Production of immunoregulatory cytokines in clinically asymptomatic periapical lesions depends on the lesions size

Zavisnost produkcije imunoregulatornih citokina u klinički asimptomatskim periapeksnim lezijama od veličine lezije

Miloš Duka*,†, Dragan Gazivoda*,†, Milan Marković‡, Ivana Majstorović*, Željka Tatomirović*,†, Dušan Mihajlović‡*, Miodrag Ćolić†§

Military Medical Academy, *Clinic for Stomatology, †Institute for Medical Research, ‡Institute for Pathology, Belgrade, Serbia; University of Defence in Belgrade, †§Faculty of Medicine of the Military Medical Academy, Belgrade, Serbia; University of East Sarajevo, ‡Institute for Pathology, Belgrade, Serbia; University of Defence in Belgrade, Faculty of Medicine of the Military Medical Academy, Belgrade, Serbia; University of Defence in Belgrade, Faculty of Medicine, Republic of Srpska, Foča, Bosnia and Herzegovina

Abstract

Background/Aim. Development of periapical lesions (PLs) involves a complex cross-talk between pathogenic microorganisms from the root canal and host immune mechanisms. In these processes proinflammatory cytokines are involved in stimulation of inflammation and osteodestructive mechanisms, whereas anti-inflammatory cytokines, with the immunoregulatory functions, have the opposite effects. How this balance is controlled is still the subject of numerous studies. The aim of this study was to examine whether the local production of interleukin (IL)-10, IL-27 and transforming growth factor (TGF-β) influences the cellular composition of PLs.

Methods. The study was conducted on 30 PLs which were collected at the Clinic for Stomatology of the Military Medical Academy, Belgrade, Serbia. The PLs were divided according to their size into small- and large-size lesions (n = 12 and n = 18, respectively). The inflammatory cells (PL-ICs) were isolated from PLs and cultivated for 24 hours in culture medium supplemented with phorbol myristate acetate and Ca2+ ionophore. Cytospins were processed for immunocytology by using monoclonal antibodies to cell subsets. The levels of cytokines in culture supernatants were determined by the ELISA method. Statistical analysis was performed using the Student t-test and the Spearman’s correlation test. The values of p < 0.05 were considered to be significant.

Results. The levels of IL-10 and TGF-β were significantly higher in the PL-ICs cultures of large-size lesions than in small ones (p < 0.01 and p < 0.05, respectively). In contrast, the levels of IL-27 were significantly higher in the cultures of small-size lesions than in small ones (p < 0.05). Although the total number of PL-ICs and the proportion of mononuclear phagocytes were higher in the large-size PLs (p < 0.01 and p < 0.05, respectively), their main composition was not significantly different between the groups. The proportions of B cells/plasma cells (CD19/CD38+ cells), CD8+ T cells and CD14+ cells were significantly higher in the large-size PLs (p < 0.005; p < 0.05; p < 0.05, respectively). In contrast, the proportion of total T cells (CD3+ cells) was higher in the small-size lesions (p < 0.05). No statistically significant correlation was found between the levels of these cytokines and the composition/phenotype of PL-ICs. Conclusion. This study suggests that IL-10, IL-27 and TGF-β may play different roles in suppression of unwanted immune/inflammatory reactions in asymptomatic PLs, depending on the extension of pathological process as judged by the size of lesions.

Key words: periapical diseases; cytokines; microbiota; immunologic factors; inflammation.

Apstrakt

Uvod/Cilj. Razvoj periapeksnih lezija (PLs) prolazi kroz složenu interakciju između patogenih mikroorganizama iz kanala zuba i imunskih mehanizama domaćina. U ovim procesima proinflamatorski citokini stimulišu zapaljenske reakcije i destrukciju kostiju dok anti-inflamatorski citokini sa immunoregulacijskim svojstvima imaju suprotan efekat. Način kako je taj balans kontrolisan je i dalje predmet brojnih studija. Cilj ovog rada bio je da se ispita da li lokalna produkcija interleukina (IL)-10, IL-27 i transformnišćeg faktora rasta beta (TGF-β) u humanim asimptomatskim PLs zavisi od njihove veličine i kako nivo ovih citokina korelira sa čelijским sastavom PLs. Metode. Istraživanje je sprovedeno na

