A Phase I Study of \(\alpha\)-Galactosylceramide (KRN7000)–Pulsed Dendritic Cells in Patients with Advanced and Recurrent Non–Small Cell Lung Cancer

Aki Ishikawa,1,2 Shinichiro Motohashi,1,2 Eiichi Ishikawa,1 Hiroki Fuchida,1 Kazuko Higashino,1 Mizuto Otsuji,2 Toshihiko Iizasa,2 Toshinori Nakayama,1 Masaru Taniguchi,3 and Takehiko Fujisawa2

1Department of Immunology and 2Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan and 3Laboratory for Immune Regulation, RIKEN Research Center for Allergy and Immunology, Yokohama, Kanagawa, Japan

ABSTRACT

Purpose: Human \(\alpha\)-24 natural killer T (NKT) cells bearing an invariant \(\alpha\)24J\(\alpha\)Q antigen receptor, the counterpart of murine \(\alpha\)24 NKT cells, are activated by a specific ligand, \(\alpha\)-galactosylceramide (\(\alpha\)GalCer, KRN7000), in a CD1d-dependent manner. I.v. administration of \(\alpha\)GalCer-pulsed dendritic cells (DC) induces significant activation and expansion of \(\alpha\)24 NKT cells in the lung and resulting potent antitumor activities in mouse tumor metastatic models. We did a phase I dose escalation study with \(\alpha\)GalCer-pulsed DCs in lung cancer patients.

Experimental Design: Patients with advanced non–small cell lung cancer or recurrent lung cancer received i.v. injections of \(\alpha\)GalCer-pulsed DCs (level 1: 5 \(\times\) 10\(^{7}\)/m\(^2\); level 2: 2.5 \(\times\) 10\(^{7}\)/m\(^2\); and level 3: 1 \(\times\) 10\(^{7}\)/m\(^2\)) to test the safety, feasibility, and clinical response. Immunomonitoring was also done in all completed cases.

Results: Eleven patients were enrolled in this study. No severe adverse events were observed during this study in any patient. After the first and second injection of \(\alpha\)GalCer-pulsed DCs, dramatic increase in peripheral blood \(\alpha\)24 NKT cells was observed in one case and significant responses were seen in two cases receiving the level 3 dose. No patient was found to meet the criteria for partial or complete responses, whereas two cases in the level 3 group remained unchanged for more than a year with good quality of life.

Conclusions: In this clinical trial, \(\alpha\)GalCer-pulsed DC administration was well tolerated and could be safely done even in patients with advanced disease.

INTRODUCTION

A unique lymphocyte subpopulation, natural killer T (NKT) cells, are characterized by the coexpression of an invariant antigen receptor and natural killer (NK) receptors (1, 2). Human NKT cells express the invariant \(\alpha\)24J\(\alpha\)Q paired with the \(\alpha\)511 antigen receptor, whereas murine NKT cells express the invariant \(\alpha\)24J\(\alpha\)Q281 receptor paired with \(V_{\beta}3/\beta\)7, or \(V_{\beta}2\). NKT cells are activated by a specific glycolipid antigen, \(\alpha\)-galactosylceramide (\(\alpha\)GalCer), in a CD1d-dependent manner (3–6). CD1d is a HLA class I-like antigen-presenting molecule, and is well conserved through mammalian evolution with a lack of allelic polymorphism (7). After activation, human \(\alpha\)24 NKT cells and murine \(\alpha\)24 NKT cells show strong antitumor activity against various malignant tumors in vitro and in vivo (8–12) and produce high levels of cytokines, such as IFN-\(\gamma\) and interleukin (IL)-4 rapidly, thereby activating other effector cells; they also play regulatory roles in a wide range of immune responses (1, 13–17).

\(\alpha\)GalCer-pulsed dendritic cells (DC) activated \(\alpha\)24 NKT cells and eradicated established metastatic tumor foci in models of mouse liver metastasis, suggesting that the administration of \(\alpha\)GalCer-pulsed DCs may exert greater antitumor activity than the direct administration of \(\alpha\)GalCer (18). The i.v. injection of \(\alpha\)GalCer-pulsed DCs induces the activation and expansion of endogenous \(\alpha\)24 NKT cells in the lung parenchyma (19, 20). These observations in murine models suggest that similar antitumor effects in the human lung would be expected when \(\alpha\)GalCer-pulsed DCs are administered.

Human \(\alpha\)24 NKT cells play crucial roles in various immune responses, including antitumor activity (21, 22). Decreased numbers of \(\alpha\)24 NKT cells in human peripheral blood mononuclear cells (PBMC) have been shown in several diseases, including lung cancer (23–27). However, the precise mechanisms underlying the reduction in the number of NKT cells in peripheral blood are not yet understood. In a recent phase I study of \(\alpha\)GalCer administration in humans, direct i.v. injections of \(\alpha\)GalCer induced a significant elevation of cytokines in the serum (28).

