Characterization of *Vibrio parahaemolyticus* clinical strains from Maryland (2012–2013) and comparisons to a locally and globally diverse *V. parahaemolyticus* strains by whole-genome sequence analysis

Julie Haendiges¹, Ruth Timme², Marc W. Allard², Robert A. Myers¹, Eric W. Brown² and Narjol Gonzalez-Escalona*²

1 Department of Health and Mental Hygiene, Baltimore, MD, USA
2 Center for Food and Applied Nutrition, Food and Drug Administration, College Park, MD, USA

*Correspondence: Narjol Gonzalez-Escalona, Center for Food and Applied Nutrition, Food and Drug Administration, 5100 Paint Branch Parkway, College Park, MD 20740, USA
e-mail: narjol.gonzalez-escalona@fda.hhs.gov

INTRODUCTION

Vibrio parahaemolyticus is a natural inhabitant of temperate and tropical coastal waters and is the leading cause of seafood-borne gastroenteritis in the United States (US) (Scallan et al., 2011). Cases of illness are usually associated with eating raw or undercooked seafood. Strains of *V. parahaemolyticus* carrying genes for thermostable direct hemolysin (*tdh*) and/or thermostable direct hemolysin-related hemolysin (*trh*) are considered pathogenic (Türner et al., 2013) and typically represent <1% of environmental *V. parahaemolyticus* strains (DePaola et al., 2000). However, this frequency may depend on the location, sample sources, and detection methods (Kaysner et al., 1990; Alam et al., 2002; Cook et al., 2002; Hervio-Heath et al., 2002; Martinez-Urtaza et al., 2008). During the last two decades *V. parahaemolyticus* infections and outbreaks have increased throughout the world. Most of these new cases belong to a pandemic clonal complex, known as CC3, first identified in February of 1996 in India (Martinez-Urtaza et al., 2005; Nair et al., 2007; Gonzalez-Escalona et al., 2008; Haendiges et al., 2014).

The emergence of CC3 caused public health concerns about the potential worldwide spread of virulent *V. parahaemolyticus*, which previously had been restricted to particular regions. Other clonal complexes of *V. parahaemolyticus*, specifically CC36 and CC34, have been observed among coastal US strains (Gonzalez-Escalona et al., 2008), and strains of Sequence Type (ST) 36, the ancestral type of CC36, have also been detected on the western coast of Canada (Banerjee et al., 2014). Although infections in the US are typically caused by strains from CC36, which is endemic to the West Coast (Abbott et al., 1989; Gonzalez-Escalona et al., 2008), a Maryland outbreak in August 2012 (Haendiges et al., 2014) was caused by strains belonging to CC3.

Foodborne illnesses due to *V. parahaemolyticus* are uncommonly reported in the US and in the state of Maryland. Forty-six cases of *V. parahaemolyticus* gastroenteritis associated illnesses were reported between 2012 and 2013. From those cases, 34...
strains were isolated. During the summer of 2012 a multistate outbreak associated with harvested shellfish was reported on the East Coast of the US (Newton et al., 2014), caused by *V. parahaemolyticus* strains belonging to CC36 (Martínez-Urtaza et al., 2013), subsequently shown to be ST36. That outbreak affected 28 persons in nine states (Newton et al., 2014), and the isolated strains were of the O4:K12 or O4:K (unknown) serotypes. Usually strains from this serotype/ST isolated in the US are from the West Coast (Gonzalez-Escalona et al., 2008; Newton et al., 2014). Another outbreak, involving 104 cases, occurred in the summer of 2013 affecting people in 13 US states and were caused by the same ST36 (Newton et al., 2014). An outbreak in Spain, during the summer of 2012, was attributed to strains that were ST36 as well (Martínez-Urtaza et al., 2013), associated with cooked seafood that had been cooled with untreated local seawater (Martínez-Urtaza et al., 2013); contrarily to the infections in the US which are often linked to the consumption of contaminated oysters (Newton et al., 2014).

The numbers of *V. parahaemolyticus* infections appears to have increased approximately 4 times in US in the last decade (Mead et al., 1999; Scallan et al., 2011). Scallan et al. (2011) reported that the domestically acquired foodborne average for *V. parahaemolyticus* infections annually were around 35,000 in the period 2000–2008, while Mead et al. (1999) reported around 8000 infections annually in the period 1992–1997. The increasing number of infections could have detrimental impacts on public health and economic growth, particularly in regions where seafood harvest and consumption are important. However, active surveillance depends upon having effective ways to identify and monitor the nature or identity of the *V. parahaemolyticus* strains causing outbreaks.

