Occurrence of Methicillin Resistant *Staphylococcus aureus* Carriage in Different Animal Species in Eastern Algeria

Belkadi Souhila, Meradi Manel*, Oucheriah Yasmine, Yahiaoui Fatima Ezzahra, Bouakaz Ahlam, Nezzar Kebaili Wissam, Heleili Nouzha

ABSTRACT

Background: Several animal species may act as a possible reservoir for transmission of MRSA to human. The aim of this study was to determine the antibiotic resistance profiles of *Staphylococci* from animals.

Methods: A total of 754 nasal and rectal swab samples collected from apparently healthy animals at Batna and Sétif governorate, eastern Algeria. For this purpose, we studied the antimicrobial susceptibility of the isolates by conventional methods (Disk diffusion test and methicillin resistance by Cefoxitin disk diffusion test).

Result: The overall prevalence of *S. aureus* isolates from 754 samples was 43.61%, with a high rate of *S. aureus* isolation in rabbits (92%). Goats, bovine, dogs, cats, horses, poultry presented a medium prevalence with 31.91%, 25%, 23.75%, 21.25%, 15% and 15% respectively, while the lowest rate was observed in sheep with 10%. MRSA were isolated in all animal species (29.46%). All detected isolates were multiple drug resistant (MDR). A complete resistance (100%) was noted for ciprofloxacin and gentamicin in sheep and horses and to penicillin in dogs. MRSA is a serious problem for human and animal health; therefore, several experiments must be carried out to demonstrate possible transmission of MRSA between companion or food-chain animals and humans, as well as some MRSA clones of human origin that have adapted to new animal hosts eventually by losing useless virulence factors or acquiring new mobile genetic elements.

Key words: Companion animals, Livestock, Methicillin resistant *Staphylococcus aureus*, Nasal portage, Rectal portage.

INTRODUCTION

Livestock is an important agricultural activity in the world that plays a fundamental role in the economic, ecological, cultural and environmental level. As a result, the animal health is an important factor. However, bacterial pathogen is consistently striking this sector (Srour, 2006).

Staphylococcus aureus is a bacterium of significant importance because of its ability to cause a wide range of diseases and capacity to adapt to diverse environmental forms (Grema et al., 2015). It is an important opportunistic pathogen that frequently colonizes the skin, the nose and mucous membranes of healthy humans and animals and can cause multiple infectious diseases of diverse severity ranging from minor skin infections, such as furunculosis to severe and highly debilitating conditions such as pneumonia and endocarditis (Jensen and Lyon, 2009; Lozano et al., 2016). In addition, *S. aureus* causes inflammation of the mammary gland in bovine and the lower part of the foot in poultry (Quinn et al., 2000).

Antibiotics are commonly used in farms for the treatment and prevention of various diseases, to improve food and to increase milk production (Sharma et al., 2011). Nevertheless, zoonotic bacteria like *S. aureus* develop resistance to these antimicrobial agents. The emergence of this bacterial resistance in animals and their products has highlighted the role that plays the resistance transfer to the human population via the food chain and to the environment by a direct contact with animals (Mesfin, 2015).

Laboratory ESPA, Veterinary and Agricultural Sciences Institute, Department of Veterinary Sciences, Batna 1 University - 05000, Algeria.

*Faculty of Natural and Life Sciences, Department of Microbiology and Biochemistry, Batna 2 University -05000, Algeria.

Corresponding Author: S. Belkadi, Laboratory ESPA, Veterinary and Agricultural Sciences Institute, Department of Veterinary Sciences, Batna 1 University - 05000, Algeria.

Email: souhilabelkadi@gmail.com

How to cite this article: Belkadi, S., Merradi, M., Oucheriah, Y., Yahiaoui, F. E., Bouakaz, A., Kebaili, W. N. and Heleli, N. (2021). Occurrence of Methicillin Resistant *Staphylococcus aureus* Carriage in Different Animal Species in Eastern Algeria. Agricultural Science Digest. DOI: 10.18805/ag.D-329.

