Diet quality is associated with primary melanoma thickness

M.C.B. Hughes, 1 M. Malt, 1 K. Khosrotehrani, 2, 3 B.M. Smithers, 4 A.C. Green 1, 5, * 1Population Health Department, QIMR Berghofer Medical Research Institute, Brisbane, Qld, Australia
2Experimental Dermatology Group, The University of Queensland Diamantina Institute, Brisbane, Qld, Australia
3Department of Dermatology, Princess Alexandra Hospital, Brisbane, Qld, Australia
4Queensland Melanoma Project, Princess Alexandra Hospital, The University of Queensland, Woolloongabba, Qld, Australia
5CRUK Manchester Institute and Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK

*Correspondence: A.C. Green. E-mail: adelie.green@qimrberghofer.edu.au

Abstract

Background Patients’ diets can influence the outcome of several common cancers, but the effect on melanoma prognosis is unknown.

Objective To assess the association between quality of melanoma patients’ prediagnosis diets and primary tumour thickness, the main prognostic indicator for melanoma.

Methods We used baseline data from patients newly diagnosed with tumour stage Ib to IV cutaneous melanoma, with completed questionnaires about food intake in the past year and other factors. Diet quality was measured by the Healthy Eating Index (HEI) and melanoma thickness was extracted from histopathology reports. We estimated prevalence ratios (PRadj) and 95% confidence intervals (CIs) adjusted for confounding factors using Poisson regression models to assess associations between HEI scores and melanoma thickness.

Results Of 634 study patients, 238 (38%) had melanomas >2 mm thick at diagnosis. Patients with the highest HEI scores were significantly less likely to be diagnosed with thick melanoma than patients with lowest HEI scores (PRadj 0.93, 95% CI 0.86–0.99) (P trend = 0.03). There was no evidence of effect modification by age, sex, previous melanoma or comorbidities.

Conclusions Melanoma thickness at diagnosis is significantly associated with quality of patients’ diets before diagnosis.

Conflict of interest None declared.

Funding sources Supported by NHMRC Program Grants 1073898 and 552429. KK was supported by the Queensland Advancing Clinical Research Fellowship. The NHMRC played no role in study design; collection, analysis and interpretation of data; writing of the report or in the decision to submit the article for publication.

Introduction

The content of people’s diets can affect their long-term health including risk of developing or dying from various cancers.1–4 A low-fat, high-fibre diet and low bodyweight may protect against progression of breast, prostate and colorectal cancers.5, 6 Cutaneous melanoma, a relatively common cancer in white populations, can be fatal if diagnosed as a thick tumour.7 Whether diet quality affects disease course in melanoma survivors is unknown. One human study has assessed the association between melanoma patients’ consumption of specific foods and their prognosis.8 It reported improved survival in patients eating fruit daily (hazard ratio, 0.54), and worse survival with eating red meat daily (hazard ratio, 1.84), but no effect of high intakes of fish or salad greens.8 No studies have assessed overall diet in relation to melanoma progression.

One reason for the dearth of such studies is the generally high survival of today’s melanoma patients who tend to be diagnosed with thin tumours with excellent prognosis.9 However, despite these trends, melanoma mortality continues to rise in many countries 10 due to older adults presenting with thick rapidly growing primary melanomas of nodular subtype.11, 12 In the absence of prospective studies of diet with melanoma mortality as outcome, measured tumour thickness at diagnosis can serve as a surrogate for risk of mortality. Evidence of discretionary dietary factors that might modify the rapid growth of thick melanomas would be an important addition to clinical knowledge for public health benefit.

In a cohort of high-risk primary melanoma patients in Australia, we earlier reported the influence of dietary intake of long-chain omega-3 vs. omega-6 fatty acids on melanoma thickness at...
diagnosis. Omega-3 fatty acids promote apoptosis and inhibit angiogenesis and can reduce invasiveness of melanoma cells in vitro, while omega-6 fatty acids may increase tumour invasiveness. We found that people with high intakes of meat, fish and fat – who thus consumed relatively high amounts of omega-3 and omega-6 fatty acids – were more likely to be diagnosed with thick rather than thin primary melanomas.