Various typing methods have been used to distinguish bacterial isolates for epidemiological investigations (Foxman et al., 2005). Pulsed Field Gel Electrophoresis (PFGE) has been a favored method for genotyping *V. parahaemolyticus* isolates (Marshall et al., 1999) and it is considered the “gold standard” for outbreak investigations (Parsons et al., 2007; Wagley et al., 2008; Dauros et al., 2011; Banerjee et al., 2014; Haendiges et al., 2014; Ma et al., 2014; Pazhani et al., 2014). While useful for short-term epidemiology, PFGE does not provide details of the genetic relationships among isolates (e.g., evolutionary relationships) (Foxman et al., 2005). Another common method for characterizing *V. parahaemolyticus* isolates is Multilocus Sequence Typing (MLST). This method is based on direct sequence analysis of housekeeping genes, making MLST better for long term evolutionary studies (Gonzalez-Escalona et al., 2008; Harth et al., 2009; Yan et al., 2011; Gavilan et al., 2013; Martínez-Urtaza et al., 2013; Turner et al., 2013). A public database was established to archive *V. parahaemolyticus* sequences (http://pubmlst.org/vparahaemolyticus) (Gonzalez-Escalona et al., 2008).

In the last 5 years, scientists have begun using genomic techniques to analyze historical collections of pathogens and outbreak isolates, providing new insights for outbreak investigations. Whole genome sequencing (WGS) and WGS-SNP data analyses allow us to better understand population dynamics and mechanisms contributing to increased virulence among foodborne bacterial pathogens, including outbreaks of *Salmonella* Montevideo in 2010 (Bakker et al., 2011; Allard et al., 2012), *Vibrio cholerae* in Haiti in 2010 (Chin et al., 2011), *E. coli* O104:H4 (in Germany in 2011, Rasko et al., 2011) and *Salmonella* Enteritidis in the US in 2010 (Allard et al., 2013). In the current project, we utilize a similar approach to explore the diversity and relationships among *V. parahaemolyticus* isolates causing outbreaks in Maryland.

Specifically, in order to better understand potential changes in *V. parahaemolyticus* populations in the state of Maryland and to investigate whether the spikes in cases during the summers of 2012 and 2013 were related to this recently introduced East Coast clone, ST36, we used WGS to compare genomes from those outbreaks with those of the other *V. parahaemolyticus* strains causing illnesses in recent years (2012–2013). We began by sequencing the 34 strains from MD, then 10 additional historical *V. parahaemolyticus* strains from different sources (clinical and environmental) from the East and West Coasts of US were also sequenced and used for phylogenetic comparative analysis. Additional available genomes from global *V. parahaemolyticus* strains were also used in the phylogenetic comparative analysis.

MATERIALS AND METHODS

BACTERIAL STRAINS AND MEDIA

The *V. parahaemolyticus* isolates sequenced for this project are listed, along with their assigned CFSAN numbers, in Tables 1, 2. Table 1 lists the 34 clinical isolates from Maryland, and Table 2 lists the national and international *V. parahaemolyticus* isolates used for comparison. All isolates were retrieved from storage (−80°C freezer), transferred to Luria-Bertani (LB) medium with 3% NaCl and incubated at 250 rpm at 37°C.

DNA EXTRACTION AND QUANTIFICATION

Genomic DNA from each isolate was isolated from overnight cultures using the DNeasy Blood and Tissue Kit (QIAGEN, Valencia, CA). The quality of the DNA was checked using a NanoDrop 1000 (Thermo Scientific, Rockford, IL) and the concentration was determined using a Qubit double-stranded DNA HS assay kit and a Qubit 2.0 fluorometer (Life Technologies, Grand Island, NY), according to each manufacturer’s instructions.

WHOLE GENOME SEQUENCING, CONTIG ASSEMBLY, AND ANNOTATION

The genomes of the historical isolates were sequenced using 200bp reads chemistry and the 36 MD outbreak isolates were sequenced using 300bp reads chemistry, using an Ion Torrent (Thermo Scientific) sequencer, according to manufacturer’s instructions, at approximately 20X coverage (Haendiges et al., 2014). Genomic sequence contigs were de novo assembled using CLC Genomics Workbench (QIAGEN). These draft genomes were annotated using the NCBI Prokaryotic Genomes Automatic Annotation Pipeline (PGAAP, http://www.ncbi.nlm.nih.gov/genomes/static/Pipeline.html) (Klimke et al., 2009).

IN SILECIO MLST PHYLOGENETIC ANALYSIS

The initial analysis and identification of the isolates was performed using an in silico *V. parahaemolyticus* MLST approach, based on information available at the *V. parahaemolyticus* MLST website (http://pubmlst.org/vparahaemolyticus). Seven
ASSIGNMENT TO CLONAL COMPLEXES

The program goeBURST v1.2.1 was used to identify CCs among the isolates (http://goeburst.phyloviz.net) (Francisco et al., 2009). To qualify as members of the same CC, isolates must share at least 5 of the 7 alleles used in the *V. parahaemolyticus* MLST scheme (Feil et al., 2004). Those STs that differ by two alleles are considered double locus variants (DLV), and those which differ at only a single locus are single locus variants (SLV).

