Inner rings in disc galaxies: dead or alive

S. Comerón1,2

1 University of Oulu, Astronomy Division, Department of Physics, P.O. Box 3000, FIN-90014, Finland
2 Finnish Centre of Astronomy with ESO (FINCA), University of Turku, Väisäläntie 20, FI-21500, Piikkiö, Finland

e-mail: seb.comeron@gmail.com

Preprint online version: May 7, 2014

\section*{ABSTRACT}

In this Letter, I distinguish “passive” inner rings as those with no current star formation as distinct from “active” inner rings that have undergone recent star formation. I built a sample of nearby galaxies with inner rings observed in the near- and mid-infrared from the NIRS0S and the SGG surveys. I used archival far-ultraviolet (FUV) and H\textalpha{} imaging of 319 galaxies to diagnose whether their inner rings are passive or active. I found that passive rings are found only in early-type disc galaxies ($-3 \leq T \leq 2$). In this range of stages, $21 \pm 3\%$ and $28 \pm 5\%$ of the rings are passive according to the FUV and H\textalpha{} indicators, respectively. A ring that is passive according to the FUV is always passive according to H\textalpha{}, but the reverse is not always true. Ring-lenses form $30 \pm 40\%$ of passive rings, which is four times more than the fraction of ring-lenses found in active rings in the stage range $-3 \leq T \leq 2$. This is consistent with both a resonance and a manifold origin for the rings because both models predict purely stellar rings to be wider than their star-forming counterparts. In the case of resonance rings, the widening may be at least partly due to the dissolution of rings. If most inner rings have a resonance origin, I estimate 200 Myr to be a lower bound for their dissolution time-scale. This time-scale is of the order of one orbital period at the radius of inner rings.

\section*{Key words.} Galaxies: evolution – Galaxies: kinematics and dynamics – Galaxies: spiral – Galaxies: statistics

\section*{1. Introduction}

Gas in disc galaxies is redistributed by angular momentum transfer caused by nonaxisymmetries with a given pattern speed such as bars, ovals, and spiral arms. Some of the gas is collected in orbits near dynamical resonances under the influence of the torques caused by the nonaxisymmetries (for a recent review on barred galaxy dynamics see {\cite{Athanassoula2012}}. Owing to star formation triggered by the high gas density and by gas travelling in intersecting orbits at each side of the resonance, rings and pseudorings are often formed there \cite{Schwarz1981,Schwarz1984}. Historically, this picture has been used to explain resonance rings and pseudorings, but recently an alternative model, called the flux tube manifold theory or manifold theory, pos-

\section*{2. Data selection and processing}

I mainly based my sample of galaxies with inner rings on the classification of SGG galaxies made by \cite{Buta2013} and statistically studied in the Atlas of Resonance (pseudo)Rings As Known In the SGG; \cite{ARRAKIS,Comerón2013}. Since the SGG sample is biased against galaxies with a small gas fraction, which are mostly elliptical and S0 galaxies, I also included NIRS0S galaxies with inner rings that matched the SGG selection criteria, namely galactic latitude $|b| \geq 30\degree$. radial velocity...
The ultraviolet continuum traces star formation that has occurred in the past 100 Myr (Kennicutt 1998). To study inner rings in the 319 sample galaxies were analysed. For each sample galaxy I verified in the FUV and Hα continuum-subtracted images whether the rings detected in S^2G or NIRS0S images were visible. A detection was considered to be positive if at least a segment of the ring was seen. In some doubtful cases with shallow AIS FUV images, this was only possible after smoothing the image with a Gaussian kernel with a 3-pixel (4.5′′) radius. Positive detections are labelled as “A” for “active” and negative detections are labelled as “P” for “passive” in Table A.1. In doubtful cases, a “?” sign is added to the detection status. From now on, I refer to positive and negative detections as active and passive rings, respectively. This definition means that some rings may be passive in one of the studied indicators but active in the other. Examples of galaxies with passive and active inner rings are shown in Figure 1. A total of 329 inner rings in the 319 sample galaxies were analysed.

Results

Out of 329 inner rings, 33 were found not to have FUV emission (Figure 2). All of them are in the stage range $-3 \leq T \leq 2$. The fraction of passive inner rings in this range of stages according to the FUV star formation indicator is $21 \pm 3\%$ with the error bar calculated using binomial statistics. Rings hosted in early-type galaxies are more likely to be passive than those in later types (Table 1). I verified whether non-detections may be partly caused by the use of shallow AIS images by recalculating the statistics come mostly from the Hubble Space Telescope (HST) Archive:

1. HST images not processed for AINUR. In these cases, Hα narrow-band images and red continuum images were downloaded from the Hubble Legacy Archive (HLA) and were used to produce a continuum-subtracted image using the technique described in Knapp et al. (2004, 2004).
2. Continuum-subtracted images in the NASA/IPAC Extragalactic Database (NED).

Hα images were available for 139 out of the 319 sample galaxies.

