TESTING THE LEFT-RIGHT SYMMETRIC MODEL AT LINEAR COLLIDER.

Katri Huitu
Helsinki Institute of Physics, University of Helsinki, Finland

Jukka Maalampi
Department of Physics, University of Helsinki, Finland

Aarre Pietilä
Department of Applied Physics, University of Turku, Finland

Martti Raidal
Department of Theoretical Physics, University of Valencia, Spain

Raimo Vuopionperä
Helsinki Institute of Physics, University of Helsinki, Finland

Abstract
We review possible tests of the left-right electroweak model at future linear colliders, concentrating on signatures of the central predictions of the model, i.e. right-handed currents, massive neutrinos and triplet Higgs bosons. We analyse processes in $e^+e^−, e^−e^−$ and $e^−γ$ collision modes. We present the mass reaches for the new particles at linear collider and sensitivities to their couplings.

The model
The left-right symmetric model (LRM) of electroweak interactions, based on the $SU(2)_L \times SU(2)_R \times U(1)_{B−L}$ symmetry, has many predictions one can test at linear collider (LC). The extended symmetry implies the existence of new gauge bosons, W^+_R and Z^0_2, which mediate $V+A$-type, i.e. right-handed, weak interactions. It also requires more complicated Higgs sector than in the Standard Model (SM) to realize the two-step spontaneous breaking of the gauge symmetry down to the unbroken $U(1)$ of QED. The breaking of $SU(2)_L \times SU(2)_R \times U(1)_{B−L}$ to the SM
symmetry $SU(2)_L \times U(1)_Y$ is arranged with an $SU(2)_R$ triplet scalar, the right-triplet $(\Delta^+_R, \Delta^+_R, \Delta^0_R)$. The breaking of the SM symmetry is due to a bidoublet scalar multiplet consisting of a doublet and a conjugated doublet of $SU(2)_L$. Also a left-triplet $(\Delta^+_L, \Delta^+_L, \Delta^0_L)$ may exist and contribute to this breaking, but the vev of Δ^0_L is tightly bound by the ρ parameter, or the mass ratio of the ordinary weak bosons. The fermion contents of the LRM is the same as that of SM, except that right-handed neutrinos N also exist. In the most natural version of the model N’s are heavy as a result of the see-saw mechanism \[2\], with a mass comparable to the masses of the new gauge bosons.

All the central predictions of the LRM, i.e. the new gauge bosons W^\pm_R and Z^0_2, the Higgs triplet $(\Delta^+_R, \Delta^+_R, \Delta^0_R)$ and the right-handed neutrinos N, are connected intriguingly to each other through the spontaneous breaking of the LR symmetry. In the following we will consider the production of W_R, Δ^+_R, and N, which will constitute the most effective probes of LRM at linear collider.

Signals of W^\pm_R

According to the results of Tevatron, the mass of the new charged gauge boson is constrained to be $M_{W_R} \gtrsim 650$ GeV \[3\]. Although this bound can be evaded for some choices of model parameters (a mass as low as ~ 300 GeV being possible \[4\]), it is probable that the pair production of W_R’s in e^+e^- \[3\] and in e^-e^- \[3, 6\] is kinematically excluded in a LC with collision energy below 1 TeV. A single W_R production via $e^+e^- \rightarrow W^+_RW^-_R$ and $e^-e^- \rightarrow W^-RW^+_R$ may be kinematically viable but it is suppressed by the smallness of the W_LW_R mixing \[4, 3\].

When the collision energy is sufficiently above 1 TeV, the pair production of W_R’s via $e^+e^- \rightarrow W^+_RW^-_R$ and $e^-e^- \rightarrow W^-RW^+_R$ may become possible. At $\sqrt{s} = 1.6$ TeV the cross section for the $W^+_RW^-_R$ production is at the level of 100 fb for $M_{W_R} = 650$ GeV \[3\] and the mass reach will be practically up to the threshold value of $\sqrt{s}/2$. The pair production of the same sign W_R’s in e^-e^- collisions is an excellent place to probe the LR model. The reaction is mediated by a Majorana neutrino in t-channel and the doubly charged Higgs boson in s-channel. The right handed neutrino (N)
and W_R boson mass reach of LC due to this process is plotted in Fig. 1. It is assumed in this plot that the doubly charged Higgs is very heavy ($M_{\Delta^{--}} = 5M_N$) so that its contribution is insignificant in comparison with the contribution of the neutrino. The direct M_{W_R} reach is up to $\sqrt{s}/2$ and the indirect M_N reach up to about 20 TeV.

