Research on Thermodynamic Parameters of a Micro-Turbine for Standalone Cogeneration

M N Chekardovskiy, S M Chekardovskiy, I A Chekardovskaya, A I Mihajlenko

Industrial University of Tyumen, 38 Volodarskogo st., Tyumen, 625000, Russia
E-mail: zemenkov@tsogu.ru

Abstract. In order to advance the heating and hot water systems in the Russian Federation we need to address the problem of introducing new sources of heat and electric energy. The paper overviews the relationship between the reliability, efficiency and diagnostic maintenance of the GMTU, the studies of rated and operating conditions of the GMTU, the development and improvement of methods for calculating rated and operating thermodynamic and diagnostic parameter of the unit. This resulted in developing a passport of thermodynamic parameters that can be compared to the parameters of the same units when they operate for the purpose of diagnosing their state.

1. Introduction
The American firm Capstone indirectly introduces gas micro-turbines of the centrifugal type for combined production of heat and electricity. In the near future, as a result of import substitution, they can play the role of a new driving force in the evolution of engineering systems for decentralized production of electricity and heat (cogeneration).

Micro-turbines can create a reliable, year-round cogeneration for power of both sports, shopping, social facilities, and oil and gas facilities, such as compressors, pumping stations and oil and gas processing plants [1].

2. Research
The object of this research is equipment in the winter sports center "Pearl of Siberia" located 50 km from the city of Tyumen - gas micro-turbine units (GMTU).

The subject of this research is cogeneration processes in the GMTU CapstoneC65. The objective is development of algorithms for determining the parameters of control and diagnostic of operation modes and the technical state of the GMTU.

Figures 1 and 2 show a micro-turbine in the section and its exterior.
Operating modes are clustered and standalone. The article presents the results of the research on a standalone operating mode of micro-turbines.

A thermotechnical scheme of a unit with rated parameters is shown in Figure 3. Here are given rated (passport) temperature values for air and combustion products at the inlet and outlet of the generator, the centrifugal compressor and turbine, the combustion chamber and the integrated recuperator for heating the air entering downstream of the compressor into the combustion chamber.
Figure 3. A thermotechnical scheme of the GMTU.

Figure 4 shows a device of the heat exchanger designed for heating water of the heat supply or hot water supply systems. Heating is provided by heat transfer from the combustion products through the walls of the ribbed tube heat exchanger to the water [2, 3].

Figure 4. A scheme of the main components of the heat exchanger.
More information on the rated specifications of micro-turbines is presented in Table 1.

Table 1. Rated specifications of the GMTU.

Parameter	Notation	Units	Value
Ambient air temperature	T_a	K	288
Ambient air pressure	P_a	kPa	101.33
Effective capacity	N_e	kW	65
Mass air flow:			
into the combustion chamber (CC)			
for cooling the CC			
total, through the centrifugal compressor	M_{air}	kg/s	0.633
Air temperature upstream the centrifugal compressor	T_o	K	783
Air temperature downstream the centrifugal compressor	T_e	K	478
Air temperature downstream the recuperator	T_v	K	783
Temperature of combustion products upstream the PT	T_z	K	1227
Temperature of combustion products downstream the PT	T_s	K	908
Temperature of combustion products downstream the recuperator	T_s	K	577
Mass flow of combustion products	M_{CP}	kg/s	0.49
Mass flow of the fuel gas	B	kg/s	0.0047
Net calorific value of the fuel gas	Q_n^p	kJ/kg	47590
Effective efficiency of the GMTU	η_e	-	0.29
Combustion chamber efficiency	η_{CC}	-	0.98
Shaft rotation frequency	n	s $^{-1}$	1600

To calculate the additional rated characteristics of the unit we developed an algorithm that includes the sequence of known thermodynamic equations for calculating gas turbine units [4]. The algorithm is shown below.

The algorithm for calculating the additional rated characteristics of the GMTU

$$L_o = \frac{Q_n^p}{2900}.$$ \hspace{1cm} (1)

