Methyl 1-ethyl-3-[hydroxy(naphthalen-1-yl)methyl]-1-methyl-2-oxospiro[indoline-3,2-pyrrolidine]-3-carboxylate

Vijayakuma, Vinodhkumar; Peters, Günther H.J.; Suresh, C.; Raghavachary, Raghunathan; Jagadeesan, G.

Published in:
Acta Crystallographica. Section E: Structure Reports Online

Link to article, DOI:
10.1107/s1600536814007065

Publication date:
2014

Document Version
Publisher's PDF, also known as Version of record

Citation (APA):
Vijayakuma, V., Peters, G. H. J., Suresh, C., Raghavachary, R., & Jagadeesan, G. (2014). Methyl 1-ethyl-3-[hydroxy(naphthalen-1-yl)methyl]-1-methyl-2-oxospiro[indoline-3,2-pyrrolidine]-3-carboxylate. Acta Crystallographica. Section E: Structure Reports Online, 70(5), [o540]. DOI: 10.1107/s1600536814007065

DTU Library
Technical Information Center of Denmark

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Methyl 1-ethyl-3’-[hydroxy(naphthalen-1-yl)methyl]-1’-methyl-2-oxospiro[indoline-3,2’-pyrrolidine]-3’-carboxylate

Vinodhkumar Vijayakumar,* Gunther H. Peters,b M. Suresh,c Raghunathan Raghavacharyc and G. Jagadeesan†

aDepartment of Life Sciences and Chemistry, Roskilde University, DK-4000 Roskilde, Denmark, bDepartment of Chemistry, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark, cDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, and dDepartment of Physics, Presidency College, Chennai 600 005, India

Correspondence e-mail: vinothdlsc@gmail.com

Received 12 December 2013; accepted 30 March 2014

Key indicators: single-crystal X-ray study; T = 293 K; mean [C–C] = 0.002 Å; R factor = 0.039; wR factor = 0.111; data-to-parameter ratio = 15.5.

In the title compound, C27H28N2O4, the pyrrolidine ring adopts a twist conformation. The plane of the indole ring is almost perpendicular to that of the pyrrolidine ring, making a dihedral angle of 88.50 (6)°. The planes of the naphthyl ring system and the pyrrolidine ring are tilted by an angle of 55.86 (5)°. The molecular conformation is stabilized by intramolecular O—H⋯O and O—H⋯N hydrogen bonds.

Related literature
For general background to spiro compounds and their biological activity, see: Pradhan et al. (2006); For uses of pyrrolidine derivative, see: Amal Raj et al. (2003); For conformation studies, see: Nardelli (1983).

Experimental

Crystal data

C27H28N2O4

M = 444.51

Orthorhombic, Pbca

V = 4547.23 (16) Å³

Z = 8

Mo Kα radiation

μ = 0.09 mm⁻¹

T = 293 K

Tmin = 0.979, Tmax = 0.983

data collection

Bruker Kappa APEXII CCD diffractometer

Absorption correction: multi-scan

(SADABS; Bruker, 2004)

Tmin = 0.25, Tmax = 0.20

I > 2σ(I)

Rint = 0.041

Refinement

R[F² > 2σ(F²)] = 0.039

wR(F²) = 0.111

S = 1.02

4636 reflections

299 parameters

H-atom parameters constrained

Δρmax = 0.02 e Å⁻³

Δρmin = −0.14 e Å⁻³

Table 1
Hydrogen-bond geometry (Å, °).

D—H⋯Å

D—H

H⋯Å

D⋯Å

D—H⋯Å

O1—H1⋯O4

0.82

2.37

2.9121 (16)

124

O1—H1⋯N1

0.82

2.39

2.9439 (17)

126

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Supporting information for this paper is available from the IUCr electronic archives (Reference: BT6950).

References

Amal Raj, A., Raghunathan, R., Sridevi Kumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem. 11, 407–409.

Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.

