DIFFEOLOGICAL MORITA EQUIVALENCE
NESTA VAN DER SCHAAF

Abstract. We introduce a new notion of Morita equivalence for diffeological groupoids, generalising the original notion for Lie groupoids. For this we develop a theory of diffeological groupoid actions, -bundles and -bibundles. We define a notion of principality for these bundles, which uses the notion of a subduction, generalising the notion of a Lie group(oid) principal bundle. We say two diffeological groupoids are Morita equivalent if and only if there exists a biprincipal bibundle between them. Using a Hilsum-Skandalis tensor product, we further define a composition of diffeological bibundles, and obtain a bicategory DiffeolBiBund. Our main result is the following: a bibundle is biprincipal if and only if it is weakly invertible in this bicategory. This generalises a well known theorem from the Lie groupoid theory. As an application of the framework, we prove that the orbit spaces of two Morita equivalent diffeological groupoids are diffeomorphic. We also show that the property of a diffeological groupoid to be fibrating, and its category of actions, are Morita invariants.

Keywords. Diffeology, Lie groupoids, diffeological groupoids, bibundles, Hilsum-Skandalis products, Morita equivalence, orbit spaces.

1. Introduction

Diffeology originates from the work of J.-M. Souriau [Sou80; Sou84] and his students [DI83; Don84; Igl85] in the 1980s. The main objects of this theory are diffeological spaces, a type of generalised smooth space that extends the traditional notion of a smooth manifold. They make for a convenient framework that deals well with (singular) quotients, function spaces (or otherwise infinite-dimensional objects), fibred products (or otherwise singular subspaces), and other constructions that lie beyond the realm of classical differential topology. As many of these constructions naturally occur in differential topology and -geometry, and since they cannot be studied with their standard tools, diffeology has become a useful addition to the geometer’s toolbox.

Diffeological groupoids have recently garnered attention in the mathematical physics of general relativity [BFW13; Gl19], foliation theory [ASZ19; GZ19; Mac20], the theory of algebroids [AZ], the theory of (differentiable) stacks [RV18; WW19], and even in relation to noncommutative geometry [IZL18; IZP20]. In all but one of these fields (general relativity), the notion of Morita equivalence is an important one. Yet, as the authors of [GZ19, p.3] point out: “The theory of Morita equivalence for diffeological groupoids has not been developed yet.” In the current paper we present one possible development of such a notion, based on the results of the author’s Master thesis [vdS20]. This development is a generalisation of the theory of Hilsum-Skandalis bibundles and the Morita equivalence of Lie groupoids, where many definitions and proofs, and certainly the general idea, extend quite straightforwardly to the diffeological case. The main exception is that we need to replace surjective submersions with so-called subductions. This special type of smooth map is, even on smooth manifolds, slightly weaker than the notion of a surjective submersion, but it

Date: 10th February 2022.
E-mail address: n.schaaf@ed.ac.uk or nestavanderschaaf@gmail.com.
turns out that they still share enough of their properties so that the entire theory can be developed\footnote{This is essentially due to the fact that the subductions are the \textit{strong epimorphisms} in the category of diffeological spaces \cite[Proposition 5.10]{BH11}.}. This development proceeds roughly as follows: based on the notions of \textit{actions} and \textit{bundles} defined in Section 4, we define a diffeological version of a \textit{bibundle} between groupoids (Definition 5.1). These stand in analogy to \textit{bimodules} for rings, and can be treated as a generalised type of morphism between groupoids. This gives a \textit{bicategory} DiffeolBiBund of diffeological groupoids, bibundles, and biequivariant maps (Theorem 5.14). Using the aforementioned notion of a \textit{subduction} (Definition 2.16), we define \textit{biprincipality} of bibundles, and with this, we obtain a notion of \textit{Morita equivalence} for diffeological groupoids (Definition 5.3). In the bicategory we also get a notion of equivalence, by way of the \textit{weak isomorphisms}. A morphism in a bicategory is called \textit{weakly invertible} if it is invertible \textit{up to 2-isomorphism}. Two objects in a bicategory are called \textit{weakly isomorphic} if there exists a weakly invertible morphism between them. The main point of this paper is to prove a \textit{Morita theorem} for diffeological groupoids, characterising the weakly invertible bibundles, and hence realising Morita equivalence as a particular instance of weak isomorphism:

Theorem 5.28 (Morita theorem). A diffeological bibundle is weakly invertible if and only if it is biprincipal. In other words, two diffeological groupoids are Morita equivalent if and only if they are weakly isomorphic in the bicategory DiffeolBiBund.

A Morita theorem for Lie groupoids has been known in the literature for some time, see e.g. \cite[Proposition 4.21]{Lan01b}. Throughout the paper, we shall point out some differences between the diffeological- and Lie theories. The main difference is that, due to technical constraints, a Morita theorem for Lie groupoids only holds in the restricted setting of \textit{left principal} bibundles. The main improvement of Theorem 5.28 over the classical Lie Morita theorem, besides the generalisation to diffeology, is therefore that it considers also a more general class of bibundles. Besides this improvement, with this paper we hope to contribute a complete account of the basic theory of bibundles and Morita equivalence of groupoids, providing detailed proofs and constructions of most necessary technical results, and culminating in a proof of the main Theorem 5.28. A brief outline of the contents of the paper is as follows.

We briefly recall the definition of a diffeology in Section 2. In particular, we describe the diffeologies of fibred products (pullbacks) and quotients, since they will be important to describe the smooth structure of the orbit space and space of composable arrows of a groupoid. We also define and study the behaviour of \textit{subductions}, especially in relation to fibred products.

In Section 3 we define \textit{diffeological groupoids}, and highlight some examples from the literature.

Sections 4 and 5 contain the main contents of this paper. In them, we define the notions of smooth groupoid \textit{actions} and \textit{-bundles}. For the latter we give a new notion of \textit{principality}, generalising the notion of a principal Lie group(oid) bundle. This leads naturally to the definition of a \textit{biprincipal bibundle}, and hence to our definition of \textit{Morita equivalence}. The remainder of Section 5 is dedicated to a proof of Theorem 5.28.

In Section 6, we describe some \textit{Morita invariants}, by generalising some well known theorems from the Lie theory. We prove: the property of a diffeological groupoid to be \textit{fibrating} is preserved under our notion of Morita equivalence; the \textit{orbit spaces} of two Morita equivalent diffeological groupoids are diffeomorphic; and the categories of representations of two Morita equivalent diffeological groupoids are categorically equivalent.
Lastly, in Section 7, we discuss the question of diffeological Morita equivalence between Lie groupoids. We end the paper with the open Question 7.6, and some suggestions for future research.

Acknowledgements. The author thanks Klaas Landsman and Ioan Mărcut for being the supervisor and second reader of his Master thesis, respectively, and for encouraging him to write the current paper. He also thanks Klaas for feedback on the paper, and Patrick Iglesias-Zemmour for email correspondence.

2. Diffeology

One of the main conveniences of diffeology\(^2\) is that the category \(\text{Diffeol}\) of diffeological spaces and smooth maps (Definition 2.2) is complete, cocomplete, (locally) Cartesian closed, and in fact a quasitopos [BH11, Theorem 3.2]. This means that we can perform many categorical constructions that are unavailable in the category \(\text{Mfnd}\) of smooth manifolds. From these, the ones that are important for us are pullbacks and quotients. We discuss both of these explicitly below. The approach of diffeology has been compared to other theories of generalised smooth spaces in [Sta11; BIKW17]. For some historical remarks we refer to [IZ13b; IZ17] and [vdS20, Chapter I]. The main reference for this section is the textbook [IZ13a] by Iglesias-Zemmour, in which nearly all of the theory below is already developed.

Definition 2.1. A Euclidean domain is an open subset \(U \subseteq \mathbb{R}^m\), for arbitrary \(m \in \mathbb{N}_{\geq 0}\). A parametrisation on an arbitrary set \(X\) is a function \(U \to X\) defined on a Euclidean domain. We denote by \(\text{Param}(X)\) the set of all parametrisations on \(X\).

The basic idea behind diffeology is that it determines which parametrisations are ‘smooth’, in such a way that it captures the properties of ordinary smooth functions on smooth manifolds. The precise definition is as follows:

Definition 2.2 (Axioms of Diffeology). Let \(X\) be a set. A diffeology on \(X\) is a collection of parametrisations \(\mathcal{D}_X \subseteq \text{Param}(X)\), containing what we call plots, satisfying the following three axioms:

- (Covering) Every constant parametrisation \(U \to X\) is a plot.
- (Smooth Compatibility) For every plot \(\alpha : U_\alpha \to X\) in \(\mathcal{D}_X\) and every smooth function \(h : V \to U_\alpha\) between Euclidean domains, we have that \(\alpha \circ h \in \mathcal{D}_X\).
- (Locality) If \(\alpha : U_\alpha \to X\) is a parametrisation, and \((U_i)_{i \in I}\) an open cover of \(U_\alpha\) such that each restriction \(\alpha|_{U_i}\) is a plot of \(X\), then \(\alpha \in \mathcal{D}_X\).

A set \(X\), paired with a diffeology: \((X, \mathcal{D}_X)\), is called a diffeological space. Although, usually we shall just write \(X\).

A function \(f : (X, \mathcal{D}_X) \to (Y, \mathcal{D}_Y)\) between diffeological spaces is called smooth if for every plot \(\alpha \in \mathcal{D}_X\) of \(X\), the composition \(f \circ \alpha \in \mathcal{D}_Y\) is a plot of \(Y\). The set of all smooth functions between such diffeological spaces is denoted \(\mathcal{C}^\infty(X,Y)\), and smoothness is preserved by composition. The category of diffeological spaces and smooth maps is denoted by \(\text{Diffeol}\), and the isomorphisms in this category are called diffeomorphisms.

Example 2.3. Any Euclidean domain \(U\) gets a canonical diffeology \(\mathcal{D}_U\), called the Euclidean diffeology. Its plots are the parametrisations that are smooth in the ordinary sense of the word. Similarly, we get a canonical diffeology \(\mathcal{D}_M\) for any smooth manifold \(M\), called the

\(^2\)The etymology of the word is explained in the afterword to [IZ13a]. Souriau first used the term “différentiel”, as in ‘differential’ (from the Latin differentia, “difference”). Through a suggestion by Van Est, the name was later changed to “diffeologie,” as in “topologie” (“topology”, from the Ancient Greek τόπος, “place,” and -(o)logy, “study of”). Hence the term: diffeology.
Any set is fully faithful, and we can adopt the previous definition without causing any confusion.

Example 2.4. Any set X carries two canonical diffeologies. First, the largest diffeology, $\mathcal{D}_X^\bullet := \text{Param}(X)$, called the coarse diffeology, containing all possible parametrisations. Letting X^\bullet denote the diffeological space with the coarse diffeology, it is easy to see that every function $Z \to X^\bullet$ is smooth. On the other hand, the smallest diffeology on X is \mathcal{D}_X^\ast, containing all locally constant parametrisations. This is called the discrete diffeology. Similar to the above, we find that every function $X^\circ \to Y$ is smooth.

Example 2.5. For any two diffeological spaces X and Y, there is a natural diffeology on the space of smooth functions $C^\infty(X,Y)$ called the standard functional diffeology \cite[Article 1.57]{IZ13a}. It is the smallest diffeology that makes the evaluation map $(f,x) \mapsto f(x)$ smooth. With these diffeologies, Diffeol becomes Cartesian closed.

2.1. Generating families. The Axiom of Locality in Definition 2.2 ensures that the smoothness of a parametrisation, or of a function between diffeological spaces, can be checked locally. This allows us to introduce the following notions, which will help us study interesting constructions, and will often simplify proofs.

Definition 2.6. Consider a family $\mathcal{F} \subseteq \text{Param}(X)$ of parametrisations on X. There exists a smallest diffeology on X that contains \mathcal{F}. We denote this diffeology by $\langle \mathcal{F} \rangle$, and call it the diffeology generated by \mathcal{F}. If $\mathcal{D}_X = \langle \mathcal{F} \rangle$, we say \mathcal{F} is a generating family for \mathcal{D}_X. The elements of \mathcal{F} are called generating plots.

The plots of the diffeology generated by \mathcal{F} are characterised as follows: a parametrisation $\alpha : U_\alpha \to X$ is a plot in $\langle \mathcal{F} \rangle$ if and only if α is locally either constant, or factors through elements of \mathcal{F}. Concretely, this means that for all $t \in U_\alpha$ there exists an open neighbourhood $t \in V \subseteq U_\alpha$ such that $\alpha|_V$ is either constant, or of the form $\alpha|_V = F \circ h$, where $F : W \to X$ is an element in \mathcal{F}, and $h : V \to W$ is a smooth function between Euclidean domains. When the family \mathcal{F} is covering, in the sense that $\bigcup_{F \in \mathcal{F}} \text{im}(F) = X$, then the condition for $\alpha|_V$ to be constant becomes redundant, and the plots in $\langle \mathcal{F} \rangle$ are locally just of the form $\alpha|_V = F \circ h$.

The main use of this construction is that we may encounter families of parametrisations that are not quite diffeologies, but that contain functions that we nevertheless want to be smooth. On the other hand, calculations may sometimes be simplified by finding a suitable generating family for a given diffeology. This simplification lies in the following result, saying that smoothness has only to be checked on generating plots:

Proposition 2.7. Let $f : X \to Y$ be a function between diffeological spaces, such that \mathcal{D}_X is generated by some family \mathcal{F}. Then f is smooth if and only if for all $F \in \mathcal{F}$ we have $f \circ F \in \mathcal{D}_Y$.

Example 2.8. The wire diffeology (called the spaghetti diffeology by Souriau) is the diffeology $\mathcal{D}_{\text{wire}}$ on \mathbb{R}^2 generated by $C^\infty(\mathbb{R}, \mathbb{R}^2)$. The resulting diffeological space is not diffeomorphic to the ordinary \mathbb{R}^2, since the identity map $\text{id}_{\mathbb{R}^2} : (\mathbb{R}^2, \mathcal{D}_{\text{wire}}) \to (\mathbb{R}^2, \mathcal{D}_{\text{wire}})$ is not smooth.

Example 2.9. The charts of a smooth atlas on a manifold define a generating family for the manifold diffeology from Example 2.3. Since a manifold may have many atlases, this shows that similarly any diffeology may have many generating families.

2.2. Quotients. We use the terminology from Section 2.1 to define a natural diffeology on a quotient X/\sim. This question relates to a more general one: given a function $f : X \to Y$,
and a diffeology \(\mathcal{D}_X \) on the domain, what is the smallest diffeology on \(Y \) such that \(f \) remains smooth? The following provides an answer:

Definition 2.10. Let \(f : X \to Y \) be a function between sets, and let \(\mathcal{D}_X \) be a diffeology on \(X \). The pushforward diffeology on \(Y \) is the diffeology \(f_*(\mathcal{D}_X) := (f \circ \mathcal{D}_X) \), where \(f \circ \mathcal{D}_X \) is the family of parametrisations of the form \(f \circ \alpha \), for \(\alpha \in \mathcal{D}_X \). The pushforward diffeology is the smallest diffeology on \(Y \) that makes \(f \) smooth.

We can now use this to define a natural diffeology on a quotient space:

Definition 2.11. Let \(X \) be a diffeological space, and let \(\sim \) be an equivalence relation on the set \(X \). We denote the equivalence classes by \([x] := \{ y \in X : x \sim y \} \). The quotient \(X/\sim \) is the collection of all equivalence classes, and comes with a canonical projection map \(p : X \to X/\sim \), which sends \(x \mapsto [x] \). The quotient diffeology on \(X/\sim \) is defined as the pushforward diffeology \(p_*(\mathcal{D}_X) \) of \(\mathcal{D}_X \) along the canonical projection map. Naturally, with respect to this diffeology, the canonical projection map becomes smooth.

The quotient diffeology will be used extensively, where the equivalence relation will often be defined by the orbits of a group(oid) action, or as the fibres of some smooth surjection. The existence of the quotient diffeology for arbitrary quotients should be contrasted to the situation for smooth manifolds, where quotients often carry no natural differentiable structure at all, but where instead one could appeal to the *Godement criterion* ([Ser65, Theorem 2, p. 92]). The following is an example of a quotient that does not exist as a smooth manifold, but whose diffeological structure is still quite rich:

Example 2.12. The irrational torus is the diffeological space defined by the quotient of \(\mathbb{R} \) by an additive subgroup: \(T_\theta := \mathbb{R}/(\mathbb{Z} + \theta \mathbb{Z}) \), where \(\theta \in \mathbb{R} \setminus \mathbb{Q} \) is an arbitrary irrational number. Equivalently, it can be described as the leaf space of the Kronecker foliation on the 2-torus with irrational slope. The topology of this quotient contains only the two trivial open sets, yet its quotient diffeology is non-trivial\(^3\). They were first classified in [DI83], whose result is (amazingly) directly analogous to the classification of the irrational rotation algebras [Rie81]. This example is treated in detail in [vdS20, Section 2.3].