Notes

- Images processed for the Atlas of Images of NUclear Rings (AINUR; Comerón et al. 2010). The images in AINUR

Fig. 1. NGC 4314 (top row) is an (R′)Sb(rLr)a galaxy (Buta et al. 2013) with a passive inner ring-lens. NGC 1672 (bottom row) is an (R′)SAB(rs,nr)b galaxy (Buta et al. 2013) whose inner pseudoring is still forming stars. In the first case the inner feature does not emit in the FUV and Hα. There is a significant amount of emission in these bands for the active inner feature. The prominent ring feature in NGC 4314 is a nuclear ring. The intervals µ < 4000 km s$^{-1}$, angular diameter $D_{50} > 1′$, and integrated blue magnitude $m_β < 15.5$ mag (data obtained from HyperLeda; Paturel et al. 2003). S^2G and NIRS0S data can be mixed safely because the detection of inner rings in the S^2G matches that in NIRS0S very well (Section 5.10 in ARRAKIS). I also included NGC 2950, an S0 non-S^2G galaxy appearing in the same frame as a genuine S^2G galaxy which also fulfils the selection criteria.

- To avoid dust absorption, ring foreshortening, and poor angular resolution problems, I additionally constrained the sample by only selecting disc galaxies (Hubble stage $-3 \leq T \leq 9$) with an ellipticity lower than $ε_i = 0.5$ according to the data of the Pipeline 4 of S^2G (Salo et al. 2013) and with inner rings with a radius larger than 10′′ according to ARRAKIS or NIRS0S. The total number of galaxies fulfilling these conditions is 357.

- Two indicators were used to search for recent star formation: the far-ultraviolet continuum and Hα-line emission.

- The ultraviolet continuum traces star formation that has occurred in the past 100 Myr (Kennicutt 1998). To study inner rings in that wavelength, I downloaded the deepest available FUV-band image in the GALEX GR6/7 Data Release4 for each galaxy. Such images were available for 319 out of the 357 galaxies initially included in the sample. These 319 galaxies are the final sample I worked with. For 160 galaxies, the FUV images belong to the GALEX All-Sky Imaging Survey (AIS), which consists of ~ 100 s exposures and can detect point sources down to $μ_{AB} \sim 20$ mag arcsec$^{-2}$. The other galaxies were imaged in deeper GALEX surveys and were in general exposed for 1000 s or more.

- The Hα emission traces star formation that has occurred in the past 20 Myr (Kennicutt 1998). Hα continuum-subtracted images used here come from three sources:

 - Images processed for the Atlas of Images of NUclear Rings (AINUR; Comerón et al. 2010). The images in AINUR

1. http://galex.stsci.edu/GR6/
2. http://archive.stsci.edu/hst/search.php
3. http://hla.stsci.edu/hlaview.html
4. http://ned.ipac.caltech.edu/
with deep GALEX images only (Table 1) and found that the results based on those two samples are compatible within the error bars, which indicates that rings with recent star formation can be detected even in relatively shallow FUV images.

Because Hα imaging is only available for a part of the sample, I reproduced the plot for the FUV inner ring emission in Figure 2 by using only FUV data that correspond to galaxies for which Hα is available (Figure 3 and Table 1). This is used below to compare the fraction of passive inner rings according to the FUV and Hα indicators.

Figure 4 and Table 1 show the fraction of passive inner rings according to the Hα indicator. This fraction is equal to or larger than that of passive rings according to the FUV for all stages (28 ± 5% of passive rings in the range −3 ≤ T ≤ 2 where all passive rings are found). This is because none of the rings lacking FUV emission have Hα emission, whereas the reverse is not always true.

While in the range of stages −3 ≤ T ≤ 2 the fraction of active inner features classified as ring-lenses is one in ten or less, 30 – 40% of the passive inner features are ring-lenses (Table 2). Regarding inner features that are not classified as ring-lenses, inner closed rings are equally frequent among the passive and the active rings (~ 30 – 40%), but pseudorings are less frequent among passive features than among active ones (~ 30% vs ~ 60%).

The passive or active status of a ring does not depend on the family (bar properties) of the host galaxy. Unbarred galaxies (SA) account for ~ 30% of host galaxies for both passive and active rings in the stage range −3 ≤ T ≤ 2.

4. Discussion

As seen in Section 1, two mechanisms have been proposed for the formation of inner rings, namely the resonance and the manifold ones. I consider the resonance mechanism first.

If inner rings are the consequence of the star formation in gas gathered in orbits near resonances, one may expect that once the gas is exhausted, the ring will fade-out and disappear because of two factors. First, bright stars with a low mass-to-light ratio will die after several Myr. Second, radial migration will cause the ring to widen. Both effects would lower the surface brightness of the ring and will tend to make it indistinguishable from the stellar background of the galaxy. Of course, active rings may also have populations of old stars widened by radial migration, but they are likely to be outshone by the regions with recent star formation and thus would appear very sharp.

One piece of evidence that might indicate that rings become wider as they die is that as seen in Table 2, ring-lenses are roughly four times more frequent among passive features than among active features. It is unclear, however, whether the full width of ring-lenses can be explained by the radial migration of stars in passive rings. Alternatively, ring-lenses may form as a response of the old stellar population to the bar potential.

