Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Investigating the effective factors of using mHealth apps for monitoring COVID-19 symptoms and contact tracing: A survey among Iranian citizens

Rezvan Rahimi a, Batoul Khoundabi b, c, Akram fathian d, *

a Department of Medical Informatics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
b Iran Helal Institute of Applied Science and Technology, Tehran, Iran
c Research Center for Health Management in Mass Gathering, Red Crescent Society of the Islamic Republic of Iran, Tehran, Iran
d Department of Management and Health Information Technology, School of Management and Medical Information Sciences, Isfahan University of Medical Sciences, Isfahan, Iran

ABSTRACT

Background and objectives: The use of mHealth applications depends on cognitive and social factors of individuals in different nations. This study aimed to identify the factors influencing the use of mHealth applications for both “contact-tracing” and “symptom-monitoring” of COVID-19 among Iranian citizens.

Methods: A cross-sectional study with an online survey was conducted among Iranian citizens. Correlation calculation and multiple linear regression analysis were performed on the studied variables to find the effective factors.

Results: A total of 1031 Iranian citizens over the age of 18 participated in this survey. A large percentage of the participants wanted to use the mHealth app to trace contacts of COVID-19 (74.5%) and the mHealth app to identify and monitor COVID-19 symptoms (74.0%). Gender, age, level of education, attitude towards technology, and fear of COVID-19 were among the factors that influenced the intention to use these two apps. The top reasons for using these apps were: “to keep myself and my family safe”, “to control the spread of the coronavirus in general”, and “to cooperate with healthcare professionals”. The reasons given for not using these two apps were related to the issues of “security and privacy” and “doubt in efficiency and usefulness” of them.

Conclusions: The study showed that many participants in this survey were interested in using the COVID-19 apps. Policies, regulations and procedures are needed to protect the privacy of individuals by ensuring data governance. Further investigation with a larger sample is suggested to generalize these results.

ARTICLE INFO

Keywords:
Telemedicine
mHealth Apps
Contact-tracing App
eHealth
Digital health
Telecommunications
COVID-19

1. Introduction

Technology has played a key role in combating the COVID-19 pandemic and maintaining community dynamism [1–8]. Digital technologies in healthcare (eHealth) programs have been recognized as valuable tools to support identifying and monitoring the COVID-19 symptoms, contact-tracing, and ultimately intervening early to reduce the prevalence of the virus [7,9–12]. As regards 4.88 billion mobile phone users worldwide [13], the investigation revealed that technically, the implementation of eHealth programs with the help of mobile applications (apps), known as mHealth apps, was easier than other methods [14].

mHealth apps are defined as “software embedded in smartphones to improve outcomes and research in the field of health and health care services”[15]. In the past epidemics such as the Ebola virus disease in West Africa, previous mHealth apps between 2014 and 2016 have been reviewed. Presently, app platforms offer a wide range of such apps to deal with the current pandemic [11,14,16]. They have been implemented in different countries for different purposes [17–24].

In a recent systematic review of the COVID-19 mobile apps, Kondylakis et al. discussed the capabilities of these tools in addressing the crucial challenges of this pandemic, such as reduction of hospital workload, access to specific and valid information, ability to track symptoms and mental status, and discovery of new predictors of the disease. Different social groups including the public, healthcare providers and policymakers will largely benefit from these tools during the
In the coronavirus risk assessment and monitoring apps (symptom-monitoring apps), a user enters his/her symptoms and it is determined whether the user is experiencing the COVID-19 symptoms or not, subsequently the person will be instructed to follow up [28].

Much research has been conducted on the challenges of using mHealth apps such as problems related to technology, privacy, justice and security [17,26,29]. However, the main factor for the effectiveness of such programs is their acceptance by a large part of the population. In the case of a coronavirus-tracing app, it was estimated that more than half of the population must use these apps in order to be effective [30]. Therefore, it is imperative to consider the factors that affect their acceptance in designing these programs and implementing strategies in different nations [27].

The use of mHealth apps depends on various cognitive and social factors of the users such as health awareness, orientation of health in whether the user is experiencing the COVID-19 symptoms or not, sub-recognized as an important precondition for the adoption of mHealth [17,39]. While the question of their privacy and security is an exception [32–36] and as we know the percentage of the impact of these factors varies from society to society [37,38]. However, the factors determining the acceptance of apps related to COVID-19 are largely unknown, although the question of their privacy and security is an exception [17,39]. While the issue of privacy and security of these apps has been recognized as an important precondition for the adoption of mHealth apps, the unusual and worrying circumstances that the COVID-19 pandemic has put everyone in, has made it more difficult to use the existing patterns and frameworks for accepting eHealth and the apps in this field [27].

