Dysregulation and functional roles of miR-183-96-182 cluster in cancer cell proliferation, invasion and metastasis

Yi Ma¹,², A-Juan Liang¹,², Yu-Ping Fan³, Yi-Ran Huang⁴, Xiao-Ming Zhao¹,², Yun Sun¹,² and Xiang-Feng Chen¹,²,⁴

¹ Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
² Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
³ Reproductive Medicine Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
⁴ Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China

Correspondence to: Yun Sun, email: dr_sunyaun@126.com
Xiang-Feng Chen, email: allanbacon@163.com

Keywords: miR-183-96-182 cluster, cancer development, cancer progression, metastasis, prognosis

Received: November 17, 2015 Accepted: March 31, 2016 Published: April 12, 2016

ABSTRACT

Previous studies have reported aberrant expression of the miR-183-96-182 cluster in a variety of tumors, which indicates its’ diagnostic or prognostic value. However, a key characteristic of the miR-183-96-182 cluster is its varied expression levels, and pleomorphic functional roles in different tumors or under different conditions. In most tumor types, the cluster is highly expressed and promotes tumorigenesis, cancer progression and metastasis; yet tumor suppressive effects have also been reported in some tumors. In the present study, we discuss the upstream regulators and the downstream target genes of miR-183-96-182 cluster, and highlight the dysregulation and functional roles of this cluster in various tumor cells. Newer insights summarized in this review will help readers understand the different facets of the miR-183-96-182 cluster in cancer development and progression.

INTRODUCTION

microRNA (miRNA) is a small non-coding RNA molecule (containing about 22 nucleotides) that silences cognate target genes via base-pairing with complementary sequences within 3’UTRs (sometimes 5’UTRs or coding regions) in corresponding mRNAs, resulting in inhibition of translation or mRNA degradation [1]. miRNA is involved in various biological processes, including cell proliferation, apoptosis, metabolism and differentiation. miR-183-96-182 cluster is a highly conserved miRNA cluster [2]. Members of this cluster are located within a 5-kb region on human chromosome 7q32.2 [3], transcribed in the same direction from telomere to centromere, and have similar biological functions in some of the closely related signaling pathways.

The transcriptional start site (TSS) of miR-183-96-182 cluster has not yet been confirmed. Several studies have suggested its localization in the 5207, 5200, or 5068 base upstream of miR-183 precursor [4-6]. Tang et al. have suggested that the potential TSS of miR-183-96-182 cluster may be localized at the 5112 site upstream domain of miR-96, which contains seven binding domains of β-Catenin/TCF/LEF-1 complex [7]. Additionally, previous reports have indicated that three TGF-β response elements at 11519-9069 region upstream domain of miR-182, can directly interact with Smad2/Smad4 complex [8]. It is known, that many upstream regulators, including HSF2, β-catenin/TCF/LEF-1, TGF-β, SP1, P53, growth hormones, Akt/FOXP3, and MYOD increase the expression of miR-183-96-182 cluster [9, 19-22]. Hypoxia and/or starvation are known to up-regulate miR-96/miR-182 expression, and miR-183/miR-182 increases the expression of hypoxia inducible factor 1α (HIF-1α) [23-27]. Thus, the relationship between miR-183-96-182 cluster and hypoxia or starvation still needs to be investigated.

While investigating its regulatory effect on the downstream target genes, the miR-183-96-182 cluster was
discovered as being a regulator of tumor development, the nervous system and the immune system [2, 28-34]. Recent studies have documented localization of some tumor-related genes, such as CDK6, BRAF, and c-MET at the upstream/downstream domain of miR-183-96-182 cluster [23, 35, 36], suggesting that these genes might be regulated to process similar functions of tumor-related molecules. Furthermore, over-expression of miR-183-96-182 cluster has been described in most malignant tumors including, hepatocarcinoma [37-39], esophageal cancer [40], gastric carcinoma [7], prostate cancer [41], bladder cancer [42, 43], upper urinary tract urothelial cancer [44], colon cancer [45-47], lung cancer [48], breast cancer [3, 49], and chronic myeloid leukemia [50], indicating that it may function as an oncogene cluster. In contrast, miR-183-96-182 cluster functions as a tumor-suppressor gene with down-regulation in pancreatic cancer [51] and melanoma [52] have been documented. In addition, some recent studies have reported some contradicting features exhibited by the miR-183-96-182 cluster in gastric carcinoma [53, 54] and lung cancer [55-58].

The available evidence, thus, suggests much variability in the role played by the miR-183-96-182 cluster in tumorigenesis, tumor progression and metastasis. In this review, we profile the dysregulation and functional roles of the miR-183-96-182 cluster during tumorigenesis in various tumor cells, and its prognostic relevance in clinical settings. The outline of this paper is provided in Appendix 1-1.

MATERIALS AND METHODS

In this review, we performed an online search of articles published from January 2000 to March 2016 in Pubmed (http://www.ncbi.nlm.nih.gov/pubmed). We used the following query: (miR-96 OR miR96 OR microRNA96 OR miR-183 OR miR183 OR microRNA183 OR miR-182 OR miR182 OR microRNA182 OR miR-183-96-182 OR miR-183/96/182). Only English language articles were included. A total of 620 records were retrieved. We then reviewed the titles and abstracts, and eliminated duplicate and irrelevant articles. Eventually, 155 full-length articles were included in this review.

RESULTS AND DISCUSSION

miR-183-96-182 cluster in cancer cell proliferation

miR-183-96-182 cluster promotes cancer cell proliferation

For examining the role of miR-183-96-182 cluster in cell proliferation, the relation between miR-96 and the members of forkhead box protein (FOX) family has been investigated. FOXO, a subfamily of FOX family that includes FOXO1, FOXO2, FOXO3 and FOXO4, was found to be associated with cell apoptosis. Recent studies have demonstrated that FOXO can activate Bim and p27kip1, resulting in increased cell apoptosis and cell cycle inhibition [59, 60]. In 2009, Guttilla et al. found coordinated repression of FOXO1 by miR-96, miR-182 and miR-27a in breast cancer cells [49]. Targetscan prediction revealed three members of the FOXO protein family, including FOXO1, FOXO3 and FOXO4 as potential targets of the miR-183-96-182 cluster. However, only FOXO1 and FOXO3 have been confirmed by previous studies [16, 35, 49, 61-65], in various types of cancers such as, prostate [63, 66, 67], bladder [43, 68], colorectal [62], breast [69], lung [61], lymphoma [64], and endometrial carcinoma [70] (Table 1). Additionally, recent studies have indicated that miR-182 promotes cell proliferation and tumor invasion by targeting FOXF2 [71, 72], a known inhibitor of MPPs and WNT5A [73, 74].

HMG-box transcription factor 1 (HBP-1), the target gene of miR-96, has been shown to inhibit Wnt/β-Catenin signaling pathway, and suppress cell proliferation and survival. Thus, miR-96 appears to promote tumor cell growth by down-regulation of HBP-1 in glioma cells [75]. Furthermore, the activation of β-Catenin/TCF/LEF-1 signaling pathway, which is stimulated by knock-down of glycogen synthase kinase 3 beta (GSK3β) [7], is known to induce up-regulation of miR-96 expression [7, 13]. As a serine/threonine protein kinase, GSK3β is essential for NF-κB-mediated anti-apoptotic response. Knock-down of GSK3β expression induces up-regulation of β-Catenin/TGF/LEF-1 complex, which binds to the promoter of miR-183-96-182 cluster and stimulates its transcription. Thus, up-regulation of the miR-183-96-182 cluster via GSK3β-mediated β-Catenin/TCF/LEF-1 signaling pathway can promote abnormal cell proliferation in gastric cancer [7]. The schematic diagram is provided in Appendix 1-2.

