Weighted Discrete Hardy Inequalities on Trees and Applications

Fernando López-García¹ - Ignacio Ojea²

Received: 14 July 2021 / Accepted: 21 December 2021 / Published online: 14 January 2022
© The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract
In this paper, we study certain inequalities and a related result for weighted Sobolev spaces on Hölder-α domains, where the weights are powers of the distance to the boundary. We obtain results regarding the divergence equation’s solvability, and the improved Poincaré, the fractional Poincaré, and the Korn inequalities. The proofs are based on a local-to-global argument that involves a kind of atomic decomposition of functions and the validity of a weighted discrete Hardy-type inequality on trees. The novelty of our approach lies in the use of this weighted discrete Hardy inequality and a sufficient condition that allows us to study the weights of our interest. As a consequence, the assumptions on the weight exponents that appear in our results are weaker than those in the literature.

Keywords Discrete Hardy inequality · Decomposition of functions · Weights · Trees · Distance · Hölder-α domains · Divergence equation · Korn’s inequality · Poincaré-type inequalities

Mathematics Subject Classification (2010) Primary: 26D10 · Secondary: 35A23 · 46E35

1 Introduction

Let \(\{U_i\}_{i \in \Gamma} \) be a certain partition of a bounded domain \(\Omega \subset \mathbb{R}^n \). Given \(f \in L^1(\Omega) \) with vanishing mean value, we decompose it into the sum of a collection of functions \(\{f_i\}_{i \in \Gamma} \).

The first author is supported by Cal Poly Pomona under start-up funds. The second author is supported by ANPCyT under grant PICT 2018 - 3017, by CONICET under grant PIP112201130100184CO and by Universidad de Buenos Aires under grant 20020170100056BA

Fernando López-García
fal@cpp.edu

Ignacio Ojea
iojea@dm.uba.ar

¹ Department of Mathematics and Statistics, California State Polytechnic University Pomona, 3801 West Temple Avenue, Pomona, CA 91768, USA

² Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IMAS, CONICET, 1428, Buenos Aires, Argentina
where each f_t is supported on U_t and has vanishing mean value. This kind of decomposition was applied by Bogovskii in [5] using a finite partition to extend the solvability of the divergence equation from star-shaped domains with respect to a ball to Lipschitz domains. In the articles [8] and [12], the authors used a similar decomposition where the partition of the domain is countable. In the case where the partition is not finite, it is required to have an upper bound of the sum of the norms of $\{f_t\}_{t\in\Gamma}$ by the norm of the function f. In [8], the decomposition is developed for John domains, and the estimation of the norms is based on the continuity of the Hardy-Littlewood maximal operator. In [12], the authors considered more general domains and the decomposition is based on the validity of a certain Poincaré-type inequality. This decomposition can be used for extending to general domains several results that are known to hold on simpler ones, e.g.: the solvability of the divergence equation, and the inequalities Poincaré, improved Poincaré, fractional Poincaré and Korn. The decomposition presented here is based on the one developed in [23] where a continuous Hardy-type inequality is applied for proving the estimation for the norms. Moreover, in [23] the partition of the domain is indexed over a set Γ with tree structure, which is strongly related to the geometry of the domain. Other references where variations of these techniques are used are: [9, 13, 19, 24, 25].

Also, a similar decomposition on cuspidal domains is used in [3, 7] for proving weighted Korn inequalities and the solvability of the divergence equation in weighted Sobolev spaces. In those papers, thanks to the geometry of the domain, the partition is indexed over \mathbb{N} (in other words, it is formed by a chain of subdomains). The discrete weighted Hardy-type inequality [22, inequality (1.102), page 56] is used for proving the estimate of the norms.

In this work, we are interested in having a better understanding of the weights that make these inequalities valid. We apply a discrete approach, similar to the one used in [3, 7], i.e.: our partition of the domain allows us to regard the weights as essentially constant over each sub-domain and a discrete Hardy-type inequality is used for estimating a weighted norm of the sum of $\{f_t\}$ in terms of another weighted norm of f. On the other hand, we recover the tree structure introduced in [23], which allows the method to be applied to a larger class of domains. Hence, we need a discrete weighted Hardy-type inequality, similar to [22, inequality (1.102)], but for sequences indexed over trees. For this inequality to hold, necessary and sufficient conditions on the weights can be derived from the continuous case treated in [16]. However, as we shall discuss below, these conditions are very hard to check for our examples. Hence, we prove a sufficient condition which is somehow a natural extension of the classical condition for sequences and is much easier to verify.

The paper is organized as follows: Section 2 introduces the weighted discrete Hardy-type inequality that is applied later, and provides two conditions on the weights that imply its validity. In Section 3, we present our decomposition of functions with vanishing mean value on arbitrary bounded domains. We also show how the Hardy-type inequality stated in the previous section can be used to obtain an upper bound of the norms of the functions proposed in the decomposition. In Section 4, we study the decomposition of functions defined in Section 3 on bounded Hölder domains. In Section 5, we prove several interesting results that are obtained as a consequence of the decomposition. In particular, we prove the solvability of the divergence equation and the improved Poincaré, the fractional Poincaré and the Korn inequalities. All these results are stated on weighted Sobolev spaces on bounded Hölder domains, where the weights are powers of the distance to the boundary. In all cases, the conditions imposed on the exponents of the weights are less restrictive than the ones in the literature. In Appendix A, we derive from [16] a necessary and sufficient condition for the validity of the weighted discrete Hardy-type inequality treated in this work. This
condition is included in the manuscript for general knowledge, but it is not used in our applications.

2 A Weighted Discrete Hardy Inequality on Trees

In this section, we study a certain weighted Hardy-type inequality on trees, and give two conditions for its validity. The first condition is sufficient and necessary and it follows from [16] (see Theorem 1). The second condition is sufficient, and it may also be necessary, but we have not proven it. We are especially interested in this second one because its verification in our examples is easier than the first one.

Throughout the paper $1 < p, q < \infty$, with $\frac{1}{p} + \frac{1}{q} = 1$, unless otherwise stated.

A tree is a graph (V, E), where V is the set of vertices and E the set of edges, satisfying that it is connected and has no cycles. A tree is said to be rooted if one vertex is designed as root. In a rooted tree (V, E), it is possible to define a partial order “≤” in V as follows: $s \leq t$ if and only if the unique path connecting t to the root a passes through s. The parent t_p of a vertex t is the vertex connected to t by an edge on the path to the root. It can be seen that each $t \in V$ different from the root has a unique parent, but several elements (children) on V could have the same parent. We assume that each vertex has a finite number of children. Note that two vertices are connected by an edge (adjacent vertices) if one is the parent of the other one. We say that a set of indices Γ has a tree structure if there is a set of edges such that (Γ, E) is a rooted tree.

Trees can be regarded as continuous or as discrete. In a continuous tree, the edges are segments on the plane, and one can define functions taking values over them, whereas the set of vertices has vanishing measure. On the other hand, on discrete trees, the edges are just links between the vertices that define a partial order. In this case, sequences indexed on the vertices can be defined. There is a natural one-to-one map between the edges and the subset of vertices $\Gamma \setminus \{a\}$. It is given by the association of the edge (t_p, t) with the vertex t. This map implies an association between the continuous and discrete versions of a given tree. Therefore, we define:

$$\Gamma^* = \Gamma \setminus \{a\}.$$

We will work with discrete trees which are derived from a continuous setting, so Γ^* is the natural environment for stating our Hardy-type inequality. It is important to notice, however, that the same results that we present here on Γ^* can be easily extended to Γ.

Given a rooted tree Γ, we consider collections of real values indexed over Γ^*, named in this work as Γ^*-sequences. We define the space $\ell^p(\Gamma^*)$ of collections $b = \{b_t\}_{t \in \Gamma^*}$ such that:

$$\|b\|_p = \left(\sum_{t \in \Gamma^*} b_t^p \right)^{\frac{1}{p}} < \infty.$$

We also define the path \mathcal{P}_t from the root a to t:

$$\mathcal{P}_t := \{s : a < s \leq t\},$$

and the shadow \mathcal{S}_t of t:

$$\mathcal{S}_t := \{s \in \Gamma^* : s \geq t\}.$$
Given positive Γ^*-sequences (i.e. weights) $u = \{u_t\}_{t \in \Gamma^*}$ and $v = \{v_t\}_{t \in \Gamma^*}$, we introduce the inequality:

$$
\left(\sum_{t \in \Gamma^*} \left| u_t^{-1} \sum_{s \geq t} b_s \right|^q \right)^{\frac{1}{q}} \leq C \left(\sum_{t \in \Gamma^*} \left| b_t v_t^{-1} \right|^q \right)^{\frac{1}{q}},
$$

(2.1)

for every $b = \{b_t\}_{t \in \Gamma}$ such that $bv^{-1} \in \ell^q(\Gamma^*)$.

Notice that the following dual version to (2.1) is equivalent.

Lemma 1 Inequality (2.1) holds if and only if

$$
\left(\sum_{s \in \Gamma^*} \left| v_s \sum_{a \prec s \leq s} d_t \right|^p \right)^{\frac{1}{p}} \leq C \left(\sum_{s \in \Gamma^*} |d_s v_s|^p \right)^{\frac{1}{p}}
$$

(2.2)

is satisfied, for every $d = \{d_t\}_{t \in \Gamma^*}$ such that $du \in \ell^p(\Gamma^*)$. Moreover, the optimal constants for both inequalities are equal to each other.

Proof The best constant C for (2.1) can be characterized by duality as:

$$
C = \sup_{\delta: ||\delta||_p = 1} \sup_{b: ||bv^{-1}||_q = 1} \sum_{t \in \Gamma^*} u_t^{-1} \left(\sum_{s \geq t} b_s \right) \delta_t
$$

$$
= \sup_{b: ||bv^{-1}||_q = 1} \sup_{\delta: ||\delta||_p = 1} \sum_{s \in \Gamma^*} b_s \left(\sum_{a \prec s \leq s} \delta_t u_t^{-1} \right).
$$

Now, taking $d = \delta u^{-1}$ and $\beta = bv^{-1}$, we obtain the dual characterization of the optimal constant in (2.2):

$$
C = \sup_{\beta: ||\beta||_q = 1} \sup_{d: ||du||_p = 1} \sum_{s \in \Gamma^*} v_s \left(\sum_{a \prec s \leq s} d_t \right) \beta_s.
$$

The goal of this section is to establish sufficient conditions for (2.1) that can be tested on our examples.

It is known (see for example [21, 22, 27]) that the classical necessary and sufficient condition for the continuous Hardy inequality in an interval translates to the discrete case. Namely, if Γ is a chain (i.e. a tree where each vertex has at most one child), then inequalities (2.2) and (2.1) hold if and only if

$$
A_{chain} = \sup_{t \in \Gamma^*} \left(\sum_{a \prec s \leq t} u_s^{-q} \right)^{\frac{1}{q}} \left(\sum_{s \geq t} v_s^p \right)^{\frac{1}{p}} < \infty.
$$

(2.3)

Moreover, the constant C in (2.1) is proportional to A_{chain}.

The authors in [16] studied continuous Hardy inequalities on trees. Their main result can be easily translated to the discrete case as shown in the following theorem. However, they also showed that, on trees that are not chains, condition (2.3) is necessary for the validity of (2.1), but not sufficient.

Theorem 1 Let Γ be a discrete tree with root a. Given a subtree K of Γ, we define its boundary as

$$
\partial K = \{ s \in K : \exists t \in \Gamma \setminus K \text{ such that } t_p = s \}.
$$

We also define the following class formed by some subtrees of Γ:

$$
\mathcal{K} = \{ K \text{ subtree of } \Gamma : a \in K, \text{ and if } s \in \partial K, \text{ then } t \notin K, \forall t > s \}.
$$
For $K \in \mathcal{K}$, we define the interior of K, $K^o = K \setminus \partial K$. Then inequality (2.1) holds if and only if:
\[
B := \sup_{K \in \mathcal{K}} \frac{\|v\|_{\ell^p(\Gamma \setminus K^o)}}{\alpha_K} < \infty,
\]
where:
\[
\alpha_K := \inf \left\{ \|b\|_p : \sum_{a < s \leq t} |b_s| u_s^{-1} = 1, \forall t \in \partial K \right\}.
\]
Moreover, the constant C in (2.1) is proportional to B.

