Data Article

Characterization data of pulp fibres performance in tissue papers applications

Flávia P. Morais a, *, Raquel A.C. Bértolo b, Joana M.R. Curtó a, c, **, Maria E.C.C. Amaral a, Ana M.M.S. Carta b, Dmitry V. Evtyugin d

a FibEnTech - Fiber Materials and Environmental Technologies Research Unit, University of Beira Interior, Covilhã, Portugal
b RAIZ - Forest and Paper Research Institute, Aveiro, Portugal
c CIEPQPF - Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, University of Coimbra, Coimbra, Portugal
d CICECO/Department of Chemistry, University of Aveiro, Aveiro, Portugal

A R T I C L E I N F O

Article history:
Received 25 January 2020
Accepted 30 January 2020
Available online 6 February 2020

Keywords:
Cellulose materials
Fibres morphology
Pulps chemical properties
Tissue papers properties

A B S T R A C T

The data presented in this article are related to the original research paper entitled “Comparative characterization of eucalyptus fibres and softwood fibres for tissue papers applications” available in Materials Letter: X Journal [1]. In this article, six eucalyptus hardwood pulps and six softwood pulps were characterized in terms of morphological, chemical and water-related (by drainability and water retention index) properties. In addition, using these pulps, unpressed laboratory isotropic handsheets were produced with a basis weight of approximately 20 g/m², similarly to tissue papers. The key properties of tissue papers, namely structural properties, tensile index, absorption, and handfeel softness were analysed in these handsheets.

© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

DOI of original article: https://doi.org/10.1016/j.mblux.2019.100028.
* Corresponding author.
** Corresponding author. FibEnTech - Fiber Materials and Environmental Technologies Research Unit, University of Beira Interior, Covilhã, Portugal.
E-mail addresses: flavia.morais@ubi.pt (F.P. Morais), jmrc@ubi.pt (J.M.R. Curtó).

https://doi.org/10.1016/j.dib.2020.105253
2352-3409 © 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Data

Here we report experimental characterization data on six eucalyptus hardwood and six softwood pulps and un-pressed laboratory isotropic handsheets with a basis weight of approximately 20 g/m² [1]. Analysis of fibres morphology, chemical properties, drainability (Schöpper-Riegler degree - °SR), water retention value (WRV), structural, tensile, absorption and handfeel (HF) softness tissue properties are shown (Table 1). Some correlations found about these properties also are shown, namely tensile index versus curl and kinked fibres (Fig. 1) and tensile index versus softness (Fig. 2).

2. Experimental design, materials, and methods

2.1. Pulp samples

Twelve industrial kraft pulps (six eucalyptus hardwood and six softwood pulps), with different bleaching sequences, were analysed. For all samples, the dry matter content was determined by placing the samples on an infrared scale at 105 °C for 30 minutes, following an adaptation of ISO 638 standard.
Table 1
Fibers morphology, chemical composition, and tissue paper properties characterization for hardwood and softwood pulps.

