The Important Role of Volatile Components From a Traditional Chinese Medicine Dayuan-Yin Against the COVID-19 Pandemic

Xiao-rui Zhang †, Ting-na Li †, Yuan-yuan Ren, Yi-jia Zeng, Hong-yang Lv, Jin Wang * and Qin-wan Huang *

College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China

Aromatic Chinese herbs have been used to prevent plagues since ancient times. Traditional Chinese medicine has unique advantages in the prevention and treatment of epidemic diseases. According to the traditional Chinese medicine treatment plan in the National COVID-19 Diagnosis and Treatment Plan (Trial Seventh Edition) of the National Health Commission, Chinese patent medicines or prescriptions rich in aromatic Chinese herbs are selected for prevention and treatment during the period of medical observation, clinical treatment, and recovery of confirmed COVID-19 patients. Some local health committees or traditional Chinese medicine administrations recommend a variety of other ways of using traditional aromatic Chinese herbs to prevent and cure COVID-19. These involve external fumigation, use of moxibustion, and wearing of sachet. The efficacy of aromatic Chinese herbs plays a decisive role in the prevention and treatment of COVID-19. The unique properties, chemical composition, and mechanism of action of aromatic Chinese herbs are worthy of extensive and in-depth experimental and clinical research. The findings are expected to provide a reference for follow-up treatment of novel coronavirus and the development of corresponding drugs. In 2003, Dayuan-Yin produced excellent results in the treatment of the SARS virus. Individually, 112 confirmed cases were administered this drug between January and April 2003, and more than 93.7% of the patients showed noticeable mitigation of the symptoms, as well as recovery. Dayuan-Yin also was selected as one of the nationally recommended prescriptions for the COVID-19. Based on the national recommendation of Dayuan-Yin prescription, this review discusses the role of volatile components in the prevention and treatment of COVID-19, and speculates the possible mechanism of action, so as to provide a basis for the prevention and treatment of COVID-19.

Keywords: COVID-19, coronavirus, volatile components, aromatic Chinese herbs, Dayuan-Yin, traditional Chinese medicine
INTRODUCTION

When the new coronavirus infection broke out in Wuhan, China, in December 2019, WHO announced that it was the COVID-19 pandemic. By mid-August 2020, more than 21,815,000 patients had been diagnosed with the disease worldwide, while 772,856 infected persons died. At present, the coronavirus has spread to 188 countries, with the US, Brazil, and India having a total of about 11,444,806 infected cases as of August 18, 2020 (Johns Hopkins University & Medicine, J.H.U., 2020). The situation is deteriorating every day, although the number of new cases in China has declined significantly since mid-March 2020. It is known that COVID-19 is harmful to different organs of the human body. Many governments have launched a joint prevention and control plan to prevent the spread of the COVID-19 pandemic.

Despite extensive and global scientific efforts, there is little that drug has had a significant clinical effect on COVID-19 (Cao B. et al., 2020). Interestingly, Traditional Chinese medicine (TCM) plays an important role in the prevention, treatment, and rehabilitation of COVID-19 (Ren et al., 2020). According to the latest data from the State Administration of traditional Chinese medicine, Dayuan-Yin, a cocktail of aromatic Chinese herbs, has a significant therapeutic effect on COVID-19 (Ruan et al., 2020). In 2003, Dayuan-Yin produced excellent results in the treatment of the SARS virus. A total of 112 confirmed cases were individually administered Dayuan-Yin between January and April 2003, with more than 93.7% of the patients showing noticeable reduction in symptoms, as well as recovery (Li H. et al., 2020). As a result of this excellent therapeutic outcome, the TCM treatment plan in the National COVID-19 Diagnosis and Treatment Plan (Trial Seventh Edition) of the National Health Commission issued by the People’s Republic of China, has recommended Dayuan-Yin for normal COVID-19 patients (General Office of the National., Health Commission of the people’s Republic of China. et al., 2020). It has been used clinically in improving symptoms of lung condition for a long time, with the results showing that the prescription shortened the course of the disease by reducing the clinical symptoms and improving prognosis of patients. Thus, it is worthy of clinical application (Ruan et al., 2020; Wang W. et al., 2020). At present, the TCM has adopted Dayuan-Yin for the treatment of COVID-19, and it has achieved good curative effect (Wang B. et al., 2020; Li D. et al., 2020). The bioactive components of Dayuan-Yin remain unknown. This is probably due to the fact that the TCM decoction has nine herbal components derived from several prescriptions in a classic TCM fashion. The complex constituents of Dayuan-Yin make it hard to carry out a detailed study on its bioactive components in a short time.

These are Atractylodes lancea (Thunb.) DC., Citrus × aurantium L., Magnolia officinalis Rehder & E.H.Wilson, Pogostemon cablin (Blanco) Benthi., Lanxangia tsao-ko (Crevost & Lemarie) M.F.Newman & Skornickc, Epedha sinica Stapf, Hansenia weberbaueriana (Fedde ex H.Wolff) Pimenov & Kljuykov, Zingiber officinale Roscoe, and Areca catechu L. in Dayuan-Yin. These plants are present in Dayuan-Yin in the ratio of 15: 10: 10: 10: 6: 6: 10: 10: 10. (General Office of the National., Health Commission of the people’s Republic of China. et al., 2020) (Figure 1). Eight of them are aromatic Chinese herbs.

Air pollution is a major environmental problem affecting global respiratory health (Guan et al., 2016). Moreover, aromatic Chinese herbs can be used for air disinfection (Sun and Liang, 2015). It is one of the reasons why aromatic Chinese medicine has been successfully used as key TCM for prevention of epidemics since ancient times (Luo et al., 2020). Volatile components are the main active components of aromatic Chinese herbs (Chen and Wang, 1994). It is supposed that the volatile components which are very active ingredients in Dayuan-Yin may play a vital role in treating COVID-19 patients.

Abbreviations: ALL acute lung injury; CDK1, cyclin-dependent kinases 1; COPD, chronic obstructive pulmonary disease; COX, cyclooxygenase; COX-2, cyclooxygenase; DPHH, 1,1-diphenyl-2-picrylhydrazyl; fMLP, N-formyl methionyl leucyl phenylalanine; FRAP, ferric reducing antioxidant power; IFN, interferon; IFN-gamma, interferon-gamma; IL, interleukin; IL-10, interleukin-10; IL-12, interleukin-12; IL-1b, interleukin 1 beta; IL-6, interleukin-6; iNOS, inducible nitric oxide synthase; IRF3, Interferon regulatory Factor 3; LDL, low-density lipoprotein; LTB4, Leukotriene B4; MAPKs, mitogen activated protein kinases; MCP, monocyte chemotactic protein; MIC, minimum inhibitory concentration; MUC, mucoprotein; NF-xB, nuclear factor-kappa B; NLRP3, Nucleotide-binding domain-(NOD-) like receptor protein 3; NOS, nitric oxide synthase; oxLDL, lipid peroxidation because oxidized LDLs; PGE2, prostaglandin E2; PGE2, prostaglandin E2; PHEIC, a public health emergency of international concern; RANTES, regulated upon activation normal T cell expressed and secreted; RPMCs, Rat peritoneal mast cells; ROS, reactive oxygen species; SARS, Severe Acute Respiratory Syndrome; SFJD, Shufengjiedu Capsule; SHL, Shuanghuanglaim, TSS, type III secretion system; THA, thioheparitin acid; TCM, traditional Chinese medicine; TL, therapeutic index; TLR4, toll like receptor 4; TLR4, toll like receptor 4; TLR7, toll like receptor 7; TNF-alpha, tumor necrosis factor-alpha; TNF-t, tumor necrosis factor alpha; VCAM-1, vascular cell adhesion molecule; WHO, World Health Organization.

