Targeting redox-altered plasticity to reactivate synaptic function: A novel therapeutic strategy for cognitive disorder

Pei Wang, Fang Wang, Lan Ni, Pengfei Wu, Jianguo Chen

Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan 430030, China
The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
Laboratory of Neuropsychiatric Diseases, the Institute of Brain Research, Huazhong University of Science and Technology, Wuhan 430030, China

Received 9 August 2020; received in revised form 22 September 2020; accepted 13 October 2020

Abstract Redox-altered plasticity refers to redox-dependent reversible changes in synaptic plasticity via altering functions of key proteins, such as N-methyl-D-aspartate receptor (NMDAR). Age-related cognitive disorders includes Alzheimer’s disease (AD), vascular dementia (VD), and age-associated memory impairment (AAMI). Based on the critical role of NMDAR-dependent long-term potentiation (LTP) in memory, the increase of reactive oxygen species in cognitive disorders, and the sensitivity of NMDAR to the redox status, converging lines have suggested the redox-altered NMDAR-dependent plasticity might underlie the synaptic dysfunctions associated with cognitive disorders. In this review, we summarize the involvement of redox-altered plasticity in cognitive disorders by presenting the available evidence. According to reports from our laboratory and other groups, this “redox-altered plasticity” is...
1. Introduction

Age-related cognitive disorders, such as Alzheimer’s disease (AD), vascular dementia (VD), and age-associated memory impairment (AAMI), have attracted increasing attention with the accelerating trend of population aging. The prevalence rate of cognitive disorders, including mild cognitive impairment and dementia, is approximately 3%–5% for people aged 65–74 years. For the population over the age of 85, one case of dementia is observed in every three people. The most important pathological feature of age-related cognitive disorders is the decline and impairment of learning and memory abilities. However, an ideal therapy to delay the progress of the age-related cognitive disorders is still unavailable. The mechanisms of learning and memory are one of the most striking subjects in the field of contemporary neurological science.

In the past forty years, researchers have revealed that the most important neurophysiological bases of memory are the activity-dependent changes in synaptic efficacy, such as long-term potentiation (LTP) and long-term depression (LTD). As early as 1949, Donald Olding Hebb, a famous Canadian psychologist, proposed Hebb’s hypothesis: when a stimulus is applied to a collection of cells, cells interacting with each other might exhibit corresponding changes. The synapse is a special structure connecting neural cells that typically forms between neurons. When the presynaptic terminals are activated by a high-frequency stimulation, the efficiency of synaptic transmission may be increased. In 1973, Bliss et al. were the first to show that a high-frequency stimulation (HFS) at the perforating fiber induced a significant increase in synaptic efficacy. Subsequently, the synaptic plasticity in the hippocampus, particularly LTP, has consistently been shown to be the biological basis of learning and memory. After presynaptic depolarization which triggers neurotransmitter release to activate postsynaptic N-methyl-D-aspartate receptors (AMPARs), depolarization is induced to remove magnesium ions from postsynaptic N-methyl-D-aspartate receptors (NMDARs); thus the NMDAR-dependent synaptic transmission is activated and LTP is induced. Because impairment in hippocampal LTP has been observed in various models of cognitive disorders, it may serve as a common early pathological basis for various cognitive disorders.

Oxidative stress, which results from an imbalance between antioxidant defenses and reactive oxygen species (ROS) generation, is one of the most important pathogenic factors involved in various aging-related diseases. A high lipid content and a relatively low level of antioxidant enzymes make the brain more vulnerable to ROS such as O₂⁻, H₂O₂, OH and O₃⁻, which are generated by mitochondrial aerobic respiration, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and xanthine/ xanthine oxidase. The function of the endogenous antioxidant system, which includes glutathione, vitamin C, carnosine, thioredoxin and superoxide dismutase, decreases with aging. In recent years, evidences from both animal models and clinical data suggest that oxidative stress may underlie the pathophysiological mechanisms of cognitive disorders. The abnormal accumulation of ROS or oxidative products are observed in many cognitive disorders. For instance, an increase in the level of lipid peroxidation products and a decrease in antioxidants have been observed in the models of VD and AD, and particularly in patients with AAMI and AD. However, its specific neurobiological mechanism remains unclear. Most studies have focused on the role of redox-induced injury in the neurodegeneration related to cognitive disorders. Redox-induced injury refers oxidative stress-triggered cell dysfunctions that may cause neuronal cell death, such as neuronal cell apoptosis, necrosis and impaired autophagy. For instance, an increase of ROS concentration occurs during the developmental apoptotic neurons and excessive amounts of ROS not only impairs macromolecules, but also triggers apoptotic signals, such as death receptor-mediated extrinsic pathways and mitochondria-mediated intrinsic pathways. For the critical role of neurodegeneration in many diseases, there is increasing evidence that redox-induced injury is involved in the etiology and pathogenesis of neurodegenerative disorders. However, although neurodegeneration is involved in both AD and VD, it may occur in the late phase, but not early phase, of the cognitive disorders because it is a type of structural damage. Notably, oxidative stress not only causes cell injury but also affects the biological functions by triggering redox-dependent changes, including post-translational modifications (PTMs), protein degradation and epigenetic modifications. According to reports from our laboratory and other groups, oxidative stress impairs LTP in the hippocampus. Furthermore, replenishing the cellular reducing ability by administering thiol agents such as dithiothreitol (DTT) and glutathione (GSH) reverses age-associated synaptic dysfunctions. In this manuscript, we designate this impairment in LTP as redox-altered plasticity and summarize the emerging evidence of redox-altered plasticity under pathological conditions. Different from redox-induced injury, redox-altered plasticity is caused by the redox-dependent changes in biological functions, and is more like functional changes rather than structural injuries, which may represent an ideal therapeutic window for pharmacological intervention. We propose that approaches targeting redox-altered plasticity may serve as a novel therapeutic strategy to reverse memory deficits in the early stages of cognitive disorders.

