_a M_b \hat{f}(x) = (x + a) \exp(x | b) \exp(a | b) = \exp(a | b) M_b T_a \hat{f}(x)
\]
for all \(\hat{f} \in H^2_w \) and \(x \in E \). For any \(\hat{f} \in \mathcal{D}(b^*2) \cap \mathcal{D}(\phi_a^\dagger) \) and \(t \in \mathbb{C} \), we have
\[
\frac{d^2}{dt^2} T_{ta} M_{tb} \hat{f} \bigg|_{t=0} = \left[\phi_a^2 T_{ta} M_{tb} \hat{f} + 2 \phi_a T_{ta} b^* M_{tb} \hat{f} + T_{ta} b^*2 M_{tb} \hat{f} \right]_{t=0} = (\phi_a^2 + 2 \phi_a b^* + b^*2) \hat{f}.
\]
On the other hand, differentiating again, we have

$$
\frac{d}{dt} T_{ta} M_{tb} \hat{f} \big|_{t=0} = \left[\frac{d}{dt} \exp(ta | tb) M_{tb} \cdot T_{ta} \hat{f} + \exp(ta | tb) \frac{d}{dt} M_{tb} \cdot T_{ta} \hat{f} \right]_{t=0},
$$

$$(\bar{a}^2 + 2\bar{a}b^* + b^*2) \hat{f} = \frac{d}{dt} \left[\frac{d}{dt} T_{ta} M_{tb} \hat{f} \right]_{t=0} = \left[\frac{d^2}{dt^2} \exp(ta | tb) M_{tb} \cdot T_{ta} \hat{f} + 2 \frac{d}{dt} \exp(ta | tb) \frac{d}{dt} M_{tb} \cdot T_{ta} \hat{f} + \exp(ta | tb) \frac{d}{dt} M_{tb} \cdot T_{ta} \hat{f} \right]_{t=0}
$$

$$
= 2(a | b) \hat{f} + (\bar{a}^2 + 2b^*a + b^*2) \hat{f}.
$$

This yields (20) where $D(b^{*2}) \cap D(\delta^2_a)$ contains the dense subspace in H^2_w of all polynomials \hat{f} generating by finite sums $\Phi^*(f) = \bigoplus n \psi_n \in \Gamma_w$.

From $M_{tb} \cdot \hat{f}(x) = \langle x | T_b \Phi^* f \rangle_w$ it follows that $\hat{T}_b = M_{a^*} \cdot \hat{I}$ with $\hat{I} := \mathcal{F} \Phi$. Thus, $T_b^\dagger = \Phi \hat{T}_b \Phi^* = \hat{I}^{-1} M_{b^*} \hat{I} \Phi^* = \mathcal{F}^{-1} M_{b^*} \mathcal{F}$. Using that $M_a^\dagger = \mathcal{F}^{-1} T_a \mathcal{F}$ with $\mathcal{F}^{-1} : H^2_w \rightarrow H^2_\chi$ and applying (20), we obtain

$$
M_a^\dagger T^\dagger_b = \mathcal{F}^{-1} T_a M_{b^*} \mathcal{F} = \exp(x | b) \mathcal{F}^{-1} M_{b^*} T_a \mathcal{F} = \exp(x | b) T^\dagger_b M^\dagger_a,
$$

$$(\phi_a \delta^\dagger_b - \delta^\dagger_b \phi_a) f = \mathcal{F}^{-1} (a b^* - b^*a) \mathcal{F} f = (a | b) f
$$

for all $f \in D(\phi^2_b) \cap D(\delta^2_a)$. For any $f = \sum_n f_n \in H^2_\chi$ there exists a unique $\psi = \bigoplus_n \psi_n$ in Γ_w with $\psi_n \in E_{\chi}^{\otimes n}$ such that the equalities $\Phi^* f = \psi$ and $f_n = \psi_n^*$ hold. Hence, the following embedding $D(\phi^2_b) \cap D(\delta^2_a) \subset H^2_\chi$ is dense. \hfill \Box

8. Gauss-Weierstrass Semigroups

Next we show that the 1-parameter Gauss-Weierstrass semigroups on the Hardy space H^2_χ can be well described by shift and multiplicative groups (a classic case can be found in [7, n.4.3.2]). For this purpose we use the Gaussian kernel

$$
g_r(\tau) = \frac{1}{\sqrt{4\pi r}} \exp \left(-\frac{\tau^2}{4r} \right), \quad \tau \in \mathbb{R}, \quad r > 0.
$$

