Impaired BK virus (BKV)-specific immunity is a key risk factor of polyomavirus-associated nephropathy. We hypothesized that BKV agnoprotein might constitute an important immune target, as it is highly expressed after infection in vitro. We demonstrated abundant expression of BKV agnoprotein in vivo by immunostaining of kidney transplant (KT) biopsy specimens. Antibody responses to the recombinant affinity-purified BKV agnoprotein, large tumor (LT), and VP1 antigens in 146 sera from 38 KT patients and in 19 sera from 16 healthy donors (HD) were compared by enzyme immunoassay. In HD, low titers of anti-agnoprotein immunoglobulin G (IgG) were found in 15% of sera, compared to 41% for anti-LT antigen and 63% for anti-VP1. No anti-BKV IgM was detectable. In KT patients, anti-agnoprotein IgG and IgM were found in 8% and 3.6% of sera, compared to 63% and 18% for anti-LT IgG and IgM and 80% and 41% for anti-VP1 IgG and IgM, respectively. Anti-LT antigen and anti-VP1, but not anti-agnoprotein, activities increased during and after BK viremia in KT patients. To investigate specific cellular immune responses, we compared levels of gamma interferon production in peripheral blood mononuclear cells (PBMC) of 10 HD and 30 KT patients by enzyme-linked immunospot assay. In HD, the median numbers of gamma interferon spot-forming units per million PBMC for the agnoprotein, LT antigen, and VP1 peptides were 1, 23, and 25, respectively, whereas the responses in KT patients were 2, 24, and 99, respectively. We conclude that BKV agnoprotein, though abundantly expressed in vivo, is poorly recognized immunologically.

The human polyomavirus BK virus (BKV) is the primary etiological agent of polyomavirus-associated nephropathy (PVAN), which causes irreversible graft loss in 1 to 10% of kidney transplant (KT) patients (15, 31). BKV was first discovered in 1970 in the urine of a KT patient with the initials B.K. who had ureteric stenosis and abundant decoy cell shedding (9). However, BKV asymptomatically infects 60 to 90% of the human population (23) and establishes a state of nonreplicative infection in the renal tubule epithelium (13, 15). Intermittent low-level urinary replication with BKV loads of \(10^6\) per ml is detected in 5% of immunocompetent individuals, whereas high-level replication with BKV loads of \(10^6\) per ml is found in 20 to 60% of immunosuppressed patients (15). In KT patients, high-level urine BKV replication is found in 30%, which may be followed by BKV viremia in 13% and by histologically confirmed PVAN in 8% of patients (18). The risk factors for PVAN are not conclusively defined and likely involve complementing determinants of the triad of recipient, graft, and virus (17). Disruption of the balance between the BKV replication and host immune control is generally viewed as a key element of PVAN pathogenesis (5). In the absence of validated antivirals, reducing maintenance immunosuppression represents the primary treatment option for presumptive or definitive PVAN (3, 39).

BKV belongs to the genus *Polyomavirus* of the Polyomaviridae family, along with the related human polyomavirus JC virus (JCV) and simian virus 40 (SV40). The genomes are 70% homologous and consist of a circular double-stranded DNA of about 5,300 bp which can be divided into the noncoding control region (NCCR), containing the origin of replication and promoters of gene transcription, and the early and late gene regions (21, 37). The early genes encode two regulatory proteins called the small tumor and large tumor (LT) antigens. The late genes comprise genes encoding the viral capsid proteins VP1, VP2, and VP3, as well as a small open reading frame encoding a basic protein of 66 amino acids at the 5' end of the VP1 mRNA. Studies of BKV infection of human endothelial cells and various cell lines demonstrated that BKV agnoprotein is abundantly expressed in the cytoplasm, with perinuclear accumulations (12, 34, 35). BKV agnoprotein, as well as the closely related JCV and SV40 agnoproteins, is expressed in a defined interval after early LT antigen expression, together with VP1 (24, 26, 28, 35). The function of BKV agnoprotein is not well defined, but data from BKV, JCV, and SV40 studies indicated roles in capsid assembly, virion egress, cell cycle regulation, viral replication, and gene expression. In vivo data on agnoprotein expression have been reported only for JCV replicating in brain tissue of cases with progressive multifocal leukoencephalopathy (29). Similar in vivo data are
lacking for BKV agnoprotein, except for an isolated fatal human immunodeficiency virus (HIV)/AIDS case with meningoencephalitis, pneumonitis, nephritis, and disseminated BKV replication (2). In our ongoing study to identify relevant targets of the immune system controlling BKV replication in KT patients (1), we hypothesized that agnoprotein might represent an important antigen, given the conserved nature of the protein and the abundant expression pattern in vitro. We have therefore assessed the expression of BKV agnoprotein in vivo in kidney biopsy samples from KT patients and have compared both the humoral and cellular immune responses against this viral protein in KT patients and in healthy controls.

