N-Glycosylation Determines the Abundance of the Transient Receptor Potential Channel TRPP2*

Received for publication, March 3, 2014, and in revised form, April 2, 2014. Published, JBC Papers in Press, April 9, 2014, DOI 10.1074/jbc.M114.562264

Alexis Hofherr1,2, Claudius Wagner2, Sorin Fedele3, Stefan Somlo1, and Michael Köttgen1,3

From the 1Renal Division, Department of Medicine, University Medical Center Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany, the 2Spemann Graduate School of Biology and Medicine (SGBM) and 3Faculty of Biology, Albert-Ludwigs-University Freiburg, 79106 Freiburg, Germany, and the 1Departments of Medicine and Genetics, Yale University School of Medicine, New Haven, Connecticut 06520

Background: Transient receptor potential channel TRPP2 is a glycoprotein mutated in polycystic kidney disease.

Results: Five N-glycosylation sites in TRPP2 and glucosidase II-mediated glycan trimming determine TRPP2 protein abundance.

Conclusion: N-Glycosylation of TRPP2 in the first extracellular loop is required for efficient protein translation and stability.

Significance: The mechanisms controlling the biogenesis of TRPP2 may provide insights into the pathogenesis of polycystic kidney and polycystic liver disease.

Glycosylation plays a critical role in the biogenesis and function of membrane proteins. Transient receptor potential channel TRPP2 is a nonselective cation channel that is mutated in autosomal dominant polycystic kidney disease. TRPP2 has been shown to be heavily N-glycosylated, but the glycosylation sites and the biological role of N-linked glycosylation have not been investigated. Here we show, using a combination of mass spectrometry and biochemical approaches, that native TRPP2 is glycosylated at five asparagines in the first extracellular loop. Glycosylation is required for the efficient biogenesis of TRPP2 because mutations of the glycosylated asparagines result in strongly decreased protein expression of the ion channel. Wild-type and N-glycosylation-deficient TRPP2 is degraded in lysosomes, as shown by increased TRPP2 protein levels upon chemical inhibition of lysosomal degradation. In addition, using pharmacological and genetic approaches, we demonstrate that glucosidase II (GII) mediates glycan trimming of TRPP2. The non-catalytic β subunit of glucosidase II (GIIβ) is encoded by PRKCSH, one of the genes causing autosomal dominant polycystic liver disease (ADPLD). The impaired GIIβ-dependent glucose trimming of TRPP2 glycosylation in ADPLD may explain the decreased TRPP2 protein expression in Prkcs−/− mice and the genetic interaction observed between TRPP2 and PRKCSH in ADPLD. These results highlight the biological importance of N-linked glycosylation and GII-mediated glycan trimming in the control of biogenesis and stability of TRPP2.

Autosomal dominant polycystic kidney disease (ADPKD)4 is one of the most common potentially fatal monogenetic diseases in man, affecting one in 400 to one in 1000 live births (1). Mutations in Polycystic Kidney Disease 2 (PKD2) cause ADPKD type 2 (OMIM no. 613,095) (2). The PKD2 gene product polycystin 2 is a member of the transient receptor potential (TRP) channel superfamily. It is classified as transient receptor potential channel polycystin 2 (TRPP2), the prototypical member of the TRPP subfamily (3). TRP channels are involved in diverse physiological processes, including sensory physiology, male fertility, regulation of vascular tone, as well as Ca2+ and Mg2+ homeostasis (3). They share the leitmotif of permeability to cations and rather low sensitivity to membrane voltage (3). Studies on the architecture of TRP channels yielded considerable evidence that these channels function as tetramers (4–6). Monomeric TRPP2 channel subunits are integral membrane proteins with six transmembrane helices (S1–S6), framing a pore-forming loop between S5 and S6 (TRPP2634–6598), and cystosolic amino and carboxyl termini (TRPP221–223 and TRPP2660–966, respectively) (7). A prominent feature of TRPP2 is the large extracellular loop between S1 and S2, consisting of 223 amino acids (TRPP2235–468) (Fig. 1A). Loss-of-function phenotypes in ADPKD patients and TRPP2-deficient animal models have revealed important biological roles of this ion channel, ranging from renal tubular morphogenesis to determination of embryonic left-right asymmetry (8). Yet, our knowledge about the molecular mechanisms translating ion channel activity into complex morphogenetic processes is still limited. An important step toward understanding the function of TRPP2 is a molecu-

* This work was supported by National Institutes of Health Grant NIH DK51041 (to S. S.). This work was also supported by Deutsche Forschungsgemeinschaft Grant DFG KFO 201 (to M. K.), by the Excellence Initiative of the German Federal and State Governments Grant GSC-4, by the Spemann Graduate School, and by the Alfried Krupp von Bohlen und Halbach Foundation (to M. K.).

1 To whom correspondence may be addressed: Renal Div., Dept. of Medicine, University Medical Center Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany. Tel.: 49-761-270-63140; Fax: 49-761-270-62070; E-mail: alexis.hofherr@uniklinik-freiburg.de.

2 To whom correspondence may be addressed: Renal Div., Dept. of Medicine, University Medical Center Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany. Tel.: 49-761-270-63140; Fax: 49-761-270-62070; E-mail: michael.koettgen@uniklinik-freiburg.de.

3 To whom correspondence may be addressed: Renal Div., Dept. of Medicine, University Medical Center Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany. Tel.: 49-761-270-63140; Fax: 49-761-270-62070; E-mail: michael.koettgen@uniklinik-freiburg.de.

4 The abbreviations used are: ADPKD, autosomal dominant polycystic kidney disease; TRP, transient receptor potential; TRPP2, TRP polycystin 2; GII, glucosidase II; ADPLD, autosomal dominant polycystic liver disease; Endo H, endoglycosidase H; PNGase F, peptide-N-glycosidase F; qPCR, quantitative PCR; NB-DNJ, N-butyldideoxyojirimycin; ER, endoplasmic reticulum.
lar dissection of its posttranslational modifications and the characterization of their biological relevance. Posttranslational phosphorylation and glycosylation have been shown to significantly impact the behavior of ion channels, including channel activity, conductance, and protein stability. Several studies have demonstrated a critical role of phosphorylation in TRPP2 function (9–14). Biochemical studies have revealed that TRPP2 is glycosylated, but a detailed mapping and characterization of glycosylated amino acid residues is lacking (15, 16).

Glycosylation of proteins plays crucial roles in biology, from quality control of protein folding to involvement in a large number of biological recognition events. The addition and processing of asparagine-linked (N-linked) oligosaccharides in the endoplasmic reticulum (ER) is the most common form of glycosylation. N-Linked glycosylation promotes proper folding and assembly of glycoproteins and increases their stability. Glycosylation begins with the cotranslational addition of a preformed, 14-residue glycan to asparagine residues at the N-linked glycosylation sites (17, 18). Glucosidase II-mediates trimming of carbohydrates eventually facilitates glycoprotein folding in the ER (17, 18). For all amino acid except proline, followed by either serine or threonine, consensus sequences, where N is asparagine, X can be any amino acid except proline, followed by either serine or threonine (ST), respectively. For all N-glycans, processing of the core glycan continues with trimming of terminal glucose residues by ER glucosidases I and II (17, 18). Glucosidase II-mediated trimming of carbohydrates eventually facilitates glycoprotein trafficking to the Golgi apparatus. Persistent glucosylation of unfolded or misfolded proteins inhibits ER exit and triggers degradation (19). Glucosidase II (GII) is of particular interest to glycans processing of TRPP2 because in vivo studies have placed TRPP2 and the non-catalytic glucosidase II β (GIIB) subunit of this enzyme in a common biogenetic pathway (20). Although the kidney-specific elimination of GIIB causes mild cystic kidney disease in mice, a severe PKD phenotype manifests on a Pkd2−/−-sensitized background (20). Loss of GIIB is accompanied by a reduction of TRPP2 protein expression (21, 20).

