ASYMPTOTIC STABILITY OF A KORTEweg-de Vries EQuation With A two-dimensionAl CENTER manIfold

SHUXIA TANG∗, JIXUN CHU†, PEIPEI SHANG‡, AND JEAN-MICHEL CORON§

Abstract. Local asymptotic stability analysis is conducted for an initial-boundary-value problem of a Korteweg-de Vries equation posed on a finite interval \([0, 2\pi \sqrt{7/3}]\). The equation comes with a Dirichlet boundary condition at the left end-point and both of the Dirichlet and Neumann homogeneous boundary conditions at the right end-point. It is known that the associated linearized equation around the origin is not asymptotically stable. In this paper, the nonlinear Korteweg-de Vries equation is proved to be locally asymptotically stable around the origin through the center manifold method. In particular, the existence of a two-dimensional local center manifold is presented, which is locally exponentially attractive. By analyzing the Korteweg-de Vries equation restricted on the local center manifold, a polynomial decay rate of the solution is obtained.

Key words. Korteweg-de Vries equation, nonlinearity, center manifold, asymptotic stability, polynomial decay rate.

AMS subject classifications. 35Q53, 37L10, 93D05, 93D20

1. Introduction.
The Korteweg-de Vries (KdV) equation
\begin{equation}
y_t + y_x + y y_x + y_{xxx} = 0
\end{equation}
was first derived by Boussinesq in [2, Equation (283 bis)] and by Korteweg and de Vries in [13], for describing the propagation of small amplitude long water waves in a uniform channel. This equation is now commonly used to model unidirectional propagation of small amplitude long waves in nonlinear dispersive systems. An excellent reference to help understand both physical motivation and deduction of the KdV equation is the book by Whitham [21].

Rosier studied in [19] the following nonlinear Neumann boundary control problem for the KdV equation with homogeneous Dirichlet boundary conditions, posed on a finite spatial interval:
\begin{equation}
\begin{cases}
y + y_x + y y_x + y_{xxx} = 0, \ t \in (0, \infty), \ x \in (0, L), \\
y(t, 0) = y(t, L) = 0, \ y_x(t, L) = u(t), \ t \in (0, \infty), \\
y(0, x) = y_0(x), \ x \in (0, L),
\end{cases}
\end{equation}

∗S. Tang is with Department of Mechanical & Aerospace Engineering, University of California, San Diego, La Jolla, 92093, CA, USA, and also with Université Pierre et Marie Curie-Paris 6, UMR 7598 Laboratoire Jacques-Louis Lions, 75005 Paris, France. (sht015@ucsd.edu). S. Tang was supported by ERC advanced grant 266907 (CPDENL) of the 7th Research Framework Programme (FP7).
†J. Chu is with Department of Applied Mathematics, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China. (chujixun@126.com). J. Chu was partially supported by ERC advanced grant 266907 (CPDENL) of the 7th Research Framework Programme (FP7), National Natural Science Foundation of China (No.11401021) and Doctoral Program of Higher Education (No.2013006120011).
‡P. Shang is with Department of Mathematics, Tongji University, Shanghai 200092, China. (peipeishang@hotmail.com). P. Shang was partially supported by ERC advanced grant 266907(CPDENL), National Natural Science Foundation of China (No.11301387) and Doctoral Program of Higher Education (No.20130072120008)
§J.-M. Coron is with Université Pierre et Marie Curie-Paris 6, UMR 7598 Laboratoire Jacques-Louis Lions, 75005 Paris, France. (coron@ann.jussieu.fr). J.-M. Coron was supported by ERC advanced grant 266907 (CPDENL) of the 7th Research Framework Programme (FP7).
where \( L > 0 \), the state is \( y(t, \cdot) : [0, L] \to \mathbb{R}, \) and \( u(t) \in \mathbb{R} \) denotes the controller. The equation comes with one boundary condition at the left end-point and two boundary conditions at the right end-point. He first considered the first order power series expansion of \((y, u)\) around the origin, which gives the following corresponding linearized control system

\[
\begin{align*}
   &y_t + y_x + y_{xxx} = 0, \ t \in (0, \infty), \ x \in (0, L), \\
   &y(t, 0) = y(t, L) = 0, \ y_x(t, L) = u(t), \ t \in (0, \infty), \\
   &y(0, x) = y_0(x), \ x \in (0, L).
\end{align*}
\]

(1.3)

By means of multiplier technique and the Hilbert Uniqueness Method (HUM) [14], he proved that (1.3) is exactly controllable if and only if the length of the spatial domain is not critical, i.e., \( L \notin \mathcal{N}, \) where \( \mathcal{N} \) denotes following set of critical lengths

\[
\mathcal{N} := \left\{ 2\pi \sqrt{\frac{j^2 + l^2 + jl}{3}}, \ j, l \in \mathbb{N}^* \right\}.
\]

(1.4)

Then, by employing the Banach fixed point theorem, he derived that the nonlinear KdV control system (1.2) is locally exactly controllable around \( 0 \) provided that \( L \notin \mathcal{N}. \) In the cases with critical lengths \( L \in \mathcal{N}, \) Rosier demonstrated in [19] that there exists a finite dimensional subspace \( M \) of \( L^2(0, L) \) which is unreachable for the linear system (1.3) when starting from the origin. In [7], Coron and Crêpeau treated a critical case of \( L = 2k\pi \) (i.e., taking \( j = l = k \) in \( \mathcal{N} \)), where \( k \) is a positive integer such that (see, [6, Theorem 8.1 and Remark 8.2])

\[
(j^2 + l^2 + jl = 3k^2 \text{ and } j, l \in \mathbb{N}^*) \Rightarrow (j = l = k).
\]

(1.5)

Here, the uncontrollable subspace \( M \) for the linear system (1.3) is one-dimensional. However, through a third order power series expansion of the solution, they showed that the nonlinear term \( yy_x \) always allows to “go” in small-time into the two directions missed by the linearized control system (1.3), and then, using a fixed point theorem, they deduced the small-time local exact controllability around the origin of the nonlinear control system (1.2). In [4], Cerpa studied the critical case of \( L \in \mathcal{N}', \) where

\[
\mathcal{N}' := \left\{ 2\pi \sqrt{\frac{j^2 + l^2 + jl}{3}}, \ j, l \in \mathbb{N}^* \text{ satisfying } j > l \text{ and } \right.
\]

\[
(1.6)
\]

\[
(1.6)
\]

\[
\left. j^2 + jl + l^2 \neq m^2 + mn + n^2, \forall m, n \in \mathbb{N}^* \setminus \{j\} \right).
\]

In this case, the uncontrollable subspace \( M \) for the linear system (1.3) is of dimension 2, and the author used a second order expansion of the solution to the nonlinear control system (1.2) to prove the local exact controllability in large time around the origin of the nonlinear control system (1.2) (the local controllability in small time for this length \( L \) is still an open problem). Furthermore, Cerpa and Crêpeau considered in [6] the cases when the dimension of \( M \) for the linear system (1.3) is higher than 2. They implemented a second order expansion of the solution to (1.2) for the critical lengths \( L \neq 2k\pi \) for any \( k \in \mathbb{N}^* \), and implemented an expansion to the third order if \( L = 2k\pi \) for some \( k \in \mathbb{N}^* \). They showed that the nonlinear term \( yy_x \) always allows to “go” into all the directions missed by the linearized control system (1.3) and then
proved the local exact controllability in large time around the origin of the nonlinear
control system (1.2).
Consider the case when there is no control, i.e., \( u = 0 \), in (1.2), which gives the
following initial-boundary-value KdV problem posed on a finite interval \([0, L]\):
\[
y_t + y_x + y_{xxx} + y y_x = 0, \quad t \in (0, \infty), \quad x \in (0, L),
\]
\[
y(t, 0) = y(t, L) = 0, \quad y_x(t, L) = 0, \quad t \in (0, \infty),
y(0, x) = y_0(x), \quad x \in (0, L),
\]
where the boundary conditions are homogeneous. For the Lyapunov function
\[
E(t) = \frac{1}{2} \| y(t, \cdot) \|^2_{L^2(0, L)} = \frac{1}{2} \int_0^L y^2(t, x) dx,
\]
we have
\[
\dot{E}(t) = - \int_0^L y(y_x + yy_x + y_{xxx}) dx = \int_0^L y_x y_{xx} dx = - \frac{1}{2} y_x^2(t, 0) \leq 0.
\]
Thus, \( 0 \in L^2(0, L) \) is stable (see (P1) below for the definition of stable) for the
KdV equation (1.7). Moreover, it has been proved in [17] that, if \( L \notin \mathcal{N} \), then 0 is
exponentially stable for the corresponding linearized equation around the origin
\[
\begin{aligned}
y_t + y_x + y_{xxx} = 0, & \quad t \in (0, \infty), \quad x \in (0, L), \\
y(t, 0) = y(t, L) = 0, & \quad y_x(t, L) = 0, \quad t \in (0, \infty), \\
y(0, x) = y_0(x), & \quad x \in (0, L),
\end{aligned}
\]
which gives the local asymptotic stability around the origin for the nonlinear equation
(1.7). However, when \( L \in \mathcal{N} \), Rosier pointed out in [19] that the equation (1.10) is not
asymptotically stable. Inspired by the fact that the nonlinear term \( yy_x \) introduces the
local exact controllability around the origin into the KdV control system (1.2) with
\( L \in \mathcal{N} \), we would like to discuss whether the nonlinear term \( yy_x \) could introduce local
asymptotic stability around the origin for (1.7).

This paper is devoted to investigating the local asymptotic stability of \( 0 \in L^2(0, L) \)
for (1.7) with the critical length
\[
L = 2 \pi \sqrt{\frac{7}{3}}.
\]
corresponding to \( j = 1 \) and \( l = 2 \) in (1.4). Let us recall that this local asymptotic
stability means that the following two properties are satisfied.

