Field identification characters to diagnose *Microhyla mukhlesuri* from closely related *M. mymensinghensis* (Amphibia: Microhylidae) and range extension of *M. mukhlesuri* up to West Bengal State, India

Suman Pratihar & Kaushik Deuti

1Department of Zoology, Sukumar Sen Gupta Mahavidyalaya, Keshpur, West Bengal 721150, India.
2Zoological Survey of India, Herpetology Division, 27 J.L. Nehru Road, Kolkata, West Bengal 700016, India.
1pratihar_vu@rediffmail.com (corresponding author), 2kaushikdeuti@gmail.com

Abstract: *Microhyla mymensinghensis* and *Microhyla mukhlesuri* were recorded from West Bengal, also analyzed 12 characters to separate the species. We also hereby first time confirm the presence of *Microhyla mukhlesuri* from the main land in India

Keywords: Amphibia, first record, frogs.

Twenty-seven species have been described within the last 15 years (Frost 2021), yet *Microhyla* remains one of the most taxonomically exciting groups of Asian frogs. Microhylidae is one of the most species rich family of Anura, comprising 690 species in 12 subfamilies (Frost 2020). Previous mitochondrial phylogenies have confirmed that *Microhyla mukhlesuri* Hasan, Islam, Kuramoto, Kurabayashi & Sumida, 2014 is sister to *M. fissipes* Boulenger, 1884 and that together they are sister to *M. mymensinghensis* Hasan, Islam, Kuramoto, Kurabayashi & Sumida, 2014 (Hasan et al. 2014; Howlader et al. 2016; Yuan et al. 2016). Asian congeners, *M. chakrapanii* Pillai, 1977, *M. mukhlesuri*, and *M. mymensinghensis* are nested along with *M. fissipes* Boulenger, 1884 and together these four species are the sister group to the clade containing *M. mixtura* and *M. okinavensis* (Garg et al. 2019). The *M. fissipes* species group consists of two subclades (Poyarkov et al. 2019). Clade one species reported from Laos, Thailand, Myanmar, Philippines, Singapore, southern Asia, and the Andamans (*M. fissipes, M. mukhlesuri, M. mymensinghensis, M. chakrapanii*). And the other clade comprising species from mainland China (Garg et al. 2019).

Microhyla mymensinghensis was first described from Mymensingh, Bangladesh together with *M. mukhlesuri* (see Hasan et al. 2014). *Microhyla mymensinghensis* was recorded from Manipur, Meghalaya, Nagaland, Tripura, and West Bengal in India. But *M. mukhlesuri* has been listed only from Mizoram state in the northeastern India (Garg et al. 2019). No details were reported to confirm the finding. Our study confirms the presence of both species in West Bengal, by analyzing 16 morphometric characters to separate these species. We also hereby confirm the presence of *Microhyla mukhlesuri* from...
the Gangetic Plain of West Bengal in India, as it was described from Bangladesh (Hasan et al. 2014).

MATERIALS AND METHODS

Field work was conducted during late evening in the months of May–July 2020 in Kharagpur, Medinipur Sadar (22.2500°N, 87.6500°E), Ghatal and Jhargram (22.0559°N, 87.1518°E) areas of West Midnapore district in the state of West Bengal, India. Habitats searched included marshes, pools, riverbanks and sandy soils inside grass, leaf litter and under boulders. Morphometric and meristic studies on the preserved specimens were done at the laboratory of the Herpetology Division, Zoological Survey of India, Kolkata using a LEICA EZ-4 stereo binocular microscope and a Heerburg magnanoscope. Measurements were done with Mitutoyo Digital caliper to the nearest 0.1 mm. Four specimens were collected (ZSI A 14818, ZSI A 14819, ZSI A 14871 and ZSI A 14872) and identified as *Microhyla mukhlesuri* (Image 1a, Table 1a). Five specimens were collected (ZSI A 14680, ZSI A 14681, ZSI A 14682, ZSI A 14873 and ZSI A 14874) and identified as *Microhyla mymensinghensis* (Image 1b, Table 1b). We found no *Microhyla ornata* in the sampling site (Midnapore, West Bengal) during our survey.