PHYLOGENOMIC ANALYSIS AND TARGETED SNP ANALYSIS

We performed two phylogenetic analyses using the software kSNP v2 (Gardner and Hall, 2013) (kmer length = 31). The first one included a broad SNP analysis of all the genomes included in the analysis, including local, national and international isolates, and was performed to provide an evolutionary context for all the *V. parahaemolyticus* isolates used for the analysis. The second was conducted to provide a more detailed phylogenetic relationship among the isolates found in each individual cluster and were targeted for more refined SNP analyses. Our goal was to recover variations unique to each respective lineage. To do this, we created a matrix that included only core SNPs (i.e., SNPs that were present in all genomes) for each lineage, using the reference-free SNP- finding program, kSNP v2 (Gardner and Hall, 2013) (kmer length = 31).
Table 2 | Locally and globally diverse *V. parahaemolyticus* isolates genomes used for phylogenomic analyses available at the National Center for Biotechnology Information.

Isolate name	Accession no(s)	CFSAN number	STs	State	Country	Isolation year	Source	References
029-1(b)	JNTW0000000000	CFSAN001611	36	OR	USA	1997	E	Haendiges et al., 2014
48057	JNTX0000000000	CFSAN001612	36	WA	USA	1990	C	Haendiges et al., 2014
K1198	JNTY010000000	CFSAN001614	59	AK	USA	2004	E	Haendiges et al., 2014
10292	JNTZ000000000	CFSAN001617	50	WA	USA	1997	C	Haendiges et al., 2014
48291	JNUA000000000	CFSAN001618	36	WA	USA	1990	C	Haendiges et al., 2014
F11-3A	JNUB000000000	CFSAN001619	36	WA	USA	1988	E	Haendiges et al., 2014
NY-3483	JNUC000000000	CFSAN001620	36	NY	USA	1998	E	Haendiges et al., 2014
K1203	JNUD000000000	CFSAN001173	59	AK	USA	2004	E	Haendiges et al., 2014
98-513-F52	JNUE000000000	CFSAN001160	34	LA	USA	1998	E	Haendiges et al., 2014
10290	JNUF000000000	CFSAN001613	36	WA	USA	1997	C	Haendiges et al., 2014
10329	NZ_AFBW0100000	N/A	36	WA	USA	1998	C	Gonzalez-Escalona et al., 2011
RIMD 2210633	NC_004603, NC_004605	N/A	3	Osaka	Japan	1996	C	Makino et al., 2003
BB220P	CP003973.1, CP003972.1	N/A	88	?	Bangladesh	1980	E	Jensen et al., 2013
AN-5034	ACF0000000000	N/A	3	?	Bangladesh	1998	?	Chen et al., 2011
AQ3810	AAWQ000000000	N/A	87	?	Singapore	1983	C	Unpublished
AQ4037	ACFN000000000	N/A	96	?	Maldives	1985	?	Chen et al., 2011
K5030	ACKB000000000	N/A	3	?	?	2005	?	Chen et al., 2011
PCV08-7	AOCL000000000	N/A	808	Selangor	Malaysia	2008	E	Truvayipati et al., 2013
Peru-466	ACFM000000000	N/A	3	?	Peru	1996	?	Chen et al., 2011
SNUVps-1	AMRZ000000000	N/A	917	?	Korea	2009	E	Jun et al., 2013
V110	AQPJ000000000	N/A	809	?	China	2010	E	Liu and Chen, 2013
3259	AVLO010000000	N/A	479	?	USA	2007	C	Unpublished
949	AVPV010000000	N/A	3	?	USA	2006	C	Unpublished
NIHCB0603	AVDM000000000	N/A	3	?	Bangladesh	2006	C	Unpublished
NIHCB0757	AVPX010000000	N/A	65	?	Bangladesh	2006	C	Unpublished
VP-NY4	AVDN010000000	N/A	3	?	India	1997	C	Unpublished
VP2007-095	NZ_AVOI0100000	N/A	631	FL	USA	2007	C	Unpublished
VP232	NZ_AVOJ0100000	N/A	3	?	India	1998	C	Unpublished
VP250	NZ_AVOK0100000	N/A	3	?	India	1998	C	Unpublished
VPCR-2010	NZ_AVPW0100000	N/A	308	?	USA	2010	E	Unpublished
12310	AXYP000000000	N/A	36	WA	USA	2006	C	Unpublished
3256	AZGS000000000	N/A	36	WA	USA	2007	C	Unpublished

N/A, not applicable; ?, unknown.

