Untangling the complexity of PAK1 dynamics
The future challenge

Maria Carla Parrini
Institut Curie; Centre de Recherche; Paris, France; Inserm U830; Paris, France

Keywords: PAK1, actin cytoskeleton, motility, Rac1, cell imaging, fluorescence resonance energy transfer (FRET), spatiotemporal dynamics, functional microscopy, biosensor

Abbreviations: PAK, p21-activated kinase; SH2, Src homology 2; SH3, Src homology 3; GBD, GTPase-binding domain; IS, inhibitory switch; AID, auto-inhibitory domain; FRET, fluorescence resonance energy transfer; YFP, yellow fluorescent protein; CFP, cyan fluorescent protein; Pakabi, PAK1 activation biosensor

PAK1 kinase is a crucial regulator of a variety of cellular processes, such as motility, cell division, gene transcription and apoptosis. Its deregulation is involved in several pathologies, including cancer, viral infection and neurodegenerative diseases. Due to this strong implication in human health, the complex network of signaling pathways centered on PAK1 is a subject of intensive investigations. This review summarizes the present knowledge on the multiple PAK1 intracellular localizations and on its shuttling between different compartments. The dynamics of PAK1 localization and activation are finely tuned by the cell and it is this tight control that underlies the capacity of PAK1 to participate in the regulation of many fundamental cell functions. Recently, PAK1 biosensors have been developed to visualize PAK1 activation in live cells. These new imaging tools should be of great help to better understand PAK1 biology and to conceive strategies for efficient and specific PAK1 inhibitors.

PAK1, a Tightly Regulated Kinase

PAK1 is the first discovered member of the mammalian PAK (p21-activated kinase) family, which comprises six proteins divided in group I (PAK1–3) and group II (PAK4–6) on the basis of their structural and functional features. We will focus on the prototype PAK1 as its implication in cancer is well established and represents an ideal target for future personalized oncology treatments. Moreover its dynamics have been extensively investigated by various cell imaging approaches.

The biological functions of PAK1 are disparate and include actin dynamics, cell motility, cell cycle progression, cell division, gene transcription, cell proliferation and apoptosis. However, it is still poorly understood how at molecular level PAK1 can perform such a variety of functions. A very reasonable assumption is that the fine control of localization and activation of PAK1 is the mechanism used by the cell to activate the right PAK1-dependent pathway according to the cell cycle status or in response to extracellular stimuli.

PAK1 is a downstream effector of the Rho-family GTPases, Rac1 and Cdc42. As all PAK proteins, PAK1 consists of a highly conserved C-terminal catalytic kinase domain and an N-terminal region with a regulatory role. The PAK1 regulatory domain contains (1) a GTPase-binding domain (GBD), (2) an auto-inhibitory switch domain (IS) and (3) several Pro-rich motifs that bind to SH3 domains of Nck and Grb2 adapters or of the PIX α/β exchange factors. Inactive PAK1 has a homodimeric trans-inhibited conformation, in which the N-terminal inhibitory IS domain of one PAK1 molecule binds and inhibits the catalytic domain of the other one in the dimer.7 When GTP-loaded Rac1 or Cdc42 (the activators) bind to the N-terminal GBD domain, a series of PAK1 conformational changes is triggered, leading to disruption of dimerization, removal of the trans-inhibitory interactions and consequent acquisition of an active state for the kinase C-terminal domain.7–9

PAK1 activation by Rac1 and Cdc42 has been well established and biochemically characterized, but this simple Rac1/Cdc42-PAK1 pathway explains only very partially the spatiotemporal regulation and the multiple cellular roles of PAK1. At least two levels of complexity need to be taken into account. First, there are also GTPase-independent mechanisms that regulate PAK1 kinase activity, such as phosphorylation by other kinases (including Erk,11,12 PDK113 and Cdc214,15), or interactions with other proteins; among the PAK1 partners, beside the already mentioned SH3-containing Nck, Grb2 and α/βPIX, it is worth mentioning the tumor suppressor Merlin16,17 and the integrin-binding protein Nischarin18 that both inhibit the PAK1 kinase activity. Second, PAK1 has kinase-independent functions that have been ascribed to its scaffold capacity,19–21 i.e., PAK1 in some cases acts not by phosphorylating targets but by facilitating the assembly of multi-protein signaling modules.

