FABRA: French Aggregator-Based Readability Assessment toolkit

Rodrigo Wilkens*, David Alfter†, Xiaoou Wang*, Alice Pintard*, Anaïs Tack†, Kevin Yancey‡, Thomas François*

*Cental, IL&C, UCLouvain, †Stanford University, ‡Duolingo
{rodrigo.wilkens, david.alfter, xiaoou.wang, alice.pintard} @uclouvain.be, atack@stanford.edu, kyancey@duolingo.com, thomas.francois@uclouvain.be

Abstract

In this paper, we present the FABRA readability toolkit based on the aggregation of a large number of readability predictor variables. The toolkit is implemented as a service-oriented architecture, which obviates the need for installation, and simplifies its integration into other projects. We also perform a set of experiments to show which features are most predictive on two different corpora, and how the use of aggregators improves performance over standard feature-based readability prediction. Our experiments show that, for the explored corpora, the most important predictors for native texts are measures of lexical diversity and dependency counts while the most important ones for foreign texts are syntactic variables illustrating language development, as well as features linked to lexical gradation in FFL textbooks. FABRA has the potential to support new research on readability assessment for French.

Keywords: readability, French, readability score encoding, automatic readability assessment

1. Introduction

International surveys on reading abilities such as PISA (Schleicher, 2019) regularly remind us that about 20% of the 15-year-old students can be considered as poor readers. Reading deficiencies can have severe consequences on people’s lives, such as the inability to access crucial information (e.g., medical data) (Friedman and Hoffman-Goetz, 2006), to process administrative applications (Kimble, 1992), or to find a job. This challenge has been addressed in a variety of ways, as the development of methods to assess reading difficulty of texts for a given audience within the field of readability. The readability research can be traced back to the 1920s∗, with the seminal work of Lively and Pressey (1923) that originated a tradition of statistical models aiming to predict the reading difficulty of texts, called readability formulas.1 The evolution of readability formulas across the 20th century can be roughly summarized as follows: initially, readability formulas were computed by hand and were therefore designed as a trade-off between reliability and minimization of effort. The most famous ones combine two textual features, such as syllable count (Flesch, 1948), sentence length (Flesch, 1948; Dale and Chall, 1948), or proportion of easy words (Dale and Chall, 1948). Later, with the dawn of computers, the first automatized formulas appeared, such as the Automated Readability Index (Smith and Senter, 1967). In addition, readability formulas included more features (Bormuth, 1966; Coleman and Liu, 1975) that mostly remained surface features in the 70s, then evolved to capture more sophisticated characteristics of texts, such as coherence or inference load (Kintsch and Vipond, 1979). For the rest of the 20th, the statistical models used to design readability formulas hardly evolved, whereas innovations occurred both in how reading difficulty was measured (e.g. cloze test and reading time) and what text characteristics were being measured.

With the advent of the 21st century, a revolution took place in readability, as the use of Natural Language Processing (NLP) techniques enabled researchers to automatically capture complex textual features, and sophisticated Machine Learning (ML) algorithms allowed to better combine them. One of its main achievements is the large set of textual features that can now be automatically measured via NLP. Not only can NLP-enabled features help readability models to become more accurate (François and Miltsakaki, 2012), but they also have applications in other domains. For instance, textual features designed for readability studies can be applied to other contexts, such as, the automatic assessment of writing skills of foreign language learners (Crossley and McNamara, 2012). In addition, their rather good interpretability allows them to be included in tools that help writers simplify text by analyzing the reading difficulties of the text (François et al., 2020).

For English, various toolkits have been proposed to help researchers automatically compute textual characteristics for text readability (Graesser et al., 2004; Lu, 2010; Chen and Meurers, 2016). However, for French, no such tool exists, which limits the design of new readability formulas as well as the use of readability features to support clear writing. In this paper, we want to support research on readability for the French language by contributing the French Aggregator-Based Readability Assessment (FABRA), a readability architecture that automatically extracts and calculates 435 language variables relevant for readability predictions that can be divided into the following groups: length-based, lexical, syntactic, and discourse. Besides being the first readability tool for French, it is also distinctive among all readability toolkits for the fact that

1Readability cannot be confused with Text Simplification that aims to modify a text, making it simpler (Saggion, 2017).
it does not only allow to calculate averages over language variables, as is usual, but as much as 18 statistical aggregators. As a result, our toolkit is able to compute 5892 readability scores. Our main contributions are (1) a toolkit that automatically extracts various features, along with 18 different statistical aggregators, (2) a study of a richer description of the language variables, and (3) an evaluation of the toolkit on two data sets. Concerning future uses of FABRA, we see at least two use cases: feature engineering for ML and linguistic studies exploring language variables patterns.

The rest of the paper is structured as follows: after a summary of related works (Section 2), we describe FABRA’s architecture and specify the implemented feature types (Section 3). We then report on various experiments aimed at assessing the interest of the toolkit for readability. Section 4 introduces the methodology of our experiments as well as two corpora designed for French native learners (L1) and French as a foreign language (L2). In Section 5, we first assess the importance of the various features on the two corpora, stressing the contribution of the aggregators, then we create a readability model based on the best feature of each subtype. Finally, the results are discussed in Section 6.

2. Automatic readability assessment

Readability studies started in the early 20th century and have led to hundreds of different formulas. As the main contributions to this field have been described in previous surveys (Chall and Dale, 1995; DuBay, 2004; François, 2011; Benjamin, 2012; Collins-Thompson, 2014; Martinc et al., 2021; Vajjala, 2021), we focus on some recent work for English and French.

Readability has long been modeled using a feature-based approach (Vajjala, 2021). Features offer a certain level of interpretability that other methods such as deep learning are lacking. For instance, Collins-Thompson and Callan (2005) showed that including word distributions across grade levels within a multinomial Naïve Bayes classifier outperforms classic readability formulas such as (Flesch, 1948). Schwarm and Ostendorf (2005) explored several syntactic features based on parsing trees, whereas Ptiler and Nenkova (2008) designed various semantic and discourse features, for instance capturing properties of lexical chains and discourse relations. Most recent works rely on distributed representations of texts (e.g., embeddings) (Cha et al., 2017; Filighera et al., 2019) and deep learning models (Nadeem and Ostendorf, 2018; Martinc et al., 2021).

As regards French, few studies have been published. The first formula for French was designed by Kandel and Moles (1958) as an adaptation of Flesch’s formula. Henry (1975) later dedicated his Ph.D. thesis to the development of a formula for native readers, which has been adapted to L2 French readers by Cornaire (1988). The first application of some NLP techniques for French readability can be traced back to the tool Daoust et al. (1996), although it is not until François and Fairon (2012) that full-fledged AI-readability was applied to French. More recently, Dascalu (2014) proposed a tool inspired by Coh-Metrix (Graesser et al., 2004). Finally, deep learning techniques were applied for both L1 French readers (Blandin et al., 2020) and L2 readers (Yancey et al., 2021). In their experiment, Yancey et al. (2021) showed that fine-tuning BERT on about 500 texts per level clearly outperformed a readability formula based on features, but it comes with a total lack of interpretability of the model.

This brief overview of the readability field reminds us that several significant breakthroughs were a direct consequence of our ability to automate more features and to extract more sophisticated ones. Surprisingly, there is only a limited amount of readability tools that can help researchers to automatically capture features in their corpus. Such tools are available for a small set of languages (e.g., Italian (Dell’Orletta et al., 2011; Tonelli et al., 2012; Okinina et al., 2020), Greek (Mikros and Voskaki, 2021), Portuguese (Scarton and Alusio, 2010), Arabic (Al-Twairesh et al., 2016), German (Chen and Meurers, 2016), and Japanese (Sato et al., 2008)), but most works target English.