Correspondence to: Miodrag Ćolić, University of Defence in Belgrade, Faculty of Medicine of the Military Medical Academy, Crniotravska 17, 11 000 Belgrade, Serbia. E-mail: mjcolic@eunet.rs
Introduction

Periapical lesions (PLs), common chronic pathological processes of the oral cavity, are triggered by bacterial infection of pulpal and endodontic environment. Their pathogenesis involves a complex host immune/inflammatory response to the bacteria and their products in order to eliminate the invading microorganisms. However, the same mechanisms may also result in the tissue injury, followed by the destruction of soft and mineralized tissues surrounding the root apex. The breakdown of tissues is triggered by different host mediators, which independently or cooperatively stimulate proteolysis and bone resorption processes. Simultaneously, the regulatory mechanisms are triggered with the aim to suppress the inflammation and tissue destruction to restrict the PL development.

PLs consist of granulation tissue, proliferating epithelium or cyst infiltrated by different inflammatory cells (ICs). The composition of ICs as well as functional and phenotypic properties of both infiltrating and stromal cells depend on the activation status of PLs which is under control of a series of cytokines. Cytokines play a major role in the modulation of immune/inflammatory reactions within PLs, and are critical determinants of lesions outcome. In this context, it is believed that the T-helper 1 (Th1) immune response, mediated by interferon-γ (IFN-γ) is involved in the progression of PLs and bone destruction, whereas Th2 helper (Th2) cytokines, such as interleukin 4 (IL-4), IL-5, IL-10 and IL-33, are described to be important for the humoral immune response and to limit or attenuate the tissue damage. IL-17 may play a role in exacerbating inflammation and osteolytic processes within PLs. On the other hand, the Foxp3+CD4+CD25+ subset of T regulatory cells (Tregs) and Th17 cells exert suppressive effects on inflammatory osteolysis, in which cytokines Transforming growth factor beta (TGF-β) and IL-10 seem to play a crucial role. The functions of Th17 and Tregs cytokines are interconnected and the Th17/Tregs archetypal was suggested to influence the PLs outcome through the balance between the production of the osteoclastogenic factor named a receptor activator of nuclear factor kappa-B ligand (RANKL) and its antagonist osteoprotegerin (OPG). Our previous results showed that IL-27 may have both pro-inflammatory and immunoregulatory functions in PLs.

Pro-inflammatory cytokines prevail in symptomatic PLs, whereas the production of immunoregulatory cytokines characterizes predominantly asymptomatic PLs. Since restriction of inflammation within PLs may occur at different stages of their development, the aim of this study was to examine whether the local production of three immunoregulatory cytokines (IL-10, IL-27 and TGF-β) in human asymptomatic PLs depends on the lesion size and how the levels of these cytokines correlate with the cellular composition/phenotype of such PLs. Similar data have not been published yet.

Methods

Patients

The study was conducted on human PLs (n = 30) at the Military Medical Academy (MMA), Belgrade, Serbia after an approval from the Ethics Committee of MMA and obtaining an informed consent from the patients. The average age of the patients was 31 years (range: 19–59 years). The patients had no malignant or autoimmune diseases and did not use immunosuppressive/immunomodulatory drugs. In addition, the patients had not been treated with antibiotics one month before the PLs excision. The clinical part of the study was performed at the Department for Oral Surgery, Clinic for Stomatology, MMA, at the time of teeth extraction or apicoectomy. The immunological part of the study was performed at the Institute for Medical Research, MMA. PLs were radiographically diagnosed using the standard equipment for intraoral (Carestream CS 2200 rentgenaparature) and extra-oral (ortopantomography and Dental Cone Beam Computed Tomography – CBCT) radiography of the maxilofacial region. Intraoral radiographs were obtained using the Digora imaging system (Soredex Corporation, Helsinki, Finland), size 2 photostimulable storage phosphor (PSP) plate sensors (40.0 mm × 30.0 mm) and the Scanora software. Intraoral tomographs were made by the Vatech apparatus in the
OrtoDent digital diagnostic center, Belgrade, following the rules for patients positioning according to the manufacturer’s instructions. The gained ortopantomography shots were calibrated by the Vatech program software for panoramic pictures (Ez dent-i), while the 3D CBCT analyses were done in the Ez 3D plus and Ez 3D-i Vatech program software. The size of radiolucent PLs on the radiographs and tomographs was analyzed by the above mentioned softwares and the smallest and largest diameters were measured. All PLs were clinically asymptomatic.