In the past decade, the live cell imaging came in help of classical approaches, based on biochemistry techniques and immunofluorescence studies. Thanks to the developments of fluorescent protein fusions and of automated video-microscopes, we start to have the right tools to decipher the dynamics of PAK1 at high...
resolution, both temporally and spatially. Importantly, since PAK1 is normally auto-inhibited, it is essential to know not only where/when PAK1 localizes, but also where/when PAK1 is activated.

Multiple Cellular Localizations for the Multifunctional PAK1

The functional versatility of PAK1 relies, at least in part, on its multiple cellular localizations (Fig. 1). PAK1 is a cytosolic kinase that shuttles to specific cellular locations, including plasma membrane, adhesion sites, cell-cell junctions and nucleus. The dynamics of PAK1 localization contribute to its activation/inactivation, to the efficient phosphorylation of its targets, to the selection of binding partners and, consequently, to the specificity of its biological function.

PAK1 translocates from cytosol to membranes. Biochemical fractioning showed that PAK1 is both cytosolic and membrane-associated.²² PAK1 translocation to membranes occurs upon stimulation by growth signals and it is mediated by interaction with Nck²³,²⁴ and Grb2²⁵ SH2/SH3 adapters. Upon activation, the SH2 domains of Nck and Grb2 bind to phosphorylated Tyr residues of Tyr-kinase receptors, while their SH3 domains interact with the Pro-rich sequences in PAK1 N-terminal domain.

Recruitment of PAK1 to plasma-membrane is sufficient to partially stimulate its kinase activity, 10- to 20-fold.²⁶,²⁷ By using a FRET (fluorescence resonance energy transfer)-based PAK1 biosensor (Fig. 2A), it was found that membrane recruitment induces a slight conformational change of the PAK1 dimers, which shift from a closed to a semi-open state, leading to the partial PAK1 activation; full PAK1 kinase activity requires Cdc42 or Rac1 that dissociates dimers producing the open state.²⁸

Interestingly, membrane-localized PAK1 is hyper-responsive to GTPase stimulation,²⁸ possibly because of its proximity with Cdc42/Rac1 molecules at the membrane or because of a higher affinity of semi-open PAK1 for Cdc42/Rac1. Moreover, other mechanisms seem to contribute to PAK1 activation at the membrane: interaction with sphingolipids,²⁷ interaction with SH3-containing exchange factors α/βPIX²⁸,²⁹ and possibly also trans-phosphorylation between PAK1 molecules.²⁸ Furthermore, the non-receptor Tyr-kinase Src, which localized on the plasma membrane, activates another non-receptor Tyr-kinase, Etk, by direct phosphorylating it at Tyr 566,³⁰ and Etk in turn activates PAK1.¹¹,¹²

These findings indicate that Nck/Grb2-mediated PAK1 translocation from cytosol to plasma-membrane is a mechanism that stimulates its kinase activity. However, it is not a simple on/off switch; multiple intermediate PAK1 activation states do exist and are dictated by the intricate balance of various incoming signals.

Figure 1. The multiple cellular localizations of PAK1. PAK1 shuttles between several subcellular sites. The various recruitment and activation mechanisms are all tightly controlled. At each of these localizations PAK1 performs distinct functions, by phosphorylating or interacting with specific targets.