Very likely, the first tool for readability was Coh-Metrix (Graesser et al., 2004; McNamara et al., 2014), which automatically extracts various text descriptors using NLP and makes the results available through a web interface. Several researchers used this tool as a common ground for feature extraction. More recently, Chen and Meurers (2016) released a web-based tool to compute 154 readability features for English and German, the Common Text Analysis Platform (CTAP). It was later extended to Italian (Okinina et al., 2020), for which about 400 features can be computed. A team from Georgia State University also developed a suite of tools for readability, that are specialized for a given linguistic level. It includes TAALES for the assessment of lexical sophistication (Kyle and Crossley, 2015), TAACO for text coherence (Crossley et al., 2016), and TAASSC that can assess syntactic complexity and sophistication (Kyle, 2016).

Although such toolkits to compute readability metrics are now available for various languages, none are yet available for French, which is why this paper aims to fill this gap.

3. FABRA

In order to make our toolkit accessible to the largest audience possible, we use a service-oriented architecture. Users can interact with the tool through a web interface to annotate a few paragraphs, whereas more advanced users can take advantage of the architecture by skipping the GUI and use a restful API. The toolkit architecture can be divided into controller and annotators. The controller is the high-level service used as the main entry to the tool. Its principal function is to connect with the other services running the entire pipeline and aggregate
the other services’ results. The second part of the tool is a set of annotators – specialized services – that provide the readability variables. The readability annotation services focus on identifying different levels of information by combining dictionaries and NLP tools. At the highest level, the provided annotation may be categorized in the following groups: length-based, lexical, syntactic, and discourse. Each one of these groups is further subdivided into feature families. In the remainder of this section, we describe the variables (Sections 3.1, 3.2, 3.3 and 3.4) and the aggregation methods (Section 3.5) proposed to improve the variables description. The next four subsections present different families of language variables in bold and, in italic, the number of language variables (l.v.).

31. Length-based variables

Length has been a recurring proxy for readability since early works (Björnsson, 1968; Smith, 1961; Flesch, 1948). The variables in this group are the most studied and, despite their weaknesses, are still influential.

Word Length (3 l.v.) We implemented word length measured with characters (entire word and stem) and syllables, excluding punctuation. For stemming, we use the French SnowBall Stemmer (Bird and Loper, 2004). For syllables, we use the pre-syllabified Lexique3 list (New, 2006) extended with espeak, a Linux Text-To-Speech (TTS) program.

Sentence Length (1 l.v.) The number of tokens per sentence, excluding punctuation.

32. Lexical variables

Lexical information is widely used in readability scores. These variables aim to encode external knowledge in readability models.

Graded Lexical (10 l.v.) Graded lexical resources are commonly used for foreign language acquisition. They summarize curricula and pedagogical information and help readability models to encode readers’ expected knowledge. In our toolkit, we use Reference Level Descriptors (RLD) (Beacco et al., 2008) and FLELex (François et al., 2014) as graded resources, both targeting Common European Framework of Reference (CEFR) levels. The first is a collection of books compiled from FFL experts knowledge and examples of learner productions. The second, FLELex, was built from a textbook corpus and indicates, for each word, the distribution of (normalized) frequency across the levels of the CEFR, as well as its cumulative frequency. In terms of annotation, we identify the word usage in each level of the RLD, and, for FLELex, we calculate the average frequency per CEFR level by looking up the frequency distribution over CEFR levels, summing the frequencies level-wise and normalizing by the number of words in the sentence.

Orthographic Neighbours (8 l.v.) As words are based on a small set of letters and syllables, the lexical retrieval during reading requires selecting the target representation from alternative lexical candidates (Andrews, 1997; Balota et al., 2007; Coltheart, 1977). Andrews (1997) found a relation between lexical retrieval and the number of lexical neighborhoods and the frequency of the neighborhoods. Following these works, we identify the number of neighbors, and their average and cumulative frequency in a reference corpus (New, 2006). In addition, we also use a variation for each of them that considers neighbors with higher frequency. Finally, we also used New and Pallier (2019) work on OLD20 and PLD20 for French. These measures are obtained by calculating each word’s average Orthographic and Phonologic Levenshtein distance from the 20 closest words found in Lexique3.

Lexical Norms (4 l.v.) Psycholinguistic norms influence the reading comprehension of young readers (Crossley et al., 2017; Beinborn et al., 2014), and their scores have been associated with writing quality and development (Sadoski et al., 1995; Crossley et al., 2019; Crossley, 2020). These norms are deeply language- and culture-dependent and take considerable amounts of time to collect, so we resort to lists previously available. For lexical coverage, we combine lists when compiled following similar methodologies. A complementary measure is word polysemy (Beinborn et al., 2014). One can see this measure as a source of confusion (i.e., the wrong sense is retrieved) or a fixation factor (i.e., readers may be more familiar with the word form). Considering the limited resources available, 4 psycholinguistic norms are used: age of acquisition (Ferrand et al., 2008; Alario and Ferrand, 1999), familiarity (Desrochers and Thompson, 2009; Ferrand et al., 2008; Bonin et al., 2003; Desrochers and Bergeron, 2000), concreteness (Bonin et al., 2018; Bonin et al., 2011; Desrochers and Thompson, 2009; Bonin et al., 2003; Desrochers and Bergeron, 2000), and polysemy (Sagot and Fiser, 2008).

Lexical Diversity (114 l.v.) Hapax legomena are words that only occur once in a document, and they generally make up about 40-60% of a text (Kornai, 2007). Some works related their number to readability, as readability decreases when a bigger proportion of hapax legomena is present (Islam et al., 2012). For lexical diversity, we count the number of hapax legomena per text, both on the token and lemma levels. A widely used measure of lexical diversity is the type-token-ratio (TTR) (Washburne and Morphett, 1938; Henry, 1975; Kemper et al., 1993), i.e., the number of types (unique word forms) divided by the number of tokens (word forms). However, TTR and its variants are critiqued for being dependent on text length (Patty and Painter, 1931; Heaps, 1978; Hess et al., 1986; Arnaud and Bejoint, 1992). We therefore also

3Variables that require tokenization, lemmatization, POS tagging, morphology information or dependency relation use the information provided from Stanza parser (Qi et al., 2020).

4The last proposed norm is used when lists overlap.
implemented alternative diversity scores: Moving Average TTR (MATTR; Covington and McFall (2010)) with a window size of 100 words; Corrected TTR (CTTR; Carroll (1964)); Root TTR (RTTR; Guiraud (1959)); Bilogarithmic TTR (LogTTR; Herdan (1960); Herdan (1966)); Squared TTR (Chaudron and Parker, 1990); and UberIndex (Arnaud and Béjoint, 1992). We doubled these scores by distinguishing lemma and surface forms. Moreover, we also differentiate all words, content words, adjectives, adverb, adjectives and adverbs, nouns and pronouns, and verb, which has the occurrence of content words as a denominator during the division, and weighted verb, which has the verbs as a denominator.

Lexical Frequencies (28 l.v.) Lexical frequency is a strong predictor of lexical complexity and readability (Rayner and Duffy, 1986). In this work, we use the following lists aiming to capture different language registers: Lexique3 as an approximation for general language, CHILDES for (productive) child language, and FLELex for language aimed at learners of French as a second language. For FLELex, we use the total frequency of each word, as opposed to the frequency distribution over CEFR levels described in Graded Lexical. Lexical frequency is calculated for each of the following categories: all words, content words, functional words, nouns (excluding proper nouns), verbs and adjectives. Lexical frequency is calculated on a word form basis for CHILDES list and the word form list from Lexique3, and on a lemma basis for FLELex and the lemma list from Lexique3.