Table 2. Fraction of passive and active inner features with a given morphology as classified in [Buta et al. 2013](#) for different star formation indicators in galaxies with −3 ≤ T ≤ 2.

Indicator	r_l, r_H, r_l, r_H	FUV	P	A	r	FUV (Hα)	P	A	Hα	P	A
P	39 ± 9%	9 ± 3%	33 ± 7%	35 ± 4%	27 ± 8%	56 ± 4%					
A	36 ± 15%	9 ± 4%	36 ± 11%	33 ± 7%	37 ± 11%	61 ± 7%					

Table 1. Fraction of passive rings according to different star formation indicators and for different Hubble stage ranges

Indicator	All types	S0	Early sp.	Late sp.
FUV	10 ± 2%	32 ± 5%	11 ± 3%	0%
Deep FUV	13 ± 3%	36 ± 8%	15 ± 5%	0%
FUV (Hα)	8 ± 2%	16 ± 7%	16 ± 6%	0%
Hα	13 ± 3%	48 ± 10%	16 ± 6%	0%

Notes. P and A stand for passive and active rings, respectively. FUV (Hα) stands for the FUV statistics assembled from galaxies with available Hα images.
Under the assumption that the resonance scenario applies, an estimate of the dissolution time-scale of rings can be made from the data presented here and by knowing that Hα emission outlasts star formation by ~ 20 Myr and FUV emission outlasts star formation by ~ 100 Myr \citep{Kennicutt1998}. The subsample of galaxies with both Hα and FUV imaging includes 19 rings without Hα emission. Eleven of those rings have no FUV emission. This means that eight rings stopped forming stars between 20 and 100 Myr ago, and the remaining stopped forming stars longer than 100 Myr ago. Assuming that the fraction of dissolving inner rings has been roughly constant for the past few hundreds of Myr, one can deduce that the ring dissolution time-scale is ~ 200 Myr. This is a time of the order of an orbital period at the radius of inner rings.

However, this ~ 200 Myr estimated dissolution time-scale is a lower limit to the true dissolution time-scale. First, rings may form stars intermittently in recurrent episodes. It is therefore reasonable to assume that some of the passive rings may actually be reactivated at some point by some gas inflow. Such periodic activity has been reported in nuclear rings \citep{Allard2006, Sarzi2007}. Episodic star formation seems more likely in rings that have stopped forming stars more recently (those without Hα emission but with FUV emission), hence the dissolution time-scale underestimated. Second, Hα surveys may be biased against galaxies with little or no Hα emission. This would bias the surveys against galaxies with passive rings, and especially against those that cannot be reactivated, because if the galaxy still has some gas reserve that can be transferred to the ring, some residual star formation may remain elsewhere in the galaxy. As a consequence, the fraction of inner rings without either FUV or Hα emission might be underestimated.

In the framework of the manifold theory, passive rings are not necessarily dissolving. Indeed, manifolds can trap both stars and gas, and for galaxies with little or no gas, purely stellar rings are expected. However, it is still natural to expect passive rings to be wider. Indeed, stars can easily occupy the whole manifold phase space, but gas collisions would cause it (and also the younger generations of stars) to fill a smaller space and thus make the rings appear thinner \citep{Athanassoula2009b}. Whether this effect is enough to explain the full difference in width between regular rings and ring-lenses is not yet explored.

A large fraction of inner rings with a manifold origin could significantly change the dissolution time-scale estimated before. At the moment, no estimate is available on the fraction of inner rings caused by manifolds. Their existence is nearly certain, however, because the characteristic morphology of all types of outer rings, as well as the statistics of the shapes and sizes of both inner and outer rings in nearby galaxies, can be explained by the manifold theory \citep{Athanassoula2009a, Athanassoula2010}. On the other hand, a set of ~ 20 N-body simulations with a fixed potential shows that at least in some cases only a minority of ring particles are trapped in manifolds \citep{Rautiainen}. This, however, is not the case for the fully self-consistent simulations of \cite{Athanassoula2012b}. Additional study, both observational and numerical, is required to reveal whether manifolds can be easily populated and therefore are a widespread mechanism for shaping galaxy morphology.

In either the resonance or manifold frameworks the lack of passive rings in galaxies with $T \geq 3$ is naturally explained because in both cases, gas is available in these late-type galaxies to populate the orbits near resonances and/or the manifold orbits.

5. Conclusions

I used two indicators of recent star formation to check whether inner rings and pseudorings in a set of 319 nearby disc galaxies are passive (without signs of recent star formation) or active (with signs of recent star formation).

I showed that passive rings are only found in galaxies with stages $-3 \leq T \leq 2$. In that range of stages, $21 \pm 3\%$ and $28 \pm 5\%$ of rings are passive according to the FUV and Hα indicators, respectively. When a ring is passive in the FUV, it is also passive in Hα, but the reverse is not always true. I found that $30 - 40\%$ of passive inner rings are classified as ring-lenses in \cite{Buta2013}. On the other hand, only $\sim 10\%$ of active inner rings in the stage range $-3 \leq T \leq 2$ are ring-lenses. Although passive rings in both resonance and manifold theories are expected to be wider than their active counterparts, it is still unclear whether these two theories can account for the full transformation of regular inner rings into wide inner ring-lenses.

