MagnetoElectric Coupling in Single Crystal Cu$_2$OSeO$_3$ Studied by a Novel Electron Spin Resonance Technique

A. Maisuradze,1,2,* A. Shengelaya,3 H. Berger,4 D. M. Djokici,4 and H. Keller1

1Physik-Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
2Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institut, CH-5232 Villigen PRL, Switzerland
3Department of Physics, Tbilisi State University, Chavchavadze av. 3, GE-0128 Tbilisi, Georgia
4Institute of Condensed Matter Physics, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland

(Received 25 January 2012; published 13 June 2012)

The magnetoelectric (ME) coupling on spin-wave resonances in single-crystal Cu$_2$OSeO$_3$ was studied by a novel technique using electron spin resonance combined with electric field modulation. An external electric field E induces a magnetic field component $\mu_0 H' = \gamma E$ along the applied magnetic field H with $\gamma = 0.7(1) \mu T/(V/mm)$ at 10 K. The ME coupling strength γ is found to be temperature dependent and highly anisotropic. $\gamma(T)$ nearly follows that of the spin susceptibility $\chi(T)$ and rapidly decreases above the Curie temperature T_c. The ratio γ/J_M monotonically decreases with increasing temperature without an anomaly at T_c.

DOI: 10.1103/PhysRevLett.108.247211 PACS numbers: 75.85.+t, 76.30.+v, 76.50.+g

MagnetoElectric (ME) materials exhibiting coupled and microscopically coexisting magnetic (M) and electric (P) polarizations have attracted considerable interest in recent years [1–4]. This coupling allows one to influence the magnetic state of a ME material via an external electric field, thus opening a broad range of possible technical applications of such materials [3,5]. Moreover, it is very interesting to investigate the microscopic mechanism of ME coupling, since P and M tend to exclude each other [4]. In order to detect the ME effect, sensitive and reliable experimental techniques are required, since this coupling is generally quite small. Usually, for the determination of the ME coupling either the dielectric properties of ME materials are measured as a function of magnetic field or the magnetization is studied as a function of an applied electric field [3].

Cu$_2$OSeO$_3$ is a paraelectric ferrimagnetic material with a Curie temperature of $T_c \approx 57$ K [6–8]. The ME effect in Cu$_2$OSeO$_3$ was first observed by magnetocapacitance experiments [6]. Later on, a small abrupt change of the dielectric constant below T_c was reported by infrared reflection and transmission studies [9,10]. Recent μSR investigations showed a rather small change of the internal magnetic field by applying an electric field [8]. X-ray diffraction [6] and nuclear magnetic resonance [11] studies revealed no evidence of any lattice anomaly below T_c, suggesting that lattice degrees of freedom are not directly involved in the ME effect. Moreover, a metastable magnetic transition with enhanced magnetocapacitance was observed [6] and later on was also investigated under hydrostatic pressure [12]. Very recently, ME Skyrmions were observed in Cu$_2$OSeO$_3$ by means of Lorentz transmission electron microscopy [13] and small angle neutron scattering experiments [14].

Here we report a study of the ME coupling in a single crystal of Cu$_2$OSeO$_3$. For this investigation, a novel microscopic method for the direct determination of the ME effect based on the standard FMR/EPR technique combined with electric field modulation was developed. As a result, to our knowledge for the first time, spin-wave resonance (SWR) excitations [15] were detected via ME coupling. The linear ME coupling strength γ was determined quantitatively in Cu$_2$OSeO$_3$. In particular, the temperature and angular dependence of γ and the SWR excitations were investigated. The temperature dependence of the ME coupling was found to follow nearly that of the spin susceptibility without a sudden change across T_c. By comparing the results of ME Cu$_2$OSeO$_3$ with those of standard DPPH (C$_{18}$H$_{12}$N$_5$O$_6$), we further demonstrate that this novel microscopic method is a very sensitive and powerful tool to investigate the ME effect and to search for new ME materials.

