High-throughput SSR marker development and its application in a centipedegrass (*Eremochloa ophiuroides* (Munro) Hack.) genetic diversity analysis

Jianjian Li, Hailin Guo, Yi Wang, Junqin Zong, Jingbo Chen, Dandan Li, Ling Li, Jingjing Wang, Jianxiu Liu*

Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Nanjing, Jiangsu, China

* turfunit@aliyun.com

Abstract

Centipedegrass (*Eremochloa ophiuroides* (Munro) Hack.) is a perennial, warm-season C4 grass species that shows great potential for use as a low-maintenance turfgrass species in tropical and subtropical regions. However, limited genetic and genomic information is available for this species, which has impeded systematic studies on the enhancement of its turf quality and resistance against biotic and abiotic stress. In this study, Illumina HiSeq high-throughput sequencing technology was performed to generate centipedegrass transcriptome sequences. A total of 352,513 assembled sequences were used to search for simple sequence repeat (SSR) loci, and 64,470 SSR loci were detected in 47,638 SSR containing sequences. The tri-nucleotides were the most frequent repeat motif, followed by di-nucleotides, tetra-nucleotides hexnucleotides, and pentanucleotides. A total of 48,061 primer pairs were successfully designed in the flanking sequences of the SSRs, and 100 sets of primers were randomly selected for the initial validation in four centipedegrass accessions. In total, 56 (56.0%) of the 100 primer pairs tested successfully amplified alleles from all four centipedegrass accessions, while 50 were identified as polymorphic markers and were then used to assess the level of genetic diversity among 43 centipedegrass core collections. The genetic diversity analysis exhibited that the number of alleles (Na) per locus ranged from 3 to 13, and the observed heterozygosity (Ho) ranged from 0.17 to 0.83. The polymorphism information content (PIC) value of the markers ranged from 0.15 to 0.78, and the genetic distances (coefficient Nei72) between the accessions varied from 0.07 to 0.48. The UPGMA-based dendrogram clustered all 43 core collections into two main groups and six subgroups, which further validated the effectiveness of these newly developed SSR markers. Hence, these newly developed SSR markers will be valuable and potentially useful for future genetic and genomic studies of *E. ophiuroides*.

Citation: Li J, Guo H, Wang Y, Zong J, Chen J, Li D, et al. (2018) High-throughput SSR marker development and its application in a centipedegrass (*Eremochloa ophiuroides* (Munro) Hack.) genetic diversity analysis. PLoS ONE 13(8): e0202605. https://doi.org/10.1371/journal.pone.0202605

Editor: Tzen-Yuh Chiang, National Cheng Kung University, TAIWAN

Received: May 7, 2018

Accepted: August 5, 2018

Published: August 22, 2018

Copyright: © 2018 Li et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability Statement: All data files are available from the NCBI database (accession number(s) SRP134136).

Funding: This work was financially supported by Grants from the Scientific Facility Project of Jiangsu Province, China (Grant No. BM2015019-1), and Jiangsu Provincial Natural Science Foundation (Grant No. BK20171327). The funders had no role in study design, data collection and
Introduction

Simple sequence repeats (SSRs) are a valuable source of genetic markers because of their abundance, high rate of polymorphism, ubiquitous distribution throughout the genome, codominant inheritance, high extent of allelic diversity, and ease of assay by PCR [1,2]. Thus, SSRs are considered excellent molecular markers in studies of germplasm characterization, genetic diversity, and genetic mapping [3,4]. However, the traditional development of SSR markers has relied on the screening of genomic libraries using repetitive probes and the sequencing of positive clones, which is time-consuming and requires the use of specialized laboratory equipment [5]. However, recent advances in next-generation sequencing (NGS) technologies provide a cost-effective, convenient and reliable approach for sequence information acquisition in non-model species and greatly accelerated the development process for molecular markers [6,7]. RNA-Seq, which is based on NGS, is a high-throughput technology that has great advantages in obtaining a large amount of sequence data for SSR mining [8]. Using transcriptome data resources, rapid progress in the development of SSR loci has been made in many green plant species [9]. Recently, a large amount of SSR markers were developed in forage and turfgrass crops such as perennial ryegrass [10], Italian ryegrass [11], alfalfa [12], hemarthria [13], red clover [14], orchardgrass [15], sudangrass [16], common bermudagrass [17], creeping bentgrass [18], seashore paspalum [19], and zoysiagrass [20]. To date, there is not a large quantity of SSR markers developed in centipedegrass, with the exception of a recent report on EST-SSR development from a cold-stressed transcriptome of centipedegrass [21].

Centipedegrass (Eremochloa ophiuroides (Munro) Hack.) is an important turfgrass that belongs to warm-season (C4) perennial grass species and is distributed extensively in Southeast Asia and United States. E. ophiuroides is a native grass in South and Central China [22,23] and is known for its good adaptation to infertile soils and a range of climatic conditions [24,25]. E. ophiuroides has great potential as a low-maintenance turf and is often referred as ‘lazy man’s grass’ or ‘poor man’s grass’ because of its lower management requirements than those of most warm-season turfgrasses [26]. Centipedegrass usually presents a broad resistance to insect and disease infestations and shows excellent heat tolerance as well [26]. These outstanding characteristics make E. ophiuroides a popular turfgrass in tropical and subtropical regions. Moreover, centipedegrass is also used as a forage grass in Japan for its heavy grazing-tolerance [24].

Over the past two decades, a series of studies, including accession identification, an analysis of genetic diversity, and construction of genetic map in centipedegrass, was performed based on the use of limited universal molecular markers [27–31]. Some efforts in improving the lawn traits of centipedegrass, including traditional selection breeding [24,32,33], irradiation mutagenesis [34–36] and somatic variation, have also been carried out [25,37–39]. Despite progress in preliminary studies on genetic analysis and germplasm innovation, genetic and genomic information on this turfgrass species is still largely limited. Thus far, less than one hundred nucleotide sequences of DNA have been deposited in a public database (National Center for Biotechnology Information), which is markedly incomparable to that for other turfgrass plants, e.g., ryegrass, festuca, bermudagrass, or zoysiagrass. The paucity of available information on the nucleotide sequences has hindered its genetic and genomic studies, such as the large-scale development of molecular markers, the construction of high-density linkage maps, and gene discovery.

To further complement the genomic sequence information and the number of molecular markers, in this study we conducted large-scale SSR mining employing the RNA sequencing (RNA-Seq) data of centipedegrass leaf, stolon and spikes based on the high-throughput Illumina HiSeq 2000 platform. The resultant SSR sequences were characterized and validated
through the successful amplification of randomly selected target loci across a selection of four distinct *E. ophiuroides* accessions. The newly developed SSR markers were subsequently utilized to assess the genetic diversity level of core collections, including 43 centipedegrass accessions from diverse geographic origins. The datasets and results reported in the present study provide a public resource and information for future genetic studies and breeding programs in *E. ophiuroides*.

Materials and methods

Plant materials and isolation of RNA and DNA

Two *E. ophiuroides* accessions E092 and E092-1 were used for cDNA sequencing. The accession E092 is a wild-type with red-purple stolons and spike tissues during its developmental stages, and it was originally collected from Chongqing city in the Southwest China. The accession E092-1 is a natural mutant with uniform green stolon and spike tissues and was isolated from E092. Initially, four *E. ophiuroides* accessions including two purple-stolon accessions (E092 and E022) and two green-stolon ones (E092-1 and E039) were used for validating the SSR primers, and then, 43 accessions from the *E. ophiuroides* core collection were adopted to test the SSR markers and assess the genetic diversity level (Table 1). All these accessions of *E. ophiuroides* were maintained by the Main Warm-season Turfgrass Germplasm Resource Preserving Centre, Nanjing Botanical Garden Men. Sun Yat-Sen, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China. All the plant materials were grown in plastic pots (13 cm top diameter × 10 cm bottom diameter × 11 cm depth), with a mix of soil, sand and peat at a ratio of 1:1:1, and were cultivated in a greenhouse under natural sunlight, with an average temperature of 30°C day/20°C night and a relative humidity of ~80%.

The total RNA, which was required for the transcriptome sequencing, was extracted from the stolons, leaves and inflorescences of accessions E092 and E092-1 using the Trizol reagent (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s instructions. Prior to the RNA extraction, the tissue samples were frozen in liquid nitrogen and were homogenized by hand using a glass tissue grinder (DUALL 20, Kontes Glass Co.). The isolated RNA was treated with RNase-free DNase I (Ambion, Austin, TX, USA) to eliminate the potential genomic DNA. The RNA concentration and quality were determined by a NanoDrop 8000 spectrophotometer (NanoDrop, Wilmington, DE), and its integrity was confirmed using an Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto, Calif.). Samples with an RNA Integrity Number (RIN) ≥ 7, and 28S:18S ratio ≥ 1.5:1, and total amount ≥ 3 μg were considered acceptable.

