On meromorphic functions defined by a differential system of order 1, II

Tristan Torrelli

Abstract. Given a nonzero germ h of holomorphic function on $(\mathbb{C}^n, 0)$, we study the condition: "the ideal $\text{Ann}_\mathcal{D} 1/h$ is generated by operators of order 1". When h defines a generic arrangement of hypersurfaces with an isolated singularity, we show that it is verified if and only if h is weighted homogeneous and -1 is the only integral root of its Bernstein-Sato polynomial. When h is a product, we give a process to test this last condition. Finally, we study some other related conditions.

1 Introduction

Let $h \in \mathcal{O} = \mathbb{C}\{x_1, \ldots, x_n\}$ be a nonzero germ of holomorphic function such that $h(0) = 0$. We denote by $\mathcal{O}[1/h]$ the ring \mathcal{O} localized by the powers of h. Let $\mathcal{D} = \mathcal{O}\langle \partial_1, \ldots, \partial_n \rangle$ be the ring of linear differential operators with holomorphic coefficients and $F_\bullet \mathcal{D}$ its filtration by order. In [28], we study the following condition on h:

$$\mathbf{A}(1/h) : \text{The left ideal } \text{Ann}_\mathcal{D} 1/h \subset \mathcal{D} \text{ of operators annihilating } 1/h \text{ is generated by operators of order one.}$$

This property is very natural when one considers sections of $\mathcal{O}[1/h]/\mathcal{O}$ with an algebraic viewpoint, see [20]. On the other hand, it seems to be linked to the topological property \textbf{LCT}(h): \textit{the de Rham complex } $\Omega^\bullet[1/h]$ \textit{of meromorphic forms with poles along } $h = 0$ \textit{is quasi-isomorphic to its subcomplex of logarithmic forms.} In particular, \textbf{LCT}(h) implies \textbf{A}(1/h) for free germs \mathbf{S} (in the sense of K. Saito [20]). The study of this condition \textbf{LCT}(h) was initiated in [9] by F.J. Castro Jiménez, D. Mond and L. Narváez Macarro (see

\[1\] Laboratoire J.A. Dieudonné, UMR du CNRS 6621, Université de Nice Sophia-Antipolis, Parc Valrose, 06108 Nice Cedex 2, France. E-mail: tristan_torrelli@yahoo.fr

2000 Mathematics Subject Classification: 32C38, 32S25, 14F10, 14F40.

Keywords: \mathcal{D}-modules, reducible complex hypersurfaces, Bernstein-Sato functional equations, characteristic variety, holonomic systems, logarithmic comparison theorem.
for a survey). In this paper, we pursue the study of the condition $A(1/h)$, and more precisely when h is a reducible germ. Our motivation is to deepen the link between $\text{LCT}(h)$ and $A(1/h)$.

Let us recall that this last condition is closely linked to the following ones:

$H(h)$: The germ h belongs to the ideal of its partial derivatives.

$B(h)$: -1 is the smallest integral root of the Bernstein polynomial of h.

$A(h)$: The ideal $\text{Ann}_D h^s$ is generated by operators of order one.

Indeed, condition $H(h)$ seems to be necessary in order to have $A(1/h)$, see [29]. Moreover, condition $A(1/h)$ always implies $B(h)$ ([28], Proposition 1.3). This last condition has the following algebraic meaning: the D-module $\mathcal{O}[1/h]$ is generated by $1/h$ (see below). On the other hand, one can easily check that:

If conditions $H(h)$, $B(h)$ and $A(h)$ are verified, then so is $A(1/h)$. (1)

Our first part is devoted to condition $B(h)$. For testing this condition, it seems natural to avoid the full determination of the Bernstein polynomial of h, denoted by $b(h^s, s)$. Here we give such a trick when h is not irreducible, using Bernstein polynomials associated with sections of holonomic D-modules.

Given a nonzero germ $f \in \mathcal{O}$ and an element $m \in \mathcal{M}$ of a holonomic D-module without f-torsion, we recall that there exists a functional equation:

$$b(s)mf^s = P(s) \cdot mf^{s+1}$$

in $(Dm) \otimes \mathcal{O}[1/f, s]f^s$, where $P(s) \in D[s] = D \otimes \mathbb{C}[s]$ and $b(s) \in \mathbb{C}[s]$ are nonzero [17]. The Bernstein polynomial of f associated with m, denoted by $b(mf^s, s)$, is the monic polynomial $b(s) \in \mathbb{C}[s]$ of smallest degree which verifies such an equation. When f is not a unit and $m \in f^{-1}\mathcal{M} - f^\ast\mathcal{M}$ with $r \in \mathbb{N}^*$, it is easy to check that $-r$ is a root of $b(mf^s, s)$. Thus we consider the following condition:

$B(m, f)$: -1 is the smallest integral root of $b(mf^s, s)$

for $m \in \mathcal{M} - f\mathcal{M}$; this extends our previous notation when $m = 1 \in \mathcal{O} = \mathcal{M}$. By generalizing a well known result due to M. Kashiwara, this condition means: the D-module $(Dm)[1/f]$ is generated by m/f (see Proposition [25]). Hence we get:

Proposition 1.1 Let $h_1, h_2 \in \mathcal{O}$ be two nonzero germs without common factor and such that $h_1(0) = h_2(0) = 0$.

(i) We have: $B(h_1h_2) \Rightarrow B(1/h_1, h_2) \Rightarrow B(\hat{1}/h_1, h_2)$ where $\hat{1}/h_1 \in \mathcal{O}[1/h_1]/\mathcal{O}$.

(ii) If $B(h_1)$ is verified, then $B(h_1h_2) \Leftrightarrow B(1/h_1, h_2)$.

(iii) If $B(h_2)$ is verified, then $B(1/h_1, h_2) \Leftrightarrow B(\hat{1}/h_1, h_2)$.
Of course, the equivalence in (ii) just means: \((\mathcal{O}[1/h_1])[1/h_2] = \mathcal{O}[1/h_1 h_2]\). Let us insist on the condition \(B(1/h_1,h_2)\). Indeed, the polynomial \(b((1/h_1)h_2,s)\) may be considered as a Bernstein polynomial of the function \(h_2\) in restriction to the hypersurface \((X_1,0) \subset (\mathbb{C}^n,0)\) defined by \(h_1\), see [26]. In particular, \(b((1/h_1)h_2^s,s)\) coincides with the (classical) Bernstein Sato polynomial of \(h_2|_{X_1} : (X_1,0) \to (\mathbb{C},0)\) if \(h_1\) defines a smooth germ \((X_1,0)\) (Corollary [24]); thus this trick is very relevant when \(h\) has smooth components. As an application, we prove that \(B(h)\) is true when \(h\) defines a hyperplane arrangement \((\text{Proposition 2.7})\), by using the classical principle of ‘Deletion-Restriction’.

This result was first obtained by A. Leykin [31], and more recently by M. Saito [22].

What about the condition \(A(1/h)\) when \(h = h_1 \cdot h_2\) is a product with \(h_1(0) = h_2(0) = 0\) and \(h_1,h_2\) have no common factor? It is also natural to consider the ideal \(\text{Ann}_D(1/h_1)h_2^s\) and the Bernstein polynomial \(b((1/h_1)h_2^s,s)\). Indeed \(B(1/h_1,h_2)\) is a weaker condition than \(B(h_1 h_2)\) \((\text{Proposition 1.1})\) and we have an analogue of (1). Of course, it is difficult to verify if \(\text{Ann}_D(1/h_1)h_2^s\) is - or not - generated by operators of order one. Meanwhile, this may be done under strong assumptions on the components of \(h\), by using the characteristic variety of \(D(1/h_1)h_2^s\) which may be explicited in terms of the one of \(D(1/h_1)\) [14]. Let us give a definition.

Definition 1.2 A reduced germ \(h \in \mathcal{O}\) defines a generic arrangement of hypersurfaces with an isolated singularity if it is a product \(\prod_{i=1}^p h_i\), \(p \geq 2\), of germs \(h_i\) which defines an isolated singularity, and such that, for any index \(2 \leq k \leq \min(p,n)\), the morphism \((h_{i_1},\ldots,h_{i_k}) : (\mathbb{C}^n,0) \to (\mathbb{C}^k,0)\) defines a complete intersection with an isolated singularity at the origin.

In the second part, we give a full characterization of \(A(1/h)\) for such a type of germ.

Theorem 1.3 Let \(h = \prod_{i=1}^p h_i \in \mathcal{O}\), \(p \geq 2\), define a generic arrangement of hypersurfaces with an isolated singularity. Then the ideal \(\text{Ann}_D 1/h\) is generated by operators of order one if and only if the following conditions are verified:

1. the germ \(h\) is weighted homogeneous;
2. \(-1\) is the only integral root of the Bernstein polynomial of \(h\).

We recall that a nonzero germ \(h\) is weighted homogeneous of weight \(d \in \mathbb{Q}^+\) for a system \(\alpha \in (\mathbb{Q}^+)^n\) if there exists a system of coordinates in which \(h\) is a linear combination of monomials \(x_1^{\gamma_1} \cdots x_n^{\gamma_n}\) with \(\sum_{i=1}^n \alpha_i \gamma_i = d\).
This result generalizes the case of a hypersurface with an isolated singularity [26]. Moreover, the condition $B(h)$ is also explicit when $p = 2$, h weighted homogeneous (Corollary 3.6), and the trick above for testing $B(h)$ may be generalized for $p \geq 3$ (Proposition 2.5). On the other hand, these conditions on the components of h are strong and they are not verified in general. To illustrate this limitation, we end this part by studying the condition $A(1/h)$ for $h = (x_1 - x_2x_3)g$ when $g \in C[x_1, x_2]$ is a weighted homogeneous polynomial.

Proposition 1.4 Let $g \in C[x_1, x_2]$ be a weighted homogeneous reduced polynomial of multiplicity greater or equal to 3. Let $h \in C[x_1, x_2, x_3]$ be the polynomial $(x_1 - x_2x_3)g$.

(i) If g is not homogeneous, then the condition $A(1/h)$ does not hold for h.

(ii) If g is homogeneous of degree 3, then $A(1/h)$ holds for h.

Here $H(h)$ are $B(h)$ are verified (see Lemma 3.7) whereas $A(h)$ fails. We mention that this family of surfaces was intensively studied by the Sevilian group in order to understand the condition $\text{LCT}(h)$ [4], [6], [10], [12], [13].

In the last part, we give some results on conditions closely linked to $A(1/h)$. First, we show how the Sebastiani-Thom process allows to construct germs h which verify the condition $A(h)$. Then, we do some remarks on a natural generalization of condition $A(1/h)$. We end this note with some remarks on the holonomy of a particular \mathcal{D}-module which appears in the study of $\text{LCT}(h)$.

Acknowledgements. This research has been supported by a Marie Curie Fellowship of the European Community (programme FP5, contract HPMD-CT-2001-00097). The author is very grateful to the Departamento de Álgebra, Geometría y Topología (Universidad de Valladolid) for hospitality during the fellowship, and to the Departamento de Álgebra (University of Sevilla) for hospitality in February 2004 and March 2005.

2 The condition $B(h)$ for reducible germs

2.1 Preliminaries

In this paragraph, we recall some results about Bernstein polynomials of a germ $f \in \mathcal{O}$ associated with a section m of a holonomic \mathcal{D}-module \mathcal{M} without f-torsion. As they appear in [24] (unpublished), we recall some proofs for the convenience of the reader.

Lemma 2.1 Let $f \in \mathcal{O}$ be a nonzero germ such that $f(0) = 0$. Let m be a germ of holonomic \mathcal{D}-module \mathcal{M} without f-torsion. Let $P(s) \in \mathcal{D}[s]$ be a differential operator such that $P(j)mf^j \in \mathcal{M}[1/f]$ is zero for a infinite sequence of integers
Proof. We have the following identity:

\[P(s)mf^s = \left(\sum_{i=0}^{d} m_i s^i \right) f^{s-N} \] \hspace{1cm} (3)

in \(\mathcal{M}[1/f, s]f^s \), where \(m_i \in \mathcal{M} \) and \(N \in \mathbb{N} \) denotes the order of \(P \). By assumption, there exists some integers \(j_0 < \cdots < j_d \) such that \(\sum_{i=0}^{d} (j_i)i m_i = 0 \) in \(\mathcal{M} \) for \(0 \leq k \leq d \). Since the Gram matrix of the integers \(j_0, \ldots, j_d \) is invertible, the previous identities imply that \(m_i = 0 \) for \(0 \leq i \leq d \). We conclude with \(\Box \).

