Remarkable relations between the central binomial series, Eulerian polynomials, and poly-Bernoulli numbers

Beáta Bényi and Toshiki Matsusaka

Abstract. The central binomial series at negative integers are expressed as a linear combination of values of certain two polynomials. We show that one of the polynomials is a special value of the bivariate Eulerian polynomial and the other polynomial is related to the antidiagonal sum of poly-Bernoulli numbers. As an application, we prove Stephan’s observation from 2004.

1. Introduction

The central binomial series is a Dirichlet series defined by

\[\zeta_{CB}(s) = \sum_{n=0}^{\infty} \frac{1}{n^{s} \binom{2n}{n}} \quad (s \in \mathbb{C}). \]

Borwein, Broadhurst, and Kamnitzer [6] studied special values \(\zeta_{CB}(k) \) at positive integers and recovered some remarkable connections. A classical evaluation is \(\zeta_{CB}(4) = \frac{1728}{945} = \frac{4}{3} \zeta(4) \). In particular, for \(k \geq 2 \) Borwein–Broadhurst–Kamnitzer showed that \(\zeta_{CB}(k) \) can be written as a \(\mathbb{Q} \)-linear combination of multiple \(\zeta \) values and multiple Clausen and Glaisher values.

On the other hand, Lehmer [15] proved that for \(k \leq 1 \), \(\zeta_{CB}(k) \) is a \(\mathbb{Q} \)-linear combination of \(1 \) and \(\pi/\sqrt{3} \). For example, we have

\[\zeta_{CB}(1) = \frac{1}{3} \frac{\pi}{\sqrt{3}}, \quad \zeta_{CB}(0) = \frac{1}{3} + \frac{2}{9} \frac{\pi}{\sqrt{3}}, \quad \zeta_{CB}(-1) = \frac{2}{3} + \frac{2}{9} \frac{\pi}{\sqrt{3}}, \quad \zeta_{CB}(-2) = \frac{4}{3} + \frac{10}{27} \frac{\pi}{\sqrt{3}}. \]

He considered the general sum

\[\sum_{n=1}^{\infty} \frac{(2n)^{2n}}{n^{2n} \binom{2n}{n}} = 2 \frac{x \arcsin(x)}{\sqrt{1-x^2}} \quad (|x| < 1) \]

and its derivatives to derive interesting series evaluations. More precisely, Lehmer provided the following explicit formula for the special values \(\zeta_{CB}(k) \) at negative integers. Define two sequences of polynomials \((p_k(x))_{k \geq -1} \) and \((q_k(x))_{k \geq -1} \) by the initial values \(p_{-1}(x) = 0, q_{-1}(x) = 1 \) and the recursion

\[p_{k+1}(x) = 2(kx + 1)p_k(x) + 2x(1-x)p_k'(x) + q_k(x), \]

\[q_{k+1}(x) = (2(k+1)x + 1)q_k(x) + 2x(1-x)q_k'(x). \]

Then for \(k \geq -1 \), we have

\[\sum_{n=1}^{\infty} \frac{(2n)^k (2x)^{2n}}{n^{2n} \binom{2n}{n}} = \frac{x}{(1-x^2)^{k+1}} \left(x \sqrt{1-x^2} p_k(x^2) + \arcsin(x) q_k(x^2) \right). \]

Consequently,

\[\zeta_{CB}(-k) = \frac{1}{3} \left(\frac{1}{3} \right)^k \left(\frac{2}{3} \right) p_k \left(\frac{1}{4} \right) + \frac{1}{3} \left(\frac{2}{3} \right)^{k+1} \left(\frac{1}{4} \right) \frac{\pi}{\sqrt{3}} \in \mathbb{Q} + \mathbb{Q} \frac{\pi}{\sqrt{3}}. \]

The first few polynomials are: \(p_0(x) = 1, p_1(x) = 3, p_2(x) = 8x + 7; \) and \(q_0(x) = 1, q_1(x) = 2x + 1, q_2(x) = 4x^2 + 10x + 1. \)
In 2004, Stephan [23, A098830] observed that the rational part of (1.4) is nothing but (a third of) a sum of poly-Bernoulli numbers of negative indices. Poly-Bernoulli numbers $B_n^{(k)}$ are a generalization of classical Bernoulli numbers using polylogarithm functions and were introduced by Kaneko [12]. We will give a precise definition in Section 3.

