Research Article

Michał Kekez*

Model-based imputation of sound level data at thoroughfare using computational intelligence

https://doi.org/10.1515/eng-2021-0051
Received Sep 15, 2020; accepted Jan 08, 2021

Abstract: The aim of the paper was to present the methodology of imputation of the missing sound level data, for a period of several months, in many noise monitoring stations located at thoroughfares by applying one model which describes variability of sound level within the tested period. To build the model, at first the proper set of input attributes was elaborated, and training dataset was prepared using recorded equivalent sound levels at one of thoroughfares. Sound level values in the training data were calculated separately for the following 24-hour sub-intervals: day (6-18), evening (18-22) and night (22-6). Next, a computational intelligence approach, called Random Forest was applied to build the model with the aid of Weka software. Later, the scaling functions were elaborated, and the obtained Random Forest model was used to impute data at two other locations in the same city, using these scaling functions. The statistical analysis of the sound levels at the above-mentioned locations during the whole year, before and after imputation, was carried out.

Keywords: imputation, monitoring station, sound level, random forest, scaling functions

1 Introduction

Missing values in measurement data always hamper interpretation of results, regardless of the area of research [1]. The reasons for the lack of data can be analyzed using three models: MCAR (missing completely at random), MAR (missing at random), and MNAR (missing not at random). In the last two models, the missingness of data is related to the data observed, or caused by a malfunction of measurement path components, wrong decisions or ethical considerations. In consequence, missing data may lead to bias as they do not appear in the sample completely randomly [1]. These factors have led to the development of various computational methods helping to overcome problems related to missingness of data [1]. In [2], the authors proposed classification of these methods into a weighting approach [3] and an imputation-based approach [1, 4]. Both approaches use additional information on the phenomena under study [1]. Weighting methods make adjustments due to missing data by modifying the base weights. Imputation methods use additional information to build the imputation model, on the basis of which the missing data is imputed [1, 5]. Imputation methods are divided into deductive and statistical [6]. Deductive methods use rules and relationships between variables for determining the missing data. Statistical methods use remaining part of dataset for reconstruction of the missing values. These methods can be divided into deterministic (imputation by the mean, and regression imputation) and stochastic (hot-deck, and stochastic regression imputation) [6]. However, they often do not give satisfactory results [7].

More sophisticated methods of imputation require building a model. When we consider time series data imputation only, autoregressive and computational intelligence (CI) methods [8] can be applied to building models. Such models can be often used also for time series forecasting [9]. Among autoregressive methods [10], autoregressive moving average (ARMA), autoregressive integrated moving average (ARIMA) [10], autoregressive conditional heteroscedasticity (ARCH), and generalized autoregressive conditional heteroscedasticity (GARCH) [11] are used. Examples of machine learning and computational intelligence methods used for missing data imputation are [12]: K-nearest neighbor (KNN), fuzzy K-means (FKM), singular value decomposition (SVD), and Bayesian principal component analysis (BPCA) as well as regression trees [1] like classification and regression trees (CART) [13] or Cubist [14]. CI methods for modeling, e.g. neural networks, or fuzzy systems are often used together with optimization algorithms like [15]: genetic algorithms, particle swarm optimization (PSO), ant colony optimization, and memetic algorithms [16]. Hybrid connections of various methods are also used for imputation [8]: hybrid simulated annealing and genetic algorithms (HSAGA), hy-
ound level variability and use it for imputation. To present the
previously mentioned deductive method. However, such
missing traffic data using these models, and finally use
imputation.

In various transportation-related problems, computa-
tional intelligence methods as well as autoregressive meth-
ods like ARIMA are used for data imputation [17, 18]. Neural
networks were used for imputation in [19]. Machine learn-
ing was used for cleaning data collected in intelligent trans-
portation systems [20]. Problems regarding road safety and
modeling of transport processes were analyzed in [21] and
the proposed tool for imputation was Random Forest. In [1],
two kinds of CI methods, namely regression trees and Ran-
dom Forest, were used for analysis of road traffic noise.
However, imputation of road traffic noise at various loca-
tions using only one model required the development of a
new methodology, as discussed in Section 2, 3 and 4. This
allows building the initial model for the first location near
thoroughfare and the immediate extension of this model
for any new thoroughfare in the same city.

