The Atacama B-Mode Search: CMB Polarimetry with Transition-Edge-Sensor Bolometers

T. Essinger-Hileman*, J. W. Appel*, J. A. Beall†, H. M. Cho‡, J. Fowler*, M. Halpern**, M. Hasselfield**, K. D. Irwin†, T. A. Marriage‡, M. D. Niemack†, L. Page*, L. P. Parker*, S. Pufu*, S. T. Staggs*, O. Stryzak*, C. Visnjic*, K. W. Yoon† and Y. Zhao*

*Joseph Henry Laboratories of Physics, Jadwin Hall, Princeton University, Princeton, NJ 08544, USA
†NIST Quantum Devices Group, 325 Broadway Mailcode 817.03, Boulder, CO 80309, USA
**Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
‡Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544, USA

Abstract. The Atacama B-mode Search (ABS) experiment is a 145 GHz polarimeter designed to measure the B-mode polarization of the Cosmic Microwave Background (CMB) at large angular scales. The ABS instrument will ship to the Atacama Desert of Chile fully tested and ready to observe in 2010. ABS will image large-angular-scale CMB polarization anisotropies onto a focal plane of 240 feedhorn-coupled, transition-edge sensor (TES) polarimeters, using a cryogenic crossed-Dragone design. The ABS detectors, which are fabricated at NIST, use orthomode transducers to couple orthogonal polarizations of incoming radiation onto separate TES bolometers. The incoming radiation is modulated by an ambient-temperature half-wave plate in front of the vacuum window at an aperture stop. Preliminary detector characterization indicates that the ABS detectors can achieve a sensitivity of 300 μK $s^{1/2}$ in the field. This paper describes the ABS optical design and detector readout scheme, including feedhorn design and performance, magnetic shielding, focal plane architecture, and cryogenic electronics.

Keywords: Polarimetry, transition-edge sensors, bolometers, cosmic microwave background, cosmology

PACS: 95.55.Rg, 95.55.Qf, 95.75.Hi, 95.85.Fm, 07.05.Fb, 07.57.Kp, 07.60.Fs

INTRODUCTION

The Atacama B-Mode Search (ABS) aims to probe the physics of the early universe through measurements of the CMB polarization anisotropies. Models of inflation predict that a gravitational-wave background existed in the early universe. Such a background would leave its imprint on the CMB in the form of a pseudo-scalar B-mode component in the CMB polarization anisotropies, whereas most other sources of CMB polarization only create vector-like E-modes [1, 2]. Detecting a B-mode component of the CMB anisotropies is a primary goal of a number of current and upcoming experiments. The ABS experiment is designed for rapid deployment to a high-altitude site in the Atacama Desert of Chile. The entire experiment will be assembled inside a modified shipping container in North America and shipped to Chile ready to rise out of the container roof and observe soon after it arrives.

ABS will observe two 250-square-degree patches around the south galactic pole with 35′ beams spread over a 24° instantaneous field of view. To reduce systematic errors, a warm half-wave plate (HWP) will modulate the incoming polarization before the radiation enters the beam-forming optics, allowing for better discrimini-

Parameter	Value	Units
Angular Resolution	35	Arcminutes
Frequency Coverage	127-160	GHz
Sky Coverage	500	Square Degrees
Multipole Coverage	25 - 200	
Pol. Modulation	Warm HWP	
Location	Ground (Chile)	
Instrument NEQ	15 μK $s^{1/2}$	

* Calculated for 240 detectors each with two bolometers of sensitivity 300 μK $s^{1/2}$. This sensitivity is extrapolated from dark tests of prototype detectors.

TABLE 1. Experimental Parameters for ABS

nation of atmospheric and instrumental noise sources. ABS is projected to be most sensitive to B-modes in the $\ell = 80 – 120$ range, as shown in Figure 1.

