Nucleosome positioning: resources and tools online

Vladimir B. Teif

School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
E-mail: vteif@essex.ac.uk

Abstract

Nucleosome positioning is an important process required for proper genome packing and its accessibility to execute the genetic program in a cell-specific, timely manner. In the recent years hundreds of papers have been devoted to the bioinformatics, physics and biology of nucleosome positioning. The purpose of this review is to cover a practical aspect of this field, namely to provide a guide to the multitude of nucleosome positioning resources available online. These include almost 300 experimental datasets of genome-wide nucleosome occupancy profiles determined in different cell types, more than 21 computer programs to analyze these data in a systematic manner, and 17 computational tools to predict intrinsic nucleosome formation probabilities from the DNA sequence. A manually curated, up to date list of these resources will be maintained online.
Introduction

The nucleosome is the basic unit of chromatin compaction, composed of the histone octamer and 146-147 base pairs (bp) of DNA wrapped around it. Nucleosomes can form at any genomic locations, but some DNA sequences have higher affinity to the histone octamer, mostly due to the differential bending properties of the DNA double helix. In addition, nucleosome positioning is cell type-specific, in a sense that the cells of the same organism sharing the same genome can have different nucleosome locations depending on the cell type and state. Interested readers are directed to a number of recent publications reviewing the biological, physical and bioinformatics aspects of these phenomena, which will be outside of the scope of the current work [1-32]. Here we will omit fundamental scientific questions, and will focus on a very practical aspect of the field: which experimental nucleosome positioning datasets already exist, how to generate your own data, and how to compare these with other experimental datasets and bioinformatically predicted nucleosome positions in a given genome?

1. Available experimental datasets

Recent high-throughput genome-wide data with respect to nucleosome positioning come from a number of related techniques, which have in common an idea to cut DNA between nucleosomes and map protected DNA regions. The most frequently used method is MNase-seq (chromatin digestion by micrococcal nuclease followed by deep sequencing) [11, 33-35]. A number of complementary methods have been proposed using MNase alone or in combination with sonication [36] and/or histone H3 immunoprecipitation (ChIP-seq) or other enzymes such as DNase (DNase-seq) [37, 38], transposase (ATAC-seq) [39] and CpG methyltransferase (NOME-seq) [40]. Another possibility is to use directed chemical cleavage, either by hydroxyl radicals targeted by artificially introduced histone modifications [41-43], or by small aromatic molecules such as methidiumpropyl-EDTA which preferentially intercalate in the DNA double helix between nucleosomes and cleave it in the presence of Fe(II) ions (MRE-seq) [44]. The method of tiling microarrays (ChIP-chip), which several years ago was the method of choice [45-48], is currently mostly overridden by high throughout sequencing based methods. New methods continue to appear to address three major problems: (1) DNA sequence biases of the experimental setup; (2) targeted enrichment to achieve ultra-high sequencing coverage for a
subset of genomic regions of interest; (3) single-cell sequencing to overcome the problem of heterogeneity, which is present in any cell population.

Unlike typical transcription factor (TF) or histone-modification ChIP-seq datasets, nucleosome positioning aims to be determined with a single-base pair resolution, which requires higher sequencing coverage. This distinction becomes particularly important for large genomes. Therefore, while Yeast nucleosome positioning datasets could be still stored even at individual web sites [10, 49-53], for higher eukaryotes the question of the storage and location of such datasets becomes outstanding. For example, the first investigation of genome-wide nucleosome redistribution in human cells was performed in 2008 [54]. The latter study reported nucleosome maps in activated versus resting CD4+ T cells, determined with 10 base pair resolution using MNase-seq. Several studies later used this method for human cell lines [40, 55-61] and primary human cells [62-67], each generating about 200-400 million DNA reads for a single condition. However, a direct comparison of nucleosome positions in primary cells from patients vs. healthy individuals still remains a challenge because a definitive resolution of nucleosome positions for the human genome requires up to the order of 1-4 billion reads [68]. (For comparison, a typical ChIP-seq dataset addressing TF binding or histone modifications contains just several tens millions reads). This increases the required storage space to the order of terabytes instead of gigabytes per dataset as was common for the “first wave” of Next Generation Sequencing (NGS) experiments. Typically, the Short Read Archive (SRA) is used for such data storage nowadays [69], while a detailed documentation and processed files are stored in the Gene Expression Omnibus (GEO) database [70]. The problem is that usually it is difficult to know which datasets already exist for nucleosome positioning in a given cell type, because “nucleosome positioning” is not a specific type of experiment, and searching e.g. for the word “MNase-seq” returns only part of MNase-seq-type datasets. For example, a surprisingly large number of 14 datasets from different laboratories already exist for nucleosome positioning in a single cell type, mouse embryonic stem cells (ESCs) [44, 66, 71-78]. One would not be aware of all of them without tracking the corresponding publications. This was one of the motivations to create a complete list of such datasets.

Table 1 provides a summary of nucleosome positioning datasets which are currently available. The short one-line descriptions introduced here for each dataset do not substitute for more detailed GEO entries and have been used in this format specifically to help readers quickly navigate in the sea of nucleosomes. Historically, studies in Yeast have founded this type of
research, and these, together with other popular model organisms such as *Arabidopsis* and *Drosophila* still provide valuable systems to understand fundamental biological mechanisms, especially when genetic modifications need to be introduced quickly. However, current literature is becoming highly populated by studies in mouse and human, since the latter have direct links to cancer and other diseases. In practical terms, knowing which datasets already exist can be helpful either to integrate their analysis with other NGS datasets available for the same cell type/state, or at least to get some hints about new experiment design. Visitors of the web site generegulation.info, where this list was initiated in 2009, frequently asked the following question: Suppose, we have no experimentally measured nucleosome maps for the cell type of our interest. Can we take nucleosome positions from another cell type (of the same organism) and compare these with our RNA-seq, ChIP-seq, etc? In general, the answer is “no”, since nucleosome maps are cell-type specific. One has to determine nucleosome maps in a given cell type, which leads us to the next practical questions.

### Table 1. Experimental nucleosome positioning datasets sorted by cell type, newest first

| Description                                                                 | Accession #   |
|----------------------------------------------------------------------------|---------------|
| **Human – about 50 datasets with different cell types/conditions:**        |               |
| | HuRef lymphoblastoid line, α-satellite arrays of centromeres [57]. ChIP-seq. | GSE60951      |
| | H1-OGN embryonic stem cells, H1-OGN induced pluripotent stem cells, and fibroblasts differentiated from H1-OGN ESCs [66]. MNase-seq. | GSE59062      |
| | HCT116 colon cancer cells and their genetic derivatives which lack DNA methyltransferases DNMT3B and DNMT1 activity [56]. NOME-seq. | GSE58638      |
| | Primary human endothelial cells stimulated with tumour necrosis factor alpha (TNFalpha) [62]. MNase-seq. | GSE53343      |
| | MCF-7 (breast cancer) with and without MBD3 knockdown [58]. MNase-seq. | GSE51097      |
| | Human embryonic stem cells (H1 and H9 hESCs). MNase-seq. | GSE49140      |
| | Human sperm [65]; Limited regions retain nucleosomes in sperm. MNase-seq. | GSE47843      |
| | Human colo829 cell line. MNase-seq. | GSE47802      |
| | Raji cells (lymphoblastoid-like) with and without α-amanitin [59]. MNase-seq. | GSE38563      |
| | 7 lymphoblastoid cell lines from the HapMap project [68]. MNase-seq. | GSE36979      |
| | Lymphoblastoid GM12878 and K562 cell lines [55]. MNase-seq. | GSE35586      |
| | CD36+ cells with and without BRG1 knockdown [67]. MNase-seq, ChIP-seq. | GSE26501      |
| | Human embryonic carcinoma (NCCIT) cell line [60]. MNase-seq, ChIP-seq. | GSE25882      |
| | Primary CD4+ T-cells, CD8+ T-cells and granulocytes [64]. MNase-seq. | GSE25133      |
| | MCF7EcoR cells where P53 was either activated or not [61]. MNase-seq. | GSE22783      |
| | Nucleosome positioning and DNA methylation in IMR90 [40]. NOME-seq. | GSE21823      |
| | Resting and activated CD4+ T cells [54]. MNase-seq; H3, H2A.Z ChIP-seq. | SRA000234     |
| **Mouse – about 70 datasets with different cell types/conditions:**        |               |
| | Mouse ESCs [44]. MNase-seq, MPE-seq, MPE-ChIP-seq | GSE69098      |
| | Mouse ESCs, wild type (WT) and Dnmt1/3a/3b triple knockout [77]. MNase-seq | GSE64910      |
| | Mouse EScs, WT and remodeler BAF250a knockout [79]. MNase-seq. | GSE59082      |
| Mouse ESCs, induced pluripotent stem cells (iPCs), somatic tail-tip fibroblasts (TTF) and liver [66]. MNase-seq. | GSE59062 |
| --- | --- |
| Mouse ESCs and sperm [76]. Different size-selection of MNase-seq fragments. | GSE58101 |
| Mouse ESCs, siRNA knockdown of EGFP, Smarca4 or MBD3 [78]. MNase-seq | GSE57170 |
| Mouse ESCs, low MNase digestion; dinucleosome fraction [75]. MNase-seq. | GSE56938 |
| Mouse ESCs and differentiated iMEFs. RED-seq; paper not published yet. | GSE51821 |
| Mouse ESCs (J1) [71]. MNase-seq, ChIP-seq | GSE51766 |
| Mouse ESCs, low MNase digestion [80]. MNase-seq. | GSE50706 |
| Mouse ESCs: (E14) and SMARCAD1-knock down cells. MNase-seq. | GSE47802 |
| Mouse ESCs and induced pluripotent cells (iPSC) from different layers [81] | GSE46716 |
| Mouse ESCs, neural progenitor cells (NPCs) and neurons with and without HMGN1 knockout. MNase-seq using high and low MNase digestion levels [72]. | GSE44175 |
| Mouse ESCs, NPCs and embryonic fibroblasts (MEFs) [74]. MNase-seq. | GSE40951 |
| Mouse thymocytes, MNase-seq. | GSE69474 |
| Mouse B-cell to macrophage lineage switching, several time points. MNase-seq. | GSE53460 |
| Mouse liver, 3-month and 21-month old mice [82]. MNase-seq. | GSE58005 |
| Mouse liver, 6 time points of the 24h light:dark cycle; WT and Bmal1-/- [83]. | GSE47142 |
| Mouse liver [73]. MNase-seq and ChIP-seq. | GSE26729 |
| Mouse bone marrow-derived macrophages (BMDMs) [84]. MNase-seq. | GSE62151 |
| Hypothalamus from MeCP2 knockout mice and control mice [85]. MNase-seq. | GSE66869 |
| Cultured germline stem cells with and without Scml2 knockout [86]. MNase-seq. | GSE55060 |
| Primary CD4+ CD8+ DP thymocytes and Rag2-/- thymocytes [87]. MNase-seq. | GSE56395 |
| Fibroblasts from E13.5 embryos. WT, Snf5-/- and Brg1-/- [88]. MNase-seq. | GSE38670 |