Figure 2. Biosensors for PAK1 activity. (A) Design of a FRET-based PAK1 biosensor. The Pakabi biosensor is a fusion protein comprising YFP, aa 65 to C-terminus of PAK1, and CFP. In the inactive dimeric state, FRET can occur because of the proximity between donor CFP and acceptor YFP. In the active monomeric state, CFP and YFP are moved apart, and FRET is decreased. (B) Visualization of PAK1 activity. A Cos-7 expressing Pakabix (membrane-targeted version of Pakabi) and mRFP-Cdc42wt was imaged by live FRET-microscopy during cell spreading. Note the high PAK1 activity detected at the leading edge of protrusions. (C) Strategy for an affinity-reagent PAK1 biosensor. A variant of the IS domain of PAK1 was designed in order to efficiently bind the active open state of endogenous PAK1. The conjugated environment-sensitive dye undergoes fluorescence changes upon protein-protein interaction and allows monitoring the binding of the affinity reagent to the PAK1 kinase domain.
PAK1 at the leading edge of protrusions. Phosphorylated active PAK1 is present at the tips of protrusions of moving cells, at membrane ruffles and at the periphery of spreading cells, which are all sites where active actin remodeling is occurring. Indeed, PAK1 phosphorylates and/or interacts with various proteins involved in actin cytoskeleton organization, including LIM kinase (an activator of the actin-depolymerizing protein cofillin), filamin (a cross-linker of actin filaments), p41-ARC (a subunit of the nucleating and branching Arp2/3 complex), MLC (myosin light-chain) and MLCK (myosin light-chain kinase). By the combinatorial effect of phosphorylation of these targets, PAK1 regulates the dynamics of protrusions and of cell motility. In particular, a Rac1/PAK1/LIMK/cofilin pathway has been proposed as spatial organizer of the lamellipodium and lamella actin networks. LIM kinase is responsible for at least two distinct PAK1-dependent diseases, the metastasis/invasion of cancer cells, and neuro-cytotoxicity in Alzheimer disease.

PAK1 at adhesion sites. PAK1 has been observed at adhesion sites and is considered a transient component of the integrin adhesion network. Localization of PAK1 to adhesion sites is mediated by its binding to PIX proteins, which associate with GIT proteins (G protein coupled receptor kinase interactor) that are direct partners of paxillin, a central component of focal adhesions. Biochemical studies suggested that GIT and PIX are not simply binding partners, but rather constituent subunits of a large multi-protein complex, which can bind PAK1 to form a tri-molecular PAK-PIX-GIT signaling module.

The use of TIRF (total internal reflection fluorescence) microscopy allows quantitative measurements on rates of adhesion assembly and disassembly. This technique revealed that PAK1 activity directly controls adhesion dynamics. Indeed, constitutively activated PAK1 accelerated both assembly and disassembly rates; conversely, inhibition of PAK1 (by expression of the PAK auto-inhibitory domain, AID, aa 83–149 of PAK1) impaired both assembly and disassembly rates, significantly increasing adhesion lifetime. Moreover, adhesions of cells in which PAK1 was inhibited by AID or by RNAi silencing were longer and thinner, with an increased distribution throughout the ventral cell surface and a reduction of the zyxin protein component (a marker of mature adhesions). These results together indicate that PAK1 regulates assembly, maturation and turnover of adhesions.

One molecular mechanism used by PAK1 to execute its function at adhesions has been well described: it is the phosphorylation of paxillin on serine 273 (S273). Phospho-S273-paxillin efficiently binds GIT, promoting the localization of the PAK5-PIX-GIT module near the leading edge of cell protrusions. Therefore, PAK1 acts both upstream and downstream of S273-paxillin phosphorylation in a positive feedback loop. S273-paxillin phosphorylation increases cell migration, protrusiveness and adhesion turnover. Since PIX is a Rac1 activator (via its GEF exchange factor activity) and PAK1 is Rac1 effector, it is possible that the phospho-S273-paxillin-PIX-GIT complex contributes both to activate Rac1 at the leading edge and to transmit its downstream signaling via PAK1.

Importantly, continuous GDP/GTP cycling of Rac1 appears to be required for adhesion turnover, for the organization and dynamics of protrusions, and consequently for cell migration. It is tempting to speculate that Rac1 cycling, PAK1 activation-inactivation cycle and adhesion turnover are dynamically connected, but the underlying molecular mechanisms still have to be discovered.

