Basis functions for electronic structure calculations on spheres

Peter M.W. Gill,¹⁺ Pierre-François Loos,¹⁻ and Davids Agboola¹

Research School of Chemistry, Australian National University, ACT 2601, Australia

We introduce a new basis function (the spherical gaussian) for electronic structure calculations on spheres of any dimension D. We find general expressions for the one- and two-electron integrals and propose an efficient computational algorithm incorporating the Cauchy-Schwarz bound. Using numerical calculations for the $D = 2$ case, we show that spherical gaussians are more efficient than spherical harmonics when the electrons are strongly localized.

¹⁺Electronic mail: peter.gill@anu.edu.au
¹⁻Electronic mail: Corresponding author: pf.loos@anu.edu.au
I. INTRODUCTION

Consider electronic structure calculations in which the electrons move in D-dimensional cartesian space \mathbb{R}^D. If the molecular orbitals (MOs) are delocalized throughout space, the plane waves
\begin{equation}
q_k(r) = \exp(\mathbf{i} \mathbf{k} \cdot \mathbf{r}), \quad \mathbf{r} \in \mathbb{R}^D
\end{equation}
form a good basis, because the product of two is a third
\begin{equation}
q_{k_1}(r)q_{k_2}(r) = q_{k_1+k_2}(r)
\end{equation}
If the MOs are localized, the cartesian gaussians
\begin{equation}
g_{\alpha}^A(r) = \exp(-\alpha |\mathbf{r} - \mathbf{A}|^2), \quad \mathbf{r} \in \mathbb{R}^D
\end{equation}
are effective, again because the product of two is a third
\begin{equation}
g_{\alpha}^A(r)g_{\beta}^B(r) = Kg_{\alpha+\beta}^P(r)
\end{equation}
where
\begin{equation}
K = \exp(-\alpha\beta|\mathbf{A} - \mathbf{B}|^2/(\alpha + \beta))
\end{equation}
\begin{equation}
P = (\alpha \mathbf{A} + \beta \mathbf{B})/(\alpha + \beta)
\end{equation}

Now consider calculations in which the electrons move on the D-dimensional sphere \mathbb{S}^D, i.e. on the surface of a $(D + 1)$-dimensional unit ball. If the average interelectronic separation r_s is small, the MOs are delocalized over the sphere and the (hyper)spherical harmonics
\begin{equation}
Q_{k,K}(r) = Y_{k,K}(r), \quad \mathbf{r} \in \mathbb{S}^D
\end{equation}
(where K is a composite index) provide a useful basis because it is single-valued and the product of two of these functions is a finite sum of several others
\begin{equation}
Q_{k_1,K_1}(r)Q_{k_2,K_2}(r) = \sum_k \sum_K c_{k,K}Q_{k,K}(r)
\end{equation}
where $c_{k,K}$ is a generalized Clebsch-Gordan coefficient. However, if r_s is large and the MOs are localized, what are good basis functions?

In this paper, we propose that spherical gaussian functions (SGFs) are a natural basis set for localized MOs on a sphere. In Section we define SGFs and show that the product of two is a third. In Section we resolve the Coulomb operator on a sphere and use...
If we define \(u = \mathbf{r} - \mathbf{A} \) then, for a unit sphere, we have \(u^2 = 2(1 - \mathbf{A} \cdot \mathbf{r}) \) and \(G^A_\alpha (\mathbf{r}) \propto \exp [\alpha (1 - u^2/2)] \) therefore decays as a cartesian Gaussian in \(u \). (See Fig. 1.) The SGF is single-valued and smooth and decays from a maximum at \(\mathbf{r} = \mathbf{A} \) to a minimum at \(\mathbf{r} = -\mathbf{A} \).

If \(\alpha \) is small, the SGF is almost constant over the sphere; if \(\alpha \) is large, the SGF is strongly peaked around \(\mathbf{A} \). For this reason, it is a natural basis function for a localized MO on a sphere.

\[
G^A_\alpha (\mathbf{r}) = \frac{\exp(\alpha \mathbf{A} \cdot \mathbf{r})}{\sqrt{2\pi (\pi/\alpha)^\lambda I_\lambda(2\alpha)}}, \quad \mathbf{r} \in S^D
\]

(9)
FIG. 1. An example of the SGF product rule on the unit ring, where $\alpha = 25$, $A = (\cos \pi/3, \sin \pi/3)$, $\beta = 50$ and $B = (\cos \pi, \sin \pi)$ yields $\zeta = 25\sqrt{3}$ and $P = (\cos [5\pi/6], \sin [5\pi/6])$.