Lemma 2.2 Let \(f \in \mathcal{O} \) be a nonzero germ such that \(f(0) = 0 \). Let \(m \in \mathcal{M} \) be a nonzero section of a holonomic \(\mathcal{D} \)-module without \(f \)-torsion.

(i) If \(g \in \mathcal{O} \) is such that \(g \cdot m = 0 \), then \(b(mf^s, s) \) coincides with \(b(m(f+g)^s, s) \).

(ii) If \(m \in \mathcal{M} - f\mathcal{M} \), then \((s+1) \) divides \(b(mf^s, s) \).

(iii) For all \(p \in \mathbb{N}^s \), \(b(mf^s, s) \) divides the \(\prod_{i=0}^{p-1} b(mf^s, ps+i) \), and the polynomial lcm \((m(f^s), ps, \ldots, (m(f^s), ps+p-1)) \) divides \(b(mf^s, s) \). In particular, these polynomials have the same roots.

Proof. In order to prove the first point, we just have to check that the polynomial \(b(m(f+g)^s, s) \) is a multiple of \(b(mf^s, s) \) for any \(g \in \text{Ann}_\mathcal{O} m \), and to apply this fact with \(\tilde{f} = f+g \), \(\tilde{g} = -g \).

Let \(P(s) \in \mathcal{D}[s] \) be a differential operator which realizes the Bernstein polynomial of \(m(f+g)^s \). In particular, \(R(s) = b(m(f+g)^s, s) - P(s)f \) belongs to \(\text{Ann}_\mathcal{D}[s] m(f+g)^s \). As \((f+g)^s \cdot m = f^s \cdot m \) for all \(i \in \mathbb{N} \), the operator \(R(s) \) annihilates \(m(f+g)^s \) by Lemma 2.1. Thus the polynomial \(b(mf^s, s) \) divides \(b(m(f+g)^s, s) \).

Now, we prove (ii). Let \(R \in \mathcal{D} \) be the remainder in the division of \(P(s) \) by \((s+1) \) in a nontrivial identity \(\Box \). Thus \(R \cdot mf^{s+1} = (R \cdot mf^s) + (s+1)af^s \) where \(a \in \mathcal{M}[1/f, s] \). From \(\Box \), we get \(b(-1)m = fR(m) \). Hence \(b(-1) = 0 \) since \(m \not\in f\mathcal{M} \).

The last point is an easy exercise. \(\Box \)

Proposition 2.3 Let \(X \subset \mathbb{C}^n \) be an analytic subvariety of codimension \(p \) passing through the origin. Let \(i : X \hookrightarrow \mathbb{C}^n \) denote the inclusion and let \(h_1, \ldots, h_p \in \mathcal{O} \) be local equations of \(i(X) \). Let \(f \in \mathcal{O} \) be a germ such that \(f \circ i \) is not constant and let \(\mathcal{M} \) be a holonomic \(\mathcal{D}_{X,0} \)-module without \((f \circ i)\)-torsion.

If \(m \in \mathcal{M} \) is nonzero, then \(b(m(f \circ i)^s, s) \) coincides with the polynomial \(b(i_+(m) f^s, s) \) where \(i_+(m) \in \mathcal{M} \otimes (\mathcal{O}[1/h_1 \cdots h_p]/\sum_{i=1}^{p} \mathcal{O}[1/h_1 \cdots \hat{h}_i \cdots h_p]) \) denotes the element \(1/h_1 \cdots h_p \).
Proof. Up to a change of coordinates, we can assume that \(h_i = x_i, 1 \leq i \leq p \). Then the remainder \(\tilde{f} \in \mathbb{C}\{x_{p+1}, \ldots, x_n\} \) in the division of \(f \) by \(x_1, \ldots, x_p \) defines the germ \(f \circ i \). Thus we have \(b(i_+ (m)f^s, s) = b(i_+ (m)\tilde{f}^s, s) \) by using Lemma [2.2](#). Let us prove that \(b(i_+ (m)\tilde{f}^s, s) \) coincides with \(b(m\tilde{f}^s, s) \). Firstly, it easy to check that a functional equation for \(b(m\tilde{f}^s, s) \) induces an equation for \(b(i_+ (m)\tilde{f}^s, s); \) thus \(b(i_+ (m)\tilde{f}^s, s) \) divides \(b(m\tilde{f}^s, s) \). On the other hand, we consider the following equation:

\[
b(i_+ (m)\tilde{f}^s, s)i_+ (m)\tilde{f}^s = P \cdot i_+ (m)\tilde{f}^{s+1}
\]

(4)

where \(P \in \mathcal{D}[s] \). It may be written \(P = \sum_{i=1}^P Q_i x_i + R \) where \(Q_i \in \mathcal{D}[s] \) and the coefficients of \(R \in \mathcal{D}[s] \) do not depend on \(x_1, \ldots, x_p \); in particular, we can change \(P \) by \(R \) in (4). Let \(\tilde{R} \in \mathcal{D}_{X,0}[s] = \mathbb{C}\{x_{p+1}, \ldots, x_n\}\{\partial_{p+1}, \ldots, \partial_n\}[s] \) denote the constant term of \(R \) as an operator in \(\partial_1, \ldots, \partial_p \) with coefficients in \(\mathcal{D}_{X,0}[s] \). Obviously we can change \(R \) by \(\tilde{R} \) in (4). As the annihilator of \(i_+ (m)\tilde{f}^s \) in \(\mathcal{D}_{X,0}[s] \) coincides with the one of \(m\tilde{f}^s \), we deduce that \(b(i_+ (m)\tilde{f}^s, s) \) is a multiple of \(b(m\tilde{f}^s, s) \). This completes the proof. \(\square \)

Corollary 2.4 Let \(h_1, h_2 \in \mathcal{O} \) be two nonzero germs without common factor and such that \(h_1(0) = h_2(0) = 0 \). Assume that \(h_1 \) defines a smooth germ \((X_1, 0) \subset (\mathbb{C}^n, 0) \). Then \(b((1/h_1)h_2^s, s) \) coincides with the (classical) Bernstein Sato polynomial of \(h_2\big|_{X_1} : (X_1, 0) \rightarrow (\mathbb{C}, 0) \).

Proposition 2.5 Let \(f \in \mathcal{O} \) be a nonzero germ such that \(f(0) = 0 \). Let \(m \) be a section of a holonomic \(\mathcal{D} \)-module without \(f \)-torsion, and \(\ell \in \mathbb{N}^* \). The following conditions are equivalent:

1. The smallest integral root of \(b(mf^s, s) \) is strictly greater than \(-\ell - 1\).

2. The \(\mathcal{D} \)-module \((\mathcal{D}m)[1/f] \) is generated by \(mf^{-\ell} \).

3. The following morphism is an isomorphism:

\[
\frac{\mathcal{D}[s]mf^s}{(s + \ell)\mathcal{D}[s]mf^s} \longrightarrow (\mathcal{D}m)[1/f]
\]

\[
P(s)mf^s \mapsto P(-\ell) \cdot mf^{-\ell}.
\]

This is a direct generalization of a well known result due to M. Kashiwara and J.E. Björk for \(m = 1 \in \mathcal{O} = \mathcal{M} \) (see [16] Proposition 6.2, [2] Propositions 6.1.18, 6.3.15 & 6.3.16).
2.2 Is -1 the only integral root of $b(h^s, s)$?

First of all, let us prove Proposition 1.1.

Proof of Proposition 1.1 Assume that condition $B(h_1 h_2)$ is verified. From Proposition 2.5 this means $\mathcal{D}1/h_1 h_2 = \mathcal{O}[1/h_1 h_2]$. In particular, we have $(\mathcal{D}1/h_1)[1/h_2] \subset \mathcal{D}1/h_1 h_2$; thus, by using Proposition 2.5 with $m = 1/h_1$, condition $B(1/h_1, h_2)$ is verified. The second relation in (i) is clear since a functional equation realizing $b((1/h_1) h_2^s, s)$ induces a functional equation for $b((1/h_1) h_2^s, s)$.

The second point is clear, since it just means $(\mathcal{O}[1/h_1])[1/h_2] = \mathcal{O}[1/h_1 h_2]$ (using three times Proposition 2.5). Now, given $P \in \mathcal{D}$ and $\ell \in \mathbb{N}$, let us prove that $(P \cdot 1/h_1) \otimes 1/h_2^\ell$ belongs to $\mathcal{D}1/h_1 h_2$ when $B(1/h_1, h_2)$ and $B(h_2)$ are verified. From Proposition 2.5 there exists an operator $Q \in \mathcal{D}$ such that $(P \cdot 1/h_1) \otimes 1/h_2^\ell = Q \cdot 1/h_1 \otimes 1/h_2$ in $(\mathcal{O}[1/h_1]/\mathcal{O})[1/h_2]$. Hence we have $(P \cdot 1/h_1) \otimes 1/h_2^\ell = Q \cdot 1/h_1 h_2 + a/h_2^\ell$, where $a \in \mathcal{O}$ and $N \in \mathbb{N}^*$. As condition $B(h_2)$ is verified, there exists $R \in \mathcal{D}$ such that $R \cdot 1/h_2 = a/h_2^\ell$. Thus we get $(P \cdot 1/h_1) \otimes 1/h_2^\ell = (Q + Rh_1) \cdot 1/h_1 h_2$. In consequence, the condition $B(1/h_1, h_2)$ is also verified. \(\square\)

The following examples show that there is no other relation between $B(h_1 h_2)$, $B(1/h_1, h_2)$, $B(1/h_1, 1/h_2)$ and $B(h_1)$, $B(h_2)$.

Example 2.6 (i) If $h_1 = x_1$ and $h_2 = x_1 + x_2 x_3 + x_4 x_5$, then $b(h_1^s, s) = b(h_2^s, s) = s + 1$ but $B((1/h_1) h_2^s, s) = b((x_2 x_3 + x_4 x_5)^s, s) = (s + 1)(s + 2)$ by using Corollary 2.3.

(ii) If $h_1 = x_1 x_2 + x_3 x_4$ and $h_2 = x_1 x_2 + x_3 x_5$, then $b(h_1^s, s) = b(h_2^s, s) = (s + 1)(s + 2)$, but $b((h_1 h_2)^s, s)$ is equal to $(s + 1)(s + 3/2)$ by using Macaulay 2 [15, 18]. Moreover, if $h_3 = x_1$, then condition $B(h_1 h_3)$ is also true, since $b((h_1 h_3)^s, s) = (s + 1)(s + 3/2)$ using Macaulay 2. Hence condition $B(h_1 h_2)$ does not depend in general of the conditions $B(h_1)$ and $B(h_2)$.

(iii) Assume that $h_1 = x_1$ and $h_2 = x_1^2 + x_2^4 + x_3^4$. Then $b(h_1^s, s) = s + 1$ and condition $B(1/h_1, h_2)$ is true, since $b((1/h_1) h_2^s, s) = b((x_1^2 + x_2^4 + x_3^4)^s, s)$ by Corollary 2.4. But a direct computation using [24] shows that condition $B(1/h_1, h_2)$ is false.

(iv) Assume that $h_1 = x_1 x_2 x_3 + x_4 x_5$ and $h_2 = x_1$. Then $b((1/h_1) h_2^s, s) = b((1/h_1) h_2^s, s) = b((x_4 x_5)^s, s) = (s + 1)^2$, using Proposition 2.9 and Proposition 1. On the other hand, $(s + 1)(s + 2)$ divides $b((h_1 h_2)^s, s)$ and $b(h_1^s, s)$, by the semi-continuity of the Bernstein polynomial (since when u is a unit, we have $b((u x_2 x_3 + x_4 x_5)^s, s) = (s + 1)(s + 2)$). Thus $B(1/h_1, h_2)$ does not imply $B(h_1 h_2)$ in general.

As an application of Proposition 1.1 we obtain a new proof of the following result.
Proposition 2.7 ([31], [22]) Let $h \in \mathbb{C}[x_1, \ldots, x_n]$ be the product of nonzero linear forms (distinct or not). Then the Bernstein polynomial of h has only -1 as integral root.

