Research Paper
Toxicity Effects of Intraperitoneal Injection of Biochemical Nanosilver on Cardiac Tissue Structure Following Aerobic Training in Male Wistar Rats

Forough Javaheri Houshi1, *Asieh Abbassi-Daloii1, Ahmad Abdi1, Seyyed Javad Ziaolhagh2

1. Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran.
2. Department of Exercise Physiology, Shahrood Branch, Islamic Azad University, Shahrood, Iran.

ABSTRACT

Aims: Silver nanoparticles are among the most valuable products of nanoscale technology, widely used in various sciences. The present study investigated the effects of biochemical silver nanoparticles on the structure of the heart tissue of non-observatory rats in the course of aerobic training.

Methods & Materials: In this experimental study, 30 male Wistar rats aged 8 to 12 weeks and weighing 34.9±202 g were studied. The rats were randomly divided into 6 groups of control, aerobic training, and biochemical injection, aerobic and nanochemical injection, biochemical injection, and nanochemical injection. Chemical and biological silver was injected intraperitoneally after a period of aerobic training. The specimens were discarded after 48 hours, and the heart tissue was removed.

Findings: The obtained results revealed the tissue changes, including irregularities and the convergence of chemical nanosilver group significantly increased, compared to the controls. Additionally, in the biological group, there was a slight dispersion of blood in some areas. Following the aerobic training and injection of toxic nanosilver, there was no irregularities, detachment, and hypertension. Only in some areas, sporadically, the accumulation of blood cells was observed in the aerobic training and nanochemical groups.

Conclusion: More tissue damage occurred in chemical silver nanoparticles, than the biological nanoparticle. Possibly, aerobic training can be highly predictive of these effects.

Extended Abstract

1. Introduction

Silver nanoparticles have unique biochemical properties. These properties are not even found in the materials from which they are derived. The small size and high surface area of the nanoparticles increase their chemical activities and allow them to act as a high-performance catalyst [1, 2]. Such increased biochemical activities of many nanoparticles have led to their widespread applications; i.e., drug delivery, vaccination, and the diagnosis or treatment of numerous diseases [3, 4]. As the applications of silver nanoparticles increase, the odds of human exposure...
to these substances enhance [8, 9]. Oxidative stress induced by oxygen free radicals is among the main pathological factors in many diseases [18, 19].

There have been few studies on the toxicity effects of nanosilver following an exercise program on body tissues. Vasili et al. explored the impact of aerobic exercise on hepatotoxicity induced by iron oxide nanoparticles in Wistar rats. They reported lower hepatic tissue damage and elevated liver enzymes in the low-intensity aerobic exercise group [21]. Silver nanoparticles account for 56% of the world’s nanoparticles; however, few studies have been conducted on the effects of exercising on preventing the toxicity of nanoparticles on body tissues. Thus, this study aimed to evaluate the toxicity effect of chemical and biological nanosilver following an aerobic exercise course on the structure of cardiac tissue.

2. Methods

This experimental study was conducted on male Wistar rats at Islamic Azad University of Shahrood Branch in 2018. Thirty male Wistar rats were randomly assigned into six groups of control, Aerobic Exercise (AE), Aerobic Exercise-and NanoBiological Injection (AE + NB), Aerobic Exercise -NanoChemical Injection (AE+NCH), NanoBiological Injection (NB), and NanoChemical Injection (NCH). (Table 1 & 2 & Figure 1). Chemical and biological silver nanoparticles were injected intraperitoneally at a toxic dose after a period of aerobic training [25].

3. Results

The obtained results suggested that tissue changes, including irregularity and coagulation types, significantly increased in the NCH group, compared to the controls. Moreover, in the NB group, some scattered blood droplets were observed in some areas. Following aerobic exercise and the injection of toxic nanosilver in the NB group, no irregularity, isolation, and hyperemia were observed. In AE + NCH group, scattered blood cell aggregation was observed in some areas.

4. Discussion

The study results were consistent with those of Naghsh et al. [27]. They reported a slow change in the core and fibers of cardiac muscle after injecting a toxic dose of nanosilver; possibly indicating the onset of apoptosis. In our study, structural changes in cardiac tissue, cardiac muscle cells, and hyperemia were observed in the NCH group.

Song et al. argued that the toxic effects of silver nanoparticles are probably due to their effects on cell viability, oxidative stress, and cell cycle. The viability of cells and their metabolism are reduced by exposure to the toxic silver nanoparticles, leading to membrane damage and the reduced activity of superoxide dismutase and glutathione peroxides [27].