Lexical Sophistication (51 l.v.)
Lexical sophistication is calculated as the ratio between the number of sophisticated words of a “class” and the total number of words of the same “class” (Lin, 1986; Hyltenstam, 1988), with sophisticated words being words not found in the Gougenheim list, and “class” being either “all POS tags”, “lexical POS tags” or “verbs”. In addition, lexical frequency is a strong predictor of word complexity (Ryder and Slater, 1988), and thus readability. Instead of directly working with frequencies, one can subdivide the frequency spectrum into frequency bands (François, 2011; Chen and Meurers, 2018), i.e., contiguous slices containing approximately the same number of words. We use four word lists, namely (1) Gougenheim (Gougenheim et al., 1964), a list of easy French words (8,775 tokens), (2) CHILDES list, a list derived from the French part of the CHILDES corpus (MacWhinney, 2000) of child language (11,479 tokens), (3) Lexique3 (New, 2006), a list derived from subtitles (142,694 tokens), and (4) FLELex (François et al., 2014)5 (14,236 tokens). For each list, we retain the top 9,000 most frequent words, and subdivide them into 9 equal slices. Those lists are further subdivided into a lemma (Lexique3 and FLELex) and surface (Lexique3, CHILDES and Gougenheim) form lists. Each of the slices is named \(K_{n} \), with \(n \) being the \(i^{th} \) slice. We computed the proportion of words in each of the slices per sentence.

3.3. Syntactic variables
The differences in syntactic usage may also indicate language mastery (Bates et al., 1994; Tardif et al., 1997). In this work, we use the Stanza parser (Qi et al., 2020) to extract the syntactic information.

Part-of-speech Tags (17 l.v.) Certain part-of-speeches have been found to be good indicators of reading difficulty (Bormuth, 1966). For POS tags, we count the number of each of the 17 Universal POS tags per sentence (e.g., NOUN, VERB and ADJ).

Morphology Features (34 l.v.) We count the morphological features combinations for each morphology tags per sentence (e.g., pronoun and plural form).

Verb Tenses (24 l.v.) Certain verb tenses or moods make texts more complex to understand than others. Although it is difficult to determine precisely which ones are most likely to cause difficulty, studies point to their importance (Carreira et al., 1997; Truitt and Zwaan, 1997; François, 2009; Gillie, 1957).

Dependency Relations (37 l.v.) In addition to syntactic information at the word level, we count the types of dependency relations between words as the number of each of the Universal Dependency tags per sentence (e.g., nominal subject and indirect object).

Language Development (25 l.v.) The syntactic structure also contains evidence of language development (Nenkova et al., 2009). Therefore, we use two well-known marks of syntactic development: T-units (Hunt, 1965)\(^7\) and Yngve index (Yngve, 1960; Frazier, 1985). Motivated by Yngve’s work, we also include other constituent-level measures, aiming at a richer representation. For this, we use the constituency parser (Kitaev and Klein, 2018) to extract occurrences of different types of phrases, the depth of a phrase in the sentence, the sentence depth, and the total number of phrases in a sentence. These measures have already been explored in other works, such as Vajjala and Meurers (2013). In addition, we also count the number of words before and after the main verb, following Graesser et al. (2011). We also measure the syntactic similarity between sentences (Baayen et al., 1993) by comparing both the similarity between one sentence and the next one as well as the similarity between a sentence and all other sentences in the document.

3.4. Discourse variables
Discursive elements, such as anaphoric relations and textual coherence, are also associated with a text’s words in the last one.

\(^5\)FLELex is described in the Graded Lexical variables.

\(^6\)It should be mentioned that, for the Gougenheim list, the first slice contains 1063 words for historical reasons and 775
readability. In this sense, discourse variables model relationships between elements across sentences.

Dialogue (31 l.v.) Following Henry (1975) who argues that texts containing dialogue might be simpler, we identify the usage of exclamation and question marks considering all sentence stops, considering all sentence stops and colons, and the presence of dialogue quotes.

Referential Expressions (6 l.v.) Bornmuth (1969) discusses the need for anaphora resolution, remarking on the relation between reading difficulty and the density of anaphoric elements as well as their distance. We consider that coreference resolution will put a significant overhead on the tool. Therefore, we simplify Bornmuth’s original measures and count the proportion of pronouns between all nouns and all words, the ratio of possessives, the ratio of personal pronouns, and the proportion of definite article considering all words and considering only nouns.

Content Overlap (10 l.v.) Word repetition is indicative of textual cohesiveness (Baayen et al., 1993). In this regard, we identify the proportion of words shared by adjacent and all sentences. For each of these cases, we consider the overlap of all words, only nouns, pronouns and nouns, and content words.

Text Likelihood (49 l.v.) N-grams models can be seen as coherence measures in the readability context (Schwarm and Ostendorf, 2005; Kate et al., 2010; Si and Callan, 2001). These variables are anchored in the comparison of a word-level distribution in a reference language model. In this work, we follow Pitler and Nenkova (2008) who showed that even a single unigram model is an efficient predictor. Our model was trained on the movie subtitles corpus behind Lexique3 (New et al., 2007), and we extract the variables both at surface and lemma levels: the probability of all words, only the content words, only the functional words, only nouns, only verbs and only adjectives. For each of them, we consider the sentence average and geometric average (which corresponds to a unigram model).

Text Coherence (8 l.v.)

Latent Semantic Analysis (LSA; Deerwester et al. (1990)) has been used to measure textual coherence (Foltz et al., 1998; Landauer et al., 1998) under the hypothesis that more coherent texts are easier to read. A complementary method consists of applying a Single Value Decomposition over a Positive Pointwise Mutual Information (PPMI) matrix (Bullinaria and Levy, 2007; Levy et al., 2015) to generate word embeddings indicating shared contexts between words. In order to obtain LSA and PPMI models, we used the frWaC (Baroni et al., 2009), a large corpus (1.6 billion words) that covers a great range of themes. For the LSA model, stopwords and punctuations were removed and only the 100,000 most frequent tokens/lemmas are used. The number of dimensions (topics) is set to 250 for the LSA training. For the calculation of the PPMI matrix, we did not remove stopwords (Bullinaria and Levy, 2007), the window size was set to 2 (Bullinaria and Levy, 2007; Levy et al., 2015) and the final number of dimensions is 500. For both metrics, our toolkit calculates the cosine similarity of all pairs of adjacent sentences as well as for each sentence with all the other sentences. Since the PPMI approach generates word-level vectors, we average all the word vectors of a sentence before using the two aforementioned coherence metrics.

3.5. Feature Aggregators

Annotation is performed at word or sentence level, thus each language variable is encoded as a list of descriptors. Following our goal of a more detailed description of the language variables, we aggregate each descriptor’s list using the following 18 descriptive statistic scores: measures of range (i.e., sum, min, max and length), separation (i.e., median, first and third quantile, and eightieth and ninetieth percentiles), central tendency (average and mode), dispersion (i.e., variance, standard deviation, relative standard deviation (RSD), interquartile range (IQR) and Dolch8), and description of the curve (i.e., skewness and kurtosis). Therefore, the toolkit can output up to $321 \times 18 + 114 = 5892$ readability scores from the combination of aggregators and language variables. We emphasize that some language phenomena may not be observed in a text. Thus the toolkit does not present their aggregations in the output, aiming to avoid misinterpretation. Also, some aggregations may be desirable even if the language phenomenon is rare in the text. Consequently, we only suppress aggregators when a single value is identified and let the user decide the minimum acceptable value of observations using the length aggregator.

4. Toolkit Evaluation Methodology

In order to illustrate the large range of research works made possible by using our toolkit and to provide some guidelines for its use as a standard readability assessment tool for French, we investigate various possibilities of leveraging FABRA’s outputs on two corpora consisting of textbooks targeting natives and second language learners described in Section 4.1. First, we perform a variable importance analysis to extract the most useful variables by corpus and variable group. More importantly, we also explore the Spearman correlation among the variables of the same family. Finally, we train machine learning models to test the readability prediction per se, using the readability formula for French by Kandel and Moles (1958).