In humans, mutations in the gene encoding for GIIB cause autosomal dominant polycystic kidney disease (ADPKD), which manifests with bile duct cysts that are indistinguishable from the liver phenotype in ADPKD (evident in 94% of ADPKD patients who are older than 35 years) (OMIM no.174,050) (22–25). GIIB is an ER enzyme with a key role in glycoprotein folding and quality control. It is comprised of two subunits: catalytic GIIB and accessory GIIB (26). GIIB has been shown to physically interact with TRPP2, and it has been suggested that GIIB may be involved in the processing of TRPP2 glycosylation (21, 20). However, direct experimental data supporting this model are missing.

We are only beginning to understand the importance of glycosylation of TRP channels. It has been shown for some TRP channels that N-glycosylation plays a critical role for cellular localization and function (27–32). Biochemical studies have revealed that TRPP2 is glycosylated but the glycosylation sites and relevance of glycosylation for TRPP2 biogenesis and stability have not been investigated (15, 16). Here we present a comprehensive mapping of N-glycosylated amino acid residues in TRPP2. Furthermore, we show that GIIB is required for glycan trimming of TRPP2 and that proper N-linked glycosylation is essential for adequate TRPP2 protein expression.

Experimental Procedures

Molecular Biology—Full-length human PKD2 (GenBank accession no. U50928) in pcDNA3 (Invitrogen) was provided by Feng Qian (University of Maryland) (33). Using this wild-type plasmid, PKD2 D511V, PKD2 N299G/N305G/N328G/N362G (TRPP24-Glyc), PKD2 N299Q/N305Q/N328Q/N362Q, PKD2 N299G/N305G/N328G/N362G/N375G (TRPP25-Glyc), and PKD2 N299Q/N305Q/N328Q/N362Q/N375Q were generated by site-directed mutagenesis. The asparagine-to-glutamine and asparagine-to-glycine mutations showed identical biochemical properties. All figures depict experiments with the asparagine-to-glycine mutations. TRPP24–703X-HA, TRPP25-HA, and PRKCSHFLAG (GIIBFLAG) constructs were described previously (15, 21).

Antibodies—Anti-TRPP2 (G-20 and D-3) antibodies were obtained from Santa Cruz Biotechnology. A monoclonal anti-TRPP2 antibody against amino acid residues 698–799 (anti-TRPP2698–799) was provided by Gerd Walz (University Medical Center Freiburg). Clone AC-15 anti-β-actin, DM1A anti-α-tubulin, and anti-FLAG M2 antibodies were purchased from Sigma-Aldrich. For HA epitope detection, polyclonal anti-HA antibodies (Zymed Laboratories Inc.) were used. Western blot detection was performed using either an anti-mouse (Dako) or anti-rabbit (GE Healthcare) horseradish peroxidase-coupled secondary antibody. For immunofluorescence-visualized antigen visualization, primary rabbit anti-LAMP1 (catalog no. ab24170, Abcam) and goat anti-PKD2 (G-20) together with secondary donkey anti-goat Alexa Fluor 488 (Invitrogen) and Cy3-coupled donkey anti-rabbit (Dianova) antibodies were used.

Cell Culture—HeLa, HEK293T, LLCPK1, IMCD3, and murine cortical collecting duct M1 cells were cultured as adherent monolayers in DMEM (Lonza) supplemented with 10% heat-inactivated FBS (Biochrom). Cell lines were maintained in a humidified 10% CO2 incubator at 36.5 °C. Cells were passaged every 3–4 days using 0.05% trypsin-EDTA (Invitrogen). 14855

Protein Isolation—Native TRPP2 was isolated from confluent M1 cells or from the kidneys of 8–4-day-old mice. Transiently transfected cells were harvested 24 h after transfection if not stated otherwise. Samples were lysed in ice-cold IP buffer (1% Triton X-100, 20 mM Tris-HCl (pH 7.5), 50 mM NaCl, 50 mM NaF, 15 mM Na2HPO4, and 0.1 mM EDTA (pH 8)) supplemented with 2 mM Na3VO4 and complete protease inhibitor mixture.
N-Glycosylation of TRPP2

(Roche). Lysates were first centrifuged at 4 °C for 15 min at 20,000 × g and subsequently subjected to ultracentrifugation at 4 °C for 30 min at 100,000 × g. Supernatants were either directly denatured 30 min at 42 °C with 2× Laemmli sample buffer and 100 mM DTT or used for immunoprecipitation and glycosylation studies.

TRPP2 Immunoprecipitation—For TRPP2 immunoprecipitation, protein G-Sepharose beads (GE Healthcare) were incubated with 2 μg of anti-TRPP2 (G-20, Santa Cruz Biotechnology) antibody in PBS (Biochrom) for 90 min at 4 °C. Antibody-coupled beads were washed three times for 10 min at 4 °C with PBS and then combined with the respective lysate (>5 mg of total protein). Immunoprecipitation took place overnight on a rotating wheel at 4 °C. Subsequently, beads were washed three times for 10 min at 4 °C with IP buffer. Proteins were eluted for 30 min at 42 °C with 2× Laemmli sample buffer and 100 mM DTT or, for glycosylation assays, with 0.5% SDS and 40 mM DTT.

Glycosylation Assays of TRPP2 Immunoprecipitates—Endoglycosidase H (Endo H, New England Biolabs) sample digestion was performed for 24 h at 37 °C with 5000 units of Endo H in G5 reaction buffer (New England Biolabs). For peptide-N-glycosidase F (PNGase F, New England Biolabs) cleavage, samples were incubated in G7 reaction buffer (New England Biolabs) with 2.5% Nonidet P-40 (New England Biolabs) and 500 units of PNGaseF for 24 h at 37 °C.

SDS-PAGE, Coomassie Staining, Western Blot Analysis, and Charge-coupled Device Camera-based ECL Detection—Protein samples (~20 μg of total protein for cell lysates) were separated by SDS-PAGE using Mini-PROTEAN TGX 4–15% precast gels (Bio-Rad). For MS, gels were stained with colloidal Coomassie (36). Otherwise, proteins were Western-blotted semidry on Immobilon-P PVDF (Millipore) membranes. Membranes were blocked with 5% BSA (Serva) and probed with anti-TRPP2 (Promega) or elastase (Promega) overnight at 37 °C or thermolysin (R&D Systems) antifade reagent were added. Finally, samples were transferred to microscope slides (R. Langenbrinck) and sealed with nail varnish (L’Oréal). Acidic organelles in transfected HeLa cells were visualized in live cells with Lysotracker Red DND-99 (Invitrogen) according to the instructions of the manufacturer. Microscopy images were recorded using an Axio Observer microscope (Zeiss).

