N, N-Dimethylglycine decreases oxidative stress and improves in vitro development of bovine embryos

Toshiyio TAKAHASHI1), Kouya SASAKI1), Tamas SOMFAI2), Takashi NAGAI3, 4), Noboru MANABE5) and Keisuke EDASHIGE6)

1) Akita Prefectural Livestock Experiment Station, Akita 019-1701, Japan
2) NARO Institute of Livestock and Grassland Science, Tsukuba 305-0901, Japan
3) Food and Fertilizer Technology Center, Taipei 10648, Republic of China (Taiwan)
4) College of Agriculture and Life Sciences, Seoul National University, Seoul 151-742, Republic of Korea
5) Osaka International University, Osaka 573-0192, Japan
6) Life and Environmental Medicine Science Unit, Kochi University, Kochi 783-8502, Japan

Abstract. The antioxidant effect of N, N-dimethylglycine (DMG) on in vitro-produced (IVP) bovine embryos was examined. After in vitro fertilization, presumptive zygotes were cultured with or without 0.1 μM DMG under different oxygen tensions. The percentage of embryos developing to the blastocyst stage was lowest under a 20% oxygen concentration without DMG, and it was significantly increased (P < 0.05) by applying a 5% oxygen concentration. Under the 20% oxygen concentration, supplementation of the medium with DMG significantly improved blastocyst development, which was nearly equal to that achieved under 5% oxygen without DMG. Furthermore, a tendentious increase (P = 0.06) in blastocyst cell numbers was observed when DMG was applied. In the second experiment, addition of H2O2 (0.5 mM) to the culture medium significantly (P < 0.01) reduced the percentage of embryos developing to the blastocyst stage. However, DMG supplementation prevented this reduction. In conclusion, DMG enhanced the in vitro development of IVP bovine embryos by acting as an antioxidant.

Key words: Antioxidant, Bovine embryo, DMG, In vitro fertilization, N, N-Dimethylglycine

In vitro-produced (IVP) bovine embryos at early developmental stages are known to be sensitive to reactive oxygen species (ROS) [1]. Under oxidative stress, ROS can accumulate in embryos, causing DNA damage and developmental arrest [2, 3]. Oxygen in air contributes to oxidative stress in embryos during culture. Reducing the oxygen concentration in the incubator from 20% to approximately 5% during culture has been reported to improve the development of IVP embryos in several mammal species including cattle [4–7].

N, N-Dimethylglycine (DMG) (also known as vitamin B15 or pangamic acid) acts as an antioxidant, extending the lifespan of animal cells through protection from oxidation [8–10]. DMG is presumably involved in the betaine pathway, the metabolism of homocysteine and glutathione synthesis [9, 10]. In a previous report, addition of 0.1 μM DMG to a culture medium prompted the development of early IVP bovine embryos [11].

However, to clarify whether or not DMG promotes in vitro development of bovine embryos by acting as an antioxidant, the embryos must be exposed to oxidized in vitro culture (IVC) conditions. This study was conducted to demonstrate the antioxidant effect of DMG on bovine embryos for the first time. For this purpose, two experiments were performed.

In Experiment 1, the effect of addition of 0.1 μM DMG and no DMG (+DMG and –DMG, respectively) to a culture medium on in vitro development of IVP bovine embryos was examined under both 20% (20O2) and 5% (5O2) oxygen concentrations. Embryos were cultured in the presence or absence of DMG under 20% (5% CO2 in air) or 5% (5% CO2, 5% O2 and 90% N2) as described below (+DMG/20O2, +DMG/5O2, –DMG/20O2 and –DMG/5O2 groups, respectively). Without DMG addition to the medium, blastocyst development was significantly lower under the 20% oxygen concentration conditions (–DMG/20O2 group) than that obtained under 5% oxygen (–DMG/5O2 group); however, they had similar cleavage rates (Table 1). When DMG was added to the culture medium under the 20% oxygen concentration conditions (+DMG/20O2 group), embryo development to the blastocyst stage increased significantly to a level similar to that of embryos cultured without DMG under 5% oxygen (–DMG/5O2 group) (Table 1). Moreover, when DMG was added to the medium and 5% oxygen was used (+DMG/5O2 group), the highest blastocyst formation rate was obtained among all the groups (P < 0.05) (Table 1). Also, when cultured under the 20% oxygen concentration conditions, a trend (P = 0.06) was found for higher numbers of total cells per blastocyst in favor of DMG-treated embryos (+DMG/20O2 group) compared with non-treated embryos (–DMG/20O2 group) (Table 2).