High-quality single crystals of Cu$_2$OSeO$_3$ were prepared using a procedure described elsewhere [11]. The crystal structure is cubic with symmetry ($P2_13$) [6,7]. Several thin single-crystal samples of approximate dimensions of $\sim 1 \times 1 \times d$ mm with thickness $d \leq 0.1$ mm were studied. The [110] direction of the crystal is oriented perpendicular to the planes of the thin samples [see Fig. 1(a)]. The FMR and EPR measurements were performed with a standard X-band (9.6 GHz) BRUKER EMX spectrometer. In order to detect the ME effect, a capacitor-like structure consisting of two thin (< 10 μm) isolated gold electrodes separated by ~ 0.3 mm was used [see Fig. 1(a)]. The sample and the DPPH marker [16,17] were placed between the two electrodes. The electrodes were connected to an ac voltage source of amplitude $V_m = 17$ V, synchronized with the frequency of 100 kHz of the magnetic field modulation generator of the spectrometer [16,17]. Two kinds of resonance experiments were...
performed: (1) EPR/FMR with standard magnetic field modulation (MFM) and (2) EPR/FMR with electric field modulation (EFM) at 100 kHz. The [110] axis of the crystal was perpendicular to the microwave field \(H_1 \). For the angular dependent measurements, the sample was rotated with respect to the applied field \(H \) [see Fig. 1(a)].

The EPR/FMR technique is based on the resonance absorption of microwave energy by a Zeeman-split spin system [16,17]. The Zeeman splitting of the spin system is achieved by sweeping an applied magnetic field \(H \). In the simplest case of an effective spin \(S = 1/2 \) system (as for the present case of \(\text{Cu}^{2+} \)) the double degenerate ground state is split into two levels by the Zeeman energy \(E_Z = g \mu_B H \). When \(E_Z = h \nu \), where \(\nu = 9.6 \) GHz is the frequency of the microwave \(H_1 \) field, resonance absorption takes place [see Fig. 1(b)]. In order to increase the sensitivity, the applied magnetic field \(H \) is modulated: \(H = H' + H_m \sin(2 \pi \nu_m t) \), where \(H' \) is the static applied magnetic field, \(H_m \) is the modulation amplitude, and \(\nu_m \) is the modulation frequency (typically \(\nu_m = 100 \) kHz). During signal detection \(H' \) is swept slowly. As a result, the detected microwave absorption power \(P(t) = P_m \sin(2 \pi \nu_m t) \) is also modulated with the frequency \(\nu_m \). The amplitude \(P_m \) is proportional to the slope \(D(H) \) of the absorption signal \(I(H) \). Further amplification and lock-in detection of \(P(t) \) results in the EPR derivative signal \(D(H) \) as illustrated in Fig. 1(c) [16,17].

Ferromagnetic resonance studies were performed previously on composite ME structures involving piezoelectric and magnetostrictive compounds [18–20]. In these experiments, a static external field \(E_{st} \) was used to detect the ME coupling strength. By applying \(E_{st} = 1 \) kV/mm in the present experiments, a shift of the resonance fields of the order of \(\approx 0.5 \) mT was also detected for \(\text{Cu}_2\text{OSeO}_3 \), indicating an additional magnetization induced by \(E_{st} \). However, in order to increase the sensitivity of signal detection and to avoid artifacts related to hysteresis effects of the magnet core, it is advantageous to apply a periodic voltage to detect small changes in the spectra. This technique was previously applied to investigate the electric field effect on the non-Kramers ion \(\text{Pr}^{3+} \) in \(\text{LaMg}_2 \) [21]. The main idea of the present experiment is to use EFM to observe EPR/FMR signals in \(\text{Cu}_2\text{OSeO}_3 \) instead of the usual MFM technique. In a spin system without ME effect (e.g., DPPH) no modulated signal \(P(t) = P_m \sin(2 \pi \nu_m t) \) will occur. However, if the ME effect is present in the sample, modulation by an electric field \(E_m \sin(2 \pi \nu_m t) \) leads to a modulation of the magnetization \(M(t) \) and therefore to a modulation of the magnetic field in the sample \(B(t) = \mu_0[H + M(t)] \). In this case the EPR/FMR signal which is proportional to the ME coupling may in principle be detected.