2. What is redox-altered plasticity?

Redox-altered plasticity refers to redox-dependent reversible changes in synaptic plasticity via altering functions of key proteins, such as NMDAR. ROS exert remarkable effects on the intracellular messenger molecules and interact directly with a variety of redox-sensitive proteins via sulfur-containing residues.
Redox-altered plasticity: Therapeutic target for cognitive disorder

(cysteine and methionine residues) or coenzymes containing metal ions. Colton et al.22 in 1986 showed that exposure to 1 x 10^{-4} mol/L hydrogen peroxide (H_{2}O_{2}) depressed synaptic transmission at the lobster neuromuscular junction. They firstly observed a blockade of LTP in the hippocampus by a microinjection of 1 mmol/L H_{2}O_{2} and reported the phenomenon of redox-altered plasticity in 1989.3 Then, Pellmar et al.127 revealed that 0.002% H_{2}O_{2} prevents the maintenance of LTP in the CA1 region of the hippocampus isolated from guinea pigs. Avshalumov et al.30 further clarified the mechanisms underlying the H_{2}O_{2}-mediated inhibition of synaptic transmission in rat hippocampal slices, including the generation of hydroxyl radicals (\cdot OH). These early reports indicated that high concentrations of ROS induce redox-impaired plasticity. However, beginning in the 1990s, many studies identified physiological concentrations of ROS as second messengers to facilitate redox-enhanced plasticity.36. As shown in the study by Kamsler et al.33, H_{2}O_{2} (1 \mu mol/L) increases the amplitude of NMDAR-dependent LTP in the hippocampus. According to Knapp et al.51, the generation of superoxide ions in vivo by the xanthine and xanthine oxidase system causes a sustained increase in basal synaptic transmission in the hippocampal CA1 area. Huddleston et al.33 observed a sustained increase in basal synaptic transmission in the hippocampal CA1 area induced by a low concentration of superoxide radicals through a mechanism involving the activation of ERK and the ryanodine receptor. Second, ROS scavengers or antioxidant enzymes impede the LTP impairment. Klann et al.44 observed a significant inhibitory effect of a superoxide ion scavenger, manganese porphyrin, on the induction of LTP. In the mice overexpressing extracellular superoxide dismutase or knocking out NADPH oxidase gp91, significant LTP and memory deficits were observed.43,46. Recent studies have revealed another redox-impaired plasticity induced by overproduction of mitochondria-derived ROS. MitOQ, a selective mitochondrial ROS scavenger, alleviates the LTP impairment induced by amyloid \beta, and overexpression of a mitochondrial superoxide dismutase 2 produces a similar effect.48.

In the past decade, a series of studies from our laboratory confirmed that high ROS concentrations mainly impair NMDAR-dependent LTP in the hippocampus, and we were the first to show that this impairment can be prevented and even reversed by thiol agents.31–35 In the study by Cai et al.31, chloramine T (20 \mu mol/L) significantly inhibited the induction of LTP in the CA1 region of hippocampal slices in vitro. Additionally, a high concentration of chloramine T (20 mmol/L) noticeably attenuated LTP in vivo, and this inhibition was reversed by the reductant DTT.32 In addition, we confirmed that the specific sulfhydryl oxidant 5,5-dithio-bis-2-nitrobenzoic acid (DTNB) impaired the NMDAR-dependent LTP in the hippocampus.31,33. Interestingly, DTT or \beta-mercaptopethanol not only prevents the oxidant-induced impairment of LTP but also reverses the impaired LTP induced by aging via reversing the hypofunction of NMDA receptor.31. Therefore, we proposed the notion of redox-altered plasticity, which has three key features. First, the redox status affects synaptic plasticity by altering protein function and signal transduction. The neurotoxic effects of strong oxidants, which might cause neuronal apoptosis and necrosis, do not appear to be involved in the redox-altered plasticity (Fig. 1). Second, redox-triggered alterations in plasticity are blocked and even reversed by reductants, such as DTT. As a reversible process, redox-altered plasticity may emerge as a window to provide interventions that will alleviate the memory impairment. Third, this alteration selectively affects synaptic plasticity via a postsynaptic mechanism, but not synaptic transmission itself.

3. Possible mechanisms underlying redox-altered plasticity

NMDAR plays an essential role in the induction of LTP and the acquisition of memories. The hypofunction of NMDAR is primarily responsible for deficits in synaptic plasticity in aged animals, animal models, and patients with age-related neurodegenerative diseases and other cognitive disorders.8,9,10–52. Recent studies have identified alterations in the functional properties of NMDAR, rather than in the level of expression or density, as the cause of NMDAR hypofunction in individuals with various disorders.49,50,53,54. The NMDAR responses delayed in aged animals, suggesting that age-related LTP and memory deficits may be due to the decrease in the NMDAR-mediated component of synaptic transmission. Age-related LTP deficits in the hippocampus generally depend on NMDAR hypofunction. According to the reports describing the regulatory effects of oxidants on NMDARs, the voltage clamp recordings from Xenopus laevis oocytes provide important early evidence: oxidants such as DTNB (0.5 mmol/L) inhibit NMDAR function, whereas DTT (2 mmol/L) enhances NMDAR function.55. As shown in our previous study, the sulfhydryl oxidant DTNB (100 \mu mol/L) decreases the magnitude of NMDAR-mediated fEPSPs in hippocampal slices.31.

Kumar et al.56 observed a redox-mediated decrease in NMDAR function during aging that is associated with cognitive decline. Robillard et al.58 further reported a significant effect of N-acetylcysteine (NAC), a precursor molecule that increases glutathione (GSH) synthesis, on alleviating the aging-associated LTP impairment in aging rats. This finding was supported by a report showing that oral administration of a glutathione supplement to aged mice increases the L-type calcium channel-dependent LTP in aged animals to compensate for NMDAR-dependent LTP in the hippocampus.59. In response to long-term dietary supplementation of N-acetyl-L-cysteine, NMDAR hypofunction caused by aging was restored by an increase in \alpha-serine-dependent NMDAR activation in a recent study.57. Notably, a sulfhydryl reducing agent also enhances NMDAR function through a direct interaction.55. DTT increases the currents from NR2A-containing NMDAR, suggesting that the main redox-sensitive site of NMDAR is on the NR2A subunit.56. The redox modification of NR2A subunits is likely to be an important target for drug interventions for aging-related cognitive disorders. However, direct evidence elucidating the precise changes in the redox status of the NR2A subunit in individuals with cognitive disorders is not available.