2.3. Fibred products

The second construction we need is that of fibred products, which are the pullbacks in the category \(\text{Diffeol} \). Recall that if \(f : X \to Z \) and \(g : Y \to Z \) are two functions between sets with a common codomain, then the fibred product of sets is (up to unique bijection)

\[
X \times_f^g Y := \{ (x, y) \in X \times Y : f(x) = g(y) \}.
\]

When each set is equipped with a diffeology, we shall construct a diffeology on the fibred product in two steps. First we describe a natural diffeology on the product \(X \times Y \), and then show how this descends to a diffeology on the fibred product as a subset.

Definition 2.13. Let \(X \) and \(Y \) be two diffeological spaces. The product diffeology on the Cartesian product \(X \times Y \) is defined as

\[
\mathcal{D}_{X \times Y} := (\mathcal{D}_X \times \mathcal{D}_Y),
\]

where \(\mathcal{D}_X \times \mathcal{D}_Y \) is the family of parametrisations of the form \(\alpha_1 \times \alpha_2 \), for \(\alpha_1 \in \mathcal{D}_X \) and \(\alpha_2 \in \mathcal{D}_Y \). The plots in \(\mathcal{D}_{X \times Y} \) are exactly the parametrisations \(\alpha : U_\alpha \to X \times Y \) such that \(pr_1 \circ \alpha \) and \(pr_2 \circ \alpha \) are plots of \(X \) and \(Y \), respectively. We assume that products are always furnished with their product diffeologies.

\(^3\)This shows that there are meaningful notions of smooth space that do not rely on the regnant philosophy of “smooth space = topological space + extra structure.”
It is clear that both projection maps pr_1 and pr_2 are smooth with respect to the product diffeology. The smooth functions into $X \times Y$ behave exactly as one would expect, where $f : A \to X \times Y$ is smooth if and only if the components $f_1 = \text{pr}_1 \circ f$ and $f_2 = \text{pr}_2 \circ f$ are smooth.

Next we define how the diffeology on a set X transfers to any of its subsets:

Definition 2.14. Consider a diffeological space X, and an arbitrary subset $A \subseteq X$. Let $i_A : A \hookrightarrow X$ denote the natural inclusion map. The *subset diffeology* on A is defined as

$$\mathcal{D}_{A \subseteq X} := \{ \alpha \in \text{Param}(A) : i_A \circ \alpha \in \mathcal{D}_X \}.$$

That is, α is a plot of A if and only if when seen as a parametrisation of X, it is also a plot. We assume that a subset of a diffeological space is always endowed with its subset diffeology.

Since the fibred product $X \times_{Z}^f Y$ is a subset of the product $X \times Y$, the following definition is a natural combination of **Definitions 2.13** and **2.14**:

Definition 2.15. Let $f : X \to Z$ and $g : Y \to Z$ be two smooth maps between diffeological spaces. The *fibred product diffeology* $\mathcal{D}_{X \times_{Z}^f Y}$ on the set $X \times_{Z}^f Y$ is the subset diffeology it gets from the product diffeology on $X \times Y$. Concretely:

$$\mathcal{D}_{X \times_{Z}^f Y} = \{ \alpha \in \mathcal{D}_{X \times Y} : f \circ \alpha_1 = g \circ \alpha_2 \}.$$

That is, the plots of the fibred product are just plots of $X \times Y$, whose components satisfy an extra condition. We assume that all fibred products are equipped with their fibred product diffeologies.

2.4. **Subductions.** Subductions are a special class of smooth functions that generalise the notion of surjective submersion from the theory of smooth manifolds. Since there is no unambiguous notion of tangent space in diffeology (cf. [CW16]), the definition looks somewhat different. For (more) detailed proofs of the results in this section, we refer to [IZ13a, Article 1.46] and surrounding text, and [vdS20, Section 2.6].

Definition 2.16. A surjective function $f : X \to Y$ between diffeological spaces is called a *subduction* if $f_* (\mathcal{D}_X) = \mathcal{D}_Y$. Note that subductions are automatically smooth.

In the case that f is a subduction, since it is then particularly a surjection, the family of parametrisations $f \circ \alpha$, where $\alpha \in \mathcal{D}_X$, are all locally of the form $f \circ \alpha$. In other words, f is a subduction if and only if f is smooth and the plots of Y can locally be lifted along f to plots of X:

Lemma 2.17. Let $f : X \to Y$ be a function between diffeological spaces. Then f is a subduction if and only if the following two conditions are satisfied:

1. The function f is smooth.
2. For every plot $\alpha : U_\alpha \to Y$, and any point $t \in U_\alpha$, there exists an open neighbourhood $t \in V \subseteq U_\alpha$ and a plot $\beta : V \to X$, such that $\alpha|_{\alpha} = f \circ \beta$.

Since many of the functions we encounter will naturally be smooth already, the notion of subductiveness is effectively captured by condition (2) in this lemma. This can also be seen in the following simple example:

Example 2.18. Consider the product $X \times Y$ of two diffeological spaces X and Y. The projection maps pr_1 and pr_2 are both subductions.

Example 2.19. For a surjective function $\pi : X \to B$ we get an equivalence relation on X, where two points are identified if and only if they inhabit the same π-fibre. The equivalence
classes are exactly the \(\pi \)-fibres themselves. We denote the quotient set of this equivalence relation by \(X/\pi \), and equip it with the quotient diffeology whenever \(X \) is a diffeological space. If \(\pi \) is a subduction, then there is a diffeomorphism \(B \cong X/\pi \) [IZ13a, Article 1.52].

For subsequent use, we state here some useful properties of subductions with respect to composition:

Lemma 2.20. We have the following properties for subductions:

1. If \(f \) and \(g \) are two subductions, then the composition \(f \circ g \) is a subduction as well.
2. Let \(f : Y \to Z \) and \(g : X \to Y \) be two smooth maps such that the composition \(f \circ g \) is a subduction. Then so is \(f \).
3. Let \(\pi : X \to B \) be a subduction, and \(f : B \to Y \) an arbitrary function. Then \(f \) is smooth if and only if \(f \circ \pi \) is smooth. In fact, \(f \) is a subduction if and only if \(f \circ \pi \) is a subduction.

Proof. (1) This is [IZ13a, Article 1.47].

(2) Assume \(f : Y \to Z \) and \(g : X \to Y \) are smooth, such that \(f \circ g \) is a subduction. Take a plot \(\alpha : U_\alpha \to Z \). Since the composition is a subduction, for every \(t \in U_\alpha \) we can find an open neighbourhood \(t \in V \subseteq U_\alpha \) and a plot \(\beta : V \to X \) such that \(\alpha|_V = \left(f \circ g \right) \circ \beta \). Since \(g \) is smooth, we get a plot \(g \circ \beta \in \mathcal{D}_Y \), which is a local lift of \(\alpha \) along \(f \). The result follows by **Lemma 2.17**.

(3) If \(f \) is smooth, it follows immediately that \(f \circ \pi \) is smooth. Suppose now that \(f \circ \pi \) is smooth. We need to show that \(f \) is smooth. For that, take a plot \(\alpha : U_\alpha \to X \). Since \(\pi \) is a subduction, we can find a open cover \(\left(V_\ell \right)_{\ell \in U_\alpha} \) of \(U_\alpha \) together with a family of plots \(\beta_\ell : V_\ell \to X \) such that \(\alpha|_{V_\ell} = \pi \circ \beta_\ell \). It follows that each restriction \(f \circ \alpha|_{V_\ell} = f \circ \pi \circ \beta_\ell \) is smooth, and by the Axiom of Locality it follows that \(f \circ \alpha \in \mathcal{D}_Y \), and hence that \(f \) is smooth. The claim about when \(f \) is a subduction follows from (2).

We also collect the following noteworthy claim:

Proposition 2.21 ([IZ13a, Article 1.49]). An injective subduction is a diffeomorphism.

We recall now some elementary results on the interaction between subductions and fibred products, as obtained in [vdS20, Section 2.6]. We point out that if \(f \) is a subduction, an arbitrary restriction \(f|_A \) may no longer be a subduction. We know from **Example 2.18** that the second projection map \(\text{pr}_2 \) of a product \(X \times Y \) is a subduction, but it is not always the case that the restriction of this projection to a fibred product \(X \times Z \) \(Y \) is a subduction as well. The following result shows that, to ensure this, it suffices to assume that \(f \) is a subduction:

Lemma 2.22. Let \(f : X \to Z \) be a subduction, and let \(g : Y \to Z \) be a smooth map. Then the restricted projection map

\[
\text{pr}_2|_{X \times f \circ g Y} : X \times f \circ g Y \to Y
\]

is also a subduction. In other words, in \(\text{Diffeol} \), subductions are preserved under pullback.

Proof. Consider a plot \(\alpha : U_\alpha \to Y \). By composition, this gives another plot \(g \circ \alpha \in \mathcal{D}_Z \). Now, since \(f \) is a subduction, for every \(t \in U_\alpha \) we can find a plot \(\beta : V \to X \) defined on an open neighbourhood \(t \in V \subseteq U_\alpha \) such that \(g \circ \alpha|_V = f \circ \beta \). This gives a plot \((\beta, \alpha|_V) : V \to X \times Z Y \) that satisfies \(\text{pr}_2|_{X \times Z Y} \circ (\beta, \alpha|_V) = \alpha|_V \). The result follows by **Lemma 2.17**.

The next result shows how two subductions interact with fibred products:
Lemma 2.23. Consider the following two commuting triangles of diffeological spaces and smooth maps:

\[
\begin{array}{ccc}
X_1 & \xrightarrow{f} & Y_1 \\
\downarrow & \searrow_{R} & \\
A & &
\end{array}
\quad \text{and} \quad
\begin{array}{ccc}
X_2 & \xrightarrow{g} & Y_2 \\
\downarrow & \swarrow_{L} & \\
A & &
\end{array}
\]

where both \(f\) and \(g\) are subductions. Then the map

\[(f \times g)|_{X_1 \times_A X_2} : X_1 \times_A X_2 \longrightarrow Y_1 \times_A Y_2; \quad (x_1, x_2) \mapsto (f(x_1), g(x_2))\]

is also a subduction.

Proof. Clearly \(f \times g\) is smooth, so we are left to show that the second condition in Lemma 2.17 is fulfilled. For that, take a plot \((\alpha_1, \alpha_2) : U \rightarrow Y_1 \times_{A} Y_2\), i.e., we have two plots \(\alpha_1 \in \mathcal{D}_{Y_1}\) and \(\alpha_2 \in \mathcal{D}_{Y_2}\) such that \(R \circ \alpha_1 = L \circ \alpha_2\). Now fix a point \(t \in U\) in the domain. Then since both \(f\) and \(g\) are subductive, we can find two plots \(\beta_1 : U_1 \rightarrow X_1\) and \(\beta_2 : U_2 \rightarrow X_2\), defined on open neighbourhoods of \(t \in U\), such that \(\alpha_1|_{U_1} = f \circ \beta_1\) and \(\alpha_2|_{U_2} = g \circ \beta_2\). Now the plot

\[(\beta_1|_{U_1 \cap U_1}, \beta_2|_{U_1 \cap U_2}) : U_1 \cap U_2 \rightarrow X_1 \times X_2\]

takes values in the fibred product because

\[r \circ \beta_1|_{U_2} = R \circ f \circ \beta_1|_{U_2} = R \circ \alpha_1|_{U_1 \cap U_2} = L \circ \alpha_2|_{U_1 \cap U_2} = L \circ \beta_2|_{U_1},\]

and we see that it lifts \((\alpha_1, \alpha_2)|_{U_1 \cap U_2}\) along \(f \times g\).

By setting \(A = \{\ast\}\) to be the one-point space, this lemma gives in particular that the product \(f \times g\) of two subductions is again a subduction.

To end this section, we should also mention the existence of the notion of a local subduction (also called strong subductions):

Definition 2.24. A smooth surjection \(f : X \rightarrow Y\) is called a local subduction if for every pointed plot of the form \((\alpha : (U_\alpha, 0) \rightarrow (Y, f(x)))\) there exists a pointed plot \((\beta : (V, 0) \rightarrow (X, x))\), defined on an open neighbourhood \(0 \in V \subseteq U_\alpha\), such that \(\alpha|_V = f \circ \beta\).

Compare this to a definition of a subduction, where in general the plot \(\beta\) does not have to hit the point \(x\) in the domain of \(f\). Note also that local subduction does not mean locally a subduction everywhere.

Proposition 2.25 ([IZ13a, Article 2.16]). The local subductions between smooth manifolds are exactly the surjective submersions.

Due to the above proposition, the notion of a local subduction will be of interest when studying Lie groupoids in the framework of diffeological Morita equivalence we develop below. See Section 7.1.

3. Diffeological Groupoids

We assume that the reader is familiar with the definition of a (Lie) groupoid. A textbook reference for that theory is [Mac05]. To fix our notation, we give here an informal description of a set-theoretic groupoid. A groupoid consists of two sets: \(G_0\) and \(G\), together with five structure maps. A groupoid will be denoted \(G \triangleright G_0\), or just \(G\). Here \(G_0\) is the set of objects of the groupoid, and \(G\) is the set of arrows. The five structure maps are

1. The source map src : \(G \rightarrow G_0\),
2. The target map trg : \(G \rightarrow G_0\),
3. The unit map u : \(G_0 \rightarrow G\), mapping \(x \mapsto \text{id}_x\),
(4) The inversion map \(\text{inv} : G \to G \), mapping \(g \mapsto g^{-1} \),
(5) And the composition:
\[
\text{comp} : G \times_{G_0}^{\text{src, trg}} G \to G; \quad (g, h) \mapsto g \circ h.
\]

The composition is associative, and the identities and inverses behave as such. We say \(G \rightrightarrows G_0 \) is a Lie groupoid if both \(G \) and \(G_0 \) are smooth manifolds such that the source and target maps are submersions, and each of the other structure maps are smooth. The definition of a diffeological groupoid is a straightforward generalisation of this:

Definition 3.1. A diffeological groupoid is a groupoid internal to the category of diffeological spaces. Concretely, this means that it is a groupoid \(G \rightrightarrows G_0 \) such that the object space \(G_0 \) and arrow space \(G \) are endowed with diffeologies that make all of the structure maps smooth.

As diffeology subsumes smooth manifolds, so do diffeological groupoids capture Lie groupoids. Note the main difference with the definition of a Lie groupoid is that we put no extra assumptions on the source and target maps. However:

Proposition 3.2. The source and target maps of a diffeological groupoid are subductions.

Proof. The smooth structure map \(u : G_0 \to G \), sending each object to its identity arrow, is a global smooth section of the source map, and hence by Lemma 2.20 (2) the source map must be a subduction. Since the inversion map is a diffeomorphism, it follows that the target map is a subduction as well. \(\square \)

Definition 3.3. Let \(G \rightrightarrows G_0 \) be a diffeological groupoid. The *isotropy group* at \(x \in G_0 \) is the collection \(G_x \) consisting of all arrows in \(G \) from and to \(x \):
\[
G_x := \text{Hom}_G(x, x) = \text{src}^{-1}(\{x\}) \cap \text{trg}^{-1}(\{x\}).
\]

Definition 3.4. Let \(G \rightrightarrows G_0 \) be a diffeological groupoid. The *orbit* of an object \(x \in G_0 \) is defined as
\[
\text{Orb}_G(x) := \{ y \in G_0 : \exists x \xrightarrow{g} y \} = \text{trg}(\text{src}^{-1}(\{x\})).
\]

The orbit space of the groupoid is the space \(G_0/G \) consisting of these orbits. We furnish the orbit space with the quotient diffeology from **Definition 2.11**, so that \(\text{Orb}_G : G_0 \to G_0/G \) is a subduction.

The orbit space of a Lie groupoid is not necessarily (canonically) a smooth manifold. The flexibility of diffeology allows us to study the smooth structure of orbit spaces of all diffeological groupoids. Below we give some examples of diffeological groupoids.

Example 3.5. Let \(X \) be a diffeological space, and let \(R \) be an equivalence relation on \(X \). We define the relation groupoid \(X \times_R X \rightrightarrows X \) as follows. The space of arrows consists of exactly those pairs \((x, y) \in X \times X \) such that \(xRy \). With the composition \((z, y) \circ (y, x) := (z, x) \), this becomes a diffeological groupoid. The orbit space \(X/(X \times_R X) \) is just the quotient \(X/R \). When \(X \) is a smooth manifold, the relation groupoid becomes a Lie groupoid (even when the quotient is not a smooth manifold).

Example 3.6. Let \(G \rightrightarrows G_0 \) be a diffeological groupoid. We can then consider the subgroupoid of \(G \) that only consists of elements in isotropy groups:
\[
I_G := \bigcup_{x \in G_0} G_x \subseteq G.
\]
This becomes a diffeological groupoid \(I_G \rightrightarrows G_0 \) called the *isotropy groupoid*. This has been studied in [Bos07, Example 2.1.9] in the context of Lie groupoids. Note that if \(G \rightrightarrows G_0 \) is a Lie groupoid, then generally \(I_G \) is not a submanifold of \(G \), so the isotropy groupoid may no longer be a Lie groupoid.
Example 3.7. The thin fundamental groupoid (or path groupoid) $\Pi^{\text{thin}}(M)$ of any smooth manifold M is a diffeological groupoid \cite[Proposition A.25]{CLW16}.