(P1) Stability: for every \( \varepsilon > 0 \), there exists \( \eta = \eta(\varepsilon) > 0 \) such that, if \( \| y_0 \|_{L^2(0, L)} < \eta \), then
\[
\| y(t, \cdot) \|_{L^2(0, L)} < \varepsilon, \quad \forall t \geq 0.
\]

(P2) (Local) attractivity: there exists \( \varepsilon_0 > 0 \) such that, if \( \| y_0 \|_{L^2(0, L)} < \varepsilon_0 \), then
\[
\lim_{t \to +\infty} \| y(t, \cdot) \|_{L^2(0, L)} = 0.
\]
As mentioned above, the stability property (P1) is implied by (1.9). Our main concern
is thus the local attractivity property (P2). We prove the following theorem, where
the precise definition of a solution to (1.7) is given in Definition 2.1 and the precise
definition of the finite dimensional vector space \( M \subset L^2(0, L) \) when \( L = 2 \pi \sqrt{7/3} \) is
given in (2.16).
**Theorem 1.1.** Consider the KdV equation (1.7) with $L = 2\pi \sqrt{7/3}$. There exist $\delta \in (0, +\infty)$, $K > 0$, $\omega > 0$ and a map $g : M \to M^\perp$, where $M^\perp \subset L^2(0, L)$ is the orthogonal of $M$ for the $L^2$-scalar product, satisfying

$$g \in C^3(M; M^\perp),$$

$$g(0) = 0, \quad g'(0) = 0,$$

such that, with $G := \{m + g(m) : m \in M\} \subset L^2(0, L)$,

the following three properties hold for every solution $y$ to (1.7) with $\|y_0\|_{L^2(0, L)} < \delta$,

1. (Local exponential attractivity of $G$.)

$$d(y(t, \cdot), G) \leq Ke^{-\omega t}d(y_0, G), \quad \forall t > 0,$$

where $d(\chi, G)$ denotes the distance between $\chi \in L^2(0, L)$ and $G$:

$$d(\chi, G) := \inf\{\|\chi - \psi\|_{L^2(0, L)} : \psi \in G\}.$$

2. (Local invariance of $G$.)

$$\text{If } y_0 \in G, \text{ then } y(t, \cdot) \in G, \quad \forall t \geq 0.$$

3. If $y_0$ is in $G$, then there exists $C > 0$ such that

$$\|y(t, \cdot)\|_{L^2(0, L)} \leq \frac{C\|y_0\|_{L^2(0, L)}}{\sqrt{1 + t\|y_0\|_{L^2(0, L)}^2}}, \quad \forall t \geq 0.$$

In particular, $0 \in L^2(0, L)$ is locally asymptotically stable in the sense of the $L^2(0, L)$-norm for (1.7).

**Remark 1.1.** It can be derived from [8, Theorem 1 and Comments] that, for every $L > 0$, there are non-zero stationary solutions with the period of $L$ to the following ordinary differential equation (ODE):

$$\begin{cases}
  f' + ff' + f''' = 0 & \text{in } [0, L], \\
  f(0) = f(L) = 0, \\
  f'(L) = 0.
\end{cases}$$

That is, besides the origin, there also exist other steady states of the nonlinear KdV equation (1.7). Therefore, $0 \in L^2(0, L)$ is not globally asymptotically stable for (1.7): Property $(P_2)$ does not hold for arbitrary $\varepsilon_0 > 0$.

Our proof of Theorem 1.1 relies on the center manifold approach. This center manifold theory plays an important role in studying dynamic properties of nonlinear systems near “critical situations”. The center manifold theorem was first proved for finite dimensional systems by Pliss [18] and Kelley [11], and the readers could refer to [12, 16] for more details of this theory. Analogous results are also established for infinite dimensional systems, such as partial differential equations (PDEs) [3, 1] and functional differential equations [9]. The center manifold method usually leads to a dimension reduction of the original problems. Then, in order to derive stability properties (asymptotic stable, or, unstable) of the full nonlinear equations, one only needs to analyze the reduced equation (restricted
on the center manifold). When dealing with the infinite dimensional problems, this method can be extremely efficient if the center manifold is finite dimensional. Following the results on existence, smoothness and attractivity of a center manifold for evolution equations in [20], Chu, Coron and Shang studied in [5] the local asymptotic stability property of (1.7) with the critical length \( L = 2k\pi \) for any positive integer \( k \) such that (1.5) holds. They proved the existence of a one-dimensional local center manifold. By analyzing the resulting one-dimensional reduced equation, they obtained the local asymptotic stability of 0 for (1.7). For \( L = 2\pi \sqrt{7/3} \), we get, following [5], the existence of a two-dimensional local center manifold. It is predictable that the two-dimensional local center manifold introduces more complexity than the one-dimensional local center manifold case.

The organization of this paper is as follows. In Section 2, some basic properties of the linearized KdV equation (1.10) and the KdV equation (1.7) are given. Then, in Section 3, we recall a theorem on the existence of a local center manifold for the KdV equation (1.7) and analyze the dynamics on the local center manifold. Theorem 1.1 follows from this analysis. In Section 4, we present the conclusion and some possible future works. Finally, we end this article with an appendix that contains computations which are important for the study of the dynamics on the center manifold.

2. Preliminaries.

2.1. Some properties for the linearized equation of (1.7) around the origin. The origin \( y = 0 \) is an equilibrium of the initial-boundary-value nonlinear KdV problem (1.7). In this subsection, we derive some properties for the linearized KdV equation (1.10) around the origin of (1.7) posed on the finite interval \([0, L]\), where \( L = 2\pi \sqrt{7/3} \in \mathbb{N}' \), for which there exists a unique pair \( \{j = 2, l = 1\} \) satisfying (1.6).

Let \( A : D(A) \subset L^2(0, L) \to L^2(0, L) \) be the linear operator defined by

\[
A\varphi := -\varphi' - \varphi''
\]

(2.1)

with

\[
D(A) := \{ \varphi \in H^3(0, L) ; \varphi(0) = \varphi(L) = \varphi'(L) = 0 \} \subset L^2(0, L),
\]

(2.2)

then the linearized equation (1.10) can be written as an evolution equation in \( L^2(0, L) \):

\[
\frac{dy(t, \cdot)}{dt} = Ay(t, \cdot).
\]

(2.3)

The following lemma can be immediately obtained.

**Lemma 2.1.** \( A^{-1} \) exists and is compact on \( L^2(0, L) \). Hence, \( \sigma(A) \), the spectrum of \( A \), consists of isolated eigenvalues only: \( \sigma(A) = \sigma_p(A) \), where \( \sigma_p(A) \) denotes the set of eigenvalues of \( A \).

**Proof.** By calculation, we get

\[
A^{-1}\varphi = \psi, \quad \forall \varphi \in L^2(0, L),
\]

(2.4)

with

\[
\psi := -\frac{1 - \cos(x - L)}{1 - \cos L} \int_0^L (1 - \cos y)\varphi(y)dy + \int_x^L (1 - \cos(x - y))\varphi(y)dy.
\]

(2.5)

Hence we get the existence of \( A^{-1} \) and that, by the Sobolev embedding theorem, this operator is compact on \( L^2(0, L) \). Therefore, \( \sigma(A) \), the spectrum of \( A \), consists of isolated eigenvalues only. \( \square \)
The following proposition is proved.

**Proposition 2.1.** ([19, Proposition 3.1]). \( A \) generates a \( C_0 \)-semigroup of contractions \( \{S(t)\}_{t \geq 0} \) on \( L^2(0, L) \), that is, for any given initial data \( y_0 \in L^2(0, L) \), \( S(t)y_0 \) is the mild solution of the linearized equation (1.10), and

\[
\|S(t)y_0\|_{L^2(0, L)} \leq \|y_0\|_{L^2(0, L)}, \quad \forall t \geq 0.
\]

Moreover, for every \( \lambda \in \sigma(A) \), \( \text{Re}(\lambda) \leq 0 \).

If \( \text{Re}(\lambda) < 0 \), \( \forall \lambda \in \sigma(A) \), then it follows directly from the ABLP (Arendt-Batty-Lyubich-Phong) Theorem [15] that the semigroup \( S(t) \) is asymptotically stable on \( L^2(0, L) \). Since we only have \( \text{Re}(\lambda) \leq 0 \), \( \forall \lambda \in \sigma(A) \), the main concern needs to be put on the eigenvalues on the imaginary axis and their corresponding eigenfunctions. Following the proofs for [5, Lemma 2.6] and [19, Lemma 3.5], the following lemma is proved.

**Lemma 2.2.** There exists a unique pair of conjugate eigenvalues of \( A \) on the imaginary axis, that is,

\[
\sigma_p(A) \cap i\mathbb{R} = \left\{ \lambda = \pm iq; \ q = \frac{20}{21\sqrt{21}} \right\}.
\]

Moreover, the corresponding eigenfunctions of \( A \) with respect to \( \lambda = \pm iq \) are

\[
\varphi := C (\varphi_1 \mp i\varphi_2),
\]

respectively, where \( C \) is an arbitrary constant, and \( \varphi_1, \varphi_2 \) are two nonzero real-valued functions:

\[
\varphi_1(x) = \Theta \left( \cos \left( \frac{5}{\sqrt{21}}x^2 \right) - 3 \cos \left( \frac{1}{\sqrt{21}}x^2 \right) + 2 \cos \left( \frac{4}{\sqrt{21}}x^2 \right) \right),
\]

\[
\varphi_2(x) = \Theta \left( -\sin \left( \frac{5}{\sqrt{21}}x^2 \right) - 3 \sin \left( \frac{1}{\sqrt{21}}x^2 \right) + 2 \sin \left( \frac{4}{\sqrt{21}}x^2 \right) \right),
\]

with

\[
\Theta := \frac{1}{\sqrt{14\pi}} \sqrt{\frac{3}{7}}.
\]

**Remark 2.1.** The equations satisfied by \( \varphi_1 \) and \( \varphi_2 \) are

\[
\begin{align*}
\varphi_1' + \varphi_1''' &= -q\varphi_2, \\
\varphi_1(0) &= \varphi_1(L) = 0, \\
\varphi_1'(0) &= \varphi_1'(L) = 0,
\end{align*}
\]

and

\[
\begin{align*}
\varphi_2' + \varphi_2''' &= q\varphi_1, \\
\varphi_2(0) &= \varphi_2(L) = 0, \\
\varphi_2'(0) &= \varphi_2'(L) = 0.
\end{align*}
\]

**Remark 2.2.** We have

\[
\int_0^L \varphi_1(x)\varphi_2(x)dx = 0,
\]

and, with the definition of \( \Theta \) given in (2.11),

\[
\|\varphi_1\|_{L^2(0,L)} = \|\varphi_2\|_{L^2(0,L)} = 1.
\]
From the results in Lemma 2.1, Proposition 2.1 and Lemma 2.2, we obtain the following corollary.

**Corollary 2.1.** \( \lambda = \pm \frac{20}{21 \sqrt{21}} \) is the unique eigenvalue pair of \( A \) on the imaginary axis, and all the other eigenvalues of \( A \) have negative real parts which are uniformly bounded away from the imaginary axis, i.e., there exists \( r > 0 \) such that any of the nonzero eigenvalues of \( A \) has a real part which is less than \(-r\).

Let us define

\[
M := \text{span}\{ \varphi_1, \varphi_2 \} = \{ m_1 \varphi_1 + m_2 \varphi_2 : m = (m_1, m_2) \in \mathbb{R}^2 \} \subset L^2(0, L),
\]

where \( \varphi_1, \varphi_2 \) are defined in (2.9), (2.10) and (2.11). Then the following decomposition holds:

\[
L^2(0, L) = M \oplus M^\perp,
\]

(2.17)

with

\[
M^\perp := \left\{ \varphi \in L^2(0, L) : \int_0^L \varphi(x) \varphi_1(x) dx = 0, \int_0^L \varphi(x) \varphi_2(x) dx = 0 \right\}.
\]

### 2.2. Some properties of the KdV equation (1.7).

By considering the equation (1.7) as a special case (with \( f = 0 \) and \( u = 0 \)) of the equation (4.6)–(4.8) in [6], we give the following definition for a solution to the equation (1.7), which follows from [6, Definition 4.1].