In addition to NMDAR, other targets may also be involved in the redox-dependent regulation of synaptic plasticity. Silva et al.59 discovered that Ca^{2+}/calmodulin-dependent protein kinase II (CaMKII) mutant mice exhibited an intact NMDAR function but a significant deficiency in LTP. According to Bodinhalan et al.60, the mechanisms underlying the age-dependent redox modulation of NMDARs are mediated by redox-triggered CaMKII inactivation. As shown in the study by Yang et al.33, an intracerebroventricular injection of 20 mmol/L Ch-T inhibits the phosphorylation of CaMKII during the induction of LTP in the rat dentate gyrus (DG). Maalouf et al.36 observed an important role for protein phosphatase 2A (PP2A) overactivation in the H_{2}O_{2}-induced impairment of LTP, which leads to the dephosphorylation and inactivation of CaMKII. LTP is also impaired in transgenic mice conditionally overexpressing glycogen synthase kinase-3\beta (GSK-3\beta), a serine/threonine protein kinase. GSK-3\beta mediates oxidative stress-induced neuronal injury.61. In addition, Cai et al.31

\[\text{Redox-altered plasticity: Therapeutic target for cognitive disorder} \]
reported that the activation of GSK-3β underlies the inhibitory effect of Ch-T (20 μmol/L) on LTP in the hippocampus. To date, the key molecular mechanism underlying redox-altered plasticity remains unclear. Further investigations are required to specifically clarify the precise targets and their modification sites that underlie redox-altered plasticity.

4. Redox-altered plasticity and cognitive disorder

Oxidative stress contributes to the age-related impairment in cognitive functions. In addition, dietary treatment with antioxidants such as vitamin E, vitamin C, and α-lipoic acid prevents the age-related impairment in LTP. Many studies of animal models have suggested a pathological role for redox-altered plasticity in triggering cognitive disorders, including AD, VD, Down syndrome (DS) and AAMI.

Increased ROS production has been considered one of the primary events in AD pathogenesis. As shown in the study by De Felice et al., Aβ oligomers induce ROS generation through an NMDAR-dependent mechanism, and these changes are counteracted by memantine, an open channel NMDAR antagonist prescribed as a memory-preserving drug to patients with AD. Moreover, Aβ1–42-induced impairments in hippocampal LTP are reversed by a mitochondria-targeted antioxidant, MitoQ, suggesting a causal relationship between mitochondrial ROS overproduction and Aβ-induced impairments in hippocampal synaptic plasticity. Similar studies have reported a role for peroxiredoxin II (Prx II), a peroxidase that is involved in AD pathogenesis, in the LTP deficits underlying age-related oxidative damage. Endophilin A1 (EP), a brain-specific protein that mediates ROS-induced signal transduction, contributes to the Aβ-induced synaptic injury and cognitive decline.

Based on accumulating pharmacological evidence, oxidative stress contributes to the cognitive impairment in patients with VD. Acupuncture, a form of treatment that involves inserting thin needles through a person’s skin at specific points on the body, significantly improves the LTP and mitochondrial function of VD rats. Liu et al. reported a decrease in oxidative stress in the hippocampus and an amelioration of the cognitive impairment in VD rats treated with CZ-7, a new derivative of claulansine F, through NRF2-mediated antioxidant responses.

DS is one of the most common chromosomal disorders and is characterized by cognitive impairments and congenital heart defects. Increased ROS levels have been observed in individuals with DS. According to Ko et al., reducing reduction in ROS levels might be a beneficial treatment for DS. Ts65Dn (TS) mice are the most commonly used animal model of DS, because they exhibit various phenotypic characteristics of DS, such as cognitive deficits. The cognitive impairments in the TS mice may be due to the altered synaptic plasticity and increased synaptic inhibition and oxidative damage. More specifically, TS mice showed a...
remarkable reduction in LTP in the hippocampus. As shown in the study by Corrales et al., melatonin (0.5 mg/day) decreases the levels of lipid peroxidation and restores hipppocampal LTP in TS mice, suggesting a relationship between LTP and ROS in TS mice.

Impairments in hippocampal LTP usually occur in aged animals, which is thought to be the basis of AAMI. Previous studies have proposed a close association between AAMI and the ROS level. In mammals, the age-related accumulation of oxidative damage has been observed in the brain, and an increase in antioxidant activity induced by chronic subcutaneous injections of two synthetic catalytic ROS scavengers, EUK-189 and EUK-207, almost completely reverses the cognitive deficits in the old animals. Interestingly, the aging-related impairment in LTP is reversed by the acute administration of reductants that directly regulate thiol redox status, such as DTT or β-mercaptoethanol, but not by classical antioxidants, such as vitamin C or Trolox, although vitamin C also prevents redox-altered plasticity.

5. Targeting redox-altered plasticity to reactivate synaptic function

ROS are involved in the pathogenesis of many cognitive disorders. Most current antioxidant drugs are based on ROS-scavenging effects, thereby reducing the activation of subsequent stress responses and preventing redox-altered plasticity. Because the oxidation is not avoidable in daily activities and over-oxidation is generally harmful to the body, we should seriously consider whether we would rather use reductants to reverse the oxidation of key molecules to restore their function or use antioxidants to prevent the unavoidable oxidation occurring in daily activities.

From this perspective, a reversal of redox-altered plasticity by erasing the accumulated oxidative damage, including key redox-modified plasticity-related proteins, is a more attractive choice to treat cognitive disorders. The application of compounds that regulate redox-altered plasticity may become a new intervention strategy for individuals with cognitive disorders. These compounds are divided into two types (Fig. 2): 1, compounds that prevent redox-altered plasticity and 2, compounds that reverse redox-altered plasticity.