length = 31). Maximum-likelihood phylogenies for each core SNP matrix were then constructed within the kSNP, labeled with the number of unique SNPs present in every descendant of that node. Draft assemblies were used to detect SNPs using the program, kSNP. Filtering was applied to eliminate detectable horizontal gene transfer such as mobile elements and paralogs, but we were not able to filter for genome recombination. Although important, reconstructing the reticulate evolutionary history of *V. parahaemolyticus* was outside the scope of this research effort. Using the kSNP approach offers several advantages. First, the kSNP approach to gathering reference-free SNPs for downstream phylogenetic analysis has been effective for microbial-scale phylogenomic analyses (Sahl et al., 2013; Timme et al., 2013), Second, these kSNP analyses are not as vulnerable to assembly errors as other methods because the putative SNPs are extracted from kmers (in our present analysis, one SNP per 25 mer), effectively eliminating any influence of assembly bias. Third, the algorithm behind SNP identification is especially conservative about common pyrosequencing errors, such as the homopolymeric runs commonly observed in data from 454 and Ion Torrent sequencing procedures: if an insertion or deletion is present in a region, the resulting 25-mer will no longer match the other homologous kmer regions, thus that SNP will be missing in that taxon. Additionally, kSNP omits kmers where all SNPs are in the center of a homopolymer repeat (Gardner and Slezak, 2010). These features make our approach conservative and prevent repeat regions from becoming a factor in our analyses: any k-mers comprising such regions will fail to be unique, and therefore will not be used.

NUCLEOTIDE SEQUENCE ACCESSION NUMBERS

The draft genome sequences for all 46 *V. parahaemolyticus* strains in our analyses are available in GenBank under the accession numbers listed in Tables 1, 2.
RESULTS AND DISCUSSION

MARYLAND V. PARAHAEOMLYTICUS OUTBREAK STRAINS AND IN SILICO MLST

Our MLST analyses provide a broad look at the diversity of V. parahaemolyticus clinical samples collected during 2010–2013 in the state of Maryland. These 34 V. parahaemolyticus strains isolated from patients—stool (80%), ear (6%), and wound (14%)—were sequenced using Ion Torrent. A quarter of these strains (25%) came from an outbreak in the summer of 2013. All the reported cases occurred during the warmer months between June and August (Table 1).

In silico MLST (Gonzalez-Escalona et al., 2008) identified 13 different STs, showing that the sporadic outbreaks in Maryland were caused by highly diverse V. parahaemolyticus strains. Seven STs were novel (STs: 651, 652, 653, 677, 678, 679, and 896) and represented strains that have only been found (so far) in Maryland (Table 1). The most prevalent STs were ST36 (28%), ST631 (22%), ST3 (8%), ST113 (8%), and ST653 (6%). The rest of the STs were represented by a single strain.

Some of the identified STs were isolated from more than one location, more than one person, and in different years (Table 1 and Figure 1); most of the illnesses associated with these isolates occurred in MD coastal counties (Figure 1). Interestingly, most of the cases on 2013 (88%) were caused by ST631 (31%) and ST36 (56%). This suggests these two STs are either more prevalent and/or have replaced the endemic V. parahaemolyticus populations in this region. Additional surveys of pathogenic V. parahaemolyticus in MD could confirm or clarify our theories.

Our eBURST analysis (goeBURST) showed that the MD isolates do not form any clonal complexes and were not related to each other (Figure 2). Therefore, the outbreaks during this period in MD were caused by V. parahaemolyticus belonging to different populations. However, some findings suggested we had reached the limits of the MLST method: the ST36 observed in MD could not be distinguished from ST36 from the West Coast by this method. It is at this point we must turn to the higher discriminatory power of WGS analyses.

PHYLOGENOMIC ANALYSIS

Using 7 V. parahaemolyticus genomes available from NCBI (www.ncbi.nlm.nih.gov/genome/?term=vibrioparahaemolyticus) and the 10 genomes from historical US V. parahaemolyticus strains (Table 2), we determined the phylogenetic relationships among the MD strains using a whole-genome SNP analysis (Figure 3). As can be seen from Figure 3, V. parahaemolyticus is a highly diverse microorganism, documented by the high number of SNPs defining each branch, and a low-resolution tree is obtained when using this entire genome database. Nevertheless, a similar clustering to the one achieved by MLST analysis can still be observed for the Maryland V. parahaemolyticus strains, where the same STs were also grouping at the genome level. Five clusters of related strains were identified, cluster I (ST36), cluster II (ST653), cluster III (ST113), cluster IV (ST631), and cluster V (ST3).

Besides Maryland ST36 strains (which appear in blue text on the Figure 3), Cluster I also contained strains that were isolated on the West Coast (1988–2004) (represented by the red text in Figure 3) and are part of CC36 (Gonzalez-Escalona et al., 2008). In this broad phylogeny, little differentiation can be observed among these ST36 strains. The same can be observed for most other clusters. But this broad phylogeny does allow us to confirm

FIGURE 1 | Sequence types (STs) isolation locations on the state of Maryland, USA. STs found in more than one location are in red fonts.
the diversity of populations causing the outbreaks in MD during that 2 year period.

