Topological transitions at $T > 0$ in the euclidean 2d U(1)-Higgs model

H. Dilger
Institut für Theoretische Physik I, WWU Münster, Wilhelm-Klemm-Str. 9, D-48149 Münster, Germany

The two-dimensional U(1)-gauged Higgs model is studied on an euclidean lattice of size $L_1 \times L_2$, where the temperature $T = L_2^{-1}$ is of the order of the sphaleron mass. The simulation parameters are taken from zero temperature results [3]. By comparison with classical and semiclassical results I discuss, whether the sphaleron transition rate can be extracted from the behavior of the Chern-Simons number and from the formation of vortices in an euclidean simulation at high temperatures.

1. Motivation

In the 2d U(1)-Higgs model, as well as in the Standard Model, the transition between gauge equivalent vacua with integer values of the Chern-Simons number N_{CS} is related to the anomalous violation of the axial U(1)-symmetry. The transition rate Γ is usually evaluated by semiclassical methods [4] and classical real-time simulations [5]. It is desirable that an evaluation of Γ by euclidean simulations gives control over the full quantum corrections to these calculations.

At low temperatures (inverse temperature $\beta \to \infty$) Γ is given by the topological susceptibility

$$\chi_{\text{top}} = \frac{1}{\beta V} \left< \left| N_{CS}(\beta) - N_{CS}(0) \right|^2 \right> \to \frac{\Gamma}{V} \, ,$$

(1)

V is the spatial volume. This relation makes use of the random walk of N_{CS} for large t.

At high temperatures β is too small to see this long-time behavior. In fact, since the topological charge $N_{CS}(\beta) - N_{CS}(0)$ must be an integer, a configuration contributing to χ_{top} is forced to change N_{CS} by at least 1 in the short time interval given by β. This leads to an exponential suppression $\chi_{\text{top}} \sim e^{-c/\beta}$, whereas Γ should be enhanced by high temperatures [3]. Can other observables do better?

2. The high temperature transition rate of the quantum pendulum

I shall address this question at first for the quantum pendulum, a particle of unit mass in the potential $V(x) = [1 + \cos(x)]$. An observable asking for paths from vacuum to vacuum will be suppressed for $\beta \to 0$, since $\Delta x = 2\pi$ in a time $\Delta t = \beta$ is required. I thus consider paths, which only need to cross one of the barrier tops $V(x) = V_{\text{max}}$ at $x_m = (2n + 1)\pi$. I define

$$\dot{\rho} = \frac{1}{\beta Z} \int D[x(t)] \chi[x(t)] e^{-S[x(t)]} \, ,$$

(2)

$$\chi[x(t)] = \begin{cases} 1 & \text{if } t \in [0, \beta] \text{ with } x(t) = x_m \\ 0 & \text{else} \end{cases}$$

For any periodic potential I find in the limit $\beta \to 0$

$$\dot{\rho} = (\pi/2) \Gamma_{\text{cl}} \, ,$$

(3)

the classical transition rate Γ_{cl} is [3]

$$\Gamma_{\text{cl}} = \left< |p| \delta(x - x_m) \right> = \sqrt{\frac{2}{\pi \beta}} \frac{e^{-\beta V_{\text{max}}}}{\int_0^{2\pi} dx e^{-\beta V(x)}} \, .$$

(4)

$\dot{\rho}$ counts repeated fluctuations over the barrier only once. Otherwise it would not be well-defined due to small time fluctuations of any quantum path. However, for small β one expects at most one physical transition to occur, thus $\dot{\rho}$ has the meaning of a transition density per unit euclidean time. For large β and periodic boundary conditions $x(0) = x(\beta) + 2\pi n$ the non-transition probability $p = 1 - \dot{\rho} \beta$ decays as $p = e^{-\beta \rho}$. So, for the interpretation as a transition density I consider

$$\rho \equiv -\ln(1 - \dot{\rho} \beta)/\beta \, .$$

(5)

For large β the behavior of ρ can be compared with the $T = 0$ transition rate given by the analogue of the topological susceptibility

$$\Gamma_\infty = \frac{1}{4\pi^2 \beta} \left< |x(\beta) - x(0)|^2 \right> \, .$$

(6)
In Figure 1 the diamonds give the value of $2\rho/\pi$, the squares give the values of Γ_∞, the dashed line shows the classical rate Γ_{cl}, the full line shows the rate Γ_{Sph} in sphaleron approximation \square.

Figure 1. $2\rho/\pi$ and Γ for the quantum pendulum.

There is a qualitative agreement of $2\rho/\pi$ and Γ_∞ at $\beta \to \infty$. For higher temperatures Γ_∞ becomes suppressed as expected, whereas $2\rho/\pi$ approaches the classical behavior of Γ. However, I yet didn’t manage to improve ρ such that there is an exact correspondence to Γ on all temperature scales. This question shall be addressed in a forthcoming paper.