4.1. Corpus

Assessing our toolkit’s performance requires corpora in which the reading difficulty of each text has been

8 In this work we extend the Dolch measure (Daoust et al., 1996), defined as the 90th percentile subtracted from the median, to be applicable to other variables than sentence length.

9 We highlight that the 114 variables from *Lexical Diversity* are self-aggregated. In other words, the information is a cardinal value and not a distribution.
evaluated according to a reference scale. A common way to build such corpora is to collect textbooks and label each extracted document with the level of the textbook it comes from (e.g., Sato et al. (2008); Volodina et al. (2014)). We followed this procedure to create FLM-Corp, a collection of 334 texts taken from Belgian school material and representing 9 levels: primaire from 4 to 6 (from 9 to 11 years old) and secondaire from 1 to 6 (from 12 to 18 years old). The text collection was carried out by university students as part of a Corpus Linguistics course. For each level, students were asked to consult a few textbooks in three disciplines, namely French, History and Science, and to extract, as far as possible, four types of texts: narrative, informative, argumentative and dialogical. Statistics about this corpus are shown in Table 1.

Table 1: FLM-Corp Description

Target	Texts	Words
Primaire 4	50	6.692
Primaire 5	36	7.254
Primaire 6	43	18.091
Secondaire 1	38	14.795
Secondaire 2	36	15.716
Secondaire 3	33	11.690
Secondaire 4	33	15.088
Secondaire 5	33	21.079
Secondaire 6	32	14.719
Total	334	125.124

We also evaluated our toolkit for French as a Foreign Language (FFL) readability, using the CEFR scale (Council of Europe, 2001), which includes six levels: A1 (Breakthrough); A2 (Waystage); B1 (Threshold); B2 (Vantage); C1 (Effective Operational Proficiency) and C2 (Mastery). Since most pedagogical materials published after 2001 indicate which CEFR level they are intended for, it is possible to build a CEFR-annotated corpus by following the same process as for the L1 corpus, as did François and Fairon (2012) to create a first FFL corpus of 1.793 texts. Yancey et al. (2021) recently expanded their collection into a large and diverse corpus extracted from 47 FFL textbooks published between 2001 and 2018. The 4,562 texts of this corpus are distributed across five CEFR levels, as the authors merged C1 and C2 levels, and contains 8 different text types: narrative, informative, text (other), dialogue, mail/e-mail, sentence (short unauthentic series of example sentences made to fit in a specific lesson), gap filling exercise, and a various category including recipe, poetry, song, advertisement, etc. In this study, we used the same corpus as Yancey et al. (2021) and were able to reproduce their sample, called FLE-Corp, totalling 2,734 texts with a balanced distribution of texts in each level, as described in Table 2.

Table 2: FLE-Corp Description

Target	Texts	Words
A1	572	60.022
A2	574	83.294
B1	580	119.048
B2	442	130.877
C1 and C2	566	198.517
Total	2734	591.758

Table 3: Top 10 Features on FLM-Corp

Features	Corr
1 STTR of nouns + proper nouns	0.42
2 CTTR of content words	0.42
3 Sentence height	0.42
4 UberIndex of adjectives	0.42
5 CTTR of verbs	0.42
6 CTTR of all words	0.42
7 Nb of noun modifiers	0.41
8 Adjectives freq in CHILDES	0.39
9 Nb of coordinating conjunctions	0.38
10 Adjectives freq in Lexique3	0.38

5. Readability assessment

In order to test the effectiveness of the different types of variables, we perform Spearman correlation analyses on two different corpora (Section 5.1). To show the benefits of the proposed aggregators, we also compare classifications based on them with the readability formula by Kandel and Moles (1958) in Section 5.2.

5.1. Feature importance analysis

For each corpus, we extracted the 10 features most correlated with the texts’ level. This step, portrayed in Tables 3 and 4, shows that variable importance varies according to target audience. In the FLM-Corp, composed of texts used in French-speaking schools, 7 variables out of 10 are lexical, among which 5 are representing lexical diversity (features 1, 2, 4, 5 and 6), and two illustrate lexical frequency in native French words lists (8, 10). The remaining three features in this top 10 are describing dependency relationships (7, 9) and language development (3). However, we see that correlation scores for this corpus are rather low, the top one feature only reaching an r of .42.

For the FLE-Corp, illustrating texts intended to FFL learners, we can see notably higher correlations between the top 10 features and the target texts’ level in Table 4. On this corpus, we found that syntactic variables (2, 4, 5, 8 and 10), among which four reflect language development, are more important than in the FLM-Corp and related to the sentence structure in general more than a particular POS. The best lexical variables (1, 6) illustrate vocabulary gradation in FFL programs and rely on a dedicated FFL resource (FLELex),

We also followed this procedure to create FLM-Corp, a collection of 334 texts taken from Belgian school material and representing 9 levels: primaire from 4 to 6 (from 9 to 11 years old) and secondaire from 1 to 6 (from 12 to 18 years old). The text collection was carried out by university students as part of a Corpus Linguistics course. For each level, students were asked to consult a few textbooks in three disciplines, namely French, History and Science, and to extract, as far as possible, four types of texts: narrative, informative, argumentative and dialogical. Statistics about this corpus are shown in Table 1.
whereas the lexical dimension for native French readability was better portrayed by diversity and words frequency in general French or children discourse (Lexique3 and CHILDES). The classical feature of sentence length (3) seems more important for FFL readers than for native ones. Finally, two features appear to have a strong potential for generalisation in readability research by being in both top 10. It is no surprise that both features have been well studied. Diversity measures based on the ratio of types and tokens are widely use in readability research, and the sentence height was already identified as an important complement to readability measures since von Glasersfeld (1970).

Feature	Corr
1 Words in FLELex A1 level	-0.64
2 Sentence height	0.61
3 Nb of token/sentence	0.56
4 Nb of constituents	0.56
5 Nb of independent sentences	-0.56
6 Words in FLELex A2 level	-0.54
7 UberIndex of verbs	0.54
8 Nb of determiners	0.54
9 CTTR of all words	0.54
10 Nb of direct subordinates	0.54

Table 4: Top 10 Features on FLE-Corp

While extracting the top 10 features gives information about the most important text characteristics depending on the audience, these features can be redundant, thus do not necessarily make good candidates for a readability model or formula. We therefore also analyzed the best feature per family for each corpus, as presented in Table 5. This table shows, for each family, the mean correlation with the text level of all features from this family computed with all aggregators (All), in order to get an idea of the whole family importance for readability evaluation. The next column (Avg) presents the mean correlation of all features from the family, computed with the “average” aggregator only, which represents a common way to calculate features in the readability literature. The last column is the best family feature among the 18 types of aggregators. To verify that this approach by family would reduce the risk of information overlap, we also looked at the correlation matrix of the best feature per family in each corpus (see Appendix B).

5.2. Readability Prediction

The toolkit is designed to support readability research. We tried to assemble many variables and a more detailed description of them. In an additional effort to assess the coverage of the description provided, we used the aggregated language variables as features for modeling the target levels by using machine learning. To that end, we trained classification (linear logistic regression) and regression (support vector machine regression) models.10 We split the data into train and test using a stratified 10-fold cross-validation approach. In the machine learning approach, we compared the classification performance in both FLE-Corp and FLM-Corp. For each variable family, we trained two models: one using the average aggregator and one using all aggregators. Then, cross-validation scores were averaged over all families and are reported in Table 6. In addition, we also trained a single model based on the best features (see Table 5) and, for comparison purposes, we used Kandel and Moles (1958). Aiming for a fairer comparison between the models, the same learning methods were used to map the difficulty levels of our corpora with the Kandel and Moles scores. The results of these models, shown in Table 6, point out a better performance of the models based on all aggregators over those using only average, in both classification and regression tasks. Moreover, there is a significant performance variation when comparing at the family level as observable by the difference between the maximum and mean scores. We also highlight that the difference in the scores of the two corpora is remarkable. We believe this difference to be due to the difference in corpus size (FLE-Corp is about eight times bigger than FLM-Corp) and the number of target levels (i.e., 5 v. 9). Finally, the results of the “best” model should be regarded skeptically because the variables were selected based on the entire corpus observation. Concerning the literature for French readability, we highlight the work of Yancey et al. (2021), who compare feature-based and deep learning approaches in a similar sample of FLE-Corp. They observed accuracy of .51 when fine-tuning BERT and .56 (correlation of .77) when combining fine-tuned BERT with features. In face of these results, the richer representation provided by the aggregators, which achieved an F1 of .69 (correlation of .74), seems promising.