Another study indicated increased apoptosis and tissue necrosis following the use of silver nanoparticles in tissues like lung and heart [28]. This impact of chemical nanosilver may be due to the use of regenerative agents for their

Table 1. Aerobic training protocol

Week	Exercise Speed (m/min)	Vo2max (%)	Exercise Duration (min)
1	15	55	15
2	15	55	15
3	20	70	20
4	20	70	25
5	25	78	30
6	25	85	40
7	30	85	50
8	30	85	60
9	30	85	60
10	30	85	60
Table 2. Rating changes in cardiac tissue variables

Group	Structural Change of Heart Tissue	Muscle Cells	Necrosis	Inflammation	Hyperemia
Control	0	0	0	0	0
AE	0	0	0	0	0
NB	1	0	0	0	1
NCH	2	2	0	0	2
AE + NB	1	0	0	0	0
AE + NCH	2	1	0	0	1

*Changes are rated on a scale from 0 to 3; 0=No change, 1=Slight change, 2=Moderate change, 3=Severe change.

Figure 1. Histological section of the rat heart (hematoxylin & eosin staining ×400)

A: Control; B: AE; C: NB; D:NCH; E: AE+NB; F: AE + NCH
products which have potential risks to human health and the environment [29].

The obtained data are also consistent with the findings of Wisløff et al. [30]. Their study on rats revealed a 15% reduction in left ventricular hypertrophy after myocardial infarction; 15% and 12% reductions in the length and width of myocytes after aerobic exercise, respectively; and a 60% improvement in cardiac muscle contraction in people with myocardial infarction. They revealed the positive effect of aerobic exercise on heart regeneration and increased Ca²⁺ sensitivity on myocardial contractile [30].

It is suggested that by varying the dose of the chemical and biological silver nanoparticles, cardiac tissue structural parameters be measured after aerobic exercise. A limitation of the present study was disregarding the measurement of other structural parameters of cardiac tissue.

5. Conclusion

Biological and chemical nanosilver can damage the cardiac muscle tissue and cause necrosis and hyperemia in the heart tissue. Moreover, chemical silver nanoparticles appear to cause more damage to the heart tissue, compared to biological silver nanoparticles. Eventually, aerobic training can probably prevent these adverse effects to a large extent.

Ethical Considerations

Compliance with ethical guidelines

This study was performed according to the guidelines for laboratory animals of Islamic Azad University of Shahrood Branch (Code: 94.F.514.77).

Funding

This study was extracted from a Ph.D. thesis written by Forough Javaheri Houshi approved by the Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences at Islamic Azad University of Ayatollah Amoli Branch.

Authors’ contributions

All authors contributed in preparing this article.

Conflicts of interest

The authors declare no conflicts of interests.
This Page Intentionally Left Blank
بررسی اثر سمیت تزریق ذرات نانویی جعبه‌ای کربن در موش‌های نر ویستار

بررسی اثر سمیت تزریق ذرات نانویی جعبه‌ای کربن در موش‌های نر ویستار

فروغ جوهری‌موسوی ۱*، مهسا عباسی‌دل‌بیک ۱، احمد علی‌ی، سید جواد پیش‌لایق ۲

۱- گروه فیزیولوژی ورزشی، دانشکده تربیت بدنی، واحد آمل، دانشگاه آزاد اسلامی، آمل، ایران.
۲- گروه فیزیولوژی ورزشی، واحد اردکان، دانشگاه آزاد اسلامی، اردکان، ایران.

مقدمه
نانوذرات ویژگی‌های فیزیکی و شیمیایی منحصر به فردی دارند؛ به‌طوری که حتی این خصوصیات در موادی که از آن‌ها مشتق می‌شوند، یافت نمی‌شود. اندازه کوچک و مساحت سطحی بالای نانوذرات، سبب افزایش فعالیت شیمیایی آن‌ها می‌شود و به آن‌ها اجازه می‌دهد تا به عنوان یک کاتالیست با کارایی بالا عمل کنند.

نتایج نشان داد تغییرات بافتی، شامل بی‌نظمی و ازهم‌گسیختگی در گروه نانونقره شیمیایی در مقایسه با گروه کنترل یافته‌ها به میزان قابل توجهی افزایش یافت. همچنین در گروه نانوبیولوژیک اندکی خون در برخی نواحی به صورت پراکنده دیده شد.

