Conservation of CENH3 Interaction Partners in Plants

Burcu Nur Keçeli¹, Chunlian Jin¹, Daniel Van Damme²³, Danny Geelen¹

¹Ghent University, Department Plants and Crops, unit HortiCell, Coupure Links 653, B-9000 Ghent, Belgium
²Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium
³VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
*Corresponding author: danny.geelen@ugent.be

This manuscript includes:
Abstract

The loading and maintenance of centromeric histone 3 (CENH3) at the centromere are critical processes ensuring appropriate kinetochore establishment and equivalent segregation of the homologous chromosomes during cell division. CENH3 loss of function is lethal whereas mutations in the histone fold domain are tolerated and lead to chromosome instability and chromosome elimination in embryos derived from crosses with wild type pollen. A wide range of proteins in yeast and animals has been reported to interact with CENH3. The histone fold domain interacting proteins are potentially alternative targets for the engineering of haploid inducer lines, which may be important when CENH3 mutations are not well supported by a given crop. Here, we provide an overview of the corresponding plant orthologs or functional analogs of CENH3 interacting proteins. We also list putative CENH3 phosphorylation and ubiquitination posttranslational modifications that are also candidate targets for modulating chromosome stability and inheritance.

Key words: CENH3, centromere, protein interaction, post translational modification, chromosome, haploid induction
CENH3 as a core component of centromeres

The histone H3 variant CENH3 is a component of the centromeric nucleosomes in eukaryotes (McKinley and Cheeseman, 2016). The role of CENH3 in nucleosome formation is conserved in yeast, mammals and plants, but compared to other histones, its amino acid sequence is poorly conserved (Drinnenberg et al., 2016) and specific names were given: CENTROMERE PROTEIN A (CENPA) in mammals, CHROMOSOME SEGREGATION 4 (CSE4) in Schizosaccharomyces pombe (Shrestha et al., 2017). In A. thaliana it was previously named HRT12 (Talbert et al., 2002) but in more recent papers it is now named as CENH3. For clarity we use in this review the common name CENH3 to discuss general properties and extend it with the specific name in superscript when addressing species-specific features.

CENH3 loading onto the centromeres is of key importance for the ensuing establishment of the kinetochore (McKinely and Cheeseman, 2016; Sandmann et al., 2017) and to ensure the fidelity of chromosome segregation during mitosis (Shrestha et al., 2017). Specialized histone chaperones selectively bind centromeric histone and mediate the assembly of the centromeric nucleosomes (Zasadzińska and Foltz, 2017). The loading of CENH3CENPA onto centromeres takes place during the G1 phase of the cell cycle when it complexes with histone H4 and nucleophosmin, and assembles the centromeric nucleosomes with the help of the chaperone HOLLIDAY JUNCTION RECOGNITION PROTEIN (HJURP) (Foltz et al., 2009; Dunleavy et al., 2009). CENH3CENPA nucleosome assembly depends on a protein complex consisting of Mis18α, Mis18β, and KINETOCHORE NULL 2 (KNL2M18BP1), recruiting HJURP to the centromeres (Foltz et al., 2009; Dunleavy et al., 2009). The Mis18-KNL2M18BP1 complex does however not directly interact with CENH3CENPA (Hayashi et al., 2004; Fujita et al., 2007). While KNL2M18BP1 mediates the recruitment of Mis18 proteins to the centromere (Fujita et al., 2007), Mis18 proteins restrict the deposition of CENH3CENPA to the centromeres (Nardi et al., 2016).

The histone fold domain (HFD) of CENH3CENPA contains a centromere-targeting domain (CATD) that is responsible for binding HJURP (Foltz et al., 2009). In yeast, HJURPSCM3 and the CENH3CENPI histone chaperone NASPSIM3 are involved in centromeric nucleosome assembly (Dunleavy et al., 2007; Pidoux et al., 2009). An orthologue of NASP identified in Arabidopsis thaliana shows H3 chaperone activity (Maksimov et al., 2016). NASP also binds CENH3 and NASP down regulation impairs the loading of CENH3 at the centromeres (Le Goff et al., 2019). An HJURP-like CENH3-selective chaperon has hitherto not been identified in plants.

CENH3 is assembled into nucleosome complexes with Histone 2A, Histone 2B and Histone 4, substituting the canonical histone H3 complex (Ramachandran and Henikoff, 2016). As in most eukaryotes, the plant centromeres are defined by the occurrence of arrays of CENH3 nucleosomes mixed with arrays of H3 nucleosomes (Panchenko et al., 2011). Most of the centromeric histone interacting proteins described in yeast and animals have not been identified in plants (Drinnenberg et al., 2016) and for many candidate CENH3 interacting proteins experimental evidence for their role in CENH3 loading is lacking (Lermontova et al., 2015). In addition to chaperones and other CENH3 interacting proteins orchestrating its deposition, there is mounting evidence for RNA transcribed from centromeric repeat sequences in specifying the centromeric chromatin (Talbert and Henikoff, 2018). Transcripts originating from the centromeric region are associated with the loading of centromere nucleosomes and the stabilization of kinetochore proteins (Talbert and Henikoff, 2018). As neither the centromere sequence nor the CENH3s amino acid sequence are strictly conserved...
(Drinnenberg et al., 2016) and even divergent CENH3s are interchangeable between some plant species (Maheshwari et al., 2017), epigenetic factors including DNA methylation and chromatin modification are put forward as the determining regulators of CENH3 loading and maintenance.

The fidelity of chromosome segregation is impaired in animals and yeast cells by mutations that affect CENH3 loading and stability (Chen et al., 2000; Pidoux et al., 2003; Tanaka et al., 2009; Ranjitkar et al., 2010; Au et al., 2013; Shrestha et al., 2017). Loading of CENH3 to the centromeric DNA mainly depends on the C-terminally positioned HFD of CENH3 rather than its variable N-terminal tail (Sullivan et al., 1994). However, a higher incidence of chromosome missegregation has been shown in yeast carrying mutations in the N-terminal tail of CENH3 CSE4 (Chen et al., 2000) that is not directly associated with the loading of CENH3 to the centromeres (Ravi et al., 2010). Conversely, more stable association of the CENH3 CSE4 with the centromeres via reduced ubiquitination at the N-terminal tail also leads to defects in chromosome segregation (Au et al., 2013). Loading of the appropriate CENH3 amount (Regnier et al., 2005; Au et al., 2008; Shrestha et al., 2017) and/or tight regulation of the dynamics of CENH3 centromere interaction (Ohzeki et al., 2016; Bui et al., 2017) is therefore critical for ensuring kinetochore function and faithful segregation of the chromosomes.

Strict regulation of CENH3 labeling on centromeres also plays a vital role in chromosome segregation in plants. Mitotic division rate is reduced in CENH3 targeting RNAi lines whereas chromosome segregation problems were recorded in meiotic cells (Lermontova et al., 2011). More recent findings from maize demonstrate the vital importance of strict regulation of CENH3 abundance. Overexpression of CENH3 results in lethality in maize callus whereas GFP-CENH3 or CENH3-YFP overexpression is tolerated (Feng et al., 2019). Moreover, N-terminal tail and C-terminal HFD maintain their significance in chromosome segregation in plants. Both GFP-CENH3 and CENH3-YFP overexpression lines exhibit reduced deposition of the fusion proteins to maize centromeres (Feng et al., 2019). C-terminal GFP or YFP fusions of CENH3 cannot fully function in maize and A.thaliana somatic cells (De Storme et al., 2016; Feng et al., 2019) and several mutations in HFD reportedly cause chromosome elimination (Karimi-Ashtiyani et al., 2015; Kuppu et al., 2015). N-terminal tail modifications on the other hand result in chromosome elimination in plants (Ravi and Chan, 2010; Kelliher et al., 2016).