Most of the volatile components of Dayuan-Yin have been elucidated, and their structures are well established (Table 1). However, there are no data on volatile components extracted from Areca catechu L. Based on clinical evidence of therapeutic results with Dayuan-Yin, we summarized its potential bioactive volatile components in the treatment of COVID-19. The biological benefits of Dayuan-Yin seem to involve anti-inflammatory, antioxidant, antibacterial, and immunomodulatory effects (Table 2).

Anti-Viral Effect

In autopsy studies and animal models, COVID-19 manifests mainly as acute viral pneumonia leading to respiratory failure (Chen et al., 2020; Yao et al., 2020). Antiviral drugs have been used to treat common cold, fever and influenza viruses by destroying the viral surface structure and inhibiting its entry (Hsieh et al., 2012), suggesting that antiviral drugs can be used for COVID-19. Unfortunately, no specific antiviral treatment has...
been recommended for COVID-19 treatment because of insufficient evidence from randomized trials (Hung et al., 2020). It has been shown that many re-purposed drugs have effects against close relatives of SARS-COV-2, such as β-coronavirus, in vitro. Furthermore, lopinavir and many interferons, especially interferon beta, have moderate effects against SARS-COV in vitro and can be used in combination with ribavirin (Chen et al., 2004; Chan et al., 2013).

Administration of antiviral drugs soon after symptoms appear reduces the release of virus in respiratory secretions of patients with COVID-19, thereby decreasing their infectivity to others. Targeted preventive treatment for contacts reduces their risk of infection (Welliver et al., 2001; Oriol and Bonaventura, 2020).

Patchouli oil is extracted from *Pogostemon cablin* (Blanco) Benth. Some studies in vitro have shown that patchouli oil exerted anti-viral effects against Coxsackie virus (IC₅₀ = 0.081 mg/ml, TI 1.25), adenovirus (IC₅₀ = 0.084 mg/ml, TI 1.20), influenza A virus (IC₅₀ = 0.088 mg/ml, TI 1.15), and respiratory syncytial virus (IC₅₀ = 0.092 mg/ml, TI 1.10) (Wei et al., 2012). Evaluation of the antiviral properties of six chemical compositions of *Atractylodes lancea* (Thunb.) D DPPH.C. revealed that atractylochin produced the most significant effect at doses of 10–40 mg/kg for five days, and attenuated IAV–induced pulmonary injury via regulation of the TLR7 signaling pathway (Cheng et al., 2016). Moreover, 1,8-cineole, the major constituent of the essential oil of *Lanxangia tsao-ko* (Crevost & Lemarié) M.F.Newman & Skornick., is commonly applied for treating inflammatory diseases of the respiratory tract caused by viruses since it potentiates the antiviral effect of IRF3, in addition to its inhibitory effect on proinflammatory NF-κB signaling (Müller et al., 2016).

Anti-Inflammatory Effect

The levels of proinflammatory factors i.e. IL-2, IL-7, IL-10, GCSF, IP10, MCP1, mipla, and TNF – α in the plasma of critically-ill patients were higher than those in plasma of patients who were not in intensive care, suggesting that “cytokine storm” is closely related to the severity of COVID-19 (Huang et al., 2020). Cytokine storm is a very prominent pathophysiological feature of COVID-19 infection (Lin et al., 2020). Extensive endothelial barrier disruption and uncontrolled cytokine storm promote uncontrolled inflammatory response which is the basis of the core mechanism underlying acute respiratory distress syndrome (ARDS) (Huang et al., 2017), although this phenotype varies among individuals. Experimental models of acute lung injury (ALI) and human genome-wide association studies of ARDS indicate that cytokine storm plays an essential role in the pathophysiology of ARDS (Biondi et al., 1986; Huang et al., 2017). Moreover, the most common and severe complication of COVID-19 is ARDS (Huang et al., 2017). Therefore, an understanding of the cytokine storm that aggravates ARDS in COVID-19 may lead to early and effective intervention in...
TABLE 1 | Continued

Volatile oils of herbs	Compounds	PubChem CID	References
Pogostemon cablin (Blanco) Benth. volatile oils	Patchouliol 10955174	(Lin et al., 2016; Tang et al., 2019)	
Cortez volatile oils	α-bulnesene 94275		
	α-guaiene 5317844		
	β-caryophyllene 519743		
	α-patchouliene 521710		
	Carvacrol 10264		
	p-cymene 7403		
	γ-Terpinene 7401		
	α-guaiene 15650252		
	Eucosene 18906		
	Carvophyllene 5291515		
	Pogostone 54909756		
	γ-eudesmol 6342005	(Tang et al., 2019)	
	α-pinene 91457		
	β-eudesmol 6854		
	ε-pinene 14896		
	Camphene 6616		
	Limonene 22311		
	Bornyl acetate 6448		
	Carvophyllene Epoxide 14350		
	Cryptomeriol 163528		
	β-Caryophyllene 5291515		
	β-selinene 442393		
	Cardene 41114		
	β-cadinene 10657		
	2-Isopropyl-4a,8-dimethyl-1,2,3,4,4a,5,6,7-octahydrophenanthrene(1R,3aR,4aS,5,6,7,8,9,9aR)- 650019		
	1,7,7-dimethylbicycl[2.2.1]hept-2-yl-ester 549130		
	Estragole 8815		
	2-Cyclohex-1-en-1-ol 13198	(Tang et al., 2019)	
	2-Cyclohex-1-en-1-ol,3-methyl-6-[1-methyl-2-(1-methylethyl)-,6-(1-methylethyl)-,cis-Menth-1-en-3-ol(9CI)] 85567		
	Cadina-1,3,5,7-tetraene(9CI) 1230243		
	Cyclohexanemethanol,4-ethenyl-a,4,8-hexahydrophenanthrene,3,5,7,9(10),11,13-hexahydrobenzene 92138		
	Atractylodes lancea (Thunb.) DC. volatile oils	Atractylol 3380635	(Yao et al., 2001; Guo et al., 2006; Chu et al., 2011)
	hoinole 10876761		
	p-phenylcarbinol 7460		
	3- carene 20049		
	4-Biphenylcarbonitrile 76669		
	Furancodine 9601230		
	β-selinene 442393		
	α-eudesmol 91457		
	α-terpineol 6423212		
	e-ethyl 6423902		
	Eudesma-4(15),8-diene 442593		
	aromadendrene 91354		
	β-sesquiphellandrene 12315492		
	patchouliene 9174671		
	atracyclol 532047		
	α-pinene 6854		
	β-selinene 442393		
	Methyl palmitate 8181		
	Methyl linoleate 5284421		
	Methyl-9-ocadecenolate 8202		
	Ethyl linoleate 5292184		
	4-hydroxyphenylacetic acid 11881		
	α-selinene 442393		
	Citrus x aurantium L. etculae	limone 22311	(Jing et al., 2015; Castro et al., 2018; Xue et al., 2021)
	sesquiterpine 6473767		
	α-pinene 6854		
	β-pinene 14896		
	suberene 19818		
	γ-Terpinene 7461		
	α-myrcene 31253		
	Lantana camara L.	1,8-Cineole 2758	(Kong et al., 2012)
	Geraniol 637566		
	Geraniol 638011		
	α-Terpinene 17100		
	α-Phellandrene 7400		
	β-Pinen 14896		
	α-Pinen 6854		
	α-Phellandrene 7400		
	2-Propan-2-3-methyl-3-phenyl 5372857		
	neral 6437397		
	Cineole 2758		
	γ-Terpinene 11467		

[Continued]
TABLE 2 | The mechanism of action of volatile components in Dayuanyin prescription.

