Geochemistry of Late Triassic weak Peraluminous A-Type Karimun Granite, Karimun Regency, Riau Islands Province

RONALDO IRZON

Centre for Geological Survey, Geological Agency, Ministry of Energy and Mineral Resources
Jln. Diponegoro No.57 Bandung, Jawa Barat, Indonesia

Corresponding author: ronaldo_irzon@yahoo.com
Manuscript received: December 01, 2015; revised: March 03, 2016; approved: December 23, 2016; available online: January 26, 2017

Abstract - Karimun is an island with various geological deposits: tin, granite, sand, and others. The tin deposit in Karimun is related to the granitoid tin belt which extends from Myanmar to western Indonesia. Late Triassic Karimun Granite is composed of quartz, K-feldspar, plagioclase, biotite, and/or muscovite with small amounts of accessory minerals. The granitoid unit is different with other felsic intrusive rocks in Malay Peninsular because of its A-type affinity although it is classified as part of the Tin Islands. All eight samples can be classified as altered rocks since the occurrence of secondary chlorite was identified both macroscopically and microscopically. Petrography was used to describe the minerals that form the samples, whereas XRF and ICP-MS were used to study Karimun Granite from the geochemical point of view. Harker diagrams confirm that the granites show similarity to other granite units in Malaysia except for CaO. Whalen diagrams indicate the granite as A-type as well as the SiO₂, REE, and LILE amounts. REE content in the weak peraluminous granitoid ranges from 183 to 3,296 ppm with Eu and Ce show negative anomalies in the REE spider diagram. Negative anomalies of Eu, Ba, Sr, P, and Ti in normalized spider plot also conclude that the studied granitoid indicates A-type.

Keywords: Karimun, tin belt, geochemistry, A-type, REE

© IJOG - 2017, All right reserved

INTRODUCTION

Background
The continental collision between the Sibumasu and Indochina in Malay Peninsula in latest Permian to Late Triassic period produced wide-spread magmatic activity. This collision happened after a prolonged subduction of the Devonian–Triassic Palaeo-Tethys Ocean (Sone and Metcalfe, 2008; Faure et al., 2014). Both intrusive and extrusive rocks were emplaced before, after, and during the collision of the pa-
blocks and are called as syn-collision granites. On the other hand, the main peak of post-collisional plutonism took place in 220-200 Ma, the period of stanniferous granites in Sumatra and Malay Peninsula were generated (Barber et al., 2005).

Karimun Regency of Riau Islands Province consists of three main islands: Karimun, Kundur, and Moro. Pulunggono and Cameron (1984) proposed that southwards extension of the Bentong-Raub Line traversed between the Kundur and Karimun Islands. Karimun Island is specific for containing many deposits such as tin, granite, sand, and others. The soils as the products of weathering mostly covers all the rocks, less fertile for cultivation. Karimun Granite, that is also known as Karimun Besar Granite, is considered as one of the best quality granitic rocks in the world for its content. PT. Karimun Granite is the largest company that runs the granite mining in the regency, and it began to export the granite to Singapore in 1972 about 170,000 tons/month. Along with the end of Singkep mining, tin mining in the regency started to decline since 1991 (Diantoro, 2014). The tin deposit in Karimun is related to the granitoid tin belt which extends from Myanmar to Billiton Island. Cobbing et al. (1992) classified the Karimun Granite as part of the Main Range Granite Province, while Kurniawan (2014) considered it as part of the Eastern Granite Province.

This paper deals essentially with the geochemistry characteristic of the Karimun Granite: major, trace, and rare earth elements. The geochemical characteristics are then compared to other granite intrusions in Peninsular Malaysia. The Karimun Granite has not been dated radiometrically, but Cameron et al. (1982) suggested a date of emplacement between Mid and Late Triassic (Carnian-Norian). Previous authors proposed that the Karimun Granite was an A-type granitoid which covered Malarco Formation by contact metamorphism (Cobbing et al., 1992).

Field Description

Totally, eight granitoid samples were collected for this study. The studied granitoids are generally composed of quartz, K-feldspar, plagioclase, biotite, and muscovite with small amounts of accessory minerals. Note that no hornblende can be detected macroscopically. Sample from Meral (GKR 37) was taken from an outcrop forming a hill of granite with intergrowth fractures. GKR 39 is an oxidized rock in an active iron mining area as the colour is not as bright as other samples. Just nearby the outside the mining location, another light grey granitoid outcrop was identified (GKR 58). GKR 40 and GKR 42 are granitoid boulders from Lembah Permai, which are light grey in

Geological Setting

Geographically, Karimun Island is located in the east of Sumatra at the coordinates of 113°30’ - 114°00’ E and 0° 35’ - 01° 10’ N (Figure 1). The studied location is generally made up of hills as remnants of an erosion. The hill slopes of Karimun are normally steeper than 45% and are covered by a primary forest. The temperature range is 23.1º - 33.2°C with humidity between 60% - 98% (Djunaedi et al., 2005). Tanjung Balai, located in Karimun Island, is the capital city of the Karimun Regency.
colour, holocrystalline-phaneritic of medium grain. A big size of greenish mineral, about 2 mm, in a granitoid outcrop was detected near the west coast of the island (GKR 41). Two medium grain granitoids (GKR 43 and GKR 55) located in Guntung Puna area showing oxidized layers, were taken from five meters high outcrops. Chlorite as an alteration mineral was clearly detected macroscopically in all these samples. Some field conditions are shown in Figure 2.