6. Discussion

We found that different aggregators are similarly related to the text target; e.g., for the Sentence height variable, 90P, avg, 80P, max, Q3 and median are similarly correlated in FLE-Corp. From a ML point of view this can be considered redundant, but details of data distribution can allow researchers to use the toolkit to explore new theories. Furthermore, the results presented in Table 5 indicate that several aggregators are superior to the traditional average aggregator. We observed that models trained using only the average aggregator have lower overall performance than models trained using all aggregators for both corpora when comparing at the language variable level. This helps to support our claim that a richer representation

10We emphasize that the ability of different algorithms' families to take advantage of the distribution encoded by the aggregation of the variables remains to be investigated. Therefore, we opt for simple learning algorithms.
Table 5: Mean absolute Correlation and Best feature per family on FLM-CORP and FLE-CORP

Family	FLM-CORP	FLE-CORP				
	All (std)	Avg	Best features	All (avg)	Avg	Best features corr
Length based						
Sentence Length	24 (.06)	28	.34 Nb of token/sentence (max)	.41 (.19)	.55	.56 Nb of token/sentence (80P)
Word Lengths	20 (.05)	19	.28 Nb of syllables/word (var)	.26 (.14)	.36	.37 Nb of letters/word (max)
Lexical						
Content Overlap	15 (.04)	12	.24 Shared (pronoun lemmas in next sent. (90P))	.15 (.08)	.13	.30 Lemmas shared in adjacent sent. (tsd)
Lex. diversity	30 (.10)	21	.43 STTR of nouns + proper nouns	.29 (.17)	.14	.54 Underindex of verb type/token
Lex. Frequency	19 (.07)	15	.39 Freq of adj. inflected (CHILDDES) (skewness)	.24 (.12)	.21	.51 Verbs freq (Lexique3) (Q1)
Graded lexicons	16 (.04)	19	.27 Words in FLELex A1 level (Q1)	.28 (.12)	.30	.64 Words in FLELex A1 level (Daoust)
Orthog. neighbors	20 (.06)	24	.32 neighbor frequency (min)	.18 (.11)	.20	.44 Phonologic distance (max)
Lex. Norms	25 (.08)	29	.36 Imaginability (avg)	.22 (.09)	.27	.44 Age of acquisition (max)
Lex. sophistication	19 (.05)	19	.37 Lemmas in K8 bands (FLELex) (max)	.20 (.10)	.22	.44 Lemmas in K8 bands (FLELex) (max)
Vorticise						
Dep. Relations	20 (.06)	21	.41 Nb of noun modifiers (max)	.24 (.14)	.31	.54 Nb of determiners (90P)
Lang. development	19 (.07)	20	.42 Sentence height (max)	.23 (.15)	.30	.61 Sentence height (90P)
Morph. features	16 (.04)	15	.27 Pronouns (90P)	.18 (.10)	.23	.5 Nb of relative pronouns (max)
POS Tag	14 (.03)	14	.22 Nb of subordinate conjunction (max)	.17 (.10)	.19	.41 Nb of punctuation (var)
Tense	15 (.04)	13	.28 Nb of infinitives (90P)	.16 (.09)	.21	.32 Nb of infinitives(90P)
Discourse						
Text coherence	21 (.07)	21	.37 LSA (lemma) in adjacent sentence (90P)	.27 (.12)	.37	.48 LSA (lemma) in all sentences (90P)
Dialogue Variables	12 (.01)	-	.13 Exclamation/question marks (skewness)	.15 (.07)	.17	.27 Exclamation/question marks (90P)
Text likelihood	21 (.06)	16	.37 Mean of 1-ngram of all verbs (min)	.25 (.14)	.17	.31 Mean of 1-ngram of all verbs (min)
Ref. expressions	04 (.03)	-	.07 Proportion of pronouns to all words	.19 (.08)	NA	.25 Proportion of def. article to all words

Table 6: Mean/maximum classification (ACC and F1) and regression (correlation) results when the models are trained by family using only the average (avg) aggregator and the entire set of aggregators (agg) and using the best correlated features from each family (Table 5). KM indicates Kandel and Moles (1958).

Corpus	Feat	ACC	F1	Corr
FLE-Corp	avg	.35/45	.49/65	.42/65
	agg	.40/52	.56/69	.56/74
	Best	.47/50	.60/80	.72/75
	KM	.36/41	.51/58	.43/50
FLM-Corp	avg	.16/23	.16/20	.17/32
	agg	.26/32	.24/30	.27/40
	Best	.25/35	.67/76	.59/69
	KM	.15/15	.25/26	.19/37

7. Conclusion

In this paper, we presented FABRA, a new toolkit for French automatic readability assessment based on feature aggregators. The toolkit calculates more than 5k scores from the combination of linguistic features and aggregators. The toolkit is provided as a service11, which has two major advantages: first, users do not need to install the toolkit to use it; second, the toolkit can easily be integrated into other projects. Due to its modular structure, it is easily extendable. Further, it allows for more comparable analyses in French readability research by providing a standardized set of measures. Finally, we want to enable researchers from other domains to enrich their analysis of readability, for example in text generation or in the evaluation of (neural) machine translation or automatic text simplification. We also highlight that FABRA may be used in different tasks. In this work, we target readability, although similar features have been used in different tasks and languages. Indeed, future research might explore the effectiveness of features across languages; particularly those language agnostic (e.g. length-based features) and those based on frameworks and tools available for different languages (e.g. Universal Dependencies). In the future, we plan to add more variables that would allow FABRA to be also used to assess writing production. We also plan to explore machine learning and deep learning models that better take advantage of the language variable distribution encoding.

8. Acknowledgements

This research has been funded by the Fonds de la Recherche Scientifique de Belgique (F.R.S.-FNRS) under the grant MIS/PGY F.4518.21 and by a research convention with France Éducation International. Com-

11https://cental.uclouvain.be/fabra/
putational resources have been provided by the Consortium des Équipements de Calcul Intensif (CÉCI), funded by the FNRS under Grant No. 2.5020.11 and by the Walloon Region. Finally, we would like to extend our most profound appreciation to Nami Yamaguchi, who provided a user perspective of FABRA and tested the correctness of certain features.

9. References

Al-Twairesh, N., Al-Dayel, A., Al-Khalifa, H., Al-Yahya, M., Alageel, S., Abanny, N., and Al-Shenaifi, N. (2016). Madad: a readability annotation tool for arabic text. In Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16), pages 4093–4097.

Andrews, S. (1997). The effect of orthographic similarity on lexical retrieval: Resolving neighborhood conflicts. Psychonomic bulletin & review, 4(4):439–461.

Arnaud, P. J. and Béjoint, H. (1992). Vocabulary and applied linguistics. Springer.

Baayen, R. H., Piepenbrock, R., and Van Rijn, H. (1993). The celex lexical database (cd-rom). Linguistic data consortium. Philadelphia, PA: University of Pennsylvania.