Deregulation of PAK1 localization and function at adhesions may have dramatic consequences. For example, it has been reported that certain breast cancer cell lines have endogenous hyperactive PAK1 because of its PIX-mediated mislocalization to atypical adhesions.

PAK1 at cell-cell junctions. In epithelial cells PAK1 has been observed at regions of E-cadherin-mediated cell-cell contacts. More specifically, the PAK-PIX-GIT complex seems to translocate from cell-matrix adhesions to cell-cell contacts and to be involved in the establishment of contact inhibition of proliferation. In cells reaching confluence the kinetics of lateral recruitment of βPIX (presumably associated with PAK1) were accurately analyzed by confocal microscopy and turned out to be much slower than that of β-catenin, a component of adherens junction; it was necessary to wait 5–6 days after establishment of cell-cell contacts to achieve a complete lateral recruitment of βPIX-containing complexes. Moreover, inhibition of PAK1 (by kinase-dead PAK1 K299R or AID domain expression) did not affect the integrity of junctions, even though it impairs contact inhibition. These data are consistent with the conclusion that PAK1 is not necessary for establishment of cell-cell contacts, but rather for the signaling triggered by the assembly of the contacts themselves.

PAK1 kinase activity is transiently activated by junction assembly. A recently discovered target of PAK1 at this cellular location is Ajuba, an actin-binding LIM-domain protein that colocalizes with cadherins. Ajuba interacts with both inactive (GDP-bound) and active (GTP-bound) Rac1. TIRF microscopy allows quantitative measurements on rates of adhesion assembly and disassembly. This technique revealed that PAK1 activity directly controls adhesion dynamics. Indeed, constitutively activated PAK1 accelerated both assembly and disassembly rates; conversely, inhibition of PAK1 (by expression of the PAK auto-inhibitory domain, AID, aa 83–149 of PAK1) impaired both assembly and disassembly rates, significantly increasing adhesion lifetime. Moreover, adhesions of cells in which PAK1 was inhibited by AID or by RNAi silencing were longer and thinner, with an increased distribution throughout the ventral cell surface and a reduction of the zyxin protein component (a marker of mature adhesions). These results together indicate that PAK1 regulates assembly, maturation and turnover of adhesions.

One molecular mechanism used by PAK1 to execute its function at adhesions has been well described: it is the phosphorylation of paxillin on serine 273 (S273). Phospho-S273-paxillin efficiently binds GIT, promoting the localization of the PAK5-PIX-GIT module near the leading edge of cell protrusions. Therefore, PAK1 acts both upstream and downstream of S273-paxillin phosphorylation in a positive feedback loop. S273-paxillin phosphorylation increases cell migration, protrusiveness and adhesion turnover. Since PIX is a Rac1 activator (via its GEF exchange factor activity) and PAK1 is Rac1 effector, it is possible that the phospho-S273-paxillin-PIX-GIT complex contributes both to activate Rac1 at the leading edge and to transmit its downstream signaling via PAK1.

Importantly, continuous GDP/GTP cycling of Rac1 appears to be required for adhesion turnover, for the organization and dynamics of protrusions, and consequently for cell migration. It is tempting to speculate that Rac1 cycling, PAK1 activation-inactivation cycle and adhesion turnover are dynamically connected, but the underlying molecular mechanisms still have to be discovered.

Deregulation of PAK1 localization and function at adhesions may have dramatic consequences. For example, it has been reported that certain breast cancer cell lines have endogenous hyperactive PAK1 because of its PIX-mediated mislocalization to atypical adhesions.

PAK1 at cell-cell junctions. In epithelial cells PAK1 has been observed at regions of E-cadherin-mediated cell-cell contacts. More specifically, the PAK-PIX-GIT complex seems to translocate from cell-matrix adhesions to cell-cell contacts and to be involved in the establishment of contact inhibition of proliferation. In cells reaching confluence the kinetics of lateral recruitment of βPIX (presumably associated with PAK1) were accurately analyzed by confocal microscopy and turned out to be much slower than that of β-catenin, a component of adherens junction; it was necessary to wait 5–6 days after establishment of cell-cell contacts to achieve a complete lateral recruitment of βPIX-containing complexes. Moreover, inhibition of PAK1 (by kinase-dead PAK1 K299R or AID domain expression) did not affect the integrity of junctions, even though it impairs contact inhibition. These data are consistent with the conclusion that PAK1 is not necessary for establishment of cell-cell contacts, but rather for the signaling triggered by the assembly of the contacts themselves.