Pradhan, R., Patra, M., Behera, A. K. & Behera, R. K. (2006). Tetrahedron, 62, 779-828.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.
supplementary materials

Acta Cryst. (2014). E70, o540 [doi:10.1107/S1600536814007065]

Methyl 1-ethyl-3’-[hydroxy(naphthalen-1-yl)methyl]-1’-methyl-2-oxospiro-
[indoline-3,2’-pyrrolidine]-3’-carboxylate

Vinodhkumar Vijayakumar, Gunther H. Peters, M. Suresh, Raghunathan Raghavachary and G. Jagadeesan

1. Comment
Spiro compounds have received considerable interest due to their biological properties (Pradhan et al., 2006). In addition, pyrrolidine derivatives are found to have anticonvulsant, antimicrobial and antifungal activities against various pathogens (Amal Raj et al., 2003). In view of their importance, the crystal structure determination of the title compound was carried out and the results are presented herein. In the title molecule (Fig. 1) the five-membered pyrrolidine ring [DS (N1) = 0.101 (1) Å and D2 (C10) = 0.051 (9) Å] adopts a twist conformation defined by the above asymmetry parameters (Nardelli, 1983). The indole ring (C1—C8/N2) is almost perpendicular to the pyrrolidine ring with dihedral angle of 88.50 (6)°. The naphthyl and pyrrolidine rings are tilted by an angle of 55.86 (5)°. The molecular conformation is stabilized by an intramolecular O—H···O and O—H···N hydrogen bond (Fig. 2 and Table 1).

2. Experimental
A mixture of methyl 2-(hydroxy(naphthalen-1-yl)methyl)acrylate (1 mmol), N-ethyl isatin (1.1 mmol) and sarcosine (1.1 mmol) was refluxed in methanol until completion of the reaction was evidenced by TLC analysis. After completion of the reaction the solvent was evaporated under reduced pressure. The reaction mixture was dissolved in ethyl acetate and washed with water followed by brine solution. The organic layer was separated and evaporated under reduced pressure. The crude mixture was purified by column chromatography using ethyl acetate and hexane as eluent (3: 7). The product was dissolved in ethyl acetate and heated for two minutes. The resulting solution was subjected to crystallization by slow evaporation of the solvent for 48 h resulting in the formation of single crystals.

3. Refinement
All H atoms were positioned geometrically, with C–H = 0.93–0.97 Å and constrained to ride on their parent atom with $U_{iso}(H) = 1.5U_{eq}(O,C)$ for methyl H atoms and $1.2U_{eq}(C)$ for other H atoms.
Figure 1
The molecular structure of the title compound, Displacement ellipsoids are drawn at the 30% probability level, H atoms have been omitted for clarity.
Figure 2
Crystal packing of the title compound, Hydrogen bonds are shown as dashed lines. For the sake of clarity, H atoms not involved in the interactions have been omitted.

(I)

Crystal data

*C*₂*H*₃*N*₂*O*₄
*M*_r = 444.51
Orthorhombic, *Pbca*
Hall symbol: -*P 2ac 2ab*
a = 16.7802 (3) Å
b = 14.6690 (3) Å
c = 18.4735 (4) Å
V = 4547.23 (16) Å³
Z = 8

F(000) = 1888
*D*_c = 1.299 Mg m⁻³
Mo *Ka* radiation, *λ* = 0.71073 Å
Cell parameters from 8834 reflections
θ = 2.1–31.2°
μ = 0.09 mm⁻¹
T = 293 K
Block, colourless
0.25 × 0.20 × 0.20 mm

Data collection

Bruker Kappa APEXII CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω and φ scan
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
*R*_{int} = 0.041
θ_{max} = 26.4°, θ_{min} = 2.2°
44640 measured reflections
4636 independent reflections
3429 reflections with *I* > 2σ(*I*)
h = −20→18
k = −18→18
l = −23→23