I estimate that if most inner rings have a resonance origin, a lower boundary for their dissolution time-scale is 200 Myr. This time-scale is of the order of one orbital period at the radius of inner rings.

Acknowledgements. The author thanks the referee, S. Ryder for useful comments. He thanks L. C. Ho, who gave the inspiration for this Letter and P. Rautiainen, H. Salo, J. H. Knapen and E. Athanassoula for useful discussions. GALEX (Galaxy Evolution Explorer) is a NASA Small Explorer, launched in April 2003. We gratefully acknowledge NASA’s support for construction, operation, and science analysis for the GALEX mission. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Based on observations made with the NASA/ESA Hubble Space Telescope, and obtained from the Hubble Legacy Archive, which is a collaboration between the Space Telescope Science Institute (STScI/NASA), the Space Telescope European Coordinating Facility (ST-ECF/ESA) and the Canadian Astronomy Data Centre (CADC/NRC/CSA).

References

\citet{Allard2006, Sarzi2007}, \cite{Athanassoula2009b}, whether this effect is enough to explain the full difference in width between regular rings and ring-lenses is not yet explored.

A large fraction of inner rings with a manifold origin could significantly change the dissolution time-scale estimated before. At the moment, no estimate is available on the fraction of inner rings caused by manifolds. Their existence is nearly certain, however, because the characteristic morphology of all types of outer rings, as well as the statistics of the shapes and sizes of both inner and outer rings in nearby galaxies, can be explained by the manifold theory \citep{Athanassoula2009a, Athanassoula2010}. On the other hand, a set of ~ 20 N-body simulations with a fixed potential shows that at least in some cases only a minority of ring particles are trapped in manifolds \citep{Rautiainen}. This, however, is not the case for the fully self-consistent simulations of \cite{Athanassoula2012b}. Additional study, both observational and numerical, is required to reveal whether manifolds can be easily populated and therefore are a widespread mechanism for shaping galaxy morphology.

In either the resonance or manifold frameworks the lack of passive rings in galaxies with $T \geq 3$ is naturally explained because in both cases, gas is available in these late-type galaxies to populate the orbits near resonances and/or the manifold orbits.

5. Conclusions

I used two indicators of recent star formation to check whether inner rings and pseudorings in a set of 319 nearby disc galaxies are passive (without signs of recent star formation) or active (with signs of recent star formation).

I showed that passive rings are only found in galaxies with stages $-3 \leq T \leq 2$. In that range of stages, $21 \pm 3\%$ and $28 \pm 5\%$ of rings are passive according to the FUV and Hα indicators, respectively. When a ring is passive in the FUV, it is also passive in Hα, but the reverse is not always true. I found that $30 - 40\%$ of passive inner rings are classified as ring-lenses in \cite{Buta2013}. On the other hand, only $\sim 10\%$ of active inner rings in the stage range $-3 \leq T \leq 2$ are ring-lenses. Although passive rings in both resonance and manifold theories are expected to be wider than their active counterparts, it is still unclear whether these two theories can account for the full transformation of regular inner rings into wide inner ring-lenses.

I estimate that if most inner rings have a resonance origin, a lower boundary for their dissolution time-scale is 200 Myr. This time-scale is of the order of one orbital period at the radius of inner rings.

Acknowledgements. The author thanks the referee, S. Ryder for useful comments. He thanks L. C. Ho, who gave the inspiration for this Letter and P. Rautiainen, H. Salo, J. H. Knapen and E. Athanassoula for useful discussions. GALEX (Galaxy Evolution Explorer) is a NASA Small Explorer, launched in April 2003. We gratefully acknowledge NASA’s support for construction, operation, and science analysis for the GALEX mission. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Based on observations made with the NASA/ESA Hubble Space Telescope, and obtained from the Hubble Legacy Archive, which is a collaboration between the Space Telescope Science Institute (STScI/NASA), the Space Telescope European Coordinating Facility (ST-ECF/ESA) and the Canadian Astronomy Data Centre (CADC/NRC/CSA).

References

\cite{Allard2006, Sarzi2007}, \cite{Athanassoula2009b}, whether this effect is enough to explain the full difference in width between regular rings and ring-lenses is not yet explored.

A large fraction of inner rings with a manifold origin could significantly change the dissolution time-scale estimated before. At the moment, no estimate is available on the fraction of inner rings caused by manifolds. Their existence is nearly certain, however, because the characteristic morphology of all types of outer rings, as well as the statistics of the shapes and sizes of both inner and outer rings in nearby galaxies, can be explained by the manifold theory \citep{Athanassoula2009a, Athanassoula2010}. On the other hand, a set of ~ 20 N-body simulations with a fixed potential shows that at least in some cases only a minority of ring particles are trapped in manifolds \citep{Rautiainen}. This, however, is not the case for the fully self-consistent simulations of \cite{Athanassoula2012b}. Additional study, both observational and numerical, is required to reveal whether manifolds can be easily populated and therefore are a widespread mechanism for shaping galaxy morphology.