Given these patterns, we then used a cluster-based analysis that enabled us to identify relationships among strains that would not have been found by examining the entire dataset (Figure 4). Each individual cluster (when more than three strains) was analyzed separately. This type of analysis helped us to clearly distinguish strains in ST36 from MD (2012–2013) from those originating on the West Coast (1988–1998). These groups differed by at least 150 SNPs (Figure 4A). Interestingly, MD strains were similar to ST36, also from the West Coast, of US but from a later time point: 2006–2007 (strains 12310 and 3256). This clearly indicates that ST36 strains have evolved in the last decade and the new ST36 strains from the West Coast are more similar to the ST36 from MD (2012–2013) than the historical ST36 from the West Coast. Also, it seems that the outbreak in 2013 in MD of ST36 was also composed by strains from at least three different subgroups within lineage ST36. One subgroup contained the strain responsible for the cases in 2012 and most 2013 cases (VP43, 12, 42, 33, 36, 40, and 38), and the other two subgroups were composed of one (VP32) and two strains (VP30 and VP46). These differences in subgroups within lineage ST36 could have arisen from adaptations to surviving in different oysters/habitats and/or to the introduction of new variants.

This is why WGS-SNP analyses provide clearer insights than earlier methods: many of these strains were unable to be distinguished from one another by MLST and PFGE analysis. The general understanding of *V. parahaemolyticus* evolution suggests that the typical mechanism is recombination, with a recombination ratio estimated at 2.5:1 and 8.8:1 by allele and site, respectively (Gonzalez-Escalona et al., 2008). Example of this are observed among strains belonging to CC345, where all known variants (SLV) of the ancestral ST type of the CC (ST345) have arisen by recombination, mainly in the recA allele (González-Escalona et al., in press).

Cluster II and Cluster III were composed by two and three strains each, respectively; no other genomes have been reported for those STs, therefore we could not use a targeted SNP analysis to further analyze those strains. Nevertheless, these clustered with other US strains (Figure 3) indicating that they are probably strains endemic to the US. Strains belonging to ST113 were isolated from wound, ear, and stool in MD, suggesting that Clusters II and III are composed of local strains. ST113 was first described for a *V. parahaemolyticus* strain isolated from oysters in Louisiana state in 2007 (Johnson et al., 2009).

The second most numerous ST observed among the MD outbreak strains was Cluster IV (ST631): these strains were highly similar, suggesting that they came from the same region 2 years in a row. In our analyses, the Cluster IV MD strains also clustered with a strain isolated in FL in 2007 (Figure 4B). If we fit this data together with the fact that ST631 had initially been reported through a strain isolated in Prince Edward Island (Canada) in 2009 (Banerjee et al., 2014), we have reason to believe that ST631 is a regional ST, endemic to the East Coast.

Finally, Cluster V (ST3), included the MD 3 strains recovered from an outbreak that caused six illnesses during the summer of 2012 (Haendiges et al., 2014). These strains had previously been characterized by Haendiges et al. (2014), using a different phylogenetic tool (BIGSdb genome comparator tool). Due to homopolymer errors (inherent to Ion Torrent sequencing), no further resolution could be observed among strains belonging to Cluster V, so we could not determine whether the strains causing the outbreak were the same or not. The other analyses performed in our study were not impacted by such errors, since the miscalls were pruned from the analysis and only true high quality SNPs were included. With this targeted SNP based analysis, these strains were undistinguishable and can be clearly separated from other ST3 strain which genome were available at NCBI by at least 57 unique SNPs and can conclusively be called as being undistinguishable and probably the same strain and coming from the same source (Figure 4C). Therefore, this targeted SNP analysis can be used for outbreak detection caused by a specific *V. parahaemolyticus* strain.

PRESENCE AND ABSENCE OF tdh AND trh GENES AND THEIR RELATION TO ETIOLOGY

There are five different subtypes of *tdh* genes that differ by sequence (*tdh1* through *tdh5*); these subtypes share 96–98% identity (Nishibuchi and Kaper, 1990). In the case of *trh* genes there are two recognized subtypes (*trh1* and 2), which share 84% identity (Kishishita et al., 1992). Most of the clinical MD *V. parahaemolyticus* analyzed carried *tdh* and/or *trh* genes (72%) (Table 1). Ten isolates (28%) were negative for *tdh* and *trh*, three (8%) were only *tdh* positive, four (11%) were only *trh* positive, and the remaining 19 (33%) isolates contained both genes.