The product of two SGFs is a third SGF, because

$$\exp(\alpha A \cdot r) \exp(\beta B \cdot r) = \exp(\zeta P \cdot r)$$ (11)

$$\zeta = \sqrt{\alpha^2 + \beta^2 + 2\alpha\beta \cos \theta}$$ (12)

$$P = (\alpha A + \beta B)/\zeta$$ (13)

where $\cos \theta = A \cdot B$. (See Fig. 1)

III. INTEGRALS OVER SPHERICAL GAUSSIANS

The hyperspherical harmonic addition theorem for points on the unit D-sphere that subtend an angle ω is

$$C_n^\lambda(\cos \omega) = \frac{2\pi}{n + \lambda \Gamma(\lambda)} \sum_K Y_{n,K}^*(r_1)Y_{n,K}(r_2)$$ (14)
where \(C_n^\lambda \) is a Gegenbauer polynomial and \(\Gamma \) is the Gamma function. The resolution of the Coulomb operator on the \(D \)-sphere is therefore

\[
 r_{12}^{-1} = (2 - 2 \cos \omega)^{-1/2}
 = \sum_{n=0}^{\infty} \frac{\left\langle (2 - 2 \cos \omega)^{-1/2} \right| C_n^\lambda (\cos \omega) \right| C_n^\lambda (\cos \omega)}{\Gamma(n + \frac{1}{2})(n + \frac{1}{2} + 2\lambda)}
 = (4\pi)^{\lambda} \sum_{n=0}^{\infty} \frac{\Gamma(n + \frac{1}{2}) \Gamma(\lambda)}{\Gamma(n + \frac{1}{2} + 2\lambda)} \sum_K Y_{n,K}^* (r_1) Y_{n,K} (r_2)
\]

The product rule yields the overlap integral

\[
 \langle G_A^\alpha | G_B^\beta \rangle = \frac{I_\lambda(\zeta)/\zeta^\lambda}{\sqrt{I_\lambda(2\alpha)I_\lambda(2\beta)/(4\alpha\beta)^\lambda}}
\]

and re-normalized kinetic integral (with \(\hat{T} \equiv -\nabla^2 / 2 \))

\[
 \frac{\left(G_A^\alpha \right| \hat{T} \left| G_B^\beta \right) \left(G_A^\alpha \right| G_B^\beta \rangle = \frac{I_{\lambda+1}(\zeta) (2\lambda + 1) \alpha \beta \cos \theta}{2\zeta} - \frac{I_{\lambda+2}(\zeta) (\alpha \beta \sin \theta)^2}{2\zeta^2}
\]

Using the Coulomb resolution, it can be shown that the re-normalized electron repulsion integral (ERI), in chemist’s notation, is

\[
 \langle G_A^\alpha G_B^\beta \left| G_C^\gamma G_D^\delta \right) \left(G_A^\alpha \right| G_B^\beta \rangle \left(G_C^\gamma \right| G_D^\delta \rangle = \frac{4\lambda \Gamma(\lambda)^2}{2\pi} \sum_{n=0}^{\infty} \frac{\Gamma(n + \frac{1}{2})(n + \lambda) I_{n+\lambda}(\zeta) I_{n+\lambda}(\eta)}{\Gamma(n + \frac{1}{2} + 2\lambda) I_\lambda(\zeta) I_\lambda(\eta)} C_n^\lambda (\cos \chi)
\]

where \(\eta \) and \(Q \) are ket analogs of \(\zeta \) and \(P \), respectively, and \(\cos \chi = P \cdot Q \). Special cases of these formulae for \(D = 1 \) (a ring), \(D = 2 \) (a normal sphere) and \(D = 3 \) (a glome) are given in Table I. (It should be noted that the ERI for \(D = 1 \) is the finite part of an infinite quantity.)