In either the resonance or manifold frameworks the lack of passive rings in galaxies with $T \geq 3$ is naturally explained because in both cases, gas is available in these late-type galaxies to populate the orbits near resonances and/or the manifold orbits.
Romero-Gómez, M., Masdemont, J. J., Athanassoula, E., & García-Gómez, C.
2006, A&A, 453, 39
Salo, H., Laurikainen, E., Laine, J., et al. 2013, in prep.
Sarzi, M., Allard, E. L., Knapen, J. H., & Mazzuca, L. M. 2007, MNRAS, 380, 949
Schwarz, M. P. 1981, ApJ, 247, 77
Schwarz, M. P. 1984, MNRAS, 209, 93
Sheth, K., Regan, M., Hinz, J. L., et al. 2010, PASP, 122, 1397
Appendix A: Properties of the inner rings in the sample

Table A.1. Properties of the inner rings in the sample

ID	Family	T	Kind	FUV	Survey	Hz
ESO 013-016	SB	6	rs	A	AIS	–
ESO 202-041	SB	9	rs	A	AIS	–
ESO 404-012	SAB	3	rs	A	AIS	–
ESO 407-014	SA	2	r	A	MIS	–
ESO 420-009	SAB	5	rs	A	AIS	–
ESO 422-005	SB	8	rs	A	AIS	–
ESO 440-011	SB	6	rs	A	NGS	–
ESO 443-069	SB	8	rs	A	AIS	–
ESO 479-004	SB	7	rs	A	GII	–
ESO 482-035	SB	3	rs	A	AIS	–
ESO 508-007	SAB	7	rs	A?	AIS	–
ESO 510-059	SB	5	rs	A	AIS	–
ESO 532-022	SB	7	rs	A	AIS	–
ESO 547-005	SAB	9	rs	A	MIS	–
ESO 548-005	SAB	8	rs	A	AIS	–
ESO 572-018	SAB	3	rs	A	AIS	–
ESO 576-032	SB	5	rs	A	AIS	–
ESO 602-030	SB	7	rs	A	AIS	–
IC 0749	SB	6	rs	A	AIS	A
IC 1014	SB	9	r	A	AIS	–
IC 1067	SB	3	r	A	GII	–
IC 1265	SA	0	r	A?	AIS	–
IC 1438	SAB	0	r'l	A	AIS	–
IC 1954	SB	6	rs	A	GII	–
IC 2969	SA	7	r	A	AIS	–
IC 3102	SAB	0	rs	A	GII	–
IC 3267	SA	1	rs	A	GII	–
IC 4214	SAB	0	r'l	A	AIS	–
IC 4237	SB	3	r	A	AIS	–
IC 5240	SB	0	r	A	AIS	A
IC 5267	SA	0	r	A	AIS	–
NGC 0150	SAB	2	rs	A	AIS	–
NGC 0210	SAB	2	r'l	A	GII	A
NGC 0255	SB	6	rs	A	AIS	–
NGC 0289	SAB	2	rs,rsA,A	MIS	–	
NGC 0470	SAB	2	rs,rsA,A	MIS	–	
NGC 0473	SA	-1	r	A	AIS	A
NGC 0488	SA	1	rl	P	MIS	P
NGC 0600	SB	7	rs	A	AIS	–
NGC 0613	SB	3	rs	A	AIS	A
NGC 0658	SA	4	rs	A	MIS	A
NGC 0691	SA	2	rs,r	A,A	AIS	A,A
NGC 0701	SB	7	rs	A	MIS	–
NGC 0718	SAB	1	rs	P?	AIS	P
NGC 0864	SAB	4	rs	A	MIS	A
NGC 0908	SA	3	rs	A	GII	–
NGC 0936	SB	-1	rs	P	GII	–
NGC 0941	SAB	5	r	A	GII	A
NGC 0986	SB	2	rs	A	NGS	A
NGC 1022	SAB	0	rs	A	NGS	P
NGC 1073	SB	5	rs	A	GII	A
NGC 1079	SAB	-1	rs	A	MIS	–
NGC 1087	SB	7	rs	A	MIS	A
NGC 1097	SB	3	rs	A	NGS	A
NGC 1179	SAB	6	rs	A	MIS	A
NGC 1187	SAB	4	rs	A	GII	A
NGC 1201	SAB	-2	r'l	P?	AIS	–
Table A.1 continued.

