Synthesis and Nonlinear Optical Behavior of Thermally Stable Chromophores Based on 9,9-Dimethyl-9H-fluoren-2-amine: Improving Intrinsic Hyperpolarizability through Modulation of “Push–Pull”

Shivani, Akriti Mishra, Paramjit Kaur,* and Kamaljit Singh*

ABSTRACT: Improvement in the first hyperpolarizability \((\beta_{\text{hrs}}) \) as well as intrinsic hyperpolarizability \((\beta_{\text{int}}) \) of chromophores based on 9,9-dimethyl-9H-fluoren-2-amine through modulation of the conjugation pathway is described. A series of six novel chromophores with “linear” conjugation showed significant enhancement of \(\beta_{\text{hrs}} \) as well as \(\beta_{\text{int}} \) compared to the counterparts lacking a “linear” conjugation but having an identical combination of donor, acceptor, and the intervening \(\pi \)-conjugated linker. The hyperpolarizability \((\beta_{\text{hrs}}) \) as well as \(\beta_{\text{int}} \) values of the new series measured using hyper-Rayleigh scattering exceeded the apparent limit set by the latter set of fluorene-based chromophores. The experimental results are analyzed and interpreted in the context of linear optical properties, single-crystal X-ray analysis, electrochemistry, etc. and corroborated by theoretical studies. We find that modulation of the “push–pull” of the conjugation pathway in these donor–acceptor chromophores compares favourably with the corresponding changes in the optical gaps, transition dipole moments, and dipole moment difference between the ground and excited states.

1. INTRODUCTION

The demand for nonlinear optical (NLO) materials with superior properties has created enormous interest among the scientific community due to their application in optical switching,1–3 sensor protection,4 light modulation,5,6 memory storage devices,7 information processing,8,9 telecommunications,10 and similar applications. It has sensitized investigations in the design of new chemical entities having ultrafast response (short response time) as well as high first (quadratic) hyperpolarizability (\(\beta \), second-order nonlinear polarizability).11,12 One of the strategies for molecular engineering to design the small molecular materials is to append the electron-rich and electron-deficient groups at the two extremes of a \(\pi \)-conjugated linker unit to produce 1D dipolar donor–\(\pi \)–acceptor (D–\(\pi \)–A)-type architectures.13,14 Optimization of molecular NLO response of such dyads is important as these constitute fundamental building blocks for the bulk materials with bulk nonlinear susceptibility.15 For enhancing the molecular first hyperpolarizability, noncentrosymmetry16,17 of the compounds is an essential prerequisite. However, most “push–pull”-type D–\(\pi \)–A chromophores are inherently centrosymmetric unless an element of dissymmetry is incorporated.16,18 Alternatively, when incorporated in noncentrosymmetric media, such chromophores show second-order nonlinear bulk susceptibility.19 Thus, the centrosymmetric chromophores are also valuable NLO-phores, and it has led to the synthesis and understanding of the NLO behavior of several classes of centrosymmetric chromophores.20 The structural features of such integrated dyads allow fine-tuning of the energies of the frontier molecular orbital (FMO) levels and the associated HOMO–LUMO gap, light absorption and emission abilities, intramolecular charge transfer (ICT), and intermolecular charge separation and recombination through the flexible structural adjustability by tuning of the length and path of the \(\pi \)-conjugation, which constitute important attributes of efficient NLO-phores. In this context, structure modification of several classes of molecular scaffolds and tuning of the \(\pi \)-conjugation by modulating its length and/or strength of donor and acceptor units have resulted in highly efficient NLO-phores.21–23 One of the elements of \(\pi \)-conjugation that has rather scarcely been addressed is the understanding of the influence of the path (linear vs nonlinear, Figure 1) of \(\pi \)-conjugation23,24 within the donor–\(\pi \)–acceptor

Received: July 29, 2022
Accepted: October 12, 2022
Published: October 21, 2022
class of NLO materials for obtaining high β. There are, however, several reports on the influence of appending groups of variable strength on the donor or acceptor moieties as well as changing the length of the π-conjugated bridge linking the donor and the acceptor.

In continuation of our interest in designing $D-\pi-A$ dyads as small-molecule-based NLO materials, we herein demonstrate a direct comparison of the π-conjugation path (linear vs nonlinear) and dependence of nonlinear efficiency on a linear conjugation pathway. We have compared the first hyperpolarizability (β_{HRS}) as well as the intrinsic first hyperpolarizability (β_{int}) of the chromophores based on 9,9-dimethyl-9H-fluoren-2-amine, possessing a linear conjugation path with a “design-deficient” series of chromophores, having similar molecular size, same number of conjugating electrons, and donor–acceptor groups attached at different positions on the fluorene unit, resulting in a “nonlinear” conjugation path. We report the synthesis, photophysical properties, electrochemistry, thermogravimetric studies, as well as NLO behavior of these compounds. Additionally, the single-crystal X-ray structures of two chromophores were determined for an unambiguous assignment of structures as well as to correlate the β_{HRS} with the solid-state structures. Further, we demonstrate unequivocal superiority of the NLO response of the current, “linear” molecular design over the design-deficient “nonlinear” chromophores of the same chemical constitution.

2. RESULTS AND DISCUSSION

The design strategy and the structures of linearly conjugated $D-\pi-A$ chromophores are shown in Figure 2. The chromophores are based on fluorene units, which are appended with a dimethylamino donor and different acceptors including dicyanovinyl, 2-(3-vinyl-5,5-dimethylcyclohex-2-en-1-ylidene)malononitrile, and cyanostilbene groups. The synthesis of chromophores SS1–SS5 (Figure 2) started from a common precursor 2-(dimethylamino)-9,9-dimethyl-9H-fluorene-3-carbaldehyde 8 obtained through the route outlined in Scheme 1. Thus, nucleophilic substitution of the bromo group of 2-bromo-9,9-dimethyl-7-nitro-9H-fluorene 4 with CuCN yielded 9,9-dimethyl-7-nitro-9H-fluorene-2-carbonitrile 5 in high yield. Reduction of the nitro group of 5 using hydrazine furnished 7-amino-9,9-dimethyl-9H-fluorene-2-carbonitrile 6, which, upon reductive methylation using paraformaldehyde and sodium cyanoborohydride yielded the dimethyl derivative, 7-(dimethylamino)-9,9-dimethyl-9H-fluorene-2-carbonitrile 7.

Finally, reduction of CN to CHO was achieved using disobutylaluminium hydride (DIBAL) to obtain the intermediate 7-(dimethylamino)-9,9-dimethyl-9H-fluorene-2-carbaldehyde 8 in 69% yield. Knoevenagel condensation of 8 with different active methylene compounds malononitrile, 2-(3,5,5-trimethylcyclohex-2-en-1-ylidene)malononitrile [obtained through Knoevenagel condensation of 3,5,5-trimethylcyclohex-2-en-1-one (isophorone) and malononitrile], 2-(4-bromophenyl)acetonitrile, and 2-(4-nitrophenyl)acetonitrile using piperidine or KOH as a base yielded 2-((7-(dimethylamino)-9,9-dimethyl-9H-fluorene-2-yl)methylene)malononitrile (SS1, 69%), (E)-2-(3-(7-(dimethylamino)-9,9-dimethyl-9H-fluorene-2-yl)vinyl)-5,5-dimethylcyclohex-2-en-1-ylidene)malononitrile (SS2, 78%), (E)-2-(4-bromophenyl)-3-(7-(dimethylamino)-9,9-dimethyl-9H-fluorene-2-yl)acrylonitrile (SS3, 80%), and (E)-3-(7-(dimethylamino)-9,9-dimethyl-9H-fluorene-2-yl)-acrylonitrile (SS4, 81%).

Figure 2. Design strategy for $D-\pi-A$ chromophores based on the fluorene units and structures of different chromophores.
Meanwhile, microwave-assisted nucleophilic substitution of Br in SS3 with CuCN yielded (E)-4-(1-cyano-2-(7-(dimethylamino)-9,9-dimethyl-9H-fluoren-2-yl)vinyl)benzonitrile (SS5, 56%). All compounds were fully characterized using spectroscopic data (Figures S1–S30, see the Supporting Information). An unambiguous proof of the structure of SS3 and SS4 was obtained by recording single-crystal X-ray structure determination.