Given the current relationship between social distancing and the use of mHealth apps to combat the COVID-19 pandemic and the low participation in the use of the COVID-19 health apps in Iran, the goal of this study is to identify the factors influencing the acceptance of a contact-tracing app and a symptom-monitoring app (if designed).

2. Material and methods

This is a cross-sectional study developed and distributed among Iranian citizens by using an online survey to identify factors related to the use of a contact-tracing app and a symptom-monitoring app. The questionnaire used in this survey was also utilized in the study of Jansen et al. [27] which predicted the acceptance factors of the COVID-19 apps in the Netherlands. The questionnaire was tailored after translation into Persian. The process of translation and cultural adjustment of its English version into Persian was performed following the published instructions [40], including the stages of translation, measuring the quality of translation, backward translation and comparing the English version with the Persian. The validity of the questionnaire was assessed in both qualitative and quantitative manners. Test-retest was used to measure reliability.

The questionnaire consisted of six parts and 30 questions:

(1) 10 questions about demographic and COVID-19 status
(2) 4 questions related to the attitude towards technology
(3) 2 questions about the level of health perceived by each person
(4) 4 questions about the level of the fear of COVID-19
(5) 5 questions related to the evaluation of the intention to use a contact-tracing app
(6) 5 questions related to the evaluation of the intention to use a symptom-monitoring app

To conduct this research, availability sampling was used through posting on social media popular in Iran (LinkedIn, Instagram, Telegram, and WhatsApp) and personal communication via email and SMS. People over the age of 18 were eligible to participate in the survey, which lasted for at least one month.

Data were analyzed using SPSS software version 26. Cronbach’s α was calculated to assess the internal consistency of part 2–6 of the questionnaire; survey scores for these factors were interpreted as negative (score 1 or 2), neutral (score 3), or positive (score 4 or 5). To identify the acceptance factors of a contact-tracing app and a symptom-monitoring app, correlation calculation (Pearson or Spearman correlation level $p < 0.1$) and multiple linear regression analysis ($p < 0.05$) were performed.

3. Results

A total of 1031 Iranian citizens over the age of 18 took part in the survey between September 10 and October 16. During this period, Iran was facing a growing trend of the infection. Approximately 60% of the responders were female with a mean age of 35 years old and the most common age group was 30–45. Approximately 83% claimed to carry their smartphones with them most of the day. All the demographic characteristics are presented in Table 1.

The internal consistency of the four questions on the COVID-19 fear scale is well accepted (Cronbach’s $\alpha = 0.912$). The mean score in this subject was 3.3 (SD ± 0.9). Majority of the responses were negative (46.51%). To assess the perceived health status of the responders, the internal consistency of the two questions was quite acceptable (Cronbach’s $\alpha = 0.684$). The mean score on this scale was 2.3 (SD ± 0.7). Most responders had a positive opinion about their health (56.64%). On the tendency towards technology scale, the internal compatibility of the four questions was quite acceptable (Cronbach’s $\alpha = 0.912$) and a large number of the people (64.57%) stated to be eager to use the new technology. The mean score on this scale was 3.7 (SD ± 0.7) (Table 2). As shown in the radar chart, the component of health perceived by individuals had a lower average than other components (Fig. 1). Figs. 2-6 illustrate how the responses are distributed in different components.

The intention to use was examined separately for contact-tracing app and symptom-monitoring app. For both scales, the internal consistency was excellent. In contact-tracing app, Cronbach’s α was 0.929 and in symptom-monitoring app, it was 0.928. For both COVID-19 mHealth apps, the intention to use for the majority of responders was positive (Table 2). Due to the abnormality of the two variables “Intention to use a contact-tracing app” and “Intention to use a monitoring app”, the Wilcoxon rank sum test was used to compare the mean of the two variables. Based on the p-value, there was no statistically significant difference between the means of these two variables ($p = 0.713$). The average of the intention to use a contact-tracing app and the intention to use a monitoring app were respectively 3.9 ± 0.8 and 3.9 ± 0.8.