For species-level analysis we examined 16 morphological characters to elucidate species identification (1) Body size (SVL) (2) Head length and head width (HL/HW) (3) extent of Tibiotarsal articulation (4) Shape of Terminal phalanges on toes (5) Shape and size of Inner and outer metatarsal, metacarpal tubercle; (6) Webbing on toes (7) length of femur and tibia (8) Dorsal spotting. (9) extent of Lateral stripe (10) pattern on the anus. (11) FAL= Forearm length, LAL= Lower arm length, HAL= Hand length, FAW= Forearm width 12. Axilla-Groin distance (A-G) (Table 1). We also have added HL, HW, FAW, TL and A-G ratios with SVL (Table no 2). We have grouped the species based on characters described by Hassan et al. (2014).

Principal Component Analysis (PCA) was performed on 16 morphometric measurements from specimens of both *Microhyla mukhlesuri* (n= 4) and *Microhyla mymensinghensis* (n= 5) using PAST 3.0 Software. Before doing the PCA, a normality test was done for all the variables. PCA factor scores for principal components (PC) with eigenvalues >1.0 were reported. Factor scores of the first two components were visualized

Image 1. Range extension of Microhyla mukhlesuri to West Bengal State.
on scatterplots to assess the degree of morphological differentiation between specimens of the two species.

Results

Two *Microhyla* species were collected during the present study *Microhyla mukhlesuri* (n = 4) and *M. mymensinghensis* (n = 5). The specimens were identified to belong to the genus *Microhyla* by the following morphological characters: absence of vomerine teeth, hidden tympanum, elliptical tongue, short snout, small eyes not protuberant and invisible from the ventral side, indistinct canthus rostralis and fingers free of webbing. Four specimens were identified as *Microhyla mukhlesuri* (Image 2a) based on size, extent of tibiotarsal articulation, mark on anus, forearm width, tibia length and shape of terminal phalanges (Garg et al. 2019; Hasan et al. 2014). This is the first record of *M. mukhlesuri* from entire Gangetic plains of India, West Bengal (Nayagram, 22.0361°N, 87.1717°E) (Image 1) which extends its range by 494 km from its type locality (Rhozan, Chittagong, Bangladesh) and by 568 km away from Mizoram, India (which was the only record from *M. munisinghensis*). Whereas *M. mymensinghensis* (Image 2b) is identified based on size, tibia length, mark on anus and forearm width (Garg et al. 2019; Hasan et al. 2014). We found *M. mukhlesuri* differs from *M. mymensinghensis* by its relatively larger adult size (Garg et al. 2019) and inverse U-shaped black mark above the anus for *M. mukhlesuri* whereas crescent-shaped black mark present above the anus in *M. mymensinghensis* as described by Hassan et al. (2014).

Identifying taxonomic characters to differentiate *M. mukhlesuri* and *M. mymensinghensis* is problematic. Both species exhibit similar extent of tibiotarsal articulation (when the hind leg is adducted) up to the snout or between the eye and snout and a lateral stripe that also extends to near the snout. Garg et al. (2019) paid attention to the shape of terminal phalanges, though the holotype description by Hassan et al. (2014) focused on forearm width, tibial length and mark on anus. We would like to focus on five putative distinguishing characteristics (a) an inverse U shape mark on the anus for *M. mukhlesuri* (vs crescent shaped mark in *M. mymensinghensis*) (Hassan et al. 2014); (b) a larger SVL in *M. mukhlesuri* (19.92–20.86 mm) (n = 4), vs. shorter (17.22–18.86 mm) (n = 5) in *M. mymensinghensis*, (c) *Microhyla mymensinghensis* has longer Tibia (TL) than *Microhyla mukhlesuri*, (d) *Microhyla mymensinghensis* has thicker fore-arm (FAW) than *Microhyla mukhlesuri* (Hassan et al. 2014), and (e) terminal phalanges of fourth toe tip knobbed but flattened in *M. mukhlesuri* (vs. knobbed but not flattened in *M. mymensinghensis*).
First record of *Microhyla mukhlesuri* in plains of India

Pratihar & Deuti

Journal of Threatened Taxa | www.threatenedtaxa.org | 26 October 2021 | 13(12): 19818–19823

Based on these characters we have identified and classified the specimens examined in this study.

In addition to aforementioned described characters, we identified a few supplementary characters to differentiate two species more confidently: (a) shape of inner metacarpal tubercle elongated in *M. mukhlesuri* vs. rounded in *M. mymensinghensis*; (b) large inner metatarsal tubercle, i.e., about 0.76 (±0.08) mm in *M. mukhlesuri* vs about 0.57 (±0.06) mm in *M. mymensinghensis*; (c) most significantly, axilla-groin distance 47% of SVL in *M. mukhlesuri* vs 38% of SVL in *M. mymensinghensis*. Both these species were observed co-occurring in humanized / agricultural habitats in the sampled areas (Image 3a, b).

