The red bayberry genome and genetic basis of sex determination

Hui-Min Jia1,†, Hui-Juan Jia1,†, Qing-Le Cai2,†, Yan Wang1, Hai-Bo Zhao1, Wei-Fei Yang2,*, Guo-Yun Wang3, Ying-Hui Li4, Dong-Liang Zhan5, Yu-Tong Shen1, Qing-Feng Niu1,5, Le Chang1, Jie Qiu6, Lan Zhao1, Han-Bing Xie1, Wan-Yi Fu1, Jing Jin1, Xiong-Wei Li7, Yun Jiao8, Chao-Chao Zhou9, Ting Tu9, Chun-Yan Cha10, Jin-Long Gao2, Long-Jiang Fan5, Eric van de Weg11, Jun-Yi Wang2,† and Zhong-Shan Gao1,*

1 Institute of Fruit Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
2 Hangzhou Gene Tech. Co., Hangzhou, China
3 Forestry Technology Extension Center, Yuyao, Ningbo, China
4 The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
5 Shanghai Center for Plant Stress Biology, and National Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
6 Institute of Crop Science & Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
7 Forest & Fruit Tree Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
8 Institute of Forestry, Ningbo Academy of Agricultural Science, Ningbo, China
9 Shunmei Breeding and Propagation Centre for Chinese Bayberry, Yuyao, China
10 Forestry Technology Extension Center, Cixi, China
11 Plant Breeding-Wageningen University and Research, Wageningen, The Netherlands

Received 9 May 2018; revised 1 July 2018; accepted 4 July 2018.

† Correspondence (Tel +86 0571-88982225; fax +86 0571 88982224; email gaozhonghan@zju.edu.cn (Z-SG) or wangjunyi@1gene.com.cn (J-YW))
* Present address: Anonoroad Gene Tech. Co., Ltd, Beijing, China.
† These authors contributed equally to this work.

Keywords: Morella rubra, genome, sex-determination region, sex-linked marker.

Abstract

Morella rubra, red bayberry, is an economically important fruit tree in south China. Here, we assembled the first high-quality genome for both a female and a male individual of red bayberry. The genome size was 313-Mb, and 90% sequences were assembled into eight pseudo chromosome molecules, with 32 493 predicted genes. By whole-genome comparison between the female and male and association analysis with sequences of bulked and individual DNA samples from female and male, a 59-Kb region determining female was identified and located on distal end of pseudochromosome 8, which contains abundant transposable element and seven putative genes, four of them are related to sex floral development. This 59-Kb female-specific region was likely to be derived from duplication and rearrangement of paralogous genes and retained non-recombinant in the female-specific region. Sex-specific molecular markers developed from candidate genes co-segregated with sex in a genetically diverse female and male germplasm. We propose sex determination follow the ZW model of female heterogamy. The genome sequence of red bayberry provides a valuable resource for plant sex chromosome evolution and also provides important insights for molecular biology, genetics and modern breeding in Myricaceae family.

Introduction

Red bayberry (Morella rubra or Myrica rubra) is an evergreen fruit tree native to China (Jia et al., 2015), and has been introduced to Japan, Australia and the United States. It is the only edible fruit species in the family Myricaceae, order Fagales, which is cultivated (Chen et al., 2004). The Myricaceae family has three genera, Morella is the largest genus with about 50 species distributed in warm, humid regions across Asia, Europe, Africa and the Americas (Huguet et al., 2005; Wilbur, 1994). The species in this family are dioecious in general with a very few monocious individuals (Wilbur, 1994). The Chinese name for M. rubra is ‘Yang Mei’, in reference to its dioecy characteristic resembling Yang (Populus), whereas its drupe fruit type and taste is similar to Mei (Prunus mume). Red bayberry has become an important economical fresh fruit in China with an annual production of 1.5 million tons, and processed fruit juice has also entered the USA and European markets. Its fruit was palatable with a special terpene aroma (Cheng et al., 2015), and is valued for its remarkably high content of anthocyanins, vitamin C and antioxidant compounds (Bao et al., 2005; Zhang et al., 2015b). The dioecious male and female flowers, and different fruit colours are shown in Figure 1. It is diploid (2n = 2x = 16) (Sugiura, 1927) with a small genome size of 323 Mb (Jiao et al., 2012). Despite having a very long history of human utilization, breeding programs have only recently been established, with the main challenge in red bayberry breeding being the selection of female individuals with extended fruit shelf life.

In general, sex determination of dioecy, with separate female and male individuals, is controlled by a heteromorphic sex chromosome or a sex determining region on homomorphic chromosomes (Charlesworth, 2013). Genetic and genomic research in a limited number of plants has revealed the prevalent system where the sex of an individual is determined by a pair of sex chromosomes, with females homozygous XX and males heterozygous XY (male heterogamety) (Ming et al., 2011) such as...
in papaya (Wang et al., 2012), diploid persimmon (Akagi et al., 2014) and kiwifruit (Akagi et al., 2018). A few plant species have a ZW system, where the sex of an individual is determined by the genotype of the egg-cell, and males are the homogametic ZZ and female the heterogametic ZW (female heterogamety), as in poplar (Yin et al., 2008), willow (Pucholt et al., 2015, 2017) and a wild species of allo-octoploid strawberry (Tennessen et al., 2016; Wei et al., 2017). The system for sex determination in red bayberry, which is critical for modern breeding, has been unclear until now.

Currently, no completed whole-genome sequences have been reported in the Myricaceae family and, in the order Fagales, only the monoecious birch (Salojarvi et al., 2017; Wang et al., 2013) and walnut (Martinez-Garcia et al., 2016) have been sequenced. Here we report a high-quality genome assembly of a diploid female and male red bayberry (2n = 16 chromosomes) and their genome annotation, the first genetic linkage map in M. rubra, characterization of the mechanism controlling sex determination.

Results

Genome assembly and annotation

The red bayberry female elite breeding line ‘Y2012-145’ and a male individual (H2011-12) were used for genome sequencing (basic plant characteristics shown in Figure S1 in the Supporting Information). Analysis of the 17-mer sequence revealed the heterozygosity of female was 0.56% and male 0.70% (Figure S2). For Y2012-145, a total of ~278-fold coverage of Illumina paired-end reads were first assembled by SOAPdenovo2 (Luo et al., 2012) (v2.04.4), and ~15-fold coverage of PacBio data assembled by Falcon (Chin et al., 2016) (v1.7.4) (Table S1). The final assembly of the female genome was 313 Mb (NCBI Sample Project NO. SAMN07510764) covering 96.9% of the bayberry genome (323 Mb). A total of 1114 scaffolds and 3433 contigs were assembled with an N50 of 635 kb and 193 kb respectively (Table S2). The assembled male individual H2011-12 genome was 313 Mb using 48-fold Illumina reads and 61-fold coverage by Pacbio reads (Table S1), the same size as the female, accounting for 98% of the total of 319 Mb, and the N50 contig index was 1.1 Mb (Table S2).