Haploid induction through impaired CENH3 functioning

Selection and fixation of desired traits is central to crop breeding. To breed a wide collection of vigorously growing hybrids, doubled haploids are created carrying two identical genome copies of the haploid parent (Maluszynski, 2003). These doubled haploids are crossed to generate new potential elite hybrids. In A.thaliana, the expression of CENH3 variant with the GFP tagged N-terminal tail of Histone 3.3 (H3.3) fused to the HFD of CENH3, referred to as *tailswap*, expressed in the CENH3 knockout mutant *cenh3-1*, produces 25-45% haploids upon crossing with wild type (Ravi and Chan, 2010). The expression of N-terminal GFP-CENH3 fusion protein in the *cenh3-1* mutant background also results in ~5% maternal haploid induction capacity (Ravi and Chan, 2010). Thus one might conclude that the N-tail of CENH3 has an important role in haploid induction. Specific mutations in the C-terminal HFD of CENH3 however, also evoke chromosome elimination. Depending on the mutation, the efficacy was around 1-2 % and around 10%, conferring the HFD domain some importance (Karimi-Ashtiyani et al., 2015; Kuppu et al., 2015). The expression of a similar CENH3-tailswap construct in maize was shown to induce the formation of haploid progeny and suggest it is a conserved mechanism that can be applied in other crops (Kelliher et al., 2016). CenH3-mutation and –
modification-based haploid induction strategies in plants are reviewed in more detail in Britt and Kuppu, 2016; Wang and Dawe, 2018; Wang et al., 2019.

CENH3 in species hybridization

The role of the centromere specific histone mark CENH3 in securing fidelity of chromosome segregation surfaces during species hybridization. The high accessibility of many flower structures allows for cross-pollination and requires the plant sexual reproduction system to establish multiple layers of hybridization barriers, one of which is inter-chromosome incompatibility mediated by the CENH3-centromere interaction (Tan et al., 2015). Additionally, barley doubled haploids have been produced with a strategy called “Bulbosum method” based on interspecific crosses starting with pollination of *Hordeum vulgare* (cultivated barley) with *Hordeum bulbosum* (bulbous barley grass) (Houben et al., 2011). In support of a role of CENH3 in rescinding hybridization events, interspecific crosses between *Hordeum vulgare* x *Hordeum bulbosum* result in paternal chromosome elimination during early embryogenesis following the loss of CENH3 from the centromeres of the paternal chromosomes (Sanei et al., 2011). The capacity to eliminate foreign chromosomes is transferable as expression of a CENH3 orthologous sequence derived from a different species such as maize in *A. thaliana* shows chromosome elimination when crossed with pollen carrying the original CENH3 locus (Maheshwari et al., 2015). This inability to transmit chromosomes loaded with ectopic CENH3 upon crosses with wild type indicates that the native CENH3-centromere interaction harbors species-specific characteristics. Thus the chromosome elimination is based on the incongruence of the different centromere–CENH3 interactions.

Conserved putative CENH3 interaction partners

Several candidate proteins interacting with the centromere have been reported, which are potentially involved in controlling the CENH3-centromere specificity. One of the well-studied examples is KNL2. KNL2 is required for CENH3/CENPA incorporation into chromatin, and CENH3/CENPA and KNL2 coordinately regulate chromosome condensation, kinetochore assembly, and chromosome segregation (Maddox et al., 2007). A homolog of KNL2 has been identified in *A. thaliana* (Lermontova et al., 2013). KNL2 knockout mutants display varying defects in organ development and leaf shape, and show reduced fertility. These defects are attributed to alterations in chromosome structure and dynamics during cell division (Lermontova et al., 2013). KNL2 contains a CENPC conserved motif (CENPC-k) that is required for centromeric localization (Sandmann et al., 2017) and specific mutations in the CENPC-k motif lead to the production of haploid progeny upon crossing with WT pollen. These properties indicate that KNL2 is critical in establishing the CENH3-centromere interaction. In line with its role in controlling CENH3 abundance at the centromere, mutations in the CENPC-k motif of KNL2 lead to the production of haploid progeny (Lermontova, 2019).

By screening the literature reporting CENH3/CENPA/CNP1/CSE4 candidate interacting proteins described for human CENH3/CENPA, budding yeast CENH3/CNP1, and fission yeast CENH3/CSE4, we generated a list of 78 putative orthologs or functional homologs in *A. thaliana*, *Z. mays* and *O. sativa* (Table 1). Histones were excluded from the selection because they are not directly involved in the regulation of CENH3 loading and maintenance at the centromeres. Affinity purification experiments, immunopurification coupled with Western blot or mass spectrometry, yeast-two hybrid, FRET, conditional growth arrest experiments and data showing that misexpression changes the abundance of CENH3/CENPA/CNP1/CSE4 at the centromeres, were all considered as indications for interactions with CENH3, either direct or indirect, for example as a part of a protein complex. Candidate plant homologs were identified using
reciprocal BLAST searches and the “HomoloGene” software (shown in Bold in Table 1). Candidate plant sequences were either previously reported as functional analogs (underlined in Table1) or no records were found (no markup, Table 1).

Plant orthologs of known interaction partners of CENH3CENPA/CNP1/CSE are considered here as “putative conserved interaction partners of CENH3”. In order to find protein homologs in plants reciprocal protein blasts of human and yeast to plant sequences were performed. The selected candidate sequences were used to perform a literature survey. For the CENH3-interacting proteins HJURP, CENPI, CENPT, CENPM and CENPP, sequence homology searches did not result in the identification of putative orthologs, indicating poor sequence conservation across species or that plants do not harbor a counterpart. The previous reports suggesting rapid evolution of centromere associated/kinetochore related proteins, corroborates with an apparent lack of sequence conservation (Drinnenberg et al., 2016).

Candidate CENH3 interacting proteins with functions related to growth and development

The candidate plant orthologs and functional homologs listed in Table 1 have been assigned functions related to different aspects of plant development. The Arabidopsis MIS12 (Sato et al., 2005), MSI1 (Hennig et al., 2005), and CUL1 (Shen et al., 2002) for instance play a critical role in embryo development. Chromosome instability can cause arrests in embryonic development in plants. Therefore, it is also assumed that mutations in CENH3 interaction partners responsible from CENH3 deposition, incorporation and maintenance cause defects in embryo development. A candidate CENH3 interacting protein required for embryogenesis is MULTICOPY SUPPRESSOR OF IRA 1 (MSI1). MSI1 and MSI1–Like (MSIL) proteins are components of different protein complexes, including the Polycomb Repressive Complex 2 (PRC2) and B-type histone acetyltransferase complexes involved in chromatin remodeling, and pRB (retinoblastoma tumor suppressor protein) that controls the cell cycle and developmental processes (Hennig et al., 2005). MSI1 functions in seed development through interaction with retinoblastoma protein and the CULLIN4-DDB complex, controlling parental gene imprinting and a member of the MEDEA (MEA)/ FERTILIZATION-INDEPENDENT ENDOSPERM (FIE)/FERTILIZATION- INDEPENDENT SEED2 (FIS) polycomb group complex (Köhler et al., 2003; Dumbliauskas et al., 2011; Jullien et al., 2008). MSI1 (Hennig et al., 2005) and CULLIN1 (CUL1) (Shen et al., 2002) play a role in postembryonic development and null mutants are embryo lethal, in agreement with a critical role in cell division and development. The plant MSIL protein family (5 in Arabidopsis, AtMSI1-5, and 3 in rice, OsRBAP1-3) is larger and more diverse than in fungi, insects and vertebrates (Yang et al., 2013). While the function of AtMSI2 and 3 are unknown, AtMSI4/FVE regulate flowering time by repressing FLC expression through a histone de- acetylation mechanism (Ausin et al., 2004) and play a role in cold stress (Kim et al., 2004). In addition to MSIL proteins and CUL1, centromere localized plant MIS12 was shown to be essential for embryogenesis (Sato et al., 2005). The role of these candidate CENH3 interacting proteins in early stage of development suggests a critical role in mitosis, which is in line with the embryo lethal phenotype of CENH3 knockout plants (Ravi and Chan 2010) and the root developmental defects reported in plants expressing recombinant CENH3 (Wijnker et al., 2014).
Candidate CENH3 interacting proteins with functions related to histone chaperones

Nucleosome assembly is mediated by conserved histone chaperones, classified into families based on the founding member genes NAP, CAF1, SPT6, SSRP1, ASF1, HIRA, NASP, and FACT (Tripathi et al., 2015). For several members of these protein families, interaction with CENH3/CENPA/CNP1/CSE4 has been demonstrated in human and yeast (Table 1). Evidence in plants is largely missing and only indirect indications for a role in CENH3 chaperone function is available. For instance, the interaction of NASP with both CENH3 and H3.1/H3.3 has been demonstrated (Le Goff et al., 2019). HFDs of H3s and CENH3 show 50 to 60% sequence similarity within the same species (Talbert and Henikoff, 2010). Considering that HFD plays the role in chromatin targeting, the chaperoning function of NAP, CAF1, ASF1 and HIRA might also be conserved in CENH3 targeting in plants.

