Clinical research

Using biomarkers to predict treatment response in major depressive disorder: evidence from past and present studies
Michael E. Thase, MD

Introduction

Major depressive disorder (MDD) is one of the world’s greatest public health problems; beyond the subjective suffering associated with depression, it is a significant contributor to early mortality (especially from suicide), absenteeism and diminished productivity in the workplace, and dysfunctional parenting. Effective treatments have been available for MDD since the introduction of electroconvulsive therapy (ECT) in the late 1940s and 1950s, and the tricyclic antidepressants (TCAs) and monoamine oxidase inhibitors (MAOIs) in the late 1950s and early 1960s. However, the response to treatment is slow and hard to predict, and a significant proportion of people will develop treatment-resistant depression (TRD) despite receiving adequate courses of therapy. Part of the problem has been the heterogeneity of MDD, although attempts to identify more treatment-responsive subtypes based on clinical characteristics did not tangibly improve outcomes. Another problem was tied to the clinical pharmacology of the treatment. This manuscript reviews some past areas of research that have proved informative, such as studies using indexes of hypercortisolism or sleep disturbance, and more recent research findings using measures of inflammation and different indicators of regional cortical activation to predict treatment response. It is concluded that, although no method has yet been demonstrated to be sufficiently accurate to be applied in clinical practice, progress has been made. It thus seems likely that—at some point in the not-too-distant future—it will be possible to prospectively identify, at least for some MDD patients, the likelihood of response or nonresponse to cognitive therapy or various antidepressant medications.

Keywords: biomarker; antidepressant; cognitive behavior therapy; prediction; treatment response

Author affiliations: Department of Psychiatry, Perelman School of Medicine of the University of Pennsylvania, Philadelphia Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA; University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA

Address for correspondence: Michael E. Thase, MD, Chief, Mood and Anxiety Disorders Section, Department of Psychiatry, 3535 Market St, Suite 670, Philadelphia, PA 19104, USA (e-mail: thase@mail.med.upenn.edu)
Clinical research

first generation of antidepressants, although introduction of large number of more tolerable and easier to prescribe antidepressants likewise did not solve the problem of TRD. The search for biomarkers of antidepressant response has thus become the best hope for improving the ability to match a particular patient with a specific form of treatment. Indeed, as reviewed by Smith, the amount of literature on putative biomarkers for MDD has skyrocketed over the past decade.

Early biomarker studies: selected examples

The 1980s and early 1990s were a time of therapeutic optimism and there were a number of reasonably well-replicated biological assessment strategies that were evaluated as potential biomarkers, including various measures of hypercortisolism and EEG sleep profiles.

Measures of hypercortisolism

By far the best studied indicator of hypercortisolism was the dexamethasone suppression test (DST), which is a test of the integrity of feedback inhibition of the hypothalamic-pituitary-adrenocortical axis. A “positive” DST result, reflected by an elevated plasma cortisol level for at least 18 hours after attempted suppression with 1 or 2 mg of the potent synthetic glucocorticoid dexamethasone, was thought to be indicative of a kind of autonomous dysfunction of brain stress-responsiveness associated with more severe endogenous or melancholic depression. Research documented that patients who were DST nonsuppressors were typically older, more symptomatically severe, and more likely to manifest psychotic features; they were also significantly less likely to respond to placebo as compared with DST suppressors (ie, depressed patients with a normal feedback inhibition response to dexamethasone). DST nonsuppressors were not, however, more likely to respond to tricyclic antidepressants or electroconvulsive therapy, so the abnormality appeared to simply reflect a greater need for active treatment, a conclusion similarly supported by the clinical correlates of cortisol non suppression. Moreover, the test performance of the DST did not support its routine use in clinical practice: too many people with “real” depressive episodes had normal DST results (ie, low sensitivity) and in ambulatory settings the proportion of “true-positive” to “false-positive” cases was too low to permit high diagnostic confidence in test results. Nevertheless, hypercortisolism remains relevant to the pathophysiology of depression as a severity-linked, state-dependent illness marker and, as suggested by the results of one recent study of adolescent boys, may be associated with the risk of developing depression. Consistent with reports that DST nonsuppression was associated with lower placebo response rates, our group found that response to an intensive inpatient cognitive behavior therapy protocol was significantly poorer among patients with elevated urinary free cortisol levels than those with more normal cortisol profiles. Again, the clinical utility of this observation is tempered by the relatively low rate of hypercortisolism in depressed outpatients.