Based on these findings, we did a phase I study of \(\alpha\)GalCer-pulsed DC treatment in patients with recurrent or advanced non–small cell lung cancer. The major goal of this study was to confirm the safety profile of \(\alpha\)GalCer-pulsed DC
immunotherapy. No severe adverse events were observed. We detected a dramatic expansion of peripheral blood Vα24 NKT cells in one patient receiving 1×10^9/m² αGalCer-pulsed DCs.

PATIENTS AND METHODS

Patient Eligibility Criteria. Patients between 20 and 80 years of age, with a histologic or cytologic diagnosis of non–small cell lung cancer for which no standard treatment was available, were eligible for the study. Further inclusion criteria were a performance status of 0, 1, or 2; expected survival of 6 months or more; and normal or near-normal renal, hepatic, and hematopoetic function. Additionally, enrolled patients had received no chemotherapy or radiotherapy for at least 6 weeks before enrollment. NKT cells were detected at a level of >10 cells in 1 mL peripheral blood by flow cytometry. Exclusion criteria were a positive response to HIV, hepatitis C virus, or human T-cell lymphotropic virus antibodies; positive for hepatitis B surface antigen; the presence of active inflammatory disease or active autoimmune disease; a history of hepatitis; pregnancy or lactation; concurrent corticosteroid therapy; and evidence for another active malignant neoplasm. Histologic type, tumor-node-metastasis classification, and the antitumor effect of treatment were classified according to the general rules for clinical and pathologic recording of lung cancer described by Japan Lung Cancer Society.

Clinical Protocol and Study Design. The study was done at Department of Thoracic Surgery, Chiba University Hospital, Japan, according to the standards of Good Clinical Practice for Trials on Medicinal Products in Japan. The protocol was approved by the Institutional Ethics Committee (no. 333). Additionally, this trial underwent ad hoc reviews by the Chiba University Quality Assurance Committee on Cell Therapy.

The study design is shown in Fig. 1. Written informed consent was obtained from all of the patients before undergoing a screening evaluation to determine eligibility. Extensive clinical and laboratory assessments were conducted weekly and consisted of a complete physical examination and standard laboratory values. Adverse events and changes in laboratory values were graded according to National Cancer Institute Common Toxicity Criteria version 2.0. All patients underwent an assessment of tumor status at baseline and 4 weeks after the fourth αGalCer-pulsed DC administration (12 weeks after study entry). Disease progression was defined as >25% increase in target lesions and/or the appearance of new lesions.

Preparation of Antigen-Presenting Cells Containing Dendritic Cells from Peripheral Blood. All procedures were done according to Good Manufacturing Practice standards. Eligible patients underwent peripheral blood leukapheresis (COBE Spectra, Gambro BCT, Inc., Lakewood, CO), and PBMCs were collected and further separated by density gradient centrifugation (OptiPrep, Nycomed Amersham, Oslo, Norway). PBMCs were washed thrice and resuspended in AIM-V (Invitrogen Corp., Carlsbad, CA) with 800 units/mL of human granulocyte macrophage colony-stimulating factor (Genetech Co., Ltd., China) and 100 Japanese reference units per milliliter of recombinant human IL-2 (Imnunace, Shionogi, Osaka, Japan). The cultured cells were pulsed with 100 ng/mL of specific ligand, αGalCer (KRN7000; Kirin Brewery, Gunma, Japan) on the day before administration. After 7 to 14 days of cultivation, the cells were harvested and washed thrice and resuspended in 100 mL 2.5% albumin in saline. Patients received the cultured cells i.v. The criteria for αGalCer-pulsed DC administration included a negative bacterial culture 48 hours before DC injection, cell viability >70%, and an endotoxin test 48 hours before DCs injection with a result <0.7 Ehrlich units/mL. To evaluate the effect of DCs themselves, we first prescribed an αGalCer-nonpulsed DC injection (DC#0; Fig. 1).

APCs containing DCs were administered in a dose-escalation design at a dose level per cohort of 5×10^6, 2.5×10^6, and 1×10^6 cells/m² injection (Fig. 1).

Dendritic Cell Phenotype Evaluation. The phenotypes of monocytes and DCs were determined with an EPICS XL-MCL flow cytometer (Beckman Coulter, Marseilles, France). The monoclonal antibodies (mAb) used were FITC-labeled anti-HLA-DR, CD83, CD14; phycoerythrin-conjugated anti-CD11c, CD80, CD56; and Cychrome-labeled anti-CD86, CD40, CD3 (Becton Dickinson, San Diego, CA). Isotype-matched control mAbs were used as negative controls.

Immunologic Monitoring. PBMC samples were obtained at least twice before DC administration and weekly until 4 weeks after the final treatment.

Flow Cytometric Analysis of Peripheral Blood Vα24+Vβ31+ Natural Killer T Cells. Frequencies of Vα24/Vβ11 NKT cells in PBMCs were assessed by flow cytometry. Mononuclear cells were three-color stained with FITC-conjugated anti−T-cell receptor (TCR) Vα24 mAb (C15; Immunotech, Marseilles, France), phycoerythrin-conjugated anti−TCR Vβ31 mAb (C21, Immunotech), and Cychrome-conjugated anti−CD3ε mAb (UCHT1; PharMingen). The stained cells were subjected to flow cytometry and the percentages of Vα24/Vβ11/CD3ε cells among mononuclear cells were calculated. Then, the NKT cell numbers (counts/mL) were estimated from the PBMC cell counts.

