Partial differential equations/Calculus of variations

Uniqueness of degree-one Ginzburg–Landau vortex in the unit ball in dimensions \(N \geq 7 \)

Unicité du tourbillon de Ginzburg–Landau de degré un dans la boule unité en dimension \(N \geq 7 \)

Radu Ignat\(^a\), Luc Nguyen\(^b\), Valeri Slastikov\(^c\), Arghir Zarnescu\(^d,e,f\)

\(^a\) Institut de mathématiques de Toulouse & Institut universitaire de France, UMR 5219, Université de Toulouse, CNRS, UPS IMT, 31062 Toulouse cedex 9, France

\(^b\) Mathematical Institute and St Edmund Hall, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, United Kingdom

\(^c\) School of Mathematics, University of Bristol, University Walk, Bristol, BS8 1TW, United Kingdom

\(^d\) Ikerbasque, Basque Foundation for Science, Maria Diaz de Haro 3, 48013, Bilbao, Bizkaia, Spain

\(^e\) BCAM, Basque Center for Applied Mathematics, Mazarredo 14, E48009 Bilbao, Bizkaia, Spain

\(^f\) “Simion Stoilow” Institute of the Romanian Academy, 21 Calea Griviţei, 010702 Bucharest, Romania

A R T I C L E I N F O

Article history:
Received 12 July 2018
Accepted 13 July 2018
Available online 14 August 2018
Presented by Haim Brézis

A B S T R A C T

For \(\varepsilon > 0 \), we consider the Ginzburg–Landau functional for \(\mathbb{R}^N \)-valued maps defined in the unit ball \(B^N \subset \mathbb{R}^N \) with the vortex boundary data \(x \) on \(\partial B^N \). In dimensions \(N \geq 7 \), we prove that, for every \(\varepsilon > 0 \), there exists a unique global minimizer \(u_\varepsilon \) of this problem; moreover, \(u_\varepsilon \) is symmetric and of the form \(u_\varepsilon (x) = f_\varepsilon (|x|) \frac{A}{|x|} \) for \(x \in B^N \).

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

Nous considérons la fonctionnelle de Ginzburg–Landau pour les applications à valeurs dans \(\mathbb{R}^N \) définies dans la boule unité \(B^N \subset \mathbb{R}^N \) avec la donnée de tourbillon \(x \) au bord \(\partial B^N \). En dimension \(N \geq 7 \), nous montrons que, pour tout \(\varepsilon > 0 \), il existe un unique minimiseur global \(u_\varepsilon \) à ce problème; de plus, \(u_\varepsilon \) est symétrique de la forme \(u_\varepsilon (x) = f_\varepsilon (|x|) \frac{A}{|x|} \) pour \(x \in B^N \).

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
1. Introduction and main results

In this note, we consider the following Ginzburg–Landau-type energy functional

$$E_\varepsilon(u) = \int_{\mathbb{R}^N} \left[\frac{1}{2} |\nabla u|^2 + \frac{1}{2\varepsilon^2} W(1 - |u|^2) \right] \, dx,$$

where $\varepsilon > 0$, B^N is the unit ball in \mathbb{R}^N, $N \geq 2$, and the potential $W \in C^1((-\infty, 1]; \mathbb{R})$ satisfies

$$W(0) = 0, \quad W(t) > 0 \text{ for all } t \in (-\infty, 1] \setminus \{0\}, \text{ and } W \text{ is convex.} \quad (1)$$

We investigate the global minimizers of the energy E_ε in the set

$$\mathcal{A} := \{ u \in H^1(B^N; \mathbb{R}^N) : u(x) = x \text{ on } \partial B^N = \mathbb{S}^{N-1} \}.$$

The requirement that $u(x) = x$ on \mathbb{S}^{N-1} is sometimes referred to in the literature as the vortex boundary condition.

We note that, in our analysis, the convexity of W needs not be strict; compare [7] where strict convexity is assumed.