**Drosophila melanogaster, MNase-seq:**

| S2 cell line. WT and stimulated by heat killed Salmonella typhimurium. | GSE64507 |
| S2 cell line. WT; treated with RNAi against Beta-galactosidase or GAGA [89]. | GSE58957 |
| S2 cell line. WT and Beaf32-depleted [90]. | GSE51766 |
| S2 cell line. WT and depletion of CTCF/P190 and ISWI [91]. | GSE51599 |
| S2 cell line. WT [92]. | GSE49526 |
| Staged Drosophila embryos [93]. | GSE41686 |
| S2 cell line. WT, mock-treated, and NELF-depleted [94]. | GSE22119 |

**Arabidopsis thaliana:**

| Col-0 seeds; chr11-1 chr17-1, MNase-seq [95] | GSE50242 |
| Col-0 seeds; WT and inhibition of Pol V-produced lncRNAs. MNase-seq [96] | GSE38401 |
| Col-0 seeds, shoots; MNase-seq, ChIP-seq, Bisulfite sequencing [97] | GSE21673 |

**Caenorhabditis elegans, MNase-seq:**

| Mixed stage, wild-type (N2) C. elegans. SOLiD paired-end sequencing [98] | SRX000426 |

**Chlamydomonas reinhardtii:**

| Chlamydomonas strain CC 1609. MNase-seq [99] | GSE62690 |

**Saccharomyces cerevisiae and related species, MNase-seq:**

| S. cerevisiae hho1, ioc3isw1, and chd1 deletion mutants complemented with the corresponding copies from K. lactis [100]. | GSE66979 |
| S. cerevisiae. Strain W303, stationary growth phase. Wild type (WT) and with introduced DNMT3b [101]. | GSE66907 |
| S. cerevisiae. Strains carrying the Sth1 degron allele and either pGal-UBR1 (YBC3386) or ubr1 null (YBC3387) represent RSC null and RSC wild type correspondingly [102]. | GSE65593 |
| **S. cerevisiae.** WT and Snf2 K1493R, K1497R strains; unstressed/stressed [103] | GSE61210 |
| **S. cerevisiae.** Strain W303. WT and modification affecting one of the following chromatin remodelers: ISW1, CHD1, FUN30, IOC3 [42]. | GSE59523 |
| **S. cerevisiae.** Strain W303. Affected histone deacetylases Sir2 and Rpd3 [104]. | GSE57618 |
| **S. cerevisiae.** Strain W303. Affected histone deacetylases Sir2 and Rpd3 [104]. | GSE56994 |
| **S. cerevisiae.** Calorie restricted and non-restricted WT, ISW2DEL and ISW2K215R strains [105]. | GSE53718 |
| **S. cerevisiae.** Strain YK699, WT and changes addressing the following: Scc2-4; Sth1-3; a2/MCM1; TATA; TATAΔ. Replicates at 25°C and 37°C [105]. | GSE51065, GSE51066 |
| **S. cerevisiae.** Strain W303 (yFR212) [107]. MNase-seq and H2A.Z ChIP-seq. | GSE47023 |
| **S. cerevisiae.** Strain BY4741, WT and Hog1 mutant. Exposed/not exposed to osmostress [109]. | GSE41494 |
| **S. cerevisiae.** Strain BY4742, WT, Ssn6 KO and Tup1 KO [110]. | GSE37465 |
| **S. cerevisiae.** Strain BY4741. Study of response to H2O2 over time in the S288c derivative [112]. | GSE30900 |
| **S. cerevisiae.** Strain YEF473A. WT and mutant with H3 shutoff to study histone H3 depletion [113]. | GSE29292 |
| **S. cerevisiae.** Strain BY4741. WT and Snf2 K1493R, K1497R strains; unstressed/stressed [103] | GSE61210 |
| **S. cerevisiae.** Strain W303. WT and modification affecting one of the following chromatin remodelers: ISW1, CHD1, FUN30, IOC3 [42]. | GSE59523 |
| **S. cerevisiae.** Strain YK699, WT and changes addressing the following: Scc2-4; Sth1-3; a2/MCM1; TATA; TATAΔ. Replicates at 25°C and 37°C [105]. | GSE56994 |
| **S. cerevisiae.** Calorie restricted and non-restricted WT, ISW2DEL and ISW2K215R strains [105]. | GSE53718 |
| **S. cerevisiae.** Strain YK699, WT and changes addressing the following: Scc2-4; Sth1-3; a2/MCM1; TATA; TATAΔ. Replicates at 25°C and 37°C [105]. | GSE51065, GSE51066 |
| **S. cerevisiae.** Strain YEF473A. WT and mutant with H3 shutoff to study histone H3 depletion [113]. | GSE29292 |
| **S. cerevisiae.** Strain S288C. WT, Nup170∆ and Sth1p depletion [111]. | GSE36792 |
| **S. cerevisiae.** Strain BY4741. Chromatin remodelling by Isw2 [49]. Tiling microarrays. | GSE8813, GSE8814, GSE8815 |
| **S. cerevisiae.** Strain Hu1867. WT and without Fun30 chromatin remodeler Fft3 [119]. | GSE58012 |
| **S. cerevisiae.** Strain FWP172. WT and spt6-1 at two different MNase concentrations [120]. Spt6 is a histone chaperone. | GSE49572 |
| **S. cerevisiae.** Strain D18, log phase and stationary Phase [122]. | GSE40451 |
| **Saccharomyces pombe.** MNase-seq: | GSE28071 |

12 Ascomycete species: *Saccharomyces mikatae, Saccharomyces bayanus, Saccharomyces castellii, Saccharomyces cerevisiae, Klyveromyces waltii, Saccharomyces paradoxus, Candida glabrata, Candida albicans, Debaryomyces hansenii, Klyveromyces lactis, Saccharomyces klyveryii, Yarrowia lipolytica* [116].

Comparison of nucleosome positioning in *S. cerevisiae,* *S. paradoxus* and their hybrid for wild-type and deletion mutant strains [117].

**S. cerevisiae.** Strains BY4741 and RPO21. MNase titration series from three different titration levels – underdigested, typical digestion, and overdigested BY4741 cells. Time dependence series: MNase-seq at 0, 20, and 120 minutes after shifting RPO21 cells from 25 C to 37 C [34].

**S. cerevisiae.** Chromatin remodelling by Isw2 [49]. Tiling microarrays. [http://research.fhcrc.org/tsukiyama/en/genomics-data/global_nucleosomemapping.html](http://research.fhcrc.org/tsukiyama/en/genomics-data/global_nucleosomemapping.html)

The Penn State Genome Cartography Project. *S. cerevisiae* and *D. melanogaster* [10, 52, 53, 118]. Tiling microarrays. [http://atlas.bx.psu.edu](http://atlas.bx.psu.edu)

*Saccharomyces pombe,* MNase-seq:

**Strain Hu1867.** WT and without Fun30 chromatin remodeler Fft3 [119].

**Strain FWP172.** WT and spt6-1 at two different MNase concentrations [120]. Spt6 is a histone chaperone.

**Wild type and without CHD remodeler Hrp3** [121].

**Strain D18,** log phase and stationary Phase [122].

[http://www.acsu.buffalo.edu/~mjbuck/Fission_Yeast_chromatin.html](http://www.acsu.buffalo.edu/~mjbuck/Fission_Yeast_chromatin.html)
2. Computational tools to analyze nucleosome positioning data