2.1. X-ray Crystallographic Characterization. Crystals of SS3 and SS4 suitable for single-crystal X-ray analysis were obtained by slow evaporation of the saturated solutions of the compounds in dichloromethane (DCM) layered at the top by light petroleum ether. The ORTEP diagrams of SS3 (CCDC number 2113758) and SS4 (CCDC number 2113759) along with atomic numbering are presented in Figure 3. The lattice parameters and other crystallographic data of the crystals are summarized in Table S1, see the Supporting Information. Compounds SS3 and SS4 crystallized in the triclinic crystal system with the P1 space group (Table S1, see the Supporting Information) and are centrosymmetric in the solid state. Therefore, these chromophores are not expected to show bulk NLO response, and only when incorporated into a suitable noncentrosymmetric matrix, these could show bulk nonlinear susceptibility. However, being inherently dipolar species, a pronounced NLO response at the molecular level was expected. In the crystal packing diagrams of SS3 and SS4 (Figure 4), antiparallel molecular dimers could be seen in the unit cells, and the most relevant intermolecular contacts (H-bonding, aromatic CH–π interaction, and shortest centroid-to-centroid distances in Å) are shown. In the three-dimensional crystal packing, the molecules assembled in such a way that the phenyl rings of the cyanostilbene units of one member of the dimeric ensemble were nearly perpendicular to the fluorene units of the neighboring molecules (Figure 4C,D). The fluorene units of all molecules, however, were coplanar and arranged in columns along the b-axis.

The molecules in the dimer of SS3 in the unit cell are held by the strong (3.144 Å, Figure 4A) intermolecular CH–π interactions between the phenyl ring of the stilbene unit and the CH of fluorene units. Likewise, hydrogen bonding (4.126 Å) involving Br and H atoms of the methyl group of N(CH₃)₂ of each member of the dimer in SS3 was also observed. Similarly, SS4 also displayed a supramolecular architecture because of the H-bonding interaction (3.140 Å) between the
NO$_2$ group of the acceptor of one molecule and the CH of the fluorene aromatic ring of the other molecule (Figure 4B). Additionally, it exhibited a strong CH–π interaction (3.171, 3.390 Å) between the phenyl ring of the stilbene and the CH of the fluorene units. At the same time, the crystal packing forces arising from an effective overlap of the acceptor units (p-Br-C$_6$H$_4$ in SS3 and p-NO$_2$-C$_6$H$_4$ in SS4) with the donor N,N-dimethyl aryl units in the crystal packing suggest a positive contribution toward the β$_{HRS}$ of these compounds. Further, the interactions represented by short distances (Figure 4C) between two stacks of antiparallel pairs of SS3 (5.662 Å between the closest phenyl rings of the fluorene units of two adjoining pairs and 5.657 Å between the nearest fluorene phenyl ring and p-Br-C$_6$H$_4$ ring of the adjoining pairs) and identical interdimer interactions in SS4 (Figure 4D) facilitate supramolecular staggered packing of the molecular asymmetric pairs in the crystal structure. These interdimer supramolecular interactions lead to the stabilization of the molecules and restrict the molecular rotations inhibiting the nonradiative energy dispersion.

Figure 4. Crystal packing of SS3 (A) and SS4 (B) showing intermolecular contacts (H-bonding, aromatic CH–π interaction, and shortest centroid-to-centroid distances in Å) of the antiparallel molecular dimers in the unit cells. Extended crystal packing diagrams of SS3 (C) and SS4 (D) viewed along the c-axis depicting stacking of the molecular dimers.
2.2. Photophysical Properties. 2.2.1. Linear Optical Behavior. The absorption spectra of the chromophores 8 and SS1–SS5 recorded in DCM are shown in Figure 5.

Chromophores SS1–SS5 showed intense low-energy (LE) bands peaking in the range 428–502 nm and a less intense high-energy (HE) band with wavelengths of maximum absorbance (λ_{max}) in the range 288–356 nm (Table 1). The molecular structures of the chromophores were optimized using the B3LYP/6-31G(d,p) basis set for each chromophore. The calculated electronic transitions and their relative contribution and oscillator strength are listed in Table S2 in the Supporting Information. For better visualization of the absorption data, the spectra were resolved using band fitting analysis (Table 1 and Figure S31, see the Supporting Information). The LE bands are attributed to ICT/donor acceptor (D → A) transitions originating from the N,N-dimethyl aryl donor group to the acceptors and are contributed dominantly $\pi \rightarrow \pi^*$ transitions (vide infra) between an occupied (HOMO + 1, HOMO) π-orbital located on the N,N-dimethylaminofluorene unit and the LUMO and/or LUMO + 1 energy levels (Table S2, see the Supporting Information) localized mainly on the σ-conjugated path as well as the acceptor (Figure S32, see the Supporting Information). From the orbital energy-level diagram (Figure 6), it is clear that the LUMO energy levels are more affected than the HOMOs upon altering the π-conjugation length as well as the strength of the acceptor. Chromophore 8 showed a broad absorption band centered at 384 nm, assigned as D → A transition, comprising two bands at 335 and 385 nm (resolved using Origin Pro 8.5, Table 1). Further, probing the influence of the electron-acceptor strength on the energies of the molecular orbitals involved in the transitions associated with HE and LE bands, it can be seen (Figure 6 and Tables 2 and S3, see the Supporting Information) that replacing the formyl group of SS1 (HE band: 288 nm, LE band: 488 nm) not only lowers the energy of the LUMO orbitals, significantly, but also stabilizes the HOMO orbitals, resulting a decrease in energy gap from 2.79 eV (8) to 2.15 eV (SS1) (Table 2). On moving from SS1 → SS2, both the HE and LE bands exhibited bathochromic shifts of 68 and 14 nm, respectively (Table 1), which reflected the combined effect of accepting a more conjugated and less accepting acceptor.

Figure 5. Electronic absorption spectra of chromophores 8 and SS1–SS5 (1 × 10$^{-5}$ M) recorded in DCM.

Figure 6. FMO energy-level diagram of 8 and SS1–SS5 showing HOMO–LUMO gap energies (eV) deduced from DFT calculations [B3LYP/6-31G(d,p)/CPCM model in DCM]. Experimental optical gap (eV) values are given in parentheses.

Table 1. Electronic Absorption (Experimental, Band-Fitted, and Theoretical) Bands, Emission Bands, and Quantum Yield of 8 and SS1–SS5 in DCM

	λ_{HE} (nm)	λ_{LE} (nm)	λ_{HE} (nm)	λ_{LE} (nm)	λ_{HE} (nm)	λ_{LE} (nm)	Φ_F (%)		
8	384 (29.0)	335 $[\pi \rightarrow \pi^*]$	35	488 (24.4)	385 $[D \rightarrow A]$	484	301	632	37
SS1	288 (8.5)	341 $[\pi \rightarrow \pi^*]$	345	428 (12.4)	356 $[D \rightarrow A]$	427	342	586	18
SS2	301 (4.6)	328 $[\pi \rightarrow \pi^*]$	305	468 (10.8)	301 (4.6)	467	371	512	38
SS3	340 (9.0)	310 $[\pi \rightarrow \pi^*]$	308	448 (14.4)	340 (9.0)	446	352	634	20

aRecorded at (1 × 10$^{-5}$ M) in DCM. be (105 M$^{-1}$ cm$^{-1}$) are shown in parentheses and assignments are shown in square brackets. cBand fitting (using Origin Pro 8.5). dCalculated via time-dependent-density functional theory (TD-DFT) at the B3LYP/6-31G (d,p)/CPCM model in DCM as a solvent (Gaussian 09). eλ_{em} at 290, 450, 480, 420, 450, and 450 nm for 8, SS1, SS2, SS3, SS4, and SS5, respectively, in DCM.
Table 2. Calculated HOMO–LUMO Energy of the LE Bands, Optical Gaps, and Electrochemical Data of 8 and SS1–SS5

	$E_{\text{HOMO}}^{\text{constr}}$ (eV)	$E_{\text{LUMO}}^{\text{constr}}$ (eV)	E_g (eV)	E_{HOMO} (eV)	E_{LUMO} (eV)	E_g^{optical} (eV)	E_g^{photo} (eV)	λ_{edge} (nm)
8	0.69	$-5.05/-5.05$	$-1.91/-1.87$	3.14/3.18	-5.09	-2.30	2.79	444
SS1	0.79	$-5.14/-5.11$	$-2.59/-2.61$	2.54/2.51	-5.19	-3.04	2.15	576
SS2	0.62	$-4.93/-4.94$	$-2.73/-2.745$	2.21/2.19	-5.02	-3.01	2.01	618
SS3	0.67	$-4.98/-4.96$	$-2.04/-2.18$	2.94/2.78	-5.07	-2.58	2.49	498
SS4	0.65	$-5.02/-5.05$	$-3.17/-3.14$	1.85/1.91	-5.05	-2.83	2.22	558
SS5	0.63	$-4.98/-5.00$	$-2.39/-2.39$	2.58/2.61	-5.03	-2.68	2.35	528

aUsing B3LYP/6-31G(d,p) level. bCalculated as $E_{\text{HOMO}} = -e[E_{\text{constr}} + 4.4]$. cCalculated as $E_{\text{LUMO}} = E_g^{\text{optical}} + E_{\text{HOMO}}$. dCalculated as $E_g^{\text{photo}} = 1239.8417/\lambda_{\text{edge}}$. Recorded in DCM ($1 \times 10^{-5}$ M).