RNA Isolation, RT-PCR, and Real-time Quantitative PCR (qPCR)—RNA of transiently transfected HeLa cells was isolated (RNeasy Plus mini kit, Qiagen) and retrotranscribed to complementary DNA (Quantitect, Qiagen) according to the protocols of the manufacturer. Subsequently, qPCR (LightCycler 480 SYBR Green I Master, Roche) was performed using the following oligonucleotides: human PKD2, 5'-AGCGGACATAGCTCCAGAAGGAG and 5'-GATGGAAATGCTCCATCCG-GTC; human HSPCB, 5'-TCTGGGTATCGGAAAGCATCG and 5'-GTGCACCTTCCTCAGGCTTGG; human PKD2, 5'-AGCGGACATAGCTCCAGAAGGAG and 5'-GATGGAAATGCTCCATCCG-GTC; human HSPCB, 5'-TCTGGGTATCGGAAAGCATCG and 5'-GTGCACCTTCCTCAGGCTTGG. Samples were analyzed on a LightCycler 480 (Roche), and relative quantification was calculated: r = 2^(ΔCqPKD2 − ΔCqHSPCB) (37).

Metabolic Labeling—Cells were cultured until ~80% confluence in DMEM minus-Met/Cys (Invitrogen) with 10% heat-inactivated FBS (Gemini Bioproducts). Subsequently, cells were incubated in medium plus 100–200 μCi/ml [35S]Met/ [35S]Cys (PerkinElmer Life Sciences), washed with PBS (Invitrogen), and then maintained in chase medium (DMEM (Invitrogen) with 10% FBS (Invitrogen)). Cells were then lysed, and the protein of interest was immunoprecipitated, followed by SDS-PAGE and Western blot analysis. Depending on the experiment, the beads were incubated with jack bean mannosidase (Promega) or elastase (Promega) overnight at 37 °C or thermolysin (R&D Systems) for 2 h at 60 °C. Peptides were recovered by 5% methanoic acid (Sigma-Aldrich). For fractionation, samples were subjected to high-performance liquid chromatography (bonded stationary phase, ZORBAX RRHD 300SB-C18 (Agilent Technologies), mobile phase, water/acetonitrile mixture (97:3)). After electrospray ionization, samples were analyzed on an Agilent Technologies 6520 Quadrupole time of flight or an Agilent Technologies 6340 ion trap hybrid mass spectrometer. Spectra were evaluated for murine TRPP2 (UniProtKB, O35245) using Mascot Server 2.3 (Matrix Science).

Immunofluorescence and Live Cell Imaging—HeLa cells were cultivated in 6 wells (Greiner Bio-One) on cover glasses (Carl Roth) until ~80% confluence for transient transfection. 24 h after transfection, HeLa cells were either fixed or used for live cell imaging. For immunofluorescence staining, cells were rinsed twice with PBS (Biochrom) and fixed for 15 min at 21 °C using 3% paraformaldehyde (Electron Microscopy Sciences) and 5% sucrose (Sigma-Aldrich) in PBS. After washing twice for 3 min with PBS, cells were blocked for 30 min at 21 °C with 5% horse serum (Invitrogen) and 0.1% Triton X-100 (Merck) in PBS. Subsequently, samples were incubated for 3 min with PBS and for 1 h with primary antibodies (1/500 in PBS) at 21 °C. Cells were then washed for 3 min with PBS and incubated with secondary antibodies (1/1000 in PBS) for 30 min at 21 °C. After an additional 3 min at 21 °C with PBS, Prolong Gold and DAPI (Invitrogen) antifade reagent were added. Finally, samples were transferred to microscope slides (R. Langenbrinck) and sealed with nail varnish (L’Oréal). Acidic organelles in transfected HeLa cells were visualized in live cells with Lysotracker Red DND-99 (Invitrogen) according to the instructions of the manufacturer. Microscopy images were recorded using an Axio Observer microscope (Zeiss).
ified 10% CO₂ incubator at 36.5 °C. Drug concentrations and incubation times were as follows: 200 μM chloroquine (Sigma-Aldrich) or 6 mM ammonium chloride (Sigma-Aldrich) for 24 h, 210 μM MG-132 (Enzo Life Sciences) for 6 h, and 18 μM cycloheximide (Sigma-Aldrich) for 2–10 h. Cells were counted after harvesting using a TC10 automated cell counter (Bio-Rad). Sample volumes were normalized for cell count.

Glucosidase II Inhibition Assay—NB-DNJ (Toronto Research Chemicals) was added either to the cell lysate (8–80 μM) or to the cell medium (2 mM) for 24–96 h prior to experiments. Glucosidase II activity was measured in the lysate of LLC-PK1 cells. The substrate used was 4-methyl-umbelliferyl α-D-glucopyranoside (4MUG, Toronto Research Chemicals). Cell lysates were incubated with 1 mM 4MUG in a total reaction volume of 100 μl for 30 min at 37 °C. The reactions were stopped with 100 μl of 2 M Tris, and the fluorescence was recorded immediately (excitation 365 nm and emission 455 nm).

Statistical Analysis—For data quantitation, at least three independent experiments were evaluated. Samples were normalized for β-actin or α-tubulin Western blot signals. Relative expression was calculated for samples on the same gel. Western blot signal intensities were measured using ImageJ. Student’s t test was performed to assess statistical significance.

RESULTS

Native TRPP2 Is N-glycosylated—TRPP2 is a six-transmembrane (S1–S6) protein with a large extracellular loop between S1 and S2 (TRPP2245–468), a pore-forming loop between S5 and S6 (TRPP2483–659), and cytosolic amino and carboxyl termini (TRPP21–223 and TRPP2680–968, respectively) (Fig. 1A) (7). Endogenous human TRPP2 has been shown to be heavily N-glycosylated (15, 16). TRPP2 contains seven potential N-glycosylation sites: 3, 299, 305, 328, 362, 375, and 580 (NetNGlyc 1.0 Server) (2). To further study the N-glycosylation of TRPP2 in a native context, we immunoprecipitated TRPP2 from wild-type mouse kidneys and analyzed the immunoreactive profile to TRPP2 in a Western blot analysis. Invariably, two distinct bands were observed, one at ~110 kDa and one below 100 kDa. Enzymatic deglycosylation of TRPP2 immunoprecipitates with Endo H, which cleaves within the chitobiose core of high mannose glycans, led to an electrophoretic mobility shift of both bands to ~80 kDa (Fig. 2A). The obtained data represent 63% of TRPP2 amino acids, covering almost all of the protein except for hydrophobic parts (Fig. 4D). The comprehensive analysis of N-linked glycosylation identified five widely conserved glycosylated asparagines in human TRPP2: 299, 305, 328, 362, and 375. Notably, all glycosylation sites are located in the first extracellular loop (Fig. 2B). These asparagines appear to be the only N-glycosylation sites of the protein because neither mass spectrometry nor enzymatic deglycosylation of the protein (Fig. 3) is possible. The additional mutation of asparagine 375 in TRPP2 (TRPP2245–468), which is partially conserved in vertebrates, abrogates any size shift after enzyme-mediated deglycosylation of the protein (Fig. 4A).

The comprehensive analysis of N-linked glycosylation identified five conserved glycosylated asparagines in human TRPP2: 299, 305, 328, 362, and 375. Notably, all glycosylation sites are located in the first extracellular loop (Fig. 2B). These asparagines appear to be the only N-glycosylation sites of the protein because neither mass spectrometry nor enzymatic digestion with Endo H or PNGase F detected evidence for additional glycosidic bonds. Further in vitro analysis was facilitated by the recapitulation of native glycosylation patterns with high-mannose glycans by heterologously expressed TRPP2 (Figs. 1B and 4A).