نتیجه‌گیری
به نظر می‌رسد نانوذره نقره شیمیایی موجب آسیب بیشتر بافت قلب نسبت به نانوذره نقره بیولوژیکی می‌شود و تمرین هوازی احتمالاً می‌تواند از این اثرات به میزان زیاد پیشگیری کند.

کلمات‌کلیدی:
تمرین، نانوذرات نقره، سمیت، بافت قلب، موش صحرایی

شماره ۲۵، دوره ۱۳۹۸، تابستان
مقاله به‌ویژه

شماره ۱۳۹۷، تابستان
نامه‌نویس

بـ: گروه فیزیولوژی ورزشی، دانشکده تربیت بدنی، واحد آمل، دانشگاه آزاد اسلامی، آمل، ایران.
۱. Васили
شماره 25 دوره 1398 تابستان نانوذره نقره استفاده شده در تحقیق حاضر از دانشکده علوم پزشکی، ایرانچگاه آزاد اسلامی واحد شاهرود به صورت مایع و به میزان 50 سیسی خریده و با استفاده از مایع توزیع و سپس به صورت پودر ارسال گردید.

تولید نانوذره مذکور بر اساس تغییرات سلولی مشاهده شده در لوله خازه و سی سی خریداری شده است. نانوذرات مذکور برابر با میزان 60 میلی‌متری مجافت با نمک نیترات نقره در محیط کشت قارچ فیوزاریوم 94ق9 مشاهده شده است.

پس از انجام تمرین هوازی، نانوذرات نقره به صورت مایع و به میزان 10 میلی‌لیتر به هر همیلتونی و یک روز در میان و هر نوبت ساعت از آخرین تزریق رت‌ها درون صفاقی تزریق شد. پس از 15 ساعت از آخرین تزریق، حیوانات روی تخته جراحی قرار گرفتند و بافت قلب و قلب بلافاصله بافت قلب قلبی برداشته شد و با توجه به اخلاقیات حیوانات، بافت و لام‌ها مورد نگهداری و سبز برای انجام روش‌های بافت شناسی تهیه شدند.

مطالعات مایکروسکوپیک و همیشه فلیکسوکروگر صورت گرفت. در همین راستا در زیر مایکروسکوپیک و برای گزارشی 4000 چهار جزئیه مشاهده شد و از آن اکسیر برداشت شد. در هر زمینه عمل سیالی، در هر بیماری 1/3 مضارک در شدت، درجه 1/3 و 1/3 تغییرات شدید مربوط به شکل‌دهی شده. در هر کدام تغییرات سلولی مشاهده شد، شکل‌دهی شده، رنگ و شکل سیلولی‌ها مشاهده شد.

یافته‌ها

در بررسی وزن حیوانات مطالعه‌شده تفاوت معنی‌داری در بین گروه‌ها و همچنین قبل و بعد از تزریق نانوذرات نقره، بیولوژیکی و شیمیایی مشاهده شد. در میان گروه‌ها که در نمونه‌گیری لوله‌های مایعی 30٪، 50٪ و 70٪ آنها نانوذرات نقره از بافت قلبی برداشته شده بود، تغییرات در سلول‌های بافتی مشاهده شد. پس از انجام تمرین هوازی نانوذرات نقره بیولوژیکی و شیمیایی

نتایج مطالعه حاضر حاکی از آن است که در گروه‌های بیولوژیکی و شیمیایی تغییرات معنی‌داری در وزن حیوانات مشاهده نمی‌شود. در گروه‌های دیگر نانوذرات نقره به طور کلی در بافت اثرات قسمت و انجمام سلولی دیده می‌شود. گرچه نتایج ترمینی (متر بر دقیقه) $

هفته‌های تمرین	سرعت تمرین (متر بر دقیقه)	خاطرات قلبی
1	1	1
2	1	1
3	2	2
4	2	2
5	3	3
6	3	3
7	4	4
8	4	4
9	5	5
10	5	5

2. Fusarium oxysporum
بر میزان فواصل بین سلولی افزوده شده و جداشدگی بافتی رؤیت می‌شود. سلول‌های عضلانی یکنواخت و هسته روشن و مشخص دارند. سلول‌های هم‌بندی نیز در فواصل بین سلول‌های عضلانی با تعداد و شکل مناسب دیده می‌شوند. تنها مقدار اندکی خون در برخی نواحی به صورت پراکنده دیده می‌شود. در نمونه‌های گروه شیمیایی تنها در برخی نواحی بافت، ازهم گسیختگی کمی مشاهده شد. همچنین در نمونه‌های گروه بیولوژیک تنها در برخی نواحی بافت، ازهم گسیختگی کمی مشاهده شد. نظم در اغلب نواحی وجود داشت و سلول‌های عضلانی قابل شکل مناسب هسته روشن و سیتوپلاسم منظم و یکنواخت داشتند. اثری از پرخونی و التهاب در بافت مشاهده نشد. در فواصل بین سلولی عضلانی نیز سلول‌های بافت مشغول به تعداد مناسب و استحکام مشخص قابل رؤیت هستند. نتایج نشان داد در نمونه‌های گروه شیمیایی، تغییرات بالقوه نسبت به گروه