Previous studies have revealed that miR-183 and miR-182 promote cell proliferation, tumor invasion, and chemo-resistance by inhibition of programmed cell death 4 (PDCD4) in various cancer cells [55, 56, 76-81]. As a typical tumor suppressor gene (TSG), PDCD4 can inhibit eukaryotic translation initiation factor 4A1 (EIF4A1) and NF-κB-dependent transcriptional factors via direct interaction with p65, to induce apoptosis in glioblastoma cells [82]. The PDCD4-targeted inhibition by the miR-183-96-182 cluster, described in various cancers, is summarized in Table 1. Notably, miR-96 has also been found to inhibit the TSG RECK [40, 83, 84] and EFNA5 [85]. Besides, miR-96 and miR-182 were found to have an inhibitory effect on TP53INP1 expression [62, 86]. Collectively, the available evidence indicates that miR-183-96-182 cluster could promote cell proliferation in various cancer types (Table 1).
Member of miR-183-96-182 cluster	Oncogene/ Tumor suppressor	Target genes	Tested in human cancer tissue	Cell lines	Cancer types	Results
miR-183-96-182 Oncogene	FOXO1	--	L428	Lymphoma	Promotes cell proliferation [64]	
miR-183-96-182 Oncogene	FGF9, CPEB1, FOXO1	✓	U251, U87	Glioma	Promotes cell growth [65]	
miR-183-96-182 Oncogene	RAB21(miR-183), RAB40B(miR-96 and miR-183), TNFSF11(miR-96)	✓	MCF-7, T47D	Breast cancer	Promotes cell proliferation [3]	
miR-183-96-182 Oncogene	--	✓	T24, UM-UC-3	Bladder Cancer	Promotes cell proliferation [154]	
miR-183-96-182 Oncogene	--	--	R262, R300, UW402, UW426, D341, D384, D425, D458, D556, D283, DAOY	Medulloblastoma	Promote cell proliferation [155]	
miR-96, miR-182 Oncogene	FOXO1	✓	MCF-7, T47D, MDA-MB-231, MDA-MB-435	Breast cancer	Promote cell proliferation [49]	
miR-96, miR-182 Oncogene	EFNA5	✓	HepG2, Hep3B, Huh7, SK-Hep1	Hepatocellular carcinoma	Promote cell proliferation [85]	
miR-96, miR-182 Tumor suppressor -	-	--	A375, SK-MEL-28	Melanoma	Inhibit cell proliferation [52]	
miR-183 Oncogene	PDCD4	✓	Eca109, TE13 and EC109, EC9706	Esophageal cancer	Promote cell proliferation [76, 81]	
miR-183 Oncogene	PDCD4	✓	SGC-7901	Gastric cancer*	Promote cell proliferation [78]	
miR-183 Oncogene	NEFL	✓	U251	Glioma	Promote cell proliferation [156]	
miR-183 Oncogene	PDCD4	✓	HepG2, Huh7	Hepatocellular carcinoma	Promote cell proliferation [79]	
miR-183 Oncogene	PDCD4	✓	SW1990	Pancreatic cancer	Promote cell proliferation [80]	
miR-183 Oncogene	SOCS-6	✓	PANC-1	Pancreatic cancer	Promote cell proliferation [157]	
miR-183 Oncogene	SOCS-6	✓	HepG2, Hep3B	Hepatocellular carcinoma	Promote cell proliferation [158]	
miR-183 Oncogene	PP2A-Cα, PP2A-Cβ, PP2A-B56-γ	✓	ACHN, A498	Renal cancer	Promote cell proliferation [104]	
miR-183 Oncogene	DKK-3, SMAD4	✓	PC-3, DU-145, LNCaP	Prostate cancer	Promote cell proliferation [159]	
miR-183	Tumor suppressor	BMI1	Gastric cancer*	Inhibit cell proliferation [103].		
---------	------------------	------	----------------	--------------------------------		
miR-96	Oncogene	FOXO1	Endometrial cancer.	Promote cell proliferation [70].		
miR-96	Oncogene	FOXO1	Hepatocellular carcinoma	Promote cell proliferation [160].		
miR-96	Oncogene	FOXO1	Bladder cancer	Promote cell proliferation [68].		
miR-96	Oncogene	FOXO1	PC3, LNCaP, and LNCaP, DU-145, PC3, 22rv-1, and 22Rv1, LNCaP clone FGC, DU145, PC3	Promote cell proliferation [63, 66, 67].		
miR-96	Oncogene	FOXO1	SW480, SW620	Promote cell proliferation [62].		
miR-96	Oncogene	FOXO3	Hepatocellular carcinoma	Promote cell proliferation [160].		
miR-96	Oncogene	FOXO3	SW480, SW620	Promote cell proliferation [62].		
miR-96	Oncogene	FOXO3	MCF-7, ZR-75-30, BT549, Bcap37, MDA-MB435, SKBR3, MDA-MB453, T47D	Breast cancer	Promote cell proliferation [69].	
miR-96	Oncogene	FOXO3	A549, SPC-A-1	Lung cancer***	Promote cell proliferation [61].	
miR-96	Oncogene	RECK	MDA-MB-231, MCF-7, MDA-MB-468, MDA-MB-435, T-74D, MDA-MB-453	Breast cancer	Promote cell proliferation [83].	
miR-96	Oncogene	RECK	A549, SK-MES-1, H1299	Lung cancer***	Promote cell proliferation [84].	
miR-96	Oncogene	HBP1	U-87 MG, U-251 MG, U-373 MG, M059J	Glioma	Promote cell proliferation [75].	
miR-96	Oncogene	MTOR	LNCaP, 22Rv-1	Prostate cancer	Promote cell proliferation (Under hypoxia) [23].	
miR-96	Tumor suppressor	KRAS	HPDE , BxPC-3, PK-8, and MIA PaCa-2, PANC-1, BxPC-3	Pancreatic cancer	Inhibit cell proliferation [20, 51].	
miR-96	Tumor suppressor	HERG1	PANC-1, SW1990, CFPAC-1, HPAC, BxPC-3	Pancreatic cancer	Inhibit cell proliferation [89].	
miR-96	Tumor suppressor	GPC1	Panc-1, AsPC-1, BxPC-3	Pancreatic cancer	Inhibit cell proliferation [90].	
miR-96	Tumor suppressor	ALK	Karpos 299, SUP-M2, SU-DHLL-1, SR-786, DEL, SH-SY5Y, H2228	Lymphoma, Neuroblastoma, and lung *** cancer	Inhibit cell proliferation [88].	
miR-96	Tumor suppressor	ATG7	✓	LNCaP, 22rv-1	Prostate cancer** (Under hypoxia) [23].	
miR-96	Tumor suppressor	REV1, RAD51	--	U2OS, HeLa, HCC1937, MDA-MB-231, HCT116, PEO1, PEO1 C4-2	Multiple tumors	Sensitize cancer cells to cisplatin and PARP inhibition [36].
miR-182	Oncogene	PDCD4	✓	A549, SPC-A-1 and A549	Lung cancer**** Promote cell proliferation [55, 56].	
miR-182	Oncogene	PDCD4	--	OVCAR3, SKOV3, OV2008, HEY, 3AO, A2780, HO8910, C13	Ovarian cancer	Promote cell proliferation [77].
miR-182	Oncogene	CHL1	✓	TPC-1, BCPAP	Papillary thyroid carcinoma	Promote cell proliferation [161].
miR-182	Oncogene	SATB2	✓	DLD-1, HCT116, SW480, SW620, Lovo	Colorectal cancer	Promote cell proliferation [162].
miR-182	Oncogene	FOXF2	✓	HT29, SW480, SW620, HCT116	Colorectal cancer	Promote cell proliferation [71].
miR-182	Oncogene	CEBPA	✓	--	Hepatocellular carcinoma	Promote cell proliferation [164].
miR-182	Oncogene	TP53INP1	✓	HEK293, HepG2	Hepatocellular carcinoma	Promote cell proliferation [86].
miR-182	Oncogene	LRRC4	✓	U251, SF126, SF767	Glioma	Promote cell proliferation [165].
miR-182	Oncogene	TCEAL7	--	HEC-1B, AN3CA, RL95-2, AN3CA	Endometrial carcinoma	Promote cell proliferation [166].
miR-182	Oncogene	CUL5	✓	Ishikawa H	Endometrial carcinoma	Promote cell proliferation [167].
miR-182	Oncogene	NDRG1	✓	LNCap, PC-3, DU145, 22Rv1	Prostate cancer***** Promote cell proliferation [126].	
miR-182	Oncogene	FOXF2, RECK, MTSS1	✓	LNCap, PC-3, DU145	Prostate cancer***** Promote cell proliferation [72].	
miR-182	Oncogene	PFN1	✓	MDA-MB-231	Breast cancer	Promote cell proliferation [168].
miR-182	Oncogene	RECK, Smad4	✓	J82, T24, UM-UC-3	Bladder cancer	Promote cell proliferation [169].
miR-182	Oncogene	FOXO3	--	A549, H1299, CL 1-0, CL 1-5	Lung cancer**** Promote cell proliferation [16].	
Interestingly, in certain cancers, over-expression of miR-183-96-182 cluster had an inhibitory effect on cell proliferation, a finding which is not consistent with the earlier reports related to most cancer types. The miR-96 target gene, ATG7, is a key factor in the autophagy pathway, which protects the cancer cells against stress responses such as hypoxia or starvation [87]. High-expression of miR-96 is thought to inhibit autophagy through directly targeting ATG7, and subsequently inhibit the survival of cancer cells under hypoxic conditions [23]. In addition, miR-96 is known to down-regulate RAD51 (a DNA repair protein) and REV1 (a DNA polymerase) to promote cellular sensitivity to cisplatin, which binds to and cause crosslinking of DNA to ultimately trigger apoptosis [36]. Similar results were also found for miR-182 in acute myelogenous leukemia [21]. Thus, the over-expression of miR-96/miR-182 appears to dramatically promote drug sensitization in cancer cells [36]. miR-96 was also shown to inhibit cell proliferation of ALK-expressing cancer cells via suppressing ALK expression, as well as those ALK-targeted genes, including AKT, STAT3, JNK and IGF-1 [88].

Notably, the inhibitory effect of miR-96 on pancreatic cancer cell proliferation has been clearly elucidated in the past few years [20, 51, 89, 90]. In pancreatic cancer, three important oncogenes, including
Table 2: miR-183-96-182 cluster in tumor invasion, migration, and metastasis.