N-Glycosylation of TRPP2 Is Required for Adequate TRPP2 Protein Levels—It has been shown that N-linked glycosylation determine the homeostasis of secretory proteins and membrane proteins in eukaryotic cells (19). Therefore, we hypothesized that aberrant N-glycosylation of TRPP2 might impair its protein biogenesis. To test this hypothesis, TRPP2245–468 was expressed heterologously in HeLa and HEK293T cells. Indeed, TRPP2245–468 shows a significant reduction in protein levels by 86.2% compared with wild-type TRPP2 in HeLa cells (n = 3, p = 0.003) (Fig. 4C). This effect is not cell type-specific because a similar reduction is observed in HEK293T cells (mean, –74.4%; n = 3; p = 0.016) (Fig. 4D). To ensure that this decrease is not solely caused by a change in kinetics of TRPP2 protein processing, we measured protein levels after 96 h in HEK293T cells. TRPP2245–468 protein levels compared with wild-type TRPP2 remain significantly reduced after 96 h (mean, –79%; n = 4; p = 0.00002).

Lower protein levels may be caused by either transcriptional down-regulation, impaired translation, or decreased protein stability. To evaluate a possible impact on mRNA transcription or stability, RNA of transiently transfected HeLa cells was iso-
lated. TRPP2 wild-type and TRPP2\(^{45-\text{Glyc}}\) mRNA abundance was similar, as assessed by qPCR (Fig. 5A). Protein stability of TRPP2 was investigated using the Streptomyces griseus metabolite cycloheximide, which inhibits protein translation by blocking elongation factor 2-mediated ribosomal translocation (38). Cells were incubated with 18 \(\mu\)M cycloheximide for 2–10 h, and TRPP2 expression was evaluated by Western blot analysis (Fig. 5, B and C). These experiments show a reduced stability of TRPP2\(^{45-\text{Glyc}}\) compared with wild-type TRPP2 after 10 h (mean, \(-46.8\%\); \(n = 3\); \(p = 0.006\)) (Fig. 5D).

TRPP2 Is Subject to Lysosomal Degradation—Nascent poly-peptides transit between a significant number of intermediate folding states before attaining their native state. It has been demonstrated that the fidelity of this process may be compromised by the absence of posttranslational glycosylation. Missing glycosylation may cause newly synthesized proteins to be degraded or to attain their native states more slowly (39). To investigate the cause for decreased levels of glycosylation-deficient TRPP2, small molecule inhibitors were employed.
Two major proteolytic pathways have been implicated in protein turnover in intact cells: lysosome- and proteasome-mediated degradation. Chloroquine is a weak base that accumulates in acidic cellular organelles, raises the pH, and, thereby, blocks lysosomal function. The peptidyl aldehyde MG-132 is a specific and potent inhibitor of the proteolytic activity of the 26 S proteasome complex (40). Wild-type TRPP2 is significantly more abundant in cells treated with lysosomotropic chloroquine (mean, 575.36%; n = 4; p = 0.0003). MG-132 shows no effect (Fig. 6A). Similarly, MG-132 has no effect on TRPP2\textsuperscript{54Glyc, but chloroquine also significantly increases TRPP2\textsuperscript{54Glyc protein levels (mean, 329.64%; n = 4; p = 0.048) (Fig. 6B). The observation that chloroquine increases TRPP2

FIGURE 2. Mass spectrometry identifies four N-glycosylated asparagine residues in murine TRPP2. A, MS precursor spectrum N\textsubscript{297}\textsuperscript{HTQADN\textsubscript{303}RSFI after elastase digestion (charge state +3). B, MS/MS spectrum of N\textsubscript{297}\textsuperscript{HTQADN\textsubscript{303}RSFI after fragmentation and reduction to charge state +1. C, MS precursor spectrum N\textsubscript{326}GSCSIPODLR after trypsin digestion (charge state +2). D, MS/MS spectrum of N\textsubscript{326}GSCSIPODLR after fragmentation and reduction to charge state +1. E, MS precursor spectrum SSEDRAPFGPRN\textsubscript{360}GT after elastase digestion (charge state +3). F, MS/MS spectrum of SSEDRAPFGPRN\textsubscript{360}GT after fragmentation and reduction to charge state +1.

FIGURE 3. TRPP2 with mutations in four N-glycosylation sites is still sensitive to enzymatic deglycosylation. TRPP2\textsuperscript{54Glyc was expressed heterologously in HeLa cells, immunoprecipitated (IP), and analyzed by SDS-PAGE and subsequent anti-TRPP2 Western blot (WB) staining. Enzymatic deglycosylation of TRPP2\textsuperscript{54Glyc with Endo H or PNGase F caused a shift in electrophoretic mobility (~3 kDa), indicating that TRPP2\textsuperscript{54Glyc is N-glycosylated.

TABLE:

Treatment	No Enzyme	Endo H	PNGase F
IP: TRPP2	-	+	-
PNGase F	-	-	+
WB: TRPP2\textsuperscript{54Glyc	100		
protein levels suggests lysosome-mediated degradation as a pathway for TRPP2 degradation. However, chloroquine is known to have pleiotropic effects on cellular metabolism. To test the hypothesis that lysosomes degrade TRPP2, we inhibited lysosomal function using another structurally different compound, ammonium chloride, which neutralizes the acidic pH value of lysosomes. Both wild-type TRPP2 (mean, 203.07%; n = 3; p = 0.04) and TRPP2 mutant Glyc (mean, 218.69%; n = 3; p = 0.02) protein levels rise under ammonium chloride treatment (Fig. 6C). Indirect immunofluorescence suggests a partial colocalization of TRPP2 and lysosomal LAMP1 (Fig. 7, A and B). However, the majority of TRPP2 is detected in a reticular pattern, consistent with the published ER localization of the overexpressed channel (41). The gross distribution, number, and appearance of lysosomes are not affected by transfection of TRPP2 or TRPP2 mutant Glyc (Fig. 7, A–C).

Protein turnover is determined by the dynamic balance between protein synthesis and degradation. Our data support a critical role for lysosomes in the degradation of TRPP2. The relatively modest increase of TRPP2 mutant Glyc protein levels upon lysosomal inhibition together with the insensitivity of TRPP2 mutant Glyc expression to proteasomal inhibition suggests reduced translation efficiency as an important additional mechanism for reduced expression of TRPP2 mutant Glyc.

Inactivation of Glucosidase II Results in Defects in N-Glycan Trimming of TRPP2—N-linked glycans are processed and monitored in the ER by enzymes and molecular chaperones (19). Because addition of N-linked oligosaccharides is required for normal protein levels and mutations in at least one protein involved in processing N-linked glycans, GlIβ, result in reduced TRPP2 levels and polycystic kidney and liver disease, we next studied the effects of GlIβ on processing of the precursor glycan processing sites.}

