Prognostic and clinical significance of modified glasgow prognostic score in pancreatic cancer: a meta-analysis of 4,629 patients

Dongdong Wu¹, Xingmu Wang¹, Ge Shi¹, Honggang Sun¹, Guoxing Ge¹

¹Clinical Laboratory Center, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China

Correspondence to: Guoxing Ge; email: zjsxwdd@163.com, https://orcid.org/0000-0001-8389-5855

Keywords: pancreatic cancer, modified Glasgow Prognostic Score, risk factors, meta-analysis, evidence-based medicine

Received: July 6, 2020 Accepted: October 5, 2020 Published: January 6, 2021

Abstract

In this study, we evaluated the association of modified Glasgow Prognostic Score (mGPS) with prognosis in pancreatic cancer (PC) by performing a meta-analysis. Potentially eligible studies were shortlisted by searching PubMed, Embase, Web of Science, Scopus, and the Cochrane Library. A total of 4,629 patients with PC from 25 studies were finally included in this meta-analysis. Meta-analyses were performed using a random-effects model or fixed-effect model according to heterogeneity. We pooled the hazard ratios (HRs) with 95% confidence intervals (CIs) to estimate the association between mGPS and overall survival (OS). The results showed that elevated mGPS correlated with poor OS in patients with PC (HR=1.92, 95% CI=1.60–2.30, p<0.002). In addition, subgroup analysis indicated that increased mGPS remained a significant prognostic factor irrespective of the study design, region, disease status, treatment, survival analysis, cancer type, study center, or the Newcastle-Ottawa Scale (NOS) score (all p<0.05). There was a significant correlation between higher mGPS and male gender (Odds ratio [OR]=1.30, 95% CI=1.01–1.67, p=0.038). Elevated pretreatment mGPS is a marker of poor prognosis in patients with PC. As an easily available and cost-effective inflammatory parameter, mGPS can serve as a promising tool for prognostication in PC.

Introduction

Pancreatic cancer (PC) is one of the most aggressive malignant tumors with a very poor prognosis [1]. PC is currently the fourth leading cause of cancer-related deaths and is projected to rank second by 2030 [2, 3]. Notably, the majority of patients at the time of diagnosis have locally advanced or metastatic disease and are inoperable with a curative intent [4]. The prognostic indicators for PC include CA 19-9, SMAD4, microsatellite instability (MSI), and micro RNAs [5]. Although these markers have been used in clinical practice, the prognosis of PC patients has not substantially improved in the past decades. Moreover, obtaining adequate tumor tissue for analysis remains a major challenge for biomarker development in PC [5]. Therefore, there is an urgent need to identify more effective prognostic indicators that are also easily accessible for clinical use.

Cancer cells activate systemic inflammatory pathways that aid cancer progression by facilitating tumor cell proliferation, immune envision, and dissemination. A variety of inflammatory markers have attracted much attention as potential prognostic markers including C-reactive protein (CRP), neutrophil to lymphocyte ratio, and the modified Glasgow Prognostic Score (mGPS). The mGPS was established combining the levels of CRP and serum albumin. Some studies [6–15] have explored the prognostic efficiency of mGPS in PC, but the results remain conflicting. For example, some clinicians [9, 12, 14, 16] reported that elevated mGPS was a significant indicator of poor prognosis in patients with PC; however, other researchers found the association between mGPS and patient survival to be insignificant [7, 17, 18]. Therefore, we collected data from eligible studies and performed a meta-analysis to evaluate the prognostic role of mGPS in patients with PC.
RESULTS

Literature selection

As shown in Figure 1, a preliminary literature search was carried out and 281 results were obtained. After removing 166 duplicates, 115 studies remained. Excluding 76 of the 115 studies by title and abstract review, 39 studies were shortlisted for full-text screening. Among them, 14 studies were excluded for the following reasons: 10 studies did not describe survival outcomes, 3 studies recruited overlapping patients, and 1 study was a review. Finally, a total of 25 studies [6–30] with 4,629 patients were included in this meta-analysis.