Conjecture 1.1. [13, stated by Kaneko, Stephan’s conjecture] For any $n \geq 0$,

$$
\left(\frac{2}{3} \right)^n p_n \left(\frac{1}{4} \right) = \sum_{k=0}^{n} p_{n-k}.
$$

In this article, we connect both polynomials $p_n(x)$ and $q_n(x)$ to known numbers and polynomials. More precisely, we prove Stephan’s conjecture (relating this way $p_n(x)$ to the poly-Bernoulli numbers) using the fact that the polynomial sequence $q_n(x)$ is a generalization of the classical Eulerian polynomials.

2. The polynomials $q_n(x)$ and bivariate Eulerian polynomials

Eulerian polynomials have been studied by Euler himself. Since then they have been studied and became classical. Several extensions, generalizations and applications are known today.

Let S_n denote the set of permutations $\pi = \pi_1 \pi_2 \ldots \pi_n$ of $[n] = \{1, 2, \ldots, n\}$. For each $\pi \in S_n$, the excedance set is defined as $\text{Exc}(\pi) = \{ i \in [n] \mid \pi_i > i \}$. We set $\text{exc}(\pi) = |\text{Exc}(\pi)|$. It is well-known that the Eulerian number $A(n, k)$ counts the number of permutations $\pi \in S_n$ with $\text{exc}(\pi) = k$. For instance, $A(3, 1) = 4$ because there are 4 permutations of $\{1, 2, 3\}$ with $\text{exc}(\pi) = 1$, namely, $132, 213, 312, 321$. A map $f : S_n \to \mathbb{Z}_{\geq 0}$ satisfying $|\{ \pi \in S_n \mid f(\pi) = k \}| = A(n, k)$ is often called an Eulerian statistic. The map exc is an example of Eulerian statistics. By Foata’s fundamental transformation, it is also known that the number of permutations with k excedances is the same as the number of permutations with k descents, or equivalently formulated, with $k + 1$ ascending runs, (see Bóna’s book [5]).

The Eulerian polynomial is defined by

$$
A_n(x) = \sum_{\pi \in S_n} x^{\text{exc}(\pi)} = \sum_{k=0}^{n} A(n, k) x^k.
$$

The generating function of the Eulerian polynomials is given as

$$
\sum_{n=0}^{\infty} A_n(x) \frac{t^n}{n!} = \frac{1 - x}{e^{t(x-1)} - x}.
$$

For a more detailed history and properties on the Eulerian numbers (polynomials) and Eulerian statistics, the articles [5, 9, 19] are good references.

We recall now a generalization of the Eulerian polynomial introduced by Foata–Schützenberger [9, Chapter IV-3]. Here we define a shifted version. Let $\text{cyc}(\pi)$ denote the number of cycles in the disjoint cycle representation of $\pi \in S_n$.

Definition 2.1 (Bivariate Eulerian polynomial). For any integer $n \geq 0$, let $F_0(x, y) = 1$ and define

$$
F_n(x, y) = \sum_{\pi \in S_n} x^{\text{exc}(\pi)} y^{\text{cyc}(\pi)}, \quad (n > 0).
$$

Example 2.2. We have $F_3(x, y) = y^3 + 3xy^2 + x^2y + xy$.

S_3	123 = (1)(2)(3)	132 = (1)(23)	213 = (12)(3)	231 = (123)	312 = (132)	321 = (13)(2)
exc(\pi)	0	1	1	2	1	1
cyc(\pi)	3	2	2	1	1	2

Table 1. Permutations in S_3 with their weights.

The generating function of the bivariate Eulerian polynomials is given by

$$
\mathcal{F}(x, y; t) := \sum_{n=0}^{\infty} F_n(x, y) \frac{t^n}{n!} = \left(\frac{1 - x}{e^{t(x-1)} - x} \right)^y.
$$

Savage–Viswanathan [22] derived several identities for the polynomials. Here we recall their recursion formula.

\[(2.1)\]
Proposition 2.3. For $n \geq 0$,

$$F_{n+1}(x, y) = \left(x(1-x) \frac{d}{dx} + nx + y \right) F_n(x, y),$$

with the initial value $F_0(x, y) = 1$.

Note that by the definition, we have $F_n(x, 1) = A_n(x)$. Moreover, for $y = r \in \mathbb{Z}_{\geq 2}$, the polynomials $F_n(x, r)$ are the r-Eulerian polynomials originally studied by Riordan [20]. In addition, we have $F_{n+1}(x, -1) = -(x-1)^n$ and $F_{n+1}(1, y) = y(y+1) \cdots (y+n)$ for any $n \geq 0$.