RECEIVER

The ABS receiver is shown in Figure 2. The detectors need to be cooled to 300 mK to operate. In addition, ABS will have its primary and secondary mirrors cooled to 4 K to reduce thermal loading on the detectors, provide a
FIGURE 1. Projected sensitivity of ABS to the EE and BB power spectra. The top curve is a model EE power spectrum for a ΛCDM cosmology with parameters currently favored by WMAP [4]. The bottom two solid black curves are the projected BB power spectra for tensor-to-scalar ratios $r = 0.05$ and $r = 0.01$ and optical depth $\tau = 0.1$. Projected foregrounds include polarized galactic dust (blue curve), estimated from [3], and B-modes from lensing (red curve). Estimated binned errors for the EE spectrum and the BB spectrum with $r = 0.05$ are shown as hashed red boxes.

cold and stable surface for beam spillover, and eliminate cryogenic lenses. To achieve this, the ABS cryostat is cooled by two pulse tube cryocoolers, each of which has a 40 K and a 4 K cold head. Cryogenic stages at 1 K and 300 mK are provided by 4He and 3He absorption fridges, respectively. In addition, the cryogenic system for ABS was designed to accommodate two levels of magnetic shielding in addition to the shielding directly around the detectors at the focal plane. A mu-metal shield at room temperature and a Cryoperm shield at 4 K should provide a shielding factor of at least 100.

OPTICS

ABS will use 60-cm mirrors in a compact crossed-Dragone configuration [6, 7], which allows for both mirrors to be kept inside the cryostat at a temperature of 4 K. In addition, the crossed Dragone design was optimized to give good focus and low cross polarization over a large focal plane. The optical design was initially optimized using CodeV, a geometric ray-tracing software package. Further analysis was carried out using DADRA [5], which performs full numerical calculations including diffraction. The simulated beams on the sky in the center of the ABS passband at 145 GHz from DADRA are shown in Figure 3.

In order to accommodate a focal plane of 240 feedhorn-coupled detectors, large throughput input optics are required. A vacuum window 330 mm in diameter will be made of ultra-high molecular weight polyethylene (UHMWPE) anti-reflection coated with expanded PTFE. A warm sapphire half-wave plate (HWP), also 330 mm in diameter, will be rotated in front of the vacuum window to modulate the polarization of incoming radiation. Large-format metal-mesh filters in the optical path will reduce loading on the cryogenic stages.

FOCAL PLANE LAYOUT

The 240 ABS detectors are grouped into triangular pods bolted into a copper support structure that mechanically supports the pods and conducts heat away. Each ABS pod consists of ten feedhorns that are supported by an aluminum interface plate. The interface plate sets the polarization angle, which is unique for each pod, of each feedhorn and forms part of an overall superconducting magnetic shield, along with an aluminum lid on the back of the pod. The detector chips are glued on the back of the feedhorns, at the output of a circular section of waveguide. Wirebonds connect the detector chips to a cus-
FIGURE 2. Layout of the ABS receiver, showing the positions of the pulse tubes, the 3He and 4He absorption fridges, and the major optical elements. Light from the sky enters from the top of the figure. During observations, the receiver will be tilted at approximately 45° so that the pulse tubes are vertical.

FIGURE 3. Simulated ABS beams for one polarization at 145 GHz from DADRA. The contours are at -3, -6, and -9 dB for each of the 240 detectors. Axes are in degrees. Beams have full-width half maxima of 35'.

FIGURE 4. Measured H-plane beam maps for the first 42 machined aluminum feedhorns. Vertical axis is dB from maximum. Horizontal axis is in degrees from the maximum position.

DETECTORS

The ABS detectors are fabricated at NIST and were designed and tested as part of a collaboration between NIST, Princeton University, the University of Chicago, and the University of Colorado at Boulder. As shown in Figure 5, each detector consists of a planar orthogonal mode transducer (OMT) that couples the two orthogonal polarizations of light onto separate microstrip lines. The OMT, which has triangular niobium probes suspended on a thin silicon nitride membrane, couples in-
coming radiation from a corrugated feedhorn through a coplanar-waveguide-to-microstrip transition. After passing through on-chip lowpass filters, the microstrip lines terminate in lossy meanders that deposit power onto separate TES bolometers. For more details on detector design and characterization see [9, 10, 11, 12, 13]. Extrapolating data taken from dark tests and assuming a 50% optical efficiency, the ABS detectors should achieve a sensitivity of $300 \mu K \sqrt{s}$ in the field.