Study characteristics

The basic characteristics of the 25 included studies are summarized in Supplementary Table 1. All studies reported the association between mGPS and OS in patients with PC. The total sample size was 4,629, with individual studies having a sample size ranging from 38 to 807. Three studies [8, 9, 20] were prospective and 22 studies [6, 7, 10–19, 21–30] were of retrospective design. Two of the included studies were conference abstracts [8, 9], and 23 studies were full-text articles [6, 7, 10–30]. Thirteen studies [6–10, 13, 14, 17, 20–22, 27, 29] recruited patients with pancreatic ductal adenocarcinoma (PDAC) and 12 studies [11, 12, 15, 16, 18, 19, 23–26, 28, 30] enrolled PC patients. Hazard ratios (HRs) and 95% confidence intervals (CIs) of multivariate analysis (MVA) were extracted from 19 studies [6–9, 11, 12, 14–16, 18, 21, 23–30] and 6 studies [10, 13, 17, 19, 20, 22] provided univariate analysis (UVA) HRs and 95% CIs. The Newcastle–Ottawa Scale (NOS) scores of all eligible studies were ≥6, indicating that all included studies were high-quality studies.

Prognostic role of mGPS in OS and subgroup analysis

The correlation between mGPS and OS was investigated in all the 25 included studies [6–30]. As shown in Figure 2 and Table 1, because of significant heterogeneity ($I^2=65\%, \ P<0.001$), a random-effects model (REM) was used. It was shown that elevated mGPS is associated with poor OS (HR=1.92, 95%
CI=1.60–2.30, p<0.002; Figure 2 and Table 1). Then, we conducted subgroup analysis; as detailed in Table 1. The pooled data indicated that increased mGPS remained a significant prognostic factor irrespective of the study design, region, disease status, treatment, survival analysis, cancer type, study center, or NOS score, with p<0.05 in all the above-mentioned subgroups. Regarding subgroups of tumor node metastasis (TNM) stage, mGPS was found to be a significant prognostic indicator in patients with stages I–III, III–IV, IV, I–II, and I–IV (Table 1).

Correlation between mGPS and clinical factors

The association between mGPS and clinical factors including sex (male vs. female) and tumor location (head vs. body/tail) was analyzed based on data from 4 [11, 15, 21, 30] and 3 studies [11, 21, 30], respectively. As shown in Figure 3, there was a significant correlation between higher mGPS and male gender (Odds ratio [OR]=1.30, 95% CI=1.01–1.67, p=0.038). However, the association between mGPS and tumor location was not significant (OR=1.18, 95% CI=0.34–4.10, p=0.792; Figure 3).

Sensitivity analysis

A sensitivity analysis was carried out by calculating the combined HR and 95% CI after omitting one study each time. As shown in Figure 4, no significant changes in the results were found by the omission of each study, suggesting that the results were robust.

Publication bias

As shown in Figure 5, the results from Begg’s funnel plot (p=0.388) and Egger’s test (p=0.197) indicated that there was no significant publication bias in the current meta-analysis.

Figure 2. Meta-analysis of impact of mGPS on overall survival in patients with pancreatic cancer.
In the present meta-analysis, we showed that a high mGPS was a prognostic indicator for poor survival in patients with PC. Moreover, the prognostic efficiency of mGPS was consistent and was not influenced by the study design, region, disease status, treatment, survival analysis, cancer type, study center, and NOS scores. In addition, the results suggested that male PC patients tend to have higher mGPSs, and therefore, have worse survival outcomes compared to females.
prognosis. Therefore, our meta-analysis indicates that mGPS could be applied as a reliable and cost-effective prognostic marker for PC.

Inflammatory responses play pivotal roles in tumor microenvironment, which can educate cancer cells to evade immune surveillance [31]. The mGPS is calculated based on the serum CRP and albumin levels. This score reflects both the inflammatory and the nutritional status of patients. CRP is a typical acute phase protein and is mainly produced by hepatocytes in response to inflammation, tissue damage, and infection [32]. Elevated levels of CRP have been reported as a prognostic factor for poor survival outcomes in a variety of cancers [32, 33]. Hypoalbuminemia is considered an indicator of malnutrition and cachexia, reflecting the poor physical condition of patients. Therefore, the elevation of mGPS could be common in patients with cancer and can serve as a prognostic marker for these patients.

Figure 3. The association between mGPS and clinical factors in pancreatic cancer. (A) mGPS and sex (male vs female); (B) mGPS and tumor location (head vs body/tail).
Previous studies have explored the prognostic role of mGPS in various cancers using meta-analysis [34–39]. Nie et al. conducted a meta-analysis including 11 studies with 2,830 patients and showed that mGPS predicted poor OS and progression-free survival (PFS) in patients with gynecologic cancers [38]. Lu and colleagues also reported that patients with elevated mGPS were associated with poor OS and cancer-specific survival (CSS) in colorectal cancer [39]. In addition, a recent meta-analysis of 20 studies demonstrated that mGPS might be an independent prognostic factor in patients with urological cancers [36]. The present meta-analysis showed the prognostic effect of mGPS in patients with PC, which implies the

Figure 4. Sensitivity analysis on the relationship of mGPS and overall survival in patients with pancreatic cancer.