3.1. Correlations

Findings related to the correlation between variables in this study indicated that the intention to use a contact-tracing app with the variables of attitude towards technology ($r = 0.241$, $p < 0.001$), fear of COVID-19 ($r = 0.236$, $p < 0.001$), and level of education ($r = 0.064$, $p < 0.041$) had a direct relationship with the gender variable ($r = 0.096$, $p < 0.002$). The data also showed that the intention to use a symptom-
3.2. Linear regression

Multiple linear regressions were performed to predict the intention to use a contact-tracing app and a symptom-monitoring app according to age, income level, attitude towards technology, fear of COVID-19 and perceived health. The model showed that the variables of attitude towards technology and fear of COVID-19 predict the intention to use a contact-tracing app (R² = 0.327) and had a significant positive effect on changes in the tendency to use this app. Given the benefits of these components, the tendency to use a tracing app also increased with rising scores related to attitude towards technology and fear of COVID-19. Also, among the available variables, only age and attitude towards technology predicted the intention to use a symptom-monitoring app (R² = 0.132) and they had a significant positive effect on the tendency to use this app, denoting that with increasing age and rising score of attitudes towards technology, the willingness to use this app also raised (Table 4).

3.3. Main reasons to use the COVID-19 mHealth apps

In this study, it was indicated that a large group of Iranian citizens want to use the apps to trace the COVID-19 contacts (74.5%) and the apps to identify and monitor the symptoms of the disease (74.0%). There are not being easy to use = 3.59%, symptom-monitoring = 3.59%) were the most mentioned reasons why people did not use these apps. Respectively, the issues of security of the apps (contact-tracing = 30.55%, symptom-monitoring = 30.94%) and not being easy to use (contact-tracing = 3.39%, symptom-monitoring = 3.59%) were the most and the least mentioned reasons why people did not use these apps.

3.4. Main reasons not to use the COVID-19 mHealth apps

In this study, it was indicated that a large group of Iranian citizens want to use the apps to trace the COVID-19 contacts (74.5%) and the apps to identify and monitor the symptoms of the disease (74.0%). There are not being easy to use = 3.59%, symptom-monitoring = 3.59%) were the most mentioned reasons why people did not use these apps. Respectively, the issues of security of the apps (contact-tracing = 30.55%, symptom-monitoring = 30.94%) and not being easy to use (contact-tracing = 3.39%, symptom-monitoring = 3.59%) were the most and the least mentioned reasons why people did not use these apps.

4. Discussion

In this study, it was indicated that a large group of Iranian citizens want to use the apps to trace the COVID-19 contacts (74.5%) and the apps to identify and monitor the symptoms of the disease (74.0%). There are not being easy to use = 3.59%, symptom-monitoring = 3.59%) were the most mentioned reasons why people did not use these apps. Respectively, the issues of security of the apps (contact-tracing = 30.55%, symptom-monitoring = 30.94%) and not being easy to use (contact-tracing = 3.39%, symptom-monitoring = 3.59%) were the most and the least mentioned reasons why people did not use these apps.

![Radar graph by five dimensions in questionnaire](image)

As demonstrated in this graph, technology and fear of COVID-19 have more significant effects on the intention to use the apps than the health status component.
was no significant difference in people’s opinions about the two different apps. Since the effectiveness of these apps was directly related to the acceptance rate, the results can be very encouraging. More than 60% of Iranians mentioned protecting their health and that of their families as the main reason for using these two apps (if designed). Only one percent of the people mentioned that none of these reasons had any effect on their use of these apps and they would never use them. Gender, age, level of education, attitude towards technology and the fear of COVID-19 were among the factors that influenced the intention to use these two apps.

Since the onset of the COVID-19 pandemic, similar surveys have been conducted worldwide to better understand people’s attitudes on the use of COVID-19 related apps [14,27,39,41–51]. In many of these studies, the impact of gender, social, and demographic factors in different communities have been reported with different results, as presented in Table 7. Differences in the findings of various studies can be explained by differences in the socio-economic, educational, and digital divide in investigated populations. Communities should look for effective strategies in reducing the technology gap in different groups of people. Various studies have shown that by using Industry 4.0 and 5.0 technologies with a focus on human–machine interaction, intelligence, and ultimately personalizing these solutions, the challenges of using them for different groups of population will be significantly reduced. It is also imperative to conduct more comprehensive research.
If it is necessary, I will use this application
If this application is available to me, I will definitely use it
I hope this application would be available to me

Completely Agree
Agree
D isagree
D isagree
No Idea
No Idea

This application is available to me, I will definitely use it

Completely Agree
Agree
D isagree
D isagree
No Idea
No Idea

If it is necessary, I will use this application
If this application is available to me, I will definitely use it
I hope this application would be available to me

Completely Agree
Agree
D isagree
D isagree
No Idea
No Idea

If this application is available to me, I will definitely use it

Completely Agree
Agree
D isagree
D isagree
No Idea
No Idea

I hope this application would be available to me

Completely Agree
Agree
D isagree
D isagree
No Idea
No Idea

Agree

I hope this application would be available to me
If this application is available to me, I will definitely use it
If it is necessary, I will use this application

Completely D isagree
D isagree
No Idea
Agree

Fig. 5. Distribution of participations by level of intention to use contact-tracing app items. Three items of the intention to use the tracing app have approximately the same weights in “Agree” and “Completely agree” responses.