The direct method in the calculus of variations yields the existence of a global minimizer u_ε of E_ε over \mathcal{A} for all range of $\varepsilon > 0$. Moreover, any minimizer u_ε belongs to $C^1(B^N; \mathbb{R}^N)$ and satisfies $|u_\varepsilon| \leq 1$ and the system of PDEs (in the sense of distributions):

$$-\Delta u_\varepsilon = \frac{1}{\varepsilon^2} u_\varepsilon W'(1 - |u_\varepsilon|^2) \quad \text{in } B^N. \quad (2)$$

The goal of this note is to give a short proof of the uniqueness and symmetry of the global minimizer of E_ε in \mathcal{A} for all $\varepsilon > 0$ in dimensions $N \geq 7$. We prove that, in these dimensions, the global minimizer is unique and given by the unique radially symmetric critical point of E_ε defined by

$$u_\varepsilon(x) = f_\varepsilon(|x|) \frac{x}{|x|} \quad \text{for all } x \in B^N, \quad (3)$$

where the radial profile $f_\varepsilon : [0, 1] \to \mathbb{R}_+$ is the unique solution to

$$\begin{cases}
- \varepsilon^2 f''_\varepsilon - \frac{N-1}{r} f'_\varepsilon + \frac{N-1}{r^2} f_\varepsilon = \frac{1}{\varepsilon^2} f_\varepsilon W'(1 - f_\varepsilon^2) & \text{for } r \in (0, 1),

f_\varepsilon(0) = 0, \quad f_\varepsilon(1) = 1.
\end{cases} \quad (4)$$

Moreover, $f_\varepsilon > 0$ and $f'_\varepsilon > 0$ in $(0, 1)$ (see, e.g., [5]).

Theorem 1. Assume that W satisfies (1). If $N \geq 7$, then for every $\varepsilon > 0$, u_ε given in (3) is the unique global minimizer of E_ε in \mathcal{A}.

To our knowledge, the question about the uniqueness of minimizers/critical points of E_ε in \mathcal{A} for any $\varepsilon > 0$ was raised in dimension $N = 2$ in the book of Bethuel, Brézis and Hélein [1, Problem 10, page 139], and in general dimensions $N \geq 2$ and also for the blow-up limiting problem around the vortex (when the domain is the whole space \mathbb{R}^N and by rescaling, ε can be assumed equal to 1) in an article of Brézis [2, Section 2].

It is well known that uniqueness is present for large enough $\varepsilon > 0$ for any $N \geq 2$. Indeed, for any $\varepsilon > (W'(1)/\lambda_1)^{1/2}$ where λ_1 is the first eigenvalue of $-\Delta$ in B^N with zero Dirichlet boundary condition, E_ε is strictly convex in \mathcal{A} and thus has a unique critical point in \mathcal{A} (that is the global minimizer of our problem).

For *sufficiently small* $\varepsilon > 0$, all results regarding uniqueness question available in the literature are in the affirmative. In particular, we have:

(i) Pacard and Rivière [12, Theorem 10.2] showed in dimension $N = 2$ that, for small $\varepsilon > 0$, E_ε has in fact a unique critical point in \mathcal{A};

(ii) Mironescu [11] showed in dimension $N = 2$ that, when B^2 is replaced by \mathbb{R}^2 and $\varepsilon = 1$, a local minimizer of E_ε subjected to a degree-one boundary condition at infinity is unique (up to translation and suitable rotation). This was generalized to dimension $N = 3$ by Millot and Pisante [10] and dimensions $N \geq 4$ by Pisante [13], also in the case of the blow-up limiting problem on \mathbb{R}^N and $\varepsilon = 1$.

These results should be compared to those for the limit problem on the unit ball obtained by sending $\varepsilon \to 0$. In this limit, the Ginzburg–Landau problem ‘converges’ to the harmonic map problem from B^N to \mathbb{S}^{N-1}. It is well known that the vortex boundary condition gives rise to a unique minimizing harmonic map $x \mapsto \frac{x}{|x|}$ if $N \geq 3$; see Brezis, Coron and Lieb [3] in dimension $N = 3$, Jäger and Kaul [8] in dimensions $N \geq 7$, and Lin [9] in dimensions $N \geq 3$ (see also [4]).