In the electron-photon collision mode W_R can be produced via the reaction $e^-\gamma \rightarrow W^-_R N$, which is kinematically accessible provided the right-handed neutrino N is light enough [7]. For $\sqrt{s_{e\gamma}} = 730$ GeV (corresponding to $\sqrt{s} = 800$ GeV in the e^+e^- mode), $M_{W_R} = 650$ GeV and $M_N \lesssim 75$ GeV the cross section is in the range $10 - 20$ fb corresponding to some 50 - 100 events for the luminosity of 50 fb$^{-1}$. The right-handed neutrino has most naturally a mass much larger than 75 GeV, making the reaction kinematically forbidden. The limits on the mixing of the left-handed neutrino ν with N still allow the kinematically more favourable reaction $e^-\gamma \rightarrow W^+_R \nu$ to have the cross section at observable level.

The production of W_R’s can be identified through its decay to the ordinary W_L boson and a neutrino.

Signals of the right-handed neutrino

The heavy right-handed neutrinos can be produced in $e^+e^- \rightarrow \overline{N}N$ proceeding via a Z_2 exchange in s-channel and a W_R exchange in t-channel [8]. In LRM the heavy neutrino is a Majorana neutrino, for which the cross section of the pair production is slightly smaller than for a Dirac neutrino, in particular close to the threshold, due to the well-known β^3 suppression. The LC with anticipated luminosities can probe neutrino masses practically up to the kinematical limit $\sqrt{s}/2$. To probe the Dirac and Majorana nature of neutrinos one can use the angular distributions. The process gives an indirect probe of the mass M_{W_R}. For $\sqrt{s} = 1.6$ TeV the probe is up to about 4 TeV, as presented in Fig. 1.

A better mass reach, up to \sqrt{s}, for the right-handed neutrino is offered by the reaction $e^+e^- \rightarrow \overline{N}\nu$ whose cross section can be at a few fb level when the constraints on the neutrino mixing are taken into account [9].
Signals of the triplet Higgs

The left-triplet Δ_L and right-triplet Δ_R Higgses transform as $(3,1,2)$ and $(1,3,2)$ under $SU(2)_L \times SU(2)_R \times U(1)_{B-L}$, respectively. The gauge symmetry prevents these scalars from coupling to quarks, and their couplings to fermions violate lepton number by two units, $|\Delta L| = 2$. For discovery the most favourable are the doubly charged components $\Delta_{L,R}^{++}$ due to their decay to an energetic like-sign lepton pair, $\Delta_{L,R}^{++} \rightarrow e^{-}e^{-}$. In e^+e^- collisions a single $\Delta_{L,R}^{++}$ is produced via the reaction $e^+e^- \rightarrow e^−l^−\Delta_{L,R}^{++}$ [10]. The cross section depends on two unknown parameters, the mass of $\Delta_{L,R}^{++}$ and the strength h_Δ of the lepton number violating $\Delta_{L,R}^{++}ll$ coupling. Assuming $h_\Delta = 0.1$ and $M_{\Delta_{L,R}^{++}} \gtrsim 100$ GeV the cross section is in the range $10−10^3$ fb. [11]. About three orders of magnitude more stringent limit is achievable for the ratio $|h_\Delta/M_{\Delta_{L,R}^{++}}|^2$ than the present limit of 10^{-5} from the Bhabha scattering [12].

Another process where a single $\Delta_{L,R}^{++}$ is produced is $e^-\gamma \rightarrow l^+\Delta^{--}$. The primary lepton created in the process will remain undetected as it is radiated almost parallel to the beam axis. One cannot tell whether this particle is a positron, antimuon or antitau. Therefore, the quantity which one can test in the reaction is actually the sum $h_{ee}^2 + h_{e\mu}^2 + h_{e\tau}^2$. Assuming the integrated luminosity of $e^-\gamma$ collisions to be $L = 5, 10, 20, 40$ fb$^{-1}$ for $\sqrt{s_{ee}} = 330, 460, 730, 1450$ GeV, respectively, and that for the discovery of Δ^{--}_R one needs ten events, we obtain the upper bounds plotted in Fig. 2. The sensitivity of LC will thus be

$$h_{ee}, h_{e\mu}, h_{e\tau} \lesssim 10^{-3}$$

for $M_{\Delta^{--}} \lesssim \sqrt{s_{ee}}$. Among the present constraints only $h_{e\mu}h_{ee} < 3.2 \times 10^{-11}$ GeV$^{-2}$. $M_{\Delta^{--}}^2$ obtained from the process $\mu \rightarrow eee$ [15], can compete with these bounds and only so at the low mass values. For the coupling $h_{e\tau}$ there does not exist any bound from the present experiments.

The pair production of $\Delta_{L,R}^{++}$’s proceeds through the s-channel exchange of the photon and the standard and the heavy Z bosons. The cross section scales as β^3/s as a function of the c.m. energy \sqrt{s}, where β is the velocity of the final state particles [13, 14]. For $\Delta_L^{++}\Delta_L^{--}$ production at $\sqrt{s} = 500$ GeV it is on the level of
a few hundreds of fb’s up to the vicinity of the kinematical limit, for the $\Delta^+_R \Delta^-_R$ production slightly less.