Microhyla mukhlesuri showed differences with *M. mymensinghensis* in terms of morphology. Principal Component Analysis (PCA) for the specimens of both the species (*M. mukhlesuri*, n = 4; *M. mymensinghensis*, n = 5) recovered two Principal Components (PC) with eigenvalues > 1.0 that accounted for 85.8% of the total variance. PC1 explained 74.09% variance with highest loadings for A–G, TL, SVL and FoL. PC2 explained 11.71% variance with highest loadings for A–G, and HW. The remaining factors explained 14.2% of the variations. For the combined data set for both male and female projections of the factor planes 1 and 2 showed distinct clusters for the two species (Figure 1).

Figure 1. Principal component analysis (PCA) Scatter plot depicting morphometric differences between *Microhyla mukhlesuri* and *Microhyla mymensinghensis*.
First record of Microhyla mukhlesuri in plains of India
Pratihar & Deuti

Discussion
Previously, Microhyla ‘ornata’ like species were grossly grouped with four known species—M. mukhlesuri, M. mymensinghensis, M. nilphamariensis, and M. ornata. In 2018 two well-supported species groups were established—(1) M. mukhlesuri and M. mymensinghensis, along with M. fissipes from southeastern and eastern Asia, and (2) M. nilphamariensis and M. ornata, along with M. taraiensis from Nepal (Garg et al. 2018). A prominent lateral stripe extends from belly to nostril in M. mukhlesuri and M. mymensinghensis whereas a less prominent lateral stripe extends from shoulder to belly in M. nilphamariensis and M. ornata. An inverse U shape mark on the anus for M. mukhlesuri (vs crescent shaped mark in M. mymensinghensis); larger SVL in M. mukhlesuri (19.92–20.86 mm) vs. shorter (17.22–18.86 mm) in M. mymensinghensis and terminal phalanges of toes knobbed but tip flattened in M. mukhlesuri (vs. knobbed but not flattened in M. mymensinghensis) are used to group the two species. In addition to this we have identified axilla-groin distance, size of metatarsal tubercle and shape of metacarpal tubercle to differentiate these two species more confidently. The PCA results reveal two different clusters on the scatterplot, representing two different species—Microhyla mukhlesuri (n= 4) and M. mymensinghensis (n= 5).

Microhyla mukhlesuri has been reported only from Mizoram state in the northeast India (Garg et al. 2019). With two males and two female specimens we hereby for first time confirm the presence of Microhyla mukhlesuri from the Gangetic Plain in West Bengal, apart from Mizoram. We are optimistic about the wider distribution of Microhyla mukhlesuri in the Gangetic plains. Nevertheless we do encourage genetic studies of these Microhyla frogs, especially after finding geographic contact zones where two similar-looking, genetically-allied congeners Microhyla mukhlesuri and M. mymensinghensis co-occur, throwing open necessity for further fine-scale diagnosis, preferably morphological, between them.

References
Biju, S.D., S. Garg, R.G. Kamei & G. Maheswaran (2019). A new Microhyla species (Anura: Microhylidae) from riparian evergreen forest in the eastern Himalayan state of Arunachal Pradesh, India. Zootaxa 4674: 100–116.
Frost, D.R. (2021). Amphibian species of the world 6.0. New York, Darrei Frost and the American Museum of Natural History.
Garg, S., A. Das, R.G. Kamei & S.D. Biju (2018). Delineating Microhyla ornata (Anura, Microhylidae): mitochondrial DNA barcodes resolve century-old taxonomic misidentification. Mitochondrial DNA Part B, 3:2 856–861.
Garg, S., R. Suyesh, A. Das, J. Jiang, N. Wijayathilaka, A.T. Amarasinghe, F. Alhadi, K.K. Vineeth, N.A. Aravind, G. Seneviratne, M. Meegaskumbura & S.D. Biju (2019). Systematic revision of Microhyla (Microhylidae) frogs of South Asia: a molecular, morphological, and acoustic assessment. Vertebrate Zoology 69: 1–71.

Table 2. Ratios of morphometric character values for Microhyla mukhlesuri and Microhyla mymensinghensis. For character abbreviations see Materials & Methods.

