Loss of 5-Hydroxymethylcytosine as an Epigenetic Signature that Correlates with Poor Outcomes in Patients with Medulloblastoma

Fu Zhao (zhaofu@ccmu.edu.cn)
Beijing Neurosurgical Institute

Zhi-Wei Zhang
Chinese Academy of Medical Sciences & Peking Union Medical College Hospital of Skin Diseases and Institute of Dermatology

Jing Zhang
Beijing Neurosurgical Institute

Shun Zhang
Beijing TianTan Hospital

Heng Zhang
Beijing Tiantan Hospital

Chi Zhao
Sanbo Brain Hospital

Yang Chen
Chinese Academy of Medical Sciences and Peking Union Medical College

Lin Luo
Beijing Neurosurgical Institute

Wei-Min Tong
University of the Chinese Academy of Sciences

Chunde Li
Beijing Tiantan Hospital

Yamei Niu
Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Basic Medical Sciences

Pinan Liu
Beijing Tiantan Hospital

Research

Keywords: Medulloblastoma, 5-hydroxymethylcytosine, Prognosis, Ki-67, Epigenetics, Immunohistochemistry
Abstract

Background: Medulloblastoma, as the most common malignant brain tumor in children, exhibits highly dysregulated DNA methylation. The novel epigenetic marker—5-hydroxymethylcytosine (5hmC) plays essential role in gene regulation during brain development and in brain tumors. However, the biological and clinical implications of 5hmC in medulloblastoma are still unclear.

Methods: Here, we detected global 5hmC levels in two independent medulloblastoma patient cohorts (discovery cohort: n = 81; validation cohort: n = 171) using ultra-high performance liquid chromatography-tandem mass spectrometry analysis. Immunohistochemistry was used to identify the cell proliferation and expression of Ten-eleven translocation 1 and 2 (TET1/2). The prognostic impacts of covariates on progression-free survival (PFS) and overall survival (OS) were evaluated using multivariate Cox hazards-regression models.

Results: We observed that global 5hmC levels were decreased in medulloblastomas compared to normal cerebellums ($P < 0.001$). Multivariate analysis showed that low 5hmC levels correlated with poor PFS and OS rates (discovery cohort: PFS: $P = 0.003$, OS: $P = 0.002$; validation cohort: PFS: $P = 0.0002$, OS: $P = 0.001$). Immunohistochemistry showed an inverse correlation between 5hmC score and Ki-67 index ($r = -0.747, P < 0.0001$). Moreover, 5hmC score was associated with protein expression of TET1 ($r = -0.419, P = 0.003$) and TET2 ($r = -0.399, P = 0.005$).

Conclusions: Our study demonstrates that loss of 5hmC is an epigenetic biomarker in medulloblastomas. Our results indicate that 5hmC could be a candidate prognostic indicator for improving survival prediction of risk stratification in patients with medulloblastoma.

Background

Medulloblastoma (MB) is a malignant embryonal tumor of the cerebellum that represents over 20% of all pediatric central nervous system (CNS) neoplasm [1]. Although conventional treatments have significantly improved outcomes in recent years, survivors are frequently left with devastating neurocognitive impairment and other sequelae following such therapy [2, 3]. Therefore, the purpose for developing treatment strategies in MB is to increase the survival rates for high-risk patients, and to improve the quality of life of survivors by reducing the toxicity of treatment. However, the current criteria for risk stratification rely primarily on the patient age, the presence of metastases, the extent of resection (EOR), and the histopathological subtypes [4-7], which is insufficient for predicting the outcome. Recent advances have shown that MBs can be classified into at least four subgroups with distinct underlying biological and clinical features [8-11]. Identifying molecular subgroups has strong potential for improving clinical management and provides a basis for investigating the biological consequences of subgroup-specific therapeutic applications [12-15]. However, more reliable and practical prognostic biomarkers are still urgently needed to develop individualized treatment options for MB.
DNA methylation of the fifth position of cytosine (5mC, 5-methylcytosine) is acknowledged as an epigenetic mechanism and its alterations in genomic DNA are associated with tumorigenesis [16, 17]. Recent studies demonstrate that 5-hydroxymethylcytosine (5hmC) is a necessary intermediate in the DNA passive demethylation process that catalyzed by the ten-eleven translocation 1–3 (TET1–3) [18, 19]. Interestingly, 5hmC is highly enriched in the human brain and plays as a stable epigenetic modifier of gene expression during neuronal differentiation and development [20, 21]. Moreover, 5hmC levels are strongly depleted in multiple human cancers, especially in brain tumors, and correlate with increased malignancy and poor prognosis [22-26].

However, little is known regarding the biological function and tumorigenesis of 5hmC in MB. To investigate the clinical and biological implications of this new epigenetic biomarker in MB, we detected global 5hmC levels in two independent cohorts of patients with MB (n = 81; n = 171) using ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) analysis. We assessed the prognostic value of 5hmC levels on the progression-free survival (PFS) and overall survival (OS) for patients with MB.

Material And Methods

Patient cohorts

Patient with initial surgery for MB at Beijing Tian Tan hospital, Capital Medical University between 2002 to 2018 were included in the study. Tumor specimens were stored in liquid nitrogen or in formalin-fixed paraffin-embedded (FFPE) blocks at Beijing Neurosurgical Institute. Patients with complete clinical data (such as age, EOR, and survival), preoperative magnetic-resonance image (MRI) scans, and surgical tissues obtained during initial surgery (before radiation or any other adjuvant treatment) were included. The EOR was established based on surgeons’ reports and confirmed with postoperative enhanced T1-weighted MRI scans. All normal cerebellums were provided by the Human Brain Bank (Chinese Academy of Medical Sciences & Peking Union Medical College).

Molecular subgroup analysis

Molecular classification (wingless [WNT], sonic hedgehog [SHH], Group 3, or Group 4) was established using the Agilent Whole Human Genome Oligo Microarray Kit, 4×44K (Agilent Technologies, Santa Clara, CA, USA; GSE116028; n = 38), the QuantiGene Plex Gene Expression Assay (QGP, version 2.0, Affymetrix, Santa Clara, CA, USA, n = 97), and immunohistochemical (IHC) staining with antibodies (β-catenin, SFRP1, NPR3, and KCNA1, n = 117), as we described previously [27, 28].