5.1. Compounds prevent redox-altered plasticity

An increasing number of studies have highlighted the potential value of natural compounds extracted from fruits, vegetables and beverages as treatments for AAMI and neurological disorders. Natural medicine ingredients from traditional medicinal herbs have shown to resist the oxidative stress-induced LTP impairment. For example, Wang et al. did not observe an effect of tanshinone IIA on hippocampal LTP under physiological conditions, but it significantly prevented the impairment in LTP induced by H₂O₂. In addition, another natural flavonoid, abacopterin E, alleviates the LTP impairment induced by H₂O₂. These effects are produced by the regulation of both ROS scavenging and signaling pathways. A combination of the ketone bodies acetoacetate (1 mmol/L) and β-hydroxybutyrate (1 mmol/L) prevents the H₂O₂ (200 μmol/L)-mediated impairment in LTP, and this neuroprotective effect of KB involves the inhibition of protein phosphatase 2A. Lead is a pervasive neurotoxic metal that impairs synaptic plasticity and cognitive function through a redox-dependent mechanism. Karamian et al. observed an amelioration of the Pb exposure-induced LTP impairment in rats treated with vitamin C in vivo.
Yang et al. reported an effect of vitamin C on antagonizing the LTP impairment induced by H₂O₂. However, after oxidative stress exposure, vitamin C may not be able to restore redox-altered plasticity. In addition, vitamin E is an antioxidant that exerts protective effects on Pb intoxication. VE restores the Pb exposure-induced decreases in EPSP slopes. The nootropic drug aniracetam is an analogue of piracetam, which is presumed to function as a memory enhancer, and it attenuates oxygen free radical-induced impairments in synaptic plasticity.

5.2. Compounds reverse redox-altered plasticity

Hydrogen sulfide (H₂S) is well-known for its toxicity and smell. Interestingly, H₂S has recently been shown to function as a third member of endogenous gasotransmitter family that mediates various physiological and pathophysiological functions. The primary sources of endogenously produced H₂S in humans and other mammalian tissues are cystathionine β-synthase, mercaptoppyruvate sulfurtransferase and cystathionine-γ lyase. Poly-sulfide (H₂Sₙ) mediates most of the biological functions of H₂S by sulfhydrating the –SH group of cysteine residue on targets, which is known as S-sulfhydration. A large number of proteins have been reported to be sulfhydrated by H₂S, including actin, GAPDH, nuclear factor κB, etc. The antioxidant actions of H₂S are well established in the cardiovascular system. In the central nervous system, the neuroprotective effect and synaptic action of exogenous H₂S have attracted the interests of numerous researchers aiming to explore its therapeutic potential as a treatment for cognitive disorders. Approximately twenty years ago, Battaglia et al. reported that exogenous H₂S facilitates the induction of hippocampal LTP, a cellular model of memory, by increasing NMDAR activity. As shown in our recent study, the mechanisms underlying H₂S-mediated regulation of LTP include: increasing D-serine availability, disinhibiting the zinc-mediated blockade of NMDAR and increasing the surface stability of AMPARs in a S-sulfhydration-dependent manner. Interestingly, H₂S rapidly reverses the LTP impairment in aged rats, indicating that the transfer of an oxidation status of receptors or other key regulators to a sulfhydration status may regenerate NMDAR activity. Our studies also revealed a requirement for the endogenous sulfhydration signal in LTP and memory, indicating that supplementation with exogenous H₂S potentially represents a new therapeutic approach for the treatment of cognitive disorders. However, the precise mechanism underlying the regulatory effects of H₂S on memory still requires further investigation.

Sulfhydryl compounds such as DTT, 2-mercaptoethanol (β-ME), glutathione (GSH) and N-acetyl cysteine (NAC) are widely used in experiments or clinical therapy as redox agents. They display a broad range of biological functions that are mediated by multiple mechanisms, including the free radical-scavenging capacity, metal ion chelation and modulation of post-translational modifications on cysteine residues. In the central nervous system, sulfhydryl compounds also function as neuroprotective agents. Disulfide bonds and/or sulfhydryl groups, which widely exist in most ligand-gated channel proteins and receptors to affect channel activity, have been shown to be involved in the direct upregulation of the activity of various types of receptors by sulfhydryl compounds, including NMDAR, GABAR and acid-sensing ion channels.
NMDAR is modulated by reducing and oxidizing chemical agents. Moreover, in recent decades, studies by our group and other labs revealed that mercaptans increase NMDAR-dependent LTP and reverses aging-related deficits in synaptic plasticity in the hippocampus. These effects are closely associated with the redox effects of sulfhydril compounds on NMDAR activity. Several studies have confirmed that mercaptans increase NMDAR activity through two mechanisms: a direct redox-dependent mechanism and an indirect mechanism depending on the activity of CaMKII.

Activity-dependent changes in synaptic strength, including LTP and LTD, are directly related to the trafficking of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors (AMPARs) toward and away from the synapse in response to NMDAR activity. Although the potentiating effect of mercaptans on NMDAR has been reported for thirty years, very little is known about whether these compounds affect AMPAR trafficking.

Recently, a posttranslational modification targeting the thiol group of cysteine residue, known as S-palmitoylation, was identified to be essential for the regulation of AMPAR surface trafficking. S-Palmitoylation refers to the formation of a reversible thioester linkage between a palmitoyl lipid and the thiol group of a cysteine residue. Palmitoylation of GluA1 and GluA2 decreases their insertion into the plasma membrane. From the chemical perspective, the formation of a thioester linkage on the cysteine residue might be disrupted by thiol reductants. Mercaptans also increased the surface stability of AMPARs via de-palmitoylation in our previous study.

The study by Wang et al. reported the development of novel multifunctional neuroprotective molecules by linking sulfhydryl groups to the structure of tacrine derivatives, and these sulfhydryl-containing molecules significantly enhanced NMDAR function. Liu et al. reported a promising role for a novel thioester derivative of tacrine, ST09, in the treatment of VD. Thus, the introduction of a mercapto group into the structural skeleton of current nootropic drugs may represent a new research direction for drug development.

6. Summary and prospects

Two ROS-dependent mechanisms, including redox-altered plasticity and redox-induced injury, are involved in cognitive disorders. Redox-altered plasticity is more similar to functional changes rather than structural changes, and thus it may emerge as a window to provide interventions designed to alleviate memory impairments. Strategies targeting redox-altered plasticity using pharmacological agents might reverse synaptic dysfunctions in the early stage and alleviate memory abnormalities in individuals with cognitive disorders. Furthermore, the use of reductants to reverse the accumulated oxidative damage, rather than antioxidants to non-selectively prevent ROS generation during daily activities, may have greater therapeutic value. The application of compounds that reverse redox-altered plasticity may become a new intervention strategy for individuals with cognitive disorders.

