Implementing the Availability Model of a Software-Defined Backbone Network in Möbius

(Gianfranco Nencioni, Bjarne E. Helvik and Poul E. Heegaard)
Department of Information Security and Communication Technology,
NTNU – Norwegian University of Science and Technology, Trondheim, Norway
{gianfranco.nencioni, bjarne.e.helvik, poul.heegaard}@ntnu.no

Abstract—Software-defined networking (SDN) promises to improve the programmability and flexibility of networks, but it may bring also new challenges that need to be explored. One open issue is the quantitative assessment of the properties of SDN backbone networks to determine whether they can provide similar availability to the traditional IP backbone networks. To achieve this goal, a two-level availability model that is able to capture the global network connectivity without neglecting the essential details and which includes a failure correlation assessment should be considered. The two-level availability model is composed by a structural model and the dynamic models of the principal minimal-cut sets of the network. The purpose of this technical report is to extensively present the implementation on Möbius of the Stochastic Activity Network (SAN) availability model of the network elements and the principal minimal-cut sets of a SDN backbone network and the corresponding traditional backbone network.

I. INTRODUCTION

During the recent years, the SDN has emerged as a new network paradigm, which mainly consists of a programmable network approach where the forwarding plane is decoupled from the control plane [1], [2]. Despite programmable networks having been studied for decades, SDN is experiencing a growing success because it is expected that the ease of changing protocols and provide support for adding new services and applications will foster future network innovation, which is limited and expensive in today’s legacy systems.

A simplified sketch of the SDN architecture from IRFT RFC 7426 [1] without the management plane is depicted in Figure 1. The control plane and data plane are separated. Here the control plane is logically centralised in a software-based controller (“network brain”), while the data plane is composed of the network devices (“network arms”) that conduct the packet forwarding.

The control plane has a northbound and a southbound interface. The northbound interface provides an network abstraction to the network applications (e.g. routing protocol, firewall, load balancer, anomaly detection, etc...), while the southbound interface (e.g. OpenFlow) standardises the information exchange between control and data planes.

In [3], the following set of potential advantages of SDN were pointed out:

- centralised control;
- simplified algorithms;
- commoditising network hardware;
- eliminating middle-boxes;
- enabling the design and deployment of third-party applications.

However, from a dependability perspective, the SDN poses a set of new vulnerabilities and challenges compared with traditional networking, as discussed in [4]:

- consistency of network information (user plane state information) and controller decisions;
- consistency between the distributed SDN controllers in the control plane;
- increased failure intensities of (commodity) network elements;
- compatibility and interoperability between general purpose, non-standard network elements;
- interdependency between path setup in network elements and monitoring of the data plane in the control plane;
- load sharing (to avoid performance bottleneck) and fault tolerance in the control plane have conflicting requirements;

In [5], a two-level availability model has been proposed in order to capture the global network connectivity without neglecting the essential details and which includes a failure correlation assessment. The two-level availability model is
composed by a structural model and the dynamic models of the principal minimal-cut sets of both the SDN backbone network and the corresponding traditional backbone network.

The purpose of this technical report is the detailed presentation of the implementation on Möbius [14] of the Stochastic Activity Network (SAN) availability model of both the network elements and the principal minimal-cut sets. These models have been used in [5].

In Section II, we introduce the nation-wide backbone network that has been used for computing the principal minimal-cut sets. The SAN models of the network elements and the principal minimal-cut sets are presented in Section III and Section IV, respectively. Finally, the conclusions are summarized in Section V.

II. MODEL CASE STUDY

In this technical report and in [5], we consider a nation-wide backbone network that consists of 10 nodes across 4 cities, and two dual-homed SDN controllers. See Figure 2 for an illustration of the topology. The nodes are located in the four major cities in Norway, Bergen (BRG), Trondheim (TRD), Stavanger (STV), and Oslo (OSL). Each town has duplicated nodes, except Oslo which has four nodes (OSL1 and OSL2). The duplicated nodes are labelled, X_1 and X_2, where X=OSL1, OSL2, BRG, STV, and TRD. In addition to the forwarding nodes, there are two dual-homed SDN controllers (SC1 and SC2), which are connected to TRD and OSL1.

III. SAN MODEL OF THE NETWORK ELEMENTS

In the following, we present the SAN models of the network elements: links (which are the same in both SDN and traditional network), traditional IP routers, SDN switches, and SDN controllers.

A. Link

The model of a link is assumed to be dominated by physical link failures. Therefore, a simple two-state Markov model is used. Figure 3 shows the SAN representation. The links are either up or down due to hardware failure. We use the same model for both traditional network and SDN. Given failure rate λ_L and repair rate μ_L, the availability of a link is $A_L = \frac{\mu_L}{\lambda_L + \mu_L}$. This model is assumed for each of the link components in the structural model. We don’t know the geographical location of the nodes and therefore the distance between them either, which implies that the length of the links connecting the nodes in the network can’t be determined. Hence, in our case studies we have to assume that the link failure rate is not dependent of the link length. Note that in general the failure rate is expected to be proportional to the length of the link.

B. Traditional IP router

The SAN model of a traditional router is depicted in Figure 4. In the model we focus on the router functionalities and the related failure sources, each component of the router has not been considered because it would be dependent on a particular router architecture. In any case, we assume 1+1 redundancy of the controller hardware, which is a common best practice in any architecture. Multiple failures are not included in the model since they are assumed to be less frequent and will probably not have significant impact on the expected accuracy of the approach.

The SAN model of the traditional router is composed of eight places:

- Working represents the state when the system is fully working and it is initialized with one token;
- failed_MAN is equal to 1 when there is a failure of the Operation and Management (O&M), 0 otherwise;
- spare_CHW represents the state when one of the two redundant control hardware is failed but the other one is correctly working;
- sys_down is a coverage state and is equal to 1 if there is an unsuccessful activation of the stand-by hardware after a failure (manual recovery);
- failed_CHW represents the state when both controllers have an hardware failure;
• **failed_SW** is equal to 1 when there is a software failure, otherwise;

• **failed_FHW** represents the state when there is a permanent hardware failure in forwarding plane;

• **failed_FHWt** represents the presence of a transient hardware failure in forwarding plane;

The router is failed when the token is not in Working or spare_CHW.

The places are connected by mean of the following timed activities with exponential time distribution:

• **MAN_F** and **MAN_R** represent the failure and the recovery events of the O&M with a rate of \(\lambda_{dO} \) and \(\mu_{dO} \), respectively;

• **CHW_F** represents the failure event of the control hardware with a rate of 2 \(\lambda_{dC} \) and there are two cases, with probability \(C_{dC} \) a token is put into spare_CHW, otherwise (with probability \(1 - C_{dC} \)) the system is not able to control the hardware failure and the system goes down;

• **CHW_F2** represents the failure event of the spare control with a rate of \(\lambda_{dC} \);

• **CHW_R** and **CHW_R2** represent the recovery of the control hardware with a rate of \(\mu_{dC} \);

• **UCHW_R** represents the recovery after an unsuccessful activation of the stand-by hardware with a rate of \(\mu_{dUC} \);

• **SW_F** and **SW_R** represent the failure and the recovery events of the software with a rate of \(\lambda_{dS} \) and \(\mu_{dS} \), respectively;

• **FHW_F** and **FHW_R** represent the permanent failure and the recovery events of the forwarding hardware with a rate of \(\lambda_{dF} \) and \(\mu_{dF} \), respectively;

intensity	[time]	description
1/\(\lambda_{dL} \) = 4	[months]	expected time to next link failure
1/\(\lambda_{dL} \) = 15	[minutes]	expected time to link repair
1/\(\lambda_{dLP} \) = 6	[months]	expected time to next permanent forwarding hardware failure
1/\(\mu_{dLP} \) = 12	[hours]	expected time to repair permanent forwarding hardware
1/\(\lambda_{dFP} \) = 1	[week]	expected time to next transient forwarding hardware failure
1/\(\mu_{dFP} \) = 3	[minutes]	expected time to repair transient forwarding hardware
1/\(\lambda_{dCF} \) = 6	[months]	expected time to next control hardware failure
1/\(\mu_{dCF} \) = 12	[hours]	expected time to repair control hardware
1/\(\lambda_{dSF} \) = 1	[week]	expected time to next software failure
1/\(\mu_{dSF} \) = 3	[minutes]	expected time to software repair
1/\(\lambda_{dO} \) = 1	[month]	expected time to next O&M failure
1/\(\mu_{dO} \) = 3	[hours]	expected time to O&M repair
1/\(\mu_{dUC} \) = 8	[hours]	expected time to recover from uncovered control hardware failure

\(C_{dC} = 0.97 \)

Coverage factor

intensity	description
\(\lambda_{dF} \) = \(\lambda_{dF1} \)	intensity of permanent hardware failures
\(\mu_{dF} \) = \(\mu_{dF1} \)	repair intensity of permanent hardware failures
\(\lambda_{dFt} \) = \(\lambda_{dF1t} \)	intensity of transient hardware failures
\(\mu_{dFt} \) = \(\mu_{dF1t} \)	restoration intensity after transient hardware failures
\(\lambda_{dS} \) = 0	intensity of software failure

C. SDN switch

Figure 5 shows the model of the switch in an SDN, which is significantly simpler than the router in a traditional network. The states related to the control hardware failures are not contained in this model, since all the control logic is located in the controller. O&M associated with the SDN switch has been also omitted because we assume that the complexity of the O&M operations done on a single switch is likely to be small relative to a router and globally in the controller. The software is still present but its failure rate will be very low since the functionality is much simpler.

Table II describes the parameters for modelling the SDN switch.

All SDN parameters are expressed relative to the parameters for the traditional network (Table I). In an SDN switch, the failure/repair intensities of (permanent/transient) hardware failures are the same because failures with the same cause,
have the same intensities in both models. However, we assume that the software on an SDN switch will be much less complicated than on a traditional IP router because the control logic has been moved to the controllers, and we have set the failure rate to zero, for the sake of simplicity.

D. SDN controller

The SDN controller has been modelled with the SAN model depicted in Figure 6. We have assumed that the SDN controller is a cluster of \(M \) processors and the system is working, i.e., possesses sufficient capacity if \(K \) out of the \(M \) processors are active, which means that both software and hardware are working. The other main assumptions of the model are:

- single repairman for a hardware failure;
- load dependency of software failure when the system is working, \(\lambda_S(N_a) = \lambda_S/N_a \), where \(N_a \) is the number of active processors;
- when the entire system fails, only processors failed due to hardware failures will be down until the system recovers;
- load independence of software failure when the system has failed, \(\lambda_S(N_a) = \lambda_S \), since the remaining unfailed processors are working at the full capacity.

The SAN model of the SDN controller is composed of six places:

- \(\text{Active}_\text{proc} \) represents the number of active processors and it is initialized to the total number of processors;
- \(\text{failed}_\text{MAN} \) is equal to 1 when there is a failure of the O&M, 0 otherwise;
- \(\text{failed}_\text{SW} \) represents the number of processors where the software has failed;
- \(\text{failed}_\text{HW} \) represents the number of processors where the hardware has failed;
- \(\text{sys}_\text{down} \) is a coverage state and is equal to 1 if the hardware failure in one processor forces all the system to be down;
- \(\text{sw}_\text{sys}_\text{down} \) is a coverage state and is equal to 1 if the software failure in one processor causes the crash of all the processors.

The places are connected by mean of the following timed activities with exponential time distribution:

- \(\text{MAN}_F \) and \(\text{MAN}_R \) represent the failure and the recovery of the O&M with a rate of \(\lambda_O \) and \(\mu_O \), respectively;
- \(\text{SW}_F \) represents the failure of the software with a rate of \(\lambda_S \), if the number of active processors is at least \(K \), or \(N_a \lambda_S \), otherwise; there are two cases, with probability \(C_S \) a token is put into \(\text{failed}_\text{SW} \) (if there are enough working processors, the system is still working), otherwise (with probability \(1 - C_S \)) the system is not able to manage the software failure and the system goes down;
- \(\text{SW}_R \) represents the recovery of the software with a rate of \(\mu_S \);
- \(\text{USW}_R \) represents the recovery of the software crash with a rate of \(\mu_{US} \);
- \(\text{HW}_F1 \) represents the failure of the hardware of the active processors with a rate of \(N_a \lambda_H \) and there are two cases, with probability \(C_C \) a token is put into \(\text{failed}_\text{HW} \) (the hardware is failed but if there are enough working processors, the system is working), otherwise (with probability \(1 - C_C \)) the system is not able to manage the hardware failure and the system goes down (note that if there is already a token in \(\text{failed}_\text{MAN} \) or \(\text{sys}_\text{down} \), the token is forced to be put in \(\text{failed}_\text{HW} \));
- \(\text{HW}_F2 \) represents the failure of the hardware of the processors with a failed software with a rate of \(N_s \lambda_H \), where \(N_s \) is the number of token in \(\text{failed}_\text{SW} \);
- \(\text{HW}_R \) represents the recovery of the hardware with a rate of \(\mu_H \);
- \(\text{UHW}_R \) represent the recovery after an unsuccessful activation of the stand-by hardware with a rate of \(\mu_{UH} \);
part of SDN, C-SDN: control part of SDN), then we have different networks (TN: traditional network, F-SDN: forwarding part of SDN, C-SDN: control part of SDN), then we have

intensity	description
\(\lambda_H = \alpha_H \lambda_{AC} N \)	intensity of hardware failures
\(\mu_H = \mu_{AC} \)	hardware repair intensity
\(1/\mu_H = 0.5h \)	restoration time after uncovered hardware failure
\(\lambda_S = \alpha_S \lambda_{AS} N \)	intensity of software failures
\(\mu_S = \mu_{AS} \)	restoration intensity after software failure
\(1/\mu_S = 0.5h \)	restoration time after uncovered software failure
\(\lambda_O = \alpha_O \lambda_{AO} N \)	intensity of O&M failures
\(\mu_O = \mu_{AO} \)	rectification intensity after O&M failures
\(C_H = C_{AC} \)	hardware failure coverage factor
\(C_S = 0.9 \)	software failure coverage factor

Furthermore, the following input and output gates are included:

- **IG MAN** enables the O&M failure activity only if there are no tokens in *failed MAN, sys down*, and *sw sys down*;
- **IG SW** enables the software failure activity only if there are no tokens in *failed MAN, sys down, sw sys down*, and there are active processors and implies the decrease of the number of active processors;
- **OG MAN** and **OG SSD** resets the number of software failures and sets the number of active processors to the total number of processors minus the number of processors with failed hardware;
- **OG SD** increases the number of failed hardware, resets the number of software failure, and sets the number of active processors to the total number of processors minus the number of processors with failed hardware.

In the proposed model the system is down where the number of tokens in *Activeproc* is lower than \(K \) or there is a token in *failed MAN, sys down*, or *sw sys down*.

The parameters the SDN controller model are listed in Table III.

In an SDN controller, all failure rates are \(N \)-times larger than in the traditional network, where \(N \) is the number of network nodes (10 in the addressed nation-wide backbone network). This is because we assume that the SDN needs roughly the same processing capacity and amount of hardware than in the traditional network. Therefore, the failure intensity is assumed to be proportional to \(N \), and of the same order of magnitude as the total failure intensity of the traditional distributed IP router system. For the hardware the total failure intensity is divided by the number of needed processors \(K = \lceil 0.8 \cdot M \rceil \), where \(M \) is the total number of processors. Moreover, we set the proportionality factors \(\alpha_H, \alpha_S \), and \(\alpha_O \) as follows by basing on previous work [12]: \(\alpha_H = 1, \alpha_S = 1, \alpha_O = 0.2 \), and \(\alpha_C = 1 \).

IV. SAN MODEL OF THE PRINCIPAL MINIMAL-CUT SETS

In [5], we have determined the minimal-cut sets for the different networks (TN: traditional network, F-SDN: forwarding part of SDN, C-SDN: control part of SDN), then we have identifies the principal minimal-cut sets, i.e. the ones with lower cardinality, (see Table IV).

Successively, we have evaluated which are the the failure correlation sources among the elements composing the principal minimal-cut set. Table V maps the failure correlation sources to the elements composing the 12 kinds of minimal-cut sets (4 for the traditional network, 8 for the SDN). The considered failure correlation sources are the following: Geographical Proximity (GEO), Physical Proximity (PHY), Common O&M (COM), Misconguration (MIS), Compatibility Issue (CIS), Homogeneous Equipment (HEQ), Traffic Migration (TMI).

type	network	GEO	PHY	COM	MIS	CIS	TMI	HEQ
\{n,n\}	TN	✓					✓	
F-SDN	✓							
C-SDN								
\{n,n,n\}	TN	✓					✓	
F-SDN	✓							
C-SDN								
\{n,n,i\}	TN	✓						
F-SDN	✓							
C-SDN								
\{n,i\}	TN	✓						
F-SDN	✓							
C-SDN								

For modelling the availability of the minimal-cuts sets, in [5] we have used a modular and systematic approach to compose the SAN model of the network elements. In the composition, for considering the failure correlation among the network elements we have "added", "modified", or "merged" dependency models. In particular, we have added for GEO, PHY, MIS, and CIS, modified for TMI and HEQ, and merged for COM.

Table VI shows the parameters related to the failure correlation. In [13], the authors discovered that around of the 10% failures are actually multiple simultaneous failures. Based on this consideration we have consider an intensity of the correlated failures that is ten times lower than the "original" one. In particular, the "original" intensity of the GEO, PHY, MIS, and CIS are related to the permanent forwarding hardware or link (depending on the correlated elements), link, O&M, and SDN controller software, respectively. Since the COM failure is a merge failure correlation, we have considered a failure intensity equal to the intensity of distributed O&M failure. For the GEO and CIS recovery, we have considered a rate three times lower than the "original" rate since they need more time for restoring from the failure source (e.g. blackout) or to discover the origin of the failure. Instead, for the PHY, MIS and COM recovery, the rate for restoring the single element as been considered. Moreover, for conducting our sensitivity analysis we use the multiplicative
The SAN model is composed of the SAN of the GEO, and if one fails all the traffic is discarded. For considering the TMI failure, the SW_F, FHW\textsubscript{F}, FHW\textsubscript{W} F, CHW\textsubscript{F}, CHW\textsubscript{W} time activities of the two routers are modified by creating two cases: if both routers are working, with probability C_{TMI} only one router is failing and instead with probability 1 – C_{TMI} both the routers are failing, otherwise only one router is failing.