We have now extended this study to assess the possible influence of the overall quality of patients’ diets, measured by the Healthy Eating Index (HEI), on thickness of melanoma at diagnosis. The HEI measures how well habitual food and drink intake adhere to the regularly updated Dietary Guidelines for Americans. Using the HEI allows the complex synergistic and cumulative effects of foods and their nutrient components to be studied, and since its introduction in 1995, many links between diet quality and reduced risk of chronic diseases have been shown across age and ethnic groups in the USA and elsewhere. Here, we hypothesized that melanoma patients who consume a recommended dietary pattern up to time of diagnosis present with thinner melanomas than those consuming less healthy diets.

Materials and methods
We used baseline data from a prospective study of patients in Queensland, Australia, newly diagnosed with tumour stage I to IV cutaneous melanoma, 2010–2014, ascertained from specialist public hospitals, private surgical clinics and pathology services, as detailed elsewhere. In all, 1254 eligible patients (aged >16 years with no clinical signs of nodal spread at presentation) were invited to participate; 825 (66%) provided written informed consent. We excluded 36 participants who were later found to have loco-regional disease at the time of diagnosis and 89 were deemed ineligible in the American Joint Committee on Cancer melanoma staging’s 8th edition, leaving 700 participants. At recruitment, participants completed a questionnaire regarding inter alia, age, sex, level of education, height and weight, frequency of skin checks, personal and family histories of melanoma and serious comorbidities (heart disease, diabetes and non-cutaneous cancer). Body mass index (BMI) was calculated (weight divided by height-squared). This study was approved by the Human Research Ethics Committees of the Metro South Hospital and Health Service (HREC/11/QPAH/470) and the QIMR Berghofer Medical Research Institute (P1305). All participants provided written informed consent.

Outcome
Tumour thickness (mm) of primary melanoma, tumour site (head or neck, trunk, upper limb, lower limb), presence of ulceration (yes, no), mitotic rate (per mm²) and melanoma subtype (superficial spreading melanoma, nodular, other, not classified) were extracted from histopathology reports.

Dietary assessment
At recruitment (on average 36 days (±26) after diagnosis), patients also completed a 142-item semi-quantitative food frequency questionnaire (FFQ) adapted from the Nurses’ Health Study and validated in an Australian population. They reported usual intakes of set amounts of each food item using nine categories, from ‘never’ to ‘4+ per day’. Additional information included intakes of specific breakfast cereals, cooking oils, butters, margarines, spreads and dietary supplements; frequency of eating fried food at home, in restaurants or fried takeaway foods; and consumption of sugar and visible fat on meat. Average food intake (grams per day) was estimated by multiplying consumption frequencies (proportions of daily use) by the specified portion size in the FFQ. Average daily intakes of foods and nutrients were estimated using the Food Patterns Equivalents Database 2015–2016 and Australian food composition data, NUTTAB 2010, respectively.

Calculation of the modified healthy eating index-2015
We used the HEI version aligned with the 2015–2020 Dietary Guidelines for Americans whose components correspond to key recommendations of the 2013 Australian Dietary Guidelines. The HEI comprises nine recommended foods receiving high scores for consumption, and four foods to be consumed sparingly that receive high scores for low consumption. The total of component scores ranges from 0 indicating non-adherence to 100 indicating perfect adherence to dietary guidelines. For each patient, we calculated scores for each HEI component (except sodium) following published methods and applying SAS codes (SAS Institute Inc., Cary, NC, USA) for FFQs from the National Cancer Institute to the guideline-based food and nutrient intake data. As we did not ask about discretionary use of salt, we followed the approach used by Xie et al in scoring dietary sodium and based the scores on sex-specific deciles of sodium intake, assigning lowest score to highest decile intake and highest score to the lowest. Finally, scores for each HEI component were summed to derive the modified HEI-2015 score (modHEI-2015), henceforth called the healthy eating index score (Table S1).