Analytical Method

Both petrography and geochemistry analyses were done in the geological laboratory of the Centre for Geological Survey in Bandung. The whole granitoid samples were dried at the room temperature for one day in minimum. Dried samples were then crushed with jaw crusher to gain the particle size of 200 mesh and were grounded using a ball mill. Pressed pellets were analyzed with the Advant XP X-ray fluorescence method (XRF) for the major oxides (\(\text{SiO}_2\), \(\text{TiO}_2\), \(\text{Al}_2\text{O}_3\), \(\text{Fe}_2\text{O}_3\), \(\text{MnO}\), \(\text{MgO}\), \(\text{CaO}\), \(\text{Na}_2\text{O}\), \(\text{K}_2\text{O}\), \(\text{P}_2\text{O}_5\), \(\text{SO}_3\)) and lost of ignition (LOI). Four certified reference material pellets: STSD 1, STSD 2, STSD 3, STSD 4, and LKSD 1-4 were measured using the same procedure as the samples and were used in data calibration.

For totally 23 trace and rare earth element analyses, 100 mg of sample powder were weighted carefully, then placed in the crucible. The samples were dissolved with three acids leach: using nitric acid (\(\text{HNO}_3\), ultrapure grade), formic acid (HF, ultrapure grade), and perchloric acid (\(\text{HClO}_4\), pro analysis grade) at 120°C until all the acids were evaporated. Ultrapure grade water was used instead of normal boiled water for rinsing or downgrading acid concentration. Nitric acid was added to the digested samples and

![Figure 1. Geological map of Karimun Island and the sampling points (modified from Cameron *et al.*, 1982).](image-url)
stored as a ‘mother’ solution. Few hours before ICP-MS measurement, an aliquot of the ‘mother’ solution was diluted with ultrapure water. GBW 7103, AGV 2, and GBW 07110 were the certified reference materials for ICP-MS analysis. Sample preparation, ICP-MS set up procedure, and certified reference evaluation are based on the study of Irzon and Permanadewi (2010).

Result and Discussion

Petrography

Megascopically, rock samples are generally light grey, holocrystalline, and medium grain granitoids. Under a microscope, the dominant minerals in decreasing abundance are quartz (22 - 45%), K-feldspar (20 - 45%), plagioclase (<25%), and biotite (<15%). Quartz crystals are anhedral, showing irregular cracks, and filling interstices among other minerals. The majority of alkali feldspar phenocrysts falls between orthoclase and sanidine series. The grain size of K-feldspars ranges from 1 to 4.3 mm. The euhedral and subhedral plagioclases may show oscillatory zoning and albite twinning as in GKR 40, GKR 43, and GKR 48. Muscovite occurs in minor amounts in GKR 39 (20%), whilst biotite as the only mafic mineral in selected samples is detected in the other seven samples. The green chlorite as biotite replace-

Figure 2. Field conditions of the studied samples: a) Fractures in granitoid body of GKR 37; b) A greenish mineral in GKR 41 which later was identified as chlorite in petrographic analysis; c) Granitoid boulder of GKR 42; d) Light grey granitoid sample from a mining area in Karimun Island, GKR 39.
ment is the most abundant alteration mineral (7 - 20%). The petrographic analysis confirmed that the previous mentioned big green mineral in GKR 41 was as chlorite. The porosity of selected samples ranges from 1 to 5%. The petrographic analysis of representative samples from Karimun Granite is presented in Table 1. The modal data of petrographic analyses were then transformed into QAPF diagram of Streckeisen (1976) in Figure 3. Half of the all selected samples was classified as alkali-feldspar-granite, three samples as syenogranite (GKR 40, GKR 43, and GKR 58), and one sample as monzo-granite (GKR 41). Microscopic pictures of some selected samples of the Karimun Granite are shown in Figure 4.