Polysomnographic studies

In an era before functional magnetic resonance imaging (fMRI) and positron emission tomography (PET) were available, polysomnographic studies were arguably the best tool to visualize brain function at rest and in response to various challenges. Moreover, the “architecture” of brain activity during sleep was known to be regulated by monoamines, acetylcholine, and other neurotransmitters relevant to the pathophysiology of depression. However, when compared with the DST, polysomnographic studies required a specialized laboratory and were both time-consuming and expensive, and, because of the manifold effects that antidepressants can have on EEG sleep profiles, valid studies could only be performed on people who were either unmedicated in the current depressive episode or who had been carefully withdrawn from pharmacotherapy. Thus, the literature on EEG sleep studies as a biomarker of antidepressant treatment response was less voluminous than that for the DST. Nevertheless, a number of studies did document associations between selected sleep characteristics—such as reduced latency to the onset of rapid eye movement (REM) sleep—and depression, and there was some evidence of an association between antidepressant-induced suppression of REM sleep and subsequent clinical response (see, for example, ref 8 for a comprehensive review of early studies). However, the strength of such associations only accounted for a small proportion of the variance in outcome and, like the DST, the diagnostic performance of EEG sleep studies did not justify routine use in clinical practice.
Subsequently, a series of studies by our group at the University of Pittsburgh\(^{10-13}\) examined whether a constellation of sleep abnormalities, including reduced REM latency, increased REM density, and poor sleep continuity, might be used as a biomarker for depressive episodes that might respond preferentially to pharmacotherapy rather than psychotherapy. This sleep profile, which was evident in about 40% to 50% of unmedicated adults seeking ambulatory treatment for MDD,\(^{10-13}\) was found to be associated with poorer response to both interpersonal psychotherapy\(^{10}\) and cognitive behavioral therapy (CBT),\(^{11}\) but was not predictive of response to fluoxetine or imipramine.\(^{10}\) Interestingly, even when patients with this sleep biomarker responded to CBT, they were at high risk for subsequent recurrent episodes of depression,\(^{11}\) perhaps because successful treatment with CBT did not normalize sleep abnormalities.\(^{11}\)

Contemporary studies

Immune mechanisms

Although it is now widely recognized that depression is a proinflammatory state\(^{14}\) and a number of contemporary studies have examined immune status in relation to antidepressant response, a consistent pattern of immune dysfunction as a biomarker of antidepressant response has been observed to date.\(^{3}\) Cytokines and other markers of inflammatory response nevertheless are relevant to central nervous system stress responses\(^{14}\) and may contribute to the host of illness processes that may render some individuals more treatment-resistant.\(^{14,15}\) In this regard, the findings of the recent study by Raison and colleagues\(^{16}\) are most interesting. In this trial, 60 outpatients with MDD and a history of nonresponse to two or more antidepressants were randomized to receive either three infusions of infliximab (5 mg/kg), a tumor necrosis factor (TNF) antagonist (n=30) or placebo (n=30); infusions were given at baseline and repeated at weeks 2 and 6; outcomes were evaluated across 12 weeks. On the primary analysis, they found that patients who received active, inflammation-suppressing therapy were no more likely to respond to treatment than were those receiving placebo.