Example 3.8. The groupoid of Σ-evolutions of a Cauchy surface is a diffeological groupoid \cite[Section II.2.2]{Gł19}.

Example 3.9. For any smooth surjection $\pi : X \to B$ between diffeological spaces, the fibres $X_b := \pi^{-1}(\{b\})$ get the subset diffeology from X. We then have a diffeological groupoid $G(\pi) \rightrightarrows B$ called the structure groupoid, whose space of arrows is defined as

$$G(\pi) := \bigcup_{a, b \in B} \text{Diff}(X_a, X_b).$$

Structure groupoids play an important rôle in the theory of diffeological fibre bundles \cite[Chapter 8]{IZ13a}. In general, they are too big to be Lie groupoids. They also generalise the notion of a frame groupoid for a smooth vector bundle. Related to this, in \cite[Section 3.4]{vdS20} structure groupoids are used to define a notion of smooth linear representations for diffeological groupoids.

Example 3.10. Given a diffeological space X, the germ groupoid $\text{Germ}(X) \rightrightarrows X$ consists of all germs of local diffeomorphisms on X. Even if X itself is a smooth manifold, this is generally not a Lie groupoid. Germ groupoids are used in \cite{IZL18; IZP20}. A detailed construction of the diffeological structure of this groupoid appears in \cite[Section 6.1]{vdS20}.

4. Diffeological Groupoid Actions and -Bundles

In the following two sections we generalise the theory of Lie groupoid bibundles to the diffeological setting. The development we present here (as in \cite[Chapter IV]{vdS20}) is analogous to the development of the Lie version, save that we need to find a suitable replacement for the notion of a surjective submersion. Some of the proofs from the Lie theory can be performed almost verbatim in our setting. These proofs already appear in the literature in various places: \cite{Blo08; dHo12; Lan01a; MM05}, and also in the different setting of \cite{MZ15}. We adopt many definitions and proofs from those sources, and point out how the diffeological theory subtly differs from the Lie theory. This difference mainly stems from the existence of quotients and fibred products of diffeological spaces, whereas in the Lie theory more care has to be taken. Ultimately, this extra care is what leads to a restricted Morita theorem for Lie groupoids, whereas the diffeological theorem is more general. In this section specifically we introduce diffeological groupoid actions and -bundles, two notions that form the ingredients for the main theory on bibundles.

4.1. Diffeological groupoid actions. The most basic notion for the upcoming theory is that of a groupoid action. For diffeological groupoids, the definition is the same as for Lie groupoids:

Definition 4.1. Take a diffeological groupoid $G \rightrightarrows G_0$, and a diffeological space X. A smooth left groupoid action of G on X along a smooth map $l_X : X \to G_0$ is a smooth function

$$G \times_{G_0}^{\text{src} l_X} X \to X; \quad (g, x) \mapsto g \cdot x,$$

satisfying the following three conditions:

1. For $g \in G$ and $x \in X$ such that $\text{src}(g) = l_X(x)$ we have $l_X(g \cdot x) = \text{trg}(g)$.
2. For every $x \in X$ we have $\text{id}_{l_X(x)} \cdot x = x$.
3. We have $h \cdot (g \cdot x) = (h \circ g) \cdot x$ whenever defined, i.e. when $\text{src}(g) = l_X(x)$ and the arrows are composable.
The smooth map $l_X : X \to G_0$ is called the left moment map. In-line, we denote an action by $G \lact X$. To save space, we may write $(g, x) \mapsto gx$ instead.

Right actions are defined similarly: a smooth right groupoid action of G on X along $r_X : X \to G_0$ is a smooth map

$$X \times_{G_0}^{r_X, \text{trg}} G \to X; \quad (x, g) \mapsto xg,$$

satisfying $r_X(xg) = \text{src}(g)$, $x \cdot \text{id}_{r_X(x)} = x$ and $(x \cdot g) \cdot h = x \cdot (g \circ h)$ whenever defined. Note how the rôle of the source and target maps are switched with respect to the definition of a left action. Right actions will be denoted by $X \triangleright_{\text{r}} G$, and r_X is called the right moment map.

Example 4.2. Any diffeological groupoid $G \ract G_0$ acts on its own arrow space from the left and right by composition, which gives actions $G \lact G$ and $G \triangleright_{\text{r}} G$ that are both defined by $(g, h) \mapsto g \circ h$.

Definition 4.3. The orbit of a point $x \in X$ in the space of an action $G \lact X$ is defined as

$$\text{Orb}_G(x) := \{gx : g \in \text{src}^{-1}([l_X(x)])\}.$$

The quotient space (or orbit space) of the action is defined as the collection of all orbits, and denoted X/G. With the quotient diffeology, the orbit projection map $\text{Orb}_G : X \to X/G$ becomes a subduction.

The following gives a notion of morphism between actions:

Definition 4.4. Consider two smooth groupoid actions $G \lact X$ and $G \lact Y$. A smooth map $\varphi : X \to Y$ is called G-equivariant if $l_X = l_Y \circ \varphi$ and it commutes with the actions whenever defined: $\varphi(gx) = g\varphi(x)$.

Definition 4.5. The (smooth left) action category $\text{Act}(G \ract G_0)$ of a diffeological groupoid $G \ract G_0$ is the category consisting of smooth left actions $G \lact X$ as objects, and G-equivariant maps as morphisms. This forms the analogue of the category of (left) modules from ring theory. We show in Section 6.3 that the action category is in some sense a Morita invariant.

4.1.1. The balanced tensor product

We now give an important construction that will later allow us to define the composition of bibundles.

Construction 4.6. Consider a diffeological groupoid $H \ract H_0$, with a smooth left action $H \lact Y$ and a smooth right action $X \triangleright_{H_0} H$. On the fibre product $X \times_{H_0}^{l_Y, \text{trg}} Y$ we define the following smooth right H-action. The moment map is $R := r_X \circ \text{pr}_1 |_{X \times_{H_0} Y} = l_Y \circ \text{pr}_2 |_{X \times_{H_0} Y}$, and the action is given by:

$$\left(X \times_{H_0}^{r_X, l_Y} Y \right) \times_{H_0}^{R, \text{trg}} H \to X \times_{H_0}^{r_X, l_Y} Y; \quad ((x, y), h) \mapsto (x \cdot h, h^{-1} \cdot y).$$

It is clear that this action is also smooth, and we call it the diagonal H-action. The balanced tensor product is the diffeological space defined as the orbit space of this smooth groupoid action:

$$X \otimes_H Y := \left(X \times_{H_0}^{r_X, l_Y} Y \right) / H.$$

The orbit of a pair of points (x, y) in the balanced tensor product will be denoted $x \otimes y$. Whenever we encounter a term of the form $x \otimes y \in X \otimes_H Y$, we assume that it is well defined, i.e. $r_X(x) = l_Y(y)$. The terminology is explained by the following useful identity:

$$xh \otimes y = x \otimes hy.$$

In the literature on Lie groupoids, this space is sometimes called the Hilsum-Skandalis tensor product, named after a construction appearing in [HS87].
We note that this marks the first difference with the development of the Lie theory of bibundles and Morita equivalence. There, the balanced tensor product can only be defined when both $X \times_{H_0}^\pi Y$ and the quotient by the diagonal H-action are smooth manifolds. This is usually only done after (bi)bundles are defined, and some principality conditions are presupposed. The principality then exactly ensures the existence of canonical differentiable structures on the fibred product and quotient. Here, the flexibility of diffeology allows us to define the balanced tensor product in an earlier stage of the development, and we do so to demonstrate this conceptual difference.

4.2. Diffeological groupoid bundles.

A groupoid bundle is a smooth map, whose domain carries a groupoid action, such that the fibres of the map are preserved by this action:

Definition 4.7. A smooth left diffeological groupoid bundle is a smooth left groupoid action $G \acts_l X$ together with a G-invariant smooth map $\pi : X \to B$. We denote such bundles by $G \acts_l X \to B$, and also call them (left) G-bundles. Right bundles are defined similarly, and denoted $B \to X \acts_r G$.

The next definition gives a notion of morphism between bundles:

Definition 4.8. Consider two left G-bundles $G \acts_l X \to B$ and $G \acts_l Y \to B$ over the same base. A G-bundle morphism is a G-equivariant smooth map $\varphi : X \to Y$ such that $\pi_X = \pi_Y \circ \varphi$. We make a similar definition for right bundles.

In order to define Morita equivalence, we need to define a notion of when a bundle is principal. For Lie groupoid bundles, these generalise the ordinary notion of smooth principal bundles of Lie groups and manifolds. That definition involves the notion of a surjective submersion. As we have mentioned, this notion needs to be generalised to diffeology. Proposition 2.25 suggests that we could take local subductions, since they directly generalise the surjective submersions. However, it turns out that subductions behave sufficiently like submersions for the theory to work. The following definition then generalises the fact that the underlying bundle of a principal Lie groupoid bundle has to be a submersion:

Definition 4.9. A diffeological groupoid bundle $G \acts_l X \to B$ is called subductive if the underlying map $\pi : X \to B$ is a subduction.

The following generalises the fact that the action of a principal Lie groupoid bundle has to be free and transitive on the fibres:

Definition 4.10. A diffeological groupoid bundle $G \acts_l X \to B$ is called pre-principal if the action map $A_G : G \times_{G_0}^\text{src} X \to X \times_B^\pi X$ mapping $(g,x) \mapsto (gx,x)$ is a diffeomorphism.

Combining these two:

Definition 4.11. A diffeological groupoid bundle is called principal if it is both subductive and pre-principal.

This definition serves as our generalisation of principal Lie groupoid bundles, cf. [Blo08, Definition 2.10] and [dHo12, Section 3.6]. Clearly any principal Lie groupoid bundle in the sense described in those references is also a principal diffeological groupoid bundle. Note that in the Lie theory, most constructions (such as the balanced tensor product) depend on the submersiveness of the underlying bundle map, so it makes little sense to define pre-principality for Lie groupoids. However, as we have already seen, in the diffeological case these constructions can be carried out more generally, and this will allow us to see what parts of the development of the theory depend on either the subductiveness or pre-principality of the bundles, rather than on full principality. In our development of the theory, some proofs
can therefore be performed separately, whereas in the Lie theory they have to be performed at once. We hope this makes for clearer exposition.

Note also that when a bundle $G \xrightarrow{l_X \sim} X \xrightarrow{\pi} B$ is pre-principal, the action map induces a diffeomorphism $X/\pi \cong X/G$, and when the bundle is subductive, Example 2.19 gives a diffeomorphism $B \cong X/\pi$. For a principal bundle we therefore have $B \cong X/G$.

Example 4.12. The action of any diffeological groupoid $G \equiv G_0$ on its own arrow space (Example 4.2) forms a bundle $G \xrightarrow{\sim} G_0$. From Proposition 3.2 it follows that this bundle is principal.

4.2.1. The division map of a pre-principal bundle

The material in this section is similar to [Blo08, Section 3.1] for Lie groupoids. If a bundle $G \xrightarrow{l_X \sim} X \xrightarrow{\pi} B$ is pre-principal, the fact that the action map is bijective gives that the action $G \xrightarrow{l_X} X$ has to be free, and transitive on the π-fibres. This means that for every two points $x, y \in X$ such that $\pi(x) = \pi(y)$, there exists a unique arrow $g \in G$ such that $gy = x$. We denote this arrow by $\langle x, y \rangle_G$, and the map $\langle \cdot, \cdot \rangle_G$ is called the division map:

Definition 4.13. Let $G \xrightarrow{l_X \sim} X \xrightarrow{\pi} B$ be a pre-principal G-bundle, and let A_G denote its action map. Then the division map associated to this bundle is the smooth map

$$\langle \cdot, \cdot \rangle_G : X \xrightarrow{\pi} X \xrightarrow{A_G^{-1}} G \xrightarrow{\text{src}_{A_G}} X \xrightarrow{\text{pr}_{1\{A_G \times G_0\}}^{-1}} G.$$

We summarise some algebraic properties of the division map that will be used in our proofs throughout later sections. The proofs are straightforward, and use the uniqueness property described above.

Proposition 4.14. Let $G \xrightarrow{l_X \sim} X \xrightarrow{\pi} B$ be a pre-principal G-bundle. Its division map $\langle \cdot, \cdot \rangle_G$ satisfies the following properties:

1. The source and targets are $\text{src}(x_1, x_2)_G = l_X(x_2)$ and $\text{trg}(x_1, x_2)_G = l_X(x_1)$.
2. The inverses are given by $(x_1, x_2)_G^{-1} = (x_2, x_1)_G$.
3. For every $x \in X$ we have $(x, x)_G = 1_{l_X(x)}$.
4. Whenever well-defined, we have $(gx_1, x_2)_G = g \circ (x_1, x_2)_G$.

Proposition 4.15. Let $\varphi : X \rightarrow Y$ be a bundle morphism between two pre-principal G-bundles $G \xrightarrow{l_X \sim} X \xrightarrow{\pi_X} B$ and $G \xrightarrow{l_Y \sim} Y \xrightarrow{\pi_Y} B$. Denoting the division maps of these bundles respectively by $\langle \cdot, \cdot \rangle^X_G$ and $\langle \cdot, \cdot \rangle^Y_G$, we have for all $x_1, x_2 \in X$ in the same π_X-fibre that:

$$\langle (x_1, x_2)_G^X, (x_1, x_2)_G^Y \rangle^Y_G = (\varphi(x_1), \varphi(x_2))^Y_G.$$

Proof. Note $(\varphi(x_1), \varphi(x_2))^Y_G$ is the unique arrow such that $\langle \varphi(x_1), \varphi(x_2) \rangle^Y_G \varphi(x_2) = \varphi(x_1)$. However, by G-equivariance we get $\varphi(x_1) = \varphi(\langle x_1, x_2 \rangle^X_G x_2) = \langle x_1, x_2 \rangle^X_G \varphi(x_2)$, from which the claim immediately follows. □

4.2.2. Invertibility of G-bundle morphisms

We now prove a result that generalises the fact that morphisms between principal Lie group bundles are always diffeomorphisms. In our case we shall do the proof in two separate lemmas.

Lemma 4.16. Consider a G-bundle morphism $\varphi : X \rightarrow Y$ between a pre-principal bundle $G \xrightarrow{l_X \sim} X \xrightarrow{\pi_X} B$ and a bundle $G \xrightarrow{l_Y \sim} Y \xrightarrow{\pi_Y} B$ whose underlying action $G \xrightarrow{l_Y} Y$ is free. Then φ is injective.

4The notational resemblance to an inner-product is not accidental. The division map plays a very similar rôle to the inner product of a Hilbert C^\ast-module. For more on this analogy, see [Blo08, Section 3].
Proof. Since $G\xleftarrow{\pi_X} X \xrightarrow{\pi_Y} B$ is pre-principal, we get a smooth division map $\langle \cdot, \cdot \rangle_B^X$. To start the proof, suppose that we have two points $x_1, x_2 \in X$ satisfying $\varphi(x_1) = \varphi(x_2)$. Since φ preserves the fibres, we get that
\[
\pi_X(x_1) = \pi_Y \circ \varphi(x_1) = \pi_Y \circ \varphi(x_2) = \pi_X(x_2).
\]
Hence the pair (x_1, x_2) defines an element in $X \times_B X$, so we get an arrow $(x_1, x_2)_G^X \in G$, satisfying $(x_1, x_2)_G^X x_2 = x_1$. If we apply φ to this equation and use its G-equivariance, we get $\varphi(x_1) = (x_1, x_2)_G^X \varphi(x_2)$. However, by assumption, $\varphi(x_1) = \varphi(x_2)$ and the action $G\xleftarrow{\pi_Y} Y$ is free, so we must have that $(x_1, x_2)_G^X$ is the identity arrow at $l_Y \circ \varphi(x_2) = l_X(x_2)$. Hence we get the desired result:
\[
x_1 = (x_1, x_2)_G^X x_2 = \text{id}_{x_2} = x_2.
\]

Lemma 4.17. Consider a G-bundle morphism $\varphi : X \to Y$ from a subductive bundle $G\xleftarrow{\pi_X} X \xrightarrow{\pi_Y} Y$ to a pre-principal bundle $G\xleftarrow{\pi_X} Y \xrightarrow{\pi_Y} B$. Then φ is a subduction.

Proof. Denote the smooth division map of $G\xleftarrow{\pi_X} X \xrightarrow{\pi_Y} Y$ by $(\cdot, \cdot)_G^Y$. Then φ and $(\cdot, \cdot)_G^Y$ combine into a smooth map
\[
\psi : X \times_B^{\pi_X, \pi_Y} Y \to X ; \quad (x, y) \mapsto (y, \varphi(x))_G^Y.
\]
Note that this is well-defined because if $\pi_X(x) = \pi_Y(y)$, then $\pi_Y \circ \varphi(x) = \pi_Y(y)$ as well, and moreover $l_Y \circ \varphi(x) = l_X(x)$, showing that the action on the right hand side is allowed. The G-equivariance of φ then gives
\[
\varphi \circ \psi = \text{pr}_2|_{X \times_B Y}.
\]
Since π_X is a subduction, so is $\text{pr}_2|_{X \times_B Y}$ by Lemma 2.22, and by Lemma 2.20(2) it follows φ is a subduction. \hfill \Box

Proposition 4.18. Any bundle morphism from a principal groupoid bundle to a pre-principal groupoid bundle is a diffeomorphism. In particular, both must then be principal.

