Experimental Investigation of unused heat recovery using ORC cycle in a passenger car

K R Yuwaraj1*, S Srinivasan2, S Rajesh3, B Arun4, and Aatif Aftab5

1, 5 Department of Mechanical Engineering, Chennai Institute of Technology, Chennai - 600069, Tamil Nadu, India.
2 Department of Mechanical Engineering, Rajalakshmi Institute of Technology, Chennai - 600124, Tamilnadu, India.
3, 4 Department of Mechanical Engineering, Meenakshi College of Engineering, Chennai - 600087, Tamilnadu, India.

*Corresponding author mail ID: yuwarajr@citchennai.net

Abstract: The internal combustion engines of automobiles generally operate around 25-40 percent conversion efficiency. The productivity of the engine can be improved by using the dissipated waste heat by the automobile cooling jacket. An ORC (Organic Rankine Cycle) unit can be installed to recover the waste heat in engine cooling jacket of a passenger car. The installation of this unit shall reduce part load from the engine by reducing the load acting directly on the alternator. The System shall increase the overall efficiency and also improves the fuel economy by using the waste thermal energy. A Thermodynamic cycle analysis and prototype fabrication of model has been considered for the experimental evaluation of the efficiency and effectiveness of ORC system. The cycle is considered using an Automotive Air-conditioning Scroll compressor as the turbine expander and also as an feed pump. Low temperature heat source from a heater is considered for the heat source in the boiler setup. The ORC turbine shall be coupled with an Electric Generator and then to the battery for recharging. The whole Setup is considered for mass production of ORC Units for cheaper price and light weight. Owing to the fact that this setup is a prototype the efficiency of the cycle can be improved further in order to careful adjustment of the critical parameters such as pressure, temperature, flow rate of the refrigerant of the thermodynamic cycle and the flow rate of the coolant according to the actual performance of the vehicle.

Keywords: IC Engines, ORC, Alternator, Compressor, Turbine, Refrigerant

1. Introduction

Considering the environmental change and the deficiency of non-sustainable power source assets, the interests in squander heat recuperation has been developing strikingly, particularly during the previous decade. Squander heat recuperation from vehicle interior burning motors (ICE) is one of the open doors for conserving of vitality utilization. In an ICE, a lot of fuel vitality is squandered in type of warmth because of warm confinements. Approximately 33% of fuel vitality is changed over to mechanical force and the rest is discharged to the encompassing in type of warmth. For instance, the consumer light weight vehicle in production in the current scenario has the heat loss from radiator ranging from 2-128.39 kW from Table 1.1 and Table 1.2.

Table 1. Total heat loss by radiator with cooled fan.

RPM	NISSAN	FORD	MITSUBISHI	HONDA	WIRA
1000	24.34	15.4	29.74	13.51	4.015
1500	41.32	20.73	27.72	27.6	13.23
2000	64.59	29.6	55.73	50.232	23.18
2500	73.35	39.45	78.69	61.03	74.83
3000	86.16	41.59	128.39	121.02	96.19
Conklin and Szybist [1] researched that the level of fuel vitality changed over to valuable work just 10.4% and furthermore found the warm vitality lost through fumes gas about 27.7%. As indicated by the fuel vitality dispersion graph (Fig 1.1) 61.9% of the fuel vitality is squandered as warmth in coolant, grinding and others. The appropriation diagram obviously demonstrates that enhancement for usage of waste warmth from motor coolant will expand the eco-friendly of the vehicle.

There are a considerable measure of waste warmth through fumes gas and coolant of an inward burning motor. Natural Rankine cycle is one of the open doors in inside ignition motors squander heat recuperation. Various techniques have been suggested for squander heat recuperation from ICE, for example, thermo electric, ingestion refrigeration framework, and natural Rankine cycle (ORC). For instance the examined thermo electric technique in fumes gas squanders heat recuperation of a three chamber flash start motor through a test. Squander heat recuperation utilizing ORC is a productive strategy contrasted and different strategies. Car makers utilize this technique to upgrade the proficiency of their items. Also the examined proficiency of a substantial diesel motor utilizing the techniques for heat recuperation from fumes gas. These strategies incorporate mechanical turbo exacerbating, electrical turbo aggravating and steam Rankine cycle. Another examined heat recuperation from a 1.7 liter flammable gas fueled inward burning by CO2 transcritical power cycle.