Ratios	Microhyla mymensinghensis	Microhyla mukhlesuri
HL/SVL	.21±.01	.22±.02
HW/SVL	.27±.04	.24±.03
FAW/SVL	.07±.003	.06±.005
AG/SVL	.38±.04	.47±.06
TL/SVL	.54±.02	.51±.01
HL/HW	.76±.09	.89±.03

Image 3. Habitat of (a) Microhyla mukhlesuri (left) and (b) M. mymensinghensis (right). © Chandan Dandapat
Hasan, M., M.M. Islam, M. Kuramoto, A. Kurabayashi & M. Sumida (2014). Description of two new species of Microhyla (Anura: Microhylidae) from Bangladesh. Zootaxa 3755: 401–418.

Howlader, M.S., A.A. Nair & J. Merilä (2016). A new species of frog (Anura: Dicroglossidae) discovered from the mega city of Dhaka. PLoS ONE 11: e0149597. https://doi.org/10.1371/journal.pone.0149597

Poyarkov Jr., N.A., V.A. Gorin, T. Zaw, V.D. Kretova, S.S. Gogoleva, P. Pawangkhanant & J. Che (2019). On the road to Mandalay: contribution to the Microhyla Tschudi, 1838 [Amphibia: Anura: Microhylidae] fauna of Myanmar with description of two new species. Zoological Research 40(4): 244.

Yuan, Z.Y., C. Suwannapoom, F. Yan, J.R. Poyarkov, N. Nguyen, S.N. Chen, H.M. Chomdej, S. Murphy & J. Che (2016). Red river barrier and Pleistocene climatic fluctuation shaped the genetic structure of M. fissipes group complex (Anura: Microhylidae) in southern China and Indochina. Current Zoology 62: 531–543.
The Journal of Threatened Taxa (JoTT) is dedicated to building evidence for conservation globally by publishing peer-reviewed articles online every month at a reasonably rapid rate at www.threatenedtaxa.org. All articles published in JoTT are registered under Creative Commons Attribution 4.0 International License unless otherwise mentioned. JoTT allows unrestricted use, reproduction, and distribution of articles in any medium by providing adequate credit to the author(s) and the source of publication.

ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print)

October 2021 | Vol. 13 | No. 12 | Pages: 19675–19886

Date of Publication: 26 October 2021 (Online & Print)

DOI: 10.11609/jott.2021.13.12.19675-19886

www.threatenedtaxa.org

Articles

Roosting habits and habitats of the Indian Flying Fox Pteropus medius Temminck, 1825 in the northern districts of Tamil Nadu, India
– M. Pandian & S. Suresh, Pp. 19675–19688

Diversity and distribution of avifauna at Warathtenna-Hakkinda Environmental Protection Area in Kandy, Sri Lanka
– Dinela Thilakaratne, Thithra Lakkanaka, Gayan Hirimuthugoda, Chaminda Wijesundara & Shalika Kumburegama, Pp. 19689–19701

Grass species composition in tropical forest of southern India
– M. Ashokkumar, S. Swaminathan & R. Nagarajan, Pp. 19702–19713

Communications

Habitat use and conservation threats to Wild Water Buffalo Bubalus arnee (Mammalia: Artiodactyla: Bovidae) in Koshi Tappu Wildlife Reserve, Nepal
– Reeta Khulal, Bijaya Neupane, Bijaya Dhami, Siddhartha Regmi, Ganesh Prasad Tiwari & Manita Parajuli, Pp. 19714–19724

Get my head around owls: people perception and knowledge about owls of Andaman Islands
– Shaunmugavel Sureshmarimuthu, Santhanakrishnan Babu, Nagaraj Rajeshkumar & Honnavalli Nagaraj Kumara, Pp. 19725–19732

Abundance and diversity of threatened birds in Nagal Wetland, Punjab, India
– Rajwinder Kaur & Onkar Singh Brraich, Pp. 19733–19742

Evaluation of fish diversity and abundance in the Kabul River with comparisons between reaches above and below Kabul City, Afghanistan
– Pranjal Borah & Jayanta Barukial, Pp. 19781–19790

Diversity of spiders (Arachnida: Araneae) and the impact of pruning in Indian sandalwood plantations from Karnataka, India
– S. Padma 1. & R. Sundararaj, Pp. 19762–19772