The total genomic DNA was isolated from the young leaves of each plant using the EZgene™ SuperFast Plant Leaves DNA Kit (Biomiga, San Diego, CA, USA) following the manufacturer’s protocols for plant leaves with high levels of phenolic compounds and polysaccharides. The DNA was dissolved in 50 μL of sterile ultra-pure water, diluted to a final concentration of 30 ng/μL and stored at -20°C until the PCR analysis.

cDNA library construction and Illumina sequencing

Illumina sequencing was performed at the Decode Genomics Ltd., in Nanjing, China, following the manufacturer’s protocols (Illumina, San Diego, CA). Briefly, the poly (A) mRNA was purified from the total RNA using Sera-mag Magnetic Oligo (dT) beads from Illumina, and then, the mRNA-enriched RNAs were chemically fragmented into short sequences using the fragmentation solution (Ambion, USA). The double-stranded cDNA was synthesized using the Superscript Double-Stranded cDNA Synthesis Kit (Invitrogen, USA). Finally, the pair-end RNA-seq libraries were constructed using the Illumina Paired End Sample Prep kit and were subsequently sequenced on the Illumina HiSeqTM 2000 platform [40].
Table 1. The germplasm collections of E. ophiuroide used in this study.

No.	Sample	Source
1	E-004	Fuzhou, Fujian, Eastern China
2	E-006	Putuoshan, Zhejiang, Eastern China
3	E-013	Yongtai, Fujian, Eastern China
4	E-015	Lushan, Jiangxi, Central China
5	E-017	Hangzhou, Zhejiang, Eastern China
6	E-019	Hangzhou, Zhejiang, Eastern China
7	E-022	Wuxi, Jiangsu, Eastern China
8	E-041	Lingchuan, Guangxi, South China
9	E-042	Taiping, Anhui, Eastern China
10	E-047	Lianyungang, Jiangsu, Eastern China
11	E-055	Guangzhou, Guangdong, South China
12	E-061	Heyuan, Guangdong, South China
13	E-063	Yingde, Guangdong, South China
14	E-065	Yingde, Guangdong, South China
15	E-072	Guilin, Guangxi, South China
16	E-074	Yichang, Hubei, Central China
17	E-077	Zhangjiagang, Hunan, Central China
18	E-078	Yichang, Hubei, Central China
19	E-084	Anshun, Guizhou, Southwestern China
20	E-087	Guiyang, Guizhou, Southwestern China
21	E-091	Chongqing, Southwestern China
22	E-092-1	Chongqing, Southwestern China
23	E-097	Xinyang, Henan, Central China
24	E-098	Xinyang, Henan, Central China
25	E-099	Jinzhai, Anhui, Eastern China
26	E-102	USA
27	E-112	Xinjiang, Sichuan, Southwestern China
28	E-115	Yiyang, Hunan, Central China
29	E-124	Changsha, Hunan, Central China
30	E-131	Yiyang, Hunan, Central China
31	E-134	Guiyang, Guizhou, Southwestern China
32	E-135	Guiyang, Guizhou, Southwestern China
33	E-141	Feixi, Anhui, Eastern China
34	E-144	Xinyang, Henan, Central China
35	E-145	Xinyang, Henan, Central China
36	E-152	Xinyang, Henan, Central China
37	E-154	Liuhe, Jiangsu, Eastern China
38	E-155	Lianyungang, Jiangsu, Eastern China
39	E-158	USA
40	E-182	Lanxi, Zhejiang, Eastern China
41	E-183	Nanjing, Jiangsu, Eastern China
42	E-187	Yixing, Jiangsu, Eastern China
43	E-188	Jinzhai, Anhui, Eastern China

[10.1371/journal.pone.0202605.t001](https://doi.org/10.1371/journal.pone.0202605.t001)

Data filtering and de novo assembly of cDNA

Prior to the transcriptome assembly, a stringent filtering criterion of an FPKM (fragments per kilobase of exon per million reads mapped) value of 1.0 in at least one sample or an FPKM
value of 0.5 in at least two samples was used to filter the raw sequencing reads. The clean reads were obtained from the raw sequencing reads by removing the adapter sequences, the reads with more than 10% unknown nucleotides, and the low-quality reads (> 50% bases with quality value Q ≤ 5 in a read). The de novo assembly of the transcriptome was accomplished using all the clean reads and the Trinity program (version trinityrnaseq_r20140717) using the de Bruijn graph method and default settings [41].

Sequence data

The assembled transcriptome sequences from the *E. ophiuroides* accessions E092 and E092-1 were deposited in the NCBI, with the BioProject accession PRJNA437781. They were de novo assembled from the raw sequencing data (7.5-fold coverage) of the accessions E092 and E092-1, which were deposited in the NCBI under the SRA accession number SRP134136 (SAMN08640788, SAMN08640789, SAMN08640790, SAMN08640791, SAMN08640792, SAMN08640793, SAMN08640794, SAMN08640795, and SAMN08640796).

SSR motif detection and SSR marker development

We employed the software package Genome-wide Microsatellite Analyzing Tool Package (GMATA2.1) (http://sourceforge.net/projects/gmata/?source=navbar) to mine the SSRs, perform the statistical analysis, and design primers from the identified SSR loci using constraints of more than five repeats and a motif length between 2 and 10 bp [42]. We followed the GMATA procedures described by Wang and Wang (2016) [42]. The primers were synthesized by Sangon Biotech Company (Shanghai, China).

Sequence IDs were given to the SSR-containing sequences used as templates for designing the primers (S1 Table). A marker name was assigned to each of the randomly selected SSR primer pairs for the PCR analysis. The marker name was comprised of the research center name “TJIB,” which stands for “Turfgrass Research Center of the Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (JIB),” and the suffix showing the plant species *Eremochloa ophiuroides* (Eo) and the serial number.

Genotyping the *E. ophiuroides* collections using the SSR markers

A subset of 100 SSR primer pairs was randomly selected for validating the SSR locus amplification by polymerase chain reactions (PCR). The primer pairs that produced a reproducible and clear amplicon of the expected size were then used for assessing the genetic diversity among the centipedegrass accessions. PCR amplification was conducted in a 10 μL reaction volume containing 5 μL of 2 x TaqPCR MasterMix (TsingKe Biological Technology Co., Beijing, China), 1 μL of primer pair (10 μM), 1.5 μL of genomic DNA (30 ng) and 2.5 μL of ddH2O. The PCR conditions comprised an initial denaturing step (95˚C /3 min) followed by ten cycles of 94˚C /30 s, 55–60˚C /30 s, and 72˚C /30 s, and then 25 cycles of 94˚C /30 s, 55˚C /30 s, and 72˚C /30 s, and finally by an elongation step (72˚C /10 min). The PCR products were separated on 8.0% non-denaturing polyacrylamide gels and were visualized by 0.1% silver nitrate staining. The band sizes were determined by comparing them against a DNA ladder.

Data analysis

The genotyping data were used to determine the genetic relationships among the 43 *E. ophiuroides* core collections. The number of alleles (Na), the number of effective alleles (Ne), the observed heterozygosities (Ho), and the Shannon’s information index (I) were calculated using GenALEX software (version: 6.5) [43,44]. The polymorphic information content (PIC)
value of the alleles revealed by each primer pair was calculated by the formula: \(PIC = 1 - \sum (Pi)^2 \), where \(Pi \) is the frequency for the \(i \)th microsatellite allele. The genetic distances across the collections were calculated with the POPGENE software (version 1.31; https://www.ualberta.ca/~fyeh/popgene_download.html) [45]. Based on Nei's unbiased measures of genetic distance, a cluster analysis of the 43 collections was carried out using the unweighted pair-group method with arithmetic average (UPGMA), and the dendrogram was subjected to 1000 bootstraps using the MEGA4 [46].

Results

Illumina paired-end sequencing and characterization of the sequencing reads

In this study, to remove the highly similar or redundant sequences, we merged sequences with a sequence identity higher than 95% using the CD-HIT-EST algorithm [47]. A total of 390,247,286 clean reads were generated using the Illumina HiSeq2000 system, and 352,513 assembled sequences were used for further analysis after adaptor removal. The length of the assembled sequences varied from 200 bp to \(\geq 16 \) kb, with the average of approximately 735 bp, and the CG content was approximately 48% (Table 2).

SSR mining and characterization

The GMATA strategy was performed to search the SSR loci from the assembled transcriptome sequences. A total of 64,470 SSR loci were found in 47,638 SSR-containing transcriptome sequences. Of the SSR-containing transcriptome sequences, 11,725 contained more than one SSR locus (Table 2 and S1 Table).

Among all the SSRs detected, the most abundant repeat motifs were trinucleotides (33,614, 52.14%), followed by dinucleotides (28,783, 44.65%), tetranucleotides (1,399, 2.17%), hexanucleotides (331, 0.51%) and pentanucleotides (317, 0.49%) (Fig 1A, S2 Table). The highest frequency of the grouped SSR motif units was dimer AG/CT (5,774, 8.96%) followed by GA/TC (5,362, 8.32%), TG/CA (4,746, 7.36%), AC/TG (4,353, 6.75%), GCC/GGC (3,674, 5.70%) and CGC/GCG (3,613, 5.60%) (Fig 1B, S3 Table). The SSR length of 15 bp (17,296, 26.83%) was the most abundant, followed by an SSR length of 10 bp (13,212, 20.49) and then of 18 bp (9,563, 14.83) (Fig 1C, S4 Table).