$$\alpha = \frac{\eta_{CC} \cdot Q_n^p}{L_o \cdot C_p \cdot (T_z - T_v)}.$$ \hspace{1cm} (2)
\[N_{PT} = M_{CP} \cdot C_{pT} \left(T_z - T_s \right), \] \hfill (3)
\[N_C = M_{air} \cdot C_{pT} \left(T_c - T_{a} \right), \text{ kW}. \] \hfill (4)
\[N_{AG} = N_{PT} - N_C, \text{ kW}. \] \hfill (5)
\[\delta_{N_e} = \frac{N_{AG} - N_e}{N_{AG}} \cdot 100, \text{ %}. \] \hfill (6)
\[\eta_{CC} = 0.98. \] \hfill (7)
\[\eta_{AG} = \frac{N_{AG}}{Q^p \cdot B}. \] \hfill (8)
\[\delta_{\eta_e} = \frac{\eta_{AG} - \eta_e}{\eta_{AG}} \cdot 100, \text{ %}. \] \hfill (9)
\[P_c = P_o \left(\frac{T_c}{T_o} \right)^{\frac{k}{k-1}}, \text{ kPa}. \] \hfill (10)
\[P_z = P_c \cdot \sigma_{CC}, \text{ kPa}. \] \hfill (11)
\[\varepsilon_C = \frac{P_c}{P_o}. \] \hfill (12)
\[\lambda_{PT} = \frac{P_z}{P_s}. \] \hfill (13)
\[\varphi = \frac{T_v - T_c}{T_s - T_c}. \] \hfill (14)
\[C_p = A + t \cdot 9.355 \cdot 10^{-5} + t^2 \cdot 3.694 \cdot 10^{-7} - t^3 \cdot 2.769 \cdot 10^{-10}, \text{ kJ/kg} \cdot \text{K}. \] \hfill (15)

Table 2 shows the results of calculating the additional rated characteristics of the unit such as: stoichiometric ratio (amount of air per 1 kg of fuel); excess air ratio; power generated by the PT; power consumed by the centrifugal compressor; air pressure behind the centrifugal compressor; pressure of combustion products upstream the PT; degree of regeneration. Completion of the full calculation of the rated operating mode allowed us to create a passport on thermodynamic parameters that is compared to the operating parameters of the same unit to diagnose its modes of operation and technical state.
Table 2. The results of calculating the additional rated characteristics of the GMTU.

№	Parameter	Notation	Units	Value
1	Stoichiometric ratio	L_0	kg/kg	16.41
2	Excess air ratio	α		5.38
3	Heat capacity of combustion products for the CT	C_{pr}	kJ/kg·K	1.189
4	Power generated by the PT	N_{PT}	kW	190.54
5	Heat capacity of air for the centrifugal compressor	C_{Pair}	kJ/kg·K	1.043
6	Power consumed by the centrifugal compressor	N_c	kW	125.54
7	Calculated effective capacity of the GMTU	δ_{N_c}	%	0
8	Calculation error N_e	δ_{N_e}	%	0
9	Combustion chamber efficiency	η_{CC}	%	0.98
10	Effective efficiency of the GMTU	δ_{η_e}	%	29
11	Calculation error η_e	δ_{η_e}	%	0
12	Air pressure behind the centrifugal compressor	P_c	kPa	573.1
13	Pressure of combustion products upstream the PT	P_z	kPa	555.9
14	Indicator of adiabatic expansion process of	κ_T	-	1.2855
	combustion products in the PT			
15	Degree of increase in air pressure in the	ε_C	-	5.89
	centrifugal compressor			
16	Expansion ratio of combustion products in the PT	λ_{PT}	-	3.88
17	Degree of regeneration	φ	-	0.71

Below shows presents the developed algorithm for calculating the operating modes for different loads from 25 to 100 percent of the nominal value. The calculation results are presented in Table 3. During operation of micro-turbines the number of controlled operating mode parameters is limited and presented in Table 3 as power coefficients of the centrifugal compressor and the PT; temperature coefficients of the PT and the centrifugal compressor; temperatures of air and combustion products downstream the PT. Completion of the full calculation of variable operating modes of the unit allowed us to create a passport on thermodynamic parameters that is compared to the operating parameters of the same unit under the load of 25 to 100 percent of the nominal value to diagnose its modes of operation and technical state by comparison.

The algorithm for calculating the operating characteristics of the GMTU

$$\varphi_C = \frac{N^H_e}{N^H_C}.$$ \hspace{1cm} (16)

$$\varphi_{CT} = \frac{N^H_e}{N^H_{CT}}.$$ \hspace{1cm} (17)
\[\varphi_{CT} = \frac{T_T}{T_S} \] \hfill (18)
\[\varphi_{TC} = \frac{T_C}{T_T} \] \hfill (19)
\[N^P_C = \frac{N^p_e}{\varphi_C}, \text{ kW} \] \hfill (20)
\[M^F_{AIR} = \frac{N^F_C}{C_{P,air} (T^p_C - T^p_o)}, \text{ kg/s.} \] \hfill (21)
\[N^F_{CT} = \frac{N^p_e}{\varphi_{CT}}, \text{ kW.} \] \hfill (22)
\[M^F_{CP} = \frac{N^F_C}{C_{P,CP} (T^p_C - T^p_S)}, \text{ kg/s.} \] \hfill (23)
\[T^p_v = \varphi \cdot (T^p_S - T^p_C) + T^p_C, \text{ K.} \] \hfill (24)
\[\alpha^F = \frac{\eta_{CC} \cdot Q^p_H}{L_o \cdot C_p (T^p_C - T^p_v)}. \] \hfill (25)
\[B = \frac{M^F_{CC}}{\alpha^F L_o}. \] \hfill (26)
\[\epsilon_C = \left(\frac{T^p_C}{T^p_0} \right)^{k-1}. \] \hfill (27)
\[\epsilon_{CT} = \left(\frac{T^p_T}{T^p_S} \right)^{k_t-1}. \] \hfill (28)

Table 3. Initial data for various operating modes of the GMTU.