Proof. Let h be the product $l_1^{p_1} \cdots l_r^{p_r}$ where $r, p_1, \ldots, p_r \in \mathbb{N}^*$ are positive integers, and $l_i \in (\mathbb{C}^n)^*$ are distinct. We prove the result by induction on r. If $r = 1$, this is a direct consequence of the following identity:

$$
\frac{1}{p^r} \left(\frac{\partial}{\partial x} \right)^p (x^p)^{s+1} = (s + \frac{1}{p})(s + \frac{2}{p}) \cdots (s + \frac{p-1}{p})(s + 1)(x^p)^s
$$

for $p \in \mathbb{N}^*$. Now, we assume that the assertion is true for any germ as above with at most $N \geq 1$ distinct irreducible components. Let h be such a germ with $r = N$. Let $l \in (\mathbb{C}^n)^*$ be a nonzero form which is not a factor of h, and $p \in \mathbb{N}^*$. In particular, -1 is the only integral root of the Bernstein polynomial of l, l^p and h. Let us remark that the assertion for $h \cdot l$ implies the assertion for $h \cdot l^p$. Indeed, using Lemma 2.2 it is easy to check that $B(1/h, l)$ implies $B(1/h, l^p)$. We conclude with the help of Proposition 2.4 (ii).

In order to prove $B(h \cdot l)$, we just have to check that -1 is the only integral root of $b((\hat{1}/l)h^*, s)$ (Proposition 2.4 (iii)). But this is true by induction on N since this last polynomial coincides with the Bernstein polynomial of $h|_{t=0}$ (Corollary 2.4). This completes the proof. □

When h has more than two components, the following result provides a generalized criterion for the condition $B(h)$.

Proposition 2.8 Let $h_1, \ldots, h_p \in \mathcal{O}$ be nonzero germs without common factor, and such that $h_1(0) = \cdots = h_p(0) = 0$.

(i) Assume that $2 \leq p \leq n$ and that (h_1, \ldots, h_p) defines a complete intersection. If $B(h_1 \cdots \hat{h}_j \cdots h_p)$, $1 \leq j \leq p$, are verified, then $B(\delta, h_1)$ implies $B(h_1 \cdots h_p)$ where $\delta = 1/h_2 \cdots h_p \in \mathcal{O}[1/h_2 \cdots h_p]/\sum_{i=2}^{p} \mathcal{O}[1/h_2 \cdots h_i \cdots h_p]$.

(ii) Assume that $p = n$ and (h_1, \ldots, h_n) defines the origin. If the conditions $B(h_1 \cdots \hat{h}_j \cdots h_n)$, $1 \leq j \leq n$, are verified, then so is $B(h_1 \cdots h_n)$.

(iii) Assume that $p \geq n + 1$. If the conditions $B(h_{i_1} \cdots h_{i_n})$ are verified for $1 \leq i_1 < \cdots < i_n \leq p$ then so is $B(h_1 \cdots h_p)$.

Proof. We start with the first assertion. From Proposition 2.4 we just have to prove $B(1/h_2 \cdots h_p, h_1)$ (since $B(h_2 \cdots h_p)$ is verified). Thus, given $P \in \mathcal{D}$ and $\ell \in \mathbb{N}$, let us prove that $(P \cdot 1/h_2 \cdots h_p) \otimes 1/h_1^\ell$ belongs to $\mathcal{D}1/h_1 \cdots h_p$. Using condition $B(\delta, h_1)$, we have

$$(P \cdot \frac{1}{h_2 \cdots h_p}) \otimes \frac{1}{h_1^\ell} = R \cdot \frac{1}{h_1 \cdots h_p} + \sum_{2 \leq i \leq p} \frac{q_i}{h_1^{\ell_1} \cdots \hat{i} \cdots \hat{i_{i-1}} \cdots \hat{i_{i+1}} \cdots h_p^{\ell_p}}$$
with $q_i \in \mathcal{O}$ and $\ell_{i,j} \in \mathbb{N}$. We conclude by using that $\mathcal{O}[1/h_1 \cdots h_i \cdots h_p]$ is generated by $1/h_1 \cdots h_i \cdots h_p$ for $2 \leq i \leq p$ by assumption.

In order to prove (ii), we have to check that $B(\delta, h_1)$ is verified when $p = n$. Firstly, we notice that the D-module $\mathcal{O}[1/h_2 \cdots h_p]/\sum_{i=2}^{p} \mathcal{O}[1/h_2 \cdots \hat{h}_i \cdots h_p]$ is generated by δ (using condition $B(h_2 \cdots h_p)$). Thus $N = (D\delta)[1/h_1]/D\delta$ is isomorphic to the module of local algebraic cohomology with support in the origin; in particular, any nonzero section generates N. We deduce easily that $(D\delta)[1/h_1]$ is generated by $\delta \otimes 1/h_1$. From Proposition 2.5, the condition $B(\delta, h_1)$ is verified.

The last point is a direct consequence of the following fact, proved by A. Leykin [31], Remark 5.2: if the condition $B(h_{i_1} \cdots h_{i_{k-1}})$ is verified for $1 \leq i_1 < \cdots < i_{k-1} \leq k$ with $k \geq n + 1$, then so is $B(h_1 \cdots h_k)$. □

Example 2.9 Let $n = 3$, $p \geq 3$ and $h_i = a_{i,1}x_1^2 + a_{i,2}x_2^3 + a_{i,3}x_3^4$ where the vector $a_i = (a_{i,1}, a_{i,2}, a_{i,3})$ belongs to \mathbb{C}^3 and the rank of $(a_{i,1}, a_{i,2}, a_{i,3})$ is maximal for $1 \leq i_1 < i_2 < i_3 \leq p$. Thus the polynomial $h = h_1 \cdots h_p$ defines a generic arrangement of hypersurfaces with an isolated singularity. By using the closed formulas for $b(h_i^s, s)$ and $b((1/h_i)h_j^s, s)$, $1 \leq i \neq j \leq p$, (see [32], [23]), it is easy to check that the conditions $B(h_i)$ and $B(1/h_i, h_j)$ are verified; thus so is $B(h)$.

3 The condition A(1/h) for a generic arrangement of hypersurfaces with an isolated singularity

In this part, we characterize the condition A(1/h) when $h \in \mathcal{O}$ defines a generic arrangement of hypersurfaces with an isolated singularity. Then we study this condition for a particular family of free germs (3.3).

3.1 A convenient annihilator

This paragraph is devoted to the determination of an annihilator which will allow us to characterize A(1/h).

Notation 3.1 Let $h = (h_1, \ldots, h_r) : \mathbb{C}^n \rightarrow \mathbb{C}^r$, $1 \leq r < n$, be an analytic morphism. For any $K = (k_1, \ldots, k_{r+1}) \in \mathbb{N}^{r+1}$ where $1 \leq k_1, \ldots, k_{r+1} \leq n$ and $k_i \neq k_j$ for $i \neq j$, let $\Delta_K^h \in D$ denote the vector field:

$$\sum_{i=1}^{r+1} (-1)^i m_{K(i)}(h) \partial_{k_i} = \sum_{i=1}^{r+1} (-1)^i \partial_{k_i} m_{K(i)}(h)$$
where $K(i) = (k_1, \ldots, k_i, \ldots, k_{r+1}) \in \mathbb{N}^r$ and $m_{K(i)}(h)$ is the determinant of the $r \times r$ matrix obtained from the Jacobian matrix of h by deleting the k-th columns with $k \notin \{k_1, \ldots, k_i, \ldots, k_{r+1}\}$.

Proposition 3.2 Assume that $n \geq 3$. Let $h = \prod_{i=1}^{p} h_i \in \mathcal{O}$, $p \geq 2$, define a generic arrangement of hypersurfaces with an isolated singularity, and let \tilde{h} be the product $\prod_{i=2}^{p} h_i$. Then the ideal $\text{Ann}_D(1/\tilde{h})h_1^r$ is generated by the operators:

$$\Delta_{h_1, \ldots, h_i} \prod_{i \neq i_1, \ldots, i_r} h_i$$

with $1 \leq r \leq \min(n-1, p)$ and $1 = i_1 < \cdots < i_r \leq p$.

Proof. Let $I \subset D$ be the left ideal generated by the given operators, and let $\mathcal{I} \subset \mathcal{O}[\xi_1, \ldots, \xi_n]$ denote the ideal generated by their principal symbols. We will just prove that $\text{Ann}_D(1/\tilde{h})h_1^r \subset I$, since the reverse inclusion is obvious. Let us study $\text{char}_D D(1/\tilde{h})h_1^r \subset T^*\mathbb{C}^n$ the characteristic variety of $D(1/\tilde{h})h_1^r$.

Given an analytic subspace $X \subset \mathbb{C}^n$, we denote by $W_{h_1} X$ the closure in $T^*\mathbb{C}^n$ of the set $\{(x, \xi + \lambda h_1(x)) : \lambda \in \mathbb{C}, (x, \xi) \in T^*_X \mathbb{C}^n\}$.

Assertion 1. The characteristic variety of $D(1/\tilde{h})h_1^r$ is the union of the subspaces W_{h_1} and $W_{h_1} \cap T^*_X \mathbb{C}^n$, $2 \leq i_1 < \cdots < i_r \leq p$, $1 \leq r \leq \min(n-1, p)$, where $X_{i_1, \ldots, i_r} \subset \mathbb{C}^n$ is the complete intersection defined by h_1, \ldots, h_{i_r}.

Proof. Under our assumption, $(\tilde{h}^{-1}(0), x)$ is a germ of a normal crossing hypersurface for any $x \in \tilde{h}^{-1}(0)/\{0\}$ close enough to the origin. In particular, $D1/\tilde{h}$ coincides with $D[1/h_{i_1} \cdots h_{i_r}]$ on a neighborhood of such a point, where $\{i_1, \ldots, i_r\} = \{i \mid h_i(x) = 0, 2 \leq i \leq p\}$. Hence, the components of the characteristic variety of $D1/\tilde{h}$ which are not supported by $h_1 = 0$ are $T^*_X \mathbb{C}^n$ and the conormal spaces $T^*_X \mathbb{C}^n$, with $2 \leq i_1 < \cdots < i_r \leq p$ and $1 \leq r \leq \min(n-1, p)$. The assertion follows from a result of V. Ginzburg ([13] Proposition 2.14.4).

We recall that the relative conormal space2 $W_{h_1} \subset T^*\mathbb{C}^n$ is defined by the polynomials $\sigma(\Delta_{k_1, k_2} h_1, h_2) = h_2(x) \xi_{k_2} - h_1(x) \xi_{k_1}$, $1 \leq k_1 < k_2 \leq n$ (see [32] for example). One can also determine explicitly the defining ideal of the spaces $W_{h_1} \cap T^*_X \mathbb{C}^n$.

Assertion 2 ([32]). The conormal space $W_{h_1} \cap T^*_X \mathbb{C}^n$ is defined by h_{i_1}, \ldots, h_{i_r} and by the principal symbol of the vector fields $\Delta_{K} h_{i_1, \ldots, i_r}$ (when $r < n-1$), where $K = (k_1, \ldots, k_{r+2}) \in \mathbb{N}^r+2$ with $1 \leq k_1 < \cdots < k_{r+2} \leq n$.

Now we can determine the equations of $\text{char}_D D(1/\tilde{h})h_1^r$.

2See [33]
Assertion 3. The defining ideal of $\mathcal{D}(1/\tilde{h})h^s_1$ is included in \mathcal{I}.

Proof. Let $A \in \mathcal{O}[\xi] = \mathcal{O}[\xi_1, \ldots, \xi_n]$ be a polynomial which is zero on the characteristic variety of $\mathcal{D}(1/\tilde{h})h^s_1$. We will prove the result when $p \geq n$ - the case $p \leq n - 1$ is analogous.

Using the inclusion $W_{h_1} X_{i_1, \ldots, i_{n-1}} \subset \text{char} \mathcal{D}(1/\tilde{h})h^s_1$ and Assertion 2, we have: $A \in (h_{i_1}, \ldots, h_{i_{n-1}})\mathcal{O}[\xi]$ for $2 \leq i_1 < \cdots < i_{n-1} \leq p$. By an easy induction on $p \geq n$, one can check that:

$$\bigcap_{2 \leq i_1 < \cdots < i_{n-1} \leq p} (h_{i_1}, \ldots, h_{i_{n-1}})\mathcal{O} = \sum_{2 \leq i_1 < \cdots < i_{n-2} \leq p} \prod_{i \neq 1, i_1, \ldots, i_{n-2}} h_i \mathcal{O}$$

using that every sequence $(h_{i_1}, \ldots, h_{i_n})$ is regular. Thus A may be written as a sum $\sum_{2 \leq i_1 < \cdots < i_{n-2} \leq p} A^{(0)}_{i_1, \ldots, i_{n-2}} (\prod_{i \neq 1, i_1, \ldots, i_{n-2}} h_i)$ for some $A^{(0)}_{i_1, \ldots, i_{n-2}} \in \mathcal{O}[\xi]$.