Many laboratories nowadays consider nucleosome positioning as an important additional piece of information to supplement new stories about a specific TF, pathway, or biological process happening in chromatin. If a general workflow of NGS analysis is already established in the lab, it is tempting to consider nucleosome positioning as just another dataset. Indeed, the first steps of analysis of nucleosome positioning experiments (e.g., MNase-seq, histone H3 ChIP-seq, NOME-seq), require standard NGS software for read mapping and quality control. However, next steps, which use as input mapped BED/BAM/SAM files, diverge from the analysis of typical ChIP-seq experiments. The major difference is that in the nucleosome positioning field we are dealing with millions of small, fuzzy enrichment peaks corresponding to individual nucleosomes defined with precision of one to several bp, in contrast to TF ChIP-seq where one deals with better defined sharp peaks, or histone-modifications ChIP-seq where one deals with broad peaks determined at a precision of hundreds bp. Therefore, generic peak calling programs usually used for ChIP-seq, such as MACs [123] or HOMER [124], are not optimal for nucleosome position calling. Yet, the basic idea behind nucleosome position calls from the experimental data is the same: one has to detect enriched peaks of size around 147 bp (e.g. TemplateFilter [34], NPC [125], nucleR [126], NORmAL [127], PING/PING2 [107, 128], MLM [45], NucDe [129], NucleoFinder [130], ChIPseqR [131], NSeq [132], NucHunter [133], iNPS [134] and PuFFIN [135]). Alternatively, one does not call nucleosome positions at all, and instead operates with the continuous nucleosome occupancy profile, defining regions of cell type/state specific differential occupancy (e.g. DANPOS/DANPOS2 [136], DiNuP [137], NUCwave [138]). We have been also applying the latter idea when analysing nucleosome positioning in mouse and human [12, 26, 75] using custom made scripts (Vainshtein and Teif, unpublished). As a rule of thumb, calling nucleosome peaks is reasonable when these are well defined. This is typically the case in yeast but not in higher eukaryotes (unless a specific subset of well-positioned nucleosomes is considered). On the other hand, nucleosome landscapes in mouse and human are usually easier to interpret in terms of differential occupancy changes. An additional complication is that since typical MNase-seq experiments are being performed using 10,000-1,000,000 cells, the averaged nucleosome profile characterising this cellular ensemble does not represent any particular individual cell. Therefore, another analysis approach is to reconstruct the most probable non-overlapping nucleosome positions in individual cells using Monte Carlo simulations (e.g. NucPosSimulator [139]). In addition, a number of questions related to nucleosome positioning, such as e.g. enhancer identification, have been addressed in more specific tools [140]. Finally, biologically oriented users without solid knowledge of
programming can take advantage of a number of available programs which visually display nucleosome occupancy in their region of interest (e.g. Skyline Nucleosome browser [141] or earlier nucleosome repositories visualizing yeast nucleosome maps [10, 49-53]). In principle, it is also possible to use generic genomic visualization tools such the UCSC Genome Browser [142]. However, due to large sizes of typical nucleosome positioning datasets this is not optimal. Thus, at least 21 computational tools offering one of these five options of the primary analysis of nucleosome positioning data are currently available online, listed with the corresponding explanations in Table 2. Since the analysis of nucleosome positioning performed using one of these five workflows (or combinations of them) can lead to equally interesting biological results, it is beyond the aims of the current review to make recommendations about the choice of these programs. Concerning the subclass of nucleosome peak calling software, interested readers are referred to recent reviews where some of the performance characteristics of nucleosome peak calling algorithms have been compared [138]. An additional parameter to be considered is the popularity of the software. Here, popularity is defined as the number of literature references in Google Scholar to the original paper. Of course, popularity does not necessarily reflect scientific superiority or the ease of use. Furthermore, since input/output data and the purpose of the software are very different, the superiority cannot be defined. The popularity is also not a very robust indicator because some newer tools might have fewer citations due to publication time lapse, while older items might have more citations because the original paper also introduced new experimental data / analysis. In addition, one has to take into account that highly cited software for the analysis of nucleosome positioning from tiling microarrays [45, 46] is not applicable to the nowadays experiments using NGS sequencing. With this disclaimer in mind, currently most popular nucleosome peak callers for single- or paired-end MNase-type nucleosome positioning experiments are TemplateFilter [34], NPC [125], DANPOS/DANPOS2 [136], nucleR [126], NOrMAL [127] and PING/PING2 [107, 128]. Paired-end sequencing is a more recent version of the experimental setup, and not all programs support it. Last but not the least feature is whether the program is a command-line tool, whether it is compatible with R or MATLAB, and whether it has a graphical user interface (GUI). These features are specified in Table 2.
Table 2. Software to process NGS nucleosome experiments (sorted by popularity).

| Description                                                                 | Command line / R / MATLAB / JAVA GUI | Tiling arrays | Peak calling | Paired-end | # citations |
|----------------------------------------------------------------------------|------------------------------------|---------------|--------------|------------|-------------|
| **Tiling array analysis** [46]. A Matlab code, which is complemented by MLM and NucleR packages. | -/-/+/- | + | + | - | 942 |
| http://bcb.dfci.harvard.edu/~gcyuan/software.html                           |                                    |               |              |            |             |
| **TemplateFilter**: Perl source code and executable files for nucleosome positioning data processing [34]. Applicable to Solexa-type high-throughput sequencing data. | +/-/-/- | - | + | - | 181 |
| http://compbio.cs.huji.ac.il/NucPosition/TemplateFiltering/Home.html       |                                    |               |              |            |             |
| **NPS**: Nucleosome Positioning from Sequencing [125]. This is Python based nucleosome peak caller, which is recommended for the use together with software BINOCh from the same group. | +/-/-/- | - | + | - | 95 |
| http://liulab.dfci.harvard.edu/NPS/                                         |                                    |               |              |            |             |
| **DANPOS** and **DANPOS2**: Dynamic Analysis of Nucleosome Positioning and Occupancy by Sequencing [136]. This is a Python package, which reports changes in location, fuzziness, or occupancy for a given nucleosome or any genomic region. It allows generating aggregate profile plots and heatmaps for subsets of genomic regions. | +/-/-/- | - | + | + | 32 |
| https://sites.google.com/site/danposdoc/                                   |                                    |               |              |            |             |
| **nucleR**: Non-parametric nucleosome positioning. This is an R package included in the Bioconductor [126]. It allows treating both NGS and Tiling Arrays experiments. The software is integrated with standard genomics R packages and allows for in situ visualization as well as to export results to common genome browser formats. | -/+/-/+ | + | + | + | 32 |
| http://mmb.pcb.ub.es/nucleR/                                               |                                    |               |              |            |             |
| **NOrMAL**: Accurate nucleosome positioning using a modified Gaussian mixture model. C++ code and executables are provided for download [127]. It is a command line tool designed to resolve overlapping nucleosomes and extract extra information ("fuzziness", probability, etc.) of nucleosome placement. Newer software called PuFFIN developed by the same authors is claimed to outperform NOrMAL. | +/-/-/- | - | + | + | 17 |
| http://www.cs.ucr.edu/~polishka/                                          |                                    |               |              |            |             |
| **PING and PING 2.0**: Probabilistic inference for nucleosome positioning with MNase-based or sonicated short-read data. An R package for nucleosome peak calling integrated in the Bioconductor [107, 128]. The authors say that PING compares favorably to NPS and TemplateFilter in scalability, accuracy and robustness. | -/+/-/- | - | + | + | 13 |
| http://www.bioconductor.org/packages/release/bioc/html/PING.html           |                                    |               |              |            |             |
| **BINOCh**: Binding Inference from Nucleosome Occupancy Changes [140, 143]. This is a Python package, which allows identification of putative enhancers by comparing nucleosome occupancy in two cell conditions and analyzing DNA motifs near nucleosome centres and | +/-/-/- | - | - | + | 12 |
| http://bcb.dfci.harvard.edu/~gcyuan/software.html                          |                                    |               |              |            |             |
edges. It requires as input sorted BED files and relies for peak calling on the software **NPC** developed by the same group. 
http://liulab.dfci.harvard.edu/BINOCh/

| **MLM** | A Multi-Layer Method to analyze microarray nucleosome positioning data. A Matlab code is available for download [45]. http://www.math.unipa.it/pinello/mlm/ | -/+/+  |  +  |  +  |  -  | 12  |
| **NucPosSimulator** | Deriving non-overlapping nucleosome configurations from MNase-seq data [139]. It utilizes a Monte Carlo (MC) approach to determine the most probable nucleosome position in overlapping and ambiguous DNA reads from high through-put sequencing experiments. In contrast to peak-calling procedures NucPosSimulator probes many possible solutions, and can apply a Simulated Annealing scheme, a heuristic optimization method, which finds an optimal solution for complex positioning problems. http://bioinformatics.fh-stralsund.de/nucpos/ | -/+/-/+  |  -  |  +  |  +  | 10  |
| **NucDe** | Mapping nucleosome-linker boundaries [129]. This is an R package mapping nucleosome-linker boundaries from both MNase-Chip and MNase-Seq data using a non-homogeneous hidden-state model based on first order differences of experimental data along genomic coordinates. http://www.stat.wisc.edu/~keles/Software/demo_Nucde.pdf | -/+/-  |  +  |  +  |  -  | 9  |
| **NucleoFinder** | A statistical approach for the detection of nucleosome positions [130]. An R package, which addresses both the positional heterogeneity across cells and experimental biases. https://sites.google.com/site/beckerjeremie/home/nucleofinder | -/+/-  |  -  |  +  |  +  | 8  |
| **ChIPseqR** | Analysis of ChIP-Seq experiments using "R"; included in the Bioconductor R package [131]. ChIPseqR takes as input mapped reads and outputs nucleosome centres and their scores. It allows producing basic statistical graphs using standard R functions. http://www.bioconductor.org/packages/release/bioc/html/ChIPseqR.html | -/+/-  |  -  |  +  |  -  | 7  |
| **DiNuP** | A systematic approach to identify regions of differential nucleosome positioning [137]. DiNuP compares the nucleosome profiles generated by high-throughput sequencing between different conditions. It provides a statistical P-value for each identified differential regions and empirically estimates the False Discovery Rate (FDR) as a cutoff when two samples have different sequencing depths and differentiate differential regions from the background noise. http://www.tongji.edu.cn/~zhanglab/DiNuP/ | +/-/-  |  -  |  -  |  ?  | 7  |
| **NSeq** | a multithreaded Java application for finding positioned nucleosomes from sequencing data [132]. NSeq includes a user-friendly graphical interface written in Java. It computes FDRs for candidate nucleosomes from Monte Carlo (MC) simulations, plots nucleosome coverage and centers, and exploits the availability of multiple processor cores by parallelizing its computations. NSeq analyzes alignment data in BAM, SAM, or BED format. It assumes that the data are single-end. https://github.com/songlab/NSeq | -/-/+  |  -  |  +  |  -  | 7  |
| **Skyline** | nucleosome browser: a web-based application for the identification of nucleosome peaks over the genome [141]. http://chromatin.unl.edu/cgi-bin/skyline.cgi | Web  |  -  |  -  |  +  | 6  |
**NucHunter**: Inferring nucleosome positions with their histone mark annotation from ChIP-seq data [133]. It uses data from histone ChIP-seq experiments to infer positioned nucleosomes, and can predict positioned nucleosomes from one or multiple BAM files, e.g. taking into account a control experiment.  
http://epigen.molgen.mpg.de/nuchunter/