Member of miR-183-96-182 cluster	Oncogene/Tumor suppressor	Target genes	Cell lines	Cancer types	Results
miR-183-96-182	Oncogene	RAB21(miR-183) RAB40B(miR-96 and miR-183) TNFSF11(miR-96)	MCF-7, T47D	Breast cancer*	Promote migration [3].
miR-183-96-182	Oncogene	BRMS1L	MCF-7, T47D, MDA-MB-435s, MDA-MB-468	Breast cancer*	Promote EMT and invasion [15].
miR-183-96-182	Oncogene	--	R262, R300 UW402, UW426, D341, D384, D425, D458, D556, D283, DA0Y	Medulloblastoma	Promote migration [155].
miR-183-96-182	Oncogene	FOXO1	Hep3B, SNU387, HKCl-1, HKCl-8	Hepatocellular carcinoma	Promote migration [13].
miR-183-96-182	Tumor suppressor	FOFOX2	55 human NSCLC cell lines	Lung cancer	Inhibit invasion and metastasis [116].
miR-183, miR-96	Tumor suppressor	SLUG, ZEB1, ITGB1, and KLF4	HCT116, MCF10A	Colon cancer***	Inhibit EMT, migration, and invasion [9].
miR-96, miR-182	Oncogene	EFNA5	HepG2, Hep3B, Huh7, SK-Hep1	Hepatocellular carcinoma	Promote invasion [85].
miR-183	Oncogene	--	HTori-3, FTC-133	Follicular thyroid carcinomas	Promote migration [171].
miR-183	Oncogene	PDCD4	Eca109, TE13	Esophageal cancer	Promote invasion [76].
miR-183	Oncogene	PDCD4	SGC-7901	Gastric cancer**	Promote invasion [78].
miR-183	Oncogene	PDCD4	SW1990	Pancreatic cancer	Promote invasion and migration [80].
miR-183	Oncogene	SOCS-6	PANC-1	Pancreatic cancer	Promote invasion and metastasis [157].
miR-183	Oncogene	SOCS-6	HepG2, Hep3B	Hepatocellular carcinoma	Promote invasion [158].
miR-183	Oncogene	PP2A-Cα, PP2A-Cβ, and PP2A-B56-γ	ACHN, A498	Renal cancer	Promote migration and invasion [104].
miR-183	Oncogene	EGR1 and PTEN	SYO-1, FUJI, HCT116, DLD1, Rh30, JR1	Synovial sarcoma, RMS, and colon*** cancer	Promote migration [105].
miR-183	Oncogene	NEFL	U251	Glioma	Promote invasion [156].
miR-183	Tumor suppressor	TIAM1	SKOV-3ip, HO-8910PM	Ovarian cancer	Inhibit migration and invasion [124].
miR-183	Tumor suppressor	BMI1	AGS, SGC7901, MKN28, MGC803, HGC27	Gastric cancer**	Inhibit invasion [103].
miR-183	Tumor suppressor	EZR	MGC-803, SGC-7901, BGC-823, MKN-45, MKN-28	Gastric cancer**	Inhibit invasion [120].
miR-183	Tumor suppressor	EZR	SOSP-9607, and MG63, U2OS, Saos2, HOS, SV40	Osteosarcoma	Inhibit migration and invasion [118, 119].
miR-183	Tumor suppressor	EZR	MDA-MB-231, T47D, SKBR-3, ZR-75-1	Breast cancer*	Inhibit migration [121].
miR-183	Tumor suppressor	EZR	801D, 95C	Lung cancer	Inhibit migration [122].
miR-183	Tumor suppressor	MMP-9	Siha, HeLa	Cervical carcinoma	Inhibit invasion and metastasis [172].
miR-183	Tumor suppressor	ITGB1 and KIF2A	HeLa	Cervical carcinoma	Inhibit migration and invasion [125].
miR-96	Oncogene	RECK	MDA-MB-231, MCF-7, MDA-MB-468, MDA-MB-435, T-74D, MDA-MB-453	Breast cancer	Promote invasion [83].
miR-96	Oncogene	MAP4K1 and IRS1	T24	Bladder cancer	Promote invasion [108].
miR-96	Oncogene	--	AGS	Gastric cancer	Promote invasion [7].
miR-96	Oncogene	--	HCCCLM6	Hepatocellular carcinoma	Promote invasion [107].
miR-96	Oncogene	AKT1S1	DU145, PC3, LNCap, 22Rv1, RasB1, AC1, AC3	Prostate cancer	Promote bone metastasis [106].
miR-96	Tumor suppressor	KRAS	HPDE, BxPC-3, PK-8, and MIA PaCa-2, PANC-1, BxPC-3	Pancreatic cancer	Inhibit migration and invasion [20, 51].
miR-182	Oncogene	MTSS1	HLE, HepG2, Hep3B, HUH-1	Hepatocellular carcinoma	Promote invasion [173].
miR-182	Oncogene	CYLD	LN382T, A172, T98G, LN18, LN229, LN464, SNB19, U373MG, U87MG, LN444, LN443, LN428, U118MG, LN-Z308, LN319	Glioma	Promote invasion [8].
miR-182	Oncogene	RECK	MCF-7, MDA-MB-231, SKBR3, BT-20	Breast cancer	Promote tumorigenicity and invasion [12].
miR-182	Oncogene	MIM	4T1 series, MCF10 series	Breast cancer	Promote invasion and metastasis [174].
miR-182	Oncogene	PFN1	DA0Y, D458 Med, Med8A	Medulloblastoma	Promote migration [175].
miR-182	Oncogene	--	STS-48, STS-109, STS-145, primary mice sarcomas cell lines (Kras and p53 mutation)	Sarcomas	Promote migration, invasion and metastasis [176].
miR-182	Oncogene	RSU1, MTSS1, PAI1, and TIMP1	Primary mice sarcomas cell lines	Sarcomas	Promote metastasis [18].
miR-182	Oncogene	CHL1	TPC-1, BCPAP	Papillary thyroid carcinoma	Promote invasion [161].
miR-182	Oncogene	SATB2	DLD-1, HCT116, SW480, SW620, Lovo	Colorectal cancer	Promote migration, invasion and metastasis [162].
miR-182	Oncogene	FOXF2	HT29, SW480, SW620, HCT116	Colorectal cancer	Promote invasion [71].
miR-182	Oncogene	TSP-1	HCT-116, HT-29	Colon cancer	Promote metastasis [177].
miR-182	Oncogene	PDCD4	A549	Lung cancer****	Promote invasion [56].
miR-182	Oncogene	PDCD4	OVCAR3, SKOV3, OV2008, HEY, 3AO, A2780, HO8910, C13	Ovarian cancer	Promote invasion [77].
KRAS [51], human either a go-go-related gene type 1 (HERG1) [89] and Glypican 1 (GPC1) [90], are known to be miR-96 target genes. KRAS, aberrantly activated in approximately 90% of pancreatic cancers [91], can promote abnormal cell proliferation by activating PI3K/Akt, NF-κB and ERK signaling pathways [92-95]. HERG1 is over-expressed in various cancer cells and found to promote cell proliferation [96-98]. GPC1 is exhibited high-expression in pancreatic cancers for efficient proliferation and angiogenesis [99]. miR-96 is known to target these three genes and, thereby, significantly increase the apoptosis rate in pancreatic cancer cells. However, the biological functions of miR-183 and miR-182 in pancreatic cancer are still unclear [80, 100]. Similar inhibitory effects were also observed in renal cell carcinoma and melanoma [52, 101, 102]. In contrast to the usual oncogenic function of the miR-183-96-182 cluster in most cancer types, the above tumor suppressor activity suggests a specific context (hypoxia/chemotherapy), phenotype, or cancer cell-dependent regulation of the miR-183-96-182 cluster in tumorigenesis.

Contradictory results

However the functions of miR-183-96-182 cluster in lung and gastric cancer are yet to be confirmed (Table 1). In non-small cell lung cancer, miR-96 was shown to promote cell proliferation by targeting FOXO3 and RECK mRNA (A549, SK-MES-1, H1299 and SPC-A-1 cell lines) [61, 84], while according to a study by Vishwamitra et al., miR-96 inhibits cell proliferation by targeting ALK (H2228 cell line) [88]. This reported discrepancy in results may be attributable to the inclusion of different cell types for analysis or involvement of different signaling pathways. Two studies on gastric carcinoma simultaneously reported contradictory results with respect to the function of miR-183 during cell proliferation in SGC-7901 cells [78, 103], Xu et al. found miR-183 was down-regulated in 65 gastric cancer tissue and 5 gastric cancer cell lines, miR-183 significantly inhibited SGC7901 and AGS cell viability with MTT assay. In contrast, Gu et al. found miR-183 was up-regulated in 80 tumor tissue, miR-183 significantly promoted SGC7901 cell proliferation by MTT and flow cytometry assay. These
Member of miR-183-96-182 cluster	Oncogene/ Tumor suppressor	Cancer types	Target genes	Results
miR-183-96-182	Oncogene	Hepatocellular carcinoma (tissue)	FOXO1	Associated with prognosis (microvascular invasion, tumor differentiation, and patients survival) [13].
miR-183-96-182	Oncogene	Lung cancer (tissue and serum)	--	Associated with prognosis (survival) [48].
miR-183, miR-96	Oncogene	Prostate cancer (tissue)	--	Associated with prognosis (tumor aggressiveness, metastatic and overall survival) when combined with other microRNAs [131].
miR-183	Oncogene	Lung cancer (tissue)*	--	Associated with prognosis (lymph node metastasis, clinical stage and EGFR mutation and patients survival) [179].
miR-183	Oncogene	Breast cancer (tissue)	--	Associated with prognosis (TNM clinical stage) [129].
miR-183	Oncogene	Colorectal cancer (plasma)	--	Associated with cancer recurrence and prognosis (lymph node metastasis, distant metastasis, TNM stage) [132].
miR-183	Oncogene	Colorectal cancer (tissue)	--	Associated with prognosis (clinical stage, lymph node metastasis, distant metastasis and patients survival) [133].
miR-183	Oncogene	Hepatocellular carcinoma (tissue)	--	Associated with cancer progression (TNM stage and cirrhosis), but not with patient survival [130].
miR-183	Oncogene	Hepatocellular carcinoma (serum)	--	Associated with prognosis (TNM stage and postoperative survival) [180].
miR-183	Tumor suppressor	Lung cancer (serum) *	--	Associated with prognosis (metastasis) [137].
miR-183	Tumor suppressor	Osteosarcoma (tissue)	EZR	Associated with aggressiveness and poor prognosis (tumor grade, response to chemotherapy, metastasis and recurrence) [135].
miR-183	*	Prostate cancer (cancer cell)	KLK3/PSA	miR-183 binds to the 3' UTR of PSA and increases its protein and mRNA levels [136].
miR-96	Oncogene	Prostate cancer (tissue)	--	Associated with prognosis (tumor stage, recurrence and survival) [138].
miR-96	Oncogene	Prostate cancer (tissue)	--	Not correlates with prognosis (biochemical recurrence and clinicopathological parameters) [139].
miR-96	Oncogene	Hepatocellular carcinoma (tissue)	LRP6, FOXO1A, and MAP2K1 (Not biologically validated)	Associated with prognosis (recurrence) when combined with other microRNAs [140].
miR-96	Oncogene	Colorectal cancer (tissue) **	--	Associated with prognosis (overall survival) [32].
miR-96	Tumor suppressor	Colorectal cancer (plasma) **	KRAS	Associated with prognosis (distant metastasis and survival) [181].
miR-96	Oncogene	Acute myeloid leukemia (mononuclear cells)	--	Associated with prognosis (relapse-free survival and overall survival) [141].
miR-182	Oncogene	Nasopharyngeal carcinoma (tissue)	--	Associated with prognosis (overall survival, disease-free survival, and distant metastasis) [144].
miR-182	Oncogene	Pancreatic cancer (plasma)	--	Associated with prognosis (Clinical stages, lymph node metastasis and survival) [143].
miR-182	Oncogene	Breast cancer (tissue)	--	Associated with prognosis (lymph node metastases and grade III occurrence) [142].
miR-182	Oncogene	Colon cancer (tissue)	FBXW7	Associated with prognosis (Survival) [145].
findings suggest that the regulation of cell proliferation by miR-183-96-182 cluster is a complicated synergic process, and the different functions of this cluster may be due to that the target genes might be expressed at different levels, contain mutations, or compete with other molecules. Other possible reasons for the contradictory results are summarized in Appendix 1-3.