Submitted: 11-12-2020 Accepted: 01-03-2021 Online: 12-03-2021

Among *Staphylococcus aureus* isolates, meticillin-resistant *S. aureus* (MRSA) represents the major cause of antibiotic-resistance. For many years, MRSA was considered as a specific pathogen of human (Baptiste et al., 2005; Leonard et al., 2008). In recent years, a clone of MRSA has appeared in farm animals (MRSA-L) and isolated in veterinarians, farmers and in foods of animal origin (Chairat et al., 2015). Nowadays, it has been detected in other pets (dogs, horses, cats, pet birds, cattle and pigs) associated with serious infections and become public health concern since it could not be treated easily with many antibiotics (Habibullah et al., 2017).
In Algeria, the problem of antimicrobial resistance in veterinary medicine is poorly documented. This study highlights the antimicrobial resistance status resulting from *S. aureus* and meticillin-resistant *S. aureus* (MRSA) carriage in animals.

MATERIALS AND METHODS

Samples collection

A total of 754 nasal and rectal swab samples were collected from randomly selected farms including cattle, sheep, goats, rabbits, cats, poultry and dogs from Batna governorate while horses were sampled from Setif governorate, eastern Algeria. This study included 377 animals from both genders. This investigation was performed between January 2018 to April 2019 in Microbiology laboratory, Batna 1 University, Algeria. All samples were aseptically collected and examined for detection of *S. aureus* (El Seedy et al., 2017).

Isolation and identification of *S. aureus*

First, samples were incubated in a nutrient broth for enrichment (Schmidt et al., 2014). After overnight incubation at 37°C, 1 μl of this broth was streaked into mannitol salt agar (MSA) which is a selective medium for *S. aureus*. The plates were then incubated for 24 hours. The incubation was extended to 48 hours if the result of the culture was negative or uncertain. Morphologically distinguishable staphylococcal colonies were cultured again on MSA plate to obtain pure cultures. The appearance of yellowish colonies on MSA was presumed to be *S. aureus*, subcultured and identified by conventional methods (gram’s staining, catalase test, free coagulase production and biochemical tests (API Staph galery) according to Giacinti et al. (2017).

Antimicrobial sensitivity testing

Disc diffusion testing was performed on all staphylococcal isolates in accordance with CLSI (2011) against the following panel of 10 antimicrobial agents; Pénicillïn (10 µg), Oxacillïn (5 µg), Cefoxitin (30 µg), Erythromycin (15 µg), Gentamicin (10 µg), Ciprofloxacïn (5 µg), Rifampïcin (5 µg), Vancomycin (30 µg), Tetracyclïn (30 µg), Amoxicillin and Clavulanic acid (20 µg /10 µg).

Using the commercially prepared disc, freshly subcultured isolates were emulsified in 3-4 ml of sterile distilled water. The turbidity of the suspension was adjusted to the turbidity of standard equivalent to 0.5 McFarland (Mustapha et al., 2016). A sterile swab was dipped in the bacterial suspension and then smeared on Mueller-Hinton agar media surface. Five discs of antibiotics commercially available were dispensed into each inoculated plate and incubated at 37°C for 24 h. Strains were classified as resistant in accordance with EUCAST (2019) for all antibiotics tested.

Cefoxitin disk diffusion test

Resistance to methicillin was tested using a cefoxitin disc whose load is 30 µg and by an oxacillin disc of 5 µg load. The reading has been done in accordance with the recommendations of the antibiogram committee of CA-SFM (Comité de l’Antibiogramme de la Société Française de Microbiologie).

RESULTS AND DISCUSSION

In veterinary medicine, the study of the carriage of *S. aureus* in animals remains limited to a few pets such as cats, horses and pigs (Labrecque, 2007). The interest about *S. aureus* and MRSA in livestock, domestic and wild animals has significantly increased (Lozano et al., 2016); Methicillin resistant *Staphylococcus aureus* emerged 50 years ago, as a nosocomial pathogen but in the last decade it has become also a major cause of serious infections in both human and animals (Stefani et al., 2012).

Our study was focused on the prevalence of *S. aureus* and methicillin resistant strains in eight categories of farm animals (Horse, sheep, cattle, goats, rabbits, poultry, dogs and cats) (Table 1).