The lesions were divided according to their size into the small and large PLs. The small lesions (n = 12) were those whose greatest diameter was less than 3.5 mm. The lesions whose smallest diameter was higher than 4.5 mm were classified as the large lesions (n = 18). No further distinctions between specimens were made regarding sex, age, etiology or tooth type. The examples of radiographs/tomographs of one small- and one large-size PLs are given on Figures 1 and 2.

After extraction, PLs were immediately placed in a medium consisting of RPMI-1640 (Sigma, Munich, Germany) and antibiotics/antimycotics, and transported to the laboratory.

![Fig. 1 – The images of one representative small-size periapical lesion (teeth 26): A) Sagittal cross-section (buccomesial and palatinal root); B) Coronary cross-section (buccomesial root); C) Axial cross-section (root apex); D) 3D reconstruction – Dental Cone Beam Computed Tomography – CBCT. The insert represents a higher magnification of the measured lesion size.](image1)

![Fig. 2 – The images of one representative large-size periapical lesion (teeth 41): A) Coronary cross-section of the root; B) Sagittal cross-section of the root; C) Axial cross-section (largest buccomesial size); D) 3D reconstruction (Dental Cone Beam Computed Tomography – CBCT). The insert represents a higher magnification of the measured lesion size.](image2)

Preparation of inflammatory cells

The inflammatory cells from PLs (PL-ICs) were isolated using a procedure previously optimized by our research group. Briefly, periapical tissue was placed in a Petri dish containing 1 mL RPMI-1640 medium and cut into 2–3 mm diameter pieces using a scalpel. The tissue was then digested for 15 min with 0.05% collagenase type IV (Sigma) and 0.02% DNAse (Sigma) in 10 mL RPMI-1640 medium in a cell incubator at 37°C. After that, the tissue was pressed through a stainless-steel mesh using a syringe plunger, filtered and resuspended in RPMI-1640 medium containing 1 mm EDTA. The released cells were washed twice by centrifugation in the RPMI medium containing 0.5 Mm EDTA at room temperature (400 g for 10 min), and counted. The viability of cells, determined by Trypan Blue dye, was between 90% and 95%. After that, cytopsins were prepared from each sample of PL-ICs using a cytocentrifuge (MPW-350, Poland) on the poly-l-lysine-coated glass slides.

The cytopsins were stained with May-Grünwald-Giemsa or used for immunocytochemistry. The cellular composition was analyzed by using a light microscope (Olympus). The identification of cells was done by the morphological criteria. A minimum of 500 cells was analyzed on each cytopsin. The results are given as percentages of cell subsets.

