Supplementary Table 1.

Body weight changes after hyperoxia and/or rituximab treatment (X ±SD). All samples were weighted at postnatal days 7, 12, and 17 and displayed mean ± SD gram. LDR: Low-dosage (20 mg/kg) rituximab and reared in hyperoxia (75% oxygen). HDR: High-dosage (40 mg/kg) of rituximab and reared in hyperoxia. PBS: Received placebo (PBS) and reared in hyperoxia. CTL: Received placebo (PBS) and reared in conventional environment (21% oxygen) as healthy control. LHE: Lactating mice reared in hyperoxia. LCE: Lactating mice reared in conventional environment.

Group	Sample size	Weight P7 (g)	Weight P12 (g)	Weight P17 (g)
CTL	12	3.00±0.24	3.93±0.33	6.64±0.18*
LDR	12	2.97±0.42	3.95±0.46	6.33±0.32*
HDR	12	3.03±0.16	3.89±0.28	6.17±0.38**
PBS	9	3.06±0.24	4.02±0.32	6.42±0.25
LCE	3	21.83±0.62	21.67±1.25	21.67±1.25
LHE	3	20.83±0.94	20.97±0.86	21.33±0.94

Compared with PBS: *P < 0.05; **P < 0.01
Supplementary Table 2.

Relative abundances of key taxa confronting hyperoxia and/or rituximab.

All Arabic numerals represent relative abundance (%). LDR: Low-dosage (20 mg/kg) rituximab and reared in hyperoxia (75% oxygen). HDR: High-dosage (40 mg/kg) of rituximab and reared in hyperoxia. PBS: Received placebo (PBS) and reared in hyperoxia. CTL: Received placebo (PBS) and reared in conventional environment (21% oxygen) as healthy control.

Name	LDR	HDR	PBS	CTL	LCE	LHE	
Phylum							
Bacteroidetes	49.54	59.43	37.69	32.74	28.05	23.16	
Firmicutes	24.98	20.92	35.63	39.23	58.02	61.51	
Proteobacteria	9.87	3.60	8.65	5.39	2.23	2.37	
Verrucomicrobiota	3.20	5.40	0.10	6.51	0.82	0.09	
Campylobacterota	4.54	2.92	6.70	2.69	1.11	1.22	
Class							
Bacteroidia	49.18	59.10	37.05	31.90	27.64	22.82	
Bacilli	10.06	8.06	15.12	14.23	46.77	47.00	
Firmicutes-Clostridia	14.92	12.78	20.33	24.99	11.08	13.36	
Verrucomicrobiae	3.20	5.40	0.10	6.51	0.82	0.09	
Order							
Bacteroidales	48.47	58.51	36.42	30.79	27.31	22.33	
Lactobacillales	5.21	3.12	7.11	6.74	33.88	39.80	
Enterobacterales	7.91	1.42	5.28	0.95	0.34	0.60	
Lachnospirales	11.45	8.24	12.51	21.03	7.33	9.00	
Family							
Tannerellaceae	22.71	29.29	7.61	11.05	2.23	0.89	
Muribaculaceae	16.83	5.46	21.85	14.21	20.55	18.31	
Bacteroidaceae	7.89	21.85	5.88	3.55	2.52	1.02	
Genus	Species	2019	2020	2021	2022	2023	2024
---------------	----------------------------------	------	------	------	------	------	------
Lactobacillaceae		3.53	2.64	6.14	6.24	33.57	38.89
Akkermansiaceae		3.18	5.38	0.06	6.47	0.80	0.06
Parabacteroides		22.71	29.29	7.61	11.05	2.22	0.89
Akkermansia		3.18	5.38	0.06	6.47	0.80	0.06
Bacteroides		7.89	21.85	5.88	3.55	2.52	1.02
Blautia		0.55	0.92	0.41	7.22	0.33	0.14
Helicobacter		4.54	2.92	6.69	2.69	1.10	1.22
Lactobacillus		3.53	2.63	6.15	6.24	33.57	38.89
Akkermansia_mucinis	hila	3.18	5.38	0.06	6.47	0.80	0.06
Parabacteroides_sp_CT06		11.47	12.64	5.29	3.11	0.67	0.50
Ligilactobacillus	murinus	2.01	1.74	4.18	5.27	6.16	5.60
Helicobacter_hepaticus		1.13	0.75	6.11	0.92	0.11	0.27
Supplementary Figure 1

An oxygen controller used for neonate breast-feeding in hyperoxia environment. Both lactating mice and littles were located within this instrument and the oxygen concentration was automatically maintained at 75% oxygen. A. Animal cages located in a hyperoxia chamber. B. Breast-feeding over a layer of spongy shavings. C. An oxygen controller (made in Shanghai, China) that maintain the oxygen concentration within a hyperoxia chamber.
Supplementary Figure 2

Hyperoxia combined with rituximab significantly altered the gut microbiota of newborns. The heatmap showed the differences of intestinal flora among the three groups (PBS, LDR and HDR) at level of genus. LDR: low dose (20mg/kg) of rituximab, reared in hyperoxic (75% oxygen) . HDR: high dose (40 mg/kg) of rituximab, reared in a hyperoxic environment. PBS: with placebo (PBS) received, reared in a hyperoxic environment.
Supplementary Figure 3

Dysbiosis of intestine microbiota induced by hyperoxia. The heatmap showed the differences of intestinal flora between CTL and PBS. CTL: Received placebo (PBS) and reared in conventional environment (21% oxygen) PBS: Received placebo (PBS) and reared in hyperoxia.
Supplementary Figure 4
Dysfunctional intestinal microbiota of lactating mice rearing in hyperoxia environment. The heatmap showed the differences of intestinal flora between LCE and LHE. LCE: Lactating mice reared in conventional environment. LHE: Lactating mice reared in hyperoxia.