Balota, D. A., Yap, M. J., Hutchison, K. A., Cortese, M. J., Kessler, B., Loftis, B., Neely, J. H., Nelson, D. L., Simpson, G. B., and Treiman, R. (2007). The english lexicon project. Behavior research methods, 39(3):445–459.

Baroni, M., Bernardini, S., Ferraresi, A., and Zanchetta, E. (2009). The WaCky wide web: A collection of very large linguistically processed web-crawled corpora. Language resources and evaluation, 43(3):209–226.

Bates, E., Marchman, V., Thal, D., Fenson, L., Dale, P., Reznick, J. S., Reilly, J., and Hartung, J. (1994). Developmental and stylistic variation in the composition of early vocabulary. Journal of child language, 21(1):85–123.

Beinborn, L., Zesch, T., and Gurevych, I. (2014). Readability for foreign language learning: The importance of cognates. ITL-International Journal of Applied Linguistics, 165(2):136–162.

Benjamin, R. G. (2012). Reconstructing readability: Recent developments and recommendations in the analysis of text difficulty. Educational Psychology Review, 24(1):63–88.

Biber, D., Gray, B., and Poonpon, K. (2011). Should we use characteristics of conversation to measure grammatical complexity in L2 writing development? Tesol Quarterly, 45(1):5–35.

Bird, S. and Loper, E. (2004). NLTK: the natural language toolkit. In Proceedings of the ACL 2004 on Interactive poster and demonstration sessions, pages 69–72. Association for Computational Linguistics.

Björnsson, C. H. (1968). Läsbarhet. Liber.

Blandin, A., Lecorvé, G., Battistelli, D., and Étienne, A. (2020). Recommandation d’âge pour des textes. In Proceedings of TALN 2020, pages 164–171.

Bormuth, J. (1966). Readability: A new approach. Reading research quarterly, 1(3):79–132.

Bormuth, J. R. (1969). Development of readability analysis. Technical report, Chicago University, IL.

Bullinaria, J. A. and Levy, J. P. (2007). Extracting semantic representations from word co-occurrence statistics: A computational study. Behavior research methods, 39(3):510–526.

Carreira, M., Carriedo, N., Alonso, M. A., and Fernández, A. (1997). The role of verb tense and verb aspect in the foregrounding of information during reading. Memory & Cognition, 25(4):438–446.

Carroll, J. B. (1964). Language and thought. Reading.

Cha, M., Gwon, Y., and Kung, H. (2017). Language modeling by clustering with word embeddings for text readability assessment. In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pages 2003–2006. ACM.

Chall, J. and Dale, E. (1995). Readability Revisited: The New Dale-Chall Readability Formula. Brookline Books, Cambridge.

Chaudron, C. and Parker, K. (1990). Discourse markedness and structural markedness: The acquisition of English noun phrases. Studies in second language acquisition, 12(1):43–64.

Chen, X. and Meurers, D. (2016). Ctap: A web-based tool supporting automatic complexity analysis. In Proceedings of the workshop on computational linguistics for linguistic complexity (CL4LC), pages 113–119.

Chen, X. and Meurers, D. (2018). Word frequency and readability: Predicting the text-level readability with a lexical-level attribute. Journal of Research in Reading, 41(3):486–510.

Coleman, M. and Liau, T. (1975). A computer readability formula designed for machine scoring. Journal of Applied Psychology, 60(2):283–284.

Collins-Thompson, K. and Callan, J. (2005). Predicting reading difficulty with statistical language models. Journal of the American Society for Information Science and Technology, 56(13):1448–1462.

Collins-Thompson, K. (2014). Computational assessment of text readability: A survey of current and future research. International Journal of Applied Linguistics, 165(2):97–135.

Coltheart, M. (1977). Access to the internal lexicon. The psychology of reading.

Cornaire, C. (1988). La lisibilité : essai d’application de la formule courte d’Henry au français langue étrangère. Canadian Modern Language Review, 44(2):261–273.

Council of Europe. (2001). Common European Framework of Reference for Languages: Learning,
ity. In *Proceedings of the Conference on Empirical Methods in Natural Language Processing*, pages 186–195.

Qi, P., Zhang, Y., Zhang, Y., Bolton, J., and Manning, C. D. (2020). Stanza: A Python natural language processing toolkit for many human languages. In *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations*.

Rayner, K. and Duffy, S. A. (1986). Lexical complexity and fixation times in reading: Effects of word frequency, verb complexity, and lexical ambiguity. *Memory & Cognition*, 14(3):191–201.

Ryder, R. J. and Slater, W. H. (1988). The relationship between word frequency and word knowledge. *The Journal of Educational Research*, 81(5):312–317.

Sadoski, M., Goetz, E. T., and Avila, E. (1995). Concreteness effects in text recall: Dual coding or context availability? *Reading Research Quarterly*, pages 278–288.

Saggion, H. (2017). Automatic text simplification. *Synthesis Lectures on Human Language Technologies*, 10(1):1–137.

Sato, S., Matsuyoshi, S., and Kondoh, Y. (2008). Automatic Assessment of Japanese Text Readability Based on a Textbook Corpus. In *Proceedings of the Sixth International Conference on Language Resources and Evaluation*, Marrakech, Morocco.

Scarton, C. and Aluı̈so, S. M. (2010). Coh-metrix-port: a readability assessment tool for texts in brazilian portuguese. In *Proceedings of the 9th International Conference on Computational Processing of the Portuguese Language, Extended Activities Proceedings, PROPOR*, volume 10. sn.

Schleicher, A. (2019). Pisa 2018: Insights and interpretations. *OECD Publishing*.

Schwarm, S. E. and Ostendorf, M. (2005). Reading level assessment using support vector machines and statistical language models. In *Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL’05)*, pages 523–530.

Si, L. and Callan, J. (2001). A statistical model for scientific readability. In *Proceedings of the tenth international conference on Information and knowledge management*, pages 574–576.

Smith, E. and Senter, R. (1967). Automated Readability Index. Technical report, AMRL-TR-66-220, Aerospace Medical Research Laboratories, Wright-Patterson Airforce Base, OH.

Smith, E. A. (1961). Devereux readability index. *The Journal of Educational Research*, 54(8):298–303.

Tardif, T., Shatz, M., and Naigles, L. (1997). Caregiver speech and children’s use of nouns versus verbs: A comparison of english, italian, and mandarin. *Journal of Child Language*, 24(3):535–565.

Tonelli, S., Tran, K. M., and Piana, E. (2012). Making readability indices readable. In *Proceedings of the First Workshop on Predicting and Improving Text Readability for target reader populations*, pages 40–48.

Truitt, T. and Zwaan, R. (1997). Verb aspect affects the generation of instrument inferences. In *38th annual meeting of the Psychonomic Society, Philadelphia*.

Vajjala, S. and Meurers, D. (2013). On the applicability of readability models to web texts. In *Proceedings of the Second Workshop on Predicting and Improving Text Readability for Target Reader Populations*, pages 59–68.

Vajjala, S. (2021). Trends, limitations and open challenges in automatic readability assessment research. *arXiv preprint arXiv:2105.00973*.

Volodina, E., Pilán, I., Eide, S. R., and Heidarsson, H. (2014). You get what you annotate: a pedagogically annotated corpus of coursebooks for Swedish as a Second Language. In *Proceedings of the third workshop on NLP for computer-assisted language learning*, pages 128–144.

von Glasersfeld, E. (1970). The problem of syntactic complexity in reading and readability. *Journal of Reading Behavior*, 3(2):1–14.

Washburne, C. and Morphet, M. V. (1938). Grade placement of children’s books. *The Elementary School Journal*, 38(5):355–364.

Yancey, K., Pintard, A., and Francois, T. (2021). Investigating readability of french as a foreign language with deep learning and cognitive and pedagogical features. *Lingue e Linguaggio*, 2021(2):229–258.