Acta Cryst. (2014). E70, o540
Refinement

Refinement on F^2

Least-squares matrix: full

$R[F^2 > 2\sigma(F^2)] = 0.039$

$wR(F^2) = 0.111$

$S = 1.02$

4636 reflections

299 parameters

0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

$w = 1/[\sigma^2(F_o^2) + (0.0509P)^2 + 1.1973P]$ where $P = (P_o^2 + 2P_c^2)/3$

$(\Delta/\sigma)_{\text{max}} = 0.001$

$\Delta\rho_{\text{max}} = 0.22$ e Å$^{-3}$

$\Delta\rho_{\text{min}} = -0.14$ e Å$^{-3}$

Extinction correction: SHELXL97 (Sheldrick, 2008), $F_c^*=kF_c[1+0.001xF_c^2/\sin(2\theta)]^{-1/4}$

Extinction coefficient: 0.0061 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement on F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2, conventional R-factors R are based on F, with F set to zero for negative F^2. The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

Atom	x	y	z	$U_{ ext{iso}}$/$U_{ ext{eq}}$
O1	0.96460 (6)	0.22318 (7)	0.34518 (6)	0.0455 (3)
H1	0.9670	0.1849	0.3775	0.068*
O3	0.90834 (6)	0.42866 (7)	0.49176 (5)	0.0417 (3)
O2	0.78729 (7)	0.43761 (8)	0.44130 (6)	0.0539 (3)
N1	0.86301 (8)	0.14862 (9)	0.46083 (7)	0.0430 (3)
O4	1.02618 (7)	0.21025 (9)	0.49220 (6)	0.0573 (3)
N2	0.96210 (8)	0.25963 (9)	0.59423 (7)	0.0456 (3)
C18	1.01590 (8)	0.40195 (9)	0.28012 (7)	0.0332 (3)
C13	0.94194 (8)	0.37632 (10)	0.31325 (7)	0.0328 (3)
C12	0.94494 (8)	0.30940 (9)	0.37557 (7)	0.0332 (3)
H12	0.9891	0.3276	0.4071	0.040*
C17	1.01480 (9)	0.46284 (10)	0.22021 (8)	0.0388 (3)
C3	0.88393 (10)	0.28059 (10)	0.61479 (8)	0.0432 (4)
C1	0.88143 (9)	0.23837 (10)	0.49136 (7)	0.0360 (3)
C4	0.83254 (10)	0.26839 (10)	0.55663 (8)	0.0397 (4)
C10	0.79905 (9)	0.25417 (11)	0.38403 (8)	0.0410 (4)
H10A	0.7503	0.2582	0.3892	0.049*
H10B	0.8108	0.2476	0.3329	0.049*
C19	1.09071 (9)	0.36786 (11)	0.30294 (8)	0.0395 (4)
H19	1.0931	0.3281	0.3421	0.047*
C11	0.88684 (8)	0.30242 (10)	0.42346 (7)	0.0333 (3)
C23	0.84805 (9)	0.39681 (10)	0.45129 (7)	0.0364 (3)
C16	0.94110 (10)	0.49640 (11)	0.19414 (9)	0.0459 (4)
H16	0.9401	0.5363	0.1550	0.055*
Atomic displacement parameters (Å²)

	U₁₁	U₂₂	U₃₃	U₁₂	U₁₃	U₂₃
O1	0.0565 (7)	0.0361 (6)	0.0438 (6)	0.0055 (5)	0.0104 (5)	−0.0025 (5)
O3	0.0426 (6)	0.0372 (6)	0.0452 (6)	−0.0019 (4)	−0.0030 (5)	−0.0087 (5)
O2	0.0459 (7)	0.0586 (7)	0.0571 (7)	0.0166 (5)	−0.0053 (5)	−0.0069 (6)
N1	0.0528 (8)	0.0357 (7)	0.0404 (7)	−0.0048 (6)	−0.0031 (6)	−0.0018 (6)
O4	0.0428 (7)	0.0746 (9)	0.0544 (7)	0.0114 (6)	−0.0006 (6)	0.0086 (6)
N2	0.0503 (8)	0.0489 (8)	0.0377 (7)	−0.0043 (6)	−0.0115 (6)	0.0051 (6)
C18	0.0329 (7)	0.0321 (7)	0.0347 (7)	−0.0002 (6)	0.0017 (6)	−0.0043 (6)
C13	0.0315 (8)	0.0346 (8)	0.0324 (7)	−0.0005 (6)	−0.0002 (6)	−0.0042 (6)
C12	0.0311 (7)	0.0341 (8)	0.0343 (7)	−0.0009 (6)	0.0005 (6)	−0.0036 (6)