In the context of genome elimination, HIRA is a promising candidate for engineering. HIRA activity is specifically impaired in the Drosophila mutant sésame (ssm), causing a unique maternal zygote effect in preventing the formation of the DNA replication-competent male pronucleus, which results in the development of haploid embryo’s carrying only maternal chromosomes (Loppin et al., 2005). In vertebrates, HIRA is critically involved in nucleosome assembly of the H3.3 histone variant independent of DNA synthesis (Tagami et al., 2004). The replacement of sperm chromosomal proteins by maternally provided histones, is impaired in sésame in agreement with the histone chaperone protein function of HIRA (Loppin et al., 2005). While the A. thaliana HIRA protein interacts with H3.3, a knock out mutant displays only a mild growth phenotype and does not affect sexual reproduction and embryogenesis, suggesting that plant HIRA has diversified to function during sporophytic development (Nie et al., 2014). A weak sexual reproduction phenotype was however reported for a hira transposon mutant (same as in the study by Nie et al., 2014) and combined with the fas1-4 mutation, the double mutant did not produce viable pollen (Duc et al., 2015).

ASYMMETRIC LEAVES 2 (AS2) has been shown to repress the meristem development gene KNOTTED1-like homeobox (KNOX) during organogenesis through the interaction with histone chaperone HIRA (Guo et al., 2008). In view of the role of HIRA controlling the expression of KNOX genes through binding with the transcription factors AS1 and AS2 (Guo et al., 2008), it seems that HIRA plays a complex function in cell growth and development. It is currently not clear how this is linked with H3.3 nucleosome assembly.

Candidate CENH3 interacting proteins with functions related to DNA modification and DNA damage

A possible role of CENH3 in DNA damage response in mammals has been proposed based on the observation that CENH3/CENPA and other centromeric proteins are recruited to double strand breaks (Zeitlin et al., 2009). CENH3 also accumulates at neocentromeres that are formed at DNA breakpoints (Hasson et al., 2011) and in conditions causing genomic rearrangements such as in wide species crosses (Cuacos et al., 2015), suggesting that CENH3 functioning is somehow associated with DNA damage. In CENH3-based-haploid induction in plants, the selective loss of chromosomes is accompanied with major chromosome rearrangements relying on the DNA repair enzyme DNA ligase 4 (Tan et al., 2015). Some chromosome fragments are transmitted to the next generation and are reintegrated into the genome by DNA damage repair mechanism (Comai and Tan 2019). Whether CENH3 is linked with the unknown mechanism behind the activation of DNA damage response pathway following the chromosome elimination remains to be tested.
Genome instability upon UV induced double strand breaks triggers the highly conserved DAMAGE DNA BINDING (DDB1) proteins DDB1A and DDB1B to form a complex with CULLIN4 (CUL4) (Molinier et al., 2008; Ganpudi and Schroeder, 2013). The loss of DDB1B results in embryo lethality, indicating that these regulators are also important for basic functions in the absence of stress (Bernhardt et al., 2010). DDB1A physically interacts with MSI1 thereby regulating the PRC2 complex that controls imprinting and endosperm development (Dumbliauskas et al., 2011). In plants, a link between CENH3 in DNA damage response pathways has so far not been reported. The fact that CENH3 interacting animal and yeast proteins involved in DNA damage response are conserved in plants, calls for investigating a presumptive role of CENH3 in the CUL4, DDB1A or DDB1B and MSI1 controlled DNA damage response.

Post-translational modifications of CENH3

Chromatin displays local DNA and histone modification patterns shaping the structural organization and stability of protein-nucleosome-DNA interactions. The histones are subjected to a variety of posttranslational modifications (PTMs) including addition of methyl, acetyl, ubiquitin, phosphoryl and ADP-riboyl groups that influence the interaction with axillary factors, many of which are regulating gene expression (Rothenbort and Strahl, 2014). CENH3 PTM serves other functions such as the maintenance of centromeric nucleosomes (Niikura et al., 2015). An alignment of CENH3 from *S. cerevisiae*, *H. sapiens*, *A. thaliana*, *Z. mays* and *O. sativa* reveals multiple candidate PTM sites in plants, many of which have been reported to undergo ubiquitination, acetylation, phosphorylation and methylation (Figure 1).

The HFD of CENH3^{CENPA} contains an acetylated or ubiquitinated lysine residue (CENPA-K124) that is conserved in the 5 aligned centromeric histone sequences (Bui et al., 2012; Niikura et al., 2015). Ubiquitination at that position in human cells depends on COPPS8, a gene conserved in plants (Table 1) and functions in ubiquitin mediated protein degradation as a component of COP9 signalosome (Schwechheimer and Isono, 2010). Plant development is orchestrated via components of COP9 signalosome by controlling of proteolysis in adjacent developmental stage (Qin et al., 2020). As an important element of cell division, CENH3 deposition and maintenance at the centromeres also can be regulated as a part of COP9 signalosome. Such regulation would give plants flexibility to cease or proceed with cell division to fulfill the requirement of different developmental stages.

Ubiquitination of CENH3 plays an important role in the stability of incorporated CENH3^{CSE4} at the centromeres in yeast (Hewawasam et al., 2010; Au et al., 2013) and CENH3^{CENPA} deposition in animal cells (Niikura et al., 2015), albeit that some modifications are dispensable for the long-term function and identity of the centromeres (Fachinetti et al., 2017). The ubiquitination-dependent proteolytic degradation of CENH3^{CSE4} is clearly established in yeast. In *S. cerevisiae*, PSH1 is an E3 ubiquitin ligase controlling the stability and localization of CENH3^{CSE4} by targeting the C terminus for ubiquitination, and is required for chromosome segregation (Hewawasam et al., 2010). An analogous function of PSH1 is executed by the *A. thaliana* ORTH/VIM proteins that function redundantly as ubiquitin ligases and regulate epigenetic silencing by modulating DNA methylation and histone modification (Woo et al., 2007; Kraft et al., 2008; Kim et al., 2014). VIM1 interacts with CENH3 in vivo in *A. thaliana*, and is required for maintenance of centromere DNA methylation and proper interphase centromere organization (Woo et al., 2008).
Several phosphorylation sites have been identified in CENH3CENPA of which S7 is phosphorylated by Aurora kinase, and plays an unexpected role in cytokinesis (Zeitlin \textit{et al.}, 2001). Cell cycle dependent phosphorylation of CENH3CENPA is mediated by cyclinE1/CDK2 at S18 (Takada \textit{et al.}, 2017). In maize CENH3s is also phosphorylated in a cell cycle dependent fashion at position S50 (Zhang \textit{et al.}, 2005). A recent study shows that Aurora3 phosphorylates Arabidopsis CENH3 at the position serine 65 (Demidov \textit{et al.}, 2019). Phosphorylation of S65 of CENH3 occurs in different developmental stages of Arabidopsis yet this PTM is mainly linked with floral meristem development. Further studies are required to determine what function phosphorylation of CENH3 plays in cell division.