**Perl scripts** to analyze paired-end MNase-seq experiments [144]. The authors have listed the code in supplementary materials of their publication, which is useful for other developers.  
http://nar.oxfordjournals.org/content/suppl/2011/07/24/gkr643.DC1/Cole_Supp_Info.pdf

**iNPS**: The authors developed an improved version of the NPC nucleosome peak calling algorithm, which they claim to outperform the latter [134].  
http://www.picb.ac.cn/hanlab/iNPS.html

**NUCwave**: Nucleosome occupancy maps from MNase-seq, ChIP-seq and CC-seq [138]. It is a Python package which generates nucleosome occupancy maps from MNase-seq, ChIP-seq and chemical cleavage (CC-seq), both for single-end and paired-end reads. It requires as input files in a Bowtie output format.  
http://nucleosome.usal.es/nucwave/

**PuFFIN**: A parameter-free method to build genome-wide nucleosome maps from paired-end sequencing data [135]. PuFFIN is a command line tool for accurate placing of the nucleosomes based on the pair-end reads. It was designed to place non-overlapping nucleosomes using extra length information present in pair-end data-sets. PuFFIN is written in Python, and released in 2014. It outperforms **NOrMAL** previously released by the same authors, and is claimed by the authors to outperform also **NSeq**, **NPS** and **Template Filtering**. It returns nucleosome positions, the width of the peak, confidence score and fuzziness.  
http://www.cs.ucr.edu/~polishka/indexPuffin.html

| Computational tools | Prediction Type | Accuracy | Ease of Use | Technical Complexity | Available Resources |
|---------------------|-----------------|----------|-------------|----------------------|---------------------|
| NucHunter           | Positioned      | -/+      | +           | +                    | 5                   |
| Perl scripts        | Positioned      | +/-      | -           | -                    | 5                   |
| iNPS                | Positioned      | +/-      | +           | +                    | 3                   |
| NUCwave             | Positioned      | +/-      | -           | +                    | 3                   |
| PuFFIN              | Positioned      | +/-      | +           | +                    | 2                   |

**3. Computational tools to predict nucleosome positions from the DNA sequence.**

While nucleosome positioning is cell-type dependent, the DNA sequence still plays an important role in directing preferential histone octamer assembly. These methods are based on different ideas: either the physical considerations of DNA bendability, or bioinformatics analysis based on experimentally known nucleosome occupancies in specific cell types, or a combination of these approaches (Table 3). Correspondingly, existing web servers can be roughly split into four classes: The first class is based on purely bioinformatics considerations [48, 145-154], e.g. counting oscillatory dinucleotide distributions as pioneered in 1970s-80s [155], or moving the scanning window along the DNA and comparing the motif to the “ideal” nucleosome positioning motif [145-147], or introducing shorter nucleosome positioning nucleotide words, or a combination thereof. The second class is a hybrid of bioinformatics and biophysics [35, 51, 156-
159], based on the algorithms which use dynamic programming to calculate allowed
configurations of non-overlapping nucleosomes and variations of the Percus equation to assign
the nucleosome formation energies learned from experimental nucleosome occupancy profiles.
More details about the application of dynamic programming and the Percus equation for
nucleosome positioning can be found elsewhere [27, 156, 160-164]. The third class is using
correlations between empirical DNA characteristics, such as A-philicity, base stacking, B-DNA
twist, bendability, bending stiffness, DNA denaturation energy, Z-DNA potential, etc, without
knowing the underlying molecular details [165]. The fourth class of web servers goes further to
the physics and calculates DNA bendability (which determines its affinity for the histone
octamer) from first principles, assigning energetic-based scores to the dinucleotides, repetitions
of dinucleotides, and in some cases to longer nucleotide words [165-171]. The latter approach is
less dependent on learning nucleosome positioning rules from high-throughput sequencing, and
usually uses for the parameterization either available crystal structures or high-throughput
computer simulations [167, 172, 173]. The advantage of this approach is the possibility to
include in the consideration covalent modifications of DNA and histones and even nucleosomes
with partially unwrapped DNA [174, 175]. It is beyond the scope of the current review to
compare the efficiency of these methods. A description of the main features of each algorithm is
included in Table 3. Most original articles introducing new software cited in Table 3 did perform
benchmarking against several existing algorithms. However, it is worth to note that since
nucleosome positioning is regulated by several mechanisms, there are probably several classes
of nucleosomes, each characterised by its preferred DNA pattern. Therefore, different
algorithms predicting nucleosome positioning might be complementary rather than mutually
exclusive. For example, we recently showed that while the algorithm of Segal and co-authors
[35, 51, 156] predicts a single nucleosome enrichment peak at binding sites of a transcription
factor CTCF, the algorithm of Trifonov and colleagues [32, 154, 176] intriguingly finds another
class of “strong nucleosomes” regularly positioned around CTCF sites [26, 177] (in both cases
calculations were performed in the absence of CTCF, not taking into account CTCF/nucleosome
competition, which is yet another story [26]). Thus, there are many interesting biological
processes determining nucleosome positioning which we still do not understand completely, and
new algorithms are destined to appear. Nevertheless, readers interested to compare the
performance of some of these methods are referred to recent reviews, e.g. [178].
| Table 3. Computational tools to predict nucleosome positioning (sorted alphabetically). |
|---------------------------------------------------------------|
| Description | Online / local installation | Di/trinucleotide / periodicity / specific motifs / empirical feature |
| FineStr: Single-base-resolution nucleosome mapping server [145-147]. The analysis is performed using the probe based on the 117-bp DNA bendability matrix derived from C. elegans. The authors suggested the universality of this pattern for other species. [http://www.cs.bgu.ac.il/~nucleom/](http://www.cs.bgu.ac.il/~nucleom/) | +/- | +/-+/- |
| ICM Web: The interactive chromatin modelling web server [166]. It takes as input the DNA sequence and generates (i) a nucleosome energy level diagram, (ii) coarse-grained representations of free DNA and chromatin and (iii) plots of the helical parameters (Tilt, Roll, Twist, Shift, Slide and Rise). [http://dna.ccs.tulane.edu/icm/](http://dna.ccs.tulane.edu/icm/) | +/- | -/-+/- |
| iNuc-PhysChem: Identifying nucleosomal or linker sequences from physicochemical properties [165]. The algorithm identifies nucleosomal sequences by incorporating twelve physicochemical properties defined elsewhere, such as A-philicity, base stacking, B-DNA twist, bendability, bending stiffness, DNA denaturation energy, Z-DNA potential. The model was trained on data from H. sapiens, C. elegans and D. melanogaster. [http://lin.uestc.edu.cn/server/iNuc-PhysChem](http://lin.uestc.edu.cn/server/iNuc-PhysChem) | +/- | -/+ +/+ |
| iNuc-PseKNC: A sequence-based predictor for nucleosome positioning in genomes with pseudo k-tuple nucleotide composition [150]. This is another software package from the developers of iNuc-PhysChem. Here, the samples of DNA sequences were formulated using six basic DNA local structural properties trained on datasets from H. sapiens, C. elegans and D. melanogaster. [http://lin.uestc.edu.cn/server/iNuc-PseKNC](http://lin.uestc.edu.cn/server/iNuc-PseKNC) | +/- | -/+ +/+ |
| Mapping_CC: Displays the nucleosome predictions based on the DNA dinucleotide correlation pattern. This algorithm was initially associated with one of the first high-throughput genome-wide nucleosome maps in Yeast [48] ([http://atlas.bx.psu.edu/project/saccharomyces.html](http://atlas.bx.psu.edu/project/saccharomyces.html)) and is undergoing updates which will be made available later at the Ioshikhes lab web site. | -/+ | +/-+/- |
| MOSAICS: Methodologies for Optimization and Sampling in Computational Studies [167]. Perl scripts and a precompiled package to perform training-free atomistic prediction of nucleosome occupancy based on all-atom force field calculations. The effect of DNA methylation can be taken into account. [http://www.cs.ox.ac.uk/mosaics/nucleosome/nucleosome.html](http://www.cs.ox.ac.uk/mosaics/nucleosome/nucleosome.html) | +/- | -/+ +/+ |
| NucEnerGen: Nucleosome energetics predictions based on high throughput sequencing [157]. It utilizes dynamic programming to calculate allowed nucleosome configurations and the Percus equation to infer sequence-dependent energies from the experimental occupancy profiles. [http://nucleosome.rutgers.edu/nucenergen/](http://nucleosome.rutgers.edu/nucenergen/) | +/- | +/+/+- |
| nuMap: A web application implementing the YR and W/S schemes to predict nucleosome positioning [168-170]. The methodology is based on the sequence-dependent anisotropic bending, which dictates how DNA is wrapped around a histone octamer. This application allows users to specify a number of options such as schemes and parameters for threading calculation | +/- | +/-+/- |
and provides multiple layout formats. [http://numap.rit.edu/app/dna/index.xhtml](http://numap.rit.edu/app/dna/index.xhtml)