PAK1 kinase activity is transiently activated by junction assembly. A recently discovered target of PAK1 at this cellular location is Ajuba, an actin-binding LIM-domain protein that colocalizes with cadherins. Ajuba interacts with both inactive (GDP-bound) and active (GTP-bound) Rac1. TIRF microscopy allows quantitative measurements on rates of adhesion assembly and disassembly. This technique revealed that PAK1 activity directly controls adhesion dynamics. Indeed, constitutively activated PAK1 accelerated both assembly and disassembly rates; conversely, inhibition of PAK1 (by expression of the PAK auto-inhibitory domain, AID, aa 83–149 of PAK1) impaired both assembly and disassembly rates, significantly increasing adhesion lifetime. Moreover, adhesions of cells in which PAK1 was inhibited by AID or by RNAi silencing were longer and thinner, with an increased distribution throughout the ventral cell surface and a reduction of the zyxin protein component (a marker of mature adhesions). These results together indicate that PAK1 regulates assembly, maturation and turnover of adhesions.

One molecular mechanism used by PAK1 to execute its function at adhesions has been well described: it is the phosphorylation of paxillin on serine 273 (S273). Phospho-S273-paxillin efficiently binds GIT, promoting the localization of the PAK5-PIX-GIT module near the leading edge of cell protrusions. Therefore, PAK1 acts both upstream and downstream of S273-paxillin phosphorylation in a positive feedback loop. S273-paxillin phosphorylation increases cell migration, protrusiveness and adhesion turnover. Since PIX is a Rac1 activator (via its GEF exchange factor activity) and PAK1 is Rac1 effector, it is possible that the phospho-S273-paxillin-PIX-GIT complex contributes both to activate Rac1 at the leading edge and to transmit its downstream signaling via PAK1.

Importantly, continuous GDP/GTP cycling of Rac1 appears to be required for adhesion turnover, for the organization and dynamics of protrusions, and consequently for cell migration. It is tempting to speculate that Rac1 cycling, PAK1 activation-inactivation cycle and adhesion turnover are dynamically connected, but the underlying molecular mechanisms still have to be discovered.

Deregulation of PAK1 localization and function at adhesions may have dramatic consequences. For example, it has been reported that certain breast cancer cell lines have endogenous hyperactive PAK1 because of its PIX-mediated mislocalization to atypical adhesions.
New Tools to Study Live Dynamics of PAK1 Activity

Antibodies that recognize phosphorylated, i.e., activated, PAK1 are commercially available and can be used for immunofluorescence studies. However, such approaches on fixed cells provide only static pictures of PAK1 activity in the cell and are not very informative on temporal dynamics. Recently, a couple of strategies have been proposed to investigate PAK1 activity in living cells.

FRET-based PAK1 biosensor. FRET (fluorescence resonance energy transfer) is a non-radiative transfer of energy from a donor to an acceptor fluorophore when they are in proximity (typically less than 10 nm). This physical phenomenon is now exploited by biologists to study cellular events at molecular scale by fluorescence microscopy. In particular, FRET-based biosensors are fusion constructs, encoded by transfectable plasmid and designed to probe intracellular activities. The pioneers “camaleon” and “Raichu” biosensors allow monitoring Ca++ production and activity of Ras oncogene, respectively. A biosensor for PAK1, called “Pakabi,” was designed by fusing two fluorophores (YFP and CFP) at the N and C termini of PAK1. The kinase domain in the open state of PAK1.