The potential differential therapeutic implications of an elevated C-reactive protein (CRP) level were likewise studied by Uher and colleagues.\(^{17}\) In this secondary analysis of a large-scale study primarily aimed at investigating genetic correlates of depression and treatment response, inflammatory markers were assessed in 241 patients with MDD prior to being randomized to 12 weeks of open-label therapy with either escitalopram or nortriptyline. Although the two antidepressants were comparably effective overall, patients with low pretreatment CRP levels were significantly more responsive to escitalopram, whereas those with high CRP levels were significantly more responsive to nortriptyline. Although replication is necessary, these findings do suggest that patients with high baseline inflammatory markers, while less responsive to selective serotonin reuptake inhibitors, may benefit from treatment with alternate approaches to therapy.

Transcriptomics

The potential importance of transcriptomics has been suggested by the results of a pair of recent, small studies.\(^{18,19}\) Pajer and colleagues ascertained genome-wide transcriptomic (RNA) profiles in blood of animals using two well-replicated animal models of depression, one hereditary and the other related to chronic stress.\(^{19}\) They identified a combined set of 26 transcripts and then searched for these putative biomarkers in the blood of 14 unmedicated adolescents with MDD and matched healthy controls. They found that a group of 11 transcriptomic markers differentiated the MDD patients from the healthy control group. Despite low statistical power for subgroup analyses, they found that a partly overlapping set of 18 transcripts separated the MDD subjects with high levels of anxiety from those who did not have co-morbid anxiety. Four transcripts that were detected only in the chronic stress model also were found in the depressed youths with a history of maltreatment (but not in the youths with no history of maltreatment). In the second study, blood RNA was examined in 32 adult outpatients with MDD and matched controls, focusing on 20 of the transcripts identified in the earlier study.\(^{19}\) They found that nine transcripts (ADCY3, DGKA, FAM46A, IGSF4A/CADM1, KIAA1539, MARCKS, PSME1, RAPH1, and TLR7) differentiated between groups at the nominal level of statistical significance, with effect sizes (Cohen’s \(d\)) ranging between 0.47 and 0.79. A total of 28 of the depressed subjects were reassessed 18 weeks later after completing a course of cognitive behavior therapy (CBT). At post-treatment, three transcripts (DGKA,
using the pupil as the indicator of cerebral activation.

cessing networks, are supported by parallel studies.

target different aspects of emotional information pro-

ehancing “top-down” control of negative emotions. The

stimuli reinforce the intuitive view that CBT works by

capacity to dampen emotional responses to negative

societal and may be targets for thera-

Neuroimaging studies using both PET and fMRI have

characteristic abnormalities that are both as-

Neuroimaging studies

studies using both PET and fMRI have sug-

ggested characteristic abnormalities that are both as-

Recent work suggests that some changes in neural correlates of information processing

can be evident within hours of first treatment expos-

Our own work suggests that CBT may capitalize

on depressed patients’ ability to suppress or distort their

negative cognitive and emotional responses to stimuli;

this feature is evident in the subgenual cingulate (sgACC;

BA25).25,26 Such an adaptive decrease in processing of

negative information is also evident in parallel studies

using the pupil as the indicator of cerebral activation.27

The findings linking psychotherapy response to the

capacity to dampen emotional responses to negative

stimuli reinforce the intuitive view that CBT works by

enhancing “top-down” control of negative emotions. The

converse notion, namely that pharmacotherapy or rTMS
target different aspects of emotional information pro-

cessing networks, are supported by parallel studies.21-23

The findings of McGrath and colleagues,28 who used

PET to study patterns of cerebral activation in 80 MDD

patients randomized to 12 weeks’ treatment with either

CBT or escitalopram, are therefore of interest. Among

study completers who either unequivocally remitted or

failed to benefit from treatment (n=38), regional cere-

bral activity in the right insula strongly predicted differ-

ential response to CBT and pharmacotherapy. Whereas

patients with relatively high levels of cerebral glucose ac-

tivity in this region responded well to pharmacotherapy

and not CBT, those with relatively low levels of glucose

metabolism in this region showed a preferential response
to CBT over pharmacotherapy. Assuming that increased

resting-state glucose activity in the right anterior insular

region is a marker of increased or sustained negative in-

formation processing bias, ie, a particular kind of severe

disturbance of adaptive affective processing, these find-
ings dovetail nicely with those from the fMRI studies of

predictors of CBT response. Moreover, as the biomark-
ers studied in the 1980s and 1990s were similarly associ-
ated with more severe depressive states, it may be that

the older and newer research models are pointing to the

same core pathophysiological process.