Numerous scientists have been performed about utilizing diverse working liquids, various designs of Rankine cycle, and improving the framework parts during the ongoing years. The contemplated the impact of utilizing various liquids on the warmth recuperation Rankine cycle and streamlined the thermodynamic boundaries like energy effectiveness for the considered working liquids [2-8]. The considered the impact of different working liquids on the proficiency of Rankine cycle utilized for squander heat recuperation. One more examined the impact of utilizing Rotary - Vane Type expander on the effectiveness of Rankine cycle utilized for squander heat recuperation. The inspected the fumes squander heat recuperation capability of a high-efficiency, low-outflows double fuel low temperature ignition motor utilizing an ORC. Organic Rankine Cycle (ORC) was planned, adjusted from information accessible in writing and advanced to fit the model vehicle Ohio State University EcoCAR (model module half and half electric vehicle). Recreations were then done to assess the measure of vitality recuperated by the ORC framework, considering both urban and parkway driving conditions. The aftereffects of the reenactments show that a straightforward ORC framework can recoup up to 10% of the motor waste warmth on parkway driving conditions, comparing to an expected 7% improvement in fuel utilization, with low punishment of the additional load to the vehicle electric range [9-18].

In this experimental investigation the waste heat recovery using automobile engine cooling jacket is considered. The prototype setup is assembled using the automobile scrap available in the market. The thermodynamic cycle analysis is considered for both the experimental setup and the actual model if considered on the passenger car.

Table 2. Total heat loss by radiator without cooled fan.

RPM	NISSAN	FORD	MITSUBISHI	HONDA	WIRA
1000	9.465	7.702	26.02	5.63	2.007
1500	13.77	7.974	23.94	13.14	4.106
2000	43.07	3.7	33.17	28.46	7.095
2500	57.05	10.38	36.2	52.56	36.73
3000	58.37	9.042	47.02	98.54	38.77
2. Experimental setup

Initially the components required for the experiment (scroll compressor, condenser, boiler setup and the generator) were measured for proper dimension to make an stand on which the experiment is performed. The stand and the experimental setup is as shown in fig.3.1 & fig.3.2.

The system is connected to the vacuum pump and evacuated for 30 minutes. Then the refrigerant R134a is charged to the system by standard procedures. Initially the system took a little time to run in a cycle as pre-determined then little adjustments on the pressure valve made the system run smoothly.

The experimental setup will help determine the ORC cycle efficiency for the standard considered temperature limit and the flow rate due to limited practical power available in the form of heat. The genuine ORC Unit will have the accompanying properties as appeared in table.3.1.

![Turbine and Generator Coupled to the Pump Fixed in the Stand](image1.png)

Figure 1. The turbine and generator coupled to the pump fixed in the stand.

![Isometric View of the Whole Setup](image2.png)

Figure 2. Isometric view of the whole setup.

Conditions	Variables
Evaporator pressure (in bar)	16 – 26
Evaporator temperature (in deg C)	80 – 120
Heat available from the Radiator (kW)	2 - 128.39
Condenser pressure (in bar)	6 - 7.5
Condenser temperature (in deg C)	25 – 30

Table 1. Actual ORC Unit Specification
The experimental cycle considered for the investigation has the design specifications as shown in table 3.2

Conditions	Values
Evaporator pressure (in bar)	16.82
Evaporator temperature (in deg C)	90
Degree of superheat (in deg C)	30
Heat available from the Radiator (kW)	4.5
Condenser pressure (in bar)	7.27
Condenser temperature (in deg C)	28
Volume of refrigerant flow (in LPM)	1.167

2.1. Assumptions in the Experiment
Before performing the experiment some of the variables in the experiments were assumed based upon the previous investigations carried out on the components.