Figure 5. Begg’s funnel plots and Egger’s publication bias plots for studies involved in the meta-analysis. (A) Begg’s test of overall survival (p=0.388) and (B) Egger’s test of overall survival (p= 0.197).
potential use of mGPS as a common prognostic factor in cancer patients. In most subgroups of our meta-
analyses, mGPS remained an effective prognostic indicator, except for patients with TNM stage I–III. This
finding suggests that the prognostic power of mGPS could be greater in advanced cancer than in operable
cancer [40].

Some limitations of the current meta-analysis require acknowledgment. First, most of the included studies
were of retrospective design and the results were easily influenced by confounding factors. However, in the
subgroup analysis stratified by survival analysis (Table 1), the results of both MVA and UVA showed a
significant prognostic value of mGPS for pancreatic cancer. The data suggested that the survival analysis
types did not influence the prognostic efficiency of mGPS. Further prospective studies with MVA of mGPS
are still needed. Second, the recruited patients were in different TNM stages. As patients with advanced cancer
may have higher mGPS, the diverse TNM stages may cause heterogeneity among studies. Third, a prognostic
model for patients with PC could not be developed due to insufficient data of the included studies, com-
promising the originality of the current meta-analysis. We suggest that a specific prognostic model or
nomogram incorporating mGPS should be explored for PC in future studies.

In conclusion, elevated pretreatment mGPS is a marker of poor prognosis in patients with PC. The prognostic
efficiency was reliable across different subgroups. As an easily obtainable and cost-effective inflammatory
parameter, mGPS can serve as a promising indicator for prognostication in PC.

MATERIALS AND METHODS

Study guidelines and ethical considerations

The current meta-analysis was carried out in accordance with the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses statement [41]. The ethical approval and patient consent were waived because all
analyses were based on previously published articles.

Search strategy

We retrieved potentially eligible studies by searching PubMed, Embase, Web of Science, Scopus, and the
Cochrane Library. The search period was from inception to June 17 2020. Search terms used were the following
free text words and medical subject heading (MeSH) terms: (pancreatic cancer OR pancreatic ductal
adenocarcinoma OR pancreatic tumor) AND (mGPS OR modified Glasgow prognostic score OR C-reactive protein
OR albumin) AND (prognosis OR prognostic OR survival OR outcome). Reference lists of literature were also
manually examined for eligible studies. Two reviewers (D Wu and X Wang) searched the database independently,
and all disagreements were resolved by discussion.

Selection criteria

The following inclusion criteria were applied: (1) prospective and retrospective studies exploring the
association between mGPS and OS in PC, with OS being calculated from the date of diagnosis to the last date of
follow-up or death from any cause [27]; (2) mGPS scoring system is used as previously described: patients
with an elevated CRP level (> 1 mg/dL) plus hypoalbuminemia (< 3.5 g/dL) are allocated a score of 2,
patients with albumin ≥3.5 g/dL and CRP > 1 mg/dL or albumin < 3.5 g/dL and CRP ≤1 mg/dL are defined as a
score of 1, and patients with albumin ≥3.5 g/dL and CRP ≤1 mg/dL are allocated a score of 0 [42]; (3) HRs of OS
and their 95% CIs can be obtained; (4) if HRs and 95% CIs of both UVA and MVA are provided, the data
may have higher mGPS, the diverse TNM stages may cause heterogeneity among studies. Third, a prognostic
model for patients with PC could not be developed due to insufficient data of the included studies, com-
promising the originality of the current meta-analysis. We suggest that a specific prognostic model or
nomogram incorporating mGPS should be explored for PC in future studies.

In conclusion, elevated pretreatment mGPS is a marker of poor prognosis in patients with PC. The prognostic
efficiency was reliable across different subgroups. As an easily obtainable and cost-effective inflammatory
parameter, mGPS can serve as a promising indicator for prognostication in PC.

MATERIALS AND METHODS

Study guidelines and ethical considerations

The current meta-analysis was carried out in accordance with the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses statement [41]. The ethical approval and patient consent were waived because all
analyses were based on previously published articles.