Detection of IFN-γ Messenger RNA in Sorted Natural Killer T Cell by Reverse Transcription-PCR. The levels of IFN-γ production in peripheral blood NKT cells were assessed by semiquantitative PCR. Two hundred thousand PBMCs separated from fresh peripheral blood were suspended in 200 μL of a complete culture medium in 96-well round-bottom plates and stimulated with 10 μg/mL of immobilized anti-CD3ε mAb (OKT3, American Type Culture Collection, Manassas, VA) for 14 hours as previously described (20, 27).

[Fig. 1] Experimental design of αGalCer-pulsed APC administration. *, injection of αGalCer nonpulsed APCs. The patients received αGalCer-pulsed APC containing DCs (DC#1, DC#2, DC#3, and DC#4). The timings of apheresis and DC administration are shown.
Then, the cells were harvested and stained with FITC-conjugated anti-TCR Vα24 mAb and phycoerythrin-conjugated anti-TCR Vβ11 mAb. Dead cells were gated out by propidium iodide staining, and TCR Vα24 Vβ11 double-positive cells were collected by a FACSVantage cell sorter (Becton Dickinson) in 96-well round-bottom plates containing 20 μL lysis buffer [40 mmol/L Tris-HCl (pH 8.5), 60 mmol/L KCl, 3 mmol/L MgCl₂, 10 mmol/L DTT, 0.5% NP40, 0.05 units/μL RNasin (Promega, Madison, WI)] at a density of 100 cells/well.

Sorted Vα24+Vβ11+ NKT cells (100 cells/well) were treated for 10 minutes at room temperature in lysis buffer. Whole cell lysates were reverse-transcribed in 8 μL buffer [100 mmol/L Tris-HCl (pH 8.5), 150 mmol/L KCl, 7.5 mmol/L MgCl₂, 25 mmol/L DTT, 0.5 mg/mL bovine serum albumin], 0.5 μL of oligo pd(T)12-18 (500 μg/mL; Amersham Pharmacia Biotech, Piscataway, NJ), 2 μL deoxyoxynucleotide triphosphates (2 mmol/L), 0.2 μL Superscript II (40 units, Life Technologies), and diethylopropionate double-distilled water in a total volume of 40 μL. The reaction was done at 42°C for 50 minutes and then inactivated at 70°C for 15 minutes. One microliter of the reaction mixture was used for PCR analysis done in 4 μL buffer (100 mmol/L KCl, 2.5 mmol/L MgCl₂, 0.05% gelatin), 0.4 μL deoxyoxynucleotide triphosphates (10 mmol/L), 1 μL each of primers for IFN-γ (5'-GAGGCAAA ATTGTCTCC TTTACTT, 3'-GTAGGCAGG ACA ACCATTACTGGG, 10 mmol/L), or Co (5'-GCAACC CCCTCA AACAACGC, 3'-CCACT TTCAG GAGGAGATT CG, 10 mmol/L), 1 unit of Taq polymerase (5 units/μL, Takara Shuzo, Co., Ltd., Shiga, Japan), and double-distilled water in a total volume of 20 μL. PCR was done at 94°C for 30 seconds, 55°C for 30 seconds, and 72°C for 1 minute for 30 cycles for IFN-γ and Co on a Takara PCR Thermal Cycler SP (Takara Shuzo). To obtain a standard curve, 2.7 × 10⁸ copy numbers of PCR products amplified with IFN-γ and Co primer pairs were serially diluted and subjected to PCR. Each PCR product was hybridized with a 32P-labeled IFN-γ or Co probe and band intensities were quantified by an automated densitometer (Fuji BAS2500, Fujifilm I&I Co., Ltd., Tokyo, Japan). The copy numbers of IFN-γ and Co in each sample were estimated from standard curves. Relative IFN-γ mRNA = copy numbers of IFN-γ / copy numbers of Co.

RESULTS

Patient Characteristics. In accordance with the protocol, a total of 11 patients were enrolled in the study from April 2001 to December 2002. Two patients in the level 1 group dropped out because their primary disease became worse during treatment and another treatment was prescribed. Patient characteristics are summarized in Table 1. Two patients were stage IV primary lung cancer and nine were recurrent lung cancer after surgical treatment. The study included nine patients with adenocarcinoma, one patient with squamous cell carcinoma, and one patient with large cell carcinoma. Ten patients received previous treatments, including two who underwent surgical resection, four who received radiation therapy, and six who received chemotherapy >6 weeks before enrollment in the study.