New records of cheilostome Bryozoa from the eastern coast of India encrusting on the exoskeleton of live horseshoe crabs of Indian sandy shores
– Swati Das, Maria Susan Sanjay, Basudev Tripathy, C. Venkatraman & K.A. Subramanian, Pp. 19799–19807

First report of Scipinia horticia (Stål) (Heteroptera: Reduviidae) from Assam, with comments on related genus Iranta Stål
– Arjuna Singh Naoem, Santanta Saikia, Anandita Buragohain, Rubina Azmeera Begum, Swapnil S. Boyane & Hemant V. Ghate, Pp. 19829–19830

Flesh fly (Diptera: Sarcophagidae): male terminalia, diversity and expanded geographical distribution from India
– Kanhil Sreejith, Shyvra Kant Sinha, Santana Mahato & Edamana Pushpalatha, Pp. 19831–19836

Checklist of moths (Heterocera) of Tadong, Sikkim, India
– Prayash Chetti, Yuki Matsui, Hideshi Naka & Archana Tiwari, Pp. 19837–19848

New distribution records of Begonia L., B. murina Craib and B. poliainel Kiew (Begoniaceae: Cucurbitales) for Laos
– Phongphayboun Phonepaseuth, Phetlasy Souladeth, Soulivanh Lanorsavan, Shuchiro Tagane, Thyraphon Vongthavane & Keoudonne Souvannakhoummane Pp. 19849–19854

Notes

A recent sighting of the Stripe-backed Weasel Mustela striigirdosa (Mammalia: Carnivora: Mustelidae) in Hkakabo Razi Landscape, Myanmar
– Sai Sein Lin Oo, Tun Tun, Kyaw Myo Naing & Paul Jeremy James Bates, Pp. 19855–19859

Are the uplifted reef beds in North Andaman letting nesting Olive Ridley Sea Turtle Lepidochelys olivacea stranded?
– Nehru Prabakaran, Anoop Raj Singh & Vedagiri Thirumurugan, Pp. 19860–19863

First record of the orb-weaving spider Araneus tubulobrinisis Zhu & Zhang, 1993 (Araneae: Araneidae) from India
– Souvik Sen, John T.D. Caleb & Shelley Acharya, Pp. 19864–19866

The genus Catapiestus Perty, 1837 (Coleoptera: Tenebrionidae: Cnoodaloinoni) from Arunachal Pradesh with one new record to India
– V.D. Hegde & Sarita Yadava, Pp. 19867–19869

Rediscovery and extended distribution of Indigofera santapau Si Sanjappa (Leguminosae: Papilionoideae) from the states of Maharashtra and Gujarat, India
– Saiam Shirikant Maiti, Ajay Natha Gangurde, Sharad Suresh Kambale, Avinash Ramchandra Gholve, Avinash Asraji Aduul, Ganesh Babaso Pawar & Kumar Vinod Chotupuri Gosavi, Pp. 19874–19877

Additional distribution records of Ceropogia anjanaerica, an endemic and ‘Endangered’ lantern flower of the northern Western Ghats, India
– Samir Shrikant Maity, Ajay Natha Gangurde, Sharad Suresh Kambale, Anoop P. Balan & A.J. Robi, Pp. 19880–19883

Notes on the extended distribution of Impatien malayamalaya, a recently described balsam in Western Ghats, India
– Anoop P. Balan & A.J. Robi, Pp. 19887–19888

Book Review

A look over on the scented tree of India (Santolium album)
– S. Suresh Ramanan & A. Arunachalam, Pp. 19884–19886

Short Communications

Is release of rehabilitated wildlife with embedded lead ammunition advisable? Plumbism in a Jaguar Panthera Onca (Mammalia: Carnivora: Felidae), survivor of gunshot wounds
– Eduardo A. Díaz, Carolina Sáenz, E. Santiago Jiménez, David A. Egas & Kelly Swing, Pp. 19808–19812

New record of the Sewing Needle Zipper Loach Paracanthobdostin Iinyaho Singer & Page, 2015 (Teleostei: Cypriniformes: Nemacheliidae) from the Chindwin drainage of Manipur, India
– Yunnam Rameshori, Yengkhom Chinglemba & Waihkm Vishwanath, Pp. 19813–19817

Field identification characters to diagnose Microhyla mukhlesuri from closely related M. mymensinghensis (Amphibia: Microhylidae) and range extension of M. mukhlesuri up to West Bengal State, India
– Suman Pratihar & Kaushik Deut, Pp. 19818–19823