Evolution in Time of Moving Unstable Systems

M. I. Shirokov

Abstract
Relativistic quantum theory shows that the known Einstein time dilation (ED) approximately holds for the decay law of the unstable particle having definite momentum p (DP). I use a different definition of the moving particle as the state with definite velocity v (DV). It is shown that in this case the decay law is not dilated. On the contrary, it is contracted as compared with the decay law of the particle at rest. It is demonstrated that ED fails in both DP and DV cases for time evolution of the simple unstable system of the kind of oscillating neutrino. Experiments are known which show that ED holds for mesons. The used theory may explain the fact by supposing that the measured mesons are in DP state.

KEY WORDS: unstable particle; decay law; Einstein time dilation; relativistic quantum mechanics; neutrino oscillation.

1Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia; e-mail: shirokov@thsun1.jinr.ru
1. INTRODUCTION

Experimenters showed that the lifetime τ of a uniformly moving unstable particle is equal to $\tau_0 \gamma$, where τ_0 is the lifetime of the particle at rest and γ is the Lorentz factor $\gamma = (1 - v^2/c^2)^{-1/2}$, e.g., see (Baily, 1977; Farley, 1992).

In other words, if $F(t)$ is the decay law of the unstable particle moving in the laboratory frame and $F_0(t)$ is the decay law of the same particle at rest, then $F_0(t) = \exp(-t/\tau_0)$ and $F(t) = \exp(-t/\tau_0 \gamma)$ or

$$F(t) = F_0(t/\gamma).$$

(1)

A usual explanation of the fact is based on the Einstein special theory of relativity and I call (1) the Einstein dilation (ED). For example, Møller (1972) sets it forth as follows:

"In view of the fact that an arbitrary physical system can be used as a clock, we see that any physical system which is moving relative to a system of inertia must have a slower course of development than the same system at rest. Consider for instance a radioactive process. The mean life τ of the radioactive substance, when moving with a velocity v, will thus be larger than the mean life τ_0 when the substance is at rest. From (2.36) we obtain immediately $\tau = (1 - v^2/c^2)^{-1/2} \tau_0$.

This argumentation may be complemented by the following possible definition of the unit of time provided by radioactive substance: this is the time interval during which the amount of the substance decreases twice, e.g.

However, the standard clocks of the relativity theory are used when obtaining Eq. (2.36)

$$\Delta t = t_2 - t_1 = \gamma (t'_2 - t'_1) = (1 - v^2/c^2)^{-1/2} \Delta \tau$$

which Møller mentions. He begins the derivation of this equation with the phrase:
“Consider a standard clock C' which is placed at rest in S' at a point on the x'-axis with the coordinate $x' = x'_1$.”

However, such a quantum clock as an unstable particle cannot be at rest (i.e., have zero velocity or zero momentum) and simultaneously be at a definite point (due to the quantum uncertainty relation). So the standard derivation of the moving clock dilation is inapplicable for the quantum clock.

Another way of theoretical derivation may be used: to find the relativistic quantum decay law $F(t)$ of the moving particle and to compare it with the decay law $F_0(t)$ of the particle at rest. Lorentz transformation of the space-time coordinates from one inertial frame to another is not needed as well as the space coordinates themselves. The approach was employed by (Exner, 1983; Stefanovich, 1996; Khalfin, 1997; Shirokov, 2004). In these papers (below I shall refer to them as (ESKS)) the state of the moving unstable particle was described by the eigenvector Ψ_p of the momentum operator \hat{P} (Exner (1983) used a packet with almost exact momentum). One may state that the obtained decay law $F_p(t)$ is consistent with ED, Eq. (1), see Sect. 3 below. I use in Sect. 2 another definition of the moving particle: it is described by the vector Φ_v having a definite nonzero velocity \vec{v}. If the particle were stable, the vector Φ_v would coincide with Ψ_p at $\vec{p} = \vec{v}m_0\gamma$, m_0 being the particle mass. However, the unstable particle has no definite mass, it is described by a distribution over masses, see Sect. 2. Therefore, if \vec{p} is definite, then \vec{v} cannot be definite, see Eq. (12) below. The exclusion is the case $\vec{p} = 0$ when \vec{v} is also zero.