UHPLC-MS/MS analysis

Absolute quantities of 5hmC were measured, as we previously described [29]. Briefly, DNA isolation was performed using the Wizard® Genomic DNA Purification Kit (A1620, Promega, Madison, WI, USA) according to the manufacturer's protocol. Nucleosides were separated by UHPLC on a T3 column (Waters,
186003538) and detected using a triple-4 quadrupole tandem MS instrument (Waters, ACQUITY UPLC XEVO TQ-S). The mass/change (m/e) transitions of 228.4 to 112.2 (cytosine), 242.3 to 126.1 (mC), and 258.2 to 124.2 (hmC) were monitored and recorded. Quantification was performed in comparison with standard curves generated using pure nucleoside standards, which were run with the same batch of samples. 5hmC percentages were calculated using the formula: \(5hmC\% = \frac{M(5hmC)}{M(\text{cytosine}) + M(5mC)} \times 100\).

Immunohistochemistry analysis

Immunohistochemistry (IHC) staining for 5hmC, Ki-67 and TET1/2 was performed on FFPE sections, as previously described [28, 30, 31]. Briefly, FFPE tissues were cut into 4-μm sections, followed by deparaffinization and rehydration using xylene and ethanol. Next, the slides were incubated in 3% hydrogen peroxide for 10 min in phosphate-buffered saline and then in blocking solution (CSA II Kit; Dako, Glostrup, Denmark) for 60 minutes at room temperature. The slides were incubated overnight with primary antibodies against 5hmC (1:800, ab214728, Abcam, US), Ki-67 (1:1000, ab15580, Abcam), TET1 (1:1000, HPA019032, Sigma, US), and TET2 (1:100, ab94580, Abcam). The number of pixels representing positively stained nuclei was detected using Image-Pro Plus image-analysis software (Media Cybernetics, Inc, MD, US). Positive staining was defined as a dark-brown staining pattern, confined to the nuclear region. For each sample, the mean value of ten snapshots was calculated to represent the percentage of positive cells. For 5hmC staining, normal cerebellum and non-tumor cells (endothelial cells) in the microenvironment were used as a positive-control tissue. All IHC slides were separately reviewed by two senior neuropathologists (L.L. and T.W.). A final score for 5hmC staining was then calculated by multiplying the score of proportion of positively stained tumor cells (0-100%) and the score of staining intensity (0,1,2,3).

Gene expression analysis

To evaluate the expression levels of 5hmC-related genes in MB, we downloaded normalized gene-expression data generated with the Removal of Unwanted Variation method from the Gene Expression Omnibus database (accession number GSE124814; https://www.ncbi.nlm.nih.gov/geo/), which included cerebellar data for 1350 patients with MB and 291 normal brain samples [32]. Expression levels of the TET1/2 genes and the isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) genes were analyzed in MB and normal cerebellum samples.

We detected the RNA-expression levels of TET1/2 in our MB samples using the QGP Assay. All samples were analyzed using a Luminex® instrument, and gene-expression levels was normalized to the geometric mean of the expression for 2 housekeeping genes (ACTB and GAPDH).

TP53 mutation analysis

Mutations of TP53 gene (exons 2 through 11) in SHH-MB was detected by Sanger sequencing, as previously described [33]. Briefly, genomic DNA derived from FFPE samples was prepared with Wizard®
Genomic DNA Purification Kit (A1120, Promega, US) according to the manufacturer's protocols. The PCR profile was performed as follows: 95°C for 2 min, 56°C for 1 min for 35 cycles. The final extension was added at 72°C for 10 min before storage at 4°C. The PCR products were loaded onto a 1% of agarose gel for electrophoresis. The reactions were analyzed by an automated Genetic Analyzer ABI 310 system (ABI, CA) according to the manufacturer's instructions.

Statistical analysis

Significant differences between two groups were analyzed using Student's t-test (two-tailed). Data are reported as mean ± standard deviation (SD). Relationships were evaluated by the Pearson correlation coefficient. For the survival analyses, OS was defined as the time from diagnosis until death, and PFS was defined as the time from the date of surgical resection until the date of tumor progression. Estimated 5-year OS and PFS were calculated using Kaplan–Meier analysis and data are reported as the mean ± standard error (SE). Patient cohorts were divided into two groups according to 5hmC levels. The optimal cut-off value (0.061 for 5hmC) was defined as the point with the most significant split using Cutoff Finder (http://molpath.charite.de/cutoff/index.jsp). Significant differences between survival curves were determined using the log-rank test. The discriminatory capacity of 5hmC-based classification was evaluated by Harrell's C index and time-dependent receiver operating characteristic (ROC) curve analysis, using the “survival ROC” package in R software, as previously described [34].

Univariate and multivariable Cox proportional hazard regression to estimate hazard ratios (HRs) for PFS and OS, including 95% confidence intervals (CIs). The multivariate model was performed with backward stepwise selection (inclusion criterion: score test, \(P < 0.10 \); exclusion criterion: likelihood-ratio test, \(P > 0.10 \)). Variables included the 5hmC levels (low vs. high), the molecular subgroup (WNT, SHH, Group 3, or Group 4), the pathological subtype (classic MB [CMB], desmoplastic/nodular MB [DNMB], or large cell/anaplastic MB [LC/AMB]), age (<3, 3–17, or ≥18 years old), metastatic status (yes vs. no), and receipt of craniospinal irradiation (CSI; yes vs. no). Covariates (EOR and receipt of chemotherapy), which were deemed as important prognostic factors in previous studies [7, 15], were also included in the Cox regression models.

The nomograms were established based on the Cox model for predicting 3-, 5-, and 10-year PFS and OS rates of the validation cohort using the “rms” package (version 4-4.2) of R software. Calibration curves were generated to compare associations between the observed and predicted outcomes, as previously described [35]. Time-dependent ROC curve analysis was used to evaluate the discriminative ability of the nomogram. All statistical analyses were performed using the SPSS Statistical Package software (version 23.0, IBM Inc., Chicago, US) or R software (version 3.4.3; http://www.r-project.org). \(P < 0.05 \) was considered to reflect a statistically significant difference.

Results

The clinical characteristics
This study included two non-overlapping patient cohorts (discovery cohort: \(n = 81 \); validation cohort: \(n = 171 \)). The demographic, clinical, and molecular characteristics were shown in Table 1. The discovery cohort included 81 patients with a mean age of 11.1 ± 9.5 years (range: 1.5–49 years). The median follow-up period was 42.7 months (10–116 months), and the estimated 5-year PFS and OS rates were 61.4% ± 6.6% (95% CI, 48.4%–74.3%) and 68.6% (95% CI, 56.2%–80.6%), respectively. The validation cohort included 171 pediatric patients with the mean age of 8.1 ± 3.8 years (range: 1.4–17 years), 8 of whom (4.7%) had metastatic disease (M+) at the time of diagnosis. The median follow-up period was 83.6 months (range: 5–227 months). The estimated 5-year PFS and OS rates were 65.2% (95% CI, 57.8%–72.6%) and 69.0% (95% CI, 61.7%–76.2%), respectively.