2.1.1. Expander
The expander used in this experiment used is the Automotive scroll compressor [Sanden TRSA05]. The isentropic efficiency of the scroll compressor acting as an expander is assumed to be 50% according to the performance study conducted by Manolakos D, Kosmadakis G, Kyritsis S, Pa G [7]. Generally, lightweight materials are used in automobile and structural applications [8-18].

2.1.2. Feed Pump
The boiler feed pump used in this experiment is Automotive scroll compressor [Sanden TRSA05]. In a perfect world, specialists of thermodynamic frameworks use siphon bends relating stream, speed, force and head to settle on plan decisions for explicit framework. By and by, in any case, it is hard to get this data. This is expected to some degree to the divided connections between automobile makers, OEM providers, and the different firms that really sub-gotten the plan work and the mass producer of the siphons. Following this data through the automobile makers is troublesome in light of the fact that the data is viewed as restrictive, or on the grounds that there is an unwillingness to talk about specialized perspectives o car gear for use in applications outside the car business.

Regardless of the hindrance insinuated over, this venture expects to check the pertinence of car scroll blower for use as evaporator feed siphons in an ORC framework. The isentropic productivity of parchment blower utilized as heater feed siphon is thought to be half.

2.2. Testing & Evaluation
Experimental Measurements from the setup were taken to make sure that the inlet test conditions are satisfied. The pressure gauge reading from the experiment is taken from the service valve in the setup. The test value taken from the experiment is taken for the calculation of overall cycle efficiency of the cycle. The software used for the purpose of evaluating the results and plotting the graph is SOLKANE 8.0.0.

3. Results and Discussions
3.1. Results
The experimental setup with the proposed configuration of ORC model is assumed with input parameters as shown in table 4.1.
Table 1. Input Parameters for Experimental Configuration

Parameter	Value
Generator temperature	60 C
Superheating	30K
Heating Capacity	4.5 kW
Condenser Temperature	28 C
Condenser Subcooling	0 K
Turbine efficiency	0.5
Generator efficiency	0.65
Feed pump efficiency	0.5

Table 2. Output results for the experimental Conditions

Parameter	Value
Condenser	4.33 kW
Turbine	0.20 kW
Generator	0.13 kW
Feed pump	0.03 kW
Mass flow	20.20 g/s
Feed Pump Volume flow	0.06 m³/h
Efficiency ratio, complete	0.02

Table 3. State point Parameters

bar	deg C	dm³/kg	KJ/kg	KJ/kgK	-
7.27	28	0.84	238.96	1.1336	0
16.82	29.11	0.84	240.55	1.1389	0
16.82	60	0.95	287.33	1.2845	0
16.82	60	6.2	356.98	1.4935	0.5
16.82	60	11.46	426.63	1.7024	1
16.82	90	14.29	463.34	1.808	1
7.27	57.14	32.99	443.11	1.808	1
7.27	67.26	34.49	453.22	1.8381	1
7.27	28	28.27	413.71	1.7148	1
7.27	28	14.55	326.33	1.4224	0.5
7.27	28	0.84	238.96	1.1336	0

The scaled model for the actual model of ORC the parameters are expected to be as shown in the table.4.4 & table.4.5

Table 4. Input Parameters for Actual Configuration

Parameter	Value
Generator temperature	60 C
Superheating	30K
Heating Capacity	80 kW
Condenser Temperature	28 C
Condenser Subcooling | 0 K
---|---
Turbine | 0.5
Generator | 0.65
Feed pump mech | 0.5
Feed pump motor | 1

Table 5. Output results for the experimental Conditions

Component	Output [kW]
Steam generator	80
Condenser	79.94
Turbine	3.63
Generator	2.36
Feed pump	0.57
Pressure ratio	2.31
Pressure difference	9.55 bar
Mass flow	359.1 g/s
Feed Pump Volume flow	1.08 m3/h
Efficiency ratio, complete	0.02

