FROBENIUS MATRICES AND A VARIANT OF
ZOLOTAREV’S THEOREM

HAI-LIANG WU AND LI-YUAN WANG

Abstract. In this paper, with the help of the theory of matrices and finite fields we generalize Zolotarev’s theorem to an arbitrary finite dimensional vector space over \mathbb{F}_q, where \mathbb{F}_q denotes the finite field with q elements.

1. Introduction

Investigating permutations over a finite set is a classical topic in number theory and combinatorics. In particular, the signs of permutations have been extensively investigated. Recall that a permutation σ is called even (respectively odd) if it is a product of an even (respectively odd) number of transpositions. We define $\text{sign}(\sigma) = 1$ if σ is even and $\text{sign}(\sigma) = -1$ if σ is odd.

Let p be an odd prime, and let a be an integer with $p \nmid a$. Clearly the sequence

$$0 \mod p, a \times 1 \mod p, \cdots, a \times (p - 1) \mod p$$

is a permutation π_p of the sequence

$$0 \mod p, 1 \mod p, \cdots, (p - 1) \mod p.$$

The well-known Zolotarev’s theorem [3] states that $\text{sign}(\pi_p)$ coincides with the Legendre symbol $(\frac{a}{p})$. Later many mathematicians investigated various variants of Zolotarev’s theorem. For example, Let n be a positive odd integer, and let b be an integer relatively prime to n. Then Frobenius (cf. [1]) proved that the Jacobi symbol $(\frac{b}{n})$ is the sign of the permutation of $\mathbb{Z}/n\mathbb{Z} = \{0 \mod n, \cdots, n - 1 \mod n\}$ induced by multiplication by $b \mod n$. Finally, Lerch [2] generalized the above results and he obtained the following theorem:

Theorem 1.1. (Lerch) Let n be any positive integer, and let c be an integer relatively prime to n. Let π_c be a permutation of $\mathbb{Z}/n\mathbb{Z}$ induced by

\[\text{2020 Mathematics Subject Classification. Primary 05A05; Secondary 11C20, 15B33.}\]

\[\text{Keywords. Zolotarev’s lemma, permutations, finite fields.}\]

\[\text{Supported by the National Natural Science Foundation of China (Grant No. 11971222).}\]
multiplication by \(c \mod n \). Then we have

\[
\text{sign}(\pi_c) = \begin{cases}
\left(\frac{c}{n}\right)
& \text{if } n \text{ is odd}, \\
1
& \text{if } n \equiv 2 \pmod{4}, \\
(-1)^{\frac{n-1}{2}}
& \text{if } n \equiv 0 \pmod{4}.
\end{cases}
\]

Motivated by the above work, in this paper we shall study a new variant of Zolotarev’s theorem. We first introduce some notations. Let \(\mathbb{F}_q \) be the finite field with \(q \) elements, and let \(n \) be a positive integer. Let \(\mathbb{F}_n^q := \{ x = (x_1, x_2, \cdots, x_n)^T : x_i \in \mathbb{F}_q \} \) be the \(n \)-dimensional vector space over \(\mathbb{F}_q \), where \(M^T \) denotes the transpose of the matrix \(M \). We also let \(\mathbb{M}_n(\mathbb{F}_q) \) be the set of all \(n \times n \) matrices with entries in \(\mathbb{F}_q \), and let \(\mathbb{M}_n(\mathbb{F}_q)^\times := \{ M \in \mathbb{M}_n(\mathbb{F}_q) : M \text{ is invertible} \} \).

Then given any \(A \in \mathbb{M}_n(\mathbb{F}_q)^\times \), the bijection:

\[
x \rightarrow Ax
\]

induces a permutation \(\tau(A) \) of \(\mathbb{F}_n^q \). To show that this permutation is indeed an extension of the above permutations, we briefly study the following special case. Let \(p \) be an odd prime, and let \(a \) be an integer relatively prime to \(p \). Suppose that \(A \) is the scalar matrix:

\[
A = \begin{bmatrix} a & a & \cdots & a \\
 & a & \cdots & a \\
 & & \ddots & \vdots \\
 & & & a
\end{bmatrix}
\]

We shall later show that

\[
\text{sign}(\tau(A)) = \left(\frac{a}{p}\right)^n = \left(\frac{\det A}{p}\right).
\]

In view of the above, we see that the permutation induced by multiplication by \(A \) is a natural extension of the permutations investigated by Zolotarev, Frobenius and Lerch. We assume that the characteristic of \(\mathbb{F}_q \) is greater than 2. Let \(\widehat{\mathbb{F}}_q^\times \) denote the group of all multiplicity characters over \(\mathbb{F}_p^\times \), and let \(\chi \) be the quadratic character in \(\widehat{\mathbb{F}}_q^\times \). Now we state our main result.