MATERIALS AND METHODS

Study participants. Plasma and urine samples were obtained, with informed consent according to the protocol of the Ethics Committee of the Basel Cantons, from 16 healthy donors (HD) and 38 KT patients (Table 1). Samples from KT patients were divided into three groups according to the present and past levels of BKV viremia and/or viruria: group A comprised all samples from patients without high-level BKV replication (“no/low-level replication”); group B comprised all samples from patients with BKV viremia and/or viruria of >10^4 or >10^5 copies/ml, respectively (“high-level” replication); and group C comprised samples from those patients who had documented high-level BKV replication with definitive or presumptive PVAN (16) earlier but in whom this had decreased by >1.5 log_{10} by the time of sample drawing (past “high-level” replication).

Quantitative PCR for BKV DNA detection. Measurements of BKV viral load in plasma and urine were performed according to standard real-time PCR protocols. Briefly, DNA was isolated from the QiAamp DNA minikit (Qiagen, Hilden, Germany) and quantified by real-time PCR (TaqMan/7700, Stratagene MX4000, or Bio-Rad iCycler) as described previously (19).

For the detection of BKV in biopsy specimens, cells were scraped under sterile conditions, incubated at 95°C for 10 min, transferred to ice, and then treated with 5 μl of proteinase K (5 mg/ml) at 55°C for 3 h, followed by enzyme inactivation at 95°C for 15 min. Subsequently, the DNA was quantified by real-time PCR using an ABI Prism 7900 HT sequence detector (Applied Biosystems, Rotkreuz, Switzerland). The following primers were used for BKV LT antigen amplification: PYY.for (5'-TAGGTGCAACCTATGGAACAGA-3') and PYY.rev (5'-GAAA GTCTTATGGTCTTCTACC-3'). The BKV probe was 5'-FAM-CATTAAAGG AACTCACCAGGACTCCCT-TAMRA-3'.
horseradish peroxidase and liquid dianminobenzidine + substrate-chromogen were added as described above. Then, after being washed, the slides were incubated with the anti-BKV agnoprotein serum (1:600 dilution) as described above. Envision alkaline phosphatase (Dako) was added as a secondary antibody to the sections, with incubation at RT for 30 min. Finally, the sections were developed with Vector-red (Vector Laboratories, Burlingame, CA) and counterstained with hematoxylin, before being mounted in Eukitt.

Generation of recombinant baculoviruses expressing GST-BKV fusion proteins. The sequence encoding the BKV agnoprotein was amplified by PCR from the urine of a KT patient who was shedding archetype NCCR BKV serotype 1. The following primers were used: Agno-for (5'-TTTTGGATCCACATGGTTCTGGCACCAGCTG-3') and Agno-rev (5'-TTTGGATCCCTAGGATGCAGGCTAGCTC-3') and Agno-rev. The resulting amplicon was cloned into the pTRE2pur plasmid (Clontech, Mountain View, CA), yielding pTRE-agn, and verified by sequencing. The entire BKV agnoprotein gene was again amplified by PCR, using pTRE-agn as the template and the primers Agno-TEV-for (5'-TTTGGATCCAACTGTATTTTTCAAGCCAGGCTAGCTC-3') and Agno-rev. The resulting amplicon was cloned into the multiple cloning site of the pFastBacGST plasmid, digested with BamHI and NotI, and cloned in frame with the gene for glutathione S-transferase (GST) (yielding pFastBacGST-BKV-agn), and confirmed by restriction analysis and sequencing. The sequences of the entire BKV VP1 and the amino-terminal 15.6-kDa domain of BKV LT antigen (ppLT) were recovered after 48 h and used for subsequent infection for Sf9 cells. Transfection of Sf9 insect cells with the Cellfectin reagent. Recombinant baculoviruses were expressed using the Bac-to-Bac expression systems (Invitrogen Ltd., Carlsbad, CA) according to the manufacturer’s instructions. Recombinant baculovirus was recovered after 48 h and used for subsequent infection for Sf9 cells. Sf9 cell lysates were prepared between days 3 and 5 postinfection. GST fusion proteins (GST-BKV agnoprotein, GST-BKV VP1, and GST-BKV LT1D1) and GST were purified by glutathione affinity chromatography using glutathione Sepharose 4 fast flow (GE Healthcare UK Ltd., Buckinghamshire, United Kingdom) according to the manufacturer’s instructions. Protein expression and purity were assessed by sodium dodecyl sulfate gel electrophoresis (SDS-PAGE) and Coomassie blue Western blotting using the anti-GST antibody B-14 (Santa Cruz Biotechnology, Inc., Santa Cruz, CA) or enzyme-linked immunosorbent assay using the anti-BKV agnoprotein serum (14), the cross-reacting SV40 LT Pab416, or the BKV VP1 antisera (35).