Theorem 6. The 1-parameter Gauss-Weierstrass semigroups $\{W_r^{\delta_1} : r > 0\}$ and $\{W_r^{\phi} : r > 0\}$, defined on the Hardy space H^2_χ for any nonzero $a \in E$ as

$$
W_r^{\delta_1} f = \int_{\mathbb{R}} g_r(\tau) T^\dagger_{ta} f d\tau \quad \text{and} \quad W_r^{\phi} f = \int_{\mathbb{R}} g_r(\tau) M^\dagger_{ta} f d\tau, \quad f \in H^2_\chi,
$$

are generated by δ^1_a and ϕ^2_a, respectively.
\textbf{Proof.} First it is sufficient to prove that the axillary 1-parameter families of linear operators over H^2_w

$$G^*_r \hat{f} = \int_{\mathbb{R}} g_r(\tau) M_{\tau a^*} \hat{f} d\tau \quad \text{and} \quad G^{0r}_r \hat{f} = \int_{\mathbb{R}} g_r(\tau) T_{\tau a} \hat{f} d\tau, \quad \hat{f} \in H^2_w \quad (22)$$

can be generated by $a^* a$ and a_0^2 and satisfy the semigroup property. Properties of Gaussian kernel yield

$$\int_{\mathbb{R}} g_r(\tau) \tau^{2k} d\tau = \frac{1}{2\sqrt{\pi r}} \int_{\mathbb{R}} e^{-\frac{\tau^2}{4r}} \tau^{2k} d\tau \bigg|_{\tau = 2\sqrt{\tau \nu}} = \left(\frac{2\sqrt{T}}{\nu}\right)^k \int_{\mathbb{R}} e^{-v^2} v^{2k} dv$$

$$= \frac{2^k \Gamma \left(\frac{2k + 1}{2}\right)}{\sqrt{\pi}} = \frac{2(2k - 1)!}{(k - 1)!} r^k, \quad k \in \mathbb{N}.$$

We can rewrite $G^*_r \hat{f}$ on the dense subspace $\{ \hat{f} \in H^2_w : \exp(\tau a^*) \hat{f} \in H^2_w \}$ as

$$G^*_r \hat{f} = \int_{\mathbb{R}} g_r(\tau) \exp(\tau a^*) \hat{f} d\tau = \sum_{l \in \mathbb{Z}_+} \frac{a^* \hat{f}}{l!} \int_{\mathbb{R}} g_r(\tau) \tau^l d\tau$$

$$= \sum_{k \in \mathbb{Z}_+} \frac{2(2k - 1)!}{(k - 1)!} \frac{r^k a^* 2k \hat{f}}{(2k)!} = \sum_{k \in \mathbb{Z}_+} \frac{r^k a^* 2k \hat{f}}{k!} = \exp(r a^* a^2) \hat{f}$$

By first equality in (22) the family G^*_r can be extended to the convolution

$$g_r \ast \hat{f} := \int_{\mathbb{R}} g_r(\tau) M_{\tau a^*} \hat{f} d\tau, \quad \hat{f} \in H^2_w$$
(dependent on a) over the whole space H^2_w. Thus, to show that the semigroup property holds, it suffices to show that

$$g_{r+s} \ast \hat{f} = G^*_r \hat{f} \ast G^*_s \hat{f} = (G^*_r \circ G^*_s) \hat{f} = g_r \ast (g_s \ast \hat{f}) = (g_r \ast g_s) \ast \hat{f}.$$

But this straightly follows from the known convolution equality $g_{r+s} = g_r \ast g_s$.