2 Measurement data used for building the model

Road traffic and noise monitoring stations, located near
thoroughfares in many cities, constantly record sound level,
traffic volume, and vehicle speed and type. Recorded data
can be used for various purposes, including calculation of
long-term noise indicators L_{DEN} and L_N [22], environmen-
tal monitoring, and creation of acoustic maps. However,
if monitoring stations cease to function partially or com-
pletely, missing values of sound level need to be imputed.
When traffic data are present, imputation can be carried
out by using deductive method, e.g. using CNOSSOS-EU [23]
or Nordic prediction method [24]; otherwise the possible
way of sound level imputation is to produce models for traf-
cic volume [18, 25–31], and vehicle speed and type, impute
missing traffic data using these models, and finally use
previously mentioned deductive method. However, such
multi-stage imputation decreases the quality of imputed
data. The better solution is to create the model of sound
level variability and use it for imputation. To present the
proposed methodology, the data recorded in a noise moni-
toring station will be used.

Sound level values were recorded in a noise monitoring
station, situated at the location number 1 (thoroughfare,
namely Krakowska Street in Kielce, Poland), consisting of
class-1 sound level meter, a road radar, and weather sta-
tion [1, 12]. Measurements were made continuously and the
RMS (root mean square) of the A-weighted sound level was
saved in the buffer in 1 second intervals with a resolution of
0.1 dB. This allowed to calculate the most common indica-
tor of noise annoyance [32], namely A-weighted equivalent
sound level L_{Aeq}, expressed in dB(A), defined as [32, 33]:

$$L_{Aeq} = 10 \log \left(\frac{1}{T} \int_0^T \left(\frac{p_A(t)}{p_0} \right)^2 dt \right)$$ \hspace{1cm} (1)

where T represents the total time of measurement (ex-
pressed in s), $p_A(t)$ – A-weighted sound pressure (in Pa),
and p_0 – reference sound pressure of 20 μPa.

Based on the previously mentioned measurements, L_{Aeq}
values were calculated for the three 24-hour sub-
intervals: day (6-18), evening (18-22), and night (22-6), separ-
ately for each 24-hour period in the year, as shown in [1]
and in Figure 1.

![Figure 1: L_{Aeq} calculated from measurements made at the location number 1, in year 2013, for: day sub-interval (6-18), (solid line), and night sub-interval (22-6), (dash-dot line)](image)

In Figures 1–6, numbers on the horizontal axis show
consecutive 24-hour periods in the year, numbered from 1
to 365; night sub-interval (hours from 22 to 6) is counted as
part of the 24-hour period ending at 6 a.m. The L_{Aeq} values
for evening (hours from 18 to 22), presented in [1], were
omitted in Figure 1 to improve the readability of the chart.

Data calculated from the measurements made in the
year 2013 includes 905 records describing the equivalent
sound level for a particular sub-interval: day (301 records),
evening (302 records) or night (also 302 records). For each of
the sub-intervals, the L_{Aeq} values are missing for almost all
of the first 44 and last 26 days of the year (Figure 1). Median

values of non-missing L_{Aeq} values in 2013 are: 70.42 dB for day sub-interval, 68.79 dB for evenings, and 64.785 dB for nights [1].

3 Elaborated model

The training data for the model contains equivalent sound level (L_{Aeq}) values of six previous days (for the same sub-interval of the 24-hour period) marked l_1, l_2, \ldots, l_6, where l_i is the L_{Aeq} recorded i days earlier. The authors in [1] created 3 separate training datasets, one for each sub-interval of 24-hour period (or time of the day, in other words). Each training set consisted of records containing the values of one output attribute dB_A (equivalent sound A-level, expressed in dB) and 8 input attributes: $day_of_the_week$ (taking values from 1 – Monday to 7 – Sunday), $day_of_the_year$ (values in the range from 1 to 365), l_1, l_2, l_3, l_4, l_5, and l_6. There was no $time_of_day$ attribute (taking values 0 for night, 1 for evening, and 2 for day) in the created sets, because it was held constant in the entire set. The training sets included all records (301 for days, 302 for evenings, and again 302 for nights). Testing was conducted by 10-fold cross validation [1]. Certain records in the training sets showed the missing values of some of l_1, l_2, \ldots, l_6 of the input attributes, and contrary to model 1 in [1], these records were not removed from the training dataset.