We highlight that, in contrast to the above, our result holds for *all* $\varepsilon > 0$, provided that $N \geq 7$. The method of our proof deviates somewhat from that in the aforementioned works. In fact, it is reminiscent of our recent work [7] on
the (non-)uniqueness and symmetry of minimizers of the Ginzburg–Landau functionals for \mathbb{R}^M-valued maps defined on N-dimensional domains, where M is not necessarily the same as N. However, we note that the results in [7] do not directly apply to the present context, as in [7] it is required that W be strictly convex. Furthermore, a priori, it is not clear why non-strict convexity of the potential W is sufficient to ensure uniqueness of global minimizers.

We exploit the convexity of W to lower estimate the ‘excess’ energy by a suitable quadratic energy that can be handled by the factorization trick à la Hardy. Indeed, the positivity of the excess energy is then related to the validity of a Hardy-type inequality, which explains our restriction of $N \geq 7$. This echoes our observation made in [7] that a result of Jäger and Kaul [8] on the minimality of the equator map (for the harmonic map problem) in these dimensions is related to a certain inequality involving the sharp constant in the Hardy inequality; see Remark 3.

We expect that our result remains valid in dimensions $2 \leq N \leq 6$, but this goes beyond the scope of this note and remains for further investigation.

2. Proof of Theorem 1

Theorem 1 will be obtained as a consequence of a stronger result on the uniqueness of global minimizers of the \mathbb{R}^M-valued Ginzburg–Landau functional with $M \geq N$. By a slight abuse of notation, we consider the energy functional

$$E_\varepsilon(u) = \int_{B^N} \left[\frac{1}{2} |\nabla u|^2 + \frac{1}{2\varepsilon^2} W(1 - |u|^2) \right] \, dx,$$

where u belongs to

$$\mathcal{A} := \{ u \in H^1(B^N, \mathbb{R}^M) : u(x) = x \text{ on } \partial B^N = S^{N-1} \subset \mathbb{R}^M \}.$$

Theorem 2. Assume that W satisfies (1). If $M \geq N \geq 7$, then for every $\varepsilon > 0$, u_ε given in (3) is the unique global minimizer of E_ε in \mathcal{A}.

When W is strictly convex, the above theorem is proved in [7]; see [7, Theorem 1.7]. The argument therein uses the strict convexity in a crucial way.

Proof. The proof will be done in several steps. First, we consider the difference between the energies of the critical point u_ε, defined in (3), and an arbitrary competitor $u_\varepsilon + v$ and show that this difference is controlled from below by some quadratic energy functional $F_\varepsilon(v)$. Second, we employ the positivity of the radial profile f_ε in (4) and apply the Hardy decomposition method in order to show that $F_\varepsilon(v) \geq 0$, which proves in particular that u_ε is a global minimizer of E_ε. Finally, we characterise the situation when this difference is zero and conclude to the uniqueness of the global minimizer u_ε.

Step 1: Lower bound for energy difference. For any $v \in H^1_0(B^N; \mathbb{R}^M)$, we have

$$E_\varepsilon(u_\varepsilon + v) - E_\varepsilon(u_\varepsilon) \geq \int_{B^N} \left[\frac{1}{2} |\nabla u_\varepsilon \cdot \nabla v + \frac{1}{2} |\nabla v|^2 \right] \, dx + \frac{1}{2\varepsilon^2} \int_{B^N} \left[W(1 - |u_\varepsilon + v|^2) - W(1 - |u_\varepsilon|^2) \right] \, dx.$$

Using the convexity of W, we have

$$W(1 - |u_\varepsilon + v|^2) - W(1 - |u_\varepsilon|^2) \geq -|W'(1 - |u_\varepsilon|^2)(|u_\varepsilon + v|^2 - |u_\varepsilon|^2)|.$$

The last two relations imply that

$$E_\varepsilon(u_\varepsilon + v) - E_\varepsilon(u_\varepsilon) \geq \int_{B^N} \left[\frac{1}{2} |\nabla u_\varepsilon \cdot \nabla v - \frac{1}{\varepsilon^2} W'(1 - f_\varepsilon^2)u_\varepsilon \cdot v \right] \, dx + \int_{B^N} \left[\frac{1}{2} |\nabla v|^2 - \frac{1}{2\varepsilon^2} W'(1 - f_\varepsilon^2)|v|^2 \right] \, dx.$$