Statistical analysis
Thickness of primary melanomas was classified as ‘thick’ (>2 mm in depth) and ‘thin to moderately thick’ (≤2 mm). HEI scores were divided into tertiles, with adherence to dietary guidelines increasing from lowest (reference group) to highest. Chi-squared tests for nominal variables and ANOVA for continuous variables were used to assess associations between patient characteristics and melanoma thickness. We estimated prevalence ratios (and 95% confidence intervals) using unadjusted and adjusted Poisson regression models with robust error variance to demonstrate the association between HEI score and melanoma thickness. To test for linear trends, we assigned an
ordinal number from 1 (lowest) to 3 (highest tertile) and mod-
eled this as a continuous variable. Our adjusted model included
age (<55, 55–60 and >70), sex, frequency of skin checks (known
to be associated with melanoma thickness,\(^{42}\) sun protection
practices\(^{43}\) and diet\(^{44}\)), socio-economic indicators (education
and health sector where patient first presented) and energy
intake (continuous).

In addition, we examined age, sex, past history of melanoma
and serious comorbidities as potential effect modifiers by includ-
ing a multiplicative term (tertiles of HEI score by these factors).
We conducted sensitivity analyses with five additional multivari-
ate models adjusting for the core factors listed above but replac-
ing the two socio-economic indicators in each iteration with:
number of sun protection measures usually practised; times
spent outdoors, weekdays and weekends; lifestyle indicators
(BMI, smoking and alcohol intake); personal and family history
of melanoma and tumour characteristics (melanoma subtype,
ulceration and mitotic rate). We repeated multivariate analysis
excluding 74 patients who reported changing their diets within
2 years of index melanoma diagnosis. Finally, we identified diet-
ary guideline components that were least and most complied
with, by calculating component adherence scores (dividing
patients’ achieved score by maximum score and multiplying by
100 for each component). The median component per cent
adherence was calculated for the lowest and highest healthy eat-
ing index score groups. Analyses were conducted in SAS v9.4.

Results

Of the 700 patients for study, we excluded 37 who did not com-
plete a diet questionnaire, 18 with extreme energy intake values
and 11 who answered <90% of the FFQ food items, leaving a
final sample of 634. Median age was 65 years (range 22
–89), 373 (59%) were male and 238 (38%) had melanomas
>2 mm thick at diagnosis (Table 1). Compared with those with melanomas
≤2 mm, those with thicker tumours were significantly
(\(P<0.05\)) older, and more likely to be: male, treated in the pub-
lic health sector and to have serious co-morbidity, but there was
no difference in the frequency of skin checks (Table 1). As