The model was constructed using Random Forest algorithm without random selection of attributes, implemented in Weka software [34]. The obtained model consists of 300 trees (100 for each sub-interval of the 24-hour period). In this method, the size of the trees may be large due to no pruning [35]. To assess the accuracy of prediction made by the model, mean absolute error (MAE), which is the arithmetic average of absolute values of differences between the predicted and real value, can be used [36]:

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y'_i - y_i|$$

where y_i denotes real dB_A value, y'_i denotes dB_A value calculated by the model, and n is the number of records. Accuracy of the model defined by MAE estimator (eq. 2) is very good because MAE on the training set does not exceed 0.27 dB, and MAE on the test set during 10-fold cross validation is not higher than 0.72 dB (Table 1) [1]:

Dataset or validation method	MAE of the model		
Day	Evening	Night	
Training dataset	0.21 dB	0.27 dB	0.23 dB
Ten-fold cross validation	0.56 dB	0.72 dB	0.62 dB

Table 1: Accuracy of the model at location no. 1 [1]

Values of L_{Aeq} calculated by the model for the location no. 1 are shown in Figure 2. Vertical dashed lines in Figure 2 separate days of the year (from 1 to 7 or 8, from 14 or 15 to 43 or 44, and from 340 or 341 to 365) for which the measurement data was missing.
The L_{Aeq} values calculated by the model, shown in Figure 2, have smaller variance than L_{Aeq} calculated from measurements (Figure 1). One can observe that minimum value of modeled L_{Aeq} at night, 60.76 dB, shown in Figure 2c is higher than corresponding measurement value of 59.12 dB in Figure 1. Similarly, maximum value of modeled L_{Aeq} at night, 66.73 dB is lower than corresponding value of 67.69 dB in Figure 1. However, the overall accuracy of the model, shown in Table 1 is quite good.

The model was used for imputation of data at location no. 1, for the whole year 2013. This means that missing L_{Aeq} values in measurement data were replaced by L_{Aeq} calculated by the model, while remaining part of data was not changed. Median values of L_{Aeq} sets after imputation are: 70.51 dB (day), 68.74 dB (evening), 64.72 dB (night).

After the imputation of missing L_{Aeq} values by the model for the whole year 2013 at location no. 1 (Table 2), the median of L_{Aeq} did not change significantly (at most ±0.09 dB). The quartiles Q_1 and Q_3 did not change more than ±0.18 dB (Q_1) and ±0.15 dB (Q_3).

Table 2: Selected parameters of the model at location no. 1 [1]

L_{Aeq} values	Q₁ quartile for 24-hour sub-interval	Median for 24-hour sub-interval	Q₃ quartile for 24-hour sub-interval						
	Day	Evening	Night	Day	Evening	Night	Day	Evening	Night
Before imputation	69.58 dB	68.28 dB	64.293 dB	70.42 dB	68.79 dB	64.785 dB	70.9 dB	69.435 dB	65.31 dB
Calculated by the model	69.686 dB	68.394 dB	64.202 dB	70.517 dB	68.776 dB	64.78 dB	70.928 dB	69.179 dB	65.153 dB
After imputation	69.62 dB	68.27 dB	64.113 dB	70.51 dB	68.74 dB	64.72 dB	70.98 dB	69.29 dB	65.26 dB

4 Generalization of the model by using scaling functions

The idea of imputing traffic data at one location by the model built on data from nearby location was presented in [5]. In this section, the idea of imputing sound level data at given location by the model built for another location will be presented.

The elaborated model described in Section 3 can be adjusted to predict sound level values at another place in the same city, located close to any road of the same class as at location no. 1. For this purpose, the l_1, l_2, …, l_6 inputs of the model are modified by input scaling function (eq. 5), while y output of the model is modified by the output scaling function (eq. 6).