№	Parameters	Notation	Units	Power, kW
1	Capacity of the GMTU	\(N^p_e \)	kW	16.25 32.5 56.23 65
	Rated power factor of the	\(\varphi_C \)	-	0.5178 0.5178 0.5178 0.5178
	centrifugal compressor CT	\(\varphi_{CT} \)	-	0.3411 0.3411 0.3411 0.3411
2				
Table 4 shows the main results of calculating the operating modes of Capstone C65.

Table 4. The results of calculating the operating modes of Capstone C65.

№	Parameters	Units	Power, kW			
			0.25 \(N_F \)	0.50 \(N_F \)	0.865 \(N_F \)	\(N_F \)
1	Actual capacity of the CT centrifugal compressor	kW	29.45	62.77	108.63	125.53
2	Air temperature downstream the centrifugal compressor	K	413.3	431.7	459.0	478.0
3	Average air temperature in the centrifugal compressor	°C	79.15	86.85	100.50	110.00
4	Average heat capacity of air	kJ/kg·K	1.040	1.042	1.044	1.045
5	Air flow of the centrifugal compressor	kg/s	0.2412	0.4193	0.6090	0.6322
6	Actual capacity of the CT	kW	47.64	95.28	164.91	190.56
7	Temperature of combustion products	K	1061.0	1108.0	1152.6	1226.9
8	Temperature of combustion products	K	785	820	853	908
9	Average temperature in the CT	°C	650.0	691.0	729.8	794.5
10	Average heat capacity of the CT	kJ/kg·K	1.17	1.18	1.19	1.21
11	Flow of combustion products in the CT	kg/s	0.1470	0.2804	0.4625	0.4930
12	Air temperature downstream the recuperator	K	677	707	738	783
13	Average temperature at \(T_z \) and \(T_v \)	°C	596.0	634.7	672.3	732.0
	Excess air ratio	α^F	6.38	6.06	5.81	5.38
---	-----------------	----------	------	------	------	------
15	Flow of the fuel gas	B^F kg/s	0.00151	0.00277	0.00420	0.00470
16	Degree of pressure increase	ε_C	3.50	4.12	5.11	5.89
	Expansion ratio of combustion products in the CT	λ_{CT}	3.88	3.88	3.88	3.88

3. Conclusion
The studies and the results of calculations on the nominal operating parameters and operating modes of the GMTU allow us to create a passport of thermodynamic characteristics that, when compared to the parameters of the same units in operation, become diagnostic features. Furthermore, based on the results obtained design solutions can be taken on the development of systems with alternative sources of heat and power (cogeneration), for example when APG is used as a fuel.

References:
[1] Zemenkov Yu D 2015 *Design and operation of gas turbine units* Reference manual ed by Yu D Zemenkov (Tyumen; TyumGNGU) 434
[2] Zemenkov Yu D 2015 *Heat and mass transfer equipment and thermal processes in the transport and storage of oil and gas production systems* Reference manual ed by Yu D Zemenkov (Tyumen; TyumGNGU) 175
[3] Moiseev B V, Zemenkov Yu D and Toropov S Yu 2014 *Industrial power system* Reference manual (Tyumen; TyumGNGU)
[4] Ilyuhin K N, Shapoval A F, Chekardovskiy S M Organization of control and diagnostics of equipment in the system of heat and gas supply *Collection of materials of scientific-practical conference dedicated to the 30th anniversary of the TyumGASA* (Moscow)182-5
[5] Zemenkov, Yu.D., Shalay, V.V., Zemenkova, M.Yu. (2015) Expert Systems of Multivariable Predictive Control of Oil and Gas Facilities Reliability. Procedia Engineering, Volume 113, pp.312-315 DOI: 10.1016/j.proeng.2015.07.271
[6] Zemenkov, Yu.D., V.V. Shalay, M.Yu. Zemenkova. Immediate Analyses and Calculation of Saturated Steam Pressure of Gas Condensates for Transportation Conditions (2015) Procedia Engineering, Volume 113 (2015), pp. 254-258 doi:10.1016/j.proeng.2015.07.330