In the case of unstable particles, whose decay laws can be measured one may expect that using either Φ_v or Ψ_p should give only slightly different results. Indeed, mass distributions of such particles are concentrated in small regions near average masses m, the dimension Γ of the regions being much less than m. However, the detailed calculation of $F_v(t)$ presented in Sect. 2 provides instead the unexpected result $F_v(t) = F_0(t\gamma)$, i.e., contraction instead
of dilation: particles with exact nonzero velocity decay faster than the one at rest.

A simple unstable system is considered in Sect. 4. The oscillating neutrino may serve as an example. The usual formulae for the neutrino oscillation, e.g., see (Bilenky and Pontecorvo, 1978; Bilenky, 2004) are valid when neutrino has definite momentum \vec{p}. The corresponding oscillation is dilated as compared to the oscillation of the neutrino with lesser momentum. However, the dilation is not Einsteinian, Eq. 1. In the case when neutrino has a definite velocity I obtain another formula for neutrino oscillation which gives the same contraction as in Sect. 2.

For summary and conclusion see Sect. 5.

2. DECAY LAW OF MOVING UNSTABLE STATE WITH PRECISE VELOCITY

Let us consider a relativistic theory which describes unstable particles, products of their decay, and the corresponding interactions. A field theory may be an example. Such a theory must contain operators of total energy and momentum $\hat{H}, \hat{\vec{P}}$ (the generators of time and space translations), total angular momentum, and generators of Lorentz boosts $\hat{\vec{K}}$. Usual Dirac’s “instant form” of the theory is implied so that interaction terms are contained in \hat{H} and $\hat{\vec{K}}$:

$$\hat{H} = \hat{H}_0 + \hat{H}_{int}, \quad \hat{\vec{K}} = \hat{\vec{K}}_0 + \hat{\vec{K}}_{int}.$$

A simple example is the Lee model of the decay of particle a into two stable particles b and c: $a \rightarrow b + c$. The interaction terms are of the three-linear kind $\hat{a}^\dagger \hat{b} \hat{c}^\dagger + H.c.$ (momentum indices of destruction-creation operators are omitted). The moving particle a is usually described by the eigenvector $\hat{a}_p^\dagger \Omega_0$ of the free Hamiltonian \hat{H}_0 (Ω_0 is the “bare” vacuum and \hat{a}_p^\dagger is the creation operator of
the particle \(a \) with momentum \(\mathbf{p} \). When \(\mathbf{p} = 0 \) the vector \(\hat{a}_0^{\dagger} \Omega_0 \) describes an unstable particle at rest.

Alternatively a moving unstable state may be described by the eigenvector \(\Phi_v = L_v \hat{a}_0^{\dagger} \Omega_0 \) of the velocity operator \(\hat{V} = \hat{P}/\hat{H} \). Here \(L_v \) is the Lorentz transformation from the frame where the velocity of the state \(\hat{a}_0^{\dagger} \Omega_0 \) is zero to the frame where the state has the velocity \(v \) (e.g., see Gasiorowicz, 1966). The state \(\hat{a}_p^{\dagger} \Omega_0 \) differs from \(\Phi_v \): \(\hat{V} \) does not commute with \(\hat{H}_0 \) and, therefore, \(\hat{H}_0 \) eigenvector \(\hat{a}_p^{\dagger} \Omega_0 \) has no definite velocity.

V. Stefanovich in private communication noted that the state \(\Phi_v \) has an admixture of decay particles and, therefore, is not a pure one-unstable-particle state. Indeed, generators of \(L_v \) contain three linear (interaction) terms of the kind \(\hat{a}\hat{b}^{\dagger}\hat{c}^{\dagger} \) and consequently \(L_v \hat{a}_0^{\dagger} \Omega_0 \) contains a term of the kind \(\hat{b}^{\dagger}\hat{c}^{\dagger} \Omega_0 \). This fact does not hinder my purpose which is to consider an example of an unstable state with a definite velocity even if it were not a pure one-particle state.