Fig. 6. Distribution of participations by level of intention to use a symptom-monitoring app items. Three items of the intention to use the symptom-monitoring app have approximately the same weights in “Agree” and “Completely agree” responses.

Table 3
Correlations between final scores

	Intention to use a contact-tracing app	Intention to use a symptom-monitoring app
Gender	-0.096*	-0.049
(1: Female, 2: Male)	P = 0.002	P = 0.121
Age	0.049	0.075*
	P = 0.114	P = 0.017
Education	0.064*	0.008
	P = 0.041	P = 0.791
Occupation	0.014	0.016
	P = 0.663	p = 0.609
Income	0.041	-0.011
	P = 0.184	P = 0.719
Living Status	-0.019	-0.002
	P = 0.550	p = 0.994
Technology	0.241*	0.079*
	P = 0.001	P = 0.12
Fear of COVID-19	0.236*	0.058
	P = 0.001	P = 0.065
Health Status	0.012	0.013
	P = 0.700	P = 0.687

* Correlation is significant at the 0.05 level (2-tailed).

on the capacities and challenges of the technologies for combating COVID-19 and potential epidemics in the future [7,52–54].

The findings of this study showed that attitude towards technology was a factor that had a positive effect on the intention to use both of these apps, but the health status perceived by the individuals themselves had no effect, and the fear of COVID-19 was only directly and meaningfully related to the intention to use the tracing app. In a similar study conducted by Jansen [27] in the Netherlands, similar findings were obtained about attitude towards technology and health status, and in that study, the fear of COVID-19 was related to the intention to use both apps. As Jansen pointed out in his research [27], since the fear of COVID-19 was difficult to translate into technology design, this finding should be seen in a larger picture. Therefore, during the pandemic outbreak, public health campaigns should inform citizens about the dangers of the disease and then offer mHealth apps for the pandemic as a personal strategy to overcome the fear.

Respecting the fact that people with worse health status are more likely to seek information and support tools [55], more studies are needed to thoroughly understand these people’s information-seeking behaviors. Also, considering the benefits of mobile apps, it is recommended to implement the apps for different groups of people, especially those with chronic diseases need to be guided for using these reliable tools.

Although this study showed that support for such apps was high in all population groups, the data demonstrated that security and privacy concerns, along with trust in relevant organizations, were important support factors. In an international study on the COVID-19 tracing app, Altman (2020) showed that people who had less trust in their national government were less likely to support such projects [49]. In other studies, the discussion of privacy [27,49,56], cyber security, inefficiency and usefulness of apps security [27,56], as the most important reasons for not using the app related to COVID-19, had been mentioned by people and some had also reported that using these apps may increase their anxiety [27].

The results showed the need to address privacy and cyber security concerns in the design of such apps, which respect the user’s personal data as much as possible. Research on the implications of apps’ privacy in this area and potential solutions to address these concerns was currently underway [17,26]. It was required to benefit from both privacy and health, but it was also essential to provide citizens with credible sources of verified information. It was clear that guidelines and
Overview of the main reasons not to use the two COVID-19 mHealth apps

Table 5
Overview of the main reasons to use the two Covid-19 mHealth apps

Main reasons to use a symptom-monitoring app	%	Main reasons to use a tracing app	%
to protect their health and their family’s	61.20	to protect their health and their family’s	64.79
to control the spread of the coronavirus	40.83	to control the spread of the coronavirus	45.88
to cooperate with healthcare professionals combating the disease	37.92	to cooperate with healthcare professionals combating the disease	42.68
to better monitor one’s health	37.15	to better monitor one’s health	39.96
to understand more about the spread and symptoms of the coronavirus	34.34	to get information about high-risk areas and refrain from commuting in those areas	31.13
to obtain information about the prevalence of the virus in the country	31.72	to protect the vulnerable groups	31.13
to protect the vulnerable groups	30.55	for people in their community	29.78
for people in their community	30.36	to obtain information about the prevalence of the virus in the country	29.10
to get information about high-risk areas and refrain from commuting in those areas for the fear of this disease	27.55	to understand more about the spread and symptoms of the coronavirus for the fear of this disease	27.55
I definitely will not use this app	20.85	for the fear of this disease	19.40
	0.01	I definitely will not use this app	0.01