Occurrence of *Staphylococcus aureus*

The results of *S. aureus* and MRSA strains prevalence on the monitored farms are summarized in Table 2. *S. aureus* was recovered from all examined animal species. Of the 754 samples, 43.61% samples were positive for *S. aureus*. Wang et al. (2019) reported a lower isolation rate with 40.66%. The highest recovery rate was noted in rabbits (92%). It was followed by goats (31.91%), bovine (25%), dogs (23.75%), cats (21.25%), poultry and horses (15% both) and lowest with sheep (10%). Radwan et al. (2015) reported the same result for low isolation rate in sheep while, Giacinti et al. (2017) reported a higher prevalence with 53.5% in dairy sheep farms. Recovery of *S. aureus* from nasal and rectal swabs in goats was lower than those found in the investigation of Daaloul-Jedidi et al. (2016) (86.6%). The isolation rates from bovine and poultry was lower than those of Akkou et al. (2016) in Algeria who reported 29.81% and 55%, respectively.

This investigation revealed that nasal swabs were found more infected by *S. aureus* than rectal swabs in goats, rabbits, cats, dogs and poultry except in sheep in which equal rate (50%) was observed in both nasal and rectal swabs. In bovine and horses, *S. aureus* isolates were more from rectal than nasal swabs. This result does not corroborate with those of Linhares et al. (2015) and Daaloul-Jedidi et al. (2016) who reported a predominance of this pathogens in nasal samples than in rectal ones in pigs and goats respectively. This portage can constitute a potential risk of transmission to people who are in contact with these animals (Carlet and Shlimmer, 2015). The frequency of *S. aureus* in nasal swabs was higher than that reported by Mai-siyama et al. (2014) as 10% for sheep, 20% for cattle and 08% for goats. For rectal samples, Al-Thani et al. (2012) reported a total absence of *S. aureus* in these samples, especially for sheep and goats. This can be explained by the difference in breeding conditions such as the presence of several animals on the same farm (birds, pets) which facilitates the transmission of this germ.
Occurrence of Methicillin Resistant *Staphylococcus aureus* Carriage in Different Animal Species in Eastern Algeria

The present study showed the influence of age in the carriage of *S. aureus*. It was more isolated in animals aged more than one year old, which is explained by the skin modifications which are considered as the first barrier against pathogens with decrease in elasticity and thickness of subcutaneous cell tissue and dry skin (Branchet *et al.*, 2012). In addition, some anomalies of the respiratory system, more often observed in elderly animals, will cause the aggression of the bronchial epithelium, expressed by a decrease in bronchial secretions which are the second barrier against the entry of many airborne infectious agents (Vareille *et al.*, 2011). Our findings are in consistent with data of Branchet *et al.* (2012) who also described age as a factor associated with the carriage of *S. aureus*. The results reported that females are most infected by *S. aureus* in all animal species. Weese (2005) confirmed that sex is a risk factor, the female seems to be more susceptible to colonization by *S. aureus* than males.

Evaluation of antibacterial activity

Results of antibiotic sensitivity test on *S. aureus* isolates recovered from nasal and rectal swabs from different animal species revealed that all the isolates were completely resistant (100%) to ciprofloxacin and gentamycin in sheep and horses and to penicillin in dogs (Table 3).

The overall results of resistance to penicillin, gentamicin, ciprofloxacin and erythromycin was highly prevalent with 64.81%, 50.53%, 48.16 and 47.79 respectively. Moreno-Grúa *et al.* (2018) gave the same resistance rate to penicillin. Table 3 shows a high resistance to vancomycin. Effectively, this may be due to the fact that the clinical isolates of *S. aureus* with intermediate and complete resistance to vancomycin have emerged within the past two decades and

Table 1: Prevalence of *S. aureus* by age and sex of different animal's species (In %).