Poly(ADP-ribose) polymerases (PARP) are responsible for ADP-ribosylation of CENH3CENPA (Saxena \textit{et al.}, 2002) and are conserved in plants (\textit{A. thaliana} PARP1:At2g31320, \textit{O. sativa} PARP1:Os07g0413700, \textit{Z.mays} PARP1:Zm00001d005168). PARP was shown to bind the 180 bp centromeric repeat sequence from Arabidopsis suggesting that it may be independently targeted to the centromeres (Babiychuk \textit{et al.}, 2001). PARP plays a role in the DNA damage response and hence its association with CENH3 should be seen in the context of stress and UV DNA damage.

Conclusion

In view of the role of recombinant CENH3 in chromosome elimination and the development of methods to generate haploids for plant breeding, we point out the importance of identifying CENH3 interaction partners. A list of putative orthologs of animal and yeast CENH3 binding proteins is presented that serves as a starting point for further research. CENH3 interacting proteins are involved in a variety of biological pathways and many are putatively involved in chemically modifying CENH3. The conservation of these genes suggests that plant CENH3 undergo similar post translation modifications. Whether any of these modifications are involved in chromosome elimination remains to be discovered.
Figure 1: Model organism CENH3 amino acid sequence and reported PTMs

A.thaliana, O.sativa, Z.mays, S.cerevisiae and H.sapiens CENH3 sequences are shown with the existing identified post-translational modifications (me: methylation, ac: acetylation, ub: ubiquitination, ph: phosphorylation) on *S.cerevisiae, H.sapiens, Z.mays* (Zm) and *A.thaliana* (At) CENH3. PTMs listed here are reported in Zeitlin et al., 2001 (CENPA-S7ph); Zhang et al., 2005 (ZmCENH3-S50ph); Hewawasam et al., 2010 (CSE4-K4ub, CSE4-K131ub, CSE4-K155ub, CSE4-K163ub, CSE4-K172ub); Samel et al., 2012 (CSE4-R37me1/2); Bui et al., 2012 (CENPA-K124ac); Bailey et al., 2013 (CENPA-G2me3, CENPA-S17ph, CENPA-S19ph); Boeckmann et al., 2013 (CSE4-K49ac, CSE4-S22ph, CSE4-K33ph, CSE4-S40ph, CSE4-S105ph); Niikura et al., 2015 (CENPA-K124ub); Yu et al., 2015 (CENPA-S68ph); Mishra et al., 2019 (CSE4-S9ph, CSE4-S10ph, CSE4-S14ph, CSE4-S16ph, CSE4-S17, CSE4-S154ph); Demidov et al., 2019 (AtCENH3-S68ph)
Table 1. Putative conserved interaction partners of CENH3 in *A. thaliana, O. sativa* and *Z. mays*.

S. pombe	*A. thaliana*	*O. sativa*	*Z. mays*	References
Ams2	Gata5:At5g66320*	Gata6:Os04g0539500	Gata3:Zm00001d017409	Takayama *et al.*, 2016; Chen *et al.*, 2003
	Gata6:At3g51080	Gata6:Zm00001d025953		
	Gata7:At4g36240			
Hos2	Hda9:At3g44680	Hda9:Os04g0409600	Hda102:Zm00001d003813	Kobayashi *et al.*, 2007
Mis16	Msi1:At5g58230**	Msi1:Os03g0640100	Msi1:Zm00001d033248	Hayashi *et al.*, 2004
Pob3	Ssrp1:At3g28730	Ssrp1LA:Os01g0184900	Nfd110:Zm00001d008847	Choi *et al.*, 2012
		Ssrp1LB:Os01g0184900		
Pst2	Snl5:At1g59890	Snl3L3:Os01g0109700	Snl3L3:Zm00001d040123	Choi *et al.*, 2012; Bowen *et al.*, 2010
	Snl6:At1g10450***			
Rpt3	Rpt3:At5g58290	Rpt3:Os02g0325100	Zm00001d015886	Kitagawa *et al.*, 2014
Sim3	Nasp:At4g37210	Os07G0122400	Zm00001d007972	Dunleavy *et al.*, 2007; Pidoux *et al.*, 2003, Le Goff *et al.*, 2019
Spt16	Spt16:At4g10710	Spt16:Os04g0321600	Spt16:Zm00014a035465	Choi *et al.*, 2012
Spt6	Gtb1:At1g65440	Spt6:Os05g0494900	Spt6:Zm00001d038570	Choi *et al.*, 2012
	Spt6:At1g63210			

H. sapiens

| AurkA | Aur1:At4g32830 | Os01g0191800 | Zm00001d039498 | Kunitoku *et al.*, 2003; Slattery *et al.*, 2008 |
| | Aur2:At12g25880 | | Zm00001d008815 | |
Protein	A. thaliana	O. sativa	Z. mays
AurkB	At2g45490	Os03g0765000	Zm00001d034166
Bmi-1	Drip1:At1g06770	Drip2:Os12g0600200	Drip2:Zm00001d033322
	Drip2:At2g30580		Zm00001d041405
			Zm00001d030985
CenpC	At1g15660	Os01g0617700	Zm00001d044220
CenpU	At5g24630	Os02g0147700	Zm00001d003685
Cops8	At1g14110	Os04g0428900	Zm00001d034361
Cul4-A	At5g46210	Os03g0786800	Zm00001d034361
Ddb1	At4g05420	Os05g0592400	Zm00001d039165
	At4g21100		Obuse et al., 2004
Ssrp1	At3g28730		
Ssrp1	Os01g0184900		
	Nfd110:Zm00001d008847		Foltz et al., 2006; Okada et al., 2009

Table 1. (continued) Putative conserved interaction partners of CENH3 in *A. thaliana*, *O. sativa* and *Z. mays*.

H. sapiens

Protein	A. thaliana	O. sativa	Z. mays
Ssrp1	At3g28730		

S. cerevisiae

Protein	A. thaliana	O. sativa	Z. mays	
Protein	GenBank Accession	GenBank Accession	GenBank Accession	Reference(s)
---------	------------------	------------------	------------------	--------------
Cdc53	Cul1:At4g02570	Cul1:Os01g0369200	Cul1:Zm00001d010858	Cheng et al., 2016
Doa1	At3g18860	Os07g0123700	Zm00001d018724	Cheng et al., 2016; Au et al., 2013
Fun30	Chr19:At2g0290	Os04g0566100	Chr19:Zm00001d002656	Durand-Dubief et al., 2012; Narlikar et al., 2013
Gcn5	Gcn5:At3g54610	Gcn5:Os10g0415900	Hag101:Zm00001d014175	Vernarecci et al., 2008; Pandey et al., 2002
Hir1	Hira:At3g44530	Os09g0567700	Hira:Zm00001d019789	Sharp et al., 2002; Duc et al., 2015
Mcm21	CenpO:At5g10710	Os04g0284100	CenpO:Zm00001d032978	Samel et al., 2012; Ranjitkar et al., 2010
Mif2	CenpC:At1g15660	CenpCA:Os01g0617700	CenpC:Zm00001d044220	Ranjitkar et al., 2010; Collins et al., 2005; Pinsky et al., 2003; Shibata and Murata, 2004
Mtw1	Mis12:At5g35520	Mis12:Os02g0620100	Mis12:Zm00001d001797	Samel et al., 2012; Collins et al., 2005; Pinsky et al., 2003; Sato et al., 2005
Ndc80	Ndc80:At3g54630	Os08g0468400	Zm00001d032029	Boeckmann et al., 2013; Collins et al., 2005; Shin et al., 2018
Pat1	Pat1:At4g14990	Pat1:Os01g0769000	Pat1:Zm00001d038671	Mishra et al., 2015; Kuromori and Yamamoto, 2000
Pat1	Pat1:At1g79090	Pat1:Os02g0517300	Pat1:Zm00001d043329	
Pat1	Pat1:At3g22270			
Psh1	Orth1:At5g39550	Orth2:Os05g0102600	Zm00001d011108	Samel et al., 2017; Deyter et al., 2017; Ranjitkar et al., 2010;
Orth2	At1g57820			
Orth5	At1g66050		Zm00001d035764	Kim et al., 2014
Sgo1	Sgo1:At3g10440	Sgo1:Os02g0799100	Sgo1:Zm00001d019148	Buehl et al., 2018; Mishra et al., 2018; Zamariola et al., 2013
Sgo2	At5g04320			
Gene	Chromosome/Locus	Chromosome/Locus	Chromosome/Locus	References
--------	-----------------	-----------------	-----------------	------------
Siz1	Siz1:At5g60410	Os05g0125000	Siz1:Zm00001d010974	Ohkuni et al., 2016; Catala et al., 2007
Siz2	Siz1:At5g60410			
Spt16	Spt16:At4g10710	Spt16:Os04g0321600	Spt16:Zm000014035465	Ranjitkar et al., 2010
Sth1	Chr12:At3g06010	Os05g0144300	Zm00001d006798	Ranjitkar et al., 2010; Hsu et al., 2003
	Chr23:At5g19310			
Ubp8	Ubp22:At5g10790	**Upb22:Os04g0647300**		Canzonetta et al., 2016
Ubr2	Prt6:At5g02310	Prt6:Os01g0148000	Zm00001d039860	Samel et al., 2017
		Prt6:Os01g0148050		