FIGURE 4. TRPP2 comprises five N-linked glycosylation sites that are required for adequate TRPP2 protein expression. A. Endo H treatment (24 h at 37 °C) of wild-type TRPP2 causes a size decrease, that was slightly more pronounced after PNGase F treatment (24 h at 37 °C). No electrophoretic mobility shift is observed after Endo H or PNGase F treatment of TRPP2 mutant Glyc, suggesting that TRPP2 mutant Glyc was not N-glycosylated. After immunoprecipitation (IP), normalized amounts of protein were used to visualize SDS-PAGE electrophoresis by anti-TRPP2 Western blot (WB) staining. B. Illustrative schematic of TRPP2 N-glycosylation. All five N-linked glycosylation sites are located in the first extracellular loop (amino acids 244–469) of human TRPP2: 299, 305, 328, 362, and 375 (corresponding to the conserved asparagines 297, 303, 326, 360, and 373 in murine TRPP2). C. Heterologous expression of wild-type TRPP2 and TRPP2 mutant Glyc in HeLa cells. Cells were counted to normalize for cell number. After lysis and SDS-PAGE, anti-TRPP2 and anti-β-actin Western blot signal intensities were measured using ImageJ. Sample intensities were normalized for β-actin. Wild-type TRPP2 protein expression was set to 100%, and relative TRPP2 mutant Glyc amounts were calculated. TRPP2 mutant Glyc shows a significant reduction in protein levels by 86.2% compared with wild-type TRPP2 (n = 3, p = 0.003). D, Overexpression of TRPP2 mutant Glyc in HEK293T cells. Similar to C, TRPP2 mutant Glyc shows a significant reduction in protein levels compared with wild-type TRPP2 (74.4%, n = 3, p = 0.016).
can of TRPP2. TRPP2 and GI\(\beta\) interact physically in cells expressing tagged versions of both proteins (Fig. 8A) (21, 20).

Kidney-specific conditional deletion of GI\(\beta\) in mice using Ksp-Cre results in significantly reduced tissue levels of the TRPP2 protein in 2-month-old mice (mean, 66.75%; \(n=4\); \(p=0.04\)) (Fig. 8, B and C). Because the Ksp-Cre is active in a portion of kidney tubule cells primarily in the distal nephron, the actual reduction in TRPP2 in cells lacking GI\(\beta\) is likely more pronounced than what can be detected at the whole organ tissue level.

We next wanted to directly examine the role of GI\(\beta\) on the trimming of N-linked glycans in TRPP2. Because this required the sensitive determination of differences in the migration of TRPP2 on the basis of variable presence or absence of two glucose residues per N-linked glycan, we used a carboxyl terminal-truncated form of TRPP2, truncated at codon 703 (TRPP2\(_{L703X-HA}\)), to allow us to better resolve migration differences on the basis of loss of GI\(\beta\) activity. We first used a potent inhibitor of \(\alpha\)-glucosidases, NB-DNJ, to establish our ability to reliably detect the lack of N-glycan deglycosylation in TRPP2\(_{L703X-HA}\), LLCPK1 cells stably expressing TRPP2\(_{L703X-HA}\) were incubated with 2 mM NB-DNJ for 96 h. Cells were pulsed for 30 min with medium containing \([\text{35S}]\text{Met/}[\text{35S}]\text{Cys}\) and chased with non-radioactive medium for 30 min. After lysis, TRPP2\(_{L703X-HA}\) was immunoprecipitated using anti-HA antibodies and digested with jack bean mannosidase, which cleaves mannose residues from deglycosylated N-glycans but not from N-glycan moieties that were not deglycosylated because of inhibition of GI\(\beta\) activity. Thus, the jack bean mannosidase treatment improves the resolution of the migrating protein species to differentiate deglycosylated forms from non-deglycosylated forms. Inhibition of GI\(\beta\) by NB-DNJ resulted in a distinct electrophoretic mobility pattern for TRPP2\(_{L703X-HA}\), migrating at a higher molecular weight compared with TRPP2\(_{L703X-HA}\) from untreated cells, in which GI\(\beta\) was active to permit deglycosylation of the protein (Fig. 8F).

This showed the ability to detect a defect in glucose trimming by this method.

GI\(\beta\) function in vivo is dependent on GI\(\beta\) (42). We therefore tested the hypothesis whether GI\(\beta\) deficiency as seen in ADPLD results in defective glucose trimming of TRPP2. TRPP2\(_{L703X-HA}\) was transiently expressed in mouse kidney epithelial cells either wild-type (Prkcsh\(^{flox/flox}\)) or null (Prkcsh\(^{-/-}\)) for GI\(\beta\). Cells were labeled metabolically, lysed, immunoprecipitated with anti-HA, digested with jack bean mannosidase,
and resolved by SDS-PAGE prior to autoradiography. TRPP2L703X-HA expressed in Prkcs−/− cells showed slower electrophoretic mobility compared with TRPP2 L703X-HA expressed in wild-type cells, indicating impaired glucose trimming in the absence of the non-catalytic GII subunit (Fig. 8G).

These data show that the enzymatic activity of GII is indeed impaired in cells treated with chloroquine compared with control cells (mean = 575.36%, n = 4, p = 0.0003). B, likewise, TRPP2Δ5-Glyc protein levels increased in the presence of chloroquine (mean, 329.64%; n = 4; p = 0.048). C, incubation of wild-type TRPP2 (mean, 203.07%; n = 3; p = 0.04) and TRPP2Δ5-Glyc (mean, 218.69%; n = 3; p = 0.02) with ammonium chloride significantly increased protein levels compared with untreated controls.

DISCUSSION

The addition and processing of N-linked oligosaccharides in the ER play a pivotal role in the biogenesis and quality control of many membrane proteins (43, 18). It has been shown that TRPP2 is a glycoprotein, but the glycosylation sites and the importance of glycosylation for TRPP2 biogenesis and stability have not been investigated (15, 41). In this study, we identified five N-glycosylation sites in TRPP2. All glycosylated asparagines in TRPP2 are located in the first extracellular loop (TRPP2245–468) between the first two transmembrane domains (Asn-299, Asn-305, Asn-328, Asn-362, and Asn-375 in human TRPP2). These asparagines are probably the only N-linked glycosylation sites in TRPP2 because enzyme-mediated deglycosylation of TRPP2 with mutations in all five residues does not cause any additional electrophoretic mobility shift of the protein. We identified five N-glycosylation sites in TRPP2 and showed that their glycosylation is required for adequate TRPP2 protein expression. Processing of these N-linked glycans is dependent on GII, highlighting the molecular association of the ADPKD protein TRPP2 and its ADPLD partner GIIβ.
appears to be degraded through lysosomes. Incubation of cells with the lysosomal inhibitor chloroquine leads to a significant increase of both wild-type and glycosylation-deficient TRPP2, whereas proteasomal inhibition with MG-132 shows no effect. In addition, we show that glucosidase II mediates trimming of TRPP2 glycosylation. This is required for efficient maintenance of steady-state levels of the protein. These combined results provide a mechanism for the decrease of TRPP2 levels in PRKCSH-deficient cells, which may contribute to the pathogenesis of ADPLD.