Looking ahead note that Eqs. (9) and (16) below show that \(\Phi_v \) is an really unstable state in the sense that the nondecay amplitude \((\Phi_v, \Phi_v(t)) \), see Eq. (8), vanishes as \(t \rightarrow \infty \).

To obtain decay laws, the usual solution of the Schroedinger equation (in the Schroedinger picture) is used: if at \(t = 0 \) the initial state is \(\psi \), then the state \(\psi(t) \) at \(t > 0 \) is \(\psi(t) = \exp(-i\hat{H}t)\psi \).

At first consider the initial state \(\Phi_0 = \hat{a}_0^{\dagger} \Omega_0 \). Let us expand \(\Phi_0 \) over those eigenvectors \(\varphi_\mu \) of \(\hat{H} \) which are simultaneously \(\hat{P} \) or \(\hat{V} \) eigenvectors with zero eigenvalue (note that \(\hat{P} \) and \(\hat{V} = \hat{P}/\hat{H} \) commute with \(\hat{H} \)). The corresponding \(\hat{H} \) eigenvalues may be called masses and are denoted by \(\mu \): \(\hat{H} \varphi_\mu = \mu \varphi_\mu \)

\[
\Phi_0 = \int_\mu c(\mu) \varphi_\mu, \quad c(\mu) = (\varphi_\mu, \Phi_0). \tag{2}
\]

Then we have

\[
\Phi_0(t) \equiv \exp(-i\hat{H}t)\Phi_0 = \int_\mu c(\mu) \exp(-i\mu t)\varphi_\mu \tag{3}
\]
and the nondecay (survival) amplitude is

$$A_0 \equiv \langle \Phi_0, \Phi_0(t) \rangle = \int_{\mu} |c(\mu)|^2 \exp(-i\mu t). \quad (4)$$

In Sections 2 and 3 I deal with states for which survival amplitudes vanish as \(t \to \infty \). This property holds only if the convolution \(\int_{\mu} \) in Eqs. (2)-(4) is integral over continual \(\mu \) values. Besides, the spectrum of \(\hat{H} \) must be bounded from below. So \(\int_{\mu} \) may be understood as the integral \(\int_{0}^{\infty} d\mu \).

The vectors \(\varphi_\mu \) may be endowed with other indices (e.g., spin ones), upon which \(\hat{H} \) eigenvalues do not depend. I do not write out these degeneration indices.

Note that the used definition of survival probability \(|A_0(t)|^2 \) is a particular case of a more general definition, see, e.g., (Exner, 1983). The latter reduces to \(|A_0(t)|^2 \) because the used initial states are eigenvectors of conserving operators \(\hat{P} \) or \(\hat{V} \). In Sect. 4, I shall deal with survival amplitudes that do not vanish as \(t \to \infty \) but oscillate.

Now let us consider the decay law of the initial state \(\Phi_v = L_v \hat{a}_0^\dagger \Omega_0 \), see above. Applying the operator \(L_v \) to both parts of Eq. (2) one obtains the expansion of \(\Phi_v \) over vectors \(L_v \varphi_\mu \equiv \varphi_{v\mu} \):

$$\Phi_v = \int d\mu c(\mu) \varphi_{v\mu}, \quad \hat{H} \varphi_{v\mu} = E_{v\mu} \varphi_{v\mu}, \quad \hat{V} \varphi_{v\mu} = \vec{v}_{v\mu} \varphi_{v\mu}. \quad (5)$$

Let us show that \(\varphi_{v\mu} \) is \(\hat{H} \) eigenvector corresponding to the eigenvalue \(E_{v\mu} = \mu \gamma, \gamma = (1 - v^2)^{-1/2} \). Indeed, one has

$$L_v^{-1} \hat{H} L_v = (\hat{H} + \vec{v} \cdot \hat{P}) \gamma \quad (6)$$

(\(\hat{H} \) and \(\hat{P} \) make up a 4-vector). Therefore,

$$H L_v \varphi_\mu = L_v (\hat{H} + \vec{v} \cdot \hat{P}) \gamma \varphi_\mu = \gamma \mu L_v \varphi_\mu.$$