A bi-parental genetic linkage map was constructed by JoinMap® 4.1 using an F1 population (Biqi × Dongkui) of 95 individuals with SNP markers identified by RAD-Seq and alignment to scaffold and contig sequences (Table S3). The final map spanned 531-cM across eight linkage groups and contained 3075 SNP markers aggregated to haplotype blocks (HB) representing 407 genetic bins (Figure S3 and Table S4). The genome-wide heat map for recombination frequencies for all possible haplo-block marker pairs is presented and the centromere region for each chromosome was determined (Figure S4 and Table S4). Sequence alignment by Blast with primary assembled contigs from both the male and female genome, and the order of SNP markers in the linkage map, helped connect and orientate contigs and scaffolds. This integrated approach greatly contributed to the quality of the reference female and male red bayberry genome, with the N50 scaffold parameter increased from 0.6 Mb to 1.6 Mb for the female and from 1.1 Mb to 2.0 Mb for the male (Table 1 and Table S2). As part of this process, the initial 169 female scaffolds and 12 male scaffolds were split, and a total of 531 scaffolds were anchored to the eight pseudochromosomes for the female, comprising 90% (280-Mb) of the Y2012-145 genome assembly, 87% coverage of the whole genome (Figures S5 and S6a), enabling orientation of 228 of the anchored scaffolds (267-Mb, 95% of the total anchored sequences). The H2012-12 male genome was also assembled into eight pseudo-chromosomes, 264 Mb in length, comprising 84% of the total assembly.

Figure 1 Red bayberry flower and fruit. a and b, female flower. c, male flowers. d to g, the fruits of red bayberry cultivars Y2012-145, Xiazhihong, Biqi and Dongkui respectively.
(313 Mb) (Figure S6b). Comparison of the genetic and physical distances between SNP markers revealed a single region of distinct recombination suppression on each of the eight pseudo-chromosomes, indicating the centromere regions of the chromosome of about 2 cM each that were represented by 3–4 haploblocks (Figures S3, S5 and Table S4). Some short scaffolds in the centromere regions could not be fine mapped due to lack of recombination and lack of overlapping synteny between the female and male.

We assessed the quality of the assembly by four independent methods. For the female genome, we first randomly selected ten scaffolds longer than 30 Kb and used the WGS paired-end reads to check the assembly accuracy within scaffolds. The results showed all regions can be covered by paired-ends reads (Figure S7). Second, 94.5% of a total of 61,391 transcriptions derived from the de novo assembled RNA-seq data of five tissues of Y2012-145 were successfully aligned to the assembled genome, and 94.7% of the fruit EST sequences from M. rubra cv. Bizi (Feng et al., 2012) were retrieved (Table S5). Third, the completeness of the assembly was evaluated using the BUSCO (Simao et al., 2015) (Benchmarking Universal Single-Copy Orthologs) data sets, with about 94% of the core eukaryotic genes retrieved (Table S6). Finally, the positions and orientation of assembled contigs from both the female and male genome generally had good linear synteny at a sequence identity threshold of 85% (Figure S8) and correlation of their relative positions on the reference genetic linkage map. For the male genome, 96% of a total of 99,328 transcriptions derived from the de novo assembled RNA-seq data of male buds and flowers of H2011-12 were successfully aligned to the assembled genome (Table S5).

Genome annotation was primarily done in the female Y2012-145, with complementary additional genes annotated in the male genome. The female genome had 114 Mb repetitive sequences, accounting for 36.4% of the assembly (313 Mb), whereas the male had 154.6 Mb repetitive sequences, accounting for 49.3%, which is more reliable because of higher coverage of long PacBio reads. Based on the known repeat motifs, 82.9% of the repeat sequence were classified and annotated. The retrotransposons (class I elements) constituted 21.4% of the genome, with superfamily gypsy and copia retrotransposons (9.9% and 5.1% respectively) (Table S7 and Figure S9), showing high similarity to that in peach (Verde et al., 2013). The repeat divergence rate peaked at 30%, and more than 98.8% of TEs had a divergence rate of >10%, indicating that most red bayberry TEs are of relatively ancient origin, similar to jujube (Liu et al., 2014) and mulberry (He et al., 2013) (Figure S10).

To annotate the female bayberry genome for protein-coding genes, we used a combination of ab initio gene predictions and homologosequence searching, integrated with RNA-seq data from different tissues (Table S8). We predicted 29,414 protein-encoding genes with an average coding sequence length of 1144 bp and five exons per gene (Table S9). Additionally, 26,460 genes in the male genome were predicted and supported by transcripts from the male flowers (Table 1), of which 3079 genes were not covered by the female gene set, so the total gene number was 32,493 for both female and male. The number of genes was similar to that found in peach (Verde et al., 2013) and pomegranate (Yuan et al., 2018), but considerably lower than that in apple (Daccord et al., 2017). A total of 26,316 (89.5%) genes in the female had substantial homology with those in public databases (Table S10). In addition to protein-coding genes, we identified 1158 putative transcription factor genes distributed across 58 families (Table S11), 489 rRNAs, 205 snRNAs, 626 tRNAs and 128 miRNAs (Table S12). Tissue-specific expressed genes based on the RNA-seq data were analysed (Figure S11). Most of the root-specific genes appear to be involved in plant defence and stress responses, such as plant disease resistance genes. A total of 26,152 genes were mapped on the eight female pseudo-chromosomes. Self-alignment of the bayberry genome sequences based on the 26,152 gene models identified 6851 paralogous gene groups and 893 gene blocks, indicating that the bayberry genome may have undergone frequent inter-chromosome fusions and segmental duplication during its evolutionary history (Figure S12).

Table 1 Characteristics of the *M. rubra* (2n = 16) genome assembly and annotation.

Categories	Female	Male
Estimate of genome size (by k-mer)	322.7 Mb	319.2 Mb
Total size of assembled scaffold	312.6 Mb	313.5 Mb
Number of scaffold (>10 Kb)	859	1407
N50 (scaffold)	1.6 Mb	2.0 Mb
Heterozygosity	0.56%	0.72%
Number of anchored scaffold	275	301
Anchored scaffold size	280 Mb	264 Mb
Number of gene models	29 414	26 416
Total size of TEs	115.0 Mb	154.6 Mb
TE share in genome	36.7%	49.3%

© 2018 The Authors. *Plant Biotechnology Journal* published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd., 17, 397–409.
syntenic patterns indicated a high level of chromosomal rearrangements between red bayberry and peach, while each red bayberry chromosome mainly matched two birch chromosomes, possibly from the ancient gamma hexaploidy event (Salojarvi et al., 2017).