Geochemistry

Major Oxides

Chemical analyses of representative samples from Karimun Granite are given in Table 2. As felsic plutonic rocks, SiO$_2$ content of the studied samples is high (70.56-73.39%) and their potassic character is indicated by K$_2$O values which are greater than Na$_2$O (K$_2$O/Na$_2$O ratios >1.3). In Harker variation diagrams, TiO$_2$, Al$_2$O$_3$, MgO, P$_2$O$_5$, and Na$_2$O show descending trends versus SiO$_2$. On the other hand, K$_2$O, CaO, and Fe$_2$O$_3$ indicate positive tendencies with the silicon dioxide escalation (Figure 5). Compared to other plutons in Malay Peninsula these trends show a similarity with Boundary Range Batholith (Ahmad et al., 2002), Endau Rompin Granite (Ghani et al., 2013), and Muncung Granite (Irzon, 2015) except for Fe$_3$O$_5$ and CaO versus SiO$_2$. Positive correlation of CaO to SiO$_2$ is unusual because the calcium oxides would decrease through magma differentiation. Plagioclase is the only Ca-bearing mineral of the selected samples. GKR 41, GKR 58, GKR 40, and GKR 43 are the four samples with plagioclase content of 25%, 15%, 13%, and 10% respectively. However, the geochemistry value does not reflect the previous petrographic data: GKR 40 (13% plagioclase) is the sample with highest CaO content (1.16%), whilst GKR 41 (25% plagioclase) only contains 0.69% of CaO. Moreover, the decrease of CaO with increasing silica in this study only shows a weak correlation coefficient with $r_{SiO_2 vs CaO} = 0.63$). After all, the calcium content in this study should be rechecked using different method to gain more calibrated data.

All rock samples have high alkaline (Na$_2$O+K$_2$O) contents ranging from 8.44 to 9.24%. Plots of Na$_2$O+K$_2$O versus SiO$_2$, which is known as total alkali silica (TAS) diagram (Middlemost, 1985) show that all samples lie within granite field (Figure 6a). TiO$_2$, MnO, MgO, and P$_2$O$_5$ are low (0.09 - 0.11%, 0.004 - 0.02%, 0.06 - 0.27%, and 0.01 - 0.015%, respectively). Molar A/CNK ranges between 1.14 and 1.24

Sample	GKR 37	GKR 39	GKR 40	GKR 41	GKR 42	GKR 43	GKR 55	GKR 58
Phenocryst								
Quartz	45	34	30	22	34	30	28	22
K-Feldspar	30	22	45	20	36	32	38	32
Plagioclase	-	-	13	25	-	10	-	15
Hornblende	-	-	-	-	-	-	-	-
Biotite	7	2	-	9	5	15	5	10
Muscovite	-	20	-	-	-	-	-	-
Opaque mineral	2	1	2	1	2	1	2	2
Accessory mineral	-	-	-	-	-	-	-	-
Sericite	2	4	-	2	5	2	6	2
Oxydized ore mineral	2	1	-	1	2	2	2	3
Chlorite	10	14	8	15	13	7	18	12
Sec. quartz	-	-	-	-	-	-	-	-
Porosity	2	2	2	5	3	1	1	2

Table 1. Petrographic Data (vol %) of Selected Samples.
Figure 3. Normative compositions of granitoids plotted on the classification diagram of Streckeisen (1976). Q = quartz; A = Alkali feldspar; P = plagioclase.

Figure 4. Photomicrographs (cross-nicols) of Karimun Granite samples. a) GKR 37; b) GKR 39; c) GKR 41; and d) GKR 58.
Table 2. Geochemistry of A-Type Karimun Granite Samples. Fe$_2$O$_3$ T: Total Iron as Fe$_3$O$_4$

Mineral	GKR 37	GKR 39	GKR 40	GKR 41	GKR 42	GKR 43	GKR 55	GKR 58	Primitive Mantle value*
SiO$_2$	72.41	70.56	73.39	71.18	72.12	72.67	71.42	71.77	Si = 10.65
TiO$_2$	0.106	0.124	0.05	0.14	0.12	0.0942	0.109	0.101	Ti = 0.044
Al$_2$O$_3$	15.37	16.3	14.49	15.79	15.71	15.15	15.83	15.95	Al = 0.86
Fe$_2$O$_3$	1.33	0.913	1.29	1.23	1.06	1.18	1.44	1.17	Fe = 18.1
MnO	0.0156	0.0045	0.02	0.0122	0.0065	0.0167	0.0176	0.0121	Mn = 0.192
CaO	3.87	4.04	2.75	3.89	4.13	3.72	3.93	3.75	Ca = 0.925
MgO	0.153	0.316	0.06	0.269	0.206	0.157	0.163	0.226	Mg = 9.65
Na$_2$O	0.6	0.542	1.16	0.697	0.788	0.794	0.74	0.721	Na = 0.51
K$_2$O	5.2	5.05	5.69	5.32	5.11	5.14	5.18	5.37	K = 0.055
P$_2$O$_5$	0.0121	0.017	0.01	0.0128	0.0147	0.0122	0.0127	0.014	P = 0.108
LOI	0.53	0.8	0.6	0.85	0.55	0.56	0.63	0.67	
Total	99.61	99.68	99.51	99.44	99.63	99.60	99.49	99.57	