IV. COMPUTATIONAL EFFICIENCY

In a calculation using \(N \) SGFs, computing the non-negligible ERIs is often the most time-consuming step and, for efficiency, one should use both two-center and four-center cutoffs. The Cauchy-Schwarz bound

\[
 \langle G_A^\alpha \left| G_B^\beta \left| G_C^\gamma \right| G_D^\delta \rangle \leq Z_{\alpha\beta} Z_{\gamma\delta}
\]
is particularly useful because the required factors
\[Z_{\alpha \beta} = \left(G_A^G B^G \mid G_A^G B^G \right)^{1/2} \]
\[= \frac{(G_A^G \mid G_B^G)}{I_\lambda(\zeta)/\zeta^\lambda} \sqrt{\frac{1_F(\lambda + \frac{1}{2}, \lambda + 1, 2\lambda + \frac{1}{2}, \zeta^2)}{2\lambda \Gamma(2\lambda + \frac{1}{2})\sqrt{\pi}}} \]
(20)

(where \(1_F \) is the generalized hypergeometric function\[12\]) can be found in closed form. For example, for \(D = 2 \),
\[Z_{\alpha \beta} = \frac{(G_A^G \mid G_B^G)}{i_0(\zeta)} \sqrt{\frac{\pi}{2} \frac{L_0(2\zeta)}{2\zeta}} \]
(21)

where \(L_0 \) is a modified Struve function\[12\].

In practice, the sum in (18) must be truncated after \(M \) terms but this is not problematic because the series converges rapidly.

In summary, we recommend the following algorithm:

1: npairs ← 0
2: for \(i = 1, N \) do
3: for \(j = i, N \) do
4: if \((G_i \mid G_j) > \text{threshold} \) then
5: npairs ← npairs + 1
6: Compute \(I_{n+\lambda}(\zeta)/I_\lambda(\zeta) \) for \(0 \leq n \leq M \)
7: Compute \(T_{ij} = (G_i \mid \hat{T} \mid G_j) \)
8: Compute \(Z_{ij} = \sqrt{(G_i G_j \mid G_i G_j)} \)
9: end if
10: end for
11: end for
12: for \(ij = 1, \text{npairs} \) do
13: for \(kl = ij, \text{npairs} \) do
14: if \(Z_{ij} Z_{kl} > \text{threshold} \) then
15: Compute \((G_i G_j \mid G_k G_l) \)
16: end if
17: end for
18: end for

The Gegenbauer polynomials needed in step 15 (see Table II) should be found by forward
TABLE II. Thomson lattices, point groups, vibrational representations Γ_{vib}, Wigner energies E_0 and E_1, optimal single-zeta exponents α, double-zeta HF energies E_{HF}, exact energies E and reduced correlation energies \bar{E}_c (all in mE_h) for n same-spin electrons on a 2-sphere with Seitz radius $r_s = 2R/\sqrt{n} = 100$. The final two rows give the number N_G of spherical gaussians and number N_Y of spherical harmonics required to achieve E_{HF}.

n	2	3	4	6	8	12	24
Lattice diameter triangle tetrahedron octahedron anti-cube icosahedron snub cube							
Point group	$D_{\infty h}$	D_{3h}	T_d	O_h	D_{4d}	I_h	O
Γ_{vib}	Π_u	$A''_u + E'$	$E + T_2$	T_{2g}^+	$A_1 + B_1 + B_2^+$	$G_g + H_g^+$	$2A_1 + 2A_2^+$
$T_{1u} + T_{2u}$	$2E_1 + 2E_2 + E_3$	$T_{1u} + G_u + H_u$	$4E + 5T_1 + 6T_2$				
E_0	7.071	20.000	36.742	81.529	139.125	283.856	911.811
$E_0 + E_1$	7.912	21.525	39.125	85.573	144.727	292.832	930.387
α	0.050	0.071	0.084	0.107	0.127	0.156	0.227
E_{HF}	8.263	22.194	39.822	86.438	145.929	294.256	933.275
E	7.993	21.589	39.102	—	—	—	—
$-\bar{E}_c$	0.135	0.202	0.180	~ 0.14	~ 0.15	~ 0.12	~ 0.12
N_G	2	6	8	12	16	24	48
N_Y	36	36	81	196	144	≥ 225	≥ 225

a E_0 is the Coulomb energy of the Thomson lattice; E_1 is the harmonic zero-point vibrational energy of the lattice.