Table 6
Overview of the main reasons not to use the two COVID-19 mHealth apps

Main reasons not to use a symptom-monitoring app	%	Main reasons not to use a tracing app	%
No reason (I definitely will use this app)	38.89	No reason (I definitely will use this app)	40.06
Doubt security	30.94	Doubt security	30.55
Doubt efficiency and usefulness	25.70	Doubt efficiency and usefulness	26.87
Privacy/ I don’t want to share my information with others	14.26	Privacy/ I don’t want to share my information with others	13.87
Increased anxiety	9.12	Increased anxiety	8.83
No (compatible) phone	4.56	No (compatible) phone	4.17
Not easy to use this apps	3.39	Not easy to use this apps	3.59

Intention to use contact-tracing app

Model	Unstandardized Coefficients	Standardized Coefficients	t	P-VALUE	95.0% Confidence Interval for B		
	B	Std. Error	Beta		Lower Bound	Upper Bound	
(Constant)	3.181	1.90		17.625	.000	2.827	3.535
Age	.006	.002	.086	2.426	.015	.001	.011
Income	.042	.025	.059	1.656	.098	.091	.008
Technology	.999	.036	.086	2.726	.007	.028	.170
Fear of COVID-19	.047	.026	.060	1.842	.066	.003	.098
Health Status	.013	.033	.012	.381	.703	.003	.011

Intention to use symptom-monitoring app

Model	Unstandardized Coefficients	Standardized Coefficients	t	P-VALUE	95.0% Confidence Interval for B		
	B	Std. Error	Beta		Lower Bound	Upper Bound	
(Constant)	2.313	0.172		13.424	.000	1.975	2.651
Age	.002	.000	.034	1.023	.306	.002	.007
Income	-.018	.024	-.025	-.730	.465	.005	.030
Technology	.238	.035	.206	6.886	.001	.170	.306
Fear of COVID-19	.192	.025	.237	7.742	.001	.143	.240
Health Status	-.005	.032	-.005	-.158	.874	-.068	.058

a. Dependent Variable: int.final.

Table 4
Linear Regression analysis

policies to protect fundamental human rights and prevent society from moving from a state of emergency to a state of exception were needed; guidelines to protect the privacy of individuals by ensuring the data governance [26].

Meanwhile, overcoming perceived obstacles such as privacy concerns, the media can play an important role in encouraging the use of such apps by informing citizens about their functions, benefits, and uses and consequently result in increased self-efficacy and perceived benefits [57]. Finally, even when there was enough trust for widespread acceptance of the app, or even if the installation of the app was mandatory, it was still necessary to bear in mind that some people may not have smartphones.

Further large-scale studies on the acceptance, quality, utility, usability, and effectiveness of mHealth apps, issues related to access, security, privacy, rules, standards, emerging technologies, and infrastructures for using these tools are needed to conclusively reach the effectiveness of such digital health solutions on a large scale.

In addition, the proposed solutions should be socially robust and therefore it was important not to exclude vulnerable groups and not to widen the existing digital divide.

5. Limitations

The present study had limitations; it was tried to overcome some of them in different ways. First, participants who responded online may not represent the general public. In particular, the level of education of individuals, digital literacy and tendency to share data can be higher among such responders. To ensure that the results did not depend on the specific sample, the summary version of the survey was repeated with a different panel provider and randomly recruited 100 participants offline. The results of these two methods were compared and no difference was obtained in the findings. However, another study with a larger sample and another sampling method is suggested for the generalization of these results.

Second, in the questionnaire, the COVID-19 mHealth apps were introduced using a brief description of their overall purpose. It was unclear whether this explanation was sufficient for the responders to understand the purpose of both mHealth apps or not. For this purpose, communication channels (telephone and email) were provided to answer the questions and possible ambiguities of the responders. Third, the survey asked people hypothetical questions about future behavior, and with the availability of these apps, people may not be so receptive to installing and using them. However, studies have often shown an acceptable correlation between what people say in polls and their actual behavior, even when it came to program installation [49]. In general,
Table 7: Overview of studies related to COVID-19 mHealth app people’s viewpoints and attitudes