Further, the following input and output gates are included:

- $IG\textsubscript{GF}$ and $IG\textsubscript{MF}$ enable the GEO and COM failure activities only if there is a token in both $Working\textsubscript{SI}$ and $Working\textsubscript{S2}$, i.e. both routers are working, and reset the token in both $Working\textsubscript{SI}$ and $Working\textsubscript{S2}$;
- $OG\textsubscript{GF}$ and $OG\textsubscript{MF}$ set the token in both $Working\textsubscript{SI}$ and $Working\textsubscript{S2}$ again;
- $OG\textsubscript{SW}$, $OG\textsubscript{FHW}$, $OG\textsubscript{FWt}$, and $OG\textsubscript{CHW}$ reset the token in both $Working\textsubscript{SI}$ and $Working\textsubscript{S2}$ and set failed_SW, failed_FHW, failed_FWt, and failed_CHW, respectively, of both routers.

The minimal-cut set is unavailable when there are not tokens in $Working\textsubscript{SI}$, $Working\textsubscript{S2}$, $\text{spare_CHW}\textsubscript{SI}$, and $\text{spare_CHW}\textsubscript{S2}$.

Further details on the implementation in Möbius of the SAN model and the related simulation can be found in the Appendix A6 and B8, respectively.

B. $\{n,n\}$ in F-SDN

Figure 8 shows the SAN model of $\{n,n\}$ in F-SDN, where the two SDN switches ($*\textsubscript{SI}$ and $*\textsubscript{S2}$) are in the same city (GEO), share the O&M (COM), and if one fails all the traffic is managed by the other one (TMI). The SAN model is composed of the SAN of the two routers ($*\textsubscript{SI}$ and $*\textsubscript{S2}$), where the single O&M failure places have been deleted and the following places are added:

- $GEO\textsubscript{F}$ and $GEO\textsubscript{R}$ represent the failure and the recovery from GEO failure with a rate of λ_{GEO} and μ_{GEO}, respectively.

For considering the TMI failure, the SW\textsubscript{F}, FHW\textsubscript{F}, FHW\textsubscript{W} F, CHW\textsubscript{F}, CHW\textsubscript{W} time activities of the two routers are modified by creating two cases: if both routers are working, with probability C_{TMI} only one router is failing and instead with probability 1 – C_{TMI} both the routers are failing, otherwise only one router is failing.

Further, the following input and output gates are included:

- $IG\textsubscript{GF}$ and $IG\textsubscript{MF}$ enable the GEO and COM failure activities only if there is a token in both $Working\textsubscript{SI}$ and $Working\textsubscript{S2}$, i.e. both routers are working, and reset the token in both $Working\textsubscript{SI}$ and $Working\textsubscript{S2}$;
- $OG\textsubscript{GF}$ and $OG\textsubscript{MF}$ set the token in both $Working\textsubscript{SI}$ and $Working\textsubscript{S2}$ again;
- $OG\textsubscript{SW}$, $OG\textsubscript{FHW}$, $OG\textsubscript{FWt}$, and $OG\textsubscript{CHW}$ reset the token in both $Working\textsubscript{SI}$ and $Working\textsubscript{S2}$ and set failed_SW, failed_FHW, failed_FWt, and failed_CHW, respectively, of both routers.

The minimal-cut set is unavailable when there are not tokens in $Working\textsubscript{SI}$, $Working\textsubscript{S2}$, $\text{spare_CHW}\textsubscript{SI}$, and $\text{spare_CHW}\textsubscript{S2}$.

Further details on the implementation in Möbius of the SAN model and the related simulation can be found in the Appendix A6 and B8, respectively.

B. $\{n,n\}$ in F-SDN

Figure 8 shows the SAN model of $\{n,n\}$ in F-SDN, where the two SDN switches ($*\textsubscript{SI}$ and $*\textsubscript{S2}$) are in the same city (GEO), share the O&M (COM), and if one fails all the traffic is managed by the other one (TMI), and share a common configuration (MIS). The SAN model is similar to the one for the two routers (see Figure 7): there is not the part related to the control hardware and there is the MIS failure instead of the COM failure.

The minimal-cut set is unavailable when there are not tokens in $Working\textsubscript{SI}$ and $Working\textsubscript{S2}$.

Further details on the implementation in Möbius of the SAN model and the related simulation can be found in the Appendix A10 and B12, respectively.

Table IV: Principal minimal-cut sets (2 and 3 cardinality) for the different networks

cardinality	type	TN & F-SDN	C-SDN
2	$\{n,n\}$	$\{\text{BRG}_{1}, \text{BRG}_{2}\}$	$\{\text{SCI}_{1}, \text{SCI}_{2}\}$
		$\{\text{PHY}_{1}, \text{PHY}_{2}\}$	
		$\{\text{MIS}_{1}, \text{MIS}_{2}\}$	
3	$\{n,n,n\}$	$\{\text{BRG}_{1}, \text{BRG}_{2}\}$	$\{\text{SCI}_{1}, \text{SCI}_{2}\}$
		$\{\text{PHY}_{1}, \text{PHY}_{2}\}$	
		$\{\text{MIS}_{1}, \text{MIS}_{2}\}$	

Table VI: Model parameters for failure correlation sources

intensity	description
$\lambda_{GEO} = \alpha_{GEO} T_{FH}$	intensity of geographical-spread failure repair rate after a geographical-spread failure
$\mu_{GEO} = \mu_{FH}/3$	repair rate after a geographical-spread failure
$\lambda_{PHY} = \alpha_{PHY} \lambda_{10}$	intensity of physical-spread failure repair rate after a physical-spread failure
$\mu_{PHY} = \mu_{L}$	failure intensity caused by a shared O&M
$\lambda_{COM} = \alpha_{COM} \lambda_{0}$	recovery rate from a shared-O&M failure
$\mu_{COM} = \mu_{O}$	misconfiguration failure intensity to recover from a misconfiguration failure
$\lambda_{CIS} = \alpha_{CIS} \lambda_{0}/10$	failure intensity caused by a compatibility issue among different elements
$\mu_{CIS} = \mu_{3}/3$	coverage factor for considering failures induced by traffic migration
$C_{TM1} = 0.95 + \beta_{TM1}$	coverage factor for taking into account failures due to homogeneous equipment

In the remainder of the section, we include $\{n,n\}$ in TN

Figure 7 depicts the SAN model of $\{n,n\}$ in TN, where the two routers are in the same city (GEO), share the O&M (COM), and if one fails all the traffic is managed by the other one (TMI). The SAN model is composed of the SAN of the two routers ($*\text{SI}$ and $*\text{S2}$), where the single O&M failure places have been deleted and the following places are added:

- GEO is equal to 1 when there is a GEO failure, 0 otherwise;
- failed_MAN is equal to 1 when there is a COM failure, 0 otherwise.

The places are connected by mean of the following timed activities with exponential time distribution:

- MAN_F and MAN_R represent the failure and the recovery of the common O&M with a rate of λ_{COM} and μ_{COM}, respectively;
Fig. 7: SAN model of \(\{n, n\} \) in TN

Fig. 8: SAN model of \(\{n, n\} \) in F-SDN
C. \(\{n, n\}\) in C-SDN

Figure 9 depicts the SAN model of \(\{n, n\}\) in C-SDN, where the two SDN controllers share a common configuration (MIS) and if one fails the other one takes over the control (TMI). The SAN model is composed of the SAN of the two SDN controllers (*C1 and *C2), where the MIS place has been added and it is by mean of MIS_F and MIS_R timed activities, which represent the failure and the recovery of the common O&M with a rate of \(\lambda_{MIS}\) and \(\mu_{MIS}\), respectively.

Moreover, similarly to the two routers and two switches cases, several time activities of the two controllers are modified for considering the TMI failure. In particular, the MAN_F, HW_F1, FHW_F, CHW_F2 time activities of the two controllers are modified by adding one case: if sys_down, sw_sys_down, and failed_MAN of the other router have zero token and if Active_proc of the addressed router is equal to \(K\), i.e. the addressed router is not able to fulfil the demand and the other router is working, then with probability \(C_{TMI}\) only one router is failing and instead with probability \(1 - C_{TMI}\) both the routers are failing.

Furthermore, the following output gates are included:

- OG_TM sets failed_MAN of both controllers;
- OG_TH_C1 (and OG_TH_C2) sets sys_down_C1 (or sys_down_C2), decreases the tokens in Active_proc_C2 (or Active_proc_C1) and increases the tokens in failed_SW_C1 (or failed_SW_C2).

The minimal-cut set is unavailable when both the SDN controllers are "singularly" failed or there is a token in MIS place. A SDN controller is "singularly" failed when Active_proc < \(K\) or there is a token in one of these places: failed_MAN, sys_down, sw_sys_down.

Further details on the implementation in Möbius of the SAN model and the related simulation can be found in the Appendix A1 and B1, respectively.

D. \(\{n, n, n\}\) in TN

Figure 10 shows the SAN model of \(\{n, n, n\}\) in TN, where the three routers have both HW and SW homogeneous equipment (HEQ). Similarly as for the TMI in the two routers case, time activities are modified and output gates are added for considering the HEQ failure.

The minimal-cut set is unavailable when there are not token in Working_S1, Working_S2, Working_S3, spare_CHW_S1, spare_CHW_S2, and spare_CHW_S3.

Further details on the implementation in Möbius of the SAN model and the related simulation can be found in the Appendix A8 and B7, respectively.

E. \(\{n, n, n\}\) in F-SDN

Figure 11 depicts the SAN model of \(\{n, n, n\}\) in F-SDN where the three SDN switches have mainly HW homogeneous equipment (HEQ). The SAN model is similar to the one for the three routers (see Figure 10): there is not the part related
Fig. 10: SAN model of $\{n, n, n\}$ in TN

Fig. 11: SAN model of $\{n, n, n\}$ in F-SDN
to the control hardware and there is the MIS failure instead of the O&M failure.

The minimal-cut set is unavailable when there are not token in Working\textsubscript{S1}, Working\textsubscript{S2}, and Working\textsubscript{S3}.

Further details on the implementation in Möbius of the SAN model and the related simulation can be found in the Appendix A12 and B11, respectively.

F. \{n, n, n\} in C-SDN

Figure 12 depicts the SAN model of \{n, n, n\} in C-SDN, where the SDN switches are in the same city (GEO), instead the controller and the switches can have compatibility issues (CIS). The GEO failure is included as in the two router case (see Figure 8). For the CIS failure, the following places (with the related timed activities and output gates) are added:

- CIS that assesses the CIS between the SDN controller and both the switches;
- CIS\textsubscript{S1} and CIS\textsubscript{S2} consider the CIS between the SDN controller and the single switch (S1 and S2, respectively).

The minimal-cut set is unavailable when both SDN switches are failed and the SDN controller is "singularly" failed or there is a token the the CIS places.

Further details on the implementation in Möbius of the SAN model and the related simulation can be found in the Appendix A3 and B3, respectively.

G. \{n, n, l\} in TN

Figure 13 shows the SAN model of SAN model of \{n, n, l\} in TN, where one router and the link are in the same city (GEO) and the two routers have homogeneous equipment (HEQ). The HEQ failure is added as in the case of only two routers (see Figure 7), nut note that in this case there is the O&M failure places are not merged because there is not COM failure here. The GEO place (with the related timed activities and output gates) is added between the working places of the link and one of the SDN switches.

The minimal-cut set is unavailable when there are not token in Working\textsubscript{S1}, Working\textsubscript{S2}, Working\textsubscript{L}, spare\textsubscript{CHW}\textsubscript{S1}, and spare\textsubscript{CHW}\textsubscript{S2}.

Further details on the implementation in Möbius of the SAN model and the related simulation can be found in the Appendix A7 and B6, respectively.

H. \{n, n, l\} in F-SDN

Figure 14 depicts the SAN model of \{n, n, l\} in F-SDN, where one SDN switch and the link are in the same city (GEO) and the two SDN switches have homogeneous equipment (HEQ). The SAN model is similar to the one for the three routers: there is not the part related to the control hardware and the O&M failures.

The minimal-cut set is unavailable when there are not token in Working\textsubscript{S1}, Working\textsubscript{S2}, and Working\textsubscript{L}.

Further details on the implementation in Möbius of the SAN model and the related simulation can be found in the Appendix A11 and B10, respectively.

I. \{n, n, l\} in C-SDN

Figure 15 depicts the SAN model of \{n, n, l\} in C-SDN, where the SDN switch and the link are in the same city (GEO), instead the controller and the switch can have compatibility issues (CIS). The GEO failure is similar to the one of the two switches and the link (see Figure 14). The CIS failure is similar to the one of the two switches and the controller (see Figure 12).

The minimal-cut set is unavailable when both SDN switch and link are failed and the SDN controller is "singularly" failed or there is a token the the CIS place.

Further details on the implementation in Möbius of the SAN model and the related simulation can be found in the Appendix A12 and B12, respectively.

J. \{n, l, l\} in TN

Figure 16 shows the SAN model of \{n, l, l\} in TN, where the two links are connected to the same router (PHY) and the router and the two links are in the same city (GEO). The PHY place (with the related timed activities and output gates) is added between the working place of the links. Instead, the GEO place is connected to the working places of each network element, i.e the links and the SDN switch.

The minimal-cut set is unavailable when there are not token in Working\textsubscript{L1}, Working\textsubscript{L2}, Working\textsubscript{R}, and spare\textsubscript{CHW}.

Further details on the implementation in Möbius of the SAN model and the related simulation can be found in the Appendix A5 and B5, respectively.

K. \{n, l, l\} in F-SDN

Figure 17 shows the SAN model of \{n, l, l\} in F-SDN, where the two links are connected to the same SDN switch (PHY) and the SDN switch and the two links are in the same city (GEO). As in the previous cases, the SAN model is similar to the one for the router and the two links: there is not the part related to the control hardware and the O&M failures.

The minimal-cut set is unavailable when there are not token in Working\textsubscript{L1}, Working\textsubscript{L2}, and Working\textsubscript{S}.

Further details on the implementation in Möbius of the SAN model and the related simulation can be found in the Appendix A9 and B9, respectively.

L. \{n, l, l\} in C-SDN

Figure 18 shows the SAN model of \{l, l\} in C-SDN, where the two links are connected to the same SDN switch (GEO, PHY). The SDN controller is independent.

The two links are unavailable when there are not token in Working\textsubscript{L1} and Working\textsubscript{L2}. The unavailability of the minimal-cut set is the multiplication of the unavailability of the two links and the unavailability of the SDN controller.

Further details on the implementation in Möbius of the SAN models and the related simulations can be found in the Appendix A4 and B4, respectively.
V. CONCLUSION

The technical report has detailed presented of the implementation on Möbius of the SAN availability model of both the network elements and the principal minimal-cut sets. The models of principal minimal-cut sets have been have been used in [5].

APPENDIX

MÔBIUS DOCUMENTATION

In the following appendix, the Möbius documentation of the SAN model and the simulation for the principal minimal-cut sets is introduced by indicating the pages of the attached document.

A. Documentation on SAN models

Firstly, we introduce the documentation on the implementation in Möbius of the SAN model of the principal minimal-cut sets.

1) \{n, n\} in C-SDN: Form page A-1 to page A-5.
2) \{n, n, l\} in C-SDN: Form page A-5 to page A-9.
3) \{n, n, n\} in C-SDN: Form page A-9 to page A-13.
4) \{n, l, l\} in C-SDN: Form page A-13 to page A-14 the model of the two links and form page A-55 to page A-57 the model of the SDN controller.

5) \{n, l, l\} in TN: Form page A-14 to page A-17.
6) \{n, n\} in TN: Form page A-17 to page A-22.
7) \{n, n, l\} in TN: Form page A-22 to page A-28.
8) \{n, n, n\} in TN: Form page A-28 to page A-35.
9) \{n, l, l\} in F-SDN: Form page A-35 to page A-37.
10) \{n, n\} in F-SDN: Form page A-37 to page A-40.
11) \{n, n, l\} in F-SDN: Form page A-40 to page A-43.
12) \{n, n, n\} in F-SDN: Form page A-43 to page A-47.

B. Documentation on simulations

Secondly, we introduce the documentation on the simulation (reward and study) in Möbius of the SAN model of the principal minimal-cut sets.

1) \{n, n\} in C-SDN: Form page A-48.
2) \{n, n, l\} in C-SDN: Form page A-48 to page A-49.
3) \{n, n, n\} in C-SDN: Form page A-49 to page A-50.
4) \{n, l, l\} in C-SDN: Form page A-50 to page A-51 the model of the SDN controller and form page A-51 to page A-52 the model of the two links.

5) \{n, l, l\} in TN: Form page A-52 to page A-53.
6) \{n, n, l\} in TN: In page A-53.
7) \{n, n, n\} in TN: In page A-54.
8) \{n, n\} in TN: Form page A-54 to page A-55.
9) \{n, l, l\} in F-SDN: Form page A-57 to page A-58.
10) \{n, n, l\} in F-SDN: Form page A-58 to page A-59.
11) \{n, n, n\} in F-SDN: In page A-59.
12) \{n, n\} in F-SDN: Form page A-59 to page A-60.

REFERENCES

[1] E. Haleplidis, K. Pentikousis, S. Denazis, J. H. Salim, D. Meyer, and O. Koufopavlou, “Software-defined networking (SDN): Layers and architecture terminology,” Internet Research Task Force (IRTF), Request for Comments RFC 7426, January 2015.
[2] D. Kreutz, F. M. V. Ramos, P. J. E. Verissimo, C. E. Rothenberg, S. Azodolmolky, and S. Uhlig, “Software-defined networking: A comprehensive survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, 2015.
[3] B. Nunes, M. Mendonca, X.-N. Nguyen, K. Obrazcka, and T. Turletti, “A survey of software-defined networking: Past, present, and future of programmable networks,” Communications Surveys Tutorials, IEEE, vol. 16, no. 3, pp. 1617–1634, Third 2014.
[4] P. E. Heegaard, V. B. Mendiratta, and B. E. Helvik., “Achieving dependability in software-defined networking - a perspective,” in 7th International Workshop on Reliable Networks Design and Modeling (RNDM), Munich, Germany, October 2015.
Fig. 13: SAN model of \(\{n, n, l\} \) in TN

[5] G. Nencioni, B. E. Helvik, and P. E. Heegaard, “Including Failure Correlation in Availability Modelling of a Software-Defined Backbone Network,” submitted to IEEE TNSM Special Issue on “Advances in Management of Softwarized Networks”.

[6] G. Ciardo and K. S. Trivedi, “A decomposition approach for stochastic reward net models,” Perf. Eval., vol. 18, pp. 37–59, 1993.

[7] R. E. Barlow and F. Proschan, Statistical Theory of Reliability and Life Testing: Probability Models. To BEGIN WITH, 1975.

[8] K. Kanoun, M. Borrel, T. Morteveille, and A. Peytavin, “Availability of CAUTRA, a Subset of the French Air Traffic Control System.” IEEE Trans. Computers, no. 5, pp. 528–535.