The surprising fact is however that the values at $y = 1/k$, for any positive integer k, have also nice combinatorial interpretations. Namely, for a sequence $s = (s_i)_{i \geq 1}$ of positive integers, let the s-inversion sequence of length n be defined as

$$I_n^{(s)} = \{(e_1, \ldots, e_n) \in \mathbb{Z}^n | 0 \leq e_i < s_i \text{ for } 1 \leq i \leq n\}.$$

The ascent statistic on $e \in I_n^{(s)}$ is

$$\text{asc}(e) = \left\{ 0 \leq i < n : \frac{e_i}{s_i} < \frac{e_{i+1}}{s_{i+1}} \right\},$$

with the convention that $e_0/s_0 = 0$. Then the s-Eulerian polynomials are defined by

$$E_n^{(s)}(x) = \sum_{e \in I_n^{(s)}} x^{\text{asc}(e)}.$$

For more properties of the s-Eulerian polynomials, see also Savage–Visontai [21]. Note that for $s = (i)_{i \geq 1} = (1, 2, 3, \ldots)$, the s-Eulerian polynomials are the classical Eulerian polynomials, $E_n^{(s)} = A_n(x)$. Savage–Viswanathan [22] showed that for $s = ((i-1)k+1)_{i \geq 1} = (1, k+1, 2k+1, 3k+1, \ldots)$ where k is a positive integer, it holds

$$E_n^{(s)}(x) = k^n F_n \left(x, \frac{1}{k} \right).$$

They called the coefficients in this special case the $1/k$-Eulerian numbers. The $1/k$-Eulerian numbers play role in the theory of k-lecture hall polytopes [22] and enumerate certain statistics in k-Stirling permutations [17]. We now show that for $k = 2$, the $E_n^{(1, 3, 5, \ldots)}(x) = 2^n F_n(x, 1/2)$ is the same as the $q_n(x)$ polynomial sequence in Lehmer’s identity.

n	$2^n F_n(x, 1/2)$	$q_n(x)$
-1	-	1
0	1	1
1	1	2x + 1
2	$2x + 1$	$4x^2 + 10x + 1$
3	$4x^2 + 10x + 1$	$8x^3 + 60x^2 + 36x + 1$
4	$8x^3 + 60x^2 + 36x + 1$	$16x^4 + 296x^3 + 516x^2 + 116x + 1$
5	$16x^4 + 296x^3 + 516x^2 + 116x + 1$	\ldots

Table 2. The polynomials $2^n F_n(x, 1/2)$ and $q_n(x)$.

Theorem 2.4. The generating function

$$Q(x, t) := \sum_{n=0}^{\infty} q_{n-1}(x) \frac{t^n}{n!}$$

equals $\mathcal{F}(x, 1/2; 2t)$, that is, $q_n(x) = 2^{n+1} F_{n+1}(x, 1/2)$ for any $n \geq -1$.

PROOF. By translating the recursion in (1.2), the generating function $Q(x, t)$ is characterized by the differential equation

$$\left((2xt - 1) \frac{d}{dt} + 2x(1-x) \frac{d}{dx} + 1 \right) Q(x, t) = 0$$

and the initial condition $Q(x, 0) = 1$. We can check that the function

$$\left(\frac{1-x}{e^{2t(x-1)} - x} \right)^{1/2} = \mathcal{F}(x, 1/2; 2t) = \sum_{n=0}^{\infty} 2^n F_n(x, 1/2) \frac{t^n}{n!}$$

satisfies these conditions by a direct calculation.

The generating function \(Q(x, t) = \mathcal{F}(x, 1/2; 2t) \) tells us that the coefficients of \(q_n(x) \) count perfect matchings with the restriction on the number of matching pairs have odd smaller entries (see [16] and [23, A185411]) and \(q_n(1) = (2n + 1)!! \).

The relation between the polynomials \(F_n(x, 1/2) \) and \(q_n(x) \) shed light on a proof of Stephan’s conjecture which follows in the next section.