Species	Age	Examined samples	Global prevalence (%)	Male(%)	Female(%)
Bovine	≤ 1 year	100	25	48	52
	< 1 year	100	10	10	90
	>1 year	90			
Sheep	< 1 year	94	30	23	77
	>1 year	70			
Goats	< 1 year	100	10.2	47	53
	>1 year	19			
Rabbits	< 3 months	100	4.08	8.16	
	5 months	8.04			
	8 months	12.5			
	12 months	73.5			
	15 months	2.04			
	24 months	2.04			
Horses	0-2 years	100	19	25	75
	2-4 years	19			
	4-6 years	6			
	6-8 years	12.5			
	8-10 years	12.5			
	10-12 years	12.5			
Dogs	0-4 months	80	6	65	35
	5-10 months	4			
	>10 months	11.25			
Cats	0-12 years	80	12	53	47
	3-5 years	6			
	> 5 years	10			

Table 2: *S. aureus* recovery rates from animal's samples (In %).

Source of the isolates	Numberof animals	Examined samples	*S. aureus*	Nasal swab	Rectal swab	MRSA (+)
Bovine	50	100	25	48	52	24
Sheep	50	100	10	50	50	40
Goats	47	94	31.91	24.46	75.5	23.33
Rabbits	50	100	92	57	43	7
Horses	50	100	15	40	60	46.66
Dogs	40	80	23.75	74	26	12.5
Cats	40	80	21.25	52.94	47.05	55.55
Poultry	50	100	15	80	20	26.66
Rate	377	754	29.23	53.3	46.69	29.46
Table 3: Overall antibiotic resistance of S. aureus isolated from animals (In %).

	OX	AMX	FOX	VAN	CIP	RIF	E	GEN	TE	P
Bovine	60	40	24	≥4	≥4	80	5	5	≥4	50
Sheep	40	40	40	≥4	100	≥4	100	≥4	50	
Goats	≥4	≥4	23.33	≥4	14	90	43	≥4	4	4
Rabbits	22.22	11.11	7.41	≥4	14.82	11.11	≥4	≥4	53	
Horses	55	16.7	46.66	50	100	25	75	100	20	65
Dogs	77.78	33.33	12.5	44.44	33	44.44	55	≥4	22.22	100
Cats	70.58	≥4	55.55	14.64	23.52	23.52	58.82	23.52	17.64	82.35
Poultry	46.66	≥4	26.66	≥4	66.66	13.33	86.66	46.66	≥4	53.33
Total	35.17	28.22	29.46	36.36	48.16	41.58	47.79	50.53	19.95	64.81

have become a serious public health problem (Cong et al., 2020). Noble et al. (1992) demonstrated that there is Vancomycin resistance transfer, mediated by transposons mainly found on plasmids, which raised considerable worry about the risk of dissemination of vancomycin-resistant determinants to universally susceptible microorganisms of medical importance, especially S. aureus. This concern was subsequently confirmed by the successful transfer of the van element from Enterococcus faecalis to a MRSA strain in mix-infected mice (Cong et al., 2020). Haaber et al. (2015) discovered that susceptibility of S. aureus to vancomycin is reduced by concurrent exposure to colistin, a cationic peptide antimicrobial employed to treat infections by Gram-negative pathogens.

Giacinti et al. (2017) revealed in their investigation that S. aureus isolates were phenotypically resistant to all the β-lactams tested and to erythromycin, streptomycin, kanamycin and tetracycline. Same results were revealed in our study for erythromycin (47.79%).

S. aureus strains (29.46%) showed a resistance to cefoxitin and were thus identified as methicillin-resistant S. aureus (MRSA) strains as described by Hachemi et al. (2019). Radwan et al. (2015) reported high rate of methicillin resistance with 58.3%.

According to Table 1, cats were more affected by SARM strains followed by horses and sheep (55.55%, 46.66% and 40% respectively). Faires et al. (2009) gave a little lower rate for cats (10%). For Sarhan and Mohammed (2019), MRSA isolates prevalence in sheep (90%) was significantly higher than our results.

Weese (2005) reported same MRSA isolation rate in horses with 42.5% while most published reports indicated that MRSA colonization in horses ranged from 0 to 11% (Grema et al., 2015). The previously prevalence might under-represent true carriage as this study samples were only from the nasopharynx.

Bounar-Kechih et al. (2018) isolated also MRSA from poultry at 53.5% which was higher than our results with 26.66%.