Now let us fix $i_1 < \cdots < i_{n-2}$ a family of index as above. From the inclusion $W_{h_1} X_{i_1, \ldots, i_{n-2}} \subset \text{char} \mathcal{D}(1/\tilde{h})h^s_1$ and Assertion 2, A belongs to the ideal $\mathcal{I}_{1, i_1, \ldots, i_{n-2}} = (h_{i_1}, \ldots, h_{i_{n-2}})\mathcal{O}[\xi] + \sum_K \sigma(\Delta_K^{h_i}) \mathcal{O}[\xi]$. On the other hand, let us remark that h_i is $\mathcal{O}[\xi]/\mathcal{I}_{1, i_1, \ldots, i_{n-2}}$-regular for $i \neq 1, i_1, \ldots, i_{n-2}$ [by the principal ideal theorem, using that $\mathcal{I}_{1, i_1, \ldots, i_{n-2}}$ defines the irreducible space $W_{h_1} X_{i_1, \ldots, i_{n-2}}$ of pure dimension $n + 1$]. Thus we have $A^{(0)}_{i_1, \ldots, i_{n-2}} \in \mathcal{I}_{1, i_1, \ldots, i_{n-2}}$, and A may be written: $A = U + \sum_{2 \leq i_1 < \cdots < i_{n-3} \leq p} A^{(1)}_{i_1, \ldots, i_{n-3}} (\prod_{i \neq 1, i_1, \ldots, i_{n-3}} h_i)$ where $A^{(1)}_{i_1, \ldots, i_{n-3}} \in \mathcal{O}[\xi]$ and $U \in \mathcal{I}$. Up to a division by \mathcal{I}, we can assume that $U = 0$. After iterating this process with $W_{h_1} X_{i_1, \ldots, i_r}$, $1 \leq r \leq n - 2$, we deduce that $A - A^{(n-2)}h_i$ belongs to \mathcal{I}. Hence, using that $W_{h_1} \subset \text{char} \mathcal{D}(1/\tilde{h})h^s_1$, we have: $A^{(n-2)} \in \sum_{1 \leq k_1 < k_2 \leq n} \sigma(\Delta_K^{h_{1}}) \mathcal{O}[\xi]$. In particular, $A^{(n-2)}h_i$ belongs to \mathcal{I}, and we conclude that $A \in \mathcal{I}$. □

Now let us prove the proposition. Let $P \in \text{Ann}_{\mathcal{D}} (1/\tilde{h})h^s_1$ be a nonzero operator of order d. In particular, $\sigma(P)$ is zero on $\text{char} \mathcal{D}(1/\tilde{h})h^s_1$, and by Assertion 3: $\sigma(P) \in \mathcal{I}$. In other words, there exists $Q \in I$ such that $\sigma(Q) = \sigma(P)$. Thus, the operator $P - Q \in \text{Ann}_{\mathcal{D}} (1/\tilde{h})h^s_1 \cap F_{d-1} \mathcal{D}$ belongs to \mathcal{I}, and so does P (by induction on the order of operators). □

Remark 3.3 We are not able to determine $\text{Ann}_{\mathcal{D}} h^s$ when h defines a generic arrangement of hypersurfaces with an isolated singularity. In particular, we do not know if the condition $A(h)$ (or $W(h)$) is - or not - verified (see [19]).

Given a germ $h \in \mathcal{O}$ such that $h(0) = 0$, let us denote by $\text{Der}(- \log h)$ the coherent \mathcal{O}-module of logarithmic derivations relative to h, that is, vector fields which preserve $h\mathcal{O}$ (see [19]).

Corollary 3.4 Let $h = \prod_{i=1}^{n} h_i \in \mathcal{O}$, $p \geq 2$, define a generic arrangement of hypersurfaces with an isolated singularity. Assume that $n \geq 3$ and that h...
is a weighted homogeneous polynomial. Then $\text{Der}(- \log h)$ is generated by the Euler vector field χ such that $\chi(h) = h$ and the vector fields

$$
\left[\prod_{i \neq i_1, \ldots, i_r} h_i \right] \Delta^{h_{11}, \ldots, h_{ir}}_K
$$

where $1 \leq r \leq \min(n - 1, p)$ and $1 = i_1 < \cdots < i_r \leq p$.

Proof. We denote by $\tilde{h} \in \mathcal{O}$ the product $h_2 \cdots h_p$. Let v be a logarithmic vector field; in particular, $v(h) = ah$. As $h = h_1h$, it is easy to check that $v(h_1) = a_1h_1$ and $v(\tilde{h}) = \tilde{a}h_1$ for $a_1, \tilde{a} \in \mathcal{O}$ such that $a_1 + \tilde{a} = a$. In particular, $v \cdot (1/\tilde{h})h_1^s = (a_1s - \tilde{a})(1/\tilde{h})h_1^s$. Thus $v + \tilde{a} - a_1 \chi$ belongs to $\text{Ann}_D (1/\tilde{h})h_1^s$, and by using the proof of the previous result, we have:

$$
v = -\tilde{a} + a_1 \chi + \sum_{r=1}^{\min(n-1,p)} \sum_{1 \leq i_1 < \cdots < i_r \leq p} \lambda_{i_1, \ldots, i_r} \Delta_{K}^{i_1, \ldots, i_r} \prod_{i \neq i_1, \ldots, i_r} h_i
$$

where $\lambda_{i_1, \ldots, i_r} \in \mathcal{O}$ for $1 \leq i_1 < \cdots < i_r \leq p$. As v is a vector field, we get $v = a_1 \chi + \sum_r \sum_{1 \leq i_1 < \cdots < i_r \leq p} \lambda_{i_1, \ldots, i_r} [\prod_{i \neq i_1, \ldots, i_r} h_i] \Delta_{K}^{i_1, \ldots, i_r}$ and the assertion follows. \square

3.2 The expected characterization

The proof of Theorem 1.3 is an easy consequence of the following result

Proposition 3.5 Let $h = \prod_{i=1}^p h_i \in \mathcal{O}$, $p \geq 2$, define a generic arrangement of hypersurfaces with an isolated singularity. Assume that $n \geq 3$ and that the origin is a critical point of h_1. Let \hat{h} denote the product $\prod_{i=2}^p h_i$. Then the ideal $\text{Ann}_D 1/h$ is generated by operators of order one if and only if the following conditions are verified:

1. the germ is weighted homogeneous;
2. -1 is the smallest integral root of the Bernstein polynomial $b((1/\hat{h})h_1^s, s)$.

Proof. We can assume that h does not define a normal crossing divisor. Indeed, the conditions $A(1/h)$, 1 and 2 are obviously verified for a normal crossing divisor. In particular, the constant term with the coefficient on the right side of any operator in $\text{Ann}_D (1/\hat{h})h_1^s$ is not a unit (see Proposition 3.2).

Firstly, we prove that conditions 1 & 2 imply $\text{A}(1/h)$. By an Euclidean division, we have a decomposition

$$
\text{Ann}_D[1/h] h_1^s = D[s](-\tilde{q} - v) + D[s]\text{Ann}_D[1/h] h_1^s
$$
where \(v \) denotes the Euler vector field such that \(v(h_1) = h_1 \) and \(v(\tilde{h}) = \tilde{q} \tilde{h} \) with \(\tilde{q} \in Q^{++} \). Moreover, with the condition 2, the ideal \(\text{Ann}_D 1/(\tilde{h} h_1) \) is obtained by fixing \(s = -1 \) in a system of generators of \(\text{Ann}_{D[s]}(1/\tilde{h}) h_1^s \) (see [20] Proposition 3.1). From Proposition 3.2 the condition \(A(1/\tilde{h}) \) is therefore verified.

Now, we prove the reverse. Let us assume that \(\text{Ann}_D 1/\tilde{h} \) is generated by the operators \(Q_1, \ldots, Q_w \in F_1 D \). From Proposition 1.3 in [28], \(B(h) \) is verified, and so\(^3\) is condition 2 by Proposition 1. Hence, we just have to check that \(h \) is necessarily weighted homogeneous. Let \(q_i \) be the germ \(Q_i(1) \in \mathcal{O} \) and \(Q_i' \) the vector field \(Q_i - q_i \). In particular, we have \(Q_i'(h) = q_i h \) for \(1 \leq i \leq w \).

As \(h = h_1 \tilde{h} \), it is easy to deduce that \(Q_i'(\tilde{h}) = \tilde{q}_i \tilde{h} \) and \(Q_i'(h_1) = q_{i,1} h_1 \) where \(\tilde{q}_i, q_{i,1} \in \mathcal{O} \) verify

\[
\tilde{q}_i + q_{i,1} = q_i, \quad 1 \leq i \leq w.
\]

On the other hand, we have the following fact:

Assertion 1. There exists a differential operator \(R \) in \(\text{Ann}_D(1/\tilde{h}) h_1^s \) such that \(R = 1 + \sum_{i=1}^w A_i q_{i,1} \) with \(A_i \in D \).

Proof. The proof is analogous to the one of [26] Lemme 3.3. From [14] p 351 or [21], there exists a ‘good’ operator \(R_0(s) \) of degree \(N \geq 1 \) in \(\text{Ann}_{D[s]}(1/\tilde{h}) h_1^s \), that is \(R_0(s) = s^N + \sum_{k=0}^{N-1} s^k P_k \) with \(P_k \in F_{N-k} D \), \(0 \leq k \leq N - 1 \). By Euclidean division, we have \(R_0(s) = (s+1)S(s) + R_0(-1) \) where \(S(s) \) is monic in \(s \) of degree \(N-1 \) and \(R_0(-1) \in \text{Ann}_D 1/\tilde{h} \). Thus, there exists \(A_1, \ldots, A_w \in D \) such that \(R_0(-1) = \sum_{i=1}^w A_i Q_i \). From the relations above, we get

\[
(s + 1) S(s)\frac{1}{\tilde{h}} h_1^s + (s + 1) \sum_{i=1}^w A_i q_{i,1} \frac{1}{\tilde{h}} h_1^s = 0.
\]

Hence \(R_1(s) = S(s) + \sum_{i=1}^w A_i q_{i,1} \) belongs to \(\text{Ann}_{D[s]}(1/\tilde{h}) h_1^s \). By iteration, we can assume that \(S(s) = 1 \). \(\square \)

In particular, at least one of the \(q_{i,1} \) is a unit (see the very beginning of the proof.)

Assertion 2. If \(q_{i,1} \) is a unit, then so is \(q_i \).

Proof. As the assertion is clear if \(\tilde{q}_i \) is not a unit, we can assume that \(\tilde{q}_i \) is a unit. Let \(\chi_i \) denote the vector field \(q_{i,1}^{-1} Q_i' \) in particular \(\chi_i(h_1) = h_1 \). As \(h_1 \) defines an isolated singularity, a famous result due to K. Saito [14] asserts that, up to a change of coordinates, \(\chi_i \) is an Euler vector field \(\sum_{k=1}^n \alpha_k x_k \partial_k \) with \(\alpha_k \in Q^{++} \). Hence, the relation \(\chi_i(\tilde{h}) = q_{i,1}^{-1} \tilde{q}_i \tilde{h} \) implies that the constant \((q_{i,1}^{-1} \tilde{q}_i)(0) \) belongs

\(^3\)In fact, the same proof shows directly that condition \(A(1/\tilde{h}) \) implies \(B(1/\tilde{h}, h_1) \).
to \mathbb{Q}^+ [consider the initial part of $q_i^{-1}\tilde{q}_i h$ relative to $\alpha_1, \ldots, \alpha_n$]. In particular, $q_i^{-1}\tilde{q}_i + 1$ is a unit, and so is $q_i = \tilde{q}_i + q_{i,1}$.

We recall that a formal power series $g \in \mathbb{C}[[x_1, \ldots, x_n]]$ is weakly weighted homogeneous of type $(\beta_0, \beta_1, \ldots, \beta_n) \in \mathbb{C}^{n+1}$ if for all monomial $x_1^{\gamma_1} \cdots x_n^{\gamma_n}$ with a nonzero coefficient in the power expansion of g, we have $\beta_1 \gamma_1 + \cdots + \beta_n \gamma_n = \beta_0$.