Development and validation of the SSR markers

A total of 48,061 non-redundant primer pairs were designed using Primer 3.0 software based on the criteria of the melting temperature, CG content, lack of secondary structure and length
of amplification bands (S5 Table). The expected length of the target bands was between 100 bp and 400 bp.

Initially, a subset of 100 primer pairs was randomly selected for validating the SSR locus amplification. A total of 81 (81.0%) of the primer pairs tested successfully generated amplification products in at least one of the four *E. ophiuroides* accessions (E022, E039, E092, E092-1), and 56% of the primer pairs successfully amplified alleles from all four centipedegrass accessions. Of the 81 that amplified, 31 (38.27%) were monomorphic, and the other 50 (61.73%) were polymorphic between the four accessions and were selected for further evaluating the genetic diversity in the *E. ophiuroides* core collections (Table 3).

Evaluation of the genetic diversity within the *E. ophiuroides* core collections

The fifty polymorphic SSR markers were further used to assess the genetic diversity of the 43 *E. ophiuroides* core collections from different geographic locations. A total of 420 alleles were detected in 43 collections, wherein 285 alleles were determined to be collection-specific and 135 alleles were generally detected in multiple collections. The Na amplified per SSR locus ranged from 3 to 13, with an average of 8.40; the Ne ranged from 1.20 to 5.27, with an average of 3.01; the Ho ranged from 0.17 to 0.83, with the average of 0.64. The PIC value ranged from 0.15 to 0.78, with an average of 0.58. The I ranged from 0.31 to 1.76, with an average of 1.17 (Table 4).

The genetic distances, with the Nei72 coefficient, among the collections ranged from 0.07 to 0.48 (S6 Table). The largest genetic distance was observed between E188 from Jinzhai, Anhui, Eastern China and E102 from the USA. The UPGMA-based dendrogram placed the 43 accessions into two main groups, which were further subdivided into six distinct clusters (Fig 2). Cluster I comprised 21 collections from Eastern (E004, E006, E047, E042, E017, E019, E013), South (E065, E015, E063, E041, E072, E055), Southwestern (E092-1, E087, E084) and Central China (E022, E077, E078, E097, E098). Cluster II comprised only two accessions from South (E061) and Central China (E074). Cluster III included three accessions from Southwestern (E091, E112) and Eastern China (E099), and one accession from the USA (E102). Cluster IV consisted of four accessions from Central (E115, E124), eastern (E141), and Southwest China (E134). In addition to one collection from Southwestern China (E135), cluster V consisted mainly of the accessions from Central (E131, E144, E145) and Eastern China (E187, E188, E182, E183). Cluster VI contained four collections consisting of one collection from Central China (E152), two from Eastern China (E155, E154) and another one from the USA (E158).

Discussion

Simple sequence repeats (SSRs) are widely used as molecular markers in plant genetic studies due to their abundance, reproducibility, high allelic variation at each locus and simplicity to analyze using conventional PCR amplification. Recently developed next generation sequencing (NGS) platforms, such as Roche’s 454 GS FLX, Illumina’s GenomeAnalyzer (GA) and ABI’s SOLiD, offer opportunities for high-throughput and inexpensive genome sequencing and rapid marker development. In the present study, SSR markers for the diploid species *E. ophiuroides* were developed based on de novo assembled cDNA by the Illumina sequencing system from two phenotypically distinct accessions E092 and E092-1, which were maintained at the China National Germplasm Resources Nursery for warm-season turfgrasses in the Institute of Botany, Jiangsu Province and Chinese Academy of Sciences. The reliability of the newly developed SSR primers was tested via a PCR analysis on the core germplasm collections of centipedegrass, including 41 accessions from China and 2 accessions from the USA.
Table 3. Screening of SSR primer pairs by PCR in four *E. ophiuroides* accessions.

ID	Marker Name	SSR	Forward primer (5'-3')	Reverse primer (5'-3')	Product size (bp)	PCR amplification in
TR80_e0_g1_i1	TJB.Eo_001	(CTC)12	AGTTCATTTGCCAGCTCAT	TAAACTGCGTGAGCAGGAAAAC	195	+ - - -
TR993_e0_g1_i1	TJB.Eo_002	(ACA)16	TGTCATCAGGAGAAGAGCA	GGTTGCGTGATGAGTTG	141	+ + - +
TR1158_e0_g1_i1	TJB.Eo_003	(GT)11	CCAGATCGCTGATGATCC	GGGCAGCTGATGAGTCA	227	+ - - +
TR1654_e0_g1_i1	TJB.Eo_004*	(CAA)13	GTGTTGTGTGGCTGGTGG	TGTTGCTGATGAGACGAC	197	+ + + +
TR1713_e0_g1_i1	TJB.Eo_005	(TCT)10	ACCACAGCAGGAGAAGGAC	ATGTTCTGCTGATGATCC	276	+ + + +
TR2338_e0_g1_i1	TJB.Eo_006*	(GCC)5	GGTGCCTGTTCCGCTATCT	CTGCTGCTCCGCTCCGTCCTG	264	+ + + +
TR2644_e0_g1_i1	TJB.Eo_007	(ACA)5	AGCAGCCGAGATGAGCTGG	CAGGGGCGTGATGAGTTG	207	+ + + +
TR2941_e0_g1_i1	TJB.Eo_008*	(ACA)5	AGCAGGAGAGCAAGGACGAGA	ATGTTCTGCTCCGCTCCGTCCTG	274	+ + + +
TR3535_e0_g2_i1	TJB.Eo_010*	(CTG)13	GGTGCCTGAGATGAGATGAGA	GGTGCCTGAGACTGACGAGG	183	+ + + +
TR5354_e0_g2_i1	TJB.Eo_011	(GCC)5	GGTGCCTGTTGAGATGAGATG	GGTGCCTGAGACTGACGAGG	173	+ + + +
TR6729_e0_g1_i1	TJB.Eo_013*	(CTG)13	GGTGCCTGTTGAGATGAGATG	GGTGCCTGAGACTGACGAGG	173	+ + + +
TR7108_e0_g1_i1	TJB.Eo_014*	(CAT)7ttg(CTC)5	GCCCAATCTATCTACATCA	GATGAGGAGCAAGGACGAGGGA	208	- + + +
TR7160_e0_g1_i1	TJB.Eo_015	(TG)11	GGTGCCCTCTGTCGTAGTGG	TTGGCAGCTGTTATGATAG	227	- - - -
TR7421_e0_g1_i1	TJB.Eo_016*	(AGA)11	AGGAGGAAGCAAGCAAGCAA	GCTGACCTGTTGGCTGCTAG	107	+ + + +
TR8081_e0_g1_i1	TJB.Eo_017*	(GAG)10	AGGAGGAAGCAAGCAAGCAA	GCTGACCTGTTGGCTGCTAG	107	+ - + +
TR9123_e0_g1_i1	TJB.Eo_018	(GTC)5tt(GTC)7	CGTTGCTCTTCCGCTTGGT	GAGGCTAACCATCTAAGCAGG	103	- + - +
TR9124_e1_g1_i1	TJB.Eo_019	(TG)8	TGTCATCCAGAGATGAGC	GCCCATGGAAAAACCTACACT	148	- - - -
TR9278_e0_g2_i1	TJB.Eo_020*	(GCC)11	AGGAGGAAGCAAGCAAGCAA	GCTGACCTGTTGGCTGCTAG	264	+ + + +
TR10202_e0_g1_i1	TJB.Eo_021	(A)14	TTGGGCTCGCCGATATAGAG	CAGGGGCGTGCTCTGCTGCT	123	+ + + +
TR11518_e0_g1_i1	TJB.Eo_022*	(CA)11	AAACAAATTGCCAGAGATC	GTGTTGCTGGTCTCCAGCAG	132	+ + + +
TR12898_e0_g1_i1	TJB.Eo_023*	(CAG)5	CAGGAAGGAAGCAAGCAAAG	GCTGCTGATGAGATGAGT	184	+ + + +
TR13811_e0_g1_i1	TJB.Eo_024	(TCA)6	ATTTTCCCTGCAAAGCCCTG	GGGCAGCTGTTGTGATGTT	166	+ + + +
TR13845_e0_g1_i1	TJB.Eo_025*	(A)12	ATCTCTGACATGGAGAAGCC	AGGAGGAAGCAAGCAAGCAA	118	+ + + +
TR13927_e0_g2_i1	TJB.Eo_026	(ACA)5	CAAAGCGAGATGAGATGGCG	GGTGTGCTGCGGAGATGTTG	279	+ + + +
TR14515_e0_g1_i1	TJB.Eo_027	(TG)6	GGTGTGCTGTTATGAGGGC	TGTTGCTGCTGATGAGTGG	215	- - - -
TR14777_e0_g1_i1	TJB.Eo_028*	(CTG)10	AGTTCATTTGCCAGCTCAT	TAAACTGCGTGAGCAGGAAAAC	195	+ - - -