Fe$_2$O$_3$ T: Total Iron as Fe$_3$O$_4$
*(McDonough and Sun, 1995)
Figure 5. Binary plots of major elements in this study and other granitoid units in Malay Peninsular with their trendlines. \(r \) is the correlation coefficient for Karimun Granite samples. a) \(\text{SiO}_2 \) vs. \(\text{TiO}_2 \), \(r = -0.82 \); b) \(\text{SiO}_2 \) vs. \(\text{Al}_2\text{O}_3 \), \(r = -0.94 \); c) \(\text{SiO}_2 \) vs. \(\text{MgO} \), \(r = -0.91 \); d) \(\text{SiO}_2 \) vs. \(\text{K}_2\text{O} \), \(r = 0.62 \); e) \(\text{SiO}_2 \) vs. \(\text{Fe}_2\text{O}_3 \), \(r = 0.51 \); f) \(\text{SiO}_2 \) vs. \(\text{CaO} \), \(r = 0.63 \); g) \(\text{SiO}_2 \) vs. \(\text{Na}_2\text{O} \), \(r = -0.72 \); h) \(\text{SiO}_2 \) vs. \(\text{P}_2\text{O}_5 \), \(r = -0.82 \); i) \(\text{SiO}_2 \) vs. \(\text{Na}_2\text{O}\text{}/\text{K}_2\text{O} \), \(r = -0.70 \); and j) \(\text{Ba} \) vs. \(\text{Sr} \), \(r = 0.64 \). = Karimun Granite, = Selim Granite (Ghani, 2005), = Endau Rompin Granite (Ghani et al., 2013), = Lingga Group of Muncung Granite, and = Singkep Group of Muncung Granite (Irzon, 2015).
suggested weak peraluminous character (Figure 6b). Moreover, Karimun Granite plots in the shoshonite field with high abundances of both K$_2$O and SiO$_2$ (Figure 6c).

The 10,000×Ga/Al ratios in the Karimun Granite are 1.73 to 3.14, with the average value of 2.18. Although the average value is relatively below the global average of 3.75 for A-type granites (Whalen et al., 1987), the samples fall into the A-type granite field in 10,000×Ga/Al vs. Na$_2$O+K$_2$O, (Na$_2$O+K$_2$O)/CaO and K$_2$O/MgO diagrams (Figure 7). The diagrams agree with the previous author conclusions that A-type granites have also been identified in some of Tin Islands such as Karimun (Cobing et al., 1992; Barber et al., 2005). The Karimun Granite contains high SiO$_2$ (>68%) and total alkaline as another major oxide character of A-type granitoid (Christiansen and Keith, 1996; Kebede et al., 1999; Ahmad and Chaudhry, 2008).

Trace and rare earth elements

Fractional crystallization in magma can be observed based on trace and/or rare earth element ratios. Ba/Sr ratio ranges from 1.72 to 3.67 (2.89 in average) whereas Rb/Sr with significant variation from 5.85 to 13.28 (10.65 on the average). High Rb/Sr, Ba/Sr ratios, high K% suggest that the Karimun Granite is primarily derived from a
felsic source (Ray et al., 2011). On Ba versus Sr diagram, the positive correlation between Ba and Sr (Figure 5i) suggests that K-feldspar, biotite, and plagioclase are being removed in the granite differentiation (Ghani, 2005). Compared to the other granitoid units in Malay Peninsular, Rb/Sr value of the samples (5.85 - 15.61) is higher than Endau Rompin Granite (Johor - Malaysia) and both groups of Muncung Granite (Lingga Regency - Indonesia), but lower than fine- and coarse-grained Selim Granite (Perak - Malaysia) (Ghani, 2005; Ghani et al., 2013; Irzon, 2015) (Tabel 3). The intermediate maturity of Karimun Granite as a granitoid unit in Peninsular Malaysia is confirmed from this Rb/Sr ratio that indicates a medium to high differentiation level. Moreover, the high Rb/Sr (>2.6) and low Sr/Ba (<0.4) ratios for most of the granitoid samples (Table 3) are

![Graph](http://example.com/graph.png)

Figure 7. 10,000 Ga/Al vs a) Na$_2$O + K$_2$O; b) (Na$_2$O+K$_2$O)/CaO; c)K$_2$O/MgO (Whalen et al., 1987). I = I-type granite, S = S-type granite, and A = A-type granite. Please note that the three diagrams require Ga content in samples which is not provided in previous the studies of Selim Granite (Ghani, 2005), Endau Rompin Granite (Ghani et al., 2013), and Muncung Granite (Irzon, 2015).
consistent with plagioclase fractionation (Nagudi, 2003).