Table 1 Characteristics of enrolled patients
Total number entered
Completions/dropouts
Median age (range)
Gender, male/female
PS, 0/1/2
Histology, Ad±/Sq**/large***
Clinical staging, IV/recurrence
Prior treatment: surgery/radiation/chemotherapy/none

NOTE. Values represent numbers of patients.
Abbreviations: PS, performance status; Ad, adenocarcinoma; Sq, squamous cell carcinoma.

Phenotypes of Antigen-Presenting Cells Containing Dendritic Cells. The phenotypes of APCs containing DCs prepared for each administration were analyzed by flow cytometry for each administration. DC-rich population (i.e., large, granular lymphocytes) were electrically gated by forward and side scatter parameters (FS^{high}SS^{high}). Representative profiles for three patients in the level 3 group are shown in Fig. 2B. In all preparations, the FS^{high}SS^{high} cells showed an immature monocyte-derived DC phenotype expressing HLA-DR, CD11c, CD80, and CD86. The expression of CD83 was marginal. All preparations were found to be negative for CD14. In addition, the percentages of CD3⁺ cells, CD3⁺CD56⁺ cells, and CD3⁺CD56⁺ cells in the administered cells (four times per patient in level 3) are shown with SDs (Fig. 2C). The administered cells contained substantial numbers of CD3⁺ cells in addition to CD3⁺ cells.

Adverse Events. No major (above grade 2) toxicity or severe side effects were observed in any patient (Table 2). One patient in the level 1 group (case 001) experienced transient flush and headache after DC injection. One patient in the level 3 group (case 010) experienced general fatigue (grade 2) during the first course and headache 1 day after the second DC administration. This patient showed a striking expansion in the number of peripheral blood NKT cells (see Fig. 3, case 010). Cystitis (grade 2) observed in this patient will not be related to the treatment and cured by antibiotics prescription. In addition, an elevation in the serum potassium level (grade 1 and 2) was observed in two patients in the level 1 group and one patient in the level 2 group, an elevation in the serum creatinine level (grade 1) was observed in one patient in the level 1 group, and an elevation in the total-bilirubin level (grade 1) was observed in one patient in the level 2 group.

Immunologic Monitoring. Immunologic assays were done for the nine patients who completed the study. The frequency of peripheral blood NKT cells in all patients was measured by fluorescence-activated cell sorting analysis. As shown in Fig. 3B, one patient (case 010) in the level 3 group showed dramatic increase in the circulating NKT cell number after the first and second αGalCer-pulsed DC administration. The absolute numbers of Vα24 NKT cells decreased transiently to a nadir around 1 to 2 days after the αGalCer-pulsed DC injection, and subsequently increased >20-fold 3 days after second αGalCer-pulsed DC injection. The increased levels were sustained for at least 1 week. This sharp fluctuation, however, could not be detected after the third and fourth αGalCer-pulsed DC injection. The frequency of NKT cells of
this patient (case 010) before entering the study was \(0.03\%\) of all PBMCs. The number of peripheral blood NKT cells from the other two patients in the level 3 group (cases 009 and 011) increased only after the first \(\alpha\)GalCer-pulsed DC administration (Fig. 3A and C). In the remaining six cases in the level 1 and level 2 groups, no clear relationship was found between the number of circulating NKT cells and \(\alpha\)GalCer-pulsed DC administration.

In addition, we monitored IFN-\(\gamma\) production from V\(\alpha\)24 NKT cells in PBMCs. IFN-\(\gamma\) production in V\(\alpha\)24 NKT cells increased following the administration of \(\alpha\)GalCer-pulsed DCs in the one case in which the number of circulating NKT cells changed strikingly (Fig. 4, case 010). After the third and fourth administration of \(\alpha\)GalCer-pulsed DCs, no obvious elevation in the level of IFN-\(\gamma\) production was detected.

Clinical Outcome. Nine cases could be evaluated at the end of the clinical trial period. From chest X-ray and computed tomography findings, there were no cases of complete response or partial response, five cases of no change, and four cases of disease progression. Three patients receiving dose level 3 were followed up for 23 to 26 weeks after the clinical trial period and all were classified as no change.

DISCUSSION

The primary aim of this study was to assess the feasibility and toxicity of adoptive immunotherapy by using \(\alpha\)GalCer-pulsed DCs in patients with advanced or recurrent non–small cell lung cancer. Our results indicate that \(\alpha\)GalCer-pulsed DC therapy has no major side effects and is well tolerated even in patients with advanced stages of lung cancer.