Acta Cryst. (2014). E70, o540
Geometric parameters (Å, °)

O1—C12	1.4224 (17)	C11—C23	1.518 (2)		
O1—H1	0.8200	C16—C15	1.353 (2)		
O3—C23	1.3418 (17)	C16—H16	0.9300		
O3—C24	1.4392 (19)	C14—C15	1.401 (2)		
O2—C2	1.1965 (17)	C14—H14	0.9300		
N1—C27	1.457 (2)	C20—C21	1.399 (2)		
N1—C9	1.458 (2)	C20—H20	0.9300		
N1—C1	1.4652 (19)	C9—H9A	0.9700		
O4—C2	1.2185 (19)	C9—H9B	0.9700		
N2—C2	1.355 (2)	C8—C7	1.382 (3)		
N2—C3	1.400 (2)	C8—H8	0.9300		
N2—C25	1.456 (2)	C21—C22	1.355 (2)		
C18—C19	1.415 (2)	C21—H21	0.9300		
C18—C17	1.422 (2)	C5—C6	1.391 (2)		
C18—C13	1.4339 (19)	C5—H5	0.9300		
C13—C14	1.368 (2)	C22—H22	0.9300		
C13—C12	1.514 (2)	C27—H27A	0.9600		
C12—C11	1.5570 (19)	C27—H27B	0.9600		
C12—H12	0.9800	C27—H27C	0.9600		
C17—C22	1.410 (2)	C24—H24A	0.9600		
C17—C16	1.416 (2)	C24—H24B	0.9600		
C3—C8	1.380 (2)	C24—H24C	0.9600		
C3—C4	1.389 (2)	C6—C7	1.368 (3)		
Bond	Distance (Å)	Bond	Distance (Å)	Dist. (%)	
----------------------	--------------	----------------------	--------------	-----------	
C1—C4	1.523 (2)	C6—H6	0.930		
C1—C2	1.542 (2)	C25—C26	1.490 (3)		
C1—C11	1.581 (2)	C25—H25A	0.970		
C4—C5	1.378 (2)	C25—H25B	0.970		
C10—C9	1.519 (2)	C15—H15	0.930		
C10—C11	1.5501 (19)	C7—H7	0.930		
C10—H10A	0.9700	C26—H26A	0.960		
C10—H10B	0.9700	C26—H26B	0.960		
C19—C20	1.358 (2)	C26—H26C	0.960		
C19—H19	0.9300				
C12—O1—H1	109.5	C15—C14—H14	118.9		
C23—O3—C24	116.77 (12)	C19—C20—C21	120.76 (15)		
C27—N1—C9	114.27 (13)	C19—C20—H20	119.6		
C27—N1—C1	115.31 (12)	C21—C20—H20	119.6		
C9—N1—C1	105.46 (12)	O4—C2—N2	125.39 (15)		
C2—N2—C3	111.49 (13)	O4—C2—C1	126.01 (14)		
C2—N2—C25	123.11 (15)	N2—C2—C1	108.53 (13)		
C3—N2—C25	125.40 (14)	N1—C9—C10	104.79 (12)		
C19—C18—C17	117.71 (13)	N1—C9—H9A	110.8		
C19—C18—C13	123.22 (13)	C10—C9—H9A	110.8		
C17—C18—C13	119.05 (13)	N1—C9—H9B	110.8		
C14—C13—C18	118.43 (13)	C10—C9—H9B	110.8		
C14—C13—C12	123.76 (13)	H9A—C9—H9B	108.9		