[9] A. J. Gonzalez and B. E. Helvik, “Characterization of router and link failure processes in UNINETT’s IP backbone network,” International Journal of Space-Based and Situated Computing, 2012.

[10] P. Kuusela and I. Norros, “On/off process modeling of ip network failures,” in Dependable Systems and Networks (DSN), 2010 IEEE/IFIP International Conference on, June 2010, pp. 585–594.

[11] S. Verbrugge, D. Colle, P. Demeester, R. Huelsermann, and M. Jaeger, “General availability model for multilayer transport networks,” in Proceedings.5th International Workshop on Design of Reliable Communica-

[12] G. Nencioni, B. E. Helvik, A. J. Gonzalez, P. E. Heegaard, and A. Kamisinski, “Availability modelling of software-defined backbone networks,” in 2016 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshop (DSN-W), June 2016, pp. 105–112.

[13] A. J. Gonzalez, B. E. Helvik, J. K. Hellan, and P. Kuusela, “Analysis of dependencies between failures in the uninett ip backbone network,” in 2010 IEEE 16th Pacific Rim International Symposium on Dependable Computing, Dec 2010, pp. 149–156.

[14] Möbius: Model-based environment for validation of system reliability, availability, security, and performance, https://www.mobius.illinois.edu/, accessed: 2017-03-02.
Fig. 14: SAN model of \(\{n, n, l\} \) in F-SDN

Fig. 15: SAN model of \(\{n, n, l\} \) in C-SDN
Fig. 16: SAN model of \{n, l, l\} in TN

Fig. 17: SAN model of \{n, l, l\} in F-SDN

Fig. 18: SAN model of \{l, l\} in C-SDN
Place Names	Initial Markings
Active_proc_C1	N_proc
Active_proc_C2	N_proc
MIS	0
failed_HW_C1	0
failed_HW_C2	0
failed_MAN_C1	0
failed_MAN_C2	0
failed_SW_C1	0
failed_SW_C2	0
sw_sys_down_C1	0
sw_sys_down_C2	0
sys_down_C1	0
sys_down_C2	0

Timed Activity: HW_F1_C1

Distribution Parameters

Rate:
Active_proc_C1->Mark() * hw_fail_rate

Activation Predicate

(none)

Reactivation Predicate

(none)

Case Distributions

1. if (MIS->Mark() == 0 && sys_down_C1->Mark() == 0 && sw_sys_down_C1->Mark() == 0 && failed_MAN_C1->Mark() == 0)
 return(1-hw_cvg);
 else
 return(0);

2. if (MIS->Mark() == 0 && sys_down_C1->Mark() == 0 && sw_sys_down_C1->Mark() == 0 && failed_MAN_C1->Mark() == 0)
 {
 if (sys_down_C2->Mark()==0 && sw_sys_down_C2->Mark()==0 && failed_MAN_C2->Mark()==0 && Active_proc_C1->Mark()==K_th)
 return(hw_cvg*tmi_cvg);
 else
 return(hw_cvg);
 }
 else
 return(1);

3. if (MIS->Mark() == 0 && sys_down_C1->Mark() == 0 && sw_sys_down_C1->Mark() == 0 && failed_MAN_C1->Mark() == 0)
 {
 if (sys_down_C2->Mark()==0 && sw_sys_down_C2->Mark()==0 && failed_MAN_C2->Mark()==0 && Active_proc_C1->Mark()==K_th)
 return(hw_cvg*(1-tmi_cvg));
 else
 return(0);
 }
 else
 return(0);

Timed Activity: HW_F1_C2

Distribution Parameters

Rate:
Active_proc_C2->Mark() * hw_fail_rate

Activation Predicate

(none)

Reactivation Predicate

(none)

Case Distributions

1. if (MIS->Mark() == 0 && sys_down_C2->Mark() == 0 && sw_sys_down_C2->Mark() == 0 && failed_MAN_C2->Mark() == 0)
 return(0);
 else
 return(1-hw_cvg);

2. if (MIS->Mark() == 0 && sys_down_C2->Mark() == 0 && sw_sys_down_C2->Mark() == 0 && failed_MAN_C2->Mark() == 0)
 {
 if (sys_down_C1->Mark()==0 && sw_sys_down_C1->Mark()==0 && failed_MAN_C1->Mark()==0 && Active_proc_C2->Mark()==K_th)
 return(hw_cvg*tmi_cvg);
 else
 return(hw_cvg);
 }
 else
 return(1);
Case 3

```c
if (MIS->Mark() == 0 && sys_down_C2->Mark() == 0 && sw_sys_down_C2->Mark() == 0 && failed_MAN_C2->Mark() == 0)
{
    if (sys_down_C1->Mark()==0 && sw_sys_down_C1->Mark()==0 && failed_MAN_C1->Mark()==0 && Active_proc_C2->Mark()==K_th)
        return(hw_cvg*(1-tmi_cvg));
    else
        return(0);
}
else
    return(0);
```

Timed Activity: HW_F2_C1

Distribution Parameters	Rate
	hw_fail_rate * failed_SW_C1->Mark()

| Activation Predicate | (none) |
| Reactivation Predicate | (none) |

Timed Activity: HW_F2_C2

Distribution Parameters	Rate
	hw_fail_rate * failed_SW_C2->Mark()

| Activation Predicate | (none) |
| Reactivation Predicate | (none) |

Timed Activity: HW_R_C1

Distribution Parameters	Rate
	hw_rcv_rate

| Activation Predicate | (none) |
| Reactivation Predicate | (none) |

Timed Activity: HW_R_C2

Distribution Parameters	Rate
	hw_rcv_rate

| Activation Predicate | (none) |
| Reactivation Predicate | (none) |

Timed Activity: MAN_F_C1

Distribution Parameters	Rate
	man_fail_rate

| Activation Predicate | (none) |
| Reactivation Predicate | (none) |

Case Distributions

Case 1

```c
if(failed_MAN_C2->Mark() == 0 && sys_down_C2->Mark() == 0 && sw_sys_down_C2->Mark() == 0)
    return(tmi_cvg);
else
    return(1);
```

Case 2

```c
if(failed_MAN_C2->Mark() == 0 && sys_down_C2->Mark() == 0 && sw_sys_down_C2->Mark() == 0)
    return(1-tmi_cvg);
else
    return(0);
```

Timed Activity: MAN_F_C2

Distribution Parameters	Rate
	man_fail_rate

| Activation Predicate | (none) |
| Reactivation Predicate | (none) |

Case Distributions

Case 1

```c
if(failed_MAN_C1->Mark() == 0 && sys_down_C1->Mark() == 0 && sw_sys_down_C1->Mark() == 0)
    return(tmi_cvg);
else
    return(1);
```

Case 2

```c
if(failed_MAN_C1->Mark() == 0 && sys_down_C1->Mark() == 0 && sw_sys_down_C1->Mark() == 0)
    return(1-tmi_cvg);
else
    return(0);
```
Timed Activity	Distribution Parameters	Rate
MAN_R_C1		man_rcv_rate
Activation Predicate		(none)
Reactivation Predicate		(none)
MAN_R_C2		man_rcv_rate
Activation Predicate		(none)
Reactivation Predicate		(none)
MIS_F		mis_fail_rate
Activation Predicate		(none)
Reactivation Predicate		(none)
MIS_R		mis_rcv_rate
Activation Predicate		(none)
Reactivation Predicate		(none)
SW_F_C1		if(Active_proc_C1->Mark() >= K_th)
 | return(sw_fail_rate);
 | return(sw.fail_rate * Active_proc_C1->Mark()); |
Activation Predicate		(none)
Reactivation Predicate		(none)
Case Distributions		1-sw_cvg
		case 2
		if (sys_down_C2->Mark()==0 & & sw_sys_down_C2->Mark()==0 & & failed_MAN_C2->Mark()==0 & & Active_proc_C1->Mark()==K_th)
 | return(sw_cvg*tmi_cvg);
 | return(sw_cvg); |
| | | case 3 |
| | | if (sys_down_C2->Mark()==0 & & sw_sys_down_C2->Mark()==0 & & failed_MAN_C2->Mark()==0 & & Active_proc_C1->Mark()==K_th)
 | return(sw_cvg*(1-tmi_cvg));
 | return(0); |
| SW_F_C2 | | if(Active_proc_C2->Mark() >= K_th)
 | return(sw.fail_rate);
 | return(sw.fail_rate * Active_proc_C2->Mark()); |
Activation Predicate		(none)
Reactivation Predicate		(none)
Case Distributions		1-sw_cvg
		case 2
		if (sys_down_C1->Mark()==0 & & sw_sys_down_C1->Mark()==0 & & failed_MAN_C1->Mark()==0 & & Active_proc_C2->Mark()==K_th)
 | return(sw_cvg*tmi_cvg);
 | return(sw_cvg); |
| | | case 3 |
| | | if (sys_down_C1->Mark()==0 & & sw_sys_down_C1->Mark()==0 & & failed_MAN_C1->Mark()==0 & & Active_proc_C2->Mark()==K_th)
 | return(sw_cvg*(1-tmi_cvg));
else return(0);

Timed Activity:	SW_R_C1
Distribution Parameters	Rate sw_rcv_rate
Activation Predicate	(none)
Reactivation Predicate	(none)

Timed Activity:	SW_R_C2
Distribution Parameters	Rate sw_rcv_rate
Activation Predicate	(none)
Reactivation Predicate	(none)

Timed Activity:	UHW_R_C1
Distribution Parameters	Rate uhw_rcv_rate
Activation Predicate	(none)
Reactivation Predicate	(none)

Timed Activity:	UHW_R_C2
Distribution Parameters	Rate uhw_rcv_rate
Activation Predicate	(none)
Reactivation Predicate	(none)

Timed Activity:	USW_R_C1
Distribution Parameters	Rate usw_rcv_rate
Activation Predicate	(none)
Reactivation Predicate	(none)

Timed Activity:	USW_R_C2
Distribution Parameters	Rate usw_rcv_rate
Activation Predicate	(none)
Reactivation Predicate	(none)

Input Gate:	IG_MAN_C1
Predicate	(MIS->Mark() == 0 & & failed_MAN_C1->Mark() == 0 & & sys_down_C1->Mark() == 0 & & sw_sys_down_C1->Mark() == 0)
Function	;

Input Gate:	IG_MAN_C2
Predicate	(MIS->Mark()==0 & & failed_MAN_C2->Mark() == 0 & & sys_down_C2->Mark() == 0 & & sw_sys_down_C2->Mark() == 0)
Function	;

Input Gate:	IG_MF
Predicate	(MIS->Mark()==0 & & failed_MAN_C1->Mark() == 0 & & sys_down_C1->Mark()== 0 & & sw_sys_down_C1->Mark()== 0 & & sw_sys_down_C1->Mark()== 0 & & sw_sys_down_C2->Mark()== 0)
Function	;

Input Gate:	IG_SW_C1
Predicate	(MIS->Mark()==0 & & failed_MAN_C1->Mark()==0 & & sw_sys_down_C1->Mark()== 0 & & sw_sys_down_C2->Mark()== 0 & & sw_sys_down_C2->Mark()== 0 & & Active_proc_C1->Mark() > 0)
Function	Active_proc_C1->Mark()--;

Input Gate:	IG_SW_C2
Predicate	(failed_MAN_C2->Mark()==0 & & sw_sys_down_C2->Mark()==0 & & sw_sys_down_C2->Mark()== 0 & & sw_sys_down_C2->Mark()== 0 & & Active_proc_C2->Mark() > 0)
Function

Active_proc_C2->Mark()--;

Output Gate:
OG_MAN_C1

Function
Active proc C1->Mark() = N_proc
failed HW C1->Mark();
failed SW C1->Mark();

Output Gate:
OG_MAN_C2

Function
Active proc C2->Mark() = N_proc
failed HW C2->Mark();
failed SW C2->Mark();

Output Gate:
OG_MR

Function

Output Gate:
OG_SD_C1

Function
failed HW C1->Mark()++;
Active proc C1->Mark() = N_proc
failed HW C1->Mark();
failed SW C1->Mark();

Output Gate:
OG_SD_C2

Function
failed HW C2->Mark()++;
Active proc C2->Mark() = N_proc
failed HW C2->Mark();
failed SW C2->Mark();

Output Gate:
OG_SSD_C1

Function
Active proc C1->Mark() = N_proc
failed HW C1->Mark();
failed SW C1->Mark();

Output Gate:
OG_SSD_C2

Function
Active proc C2->Mark() = N_proc
failed HW C2->Mark();
failed SW C2->Mark();

Output Gate:
OG_TH_C1

Function
sys down C2->Mark()=1;
Active proc C2->Mark()--;
failed HW C1->Mark()++;

Output Gate:
OG_TH_C2

Function
sys down C1->Mark()=1;
Active proc C1->Mark()--;
failed HW C2->Mark()++;

Output Gate:
OG_TM

Function
failed MAN C1->Mark();
failed MAN C2->Mark();

Output Gate:
OG_TS_C1

Function
sw sys down C2->Mark()=1;
Active proc C2->Mark()--;
failed SW C1->Mark()++;

Output Gate:
OG_TS_C2

Function
sw sys down C1->Mark()=1;
Active proc C1->Mark()--;
failed SW C2->Mark()++;

Model: csl

Place Attributes:

Place Names	Initial Markings
Active_proc	N_proc
CIS	0
Failed_L	0
GEO	0
Working_L	1
Working_S	1
failed_FHW_S	0
failed_FHW1_S	0
failed_HW	0
failed_MAN	0
Failed Event	Value
--------------	-------
failed_SW	0
failed_SW_S	0
sw_sys_down	0
sys_down	0

Timed Activity	Rate	Activation Predicate	Reactivation Predicate
CIS_F			
Distribution Parameters	cis_fail_rate		
CIS_R			
Distribution Parameters	cis_rcv_rate		
FHW_F_S			
Distribution Parameters	fhw_fail_rate		
FHW_R_S			
Distribution Parameters	fhw_rcv_rate		
FHWt_F_S			
Distribution Parameters	fhwt_fail_rate		
FHWt_R_S			
Distribution Parameters	fhwt_rcv_rate		
GEO_F			
Distribution Parameters	geo_fail_rate		
GEO_R			
Distribution Parameters	geo_rcv_rate		
HW_F1			
Distribution Parameters	Active_proc->Mark() * hw_fail_rate		

Case Distributions case 1
```c
if (sys_down->Mark() == 0 && sw_sys_down->Mark() == 0 && failed_MAN->Mark() == 0)
    return(1-hw_cvg);
else
    return(0);
case 2
if (sys_down->Mark() == 0 && sw_sys_down->Mark() == 0 && failed_MAN->Mark() == 0)
    return(hw_cvg);
else
    return(1);
```

Timed Activity:	Rate
HW_F2	
Distribution Parameters	hw_fail_rate * failed_SW->Mark()
Activation Predicate	(none)
Reactivation Predicate	(none)

Timed Activity:	Rate
HW_R	
Distribution Parameters	hw_rcv_rate
Activation Predicate	(none)
Reactivation Predicate	(none)

Timed Activity:	Rate
L_F	
Distribution Parameters	link_fail_rate
Activation Predicate	(none)
Reactivation Predicate	(none)

Timed Activity:	Rate
L_R	
Distribution Parameters	link_rcv_rate
Activation Predicate	(none)
Reactivation Predicate	(none)

Timed Activity:	Rate
MAN_F	
Distribution Parameters	man_fail_rate
Activation Predicate	(none)
Reactivation Predicate	(none)

Timed Activity:	Rate
MAN_R	
Distribution Parameters	man_rcv_rate
Activation Predicate	(none)
Reactivation Predicate	(none)

Timed Activity:	Rate
SW_F	
Distribution Parameters	if(Active_proc->Mark() >= K_th) return(csw_fail_rate); else return(csw_fail_rate * Active_proc->Mark());
Activation Predicate	(none)
Reactivation Predicate	(none)