Search strategy

We retrieved potentially eligible studies by searching PubMed, Embase, Web of Science, Scopus, and the
Cochrane Library. The search period was from inception to June 17 2020. Search terms used were the following
free text words and medical subject heading (MeSH) terms: (pancreatic cancer OR pancreatic ductal
adenocarcinoma OR pancreatic tumor) AND (mGPS OR modified Glasgow prognostic score OR C-reactive protein
OR albumin) AND (prognosis OR prognostic OR survival OR outcome). Reference lists of literature were also
manually examined for eligible studies. Two reviewers (D Wu and X Wang) searched the database independently,
and all disagreements were resolved by discussion.

Selection criteria

The following inclusion criteria were applied: (1) prospective and retrospective studies exploring the
association between mGPS and OS in PC, with OS being calculated from the date of diagnosis to the last date of
follow-up or death from any cause [27]; (2) mGPS scoring system is used as previously described: patients
with an elevated CRP level (> 1 mg/dL) plus hypoalbuminemia (< 3.5 g/dL) are allocated a score of 2,
patients with albumin ≥3.5 g/dL and CRP > 1 mg/dL or albumin < 3.5 g/dL and CRP ≤1 mg/dL are defined as a
score of 1, and patients with albumin ≥3.5 g/dL and CRP ≤1 mg/dL are allocated a score of 0 [42]; (3) HRs of OS
and their 95% CIs can be obtained; (4) if HRs and 95% CIs of both UVA and MVA are provided, the data
may have higher mGPS, the diverse TNM stages may cause heterogeneity among studies. Third, a prognostic
model for patients with PC could not be developed due to insufficient data of the included studies, com-
promising the originality of the current meta-analysis. We suggest that a specific prognostic model or
nomogram incorporating mGPS should be explored for PC in future studies.

In conclusion, elevated pretreatment mGPS is a marker of poor prognosis in patients with PC. The prognostic
efficiency was reliable across different subgroups. As an easily obtainable and cost-effective inflammatory
parameter, mGPS can serve as a promising indicator for prognostication in PC.

MATERIALS AND METHODS

Study guidelines and ethical considerations

The current meta-analysis was carried out in accordance with the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses statement [41]. The ethical approval and patient consent were waived because all
analyses were based on previously published articles.

Search strategy

We retrieved potentially eligible studies by searching PubMed, Embase, Web of Science, Scopus, and the
Cochrane Library. The search period was from inception to June 17 2020. Search terms used were the following
free text words and medical subject heading (MeSH) terms: (pancreatic cancer OR pancreatic ductal
adenocarcinoma OR pancreatic tumor) AND (mGPS OR modified Glasgow prognostic score OR C-reactive protein
OR albumin) AND (prognosis OR prognostic OR survival OR outcome). Reference lists of literature were also
manually examined for eligible studies. Two reviewers (D Wu and X Wang) searched the database independently,
and all disagreements were resolved by discussion.

Selection criteria

The following inclusion criteria were applied: (1) prospective and retrospective studies exploring the
association between mGPS and OS in PC, with OS being calculated from the date of diagnosis to the last date of
follow-up or death from any cause [27]; (2) mGPS scoring system is used as previously described: patients
with an elevated CRP level (> 1 mg/dL) plus hypoalbuminemia (< 3.5 g/dL) are allocated a score of 2,
patients with albumin ≥3.5 g/dL and CRP > 1 mg/dL or albumin < 3.5 g/dL and CRP ≤1 mg/dL are defined as a
score of 1, and patients with albumin ≥3.5 g/dL and CRP ≤1 mg/dL are allocated a score of 0 [42]; (3) HRs of OS
and their 95% CIs can be obtained; (4) if HRs and 95% CIs of both UVA and MVA are provided, the data
may have higher mGPS, the diverse TNM stages may cause heterogeneity among studies. Third, a prognostic
model for patients with PC could not be developed due to insufficient data of the included studies, com-
promising the originality of the current meta-analysis. We suggest that a specific prognostic model or
nomogram incorporating mGPS should be explored for PC in future studies.