Immunocytochemistry

For immunostaining, anti-CD3, -CD4, -CD8, -CD14, -CD19, -CD38 and -HLA DR unconjugated monoclonal antibodies (mAbs) were obtained from Serotec, Oxford, UK. Rabbit anti-mouse unconjugated- and peroxidase conjugated-Ig, as well as an alkaline phosphatase anti-alkaline phosphatase (APAAP) complex were purchased from DAKO, Copenhagen, Denmark. Cytospins were fixed with 2% paraformaldehyde for 2 min at room temperature, washed with phosphate-buffered saline (PBS) for 10 min, blocked with rabbit serum for 20 min and washed with PBS. Cytospins were incubated with the primary antibodies for 60 min at room temperature followed by washing with PBS. When the staining was further processed for the immunoperoxidase method, the slides were blocked with 0.3% H2O2 in PBS for 20 min and then incubated with appropriate dilution of anti-mouse peroxidase conjugated-Ig. The immunoperoxidase reaction was developed with diaminobenzidine. When the immunostaining was performed with the immunoperoxidase method, the slides were incubated with anti-mouse unconjugated Ig and then with APAAP. The reaction was finished by using Fast Red, as a substrate. Both enzyme substrates were obtained from Sigma. The controls were the samples incubated with an irrelevant mAb, mouse anti-rat CD4 (OX-38), Serotec, non-reactive with human cells. To identify B cells and plasma cells, cytopsins were stained with the combination of anti-CD19 mAb and anti-CD38 mAb. T cells were identified based on the positivity with anti-CD 3 mAb and subsets of T cells based on the staining with anti-CD4 and anti-CD8 mAbs, respectively. CD14 was a marker of mononuclear phagocytes, whereas HLA-DR was a marker...
of antigen-presenting cells. Cytospins were analyzed by light microscopy. On each cytospin at least 500 cells were counted. The percentages of positive cells were determined on the basis of total counted cells.

Cell cultures

PL-ICs were cultivated in 96-wells, with the round-bottomed plates (ICN, Costa Mesa, CA) (1 × 10^5 cells/well, 200 µL) in the complete culture medium consisted of RPMI-1640 medium supplemented with 10% fetal calf serum (FCS) (Sigma) and the standard culture solutions of antibiotics. Phorbol myristate acetate (PMA) (20 ng/mL) (Sigma) and Ca^2+ ionophore (A 23187, 1 M) (Sigma) were used for the cell stimulation. After 24 h, the cell supernatants were collected, centrifuged and frozen at -70ºC until the levels of cytokines were determined.

Cytokine assays

The concentrations of IL-10, IL-27 and TGF-β in culture supernatants were detected by using the specific ELISA kits (R&D, Minneapolis, USA) following the instructions of the manufacturer. The levels of cytokines were determined on the basis of standard curve, constructed by known concentrations of these cytokines. The results are presented as pg/mL.

Statistical analysis

Statistical analysis was performed by using the Student t-test and Spearman's correlation test. The values of *p* < 0.05 were considered to be significant.

Results

The first aim of this study was to examine the composition of PL-ICs isolated from clinically asymptomatic lesions divided according to their size. As presented in Table 1, the total number of PL-ICs from the small-size lesions was lower compared to the number of PL-ICs isolated from the large size lesions (*p* < 0.01). However, their main composition was not significantly different, except that the large-size lesions contained a higher proportion of mononuclear phagocytic cells (*p* < 0.05).

The results related to the production of three immunoregulatory cytokines in the cultures of PL-ICs were presented in Figure 3. The levels of IL-10 and TGF-β were significantly higher in the PL-ICs cultures of larger-size lesions (*p* < 0.01 and *p* < 0.05, respectively). In contrast, the level of IL-27 was higher in the cultures of small-size lesions (*p* < 0.05).

Table 1

Total cellularity and cellular composition of periapical lesions (PLs)
Cell type

Total number of cells (∗10^6)
Lymphocytes (%)
Plasma cells (%)
N-granulocytes (%)
Macrophages (%)
Mast cells (%)
Other cells (%)

SD – standard deviation; ∗*p* < 0.05; ***p* < 0.01, compared to the values of small-size PLs.
Table 2

Phenotypic characteristics of inflammatory cells isolated from periapical lesions (PLs)

Markers	Small-size PLs (n = 12)	Large-size PLs (n = 18)
	mean ± SD	mean ± SD
CD3	38.2 ± 6.9	32.4 ± 7.1*
CD4	19.2 ± 5.2	22.3 ± 6.5
CD8	6.8 ± 4.6	12.2 ± 5.8*
CD19/38	20.4 ± 6.9	30.8 ± 5.5***
CD14	13.8 ± 4.7	21.7 ± 8.6*
HLA-DR	15.1 ± 3.6	20.9 ± 8.8

SD – standard deviation; *p < 0.05; ***p < 0.005, compared to the values of small-size PLs.