Moreover, by (2), we obtain

$$E_\varepsilon(u_\varepsilon + v) - E_\varepsilon(u_\varepsilon) \geq \int_{B^N} \left[\frac{1}{2} |\nabla v|^2 - \frac{1}{2\varepsilon^2} W'(1 - f_\varepsilon^2)|v|^2 \right] \, dx =: \frac{1}{2} F_\varepsilon(v)$$

for all $v \in H^1_0(B^N; \mathbb{R}^M)$. (In the sequel, for simplicity, we will also write $F_\varepsilon(v)$ for scalar $v \in H^1_0(B^N; \mathbb{R})$.)

Step 2: A rewriting of $F_\varepsilon(v)$ using the decomposition $v = f_\varepsilon w$ for every scalar test function $v \in C^\infty_c(B^N \setminus \{0\}; \mathbb{R})$. We consider the operator

$$L_\varepsilon := \frac{1}{2} \nabla_2^2 F_{\varepsilon} = -\Delta - \frac{1}{\varepsilon^2} W'(1 - f_\varepsilon^2).$$
Using the decomposition
\[v = f_\varepsilon w \]
for the scalar function \(v \in C_c^\infty(B^N \setminus \{0\}; \mathbb{R}) \), we have (see, e.g., [6, Lemma A.1]):
\[
F_\varepsilon(v) = \int_{B^N} L_\varepsilon v \cdot v \, dx = \int_{B^N} w^2 L_\varepsilon f_\varepsilon \cdot f_\varepsilon \, dx + \int_{B^N} f_\varepsilon^2 |\nabla w|^2 \, dx
\]
\[= \int_{B^N} f_\varepsilon^2 \left(|\nabla w|^2 - \frac{N-1}{r^2} w^2 \right) \, dx, \]
because (4) yields \(L_\varepsilon f_\varepsilon \cdot f_\varepsilon = -\frac{N-1}{r^2} f_\varepsilon^2 \) in \(B^N \).

Step 3: We prove that \(F_\varepsilon(v) \geq 0 \) for every scalar test function \(v \in C_c^\infty(B^N \setminus \{0\}; \mathbb{R}) \). Within the notation \(v = f_\varepsilon w \) of Step 2 with \(v, w \in C_c^\infty(B^N \setminus \{0\}; \mathbb{R}) \), we use the decomposition
\[w = \varphi g \]
with \(\varphi = |x|^{-\frac{N-2}{2}} \) being the first eigenfunction of the Hardy’s operator \(-\Delta - \frac{(N-2)^2}{4|x|^2} \) in \(\mathbb{R}^N \setminus \{0\} \) and \(g \in C_c^\infty(B^N \setminus \{0\}; \mathbb{R}) \). We compute
\[|\nabla w|^2 = |\nabla \varphi|^2 g^2 + |\nabla g|^2 \varphi^2 + \frac{1}{2} \nabla(\varphi^2) \cdot \nabla(g^2). \]
As \(|\nabla \varphi|^2 = \frac{(N-2)^2}{4|x|^2} \varphi^2 \) and \(\varphi^2 \) is harmonic in \(B^N \setminus \{0\} \), integration by parts yields
\[
F_\varepsilon(v) = \int_{B^N} f_\varepsilon^2 \left(|\nabla \varphi|^2 g^2 + \frac{(N-2)^2}{4r^2} \varphi^2 g^2 - \frac{N-1}{r^2} \varphi^2 g^2 \right) \, dx - \frac{1}{2} \int_{B^N} \nabla(\varphi^2) \cdot \nabla(f_\varepsilon^2) g^2 \, dx
\]
\[\geq \int_{B^N} f_\varepsilon^2 |\nabla \varphi|^2 g^2 \, dx + \frac{(N-2)^2}{4} - (N-1) \int_{B^N} f_\varepsilon^2 \varphi^2 g^2 \, dx
\]
\[\geq \frac{(N-2)^2}{4} - (N-1) \int_{B^N} \frac{v^2}{r^2} \, dx \geq 0, \tag{6} \]
where we have used \(N \geq 7 \) and \(\frac{1}{2} \nabla(\varphi^2) \cdot \nabla(f_\varepsilon^2) = 2\varphi \varphi' f_\varepsilon f_\varepsilon' \leq 0 \) in \(B^N \setminus \{0\} \).