miR-183-96-182 cluster in tumor invasion and metastasis

miR-183-96-182 cluster promotes tumor invasion and metastasis

It has been demonstrated that miR-183-96-182 cluster promotes tumor invasion and metastasis in most cancers, including thyroid, esophagus, gallbladder, ovary, bladder, kidney, liver cancers, melanoma, medulloblastoma, sarcoma, glioma, and myeloid cell tumor (Table 2). miR-183 promotes tumor invasion and metastasis by targeting PDCD4, protein phosphatase 2A (PP2A), EGR1 and PTEN [76, 78, 104, 105]. In addition, TGF-β and Smad can also promote prostate cancer bone metastasis by induction of miR-96 and activation of the mTOR pathway [106]. Moreover, the inhibitory effect on metastasis in hepatoma carcinoma cells, induced by the suppression of miR-96 [107], was reported as being associated with the inhibition of EFNA5 expression by miR-96-targeting [85]. Similar findings have been reported in case of gastrin, bladder, and breast cancers [3, 7, 83, 108]. With regard to miR-182, Huynh et al. reported significant suppression of invasive growth tendency and metastasis by suppressing miR-182 in vivo [109]. Moreover, similar to the effects of TGF-β on miR-96, TGF-β up-regulates miR-182, which can target CYLD and thus promote the activation of NF-κB in glioblastoma. Therefore, TGF-β-mediated up-regulation of miR-182 probably results in the persistent activation of NF-κB in glioblastoma, which subsequently leads to angiogenesis and tumor invasion. Table 2 shows the target genes of miR-183-96-182 cluster which regulate invasion and metastasis in various tumor cells.

miR-183-96-182 cluster inhibits tumor invasion and metastasis

On the contrary, miR-183-96-182 suppresses tumor metastasis in lung, colon, and pancreatic cancers (Table 2). Transcriptional repressor Zinc C finger E-box-binding homeobox 1 (ZEB1) family is a series of transcription factors which contain zinc finger domain. The highly conserved zinc finger structure can bind to E-box domain of the promoter of target genes, such as E-cadherin, the key epithelial marker for epithelial-mesenchymal transition (EMT and MET) [110, 111]. A recent study indicated a ZEB1/miR-200 double negative feedback loop in EMT at different stages of tumor development [112]. Notably, miR-183/96 can inhibit EMT via suppressing ZEB1 expression. Besides, ZEB1 can also block the transcription of miR-183-96-182 cluster by binding to its promoter [9]. miR-183-96-182 cluster and ZEB1 exert a double negative feedback loop in p21-/- cells. However, more recently, p21, an inhibitor of cyclin-dependent kinase through suppressing the expressions of CDK1 and CDK1 proteins [113], can also inhibit EMT progression [114, 115]. There is further evidence that p21 can interact with ZEB1 to form a complex and binds to the promoter of miR-183-96-182 cluster, which suppresses the transcription inhibition by ZEB1 and results in the suppression of EMT. The schematic diagram is provided in Appendix 1-4. Similar results were also reported in lung cancer cells by Kundu et al., where they found that FOXF2 correlates with ZEB1 expression, and miR-183-96-182 can suppress FOXF2 to inhibit tumor invasion and metastasis in lung cancers [116].
The EZR gene, the target gene of miR-183, plays an important role in angiogenesis and tumor metastasis in various tumors [117]. The miR-183 was found to block MAPK/ERK signaling pathway, as well as inhibit tumor invasion and metastasis by suppressing EZR expression in gastric, breast, lung cancers, and osteosarcoma [118-122]. Additionally, several previous studies demonstrated that some oncogenes, including TIAM1, BMI1, TSP-1, FOXO3, GNA13, ITGB1, KIF2A, SLUG, ITGB1, and KLK4, were targeted by miR-183 and miR-96 for the suppression of invasion and metastasis in oophoroma, lung, prostate, colon, cervix, stomach and pancreas cancer cells [9, 16, 20, 51, 103, 123-125] (Table 2).

Contradictory results

Investigations of the effects of miR-183-96-182 cluster on tumor invasion and metastasis have sometimes yielded contradictory results in different tumors, and in some cases, even within the same tumor type. miR-183 was found to be down-regulated by Caos et al. (in 52 pairs of FFPE samples and 5 cell lines) and Xus et al. (in 65 pairs of samples and 5 cell lines) (Table 2) and hypothesized to inhibit tumor invasion by suppressing the expressions of BMI1 or EZR proteins in gastric cancers [103, 120]. Conversely, Hues et al. reported that miR-183 was up-regulated (20 non-tumor tissue and 80 tumor tissue samples) and promotes gastric cancer cell invasion by inhibiting PDCD4 expression [78]. Similar differences in results were also reported in case of prostate cancers. miR-182 was over-expressed in prostate cancer tissue by Hirata et al. (52 paired samples) and Liu et al. (5 tumor and 3 non-tumor tissue) and enhanced the invasive and migratory capacity in PC3 and DU145 cells by targeting NDRG1, FOXF2, RECK, and MTSS1 genes [72, 126]. In contrast, over-expression of miR-182 was shown to inhibit tumor invasion in PC3 and LNCaP cells by suppressing GNA13 expression [123]. These findings suggest a context-dependent phenotype for the miR-183-96-182 cluster in carcinogenesis which needs to be further investigated to understand the complex interactions, especially in those cancers where contradictory results have been observed, such as prostate, colon, lung, breast, and gastric cancers (Table 2).

miR-183-96-182 cluster in cancer prognosis

Most of cancer cells display high-expression of miR-183 [127, 128]. The up-regulation of miR-183 is known to be associated with poor prognosis in breast cancer, colorectal cancer, hepatocellular cancer, and prostate cancer [13, 129-134], while predicts a good prognosis in osteosarcoma [135] (Table 3). This finding is consistent with its functions in cell proliferation, invasion and metastasis in these tumors types. Notably, miR-183 might affect the prediction for PSA-dependent diagnosis and prognosis via regulating PSA expression [136]. With respect to the prediction of miR-183-related prognosis, the available evidence from different studies is contradictory in lung cancer. Lin et al. showed the low expression of miR-183 in the peripheral blood which was associated with increased TNM stage in lung cancer patients (13 squamous-cell carcinoma and 17 adenocarcinoma) [137]. While Zhu et al. demonstrated the up-regulation of miR-183 family in lung cancer tissue (36 squamous-cell carcinoma and 34 adenocarcinoma), and that it appeared to confer a poor prognosis [48]. The wide variability in the reported results may be attributable to the differences between blood and tissue or the heterogeneity in lung cancer cells.

The high expression of miR-96 in prostate cancer is well documented [23, 41, 63, 66, 67, 138]. Larnes et al. recently reported a miRNA index quote (miQ) in prostate cancer, which uses four miRNAs (miR-96, 183, 145, and 221) for more accurate diagnosis (area under the curve, AUC = 0.931) and prognosis (AUC = 0.895 for predicting aggressiveness and AUC = 0.827 for metastasis). miQ was verified in an independent Dutch cohort and three external cohorts, and significantly outperformed the prostate-specific antigen [131]. Schaefer et al. demonstrated that highly expressed miR-96 can predict cancer recurrence after radical prostatectomy [138]. Additionally, Haflidadottir et al. found miR-96 expression correlated with WHO grade, and the overall survival time in prostate cancer [67]. In contrast, a recent investigation found no significant correlation between the expression of miR-96 and clinicopathological parameters [139]. Thus, suggesting that more studies are required to understand the prognostic relevance of miR-96. In addition, miR-96 was reported as a potential biomarker for the predicting recurrence after surgical resection of hepatocellular cancer [140], and as prognostic indicator in lung cancer, colorectal cancer and acute myeloid leukemia [32, 48, 141] (Table 3).

Corresponding to the biological functions of miR-182 in various tumors, the up-regulation of miR-182 was associated with poor prognoses in hepatocellular carcinoma [13], breast cancer [142], pancreatic cancer [143], oropharyngeal carcinoma [144], colorectal adenocarcinoma [145-148], prostate cancer [149], bladder cancer [150], and glioblastoma [151] (Table 3). In contrast, the up-regulation of miR-182 was found to correlate with good prognosis in lung cancer [152]. We presume that this might be associated with the miR-183 target genes, such as RGS17, RASA1, CTTN, and FOXO3, which have been shown to inhibit cell proliferation, tumor invasion and metastasis in lung cancer cells [16, 57, 58, 153].

CONCLUDING REMARKS

Recent studies suggest an important role of miR-183-96-182 cluster in tumorigenesis, cancer progression, tumor invasion and metastasis. Although
most of the reports showed that miR-183-96-182 cluster is an oncogene cluster, it also functions as a TSG by inhibiting cell proliferation and metastasis in certain cancer cells. We hypothesize that the different results observed in expression and function of the miR-183-96-182 cluster may result from different underlying tissue types, different expression abundance of miR-183-96-182 or their target genes, differences between cell lines (Table 1-2), differences between cell line and tumor tissue, tissue and blood (Table 3), and differences between detecting methods used. Recent studies have also indicated diagnostic and prognostic relevance of the members of miR-183-96-182 cluster, either independently or collectively. These new data on the functions of miR-183-96-182 cluster in various tumors suggest that further studies will be needed to clarify its functions in the various stages and histological subtypes in different types of tumors, which will significantly improve the accuracy of the prediction for tumor diagnosis or prognosis. As regards the conflicting results in certain tumors, we believe that miR-183-96-182 cluster might play different roles because of tumor heterogeneity, which will be important for the individual diagnosis and prognosis in anti-tumor treatment.