Discussion

This is the first study investigating the production of immunoregulatory cytokines (IL-10, IL-27 and TGF-β) in clinically asymptomatic PLs, which were analyzed according to the size of PLs. IL-10 and TGF-β were implicated in the suppressive mechanisms mediated by different PL cells, including CD4 CD25 Foxp3 Tregs. In contrast, IL-27 was identified as both pro-inflammatory and immunosuppressive cytokine in PLs. We decided to study the clinically asymptomatic lesions based on a large number of data showing that immunosuppressive mechanisms are more operative in this type of lesions. In addition, the large-size lesions are usually an advanced stage of the PL development, characterized as large granulomas or cysts. In contrast, the small-size lesions usually represent an early stage of PL induction. The division into these two groups of PLs was arbitrary and based on the size of our PL collection. To avoid possible errors in the PL measurement, we excluded from the study those PLs whose greatest diameter was higher than 3.5 mm and PLs whose smallest diameter was less than 4.5 mm.

Both types of PLs had similar cellular content, composed predominantly of mononuclear infiltrating cells, which is a typical hallmark of asymptomatic lesions, whereas the proportion of granulocytes which are characteristic for symptomatic lesions (acute phase of PL development or PL exacerbation) was lower. Our results showed that ICs from the large-size PLs produced higher levels of IL-10 and TGF-β than ICs from the small-size PLs. This finding correlates with a higher proportion of mononuclear phagocytic cells, which are an important source of these immunosuppressive cytokines. Except macrophages, IL-10 is produced by dendritic cells, different subsets of T and B cells and various innate immune cells. TGF-β is additionally secreted by different stromal cells and both cytokines are produced by Tregs. In our previous paper, we showed positive correlations between the frequency of Tregs and the levels of IL-10 and TGF-β in culture supernatants of mononuclear cells (MNC) isolated from PLs. It is interesting that all Tregs, isolated from PLs, expressed IL-10, but only a half of them were TGF-β-positive. Based on all these data, it can be supposed that the proportion of Tregs in the large-size PLs is higher than that in the small-size lesions, but this hypothesis, which has not been tested so far, needs to be proved in further experiments.

IL-10 and TGF-β have the potent anti-inflammatory properties that play a central role in limiting the host immune response to pathogens, thereby preventing the tissue damage, including osteolysis in PLs. Dysregulation of IL-10 is associated with the enhanced immunopathological processes in response to infection and increased risk for the development of autoimmune diseases. It is interesting that the systemic administration of IL-10 for autoimmune therapy was shown to be paradoxically proinflammatory, whereas the localized IL-10 delivery proved to be therapeutic.
mediates its immunosuppressive activity by the heterodimeric IL-10 receptors (IL-10R1, IL-10R2), which is expressed at varying degrees in many cell types, especially in monocytes and macrophages. The ligation of receptor is followed by the activation of Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling pathway, and subsequent transcription of various immunomodulatory genes, which, in turn, inhibit the production of pro-inflammatory mediators, stimulate the release of anti-inflammatory molecules such as interleukin-1 receptor antagonist (IL-1RA), soluble tumor necrosis factor-α (TNF-α) receptor, and interleukin-27 and down-regulate antigen presentation and phagocytosis. Additionally, through the release or via physical interactions with T cells, IL-10 can directly or indirectly enhance the Treg function, but it is also able to activate a certain type of immune cells, including the B cells, and to stimulate their proliferation. Such finding and association of IL-10 with the Th2 immune response are in agreement with a higher percentage of CD19+/CD38+ B cells/plasma cells and with previous findings that the advanced stage of PL development is associated with the predominance of humoral immune response.

TGF-β participates in several important pathophysiological processes and plays a bidirectional activity in the immune regulation. Its dual role in modulating the macrophage function is rapidly gaining recognition. TGF-β functions as a macrophage suppressing agent and as a monocyte activator. It also exerts the inhibitory and stimulatory effects on the bone marrow cells, stimulates the chemotactic activity of osteoblasts and supports the differentiation of mesenchymal stem cells into osteoblasts and chondroblasts. In our previous paper, we showed that the production of TGF-β by PL-ICs is upregulated by the mesenchymal stem cells isolated from PLs. TGF-β also stimulates the production of extracellular matrix and collagen type I, the molecules which are of key importance for the promotion of tissue healing. It is known that healing is a characteristic of advanced stage of the PL development, a finding which is in correlation with our present results.