*no markup: genes identified via reciprocal Blasts from Human or Yeast to Arabidopsis/Rice/Maize (no references found).

**bold: genes identified through the software program Homologene.

***underlined: genes identified via reciprocal Blasts from Human or Yeast to Arabidopsis/Rice/Maize and supported by previous reports (the relevant references are underlined).
References:

Au W-C, Crisp MJ, DeLuca SZ, Rando OJ, Basrai MA. 2008. Altered dosage and mislocalization of histone H3 and Cse4p lead to chromosome loss in Saccharomyces cerevisiae. Genetics 179, 263-275.

Au WC, Dawson AR, Rawson DW, Taylor SB, Baker RE, Basrai MA. 2013. A novel role of the N-terminus of budding yeast histone H3 variant Cse4 in ubiquitin-mediated proteolysis. Genetics, genetics. 113.149898.

Ausín I, Alonso-Blanco C, Jarillo JA, Ruiz-García L, Martínez-Zapater JM. 2004. Regulation of flowering time by FVE, a retinoblastoma-associated protein. Nature genetics 36, 162.

Babiychuk E, Van Montagu M, Kushnir S. 2001. N - terminal domains of plant poly(ADP - ribose) polymerases define their association with mitotic chromosomes. The Plant Journal 28, 245-255.

Bailey AO, Panchenko T, Sathyam KM, Petkowski JJ, Pai PJ, Bai DL, Russell DH, Macara IG, Shabanowitz J, Hunt DF, Black BE, Foltz DR. 2013. Posttranslational modification of CENP-A influences the conformation of centromeric chromatin. Proceedings of the National Academy of Science United States of America 110, 11827-11832.

Bernhardt A, Mooney S, Hellmann H. 2010. Arabidopsis DDB1a and DDB1b are critical for embryo development. Planta 232, 555-566.

Boeckmann L, Takahashi Y, Au W-C, Mishra PK, Choy JS, Dawson AR, Szeto MY, Waybright TJ, Heger C, McAndrew C. 2013. Phosphorylation of centromeric histone H3 variant regulates chromosome segregation in Saccharomyces cerevisiae. Molecular biology of the cell 24, 2034-2044.

Bowe AJ, Gonzalez D, Mullins JG, Bhatt AM, Martinez A, Conlan RS. 2010. PAH-domain-specific interactions of the Arabidopsis transcription coregulator SIN3-LIKE1 (SNL1) with telomere-binding protein 1 and ALWAYS EARLY2 Myb-DNA binding factors. Journal of molecular biology 395, 937-949.

Britt AB, Kuppu S. 2016. CenH3: an emerging player in haploid induction technology. Frontiers in plant science 7, 357.

Buehl CJ, Deng X, Luo J, Buranasudja V, Hazbun T, Kuo M-H. 2018. A failsafe for sensing chromatid tension in mitosis with the histone H3 tail in Saccharomyces cerevisiae. Epigenetics & chromatin 10, 1-21.

Canzonetta C, Vernareacci S, Iuliani M, Marracino C, Belloni C, Ballario P, Filetici P. 2016. SAGA DUB-Ubp8 deubiquitylates centromeric histone variant Cse4. G3: Genes, Genomes, Genetics 6, 287-298.

Catala R, Ouyang J, Abreu IA, Hu Y, Seo H, Zhang X, Chua N-H. 2007. The Arabidopsis E3 SUMO ligase SIZ1 regulates plant growth and drought responses. The Plant Cell 19, 2952-2966.

Chen ES, Saitoh S, Yanagida M, Takahashi K. 2003. A cell cycle-regulated GATA factor promotes centromeric localization of CENP-A in fission yeast. Molecular cell 11, 175-187.

Chen Y, Baker RE, Keith KC, Harris K, Stoler S, Fitzgerald-Hayes M. 2000. The N terminus of the centromere H3-like protein Cse4p performs an essential function distinct from that of the histone fold domain. Molecular and cellular biology 20, 7037-7048.
Cheng H, Bao X, Rao H. 2016. The F-box protein Rcy1 is involved in the degradation of histone H3 variant Cse4 and genome maintenance. Journal of Biological Chemistry, jbc. M115. 701813.

Choi ES, Strålfors A, Catania S, Castillo AG, Svensson JP, Pidoux AL, Ekwall K, Allshire RC. 2012. Factors that promote H3 chromatin integrity during transcription prevent promiscuous deposition of CENP-ACnp1 in fission yeast. Public Library of Science genetics 8, e1002985.

Collins KA, Castillo AR, Tatsutani SY, Biggins S. 2005. De novo kinetochore assembly requires the centromeric histone H3 variant. Molecular biology of the cell 16, 5649-5660.

Comai L, Tan EH. 2019. Haploid Induction and Genome Instability. Trends in Genetics.

Cuacos M, Franklin H, Chris F, Heckmann S. 2015. Atypical centromeres in plants—what they can tell us. Frontiers in plant science 6, 913.

De Storme N, Keçeli BN, Zamariola L, Angenon G, Geelen D. 2016. CENH3-GFP: a visual marker for gametophytic and somatic ploidy determination in Arabidopsis thaliana. BioMed Central plant biology 16, 1.

Demidov D, Heckmann S, Weiss O, Rutten T, Tomaštiková ED, Kuhlmann M, Scholl P, Municio CM, Lermontova I, Houben A. 2019. Deregulated phosphorylation of CENH3 at Ser65 affects the development of floral meristems in Arabidopsis thaliana. Frontiers in plant science 10.

Deyter GM, Hildebrand EM, Barber AD, Biggins S. 2017. Histone H4 facilitates the proteolysis of the budding yeast CENP-ACse4 centromeric histone variant. Genetics 205, 113-124.

Drinnenberg IA, Henikoff S, Malik HS. 2016. Evolutionary turnover of kinetochore proteins: a ship of theseus? Trends in cell biology 26, 498-510.

Duc C, Benoit M, Le Golf S, Simon L, Poulet A, Cotterell S, Tatout C, Probst AV. 2015. The histone chaperone complex HIR maintains nucleosome occupancy and counterbalances impaired histone deposition in CAF-1 complex mutants. The Plant Journal 81, 707-722.

Dumbiauskas E, Lechner E, Jaciubek M, Berr A, Pazhouhandeh M, Alioua M, Cognat V, Brukhin V, Koncz C, Grossniklaus U. 2011. The Arabidopsis CUL4–DDB1 complex interacts with MST1 and is required to maintain MEDEA parental imprinting. The European Molecular Biology Organization journal 30, 731-743.

Dunleavy EM, Pidoux AL, Monet M, Bonilla C, Richardson W, Hamilton GL, Ekwall K, McLaughlin PJ, Allshire RC. 2007. A NASP (N1/N2)-related protein, Sim3, binds CENP-A and is required for its deposition at fission yeast centromeres. Molecular cell 28, 1029-1044.