The kinematically most favoured decay modes of the doubly charged scalars are those to like-sign lepton pairs, which provide excellent discovery signals.

References

[1] J.C. Pati and A. Salam, Phys. Rev. D 10 (1974) 275;
 R.N. Mohapatra and J. C. Pati, Phys. Rev. D11 (1975) 566, 2558;
 G. Senjanovic and R. N. Mohapatra, Phys. Rev. D12 (1975) 1502;
 R. N. Mohapatra and R. E. Marshak, Phys. Lett. 91B (1980) 222.

[2] M. Gell-Mann, P. Ramond and R. Slansky, in *Supergravity*, eds. P. van Nieuwenhuizen and D. Z. Freedman (North Holland 1979);
 T. Yanagida, in Proceedings of *Workshop on Unified Theory and Baryon Number in the Universe*, eds. O. Sawada and A. Sugamoto (KEK 1979).

[3] F. Abe et al., CDF Collaboration, Phys. Rev. Lett. 74 (1995) 2900;
 S. Abachi et al., D0 Collaboration, Phys. Lett. B 358 (1995) 405.

[4] P. Langacker and S. U. Sankar, Phys. Rev. D40 (1989) 1569.

[5] J. Maalampi, A. Pietilä and J. Vuori, Nucl. Phys. B 381 (1992) 544, and Phys. Lett. B 297 (1992) 327.

[6] T. Rizzo, Phys. Lett. 116B (1982) 23;
 D. London, G. Belanger and J.N. Ng, Phys. Lett. B188 (1987) 155;
 C.A. Heusch and P. Minkowski, Nucl. Phys. B 416 (1994) 3;
 P. Helde, K. Huitu, J. Maalampi and M. Raidal, Nucl. Phys. B 437 (1995) 305.

[7] K. Huitu, J. Maalampi and M. Raidal, Phys. Lett. B 365 (1996) 407.

[8] J. Maalampi, K. Mursula and R. Vuopionper, Nucl. Phys. B 372 (1992) 23;
 W. Buchmüller and C. Greub, Nucl. Phys. B 381 (1992) 109 and Nucl. Phys. B 363 (1991) 345.
[9] J. Gluza and M. Zralek, Phys. Lett. B 372 (1996) 259.

[10] M. Lusignoli and S. Petrarca, Phys. Lett. B 226 (1989) 397;
 T. Rizzo, Phys. Rev. D 45 (1992) 42;
 N. Lepore, B. Thorndyke, H. Nadeau, D. London, Phys. Rev. D 50 (1994) 2031.

[11] G. Barenboim, K. Huitu, J. Maalampi and M. Raidal, preprint FTUV/96-64.

[12] M.L. Swartz, Phys. Rev. D 40 (1989) 1521;
 R. Mohapatra, Phys. Rev. D 46 (1992) 2990.

[13] J.A. Grifols, A. Mendez and G.A. Schuler, Mod. Phys. Lett. A 4 (1989) 1485.

[14] J.F. Gunion, Int. J. Mod. Phys. A11 (1996) 1551.

[15] U. Bellgardt et al., Nucl. Phys. B 299 (1988) 1.
Figure caption

Figure 1. Sensitivity of the processes $e^-e^- \rightarrow W_R^-W_R^-$ and $e^+e^- \rightarrow \overline{N}N$ on the masses of the heavy charged gauge boson W_R and the right-handed neutrino N at the collision energy $\sqrt{s} = 1.6$ TeV assuming discovery limit of 0.1 fb and e^+e^- luminosity of 200 fb$^{-1}$. The mass of the doubly charged triplet Higgs Δ_R is taken to be $M_{\Delta^{--}} = 5M_N$. Dashed line is for Majorana neutrinos, solid line for Dirac neutrinos.

Figure 2. Sensitivity of the process $e^-\gamma \rightarrow l^+\Delta^{--}$ on the lepton number violating couplings h_{ee}, $h_{e\mu}$ and $h_{e\tau}$ as a function of the doubly charged Higgs mass M_Δ for various collision energies. The discovery limit of Δ^{--} is assumed to be ten events.
Figure 2:

$e^- \gamma \rightarrow l^+ \Delta^-$

\[
\sqrt{h_{ee}^2 + h_{e\mu}^2 + h_e^2} \quad \sqrt{s} = 330 \text{ GeV}
\]
\[
\sqrt{s} = 460 \text{ GeV}
\]
\[
\ldots \ldots \sqrt{s} = 730 \text{ GeV}
\]
\[
\ldots \ldots \sqrt{s} = 1.45 \text{ TeV}
\]
\[
\sqrt{h_{ee} h_{e\mu}} \quad \mu \rightarrow eee
\]

$M_{\Delta}[\text{GeV}]$