| Table 1 Patient and tumour characteristics by thickness of the primary melanoma |
|---------------------------------|------------------|------------------|------------------|
| **Patient and tumour characteristics** | **Total** | **Thickness** | **P-value\(^{\dagger}\)** |
| | \(N=634\) | \(\leq 2 \text{ mm} (\%)\) | \(>2 \text{ mm} (\%)\) |
| | \(N=396\) | \(N=238\) | \(N=238\) |
| **Patient characteristics** | | | |
| Age at diagnosis, mean (±SD) | 62 (±13) | 61 (±13) | 64 (±13) | 0.002 |
| Body mass index, mean (±SD) | 28.3 (±5.4) | 28.4 (±5.5) | 28.1 (5.2) | 0.65 |
| Male sex, n (%) | 373 (59) | 213 (54) | 160 (67) | 0.0009 |
| University or college degree, n (%) | 129 (20) | 82 (21) | 47 (20) | 0.27 |
| Private health sector, n (%) | 353 (56) | 233 (59) | 120 (50) | 0.039 |
| Skin checks by doctor ≥1/year, n (%) | 311 (49) | 194 (49) | 117 (49) | 0.58 |
| Comorbidity\(^{\ddagger}\), n (%) | 301 (47) | 175 (44) | 126 (53) | 0.033 |
| **Tumour characteristics** | | | |
| Site of melanoma, n (%) | | | |
| Head and neck | 134 (21) | 72 (18) | 62 (26) | 0.061 |
| Trunk | 227 (36) | 147 (37) | 80 (34) | |
| Upper limb | 132 (21) | 91 (23) | 41 (17) | |
| Lower limb | 141 (22) | 86 (22) | 55 (23) | |
| Ulceration, n (%) | 178 (28) | 83 (21) | 95 (40) | <0.0001 |
| Mitotic rate >3 mm\(^2\), n (%) | 269 (43) | 119 (31) | 150 (63) | <0.0001 |
| Subtype, n (%) | | | |
| SSM | 253 (40) | 191 (48) | 62 (26) | <0.0001 |
| Nodular | 152 (24) | 59 (15) | 93 (39) | |
| Other\(^{\§}\) | 106 (17) | 67 (17) | 39 (16) | |
| Not classified\(^{\¶}\) | 123 (19) | 79 (20) | 44 (18) | |
| **Median daily intake** | | | |
| Ethanol (g), mean (±SD) | 10.9 (±15.5) | 10.2 (±14.5) | 12.0 (±17.0) | 0.172 |
| Total energy intake (MJ), mean (±SD) | 9.2 (±2.8) | 9.0 (±2.6) | 9.6 (±2.9) | 0.011 |

\(^{\dagger}\)Chi-squared tests (categorical variables) and ANOVA (continuous).
\(^{\ddagger}\)Ever diagnosis of heart disease, diabetes, hypertension/stroke or cancers other than skin.
\(^{\§}\)Other: lentigo maligna (17.8%), desmoplastic (34.0%), nevus (22.6%), spitzoid (4.7%), lentiginous (1.9%), acral lentiginous (7.6%) and mixed (11.3%).
\(^{\¶}\)Not classified: unable to classify (12.2%), not stated (87.0%) and other (0.8%).
Thus, all patients in this study, particularly likely from animal-

Table 2 Prevalence ratios (and 95% CI) of thick melanomas (>2 mm) by tertile of modified Healthy Eating Index-2015 (modHEI-2015) scores

Component	Tertile 1	Tertile 2	Tertile 3	P\textsubscript{trend}
Mean modHEI-2015 score, mean (sd)				
Tertile 1	Tertile 2	Tertile 3		
Mean modHEI-2015 score, mean (sd)	53.3 (5.9)	66.1 (2.7)	77.1 (4.7)	

N (%) with thick (>2 mm) melanoma

Tertile 1	Tertile 2	Tertile 3	
Unadjusted	1.00	0.93 (0.87, 0.99)	0.92 (0.86, 0.98)
Adjusteda	1.00	0.94 (0.88, 1.00)	0.93 (0.86, 0.99)

aAdjusted for age, sex, skin examination habits, education, health sector and energy intake.

expected, thicker melanomas had significantly more ulceration and mitoses, and were more likely of nodular subtype (Table 1).

Median HEI score among study patients was 65.7 (range 33.7–90.4). Scores increased with age and were higher among females and those treated in the private sector (all \(P < 0.001 \)), with no difference according to skin examination frequency or presence of co-morbidity (Table S2). Melanoma thickness decreased significantly with increasingly healthy dietary patterns after adjustment for confounding factors including frequency of skin examinations, such that those patients with the highest HEI scores were significantly less likely to be diagnosed with a thick (>2 mm) melanoma than the third of patients with the lowest scores (\(PR_{\text{adj}} = 0.93 \) (95% CI 0.86, 0.99) (\(P_{\text{trend}} = 0.03 \)) (Table 2). There was no evidence of effect modification by age, sex, previous melanoma or comorbidities. Results remained unchanged after several sensitivity multivariate analyses replacing socioeconomic indicators with other potential confounders and after excluding those who changed their diet within 2 years of completing the FFQ.