Enzyme immunoassay (EIA) with GST-BKV fusion proteins. Standard 96-well EIA plates with high-level coating properties were used for coating at 16 h overnight at 4°C. The wells were washed five times with 0.1% Tween 20, treated with blocking buffer (PBS [pH 7.4], 4% bovine serum albumin, 0.1% Tween 20) at RT for 2 h, and washed three times. The wells were incubated for 1 h at RT with 100 μl of diluted patient sera, washed five times, incubated with the secondary antibodies at RT for 1 h, and washed again five times before application of the secondary anti-human immunoglobulin G (IgG) or anti-human IgM antibodies (Sigma-Aldrich), washing, and detection using o-phenylenediamine hydrochloride (Sigma-Aldrich, St. Louis, MO) for 30 min at RT by adding 1 N sulfuric acid. Optical densities (ODs) were measured using an automated plate reader (Tecan Group Ltd., Männedorf, Switzerland) at 492 nm. Equivalents of 1.0 pmol of antigen/well, serum dilutions of 1:400, and dilutions of anti-IgG and -IgM antibodies of 1:10,000 were found to yield minimal background. Affinity-purified GST was run as a negative control and subtracted from the GST-BKV LT1D1, GST-BKV VP1, and GST-BKV agnoprotein signals. For every sample, the background was determined by subtraction of the background ODs in the absence of GST. The cutoff was defined as two standard deviations the background level taken as the negative control. Therefore, all OD values of <0.0400 were deemed to be negative. Values from 0.0400 to 0.0999 were classified as + (borderline positive), values of >0.1000 as +1 (positive), and values of >0.1000 as +2 (strongly positive). For each antigen, all samples tested for IgG were run on the same day, as were all samples tested for IgM. For confirmatory testing, we included three selected samples as references, which were negative, strongly positive, and borderline positive, indicating variation coefficients of <10%, which can cause minimal shifts in the groups.

Testing patient sera for agnoprotein antibodies on UTA-6 agnoprotein-expressing cells. UTA-6 cells (8) were transfected with pTRE-agn in the absence of tetracycline. After 44 h, cells were transferred to wells of 10-well glass slides and incubated at 37°C in a CO2 atmosphere for 4 h. Cells were washed in PBS, fixed in cold 100% acetone for 5 min, and air dried. As a negative control, naive UTA-6 cells were treated in parallel. For immunofluorescence, cells were incubated with patient sera diluted in PBS-bovine serum albumin (1:40 or 1:160) at RT for 1 h, washed in PBS, incubated with fluorescein isothiocyanate-labeled anti-human IgG diluted 1:3,200 (BioMerieux, France) as before, washed, mounted with N-propyl gallate in glyciner, and viewed with a Nikon E800 epi-fluorescence microscope.

BVK overlapping peptide pools. Overlapping peptide pools which covered the entire coding sequence of the BKV LT antigen (pPLT), VP1 (pVP1), and agnoprotein (pAgno) as defined by the sequence of the BKV Dunlop strain (GenBank accession no. V01108) were used for peripheral blood mononuclear cell (PBMC) stimulation. The pools consisted of 180 (LT antigen), 88 (VP1), and 16 (agnoprotein) peptides with 15 amino acids each and 11-amino-acid overlaps (Eurogentec, Geneva, Switzerland), dissolved in dimethyl sulfoxide.