Recursion, e.g.

$$T_n(z) = 2zT_{n-1}(z) - T_{n-2}(z)$$ \hfill (22)

$$P_n(z) = \frac{2n-1}{n} z P_{n-1}(z) - \frac{n-1}{n} P_{n-2}(z)$$ \hfill (23)

$$U_n(z) = 2zU_{n-1}(z) - U_{n-2}(z)$$ \hfill (24)
V. NUMERICAL RESULTS

In 1904, J.J. Thomson asked[19] what arrangement of n identical charges on a sphere minimizes their electrostatic energy E_0. This deceptively simple question and its various generalizations have led to much work[20] and, although rigorous mathematical proofs are rare,[20] careful numerical investigations[21] have provided optimal or near-optimal arrangements for many values of n.

Thirty years later, Wigner discovered[22] that a low-density electron gas will spontaneously “crystallize”, each electron moving with small amplitude around a lattice site in what is now called a “Wigner crystal” (or, in case of a finite number of particles, a Wigner molecule). Such crystals have also been observed for electrons confined within harmonic wells,[23–27] cubes,[28] squares[29] and spheres.[30]

The exact energy of a Wigner molecule can be approximated by the sum of its Thomson energy E_0 and the harmonic zero-point energy E_1 of the electrons as they vibrate around the lattice sites.[30] These vibrations can be classified according to their irreducible representations Γ_{vib} within the point group of the Thomson lattice[31] (see Table II).

To illustrate the usefulness of SGFs, we have studied n same-spin electrons on a 2-sphere with radius R and Wigner-Seitz radius $r_s = R\sqrt{2} = 100$, for seven n values.

We first consider $n = 2$, for which the Thomson lattice is points at the north and south poles of the sphere. If we place SGFs with exponent α at each pole and minimize the Hartree-Fock (HF) energy[14] with respect to α, we obtain the minimal-basis energy

$$E_{\text{HF}}^{\alpha} = 0.008270$$ \hspace{1cm} (25)

Adding a second SGF (with exponent β) at each pole and optimizing with respect to both exponents yields the split-valence energy

$$E_{\text{HF}}^{\alpha,\beta} = 0.008263$$ \hspace{1cm} (26)

This energy, which is obtained using only $N_G = 4$ SGFs, can also be obtained using a spherical harmonic basis, but only by using harmonics with $0 \leq \ell \leq 5$, of which there are $N_Y = (5 + 1)^2 = 36$. This example reveals how much more efficient SGFs are than spherical harmonics, for problems in which the MOs are strongly localized. It can be shown[3] that the exact energy is

$$E = 0.007993$$ \hspace{1cm} (27)
which implies that the reduced (i.e. per electron) correlation energy is $E_c = -0.135 \text{ mE}_h$. We have performed analogous calculations for all values of n where the Thomson lattice sites are equivalent. It turns out that there are seven such cases and the results for $n = 2, 3, 4, 6, 8, 12, 24$ are given in Table II.

Although the Wigner-Seitz radius (the average distance between neighboring electrons) is $r_s = 100$ in all cases, we note that the minimal-basis exponent α grows, i.e. the electrons become more localized, as n increases.

For $n \geq 6$, we have not been able to calculate the exact energy E, so we have estimated the reduced correlation energies in these cases using $E \approx E_0 + E_1$. The resulting E_c values appear to decrease slowly with n.

Finally, we note that the superior efficiency of SGFs, compared with spherical harmonics, is observed for all n values that we have considered. In each case, the number N_Y of spherical harmonics required to achieve the HF energy in Table II was an order of magnitude larger than the number N_G of SGFs. In fact, for $n = 12$ and $n = 24$, not even 196 spherical harmonics (i.e. $0 \leq \ell \leq 13$) were able to match the energy of the split-valence SGF basis.

VI. CONCLUDING REMARKS

Cartesian gaussian basis functions, which are widely used in quantum chemical calculations in \mathbb{R}^D, can be successfully generalized to spherical gaussian functions (SGFs) for calculations on the sphere \mathbb{S}^D. We have derived formulae for the required overlap, kinetic energy and electron repulsion integrals and the worst of these involves a rapidly converging infinite series.