Condition (2.4) is rather cumbersome and one can find it very hard to prove in practical examples. However, valuable information can be derived from it. E.g., fixing a vertex $t \in \Gamma^*$, consider the sub-tree: $K = \Gamma \setminus S_t$. In this case, $\|v\|_{\ell^p(\Gamma^* \setminus K)} = \|v\|_{\ell^p(S_t)}$. On the other hand, t is the only vertex in ∂K and α_K^{-1} becomes a dual characterization of $\|u^{-1}\|_{\ell^q(\mathcal{P}_d)}$. Hence, the expression inside the supremum of (2.4) becomes the expression inside the supremum of (2.3), which proves: $A_{\text{chain}} \leq B$. The converse is not true: in [16, Section 5] an example is given where $B = \infty$ whereas A_{chain} remains bounded.

A recursive method for computing α_K is given in [16], as well as several sufficient and slightly less complex conditions. But the main difficulty of estimating a supremum over all subtrees in \mathcal{K} remains. Hence, we prove in the following theorem a sufficient condition that can be regarded as a generalization of (2.3), and which is almost as easy to check. On the downside, we do not know if this new sufficient condition is also necessary for the validity of (2.2).

Theorem 2 Let $u = \{u_t\}_{t \in \Gamma^*}$ and $v = \{v_t\}_{t \in \Gamma^*}$ be two weights that satisfy:
\[
A_{\text{tree}} := \sup_{t \in \Gamma^*} \left(\sum_{a < s \leq t} u_s^{-q} \right)^{\frac{1}{q}} \left(\sum_{a < s \leq t} v_s^p \left(\sum_{a < s \leq t} u_s^{-q} \right)^{\frac{p}{q} \left(1 - \frac{1}{q}\right)} \right)^{\frac{1}{p}} < \infty,
\]
for some $\theta > 1$. Then inequality (2.2) holds. In addition, the optimal constant in (2.2) satisfies that $C \leq \left(\frac{\theta}{\theta - 1}\right)^{\frac{1}{q}} A_{\text{tree}}$.

Proof We follow an idea used in [26], where a sufficient condition is given for the case $p = q = 2$. However, this new variant, with the inclusion of the parameter θ, gives a much sharper result for our applications to inequalities in weighted Sobolev spaces.

We begin observing that the concavity of the function $f(x) = x^{1 - \frac{1}{\theta}}$ implies, via the mean value theorem, the following inequality for $0 \leq x_1 < x_2$:
\[
\frac{x_2 - x_1}{x_2^{\frac{1}{\theta}}} \leq \frac{\theta}{\theta - 1} (x_2^{1 - \frac{1}{\theta}} - x_1^{1 - \frac{1}{\theta}}).
\]
In order to prove the validity of (2.2) we can assume that $d_t \geq 0$. Now, let us define $N(t) := \sum_{a < r \leq t} u_r^{-q}$. Applying the Hölder inequality we obtain:
\[
I := \sum_{s \in \Gamma^*} \left(\sum_{a < r \leq t} d_t \right)^{\frac{p}{q}} \sum_{s \in \Gamma^*} \left(\sum_{a < r \leq t} d_t u_t N(t)^{\frac{1}{q2}} u_t^{-1} N(t)^{-\frac{1}{q2}} \right)^{\frac{p}{q}}
\leq \sum_{s \in \Gamma^*} \left(\sum_{a < r \leq t} d_t^{p} u_t^{p} N(t)^{\frac{p}{q2}} \right)^{\frac{q}{p}} \left(\sum_{a < r \leq t} u_t^{-q} N(t)^{-\frac{1}{q2}} \right)^{\frac{q}{p}}.
\]
For the last factor, observe that $u_t^{-q} = N(t) - N(t_p)$ for every t in Γ^*, where $N(a)$ is defined as 0. Thus, using this and (2.6) with $x_2 = N(t)$ and $x_1 = N(t_p)$ we have:

$$u_t^{-q} N(t)^{-1/\theta} = \frac{N(t) - N(t_p)}{N(t)^{1/\theta}} \leq \frac{\theta}{\theta - 1} \left(N(t)^{1/\theta} - N(t_p)^{1/\theta} \right).$$

Now, we apply a telescopic argument along the path that goes from a to s, obtaining:

$$I \leq \left(\frac{\theta}{\theta - 1} \right)^{\frac{\theta}{\theta - 1}} \sum_{s \in \Gamma^*} v_s^p \left(\sum_{a < t \leq s} d_t^p u_t^p N(t)^{\frac{p}{\theta}} \right) \left(\sum_{a < t \leq s} \left(N(t)^{1/\theta} - N(t_p)^{1/\theta} \right) \right)^{\frac{p}{\theta}}.$$

Interchanging the summations and applying condition (2.5) we obtain:

$$I \leq \left(\frac{\theta}{\theta - 1} \right)^{\frac{\theta}{\theta - 1}} A_{\text{free}} \sum_{t \in \Gamma^*} d_t^p u_t^p,$$

and the result follows.

Remark 1 Condition (2.5), with the parameter $\theta > 1$, resembles similar sufficient conditions that appear when dealing with weighted inequalities involving two weights. For example, see [28, Theorem 1].

Remark 2 Observe that condition (2.5) (as well as (2.3)) implies that $\sum_{s \in \Gamma^*} v_s^p < \infty$. In other words, $v \in \ell^p(\Gamma^*)$.

Remark 3 The proof for Theorem 2 can be copied verbatim replacing Γ^* by Γ, both in the inequality (2.2) and in the condition (2.5).

Observe that as θ approaches 1, condition (2.5) “tends” to condition (2.3). It seems that we cannot take $\theta \rightarrow 1$, since the factor $\frac{\theta}{\theta - 1}$ goes to infinity. However, condition (2.5) is actually equivalent to (2.3) if Γ is a chain. Indeed:

Theorem 3 If Γ is a chain, then conditions (2.3) and (2.5) are equivalent.

Proof Equation (2.5) implies the validity of (2.2), which is equivalent to (2.3) on chains, proving that (2.5) implies (2.3).

Suppose now that (2.3) holds. Then:

$$\left(\sum_{a < r \leq s} u_r^{-q} \right)^{\frac{1}{q}} \leq A_{\text{chain}} \left(\sum_{r \geq s} v_r^p \right)^{-\frac{1}{p}},$$

which in turn gives:

$$\sum_{s \geq t} v_s^p \left(\sum_{a < r \leq s} u_r^{-q} \right)^{\frac{p}{\theta} \left(1 - \frac{1}{\theta} \right)} \leq A_{\text{chain}}^{p \left(1 - \frac{1}{\theta} \right)} \sum_{s \geq t} v_s^p \left(\sum_{r \geq s} v_r^p \right)^{-\frac{1}{\theta} - 1}.$$
Now, let us assume the following inequality holds on chains for any $\theta > 1$:

$$
\sum_{s \geq t} v_s^p \left(\sum_{r \geq s} v_r^p \right)^{\frac{1}{p} - 1} \leq \theta \left(\sum_{s \geq t} v_s^p \right)^{\frac{1}{p}}.
$$

(2.7)

Using this, we obtain:

$$
A_{tree} = \sup_{t \in \Gamma^*} \left(\sum_{a < s \leq t} u_s^{-q} \right)^{\frac{1}{pq}} \left(\sum_{s \geq t} v_s^p \left(\sum_{a < r \leq s} u_r^{-q} \right)^{\frac{1}{q}(1 - \frac{1}{p})} \right)^{\frac{1}{p}}
\leq \theta \frac{1}{\theta} A_{chain}^{1 - \frac{1}{\theta}} \sup_{t \in \Gamma^*} \left(\sum_{a < s \leq t} u_s^{-q} \right)^{\frac{1}{pq}} \left(\sum_{s \geq t} v_s^p \right)^{\frac{1}{p}} \leq \theta \frac{1}{\theta} A_{chain}.
$$

Hence, it only remains to prove (2.7). Let us first present the main idea of why (2.7) holds naturally on every chain. Suppose that we are working on a continuous setting. In that case, the left member of (2.7) would become:

$$
I = \int_t^\infty v(s)^p \left(\int_s^\infty v(x)^p \, dx \right)^{\frac{1}{p} - 1} \, ds.
$$

Now, through the substitution $\xi = F(s) = \int_s^\infty v(x)^p \, dx$, $d\xi = -v(s)^p \, ds$, we have:

$$
I = -\int_{F(t)}^0 \xi^{\frac{1}{p} - 1} \, d\xi = -\theta \xi^{\frac{1}{p}} F(t) = -\theta F(t)^{\frac{1}{p}} = \theta \left(\int_t^\infty v(s)^p \, ds \right)^{\frac{1}{p}},
$$

which is the continuous analog to the right hand side of (2.7).

Now, in the discrete case, we cannot change variables as we did with the integral, but an adapted version of the same idea can be applied. We proceed in a similar way than the proof of Theorem 2: we define $M(s) = \sum_{r \geq s} v_r^p$. Recalling Remark 2, we have that $M(s) < \infty$ and $\lim_{s \to \infty} M(s) = 0$. We denote by s_c the child of s along Γ, which is unique thanks to the fact that Γ is a chain. Applying the convexity of the function $f(x) = x^{\frac{1}{p}}$ and a telescopic argument, we obtain:

$$
\sum_{s \geq t} v_s^p \left(\sum_{r \geq s} v_r^p \right)^{\frac{1}{p} - 1} = \sum_{s \geq t} \frac{M(s) - M(s_c)}{M(s)^{1 - \frac{1}{p}}} \leq \theta \sum_{s \geq t} M(s)^{\frac{1}{p}} - M(s_c)^{\frac{1}{p}}
= \theta M(t) \frac{1}{p} = \theta \left(\sum_{s \geq t} v_s^p \right)^{\frac{1}{p}},
$$

which completes the proof.

Observe that the fact that each s has only one child s_c is crucial for the telescopic argument to hold. On general trees, this step cannot be performed, and the proof fails.

The proof of the previous theorem shows that condition (2.5) can be unravel into two: the classical condition (2.3), and the additional (2.7). We state this as a corollary, although for the application considered here it is easier to work directly with (2.5).

Corollary 1 Let Γ be a tree. If $u = \{u_t\}_{t \in \Gamma}$ and $v = \{v_t\}_{t \in \Gamma}$ verify both (2.3) and (2.7) (with any constant), then (2.5) holds.
3 A Decomposition of Functions

Let $\Omega \subset \mathbb{R}^n$ be a bounded domain with $n \geq 2$. We refer by a weight $\eta : \Omega \rightarrow \mathbb{R}$ to a Lebesgue-measurable function, which is positive almost everywhere. Then, we define the weighted spaces $L^p(\Omega, \eta)$ as the space of Lebesgue-measurable functions $f : \Omega \rightarrow \mathbb{R}$ with finite norm

$$\|f\|_{L^p(\Omega, \eta)} = \left(\int_{\Omega} |f(x)|^p \eta(x) \, dx \right)^{1/p}. $$

Henceforth, $d_a : \Omega \rightarrow \mathbb{R}$ will denote the distance functions to $\partial \Omega$ and $A \subset \bar{\Omega}$ respectively.

Definition 1 Let C be the space of constant functions from \mathbb{R}^n to \mathbb{R} and $\{U_t\}_{t \in \Gamma}$ a collection of open subsets of Ω that covers Ω except for a set of Lebesgue measure zero; Γ is an index set. It also satisfies the additional requirement that for each $t \in \Gamma$ the set U_t intersects a finite number of U_s with $s \in \Gamma$. This collection $\{U_t\}_{t \in \Gamma}$ is called an open covering of Ω. Given $g \in L^1(\Omega)$ orthogonal to C (i.e., $\int g \varphi = 0$ for all $\varphi \in C$), we say that a collection of functions $\{g_t\}_{t \in \Gamma}$ in $L^1(\Omega)$ is a C-orthogonal decomposition of g subordinate to $\{U_t\}_{t \in \Gamma}$ if the following three properties are satisfied:

1. $g = \sum_{t \in \Gamma} g_t$.
2. $\text{supp}(g_t) \subset U_t$.
3. $\int_{U_t} g_t = 0$, for all $t \in \Gamma$.

We also refer to this collection of functions by a C-decomposition. Notice that the third condition is equivalent to the orthogonality to the space C of constant functions. Indeed, this condition can be replaced by $\int_{U_t} g_t(x) \varphi(x) \, dx = 0$, for all $\varphi \in C$ and $t \in \Gamma$.

In Theorem 4 below, we show the existence of a C-orthogonal decomposition by using a constructive argument introduced in [23].