ESA for IFN-γ. The PBMCs for enzyme-linked immunospot assay (ESA) were obtained from 10 HD and 30 KT patients as described previously (1). PBMCs were isolated in CPT tubes (Becton-Dickinson, Allschwil, Switzerland). The cells were counted, and 1.5×10^6 PBMCs were added in 500 μl of fetal calf serum containing 10% dimethyl sulfoxide (Sigma-Aldrich). For ESA, PBMCs were diluted in RPMI 1640-5% human serum-1% glutamax-1% PenStrep (RSAB) (Sigma-Aldrich). The BKV-specific cellular immune response was determined by measuring gamma interferon (IFN-γ) upon stimulation of PBMCs in an ESA. Ninety-six-well multiscreen filter plates (MSPIN; Millipore, Volketswil, Switzerland) were coated with 100 μl (10 μg/ml) mouse anti-human IFN-γ monoclonal antibody (1-D1K; Mabtech, Hamburg, Germany) and incubated overnight at 4°C. PBMCs were seeded at a concentration of 2.5×10^5/well (2.5×10^5/well for the positive control) and incubated overnight at 37°C in 5% CO2 with 2 μg/ml pooled baculovirus antigens (pPLT, pVP1, and pAgno), a negative control (RSAB), and 1 μg/ml Staphylococcus enterotoxin B (Sigma-Aldrich) as a positive control. ESA were performed in triplicate. After incubation, the plates were washed with PBS with 0.05% Tween 20 (Sigma-Aldrich), incubated at RT for 2 h with 100 μl (1 μg/ml) detection biotinylated mouse anti-human IFN-γ monoclonal antibody (1-D1K; Mabtech), washed again, and incubated at RT for 1 h with 100 μl streptavidin ALP (1 μg/ml; Mabtech). Spots were developed by treatment with 100 μl 5-bromo-4-chloro-3-indolylphosphate-nitroblue tetrazolium (Calbiochem, Lucerne, Switzerland) per well for 10 min, washed 5 times with H2O from both sides, and dried in the dark. IFN-γ spots were counted by using an ESA reader (AID, Büren, Switzerland). The number of spots per well was determined by subtracting the negative control value.

Statistical methods. Statistical analyses were performed using XLSTAT 2006 software (Addinsoft, New York, NY). Comparisons between immune responses to different antigens were performed using the Kruskal-Wallis test for nonparametric dependent samples, with the Bonferroni adjustment for pairwise comparisons. Comparisons between immune responses to a single antigen in the different subject groups were performed using the Friedman test for nonparametric independent samples, again with the Bonferroni adjustment for pairwise comparisons.

RESULTS

BKV agnoprotein is abundant in the cytoplasm of infected renal tubular cells. We investigated the patterns of expression of agnoprotein and LT antigen in renal primary proximal tubular epithelial cells at 2 days postinfection with BKV strain Dunlop (Fig. 1A). BKV agnoprotein was located predominantly in the cytoplasm of renal proximal tubular epithelial cells (green fluorescence), whereas LT antigen was detected exclusively in the nucleus (red fluorescence). The cells were positive either for LT antigen alone (Fig. 1A, cell 1), for LT antigen and low-level cytoplasmic agnoprotein (cell 2), or for high-level cytoplasmic agnoprotein (cell 3) but were never positive for agnoprotein without LT an-
tigen. The data demonstrate that BKV agnoprotein is abundantly expressed in the cytoplasm of renal primary proximal tubular epithelial cells infected in vitro, as expected for the BKV late gene.

To investigate the expression of BKV agnoprotein in vivo, we examined 16 needle biopsy specimens from renal transplant recipients with BKV viruria. PCR analysis of DNA extracted from the paraffin-embedded specimens revealed the presence of BKV DNA sequences in 6 of the 16 samples (38%). Immunohistochemical analysis revealed agnoprotein expression in 4 of the 6 BKV PCR-positive biopsy specimens (67%) but in none of the BKV PCR-negative renal tissues (overall frequency, 25%). Agnoprotein-expressing cells frequently showed a focal distribution surrounded by neighboring negative areas which often contained inflammatory infiltrates as in PVAN B (Fig. 1B). Single immunostaining for BKV agnoprotein revealed predominant staining of the cytoplasm of renal tubular epithelial cells with unstained, typically enlarged nuclei (Fig. 1C). Double immunostaining for LT antigen and BKV agnoprotein (Fig. 1D) showed the exclusive nuclear staining of LT antigen and a range of intensities for agnoprotein in the cytoplasm of infected cells, similar to the picture obtained by in vitro infection of renal primary proximal tubular epithelial cells (Fig. 1A). Indeed, some cells were positive for LT antigen but negative for agnoprotein (Fig. 1D), while different levels of agnoprotein expression were observed in adjacent cells of the same tissue sample (Fig. 1D), all of which were positive for LT antigen as expected for different stages of the early and late phases of the BKV replication cycle.