(Continued)
ID	Marker Name	SSR	Forward primer (5’-3’)	Reverse primer (5’-3’)	Product size (bp)	PCR amplification in E092-1	E092	E022	E039
TR15964_c0_g1_i1	TJB_Eo_029*	(CAA)5	AACAAGGCAACAGGACAGAG	ATTTTCGACCGGATAGTTTT	182	+	+	+	+
TR16265_c0_g1_i1	TJB_Eo_030	(ATC)7	CGCATATGTTGAGGAGTGTGA	CGACAATGCGGTGTGATA	254	-	-	-	-
TR16281_c0_g1_i1	TJB_Eo_031*	(CAC)13	GACGACGATGAGATAGAGA	CTAGTGTTGAGGATAGAGAG	154	+	+	+	+
TR16284_c1_g1_i1	TJB_Eo_032	(ACA)16	CAAAATAGGCAATGAGGCA	TCTGAGCTTCTCTGAGAGAG	109	-	-	-	-
TR16410_c1_g1_i1	TJB_Eo_033	(GTT)12	AGCTTATGCTCTCTGAGAG	CAATATCCGAGACAGTGGTT	155	+	-	-	-
TR17043_c1_g1_i1	TJB_Eo_034	(TCA)10	CATCTGCTATCATCAGGAG	GCTGGCTTGGGACTAGTGCG	204	-	-	-	-
TR17216_c0_g1_i1	TJB_Eo_035	(CAA)19	ATTTGGCAATGAGATAGAGA	TGCTGAGCTTCTCTGAGAG	261	+	+	+	+
TR17372_c0_g1_i1	TJB_Eo_036	(TTG)10	GATGGTGGTGGGAGGAGGAG	ACAAATAGGCAATGAGGCA	254	+	+	+	+
TR17509_c1_g1_i1	TJB_Eo_037	(TGG)5	GCAACGATGAGAGCAGAAG	GCTGGCTTGGGACTAGTGCG	185	-	-	-	-
TR18313_c0_g1_i1	TJB_Eo_038	(GCT)6gg	GCTGCTGCTGCTGCTGCTGCT	TACTGCTCAGGACAGGATTT	236	+	+	+	+
TR18539_c0_g2_i1	TJB_Eo_039	(AAC)10	CCAGGAAAGAACAGGACAG	GCTGGAGCTTCTCTGAGAG	103	-	-	-	-
TR21460_c3_g4_i1	TJB_Eo_040	(CGT)5	CACCTGCTCAAGACACAC	TCAAGGCAACAGAAGAGGAG	165	+	+	+	+
TR21890_c0_g1_i1	TJB_Eo_041	(GCT)5	AGACGACCTCAAGGACTCT	GAGCTTCTCTGAGAGAAGAG	192	+	+	+	+
TR23033_c0_g1_i1	TJB_Eo_042	(GTT)10	AGCTTATGCTCTCTGAGAG	CAAGGCAGCTACCATCAAGA	108	-	-	-	-
TR23780_c0_g1_i1	TJB_Eo_043	(ACC)6as(CAG)5(CAA)5	CGGAAATGCAACACCAAACTA	ACAAGCTGACCTGAGACT	141	-	-	-	-
TR23987_c0_g1_i1	TJB_Eo_044*	(TTG)11	CTGTTTCAAGCGGAGCTTCCC	GAGCAGTATACGAGCAGAAA	185	-	+	+	+
TR26689_c0_g1_i1	TJB_Eo_045	(TCT)10	ACAGTCTGCTCCACACATC	GCAGAGCTGACACAGAAGAG	275	+	+	+	+
TR26876_c2_g2_i9	TJB_Eo_046*	(A)11	AAAATCAACCAGACGACAC	ATGCTGCTCTGAGAAGAG	166	-	+	+	+
TR27357_c0_g3_i1	TJB_Eo_047	(ACA)10	GCAACATATGCTTGCTAGAG	CAAAGCGCAATGCAATGTA	237	+	+	+	+
TR27781_c0_g1_i1	TJB_Eo_048	(CAG7)(CAA)5	TTACAAGCTGCTGCTGAGGAGT	GTCTGCTGCTGAGATAGGGAT	172	+	+	+	+
TR28391_c0_g1_i1	TJB_Eo_049	(GT)6	ACATGAAAGCTGCTGCTGAGG	AAAAATAGGCAATGAGGCA	110	+	+	+	+
TR28656_c0_g1_i1	TJB_Eo_050	(TATG)11	GCAATTGCTATGCTGAGAGAG	GCTGGCTTGGGACTAGTGCG	170	-	-	-	-
TR29033_c0_g3_i1	TJB_Eo_051*	(TTG)11	TGTATGCTGCGGAGATGGG	GCTGGCAACCTGCTAGAGAG	108	+	+	+	+
TR29155_c1_g3_i1	TJB_Eo_052*	(CAA)5	GCAACACACACACACAAACAC	GCAAGCTGATGCTGAGGAT	258	+	+	+	+
TR29597_c0_g1_i1	TJB_Eo_053	(GTT)6	GCTGATGACACACGAGACAG	TCAAGATGCTGAGGCAGCA	202	+	+	+	+
TR29883_c0_g1_i4	TJB_Eo_054*	(GGA)10	CTTAGGCAACACCCCATCCT	GTGAGCTGCTGAGCAGAGAG	161	+	+	+	+
TR30407_c0_g1_i1	TJB_Eo_055*	(AG)12	GCTGCTGCTGACTACACACA	TCTGGCTCTCTCTGAGAG	136	+	+	+	+
TR30845_c0_g1_i1	TJB_Eo_056*	(ATG)10	ACCACACGACAGTGAGCAGC	CATTGCTCTTCTCTGAGAG	202	+	+	+	+
TR31759_c0_g1_i1	TJB_Eo_057	(ATC)11	TGGCTGAGAAACGTTGACA	TGCTGCTGCTGCTGAGGATG	192	+	+	+	+
TR32331_c0_g1_i1	TJB_Eo_058	(GAG)6	GAAAGAAGGAGAGTGAGCAA	ACTGACTACACTCCCAACAC	191	+	+	+	+