First we describe the FMR/EPR signals obtained in \(\text{Cu}_2\text{OSeO}_3 \) using the conventional MFM technique. For a polycrystalline or arbitrarily shaped single crystal, a very complex signal is observed as reported previously (see Ref. [22]). We found that the signal is substantially simpler for a thin single crystal with a nearly constant effective demagnetization factor [23]. Figure 2(a) shows the FMR signal of a thin single-crystal sample of \(\text{Cu}_2\text{OSeO}_3 \) thickness \(d = 55 \) \(\mu \)m at 14 K with the applied magnetic field \(H \) parallel (\(H_{//}, \theta = 90^\circ \)) and perpendicular (\(H_{\perp}, \theta = 0^\circ \)) to the plane of the sample [see Fig. 1(a)]. For \(H_2 \) a slightly skewed single signal is observed, whereas for \(H_{\perp} \) multiple peaks with different signal intensities are evident. These peaks represent resonances of different spin-wave (SW) modes. In thin ferromagnetic samples, SW modes are expected to occur at resonance fields \(H_n \) [15,24,25]:

\[
H_n = H_0 - S \left(\frac{\pi}{d} \right)^2 [(n + 1)^2 - 1]
\]

Here, \(S \) is a parameter related to the spin stiffness [15,24], \(n \) is the order of the spin-wave mode, and \(d \) is the thickness of the sample. With increasing \(n \) the resonance field \(H_n \) decreases, and with decreasing \(d \) the difference \(H_0 - H_1 \) increases. Qualitatively, this behavior agrees with our observation [see Fig. 2(b)]. However, there are quantitative deviations from Eq. (1) as was reported previously for various materials [24,25]. These deviations are often related to stress, magnetic anisotropy, distribution, or variation of
magnetization across the sample. As shown in Fig. 2, it was possible to detect SW modes with order \(n \geq 10 \) in the present experiments. However, due to a slight variation of thickness \(d \) across the sample, the modes of high order \(n \) interfere. Moreover, with increasing temperature the line widths of the SWR modes increase and overlap [see Fig. 3].

Next we discuss the ME effect using the EFM method by applying an ac electric field \(E_m \sin(2\pi v_m t) \). Figure 3 shows some typical FMR spectra of the 55 \(\mu \)m-thick single-crystal sample at different temperatures detected by this technique. It is evident that the SWR lines are also observed as for MFM. At 10 K, the SWR signals \(D^M(H) \) and \(D^E(H) \) detected by MFM and EFM, respectively, have approximately the same amplitudes. With increasing temperature, however, the amplitude of \(D^E(H) \) is reduced compared to that of \(D^M(H) \). Above 60 K, the intensity of the \(D^E(H) \) signal becomes very small. Note that for the marker sample DPPH, no signal is present in the case of EFM as expected. The absence of a DPPH signal unambiguously demonstrates that ME coupling in \(\text{Cu}_2\text{OSeO}_3 \) gives rise to the \(D^E(H) \) signal. Thus, the ratio of the signal intensities detected by electric and magnetic modulations is proportional to strength of the ME effect [26],

\[
\alpha(H) = \frac{I^E(H)}{I^M(H)} = \frac{\int_0^H D^E(h) dh}{\int_0^H D^M(h) dh}.
\]

This ratio is determined by \(\alpha = \mu_0 H_i / \mu_0 H_m \), where \(\mu_0 H_i = \gamma E_m \) is the magnetic field induced by the electric field \(E_m \), and \(\mu_0 H_m = 0.1 \text{ mT} \) is the field used in the MFM experiment. Therefore, the ME coupling strength \(\gamma = \alpha C \) with a calibration factor \(C = \mu_0 H_m / E_m = 1.76 \mu \text{T/(V/mm)} \) [1,3]. It is convenient to introduce the spectrally averaged value of \(\alpha(H) \),

\[
\langle \alpha \rangle = \frac{\int I^M(H)\alpha(H)dH}{\int I^M(H)dH} = \frac{\int I^E(H)dH}{\int I^M(H)dH} = J^E / J^M = \frac{J^E}{J^M}. \tag{3}
\]