| Software | Description | Status |
|----------|-------------|--------|
| **NuPoP**: Nucleosome Positioning Prediction Engine [158, 159]. NuPoP is built upon a duration hidden Markov model, in which the linker DNA length is explicitly modeled. NuPoP outputs the Viterbi prediction, nucleosome occupancy score (from backward and forward algorithms) and nucleosome affinity score. NuPoP has three formats including a web server prediction engine, a stand-alone Fortran program, and an R package. The latter two can predict nucleosome positioning for a DNA sequence of any length. [http://nucleosome.stats.northwestern.edu](http://nucleosome.stats.northwestern.edu) | ++/++/++/++/- | |
| **Nu-OSCAR**: Nucleosome-Occupancy Study for Cis-elements Accurate Recognition. It is devoted to identifying binding sites of known transcription factors, which further incorporates nucleosome occupancy around sites on promoter regions. The derivation of the algorithm is based on a biophysical view of interactions between protein factors and nucleosome DNA. The current release of the program supports yeast transcription factors. [http://bioinfo.au.tsinghua.edu.cn/nu_oscar/oscar.html](http://bioinfo.au.tsinghua.edu.cn/nu_oscar/oscar.html) | Web server currently not accessible, 21.08.2015 | |
| **nuScore**: A nucleosome-positioning score calculator based on the DNA curvature properties [171]. This software allows an important type of analysis, where a user enters many sequences to calculate the average nucleosome energy profile. [http://compbio.med.harvard.edu/nuScore](http://compbio.med.harvard.edu/nuScore) | +/- +/- +/- +/- | |
| **N-score**: MATLAB and Python codes using a wavelet analysis based model for predicting nucleosome positions from DNA sequence [148]. [http://bcb.dfci.harvard.edu/~gcyuan/software.html](http://bcb.dfci.harvard.edu/~gcyuan/software.html) | +/- +/- +/- +/- | |
| **NXSensor**: Prediction of nucleosome-excluding sequences based on DNA bending properties [149]. It takes as input DNA sequences in FASTA format, and outputs nucleosome-excluding or nucleosome favouring segments. [http://www.sfu.ca/~ibajic/NXSensor/](http://www.sfu.ca/~ibajic/NXSensor/) | +/- +/- +/- +/- | |
| **Online nucleosome position prediction by genomic sequence (Segal Lab)** [35, 51, 156]. Although it has no specific name, this is one of the most popular tools in this class, realized as a web server (allows analyzing a limited number of DNA sequences), and a stand-alone application which can be installed on a local cluster. It allows calculating nucleosome occupancy or nucleosome start site probability profiles of non-overlapping nucleosomes; alternatively, it is possible to calculate the net nucleosome formation energy profile. It uses machine learning for energy assignment based on the training datasets and dynamic programming to sample nucleosome configurations (similar to NucEnerGen, NuPoP and the algorithm of van Noort and co-authors). [http://genie.weizmann.ac.il/software/nucleo_prediction.html](http://genie.weizmann.ac.il/software/nucleo_prediction.html) | ++/++/++/++/- | |
| **Online nucleosome position prediction (van Noort and co-authors)** [160]. This algorithm is based on dinucleotide distributions, but unlike other methods based on dinucleotide distributions it does not use machine learning and accounts only for the dinucleotide periodicity. In addition, this method uses dynamic programming to account for size exclusion and the Percus equation to assign nucleosome affinities (similar to NucEnerGen, NuPoP and the algorithm of Segal and co-authors mentioned above). [http://bio.physics.leidenuniv.nl/~noort/cgi-bin/nup3_st.py](http://bio.physics.leidenuniv.nl/~noort/cgi-bin/nup3_st.py) | +/- +/- +/- +/- | |
| **RECON**: A program for prediction of the nucleosome formation potential [152, 153] learned from nucleosome positioning sequences available at the beginning of the NGS nucleosome era. | Software can be requested from authors. | |
SymCurv: A program for nucleosome positioning prediction [151]. It calculates the curvature of the DNA sequence and uses a greedy algorithm to parse the sequence in nucleosome-bound and nucleosome-free segments. [http://genome.crg.es/SymCurv/documentation.html](http://genome.crg.es/SymCurv/documentation.html)

| SymCurv | +/- | -/-/+ |
|---------|-----|-------|

Strong nucleosomes: Based on a recent discovery of strong nucleosome positioning sequences which are visually seen as regular arrays in genomic sequence [32, 154, 176], the program from Trifonov’s lab is finding a specific class of strongly positioned nucleosomes of the RR/YY and TA periodic types [154]. [http://strn-nuc.haifa.ac.il:8080/mapping/home.jsf](http://strn-nuc.haifa.ac.il:8080/mapping/home.jsf)

| Strong nucleosomes | +/- | +/+/-/ |
|--------------------|-----|-------|

Conclusions
The hunting for nucleosomes in their natural genomic environment has been opened for years and is far from being completed. Experienced nucleosome hunters are aware of the typical habits of nucleosomes: their preference for certain DNA sequences, and the ability to hide themselves using many natural obstacles (e.g. being masked by non-histone proteins [179], bound by transcription factors [180] or being able to unwrap and re-wrap their DNA dynamically [175, 181]), as well as artificial complications such as sequencing biases and the effect of the chromatin digestion level [182-184]. Furthermore, some of the sequence preferences for nucleosome cleavage are not artificial, but can be also associated with natural processes such as apoptosis [185]. As mentioned in the introduction, this review was not intended to discuss fundamental questions of the field, neither it was possible to highlight many excellent works which did not aim to develop online tools or resources. A reader, who managed to read this article until the end, has performed a quick, deep practical excurse to the nucleosome positioning resources and tools which are available online. This growing list has to be taken seriously and studied systematically while developing new nucleosome positioning tools or designing new high-throughput experiments. Since new tools and datasets are appearing at high rate, an updated version of this list will be maintained online.

Acknowledgement
Many authors of online tools listed above have helped by providing details about their resources. Three anonymous referees are acknowledged for interesting comments and encouragement to extend this work.
References