**Definition 2.1.** Let \( T > 0, y_0 \in L^2(0, L) \). A solution to the Cauchy problem (1.7) on \([0, T]\) is a function

\[
y \in \mathcal{B} := C^0([0, T]; L^2(0, L)) \cap L^2(0, T; H^1(0, L))
\]

(2.19)

such that, for every \( \tau \in [0, T] \) and for every \( \phi \in C^3([0, \tau] \times [0, L]) \) such that

\[
\phi(t, 0) = \phi(t, L) = \phi_x(t, 0) = 0, \forall t \in [0, \tau],
\]

one has

\[
-\int_0^\tau \int_0^L (\phi_t + \phi_x + \phi_{xxx}) y dx dt + \int_0^\tau \int_0^L \phi y_{xt} dx dt
\]

\[
+ \int_0^L y(\tau, x) \phi(\tau, x) dx - \int_0^L y_0(x) \phi(0, x) dx = 0.
\]

(2.21)

A solution to the Cauchy problem (1.7) on \([0, +\infty)\) is a function

\[
y \in C^0([0, +\infty); L^2(0, L)) \cap L^2_{\text{loc}}([0, +\infty); H^1(0, L))
\]

(2.22)

such that, for every \( T > 0, y \) restricted to \([0, T] \times (0, L)\) is a solution to (1.7) on \([0, T]\).

Then by considering equation (1.7) as a special case (with \( f = 0 \) and \( u = 0 \)) of the equation (A.1) in [7], the following two propositions about the existence and uniqueness of the solutions to (1.7) follow directly from [7, Proposition 14 and Proposition 15].
Proposition 2.2. Let $T \in (0, +\infty)$. There exist $\varepsilon = \varepsilon(T) > 0$ and $C = C(T) > 0$ such that, for every $y_0 \in L^2(0, L)$ with $\|y_0\|_{L^2(0, L)} < \varepsilon(T)$, there exists at least one solution $y$ to the equation (1.7) on $[0, T]$ which satisfies

$$\|y\|_B := \max_{t \in [0, T]} \|y(t, \cdot)\|_{L^2(0, L)} + \left(\int_0^T \|y(t, \cdot)\|_{H^1(0, L)}^2 dt\right)^{1/2}$$

(2.23)

$$\leq C(T)\|y_0\|_{L^2(0, L)}.$$

Proposition 2.3. Let $T \in (0, +\infty)$. There exists $C > 0$ such that, for every solutions $y_1$ and $y_2$, corresponding to every initial conditions $(y_{10}, y_{20}) \in (L^2(0, L))^2$ respectively, to the equation (1.7) on $[0, T]$, one has the following inequalities:

$$\int_0^T \int_0^L (y_{1x}(t, x) - y_{2x}(t, x))^2 dx dt \leq \int_0^L (y_{10}(x) - y_{20}(x))^2 dx$$

(2.24)

$$\times \exp \left(C \left(1 + \|y_1\|_{L^2(0, T; H^1(0, L))}^2 + \|y_2\|_{L^2(0, T; H^1(0, L))}^2\right)\right),$$

$$\int_0^L (y_1(t, x) - y_2(t, x))^2 dx \leq \int_0^L (y_{10}(x) - y_{20}(x))^2 dx$$

(2.25)

$$\times \exp \left(C \left(1 + \|y_1\|_{L^2(0, T; H^1(0, L))}^2 + \|y_2\|_{L^2(0, T; H^1(0, L))}^2\right)\right),$$

for all $t \in [0, T]$.

Let us also mention that for every solution $y$ to (1.7) on $[0, T]$ or on $[0, +\infty)$,

$$t \mapsto \|y(t, \cdot)\|_{L^2(0, L)}^2$$

(2.26)

is a non-increasing function.

This can be easily seen by multiplying the first equation of (1.7) with $y$, integrating on $[0, L]$ and performing integration by parts. One then gets, if $y$ is smooth enough,

$$\frac{d}{dt} \int_0^L y(t, x)^2 dx = -y_x(t, 0)^2,$$

(2.27)

which gives (2.26). The general case follows from a smoothing argument. As a consequence of Proposition 2.2, Proposition 2.3 and (2.26), one sees that (1.7) has one and only one solution defined on $[0, +\infty)$ if $\|y_0\|_{L^2(0, L)} < \varepsilon(1)$.

3. Existence of a center manifold and dynamics on this manifold.

Let us start this section by recalling why, as it is classical, the property “$0 \in L^2(0, L)$ is locally asymptotically stable in the sense of the $L^2(0, L)$-norm for (1.7)” stated at the end of Theorem 1.1 is a consequence of the other statements in this theorem. For convenience, let us recall the argument. Let $y_0 \in L^2(0, L)$ be such that $\|y_0\|_{L^2(0, L)} < \delta$ and let $y$ be the solution to (1.7). It suffices to check that

$$y(t, \cdot) \to 0 \text{ in } L^2(0, L) \text{ as } t \to +\infty.$$  

(3.1)

By (1.17), (2.26) and the fact that $M$ is of finite dimension, there exists an increasing sequence of positive real numbers $(t_n)_{n \in \mathbb{N}}$ and $z_0 \in L^2(0, L)$ such that

$$t_n \to +\infty \text{ as } n \to +\infty,$$

(3.2)

$$y(t_n, \cdot) \to z_0 \text{ in } L^2(0, L) \text{ as } n \to +\infty,$$

(3.3)

$$z_0 \in G \text{ and } \|z_0\|_{L^2(0, L)} < \delta.$$  

(3.4)
Let $z : [0, +\infty) \times (0, L) \to \mathbb{R}$ be the solution to (1.7) satisfying the initial condition $z(0, \cdot) = z_0$. It follows from (1.20) and (3.4) that

(3.5) \quad z(t, \cdot) \to 0 \text{ in } L^2(0, L) \text{ as } t \to +\infty.

Let $\eta > 0$. By (3.5), there exists $\tau > 0$ such that

(3.6) \quad \|z(\tau, \cdot)\|_{L^2(0, L)} \leq \frac{\eta}{2}.

By Proposition 2.3 and (3.3),

(3.7) \quad y(t_n + \tau, \cdot) \to z(\tau, \cdot) \text{ in } L^2(0, L) \text{ as } n \to +\infty.

By (3.6) and (3.7), there exists $n_0 \in \mathbb{N}$ such that

(3.8) \quad \|y(t_n + \tau, \cdot)\|_{L^2(0, L)} < \eta,

which, together with (2.26), implies that

(3.9) \quad \|y(t, \cdot)\|_{L^2(0, L)} < \eta, \; \forall t \geq t_{n_0} + \tau,

which concludes the proof of (3.1).

The remaining parts of this section are organized as follows. We first recall in Section 3.1 a theorem (Theorem 3.1) on the existence of a local center manifold for (1.7). Then in Section 3.2 we analyze the dynamics of (1.7) on this center manifold and deduce Theorem 1.1 from this analysis.

### 3.1. Existence of a local center manifold.

In [5, Theorem 3.1], following [20], the existence of a center manifold for (1.7) was proved for the first critical length, i.e., $L = 2\pi$. The same proof applies for our $L$ (i.e., the $L$ defined by (1.11)) and allows us to get the following theorem.

**Theorem 3.1.** There exist $\delta \in (0, \varepsilon(1)), K > 0, \omega > 0$ and a map $g : M \to M^\perp$ satisfying (1.14) and (1.15) such that, with $G$ defined by (1.16), the following two properties hold for every solution $y(t, x)$ to (1.7) with $\|y_0\|_{L^2(0, L)} < \delta$.

1. (Local exponential attractivity of $G$.)

   (3.10) \quad d(y(t, \cdot), G) \leq Ke^{-\omega t}d(y_0, G), \; \forall t > 0,

   where $d(\chi, G)$ denotes the distance between $\chi \in L^2(0, L)$ and $G$:

   (3.11) \quad d(\chi, G) := \inf\{\|\chi - \psi\|_{L^2(0, L)}; \; \psi \in G\}.

2. (Local invariance of $G$.)

   (3.12) \quad If $y_0 \in G$, then $y(t, \cdot) \in G, \; \forall t \geq 0$.

### 3.2. Dynamics on the local center manifold.

In this section we study the dynamics of (1.7) on $G_\delta$ with

(3.13) \quad G_\delta := \{\zeta(x) \in G; \; \|\zeta\|_{L^2(0, L)} < \delta\}.

Let

(3.14) \quad \Omega := \{(m_1, m_2) \in \mathbb{R}^2; \; m_1\varphi_1 + m_2\varphi_2 + g(m_1\varphi_1 + m_2\varphi_2) \in G_\delta\},
then $\Omega$ is a bounded open subset of $\mathbb{R}^2$ which contains $(0, 0) \in \mathbb{R}^2$. Let $m^0 = (m^0_1, m^0_2) \in \Omega$, and let $y$ be the solution of (1.7) on $[0, +\infty)$ for the initial data $y_0 := m^0_1 \varphi_1 + m^0_2 \varphi_2 + g(m^0_1 \varphi_1 + m^0_2 \varphi_2)$. It follows from (2.26) and Theorem 3.1 that $y(t, \cdot) \in G_\delta$ for every $t \in [0, +\infty)$. Hence we can define, for $t \in [0, +\infty)$, $m(t) = (m_1(t), m_2(t)) \in \Omega$ by requiring that

$$
y(t, \cdot) = m_1(t) \varphi_1 + m_2(t) \varphi_2 + g(m_1(t) \varphi_1 + m_2(t) \varphi_2).
$$

Since $y \in C^0([0, +\infty); L^2(0, L))$, then $m \in C^0([0, +\infty); \mathbb{R}^2)$. Let $T > 0$. Let $u \in C^0_0(0, T)$. We apply (2.21) with $\tau = T$ and $\phi(t, x) := u(t) \varphi_1(x)$ (note that, by (2.12), (2.20) holds). We get

$$
- \int_0^T \int_0^L (\dot{u}(t) \varphi_1(x) + u(t) \varphi_1'(x) + u(t) \varphi_1''(x)) y(t, x) dx dt + \int_0^T \int_0^L u(t) \varphi_1(x) (yy_x)(t, x) dx dt = 0.
$$

From (2.12), (2.18), (3.15) and (3.16), we have

$$
- \int_0^T (m_1(t) \dot{u}(t) - q m_2(t) u(t)) dt - \frac{1}{2} \int_0^T \int_0^L y^2(t, x) \varphi_1'(x) u(t) dx dt = 0.
$$

Hence, in the sense of distributions on $(0, T)$,

$$
\dot{m}_1 = -q m_2 + \frac{1}{2} \int_0^L (m_1 \varphi_1 + m_2 \varphi_2 + g (m_1 \varphi_1 + m_2 \varphi_2))^2 \varphi_1' dx.
$$

Similarly, in the sense of distributions on $(0, T)$,

$$
\dot{m}_2 = q m_1 + \frac{1}{2} \int_0^L (m_1 \varphi_1 + m_2 \varphi_2 + g (m_1 \varphi_1 + m_2 \varphi_2))^2 \varphi_2' dx.
$$