Bioactivities	Volatile oils of herbs	Mechanisms	References
Anti-inflammatory activity	Pogostemon cablin (Blanco) Benth. volatile oils	Patchouline: cyclin E1↓, cyclin B1↓, CDK1↓; the subsequent S-phase arrest, IFN-γ&↓, IL-10↓	(Su et al., 2015)
		Patchouline: TNF-α↓, IL-6↓, IL-10↓, NF-SH1	(Chen et al., 2015)
		Patchouline: regulates on the balance between Nrf2 and NF-κB p65 signaling	(Yang et al., 2018)
		Pathchouline: LPS-induced IL-8 secretionogenic (Dang et al., 2020)	
		Pathchouline: caspase-1/NF-κB/ MAPKs activations↓, reduce IL-1β↓, IL-4↓, IL-6↓, caspase-1/NF-κB p65 expression↓	
		Pathchouline: regulates on the balance between Keap1/Nrf2 and NF-κB signaling pathways	(Sun et al., 2016)
Magnolia officinalis Rehder & E.H.Wilson Cortex volatile oils	Magnolia officinalis Rehder & E.H.Wilson Cortex volatile oils	Magnolia officinalis Rehder & E.H.Wilson Cortex volatile oils: PGE2/TNF-α↓, IL-1↓	(Cao et al., 2015)
Atractylodes lancea (Thunb.) DC. volatile oils	Magnolia officinalis Rehder & E.H.Wilson Cortex volatile oils	Magnolia officinalis Rehder & E.H.Wilson Cortex volatile oils: PGE2/TNF-α↓, IL-1↓	(Cao et al., 2015)
		Atractylone: caspase-1/NF-κB/MAPKs activations↓, reduce IL-1β↓, IL-4↓, IL-6↓, caspase-1/NF-κB p65 expression↓	
Citrus × aurantium L. Pericarpium volatile oils	Citrus × aurantium L. Pericarpium volatile oils	Citrus × aurantium L. Pericarpium volatile oils: Nitric oxide↓, INO↓, COX-2↓	(Ding et al., 2020)
Larvanga tsao-ko (Crevois & Leman) M.F.Newman & Skornicki. volatile oils	Citrus × aurantium L. Pericarpium volatile oils	Citrus × aurantium L. Pericarpium volatile oils: Nitric oxide↓, INO↓, COX-2↓	(Ding et al., 2020)
		1.8-cineole: IL-4↓, IL-5↓, MCP-1↓, IL-1β↓, IL-6↓, TNF-α↓, IFN-gamma↓, NF-κB p65↓, ICAM-1↓, VCAM-1↓ in lung tissues of mice infected with influenza A virus.	(Li et al., 2016)
		1.8-cineole: mucin-filled goblet cells↓, MUC2↓, MUC19↓, NF-kappa B↓	(Suchoff et al., 2015)
		1.8-cineole: IL-10↓, TNF-α↓, IL-1β↓, NF-κB subunit p65↓ and TLR4↓	(Zhao et al., 2014)
		1.8-cineole: LTB4↓ and PGE2↓ in human blood monocytes ex vivo in the treatment of bronchial asthma.	(Jueergens et al., 1998b)
		1.8-cineole: TNFα, IL-1β, leukotriene B4↓, thromboxane B2↓ in human blood monocytes in vitro	(Jueergens et al., 1998b)
Hansenia weberbaueriana (Fedde ex H.Wolff) Pimenov & Kljuykov volatile oils	Hansenia weberbaueriana (Fedde ex H.Wolff) Pimenov & Kljuykov volatile oils	Hansenia weberbaueriana (Fedde ex H.Wolff) Pimenov & Kljuykov volatile oils: NO↓ in RAW 264.7 cells.	(Bi et al., 2018)
		α-pinene: MAPKs↓, NF-κB↓ in mouse peritoneal macrophages	(Kim et al., 2015)
		α-pinene: LPS-induced nuclear translocation of NF-κB↓ in TPS-1 cells by κB↓ in a dose-dependent manner	(Zhou et al., 2004)
Ginger volatile oil	Ginger volatile oil	PLS-induced IL-8 secretion↓, RANTES↓ in human bronchial epithelial cells (BEAS-2B)	(Podlogar and Verspohl, 2012)
Antiviral activity	Pogostemon cablin (Blanco) Benth. volatile oils	anti-Coxsackie virus (IC50 0.081 mg/ml, TI 1.29), anti-adenovirus (IC50 0.084 mg/ml, TI 1.12), anti-influenza A virus (IC50 0.098 mg/ml, TI 1.15), and anti-respiratory syncytial virus (IC50 0.092 mg/ml, TI 1.10)	(Wei et al., 2012)
		Regulate the TLR7 signaling pathway.	(Cheng et al., 2016)
		1.8-cineole: IRF3 antiviral activity↓, proinflammatory NF-κB signalling↓	(Müller et al., 2016)
Anti-oxidative activity	Magnolia officinalis Rehder & E.H.Wilson Cortex volatile oils	Scavenging DPPH free radicals, providing hydrogen atoms, scavenging superoxide free radicals	(Guo, 2012)
		Scavenging DPPH+ radical activity with an IC50 of 288,7 μg/mL, lipid peroxidation↓, and effects on T-AOC in the serum and organ tissues of mice	(He et al., 2020)
		Citrus reticulata peel oil prevented LDL lipid peroxidation because oxLDL are absorbed by the macrophages’ scavenger molecules, forming foam cells	(Yoon et al., 2010; Castro et al., 2020)
		Certain monoterpenes and essential oils: LDL oxidation↓	(Barter, 2005)
		(Naderi et al., 2004)	

(Continued)
that long-term prediagnostic use of nonaspirin NSAIDs (e.g., ibuprofen) is associated with a significant reduction in lung cancer survival (Brasky et al., 2012). In addition, baricitinib, fedraitinib, and oxolutinib are active and selective JAK inhibitors which have been approved for rheumatoid arthritis and myelofibrosis. All three drugs are effective anti-inflammatory agents, and as JAK-STAT signaling inhibitors, they may be effective against the consequences of elevated levels of cytokines (including interferon-γ) usually observed in patients with COVID-19 (Stebbing et al., 2020).