Proof. By Lemma 4.17 any such bundle morphism is a subduction, and since in particular the underlying action of a pre-principal bundle is free, it must also be injective by Lemma 4.16. The result follows by Proposition 2.21. That the second bundle is principal too follows from the fact that a bundle map preserves the fibres, so the projection of the second bundle can be written as the composition of a diffeomorphism and a subduction. \hfill \Box

5. DIFFEOREOLOGICAL BIBUNDLES AND MORITA EQUIVALENCE

This section contains the main definition of this paper: the notion of a biprincipal bibundle, which immediately gives our definition of Morita equivalence. The definition of groupoid bibundles for diffeology are a straightforward adaptation of the definition in the Lie case:

Definition 5.1. Let $G \xrightarrow{\pi_0} G_0$ and $H \xrightarrow{\pi_1} H_0$ be two diffeological groupoids. A diffeological (G, H)-bibundle consists of a smooth left action $G\xleftarrow{\pi_0} X$ and a smooth right action $X \xrightarrow{r_X} H$ such that the left moment map l_X is H-invariant and the right moment map r_X is G-invariant, and moreover such that the actions commute: $(g \cdot x) : h = g \cdot (x \cdot h)$, whenever defined. We draw:
\[
\begin{align*}
\begin{array}{ccc}
G & \xleftarrow{l_X} & X & \xrightarrow{r_X} & H \\
\downarrow & & \downarrow & & \downarrow \\
G_0 & & & & H_0,
\end{array}
\end{align*}
\]
and denote them by $G\xleftarrow{\pi_0} X \xrightarrow{r_X} H$ in-line. Underlying each bibundle are two groupoid bundles: the left underlying G-bundle $G\xleftarrow{\pi_0} X \xrightarrow{\pi_X} H_0$ and the right underlying H-bundle
$G_0 \xleftarrow{l_X} X \xrightarrow{r_X} H$. It is the properties of these underlying bundles that will determine the behaviour of the bundle itself.

Definition 5.2. Consider a diffeological bibundle $G \xleftarrow{l_X} X \xrightarrow{r_X} H$. We say this bibundle is **left pre-principal** if the left underlying bundle $G \xleftarrow{l_X} X \xrightarrow{r_X} H_0$ is pre-principal. We say it is **right pre-principal** if the right underlying bundle $G_0 \xleftarrow{l_X} X \xrightarrow{r_X} H$ is pre-principal. We make similar definitions for subductiveness and principality. Notice that, in this convention, if a bibundle $G \xleftarrow{l_X} X \xrightarrow{r_X} H$ is left subductive, then its right moment map r_X is a subduction (and vice versa)\(^5\).

We now have the main definition of this theory:

Definition 5.3. A diffeological bibundle is called:

1. **pre-biprincipal** if it is both left- and right pre-principal\(^6\);
2. **bisubductive** if it is both left- and right subductive;
3. **biprincipal** if it is both left- and right principal.

Two diffeological groupoids G and H are called **Morita equivalent** if there exists a biprincipal bibundle between them, and in that case we write $G \simeq_{\text{ME}} H$.

Compare this to the original definition [MRW87, Definition 2.1] of equivalence for locally compact Hausdorff groupoids. We will prove in Corollary 5.20 that Morita equivalence forms a genuine equivalence relation.

Example 5.4. Since submersions between manifolds are subductions with respect to the manifold diffeologies, we see that if two Lie groupoids $G \xrightarrow{G_0}$ and $H \xrightarrow{H_0}$ are Morita equivalent in the Lie sense (e.g. [CM18, Definition 2.15]), then they are Morita equivalent in the diffeological sense. We remark on the converse question in Section 7.1.

In fact, many elementary examples of Morita equivalences between Lie groupoids generalise straightforwardly to analogously defined diffeological groupoids. We refer to [vdS20, Section 4.3] for some of these examples. For us, the most important one is:

Example 5.5. Consider a diffeological groupoid $G \xrightarrow{G_0}$. There exists a canonical (G,G)-bibundle structure on the space of arrows G, which is called the **identity bibundle**. The actions are just the composition in G itself, as in Example 4.2. Note that the identity bibundle is always biprincipal, because the action map has a smooth inverse $(g_1,g_2) \mapsto (g_1 \circ g_2^{-1}, g_2)$.

This proves that any diffeological groupoid is Morita equivalent to itself, through the identity bibundle $G \xleftarrow{l_X} X \xrightarrow{r_X} G$.

Construction 5.6. Consider a diffeological bibundle $G \xleftarrow{l_X} X \xrightarrow{r_X} H$. The **opposite bibundle** $H \xleftarrow{r_X} X \xrightarrow{l_X} G$ is defined as follows. The underlying diffeological space does not change, $\overline{X} := X$, but the moment maps switch, meaning that $l_{\overline{X}} := r_X$ and $r_{\overline{X}} := l_X$, and the actions are defined as follows:

\[
\begin{align*}
H \xleftarrow{r_X} \overline{X}; \quad h \cdot x &:= xh^{-1}, \\
\overline{X} \xrightarrow{l_X} G; \quad x \cdot g &:= g^{-1}x.
\end{align*}
\]

Here the actions on the right-hand sides are the original actions of the bibundle. It is easy to see that performing this operation twice gives the original bibundle back. It is also important

\(^5\)Note: [dHo12, Section 4.6] defines this differently, where “a bundle is left (resp. right) principal if only the right (resp. left) underlying bundle is so.” We suspect this may be a typo, since it apparently conflicts with their use of terminology in the proof of [dHo12, Theorem 4.6.3]. We stick to the terminology defined above, where left principality pertains to the left underlying bundle.

\(^6\)The prefixes bi- and pre- commute: “bi-(pre-principal) = pre-(biprincipal)”.
to note that for all properties defined in Definition 5.2, taking the opposite merely switches the words ‘left’ and ‘right’.

The following extends Proposition 4.14(4):

Lemma 5.7. Consider a left pre-principal bibundle $G \ltimes_X X \rtimes_Y H$, and also the opposite G-action $\overline{X} \ltimes_Y G$. Then, whenever defined, we have:

$$\langle x_1, x_2 g \rangle_G = \langle x_1, x_2 \rangle_G \circ g.$$

Proof. This follows directly from Proposition 4.14 and the definition of the opposite action:

$$\langle x_1, x_2 g \rangle_G = \langle x_1, g^{-1} x_2 \rangle_G = (g^{-1} \circ \langle x_2, x_1 \rangle_G)^{-1} = \langle x_1, x_2 \rangle_G \circ g. \quad \square$$

5.1 Induced actions. A bibundle $G \curvearrowright X \leftarrow H$ allows us to transfer a groupoid action $H \curvearrowright Y$ to a groupoid action $G \curvearrowright X \otimes_H Y$. This is called the induced action, and, together with the balanced tensor product, will be crucial to define the composition of bibundles. The idea is that G acts on the first component of $X \otimes_H Y$.

Construction 5.8. Consider a diffeological bibundle $G \ltimes X \rtimes_Y H$, and a smooth action $H \curvearrowright Y$. We construct a smooth left G-action on the balanced tensor product $X \otimes_H Y$. The left moment map is defined as

$$L_X : X \otimes_H Y \longrightarrow G_0; \quad x \otimes y \longmapsto l_X(x).$$

This is well defined because l_X is H-invariant, and smooth by Lemma 2.20(3). For an arrow $g \in G$ with $\text{src}(g) = L_X(x \otimes y) = l_X(x)$, define the action as:

$$G \ltimes l_X X \otimes_H Y; \quad g \cdot (x \otimes y) := (gx) \otimes y.$$

Note that the right hand side is well defined because r_X is G-invariant, so $r_X(gx) = l_Y(y)$. Since there can be no confusion, we will drop all parentheses and write $gx \otimes y$ instead. That the action is smooth follows because $(g, (x, y)) \mapsto (gx, y)$ is smooth (on the appropriate domains) and by another application of Lemma 2.20(3). Hence we obtain the induced action $G \ltimes X \otimes_H Y$.

Now suppose that we are given a smooth H-equivariant map $\varphi : Y_1 \rightarrow Y_2$ between two smooth actions $H \curvearrowright Y_1$ and $H \curvearrowright Y_2$. We define a map

$$\text{id}_X \otimes \varphi : X \otimes_H Y_1 \longrightarrow X \otimes_H Y_2; \quad x \otimes y \longmapsto x \otimes \varphi(y).$$

The underlying map $X \times_{H_0} Y_1 \rightarrow X \times_{H_0} Y_2 : (x, y) \mapsto (x, \varphi(y))$ is clearly smooth. Then by composition of the projection onto $X \otimes_H Y_2$ and Lemma 2.20(3), we find $\text{id}_X \otimes \varphi$ is smooth. Moreover, it is G-equivariant:

$$\text{id}_X \otimes \varphi(gx \otimes y) = gx \otimes \varphi(y) = g(\text{id}_X \otimes \varphi(x \otimes y)).$$

Definition 5.9. A diffeological bibundle $G \ltimes X \rtimes_Y H$ defines an induced action functor:

$$X \otimes_H - : \mathbf{Act}(H \rightrightarrows H_0) \longrightarrow \mathbf{Act}(G \rightrightarrows G_0),$$

$$(H \curvearrowright Y) \mapsto \langle G \ltimes X \otimes_H Y \rangle,$$

$$\varphi \mapsto \text{id}_X \otimes \varphi.$$

sending each smooth left H-action $(H \curvearrowright Y) \mapsto \langle G \ltimes X \otimes_H Y \rangle$ and each H-invariant map $\varphi \mapsto \text{id}_X \otimes \varphi$. We will use this functor in Section 6.3.
5.2. The bicategory of diffeological groupoids and -bibundles. Combining the balanced tensor product (Construction 4.6) and the induced action of a bibundle (Construction 5.8), we can define a notion of composition for diffeological bibundles, and thereby obtain a new sort of category of diffeological groupoids\(^7\). Since performing multiple balanced tensor products is not strictly associative, we need to introduce a notion of comparison between diffeological bibundles.

Definition 5.10. Let \(G \xleftarrow{\phi} X \xrightarrow{r} H\) and \(G' \xleftarrow{\phi'} Y \xrightarrow{r'} H\) be two bibundles between the same two diffeological groupoids. A smooth map \(\varphi : X \rightarrow Y\) is called a **bundle morphism** if it is a bundle morphism between both underlying bundles. We also say that \(\varphi\) is **biequivalent**. Concretely, this means that the following diagram commutes:

\[
\begin{array}{ccc}
X & \xrightarrow{r_X} & H_0 \\
\downarrow{\iota_X} & & \uparrow{r_Y} \\
G_0 & \xleftarrow{\iota_Y} & Y,
\end{array}
\]

that is: \(l_X = l_Y \circ \varphi\), \(r_X = r_Y \circ \varphi\), and that \(\varphi\) is equivariant with respect to both actions. The isomorphisms of bibundles are exactly the diffeomorphic biequivariant maps. These are the 2-isomorphisms in DiffeoBiBund.

The composition of bibundles is defined as follows:

Construction 5.11. Consider two diffeological bibundles \(G \xleftarrow{\phi} X \xrightarrow{r} H\) and \(G' \xleftarrow{\phi'} Y \xrightarrow{r'} H\). We shall define on \(X \otimes_H Y\) a \((G, K)\)-bibundle structure using the induced actions from Construction 5.8. On the left we take the induced \(G\)-action along \(L_X : X \otimes_H Y \rightarrow G_0\), which we recall maps \(x \otimes y \mapsto l_X(x)\), defined by

\[
G \xleftarrow{\phi} X \otimes_H Y; \quad g(x \otimes y) := (gx) \otimes y.
\]

This action is well-defined because the \(G\)- and \(H\)-actions commute. Similarly, we get an induced \(K\)-action on the right along \(R_Y : X \otimes_H Y \rightarrow K_0\), which maps \(x \otimes y \mapsto r_Y(y)\), given by

\[
X \otimes_H Y \xrightarrow{R_Y} K; \quad (x \otimes y)k := x \otimes (yk).
\]

It is easy to see that these two actions form a bibundle \(G \xleftarrow{\phi} X \otimes_H Y \xrightarrow{r' \circ \phi} K\), which we also call the balanced tensor product. Note that the moment maps are smooth by Lemma 2.20(3).

The following two propositions characterise the compositional structure of the balanced tensor product up to biequivalent diffeomorphism. The first of these shows that the identity bibundle (Example 5.5) is a weak identity:

Proposition 5.12. Let \(G \xleftarrow{\phi} X \xrightarrow{r} H\) be a diffeological bibundle. Then there are biequivalent diffeomorphisms

\[
\begin{align*}
G \xleftarrow{\phi} X \otimes G X & \xrightarrow{R \otimes \phi} H \\
& \searrow{\iota} \quad \nearrow{\iota'} \\
G \xleftarrow{\phi} X \xrightarrow{r} H & \quad G \xleftarrow{\phi} X \xrightarrow{r} H
\end{align*}
\]

Proof. The idea of the proof is briefly sketched on [Blo08, p.8]. The map \(\varphi : G \otimes_G X \rightarrow X\) is defined by the action: \(g \otimes x \mapsto gx\). This map is clearly well defined, and by an easy application of Lemma 2.20(3) also smooth. Further note that \(\varphi\) intertwines the left moment maps:

\[
l_X \circ \varphi(g \otimes x) = l_X(gx) = \text{trg}(g) = L_G(g \otimes x),
\]

\(^7\)The most straightforward way to obtain a (2-)category of diffeological groupoids is to consider the smooth functors and smooth natural transformations. We will not be studying this category in the current paper.
and similarly we find it intertwines the right moment maps. Associativity of the G-action and the fact that it commutes with the H-action directly ensure that φ is biequivariant. Moreover, we claim that the smooth map $\psi : X \to G \otimes G X$ defined by $x \mapsto \text{id}_{X} (x) \otimes x$ is the inverse of φ. It follows easily that $\varphi \circ \psi = \text{id}_{X}$, and the other side follows from the defining property of the balanced tensor product:

\[
\psi \circ \varphi (g \otimes x) = \psi (gx) = \text{id}_{X} (gx) \otimes gx = (\text{id}_{X} (g) \circ g) \otimes x = g \otimes x.
\]

It follows from an analogous argument that the identity bibundle of H acts like a weak right inverse. □

The second proposition shows that the balanced tensor is associative up to canonical biequivariant diffeomorphism:

Proposition 5.13. Let $G \rtimes_{L} X \otimes_{H} Y \rtimes_{H'} Z \rtimes_{K}$ be diffeological bibundles. Then there exists a biequivariant diffeomorphism

\[
A : (x \otimes y) \otimes z \mapsto x \otimes (y \otimes z).
\]

Proof. That the map A is smooth follows by Lemma 2.20(3), because the corresponding underlying map $((x, y), z) \mapsto (x, (y, z))$ is a diffeomorphism. The inverse of this diffeomorphism on the underlying fibred product induces exactly the smooth inverse of A, showing that A is a diffeomorphism. Furthermore, it is easy to check that A is biequivariant. □

Combining Propositions 5.12 and 5.13 gives that the balanced tensor product of bibundles behaves like the composition in a bicategory. This is a category where the axioms of composition hold merely up to canonical 2-isomorphism. For us, the 2-morphisms are the biequivariant smooth maps. For the precise definition of a bicategory we refer to e.g. [Mac71; Lac10]. The proof of the following is directly analogous to the one for the Lie theory, as explained throughout [Blo08].

Theorem 5.14. There is a bicategory DiffeolBiBund consisting of diffeological groupoids as objects, diffeological bibundles as morphisms with balanced tensor product as composition, and biequivariant smooth maps as 2-morphisms.

As we remarked in Section 4.1, the balanced tensor product for Lie groupoids can only be constructed for left (or right) principal bibundles. This means that in the Lie theory, the category of bibundles only consists of the left (or right) principal bibundles, since otherwise the composition cannot be defined. For diffeology we obtain a bicategory of all bibundles.

5.3. **Properties of bibundles under composition and isomorphism.** We study how the properties of diffeological bibundles defined in Definition 5.2 are preserved under the balanced tensor product and biequivariant diffeomorphism. These results will be crucial in characterising the weakly invertible bibundles. First we show that left subductive and left pre-principal bibundles are closed under composition.

Proposition 5.15. The balanced tensor product preserves left subductiveness.