(Continued)
ID	Marker Name	SSR	Forward primer (5’-3’)	Reverse primer (5’-3’)	Product size (bp)	PCR amplification in E092-1	E092	E022	E039
TR33540_c0_g1_i1	TJIB.Eo_059	(ATG)10	TGTTCAAGTGATGCAAGACGATC	AGATCGTGGTGTTGCAAGATC	244	-	-	-	-
TR33948_c0_g1_i1	TJIB.Eo_060	(TGT)5(TGC)7	GCTGTATTGGATGTCAGCATC	GCTGTAAGTGTCAGCATC	250	+	-	-	-
TR34533_c0_g3_i1	TJIB.Eo_061	(CTG)12	TCAAGCTGTGGTGTAACGC	GATGCAAGAGGATGTTCTAG	276	+	+	+	+
TR34630_c0_g1_i3	TJIB.Eo_062	(CCG)5	GATGCTGAGGAGCATTTTGG	AGATGCAAGAGGATGTTCTA	237	+	+	+	+
TR35413_c0_g1_i1	TJIB.Eo_063	(TGT)8	TTATGATGAGTAAAAAGGACGAAG	TTTATGATGAGTAAAAAGGACGAAG	181	+	+	+	+
TR39034_c2_g2_i1	TJIB.Eo_064	(TGA)12	CTATGCTGATGCTCACTGCTAA	CGGCTCTGCTCAGGCAATC	134	-	-	-	-
TR39482_c0_g1_i1	TJIB.Eo_065	(CCT)7	TGCTGATGCTGCTCGAGCAG	AGATGCAAGAGGATGTTCTA	142	+	+	+	+
TR39866_c0_g1_i2	TJIB.Eo_066	(ATC)14	GGTGTTGTGGATGATGTTCTA	AGATGCAAGAGGATGTTCTA	198	-	-	-	-
TR42732_c0_g1_i1	TJIB.Eo_067	(GA)6	GAGATCTACCGAGCACGCAAG	AGATGCAAGAGGATGTTCTA	124	+	+	+	+
TR43258_c0_g1_i1	TJIB.Eo_068	(ATC)14	AAGCTGCTCAGATGCTGTTCTA	AGATGCAAGAGGATGTTCTA	268	-	-	-	-
TR44815_c0_g2_i1	TJIB.Eo_070	(CAC)10	AGGCAAGAGGATGTTCTAAGG	AGATGCAAGAGGATGTTCTA	198	-	-	-	-
TR45627_c0_g1_i1	TJIB.Eo_071	(GA)6	GAGATCTACCGAGCACGCAAG	AGATGCAAGAGGATGTTCTA	124	+	+	+	+
TR46377_c0_g1_i1	TJIB.Eo_072	(GAA)10	GAGATCTACCGAGCACGCAAG	AGATGCAAGAGGATGTTCTA	229	+	+	+	+
TR46548_c0_g1_i2	TJIB.Eo_073	(CCG)11	TACAGCAATCCTCCAGCTCCT	GAGAAGATGCTCCTCCAGCTCCT	278	+	+	+	+
TR46887_c0_g3_i1	TJIB.Eo_074	(CTG)11	CTTTGAGAGGAGGCTTATTTG	TGACATGAGTGAGATGCTC	115	+	+	+	+
TR46947_c0_g1_i1	TJIB.Eo_075	(CCT)11	TCTCCAGAAGATGCTGTTCTA	GCTGACTCCTCCAGCTCCT	210	+	+	+	+
TR47176_c0_g1_i1	TJIB.Eo_076	(AAC)10	CTTTGCTCAGACTCAATGTT	GCTGACTCGTGGATGCTC	179	-	-	-	-
TR47761_c0_g2_i1	TJIB.Eo_077	(GTT)14	CCTTCTGAGGCTCCTCCAGCTC	GAGAAGATGCTCCTCCAGCTC	135	+	+	+	+
TR48071_c1_g1_i2	TJIB.Eo_078	(ACC)10	CAGTGAGTCTCCACCTCCCTCTC	AGATGCAAGAGGATGTTCTA	235	+	+	+	+
TR49631_c0_g1_i1	TJIB.Eo_079	(AAC)7	AAATCATTGAGTGGTGGAGCAG	TGCTGCTCCTAAGATGATGCTC	211	-	-	-	-
TR51210_c0_g2_i1	TJIB.Eo_080	(ATC)14	AAGGCCTTCTCCAGCTCACC	ATATGAGTGGGCTCCTGTTT	195	+	+	+	+
TR51244_c7_g2_i1	TJIB.Eo_081	(CGG)12	TGCTGTTGAAAAATCCACAC	TCTTCTGCGTGGGATGCTC	259	-	-	-	-
TR51733_c0_g4_i1	TJIB.Eo_082	(TCT)13	AGAAGACATAGGGCCACAC	GCTGACTCCTCAATGTTCTGAT	156	+	+	+	+
TR51940_c0_g2_i1	TJIB.Eo_083	(CTT)15	TGCGAATCGAGTGGTGTTCTT	CCAGCTGCTTCCTCTACTG	272	-	+	+	-
TR52704_c4_g2_i1	TJIB.Eo_084	(CTC)10	GGGTTATGAGTAATGGAAGT	GCTGACTCCTCCCTCCTCCTG	144	+	+	+	+
ID	Marker Name	SSR	Forward primer (5'-3')	Reverse primer (5'-3')	Product size (bp)	PCR amplification in			
--------------	-------------	------------------------------	------------------------	------------------------	------------------	----------------------			
TR53512_c1_g1_i5	TJB_E0_085	(A)12	CACCTTCAAAACCTGCCATT	CACAACACACACTACGGGAG	258	+ + + +			
TR53516_c0_g1_i1	TJB_E0_086"	(TGA)10	GGGCATATGCCTGGCAAT	AAGCATAGAAGCGACGCAAT	139	- + + +			
TR53584_c1_g1_i1	TJB_E0_087"	(ACA)6acagcgtcgc(CAA)6	TGTGCACTATTGGTACAGCC	GGAATGCTGAGAAGAGAGA	255	+ + + +			
TR53641_c0_g1_i1	TJB_E0_088	(GTT)10	GCCCTTAGAAATGAGACCGT	CACAACCCAAAATCATACGA	144	- + + -			
TR53936_c0_g1_i1	TJB_E0_089"	(CAA)5	CCTCTGTCGTGATGATGCA	ACTGCAACACACAGGTCG	209	+ + + +			
TR54047_c0_g1_i1	TJB_E0_090"	(CTAC)18	GGCCACACTGCTTTAACCAT	TCACGGTTAAATCTTTGGAC	246	+ + + +			
TR54725_c0_g4_i1	TJB_E0_091"	(TCA)5	CACACTCCGAGGTGACTT	AGGAGTGCCCACAATGACA	218	+ + + +			
TR54851_c2_g5_i1	TJB_E0_092"	(TCC)10	CGGCCATCTTTGTCGCA	GAGAGGAGGAGGAGGACG	228	+ + + +			
TR56883_c0_g2_i1	TJB_E0_093	(TTG)10	TACACTGCTGAGCAAATCG	CAAGCGATGTCGAAAGCAA	225	+ - + -			
TR57592_c0_g1_i1	TJB_E0_094	(CAA)10	CAGAATGCGCCGATTTGCT	TCTGATACCCGATGCTGCG	229	- - - -			
TR58461_c0_g2_i1	TJB_E0_095	(GAA)12	AACTCGAAGCGAAACGCTC	CTGCGAGCCCTGATGCTGA	213	- - - -			
TR59379_c0_g2_i2	TJB_E0_096	(CAT)5	GTTGTCGATACGACGCGC	TAGCGTGACAAATGACG	138	- - + +			
TR59407_c0_g1_i1	TJB_E0_097"	(CCT)10	CATAACACGACACATGCGG	GAGGAGGAGGAGAAGAAGA	264	+ + + +			
TR60466_c0_g1_i1	TJB_E0_098	(CAG)6	TACGGCTGACGATATGCTAC	TGTGCTGATTGGATGCTG	108	+ + + +			
TR60586_c0_g1_i1	TJB_E0_099	(TGC)5	TGGACACCTGGTGGTGGGAG	CGCAAGAGACGATGACG	247	- - + -			
TR61247_c0_g4_i1	TJB_E0_100	(GTT)17	ACAGATGCTCGTGGGTTTT	ATTTGAGTCGCGTCCAGACT	238	+ - - -			

* These marker loci showed polymorphic amplifications in the four accessions of *E. ophiuroides*.

https://doi.org/10.1371/journal.pone.0202605.t003
Centipedegrass is an important warm-season grass species that is widely used for turf in the southeastern United States and in the south of China. Because of its superiorities over other turf-grasses, which mainly include its low maintenance requirements and good adaptation to poor soil, centipedegrass shows great potential for commercial application in the turf industry. However, a lack of genomic information has hampered critical research on augmenting marker assisted breeding programs for this species. Hence, the development of an effective marker system to assess genetic diversity in centipedegrass collections facilitates the maintenance of germplasm and cultivar improvement. Prior to our study, 30 SSR primer pairs were developed in *E. ophiuroides* using the traditional method [29]. Recently, approximately 3,500 SSR primer pairs were successfully designed from 5,839 identified SSR loci based on Illumina paired-end sequencing reads [21]. In the present study, a total of 48,061 SSR primer pairs were developed from assembled centipedegrass transcriptome sequences using an NGS-based RNA-seq technique. These SSRs were mined from the transcriptomes, meaning in the gene coding regions only. However, the gene-coding regions should have fewer SSRs than those of the intergenic regions [48]. Therefore, the SSRs developed here are only part of the SSRs in the genome of centipedegrass. Even so, these results represent an important complementation to the molecular toolbox of centipedegrass, which might contribute to promoting genetic and genomic research on centipedegrass.

The motif type and abundance of SSRs are the main characteristics of microsatellites. In this study, the most abundant motif was that of tri-nucleotides (52.14%) followed by di-nucleotides (44.65%), tetra-nucleotides (2.17%), hex-nucleotides (331, 0.51%) and penta-nucleotides (0.49%). This result is consistent with previous findings, showing that tri-nucleotides are the most common type in centipedegrass [21], and is also in accord to the findings in many other plant species, such as alfalfa [49], Dysosma [50], peanut [51], common bean [52], and...
Table 4. Polymorphism statistics of novel SSR markers in 43 *E. ophiuroides* core collections.