The UK is currently conducting a randomized evaluation of COVID-19 treatment (recovery) trial, based on the announcement on June 16, 2020, that dexamethasone had been shown to significantly improve the prognosis of COVID-19 patients receiving respiratory support (Recovery, Randomised Evaluation of COVID-19 therapy trial, 2020). Dexamethasone is a glucocorticoid which can be used as a synthetic form of the natural hormone cortisol (Cain and Cidlowski, 2017). It has the same anti-inflammatory effect as cortisol. It inhibits the release of inflammatory chemokines by immune cells, thereby improving the prognosis of patients by reducing the severity of ARDS (Lester et al., 2020).

Other aspects

Larungxia tsao-ko (Crevois & Lemarie) M.F.Newman & Skornick.
Ginger volatile oil

Inhibit the phytopathogenic fungus Sclerotinia sclerotiorum. (Dias et al., 2020)

Citrus x aurantium L. Pericarpum volatile oils

Protect the mice from Staphylococcus aureus or Escherichia coli infection. (Dai et al., 2016)

Hansenia weberbaueriana (Fedde ex H.Wolff) Pimenov & Klijuykov extract

Falcariirol inhibited DC maturation by blocking the canonical pathway of nuclear factor-kappaB and phosphorylated p38. (Zhang et al., 2020)

Bioactivities	Volatile oils of herbs	Mechanisms	References
Anti-bacterial activity	Larungxia tsao-ko (Crevois & Lemarie) M.F.Newman & Skornick. volatile oils	Inhibit Candida albicans (MIC 0.9 ml/L), Cryptococcus neoformans (MIC 0.15 ml/L), S. aureus (MIC 0.6 ml/L), M. gypseum (MIC 0.6 ml/L), A. fumigatus (MIC 0.3950 ml/L), A. niger (MIC 1.0 ml/L), Mucor globosum (MIC 0.8 ml/L), Rhizopus nigricans (MIC 0.8 ml/L), Scopulariopsis brevicaulis (MIC 0.5 ml/L), Escherichia coli, 8099 (MIC 1.0 ml/L), Bacillus subtilis, ATCC 9379 (MIC 0.7 ml/L), Staphylococcus albus, AS1.184 (MIC 0.8 ml/L), Micrococcus tetragenus (MIC 0.8 ml/L), Staphylococcus aureus (MIC 0.7 ml/L), methicillin-resistant Staphylococcus aureus, Staphylococcus epidermidis (MIC 0.125 mg/ml), Shigella sonnei standard strain (MIC 0.125 mg/ml), H. pylori Streptococcus A, Pseudomonas aeruginosa, Bacillus subtilis, yeast, penicillium.	(Zhou et al., 2014; Lin et al., 2016; Wang et al., 2018)
Anti-bacterial activity	Magnolia officinalis Rehder & E.H.Wilson Cortex volatile oils	Inhibit Staphylococcus aureus, Candida albicans, methicillin-resistant Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Shigella sonnei, Escherichia coli, Listeria monocytes, Salmonella, Bacillus cereus, Pseudomonas aeruginosa.	(Guo, 2012; Tang et al., 2019)
Anti-bacterial activity	Atractylodes lancea (Thunb.) DC. volatile oils	Inhibit Gram-positive and Gram-negative bacteria due to disruption of the cell membrane.	(He et al., 2020)
Anti-bacterial activity	Citrus x aurantium L. Pericarpum volatile oils	Hinesol: H*, K*-ATPase activity↓	(Dias et al., 2020)
Anti-bacterial activity	Larungxia tsao-ko (Crevois & Lemarie) M.F.Newman & Skornick. volatile oils	Limonene: protect the lens epithelial cells from oxidative stress through antioxidant and anti-apoptotic pathways.	(Ahmad and Beg, 2013)
Anti-bacterial activity	Limonene: protect the lens epithelial cells from oxidative stress through antioxidant and anti-apoptotic pathways.	(Yang et al., 2010)	
Anti-bacterial activity	Limonene: protect the lens epithelial cells from oxidative stress through antioxidant and anti-apoptotic pathways.	(Kennedy-Felos et al., 2016)	
Anti-bacterial activity	Limonene: protect the lens epithelial cells from oxidative stress through antioxidant and anti-apoptotic pathways.	(Zhou et al., 2014; Lin et al., 2016; Wang et al., 2018)	
Anti-bacterial activity	Limonene: protect the lens epithelial cells from oxidative stress through antioxidant and anti-apoptotic pathways.	(Gao et al., 2015)	
Anti-bacterial activity	Limonene: protect the lens epithelial cells from oxidative stress through antioxidant and anti-apoptotic pathways.	(Schürmann et al., 2016)	
Anti-bacterial activity	Limonene: protect the lens epithelial cells from oxidative stress through antioxidant and anti-apoptotic pathways.	(Kennedy-Felos et al., 2016)	
Anti-bacterial activity	Limonene: protect the lens epithelial cells from oxidative stress through antioxidant and anti-apoptotic pathways.	(Zhou et al., 2014; Lin et al., 2016; Wang et al., 2018)	
Anti-bacterial activity	Limonene: protect the lens epithelial cells from oxidative stress through antioxidant and anti-apoptotic pathways.	(Ahmad and Beg, 2013)	
Anti-bacterial activity	Limonene: protect the lens epithelial cells from oxidative stress through antioxidant and anti-apoptotic pathways.	(Yang et al., 2010)	
Anti-bacterial activity	Limonene: protect the lens epithelial cells from oxidative stress through antioxidant and anti-apoptotic pathways.	(Kennedy-Felos et al., 2016)	
Anti-bacterial activity	Limonene: protect the lens epithelial cells from oxidative stress through antioxidant and anti-apoptotic pathways.	(Zhou et al., 2014; Lin et al., 2016; Wang et al., 2018)	
Anti-bacterial activity	Limonene: protect the lens epithelial cells from oxidative stress through antioxidant and anti-apoptotic pathways.	(Gao et al., 2015)	
Anti-bacterial activity	Limonene: protect the lens epithelial cells from oxidative stress through antioxidant and anti-apoptotic pathways.	(Schürmann et al., 2016)	
Anti-bacterial activity	Limonene: protect the lens epithelial cells from oxidative stress through antioxidant and anti-apoptotic pathways.	(Kennedy-Felos et al., 2016)	
Anti-bacterial activity	Limonene: protect the lens epithelial cells from oxidative stress through antioxidant and anti-apoptotic pathways.	(Zhou et al., 2014; Lin et al., 2016; Wang et al., 2018)	
Anti-bacterial activity	Limonene: protect the lens epithelial cells from oxidative stress through antioxidant and anti-apoptotic pathways.	(Ahmad and Beg, 2013)	
Anti-bacterial activity	Limonene: protect the lens epithelial cells from oxidative stress through antioxidant and anti-apoptotic pathways.	(Yang et al., 2010)	
Anti-bacterial activity	Limonene: protect the lens epithelial cells from oxidative stress through antioxidant and anti-apoptotic pathways.	(Kennedy-Felos et al., 2016)	
Anti-bacterial activity	Limonene: protect the lens epithelial cells from oxidative stress through antioxidant and anti-apoptotic pathways.	(Zhou et al., 2014; Lin et al., 2016; Wang et al., 2018)	

TABLE 2 | Continued
diagnosed with COVID-19 may lead to unexpected consequences (Brotherton et al., 2020). During the treatment of COVID-19, Dayuan-Yin also reduces the severity of ARDS by inhibiting the release of inflammatory chemokines from immune cells. As a classic prescription in ancient China, Dayuan-Yin can play a safe and effective role in the treatment of respiratory infections in a more adverse environment. Thus, it can avoid such problems in a large extent.