Decreased 5hmC levels as an epigenetic hallmark of MB

We detected the relative abundances of 5hmC in MBs and normal cerebellums by UHPLC-MS/MS. In discovery cohort, 5hmC levels were significantly lower in MBs than in normal cerebellums \((P < 0.0001, \text{ Figure 1A})\). Among four molecular subgroups, SHH-MBs had lower 5hmC levels than Group 4-MBs \((P = 0.038, \text{ Figure 1C})\). In the validation cohort, MBs had lower 5hmC levels than normal cerebellums \((P < 0.0001, \text{ Figure 1D})\). LC/AMBs had lower 5hmC levels than CMBs \((P = 0.027, \text{ Figure 1E})\). Moreover, somatic \(TP53\) mutations were detected in 38 pediatric SHH-MBs of validation cohort, three of which harbored a mutation in \(TP53\) exons (NM_000546, c.375G>A, c.454C>T, c.625_626delAG). No statistical difference in 5hmC levels was observed between tumors with or without \(TP53\) mutation \((0.050 \text{ vs} 0.083; P = 0.405)\).

MBs with low 5hmC levels had poor survival rates

To determine whether 5hmC could be a prognostic predictor in MBs, we compared the PFS and OS stratified by 5hmC levels. In the discovery cohort, MBs with low 5hmC levels were associated with lower 5-year PFS and OS rates than those with high 5hmC levels (5-year PFS: 35.8% ± 10.7% \text{ vs} 66.5 ± 7.5%, \(P = 0.011 \); 5-year OS: 47.0% ± 10.0% \text{ vs} 62.4% ± 8.9%, \(P = 0.017 \); Figure 2A, B). In the validation cohort, MBs with low 5hmC levels also showed worse OS and PFS compared to those with high 5hmC levels (5-year PFS: 44.8% ± 7.7% \text{ vs} 72.1% ± 4.2%, \(P = 0.0002 \); 5-year OS: 56.4% ± 7.8% \text{ vs} 74.6% ± 4.2%, \(P = 0.0005 \); Figure 2C, D).

We performed Harrell’s C index and time-dependent ROC curves to assess the discriminatory capacity of 5hmC-based classification and molecular classification as prognostic biomarkers for survival in both cohorts. C-index showed that 5hmC-based classification had good predictive accuracy in terms of 5-year PFS and OS (range: 0.598–0.630), as did the molecular subgroup (range: 0.568–0.603; Supplementary Table S1). Time-dependent ROC curves also confirmed the similar AUCs for 5-year and 8 (10)-year survival between 5hmC-based classification (range: 0.596–0.641) and the molecular classification in both cohorts (range: 0.575–0.624; Supplementary Figure S1). These results indicate that 5hmC could be a potential biomarker for prognostic prediction in MB.

5hmC was an independent prognostic indicator for MB
To further identify the prognostic value of 5hmC in MBs, univariate and multivariate Cox regression analyses were performed in both cohorts. In the discovery cohort, multivariate Cox regression analysis identified 5hmC levels (low vs. high) as a significant predictor of PFS (HR = 3.711, 95% CI = 1.648–7.357, \(P = 0.003 \)) and OS (HR = 3.974, 95% CI = 1.641–8.394, \(P = 0.002 \)) (Table 2). Meanwhile, molecular subgroup (WNT, SHH, Group 3, and Group 4), histological subtype (CMB, DNMB, and LC/AMB), and CSI treatment (yes vs. no) were identified as prognostic predictors (Table 2). In validation cohort, multivariate analysis confirmed that 5hmC levels (PFS: HR = 2.830, 95% CI = 1.623–4.660, \(P = 0.0002 \); OS: HR = 2.529, 95% CI = 1.475–4.337, \(P = 0.001 \)), as well as metastatic status, CSI treatment, histological subtype, and molecular subgroup, contributed significantly PFS and OS (Table 3).

Nomograms showed the relative utility of variables in predicting OS and PFS

We generated survival nomograms to show the relative clinical effect of each variable to predict 3-year, 5-year, and 10-year PFS and OS based on multivariate Cox model of the validation cohort (Figure 3A, B). The calibration plots showed the acceptable agreement between nomogram-based predictions and clinical observations (Supplementary Figure S2). We then respectively compared the predictive accuracies of survival between nomograms with 5hmC and without 5hmC using time-dependent ROC curves (Supplementary Figure S3). We found that AUCs of 3-, 5, 10-year OS and PFS (range: 0.785–0.817) were higher in nomograms with 5hmC-based classification than those without 5hmC-based classification (range: 0.717–0.762). These results indicate that integration of 5hmC-based classification with clinical and molecular factors can improve risk stratification for patients with MB.

Loss of 5hmC was linked to high cell proliferation in MBs

We performed the IHC for 5hmC staining to further confirm the reduction of 5hmC generation in MBs. We observed that MBs presented lower nuclear positivity and staining intensity of 5hmC antibody compared with normal cerebellums (\(P < 0.0001 \); Fig. 4A, B). We then performed IHC for Ki-67 staining to determine the relationship between 5hmC and cell proliferation. We found that Ki-67 index reversely correlated with 5hmC score (\(r = -0.747 \), \(P < 0.0001 \), Figure 4A, C) and 5hmC levels (\(r = -0.569 \), \(P < 0.0001 \), Figure 4D), respectively. Moreover, MBs with low 5hmC levels had higher Ki-67 index than those with high 5hmC levels (\(P < 0.0001 \); Fig. 4E).

Reduced 5hmC levels related to low TET1/2 expression

Since changes in expression of \(TET \) and \(IDH \) genes were linked to altered 5hmC levels in cancer [19], we determined whether the loss of 5hmC in MB was caused by abnormal expression of TET or IDH genes. Firstly, we found that gene mutations in \(TET1/2/3 \) or \(IDH1/2 \) were extremely rare in MBs (range: 0%–4.3%; Supplementary Table S2). In mRNA-expression levels, we found that the levels of \(TET1/2 \) and \(IDH1/2 \) were higher in MBs (\(n = 1350 \)) than in normal cerebellums (\(n = 291 \); all \(P < 0.001 \); Figure 5A). We then compared the mRNA-expression levels of \(TET1/2 \) between high-5hmC and low-5hmC MBs using QGP analysis and found no significant differences between two groups (Figure 5B; Supplementary Figure S4). To determine the relationship between 5hmC and expression of TET1/2 proteins, we then performed
IHC staining for TET1/2 antibodies in MB samples (Figure 5C). We observed a significant association between 5hmC scores and nuclear positivity for TET1/2 ($r = 0.419, P = 0.003$; $r = 0.399, P = 0.005$; Figure 5D, E).