Abbreviations

miRNA, microRNA; TSS, transcriptional start site; TSG, tumor suppressor gene; EMT, epithelial-mesenchymal transition.

CONFLICTS OF INTEREST

The authors disclose no potential conflicts of interest.

GRANT SUPPORT

This work was supported by the National Natural Science Foundation of China (Grant No.81501310, 81571499, 81370762, 81572536) and Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University (RJZZ14-009). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

REFERENCES

1. Lee RC, Feinbaum RL and Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993; 75(5):843-854.
2. Dambal S, Shah M, Mihelich B and Nonn L. The microRNA-183 cluster: the family that plays together stays together. Nucleic acids research. 2015; 43(15):7173-7188.
3. Li P, Sheng C, Huang L, Zhang H, Huang L, Cheng Z and Zhu Q. MiR-183/-96/-182 cluster is up-regulated in most breast cancers and increases cell proliferation and migration. Breast cancer research. 2014; 16(6):473.
4. Chien CH, Sun YM, Chang WC, Chiang-Hsieh PY, Lee TY, Tsai WC, Horng JT, Tsou AP and Huang HD. Identifying transcriptional start sites of human microRNAs based on high-throughput sequencing data. Nucleic acids research. 2011; 39(21):9345-9356.
5. Ozsolak F, Poling LL, Wang Z, Liu H, Liu XS, Roeder RG, Zhang X, Song JS and Fisher DE. Chromatin structure analyses identify miRNA promoters. Genes & development. 2008; 22(22):3172-3183.
6. Wang G, Wang Y, Shen C, Huang YW, Huang K, Huang TH, Nephew KP, Li L and Liu Y. RNA polymerase II binding patterns reveal genomic regions involved in microRNA gene regulation. PLoS one. 2010; 5(11):e13798.
7. Tang X, Zheng D, Hu P, Zeng Z, Li M, Tucker L, Monahan R, Resnick MB, Liu M and Ramratnam B. Glycogen synthase kinase 3 beta inhibits microRNA-183-96-182 cluster via the beta-Catenin/TCF/LEF-1 pathway in gastric cancer cells. Nucleic acids research. 2014; 42(5):2988-2998.
8. Song L, Liu L, Wu Z, Li Y, Ying Z, Lin C, Wu J, Hu B, Cheng SY, Li M and Li J. TGF-beta induces miR-182 to sustain NF-kappaB activation in glioma subsets. The Journal of clinical investigation. 2012; 122(10):3563-3578.
9. Li XL, Hara T, Choi Y, Subramanian M, Francis P, Bilke S, Walker RL, Pineda M, Zhu Y, Yang Y, Luo J, Wakefield LM, Brabletz T, et al. A p21-ZEB1 complex inhibits epithelial-mesenchymal transition through the microRNA 183-96-182 cluster. Molecular and cellular biology. 2014; 34(3):533-550.
10. Donatelli SS, Zhou JM, Gilvary DL, Eksioglu EA, Chen X, Cress WD, Haura EB, Schabath MB, Coppola D, Wei S and Djeu JY. TGF-beta-inducible microRNA-183 silences tumor-associated natural killer cells. Proceedings of the National Academy of Sciences of the United States of America. 2014; 111(11):4203-4208.
11. Qiu Y, Luo X, Kan T, Zhang Y, Yu W, Wei Y, Shen N, Yi B and Jiang X. TGF-beta upregulates miR-182 expression to promote gallbladder cancer metastasis by targeting CADM1. Molecular bioSystems. 2014; 10(3):679-685.
12. Chiang CH, Hou MF and Hung WC. Up-regulation of miR-182 by beta-catenin in breast cancer increases tumorigenicity and invasiveness by targeting the matrix metalloproteinase inhibitor RECK. Biochimica et biophysica acta. 2013; 1830(4):3067-3076.
13. Leung WK, He M, Chan AW, Law PT and Wong N. Wnt/beta-Catenin activates MiR-183/96/182 expression in hepatocellular carcinoma that promotes cell invasion. Cancer letters. 2015; 362(1):97-105.
14. Rihani A, Van Goethem A, Ongenae M, De Brouwer S, Volders PJ, Agarwal S, De Preter K, Mestdagh P, Sholet J,
Spleman F, Vandesompele J and Van Maerken T. Genome wide expression profiling of p53 regulated miRNAs in neuroblastoma. Scientific reports. 2015; 5:9027.

15. Zhang W, Qian P, Zhang X, Zhang M, Wang H, Wu M, Kong X, Tan S, Ding K, Perry JK, Wu Z, Cao Y, Lobie PE and Zhu T. Autocrine/Paracrine Human Growth Hormone-stimulated MicroRNA 96-182-183 Cluster Promotes Epithelial-Mesenchymal Transition and Invasion in Breast Cancer. The Journal of biological chemistry. 2015; 290(22):13812-13829.

16. Yang WB, Chen PH, Hsu Ts, Fu TF, Su WC, Liaw H, Chang WC and Hung JJ. Sp1-mediated microRNA-182 expression regulates lung cancer progression. Oncotarget. 2014; 5(3):740-753. doi: 10.18632/oncotarget.1608.

17. Liu WH and Chang LS. Suppression of Akt/Foxp3-mediated miR-183 expression blocks Sp1-mediated ADAM17 expression and TNFalpha-mediated NFkappB activation in piceatannol-treated human leukemia U937 cells. Biochemical pharmacology. 2012; 84(5):670-680.

18. Dodd RD, Sachdeva M, Mito JK, Eward WC, Brigman BE, Ma Y, Dodd L, Kim Y, Lev D and Kirsch DG. Myogenic transcription factors regulate pro-metastatic miR-182. Oncogene. 2016; 35(14):1868-75. doi: 10.1038/onc.2015.252.

19. Lodrini M, Oehme I, Schroeder C, Milde T, Schier MC, Kopp-Schneider A, Schulte JH, Fischer M, De Preter K, Pattyn F, Castoldi M, Muckenthaler MU, Kulozik MH, Langford C, van Dongen S, Abreu-Goodger C, Piipari SCO2 and PDHA1 in breast cancer. Oncotarget. 2015; 6(29):27199-27213. doi: 10.18632/oncotarget.4508.

20. Jensen KP, Covault J, Conner TS, Tennen H, Kranzler HR and Furneaux HM. A common polymorphism in serotonin receptor 1B mRNA moderates regulation by miR-96 and associates with aggressive human behaviors. Molecular psychiatry. 2009; 14(4):381-389.

21. Henson BJ, Zhu W, Hardaway K, Wetzel JL, Stefan M, Albers KM and Nicholls RD. Transcriptional and post-transcriptional regulation of SPAST, the gene most frequently mutated in hereditary spastic paraplegia. PloS one. 2012; 7(5):e36505.

22. Lewis MA, Quint E, Glazier AM, Fuchs H, De Angelis MH, Langford C, van Dongen S, Abreu-Goodeger C, Piipari M, Redshaw N, Dalmay T, Moreno-Pelayo MA, Enright AJ and Steel KP. An ENU-induced mutation of miR-96 associated with progressive hearing loss in mice. Nature genetics. 2009; 41(5):614-618.

23. Li Y, Zhang W, Xu Y, Liu Y, Li Y, Wang Z, Wang Y, Zhang X and Ye L. The oncoprotein HBXIP promotes glucose metabolism reprogramming via downregulating SCO2 and PDHA1 in breast cancer. Oncotarget. 2015; 6(29):27199-27213. doi: 10.18632/oncotarget.4508.

24. Perilli L, Vicentini C, Agostini M, Pizzini S, Pizzi M, D’Ange E, Bortoluzzi S, Mandruzzato S, Mammano E, Rugge M, Nitti D, Scarpa A, Fassan M and Zanovello P. Circulating miR-182 is a biomarker of colorectal adenocarcinoma progression. Oncotarget. 2014; 5(16):6611-6619. doi: 10.18632/oncotarget.2245.
Segura MF, Hanniford D, Menendez S, Reavie L, Zou X, Alvarez-Diaz S, Zakrzewski J, Blochin E, Rose A, Bogunovic D, Polsky D, Wei J, Lee P, et al. Aberrant miR-182 expression promotes melanoma metastasis by repressing FOXO3 and microphthalmia-associated transcription factor. Proceedings of the National Academy of Sciences of the United States of America. 2009; 106(6):1814-1819.

Wang Y, Huang JW, Calses P, Kemp CJ and Taniguchi T. MiR-96 downregulates REV1 and RAD51 to promote cellular sensitivity to cisplatin and PARP inhibition. Cancer research. 2012; 72(16):4037-4046.

Pineau P, Volinia S, McLunkin K, Marchio A, Battiston C, Terris B, Mazzaferro V, Lowe SW, Croce CM and Dejean A. miR-221 overexpression contributes to liver tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America. 2010; 107(1):264-269.

Ladeiro Y, Couchy G, Balabaud C, Bioulac-Sage P, Pelletier L, Rebouissou S and Zucman-Rossi J. MicroRNA profiling in hepatocellular tumors is associated with clinical features and oncogene/tumor suppressor gene mutations. Hepatology. 2008; 47(6):1955-1963.

Li J, Shi W, Gao Y, Yang B, Jing X, Shan S, Wang Y and Du Z. Analysis of microRNA expression profiles in human hepatitis B virus-related hepatocellular carcinoma. Clinical laboratory. 2013; 59(9-10):1009-1015.

Xia H, Chen S, Chen K, Huang H and Ma H. MiR-96 promotes proliferation and chemo- or radioresistance by down-regulating RECK in esophageal cancer. Biomedicine & pharmacotherapy. 2014; 68(8):951-958.