Proof. Consider the balanced tensor product $G \rtimes_{L} X \otimes_{H} Y \rtimes_{H'} Z \rtimes_{K}$ of two left subductive bibundles $G \rtimes_{L} X \rtimes_{H} Y$ and $H \rtimes_{H'} Z \rtimes_{K}$. We need to show that the right moment map
$R_{Y} : X \otimes_{H} Y \to K_{0}$ is a subduction. But, note that it fits into the following commutative diagram:

$$
\begin{array}{ccc}
X \times^{r_{X},l_{Y}}_{H_{0}} Y & \xrightarrow{\pi} & X \otimes_{H} Y \\ \downarrow \text{pr}_{2|X \times_{H_{0}} Y} & & \downarrow R_{Y} \\ Y & \xrightarrow{r_{Y}} & K_{0}.
\end{array}
$$

Here π is the canonical quotient projection. The restricted projection $\text{pr}_{2|X \times_{H_{0}} Y}$ is a subduction by Lemma 2.22, since r_{X} is a subduction. Moreover, r_{Y} is a subduction, so the bottom part of the diagram is a subduction. It follows by Lemma 2.20(3) that R_{Y} is a subduction. \qed

Note that, even though R_{Y} only explicitly depends on the moment map r_{Y}, the proof still depends on the subductiveness of r_{X} as well.

To prove that the balanced tensor product of two left pre-principal bibundles is again left pre-principal, we need the following lemma, describing how the division map interacts with the bibundle structure, extending the list in Proposition 4.14 on the algebraic properties of the division map.

Lemma 5.16. Let $G\rightrightarrows X \rightrightarrows H$ be a left pre-principal bibundle, and denote its division map by $\langle \cdot,\cdot \rangle_{G}$. Then, whenever defined:

$$
\langle x_{1},x_{2}h \rangle_{G} = \langle x_{1}h^{-1},x_{2} \rangle_{G}, \quad \text{or equivalently:} \quad \langle x_{1}h,x_{2}h \rangle_{G} = \langle x_{1},x_{2} \rangle_{G}.
$$

Proof. The arrow $\langle x_{1}h,x_{2}h \rangle_{G} \in G$ is the unique one so that $\langle x_{1}h,x_{2}h \rangle_{G}(x_{2}h) = x_{1}h$. Now, since the actions commute, we can multiply both sides of this equation from the right by h^{-1}, which gives $\langle x_{1}h,x_{2}h \rangle_{G}x_{2} = x_{1}$, and this immediately gives our result. \qed

Proposition 5.17. The balanced tensor product preserves left pre-principality.

Proof. To start the proof, take two left pre-principal bibundles, with our usual notation: $G\rightrightarrows X \rightrightarrows H$ and $H\rightrightarrows Y \rightrightarrows K$. Denote their division maps by $\langle \cdot,\cdot \rangle_{G}$ and $\langle \cdot,\cdot \rangle_{H}$, respectively. Using these, we will construct a smooth inverse of the action map of the balanced tensor product. Let us denote the action map of the balanced tensor product by

$$
\Phi : G \times^{\text{src},L_{X}} (X \otimes_{H} Y) \longrightarrow (X \otimes_{H} Y) \times^{R_{Y},R_{Y}}_{K_{0}} (X \otimes_{H} Y),
$$

mapping $(g,x \otimes y) \mapsto (gx \otimes y, x \otimes y)$. After some calculations (which we describe below), we propose the following map as an inverse for Φ:

$$
\Psi : (X \otimes_{H} Y) \times^{R_{Y},R_{Y}}_{K_{0}} (X \otimes_{H} Y) \longrightarrow G \times^{\text{src},L_{X}}_{G_{0}} (X \otimes_{H} Y);
$$

$$
(x_{1} \otimes y_{1},x_{2} \otimes y_{2}) \longmapsto \langle x_{1}(y_{1},y_{2})_{H},x_{2}(x_{1},y_{2})_{H},x_{2} \otimes y_{2} \rangle.
$$

It is straightforward to check that every action and division occurring in this expression is well defined. We need to check that Ψ is independent on the representations of $x_{1} \otimes y_{1}$ and $x_{2} \otimes y_{2}$. Only the first component Ψ_{1} of Ψ could be dependent on the representations, so we focus there. Suppose we have two arrows $h_{1},h_{2} \in \mathcal{H}$ satisfying $\text{trg}(h_{1}) = r_{X}(x_{i}) = l_{Y}(y_{i})$, so that $x_{i}h_{i} \otimes y_{i}^{-1}y_{i} = x_{i} \otimes y_{i}$. For the division of y_{2} and y_{1} we then use Proposition 4.14 to get:

$$
\langle h_{1}^{-1}y_{1},h_{2}^{-1}y_{2} \rangle_{H} = h_{1}^{-1} \circ \langle y_{1},h_{2}^{-1}y_{2} \rangle_{H} = h_{1}^{-1} \circ (h_{2}^{-1} \circ \langle y_{2},y_{1} \rangle_{H})^{-1} = h_{1}^{-1} \circ \langle y_{1},y_{2} \rangle_{H} \circ h_{2}.
$$
Then, using this and Lemma 5.16, we get:
\[
\Psi_1(x_1h_1 \otimes h_1^{-1}y_1, x_2h_2 \otimes h_2^{-1}y_2) = \langle x_1h_1 (h_1^{-1}y_1, h_2^{-1}y_2)_H, x_2h_2 \rangle_G^X
\]
\[
= \langle (x_1h_1) (h_1^{-1} \circ (y_1, y_2)_H \circ h_2), x_2h_2 \rangle_G^X
\]
\[
= \langle (x_1(y_1, y_2))h_2, x_2h_2 \rangle_G^X
\]
\[
= \langle x_1(y_1, y_2)_H, x_2 \rangle_G^X.
\]
Since the second component of \(\Psi \) is by construction independent on the representation, it follows that \(\Psi \) is a well-defined function. We now need to show that \(\Psi \) is smooth. The second component is clearly smooth, because it is just the projection onto the second component of the fibred product. That the other component is smooth follows from Lemmas 2.20 and 2.23. Writing
\[
\psi : ((x_1, y_1), (x_2, y_2)) \mapsto \langle (x_1(y_1, y_2))_H, x_2 \rangle_G^X
\]
and \(\pi : X \times_{H_0} Y \rightarrow X \otimes_H Y \) for the canonical projection, we get a commutative diagram
\[
\begin{array}{ccc}
X \times_{H_0} Y & \xrightarrow{\pi} & X \otimes_H Y \\
\downarrow & & \downarrow \\
G & \xrightarrow{\psi} & \Psi_1
\end{array}
\]
Here by temporarily use the notation \(r_Y := r_Y \circ pr_2|_{X \times_{H_0} Y} \), which satisfies \(R_Y \circ \pi = r_Y \).
Therefore by Lemma 2.23 the top arrow in this diagram is a subduction. Since the map \(\psi \) is evidently smooth, it follows by Lemma 2.20(3) that the first component \(\Psi_1 \), and hence \(\Psi \) itself, must be smooth.

Thus, we are left to show that \(\Psi \) is an inverse for \(\Phi \). That \(\Psi \) is a right inverse for \(\Phi \) now follows by simple calculation using Proposition 4.14 and Lemma 5.16:
\[
\Psi \circ \Phi(g, x \otimes y) = \Psi(gx \otimes y, x \otimes y) = \langle (gx(y, y))_H^X, x \otimes y \rangle = \langle g \circ (x, x)_G^X, x \otimes y \rangle = (g, x \otimes y).
\]
For the other direction, we compute:
\[
\Phi \circ \Psi(x_1 \otimes y_1, x_2 \otimes y_2) = \Phi \left(\langle x_1(y_1, y_2)_H^X, x_2 \rangle_G^X, x_2 \otimes y_2 \right)
\]
\[
= \left(\langle x_1(y_1, y_2)_H^X, x_2 \rangle_G^X, x_2 \otimes y_2 \right)
\]
\[
= \left(x_1 \otimes \langle y_1, y_2 \rangle_H, x_2 \otimes y_2 \right)
\]
\[
= \left(x_1 \otimes (y_1, y_2)_H, x_2 \otimes y_2 \right).
\]
Here in the second to last step we use the properties of the balanced tensor product to move the arrow \((y_1, y_2)_H^X\) over the tensor symbol. Hence we conclude that \(\Phi \) is a diffeomorphism, which proves that \(G \smallsetminus_{X \otimes_H Y} K \) is a left pre-principal bibundle.

Next we show that left subductiveness and left pre-principality are also preserved under biequivariant diffeomorphism.

Proposition 5.18. Left pre-principality is preserved by biequivariant diffeomorphism.

Proof. Suppose that \(\varphi : X \rightarrow Y \) is a biequivariant diffeomorphism from a left pre-principal bibundle \(G \smallsetminus_{X \otimes H} Y \) to another diffeological bibundle \(G \smallsetminus_{Y \otimes H} K \). Denote their left
action maps by A_X and A_Y, respectively. The following square commutes because of biequvariance:

$$
\begin{array}{ccc}
G \times_{G_0} X & \xrightarrow{A_X} & X \times_{H_0} X \\
(id_G \times \varphi)(G_0 \times X) & & \downarrow \quad (\varphi \times \varphi)(X \times H_0) \\
G \times_{G_0} Y & \xrightarrow{A_Y} & Y \times_{H_0} Y.
\end{array}
$$

It is easy to see that both vertical maps are diffeomorphisms. Hence it follows A_Y must be a diffeomorphism as well. □

Proposition 5.19. Left subductiveness is preserved by biequivariant diffeomorphism.

Proof. Suppose that $\varphi : X \to Y$ is a biequivariant diffeomorphism from a left subductive bibundle $G \acts_l X \acts_r H$ to $G \acts_l Y \acts_r H$. That the first bundle is left subductive means that r_X is a subduction, but since φ intertwines the moment maps, it follows immediately that $r_Y = r_X \circ \varphi^{-1}$ is a subduction as well. □

Of course, these four propositions all hold for their respective ‘right’ versions as well. This can be proved formally, without repeating the work, by using opposite bibundles.

Corollary 5.20. Morita equivalence defines an equivalence relation between diffeological groupoids.

Proof. Morita equivalence is reflexive by the existence of identity bibundles, which are always biprincipal (Example 5.5). It is also easy to check that the opposite bibundle (Construction 5.6) of a biprincipal bibundle is again biprincipal, showing that Morita equivalence is symmetric. Transitivity follows directly from Propositions 5.15 and 5.17 and their opposite versions. □

5.4. Weak invertibility of diffeological bibundles

In this section we prove the main Morita Theorem 5.28. As we explained in the Introduction, in the bicategory of diffeological groupoids we get a notion of weak isomorphism. Let us describe these explicitly: a bibundle $G \acts_l X \acts_r H$ is weakly invertible if and only if there exists a second bibundle $H \acts_l Y \acts_r G$, such that $X \otimes_H Y$ is biequivariantly diffeomorphic to G and $Y \otimes_G X$ is biequivariantly diffeomorphic to H. The Morita theorem says that such a weak inverse exists if and only if the bibundle is biprincipal. Let us recall the corresponding statement in the Lie theory: a (say) left principal bibundle has a left principal weak inverse if and only if it is biprincipal [Lan01b, Proposition 4.21]. Here both the original bibundle and its weak inverse have to be left principal, since everything takes place in a bicategory of Lie groupoids and left principal bibundles. According to Theorem 5.14 we get a bicategory of arbitrary bibundles, and the question of weak invertibility becomes a slightly more general one, since we do not start out with a bibundle that is already left principal. Instead we have to infer left principality from bare weak invertibility, where neither the weak inverse may be assumed to be left principal.

One direction of the claim in the main theorem is relatively straightforward, and is the same as for Lie groupoids:

Proposition 5.21. Let $G \acts_l X \acts_r H$ be a biprincipal bibundle. Then its opposite bundle $H \acts_l X \acts_r G$ is a weak inverse.
Proof. We construct biequivariant diffeomorphisms
\[
G \multimap_{\pi X} X \otimes_H \overline{X} \cong G \quad \text{and} \quad H \multimap_{\pi Y} Y \otimes_G H \cong H,
\]
\[
\varphi_G : G \multimap_{\pi X} X \otimes_H \overline{X} \rightarrow G, \quad \varphi_H : H \multimap_{\pi Y} Y \otimes_G H \rightarrow H.
\]
Since the original bundle is pre-biprincipal, we have a division map \(\langle \cdot, \cdot \rangle_G : X \times_{H_0} X \rightarrow G\).

We define a new function \(\varphi_G : X \otimes_H \overline{X} \rightarrow G; \quad x_1 \otimes x_2 \mapsto \langle x_1, x_2 \rangle_G\).

This is independent on the representation of the tensor product by Lemma 5.16, and smooth by Lemma 2.20 (3) since \(\varphi_G \circ \pi = \langle \cdot, \cdot \rangle_G\), where \(\pi\) is the canonical projection onto the balanced tensor product. We check that \(\varphi_G\) is biequivariant. It is easy to check that \(\varphi_G\) intertwines the moment maps, for example:

\[
\text{src} \circ \varphi_G(x_1 \otimes x_2) = \text{src} \left(\langle x_1, x_2 \rangle_G \right) = l_X(x_2) = R_{\overline{X}}(x_1 \otimes x_2).
\]

The left \(G\)-equivariance of \(\varphi_G\) follows directly out of Proposition 4.14, and the right \(G\)-equivariance follows from Lemma 5.7. Hence \(\varphi_G\) is a genuine bibundle morphism.

Since the original bundle is biprincipal, so is its opposite, and therefore by Propositions 5.15 and 5.17 it follows that both balanced tensor products are also biprincipal. Therefore \(\varphi_G\) is in particular a left \(G\)-equivariant bundle morphism from a principal bundle \(G \multimap_{\pi X} X \otimes_H \overline{X} \rightarrow G_0\) to a pre-principal bundle \(G \multimap_{\pi Y} Y \otimes_G H \rightarrow G_0\), and hence a diffeomorphism by Proposition 4.18. This proves that the opposite bibundle is a weak right inverse. Note that we already need full biprincipality of the original bibundle for this. To prove that it is also a weak left inverse we make an analogous construction for \(\varphi_H\), which we leave to the reader. □

The rest of this section will be dedicated to proving the converse of this claim, i.e., that a weakly invertible bibundle is biprincipal. First let us remark that by imitating a result from the Lie theory, we can obtain a partial result in this direction. Let us denote by \(\text{DiffeolBiBund}_{LP}\) the bicategory of diffeological groupoids and left principal bibundles. Note that by Section 5.3 left principality is preserved by the balanced tensor product, so this indeed forms a subcategory.

Theorem 5.22. A left principal diffeological bibundle has a left principal weak inverse if and only if it is biprincipal. That is, the weakly invertible bibundles in \(\text{DiffeolBiBund}_{LP}\) are exactly the biprincipal ones.

Proof. This follows by combining Proposition 5.21 with an adaptation of an argument from the Lie groupoid theory as in [MM05, Proposition 2.9]. A more detailed proof (for diffeological groupoids) is in [vdS20, Proposition 4.61]. □

This theorem is the most direct analogue of [Lan01b, Proposition 4.21] in the setting of diffeology. Our main theorem will be a further generalisation of this, which says that the same claim holds in the larger bicategory \(\text{DiffeolBiBund}\) of all bibundles. We break the proof down in several steps, starting with the implication of bisubductiveness:

Proposition 5.23. A weakly invertible diffeological bibundle is bisubductive.

Proof. Suppose we have a bibundle \(G \multimap_{\pi X} X \multimap_{\pi Y} Y \rightarrow G\) that admits a weak inverse \(H \multimap_{\pi Y} Y \rightarrow G\). Let us denote the included biequivariant diffeomorphisms by \(\varphi_G : X \otimes_H Y \rightarrow G\) and
\(\varphi_H : Y \otimes_G X \to H \), as usual. Since the identity bibundles of \(G \) and \(H \) are both biprincipal, it follows by Proposition \(5.19 \) that the moment maps \(L_X, R_X, L_Y \) and \(R_Y \) are all subductions. Together with the original moment maps, we get four commutative squares, each of the form:

\[
\begin{array}{ccc}
X \times_{H_0}^r Y & \xrightarrow{\pi} & X \otimes_H Y \\
pr_1|_{X \times_{H_0} Y} & & L_X \\
X & \xrightarrow{t_x} & G_0.
\end{array}
\]

Here \(\pi : X \times_{H_0}^r Y \to X \otimes_H Y \) is the quotient map of the diagonal \(H \)-action. By Lemma \(2.20(3) \) it follows that, since \(L_X \) is a subduction, so is \(l_X \circ pr_1|_{X \times_{H_0} Y} \), and in turn by Lemma \(2.20(2) \) it follows \(l_X \) is a subduction. In a similar fashion we find that \(r_X, l_Y \) and \(r_Y \) are all subductions as well.\(\square \)

This proposition gives us halfway to proving that weakly invertible bibundles are biprincipal. To prove that they are pre-biprincipal, it is enough to construct smooth division maps.

We will give this construction below (Construction \(5.26 \)), which follows from a careful reverse engineering of the division map of a pre-principal bundle. Recall from Proposition \(5.17 \) that the smooth inverse of the action map contains the information of both the \(G \)-division map and the \(H \)-division map. Specifically, the first component of the inverse is of the form \((x_1(y_1, y_2)_H, x_2)_G \), in which if we set \(y_1 = y_2 \), we simply reobtain the \(G \)-division map \((x_1, x_2)_G \). The question is if this “reobtaining” can be done in a smooth way. This is not so obvious at first. Namely, if we vary \((x_1, x_2) \) smoothly within \(X \times_{H_0}^r X \), can we guarantee that \(y_1 \) and \(y_2 \) vary smoothly with it, while still retaining the equalities \(r_X(x_1) = l_Y(y_1) \) and \(y_1 = y_2 \)? The elaborate Construction \(5.26 \) proves that this can indeed be done. An essential part of our argument will be supplied by the following two lemmas.