3. The polynomials \(p_n(x) \) and a proof of Stephan’s conjecture

In this section, we focus on the polynomial sequence \(p_n(x) \) in the expression of Lehmer (1.3). We prove the observation of Stephan who noticed a relation of the sequence with the poly-Bernoulli numbers. Poly-Bernoulli numbers were introduced by Kaneko [12] by the polylogarithm function (\(\text{Li}_k(z) = \sum_{m=1}^{\infty} z^m / m^k \) for any integer \(k \)) as a generalization of the classical Bernoulli numbers. The poly-Bernoulli numbers \(B_n^{(k)} \in \mathbb{Q} \) are defined by

\[
\sum_{n=0}^{\infty} B_n^{(k)} \frac{x^n}{n!} = \frac{\text{Li}_k(1 - e^{-t})}{1 - e^{-t}}.
\]

Poly-Bernoulli numbers have attractive properties. In particular, the values with negative indices \(k \) enumerate several combinatorial objects, (see for instance, [3, 4, 8, 11] and the references therein).

As one of the most basic properties, Arakawa and Kaneko [1] showed that

\[
\sum_{k=0}^{n} (-1)^k B_{n-k}^{(-k)} = 0
\]

holds for any positive integer \(n \). Since then, several authors have generalized the formula for the alternating anti-diagonal sum in [14, 18], but not much is known about the anti-diagonal sum in Conjecture 1.1.

In most of the combinatorial interpretations, the roles of \(n \) and \(k \) are separately significant, hence it is not natural to consider the anti-diagonal sum. However, one of the interpretations, where this is natural, is the set of permutations with ascending-to-max property [10]. A permutation \(\pi \in \mathfrak{S}_n \) is called ascending-to-max, if for any integer \(i, 1 \leq i \leq n - 2 \)

a. if \(\pi^{-1}(i) < \pi^{-1}(n) \) and \(\pi^{-1}(i + 1) < \pi^{-1}(n) \) then \(\pi^{-1}(i) < \pi^{-1}(i + 1) \), and
b. if \(\pi^{-1}(i) > \pi^{-1}(n) \) and \(\pi^{-1}(i + 1) > \pi^{-1}(n) \), then \(\pi^{-1}(i) > \pi^{-1}(i + 1) \).

In other words: record a permutation in one-line notation and draw an arrow from value \(i \) to \(i + 1 \) for each \(i \). Then, the permutation has the ascending-to-max property if all the arrows starting from the left of \(n \) point forward and all the arrows starting from an element to the right of \(n \) point backward. For instance, 47518362 has the property, but 41385762 has not. It follows from the results of Bényi and Hajnal [2] that the number of permutations \(\pi \in \mathfrak{S}_{n+1} \) with the ascending-to-max property is given by the anti-diagonal sum \(b_n = \sum_{k=0}^{n} B_{n-k}^{(-k)} \). However, no explicit formula or recursion was known about the sequence \(b_n \).

Our first result is a recursion for the sequence \(b_n \).

Proposition 3.1. The sequence \((b_n)_{n \geq 0} \) satisfies the recurrence relation \(b_0 = 1 \) and

\[
3b_{n+1} = 2b_n + \sum_{k=0}^{n} \binom{n+1}{k} b_k + 3.
\]

In order to prove this theorem, we need some preparations. Recall that by [1, p.163], we have

\[
\sum_{n=0}^{\infty} b_n x^n = \sum_{j=0}^{\infty} \frac{(j!)^2 x^{2j}}{(1-x)^2(1-2x)^2 \cdots (1-(j+1)x)^2} = \frac{1}{(1-x)^2} \sum_{j=0}^{\infty} f_j \left(2 - \frac{1}{x} - 2 - \frac{1}{x} \right),
\]

where \((x)_j = x(x+1)(x+2) \cdots (x+j-1) \) is the Pochhammer symbol and we put

\[
f_j(x, y) = \frac{(j!)^2}{(x)_j(y)_j}.
\]
By a direct calculation, we have
\[
\sum_{n=k=0}^{\infty} \binom{n+k}{k} b_k x^n = \sum_{k=0}^{\infty} b_k x^k \sum_{n=0}^{\infty} \binom{n+k}{k} x^n = \sum_{k=0}^{\infty} b_k x^{k-1} \left(\frac{1}{(1-x)^{k+1}} - 1 \right).
\]

\[
= \frac{1-x-x^2}{x(1-2x)^2} \sum_{j=0}^{\infty} f_j \left(3 - \frac{1}{x}, 3 \frac{1}{x} \right) - \frac{1}{x(1-x)^2} \sum_{j=0}^{\infty} f_j \left(2 - \frac{1}{x}, 2 - \frac{1}{x} \right).
\]

Thus, the desired recursion in (3.1) is equivalent to
\[
\frac{2(2-x)}{(1-x)^2} \sum_{j=0}^{\infty} f_j \left(2 - \frac{1}{x}, 2 - \frac{1}{x} \right) = \frac{3}{1-x} + \frac{1-x}{(1-2x)^2} \sum_{j=0}^{\infty} f_j \left(3 - \frac{1}{x}, 3 \frac{1}{x} \right).
\]

To prove (3.3), we derive a useful equation.