On comparing the range of adherence for specific dietary components between those in lowest and highest tertiles of HEI score (Table 3), the median per cent adherence of melanoma patients in the lowest tertile was low (≤50% of maximum score) for the recommended components of Total Fruit, Greens and Beans, Whole Grains and Fatty Acids, and for Sodium and Saturated fats as components to eat sparingly. In contrast, among melanoma patients in the highest HEI tertile, median adherence was low (<50% of maximum scores) for Fatty Acids only; moderate (50% to <80%) for Greens and Beans, Whole Grains, Dairy and Sodium; and high (≥80%) for all other components. All study patients achieved maximum scores for Total Protein Foods and Refined Grains.

Discussion

We have assessed the relation between melanoma patients’ diet quality before diagnosis and the thickness of their primary tumour as a way of addressing the larger issue of influence of patients’ diets on melanoma outcome. We used dietary patterns to capture the complexity of nutrients in patients’ overall diets, and measured these patterns with an index that positively weights high consumption of foods recommended in a healthy diet, and low consumption of foods to be consumed sparingly.37 We found that diet quality prediagnosis was inversely associated with thickness of melanoma at diagnosis, with the patients in the top tier of diet quality being 7% less likely than those in the lowest tier to be diagnosed with melanoma >2 mm thick vs. ≤2 mm, after accounting for known confounders. Notably, we adjusted for frequency of skin checks (both by doctor and self) because frequent skin checks are associated with thinner melanomas, as well as higher education and other positive health-related behaviours like not smoking and sun protection/avoidance, all of which are associated with eating habits.

On assessing compliance with dietary components, we found that those with poorer diets had lower intakes of recommended foods, namely Total Fruits, Greens and Beans, Seafood and Plant Proteins, and higher intakes of Sodium and Saturated Fats that should be eaten sparingly. All patients had low compliance (below 50%) for the Fatty Acids component but full compliance (100%) for Total Protein Foods, consistent with a National Health Survey in 2011 showing almost all Australians (99%) meet recommended protein intake,43 likely from animal-based foods such as red meat and poultry that are highly consumed46,47 but not fish (also a source of omega-3 fatty acids), as previously noted.13 Thus, all patients in this study, particularly those with the poorest diet quality, could benefit by substituting fish, as well as beans, legumes, nuts and seeds (sources of mono- and polyunsaturated fats) for some of the highly consumed red

Component	Tertile 1	Tertile 3
Adequacy		
Total vegetables	78%	100%
Greens and beans	19%	51%
Total fruits	46%	100%
Whole fruits	74%	100%
Whole grain	30%	65%
Dairy	55%	69%
Total protein foods	100%	100%
Seafood and plant proteins	67%	100%
Fatty acids	2%	34%
Moderation		
Sodium	30%	70%
Refined grains	100%	100%
Saturated fats	32%	82%
Added sugars	82%	100%
meat and poultry (sources of saturated fat), in order to improve compliance with the Saturated Fat and Fatty Acid components while adhering to the Total Protein Foods component.

Our findings broadly agree with those of the previous US study of specific foods and melanoma prognosis showing better survival in patients who, at diagnosis, ate fruit every day, and worse survival in patients eating red meat every day. However, the previous study’s dietary assessment was extremely limited: patients were asked only about consumption of red meat, fish, green salad and fruit on a 4-level scale, daily to never, because the primary aim was to examine modifiable lifestyle factors and melanoma survivorship. Thus, our study substantially extends knowledge in this field, presenting detailed assessment of the whole of patients’ diets at time of diagnosis, and adjusting for an extensive list of possible confounding factors. Our results suggest that eating a healthy diet including seafood, plant proteins, green vegetables, all with well-established anti-carcinogenic actions such as anti-inflammatory and antioxidant effects, together with low intakes of less healthy nutritional components, especially sodium and saturated fats, likely played a role in healthy-eating patients’ decreased melanoma thickness at diagnosis.