Discussion

Recent advances have revealed molecular and clinical heterogeneities in MB [8, 36]. Therefore, identifying reliable biomarkers is crucial for tailoring individual treatment strategies of patients with MB. In this study, we investigated the clinical relevance of a novel epigenetic biomarker—5hmC, in two large independent MB cohorts. We demonstrated that global loss of 5hmC is a common epigenetic event in MBs. More importantly, we provided the first evidence that loss of 5hmC significantly correlates with poor survival in patients with MB. Our findings suggest that the integration of 5hmC-based classification in existing risk stratification models can facilitate the individualized therapy of MB in future clinical trials.

Previous studies reported that reduced 5hmC levels correlated with a more aggressive phenotype and poorer survival in glioma [23, 24, 37]. In this study, we determined 5hmC levels as a significant prognostic indicator for patients with MB, independently of clinical or molecular parameters. This implies that characterization of 5hmC levels could segregate individuals with MB into groups with favorable or extremely poor survival, where those with low 5hmC levels may need more clinical care. Moreover, given the important prognostic value of 5hmC, it is interesting to consider the functional relevance of this epigenetic biomarker in MB tumorigenesis. The loss of 5hmC in MB indicates an imbalance occurred between methylation and demethylation, which may lead to tumor-suppressor gene silencing or oncogene activation [38, 39]. More importantly, a recent study of ovarian cancer demonstrated that the pharmacologic reversal in 5hmC levels using DNA methyltransferase inhibitors (DNMTIs)—5-azacytidine, could enhance the chemosensitivity of platinum resistant tumors and prolong survival *in vitro* and *in vivo* [40]. This finding provides a novel hint that MB patients with 5hmC loss may benefit from treatment of DNMTIs. Thus, future genome-wide hydroxymethylation studies are urgently needed to improve our understanding of potential tumorigenic mechanisms caused by altered 5hmC levels and to investigate the potential new therapies for MB.

Interestingly, we observed that MBs with low 5hmC levels had higher cell proliferation. This finding is consistent with a previous study showing the inverse link between 5hmC levels and cell proliferation in multiple human cancers [22]. The higher Ki-67 index indicates more aggressive biological behavior and shorter survival in brain tumors [41-43]. More importantly, we previously showed Ki-67 index as an independent prognostic predictor in MBs [28]. These data may offer a plausible explanation for the poor survival of MBs with low 5hmC levels. Moreover, we observed that strong 5hmC staining could be seen not only in the well-differentiated, non-proliferating cell types of the normal cerebellum, but also in neuronal differentiated cells within nodular areas of DNMB (Figure 4A). In contrast, poorly differentiated cells intervening nodular areas exhibited loss of 5hmC and higher proliferation. This finding indicates that loss of 5hmC may lead to the abnormal differentiation of MB cells, considering that TET activity and 5hmC levels are necessary for successful tissue differentiation [44],
Survival nomograms has been proposed as a new alternative of traditional risk classification system in multiple types of cancers due to its predictive accuracy and convenient utility [45, 46]. In this study, we developed a survival nomogram based on 5hmC levels, molecular subgroup and clinico-pathological factors to predict outcome in pediatric patients with MB. To the best of our knowledge, this is the first survival nomogram for pediatric MB that integrates comprehensive prognostic predictors based on a large patient cohort. Our nomogram performed well in predicting survival, and its prediction was supported by the C-index and the calibration curve. We believe that this model can provide an individualized survival prediction for both physicians and patients through this easy-to-use scoring system.

Dysfunctional TET and/or IDH genes influence the regulation of DNA hydroxymethylation and lead to reduction of 5hmC generation in cancers [19]. However, previous data showed that gene mutations of TET1/2/3 and IDH1/2 were extremely rare in MBs [47-50]. In this study, we found that reduced 5hmC in MBs relate to decreased expression of TET1/2 proteins, suggesting that the inactivation of TET1/2 proteins may be responsible for the altered 5hmC levels in MBs. Future studies are needs to elucidate the potential mechanisms that inhibit the activity of TET1/2 proteins in MBs.

Conclusions

Taken together, our data demonstrate that loss of 5hmC is associated with aggressive behavior and poor prognosis in MB. Our study highlights 5hmC as a novel prognostic indicator that can be used in clinical to improve the accuracy of survival prediction for patients with MB. Additional large-scale, multi-centered retrospective and prospective studies are still required to evaluate the utility of 5hmC as a prognostic tool in future clinical trials.

List Of Abbreviations

5hmC: 5-hydroxymethylcytosine; 5mC: 5-methylcytosine; CH: cerebellar hemisphere; CSI: craniospinal irradiation; DN: desmoplastic nodular; EOR: extent of resection; GTR: gross total resection; HR, Hazard ratio; IHC: immunohistochemistry; MB: medulloblastoma; LC/A, Large cell/ anaplastic; OS: Overall survival; PFS: Progression free survival; SHH: sonic hedgehog; STR: subtotal removal. TET: Ten-eleven translocation; UHPLC-MS/MS: Ultra-high-performance liquid chromatography-mass spectrometry.

Declarations

Ethics approval and consent to participate

This study was approved by the Ethics Review Board of Beijing Tian Tan Hospital (Capital Medical University; Approval Number: KY2018-020-01). All patients or family provided written informed consent. All normal cerebellums were provided by the Human Brain Bank (Chinese Academy of Medical Sciences &
Peking Union Medical College), with the approval from the Institutional Review Board of the Institute of Basic Medical Sciences (Chinese Academy of Medical Sciences; Approval Number: 009-2014).

Consent for publication

Not applicable.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Competing interests

The authors declare that they have no competing interests.

Funding

This study was supported by the National Natural Science Foundation of China (grant number 81902862, to F.Z.) and the Capital Health Development and Research Special Projects of Beijing (grant number 2018-2-1073, to C.L.). This study was also partially supported by the Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences (grant numbers 2016ZX310182-2 and 2016ZX310176-6, to Y.N.), the Medical Epigenetics Research Center (Chinese Academy of Medical Sciences; grant number 2019PT310017, to Y.N.), and the Beijing Dongcheng District Outstanding Talent Funding Project (grant number 2019DCT-M-16, to F.Z.).

Author's Contributions

The study was conceived and designed by FZ, PL, and YN. Clinical data collection was performed by CL, BW, ZS and HZ. Sample collection was performed by ZY and CL. Bioinformatics and statistical analyses were performed by ZJ, SL and ZZ. Histopathological diagnosis was performed by WT and LL. FZ, ZZ, YC, and ZJ conducted the experiments of UHPLC-MS/MS and IHC. The manuscript was written and reviewed by FZ, YN. All authors read and approved the final manuscript.