Red bayberry genes, identified by comparative analyses with those in mulberry, papaya, peach and poplar, clustered in 20,015 orthologous gene groups. A large number of shared genes were found in most plant species. A total of 8,432 were shared among all five genomes, 1,083 were confined to Fabidae (red bayberry, mulberry, peach and poplar), 260 to plants with fleshy fruits (red bayberry, mulberry, peach and papaya) and 1,330 were unique to Morella rubra (Figure S14).

Further functional characterization revealed that fruit-specific gene families were highly enriched in biosynthesis of secondary metabolites. About 45.4% of the red bayberry-specific genes could be annotated as ‘transferase activity’ and ‘membrane’ in GO terms (Table S14).

Identification of a sex-specific genomic region

To analyse sex determination in red bayberry, bulked DNA pools of female (BSA-F, including 100 varieties) and male (BSA-M, including 100 natural individuals) DNA from Morella rubra were used to construct libraries (Table S15), and sequenced with 106-fold and 127-fold coverage respectively. Three female cultivars and three male individuals were also resequenced individually with an average 44-fold coverage (Table S16). The BSA-F and BSA-M reads were aligned to both the female and male reference genome to detect true or ghost (Ghost Ins/Del result from paralogous regions with small sequence divergence to the reference) SNPs and Ins/Dels associated with the male and female. For Scaffold S_906a (262-kb) anchored to chromosome 8 in HB8-35 (Figures S3 and S15), we found the S_906a-140,699 SNP to be differently represented, being heterozygous in the BSA-F (A:G signal intensity was ~1:2 ratio, with A the female reference), while male BSA were almost homogenous for G (97%): this pattern was confirmed with seven resequenced female and males. This difference in BSA-F and BSA-M sequences was repeated in other candidate SNPs flanking S_906a on chromosome 8, but did not fit all resequenced individuals (Table S17). In addition, abundant ‘Insertions’ of more than 100 consecutive base pairs were found in BSA-F with significantly higher (66% of 106-fold) sequence coverage found in chromosome 8 (Figures 3a and S16), located in Scaffold_906a (Figure 3b). However, using the male genome as template, we found no outstanding SNPs or insertions from the BSA-M associated with sex differentiation, although there were many minor contrasts across each pseudochromosome at a relatively low signal intensity (less than 40% coverage of 127-fold total read depth) in the male bulked sample (Figure S17). These results indicate sex in Morella rubra is determined by a single genomic region in the female genome. According to the linkage mapping and
assembled contigs/scaffold alignments of from both female and male, we confined the female-specific region (FSR) in the middle of S_906a to a 59-kb stretch (Figure 3b) that included seven putative genes MR8G025874.1-MR8G025880.1 (Figure 3c and Table S18). The 1.4 kb gap with repeat sequences between S_5204 and S_2925 was filled by PCR amplification with primers designed from two ends of adjacent scaffolds (Figure 3b). Sequence analysis of the FSR revealed highly repetitive transposon sequences, such as hAT, MULE and LTR-copia in the middle and two ends (Figure 3c), similar to sex-specific regions in other species, such as persimmons and papaya (Akagi et al., 2014; Bachtrog, 2013; Wang et al., 2012).

Characterization putative genes in a sex-specific genomic region

By blasting the protein sequence of seven genes in the female-specific region against the TAIR database, we found three genes related to flowering: MR8G025875.1 (MrCKA2) encodes the casein kinase II (CK2) regulating flowering time (Ogiso et al., 2010); MR8G025877.1 (MrAS2) is SUMO protease 1, positively regulating the transition to flowering (Kong et al., 2017); and MR8G025880.1 (MrFT2) is involved in the FLOWERING LOCUS T (FT) gene, assumed to be a major component of florigen, that regulates flowering in Arabidopsis (Fornara et al., 2010). Two genes are related to hormones. MR8G025874.1 (MrCPS2) has been predicted as an ent-copaleyl diphasate synthase (CPS), a key enzyme in the biosynthesis of gibberellin (GA) (Heidem and Phillips, 2000), and MR8G025878.1 (MrSAUR2) as a member of a SAUR-like auxin-responsive protein family (SAUR58) (Wuest et al., 2010), which induce early auxin-responsive genes. MR8G025876.1 (MrTFIID2) predicted as transcription initiation factor TFIIID. MR8G025879.1 (MrLSD90-2) was annotated as a gene involved in the metabolism of very long-chain fatty acid-containing phospholipids (Yokoyama et al., 2008). Also on chromosome 8, for each candidate gene in the FSR one copy of a paralogous gene was present at different loci (Figures 3c, 4a and Table S18). To confirm the coding sequence of these putative genes, they were sequenced after amplification with gene-specific primers on the cDNA templates from female buds. Only the first predicted exon was obtained for MrCPS2 and MrFT2, and full length sequences were verified for MrCKA2, MrTFIID2, MrAS2, MrSAUR2 and MrLsd90-2. The specific female S_906a-140,699A SNP mentioned above was located 246 nt before MR8G025877.1 (MrAS2). S_906a-140,699G SNP is actually from a paralogous gene MR8G020746.1 (Figure 4a). Interestingly, comparative analysis of the FSR and their paralogous sequences shows CPS2, CKA2, ASP2, SAUR2, Lsd90-2 are partially matched to their paralogous and abundant repetitive sequences among the FSR and their paralogous sequences (Figure 4a), suggesting that the evolution of the bayberry FSR region may come from the trans- and cis-duplication.

The next stage was to develop sex predictive DNA markers. A single amplified band was detected in the female individuals (including two parents of our mapping population) with markers based on MR8G025876.1 (SAUR2) and MR8G025880.1 (FT2) (Figure 4b). The presence and absence of these two markers in the mapping population was close to 3:1 ratio as expected. We also designed sequence characterized markers for each gene pair MrFT1/MrFT2 and MrCPS1/MrCPS2 based on sequence polymorphism in introns (Figure S18). The female-specific fragments were amplified along with the ampiclon of the second locus (paralogous genes present in both male and female) as a positive internal
control. The two co-dominant markers (Table S19) amplified two bands in the female, but one in the male (Figure 4b), and those three markers for MrCPS2, MrFT2 and MrSUR2 were perfectly valid in tests with 133 female and 128 male individuals (Table S15) collected from different geographical sources in China. Only the female-specific band segregated in the mapping population. Further characterized sex-linked S_906a_MrFT2_BD markers specific to each parent (both are female in normal status) of the mapping population ‘Biqi’ × ‘Dongkui’ (Figure S15) were vital to map this gene, and S-906a on LG8, which helped to split the initial scaffold S_906 in two, one is S-906a (contig 1 and contig 2, 262 Kb) containing the sex-specific region on LG8 and the other S-906b (contig 3 and contig 4) on LG2. The female-specific region (FSR) was located in haploblock (HB8-35) of about 500 kb, with boundary contigs/scaffolds aligned to contigs from the male (Figures 3b and S15), suggesting that the FSR region in Morella might be a small region flanked by recombinant regions. Comparing the female and male assembled sequences and perfect link of the molecular markers to sex, we put forward the hypothesis of a female heterozygous ZW sex-determining model in red bayberry: females have a genome region (W) lacking in males, which have the ZZ genotype.