Supporting Information), except for a slight blue shift in the LE bands of SS1–SS5, recorded in methanol (Figures S33–S38, see the Supporting Information). Although the presence of the donor and acceptor moieties in the dyads ensures the ground-state charge asymmetry, the solvent-dependent linear optical behavior SS1–SS5 pointed to insignificant solvatochromism, which meant a less-polar ground state of the molecules. The more polar and hydrogen bonding solvent methanol may however stabilize the molecules in the ground state, which accounts for the observed negative solvatochromism albeit of very small magnitude (Table 3). Dependence of the absorption maxima for the ICT bands of SS1–SS5 on the dielectric constant of the solvent is plotted (Figure S39a, see the Supporting Information), wherein very irregular changes in the position of ICT maxima were seen in solvents of different dielectric constant, attesting to the lack of a distinctive positive solvatochromism.

Probing the influence of the solvent polarity on the excited state of the compounds, significant shifts in the position of the emission bands in the fluorescence emission spectra were noted when the spectra were recorded in solvents of varying polarity (Figures 8b and S39b, see the Supporting Information). This meant (i) more polar excited states of these chromophores, (ii) a large difference in polarity and dipole moments of the ground and excited states, which was also confirmed by the dipole moments data computed by using TD-DFT calculations using the CPCM solvation model (Table S5, see the Supporting Information), (iii) existence of strong ICT and the LE band preferably stabilized by the solvating

Figure 7. Normalized emission spectra of chromophores 8 and SS1–SS5 (1×10^{-5} M) recorded in DCM.
effect of the polar solvent, and (iv) a high optical nonlinearity (β, first hyperpolarizability) (vide infra). The calculated HOMO–LUMO levels indicated that the strong solvatochromism arises from the ICT, wherein the ground state has significant localization of the electron density on the donor, N,N-dimethylamino part of the chromophores, while it shifts to the acceptor unit in the excited state (Figure S32, see the Supporting Information). In addition to the bathochromic shift in the emission bands, upon increasing solvent polarity, the emission intensities saw a diminishing trend (Table S6, see the Supporting Information).

Thus, maximum luminescence was noted in the least polar hexanes or toluene, which was nearly quenched in methanol. The emission spectra recorded in methanol exhibited negligible fluorescence with quantum yields (Φ_F) not exceeding the value of 0.24 (Tables S6 and S7, see the Supporting Information) compared to the highest quantum yield ($\Phi_F = 0.65$) of SS2 in DCM. This is attributed to the enhanced ICT, leading to nonradiative relaxation30 (Tables 3 and S7, see Supporting Information), which results in fluorescence quenching due to the increased probability of nonfluorescent twisted ICT state population in methanol (Figures S33–S38, see the Supporting Information). The evidence for the existence of a relaxed twisted ICT state in D–A chromophores has been demonstrated by means of femtosecond time-resolved fluorescence measurements.30,31

Time-correlated single-photon counting measurements showed that as the solvent polarity increased, the fluorescence

Table 3. Optical Properties of 8 and SS1–SS5 in Different Solvents

solvent	polarizability factor (Δf)	λ_{abs} (nm)b	extinction coeff (ϵ_{\max}) ($\text{M}^{-1} \cdot \text{cm}^{-1}$)	λ_{em} (nm)b	Stokes shift (nm)	quantum yield (Φ_F)a	fluorescence lifetime (τ_f) (ns)c	radiative rate (k_r) (s^{-1})	nonradiative rate (k_n) (s^{-1})
8									
toluene	0.01	376	30 700	434	58	0.27	1.90	4.20×10^3	3.71×10^3
DCM	0.22	384	29 000	490	106	0.37	2.69	1.37×10^4	2.34×10^4
MeOH	0.31	382	29 150	534	152	0.13	1.87	8.69×10^3	4.65×10^3
SS1									
toluene	0.01	478	32 300	554	76	0.42	1.20	3.31×10^3	4.57×10^3
DCM	0.22	488	24 400	632	130	0.43	2.85	1.51×10^4	2.00×10^4
MeOH	0.31	475	25 000	668	193	0.11	2.10	0.52×10^4	4.23×10^3
SS2									
toluene	0.01	502	14 500	629	127	0.57	1.49	3.82×10^3	2.89×10^3
DCM	0.22	502	13 800	780	228	0.65	2.19	2.97×10^4	1.59×10^4
MeOH	0.31	490	13 600	707	217	0.04	1.64	0.24×10^4	5.85×10^3
SS3									
toluene	0.01	430	18 000	520	90	0.21	1.59	1.32×10^4	4.97×10^4
DCM	0.22	428	12 400	586	146	0.18	1.76	1.02×10^4	4.66×10^4
MeOH	0.31	422	11 100	605	183	0.13	1.29	1.00×10^4	6.74×10^4
SS4									
toluene	0.01	452	12 800	598	146	0.26	0.45	5.78×10^4	1.64×10^4
DCM	0.22	468	10 800	512	151	0.38	2.69	1.41×10^4	2.30×10^4
MeOH	0.31	456	11 500	558	102	0.09	2.38	0.38×10^4	3.82×10^4
SS5									
toluene	0.01	450	13 300	558	108	0.21	1.35	1.56×10^4	5.85×10^3
DCM	0.22	448	14 400	654	165	0.20	1.78	1.12×10^4	5.50×10^3
MeOH	0.31	436	10 900	662	226	0.24	0.55	4.36×10^3	1.38×10^3

aLippert orientation polarizability factor, $\Delta f = (\epsilon - 1)/(2\epsilon + 1) = (\eta^2 - 1)/(2\eta^2 + 1)$, where ϵ is the dielectric constant and η is the refractive index, (ref 32). bDCM (1×10^{-5} M). cQuantum yields ($\Phi_F = [((F_\text{p})/(F_\text{r}) \times (1 - 10^{-4})/(1 - 10^{-5})) \times (\eta^2_r/\eta^2_r)]$ Φ_F, where F_p and F_r are the area of emission band of the chromophore and fluorescence used as a reference, A_p and A_r are the absorbance of chromophore and reference, η_r and η_r are the refractive index of solvent for chromophore and reference, and Φ_F is the quantum yield of reference (0.95 in 0.1 M aqueous NaOH). dDCM (1×10^{-5} M) excited at different excitation wavelengths (Table S8, see the Supporting Information). ek$_\text{p}$ = $k_{\text{r}}/k_{\text{n}} = (1 - \Phi_F)/\Phi_F$.

Figure 8. (a) UV–visible absorption and (b) emission behavior of SS1 (1×10^{-5} M) in different solvents.
lifetimes also increased from 0.45 to 1.90 ns in nonpolar toluene to 1.76–2.85 ns in moderately aprotic polar DCM (Table 3). However, in protic solvent, an opposite trend was noticed; that is, as the polarity increases from DCM to methanol (MeOH), a decrease in the fluorescence lifetime is observed (Tables 3 and S8 and Figures S33–S38, see the Supporting Information), which attributed to the hydrogen bonding in methanol. Further, the radiative rate (k_r) showed a significant decrease; in turn, the nonradiative rates (k_n) saw an increase with increasing solvent polarity (Table 3).

To further ascertain the strong ICT characteristic, quantitatively, the excited-state dipole moments were calculated using the Lippert–Mataga relation (eq 1), representing the relation between Stokes shift and solvent polarity parameters. Equation 1 is an approximation in which solute polarization and high degrees of linearity are neglected; therefore, the estimations of the excited-state dipoles are considered as reliable.

\[
\frac{E_{\Lambda} - E_{\Phi}}{\hbar} = \frac{\Delta \tilde{\nu}}{\mu_0} = \frac{2}{\hbar c a_0^3} \left(\frac{1}{2e} + 1 - \frac{n^2 - 1}{2n^2 + 1} \right) (\mu_1 - \mu_2)^2
\]

In eq 1, \(\tilde{\nu}_A \) and \(\tilde{\nu}_F \) are wavenumbers in cm\(^{-1} \) corresponding to the wavelengths of the maximum absorption and emission, \(h \) is Planck’s constant, \(c \) is the speed of light, and \(a_0 \) is the Onsager cavity radius. The parameters \(\varepsilon \) and \(n \) represent the relative permittivity and refractive index, respectively, and are considered in the orientation polarizability term, \(\Delta \tilde{\nu}_f \).