Theorem 1.2. Suppose that the characteristic of \(\mathbb{F}_q \) is greater than 2. Then for any \(A \in \mathbb{M}_n(\mathbb{F}_q)^\times \) we have

\[
\text{sign}(\tau(A)) = \chi(\det A).
\]

To make the above result more accessible, we introduce the following example. When \(\mathbb{F}_q = \mathbb{F}_3 \) and \(n = 2 \), we let \(A = \begin{bmatrix} 1 & -1 \\
 1 & 1 \end{bmatrix} \). Let the sequence

\[
x_1, x_2, \cdots, x_9 = \begin{bmatrix} -1 \\
 -1 \end{bmatrix}, \begin{bmatrix} -1 \\
 0 \end{bmatrix}, \begin{bmatrix} -1 \\
 1 \end{bmatrix}, \begin{bmatrix} 0 \\
 -1 \end{bmatrix}, \begin{bmatrix} 0 \\
 0 \end{bmatrix}, \begin{bmatrix} 1 \\
 -1 \end{bmatrix}, \begin{bmatrix} 1 \\
 0 \end{bmatrix}, \begin{bmatrix} 1 \\
 1 \end{bmatrix}.
\]

By computation we can verify that the sequence

\[
Ax_1, Ax_2, \cdots, Ax_9
\]
is equal to
\[x_6, x_1, x_8, x_7, x_5, x_3, x_2, x_9, x_4. \]
Now it is easy to see that \(\text{sign}(\tau(A)) = \left(\frac{2}{3} \right) = -1 \). We will prove our main result in Section 2.

2. PROOF OF THE MAIN RESULT

Throughout this section, we assume that the characteristic of \(\mathbb{F}_q \) is greater than 2. Let \(\hat{\mathbb{F}}^\times_q \) denote the group of all multiplicity characters over \(\mathbb{F}_p^\times \), and let \(\chi \) be the quadratic character in \(\hat{\mathbb{F}}^\times_q \). We also let \(I_n \) denote the \(n \times n \) identity matrix.

We first consider diagonal matrices.

Lemma 2.1. Let \(\mathbb{F}_q \) be the finite field with \(q \) elements and let \(n \) be a positive integer. Then for any invertible diagonal matrix \(D \in M_n(\mathbb{F}_q) \) we have
\[\text{sign}(\tau(D)) = \chi(\det D). \]

Proof. We first consider the case
\[D_a = \begin{bmatrix} a & 1 & \ldots & 1 \\ 1 & 1 & \ldots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \ldots & 1 \end{bmatrix}, \]
where \(a \in \mathbb{F}_q^\times \). Given any \((x_2, x_3, \ldots, x_n)^T \in \mathbb{F}_q^{n-1} \), we set
\[C_{x_2,x_3,\ldots,x_n} := \{(x, x_2, x_3, \ldots, x_n)^T : x \in \mathbb{F}_q\}. \]
It is easy to see that \(\tau(D_a) \) can be factored into permutations on each \(C_{x_2,x_3,\ldots,x_n} \). Similar to Zolotarev’s theorem, it is easy to see that
\[\text{sign}(\tau(D_a) |_{C_{x_2,x_3,\ldots,x_n}}) = \chi(a). \]
Hence
\[\text{sign}(\tau(D_a)) = \prod_{C_{x_2,x_3,\ldots,x_n}} \text{sign}(\tau(D_a) |_{C_{x_2,x_3,\ldots,x_n}}) = \chi(a)^{n-1} = \chi(a). \quad (2.1) \]

Now for any diagonal matrix \(D \in M_n(\mathbb{F}_q) \) of the form
\[\begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix} = \begin{bmatrix} \lambda_1 & 1 & & \\ 1 & 1 & & \\ & \ddots & \ddots & \\ & & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ & \ddots \\ & & \lambda_n \end{bmatrix}, \]
it is easy to see that
\[\text{sign}(\tau(D)) = \chi(\lambda_1) \cdots \chi(\lambda_n) = \chi(\det D). \]
This completes the proof. \(\square \)

We also need the following result.
Lemma 2.2. For any \(1 \leq i < j \leq n\), let \(I_{ij}\) be the elementary matrix obtained from the identity matrix \(I_n\) by switching \(i\)-th row and \(j\)-th row. Then we have
\[
\text{sign}(\tau(I_{ij})) = \chi(-1).
\]

Proof. For any \(1 \leq i < j \leq n\), we set
\[
C_{ij} := \{(x_1, \ldots, x_n)^T \in \mathbb{F}_q^n : x_i = x_j\},
\]
and
\[
D_{ij} := \{(x_1, \ldots, x_n)^T \in \mathbb{F}_q^n : x_i \neq x_j\}.
\]
Clearly \(\tau(I_{ij})|_{C_{ij}}\) is identity and \(\tau(I_{ij})|_{D_{ij}}\) is a product of \((q^n - q^{n-1})/2\) transpositions. Hence we have
\[
\text{sign}(I_{ij}) = (-1)^{\frac{q^n - q^{n-1}}{2}} = \chi(-1).
\]
This completes the proof. \(\square\)

Let \(g(t) = t^m + a_1 t^{m-1} + \cdots + a_m \in \mathbb{F}_q[t]\). Then the Frobenius matrix \(N_g\) with respect to \(g(t)\) is an \(m \times m\) matrix defined by
\[
N_g := \begin{bmatrix}
0 & 0 & \cdots & 0 & -a_m \\
1 & 0 & \cdots & 0 & -a_{m-1} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & -a_1
\end{bmatrix}.
\]

We need the following result concerning the rational canonical form of a matrix.