Table 2 Patient profiles and adverse events observed

Level events (grade)	Case	Age/gender	Diagnosis	Cancer lesion	Pretreatment	Adverse
1	001	65/F	Rec	Lung	OP	Hot flash(I), headache(I), hyperkalemia(II), creatinine(I)
	002	63/M	Rec	Lung	None	Hyperkalemia(II)
	003	68/M	Rec	Lung	CT	None
2	006	65/M	Rec	Lung, brain, bone	CT, RT	Hyperbilirubinemia
	007	78/M	Rec	Lung	RT	Hyperkalemia(I)
	008	67/M	Rec	Lung	RT	None
3	009	61/M	Primary	Lung, adrenal gland	RT	None
	010	66/F	Rec	Lung, pleura	OP, CT	Headache(I), cystitis(II), general fatigue(II)
	011	74/F	Primary	Lung, pleura, bone	CT	None

Abbreviations: M, male; F, female; rec, recurrence; primary, primary lung cancer; ST, surgical treatment; CT, chemotherapy; RT, radiation therapy.
There were no clinical symptoms suggesting the development of an autoimmune disease during the observation period. Furthermore, the therapy was safe and done on outpatients. Although activated liver NKT cells in mice cause severe hepatitis (29, 30), slight liver dysfunction was detected in only one patient in the level 2 group, and this patient recovered without additional treatment. This could be due to the low frequency of αGalCer-reactive NKT cells in humans compared with mice (31).

We detected hyperbilirubinemia (T-bilirubin, 2.3 mg/dL, reference range 0.2-1.2 mg/dL) in patient 6 on day 35 (2 weeks after the second αGalCer-pulsed DC administration). This patient showed the following: aspartate aminotransferase (GOT, 30 units/L, reference range 13-33 units/L), alanine aminotransferase (GPT, 28 units/L, reference range 8-42 units/L), and lactate dehydrogenase (LDH, 237 units/L, reference range 119-229 units/L). The patient had an episode of fluctuating increased T-bilirubin levels (1.5-2.0 mg/mL) without treatment. Thus, the elevated T-bilirubin in patient 6 on day 35 seems not to be related to our cell therapy. As for the relationship with hemolysis, patient 6 on day 35 showed potassium and LDH level at the upper limits (potassium, 4.9 mEq/L, reference range 3.5-5.0 mEq/L; LDH, 237 units/L, reference range 119-229 units/L), whereas the LDH level of this patient before entry was 272 units/L LDH. Thus, we cannot exclude the possibility of hemolysis in patient 6 on day 35; however, it is more likely that this is a feature unique to this patient. In any event, no treatment for the elevated T-bilirubin was required.

We observed one episode of cystitis in patient 10 between the administration of DC#3 and DC#4. Three days after the administration of DC#3, the patient experienced frequent urination, painful urination, and hematuria, and antibiotics were prescribed. No bacterial assessment of the urine was done because the symptoms were very mild and disappeared within a day. The transferred cells (DC#3) were tested for bacterial contamination and none was noted. As we did not observe cystitis after the administration of DC#1, DC#2, or DC#4, it is unlikely that the cystitis was caused by the therapy. In addition, because no

Fig. 3 Points, numbers of peripheral blood Vα24 NKT cells during the course of treatment in three patients in the level 3 group. The numbers and percentages of peripheral blood Vα24 NKT cells (Vα24 Vβ11+ cells) during the course of treatment in three patients in the level 3 group were assessed by flow cytometric analysis. The frequency of Vα24 NKT cells in the total PBMCs of each patients is as follows; case 009, 0.01%; case 010, 0.03%; and case 011, 0.012%.

There were no clinical symptoms suggesting the development of an autoimmune disease during the observation period. Furthermore, the therapy was safe and done on outpatients. Although activated liver NKT cells in mice cause severe

Fig. 4 Increased expression of IFN-γ in Vα24 NKT cells after administration of αGalCer-pulsed DCs. The ability to produce IFN-γ in peripheral blood Vα24 NKT cells during the course of treatment in case 010 was determined by quantitative reverse transcription-PCR. Whole PBMC was activated with immobilized anti-CD3ε overnight. Vα24 Vβ11+ NKT cells were sorted and quantitative reverse transcription-PCR for IFN-γ and Cα was done. Columns, relative IFN-γ mRNA (copy numbers of IFN-γ mRNA normalized to the copy numbers of TCR Cα mRNA in 100 Vα24 Vβ11+ NKT cells) for triplicate cultures; bars, SD. *, not detected.
increase in the level of peripheral blood NKT cells was observed after the administration of DC/#3 or DC/#4, it is also unlikely that the cystitis was the result of changes in NKT cells.

As for elevations in potassium, we observed two episodes in level 1 and one episode in level 2 treatment. We observed no episode of potassium elevation in level 3 treatment in which the highest doses of cells were administered. Nine patients received four cell administrations. Thus, although we cannot exclude the possibility of a temporal association, we do not believe there is any link between the administration of cells and potassium elevation. As for elevation in serum creatinine, we observed one episode in level 1; however, for the same reason as above, there seems to be no relationship between treatment and creatinine elevation. It is possible that the elevation in potassium was due to hemolysis, whereas no simultaneous elevation in T-bilirubin or LDH was detected. Thus, it is more likely that the patient experienced a transient reduction in kidney function. In fact, the levels of potassium were at the upper limit of the reference range (4.8 mEq/L) before entry into the study. However, no abnormalities in kidney function were detected in any of the patients with elevated potassium levels in the creatinine clearance test.