Dunleavy EM, Roche D, Tagami H, Lacoste N, Ray-Gallet D, Nakamura Y, Daigo Y, Nakatani Y, Almouzni-Pettinotti G. 2009. HJURP is a cell-cycle-dependent maintenance and deposition factor of CENP-A at centromeres. Cell 137, 485-497.

Durand-Dubief M, Will WR, Petriti E, Theodorou D, Harris RR, Crawford MR, Paszkiewicz K, Krueger F, Correia RM, Vetter AT. 2012. SWI/SNF-like chromatin remodeling factor Fun30 supports point centromere function in S. cerevisiae. Public Library of Science genetics 8, e1002974.

Fachinetti D, Logsdon GA, Abdullah A, Selzer EB, Cleveland DW, Black BE. 2017. CENP-A modifications on Ser68 and Lys124 are dispensable for establishment, maintenance, and long-term function of human centromeres. Developmental cell 40, 104-113.

Feng C, Yuan J, Bai H, Liu Y, Su H, Liu Y, Shi L, Gao Z, Birchler JA, Han F. 2019. The deposition of CENH3 in maize is stringently regulated. The Plant Journal.

Foltz DR, Jansen LE, Bailey AO, Yates III JR, Bassett EA, Wood S, Black BE, Cleveland DW. 2009. Centromere-specific assembly of CENP-a nucleosomes is mediated by HJURP. Cell 137, 472-484.
Foltz DR, Jansen LE, Black BE, Bailey AO, Yates III JR, Cleveland DW. 2006. The human CENP-A centromeric nucleosome-associated complex. Nature cell biology 8, 458.
Fujita Y, Hayashi T, Kiyomitsu T, Toyoda Y, Kokubu A, Obuse C, Yanagida M. 2007. Priming of centromere for CENP-A recruitment by human hMis18α, hMis18β, and M18BP1. Developmental cell 12, 17-30.
Ganpudi AL, Schroeder DF. 2013. Genetic interactions of Arabidopsis thaliana damaged DNA binding protein 1B (DDB1B) with DDB1A, DET1, and COP1. G3: Genes, Genomes, Genetics (Bethesda) 3, 493-503.
Guo M, Thomas J, Collins G, Timmermans MC. 2008. Direct repression of KNOX loci by the ASYMMETRIC LEAVES1 complex of Arabidopsis. The Plant Cell 20, 48-58.
Hasson D, Alonso A, Cheung F, Tepperberg JH, Papenhausen PR, Engelen JJ, Warburton PE. 2011. Formation of novel CENP-A domains on tandem repetitive DNA and across chromosome breakpoints on human chromosome 8q21 neocentromeres. Chromosoma 120, 621-632.
Hayashi T, Fujita Y, Iwasaki O, Adachi Y, Takahashi K, Yanagida M. 2004. Mis16 and Mis18 are required for CENP-A loading and histone deacetylation at centromeres. Cell 118, 715-729.
Hennig L, Bouveret R, Gruissem W. 2005. MSI1-like proteins: an escort service for chromatin assembly and remodeling complexes. Trends in cell biology 15, 295-302.
Hewawasam G, Shivaraju M, Mattingly M, Venkatesh S, Martin-Brown S, Florens L, Workman JL, Gerton JL. 2010. Psh1 is an E3 ubiquitin ligase that targets the centromeric histone variant Cse4. Molecular Cell 40, 444-454.
Houben A, Sanei M, Pickering R. 2011. Barley doubled-haploid production by uniparental chromosome elimination. Plant Cell, Tissue and Organ Culture (PCTOC) 104, 321-327.
Hsu J-m, Huang J, Meluh PB, Laurent BC. 2003. The yeast RSC chromatin-remodeling complex is required for kinetochore function in chromosome segregation. Molecular and cellular biology 23, 3202-3215.
Jullien PE, Mosquina A, Ingouff M, Sakata T, Ohad N, Berger F. 2008. Retinoblastoma and its binding partner MSI1 control imprinting in Arabidopsis. Public Library of Science biology 6, e194.
Kang YH, Park CH, Kim T-S, Soung N-K, Bang JK, Kim BY, Park J-E, Lee KS. 2011. Mammalian polo-like kinase 1-dependent regulation of the PBIP1-CENP-Q complex at kinetochores. Journal of Biological Chemistry, jbc. M111. 224105.
Karimi-Ashtiyani R, Ishii T, Niessen M, Stein N, Heckmann S, Gurushidze M, Banaei-Moghaddam AM, Fuchs J, Schubert V, Koch K. 2015. Point mutation impairs centromeric CENH3 loading and induces haploid plants. Proceedings of the National Academy of Sciences 112, 11211-11216.
Kelliher T, Starr D, Wang W, McCuiston J, Zhong H, Nuccio ML, Martin B. 2016. Maternal haploids are preferentially induced by CENH3-tailswap transgenic complementation in maize. Frontiers in plant science 7, 414.
Kim HJ, Hyun Y, Park JY, Park MJ, Park MK, Kim MD, Kim HJ, Lee MH, Moon J, Lee I, Kim J. 2004. A genetic link between cold responses and flowering time through FVE in Arabidopsis thaliana. Nature Genetics 36, 167-171.
Kim J, Kim JH, Richards EJ, Chung KM, Woo HR. 2014. Arabidopsis VIM proteins regulate epigenetic silencing by modulating DNA methylation and histone modification in cooperation with MET1. Molecular plant 7, 1470-1485.
Kitagawa T, Ishii K, Takeda K, Matsumoto T. 2014. The 19S proteasome subunit Rpt3 regulates distribution of CENP-A by associating with centromeric chromatin. Nature Communications 5, 3597.
Kobayashi Y, Saitoh S, Ogiyama Y, Soejima S, Takahashi K. 2007. The fission yeast DASH complex is essential for satisfying the spindle assembly checkpoint induced by defects in the inner - kinetochore proteins. Genes to Cells 12, 311-328.
Köhler C, Hennig L, Bouveret R, Gheyselinck J, Grossniklaus U, Gruissem W. 2003. Arabidopsis MSI1 is a component of the MEA/FIE Polycomb group complex and required for seed development. The European Molecular Biology Organization journal 22, 4804-4814.

Kraft E, Bostick M, Jacobsen SE, Callis J. 2008. ORTH/VIM proteins that regulate DNA methylation are functional ubiquitin E3 ligases. The Plant Journal 56, 705-714.

Kunitoku N, Sasayama T, Marumoto T, Zhang D, Honda S, Kobayashi O, Hatakeyama K, Ushio Y, Saya H, Hirota T. 2003. CENP-A phosphorylation by Aurora-A in prophase is required for enrichment of Aurora-B at inner centromeres and for kinetochore function. Developmental cell 5, 853-864.

Kupp S, Tan EH, Nguyen H, Rodgers A, Comai L, Chan SW, Britt AB. 2015. Point mutations in centromeric histone induce post-zygotic incompatibility and uniparental inheritance. Public Library of Science genetics 11, e1005494.

Kuromori T, Yamamoto M. 2000. Members of the Arabidopsis 14-3-3 gene family trans-complement two types of defects in fission yeast. Plant Science 158, 155-161.

Le Goff S, Keçeli BN, Jerabkova H, Heckmann S, Rutten T, Cotterell S, Schubert V, Roitinger E, Mechtler K, Franklin FCH. 2019. The H3 histone chaperone NASP/3 3 escorts CenH3 in Arabidopsis. The Plant Journal.

Lermontova I. 2019. Generation of haploid plants based on knl2. Google Patents.

Lermontova I, Koroleva O, Rutten T, Fuchs J, Schubert V, Moraes I, Koszegi D, Schubert I. 2011. Knockdown of CENH3 in Arabidopsis reduces mitotic divisions and causes sterility by disturbed meiotic chromosome segregation. The Plant Journal 68, 40-50.