It was unusual to find that 28% of these clinical *V. parahaemolyticus* did not carry *tdh* or *trh*, since these strains are usually considered non-pathogenic (Nishibuchi and Kaper, 1995; Blackstone et al., 2003; DePaola et al., 2003).
FIGURE 3 | Phylogenetic clustering analysis of the outbreak strains of *V. parahaemolyticus*, Maryland, 2012–2013, by whole-genome SNP analysis. A k-SNP (Timme et al., 2013) analysis was performed. The maximum-likelihood tree shows *V. parahaemolyticus* MD outbreak isolates (in blue fonts), historical US strains sequenced in this study (in red fonts) and other related but unassociated *V. parahaemolyticus* strains (retrieved from NCBI, black fonts). Maximum-likelihood phylogeny was constructed from a (Continued)
some recent reports of *V. parahaemolyticus* without either of these two pathogenicity markers causing sporadic cases of illness (Jones et al., 2012; Banerjee et al., 2014) and having these 10 genomes may help researchers discover what makes these strains pathogenic. Jones et al. (2012) reported that 27% of their clinical isolates collected across US from July 2006 to November 2007 were *tdh/trh* negative while Banerjee et al. (2014) reported the same genotype for 4% of the clinical *V. parahaemolyticus* collected in Canada during 2000–2009. Furthermore, the majority of the *tdh/trh* negative strains (70%) were isolated from either wound or ear infections (Table 1). This further indicates that these two markers may not be necessary for human illness to occur (Broberg et al., 2011), although it is possible that these patients had some kind of immune deficiencies that could make them more prone to infections (chronic liver disease), as observed for *V. vulnificus* (Kim et al., 2014). The actual percentage of *tdh/trh* negative clinical strains is currently hard to estimate and might depend on several factors including sample size, *V. parahaemolyticus* endemic populations, type of infection, as well as errors caused by sporadic outbreaks that often go unnoticed or underreported (Scallan et al., 2011).

Most of the *tdh* and/or *trh* positive strains carried *tdh2* and *trh1* combination. Most clinical US strains carry both *tdh/trh* (Okuda et al., 1997a; Jones et al., 2012; Paranipye et al., 2012; Turner et al., 2013) while pandemic strains carried *tdh1* and *tdh2* (Okuda et al., 1997b; Matsumoto et al., 2000; Makino et al., 2003; Gonzalez-Escalona et al., 2005). Among the MD *V. parahaemolyticus* strains, only three were both *tdh1* and two positive and these were identified as belonging to the pandemic clonal complex and were ST3 (Haendiges et al., 2014). Only two MD strains carried exclusively *trh2*. A study of environmental *V. parahaemolyticus* in Norway also identified strains containing only the *trh* gene that were also *trh2*, however those strains belonged different STs than the one observed in this study (Ellingsen et al., 2013). The availability of these genomes would help in future analysis in determining which other genes besides *tdh* and *trh* are necessary for pathogenesis in this marine bacterium.

DISTRIBUTION OF T3SS AND OTHER GENOMIC REGIONS IN MD V. PARAHAEOMOLYTICUS CLINICAL STRAINS

We performed an *in silico* analysis of each strain’s genome using CLC Genome Workbench software (QIAGEN) for 24 known regions described for pandemic strains, including both T3SS, T3SS1 and 2α (Boyd et al., 2008) and well as for T3SS2β (Park et al., 2000), containing the *ure* genes and *trh* gene and described previously for strains carrying both *tdh* and *trh*
genes (Supplementary Table 1). All strains carried NK, T3SS-1, Osmotolerance (chromosome I), Gametolysin, Osmotolerance (chromosome II), CPS, Type I secretion, Type I pilus, Multidrug efflux, and Ferric uptake. Most strains lacked all the pathogenicity islands described for the pandemic strain RIMD2210633 (VPA11-7). Four other MD strains carried either Vpa11 (VP10) or Vpa12 (VP2, and VP14), although carrying a sequence different from that of the pandemic strain. Of the nine MD strains lacking tdh or trh gene, six carried a T6SS different from the pandemic, for the presence/absence of the other elements or PIs were very similar to the strains carrying tdh, trh, or tdh/trh strains. Seven of these strains were isolated from wound or ear infections. Since tdh/trh and TSS2s were described as needed for producing infections at the intestinal level [because tdh/trh causes intestinal fluid secretion as well as cytotoxicity in a variety of cell types (Raimondi et al., 2000)] while TTSS2 has a role in enterotoxicity (Park et al., 2004), then these strains could have caused infections by a rather opportunistic way than by an actual infection as observed for gastroenteritis. These strains still possess TSS1 which is known for being involved in the cytotoxicity (Park et al., 2004). A more detailed study could reveal additional elements we did were not able to assess in this study; such analyses will certainly shed more light on the infection mechanisms of these unusual V. parahaemolyticus strains.