BKV agnoprotein elicits only poor IgG and IgM responses compared to LT antigen and VP1. To investigate the antibody response against BKV agnoprotein by EIA, we generated GST fusion proteins with the full-length BKV agnoprotein, the amino-terminal 133 amino acids of LT antigen, and the full-length major capsid protein VP1 for high-level expression in insect cells and convenient purification via glutathione affinity chromatography. As shown for GST-BKV agnoprotein by polyacrylamide gel electrophoresis and Western blotting with anti-GST (Fig. 2A), GST fusion proteins were prominently expressed and highly enriched by single-step glutathione-Sepharose 4B, with some limited amounts of smaller proteins corresponding to endogenous GST and breakdown products. Using purified GST-BKV agnoprotein, GST-BKV LTD1,

FIG. 1. BKV agnoprotein expression in kidney tubular epithelial cells. (A) Indirect immunofluorescence of primary kidney proximal tubular epithelial cell culture infected with BKV strain Dunlop and stained at 48 h postinfection with rabbit anti-BKV agnoprotein serum (green) and anti-SV40 LT Pab416 (red). Arrows indicate cells with LT antigen (cell 1), LT antigen plus a little agnoprotein (cell 2), and LT antigen plus abundant agnoprotein (cell 3) (note that there are no cells with agnoprotein alone). (B) Immunohistochemistry of renal allograft biopsy specimen stained with anti-BKV agnoprotein serum (brown). Magnification, ×100. (C) Immunohistochemistry of renal allograft biopsy specimen stained with anti-BKV agnoprotein serum (brown). Magnification, ×400. (D) Immunohistochemistry of renal allograft biopsy specimen double stained with anti-BKV agnoprotein serum (red) and anti-SV40 LT Pab416 (brown). Magnification, ×1,000.
GST-BKV VP1, and GST alone, we adapted antigen coating conditions, serum dilutions, and dilutions of secondary antibodies in order to obtain optimal signal-to-noise ratios (Fig. 2B and data not shown).

We tested 146 plasma samples from 38 KT patients as well as 19 samples from 16 HD for IgG and IgM activity. The characteristics of these subject groups are shown in Table 1. No significant differences were found concerning age or gender distribution. None of the HD had detectable viremia, and only one HD had detectable low-level viremia (6 × 10^2 copies/ml) in one of the samples (frequency, 1/19 [5%]). By contrast, KT patients had a median plasma BKV load of 10^3 copies/ml. Not unexpectedly, the median time of sampling of KT patients posttransplantation increased from group A (9 weeks) to group B (26 weeks) to group C (120 weeks; \(P < 0.001 \)).

The results of the antibody responses found in the study participants (Table 2; Fig. 3) can be summarized as follows. Only 4 of 54 individuals had no detectable anti-BKV antibodies, yielding an overall BKV seropositivity rate of 92.6%, which is in the range of published results for other serological assays (5, 22). IgG responses were more frequent and with higher OD values in KT patients than in HD, particularly with ongoing or past high-level BKV replication, and were more pronounced against the BKV VP1 capsid protein than against the BKV LT antigen. Anti-VP1 IgG was detected in 12/19 (63%) HD and in 117/146 (80%) KT patients. Anti-LTD1 IgG were detected in 8/19 (42%) HD and in 91/146 (62%) KT patients. By contrast, IgG responses against BKV agnoprotein were found in only 3/19 (15%) HD and 11/146 (7.5%) KT patients. When borderline positive results were regarded as seronegative, only 1/165 samples (1%) had detectable anti-agnoprotein IgG, compared to 60/165 (41%) and 78/165 (53%) samples for anti-LTD1 IgG and anti-VP1 IgG, respectively. Finally, IgG responses were generally more frequently detected than IgM responses for any of the three antigens and had higher OD values. In sera from HD, no IgM responses against any of the three BKV antigens could be found. In sera from KT patients, IgM responses were most frequently found in group B patients with ongoing high-level replication (Table 2). Anti-agnoprotein IgM responses were rarely detected in 6/165 (3.6%) samples tested, 5 of which were weakly positive and 1 (0.6%) of which was positive.

Among KT patients, the percentage of positive samples and the median OD values for anti-LTD1 responses increased from group A (“no/low-level” replication) (56% and 0.0433) to group B (“high-level” replication) (59% and 0.0499) and group C (past “high-level” replication) (74% and 0.1863) \((P = 0.01)\), with the strongest difference between groups A and C \((P = 0.008)\). The anti-VP1 IgG response was increased in KT patients from group A (72%; 0.0676) to group B (83%; 0.1708) \((P < 0.008)\) and was lower in group C (79%; 0.0820) but did not reach statistical significance. By contrast, anti-agnoprotein responses remained low in all groups, with no statistically significant changes (percentages of positive samples and median ODs: group A, 8% and 0.0006; group B, 6% and 0.0064; and group C, 10% and 0.0027). In all subgroups, the response to agnoprotein was significantly lower than that to any of the other antigens \((P < 0.0001\) for all comparisons). The anti-LTD1 response was significantly higher than the anti-VP1 response only in group C. To confirm the poor anti-agnoprotein IgG response by a different technique based on native agnoprotein, we tested 30 sera from KT patients by indirect immunofluorescence of agnoprotein-expressing UTA-6 cells. Only 1 of 30 patient sera (3.3%) was found to be reactive at a serum dilution of 1:40.