ID	Family	T	Kind	FUV	Survey	Hr
NGC 1232	SAB	5	rs	A	AIS	
NGC 1297	SA	-2	rl	P	MIS	
NGC 1310	SB	6	rs	A	NGS	
NGC 1317	SAB	0	r'l	A	NGS	P
NGC 1326	SAB	-1	r	A	NGS	P
NGC 1350	SAB	0	r	A	NGS	A
NGC 1357	SA	0	rs	A	AIS	
NGC 1365	SB	4	rs	A	NGS	
NGC 1367	SAB	0	rs	A	GII	P
NGC 1385	SB	8	rs	A	NGS	
NGC 1398	SB	1	r	A	AIS	A
NGC 1433	SB	-2	rs	P	AIS	
NGC 1452	SB	0	r	A	AIS	
NGC 1493	SB	5	rs	A	GII	A
NGC 1512	SB	1	r	A	NGS	A
NGC 1553	SA	-1	rl	P	NGS	
NGC 1566	SAB	3	r'l	A	NGS	A
NGC 1640	SB	1	r	A	AIS	
NGC 1672	SAB	3	rs	A	NGS	A
NGC 2460	SAB	1	rs	A	AIS	A
NGC 2523	SB	2	r	A	AIS	
NGC 2604	SB	5	rs	A	MIS	A
NGC 2608	SAB	3	rs	A	MIS	A
NGC 2633	SAB	3	rs	A	AIS	
NGC 2681	SAB	0	rs	A	NGS	P
NGC 2775	SA	-1	rs	A	MIS	A
NGC 2780	SB	1	rs	A	AIS	
NGC 2782	SA	1	rs	A	NGS	
NGC 2787	SB	-2	r	A	AIS	P
NGC 2805	SAB	5	rs	A	AIS	A
NGC 2859	SAB	-1	r'l	A	GII	P
NGC 2906	SA	3	rs	A	MIS	
NGC 2950	SAB	-1	r'l	P	AIS	P
NGC 2962	SAB	-1	r'l	P	MIS	
NGC 2964	SAB	3	rs	A	NGS	
NGC 2966	SAB	1	r'l	A	MIS	
NGC 2967	SAB	5	rs	A	MIS	
NGC 2968	SB	-1	rs	A	NGS	
NGC 2974	SA	0	r	A	GII	
NGC 3031	SA	1	rs,r	A	GII	P
NGC 3032	SA	-2	rs,r	P	GII	A
NGC 3061	SAB	3	rs	A	AIS	
NGC 3147	SAB	3	rs	A	NGS	
NGC 3166	SB	-1	r'l	A	GII	
NGC 3184	SA	4	rs	A	AIS	A
NGC 3185	SAB	1	rs	A	NGS	A
NGC 3245	SAB	-2	rs	A	GII	P
NGC 3344	SAB	4	r	A	NGS	A
NGC 3346	SB	6	rs	A	AIS	
NGC 3351	SB	1	r	A	NGS	A
NGC 3359	SB	7	rs	A	NGS	A
NGC 3368	SAB	-1	rs	A	NGS	A
NGC 3380	SAB	0	rs	A	AIS	
NGC 3381	SB	8	rs	A	AIS	
NGC 3455	SA	5	rs	A	GII	
NGC 3485	SAB	3	rs	A	GII	A
NGC 3486	SAB	5	r	A	GII	A
NGC 3504	SAB	1	rs	A	AIS	A
NGC 3513	SB	5	rs	A	GII	A
ID	Family	T	Kind	FUV	Survey	Hα
---------	--------	---	------	-----	--------	-----
NGC 3547	SB 6	rs	A	GII		
NGC 3583	SAB 3	rs	A	AIS		
NGC 3611	SA 1	r	A	MIS		
NGC 3614	SA 4	r	A	AIS		
NGC 3637	SB -1	rl	P?			
NGC 3642	SA 2	rl	P?	GII		
NGC 3664	SB 9	rs	A	MIS		
NGC 3673	SAB 1	rs	A	AIS		
NGC 3681	SAB 1	rs	A	AIS		
NGC 3683A	SAB 4	rs	A	AIS		
NGC 3687	SAB 2	rs	A	AIS		
NGC 3691	SB 9		A	AIS		
NGC 3705	SAB 3	rs	A	AIS		
NGC 3726	SAB 4		A	AIS		
NGC 3729	SB 0		A	GII		
NGC 3780	SA 4	rs	A	AIS		
NGC 3782	SB 8	rs	A	AIS		
NGC 3786	SA 0		A	AIS		
NGC 3870	SB -2	rs	A?	GII		
NGC 3887	SAB 4	rs	A	GII		
NGC 3888	SA 3	rs	A	AIS		
NGC 3892	SAB -1	rl	P	AIS		
NGC 3900	SA 0		A	AIS		
NGC 3945	SB -1	rl	A	AIS		
NGC 3949	SAB 5	rs	A	AIS		
NGC 4030	SA 4	rs	A	MIS		
NGC 4037	SAB 5	rs	A	AIS		
NGC 4041	SAB 5	rs	A	GII		
NGC 4045	SAB 2	rs	A	GII		
NGC 4050	SAB 1	rs	A	AIS		
NGC 4051	SAB 3	rs	A	AIS		
NGC 4067	SB 2	rs	A	GII		
NGC 4116	SB 7	rs	A	AIS		
NGC 4123	SB 3	rs	A	AIS		
NGC 4136	SAB 4	rs	A	GII		
NGC 4138	SA -1	r	A	NGS		
NGC 4141	SB 7	rs	A	AIS		
NGC 4145	SAB 7	rs	A	AIS		
NGC 4162	SA 5	r	A?	AIS		
NGC 4189	SAB 4	rs	A	GII		
NGC 4212	SA 3	rs	A	GII		
NGC 4234	SB 9	rs	A	AIS		
NGC 4245	SB -1	r	A	GII		
NGC 4250	SAB -1	rl	A	AIS		
NGC 4298	SA 4	rs	A	GII		
NGC 4303	SAB 5	rs	A	NGS		
NGC 4309	SAB -2	rl	A	GII		
NGC 4314	SB 1	rl	P	NGS		
NGC 4321	SAB 4	rs	A	GII		
NGC 4336	SAB 0	r	P	AIS		
NGC 4339	SA -2	r	A?	AIS		
NGC 4340	SB -1	r	P?	AIS		
NGC 4371	SB -2	r	P	DIS		
NGC 4380	SA 2	r	A	GII		
NGC 4385	SAB 2	rs	A	AIS		
NGC 4394	SB -1	rs	A	AIS		
NGC 4405	SAB 1	rs	A	NGS		
NC 4411A	SB 6	rs	A	GII		
NGC 4412	SAB 4	rs	A	AIS		
NGC 4413	SB 2	rs	A	NGS		
Table A.1. continued.