Lermontova I, Kuhlmann M, Friedel S, Rutten T, Heckmann S, Sandmann M, Demidov D, Schubert V, Schubert I. 2013. Arabidopsis kinetochore null2 is an upstream component for centromeric histone H3 variant cenH3 deposition at centromeres. The Plant Cell, tpc.113.114736.

Lermontova I, Sandmann M, Mascher M, Schmit AC, Chabouté ME. 2015. Centromeric chromatin and its dynamics in plants. The Plant Journal 83, 4-17.

Loppin B, Bonnefoy E, Anselme C, Laurencen A, Karr TL, Couble P. 2005. The histone H3.3 chaperone HIRA is essential for chromatin assembly in the male pronucleus. Nature 437, 1386-1390.

Maddox PS, Hyndman F, Monen J, Oegema K, Desai A. 2007. Functional genomics identifies a Myb domain-containing protein family required for assembly of CENP-A chromatin. Journal of Cell Biology 176, 757-763.

Maheshwari S, Ishii T, Brown CT, Houben A, Comai L. 2017. Centromere location in Arabidopsis is unaltered by extreme divergence in CENH3 protein sequence. Genome research.

Maheshwari S, Tan EH, West A, Franken FCH, Comai L, Chan SW. 2015. Naturally occurring differences in CENH3 affect chromosome segregation in zygotic mitosis of hybrids. Public Library of Science genetics 11, e1004970.

Maksimov V, Nakamura M, Wildhaber T, Nanni P, Ramström M, Bergquist J, Hennig L. 2016. The H3 chaperone function of NASP is conserved in Arabidopsis. The Plant Journal 88, 425-436.

Maluszynski M. 2003. Doubled haploid production in crop plants : a manual. Dordrecht ; Boston: Kluwer Academic Publishers.

McKinley KL, Cheeseman IM. 2016. The molecular basis for centromere identity and function. Nature reviews Molecular cell biology 17, 16.

Mishra PK, Guo J, Dittman LE, Haase J, Yeh E, Bloom K, Basrai MA. 2015. Pat1 protects centromere-specific histone H3 variant Cse4 from Psh1-mediated ubiquitination. Molecular biology of the cell 26, 2067-2079.

Mishra PK, Olafsson G, Boeckmann L, Westlake TJ, Jowhar ZM, Dittman LE, Baker RE, D’Amours D, Thorpe PH, Basrai MA. 2019. Cell cycle-dependent association of
polo kinase Cdc5 with CENP-A contributes to faithful chromosome segregation in budding yeast. Molecular biology of the cell 30, 1020-1036.
Mishra PK, Thapa KS, Chen P, Wang S, Hazbun TR, Basrai MA. 2018. Budding yeast CENP-ACse4 interacts with the N-terminus of Sgo1 and regulates its association with centromeric chromatin. Cell Cycle 17, 11-23.
Moliner J, Lechner E, Dumblauskas E, Genschik P. 2008. Regulation and role of Arabidopsis CUL4-DDB1A-DDB2 in maintaining genome integrity upon UV stress. Public Library of Science Genet 4, e1000093.
Nardi IK, Zasadzinska E, Stellfox ME, Knippler CM, Foltz DR. 2016. Licensing of centromeric chromatin assembly through the Mis18α-Mis18β heterotetramer. Molecular cell 61, 774-787.
Narlikar GJ, Sundaramoorthy R, Owen-Hughes T. 2013. Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes. Cell 154, 490-503.
Nie X, Wang H, Li J, Holec S, Berger F. 2014. The HIRA complex that deposits the histone H3.3 is conserved in Arabidopsis and facilitates transcriptional dynamics. Biology Open 3, 794-802.
Niikura Y, Kitagawa R, Ogi H, Abdulle R, Pagala V, Kitagawa K. 2015. CENP-A K124 ubiquitylation is required for CENP-A deposition at the centromere. Developmental cell 32, 589-603.
Obuse C, Yang H, Nozaki N, Goto S, Okazaki T, Yoda K. 2004. Proteomics analysis of the centromere complex from HeLa interphase cells: UV - damaged DNA binding protein 1 (DDB - 1) is a component of the CEN - complex, while BMI - 1 is transiently co - localized with the centromeric region in interphase. Genes to Cells 9, 105-120.
Ohkuni K, Takahashi Y, Fulp A, Lawrimore J, Au W-C, Pasapula N, Levy-Myers R, Warren J, Strunnikov A, Baker RE. 2016. SUMO-Targeted Ubiquitin Ligase (STUbL) Sbx5 regulates proteolysis of centromeric histone H3 variant Cse4 and prevents its mislocalization to euchromatin. Molecular biology of the cell 27, 1500-1510.
Ohzeki J-i, Shono N, Otake K, Martins NM, Kugou K, Kinbara H, Nagase T, Larionov V, Earnshaw WC, Masumoto H. 2016. KAT7/HBO1/MYST2 regulates CENP-A chromatin assembly by antagonizing Suv39h1-mediated centromere inactivation. Developmental cell 37, 413-427.
Panchenko T, Sorensen TC, Woodcock CL, Kan Z-y, Wood S, Resch MG, Luger K, Englander SW, Hansen JC, Black BE. 2011. Replacement of histone H3 with CENP-A directs global nucleosome array condensation and loosening of nucleosome superhelical termini. Proceedings of the National Academy of Sciences 108, 16588-16593.
Pandey R, Muøller A, Napoli CA, Selinger DA, Pikaard CS, Richards EJ, Bender J, Mount DW, Jorgensen RA. 2002. Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes. Nucleic acids research 30, 5036-5055.
Phelps-Durr TL, Thomas J, Vahab P, Timmermans MC. 2005. Maize rough sheath2 and its Arabidopsis orthologue ASYMMETRIC LEAVES1 interact with HIRA, a predicted histone chaperone, to maintain knox gene silencing and determinacy during organogenesis. The Plant Cell 17, 2886-2898.
Pidoux AL, Choi ES, Abbott JK, Liu X, Kagansky A, Castillo AG, Hamilton GL, Richardson W, Rappisilber J, He X. 2009. Fission yeast Scm3: A CENP-A receptor required for integrity of subkinetochore chromatin. Molecular cell 33, 299-311.
Pidoux AL, Richardson W, Allshire RC. 2003. Sim4: a novel fission yeast kinetochore protein required for centromeric silencing and chromosome segregation. Journal of Cell Biology 161, 295-307.
Pinsky BA, Tatsutani SY, Collins KA, Biggins S. 2003. An Mtw1 complex promotes kinetochore biorientation that is monitored by the Ipl1/Aurora protein kinase. Developmental cell 5, 735-745.
Qin N, Xu D, Li J, Wang Deng X. 2020. COP9 Signalosome: discovery, conservation, activity, and function. Journal of Integrative Plant Biology.

Ramachandran S, Henikoff S. 2016. Nucleosome dynamics during chromatin remodeling in vivo. Nucleus 7, 20-26.

Ranjitkar P, Press MO, Yi X, Baker R, MacCoss MJ, Biggins S. 2010. An E3 ubiquitin ligase prevents ectopic localization of the centromeric histone H3 variant via the centromere targeting domain. Molecular cell 40, 455-464.

Ravi M, Chan SW. 2010. Haploid plants produced by centromere-mediated genome elimination. Nature 464, 615.

Ravi M, Kwong PN, Menorca RM, Valencia JT, Ramahi JS, Stewart JL, Tran RK, Sundaresan V, Comai L, Chan SW-L. 2010. The rapidly evolving centromere-specific histone has stringent functional requirements in Arabidopsis thaliana. Genetics 186, 461-471.

Regnier V, Vagnarelli P, Fukagawa T, Zerjal T, Burns E, Trouche D, Earnshaw W, Brown W. 2005. CENP-A is required for accurate chromosome segregation and sustained kinetochore association of BubR1. Molecular Cell Biology 25, 3967-3981.

Rothbart SB, Strahl BD. 2014. Interpreting the language of histone and DNA modifications. Biochim Biophys Acta 1839, 627-643.