It is known that the difference in dipole moments in the ground and the excited states can be used to analyze the solvent sensitivity to polarity.\(^{34} \) Owing to the least solvent interactions, the estimated changes in dipole moment (\(\Delta \mu_{\text{eq}} \)) are appreciably large. Figure 9 shows the plot of the Stokes shift of chromophores versus orientation polarizability (\(\Delta \tilde{\nu}_f \)) for the ICT characteristic.

Figure 9. Relation between the Stokes shift (\(\tilde{\nu}_A - \tilde{\nu}_F \)) and the orientation polarizability (\(\Delta \tilde{\nu}_f \)).

2.4. Thermal Stability. Due to their dense molecular packing and the stacking arrangement in the solid state, complemented by intermolecular forces, chromophores SS1–SS5 are expected to have good thermal stability. All chromophores showed very good stability to heat (Table 4) in thermogravimetric analysis (TGA) with the onset temperature falling above 325 °C, after which a significant weight loss was observed (Figure S40, see the Supporting Information). The excellent thermal stability is a good attribute for the fabrication of optoelectronic devices.

2.5. Electrochemistry. The redox behavior of chromophores SS1–SS5 (4 × 10\(^{-4} \) M) was studied in DCN solutions by cyclic voltammetry (CV) with tetra-n-butyl ammonium hexafluorophosphate (TBAPF\(_6\)) as the supporting electrolyte. A platinum electrode was used as a counter electrode, glassy carbon was used as the working electrode, and Ag/AgCl was used as the reference electrode. Ferrocene was used as an internal reference, and the voltammograms were recorded at a scan rate of 100 mV s\(^{-1} \). Variation in the scan rates did not affect the peak potentials and/or \(E_{1/2} \) values. The CV spectra (Figure 10) show the redox behavior of all compounds. The calculated energies showed good correlation (Tables 1 and 2) with the corresponding values obtained from CV and UV–visible absorption data. All chromophores showed first oxidation potential in the range of 0.74–0.91 V (Figure 10), attributed to the loss of electron from the N,N-dimethylamine subunit, while the second oxidation potential corresponded to the oxidation of fluorene.

Comparison of the electrode potentials allowed visualization of the effect of strength of the acceptor and/or \(\pi \)-conjugation path length connecting the donor and the acceptor in chromophores SS1–SS5 and 8. The first oxidation potentials of chromophores 8 (\(E_{1/2} \) 0.87 V) and SS1 (\(E_{1/2} \) 0.91 V) were marginally higher (Table 4) compared to SS2 (\(E_{1/2} \) 0.74 V). This is attributed to the facile oxidation of SS2, which could be attributed to the longer \(\pi \)-conjugation path length, weakening the communication between the donor N,N-dimethylamino group and the acceptor. The dicyanovinylidene group in SS1 exerts a stronger electron-withdrawing effect, more than the formyl group in 8, rendering the first oxidation more difficult in the former. The second oxidation potentials of the compounds, corresponding to the removal of electron from the fluorene unit, are significantly higher (Table 4).

While a single peak corresponding to the reduction of the acceptor unit was observed in 8, SS1, and SS2, an additional peak was observed for the chromophores SS5 containing a cyanostilbene acceptor (Figure 10), which may arise due to the formation of radical anion and/or a dianionic species upon reduction. Further, the second oxidation potential in the case of compound SS4 is slightly higher than that of the comparable members SS5 and SS3 (Table 4).

Natural bond orbital (NBO) calculations showed net positive charge on the donor N,N-dimethylamino as well as the 9,9-dimethyl fluorene (linker) groups while net negative charge on the acceptor unit (Table 5 and Figure S41, see the Supporting Information), which corroborated the path of electron transfer (ET) in 8 and SS1–SS5. Likewise, positive charge on the linker suggested the dominating role of the linker in the ET in 8 and SS1–SS5. Interestingly, the negative charges on the acceptor units in SS3–SS5 are in the same order as the first oxidation potentials, suggesting the nitro-substituted SS4 to be the most bathochromic, which indeed is as revealed from the UV–visible absorption data (Table 1). The distinctive separation of positive charge on the donor and linker and negative charges on the acceptor units in SS1–SS5 renders these compounds to be purely dipolar compounds.

https://doi.org/10.1021/acsomega.2c04795
ACS Omega 2022, 7, 39045−39060
with a single major dipolar hyperpolarizability tensor component β_{HRS}.

2.6. Quadratic Hyperpolarizability. The first hyperpolarizability β_{HRS} for the chromophores 8 and SS1–SS5, was measured in DCM using the hyper-Rayleigh scattering (HRS) method. A Q-switched Nd:YAG (Spectra-Physics, repetition rate 10 Hz and pulse width 10 ns) laser at a fundamental wavelength of 1064 nm was used for the measurements. The analysis of the fluorescence emission spectra indicated chances of multiphoton fluorescence (MPF) and resonance enhancement of the second-order nonlinear polarizability values. We performed monochromator scan (for MPF correction, see the Supporting Information) for all the compounds. It was seen that all compounds except 8 and SS2 showed a broad MPF band (Figure S42, see the Supporting Information). Therefore, the values were corrected for resonance enhancement and MPF. The β_{HRS} values are tabulated in Table 6. In accordance with two-level model of Oudar and Chemla (eq 2), the principle factors that determine molecular polarization and hence second-order polarizability are the strength of the donor and acceptor and the π-conjugation pathway connecting them.

Table 4. Electrochemical and Decomposition Temperatures for 8 and SS1–SS5 in DCM

	E_{onset}	E_{red}	E_{pc1} (V)	E_{pc2} (V)	E_{pc3} (V)	i_{pa} (A) (10$^{-6}$)	i_{pc} (A) (10$^{-6}$)	T_d (°C)
8	0.69	−0.76	0.87	1.56	−1.06	7.12	9.60	235
SS1	0.79	−0.82	0.91	1.50	−1.12	2.97	4.83	272
SS2	0.62	−0.85	0.74	1.41	−1.23	2.55	3.80	240
SS3	0.67	−0.85	$E_{\text{f}} = 0.79$	1.41	−1.19	3.94	6.05	265
SS4	0.65	−0.79	$E_{\text{f}} = 0.82$	1.52	−1.09	4.58	2.91	315
SS5	0.63	−0.83	$E_{\text{f}} = 0.79$	1.51	−1.14 (−1.59)	8.98	7.71	335

* E_{pc} and E_{pa} correspond to the anodic and cathodic peak potentials, respectively; scan rate 100 mV s$^{-1}$. b Amplitudes of the anodic and cathodic peaks. c Corresponding to a 10% weight loss (TGA). d E_{f} and E_{i} are forward and reverse peaks for the reversible redox process. e Second cathodic peak potential (E_{pc2}). f Amplitude of second cathodic peak (i_{pc2}).

Table 5. Estimated Natural Bond Orbital (NBO) Charge Distribution of 8 and SS1–SS5

	NBO charge distribution on sub-units			
	Donor	π-linker	Acceptor	
8	0.03043	0.04701	−0.07746	
SS1	0.04670	0.17341	−0.22011	
SS2	0.02472	0.16134	−0.18606	
SS3	0.02735	0.82610	−0.11356	
SS4	0.03846	0.13366	−0.17212	
SS5	0.01114	0.10432	−0.11546	

Table 6. Quadratic NLO Parameters of 8 and SS1–SS5 in DCM

	β_{d1} (10$^{-30}$ esu)	β_{d2} (10$^{-30}$ esu)	β_{a1} (10$^{-30}$ esu)	β_{a2} (10$^{-30}$ esu)	β_{max} (10$^{-30}$ esu)	β_{max} (10$^{-30}$ esu)
8	74 ± 14	32	125.15	2.087	0.036	30.23
SS1	548 ± 40	69	611.81	7.244	0.076	70.64
SS2	626 ± 98	53	845.79	11.001	0.057	86.47
SS3	274 ± 35	81	372.11	5.716	0.048	36.56
SS4	645 ± 48	119	963.46	9.615	0.067	92.65
SS5	566 ± 65	136	774.90	7.927	0.071	76.43

* Second-order nonlinear polarizability (first hyperpolarizability) corrected for resonance/MPF enhancement, β_{HRS} was recorded at 1064 nm in DCM. b β_{d1}: Frequency-independent static first hyperpolarizability calculated using the equation: $\beta_{d1} = \beta_{\text{HRS}}[(1 - \lambda_{\text{max}}^2/\lambda_{\text{fund}}^2)][1 - (2\lambda_{\text{max}}^2/\lambda_{\text{fund}}^2)]$. c β_{HRS}: Theoretical second-order nonlinear polarizability, $\beta^{\text{fund}}_{\text{d1}}$: intrinsic off-resonant hyperpolarizability given by $\beta_{\text{HRS}}/\beta^{\text{max}}_{\text{d1}}$. d β_{d2}, β_{a1}, β_{a2}, and β_{max} are forward and reverse peaks for the reversible redox process. e Second cathodic peak potential (E_{pc2}). f Amplitude of second cathodic peak (i_{pc2}).
In eq 2, β is the second-order nonlinear polarizability, $\Delta \mu_{ge}$ represents the dipole moment difference between the ground and excited states, and r_{ge} is the transition dipole moment, which can be directly correlated with the oscillator strength (f) or molar extinction coefficient (c). Finally, E_{ge} represents the optical gap of the ICT (LE) transition.