Study	Aim of the study	Type of study	Participants No.	Country/ Population	Main findings
Altmann et al., 2020 [49] Published	Exploring the acceptability of COVID-19 contact-tracing app across the five different country	Online survey (March 20 - April 10, 2020)	5,995	Five countries: France, Germany, Italy, the United Kingdom, the United States	High support for contact tracing apps irrespective of age, gender, region, and country of residence
O’Callaghan et al., 2020 [44] Published	Investigating the obstacles and levers to using a COVID-19 contact-tracing app	Online survey (May 22 - May 29, 2020)	8,088	Ireland adults	High support for contact tracing apps
Sharma et al. 2021 [43] In press	Determining the socio demographic factors of the adoption of a COVID-19 contact-tracing app	Online survey (August 1 - September 31, 2020)	28,246	Residents of Delhi, India	High acceptability of the contact tracing app
Montagni et al., 2020 [45] Published	Exploring knowledge, attitudes, beliefs, and practices (KABP) of a COVID-19 contact-tracing app	Online survey (September 25 - October 16, 2020)	318	Students at the health sciences campus of the University of Bordeaux, France	Low use of the contact tracing app among health students
Walrave et al., 2020 [42] Published	Investigating the predictors that influence COVID-19 contact-tracing app intention using an extended unified theory of acceptance and use of technology (UTAUT) model	Online survey (April 17 - April 19, 2020)	1,500	Flanders, Belgium adults	The main reasons for not using the app were: belief that it was not practical given its limited distribution, lack of interest, concerns about cybersecurity and privacy
Wyl et al., 2020 [41] Published	Investigating the acceptance drivers of a COVID-19 contact-tracing app	Nationwide online panel survey (September 28 - October 8, 2020)	1,511	Switzerland adults	The main reasons for not using the app were: citizenship status and language region were associated with lower app uptake
Guillon and Kergall, 2020 [47] Published	Exploring attitudes and opinions on quarantine and the factors associated with the acceptability and potential use of a COVID-19 contact-tracing app	Online survey (April 16 - May 7, 2020)	1,849	France adults	Concerns about privacy
Kaspar, 2020 [14] Published	Examining cognitive predictors related to social distancing, using an app, and providing health-related data requested by two apps (COVID-19 contact-tracing app and data donation app)	Online survey (April 15 - May 15, 2020)	406	German adults	The motivations to use and support a contact-tracing app were stronger than the motivations to use and accept a data donation app
Camacho-Rivera et al., 2020 [48] Published	Investigating determinants of using COVID-19 mHealth tools and Evaluating the associations between chronic health conditions and attitudes toward using COVID-19 mHealth tools (COVID-19 apps or websites)	Online survey (April 20 - June 8, 2020)	10,760	The United States adults	The study shows the differences in attitudes toward COVID-19 mHealth tools across age, sex, race/ethnicity, education, and region. COVID-19 mHealth tools were more likely to be used by those with chronic health issues to monitor possible COVID-19 exposure and symptoms. People with various chronic health conditions have quite different attitudes regarding COVID-19 m-health technologies (i.e., app vs website)

(continued on next page)
widespread initial support for such apps was the necessary first step in the acceptance; this study found that people mainly had a positive view towards using such apps.

6. Conclusion

The present study was the first to determine the factors related to the acceptance and using of mHealth apps related to COVID-19 in Iran. There was no meaningful difference in people’s opinions about the two different apps. It showed that a large group of the participants in this survey were interested in using the COVID-19 apps. The results will be helpful for policymakers, mobile app developers, and researchers. Further investigation with a larger sample is suggested to generalize these results and actual adoption of the COVID-19 apps based on these results, and to assess their potential to control epidemics.

7. Summary points

What was already known on the topic?

- Technology has played a key role in combating the COVID-19 pandemic.
- The use of mHealth apps depends on the cognitive and social factors of individuals.
- The effectiveness of COVID-19 mHealth apps is directly related to the acceptance rate.

What this study added to our knowledge?

- In this study, it was indicated that a large group of participants want to use the apps to trace the COVID-19 contacts (74.5%) and the apps to identify and monitor the symptoms of the disease (74.0%).
- Gender, age, level of education, attitude towards technology and the fear of COVID-19 were among the factors that influenced the intention to use COVID-19 mHealth apps.
- More than 60% of participants in this study mentioned “for protecting their health and that of their families” as the main reason for using COVID-19 mHealth apps.
• The reasons given for not using COVID-19 mHealth apps were related to the issues of “security and privacy’, ‘doubt in efficiency and usefulness’.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The authors would like to express their gratitude to Faeezeh Sadeghi for her assistance with language editing during the study’s draft. The authors would like to thank everyone who participated in this research.