Female and male flower development and expression of sex candidate genes

After fruit harvest in June, the vegetative bud transits to flower buds from July to August, the pistil and stamen primordium form between September and November, and the flower type is visible in February (Figure 5a). The female primordium appears first on the upper part of the bud, whereas the male primordium appears first in the lower part. The expression patterns of four candidate genes in FSR together were investigated. Clearly, four female-specific genes were expressed only in the female bud, MrCPS2 and MrASP2 expression reached a peak on August 27 at the female flower initiating stage, followed by higher MrSAUR2, and MrFT2 expression during the flower primordium formation period (September to November, Figure 5b). This study of the serial anatomy of flower and candidate gene expression study demonstrated the roles of two candidate genes, ASP and CPS, as key initiating factors.

Discussion

The red bayberry genome size is small and simple (around 320 Mb), being diploid with intermediate heterozygosity. The
female and male independent assemblies, reciprocal sequence comparison at micro level in contigs and an efficient mapping approach (Di Pierro et al., 2016), led to high quality of assembly, with an extended total and oriented size of the female pseudochromosome of 280 Mb (87%) and 264 Mb (82%) of the male (Table 1). Due to genetic diversity of two parents, 65% of haplotype blocks (HB) in the linkage map was heterozygous (Figure S3), which is helpful to define HB and anchor scaffolds in right position and orientation.

Myricaceae, a member of the Fagales order according to Angiosperm Phylogeny Group IV, is closely related to Cucurbitales, Rosales and Fabales (Allantospermum et al., 2016). Our results support this classification. As one of IV clades of actinorhizal plants, the genetic and fossil record puts Myricaceae close to Betulaceae and Casuarinaceae (Huguet et al., 2005) (the member of Fabales). The time and centre of origin of Myricaceae has been proposed by two distinct hypothesis: late Cretaceous (−90 Mya) in South eastern Asia (Chourey, 1974) or Early Tertiary (−46 Mya) in north America (Huguet et al., 2005). Our evolution analysis indicates that red bayberry occurred about 49 Mya ago (Figure 2a), thus supporting the latter hypothesis of a recent event close to Early Tertiary.

Morella rubra is dioecious fruit tree. Dioecious plants only account for 6% in the flowering plant (Charlesworth, 2002; Ming et al., 2011). The diversity of genetic mechanisms for sex determination in these plants is attributed to how the separate sexes evolved independently from hermaphroditism in different lineages, and often recently (Pannell, 2017; Renner, 2014). Genetic polymorphism (sex chromosome) is thought to be the

Figure 5 Female and male floral bud development and expression profiles of four female-specific candidate genes. (a) Morphology and cross-sectional images of female and male flower initiation and development from July to February. (b) Quantitative expression level of four female-specific candidate genes: MR8G025874.1 (MrCPS2), ent-copalyl diphosphate synthase. MR8G025877.1 (MrASP2) is SUMO protease; MR8G025878.1 (MrSAUR2), SAUR-like auxin-responsive protein family; MR8G025880.1 (MrFT2) predicted as FLOWERING LOCUS T (FT) gene.

ª2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd., 17, 397–409
cause of dioecy, with the XY system being prevalent (Ming et al., 2011; Pannell, 2017), whereas the ZW system appears in very few genera (Ming et al., 2011) such as Ginkgo, Datisca, Populus (Yin et al., 2008), Salix (Pucholt et al., 2015, 2017), Fragaria (Tennessee et al., 2016; Wei et al., 2017). Our study adds the Morella genus to this short list, and it will become a reference for other dioecious plants in Fagales. The ZW sex-determining mode seems to be prevalent among the dioecious plants in Cucurbitales, Rosales and Fagales (this study) within Fabidae (Ming et al., 2011).

Because of the common origin of the sex-determining or regulatory genes and repeated sequences within and surrounding the so-called SDR (Charlesworth, 2013; Ming et al., 2011; Moore et al., 2016), it is not easy to find, locate and define the exact boundary lines of male- or female-specific regions. Our integrated approach combined DNA marker haploblock mapping, sequencing both female and male genomes and GWAS using two bulked sex DNA pools, has successfully pinpointed a core female-specific region of approximately 59 Kb FSR as sex-determining region (SDR) on the distal end of linkage group 8 in Morella rubra (Figures 3c and 55). It is the smallest identified to date, with others ranging from 100 Kb to 1 Mb: Populus (100 Kb) (Gerald et al., 2015), Vitis (143 Kb) (Fechter et al., 2012), Fragaria (280 Kb) (Tennessee et al., 2016), Salix (804 Kb) (Pucholt et al., 2017) and much larger SDR (1–10 Mb) in Actinidia (Zhang et al., 2015a) and Carica (Wang et al., 2012). This 59-Kb region as a whole was absent in Z chromosome 8 (Figure 3b and c). The origin of this region is likely due to duplication and rearrangement of seven predicted genes, considering evidences of identified hA7 and MULE and LTR-copia transposable elements and paralogous present on the same chromosome. Examination of sex recombination suppression and sex-linked differences in SNP intensity through our genetic map was not feasible as our mapping population was created by a cross between two female cultivars (see below) and small size of FSR. Alternatively, we tested three markers covering the 59 kb region on the females and males in a large germplasm (Table S15), they were present collectively in the female, indicating no recombination within the 59-Kb region and recombination is suppressed within this region. Because of the long juvenile period, most seedlings from the common origin of the sex-determining or regulatory genes in red bayberry. The female-specific region harbours a cluster of candidate genes which may be involved in flower development, as indicated by gene expression when the sex is determined during flower development (Figure 5). The expression pattern of MrCPS2 (though only the first predicted exon was expressed) and MrASP2, suggest they have a role in sex differentiation. Another approach is looking at mutations in nature. A monocious red bayberry individual (WZ genotype) has female flower and abnormal male catkins, the female cv. ‘Biqi’ only very rarely has a mutated branch bearing only male flowers. Plant hormones also have a regulatory effect on the flower sex, as seen in cv. ‘Dongkui’, where the normal female plant can be reversed to a monoecious tree with both female and male (the source pollen to construct the mapping population ‘Biqi’ × ‘Dongkui’) after applying the vigour control regulator uniconazole in July and August. However, we have not yet found any male trees have a mutation bearing female flower or fruit in nature. These observations indicated some genetic and environmental modifiers affect the phenotype of ZW. More in-depth research on the candidate genes will provide new insight of gene expression difference and dosage compensation in sex determination and regulation.