1. Andrews AJ, Luger K. Nucleosome structure(s) and stability: variations on a theme, Annu Rev Biophys 2011;40:99-117.
2. Chereji RV, Morozov AV. Functional roles of nucleosome stability and dynamics, Brief Funct Genomics 2015;14:50-60.
3. Travers AA, Vaillant C, Arneodo A et al. DNA structure, nucleosome placement and chromatin remodelling: a perspective, Biochem Soc Trans 2012;40:335-340.
4. Kaplan N, Hughes TR, Lieb JD et al. Contribution of histone sequence preferences to nucleosome organization: proposed definitions and methodology, Genome Biol 2010;11:140.
5. Segal E, Widom J. What controls nucleosome positions?, Trends Genet 2009;25:335-343.
6. Struhl K, Segal E. Determinants of nucleosome positioning, Nat Struct Mol Biol 2013;20:267-273.
7. Trifonov EN. Cracking the chromatin code: precise rule of nucleosome positioning, Phys Life Rev 2011;8:39-50.
8. Längst G, Teif VB, Rippe K. Chromatin Remodeling and Nucleosome Positioning. In: Rippe K. (ed) Genome Organization and Function in the Cell Nucleus. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2011, 111-138.
9. Ioshikhes I, Hosid S, Pugh BF. Variety of genomic DNA patterns for nucleosome positioning, Genome Res 2011;21:1863-1871.
10. Zhang Z, Wippo CJ, Wal M et al. A packing mechanism for nucleosome organization reconstituted across a eukaryotic genome, Science 2011;332:977-980.
11. Hughes AL, Rando OJ. Mechanisms underlying nucleosome positioning in vivo, Annu Rev Biophys 2014;43:41-63.
12. Teif VB, Erdel F, Beshnova DA et al. Taking into account nucleosomes for predicting gene expression, Methods 2013;62:26-38.
13. Bartholomew B. Regulating the chromatin landscape: structural and mechanistic perspectives, Annu Rev Biochem 2014;83:671-696.
14. Mueller-Planitz F, Klinker H, Becker PB. Nucleosome sliding mechanisms: new twists in a looped history, Nat Struct Mol Biol 2013;20:1026-1032.
15. Korber P. Active nucleosome positioning beyond intrinsic biophysics is revealed by in vitro reconstitution, Biochem Soc Trans 2012;40:377-382.
16. Iyer VR. Nucleosome positioning: bringing order to the eukaryotic genome, Trends Cell Biol 2012;22:250-256.
17. Cole HA, Nagarajavel V, Clark DJ. Perfect and imperfect nucleosome positioning in yeast, Biochim Biophys Acta 2012.
18. Scipioni A, De Santis P. Predicting nucleosome positioning in genomes: physical and bioinformatic approaches, Biophys Chem 2011;155:53-64.
19. Jiang C, Pugh BF. Nucleosome positioning and gene regulation: advances through genomics, Nat Rev Genet 2009;10:161-172.
20. Everaers R, Schiessel H. The physics of chromatin, J Phys Condens Matter 2015;27:060301.
21. Blossey R, Schiessel H. The dynamics of the nucleosome: thermal effects, external forces and ATP, FEBS J 2011;278:3619-3632.
22. Korolev N, Fan Y, Lyubartsev AP et al. Modelling chromatin structure and dynamics: status and prospects, Curr Opin Struct Biol 2012;22:151-159.
23. Olins DE, Olins AL. Chromatin history: our view from the bridge, Nat Rev Mol Cell Biol 2003;4:809-814.
24. Kornberg RD, Lorch Y. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome, Cell 1999;98:285-294.
25. Flores O, Deniz O, Soler-Lopez M et al. Fuzziness and noise in nucleosomal architecture, Nucleic Acids Res 2014;42:4934-4946.
26. Beshnova DA, Cherstvy AG, Vainshtein Y et al. Regulation of the nucleosome repeat length in vivo by the DNA sequence, protein concentrations and long-range interactions, PLoS Comput Biol 2014;10:e1003698.
27. Teif VB, Rippe K. Calculating transcription factor binding maps for chromatin, Brief Bioinform 2012;13:187-201.
28. Chevereau G, Palmeira L, Thermes C et al. Thermodynamics of intragenic nucleosome ordering, Phys Rev Lett 2009;103:188103.
29. Mahony S, Pugh BF. Protein-DNA binding in high-resolution, Crit Rev Biochem Mol Biol 2015;1-15.
30. Lieleg C, Krietenstein N, Walker M et al. Nucleosome positioning in yeasts: methods, maps, and mechanisms, Chromosoma 2015;124:131-151.
31. Zentner GE, Henikoff S. Surveying the epigenomic landscape, one base at a time, Genome Biol 2012;13:250.
32. Trifonov EN, Nibhani R. Review fifteen years of search for strong nucleosomes, Biopolymers 2015;103:432-437.
33. Jiang C, Pugh BF. Nucleosome positioning and gene regulation: advances through genomics, Nat Rev Genet 2009;10:161-172.
34. Weiner A, Hughes A, Yassour M et al. High-resolution nucleosome mapping reveals transcription-dependent promoter packaging, Genome Res 2010;20:90-100.
35. Kaplan N, Moore IK, Fondufe-Mittendorf Y et al. The DNA-encoded nucleosome organization of a eukaryotic genome, Nature 2009;458:362-366.
36. Orsi GA, Kasinathan S, Zentner GE et al. Mapping regulatory factors by immunoprecipitation from native chromatin, Curr Protoc Mol Biol 2015;110:Unit 21.31.
37. Bell O, Tiwari VK, Thoma NH et al. Determinants and dynamics of genome accessibility, Nat Rev Genet 2011;12:554-564.
38. Guertin MJ, Lis JT. Mechanisms by which transcription factors gain access to target sequence elements in chromatin, Curr Opin Genet Dev 2013;23:116-123.
39. Buenrostro JD, Wu B, Chang HY et al. ATAC-seq: A Method for Assaying Chromatin Accessibility Genome-Wide, Curr Protoc Mol Biol 2015;109:Unit 21.29.
40. Kelly TK, Liu Y, Lay FD et al. Genome-wide mapping of nucleosome positioning and DNA methylation within individual DNA molecules, Genome Res 2012;22:2497-2506.
41. Brogaard K, Xi L, Wang JP et al. A map of nucleosome positions in yeast at base-pair resolution, Nature 2012;486:496-501.
42. Ramachandran S, Zentner GE, Henikoff S. Asymmetric nucleosomes flank promoters in the budding yeast genome, Genome Res 2015;25:381-390.
43. Moyle-Heyrman G, Zaichuk T, Xi L et al. Chemical map of Schizosaccharomyces pombe reveals species-specific features in nucleosome positioning, Proc Natl Acad Sci U S A 2013;110:20158-20163.
44. Ishii H, Kadonaga JT, Ren B. MPE-seq, a new method for the genome-wide analysis of chromatin structure, Proc Natl Acad Sci U S A 2015.
45. Di Gesu V, Lo Bosco G, Pinello L et al. A multi-layer method to study genome-scale positions of nucleosomes, Genomics 2009;93:140-145.
46. Yuan GC, Liu YJ, Dion MF et al. Genome-scale identification of nucleosome positions in S. cerevisiae, Science 2005;309:626-630.
47. Yassour M, Kaplan T, Jaimovich A et al. Nucleosome positioning from tiling microarray data, Bioinformatics 2008;24:i139-146.
48. Ioshikhes IP, Albert I, Zanton SJ et al. Nucleosome positions predicted through comparative genomics, Nat Genet 2006;38:1210-1215.
49. Whitehouse I, Rando OJ, Delrow J et al. Chromatin remodelling at promoters suppresses antisense transcription, Nature 2007;450:1031-1035.
50. Morozov AV, Fortney K, Gaykalova DA et al. Using DNA mechanics to predict in vitro nucleosome positions and formation energies, Nucleic Acids Res 2009;37:4707-4722.
51. Field Y, Kaplan N, Fondufe-Mittendorf Y et al. Distinct modes of regulation by chromatin encoded through nucleosome positioning signals, PLoS Comput Biol 2008;4:e1000216.
52. Yen K, Vinayachandran V, Pugh BF. SWR-C and INO80 chromatin remodelers recognize nucleosome-free regions near +1 nucleosomes, Cell 2013;154:1246-1256.
53. Zhang Z, Pugh BF. High-resolution genome-wide mapping of the primary structure of chromatin, Cell 2011;144:175-186.
54. Schones DE, Cui K, Cuddapah S et al. Dynamic regulation of nucleosome positioning in the human genome, Cell 2008;132:887-898.
55. Kundaje A, Kyriazopoulou-Panagiotopoulou S, Libbrecht M et al. Ubiquitous heterogeneity and asymmetry of the chromatin environment at regulatory elements, Genome Res 2012;22:1735-1747.
56. Lay FD, Liu Y, Kelly TK et al. The role of DNA methylation in directing the functional organization of the cancer epigenome, Genome Res 2015;25:467-477.
57. Henikoff JG, Thakur J, Kasinathan S et al. A unique chromatin complex occupies young alpha-satellite arrays of human centromeres, Sci Adv 2015;1.
58. Shimbo T, Du Y, Grimm SA et al. MBD3 localizes at promoters, gene bodies and enhancers of active genes, PLoS Genet 2013;9:e1004028.
59. Fenouil R, Cauchy P, Koch F et al. CpG islands and GC content dictate nucleosome depletion in a transcription-independent manner at mammalian promoters, Genome Res 2012;22:2399-2408.
60. Jung I, Kim SK, Kim M et al. H2B monoubiquitylation is a 5'-enriched active transcription mark and correlates with exon-intron structure in human cells, Genome Res 2012;22:1026-1035.
61. Lidor Nili E, Field Y, Lubling Y et al. p53 binds preferentially to genomic regions with high DNA-encoded nucleosome occupancy, Genome Res 2010;20:1361-1368.
62. Diermeier S, Kolovos P, Heizinger L et al. TNFalpha signalling primes chromatin for NF-kappaB binding and induces rapid and widespread nucleosome repositioning, Genome Biol 2014;15:536.
63. Ho JW, Jung YL, Liu T et al. Comparative analysis of metazoan chromatin organization, Nature 2014;512:449-452.
64. Valouev A, Johnson SM, Boyd SD et al. Determinants of nucleosome organization in primary human cells, Nature 2011;474:516-520.
65. Samans B, Yang Y, Krebs S et al. Uniformity of nucleosome preservation pattern in Mammalian sperm and its connection to repetitive DNA elements, Dev Cell 2014;30:23-35.
66. West JA, Cook A, Alver BH et al. Nucleosomal occupancy changes locally over key regulatory regions during cell differentiation and reprogramming, Nat Commun 2014;5:4719.
67. Hu G, Schones DE, Cui K et al. Regulation of nucleosome landscape and transcription factor targeting at tissue-specific enhancers by BRG1, Genome Res 2011;21:1650-1658.
68. Gaffney DJ, McVicker G, Pai AA et al. Controls of nucleosome positioning in the human genome, PLoS Genet 2012;8:e1003036.
69. Kodama Y, Shumway M, Leinonen R. The Sequence Read Archive: explosive growth of sequencing data, Nucleic Acids Res 2012;40:D54-56.
70. Barrett T, Wilhite SE, Ledoux P et al. NCBI GEO: archive for functional genomics data sets--update, Nucleic Acids Res 2013;41:D991-995.
71. Zhang Y, Vastenhouw NL, Feng J et al. Canonical nucleosome organization at promoters forms during genome activation, Genome Res 2014;24:260-266.
72. Deng T, Zhu ZI, Zhang S et al. HMGN1 modulates nucleosome occupancy and DNase I hypersensitivity at the CpG island promoters of embryonic stem cells, Mol Cell Biol 2013;33:3377-3389.
73. Li Z, Gadue P, Chen K et al. Foxa2 and H2A.Z Mediate Nucleosome Depletion during Embryonic Stem Cell Differentiation, Cell 2012;151:1608-1616.
74. Teif VB, Vainstein E, Marth K et al. Genome-wide nucleosome positioning during embryonic stem cell development, Nat Struct Mol Biol 2012;19:1185-1192.
75. Teif VB, Beshnova DA, Vainshtein Y et al. Nucleosome repositioning links DNA (de)methylation and differential CTCF binding during stem cell development, Genome Research 2014;24:1285-1295.
76. Carone BR, Hung JH, Hainer SJ et al. High-resolution mapping of chromatin packaging in mouse embryonic stem cells and sperm, Dev Cell 2014;30:11-22.
77. Yearim A, Gelfman S, Shayevitch R et al. HP1 is involved in regulating the global impact of DNA methylation on alternative splicing, Cell Rep 2015;10:1122-1134.
78. Hainer SJ, Gu W, Carone BR et al. Suppression of pervasive noncoding transcription in embryonic stem cells by esBAF, Genes Dev 2015;29:362-378.
79. Lei I, West J, Yan Z et al. BAF250a Protein Regulates Nucleosome Occupancy and Histone Modifications in Priming Embryonic Stem Cell Differentiation, J Biol Chem 2015;290:19343-19352.
80. Chen P, Zhao J, Wang Y et al. H3.3 actively marks enhancers and primes gene transcription via opening higher-ordered chromatin, Genes Dev 2013;27:2109-2124.
81. Tao Y, Zheng W, Jiang Y et al. Nucleosome organizations in induced pluripotent stem cells reprogrammed from somatic cells belonging to three different germ layers, BMC Biol 2014;12:109.
82. Bochkis IM, Przybylski D, Chen J et al. Changes in nucleosome occupancy associated with metabolic alterations in aged Mammalian liver, Cell Rep 2014;9:996-1006.
83. Menet JS, Pescatore S, Rosbash M. CLOCK:BMAL1 is a pioneer-like transcription factor, Genes Dev 2014;28:8-13.
84. Scruggs BS, Gilchrist DA, Nechaev S et al. Bidirectional Transcription Arises from Two Distinct Hubs of Transcription Factor Binding and Active Chromatin, Mol Cell 2015;58:1101-1112.
85. Chen L, Chen K, Lavery LA et al. MeCP2 binds to non-CG methylated DNA as neurons mature, influencing transcription and the timing of onset for Rett syndrome, Proc Natl Acad Sci U S A 2015;112:5509-5514.
86. Hasegawa K, Sin HS, Maezawa S et al. SCML2 establishes the male germline epigenome through regulation of histone H2A ubiquitination, Dev Cell 2015;32:574-588.
87. Zacarias-Cabeza J, Belhocine M, Vanhille L et al. Transcription-dependent generation of a specialized chromatin structure at the TCRbeta locus, J Immunol 2015;194:3432-3443.
88. Tolstorukov MY, Sansam CG, Lu P et al. Swi/Snf chromatin remodeling/tumor suppressor complex establishes nucleosome occupancy at target promoters, Proc Natl Acad Sci U S A 2013;110:10165-10170.
89. Fuda NJ, Guertin MJ, Sharma S et al. GAGA factor maintains nucleosome-free regions and has a role in RNA polymerase II recruitment to promoters, PLoS Genet 2015;11:e1005108.
90. Lhoumaud P, Hennion M, Gamot A et al. Insulators recruit histone methyltransferase dMes4 to regulate chromatin of flanking genes, EMBO J 2014;33:1599-1613.
91. Bohla D, Herold M, Panzer I et al. A functional insulator screen identifies NURF and dREAM components to be required for enhancer-blocking, PLoS ONE 2014;9:e107765.
92. Nalabothula N, McVicker G, Maiorano J et al. The chromatin architectural proteins HMGD1 and H1 bind reciprocally and have opposite effects on chromatin structure and gene regulation, BMC Genomics 2014;15:92.
93. Chen K, Johnston J, Shao W et al. A global change in RNA polymerase II pausing during the Drosophila midblastula transition, Elife 2013;2:e00861.
94. Gilchrist DA, Dos Santos G, Fargo DC et al. Pausing of RNA polymerase II disrupts DNA-specified nucleosome organization to enable precise gene regulation, Cell 2010;143:540-551.
95. Li G, Liu S, Wang J et al. ISWI proteins participate in the genome-wide nucleosome distribution in Arabidopsis, Plant J 2014;78:706-714.
96. Zhu Y, Rowley MJ, Bohmdorfer G et al. A SWI/SNF chromatin-remodeling complex acts in noncoding RNA-mediated transcriptional silencing, Mol Cell 2013;49:298-309.
97. Chodavarapu RK, Feng S, Bernatavichute YV et al. Relationship between nucleosome positioning and DNA methylation, Nature 2010;466:388-392.
98. Valouev A, Ichikawa J, Tonthat T et al. A high-resolution, nucleosome position map of C. elegans reveals a lack of universal sequence-dictated positioning, Genome Res 2008;18:1051-1063.
99. Fu Y, Luo GZ, Chen K et al. N6-methyldeoxyadenosine marks active transcription start sites in chlamydomonas, Cell 2015;161:879-892.
100. Hughes AL, Rando OJ. Comparative Genomics Reveals Chd1 as a Determinant of Nucleosome Spacing in Vivo, G3 (Bethesda) 2015.
101. Morselli M, Pastor WA, Montanini B et al. In vivo targeting of de novo DNA methylation by histone modifications in yeast and mouse, Elife 2015;4:e06205.
102. Parnell TJ, Schlichter A, Wilson BG et al. The chromatin remodelers RSC and ISW1 display functional and chromatin-based promoter antagonism, Elife 2015;4:e06073.
103. Dutta A, Gogol M, Kim JH et al. Swi/Snf dynamics on stress-responsive genes is governed by competitive bromodomain interactions, Genes Dev 2014;28:2314-2330.
104. Yoshida K, Bacal J, Desmarais D et al. The histone deacetylases sir2 and rpd3 act on ribosomal DNA to control the replication program in budding yeast, Mol Cell 2014;54:691-697.
105. Lopez-Serra L, Kelly G, Patel H et al. The Scc2-Scc4 complex acts in sister chromatid cohesion and transcriptional regulation by maintaining nucleosome-free regions, Nat Genet 2014;46:1147-1151.
106. Dang W, Sutphin GL, Dorsey JA et al. Inactivation of yeast Isw2 chromatin remodeling enzyme mimics longevity effect of calorie restriction via induction of genotoxic stress response, Cell Metab 2014;19:952-966.
107. Woo S, Zhang X, Sauteraud R et al. PING 2.0: an R/Bioconductor package for nucleosome positioning using next-generation sequencing data, Bioinformatics 2013;29:2049-2050.
108. Hu Z, Chen K, Xia Z et al. Nucleosome loss leads to global transcriptional up-regulation and genomic instability during yeast aging, Genes Dev 2014;28:396-408.
109. Nadal-Ribelles M, Conde N, Flores O et al. Hog1 bypasses stress-mediated down-regulation of transcription by RNA polymerase II redistribution and chromatin remodeling, Genome Biol 2012;13:R106.
110. Chen K, Wilson MA, Hirsch C et al. Stabilization of the promoter nucleosomes in nucleosome-free regions by the yeast Cyc8-Tup1 corepressor, Genome Res 2013;23:312-322.
111. Van de Vosse DW, Wan Y, Lapetina DL et al. A role for the nucleoporin Nup170p in chromatin structure and gene silencing, Cell 2013;152:969-983.
112. Huebert DJ, Kuan PF, Keles S et al. Dynamic changes in nucleosome occupancy are not predictive of gene expression dynamics but are linked to transcription and chromatin regulators, Mol Cell Biol 2012;32:1645-1653.
113. Gossett AJ, Lieb JD. In vivo effects of histone H3 depletion on nucleosome occupancy and position in Saccharomyces cerevisiae, PLoS Genet 2012;8:e1002771.
114. Tsankov A, Yanagisawa Y, Rhind N et al. Evolutionary divergence of intrinsic and trans-regulated nucleosome positioning sequences reveals plastic rules for chromatin organization, Genome Res 2011;21:1851-1862.
115. Fan X, Moqtaderi Z, Jin Y et al. Nucleosome depletion at yeast terminators is not intrinsic and can occur by a transcriptional mechanism linked to 3'-end formation, Proc Natl Acad Sci U S A 2010;107:17945-17950.