The IgM responses showed no clear tendency for anti-LTD1 responses, whereas anti-VP1 responses increased significantly during the active PVAN phase and subsided afterwards (percentages of positive samples for groups A, B, and C, 24%, 55%, and 39%, respectively; median OD values for groups A, B, and C, 0.0214, 0.0446, and 0.0250, respectively; \(P < 0.008 \) for the increase in group B, but the subsequent decrease in group C did not reach statistical significance). Again, anti-agnoprotein responses remained very low throughout this time and were significantly lower than responses to any of the other antigens.

BKV agnoprotein elicits poor cellular immune responses. To test whether the BKV agnoprotein elicited cellular immune responses, we tested 30 patient sera from KT patients by indirect immunofluorescence of agnoprotein-expressing UTA-6 cells. Only 1 of 30 patient sera (3.3%) was found to be reactive at a serum dilution of 1:40.
TABLE 2. Antibody activity against purified recombinant BKV proteins

Group (no. of subjects)	Antibody (no. of samples tested)	Protein	**No. (%) of samples that were**:	Median OD at 492 nm (interquartile range)			
			Negative	Borderline positive	Positive	Strongly positive	
HD (16)	IgG (19)	LTD1	11 (57.9)	5 (26.3)	3 (15.8)	0	0.0322 (0.0128–0.0688)
		VP1	7 (36.8)	4 (21.1)	7 (36.8)	1 (5.3)	0.0744 (0.0320–0.1380)
		Agnoprotein	16 (84.2)	1 (5.3)	2 (10.5)	0	0.0120 (0.0050–0.0201)
	IgM (19)	LTD1	19 (100)	0	0	0	0.0088 (0.0043–0.0131)
		VP1	19 (100)	0	0	0	0.0099 (0.0026–0.0133)
		Agnoprotein	19 (100)	0	0	0	0.0046 (0.0003–0.0076)
KT patient groups\(^b\)	IgG (25)	LTD1	11 (44.0)	7 (28.0)	6 (24.0)	1 (4.0)	0.0433 (0.0238–0.1018)
		VP1	7 (28.0)	12 (48.0)	5 (20.0)	1 (4.0)	0.0676 (0.0319–0.0958)
		Agnoprotein	23 (92.0)	2 (8.0)	0	0	0.0006 (0.0000–0.0145)
	IgM (25)	LTD1	20 (80.0)	3 (12.0)	2 (8.0)	0	0.0146 (0.071–0.0316)
		VP1	19 (76.0)	4 (16.0)	2 (8.0)	0	0.0214 (0.0103–0.0264)
		Agnoprotein	23 (92.0)	2 (8.0)	0	0	0.0002 (0.0000–0.0044)
B (27)	IgG (83)	LTD1	34 (41.0)	18 (21.7)	14 (16.9)	17 (20.5)	0.0499 (0.0193–0.5721)
		VP1	14 (16.9)	14 (16.9)	55 (66.3)	0	0.1708 (0.0633–0.2854)
		Agnoprotein	78 (94.0)	4 (4.8)	1 (1.2)	0	0.0064 (0.0000–0.0147)
	IgM (83)	LTD1	62 (74.7)	15 (18.1)	6 (7.2)	0	0.0156 (0.0301–0.0389)
		VP1	37 (44.6)	17 (20.5)	29 (34.9)	0	0.0446 (0.0226–0.1556)
		Agnoprotein	79 (95.2)	3 (3.6)	1 (1.2)	0	0.0016 (0.0000–0.0063)
C (23)	IgG (38)	LTD1	10 (26.3)	6 (15.8)	15 (39.5)	7 (18.4)	0.1863 (0.0425–0.7489)
		VP1	8 (21.1)	13 (34.2)	17 (44.7)	0	0.0820 (0.0488–0.2115)
		Agnoprotein	34 (89.5)	4 (10.5)	0	0	0.0027 (0.0000–0.0103)
	IgM (38)	LTD1	32 (84.2)	3 (7.9)	3 (7.9)	0	0.0107 (0.0047–0.0212)
		VP1	23 (60.5)	6 (15.8)	9 (23.7)	0	0.0250 (0.0095–0.0805)
		Agnoprotein	38 (100.0)	0	0	0	0.0020 (0.0000–0.0062)
All (38)	IgG (146)	LTD1	55 (37.7)	31 (21.2)	35 (24.0)	25 (17.1)	0.0578 (0.0215–0.5187)
		VP1	29 (19.9)	39 (26.7)	77 (52.7)	1 (0.7)	0.1144 (0.0549–0.2222)
		Agnoprotein	135 (92.5)	10 (6.8)	1 (0.7)	0	0.0042 (0.0000–0.0139)
	IgM (146)	LTD1	114 (78.1)	21 (14.4)	11 (7.5)	0	0.0142 (0.0041–0.0309)
		VP1	79 (54.1)	27 (18.5)	40 (27.4)	0	0.0360 (0.0132–0.1038)
		Agnoprotein	140 (95.9)	5 (3.4)	1 (0.7)	0	0.0016 (0.0000–0.0056)
All subjects (54)	IgG (165)	LTD1	66 (40.0)	36 (21.8)	38 (23.0)	25 (15.2)	0.0570 (0.0185–0.3585)
		VP1	36 (21.8)	43 (26.1)	84 (50.9)	2 (1.2)	0.1093 (0.0541–0.2147)
		Agnoprotein	151 (91.5)	11 (6.8)	3 (1.8)	0	0.0058 (0.0000–0.0148)
	IgM (165)	LTD1	133 (80.6)	21 (12.7)	11 (6.7)	0	0.0127 (0.0041–0.0265)
		VP1	98 (59.4)	27 (16.4)	40 (24.2)	0	0.0277 (0.0103–0.0896)
		Agnoprotein	159 (96.4)	5 (3.0)	1 (0.6)	0	0.0018 (0.0000–0.0066)