The trend of β_{HRS} of 8 ($\beta_{\text{HRS}} = 74 \times 10^{-30}$ esu, Table 6) with SS1 ($\beta_{\text{HRS}} = 548 \times 10^{-30}$ esu) and SS2 ($\beta_{\text{HRS}} = 626 \times 10^{-30}$ esu) clearly established the role of enhanced acceptor strength (8 vs SS1) and effect of increased π-conjugation path length (SS1 vs SS2). Thus, a systematic 7.4-fold and 8.5-fold increase of β_{HRS} respectively, in the pairs comprising 8, SS1, and SS2 demonstrates the effect of the acceptor strength and length of the π-conjugation pathway as the donor group was the same. The increasing order of oscillator strength of the LE transition ($f = 0.7642$, 8; 1.0011, SS1 and 1.2377, SS2), the change of dipole moment ($\Delta \mu = 9.45$ D, 8; 16.09 D, SS1 and 23.34 D, SS2) between the ground and excited states, and the decreasing optical gap ($E_{ge} = 2.79$ eV, 8; 2.15 eV, SS1 and 2.01 eV, SS2) in that order corroborate the order of experimental β_{HRS} values of these three compounds. Likewise, the group of cyanostilbene-based chromophores SS3, SS4, and SS5, in which the acceptor strength increases in the order SS4 > SS5 > SS3 owing to the strength of the electron-withdrawing group (NO$_2$ > CN > Br) attached at the p-position of the phenyl group, values in the same order (Table 6). Although the oscillator strength of SS4 ($f = 0.6274$) was the lowest of the three members, the higher β_{HRS} value of SS4 is attributed to the higher change in the dipole moment ($\Delta \mu = 24.93$ D) and lower optical gap (2.22 eV).

The theoretically calculated first hyperpolarizability (β_{Theor}) shows good correlation with the experimental value (Table 6). Considering the robustness of the theoretically calculated values, it could be argued that reliable structure-dependent first hyperpolarizability correlations could be drawn for similar fluorene-based donor–acceptor chromophores for which experimental determinations were not possible due to instability and/or nonaccessibility or cumbersome synthesis. Similarly, frequency-independent static first hyperpolarizability has also been determined and shows a trend similar to the experimental first hyperpolarizability. A histogram showing the first hyperpolarizability of SS1–SS5 and 8 is shown in Figure 11, while the quadratic curves are shown in Figure S4 in the Supporting Information.

The NLO efficiency of compounds can be compared more realistically from the intrinsic (size-independent) hyperpolarizability β_{int}, as defined by Kuz’ya. Intrinsic hyperpolarizability is a worthy parameter for device applications, where the bulk susceptibility per unit volume is more important than the molecular hyperpolarizability per chromophore. Interestingly, the trend of β_{int} mirrored that of the experimental β_{HRS} for 8 and SS1 (Table 6). However, the β_{int} value of SS2 is smaller than that of SS1 (Figure 12). This reversed trend can be justified considering the fact that β_{int} is size independent; therefore, the longer length of the π-conjugated spacer in SS2 would weaken the strength of the acceptor, resulting in lower β_{HRS} compared to shorter chromophore SS1 but may not exert influence on β_{int}.

Similarly, the CN-substituted SS5 outperforms in terms of β_{int} than the otherwise stronger NLO chromophore SS4. In order to visualize these results in a larger standpoint, the NLO behavior of the current set of chromophores has been compared with analogues lacking a linear conjugation SP1–SP5 (Figure 13), reported by us earlier.

The fundamental limit of the intrinsic first hyperpolarizability of the “design-deficient” compounds SP1–SP5 with a “nonlinear conjugation pathway” is defined by SP5, Figure 12a. It is apparent that the intrinsic first hyperpolarizability of the “linearly conjugated” counterparts SS1–SS5 except SS3 is way higher (3.7-fold in SS4) than SP1–SP5. The β_{int} of SS3 is actually higher than the comparable analogue SP3. Further, compounds SS1–SS5 are located on the top right-hand corner of the plot of β_{int} versus wavelength (Figure 12b), whereas the set of chromophores SP1–SP5 is found in the lower left-hand corner of the plot.

The reason for the higher first hyperpolarizability [SS1–SS5: β_{HRS} 274–645 $\times 10^{-30}$ esu, SP1–SP5: β_{HRS} 113–174 $\times 10^{-30}$ esu] and the consequent intrinsic hyperpolarizability [SS1–SS5: β_{int} 0.048–0.076, SP1–SP5: β_{int} 0.028–0.050] of the current set of chromophores is attributed to the blueshifted LE bands [SS1–SS5: λ_{max} 428–502 nm (LE)], lower optical gaps [SS1–SS5: $E_{\text{g}}^{\text{opt}}$ 2.01–2.49 eV, SP1–SP5: $E_{\text{g}}^{\text{opt}}$ 2.239–2.707 eV], higher difference in dipole moments between the ground and excited states [SS1–SS5: $\Delta \mu_{ge}$ 16.09–24.93 D; SP1–SP5: $\Delta \mu_{ge}$ 3.098–21.548 D], and higher oscillator strength [SS1–SS5: f 0.6274–1.2377; SP1–SP5: f 0.3003–1.0960] of the band contributing to the NLO response. Likewise, the emission bands of SS1–SS5 were considerably red-shifted (λ_{max} 512–780 nm and Φ_F 18–65%) and intense, while for SP1–SP5, the emission bands peaked in the range of 478–694 nm and were significantly less intense (Φ_F: 2–14%). In Figure 14, the electrostatic potential maps depicting NBO charges are shown, which clearly show the direction of dipoles in SS1 and SS4 and their analogues SP1 and SP4 having a “nonlinear” conjugation (Figure S4, see the Supporting Information). Thus, designing chromophores with linear conjugation is a better strategy for obtaining higher NLO response of the fluorene-based donor–π–acceptor chromophores.

3. CONCLUSIONS

This study was aimed to demonstrate the difference in the linear optical properties and NLO response (first hyperpolarizability, β_{HRS}) and the associated intrinsic hyperpolarizability parameters for 8 and SS1–SS5.
ability, β^{int} of a set of fluorene-based “push−pull” chromophores SS1−SS5 having a “linear” conjugation path with the corresponding chromophores SP1−SP5 having “nonlinear” conjugation path. The former set of chromophores showed significantly red-shifted absorption/emission bands, high Stokes shift, and high quantum yield. These chromophores also showed high thermal stability and structure-dependent (strength of donor and acceptor and path of π-conjugation) photophysical and redox behavior. Further, superior first hyperpolarizability, β_{HRS}, of SS1−SS5 (274 to 645 × 10$^{-30}$ esu) as well as intrinsic hyperpolarizability β^{int} has been attributed to the lower optical gap (E_g), the oscillating strength of the LE band, and collective influence of the difference in the dipole moment ($\Delta \mu_{ge}$) of the ground and excited states, NBO charges, etc. Apart from the number of delocalized electrons, β^{int} depends on the wavelength of the maximum absorption and the measured first hyperpolarizability. Further, the crystal packing forces due to the effective overlap of the acceptor units (p-Br-C_6H$_4$ in SS3 and p-NO$_2$-C_6H$_4$ in SS4) with the donor N,N-dimethyl aryl units in the solid state furnished a positive contribution toward the first hyperpolarizability of these compounds. This study has revealed a direct comparison of NLO behavior of two sets of fluorene-based “push−pull” chromophores having difference in conjugation paths and has reasserted the superiority of the “linear” conjugation pathway.