Acknowledgments

Many thanks to Carine Joffré for critical reading of the manuscript and to Jacques Camonis for the continuous support.
14. Banerjee M, Worth D, Prowse DM, Nikolic M. Pak1 suppressor gene, is an inhibitor of the p21-activated kinase. Pak1. Mol Cell 2003; 12:841-9; PMID:14508356; http://dx.doi.org/10.1016/S1097-2765(03)00382-4

17. Hirokawa Y, Tikoé A, Huyhn J, Utermark T, Hanemann CO, Giovannini M, et al. A clue to the therapy of neurofibromatosis type 1: Nf1 is a PAK1 inhibitor. Cancer J 2004; 10:20-6; PMID:15000491; https://doi.org/10.1097/00002393-200401000-00006

18. Alshari SK, Reddi PJ, Juliano RL. The integlin-binding protein Nils harbors cell migration by inhibiting PAK1. J Biol Chem 2004; 279:2377-88; PMID:15229651; http://dx.doi.org/10.1074/jbc.M0076029

19. Brown MC, West KA, Turner CE. Pak1-dependent paxillin kinase linker and p21-activated kinase localization to focal adhesions involves a multistep activation pathway. Mol Cell Biol 2002; 12:1550-65; PMID:12006652; http://dx.doi.org/10.1099/mcb.20.12.6354-63; PMID:12006652; http://dx.doi.org/10.1099/mcb.20.12.6354-63

20. Molli PR, Li DQ, Murray BW, Rayala SK, Kumar R. Regulation by sphingosine and other biologically active lipids. J Biol Chem 1998; 273:8137-44; PMID:9525917; http://dx.doi.org/10.1074/jbc.273.14.8137

21. Stofega MR, Sanders LC, Gardiner EM, Bokoch GM. Pak1-mediated activation of ERK1/2 regulates lamellipodial dynamics. J Cell Biol 2008; 179:839-49; PMID:18547871; http://dx.doi.org/10.1083/jcb.201010059

22. Delorme-Walker VD, Peterson JR, Chernoff J, Waterman CM, Danuser G, DerMarderosian C, et al. Pak1 regulates focal adhesion strength, myosin IIA distribution, and actin dynamics to optimize cell migration. J Cell Biol 2011; 193:1289-303; PMID:21089890; http://dx.doi.org/10.1083/jcb.201010059

23. Delorme V, Machacke M, DerMarderosian C, Anderson KL, Wittmann T, Hanein D, et al. Cofilin activity downstream of Pak1 regulates cell protrusion efficiency by organizing lamellipodium and lamella actin networks. Dev Cell 2007; 13:646-62; PMID:17398134; http://dx.doi.org/10.1016/j.devcel.2007.08.011

24. Stofega MR, Sanders LC, Gardiner EM, Bokoch GM. Constitutive p21-activated kinase (PAK1) activation in breast cancer cells as a result of mislocalization of Pak1 to focal adhesions. Mol Cell Biol 2004; 15:2965-77; PMID:15047871; http://dx.doi.org/10.1010/cmb.2007.08.0052-2

25. Bokoch GM, Reilly AM, Daniels RH, King CC, Schlessinger J. The adaptor protein Nck links receptor tyrosine kinases with the serine/threonine kinase Pak1. J Biol Chem 1996; 271:25746-9; PMID:8842410; http://dx.doi.org/10.1074/jbc.271.25.25746

26. Lu W, Katz S, Gupta R, Mayer BJ. Activation of Pak by membrane localization mediated by an SH3 domain from the adaptor protein Nck. Curr Biol 1997; 7:85-94; PMID:9042662; http://dx.doi.org/10.1016/S0960-8222(00)00552-2

27. Puto LA, Pestonjamasp K, King CC, Bokoch GM. Directional sensing requires G beta gamma-mediated activation of Pak1 and PIX alpha-dependent activation of Cdc42. Nat Cell Biol 2004; 6:396-406; PMID:15229651; http://dx.doi.org/10.1074/jbc.M0076029