IL-27 is a relatively new cytokine member of the IL-6/IL-12 family, exerting both pro-inflammatory and anti-inflammatory properties. It consists of the Epstein-Barr virus-induced gene 3 (EUB3) and p28 subunits and acts through the IL-27 receptor complex formed by WSX-1 and gp130 subunits. DCs and activated macrophages are its main source. In the PLs endothelial cells as well as the mast cells are also IL-27. It is well documented that IL-27 plays an important role in the initial immune response by stimulating the production of Th1 cytokines, which are important for the development of granulomatous diseases (tuberculosis, sarcoidosis and Crohn’s disease). However, IL-27 has general inhibitory effects on the activity of Th1, Th2, Th17 and regulatory T cells. The inhibitory effect of IL-27 on osteoclasts is in accordance with this hypothesis, suggesting the role of this cytokine in the restriction of unwanted immune responses and bone destruction in PLs. In our previous experiment, we showed that the production of IL-27 by PL-MNC, especially in symptomatic PLs, was significantly higher compared to its level in the cultures of peripheral blood MNC and correlated with the frequency of CD14+ and CD3+ cells. Exogenous IL-27 stimulated Th1 and down-regulated the Th17 cytokine production by PL-MNC from symptomatic PLs, but the downregulated Th1 and Th2 responses in asymptomatic PLs suggested its complex biological functions in PLs.

We showed in this study for the first time that the small-size asymptomatic PLs produce the higher levels of IL-27 than the large-size PLs. These results suggest that the immunoregulatory mechanisms are differently regulated during the progression of PL development, having in mind the opposite production of IL-10 and TGF-β. Our results also suggest that, during initiation of the PL development, IL-27 may have a more important down-modulatory role in suppressing the production of Th1 and Th2 cytokines, than the other two cytokines may have. However, under the certain conditions, IL-27 can stimulate the Th1 response, which is mediated by the activated CD4+ T-cells, recently migrated into the periapical tissue. This finding was already observed in our previous paper, in which we showed that exogenous IL-27 stimulated the production of IFN-gama by PL-MNC, especially during the exacerbation phase of the PL development.

Conclusion

The results of this study, performed on clinically asymptomatic PLs, showed that the small-size lesions differ from the large-size lesions in terms of IL-10, IL-27 and TGF-β production. ICs from the small-size PLs produce significantly much higher quantity of IL-27 than the large-size PLs. It was the opposite with IL-10 and TGF-β. Cumulatively, it can be hypothesized that these immunoregulatory cytokines may play different roles in the suppression of unwanted immune/inflammatory responses in asymptomatic PLs, depending on the extension of the pathological process.

Acknowledgement

The study was supported by the project (grant No. OI 175102) from the Ministry of Education, Science and Technological Development of the Republic of Serbia and the project of the Faculty of Medicine of the Military Medical Academy, University of Defence in Belgrade (project No. MFVMA 07/17-19).

Declaration of interest

Authors declare no conflict of interest.
REFERENCES

1. Wartinde J, Shemeth H. The dynamics of the periapical lesion. Endod Pract Today 2017; 11(3); 167–71.

2. Graveri DT, Oates T, Garlet GP. Review of osteoimmunology and the host response in endodontic and periodontal lesions. J Oral Microbiol 2011; 3(1): 5304.

3. Ćalić M, Gazivoda D, Vucetić D, Vasilijić S, Rudolf R, Lukić A. Proinflammatory and immunoregulatory mechanisms in periapical lesions. Mol Immunol 2009; 47(1): 101–13.

4. Cavulla F, Araujo-Pires AC, Bigiotti CC, Garlet GP. Cytokine networks regulating inflammation and immune defense in the oral cavity. Curr Oral Health Rep 2014; 1(2): 104–13.