Mihelich BL, Khramtsova EA, Arna V, Vaishnav A, Johnson DN, Giangreco AA, Martens-Uzunova E, Bagasra O, Kajdacsy-Balla A and Nonn L. miR-183-96-182 cluster is overexpressed in prostate tissue and regulates zinc homeostasis in prostate cells. The Journal of biological chemistry. 2011; 286(52):44503-44511.

Yoshino H, Seki N, Itsukato T, Chiyomaru T, Nakagawa M and Enokida H. Aberrant expression of microRNAs in bladder cancer. Nature reviews Urology. 2013; 10(7):396-404.

Han Y, Chen J, Zhao X, Liang C, Wang Y, Sun L, Jiang Z, Zhang Z, Yang R, Chen J, Li Z, Tang A, Li X, et al. MicroRNA expression signatures of bladder cancer and non-tumoral tissues. Molecular cancer. 2006; 5:29.

Fukushima Y, Iinuma H, Tsukamoto M, Matsuda K and Hashiguchi Y. Clinical significance of microRNA-21 as a biomarker in each Dukes' stage of colorectal cancer. Oncology reports. 2015; 33(2):573-582.

Zhu W, Liu X, He J, Chen D, Hunag Y and Zhang YK. Overexpression of members of the microRNA-183 family is a risk factor for lung cancer: a case control study. BMC cancer. 2011; 11:393.

Yu S, Lu Z, Liu C, Meng Y, Ma Y, Zhao W, Liu J, Yu J and Chen J. miRNA-96 suppresses KRAS and functions as a tumor suppressor gene in pancreatic cancer. Cancer research. 2010; 70(14):6015-6025.

Poell JB, van Haastert RJ, de Gunst TJ, Gommans WM, Verheul M, Cerisoli F, van Noort P, Prevost GP, Schaapveld RQ and Cuppen E. A functional screen identifies specific microRNAs capable of inhibiting human melanoma cell viability. PLoS one. 2012; 7(8):e43569.

Kong WQ, Bai R, Liu T, Cai CL, Liu M, Li X and Tang H. MicroRNA-182 targets cAMP-responsive element-binding protein 1 and suppresses cell growth in human gastric adenocarcinoma. The FEBS journal. 2012; 279(7):1252-1260.
57. Sun Y, Fang R, Li C, Li L, Li F, Ye X and Chen H. Hsa-mir-182 suppresses lung tumorigenesis through down regulation of RGS17 expression in vitro. Biochemical and biophysical research communications. 2010; 396(2):501-507.

58. Zhu YJ, Xu B and Xia W. Hsa-mir-182 downregulates RASA1 and suppresses lung squamous cell carcinoma cell proliferation. Clinical laboratory. 2014; 60(1):155-159.

59. Burgering BM and Medema RH. Decisions on life and death: FOXO Forkhead transcription factors are in command when PKB/Akt is off duty. Journal of leukocyte biology. 2003; 73(6):689-701.

60. Burgering BM and Kops GJ. Cell cycle and death control: long live Forkheads. Trends in biochemical sciences. 2002; 27(7):352-360.

61. Li J, Li P, Chen T, Gao G, Chen X, Du Y, Zhang R, Yang R, Zhao W, Dun S, Gao F and Zhang G. Expression of microRNA-96 and its potential functions by targeting FOXO3 in non-small cell lung cancer. Tumour biology. 2015; 36(2):685-692.

62. Gao F and Wang W. MicroRNA-96 promotes the proliferation of colorectal cancer cells and targets tumor protein p53 inducible nuclear protein 1, forkhead box protein O1 (FOXO1) and FOXO3a. Molecular medicine reports. 2015; 11(2):1200-1206.

63. Yu JJ, Wu YX, Zhao FJ and Xia SJ. miR-96 promotes cell proliferation and clonogenicity by down-regulating of FOXO1 in prostate cancer cells. Medical oncology. 2014; 31(4):910.

64. Xie L, Ushmorov A, Leithauser F, Guan H, Steidl C, Farbinger J, Pelzer C, Vogel MJ, Maier HJ, Gascoyne RD, Moller P and Wirth T. FOXO1 is a tumor suppressor in classical Hodgkin lymphoma. Blood. 2012; 119(15):3503-3511.

65. Tang H, Bian Y, Tu C, Wang Z, Yu Z, Liu Q, Xu G, Wu M and Li G. The miR-183/96/182 cluster regulates oxidative apoptosis and sensitizes cells to chemotherapy in gliomas. Current cancer drug targets. 2013; 13(2):221-231.

66. Fendler A, Jung M, Stephan C, Erbersdobler A, Jung K and Yousef GM. The antiapoptotic function of miR-96 in prostate cancer by inhibition of FOXO1. PloS one. 2013; 8(1):e80807.

67. Haflidadottir BS, Larne O, Martin M, Persson M, Edsjö A, Bjartell A and Ceder Y. Uregulation of miR-96 enhances cellular proliferation of prostate cancer cells through FOXO1. PloS one. 2013; 8(8):e72400.

68. Guo Y, Liu H, Zhang H, Shang C and Song Y. miR-96 regulates FOXO1-mediated cell apoptosis in bladder cancer. Oncology letters. 2012; 4(3):561-565.

69. Lin H, Dai T, Xiong H, Zhao X, Chen X, Yu C, Li J, Wang X and Song L. Unregulated miR-96 induces cell proliferation in human breast cancer by downregulating transcriptional factor FOXO3a. PloS one. 2010; 5(12):e15797.

70. Myatt SS, Wang J, Monteiro LJ, Christian M, Ho KK, Fusi L, Dina RE, Brosens JJ, Ghaem-Maghami S and Lam EW. Definition of microRNAs that repress expression of the tumor suppressor gene FOXO1 in endometrial cancer. Cancer research. 2010; 70(1):367-377.

71. Zhang Y, Wang X, Wang Z, Tang H, Fan H and Guo Q. miR-182 promotes cell growth and invasion by targeting forkhead box F2 transcription factor in colorectal cancer. Oncology reports. 2015; 33(5):2592-2598.

72. Hirata H, Ueno K, Shahrayar V, Deng G, Tanaka Y, Tabatabai ZL, Hinoda Y and Dahiya R. MicroRNA-183-5p promotes cell invasion and proliferation by down regulating FOXF2, RECK and MTSS1 genes in human prostate cancer. PloS one. 2013; 8(1):e55502.

73. van der Heul-Nieuwenhuijsen L, Dits N, Van Ijcken W, de Lange D and Jenster G. The FOXF2 pathway in the human prostate stroma. The Prostate. 2009; 69(14):1538-1547.

74. Ormestad M, Astorga J, Landgren H, Wang T, Johansson BR, Miura N and Carlsson P. Foxf1 and Foxf2 control FOXF2, RECK and MTSS1 genes in human prostate cancer. Molecules and cells. 2014; 37(12):873-880.
82. Gaur AB, Holbeck SL, Colburn NH and Israel MA. Downregulation of Pdcd4 by mir-21 facilitates glioblastoma proliferation in vivo. Neuro-oncology. 2011; 13(6):580-590.

83. Zhang J, Kong X, Li J, Luo Q, Li X, Shen L, Chen L and Fang L. miR-96 promotes tumor proliferation and invasion by targeting RECK in breast cancer. Oncology reports. 2014; 31(3):1357-1363.

84. Guo H, Li Q, Li W, Zheng T, Zhao S and Liu Z. MiR-96 downregulates RECK to promote growth and motility of non-small cell lung cancer cells. Molecular and cellular biochemistry. 2014; 390(1-2):155-160.

85. Wang TH, Yeh CT, Ho JY, Ng KF and Chen TC. OncomiR miR-96 and miR-182 promote cell proliferation and invasion through targeting ephrinA5 in hepatocellular carcinoma. Molecular carcinogenesis. 2016; 55(4):366-375.

86. Qin J, Luo M, Qian H and Chen W. Upregulated miR-182 increases drug resistance in cisplatin-treated HCC cell by regulating TP53INP1. Gene. 2014; 538(2):342-347.

87. Shen S, Kepp O and Kroemer G. The end of autophagic cell death? Autophagy. 2012; 8(1):1-3.

88. Vishwamitra D, Li Y, Wilson D, Manshouri R, Curry CV, Shi B, Tang X, Sheehan AM, Wistuba II, Shi P and Amin HM. MicroRNA 96 is a post-transcriptional suppressor of anaplastic lymphoma kinase expression. The American journal of pathology. 2012; 180(5):1772-1780.

89. Feng J, Yu J, Pan X, Li Z, Chen Z, Zhang W, Wang B, Yang L, Xu H, Zhang G and Xu Z. HERG1 functions as an oncogene in pancreatic cancer and is downregulated by miR-96. Oncotarget. 2014; 5(14):5832-5844. doi: 10.18632/oncotarget.2200.

90. Li C, Du X, Tai S, Zhong X, Wang Z, Hu Z, Zhang L, Kang P, Ji D, Jiang X, Zhou Q, Wan M, Jiang G and Cui Y. GPC1 regulated by miR-96-5p, rather than miR-182-5p, in inhibition of pancreatic carcinoma cell proliferation. International journal of molecular sciences. 2014; 15(4):6314-6327.

91. Hingorani SR, Petricoin EF, Maitra A, Rajapakse V, King C, Jacobetz MA, Ross S, Conrads TP, Veenstra TD, Stivala F, Libra M, Basecke J, Evangelisti C, Martelli AM and Franklin RA. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochimica et biophysica acta. 2007; 1773(8):1263-1284.

92. Lastraioli E, Guasti L, Crociani O, Polvani S, Hofmang M, Witelh B, Bencini L, Calistrini L, Scatizzi M, Moretti R, Wanke E, Olivotto M, Mugnai G and Arcangeli A. herg1 gene and HERG1 protein are overexpressed in colorectal cancers and regulate cell invasion of tumor cells. Cancer research. 2004; 64(2):606-611.