28. Bokoch GM, Wang Y, Bohl BP, Sells MA, Quilliam S. Pak1-dependent kinase-1 (PDK1). J Biol Chem 2000; 275:29403-9; PMID:11382770; http://dx.doi.org/10.1074/jbc.M0075572

29. Daniels RH, Zenke FT, Bokoch GM. alphaPix phosphorylation on c212 affects microtubules in cells undergoing mitosis. Curr Biol 2002; 12:1233-9; PMID:12076334; http://dx.doi.org/10.1016/S0092-8674(02)00956-9

30. Thiel DA, Reeder MK, Pfaff A, Coleman TR, Sells MA, Chernoff J. Cell cycle-regulated phosphorylation of p21-activated kinase 1. Curr Biol 2002; 12:1227-32; PMID:12076334; http://dx.doi.org/10.1016/S0092-8674(02)00951-4

31. Kells JL, Wilker EW, Johnson KC, Eckman MS, Yaffe MB, Jacks T. Merlin, the product of the Nf2 tumor suppressor gene, is an inhibitor of the p21-activated kinase. Pak1. Mol Cell 2003; 12:841-9; PMID:14508356; http://dx.doi.org/10.1016/S1097-2765(03)00382-4

References
46. Premont RT, Perry SJ, Schmalzigau R, Roseman JT, Xing Y, Claing A. The GIT/PIX complex: an oligomeric assembly of GIT family ARF-GTPase-activating proteins and PIX family Rac/Cdc42 guanine nucleotide exchange factors. Cell Signal 2004; 16:1001-11; PMID:15212761

47. Kraynov VS, Chamberlain C, Bokoch GM, Schwartz MA, Slabaugh S, Hahn KM. Localized Rac activation dynamics visualized in living cells. Science 2000; 290:333-7; PMID:11030631; http://dx.doi.org/10.1126/science.290.5490.333

48. Itoh RE, Kurokawa K, Ohba Y, Yoshizaki H, Mochizuki N, Matsuda M. Activation of rac and cdc42 video imaged by fluorescent resonance energy transfer-based single-molecule probes in the membrane of living cells. Mol Cell Biol 2002; 22:6582-91; PMID:12192056; http://dx.doi.org/10.1128/MCB.22.18.6582-6591.2002

49. Parrini MC, Sadou-Dubourgnoux A, Aoki K, Kunida K, Biondini M, Harzoglu A, et al. SH3BP1, an exocyst-associated RhoGAP, inactivates Rac1 at the front to drive cell motility. Mol Cell 2011; 42:650-61; PMID:21658605; http://dx.doi.org/10.1016/j.molcel.2011.03.032

50. Liu F, Jia L, Thompson-Baine A-M, Puglise JM, Ter Beest MB, Zegers MM. Cadherins and Pak1 control contact inhibition of proliferation by Pak1-betaPIX and regulates Aurora-A. Mol Cell 2005; 21:1853-64; PMID:15982013; http://dx.doi.org/10.1016/j.molcel.2005.08.035

51. Lozano E, Frasa MAM, Smolarczyk K, Knaus UG, Liu F, Jia L, Thompson-Baine A-M, Puglise JM, Ter Beest MB, Zegers MM. Association between Pak1 expression and regulates Aurora-A. Mol Cell 2005; 21:1853-64; PMID:15982013; http://dx.doi.org/10.1016/j.molcel.2005.08.035

52. Deacon SW, Besser A, Fukui JA, Rennefaehr UE, Myers C, Chernoff J, et al. An isoform-selective, small-molecule inhibitor targets the autoregulatory mechanism of p21-activated kinase. Chem Biol 2008; 15:322-31; PMID:18420139; http://dx.doi.org/10.1016/j.chembiol.2008.03.005

53. Li F, Adam L, Vadlamudi RK, Zhou H, Sen S, Chernoff J, et al. p21-activated kinase 1 interacts with and phosphorylates histone H3 in breast cancer cells. EMBO Rep 2002; 3:767-73; PMID:12151336; http://dx.doi.org/10.1093/embo-reports/kvf157