ID	Family	T	Kind	FUV	Survey	Hα
(1)	(2)	(3)	(4)	(5)	(6)	(7)
NGC 4414	SA	4	rl	A	NGS	A
NGC 4416	SB	8	rs	A	GII	A
NGC 4430	SAB	8	rs	A	AIS	–
NGC 4450	SAB	1	rs	A	AIS	A
NGC 4454	SAB	0	r	A	AIS	–
NGC 4477	SB	1	r	P?	GII	–
NGC 4491	SB	0	rs	P?	NGS	–
NGC 4492	SA	-3	rs	A	AIS	A
NGC 4496A	SB	7	rs	A	AIS	–
NGC 4498	SB	7	rs	A	GII	A
NGC 4501	SA	3	rs	A	AIS	A
NGC 4504	SAB	5	rs	A	GII	–
NGC 4519	SAB	6	rs	A	GII	A
NGC 4528	SB	-2	r	P?	NGS	–
NGC 4531	SA	1	rs	A	NGS	A
NGC 4540	SAB	9	rs	A	AIS	A
NGC 4548	SB	1	rs	A	GII	A
NGC 4567	SA	4	rs	A	GII	A
NGC 4579	SB	1	rs	A	NGS	A
NGC 4580	SA	1	rs,rs	P?A	GII	P,A
NGC 4593	SB	1	rs	A	AIS	–
NGC 4596	SB	0	rs	P	GII	–
NGC 4618	SB	9	rs	A	NGS	A
NGC 4639	SB	2	rs	A	AIS	A
NGC 4643	SB	-2	r	P?	AIS	P
NGC 4651	SA	4	rs	A	GII	A
NGC 4654	SB	6	rs	A	AIS	A
NGC 4680	SAB	3	rs	A	AIS	–
NGC 4698	SA	0	rs,r	A,P	GII	A,P
NGC 4713	SAB	5	rs	A	AIS	A
NGC 4725	SAB	1	r	A	AIS	A
NGC 4736	SAB	1	rl	A	NGS	A
NGC 4750	SA	1	rs	A	AIS	A
NGC 4772	SA	0	r	A	MIS	A
NGC 4779	SB	3	rs	A	AIS	–
NGC 4793	SA	5	rs	A	GII	A
NGC 4800	SA	1	rs	A	AIS	A
NGC 4814	SA	4	rs	A	GII	–
NGC 4826	SA	1	rs,r	P,A	CAI	P,A
NGC 4880	SAB	-1	rl	P	AIS	–
NGC 4897	SAB	3	rs	A	GII	–
NGC 4902	SB	3	rs	A	AIS	–
NGC 4941	SA	0	rs	A	AIS	–
NGC 4961	SB	4	rs	A	GII	–
NGC 4995	SAB	2	rs	A	AIS	–
NGC 5033	SA	5	rs	A	AIS	A
NGC 5055	SA	4	rs,rl	A,A	NGS	A,A
NGC 5068	SB	7	rs	A	GII	A
NGC 5101	SB	0	rs	A	AIS	–
NGC 5105	SAB	6	rs	A	AIS	–
NGC 5112	SB	6	rs	A	AIS	A
NGC 5134	SAB	0	rs	A	AIS	–
NGC 5145	SA	-1	r	A	AIS	–
NGC 5194	SAB	4	rs	A	GII	A
NGC 5195	SAB	0	r	P?	GII	P?
NGC 5205	SB	2	rs	A	AIS	–
NGC 5218	SB	1	rs	A	AIS	–
NGC 5300	SAB	5	rs	A	AIS	–
NGC 5313	SA	3	r	A	AIS	–
NGC 5334	SB	6	rs	A	AIS	A
Table A.1 continued.