Experiment 2 demonstrated the antioxidant actions of DMG. In vitro culture of IVP bovine embryos at the 8- to 16-cell stage was
conducted using the culture medium either in the absence (control group) or presence of 0.5 mM hydrogen peroxide (H_2O_2). In another group, both H_2O_2 and 0.1 μM DMG were added to the culture medium.

As described below, IVP embryos were cultured to the blastocyst stage. Table 3 shows that the addition of H_2O_2 significantly ($P < 0.01$) reduced blastocyst development compared with the control group (65.0% and 14.3%, respectively). However, when DMG was added to the H_2O_2-containing medium, the blastocyst formation rate improved significantly ($P < 0.01$) to a level (57.1%) equivalent to that obtained in the control group (Table 3), demonstrating that DMG exerted a strong antioxidant effect by counteracting exogenous oxidative stress in embryos.

The concentration of oxygen in the body is lower than that in the atmosphere. Previous studies have demonstrated that the oxygen concentration in the oviduct and uterus is approximately one-fourth of that in the atmosphere [12]. Embryo development has reportedly been improved by adjusting the oxygen concentration to approximately 5% in in vitro culture of early embryos [5]. Our results confirm that a 5% oxygen concentration, which is presumed to approximate the oxygen concentration in the body, is effective as a culture condition for early embryos and that the level of oxidative stress is involved in determining the quality of embryos, such as the number of cells. Oxygen present in the culture medium changes into free radical or nonradical molecular species. Previous reports have described that ROS affects fertilization of in vitro maturation (IVM) oocytes and their subsequent cleavage [13, 14]. Differences attributable to
the concentration of oxygen have also been demonstrated in the \textit{in vitro} production of embryos in cattle, including the IVM and \textit{in vitro} fertilization (IVF) of oocytes and IVC of early embryos [15]. Results of previous studies have shown that decreasing the oxygen concentration to 5% during maturation improved embryo development and changed the expression of genes related to oocyte competence and glucose metabolism [16] and that the addition of antioxidants to the culture medium for IVF oocytes affects their pronucleus formation rate in cattle [17]. However, exceedingly low oxygen concentrations might adversely affect development, as the proliferative capacity was decreased and apoptosis was increased under a markedly low oxygen concentration of 1% in human and mouse stem cells [18].

Although the blastocyst formation rate of embryos cultured under an oxygen concentration of 5% was found to be significantly higher even without DMG (–DMG/5O2 group) than that of embryos cultured without DMG under the 20% oxygen concentration conditions (–DMG/20O2 group), the development rate improved significantly when DMG was added to the culture medium and embryos were cultured, even under the 5% oxygen concentration conditions (+DMG/5O2 group); the highest blastocyst formation rate was obtained in the +DMG/20O2 group among all the group. Furthermore, cells in the prepared embryos were slightly more numerous with the addition of DMG. There are two possible explanations for these phenomena; it is possible that (1) even under 5% oxygen the embryos still suffer from oxidative stress to some degree or (2) DMG might improve embryo development not only by neutralizing oxidative stress but also via another, currently unknown, way. Further research will be necessary to clarify this point. Based on the findings presented above, we conclude that 0.1 μM DMG apparently exerted an antioxidant effect on bovine embryos produced \textit{in vitro}, increasing blastocyst formation rates and tending to increase the number of cells in resultant embryos.

Methods

Reagents were obtained from Sigma Chemical (St. Louis, MO, USA) unless otherwise specified.

The protocol was approved by the Ethics Committee for Experimentation with Animals of the Akita Prefectural Experiment Station.