In conclusion, we report the de novo whole-genome sequences, the first in the Myricaceae family, for a male and female individual of red bayberry. The genomes are fundamental to molecular biology, genetics and breeding research on Morella species. We identified a conserved sex-determining region, underlying the ZW genetic model, the female has a specific genomic region with putative genes related to sex floral development.

Materials and methods

Genome assembly of both female and male individual

The female ‘Y2012-14S’ (Jia et al., 2014) and male ‘H2011-12’ (Jiao et al., 2012) red bayberry were used for genome sequencing. Different library types were generated for sequencing and an overview of the library types for assembly are shown in Table S1. The red bayberry Genome assembly pipeline is shown in Figure S20. Illumina PE reads were assembled into contigs (pb-contigs) using SOAPdenovo2 (Luo et al., 2012) with default parameters, and PacBio reads were assembled into contigs (sp-contigs) using Falcon (Chin et al., 2016) (v1.7.4). The assemblies were merged together using the HABOT software (Zou et al., 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd., 17, 397–409.
2017) followed by a round of scaffolding and gap filling using Illumina PE reads to obtain the final assembly.

Genetic map and pseudochromosome construction

An integrated (bi-parental) genetic linkage map of red bayberry was constructed using the F1 population from a cross between *M. rubra* cv. ‘Biqi’ (female) and ‘Donkui’ (usual female, induced as pollen donor) (Jiao et al., 2012; Wang et al., 2015). Both parents are highly heterozygous and genetically distant (Jia et al., 2015), so the F1 population could be considered a double pseudo-testcross. A total of 95 individual and their parents were genotyped with restriction site-associated DNA sequencing (RAD-seq, EcoRI restriction enzyme), the summary statistics are shown in Table S3. The clean reads were mapped onto the assembly genome using Bowtie2 (v2.2.2) (Langmead and Salzberg, 2012) with the following parameters: ‘-end-to-end -k 1 -p 5 –phred64’. Segregating polymorphic SNPs were called using the Samtools (v0.1.19) (Li et al., 2009a), and then filtered using VCFTools (0.1.19) (Danecek et al., 2011) with parameters of ‘-d 0.8 –cvNg’, resulting in a total of 8525 SNP markers. These markers were adjusted to codes fit the software Joinmap (v8.1) (Van Ooijen, 2006), filtered for low segregation distortion. Using the independence LOD method, 3664 markers were clustered with Haploblock Aggregator (https://www.wur.nl/en/product/HAPLOBLOCK-AGGREGATOR.htm). Genome-wide recombination frequencies for all possible haploblock marker pairs were calculated against the male contigs using BLASTN with an e-value cutoff of 1e-25. The integrated linkage map was used to construct female pseudomolecules (chromosomes). The map position of SNP markers aligned to anchor to the female scaffold. The orientation of the scaffolds with more than two SNPs was determined by the most common orientation indicated by all possible pairs of mapped markers when considering their order on the integrated genetic map. Based on the alignment between female and male genome, short and adjacent female scaffolds could be further ordered and extended based on the homology region. Adjacent scaffolds in each chromosome were separated by 1000 ‘N’s. All unanchored contigs were connected randomly to chromosome 0.

Gene prediction

The gene prediction pipeline of the female red bayberry genome combined *ab initio* gene prediction, homologous sequence searching and transcriptome sequence mapping. Glimmer HMM (v1.1.0) (Majors et al., 2004), Fgenes (v2.1) (Solovyev et al., 2006) and Augustus (v3.0.2) (Stanke et al., 2006) were used for *de novo* prediction. For homology-based gene prediction, *A. thaliana*, *Glycine max*, *Oryza sativa*, *Prunus persica* and *Solanum lycopersicum* protein sequences were aligned to the *M. rubra* female genome using TBLASTN (Altschul et al., 1997), with an e-value cutoff of 1e-25, followed by further alignments using GeneWise (v2.4.1) (Binney et al., 2004) for accurate exon-intron information. GLEAN (v1.1) (Elisk et al., 2007) was used to merge de novo and homology-based gene sets into the consensus gene set. Additionally, to identify the accurate splice junctions between each exon, the RNA-seq data derived from eight of the ‘Y2012-145’ libraries (Table S8) were first aligned to the female assembly using TopHat (Trapnell et al., 2010) (http://tophat.cbcb.umd.edu) to obtain the open reading frames (ORFs) from the mapping result. Finally, we integrated GLEAN set with Cufflinks by in-house pipeline (Kocher et al., 2013) to generate a final female gene set. For the male gene sets prediction, RNA-seq data from three libraries of H2011-12 (Table S8) were firstly aligned to the male assembly using TopHat (http://tophat.cbcb.umd.edu) and then the Cufflinks were used to get a set of assembled transcripts. The de novo annotated genes were named following the convention in apple (Daccord et al., 2017): MR (for *Morella rubra*) followed by the chromosome number (unmapped gene shown as 0) and gene number, for example *MRBG025877.1*.