ID	Marker name	Na	Ne	Ho	I	PIC
TR1654_c2_g1_i1	TJIB.Eo_004	3	1.88	0.48	0.66	0.36
TR2338_c1_g1_i1	TJIB.Eo_006	10	3.52	0.73	1.41	0.67
TR2941_c0_g1_i2	TJIB.Eo_008	8	5.16	0.83	1.75	0.78
TR4044_c0_g1_i1	TJIB.Eo_009	7	1.40	0.29	0.52	0.26
TR5354_c0_g2_i1	TJIB.Eo_010	11	4.07	0.77	1.65	0.72
TR6729_c0_g1_i1	TJIB.Eo_013	10	2.34	0.59	1.02	0.49
TR7108_c0_g1_i1	TJIB.Eo_014	7	2.59	0.63	1.01	0.54
TR7421_c0_g1_i1	TJIB.Eo_016	5	1.20	0.17	0.31	0.15
TR8741_c0_g1_i1	TJIB.Eo_017	8	3.82	0.76	1.44	0.69
TR9728_c0_g2_i1	TJIB.Eo_020	8	5.27	0.83	1.71	0.78
TR11518_c0_g1_i1	TJIB.Eo_022	7	2.56	0.62	1.14	0.56
TR12898_c0_g1_i1	TJIB.Eo_023	10	5.24	0.83	1.76	0.78
TR13845_c0_g1_i1	TJIB.Eo_025	6	1.90	0.48	0.83	0.42
TR14777_c0_g1_i1	TJIB.Eo_028	5	1.57	0.38	0.55	0.30
TR15964_c0_g1_i1	TJIB.Eo_029	10	2.48	0.61	1.11	0.55
TR16281_c0_g1_i1	TJIB.Eo_031	12	3.36	0.72	1.40	0.65
TR18313_c0_g1_i1	TJIB.Eo_038	11	3.36	0.72	1.34	0.65
TR21460_c3_g4_i1	TJIB.Eo_040	10	3.30	0.71	1.36	0.65
TR23987_c0_g1_i1	TJIB.Eo_044	9	3.38	0.72	1.31	0.65
TR26876_c2_g2_i9	TJIB.Eo_046	11	3.04	0.69	1.22	0.62
TR27357_c0_g3_i1	TJIB.Eo_047	9	4.31	0.79	1.52	0.73
TR29033_c0_g3_i1	TJIB.Eo_051	7	3.74	0.75	1.41	0.69
TR29155_c1_g3_i3	TJIB.Eo_052	13	3.31	0.71	1.26	0.64
TR29833_c0_g1_i4	TJIB.Eo_054	9	2.25	0.57	1.09	0.51
TR30407_c0_g1_i1	TJIB.Eo_055	11	4.68	0.81	1.65	0.76
TR30845_c0_g1_i1	TJIB.Eo_056	9	3.01	0.68	1.28	0.62
TR33948_c0_g1_i1	TJIB.Eo_060	11	2.40	0.60	0.99	0.49
TR34333_c0_g3_i1	TJIB.Eo_061	10	4.50	0.80	1.60	0.74
TR34630_c0_g1_i3	TJIB.Eo_062	7	2.04	0.52	0.81	0.42
TR35413_c0_g1_i1	TJIB.Eo_063	9	1.60	0.39	0.56	0.31
TR39482_c0_g1_i1	TJIB.Eo_065	8	2.98	0.68	1.25	0.60
TR39754_c0_g1_i1	TJIB.Eo_066	10	3.47	0.73	1.35	0.66
TR42732_c0_g1_i1	TJIB.Eo_068	8	2.14	0.55	0.97	0.48
TR45627_c0_g1_i1	TJIB.Eo_071	10	2.62	0.63	1.03	0.55
TR46377_c0_g1_i1	TJIB.Eo_072	10	2.29	0.58	0.98	0.48
TR46548_c0_g1_i2	TJIB.Eo_073	11	1.94	0.50	0.75	0.39
TR46887_c0_g3_i1	TJIB.Eo_074	9	2.86	0.67	1.21	0.59
TR46947_c0_g1_i1	TJIB.Eo_075	8	2.46	0.61	1.04	0.52
TR47761_c0_g2_i1	TJIB.Eo_077	5	1.91	0.49	0.74	0.38
TR48071_c1_g1_i2	TJIB.Eo_078	8	2.65	0.64	1.13	0.57
TR51210_c0_g2_i1	TJIB.Eo_080	9	2.43	0.60	1.21	0.55
TR51733_c0_g4_i1	TJIB.Eo_082	8	3.72	0.75	1.35	0.68
TR52704_c4_g2_i1	TJIB.Eo_084	5	3.07	0.69	1.23	0.61
TR53516_c0_g1_i1	TJIB.Eo_086	9	4.37	0.79	1.62	0.74
TR53584_c1_g1_i1	TJIB.Eo_087	8	5.01	0.82	1.66	0.77
TR53936_c0_g1_i1	TJIB.Eo_089	11	2.70	0.65	1.15	0.57
TR54047_c0_g1_i1	TJIB.Eo_090	4	3.16	0.70	1.25	0.63

(Continued)
chrysanthemum [53]. This result indicates that tri-nucleotide repeats are dominant over the other motif types in plant cDNA sequences, which might be explained by the fact that the variations of tri-nucleotide repeats will not affect the open reading frames and only lead to the adding or subtracting of amino acid repeats [54]. AG/CT was the most common motif unit of the grouped SSRs, representing 8.96% of the grouped SSR motif units in the present study, which is common in the genomes of many plant species [49, 55, 56].

In the present investigation, the 100 randomly selected primer pairs were used to check the effectiveness of the actual amplification of all the developed markers. Of these selected primer pairs, 81 (81.0%) of the primers successfully produced amplification in at least one of the four *E. ophiuroides* accessions, and 56% successfully amplified alleles from all four centipedegrass accessions, while 19 primers showed no amplification. The unsuccessful amplification indicated that transcriptome-based markers may not work for genomic DNA, which is mainly attributed to the fact that the primer originated from an erroneously assembled transcript or that the primer sequence contained exon-exon junctions. Out of these 81 primers, 50 (61.73%) showed polymorphic patterns, which was lower than the previously reported 87.78% polymorphic genic-SSRs across 14 centipedegrass accessions [21]. In addition to the higher proportion of monomorphic markers, the initial use of a lower quantity of centipedegrass accessions (only four accessions used) for the polymorphism screening was the main reason for the lower proportion of polymorphic markers detected in our study. For the further genetic diversity analysis among the 43 core accessions of *E. ophiuroides*, the Na detected by the 50 SSR markers varied from three to thirteen, with an average of 8.40 alleles per locus, while the Ne per locus was from 1.20 to 5.27, with an average of 3.01. This discrepancy can be explained by the fact that quite a few of the alleles identified were collection-common. At the same time, the average Na (8.4) and Ne (3.01) and the Ho and the I detected in the present study were higher than those in a previous study by Wang et al [21], which was because more centipedegrass accessions were used in the present study and because the 43 accessions derived from a core collection of centipedegrass germplasms were preliminarily constructed through a systematic work, including the initial collection of germplasms and the subsequent identification and screening [57]. Moreover, the PIC value is commonly used as a measure of polymorphism for a marker locus and is determined by both the number of alleles and their frequency distribution within the population. According to the classification basis for the marker loci informativeness level proposed by Botstein et al (1980) [58], all the *E. ophiuroides* SSRs validated in the present study indicated a moderate level (0.50 > PIC > 0.25) to a high level of informativeness (PIC > 0.5), with an average PIC value of 0.58, with the exception of TJIB.Eo_016 (PIC = 0.15), which was considered a poor marker in these respects. In addition, 70.0% (35 out of 50) of the markers showed a high informativeness level and worked as resolving power markers.

Currently, NGS-based RNA-seq has become one of the most efficient ways for developing genic SSR markers in both model and non-model plants, and many RNA-seq derived SSR

Table 4. (Continued)

ID	Marker name	Na	Ne	Ho	I	PIC
TR54725_c0_g4_i1	TJIB.Eo_091	5	2.62	0.63	1.02	0.54
TR54851_c2_g5_i1	TJIB.Eo_092	6	3.07	0.69	1.17	0.61
TR59407_c0_g1_i1	TJIB.Eo_097	5	1.92	0.49	0.97	0.36
Total		420	–	–	–	–
Mean		8.40	3.01	0.64	1.17	0.58

Na, number of alleles; Ne, number of effective alleles; Ho, observed heterozygosity; I, Shannon's information index; PIC, polymorphism information content.

https://doi.org/10.1371/journal.pone.0202605.t004
markers have been widely utilized in genetic diversity analysis [59,60], chromosome mapping [61,62] and gene-based association studies [63–65]. In the present study, the usefulness of the 50 newly developed polymorphic EST-SSR markers for the evaluation of genetic diversity among centipedegrass accessions was clearly demonstrated. Based on the analysis results, the 50 markers divided the 43 E. ophiuroides accessions into two main groups and into six subgroups using the UPGMA cluster analysis. Although the resulting dendrogram could not sufficiently cluster the accessions based on their geographical origins, it precisely demonstrated the
effectiveness of these SSR markers in the *E. ophiuroides* genetic analysis. It is reasonable that the genetic relationship of the 43 *E. ophiuroides* accessions did not exactly correspond to their geographical positions due to their complex genetic background and evolution history. Therefore, these large-scale developed SSR markers from centipedegrass transcriptome are valuable tools for further genetic and genomic analyses of centipedegrass accessions. Moreover, Wang et al (2017) [21] reported that centipedegrass EST-SSRs were applicable for six Poaceae relatives and that a higher cross-species transferability of the SSRs was detected in C4 plant maize, sorghum, and sultan grass than in C3 plant wheat, rice, and barley. A good proportion of the centipedegrass genic SSRs mined in this study also functioned in two other Poaceae C4 members, zoysiagrass and bermudagrass (S1 Fig). Both findings proved the cross-species transferability of the centipedegrass SSR markers to other genetically closed species and reflected the close relationship of the C4 plants. Furthermore, the identification of the EST-SSR within the sequences provides a future opportunity to mine the expressed sequences for significant physical and functional association with turf traits of interest in marker-assisted breeding in *E. ophiuroides* and other closely related turf species.