![تصاویر](تصاویر.jpg)

A: گروه کنترل، B: گروه هوازی، C: گروه پیلوزکد، D: گروه شیمیایی، E: گروه شیمیایی پیلوزکد، F: گروه هوازی شیمیایی

پرخونی و التهاب در بافت مشاهده شد. در فواصل بین سلولی عضلانی نیز سلول‌های بافت مشغول به تعداد مناسب و استحکام مشخص قابل رؤیت هستند. نتایج نشان داد در نمونه‌های گروه شیمیایی، تغییرات بالقوه نسبت به گروه
در فرآیند کننده در شیمیایی، التهاب کمتری دارند؛ به طوری که از شدت بی‌نظمی و جداشدگی به صورت غیرمحسوس کاسته می‌شود و بالاترین واکنشهای سلولی مشخصه‌ای از میزان پرخونی نیز کاسته شده است و تنها در برخی نواحی و به‌صورت پراکنده سلول‌های خونی تجمع دارند و در بافت تغییرات (تصویر شماره ۱) باورکننده و جمله‌ای است. همچنین در بافت، اثرات نظم و انسجام سلولی دیده می‌شود. مقدار اندکی خون در برخی نواحی و به‌صورت پراکنده دیده می‌شود.

در نمونه‌های گروه بیولوژیک به‌طور کل در بافت، اثرات نظم و انسجام سلولی دیده می‌شود. گرچه بر میزان فواصل بین سلولی افزوده شده و جداشدگی بافتی رویت می‌شود، سلول‌های عضلانی سیتوپلاسم یکنواخت و هسته روشن و مشخص دارند. سلول‌های هم‌بندی نیز در فواصل بین سلول‌های عضلانی مشاهده می‌شود. در نمونه‌های گروه شیمیایی اثرات بی‌نظمی و ازهم گسیختگی به میزان قابل توجهی در بافت افزایش یافته است. اگرچه ستون‌های عضلات قلب شکل مناسب دارند، اما انشعابات آنها اندک است. در برخی نواحی و به‌صورت پراکنده سلول‌های خونی تجمع دارند و در بافت تغییرات (تصویر شماره ۱) باورکننده و جمله‌ای است.

نتیجه آزمایشات تحقیق حاضر نشان داده که در نمونه‌های گروه کنترل مشکل بافت قلب در مقایسه با نمونه‌های ویژه میزان پرخونی، کاهش در اثر استرس اکسیداتیو و چرخه سلولی و حفظ یافته می‌شود. بعضی از نمونه‌های گروه بیولوژیک و شیمیایی نیز نشان دادند که در نمونه‌های گروه‌های بیولوژیک و شیمیایی، کاهش در آپوپتوز بیانگر تغییرات خفیف در بافت می‌باشد. در نمونه‌های گروه بیولوژیک و شیمیایی، کاهش در آپوپتوز بیانگر تغییرات خفیف در بافت می‌باشد. در نمونه‌های گروه بیولوژیک و شیمیایی، کاهش در آپوپتوز بیانگر تغییرات خفیف در بافت می‌باشد.
می‌تواند هیچ‌گونه تاثیر نانو نقره بیولوژیکی و شیمیایی ممکن است به علت استفاده از موصل احیاکننده در اثر تزریق تئودروم کویرال شیمیایی باشد که می‌تواند برای سلامتی انسان و محیط زیست خطر نسبی فراوانی نشان دهد با این حال، نانوذرات نقره زیستی به علت وجود مواد و ترکیبات قابلیت از شروع مراحل به مهارت قابل توجه فعال است.

ملاحظات اخلاقی

پیروی از اصول اخلاق پژوهش

این مطالعه بر اساس دستورالعمل کار با حیوانات آزمایشگاهی مطالعه آزاد شاهرود با کد شماره 1377141544، انجام شده است. همچنین همه آزمایش‌ها بر اساس خط مشی‌های قرارداد هلسینکی اجرا شد.