Phylogenetic tree and determination of speciation time

Red bayberry belongs to the Fagarales of Eurosids I clade, a member of the Rosids clade. We select two genomes belong to Asterids including *Actinidia chinensis* (Kiwi fruit) and *Solanum lycopersicum* (tomato), and 10 belongs to Rosids including *Arabidopsis thaliana*, *Betula pendula*, *Carica papaya*, *Citrus sinensis*, *Fagaria vesca*, *Juglans regia*, *Medicago truncatula*, *Morus notabilis*, *Populus trichocarpa*, *Prunus persica*, *Theobroma cacao*, *Vitis vinifera*. Comparative analysis was performed to establish the phylogenetic relationships of red bayberry at the genome-wide level. Proteins from fifteen selected species were classified using all-by-all BLASTp, and then the Cufflinks were used to get a set of assembled transcripts. For homology-based gene prediction. For homology-based gene prediction, *A. thaliana*, *Glycine max*, *Oryza sativa*, *Prunus persica* and *Solanum lycopersicum* protein sequences were aligned to the *M. rubra* female genome using TBLASTN (Altschul et al., 1997), with an e-value cutoff of 1e-25, followed by further alignments using GeneWise (v2.4.1) (Binney et al., 2004) for accurate exon-intron information. GLEAN (v1.1) (Elisk et al., 2007) was used to merge de novo and homology-based gene sets into the consensus gene set. Additionally, to identify the accurate splice junctions between each exon, the RNA-seq data derived from eight of the ‘Y2012-145’ libraries (Table S8) were first aligned to the female assembly using TopHat (Trapnell et al., 2010) (http://tophat.cbcb.umd.edu) to obtain the open reading frames (ORFs) from the mapping result. Finally, we integrated GLEAN set with Cufflinks by in-house pipeline (Kocher et al., 2013) to generate a final female gene set. For the male gene sets prediction, RNA-seq data from three libraries of H2011-12 (Table S8) were firstly aligned to the male assembly using TopHat (http://tophat.cbcb.umd.edu) and then the Cufflinks were used to get a set of assembled transcripts. The de novo annotated genes were named following the convention in apple (Daccord et al., 2017): MR (for *Morella rubra*) followed by the chromosome number (unmapped gene shown as 0) and gene number, for example *MRBG025877.1*.

Synteny analysis, whole-genome duplication and evolution

The program MUMmer3.23 (http://mummer.sourceforge.net/) was used for synteny analysis of the female and male red bayberry genome, with parameters of ‘-maxmatch chr1.fa lg1.fa’. The mapping results were filtered with the identity more than 85%. Graphics are shown using mummer plot.
We performed all-by-all BLAST with identity ≥40% and e-value ≤1e-10. Syntenic region within species were identified using MCScanx (Tang et al., 2008b) with parameters of '-a -e 1e-5 -u 10000 -s 5'. Based on the syntenic blocks, we performed synteny analysis of the relationship between M. rubra, F. persica and B. pendula. To reconstruct the paleopolyploid history of red bayberry, we analysed the synteny among M. rubra, M. truncatula, M. notabilis, J. regia, P. persica and B. pendula. The 4-fold degenerate third-codon position (4DTv) of synteny blocks were calculated and revised by HKY (Hasegawa et al., 1985) model.

Resequencing and sex-specific region analysis
Bulked DNA libraries with 100 females and 100 males of M. rubra were sequenced giving 106-fold and 127-fold coverage respectively. Three main productive cultivars (Biqi, Dongkui and Xiaohong) and three male plants (Y2015-20, C2013-14 and Y2010-7) were resequenced to 36–58 fold coverage. To analyse the sex determination in red bayberry, we firstly mapped the two bulk reads (BSA-F and BSA-M) to the female reference assembly using SOAP with the parameter of ‘-m 0 -x 1000 -s 40 -l 35 -v 7 -r 2’. SOAP SNP (Li et al., 2009b) was employed to identify the SNP of two bulk reads with the parameter of ‘-u -t -L 150 -Q’ and the depths of single base (SNPs) along the female reference genome were calculated for BSA-F and BSA-M by soap.coverage. To identify the female-specific genome regions, the region with more than 100 consecutive base pair (>10 depth) BSA-F reads were mapped and absence of the BSA-M (0 depth) reads were obtained, a more than 50% coverage was considered as a candidate region. The candidate SNPs and insertions were checked in three individuals of each sex. The alignments of the candidate region with the female and male reference genomes were further processed. The sex-linked markers developed, based on the female-specific genes and their homologs, were tested in three main productive cultivars (Biqi, Dongkui and Xiazhi) and three male plants (Y2015-20, C2013-14 and Y2010-7) respectively. Three main productive cultivars (Biqi, Dongkui and Xiazhi) and three male plants (Y2015-20, C2013-14 and Y2010-7) were involved in establishing the mapping population and varieties maintenance and collection of the germplasm materials. W.F.Y., H.M.J. and J.Q. analysed the evolution and constructed the phylogenetic tree. H.B.Z., Y.W., L.Z. and X.W.L. tested the molecular markers in the germplasm. H.M.J., Z.S.G. and H.J.J. drafted the paper with input from Q.L.C., E.V.W., W.Y., L.J.F., J.Y.W. and Y.H.L. All authors approved the final manuscript.

Conflict of interest
Z.S.G., Y.W., H.M.J., H.B.Z., Y.J., C.Y.C. and G.Y.W. have two pending patents for the sex-linked marker technique in China (201710221539.3 and 201710221205.6). The other authors declare they have no competing interests.

References
Akagi, T., Henry, I.M., Tao, R. and Comai, L. (2014) A Y-chromosome-encoded small RNA acts as a sex determinant in persimmons. Science, 346, 646–650.
Akagi, T., Henry, I.M., Ohtani, H., Morimoto, T., Beppu, K., Kataoka, I. and Tao, R. (2018) A Y-encoded suppressor of feminization arose via lineage-specific duplication of a cytokinin response regulator in kiwifruit. Plant Cell, 30, 780–795.
Allanotaxus sempervirens, A., Apodanthaceae, A., Boraginaceae, B., Buxaceae, C., Centrolepidaceae, C., Cymoriaceae, D., Dilleniales, D. et al. (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc., 181, 1–20.
Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J.H., Zhang, Z., Miller, W. and Lipman, D.J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res., 25, 3389–3402.
Bachtrog, D. (2013) Y-chromosome evolution: emerging insights into processes of Y-chromosome degeneration. Nat. Rev. Genet., 14, 113–124.
Bao, J.S., Cai, Y.Z., Sun, M., Wang, G.Y. and Corke, H. (2005) Anthocyanins, flavonoids, and free radical scavenging activity of Chinese bayberry (Myrica rubra) extracts and their color properties and stability. J. Agric. Food Chem., 53, 2327–2332.
Binney, E., Clamp, M. and Durbin, R. (2004) GeneWise and genomewise. Genome Res., 14, 988–995.
Charlesworth, D. (2002) Plant sex determination and sex chromosomes. Heredity, 88, 94–101.
Charlesworth, D. (2013) Plant sex chromosome evolution. J. Exp. Bot., 64, 405–420.
Chen, K.S., Xu, C.J., Zhang, B. and Ferguson, I.B. (2004) Red bayberry: botany and horticulture. Horticult. Rev., 30, 83–114.
Cheng, H., Chen, J., Chen, S., Wu, D., Liu, D. and Ye, X. (2015) Characterization of aroma-active volatiles in three Chinese bayberry (Myrica rubra) cultivars using GC–MS–olfactometry and an electronic nose combined with principal component analysis. Food Res. Int., 72, 8–15.

Data availability
The genome assemblies of female M. rubra Y2012-14S and male M. rubra H2011-12 have been deposited at GenBank: SAMN07510764 and SAMN07680263 respectively (Bio Project PRJNA398601).