Dogs and rabbits were the least affected by S. aureus carriage (12.5% and 7.41% respectively). Loeffler et al. (2005) and Moreno-Grúa et al. (2018) gave also a low rate with 9% for dogs and 12.5% for rabbits, respectively.

All the isolated MRSA strains showed cross-resistance to antibiotics used in the study. They were more resistant towards two or multiple antibiotic combinations; therefore, they were cross-resistant to many other antibiotic families other than β-lactam antibiotics. In Algeria, selling antibiotics is totally controlled what means abusive and indiscriminate use in human but also in the animal.

CONCLUSION
The main finding of this study indicates clearly that S. aureus and MRSA were highly isolated from all animal species joining the results of other studies. They were also resistant to β-lactam antibiotics (Penicillin and Oxacillin). This result also suggests that it may be a potential risk for human health because of a possible transmission from animals. Because of the few studies done in this area in Algeria, it will be interesting to realize sampling from multiple anatomic sites when screening animals for MRSA and to undertake molecular studies are needed in order to understand the cross transmission from animal to human or from human to animals.

REFERENCES
Akkou, M., Antri, K., Bachtarzi, M.A., Bes, M., Tristan, A., Dauwalder, O., Kaidi R., Meugnier, H., Tazir, M., Ettene, J., Laurent, F. and Ramdani-Bouguessa, N. (2016). Phenotypic and genotypic characterization of Staphylococcus aureus strains associated with bovine mastitis and nasal carriage of workers in contact to animals in Algeria. Pakistan Veterinary Journal. 36(2): 184-188.

Al-Thani, R.F. and Al-Ali, F. (2012). Incidences and antimicrobial susceptibility profiles of Staphylococcus aureus species isolated from animals in different Qatari farms. African Journal of Microbiology Research. 6: 7454-7458.

Baptiste, K.E., Williams, K., Williams, N.J., Wattret, A., Clegg, P.D. and Dawson, S. (2005). Methicillin-resistant staphylococci in companion animals. Emerging Infectious Disease Journal. 11: 1942-1944.

Bounar-Kechih, S., Hamdi, M.T., Aggad, H., Megueni, N. and Cantekin, Z. (2018). Carriage Methicillin-Resistant Staphylococcus aureus in Poultry and Cattle in Northern Algeria. Veterinary Medicine International, 5 p.

Branchet, M.C., Boisnic, S., Frances, C. and Robert, A.M. (1990). Skin thickness changes in normal aging skin. Journal of Gerontology. 36: 28-35.
Occurrence of Methicillin Resistant *Staphylococcus aureus* Carriage in Different Animal Species in Eastern Algeria

Carlet, J. and Shlemer, B. (2015). Consommation d’antibiotiques et résistance aux antibiotiques en France : nécessité d’une mobilisation déterminée et durable. Bilan des données de surveillance. 17-150.

Chairat, S., Gharsa, H., Lozano, C., Gómez-Sanz, E., Gómez, P., Zarazaga, M., Boudabous, A., Torre, C., Ben Slama, K. (2015). Characterization of *Staphylococcus aureus* from raw meat samples in Tunisia: Detection of clonal lineage ST398 from the African Continent. Foodborne Pathogens and Disease. 12: 686-92.

Cong, Y., Yang S. and Rao, X. (2020). Vancomycin resistant *Staphylococcus aureus* infections: A review of case updating and clinical features. Journal of Advanced Research. 21: 169-176.

Daaloul-Jedidi, M., Soudani, A. and Messadi, L. (2016). Nasal and rectal carriage of coagulase positive *Staphylococcus* in healthy goats. Journal of new sciences, Agriculture and Bio-technology. 3(4): 1910-1913.

El-Seedy, F.R., Samy, A.A., Salam, H.S.H., Khairy, E.A. and Koraney, A.A. (2017). Polymerase chain reaction detection of genes responsible for multiple antibiotic resistance *Staphylococcus aureus* isolated from food of animal origin in Egypt, Veterinary World. 10(10): 1205-1211.

EUCAST (European Committee on Antimicrobial Susceptibility Testing) (2019). Breakpoint Tables for Interpretation of Zone Diameters (Version 2.0). Guidelines. European Committee on Antimicrobial Susceptibility Testing.