The equations \(\hat{P} \varphi_\mu = 0 \) and \(\hat{H} \varphi_\mu = \mu \varphi_\mu \) have been used.
Respectively, in place of Eqs. (3) and (4) one gets

\[\Phi_v(t) = \int d\mu c(\mu) \varphi_{\mu} \exp(-i\mu \gamma t), \]
\[A_v(t) \equiv (\Phi_v, \Phi_v(t)) = \int d\mu |c(\mu)|^2 \exp(-i\mu \gamma t). \]

Note. When calculating Eq. (7) the orthonormalization equation \(\langle \varphi_{\mu_1}, \varphi_{\mu_2} \rangle = \delta(\mu_1 - \mu_2) \) is used, implying unit normalization of \(\hat{\vec{V}} \) eigenvectors. This is the case if \(\hat{\vec{V}} \) has a discrete spectrum analogously to the spectrum the momentum has when the system is implied to be in a large space volume and usual periodicity conditions are imposed (or the volume opposite boundaries are identified).

Comparing Eq. (8) with Eq. (4) one obtains the following relation of survival amplitudes:

\[A_v(t) = A_0(\gamma t). \]

The same relation holds for the probabilities \(F_v(t) = |A_v(t)|^2 \) and \(F_0(t) = |A_0(t)|^2 \):

\[F_v(t) = F_0(\gamma t). \]

So one gets contraction instead of dilation, Eq. (1), if a moving unstable state has a definite velocity. Remark that in order to obtain Eq. (10) one needs not know \(\varphi_\mu \) or \(c(\mu) \), see Eq. (2); relation (10) is true for any decay interaction.

In order to discuss this unexpected result I write out the corresponding survival amplitudes for the state \(\psi_p \) with exact momentum.

3. DECAY LAW OF UNSTABLE STATE WITH PRECISE MOMENTUM

I define \(\Psi_p \) in analogy with Eq. (5) by expansion over common eigenvectors \(\psi_{\mu} \) of the operators \(\hat{H} \) and \(\hat{\vec{P}} \):

\[\Psi_p = \int d\mu c(\mu) \psi_{\mu} , \quad \hat{H} \psi_{\mu} = E_{\mu} \psi_{\mu} , \quad \hat{\vec{P}} \psi_{\mu} = \vec{p} \psi_{\mu}. \]

\[\]
Here the coefficients $c(\mu)$ do not depend on p just as in Eq. \(5 \). One may assume that $\psi_{\alpha} = L_{\alpha\beta} \varphi_{\beta}$ where $L_{\alpha\beta}$ is the operator of the Lorentz transformation of the zero velocity state φ_{β} into the frame where the velocity of the state is equal to $\vec{p}/\sqrt{p^2 + \mu^2}$, i.e., corresponds to the momentum \vec{p}. One may verify that $L_{\alpha\beta} \varphi_{\beta}$ is a \vec{P} eigenvector with eigenvalue \vec{p}. In the same way as before, see Eq. \(6 \), one may demonstrate that ψ_{α} is a \hat{H} eigenvector with eigenvalue E_{α}:

$$\hat{H} L_{\alpha\beta} \varphi_{\beta} = \mu \gamma_{\alpha\beta} L_{\alpha\beta} \varphi_{\beta}, \quad \mu \gamma_{\alpha\beta} = \mu \left[1 - p^2/(p^2 + \mu^2) \right]^{-1/2} = \sqrt{p^2 + \mu^2}.$$

The value $\sqrt{p^2 + \mu^2}$ for E_{α} was obtained in a different way in (Shirokov, 2004).