Conclusions

The present work represents a substantial advance in the identification of a large number of informative SSR loci in *E. ophiuroides* by high-throughput RNA sequencing technology based on the Illumina HiSeq 2000 platform. A total of 64,470 SSR loci were identified from the assembled transcriptome of *E. ophiuroides*. Among them, the trinucleotide SSRs were the most dominant repeat motif (52.14%), followed by dinucleotides (28,783, 44.65%), tetranucleotides (1,399, 2.17%), hexanucleotides (331, 0.51%) and pentanucleotides (317, 0.49%). In total, 48,061 primer pairs were successfully designed from these identified SSR loci, and a subset of the 100 primer pairs was randomly selected and preliminarily tested in two different types of centipedegrass accessions. The PCR analysis revealed that 81.00% of the primer pairs successfully worked in at least one of the four *E. ophiuroides* accessions, and that 56% of the primer pairs successfully amplified alleles from all four accessions. Among the primers tested, 50 (61.73%) of the primers generated polymorphic bands and were further applied to assess the genetic diversity level of 43 centipedegrass core collections. In total, 420 alleles were detected by these newly developed SSR markers in the 43 collections, of which 285 were collection-specific alleles and 135 were multi-accession alleles. The PIC values ranged from 0.15 to 0.78, with an average of 0.58, and the I ranged from 0.31 to 1.76 with an average of 1.17. The 43 *E. ophiuroides* core collections were successfully clustered into two main groups and six subgroups based on the UPGMA cluster analysis. Thus, in the present study, the newly developed polymorphic SSR markers successfully shed light on the levels of the molecular diversity inherited in the core collections of centipedegrass deposited in the Turfgrass Research Center of Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (JIB). The SSR primers and sequence information developed in the present study will be useful and robust resources for future genetic and genomic studies, such as genetic map construction and comparative genomic analyses, and molecular marker-assisted breeding in centipedegrass and its related species.

Supporting information

S1 Fig. Examples of PCR amplification of centipedegrass SSR markers in bermudagrass (*Cynodon dactylon* L). M: DNA ladder marker; C1: *Cynodon* accession 118M; C2: *Cynodon* accession 118. The captital letter A, B, . . .,N represents SSR marker, respectively. (PPTX)
S1 Table. Statistics of *E. ophiuroides* SSR mining.
(XLSX)

S2 Table. Statistics of SSR motif (mer) types of *E. ophiuroides*.
(XLSX)

S3 Table. Statistics of grouped SSR motif units of *E. ophiuroides*.
(XLSX)

S4 Table. Statistics of SSR length of *E. ophiuroides*.
(XLSX)

S5 Table. SSR markers developed from the de novo transcriptome sequence of *E. ophiuroides*.
(XLSX)

S6 Table. Nei’s unbiased measures of genetic distance between *E. ophiuroides* core collections.
(XLS)

Acknowledgments

The authors would like to thank anonymous reviewers for their constructive comments. We also thank Ms. Ai-gui Guo and Miss Jingjing Ma for help in maintaining experimental materials. We also acknowledge the helpful guidance of Dr. Weicong Qi in the processes of data analysis.

Author Contributions

Conceptualization: Jianjian Li, Jianxiu Liu.

Data curation: Jianjian Li.

Formal analysis: Jianjian Li, Hailin Guo, Jingjing Wang.

Funding acquisition: Jianjian Li, Jianxiu Liu.

Investigation: Jianjian Li, Yi Wang, Jingbo Chen, Ling Li.

Methodology: Jianjian Li, Hailin Guo, Jingjing Wang.

Project administration: Jianjian Li.

Resources: Jianxiu Liu.

Software: Junqin Zong.

Supervision: Hailin Guo, Jianxiu Liu.

Validation: Jianjian Li, Junqin Zong.

Visualization: Yi Wang, Jingbo Chen, Dandan Li.

Writing – original draft: Jianjian Li.

Writing – review & editing: Jianjian Li, Hailin Guo, Jianxiu Liu.

References

1. Gupta PK, Varshney RK, Sharma PC, Ramesh B. Molecular markers and their applications in wheat breeding. Plant Breed. 1999; 118: 369–390.
2. Kuleung C, Baenziger PS, Dweikat I. Transferability of SSR markers among wheat, rye, and triticale. Theor Appl Genet. 2004; 108: 1147–1150. https://doi.org/10.1007/s00122-003-1532-5 PMID: 15067402

3. Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingeys S, et al. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed. 1996; 2: 225–238.

4. Varshney RK, Sigmund R, Börner A, Korzun V, Stein N, Sorrells ME, et al. Interspecific transferability and comparative mapping of barley EST-SSR markers in wheat, rye and rice. Plant Sci. 2005; 168: 195–202.

5. Iniguezly FL, Voort AV, Osborn TC. Development of a set of public SSR markers derived from genomic sequence of a rapid cycling Brassica oleracea L. genotype. Theor Appl Genet. 2008; 117: 977–985. https://doi.org/10.1007/s00122-008-0837-9 PMID: 18651126

6. Yang H, Tao Y, Zheng Z, Li C, Sweetingham M, Howieson J. Application of next-generation sequencing for rapid marker development in molecular plant breeding: a case study on anthracnose disease resistance in Lupinus angustifolius L. BMC Genomics 2012; 13: 318. https://doi.org/10.1186/1471-2164-13-318 PMID: 22805587

7. Zheng Y, Guo H, Zang G, Liu J. Genetic linkage maps of centipedegrass Eremochloa ophiuroides (Munro) Hack based on sequence-related amplified polymorphism and expressed sequence tag-simple sequence repeat markers. Sci Hortic. 2013; 156: 86–92.

8. Fu BD, He SP. Transcriptome Analysis of Silver Carp Hypophthalmichthys molitrix by Paired-End RNA Sequencing. DNA Res. 2012; 19: 131–142. https://doi.org/10.1093/dnares/dsr046 PMID: 2279088

9. Hodel RGJ, Gitzendanner MA, Germain-Aubrey CC, Liu X, Crowl AA, Sun M, et al. A new resource for the development of SSR markers: millions of loci from a thousand plant transcriptomes. Appl Plant Sci. 2016; 4: 1600024.

10. Studer B, Asp T, Frei U, Hentrup S, Meally H, Guillard A, et al. Expressed sequence tag-derived microsatellite markers of perennial ryegrass (Lolium perenne L.). Mol Breed. 2008; 21: 533–548.

11. Hirata M, Cai H, Inoue M, Yuyama N, Miura Y, Komatsu T, et al. Development of simple sequence repeat (SSR) markers and construction of an SSR-based linkage map in Italian ryegrass (Lolium multiflorum Lam.). Theor Appl Genet. 2006; 113: 270–279. https://doi.org/10.1007/s00122-006-0292-4 PMID: 16791693

12. Yang SS, Tu ZJ, Cheung F, Xu WW, Lamb JH, et al. Using RNA-seq for gene identification, polymorphism detection and transcript profiling in two alfalfa genotypes with divergent cell wall composition in stems. BMC Genomics. 2011: 12: 199. https://doi.org/10.1186/1471-2164-12-199 PMID: 21504589

13. Huang X, Yan HD, Zhang XQ, Zhang J, Frazier TP, Huang DJ, et al. De novo transcriptome analysis and molecular marker development of two Hemarthria species. Front Plant Sci. 2016; 7: 496. https://doi.org/10.3389/fpls.2016.00496 PMID: 27148320

14. Yates SA, Swain MT, Hegarty MJ, Chernukin I, Lowe M, Allison GG, et al. De novo assembly of red clover transcriptome based on RNA-seq data provides insight into drought response, gene discovery and marker identification. BMC Genomics. 2014; 15: 453. https://doi.org/10.1186/1471-2164-15-453 PMID: 24912738

15. Bushman BS, Larson SR, Tuna M, West MS, Hernandez AG, Vullaganti D, et al. Orchardgrass (Dactylis glomerata L.) EST and SSR marker development, annotation, and transferability. Theor Appl Genet. 2011; 123: 119–129. https://doi.org/10.1007/s00122-011-1571-2 PMID: 21465196

16. Zhu Y, Wang X, Huang L, Lin C, Zhang X, Xu W, et al. Transcriptomic identification of drought-related genes and SSR markers in Sudan grass based on RNA-Seq. Front Plant Sci. 2017; 8: 687. https://doi.org/10.3389/fpls.2017.00687 PMID: 28523007

17. Guo Y, Wu Y, Anderson JA, Moss JQ, Zhu L, Fu J. SSR marker development, linkage mapping, and QTL analysis for establishment rate in common bermudagrass. Plant Genome. 2017; 10: 1–11.

18. Kubik C, Honig J, Bonos SA. Characterization of 215 simple sequence repeat markers in creeping bentgrass (Agrostis tifoliana L.). Mol Ecol Resour. 2011; 11: 872–876. https://doi.org/10.1111/j.1755-0998.2011.03006.x PMID: 21843299

19. Jia X, Deng Y, Sun X, Liang L, Ye X. Characterization of the global transcriptome using illumina sequencing and novel microsatellite marker information in seashore paspalum. Genes Genom. 2015; 37: 77–86.