Step 4: We prove that \(F_\varepsilon(v) \geq 0 \) for every \(v \in H^1_0(B^N; \mathbb{R}^M) \), meaning that \(u_\varepsilon \) is a global minimizer of \(E_\varepsilon \) over \(\mathcal{A} \); moreover, \(F_\varepsilon(v) = 0 \) if and only if \(v = 0 \). Let \(v \in H^1_0(B^N; \mathbb{R}^M) \). As a point has zero \(H^1 \) capacity in \(\mathbb{R}^N \), a standard density argument implies the existence of a sequence \(v_k \in C_c^\infty(B^N \setminus \{0\}; \mathbb{R}^M) \) such that \(v_k \rightharpoonup v \) in \(H^1(B^N; \mathbb{R}^M) \) and a.e. in \(B^N \). On the one hand, by definition (5) of \(F_\varepsilon \), since \(W'(1 - f_\varepsilon^2) \in L^\infty \), we deduce that \(F_\varepsilon(v_k) \to F_\varepsilon(v) \) as \(k \to \infty \). On the other hand, by (6) and Fatou’s lemma, we deduce
\[
\liminf_{k \to \infty} F_\varepsilon(v_k) \geq \left(\frac{(N-2)^2}{4} - (N-1) \right) \liminf_{k \to \infty} \int_{B^N} \frac{v_k^2}{r^2} \, dx
\]
\[\geq \left(\frac{(N-2)^2}{4} - (N-1) \right) \int_{B^N} \frac{v^2}{r^2} \, dx. \]
Therefore, we conclude that
\[F_\varepsilon(v) \geq \left(\frac{(N-2)^2}{4} - (N-1) \right) \int_{B^N} \frac{v^2}{r^2} \, dx \geq 0, \quad \forall v \in H^1_0(B^N; \mathbb{R}^M), \]
implying by (5) that \(u_\varepsilon \) is a minimizer of \(E_\varepsilon \) over \(\mathcal{A} \). Moreover, \(F_\varepsilon(v) = 0 \) if and only if \(v = 0 \).

Step 5: Conclusion. We have shown that \(u_\varepsilon \) is a global minimizer. Assume that \(\tilde{u}_\varepsilon \) is another global minimizer of \(E_\varepsilon \) over \(\mathcal{A} \). If \(v := \tilde{u}_\varepsilon - u_\varepsilon \), then \(v \in H^1_0(B^N; \mathbb{R}^M) \) and by steps 1 and 4, we have that \(0 = E_\varepsilon(\tilde{u}_\varepsilon) - E_\varepsilon(u_\varepsilon) \geq F_\varepsilon(v) \geq 0 \), which yields \(F_\varepsilon(v) = 0 \). Step 4 implies that \(v = 0 \), i.e. \(\tilde{u}_\varepsilon = u_\varepsilon \). \qed
Remark 3. Recall that, in the case $M \geq N \geq 7$, Jäger and Kaul [8] proved the uniqueness of global minimizer for harmonic map problem

$$\min_{u \in \mathcal{A}_{a}} \int_{B^N} |\nabla u|^2 \, dx,$$

where $\mathcal{A}_{a} = \{ u \in H^1(B^N; S^{M-1}) : u(x) = x \text{ on } \partial B^N = S^{N-1} \subset S^{M-1} \}$. This can also be seen by the method above, as observed in our earlier paper [7]. We give the argument here for readers' convenience: take a perturbation $v \in H^1_0(B^N, \mathbb{R}^M)$ of the harmonic map $u_*(x) = \frac{x}{|x|}$ such that $|u_*(x) + v(x)| = 1$ a.e. in B^N. Then, by [7, Proof of Theorem 5.1],

$$\int_{B^N} \left[|\nabla (u_* + v)|^2 - |\nabla u_*|^2 \right] \, dx = \int_{B^N} \left[|\nabla v|^2 - |\nabla u_*|^2 \right] \, dx = \int_{B^N} \left[|\nabla v|^2 - (N-1) \frac{|v|^2}{|x|^2} \right] \, dx.$$