Case Distributions
case 1
1-sw_cvg
case 2
sw_cvg

Timed Activity:	Rate
SW_F_S	
Distribution Parameters	
```
### SW_R

- **Distribution Parameters**
  - Rate: `csw_rcv_rate`

- **Activation Predicate**
  - (none)

- **Reactivation Predicate**
  - (none)

### SW_R_S

- **Distribution Parameters**
  - Rate: `sw_rcv_rate`

- **Activation Predicate**
  - (none)

- **Reactivation Predicate**
  - (none)

### UHW_R

- **Distribution Parameters**
  - Rate: `uhw_rcv_rate`

- **Activation Predicate**
  - (none)

- **Reactivation Predicate**
  - (none)

### USW_R

- **Distribution Parameters**
  - Rate: `usw_rcv_rate`

- **Activation Predicate**
  - (none)

- **Reactivation Predicate**
  - (none)

---

### Input Gate: IG_CF

- **Predicate**
  - `(CIS->Mark()==0 && Working_S->Mark()==1 && failed_MAN->Mark()==0 && sys_down->Mark()==0 && sw_sys_down->Mark()==0)`

- **Function**
  - `Working_S->Mark()=0;`

### Input Gate: IG_GF

- **Predicate**
  - `(Working_L->Mark()==1 && Working_S->Mark()==1)`

- **Function**
  - `Working_L->Mark()=0;`  
  - `Working_S->Mark()=0;`

### Input Gate: IG_MAN

- **Predicate**
  - `(failed_MAN->Mark()==0 && sys_down->Mark()==0 && sw_sys_down->Mark()==0)`

- **Function**
  - `;`

### Input Gate: IG_SW

- **Predicate**
  - `(failed_MAN->Mark()==0 && sys_down->Mark()==0 && sw_sys_down->Mark()==0 && Active_proc->Mark()>0)`

- **Function**
  - `Active_proc->Mark()--;`

### Output Gate: OG_CR

- **Function**
  - `Working_S->Mark()=1;`

### Output Gate: OG_GR

- **Function**
  - `Working_L->Mark()=1;`  
  - `Working_S->Mark()=1;`

### Output Gate: OG_MAN

- **Function**
  - `Active_proc->Mark() = N_proc - failed_HW->Mark();`  
  - `failed_SW->Mark()=0;`

### Output Gate: OG_SD

- **Function**
  - `failed_HW->Mark()++;`  
  - `Active_proc->Mark() = N_proc - failed_HW->Mark();`  
  - `failed_SW->Mark()=0;`
**Model: css**

| Place Names | Initial Markings |
|-------------|------------------|
| Active_proc | N_proc           |
| CIS         | 0                |
| CIS_S1      | 0                |
| CIS_S2      | 0                |
| QDD         | 0                |
| Working_S1  | 1                |
| Working_S2  | 1                |
| failed_FHW_S1 | 0         |
| failed_FHW_S2 | 0          |
| failed_FHWt_S1 | 0         |
| failed_FHWt_S2 | 0         |
| failed_HW   | 0                |
| failed_MAN  | 0                |
| failed_SW   | 0                |
| failed_SW_S1 | 0             |
| failed_SW_S2 | 0             |
| sw_sys_down | 0                |
| sys_down    | 0                |

**Timed Activity:**

### CIS_F
- **Distribution Parameters**
  - Rate: `cis_fail_rate`
- **Activation Predicate**: (none)
- **Reactivation Predicate**: (none)

### CIS_F_S1
- **Distribution Parameters**
  - Rate: `cis_fail_rate`
- **Activation Predicate**: (none)
- **Reactivation Predicate**: (none)

### CIS_F_S2
- **Distribution Parameters**
  - Rate: `cis_fail_rate`
- **Activation Predicate**: (none)
- **Reactivation Predicate**: (none)

### CIS_R
- **Distribution Parameters**
  - Rate: `cis_rcv_rate`
- **Activation Predicate**: (none)
- **Reactivation Predicate**: (none)

### CIS_R_S1
- **Distribution Parameters**
  - Rate: `cis_rcv_rate`
- **Activation Predicate**: (none)
- **Reactivation Predicate**: (none)

### CIS_R_S2
- **Distribution Parameters**
  - Rate: `cis_rcv_rate`
- **Activation Predicate**: (none)
- **Reactivation Predicate**: (none)
| Activation Predicate | (none) |
|----------------------|--------|

| Timed Activity: FHW_F_S1 | Rate |
|--------------------------|------|
| Distribution Parameters  | fhw_fail_rate |
| Activation Predicate     | (none) |
| Reactivation Predicate   | (none) |

| Timed Activity: FHW_F_S2 | Rate |
|--------------------------|------|
| Distribution Parameters  | fhw_fail_rate |
| Activation Predicate     | (none) |
| Reactivation Predicate   | (none) |

| Timed Activity: FHW_R_S1 | Rate |
|--------------------------|------|
| Distribution Parameters  | fhw_rcv_rate |
| Activation Predicate     | (none) |
| Reactivation Predicate   | (none) |

| Timed Activity: FHW_R_S2 | Rate |
|--------------------------|------|
| Distribution Parameters  | fhw_rcv_rate |
| Activation Predicate     | (none) |
| Reactivation Predicate   | (none) |

| Timed Activity: FHWt_F_S1 | Rate |
|--------------------------|------|
| Distribution Parameters  | fhwt_fail_rate |
| Activation Predicate     | (none) |
| Reactivation Predicate   | (none) |

| Timed Activity: FHWt_F_S2 | Rate |
|--------------------------|------|
| Distribution Parameters  | fhwt_fail_rate |
| Activation Predicate     | (none) |
| Reactivation Predicate   | (none) |

| Timed Activity: FHWt_R_S1 | Rate |
|--------------------------|------|
| Distribution Parameters  | fhwt_rcv_rate |
| Activation Predicate     | (none) |
| Reactivation Predicate   | (none) |

| Timed Activity: FHWt_R_S2 | Rate |
|--------------------------|------|
| Distribution Parameters  | fhwt_rcv_rate |
| Activation Predicate     | (none) |
| Reactivation Predicate   | (none) |

| Timed Activity: GEO_F    | Rate |
|--------------------------|------|
| Distribution Parameters  | geo_fail_rate |
| Activation Predicate     | (none) |
| Reactivation Predicate   | (none) |

| Timed Activity: GEO_R    | Rate | | |
|---|---|---|---|
| Distribution Parameters  |       |
| Activation Predicate     | (none) |
| Reactivation Predicate   | (none) |
| Activity          | Rate                          | Activation Predicate | Reactivation Predicate |
|-------------------|-------------------------------|----------------------|------------------------|
| **HW_F1**         |                               | *(none)*             | *(none)*               |
| **HW_F2**         | hw_fail_rate * failed_SW->Mark() | *(none)*             | *(none)*               |
| **HW_R**          | hw_rcv_rate                   | *(none)*             | *(none)*               |
| **MAN_F**         | man_fail_rate                 | *(none)*             | *(none)*               |
| **MAN_R**         | man_rcv_rate                  | *(none)*             | *(none)*               |
| **SW_F**          | if(Active_proc->Mark() == K_th) return(csw_fail_rate); else return(csw_fail_rate * Active_proc->Mark()); | *(none)*             | *(none)*               |

**Case Distributions**

1. sw_cvg
2. 1-sw_cvg

| Activity          | Rate                          | Activation Predicate | Reactivation Predicate |
|-------------------|-------------------------------|----------------------|------------------------|
| **SW_F_S1**       | sw_fail_rate                  | *(none)*             | *(none)*               |
### Activation Predicate

| **Activation Predicate** | **Reactivation Predicate** |
|-------------------------|--------------------------|
| (none)                  | (none)                   |

### Timed Activity: SW_F_S2

**Distribution Parameters**

| Rate | sw_fail_rate |
|------|--------------|

**Activation Predicate**

| (none) |
|--------|

### Timed Activity: SW_R

**Distribution Parameters**

| Rate | csw_rcv_rate |
|------|--------------|

**Activation Predicate**

| (none) |
|--------|

### Timed Activity: SW_R_S1

**Distribution Parameters**

| Rate | sw_rcv_rate |
|------|-------------|

**Activation Predicate**

| (none) |
|--------|

### Timed Activity: SW_R_S2

**Distribution Parameters**

| Rate | sw_rcv_rate |
|------|-------------|

**Activation Predicate**

| (none) |
|--------|

### Timed Activity: UHW_R

**Distribution Parameters**

| Rate | uhw_rcv_rate |
|------|--------------|

**Activation Predicate**

| (none) |
|--------|

### Timed Activity: USW_R

**Distribution Parameters**

| Rate | usw_rcv_rate |
|------|--------------|

**Activation Predicate**

| (none) |
|--------|

### Input Gate: IG_CF

**Predicate**

(Working_S1->Mark()==1 && Working_S2->Mark()==1 && failed_MAN->Mark()==0 && sys_down->Mark()==0 && sw_sys_down->Mark()==0)

**Function**

Working_S1->Mark()=0;
Working_S2->Mark()=0;

### Input Gate: IG_CF_S1

**Predicate**

(CIS_S1->Mark()==0 && Working_S1->Mark()==1 && failed_MAN->Mark()==0 && sys_down->Mark()==0 && sw_sys_down->Mark()==0)

**Function**

Working_S1->Mark()=0;

### Input Gate: IG_CF_S2

**Predicate**

(CIS_S2->Mark()==0 && Working_S2->Mark()==1 && failed_MAN->Mark()==0 && sys_down->Mark()==0 && sw_sys_down->Mark()==0)

**Function**

Working_S2->Mark()=0;

### Input Gate: IG_GF

**Predicate**

(Working_S1->Mark()==1 && Working_S2->Mark()==1)

**Function**

Working_S1->Mark()=0;
Working_S2->Mark()=0;

### Input Gate: IG_MAN

**Predicate**

(failed_MAN->Mark()==0 && sys_down->Mark()==0 && sw_sys_down->Mark()==0)
**Function**

- **Input Gate:** IG_SW
  - **Predicate:** 
    \[
    \text{failed\_MAN} \rightarrow \text{Mark}() = 0 \quad \&\& \quad \text{sys\_down} \rightarrow \text{Mark}() = 0 \quad \&\& \quad \text{sw\_sys\_down} \rightarrow \text{Mark}() = 0 \quad \&\& \quad \text{Active\_proc} \rightarrow \text{Mark}() > 0
    \]
  - **Function:** \( \text{Active\_proc} \rightarrow \text{Mark}() -= 1 \)

- **Output Gate:** OG_CR
  - **Function:** 
    \[
    \text{Working\_S1} \rightarrow \text{Mark}() = 1;
    \text{Working\_S2} \rightarrow \text{Mark}() = 1;
    \]

- **Output Gate:** OG_CR_S1
  - **Function:** 
    \[
    \text{Working\_S1} \rightarrow \text{Mark}() = 1;
    \]

- **Output Gate:** OG_CR_S2
  - **Function:** 
    \[
    \text{Working\_S2} \rightarrow \text{Mark}() = 1;
    \]

- **Output Gate:** OG_GR
  - **Function:** 
    \[
    \text{Working\_S1} \rightarrow \text{Mark}() = 1;
    \text{Working\_S2} \rightarrow \text{Mark}() = 1;
    \]

- **Output Gate:** OG_MAN
  - **Function:** 
    \[
    \text{Active\_proc} \rightarrow \text{Mark}() = \text{N\_proc} - \text{failed\_HW} \rightarrow \text{Mark}();
    \text{failed\_SW} \rightarrow \text{Mark}() = 0;
    \]

- **Output Gate:** OG_SD
  - **Function:** 
    \[
    \text{failed\_HW} \rightarrow \text{Mark}() += 1;
    \text{Active\_proc} \rightarrow \text{Mark}() = \text{N\_proc} - \text{failed\_HW} \rightarrow \text{Mark}();
    \text{failed\_SW} \rightarrow \text{Mark}() = 0;
    \]

- **Output Gate:** OG_SSD
  - **Function:** 
    \[
    \text{Active\_proc} \rightarrow \text{Mark}() = \text{N\_proc} - \text{failed\_HW} \rightarrow \text{Mark}();
    \text{failed\_SW} \rightarrow \text{Mark}() = 0;
    \]

**Model: II**

| Place Names   | Initial Markings |
|---------------|------------------|
| Failed_L1     | 0                |
| Failed_L2     | 0                |
| GEO           | 0                |
| PHY           | 0                |
| Working_L1    | 1                |
| Working_L2    | 1                |

**Timed Activity:** GEO_F

- **Distribution Parameters**
  - **Rate:** geo_fail_rate
  - **Activation Predicate:** (none)
  - **Reactivation Predicate:** (none)

**Timed Activity:** GEO_R

- **Distribution Parameters**
  - **Rate:** geo_rcv_rate
  - **Activation Predicate:** (none)
  - **Reactivation Predicate:** (none)

**Timed Activity:** L_F1

- **Distribution Parameters**
  - **Rate:** link_fail_rate
  - **Activation Predicate:** (none)
  - **Reactivation Predicate:** (none)

**Timed Activity:** L_F2
| Distribution Parameters | Rate |
|-------------------------|------|
|                         | link_fail_rate |
| Activation Predicate    | (none) |
| Reactivation Predicate  | (none) |

Timed Activity: \texttt{L_R1}

| Distribution Parameters | Rate |
|-------------------------|------|
|                         | link_rcv_rate |
| Activation Predicate    | (none) |
| Reactivation Predicate  | (none) |

Timed Activity: \texttt{L_R2}

| Distribution Parameters | Rate |
|-------------------------|------|
|                         | link_rcv_rate |
| Activation Predicate    | (none) |
| Reactivation Predicate  | (none) |

Timed Activity: \texttt{PHY_F}

| Distribution Parameters | Rate |
|-------------------------|------|
|                         | phy_fail_rate |
| Activation Predicate    | (none) |
| Reactivation Predicate  | (none) |

Timed Activity: \texttt{PHY_R}

| Distribution Parameters | Rate |
|-------------------------|------|
|                         | phy_rcv_rate |
| Activation Predicate    | (none) |
| Reactivation Predicate  | (none) |

Input Gate: \texttt{IG_GF}

Predicate \((\text{Working}_L1->\text{Mark}()==1 \&\& \text{Working}_L2->\text{Mark}()==1)\)

Function \(\text{Working}_L1->\text{Mark}()==0; \text{Working}_L2->\text{Mark}()==0;\)

Input Gate: \texttt{IG_PF}

Predicate \((\text{Working}_L1->\text{Mark}()==1 \&\& \text{Working}_L2->\text{Mark}()==1)\)

Function \(\text{Working}_L1->\text{Mark}()==0; \text{Working}_L2->\text{Mark}()==0;\)

Output Gate: \texttt{OG_GR}

Function \(\text{Working}_L1->\text{Mark}()==1; \text{Working}_L2->\text{Mark}()==1;\)

Output Gate: \texttt{OG_PR}

Function \(\text{Working}_L1->\text{Mark}()==1; \text{Working}_L2->\text{Mark}()==1;\)

Model: \texttt{rll}

| Place Names     | Initial Markings |
|-----------------|------------------|
| Failed_L1       | 0                |
| Failed_L2       | 0                |
| GEO             | 0                |
| PHY             | 0                |
| Working_L1      | 1                |
| Working_L2      | 1                |
| Working_R       | 1                |
| failed_CHW      | 0                |
| failed_FHW      | 0                |
| failed_FHWt     | 0                |

Place Attributes:
| Activity     | Rate               | | |
|---|---|---|---|
| CHW_F        | 2 * chw_fail_rate  |
| CHW_F2       | chw fail_rate      |
| CHW_R        | chw fail_rate      |
| CHW_R2       | chw_rcv_rate       |
| FHW_F        | fhw_fail_rate      |
| FHW_R        | fhw_rcv_rate       |
| FHWt_F       | fhwt_fail_rate     |
| FHWt_R       | fhwt_rcv_rate      |
| GEO_F        |                    |
| Distribution Parameters | Rate     | Activation Predicate | Reactivation Predicate |
|-------------------------|----------|----------------------|------------------------|
|                         | geo_fail_rate | (none)               | (none)                 |
| Timed Activity:         | GEO_R     |                      |                        |
| Distribution Parameters | Rate     | geo_rcv_rate         | (none)                 |
|                         |          | (none)               |                        |
|                         | L_F1      | link_fail_rate       | (none)                 |
|                         |          | (none)               |                        |
|                         | L_F2      | link_fail_rate       | (none)                 |
|                         |          | (none)               |                        |
|                         | L_R1      | link_rcv_rate        | (none)                 |
|                         |          | (none)               |                        |
|                         | L_R2      | link_rcv_rate        | (none)                 |
|                         |          | (none)               |                        |
|                         | MAN_F     | man_fail_rate        | (none)                 |
|                         |          | (none)               |                        |
|                         | MAN_R     | man_rcv_rate         | (none)                 |
|                         |          | (none)               |                        |
|                         | PHY_F     | phy_fail_rate        | (none)                 |
|                         |          | (none)               |                        |
|                         | PHY_R     | phy_rcv_rate         | (none)                 |
|                         |          | (none)               |                        |
| Timed Activity: | SW_F |
|----------------|------|
| Distribution Parameters | Rate |
|                        | sw_fail_rate |
| Activation Predicate | (none) |
| Reactivation Predicate | (none) |

| Timed Activity: | SW_R |
|----------------|------|
| Distribution Parameters | Rate |
|                        | sw_rcv_rate |
| Activation Predicate | (none) |
| Reactivation Predicate | (none) |

| Timed Activity: | UCHW_R |
|----------------|--------|
| Distribution Parameters | Rate |
|                        | uchw_rcv_rate |
| Activation Predicate | (none) |
| Reactivation Predicate | (none) |

| Input Gate: | IG_GF |
|-------------|-------|
| Predicate   | (Working_L1->Mark()==1 && Working_L2->Mark()==1 && Working_R->Mark()==1) |
| Function    | Working_L1->Mark()=0; Working_L2->Mark()=0; Working_R->Mark()=0; |

| Input Gate: | IG_PF |
|-------------|-------|
| Predicate   | (Working_L1->Mark()==1 && Working_L2->Mark()==1) |
| Function    | Working_L1->Mark()=0; Working_L2->Mark()=0; |

| Output Gate: | OG_GR |
|--------------|-------|
| Function     | Working_L1->Mark()=1; Working_L2->Mark()=1; Working_R->Mark()=1; |

| Output Gate: | OG_PR |
|--------------|-------|
| Function     | Working_L1->Mark()=1; Working_L2->Mark()=1; |

Model: rr

Place Attributes:

| Place Names       | Initial Markings |
|-------------------|------------------|
| Failed_MAN        | 0                |
| GEO               | 0                |
| Working_S1        | 1                |
| Working_S2        | 1                |
| failed_CHW_S1     | 0                |
| failed_CHW_S2     | 0                |
| failed_FHW_S1     | 0                |
| failed_FHW_S2     | 0                |
| failed_FHWt_S1    | 0                |
| failed_FHWt_S2    | 0                |
| failed_SW_S1      | 0                |
| failed_SW_S2      | 0                |
| spare_CHW_S1      | 0                |
| spare_CHW_S2      | 0                |
| sys_down_S1       | 0                |
| sys_down_S2       | 0                |

| Timed Activity: | CHW_F2_S1 |
|----------------|-----------|
| Distribution Parameters | Rate |
|                        | chw_fail_rate |
| Activation Predicate | (none) |
| Reactivation Predicate | Case Distributions |
|------------------------|--------------------|
|                        | case 1             |
|                        | if (\text{Working\_S2}->Mark() == 1) |
|                        | return(tmi\_cvg);  |
|                        | else               |
|                        | return(1);        |
|                        | case 2             |
|                        | if (\text{Working\_S2}->Mark() == 1) |
|                        | return(1-tmi\_cvg); |
|                        | else               |
|                        | return(0);        |

**Timed Activity:** \text{CHW\_F2\_S2}

**Distribution Parameters**
- Rate: \text{chw\_fail\_rate}

**Activation Predicate** (none)

**Reactivation Predicate** (none)

**Case Distributions**
- case 1
  - if (\text{Working\_S1}->Mark() == 1)
  - return(tmi\_cvg);
  - else
  - return(1);
- case 2
  - if (\text{Working\_S1}->Mark() == 1)
  - return(1-tmi\_cvg);
  - else
  - return(0);

**Timed Activity:** \text{CHW\_F\_S1}

**Distribution Parameters**
- Rate: \(2 \times \text{chw\_fail\_rate}\)

**Activation Predicate** (none)

**Reactivation Predicate** (none)

**Case Distributions**
- case 1
  - 1-chw\_cvg
- case 2
  - chw\_cvg

**Timed Activity:** \text{CHW\_F\_S2}

**Distribution Parameters**
- Rate: \(2 \times \text{chw\_fail\_rate}\)

**Activation Predicate** (none)

**Reactivation Predicate** (none)

**Case Distributions**
- case 1
  - 1-chw\_cvg
- case 2
  - chw\_cvg

**Timed Activity:** \text{CHW\_R2\_S1}

**Distribution Parameters**
- Rate: \text{chw\_rcv\_rate}

**Activation Predicate** (none)

**Reactivation Predicate** (none)

**Timed Activity:** \text{CHW\_R2\_S2}

**Distribution Parameters**
- Rate: \text{chw\_rcv\_rate}

**Activation Predicate** (none)

**Reactivation Predicate** (none)
| Timed Activity | Rate          | Distribution Parameters | Activation Predicate | Reactivation Predicate |
|----------------|---------------|--------------------------|----------------------|------------------------|
| CHW_R_S1       | chw_fail_rate | (none)                   | (none)               |                        |
| CHW_R_S2       | chw_fail_rate | (none)                   | (none)               |                        |
| FHW_F_S1       | fhw_fail_rate | (none)                   | (none)               |                        |
| FHW_F_S2       | fhw_fail_rate | (none)                   | (none)               |                        |
| FHW_R_S1       | fhw_rcv_rate  | (none)                   | (none)               |                        |
| FHW_R_S2       | fhw_rcv_rate  | (none)                   | (none)               |                        |
| FHWt_F_S1      | fhwt_fail_rate| (none)                   | (none)               |                        |

Case Distributions

**Case 1**