Chemically, transition elements are described as elements in the d-block of the periodic table. The group is different from other elements because that in a given inner orbital, it has less than a full quota of electrons which cause the formation in many oxidation states (White, 2013). The amount of some transition elements: Sc, V, and Nb of the studied samples are categorized low at up to 1.4, 5.3 - 10.1, and 0.7 - 8.8 ppm respectively. Contrastively, other transition elements are high: Y (53-654 ppm), Th (29 - 45 ppm), and U (11 - 19 ppm). REEs are classified as transition elements. These samples contain moderate to high and variable REE concentration of 183

Table 3. Average Major Oxides and Trace Elements Value, and Rb/Sr and Sr/Ba Ratios of Studied Samples Compared to Some Other Granitoid Units in Peninsular Malaysia. Data sources: (1) Ghani (2005); (2) Ghani et al. (2013); (3) Irzon (2015)

	Selim Granite (¹)	Endau Rompin Granite (²)	Muncung Granite (³)	Karimun Granite		
	Fine grained	Coarse grained	Group A	Group B		
SiO₂	76.06	75.70	72.10	71.62	73.75	71.94
TiO₂	0.09	0.16	0.29	0.13	0.24	0.10
Al₂O₃	12.89	12.82	14.05	16.55	12.67	15.57
Fe₂O₃T	1.17	1.49	2.17	1.31	3.12	1.23
MnO	0.04	0.04	0.05	0.03	0.04	0.01
CaO	0.34	0.45	1.90	0.50	0.67	0.69
MgO	0.05	0.10	0.39	0.25	0.31	0.19
Na₂O	3.30	2.81	3.63	3.64	3.45	3.76
K₂O	5.10	5.53	3.81	4.75	4.52	5.26
P₂O₅	0.01	0.08	0.06	0.03	0.08	0.01
Trace and rare earth elements (ppm)						
Ba	46.82	136.56	958.47	167.10	440.44	86.09
Rb	756.33	610.11	167.63	280.43	175.27	288.09
Sr	25.63	42.63	167.17	25.73	62.11	27.55
Th	39.22	44.8	18.08	29.90	27.56	38.15
V	8.08	9.07	19.37	14.16	15.52	7.26
Sc	5.52	5.52	-	2.92	8.89	0.83
La	45.15	40.90	42.78	30.28	242.39	141.58
Ce	111.33	93.48	72.63	62.12	146.37	203.65
Pr	12.97	23.71	8.39	7.58	48.72	33.53
Nd	45.37	37.57	30.15	28.12	181.19	117.72
Sm	11.47	8.58	5.63	6.93	36.26	37.29
Eu	0.12	0.30	1.27	0.21	2.08	0.64
Gd	11.05	8.23	5.40	6.11	32.52	28.49
Tb	2.26	1.56	0.91	1.09	3.77	4.94
Dy	16.20	11.00	5.37	7.06	18.77	28.48
Ho	3.57	2.37	1.18	1.50	3.28	5.37
Er	10.58	6.46	3.51	4.27	8.39	12.55
Tm	1.63	1.06	0.54	0.66	1.15	2.20
Yb	10.87	6.81	3.69	4.44	7.16	13.90
Lu	1.55	0.97	0.57	0.67	1.03	1.91
ΣREE	284.10	243.00	182.02	161.05	733.07	632.24
Rb/Sr	29.51	14.31	1.00	10.90	2.82	10.46
Sr/Ba	0.55	0.31	0.17	0.15	0.14	0.32
to 3,296 ppm, 632 ppm on the average (Table 2). The high amount of REE exhibits the A-type granite character (Whalen et al., 1987; Goodge and Vervoot, 2006; Shellnutt and Zhou, 2007; Singh and Vallinayagam, 2012).

Primitve Mantle value of McDonough and Sun (1995) is used to normalized both trace and rare earth elements data of this study. The normalized REE patterns relatively show a stronger fractionation of light rare earth elements (LREE) (1.70<(La/Sm)_N<2.77) than that of heavy rare earth elements (HREE) (0.75<(Ga/Yb)_N<3.1) (Figure 8a). It has been observed that granitic rocks contain higher amounts of Th, U, and light rare earth elements (REEs) compared to other igneous rocks such as basalt and andesite (Sahoo et al., 2011) that can explain the Th and U amounts and REE pattern of these samples. Europium and cerium negative anomalies were detected: Eu/Eu* of 0.034 to 0.068 and Ce/Ce* of 0.62 to 0.85. Both anomalies are used as indicators of magma evolution. The pronounced negative Eu anomaly may be correlated to plagioclase remaining in the source after partial melting generating the granite, where as cerium negative anomaly probably due to high oxygen fugacity at the source of the magma that cause some of trivalent ceriums were oxydized to tetravalent cerium (Salem et al., 2001; Jurvainen et al., 2005; Papangelakis and Moldoveanu, 2014). Compared to four granitoid units in Malay Peninsular, the average total REE value of Karimun Granite is just smaller than Lingga Granite (Figure 8b). The biggest negative Eu anomaly of the group is shown by Karimun Granite whilst Endau Rompin Granite by the smallest anomaly.