Yngve, Y. H. (1960). A model and an hypothesis for language structure. *Proceedings of the American philosophical society*, 104(5):444–466.

10. Language Resource References

Alario, F.-X. and Ferrand, L. (1999). A set of 400 pictures standardized for french: Norms for name agreement, image agreement, familiarity, visual complexity, image variability, and age of acquisition. *Behavior Research Methods, Instruments, & Computers*, 31(3):531–552.

Beacco, J.-C., Lepage, S., Porquier, R., and Riba, P. (2008). *Niveau A2 pour le français: Un référentiel*. Didier.

Bonin, P., Méot, A., Aubert, L.-F., Malardier, N., Niedenthal, P., and Capelle-Tozcek, M.-C. (2003). Normes de concretude, de valeur d’imagerie, de freqeucnt subjective et de valence emotionnelle pour 866 mots. *L’année Psychologique*, 103(4):655–694.

Bonin, P., Méot, A., Ferrand, L., and Roux, S. (2011). L’imageabilité: normes et relations avec d’autres variables psycholinguistiques. *L’année psychologique*, 111(2):327–357.

Bonin, P., Méot, A., and Bugaiska, A. (2018). Concreteness norms for 1,659 french words: Relationships with other psycholinguistic variables and word recognition times. *Behavior research methods*, 50(6):2366–2387.
Desrochers, A. and Bergeron, M. (2000). Valeurs de fréquence subjective et d’imagerie pour un échantillon de 1,916 substantifs de la langue française. *Canadian Journal of Experimental Psychology/Revue canadienne de psychologie expérimentale*, 54(4):274.

Desrochers, A. and Thompson, G. L. (2009). Subjective frequency and imageability ratings for 3,600 French nouns. *Behavior research methods*, 41(2):546–557.

Ferrand, L., Bonin, P., Méot, A., Augustinova, M., New, B., Pallier, C., and Brysbaert, M. (2008). Age-of-acquisition and subjective frequency estimates for all generally known monosyllabic French words and their relation with other psycholinguistic variables. *Behavior research methods*, 40(4):1049–1054.

François, T., Gala, N., Watrin, P., and Fairon, C. (2014). FLELex: a graded lexical resource for French foreign learners. In *LREC*, pages 3766–3773.

Gougenheim, G., Michea, R., Rivenc, P., and Sauvageot, A. (1964). L’élaboration du français fondamental (1er degré). *Étude sur l’établissement d’un vocabulaire et d’une grammaire de bas, Paris: Didier*.

MacWhinney, B. (2000). *The CHILDES Project: Tools for analyzing talk. Third Edition*. Lawrence Erlbaum Associates, Mahwah, NJ.

New, B., Brysbaert, M., Veronis, J., and Pallier, C. (2007). The use of film subtitles to estimate word frequencies. *Applied psycholinguistics*, 28(4):661–677.

New, B. (2006). Lexique 3: Une nouvelle base de données lexicales. In *Actes de la Conférence Traitement Automatique des Langues Naturelles (TALN 2006)*.

Sagot, B. and Fišer, D. (2008). Building a free French wordnet from multilingual resources. In *OntoLex*.

1229
A. Overview of all the variables

Table 7 describes all variables available in the toolkit.

Variable	Description
Length based	
LENwrdSTEM	Number of letters per word stem.
LENwrdLETTERS	Number of letters per word.
LENwrdSYL	Number of syllables per word.
LENsntWRD	Number of token per sentence, including punctuation.
Lexical Variables	
LEXgrdBA1 to LEXgrdB2	Proportion of words in Beacco’s French Reference Level Descriptors for each CEFR level (A1 to B2).
LEXgrdBOOV	Words out of vocabulary in Beacco’s French Reference Level Descriptors.
LEXgrdFA1 to LEXgrdFC2	Frequency of words in FLELex resource for each CEFR level (A1 to C2).
Orthographic neighbors	
LEXnghORT	Mean Orthographic Levenstein distance, computed on Lexique3.
LEXnghPHO	Mean Phonologic Levenstein distance, computed on Lexique3.
LEXnghNUMH	Number of lexical neighbors.
LEXnghFRQH	Neighbors cumulative frequency in a reference corpus considering neighbors with higher frequency than the word in the text.
LEXnghFRQ	Neighbors cumulative frequency in a reference corpus.
LEXnghAVGF	Neighbors average frequency in a reference corpus.
Lexical Norms	
LEXnrmCNCR	Words level of concreteness.
LEXnrmIMG	Imageability.
LEXnrmFAM	Words familiarity, also called subjective frequency.
LEXnrmAOA	Age of acquisition of each word.
LEXnrmCNRCROOV	Words out of vocabulary on lexical norms dictionary (concreteness).
LEXnrmIMGOOV	Words out of vocabulary on lexical norms dictionary (Imageability).
LEXnrmFAMOOV	Words out of vocabulary on lexical norms dictionary (familiarity).
LEXnrmAOAOOV	Words out of vocabulary on lexical norms dictionary age of acquisition.
Lexical diversity	
LEXdvrHLL	Number of distinct lemmatized hapax in each sentence.
LEXdvrHLT	Number of distinct hapax (wordform) in each sentence.
LEXdvr[A/AD/F/M/N/V/W][L/S][T/U/C/L/M/R/S](W)	Adjectives (A), adverbs (AD), function words (F), modifiers (adjectives and adverbs; M), nouns and proper nouns (N), verbs (V), or all words (W) of the text either in lemma (L) or wordform (S), with different versions of their type-token-ratio: [TTR (T), CTTR (C), RTTR (R), LogTTR (L), UberIndex (U), SquaredTTR (S), MATTR (M)]. For verbs, the final W indicates that the ratio is normalized over all word tokens, while without this specification, the ratio is normalized over verb tokens.
Lexical sophistication	
LEXsopGK1 to LEXsopGK9	Number of words in the first 9 frequency bands of 1000 words of Gougenheim vocabulary list.
LEXsopCK1 to LEXsopCK9	Number of surface form words in the first 9 frequency bands of 1000 words of CHILDES.
LEXsopLWK1 to LEXsopLWK9	Number of surface form words in the first 9 frequency bands of 1000 words of Lexique3.
LEXsopLLK1 to LEXsopLWK9	Number of lemmas in the first 9 frequency bands of 1000 words of Lexique3.
LEXsopFK1 to LEXsopFK9	Number of lemmas in the first 9 frequency bands of 1000 words of FLELex.
LEXsopTKOG	Number of “sophisticated” tokens by total number of tokens ("sophisticated" = not in Gougenheim).
LEXsopTYOG	Number of “sophisticated” types by total number of types
Variable	Description
--------------------------	---
LEXsopTKOGc	Number of “sophisticated” lexical tokens by total lexical tokens
LEXsopTYOGc	Number of “sophisticated” lexical types by total number of lexical types
LEXsopTKOGv	Number of “sophisticated” verb tokens by total verb tokens
LEXsopTYOGv	Number of “sophisticated” verb types by total number of verb types
LEXXfrq[C/F/L]	Frequencies in CHILDES (C), FLELex (F) or Lexique3 (L) by word type
	[adjective (A), common noun (N), grammatical (F), lexical (C),
	non noun (NOTN), verb (V), all (W)] for lemma (L) or wordform (S).
LEXcovLGAL	Any lemma is shared in any sentences.
LEXcovLGAR	Pronoun lemmas are shared in any sentences.
LEXcovLGCO	Word lemmas are shared in any sentences.
LEXcovLGNO	Noun lemmas are shared in any sentences.
LEXcovLGST	Noun and pronoun lemmas are shared in any sentences.
LEXcovLLAL	Any lemma is shared in adjacent sentences.
LEXcovLLAR	Pronoun lemmas are shared in adjacent sentences.
LEXcovLLCO	Word lemmas are shared in adjacent sentences.
LEXcovLLNO	Noun lemmas are shared in adjacent sentences.
LEXcovLLST	Noun and pronoun lemmas are shared in adjacent sentences.
SYNpos[+tag]	Number of different POS types in the text, following universal guidelines.
SYNdep[+dep]	Number of different dependency types, following universal guidelines.
SYNmor[+type]	Number of different morphological types, following universal guidelines.
SYNdevAFT	Words quantity after the main verb in each sentence.
SYNdevBFR	Words quantity before the main verb in each sentence.
SYNdevAVGRSHGT	Deepness of constituents in the text.
SYNdevSUB	Number of words directly subordinate in the dependency tree.
SYNdevSIM	Global (average of the relation between one sentence v. all other sentences) syntactic similarity.
SYNdevSIMA	Local (relation between one sentences and its next sentence) syntactic similarity.
SYNdevNPHRS	Number of constituents.
SYNdevNPRS[+type]	Number of different types of constituents in the text, following this guideline.
SYNdevHGT	Deepness of sentences in the text.
SYNdevTU	T-units.
SYNdevVG[1/2/3]	Number of verbs from French 1st, 2nd and 3rd groups in the text.
SYNdevYNGVE	Yngve index.
SYNsPRT	Number of verbs at present tense in the text.
SYNsCND	Number of verbs at conditional tense in the text.
SYNsFUT	Number of verbs at future tense in the text.
SYNsIMPF	Number of verbs at imperfect tense in the text.
SYNsPST	Number of verbs at past tense in the text.
SYNsPRSP	Number of present participles in the text.
SYNsPSTP	Number of past participles in the text.
SYNsIMPR	Number of verbs at imperative mode in the text.
SYNsINF	Number of verbs at infinitive mode in the text.
SYNsSUBJ	Number of verbs at subjunctive mode in the text.
SYNsSUBJPRT	Number of verbs at subjunctive present in the text.
SYNsSUBJMPF	Number of verbs at subjunctive imperfect in the text.
SYNs[+tense]U	Binary measure of the presence/absence of tenses in the text.
Variable	Description
---------------------	---
DIScohLSAL	The LSA, based on frWaC occurrence, considering the word lemma at global (average of the relation between one sentence v. all other sentences) level.
DIScohLSALADJ	The LSA, based on frWaC occurrence, considering the word lemma at local (relation between one sentences and its next sentence) level.
DIScohLSAS	The LSA, based on frWaC occurrence, considering the word surface at global (average of the relation between one sentence v. all other sentences) level.
DIScohLSASADJ	The LSA, based on frWaC occurrence, considering the word surface at local (relation between one sentences and its next sentence) level.
DIScohPPMIL	The PPMI, based on frWaC occurrence, considering the word lemma at global (average of the relation between one sentence v. all other sentences) level.
DIScohPPMILADJ	The PPMI, based on frWaC occurrence, considering the word lemma at local (relation between one sentences and its next sentence) level.
DIScohPPMIW	The PPMI, based on frWaC occurrence, considering the word surface at global (average of the relation between one sentence v. all other sentences) level.
DIScohPPMIWADJ	The PPMI, based on frWaC occurrence, considering the word surface at local (relation between one sentences and its next sentence) level.
DISdiaPPEI1	Percentage of exclamation and question marks considering all sentence stops.
DISdiaPPEI2	Percentage of exclamation and question marks considering all sentence stops and colons.
DISdiaBINGUI	Presence of dialogue quotes.
DISrefPN	Proportion of pronouns to all nouns.
DISrefPW	Proportion of pronouns to all words.
DISrefPRSW	Ratio of personal pronouns in the text.
DISrefPOSSW	Ratio of possessives in the text.
DISrefDW	Proportion of definite article to all words.
DISrefDN	Proportion of definite article to all nouns.
DISlkh[A/C/F/N/V/W]	Probability of adjectives (A), content words (C), function words (F), nouns (N), verbs (V), or all words (W), in lemma (L) or wordform (S), using different types of N-gram models : [log of mean, geometric mean, mean].