Hence, if we define $F : \Omega \to \mathbb{R}^2$, $m = (m_1, m_2) \mapsto F(m)$, by

$$
F(m) := \left( \begin{array}{c}
- q m_2 + \frac{1}{2} \int_0^L (m_1 \varphi_1 + m_2 \varphi_2 + g (m_1 \varphi_1 + m_2 \varphi_2))^2 \varphi_1' dx \\
q m_1 + \frac{1}{2} \int_0^L (m_1 \varphi_1 + m_2 \varphi_2 + g (m_1 \varphi_1 + m_2 \varphi_2))^2 \varphi_2' dx
\end{array} \right),
$$

then

$$
\dot{m} = F(m).
$$

Note that, by (1.14) and (3.20),

$$
F \in C^3(\Omega; \mathbb{R}^2),
$$

which, together with (3.21), implies that

$$
m \in C^4([0, +\infty); \mathbb{R}^2).
$$

We now estimate $g$ close to $0 \in M$. Let $\psi \in C^4([0, L])$ be such that

$$
\psi(0) = \psi(L) = \psi'(0) = 0.
$$
Using Definition 2.1 with \( \phi(t, x) := \psi(x) \), (3.24) and integration by parts, we get

\[
-\frac{1}{\tau} \int_0^\tau \int_0^L (\psi' + \psi'')ydxdt - \frac{1}{2\tau} \int_0^\tau \int_0^L \psi'^2dxdt
+ \int_0^L \frac{1}{\tau} (g(\tau, x) - y_0(x)) \psi(x)dx = 0.
\]

(3.25)

Letting \( \tau \to 0^+ \) in (3.25), and using (3.20), (3.21) and (3.23), we get

\[
- \int_0^L (\psi' + \psi'')y_0 dx - \frac{1}{2} \int_0^L \psi''y_0 dx + \int_0^L \left( \dot{m}_1(0)\varphi_1(x) + \dot{m}_2(0)\varphi_2(x) + \frac{\partial g}{\partial m_1}(\mathbf{m}^0)\dot{m}_1(0) + \frac{\partial g}{\partial m_2}(\mathbf{m}^0)\dot{m}_2(0) \right) \psi dx = 0.
\]

(3.26)

We expand \( g \) in a neighborhood of \( 0 \in M \). Using (1.14) and (1.15), there exist

\[
a \in M^\perp, b \in M^\perp, c \in M^\perp
\]

such that

\[
g(\alpha \varphi_1 + \beta \varphi_2) = \alpha^2a + \alpha \beta b + \beta^2c + o(\alpha^2 + \beta^2) \text{ in } L^2(0, L) \text{ as } \alpha^2 + \beta^2 \to 0,
\]

(3.28)

\[
\frac{\partial g}{\partial m_1}(\alpha \varphi_1 + \beta \varphi_2) = 2\alpha a + \beta b + o(|\alpha| + |\beta|) \text{ in } L^2(0, L) \text{ as } |\alpha| + |\beta| \to 0,
\]

(3.29)

\[
\frac{\partial g}{\partial m_2}(\alpha \varphi_1 + \beta \varphi_2) = ab + 2\beta c + o(|\alpha| + |\beta|) \text{ in } L^2(0, L) \text{ as } |\alpha| + |\beta| \to 0.
\]

(3.30)

As usual, by (3.28), we mean that, for every \( \varsigma_1 > 0 \), there exists \( \varsigma_2 > 0 \) such that

\[
(\alpha^2 + \beta^2 \leq \varsigma_1) \implies \left( \| g(\alpha \varphi_1 + \beta \varphi_2) - (\alpha^2a + \alpha \beta b + \beta^2c) \|_{L^2(0, L)} \leq \varsigma_2(\alpha^2 + \beta^2) \right).
\]

(3.31)

Similar definitions are used in (3.29), (3.30) and later on. We now expand the left hand side of (3.26) in terms of \( m_1^0, m_2^0, (m_1^0)^2, m_1^0m_2^0 \) and \( (m_2^0)^2 \) as \( |m_1^0| + |m_2^0| \to 0 \).

For the functions \( \varphi_1 \) and \( \varphi_2 \) defined by (2.9), (2.10) and (2.11), the following equalities can be derived from (2.12), (2.13) and using integrations by parts:

\[
\int_0^L \varphi_1(x)\varphi_2(x)dx = \frac{10}{7\sqrt{21}},
\int_0^L \varphi_2(x)\varphi'_1(x)dx = -\frac{10}{7\sqrt{21}},
\int_0^L \varphi_1(x)\varphi_1(x)dx = 0,
\int_0^L \varphi_2(x)\varphi_2(x)dx = 0,
\int_0^L \varphi_1(x)\varphi_2(x)dx = -2c_1,
\int_0^L \varphi_2(x)\varphi_1(x)dx = 2\sqrt{3}c_1,
\int_0^L \varphi_1(x)\varphi_2(x)\varphi'_1(x)dx = c_1,
\int_0^L \varphi_1(x)\varphi_2(x)\varphi'_2(x)dx = -\sqrt{3}c_1,
\]

where the constant \( c_1 \) is defined by

\[
c_1 := \frac{177147}{392392\pi} \frac{1}{\sqrt{\frac{1}{2\pi} \sqrt{\frac{3}{7}}}}.
\]

(3.36)
Looking successively at the terms in \((m_1^0)^2, m_0^0 m_0^1\) and \((m_2^0)^2\) in (3.26) as \(|m_1^0| + |m_2^0| \to 0\), we get, using (3.20), (3.21), (3.28), (3.29), (3.30) as well as (3.32)–(3.35),

\[
(3.37) \quad - \int_0^L (\psi_x + \psi_{xxx}) dx - \frac{1}{2} \int_0^L \psi_x \varphi_1^2 dx + \int_0^L (-c_1 \varphi_2 + qb) \psi dx = 0,
\]

\[
- \int_0^L (\psi_x + \psi_{xxx}) bdx - \int_0^L \psi_x \varphi_1 \varphi_2 dx + \int_0^L (c_1 \varphi_1 - \sqrt{3} c_1 \varphi_2 - 2qa + 2qc) \psi dx = 0,
\]

\[
(3.38) \quad - \int_0^L (\psi_x + \psi_{xxx}) cdx - \frac{1}{2} \int_0^L \psi_x \varphi_2^2 dx + \int_0^L (\sqrt{3} c_1 \varphi_1 - qb) \psi dx = 0.
\]

Since (3.37), (3.38) and (3.39) must hold for every \(\psi \in C^3([0, L])\) satisfying (3.24), one gets that \(a, b\) and \(c\) are of class \(C^\infty\) on \([0, L]\) and satisfy

\[
(3.40) \quad \begin{cases} 
  a' + a''' + \varphi_1 \varphi_1' - c_1 \varphi_2 + qb = 0, \\
  a(0) = a(L) = 0, \ a'(L) = 0,
\end{cases}
\]

\[
(3.41) \quad \begin{cases} 
  b' + b''' + \varphi_1 \varphi_2' + \varphi_1 \varphi_2 + c_1 \varphi_1 - \sqrt{3} c_1 \varphi_2 - 2qa + 2qc = 0, \\
  b(0) = b(L) = 0, \ b'(L) = 0,
\end{cases}
\]

\[
(3.42) \quad \begin{cases} 
  c' + c''' + \varphi_2 \varphi_2' + \sqrt{3} c_1 \varphi_1 - qb = 0, \\
  c(0) = c(L) = 0, \ c'(L) = 0.
\end{cases}
\]

We derive in the Appendix the unique functions \(a : [0, L] \to \mathbb{R}, \ b : [0, L] \to \mathbb{R}\) and \(c : [0, L] \to \mathbb{R}\) which are solutions to (3.40), (3.41) and (3.42). From (3.20) and (3.28), we get that, as \(m \to 0 \in \mathbb{R}^2\),

\[
F(m) = \left( \begin{array}{c}
qm_2 - c_1 m_1 m_2 - A_1 m_1^3 + B_1 m_1^2 m_2 + C_1 m_1 m_2^2 + D_1 m_2^3 \\
qm_1 - c_1 m_1^2 - \sqrt{3} c_1 m_1 m_2 + A_2 m_1^3 + B_2 m_1^2 m_2 + C_2 m_1 m_2^2 + D_2 m_2^3
\end{array} \right) + o(|m|^3),
\]
with

\begin{align*}
A_1 &:= \int_0^L a\varphi_1\varphi'_1 \, dx, \\
B_1 &:= \int_0^L b\varphi_1\varphi'_1 + \int_0^L a\varphi_2\varphi'_1 \, dx, \\
C_1 &:= \int_0^L c\varphi_1\varphi'_1 + \int_0^L b\varphi_2\varphi'_1 \, dx, \\
D_1 &:= \int_0^L c\varphi_2\varphi'_1 \, dx, \\
A_2 &:= \int_0^L a\varphi_1\varphi'_2 \, dx, \\
B_2 &:= \int_0^L b\varphi_1\varphi'_2 + \int_0^L a\varphi_2\varphi'_2 \, dx, \\
C_2 &:= \int_0^L c\varphi_1\varphi'_2 + \int_0^L b\varphi_2\varphi'_2 \, dx, \\
D_2 &:= \int_0^L c\varphi_2\varphi'_2 \, dx.
\end{align*}

Let us now study the local asymptotic stability property of \(0 \in \mathbb{R}^2\) for (3.21). We propose two methods for that. The first one is a more direct one, which relies on normal forms for dynamical systems on \(\mathbb{R}^2\). The second one, which relies on a Lyapunov approach related to the physics of (1.7), is less direct. However, there is a reasonable hope that this second method can be applied to other critical lengths \(L \in \mathcal{N} \setminus 2\pi\mathbb{N}\) for which the dimension of \(M\) is larger than 2.