ACKNOWLEDGEMENTS

The excellent assistance in histopathological diagnosis provided by prof. Felice Giangaspero (Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University, Rome, Italy) is gratefully acknowledged.

References

1. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW: The 2016 World Health Organization Classification of Tumors of
the Central Nervous System: a summary. Acta Neuropathol 2016, 131(6):803-820.

2. Packer RJ, Vezina G: Management of and prognosis with medulloblastoma: therapy at a crossroads. Arch Neurol 2008, 65(11):1419-1424.

3. Archer TC, Mahoney EL, Pomeroy SL: Medulloblastoma: Molecular Classification-Based Personal Therapeutics. Neurotherapeutics 2017, 14(2):265-273.

4. Mueller S, Chang S: Pediatric brain tumors: current treatment strategies and future therapeutic approaches. Neurotherapeutics 2009, 6(3):570-586.

5. Packer RJ, Gajjar A, Vezina G, Rorke-Adams L, Burger PC, Robertson PL, Bayer L, LaFond D, Donahue BR, Marymont MH et al: Phase III study of craniospinal radiation therapy followed by adjuvant chemotherapy for newly diagnosed average-risk medulloblastoma. J Clin Oncol 2006, 24(25):4202-4208.

6. Tarbell NJ, Friedman H, Polkinghorn WR, Yock T, Zhou T, Chen Z, Burger P, Barnes P, Kun L: High-risk medulloblastoma: a pediatric oncology group randomized trial of chemotherapy before or after radiation therapy (POG 9031). J Clin Oncol 2013, 31(23):2936-2941.

7. Gajjar A, Chintagumpala M, Ashley D, Kellie S, Kun LE, Merchant TE, Woo S, Wheeler G, Ahern V, Krasin MJ et al: Risk-adapted craniospinal radiotherapy followed by high-dose chemotherapy and stem-cell rescue in children with newly diagnosed medulloblastoma (St Jude Medulloblastoma-96): long-term results from a prospective, multicentre trial. Lancet Oncol 2006, 7(10):813-820.

8. Taylor MD, Northcott PA, Korshunov A, Remke M, Cho YJ, Clifford SC, Eberhart CG, Parsons DW, Rutkowski S, Gajjar A et al: Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol 2012, 123(4):465-472.

9. Northcott PA, Korshunov A, Witt H, Hielscher T, Eberhart CG, Mack S, Bouffet E, Clifford SC, Hawkins CE, French P et al: Medulloblastoma comprises four distinct molecular variants. J Clin Oncol 2011, 29(11):1408-1414.

10. Cavalli FMG, Remke M, Rampasek L, Peacock J, Shih DJH, Luu B, Garzia L, Torchia J, Nor C, Morrissy AS et al: Intertumoral Heterogeneity within Medulloblastoma Subgroups. Cancer Cell 2017, 31(6):737-754 e736.

11. Kool M, Koster J, Bunt J, Hasselt NE, Lakeman A, van Sluis P, Troost D, Meeteren NS, Caron HN, Cloos J et al: Integrated genomics identifies five medulloblastoma subtypes with distinct genetic profiles, pathway signatures and clinicopathological features. PLoS One 2008, 3(8):e3088.

12. Kool M, Korshunov A, Remke M, Jones DT, Schlanstein M, Northcott PA, Cho YJ, Koster J, Schouten-van Meeteren A, van Vuurden D et al: Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas. Acta Neuropathol 2012, 123(4):473-484.

13. Schwalbe EC, Lindsey JC, Nakjang S, Crosier S, Smith AJ, Hicks D, Rafiee G, Hill RM, IlIASOVA A, Stone T et al: Novel molecular subgroups for clinical classification and outcome prediction in childhood medulloblastoma: a cohort study. Lancet Oncol 2017, 18(7):958-971.
14. Shih DJ, Northcott PA, Remke M, Korshunov A, Ramaswamy V, Kool M, Luu B, Yao Y, Wang X, Dubuc AM et al: **Cytogenetic prognostication within medulloblastoma subgroups.** *J Clin Oncol* 2014, **32**(9):886-896.

15. Thompson EM, Hielscher T, Bouffet E, Remke M, Luu B, Gururangan S, McLendon RE, Bigner DD, Lipp ES, Perreault S et al: **Prognostic value of medulloblastoma extent of resection after accounting for molecular subgroup: a retrospective integrated clinical and molecular analysis.** *Lancet Oncol* 2016, **17**(4):484-495.

16. Esteller M: **Epigenetics in cancer.** *N Engl J Med* 2008, **358**(11):1148-1159.

17. Shen H, Laird PW: **Interplay between the cancer genome and epigenome.** *Cell* 2013, **153**(1):38-55.

18. Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L et al: **Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1.** *Science* 2009, **324**(5929):930-935.

19. Kroeze LI, van der Reijden BA, Jansen JH: **5-Hydroxymethylcytosine: An epigenetic mark frequently deregulated in cancer.** *Biochim Biophys Acta* 2015, **1855**(2):144-154.

20. Kriaucionis S, Heintz N: **The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain.** *Science* 2009, **324**(5929):929-930.

21. Szulwach KE, Li X, Li Y, Song CX, Wu H, Dai Q, Irier H, Upadhyay AK, Gearing M, Levey Al et al: **5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging.** *Nat Neurosci* 2011, **14**(12):1607-1616.

22. Jin SG, Jiang Y, Qiu R, Rauch TA, Wang Y, Schackert G, Krex D, Lu Q, Pfeifer GP: **5-Hydroxymethylcytosine is strongly depleted in human cancers but its levels do not correlate with IDH1 mutations.** *Cancer Res* 2011, **71**(24):7360-7365.

23. Kraus TF, Globisch D, Wagner M, Eigenbrod S, Widmann D, Munzel M, Muller M, Pfaffeneder T, Hackner B, Feiden W et al: **Low values of 5-hydroxymethylcytosine (5hmC), the "sixth base," are associated with anaplasia in human brain tumors.** *Int J Cancer* 2012, **131**(7):1577-1590.

24. Johnson KC, Houseman EA, King JE, von Herrmann KM, Fadul CE, Christensen BC: **5-Hydroxymethylcytosine localizes to enhancer elements and is associated with survival in glioblastoma patients.** *Nat Commun* 2016, **7**:13177.