Let us stress that φ_{β} is a stable state (with a definite mass) so ψ_{α} is also the state with a definite velocity \vec{v}_{α} corresponding to momentum \vec{p}. Meanwhile Ψ_p is not eigenstate of \hat{V}. Indeed,

$$\hat{V} \Psi_p = \int d\mu c(\mu) \vec{P}/\hat{H} \psi_{\alpha} = \vec{p} \int d\mu c(\mu) (p^2 + \mu^2)^{-1/2} \psi_{\alpha}.$$

So the r.h.s. of \(12 \) is not proportional to $\Psi_p = \int d\mu c(\mu) \psi_{\alpha}$.

Using Eq. \(11 \) one obtains for survival amplitudes

$$A_p(t) \equiv \langle \Psi_p, e^{-i\hat{H}t} \Psi_p \rangle = \int d\mu |c(\mu)|^2 \exp(-it \sqrt{p^2 + \mu^2}) , \quad (13)$$

$$A_0(t) \equiv \langle \Psi_0, e^{-i\hat{H}t} \Psi_0 \rangle = \int d\mu |c(\mu)|^2 \exp(-i\mu t) . \quad (14)$$

Note that when $\vec{p} = 0$ the state $\Psi_p(t) = \exp(-i\hat{H}t) \Psi_p$ coincides with $\Phi_p(t)$, see Eq. \(3 \).

Now the survival law $A_p(t)$ is not connected with $A_0(t)$ by such a simple relation as $A_v(t)$ does, see Eq. \(9 \). To compare $A_p(t)$ with $A_0(t)$, one has to calculate $A_p(t)$ and $A_0(t)$ separately. For this purpose one needs to know $|c(\mu)|^2$. The Breit-Wigner distribution

$$|c(\mu)|^2 = \frac{\Gamma}{2\pi} \left[(\mu - m)^2 + \Gamma^2 / 4 \right]^{-1} \quad (15)$$
was used in (ESKS). Let us write out approximate expressions for $A_0(t)$ and $A_p(t)$ which are valid for time not too short and not too long when the decay laws are exponential (Shirokov, 2004)

$$A_0(t) \cong \exp(-imt - \frac{1}{2}\Gamma t), \quad \text{(16)}$$

$$A_p(t) \cong \exp(-im\gamma_m t - \frac{1}{2}\Gamma t/\gamma_m), \quad \gamma_m \equiv \sqrt{p^2 + m^2/m}. \quad \text{(17)}$$

Here m is the average (or the most probable) mass in the distribution (15). It follows from Eqs. (16) and (17) that

$$|A_p(t)|^2 \cong |A_0(t/\gamma_m)|^2, \quad \text{(18)}$$

i.e. ED holds for survival probability of an unstable particle with precise momentum. The dilation (18) is to be juxtaposed to the contraction (10). As was argued in Introduction, one may expect that the amplitudes $A_v(t)$ and $A_p(t)$ should not differ appreciably. Let us show that this expectation is realized in a sense. Note beforehand that Eqs. (16) and (9) result in the explicit approximate expression for $A_v(t)$ when $\vec{v} = \vec{p}/\sqrt{p^2 + m^2}$

$$A_v(t) \cong \exp(-im\gamma t - \frac{1}{2}\Gamma t/\gamma), \quad \text{(19)}$$

Let us compare the exponents E_p and E_v of the corresponding exponentials in Eqs. (17) and (19)

$$E_p = -im\gamma_m - \frac{1}{2}\Gamma t/\gamma_m, \quad E_v = -im\gamma - \frac{1}{2}\Gamma t\gamma, \quad \text{(20)}$$

assuming that $\gamma_m = \gamma$. As $\Gamma \ll m$ the exponents coincide in the zero approximation when the terms $\sim \Gamma$ are neglected in E_p and E_v. So in this approximation the corresponding amplitudes $A_p(t)$ and $A_v(t)$ coincide and both satisfy the contraction property

$$A_p(t) \cong A_v(t) \cong A_0(t\gamma). \quad \text{(21)}$$

However, the main terms of E_p and E_v are purely imaginary and do not contribute to modules of $A_p(t)$ and $A_v(t)$. It is real parts $\frac{1}{2}\Gamma t/\gamma_m$ and $\frac{1}{2}\Gamma t\gamma$ that
do contribute and determine the different dependences of $|A_p|^2$ and $|A_v|^2$ upon t, see Eqs. (18) and (19).