116. Tsankov AM, Thompson DA, Socha A et al. The role of nucleosome positioning in the evolution of gene regulation, PLoS Biol 2010;8:e1000414.

117. Tirosh I, Sigal N, Barkai N. Divergence of nucleosome positioning between two closely related yeast species: genetic basis and functional consequences, Mol Syst Biol 2010;6:365.

118. Mavrich TN, Jiang C, Ioshikhes IP et al. Nucleosome organization in the Drosophila genome, Nature 2008;453:358-362.

119. Steglich B, Stralfors A, Khorosjutina O et al. The Fun30 chromatin remodeler Ft3 controls nuclear organization and chromatin structure of insulators and subtelomeres in fission yeast, PLoS Genet 2015;11:e1005101.

120. DeGennaro CM, Alver BH, Marguerat S et al. Spt6 regulates intragenic and antisense transcription, nucleosome positioning, and histone modifications genome-wide in fission yeast, Mol Cell Biol 2013;33:4779-4792.

121. Shim YS, Choi Y, Kang K et al. Hrp3 controls nucleosome positioning to suppress non-coding transcription in eu- and heterochromatin, EMBO J 2012;31:4375-4387.

122. Givens RM, Lai WK, Rizzo JM et al. Chromatin architectures at fission yeast transcriptional promoters and replication origins, Nucleic Acids Res 2012;40:7176-7189.

123. Zhang Y, Liu T, Meyer CA et al. Model-based Analysis of ChIP-Seq (MACS), Genome Biol 2008;9:R137.

124. Heinz S, Benner C, Spann N et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities, Mol Cell 2010;38:576-589.

125. Zhang Y, Shin H, Song JS et al. Identifying positioned nucleosomes with epigenetic marks in human from ChIP-Seq, BMC Genomics 2008;9:537.

126. Flores O, Orozco M. nucleR: a package for non-parametric nucleosome positioning, Bioinformatics 2011;27:2149-2150.

127. Polishko A, Ponts N, Le Roch KG et al. NORMAL: accurate nucleosome positioning using a modified Gaussian mixture model, Bioinformatics 2012;28:i242-249.

128. Zhang X, Robertson G, Woo S et al. Probabilistic inference for nucleosome positioning with MNase-based or sonicated short-read data, PLoS ONE 2012;7:e32095.