One of our greatest limitations was the use of melanoma thickness in lieu of melanoma survival as the prognostic outcome in order to gain sufficient statistical power to assess the effects of diet quality in melanoma survivors. We also acknowledge the limitations in using self-reported dietary information with its attendant potential misclassification of patients’ intakes, but we note that this misclassification would be non-differential and reduce power to detect difference and would not introduce bias to results. We are unable to infer causality because prediagnosis diet patterns and thickness were measured at the same time. On the other hand, our study has many strengths including novelty; extensive analyses to minimize the effect of other possible explanatory factors like frequent skin checks and our demonstration that the findings were not affected by patients changing their diets. As well, our detailed investigation of dietary components of a healthy diet allows dermatologists and others to give practical advice to high-risk patients in similar settings, with the caveat that our results may not apply to patients in countries with different dietary patterns. Our assessment of the level of compliance with recommended intakes also shows that people at risk of melanoma who have poorer quality diets could be particularly encouraged to increase their consumption of green vegetables, whole grain foods and foods rich in fatty acids such as fish and nuts.

In conclusion, we have shown that melanoma patients who were consuming healthy diets in the year before diagnosis were less likely to present with thick (>2 mm) melanomas than patients whose diet was of poor quality, independent of their frequency of skin checks and of other beneficial behaviours. Large longitudinal studies in other settings could confirm and advance these results by assessing the association of diet quality before diagnosis with recurrence-free survival rather than tumour thickness, while accounting for disease stage and management and socioeconomic factors.

Data availability statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.