```
if(Working_S1->Mark()==1 & Working_S2->Mark()==1)
 return(1-tmi_cvg);
else
 return(0);
```

**Case 2**

```
if(Working_S1->Mark()==1 & Working_S2->Mark()==1)
 return(tmi_cvg);
else
 return(1);
```
if (Working_S1->Mark()==1 && Working_S2->Mark()==1)
    return(1-tmi_cvg);
else
    return(0);

case 2
    if (Working_S1->Mark()==1 && Working_S2->Mark()==1)
        return(tmi_cvg);
    else
        return(1);

### Timed Activity: FHWt_F_S2

| Distribution Parameters | Rate |
|-------------------------|------|
|                         | fhwt_fail_rate |

| Activation Predicate     | (none) |
| Reactivation Predicate   | (none) |

### Case Distributions

| Case | Distribution |
|------|--------------|
| case 1 | if (Working_S1->Mark()==1 && Working_S2->Mark()==1)
        | return(1-tmi_cvg);
        | else
        | return(0); |
| case 2 | if (Working_S1->Mark()==1 && Working_S2->Mark()==1)
        | return(tmi_cvg);
        | else
        | return(1); |

### Timed Activity: FHWt_R_S1

| Distribution Parameters | Rate |
|-------------------------|------|
|                         | fhwt_rcv_rate |

| Activation Predicate     | (none) |
| Reactivation Predicate   | (none) |

### Timed Activity: FHWt_R_S2

| Distribution Parameters | Rate |
|-------------------------|------|
|                         | fhwt_rcv_rate |

| Activation Predicate     | (none) |
| Reactivation Predicate   | (none) |

### Timed Activity: GEO_F

| Distribution Parameters | Rate |
|-------------------------|------|
|                         | geo_fail_rate |

| Activation Predicate     | (none) |
| Reactivation Predicate   | (none) |

### Timed Activity: GEO_R

| Distribution Parameters | Rate |
|-------------------------|------|
|                         | geo_rcv_rate |

| Activation Predicate     | (none) |
| Reactivation Predicate   | (none) |

### Timed Activity: MAN_F

| Distribution Parameters | Rate |
|-------------------------|------|
|                         | man_fail_rate |

| Activation Predicate     | (none) |
| Reactivation Predicate   | (none) |

### Timed Activity: MAN_R

| Distribution Parameters | Rate |
|-------------------------|------|
|                         | man_rcv_rate |

| Activation Predicate     | (none) |
| Reactivation Predicate   | (none) |

### Timed Activity: SW_F_S1
### Distribution Parameters

| Rate        | sw_fail_rate          |
|-------------|-----------------------|

### Activation Predicate

- (none)

### Reactivation Predicate

- (none)

### Case Distributions

**Case 1**

```csharp
if(Working_S1->Mark()==1 && Working_S2->Mark()==1)
 return(1-tmi_cvg);
else
 return(0);
```

**Case 2**

```csharp
if(Working_S1->Mark()==1 && Working_S2->Mark()==1)
 return(tmi_cvg);
else
 return(1);
```

### Timed Activity: SW_F_S2

**Distribution Parameters**

Rate	sw_fail_rate

### Activation Predicate

- (none)

### Reactivation Predicate

- (none)

### Case Distributions

**Case 1**

```csharp
if(Working_S1->Mark()==1 && Working_S2->Mark()==1)
 return(1-tmi_cvg);
else
 return(0);
```

**Case 2**

```csharp
if(Working_S1->Mark()==1 && Working_S2->Mark()==1)
 return(tmi_cvg);
else
 return(1);
```

### Timed Activity: SW_R_S1

**Distribution Parameters**

Rate	sw_rcv_rate

### Activation Predicate

- (none)

### Reactivation Predicate

- (none)

### Timed Activity: SW_R_S2

**Distribution Parameters**

Rate	sw_rcv_rate

### Activation Predicate

- (none)

### Reactivation Predicate

- (none)

### Timed Activity: UCHW_R_S1

**Distribution Parameters**

Rate	uchw_rcv_rate

### Activation Predicate

- (none)

### Reactivation Predicate

- (none)

### Timed Activity: UCHW_R_S2

**Distribution Parameters**

Rate	uchw_rcv_rate

### Activation Predicate

- (none)

### Reactivation Predicate

- (none)

### Input Gate: IG_GF

**Predicate**

(Working_S1->Mark()==1 && Working_S2->Mark()==1)

**Function**

- Working_S1->Mark()=0;
- Working_S2->Mark()=0;

### Input Gate: IG_MF
Function
Working_S1->Mark()==1 & Working_S2->Mark()==1

Output Gate: OG_CHW
Function
Working_S1->Mark()==0;
Working_S2->Mark()==0;
failed_CHW_S1->Mark()==1;
failed_CHW_S2->Mark()==1;

Output Gate: OG_FHW
Function
Working_S1->Mark()==0;
Working_S2->Mark()==0;
failed_FHW_S1->Mark()==1;
failed_FHW_S2->Mark()==1;

Output Gate: OG_FHWt
Function
Working_S1->Mark()==0;
Working_S2->Mark()==0;
failed_FHWt_S1->Mark()==1;
failed_FHWt_S2->Mark()==1;

Output Gate: OG_GR
Function
Working_S1->Mark()==1;
Working_S2->Mark()==1;

Output Gate: OG_MR
Function
Working_S1->Mark()==1;
Working_S2->Mark()==1;

Output Gate: OG_SW
Function
Working_S1->Mark()==0;
Working_S2->Mark()==0;
failed_SW_S1->Mark()==1;
failed_SW_S2->Mark()==1;

Model: rrl

Place Attributes:

Place Names	Initial Markings
Failed_L	0
GEO	0
Working_L	1
Working_S1	1
Working_S2	1
failed_CHW_S1	0
failed_CHW_S2	0
failed_FHW_S1	0
failed_FHW_S2	0
failed_FHWt_S1	0
failed_FHWt_S2	0
failed_MAN_S1	0
failed_MAN_S2	0
failed_SW_S1	0
failed_SW_S2	0
spare_CHW_S1	0
spare_CHW_S2	0
sys_down_S1	0
sys_down_S2	0

Timed Activity: CHW_F2_S1

Distribution Parameters
Rate
chw_fail_rate

Activation Predicate
(case 1)
if (Working_S2->Mark() == 1)
return(heq_cvg);
else return(1);
case 2
if (Working_S2->Mark() == 1)
    return(1-heq_cvg);
else
    return(0);

Timed Activity: CHW_F2_S2
Distribution Parameters
Rate
chw_fail_rate
Activation Predicate
(none)
Reactivation Predicate
(none)

Case Distributions
case 1
if (Working_S2->Mark() == 1)
    return(heq_cvg);
else
    return(1);
case 2
if (Working_S2->Mark() == 1)
    return(1-heq_cvg);
else
    return(0);

Timed Activity: CHW_F_S1
Distribution Parameters
Rate
2 * chw_fail_rate
Activation Predicate
(none)
Reactivation Predicate
(none)

Case Distributions
case 1
1-chw_cvg
case 2
chw_cvg

Timed Activity: CHW_F_S2
Distribution Parameters
Rate
2 * chw_fail_rate
Activation Predicate
(none)
Reactivation Predicate
(none)

Case Distributions
case 1
1-chw_cvg
case 2
chw_cvg

Timed Activity: CHW_R2_S1
Distribution Parameters
Rate
chw_rcv_rate
Activation Predicate
(none)
Reactivation Predicate
(none)

Timed Activity: CHW_R2_S2
Distribution Parameters
Rate
chw_rcv_rate
Activation Predicate
(none)
Reactivation Predicate
(none)

Timed Activity: CHW_R_S1
Distribution Parameters
Rate
chw_fail_rate
Activation Predicate
(none)
Timed Activity	Distribution Parameters	Rate	Activation Predicate	Reactivation Predicate
CHW_R_S2		chw_fail_rate	(none)	(none)
FHW_F_S1		fhw_fail_rate	(none)	(none)
FHW_R_S1		fhw_rcv_rate	(none)	(none)
FHW_R_S2		fhw_rcv_rate	(none)	(none)
FHWt_F_S1		fhwt_fail_rate	(none)	(none)

**Case Distributions**

- **Case 1**
  - if($Working_S1->Mark()==1$ && $Working_S2->Mark()==1$)
  - return(1-heq_cvg);
  - else
    - return(0);
- **Case 2**
  - if($Working_S1->Mark()==1$ && $Working_S2->Mark()==1$)
    - return(heq_cvg);
  - else
    - return(1);
if(Working_S1->Mark()==1 && Working_S2->Mark()==1) 
return(heq_cvg);
else 
return(1);

Timed Activity:	FHWt_F_S2
Distribution Parameters	Rate
	fhwt_fail_rate
Activation Predicate	(none)
Reactivation Predicate	(none)
Case Distributions	case 1
	if(Working_S1->Mark()==1 && Working_S2->Mark()==1)
	return(1-heq_cvg);
	else
	return(0);
	case 2
	if(Working_S1->Mark()==1 && Working_S2->Mark()==1)
	return(heq_cvg);
	else
	return(1);

Timed Activity:	FHWt_R_S1
Distribution Parameters	Rate
	fhwt_rcv_rate
Activation Predicate	(none)
Reactivation Predicate	(none)

Timed Activity:	FHWt_R_S2
Distribution Parameters	Rate
	fhwt_rcv_rate
Activation Predicate	(none)
Reactivation Predicate	(none)

Timed Activity:	GEO_F
Distribution Parameters	Rate
	geo_fail_rate
Activation Predicate	(none)
Reactivation Predicate	(none)

Timed Activity:	GEO_R
Distribution Parameters	Rate
	geo_rcv_rate
Activation Predicate	(none)
Reactivation Predicate	(none)

Timed Activity:	L_F
Distribution Parameters	Rate
	link_fail_rate
Activation Predicate	(none)
Reactivation Predicate	(none)

Timed Activity:	L_R
Distribution Parameters	Rate
	link_rcv_rate
Activation Predicate	(none)
Reactivation Predicate	(none)

Timed Activity:	MAN_F_S1
Distribution Parameters	Rate
	man_fail_rate
Activation Predicate	(none)
Reactivation Predicate	(none)
### Case Distributions

**Case 1**

```c
if(Working_S1->Mark()==1 && Working_S2->Mark()==1)
 return(1-heq_cvg);
else
 return(0);
```

**Case 2**

```c
if(Working_S1->Mark()==1 && Working_S2->Mark()==1)
 return(heq_cvg);
else
 return(1);
```

### Timed Activity: MAN_F_S1

**Distribution Parameters**
- **Rate**: `man_fail_rate`
- **Activation Predicate**: (none)
- **Reactivation Predicate**: (none)

### Timed Activity: MAN_F_S2

**Distribution Parameters**
- **Rate**: `man_fail_rate`
- **Activation Predicate**: (none)
- **Reactivation Predicate**: (none)

### Timed Activity: MAN_R_S1

**Distribution Parameters**
- **Rate**: `man_rcv_rate`
- **Activation Predicate**: (none)
- **Reactivation Predicate**: (none)

### Timed Activity: MAN_R_S2

**Distribution Parameters**
- **Rate**: `man_rcv_rate`
- **Activation Predicate**: (none)
- **Reactivation Predicate**: (none)

### Timed Activity: SW_F_S1

**Distribution Parameters**
- **Rate**: `sw_fail_rate`
- **Activation Predicate**: (none)
- **Reactivation Predicate**: (none)

### Timed Activity: SW_F_S2

**Distribution Parameters**
- **Rate**: `sw_fail_rate`
- **Activation Predicate**: (none)
- **Reactivation Predicate**: (none)

### Case Distributions

**Case 1**

```c
if(Working_S1->Mark()==1 && Working_S2->Mark()==1)
 return(1-heq_cvg);
else
 return(0);
```

**Case 2**

```c
if(Working_S1->Mark()==1 && Working_S2->Mark()==1)
 return(heq_cvg);
else
 return(1);
```
```c
else return(0);

case 2
 if(Working_S1->Mark()==1 && Working_S2->Mark()==1)
 return(heq_cvg);
 else return(1);
```

Timed Activity:	SW_R_S1
Distribution Parameters	Rate
sw_rcv_rate	
Activation Predicate	(none)
Reactivation Predicate	(none)

Timed Activity:	SW_R_S2
Distribution Parameters	Rate
sw_rcv_rate	
Activation Predicate	(none)
Reactivation Predicate	(none)

Timed Activity:	UCHW_R_S1
Distribution Parameters	Rate
uchw_rcv_rate	
Activation Predicate	(none)
Reactivation Predicate	(none)

Timed Activity:	UCHW_R_S2
Distribution Parameters	Rate
uchw_rcv_rate	
Activation Predicate	(none)
Reactivation Predicate	(none)

Input Gate:	IG_GF
Predicate	(Working_L->Mark()==1 && Working_S2->Mark()==1)
Function	Working_L->Mark()=0; Working_S2->Mark()=0;

Output Gate:	OG_CHW
Function	Working_S1->Mark()=0; Working_S2->Mark()=0; failed_CHW_S1->Mark()=1; failed_CHW_S2->Mark()=1;

Output Gate:	OG_FHW
Function	Working_S1->Mark()=0; Working_S2->Mark()=0; failed_FHW_S1->Mark()=1; failed_FHW_S2->Mark()=1;

Output Gate:	OG_FHWt
Function	Working_S1->Mark()=0; Working_S2->Mark()=0; failed_FHWt_S1->Mark()=1; failed_FHWt_S2->Mark()=1;

Output Gate:	OG_GR
Function	Working_L->Mark()=1; Working_S2->Mark()=1;

Output Gate:	OG_MAN
Function	Working_S1->Mark()=0; Working_S2->Mark()=0; failed_SW_S1->Mark()=1; failed_SW_S2->Mark()=1;

Output Gate:	OG_SW
Function	Working_S1->Mark()=0;
```
Model: rrr

Place Attributes:

| Place Names | Initial Markings |
|-------------------|------------------|
| Working_S1 | 1 |
| Working_S2 | 1 |
| Working_S3 | 1 |
| failed_CHW_S1 | 0 |
| failed_CHW_S2 | 0 |
| failed_CHW_S3 | 0 |
| failed_FHW_S1 | 0 |
| failed_FHW_S2 | 0 |
| failed_FHW_S3 | 0 |
| failed_FHWt_S1 | 0 |
| failed_FHWt_S2 | 0 |
| failed_FHWt_S3 | 0 |
| failed_MAN_S1 | 0 |
| failed_MAN_S2 | 0 |
| failed_MAN_S3 | 0 |
| failed_SW_S1 | 0 |
| failed_SW_S2 | 0 |
| failed_SW_S3 | 0 |
| spare_CHW_S1 | 0 |
| spare_CHW_S2 | 0 |
| spare_CHW_S3 | 0 |
| sys_down_S1 | 0 |
| sys_down_S2 | 0 |
| sys_down_S3 | 0 |

Timed Activity: CHW_F2_S1

| Distribution Parameters | Rate | Activation Predicate | Reactivation Predicate |
|-------------------------|---------------|----------------------|------------------------|
| | chw_fail_rate | (none) | (none) |

Case Distributions

Case 1

if (Working_S2->Mark() == 1 && Working_S3->Mark()==1)
 return(heq_cvg);
else
 return(1);

Case 2

if (Working_S2->Mark() == 1 && Working_S3->Mark()==1)
 return(1-heq_cvg);
else
 return(0);

Timed Activity: CHW_F2_S2

| Distribution Parameters | Rate | Activation Predicate | Reactivation Predicate |
|-------------------------|---------------|----------------------|------------------------|
| | chw_fail_rate | (none) | (none) |

Case Distributions

Case 1

if (Working_S1->Mark() == 1 && Working_S3->Mark()==1)
 return(heq_cvg);
else
 return(1);

Case 2

if (Working_S1->Mark() == 1 && Working_S3->Mark()==1)
 return(1-heq_cvg);
else
 return(0);

Timed Activity: CHW_F2_S3

| Distribution Parameters | Rate | Activation Predicate | Reactivation Predicate |
|-------------------------|---------------|----------------------|------------------------|
| | | (none) | (none) |
Distribution Parameters: chw_fail_rate
Activation Predicate: (none)
Reactivation Predicate: (none)

Case Distributions
- **Case 1**
 - if (Working_S1->Mark()==1 && Working_S2->Mark() == 1)
 - return(heq_cvg);
 - else
 - return(1);

- **Case 2**
 - if (Working_S1->Mark()==1 && Working_S2->Mark() == 1)
 - return(1-heq_cvg);
 - else
 - return(0);

Timed Activity: CHW_F_S1
Distribution Parameters:
- Rate: 2 * chw_fail_rate
Activation Predicate: (none)
Reactivation Predicate: (none)

Case Distributions
- **Case 1**
 - 1-chw_cvg
- **Case 2**
 - chw_cvg

Timed Activity: CHW_F_S2
Distribution Parameters:
- Rate: 2 * chw_fail_rate
Activation Predicate: (none)
Reactivation Predicate: (none)

Case Distributions
- **Case 1**
 - 1-chw_cvg
- **Case 2**
 - chw_cvg

Timed Activity: CHW_F_S3
Distribution Parameters:
- Rate: 2 * chw_fail_rate
Activation Predicate: (none)
Reactivation Predicate: (none)

Case Distributions
- **Case 1**
 - 1-chw_cvg
- **Case 2**
 - chw_cvg

Timed Activity: CHW_R2_S1
Distribution Parameters:
- Rate: chw_rcv_rate
Activation Predicate: (none)
Reactivation Predicate: (none)

Timed Activity: CHW_R2_S2
Distribution Parameters:
- Rate: chw_rcv_rate
Activation Predicate: (none)
Reactivation Predicate: (none)