In conclusion, elevated pretreatment mGPS is a marker of poor prognosis in patients with PC. The prognostic
efficiency was reliable across different subgroups. As an easily obtainable and cost-effective inflammatory
parameter, mGPS can serve as a promising indicator for prognostication in PC.
of PC patients. The association between mGPS and clinical factors was analyzed using ORs and 95% CIs. HRs and 95% CIs were directly extracted from the articles or calculated from the Kaplan–Meier (K–M) curves according to Parmar’s method [44]. Heterogeneity across included studies was evaluated using Cochran’s Q tests and Higgins I-squared (I²) statistics. Either p<0.1 or I² > 50% indicated the existence of significant heterogeneity, and the REM was applied for analysis. Otherwise, a fixed-effects model (FEM) was adopted. Subgroup analysis stratified by study design, region, disease status, treatment, survival analysis, cancer type, study center, NOS score, and TNM stage were performed to detect the source of heterogeneity. We also performed a sensitivity analysis to evaluate the validity of the combined results. Moreover, we used the Begg’s funnel plot and Egger’s test to evaluate publication bias. A p-value of less than 0.05 was considered statistically significant.

Abbreviations

mGPS: modified Glasgow Prognostic Score; PC: pancreatic cancer; HRs: hazard ratios; CIs: confidence intervals; OS: overall survival; NOS: Newcastle-Ottawa Scale; MSI: microsatellite instability; CRP: C-reactive protein; MeSH: medical subject heading; UVA: univariate analysis; MVA: multivariate analysis; TNM: Tumor Node Metastasis; REM: random-effects model; FEM: fixed-effects model; PDAC: pancreatic ductal adenocarcinoma; OR: odds ratio.

AUTHOR CONTRIBUTIONS

D. Wu and G. Ge contributed to the conception or design of the study. X. Wang, G. Shi, and H. Sun performed experiments, collected the clinical and laboratory data. D. Wu and X. Wang performed the analysis and interpretation of data and drafted the manuscript. H. Sun and G. Ge critically revised the manuscript. All authors gave final approval and agrees to be accountable for all aspects of work ensuring integrity and accuracy.

CONFLICTS OF INTEREST

The authors declare that there are no conflicts of interest associated with the manuscript.

REFERENCES

1. Lai E, Puzzoni M, Ziranu P, Pretta A, Impera V, Mariani S, Licia N, Soro P, Musio F, Persano M, Donisi C, Tolu S, Balconi F, et al. New therapeutic targets in pancreatic cancer. Cancer Treat Rev. 2019; 81:101926. https://doi.org/10.1016/j.ctrv.2019.101926 PMID:31739115
2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020; 70:7–30. https://doi.org/10.3322/caac.21590 PMID:31912902
3. Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014; 74:2913–21. https://doi.org/10.1158/0008-5472.CAN-14-0155 PMID:24840647
4. Lawlor RT, Veronese N, Notteger A, Malleo G, Smith L, Demurtas J, Cheng L, Wood LD, Silvestris N, Salvia R, Scarpa A, Luchini C. Prognostic role of high-grade tumor budding in pancreatic ductal adenocarcinoma: a systematic review and meta-analysis with a focus on epithelial to mesenchymal transition. Cancers (Basel). 2019; 11:113. https://doi.org/10.3390/cancers11010113 PMID:30669452
5. Hasan S, Jacob R, Manne U, Paluri R. Advances in pancreatic cancer biomarkers. Oncol Rev. 2019; 13:410. https://doi.org/10.4081/oncol.2019.410 PMID:31044028
6. Abe T, Nakata K, Kibe S, Mori Y, Miyasaka Y, Ohuchida K, Ohtsuka T, Oda Y, Nakamura M. Prognostic value of preoperative nutritional and immunological factors in patients with pancreatic ductal adenocarcinoma. Ann Surg Oncol. 2018; 25:3996–4003. https://doi.org/10.1245/s10434-018-6761-6 PMID:30225838
7. Asama H, Suzuki R, Takagi T, Sugimoto M, Konno N, Watanabe K, Nakamura J, Kikuchi H, Takasumi M, Sato Y, Irie H, Hikichi T, Ohira H. Evaluation of inflammation-based markers for predicting the prognosis of unresectable pancreatic ductal adenocarcinoma treated with chemotherapy. Mol Clin Oncol. 2018; 9:408–14. https://doi.org/10.3892/mco.2018.1696 PMID:30233794
8. Chen LT, Macarulla TM, Belanger B, Mirakhor B, de Jong FA, Siveke J. The prognostic value of the modified glasgow prognostic score (mGPS) in predicting overall survival (OS) in patients with metastatic pancreatic ductal adenocarcinoma (mPDAC) receiving liposomal irinotecan (nal-IRI)+5-fluorouracil and leucovorin (5-FU/LV). Annals of Oncology. 2018; 29:VIII255–VIII256. https://doi.org/10.1093/annonc/mdy282.132
9. Coe P, O’Reilly D, Kauser A, de LCN, Deshpande R, Ammori B, Sherlock D, Valle J. The systemic inflammatory response as a prognostic factor in resection for pancreatic ductal adenocarcinoma. HPB. 2012; 14:79.
10. Fujiwara Y, Haruki K, Shiba H, Hamura R, Horiuchi T, Shirai Y, Furukawa K, Gocho T, Yanaga K. C-reactive protein-based prognostic measures are superior at predicting survival compared with peripheral blood cell count-based ones in patients after curative resection for pancreatic cancer. Anticancer Res. 2018; 38:6491–99. https://doi.org/10.21873/anticanres.13013 PMID:30396977