**Method 1: normal form.** Let

\begin{equation}
\dot{z} := m_1 + im_2 \in \mathbb{C}.
\end{equation}

Then

\begin{equation}
m_1 = \frac{z + \overline{z}}{2}, \quad m_2 = \frac{z - \overline{z}}{2i},
\end{equation}

and it follows from (3.21) and (3.43) that, as \(|z| \to 0, \)

\begin{equation}
\dot{z} = (iQ)z + P_2(z, \overline{z}) + P_3(z, \overline{z}) + o(|z|^3),
\end{equation}

where \(P_j(z, \overline{z})\) are polynomials in \(z, \overline{z}\) of degree \(j\). To be more precise, we have

\begin{equation}
P_2(z, \overline{z}) := \left(\sqrt{3}c_1m_2^2 + c_1m_1m_2\right) + i \left(-c_1m_1^2 - \sqrt{3}c_1m_1m_2\right),
\end{equation}

\begin{equation}
= -\frac{c_1}{2} \left(\sqrt{3} + i\right) z^2 + \frac{c_1}{2} \left(\sqrt{3} - i\right) \overline{z},
\end{equation}

and

\begin{equation}
P_3(z, \overline{z}) := \left(A_1 + iA_2\right) \left(\frac{z + \overline{z}}{2}\right)^3 + \left(B_1 + iB_2\right) \left(\frac{z + \overline{z}}{2}\right)^2 \left(\frac{z - \overline{z}}{2i}\right) + \left(C_1 + iC_2\right) \left(\frac{z + \overline{z}}{2}\right) \left(\frac{z - \overline{z}}{2i}\right)^2 + \left(D_1 + iD_2\right) \left(\frac{z - \overline{z}}{2i}\right)^3.
\end{equation}
We can rewrite \((3.54)\) as
\[
\dot{z} = (iq) z + \sum_{i+j=2}^{3} \frac{1}{i!j!} g_{ij} z^i \bar{z}^j + o(|z|^3),
\]
and it is known from [10, page 45 and page 47] that \((3.57)\) has the following Poincaré normal form
\[
\dot{\xi} = (iq) \xi + \rho \xi^2 \xi + o(|\xi|^3),
\]
where
\[
\rho = \frac{i}{2q} \left( g_{20} g_{11} - 2 |g_{11}|^2 - \frac{1}{3} |g_{02}|^2 \right) + \frac{g_{21}}{2}.
\]
According to \((3.55)\) and \((3.56)\), through a simple computation, we have
\[
g_{20} = -c_1 \left( \sqrt{3} + i \right), g_{11} = \frac{c_1}{2} \left( \sqrt{3} - i \right), g_{02} = 0,
\]
\[
g_{21} = \frac{1}{4} (3A_1 + i3A_2 - iB_1 + B_2 + C_1 + iC_2 + -i3D_1 + 3D_2).
\]
Using \((3.60)\) and \((3.61)\), the formula of \(\rho\) provided by \((3.59)\) gives
\[
\rho = \rho_1 + i\rho_2,
\]
with
\[
\rho_1 := \frac{1}{8} (3A_1 + C_1 + B_2 + 3D_2),
\]
\[
\rho_2 := -2 \frac{c_2^2}{q} + \frac{1}{8} (-B_1 - 3D_1 + 3A_2 + C_2).
\]
It follows that we can derive the Poincaré normal form of the reduced equation on the local center manifold \((3.58)\). Moreover, in Cartesian coordinates, \((3.58)\) is
\[
\dot{\xi}_1 = -q \xi_2 + (a \xi_1 - b \xi_2) (\xi_1^2 + \xi_2^2) + o(|\xi_1|^3 + |\xi_2|^3),
\]
\[
\dot{\xi}_2 = q \xi_1 + (a \xi_2 + b \xi_1) (\xi_1^2 + \xi_2^2) + o(|\xi_1|^3 + |\xi_2|^3),
\]
where
\[
\xi = \xi_1 + i \xi_2.
\]
In polar coordinates, set
\[
r = \sqrt{\xi_1^2 + \xi_2^2}, \theta = \arctan \frac{\xi_2}{\xi_1},
\]
we have, as \(r \to 0\),
\[
\dot{r} = \rho_1 r^3 + o(r^3), \quad \dot{\theta} = q + \rho_2 r^2 + o(r^2).
\]
Now it is clear to see from \((3.69)\) that the origin \(0 \in \mathbb{R}^2\) is asymptotically stable for \((3.21)\) if \(\rho_1 < 0\) and is not stable if \(\rho_1 > 0\). From \((2.9)\), \((2.10)\), \((2.11)\), \((3.44)\)–\((3.51)\)
and the Appendix, we can obtain all the coefficients \(A_i, B_i, C_i, D_i\) \((i = 1, 2)\). Then, using Matlab, it follows that

\[
\rho_1 := \frac{1}{8} (A_1 + C_1 + B_2 + 3D_2) = -0.014325 < 0.
\]

And straightforward computation leads to the existence of \(C > 0\) such that, at least if \(r(0) \in [0, +\infty)\) is small enough, one has for the solution to (3.69),

\[
r(t) \leq \frac{Cr(0)}{\sqrt{1 + tr(0)^2}}, \quad \forall t \in [0, +\infty),
\]

which concludes the proof of Theorem 1.1.

**Method 2: Lyapunov function.** Let us start with a formal motivation. Recall that, by (1.9) and with \(E\) defined in (1.8), we have, along the trajectories of (1.7),

\[
\dot{E} = -\frac{1}{2}K^2
\]

with

\[
K := y_x(0)
\]

It is therefore natural to consider the following candidate for a Lyapunov function

\[
V := E - \mu K \dot{K}
\]

where \(\mu > 0\) is small enough. Indeed, one then gets

\[
\dot{V} := -\frac{1}{2}K^2 - \mu \left(\dot{K}\right)^2 - \mu K \ddot{K},
\]

and one may hope to absorb \(-\mu K \ddot{K}\) with \(-\frac{1}{2}K^2 - \mu \left(\dot{K}\right)^2\) and get \(\dot{V} < 0\) on \(G \setminus \{0\}\), at least in a neighborhood of 0.

We follow this strategy together with the approximation of \(g\) previously found. For \(m = (m_1, m_2) \in \Omega\), let (see (3.28))

\[
\hat{y} = m_1 \varphi_1 + m_2 \varphi_2 + m_1^2 a + m_1 m_2 b + m_2^2 c \in C^\infty([0, L]),
\]

\[
\tilde{E} := \frac{1}{2} \int_0^L \hat{y}^2 dx.
\]

Then, using (2.12), (2.13), (3.40), (3.41) and (3.42) (compare with (3.26)), one gets that, along the trajectories of (3.21), for \(m \in \Omega\) and \(\psi \in C^3([0, L])\) satisfying

\[
\psi(0) = \psi(L) = 0,
\]
one has

\[- \int_0^L (\psi' + \psi'')\dd y \, \dd x + \psi'(0) (m_1^2 a'(0) + m_1 m_2 b'(0) + m_2^2 c'(0)) \]

\[- \frac{1}{2} \int_0^L \psi_x \dd y^2 \, \dd x + \int_0^L \left( \dd m_1 \varphi_1 + \dd m_2 \varphi_2 + \frac{\partial \dd \varphi}{\partial m_1} \dd m_1 + \frac{\partial \dd \varphi}{\partial m_2} \dd m_2 \right) \psi \, \dd x \]

\[= \int_0^L (\dd \varphi + \dd \varphi_x + \dd \varphi_{xx} + \dd \varphi_{xxx}) \psi \, \dd x \]

\[= \int_0^L \left[ m_1^2 (A_1 \varphi_1 + A_2 \varphi_2 - b c_1 + \varphi_1 a' + a \varphi'_1) \right. \]

\[+ m_1^2 m_2 (B_1 \varphi_1 + B_2 \varphi_2 + 2 a \varphi_1 - b \sqrt{3} c_1 \]

\[\quad - 2 c_1 + \varphi_1 b' + \varphi_2 a' + a \varphi_2 + b \varphi'_1) \]

\[+ m_1 m_2^2 (C_1 \varphi_1 + C_2 \varphi_2 + 2 a \sqrt{3} c_1 + b c_1 \]

\[\quad - 2 c \sqrt{3} c_1 + \varphi_1 c' + \varphi_2 b' + b \varphi'_1) \]

\[+ m_2^3 (D_1 \varphi_1 + D_2 \varphi_2 + b \sqrt{3} c_1 + \varphi_2 c' + c \varphi'_2) \]

\[+ o(|m|^4) \]

(3.79)

Then, using (3.79) with \( \psi := \dd \varphi \) (which, by (2.12), (2.13), (3.40), (3.41), (3.42) and (3.76), satisfies (3.78)), along the trajectories of (3.21), we have from (2.14), (2.15), (3.27) and (3.43)–(3.51) that the right hand side of (3.79) is \( o(|m|^4) \), and

(3.80)

\[\dot{\mathcal{E}} = - \frac{1}{2} \mathcal{K}^2 + o(|m|^4) \text{ as } |m| \to 0,\]

with \( \mathcal{K} : \Omega \to \mathbb{R} \) defined by

(3.81)

\[\mathcal{K} := a'(0)m_1^2 + b'(0)m_1 m_2 + c'(0)m_2^2.\]

Let us emphasize that, even if “along the trajectories of (3.21)” might be misleading, \( \dot{\mathcal{E}} \) is just a function of \( m \in \Omega \). It is the same for \( \dot{V}, \dot{\mathcal{K}}, \dot{\mathcal{K}} \) which appear below. Using (1.15) and (3.20), we have, along the trajectories of (3.21),

(3.82)

\[\dot{\mathcal{K}} = qb'(0)m_1^2 + 2q(c'(0) - a'(0))m_1 m_2 - qb'(0)m_2^2 + o(|m|^2).\]

Using (3.20), we get the existence of \( C > 0 \) such that, along the trajectories of (3.21),

(3.83)

\[|\dot{\mathcal{K}}| \leq C|m|^2, \quad \forall m \in \Omega.\]

We can now define our Lyapunov function \( \dot{V} \). Let \( \mu \in (0, 1/4] \). Let \( \dot{V} : \Omega \to \mathbb{R} \) be defined by

(3.84)

\[\dot{V} := \dot{E} - \mu \dot{\mathcal{K}}.\]

From (3.84), we have the existence of \( \eta_0 > 0 \) such that, for every \( m \in \mathbb{R}^2 \) satisfying
\[ |\mathbf{m}| < \eta_0 \] and along the trajectories of (3.21),

\[ \dot{\mathbf{V}} = -\frac{1}{2} \dddot{\mathbf{K}} - \mu \dot{\mathbf{K}}^2 + \mu \ddot{\mathbf{K}} \dot{\mathbf{K}} + o(|\mathbf{m}|^4) \]
\[ \leq -\frac{1}{4} \dot{\mathbf{K}}^2 - \mu \dot{\mathbf{K}}^2 + \mu^2 \left( \dddot{\mathbf{K}} \right)^2 + o(|\mathbf{m}|^4) \]
\[ \leq -\frac{1}{4} \dot{\mathbf{K}}^2 - \mu \dot{\mathbf{K}}^2 + 2\mu^2 C^2 |\mathbf{m}|^4 \]
\[ \leq -\mu \left( \dot{\mathbf{K}}^2 + \left( \dddot{\mathbf{K}} \right)^2 - 2\mu C^2 |\mathbf{m}|^4 \right). \]

(3.85)

Let us assume for the moment that, for every \( \mathbf{m} = (m_1, m_2) \in \mathbb{R}^2 \),

\[ \begin{cases} a'(0)m_1^2 + b'(0)m_1m_2 + c'(0)m_2^2 = 0, \\ q'b'(0)m_1^2 + 2q(c'(0) - a'(0))m_1m_2 - qb'(0)m_2^2 = 0, \end{cases} \Rightarrow (\mathbf{m} = \mathbf{0}). \]

(3.86)

Then, by homogeneity, there exists \( \eta_1 > 0 \) such that
\[ (a'(0)m_1^2 + b'(0)m_1m_2 + c'(0)m_2^2)^2 + (q'b'(0)m_1^2 + 2q(c'(0) - a'(0))m_1m_2 - qb'(0)m_2^2)^2 \]
\[ \geq 2\eta_1 |\mathbf{m}|^4, \forall \mathbf{m} = (m_1, m_2) \in \mathbb{R}^2. \]