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (No. 81773712 to Pengfei Wu, Nos. 81471377 and 81671438 to Fang Wang, Nos. 81473198 and 81673414 to Jianguo Chen) and Foundation for Innovative Research Groups of NSFC (No. 81721005 to Jianguo Chen and Fang Wang, China).

Author contributions

Pengfei Wu and Jianguo Chen conceived and designed the review. Pei Wang and Pengfei Wu retrieved the literature and drafted the manuscript. Pei Wang drew the Figures. Fang Wang and Jianguo Chen participated in the design of study and assessed the quality of study. Lan Ni, Fang Wang and Jianguo Chen revised the review.

Conflicts of interest

The author declares no conflicts of interest related to the content of this article.

References

1. Qiu J. Ticking time bomb faced by China’s ageing population. Lancet Neurol 2007;6:582–3.
2. Bliss TV, Gardner-Medwin AR. Long-lasting potentiation of synaptic transmission in the dentate area of the unanaesthetized rabbit following stimulation of the perforant path. J Physiol 1973;232:357–74.
3. Bliss TV, Collingridge GL. A synaptic model of memory: Long-term potentiation in the hippocampus. Nature 1993;361:31–9.
4. Lynch MA. Long-term potentiation and memory. Physiol Rev 2004;84:87–136.
5. Kidd PM. Alzheimer’s disease, amnestic mild cognitive impairment, and age-associated memory impairment: Current understanding and progress toward integrative prevention. Alternative Med Rev 2008;13:85–115.
6. Rowan MJ, Klyubin I, Wang Q, Hu NW, Anwyl R. Synaptic memory mechanisms: Alzheimer’s disease amyloid beta-peptide-induced dysfunction. Biochem Soc Trans 2007;35:1219–23.
7. Moeini JP, Rouaud E, Sinet PM, Potier B, Jouvenceau A, Dutar P, et al. A critical role for the glial-derived neuregulator ΔN-serine in the age-related deficits of cellular mechanisms of learning and memory. Aging Cell 2006;5:267–74.
8. Battaglia F, Wang HY, Ghilardi MF, Gushi E, Quararone A, Friedman E, et al. Cortical plasticity in Alzheimer’s disease in humans and rodents. Biol Psychiatry 2007;62:1405–12.
9. Foster TC. Regulation of synaptic plasticity in memory and memory decline with aging. Prog Brain Res 2002;138:283–303.
10. Tang LH, Aizenman E. Long-lasting modification of the N-methyl-D-aspartate receptor channel by a voltage-dependent sulfhydryl redox process. Mol Pharmacol 1993;44:473–8.
11. Lipton SA, Choi YB, Takahashi H, Zhang D, Li W, Godzik A, et al. Cysteine regulation of protein function as exemplified by NMDA-receptor modulation. Trends Neurosci 2002;25:474–80.
12. Halliwell B. Reactive oxygen species and the central nervous system. J Neurochem 1992;59:1609–23.
13. Ito M, Liu JJ, Arakawa N, Kitaoka S, Kawaji A, Matsuda K, et al. Depressive-like behaviors are regulated by NOX1/NADPH oxidase by redox modification of NMDA receptor 1. J Neurosci 2017;37:4200–12.
14. Jang EY, Ryu YH, Lee BH, Chang SC, Yeo MJ, Kim SH, et al. Involvement of reactive oxygen species in cocaine-taking behaviors in rats. Addiction Biol 2015;20:663–75.
15. Ravaglia G, Forti P, Mauoi F, Bianchi G, Martelli M, Talerico T, et al. Plasma amino acid concentrations in patients with amnestic mild cognitive impairment or Alzheimer’s disease. Am J Clin Nutr 2004;80:483–8.
16. Wang S, Irving G, Jiang L, Wang H, Li M, Wang X, et al. Oxidative stress mediated hippocampal neuron apoptosis participated in carbon disulfide-induced rats cognitive dysfunction. *Neurochem Res* 2017; 42:583–94.

17. Ji MH, Qiu LL, Tang H, Ju LS, Sun XR, Zhang H, et al. Sepsi-induced selective parvalbumin interneuron phenotype loss and cognitive impairments may be mediated by NADPH oxidase 2 activation in mice. *J Neuroinflammation* 2015;12:182.

18. Rehman SU, Shah SA, Ali T, Chung JI, Kim MO. Anthocyanins reversed α-galactose-induced oxidative stress and neuroinflammation mediated cognitive impairment in adult rats. *Mol Neurobiol* 2017;54:255–71.

19. Guo XD, Sun GL, Zhou TT, Wang YY, Xu X, Shi XF, et al. LX2343 alleviates cognitive impairments in AD model rats by inhibiting oxidative stress-induced neuronal apoptosis and tauopathy. *Acta Pharmacol Sin* 2017;38:1104–19.

20. Zheng Q, Zhong X, Zhan L, Luo H, Qian L, Fu X, et al. The neuron-specific protein TMEM59L mediates oxidative stress-induced cell death. *Mol Neurobiol* 2017;54:4189–200.

21. Gervais FG, Xu D, Robertson GS, Vaillancourt JP, Zhu Y, Huang J, et al. Involvement of caspases in proteolytic cleavage of Alzheimer’s amyloid-beta precursor protein and amyloidogenic A beta peptide formation. *Cell* 1999;97:395–406.

22. Abramov AY, Scorziello A, Duchen MR. Three distinct mechanisms generate oxygen free radicals in neurons and contribute to cell death during anoxia and reoxygenation. *J Neurosci* 2007;27:1129–38.

23. Simon Hu, Haj-Yehia A, Levi-Schaffer F. Role of reactive oxygen species (ROS) in apoptosis induction. *Aptosis* 2000;5:415–8.

24. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. *Int J Biochem Cell Biol* 2007;39:44–84.

25. Niizuma K, Endo H, Chan PH. Oxidative stress and mitochondrial dysfunction as determinants of ischemic neuronal death and survival. *J Neurochem* 2009;109:133–8.