There is still rather limited information on the role of N-linked glycosylation of TRP channels. For a subset of TRP channels it has been shown that N-glycosylation plays an important role in cellular localization and ion channel function (31). In TRPV5, a channel critical for Ca2+/H\textsubscript{1001} reabsorption in the distal tubule of the kidney, cleavage of a single N-linked oligosaccharide by Klotho, a glucuronidase enzyme, stabilizes the channel at the apical plasma membrane (29). In TRPC6 and TRPC3, two closely related cation channels, differences in the N-glycosylation patterns are responsible for their distinct functional properties, switching the channel from a tightly receptor-regulated mode to a constitutively active mode (27). In TRPV4, an osmosensitive TRP channel, mutation of a single N-glycosylation site within the pore-forming loop increases the expression of plasma membrane-bound channels compared with the wild type (30). The temperature-sensitive TRP channels TRPV1 and TRPM8 are also N-glycosylated at a position near the pore loop. Glycosylation of these asparagines affects the biophysical properties and response to canonical activators of both channels (44, 45, 32). All these TRP channels display glycosylation at one or two asparagines. TRPP2, however, is more heavily glycosylated akin to TRPML1, the channel mutated in mucolipidosis type IV (46, 47). One hallmark of the TRPP and the TRPML subfamilies of TRP channels is the prominent first extracellular loop, which harbors the glycosylation sites (Fig. 4B) (48). Interestingly, TRPML1 is cleaved within this first extracellular loop, and there is evidence that TRPP2 undergoes proteolytic cleavage as well (46, 47, 49). In addition to full-length TRPP2, we invariably detect TRPP2 antibody-reactive bands on Western blot analyses that are considerably smaller than the calculated size of the full-length protein. This applies to native and overexpressed protein (Figs. 1, B and C, and 4, C and D). The biological function of cleavage and of the particularly big first extracellular loop of these TRP channels is not known. However, on the basis of data from other ion channels and membrane proteins, it is tempting to speculate that cleavage may be a regulatory mechanism that extends beyond mere inactivation of TRPP2 channels (50, 51). Whether the biological roles of cleavage and glycosylation in the first extracellular loop intersect remains to be determined. Unfortunately, the impact of glycosylation on channel function and cellular localization of TRPP2 cannot be studied easily using heterologous expression systems because overexpressed wild-type TRPP2 is trapped in the ER and does not traffic to the plasma membrane (15, 41). Although this precludes the straightforward investigation of the effect of glycosylation on the biophysical properties of TRPP2 using electrophysiological approaches, the biogenesis and degradation of the channel can be studied using heterologously expressed TRPP2.

The proteasome and lysosome are the main sites of cellular proteolysis (52). The majority of regulated degradation occurs through the ubiquitin-proteasome system in the cytoplasm. Proteins are marked for degradation by covalent attachment of multiple copies of ubiquitin molecules. The polyubiquitinated
protein is recognized by the proteasome, a multisubunit protease that degrades the substrate into short polypeptides (53, 54). In contrast, selective lysosomal protein degradation is achieved by controlling the trafficking of proteins into the acidic lysosome, where they are exposed to resident proteases. Transmembrane proteins require special mechanisms for their degradation because different parts of such proteins are on opposite sides of a membrane. Eukaryotic cells have devised several solutions to this problem. Membrane proteins in the ER and in mitochondria are removed from the lipid bilayer by retinal binding protein (RBP). In the ER, RBP is covalently bound to the membrane, and its removal involves retrotranslocation, where the protein is first transported to the cytoplasm before being degraded by the proteasome. In mitochondria, transmembrane proteins are typically degraded by the mitochondrial proteasome, which is specifically adapted for the environment of the mitochondrial matrix.
rotranslocation into the cytoplasm, where they are ubiquitinated and degraded by the proteasome (43). In contrast, integral membrane proteins from the plasma membrane and the Golgi apparatus are collected in vesicles and sent to multivesicular bodies via endosomes. Fusion of multivesicular bodies with lysosomes leads to degradation of proteins and lipids by lysosomal proteases and lipases (55).

The pathways responsible for the degradation of proteins can be studied by incubating cells with specific and selective inhibitors of proteasomes or lysosomes, such as MG-132 or chloroquine, respectively. We used these inhibitors to investigate where wild-type and non-glycosylated TRPP2 are degraded. Because overexpressed TRPP2 is an ER-resident protein and because glycosylation has been shown to be important for folding and quality control of membrane proteins, we speculated that TRPP2 is likely degraded by the ubiquitin-proteasome system via ER-associated degradation (43). Indeed, previous studies have shown that TRPP2 is ubiquitinated (56, 21). Surprisingly, inhibition of the proteasome with MG-132 did not show any effect on wild-type or glycosylation-deficient TRPP2 levels. Inhibition of lysosomal degradation with chloroquine or ammonium chloride, however, resulted in a significant increase of wild-type and glycosylation-deficient TRPP2 levels. Because overexpressed TRPP2 has been shown to be fully Endo H-sensitive and because immunofluorescence shows exclusive ER localization of the channel, lysosomal degradation of the protein appears to be rather counterintuitive (15, 41). It is conceivable, though, that transient trafficking of TRPP2 to the Golgi apparatus and plasma membrane as well as to the lysosomal compartment cannot be detected under steady-state conditions because the retrieval of the channel to the ER profoundly exceeds its forward transport. It has been reported that wild-type TRPP2 can be found at the plasma membrane under certain circumstances (57, 58). Furthermore, truncation mutations of the carboxyl terminus that delete an ER retention/retrieval motif in TRPP2 can be detected at the plasma membrane (15, 10, 59). A recent study has shown that TRPP2 takes different routes to the plasma membrane and the membrane of the primary cilium (59). Notably, this study showed that TRPP2 does not traverse the Golgi apparatus on its way to the primary cilium, raising the possibility that similar mechanisms apply to lysosomal targeting. The stability of \(\text{TRPP2}^{\Delta_{5}-\text{Glyc}} \) is decreased significantly, as shown in the experiments with cycloheximide-treated cells (Fig. 5D). However, it should be noted that lysosomal degradation may not explain the strong decrease of glycosylation-deficient TRPP2 because the increase in protein levels upon glycosylation inhibition is not increased for TRPP2\(^{\Delta_{5}-\text{Glyc}}\) compared with wild-type TRPP2. The relatively modest increase of TRPP2\(^{\Delta_{5}-\text{Glyc}}\) protein levels upon inhibition of lysosomes suggests reduced efficiency of translation and folding of TRPP2 as an important additional mechanism for low-level expression of TRPP2\(^{\Delta_{5}-\text{Glyc}}\).

The general importance of N-glycosylation in protein function is highlighted by severe and pleiotropic clinical phenotypes of patients with impaired glycosylation. These disorders are caused by several known heritable defects in N-glycan synthesis and processing (60, 18). Glycosylation begins with the cotranslational addition of a preformed, 14-residue precursor glycan to asparagine residues that are part of the consensus sequence \(\text{NXST} \). Processing of the core glycan commences with trimming of two of the three terminal glucose residues by ER glucosidases I and II in the calnexin/calreticulin cycle (17, 18). Mutations in these glucosidases result in human disease. The non-catalytic \(\beta \) subunit of glucosidase II, encoded by the \(\text{PRKCSH} \) gene, is of particular interest to glycan processing of TRPP2 because mutations in this gene cause ADPLD (22–24). Mutations in \(\text{PRKCSH} \) manifest with bile duct indistinguishable from the liver phenotype in ADPKD. It has been shown that \(\text{PRKCSH} \) is part of a genetic interaction network with several PKD genes, including \(\text{PKD1} \) and \(\text{PKD2} \) (20). This study established that polycystin 1 is the rate-limiting component in cyst formation in human polycystic kidney and liver disease. Furthermore, it has been shown that GIIB is required for adequate expression of polycystin 1 and TRPP2 (21, 20). Whether TRPP2 is a substrate for glucosidase II has not been addressed previously. Here we show that GI1 is required for glycan trimming of TRPP2 using pharmacological and genetic approaches. This observation provides a mechanism for the reduction of TRPP2 expression in cells lacking GIIB. It should be noted that the reduction of TRPP2 protein levels in GIIB mutant kidneys was performed with Ksp-Cre-mediated deletion of GIIB. This approach leads to deletion of the gene in less than 30% of the TRPP2-expressing cells in the kidney.\(^5\) Therefore, the reduction in TRPP2 expression depicted in Fig. 8, B and C, would probably be more profound in \(\text{Prkcs} \) null kidneys. This is supported by the observation that shRNA-mediated knockdown of \(\text{PRKCSH} \) in renal epithelial cells leads to a considerably stronger reduction of TRPP2 expression (21). Although it has been shown convincingly that polycystin 1 is the central component for cyst formation, the reduction of TRPP2 expression in cells lacking GIIB also contributes to cyst formation or modulates the severity of the disease.