Using Hardy's inequality in dimension N, we arrive at

$$\int_{B^N} \left[|\nabla (u_* + v)|^2 - |\nabla u_*|^2 \right] \, dx \geq \left(\frac{(N-2)^2}{4} - (N-1) \right) \int_{B^N} \frac{|v|^2}{|x|^2} \, dx.$$

The result follows since $N \geq 7$.

Acknowledgements

R.I. acknowledges partial support by the ANR project ANR-14-CE25-0009-01. V.S. acknowledges support by the Leverhulme grant RPG-2014-226. A.Z. was partially supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS–UEFISCDI, project number PN-II-RU-TE-2014-4-0657; by the Basque Government through the BERC 2018–2021 program; by the Spanish Ministry of Economy and Competitiveness MINECO: BCAM Severo Ochoa accreditation SEV-2013-0323.

References

[1] F. Bethuel, H. Brezis, F. Hélein, Ginzburg–Landau Vortices, Progress in Nonlinear Differential Equations and Their Applications, vol. 13, Birkhäuser Boston Inc., Boston, MA, USA, 1994.
[2] H. Brezis, Symmetry in nonlinear PDE's, in: Differential Equations, La Pietra 1996 (Florence, Italy), in: Proceedings of Symposia in Pure Mathematics, vol. 65, American Mathematical Society, Providence, RI, USA, 1999, pp. 1–12.
[3] H. Brezis, J.-M. Coron, E.H. Lieb, Harmonic maps with defects, Commun. Math. Phys. 107 (4) (1986) 649–705.
[4] J.-M. Coron, R. Gulliver, Minimizing p-harmonic maps into spheres, J. Reine Angew. Math. 401 (1989) 82–100.
[5] R. Ignat, L. Nguyen, V. Slastikov, A. Zarnescu, Uniqueness results for an ODE related to a generalized Ginzburg–Landau model for liquid crystals, SIAM J. Math. Anal. 46 (5) (2014) 3390–3425.
[6] R. Ignat, L. Nguyen, V. Slastikov, A. Zarnescu, Stability of the melting hedgehog in the Landau–de Gennes theory of nematic liquid crystals, Arch. Ration. Mech. Anal. 215 (2) (2015) 631–673.
[7] R. Ignat, L. Nguyen, V. Slastikov, A. Zarnescu, On the uniqueness of minimisers of Ginzburg–Landau functionals, arXiv:1708.05040, 2017. To appear in Ann. Sci. Éc. Norm. Supér.
[8] W. Jäger, H. Kaul, Rotationally symmetric harmonic maps from a ball into a sphere and the regularity problem for weak solutions of elliptic systems, J. Reine Angew. Math. 343 (1983) 146–161.
[9] F.-H. Lin, A remark on the map $x/|x|$, C. R. Acad. Sci. Paris, Ser. I 305 (12) (1987) 529–531.
[10] V. Millot, A. Pisante, Symmetry of local minimizers for the three-dimensional Ginzburg–Landau functional, J. Eur. Math. Soc. 12 (5) (2010) 1069–1096.
[11] P. Mironescu, Les minimiseurs locaux pour l’équation de Ginzburg–Landau sont à symétrie radiale, C. R. Acad. Sci. Paris, Ser. I 323 (6) (1996) 593–598.
[12] F. Pacard, T. Rivière, Linear and Nonlinear Aspects of Vortices, Progress in Nonlinear Differential Equations and Their Applications, vol. 39, Birkhäuser Boston Inc., Boston, MA, USA, 2000. The Ginzburg–Landau model.
[13] A. Pisante, Two results on the equivariant Ginzburg–Landau vortex in arbitrary dimension, J. Funct. Anal. 260 (3) (2011) 892–905.