(3.87)

From (3.81), (3.82) and (3.87), we get the existence of \( \eta_2 > 0 \) satisfying

\[ \dot{\mathbf{K}}^2 + \left( \dddot{\mathbf{K}} \right)^2 \geq \eta_1 |\mathbf{m}|^4, \forall \mathbf{m} \in \mathbb{R}^2 \text{ such that } |\mathbf{m}| < \eta_2. \]

(3.88)

From (3.85) and (3.88), we get the existence of \( \eta_3 > 0 \) such that, for every \( \mu \in (0, \eta_3) \),

\[ \dot{\mathbf{V}} \leq -\frac{\mu}{2} \eta_1 |\mathbf{m}|^4, \forall \mathbf{m} \in \mathbb{R}^2 \text{ such that } |\mathbf{m}| < \eta_3. \]

(3.89)

Moreover, straightforward estimates show that there exists \( \eta_4 > 0 \) such that, for every \( \mu \in (0, \eta_4) \),

\[ \eta_4 |\mathbf{m}|^2 \leq \dot{\mathbf{V}} \leq \frac{1}{\eta_4} |\mathbf{m}|^2, \forall \mathbf{m} \in \mathbb{R}^2 \text{ such that } |\mathbf{m}| < \eta_4, \]

(3.90)

which, together with (3.89), proves the existence of \( C > 0 \) such that, at least if \( \mathbf{m}^0 \in \mathbb{R}^2 \) is small enough, the solution to (3.21) satisfies

\[ |\mathbf{m}(t)| \leq \frac{C |\mathbf{m}^0|}{\sqrt{1 + t |\mathbf{m}^0|^4}}, \forall t \geq 0. \]

(3.91)

It only remains to prove (3.86). From the Appendix, one gets that \( c'(0) \approx 0.0118 \neq 0 \), then (3.86) holds if \( m_1 = 0 \). Let us now deal with the case \( m_1 \neq 0 \). Dividing both the polynomials on the two equations on the left hand side of (3.86) by \( m_1^2 \), then the two resulting polynomials have a common root if and only if their resultant is zero. This resultant is the determinant of the Sylvester matrix \( S \):

\[ S := \begin{pmatrix} c'(0) & b'(0) & a'(0) & 0 \\ 0 & c'(0) & b'(0) & a'(0) \\ -b'(0) & -2(a'(0) - c'(0)) & b'(0) & 0 \\ 0 & -b'(0) & -2(a'(0) - c'(0)) & b'(0) \end{pmatrix}. \]

(3.92)
Straightforward computations show that
\[
\det(S) = a'(0)^3 [b'(0) + 4c'(0)] + a'(0)^2 [-2b'(0)^2 + b'(0)c'(0) - 8c'(0)^2]
\]
+ \[
a'(0) [5b'(0)^2 c'(0) + 4c'(0)^3] - b'(0)^2 c'(0)^2 - b'(0)^4.
\]
From (3.93) and the Appendix (see in particular (A.42), (A.43) and (A.44)), we have
\[
(3.94) \quad \det(S) \approx -0.0197 \neq 0.
\]
Hence, the two resulting polynomials do not have a common root. Thus, (3.86) is proved.

Remark 3.1. It follows from our proof of Theorem 1.1 that the decay rate stated in (1.20) is optimal in the following sense: there exists \(\varepsilon > 0\) such that, for every \(y_0 \in G\) such that \(\|y_0\|_{L^2(0,L)} \leq \varepsilon\),
\[
(3.95) \quad \|y(t, \cdot)\|_{L^2(0,L)} \geq \frac{\varepsilon \|y_0\|_{L^2(0,L)}}{\sqrt{1 + t\|y_0\|_{L^2(0,L)}^2}}.
\]
(For the Lyapunov approach, let us point out that, decreasing if necessary \(\eta_3 > 0\), one has, for every \(\mu \in (0, \eta_3)\),
\[
(3.96) \quad \dot{V} \geq -\frac{1}{\eta_3} |\mathbf{m}|^4, \quad \forall \mathbf{m} \in \mathbb{R}^2 \text{ such that } |\mathbf{m}| < \eta_3.
\]

4. Conclusion and future works.
In this article, we have proved that for the critical case of \(L = 2\pi \sqrt{1/3}\), \(0 \in L^2(0,L)\) is locally asymptotically stable for the KdV equation (1.7). First, we recalled that the equation has a two-dimensional local center manifold. Next, through a second order power series approximation at \(0 \in M\) of the function \(g\) defining the local center manifold, we derived the local asymptotic stability of \(0 \in L^2(0,L)\) on the local center manifold and obtained a polynomial decay rate for the solution to the KdV equation (1.7) on the center manifold.

Since the KdV equation (1.7) also has other (periodic) steady states than the origin (see Remark 1.1), it remains an open and interesting problem to consider the (local) stability property of these steady states for the KdV equation (1.7). Furthermore, it remains to consider all the other critical cases with a two-dimensional (local) center manifold as well as all the last remaining critical cases, i.e., when the equation has a (local) center manifold with a dimension larger than 2.

Appendix. On the solution \(a, b\) and \(c\) to equations (3.40), (3.41) and (3.42).
Set
\[
(A.1) \quad f_+(x) := a(x) + c(x), \quad f_-(x) := a(x) - c(x),
\]
and
\[
(A.2) \quad \begin{cases}
    g_+(x) := \varphi_1(x)\varphi_1'(x) + \varphi_2(x)\varphi_2'(x) + \sqrt{3}c_1\varphi_1(x) - c_1\varphi_2(x), \\
    g_-(x) := \varphi_1(x)\varphi_1'(x) - \varphi_2(x)\varphi_2'(x) - \sqrt{3}c_1\varphi_1(x) - c_1\varphi_2(x), \\
    g(x) := \varphi_1(x)\varphi_2'(x) + \varphi_1'(x)\varphi_2(x) + c_1\varphi_1(x) - \sqrt{3}c_1\varphi_2(x).
\end{cases}
\]
First, adding each equation of (3.42) to the corresponding equation of (3.40), we have the following ODE equation for \( f_+(x) \):

(A.3) \[
\begin{align*}
& f_+''(x) + f_+'(x) + g_+(x) = 0, \\
& f_+(0) = f_+(L) = 0, \quad f_+'(L) = 0.
\end{align*}
\]

Second, subtracting each equation of (3.42) from the corresponding equation of (3.40), we obtain

(A.4) \[
\begin{align*}
& 2q\phi(x) + f'_-(x) + f'''_-(x) + g_-(x) = 0, \\
& f_-(0) = f_-(L) = 0, \quad f'_-(L) = 0,
\end{align*}
\]

which gives

(A.5) \[ b(x) = -\frac{1}{2q}(f'_-(x) + f'''_-(x) + g_-(x)). \]

Substitute (A.5) into (3.41), then the following ODE equation for \( f_-(x) \) is obtained:

(A.6) \[
\begin{align*}
& f_-'(0) = f_-'(L) = f''_-(L) = f'''_-(L) = 0, \\
& f_-'(0) + f'''_-(0) = 0, \quad f''_-(L) + f'''_-(L) = 0,
\end{align*}
\]

where the second and third lines are borrowed from (A.4), and the last three lines are obtained from (A.5) and the boundary conditions of (2.12), (2.13), (3.41), (A.2), and (A.4).

By employing the method of undetermined coefficients, the (unique) solution to the nonhomogeneous ODE equation (A.3) is

(A.7) \[
\begin{align*}
f_+(x) &= \sum_{l=1}^{3} C_l f_+(x) + c_{+11} \cos \left( \frac{1}{\sqrt{21}} x \right) + c_{+12} \sin \left( \frac{1}{\sqrt{21}} x \right) + c_{+21} \cos \left( \frac{3}{\sqrt{21}} x \right) \\
& \quad + c_{+31} \cos \left( \frac{4}{\sqrt{21}} x \right) + c_{+32} \sin \left( \frac{4}{\sqrt{21}} x \right) + c_{+41} \cos \left( \frac{5}{\sqrt{21}} x \right) \\
& \quad + c_{+42} \sin \left( \frac{5}{\sqrt{21}} x \right) + c_{+51} \cos \left( \frac{6}{\sqrt{21}} x \right) + c_{+61} \cos \left( \frac{9}{\sqrt{21}} x \right),
\end{align*}
\]

where the fundamental solutions \( f_+(x), \ l = 1, 2, 3 \) are

(A.8) \[ f_{+1}(x) = 1, \ f_{+2}(x) = \cos(x), \ f_{+3}(x) = \sin(x), \]

and the constants are

(A.9) \[
\begin{align*}
c_{+11} &= \frac{3c_1 \Theta}{(\sqrt{21}) - (\frac{1}{\sqrt{21}})_3}, \quad c_{+12} = \frac{-3\sqrt{3}c_1 \Theta}{(\sqrt{21}) + (\frac{1}{\sqrt{21}})_3}, \quad d_{21} = \frac{\Theta^2 (\frac{18}{\sqrt{21}})}{(\sqrt{21}) - (\frac{1}{\sqrt{21}})_3},
\end{align*}
\]

(A.10) \[
\begin{align*}
c_{+31} &= \frac{-2c_1 \Theta}{(\sqrt{21}) - (\frac{1}{\sqrt{21}})_3}, \quad d_{32} = \frac{2\sqrt{3}c_1 \Theta}{(\sqrt{21}) + (\frac{1}{\sqrt{21}})_3}, \quad d_{41} = \frac{c_1 \Theta}{(\sqrt{21}) - (\frac{1}{\sqrt{21}})_3},
\end{align*}
\]

(A.11) \[
\begin{align*}
c_{+42} &= \frac{\sqrt{3}c_1 \Theta}{(\sqrt{21}) + (\frac{1}{\sqrt{21}})_3}, \quad d_{51} = \frac{\Theta^2 (\frac{18}{\sqrt{21}})}{(\sqrt{21}) - (\frac{1}{\sqrt{21}})_3}, \quad d_{61} = \frac{\Theta^2 (\frac{18}{\sqrt{21}})}{(\sqrt{21}) - (\frac{1}{\sqrt{21}})_3},
\end{align*}
\]
and

\begin{equation}
C_{+l} = \frac{\det(A_{+l})}{\det(A_+)}, \quad l = 1, 2, 3.
\end{equation}