Anti-inflammatory property is widespread in various sources of volatile components. Several data have found that 1,8-cineole significantly improved lung function and health conditions, and reduced dyspnea in patients with asthma, acute bronchus, and chronic obstructive pulmonary disease (COPD). Moreover, it significantly reduced the frequency of cough in patients with acute bronchitis, and alleviated frequent exacerbations in patients with COPD and frequent exacerbations, notably (Worth et al., 2009; Worth and Dethlefson, 2012; Fischer and Dethlefson, 2013; Vogelmeier et al., 2018). In a mouse model of LPS-induced acute pulmonary inflammation, 1,8-cineole upregulated IL-10 in lung tissues, and decreased the expressions of TNF-α, IL-1β, NF-kB’s subunit p65 and TLR4 (Zhao et al., 2014). Moreover, 1,8-cineole was shown to inhibit LTβ4 and PGE2 (pathways of AA-metabolism in human blood monocytes) in bronchial asthma in vitro (Juergens et al., 1998b). In addition, 1,8-cineole decreased levels of TNFα, IL-1β, leukotriene B4, and thromboxane B2 in human blood monocytes in vitro (Juergens et al., 1998a).

Pogostone, a bioactive compound extracted from Pogostemon cablin (Blanco) Benth., reduced the total population of T cells under ConA stimulation by blocking T cell proliferation via down-regulation of cyclin E, cyclin B, and CDK1. Subsequent S-phase arrest inhibited the production of IFN-gamma and IL-10 (Su et al., 2015). Simultaneously, pogostone pretreatment mitigated ethanol-induced gastric ulcer in rats by downregulation of IL-6 and TNF-alpha, and upregulation of IL-10 and non-protein-sulphhydryl (NP-SH) groups in the gastric mucosa (Chen et al., 2015). In lung disease, pogostone exerted potent protective effects against lipopolysaccharide-induced acute lung injury in mice by decreasing TNF-α-induced cell injury in A549 cells through modulation of the balance between Nrf2 and NF-κB-p65 signaling pathways (Yang et al., 2018). Pogostone significantly inhibited the protein and mRNA expressions of proinflammatory mediators such as TNF-α, IL-6, IL-1β, NO, and PGE2. Pogostone also significantly reduced LPS-induced mortality in mice, suppressed the production of proinflammatory mediators in serum. And it attenuated liver and lung injury via downregulation of the mRNA expressions of inflammatory mediators in multiple organs due to inhibition of activation of NF-κB and phosphorylation of p38 MAPK (Li et al., 2014). Pre-treatment with pogostone markedly mitigated LPS-induced acute lung injury in mice, improved survival, attenuated histological alterations in the lungs, reduced MPO and MDA levels, decreased the wet/dry weight ratio of lungs, and down-regulated proinflammatory mediators, such as TNF-a, IL-1 beta and IL-6. Furthermore, pretreatment with pogostone enhanced the Nrf2-dependent genes NQO-1, GCLC, and HO-1, but suppressed the NF-kappa B regulated genes TNF-alpha, IL-1 beta, and IL-6. The mechanism involved in the protective effect of pogostone was correlated with its regulation of the balance between Keap1-Nrf2 and NF-kappa B signaling pathways (Sun et al., 2016). Moreover, volatile oils from Pogostemon cablin contain a bioactive component named β-patchoulene which has been shown to significantly decrease mortality and lung wet/dry weight ratio of mice, and mitigate pathological changes in lungs, when compared to model group. It suppressed LPS-induced activation of NF-kappa B, and markedly upregulated Nrf2 and miR-146a (Chen et al., 2017).

Anti-Oxidative Properties

Oxidative stress and inflammation form a positive feedback cycle (Mittal et al., 2014). In lung disease, excessive inflammation and oxidative stress lead to adverse outcomes. For instance, patients with COPD are usually affected by other diseases (Rabe and Watz, 2017). Several mechanisms in lung inflammation and oxidative stress destroy DNA and lead to an imbalance between tissue repair and cell proliferation, which seems to promote the link between COPD and lung cancer (Wilson et al., 2008; Houghton, 2013; Durham and Adcock, 2015). Under normal conditions, the production and elimination of ROS maintain a crucial balance between oxidation and antioxidation (Cao et al., 2019). In such a balance, the signal pathways are regulated, and cell proliferation can be guaranteed. When inflammatory factors destroy this balance, oxidative stress enhances the maturation of proinflammatory factors, leading to oxidative damage to cells and multisystem diseases (Sies, 2015; Kruk et al., 2019). Antioxidant drugs have been used in lung diseases. For example, antioxidants have been recommended for reduction of mortality or prevention of organ damage in animal models of acute lung injury induced by lipopolysaccharides (Hsu et al., 2006; Zhu et al., 2020). Vitamin C has also been shown to reduce the incidence of pneumonia in several controlled trials for human subjects (Hemila, 2017).

The essential oil of Magnolia officinalis Rehder & E.H. Wilson exerts antioxidant effect by scavenging 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical and superoxide anion radical. The essential oil contains β-eucalyptol with a hydroxyl group which can provide hydrogen atom for scavenging DPPH radical. Moreover, with increase in volatile oil concentration, the antioxidant capacity gradually increased (Guo, 2012). The essential oil from Atractylodes lancea (Thunb) DC. showed a strong antioxidant effect in vitro and indicated by DPPH-radical scavenging property, with an IC50 of 288.7 μg/ml. Moreover, it inhibited lipid peroxidation, and affected total antioxidant capacity (T-AOC) in the serum and organ tissues of mice (He et al., 2020). In short-term cigarette smoke (CS)-induced acute lung inflammation, 1,8-cineole decreased oxidative stress involving reactive oxygen species, by increasing superoxide dismutase and catalase, while reducing levels of malondialdehyde, inflammation, and the NF-kappa B p65 subunit (Kennedy-Feitosa et al., 2016).

Antibacterial Properties

The major components of Pogostemon cablin (Blanco) Benth. are carvacrol (47.5%) and p-cymene (15.2%). It completely inhibits the growth of *E. coli* at a level of 0.05% (Lin et al., 2016). The essential oil of Atractylodes lancea (Thunb.) DC. exhibited antibacterial effects against Gram-positive and Gram-negative bacteria due to the cell membrane (He et al., 2020). In chronic
rhinosinusitis, 1,8-cineole suppressed the growth of *S. aureus*, *Escherichia coli*, *Moraxella catarrhalis* due to downregulation of significant and critical players in biofilm generation (Agra, Sara, and Gschwendtner, 2019). On the other hand, the major constituent of the essential oil of *Atractylodes lancea* (Thunb.) DC. is β-eudesmol. In terms of intestinal flora, β-eudesmol has two-way regulation for gastrointestinal motility: anticholinergic pathway and direct effect on gastrointestinal smooth muscle.