One can assume that at all thoroughfares in a given city, for a given 24-hour sub-interval and for a given day of week, traffic volume can be expressed as a product of a constant and a coefficient having the value specific to this road. When Nordic prediction model [24] is applied to calculate sound level at any of these thoroughfares (and when percentage of heavy vehicles is similar at all thoroughfares), we obtain the sound level expressed as a sum of a constant and a parameter having the value specific to this road. This led to the idea of output scaling function (eq. 6) in the form of the sum of a constant (obtained for location no. 1) and a parameter specific to given thoroughfare (calculated separately for each day of week and each of three 24-hour sub-intervals).

In order to obtain parameters of both scaling functions, at first $a(d,t)$ values, which are equivalent sound levels [33] for a given day of the week d, and for a given 24-hour sub-interval t, are calculated separately for each $d=1,2,\ldots,7$, and for each $t=0,1,2$, with use of L_{Aeq} measurement data records from location no.1 (described as training data in Section 3):

$$a(d,t) = 10 \log \left(\frac{1}{n} \sum_{i=1}^{n} 10^{0.1y_i} \right)$$ \hspace{1cm} (3)

for all n records fulfilling the condition $day_of_the_week = d$ and $time_of_day = t$, and where $day_of_the_week$ is input attribute (1 – Monday, 2 – Tuesday, …, 7 – Sunday), $time_of_day$ is also input attribute (0 – night, 1– evening, 2 – day), and y_i denotes db_A value in measurement data for given location. Values of $a(d,t)$ for location no. 1 are shown in Table 3.

The $a(d,t)$ values for location no. 1 (calculated according to eq. 3) are denoted as $a_1(d,t)$. Then, the $a(d,t)$ values for a new location are calculated according to eq. 3 (using measurement data from this new location), and denoted as $a_2(d,t)$. Later, the parameters of scaling functions, namely...
Table 3: Values of \(a(d, t) \) in dB, for location no. 1

\(a(d, t) \), in dB	\(d \)						
\(t \)	1	2	3	4	5	6	7
2	70.6	70.9	70.6	70.7	70.7	69.7	68.5
1	68.7	68.7	68.9	69.2	69.4	68.4	68.6
0	64.5	64.7	64.7	64.9	65.0	65.2	63.8

\(p(d, t) \) values, are calculated separately for \(d=1,2,\ldots,7 \), and \(t=0,1,2 \):

\[
p(d, t) = a_2(d, t) - a_1(d, t) \tag{4}
\]

The extended model, proposed in this section, for the given data record replaces the value of each input attribute \(l_i \) with the corresponding \(l'_i \) value, calculated using the so-called input scaling function:

\[
l'_i = l_i - p(d', t) \quad \text{for} \quad d' = (d + 6 - i) \, \text{mod} \, 7 + 1 \tag{5}
\]

where \(d \) is \textit{day of the week} attribute value, and \(t \) is \textit{time of day} attribute value in the given data record.

Then, the extended model produces its output \(y \) by using the so-called output scaling function:

\[
y = y' + p(d, t) \tag{6}
\]

where \(y' \) is the value of the output of elaborated model shown in Section 3, \(d \) is \textit{day of the week} attribute value, and \(t \) is \textit{time of day} attribute value, in the given data record.

4.1 Application of the model for location no. 2

The values of \(L_{Aeq} \) at location no. 2 (thoroughfare, namely Jesionowa Street in Kielce, Poland) in year 2013 calculated from measurements are shown in Figure 3.

For over 130 days, the \(L_{Aeq} \) values are missing (Figures 3a, 3b, 3c). However, the \(L_{Aeq} \) data for the first and for the last 10 days of the year are present (contrary to data at location no. 1), with \(L_{Aeq} \) taking values often close to the year’s minimum. The lowest value of \(L_{Aeq} \) for day sub-interval (Figure 3a) was 65.9 dB at 1st Jan, and highest was 76.6 dB at 20th Nov. The lowest values for evening and night sub-intervals were usually observed at national holidays.

In order to adjust the model (presented in Section 3) for location no. 2, the values of \(a(d, t) \) (eq. 3) for this location were calculated, based on the measurement values. Next, the \(p(d, t) \) values (eq. 4) for scaling functions were calculated. Then, the model with output scaling function...
was used to predict the values of L_{Aeq} for location no. 2 (Figure 4).