ID	Family	T	Kind	FUV	Survey	Hr
NGC 5339	SB	2	rs	A	AIS	−
NGC 5347	SB	1	rs	A	AIS	−
NGC 5350	SB	3	rs	A	AIS	−
NGC 5364	SA	3	r	A	DIS	A
NGC 5371	SAB	3	rs	A	AIS	−
NGC 5375	SB	1	rs	A	GII	−
NGC 5376	SA	2	rs	A	AIS	−
NGC 5383	SB	1	rs	A	AIS	−
NGC 5426	SAB	5	rs	A	GII	−
NGC 5457	SAB	5	rs	A	GII	A
NGC 5534	SB	1	rs	A	AIS	A
NGC 5595	SAB	6	rs	A	AIS	−
NGC 5600	SB	8	rs	A	AIS	−
NGC 5636	SAB	0	r	A	MIS	−
NGC 5665	SB	5	rs	A	AIS	−
NGC 5668	SAB	6	rs	A	CAI	A
NGC 5669	SB	7	rs	A	AIS	A
NGC 5678	SA	3	rs	A	AIS	−
NGC 5701	SB	0	rl	P	MIS	−
NGC 5713	SB	2	rs	A	MIS	A
NGC 5728	SB	0	rs	A	AIS	A
NGC 5740	SAB	2	r	A	MIS	−
NGC 5757	SB	2	rs	A	AIS	A
NGC 5768	SAB	4	rs	A	AIS	−
NGC 5770	SAB	-1	r	P	GII	−
NGC 5806	SAB	2	rs	A	GII	A
NGC 5821	SAB	1	r	A	AIS	−
NGC 5850	SB	2	r	A	MIS	A
NGC 5892	SB	6	rs	A	AIS	−
NGC 5915	SA	5	r	A	GII	A
NGC 5921	SB	3	rs	A	AIS	A
NGC 5930	SAB	0	rs	A	AIS	−
NGC 5957	SB	1	rs	A	GII	−
NGC 5962	SAB	5	rs	A	NGS	A
NGC 5964	SB	6	rs	A	GII	A
NGC 6012	SB	2	r	A	GII	−
NGC 6014	SAB	0	rs	A?	AIS	−
NGC 6267	SB	3	rs	A	AIS	−
NGC 6278	SA	-2	r	P?	AIS	−
NGC 6412	SB	6	rs	A	AIS	A
NGC 6902	SAB	1	rs	A	NGS	−
NGC 7070	SB	5	rs	A	AIS	−
NGC 7098	SAB	0	rl	A	AIS	A
NGC 7107	SB	8	rs	A	AIS	−
NGC 7179	SB	0	r	A	GII	−
NGC 7205	SA	4	rs	A	AIS	A
NGC 7290	SA	3	rs	A	AIS	−
NGC 7378	SA	0	rs	A	AIS	−
NGC 7418	SAB	5	rs	A	NGS	−
NGC 7421	SB	2	rs	A	NGS	−
NGC 7424	SB	6	rs	A	GII	A
NGC 7496	SB	3	rs	A	NGS	−
NGC 7513	SB	1	rs	A	AIS	−
NGC 7531	SAB	1	r	A	GII	−
NGC 7552	SB	1	rs	A	NGS	A
NGC 7716	SAB	2	r	A	MIS	−
NGC 7723	SB	2	rs	A	MIS	−
NGC 7742	SA	-1	r,r	A,A,GII	−	
NGC 7743	SAB	1	rs	P	AIS	−
NGC 7755	SAB	4	rs	A	AIS	−
ID	Family	T	Kind	FUV	Survey	Hα
------	--------	-----	------	-----	--------	-----------
PGC 003853	SB	6	rs	A	AIS	–
PGC 006626	SB	6	rs	A	AIS	–
PGC 012633	SAB	2	rs	A	MIS	–
PGC 012664	SAB	6	rs	A	MIS	–
PGC 032091	SAB	5	rs	A	AIS	–
PGC 038250	SAB	9	rs	A	AIS	–
PGC 044735	SAB	8	rs	A	GII	–
PGC 044952	SA	7	r	A	AIS	–
PGC 047721	SA	2	rs, r, r	A, A?, A?	AIS	–
PGC 048179	SB	6	rs	A	GII	A
PGC 054944	SB	7	rs	A	AIS	–
UGC 01551	SB	6	rs	A	GII	–
UGC 04867	SB	7	rs	A	AIS	–
UGC 06023	SAB	5	rs	A	AIS	A
UGC 06309	SB	5	rs	A	AIS	–
UGC 07184	SB	7	rs	A	MIS	–
UGC 08155	SA	1	rs	A	AIS	–
UGC 09356	SAB	4	rs	A	AIS	–
UGC 09569	SB	5	rs	A	AIS	–
UGC 10054	SB	7	rs	A	AIS	A
UGC 10791	SB	7	rs	A	NGS	–
UGC 12151	SB	7	rs	A	MIS	–

ID (Column 1) refers to the galaxy name, family (Column 2) to its bar classification and T (Column 3) to its stage (from Buta et al. 2013, and NIRSOS). Kind (Column 4) indicates the ring classification by Buta et al. (2013) and NIRS0S. FUV (Column 5) indicates whether a given ring emits in the ultraviolet continuum (“A”) or not (“P”). The Survey column (Column 6) indicates to which GALEX survey the FUV images used here belong. Hα (Column 7) indicates whether a given ring is seen in continuum-subtracted Hα images (“A”), or not (“P”). Uncertain detection statuses are indicated by “?” in Columns 5 and 7.