Antibacterial effect is an essential pharmacological property of volatile compounds (Houdkova et al., 2017; Riad et al., 2020). Secondary bacterial coinfection is common in patients with COVID-19 infection, and it leads to adverse prognosis (Macintyre et al., 2018). At present, many antibiotics have been used in the treatment of COVID-19. For example, Shufeng Jiedu Capsule (SFJD) prevents acute upper respiratory tract infection and treatment of COVID-19. For example, Shufeng Jiedu Capsule (Houdkova et al., 2017; Riad et al., 2020). At present, many antibiotics have been used in the treatment of COVID-19. For example, Shufeng Jiedu Capsule (SFJD) prevents acute upper respiratory tract infection and treatment of COVID-19. For example, Shufeng Jiedu Capsule (Houdkova et al., 2017; Riad et al., 2020).

Secondary bacterial coinfection is common in patients with COVID-19 infection, and it leads to adverse prognosis (Macintyre et al., 2018). At present, many antibiotics have been used in the treatment of COVID-19. For example, Shufeng Jiedu Capsule (SFJD) prevents acute upper respiratory tract infection and treatment of COVID-19. For example, Shufeng Jiedu Capsule (Houdkova et al., 2017; Riad et al., 2020).

Shuanghuanglian (SHL) is a popular anti-bacterial drug. It has various pharmacological potential such as antibacterial, antiviral, and immune-enhancing properties which can be exploited in the treatment of acute upper respiratory tract infection (Zhang et al., 2013). Preliminary studies in vitro showed that SHL oral liquid inhibited SARS-COV-2. Indeed, SHL has been used to carry out clinical research on COVID-19 in Shanghai Public Health Clinical Center and Tongji Hospital Affiliated to Huazhong University of Science and Technology (Pan X. et al., 2020).

The antibacterial effects of volatile components of Dayuan-Yin are not limited to upper respiratory tract infections: these volatile components also regulate intestinal flora, treat gastric ulcers, and improve gastrointestinal symptoms. Human gut microbes are the “second genome” of the human body (Backhed et al., 2005; Gill et al., 2006; Cani and Delzenne, 2007). The composition of intestinal flora is closely related to human health status, and it plays an essential role in maintaining physiological balance (Schuitt et al., 2016). It has been confirmed that intestinal flora reduces ventilator-associated pneumonia and enteritis by enhancing the function of primary alveolar macrophages (Bradley et al., 2019). Patients with COVID-19 showed intestinal microbial malnutrition and decreased microbial flora levels of some probiotics such as *Lactobacillus* and *Bifidobacterium*. The latest version of novel coronavirus pneumonia diagnosis and treatment plan released by the People’s Republic of China National Health Council suggests that intestinal microbiota should be used in severe and critical cases to maintain intestinal micro ecological balance (General Office of the National, Health Commission of the people’s Republic of China. et al., 2020).

EFFECTS OF NON-VOLATILE COMPONENTS

Apart from the biological effects of the volatile components mentioned above, other non-volatile components of Dayuan-Yin also have abundant pharmacological properties.

Epicatechin, one of the chemical components of *Lanxangia tsao-ko* (Crevost & Lemarié) M.F.Newman & Skornick, exhibited excellent anti-inflammatory properties in LPS-stimulated macrophage RAW 264.7 cells. Quercetin, one of the chemical components of *Lanxangia tsao-ko* (Crevost & Lemarié) M.F. Newman & Skornick, produced the most potent neuroprotective effect on PC-12 cells induced via H2O2 and DPPH radical-scavenging properties (Zhang T. T. et al., 2014). It was shown that SFE-CO2 extract of *Hansenia weberbaueriana* (Fedde ex H.Wolff) Pimenov & Kljuykov significantly prolonged average survival time of mice with influenza virus pneumonia, directly killed the influenza virus, and reduced the hemagglutination titer. *Hansenia weberbaueriana* (Fedde ex H.Wolff) Pimenov & Kljuykov induced immunosuppressive effects in vitro. Falcardinol, the main bioactive compound in *Hansenia weberbaueriana* (Fedde ex H.Wolff) Pimenov & Kljuykov, inhibited DC maturation by blocking the canonical pathway of nuclear factor-kappaB and phosphorylated p38 (Mitsui et al., 2010). Falcardinol inhibited the growth of *Pseudomonas aeruginosa* by repressing virulence-related genes, including the T3SS; quorum sensing synthase genes lasR and rhlR; lasB; motility-related genes flIC and flIG; and phasynthesis genes phzA1 and phzA2 (Zhang et al., 2020).

It is obvious that Dayuan-Yin exerts extensive biological properties such as antiviral, anti-inflammatory, antioxidative, and antibacterial effects. It can be inferred that Dayuan-Yin may play an essential role in preventing COVID-19 pandemic.

SUMMARY AND FUTURE PROSPECTS

At present, there are no conventional drugs that can cure COVID-19 (Cao B. et al., 2020). However, according to data collected by the National Health Commission of the people’s Republic of China, clinical practice in Chinese hospitals have reported that traditional Chinese medicine has a definite therapeutic effect in the early stages of COVID-19 infection (Liu C.-X. et al., 2020). As a significant part of medical practice, Chinese medicine has been used to treat human diseases for more than 5,000 years (Li and Kan, 2017). In recent decades, volatile compounds extracted from medicinal plants have attracted more and more attention due to their important biological effects such as antiviral, anti-inflammatory, and antibacterial properties. Besides, they are non-toxic and have few side effects, making them suitable for use as drugs. This review discussed the potential role of traditional Chinese medicine in terms of volatile components. The anti-inflammatory, antiviral, antibacterial and immunomodulatory effects of these volatiles seem to play the most critical roles in treating patients infected with COVID-19. However, there are still lack of clinical trials on Dayuan-Yin. These need to be done in future.

In China, the situation of COVID-19 pandemic prevention and control has improved. The national pandemic situation has been controlled. However, with the resumption of factory work, re-opening of shopping malls, and resumption of transportation, the cross-flow of personnel has increased significantly, and the
probability of close contact between people has increased tremendously too. In particular, with likelihood of increase in imported cases from abroad, the epidemic prevention and control should not be relaxed. It is essential to improve the ability of the human body to withstand infection. In addition to frequent washing of hands, wearing masks, social distancing and other measures, the “Chinese medicine sachet” can be used as an essential means of prevention. This stems from a very important theory of traditional Chinese medicine, namely “treating pre-disease”. This idea in traditional Chinese medicine originated in the Yin and Shang Dynasties, took shape in Zhouyi, and formed in Huangdi Neijing (Xu et al., 2016). Chinese doctors in the past dynasties attached great importance to the prevention and treatment of diseases. They emphasized the prevention of diseases first, especially infectious diseases (Lian et al., 2020). Wearing Chinese medicine sachet is another special treatment of “treating pre-disease” (Chen et al., 2020). Chinese medicine sachet has been used to prevent disease since ancient times. In this method, aromatic Chinese medicine is put into a unique bag and worn on the chest to prevent respiratory diseases. This is known as “Xiangpei therapy” (Zhang Q. et al., 2014). From the perspective of modern medicine, the medicinal fragrance (i.e., volatile oil components) of Chinese medicine sachet stimulates the nasal mucosa, promotes the secretion of immunoglobulins, and kills all kinds of viruses at the same time, thereby playing multiple roles in regulating immune function, and exerting antibacterial and anti-viral effects (Lvy and Bai, 2017). Interestingly, early intervention with aromatic Chinese medicine blocks the course of diseases and relieves symptoms in clinical practice through oral administration, external fumigation, and moxibustion (Lun and Chen, 1987; Chen et al., 2013). Aromatic Chinese medicine dispels exterior pathogenic factors, regulates qi, activates blood circulation, breaks blood stasis, and disperses nodules. The application of aromatic Chinese medicine embodies the theory of “internal disease and external treatment” of traditional Chinese medicine (Hu et al., 2010). Since the outbreak of COVID-19, fumigation has been used for air disinfection to prevent the spread of the virus. In the clinical treatment period, the application of moxibustion plays the role of anti-inflammatory agent, regulates immune function, and prevents deterioration of the patients (Zhang, 2012; Liu K. et al., 2020). Some local health committees or Chinese medicine administration bureaus are actively involved in promoting aromatic traditional Chinese medicine as an anti-epidemic, as well as the use of fumigation or Chinese medicine sachet to prevent and control COVID-19 (Chen et al., 2020).