Let us pursue the proof. We have proved that there exists an Euler vector field χ_i such that $q_i^{-1}\chi_i(h) = h$ (in particular, $q_i(0) > 0$). From [19], Corollary 3.3, there exists a formal change of coordinates ϕ such that $h \circ \phi$ is weakly weighted homogeneous of type $(1, \alpha_1 q_i^{-1}(0), \ldots, \alpha_n q_i^{-1}(0))$. As the $\alpha_k q_i^{-1}(0)$ are strictly positive, $h \circ \phi$ is in fact weighted homogeneous, and according to a theorem of Artin [1], a convergent change of coordinates exists. This completes the proof.

Proof of Theorem 1.3. The case $n = 2$ is done in [20], Theorem 1.2. We just have to check that the condition 2 in the previous statement may be replaced by $B(h)$. Indeed, condition A $(1/h)$ always implies $B(h)$ (28 Proposition 1.3), and on the other hand, $B(h)$ is stronger than $B(1/\tilde{h}, h_1)$ (Proposition 11).

Of course, we can use [22] to test if condition $B(h)$ is verified. In the particular case $p = 2$ and h weighted homogeneous, we obtain the following characterization:

Corollary 3.6 Let $h_1, h_2 \in \mathbb{C}[x_1, \ldots, x_n]$ be two weighted homogeneous polynomial of degree d_1, d_2 for a system $\alpha \in (\mathbb{Q}^+)^n$, defining hypersurfaces with an isolated singularity at the origin and without common components. Let $K \subset \mathcal{O}$ be the ideal generated by the maximal minors of the Jacobian matrix of (h_1, h_2). Then the annihilator of $1/h_1 h_2$ is generated by operators of order 1 if and only if for $j = 1$ or 2, there is no weighted homogeneous element in $\mathcal{O}/h_j \mathcal{O} + K$ whose weight belongs to the set $\{d_j \times k - \sum_{i=1}^n \alpha_i ; k \in \mathbb{N} & k \geq 2\}$.

This relies on the existence of closed formulas for $b((1/\tilde{h})h_1^s, s)$ under these assumptions [20].

3.3 About a family of free germs

In this part, we prove Proposition 1.4. As the two parts are quite distinct, we will prove them successively.

Lemma 3.7 Let $g \in \mathbb{C}\{x_1, x_2\}$ be a nonzero reduced germ of plane curve such that $g(0) = 0$. Then -1 is the only integral root of the Bernstein polynomial of $(x_1 - x_2 x_3)g(x_1, x_2)$.
Let us write g.

Proof. As g is a reduced germ of plane curve, $B(g)$ is verified \[30\], \[21\]. Thus, by using Proposition \[\text{[1]}\] the three conditions $B((x_1 - x_2 x_3)g(x_1, x_2))$, $B(1/x_1 - x_2 x_3, g)$ and $B(1/x_1 - x_2 x_3, g)$ are equivalent. Let us prove the last one. From Corollary \[\text{[2.4]}\], we have $b((1/x_1 - x_2 x_3)g^*, s) = b((g(x_2 x_3, x_2))^*, s)$. Let us write $g(x_2 x_3, x_2) = x_2^\ell \tilde{g}(x_2, x_3)$, where $\tilde{g} \in \mathbb{C}\{x_2, x_3\} - x_2 \mathbb{C}\{x_2, x_3\}$ is reduced and $\ell \in \mathbb{N}^*$. If \tilde{g} is a unit, then $B(g(x_2 x_3, x_2))$ is verified and so is $B((x_1 - x_2 x_3)g(x_1, x_2))$. Now we assume that \tilde{g} is not a unit. As it is reduced, $B(\tilde{g})$ is verified and $B(\tilde{g} x_2^\ell)$ is equivalent to $B(1/\tilde{g}, x_2^\ell)$. Using Lemma \[\text{[2.2]}\] it is easy to check that $B(1/\tilde{g}, x_2)$ implies $B(1/\tilde{g}, x_2^\ell)$. Thus we just have to prove $B(1/\tilde{g}, x_2)$. As condition $B(\tilde{g})$ is verified, the conditions $B(1/\tilde{g}, x_2)$, $B(\tilde{g} x_2)$ and $B(1/x_2, \tilde{g})$ are equivalent (Proposition \[\text{[1]}\]). Both of them are verified since $b((1/x_2)\tilde{g}^*, s) = b((\tilde{g}(0, x_3))^*, s)$ from Corollary \[\text{[2.4]}\] where $\tilde{g}(0, x_3) = ux_3^N$ with $u \in \mathbb{C}\{x_3\}$ is a unit. This completes the proof. \square

We recall that a nonzero germ $h \in \mathcal{O}$ defines a germ of free divisor if the module of logarithmic derivations relative to h is \mathcal{O}-free \[\text{[20]}\]. Moreover, such a germ defines a Koszul-free divisor if there exists a basis $\{\delta_1, \ldots, \delta_n\}$ of $\text{Der}(-\log h)$ such that the sequence of principal symbols $(\sigma(\delta_1), \ldots, \sigma(\delta_n))$ is $\text{gr}F\mathcal{D}$-regular.

Lemma 3.8 Let $g \in \mathbb{C}[x_1, x_2]$ be a weighted homogeneous and reduced polynomial whose multiplicity is greater or equal to 3. Let $h \in \mathbb{C}[x_1, x_2, x_3]$ denote the polynomial $(x_1 - x_2 x_3)g(x_1, x_2)$.

(i) The polynomial h defines a free divisor and verifies the condition $\text{H}(h)$.

(ii) The polynomial h defines a Koszul-free divisor if and only if the weighted homogeneous polynomial g is not homogeneous.

Proof. (i) It is enough to remark that the following vector fields verify Saito’s criterion \[\text{[20]}\] for h:

\[
\begin{align*}
\delta_1 &= \alpha_1 x_1 \partial_1 + \alpha_2 x_2 \partial_2 + (\alpha_1 - \alpha_2) x_3 \partial_3 \\
\delta_2 &= g'_{x_2} \partial_1 - g'_{x_1} \partial_2 + (x_3 u - v) \partial_3 \\
\delta_3 &= (x_1 - x_2 x_3) \partial_3
\end{align*}
\]

where $(\alpha_1, \alpha_2) \in (\mathbb{Q}^+)^2$ is a system of weights for g, and $u \in \mathbb{C}[x_1, x_2, x_3]$, $v \in \mathbb{C}[x_2, x_3]$ are the polynomials of degree in x_3 less or equal to 1 uniquely defined by the relation

\[x_3 g'_{x_1}(x_1, x_2) + g'_{x_2}(x_1, x_2) = u(x_1, x_2, x_3)x_1 - v(x_2, x_3)x_2\]

(we use that $g'_{x_1}, g'_{x_2} \in (x_1, x_2)\mathbb{C}[x_1, x_2]$ under our assumptions.)

(ii) As the sequence $(\sigma(\delta_1), \sigma(\delta_2), \xi_3)$ is regular, the germ h is Koszul-free if and only if the sequence $(\sigma(\delta_1), \sigma(\delta_2), x_1 - x_2 x_3)$ is $\mathcal{O}[\xi]$-regular. By division
by \(x_1 - x_2x_3\), this condition may be rewritten: the polynomials

\[
\begin{align*}
\gamma_1 &= \alpha_1 x_2x_3 \xi_1 + \alpha_2 x_2 \xi_2 + (\alpha_1 - \alpha_2)x_3 \xi_3 \\
\gamma_2 &= g'_{x_2}(x_2x_3, x_2) \xi_1 - g'_{x_1}(x_2x_3, x_2) \xi_2 + (x_3 u(x_2x_3, x_2) - v(x_2, x_3)) \xi_3
\end{align*}
\]

have no common factor. Let us notice that \(x_2\) is the only (irreducible) common factor of \(g'_{x_2}(x_2x_3, x_2)\) and \(g'_{x_2}(x_2x_3, x_2)\) [since \(g \in \mathbb{C}[x_1, x_2]\) defines an isolated singularity.] Thus, when \(\gamma_1\) and \(\gamma_2\) have a common factor, this factor is \(x_2\) (up to a multiplicative constant). As \(g\) belongs in \((x_1, x_2)^3\mathbb{C}[x_1, x_2]\), we have \(g'_{x_1}, g'_{x_2} \in (x_1, x_2)^2\mathbb{C}[x_1, x_2]\); thus \(u, v \in (x_1, x_2)\mathbb{C}[x_1, x_2, x_3]\). In particular, \(x_2\) is a factor of \(\gamma_2\), and \(\gamma_1, \gamma_2\) have no common factor if and only if \(\alpha_1 \neq \alpha_2\). This completes the proof. \(\square\)

Of course, for \(g = x_1x_2(x_1 + x_2)\), \(h\) is the example of F.J. Calderón-Moreno in \(\text{[4]}\) and it is not Koszul-free.

Proof of Proposition \(\text{[4]}\) part (i). Without loss of generality, we will assume that \(\delta_1(h) = h\). Let us take \(\delta_2' = \delta_2 - u \cdot \delta_1\) and \(\delta_3' = \delta_3 + x_2\delta_1\); in particular, \(\{\delta_1, \delta_2', \delta_3'\}\) is a basis of \(\text{Der}(\log h)\) such that \(\delta_2'(h) = \delta_3'(h) = 0\).

From the characterization of condition \(A(1/h)\) for Koszul-free germs (see Corollary 1.8), it is enough to check that condition \(A(h)\) fails, that is, the sequence \((x_1 - x_2x_3, \sigma(\delta_2'), \sigma(\delta_3'))\) is not regular. As \(g\) belongs to \((x_1, x_2)^3\mathbb{C}[x_1, x_2]\), we have \(\sigma(\delta_2'), \sigma(\delta_3') \in (x_1, x_2)\mathcal{O}[\xi]\). By division by \(x_1 - x_2x_3\), we deduce that the sequence is not regular. \(\square\)

Notation 3.9 Given a homogeneous polynomial \(g \in \mathbb{C}[x_1, x_2] - \mathbb{C}\) of degree \(p \geq 1\), we denote by \(g_1, g_2 \in \mathbb{C}[x_1, x_2, x_3]\) the quotient of the division of \(g'_{x_1}, g'_{x_2}\) by \(x_1 - x_2x_3\). In particular:

\[
g'_{x_i} = (x_1 - x_2x_3)\tilde{g}_i + x_2^{p-1} g'_{x_2}(x_3, 1), \quad i \in \{1, 2\}.
\]

Lemma 3.10 Let \(g \in \mathbb{C}[x_1, x_2]\) be a homogeneous reduced polynomial of degree \(p \geq 3\). Then the characteristic variety of \(\mathcal{D}(1/x_1 - x_2x_3)g^s\) is defined by the following polynomials: \((x_1 - x_2x_3)\xi_3, g'_{x_2}(x_3, 1)\xi_1 - g'_{x_1}(x_3, 1)\xi_2 + px_2^{p-2}g(x_3, 1)\xi_3,\text{ and }\]

\[
[x_2g'_{x_2}(x_3, 1)\xi_1 - x_2g'_{x_1}(x_3, 1)\xi_2 + pg(x_3, 1)\xi_3] \xi_3\]

Proof. Using Proposition 2.14.4, the characteristic variety of the \(\mathcal{D}\)-module \(\mathcal{D}(1/x_1 - x_2x_3)g^s\) is the union of the conormal spaces \(W_g\) and \(W_{g|x_1=x_2x_3}\). It is easy to check that they are defined by the ideals \(I_1 = \langle \xi_3, g'_{x_2}(x_3, 1)\xi_1 - g'_{x_1}(x_3, 1)\xi_2 \rangle \mathcal{O}[\xi]\) and \(I_2 = \langle x_1 - x_2x_3, x_2g'_{x_2}(x_3, 1)\xi_1 - x_2g'_{x_1}(x_3, 1)\xi_2 + pg(x_3, 1)\xi_3 \rangle \mathcal{O}[\xi]\) respectively. Clearly, the ideal \(I\) generated by the given polynomials is contained in \(I_1 \cap I_2\). Thus, we just have to prove the reverse relation.