Definition 2 Given a countable open covering $\{U_t\}_{t \in \Gamma}$ of Ω, we say that a weight $\eta : \Omega \rightarrow \mathbb{R}$ is admissible if there exists a constant C independent of t such that:

$$\text{ess sup}_{x \in U_t} \eta(x) \leq C \text{ ess inf}_{x \in U_t} \eta(x),$$

for all $t \in \Gamma$. Notice that admissible weights are subordinate to $\{U_t\}_{t \in \Gamma}$ of Ω.

Example 1 One classical example is induced by a Whitney decomposition. Given $\Omega \subset \mathbb{R}^n$ an open set, it is known (see, for example [29, Section VI]), that there exists a collection of dyadic closed cubes, $\{Q_j\}_{j \in \mathbb{N}}$, with edges parallel to the coordinate axis, such that $\Omega = \bigcup_j Q_j$, satisfying the length ($\ell(Q_j)$) of the edges of the cube (Q_j) is proportional to $d(Q_j, \partial \Omega)$, where the constant involved does not depend on j. Moreover two neighbouring cubes are of similar size. These properties are well adapted for working with weights that depend on the distance to the boundary. Then, every weight $\eta(x) = d(x)^r$, with r in \mathbb{R}, is admissible subordinate to $\{U_j\}_j$, where $U_j = \frac{17}{16} Q_j^n$. A construction similar to a Whitney decomposition is used in [23], and in Section 4.
Example 2 Another example is the one studied in the articles [3, 7, 23], where \(\Omega \) is a cuspidal domain with only one singularity (the tip of the cusp) on its boundary. For example, we can consider

\[
\Omega := \{ (x_1, x_2) \in \mathbb{R}^2 : 0 < x_1 < 1 \text{ and } 0 < x_2 < x_1^\gamma \},
\]

where \(\gamma > 1 \). In this case, it is of interest to consider weights that depend on the distance to the cusp instead of the distance to the boundary. For that reason, the partition of the domain depends on the singularity we have at the origin as it can be seen at the open covering \(\{ U_n \}_{n \geq 0} \):

\[
U_n = \{ (x_1, x_2) \in \Omega : 2^{-(n+2)} < x_1 < 2^{-n} \}.
\]

For this open covering, any power \(\eta(x) = d_0(x)^\gamma \) of the distance to the cusp is admissible.

Definition 3 Let \(\Omega \subset \mathbb{R}^n \) be a bounded domain. We say that an open covering \(\{ U_i \}_{i \in \Gamma} \) is a tree covering of \(\Omega \) if it also satisfies the properties:

1. \(\chi_\Omega(x) \leq \sum_{i \in \Gamma} \chi_{U_i}(x) \leq N \chi_\Omega(x) \), for almost every \(x \in \Omega \), where \(N \geq 1 \).
2. The set of subindices \(\Gamma \) has the structure of a rooted tree, i.e. it is the set of vertices of a rooted tree \((\Gamma, E) \) with a root \(a \).
3. There is a collection \(\{ B_t \}_{t \neq a} \) of pairwise disjoint open sets with \(B_t \subseteq U_t \cap U_{t_0} \).

Remark 4 Given an open covering of a domain \(\Omega \), one can choose an element of the covering as the root, and there are different ways to define a tree-covering. Notice that two vertices on the tree are adjacent only if the intersection of their corresponding open sets is non-empty. Some care should be taken in order to obtain a meaningful tree-covering, according with the geometry of the domain. For example, it is known that the quasi-hyperbolic distance between two cubes in a Whitney decomposition is comparable with the shorter chain of Whitney cubes connecting them (see [18]). Hence, on an open covering like the one in Example 1 and using an inductive argument, we can define a tree-covering such that the number of Whitney cubes in each chain to the root (a distinguished cube) is minimal. This tree structure contains some geometric information in terms of the quasi-hyperbolic distance. Another possible tree-covering on a Whitney decomposition can be defined when the domain is a John domain, in which case each chain connecting a Whitney cube with the root is a Boman chain. This type of tree-covering, which characterizes John domains, is introduced in [25].

The open covering for external cusps in Example 2 can be seen as a tree-covering that is actually a chain, with the root defined as the open set furthest from the tip of the cusp.

Given a tree covering \(\{ U_i \}_{i \in \Gamma} \) of \(\Omega \) and \(\nu, \omega : \Omega \to \mathbb{R} \) admissible weights subordinate to \(\{ U_i \}_{i \in \Gamma} \), we define the following discrete Hardy-type inequality on trees for positive sequences \(\{ b_t \}_{t \in \Gamma} \):

\[
\left(\sum_{t \in \Gamma^*} |B_t|^{-q/p} \nu_t^{-q} \left(\sum_{s \leq t} b_s \right)^{q} \right)^{\frac{1}{q}} \leq C \left(\sum_{t \in \Gamma^*} |B_t|^{-q/p} \omega_t^{-q} b_t^{q} \right)^{\frac{1}{q}}, \quad (3.2)
\]

where the sequence weights \(\{ \omega_t \}_{t \in \Gamma^*} \) and \(\{ \nu_t \}_{t \in \Gamma^*} \) are defined as

\[
\omega_t = \text{ess inf}_{x \in B_t} \omega(x) \quad \text{and} \quad \nu_t = \text{ess inf}_{x \in B_t} \nu(x).
\]

Observe that here is where the necessity of working on \(\Gamma^* \) becomes apparent, since the weights depend on \(B_t \), which plays the role of the edge between \(t_p \) and \(t \), and is not defined for the root of the tree.
Remark 5 Observe that (3.2) is exactly (2.1), taking $u_t = |B_t|^\frac{1}{p} v_t$ and $v_t = |B_t|^\frac{1}{q} \omega_t$.

Theorem 4 Let $\Omega \subset \mathbb{R}^n$ be a bounded domain with a tree covering $\{U_t\}_{t \in \Gamma}$ such that $\frac{|U_t|}{|B_t|} \leq C$ for every $t \in \Gamma^*$, and let $v, \omega : \Omega \to \mathbb{R}$ be admissible weights, with $v^p \in L^1(\Omega)$, such that $L^q(\Omega, \omega^{-q}) \hookrightarrow L^q(\Omega, v^{-q})$ and the weighted discrete Hardy inequality on trees (3.2) holds. Then, given $g \in L^q(\Omega, \omega^{-q})$, with $\int_\Omega g = 0$, there exists $\{g_t\}_{t \in \Gamma}$, a C-decomposition of g, such that

$$\sum_{t \in \Gamma} \int_{U_t} |g_t(x)|^q v^{-q}(x) dx \leq C \int_\Omega |g(x)|^q \omega^{-q}(x) dx. \quad (3.3)$$

Proof Observe that since $g \in L^q(\Omega, \omega^{-q})$, then $g \in L^1(\Omega)$. Indeed, using the Hölder inequality and the integrability of ω^p we obtain:

$$\int_\Omega |g(x)| dx = \int_\Omega |g(x)| \omega(x) \omega^{-1}(x) dx \leq \left(\int_\Omega |g(x)|^q \omega^{-q}(x) \right)^{\frac{1}{q}} \left(\int_\Omega \omega(x)^p \right)^{\frac{1}{p}} \leq C \|g\|_{L^q(\Omega, \omega^{-q})}.$$

Now, let $\{\phi_t\}_{t \in \Gamma}$ be a partition of the unity subordinate to $\{U_t\}_{t \in \Gamma}$. In other words, we have that supp$(\phi_t) \subset U_t$, $0 \leq \phi_t(x) \leq 1$ and $\sum_t \phi_t(x) = 1$, $\forall x \in \Omega$. Now, we can define an initial decomposition for g given by $f_t = g \phi_t$. The collection $\{f_t\}_{t \in \Gamma}$ satisfies the first two properties in Definition 1, but not necessarily the third one. Hence, we modify these functions in order to obtain the C-orthogonality.

For $s \in \Gamma$, we define the shadow W_s of U_s, as:

$$W_s = \bigcup_{k \geq s} U_k,$$

and for $s \in \Gamma^*$

$$h_s(x) = \frac{\chi_s(x)}{|B_s|} \int_{W_s} \sum_{k \geq s} f_k,$$

where $\chi_s(x)$ is the characteristic function of B_s. Note that supp$(h_s) \subset B_s$ and $\int h_s(x) dx = \int_{W_s} \sum_{k \geq s} f_k$. Now, we take:

$$g_t(x) = f_t(x) + \left(\sum_{s:s_p=t} h_s(x) \right) - h_t(x) \quad \forall t \neq a,$$

$$g_a(x) = f_a(x) + \left(\sum_{s:s_p=a} h_s(x) \right).$$

Note that the summations above are finite since they are indexed over the children of t (or a). With this definitions, we have for $t \neq a$:

$$\int_\Omega g_t = \int_{U_t} f_t + \sum_{s:s_p=t} \int_{B_s} h_s - \int_{B_t} h_t$$

$$= \int_{U_t} f_t + \sum_{s:s_p=t} \int_{W_s} \sum_{k \geq s} f_k - \int_{W_t} \sum_{k \geq t} f_k.$$
Weighted Discrete Hardy Inequalities on Trees and Applications

\[\int_{U_t} f_t + \sum_{s: s_p = t} \sum_{k \geq s} \int_{U_k} f_k - \sum_{k \geq t} \int_{U_k} f_k = 0. \]

Whereas for \(t = a \):

\[\int_{\Omega} g_a = \int_{U_a} f_a + \sum_{s: s_p = a} \int_{B_s} h_s = \int_{U_a} f_a + \sum_{s: s_p = a} \int_{W_s} \sum_{k \geq s} f_k = \int_{\Omega} \sum_{k \geq a} f_k = \int_{\Omega} g = 0. \]

Hence, \(\{g_t\}_{t \in \Gamma} \) is a \(C \)-orthogonal decomposition of \(g \). It remains to prove estimate (3.3), which is a consequence of inequality (3.2). Recall that the support of each \(h_s \), with \(s \in \Gamma^* \), is included in \(B_s \), and the collection of open sets \(\{B_t\}_{t \neq a} \) is pairwise disjoint. Moreover, \(h_s \) appears in the definition of \(g_t \) if and only if \(t = s \) or \(t = s_p \). Now using the basic inequality \((a + b)^q \leq 2^{q-1}(a^q + b^q) \) repeatedly we can prove the estimate:

\[
\sum_{t \in \Gamma} \int_{U_t} |g_t(x)|^q v(x)^{-q} \, dx \\
\leq \sum_{t \in \Gamma^*} 2^{q-1} \int_{U_t} \left(|f_t(x)|^q + \left(\sum_{s: s_p = t} h_s(x) \right) - h_t(x) \right)^q v^{-q}(x) \, dx \\
+ 2^{q-1} \int_{U_a} \left(|f_a(x)|^q + \left(\sum_{s: s_p = a} h_s(x) \right)^q \right) v^{-q}(x) \, dx \\
= 2^{q-1} \left\{ \sum_{t \in \Gamma} \int_{U_t} |f_t(x)|^q v^{-q}(x) \, dx \\
+ \sum_{t \in \Gamma^*} \int_{U_t} \left(|h_t(x)|^q + \sum_{s: s_p = t} |h_s(x)|^q \right) v^{-q}(x) \, dx \\
+ \int_{U_a} \sum_{s: s_p = a} |h_s(x)|^q v^{-q}(x) \, dx \right\} \\
\leq 2^{q-1} \int_{U_t} |f_t(x)|^q v^{-q}(x) \, dx + 2^q \sum_{t \in \Gamma^*} \int_{\Omega} |h_t(x)|^q v^{-q}(x) \, dx \\
\leq 2^{q-1} \int_{\Omega} |g(x)|^q v^{-q}(x) \, dx + 2^q \sum_{t \in \Gamma^*} \int_{\Omega} |h_t(x)|^q v^{-q}(x) \, dx \\
= (I) + (II). \]

The term (I) gives the desired estimate thanks to the embedding \(L^q(\Omega, \omega^{-q}) \hookrightarrow L^q(\Omega, v^{-q}) \).
Now, observe that
\[|h_s(x)| \leq \frac{1}{|B_s|} \int_{W_s} \sum_{k \geq s} |f_k| \leq \frac{1}{|B_s|} \int_{W_s} |g|. \]

Thus,
\[
(II) \leq C \sum_{r \in \Gamma^*} v_r^{-q} |B_r|^{1-q} \left(\int_{W_r} |g(x)| \, dx \right)^q \\
\leq C \sum_{r \in \Gamma^*} v_r^{-q} |B_r|^{1-q} \left(\int_{U_r} |g(x)| \, dx \right)^q.
\]

Now, we apply (3.2) with \(b_s = \int_{U_s} |g|\), obtaining:
\[
(II) \leq C \sum_{r \in \Gamma^*} \omega_r^{-q} |B_r|^{1-q} \left(\int_{U_r} |g(x)| \, dx \right)^q \\
\leq C \sum_{r \in \Gamma^*} \omega_r^{-q} |B_r|^{1-q} \left(\frac{1}{U_r} \int_{U_r} \omega(x)^p \, dx \right)^{\frac{q}{p}} \left(\int_{U_r} |g(x)|^{q_0} \omega^{-q_0}(x) \, dx \right) \\
\leq C \sum_{r \in \Gamma^*} \omega_r^{-q} |B_r|^{1-q} \omega_0^q \left(\frac{1}{U_r} \int_{U_r} |g(x)|^{q_0} \omega^{-q_0}(x) \, dx \right) \\
\leq C \sum_{r \in \Gamma^*} \int_{U_r} |g(x)|^{q_0} \omega^{-q_0}(x) \, dx.
\]

which completes the proof. The constant \(C\) depends on the constants in (3.1) for \(\omega\) and \(v\), on the constant \(N\) that appears on Definition 3, on \(\sup_{U_r} \frac{|U_r|}{|B_r|}\) and linearly on the constant on (3.2).

\[\square \]

Remark 6 Observe that, combining Remark 5 with Remark 2, it is easy to check that the requirement \(\omega^p \in L^1(\Omega)\) is implied by the validity of the Hardy-type inequality (3.2).