20. Tsuruta SI, Hashiguchi M, Ebina M, Matsuo T, Yamamoto T, Kobayashi M, et al. Development and characterization of simple sequence repeat markers in zoysia japonica steud. Grassl Sci. 2005; 51: 249–257.
21. Wang P, Yang L, Zhang E, Qin Z, Wang H, Liao Y, et al. Characterization and development of EST-SSR markers from a cold-stressed transcriptome of centipede grass by illumina paired-end sequencing. Plant Mol Biol Rep. 2017; 35: 215–223.

22. Hanna WW, Burton WG. Cytology, reproductive behavior and fertility characteristics of centipede grass. Crop Sci. 1978; 18: 835–837.

23. Watson L, Dallwitz MJ. The grass genera of the world. CAB International, Wallingford, UK. 1992.

24. Islam M, Hirata M. Centipede grass (Eremochloa ophiuroides [Munro] Hack.): Growth behavior and multipurpose usages. Grassl Sci. 2005; 51: 183–190.

25. Liu M, Yang J, Lu S, Guo Z, Lin X, Wu H. Somatic embryogenesis and plant regeneration in centipede grass (Eremochloa ophiuroides [Munro] Hack.). In Vitro Cell Dev-Pl. 2008; 44: 100–104.

26. Hanna WW. Centipede grass–Diversity and vulnerability. Crop Sci. 1995; 35: 332–334.

27. Xuan J, Guo H, Liu J, Chen S. Initial identification of cold tolerance in the Eremochloa ophiuroides germplasm resource. Acta Pratacult Sin. 2003; 12: 110–114 (in Chinese with English abstract).

28. Millalewis SR, Kimball JA, Zuleta MC, Harrisshultz KR, Schwartz BM, Hanna WW. Use of sequence-related amplified polymorphism (SRAP) markers for comparing levels of genetic diversity in centipede grass (Eremochloa ophiuroides [Munro] Hack.) germplasm. Genet Resour Crop Ev. 2012; 59: 1517–1526.

29. Harrisshultz KR, Millalewis SR, Zuleta MC, Schwartz BM, Hanna WW, Brady JA. Development of simple sequence repeat markers and the analysis of genetic diversity and ploidy level in a centipede grass collection. Crop Sci. 2012; 52: 383–392.

30. Guo H, Guo A, Zong J, Yuan X, Zhang F, Liu J. Identification analysis of eight centipede grass materials by SRAP molecular markers. Acta Agrestia Sin. 2014; 22: 203–207 (in Chinese with English abstract).

31. Luo J, Liu M, Zhang C. Transgenic centipede grass (Eremochloa ophiuroides [Munro] Hack.) Overexpressing-Adenosylmethionine Decarboxylase (SAMDC) gene for improved cold tolerance through involvement of H_2O_2 and no signaling. Front Plant Sci. 2017; 8: 1655. https://doi.org/10.3389/fpls.2017.01655 PMID: 29018465

32. Reuter JA, Spacek D, Snyder MP. High-throughput sequencing technologies. Mol Cell. 2015; 58: 586–597. https://doi.org/10.1016/j.molcel.2015.05.004 PMID: 26000844

33. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from ma-seq data without a reference genome. Nat Biotechnol. 2011; 29: 644–652. https://doi.org/10.1038/nbt.1883 PMID: 21572440

34. Wang X, Wang L. GMATA: an integrated software package for genome-scale SSR mining, marker development and viewing. Front Plant Sci. 2016; 7: 1350. https://doi.org/10.3389/fpls.2016.01350 PMID: 27679641

35. Peakall R, Smouse PE. GenAIEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research–an update. Bioinformatics. 2012; 28: 2537–2539. https://doi.org/10.1093/bioinformatics/bts460 PMID: 22820204
44. Peakall R, Smouse PE. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes. 2006; 6: 288–295.

45. Yeh FC, Yang R, Boyle T. POPGENE Version 1.31. University of Alberta, Edmonton, Canada. 1999; Available form: http://www.ualberta.ca/~fyeh/.

46. Tamura K, Dudley J, Nei M, Kumar S. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol. 2007; 24: 1596–1599. https://doi.org/10.1093/molbev/msm092 PMID: 17488738

47. Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006; 22: 1658–1659. https://doi.org/10.1093/bioinformatics/btl158 PMID: 16731699

48. Wang X, Yang S, Chen Y, Zhang S, Zhao Q, Li M, et al. Comparative genome-wide characterization leading to simple sequence repeat marker development for Nicotiana. BMC Genomics. 2018; 19: 500. https://doi.org/10.1186/s12864-018-4878-4 PMID: 29945549

49. Liu Z, Chen T, Ma L, Zhao Z, Nan Z, et al. Global transcriptome sequencing using the illumina platform and the development of EST-SSR markers in autotetraploid alfalfa. PloS ONE. 2013; 8: e83549. https://doi.org/10.1371/journal.pone.0083549 PMID: 24349529

50. Guo R, Mao YR, Cai JR, Wang JY, Wu J, Qiu YX. Characterization and cross-species transferability of EST–SSR markers developed from the transcriptome of Dysosma versipellis (Berberidaceae) and their application to population genetic studies. Mol Breed. 2014; 34: 1733–1746.

51. Zhou X, Dong Y, Zhao J, Huang L, Ren X, Chen Y, et al. Genomic survey sequencing for development and validation of single-locus SSR markers in peanut (Arachis hypogaea L.). BMC Genomics. 2016; 17: 420. https://doi.org/10.1186/s12864-016-2743-x PMID: 27251557

52. Kalavacharya V, Liu Z, Meyers BC, Thimmapuram J, Melmaiee K. Identification and analysis of common bean (Phaseolus vulgaris L.) transcriptomes by massively parallel pyrosequencing. BMC Plant Biol. 2011; 11: 135. https://doi.org/10.1186/1471-2229-11-135 PMID: 21985325

53. Morgante M, Hanafey M, Powell W. Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat Genet. 2002; 30: 194–200. https://doi.org/10.1038/ng822 PMID: 11799393

54. He X, Zheng J, Zhou J, He K, Shi S, Wang B. Characterization and comparison of est-ssrs in salix, populus, and eucalyptus. Tree Genet Genomes. 2015; 11: 820.

55. Chen H, Wang L, Wang S, Liu C, Blair MW, Cheng X. Transcriptome sequencing of mung bean (Vigna radiate L.) genes and the identification of EST-SSR markers. PloS ONE. 2015; 10: e0120273. https://doi.org/10.1371/journal.pone.0120273 PMID: 25830701

56. Zheng YQ. Detection of genetic diversity, construction of genetic linkage map and mapping QTL in centipedegrass (Eremochloa ophiuroides). Ph. D thesis, Nanjing Agricultural University, Nanjing, China. 2009.

57. Botstein D, White RL, Skolnick M, Davis RW. Construction of genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet. 1980; 32: 314–331. PMID: 6247908

58. Ding Y, Zhang J, Lu Y, Lin E, Lou L, Tong Z. Development of EST-SSR markers and analysis of genetic diversity in natural populations of endemic and endangered plant Phoebe chekiangensis. Biochem Syst Ecol. 2015; 63: 183–189.

59. Zhang J, Liu T, Rui F. Development of EST-SSR markers derived from transcriptome of Saccharina japonica, and their application in genetic diversity analysis. J Appl Phycol. 2018; 30: 2101–2109.

60. Du FK, Xu F, Qu H, Feng S, Tang J, Wu R. Exploiting the transcriptome of Euphrates Poplar, Populus euphratica (Salicaceae) to develop and characterize new EST-SSR markers and construct an EST-SSR database. PloS ONE. 2013; 8: e61337. https://doi.org/10.1371/journal.pone.0061337 PMID: 23593466

61. Yang T, Fang L, Zhang X, Hu J, Bao S, Hao J, et al. High-throughput development of SSR markers from Pea (Lisum sativum L.) based on next generation sequencing of a purified Chinese commercial variety. PloS ONE. 2015; 10: e0139775. https://doi.org/10.1371/journal.pone.0139775 PMID: 26440522

62. Xiao Y, Zhou L, Wei X, Mason AS, Yang Y, Ma Z, et al. Exploiting transcriptome data for the development and characterization of gene-based SSR markers related to cold tolerance in oil palm (Elaeis guineensis). BMC Plant Biol. 2014; 14: 384. https://doi.org/10.1186/s12870-014-0384-2 PMID: 25526814

63. Nie G, Tang L, Zhang Y, Huang L, Ma X, Cao X, et al. Development of SSR markers based on transcriptome sequencing and association analysis with drought tolerance in perennial grass Miscanthus from China. Front Plant Sci. 2017; 8: 801. https://doi.org/10.3389/fpls.2017.00801 PMID: 28559912

64. Xie Y, Sun X, Ren J, Fan J, Lou Y, Fu J, et al. Genetic diversity and association mapping of cadmium tolerance in bermudagrass [Cynodon dactylon (L.) Pers.]. Plant Soil. 2015; 390: 307–321.