11. Hwang I, Kang J, Ip HN, Jeong JH, Kim KP, Chang HM, Yoo C, Ryoo BY. Prognostic factors in patients with metastatic or recurrent pancreatic cancer treated with first-line nab-paclitaxel plus gemcitabine: implication of inflammation-based scores. Invest New Drugs. 2019; 37:584–90. https://doi.org/10.1007/s10637-018-0681-y PMID:30324344

12. Iino C, Shimoyama T, Igarashi T, Aihara T, Ishii K, Sakamoto J, Tono H, Fukuda S. Biliary drainage improves the predictive value of modified Glasgow prognostic scores in inoperable pancreatic cancer. PLoS One. 2017; 12:e0178777. https://doi.org/10.1371/journal.pone.0178777 PMID:28644836

13. Ikuta S, Aihara T, Yamanaka N. Preoperative c-reactive protein to albumin ratio is a predictor of survival after pancreatic resection for pancreatic ductal adenocarcinoma. Asia Pac J Clin Oncol. 2019; 15:e109–14. https://doi.org/10.1111/ajco.13123 PMID:30632282

14. Ikuta S, Sonoda T, Aihara T, Nakajima T, Yamanaka N. The preoperative modified Glasgow prognostic score for the prediction of survival after pancreatic cancer resection following non-surgical treatment of an initially unresectable disease. Contemp Oncol (Pozn). 2018; 22:229–235. https://doi.org/10.5114/wo.2018.81344 PMID:30783386

15. Imaoka H, Mizuno N, Hara K, Hijikota S, Tajika M, Tanaka T, Ishihara M, Yogi T, Tsutsumi H, Fujiyoshi T, Sato T, Shimizu Y, Niwa Y, Yamao K. Evaluation of modified Glasgow prognostic score for pancreatic cancer: a retrospective cohort study. Panaceas. 2016; 45:211–17. https://doi.org/10.1097/MPA.0000000000000446 PMID:26495775

16. Kasuga A, Okano N, Naruge D, Kitamura H, Takasu A, Nagashima F, Furuse J. Retrospective analysis of fixed dose rate infusion of gemcitabine and S-1 combination therapy (FGS) as salvage chemotherapy in patients with gemcitabine-refractory advanced pancreatic cancer: inflammation-based prognostic score predicts survival. Cancer Chemother Pharmacol. 2015; 75:457–64. https://doi.org/10.1007/s00280-014-2665-8 PMID:25547407

17. Kubo H, Murakami T, Matsuyma R, Yabushita Y, Tsuchiya N, Sawada Y, Homma Y, Kumamoto T, Endo I. Prognostic impact of the Neutrophil-to-Lymphocyte ratio in borderline resectable pancreatic ductal adenocarcinoma treated with neoadjuvant chemoradiotherapy followed by surgical resection. World J Surg. 2019; 43:3153–60. https://doi.org/10.1007/s00268-019-05159-9 PMID:31549202

18. Nakagawa K, Sho M, Akahori T, Nagai M, Nakamura K, Takagi T, Tanaka T, Nishiofuku H, Ohbayashi C, Kichikawa K, Ikeda N. Significance of the inflammation-based prognostic score in recurrent pancreatic cancer. Pancreatolog. 2019; 19:722–28. https://doi.org/10.1016/j.pan.2019.05.461 PMID:31153778

19. Inoue D, Ozaka M, Matsuyma M, Yamada I, Takano K, Saiura A, Ishii H. Prognostic value of neutrophil-lymphocyte ratio and level of C-reactive protein in a large cohort of pancreatic cancer patients: a retrospective study in a single institute in Japan. Jpn J Clin Oncol. 2015; 45:61–66. https://doi.org/10.1093/jjco/hyu159 PMID:25341546