Samel A, Cuomo A, Bonaldi T, Ehrenhofer-Murray AE. 2012. Methylation of CenH3 arginine 37 regulates kinetochore integrity and chromosome segregation. Proceedings of the National Academy of Sciences 109, 9029-9034.

Sanchez-Pulido L, Devos D, Sung ZR, Calonje M. 2008. RAWUL: a new ubiquitin-like domain in PRC1 ring finger proteins that unveils putative plant and worm PRC1 orthologs. BioMed Central genomics 9, 308.

Sandmann M, Talbert P, Demidov D, Kuhlmann M, Rutten T, Conrad U, Lermontova I. 2017. Targeting of A. thaliana KNL2 to centromeres depends on the conserved CENPC-k motif in its C-terminus. The Plant Cell, tpc. 00720.02016.

Sato H, Shibata F, Murata M. 2005. Characterization of a Mis12 homologue in Arabidopsis thaliana. Chromosome Research 13, 827-834.

Saxena A, Saffery R, Wong LH, Kalitsis P, Choo KA. 2002. Centromere proteins Cenpa, Cenpb, and Bub3 interact with poly (ADP-ribose) polymerase-1 protein and are poly (ADP-ribosyl) ated. Journal of Biological Chemistry 277, 26921-26926.

Schwechheimer C, Isono E. 2010. The COP9 signalosome and its role in plant development. European journal of cell biology 89, 157-162.

Sharp JA, Franco AA, Osley MA, Kaufman PD. 2002. Chromatin assembly factor I and Hir proteins contribute to building functional kinetochores in S. cerevisiae. Genes & development 16, 85-100.

Shen W-H, Parmentier Y, Hellmann H, Lechner E, Dong A, Masson J, Granier F, Lepiniec L, Estelle M, Genschik P. 2002. Null mutation of AtCUL1 causes arrest in early embryogenesis in Arabidopsis. Molecular biology of the cell 13, 1916-1928.

Shibata F, Murata M. 2004. Differential localization of the centromere-specific proteins in the major centromeric satellite of Arabidopsis thaliana. Journal of Cell Science 117, 2963-2970.

Shin J, Jeong G, Park JY, Kim H, Lee I. 2018. MUN (MERISTEM UNSTRUCTURED), encoding a SPC24 homolog of NDC80 kinetochore complex, affects development through cell division in arabidopsis thaliana. The Plant Journal 93, 977-991.
Shrestha RL, Ahn GS, Staples MI, Sathyan KM, Karpova TS, Foltz DR, Basrai MA. 2017. Mislocalization of centromeric histone H3 variant CENP-A contributes to chromosomal instability (CIN) in human cells. Oncotarget 8, 46781.

Slattery SD, Moore RV, Brinkley BR, Hall RM. 2008. Aurora-C and Aurora-B share phosphorylation and regulation of CENP-A and Borealin during mitosis. Cell Cycle 7, 787-795.

Sullivan KF, Hechenberger M, Masri K. 1994. Human CENP-A contains a histone H3 related histone fold domain that is required for targeting to the centromere. The Journal of cell biology 127, 581-592.

Tagami H, Ray-Gallet D, Almouzni G, Nakatani Y. 2004. Histone H3. 1 and H3. 3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell 116, 51-61.

Takada M, Zhang W, Suzuki A, Kuroda TS, Yu Z, Inuzuka H, Gao D, Wan L, Zhuang M, Hu L. 2017. FBW7 loss promotes chromosomal instability and tumorigenesis via cyclin E1/CDK2-mediated phosphorylation of CENP-A. Cancer research 77, 4881-4893.

Tagayama Y, Shirai M, Masuda F. 2016. Characterisation of functional domains in fission yeast Ams2 that are required for core histone gene transcription. Scientific Reports 6, 38111.

Talbert PB, Henikoff S. 2010. Histone variants—ancient wrap artists of the epigenome. Nature reviews Molecular cell biology 11, 264.

Talbert PB, Henikoff S. 2018. Transcribing centromeres: noncoding RNAs and kinetochore assembly. Trends in Genetics.

Talbert PB, Masuelli R, Tyagi AP, Comai L, Henikoff S. 2002. Centromeric localization and adaptive evolution of an Arabidopsis histone H3 variant. The Plant Cell 14, 1053-1066.

Tan EH, Henry IM, Ravi M, Bradnam KR, Mandakova T, Marimuthu MP, Korf I, Lysak MA, Comai L, Chan SW. 2015. Catastrophic chromosomal restructuring during genome elimination in plants. Elife 4, e06516.

Tanaka K, Chang HL, Kagami A, Watanabe Y. 2009. CENP-C functions as a scaffold for effectors with essential kinetochore functions in mitosis and meiosis. Developmental cell 17, 334-343.

Tripathi AK, Singh K, Pareek A, Singla-Pareek SL. 2015. Histone chaperones in Arabidopsis and rice: genome-wide identification, phylogeny, architecture and transcriptional regulation. BioMed Central plant biology 15, 42.

Vernarecci S, Ornaghi P, Bâgu A, Cundari E, Ballario P, Filetici P. 2008. Gcn5p plays an important role in centromere kinetochore function in budding yeast. Molecular and cellular biology 28, 988-996.

Wang B, Zhu L, Zhao B, Zhao Y, Xie Y, Zheng Z, Li Y, Sun J, Wang H. 2019. Development of a haploid-inducer mediated genome editing system for accelerating maize breeding. Molecular plant 12, 597-602.

Wang N, Dawe RK. 2018. Centromere size and its relationship to haploid formation in plants. Molecular plant 11, 398-406.

Wijnker E, Deurhof L, Van De Belt J, De Snoo CB, Blankestijn H, Becker F, Ravi M, Chan SW, Van Dun K, Lelivelt CL. 2014. Hybrid recreation by reverse breeding in Arabidopsis thaliana. Nature protocols 9, 761.

Woo HR, Dittmer TA, Richards EJ. 2008. Three SRA-domain methylcytosine-binding proteins cooperate to maintain global CpG methylation and epigenetic silencing in Arabidopsis. Public Library of Science genetics 4, e1000156.

Woo HR, Pontes O, Pikaard CS, Richards EJ. 2007. Vim1, a methylcytosine-binding protein required for centromeric heterochromatinization. Genes & development 21, 000-000.

Yang D-H, Maeng S, Bahn Y-S. 2013. Msi1-like (MSIL) proteins in fungi. Mycobiology 41, 1-12.
Yu Z, Zhou X, Wang W, Deng W, Fang J, Hu H, Wang Z, Li S, Cui L, Shen J. 2015. Dynamic phosphorylation of CENP-A at Ser68 orchestrates its cell-cycle-dependent deposition at centromeres. Developmental cell 32, 68-81.

Zamariola L, De Storme N, Tiang C, Armstrong S, Franklin F, Geelen D. 2013. SGO1 but not SGO2 is required for maintenance of centromere cohesion in Arabidopsis thaliana meiosis. Plant reproduction 26, 197-208.

Zasadzińska E, Foltz DR. 2017. Orchestrating the specific assembly of centromeric nucleosomes. Centromeres and Kinetochores: Springer, 165-192.

Zeitlin SG, Baker NM, Chapados BR, Soutoglou E, Wang JY, Berns MW, Cleveland DW. 2009. Double-strand DNA breaks recruit the centromeric histone CENP-A. Proceedings of the National Academy of Sciences 106, 15762-15767.

Zeitlin SG, Shelby RD, Sullivan KF. 2001. CENP-A is phosphorylated by Aurora B kinase and plays an unexpected role in completion of cytokinesis. Journal of Cell Biology 155, 1147-1157.

Zhang X, Li X, Marshall JB, Zhong CX, Dawe RK. 2005. Phosphoserines on maize CENTROMERIC HISTONE H3 and histone H3 demarcate the centromere and pericentromere during chromosome segregation. The Plant Cell 17, 572-583.
Figure 1