Establishing Moderators and Biosignatures of

Antidepressant Response for Clinical Care for

Depression

Perhaps the most ambitious systematic effort to de-

velop biomarkers to guide the treatment of MDD is

the project known as Establishing Moderators and

Biosignatures of Antidepressant Response for Clin-

cal Care for Depression (EMBARC). Led by Madhu-

kar Trivedi29 and colleagues at both the University of

Texas Southwestern Medical Center in Dallas, Texas

and Columbia University in New York City, this large-

scale study (n=400 patients with early-onset, recurrent

MDD) was funded in 2010 by the National Institute of

Mental Health. The study is built around an 8-week,

placebo-controlled, randomized controlled trial, with

patients who do not respond to the first course of active

treatment (sertraline) switched to a second course of

therapy with a dissimilar medication (bupropion) and

patients not responding to placebo switched to active

sertraline. Potential clinical moderators of treatment

response include symptom severity, anxiety, a history

of early trauma, chronicity, personality pathology, and

depressive subtypes (atypical depression and melan-

cholia). Potential biomarkers of treatment response in-

clude structural (cerebral cortical thickness) and func-

tional (reward and emotion conflict tasks) magnetic
resonance imaging (MRI), resting state connectivity, and cortical evoked potentials. Moderating effects are tested using pretreatment studies and potentially mediating effects are tested by repeating selected studies after 1 week on therapy. In addition, biological samples (eg, DNA, RNA, and plasma) will be collected before and during treatment and stored for future studies. One important feature of the EMBARC study is that a healthy control group is being recruited to ensure that “abnormalities” are indeed abnormal and to help confirm test-retest stability of selected measures. Another extremely important aspect of the EMBARC study is the effort taken to standardize the assessment battery across the multiple participating sites. Although results of EMBARC are not yet available, the study has completed enrollment and it can be anticipated that findings will begin to be presented at scientific meetings in 2015.

Future directions and conclusions

It is fair to say that no biological marker or biosignature of depression exists, nor that any particular constellation of neurobiological abnormalities has been definitively shown to have value for predicting differential response to antidepressant therapies. However, it is evident that progress is being made and several novel findings warrant further careful study. In this regard, studies utilizing neuroimaging methods appear to be pointing to factors that predispose to differential response to psychotherapy and pharmacotherapy, which in turn might also lead to a better means of predicting who might benefit from the two therapies together or in combination. Moreover, whereas a meta-analysis of three larger-scale studies failed to identify any replicable genetic markers of antidepressant response, 30 this does not preclude the possibility that specific genes involved in drug metabolism31 or neurotransmitter synthesis32 might have specific therapeutic implications. The specific impact of genes may of course be modified or shaped by life experiences and other epigenetic factors, which makes the transcriptomic approach of Redel and colleagues16,19 not only all the more interesting but also in the most acute need of larger-scale replication.

REFERENCES

1. Kessler RC, Merikangas KR, Wang PS. Prevalence, comorbidity, and service utilization for mood disorders in the United States at the beginning of the twenty-first century. *Ann Rev Clin Psychol.* 2007;3:137-158.

2. Insel TR, Wang PS. The STAR*D trial: revealing the need for better treatments. *Psychiatr Serv,* 2009;60:1466-1467.

3. Smith DF. Quest for biomarkers of treatment-resistant depression: shifting the paradigm toward risk. *Front Psychiatry,* 2013;4:57.

4. Thase ME, Howland R. Biological processes in depression: updated review and integration. In: Beckham EE, Leber WR, eds. *Handbook of Depression.* New York, NY: Guilford Press; 1995:213-279.

5. Ribeiro SC, Tandon R, Grunhaus L, Greden JF. The DST as a predictor of outcome in depression: a meta-analysis. *Am J Psychiatry.* 1993;150:1618-1629.