CONCLUSIONS

Our study used WGS to provide a high resolution investigation of genetic diversity and relationships of clinical V. parahaemolyticus strains isolated in the state of Maryland during 2012–2013 period in comparison to those isolated from other geographical locations. Having an archive of V. parahaemolyticus genomes allowed us to perform a phylogenetic analysis of strains and revealed that strains causing outbreaks in MD were highly diverse, genetically distinct, and clearly different from other regional and global strains. Despite the geographic breadth of our strains, we are aware that our study captured only a fraction of the actual number of V. parahaemolyticus strains causing illness in the state of Maryland, due in part to the sporadic nature of outbreaks, the low number of strains recovered per outbreak, and the fact that many outbreaks are never investigated (Scallan et al., 2011).

We suggest using a similar approach during future outbreaks to analyze the identity of suspect V. parahaemolyticus strains and their relationship to strains causing previous outbreaks. Our WGS analysis of V. parahaemolyticus strains highlights the need for a genome database for V. parahaemolyticus to improve traceback and responses to outbreaks. We have created a new BioProject (PRJNA245882) at NCBI, spearheaded by FDA-CFSAN and the state of Maryland’s DHMH, in which we are going to continually deposit new available genomes of V. parahaemolyticus causing outbreaks that would improve detection of new outbreak strains, track the emergence of new clonal strains in geographical regions where these strains are not endemic, and will be used in source tracking. We suggest and encourage the scientific community to deposit further V. parahaemolyticus genomes from their respective countries in centralized databases, such as NCBI, in order to improve source tracking.

ACKNOWLEDGMENTS

This project was supported by the FDA Foods Program Intramural Funds. The authors thank Dr. Lili Fox Vélez for her editorial assistance on this manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: http://www.frontiersin.org/journal/10.3389/fmicb.2015.00125/abstract

REFERENCES

Abott, S. L., Powers, C., Kayser, C. A., Takeda, Y., Ishihashi, M., Joseph, S. W., et al. (1989). Emergence of a restricted bioserovar of Vibrio parahaemolyticus as the predominant cause of Vibrio-associated gastroenteritis on the West Coast of the United States and Mexico. J. Clin. Microbiol. 27, 2891–2893.

Alam, M. J., Tomochika, K. L., Miyoshi, S. I., and Shinoda, S. (2002). Environmental investigation of potentially pathogenic Vibrio parahaemolyticus in the Seto-Inland Sea, Japan. FEMS Microbiol. Lett. 208, 83–87. doi: 10.1111/j.1574-6968.2002.tb1064.x

Allard, M. W., Luo, Y., Strain, E., Li, C., Keys, C. E., Son, I., et al. (2012). High resolution clustering of Salmonella enterica serovar Montevideo strains using a next-generation sequencing approach. BMC Genomics 13:52. doi: 10.1186/1471-2164-13-32

Allard, M. W., Luo, Y., Strain, E., Pettengill, J., Timme, R., Wang, C., et al. (2013). On the evolutionary history, population genetics and diversity among isolates of Salmonella Enteritidis PFGE pattern JEGX01.0004. PLoS ONE 8:e55254. doi: 10.1371/journal.pone.0055254

Bakker, H. C., Swift, A. L., Cummings, C. A., Hoelzer, K., Degoricia, J., Rodriguez-Rivera, L. D., et al. (2011). A whole-genome single nucleotide polymorphism-based approach to trace and identify outbreaks linked to a common Salmonella enterica subsp. enterica serovar Montevideo pulsed-field gel electrophoresis type. Appl. Environ. Microbiol. 77, 8648–8655. doi: 10.1128/AEM.06358-11

Banerjee, S. K., Kearney, A. K., Nadon, C. A., Peterson, C. L., Tyler, K., Bakouche, L., et al. (2014). Phenotypic and genotypic characterization of Canadian clinical isolates of Vibrio parahaemolyticus collected from 2000 to 2009. J. Clin. Microbiol. 52, 1081–1088. doi: 10.1128/JCM.03047-13

Blackstone, G. M., Nordstrom, J. L., Vickery, M. C., Bowen, M. D., Meyer, R. F., and DePaola, A. (2003). Detection of pathogenic Vibrio parahaemolyticus in oyster enrollments by real time PCR. J. Microbiol. Methods 53, 149–155. doi: 10.1016/S0167-7012(03)00204-0

Boyd, E. F., Cohen, A. L., Naughton, L. M., Ussery, D. W., Binnewies, T. T., Stine, O. C., et al. (2008). Molecular analysis of the emergence of pandemic Vibrio parahaemolyticus. BMC Microbiol. 8:110. doi: 10.1186/1471-2180-8-110

Broberg, C. A., Calder, T. J., and Orth, K. (2011). Vibrio parahaemolyticus cell biology and pathogenicity determinants. Microbes Infect. 13, 992–1001. doi: 10.1016/j.micinf.2011.06.013

Chen, Y., Stine, O. C., Badger, J. H., Gil, A. I., Nair, G. B., Nishibuchi, M., et al. (2002). Environmental investigation of potentially pathogenic Vibrio parahaemolyticus in the Seto-Inland Sea, Japan. J. Clin. Microbiol. 40, 2891–2893. doi: 10.1111/j.1574-6968.2002.tb1064.x

Chin, C.-S., Sorenson, J., Harris, J. B., Robins, W. P., Charles, R. C., Jean-Charles, J., et al. (2011). Comparative genomic analysis of Vibrio parahaemolyticus: serotype conversion and virulence. BMC Genomics 12:294. doi: 10.1186/1471-2164-12-294

Cook, D. W., Bowers, J. C., and DePaola, A. (2002). Density of total and pathogenic (tdh+) Vibrio parahaemolyticus in Atlantic and Gulf coast molluscan shellfish at harvest. J. Food Prot. 65, 1873–1880.