4 Decomposition on Hölder Domains

In this section, we prove that a \(C\)-orthogonal decomposition of a function \(g\) as the one given in Theorem 4 can be obtained when \(\Omega\) is a Hölder-\(\alpha\) domain, and the weights are powers of the distance to \(\partial \Omega\).

Let \(\Omega\) be a bounded domain whose boundary is locally the graph of a function \(\varphi\) that verifies: \(|\varphi(x) - \varphi(y)| \leq K_\varphi |x - y|^\alpha\) for all \(x, y\). Our approach follows the construction given in [23, Section 6].

Let \(\varphi : (\frac{-3\ell}{2}, \frac{3\ell}{2})^{n-1} \rightarrow \mathbb{R}\) be a Hölder-\(\alpha\) function with \(0 < \alpha \leq 1\) and \(\ell > 0\). We also assume that \(2\ell \leq \varphi < 3\ell\). Consider:
\[
\Omega_\varphi = \left\{ (x', x_n) \in \left(-\frac{\ell}{2}, \frac{\ell}{2} \right)^{n-1} \times \mathbb{R}, \ 0 < x_n < \varphi(x') \right\}. \tag{4.1}
\]

We could assume \(\Omega\) is locally \(\Omega_\varphi\), but in that case, the distance to \(\partial \Omega\) is not necessarily equivalent to the distance to the portion of the graph of \(\varphi\) above \(\left(-\frac{\ell}{2}, \frac{\ell}{2} \right)^{n-1}\). Thus, in order to solve this problem, we assume \(\Omega\) is locally an expanded version of \(\Omega_\varphi\):
\[
\Omega_{\varphi,E} = \left\{ (x', x_n) \in \left(-\frac{3\ell}{2}, \frac{3\ell}{2} \right)^{n-1} \times \mathbb{R}, \ 0 < x_n < \varphi(x') \right\}. \tag{4.2}
\]
Now, for \(x \in \Omega_\varphi \), the distance to \(\partial \Omega \) is equivalent to the distance to:

\[
G = \{(x', x_n) \in \left(-\frac{3\ell}{2}, \frac{3\ell}{2}\right)^{n-1} \times \mathbb{R}, \ x_n = \varphi(x')\}.
\]

We denote \(d_G \) the distance to \(G \). Now, we can prove our first result regarding Hölder-\(\alpha \) domains, namely:

Lemma 2 Let \(\Omega_\varphi \) be the domain defined in (4.1) for some \(0 < \alpha \leq 1 \), and \(\beta \) satisfying:

\[
\beta \, p > -\alpha.
\]

Then, given \(f \) in \(L^q(\Omega_\varphi, d_G^{-\beta q}) \) with vanishing mean value, there exists a \(C \)-decomposition of \(f \) that satisfies estimate (3.3) with \(\omega = d_G^\beta \) and \(\nu = d_G^{\beta + \alpha - 1} \).

Proof We build a tree covering of \(\Omega_\varphi \) and prove that the hypotheses of Theorem 4 hold on it. The main idea is to give a Whitney-type decomposition of \(\Omega_\varphi \) into cubes that satisfies:

- The edge \(\ell_t \) of a cube \(Q_t \) is proportional to \(d_G(Q_t) \).
- Two adjacent cubes have comparable sizes.

The cubes are constructed level by level, moving upward towards the graph of \(\varphi \). The level 0 is given by the root cube \(Q_a = (-\ell/2, \ell/2)^{n-1} \times (0, \ell) \). The other cubes are built recursively. Suppose that \(Q_t = Q_t' \times (x_{n,t}, x_{n,t}^2) \) is a cube of level \(m \). Then, cubes \(Q_s \) in level \(m+1 \), with \(s_p = t \), are defined in the following way: consider the cube \(Q_{0} \), which denotes an expansion of a translated copy of \(Q_0 \), then:

- If \(Q \subseteq \Omega_{\varphi, E} \), then we define only one cube \(Q_s \) at level \(m+1 \) with \(s_p = t \), \(Q_s = Q_t + (0, \ldots, 0, \ell_t) \).
- If \(Q \nsubseteq \Omega_{\varphi, E} \), we define \(2^{n-1} \) cubes \(Q_s \) at level \(m+1 \) with \(s_p = t \), written as \(Q_s = \tilde{Q}_t' \times (x_{n,t}^2, x_{n,t}^2 + \ell/2) \), where \(\tilde{Q}_t' \) is one of the \((n-1)\)-dimensional cubes given by the partition of \(Q_t' \) into \(2^{n-1} \) cubes with edges of length \(\ell/2 \).

See Fig. 1 for an example of this construction.

It is easy to check that this partition satisfies the two main properties of a Whitney decomposition mentioned above. Recall that in a tree covering a certain overlapping of the elements is needed, but our cubes are pairwise disjoint, so we need to enlarge them. If \(Q_t = Q_t' \times (x_{n,t}^1, x_{n,t}^2) \), we can expand it downward with a half of itself, defining \(U_t = Q_t' \times (x_{n,t}^1 - \ell/2, x_{n,t}^2) \). Now \{\(U_t \}\} is a tree covering, with \(B_t = Q_t' \times (x_{n,t}^1 - \ell/2, x_{n,t}^2) \). We denote \(\Gamma \) the underlying set of indices with tree structure.

Now, we need to prove that the hypotheses of Theorem 4 hold for the weights \(\omega = d_G^\beta \) and \(\nu = d_G^{\beta + \alpha - 1} \). Notice that the tree covering defined above satisfies that \(\frac{\omega_t}{\nu_t} = \frac{3}{2} \) for every \(t \in \Gamma^* \). Moreover, observe that \(L^q(\Omega_\varphi, d_G^{-(\beta + \alpha - 1)}) \hookrightarrow L^q(\Omega_\varphi, d_G^{-\beta q}) \) since \(\beta \geq \beta + \alpha - 1 \). Notice that, by construction:

\[
\max d_G(z) \leq C \min d_G(z) \sim \ell_t \quad \forall z \in Q_t,
\]

which implies that the weights \(\omega \) and \(\nu \) are admissible. As we mentioned in Remark 5, (3.2) is equivalent to (2.1) and (2.2) with \(u_t = |B_t|^{\frac{1}{p}} \ell_t^{\beta + \alpha - 1} \) and \(v_t = |B_t|^{\frac{1}{p}} \ell_t^\beta \). Thus, the rest of the proof is devoted to verifying the sufficient condition (2.5) for these weights and finally the integrability of \(\omega^p \).

Without loss of generality, we assume that \(\ell = 1 \), and thus the edge of every cube is \(2^{-j} \) for some \(j \in \mathbb{N} \). Since (2.5) involves summations over the shadow \(S_t \) of a node, and over
the path \mathcal{P}_t that goes from a to t, we begin by estimating the number of cubes of a given size both in \mathcal{S}_t and \mathcal{P}_t. Definitions of the shadow and path appear in page 4.

Consider a cube $Q_t = Q'_t \times (x_{n,t}^1, x_{n,t}^2)$ and take Q_s the first cube going downward from Q_t, such that $s \leq t$ and $\ell_s = 2\ell_t$. We have that $3(Q_s + (0, \ldots, 0, \ell_s)) \subseteq \Omega_{\phi_E}$. Hence, there is some $x'_s \in 3Q'_s$ such that $\varphi(x'_s) \leq x_{n,s}^2 + 2\ell_s \leq x_{n,t}^1 + 2\ell_s = x_{n,t}^1 + 4\ell_t$ (see Fig. 2 (left)). Now, for every $x'_s \in Q'_s$:

$$|\varphi(x'_s)| \leq |\varphi(x'_s) - \varphi(x'_s)| + |\varphi(x'_s)| \leq K_{\varphi}|x'_s - x'_s|^\alpha + x_{n,t}^1 + 4\ell_t \leq C_{\alpha}K_{\varphi}\ell_t^\alpha + x_{n,t}^1 + 4\ell_t.$$

Now, let us consider the shadow $W_t = \bigcup_{r \geq t} Q_r$, the union of all the cubes Q_r with r in \mathcal{S}_t. Then, the above estimate and the fact that $\ell_t \leq \ell$ gives:

$$|W_t| \leq \ell_t^{n-1}(C_\alpha K_{\varphi} \ell_t^\alpha + 4\ell_t) \leq C \ell_t^{n-1+\alpha},$$

where C is independent of t. Finally, for $i \in \mathbb{N}$, let us denote $\mathbb{P}_i(t)$ and $\mathbb{W}_i(t)$ the number of cubes Q_r of side length 2^{-i} with r in \mathcal{P}_t and \mathcal{S}_t, respectively. Namely:

$$\mathbb{P}_i(t) = \#\{r \in \Gamma : r \leq t, \ell_r = 2^{-i}\},$$

$$\mathbb{W}_i(t) = \#\{r \in \Gamma : r \geq t, \ell_r = 2^{-i}\}.$$

We want to estimate both of these quantities. For $\mathbb{P}_i(t)$, let us take $r \in \Gamma$ the lowest index in \mathcal{P}_t such that $\ell_r = 2^{-i}$. Now, $\mathbb{P}_i(t)$ is at most the number of cubes with edges ℓ_r in W_r. Hence:

$$\mathbb{P}_i(t) \leq \frac{|W_r|}{|Q_r|} \leq C \ell_r^{n-1+\alpha} \ell_r^{-n} \leq C \ell_r^{-1+\alpha} = C 2^{j(1-\alpha)}.$$

Observe that, in particular, this is an estimate for the number of cubes of the same size in a chain of cubes.