Timed Activity: CHW_R2_S3
| Distribution Parameters | Rate |
|-------------------------|------------|
| | chw_rcv_rate |

| Activation Predicate | (none) |
| Reactivation Predicate | (none) |

Timed Activity: CHW_R_S1

| Distribution Parameters | Rate |
|-------------------------|------------|
| | chw_fail_rate |

| Activation Predicate | (none) |
| Reactivation Predicate | (none) |

Timed Activity: CHW_R_S2

| Distribution Parameters | Rate |
|-------------------------|------------|
| | chw_fail_rate |

| Activation Predicate | (none) |
| Reactivation Predicate | (none) |

Timed Activity: CHW_R_S3

| Distribution Parameters | Rate |
|-------------------------|------------|
| | chw_fail_rate |

| Activation Predicate | (none) |
| Reactivation Predicate | (none) |

Case Distributions

Case 1

```plaintext
if(Working_S1->Mark()==1 && Working_S2->Mark()==1 && Working_S3->Mark()==1)
return(1-heq_cvg);
```

Case 2

```plaintext
if(Working_S1->Mark()==1 && Working_S2->Mark()==1 && Working_S3->Mark()==1)
return(heq_cvg);
```

Timed Activity: FHW_F_S1

Distribution Parameters	Rate
	fhw_fail_rate

| Activation Predicate | (none) |
| Reactivation Predicate | (none) |

Case Distributions

Case 1

```plaintext
if(Working_S1->Mark()==1 && Working_S2->Mark()==1 && Working_S3->Mark()==1)
return(1-heq_cvg);
```

Case 2

```plaintext
if(Working_S1->Mark()==1 && Working_S2->Mark()==1 && Working_S3->Mark()==1)
return(heq_cvg);
```

Timed Activity: FHW_F_S2

Distribution Parameters	Rate
	fhw_fail_rate

| Activation Predicate | (none) |
| Reactivation Predicate | (none) |

Case Distributions

Case 1

```plaintext
if(Working_S1->Mark()==1 && Working_S2->Mark()==1 && Working_S3->Mark()==1)
return(1-heq_cvg);
```

Case 2

```plaintext
if(Working_S1->Mark()==1 && Working_S2->Mark()==1 && Working_S3->Mark()==1)
return(heq_cvg);
```

Timed Activity: FHW_F_S3

Distribution Parameters	Rate
	fhw_fail_rate

| Activation Predicate | (none) |
| Reactivation Predicate | (none) |

Case Distributions

Case 1

```plaintext
if(Working_S1->Mark()==1 && Working_S2->Mark()==1 && Working_S3->Mark()==1)
return(1-heq_cvg);
```

```plaintext
if(Working_S1->Mark()==1 && Working_S2->Mark()==1 && Working_S3->Mark()==1)
return(heq_cvg);
```
```c
else return(1-heq_cvg);
else return(0);
case 2
if(Working_S1->Mark()==1 && Working_S2->Mark()==1 && Working_S3->Mark()==1)
return(heq_cvg);
else return(1);
```

Timed Activity:	FHW_R_S1
Distribution Parameters	Rate
Activation Predicate	(none)
Reactivation Predicate	(none)

Timed Activity:	FHW_R_S2
Distribution Parameters	Rate
Activation Predicate	(none)
Reactivation Predicate	(none)

Timed Activity:	FHW_R_S3
Distribution Parameters	Rate
Activation Predicate	(none)
Reactivation Predicate	(none)

Timed Activity:	FHWt_F_S1
Distribution Parameters	Rate
Activation Predicate	(none)
Reactivation Predicate	(none)

Case Distributions	FHWt_F_S1
case 1	
if(Working_S1->Mark()==1 && Working_S2->Mark()==1 && Working_S3->Mark()==1)	
return(1-heq_cvg);	
else return(0);	
case 2	
if(Working_S1->Mark()==1 && Working_S2->Mark()==1 && Working_S3->Mark()==1)	
return(heq_cvg);
else return(1); |

Timed Activity:	FHWt_F_S2
Distribution Parameters	Rate
Activation Predicate	(none)
Reactivation Predicate	(none)

Case Distributions	FHWt_F_S2
case 1	
if(Working_S1->Mark()==1 && Working_S2->Mark()==1 && Working_S3->Mark()==1)	
return(1-heq_cvg);	
else return(0);	
case 2	
if(Working_S1->Mark()==1 && Working_S2->Mark()==1 && Working_S3->Mark()==1)	
return(heq_cvg);
else return(1); |

Timed Activity:	FHWt_F_S3
Distribution Parameters	Rate
Activation Predicate	(none)
Reactivation Predicate	(none)

Case Distributions	FHWt_F_S3
case 1	
if(Working_S1->Mark()==1 && Working_S2->Mark()==1 && Working_S3->Mark()==1)	
return(1-heq_cvg);	
else return(0);	
case 2	
if(Working_S1->Mark()==1 && Working_S2->Mark()==1 && Working_S3->Mark()==1)	
return(heq_cvg);	
else return(1);	
Case Distributions	
--------------------	--
case 1	if(Working_S1->Mark()==1 && Working_S2->Mark()==1 && Working_S3->Mark()==1) return(1-heq_cvg);
else return(0);	
case 2	if(Working_S1->Mark()==1 && Working_S2->Mark()==1 && Working_S3->Mark()==1) return(heq_cvg);
else return(1); |

Timed Activity:
FHWt_R_S1

Distribution Parameters
- **Rate**: fhwt_rcv_rate

Activation Predicate: (none)

Reactivation Predicate: (none)

Timed Activity:
FHWt_R_S2

Distribution Parameters
- **Rate**: fhwt_rcv_rate

Activation Predicate: (none)

Reactivation Predicate: (none)

Timed Activity:
FHWt_R_S3

Distribution Parameters
- **Rate**: fhwt_rcv_rate

Activation Predicate: (none)

Reactivation Predicate: (none)

Timed Activity:
MAN_F_S1

Distribution Parameters
- **Rate**: man_fail_rate

Activation Predicate: (none)

Reactivation Predicate: (none)

Case Distributions	
case 1	if(Working_S1->Mark()==1 && Working_S2->Mark()==1 && Working_S3->Mark()==1) return(1-heq_cvg);
else return(0);	
case 2	if(Working_S1->Mark()==1 && Working_S2->Mark()==1 && Working_S3->Mark()==1) return(heq_cvg);
else return(1); |

Timed Activity:
MAN_F_S2

Distribution Parameters
- **Rate**: man_fail_rate

Activation Predicate: (none)

Reactivation Predicate: (none)

Case Distributions	
case 1	if(Working_S1->Mark()==1 && Working_S2->Mark()==1 && Working_S3->Mark()==1) return(1-heq_cvg);
else return(0);	
case 2	if(Working_S1->Mark()==1 && Working_S2->Mark()==1 && Working_S3->Mark()==1) return(heq_cvg);
else return(1); |

Timed Activity:
MAN_F_S3

Distribution Parameters
- **Rate**: man_fail_rate
Case Distributions

Case 1

if(Working_S1->Mark()==1 && Working_S2->Mark()==1 && Working_S3->Mark()==1)
return(1-heq_cvg);
else
return(0);

Case 2

if(Working_S1->Mark()==1 && Working_S2->Mark()==1 && Working_S3->Mark()==1)
return(heq_cvg);
else
return(1);

Timed Activity: MAN_R_S1

Distribution Parameters

Rate

man_rcv_rate

Activation Predicate

(none)

Reactivation Predicate

(none)

Timed Activity: MAN_R_S2

Distribution Parameters

Rate

man_rcv_rate

Activation Predicate

(none)

Reactivation Predicate

(none)

Timed Activity: MAN_R_S3

Distribution Parameters

Rate

man_rcv_rate

Activation Predicate

(none)

Reactivation Predicate

(none)

Timed Activity: SW_F_S1

Distribution Parameters

Rate

sw_fail_rate

Activation Predicate

(none)

Reactivation Predicate

(none)

Timed Activity: SW_F_S2

Distribution Parameters

Rate

sw_fail_rate

Activation Predicate

(none)

Reactivation Predicate

(none)

Timed Activity: SW_F_S3

Distribution Parameters

Rate

sw_fail_rate

Activation Predicate

(none)

Reactivation Predicate

(none)
Distribution Parameters	Rate	sw_fail_rate
Activation Predicate	(none)	
Reactivation Predicate	(none)	

Case Distributions

Case 1

```cpp
if(Working_S1->Mark()==1 && Working_S2->Mark()==1 && Working_S3->Mark()==1)
return(1-heq_cvg);
else
return(0);
```

Case 2

```cpp
if(Working_S1->Mark()==1 && Working_S2->Mark()==1 && Working_S3->Mark()==1)
return(heq_cvg);
else
return(1);
```

Timed Activity: SW_R_S1

Distribution Parameters	Rate	sw_rcv_rate
Activation Predicate	(none)	
Reactivation Predicate	(none)	

Timed Activity: SW_R_S2

Distribution Parameters	Rate	sw_rcv_rate
Activation Predicate	(none)	
Reactivation Predicate	(none)	

Timed Activity: SW_R_S3

Distribution Parameters	Rate	sw_rcv_rate
Activation Predicate	(none)	
Reactivation Predicate	(none)	

Timed Activity: UCHW_R_S1

Distribution Parameters	Rate	uchw_rcv_rate
Activation Predicate	(none)	
Reactivation Predicate	(none)	

Timed Activity: UCHW_R_S2

Distribution Parameters	Rate	uchw_rcv_rate
Activation Predicate	(none)	
Reactivation Predicate	(none)	

Timed Activity: UCHW_R_S3

Distribution Parameters	Rate	uchw_rcv_rate
Activation Predicate	(none)	
Reactivation Predicate	(none)	

Output Gate: OG_CHW

Function

```cpp
Working_S1->Mark()=0;
Working_S2->Mark()=0;
Working_S3->Mark()=0;
failed_CHW_S1->Mark()=1;
failed_CHW_S2->Mark()=1;
failed_CHW_S3->Mark()=1;
```

Output Gate: OG_FHW

Function

```cpp
Working_S1->Mark()=0;
Working_S2->Mark()=0;
Working_S3->Mark()=0;
failed_FHW_S1->Mark()=1;
```
Output Gate: OG_FHWt

Function

```c
Working_S1->Mark()=0;
Working_S2->Mark()=0;
Working_S3->Mark()=0;
failed_FHWt_S1->Mark()=1;
failed_FHWt_S2->Mark()=1;
failed_FHWt_S3->Mark()=1;
```

Output Gate: OG_MAN

Function

```c
Working_S1->Mark()=0;
Working_S2->Mark()=0;
Working_S3->Mark()=0;
failed_SW_S1->Mark()=1;
failed_SW_S2->Mark()=1;
failed_SW_S3->Mark()=1;
```

Output Gate: OG_SW

Function

```c
Working_S1->Mark()=0;
Working_S2->Mark()=0;
Working_S3->Mark()=0;
failed_SW_S1->Mark()=1;
failed_SW_S2->Mark()=1;
failed_SW_S3->Mark()=1;
```

Model: sll

Place Attributes:

Place Names	Initial Markings
Failed_L1	0
Failed_L2	0
GEO	0
PHY	0
Working_L1	1
Working_L2	1
Working_S	1
failed_FHW	0
failed_FHWt	0
failed_SW	0

Timed Activity: FHW_F

Distribution Parameters

- Rate: `fhw_fail_rate`

Activation Predicate: (none)

Reactivation Predicate: (none)

Timed Activity: FHW_R

Distribution Parameters

- Rate: `fhw_rcv_rate`

Activation Predicate: (none)

Reactivation Predicate: (none)

Timed Activity: FHWt_F

Distribution Parameters

- Rate: `fhwt_fail_rate`

Activation Predicate: (none)

Reactivation Predicate: (none)

Timed Activity: FHWt_R

Distribution Parameters

- Rate: `fhwt_rcv_rate`

Activation Predicate: (none)

Reactivation Predicate: (none)

Timed Activity: GEO_F

Distribution Parameters

- Rate
| Timed Activity | Distribution Parameters | Rate | Activation Predicate | Reactivation Predicate |
|----------------|-------------------------|-------|----------------------|------------------------|
| geo fail rate | | geo_rcv_rate | (none) | (none) |
| Timed Activity: GEO_R | Distribution Parameters | Rate | Activation Predicate | Reactivation Predicate |
| Timed Activity: L_F1 | Distribution Parameters | Rate | Activation Predicate | Reactivation Predicate |
| Timed Activity: L_F2 | Distribution Parameters | Rate | Activation Predicate | Reactivation Predicate |
| Timed Activity: L_R1 | Distribution Parameters | Rate | Activation Predicate | Reactivation Predicate |
| Timed Activity: L_R2 | Distribution Parameters | Rate | Activation Predicate | Reactivation Predicate |
| Timed Activity: PHY_F | Distribution Parameters | Rate | Activation Predicate | Reactivation Predicate |
| Timed Activity: PHY_R | Distribution Parameters | Rate | Activation Predicate | Reactivation Predicate |
| Timed Activity: SW_F | Distribution Parameters | Rate | Activation Predicate | Reactivation Predicate |
| Timed Activity: SW_R | Distribution Parameters | Rate | Activation Predicate | Reactivation Predicate |
Input Gate: IG_GF
Predicate: (Working_L1->Mark()==1 && Working_L2->Mark()==1 && Working_S->Mark()==1)
Function: Working_L1->Mark()=0;
Working_L2->Mark()=0;
Working_S->Mark()=0;

Input Gate: IG_PF
Predicate: (Working_L1->Mark()==1 && Working_L2->Mark()==1)
Function: Working_L1->Mark()=0;
Working_L2->Mark()=0;

Output Gate: OG_GR
Function: Working_L1->Mark()==1;
Working_L2->Mark()==1;
Working_S->Mark()==1;

Output Gate: OG_PR
Function: Working_L1->Mark()==1;
Working_L2->Mark()==1;

Model: ss

Place Attributes:
Place Names	Initial Markings
GEO	0
MIS	0
Working_S1	1
Working_S2	1
failed_FHW_S1	0
failed_FHW_S2	0
failed_FHWt_S1	0
failed_FHWt_S2	0
failed_SW_S1	0
failed_SW_S2	0

Timed Activity: FHW_F_S1
Distribution Parameters: Rate fhw_fail_rate
Activation Predicate: (none)
Reactivation Predicate: (none)
Case Distributions:
- case 1
 - if(Working_S1->Mark()==1 && Working_S2->Mark()==1)
 - return(1-tmi_cvg);
 - else
 - return(0);
- case 2
 - if(Working_S1->Mark()==1 && Working_S2->Mark()==1)
 - return(tmi_cvg);
 - else
 - return(1);

Timed Activity: FHW_F_S2
Distribution Parameters: Rate fhw_fail_rate
Activation Predicate: (none)
Reactivation Predicate: (none)
Case Distributions:
- case 1
 - if(Working_S1->Mark()==1 && Working_S2->Mark()==1)
 - return(1-tmi_cvg);
 - else
 - return(0);
- case 2
 - if(Working_S1->Mark()==1 && Working_S2->Mark()==1)
 - return(tmi_cvg);
 - else
 - return(1);
| Timed Activity: | Rate |
|---------------|------|
| FHW_R_S1 | |
| Distribution Parameters | fhw_rcv_rate |
| Activation Predicate | (none) |
| Reactivation Predicate | (none) |

Timed Activity:	Rate
FHW_R_S2	
Distribution Parameters	fhw_rcv_rate
Activation Predicate	(none)
Reactivation Predicate	(none)

Timed Activity:	Rate
FHWT_F_S1	
Distribution Parameters	fhwt_fail_rate
Activation Predicate	(none)
Reactivation Predicate	(none)

Case Distributions
case 1
if(Working_S1->Mark()==1 && Working_S2->Mark()==1)
return(1-tmi_cvg)
else
return(0)
case 2
if(Working_S1->Mark()==1 && Working_S2->Mark()==1)
return(tmi_cvg)
else
return(1)

Timed Activity:	Rate
FHWT_F_S2	
Distribution Parameters	fhwt_fail_rate
Activation Predicate	(none)
Reactivation Predicate	(none)

Case Distributions
case 1
if(Working_S1->Mark()==1 && Working_S2->Mark()==1)
return(1-tmi_cvg)
else
return(0)
case 2
if(Working_S1->Mark()==1 && Working_S2->Mark()==1)
return(tmi_cvg)
else
return(1)

Timed Activity:	Rate
FHWT_R_S1	
Distribution Parameters	fhwt_rcv_rate
Activation Predicate	(none)
Reactivation Predicate	(none)

Timed Activity:	Rate
FHWT_R_S2	
Distribution Parameters	fhwt_rcv_rate
Activation Predicate	(none)
Reactivation Predicate	(none)

Timed Activity:	Rate			
GEO_F				
Distribution Parameters	geo_fail_rate			
Activation Predicate	(none)			
Reactivation Predicate	(none)			
Timed Activity	Distribution Parameters	Rate	Activation Predicate	Reactivation Predicate
---------------	-------------------------	---------------	----------------------	------------------------
GEO_R		geo_rcv_rate	(none)	(none)
MIS_F		mis_fail_rate	(none)	(none)
MIS_R		mis_rcv_rate	(none)	(none)
SW_F_S1		sw_fail_rate	(none)	(none)
SW_F_S2		sw_fail_rate	(none)	(none)
SW_R_S1		sw_rcv_rate	(none)	(none)
SW_R_S2		sw_rcv_rate	(none)	(none)

Case Distributions

Case 1
if(Working_S1->Mark()==1 && Working_S2->Mark()==1)
 return(1-tmi_cvg);
else
 return(0);

Case 2
if(Working_S1->Mark()==1 && Working_S2->Mark()==1)
 return(tmi_cvg);
else
 return(1);
Input Gate: IG_GF
Predicate: (Working_S1->Mark()==1 && Working_S2->Mark()==1)
Function: Working_S1->Mark()=0;
Working_S2->Mark()=0;

Input Gate: IG_MF
Predicate: (Working_S1->Mark()==1 && Working_S2->Mark()==1)
Function: Working_S1->Mark()=0;
Working_S2->Mark()=0;

Output Gate: OG_FHW
Function: Working_S1->Mark()=0;
Working_S2->Mark()=0;
failed_FHW_S1->Mark()=1;
failed_FHW_S2->Mark()=1;

Output Gate: OG_FHWt
Function: Working_S1->Mark()=0;
Working_S2->Mark()=0;
failed_FHWt_S1->Mark()=1;
failed_FHWt_S2->Mark()=1;

Output Gate: OG_BR
Function: Working_S1->Mark()=1;
Working_S2->Mark()=1;

Output Gate: OG_MR
Function: Working_S1->Mark()=1;
Working_S2->Mark()=1;

Output Gate: OG_SW
Function: Working_S1->Mark()=0;
Working_S2->Mark()=0;
failed_SW_S1->Mark()=1;
failed_SW_S2->Mark()=1;

Model: ssl

Place Attributes:

Place Names	Initial Markings
Failed_L	0
GEO	0
Working_L	1
Working_S1	1
Working_S2	1
failed_FHW_S1	0
failed_FHW_S2	0
failed_FHWt_S1	0
failed_FHWt_S2	0
failed_SW_S1	0
failed_SW_S2	0

Timed Activity: FHW_F_S1

Rate: fhw_fail_rate
Activation Predicate: (none)
Reactivation Predicate: (none)

Case Distributions:

Case 1
if(Working_S1->Mark()==1 && Working_S2->Mark()==1)
 return(1-heq_cvg);
else
 return(0);

Case 2
if(Working_S1->Mark()==1 && Working_S2->Mark()==1)
 return(hq_cvg);
else
 return(1);
Distribution Parameters

Rate
fhw_fail_rate

Activation Predicate
(none)

Reactivation Predicate
(none)

Timed Activity: FHW_R_S1

Distribution Parameters
Rate
fhw_rcv_rate

Activation Predicate
(none)

Reactivation Predicate
(none)

Timed Activity: FHW_R_S2

Distribution Parameters
Rate
fhw_rcv_rate

Activation Predicate
(none)

Reactivation Predicate
(none)

Timed Activity: FHWt_F_S1

Distribution Parameters
Rate
fhwt_fail_rate

Activation Predicate
(none)

Reactivation Predicate
(none)

Timed Activity: FHWt_F_S2

Distribution Parameters
Rate
fhwt_fail_rate

Activation Predicate
(none)

Reactivation Predicate
(none)

Timed Activity: FHWt_R_S1

Distribution Parameters
Rate
fhwt_rcv_rate

Activation Predicate
(none)

Reactivation Predicate
(none)
Timed Activity	Rate	Distribution Parameters	Activation Predicate	Reactivation Predicate
FHWt_R_S2		fhw_t_r_rate	(none)	(none)
GEO F		geo_fail_rate	(none)	(none)
GEO R		geo_rcv_rate	(none)	(none)
L_F		link_fail_rate	(none)	(none)
L_R		link_rcv_rate	(none)	(none)
SW_F_S1		sw_fail_rate	(none)	(none)
SW_F_S2		sw_fail_rate	(none)	(none)
else return(heq_cvg);
else return(1);

Timed Activity: SW_R_S1
Distribution Parameters Rate
Activation Predicate sw_rcv_rate (none)
Reactivation Predicate (none)

Timed Activity: SW_R_S2
Distribution Parameters Rate
Activation Predicate sw_rcv_rate (none)
Reactivation Predicate (none)

Input Gate: IG_GF
Predicate (Working_L->Mark()==1 && Working_S2->Mark()==1)
Function Working_L->Mark()==0;
Working_S2->Mark()==1;

Output Gate: OG_FHW
Function Working_S1->Mark()==0;
Working_S2->Mark()==1;
failed_FHW_S1->Mark()==1;
failed_FHW_S2->Mark()==1;

Output Gate: OG_FHWt
Function Working_S1->Mark()==0;
Working_S2->Mark()==1;
failed_FHWt_S1->Mark()==1;
failed_FHWt_S2->Mark()==1;

Output Gate: OG_GR
Function Working_S1->Mark()==0;
Working_S2->Mark()==1;

Output Gate: OG_SW
Function Working_S1->Mark()==0;
Working_S2->Mark()==1;
failed_SW_S1->Mark()==1;
failed_SW_S2->Mark()==1;

Model: sss

Place Attributes:

Place Names	Initial Markings
Working_S1	1
Working_S2	1
Working_S3	1
failed_FHW_S1	0
failed_FHW_S2	0
failed_FHW_S3	0
failed_FHWt_S1	0
failed_FHWt_S2	0
failed_FHWt_S3	0
failed_SW_S1	0
failed_SW_S2	0
failed_SW_S3	0

Timed Activity: FHW_F_S1
Distribution Parameters Rate
Activation Predicate fhw_fail_rate (none)
Reactivation Predicate (none)
Case Distributions case 1

if (Working_S1->Mark() == 1 && Working_S2->Mark() == 1 && Working_S3->Mark() ==1)

A – 43
else return(1-heq_cvg);

if (Working_S1->Mark() == 1 && Working_S2->Mark() == 1 && Working_S3->Mark() ==1)
 return(1-heq_cvg);
else return(0);

case 2

if (Working_S1->Mark() == 1 && Working_S2->Mark() == 1 && Working_S3->Mark() ==1)
 return(heq_cvg);
else return(1);

Timed Activity: FHW_F_S2

Distribution Parameters	Rate
	fhw_fail_rate

Activation Predicate	(none)
Reactivation Predicate	(none)

Case Distributions

Case	Description
1	if (Working_S1->Mark() == 1 && Working_S2->Mark() == 1 && Working_S3->Mark() ==1)
	return(1-heq_cvg);
	return(0);
2	if (Working_S1->Mark() == 1 && Working_S2->Mark() == 1 && Working_S3->Mark() ==1)
	return(heq_cvg);
	return(1);

Timed Activity: FHW_F_S3

Distribution Parameters	Rate
	fhw_fail_rate

Activation Predicate	(none)
Reactivation Predicate	(none)

Case Distributions

Case	Description
1	if (Working_S1->Mark() == 1 && Working_S2->Mark() == 1 && Working_S3->Mark() ==1)
	return(1-heq_cvg);
	return(0);
2	if (Working_S1->Mark() == 1 && Working_S2->Mark() == 1 && Working_S3->Mark() ==1)
	return(heq_cvg);
	return(1);

Timed Activity: FHW_R_S1

Distribution Parameters	Rate
	fhw_rcv_rate

Activation Predicate	(none)
Reactivation Predicate	(none)

Timed Activity: FHW_R_S2

Distribution Parameters	Rate
	fhw_rcv_rate

Activation Predicate	(none)
Reactivation Predicate	(none)

Timed Activity: FHW_R_S3

Distribution Parameters	Rate
	fhw_rcv_rate

Activation Predicate	(none)
Reactivation Predicate	(none)

Timed Activity: FHWt_F_S1

Distribution Parameters	Rate
	fhwt_fail_rate

Activation Predicate	(none)
Reactivation Predicate	(none)
Case Distributions

Case 1
if (Working_S1->Mark() == 1 && Working_S2->Mark() == 1 && Working_S3->Mark() == 1)
 return(1-heq_cvg);
else
 return(0);

Case 2
if (Working_S1->Mark() == 1 && Working_S2->Mark() == 1 && Working_S3->Mark() == 1)
 return(heq_cvg);
else
 return(1);

Timed Activity: **FHWt_F_S2**

Distribution Parameters
- Rate: fhwt_fail_rate

Activation Predicate: (none)

Reactivation Predicate: (none)

Case Distributions

Case 1
if (Working_S1->Mark() == 1 && Working_S2->Mark() == 1 && Working_S3->Mark() == 1)
 return(1-heq_cvg);
else
 return(0);

Case 2
if (Working_S1->Mark() == 1 && Working_S2->Mark() == 1 && Working_S3->Mark() == 1)
 return(heq_cvg);
else
 return(1);

Timed Activity: **FHWt_F_S3**

Distribution Parameters
- Rate: fhwt_fail_rate

Activation Predicate: (none)

Reactivation Predicate: (none)

Case Distributions

Case 1
if (Working_S1->Mark() == 1 && Working_S2->Mark() == 1 && Working_S3->Mark() == 1)
 return(1-heq_cvg);
else
 return(0);

Case 2
if (Working_S1->Mark() == 1 && Working_S2->Mark() == 1 && Working_S3->Mark() == 1)
 return(heq_cvg);
else
 return(1);

Timed Activity: **FHWt_R_S1**

Distribution Parameters
- Rate: fhwt_rcv_rate

Activation Predicate: (none)

Reactivation Predicate: (none)

Timed Activity: **FHWt_R_S2**

Distribution Parameters
- Rate: fhwt_rcv_rate

Activation Predicate: (none)

Reactivation Predicate: (none)

Timed Activity: **FHWt_R_S3**

Distribution Parameters
- Rate: fhwt_rcv_rate

Activation Predicate: (none)

Reactivation Predicate: (none)

Timed Activity: **SW_F_S1**

Distribution Parameters
- Rate: sw_fail_rate
| Timed Activity | SW_F_S2 |
|---------------------|--------------|
| Distribution | Rate |
| Parameters | sw_fail_rate |
| Activation Predicate| (none) |
| Reactivation Predicate| (none) |

Timed Activity	SW_F_S3
Distribution	Rate
Parameters	sw_fail_rate
Activation Predicate	(none)
Reactivation Predicate	(none)

Timed Activity	SW_R_S1
Distribution	Rate
Parameters	sw_rcv_rate
Activation Predicate	(none)
Reactivation Predicate	(none)

Timed Activity	SW_R_S2
Distribution	Rate
Parameters	sw_rcv_rate
Activation Predicate	(none)
Reactivation Predicate	(none)

Timed Activity	SW_R_S3
Distribution	Rate
Parameters	sw_rcv_rate
Activation Predicate	(none)
Reactivation Predicate	(none)
Output Gate:	Function
-------------	----------
OG_FHW	Working_S1->Mark();\
	Working_S2->Mark();\
	Working_S3->Mark();\
	failed_FHW_S1->Mark();\
	failed_FHW_S2->Mark();\
	failed_FHW_S3->Mark();
OG_FHWt	Working_S1->Mark();\
	Working_S2->Mark();\
	Working_S3->Mark();\
	failed_FHWt_S1->Mark();\
	failed_FHWt_S2->Mark();\
	failed_FHWt_S3->Mark();
OG_SW	Working_S1->Mark();\
	Working_S2->Mark();\
	Working_S3->Mark();\
	failed_SW_S1->Mark();\
	failed_SW_S2->Mark();\
	failed_SW_S3->Mark();
Range Study Variable Assignments for Study **CC_study** in Project **SDNbackbone**:

Variable	Type	Range Type	Range	Increment	Increment Type	Function	n
K_th	int	Fixed	8	-	-	-	-
N_proc	int	Fixed	10	-	-	-	-
hw_cvg	double	Fixed	0.97	-	-	-	-
hw_fail_rate	double	Fixed	1.0E-8	-	-	-	-
hw_rcv_rate	double	Fixed	2.0E-5	-	-	-	-
man_fail_rate	double	Fixed	1.0E-6	-	-	-	-
man_rcv_rate	double	Fixed	9.0E-5	-	-	-	-
mis_fail_rate	double	Manual	[5.0E-6, 5.0E-7, 5.0E-8, 5.0E-9, 5.0E-10]	-	-	-	-
mis_rcv_rate	double	Fixed	9.0E-5	-	-	-	-
sw_cvg	double	Fixed	0.9	-	-	-	-
sw_fail_rate	double	Fixed	2.0E-5	-	-	-	-
sw_rcv_rate	double	Fixed	0.006	-	-	-	-
tmi_cvg	double	Manual	[0.9, 0.93, 0.95, 0.97, 1.0]	-	-	-	-
uhw_rcv_rate	double	Fixed	6.0E-4	-	-	-	-
usw_rcv_rate	double	Fixed	6.0E-4	-	-	-	-

Performance Variable: **CC_unavailability**

Top Level Model Information	Model Name	Model Type
Child Model Name	cc	SAN Model

Performance Variable: **U_cc**

(Reward is over all Available Models)

```
if (( (cc->Active_proc_C1->Mark())<K_th || cc->failed_MAN_C1->Mark()==1 || cc->sys_down_C1->Mark()==1 || cc->sw_sys_down_C1->Mark()==1)
  && (cc->Active_proc_C2->Mark())<K_th || cc->failed_MAN_C2->Mark()==1 || cc->sys_down_C2->Mark()==1 || cc->sw_sys_down_C2->Mark()==1)
  || cc->MIS->Mark()==1)
  return(1);
else{
  return(0);
}
```

 Simulator Statistics

Type	Time Averaged Interval of Time
Options	Estimate Mean
Include Lower Bound on Interval Estimate	
Include Upper Bound on Interval Estimate	
Estimate out of Range Probabilities	
Confidence Level is Relative	

| Parameters | Start Time | 0.0 |
| Stop Time | 10000000, |

| Confidence | Confidence Level | 0.95 |
| Confidence Interval | 0.1 |

Range Study Variable Assignments for Study **CSL_study** in Project **SDNbackbone**:

Variable	Type	Range Type	Range	Increment	Increment Type	Function	n
K_th	int	Fixed	8	-	-	-	-
N_proc	int	Fixed	10	-	-	-	-
cis_fail_rate	double	Manual	[2.0E-4, 2.0E-5, 2.0E-6, 2.0E-7, 2.0E-8]	-	-	-	-
cis_rcv_rate	double	Fixed	0.002	-	-	-	-
Performance Variable Model: CSL_unavailability

Top Level Model Information	Child Model Name	Model Type
	csl	SAN Model

Performance Variable: U_csl

Impulse Functions

(Reward is over all Available Models)

```c
if (csl->Working_S->Mark()==0 && csl->Working_L->Mark()==0 &&
    (csl->Active_proc->Mark())<K_th || csl->failed_MAN->Mark()==1 || csl->sys_down->Mark()==1 || csl->sw_sys_down->Mark()==1 || csl->CIS->Mark()==1){
    return(1);
} else{
    return(0);
}
```

Simulator Statistics

Type	Time Averaged Interval of Time
Estimate Mean	
Include Lower Bound on Interval Estimate	
Include Upper Bound on Interval Estimate	
Estimate out of Range Probabilities	
Confidence Level is Relative	

Parameters

- **Start Time**: 0.0
- **Stop Time**: 10000000
- **Confidence**: 0.95
- **Confidence Interval**: 0.1

Range Study Variable Assignments for Study CSS_study in Project SDNbackbone:

Variable	Type	Range Type	Range	Increment	Increment Type	Function	n
K_th	int	Fixed	8	-	-	-	
N_proc	int	Fixed	10	-	-	-	
cis_fail_rate	double	Manual	[2.0E-4, 2.0E-5, 2.0E-6, 2.0E-7, 2.0E-8]	-	-	-	
Performance Variable Model: CSS_unavailability

Top Level Model Information	Child Model Name	css
Model Type	SAN Model	

Performance Variable: U_css

Affecting Models
- css

Impulse Functions

Reward Function

(Reward is over all Available Models)

```c
if (css->Working_S1->Mark()==0 && css->Working_S2->Mark()==0 &&
    (css->Active_proc->Mark()<K_th || css->failed_MAN->Mark()==1 || css->sys_down->Mark()==1 || css->sw_sys_down->Mark()==1) || css->CIS->Mark()==1 || css->CIS_S1->Mark()==1 || css->CIS_S2->Mark()==1){
    return(1);
} else{
    return(0);
}
```

Simulator Statistics

Options	Time Averaged Interval of Time
Estimate Mean	
Include Lower Bound on Interval Estimate	
Include Upper Bound on Interval Estimate	
Estimate out of Range Probabilities	
Confidence Level is Relative	

Parameters

- **Start Time**: 0.0
- **Stop Time**: 10000000
- **Confidence Level**: 0.95

Confidence Interval
- **Confidence Level**: 0.95
- **Confidence Interval**: 0.1

Range Study Variable Assignments for Study C_study in Project SDNbackbone:

Variable	Type	Range Type	Range	Increment	Increment Type	Function	n
K_th	int	Fixed	8	-	-	-	-
N_proc	int	Fixed	10	-	-	-	-
hw_cvg	double	Fixed	0.97	-	-	-	-
hw_fail_rate	double	Fixed	1.0E-8	-	-	-	-
Variable	Type	Range Type	Range	Increment	Increment Type	Function	n
--------------	----------	------------	----------------------------	-----------	----------------	----------	---
geo_fail_rate	double	Manual	[1.0E-5, 1.0E-6, 1.0E-7, 1.0E-8, 1.0E-9]	-	-	-	
geo_rcv_rate	double	Fixed	0.01	-	-	-	
link_fail_rate	double	Fixed	1.0E-6	-	-	-	
link_rcv_rate	double	Fixed	0.01	-	-	-	
phy_fail_rate	double	Manual	[1.0E-5, 1.0E-6, 1.0E-7, 1.0E-8, 1.0E-9]	-	-	-	
phy_rcv_rate	double	Fixed	0.003	-	-	-	

Performance Variable Model: **C_unavailability**

Top Level Model Information

Child Model Name	SDNcontroller
Model Type	SAN Model

Performance Variable: **U_c**

Affecting Models

| SDNcontroller |

Impulse Functions

(Reward is over all Available Models)

Reward Function

```c
if (SDNcontroller->Active_proc->Mark()<K_th || SDNcontroller->failed_MAN->Mark()==1 || SDNcontroller->sys_down->Mark()==1 || SDNcontroller->sw_sys_down->Mark()==1)
    return(1);
else{
    return(0);
}
```

Simulator Statistics

Type	Time Averaged Interval of Time
Options	Estimate Mean
Include Lower Bound on Interval Estimate	
Include Upper Bound on Interval Estimate	
Estimate out of Range Probabilities	
Confidence Level is Relative	

Parameters

| Start Time | 0.0, |
| Stop Time | 10000000, |

Confidence

| Confidence Level | 0.95 |
| Confidence Interval | 0.1 |

Range Study Variable Assignments for Study **LL_study** in Project **SDNbackbone**:

Variable	Type	Range Type	Range	Increment	Increment Type	Function	n
geo_fail_rate	double	Manual	[1.0E-5, 1.0E-6, 1.0E-7, 1.0E-8, 1.0E-9]	-	-	-	
geo_rcv_rate	double	Fixed	0.01	-	-	-	
link_fail_rate	double	Fixed	1.0E-6	-	-	-	
link_rcv_rate	double	Fixed	0.01	-	-	-	
phy_fail_rate	double	Manual	[1.0E-5, 1.0E-6, 1.0E-7, 1.0E-8, 1.0E-9]	-	-	-	
phy_rcv_rate	double	Fixed	0.003	-	-	-	

Performance Variable Model: **LL_unavailability**

Top Level Model Information

Child Model Name	II
Model Type	SAN Model

Performance Variable: **U_LI**

Affecting Models

| II |

Impulse Functions

Reward Function

(Reward is over all Available Models)
if (ll->Working_L1->Mark()==0 && ll->Working_L2->Mark()==0) {
 return(1);
} else {
 return(0);
}

Simulator Statistics

Type	Time Averaged Interval of Time	
Options		
Estimate Mean		
Include Lower Bound on Interval Estimate		
Include Upper Bound on Interval Estimate		
Estimate out of Range Probabilities		
Confidence Level is Relative		
Parameters	Start Time	0.0,
Confidence	Confidence Level	0.95
	Confidence Interval	0.1