Further, using the equality $T_{\delta_0^2} = \mathcal{F}^{-1} M_{\tau a^*} \mathcal{F}$ we obtain that

$$W_r^{\delta_0^2} f = \int_{\mathbb{R}} g_r(\tau) \mathcal{F}^{-1} M_{\tau a^*} \mathcal{F} f d\tau = \mathcal{F}^{-1} G^*_r \mathcal{F} f$$

for all $f \in H^2_\chi$. By Theorem 4 it follows that

$$\left. \frac{dW_r^{\delta_0^2} f}{dr} \right|_{r=0} = \mathcal{F}^{-1} \left. \frac{G^*_r \hat{f}}{dr} \right|_{r=0} = \mathcal{F}^{-1} a^* a^2 \hat{f} = \delta_0^{12} f$$

for all $f \in \mathcal{D}(\delta_0^{12})$, since $\hat{f} \in \mathcal{D}(a^* a^2)$ and $\delta_0^{12} = \mathcal{F}^{-1} a^* a^2 \mathcal{F}$. Hence, the case of semigroup $W_r^{\delta_0^2}$ is proven.

Similar reasonings can be applied to the semigroup G^{0r}_r. As a result, we obtain that the equalities $W_r^{\delta_0^2} = \mathcal{F}^{-1} G^{0r}_r \mathcal{F}$ and $\delta_0^{12} = \mathcal{F}^{-1} \delta_0^{12} \mathcal{F}$ hold. \qed
9. Complexified Infinite-Dimensional Heisenberg Group

Let us give yet another application. Consider an infinite-dimensional analog of the Heisenberg group over \(\mathbb{C} \). Namely, let us define the group \(\mathcal{G} \) of upper triangular matrix-type elements

\[
X(a, b, t) = \begin{bmatrix} 1 & a & t \\ 0 & 1 & b \\ 0 & 0 & 1 \end{bmatrix}, \quad t \in \mathbb{C}, \quad a, b \in E
\]

with unit \(X(0, 0, 0) \) and multiplication

\[
\begin{bmatrix} 1 & a & t \\ 0 & 1 & b \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & a' & t' \\ 0 & 1 & b' \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & a + a' & t + t' + \langle a \mid b' \rangle \\ 0 & 1 & b + b' \\ 0 & 0 & 1 \end{bmatrix}.
\]

Obviously, \(X(a, b, t)^{-1} = X(-a, -b, -t + \langle a \mid b \rangle) \).

We will now describe an irreducible linear representation of the group \(\mathcal{G} \). For this purpose we will use the algebra \(\mathbb{H} \) of quaternions \(\gamma = \alpha_1 + \alpha_2 i + \beta_1 j + \beta_2 k = (\alpha_1 + \alpha_2 i) + (\beta_1 + \beta_2 i)j = \alpha + \beta j \) as pairs of complex numbers \(\langle \alpha, \beta \rangle \in \mathbb{C}^2 \) with \(\alpha = \alpha_1 + \alpha_2 i, \beta = \beta_1 + \beta_2 i \in \mathbb{C} \) and \(\alpha_i, \beta_i \in \mathbb{R} \) \((i = 1, 2)\) where basis elements in \(\mathbb{R}^4 \) satisfy the relations \(i^2 = j^2 = k^2 = ijk = -1 \), \(k = ij = -ji, \) \(ki = ik = j \). Thus, \(\mathbb{H} = \mathbb{C} \oplus \mathbb{C} j \) is a vector space over \(\mathbb{C} \) [25]. Denote \(\beta := \mathbb{S}_2 \gamma \) where \(\gamma = \alpha + \beta j \).

Let \(E_{\mathbb{H}} = E \oplus E j \) be the Hilbert space with \(\mathbb{H} \)-valued scalar product

\[
\langle p \mid p' \rangle = \langle a + bj \mid a' + b'j \rangle = \langle a \mid a' \rangle + \langle b \mid b' \rangle + [\langle a' \mid b \rangle - \langle a \mid b' \rangle] j
\]

where \(p = a + bj \) with \(a, b \in E \) (similarly, for \(p' = a' + b'j \)). Hence,

\[
\mathbb{S} \langle p \mid p' \rangle = \langle a' \mid b \rangle - \langle a \mid b' \rangle, \quad \mathbb{S} \langle p \mid p \rangle = 0.
\]

The following theorem describes a representation of the above infinite-dimensional Heisenberg group which can be seen as an analog of the Weyl–Schrodinger representation

Theorem 7. The linear representation of \(\mathcal{G} \) over \(H^2_x \)

\[
\mathcal{H}^\dagger: \mathcal{G} \ni X(a, b, t) \longmapsto \exp \left[t + \frac{1}{2} \langle a \mid b \rangle \right] T_a^\dagger M_b^\dagger
\]

is well defined and irreducible.