Absence of L_{Aeq} data for the first and for the last week in the learning set of the model resulted in lower accuracy of the model for these two weeks at location no. 2 (Figure 4). As a result, minimum value of modeled L_{Aeq} for evening, 68.92 dB, shown in Figure 4b is higher than corresponding measurement value of 65.97 dB in Figure 3b. Similarly, maximum value of modeled L_{Aeq} for evening, 71.98 dB, is lower than corresponding value of 74.48 dB in Figure 3b. However, the overall accuracy of the model, shown in Table 5, is fairly good.

The model was used for imputation of data at location no. 2, for the whole year 2013. Median values of imputed L_{Aeq} sets are: 72.333 dB (day), 71.03 dB (evening), 67.46 dB (night). After the imputation of missing L_{Aeq} values by the model for the whole year 2013 at location no. 2 (Table 4), the median of L_{Aeq} did not change significantly (less than ±0.06 dB). The quartiles Q_1 and Q_3 did not change more than +0.18 dB (Q_1) and −0.39 dB (Q_3).

To assess the accuracy of the model with scaling functions, parameters of that function were computed again, based on training data containing only about 2/3 of the whole dataset. Using that model, mean absolute error (eq. 2) was calculated on training data and on the remaining test data. The MAE was in the range from 0.8 to 1.1 dB (Table 5).

Table 4: Selected parameters of the model at location no. 2

L_{Aeq} values	Q_1 quartile for 24-hour sub-interval	Q_3 quartile for 24-hour sub-interval	
$$L_{Aeq}$$	Day	Evening	Night
Before imputation	71.57 dB	70.35 dB	66.15 dB
Calculated by the model	72.089 dB	70.621 dB	66.639 dB
After imputation	71.7 dB	70.39 dB	66.323 dB

Table 5: Accuracy of the model with scaling functions at location no. 2

Dataset	Mean absolute error (MAE)		
	Day	Evening	Night
Training data	0.805 dB	0.923 dB	0.978 dB
Test data	0.775 dB	0.793 dB	1.105 dB

4.2 Application of the model for location no. 3

The values of L_{Aeq} at location no. 3 (thoroughfare, namely Lodzka Street in Kielce, Poland) in year 2013 calculated from measurements are shown in Figure 5.

For about 120 days, mainly from May to August and in November and December, the L_{Aeq} values are missing (Figure 5). The lowest values of L_{Aeq} for every 24-hour sub-
Model-based imputation of sound level data at thoroughfare using computational intelligence

Figure 5: L_{Aeq} calculated from measurements made at the location no. 3, in year 2013, for: (a) day sub-interval (6-18), (b) evening (18-22), and (c) night (22-6) in year 2013

interval were recorded at national holidays and in January and December.

In order to adjust the model (presented in Section 3) for location no. 3, the values of $a(d, t)$ (eq. 3) and $p(d, t)$ (eq. 4) for this location were calculated. The values of L_{Aeq} at location no. 3 in year 2013 calculated by the model with output scaling functions are shown in Figure 6.

The minimum values of modeled L_{Aeq} for day, evening, and night (70.56, 66.38, and 61.92 dB, respectively), shown in Figure 6, are higher than the corresponding measurement values of 65.7, 61.4, and 59.3 dB, respectively (Figure 5). Similarly, the maximum values of modeled L_{Aeq} for day, evening, and night (73.52, 71.56, and 68.27 dB, respectively) are lower than the corresponding measurement values of 74.8, 73.2, and 69.9 dB, respectively (Figure 5). However, the overall accuracy of the model, shown in Table 7, is fairly good.

The model was used for imputation of data at location no. 3, for the whole year. Median values of L_{Aeq} after imputation are: 72.6 dB (day), 70.6 dB (evening), 67.1 dB (night). After the imputation of missing L_{Aeq} values by the model for the whole year 2013 at location no. 3 (Table 6), the median of L_{Aeq} did not change significantly (at most -0.1 dB). The quartiles Q_1 and Q_3 did not change more than $+0.4$ dB (Q_1) and -0.3 dB (Q_3).