Lemma 3.2. For any \(j \in \mathbb{Z}_{\geq 0}\), we have
\[
(x-1)(x-2) (f_j(x-2,y) - f_{j-1}(x-2,y)) + (x-1)(2x-5)f_{j-1}(x-1,y)
\]
\[- (x-1)(x-y-1)f_j(x-1,y) - (x-2)^2 f_{j-1}(x,y)
\]
\[
= \begin{cases}
(x-1)(y-1) & \text{if } j = 0, \\
0 & \text{if } j > 0,
\end{cases}
\]
where we put \(f_{-1}(x,y) = 0\).

Proof. By direct calculation, one can verify it.

Proof of Proposition 3.1. We prove (3.3). Setting \(x \to 3 - 1/x\) and \(y \to 2 - 1/x\) and applying Lemma 3.2, we obtain
\[
f_j \left(2 - \frac{1}{x}, 2 - \frac{1}{x} \right) = \frac{(1-x)^2}{(1-2x)(2-x)} f_j \left(3 - \frac{1}{x}, 2 - \frac{1}{x} \right)
\]
\[- \frac{1-x}{2-x} \left(f_{j+1} \left(1 - \frac{1}{x}, 2 - \frac{1}{x} \right) - f_j \left(1 - \frac{1}{x}, 2 - \frac{1}{x} \right) \right).
\]

Summing up both sides over \(j = 0, 1, 2, \ldots\), we have
\[
\sum_{j=0}^{\infty} f_j \left(2 - \frac{1}{x}, 2 - \frac{1}{x} \right) = \frac{1-x}{2-x} + \frac{(1-x)^2}{(1-2x)(2-x)} \sum_{j=0}^{\infty} f_j \left(3 - \frac{1}{x}, 2 - \frac{1}{x} \right).
\]

From Lemma 3.2 again for \(x \to 3 - 1/x\) and \(y \to 3 - 1/x\), we conclude (3.3).

Remark 3.3. Unfortunately, we could not provide a combinatorial proof for this recurrence, though it would be very interesting to find one using for instance the permutations with the ascending-to-max property.

To relate the sequence \((b_n)_{n \geq 0}\) to the polynomial sequence \((p_n(x))_{n \geq -1}\), we next derive the generating function for \(p_n(x)\).

Proposition 3.4. We have
\[
P(x, t) := \sum_{n=0}^{\infty} p_{n-1}(x) \frac{t^n}{n!} = \frac{e^{(1-x)t} (\arcsin(x^{1/2} e^{(1-x)t}) - \arcsin(x^{1/2}))}{x^{1/2} (1 - xe^{2(1-x)t})^{1/2}}.
\]

Proof. From (1.3), we have
\[
\sum_{k=0}^{\infty} \sum_{n=1}^{\infty} \binom{2n}{n} k^{k-1} (2x)^{2n} \frac{k}{k!} = \frac{x}{(1-x^2)^{1/2}} \left(x \sqrt{1-x^2} P \left(x^2, \frac{t}{1-x} \right) + \arcsin(x) Q \left(x^2, \frac{t}{1-x^2} \right) \right).
\]

By applying (1.3) with \(k = -1\) again, the left-hand side equals
\[
\sum_{n=1}^{\infty} \frac{(2n)^{-1} (2xe^{t})^{2n} (2n)!}{(n^n)!} = \frac{x e^t \arcsin(x e^t)}{(1-x e^{2t})^{1/2}}.
\]
Thus, Combining with Theorem 2.4, we have
\[
P(x^2, t) = \frac{e^{\arcsin(xe^t)}}{x(1 - x^2e^{2t})^{1/2}} \frac{\arcsin(x)}{x\sqrt{1 - x^2}} F\left(x^2, \frac{1}{2}, 2t\right)
\]
which implies the claim. \(\square\)

We define the sequence \(a_n\) as special values of \(p_n(x)\),
\[
a_n = \left(\frac{2}{3}\right)^n p_n\left(\frac{1}{4}\right).
\]

Using the generating function of \(p_n(x)\), we obtain the recurrence formula that the sequence \((a_n)_{n \geq 0}\) satisfies.