C18—C13—C12	117.77 (12)	C3—C8—C7	117.37 (17)		
O1—C12—C13	106.51 (11)	C3—C8—H8	121.3		
O1—C12—C11	110.86 (11)	C7—C8—H8	121.3		
C13—C12—C11	116.59 (11)	C22—C21—C20	120.08 (15)		
O1—C12—H12	107.5	C22—C21—H21	120.0		
C13—C12—H12	107.5	C20—C21—H21	120.0		
C11—C12—H12	107.5	C4—C5—C6	118.98 (17)		
C22—C17—C16	120.97 (14)	C4—C5—H5	120.5		
C22—C17—C18	119.38 (14)	C6—C5—H5	120.5		
C16—C17—C18	119.64 (13)	C21—C22—C17	120.94 (15)		
C8—C3—C4	122.11 (17)	C21—C22—H22	119.5		
C8—C3—N2	127.79 (16)	C17—C22—H22	119.5		
C4—C3—N2	110.09 (13)	N1—C27—H27A	109.5		
N1—C1—C4	116.80 (12)	N1—C27—H27B	109.5		
N1—C1—C2	108.27 (12)	H27A—C27—H27B	109.5		
C4—C1—C2	101.51 (12)	N1—C27—H27C	109.5		
N1—C1—C11	101.56 (11)	H27A—C27—H27C	109.5		
C4—C1—C11	112.59 (12)	H27B—C27—H27C	109.5		
C2—C1—C11	116.72 (12)	O3—C24—H24A	109.5		
C5—C4—C3	119.39 (14)	O3—C24—H24B	109.5		
C5—C4—C1	132.19 (14)	H24A—C24—H24B	109.5		
C3—C4—C1	108.37 (13)	O3—C24—H24C	109.5		
C9—C10—C11	106.51 (12)	H24A—C24—H24C	109.5		
C9—C10—H10A	110.4	H24B—C24—H24C	109.5		
C11—C10—H10A	110.4	C7—C6—C5	120.56 (18)		
C9—C10—H10B 110.4 C7—C6—H6 119.7
C11—C10—H10B 110.4 C5—C6—H6 119.7
H10A—C10—H10B 110.4 N2—C25—C26 113.18 (16)
C20—C19—C18 121.12 (14) N2—C25—H25A 108.9
C20—C19—H19 119.4 C26—C25—H25A 108.9
C18—C19—H19 119.4 C26—C25—H25B 108.9
C23—C11—C10 113.72 (12) C26—C25—H25B 107.8
C23—C11—C12 108.73 (11) C16—C15—C14 120.62 (15)
C10—C11—C12 112.50 (11) C16—C15—H15 119.7
C23—C11—C1 107.70 (11) C14—C15—H15 119.7
C10—C11—C1 101.67 (11) C6—C7—C8 121.59 (17)
C12—C11—C1 112.35 (11) C6—C7—H7 119.2
O2—C23—O3 123.65 (14) C8—C7—H7 119.2
O2—C23—C11 126.86 (14) C25—C26—H26A 109.5
O3—C23—C11 109.47 (12) C25—C26—H26B 109.5
C15—C16—C17 120.09 (14) C25—C26—H26C 109.5
C15—C16—C16H6 120.0 H26A—C26—H26B 109.5
C17—C16—C16H6 120.0 H26A—C26—H26C 109.5
C13—C14—C15 122.18 (14) H26B—C26—H26C 109.5
C13—C14—H14 118.9