Proof. First we prove that the following operator representation

\[
\mathcal{H}: \mathcal{G} \ni X(a, b, t) \longmapsto \exp \left[t + \frac{1}{2} \langle a \mid b \rangle \right] M_a \cdot T_b
\]

into the algebra of all bounded linear operator on \(H^2_\mathbb{H} \) is well defined and irreducible. Consider the auxiliary group \(\mathbb{C} \times E_{\mathbb{H}} \) with the multiplication

\[
(t, p)(t', p') = \left(t + t' - \frac{1}{2} \mathbb{S} \langle p \mid p' \rangle, \ p + p' \right)
\]
for all $p = a + bj$, $p' = a' + b'j \in E_\mathbb{H}$. It is related to \mathcal{G} via the mapping

$$G : X(a, b, t) \mapsto \left(t - \frac{1}{2}(a | b), a + bj\right).$$

Check that G is a group isomorphism. In fact,

$$G(X(a, b, t)X(a', b', t')) = G(X(a + a', b + b', t + t' + (a | b'))) = (t + t' + (a | b') - \frac{1}{2}[(a + a') | b + b']) (a + a') + (b + b')j

= (t + t' - \frac{1}{2}[(a | b) + (a' | b')] + \frac{1}{2}[(a | b') - (a' | b)]) (a + a) + (b + b')j

= (t - \frac{1}{2}(a | b), a + bj) \left(t' - \frac{1}{2}(a' | b'), a' + b'j\right)

= G(X(a, b, t))G(X(a', b', t')).$$

Now let us check that the Weyl-like operator

$$W(p) = \exp\left[\frac{1}{2}(a | b)\right]M_aT_b, \quad p = a + bj$$

on the space $H^2_\mathbb{H}$ satisfies the commutation relation

$$W(p + p') = \exp\left[-\frac{1}{2}3(p | p')\right]W(p)W(p').$$

In fact, using (20), we obtain

$$\exp\left[\frac{1}{2}(a | b') - \frac{1}{2}(a' | b)\right]W(p)W(p')

= \exp\left[\frac{1}{2}(a | b) + \frac{1}{2}(a' | b')\right] \exp\left[\frac{1}{2}(a | b') - \frac{1}{2}(a' | b)\right]M_{a'*}T_bM_{a'*}T_{b'}

= \exp\left[\frac{1}{2}(a + a' | b + b')\right]M_{a'*}T_{b'*} = W(p + p').$$

As a consequence, the mapping $\mathcal{F} : C \times E_\mathbb{H} \ni (t, p) \mapsto \exp(t)W(p)$ is a group isomorphism. So, \mathcal{H} is also a group isomorphism as a composition of the group isomorphisms G and \mathcal{F}.

Let us check irreducibility. If there exists an element $x_0 \neq 0$ in E and an integer $n > 0$ such that

$$\exp\left[t + \frac{1}{2}(a | b)\right]\exp[x_0(x + b)]^{n} = 0 \quad \text{for all} \quad x, a, b \in E$$

then $x_0 = 0$. This gives a contradiction. Hence the representation \mathcal{H} is irreducible. Finally, using that

$$\exp\left[t + \frac{1}{2}(a | b)\right]T_{a}^\dagger M_{b}^\dagger = \mathcal{F}^{-1}\left(\exp\left[t + \frac{1}{2}(a | b)\right]M_{a}T_{b}\right)\mathcal{F},$$

we conclude that the group representation $\mathcal{H}^\dagger = \mathcal{F}^{-1}\mathcal{H}\mathcal{F}$ is irreducible. □
Acknowledgements

I am grateful to Referee for valuable suggestions which improved this article.

Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

[1] Beltiță, I., Beltiță, D.: On Weyl calculus in infinitely many variables. Geom. Methods Phys. In: Kielanowski, P., Buchstaber, V., Odzijewicz, A., Schlichenmaier, M., Voronov, T. (eds.) XXIX Workshop 2010, pp. 95–104 (2010)
[2] Beltiță, I., Beltiță, D.: Representation of nilpotent Lie groups via measurable dynamical systems. Geom. Methods Phys. In: XXXIV Workshop 2015 Trends in Mathematics, pp. 95–104 (2015)
[3] Beltiță, I., Beltiță, D., Măntoiu, M.: On Wigner transforms in infinite dimensions. J. Math. Phys. 57(021705), 1–13 (2016)
[4] Berezanski, Y.M., Kondratiev, Y.G.: Spectral Methods in Infinite-Dimensional Analysis. Springer, Berlin (1995)
[5] Borodin, A., Olshanski, G.: Harmonic analysis on the infinite-dimensional unitary group and determinantal point processes. Ann. Math. 161(3), 1319–1422 (2005)
[6] Bourbaki, N.: Integration II. Springer, Berlin (2004)
[7] Butzer, P.L., Berens, H.: Semi-groups of Operators and Approximation. Springer, Berlin (1967)
[8] Carando, D., Dimand, V., Muro, S.: Coherent sequences of polynomial ideals on Banach spaces. Math. Nachr. 282(8), 1111–1133 (2009)
[9] Cole, B., Gamelin, T.W.: Representing measures and Hardy spaces for the infinite polydisk algebra. Proc. Lond. Math. Soc. 53, 112–142 (1986)
[10] Dwyer, A.W.: Partial differential equationa in Fischer-Fock spaces for the Hilbert–Schmidt holomorphy type. Bull. Am. Soc. 77, 725–730 (1971)
[11] Floret, K.: Natural norms on symmetric tensor products of normed spaces. Note Mat. 17, 153–188 (1997)
[12] Holmes, I., Sengupta, A.N.: The Gaussian Radon transform in the classical Wiener space. Commun. Stoch. Anal. 8(2), 247–268 (2014)
[13] Klenke, A.: Probability Theory. A Comprehensive Course. Springer, Berlin (2008)
[14] Lopushansky, O., Zagorodnyuk, A.: Hilbert spaces of analytic functions of infinitely many variables. Ann. Pol. Math. 81(2), 111–122 (2003)
[15] Lopushansky, O.: The Hilbert–Schmidt analyticity associated with infinite-dimensional unitary groups. Results Math. 71(1), 111–126 (2017)
[16] Neeb, K.-H.: Holomorphy and Convexity in Lie Theory, vol. 28. De Gruyter Expositions in Mathematics, Berlin (2000)

[17] Neeb, K.-H., Ørsted, B.: Hardy spaces in an infinite dimensional sett. In: Doebner, H.D. (ed.) Lie Theory and Its Applications in Physics, pp. 3–27. World Scientific Publishing, Singapore (1998)

[18] Neretin, Y.A.: Hua-type integrals over unitary groups and over projective limits of unitary groups. Duke Math. J. 114(2), 239–266 (2002)

[19] Okada, S., Okazaki, Y.: Projective limit of infinite radon measures. J. Aust. Math. Soc. 25(A), 328–331 (1978)

[20] Olshanski, G.: The problem of harmonic analysis on the infinite-dimensional unitary group. J. Funct. Anal. 205(2), 464–524 (2003)

[21] Petersson, P.: Hypercyclic convolution operators on entire functions of Hilbert–Schmidt holomorphy type. Ann. Math. Blaise Pascal 8(2), 107–114 (2001)

[22] Pinasco, D., Zalduendo, I.: Integral representations of holomorphic functions on Banach spaces. J. Math. Anal. Appl. 308, 159–174 (2005)

[23] Stroock, D.W.: Abstract Wiener space, revisited. Commun. Stoch. Anal. 2(1), 145–151 (2008)

[24] Tomas, E.: On Prohorov’s criterion for projective limits. Oper. Theory Adv. Appl. 168, 251–261 (2006)

[25] Ward, J.: Quaternions and Cayley Numbers: Algebra and Applications. Kluwer Academic Publishers, Dordrecht (1997)

[26] Yamasaki, Y.: Projective limit of Haar measures on O(n). Publ. Res. Inst. Math. Sci. 8, 141–149 (1972)

Oleh Lopushansky
Faculty of Mathematics and Natural Sciences
University of Rzeszów
1 Pigionia Str.
35-310 Rzeszow
Poland

e-mail: ovlopusz@ur.edu.pl;
 ovlopushansky@hotmail.com

Received: April 2, 2017.
Accepted: September 7, 2017.