There is no doubt that the pharmacological effects of volatile components of traditional Chinese medicine are beneficial in the global fight against COVID-19. However, each TCM prescription has multiple goals and links in the treatment of diseases, making it difficult to clearly and thoroughly explain its mechanism in a short period. More research should be carried out on volatile components of traditional Chinese medicine to elucidate the associated regulatory mechanism, evaluate possible side effects, and conduct standard clinical trials. The insights provided in this review may help ease the COVID-19 pandemic worldwide.

AUTHOR CONTRIBUTIONS
Q-wH and JW are the corresponding authors on the study. X-rZ and T-nL are first authors and responsible for collecting materials and writing the paper. Y-yR, Y-jZ, and H-yl helped in organizing the information and edited the article pictures. All authors contributed to the article and approved the submitted version.

FUNDING
This work is financially supported by the Xinling Scholar Talent Promotion Plan of Chengdu University of Traditional Chinese Medicine (QNXZ2018023, XSGG2019008).

ACKNOWLEDGMENTS
We are indebted to our alma mater, Chengdu University of Traditional Chinese Medicine for provided convenience in the collection of documents. Thanks for all the help from everyone in our lab.

REFERENCES
Chen, H., He, X., and Wang, J. (2013). Research progress on the clinical effects of Chinese herbal sachets in preventing colds. Chin. J. Ethnomed Ethnopharm. 22, 45–46.
Ahmed, S., and Beg, Z. H. (2013). Hypo-epidemic and antioxidant activities of thymoquinone and limonene in rats via anti-inflammatory, antioxidant and anti-inflammatory drug use and lung cancer survival in the VITAL study. J. Thorac. Oncol. 7, 1503–1512. doi: 10.1097/JTO.0b013e31826b18dc
Brotheron, H., Uusuf, E., Najm, B., Forrest, K., Bojang, K., Samateh, A. L., et al. (2020). Dexamethasone for COVID-19: data needed from randomised clinical trials. Front. Pharmacol.
Lin, S.-H., Zhao, Y.-S., Zhou, D.-X., Zhou, F.-C., and Xu, F. (2020). Coronavirus Disease 2019 (COVID-19): Cytokine Storms, Hyper-Inflammatory Phenotypes, and Acute Respiratory Distress Syndrome. *Genes Dis*. doi: 10.1016/j.gendis.2020.06.009

Liu, C.-X., Wang, Y.-L., Zhang, H.-B., Tian, C.-W., Huang, H., and Zhang, T.-J. (2020). Attach importance to research and development of Chinese materia medica based on prevention and control needs of SARS-CoV-2 infection. *Chin. Trad. Herb. Drugs*. 51, 1361–1374. doi: 10.7501/j.issn.0253-2670.2020.06.001

Liu, K., Guan, D., Li, N., Ni, H., and Chen, L. (2020). Feasibility Analysis of Moxibustion Whole Process Intervention in the Prevention and Treatment of COVID-19. *Acta Chin. Med*. 35, 1144–1147.

Lubamba, B., Panin, N., Lebaqc, J., Huaux, F., Lebecque, P., Wallemacq, P., et al. (2011). 70 Vardenafil as anti-inflammatory drug in the treatment of cystic fibrosis lung disease. *J. Cystic Fibrosis* 10, S18. doi: 10.1016/s1569-1993(11)60088-x

Lun, X., and Chen, X. (1987). Prevention and treatment of aromatic Chinese Medicine. *Chin. Trad. Patent Med*. 19, 48–63.

Luo, J., Yin, N., Huang, X.-Y., Zhang, H., Li, H.-T., Ren, G.-L., et al. (2020). Study on the Mechanism of Aromatic Traditional Chinese Medicine Compound on Prevention and Treatment of New Coronavirus Pneumonia. *J. Jiangxi Univ. Trad. Chin. Med*. 32, 66–73.

Lvy, P., and Bai, M. (2017). Discussion on the effect of air disinfection for aromatic smell of traditional Chinese medicine Sachet. *Stratt Pharm. J*. 29, 47–48.

Machado, C. R., Chughtai, A. A., Barnes, M., Ridda, I., Seale, H., Toms, R., et al. (2018). The role of pneumonia and secondary bacterial infection in fatal and serious outcomes of pandemic influenza a(H1N1)pdm09. *BMC Infect. Dis*. 18, 637. doi: 10.1186/s12879-018-3548-0

Marinho, P. M., Marcos, A. A. A., Romano, A. C., Nascimento, H., and Rubens, B. J. (2020). Retinal findings in patients with COVID-19. *Lancer* 395 (10237). 1610. doi: 10.1016/S0140-6736(20)31014-X

Mesomo, M. C., Corazza, M. L., Ndiaye, P. M., Dalla Santa, O. R., Cardozo, L., and Scheer, A. D. (2013). Supercritical CO2 extracts and essential oil of ginger (Zingiber officinale R.): Chemical composition and antibacterial activity. *J. Supercritical Fluids* 80, 44–49. doi: 10.1016/j.supflu.2013.03.031

Mitsui, S., Torii, K., Fukui, H., Tsujiyama, K., Maeda, A., Nose, M., et al. (2010). The herbal medicine compound falcardinol from Nototoryggy Rhizoma suppresses dendritic cell maturation. *J. Pharmacol. Exp. Ther.* 333, 954–960. doi: 10.1124/jpet.109.162305

Mittal, M., Siddiqui, M. R., Tran, K., Reddy, S. P., and Malik, A. B. (2014). Reactive oxygen species in inflammation and tissue injury. *Antioxid Redox Signal*. 20, 1126–1167. doi: 10.1089/ars.2012.5149

Müller, J., Greiner, J. F., Zeuner, M., Brettzmann, V., Schäfermann, J., Wieters, F., et al. (2016). 1,8-Cineole potentiates IFN-β-mediated antiviral response in human stem cells and in an ex vivo model of rhinovirus. *Clin. Sci. (London Engl.*) 1. 130, 1339–1352. doi: 10.1042/csx20160218

Naderi, G. A., Asgary, S., Ani, M., Sarraf-Zaiedan, N., and Safari, M. R. (2004). Effect of some volatile oils on the affinity of intact and oxidized lowdensity lipoproteins for adrenal cell surface receptors. *Mol. Cell. Biochem.* 267, 59–66. doi: 10.1023/B:MCBCL.0000049365.60694.81

National., General Of and Medicine., Of China., Of State Administration of Traditional Chinese (2020). Diagnosis and treatment of corona virus disease-19(th 7th edition) Acta* Chin. Med*. 15, 801–805.