Faires, M.C., Tatcr, K.C. and Weese, J.S. (2009). An investigation of methicillin-resistant *Staphylococcus aureus* colonization in people and pets in the same household with an infected person or infected pet. Journal of the American Veterinary Medical Association. 235(5): 540-543.

Giacinti, G., Cartora, V., Caprido, A., Sagrafoli, D., Marri, N., Giangolini, G., Amoroso, R., Iurescia, M., Stravino, F., Dottarelli, S., Feltrin, F., Franco, A., Amabiliste, S. and Battisti, A. (2017). Prevalence and characterization of methicillin-resistant *Staphylococcus aureus* carrying mecA or mecC and methicillin-susceptible *Staphylococcus aureus* in dairy sheep farms in central Italy. Journal of Dairy Science. 100(10): 7857-863.

Grema, H.A., Geidam Y.A., Gadzama G.B., Shehata, A.A.E., Abdel-Ghani, A.E., Abdullah, M.M. and Ingerber, H. (2015). Methicillin resistant *Staphylococcus aureus* (MRSA): A review. Advances in Animal and Veterinary Sciences. 3(2): P. 79.

Haaber, J., Friberg, C., McCready, M., Lin, R., Cohen, N.S. and Ingerber, H. (2015). Reversible Antibiotic Tolerance induced in *Staphylococcus aureus* by concurrent drug exposure. mBio 6(1): 02268-14.

Habibullah, M.Z., Espinosa-Gongora, C., Damborg, P., Sieber, R.N., Munk, R., Husted, L., Moodley, A., Skov, R., Larsen, J. and Guardabassi, L. (2017). Horses in Denmark Are a Reservoir of Diverse Clones of Methicillin-Resistant and –Susceptible *Staphylococcus aureus*. Frontiers in Microbiology. 8: 543.

Hachemi, A., Zenia, S., Denia, M.F., Guessoum, M., Hachemi, M.M. and Ait-Oudhia, K. (2019). Epidemiological study of sausage in Algeria: Prevalence, quality assessment and antibiotic resistance of *Staphylococcus aureus* isolates and the risk factors associated with consumer habits affecting foodborne poisoning. Veterinary World. 12(8): 1240-1250.

Jensen, S.O., Lyon B.R. (2009). Genetics of antimicrobial resistance in *Staphylococcus aureus*. Future Microbiology Journal. 4(5): 565-582. https://doi.org/10.2217/fmb.09.30.

Labrecque, O. (2007). Sensibilité d’isolats de *Staphylococcus aureus* d’origine bovine aux antimicrobiens et présence de gènes de résistance. Thèse de doctorat. Université de Montréal 100p.

Leonard, F.C. and Markey, B.K. (2008). Methicillin-resistant *Staphylococcus aureus* in animals: a review. The Veterinary Journal. 175: 27-36.

Linhares, L.L., Yang M., Sreevatsan, S., Munoz-Zanzi, C.A., Torremorell, M. and Davies, P.R. (2015). The effect of anatomic site and age on detection of *Staphylococcus aureus* in pigs. Journal of Veterinary Diagnostic Investigation. 27(1): 55-60.

Loeffler, A., Boag, A.K., Sung, J., Lindsay, J.A., Guardabassi, L., Dalsgaard, A., Smith, H., Stevens, K.B. and Lloyd, D.H. (2005). Prevalence of methicillin-resistant *Staphylococcus aureus* among staff and pets in a small animal referral hospital in the UK. Journal of. Antimicrobial Chemotherapy. 56(4): 692-697.

Lozano, C., Gharsa H, Ben Slama K, Zarazaga and M, Torres C. (2016). *Staphylococcus aureus* in Animals and Food: Methicillin Resistance, Prevalence and Population Structure. A Review in the African Continent. Microorganisms. 4: 12.

Mai-siyama, I.B., Okon, K.O., Adamu, N.B., Asikia, U.M., Isyaka, T.M., Adamu, S.G. and Mohammed, A. (2014). Methicillin-resistant *Staphylococcus aureus* (MRSA) colonization rate among ruminant animals slaughtered for human consumption and contact persons in Maiduguri, Nigeria. African Journal of Microbiology Research. 8: 2643-2649.