On the other hand, for $\mathbb{W}_i(t)$, we assume $\ell_t = 2^{-k}$, and consider the set of the first cubes Q_r such that $r \geq t$ and $\ell_r = 2^{-i}$. In Fig. 2 (right) a cube Q_t is shown, along with
the four first cubes of a certain size in W_r. There are $\frac{w^{-1}}{e^{-1}}$ of such cubes. Moreover each of these cubes Q_r is followed by a chain of cubes with side length 2^{-i} which is bounded by $\mathbb{P}_i(r) \leq C2^{i(1-\alpha)}$. Therefore:

$$\mathbb{W}_i(t) \leq C \frac{n^{-1}}{e^{-1}} e^{-(n-1)2^{i(1-\alpha)}} = C2^{-k(n-1)-i(\alpha-n)}.$$

Finally, we can prove sufficient condition (2.5). We have three indices in Γ: r, s and t, for which we have: $e_r = 2^{-i}$, $e_s = 2^{-j}$, $e_t = 2^{-k}$. Hence:

$$\sum_{a < r \leq t} u_r^{-q} = \sum_{a < r \leq t} |B_r|^{-q/p} d_r^{-q(\beta + \alpha - 1)} \leq C \sum_{i=0}^{k} \mathbb{P}_i(t)(2^{-in})^{-\frac{q}{p}} 2^{iq(\beta + \alpha - 1)}$$

$$\leq C \sum_{i=0}^{k} 2^{i(1-\alpha+n\frac{q}{p}+q(\beta+\alpha-1))} \leq C \sum_{i=0}^{k} 2^{iq(\frac{\alpha_1+\alpha}{p}+\beta)}$$

$$\leq C2^{kq(\frac{\alpha_1+\alpha}{p}+\beta)}.$$

In the last step we used that the exponent is positive. Indeed:

$$\frac{n-1+\alpha}{p} + \beta = \frac{\beta p + \alpha}{p} + \frac{n-1}{p} > 0,$$

since $\beta p > -\alpha$. In the same way, we obtain that:

$$\sum_{a < r \leq s} u_r^{-q} \leq C2^{q(\frac{\alpha_1+\alpha}{p}+\beta)}.$$

Let us denote:

$$I_1 = \left(\sum_{a < s \leq t} u_s^{-q} \right)^{\frac{1}{q}} \left(\sum_{s \geq i} v_s^{p} \left(\sum_{a < r \leq s} u_r^{-q} \right)^{\frac{\alpha}{q}(1-\frac{q}{p})} \right)^{\frac{1}{p}}.$$
Recall that we want to prove that $A_{\text{tree}} = \sup_{t \in \mathbb{R}^*} I_t < \infty$. Then:

$$
I_t \leq C 2^{k \left(\frac{n+1+\alpha}{p} + \beta \right) \frac{1}{\theta}} \left(\sum_{s \geq t} |B_s| d_G^p \left(\sum_{a < r \leq s} u_r^q \right)^{\frac{p}{q}} (1 - \frac{1}{\theta}) \right) \frac{1}{\theta}
$$

$$
\leq C 2^{k \left(\frac{n+1+\alpha}{p} + \beta \right) \frac{1}{\theta}} \left(\sum_{j=k}^{\infty} \mathbb{W}_j(t) 2^{-j n} 2^{-j \beta} p 2^{j \left(\frac{n+1+\alpha}{p} + \beta \right) p (1 - \frac{1}{\theta})} \right) \frac{1}{\theta}
$$

$$
\leq C 2^{k \left(\frac{n+1+\alpha}{p} + \beta \right) \frac{1}{\theta}} \left(\sum_{j=k}^{\infty} 2^{-k(n-1) - j(n-1) + j(n+\beta - (\frac{n+1+\alpha}{p} + \beta) p (1 - \frac{1}{\theta}))} \right) \frac{1}{\theta}
$$

$$
\leq C 2^{k \left(\frac{n+1+\alpha}{p} + \beta \right) \frac{1}{\theta}} 2^{-k(n-1)} \left(\sum_{j=k}^{\infty} 2^{-j(n+\beta - (\frac{n+1+\alpha}{p} + \beta) p (1 - \frac{1}{\theta}))} \right) \frac{1}{\theta}.
$$

For the summation to be finite, we need the exponent of 2 to be negative or equivalently:

$$
\alpha + \beta p - \left(\frac{n-1+\alpha}{p} + \beta \right) p \left(1 - \frac{1}{\theta} \right) > 0.
$$

But (4.3) implies $\alpha + \beta p > 0$, so we can choose $\theta > 1$ but close to 1^+ such that the inequality above remains valid. Now, we can continue the estimate:

$$
I_t \leq C 2^{k \left(\frac{n+1+\alpha}{p} + \beta \right) \frac{1}{\theta}} 2^{-k(n-1) - \frac{1}{p} - \frac{1}{\theta} - \left(\frac{n-1+\alpha}{p} + \beta \right) p (1 - \frac{1}{\theta})}.
$$

Since A_{tree} is the supremum of I_t over t, we need I_t to be bounded uniformly on t, which is to say on k, hence we need:

$$
E = \left(\frac{n-1+\alpha}{p} + \beta \right) \frac{1}{\theta} - \frac{n-1+\alpha}{p} - \beta + \left(\frac{n-1+\alpha}{p} + \beta \right) \left(1 - \frac{1}{\theta} \right) \leq 0.
$$

But it is easy to check that, in fact, $E = 0$. Hence, (2.5) is fulfilled.

Finally, as we mentioned in Remark 6 the integrability of the weight ω^p is implied by the sufficient condition for the Hardy-type inequality (3.2). Indeed:

$$
\int_{\Omega_p} \omega^p(x) \, dx \leq \sum_{t \in \Gamma} \int_{U_t} \omega^p(x) \, dx \leq C \sum_{t \in \Gamma} |U_t| \omega_t^p \leq C \sum_{k=0}^{\infty} \mathbb{W}_k(a) 2^{-k(n-1) - \frac{1}{\theta} - \left(\frac{n-1+\alpha}{p} + \beta \right) p (1 - \frac{1}{\theta})}
$$

$$
\leq C \sum_{k=0}^{\infty} 2^{-k(n-1) - \frac{1}{\theta} - \left(\frac{n-1+\alpha}{p} + \beta \right) p (1 - \frac{1}{\theta})} = C \sum_{k=0}^{\infty} 2^{-k(n+\beta - (\frac{n-1+\alpha}{p} + \beta) p (1 - \frac{1}{\theta}))},
$$

which is finite since $\beta p > -\alpha$.

\textit{Remark 7} The previous lemma was stated assuming a certain fixed shift in the exponents of the weights. However, one can prefer to consider the general case, with two different weights $v = d_G^p$ and $\omega = d_G^\beta$. In that case, the proof of Lemma 2 can be reproduced verbatim until the last step, where the exponent E in the estimate of I_t should be studied. The requirement $E \leq 0$ is not automatically fulfilled, but implies the restriction $\gamma \leq \beta + \alpha - 1$, where the natural shift between the weights becomes apparent. In order to simplify the proof, we stated the lemma in the critical case $\gamma = \beta + \alpha - 1$, which is the most useful.
Weighted Discrete Hardy Inequalities on Trees and Applications

Lemma 2 constitutes the core of the decomposition on Hölder-α domains. In order to extend this result to a complete Hölder domain, we just need to cover it with patches given by rectangles of the form of Ω_φ:

Theorem 5 Let Ω be a Hölder-α bounded domain, with $0 < \alpha \leq 1$, and β satisfying that $\beta_\rho > -\alpha$. Then, given $g \in L^q(\Omega, d^{-\beta_\rho})$, with vanishing mean value, there exists a $C-$decomposition of g subordinate to a partition $\{U_i\}_{i \in \Gamma}$ of Ω that satisfies:

$$\sum_{i \in \Gamma} \int_{U_i} |g(x)|^q d^{-(\beta_\rho+1)q}(x) \leq C \int_{\Omega} |g(x)|^q d^{-\beta_\rho q}(x) dx.$$ \hspace{1cm} (4.4)

In addition, the partition is formed by one smooth domain Ω_0, with positive distance to $\partial \Omega$, and denumerable cubes or cubes extended by a factor 3^2 in one direction.

Proof Let us begin by covering $\partial \Omega$ with a finite number of open sets $\{U_i\}$, for $i = 1, \ldots, m$, such that $\Omega_i = U_i \cap \Omega$ are of the form of Ω_φ defined in (4.1). We may assume also that there are open sets \mathcal{V}_i such that $\mathcal{V}_i \cap \Omega$ are of the form of $\Omega_{\varphi,E}$, defined in (4.2). Then, we take a smooth domain Ω_0 that intersects each Ω_i, with $1 \leq i \leq m$, and such that $d(\Omega_0, \partial \Omega) = \delta > 0$, and $\bigcup_{i = 0}^m \Omega_i = \Omega$.

We continue by using the idea by Bogovskii in [5] for a finite partition and Lemma 2 in each Ω_i, with $1 \leq i \leq m$. Indeed, let us apply an inductive argument. Let $A, B \subset \Omega$ be two sets such that $|A \cap B| > 0$ and a function $f \in L^q(\Omega, d^{-\beta_\rho})$ such that $\int_{A \cup B} f = 0$. Then, we can decompose f in $A \cup B$ in the following way:

$$f(x) = \frac{\chi_A(x) f(x) - \frac{\chi_{A \cap B}(x) d^{\beta_\rho}(x)}{d^{\beta_\rho}(A \cap B)} \int_A f}{f_A(x)} + \frac{\chi_{B \setminus A}(x) d^{\beta_\rho}(x)}{d^{\beta_\rho}(A \cap B)} \int_A f,$$

where $d^{\beta_\rho}(A \cap B) = \int_{A \cap B} d^{\beta_\rho}$. It follows from the integrability of d^{β_ρ} that f is integrable and the functions f_A and f_B are well-defined. In order to show the weighted integrability of f_A and f_B, it is sufficient to estimate the second term of f_A. By the Hölder inequality, we obtain:

$$\int_A |f(x)| dx \leq \left(\int_A |f(x)|^q d^{-\beta_\rho q}(x) \right)^{\frac{1}{q}} d^{\beta_\rho}(A)^{\frac{1}{\rho}}.$$

Hence the weighted integral of the second term of f_A is:

$$\int \frac{\chi_{A \cap B}(x)^q d^{\beta_\rho q}(x)}{d^{\beta_\rho}(A \cap B)^q} \left(\int_A |f(x)|^q d^{-\beta_\rho q}(x) \right)^{\frac{1}{q}} d^{\beta_\rho}(A)^{\frac{1}{\rho}} \int_{A \cap B} d^{\beta_\rho(q-1)q}(x) dx.$$

\square Springer
Now, we use that \((p - 1)q = p\) and the integrability of \(d^{\beta p}\), which gives:

\[
\int \frac{\chi_{A \cap B}(x)^q \, d^{\beta p q}(x)}{d^{\beta p}(A \cap B)^q} \left(\int_A |f|^p \, d^{\beta q}(x) \, dx \right)^{\frac{q}{p}}
\leq \|f\|_L^q(A \cap B)^{\frac{q}{p}} \int_{A \cap B} d^{\beta p}(x) \, dx
= \|f\|_L^q(Q, d^{\beta q}) \int_{Q \cap B} d^{\beta p}(A \cap B)
\leq \left(\frac{d^{\beta p}(A \cap B)}{d^{\beta p}(A \cap B)^q} \right)^{\frac{q-1}{p}} \|f\|_L^q(Q, d^{\beta q}) \leq C \|f\|_L^q(Q, d^{\beta q}).
\]

Since \(d(x) > 0\) on \(A \cap B\), which has positive measure, we can conclude that \(d^{\beta p}(A \cap B) > 0\). Thus, there is a constant \(C\) such that:

\[
\|f_A\|_{L^q(Q, d^{\beta q})} + \|f_B\|_{L^q(Q, d^{\beta q})} \leq C \|f\|_{L^q(Q, d^{\beta q})}.
\]

Furthermore, it is easy to check that \(f_A\) and \(f_B\) are supported in \(A\) and \(B\) respectively and that both has vanishing mean value.

Next, we can apply this argument with \(A = \Omega_m\) and \(B = \bigcup_{i=0}^{m-1} \Omega_i\), and then again with \(A = \Omega_{m-1}\) and \(B = \bigcup_{i=0}^{m-2} \Omega_i\), etc. Therefore, we obtain for every \(g \in L^q(Q, d^{\beta q})\), with vanishing mean value on \(Q\), a finite decomposition \(g = \sum_{i=0}^{m} g_i\), such that \(g_i\) is supported on \(\Omega_i\) and has vanishing mean value, with the estimate

\[
\sum_{i=0}^{m} \|g_i\|_{L^q(Q, d^{\beta q})} \leq C \|g\|_{L^q(Q, d^{\beta q})}.
\]

Now, each \(g_i\) for \(i = 1, \ldots, m\) can be decomposed applying Lemma 2 with estimate (3.3). And, using that \(d(x)\) is bounded and \(1 - \alpha > 0\), we have:

\[
\|g_0\|_{L^q(Q, d^{(\beta-\alpha q)})} \leq C \|g_0\|_{L^q(Q, d^{\beta q})},
\]

which completes the proof.

\[\square\]

5 Applications to Inequalities on Hölder Domains

In this section we present several results regarding different inequalities on Hölder-\(\alpha\) domains. In all the cases the proof follows a similar model: given a function \(f\) with vanishing mean value on \(Q\), we consider a partition \(\{U_t\}_{t \in \Gamma}\), as the one provided by Theorem 5 and apply the decomposition to \(f\). Then, we apply an unweighted version of the inequality on each \(U_t\), for \(t \in \Gamma\), and take advantage of the estimate (4.4) for recovering a global norm. For doing this we rely heavily on the fact that the distance to \(\partial Q, d(x)\), can be regarded as constant over each \(U_t\). In other words, we can define values \(d_t\) such that \(d_t \sim d(x), \forall x \in U_t\), where the constants involved in the proportionality are independent of \(t\). Moreover, we have that each \(U_t\) is either a smooth domain (\(\Omega_0\) in the proof of Theorem 5), or a cube or a cube expanded along one direction by a factor \(\frac{3}{2}\). For this simple domains, we can control the constant involved in the unweighted inequality.