Lemma 5.24. When \(G \curvearrowright X \overset{r_X}{\to} H \) is a weakly invertible bundle, admitting a weak inverse \(H \overset{r_Y}{\to} Y \overset{r_Y}{\to} G \), then all four actions are free.

Proof. This follows from an argument that is used in the proof of [Blo08, Proposition 3.23]. Suppose we have an arrow \(h \in H \) and a point \(y \in Y \) such that \(hy = y \). By Proposition \(5.23 \) it follows that in particular \(l_X \) is surjective, so we can find \(x \in X \) such that \(y \otimes x \in Y \otimes_G X \). Then

\[
h(y \otimes x) = (hy) \otimes x = y \otimes x.
\]

But by Proposition \(5.18 \) the bundle \(H \overset{r_Y}{\to} Y \overset{r_X}{\to} G \), which is equivariantly diffeomorphic to the identity bundle on \(H \), is pre-principal. So, the left action \(H \curvearrowright Y \otimes_G X \) is free, and hence \(h = id_{L_Y(y \otimes x)} = id_{r_Y(y)} \), proving that \(H \curvearrowright Y \) is also free. That the three other actions are free follows analogously.\(\square \)

Lemma 5.25. Let \(X \overset{r_X}{\to} H \) and \(H \overset{r_Y}{\to} Y \) be smooth actions, so that we can form the balanced tensor product \(X \otimes_H Y \). Suppose that \(H \overset{r_Y}{\to} Y \) is free. Then \(x_1 \otimes y = x_2 \otimes y \) if and only if \(x_1 = x_2 \). Similarly, if \(X \overset{r_X}{\to} H \) is free, then \(x \otimes y_1 = x \otimes y_2 \) if and only if \(y_1 = y_2 \).

Proof. If \(x_1 = x_2 \) to begin with, the implication is trivial. Suppose therefore that \(x_1 \otimes y = x_2 \otimes y \), which means that there exists an arrow \(h \in H \) such that \((x_1, h^{-1}, hy) = (x_2, y) \). In particular \(hy = y \), which, because the action on \(Y \) is free, implies \(h = id_{r_Y(y)} \), and it follows that \(x_1 = x_2 id_{r_Y(y)}^{-1} = x_2 \).\(\square \)

We shall now describe how the division map arises from local data:
Construction 5.26. For this construction to work, we start with a diffeological bibundle $Gr^L X \times H \curvearrowright G$, admitting a weak inverse $H \curvearrowright Y \curvearrowright G$. Then consider a pointed plot $\alpha : (U_\alpha, 0) \to (X \times H \times X, (x_1, x_2))$. We split α into the components (α_1, α_2), which in turn are pointed plots $\alpha_i : (U_\alpha, 0) \to (X, x_i)$ satisfying $r_X \circ \alpha_1 = r_X \circ \alpha_2 : U_\alpha \to H_0$. This equation gives a plot of H_0, and since by Proposition 5.23 the moment map $\lambda_Y : Y \to H_0$ is a subduction, for every $t \in U_\alpha$ we can find a plot $\beta : V \to Y$, defined on an open neighbourhood $t \in V \subseteq U_\alpha$, such that $r_X \circ \alpha_1 = \lambda_Y \circ \beta$. From this equation it follows that the smooth maps $\alpha_i |_V, \beta : V \to X \times H \times Y$ define two plots of the underlying space of the balanced tensor product. Applying the quotient map $\pi : X \times H \times Y \to X \times H Y$, we thus get two full-fledged plots $s \mapsto \alpha_i |_V(s) \otimes (\beta(s))$ of the balanced tensor product. We combine these two plots to define yet another smooth map:

$$\Omega^a V : \pi \circ (\alpha_1 |_V, \beta), \pi \circ (\alpha_2 |_V, \beta) : V \to (X \times H Y) \times H_0 \to H_0$$

Note that $\Omega^a V$ lands in the right codomain because $R_Y \circ \pi \circ (\alpha_i |_V, \beta) = r_Y \circ \beta$, irrespective of $i \in \{1, 2\}$. We also note that the codomain of $\Omega^a V$ is exactly the domain of the inverse $\Psi = (\Psi_1, \Psi_2)$ of the action map of the balanced tensor product $Gr^L X \times H Y \to H_0$ (given explicitly in Proposition 5.17). In particular we then get a smooth map

$$\Psi_1 \circ \Omega^a V : \pi \circ \Omega^a V : V \to (X \times H Y) \times H_0 \to H_0$$

We now extend this map to the entire domain U_α, and show that it is independent on the choice of plot β. For that, pick two points $t, \tilde{t} \in U_\alpha$, so that by subductiveness of the left moment map λ_Y we can find two plots, $\beta : V \to Y$ and $\tilde{\beta} : \tilde{V} \to Y$, defined on open neighbourhoods of t and \tilde{t}, respectively, such that $r_X \circ \alpha_1 |_V = \lambda_Y \circ \beta$ and $r_X \circ \alpha_1 |_{\tilde{V}} = \lambda_Y \circ \tilde{\beta}$. Following the above construction, we get two smooth maps:

$$\Omega^a V : s \mapsto (\alpha_1 |_V(s) \otimes (\beta(s)), \alpha_2 |_V(s) \otimes (\beta(s)))$$

$$\tilde{\Omega}^a V : s \mapsto (\alpha_1 |_{\tilde{V}}(s) \otimes (\tilde{\beta}(s)), \alpha_2 |_{\tilde{V}}(s) \otimes (\tilde{\beta}(s)))$$

We now remark an important characterisation of Ψ, as a consequence of it being a diffeomorphism and inverse to the action map. Namely, $\Psi_1(x_1 \otimes y_1, x_2 \otimes y_2) \in G$ is the unique arrow $g \in G$ satisfying $g x_2 \otimes y_2 = x_1 \otimes y_1$. Therefore, $\Psi_1 \circ \Omega^a V(s) \in G$ is the unique arrow such that

$$[\Psi_1 \circ \Omega^a V(s)] \cdot (\alpha_2 |_V(s) \otimes (\beta(s))) = \alpha_1 |_V(s) \otimes (\beta(s)).$$

By Lemma 5.24 all of the four actions of the original bibundles are free. Consequently, applying Lemma 5.25, since the second component in each term is just $\beta(s)$, this means that $\Psi_1 \circ \Omega^a V(s)$ is the unique arrow in G such that

$$\Psi_1 \circ \Omega^a V(s) \cdot \alpha_2 |_V(s) = \alpha_1 |_V(s),$$

where the tensor with $\beta(s)$ can be removed. But, for exactly the same reasons, if we take $s \in V \cap \tilde{V}$, then $\Psi_1 \circ \tilde{\Omega}^a V(s) \in G$ is also the unique arrow such that

$$\Psi_1 \circ \tilde{\Omega}^a V(s) \cdot \alpha_2 |_{\tilde{V}}(s) = \alpha_1 |_{\tilde{V}}(s),$$

proving that

$$\Psi_1 \circ \Omega^a V(s) \cdot \alpha_2 |_{V \cap \tilde{V}}(s) = \Psi_1 \circ \tilde{\Omega}^a V(s).$$

This shows that on the overlaps $V \cap \tilde{V}$ the map $\Psi_1 \circ \Omega^a V |_{V \cap \tilde{V}}$ does not depend on the plots β and $\tilde{\beta}$. This allows us to extend $\Psi_1 \circ \Omega^a V$, in a well-defined way, to the entire domain of U_α. We do this as follows. For every $t \in U_\alpha$ there exists a plot $\beta_t : V_t \to Y$, defined on an open neighbourhood $V_t \ni t$, such that $r_X \circ \alpha_1 |_{V_t} = \lambda_Y \circ \beta_t$. Clearly, this gives an open
cover \((V_i)_{i \in U_\alpha}\) of \(U_\alpha\). For \(t \in U_\alpha\) we then set \(\Psi_1 \circ \Omega^\alpha(t) := \Psi_1 \circ \Omega^\alpha|_{V_i}(t)\). Hence we get a well-defined function \(\Psi_1 \circ \Omega^\alpha : U_\alpha \to G\), which is smooth by the Axiom of Locality.

The main observation now is that, as the plot \(\alpha\) is centred at \((x_1, x_2)\), we get that \(\Psi_1 \circ \Omega^\alpha(0)\) is the unique arrow in \(G\) such that \(\Psi_1 \circ \Omega^\alpha(0) \cdot x_2 = x_1\). This is exactly the property that characterises the division \(\langle x_1, x_2 \rangle_G\)!

Proposition 5.27. A weakly invertible diffeological bibundle is pre-biprincipal.

Proof. The bulk of the work has been done in Construction 5.26. Start with a diffeological bibundle \(G \cdot \times X \times^H \times Y\) and a weak inverse \(H \cdot \times V \times^G H\). We shall define a smooth division map \(\langle \cdot, \cdot \rangle_G\) for the left \(G\)-action. For \((x_1, x_2) \in X \times^H_0 \times X\), we know by the Axiom of Covering that the constant map \(\text{const}((x_1, x_2)) : \mathbb{R} \to X \times^H_0 \times X\) is a plot centred at \((x_1, x_2)\). We use the shorthand \(\Psi_1 \circ \Omega(x_1, x_2)\) to denote the map \(\Psi_1 \circ \Omega^\alpha\) defined by the plot \(\alpha = \text{const}((x_1, x_2))\), and then write:

\[
\langle x_1, x_2 \rangle_G := \Psi_1 \circ \Omega(x_1, x_2)(0).
\]

That just leaves us to show that this map is smooth. For that, take an arbitrary plot \(\alpha : U_\alpha \to X \times^H_0 \times X\) of the fibred product. We need to show that \(\langle \cdot, \cdot \rangle_G \circ \alpha\) is a plot of \(G\). For any \(t \in U_\alpha\), we have that

\[
\langle \alpha_1(t), \alpha_2(t) \rangle_G = \Psi_1 \circ \Omega^\alpha(t)(0)
\]

is the unique arrow in \(G\) such that

\[
\Psi_1 \circ \Omega^\alpha(t)(0) \cdot \text{const}^2_{\alpha(t)}(0) = \text{const}^1_{\alpha(t)}(0),
\]

where \(\text{const}^i\) denotes the \(i\)-th component of the constant plot. But then \(\text{const}^i_{\alpha(t)}(0) = \alpha_i(t)\), and we already know that \(\Psi_1 \circ \Omega^\alpha(t) \in G\) is the unique arrow that sends \(\alpha_2(t)\) to \(\alpha_1(t)\), so we have:

\[
\Psi_1 \circ \Omega^\alpha(t)(0) = \Psi_1 \circ \Omega^\alpha(t), \quad \text{which means} \quad \langle \cdot, \cdot \rangle_G \circ \alpha = \Psi_1 \circ \Omega^\alpha.
\]

But the right hand side \(\Psi_1 \circ \Omega^\alpha : U_\alpha \to G\) is a plot of \(G\) as per Construction 5.26, proving that the map \(\langle \cdot, \cdot \rangle_G\) is smooth. It is quite evident from its construction that it satisfies exactly the properties of a division map, and it is now easy to verify that

\[
(\langle \cdot, \cdot \rangle_G, \Psi_2^1 |_{X \times^H_0 X}) : X \times^H_0 \times X \to G \times^G_0 \times X
\]

is a smooth inverse of the action map (see Section 4.2.1). The fact that it lands in the right codomain, i.e., \(\text{src}(\langle x_1, x_2 \rangle_G) = l_X(x_2)\), follows from the properties of \(\Psi\) as the inverse of the action map of the balanced tensor product. Therefore \(G \cdot \times X \times^H_0 \times H\) is a pre-principal bundle. An analogous argument will show that \(G_0 \cdot \times X \times^H_0 \times H\) is also pre-principal, and hence we have proved the claim.

We can now prove our main theorem:

Theorem 5.28. A bibundle is weakly invertible in DiffeolBiBund if and only if it is biprincipal. That means: two diffeological groupoids are Morita equivalent if and only if they are equivalent in DiffeolBiBund.

Proof. One of the implications is just Proposition 5.21. The other now follows from a combination of Propositions 5.23 and 5.27.\(\square\)
This significantly generalises [Lan01b, Proposition 4.21], not only in that we have a generalisation to a diffeological setting, but also in that it considers a more general type of bibundle. It justifies the bicategory \textbf{DiffeoBiBund} as being the appropriate setting for Morita equivalence of diffeological groupoids. It also shows that the assumptions of left principality of the Lie groupoid bibundles appear to be more like technical necessities for getting a well defined bicategory of Lie groupoids and bibundles, rather than being meaningful assumptions on the underlying smooth structure of the bibundles. In \textbf{Section 7.1} we discuss other aspects of diffeological Morita equivalence between Lie groupoids. A possible \textit{category of fractions} approach to Morita equivalence of diffeological groupoids is discussed in [vdS20, Chapter V].

6. Some Morita Invariants

In theories of Morita equivalence, there are often interesting properties that are naturally Morita invariant. In this section we discuss some results that generalise several well known Morita invariants of Lie groupoids to the diffeological setting. These include: invariance of the orbit spaces (Definition 3.4), of being fibrating (Definition 6.2), and of the action categories (Definition 4.5) The proofs are taken from [vdS20, Chapter IV].

6.1. Invariance of orbit spaces. It is a well known result that if two Lie groupoids $G \cong G_0$ and $H \cong H_0$ are Morita equivalent (in the Lie groupoid sense), then there is a \textit{homeomorphism} between their orbit spaces G_0/G and H_0/H [CM18, Lemma 2.19]. The following theorem shows that, for diffeological groupoids, we get a genuine \textit{diffeomorphism}. The construction of the underlying function is the same as for the Lie groupoid case, which is sketched in the proof of [CM18, Lemma 2.19], and which we describe below in detail.

Theorem 6.1. If $G \cong G_0$ and $H \cong H_0$ are two Morita equivalent diffeological groupoids, then there is a \textit{diffeomorphism} $G_0/G \cong H_0/H$ between their orbit spaces.

Proof. Let $G \ltimes X \rightthreetimes H$ be the bibundle instantiating the Morita equivalence. Our first task will be to construct a function $\Phi : G_0/G \to H_0/H$ between the orbit spaces. The idea is to lift a point $a \in G_0$ of the base of the groupoid to its l_X-fibre, which by right principality is just an H-orbit in X, and then to project this orbit down to the other base H_0 along the right moment map r_X. The fact that the bundle is biprincipal ensures that this can be done in a consistent fashion.

We are dealing with \textit{four} actions here, so we need to slightly modify our notation to avoid confusion. If $a \in G_0$ is an object in the groupoid G, we shall denote its orbit by $\text{Orb}_{G_0}(a)$, which, as usual, is just the set of all points $a' \in G_0$ such that there exists an arrow $g : a \to a'$ in G. Similarly, for $b \in H_0$ we write $\text{Orb}_{H_0}(b)$. On the other hand, we have two actions on X, for whose orbits we use the standard notations $\text{Orb}_G(x)$ and $\text{Orb}_H(x)$, where $x \in X$.

Now, start with a point $a \in G_0$, and consider its fibre $l^{-1}_X(a)$ in X. Since the bibundle is right subductive, the map l_X is surjective, so this fibre is non-empty and we can find a point $x_a \in l^{-1}_X(a)$. We claim that the expression $\text{Orb}_{H_0} \circ r_X(x_a)$ is independent on the choice of the point x_a in the fibre. For that, take another point $x_a' \in l^{-1}_X(a)$. This gives the equation $l_X(x_a) = l_X(x_a')$, and since bibundle is right pre-principal, we get a unique arrow $h \in H$ such that $x_a = x_a'h$. From the definition of a right groupoid action, this in turn gives the equations $r_X(x_a') = \text{src}(h)$ and $r_X(x_a) = \text{trg}(h)$, which proves the claim. To summarise, whenever $x_a, x_a' \in l^{-1}_X(a)$ are two points in the same l_X-fibre, then we have:

\begin{itemize}
 \item[(\spadesuit)] $\text{Orb}_{H_0} \circ r_X(x_a) = \text{Orb}_{H_0} \circ r_X(x_a')$.
\end{itemize}

Next we want to show that neither is this expression dependent on the point $a \in G_0$, but rather on its orbit $\text{Orb}_{G_0}(a)$. For this, take another point $b \in \text{Orb}_{G_0}(a)$, so there exists some
We are therefore to show that \(\sigma \) of the base space. By right subductivity, the left moment map that \(\Phi \) of the right moment map \(l_X \) is a surjection (and for each \(a \) there exists an \(x_a \)).