3. Topological transitions in the 2d U(1)-Higgs model

Can a similar observable be defined in the 2d U(1)-Higgs model? Lattice formulation and scaling behavior of this model at $T = 0$ are described in \square. Here the quantities of interest are the link fields

$$B_x^\mu = -\omega_x + A_x^\mu + \omega_{x+\hat{\mu}} \in [-\pi, \pi], \quad (7)$$

A_x^μ is the gauge field, ω_x is the phase of the scalar field. The difficulty is the analogue of the sector boundaries. A naive guess is the requirement $N_{CS} = n + 1/2$ with the lattice definition

$$N_{CS}(0) = \sum_{x_1} \frac{A_1^1}{2\pi}, \quad \partial_t^+ N_{CS}(t) = \sum_{x_1} \frac{F_x}{2\pi}, \quad (8)$$

$F_x/(2\pi)$ is the topological density, see \square. In addition a topological transition shows a vortex

$$B_x^1 + B_{x+e_1}^2 - B_x^2 - B_{x+e_2}^1 \notin [-\pi, \pi]. \quad (9)$$

However, the above condition $N_{CS} = n + 1/2$ is in general not related to the formation of a vortex. Consider the related quantity

$$N_B(t) \equiv \frac{1}{2\pi} \sum_{x_1} B^1_{(x_1,t)} = N_{CS}(t) \mod 1. \quad (10)$$

In the continuum model with fixed scalar field length $\rho(x) = v$, $N_B(t)$ decouples from all other degrees of freedom. Its effective action reads

$$S_{eff}[N_B] = \frac{2\pi^2}{e^2 L_1} \int dt \left(\tilde{N}_B^2 + v^2 e^2 N_B^2 \right). \quad (11)$$

This leads to a probability distribution of the constant mode $\tilde{N}_{CS} = \int_0^\beta dt N_{CS}(t)/\beta$

$$P(\tilde{N}_{CS}) \sim \sum_k e^{-\frac{d^2}{\pi^2} (\tilde{N}_{CS}-k)^2}, \quad d = 2\pi^2 v^2. \quad (12)$$

With growing L_1 it becomes constant. Thus, even with fixed $\rho(x)$, i.e. with parameters which do not allow for the standard instanton or sphaleron solutions, configurations with $N_{CS} \simeq n + 1/2$ are not suppressed. I found this L_1-dependence of $P(\tilde{N}_{CS})$ also in lattice simulations with variable scalar field length, completely dominating the effects induced by vortices. Only the parameter d had to be matched. So the crossing of $N_{CS}(t)$ through the points $N_{CS} = n + 1/2$ is no good condition for topological transitions, see also \square.

Another possibility is to consider the density of vortices per unit time and spatial volume

$$\rho_v = < N_{vortices} > / (\beta L_1). \quad (13)$$

Again it is important not to count nearby vortices and antivortices separately, which tend to occur in small clusters. I evaluated $\rho_v(\beta)$ in the ‘Higgs region’ of parameter space with the MC algorithm described in \square. The $T = 0$ results $am_H = 0.442(19), am_v = 0.258(6), v = 1.849(1)$ lead to a sphaleron energy $aE_{Sph} = 1.01(4)$.

A comparison of $\rho_v(\beta)$ (diamonds) with the transition rate per volume Γ_{Sph}/L_1 in sphaleron approximation \square (full line with dashed error)
Figure 2. ρV, ρ_{red}, and sphaleron rate Γ_{Sph}/L_1.

shows a plateau of $\rho V(\beta)$ for large β, see Figure 2. It exceeds the topological susceptibility at large β (horizontal line) by far. This plateau is related to dislocation-like vortex pairs (DVPs). These objects have a size of a few lattice spacings, but fixed δS for $a \to 0$ compared to a vacuum configuration. A typical example is shown in Figure 3. For this example I find $\delta S = 4\kappa \bar{\rho}^2$, compared with a vacuum configuration scalar field length $\rho_x = \bar{\rho}$, $B^\mu_x = 0$. The DVPs contribute to the expectation value ρV and therefore destroy its scaling behavior in the continuum limit. Thus it is crucial to separate the true topological transitions from these effects on the cut-off scale.

Under cooling dislocation-like objects should loose their energy density faster than physical objects of the size of the correlation length. In fact, there is a correlation between vortices and lumps in the energy density $\varepsilon(x)$ after some cooling sweeps. Figure 4 shows the distribution $p(\varepsilon_{\text{max}})$ of the local maxima of the energy density near a vortex. I define the minimal required energy density for a true topological transition in the valley between the two peaks, thus throwing away a part of the vortices, identified as the dislocation-like ones. The cooling parameters are fixed for all β-values, a detailed study of the behavior under cooling shall be given in a future publication.

The such reduced vortex density ρ_{red} (squares in Figure 3) fits better to the sphaleron rate at small β and to the topological susceptibility at large β. However, this is a rough estimate, far from giving quantitative results. Rather it gives a hint which quantities should be better understood even in this simple toy model for the high temperature physics of the Standard Model.

REFERENCES

1. H. Dilger, J. Heitger, MS-TPI-96-11, hep-lat # 9607048.
2. A.I. Bochkarev, M.E. Shaposhnikov, Mod. Phys. Lett. A12 (1987) 991; A.I. Bochkarev, G.G. Tsitsishvili, Phys. Rev. D40 (1989) 1378
3. A.I. Bochkarev, P. de Forcrand, Phys. Rev. D44 (1991) 519; J. Smit, W.H. Tang, Nucl. Phys. B (Proc. Suppl.) 42 (1995) 590.
4. P. Arnold, L. McLerran, Phys. Rev. D37 (1988) 1020.
5. I. Affleck, Phys. Rev. Lett. 46 (1981) 388.
6. F. Karsch, M.L. Laursen, T. Neuhaus, B. Plache, Nucl. Phys. B406 (1993) 825.