Springer
The divergence problem is solved directly: we apply the decomposition to the data \(f \). For the other results a duality characterization of the norm on the left hand side is used, and the decomposition is applied to the function in the dual space of the one where the function involved in the inequality belongs. For applying this argument we need the lemma below.

Recall that the weight \(d^{\beta p} \) is integrable over \(\Omega \). Thus, let us define the following subspace of \(L^q(\Omega, d^{-\beta q}) \):

\[
V := \left\{ g(x) + \psi d^{\beta p}(x) : \\
g(x) \in L^q(\Omega, d^{-\beta q}) \text{ and } \psi \in \mathbb{R}, \text{ with } \text{supp}(g) \subset \Omega, \int_{\Omega} g = 0, \right\}.
\]

Lemma 3 \(V \) is dense in \(L^q(\Omega, d^{-\beta q}) \), and any \(g + \psi d^{\beta p} \in V \) verifies that

\[
\| g \|_{L^q(\Omega, d^{-\beta q})} \leq 2 \| g + \psi d^{\beta p} \|_{L^q(\Omega, d^{-\beta q})}.
\]

Proof First, let us prove the estimation in the lemma. Notice that

\[
\psi = \frac{\int_{\Omega} g + \psi d^{\beta p}}{\int_{\Omega} d^{\beta p}}.
\]

Thus, by using the Hölder inequality we obtain

\[
\| \psi d^{\beta p} \|_{L^q(\Omega, d^{-\beta q})} \leq \frac{\left| \int_{\Omega} g + \psi d^{\beta p} \right|}{\int_{\Omega} d^{\beta p}} \| d^{\beta p} \|_{L^q(\Omega, d^{-\beta q})}
\]

\[
\leq \left(\int_{\Omega} d^{\beta p} \right)^{1/p + 1/q - 1} \| g + \psi d^{\beta p} \|_{L^q(\Omega, d^{-\beta q})},
\]

which implies the estimate.

Now, given \(F \in L^q(\Omega, d^{-\beta q}) \) and \(\varepsilon > 0 \), let us show that there exists \(g_F + \psi_F d^{\beta p} \) in \(V \) sufficiently close to \(F \). Using again that \(d^{\beta p} \) is integrable, we define \(\psi_F \) by

\[
\psi_F = \frac{\int_{\Omega} F}{\int_{\Omega} d^{\beta p}}.
\]

Then, the function \(h_F(x) = F(x) - \psi_F d^{\beta p} \) has a vanishing mean value, but it does not necessarily have a compact support. Thus, let \(B \) be an open ball, independent of \(\varepsilon \), such that \(\overline{B} \subset \Omega \). And, let \(\Omega_\varepsilon \) be an open set that contains \(B \) such that \(\overline{\Omega_\varepsilon} \subset \Omega \) and

\[
\left\| (1 - \chi_{\Omega_\varepsilon}(x)) h_F(x) \right\|_{L^q(\Omega, d^{-\beta q})} < \varepsilon,
\]

where \(\chi \) denotes a characteristic function. Finally, let us show that the following function fulfills the requirements

\[
g_F(x) = \chi_{\Omega_\varepsilon}(x) h_F(x) + \frac{\chi_B(x) d^{\beta p}(x)}{\int_B d^{\beta p}} \int_{\Omega \setminus \Omega_\varepsilon} h_F.
\]
Following some straightforward calculations, it can be seen that $g_F(x) + \psi_F d^{\beta p}(x)$ belongs to V. And, by using the Hölder inequality multiple times we conclude the proof of the lemma with the following estimation

$$\|F(x) - g_F(x) + \psi_F d^{\beta p}(x)\|_{L^q(\Omega, d^{-\beta q})}$$

$$= \|h_F(x) - g_F(x)\|_{L^q(\Omega, d^{-\beta q})}$$

$$\leq \left(1 - \chi_{\Omega_{\epsilon}}(x)\right)h_F(x) - \frac{\chi_B(x) d^{\beta p}(x)}{\int_B d^{\beta p}} \int_{\Omega \setminus \Omega_{\epsilon}} h_F$$

$$\leq \left(1 + \left(\frac{\int_\Omega d^{\beta p}}{\int_B d^{\beta p}}\right)^{1/p}\right) \left(1 - \chi_{\Omega_{\epsilon}}(x)\right)h_F(x)\|_{L^q(\Omega, d^{-\beta q})}$$

$$\leq \left(1 + \left(\frac{\int_\Omega d^{\beta p}}{\int_B d^{\beta p}}\right)^{1/p}\right) \varepsilon.$$

The importance of this lemma will become evident later, in the proof of the improved Poincaré inequality, which is the first result that is obtained via a duality argument.

5.1 The Divergence Equation

In this subsection, we study the problem $\text{div} \, u = f$ in Ω with boundary condition $u = 0$ on $\partial \Omega$, for certain f such that $\int_\Omega f = 0$. In addition we want to obtain an estimate for the norm of the solution u in terms of the datum f. The unweighted estimate $\|Du\|_{L^q(\Omega)} \leq C\|f\|_{L^q(\Omega)}$, that is valid on regular domains, cannot hold on Hölder-\(\alpha\) domains due to the singularities on the boundary of Ω. Weighted norms can be used to compensate those singularities, as shown in the following inequality:

$$\|Du\|_{L^q(\Omega, d^{(1-\alpha)/q})} \leq C\|f\|_{L^q(\Omega)}.$$

Such a result was extended in [14], under certain additional hypotheses. Indeed, in that paper only the planar case is considered, and $\partial \Omega$ is assumed to be included in a $1-\text{Ahlfors}$ regular set. In this context the following estimate is proven:

$$\|Du\|_{L^q(\Omega, d^{(1-\alpha)/q})} \leq C\|f\|_{L^q(\Omega, d^{-\beta q})},$$

(5.1)

where the restrictions $0 \leq \beta \leq 1 - \alpha$ and $\beta < \frac{1}{q}$ are imposed on β. It is important to notice that we have stated (5.1) in the same terms of our results to simplify the comparison. We follow the same principle when citing previous results in the next subsections.

Observe that the restrictions on β allows the weight to be transferred partially (or totally) to the right hand side. The case $\beta = 1 - \alpha$ is used to prove well-posedness of the Stokes equations. The estimation (5.1) was generalized in [23] where the restrictions on the dimension on Ω, on the parameter β, and on the Ahlfors regularity on $\partial \Omega$ were lifted, with the exception of the requirement $\beta \geq 0$. Our result shows that this restriction can be relaxed, and that it is enough to ask $\beta > -\alpha/p$.

Theorem 6 Let $\Omega \subset \mathbb{R}^n$ be a bounded Hölder-α domain, and $\beta p > -\alpha$. Given $f \in L^q_0(\Omega, d^{-\beta q})$ such that $\int_\Omega f = 0$, there exists a vector field $u \in W^{1,q}_0(\Omega, d^{\beta(1-\alpha-\beta)q})$, solution of $\text{div} \, u = f$, that verifies the estimate (5.1).
Proof It is known (see, for example, [17]), that given a John domain U and $f \in L^q(U)$, with vanishing mean value, there exists $u \in W^{1,q}_0(U)^n$ such that $\text{div} u = f$ and:

$$\|u\|_{W^{1,q}_0(U)} \leq C \|f\|_{L^q(U)}.$$

Moreover, a simple scaling argument shows that the result holds with the same constant C for every cube (or, more generally, for every rectangle with a fixed aspect ratio). Indeed, consider a reference cube $\hat{Q} = (0, 1)^n$. For simplicity, we take $Q \subset \mathbb{R}^n$ some other cube, with edges parallels to the coordinate axis and of side-length ℓQ. We can consider the affine map $F: \hat{Q} \rightarrow Q$, $F(\hat{x}) = \ell Q \hat{x} + b$, being b a fixed vertex of Q. Then, given $f \in L^p(Q)$ such that $\int_Q f = 0$, we define $\hat{f}(\hat{x}) = f(F(\hat{x}))$, and \hat{u} the solution of $\text{div} \hat{u} = \hat{f}$ on \hat{Q}.

Now we define $u(x) = \ell Q \hat{u}(F^{-1}(x))$, which satisfies that $\text{div}_X u = \ell Q \text{div}_X \hat{u}(F^{-1}(x)) = \ell Q \frac{1}{\ell Q} \text{div}_X \hat{u}(\hat{x}) = \hat{f}(\hat{x}) = f(x)$. The estimate follows in a similar way, where the constant C is the same for Q and for the fixed cube \hat{Q}. If the edges of Q are not parallel to the axis, a rotation needs to be included in F, but the same idea follows.

Now, given Ω a Hölder-α domain, and $f \in L^q(\Omega, d^{-q})$ such that $\int_\Omega f = 0$, we consider $\{f_t\}_{t \in \Gamma}$ the decomposition of f given by Theorem 5. For each f_t, we have a solution u_t of $\text{div} u_t = f_t$, supported on U_t, with the unweighted estimate:

$$\|D u_t\|_{L^q(U_t)} \leq C \|f_t\|_{L^q(U_t)}.$$

In addition, we can choose a uniform constant C for every $t \in \Gamma$. Now we define $u = \sum_{t \in \Gamma} u_t$, which satisfies that $\text{div} u = f$ in Ω and $u = 0$ on $\partial \Omega$. Moreover, we can take a constant $d_t \sim d(U_t, \partial \Omega)$ for each t, and:

$$\|D u\|_{L^q(\Omega, d^{(1-\alpha-\beta)d})} \leq C \sum_{t \in \Gamma} \|D u_t\|_{L^q(U_t, d^{(1-\alpha-\beta)d})} \leq C \sum_{t \in \Gamma} d_t^{(1-\alpha-\beta)d} \|D u_t\|_{L^q(U_t)} \leq C \sum_{t \in \Gamma} d_t^{(1-\alpha-\beta)d} \|f_t\|_{L^q(U_t)} \leq C \sum_{t \in \Gamma} \int_{U_t} |f_t(x)|^q d(x)^{(1-\alpha-\beta)q} \, dx \leq C \int_\Omega |f(x)|^q d(x)^{-\beta q} \, dx = C \|f\|_{L^q(\Omega, d^{-\beta q})}^q,$$

where in the last step we used (4.4).

5.2 Improved Poincaré inequality

Improved Poincaré inequalities have been largely studied in several contexts. For a Hölder-α domain Ω, it is proven in [4] (and later in [12]) that:

$$\|f\|_{L^p(\Omega)} \leq C \|\nabla f\|_{L^p(\Omega, d^\alpha)},$$

for every f with vanishing mean value on Ω.

A weighted extension of this result was given in [1], where the authors proved:

$$\|f\|_{L^p(\Omega, d^\beta)} \leq C \|\nabla f\|_{L^p(\Omega, d^{(1+\beta)p})},$$

for β satisfying $0 \leq \beta \leq 1 - \alpha$. We show that this restrictions on β can be reduced to the requirement $\beta > -\alpha/p$.