Range Study Variable Assignments for Study **RLL_study** in Project **SDNbackbone**:

Variable	Type	Range Type	Range	Increment	Increment Type	Function	n
chw_cvg	double	Fixed	0.97	-	-	-	-
chw_fail_rate	double	Fixed	9.0E-9	-	-	-	-
chw_rcv_rate	double	Fixed	2.0E-5	-	-	-	-
fhw_fail_rate	double	Fixed	9.0E-9	-	-	-	-
fhw_rcv_rate	double	Fixed	2.0E-5	-	-	-	-
fhwt_fail_rate	double	Fixed	2.0E-6	-	-	-	-
fhwt_rcv_rate	double	Fixed	0.006	-	-	-	-
geo_fail_rate	double	Manual	[9.0E-8, 9.0E-9, 9.0E-10, 9.0E-11, 9.0E-12]	-	-	-	
geo_rcv_rate	double	Fixed	7.0E-6	-	-	-	-
link_fail_rate	double	Fixed	1.0E-6	-	-	-	-
link_rcv_rate	double	Fixed	0.01	-	-	-	-
man_fail_rate	double	Fixed	5.0E-7	-	-	-	-
man_rcv_rate	double	Fixed	9.0E-5	-	-	-	-
phy_fail_rate	double	Manual	[1.0E-5, 1.0E-6, 1.0E-7, 1.0E-8, 1.0E-9]	-	-	-	
phy_rcv_rate	double	Fixed	0.003	-	-	-	-
sw_fail_rate	double	Fixed	2.0E-6	-	-	-	-
sw_rcv_rate	double	Fixed	0.006	-	-	-	-
uchw_rcv_rate	double	Fixed	3.0E-5	-	-	-	-

Performance Variable Model: **RLL_unavailability**

Top Level Model Information	Child Model Name	rll
Model Type	SAN Model	

Performance Variable: **U_rll**

Affecting Models	rll
Impulse Functions	
Reward Function	
(Reward is over all Available Models)

if (rll->Working_L1->Mark()==0 && rll->Working_L2->Mark()==0 && rll->Working_R->Mark()==0 &&
 rll->spare_CHW->Mark()==0)
{
 return(1);
} else {
 return(0);
}

Simulator Statistics

Type	Time Averaged Interval of Time
Options	
Estimate Mean	
Include Lower Bound on Interval Estimate	
Variable Assignments for Study RRL_study in Project SDNbackbone:

Variable	Type	Range Type	Range	Increment	Increment Type	Function	n
chw_cvg	double	Fixed	0.97				
chw_fail_rate	double	Fixed	9.0E-9				
chw_rcv_rate	double	Fixed	2.0E-5				
fhw_fail_rate	double	Fixed	9.0E-9				
fhw_rcv_rate	double	Fixed	2.0E-5				
fhwt_fail_rate	double	Fixed	2.0E-6				
fhwt_rcv_rate	double	Fixed	0.006				
geo_fail_rate	double	Manual	[9.0E-8, 9.0E-9, 9.0E-10, 9.0E-11, 9.0E-12]				
geo_rcv_rate	double	Fixed	7.0E-6				
heq_cvg	double	Manual	[0.98, 0.99, 1.0]				
link_fail_rate	double	Fixed	1.0E-6				
link_rcv_rate	double	Fixed	0.01				
man_fail_rate	double	Fixed	5.0E-7				
man_rcv_rate	double	Fixed	9.0E-5				
sw_fail_rate	double	Fixed	2.0E-6				
sw_rcv_rate	double	Fixed	0.006				
uchw_rcv_rate	double	Fixed	3.0E-5				

Performance Variable Model: RRL_unavailability

Top Level Model Information

Child Model Name	Model Type
rrl	SAN Model

Performance Variable: U_rrl

Reward Function

(Reward is over all Available Models)

```c
if (rrl->Working_S1->Mark()==0 & rrl->Working_S2->Mark()==0 & rrl->Working_L->Mark()==0 &
    rrl->spare_CHW_S1->Mark()==0 & rrl->spare_CHW_S2->Mark()==0){
    return(1);
} else{
    return(0);
}
```

Simulator Statistics

Type	Time Averaged Interval of Time
Options	Estimate Mean
	Include Lower Bound on Interval Estimate
	Include Upper Bound on Interval Estimate
	Estimate out of Range Probabilities
	Confidence Level is Relative

Parameters	Estimate Mean
Start Time	0.0
Stop Time	100000000

Confidence	Estimate Mean
Confidence Level	0.95
Confidence Interval	0.1
Range Study Variable Assignments for Study **RRR_study in Project SDNbackbone**

Variable	Type	Range Type	Range	Increment	Increment Type	Function	n
chw_cvg	double	Fixed	0.97	-	-	-	-
chw_fail_rate	double	Fixed	9.0E-9	-	-	-	-
chw_rcv_rate	double	Fixed	2.0E-5	-	-	-	-
fhw_fail_rate	double	Fixed	9.0E-9	-	-	-	-
fhw_rcv_rate	double	Fixed	2.0E-5	-	-	-	-
fhwt_fail_rate	double	Fixed	2.0E-6	-	-	-	-
fhwt_rcv_rate	double	Fixed	0.006	-	-	-	-
heq_cvg	double	Manual	[0.98, 0.99, 1.0]	-	-	-	-
man_fail_rate	double	Fixed	5.0E-7	-	-	-	-
man_rcv_rate	double	Fixed	9.0E-5	-	-	-	-
sw_fail_rate	double	Fixed	2.0E-6	-	-	-	-
sw_rcv_rate	double	Fixed	0.006	-	-	-	-
uchw_rcv_rate	double	Fixed	3.0E-5	-	-	-	-

Performance Variable Model: **RRR_unavailability**

Top Level Model Information	Child Model Name	rrr	Model Type	SAN Model

Performance Variable: **U_rrr**

Affecting Models

rr

Impulse Functions

(Reward is over all Available Models)

```c
if (rrr->Working_S1->Mark()==0 && rrr->Working_S2->Mark()==0 && rrr->Working_S3->Mark()==0 && rrr->spare_CHW_S1->Mark()==0 && rrr->spare_CHW_S2->Mark()==0 && rrr->spare_CHW_S3->Mark()==0){
    return(1);
}
else{
    return(0);
}
```

Reward Function

(Reward is over all Available Models)

```c
if (rrr->Working_S1->Mark()==0 && rrr->Working_S2->Mark()==0 && rrr->Working_S3->Mark()==0 && rrr->spare_CHW_S1->Mark()==0 && rrr->spare_CHW_S2->Mark()==0 && rrr->spare_CHW_S3->Mark()==0){
    return(1);
}
else{
    return(0);
}
```

Simulator Statistics

Type	Time Averaged Interval of Time
Estimate Mean	
Include Lower Bound on Interval Estimate	
Include Upper Bound on Interval Estimate	
Estimate out of Range Probabilities	
Confidence Level is Relative	

Parameters	Options
Start Time	Estimate Mean
Stop Time	Include Lower Bound on Interval Estimate
Confidence	Include Upper Bound on Interval Estimate
Confidence Interval	Estimate out of Range Probabilities

Range Study Variable Assignments for Study **RR_study in Project SDNbackbone**

Variable	Type	Range Type	Range	Increment	Increment Type	Function	n
chw_cvg	double	Fixed	0.97	-	-	-	-
chw_fail_rate	double	Fixed	9.0E-9	-	-	-	-
chw_rcv_rate	double	Fixed	2.0E-5	-	-	-	-
fhw_fail_rate	double	Fixed	9.0E-9	-	-	-	-
fhw_rcv_rate	double	Fixed	2.0E-5	-	-	-	-
fhwt_fail_rate	double	Fixed	2.0E-6	-	-	-	-
fhwt_rcv_rate	double	Fixed	0.006	-	-	-	-
geo_fail_rate	double	Manual	[9.0E-8, 9.0E-9, 9.0E-10, 9.0E-11, 9.0E-12]	-	-	-	-
geo_rcv_rate	double	Fixed	7.0E-6	-	-	-	-
man_fail_rate	double	Manual	[5.0E-5, 5.0E-6, 5.0E-7, 5.0E-8]	-	-	-	-
Performance Variable Model: RR_unavailability

Top Level Model Information
- **Child Model Name**: rr
- **Model Type**: SAN Model

Performance Variable: U_rr

Affecting Models: rr

Impulse Functions

(Reward is over all Available Models)

```cpp
if (rr->Working_S1->Mark()==0 && rr->Working_S2->Mark()==0 &&
    rr->spare_CHW_S1->Mark()==0 && rr->spare_CHW_S2->Mark()==0)
    return(1);
else
    return(0);
```

Reward Function

Type: Time Averaged Interval of Time

- **Options**:
 - Estimate Mean
 - Include Lower Bound on Interval Estimate
 - Include Upper Bound on Interval Estimate
 - Estimate out of Range Probabilities
 - Confidence Level is Relative

Parameters:
- **Start Time**: 0.0
- **Stop Time**: 10000000
- **Confidence Level**: 0.95
- **Confidence Interval**: 0.1

Model: SDNcontroller

Place Attributes:

Place Names	Initial Markings
Active_proc	N_proc
failed_HW	0
failed_MAN	0
failed_SW	0
sw_sys_down	0
sys_down	0

Timed Activity: HW_F1

Rate

Active_proc->Mark() * hw_fail_rate

Activation Predicate: (none)

Reactivation Predicate: (none)

Case Distributions

- **case 1**
  ```cpp
  if (sys_down->Mark()==0 && sw_sys_down->Mark()==0 && failed_MAN->Mark()==0)
      return(1-hw_cvg);
  else
      return(0);
  ```

- **case 2**
```
if (sys_down->Mark() == 0 && sw_sys_down->Mark() == 0 && failed_MAN->Mark() == 0)
    return(hw_cvg);
else
    return(1);
```

Timed Activity	Distribution Parameters	Rate
HW_F2		hw_fail_rate * failed_SW->Mark()
	Activation Predicate	(none)
	Reactivation Predicate	(none)

Timed Activity	Distribution Parameters	Rate
HW_R		hw_rcv_rate
	Activation Predicate	(none)
	Reactivation Predicate	(none)

Timed Activity	Distribution Parameters	Rate
MAN_F		man_fail_rate
	Activation Predicate	(none)
	Reactivation Predicate	(none)

Timed Activity	Distribution Parameters	Rate
MAN_R		man_rcv_rate
	Activation Predicate	(none)
	Reactivation Predicate	(none)

Timed Activity	Distribution Parameters	Rate
SW_F		if(Active_proc->Mark() >= K_th) return(sw_fail_rate); else return(sw_fail_rate * Active_proc->Mark());
	Activation Predicate	(none)
	Reactivation Predicate	(none)

Case Distributions
1-sw_cvg
case 2
sw_cvg

Timed Activity	Distribution Parameters	Rate
SW_R		sw_rcv_rate
	Activation Predicate	(none)
	Reactivation Predicate	(none)

Timed Activity	Rate
UHW_R	
Distribution Parameters: uhw_rcv_rate
Activation Predicate: (none)
Reactivation Predicate: (none)

Timed Activity: USW_R
Distribution Parameters: Rate
Activation Predicate: (none)
Reactivation Predicate: (none)

Input Gate: IG_MAN
Predicate: (failed_MAN->Mark() == 0 && sys_down->Mark() == 0 && sw_sys_down->Mark() == 0)
Function: ;

Input Gate: IG_SW
Predicate: (failed_MAN->Mark() == 0 && sys_down->Mark() == 0 && sw_sys_down->Mark() == 0 && Active_proc->Mark() > 0)
Function: Active_proc->Mark()--;

Output Gate: OG_MAN
Function: Active_proc->Mark() = N_proc - failed_HW->Mark();
failed_SW->Mark()=0;

Output Gate: OG_SD
Function: failed_HW->Mark()++;
Active_proc->Mark() = N_proc - failed_HW->Mark();
failed_SW->Mark()=0;

Output Gate: OG_SSD
Function: Active_proc->Mark() = N_proc - failed_HW->Mark();
failed_SW->Mark()=0;

Range Study Variable Assignments for Study SLL_study in Project SDNbackbone:

Variable	Type	Range Type	Range	Increment	Increment Type	Function
fhw_fail_rate	double	Fixed	9.0E-9	-	-	-
fhw_rcv_rate	double	Fixed	2.0E-5	-	-	-
fhw_tfail_rate	double	Fixed	2.0E-6	-	-	-
fhw_trcv_rate	double	Fixed	0.006	-	-	-
geo_fail_rate	double	Manual	[9.0E-8, 9.0E-9, 9.0E-10, 9.0E-11, 9.0E-12]	-	-	-
geo_rcv_rate	double	Fixed	7.0E-6	-	-	-
link_fail_rate	double	Fixed	1.0E-6	-	-	-
link_rcv_rate	double	Fixed	0.01	-	-	-
phy_fail_rate	double	Manual	[1.0E-5, 1.0E-6, 1.0E-7, 1.0E-8, 1.0E-9]	-	-	-
phy_rcv_rate	double	Fixed	0.003	-	-	-
sw_fail_rate	double	Fixed	2.0E-20	-	-	-
sw_rcv_rate	double	Fixed	0.006	-	-	-

Performance Variable Model: SLL_unavailability
Top Level Model Information
Child Model Name: sll
Model Type: SAN Model
Performance Variable: U_sll

Affecting Models: sll

Impulse Functions:

(Reward is over all Available Models)
if (sll->Working_L1->Mark()==0 && sll->Working_L2->Mark()==0 && sll->Working_S->Mark()==0){
 return(1);
} else{
 return(0);
}

Reward Function:

Simulator Statistics:

Type Time Averaged Interval of Time

Options

Estimate Mean
Include Lower Bound on Interval Estimate
Include Upper Bound on Interval Estimate
Estimate out of Range Probabilities
Confidence Level is Relative

Parameters

Start Time 0.0,
Stop Time 10000000,
Confidence Level 0.95
Confidence Interval 0.1

Range Study Variable Assignments for Study SSL_study in Project SDNbackbone:

Variable	Type	Range Type	Range	Increment	Increment Type	Function	n
fhw_fail_rate	double	Fixed	9.0E-9	-	-	-	-
fhw_rcv_rate	double	Fixed	2.0E-5	-	-	-	-
fhwt_fail_rate	double	Fixed	2.0E-6	-	-	-	-
fhwt_rcv_rate	double	Fixed	0.006	-	-	-	-
geo_fail_rate	double	Manual	[9.0E-8, 9.0E-9, 9.0E-10, 9.0E-11, 9.0E-12]	-	-	-	-
geo_rcv_rate	double	Fixed	7.0E-6	-	-	-	-
heq_cvg	double	Manual	[0.98, 0.99, 1.0]	-	-	-	-
link_fail_rate	double	Fixed	1.0E-6	-	-	-	-
link_rcv_rate	double	Fixed	0.01	-	-	-	-
sw_fail_rate	double	Fixed	2.0E-20	-	-	-	-
sw_rcv_rate	double	Fixed	0.006	-	-	-	-

Performance Variable Model: SSL_unavailability

Top Level Model Information

Child Model Name: ssl
Model Type: SAN Model

Performance Variable: U_ssl

Affecting Models: sll

Impulse Functions:

(Reward is over all Available Models)
if (ssl->Working_S1->Mark()==0 && ssl->Working_S2->Mark()==0 && ssl->Working_L->Mark()==0){
 return(1);
} else{
 return(0);
}

Reward Function:

Simulator Statistics:

Type Time Averaged Interval of Time

Options

Estimate Mean
Include Lower Bound on Interval Estimate
Include Upper Bound on Interval Estimate
Estimate out of Range Probabilities
Confidence Level is Relative

Parameters

Start Time 0.0,
Range Study Variable Assignments for Study SSS_study in Project SDNbackbone:

Variable	Type	Range Type	Range	Increment	Increment Type	Function	n
fhw_fail_rate	double	Fixed	9.0E-9				
fhw_rcv_rate	double	Fixed	2.0E-5				
fhwt_fail_rate	double	Fixed	2.0E-6				
fhwt_rcv_rate	double	Fixed	0.006				
heq_cvg	double	Manual	[0.98, 0.99, 1.0]				
sw_fail_rate	double	Fixed	2.0E-20				
sw_rcv_rate	double	Fixed	0.006				

Performance Variable Model: SSS_unavailability

Top Level Model Information
- Child Model Name: `sss`
- Model Type: SAN Model

Performance Variable: U_sss

Impulse Functions

Reward Function

(Reward is over all Available Models)

```c
if (sss->Working_S1->Mark()==0 && sss->Working_S2->Mark()==0 && sss->Working_S3->Mark()==0){
    return(1);
} else{
    return(0);
}
```

Simulator Statistics

Options	Time Averaged Interval of Time
Estimate Mean	
Include Lower Bound on Interval Estimate	
Include Upper Bound on Interval Estimate	
Estimate out of Range Probabilities	
Confidence Level is Relative	

Parameters	Start Time	Stop Time	Confidence
	0.0,	10000000	0.95

Range Study Variable Assignments for Study SS_study in Project SDNbackbone:

Variable	Type	Range Type	Range	Increment	Increment Type	Function	n
fhw_fail_rate	double	Fixed	9.0E-9				
fhw_rcv_rate	double	Fixed	2.0E-5				
fhwt_fail_rate	double	Fixed	2.0E-6				
fhwt_rcv_rate	double	Fixed	0.006				
geo_fail_rate	double	Manual	[9.0E-8, 9.0E-9, 9.0E-10, 9.0E-11, 9.0E-12]				
geo_rcv_rate	double	Fixed	7.0E-6				
mis_fail_rate	double	Manual	[5.0E-6, 5.0E-7, 5.0E-8, 5.0E-9, 5.0E-10]				
mis_rcv_rate	double	Fixed	9.0E-5				
sw_fail_rate	double	Fixed	2.0E-20				
sw_rcv_rate	double	Fixed	0.006				
tmi_cvg	double	Manual	[0.9, 0.93, 0.95, 0.97, 1.0]				
Performance Variable Model: SS_unavailability

Top Level Model Information	Child Model Name	ss
Model Type		SAN Model

Performance Variable: U_ss

Affecting Models: ss

Impulse Functions

Reward Function *(Reward is over all Available Models)*

```c
if (ss->Working_S1->Mark()==0 && ss->Working_S2->Mark()==0){
    return(1);
} else{
    return(0);
}
```

Simulator Statistics

Type	Time Averaged Interval of Time
Options	Include Lower Bound on Interval Estimate
	Include Upper Bound on Interval Estimate
	Estimate out of Range Probabilities
	Confidence Level is Relative

Parameters	Start Time	0.0
	Stop Time	10000000
Confidence	Confidence Level	0.95
	Confidence Interval	0.1