Proposition 3.5. The sequence \((a_n)_{n \geq 0}\) defined in (3.4) satisfies \(a_0 = 1\) and
\[
3a_{n+1} = 2a_n + \sum_{k=0}^{n} \binom{n+1}{k} a_k + 3.
\]

Proof. By Proposition 3.4, the generating function for \(a_n\) is given by
\[
\sum_{n=0}^{\infty} a_n \frac{t^{n+1}}{(n+1)!} = \frac{3}{2} P\left(\frac{1}{4}, \frac{2}{3}\right) = \frac{6e^{t/2}(\arcsin(e^{t/2}/2) - \arcsin(1/2))}{(4 - e^t)^{1/2}}.
\]
Since this function satisfies the differential equation
\[
(4 - e^t) \frac{d}{dt} - 2 \frac{3}{2} P\left(\frac{1}{4}, \frac{2}{3}\right) = 3e^t,
\]
the coefficients \(a_n\) satisfy the desired recurrence formula. \(\square\)

In conclusion, we have the main theorem.

Theorem 3.6. Conjecture 1.1 is true, i.e. for any \(n \geq 0\),
\[
\left(\frac{2}{3}\right)^n p_n\left(\frac{1}{4}\right) = \sum_{k=0}^{n} P_{n-k}^{(-k)}.
\]

Proof. Proposition 3.1 and Proposition 3.5 imply the theorem. \(\square\)

In the course of our proof, we obtain two types of generating functions in (3.2) and (3.5) for the sequences \((a_n)_{n \geq 0}\) = \((b_n)_{n \geq 0}\). As a corollary, we have an explicit formula for the anti-diagonal sum, (see [3, p.24]).

Corollary 3.7.
\[
b_n = \sum_{k=0}^{n} B_{n-k}^{(-k)} = \frac{(-1)^{n+1}}{2} \sum_{j=1}^{n+1} (-1)^{j} j! \binom{n+1}{j} \left(\frac{2j}{3}\right) \sum_{i=0}^{j-1} \frac{3^i}{(2i+1)(2i)!}.
\]

Proof. The result follows from the explicit formula by Borwein–Girgensohn [7] and Theorem 3.6. \(\square\)

As a final remark, we show that the polynomial \(p_n(x)\) can also be expressed in terms of bivariate Eulerian polynomials.

Theorem 3.8. For any \(n \geq 0\), we have
\[
p_n(x) = 2^n \sum_{k=0}^{n} \binom{n+1}{k} F_{n-k}(x, 1/2) F_k(x, 1/2).
\]

Proof. Consider
\[
P(x, t) = \frac{e^{(1-x)t}(\arcsin(x^{1/2}e^{(1-x)t}) - \arcsin(x^{1/2}))}{x^{1/2}(1 - xe^{2(1-x)t})^{1/2}}
\]
\[
= \mathcal{F}\left(x^2, \frac{1}{2}, 2t\right) \frac{1}{x^{1/2} (1-x)^{1/2}}(\arcsin(x^{1/2}e^{(1-x)t}) - \arcsin(x^{1/2})).
\]
Since
\[
\frac{d}{dt} x^{1/2}(1 - x)^{1/2} \left(\arcsin(x^{1/2}e^{(1-x)t}) - \arcsin(x^{1/2}) \right) = \mathcal{F} \left(x, \frac{1}{2}, 2t \right),
\]
it holds that
\[
\frac{1}{x^{1/2}(1 - x)^{1/2}} \left(\arcsin(x^{1/2}e^{(1-x)t}) - \arcsin(x^{1/2}) \right) = \sum_{n=0}^{\infty} \frac{2^n F_n(x, 1/2)}{(n + 1)!} t^{n+1}.
\]
Thus, we have
\[
P(x, t) = \sum_{n=0}^{\infty} \left(2^{n-1} \sum_{k=0}^{n-1} \binom{n}{k} F_{n-k-1}(x, 1/2) F_k(x, 1/2) \right) \frac{t^n}{n!},
\]
which concludes the proof. \(\square\)

