The Remote Misses of COVID-19
Ahmad Mourad, MD

America’s response to coronavirus disease 2019 (COVID-19) is evolving as quickly as the pandemic itself, with attitudes and actions diverging along the way. Exploring historical examples of population-wide responses to other large-scale, traumatic events may offer useful insights. In London during the 1940s, the populace was bracing for the devastation from German bombings. In addition to physical damage, physicians were also anticipating significant psychological damage to those living through the destruction. Several hospitals planned to increase their capacities to manage the psychological effects of war (1). However, most of London’s citizens did not experience the expected paralyzing effects of combat stress. Are we seeing a similar phenomenon among Americans today during the COVID-19 pandemic?

One proposed explanation for the dissonance between expected and observed psychological effects seen in World War II London comes from J.T. MacCurdy, a Canadian psychiatrist, who, in his book The Structure of Morale, divides the population into 3 groups after a traumatic event (1, 2):

1. Direct hits: those who suffer direct injury, leading to their death or incapacitation. This group cannot communicate their experiences or instill fear in the population. In MacCurdy’s words, “The morale of the community depends on the reaction of the survivors, and corpses do not run about spreading panic.”
2. Near misses: those who feel but are not debilitated by a physical effect, or those who witness the death of others. These persons “feel the blast, see the destruction but they survive, deeply impressed.”
3. Remote misses: those who see or hear the traumatic event and witness some of the aftermath but evade physical or emotional harm.

MacCurdy postulates that these experiences result in emotional and behavioral changes through a mechanism known as “passive adaptation to danger,” in which near misses result in more cautionary behavior. On the other hand, remote misses result in “a feeling of excitement with a flavor of invulnerability” because these persons have faced their fears and survived without any physical or emotional effects. He also describes “active adaptation,” such as preparedness drills, as a mechanism that may produce an arguably more appropriate response to danger. However, most of the population learns through passive adaptation, and if the proportion of remote misses in this population exceeds direct hits or near misses, as MacCurdy suggests was the case in London during World War II, we are left with a general population that feels invulnerable and has a false sense of security.

Is it possible that the COVID-19 pandemic has also led to a division of the population through passive adaptation? During the past several weeks, we have seen pressure from many to increase business reopenings despite dramatic signals of increasing cases. More people, particularly young adults, are seen congregating on beaches, crowding into bars, abandoning face masks, ignoring social distancing, and reverting to their daily routines. A possible explanation for these behaviors is that young adults have been experiencing more psychological distress and loneliness during COVID-19 (3) and are seeking social companionship. Others are enduring significant financial stress, and returning to work may be necessary, despite increasing their risk for exposure to the virus in the process. However, it could also be that the pandemic has left us with many remote misses—persons who are hearing about the cases on the news and perhaps have acquaintances who have had COVID-19 but have not had it themselves and have not lost loved ones or seen them suffer through the illness.

In addition, the pandemic has been a stark reminder of our society’s health care and socioeconomic inequalities. In states that have published mortality data stratified by race and ethnicity, non-Hispanic Black and Hispanic patients have had up to 4 times higher risk for death from COVID-19 than White patients (4, 5). Also, mortality has been higher in older persons (5). As such, could we expect minority groups and older persons to exhibit near-miss behavior because a disproportionately large number of those affected are among these groups? Recent data suggest that non-Hispanic Blacks, Hispanics, and elderly persons are in fact more likely to wear face masks—an example of more cautionary behavior (6). Thus, the sense of invulnerability may be more pronounced among nonminority and younger age groups because a smaller proportion of cases or deaths have occurred among them, making it more difficult for them to relate to those affected. It has been estimated that the average American knows 600 people, which would mean that approximately 500,000 deaths from COVID-19 would have to occur for every American to know someone who has died, assuming an equal distribution of cases in the population (7). As the pandemic rages on, our population may evolve from one of predominantly remote misses to one of mostly near misses. However, our population seems to have shifted from one of “fear” to one that has “faced its fears” and, as a result, has developed feelings of invulnerability and a false sense of security. In times of war, this may be a useful mechanism; in a pandemic, it may prove devastating.

As physicians and health care workers, we experience direct hits and near misses on a daily basis.
throughout our careers. Many of us have fallen ill, cared for loved ones, and treated patients afflicted with COVID-19. We have personally seen and experienced the true devastation this pandemic has caused. We carry with us the stories of suffering and death, as well as those of compassion and caring. These narratives have the capacity to appeal to emotions and to educate. We must use them to illustrate to the broader public that we still have a lot to fear from this disease. Remote misses should never feel remote. We need to “feel the blast” caused by anyone who becomes ill with COVID-19, and we need to be “deeply impressed.” For, if we do not value the losses, we are not valuing the lives that are bound to be affected.

From Duke University School of Medicine, Durham, North Carolina (A.M.).

Disclosures: The author has disclosed no conflicts of interest. The form can be viewed at www.acponline.org/authors/icmje/ConflictOfInterestForms.do?msNum=M20-4984.

Corresponding Author: Ahmad Mourad, MD, Duke University School of Medicine, Duke Box 102359, Durham, NC 27710; e-mail, ahmad.mourad@duke.edu.

Author contributions are available at Annals.org.

Ann Intern Med. 2020;173:1010-1011. doi:10.7326/M20-4984

References
1. MacCurdy JT. Passive adaptation to dangers. In: MacCurdy JT, ed. The Structure of Morale. Macmillan; 1943:1-27.
2. Gladwell M. “How Jay did it, I don’t know.” In: Gladwell M, ed. David and Goliath: Underdogs, Misfits, and the Art of Battling Giants. Little, Brown; 2013:125-164.
3. McGinty EE, Presskreischer R, Han H, et al. Psychological distress and loneliness reported by US adults in 2018 and April 2020. JAMA. 2020;324:93-94. [PMID: 32492088] doi:10.1001/jama.2020.9740
4. Gross CP, Essien UR, Pasha S, et al. Racial and ethnic disparities in population-level Covid-19 mortality [Letter]. J Gen Intern Med. 2020. [PMID: 32754782] doi:10.1007/s11606-020-06081-w
5. Wortham JM, Lee JT, Althomsons S, et al. Characteristics of persons who died with COVID-19—United States, February 12-May 18, 2020. MMWR Morb Mortal Wkly Rep. 2020;69:923-929. [PMID: 32673298] doi:10.15585/mmwr.mm6928e1
6. Fisher KA, Barile JP, Guerin RJ, et al. Factors associated with cloth face covering use among adults during the COVID-19 pandemic—United States, April and May 2020. MMWR Morb Mortal Wkly Rep. 2020;69:933-937. [PMID: 32673303] doi:10.15585/mmwr.mm6928e3
7. Gelman A. The average American knows how many people? The New York Times. 18 February 2013. Accessed at www.nytimes.com/2013/02/19/science/the-average-american-knows-how-many-people.html on 8 July 2020.
**Author Contributions:** Conception and design: A. Mourad.
Drafting of the article: A. Mourad.
Critical revision of the article for important intellectual content: A. Mourad.
Final approval of the article: A. Mourad.
Collection and assembly of data: A. Mourad.