In contrast to other DC-based clinical trials, in which DCs were induced in medium containing granulocyte macrophage colony-stimulating factor and IL-4 (GM/IL-4 DC; refs. 32–36), the DCs used in our phase I study were prepared by stimulation with granulocyte macrophage colony-stimulating factor and IL-2 (GM/IL-2 DC). Our preliminary results showed that GM/IL-2 DCs stimulate NKT cells to proliferate very efficiently at levels similar to stimulated by GM/IL-4 DCs. In our GM/IL-2 DCs, CD1d molecules are expressed on various cell subsets, including DCs, macrophages, T cells, and B cells. The presentation of αGalCer is independent from transporters associated with antigen processing and clearly different from that of peptide presentation by class I MHC molecules (1, 37). Thus, several cell types other than DCs may also be involved in αGalCer presentation and the resulting expansion of NKT cells.

The levels of circulating NKT cells are decreased in primary lung cancer patients, but the ability to produce IFN-γ is normal compared with healthy controls (20). Moreover, our previous reports showed that i.v.-injected αGalCer-pulsed mouse DCs migrate to the lung and activate endogenous Vα14 NKT cells in situ (19). The monitoring of Vα14 NKT cell number in the lung of mice receiving αGalCer-pulsed DCs showed a significant increase for at least 7 days (19). Furthermore, the number of Vα24 NKT cells in human lung seem to be equivalent to the number of Vα14 NKT cells in mouse lung and considerably increased numbers of Vα24 NKT cells have been found to infiltrate tumor lesions (20). Therefore, we chose i.v. injection as the route of administration of αGalCer-pulsed DCs, as αGalCer-pulsed DCs activate lung NKT cells very efficiently. As for monitoring the injected DCs in circulation, there is a report suggesting that only a limited fraction of the i.v. administered DCs can be detected in the peripheral blood (38); thus, we did not include monitoring of the circulating DCs.

Primary lung cancer is hard to cure although the primary tumor lesion is small enough to be diagnosed at early stage. Approximately half or more of patients with lung carcinomas who underwent complete resection had clinically undetectable local or distant micrometastases (39–41). These patients probably had microscopic lesions that could not be removed by surgery. This emphasizes the importance of preoperative or postoperative immunotherapy to suppress the growth of micrometastasis. For this purpose, among lymphocytes possessing antitumor activity, cells for tumor surveillance, such as NK and NKT cells, should be most appropriate. Furthermore, because intrapulmonary recurrence is one of the common patterns of recurrence during postoperative follow-up periods, the control of intrapulmonary metastasis seems particularly important for improving prognosis. Immunotherapy would seem to be most beneficial when used as a postsurgical adjuvant therapy because the residual tumor would probably be at its minimum after complete resection. From this point of view, non–small cell lung cancer patients undergoing radical surgery may be the optimal candidates for immunotherapy aimed at NKT cell activation in the lung.

To detect changes in the function of Vα24 NKT cells after treatment, we used a semiquantitative reverse transcription-PCR assay with cell sorting. We prepared 100 sorted NKT cells and examined their copy numbers of IFN-γ mRNA normalized to the copy numbers of TCR Cα mRNA (Fig. 4). This was the only way to evaluate the function of Vα24 NKT cells in PBMCs. Although this analysis cannot determine whether the increase in IFN-γ mRNA reflects an increase in cell number or an increase on a per cell basis, the change reflects an increase on a population basis. The analysis of peripheral blood lymphocytes may not reflect the status of lymphocytes in the lung where tumor eradication might be occurring, but it is the only reliable method for the repeated detection of immune reactions in humans presently available. As shown in Fig. 4, the production of IFN-γ was up-regulated after the first two injections of αGalCer-pulsed DCs, although we detected only one case (case 010) with a high frequency of Vα24 NKT cells in the PBMC. This is the first observation that the function of Vα24 NKT cells is modulated after the administration of αGalCer-pulsed DCs in humans.

There are only a few reports of clinical studies using αGalCer against malignant diseases. Giacone et al. (28) reported a rapid disappearance of NKT cells from the PBMC and slight increased serum level of IFN-γ, IL-12, granulocyte macrophage colony-stimulating factor, and tumor necrosis factor-α after the first i.v. injection of soluble αGalCer. Similar to our results, the changes were observed only in patients with relatively high NKT cell numbers before treatment. However, we did not detect IL-4 or IFN-γ in the peripheral blood of all patients. Nieda et al. (42) reported a decrease in the number of lymphocytes not only in peripheral blood NKT cell subsets but also in NK cell, T-cell, and B-cell subsets, after the administration of αGalCer pulsed GM/IL-4 DCs. In mouse models, the mechanism for the rapid disappearance of splenic NKT cells after αGalCer administration seems to be the down-regulation of surface TCR and NKT1.1 markers (43–45). We also observed a rapid disappearance of Vα24 NKT cells from the peripheral blood in case...
010 (Fig. 3B). However, the most remarkable observation was a dramatic expansion of circulating NKT cells a few days after the transient disappearance. This dramatic expansion was not observed in previous reports (28, 42). We are currently performing a more comprehensive study with increased numbers of patients.