In summary, we demonstrate that TRPP2 is glycosylated at five asparagines in the first extracellular loop. N-glycosylation and glycan trimming through glucosidase II regulate the abundance of TRPP2, highlighting the importance of these post-translational modifications for the biogenesis and stability of the protein. These results provide a basis for further studies addressing additional roles of TRPP2 glycosylation in health and disease.

Acknowledgments—These studies utilized reagents provided by the NIDDK sponsored Baltimore Polycystic Kidney Disease Research and Clinical Core Center, P30 DK090868. We thank Feng Qian for providing plasmids, Gerd Walz for TRPP2 antibodies, and Simone Dieiderichsen and Julia Merkel for technical assistance.

REFERENCES

1. United States Renal Data System (2012). *USRDS 2012 Annual Data Report: Atlas of Chronic Kidney Disease and End-Stage Renal Disease in the United States*, pp. 362–375, National Institutes of Health, Bethesda, MD.
2. Mochizuki, T., Wu, G., Hayashi, T., Xenophontos, S. L., Veldhuisen, B., Saris, J. J., Reynolds, D. M., Cai, Y., Gabow, P. A., Pierides, A., Kimberling, F. Grahammer, personal communication.

\(^5\) F. Grahammer, personal communication.
N-Glycosylation of TRPP2

W. J., Breuning, M. H., Deltas, C. C., Peters, D. J., and Somlo, S. (1996) PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science 272, 1339–1342

3. Nilius, B., and Owsianik, G. (2011) The transient receptor potential family of ion channels. Genome Biol. 12, 218

11. Streets, A. J., Moon, D. J., Kane, M. E., Obara, T., and Ong, A. C. (2006) Trafficking of TRPP2 by PACS proteins represents a novel mechanism of ion channel regulation. EMBO J. 24, 705–716

12. Streets, A. J., Needham, A. J., Gill, S. K., and Ong, A. C. (2010) Protein N-glycosylation: diversity, synthesis and function. Adv. Exp. Med. Biol. 704, 287–313

13. Plotnikova, O. V., Pugacheva, E. N., and Golemis, E. A. (2011) Aurora A kinase activity influences calcium signaling in kidney cells. J. Cell Biol. 193, 1021–1032

14. Streets, A. J., Wessely, O., Peters, D. J., and Ong, A. C. (2013) Hyperphosphorylation of polycystin-2 at a critical residue in disease reveals an essential role for polycystin-1-regulated dephosphorylation. Hum. Mol. Genet. 22, 1924–1939

15. Cai, Y., Maeda, Y., Cedzich, A., Torres, V. E., Wu, G., Hayashi, T., Mochizuki, T., Park, J. H., Witzgall, R., and Somlo, S. (1999) Identification and characterization of polycystin-2, the PKD2 gene product. J. Biol. Chem. 274, 28557–28565

16. Newby, L. J., Streets, A. J., Zhao, Y., Harris, P. C., Ward, C. J., and Ong, A. C. (2002) Identification, characterization, and localization of a novel kidney polycystin-1-poly-cystin-2 complex. J. Biol. Chem. 277, 20763–20773

17. Helenius, A., and Aebersold, R. (2004) Roles of N-linked glycans in the endoplasmic reticulum. Annu. Rev. Biochem. 73, 1019–1049

18. Moremen, K. W., Tiemeyer, M., and Nairn, A. C. (2002) Identification, characterization, and localization of a novel kidney polycystin-1-polycystin-2 complex. J. Am. Soc. Nephrol. 13, 468–465

19. Aebi, M., Bernasconi, R., Clerc, S., and Molinari, M. (2010) N-glycan structures: recognition and processing in the ER. Trends Biochem. Sci. 35, 74–82

20. Fedele, S. V., Tian, X., Gallagher, A.-R., Mitobe, M., Nishio, S., Lee, S. H., Cai, Y., Geng, L., Crews, C. M., and Somlo, S. (2011) A genetic interaction network of five genes for human polycystic kidney and liver diseases defines polycystin-1 as the central determinant of cyst formation. Nat. Genet. 43, 639–647

21. Gao, H., Wang, Y., Wegierski, T., Skouloudaki, K., Pütz, M., Fu, X., Engel, C., Boehlke, C., Peng, H., Kuehn, E. W., Kim, E., Kramer-Zucker, A., and Walz, G. (2010) PRKCSH/SO4K-H, the protein mutated in polycystic liver disease, protects polycystin-2/TRPP2 against HERP-mediated degradation. Hum. Mol. Genet. 19, 16–24

22. Li, A., Davila, S., Furui, L., Qian, Q., Tian, X., Kamath, P. S., King, B. F., Torres, V. E., and Somlo, S. (2003) Mutations in PRKCSH cause isolated autosomal dominant polycystic liver disease. Am. J. Hum. Genet. 72, 691–703

23. Dre nth, J. P., te Morsche, R. H., Smink, R., Bonafaccio, J. S., and Jansen, J. B. (2003) Germline mutations in PRKCSH are associated with autosomal dominant polycystic liver disease. Nat. Genet. 33, 345–347

24. Dre nth, J. P., Martina, J. A., van der Kerkhof, R., Bonafaccio, J. S., and Jansen, J. B. (2005) Polycystic liver disease is a disorder of cotranslational protein processing. Trends Mol. Med. 11, 37–42

25. Bae, K. T., Zhu, F., Chapman, A. B., Torres, V. E., Grantham, J. J., Guay-Woodford, L. M., Baumgarten, D. A., King, B. F., Jr., Wetzl, L. H., Kenney, P. J., Brummer, M. E., Bennett, W. M., Klahr, S., Meyers, C. M., Zhang, X., Thompson, P. A., Miller, J. P., and Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease (CRISP) (2006) Magnetic resonance imaging evaluation of hepatic cysts in early autosomal-dominant polycystic kidney disease: the Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease cohort. Clinical Journal of the American Society of Nephrology 1, 64–69

26. Trombeta, E. S., Simons, J. F., and Helenius, A. (1996) Endoplasmic reticulum glucosidase II is composed of a catalytic subunit, conserved from yeast to mammals, and a tightly bound noncatalytic HDEL-containing subunit. J. Biol. Chem. 271, 27509–27516

27. Dietrich, A., Mederos y Schnitzler, M., Emmel, J., Kalwa, H., Hofmann, T., and Gudermann, T. (2003) N-linked protein glycosylation is a major determinant for basal TRPC3 and TRPC6 channel activity. J. Biol. Chem. 278, 47842–47852

28. Wirkner, K., Hogestad, H., Janhle, R., Hucko, F., and Illes, P. (2005) Characterization of rat transient receptor potential vanilloid 1 receptors lacking the N-glycosylation site N604. Neuroreport 16, 997–1001

29. Chang, Q., Hoefs, S., van der Kemp, A. W., Topala, C. N., Benders, R. J., and Hoenderop, J. G. (2005) The β-glucuronidase Klotho hydrolyzes and activates the TRPV5 channel. Science 310, 490–493