26. Qi S, Guo L, Yan S, Lee RJ, Yu S, Chen S. Hypocrellin A-based photodynamic action induces apoptosis in A549 cells through ROS-mediated mitochondrial signaling pathway. *Acta Pharm Sin B* 2019;9:279–93.

27. Colton CA, Colton JS, Gilbert DL. Changes in synaptic transmission produced by hydrogen peroxide. *J Free Radic Biol Med* 1986;2:141–8.

28. Colton CA, Fagni L, Gilbert D. The action of hydrogen peroxide on paired pulse and long-term potentiation in the hippocampus. *Free Radical Bio Med* 1989;7:3–8.

29. Pellmar TC, Hollenbeck GE, Harris WA, Klann E. Free radicals induce neuroferritin expression in normal physiological functions and human disease. *Acta Pharm Sin B* 2019;9:279–93.

30. Avshulov MV, Chen BT, Rice ME. Mechanisms underlying H2O2-mediated inhibition of synaptic transmission in rat hippocampal slices. *Brain Res* 2000;882:86–94.

31. Cai F, Wang F, Lin FK, Liu C, Ma LQ, Liu J, et al. Redox modulation of long-term potentiation in the hippocampus via regulation of the glycogen synthase kinase-3β pathway. *Free Radical Bio Med* 2008;45:964–70.

32. Wang J, Hu ZL, Jiang B, Li M, Wang X, et al. Effect of chloramine-T on long-term potentiation at synapses between perforant path and dentate gyrus in hippocampus of rats in vivo. *Neurotoxicology* 2011;32:199–205.

33. Yang YJ, Wu PF, Long LH, Yu DF, Wu WN, Hu ZL, et al. Reversal of aging-associated hippocampal synaptic plasticity deficits by reductants via regulation of thiol redox and NMDA receptor function. *Aging Cell* 2010;9:709–21.

34. Wang W, Wang F, Yang YJ, Hu ZL, Long LH, Fu H, et al. The flavonoid baicalin promotes NMDA receptor-dependent long-term potentiation and enhances memory. *Br J Pharmacol* 2011;162:1364–79.

35. Wang W, Zheng LL, Wang F, Hu ZL, Wu WN, Gu J, et al. Tan-shini II A attenuates neuronal damage and the impairment of long-term potentiation induced by hydrogen peroxide. *J Ethnopharmacol* 2011;134:147–55.

36. Maalouf M, Rho JM. Oxidative impairment of hippocampal long-term potentiation involves activation of protein phosphatase 2A and is prevented by ketone bodies. *J Neurosci Res* 2008;86:3322–30.

37. Bonett RM, Trujano-Alvarez AL, Williams MJ, Timpe EK. Biogeography and body size shuffling of aquatic salamander communities on a shifting refuge. *Proc Biol Sci* 2013;280:20130200.

38. Robillard JM, Gordon GR, Choi HB, Christie BR, MacVicar BA. Glutathione reduces the mechanism of synaptic plasticity in aged mice to that of the adult. *PLoS One* 2011;6:e20676.

39. Droge W. Free radicals in the physiological control of cell function. *Physiol Rev* 2002;82:47–95.

40. Knapp LT, Klann E. Role of reactive oxygen species in hippocampal long-term potentiation: Contributory or inhibitory? *J Neurosci Res* 2002;70:1–7.

41. Kamsler A, Segal M. Hydrogen peroxide modulation of synaptic plasticity. *J Neurosci* 2003;23:269–76.

42. Knapp LT, Klann E. Potentiation of hippocampal synaptic transmission by superoxide requires the oxidative activation of protein kinase C. *J Neurosci* 2002;22:674–83.

43. Huddleston AT, Tang W, Takeshima H, Hamilton SL, Klann E. Superoxide-induced potentiation in the hippocampus requires activation of ryamodine receptor type 3 and ERK. *J Neurophysiol* 2008;99:1565–71.

44. Klann E. Cell-permeable scavengers of superoxide prevent long-term potentiation in hippocampal area CA1. *J Neurobiol* 1998;30:452–7.

45. Hu D, Serrano F, Oury TD, Klann E. Aging-dependent alterations in synaptic plasticity and memory in mice that overexpress extracellular superoxide dismutase. *J Neurosci* 2006;26:3933–41.

46. Kishida KT, Hoeffer CA, Hu D, Pao M, Holland SM, Klann E. Synaptic plasticity deficits and mild memory impairments in mouse models of chronic granulomatous disease. *Mol Cell Biol* 2006;26:5908–20.

47. Ma T, Hoeffer CA, Wong H, Massaad CA, Zhou P, Iadecola C, et al. Amyloid-beta-induced impairments in hippocampal synaptic plasticity are rescued by decreasing mitochondrial superoxide. *J Neurosci* 2011;31:5589–95.

48. Dumont M, Wille E, Stack C, Calingasan NY, Beal MF, Lin MT. Reduction of oxidative stress, amyloid deposition, and memory deficit by manganese superoxide dismutase overexpression in a transgenic mouse model of Alzheimer’s disease. *FASEB J* 2009;23:2459–66.

49. Potier B, Poinessou-Jaz F, Dutar P, Billard JM. NMDA receptor activation in the aged rat hippocampus. *Exp Gerontol* 2000;35:1185–99.

50. Clayton DA, Grosshans DR, Browning MD. Aging and surface expression of hippocampal NMDA receptors. *J Biol Chem* 2002;277:14367–9.

51. Barnes CA, Rao G, Shen J. Age-related decrease in the N-methyl-D-aspartate-activated excitatory postsynaptic potential in hippocampal region CA1. *Neurobiol Aging* 1997;18:445–52.

52. Shankar S, Teyler TJ, Robbins N. Aging differentially alters forms of long-term potentiation: Contributory or inhibitory? *J Neurosci Res* 2011;93:2240–5.

53. Rong J, Liu C, Wang D, Ma LQ, Liu J, et al. Redox modulation of long-term potentiation in the hippocampus via regulation of the glycogen synthase kinase-3beta pathway. *Free Radical Bio Med* 2008;45:964–70.

54. Yang J, Hu ZL, Jiang B, Li M, Chen Y, et al. Effect of chloramine-T on long-term potentiation at synapses between perforant path and dentate gyrus in hippocampus of rats in vivo. *Neurotoxicology* 2011;32:199–205.