References

[1] R. Boyle, K. Conboy, The role of IS in the covid-19 pandemic: a liquid-modern perspective, Int. J. Inform. Manage., 55 (2020) 102184.
[2] D.S.W. Ting, L. Carin, V. Drau, T.Y. Wong, Digital technology and COVID-19, Nature Medicine, 2020.
[3] M. Grispin, Digital Health and AI in the Time of COVID-19, Detail of New (2020).
[4] V. Ozdemir, Digital Health in Times of COVID-19, Mary Ann Liebert, Inc., publishers 140 Huguenot Street, 3rd Floor New York, 2020.
[5] S. Mortazavi, S. Mortazavi, H. Parsaei, COVID-19 pandemic: how to use artificial intelligence to help healthcare workers for positions with the highest possible levels of exposure to the novel coronavirus, J. Biomed. Phys. Eng. 10 (2020) 383–386.
[6] A. Haleem, M. Javadi, R. Vaishya, S. Bahl, R. Suman, A. Vaish, Industry 4.0 and its role in healthcare during COVID-19 pandemic: a review, J. Ind. Integrat. Manage. 5 (2020).
[7] A.C. Smith, E. Thomas, C.L. Snoswell, H. Haydon, A. Mehrotra, J. Clemensen, L.J. Kalamaras, K. Votis, D. Tzovaras, COVID-19 Mobile Apps: A Systematic Review of Potential applications in COVID-19, J. Industrial Integrat. Manage. 5 (2020).
[8] N. Pappot, G. Taarnhøj, H. Pappot, Telemedicine and e-Health Solutions for COVID-19: Patients’ Perspective, Telemed. J. e-Health, Off. J. Am. Telemede Medicine Association, 2020.
[9] J.E. Hollander, B.G. Carr, Virtually perfect? Telemedicine for COVID-19, Arch. Clin. Infect. Dis., In Press (2020).
[10] K. Kaspar, Motivations for Social Distancing and App Use as Complementary Measures to Combat the COVID-19 Pandemic: Quantitative Study Survey, J. Int. Med. Internet Res. 22 (2020) e21613.
[11] R. Nouri, S. R-Niakan Kalhori, M. Ghazisaeedi, G. Marchand, M. Yasini, Criteria for assessing the quality of mHealth apps: a systematic review, J. Am. Med. Inform. Assoc. 25 (2018) 1089-1098.
[12] N. Askari, N.S. Klaver, T.J. van Gestel, J. van de Klundert, Intention to use medical health literacy, and health app use efficacy, J. Med. Internet Res. 16 (2014), e125.
[13] M. Askari, N.S. Klaver, T.J. van Gestel, J. van de Klundert, Intention to use medical health literacy, and health app use efficacy, J. Med. Internet Res. 16 (2014), e125.
[14] M. Rahimi et al., The reasons given for not using COVID-19 mHealth apps were related to the issues of “security and privacy’, ‘doubt in efficiency and usefulness”.
[15] S. Keshvardoost, K. Bahaadinbeigy, F. Fatehi, Role of telehealth in the management and control of COVID-19: lessons learned from previous SARS, MERS, and Ebola outbreaks, Telemed. e-Health (2020).
[16] M. Javaid, A. Haleem, R. Vaishya, S. Bahl, R. Suman, A. Vaish, Industry 4.0 and its role in healthcare during COVID-19 pandemic: a review, J. Ind. Integrat. Manage. 5 (2020).
[17] A.C. Smith, E. Thomas, C.L. Snoswell, H. Haydon, A. Mehrotra, J. Clemensen, L.J. Kalamaras, K. Votis, D. Tzovaras, COVID-19 Mobile Apps: A Systematic Review of Potential applications in COVID-19, J. Industrial Integrat. Manage. 5 (2020).
[18] R. Rahimi et al., The reasons given for not using COVID-19 mHealth apps were related to the issues of “security and privacy’, ‘doubt in efficiency and usefulness”.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The authors would like to express their gratitude to Faeezeh Sadeghi for her assistance with language editing during the study’s draft. The authors would like to thank everyone who participated in this research.