93. Wang H, Zhang Y, Cao L, Han H, Wang J, Yang B, Nattel S and Zhang W. HERG K+ channel, a regulator of tumor cell apoptosis and proliferation. Cancer research. 2002; 62(17):4843-4848.

94. Afrasiabi E, Hietamaki M, Viitanen T, Sukumaran P, Bergelin N and Torquist K. Expression and significance of HERG (KCNH2) potassium channels in the regulation of MDA-MB-435S melanoma cell proliferation and migration. Celluar signalling. 2010; 22(1):57-64.

95. Whipple CA, Young AL and Koc M. A KrasG12D-driven genetic mouse model of pancreatic cancer requires glypican-1 for efficient proliferation and angiogenesis. Oncogene. 2012; 31(20):2535-2544.

96. Wellner U, Schubert J, Burk UC, Schmalhofer O, Zhu F, Sonntag A, Waldvogel B, Vannier C, Darling D, zur Hausen A, Brunton VG, Morton J, Sansom O, et al. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nature cell biology. 2009; 11(12):1487-1495.

97. Xu X, Wu J, Li S, Hu Z, Xu X, Zhu Y, Liang Z, Wang X, Lin Y, Mao Y, Chen H, Luo J, Liu B, Zheng X and Xie L. Downregulation of microRNA-182-5p contributes to renal cell carcinoma proliferation via activating the AKT/FOXO3a signaling pathway. Molecular cancer. 2014; 13:109.

98. Yan D, Dong XD, Chen X, Yao S, Wang L, Wang J, Wang C, Hu DN, Qu J and Tu L. Role of microRNA-182 in posterior uveal melanoma: regulation of tumor development through MITF, BCL2 and cyclin D2. PloS one. 2012; 7(7):e40967.

99. Xu L, Li Y, Yan D, He J and Liu D. MicroRNA-183 inhibits gastric cancer proliferation and invasion via directly targeting Bmi-1. Oncology letters. 2014; 8(5):2345-2351.

100. Qiu M, Liu L, Chen L, Tan G, Liang Z, Wang K, Liu J and Chen H. microRNA-183 plays as oncogenes by increasing cell proliferation, migration and invasion via targeting protein phosphatase 2A in renal cancer cells. Biochemical and biophysical research communications.
105. Sarver AL, Li L and Subramanian S. MicroRNA miR-183 functions as an oncogene by targeting the transcription factor EGR1 and promoting tumor cell migration. Cancer research. 2010; 70(23):9570-9580.

106. Siu MK, Tsai YC, Chang YS, Yin JJ, Suau F, Chen WY and Liu YN. Transforming growth factor-beta promotes prostate bone metastasis through induction of microRNA-96 and activation of the mTOR pathway. Oncogene. 2015; 34(36):4767-4776.

107. Chen RX, Xia YH, Xue TC and Ye SL. Suppression of microRNA-96 expression inhibits the invasion of hepatocellular carcinoma cells. Molecular medicine reports. 2012; 5(3):800-804.

108. Wang Y, Luo H, Li Y, Chen T, Wu S and Yang L. hsa-miR-96 up-regulates MAP4K1 and IRS1 and may function as a promising diagnostic marker in human bladder urothelial carcinomas. Molecular medicine reports. 2012; 5(1):260-265.

109. Huynh C, Segura MF, Gaziel-Sovran A, Menendez S, Jurin J, Tong P, Creighton CJ and Gibbons DL. The miR-200 family and the miR-183~96~182 cluster target Foxf2 to inhibit invasion and metastasis in lung cancers. Oncogene. 2013; 32(35):4767-4776.

110. Brabletz S and Brabletz T. The ZEB/miR-200 feedback loop: at the crossroads of signal transduction in epithelial-mesenchymal transition and cancer stem cell-like gene expression in vivo. Experimental cell research. 2009; 37556. doi: 10.18632/oncotarget.6065.

111. Hunter KW. Ezrin, a key component in tumor metastasis. Trends in molecular medicine. 2004; 10(5):201-204.

112. Zhao H, Guo M, Zhao G, Ma Q, Ma B, Qiu X and Fan Q. miR-183 inhibits the metastasis of osteosarcoma via downregulation of the expression of Ezrin in F5M2 cells. International journal of molecular medicine. 2012; 30(5):1013-1020.

113. Abbas T and Dutta A. p21 in cancer: intricate networks and multiple activities. Nature reviews Cancer. 2009; 9(6):400-414.

114. Bachman KE, Blair BG, Brenner K, Bardelli A, Arena S, Zhou S, Hicks J, De Marzo AM, Argani P and Park BH. p21(WAF1/CIP1) mediates the growth response to TGF-beta in human epithelial cells. Cancer biology & therapy. 2004; 3(2):221-225.

115. Liu M, Casimiro MC, Wang C, Shirley LA, Jiao X, Katiyar S, Ju X, Li Z, Yu Z, Zhou J, Johnson M, Fortina P, Hyslop T, Windle JJ and Pestell RG. p21CIP1 attenuates Ras- and c-Myc-dependent breast tumor epithelial mesenchymal transition and cancer stem cell-like gene expression in vivo. Proceedings of the National Academy of Sciences of the United States of America. 2009; 106(45):19035-19039.

116. Kundu ST, Byers LA, Peng DH, Roybal JD, Diao L, Wang J, Tong P, Creighton CJ and Gibbons DL. The miR-200 family and the miR-183~96~182 cluster target Foxf2 to inhibit invasion and metastasis in lung cancers. Oncogene. 2016; 35(2):173-186.

117. Hunter KW. Ezrin, a key component in tumor metastasis. Trends in molecular medicine. 2004; 10(5):201-204.
130. Liang Z, Gao Y, Shi W, Zhai D, Li S, Jing L, Guo H, Liu T, Wang Y and Du Z. Expression and significance of microRNA-183 in hepatocellular carcinoma. The Scientific World Journal. 2013; 2013:381874.

131. Larne O, Martens-Uzunova E, Hagman Z, Edsjo A, Lippolis G, den Berg MS, Bjartell A, Jenster G and Ceder Y. miQ-RNA: a novel microRNA based diagnostic and prognostic tool for prostate cancer. International journal of cancer. 2013; 132(12):2867-2875.

132. Yuan D, Li K, Zhu K, Yan R and Dang C. Plasma miR-183 predicts recurrence and prognosis in patients with colorectal cancer. Cancer biology & therapy. 2015:0.

133. Zhou T, Zhang GJ, Zhou H, Xiao HX and Li Y. miR-96 in patients with acute myeloid leukemia. Diagnostic pathology. 2014; 9:76.

134. Christinat Y and Krek W. Integrated genomic analysis identifies subclasses and prognosis signatures of kidney cancer. Oncotarget. 2015; 6(12):10521-10531. doi: 10.18632/oncotarget.3294.

135. Mu Y, Zhang H, Che L and Li K. Clinical significance of microRNA-183/Ezrin axis in judging the prognosis of patients with osteosarcoma. Medical oncology. 2014; 31(2):821.

136. Larne O, Ostling P, Haflidadottir BS, Hagman Z, Aakula A, Kohonen P, Kallioniemi O, Edsjo A, Bjartell A, Lilja H, Lundwall A and Ceder Y. miR-183 in prostate cancer cells positively regulates synthesis and serum levels of prostate-specific antigen. European urology. 2015; 68(4):581-588.

137. Lin Q, Mao W, Shu Y, Lin F, Liu S, Shen H, Gao W, Li S and Shen D. A cluster of specified microRNAs in peripheral blood as biomarkers for metastatic non-small-cell lung cancer by stem-loop RT-PCR. Journal of cancer research and clinical oncology. 2012; 138(1):85-93.

138. Schaefer A, Jung M, Mollenkopf HJ, Wagner I, Stephan C, Jentzmik F, Miller K, Lein M, Kristiansen G and Jung K. Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma. International journal of cancer. 2010; 126(5):1166-1176.

139. Kang SG, Ha YR, Kim SJ, Kang SH, Park HS, Lee JG, Cheon J and Kim CH. Do microRNA 96, 145 and 221 expressions really aid in the prognosis of prostate carcinoma? Asian journal of andrology. 2012; 14(5):752-757.

140. Sato F, Hatano E, Kitamura K, Myamoto A, Fujiwara T, Takizawa S, Tsuchiya S, Tsujimoto G, Uemoto S and Shimizu K. MicroRNA profile predicts recurrence after resection in patients with hepatocellular carcinoma within the Milan Criteria. PloS one. 2011; 6(1):e16435.

141. Zhao J, Lu Q, Zhu J, Fu J and Chen YX. Prognostic value of miR-96 in patients with acute myeloid leukemia. Diagnostic pathology. 2014; 9:76.

142. Medinegheh I, Omrane I, Privat M, Uhrhammer N, Ayari H, Belaiba F, Benayed F, Benromdhan K, Mader S, Bignon UJ and Elgaaied AB. MicroRNAs expression in triple negative vs non triple negative breast cancer in Tunisia: interaction with clinical outcome. PloS one. 2014; 9(11):e111877.

143. Chen Q, Yang L, Xiao Y, Zhu J and Li Z. Circulating microRNA-182 in plasma and its potential diagnostic and prognostic value for pancreatic cancer. Medical oncology. 2014; 31(11):225.

144. Hui AB, Lin A, Xu W, Waldron L, Perez-Ordonez B, Weinreb I, Shi W, Bruce J, Huang SH, O’Sullivan B, Waldron J, Gullane P, Irish JC, Chan K and Liu FF. Potentially prognostic miRNAs in HPV-associated oropharyngeal carcinoma. Clinical cancer research. 2013; 19(8):2154-2162.

145. Li L, Sarver AL, Khatri R, Hajeri PB, Kamenev I, French AJ, Thibodeau SN, Steer CJ and Subramanian S. Sequential expression of miR-182 and miR-503 cooperatively targets FBXW7, contributing to the malignant transformation of colon adenoma to adenocarcinoma. The Journal of pathology. 2014; 234(4):488-501.