Lemma 2.3. Let \(M \in M_n(\mathbb{F}_q)\), and let \(f_\chi(t)\) be the characteristic polynomial of \(M\). Suppose that \(f_\chi(t) = p_1(t)^{e_1} \cdots p_r(t)^{e_r}\) with \(e_1, \ldots, e_r\) positive integers and \(p_1, \ldots, p_r\) distinct monic irreducible polynomials over \(\mathbb{F}_q\). Then there exists a matrix \(T \in M_n(\mathbb{F}_q)^*\) such that
\[
TMT^{-1} = \begin{bmatrix}
L_1 & & \\
& L_2 & \\
& & \ddots \\
& & & L_r
\end{bmatrix},
\]
where
\[
L_i = \begin{bmatrix}
N_{p_1} & & \\
& N_{p_1} & \\
& & \ddots \\
& & & N_{p_1}
\end{bmatrix}.
\]
We also call this form the rational canonical form of \(A\).

We now consider the Frobenius matrices.

Lemma 2.4. Let \(g(t) = t^n + a_1 t^{n-1} + \cdots + a_n \in \mathbb{F}_q[t]\) with \(a_n \neq 0\), and let \(N(g)\) be the Frobenius matrix with respect to \(g\). Then we have
\[
\text{sign}(\tau(N_g)) = \chi(\det N_g).
\]
Proof. One can verify that
\[\tau(N_g) = \tau(A_3) \circ \tau(A_2) \circ \tau(A_1), \]
where
\[
A_1 = \begin{bmatrix} 0 & \cdots & 0 & 1 \\ 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 1 & 0 \end{bmatrix}, \quad A_2 = \begin{bmatrix} -1 & 0 & \cdots & 0 \\ -a_{n-1} & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ -a_1 & 0 & \cdots & 1 \end{bmatrix}, \quad A_3 = \begin{bmatrix} a_n \\ 1 \\ \vdots \\ \vdots \end{bmatrix}.
\]
By Lemma 2.1 we have \(\text{sign}(\tau(A_3)) = \chi(a_n) = \chi(\det A_3) \). Noting that
\[A_1 = I_{12}I_{13} \cdots I_{1n}, \]
by Lemma 2.2 we obtain
\[\text{sign}(\tau(A_1)) = \chi(-1)^n = \chi(\det A_1). \]
Note that the dimension of subspace \(V = \{ x \in \mathbb{F}_q^n : A_2x = x \} \) is \(n - 1 \) and \(A_2^2 = I \). Hence \(\tau(A_2) \) is a product of \((q^n - q^{n-1})/2 \) transpositions. Hence \(\text{sign}(\tau(A_2)) = (-1)^{\frac{q^n-q^{n-1}}{2}} = \chi(-1) = \chi(\det A_2) \). Then our desired result follows from \(\det N_g = \det A_1 \cdot \det A_2 \cdot \det A_3 \).

We are now in a position to prove our main result.

Proof of Theorem 1.2. We first consider case
\[
P = \begin{bmatrix} L & I \\ \vdots & \vdots \\ & \vdots \\ & & I \end{bmatrix},
\]
where
\[
L = \begin{bmatrix} N_g & I \\ \vdots & \vdots \end{bmatrix},
\]
and \(N_g \) is the Frobenius matrix with respect to the monic polynomial \(g(t) \). By Lemma 2.4 it is easy to see that \(\text{sign}(\tau(P)) = \chi(\det N_g) \). Now by Lemma 2.3 we see that there is an invertible matrix \(T \) such that \(TAT^{-1} \) is of the rational canonical form. In view of the above, one can verify that
\[\text{sign}(\tau(A)) = \chi(\det A). \]
This completes the proof.
References

[1] A. Brunyate, P.L. Clark, Extending the Zolotarev-Frobenius approach to quadratic reciprocity, Ramamujan J. 37 (2015) 25–50.
[2] M. Lerch, Sur un théorème de Zolotarev, Bull. Intern. de l’Acad. François Joseph 3 (1896), 34–37.
[3] G. Zolotarev, Nouvelle déonstration de la loi de réciprocité de Legendre, Nouvelles Ann. Math. 11 (1872), 354–362.

(Hai-Liang Wu) School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, People’s Republic of China
Email address: whl.math@smail.nju.edu.cn

(Li-Yuan Wang) School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing 211816, People’s Republic of China
Email address: wly@smail.nju.edu.cn