4. EXPERIMENTAL SECTION

4.1. Materials and Instrumentation. The reagents potassium tertiary butoxide (KO’Bu), Pd/C, NaBH$_3$CN, paraformaldehyde, DIBAL, bromine, malononitrile, 4-bromo-phenylacetonitrile, 4-nitrophenylacetonitrile, and the solvents used were bought from Spectrochem, India. Prior to their use in reactions, the solvents N,N-dimethylformamide (DMF), DCM, methanol (CH$_3$OH), and tetrahydrofuran (THF) were dried by using recommended methods.
Nuclear magnetic resonance spectra (\(^1\)H NMR and \(^{13}\)C NMR) were recorded in CDCl\(^3\) on a Bruker BioSpin Avance III HD at 500 MHz or a JEOL-FT NMR-AL at 400 MHz using TMS as an internal standard. High-resolution mass spectra (HRMS) were recorded on a Bruker LC–MS MICROTOF II spectrometer. Fourier transform infrared (FTIR) spectra were recorded in the range 650–4000 cm\(^{-1}\) on a Cary 630 FTIR (Agilent Technologies) spectrophotometer. Fluorescence measurements were performed on a Fluorolog Horiba fluorescence spectrometer, having a pulsed xenon flash lamp (50–60 Hz) and a 450 W CW ozone-free xenon arc lamp (250–2500 nm). The quantum yields were determined using an integrating sphere. Time-resolved fluorescence decay studies were performed on a PicoQuant FluoroTime 300 high-performance fluorescence lifetime spectrometer. The instrument response function was recorded by using an aqueous solution of Ludox. UV–visible absorption data was recorded on a HITACHI U-2910 spectrophotometer using matched quartz cuvettes of 1 cm path length. The CV measurements were performed on an Autolab PGSTAT302N Metrohm workstation using a glass cell with a three-electrode assembly comprising a platinum counter electrode and a glassy carbon electrode as the working electrode. Ag/AgCl was used as the reference electrode. The thermal stability of the chromophores was determined by TGA using an STA7200 Hitachi thermal analysis system under a N\(_2\) atmosphere at a heating rate of 20 °C min\(^{-1}\).

4.2. Computational Details. Theoretical calculations were performed by using the Gaussian 09 suite of programs.\(^{39}\) The molecular geometries of the chromophores were optimized at the DFT method employing the hybrid B3LYP functional group and the 6-31G (d,p) basis set according to the previous methods.\(^{27}\) The first 25 excited states were used for TD-DFT calculations in gaseous medium and DCM as the solvent medium (PCPM) model. The molecular orbital contours were visualized using Gauss View 5.0.9. Using the hyperpolarizability tensor components, \(\beta_{\text{tot}}\) values were calculated by using eqs 3 and 4

\[
\beta_{\text{tot}} = [(\beta_{xx} + \beta_{yy} + \beta_{zz})^2 + (\beta_{yy} + \beta_{zz} + \beta_{xx})^2 + (\beta_{zz} + \beta_{xx} + \beta_{yy})^2]^{1/2} \tag{3}
\]

\[
\beta_{\text{tot}} = (\beta_x^2 + \beta_y^2 + \beta_z^2)^{1/2} \tag{4}
\]

4.3. Hyper-Rayleigh Scattering Measurements. The detailed HRS experimental setup is described elsewhere.\(^{40}\) HRS experiments were conducted using a Q-switched Nd:YAG (Spectra-Physics, repetition rate 10 Hz and pulse width 10 ns) laser at a fundamental wavelength of 1064 nm. The complete details of the experiments are mentioned in the Supporting Information.

4.4. Synthesis and Characterization. Precursors 9,9-dimethylfluorene 2 and 9,9-dimethyl-2-nitrofluorene 3 were synthesized using previously reported methods.\(^{27}\)

4.4.1. Synthesis of 2-Bromo-9,9-dimethyl-7-nitro-9H-fluorene (4). To a solution of 3 (4 g, 16.7 mmol) in acetic acid (20 mL) in a 100 mL three-necked flask, bromine (8 g, 50.1 mmol) was added dropwise for 2 h at 0 °C. The mixture was stirred at room temperature for 24 h. The solution was extracted with diethyl ether (3 × 30 mL), and the combined organic extract was sequentially washed with water and aqueous KOH solution. The organic extract was dried over anhydrous MgSO\(_4\). Removal of the solvent furnished a light yellow product, which was purified by column chromatography using ethyl acetate/hexane (10:90, v/v) as eluents to isolate pure 4 as an orange solid (3.82 g, 82% yield). mp: 241–243 °C.\(^{41}\) IR (\(\nu_{\text{max}}\) cm\(^{-1}\)): 670.9 (C–Br, str.) and 1513.3 (N=O, str.). \(^1\)H NMR (400 MHz, CDCl\(_3\), 25 °C): \(\delta\) (ppm) 1.52 (s, 6H, 2 × CH\(_3\)), 7.52–7.54 (m, 1H, ArH), 7.61–7.62 (d, 1H, J = 2 Hz, ArH), 7.66 (dd, 1H, ArH), 7.79 (dd, J = 9 Hz, 1H, ArH), 8.24–8.27 (m, 2H, ArH). \(^{13}\)C NMR (125 MHz, CDCl\(_3\), 25 °C): \(\delta\) (ppm) 26.7, 47.5, 118.4, 120.3, 122.7, 123.6, 123.7, 123.8, 123.9, 124.0.
126.6, 130.9, 135.8, 144.6, 147.5, 154.3, 156.9. HRMS m/z: calcd for C_{14}H_{18}N_2O (M + H)^+; 263.1548; found, 263.1544.

4.4.4. Synthesis of 7-(Dimethylamino)-9,9-dimethyl-9H-fluoren-2-ylidene)malononitrile (6). To a stirred mixture of 6 (0.5 g, 3.79 mmol) and Pd/C (0.03 g, 0.094 mmol) in anhydrous THF (10 mL) under an inert atmosphere was cooled at 0 °C; a solution of copper(I) cyanide (0.20 g, 2.23 mmol) was added in small portions at 0 °C. The mixture was allowed to warm to room temperature and stirred overnight before pouring into cold water (150 mL). The resultant mixture was extracted with ethyl acetate (3 × 30 mL). The combined organic extract was washed with saturated aqueous NaHCO_3 solution and dried with anhydrous MgSO_4. The solvent was removed under reduced pressure, and the residue was crystallized from ethanol to obtain 7 (0.46 g, 82% yield) as off-white crystals. mp: 267–269 °C. IR (ν_max cm\(^{-1}\)) 1222.6 (C–N, str.), 1431.3 (CH_2 bend), 2221.5 (C≡N, str.). 1^H NMR (400 MHz, CDCl_3, 25 °C): δ (ppm) 1.47 (s, 6H, 2 × CH_3), 3.07 (s, 6H, 2 × NCH_3), 6.76 (m, 2H, ArH), 7.55–7.56 (m, 1H, ArH), 7.59–7.62 (m, 3H, ArH). 13^C NMR (100 MHz, CDCl_3, 25 °C): δ (ppm) 27.3, 40.9, 46.9, 106.3, 111.6, 118.6, 199.9, 120.7, 120.7, 122.2, 125.7, 126.8, 129.8, 138.9, 150.7, 154.9. HRMS m/z: calcd for C_{16}H_{16}N_2O (M + H)^+; 266.1545; found, 266.1543.

4.4.4. Synthesis of 2-((7-Dimethylamino)-9,9-dimethyl-9H-fluorene-2-yl)methylene)malononitrile (SS1). A solution of 8 (0.1 g, 0.38 mmol) and piperidine (0.09 g, 1.06 mmol) in anhydrous THF (15 mL) was cooled at 0 °C under an inert atmosphere; a solution of malononitrile (0.01 g, 0.15 mmol) in anhydrous THF (1 mL) was added dropwise, and the reaction was stirred at 0 °C. After completion of the reaction (TLC), the reaction mixture was passed through Celite, and the bed was washed with DCm (20 mL). The combined filtrate was washed with water (2 × 20 mL). The DCm extract was dried with anhydrous Na_2SO_4, and the solvent was removed under reduced pressure to obtain crude SS1, which was purified by column chromatography using ethyl acetate/hexane (30:70, v/v) as eluents to isolate pure SS1 (0.081 g, 69% yield). mp: 256–258 °C. IR (ν_max cm\(^{-1}\)) 1780.7 (C=O, str.), 1485.6 (C–H, alkene), 1379.2 (C–H, alkene), 1222.6 (C–N, str.), 1431.3 (CH_2 bend), 1610 (C≡C, str.) and 2221.5 (C≡N, str.). 1^H NMR (500 MHz, CDCl_3, 25 °C): δ (ppm) 1.52 (s, 6H, 2 × CH_3), 3.12 (s, 6H, 2 × NCH_3), 6.74–6.77 (m, 2H, ArH), 7.65–7.68 (m, 2H, ArH), 7.74 (s, 1H, ArH), 8.11 (m, 1H, ArH), 8.00 (s, 1H, CH). 13^C NMR (125 MHz, CDCl_3, 25 °C): δ (ppm) 27.1, 29.7, 40.6, 46.8, 105.5, 111.7, 113.9, 118.9, 122.7, 124.0, 125.6, 127.8, 132.1, 147.6, 152.0, 153.8, 157.6, 159.7. HRMS m/z: calcd for C_{25}H_{21}N_3O (M + H)^+, 314.1675; found, 314.1735.