A group of elements that is unsuitable in size and/or charge to the cation sites of the minerals is called incompatible element. The partition coefficient between rock-forming minerals and liquid phases of this group is much smaller than 1. This group is then divided into two subgroups: large-ion lithophile elements (LILE) and high field strength elements (HFSE). K, Rb, Cs, Sr, Ba, U, Th are elements having large ionc radius well known as LILE. On the other hand, HFSE is a group of elements of large ionic valences or high charges: Zr, Nb, Hf, Ta, Sc, Y, and the REE. The selected granitoid samples show high level of LILE at 4,643 – 5,256 ppm on the average of 4,846 ppm. This high LILE content and previous high alkali character of Karimun Granite fit the statement that A type granitoid may represent products of mantle-derived magmas with or without crustal contamination through extensive fractional crystallization, common contemporaneity with mafic syenite plutons and characterized by high alkali, LILE, and HFSE contents (Goodge and Vervoot, 2006; Dwivedi et al., 2011).

On a primitive mantle normalized (McDonough and Sun, 1995) extended spider diagram, the granitoid shows positive anomalies of U, La, Nd, Dy and negative anomalies of Ba, Ce, Sr, P, Y, and Ti (Figure 9). The anomalies indicate fractionation by mineral phases containing these elements at some stage in the history of the source of the magma. As Eu negative anomaly, both Ba and Sr depletions can be related to the fractionation feldspar, especially plagioclase, in the magma chamber (Mao et al., 2011; Keshavarzi et al., 2014). Fractionation of plagioclase would increase NK/A molar (Na_2O + K_2O)/Al_2O_3) ratios and negative Sr-Eu anomalies, while separation of K-feldspar would lead to increasing Na_2O/K_2O ratios and negative Eu-Ba anomalies. Furthermore, fractionation of K-feldspar usually follows that of plagioclase (Zhang et al., 2012). Selected granitoid samples display negative anomalies of Eu, Ba, and Sr (Figure 8 and Figure 9), while Na_2O/K_2O ratios decrease with increasing SiO_2 (Figure 2j), which favours fractional crystallization of both plagioclase and K-feldspar. Other authors also conclude that the negative anomalies shown by Eu, Ba, Sr, and Ti are typical of A-type granitoids (Ahmad and Chaudhry, 2008; Tong et al., 2012; Zhang et al., 2012). Negative Ti anomaly can be interpreted as reflecting ilmenite fractionation. The sharp negative Nb anomaly suggests that the granite melts originated from partial melting of subduction zone environment.
Figure 8. a) REE spider diagram of Karimun Granit samples; b) The average REE spider diagram of five granitoid units in Malay Peninsular. All values were normalized to primitive mantle value of McDonough and Sun (1995).

(Tong et al., 2012). On the other hand, positive anomalies would indicate element accumulation or minor fractionation of mineral related elements in differentiation process.

Conclusions

Karimun Granites are composed mainly of quartz, K-feldspar, plagioclase, and biotite. A
Figure 9. Extended spider-diagram of the studied samples normalized to primitive mantle. Normalization values from Sun and McDonough (1995).

The number of chlorites in the eight samples indicates that the granitoids were altered. The modal data of petrography analyses classified most of the samples as alkali-feldspar-granite. TiO$_2$, Al$_2$O$_3$, MgO, and Na$_2$O show a negative corelation with SiO$_2$. On the other hand, K$_2$O increases with increasing SiO$_2$. The molar A/CNK suggests the weak peraluminous character, whereas high abundances of both K$_2$O and SiO$_2$ as shoshonite granitoid. Whalen diagrams and Eu, Ba, Sr, P, Ti negative anomalies concluded the A-type of Karimun Granite and agreed with the previous author conclusions that A-type granites have also been identified in some of Tin Islands. The intermediate maturity of the studied granite is confirmed from the Rb/Sr ratio. REE content of the samples ranges from 183 to 3,296 ppm, 632 ppm on the average, with stronger fractionation of LREE than HREE. Europium and cerium negative anomalies were 0.034 to 0.068 and 0.62 to 0.85, respectively. Ba, Sr, and Eu anomalies in extended spider diagram reveal the feldspar fractionation during a differentiation process.

ACKNOWLEDGEMENTS

The author is thankful to his big family for the spirit. The writer would like to thank the Head of the Centre for Geological Survey for the publicity permission. Professor Hamdan Zainal Abidin supports this paper from his scientific ideas. The very good laboratory work that was performed by Indah and Citra is highly acknowledged. Mr. Eko Partoyo, Mr. Baharuddin, and Mr. Purnama Sendjaja support the research in petrology view. Geochemistry Programme of the Centre for Geological Survey assists this research financially.

REFERENCES

Ahmad, R.A., Yusoff, I., and Ghani, A.A., 2002. Geochemical characteristics of the granitic rocks from Boundary Range Batholith, Peninsular Malaysia. Geological Society of Malaysia Annual Geological Conference, Kelantan, Malaysia, p.243-246.
Ahmad, S.A. and Chaudhry, M.N., 2008. A-type Granites from the Nagarparkar Complex, Pakistan: Geochemistry and Origin. *Geology Bulletin of Punjab University*, 43, p.69-81.