25. Liu WR, Tian MX, Jin L, Yang LX, Ding ZB, Shen YH, Peng YF, Zhou J, Qiu SJ, Dai Z et al: **High expression of 5-hydroxymethylcytosine and isocitrate dehydrogenase 2 is associated with favorable prognosis after curative resection of hepatocellular carcinoma.** *J Exp Clin Cancer Res* 2014, **33**:32.

26. Wu J, Li H, Shi M, Zhu Y, Ma Y, Zhong Y, Xiong C, Chen H, Peng C: **TET1-mediated DNA hydroxymethylation activates inhibitors of the Wnt/beta-catenin signaling pathway to suppress EMT in pancreatic tumor cells.** *J Exp Clin Cancer Res* 2019, **38**(1):348.

27. Zhao F, Ohgaki H, Xu L, Giangaspero F, Li C, Li P, Yang Z, Wang B, Wang X, Wang Z et al: **Molecular subgroups of adult medulloblastoma: a long-term single-institution study.** *Neuro Oncol* 2016, **18**(7):982-990.
28. Zhao F, Zhang J, Li P, Zhou Q, Zhang S, Zhao C, Wang B, Yang Z, Li C, Liu P: Prognostic value of Ki-67 index in adult medulloblastoma after accounting for molecular subgroup: a retrospective clinical and molecular analysis. *J Neurooncol* 2018, 139(2):333-340.

29. Wu T, Zhang ZW, Li S, Wang B, Yang Z, Li P, Zhang J, Tong WM, Li C, Zhao F et al: Characterization of global 5-hydroxymethylcytosine in pediatric posterior fossa ependymoma. *Clin Epigenetics* 2020, 12(1):19.

30. Lian CG, Xu Y, Ceol C, Wu F, Larson A, Dresser K, Xu W, Tan L, Hu Y, Zhan Q et al: Loss of 5-hydroxymethylcytosine is an epigenetic hallmark of melanoma. *Cell* 2012, 150(6):1135-1146.

31. Muller T, Gessi M, Waha A, Isselstein LJ, Luxen D, Freihoff D, Freihoff J, Becker A, Simon M, Hammes J et al: Nuclear exclusion of TET1 is associated with loss of 5-hydroxymethylcytosine in IDH1 wild-type gliomas. *Am J Pathol* 2012, 181(2):675-683.

32. Weishaupt H, Johansson P, Sundstrom A, Lubovac-Pilav Z, Olsson B, Nelander S, Swartling FJ: Batch-normalization of cerebellar and medulloblastoma gene expression datasets utilizing empirically defined negative control genes. *Bioinformatics* 2019, 35(18):3357-3364.

33. Zhukova N, Ramaswamy V, Remke M, Pfaff E, Shih DJ, Martin DC, Castelo-Branco P, Baskin B, Ray PN, Bouffet E et al: Subgroup-specific prognostic implications of TP53 mutation in medulloblastoma. *J Clin Oncol* 2013, 31(23):2927-2935.

34. Heagerty PJ, Zheng Y: Survival model predictive accuracy and ROC curves. *Biometrics* 2005, 61(1):92-105.

35. Goeman JJ: L1 penalized estimation in the Cox proportional hazards model. *Biom J* 2010, 52(1):70-84.

36. Kumar R, Liu APY, Northcott PA: Medulloblastoma genomics in the modern molecular era. *Brain Pathol* 2020, 30(3):679-690.

37. Orr BA, Haffner MC, Nelson WG, Yegnasubramanian S, Eberhart CG: Decreased 5-hydroxymethylcytosine is associated with neural progenitor phenotype in normal brain and shorter survival in malignant glioma. *PLoS One* 2012, 7(7):e41036.

38. Vasanthakumar A, Godley LA: 5-hydroxymethylcytosine in cancer: significance in diagnosis and therapy. *Cancer Genet* 2015, 208(5):167-177.

39. Uribe-Lewis S, Stark R, Carroll T, Dunning MJ, Bachman M, Ito Y, Stojic L, Halim S, Vowler SL, Lynch AG et al: 5-hydroxymethylcytosine marks promoters in colon that resist DNA hypermethylation in cancer. *Genome Biol* 2015, 16:69.

40. Tucker DW, Getchell CR, McCarthy ET, Ohman AW, Sasamoto N, Xu S, Ko JY, Gupta M, Shafrir A, Medina JE et al: Epigenetic Reprogramming Strategies to Reverse Global Loss of 5-Hydroxymethylcytosine, a Prognostic Factor for Poor Survival in High-grade Serous Ovarian Cancer. *Clin Cancer Res* 2018, 24(6):1389-1401.

41. Moschovi M, Koultouki E, Stefanaki K, Sfakianos G, Tourkantoni N, Prodromou N, Alexiou GA: Prognostic significance of angiogenesis in relation to Ki-67, p-53, p-27, and bcl-2 expression in embryonal tumors. *Pediatr Neurosurg* 2011, 47(4):241-247.
42. Pouget C, Hergalant S, Lardenois E, Lacomme S, Houlgatte R, Carpentier C, Dehais C, Rech F, Taillandier L, Sanson M et al: **Ki-67 and MCM6 labeling indices are correlated with overall survival in anaplastic oligodendroglioma, IDH1-mutant and 1p/19q-codeleted: a multicenter study from the French POLA network.** *Brain Pathol* 2020, 30(3):465-478.

43. Preusser M, Heinzl H, Gelpi E, Hoftberger R, Fischer I, Pipp I, Milenkovic I, Wohrer A, Popovici F, Wolfsberger S et al: **Ki67 index in intracranial ependymoma: a promising histopathological candidate biomarker.** *Histopathology* 2008, 53(1):39-47.

44. Dawlaty MM, Breiling A, Le T, Barrasa MI, Raddatz G, Gao Q, Powell BE, Cheng AW, Faull KF, Lyko F et al: **Loss of Tet enzymes compromises proper differentiation of embryonic stem cells.** *Dev Cell* 2014, 29(1):102-111.

45. Wang Y, Li J, Xia Y, Gong R, Wang K, Yan Z, Wan X, Liu G, Wu D, Shi L et al: **Prognostic nomogram for intrahepatic cholangiocarcinoma after partial hepatectomy.** *J Clin Oncol* 2013, 31(9):1188-1195.

46. International Bladder Cancer Nomogram C, Bochner BH, Kattan MW, Vora KC: **Postoperative nomogram predicting risk of recurrence after radical cystectomy for bladder cancer.** *J Clin Oncol* 2006, 24(24):3967-3972.

47. Parsons DW, Li M, Zhang X, Jones S, Leary RJ, Lin JC, Boca SM, Carter H, Samayoa J, Bettegowda C et al: **The genetic landscape of the childhood cancer medulloblastoma.** *Science* 2011, 331(6016):435-439.