To assess the accuracy of the model with scaling functions at location no. 3, the same procedure as for location no. 2 was applied. The MAE was in the range from 0.7 to 1.1 dB (Table 7).
Table 6: Selected parameters of the model at location no. 3

L_{Aeq} values	**Q_1 quartile for 24-hour sub-interval**	**Day**	**Evening**	**Night**
Before imputation	71.6 dB	69.7 dB	65.725 dB	
Calculated by the	71.859 dB	69.809 dB	65.978 dB	
After imputation	71.7 dB	69.733 dB	66.1 dB	

L_{Aeq} values	**Median for 24-hour sub-interval**	**Day**	**Evening**	**Night**
Before imputation	72.7 dB	70.7 dB	67.1 dB	
Calculated by the	72.699 dB	70.318 dB	66.828 dB	
After imputation	72.6 dB	70.6 dB	67.1 dB	

L_{Aeq} values	**Q_3 quartile for 24-hour sub-interval**	**Day**	**Evening**	**Night**
Before imputation	73.3 dB	71.3 dB	67.7 dB	
Calculated by the	72.977 dB	70.745 dB	67.357 dB	
After imputation	73.1 dB	71.0 dB	67.593 dB	

Table 7: Accuracy of the model with scaling functions at location no. 3

Dataset	**Mean absolute error (MAE)**	**Day**	**Evening**	**Night**
Training data	0.706 dB	0.773 dB	0.827 dB	
Test data	0.935 dB	1.094 dB	1.001 dB	

5 Conclusions

The presented model with scaling functions was successfully applied to imputation of missing L_{Aeq} values at three various locations at thoroughfares in the same city. After imputation by the model with scaling functions, the Q_1 and Q_3 quartiles slightly changed (no more than ± 0.4 dB), and the median values did not change more than ± 0.1 dB. To evaluate the quality of the model, 10-fold cross validation (for location no. 1) and train and test sets (for locations no. 2 and 3) were applied. The accuracy of the model at location no. 1 was not worse than 0.72 dB (MAE value), while at locations no. 2 and 3 the MAE did not exceed 1.11 dB.

The accuracy of the model presented in Section 3 and 4 is sufficient for many practical purposes.

References

[1] Kekez M, Radziszewski L, Bąkowski A. Application of selected AI models to reconstruction of noise levels at thoroughfare during selected year. 2019 20th International Carpathian Control Conference (ICCC), Krakow-Wieliczka, Poland. 2019. doi: 10.1109/CarpathianCC.2019.8765915.

[2] Frątczak E, Kamiński A, Kordos J, editors. Statystyka – zastosowania biznesowe i społeczne. Warszawa: Wyższa Szkoła Menedżerska w Warszawie; 2014.

[3] Särndal CE, Lundström S. Estimation in surveys with nonresponse. Chichester: John Wiley & Sons; 2005.

[4] Little JA, Rubin D. Statistical analysis with missing data. Hoboken: John Wiley & Sons; 2002.

[5] Henrickson K, Zou Y, Wang Y. Flexible and robust method for missing loop detector data imputation. Transportation Research Record: Journal of the Transportation Research Board. 2015;2527:29-36.

[6] Piasecki T. Metody imputacji w badaniach gospodarstw domowych. Wiadomości Statystyczne. 2014;9:1-20. Polish.

[7] van Buuren S. Flexible imputation of missing data. 2nd ed. Boca Raton: Chapman & Hall/CRC; 2018.

[8] Marwala T. Computational intelligence for missing data imputation, estimation, and management. Hershey, New York: Information Science Reference/Igi Global; 2009.

[9] Kalimoldayev M, Drozdenko A, Koplyk I, Marinich T, Abdildayeva A, Zhukabaiyeva T. Analysis of modern approaches for the prediction of electric energy consumption. Open Engineering. 2020;10:350–361.

[10] Box G, Jenkins G, Reinsel G, Ljung G. Time series analysis: forecasting and control. 5th ed. New Jersey: John Wiley & Sons; 2016.

[11] Engle RF. Autoregressive conditional heteroscedasticity with estimates of variance of United Kingdom inflation. Econometrica. 1982;50(4):987–1008.

[12] Schmitt P, Mandel J, Guedj M. A comparison of six methods for missing data imputation. Journal of Biometrics & Biostatistics. 2015;6:224. doi:10.4172/2155-6180.1000224

[13] Painsky A, Rosset S. Cross-validated variable selection in tree-based methods improves predictive performance. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2017;39(1):2142–2153.

