Eigenvalues and diagonal elements

Rajendra Bhatia · Rajesh Sharma

Received: 2 April 2022 / Accepted: 13 July 2022 / Published online: 2 August 2022
© The Indian National Science Academy 2022

Abstract A basic theorem in linear algebra says that if the eigenvalues and the diagonal entries of a Hermitian matrix A are ordered as $\lambda_1 \leq \lambda_2 \leq ... \leq \lambda_n$ and $a_1 \leq a_2 \leq ... \leq a_n$, respectively, then $\lambda_1 \leq a_1$. We show that for some special classes of Hermitian matrices this can be extended to inequalities of the form $\lambda_k \leq a_{2k-1}$, $k = 1, 2, ..., \lceil \frac{n}{2} \rceil$.

Keywords Hermitian matrix · Majorization · Nonnegative matrix · Laplacian matrix of graph

Let A be an $n \times n$ complex Hermitian matrix. The eigenvalues and the diagonal entries of A are real numbers, and we enumerate them in increasing order as

$$\lambda_1 \leq \lambda_2 \leq ... \leq \lambda_n,$$

and

$$a_1 \leq a_2 \leq ... \leq a_n,$$

respectively. Various inequalities relating these two n-tuples are known and are much used in matrix analysis. For example, we have

$$\lambda_1 \leq a_1 \quad \text{and} \quad \lambda_n \geq a_n. \quad (1)$$

These are subsumed in the majorization relations due to I. Schur: for $1 \leq k \leq n$

$$\sum_{j=1}^{k} \lambda_j \leq \sum_{j=1}^{k} a_j, \quad (2)$$

with equality when $k = n$. This is a complete characterization of two n-tuples that could be the eigenvalues and diagonal entries of a Hermitian matrix. In general, there are no further relations between individual λ_j and a_k.

However, for large and interesting subsets of Hermitian matrices, it might be possible to find such extra relations. In [1], the authors consider eigenvalues of matrices associated with graphs. Let G be a simple weighted graph on n vertices and let A be the signless Laplacian matrix associated with G. Then, it is shown in [1] that $\lambda_2 \leq a_3$. This result is extended to other classes in [3]. One of these is the class P of Hermitian matrices whose off-diagonal
entries are nonnegative. (In particular, this includes symmetric entrywise nonnegative matrices.) It is shown in [3] that if \(A \in \mathcal{P} \), then \(\lambda_2 \leq a_3 \).

In this note we consider, in addition to the class \(\mathcal{P} \), another class \(\mathcal{I} \) consisting of Hermitian matrices all whose off-diagonal entries are purely imaginary. We show that the inequality \(\lambda_2 \leq a_3 \) is valid for \(A \in \mathcal{I} \) as well. The proof we give works for both the classes \(\mathcal{P} \) and \(\mathcal{I} \). Then we show that much more is true for the class \(\mathcal{I} \). We show that in this case, the inequality \(\lambda_{n-1} \geq a_{n-2} \) also holds. Further, for all \(1 \leq k \leq \lfloor \frac{n}{2} \rfloor \) we have \(\lambda_k \leq a_{2k-1} \). We construct examples to show that neither of these results is true for the class \(\mathcal{P} \).

Theorem 1 Let \(A \) be an \(n \times n \) Hermitian matrix whose off-diagonal entries are either all nonnegative real numbers or all purely imaginary numbers. Then

\[
\lambda_2 \leq a_3. \tag{3}
\]

In case the off-diagonal entries are all purely imaginary, we also have

\[
\lambda_{n-1} \geq a_{n-2}. \tag{4}
\]

For the second class of matrices in Theorem 1, we can go further:

Theorem 2 Let \(A \) be an \(n \times n \) Hermitian matrix whose off-diagonal entries are all purely imaginary. Then, for \(1 \leq k \leq \lfloor \frac{n}{2} \rfloor \),

\[
\lambda_k \leq a_{2k-1} \quad \text{and} \quad \lambda_{n-k+1} \geq a_{n-2k+2}. \tag{5}
\]

We remark that in both (1) and (5) the second inequality follows from the first by considering \(-A\) in place of \(A \). Similarly (4) follows from (3). The argument cannot be used for the class \(\mathcal{P} \).

Our proofs rely upon two basic theorems of matrix analysis. Let \(\lambda_j(A) \), \(1 \leq j \leq n \), denote the eigenvalues of a Hermitian matrix enumerated in the increasing order. Weyl’s inequality says that if \(A \) and \(B \) are two \(n \times n \) Hermitian matrices, then

\[
\lambda_j(A + B) \leq \lambda_j(A) + \lambda_n(B), \quad 1 \leq j \leq n. \tag{6}
\]

Cauchy’s interlacing principle says that if \(A_r \) is an \(r \times r \) principal submatrix of \(A \), then

\[
\lambda_j(A) \leq \lambda_j(A_r), \quad 1 \leq j \leq r. \tag{7}
\]

See Chapter III of [2] for this and other facts used here.