Here,

\begin{equation}
A_+ = \begin{pmatrix}
f_{+1}(0) & f_{+2}(0) & f_{+3}(0) \\
f_{+1}'(L) & f_{+2}'(L) & f_{+3}'(L) \\
\end{pmatrix},
\end{equation}

and each $A_{+l}$ is the matrix formed by replacing the $l$-th column of $A_+$ with a column vector $-b_+$, where

\begin{equation}
b_+ = (b_{+1} \ b_{+2} \ b_{+3})^T,
\end{equation}

and

\begin{equation}
b_{+1} = c_{+11} + c_{+21} + c_{+31} + c_{+41} + c_{+51} + c_{+61},
\end{equation}

\begin{equation}
b_{+2} = c_{+11} \cos \left( \frac{4}{\sqrt{21}} L \right) + c_{+12} \sin \left( \frac{4}{\sqrt{21}} L \right) + c_{+21} \cos \left( \frac{5}{\sqrt{21}} L \right)
\end{equation}

\begin{equation}
+ c_{+31} \cos \left( \frac{6}{\sqrt{21}} L \right) + c_{+32} \sin \left( \frac{6}{\sqrt{21}} L \right) + c_{+41} \cos \left( \frac{9}{\sqrt{21}} L \right),
\end{equation}

\begin{equation}
b_{+3} = \frac{1}{\sqrt{21}} c_{+11} \sin \left( \frac{4}{\sqrt{21}} L \right) + \frac{1}{\sqrt{21}} c_{+12} \cos \left( \frac{4}{\sqrt{21}} L \right) - \frac{3}{\sqrt{21}} c_{+21} \sin \left( \frac{5}{\sqrt{21}} L \right)
\end{equation}

\begin{equation}
- \frac{4}{\sqrt{21}} c_{+31} \sin \left( \frac{5}{\sqrt{21}} L \right) + \frac{4}{\sqrt{21}} c_{+32} \cos \left( \frac{5}{\sqrt{21}} L \right) - \frac{5}{\sqrt{21}} c_{+41} \sin \left( \frac{9}{\sqrt{21}} L \right),
\end{equation}

\begin{equation}
b_{+3} = \frac{5}{\sqrt{21}} c_{+42} \cos \left( \frac{5}{\sqrt{21}} L \right) - \frac{6}{\sqrt{21}} c_{+51} \sin \left( \frac{5}{\sqrt{21}} L \right) - \frac{9}{\sqrt{21}} c_{+61} \sin \left( \frac{9}{\sqrt{21}} L \right).
\end{equation}

Similarly, by employing the method of undetermined coefficients, the (unique) solution to the nonhomogeneous ODE system (A.6) is

\begin{equation}
f_-(x) = \sum_{l=1}^{6} C_{-l} f_{-l}(x) + c_{-11} \cos \left( \frac{4}{\sqrt{21}} x \right) + c_{-12} \sin \left( \frac{4}{\sqrt{21}} x \right) + c_{-21} \cos \left( \frac{5}{\sqrt{21}} x \right)
\end{equation}

\begin{equation}
+ c_{-31} \cos \left( \frac{8}{21} x \right) + c_{-32} \sin \left( \frac{8}{21} x \right) + c_{-41} \cos \left( \frac{10}{21} x \right),
\end{equation}

where the fundamental solutions $f_{-l}, l = 1, 6$ are

\begin{equation}
\begin{cases}
f_{-1}(x) = e^{\alpha_1 x} \cos (\beta_1 x), & f_{-2}(x) = e^{\alpha_1 x} \sin (\beta_1 x), \\
f_{-3}(x) = e^{-\alpha_1 x} \cos (\beta_1 x), & f_{-4}(x) = e^{-\alpha_1 x} \sin (\beta_1 x), \\
f_{-5}(x) = \cos (\beta_2 x), & f_{-6}(x) = \sin (\beta_2 x),
\end{cases}
\end{equation}
\[ \alpha_1 = \frac{(20 + \sqrt{57})^{\frac{1}{3}} - 7(20 + \sqrt{57})^{-\frac{1}{3}}}{2\sqrt[3]{7}}, \]  
\[ \beta_1 = \frac{(20 + \sqrt{57})^{\frac{1}{3}} + 7(20 + \sqrt{57})^{-\frac{1}{3}}}{2\sqrt[3]{21}}, \]  
\[ \beta_2 = \frac{(20 + \sqrt{57})^{\frac{1}{3}} + 7(20 + \sqrt{57})^{-\frac{1}{3}}}{\sqrt[3]{21}}, \]

the constants are

\[ c_{-11} = \frac{-3\Theta^2 \frac{40}{21} + 4q\Theta^2 \frac{2}{\sqrt{21}} + 9qc_1\Theta}{(\frac{4}{\sqrt{21}})^6 - 2(\frac{4}{\sqrt{21}})^4 + (\frac{4}{\sqrt{21}})^2 - 4q^2}, \]
\[ c_{-12} = \frac{-9\sqrt{3}qc_1\Theta}{(\frac{4}{\sqrt{21}})^6 - 2(\frac{4}{\sqrt{21}})^4 + (\frac{4}{\sqrt{21}})^2 - 4q^2}, \]
\[ c_{-21} = \frac{3\Theta^2 \frac{35}{21} - 4q\Theta^2 \frac{2}{\sqrt{21}}}{(\frac{5}{\sqrt{21}})^6 - 2(\frac{5}{\sqrt{21}})^4 + (\frac{5}{\sqrt{21}})^2 - 4q^2}, \]
\[ c_{-31} = \frac{3\Theta^2 \frac{240}{21} - 4q\Theta^2 \frac{12}{\sqrt{21}} - 6qc_1\Theta}{(\frac{5}{\sqrt{21}})^6 - 2(\frac{5}{\sqrt{21}})^4 + (\frac{5}{\sqrt{21}})^2 - 4q^2}, \]
\[ c_{-32} = \frac{6\sqrt{3}qc_1\Theta}{(\frac{5}{\sqrt{21}})^6 - 2(\frac{5}{\sqrt{21}})^4 + (\frac{5}{\sqrt{21}})^2 - 4q^2}, \]
\[ c_{-41} = \frac{-3\Theta^2 \frac{600}{21} + 4q\Theta^2 \frac{30}{\sqrt{21}} - 3qc_1\Theta}{(\frac{5}{\sqrt{21}})^6 - 2(\frac{5}{\sqrt{21}})^4 + (\frac{5}{\sqrt{21}})^2 - 4q^2}, \]
\[ c_{-42} = \frac{-3\sqrt{3}qc_1\Theta}{(\frac{5}{\sqrt{21}})^6 - 2(\frac{5}{\sqrt{21}})^4 + (\frac{5}{\sqrt{21}})^2 - 4q^2}, \]
\[ c_{-51} = \frac{3\Theta^2 \frac{2048}{21} - 4q\Theta^2 \frac{16}{\sqrt{21}}}{(\frac{8}{\sqrt{21}})^6 - 2(\frac{8}{\sqrt{21}})^4 + (\frac{8}{\sqrt{21}})^2 - 4q^2}, \]
\[ c_{-61} = \frac{3\Theta^2 \frac{1256}{21} + 4q\Theta^2 \frac{2}{\sqrt{21}}}{(\frac{10}{\sqrt{21}})^6 - 2(\frac{10}{\sqrt{21}})^4 + (\frac{10}{\sqrt{21}})^2 - 4q^2}, \]

and

\[ C_{-l} = \frac{\text{det}(A_{-l})}{\text{det}(A_{-})}, \quad l = 1, 6. \]

Here, the matrix

\[ A_{-} = (\alpha_{-1} \quad \alpha_{-2} \quad \alpha_{-3} \quad \alpha_{-4} \quad \alpha_{-5} \quad \alpha_{-6}), \]
where

\[
\alpha_{-l} = \begin{pmatrix}
    f_{-l}(0) \\
    f_{-l}(L) \\
    f'_{-l}(L) \\
    f''_{-l}(0) \\
    f''_{-l}(L) \\
    f^{(4)}_{-l}(L)
\end{pmatrix}, \quad l = 1, 6,
\]

(A.34)

and each \(A_{-l}\) is the matrix formed by replacing the \(l\)-th column of \(A\) with a column vector \(-b_-\), where

\[
b_- = \begin{pmatrix}
    b_{-1} \\
    b_{-2} \\
    b_{-3} \\
    b_{-4} \\
    b_{-5} \\
    b_{-6}
\end{pmatrix}^T.
\]

(A.35)

Here,

\[
b_{-1} = c_{-11} + c_{-21} + c_{-31} + c_{-41} + c_{-51} + c_{-61},
\]

(A.36)

\[
b_{-2} = c_{-11} \cos \left( \frac{1}{\sqrt{21}}L \right) + c_{-12} \sin \left( \frac{1}{\sqrt{21}}L \right) + c_{-21} \cos \left( \frac{2}{\sqrt{21}}L \right) + c_{-31} \cos \left( \frac{4}{\sqrt{21}}L \right) + c_{-41} \cos \left( \frac{5}{\sqrt{21}}L \right) + c_{-51} \cos \left( \frac{8}{\sqrt{21}}L \right) + c_{-61} \cos \left( \frac{10}{\sqrt{21}}L \right),
\]

(A.37)

\[
b_{-3} = -\frac{1}{\sqrt{21}}c_{-11} \sin \left( \frac{1}{\sqrt{21}}L \right) + \frac{1}{\sqrt{21}}c_{-12} \cos \left( \frac{1}{\sqrt{21}}L \right) - \frac{2}{\sqrt{21}}c_{-21} \sin \left( \frac{2}{\sqrt{21}}L \right) - \frac{4}{\sqrt{21}}c_{-31} \sin \left( \frac{4}{\sqrt{21}}L \right) + \frac{4}{\sqrt{21}}c_{-32} \cos \left( \frac{4}{\sqrt{21}}L \right) - \frac{5}{\sqrt{21}}c_{-41} \sin \left( \frac{5}{\sqrt{21}}L \right) + \frac{5}{\sqrt{21}}c_{-42} \cos \left( \frac{5}{\sqrt{21}}L \right) - \frac{8}{\sqrt{21}}c_{-51} \sin \left( \frac{8}{\sqrt{21}}L \right) - \frac{10}{\sqrt{21}}c_{-61} \sin \left( \frac{10}{\sqrt{21}}L \right),
\]

(A.38)

\[
b_{-4} = \frac{20}{21\sqrt{21}}c_{-12} \cos \left( \frac{1}{\sqrt{21}}L \right) + \frac{20}{21\sqrt{21}}c_{-32} \cos \left( \frac{4}{\sqrt{21}}L \right),
\]