4.4.4. Synthesis of 2-(3-(2-(7-Dimethylamino)-9,9-dimethyl-9H-fluorene-2-yl)vinyloxy)-5,5-dimethylcyclohex-2-en-1-ylidene)malononitrile (SS2). A solution of 8 (0.06 g, 0.23 mmol) and piperidine (0.008 g, 0.09 mmol) in anhydrous THF (10 mL) under an inert atmosphere was cooled at 0 °C; a solution of 2-(3,5,5-trimethyl-2-cyclohexyldiene)malononitrile (0.03 g, 0.16 mmol) in anhydrous THF (3 mL) was added dropwise, and the reaction was stirred at 0 °C. After evaporating THF, the reaction mixture was extracted with organic solvent and water. The organic solvent dried over anhydrous Na_2SO_4 and the solvent was removed under reduced pressure to obtain a crude product, which was further purified by column chromatography using 15:85 (ethy
acetate/hexane, v/v) to isolate a dark maroon solid SS2 (0.076 g, 78% yield). mp: 298–302 °C. IR (ν\text{max} cm⁻¹): 775.3 (C–H, alkene), 1222.6 (C–N, str.), 1431.3 (CH₂ bend), 1610 (C=C, str.) and 2221.5 (C≡N, str.). \(^1\)H NMR (500 MHz, CDCl₃, 25 °C): \(\delta\) (ppm) 1.12 (s, 6H, 2 × CH₃), 1.52 (s, 6H, 2 × CH₂), 2.52 (s, 2H, CH₂), 2.64 (s, 2H, CH₂), 3.09 (s, 6H, 2 × NCH₃), 6.74–6.67 (m, 1H, ArH), 6.78 (m, 1H, ArH), 6.88 (s, 1H, Ar), 7.04–7.07 (m, 1H, CH), 7.16–7.19 (m, 1H, CH), 7.44–7.45 (m, 1H, ArH), 7.58 (s, 1H, ArH), 7.59–7.63 (m, 2H, Ar). \(^1^3\)C NMR (125 MHz, CDCl₃, 25 °C): \(\delta\) (ppm) 21.0, 27.5, 28.1, 32.0, 39.2, 40.8, 46.7, 66.9, 67.9, 106.1, 111.5, 113.1, 118.9, 120.9, 121.4, 122.8, 127.2, 127.9, 132.6, 138.3, 142.4, 151.1, 153.7, 154.6, 156.2, 169.3, 170.4. HRMS m/z: calcld for C₉₀H₁₇N₃ (M + H)\(^+\), 434.2596; found, 434.2595.

4.4.8. Synthesis of (E)-2-(4-Bromophenyl)-3-(7-(dimethylamino)-9,9-dimethyl-9H-fluoren-2-yl)acrylonitrile (SS3). To a solution of 8 (0.1 g, 0.38 mmol) and 4-bromophenylacetonitrile (0.08 g, 0.41 mmol) in dry methanol (5 mL), a solution of potassium hydroxide (1.5 mL, 0.6 M) was added dropwise under vigorous stirring. Upon completion of the addition, the mixture turned cloudy, and the suspension was stirred for 24 h at room temperature and subsequently cooled, which resulted in the precipitation of the product which was filtered and recrystallized from ethanol to obtain pure SS3 as a yellow solid (0.13 g, 78% yield). mp: 240–242 °C. IR (ν\text{max} cm⁻¹): 641.4 (C–Br, str.), 775.3 (C–H, C=C), 1222.6 (C–N, str.), 1431.3 (CH₂ bend), 1610 (C=C, str.) and 2221.5 (C≡N, str.). \(^1\)H NMR (500 MHz, CDCl₃, 25 °C): \(\delta\) (ppm) 1.54 (s, 6H, 2 × CH₃), 3.09 (s, 6H, 2 × NCH₃), 6.75–6.77 (m, 1H, ArH), 6.79 (m, 1H, ArH), 7.57–7.61 (m, 5H, ArH), 7.64–7.66 (m, 2H, ArH), 7.81–7.83 (m, 1H, ArH), 8.03 (s, 1H, CH). \(^1^3\)C NMR (125 MHz, CDCl₃, 25 °C): \(\delta\) (ppm) 23.2, 27.2, 29.7, 40.7, 46.9, 105.7, 107.3, 111.6, 117.3, 118.7, 120.3, 121.9, 122.1, 125.8, 128.8, 129.6, 131.5, 132.3, 144.7, 151.6, 153.2, 156.2. HRMS m/z: calcld for C₂₆H₂₃BrN (M + H)\(^+\), 443.1123; found, 443.1120.

4.4.9. Synthesis of (E)-3-(7-(Dimethylamino)-9,9-dimethyl-9H-fluoren-2-yl)-2-(4-nitrophenyl)acrylonitrile (SS4). To a solution of 8 (0.2 g, 0.75 mmol) and 4-nitrophenylacetonitrile (0.184 g, 1.13 mmol) in dry methanol (5 mL), a solution of potassium hydroxide (2 mL, 0.6 M) was added dropwise under vigorous stirring. Upon completion of the addition, the suspension was stirred for 10 h at room temperature and resulted in the precipitation of the product which was filtered and recrystallized from ethanol to obtain analytically pure SS4 as a dark red solid (0.23 g, 74% yield). mp: 280–282 °C. IR (ν\text{max} cm⁻¹): 775.3 (C–H, alkene), 1222.6 (C–N, str.), 1431.3 (CH₂ bend), 1513.3 (N=O, str.), 1610 (C=C, str.) and 2221.5 (C≡N, str.). \(^1\)H NMR (500 MHz, CDCl₃, 25 °C): \(\delta\) (ppm) 1.53 (s, 6H, 2 × CH₃), 3.08 (s, 6H, 2 × NCH₃), 6.73–6.76 (m, 2H, ArH), 7.63–7.66 (m, 2H, ArH), 7.72 (s, 1H, ArH), 7.84–7.86 (m, 3H, ArH), 8.07 (s, 1H, CH), 8.08 (s, 1H, ArH), 8.30–8.31 (m, 1H, Ar). \(^1^3\)C NMR (125 MHz, CDCl₃, 25 °C): \(\delta\) (ppm) 27.3, 40.7, 46.8, 105.9, 105.9, 111.6, 118.8, 118.8, 121.9, 123.4, 124.3, 126.3, 126.5, 129.7, 130.2, 130.4, 141.5, 144.3, 146.2, 147.4, 151.5, 153.5, 156.8. HRMS m/z: calcld for C₂₆H₂₃NO₂ (M + H)\(^+\), 410.1869; found, 410.1867.

4.4.10. Synthesis of (E)-4-(1-Cyano-2-(7-(dimethylamino)-9,9-dimethyl-9H-fluoren-2-yl)vinyl)benzonitrile (SS5). A solution of compound SS3 (0.5 g, 1.13 mmol) in dry DMF (7 mL) was maintained under an inert atmosphere, and copper(I) cyanide (0.252 g, 2.81 mmol) was added in the microwave tube. The reaction mixture was heated at 130 °C in a microwave reactor for 4 h, after which the solvent was removed under reduced pressure, and the compound was extracted with (3 × 20 mL). The combined layer was extracted with water, and the organic extract was dried over anhydrous Na₂SO₄. Removal of solvent yielded crude SS5 as a pure orange solid (0.28 g, 64% yield). mp: 254–256 °C. IR (ν\text{max} cm⁻¹): 775.3 (C–H, alkene), 1222.6 (C–N, str.), 1431.3 (CH₃ bend), 1610 (C=C, str.) and 2221.5 (C≡N, str.). \(^1\)H NMR (500 MHz, CDCl₃, 25 °C): \(\delta\) (ppm) 1.52 (s, 6H, 2 × CH₃), 3.08 (s, 6H, 2 × NCH₃), 6.72–6.73 (m, 1H, ArH), 6.74–6.76 (m, 1H, ArH), 7.62–7.66 (m, 3H, ArH), 7.72–7.74 (m, 2H, ArH), 7.78–7.80 (m, 2H, ArH), 7.81–7.83 (m, 1H, ArH), 8.05 (s, 1H, CH). \(^1^3\)C NMR (125 MHz, CDCl₃, 25 °C): \(\delta\) (ppm) 27.3, 40.7, 46.8, 105.9, 106.3, 111.5, 111.8, 118.1, 118.5, 118.8, 121.8, 123.3, 126.2, 126.5, 129.7, 130.2, 132.7, 139.6, 144.1, 146.6, 151.4, 153.5, 156.7. HRMS m/z: calcld for C₂₆H₂₃N₂ (M + H)\(^+\), 390.1970; found, 390.1971.
Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS
K.S. thanks SERB (DST) for the grant EMR/2017/000520 and fellowship to Shivani. We thank Guru Nanak Dev University, Amritsar, for additional funding under RUSA Scheme as well as facilities. We also thank P. K. Das, Indian Institute of Science, Bangalore, for allowing us to use the HRS setup in his laboratory.