Table 7: Variables description

B. Correlation matrices
Table 8: Correlation matrix on FLM-Corp best feature per family

	LEXfrqLVS	LEXfrqPHO	LEXfrqPK3	LEXwrdOA	LEXwrdSVU	LEXwrdLLC	LEXwrdFA1	SYNdevHGT	SYNposPUNCT	SYNposPRONREL	SYNposDET	SYNposINF	DSCohLSAL	DISsibVLM	DISsibPPE2	DISsibDW	DISsibLETTERS	DISsibWRD
LEXfrqLVS	-0.38	-0.35	-0.34	-0.52	0.24	0.64	0.40	0.36	-0.53	0.11	0.46	0.56	-0.39	-0.40	-0.50			
LEXfrqPHO	-0.36	0.24	0.47	-0.31	-0.40	0.30	0.34	0.40	0.29	0.42	-0.47	-0.22	0.36	0.62	0.47			
LEXfrqPK3	-0.35	0.42	-0.41	0.45	-0.28	0.44	0.24	0.38	0.42	0.24	0.39	-0.20	0.17	0.42	0.43			
LEXwrdOA	-0.34	0.46	0.41	-0.51	-0.31	0.52	-0.34	0.42	0.49	0.32	0.41	-0.48	0.23	0.48	0.49			
LEXwrdSVU	-0.52	0.47	0.45	0.51	-0.39	0.47	0.38	0.32	0.50	0.45	0.36	-0.21	0.30	0.67	0.33			
LEXwrdLLC	0.24	-0.31	-0.28	0.31	-0.39	0.25	0.56	0.36	0.36	0.23	-0.30	0.33	0.33	0.27	0.67			
LEXwrdFA1	0.64	-0.49	-0.44	-0.42	0.47	-0.25	0.36	0.56	0.36	0.23	-0.30	0.33	0.33	0.27	0.67			
SYNdevHGT	-0.49	0.50	0.43	0.51	0.58	-0.38	0.56	0.57	0.53	0.78	-0.55	0.46	0.62	0.40	0.54			
SYNposPUNCT	-0.34	-0.34	-0.24	-0.32	0.33	-0.39	-0.57	-0.36	0.54	-0.28	0.35	-0.36	0.24	0.31	0.55	-0.36	0.55	
SYNposPRONREL	0.36	0.40	0.38	0.42	0.50	-0.24	0.43	0.53	0.36	-0.20	0.46	0.30	0.62	0.40	0.53	-0.36	-0.36	
SYNposDET	0.53	0.49	0.42	0.49	0.52	-0.36	-0.56	0.58	-0.41	0.38	0.40	0.06	-0.40	0.50	0.58	-0.36	0.58	
SYNposINF	0.11	0.28	0.24	0.32	0.45	-0.23	0.22	0.40	0.31	0.30	0.36	0.06	0.03	0.27	0.33			
DSCohLSAL	-0.40	0.42	0.39	0.41	0.45	-0.51	0.44	0.62	0.48	0.39	0.45	0.31	0.37	0.41	0.64			
DISsibPPE2	0.56	-0.47	-0.46	-0.48	0.56	-0.53	0.39	0.49	-0.36	0.30	-0.45	-0.17	0.21	0.25	0.35	-0.17	-0.17	
DISsibDW	-0.39	0.26	0.17	-0.21	0.35	-0.34	0.36	0.20	0.40	0.06	-0.31	0.23	-0.29	-0.29	-0.29			
DISsibLETTERS	0.50	0.47	0.40	0.49	0.53	-0.38	-0.53	0.54	0.88	0.40	0.88	0.33	0.64	-0.41	0.40			
DISsibWRD	-0.50	0.47	0.40	0.49	0.53	-0.38	-0.53	0.54	0.88	0.40	0.88	0.33	0.64	-0.41	0.40			

Table 9: Correlation matrix on FLE-Corp best feature per family