Barber, A.J., Crow, M.J., and Milsom, J.S. (Eds.), 2005. Sumatra Geology, Resources, and Tectonic Evolution. *Geological Society*, London, Memoir, 31. DOI: 10.1017/S0016756806212974

Cameron, N.R., Ghazali, S.A., and Thompson, S.J., 1982. *Geologic Map of The Bengkalis Quadrangle, Sumatra, scale 1:250.000*. Pusat Penelitian dan Pengembangan Geologi, Bandung.

Christiansen, E.H. and Keith, J.D., 1996. Trace element systematics in silicic magmas: a metallogenic perspective. In: Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulfide Exploration, *Geological Association of Canada, Short Course Notes*, 12, p.115-151.

Cobbing, E.J., Pitfield, P. E. J., Darbyshire, D. P. F., and Mallick, D. I. J., 1992. The granites of the South-East Asian tin belt. *Overseas Memoir*, 10, British Geological Survey. DOI: 10.1144/gsjgs.143.3.0537

Diantoro, S., 2014. The Effect of Implementation of Licencing Policies of Granite Mining to the Effectiveness of Environmental Management in Karimun District of Riau Islands Province. *The International Journal of Social Science*, 22 (1), p.98 - 123.

Djunaedi, E.K., Utoyo, and Sutrisno, 2005. Pemantauan dan Evaluasi Konservasi Sumber Daya Mineral di Daerah Kabupaten Karimun, Provinsi Riau. *Kolokium Hasil Lapangan – DIM 2005*, p.49-1 – 49-10.

Dwivedi, A.K., Pandey, U.K., Bhatt, A.K., Babu, P.V.R., and Joshi, M., 2011. Geochemistry and Geochronology of A-type Barabazar Granite: Implications on the Geodynamics of South Purulia Shear Zone, Singhbhum Craton, Eastern India. *Journal Geological Society of India*, 77, p.527-538. DOI: 10.1007/s12594-011-0055-y

Faure, M., Lepvrier, C., Vuong, N.V., Lin, W. and Chen, Z., 2014. The South China Block-Indochina collision: where, when, and how? *Journal of Southeast Asian earth sciences*, 79, p.260-274. DOI: 10.1016/j.jsseaes.2013.09.022

Ghani, A.A., 2005. Highly evolved S type granite: Selim Granite, Main Range Batholith, Peninsular Malaysia. *Geological Society of Malaysia Bulletin*, 51, p.95-101.

Ghani, A.A., Yusoff, I., Hassan, M.H.A., and Ramli, R., 2013. Geochemical study of volcanic and associated granitic rocks from Endau Rompin, Johor, Peninsular Malaysia. *Journal of Earth System Science*, 122 (1), p.65-78. DOI:10.1007/s12040-012-0250-2.

Goode, J.W. and Vervoot, J.D., 2006. Origin of Mesoproterozoic A-type granites in Laurentia: Hf isotope evidence. *Earth and Planetary Science Letters*, 243, p.711–731. DOI:10.1016/j.epsl.2006.01.040

Irzon, R. and Permanadewi, S., 2010. Elements Study of Igneous and Altered Rocks in Kulo-nprogo and Its Surrounding Using ICP-MS. *Proceeding PIT IAGI, Lombok.*

Irzon, R., 2015. Contrasting Two Facies of Mun-cung Granite in Lingga Regency Using Major, Trace, and Rare Earth Element Geochemistry. *Indonesian Journal on Geoscience*, 2 (1), p.23-33. DOI:10.17014/tjog.2.1.23-33.

Jurvanen, T., Eklund, O., and Vaisanen, M., 2005. Generation of A-type granitic melts during the late Svecofennian metamorphism in southern Finland. *GGF*, 127, p.139-147. DOI: 10.1080/11035890501272139

Kebede, T., Koeberl, C., and Koller F., 1999. Geology, Geochemistry and Petrogenesis of Intrusive Rocks of The Wallaga Area, Western Ethiopia. *Journal of African Earth Sciences*, 29 (4), p.715-734. DOI: 10.1016/S0899-5362(99)00126-8

Keshavarzi, R., Esmaili, D., Kahkhaei, M.R., Mokhtari, M.A.A., and Jabari, R., 2014. Petrology, Geochemistry and Tectonomagmatic Setting of Neshveh Intrusion (NW Saveh). *Open Journal of Geology*, 4, p.177-189. DOI:10.4236/ojg.2014.45013.

Kurniawan, A., 2014. Geologi Batuan Granitoid di Indonesia dan Distribusinya. *Masyarakat Ilmu Bumi Indonesia*, 1(E-3), p.1-16.
Mao, J., Xie, G., Duan, C., Pirajno, F., Ishiyama, D., and Chen, Y., 2011. A tectono-genetic model for porphyry–skarn–stratabound Cu–Au–Mo–Fe and magnetite–apatite deposits along the Middle–Lower Yangtze River Valley, Eastern China. Ore Geology Reviews, 43, p.294-314. DOI: 10.1016/j.oregeorev.2011.07.010

McDonough, W.F. and Sun, S. 1995. Composition of the Earth. Chemical Geology, 120, p.223-253. DOI:10.1016/0009-2541(94)00140-4.