Here, \(J^B = \int D^B(h)d^2h \), \(\beta = E, M \) are the signal intensities in the EFM and the MFM experiments, respectively. \(J^M \) is also a measure of spin susceptibility [16]. The temperature dependence of \(\alpha(H) \) for \(H_i \) is shown in Fig. 4(a). Above 20 K, \(\alpha(H) \) has a minimum at around 300 mT, and is nearly constant above 320 mT. The averaged ME effect parameter \(\langle \alpha \rangle \) as a function of temperature is plotted in Fig. 4(b), together with the temperature dependencies of \(J^E \) and \(J^M \). The ME effect is most pronounced at low temperatures and decreases with increasing temperature. With the above value of \(C \) and \(\langle \alpha \rangle = 0.4 \), one obtains \(\gamma = 0.7(1) \mu \text{T/(V/mm)} \) at 10 K. Below 20 K, the ME effect is decreasing slightly faster than \(J^M \) with increasing temperature as shown in Fig. 4(b). Above 60 K, the ME effect rapidly decreases, although it is still present in the paramagnetic phase. The insert of Fig. 4(b) shows \(\langle \alpha \rangle \) at 14 K as a function of the angle \(\theta \) [see Fig. 1(a)]. The sign change of \(\langle \alpha(\theta) \rangle \) at \(\theta = 25^\circ \) corresponds to the change of the direction of the induced magnetization \(M^i \) with respect to \(H \). The observed \(\langle \alpha(\theta) \rangle \) indicates that the ME effect depends not
only on the relative orientation of E_m and \mathbf{H} [see Fig. 1(a)] but also on the crystal orientation with respect to these fields. In Fig. 4(c), the temperature dependence of the ratio $\langle \alpha \rangle/J^M$ is shown. This ratio decreases gradually with increasing temperature showing no anomaly at $T_c = 57$ K, indicating that the ME coupling mechanism is not related to the onset of long range magnetic order. The ME coupling is linear as is evident from the linear relation between the SWR peak-to-peak amplitude A_{pp} of $D(H)$ and the applied EFM amplitude E_m [see Figs. 5(a) and 5(b)]. In Fig. 5(c), we show A_{pp} as a function of the EFM frequency ν_m. Note that A_{pp} shows no appreciable frequency dependence, indicating that γ is not related to a mechanical resonance of the sample, as observed in some of the composite ME materials [27].

It is interesting to compare the magnitude of the ME effect $\gamma = \alpha C$ observed in this work with previous results [6,8]. For an applied electric field of $\delta E = 500/3$ (V/mm), a change of the internal magnetic field of $\mu_0 \delta H_\muSR = 0.4(4)$ mT was detected by μSR [8]. This corresponds to an electric field induced magnetization of $\mu_0 \delta M_{\muSR} = \mu_0 \delta H_\muSR(1 - N)^{-1} \approx 0.6$ mT (for $N = 1/3$ [28]). For the same electric field and for a mean value of $\langle \alpha \rangle \approx 0.28$ for $T < 50$ K, the average induced magnetization is estimated to be $\mu_0 \delta M_{\muSR} = \mu_0 \delta H_\muSR(1 - N)^{-1} = (\alpha/C) \delta E(1 - N)^{-1} \approx 0.55$ mT, where $N \approx 0.85$ was used corresponding to the actual geometry of the sample [23]. The present value of $\mu_0 \delta M_{\muSR} \approx 0.55$ mT is in good agreement with the value of ≈ 0.6 mT obtained by μSR [8]. The observed temperature dependence of the ME effect differs slightly from that measured by magnetocapacitance experiments on powder samples [6], but it is in agreement with that observed recently for a single crystal sample [29]. While the ME effect parameter $\langle \alpha \rangle$ is strongly reduced above 60 K, the ME effect reported in Ref. [6] is still substantial up to 65 K.

In summary, the magnetoelectric coupling in single crystal of Cu$_2$OSeO$_3$ was studied by means of a novel and highly sensitive magnetic resonance technique. This method is based on the use of electric field modulation instead of conventional magnetic field modulation in standard continuous wave EPR. Resonance lines of spin-wave modes of more than order 10 could be resolved in the FMR spectra. Moreover, spin-wave resonances were observed via the ME coupling by applying an electric field modulation technique. By combining magnetic and electric field...
modulation experiments, the temperature and angular dependence of the linear ME effect in Cu2OSeO3 was investigated for the electric field parallel to the [110] direction of the crystal. The ME coupling was found to be \(\gamma = 0.7(1) \mu T/(V/mm) \) at 10 K. The magnetization induced by the applied electric field is in good agreement with previous \(\mu \text{SR} \) results [8]. The temperature dependence of the ratio of ME coupling strength to the spin susceptibility \(\gamma/JM \) exhibits no anomaly at \(T_c = 57 \text{K} \). This indicates that the ME coupling mechanism is not related to the presence of long-range magnetic order.

We acknowledge support by the Swiss National Science Foundation, the NCCR Project Materials with Novel Electronic Properties (MaNEP), the SCOPES Grant No. IZ73Z0-128242, and the Georgian National Science Foundation Grant No. GNSF/ST08/4-416.