20. Jamieson NB, Denley SM, Logue J, MacKenzie DJ, Foulis AK, Dickson EJ, Imrie CW, Carter R, McKay CJ, McMillan DC. A prospective comparison of the prognostic value of tumor- and patient-related factors in patients undergoing potentially curative surgery for pancreatic ductal adenocarcinoma. Ann Surg Oncol. 2011; 18:2318–28. https://doi.org/10.1245/s10434-011-1560-3 PMID:21267785

21. La Torre M, Nigri G, Cavallini M, Mercantini P, Ziparo V, Ramacciato G. The Glasgow prognostic score as a predictor of survival in patients with potentially resectable pancreatic adenocarcinoma. Ann Surg Oncol. 2012; 19:2917–23. https://doi.org/10.1245/s10434-012-2348-9 PMID:22488099

22. Liu Z, Jin K, Guo M, Long J, Liu L, Liu C, Xu J, Ni Q, Luo G, Yu X. Prognostic value of the CRP/albumin ratio, a novel inflammation-based score in pancreatic cancer. Ann Surg Oncol. 2017; 24:561–68. https://doi.org/10.1245/s10434-016-5579-3 PMID:27650825

23. Martin HL, Ohara K, Kiberu A, Van Hagen T, Davidson A, Khattak MA. Prognostic value of systemic inflammation-based markers in advanced pancreatic cancer. Intern Med J. 2014; 44:676–82. https://doi.org/10.1111/imj.12453 PMID:24750233
24. Matsumoto I, Kamei K, Omae K, Suzuki S, Matsuoka H, Mizuno N, Ozaka M, Ueno H, Kobayashi S, Usugi K, Kobayashi M, Todaka A, Fukutomi A. FOLFIRINOX for locally advanced pancreatic cancer: results and prognostic factors of subset analysis from a nationwide multicenter observational study in Japan. Pancreatology. 2019; 19:296–301. https://doi.org/10.1016/j.pan.2019.01.001 PMID:30638853

25. Sawada M, Kasuga A, Mie T, Furukawa T, Taniguchi T, Fukuda K, Yamada Y, Takeda T, Kanata R, Matsuyama M, Sasaki T, Ozaka M, Sasahira N. Modified FOLFIRINOX as a second-line therapy following gemcitabine plus nab-paclitaxel therapy in metastatic pancreatic cancer. BMC Cancer. 2020; 20:449. https://doi.org/10.1186/s12885-020-06945-8 PMID:32434547

26. Shimizu T, Taniguchi K, Asakuma M, Tomioka A, Inoue Y, Komeda K, Hirokawa F, Uchiyama K. Lymphocyte-to-Monocyte ratio and prognostic nutritional index predict poor prognosis in patients on chemotherapy for unresectable pancreatic cancer. Anticancer Res. 2019; 39:2169–76. https://doi.org/10.21873/anticanceres.13331 PMID:30952764

27. Wang DS, Luo HY, Qiu MZ, Wang ZQ, Zhang DS, Wang FH, Li YH, Xu RH. Comparison of the prognostic values of various inflammation based factors in patients with pancreatic cancer. Med Oncol. 2012; 29:3092–100. https://doi.org/10.1007/s12032-012-0226-8 PMID:22476808

28. Wu M, Guo J, Guo L, Zuo Q. The c-reactive protein/albumin ratio predicts overall survival of patients with advanced pancreatic cancer. Tumour Biol. 2016; 37:12525–33. https://doi.org/10.1007/s13277-016-5122-y PMID:27344157

29. Xiao Y, Xie Z, Shao Z, Chen W, Xie H, Qin G, Zhao N. Prognostic value of postdiagnostic inflammation-based scores in short-term overall survival of advanced pancreatic ductal adenocarcinoma patients. Medicine (Baltimore). 2017; 96:e9247. https://doi.org/10.1097/MD.0000000000009247 PMID:29390358

30. Yamada S, Fuji T, Yabusaki N, Murotani K, Iwata N, Kanda M, Tanaka C, Nakayama G, Sugimoto H, Koike M, Fujiwara M, Kodera Y. Clinical implication of inflammation-based prognostic score in pancreatic cancer: glasgow prognostic score is the most reliable parameter. Medicine (Baltimore). 2016; 95:e3582. https://doi.org/10.1097/MD.0000000000003582 PMID:27149487

31. Imrie CW. Host systemic inflammatory response influences outcome in pancreatic cancer. Pancreatology. 2015; 15:327–30. https://doi.org/10.1016/j.pan.2015.04.004 PMID:25975490