The TES bolometers will be time-domain multiplexed and amplified through three stages of SQUIDs, read out by a Multi-Channel Electronics (MCE) system provided by the University of British Columbia. This will allow for the 240 polarimeters in ABS to be read out with a minimum of wiring to room temperature, which is important in reducing thermal loading on the 300 mK stage of the cryogenics.

CONCLUSIONS

The ABS design and construction is underway and on schedule for deployment in 2010.

ACKNOWLEDGMENTS

We would like to thank our collaborators in the detector development at the Kavli Institute for Cosmological Physics and the University of Colorado at Boulder. We also gratefully acknowledge Bill Dix and Glenn Atkinson for skillfully machining many parts of the experiment, notably the mirrors and feedhorns, as well as Jennifer Lin, who designed the feedhorns. Work at NIST is supported by the NIST Innovations in Measurement Science program. Work at Princeton University is supported by the NSF through awards PHY-0355328 and PHY-085587 and NASA through award NNX08AE03G.

T. Essinger-Hileman was supported by a National Defense Science and Engineering Graduate (NDSEG) Fellowship.

REFERENCES

1. U. Seljak and M. Zaldarriaga, “Signature of Gravity Waves in the Polarization of the Microwave Background,” *Phys. Rev. Lett.* **78**, 2054 (1997).
2. M. Kamionkowski, A. Kosowsky, and A. Stebbins, “A Probe of Primordial Gravity Waves and Vorticity,” *Phys. Rev. Lett.* **78**, 2058 (1997).
3. J. Dunkley, et. al., “CMBPol Mission Concept Study: Prospects for polarized foreground removal,” arXiv:0811.3915v1 [astro-ph] (2008).
4. J. Dunkley, et. al., “Five-Year Wilkinson Anisotropy Probe Observations: Likelihoods and Parameters from the WMAP Data,” *ApJ*, **180**, 306-329 (2009).
5. W. A. Imbrie and R. E. Hodges, “The Linear-Phase Triangular Facet Approximation in Physical Optics Analysis of Reflector Antennas,” *Applied Comput. Electromagnetics Soc. J.*, **6**, 74 (1991).
6. C. Dragone, “Offset multireflector antennas with perfect pattern symmetry and polarization discrimination,” *Bell Syst. Tech. J.*, **2663** (1978).
7. C. Dragone, “Unique reflector arrangement with very wide field of view for multibeam antennas,” *Electron. Lett.*, **1061** (1983).
8. E.S. Battistelli, et. al., “Functional Description of Read-Out Electronics for Time-Domain Multiplexed Bolometers for Millimeter and Sub-millimeter Astronomu,” *J. Low Temp. Phys.*, **151**, 908 (2008).
9. J. W. Appel, et. al., “Characterization and Modeling the Noise and Complex Impedance in Feedhorn-Coupled TES Polarimeters,” *Also in these Proceedings*, (2009).
10. J. E. Austermann, et. al., “Measurements of TES Bolometer Uniformity for CMB Polarimeter Arrays,” *Also in these Proceedings*, (2009).
11. L. E. Bleem, et. al., “Optical Properties of feedhorn-coupled TES polarimeters for CMB polariometry,” *Also in these Proceedings*, (2009).
12. J. McMahon, et. al., “Planar Orthomode Transducers for Feedhorn-Coupled TES Polarimeters,” *Also in these Proceedings*, (2009).
13. K. W. Yoon, et. al., “Towards a large format TES array for CMB Polarimetry,” *Also in these Proceedings*, (2009).