Oocytes were collected from follicles (2–5 mm in diameter) of bovine ovaries collected at a meat processing plant by aspirating follicular fluid containing cumulus–oocyte complexes (COCs) with a 5-ml syringe equipped with an 18G needle. The IVM medium was 25 mM HEPES-buffered TCM-199 (TCM-199; Gibco, Thermo Fisher Scientific, Waltham, MA, USA) supplemented with 0.4% (w/v) bovine serum albumin (BSA, Fraction V), 100 μM cysteamine, 50 ng/ml epidermal growth factor, 1 ng/ml transforming growth factor α, and 100 μM bSA (Fraction V), 10 μl/ml insulin-transferrin-selenium (Gibco), 1 ng/ml transforming growth factor β1 and 10 ng/ml fibroblast growth factor [20]. Twenty zygotes per Repro C-1 plate were placed in 100 μl of SOF1 medium covered with paraffin oil and cultured with or without 0.1 μM DMG at 38.5°C under gaseous conditions of 5% CO2, 5% O2 and 90% N2 or 5% CO2, 95% air and saturated humidity. After 96 h of culture, the embryos were then transferred to SOF2 medium, which was SOF1 medium supplemented with 1.5 mM glucose and 5% (v/v) fetal bovine serum in place of BSA [21], and cultured with or without 0.1 μM DMG under the same gaseous conditions. We changed the IVC medium based on a report by Matsumoto et al. [21] and performed IVC using the culture media supplemented with glucose thereafter because it was shown that the addition of glucose to the IVC medium immediately after IVF until 96 h of IVC is detrimental to bovine embryo development, although it is necessary later for embryo hatching [22].

The embryonic cell number was assessed using double staining. Embryos were treated with 0.2% Triton X-100-PBS supplemented with 0.1 mg/ml propidium iodide for 1 min. They were then transferred into 99.5% ethanol supplemented with 25 μg/ml Bis-benzimide (33342; Hoechst). Embryos were stained at 4°C for 3 h and protected from light. They were then washed with Vectashield (Vector Laboratories, Burlingame, CA, USA). The treatment solution containing embryos was dropped onto a slide glass. A cover slip was added to flatten the embryos. Observations were conducted using a fluorescence microscope (IMT-2, Olympus, Tokyo, Japan). The inner cell mass (blue) and trophectoderm (pink) cells were counted.

In one experiment, embryos at the 8-cell to 16-cell stage were used to examine the antioxidative effect of DMG. The test was conducted with three groups: a group cultured with H2O2 (0.5 mM), a group cultured with H2O2 (0.5 mM) and DMG (0.1 μM) and a control group cultured without H2O2 and DMG. The embryos were cultured in SOF1 medium and then in SOF2 medium until Day 8 (Day 0 = the day of IVF), and the development rate was examined.
The StatView software was used for statistical analyses. After all percentage data were subjected to arcsine transformation, significance was tested using a one-way analysis of variance (ANOVA) and the Tukey-Kramer test. Differences with $P < 0.05$ were regarded as significant.