\(^a\) Antibody activity was measured as the OD at 492 nm in an enzyme-linked immunosorbent assay at a serum dilution of 1:400 and was classified as follows: negative, <0.0400; borderline positive, 0.0400 to 0.0999; positive, 0.1000 to 0.9999; and strongly positive, >0.9999.

\(^b\) A, no/low-level replication; B, high-level replication; C, past replication.

\(^c\) For some KT patients, samples were drawn before the onset of, during, and after the resolution of PVAN. Therefore, this number is smaller than the total for groups A, B, and C.
responses, we analyzed 10 PBMC samples from 10 HD and 48 PBMC samples from 30 KT recipients (Fig. 4). ESAs were performed to detect IFN-γ/H9253 secretion as described previously (1), using Staphylococcus enterotoxin B as a positive control (median of 8,080 spot-forming units [SFU] per million PBMCs). In HD, the median number of IFN-γ/H9253 SFU for LT antigen peptide stimulation was 23 (interquartile range, 20 to 30), that for VP1 peptides was 25 (17 to 44), and that for agnoprotein peptides was 1 (0 to 2). In KT patients, the median number of IFN-γ/SFU for LT antigen peptide stimulation was 24 (interquartile range, 8 to 76), that for VP1 peptides was 99 (18 to 246), and that for agnoprotein peptides was 2 (0 to 5). Thus, the response to agnoprotein peptides was significantly lower, even after adjusting for protein length by dividing the number of SFU by the number of 15-mer peptides per protein pool (P<0.05 by the Kruskal-Wallis test).

Time courses of immune responses in selected patients. To explore the evolution of humoral and cellular immune responses to different BKV proteins over time, we identified three patients with sufficient sampling density to show different patterns of antibody activity changes before, during, and after high-level BKV replication and PVAN.

Patient 1 (Fig. 5A) is a 49-year-old female who developed definitive PVAN at 7 weeks posttransplantation and had a prolonged course of high-level BKV replication, defined as a plasma BKV load of 10^4/ml (16) over more than 35 weeks. The plasma BKV load peaked at 1.16×10^6 copies/ml at 27