In the next section I will consider a simple unstable system whose time evolution is determined by the interference of the main terms defined above (the terms $\sim \Gamma$ being absent). For this system one may expect the breakdown of ED (in view of Eq. (21)) even if the system has a precise momentum.

4. TIME EVOLUTION OF MOVING TWO-MASS STATE

Let us consider an unstable system at rest whose state vector ϕ is a superposition of two \hat{H} eigenvectors φ_1 and φ_2:

$$\phi = c_1 \varphi_1 + c_2 \varphi_2, \quad |c_1|^2 + |c_2|^2 = 1, \quad (22)$$

$$\hat{H} \varphi_1 = m_1 \varphi_1, \quad \hat{H} \varphi_2 = m_2 \varphi_2, \quad m_1 \neq m_2. \quad (23)$$

The system time evolution is described by the survival amplitude

$$A_0(t) \equiv \langle \phi, \phi(t) \rangle = |c_1|^2 e^{-im_1 t} + |c_2|^2 e^{-im_2 t}. \quad (24)$$

The survival amplitudes of the system with nonzero exact velocity \vec{v} and exact momentum \vec{p} are, respectively,

$$A_v(t) = |c_1|^2 \exp(-im_1 t \gamma) + |c_2|^2 \exp(-im_2 t \gamma), \quad (25)$$

$$A_p(t) = |c_1|^2 \exp(-it \sqrt{\vec{p}^2 + m_1^2}) + |c_2|^2 \exp(-it \sqrt{\vec{p}^2 + m_2^2}), \quad (26)$$

cf. Eqs. (8) and (13).

As examples of such a system one may take electron neutrino, e.g., see (Bilenky, Pontecorvo, 1978; Bilenky, 2004) and K_0-meson

$$|K_0\rangle = (|K_s\rangle + |K_l\rangle)/\sqrt{2},$$
provided that $\Gamma_s = \Gamma_l = 0$, e.g., see (Perkins, 1987). Note that I deal here with the evolution of the unstable states in time, provided the source and the detector of the states are located in the same space volume. In the literature different approaches to neutrino oscillations are considered: the neutrino source and detector are separated by a distance R and one deals with the oscillatory dependence on R, see, e.g., (Dolgov, Okun, Rotaev, Schepkin, 2004) and references therein.

In what follows, I let $c_1 = c_2 = 1/\sqrt{2}$. Then

$$|A_0(t)|^2 = \cos^2 \left[\frac{1}{2}(m_1 - m_2)t \right],$$ \hspace{1cm} (27)

$$|A_v(t)|^2 = \cos^2 \left[\frac{1}{2}(m_1 - m_2)t\gamma \right] = |A_0(t\gamma)|^2,$$ \hspace{1cm} (28)

$$|A_p(t)|^2 = \cos^2 \left[\frac{1}{2} \left(\sqrt{p^2 + m_1^2} - \sqrt{p^2 + m_2^2} \right)t \right] = |A_0(t/\tilde{\gamma})|^2,$$ \hspace{1cm} (29)

$$\tilde{\gamma} = (\sqrt{p^2 + m_1^2} + \sqrt{p^2 + m_2^2})/(m_1 + m_2).$$

The oscillatory behavior of these probabilities allows us to use the two-mass system as the quantum clock. Its unit of time may be defined as the period of oscillation (the oscillation frequency being equal to $m_1 - m_2$ in the case of $|A_0(t)|^2$), cf. with the definition of the unit of time provided by radioactive substance, see Introduction.

It follows from (27) and (29) that the time evolution $|A_p(t)|^2$ in the case of exact momentum is dilated as compared to $|A_0(t)|^2$, but the dilation is not Einsteinian if $m_1 \neq m_2$: $\tilde{\gamma}$ turns into the Lorentz factor only if $m_1 \cong m_2$. In the case of exact velocity we have the same contraction as for unstable particles, cf. Eqs. (27) and (28).