6. Owens M, Herbert J, Jones PB, et al. Elevated morning cortisol is a stratified population-level biomarker for major depression in boys only with high depressive symptoms. *Proc Natl Acad Sci U S A.* 2014;111:3638-3643.

7. Thase ME, Dubé S, Bowler K, Howland RH, Myers JE, Friedman E, Jarrett DB. Hypothalamic-pituitary-adrenocortical activity and response to cognitive behavior therapy in unmedicated, hospitalized depressed patients. *Am J Psychiatry.* 1996;153:886-891.

8. Thase ME, Kuper DJ. Current status of EEG sleep in the assessment and treatment of depression. In: Burrows GD, Werry JW, eds. *Advances in Human Psychopharmacology.* Volume 4. Greenwich, CT: JAI Press, Inc; 1987;93-148.

9. Benca RM, Obermeyer WH, Thisted RA, Gillin JC. Sleep and psychiatric disorders. A meta-analysis. *Arch Gen Psychiatry.* 1992;49:651-668.

10. Thase ME, Buyse DJ, Frank E, et al. Which depressed patients will respond to interpersonal psychotherapy? The role of abnormal EEG sleep profiles. *Am J Psychiatry,* 1997;154:502-509.

11. Thase ME, Simons AD, Reynolds CF 3rd. Abnormal electroencephalographic sleep profiles in major depression: association with response to cognitive behavior therapy. *Arch Gen Psychiatry.* 1996;53:99-108.

12. Thase ME, Kuper DJ, Fasiczka AJ, Buyse DJ, Simons AD, Frank E. Identifying an abnormal electroencephalographic sleep profile to characterize major depressive disorder. *Biol Psychiatry.* 1997;41:964-973.

13. Thase ME, Fasiczka AL, Berman SR, Simons AD, Reynolds CF 3rd. Electroencephalographic sleep profiles before and after cognitive behavior therapy of depression. *Arch Gen Psychiatry.* 1998;55:138-144.

14. Miller AH, Haroon E, Raison CL, Felger JC. Cytokine targets in the brain: impact on neurotransmitters and neurocircuitry. *Depress Anxiety.* 2013;30:297-306.

15. Carvalho LA, Torpe JP, Papadopoulos AS, et al. Lack of clinical therapeutic benefit of antidepressants is associated overall activation of the inflammatory system. *J Affect Disord.* 2013;148:136-140.

16. Raison CL, Rutherford RE, Woolwine BJ, et al. A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression: the role of baseline inflammatory biomarkers. *JAMA.* 2013;309:31-41.

17. Uher R, Tansey KE, Dew T, et al. An inflammatory biomarker as a differential predictor of outcome of depression treatment with escitalopram and nortriptyline. *Am J Psychiatry.* 2014. Epub ahead of print: doi: 10.1176/appi.ajp.2014.14010094.