Let \(A, B, C, D \in \mathcal{O}[\xi]\) be such that

\[
A(x_1 - x_2x_3) + B(x_2g'_{x_2}(x_3, 1)\xi_1 - x_2g'_{x_1}(x_3, 1)\xi_2 + pg(x_3, 1)\xi_3) = C\xi_3 + D(g'_{x_2}(x_3, 1)\xi_1 - g'_{x_1}(x_3, 1)\xi_2).
\]
Proof of Proposition 1.4, part (ii). We will prove that $\text{Ann}(\alpha_{x}) - \text{we know that we have the decomposition Ann}(1 - \alpha_{x})$ such that:

\[A - D(\tilde{g}_{2}\xi_{1} - \tilde{g}_{1}\xi_{2})(x_{1} - x_{2}x_{3}) + (pB\tilde{g}(x_{3}, 1) - C)\xi_{3} \]

\[+ (B - Dx_{2}^{2})x_{2}(g'_{x_{2}}(x_{3}, 1)\xi_{1} - g'_{x_{1}}(x_{3}, 1)\xi_{2}) = 0 \]

Since the sequence $(x_{1} - x_{2}x_{3}, \xi_{3}, x_{2}(g'_{x_{2}}(x_{3}, 1)\xi_{1} - g'_{x_{1}}(x_{3}, 1)\xi_{2}))$ is $\mathcal{O}[\xi]$-regular, there exist $U, V, W \in \mathcal{O}[\xi]$ such that

\[\begin{cases} A - D(\tilde{g}_{2}\xi_{1} - \tilde{g}_{1}\xi_{2}) = U\xi_{3} + Wx_{2}(g'_{x_{2}}(x_{3}, 1)\xi_{1} - g'_{x_{1}}(x_{3}, 1)\xi_{2}) \\ B - Dx_{2}^{2} = -V\xi_{3} - W(x_{1} - x_{2}x_{3}) \end{cases} \]

Thus one can notice that the first part of the first identity belongs to I, that is, I is the defining ideal of $W_{g} \cup W_{g|x_{1}=x_{2}x_{3}}$. □

Lemma 3.11 Let $g \in \mathcal{C}[x_{1}, x_{2}]$ be a homogeneous reduced polynomial of degree 3. Then the annihilator of $(1/x_{1} - x_{2}x_{3})g^{*}$ is generated by the following differential operators:

\[(x_{1} - x_{2}x_{3})\partial_{1} - x_{2}, \quad g'_{x_{2}}\partial_{1} - g'_{x_{1}}\partial_{2} + 3x_{2}g(x_{3}, 1)\partial_{3} + x_{3}\tilde{g}_{1} + \tilde{g}_{2} \quad \text{and} \]

\[[x_{2}g'_{x_{2}}(x_{3}, 1)\partial_{1} - x_{2}g'_{x_{1}}(x_{3}, 1)\partial_{2} + 3g(x_{3}, 1)\partial_{3} + \tilde{g}_{2}\partial_{1} - \tilde{g}_{1}\partial_{2} + 3g'_{x_{1}}(x_{3}, 1)\partial_{3} + u'_{1}] \]

where $u = x_{3}\tilde{g}_{1} + \tilde{g}_{2}$.

Proof. Let us denote by $I \subset \mathcal{D}$ the ideal generated by the given operators S_{1}, S_{2}, S_{3}. It is not hard to check the inclusion $I \subset \text{Ann}_{\mathcal{D}}(1/x_{1} - x_{2}x_{3})g^{*}$. Let us prove that the reverse inclusion by induction on the order of operators.

Let $P \in \text{Ann}_{\mathcal{D}}(1/x_{1} - x_{2}x_{3})g^{*}$ be an operator of order d. As $d = 0$ implies $P = 0$, we can assume $d \geq 1$. Then $\sigma(P)$ is zero on the characteristic variety of $\mathcal{D}(1/x_{1} - x_{2}x_{3})g^{*}$. From the previous result, there exists $A_{1} \in \mathcal{O}[\xi]$ (resp. A_{2}, A_{3}) zero or homogeneous in ξ of degree $d - 1$ (resp. $d - 1, d - 2$) such that $\sigma(P) = \sum_{i=1}^{3} A_{i}\sigma(S_{i})$. If $\hat{A}_{i} \in \mathcal{D}$, $1 \leq i \leq 3$, are such that $\sigma(A_{i}) = A_{i}$ for $1 \leq i \leq 3$, then $P - \sum_{i=1}^{3} \hat{A}_{i}S_{i}$ belongs to $\mathcal{D}d_{-1}$ and annihilates $(1/x_{1} - x_{2}x_{3})g^{*}$. By induction, it belongs to I and so does P. □

Proof of Proposition 1.4 part (ii). We will prove that $\text{Ann}_{\mathcal{D}}1/h$ is generated by the operators $\tilde{\delta}_{1} = \delta_{1} + 4$, $\tilde{\delta}_{2} = \delta_{2} + u$, $\tilde{\delta}_{3} = \delta_{3} - x_{2}$ (with the notations introduced in the proof of Lemma 3.8 with $\alpha_{1} = \alpha_{2} = 1$). From Lemma 3.7 we know that -1 is the smallest integral root of $b((1/x_{1} - x_{2}x_{3})g^{*}, s)$. Thus we have the decomposition $\text{Ann}_{\mathcal{D}}1/h = \mathcal{D}\tilde{\delta}_{1} + \text{Ann}_{\mathcal{D}}(1/x_{1} - x_{2}x_{3})g^{*}$, and the assertion is a direct consequence of the previous result and of the following relation in \mathcal{D}:

\[[g'_{x_{2}}(x_{3}, 1)x_{2}\partial_{1} - g'_{x_{1}}(x_{3}, 1)x_{2}\partial_{2} + 3g(x_{3}, 1)\partial_{3} + 3g'_{x_{1}}(x_{3}, 1)](\partial_{3}\tilde{\delta}_{1} - \partial_{1}\tilde{\delta}_{3}) \]

17
\[+ [\partial_2 + x_3\partial_1](\partial_3\tilde{\delta}_2 + (\tilde{g}_2\partial_1 - \tilde{g}_1\partial_2)\tilde{\delta}_3) = -2S_3 + \partial_1\tilde{\delta}_2 - (\tilde{g}_2\partial_1 - \tilde{g}_1\partial_2 + u'_{x_1})\tilde{\delta}_1 \]

where \(S_3 \) is the operator of order 2 which appears in the given system of generators of \(\text{Ann}_D(1/x_1 - x_2x_3)g^s \). □

4 Some other conditions

In this part, \(h \in \mathcal{O} \) denotes a nonzero germ such that \(h(0) = 0 \).

4.1 The condition \(A(h) \) for Sebastiani-Thom germs

We recall that the condition \(A(h) \) on the ideal \(\text{Ann}_D h^s \) may be considered almost as a geometric condition. Indeed the following condition implies \(A(h) \):

\(W(h) \): The relative conormal space \(W_h \) is defined by linear equations in \(\xi \). Since \(W_h = \{(x, \lambda dh) | \lambda \in C\} \subset T^*\mathbb{C}^n \) is the characteristic variety of \(D h^s \) (16). For example, \(W(h) \) is true for hypersurfaces with an isolated singularity \(\mathbb{G} \) and for locally weighted homogeneous free divisors \(\mathbb{G} \). This condition also means that the kernel of the morphism of graded \(\mathcal{O} \)-algebras:

\[
\mathcal{O}[X_1, \ldots, X_n] \longrightarrow \mathcal{R}(\mathcal{J}_h)
\]

is generated by homogeneous elements of degree 1, where \(\mathcal{J}_h \) denotes the Jacobian ideal \((h'_{x_1}, \ldots, h'_{x_n})\mathcal{O} \) and \(\mathcal{R}(\mathcal{J}_h) \) is the Rees algebra \(\bigoplus_{d \geq 0} \mathcal{J}_h^{d+1} \). Following a terminology due to W.V. Vasconcelos, one says that \(\mathcal{J}_h \) is of linear type (see [6] for more details). Finally, let us give a third condition trapped between \(A(h) \) and \(W(h) \):

\(G(h) \): The graded ideal \(\text{gr}^F \text{Ann}_D h^s \) is generated by homogeneous polynomials in \(\xi \) of degree 1.

Remark 4.1 (i) We do not know if the conditions \(A(h), G(h) \) and \(W(h) \) are - or not - equivalent.

(ii) These conditions are not stable by multiplication by a unit.

It seems uneasy to find sufficient conditions on \(h \) for \(A(h) \) or \(W(h) \). Thus, it is natural to study if the class of germs \(h \) which verify \(A(h) \) or \(W(h) \) is - or not - stable by Thom-Sebastiani sums. Here we give a positive answer in a particular case.

Proposition 4.2 Let \(g \in \mathcal{O} \) be a nonzero germ such that \(g(0) = 0 \) and which verifies the condition \(W(g) \). Let \(f \in \mathcal{C}\{z_1, \ldots, z_p\} \) be a nonzero germ which defines an isolated singularity at the origin. Then \(h = g + f \) verifies the condition \(W(h) \).
 Proposition 4.3 Let $g \in \mathcal{O}$ be a nonzero germ such that $g(0) = 0$, and $\Upsilon_1, \ldots, \Upsilon_w \in \mathcal{O}[\xi]$ be homogeneous polynomials which generate the defining ideal of W_g.

Let $f \in \mathbb{C}\{z_1, \ldots, z_p\}$ be a nonzero germ which defines an isolated singularity and $\xi_1, \ldots, \xi_n, \eta_1, \ldots, \eta_p$ denote the conormal coordinates on $T^*\mathbb{C}^n \times \mathbb{C}^p$. Then the relative conormal space $W_{g+f} \subset T^*\mathbb{C}^n \times \mathbb{C}^p$ is defined by the polynomials $f'_i \eta_j - f'_j \eta_i$, $1 \leq i < j \leq p$, $g'_{x_k} \eta_i - f'_x \xi_k$, $1 \leq i \leq p$, $1 \leq k \leq n$, and $\Upsilon_1, \ldots, \Upsilon_w$.

Proof. Let us denote by $E \subset \mathbb{C}\{z_1, \ldots, z_p\}$ a \mathbb{C}-vector space of finite dimension isomorphic to $\mathbb{C}\{z_1, \ldots, z_p\}/(f'_i, \ldots, f'_p)$ by projection, and by $\mathcal{C}\{x, z\}$ the ring $\mathbb{C}\{x, z, x_1, \ldots, z_p\}$. In particular, any germ $p \in \mathcal{C}\{x, z\}$ may be written in a unique way: $p = \tilde{p} + r$ where $\tilde{p} \in E \otimes \mathcal{O} \subset \mathcal{C}\{x, z\}$ and $r \in (f'_i, \ldots, f'_p)\mathcal{C}\{x, z\}$.

We denote by $I_{f+g} \subset \mathcal{C}\{x, z\}[\xi, \eta]$ the ideal generated by the given operators, and by $I_g \subset \mathcal{C}\{x, z\}[\xi, \eta]$ (resp. I_f) the ideal generated by $\Upsilon_1, \ldots, \Upsilon_w$ (resp. $f'_i \eta_j - f'_j \eta_i$, $1 \leq i < j \leq p$). Obviously, any element of I_{g+f} is zero on W_{g+f}. Let us prove the reverse relation.

Let $P \in \mathcal{C}\{x, z\}[\xi, \eta]$ be a homogeneous polynomial of degree $N \in \mathbb{N}^*$ in (ξ, η) which is zero on W_{g+f}.

Assertion 1. There exists $\tilde{P}(\xi, \eta) \in \mathcal{C}\{x, z\}[\xi, \eta]$ such that $P - \tilde{P}(\xi, \eta)$ belongs to I_{g+f}, and it is of the form:

$$\tilde{P}(\xi, \eta) = Q(\eta) + \sum_{|\gamma| \leq N-1} \tilde{P}_\gamma(\xi) \eta_1^{\gamma_1} \cdots \eta_p^{\gamma_p}$$

where $\gamma = (\gamma_1, \ldots, \gamma_p) \in \mathbb{N}^p$, $\tilde{P}_\gamma(\xi) \in (E \otimes \mathcal{O})[\xi]$ are zero or homogeneous in ξ of degree $N - |\gamma|$, $Q(\eta) \in \mathcal{C}\{x, z\}[\eta]$ is zero or homogeneous of degree N.