32. Liao DW, Hu X, Wang Y, Yang ZQ, Li X. C-reactive protein is a predictor of prognosis of prostate cancer: a systematic review and meta-analysis. Ann Clin Lab Sci. 2020; 50:161–71. PMID:32366552

33. Hu Q, Gou Y, Sun C, Ding W, Xu K, Gu B, Xia G, Ding Q. The prognostic value of C-reactive protein in renal cell carcinoma: a systematic review and meta-analysis. Urol Oncol. 2014; 32:50.e1–8. https://doi.org/10.1016/j.urolonc.2013.07.016 PMID:24239465

34. Chen H, Hu N, Chang P, Kang T, Han S, Lu Y, Li M. Modified glasgow prognostic score might be a prognostic factor for hepatocellular carcinoma: a meta-analysis. Panminerva Med. 2017; 59:302–07. https://doi.org/10.23736/S0031-0808.16.03236-5 PMID:28001023

35. He L, Li H, Cai J, Chen L, Yao J, Zhang Y, Xu W, Geng L, Yang M, Chen P, Zheng J, Yang Y, Gong S. Prognostic Value of the Glasgow Prognostic Score or Modified Glasgow Prognostic Score for Patients with Colorectal Cancer Receiving Various Treatments: a Systematic Review and Meta-Analysis. Cell Physiol Biochem. 2018; 51:1237–1249. https://doi.org/10.1159/000495500 PMID:30481755

36. Qi F, Xu Y, Zheng Y, Li X, Gao Y. Pre-treatment Glasgow prognostic score and modified Glasgow prognostic score may be potential prognostic biomarkers in urological cancers: a systematic review and meta-analysis. Ann Transl Med. 2019; 7:531. https://doi.org/10.21037/atm.2019.09.160 PMID:31807513

37. Wang Y, Chen L, Wu Y, Li P, Che G. The prognostic value of modified Glasgow prognostic score in patients with esophageal squamous cell cancer: a meta-analysis. Nutr Cancer. 2020; 72:1146–54. https://doi.org/10.1080/01635581.2019.1677925 PMID:31617767

38. Nie D, Zhang L, Wang C, Guo Q, Mao X. A high Glasgow prognostic score (GPS) or modified Glasgow prognostic score (mGPS) predicts poor prognosis in gynecologic cancers: a systematic review and meta-analysis. Arch Gynecol Obstet. 2020; 301:1543–51. https://doi.org/10.1007/s00404-020-05581-8 PMID:32409927

39. Lu X, Guo W, Xu W, Zhang X, Shi Z, Zheng L, Zhao W. Prognostic value of the Glasgow prognostic score in
colorectal cancer: a meta-analysis of 9,839 patients. Cancer Manag Res. 2018; 11:229–49. https://doi.org/10.2147/CMAR.S185350 PMID:30636896

40. Dolan RD, McMillan DC. The prevalence of cancer associated systemic inflammation: Implications of prognostic studies using the Glasgow Prognostic Score. Crit Rev Oncol Hematol. 2020; 150:102962. https://doi.org/10.1016/j.critrevonc.2020.102962 PMID:32344318

41. Moher D, Liberati A, Tetzlaff J, Altman DG, and PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009; 6:e1000097. https://doi.org/10.1371/journal.pmed.1000097 PMID:19621072

42. Sonehara K, Tateishi K, Komatsu M, Yamamoto H, Hanaoka M, Kanda S, Koizumi T. Modified glasgow prognostic score as a prognostic factor in patients with extensive disease-small-cell lung cancer: a retrospective study in a single institute. Chemotherapy. 2019; 64:129–37. https://doi.org/10.1159/000502681 PMID:31622969

43. Hu X, Wang Y, Yang WX, Dou WC, Shao YX, Li X. Modified glasgow prognostic score as a prognostic factor for renal cell carcinomas: a systematic review and meta-analysis. Cancer Manag Res. 2019; 11:6163–73. https://doi.org/10.2147/CMAR.S208839 PMID:31308752

44. Parmar MK, Torri V, Stewart L. Extracting summary statistics to perform meta-analyses of the published literature for survival endpoints. Stat Med. 1998; 17:2815–34. https://doi.org/10.1002/(sici)1097-0258(19981230)17:24<2815::aid-sim110>3.0.co;2-b PMID:9921604
SUPPLEMENTARY MATERIALS

Supplementary Table

Please browse Full Text version to see the data of Supplementary Table 1.

Supplementary Table 1. Characteristics of the included studies.