129. Kuan PF, Huebert D, Gasch A et al. A non-homogeneous hidden-state model on first order differences for automatic detection of nucleosome positions, Stat Appl Genet Mol Biol 2009;8:Article29.

130. Becker J, Yau C, Hancock JM et al. NucleoFinder: a statistical approach for the detection of nucleosome positions, Bioinformatics 2013;29:711-716.

131. Humburg P, Helliwell CA, Bulder D et al. ChiPseqR: analysis of ChIP-seq experiments, BMC Bioinformatics 2011;12:39.

132. Nellore A, Bobkov K, Howe E et al. NSeq: a multithreaded Java application for finding positioned nucleosomes from sequencing data, Front Genet 2012;3:320.

133. Mammana A, Vingron M, Chung HR. Inferring nucleosome positions with their histone mark annotation from ChIP data, Bioinformatics 2013;29:2547-2554.

134. Chen W, Liu Y, Zhu S et al. Improved nucleosome-positioning algorithm iNPS for accurate nucleosome positioning from sequencing data, Nat Commun 2014;5:4909.

135. Polishko A, Bunnik EM, Le Roch KG et al. PuFFIN—a parameter-free method to build nucleosome maps from paired-end reads, BMC Bioinformatics 2014;15 Suppl 9:S11.

136. Chen K, Xi Y, Pan X et al. DANPOS: dynamic analysis of nucleosome position and occupancy by sequencing, Genome Res 2013;23:341-351.
137. Fu K, Tang Q, Feng J et al. DiNuP: a systematic approach to identify regions of differential nucleosome positioning, Bioinformatics 2012;28:1965-1971.
138. Quintales L, Vazquez E, Antequera F. Comparative analysis of methods for genome-wide nucleosome cartography, Brief Bioinform 2014.
139. Schopflin R, Teif VB, Muller O et al. Modeling nucleosome position distributions from experimental nucleosome positioning maps, Bioinformatics 2013;29:2380-2386.
140. Meyer CA, He HH, Brown M et al. BINOCh: binding inference from nucleosome occupancy changes, Bioinformatics 2011;27:1867-1868.
141. Belch Y, Yang J, Liu Y et al. Weakly positioned nucleosomes enhance the transcriptional competency of chromatin, PLoS ONE 2010;5:e12984.
142. Rosenbloom KR, Armstrong J, Barber GP et al. The UCSC Genome Browser database: 2015 update, Nucleic Acids Res 2015;43:D670-681.
143. He HH, Meyer CA, Shin H et al. Nucleosome dynamics define transcriptional enhancers, Nat Genet 2010;42:343-347.
144. Cole HA, Howard BH, Clark DJ. Genome-wide mapping of nucleosomes in yeast using paired-end sequencing, Methods Enzymol 2012;513:145-168.
145. Trifonov EN. Base pair stacking in nucleosome DNA and bendability sequence pattern, J Theor Biol 2010;263:337-339.
146. Gabdank I, Barash D, Trifonov EN. FineStr: a web server for single-base-resolution nucleosome positioning, Bioinformatics 2010;26:845-846.
147. Gabdank I, Barash D, Trifonov EN. Nucleosome DNA bendability matrix (C. elegans), J Biomol Struct Dyn 2009;26:403-411.
148. Yuan G-C, Liu JS. Genomic sequence is highly predictive of local nucleosome depletion, PLoS Comp. Biol. 2008;4:e13.
149. Luykx P, Bajic IV, Khuri S. NXSensor web tool for evaluating DNA for nucleosome exclusion sequences and accessibility to binding factors, Nucleic Acids Res 2006;34:W560-565.
150. Guo SH, Deng EZ, Xu LQ et al. iNuc-PseKNC: a sequence-based predictor for predicting nucleosome positioning in genomes with pseudo k-tuple nucleotide composition, Bioinformatics 2014;30:1522-1529.
151. Nikolaou C, Althammer S, Beato M et al. Structural constraints revealed in consistent nucleosome positions in the genome of S. cerevisiae, Epigenetics Chromatin 2010;3:20.
152. Levitsky VG, Ponomarenko MP, Ponomarenko JV et al. Nucleosomal DNA property database, Bioinformatics 1999;15:582-592.
153. Levitsky VG. RECON: a program for prediction of nucleosome formation potential, Nucleic Acids Res 2004;32:W346-349.
154. Nibhani R, Trifonov EN. TA-periodic ("601"-like) centromeric nucleosomes of A. thaliana, J Biomol Struct Dyn 2015:1-4.
155. Trifonov EN, Sussman JL. The pitch of chromatin DNA is reflected in its nucleotide sequence, Proc Natl Acad Sci U S A 1980;77:3816-3820.
156. Segal E, Fondufe-Mittendorf Y, Chen L et al. A genomic code for nucleosome positioning, Nature 2006;442:772-778.
157. Locke G, Tolkunov D, Moqtaderi Z et al. High-throughput sequencing reveals a simple model of nucleosome energetics, Proc Natl Acad Sci U S A 2010;107:20998-21003.
158. Xi L, Fondufe-Mittendorf Y, Xia L et al. Predicting nucleosome positioning using a duration Hidden Markov Model, BMC Bioinformatics 2010;11:346.
159. Wang JP, Fondufe-Mittendorf Y, Xi L et al. Preferentially quantized linker DNA lengths in Saccharomyces cerevisiae, PLoS Comput Biol 2008;4:e1000175.
van der Heijden T, van Vugt JJ, Logie C et al. Sequence-based prediction of single nucleosome positioning and genome-wide nucleosome occupancy, Proc Natl Acad Sci U S A 2012;109:E2514-2522.

Mobius W, Osberg B, Tsankov AM et al. Toward a unified physical model of nucleosome patterns flanking transcription start sites, Proc Natl Acad Sci U S A 2013;110:5719-5724.

Mobius W, Gerland U. Quantitative test of the barrier nucleosome model for statistical positioning of nucleosomes up- and downstream of transcription start sites, PLoS Comput Biol 2010;6:e1000891.

Schwab DJ, Bruinsma RF, Rudnick J et al. Nucleosome switches, Phys Rev Lett 2008;100:228105.

Teif VB, Rippe K. Predicting nucleosome positions on the DNA: combining intrinsic sequence preferences and remodeler activities, Nucleic Acids Res 2009;37:5641-5655.

Chen W, Lin H, Feng PM et al. iNuc-PhysChem: a sequence-based predictor for identifying nucleosomes via physicochemical properties, PLoS ONE 2012;7:e47843.

Stolz RC, Bishop TC. ICM Web: the interactive chromatin modeling web server, Nucleic Acids Res 2010;38:W254-261.

Minary P, Levitt M. Training-free atomistic prediction of nucleosome occupancy, Proc Natl Acad Sci U S A 2014;111:6293-6298.

Minary P, Levitt M. Training-free atomistic prediction of nucleosome occupancy, Proc Natl Acad Sci U S A 2014;111:6293-6298.

Clauvelin N, Lo P, Kulaeva OI et al. Nucleosome positioning and composition modulate in silico chromatin flexibility, J Phys Condens Matter 2015;27:064112.

Olson WK, Zhurkin VB. Working the kinks out of nucleosomal DNA, Curr Opin Struct Biol 2011;21:348-357.

Teif VB, Ettig R, Rippe K. A lattice model for transcription factor access to nucleosomal DNA, Biophys J 2010;99:2597-2607.

Teif VB, Rippe K. Nucleosome mediated crosstalk between transcription factors at eukaryotic enhancers, Phys Biol 2011;8:044001.

Salih B, Tripathi V, Trifonov EN. Visible periodicity of strong nucleosome DNA sequences, J Biomol Struct Dyn 2015;33:1-9.

Salih B, Teif VB, Tripathi V et al. Strong nucleosomes of mouse genome including recovered centromeric sequences, J Biomol Struct Dyn. 2014;33:1164-1175.

Liu H, Zhang R, Xiong W et al. A comparative evaluation on prediction methods of nucleosome positioning, Brief Bioinform 2014;15:1014-1027.

Zentner GE, Henikoff S. High-resolution digital profiling of the epigenome, Nat Rev Genet 2014;15:814-827.

Soufi A, Garcia MF, Jaroszewicz A et al. Pioneer transcription factors target partial DNA motifs on nucleosomes to initiate reprogramming, Cell 2015;161:555-568.

Chereji RV, Morozov AV. Ubiquitous nucleosome unwrapping in the yeast genome, Proc Natl Acad Sci U S A 2014;111:5236-5241.

Feng J, Dai X, Xiang Q et al. New insights into two distinct nucleosome distributions: comparison of cross-platform positioning datasets in the yeast genome, BMC Genomics 2010;11:33.

Rizzo JM, Bard JE, Buck MJ. Standardized collection of MNase-seq experiments enables unbiased dataset comparisons, BMC Mol Biol 2012;13:15.
184. Chung HR, Dunkel I, Heise F et al. The effect of micrococal nuclease digestion on nucleosome positioning data, PLoS ONE 2010;5:e15754.

185. Bettecken T, Frenkel ZM, Altmuller J et al. Apoptotic cleavage of DNA in human lymphocyte chromatin shows high sequence specificity, J Biomol Struct Dyn 2012;30:211-216.
Key points:

- >50 genome-wide nucleosome-positioning datasets already exist for human, >70 datasets for mouse, and >150 datasets for lower eukaryotes.

- At least 21 web servers or freely downloadable computer programs for the analysis of experimental nucleosome positioning experiments already exist.

- 17 computational tools for theoretical prediction of nucleosome positioning from DNA sequence are already available online.