Acknowledgements
This work was supported by the National Natural Science Foundation of China (31471843 and 31772271), the funding from the Agriculture and Forestry Bureau of Yuyao City (2013–2016), the Ningbo Science and Technology Research Grant (contract no 2016C10021). We thank Professor Zhang Guoping for his support on postdoctoral program of Dr. Jia Hui-min; Professor Ray Ming for his valuable suggestions on resequencing some male bayberry individuals to define the sex-determining region; and Professor Donald Grierson for his comments and suggestion in revising the manuscript; Mr. Yingui Wu, Ms YS Li and LW Ye for assistance in collecting samples; and Dr. Robert van Loo for support in building the recombination heatmap of SNP markers.

Authors’ contributions
Z.S.G., H.J.J. and Q.L.C. conceived the study and led the research together with J.Y.W. and G.Y.W. H.M.J. coordinated the sampling, bioinformatics and experimental work. Q.L.C. and J.L.G. performed the library construction and sequencing. D.L.Z., Q.L.C., J.Y.W. and J.L.G. assembled the genome, W.F.Y. and H.M.J. annotated the genome and analysed the sex-specific region. H.M.J., Y.W., Y.T.S., H.B.Z., L.Z., H.B.X. and L.C. performed the DNA and RNA extraction. E.V.W. and H.M.J. led the marker linkage mapping, assisted by W.Y., W.F.Y., X.W.L., H.J.J., Q.F.N. and H.B.Z. performed the RNA-seq and qPCR. G.Y.W., C.Y.C., H.J.J., C.C.Z., Y.J. and T.T. were involved in establishing the mapping population and varieties maintenance and collection of the germplasm materials. W.F.Y., H.M.J. and J.Q. analysed the evolution and constructed the phylogenetic tree. H.B.Z., Y.W., L.Z. and X.W.L. tested the molecular markers in the germplasm. H.M.J., Z.S.G and H.J.J. drafted the paper with input from Q.L.C., E.V.W., W.Y., L.J.F., J.Y.W. and Y.H.L. All authors approved the final manuscript.
Red bayberry genome and sex determination

Chin, C.S., Peluso, P., Sedlazeck, F.J., Nattestad, M., Concepcion, G.T., Clum, A., Dunn, C. et al. (2016) Phased diploid genome assembly with single-molecule real-time sequencing. Nat. Methods, 13, 1050.

Chourey, M.S. (1974) A study of the Myricaceae from Eocene sediments of southeastern North America. Palaeontographica Abteilung B, 146, 88–153.

Daccord, N., Celton, J.-M., Linsmith, G., Becker, C., Choisne, N., Schijlen, E., van de Geest, H. et al. (2017) High-quality de novo assembly of the apple genome and methyleosome dynamics of early fruit development. Nat. Genet. 49, 1099–1116.

Danecek, P., Auton, A., Abecasis, G., Albers, C.A., Banks, E., DePristo, M.A., Handsaker, R.E. et al. (2011) The variant call format and VCFtools. Bioinformatics, 27, 2156–2158.

Di Pierro, E.A., Gianfranceschi, L., Di Guardo, M., Koehorst-van Putten, H.J.J., Kruisel brink, J.W., Longhi, S., Trogg, M. et al. (2016) A high-density, multi-pedigree SNP genetic map on apple validates a new mapping approach for outcrossing species. Horticult. Res. 3, 16057.

Elkik, C.G., Mackey, A.J., Reese, J.T., Milshina, N.V., Roos, D.S. and Weinstock, G.M. (2007) Creating a honey bee consensus gene set. Genome Biol. 8, R13.

Fechter, I., Hausmann, L., Daum, M., Sollanayakanahally, R.Y., Stanton, B. et al. (2015) Genetic diversity of male and female Chinese bayberry (Myrica rubra)– genotyping in silico association with demographic, agronomic and fruit quality traits. J. Integr. Plant Biol. 57, 1092–1104.

Fornara, F., de Montaigu, A. and Coupland, G. (2010) SnapShot: control of FLC stability. Trends Plant Sci. 15, 309–311.

Fechter, I., Hausmann, L., Daum, M., Sollanayakanahally, R.Y., Stanton, B. et al. (2015) Genetic diversity of male and female Chinese bayberry (Myrica rubra)– genotyping in silico association with demographic, agronomic and fruit quality traits. J. Integr. Plant Biol. 57, 1092–1104.

Fornara, F., de Montaigu, A. and Coupland, G. (2010) SnapShot: control of FLC stability. Trends Plant Sci. 15, 309–311.

Fechter, I., Hausmann, L., Daum, M., Sollanayakanahally, R.Y., Stanton, B. et al. (2015) Genetic diversity of male and female Chinese bayberry (Myrica rubra)– genotyping in silico association with demographic, agronomic and fruit quality traits. J. Integr. Plant Biol. 57, 1092–1104.

Fechter, I., Hausmann, L., Daum, M., Sollanayakanahally, R.Y., Stanton, B. et al. (2015) Genetic diversity of male and female Chinese bayberry (Myrica rubra)– genotyping in silico association with demographic, agronomic and fruit quality traits. J. Integr. Plant Biol. 57, 1092–1104.

Fechter, I., Hausmann, L., Daum, M., Sollanayakanahally, R.Y., Stanton, B. et al. (2015) Genetic diversity of male and female Chinese bayberry (Myrica rubra)– genotyping in silico association with demographic, agronomic and fruit quality traits. J. Integr. Plant Biol. 57, 1092–1104.

Fechter, I., Hausmann, L., Daum, M., Sollanayakanahally, R.Y., Stanton, B. et al. (2015) Genetic diversity of male and female Chinese bayberry (Myrica rubra)– genotyping in silico association with demographic, agronomic and fruit quality traits. J. Integr. Plant Biol. 57, 1092–1104.
Tennessen, J.A., Govindaraju, R., Liston, A. and Ashman, T.-L. (2016) Homomorphic ZW chromosomes in a wild strawberry show distinctive recombination heterogeneity but a small sex-determination region. New Phytol. 211, 1412–1423.

Trapnell, C., Williams, B.A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M.J., Salzberg, S.L. et al. (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515.

Van Ooijen, J. (2006) Joinmap® 4: Software for the Calculation of Genetic Maps in Experimental Populations Kyazma BV The Netherlands: Wageningen.

Verde, I., Abbott, A.G., Scalabin, S., Jung, S., Shu, S., Marroni, F., Zhebentyayeva, T. et al. (2013) The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat. Genet. 45, 487–494.