Proof of Theorem 1 If \(P \) is a permutation matrix, then the increasingly ordered eigenvalues and diagonal entries of \(PAP^T \) are the same as those of \(A \). So, for simplicity, we may assume that the diagonal entries of \(A \) are in increasing order. Let

\[
A_3 = \begin{bmatrix}
a_{11} & a_{12} & a_{13} \\
a_{12} & a_{22} & a_{23} \\
a_{13} & a_{23} & a_{33}
\end{bmatrix}
\]

be the top-left \(3 \times 3 \) submatrix of \(A \). (Note \(a_{jj} = a_j \) is our notation.) Decompose

\[
A_3 = D_3 + M_3 \tag{8}
\]

where \(D_3 \) is the diagonal part and \(M_3 \) the off-diagonal part of \(A_3 \). By Weyl’s inequality

\[
\lambda_2(A_3) \leq \lambda_2(M_3) + \lambda_3(D_3) = \lambda_2(M_3) + a_3. \tag{9}
\]

Note that \(\det M_3 = 2Rea_{12}a_{23}a_{13} \). So, under the hypothesis of Theorem 1, \(\det M_3 \geq 0 \). We also have \(\text{tr} M_3 = 0 \). These two conditions imply that we must have \(\lambda_2(M_3) \leq 0 \). For, if \(\lambda_3(M_3) \geq \lambda_2(M_3) > 0 \), then the condition \(\text{tr} M_3 = 0 \) forces \(\lambda_1(M_3) \) to be negative. But this is impossible if \(\det M_3 \geq 0 \). So, from (9) we see that \(\lambda_2(A_3) \leq a_3 \). Then, by the interlacing principle (7), we have \(\lambda_2(A) \leq a_3 \).

Here we should observe that the only property of \(M_3 \) we used was that \(\det M_3 \geq 0 \). Thus the conclusion of Theorem 1 is valid for some other matrices not included in the classes \(\mathcal{P} \) or \(\mathcal{I} \).
Proof of Theorem 2 Let \(A_r \) be the top \(r \times r \) principal submatrix of \(A \). Decompose \(A_r \) as
\[
A_r = D_r + M_r
\]
where \(D_r \) is diagonal and \(M_r \) off-diagonal. The matrix \(iM_r \) is a real skew-symmetric matrix. So, the nonzero eigenvalues of \(iM_r \) are purely imaginary and occur in conjugate pairs. Thus the nonzero eigenvalues of \(M_r \) occur in \(\pm \) pairs. This shows that
\[
\lambda_k(M_r) \leq 0 \quad \text{for} \quad 1 \leq k \leq \left\lfloor \frac{r}{2} \right\rfloor. \tag{10}
\]
Now let \(1 \leq k \leq \left\lfloor \frac{n}{2} \right\rfloor \). Using, successively, the interlacing principle, Weyl’s inequality and (10), we get
\[
\lambda_k(A) \leq \lambda_k(A_{2k-1}) \leq \lambda_k(M_{2k-1}) + a_{2k-1} \leq a_{2k-1}.
\]
\(\square \)

We now give two examples to show why for the case of matrices with nonnegative off-diagonal entries we have to be content just with inequality (3). Let \(A \) be the \(4 \times 4 \) matrix
\[
A = \begin{bmatrix}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{bmatrix}.
\]
The \(4 \times 4 \) matrix \(E \) all whose entries are equal to one has eigenvalues \((4, 0, 0, 0)\). So the matrix \(A = E - I \) has eigenvalues \((3, -1, -1, -1)\). Thus \(\lambda_3 = -1 \), and the inequality (4) does not hold in this case. Further, this example shows that in the general case, not only the inequality (4) might fail, \(\lambda_{n-1} \) could be smaller than \(a_j, j = 1, 2, \ldots, n \).

Let \(B \) be the \(5 \times 5 \) matrix
\[
B = \begin{bmatrix}
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0
\end{bmatrix}.
\]
Then \(B = S^2 + S^3 \), where \(S \) is the shift matrix
\[
S = \begin{bmatrix}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0
\end{bmatrix}.
\]
The eigenvalues of \(S \) are the fifth roots of 1. Using this one readily sees that the eigenvalues of \(B \) are \(2, 2 \cos \frac{2\pi}{5} \) and \(2 \cos \frac{4\pi}{5} \), the first of these with multiplicity one and the latter two with multiplicities two each. In particular, \(\lambda_3 > 0 \) and the assertion \(\lambda_3 \leq a_5 \) in the first inequality (5) does not hold in this case.

Acknowledgements The second author thanks Ashoka University for arranging his visit during Dec 2021-Jan 2022.

References
1. A. Berman and M. Farber, A lower bound for the second largest Laplacian eigenvalues of weighted graphs, Electron. J. Linear Algebra, 22 (2011), 1179-1184.
2. R. Bhatia, Matrix Analysis, Springer, New York (1997).
3. Z. Charles, M. Farber, C.R. Johnson, L.K. Shaffer, The relation between the diagonal entries and eigenvalues of a symmetric matrix, based upon the sign patterns of its off-diagonal entries, Linear Algebra Appl; 438 (2013), 1427-1445.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.