3.2. Application in Passenger car

A WHR using the proposed Organic Rankin Cycle is estimated for the values obtained for the HONDA CIVIC model. The technical specification for the HONDA CIVIC is obtained from the WWW (from official website of HONDA). The Car alternator used for the purpose of comparison is (Delco 22SI type12V-100A). The Car alternator is assumed to be coupled to the engine at the speed ratio of 2:1. The technical data for the Delco 22SI type12V-100A as experimented values are taken from the Fig.4.3. for an Delco 22SI type12V-100A at a battery voltage of 14V, ambient temperature of 25° C and maximum excitation current.

![Figure 4.3. Characteristics of Delco 22SI type12V-100A.](image)

The Output simulated for the DELCO Alternator and an actual ORC in a passenger car may be represented in Table 4.6 & Table 4.7.
Table 6. Output for Delco 22SI type 12V-100A

Engine RPM	Alternator RPM	Electrical Power (W)	Efficiency	Mechanical Power (W)	Torque (Nm)
1500	3000	1104	0.46	2400.000000	7.643312102
1750	3500	1140	0.44	2590.909091	7.072545289
2000	4000	1200	0.43	2790.697674	6.665679159
2500	5000	1260	0.43	2930.232558	5.599170493
3000	6000	1320	0.42	3142.857143	5.004549591

Table 7. Output for ORC in HONDA CIVIC

Engine RPM	Waste Heat Flow Rate (W)	Electrical Power (W)	Torque (Nm)
1500	27.6	810	0
1750	38.916	1150	0
2000	50.232	1480	0
2500	61.03	1800	0
3000	121.02	3570	0

The percentage in increase of Brake thermal efficiency and the percentage in reduction of Specific Fuel Consumption for the HONDA CIVIC Model may be tabulated as given in Table 4.7.

Table 8. Performance Improvement using ORC

	Using Alternator	Using ORC
Engine Speed (RPM)	1750	1750
Torque (Nm)	200	207.0725453
Brake Power (kW)	36.633333333	39.224242422
Mass flow of fuel (kg/s)	0.000544872	0.000446626
Specific Fuel Consumption (kg/kWh)	1.48737E-05	1.21918E-05
Mileage (km/L)	26	31.71930579

It is found that there is and 6.6% increase in brake thermal power and the SFC is reduced by 0.18%. Due to the decrease in SFC of the vehicle there is 22% increase in the mileage of the Car.

4. Conclusion

Implementation of ORC waste recovery in passenger car shall result in downsizing of engine cooling radiator, decrease of part of the load acting on the engine due to the alternator and it shall also account for reduce fuel consumption of the vehicle. The systems to increases the heat utilization from every drop of fuel and hence it yields better mileage. The prototype modeling just indicates how the waste heat can be tapped into useful work however proper installation of waste heat recovery unit shall need careful attention of sizing of the condenser, pump and generator. Though the system only yields an
overall efficiency of 2%, the ORC Unit is a comparatively feasible solution to the unwanted heat recovery systems in the current market.

References

[1] Conklin, J.C. and Szybist, J.P., 2010. A highly efficient six-stroke internal combustion engine cycle with water injection for in-cylinder exhaust heat recovery. *Energy*, 35(4), pp.1658-1664.

[2] Vázquez, J., Sanz-Bobi, M.A., Palacios, R. and Arenas, A., 2002, October. State of the art of thermoelectric generators based on heat recovered from the exhaust gases of automobiles. In *Proc. 7th European workshop on thermoelectrics* (No. 17).

[3] Zhang, X. and Chau, K.T., 2011. An automotive thermoelectric–photovoltaic hybrid energy system using maximum power point tracking. *Energy Conversion and Management*, 52(1), pp.641-647.

[4] Yang, J., 2005, June. Potential applications of thermoelectric waste heat recovery in the automotive industry. In *ICT 2005. 24th International Conference on Thermoelectrics*, 2005. (pp. 170-174). IEEE.