48. Jones DT, Jager N, Kool M, Zichner T, Hutter B, Sultan M, Cho YJ, Pugh TJ, Hovestadt V, Stutz AM et al: **Dissecting the genomic complexity underlying medulloblastoma.** *Nature* 2012, 488(7409):100-105.

49. Snuderl M, Triscott J, Northcott PA, Shih HA, Kong E, Robinson H, Dunn SE, Iafrate AJ, Yip S: **Deep sequencing identifies IDH1 R132S mutation in adult medulloblastoma.** *J Clin Oncol* 2015, 33(6):e27-31.

50. Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, Kos I, Batinic-Haberle I, Jones S, Riggins GJ et al: **IDH1 and IDH2 mutations in gliomas.** *N Engl J Med* 2009, 360(8):765-773.

Tables
Table 1.
Clinicopathologic characteristics of two independent cohorts involved in this study

Characteristics	Discovery cohort	Validation cohort		
	n = 81, (%)	n = 171, (%)		
Age at diagnosis				
0-3 years	12 (14.8)	16 (9.4)		
4-17 years	52 (64.2)	155 (90.6)		
≥18 years	17 (21.0)	0 (0.0)		
Sex				
Male	59 (72.8)	123 (71.9)		
Female	22 (27.2)	48 (28.1)		
Tumor location				
Vermis	22 (27.2)	59 (34.5)		
Hemisphere	18 (22.2)	20 (11.7)		
4th ventricle	41 (50.6)	92 (53.8)		
Tumor size (cm)				
≤ 4	24 (29.6)	51 (29.8)		
> 4	57 (70.4)	120 (70.2)		
Metastasis				
M0	81 (100.0)	163 (95.3)		
M+	0 (0.0)	8 (4.7)		
Surgical resection				
GTR	59 (72.8)	122 (71.3)		
STR	22 (27.2)	49 (28.7)		
Histology				
CMB	61 (75.3)	140 (81.9)		
DNMB	12 (14.8)	17 (9.9)		
LC/AMB	8 (9.9)	14 (8.2)		
Molecular subgroup				
WNT	9 (11.1)	20 (11.7)		
	Yes		No	
----------------	-----	-----	-----	-----
SHH				
	25	(30.9)	40	(23.3)
Group 3				
	13	(16.0)	49	(28.7)
Group 4				
	34	(42.0)	62	(36.3)
CSI				
Yes	67	(82.7)	159	(93.0)
No	14	(17.3)	12	(7.0)
Chemotherapy				
Yes	49	(60.5)	129	(75.4)
No	32	(39.5)	42	(24.6)
Survival				
Living	49	(60.5)	113	(66.1)
Dead	32	(39.5)	58	(33.9)

Abbreviations: 5hmC, 5-Hydroxymethylcytosine; CSI, craniospinal Irradiation; DN/EN, desmoplastic / nodular or extensive nodular; EOR, extent of resection; LC/A, large cell/ anaplastic, MB, medulloblastoma; STR, subtotal removal.

Table 2. Cox proportional hazards models for progression-free survival and overall survival rate in discovery cohort of medulloblastomas (n = 81).

Variables	Progression-free survival	Overall survival				
	HR	95% CI	P	HR	95% CI	P
Univariate analysis						
5hmC levels, low vs. high	2.498	1.092-4.422	.017	2.521	1.134-4.751	.010
Pathological subtype						
CMB vs. LC/A	0.210	0.088-0.501	.001	0.323	0.138-0.804	.012
DNMB vs. LC/A	0.134	0.077-0.289	.002	0.152	0.096-0.435	.006
CSI, yes vs. no	0.321	0.140-0.727	.005	0.349	0.163-0.749	.007
Molecular subgroup						
WNT vs. Group 3	0.092	0.011-0.752	.024	0.103	0.039-0.666	.011
SHH vs. Group 3	0.310	0.117-0.820	.018	0.274	0.101-0.741	.019
Group 4 vs. Group 3	0.490	0.211-1.138	.097	0.473	0.175-0.948	.041
Chemotherapy, yes vs. no	0.892	0.440-1.808	.751	0.579	0.254-1.320	.193
EOR, GTR vs. STR	1.004	0.469-2.193	.971	0.941	0.432-2.051	.879
Location, CH vs. midline	0.932	0.370-2.352	.882	1.203	0.485-2.981	.690
Tumor size (cm), ≥ 4 vs. <4	1.389	0.621-3.110	.424	1.372	0.609-3.089	.446
Gender, male vs. female	1.536	0.573-2.120	.960	0.914	0.420-1.988	.821
Age (years)						
3–17 vs. 0–3	0.958	0.326-2.577	.746	0.899	0.301-2.703	.759
≥18 vs. 0–3	0.582	0.174-1.941	.085	0.477	0.141-1.613	.234
Multivariate analysis						
5hmC levels, low vs. high	3.711	1.648-7.357	.003	3.974	1.641-8.394	.002
Molecular subgroup						
WNT vs. Group 3	0.086	0.037-0.715	.023	0.075	0.039-0.622	.016
SHH vs. Group 3	0.472	0.107-1.068	.065	0.284	0.090-0.895	.032
Group 4 vs. Group 3	0.512	0.216-1.215	.129	0.563	0.178-0.980	.045
Pathological subtype						
CMB vs. LC/AMB	0.215	0.103-0.715	.008	0.393	0.144-1.073	.066
DNMB vs. LC/AMB	0.135	0.098-0.454	.006	0.093	0.111-0.795	.015
CSI, yes vs. no	0.636	0.270-0.566	.016	0.507	0.150-1.412	.054
Age (year)						
3-17 vs. 0-3	1.286	0.367-4.512	.694	0.962	0.285-3.243	.950
≥18 vs. 0-3	0.280	0.125-2.414	.429	0.687	0.159-2.968	.615
Resection, GTR vs. STR	1.018	0.365-2.841	.973	0.987	0.454-2.135	.726
Chemotherapy, yes vs. no	1.940	0.637-4.910	.307	1.743	0.644-3.776	.563

Abbreviations: 5hmC, 5-Hydroxymethylcytosine; CH, cerebellar hemisphere; CSI, craniospinal Irradiation; DN/EN, desmoplastic / nodular or extensive nodular; EOR, extent of resection; LC/A, large cell/ anaplastic, MB, medulloblastoma; STR, subtotal removal.
Table 3.
Cox proportional hazards models for progression-free survival and overall survival rate in discovery cohort of medulloblastomas (n = 171).