(B) Anti-BKV antibody activity in all renal transplant recipients (146 samples from 38 patients). (C) Anti-BKV antibody activity in renal transplant recipients without evidence of BKV replication or prior to the development of PVAN (25 samples from 16 patients). (D) Anti-BKV antibody activity in renal transplant recipients with ongoing PVAN (83 samples from 27 patients). (E) Anti-BKV antibody activity in renal transplant recipients after resolution of PVAN (38 samples from 23 patients).
In this study, we demonstrate that BKV agnoprotein is expressed in vivo in renal tubular epithelial cells of needle biopsy samples from KT patients with histologically defined PVAN. The cellular staining pattern in vivo is indistinguishable from the one found upon BKV infection of primary renal tubular epithelial cells in vitro (Fig. 1), where BKV agnoprotein is abundant in the cytoplasm and enriched in the perinuclear area, as reported previously (35). Of note, agnoprotein expression in vitro and in vivo was found exclusively in cells positive for the early viral gene product LT antigen. By contrast, LT antigen was detectable in the nuclei of cells in which agnoprotein ranged from undetectable to maximal cytoplasmic staining, as expected for sequential progression from viral early to late gene expression. The asynchronous side-by-side quality of different stages of the polyomaviral replication cycle in vivo is typically seen in tissue culture after spread and secondary infection of susceptible cells in vitro. This interpretation is in line with ultrastructural studies of PVAN demonstrating the uptake of polyomavirus particles (7). Alternatively, asynchronous weeks posttransplantation. Initially, she had only a weakly positive IgG anti-VP1 antibody response, which over the next weeks increased without any effect on BKV load. At about 34 weeks posttransplantation, increases in anti-VP1 IgM were noted, followed by anti-LT antigen IgM. The increase in the IgM antibody activities heralded a further increase in anti-VP1 IgG (peak at 54 weeks posttransplantation), followed by a steep rise of anti-LT antigen IgG from week 41 to a plateau at week 54 posttransplantation. Simultaneously with the latter changes in anti-BKV responses, the BKV load dropped to 1.36×10^5 at week 37 and decreased further below the threshold of detection at 71 weeks posttransplantation. ESA at 71 weeks posttransplantation showed strong anti-VP1 and anti-LT antigen responses (317 and 121 spots, respectively). The agnoprotein-specific antibody and cellular responses were very low and undetectable, respectively.

Patient 2 (Fig. 5B) is a 54-year-old male who developed PVAN just 5 weeks posttransplantation and had an intermediate course of high-level BKV replication over 15 weeks. The BKV viral load peaked at 2.08$ \times 10^6$ copies/ml at 7 weeks posttransplantation and then remained stable at 1×10^6 copies/ml until week 16, before it dropped to 2.39$ \times 10^5$ copies/ml at week 22. Anti-VP1 IgG was detectable at low levels from the first sample on, but it started to increase only after week 15, after anti-VP1 IgM peaked. In contrast to the case for patient 1, anti-LTD1 responses remained low or undetectable throughout, as did the agnoprotein antibodies. ESA was performed at week 16, when the BKV viral load was still high, and found a moderate IFN-γ response to VP1 peptides (49 spots), while the LT-specific response was still low (19 spots). Agnoprotein responses were negative.

Patient 3 (Fig. 5C) is a 53-year-old male who developed PVAN at 9 weeks after transplantation and had a relatively short course of high-level BKV replication over 8 weeks. His BKV viral load peaked at 7.90$ \times 10^4$ copies/ml at 18 weeks posttransplantation and steadily declined thereafter. He was weakly positive for anti-VP1 antibodies, which increased in parallel with the BKV viral load rise and peaked at 18 weeks. Anti-LT IgG antibodies remained low until 20 weeks posttransplantation and started to increase at the same time that the BKV viral load started to do so. No BKV-specific IgM was detected. The cellular immune response was assayed at week 20, revealing a strong VP1- and LT antigen-specific IFN-γ response with 227 and 49 SFU, respectively. At 28 weeks, LT antigen-specific IFN-γ responses had slightly increased, while the anti-VP1 response had dropped (80 and 105 SFU, respectively). At both time points, agnoprotein-specific IFN-γ responses were low (12 and 10 SFU, respectively).
The low immunogenicity of BKV agnoprotein is in contrast to the HIV protein Tat, consisting of 86 to 101 amino acids. Anti-TAT antibodies have been found in only 10 to 14% of HIV type 1 (HIV-1)-positive patients (4) and were predictive of nonprogression both in HIV-1 (33)- and HIV-2 (36)-positive patients. Consequently, HIV Tat has been considered for use as a candidate anti-HIV vaccine (30). At this point, we can only speculate about the underlying mechanism of the poor immunogenicity of agnoprotein, which might involve host as well as viral factors. Since abundant agnoprotein expression is tempting to hypothesize that efficient immune recognition of agnoprotein would significantly curtail the replication and spread of polyomavirus in its host population. Our results indicate that agnoprotein may not be a sensitive tool for monitoring the immune response in KT patients, but its potential as a candidate anti-BKV vaccine cannot be conclusively ruled out.

ACKNOWLEDGMENTS

We thank Jacqueline Samaridis and Claudia Mistl for technical support in performing the enzyme-linked immunosorbent assays and ESAs.