Proof. Let us write: $P = \sum_{|\beta + \gamma| = N} p_{\beta, \gamma} \eta^\gamma \xi^\beta$ with $p_{\beta, \gamma} \in \mathcal{O}$. For all $\beta \in \mathbb{N}^n$, $|\beta| = N$, the germ $p_{\beta, 0} \in \mathcal{O}$ may be written in a unique way $p_{\beta, 0} = \tilde{p}_{\beta, 0} + r_{\beta, 0}$ with $\tilde{p}_{\beta, 0} \in E \otimes \mathcal{O}$ and $r_{\beta, 0} = \sum_{i=1}^p r_{\beta, 0,i} f'_i$ for some $r_{\beta, 0,i} \in \mathcal{C}\{x, z\}$. As $|\beta| \geq 1$, there exists an index k such that $\beta_k \neq 0$. Thus

$$r_{\beta, 0} \xi_1^{\beta_1} \cdots \xi_n^{\beta_n} - \sum_{i=1}^p r_{\beta, 0,i} g'_{x_k} \eta_i \xi_1^{\beta_1} \cdots \xi_k^{\beta_k-1} \cdots \xi_n^{\beta_n} \in I_{g+f}$$

and we fix $\tilde{P}_0(\xi) = \sum_{|\beta| = N} \tilde{p}_{\beta, 0} \xi^\beta$. By iterating this process for increasing $|\gamma|$, we get a decomposition $P = Q(\eta) + \sum_{|\gamma| \leq N-1} \tilde{P}_\gamma(\xi) \eta^\gamma + R$ where $R \in I_{g+f}$. □

Assertion 2. The polynomials $\tilde{P}_\gamma(\xi)$ belong to I_g. 19
Proof. We prove it by induction on γ, using the lexicographical order on \mathbb{N}^p. As $\tilde{P}(g_{x_1}, \ldots, g_{x_n}, f_{z_1}, \ldots, f_{z_p}) = 0$, we have $\tilde{P}_0(g_{x_1}, \ldots, g_{x_n}) \in (f_{z_1}, \ldots, f_{z_p})\mathcal{C}\{x, z\}$. Thus $\tilde{P}_0(\xi)$ belongs to I_g (since $\tilde{P}_0(\xi) \in (E \otimes \mathcal{O})[\xi]$ and $g \in \mathcal{O}$). Now, let us assume that $\tilde{P}_\gamma(\xi) \in I_g$ for all $\gamma' < \gamma$. Then, we deduce that $\tilde{P}_\gamma(g_{x_1}, \ldots, g_{x_n}) = 0$ and $\tilde{P}_\gamma'(g_{x_1}, \ldots, g_{x_n}) = 0$ for $\gamma' < \gamma$, we have:

$$\tilde{P}_\gamma(g_{x_1}, \ldots, g_{x_n})f_{z_1}^r \cdots f_{z_p}^r \in (f_{z_1}^r, f_{z_2}^r, \ldots, f_{z_p}^r)\mathcal{C}\{x, z\} + Q(f_{z_1}^r, \ldots, f_{z_p}^r)\mathcal{C}\{x, z\} \subset (f_{z_1}^r, \ldots, f_{z_p}^r)\mathcal{C}\{x, z\}$$

since the degree of $Q(\eta)$ is strictly greater than $|\gamma|$. From this identity, we deduce that $\tilde{P}_\gamma(g_{x_1}, \ldots, g_{x_n}) \in (f_{z_1}^r, \ldots, f_{z_p}^r)\mathcal{C}\{x, z\}$ using that $(f_{z_1}^r, \ldots, f_{z_p}^r)$ is a $\mathcal{C}\{x, z\}$-regular sequence. Thus $\tilde{P}_\gamma(\xi)$ belongs to I_g as above. \Box

In particular, the polynomial $P - Q(\eta)$ belongs to I_{g+f}. As P is zero on W_{g+f}, we have $Q(f_{z_1}^r, \ldots, f_{z_p}^r) = 0$. Thus $Q(\eta)$ belongs to I_f (since $(f_{z_1}^r, \ldots, f_{z_p}^r)$ is $\mathcal{C}\{x, z\}$-regular). We conclude that $P \in I_{g+f}$, and this completes the proof. \Box

Remark 4.4 Let us recall that the reduced Bernstein polynomial of the germ $h = g(x) + z^N$ has no integral root for N ‘generic’ [21]. In particular, our result allows to construct some examples of weighted homogeneous polynomials h which verify condition $A(1/h)$ [with the help of identity [11] of the Introduction].

4.2 The condition $A_{log}(1/h)$

Let us recall how the condition $A(1/h)$ appears in the study of the so-called logarithmic comparison theorem. If D is a free divisor, F.J. Calderón-Moreno and L. Narváez-Macarro [3] have obtained a differential analogue of the condition $\text{LCT}(D)$; in particular, it implies that the natural \mathcal{D}-linear morphism $\varphi_D : \mathcal{D}_X \otimes \mathcal{V}_D^0 \mathcal{O}_X(D) \rightarrow \mathcal{O}_X(\ast D)$ is an isomorphism. Here $\mathcal{O}_X(D)$ denotes the \mathcal{O}_X-module of meromorphic functions with at most a simple pole along D, and $\mathcal{V}_D^0 \subset \mathcal{D}_X$ is the sheaf of ring of logarithmic differential operators, that is, $P \in \mathcal{D}_X$ such that $P \cdot (h_D)^k \subset (h_D)^k \mathcal{O}$ for any $k \in \mathbb{N}$, where h_D is a (local) defining equation of D. Locally, we have $\mathcal{O}_X(D) = \mathcal{V}_D^0 \cdot (1/h_D)$, thus φ_D is given by

$$\mathcal{D}/\mathcal{D}\text{Ann}_{\mathcal{V}_D^0} 1/h_D \rightarrow \mathcal{O}[1/h_D]$$

$$P \mapsto P \cdot \frac{1}{h_D}$$
where \(\text{Ann}_{\mathcal{V}^D} 1/h_D \subset \mathcal{V}^D_0 \) is the ideal of logarithmic operators which annihilate \(1/h_D \). From the structure theorem of logarithmic operators associated with a free divisor \([4]\), we have \(\mathcal{V}^D_0 = \mathcal{O}_X[\text{Der}(\log h_D)] \); hence the ideal \(\text{Ann}_{\mathcal{V}^D_0} 1/h_D \) is locally generated by \(v_i + a_i, 1 \leq i \leq n \), where \(\{v_1, \ldots, v_n\} \) is a basis of \(\text{Der}(\log h_D) \) and \(a_i \in \mathcal{O} \) is defined by \(v_i(h_D) = a_i h_D, 1 \leq i \leq n \). In particular, the injectivity of \(\varphi_D \) means that the condition \(A(1/h) \) is verified.

Let us notice that the following condition may also be considered:

\(A_{\log}(1/h) \): The ideal \(\text{Ann}_{\mathcal{D}} 1/h \) is generated by logarithmic operators.

In this paragraph, we compare these two conditions. Firstly, it is easy to see that the condition \(A(1/h) \) always implies \(A_{\log}(1/h) \). On the other hand, we do not know if these conditions are distinct or not. Meanwhile, we have the following result:

Lemma 4.5 Let \(h \in \mathcal{O} \) be a nonzero germ such that \(h(0) = 0 \). Assume that one of the following conditions is verified:

1. the ring \(\mathcal{V}^D_0 \) coincides with \(\mathcal{O}[\text{Der}(\log h)] \), the \(\mathcal{O} \)-subalgebra of \(\mathcal{D} \) generated by the logarithmic derivations relative to \(h \).

2. the conditions \(A(h) \) and \(H(h) \) are verified.

Then the conditions \(A(1/h) \) and \(A_{\log}(1/h) \) are equivalent.

Proof. Assume that condition 1 is verified, and let \(P \in \mathcal{V}^D_0 \cap \text{Ann}_{\mathcal{D}} 1/h \) be a nonzero logarithmic operator annihilating \(1/h \). By assumption, it may be written as a sum \(\sum_{|\gamma| \leq d} p_\gamma v_1^{\gamma_1} \cdots v_N^{\gamma_N} \) where \(p_\gamma \in \mathcal{O} \) and \(v_1, \ldots, v_N \) is a generating system of \(\text{Der}(\log h) \). As \(\text{Der}(\log h) \) is stable by Lie brackets, we have

\[
P = \sum_{|\gamma| \leq d} p_\gamma (v_1 + a_1)^{\gamma_1} \cdots (v_N + a_N)^{\gamma_N} + \sum_{|\gamma| < d} r_\gamma v_1^{\gamma_1} \cdots v_N^{\gamma_N} + R
\]

where \(r_\gamma \in \mathcal{O} \), and \(a_i \in \mathcal{O} \) is defined by \(v_i(h) = a_i h, 1 \leq i \leq N \); in particular, \(R \) belongs to \(\mathcal{V}^D_0 \cap \text{Ann}_{\mathcal{D}} 1/h \). By induction, we conclude that \(P \) belongs to the ideal \(\mathcal{D}(v_1 + a_1, \ldots, v_N + a_N) \); thus \(A_{\log}(1/h) \) implies the condition \(A(1/h) \).

Now we assume that the conditions \(A_{\log}(1/h) \), \(A(h) \) and \(H(h) \) are verified. From Proposition \([4,7]\), the condition \(B(h) \) is also verified. Thus so is \(A(1/h) \) (see \([\Pi]\) in the Introduction). This completes the proof. \(\square \)

In particular, these conditions coincides for weighted homogeneous polynomials which define an isolated singularity.
Remark 4.6 Some criterions for condition 1 are given by M. Schulze in [23].

Finally, this condition $A_{\log}(1/h)$ always implies $B(h)$ (as $A(1/h)$ does.)

Proposition 4.7 Let $h \in O$ be a nonzero germ such that $h(0) = 0$. If the ideal $\text{Ann}_h 1/h$ is generated by logarithmic operators, then -1 is the only integral root of the Bernstein polynomial of h.

Proof. The proof is analogous to the one of [20], Proposition 1.3. We need the following fact.

Assertion. If Q is a logarithmic operator relative to h, then $Q \cdot h^s = q(s)h^s$ with $q(s) \in O[s]$.

Proof. We have $Q \cdot h^s = a(s)h^{s-N}$ with $a(s) = \sum_{i=0}^{N} a_i s^i$, $a_i \in O$, and N is the degree of Q. Thus we just have to prove that $a(s) \in h^N O[s]$. As Q is logarithmic, $Q \cdot h^k$ belongs to $h^k O$ for $k \geq 1$; in particular $\sum_{i=0}^{N} a_i k^i \in h^N O$ for $1 \leq k \leq N + 1$. By solving this system, we get $a_i \in h^N O$, $0 \leq i \leq N$, that is, $a(s) \in h^N O[s]$.

Let Q_1, \ldots, Q_w be a generating system of logarithmic operators which annihilate $1/h$. For $1 \leq i \leq w$, we have $Q_i \cdot h^s = q_i(s)h^s$ with $q_i(s) \in O[s]$. As Q_i annihilates $1/h$, the polynomial $q_i(s)$ belongs to $(s + 1)O[s]$ and we denote $\tilde{q}_i(s) \in O[s]$ the quotient of $q_i(s)$ by $(s + 1)$. Let us suppose that the Bernstein polynomial of h, denoted by $b(s)$, has an integral root strictly smaller than -1. We denote by $k \leq -2$, the greatest integral root of $b(s)$ verifying this condition. Using a Bernstein equation which gives $b(s)$, we get:

$$b(s) \cdots b(s-k-2)h^s = P(s)h^{s-k-1}$$

where $P(s) \in D[s]$. Thus $P(k)$ annihilates $1/h$ and it may be written $\sum_{i=1}^{w} A_i Q_i$ with $A_i \in D$, $1 \leq i \leq w$. If $P'(s) \in D[s]$ is the quotient of $P(s)$ by $s - k$, the previous equation becomes:

$$\underbrace{b(s) \cdots b(s-k-2)}_{c(s)} h^s = (s-k) \left[P'(s) + \sum_{i=1}^{w} A_i \tilde{q}_i \right] h^{-k-2} \cdot h^{s+1}$$

where $-k-2 \geq 0$ and the multiplicity of k in $c(s)$ is the same in $b(s)$. Hence, by division by $(s-k)$, we get a Bernstein functional equation such that the polynomial in the left member is not a multiple of $b(s)$. But this is not possible, because $b(s)$ is the Bernstein polynomial of h. Hence we have the result. □
4.3 The condition $M(h)$

Let $h \in \mathcal{O}$ be a nonzero germ such that $h(0) = 0$. In this paragraph, we study the following condition

$M(h)$: The \mathcal{D}-module $\tilde{\mathcal{M}}_h = \mathcal{D}/\tilde{\mathcal{I}}_h$ is holonomic

where $\tilde{\mathcal{I}}_h \subset \mathcal{D}$ is the left ideal generated by the operators of order 1 which annihilate $1/h$. This condition only depends on the ideal $h\mathcal{O}$ (since the right multiplication by a unit $u \in \mathcal{O}$ induces an isomorphism of \mathcal{D}-modules from $\tilde{\mathcal{M}}_h$ to $\tilde{\mathcal{M}}_{uh}$).