In summary, our results indicate that αGalCer-pulsed DC administration is well tolerated and that this therapy can be done safely even in patients with advanced disease. With greater numbers of treatments, we may have more conclusive findings about immune responses and antitumor responses. Furthermore, a combination of this αGalCer-pulsed DC therapy with potentially additive or synergistic therapeutic maneuvers may provide more prominent antitumor responses.

ACKNOWLEDGMENTS

We thank K. Sugaya for excellent technical assistance in the cell sorting assay and all the nurses and staff surgeons in the Department of Thoracic Surgery, Chiba University Hospital, Chiba, Japan, for their excellent help with patient care and continuous support.

REFERENCES

1. Taniguchi M, Harada M, Kojo S, Nakayama T, Wakah H. The regulatory role of Vα14 NKT cells in innate and acquired immune response. Annu Rev Immunol 2003;21:483–513.
2. Godfrey DI, MacDonald HR, Kronenberg M, Smyth MJ, Van Kaer L. NKT cells: facts, functions and fallacies. Immunol Today 2000;21:573–83.
3. Kawano T, Cui J, Koezuka Y, et al. CD1d-restricted and TCR-mediated activation of Vα14 NKT cells by glycolyceromides. Science 1997;278:1626–9.
4. Brossay L, Chioda M, Burdin N, et al. CD1d-mediated recognition of an α-galactosylceramide by natural killer T cells is highly conserved through mammalian evolution. J Exp Med 1998;188:1521–8.
5. Spada FM, Koezuka Y, Porcelli SA. CD1d-restricted recognition of synthetic glycolipid antigens by human natural killer T cells. J Exp Med 1998;188:1529–34.
6. Kawano T, Tanaka Y, Shimizu E, et al. A novel recognition motif of human NKT antigen receptor for a glycolipid ligand. Int Immunol 1999;11:881–7.
7. Porcelli SA, Modlin RL. The CD1 system: Antigen-presenting molecules for T cell recognition of lipids and glycolipids. Annu Rev Immunol 1999;17:297–329.
8. Kawano T, Cui J, Koezuka Y, et al. Natural killer-like nonspecific tumor cell lysis mediated by specific ligand-activated Vα14 NKT cells. Proc Natl Acad Sci U S A 1998;95:5690–6.
9. Naiki Y, Nishimura H, Kawano T, et al. Regulatory role of peritoneal NK1.1+ αβ T cells in IL-12 production during Salmonella infection. J Immunol 1999;163:2057–63.
10. Nakagawa R, Motoki K, Ueno H, et al. Treatment of hepatic metastasis of the colon26 adenocarcinoma with an α-galactosylceramide, KRN7000. Cancer Res 1998;58:1202–7.
11. Shin T, Nakayama T, Akutsu Y, et al. Inhibition of tumor metastasis by adoptive transfer of IL-12-activated Vα14 NKT cells. Int J Cancer 2001;91:523–8.
12. Takahashi T, Nieda M, Koezuka Y, et al. Analysis of human Vα24 CD4+ NKT cells activated by α-glycosylceramide-pulsed monocyte-derived dendritic cells. J Immunol 2000;164:4458–64.
13. Wilson SB, Devotchil TL. JANUS-like role of regulatory iNKT cells in autoimmune disease and tumor immunity. Nat Rev Immunol 2003;3:211–22.
14. Carnaud C, Lee D, Donnars O, et al. Cutting edge: Cross-talk between cells of the innate immune system: NKT cells rapidly activate NK cells. J Immunol 1999;163:4647–50.
15. Hayakawa Y, Takeda K, Yagita H, et al. Critical contribution of IFN-γ and NK cells, but not perforin-mediated cytotoxicity, to anti-metastatic effect of α-galactosylceramide. Eur J Immunol 2001;31:1720–7.
16. Nishimura T, Kitamura H, Iwakabe K, et al. The interface between innate and acquired immunity: glycolipid antigen presentation by CD1d-expressing dendritic cells to NKT cells induces the differentiation of antigen-specific cytotoxic T lymphocytes. J Immunol 2000;12:987–94.
17. Fuji S, Shimizu K, Kronenberg M, Steinman RM. Prolonged IFN-γ-producing NKT response induced with α-galactosylceramide-loaded DCs. Nat Immunol 2002;3:786–74.
18. Toura I, Kawano T, Akutsu Y, et al. Cutting edge: Inhibition of experimental tumor metastasis by dendritic cells pulsed with α-galactosylceramide. J Immunol 1999;163:2387–91.
19. Akutsu Y, Nakayama T, Harada M, et al. Expansion of lung Vα14 NKT cells by administration of α-galactosylceramide-pulsed dendritic cells. Jpn J Cancer Res 2002;93:397–403.
20. Motohashi S, Kobayashi S, Ito T, et al. Preserved IFN-γ production of circulating Vα24 NKT cells in primary lung cancer patients. Int J Cancer 2002;102:159–65.
21. Godfrey DI, Hammond KJ, Poulton LD, Smyth MJ, Baxter AG. NKT cells: facts, functions and fallacies. Immunol Today 2000;21:573–83.
22. Kronenberg M, Gapia L. The unconventional lifestyle of NKT cells. Nat Rev Immunol 2002;2:557–68.
23. Tahir SM, Cheng O, Shaulov A, et al. Loss of IFN-γ production by invariant NK T cells in advanced cancer. J Immunol 2001;167:4046–50.
24. Sumida T, Sakamoto A, Murata H, et al. Selective reduction of T cells bearing invariant Vα24Jα11 antigen receptor in patients with systemic sclerosis. J Exp Med 1995;182:1163–8.
25. van der Vliet HJ, von Blomberg BM, Hazenberg MD, et al. Selective decrease in circulating Vα24Jα11 NKT cells during HIV type 1 infection. J Immunol 2002;168:1490–5.
26. Araki M, Kondo T, Gumperz JE, et al. Th2 bias of CD4+ NKT cells derived from multiple sclerosis in remission. Int Immunol 2003;15:279–88.
27. Nakagawa R, Kawamura T, Naito T, et al. Impaired IFN-γ production of Vα24 NKT cells in non-remitting sarcoidosis. Int Immunol 2004;16:215–22.
28. Giaconne G, Punt CJ, Ando Y, et al. A phase I study of the natural killer T-cell ligand α-galactosylceramide (KRN7000) in patients with solid tumors. Clin Cancer Res 2002;8:3702–9.
29. Osman Y, Kawamura T, Naito T, et al. Activation of hepatic NKT cells and subsequent liver injury following administration of α-galactosylceramide. Eur J Immunol 2000;30:1919–28.
30. Kaneko Y, Harada M, Kawano T, et al. Augmentation of Vα14 NKT cell-mediated cytotoxicity by interferon 4 in an autocrine mechanism resulting in the development of concanavalin A-induced hepatitis. J Exp Med 2000;191:105–14.
31. Ishihara S, Nieda M, Kitayama J, et al. CD8+ NKR-P1A+ T cells preferentially accumulate in human liver. Eur J Immunol 1999;29:4206–13.
32. Feng L, Engleman EG. Dendritic cells in cancer immunotherapy. Annu Rev Immunol 2000;18:245–73.
33. Thurner B, Haendle I, Roder C, et al. Vaccination with Mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J Exp Med 1999;190:1669–78.
34. Stift A, Friedl J, Dubsky P, et al. Dendritic cell-based vaccination in solid cancer. J Clin Oncol 2003;21:135–42.
35. Butterfield LH, Ribas A, Dissette VB, et al. Determinant spreading on a determinant spreading in melanoma patients vaccinated with a dendritic cell vaccine. Cancer Immunol Immunother 2002;51:449–58.
36. Su Z, Dannull J, Heiser A, et al. Immunological and clinical responses in metastatic renal cancer patients vaccinated with tumor RNA-transfected dendritic cells. Cancer Res 2003;63:2127–33.
37. Adachi Y, Koseki H, Zijlstra M, Taniguchi M. Positive selection of invariant Vα14+ T cells by non-major histocompatibility
complex-encoded class I-like molecules expressed on bone marrow-derived cells. Proc Natl Acad Sci U S A 1995;92:1200–4.