References

[1] R. Boyle, K. Conboy, The role of IS in the covid-19 pandemic: a liquid-modern perspective, Int. J. Inform. Manage., 55 (2020) 102184.
[2] D.S.W. Ting, L. Carin, V. Drau, T.Y. Wong, Digital technology and COVID-19, Nature Medicine, 2020.
[3] M. Grispin, Digital Health and AI in the Time of COVID-19, Detail of New (2020).
[4] V. Ozdemir, Digital Health in Times of COVID-19, Mary Ann Liebert, Inc., publishers 140 Huguenot Street, 3rd Floor New York, 2020.
[5] S. Mortazavi, S. Mortazavi, H. Parsaei, COVID-19 pandemic: how to use artificial intelligence to help healthcare workers for positions with the highest possible levels of exposure to the novel coronavirus, J. Biomed. Phys. Eng. 10 (2020) 383–386.
[6] A. Haleem, M. Javadi, R. Vaishya, S. Deshmukh, Areas of academic research with the impact of COVID-19, Am. J. Emergency Med. 38 (2020) 1524–1526.
[7] M. Javadi, A. Haleem, R. Vaishya, S. Bahl, R. Suman, A. Vaish, Industry 4.0 technologies and their applications in fighting COVID-19 pandemic, Diabet. Metabol. Syndrome: Clin. Res. Rev. 14 (2020) 419–422.
[8] A. Haleem, M. Javadi, Medical 4.0 and its role in healthcare during COVID-19 pandemic: a review, J. Ind. Integrat. Manage. 5 (2020).
[9] S. Keshvardoost, K. Bahaadinbeigy, F. Fatehi, Role of telehealth in the management and control of COVID-19: lessons learned from previous SARS, MERS, and Ebola outbreaks, Telemed. e-Health (2020).
[10] M. Javaid, A. Haleem, R. Vaishya, S. Bahl, R. Suman, A. Vaish, Industry 4.0 and its role in healthcare during COVID-19 pandemic: a review, J. Ind. Integrat. Manage. 5 (2020).
[11] A.C. Smith, E. Thomas, C.L. Snoswell, H. Haydon, A. Mehrzad, J.L. Caffery, Telehealth for global emergencies: Implications for coronaviruses disease 2019 (COVID-19), J. Telemed. Telecare, (2020) 1357633X20916567.
[12] N. Pappot, G. Taarnhøj, H. Pappot, Telemedicine and e-Health Solutions for COVID-19: Patients’ Perspective, Telemed. J. e-Health, Off. J. Am. Telemedicine Association, 2020.
[13] J.E. Hollander, B.G. Carr, Virtually perfect? Telemedicine for COVID-19, Arch. Clin. Infect. Dis., In Press (2020).
[14] K. Kaspar, Motivations for Social Distancing and App Use as Complementary Measures to Combat the COVID-19 Pandemic: Quantitative Study Survey, J. Int. Med. Internet Res. 22 (2020) e21613.
[15] R. Nouri, S. R-Niakan Kalhori, M. Ghazisaeedi, M. Marchand, M. Yasini, Criteria for assessing the quality of mHealth apps: a systematic review, J. Am. Med. Inform. Assoc. 25 (2018) 1089-1098.
[16] N. Askari, N.S. Klaver, T.J. van Gestel, J. van de Klundert, Intention to use medical health literacy, and health app use efficacy, J. Med. Internet Res. 16 (2014), e125.
[17] M. Rahimi et al., The reasons given for not using COVID-19 mHealth apps were related to the issues of “security and privacy’, ‘doubt in efficiency and usefulness”.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The authors would like to express their gratitude to Faeezeh Sadeghi for her assistance with language editing during the study’s draft. The authors would like to thank everyone who participated in this research.

References

[1] R. Boyle, K. Conboy, The role of IS in the covid-19 pandemic: a liquid-modern perspective, Int. J. Inform. Manage., 55 (2020) 102184.
[2] D.S.W. Ting, L. Carin, V. Drau, T.Y. Wong, Digital technology and COVID-19, Nature Medicine, 2020.
[3] M. Grispin, Digital Health and AI in the Time of COVID-19, Detail of New (2020).
[4] V. Ozdemir, Digital Health in Times of COVID-19, Mary Ann Liebert, Inc., publishers 140 Huguenot Street, 3rd Floor New York, 2020.
[54] R.P. Singh, M. Javaid, R. Kataria, M. Tyagi, A. Haleem, R. Suman, Significant applications of virtual reality for COVID-19 pandemic, Diabet. Metab. Syndr.: Clin. Res. Rev. 14 (2020) 661–664.

[55] A.-F. Abdulai, A.-H. Tiffere, F. Adam, M.M. Kabanuye, COVID-19 information-related digital literacy among online health consumers in a low-income country, Int. J. Med. Inf. 145 (2021), 104322.

[56] I. Montagni, N. Roussel, R. Thiebaut, C. Tzourio, The French Covid-19 contact tracing app: usage and opinions by students in the health domain, medRxiv, 2020.

[57] M. Walrave, C. Waeterloos, K. Ponnet, Adoption of a contact tracing app for containing COVID-19: a health belief model approach, JMIR Public Health Surveillance 6 (2020), e20572.