REFERENCES

(1) Zhang, S.-Y.; Shu, X.; Zeng, Y.; Liu, Q.-Y.; Du, Z.-Y.; He, C.-T.; Zhang, W.-X.; Chen, X.-M. Molecule-Based Nonlinear Optical Switch with Highly Tunable On-Off Temperature Using a Dual Solid Solution Approach. Nat. Commun. 2020, 11, 2752.

(2) Hänsel, M.; Barta, C.; Rietze, C.; Utecht, M.; Rueck-Braun, K.; Saalfrank, P.; Tegeder, P. 2-Dimensional Nonlinear Optical Switching Materials: Molecular Engineering towards High Nonlinear Optical Contrasts. J. Phys. Chem. C 2018, 122, 25555−25564.

(3) Boixel, J.; Guerchais, V.; Le Bozec, H. L.; Jacquemin, D.; Amar, A.; Boucekkine, A.; Colombo, A.; Dragonetti, C.; Marinotto, D.; Roberto, D.; Righetto, S.; De Angelis, R. D. Second-Order NLO Switches from Molecules to Polymer Films Based on Photochromic Cyclometalated Platinum (II) Complexes. J. Am. Chem. Soc. 2014, 136, 5367−5375.

(4) Saravanakumar, M.; Chandrasekaran, J.; Krishnakumar, M.; Babu, B.; Vinitha, G.; Anis, M. Experimental and Quantum Chemical Studies on SHG, Z-scan and Optical Limiting Investigation of 2-Amino-5-Bromopyridinium Trifluoroacetate Single Crystal for Opto-electronic Applications. Amino-5-Bromopyridinium Trifluoroacetate Single Crystal for Opto-electronic Applications. J. Phys. Chem. C 2014, 118, 12267−12272.

(5) Zhang, C.; Li, X.; Wang, Y.; An, M.; Sun, Z. A Hydrazone Organic Optical Modulator with a π Electronic System for Ultrafast Photonics. J. Mater. Chem. C 2021, 9, 11306−11313.

(6) Zhang, Y.; He, J.; Saris, P. J. G.; Chae, H. U.; Das, S.; Kapadia, R.; Armani, A. M. Multiphysical Photoresponsive Organic Molecule for Electric Field Sensing and Modulation. J. Mater. Chem. C 2022, 10, 1204−1211.

(7) Zhang, Z.; Wang, Z.; Shi, T.; Bi, C.; Rao, F.; Cai, Y.; Liu, Q.; Wu, H.; Zhou, P. Memory Materials and Devices: From Concept to Application. InfoMat 2020, 2, 261−290.

(8) Wu, J.; Li, Z.; Luo, J.; Jen, A. K.-Y. High-Performance Organic Second- and Third-Order Nonlinear Optical Materials for Ultrafast Information Processing. J. Phys. Chem. Solids 2020, 136, 109133.

(9) Semin, S.; Li, X.; Duan, Y.; Rasing, T. Nonlinear Optical Properties and Applications of Fluorenone Molecular Materials. Adv. Opt. Mater. 2021, 9, 2100327.

(10) Xie, Z.; Lêber, Y.; Suarez, M. A.; Mivelte, M.; Salut, R.; Merolla, J.-M.; Grosjean, T. Doubly Resonant Photonic Antenna for Single Infrared Quantum Dot Imaging at Telecommunication Wavelengths. Nano Lett. 2017, 17, 2152−2158.

(11) Cleuvenbergen, S. V.; Asselberghs, I.; Vanomelingen, W.; Verbiest, T.; Franz, E.; Clays, K.; Kuyzk, M. G.; Koeckelberghs, G. Record-High Hyperpolarizabilities in Conjugated Polymers. J. Mater. Chem. C 2014, 2, 4533−4538.

(12) Kaur, S.; Kaur, M.; Kaur, P.; Clays, K.; Singh, K. Ferrocene Chromophores Continue to Inspire. Fine-Tuning and Switching of the Second-Order Nonlinear Optical Response. Coord. Chem. Rev. 2017, 343, 185−219.

(13) Ye, J.-T.; Liu, J.-H.; Zhang, Q.; Qiu, Y.-Q.; Wang, L.-H. Tuning of Second-Order Nonlinear Optical Properties Based on [2.2] Paracyclophanes Isomer: The Relative Configuration and Polarisability Environment. J. Phys. Chem. C 2020, 124, 21692−21701.

(14) In, Y. R.; Han, J. M.; Kwon, J. E.; Kim, B.-G.; Moon, H. C. Rational Molecular Design of Electrochromic Conjugated Polymers: Toward High-Performance Systems with Ultrahigh Coloration Efficiency. Chem. Eng. J. 2022, 433, 133808.
(31) Guo, X.; Wang, S.; Xia, A.; Su, H. Determination of the Formation of Dark State via Depleted Spontaneous Emission in a Complex Solvated Molecule. *J. Phys. Chem. A* 2007, 111, 5800−5805.

(32) Kumar, S. Comparative Study of Excited State Dipole Moment of Coumarin Laser Dyes: Solvent and Substituent Effect. *J. Mater. Sci. Eng. B* 2014, 4, 358−365.

(33) Sayresmith, N.; Saminathan, A.; Sailer, J. K.; Patberg, S. M.; Sandor, K.; Krishnan, Y.; Walter, M. G. Photostable Voltage Sensitive Dyes Based on Simple, Solvatofluorochromic, Asymmetric Thiazolothiazoles. *J. Am. Chem. Soc.* 2019, 141, 18780−18790.

(34) Lakowicz, J. R. *Principles of Fluorescence Spectroscopy*, 3rd ed.; Springer: Berlin, 2006.

(35) Hapiot, P.; Lagrost, C.; Le Floch, F. L.; Raoult, E.; Rault-Berthelot, J. Comparative Study of the Oxidation of Fluorene and 9,9'-Disubstituted Fluorenes and Their Related 2,7'-Dimers and Trimer. *Chem. Mater.* 2005, 17, 2003−2012.

(36) Oudar, J. L.; Chemla, D. S. Hyperpolarizabilities of the Nitroanilines and Their Relations to the Excited State Dipole Moment. *J. Chem. Phys.* 1977, 66, 2664.

(37) Pérez-Moreno, J.; Zhao, Y.; Clays, K.; Kuzyk, M. G.; Shen, Y.; Qiu, L.; Hao, J.; Guo, K. Modulated Conjugation as a Means of Improving the Intrinsic Hyperpolarizability. *J. Am. Chem. Soc.* 2009, 131, 5084−5093.

(38) Watkins, D. S.; Kuzyk, M. G. The Effect of Electron Interactions on the Universal Properties of Systems with Optimized Off-Resonant Intrinsic Hyperpolarizability. *J. Chem. Phys.* 2011, 134, 094109.

(39) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; et al. *Gaussian* 09, Revision B.01; Gaussian, Inc.: Wallingford CT, 2010.

(40) Clays, K.; Coe, B. J. Design Strategies versus Limiting Theory for Engineering Large Second-Order Nonlinear Optical Polarizabilities in Charged Organic Molecules. *Chem. Mater.* 2003, 15, 642−648.

(41) Hosseinzadeh, R.; Mohadjerani, M.; Pooryousef, M.; Eslami, A.; Emami, S. A New Boronic Acid Fluorescent Sensor Based on Fluorene for Monosaccharides at Physiological pH. *Spectrochim. Acta, Part A* 2015, 144, 53−60.