Wang, J., Na, J.-K., Yu, Q., Gschwend, A.R., Han, J., Zeng, F., Aryal, R. et al. (2012) Sequencing papaya X and Y chromosomes reveals molecular basis of incipient sex chromosome evolution. Proc. Natl. Acad. Sci. USA, 109, 13710–13715.

Wang, N., Thomson, M., Bodie, W.J., Crawford, R.M., Hunt, H.V., Featherstone, A.W., Pellicer, J. et al. (2013) Genome sequence of dwarf birch (Betula nana) and cross-species RAD markers. Mol. Ecol. 22, 3098–3111.

Wang, G., Shen, Y., Jia, H., Jiao, Y., Chai, C., Bao, J., Sun, D. et al. (2015) Construction of a crossing population between two Chinese bayberry cultivars ‘Biq’ and ‘Dongkui’ and hybrid identification by polymorphic SSRs. J. Fruit Sci., Chinese English Abstract, 32, 555–560.

Wei, N., Govindaraju, R., Tennessen, J.A., Liston, A. and Ashman, T.-L. (2017) Genetic mapping and phylogenetic analysis reveal intraspecific variation in sex chromosomes of the Virginian strawberry. J. Hered. 108, 731–739.

Wilbur, R.K. (1994) The Myricaceae of the United States and Canada: genera, subgenera, and series. SIDG, Contributions Botany, 16, 93–107.

Wuest, S.E., Vlijmer, R., Schmidt, A., Weiss, M., Gheyselinck, J., Lohr, M., Wellmer, F. et al. (2010) Arabidopsis female gametophyte gene expression map reveals similarities between plant and animal gametes. Curr. Biol. 20, 506–512.

Yang, Z. (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591.

Yin, T., Difazio, S.P., Guiter, L.E., Zhang, X., Sewell, M.M., Woolbright, S.A., Allan, G.J. et al. (2008) Genome structure and emerging evidence of an incipient sex chromosome in Populus. Genome Res. 18, 422–430.

Yokoyama, K., Nakagawa, M., Satoh, M., Saitoh, S., Dohmae, N., Harada, A., Satoh, N. et al. (2008) Expression of a novel 90-kDa protein, Lsd90, involved in the metabolism of very long-chain fatty acid-containing phospholipids in a mitosis-defective fission yeast mutant. J. Biochem. 143, 369–375.

Yuan, Z., Fang, Y., Zhang, T., Fei, Z., Han, F., Liu, C., Liu, M. et al. (2018) The pomegranate (Punica granatum L.) genome provides insights into fruit quality and ovule developmental biology. Plant Biotechnol. J. 16, 1363–1374.

Zhang, Q., Liu, C., Liu, Y., VanBuren, R., Yao, X., Zhong, C. and Huang, H. (2015a) High-density interspecific genetic maps of kiwifruit and the identification of sex-specific markers. DNA Res. 22, 367–375.

Zhang, X.N., Huang, H., Zhang, Q., Fan, F., Xu, C., Sun, C., Li, X. et al. (2015b) Phytochemical characterization of Chinese bayberry (Myrica rubra Sieb. et Zucc.) of 17 cultivars and their antioxidant properties. Int. J. Mol. Sci. 16, 12467–12481.

Zou, C.S., Chen, A.J., Xiao, L.H., Muller, H.M., Ache, P., Haberer, G., Zhang, M.L. et al. (2017) A high-quality genome assembly of quinoa provides insights into the molecular basis of salt bladder-based salinity tolerance and the exceptional nutritional value. Cell Res. 27, 1327–1340.

Supporting information
Additional supporting information may be found online in the Supporting Information section at the end of the article.

Figure S1 The female and male tree of red bayberry used for sequencing and assembly.

Figure S2 The distribution of 17-mer depth of the female and male illumina PE reads.

Figure S3 The red bayberry genetic haplblock (HB) map constructed using RAD tag sequencing technology.

Figure S4 Genome wide Heatmap of the recombination frequencies for 406 haploblocks from eight linkage groups of red bayberry.

Figure S5 Integrated genetic and physical map of female red bayberry.

Figure S6 Alignment of the female (a) and male (b) assembled scaffolds with the SNPs marker linkage genetic map.

Figure S7 An example of assembly contigs with paired-end relationship.

Figure S8 Synteny between the female and male genome on eight pseudomolecules (chromosome) at 85% sequence identity.

Figure S9 Area charts show quantification of retrotransposons (RT), DNA transposons (DNA-TEs) and genes (both exons and introns) in eight chromosomes of female red bayberry.

Figure S10 Divergence distribution of classified transposable element (TE) families in the M. rubra female genome.

Figure S11 Tissue-specific genes of the red bayberry.

Figure S12 Distribution of basic genomic elements of red bayberry.

Figure S13 Duplication events in the red bayberry genome.

Figure S14 Venn diagram of orthologous gene families in five species.

Figure S15 Location of the female-specific region (FSR) by linkage mapping.

Figure S16 Genome wide analysis of female-specific insertions along the eight chromosomes with female reference.

Figure S17 Genome wide analysis of male-specific insertions along the eight chromosomes with male reference.

Figure S18 Alignment of sequences of female-specific gene MrFT2 and its paralogous gene MrFT1.

Figure S19 Amplification of sex-linked marker derived from partial MrFT2 genes in American wax bayberry (Morella cerifera).

Figure S20 Overview of the processing pipeline used for the assembly of the red bayberry genome.

Table S1 Summary of input sequence data for the assembly of female and male red bayberry genome.

Table S2 Statistics of female and male M. rubra genome primary assembly.

Table S3 The alignment results of two parents and their 95 progenies.

Table S4 Summary of genetic map of M. rubra from RAD-sequencing of F1 population.

Table S5 Summary of statistics of the transcriptome mapping to the red bayberry genome assembly.

Table S6 The statement of the categories of BUSCO groups searched in red bayberry genome.

Table S7 Classification of red bayberry repeat sequences.

Table S8 Tissue source for RNA-seq and total amount of available sequence data.

Table S9 General statistics for predicted protein-coding genes for female red bayberry.

Table S10 Functional annotation of predicted genes for female red bayberry.

Table S11 Comparison of red bayberry transcription factors with other species in number observed per transcription factor class.

Table S12 Identification of non-coding RNA genes in the red bayberry genome.

Table S13 The statistics of gene families among different species.
Table S14 GO cluster/analysis for genes in *M. rubra* unique families.
Table S15 Plant materials used for BSA sequencing, resequencing and sex-specific primer PCR amplification.
Table S16 Plant materials used for resequencing and BSA
Table S17 The filtered SNP information in BSA and resequenced individuals.
Table S18 Female-specific genes and their paralogous on the same chromosome.
Table S19 Primer sequences information.