نتایج

این تحقیق مستورت‌یافته است که برخی فروغ جوهری هوشی، در گروه بیولوژیکی و در نمونه‌های گروه هوازی دارای اثرات سطحی از لحاظ صورت‌نگارانی، همچنین نمونه‌های گروه هوازی بیولوژیکی نیز سطحی از لحاظ صورت‌نگارانی دارند.

مطالعه‌های مشابه

در سه مطالعه مشابه دیده شده که نانو نقره بیولوژیکی و شیمیایی می‌تواند ناکامی‌گری و بی‌دردی در بافت قلب و ایجاد نکروز و پرخونی در بافت قلب رخ دهد. همچنین به نظر می‌رسد نانوذره نقره، موجب آسیب بیشتر بافت قلب نسبت به نانوذره نقره بیولوژیکی می‌شود و تمرین هوازی احتمالاً می‌تواند از این اثرات به مهاره‌ای‌ترین کنند.

نتیجه‌گیری

نتایج تحقیق نشان داد که نانوذره بیولوژیکی و شیمیایی موجب آسیب به بافت عضله قلب و ایجاد نکروز و پرخونی در بافت قلب

4. Wisløff
References

[1] Erb U, Aust KT, Palumbo G. Nanostructured materials: Processing, properties and potential applications. New York: Noyes Publications; 2002.

[2] Goddard WA, Brenner DW, Lyshevski SE, Iafrate GJ. Handbook of nanoscience engineering, and technology. USA: CRC Press; 2002. [DOI:10.1201/9781420040623]

[3] Chen X, Schluesener HJ. Nanosilver: a nanoproduct in medical application. Toxicology Letters. 2008; 176(1):1-12. [DOI:10.1016/j.toxlet.2007.10.004] [PMID]

[4] Buzea C, Pacheco I, Robbie K. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases. 2007; 2(4):17-71. [DOI:10.1116/1.2815690]

[5] Gibbons B, Warner L. The role of antimicrobial silver nanotechnology. Medical Device and Diagnostic Industry Magazine. 2005; 27(5):164-9.

[6] Panacek A, Kvetek R, prucek R, Kolar M. et al Silver colloid nanoparticles: synthesis, characterization, and antibacterial activity. The Journal of Physical Chemistry. 2006; 110(33):16248-53. [DOI:10.1021/jp063826h] [PMID]

[7] Tang J, Xi T. [Status of biological evaluation on silver nanoparticles(Chinese)]. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2008; 25(4):586-61. [PMID]

[8] Panalya NR, Pena-Mendez EM, Havel J. Silver or silver nanoparticles: A hazardous threat to the environment and human health? Journal of Applied Biomedicine. 2008; 6:117-29. [DOI:10.3272/jab.2008.015]

[9] Ostiguy C, Soucy B, Lapointe G, Woods C. Health Effects of Nanoparticles. Montreal: Institut de Recherche Robert-Sauvé en santé et en sécurité du travail; 2008.

[10] Hamrahi-Michak M, Sadeghi SA, Haghighi H, Ghanbari-Kakavandi Y, et al. The effect of cerium oxide NP on blood cells of male rat. Annals of Biological Research. 2012; 3(6):2859-66.

[11] Ranjbar Sardari RR, Rezaei Zarchi S, Talebi A, Nasri S. et al. The toxicity effect of colostrum along with aerobic and anaerobic exercise on lipid peroxidation and total antioxidant capacity of male wistar rats (Persian). Armaghane danesh Journal. 2016; 21(3):265-77.

[12] Pourali P, Yahyaei B. Biological production of silver nanoparticles by soil isolated bacteria and preliminary study of their cytotoxicity and cutaneous wound healing efficiency in rat. Journal of Trace Elements in Medicine and Biology. 2016; 34:22-31. [DOI:10.1016/j.jtemb.2015.11.004] [PMID]

[13] Parka E, Bae E. Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nanoparticles. Environmental Toxicology and Pharmacology. 2010; 30(2):162-68. [DOI:10.1016/j.etap.2010.05.004] [PMID]

[14] Kim YS, Kim JS, Cho HS, Rha DS, et al. Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague-Dawley rats. Inhal. Toxicol. 2008; 20(6):575-83. [DOI:10.1080/08958370701874663] [PMID]

[15] Hyun JS, Lee BS, Ryu HY, Sung JH, et al. Effects of repeated silver nanoparticles exposure on the histological structure and mucins of nasal respiratory mucosa in rats. Toxicology Letters. 2008; 182(3):24-8. [DOI:10.1016/j.toxlet.2008.08.003] [PMID]

[16] Silka SC, Rajasekaran M, Hellstrom WJ. Role of oxidative stress and antioxidants in male infertility. Journal of Andrology. 1995; 16(6):464-8.