38. Morse MA, Coleman RE, Akabani G, et al. Migration of human dendritic cells after injection in patients with metastatic malignancies. Cancer Res 1999;59:56–8.

39. Mountain CF. Revisions in the International System for Staging Lung Cancer. Chest 1997;111:1710–7.

40. Stenbygaard LE, Sorensen JB, Olsen JE. Metastatic pattern in adenocarcinoma of the lung. An autopsy study from a cohort of 137 consecutive patients with complete resection. J Thorac Cardiovasc Surg 1995;110:1130–5.

41. Pairolero PC, Williams DE, Bergstrahl EJ, et al. Postsurgical stage I bronchogenic carcinoma: morbid implications of recurrent disease. Ann Thorac Surg 1984;38:331–8.

42. Nieda M, Okai M, Tazbirkova A, et al. Therapeutic activation of \(V_{ \alpha 24} + V_{\beta 11}^+ \) NKT cells in human subjects results in highly coordinated secondary activation of acquired and innate immunity. Blood 2004;103:383–9.

43. Wilson MT, Johansson C, Olivares-Villagomez D, et al. The response of natural killer T cells to glycolipid antigens is characterized by surface receptor down-modulation and expansion. Proc Natl Acad Sci U S A 2003;100:10913–8.

44. Harada M, Seino K, Wakao H, et al. Down-regulation of the invariant \(V_{\alpha 14} \) antigen receptor in NKT cells upon activation. Int Immunol 2004;16:241–7.

45. Crowe NY, Uldrich AP, Kyparissoudis K, et al. Glycolipid antigen drives rapid expansion and sustained cytokine production by NK T cells. J Immunol 2003;171:4020–7.