5. CONCLUSION

Relativistic quantum-mechanical derivation of the time evolution of moving unstable particles was considered in the papers (ESKS). There the state of the
moving particle was defined as the eigenvector Ψ_p of the momentum operator \hat{P} with eigenvalue \vec{p}. It was shown that then the nondecay law satisfied approximately ED, Eq. (11). Here in Sect. 2 the moving particle is described by eigenvector Φ_v of the velocity operator $\hat{V} = \hat{P}/\hat{H}$. If the particle were stable, then Φ_v would coincide with Ψ_p if $\vec{p} = \vec{v}m_0\gamma$. The vectors do not coincide in the case of unstable particle, but one may expect that they should give only slightly different results. It was shown in Sect. 3 that Φ_v and Ψ_p give indeed the same nondecay amplitude in the zero approximation. However, the approximation does not contribute to the corresponding probability, i.e., the nondecay law $F(t)$. As a result, the laws $F_v(t)$ and $F_p(t)$ turn out to be strongly different: $F_v(t)$ is contracted as compared to the nondecay law $F_0(t)$ of the particle at rest, see Eq. (10), meanwhile $F_p(t)$ is dilated, see Eq. (18).

Section 4 deals with unstable systems which are simpler than unstable particles. Oscillating neutrino may be the example. If it has exact momentum, then a dilation follows, but it is not ED, Eq. (11). In the case of exact velocity I obtain the formula which leads to the contraction, see Eq. (28).

I conclude that relativistic quantum theory of the time evolution of moving unstable systems does not ensure ED. The theory allows the possibility of moving unstable systems whose time evolution breaks ED.

Experiments are known which show that moving mesons have longer lifetimes than the immovable ones so that ED holds (Bailey, 1977; Farley, 1992). The theory used here may explain this fact supposing that the experiments deal with mesons which are in states close to Ψ_p. In this case, the theory approximately gives ED.

ACKNOWLEDGMENTS

Dr. E. Stefanovich called my attention to that neutrino oscillations also allow one to verify ED along with K_0 oscillation. I am grateful to him also for
useful discussions of this paper.

I thank Dr. O. Teryaev for pointing to the paper (Dolgov et al., 2004).
REFERENCES

Bailey J. et al. (1977). Measurement of relativistic time dilation for positive and negative muons in a circular orbit. *Nature* **268**, 301-304.

Bilenky, S. M. and Pontecorvo, B. (1978). Lepton mixing and neutrino oscillations. *Physics Report* **41**, No. 4, 226-261, Sect. 3.

Bilenky, S. M. (2004). Neutrinos: a brief review. *Modern Physics Letters A* **19**, No. 33, 2451-2477, Sect. 3.

Dolgov, A. D., Okun, L. B., Rotaev, M. V. and Schepkin, M. G. (2004). Oscillation of neutrinos produced by a beam of electrons. arXiv: [hep-ph/0407189](http://arxiv.org/abs/hep-ph/0407189).

Exner, P. (1983). Representations of the Poincaré group associated with unstable particles. *Physical Review D* **28**, No. 10, 2621-2627.

Farley, F. (1992). The CERN (g-2) measurements. *Zeitschrift für Physik C* **56**, S88, Sect. 5.

Gasiorowicz, S. (1966). *Elementary particle physics*, John Wiley, New York, Ch. 4.

Khalfin, L. A. (1997). Quantum theory of unstable particles and relativity. http://www.pdmi.ras.ru/preprint/1997/97-06.html.

Møller, C. (1972). *The Theory of Relativity*. Clarendon Press, Oxford, Ch. 2.6.

Perkins, D. (1987). *Introduction to High Energy Physics*. Addison-Wesley Co., Inc.

Shirokov, M. I. (2004). Decay law of moving unstable particle. *International Journal of Theoretical Physics* **43**, No. 6, 1541-1553.

Stefanovich, E. (1996). Quantum effects in relativistic decays. *International Journal of Theoretical Physics* **35**, No. 12, 2539-2554.