Springer
Theorem 7 Let Ω be a Hölder-α domain for some $0 < \alpha \leq 1$, and $\beta p > -\alpha$. Then, there exists a constant C such that for all $f \in L^p(\Omega, d^{\beta p})$, with $\int_\Omega f d^{\beta p} = 0$, it follows that

$$\|f\|_{L^p(\Omega, d^{\beta p})} \leq C \|\nabla f\|_{L^p(\Omega, d^{(\beta+\alpha)p})}.$$

Proof We study the norm of f using a duality characterization. Thanks to Lemma 3, it is enough to consider $h = g + d^{\beta p} \psi \in V$:

$$\|f\|_{L^p(\Omega, d^{\beta p})} = \sup_{h : \|h\|_{L^q(\Omega, d^{-\beta q})} = 1} \int_\Omega fh$$

$$= \sup_{h : \|h\|_{L^q(\Omega, d^{-\beta q})} = 1} \int_\Omega f (g + d^{\beta p} \psi)$$

$$= \sup_{h : \|h\|_{L^q(\Omega, d^{-\beta q})} = 1} \int_\Omega fg.$$

In the last step, we used that $\int_\Omega f d^{\beta p} = 0$ and ψ is a constant. Now, since g has vanishing mean value, we can apply the decomposition of Theorem 4:

$$\|f\|_{L^p(\Omega, d^{\beta p})} = \sup_{h : \|h\|_{L^q(\Omega, d^{-\beta q})} = 1} \int_\Omega \sum_{t \in \Gamma} f g_t.$$

Here the necessity of Lemma 3 becomes clear: since the support of g is compact in Ω, it intersects only a finite number of sets U_t, so the summation is finite and it can be pulled out of the integral. We denote $f U_t = \frac{1}{|U_t|} \int_{U_t} f$. Hence, using the $C-$orthogonality of g_t and the fact that $d(x) \sim d_t$ for $x \in U_t$ we have:

$$\int_\Omega fg = \sum_{t \in \Gamma} \int_{U_t} f g_t = \sum_{t \in \Gamma} \int_{U_t} (f - f U_t) g_t$$

$$\leq \sum_{t \in \Gamma} \|f - f U_t\|_{L^p(U_t, d^{(\beta+\alpha-1)p})} \|g_t\|_{L^q(U_t, d^{-\beta-q})}$$

$$\leq \left(\sum_{t \in \Gamma} \|f - f U_t\|_{L^p(U_t, d^{(\beta+\alpha-1)p})}^p \right)^{\frac{1}{p}} \left(\sum_{t \in \Gamma} \|g_t\|_{L^q(U_t, d^{-\beta-q})}^q \right)^{\frac{1}{q}}$$

$$\leq C \left(\sum_{t \in \Gamma} d_t^{(\beta+\alpha-1)p} \|f - f U_t\|_{L^p(U_t)}^p \right)^{\frac{1}{p}} \|g\|_{L^q(\Omega, d^{-\beta q})}.$$

In the last step we used (4.4).

In order to complete the proof, we recall that, thanks to the estimate in Lemma 3, $\|g\|_{L^q(\Omega, d^{-\beta q})} \leq 2$, and that the Poincaré inequality holds on the unweighted case for smooth domains. Moreover, for convex domains the constant is proportional to the diameter of the domain. In our case, the diameter of each cube U_t is proportional to d_t, hence:

$$\|f\|_{L^p(\Omega, d^{\beta p})} \leq C \left(\sum_{t \in \Gamma} d_t^{(\beta-1+\alpha)p} d_t^p \|\nabla f\|_{L^p(U_t)}^p \right)^{\frac{1}{p}}$$

$$\leq C \left(\sum_{t \in \Gamma} \|\nabla f\|_{L^p(U_t, d^{(\beta+\alpha)p})}^p \right)^{\frac{1}{p}}$$

$$= C \|\nabla f\|_{L^p(\Omega, d^{(\beta+\alpha)p})}.$$
5.3 Fractional Poincaré Inequality

Recently, different versions of the classical fractional Poincaré inequality have been studied. For example,

\[
\inf_{c \in \mathbb{R}} \|u - c\|_{L^p(U)} \leq C \left(\int_U \int_{U \cap B(x, \tau d(x))} \frac{|u(x) - u(y)|^p}{|x - y|^{n+sp}} \, dy \, dx \right)^{\frac{1}{p}}, \tag{5.2}
\]

for \(\tau \in (0, 1) \). Let us recall that the classical fractional Poincaré inequality is obtained by replacing the right hand side in (5.2) by the seminorm of \(W^{s,p} \), for \(0 < s < 1 \), where the double integral is taken over \(U \times U \). Both expressions (seminorms) are equivalent for Lipschitz domains ([15, equation (13)]), but this equivalence fails on irregular domains such as Hölder-\(\alpha \) domains. The classical inequality holds for every bounded domain (see, for example [10, Section 2], [19, Proposition 4.1]). In addition, it is shown in [19, Proposition 4.1] that the constant involved in the inequality is proportional to \(\text{diam}(U)^{\frac{n}{p} + s} |U|^{-\frac{1}{p}} \). On the other hand, the stronger version (5.2) fails on irregular domains. Here we prove a weaker version of this inequality in weighted spaces for Hölder-\(\alpha \) domains.

Theorem 8 Let \(\Omega \) be a Hölder-\(\alpha \) domain, with \(0 < \alpha \leq 1 \), \(u \in W^{s,p}(\Omega, d^\beta p) \), with \(s \in (0, 1) \) and \(\beta p > -\alpha \), and \(\tau \in (0, 1) \). Then:

\[
\inf_{c \in \mathbb{R}} \|u - c\|_{L^p(\Omega, d^\beta p)} \leq C \left(\int_{\Omega} \int_{\Omega \cap B(x, \tau d(x))} \frac{|u(y) - u(x)|^p}{|y - x|^{n+sp}} \delta(x, y)^{(s+\beta-\alpha+1)p} \, dy \, dx \right)^{\frac{1}{p}}, \tag{5.3}
\]

where \(\delta(x, y) = \min\{d(x), d(y)\} \).

Proof For simplicity, we may assume that \(\int_{\Omega} u d^\beta p = 0 \). As in Theorem 7, we write the norm on the left hand side by duality and apply Lemma 3. Taking \(h = g + d^\beta p \psi \):

\[
\|u\|_{L^p(\Omega, d^\beta p)} = \sup_{h : \|h\|_{L^q(\Omega, d^{-\beta p})} = 1} \int_{\Omega} uh = \sup_{h : \|h\|_{L^q(\Omega, d^{-\beta p})} = 1} \int_{\Omega} u g.
\]

Now, we apply the decomposition for the function \(g \) and the estimate (4.4). Thus, for any set of constants \(\{c_t\}_{t \in \Gamma} \), we have:

\[
\int_{\Omega} u g = \sum_{t \in \Gamma} \int_{U_t} (u - c_t) g_t
\]

\[
\leq \sum_{t \in \Gamma} \|u - c_t\|_{L^p(U_t, d^\beta p)} \|g_t\|_{L^q(U_t, d^{-\beta p})}
\]

\[
\leq C \left(\sum_{t \in \Gamma} \|u - c_t\|_{L^p(U_t, d^\beta p)}^{(\beta + \alpha - 1)} \right)^{\frac{1}{\beta}}.
\]

For completing the proof we invoke [19, Proposition 4.2], that states that for a cube \(Q \) with edges of length \(\ell(Q) \):

\[
\inf_{c} \|u - c\|_{L^p(Q)} \leq C_{n,p} \tau^{s-n} \ell(Q)^{s} \left(\int_Q \int_{Q \cap B(x, \tau \ell(Q))} \frac{|u(x) - u(y)|^p}{|x - y|^{n+sp}} \right)^{\frac{1}{p}}, \tag{5.4}
\]
for any $\tau \in (0, 1)$. This result also holds for the elements U_τ that are cubes expanded in one direction by a factor $\frac{3}{2}$. For the central subdomain Ω_0, we apply inequality (5.2) (which holds, since Ω_0 is a Lipschtiz domain). Hence, we obtain:

$$
\| u \|_{L^p(\Omega, d\nu)} \leq C_{n,p} \tau^{s-n} \left(\sum_{\ell \in \Gamma} \int_{U_\ell} \int_{U_\ell \cap B(x, \ell(U_\ell))} \frac{|u(x) - u(y)|^p}{|x - y|^{n+sp}} \ell(U_\ell)^{sp} d\nu^{(\beta + \alpha - 1)} \right)^{\frac{1}{p}}.
$$

Since $\ell(U_\ell) \sim d \sim d(x) \sim d(y)$ for every $x \in U_\ell$ and $y \in U_\ell$, we continue:

$$
\leq C_{n,p} \tau^{s-n} \left(\sum_{\ell \in \Gamma} \int_{U_\ell} \int_{B(x, \ell(U_\ell))} \frac{|u(x) - u(y)|^p}{|x - y|^{n+sp}} d\nu^{(\beta + \alpha - 1)} \right)^{\frac{1}{p}}.
$$

This result provides a partial generalization of the one obtained in [10]. In that paper, a more general form of the inequality is considered, with different exponents p and q on the left and right hand sides, as well as a larger class of domains. However, for technical reasons, when dealing with Hölder-\(\alpha\) domains, only the case $\beta = 0$ is considered. Our result is equivalent to [10, Theorem 5.1] with $p = q$, but the restriction on β is weaker.

Moreover, [10, Theorem 5.2] shows that the shift in the exponent between the left and right hand sides of (5.3) is optimal.

5.4 Korn’s Inequality

Given a vector field $u \in W^{1,p}(U)^n$, Korn’s inequality states that,

$$
\| Du \|_{L^p(U)} \leq C \| \varepsilon(u) \|_{L^p(U)},
$$

where $\varepsilon(u) = \frac{Du + Du^T}{2}$ is the symmetric gradient. This result fails when $\varepsilon(u)$ vanishes but Du does not. Thus, some additional condition on u is needed. The so-called first case states the inequality when u vanishes on the boundary of U, and it can be proven using simple arguments, for every bounded domain. We are interested in the second case that establishes that (5.4) holds when $\int_U \frac{Du + Du^T}{2} = 0$. This case requires deeper considerations on the domain and it actually fails for irregular domains.

A general case is also considered in the literature:

$$
\| Du \|_{L^p(U)} \leq C \{ \| \varepsilon(u) \|_{L^p(U)} + \| u \|_{L^p(U)} \},
$$

which does not need any further assumption on u. Inequality (5.5) can be easily derived from the second case of (5.4) (see, for example [6]). The converse can be proved, for regular domains, using a compactness argument (see [20]).

We prove the following weighted version of (5.4).
Theorem 9 Let \(\Omega \) be a Hölder-\(\alpha \) domain for some \(0 < \alpha \leq 1 \), and \(u \in W^{1,p}(\Omega, d^{\beta p}) \) with \(\beta p > -\alpha \), such that \(\int_{\Omega} \frac{|Du-Du'|}{2} d^{\beta p} = 0 \) then,

\[\|Du\|_{L^p(\Omega, d^{\beta p})} \leq C \|\varepsilon(u)\|_{L^p(\Omega, d^{(\beta+\alpha-1)p})}. \]

Proof Observe that if we denote \(\eta(u) = \frac{Du-Du'}{2} \) then \(Du = \varepsilon(u) + \eta(u) \). Thus, it is enough to prove the estimate for the coordinates \(\eta_{i,j}(u) \) of the matrix \(\eta(u) \), that have vanishing weighted mean value. The estimate is obtained by following step by step the proof of Theorem 7 so we only give references for the needed unweighted inequalities. The norm of \(\eta_{i,j}(u) \) is characterized by duality via Lemma 3. The unweighted estimate (5.4) is known to hold for convex domains with a constant \(C \) proportional to the ratio between the diameter of \(U \) and the diameter of a maximal ball contained in \(U \) (see [13]). Hence, a universal constant can be taken for every \(U \) that is a cube or a cube expanded in one direction by a fixed factor. On the other hand, for the central subdomain \(\Omega_0 \), we can apply [11, Corollary 2.2] where it is shown that (5.4) holds on domains of Jones, which include Lipschitz domains.

This generalizes [1, Theorem 3.1] and [14, Theorem 2.1], where a similar result is proven, but only for \(0 \leq \beta \leq 1-\alpha \). In both cases the result is stated in the form of (5.5) but it is derived from the second case. In [2] a counterexample is given that shows that the shift \(\alpha - 1 \) between the exponents on the left and right hand sides is optimal.

Funding The first author is supported by Cal Poly Pomona under start-up funds. The second author is supported by ANPCyT under grant PICT 2018 - 3017, by CONICET under grant PIP112201130100184CO and by Universidad de Buenos Aires under grant 20020170100056BA.

Availability of data and material Not applicable.

Code availability Not applicable.

Appendix A: Proof of Theorem 1

We derive the discrete result from a continuous analogous proven in [16]. We begin by obtaining another equivalent form for the Hardy-type inequality:

Lemma 4 Inequalities (2.1) and (2.2) are equivalent (with the same constant \(C \)) to:

\[
\left(\sum_{s \in \Gamma^*} \left(v_s \sum_{a < t \leq s} F_t u_t^{-1} \right)^p \right)^{\frac{1}{p}} \leq C \left(\sum_{s \in \Gamma^*} F_s^p \right)^{\frac{1}{p}},
\]

for every \(F = \{F_t\}_{t \in \Gamma} \in \ell^p(\Gamma) \).

Proof Equation (A.1) is obtained from (2.2) by changing variables \(F_s = d_s u_s \).