*alexander.m@physik.uzh.ch

[1] M. Fiebig, J. Phys. D: Appl. Phys. 38, R123 (2005).
[2] N. A. Spaldin and M. Fiebig, Science 309, 391 (2005).
[3] W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature 442, 759 (2006).
[4] N. A. Hill, J. Phys. Chem. B 104, 6694 (2000).
[5] M. Bibes and A. Barthélémy, Nature Mater. 7, 425 (2008).
[6] Jan-Willem G. Bos, C. V. Colin, and T. T. M. Palstra, Phys. Rev. B 78, 094416 (2008).
[7] H. Effenberger and F. Pertlik, Monatsch. Chem. 117, 887 (1986).
[8] A. Maisuradze, Z. Guguchia, B. Graneli, H. M. Rønnow, H. Berger, and H. Keller, Phys. Rev. B 84, 064433 (2011).
[9] K. H. Miller, X. S. Xu, H. Berger, E. S. Knowles, D. J. Arenas, M. W. Meisel, and D. B. Tanner, Phys. Rev. B 82, 144410 (2010).
[10] V. P. Gnezdilov, K. V. Lamonova, Yu. G. Pashkevich, P. Lemmens, H. Berger, F. Bussy, and S. L. Gnatchenko, Fiz. Nizk. Temp. 36, 688 (2010).
[11] M. Belesi, I. Rousochatzakis, H. C. Wu, H. Berger, I. V. Shvets, F. Mila, and J. P. Ansermet, Phys. Rev. B 82, 094422 (2010).
[12] C. L. Huang, K. F. Tseng, C. C. Chou, S. Mukherjee, J. L. Her, Y. H. Matsuda, K. Kindo, H. Berger, and H. D. Yang, Phys. Rev. B 83, 052402 (2011).
[13] S. Seki, X. Z. Yu, S. Ishiwata, and Y. Tokura, Science 336, 198 (2012).
[14] T. Adams, A. Chacon, M. Wagner, A. Bauer, G. Brandl, B. Pedersen, H. Berger, P. Lemmens, and C. Pfeiffer, arXiv:1204.3597v1.
[15] C. Kittel, Phys. Rev. 110, 1295 (1958).
[16] A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Clarendon, Oxford, 1970).
[17] C. P. Poole, Electron Spin Resonance: A Comprehensive Treatise on Experimental Techniques (Dover, New York, 1997), 2nd ed.
[18] Y. Chen, A. Yang, M. R. Paudel, S. Stadler, C. Vittoria, and V. G. Harris, Phys. Rev. B 83, 104406 (2011).
[19] M. Weiler, L. Drehl, C. Hegg, H. Huebl, R. Gross, M. S. Brandt, and S. T. B. Goennenwein, Phys. Rev. Lett. 106, 117601 (2011).
[20] S. Shastry, G. Srinivasan, M. I. Bichurin, V. M. Petrov, and A. S. Tatarenko, Phys. Rev. B 70, 064416 (2004).
[21] P. Wysling and K. A. Müller, J. Phys. C: Solid State Phys. 9, 635 (1975).
[22] M. I. Kobets, K. G. Dergachev, E. N. Khatsko, A. I. Rykova, P. Lemmens, D. Wulferding, and H. Berger, Low Temp. Phys. 36, 176 (2010).
[23] G. Zheng, M. Pardavi-Horvath, X. Huang, B. Keszei, and J. Vandlik, J. Appl. Phys. 79, 5742 (1996).
[24] T. G. Rappoport, P. Redlinski, X. Liu, G. Zaránd, J. K. Furdyna, and B. Jankó, Phys. Rev. B 69, 125213 (2004).
[25] X. Liu and J. K. Furdyna, J. Phys.: Condens. Matter 18, R245 (2006).
[26] Provided that the rest of experimental conditions are identical.
[27] U. Laletsin, N. Padubnaya, G. Srinivasan, and C. P. Devreugd, Appl. Phys. A 78, 33 (2004).
[28] Assuming an effective demagnetization factor \(N = 1/3 \) for a randomly shaped domain.
[29] M. Belesi, I. Rousochatzakis, M. Abid, U. K. Rössler, H. Berger, and J.-Ph. Ansermet, arXiv:1204.3783v1.