Mesfin, Z. (2015). Hygienic practices, bacteriological quality of cow milk and its public health importance along the dairy value chain in sidama high lands of southern Ethiopia. Mémoire de master en science vétérinaire et santé publique. Université, Addis Ababa, Ethiopia, 81p.

Moreno-Grúa, E., Pérez-Fuentes, S., Muñoz-Silvestre, A., Viana, D., Fernández-Ros, A.B., Sanz-ejero, C., Corpa, J.M. and Selva, L. (2018). Characterization of Livestock-Associated Methicillin-Resistant *Staphylococcus aureus* Isolates Obtained from Commercial Rabbits Located in the Iberian Peninsula. Frontiers in Microbiology. 9: 1812.

Mustapha, M., Bukar-Kolo, Y.M., Geidam, Y.A and Gulani, I.A. (2016). Phenotypic and genotypic detection of methicillin-resistant *Staphylococcus aureus* in hunting dogs in Maiduguri metropolitan, Borno State, Nigeria, Veterinary World. 9(5): 501-506.

Noble, W.C., Virani, Z. and Cree, R.G.(A) (1992). Co-transfer of the vancomycin and other resistancegenes from *Enterococcus faecalis* NCTC 12201 to *Staphylococcus aureus*. FEMS Microbiology Letters. 93: 195-198.

Quinn, P.J., Carter M.E., Markey B.K. and Carter G.R. (2000). *Staphylococcus* species In: Clinical Veterinary Microbiology, Mosby, Edinburgh 118-126.

Radwan, I.A.H., Shehata, A.A.E., Abdel-Ghani, A.E., Abdullah, M.M. and Abdaraboh, A.A.M. (2015). Phenotypic and genotypic diversity of *Staphylococcus aureus* isolated from livestock and human. Global Veterinaria. 14(2): 274-281.
Occurrence of Methicillin Resistant *Staphylococcus aureus* Carriage in Different Animal Species in Eastern Algeria

Sarhan, S.R. and Mohammed, H.A. (2019). Isolation and Identification of mec A gene from MRSA isolated from local sheep and evaluate the inhibitory effect of cranberry leaves extract *in-vitro*. Research Journal of Pharmacy and Technology. 12(5): 2131-2136.

Sharma, D.S., Pradeep K.S. and Anjali M. (2011). Prevalence and antimicrobial susceptibility of drug resistant *Staphylococcus aureus* in raw milk of dairy cattle. International Research Journal of Microbiology. 14: 466-470.

Schmidt, V.M., Williams, N.J., Pinchbeck, G., Corless, C.E., Shaw, S., Mc Ewan, N., Dawson, S. and Nuttal, T. (2014). Antimicrobial resistance and characterization of staphylococci isolated from healthy Labrador retrievers in the United Kingdom. BMC Veterinary Research. 10: 17.

Srour, G. (2006). Amélioration durable de l’élevage des petits ruminants au Liban. Thèse de doctorat en Science agronomiques. Institut national Polytechnique de Lorraine 219 p.

Stefani, S., Chung, D.R., Lindsay, J.A., Friedrich, A.W., Kearns, A.M., Westhf, H. and Mac Kenzie, F.M. (2012). Meticillin-resistant *Staphylococcus aureus* (MRSA): global epidemiology and harmonization of typing methods. International Journal of Antimicrobial Agents. 39: 273-282.

Vareille, M., Kieninger, E., Edwards, M.R. and Regamey, N. (2011). The airway epithelium: soldier in the fight against respiratory viruses. Clinical Microbiology Reviews. 24: 210-229.

Wang, J., Sang, L., Sun, S., Chen, Y. and Chen, D. (2019). Xie X. Characterisation of *Staphylococcus aureus* isolated from rabbits in Fujian, China. Epidemiology and Infection. 147: 256.

Weese, J.S. (2005). Methicillin-resistant *Staphylococcus aureus*: an emerging pathogen in small animals. Journal of the American Animal Hospital Association. 41: 150-157.