54. Singh RR, Song C, Yang Z, Kumar R. Nuclear localization and chromatin targets of p21-activated kinase 1. J Biol Chem 2005; 280:18130-7; PMID:15749698; http://dx.doi.org/10.1074/jbc.M412607200

55. Lightcap CM, Kari G, Arias-Romero LE, Chernoff J, Rodeck U, Williams JC. Interaction with LC8 is required for Pak1 nuclear import and is indispensable for zebrafish development. PLoS One 2009; 4:e6025; PMID:19557173; http://dx.doi.org/10.1371/journal.pone.0006025

56. Holm C, Rayala S, Jirstön K, Stål O, Kumar R, Landberg G. Association between Pak1 expression and regulates Aurora-A. Mol Cell 2005; 20:237-49; PMID:15361624; http://dx.doi.org/10.1038/embo-reports/kvf157

57. Holm C, Rayala S, Jirstön K, Stål O, Kumar R, Landberg G. Association between Pak1 expression and regulates Aurora-A. Mol Cell 2005; 20:237-49; PMID:15361624; http://dx.doi.org/10.1038/embo-reports/kvf157

58. Hirokawa Y, Arnold M, Nakajima H, Zalcberg J, Nagai T, Miyawaki A, et al. Interaction with LC8 is required for Pak1 nuclear import and is indispensable for zebrafish development. PLoS One 2009; 4:e6025; PMID:19557173; http://dx.doi.org/10.1371/journal.pone.0006025

59. Maruta H. Signal therapy of breast cancers by the HDAC inhibitor FK228 that blocks the activation of endogenous Cdc42 visualized in living cells. Science 2000; 290:333-7; PMID:11030651; http://dx.doi.org/10.1126/science.290.5490.333

60. Fu J, Bian M, Jiang Q, Zhang C. Roles of Aurora kinases in mitosis and tumorigenesis. Mol Cancer Res 2007; 5:1-10; PMID:17259342; http://dx.doi.org/10.1158/1538-7445.MCR-06-0208

61. Mochizuki N, Yamashita S, Kurokawa K, Ohba Y, Nagai T, Miyawaki A, et al. Spatio-temporal images of growth-factor-induced activation of Rac and Ral1. Nature 2001; 411:1065-8; PMID:11429608; http://dx.doi.org/10.1038/35082594

62. Nalbant P, Hodgson L, Kraynov V, Tourcakhine A, Hahn KM. Activation of endogenous Cdc42 visualized in living cells. Science 2004; 305:1615-9; PMID:15361624; http://dx.doi.org/10.1126/science.1100367

63. Jha RK, Leerer-Fay A, Yin S, Wu Y, Butterfoss GL, Snypers T, et al. Computational design of a PAK1 binding protein. J Mol Biol 2010; 400:257-70; PMID:20460129; http://dx.doi.org/10.1016/j.jmb.2010.05.006

64. Jha RK, Wu Y, Zawistowski JS, MacNevin C, Hahn KM, Kuhlman B. Redesign of the PAK1 autoinhibitory domain for enhanced stability and affinity in biosensor applications. J Mol Biol 2011; 413:513-22; PMID:2158/1541-7786.MCR-06-0208

65. Jha RK, Leaver-Fay A, Yin S, Wu Y, Butterfoss GL, Snypers T, et al. Computational design of a PAK1 binding protein. J Mol Biol 2010; 400:257-70; PMID:20460129; http://dx.doi.org/10.1016/j.jmb.2010.05.006

66. Jha RK, Wu Y, Zawistowski JS, MacNevin C, Hahn KM, Kuhlman B. Redesign of the PAK1 autoinhibitory domain for enhanced stability and affinity in biosensor applications. J Mol Biol 2011; 413:513-22; PMID:2158/1541-7786.MCR-06-0208

67. Jha RK, Straus CEM. 3D structure analysis of PAKs: A clue to the rational design for affinity reagents and blockers. Cellular Log 2012; 2:69-78; http://dx.doi.org/10.1016/j.cell.201107162