(A.39)
\[ b_{-5} = \frac{-20}{21\sqrt{21}}c_{-11} \sin \left( \frac{1}{\sqrt{21}}L \right) + \frac{20}{21\sqrt{21}}c_{-12} \cos \left( \frac{1}{\sqrt{21}}L \right) \\
\quad - \frac{34}{21\sqrt{21}}c_{-21} \sin \left( \frac{2}{\sqrt{21}}L \right) \]
\[ + \frac{20}{21\sqrt{21}}c_{-31} \sin \left( \frac{4}{\sqrt{21}}L \right) + \frac{20}{21\sqrt{21}}c_{-32} \cos \left( \frac{4}{\sqrt{21}}L \right) \]
\[ + \frac{20}{21\sqrt{21}}c_{-41} \sin \left( \frac{5}{\sqrt{21}}L \right) - \frac{20}{21\sqrt{21}}c_{-42} \cos \left( \frac{5}{\sqrt{21}}L \right) \]
\[ + \frac{344}{21\sqrt{21}}c_{-51} \sin \left( \frac{8}{\sqrt{21}}L \right) + \frac{790}{21\sqrt{21}}c_{-61} \sin \left( \frac{10}{\sqrt{21}}L \right) \]  

\[ (A.40) \]

\[ b_{-6} = \frac{-20}{21^2}c_{-11} \cos \left( \frac{1}{\sqrt{21}}L \right) - \frac{20}{21^2}c_{-12} \sin \left( \frac{1}{\sqrt{21}}L \right) \\
\quad - \frac{68}{21^2}c_{-21} \cos \left( \frac{2}{\sqrt{21}}L \right) \]
\[ - \frac{80}{21^2}c_{-31} \cos \left( \frac{4}{\sqrt{21}}L \right) - \frac{80}{21^2}c_{-32} \sin \left( \frac{4}{\sqrt{21}}L \right) \]
\[ + \frac{100}{21^2}c_{-41} \cos \left( \frac{5}{\sqrt{21}}L \right) + \frac{100}{21^2}c_{-42} \sin \left( \frac{5}{\sqrt{21}}L \right) \]
\[ + \frac{2752}{21^2}c_{-51} \cos \left( \frac{8}{\sqrt{21}}L \right) + \frac{7900}{21^2}c_{-61} \cos \left( \frac{10}{\sqrt{21}}L \right) \]  

\[ (A.41) \]

Therefore, we derive from (A.1) that

\[ a(x) = \frac{1}{2} (f_+(x) + f_-(x)) \]
\[ = \frac{1}{2} \left[ \sum_{i=1}^{3} C_{+i} f_{+i}(x) + \sum_{i=1}^{6} C_{-i} f_{-i}(x) \right] \]
\[ + (c_{+11} + c_{-11}) \cos \left( \frac{1}{\sqrt{21}}x \right) + (c_{+12} + c_{-12}) \sin \left( \frac{1}{\sqrt{21}}x \right) \]
\[ + c_{-21} \cos \left( \frac{2}{\sqrt{21}}x \right) + c_{+21} \cos \left( \frac{3}{\sqrt{21}}x \right) \]
\[ + (c_{+31} + c_{-31}) \cos \left( \frac{4}{\sqrt{21}}x \right) + (c_{+32} + c_{-32}) \sin \left( \frac{4}{\sqrt{21}}x \right) \]
\[ + (c_{+41} + c_{-41}) \cos \left( \frac{5}{\sqrt{21}}x \right) + (c_{+42} + c_{-42}) \sin \left( \frac{5}{\sqrt{21}}x \right) \]
\[ + c_{+51} \cos \left( \frac{6}{\sqrt{21}}x \right) + c_{-51} \cos \left( \frac{8}{\sqrt{21}}x \right) \]
\[ + c_{+61} \cos \left( \frac{9}{\sqrt{21}}x \right) + c_{-61} \cos \left( \frac{10}{\sqrt{21}}x \right) \]  

\[ (A.42) \]
and
\[ c(x) = \frac{1}{2} (f_+ (x) - f_- (x)) \]
\[ = \frac{1}{2} \left[ \sum_{i=1}^{3} C_{+i} f_{+i}(x) - \sum_{i=1}^{6} C_{-i} f_{-i}(x) \right. \]
\[ + (c_{+11} - c_{-11}) \cos \left( \frac{1}{\sqrt{21}} x \right) + (c_{+12} - c_{-12}) \sin \left( \frac{1}{\sqrt{21}} x \right) \]
\[ - c_{-21} \cos \left( \frac{2}{\sqrt{21}} x \right) + c_{+21} \cos \left( \frac{3}{\sqrt{21}} x \right) \]
\[ + (c_{+31} - c_{-31}) \cos \left( \frac{4}{\sqrt{21}} x \right) + (c_{+32} - c_{-32}) \sin \left( \frac{4}{\sqrt{21}} x \right) \]
\[ + (c_{+41} - c_{-41}) \cos \left( \frac{5}{\sqrt{21}} x \right) + (c_{+42} - c_{-42}) \sin \left( \frac{5}{\sqrt{21}} x \right) \]
\[ + c_{+51} \cos \left( \frac{6}{\sqrt{21}} x \right) - c_{-51} \cos \left( \frac{8}{\sqrt{21}} x \right) \]
\[ \left. + c_{+61} \cos \left( \frac{9}{\sqrt{21}} x \right) - c_{-61} \cos \left( \frac{10}{\sqrt{21}} x \right) \right] . \] (A.43)

From (A.5), we obtain
\[ b(x) = -\frac{1}{2q} (f_+'' (x) + f_-''' (x) + g_- (x)) \]
\[ = -\frac{1}{2q} \left[ \sum_{i=1}^{6} C_{-i} f_{-i}'(x) + \sum_{i=1}^{6} C_{-i} f_{-i}''(x) \right. \]
\[ - \left( \frac{20}{21 \sqrt{21}} c_{-11} + \frac{2}{\sqrt{21}} \Theta^2 + 3 c_{1} \Theta \right) \sin \left( \frac{1}{\sqrt{21}} x \right) \]
\[ + \left( \frac{20}{21 \sqrt{21}} c_{-12} + 3 \sqrt{3} c_{1} \Theta \right) \cos \left( \frac{1}{\sqrt{21}} x \right) \]
\[ - \left( \frac{34}{21 \sqrt{21}} c_{-21} + \frac{9}{\sqrt{21}} \Theta^2 \right) \sin \left( \frac{2}{\sqrt{21}} x \right) \]
\[ - \left( \frac{20}{21 \sqrt{21}} c_{-31} + 2 c_{1} \Theta \right) \sin \left( \frac{4}{\sqrt{21}} x \right) \]
\[ + \left( \frac{20}{21 \sqrt{21}} c_{-32} - 2 \sqrt{3} c_{1} \Theta \right) \cos \left( \frac{4}{\sqrt{21}} x \right) \]
\[ + \left( \frac{20}{21 \sqrt{21}} c_{-41} + \frac{30}{\sqrt{21}} \Theta^2 + c_{1} \Theta \right) \sin \left( \frac{5}{\sqrt{21}} x \right) \]
\[ - \left( \frac{20}{21 \sqrt{21}} c_{-42} + \sqrt{3} c_{1} \Theta \right) \cos \left( \frac{5}{\sqrt{21}} x \right) \]
\[ - \frac{12}{\sqrt{21}} \Theta^3 \sin \left( \frac{6}{\sqrt{21}} x \right) + \left( \frac{8 \times 43}{21 \sqrt{21}} c_{-51} - \frac{16}{\sqrt{21}} \Theta^2 \right) \sin \left( \frac{8}{\sqrt{21}} x \right) \]
\[ \left. - \left( \frac{790}{\sqrt{21}} c_{-61} - \frac{5}{\sqrt{21}} \Theta^2 \right) \sin \left( \frac{10}{\sqrt{21}} x \right) \right] . \] (A.44)

**Acknowledgment.** We would like to thank Shengquan Xiang for useful comments on a preliminary version of this article.
REFERENCES

[1] Peter W. Bates and Christopher K. R. T. Jones. Invariant manifolds for semilinear partial differential equations. In Dynamics reported, Vol. 2, volume 2 of Dynam. Report. Ser. Dynam. Systems Appl., pages 1–38. Wiley, Chichester, 1989.

[2] Joseph Boussinesq. Essai sur la théorie des eaux courantes. Mémoires présentés par divers savants à l’Acad. des Sci. Inst. Nat. France, XXIII, pp. 1–680, 1877.

[3] Jack Carr. Applications of centre manifold theory, volume 35 of Applied Mathematical Sciences. Springer-Verlag, New York-Berlin, 1981.

[4] Eduardo Cerpa. Exact controllability of a nonlinear Korteweg-de Vries equation on a critical spatial domain. SIAM J. Control Optim., 46(3):877–899 (electronic), 2007.

[5] Jixun Chu, Jean-Michel Coron, and Peipei Shang. Asymptotic stability of a nonlinear Korteweg-de Vries equation with critical lengths. J. Differential Equations, 259(8):4045–4085, 2015.

[6] Jean-Michel Coron. Control and nonlinearity, volume 136 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2007.

[7] Jean-Pierre Jouan and Emmanuelle Crépeau. Exact boundary controllability of a nonlinear KdV equation with critical lengths. J. Eur. Math. Soc. (JEMS), 6(3):367–398, 2004.

[8] Gleb Germanovitch Doronin and Fabio M. Natali. An example of non-decreasing solution for the KdV equation posed on a bounded interval. C. R. Math. Acad. Sci. Paris, 352(5):421–424, 2014.

[9] Mariana Haragus and Gérard Iooss. Local bifurcations, center manifolds, and normal forms in infinite-dimensional dynamical systems. Universitext. Springer-Verlag London, Ltd., London; EDP Sciences, Les Ulis, 2011.

[10] Brian D. Hassard, Nicholas D. Kazarinoff, and Yieh Hei Wan. Theory and applications of Hopf bifurcation, volume 41 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge-New York, 1981.

[11] Al Kelley. The stable, center-stable, center, center-unstable, unstable manifolds. J. Differential Equations, 3:546–570, 1985.

[12] Hassan K. Khalil. Nonlinear systems. Macmillan Publishing Company, New York, 1992.

[13] Diederik J. Korteweg and Gustav de Vries. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philos. Mag., 39(5):422–443, 1895.

[14] Jacques-Louis Lions. Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Tome 1, volume 8 of Recherches en Mathématiques Appliquées [Research in Applied Mathematics]. Masson, Paris, 1988. Contrôlabilité exacte. [Exact controllability]. With appendices by E. Zuazua, C. Bardos, G. Lebeau and J. Rauch.

[15] Rainer Nagel. Spectral and asymptotic properties of strongly continuous semigroups. In Semigroups of linear and nonlinear operations and applications (Caracas, 1992), pages 225–240. Kluwer Acad. Publ., Dordrecht, 1993.

[16] Lawrence Perko. Differential equations and dynamical systems, volume 7 of Texts in Applied Mathematics. Springer-Verlag, New York, third edition, 2001.

[17] Gustavo Alberto Perla Menzala, Carlos Frederico Vasconcellos, and Enrique Zuazua. Stabilization of the Korteweg-de Vries Equation with localized damping. Q. Appl. Math., LX(1):111–129, 2002.

[18] Viktor Aleksandrovich Pliss. A reduction principle in the theory of stability of motion. Izv. Akad. Nauk SSSR Ser. Mat., 28:1297–1324, 1964.

[19] Lionel Rosier. Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain. ESAIM Control Optim. Calc. Var., 2:33–55 (electronic), 1997.

[20] Nguyen Van Minh and Jianhong Wu. Invariant manifolds of partial functional differential equations. J. Differential Equations, 198(2):381–421, 2004.

[21] Gerald Whitham. Linear and nonlinear waves. Pure and Applied Mathematics (New York). John Wiley & Sons, Inc., New York, 1999. Reprint of the 1974 original, A Wiley-Interscience Publication.