[5] Freymann, R., Strobl, W. and Obieglo, A., 2008. The turbosteamer: A system introducing the principle of cogeneration in automotive applications. *MTZ worldwide*, 69(5), pp.20-27.

[6] Schroeder, D.J. and Leslie, N., 2010. Organic Rankine Cycle Working Fluid Considerations for Waste Heat to Power Applications. *Ashrae Transactions*, 116(1).

[7] Manolakos, D., Kosmadakis, G., Kyritsis, S. and Papadakis, G., 2009. Identification of behaviour and evaluation of performance of small scale, low-temperature Organic Rankine Cycle system coupled with a RO desalination unit. *Energy*, 34(6), pp.767-774.

[8] Kritmaitree, P., Akiyama, M., Hino, R., Kaminaga, M. and Terada, A., 2002. Analytical study of volumetric scroll pump for liquid hydrogen circulating system. *Journal of nuclear science and technology*, 39(1), pp.101-107.

[9] M. Vinayagam., Ravichandran, M.: Experimental investigation on mechanical properties of AA7075-AlN composites. *Mater Test*. 61 (6), 554-558 (2019).

[10] Mohanavel, V., Rajan, K., Ravichandran, M.: Synthesis, characterization and properties of stir cast AA6351-aluminium nitride (AlN) composites, *Journal of Materials Research*, 31 (2), 3824-3831 (2016).

[11] V. Mohanavel, S. Suresh Kumar, J. Vairamuthu, P. Ganeshan, B. NagarajaGanesh, 2020, Influence of stacking sequence and fiber content on the mechanical properties of natural and synthetic fibers reinforced penta-layered hybrid composites, *Journal of Natural Fibers*, DOI : 10.1080/15440478.2021.1875368

[12] Vinayagam Mohanavel, Thandavamoorthy Raja, Anshul Yadav, Manickam Ravichandran, Jerzy Winczek, Evaluation of Mechanical and Thermal Properties of Jute and Ramie Reinforced Epoxy-based Hybrid Composites, *Journal of Natural Fibers*, DOI : 10.1080/15440478.2021.1958432

[13] B. Chaitanya Kumar, P. Sri Charan, Kanishkar Jayakumar, D. Alankrutha, G. Sindhu, Ram Subbiah, 2020, Assessment Of Wear Properties On Low Temperature Molten Salt Bath Nitriding On Austenitic Stainless Steel, *Materials Today: Proceedings*, 27, 2, 1541-1544.

[14] M. Vinayagam., K.S.Ashraff Ali, S.Prasath, T.Sathi, 2020, Microstructural and tribochemical characteristics of AA6351/Si3N4 composites manufactured by stir casting, *Journal of Materials Research and Technology*, 9 (6), 14662-14672.

[15] T. Lakshmi Deepak, G. Ananda Mithra, K. Lokesh, B. Sai Chandra, Ram Subbiah, 2020, Stability Of Expanded Austenite By Gas Nitriding Process On Austenitic Stainless Steel Material Under Low Temperature Conditions, *Materials Today: Proceedings*. 27, 2, 2020, 1681-1684.
[16] K. Raja, B. Prabu, P. Ganeshan, V. S. Chandra Sekar & B. NagarajaGanesh, 2020, Characterization Studies of Natural Cellulosic Fibers Extracted from Shwetark Stem, Journal of Natural Fibers, DOI: 10.1080/15440478.2019.1710650

[17] Ram Subbiah, Md. Rahel, A Sravika, R.Ambika, A.Srujana, E.Navya, 2019, Investigation on Microstructure and Mechanical Properties of P91 Alloy Steel Treated With Normalizing Process - A Review, Materials Today: Proceedings, 18, 7, 2265-2269.

[18] A. Rohit Sai Krishna, B. Vamshi Krishna, T. Sashank, D. Harshith, Ram Subbiah, 2020, Influence and Assessment of Mechanical Properties on Treated P91 Steel with Normalizing Processes, Materials Today: Proceedings. 27, 2, 1555-1558.