In quantum chemical calculations in \mathbb{R}^D, it is common to use both s-type cartesian gaussians and gaussians of higher angular momentum (i.e. p-type, d-type, etc.). Integrals over these higher functions can be obtained from the fundamental integrals over s-type functions by differentiating with respect to the cartesian coordinates of the gaussian center. In a similar way, if desired, one can obtain higher SGFs, and their integrals, by differentiating with respect to the cartesian coordinates of A, B, C and/or D.

We are using SGFs in a systematic study of electrons on 2-spheres and 3-spheres and will report our results elsewhere.
ACKNOWLEDGMENTS

P.F.L. and P.M.W.G. thank the NCI National Facility for generous grants of super-computer time. P.M.W.G. thanks the Australian Research Council for funding (Grants No. DP120104740 and DP140104071). P.F.L. thanks the Australian Research Council for a Discovery Early Career Researcher Award (Grant No. DE130101441) and a Discovery Project grant (DP140104071).

REFERENCES

1F. Bloch, Z. Phys. 52, 555 (1929).
2S. F. Boys, Proc. Roy. Soc. (London) A200, 542 (1950).
3P. F. Loos and P. M. W. Gill, Phys. Rev. A 79, 062517 (2009).
4P. F. Loos and P. M. W. Gill, Phys. Rev. Lett. 103, 123008 (2009).
5P. F. Loos and P. M. W. Gill, Mol. Phys. 108, 2527 (2010).
6P. F. Loos and P. M. W. Gill, J. Chem. Phys. 135, 214111 (2011).
7P. M. W. Gill and P. F. Loos, Theor. Chem. Acc. 131, 1069 (2012).
8P. F. Loos and P. M. W. Gill, Phys. Rev. Lett. 108, 083002 (2012).
9P. F. Loos and P. M. W. Gill, J. Chem. Phys. 138, 164124 (2013).
10P. F. Loos, C. J. Ball, and P. M. W. Gill, J. Chem. Phys. 140, 18A524 (2014).
11J. Avery, Hyperspherical harmonics: applications in quantum theory (Kluwer Academic, Dordrecht, 1989).
12F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, eds., NIST handbook of mathematical functions (Cambridge University Press, New York, 2010).
13Z. Y. Wen and J. Avery, J. Math. Phys. 26, 396 (1985).
14A. Szabo and N. S. Ostlund, Modern quantum chemistry (McGraw-Hill, New York, 1989).
15P. M. W. Gill, Adv. Quantum Chem. 25, 141 (1994).
16M. Häser and R. Ahlrichs, J. Comput. Chem. 10, 104 (1989).
17P. M. W. Gill, B. G. Johnson, and J. A. Pople, Chem. Phys. Lett. 217, 65 (1994).
18J. J. Thomson, Phil. Mag. Ser. 6 7, 237 (1904).
19T. Erber and G. M. Hockney, Adv. Chem. Phys. 98, 495 (1997).
20R. E. Schwartz, Exp. Math. 22, 157 (2013).
D. J. Wales and S. Ulker, Phys. Rev. B 74, 212101 (2006).

E. Wigner, Phys. Rev. 46, 1002 (1934).

J. Cioslowski, J. Chem. Phys. 133, 234902 (2010).

J. Cioslowski and E. Grzebielucha, J. Chem. Phys. 134, 124305 (2011).

J. Cioslowski and J. Albin, J. Chem. Phys. 136, 114306 (2012).

J. Cioslowski and J. Albin, J. Chem. Phys. 139, 104306 (2013).

J. Cioslowski and J. Albin, J. Chem. Phys. 139, 114109 (2013).

A. Alavi, J. Chem. Phys. 113, 7735 (2000).

I. G. Ryabinkin and V. N. Staroverov, Phys. Rev. A 81, 032509 (2010).

J. Cioslowski, Phys. Rev. E , 046405 (2009).

D. C. Harris and N. D. Bertolucci, Symmetry and Spectroscopy: An introduction to vibrational and electronic spectroscopy (Oxford University Press, New York, 1978).