References
1 Hurtado-Barroso S, Triuar-Soler M, Lamiela-Raventos RM et al. Vegetable and fruit consumption and prognosis among cancer survivors: a systematic review and meta-analysis of cohort studies. Adv Nutr 2020; 11: 1569–1582.
2 Kohler LN, Garcia DO, Harris RB et al. Adherence to diet and physical activity cancer prevention guidelines and cancer outcomes: a systematic review. Cancer Epidemiol Biomarkers Prev 2016; 25: 1018–1028.
3 Nagle CM, Wilson LF, Hughes MC et al. Cancers in Australia in 2010 attributable to the consumption of red and processed meat. Aust N Z J Public Health 2015; 39: 429–433.
4 Nagle CM, Wilson LF, Hughes MC et al. Cancers in Australia in 2010 attributable to inadequate consumption of fruit, non-starchy vegetables and dietary fibre. Aust N Z J Public Health 2015; 39: 422–428.
5 Davies NJ, Batehup L, Thomas R. The role of diet and physical activity in breast, colorectal, and prostate cancer survivorship: a review of the literature. Br J Cancer 2011; 105(Suppl 1): S52–S73.
6 Mauny L, Harrissart G, Dewaele P et al. Impact des régimes alimentaires sur la mortalité et le risque de récidive de cancer du sein: revue de la littérature [Impact of nutrition on breast cancer mortality and risk of recurrence, a review of the evidence]. Bull Cancer 2020; 107: 61–71.
7 Balch CM, Gershenson D, Soong SI et al. Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol 2009; 27: 6199–6206.
8 Gould Rothberg BE, Bulloch KJ, Fine JA et al. Red meat and fruit intake is prognostic among patients with localized cutaneous melanomas more than 1 mm thick. Cancer Epidemiol 2014; 38: 599–607.
9 Green AC, Baade P, Coory M et al. Population-based 20-year survival among people diagnosed with thin melanomas in Queensland, Australia. J Clin Oncol 2012; 30: 1462–1467.
10 Olsen CM, Green AC, Pandeya N et al. Trends in melanoma incidence rates in eight susceptible populations through 2015. J Invest Dermatol 2019; 139: 1392–1395.
11 Ghiavand R, Khosrotehrani K, Hughes MCB et al. Patient age and risk of recurrence of primary melanoma at high risk of spread. Br J Dermatol 2021; 184: 566–568.
12 Green AC, Viros A, Hughes MCB et al. Nodular melanoma: a histopathologic entity? Acta Derm Venereol 2018; 98: 460–462.
13 Mahamat-Saleh Y, Hughes MCB, Miura K et al. Patterns of Omega-3 and Omega-6 fatty acid dietary intake and melanoma thickness at diagnosis. Cancer Epidemiol Biomarkers Prev 2020; 29: 1647–1653.
14 Mannini A, Kerstin N, Calorini L et al. An enhanced apoptosis and a reduced angiogenesis are associated with the inhibition of lung colonisation in animals fed an n-3 polysaturated fatty acid-rich diet injected with a highly metastatic murine melanoma line. Br J Nutr 2009; 101: 688–693.
15 Serini S, Zinzi A, Ottes Vasoncelos R et al. Role of beta-catenin signaling in the anti-invasive effect of the omega-3 fatty acid DHA in human melanoma cells. J Dermatol Sci 2016; 84: 149–159.
16 Denkis Y, Kempf D, Fernandez M et al. Role of omega-3 polyunsaturated fatty acids on cyclooxygenase-2 metabolism in brain-metastatic melanoma. J Lipid Res 2005; 46: 1278–1284.
17 Krebs-Smith SM, Pannucci TE, Subar AF et al. Update of the healthy eating index: HEI-2015. J Acad Nutr Diet 2018; 118: 1591–1602.
Kirkpatrick SI, Reedy J, Krebs-Smith SM et al. Applications of the healthy eating index for surveillance, epidemiology, and intervention research: considerations and caveats. J Acad Nutr Diet 2018; 118: 1603–1621.

Kennedy ET, Ohls J, Carlson S et al. The healthy eating index: design and applications. J Am Diet Assoc 1995; 95: 1103–1108.

Chiuse SE, Fung TT, Rimm EB et al. Alternative dietary indices both strongly predict risk of chronic disease. J Nutr 2012; 142: 1009–1018.

Estrella ML, Durazo-Arvizu RA, Mattei J et al. Alternate healthy eating index is positively associated with cognitive function among middle-aged and older Hispanics/Latinos in the HCHS/SOL. J Nutr 2020; 150: 1478–1487.

Wrobleski MM, Parker EA, Hurley KM et al. Comparison of the HEI and HEI-2010 diet quality measures in association with chronic disease risk among low-income, African American urban youth in Baltimore Maryland. J Am Coll Nutr 2018; 37: 201–208.

Kord-Varkaneh H, Salehi-Sahlabadi A, Zarezade M et al. Association between healthy eating Index-2015 and breast cancer risk: a case-control study. Asian Pac J Cancer Prev 2020; 21: 1363–1367.

Navarro P, Mehegan J, Murrin CM et al. Adherence to the healthy eating Index 2015 across generations is associated with birth outcomes and weight status at age 5 in the lifeways cross-generation cohort study. Nutrients 2019; 11: 928.

Peltner J, Thiele S. Association between the healthy eating Index-2010 and nutrient and energy densities of German households’ food purchases. Eur J Public Health 2017; 27: 547–552.

Poulimenou D, Vlachos D, Maraki MI et al. Diet quality, overweight and daily monetary allowance of Greek adolescents. Int J Adolesc Med Health 2017; 31. https://doi.org/10.1515/ijamh-2017-0019

Smithers BM, Hughes MCB, Beeley VL et al. Prospective study of patterns of surgical management in adults with primary cutaneous melanoma at high risk of spread, in Queensland, Australia. J Surg Oncol 2015; 112: 359–365.