[17] Agarwal A, Saleh RA, Bedawey MA. Role of reactive oxygen species in the pathophysiology of human reproduction. Fertility and Sterility. 2003; 79(4):829-43. [DOI:10.1016/S0015-0282(02)04948-8]

[18] Ochsendorf FR. Infection in male genital tract and reactive oxygen species: 1999. [DOI:10.1093/humupd/5.5.399] [PMID]

[19] Ahn J, Kim J. Mechanisms and consequences of inflammatory signaling in the myocardium. Current Hypertension Reports. 2012; 14(6):510-16. [DOI:10.1007/s11906-012-0309-0] [PMID]

[20] Almofti MR, Ichikawa T, Yamashita K, Terada H, Shinohara Y. Silver ion induces a cyclosporine a-insensitive permeability transition in rat liver mitochondria and release of apoptogenic cytochrome c. Journal of Biochemistry. 2003; 134(1):43-9. [DOI:10.1093/jb/mgl111] [PMID]

[21] Vasili A, Sharifi G, Faramarz M, Noori A, Yazdanshenas S. The effect of aerobic exercise on hepatotoxicity induced by intratracheal instillation of iron oxide nanoparticles in Wistar rats. General Physiology and Biophysics. 2016; 35(1):35-43. [DOI:10.4149/gpb_2015031] [PMID]

[22] Shin SH, Ye MK. The effect of nano-silver on allergic rhinitis model in mice. Clinical and Experimental Otorhinolaryngology. 2012; 5(4):222-7. [DOI:10.3342/ceo.2012.5.4.222] [PMCID] [PMCID]

[23] Wang Z, Xia T, Liu S. Mechanisms of nanosilver-induced toxicological effects: more attention should be paid to its sublethal effects. Nanoscale. 2015; 7(17):7470-81. [DOI:10.1039/C5NR01133G] [PMID] [PMCID]

[24] Lee JH, Kim YS, Song KS, Ryu HR, Sung JH, Park JD, et al. Biopersistence of silver nanoparticles in tissues from Sprague-Dawley Rats. Particle and Fibre Toxicology. 2013; 10(1):36-47. [DOI:10.1186/1743-8977-10-36] [PMID] [PMCID]

[25] Mogharnasi M, Baya J, Foadoddini M, Saleheinia M, Shaha-mat Nashtifani F. [The effect of colostrum along with aerobic and anaerobic exercise on lipid peroxidation and total antioxidant capacity of male wistar rats (Persian)]. Armaghane danesh Journal. 2016; 21(3):265-77.

[26] Wisløff U, Currie S, Smith GL, Ellingsen Ø. Aerobic exercise reduces cardiomyocyte hypertrophy and increases contractility, Ca2+ sensitivity and SERCA-2 in rat after myocardial infarction. Cardiovascular Research. 2003; 54(1):162-74. [DOI:10.1016/S0008-6363(01)00565-X] [PMID] [PMCID] [PMCID]

[27] Martirosyan, A. Bazes, Y. Schneider. Nanotoxicology, 2014; 8(5):573-82. [DOI:10.3109/17435390.2013.812258] [PMID]

[28] Akradi L, Sohrabi Haghdoost I, Djeddi AN. Histopathologic and apoptotic changes in rat liver mitochondria and release of apoptogenic cytochrome c. Journal of Pathology and Immunopathology Research. 1987; 6(6):301-15.

[29] Ojeda FS, Alvarez R, Hernandez-Cervantes J, et al. The effect of repeated silver nanoparticle exposure on the histological structure and mucins of nasal respiratory mucosa in rats. Toxicology Letters. 2008; 182(3):24-8. [DOI:10.1016/j.toxlet.2008.08.003] [PMID]

[30] Wisløff U, Loennechen JP, Currie S, Smith GL, Ellingsen Ø. Aerobic exercise reduces cardiomyocyte hypertrophy and increases contractility, Ca2+ sensitivity and SERCA-2 in rat after myocardial infarction. Cardiovascular Research. 2003; 54(1):162-74. [DOI:10.1016/S0008-6363(01)00565-X] [PMID] [PMCID] [PMCID]