Metcalfe, I., 2000. The Bentong-Raub suture zone. Journal of Asian Earth Science, 18, p.691-712. DOI:10.1016/S1367-9120(00)00043-2.

Middlemost, E.A.K., 1985. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37, p.215-224. DOI:10.1016/0012-8252(94)90029-9.

Nagudi, B., Koeberl, C., and Kurat, G., 2003. Petrography and geochemistry of the Singo granite, Uganda, and implications for its origin. Journal of African Earth Sciences, 36, p.73-87. DOI:10.1016/S0899-5362(03)00014-9

Papangelakis, V.G. and Moldoveanu, G., 2014. Recovery of Rare Earth Elements From Clay Minerals. can Rare Earth Resources Conference, p.191-202.

Peccerillo, R. and Taylor, S.R., 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology, 58, p.63-81. DOI:10.1007/BF00384745.

Pulonggono, A. and Cameron, N.R., 1984. Sumatran microplates, their characteristics and their role in the evolution of the Central and South Sumatra basins. Indonesian Petroleum Association, Proceedings of the 13th Annual Convention, 13, p.1221 - 1443.

Ray, J., Saha, A., Ganguly, S., Balaram, V., Krishna, A.K., and Hazra, S. 2011. Geochemistry and petrogenesis of Neoproterozoic Myllem granitoids, Meghalaya Plateau, northeastern India. Journal of Earth System Science, 120 (3), p.459-473. DOI:10.1007/s12040-011-0084-3.

Sahoo, S.K., Hosoda, M., Kamagata, S., Sornmachi, A., Ishikawa, T., Tokonami, S., and Uchida, S., 2011. Thorium, Uranium and Rare Earth Elements Concentration in Weathered Japanese Soil Samples. Progress in Nuclear Science and Technology, 1, p.416-419.

Salem, L.A., Abdel-Moneum, A.A., Shazly, A.G., and El-Shibiny, N.H., 2001. Mineralogy and geochemistry of Gabal El-Ineigi Granite and associated fluorspar veins, Central Eastern Desert, Egypt: application of fluid inclusions to fluorspar genesis. Journal of African Earth Sciences, 32(1), p. 29-45. DOI: 10.1016/S0899-5362(01)90017-X

Shand, S.J., 1943. Eruptive rocks. D. Van Nostrand Company, New York, 360pp.

Shellnutt, J.G. and Zhou, M.F., 2007. Permian peralkaline, peraluminous and metaluminous A-type granites in the Panxi district, SW China: Their relationship to the Emeishan mantle plume. Chemical Geology, 243, p.286–316. DOI:10.1016/j.chemgeo. 2007.05.022.

Singh, L.S. and Vallinayagam, G., 2012. High Heat Producing Volcano-Plutonic Rocks of the Siner Area, Malani Igneous Suite, Western Rajasthan, India. International Journal of Geosciences, 3, p.1137-1141. DOI: 10.4236/ijg.2012.35115.

Sone, M. and Metcalfe, I., 2008. Parallel Tethyan sutures in mainland Southeast Asia: New insights for Palaeo-Tethys closure and implications for the Indosinian orogeny. Comptes Rendus Geoscience, 340, p.166-179. DOI: 10.1016/j.crte.2007.09.008

Streckeisen, A., 1976. To each plutonic rock its proper name. Earth-Science Reviews, 12, p.1–33.

Tong Y., Wang, T., Siebel, W., Hong, D.W., and Sun, M., 2012. Recognition of early Carboniferous alkaline granite in the southern Altai orogen: post-orogenic processes constrained by U–Pb zircon ages, Nd isotopes, and geochemical data. International Journal of Earth Science (Geologische Rundschau), 101, p.937–950. DOI: 10.1007/s00531-011-0700-0.

Warith, A.A., Michalik, M., and Ali, B.H., 2010. Luorine Enriched Granites: Chemical
Characterization and Relation to Uranium Mineralization. *Journal of Applied Sciences Research*, 6(4), p.299-323.

Whalen, J. B., Currie, K. L., and Chappell, B. W., 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis. *Contributions to Mineralogy and Petrology*, 96, p.407-419. DOI: 10.1007/BF00402202

White, W.M., 2013. *Geochemistry*. Wiley-Blackwell, UK. 668pp. DOI: 10.1017/S0016756813000708

Zhang, J., Ma, C. and She, Z., 2012. An Early Cretaceous garnet-bearing metaluminous A-type granite intrusion in the East Qinling Orogen, central China: Petrological, mineralogical and geochemical constraints. *Geoscience Frontiers*, 3 (5), p.635-646. DOI: 10.1016/j.gsf.2011.11.011