5. Lukić A, Vasilijić S, Magistorović I, Vucetić D, Mogiljević S, Gazivoda D, et al. Characterization of antigen-presenting cells in human apical periodontitis lesions by flow cytometry and immunocytochemistry. Int Endod J 2006; 39(8): 626–36.

6. Garlet GP. Destructive and protective roles of cytokines in periodontitis: a re-appraisal from host defense and tissue destruction viewpoints. J Dent Res 2010; 89(12): 1349–63.

7. Ćalić M, Vasilijić S, Gazivoda D, Vucetić D, Marjanović M, Lukić A. Interleukin-17 plays a role in exacerbation of inflammation within chronic periapical lesions. Eur J Oral Sci 2007; 115(4): 551–60.

8. Takayanagi H. New developments in osteoimmunology. Nat Rev Rheumatol 2012; 8(11): 684–91.

9. Sfeir C, Campanelli AP, Garlet GP, Cardoso CR, Mariano FS, Claudino M, de Assis GF, Menezes R, Garlet TP, Letra A, Bramante CM, Campanelli AP, Figueiredo RD, Granville K, Trombone AP, Repeke CE, Letra A, Granjeiro JM, et al. The potential role of suppressors of cytokine expression on the differentiation of naive CD4+ cells in human chronic periapical diseases. Am J Transpl Res 2017; 9(3): 1460–70.

10. Yoshimura T, Takeo A, Horsley V, Shiokawa K, Iwashita T, et al. Cytokine and cytokine receptor expression as a biological indicator of immune activation: important considerations in the development of in vitro model systems. J Immunol Methods 2000; 243(1-2): 125–45.

11. Ćalić M, Gazivoda D, Vucetić D, Magistorović I, Vasilijić S, Rudolf R, et al. Regulatory T-cells in periapical lesions. J Dent Res 2009; 88(11): 997–1002.

12. Marton IJ, Kiss C. Overlapping protective and destructive regulatory pathways in apical periodontitis. J Endod 2014; 40(2): 155–63.

13. Kruse C, Spin-Neveu R, Wenzel A, Kirkerud L. Cone beam computed tomography and periapical lesions: a systematic review analysing studies on diagnostic efficacy by a hierarchical model. Int Endod J 2014; 48(9): 815–28.

14. Vannella KM, Wynn TA. Mechanisms of organ injury and repair by macrophages. Annu Rev Physiol 2017; 79(1): 593–617.

15. Jannik S, Cheng G. Role of interleukin 10 transcriptional regulation in inflammation and autoimmune disease. Rev Immunol 2012; 32(1): 23–63.

16. Travis M-A, Strohgard D. TGF-β activation and function in immunity. Annu Rev Immunol 2014; 32(1): 51–82.

17. Tasaka A, Sakaguchi S. Regulatory T cells in cancer immunotherapy. Cell Res 2017; 27(1): 109–18.

18. Rajas JM, Aria M, Martin V, Sevilla N. IL-10: a multifunctional cytokine in viral infections. J Immunol Res 2017; 2017: 614054.

19. Yoshimura A, Wakahayashi Y, Mori T. Cellular and molecular basis for the regulation of inflammation by TGF-. J Biochem 2010; 147(6): 781–92.

20. Marković M, Tomić S, Džokić J, Ćalić M. Mesenchymal stem cells from periapical lesions upregulate the production of immunoregulatory cytokines by inflammatory cells in culture. Acta Fac Med Naiss 2015; 32(3): 171–9.

21. Pakyari M, Varmokh A, Madaressi MK, Ghalayri A. Critical role of transforming growth factor beta in different phases of wound healing. Adv Wound Care (New Rochelle) 2013; 2(5): 215–24.

22. Yoshimura T, Takeo A, Hamato S, Miyazaki Y, Kinjyo I, Ishibashi M, Gazivoda D, Vucetic S, Rudolf R, Lukić D, Marjanović M, Gazić I, Vasić M, Lukić D, Marjanović M, Gazić I, Judas M, Gazivoda D, Vukelić S, Rudolf R, et al. Overlapping protective and destructive roles of cytokines in periapical lesions. J Dent Res 2008; 87(12): 1227–33.