We deduce inequality (A.1) from the continuous case. Let \(G_c = (\Gamma_c, E_c) \) be a continuous tree with root \(a \). By continuous, we mean that the edges in \(E_c \) are segments in the plane, with
a certain length. In [16], the authors consider η and μ two weights and study the operator $T : L^{p_1}(G) \rightarrow L^{p_2}(G)$ given by:

$$T(f) = \eta(x) \int_0^x f(y)\mu(y)dy.$$

Where the integral is taken along the path that connects the root a with the point x, that could lie anywhere in G_c. Here we are only interested in the case $p_1 = p_2 = p$, so we consider $\mu \in L^p(G_c)$ and $\eta \in L^p(G_c)$, but the same ideas could be applied to the general case. T is continuous in $L^p(G_c)$ if and only if:

$$\sup_{f \in L^p} \left(\int_{G_c} \left(\eta(x) \int_0^x f(y)\mu(y)dy \right)^p dx \right)^{\frac{1}{p}} \leq \infty.$$

Given a sub-tree K, we denote ∂K the boundary of K. We say that $x \in \partial K$ is maximal if every point $y > x$ does not belong to K. We define K_c the set of all sub-trees of Γ containing a and such that every boundary point is maximal. We also define:

$$C_c = \sup_{f \in L^p} \left(\int_{G_c} \eta(x)\mu(x)^p dx \right)^{\frac{1}{p}},$$

where

$$\alpha_{c,K} = \inf \left\{ \|f\|_p : \int_{\alpha} |f(x)|\mu(x)dx, \forall t \in \partial K \right\}.$$

Now, we can state the main result of [16], namely:

Theorem 10 T is continuous if and only if $B_c < \infty$. Moreover:

$$B_c \leq C_c \leq 4B_c.$$

Proof See [16, Theorem 3.1]. \square

Finally, we can prove the theorem:

Proof of Theorem 1 We prove that given $G = (\Gamma, E)$ a discrete tree, $v = \{v_t\}_{t \in \Gamma^*}$ and $u = \{u_t\}_{t \in \Gamma^*}$ positive weights, inequality (A.1) holds for every $F = \{F_t\}_{t \in \Gamma^*}$ if and only if:

$$B = \sup_{K \in \mathcal{K}} \left(\sum_{t \in \Gamma \setminus K^*} v_t^p \right)^{\frac{1}{p}}.$$

Moreover $B \leq C \leq 4B$.

In order to apply Theorem 10, we build a continuous tree G_c from G by assigning each edge in E a length of 1. Take $0 < \varepsilon < 1$. We denote $(s - \varepsilon, s)$ the points in the edge (s, s) that are at a distance less than ε from s. For each $s \in \Gamma^*$, we take φ_s^ε a function such that:

$$\text{supp}(\varphi_s^\varepsilon) \subset (s - \varepsilon, s), \quad \int_{s-\varepsilon}^s \varphi_s^\varepsilon(x)^pdx = 1.$$
Now we complete the setting for the continuous problem by defining, for \(z \in (s_p, s) \) the functions:

- \(f(z) = F_s \),
- \(\mu(z) = u^{-1}_s \),
- \(\eta_\varepsilon(z) = v_\varepsilon \varphi^\varepsilon(z) \).

In the definition of \(C_\varepsilon \) we take \(\eta_\varepsilon \) and \(\mu \) as the weights and the supremum over all functions that are constant on each edge and denote the result \(C_\varepsilon \). Analogously, \(B_\varepsilon \) is \(B_\varepsilon \) with \(\eta_\varepsilon \) and \(\mu \). We prove that \(C_\varepsilon \to C \) and \(B_\varepsilon \to B \) when \(\varepsilon \to 0^+ \).

First, for \(C \), observe that we can assume without loss of generality that \(F_t \) (hence, \(f \)) is positive. Then:

\[
\int_{s_p}^s \left(\eta_\varepsilon(x) \int_a^x f(y)\mu(y)dy \right)^p dx = \int_{s-\varepsilon}^s \left(\eta_\varepsilon(x) \int_a^x f(y)\mu(y)dy \right)^p dx
\]

\[
\geq \int_{s-\varepsilon}^s v_\varepsilon^p \varphi^\varepsilon(x)^p \left(\sum_{a < t < s} F_t u^{-1}_t + (1 - \varepsilon)F_s u^{-1}_s \right)^p dx
\]

\[
\geq v_\varepsilon^p \left(\sum_{a < t < s} F_t u^{-1}_t \right)^p (1 - \varepsilon) \int_{s-\varepsilon}^s \varphi^\varepsilon(x)^p dx
\]

\[
= (1 - \varepsilon)v_\varepsilon^p \left(\sum_{a < t < s} F_t u^{-1}_t \right)^p.
\]

On the other hand:

\[
\int_{s_p}^s \left(\eta_\varepsilon(x) \int_a^x f(y)\mu(y)dy \right)^p dx \leq \int_{s-\varepsilon}^s \left(\eta_\varepsilon(x) \int_a^x f(y)\mu(y)dy \right)^p dx
\]

\[
\leq \int_{s-\varepsilon}^s v_\varepsilon^p \varphi^\varepsilon(x)^p \left(\sum_{a < t < s} F_t u^{-1}_t \right)^p dx = v_\varepsilon^p \left(\sum_{a < t < s} F_t u^{-1}_t \right)^p.
\]

Finally, observe that

\[
\int_{s_p}^s f(x)^p dx = F_s^p.
\]

Hence, we have:

\[
(1 - \varepsilon)C \leq C_\varepsilon \leq C,
\]

which proves that \(C_\varepsilon \to C \), when \(\varepsilon \to 0^+ \).

For \(B \), take \(\delta > 0 \) and \(K \in \mathcal{K} \) such that

\[
\left(\sum_{s \in \Gamma \setminus K^o} v_\varepsilon^p \right)^{\frac{1}{\alpha_K}} > B - \delta.
\]

Consider \(K_\varepsilon \) the continuous subtree obtained by removing from \(K \) the points that are at a distance less than \(\varepsilon \) from its leaves. Then:

\[
\int_{G_\varepsilon \setminus K_\varepsilon} \eta_\varepsilon(x)^p dx = \sum_{s \in \Gamma \setminus K^o} \int_{s-\varepsilon}^s v_\varepsilon^p \varphi^\varepsilon(x)^p dx = \sum_{s \in \Gamma \setminus K^o} v_\varepsilon^p.
\]

In a similar way, it is easy to see that:

\[
\lim_{\varepsilon \to 0^+} \alpha_{\varepsilon,K_\varepsilon} = \alpha_K.
\]
Moreover, we have that if $K_1, K_2 \in \mathcal{K}$ and $K_1 \subset K_2$, then $\alpha_{K_1} \geq \alpha_{K_2}$. In particular, this means $\alpha_{c,K} \geq \alpha_{c,K}$. This implies:

$$B_\varepsilon \leq B \quad \text{and} \quad \lim_{\varepsilon \to 0^+} B_\varepsilon > B - \delta.$$

Since this can be done for every $\delta > 0$, we have: $B = B_c$. \hfill \Box

References

1. Acosta, G., Durán, R.G., Lombardi, A.L.: Weighted Poincaré and Korn inequalities for Hölder α domains. Math. Methods Appl. Sci. 29(4), 387–400 (2006). https://doi.org/10.1002/mma.680
2. Acosta, G., Durán, R.G., López García, F.: Korn inequality and divergence operator: counterexamples and optimality of weighted estimates. Proc. Amer. Math. Soc. 141(1), 217–232 (2013). https://doi.org/10.1090/S0002-9939-2012-11408-X
3. Acosta, G., Ojea, I.: Korn’s inequalities for generalized external cusps. Math. Methods Appl. Sci. 39(17), 4935–4950. https://doi.org/10.1002/mma.3170 (2016)
4. Boas, H., Straube, E.: Integral inequalities of Hardy and Poincaré type. Proc. Amer. Math. Soc 103(172), 176 (1988)
5. Bogovskii, M.: Solution of the first boundary value problem for the equation of continuity of an incompressible medium. Soviet. Math. Dokl. 248, 1094–1098 (1979)
6. Brenner, S.C., Scott, L.R. The Mathematical Theory of Finite Element Methods Texts in Applied Mathematics, 3rd edn., vol. 15. Springer, New York (2008). https://doi.org/10.1007/978-0-387-75934-0
7. Bui, G., López-García, F., Tran, V.: An application of the weighted discrete Hardy inequality. Submitted for Publication (2019)
8. Diening, L., Ruzicka, M., Schumacher, K.: A decomposition technique for John domains. Ann. Acad. Sci. Fenn. Math. 35(1), 87–114 (2010). https://doi.org/10.5186/aasfm.2010.3506
9. Ding, Z., Li, B.: A conformal Korn inequality on Hölder domains. J. Math. Anal. Appl. 481(1), 123440, 14 (2020). https://doi.org/10.1016/j.jmaa.2019.123440
10. Drelichman, I., Durán, R.G.: Improved Poincaré inequalities in fractional Sobolev spaces. Ann. Acad. Sci. Fenn. Math. 43(2), 885–903 (2018). https://doi.org/10.5186/aasfm.2018.4352
11. Durán, R., Muschietti, M.A.: The Korn inequality for Jones domains. Electron. J. Diff. Eqns. 127, 1–10 (2004)
12. Durán, R., Muschietti, M.A., Russ, E., Tchamitchian, P.: Divergence operator and Poincaré inequalities on arbitrary bounded domains. Complex Var. Elliptic Equ. 55(8-10), 795–816 (2010). https://doi.org/10.1080/17476931003786659
13. Durán, R.G.: An elementary proof of the continuity from $L^p_1(\Omega)$ to $H^s_1(\Omega)^\sigma$ of Bogovskii’s right inverse of the divergence. Rev. Unión Mat. Argentina 2(53), 59–79 (2012)
14. Durán, R.G., López García, F.: Solutions of the divergence and analysis of the Stokes equations in planar Hölder-α domains. Math. Models Methods Appl. Sci. 20(1), 95–120 (2010). https://doi.org/10.1142/S0218202510004167
15. Dyda, B.: On comparability of integral forms. J. Math. Anal. Appl. 318(2), 564–577 (2006)
16. Evans, W.D., Harris, D.J., Pick, L.: Weighted Hardy and Poincaré inequalities on trees. J. London Math. Soc. (2) 52(1), 121–136 (1995). https://doi.org/10.1112/jlms/52.1.121
17. G. Acosta, R.G.D., Muschietti, M.A.: Solutions of the divergence operator on John domains. Adv. Math. 2(206), 373–401 (2006)
18. Hurri, R.: Poincaré domains in \mathbb{R}^n. Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes 1(71), 42 (1988)
19. Hurri-Syrjänen, R., López-García, F.: On the weighted fractional Poincaré-type inequalities. Colloq. Math. 157(2), 213–230 (2019). https://doi.org/10.4064/cm7612-9-2018
20. Kikuchi, N., Oden, J.T. Contact Problems in Elasticity: a Study of Variational Inequalities and Finite Element Methods, 2nd edn. Studies in Applied Mathematics. SIAM, Philadelphia (1988)
21. Kufner, A., Maligranda, L., Persson, L.E.: Hardy inequality: About its history and some related results, Vydavatelsky Servis, Plze vn (2007)
22. Kufner, A., Persson, L.E., Samko, N. Weighted Inequalities of Hardy Type, 2nd edn. World Scientific Publishing Co. Pte. Ltd., Hackensack (2017). https://doi.org/10.1142/10052
23. López García, F.: A decomposition technique for integrable functions with applications to the divergence problem. J. Math. Anal. Appl. 418(1), 79–99 (2014). https://doi.org/10.1016/j.jmaa.2014.03.080
24. López-García, F.: Weighted generalized Korn inequalities on John domains. Math. Methods Appl. Sci. 41(17), 8003–8018 (2018). https://doi.org/10.1002/mma.5266
25. López-García, F.: Weighted Korn inequalities on John domains. Studia Math. 241(1), 17–39 (2018). https://doi.org/10.4064/sm8488-4-2017
26. Miclo, L.: An example of application of discrete Hardy’s inequalities. Markov Process. Related Fields 5(3), 319–330 (1999)
27. Okpoti, C.A.: Weight characterizations of Hardy and Carleman type inequalities. PhD thesis, Luleå University of Technology, Department of Mathematics (2006)
28. Sawyer, E., Wheeden, R.L.: Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces. Amer. J. Math. 114(4), 813–874 (1992). https://doi.org/10.2307/2374799
29. Stein, E.M.: Singular integrals and differentiability properties of functions, Princeton Mathematica Series, vol. 30. Princeton University Press (1970)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.