Let us recall that this condition and this ‘logarithmic’ \mathcal{D}-module - introduced by F.J Castro-Jiménez and J.M. Ucha in [11] - are very natural in this topic. Indeed, the condition $A(1/h)$ always implies $M(h)$, since $A(1/h)$ means that the morphism $\tilde{\mathcal{M}}_h \to \mathcal{O}[1/h]$ defined by $P \mapsto P \cdot 1/h$ is an isomorphism. Moreover, the condition $\text{LCT}(D)$ needs locally $M(h_D)$ for a free divisor D (see the beginning of the previous paragraph).

Here, we link the condition $M(h)$ with some other conditions introduced in this topic (see §4.1). Firstly, let us consider the following one:

$L(h)$: The ideal in $\mathcal{O}_{T^* \mathbb{C}^n}$ generated by $\pi^{-1}\text{Der}(-\log h)$ defines an analytic space of (pure) dimension n

where π denotes the canonical map $T^* \mathbb{C}^n \to \mathbb{C}^n$. In K. Saito’s language, one says that the irreducible components of the logarithmic characteristic variety are holonomic; moreover, this is equivalent to the local finiteness of the logarithmic stratification associated with h (see [20], §3). For a free germ, this is exactly the notion of Koszul-free germ (see [20], Proposition 6.3; [3], Corollary 1.9).

Proposition 4.8. Let $h \in \mathcal{O}$ be a nonzero germ such that $h(0) = 0$.

(i) The condition $L(h)$ implies $M(h)$.
(ii) The condition $A(h)$ implies $M(h)$.
(iii) The condition $G(h)$ implies $L(h)$.
(iv) If h defines a locally weighted homogeneous divisor, then the condition $L(h)$ is verified.

Proof. The first point is clear since $\pi^{-1}\text{Der}(-\log h) \subset \text{gr} \tilde{I}_h$. Let us prove (ii).

By assumption, the ideal $J = \text{Ann}_{\mathcal{D}} h^*$ is included \tilde{I}. On the other hand, it is obvious that the operators $h\partial_i + h' x_i$, $1 \leq i \leq n$, belong to \tilde{I}. Hence, we have the following inclusion: $\text{gr}^F J + (h\xi_1, \ldots, h\xi_n)\mathcal{O}[\xi] \subset \text{gr}^F \tilde{I}$. We notice that

$$\text{gr}^F J + (h\xi_1, \ldots, h\xi_n)\mathcal{O}[\xi] = (\text{gr}^F J, h)\mathcal{O}[\xi] \cap (\xi_1, \ldots, \xi_n)\mathcal{O}[\xi]$$
since \(\text{gr}^F J \subset (\xi_1, \ldots, \xi_n)\mathcal{O}[\xi] \). Thus the characteristic variety of \(\tilde{\mathcal{M}}_h \) is included in \(V(\text{gr}^F J, h) \cup V(\xi_1, \ldots, \xi_n) \subset T^*\mathbb{C}^n \). Let us recall that the characteristic variety of \(Dh^* \) is the closure \(W_h \subset T^*\mathbb{C}^n \) of the set \(\{(x, \lambda dh(x)) \mid \lambda \in \mathbb{C}\} \) \[1\]; in particular, \(W_h \) is irreducible of pure dimension \(n + 1 \). From the principal ideal theorem, \(W_h \cap \{h = 0\} = V(\text{gr}^F J, h) \) has a pure dimension \(n \). Hence \(\mathcal{M}_h \) is holonomic.

The proof of (iii) is the very same, since the ideal generated by the principal symbol of the elements in \(\text{Der}(\log h) \) contains \(\text{gr}^F J + (h\xi_1, \ldots, h\xi_n)\mathcal{O}[\xi] \).

Let us prove (iv), by induction on dimension. Let \(D \subset \mathbb{C}^n \) denote the hypersurface defined by \(h \), and let \(L \) be the associated logarithmic characteristic variety. If \(n = 2 \), then \(W(h) \) is verified and so is \(L(h) \) by (iii). Now, we assume that \(n \geq 3 \). From Proposition 2.4 in [9], there exists a neighborhood \(U \) of the origin such that, for each point \(w \in U \cap D, w \neq 0 \), the germ of pair \((\mathbb{C}^n, D, w) \) is isomorphic to a product \((\mathbb{C}^{n-1} \times \mathbb{C}, D' \times \mathbb{C}, (0,0)) \) where \(D' \) is a locally weighted homogeneous divisor of dimension \(n - 2 \). Up to this identification, \(\text{Der}(\log h)_w \) is generated by the elements in \(\text{Der}(\log h_{D'}) \) and \(\partial/\partial z \), where \(z \) is the last coordinate on \(\mathbb{C}^{n-1} \times \mathbb{C} \); in particular, the induction hypothesis applied to \(D' \) implies the result for \(\mathbb{C} \times D' \). Hence, the dimension of \(L \cap \pi^{-1}(U - \{0\}) = L - T^*_{\{0\}}\mathbb{C}^n \) is \(n \). Let \(C \subset L \) be an irreducible component of \(L \). If \(\pi(C) = \{0\} \), then \(C \) coincides with \(T^*_{\{0\}}\mathbb{C}^n \) since \(\dim C \) is at most equal to \(n \) (see [2], Proposition 1.14 (i)). Now, if \(\pi(C) \) is not the origin, then \(\dim C = \dim(C - T^*_{\{0\}}\mathbb{C}^n) = \dim(L - T^*_{\{0\}}\mathbb{C}^n) = n \). We conclude that \(L \) has dimension \(n \). \(\square \)

We recall that K. Saito proved that the condition \(L(h) \) is verified for any hyperplane arrangements [20], Example 3.14. The point (iv) may be considered as a generalization of this fact. On the other hand, it generalizes also the fact that locally weighted homogeneous free divisors are Koszul-free [4] (of course, our proof is similar).

The following diagram summarizes the previous relations:
Let us notice that the reverse relations are false. Firstly, if h is the germ $(x_1 - x_2x_3)(x_1x_2^3 + x_1^2x_2)$ then $L(h)$ and $A(h)$ are not verified but $A(1/h)$ holds \cite{20, 5, 6, 10, 28}. On the other hand, if $h = (x_1 - x_2x_3)(x_1^3 + x_2^4)$ then it defines a Koszul-free germ (see Lemma \cite{3, 8} for instance); in particular, $L(h)$ is verified where as $A(h)$ and $A(1/h)$ fail (see the proof of Proposition \cite{1, 2} (i)). Finally, L. Narváez-Macarro and F.J Calderón-Moreno prove in \cite{8} that the free divisor defined by $h = (x_1 - x_2x_3)(x_1^5 + x_2^4 + x_1^4x_2)$ is not of Spencer type4. In fact, the condition $M(h)$ is no more verified, since all elements of a system of generators of $	ilde{I}$ belongs to $D(x_1, x_2)$, see \cite{8} §5.

References

\cite{1} Artin M., On the solution of analytic equations, Invent. Math. (1968) 277–291

\cite{2} Björk J.E., Analytic D-Modules and Applications, Kluwer Academic Publishers 247, 1993.

\cite{3} Bruce F.W., Roberts R.M., Critical points of functions on analytic varieties, Topology 27 (1988) 57–90.

\cite{4} Calderón-Moreno F.J., Logarithmic differential operators and logarithmic de Rham complexes relative to a free divisor, Ann. Sci. École Norm. Sup. 32 (1999) 577–595.

4This is a necessary condition on a free divisor D for verifying $\text{LCT}(D)$, see \cite{8}.
[5] Calderón-Moreno F.J., Castro-Jiménez F.J., Mond D., Narváez-Macarro L., Logarithmic cohomology of the complement of a plane curve, Comment. Math. Helv. 77 (2002) 24–38.

[6] Calderón-Moreno F.J., Narváez-Macarro L., The module $\mathcal{D}f^*$ for locally quasi-homogeneous free divisors, Compos. Math. 134 (2002) 59–74.

[7] Calderón-Moreno F.J., Narváez-Macarro L., Locally quasi-homogeneous free divisors are Koszul-free, Tr. Mat. Inst. Steklova 238 (2002) 81–85.

[8] Calderón-Moreno F.J., Narváez-Macarro L., Dualité et comparaison sur les complexes de de Rham logarithmiques par rapport aux diviseurs libres, Ann. Inst. Fourier (Grenoble) 55 (2005) 47–75.

[9] Castro-Jiménez F.J., Mond D., Narváez-Macarro L., Cohomology of the complement of a free divisor, Trans. Amer. Math. Soc. 348 (1996) 3037–3049.

[10] Castro-Jiménez F.J., Ucha-Enríquez J.M., Explicit comparison theorems for \mathcal{D}-modules, J. Symbolic Comput. 32 (2001) 677–685.

[11] Castro-Jiménez F.J., Ucha J.M., Free divisors and duality for \mathcal{D}-modules, Tr. Mat. Inst. Steklova 238 (2002) 97–105.

[12] Castro-Jiménez F.J., Ucha Enríquez J.M., Testing the Logarithmic Comparison Theorem for Spencer free divisors, Experiment. Math. 13 (2004) 441–449.

[13] Castro-Jiménez F.J., Ucha Enríquez J.M., Logarithmic comparison theorem and some Euler homogeneous free divisors, Proc. Amer. Math. Soc. 133 (2005) 1417–1422.

[14] Ginsburg V., Characteristic varieties and vanishing cycles, Invent. Math. 84 (1986) 327–402.

[15] Grayson D., Stillman M., Macaulay2: A Software System for Research in Algebraic Geometry, available from World Wide Web (http://www.math.uiuc.edu/Macaulay2), 1999.

[16] Kashiwara M., B-functions and holonomic systems, Invent. Math. 38 (1976) 33–53.

[17] Kashiwara M., On the holonomic systems of differential equations II, Invent. Math. 49 (1978) 121–135.
[18] Leykin A., Tsai H., D-Module Package for Macaulay 2, available from World Wide Web (http://www.math.cornell.edu/~htsai), 2001.

[19] Saito K., Quasihomogene isolierte Singularitäten von Hyperflächen, Invent. Math. 14 (1971) 123–142.

[20] Saito K., Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci. Univ. Tokyo 27 (1980) 265–291.

[21] Saito M., On microlocal b-function, Bull. Soc. Math. France 122 (1994) 163–184.

[22] Saito M., Bernstein-Sato polynomials of hyperplane arrangements, arXiv:math.AG/0602527.

[23] Schulze M., A criterion for the logarithmic differential operators to be generated by vector fields, arXiv:math.CV/0406023.

[24] Torrelli T., Équations fonctionnelles pour une fonction sur un espace singulier, Thèse, Université de Nice-Sophia Antipolis, 1998.

[25] Torrelli T., Équations fonctionnelles pour une fonction sur une intersection complète quasi homogène à singularité isolée, C. R. Acad. Sci. Paris 330 (2000) 577–580.

[26] Torrelli T., Polynômes de Bernstein associés à une fonction sur une intersection complète à singularité isolée, Ann. Inst. Fourier 52 (2002) 221-244.

[27] Torrelli T., Bernstein polynomials of a smooth function restricted to an isolated hypersurface singularity, Publ. RIMS, Kyoto Univ. 39 (2003) 797-822.

[28] Torrelli T., On meromorphic functions defined by a differential system of order 1, Bull. Soc. Math. France 132 (2004) 591–612.

[29] Torrelli T., Logarithmic comparison theorem ans D-modules: an overview, arXiv:math.CV/0510430.

[30] Varchenko A.N., Asymptotic Hodge structure in the vanishing cohomology, Math. USSR Izvestià 18 (1982)

[31] Walther U., Bernstein-Sato polynomial versus cohomology of the Milnor fiber for generic hyperplane arrangements, Compos. Math. 141 (2005) 121–145.
[32] YANO T., *On the theory of b-functions*, Publ. R.I.M.S. Kyoto Univ. 14 (1978) 111–202.