[14] McCandless T, Dettling S, Haupt SE. Comparison of implicit vs. explicit regime identification in machine learning methods for solar irradiance prediction. Energies. 2020;13(3):689:1-14.

[15] Engelbrecht AP. Fundamentals of computational swarm intelligence. Chichester: John Wiley & Sons; 2005.

[16] Moscato P, Mathieson L. Memetic algorithms for business analytics and data science: a brief survey. In: Moscato P, de Vries N, editors. Business and consumer analytics: new ideas. Cham: Springer; 2019. p. 545-608.

[17] Chen W, Guo F, Wang FY. A survey of traffic data visualization. Intelligent Transportation Systems, IEEE Transactions on. 2015;16(6):2970-2984.
[18] Spławinska M. The problem of imputation of the missing data from the continuous counts of road traffic. Archives of civil engineering. 2015;61(1):131-145.

[19] Alippi C, Boracchi G, Roveri M. On-line reconstruction of missing data in sensor/actuator networks by exploiting temporal and spatial redundancy. Proceedings of the International Joint Conference on Neural Networks; 2012 Jun 10-15; Brisbane, Australia. IEEE; 2012. p. 1-8. doi: 10.1109/IJCNN.2012.6252689.

[20] Megler VM, Tufte K, Maier D. Improving data quality in intelligent transportation systems. arXiv: 1602.03100. 2016 [10 p.]. Available from: https://arxiv.org/abs/1602.03100

[21] Wang Y, Zhang W, Henrikson K, Ke R, Cui Z. Digital roadway interactive visualization and evaluation network applications to WSDOT operational data usage. Research Report WA-RD 854.1, University of Washington, 2016.

[22] Batko WM, Stepień B. Type A standard uncertainty of long-term noise indicators. Archives of Acoustics. 2014;39(1):25-36.

[23] Kephalopoulos S, Paviotti M, Ledee FA. Common noise assessment methods in Europe (CNOSSOS-EU). Publications Office of the European Union. 2012.

[24] Nielsen HL. Road traffic noise: Nordic prediction method. Nordic Council of Ministers. 1997.

[25] Sharma S, Lingras P, Zhong M. Effect of missing values estimations on traffic parameters. Transportation Planning and Technology. 2004;27(2):119-144.

[26] Zhong M, Lingras P, Sharma S. Estimation of missing traffic counts using factor, genetic, neural, and regression techniques. Transport Research Part C: Emerging Technologies. 2004;12(2):139-166.

[27] Zhong M, Sharma S, Lingras P. Genetically designed models for accurate imputations of missing traffic counts. Transport Research Record. 2004;1879(1):71-79.

[28] Zhong M, Sharma S, Lingras P. Genetically-designed time delay neural networks for multiple-interval urban freeway traffic flow forecasting. Neural Information Processing – Letters and Reviews. 2006;10(8-9):201-209.

[29] Lingras P, Sharma S, Zhong M. Prediction of recreational travel using genetically designed regression and time delay neural network models. Transport Research Record. 2002;1805:16-24.

[30] Zhong M, Sharma S, Lingras P. Short-term traffic prediction on different types of roads with genetically designed regression and time delay neural network models. Journal of Computing in Civil Engineering. 2005;19(1):94-103.

[31] Zhong M, Sharma S, Lingras P. Refining genetically designed models for improved traffic prediction on rural roads. Transportation Planning and Technology. 2005;28(3):213-236.

[32] Bąkowski A, Radziszewski L, Dekys V. Modelling of road traffic noise. Matec Web of Conferences. 2018;157:02001. doi: 10.1051/matecconf/201815702001.

[33] ISO 9612:2009. Acoustics – Determination of occupational noise exposure – Engineering method.

[34] Frank E, Hall MA, Witten IH. The WEKA workbench. Online appendix for “Data mining: practical machine learning tools and techniques”. 4th ed. Morgan Kaufmann; 2016.

[35] Breiman L, Cutler A. Random forests. [Internet] c2004-2016 [cited 2020 Sep 15] Available from: https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm

[36] Hyndman R, Athanasopoulos G. Forecasting: principles and practice. 2nd ed. Melbourne: OTexts; 2018. [cited 2020 Nov 10] Available from: https://otexts.com/fpp2/