Either by replacing \(G \rtimes X \rightarrow G \rightarrow H \) by its opposite bibundle, or by switching the words ‘left’ and ‘right’, the above argument analogously gives a function going the other way:

\[
\Psi : G_0/G \rightarrow H_0/H; \quad \text{Orb}_{G_0}(a) \mapsto \text{Orb}_{G_0} \circ r_X(x_a),
\]

where now \(y_b \in r_X^{-1}(b) \) is some point in the fibre of the right moment map \(r_X \). We claim that \(\Phi \) and \(\Psi \) are mutual inverses. To see this, pick a point \(a \in G_0 \), a point \(x_a \in l_X^{-1}(a) \), a point \(y_{rX(x_a)} \in r_X^{-1}(rX(x_a)) \). Then we can write

\[
\Psi \circ \Phi (\text{Orb}_{G_0}(a)) = \Psi (\text{Orb}_{G_0}(rX(x_a))) = \text{Orb}_{G_0}(lX(y_{rX(x_a)})).
\]

We also have, by choice, the equation

\[
rX(x_a) = rX(y_{rX(x_a)}),
\]

so by left pre-principality there exists an arrow \(g \in G \) such that \(gx_a = y_{rX(x_a)} \). By definition of a left groupoid action, this then further gives

\[
\text{src}(g) = lX(x_a) = a \quad \text{and} \quad \text{trg}(g) = lX(y_{rX(x_a)}).
\]

This proves that the right-hand side of the previous equation is equal to

\[
\text{Orb}_{G_0}(lX(y_{rX(x_a)})) = \text{Orb}_{G_0}(a),
\]

which gives \(\Psi \circ \Phi = \text{id}_{G_0/G} \). Through a similar argument, using right pre-principality, we obtain that \(\Phi \circ \Psi = \text{id}_{H_0/H} \).

To finish the proof, it suffices to prove that both \(\Phi \) and \(\Psi \) are smooth. Again, due to the symmetry of the situation, and since the bibundle \(G \rtimes X \rightarrow G \rightarrow H \) is biprincipal, we shall only prove that \(\Phi \) is smooth. The proof for \(\Psi \) will follow analogously. Since \(\text{Orb}_{G_0} \) is a subduction, to prove that \(\Phi \) is smooth it suffices by Lemma 2.20(b) to prove that \(\Phi \circ \text{Orb}_{G_0} \) is smooth. Since the left moment map \(lX \) is a surjection, using the Axiom of Choice we pick a section \(\sigma : G_0 \rightarrow X \), which replaces our earlier notation of \(\sigma(a) = x_a \). From the way \(\Phi \) is defined, we see that we get a commutative diagram:

\[
\begin{array}{ccc}
G_0 & \xrightarrow{\sigma} & X \\
\text{Orb}_{G_0} \downarrow & & \downarrow \text{Orb}_{H_0} \\
G_0/G & \xrightarrow{\Phi} & H_0/H.
\end{array}
\]

We are therefore to show that \(\text{Orb}_{H_0} \circ r_X \circ \sigma \) is smooth. For this, pick a plot \(\alpha : U_0 \rightarrow G_0 \) of the base space. By right subductivity, the left moment map \(lX \) is a subduction, so locally \(\alpha|_V = lX \circ \beta \), where \(\beta \) is some plot of \(X \). Now, note that, for all \(t \in V \), both the points \(\beta(t) \) and \(\sigma \circ lX \circ \beta(t) \) are elements of the fibre \(l_X^{-1}(lX \circ \beta(t)) \). Therefore, by equation (4) we get:

\[
\text{Orb}_{H_0} \circ r_X \circ \sigma \circ \alpha|_V = \text{Orb}_{H_0} \circ r_X \circ \sigma \circ lX \circ \beta = \text{Orb}_{H_0} \circ r_X \circ \beta.
\]
The right-hand side of this equation is clearly smooth (and no longer dependent on the choice of section \(\sigma \)). By the Axiom of Locality for \(G_0 \), it follows that \(\text{Orb}_H \circ r_X \circ \sigma \circ \alpha \) is globally smooth, and since the plot \(\alpha \) was arbitrary, this proves that \(\Phi \circ \text{Orb}_G \) is smooth. Hence, \(\Phi \) is smooth. After an analogous argument that shows \(\Psi \) is smooth, the desired diffeomorphism between the orbit spaces follows. \(\square \)

6.2. Invariance of fibration. The theory of diffeological (principal) fibre bundles is shown in [IZ13a, Chapter 8] to be fully captured by the following notion:

Definition 6.2. A diffeological groupoid \(G \rightrightarrows G_0 \) is called fibrating (or a fibration groupoid) if the characteristic map \((\text{trg}, \text{src}) : G \to G_0 \times G_0 \) is a subduction.

This leads to a theory of diffeological fibre bundles that is able to treat the standard smooth locally trivial (principal) fibre bundles of smooth manifolds, but also bundles that are not (and could not meaningfully be) locally trivial. It is then natural to ask if this property of diffeological groupoids is invariant under Morita equivalence. The following theorem proves that this is the case:

Theorem 6.3. Let \(G \rightrightarrows G_0 \) and \(H \rightrightarrows H_0 \) be two Morita equivalent diffeological groupoids. Then \(G \rightrightarrows G_0 \) is fibrating if and only if \(H \rightrightarrows H_0 \) is fibrating.

Proof. Because Morita equivalence is an equivalence relation, it suffices to prove that if \(G \rightrightarrows G_0 \) is fibrating, then so is \(H \rightrightarrows H_0 \). Denoting the characteristic maps of these groupoids by \(\chi_G = (\text{trg}, \text{src}G) \) and \(\chi_H = (\text{trg}, \text{src}H) \), assume that \(G \) is fibrating, so that \(\chi_G \) is a subduction. Our goal is to show \(\chi_H \) is also a subduction.

To begin with, take an arbitrary plot \(\alpha = (\alpha_1, \alpha_2) : U_\alpha \to G_0 \times G_0 \), and fix an element \(t \in U_\alpha \). We thus need to find a plot \(\Phi : W \to H \), defined on an open neighbourhood \(t \in W \subseteq U_\alpha \), such that \(\alpha_{|W} = \chi_H \circ \Phi \). Morita equivalence yields a biequivariant bibundle \(\mathcal{G} \rightrightarrows X \times X \). To construct the plot \(\Phi \), we use almost all of the structure of this bibundle.

The right moment map \(r_X : X \to H_0 \) is a subduction, so for each of the component maps \(\alpha_i \) of \(\alpha \) we get a plot \(\beta_i : U_i \to X \), defined on an open neighbourhood \(t \in U_i \subseteq U_\alpha \), such that \(\alpha_i_{|U_i} = r_X \circ \beta_i \). Define \(U := U_1 \cap U_2 \), which is another open neighbourhood of \(t \in U_\alpha \), and introduce the notation

\[
\beta := (\beta_1|_U, \beta_2|_U) : U \to X \times X.
\]

Composing with the left moment map \(l_X : X \to G_0 \), we get \((l_X \times l_X) \circ \beta : U \to G_0 \times G_0 \). It is here that we use that \(G \rightrightarrows G_0 \) is fibrating. Because of that, we can find an open neighbourhood \(t \in V \subseteq U \subseteq U_\alpha \) and a plot \(\Omega : V \to G \) such that

\[
\chi_G \circ \Omega = (l_X \times l_X) \circ \beta_{|V}.
\]

This means that \(\text{trg}_G \circ \Omega = l_X \circ \beta_{|V} \) and \(\text{src}_G \circ \Omega = l_X \circ \beta_{|V} \). Let \(\varphi_G : X \times H_0 \to G_0 \times G_0 \) be the biequivariant diffeomorphism from Proposition 5.2. Using the plot \(\Omega \) we just obtained, we get another plot \(\varphi_G^{-1} \circ \Omega : V \to X \times H_0 \). Now, since the canonical projection \(\pi_H : X \times H_0 \times X \to X \times H_0 \times X \) of the diagonal \(H \)-action is a subduction, we can find an open neighbourhood \(t \in W \subseteq V \) and a plot \(\omega : W \to X \times H_0 \times X \) such that

\[
\pi_H \circ \omega = \varphi_G^{-1} \circ \Omega_{|W}.
\]

Note that the plot \(\omega \) decomposes into its components \(\omega_1, \omega_2 : W \to X \), which satisfy \(r_X \circ \omega_1 = r_X \circ \omega_2 \). Using the biequivariance of \(\varphi_G \) and the defining relation \(L_X \circ \pi_H = l_X \circ \text{pr}_1|_{X \times H_0} \times X \) we find:

\[
l_X \circ \beta_1|_W = \text{trg}_G \circ \Omega_{|W} = L_X \circ \varphi_G^{-1} \circ \Omega_{|W} = L_X \circ \pi_H \circ \omega = l_X \circ \text{pr}_1|_{X \times H_0} \times X \circ \omega = l_X \circ \omega_1,
\]

\[
l_X \circ \beta_2|_W = \text{src}_G \circ \Omega_{|W} = L_X \circ \varphi_G^{-1} \circ \Omega_{|W} = L_X \circ \pi_H \circ \omega = l_X \circ \text{pr}_1|_{X \times H_0} \times X \circ \omega = l_X \circ \omega_2.
\]
where the first equality follows from the equation (1), and the third one from (3). Similarly, we find \(l_X \circ \beta_2|_W = l_X \circ \omega_2 \). These two equalities give two well-defined plots, one for each \(i \in \{1, 2\} \), given by

\[
\beta_i|_W \odot \omega_i := \pi_G \circ (\beta_i|_W, \omega_i) : W \xrightarrow{(\beta_i|_W, \omega_i)} X \times_{G_0} X \xrightarrow{\pi_G} X \otimes G X,
\]

where \(\pi_G : X \times_{G_0} X \to X \otimes G X \) is the canonical projection of the diagonal \(G \)-action. We can now apply the biequivariant diffeomorphism \(\varphi_H : X \otimes G X \to H \) from Proposition 5.21 to get two plots in \(H \). It is from these two plots that we will create \(\Phi \). Here it is absolutely essential that we have constructed the plot \(\omega \) such that \(r_X \circ \omega_1 = r_X \circ \omega_2 \), because that means that the sources of these two plots in \(H \) will be equal, and hence they can be composed if we first invert one of them component-wise. To see this, use the biequivariance of \(\varphi_H \) to calculate

\[
\text{src}_H \circ \varphi_H \circ (\beta_1|_W \otimes \omega_1) = R_H \circ (\beta_1|_W \otimes \omega_1) = r_X \circ \text{pr}_2|_{X \times_{G_0} X} \circ (\beta_1|_W, \omega_1) = r_X \circ \omega_1,
\]

and similarly:

\[
\text{trg}_H \circ \varphi_H \circ (\beta_1|_W \otimes \omega_1) = L_H \circ (\beta_1|_W \otimes \omega_1) = r_X \circ \text{pr}_1|_{X \times_{G_0} X} \circ (\beta_1|_W, \omega_1) = r_X \circ \beta_1|_W = \alpha_1|_W.
\]

Of course, if we switch \(\beta_1|_W \odot \omega_1 \) to \(\omega_1 \odot \beta_1|_W \), which is defined in the obvious way, then the right-hand sides of the above two equations will switch. So, for every \(s \in W \), the expression \(\varphi_H (\omega_2(s) \otimes \beta_2(s)) \) is an arrow in \(H \) from \(r_X \circ \beta_2(s) = \alpha_2(s) \) to \(r_X \circ \omega_2(s) \), and \(\varphi_H (\beta_1(s) \otimes \omega_1(s)) \) is an arrow from \(r_X \circ \omega_1(s) = r_X \circ \omega_2(s) \) to \(r_X \circ \beta_1(s) = \alpha_1(s) \), which can hence be composed to give an arrow from \(\alpha_2(s) \) to \(\alpha_1(s) \). This is exactly the kind of arrow we want. Therefore, for every \(s \in W \), we get a commutative triangle in the groupoid \(H \), which defines for us the plot \(\Phi : W \to H \):

\[
\begin{array}{ccc}
\alpha_2(s) & \xrightarrow{\Phi(s)} & \alpha_1(s) \\
\downarrow & & \downarrow \\
\varphi_H (\omega_2(s) \otimes \beta_2(s)) & & \varphi_H (\beta_1(s) \otimes \omega_1(s)) \\
\end{array}
\]

The map \(\Phi \) is clearly smooth, because inversion and multiplication in \(H \) are smooth. Hence we have defined the plot \(\Phi \), and by the above diagram it is clear that it satisfies

\[
\chi_H \circ \Phi = (\text{trg}_H \circ \Phi, \text{src}_H \circ \Phi) = \alpha|_W.
\]

Thus we may at last conclude that \(\chi_H \) is a subduction, and hence that \(H \cong H_0 \) is also fibrating.

\[\square\]

6.3. Invariance of representations. In the Morita theory of rings, it holds that two rings are Morita equivalent if and only if their categories of modules are equivalent. For groupoids, even discrete ones, this is no longer an “if and only if” proposition, but merely an “only if”. Nevertheless, it is known that the result transfers to Lie groupoids as well [Lan01a, Theorem 6.6], and here we shall prove that it transfers also to diffeology.

Theorem 6.4. Suppose that \(G \cong G_0 \) and \(H \cong H_0 \) are Morita equivalent diffeological groupoids. Then the action categories \(\text{Act}(G \cong G_0) \) and \(\text{Act}(H \cong H_0) \) are categorically equivalent.
Proof. If $G \simeq G_0$ and $H \simeq H_0$ are Morita equivalent, there exists a biprincipal bibundle $G \ltimes^X \ltimes^Y H$. Recall from Definition 4.5 the notion of action categories and from Definition 5.9 that of induced action functors. We claim that

\[X \otimes_H - : \text{Act}(H \simeq H_0) \rightarrow \text{Act}(G \simeq G_0), \]

\[X \otimes_G - : \text{Act}(G \simeq G_0) \rightarrow \text{Act}(H \simeq H_0) \]

are mutually inverse functors up to natural isomorphism. To see this, take a left H action $H \ltimes^Y Y$. Then

\[(X \otimes_G -) \circ (X \otimes_H -) [H \ltimes^Y Y] = (X \otimes_G -) [G \ltimes^X X \otimes_H Y] = H \ltimes^X (X \otimes_G (X \otimes_H Y)).\]

Therefore, we need to construct a natural biequivariant diffeomorphism

\[\mu_Y : X \otimes_G (X \otimes_H Y) \rightarrow Y. \]

For this, we collect the biequivariant diffeomorphisms from Propositions 5.12, 5.13 and 5.21. Let us denote them by

\[A_Y : X \otimes_G (X \otimes_H Y) \rightarrow (X \otimes_G X) \otimes_H Y, \]

\[\varphi_H : X \otimes_G X \rightarrow H, \]

\[M_Y : H \otimes_H Y \rightarrow Y, \]

describing the association up to isomorphism, the division map of the bibundle, and the left action $H \ltimes Y$, respectively. We then define

\[\mu_Y := M_Y \circ (\varphi_H \otimes \text{id}_Y) \circ A_Y. \]

Note that $(\varphi_H \otimes \text{id}_Y)$ is still a biequivariant diffeomorphism. The natural transformation $\mu : (X \otimes_G -) \circ (X \otimes_H -) \Rightarrow \text{id}_{\text{Act}(H)}$ then becomes:

\[X \otimes_G (X \otimes_H Y) \xrightarrow{\mu_Y} Y \]

\[\downarrow \text{id}_X \otimes (\text{id}_Y \circ \varphi) \]

\[X \otimes_G (X \otimes_H Z) \xrightarrow{\mu_Y} Z, \]

where $\varphi : Y \rightarrow Z$ is an H-equivariant smooth map. It follows from the structure of these maps that the naturality square commutes. The top right corner of the diagram becomes:

\[\varphi \circ \mu_Y (x_1 \otimes (x_2 \otimes y)) = \varphi \circ M_Y \circ (\varphi_H \otimes \text{id}_Y) \circ A_Y (x_1 \otimes (x_2 \otimes y)) \]

\[= \varphi \circ M_Y \circ (\varphi_H \otimes \text{id}_Y) ((x_1 \otimes x_2) \otimes y) \]

\[= \varphi \circ M_Y (((\varphi_H(x_1 \otimes x_2) \otimes y) \]

\[= \varphi (\varphi_H(x_1 \otimes x_2)) \]

\[= \varphi_H(x_1 \otimes x_2) \varphi(y), \]

where the very last step follows from H-equivariance of φ. Following a similar calculation, the bottom left corner evaluates as

\[\mu_Z \circ (\text{id}_X \otimes (\text{id}_Y \otimes \varphi)) = M_Z \circ (\varphi_H \otimes \text{id}_Z) \circ A_Z \circ (\text{id}_X \otimes (\text{id}_Y \otimes \varphi)) \]

\[= M_Z \circ (\varphi_H \otimes \text{id}_Z) \circ ((\text{id}_X \otimes (\text{id}_X \otimes \varphi)) \]

\[= M_Z \circ \varphi_H \otimes \varphi, \]

which, when evaluated, gives exactly the same as the above expression for the top right corner. This proves that μ is natural, and since every of its components is an H-equivariant diffeomorphism, it follows that μ is a natural isomorphism. The fact that the composition
$(X \otimes_H -) \circ (X \otimes_G -)$ is naturally isomorphic to $\text{id}_{\text{Act}(G)}$ follows from an analogous argument. Hence the categories $\text{Act}(G \rightrightarrows G_0)$ and $\text{Act}(H \rightrightarrows H_0)$ are equivalent, as was to be shown. □

7. Discussion and Suggestions for Future Research

7.1. Diffeological bibundles between Lie groupoids. As we saw in Example 5.4, if two Lie groupoids are Lie Morita equivalent (i.e. Morita equivalent in the Lie groupoid sense [CM18, Definition 2.15]), then they are also diffeologically Morita equivalent. This is simply due to the fact that surjective submersions between smooth manifolds are in particular also subductions, and hence a Lie principal groupoid bundle is also diffeologically principal. But, what if $G \rightrightarrows G_0$ and $H \rightrightarrows H_0$ are two Lie groupoids, such that there exists a diffeological biprincipal bibundle $G \rtimes^X \leftarrow^X H$ between them. What does that say about the Lie Morita equivalence of G and H? This still remains an open question (Question 7.6). In this section we discuss some related results, which also pertain to our choice of subductions over local subductions for the development of the general theory. A slightly more detailed discussion is in [vdS20, Section 4.4.3]. In light of Proposition 2.25, the source and target maps of a Lie groupoid are local subductions (cf. Proposition 3.2), and we can therefore introduce the following class of diffeological groupoids:

Definition 7.1. We say a diffeological groupoid $G \rightrightarrows G_0$ is locally subductive if its source and target maps are local subductions\(^8\). Clearly, every Lie groupoid is a locally subductive diffeological groupoid.