55. Yang YJ, Wu PF, Long LH, Yu DF, Wu WN, Hu ZL, et al. Reversal of aging-associated hippocampal synaptic plasticity deficits by reductants via regulation of thiol redox and NMDA receptor function. *Aging Cell* 2010;9:709–21.

56. Wang W, Wang F, Yang YJ, Hu ZL, Long LH, Fu H, et al. The flavonoid baicalin promotes NMDA receptor-dependent long-term potentiation and enhances memory. *Br J Pharmacol* 2011;162:1364–79.
Redox-altered plasticity: Therapeutic target for cognitive disorder

55. Omerovic A, Chen SJ, Leonard JP, Kelso SR. Subunit-specific redox modulation of NMDA receptors expressed in Xenopus oocytes. J Recept Signal Transduct Res 1995;15:811–27.

56. Kumar A, Foster TC. Linking redox regulation of NMDAR synaptic function to cognitive decline during aging. J Neurosci 2013;33:15710–5.

57. Haxaire C, Turpin FR, Potier B, Kervern M, Sinet PM, Barbanel G, et al. Reversal of age-related oxidative stress prevents hippocampal synaptic plasticity deficits by protecting n-serine-dependent NMDA receptor activation. Aging Cell 2012;11:336–44.

58. Kohr G, Eckardt S, Luddens H, Monyer H, Seeburg PH. NMDA receptor channels: Subunit-specific potentiation by reducing agents. Neuron 1994;12:1031–40.

59. Silva AJ, Paylor R, Wehner JM, Tonegawa S. Impaired spatial learning in alpha-calciun-calmodulin kinase II mutant mice. Science 1992;257:206–11.

60. Bodhinathan K, Kumar A, Foster TC. Intracellular redox state alters NMDA receptor response during aging through Ca2+/calmodulin-dependent protein kinase II. J Neurosci 2010;30:1914–24.

61. Maiase K, Chong ZZ. Insights into oxidative stress and novel therapeutic targets for Alzheimer disease. Restor Neurol Neurosci 2004;22:87–104.

62. Giasson BI, Duda JE, Murray IV, Chen Q, Souza JM, Hurtig HI, et al. Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science 2000;290:985–9.

63. Murray CA, Lynch MA. Dietary supplementation with vitamin E reverses the age-related deficit in long term potentiation in dentate gyrus. J Biol Chem 1998;273:12161–8.

64. Butterfield DA, Lauderback CM. Lipid peroxidation and protein oxidation in Alzheimer’s disease brain: Potential causes and consequences involving amyloid beta-peptide-associated free radical oxidative stress. Free Radic Biol Med 2002;32:1050–60.

65. De Felice FG, Velasco PT, Lambert MP, Fernandez SJ, Ferreira ST, et al. Abeta oligomers induce neuronal oxidative stress through an N-methyl-D-aspartate receptor-dependent mechanism that is blocked by the Alzheimer drug memantine. J Biol Chem 2007;282:11590–61.

66. Yu Q, Wang Y, Du F, Yan S, Hu G, Origlia N, et al. Overexpression of endophilin A1 exacerbates synaptic alterations in a mouse model of Alzheimer’s disease. Nat Commun 2018;9:2968.

67. Li H, Liu Y, Lin LT, Wang XR, Du SQ, Yan CQ, et al. Acupuncture reversed hippocampal mitochondrial dysfunction in vascular dementia rats. Neurochem Int 2016;92:35–42.

68. Liu DD, Yuan X, Chu SF, Chen C, Ren Q, Luo P, et al. CZ-7, a new derivative of claulansine F, ameliorates 2VO-induced vascular dementia of mice. Brain Res 2019;1629:270–81.

69. Battogtokh G, Choi YS, Kang DS, Park SJ, Shim MS, Huh KM, et al. Mitochondriatargeting drug conjugates for cytotoxic, anti-oxidizing and sensing purposes: Current strategies and future perspectives. Acta Pharm Sin B 2018;8:862–80.

70. Wang J, Huang L, Cheng C, Li G, Xie J, Shen M, et al. Design, synthesis and biological evaluation of chalcone analogues with novel dual antioxidant mechanisms as potential anti-ischemic stroke agents. Acta Pharm Sin B 2019;9:335–50.

71. Liu Z, Wang W, Feng N, Wang L, Shi J, Wang X. Parishin C’s prevention of Abeta 1–42-induced inhibition of long-term potentiation is related to NMDA receptors. Acta Pharm Sin B 2016;6:189–97.

72. Lei Y, Fu W, Chen J, Xiong C, Wu G, Wei H, et al. Neuroprotective effects of abacavir from Abacavir penargiana against oxidative stress-induced neurotoxicity. J Ethnopharmacol 2011;134:275–80.

73. Maalouf M, Rho JM. Oxidative impairment of hippocampal long-term potentiation involves activation of protein phosphatase 2A and is prevented by ketone bodies. J Neurosci Res 2008;86:3322–30.

74. Karamian R, Komaki A, Salehi I, Tahmasebi L, Komaki H, Shahidi S, et al. Vitamin C reverses lead-induced deficits in hippocampal synaptic plasticity in rats. Brain Res Bull 2015;116:7–15.

75. Watson JB, Khorasani H, Persson A, Huang KP, Huang FL, O’Dell TJ. Age-related deficits in long-term potentiation are insensitive to hydrogen peroxide: Coincidence with enhanced autophosphorylation of Ca2+/calmodulin-dependent protein kinase II. J Neurosci Res 2002;70:298–308.

76. Bishop NA, Lu T, Yankner BA. Neural mechanisms of ageing and cognitive decline. Nature 2010;464:529–35.

77. Lu T, Pan Y, Kao SY, Li C, Kohane I, Chan J, et al. Gene regulation and DNA damage in the aging human brain. Nature 2004;429:883–91.

78. Liu R, Liu Y, Bi X, Thompson RF, Docotrow SR, Malfroy B, et al. Reversal of age-related learning deficits and brain oxidative stress in mice with superoxide dismutase/catalase mimetics. Proc Natl Acad Sci U S A 2003;100:8526–31.