References

1. Takahashi M. Oxidative stress and redox regulation on in vitro development of mammalian embryos. J Reprod Dev 2012; 58: 1–9. [Medline] [CrossRef]
2. Takahashi M, Keicho K, Takahashi H, Ogawa H, Schultz RM, Okano A. Effect of oxidative stress on development and DNA damage in in vitro cultured bovine embryos by comet assay. Theriogenology 2000; 54: 137–145. [Medline] [CrossRef]
3. Balasubramanian S, Son WJ, Kumar BM, Ock SA, Yoo JG, Im GS, Choe SY, Rho GJ. Expression pattern of oxygen and stress-responsive gene transcripts at various developmental stages of in vitro and in vivo preimplantation bovine embryos. Theriogenology 2007; 68: 265–275. [Medline] [CrossRef]
4. Kito S, Kaneko Y, Yano H, Tateno S, Ohta Y. Developmental responses of 2-cell embryos to oxygen tension and bovine serum albumin in Wistar rats. Exp Anim 2008; 57: 123–128. [Medline] [CrossRef]
5. Corrêa GA, Rumpf R, Mandim TC, Franco MM, Dode MA. Oxygen tension during in vitro culture of bovine embryos: effect in production and expression of genes related to oxidative stress. Anim Reprod Sci 2008; 104: 132–142. [Medline] [CrossRef]
6. Leoni GG, Rosati I, Saccu S, Bogliolo L, Bebbere D, Berlinguer F, Ledda S, Naitana S. A low oxygen atmosphere during IVF accelerates the kinetic of formation of in vitro produced ovine blastocysts. Reprod Domest Anim 2007; 42: 299–304. [Medline] [CrossRef]
7. Goosvaerts IG, Leruy JL, Van Soom A, De Clerq JB, Andries S, Bols PE. Effect of cumulus cell coculture and oxygen tension on the in vitro developmental competence of bovine zygotes cultured singly. Theriogenology 2009; 71: 729–738. [Medline] [CrossRef]
8. Look MP, Riezler R, Berthold HK, Stabler SP, Schliefer K, Allen RH, Sauerbruch T, Rockstroh JK. Decrease of elevated N,N-dimethylglycine and N-methylglycine in human immunodeficiency virus infection during short-term highly active antiretroviral therapy. Metabolism 2001; 50: 1275–1281. [Medline] [CrossRef]
9. Friesen RW, Novak EM, Hasman D, Innis SM. Relationship of dimethylglycine, choline, and betaine with one-carbon pool in plasma of pregnant women and their newborn infants. J Nutr 2007; 137: 2641–2646. [Medline]
10. Harigane K, Prathiba J. Effect of dimethylglycine on gastric ulcers in rats. J Pharm Pharmacol 2000; 52: 1519–1522. [Medline] [CrossRef]
11. Takahashi T, Itoh R, Nagai T. Effects of N, N-dimethylglycine on the development of in vitro produced bovine embryos. J Reprod Dev 2009; 55: 339–342. [Medline] [CrossRef]
12. Fischer B, Bavister BD. Oxygen tension in the oviduct and uterus of rhesus monkeys, hamsters and rabbits. J Reprod Fertil 1993; 99: 673–679. [Medline] [CrossRef]
13. Goto Y, Noda Y, Muri T, Nakano M. Increased generation of reactive oxygen species in embryos cultured in vitro. Free Radic Biol Med 1995; 15: 69–75. [Medline] [CrossRef]
14. Lopes AS, Lane M, Thompson JG. Oxygen consumption and ROS production are increased at the time of fertilization and cell cleavage in bovine zygotes. Hum Reprod 2010; 25: 2762–2773. [Medline] [CrossRef]
15. Sugimura S, Matoba S, Hashidaya Y, Aikawa Y, Ohtake M, Matsuda H, Kobayashi S, Konishi K, Inoue K. Oxidative phosphorylation-linked respiration in individual bovine oocytes. J Reprod Dev 2012; 58: 636–641. [Medline] [CrossRef]
16. Bermejo-Álvarez P, Lonergan P, Rizos D, Gutiérrez-Adan A. Low oxygen tension during IVM improves bovine oocyte competence and enhances anaerobic glycolysis. Reprod Biomed Online 2010; 20: 341–349. [Medline] [CrossRef]
17. Gonçalves FS, Barreto LS, Arruda RP, Perri SH, Mingoti GZ. Effect of antioxidants during bovine in vitro fertilization procedures on spermatozoa and embryo development. Reprod Domest Anim 2010; 45: 129–135. [Medline] [CrossRef]
18. Yoshida Y, Takahashi K, Okita K, Ichisaka T, Yamana S. Hypoxia enhances the generation of induced pluripotent stem cells. Cell Stem Cell 2009; 5: 237–241. [Medline] [CrossRef]
19. Brackett BG, Oliphant G. Capacitation of rabbit spermatozoa in vitro. Biol Reprod 1975; 12: 260–274. [Medline] [CrossRef]
20. Takahashi Y, First NL. In vitro development of bovine one-cell embryos: Influence of glucose, lactate, pyruvate, amino acids and vitamins. Theriogenology 1992; 37: 963–978. [Medline] [CrossRef]
21. Matsumoto M, Otoi T, Suzuki T. Effect of glucose and lactate on development of in vitro produced bovine embryos in a modified synthetic oviduct fluid medium. J Mamm Ova Res 1999; 16: 73–76. (in Japanese). [CrossRef]
22. Kim JH, Funahashi H, Nawa K, Okada K. Glucose requirement at different developmental stages of in vitro fertilized bovine embryos cultured in semi-defined medium. Theriogenology 1993; 39: 875–886. [Medline] [CrossRef]