Disclosures: Dr Thase has provided scientific consultation to Alkermes, Astra-Zeneca, Bristol-Myers Squibb Company, Eli Lilly & Company, Forest Pharmaceuticals, Inc, Gerson Lehman Group, GlaxoSmithKline, Guidedepoint Global, H. Lundbeck A/S, Medavante, Inc, Merck and Co. Inc, Neronetics, Inc, Novartis, Otsuka, Ortho-McNeil Pharmaceuticals, Pfizer (formerly Wyeth-Ayerst Laboratories), Shire US Inc, Sunovion Pharmaceuticals, Inc, and Takeda. Dr Thase receives grant funding from the Agency for Healthcare Research and Quality, Eli Lilly & Company, National Institute of Mental Health, Otsuka Pharmaceuticals, PharmaNeuroboost (ended 03/13), and Roche (ended 06/13). He has equity holdings in Medavante, Inc and receives royalty income from American Psychiatric Foundation, Inc, Guilford Publications, Herald House, Oxford University Press, and W.W. Norton & Company. His wife is employed as the Group Scientific Director for Peloton Advantage which does business with Pfizer.
El Trastorno Depresivo Mayor (TDM) es una condición heterogénea con una respuesta variable a una diversidad de tratamientos. A pesar de grandes esfuerzos, a la fecha no se ha identificado ningún biomarcador confiable que pueda predecir la respuesta o falta de ella para alguna forma de tratamiento, ni se ha encontrado alguno que pueda ser empleado para identificar a los pacientes con alto riesgo de desarrollar una depresión resistente al tratamiento (por ejemplo, falta de respuesta a una secuencia de tratamientos aplicados con una duración e intensidad adecuadas). Este artículo revisa algunas investigaciones antiguas que aportaron información, como los estudios que emplearon indicadores de hiperactividad o alteraciones del sueño, y hallazgos de investigaciones más recientes que han empleado marcadores de la inflamación y diferentes indicadores de activación cortical regional para predecir la respuesta terapéutica. Se concluye que, aunque se han realizado progresos, aún no se ha demostrado que algún método sea totalmente preciso para ser aplicado en la práctica clínica. Parece ser entonces que, en algún momento del futuro cercano, será posible identificar prospectivamente –al menos para algunos pacientes con TDM– la probabilidad de respuesta o falta de ella a la terapia cognitiva o a varios fármacos antidepresivos.

El empleo de biomarcadores para predecir la respuesta terapéutica en el Trastorno Depresivo Mayor: evidencias del pasado y estudios actuales

El Trastorno Depresivo Mayor (TDM) es una condición heterogénea con una respuesta variable a una diversidad de tratamientos. A pesar de grandes esfuerzos, a la fecha no se ha identificado ningún biomarcador confiable que pueda predecir la respuesta o falta de ella para alguna forma de tratamiento, ni se ha encontrado alguno que pueda ser empleado para identificar a los pacientes con alto riesgo de desarrollar una depresión resistente al tratamiento (por ejemplo, falta de respuesta a una secuencia de tratamientos aplicados con una duración e intensidad adecuadas). Este artículo revisa algunas investigaciones antiguas que aportaron información, como los estudios que emplearon indicadores de hiperactividad o alteraciones del sueño, y hallazgos de investigaciones más recientes que han empleado marcadores de la inflamación y diferentes indicadores de activación cortical regional para predecir la respuesta terapéutica. Se concluye que, aunque se han realizado progresos, aún no se ha demostrado que algún método sea totalmente preciso para ser aplicado en la práctica clínica. Parece ser entonces que, en algún momento del futuro cercano, será posible identificar prospectivamente –al menos para algunos pacientes con TDM– la probabilidad de respuesta o falta de ella a la terapia cognitiva o a varios fármacos antidepresivos.

Utilisation des biomarqueurs pour prédire la réponse au traitement dans le trouble dépressif majeur: données issues des études passées et présentes

Le trouble dépressif majeur (TDM) est une pathologie hétérogène dont la réponse à une large gamme de traitement est variable. Malgré des efforts considérables, à ce jour, aucun biomarqueur n’a été identifié pour prédire de façon fiable une réponse ou une non-réponse à un traitement donné, ou pour identifier les patients à risque élevé de développer une dépression résistante au traitement (c’est-à-dire l’absence de réponse après une série de traitements administrés avec une dose et une durée adéquates). Cet article passe en revue d’anciens domaines de recherche intéressants tels que les études sur les marqueurs d’un hypercortisolisme ou sur des anomalies du sommeil, ainsi que des résultats de travaux récents sur la mesure de l’inflammation et sur des indicateurs d’activation corticale régionale pour prédire la réponse au traitement. En conclusion, bien qu’aucun examen biologique précis n’ait été encore validé pour être utilisé en pratique clinique, des progrès ont été faits. Il est donc probable que, dans un futur pas trop éloigné, il sera possible d’identifier de façon prospective, au moins pour certains patients atteints de TDM, la probabilité de réponse ou de non-réponse à un traitement cognitif ou aux différents antidépresseurs.