Variables	Progression-free survival	Overall				
	HR	95% CI	P	HR	95% CI	P
Univariate analysis						
5hmC levels, low vs. high	2.711	1.632-4.501	.001	2.555	1.517-4.302	.0004
Metastatic status, M+ vs. M0	5.628	2.199-14.402	<.0001	8.018	3.091-20.798	<.0001
CSI, yes vs. no	0.269	0.136-0.480	.0002	0.262	0.141-0.588	.0001
Molecular subgroup						
WNT vs. Group 3	0.223	0.067-0.721	.013	0.145	0.034-0.611	.009
SHH vs. Group 3	0.403	0.173-0.920	.028	0.426	0.210-0.864	.014
Group 4 vs. Group 3	0.543	0.303-0.974	.041	0.534	0.295-0.966	.038
Pathological subtype						
CMB vs. LC/AMB	0.220	0.117-0.430	.0002	0.255	0.104-0.422	.0003
DNMB vs. LC/AMB	0.188	0.050-0.513	.002	0.216	0.052-0.439	.005
Age (year), 3–17 vs. 0–3	0.383	0.194-0.757	.006	0.476	0.266-1.007	.052
EOR, GTR vs. STR	0.762	0.446-1.300	.319	0.807	0.462-1.412	.453
Chemotherapy, yes vs. no	0.929	0.518-1.665	.804	0.993	0.551-1.789	.981
Location, CH vs. midline	1.083	0.821-1.428	.574	1.066	0.802-1.418	.658
Tumor size (cm), <4 vs. ≥ 4	1.383	0.781-2.450	.266	0.806	0.452-1.438	.465
Gender, male vs. female	0.926	0.534-1.606	.784	0.948	.537-1.673	.854
Multivariate analysis						
5hmC levels, Low vs. high	2.830	1.623-4.660	.0002	2.529	1.475-4.337	.001
Metastatic status, M+ vs. M0	10.056	3.896-21.379	<.0001	11.300	4.097-31.800	.032
CSI, yes vs. no	0.389	0.147-0.561	.028	0.420	0.197-0.896	.011
Pathological subtype						
CMB vs. LC/AMB	0.447	0.214-0.935	.018	0.378	0.185-0.772	.008
Molecular subgroup						
--------------------	---	---	---	---	---	
DN/ENMB vs. LC/AMB	0.479	0.121-1.466	.131	0.454	0.120-1.176	.096
WNT vs. Group 3	0.277	0.082-0.869	.027	0.139	0.031-0.628	.009
SHH vs. Group 3	0.342	0.157-0.659	.002	0.319	0.128-0.792	.011
Group 4 vs. Group 3	0.610	0.362-1.058	.075	0.564	0.307-1.038	.087
EOR, GTR vs. STR	1.094	0.635-2.012	.572	1.014	0.602-2.054	.689
Chemotherapy, yes vs. no	1.126	0.593-2.027	.337	1.072	0.566-2.028	.763
Age (years), 3–17 vs. 0–3	0.967	0.343-2.732	.949	1.138	0.352-3.307	.895

Abbreviations: 5hmC, 5-Hydroxymethylcytosine; CH, cerebellar hemisphere; CSI, craniospinal Irradiation; DN/EN, desmoplastic / nodular or extensive nodular; EOR, extent of resection; LC/A, large cell/ anaplastic, MB, medulloblastoma; STR, subtotal removal.

Figures

Figure 1

Loss of 5hmC as a hallmark in medulloblastomas. Comparative evaluation of global 5hmC levels as measured by UHPLC-MS/MS is analyzed between tumors and cerebellum, pathological subtypes, and molecular subgroups in the discovery cohort (A-C) and the validation cohort (D-F), respectively. *P < 0.05,
****P < 0.0001, by unpaired t-test. CMB, classic medulloblastoma; DNMB, desmoplastic nodular medulloblastoma; LC/AMB, Large cell/ anaplastic medulloblastoma.

Figure 2

Medulloblastomas with low 5hmC levels show poor prognosis. Kaplan-Meier plots of estimated overall survival (OS) and progression-free survival (PFS) time distributions stratified by 5hmC levels (low 5hmC levels vs. high 5hmC levels) are respectively analyzed in the discovery cohort (n = 81) (A, B) and the validation cohort (n = 171) (C, D). Survival differences are calculated using continuous log-rank test. The numbers below the X-axis indicate the number of persons at risk at each time point.
Figure 3

Survival nomograms for pediatric medulloblastoma. Nomograms are created based on the multivariable Cox model of the validation cohort. The presence or absence of each variable is scored (top row). The cumulative score from each variable is used to calculate 3-year, 5-year or 10-year PFS (A) and OS (B) probabilities. GTR, gross total resection; STR, subtotal resection; DNMB, Desmoplastic / nodular
medulloblastoma; LC/AMB, Large cell/ anaplastic medulloblastoma; OS, overall survival; PFS, progression-free survival.

Figure 4

The relationship between 5hmC and cell proliferation in medulloblastomas. (A) Representative image of 5hmC immunoreactivity and Ki-67 immunoreactivity in medulloblastomas (400x). Non-tumor cells (endothelial cells) in the microenvironment were used as a positive-control tissue (black arrow). (B) Comparative evaluation of nuclear positivity of 5hmC antibody between tumors and normal cerebellums. (C) A significant inverse correlation between 5hmC score and Ki-67 and Ki-67 index (n = 49). Data are analyzed using Pearson correlation coefficient. (D) A significant inverse correlation between the relative abundance of 5hmC and Ki-67 index (n = 49). Data are analyzed using Pearson correlation coefficient. (E) Comparative evaluation of Ki-67 index between medulloblastomas with low and high 5hmC levels. **** P < 0.0001, by unpaired t-test.
Figure 5

Loss of 5hmC in medulloblastomas is associated with decreased expression of TET1/2 proteins. (A) The comparative evaluation of mRNA expression levels of TET1/2/3 and IDH1/2 between MB samples (n = 1350) and normal cerebellum (n = 291). ***P < 0.001, by unpaired t-test. (B) The comparative evaluation of mRNA expression levels of TET1/2 between MBs with low 5hmC levels and high 5hmC levels in the discovery cohort (n = 50) and the validation cohort (n = 84). Data are analyzed using unpaired t-test. (C)
Representative imaging of IHC for TET1 and TET2 staining in MBs (left: negative; right: nuclear positive) and in normal cerebellum. (D) A strong correlation between TET1 staining and 5hmC score (n = 49). Data are analyzed using Pearson correlation coefficient. (E) A strong correlation between TET2 staining and 5hmC score (n = 49). Data are analyzed using Pearson correlation coefficient.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- 5.Additionalfiles.docx