C19—C18—C13—C14 −177.76 (14) C4—C1—C11—C10 −91.23 (14)
C17—C18—C13—C14 0.7 (2) C2—C1—C11—C10 151.93 (12)
C19—C18—C13—C12 −0.1 (2) N1—C1—C11—C10 −86.02 (13)
C17—C18—C13—C12 178.35 (12) C4—C1—C11—C12 148.28 (12)
C14—C13—C12—O1 106.00 (15) C2—C1—C11—C12 −91.23 (14)
C18—C13—C12—O1 −71.55 (15) C24—O3—C23—O2 12.4 (2)
C14—C13—C12—C11 183.3 (2) C24—O3—C23—C11 −165.93 (13)
C18—C13—C12—C11 183.3 (2) C10—C11—C23—C11 −172.73 (11)
C19—C18—C17—C22 −0.3 (2) C12—C11—C23—O2 −5.6 (2)
C13—C18—C17—C22 −178.76 (14) C25—C25—C26—H26A 109.5
C19—C18—C17—C16 −178.06 (14) C25—C25—C26—H26B 109.5
C13—C18—C17—C16 −0.4 (2) C25—C25—C26—H26C 109.5
C2—N2—C3—C4 −177.79 (16) C10—C11—C23—O3 172.73 (11)
C25—N2—C3—C4 3.1 (3) C12—C11—C23—O3 −61.09 (14)
C2—N2—C3—C8 0.98 (18) C11—C11—C23—O2 −117.41 (16)
C25—N2—C3—C8 −178.11 (14) C10—C11—C23—O2 172.73 (11)
C27—N1—C1—C4 77.10 (15) C12—C11—C23—O3 −177.87 (14)
C27—N1—C1—C14 49.96 (19) C18—C19—C29—C21 0.3 (3)
C9—N1—C1—C4 77.10 (15) C3—N2—C2—O4 −177.41 (15)
C9—N1—C1—C14 63.76 (17) C25—N2—C2—O4 −177.87 (14)
C27—N1—C1—C2 −169.18 (12) C3—N2—C2—O4 1.7 (3)
C27—N1—C1—C11 −172.81 (14) C3—N2—C2—C1 0.3 (3)
C9—N1—C1—C11 −45.76 (14) C25—N2—C2—C1 0.3 (3)
C8—C3—C4—C5 0.2 (2) C25—N2—C2—C1 −178.75 (14)
N2—C3—C4—C5 −178.66 (14) N1—C1—C2—O4 53.2 (2)
C8—C3—C4—C1 177.69 (15) C4—C1—C2—O4 176.71 (16)
N2—C3—C4—C1 −1.16 (17) C11—C1—C2—O4 −60.5 (2)
N1—C1—C4—C5 −64.6 (2) N1—C1—C2—N2 −123.80 (13)
C2—C1—C4—C5 177.95 (17) C4—C1—C2—N2 −0.32 (15)
C11—C1—C2—N2 122.47 (13)
supplementary materials

C11—C1—C4—C5 52.4 (2) C27—N1—C9—C10 165.99 (14)
N1—C1—C4—C3 118.35 (14) C1—N1—C9—C10 38.31 (15)
C2—C1—C4—C3 0.88 (15) C11—C10—C9—N1 −14.51 (16)
C11—C1—C4—C3 −124.70 (13) C4—C3—C8—C7 0.0 (3)
C17—C18—C19—C20 −0.2 (2) N2—C3—C8—C7 178.67 (16)
C13—C18—C19—C20 178.25 (15) C19—C20—C21—C22 0.0 (3)
C9—C10—C11—C23 −127.72 (13) C3—C4—C5—C6 −0.3 (2)
C9—C10—C11—C12 108.12 (13) C1—C4—C5—C6 −177.12 (16)
C9—C10—C11—C1 12.26 (15) C20—C21—C22—C17 −0.4 (3)
O1—C12—C11—C23 −177.09 (11) C13—C12—C11—C10 −55.04 (15)
C13—C12—C11—C10 50.22 (15) C18—C17—C22—C21 0.6 (3)
C13—C12—C11—C1 −174.14 (11) C4—C5—C6—C7 0.2 (3)
N1—C1—C11—C23 154.27 (11) C17—C16—C15—C14 0.5 (3)
N1—C1—C11—C10 34.47 (13) C13—C14—C15—C16 −0.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
O1—H1···O4	0.82	2.37	2.9121 (16)	124
O1—H1···N1	0.82	2.39	2.9439 (17)	126