30. Xu, F., Yu, Y., Tian, W., and Cohen, D. M. (2006) Glycosylation of the osmoresponsive transient receptor potential channel TRPV4 on Asn-651 influences membrane trafficking. Am. J. Physiol. Renal Physiol. 290, F1103–F1109

31. Cohen, D. M. (2006) Regulation of TRP channels by N-linked glycosylation. Semin. Cell Dev. Biol. 17, 630–637

32. Pertusa, M., Madrid, R., Morenilla-Palao, C., Belmonte, C., and Viana, F. (2012) N-glycosylation of TRPM8 ion channels modulates temperature sensitivity of cold thermoreceptor neurons. J. Biol. Chem. 287, 18218–18229

33. Hanoaka, K., Qian, F., Boletta, A., Bhunia, A. K., Piontek, K., Tsiokas, L., Sukhatme, V. P., Guggino, W. B., and Germino, G. G. (2000) Co-assembly of polycystin-1 and -2 produces unique cation-permeable currents. Nature 408, 990–994

34. Geng, L., Okuhara, D., Yu, Z., Tian, X., Cai, Y., Shibazaki, S., and Somlo, S. (2006) Polycystin-2 traffics to cilia independently of polycystin-1 by using an N-terminal RVxP motif. J. Cell Sci. 119, 1383–1395

35. Shao, X., Somlo, S., and Igarashi, P. (2002) Epithelial-specific Cre/lox recombination in the developing kidney and genitourinary tract. J. Am. Soc. Nephrol. 13, 1837–1846

36. Dyballa, N., and Mettger, S. (2009) Fast and sensitive colloidal Coomassie G-250 staining for proteins in polyacrylamide gels. J. Vis. Exp. 30, 1431

37. Jacob, F., Guertler, R., Naim, S., Nixdorf, S., Fedier, A., Hacker, N. F., and Heinzelmann-Schwarz, V. (2013) Careful selection of reference genes is required for reliable performance of RT-qPCR in human normal and cancer cell lines. PLoS ONE 8, e59180

38. Schneider-Poetsch, T., Ju, J., Eyler, D. E., Dang, Y., Bhat, S., Merrick, W. C., Green, R., Shen, B., and Liu, J. O. (2010) Inhibition of eukaryotic translation elongation by cycloheximide and lactimidomycin. Nat. Chem. Biol. 6, 209–217

39. Brodsky, J. L. (2012) Cleaning up: ER-associated degradation to the rescue. Cell 151, 1163–1167

40. Lee, D. H., and Goldberg, A. L. (1998) Proteasome inhibitors: valuable new
tools for cell biologists. *Trends Cell Biol.* 8, 397–403
41. Koulen, P., Cai, Y., Geng, L., Maeda, Y., Nishimura, S., Witzgall, R., Ehrlrich, B. E., and Somlo, S. (2002) Polycystin-2 is an intracellular calcium release channel. *Nat. Cell Biol.* 4, 191–197
42. Trombetta, E. S., Fleming, K. G., and Helenius, A. (2001) Quaternary and domain structure of glycoprotein processing glucosidase II. *Biochemistry* 40, 10717–10722
43. Hampton, R. Y. (2002) ER-associated degradation in protein quality control and cellular regulation. *Curr. Opin. Cell Biol.* 14, 476–482
44. Dragoni, I., Guida, E., and McIntyre, P. (2006) The cold and menthol receptor TRPM8 contains a functionally important double cysteine motif. *J. Biol. Chem.* 281, 37353–37360
45. Veldhuis, N. A., Lew, M. J., Abogadie, F. C., Poole, D. P., Jennings, E. A., Ivanusic, J. J., Eilers, H., Bunnett, N. W., and McIntyre, P. (2012) N-glycosylation determines ionic permeability and desensitization of the TRPV1 capsaicin receptor. *J. Biol. Chem.* 287, 21765–21772
46. Kiselyov, K., Chen, J., Rbaibi, Y., Oberdick, D., Tjon-Kon-Sang, S., Shcheynikov, N., Muallem, S., and Soyombo, A. (2005) TRP-ML1 is a lysosomal monovalent cation channel that undergoes proteolytic cleavage. *J. Biol. Chem.* 280, 43218–43223
47. Miedel, M. T., Weixel, K. M., Bruns, J. R., Traub, L. M., and Weisz, O. A. (2006) Posttranslational cleavage and adaptor protein complex-dependent trafficking of mucolipin-1. *J. Biol. Chem.* 281, 12751–12759
48. Qian, F., and Noben-Trauth, K. (2005) Cellular and molecular function of mucolipins (TRPML) and polycystin 2 (TRPP2). *Pfizers Arch.* 451, 277–285
49. Huang, K., Diener, D. R., Mitchell, A., Pazour, G. J., Witman, G. B., and Rosenbaum, J. L. (2007) Function and dynamics of PKD2 in *Chlamydomonas reinhardtii* flagella. *J. Cell Biol.* 179, 501–514
50. Yu, S., Hackmann, K., Gao, J., Gao, J., He, X., Piontek, K., Garcia-González, M. A., Garcia González, M. A., Menezes, L. F., Xu, H., Germino, G. G., Zuo, J., and Qian, F. (2007) Essential role of cleavage of Polycystin-1 at G protein-coupled receptor proteolytic site for kidney tubular structure. *Proc. Natl. Acad. Sci. U.S.A.* 104, 18688–18693
51. Kleyman, T. R., Carattino, M. D., and Hughy, R. P. (2009) ENaC at the cutting edge: regulation of epithelial sodium channels by proteases. *J. Biol. Chem.* 284, 20447–20451
52. Ciechanover, A. (2012) Intracellular protein degradation: from a vague idea thru the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting. *Biochim. Biophys. Acta* 1824, 3–13
53. Hochstrasser, M. (1996) Ubiquitin-dependent protein degradation. *Annu. Rev. Genet.* 30, 405–439
54. Glickman, M. H., and Ciechanover, A. (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. *Physiol. Rev.* 82, 373–428
55. Katzmann, D. J., Odorizzi, G., and Emr, S. D. (2002) Receptor downregulation and multivesicular-body sorting. *Nat. Rev. Mol. Cell Biol.* 3, 893–905
56. Liang, G., Li, Q., Tang, Y., Kokame, K., Kikuchi, T., Wu, G., and Chen, X.-Z. (2008) Polycystin-2 is regulated by endoplasmic reticulum-associated degradation. *Hum. Mol. Genet.* 17, 1109–1119
57. Luo, Y., Vassilev, P. M., Li, X., Kawanabe, Y., and Zhou, J. (2003) Native polycystin 2 functions as a plasma membrane Ca$^{2+}$-permeable cation channel in renal epithelia. *Mol. Cell. Biol.* 23, 2600–2607
58. Tsiokas, L. (2009) Function and regulation of TRPP2 at the plasma membrane. *Am. J. Physiol. Renal Physiol.* 297, F1–F9
59. Hoffmeister, H., Babinger, K., Gürster, S., Cedzich, A., Meese, C., Schade, K., Osten, L., de Vries, U., Rasche, A., and Witzgall, R. (2011) Polycystin-2 takes different routes to the somatic and ciliary plasma membrane. *J. Cell Biol.* 192, 631–645
60. Freeze, H. H. (2007) Congenital disorders of glycosylation: CDG-I, CDG-II, and beyond. *Curr. Mol. Med.* 7, 389–396