Dauros, P., Bello, H., Dominguez, M., Hormazabal, J. C., and Gonzalez, G. (2011). Characterization of Vibrio parahaemolyticus strains isolated in Chile in 2005 and in 2007. J. Infect. Dev. Ctries. 5, 302–510.

DePaola, A., Kaysner, C. A., Bowers, J., and Cook, D. W. (2000). Environmental investigations of Vibrio parahaemolyticus in oysters after outbreaks in Washington, Texas, and New York (1997 and 1998). Appl. Environ. Microbiol. 66, 4649–4654. doi: 10.1128/AEM.66.11.4649-4654.2000

Dauros, P., Nordstrom, J. L., Bowers, J. C., Wells, J. G., and Cook, D. W. (2003). Seasonal abundance of total and pathogenic Vibrio parahaemolyticus in Alabama oysters. Appl. Environ. Microbiol. 69, 1521–1526. doi: 10.1128/AEM.69.3.1521-1526.2003
ure genes of Vibrio parahaemolyticus. Infect. Immun. 68, 5742–5748. doi: 10.1128/IAI.68.5742-5748.2000
Park, K. S., Ono, T., Rokuda, M., Jang, M. H., Okada, K., Iida, T., et al. (2004). Functional characterization of two type III secretion systems of Vibrio parahaemolyticus. Infect. Immun. 72, 6659–6663. doi: 10.1128/IAI.72.11.6659-6665.2004
Parsons, M. B., Cooper, K. L., Kubota, K. A., Puhr, N., Simington, S., Calimlim, P. S., et al. (2007). PulseNet USA standardized pulsed-field gel electrophoresis protocol for subtyping of Vibrio parahaemolyticus. Foodborne Pathog. Dis. 4, 285–292. doi: 10.1089/fpd.2007.0089
Pazhani, G. P., Bhowmik, S. K., Ghosh, S., Guin, S., Dutta, S., Rajendran, K., et al. (2014). Enterotoxicity and cytotoxicity of Vibrio parahaemolyticus thermostable direct hemolysin in vitro systems. Infect. Immun. 68, 3180–3185. doi: 10.1128/IAI.68.6.3180-3185.2000
Rasko, D. A., Webster, D. R., Sahl, J. W., Bashir, A., Boisen, N., Scheutz, F., et al. (2011). Origins of the E. coli strain causing an outbreak of hemolytic-uremic syndrome in Germany. N. Engl. J. Med. 365, 709–717. doi: 10.1056/NEJMoA1104920
Sahl, J. W., Gillece, J. D., Schupp, J. M., Widdell, V. G., Driebe, E. M., Engelthaler, D. M., et al. (2013). Evolution of a pathogen: a comparative genomics analysis identifies a genetic pathway to pathogenesis in Acinetobacter. PLoS ONE 8:e54287. doi: 10.1371/journal.pone.0054287
Scallan, E., Hoekstra, R. M., Angulo, F. J., Tauxe, R. V., Widdowson, M. A., Roy, S. L., et al. (2011). Foodborne illness acquired in the United States—major pathogens. Emerg. Infect. Dis. 17, 7–15. doi: 10.3201/eid1701.P11101
Timme, R. E., Pettengill, J. B., Allard, M. W., Strain, E., Barrangou, R., Wehnes, C., et al. (2013). Phylogenetic diversity of the enteric pathogen Salmonella enterica subsp. enterica inferred from genome-wide reference-free SNP characters. Genome Biol. Evol. 5, 2109–2123. doi: 10.1093/gbe/evt159

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 16 December 2014; accepted: 02 February 2015; published online: 19 February 2015.
Citation: Haendiges J, Timme R, Allard MW, Myers RA, Brown EW and Gonzalez-Escalona N (2015) Characterization of Vibrio parahaemolyticus clinical strains from Maryland (2012–2013) and comparisons to a locally and globally diverse V. parahaemolyticus strains by whole-genome sequence analysis. Front. Microbiol. 6:125. doi: 10.3389/fmicb.2015.00125
This article was submitted to Food Microbiology, a section of the journal Frontiers in Microbiology. Copyright © 2015 Haendiges, Timme, Allard, Myers, Brown and Gonzalez-Escalona. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.