79. Battogtokh G, Choi YS, Kang DS, Park SJ, Shim MS, Huh KM, et al. Mitochondriatargeting drug conjugates for cytotoxic, anti-oxidizing and sensing purposes: Current strategies and future perspectives. Acta Pharm Sin B 2018;8:862–80.

80. Wang J, Huang L, Cheng C, Li G, Xie J, Shen M, et al. Design, synthesis and biological evaluation of chalcone analogues with novel dual antioxidant mechanisms as potential anti-ischemic stroke agents. Acta Pharm Sin B 2019;9:335–50.

81. Lei Y, Fu W, Chen J, Xiong C, Wu G, Wei H, et al. Neuroprotective effects of abacavir from Abacavir penargiana against oxidative stress-induced neurotoxicity. J Ethnopharmacol 2011;134:275–80.

82. Maalouf M, Rho JM. Oxidative impairment of hippocampal long-term potentiation involves activation of protein phosphatase 2A and is prevented by ketone bodies. J Neurosci Res 2008;86:3322–30.

83. Karamian R, Komaki A, Salehi I, Tahmasebi L, Komaki H, Shahidi S, et al. Vitamin C reverses lead-induced deficits in hippocampal synaptic plasticity in rats. Brain Res Bull 2015;116:7–15.

84. Salehi I, Karamian R, Komaki A, Tahmasebi L, Taheri M, Nazari M, et al. Effects of vitamin E on lead-induced impairments in hippocampal synaptic plasticity. Brain Res 2015;1629:270–81.

85. Wang YF, Li CC, Cai JX. Aniracetam attenuates H2O2-induced deficiency of neuron viability, mitochondria potential and hippocampal long-term potentiation of mice in vitro. Neurosci Bull 2006;22:274–80.

86. Yan SK, Chang T, Wang H, Wu L, Wang R, Meng QH. Effects of hydrogen sulfide on homocysteine-induced oxidative stress in vascular smooth muscle cells. Biochem Bioph Res Co 2006;351:485–91.

87. Chang T, Untereiner A, Liu J, Wu L. Interaction of methylglyoxal and hydrogen sulfide in rat vascular smooth muscle cells. Antioxid Redox Signal 2010;12:1093–100.

88. Hourian JK, Kenna JG, Hayes JD. The gasotransmitter hydrogen sulfide induces NFR2-target genes by inactivating the KEAP1 ubiquitin ligase substrate adaptor through formation of a disulfide bond between Cys-226 and Cys-613. Antioxidants Redox Signal 2013;19:465–81.

89. Liu YH, Lu M, Hu LF, Wong PT, Webb GD, Bian JS. Hydrogen sulfide in the mammalian cardiovascular system. Antioxidants Redox Signal 2012;17:857–86.

90. Li YL, Wu PF, Chen JG, Wang S, Han QQ, Li D, et al. Activity-dependent sulfuration-dependent gating of NR2A-containing N-methyl-D-aspartate subtype glutamate receptor-dependent synaptic plasticity via increasing n-serine availability. Antioxidants Redox Signal 2017;27:398–414.

91. Luo H, Wu PF, Han QQ, Cao Y, Deng SL, Wang J, et al. Reactive sulfur species emerge as gliotransmitters to support memory via sulfuration-dependent gating of NR2A-containing N-methyl-D-aspartate subtype glutamate receptor function. Antioxidants Redox Signal 2019;30:1880–99.
104. Wang Y, Guan XL, Wu PF, Wang CM, Cao H, Li L, et al. Multi-functional mercapto-tacrine derivatives for treatment of age-related neurodegenerative diseases. J Med Chem 2012;55:3588–92.

105. Herin GA, Du S, Aizenman E. The neuroprotective agent ebselen modifies NMDA receptor function via the redox modulatory site. J Neurochem 2001;78:1307–14.

106. Lei S, McBain CJ. Two Loci of expression for long-term depression at hippocampal mossy fiber-interneuron synapses. J Neurosci 2004;24:2112–21.

107. Yu SY, Wu DC, Liu L, Ge Y, Wang YT. Role of AMPA receptor trafficking in NMDA receptor-dependent synaptic plasticity in the rat lateral amygdala. J Neurochem 2008;106:889–99.

108. Citri A, Malenka RC. Synaptic plasticity: Multiple forms, functions, and mechanisms. Neuropsychopharmacology 2008;33:18–41.

109. Han J, Wu P, Wang F, Chen J. S-Palmitoylation regulates AMPA receptors trafficking and function: A novel insight into synaptic regulation and therapeutics. Acta Pharm Sin B 2015;5:1–7.

110. Guan X, Fierke CA. Understanding protein palmitoylation: Biological significance and enzymology. Sci China Chem 2011;54:1888–97.

111. Yang G, Xiong W, Kojic L, Cynader MS. Subunit-selective palmitoylation regulates the intracellular trafficking of AMPA receptor. Eur J Neurosci 2009;30:35–46.

112. Hayashi T, Rumbaugh G, Huganir RL. Differential regulation of AMPA receptor subunit trafficking by palmitoylation of two distinct sites. Neuron 2005;47:709–23.

113. Lin DT, Makino Y, Sharma K, Hayashi T, Neve R, Takamiya K, et al. Regulation of AMPA receptor extrasynaptic insertion by 4.1N, phosphorylation and palmitoylation. Nat Neurosci 2009;12:879–87.

114. Van Dolah DK, Mao LM, Shaffer C, Guo ML, Fibuch EE, Chu XP, et al. Reversible palmitoylation regulates surface stability of AMPA receptors in the nucleus accumbens in response to cocaine in vivo. Biol Psychiatry 2011;69:1035–42.

115. Han J, Zhang H, Wang S, Zhou J, Luo Y, Long LH, et al. Potentiation of surface stability of AMPA receptors by sulfhydryl compounds: A redox-independent effect by disrupting palmitoylation. Neurochem Res 2016;41:2890–903.

116. Liu JM, Wu PF, Rao J, Zhou J, Shen ZC, Luo H, et al. ST09, a novel thioester derivative of tacrine, alleviates cognitive deficits and enhances glucose metabolism in vascular dementia rats. CNS Neurosci Ther 2016;22:220–9.