Gershenson JD, Scouray RA. Melanoma staging: American joint committee on cancer (AJCC) 8th edition and beyond. Ann Surg Oncol 2018; 25: 2105–2110.

Willett WC. Nutritional Epidemiology, Third Edition edn. Oxford University Press, Oxford, New York, 2012.

Willett WC, Sampson L, Stampfer MJ et al. Reproducibility and validity of a semiquantitative food frequency questionnaire. Am J Epidemiol 1985; 122: 51–63.

Ibiebele TI, Parekh S, Mallitt K-A et al. Reproducibility of food and nutrient intake estimates using a semi-quantitative FFQ in Australian adults. Public Health Nutr 2009; 12: 2359–2365.

Marks GC, Hughes MC, van der Pols JC. Relative validity of food intake estimates using a food frequency questionnaire. Public Health Nutr 2006; 9: 394–402.

Bowman SA, Clemens JC, Shimizu M et al. Food Patterns Equivalents Database 2015–2016: Methodology and User Guide [Online]. In, September 2018 Edn. Food Surveys Research Group, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland, 2018.

Food Standards Australia New Zealand. NUTTAB 2010 Electronic Database Files - Australian Food Composition Tables. 2011 [WWW document]. URL: www.foodstandards.gov.au (last accessed: 15 November 2013).

National Health and Medical Research Council. Australian Dietary Guidelines. Canberra 2013.

Reedy J, Lerman JL, Krebs-Smith SM et al. Evaluation of the healthy eating Index-2015. J Acad Nutr Diet 2018; 118: 1622–1633.

Panizza CE, Shvetsov YB, Harmon BE et al. Testing the predictive validity of the healthy eating Index-2015 in the multiracial cohort: is the score associated with a reduced risk of all-cause and cause-specific mortality? Nutrients 2018; 10: 452.

National Cancer Institute. The Healthy Eating Index - Simple HEI Scoring Algorithm, per day. 2019 [WWW document]. URL: https://epi.grants.cancer.gov/hei/sas-code.html (last accessed: 25 February 2020).

Xie J, Poole EM, Terry KL et al. A prospective cohort study of dietary indices and incidence of epithelial ovarian cancer. J Ovarian Res 2014; 7: 112.

Zou G. A modified poisson regression approach to prospective studies with binary data. Am J Epidemiol 2004; 159: 702–706.

Baade PD, English DR, Youl PH et al. The relationship between melanoma thickness and time to diagnosis in a large population-based study. Arch Dermatol 2006; 142: 1422–1427.

Green AC, Hughes MCB, von Schuckmann LA et al. Clustering of prevention behaviours in patients with high-risk primary melanoma. Psycho-Oncol 2018; 27: 1442–1449.

McNaughton SA, Mishra GD, Paul AA et al. Supplement use is associated with health status and health-related behaviors in the 1946 British birth cohort. J Nutr 2005; 135: 1782–1789.

Australian Bureau of Statistics. Australian Health Survey: usual nutrient intakes [online]. Canberra, Australia. 2015. (last accessed: 02 Sep 2021).

Ridoutt B, Baird D, Bastiaans K et al. Changes in food intake in Australia: comparing the 1995 and 2011 National Nutrition Survey Results Disaggregated into basic foods. Foods 2016; 5: 40.

Sui Z, Raubenheimer D, Cunningham J et al. Changes in Meat/Poultry/ Fish Consumption in Australia: from 1995 to 2011-2012. Nutrients 2016; 8: 753.

Supporting information

Additional Supporting Information may be found in the online version of this article:

Table S1. Components and scoring criteria for the modified Healthy Eating Index-2015 (modHEI-2015)

Table S2. Patient and tumour characteristics at baseline by tertile of modified Healthy Eating Index-2015 (modHEI-2015) scores