Looking at the structure of the proofs in Sections 4 and 5, it appears as if they can be generalised to a setting where we replace all subductions by local subductions. In doing so, we would get a theory of locally subductive groupoids, locally subductive groupoid bundles, and the corresponding notions for bibundles and Morita equivalence, which, as it appears, would follow the same story as we have so far presented. An upside to that framework would be that it directly returns the original theory of Morita equivalence for Lie groupoids, once we restrict our diffeological spaces to smooth manifolds. In this section we shall prove that, even in the slightly more general setting of Section 5, the diffeological bibundle theory reduces to the Lie groupoid theory in the correct way. We do this by proving that the moment maps of a biprincipal bibundle between locally subductive groupoids have to be local subductions as well (Lemma 7.3). In hindsight, this provides more justification for our choice of starting with subductions instead of local subductions. One consequence of this choice is that it allows for groupoid bundles that are truly pseudo-bundles, in the sense of [Per16]. The notion of pseudo-bundles seems to be the correct notion in the setting of diffeology to generalise all bundle constructions on manifolds, at least if we want to treat (internal) tangent bundles as such (see [CW16]). There exists diffeological spaces whose internal tangent bundle is not a local subduction [CW16, Example 3.17]. If we had defined principality of a groupoid bundle to include local subductiveness, these examples would not be treatable by our theory of Morita equivalence.

Lemma 7.2. Let $G \rightrightarrows X \rightrightarrows H$ be a diffeological bibundle, where $H \rightrightarrows H_0$ is a locally subductive groupoid. Then the canonical projection map $\pi_H : X \times_{H_0}^r X \rightarrow X \otimes_H X$ is a local subduction.

\(^8\)It would be tempting to call such groupoids “diffeological Lie groupoids,” but this would conflict with earlier established terminology of so-called diffeological Lie groups in [IZ13a, Article 7.1] and [Les03; Mag18].
Proof. Let \(\alpha : (U_\alpha,0) \to (X \otimes_H X, x_1 \otimes x_2) \) be a pointed plot of the balanced tensor product. Since \(\pi_H \) is already a subduction, we can find a plot \(\beta : V \to X \times_{H_0} X \), defined on an open neighbourhood \(0 \in V \subseteq U_\alpha \) of the origin, such that \(\alpha|_V = \pi_H \circ \beta \). This plot decomposes into two plots \(\beta_1, \beta_2 \in \mathcal{D}_X \) on \(X \), satisfying \(r_X \circ \beta_1 = r_X \circ \beta_2 \). We use the notation \(\alpha|_V = \beta_1 \otimes \beta_2 \). In particular, we get an equality \(x_1 \otimes x_2 = \beta_1(0) \otimes \beta_2(0) \) inside the balanced tensor product, which means that we can find an arrow \(h \in H \) such that \(\beta_i(0) = x_i h \). The target must be \(\text{trg}(h) = r_X(x_1) = r_X(x_2) \). This arrow allows us to write a pointed plot \(r_X \circ \beta_1 : (V,0) \to (H_0, \text{trg}(h^{-1})) \), so that now we can use that \(H \xrightarrow{\pi} H_0 \) is locally subductive. Since the target map of \(H \) is a local subduction, we can find a pointed plot \(\Omega : (W,0) \to (H, h^{-1}) \) such that \(r_X \circ \beta|_W = \text{trg}_H \circ \Omega \). This relation means that, for every \(t \in W \), we have a well-defined action \(\beta_1(t) \cdot \Omega(t) \in X \). Hence we get a pointed plot

\[
\Psi : (W,0) \longrightarrow (X \times^{r_X,r_X}_{H_0} X, (x_1, x_2)); \quad t \longmapsto (\beta_1(t) \Omega(t), \beta_2(t) \Omega(t)).
\]

It then follows by the definition of the balanced tensor product that

\[
\pi_H \circ \Psi(t) = \beta_1|_W(t) \Omega(t) \otimes \beta_2|_W(t) \Omega(t) = \beta_1|_W(t) \otimes \beta_2|_W(t) = \alpha|_W(t),
\]

proving that \(\pi_H \) is a local subduction. \(\square \)

Lemma 7.3. If \(G \lhd_X X \xrightarrow{r_X} H \) is a biprincipal bibundle between locally subductive groupoids, then the moment maps \(l_X \) and \(r_X \) are local subductions as well.

Proof. If the bibundle \(G \lhd_X X \xrightarrow{r_X} H \) is biprincipal, we get two biequivariant diffeomorphisms \(\varphi_G : X \otimes H X \to G \) and \(\varphi_H : X \otimes G X \to H \) (Proposition 5.21). It follows that the local subductivity of the source and target maps of \(G \) and \(H \) transfer to the four moment maps of the balanced tensor products. For example, the left moment map \(L_X : X \otimes_H X \to G_0 \) can be written as \(L_X = \text{trg}_G \circ \varphi_G \), where the right hand side is clearly a local subduction. We know as well that \(L_X \) fits into a commutative square with the original moment map \(l_X \):

\[
\begin{array}{ccc}
X \times^{r_X,r_X}_{H_0} X & \xrightarrow{\pi_H} & X \otimes_H X \\
\downarrow \text{pr}_1|_{X \times_H X} & & \downarrow L_X \\
X & \xrightarrow{l_X} & G_0.
\end{array}
\]

Since local subductions compose, and since by Lemma 7.2 the projection \(\pi_H \) is a local subduction, we find that the upper right corner \(L_X \circ \pi_H \) must be a local subduction. Hence the composition \(l_X \circ \text{pr}_1|_{X \times_H X} \) is a local subduction, which by an argument that is analogous to the proof of Lemma 2.20(2) gives the local subductiveness of \(l_X \). That the right moment map \(r_X \) is a local subduction follows from a similar argument. \(\square \)

The lemma suggests that, if we refine our notion of principality something we might call pure-principality, by passing from subductions to local subductions, then biprincipality between locally subductive groupoids means the same thing as this new notion of pure-principality. Let us make this precise.

Definition 7.4. Two diffeological groupoids are called purely Morita equivalent if there exists a biprincipal bibundle between them, such that the two underlying moment maps are local subductions.

Clearly, pure Morita equivalence implies ordinary Morita equivalence in the sense of Definition 5.3, since local subductions are, in particular, subductions. The question is if the converse implication holds as well. We have a partial answer, since Lemma 7.3 can now be restated as follows:
Proposition 7.5. Two locally subductive groupoids are Morita equivalent if and only if they are purely Morita equivalent.

Especially in light of the existence of subductions that are not local subductions (see e.g. [IZ13a, Exercise 61, p.60]), and the fact that the proof of Lemma 7.3 relies so heavily on the assumption that the groupoids are locally subductive, it seems that the ordinary diffeological Morita equivalence of Definition 5.3 is not equivalent to pure-Morita equivalence in general. We do not, however, know of an explicit counter-example. This discussion leaves us an open question:

Question 7.6. Does diffeological Morita equivalence reduce to Lie Morita equivalence on Lie groupoids? That is to ask, if two Lie groupoids are diffeologically Morita equivalent, are they also Lie Morita equivalent?

If two Lie groupoids G and H are diffeologically Morita equivalent, then there exists a diffeological biprincipal bibundle $G \xrightarrow{\rho} X \xleftarrow{\tau} H$, where X is a diffeological space. A positive answer to Question 7.6 could consist of a proof that X is in fact a smooth manifold. Since G and H are both manifolds, it follows that $X \otimes_H \overline{X}$ and $\overline{X} \otimes_G X$ are also manifolds. We do not know if this is sufficient to imply that X itself has to be a manifold. One suggestion is to use [IZ13a, Article 4.6], which gives a characterisation for when a quotient of a diffeological space by an equivalence relation is a smooth manifold. Since the balanced tensor products are quotients of diffeological spaces, one may try to use this result to obtain a special family of plots for their underlying fibrred products. This could potentially be used to define an atlas on X.

7.2. Directions for future research. We list here some possible directions for future research. These are also proposed at the end of [vdS20, Section 1.2.3],

- Finding an answer to the open Question 7.6 about diffeological Morita equivalence between Lie groupoids.
- The construction of a theory of bibundles for a more general framework of generalised smooth spaces. One possibility is to look at the generalised spaces of [BH11, Definition 4.11] (subsuming diffeology), or even to look at arbitrary classes of sheaves. What is the relation between our theory of Morita equivalence and the discussion in [MZ15]? A theory of principal bibundles seems to exist in a general setting for groupoids in ∞-toposes: [vL18].
- What is the precise relation between differentiable stacks and diffeological groupoids (cf. [WW19])? Using our notion of Morita equivalence, what types of objects are “diffeological stacks” (i.e., Morita equivalence classes of diffeological groupoids)?
- Can the Hausdorff Morita equivalence for holonomy groupoids of singular foliations introduced in [GZ19] be understood as a Morita equivalence between diffeological groupoids?
- Can the bridge between diffeology and noncommutative geometry that is being built in [Ber16; IZL18; ASZ19; IZP20] be strengthened by our theory of Morita equivalence? Morita equivalence of Lie groupoids is already an important concept in relation to noncommutative geometry, especially for the theory of groupoid C^*-algebras. Can this link be extended to the diffeological setting, possibly through a theory of groupoid C^*-algebras for (a large class of) diffeological groupoids? If such a theory exists, what is the relation between Morita equivalence of diffeological groupoids and the Morita equivalence of their groupoid C^*-algebras? Is Morita equivalence preserved just like in the Lie case?
References

[ASZ19] I. Androulidakis, G. Skandalis and M. Zambon. Diffeological groupoids and their C^*-algebras. Lecture slides, https://indico.math.cnrs.fr/event/3571/contributions/1977/attachments/2341/2854/Androulidakis.pdf. 2019.

[AZ] I. Androulidakis and M. Zambon. Integration of Singular Subalgebroids. In preparation.

[BHKW17] A. Batubenge, P. Iglesias-Zemmour, Y. Karshon and J. Watts. Diffeological, Frölicher, and Differential Spaces. 2017. arXiv: 1712.06776 [math.DG].

[Ber16] P. Bertozzini. Spectral Geometries for Some Diffeologies. Lecture slides, http://bcc.impan.pl/16Index-SIII/uploads/Bertozzini_slides.pdf. 2016.

[Blo08] C. Blohmann. “Stacky Lie groups”. In: Int. Math. Res. Not. (2008), Art. ID rnn 082, 51.

[BFW13] C. Blohmann, M. C. B. Fernandes and A. Weinstein. “Groupoid symmetry and constraints in general relativity”. In: Communications in Contemporary Mathematics 15.01 (2013), pp. 125–161.

[Bos07] R. D. Bos. “Groupoids in Geometric Quantization”. PhD thesis. Radboud University Nijmegen, 2007.

[CW16] J. Christensen and E Wu. “Tangent spaces and tangent bundles for diffeological spaces”. In: Cah. Topol. Géom. Differ. Catég. LVII (2016).

[CLW16] B. Collier, E. Lerman and S. Wolbert. “Parallel transport on principal bundles over stacks”. In: Journal of Geometry and Physics 107 (2016), pp. 187–213.

[CM18] M. Crainic and J. N. Mestre. “Orbispaces as differentiable stratified spaces”. In: Letters in mathematical physics 108.3 (2018), pp. 805–859.

[dHo12] M. L. del Hoyo. Lie Groupoids and Differentiable Stacks. Dec. 2012. arXiv: 1212.6714 [math.DG].

[DON83] P. Donato and P. Iglesias. “Exemple de groupes différentiels: flots irrationnels sur le tore”. In: CPT-83/P-1524 (1983). http://math.huji.ac.il/~piz/documents/EDGDFISLT.pdf.

[GZ19] A. Garmendia and M. Zambon. “Hausdorff Morita equivalence of singular foliations”. In: Annals of Global Analysis and Geometry 55.1 (2019), pp. 99–132.

[GL99] J. Glowacki. “Groupoid Symmetry and Constraints Bracket of General Relativity Revisited”. Master thesis, https://www.math.ru.nl/~landsman/Jan2019.pdf. 2019.

[HSL07] P. Iglesias-Zemmour. Diffeology. Vol. 185. American Mathematical Soc., 2013.

[IZL18] P. Iglesias-Zemmour and J.-P. Laffineur. “Noncommutative geometry and diffeology: The case of orbifolds”. In: Journal of Noncommutative Geometry 12.4 (2018), pp. 1551–1572.

[Lac10] S. Lack. “A 2-categories companion”. In: Towards higher categories. Springer, 2010, pp. 105–191.

[Lan01a] N. P. Landsman. “Bicategories of operator algebras and Poisson manifolds”. In: Mathematical physics in mathematics and physics. Vol. 30. Fields Inst. Commun. Amer. Math. Soc., 2001, pp. 271–286.

[Lan01b] N. P. Landsman. “Quantized reduction as a tensor product”. In: Quantization of singular symplectic quotients. Springer, 2001, pp. 137–180.

[Les03] J. Leslie. “On a diffeological group realization of certain generalized symmetrizable Kac-Moody Lie algebras”. In: Journal of Lie Theory 13.2 (2003), pp. 427–442.

[Mac71] S. Mac Lane. Categories for the working mathematician. Second Edition (1998). Vol. 5. Graduate Texts in Mathematics. Springer-Verlag, 1971.
[Mac20] L. E. MacDonald. The holonomy groupoids of singularly foliated bundles. June 2020. arXiv: 2006.14271 [math.DG].

[Mac05] K. C. H. Mackenzie. General theory of Lie groupoids and Lie algebroids. Vol. 213. Cambridge University Press, 2005.

[Mag18] J.-P. Magnot. “The group of diffeomorphisms of a non-compact manifold is not regular”. In: Demonstratio Mathematica 51.1 (2018), pp. 8–16.

[MZ15] R. Meyer and C. Zhu. “Groupoids in Categories with Pretopology”. In: Theory & Applications of Categories 30.55 (2015).

[MM05] I. Moerdijk and J. Mrčun. “Lie groupoids, sheaves and cohomology”. In: Poisson geometry, deformation quantisation and group representations. Vol. 323. London Math. Soc. Lecture Note Ser. Cambridge Univ. Press, Cambridge, 2005, pp. 145–272.

[MRW87] P. S. Muhly, J. N. Renault and D. P. Williams. “Equivalence and isomorphism for groupoid C^*-algebras”. In: Journal of Operator Theory (1987), pp. 3–22.

[nL18] nLab. Bibundle. https://ncatlab.org/nlab/show/bibundle, (version: 2018-07-3). 2018.

[Per16] E. Pervova. “Diffeological vector pseudo-bundles”. In: Topology and its Applications 202 (2016), pp. 269–300.

[Rie81] M. A. Rieffel. “C^*-algebras associated with irrational rotations”. In: Pacific Journal of Mathematics 93.2 (1981), pp. 415–429.

[RV18] D. M. Roberts and R. F. Vozzo. “Smooth loop stacks of differentiable stacks and gerbes”. In: Cah. Topol. Géom. Différ. Catég. LIX-2 (2018), pp. 95–141.

[Ser65] J.-P. Serre. “Lie groups and Lie algebras”. In: Lecture Notes in Math 1500 (1965).

[Sou80] J.-M. Souriau. “Groupes différentiels”. In: Differential geometrical methods in mathematical physics. Springer, 1980, pp. 91–128.

[Sou84] J.-M. Souriau. “Groupes différentiels et physique mathématique”. In: Group Theoretical Methods in Physics. Springer, 1984, pp. 511–513.

[Sta11] A. Stacey. “Comparative smoothology”. In: Theory and Applications of Categories 25.4 (2011), pp. 64–117.

[vdS20] N. van der Schaaf. “Diffeology, Groupoids & Morita Equivalence”. Master Thesis. 2020.

[WW19] J. Watts and S. Wolbert. Diffeological Coarse Moduli Spaces of Stacks over Manifolds. 2019. arXiv: 1406.1392 [math.DG].