146. Wang S, Yang MH, Wang XY, Lin J and Ding YQ. Increased expression of miRNA-182 in colorectal carcinoma: a novel microRNA based diagnostic and prognostic factor. International journal of clinical and experimental pathology. 2014; 7(6):3498-3503.

147. Rapti SM, Kontos CK, Papadopoulos IN and Scorilas A. Enhanced miR-182 transcription is a predictor of poor overall survival in colorectal adenocarcinoma patients. Clinical chemistry and laboratory medicine. 2014; 52(8):1217-1227.

148. Liu H, Du L, Wen Z, Yang Y, Li J, Wang L, Zhang X, Liu Y, Dong Z, Li W, Zheng G and Wang C. Up-regulation of miR-182 expression in colorectal cancer tissues and its prognostic value. International journal of colorectal disease. 2013; 28(5):697-703.

149. Casanova-Salas I, Rubio-Briones J, Calatrava A, Mancarella C, Masia E, Casanova J, Fernandez-Serra A, Rubio L, Ramirez-Backhaus M, Armiman A, Domínguez-Escrig J, Martinez F, Garcia-Casado Z, Scotlandi K, Vicent MJ and Lopez-Guerrero JA. Identification of miR-187 and miR-182 as biomarkers of early diagnosis and prognosis in patients with prostate cancer treated with radical prostatectomy. The Journal of urology. 2014; 192(1):252-259.

150. Pignot G, Cizeron-Clairac G, Vacher S, Susini A, Tozlu S, Vieillefond A, Zerbib M, Lidereau R, Debre B, Amsemel-Ouazana D and Bieche I. microRNA expression profile in a large series of bladder tumors: identification of a 3-miRNA signature associated with aggressiveness of muscle-invasive bladder cancer. International journal of cancer. 2013; 132(11):2479-2491.

151. Jiang L, Mao P, Song L, Wu J, Huang J, Lin C, Yuan J, Qu L, Cheng SY and Li J. miR-182 as a prognostic marker for glioma progression and patient survival. The American journal of pathology. 2010; 177(1):29-38.

152. Stenvold H, Donnem T, Andersen S, Al-Saad S, Busund LT and Bremnes RM. Stage and tissue-specific prognostic
impact of miR-182 in NSCLC. BMC cancer. 2014; 14:138.
153. Zhang L, Liu T, Huang Y and Liu J. microRNA-182 inhibits the proliferation and invasion of human lung adenocarcinoma cells through its effect on human cortical actin-associated protein. International journal of molecular medicine. 2011; 28(3):381-388.
154. Liu Y, Han Y, Zhang H, Nie L, Jiang Z, Fa P, Gui Y and Cai Z. Synthetic miRNA-mowers targeting miR-183-96-182 cluster or miR-210 inhibit growth and migration and induce apoptosis in bladder cancer cells. PloS one. 2012; 7(12):e52280.
155. Weeraratne SD, Amani V, Teider N, Pierre-Francois J, Winter D, Kye MJ, Sengupta S, Archer T, Remke M, Bai AH, Warren P, Pfister SM, Steen JA, Pomeroy SL and Cho YJ. Pleiotropic effects of miR-183–96–182 converge to regulate cell survival, proliferation, and migration in medulloblastoma. Acta neuropathologica. 2012; 123(4):539-552.
156. Wang ZY, Xiong J, Zhang SS, Wang JJ, Gong ZJ and Dai MH. Up-Regulation of microRNA-183 Promotes Cell Proliferation and Invasion in Glioma By Directly Targeting NEFL. Cellular and molecular neurobiology. 2016.
157. Miao F, Zhu J, Chen Y, Tang N, Wang X and Li X. microRNA-183-5p promotes the proliferation, invasion and metastasis of human pancreatic adenocarcinoma cells. Oncology letters. 2016; 11(1):134-140.
158. Li ZB, Li ZZ, Li L, Chu HT and Jia M. MiR-21 and miR-183 can simultaneously target SOCS6 and modulate growth and invasion of hepatocellular carcinoma (HCC) cells. European review for medical and pharmacological sciences. 2015; 19(7):3208-3217.
159. Ueno K, Hirata H, Shahryari V, Deng G, Tanaka Y, Tabatabai ZL, Hinoda Y and Dahiya R. microRNA-183 is an oncogene targeting Dkk-3 and SMAD4 in prostate cancer. British journal of cancer. 2013; 108(8):1659-1667.
160. Xu D, He X, Chang Y, Xu C, Jiang X, Sun S and Lin J. Inhibition of miR-96 expression reduces cell proliferation and clonogenicity of HepG2 hepatoma cells. Oncology reports. 2013; 29(2):653-661.
161. Zhu H, Fang J, Zhang J, Zhao Z, Liu L, Wang J, Xi Q and Gu M. miR-182 targets CHL1 and controls tumor growth and invasion in papillary thyroid carcinoma. Biochemical and biophysical research communications. 2014; 450(1):857-862.
162. Yang MH, Yu J, Jiang DM, Li WL, Wang S and Ding YQ. microRNA-182 targets special AT-rich sequence-binding protein 2 to promote colorectal cancer proliferation and metastasis. Journal of translational medicine. 2014; 12:109.
163. Cekaite L, Rantala JK, Bruun J, Guriby M, Agesten TH, Danielsen SA, Lind GE, Nesbakken A, Kallioniemi O, Lothe RA and Skotheim RI. MiR-9–31, and -182 deregulation promote proliferation and tumor cell survival in colon cancer. Neoplasia. 2012; 14(9):868-879.
164. Wang C, Ren R, Hu H, Tan C, Han M, Wang X and Zheng Y. MiR-182 is up-regulated and targeting Cebpa in hepatocellular carcinoma. Chinese journal of cancer research. 2014; 26(1):17-29.
165. Tang H, Wang Z, Liu Q, Liu X, Wu M and Li G. Disturbing miR-182 and -381 inhibits BRD7 transcription and glioma growth by directly targeting LRRC4. PloS one. 2014; 9(1):e84146.
166. Guo Y, Liao Y, Jia C, Ren J, Wang J and Li T. MicroRNA-182 promotes tumor cell growth by targeting transcription elongation factor A-like 7 in endometrial carcinoma. Cellular physiology and biochemistry. 2013; 32(3):581-590.
167. Devor EJ, Schickling BM, Reyes HD, Warrier A, Lindsay B, Goodheart MJ, Santillan DA and Leslie KK. Cul5, a ubiquitin ligase scaffold protein, is significantly underexpressed in endometrial adenocarcinomas and is a target of miR-182. Oncology reports. 2016; 35(4):2461-5. doi: 10.3892/or.2016.4605.
168. Liu H, Wang Y, Li X, Zhang YJ, Li J, Zheng YQ, Liu M, Song X and Li XR. Expression and regulatory function of miRNA-182 in triple-negative breast cancer cells through its targeting of profilin 1. Tumour biology. 2013; 34(3):1713-1722.
169. Hirata H, Ueno K, Shahryari V, Tanaka Y, Tabatabai ZL, Hinoda Y and Dahiya R. Oncogenic microRNA-182-5p targets Smad4 and RECK in human bladder cancer. PloS one. 2012; 7(11):e51056.
170. Tang L, Chen F, Pang EJ, Zhang ZQ, Jin BW and Dong WF. MicroRNA-182 inhibits proliferation through targeting oncogenic ANUBL1 in gastric cancer. Oncology reports. 2015; 33(4):1707-1716.
171. Wojtas B, Ferraz C, Stokowy T, Hauptmann S, Lange D, Dralle H, Musholt T, Jarzab B, Paschke R and Eszlinger M. Differential miRNA expression defines migration and reduced apoptosis in follicular thyroid carcinomas. Molecular and cellular endocrinology. 2014; 388(1-2):1-9.
172. Fan D, Wang Y, Qi P, Chen Y, Xu P, Yang X, Jin X and Tian X. MicroRNA-183 functions as the tumor suppressor via inhibiting cellular invasion and metastasis by targeting oncogenic ANUBL1 in gastric cancer. Oncology reports. 2013; 29(2):653-661.
176. Sachdeva M, Mito JK, Lee CL, Zhang M, Li Z, Dodd RD, Cason D, Luo L, Ma Y, Van Mater D, Gladdy R, Lev DC, Cardona DM and Kirsch DG. MicroRNA-182 drives metastasis of primary sarcomas by targeting multiple genes. The Journal of clinical investigation. 2014; 124(10):4305-4319.

177. Amodeo V, Bazan V, Fanale D, Insalaco L, Caruso S, Cicero G, Bronte G, Rolfo C, Santini D and Russo A. Effects of anti-miR-182 on TSP-1 expression in human colon cancer cells: there is a sense in antisense? Expert opinion on therapeutic targets. 2013; 17(11):1249-1261.

178. Liu Z, Liu J, Segura MF, Shao C, Lee P, Gong Y, Hernando E and Wei JJ. MiR-182 overexpression in tumourigenesis of high-grade serous ovarian carcinoma. The Journal of pathology. 2012; 228(2):204-215.

179. Xu F, Zhang H, Su Y, Kong J, Yu H and Qian B. Up-regulation of microRNA-183-3p is a potent prognostic marker for lung adenocarcinoma of female non-smokers. Clinical & translational oncology. 2014; 16(11):980-985.

180. Chen L, Chu F, Cao Y, Shao J and Wang F. Serum miR-182 and miR-331-3p as diagnostic and prognostic markers in patients with hepatocellular carcinoma. Tumour biology. 2015; 36(10):7439-7447.

181. Ress AL, Stiegelbauer V, Winter E, Schwarzenbacher D, Kiesslich T, Lax S, Jahn S, Deutsch A, Bauernhofer T, Ling H, Samonigg H, Gerger A, Hoefler G and Pichler M. MiR-96-5p influences cellular growth and is associated with poor survival in colorectal cancer patients. Molecular carcinogenesis. 2015; 54(11):1442-1450.