References

1. T. Arakawa and M. Kaneko, On poly-Bernoulli numbers, Comment. Math. Univ. St. Paul. 48 (1999), no. 2, 159–167. MR 1713681
2. B. Bényi and P. Hajnal, Combinatorics of poly-Bernoulli numbers, Studia Sci. Math. Hungar. 52 (2015), no. 4, 537–558. MR 3452964
3. M. Bóna, Combinatorial properties of poly-Bernoulli numbers, Integers 17 (2017), Paper No. A31, 26. MR 3671793
4. B. Bényi and T. Matsuoka, On the combinatorics of symmetrized poly-Bernoulli numbers, Electron. J. Combin. 28 (2021), no. 1, Paper No. 1.47.20. MR 4245280
5. M. Bóna, Combinatorics of permutations, second ed., Discrete Mathematics and its Applications (Boca Raton), CRC Press, Boca Raton, FL, 2012, With a foreword by Richard Stanley. MR 2919720
6. J. M. Borwein, D. J. Broadhurst, and J. Kamnitzer, Central binomial sums, multiple Clausen values, and zeta values, Experiment. Math. 10 (2001), no. 1, 25–34. MR 1821569
7. J. M. Borwein and R. Girgensohn, A family of two-variable derivative polynomials for tangent and secant, Electron. J. Combin. 8 (2001), no. 2, 1441–1466. MR 1821569
8. C. Brewbaker, A combinatorial interpretation of the poly-Bernoulli numbers and two Fermat analogues, Integers 9 (2009), A02, 9. MR 2373086
9. D. Foata and M.-P. Schützenberger, Théorie Géométrique des Polynômes Eulériens, Lecture Notes in Mathematics, Vol. 138, Springer-Verlag, Berlin-New York, 1970. MR 2167981
10. M. He, J. I. Munro, and S. S. Rao, A categorization theorem on suffix arrays with applications to space efficient text indexes, Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, ACM, New York, 2005, pp. 23–32. MR 2298247
11. M. Hirose, T. Matsuoka, R. Sekigawa, and H. Yoshizaki, Bijective enumerations for symmetrized poly-Bernoulli polynomials, preprint, arXiv:2107.11952.
12. M. Kaneko, Poly-Bernoulli numbers, J. Théor. Nombres Bordeaux 9 (1997), no. 1, 221–228. MR 1469669
13. M. Kaneko, A note on poly-Bernoulli numbers and multiple zeta values, Diophantine analysis and related fields—DARF 2007/2008, AIP Conf. Proc., vol. 976, Amer. Inst. Phys., Melville, NY, 2008, pp. 118–124. MR 2405633
14. M. Kaneko, F. Sakurai, and H. Tsumura, On a duality formula for certain sums of values of poly-Bernoulli polynomials, J. Théor. Nombres Bordeaux 30 (2018), no. 1, 203–218. MR 3809716
15. D. H. Lehmer, Interesting series involving the central binomial coefficient, Amer. Math. Monthly 92 (1985), no. 7, 449–457. MR 801217
16. S.-M. Ma, A family of two-variable derivative polynomials for tangent and secant, Electron. J. Combin. 20 (2013), no. 1, Paper 11, 12. MR 3035021
17. S.-M. Ma and T. Mansour, The 1/k-Eulerian polynomials and k-Stirling permutations, Discrete Math. 338 (2015), no. 8, 1448–1472. MR 3336116
18. T. Matsuoka, Symmetrized poly-Bernoulli numbers and combinatorics, J. Integer Seq. 23 (2020), no. 9, Art. 20.9.2, 8. MR 4167932
19. T. K. Petersen, Eulerian numbers, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser/Springer, New York, 2015, With a foreword by Richard Stanley. MR 3408615
20. J. Riordan, An introduction to combinatorial analysis, Wiley Publications in Mathematical Statistics, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1958. MR 0096594
21. C. D. Savage and M. Visontai, The s-Eulerian polynomials have only real roots, Trans. Amer. Math. Soc. 367 (2015), no. 2, 1441–1466. MR 3280050
22. C. D. Savage and G. Viswanathan, The 1/k-Eulerian polynomials, Electron. J. Combin. 19 (2012), no. 1, Paper 9, 21. MR 2880640
23. N. J. A. Sloane, The on-line encyclopedia of integer sequences, Available at https://oeis.org.

Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, JAPAN
Email address: benyi.beata@uni-nke.hu

Email address: matsuoka.toshiki@math.nagoya-u.ac.jp