Nutmam, T. B. (2020). Human infection with Strongyloides stercoralis and other related Strongyloides species. *Parasitology* 144 (3), 263–273. doi: 10.1017/S0031182019000834

Oriol, M., and Bonaventura, C. (2020). Use of antiviral drugs to reduce COVID-19 transmission. *Lancet Global Health* 8, e639–e640. doi: 10.1016/s2214-109x(20)30114-5

Pan, P.-P., Sun, K.-P., Zheng, Y.-P., Jin, J.-J., and Shu-Pei, L. (2020). Qualitative Study of Dexamethasone in Hospitalized Patients with COVID-19 – Preliminary Report. *Med. Times*. doi: 10.1016/j.mt.2020.06.22.20137273

Podlogar, J. A., and Verspohl, E. J. (2012). Antiinflammatory effects of ginger and some of its components in human bronchial epithelial (BEAS-2B) cells. *Phytother Res.* 26, 333–336. doi: 10.1002/ptr.3558
Qian, Y. (2019). Effect of Shufeng Jiedu Capsule on Serum PGE2, IL-1β and TNF-α in Rats with Acute Pharyngitis and Clinical Efficacy Observation. [master's thesis]. [Fuzi Anhui University of Chinese Medicine].

Rabe, K. F., and Watz, H. (2017). Chronic obstructive pulmonary disease. Lancet 389, 1931–1940. doi: 10.1016/S0140-6736(17)31222-9

Ren, J. L., Zhang, A. H., and Wang, X. J. (2020). Traditional Chinese medicine for COVID-19 treatment. Pharmacol. Res. 155, 104743. doi: 10.1016/j.phrs.2020.104743

Riad, N., Zahid, M. R., Trovato, E., Bouzidi, N., Daghbouche, Y., Utczás, M., et al. (2020). Chemical screening and antibacterial activity of essential oil and volatile fraction of Dictyopteris polypodioides. Microchem. J. 152, 104415. doi: 10.1016/j.microc.2019.104415

Ruan, X., Du, P., Zhao, K., Huang, J., Xia, H., Dai, D., et al. (2020). Mechanism of Dayuan-Yin Against the COVID-19 Pandemic. J. Pharm. Pharm. Sci. 23, 205–215. doi: 10.18832/jppss202002030125

Schuijt, T. J., Lankelma, J. M., Scicluna, B. P., De Sousa E Melo, F., Roelofs, J. J., De Ruijter, T., et al. (2020). Protective effects of pogostone against Staphylococcus aureus. Chin. J. Antibiotics 43, 759–764. doi: 10.1007/s00009-020-00307-8

Song, W., Xu, B., Fan, Y.-L., Li, B., Cong, X.-D., Dong, G.-J., et al. (2020) Experience in Treatment of COVID-19 by Elimination of Pathogens Through Purgation and Duodenal Euphoria. PLuSS J. Pharm. 6 (19), 70–73.

Wang, J., Xue, B., Liang, A., Wang, L., Fu, M., and Ye, Z. (2002). Effects of β-eudesmol, an active constituent from Rhizoma Atractylodis on small intestine movement in rats. Chin. Pharm. J. 28, 28–30. doi: 10.18832/jppss202002030125

Wang, X.-Y., Chen, Y.-Y., and Bao, J.-K. (2018). Study on the molecular mechanism of poxvirus against Staphylococcus aureus. Chin. J. Antibiotics 43, 759–764. doi: 10.1007/s00009-020-00307-8

Wang, W., Chen, Y., and Qiang, W. (2020). “A case of Danyuan Yin and LiujinZi Decoction ‘Treating with COVID-19’,” in National Conference on Scientific Research Theory and Academic Research. Beijing, China: China Global Culture Publishing House.

Wei, X., Peng, C., and Wan, F. (2012). Study on the effect of anti-respiratory viruses of Patchouli Oil in vitro. Pharmacol. Clin. Chin. Med. Mat. 28, 65–68. doi: 10.14721/1725-0225.1000128

Welliver, R. M., Anto, S. C., Carewitz, O., Schatteman, E., Hassman, M., Hedrick, J., et al. (2011). Effectiveness of oseltamivir in preventing influenza in household contacts: a randomized controlled trial. JAMA 285, 748–754. doi: 10.1001/jama.285.6.748

Wilson, D. O., Weissfeld, J., Lu, Fei, R., Fishier, S. N., Balogh, P., Landreenu, J. R., et al. (2008). The Pittsburgh Lung Screening Study (PLUSS): outcomes within 3 years of a first computed tomography scan. Am. J. Respir. Crit. Care Med. 178, 956–961. doi: 10.1164/rccm.200802-336OC

Zhang et al. Dayuan-Yin Against the COVID-19 Pandemic

Zhang, Q., Wang, H., Ma, L., Tan, J., and Chen, M. (2014). Effect of Miao medicine Fanggan sachet on expression of NKP46 in peripheral blood of mice. Guangdong Med. J. 35, 1320–1322. doi: 10.4258/gdmj.2014.09.0275

Zhang, T. T., Lu, C. L., and Jiang, J. G. (2014). Bioactivity evaluation of ingredients identified from the fruits of Amomum tsao-ko Crevost et Lemaire, a Chinese spice. Food Funct. 5, 1747–1754. doi: 10.1039/c4fo00169a
Zhang, P., Wu, Q., Chen, L., and Duan, K. (2020). Pseudomonas aeruginosa Virulence-Inhibiting Herbal Compound Falcarindiol Significantly Reduced Mortality in Mice Infected with. *Antibiotics (Basel Switzerland)* 9 (3), 136. doi: 10.3390/antibiotics9030136

Zhang, X. (2012). The antibacterial effect of Cangzhu and its application in the disinfection of hospital environment. *China Foreign Med. Treat.* 31, 184–185.

Zhao, C., Sun, J., Fang, C., and Tang, F. (2014). 1,8-cineol attenuates LPS-induced acute pulmonary inflammation in mice. *Inflammation* 37, 566–572. doi: 10.1007/s10753-013-9770-4

Zhou, J. Y., Tang, F. D., Mao, G. G., and Bian, R. L. (2004). Effect of alpha-pinene on nuclear translocation of NF-kappa B in THP-1 cells. *Acta Pharmacol. Sinica* 25, 480–484.

Zhou, Y., Peng, C., Wang, F., and Cao, X. (2014). Effect of patchouli oil on acute bacterial upper respiratory infections model mice. *Pharmacol. Clinics Chin. Mat. Medica.* 30, 59–62.

Zhu, X., Wang, B., Zhang, X., Chen, X., Zha, J., Zou, Y., et al. (2020). Alpha-linolenic acid protects against lipopolysaccharide-induced acute lung injury through anti-inflammatory and anti-oxidative pathways. *Microb. Pathog.* 142, 104077. doi: 10.1016/j.micpath.2020.104077

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Zhang, Li, Ren, Zeng, Lv, Wang and Huang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.