Pulp samples	H_A	H_B	H_C	H_D	H_E	H_F	S_A	S_B	S_C	S_D	S_E	S_F
Fiber length^{a}, mm	0.84 ± 0.00	0.76 ± 0.00	0.77 ± 0.00	0.80 ± 0.00	0.71 ± 0.00	0.70 ± 0.00	1.96 ± 0.03	1.75 ± 0.03	1.73 ± 0.03	1.76 ± 0.02	1.69 ± 0.08	1.57 ± 0.02
Fiber width, μm	19.1 ± 0.2	18.2 ± 0.0	18.0 ± 0.2	18.8 ± 0.0	18.0 ± 0.1	18.3 ± 0.1	30.3 ± 0.5	29.4 ± 0.1	30.4 ± 0.2	30.8 ± 0.2	30.9 ± 0.3	29.9 ± 0.4
Coarseness, mg/100 m	8.4 ± 0.14	9.36 ± 0.18	6.71 ± 0.06	9.56 ± 0.15	8.22 ± 1.07	7.02 ± 0.63	19.66 ± 2.01	19.13 ± 2.88	16.81 ± 2.07	16.77 ± 1.72	18.83 ± 4.78	17.37 ± 1.71
Kinked fibers, %	43.7 ± 0.5	45.4 ± 0.5	50.4 ± 0.3	37.2 ± 0.1	51.6 ± 0.4	53.4 ± 0.5	55.1 ± 1.0	50.5 ± 0.8	51.7 ± 1.3	45.2 ± 0.7	47.1 ± 0.2	45.0 ± 1.0
Curl, %	10.4 ± 0.1	10.7 ± 0.2	12.3 ± 0.1	8.6 ± 0.0	12.5 ± 0.2	13.7 ± 0.2	14.4 ± 0.1	12.5 ± 0.2	13.2 ± 0.1	12.5 ± 0.2	12.7 ± 0.1	11.8 ± 0.2
Fines elements^{b}, %	45.6 ± 0.6	44.9 ± 0.2	40.0 ± 0.3	44.1 ± 0.9	43.7 ± 2.5	42.0 ± 1.6	34.1 ± 1.7	33.6 ± 3.2	29.9 ± 2.9	31.6 ± 2.8	30.4 ± 3.8	31.6 ± 1.4
Viscosity, mL/g	814 ± 0	790 ± 0	630 ± 0	915 ± 4	453 ± 0	973 ± 0	683 ± 9	699 ± 14	865 ± 4	844 ± 2	808 ± 0	656 ± 0
Pentosan content, %	19.5 ± 0.2	17.4 ± 0.0	16.4 ± 0.0	19.6 ± 0.3	21.1 ± 0.2	6.3 ± 0.0	8.6 ± 0.1	8.1 ± 0.0	8.3 ± 0.1	7.6 ± 0.1	10.3 ± 0.2	9.7 ± 0.5
Carboxylic groups content, mmol/100 g	5.05 ± 0.03	9.61 ± 0.18	9.26 ± 0.12	7.03 ± 0.05	5.02 ± 0.01	4.36 ± 0.05	10.60 ± 0.42	8.92 ± 0.32	8.73 ± 0.10	7.27 ± 0.04	1.89 ± 0.16	2.98 ± 0.04
TW, %	39.1 ± 0.3	45.9 ± 0.2	51.6 ± 0.0	44.1 ± 0.9	43.7 ± 2.5	42.0 ± 1.6	34.1 ± 1.7	33.6 ± 3.2	29.9 ± 2.9	31.6 ± 2.8	30.4 ± 3.8	31.6 ± 1.4
SR	18 ± 0	18 ± 0	21 ± 1	20 ± 0	20 ± 0	18 ± 0	12 ± 1	12 ± 1	13 ± 1	14 ± 1	14 ± 0	15 ± 0
WRV index, %	73.7 ± 1.9	76.9 ± 2.8	72.2 ± 2.1	76.3 ± 2.8	60.6 ± 2.6	63.1 ± 1.9	75.0 ± 1.5	63.7 ± 1.1	64.2 ± 3.9	70.1 ± 1.2	69.0 ± 2.4	72.5 ± 3.6
Bulk, cm^{3}/g	3.61 ± 0.03	5.68 ± 0.02	5.83 ± 0.02	3.55 ± 0.03	3.71 ± 0.02	3.55 ± 0.00	8.04 ± 0.03	7.49 ± 0.02	6.43 ± 0.02	6.53 ± 0.01	3.46 ± 0.03	3.54 ± 0.03
Tensile Index, N/m	5.67 ± 0.38	4.03 ± 0.19	4.29 ± 0.21	9.96 ± 0.21	2.73 ± 0.41	2.00 ± 0.35	4.49 ± 0.80	5.43 ± 0.58	8.36 ± 0.17	11.45 ± 0.99	6.12 ± 0.70	9.31 ± 0.34
Softness (HF)	76.0 ± 1.5	75.2 ± 2.5	79.6 ± 1.7	65.7 ± 2.1	81.7 ± 2.5	86.9 ± 3.7	71.7 ± 1.8	73.1 ± 2.0	68.1 ± 2.1	63.8 ± 3.0	75.8 ± 2.6	69.3 ± 2.7
Water Absorption Capacity, g/g	8.83 ± 0.05	8.19 ± 0.02	8.17 ± 0.02	8.08 ± 0.28	8.59 ± 0.37	8.45 ± 0.02	9.48 ± 0.19	9.03 ± 0.29	8.82 ± 0.36	8.34 ± 0.20	8.64 ± 0.22	8.42 ± 0.09

^{a} Length weighted in length.

^{b} % in length; Values reported are the mean ± standard variation. Raw data available in supplementary material.
2.2. Fibres morphological properties and pulps composition

The pulps morphological analysis was performed using a system based on image analysis, namely MorFi® (TECHPAP, Grenoble, France) equipment. The equipment integrates a digital camera and image analysis software for the automatic measurement of suspended fibres. Parameters such as length, width, coarseness, curl, kinks and fines were analysed. All assays were done in triplicate.

2.3. Chemical characterization

The pulp’s viscosity, the pentosan content and the carboxyl group content was determined according to SCAN-CM 15:88, TAPPI T 223 cm-10, TAPPI T 237 om-97 standard, respectively.

2.4. Pulps suspension characterization

The pulps drainability was evaluated considering the measurement of the Schopper-Riegler degree according to ISO 5267/1 standard. For each sample, triplicate assays were performed.

The Water Retention Value (WRV) was determined according to the method described by Jayme [2]. This method is based on centrifugation at 7000 revolutions per minute, about 2 g of wet pulp for 10 minutes. Thereafter, the already centrifuged pulp was removed and weighed exactly to

![Fig. 1. Correlation of tensile index and curl and kinked fibres for hardwood and softwood pulps.](image-url)
2.5. Laboratory isotropic handsheets preparation and testing

The handsheets of each pulp were produced according to an adaptation of ISO 5269-1 standard. Handsheets with a basis weight of approximately 20 g/m² and unpressed were produced to approximate more tissue paper, using a laboratory handsheet former according to the respective standard. Finally, the handsheets were removed from the former web with a blotting paper and placed in a conditioned room (temperature of 23.0 ± 1.0 °C and relative humidity of 50.0 ± 2.0%). For each assay, 10 replicates were carried out for each sample.

The handsheets produced were tested for various tissue paper properties like, thickness and bulk (ISO 12625-3), basis weight (ISO 12625-6), tensile index (ISO 12625-4), water absorption capacity (ISO 12625-8), and softness using a TSA - Tissue Softness Analyzer (Emtec) equipment. The handsheets porosity was also determined by the Henriksson et al. [3] equation:

\[
\text{Porosity} \% = 1 - \left(\frac{\rho_{\text{handsheets}}}{\rho_{\text{cellulose}}} \right) \times 100
\]

where \(\rho_{\text{handsheets}} \) corresponds to the handsheet’s apparent density and \(\rho_{\text{cellulose}} \) corresponds to the cellulose density (1.5 g/cm³).

Fig. 2. Correlation of tensile index and softness for hardwood and softwood pulps.
Acknowledgments

This research was supported by Project InPaCTus — Innovative Products and Technologies from eucalyptus, Project Nº 21 874 funded by Portugal 2020 through European Regional Development Fund (ERDF) in the frame of COMPETE 2020 nº 246/AXIS II/2017.

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.dib.2020.105253.

References

[1] F.P. Morais, R.A.C. Bértolo, J.M.R. Curto, M.E.C.C. Amaral, A.M.M.S. Carta, D.V. Evtyugin. Comparative characterization of eucalyptus fibers and softwood fibers for tissue papers applications, Mater. Lett. X 4 (2019) 100028, https://doi.org/10.1016/j.mblux.2019.100028.
[2] G. Jayme. Properties of wood cellulos: II. Determination and significance of water retention value, Tappi J. 41 (1958) 180A–183A.
[3] M. Henriksson, L.A. Berglund, P. Isaksson, T. Lindström, T. Nishino. Cellulose nanopaper structures of high toughness, Biomacromolecules 9 (2008) 1579–1585, https://doi.org/10.1021/bm800038n.