REPLACING LANGUAGE MODEL FOR STYLE TRANSFER

Pengyu Cheng∗
Tencent AI Lab
pengyucheng@tencent.com

Ruineng Li∗
Columbia University
rl3315@columbia.edu

ABSTRACT

We introduce replacing language model (RLM), a sequence-to-sequence language modeling framework for text style transfer (TST). Our method autoregressively replaces each token of the source sentence with a text span that has a similar meaning but in the target style. The new span is generated via a non-autoregressive masked language model, which can better preserve the local-contextual meaning of the replaced token. This RLM generation scheme gathers the flexibility of autoregressive models and the accuracy of non-autoregressive models, which bridges the gap between sentence-level and word-level style transfer methods. To control the generation style more precisely, we conduct a token-level style-content disentanglement on the hidden representations of RLM. Empirical results on real-world text datasets demonstrate the effectiveness of RLM compared with other TST baselines. The code is at https://github.com/Linear95/RLM.

1 INTRODUCTION

Text style transfer (TST) aims to rewrite natural language sentences with the same semantic meaning but in a different target style, where the styles of text are usually considered from the perspectives of formality (Rao and Tetreault, 2018), sentiment (Hu et al., 2017; Shen et al., 2017), persona (Wu et al., 2021), and politeness (Madaan et al., 2020), etc. Recently, text style transfer has increasingly attracted considerable interest for its potential usage in various scenarios such as personalized chatbots (Wu et al., 2021; Zhang et al., 2018), writing assistants (Rao and Tetreault, 2018), and non-player characters in games (Campano and Sabouret, 2009; Yunanto et al., 2019). Although with substantial application potential, TST remains a difficult learning task, mainly because of the scarcity of parallel source-target training data in practice (Malmi et al., 2020). Therefore, current studies of TST have concentrated on the unsupervised learning setup (Huang et al., 2021; Reid and Zhong, 2021; Li et al., 2022), where only raw-text sentences and their corresponding source style labels are provided in training data.

Prior works of unsupervised TST fall into two tracks: sentence-level and word-level. Sentence-level methods allow models to generate the entire transferred sentences. To control the generation, a large group of sentence-level methods disentangle source style information from the content representations in latent spaces, then generate the transferred sentences with the content representations and target style attributes (Hu et al., 2017; Lample et al., 2018; John et al., 2019; Cheng et al., 2020b). Other sentence-level methods design discriminators to evaluate and induce the generated sentence to reach the target style (Yang et al., 2018; Holtzman et al., 2018). Although remaining the mainstream, sentence-level methods have been continuously challenged with the content preservation problem (Huang et al., 2021), that the transferred results always contain irrelevant words or differ from the semantic meaning of the source sentences, due to the overmuch freedom given to the neural generators.

To mitigate the content preservation problem, word-level TST methods keep the backbone of the original sentence, only masking or removing style-related words (Li et al., 2018; Sudhakar et al., 2019; Malmi et al., 2020; Huang et al., 2021). Then the generators are supposed to fill words or spans in the target style into the masked or removed positions. With precise edits on source sentences, word-level methods have achieved success to retain the original content meaning in the generation. Besides, many of the word-level transfer methods conduct generation in non-autoregressive schemes (Wu et al., 2019; Huang et al., 2021; Reid and Zhong, 2021), which further improve the transfer efficiency.

∗Equal Contribution.
Although widely applied in NLP scenarios, AR models have been growingly challenged at their low-efficiency and accumulation errors (Qi et al., 2021; Arora et al., 2022). Hence, many non-autoregressive (NAR) modeling frameworks are recently proposed (Kenton and Toutanova, 2019; Shen et al., 2020). Generally, NAR models have the following form:

$$P(X) = P(X_0 | X_I) \cdot P(X_{\bar{I}}),$$

where $X_I = \{x_i | i \in I\}$ and $X_{\bar{I}} = \{x_i | i \notin I\}$ are selected from index set I and its complement \bar{I} respectively. Since the size of I can vary, a practical implementation of equation 2 is to mask words in $X_{\bar{I}}$ with special [MASK] tokens to keep the same input sequence length, then letting the language model reconstruct the masked sequence, which leads to masked language modeling (MLM) (Kenton and Toutanova, 2019).

Disentangled Representations for Style Transfer: Disentangled representation learning (DRL) targets to map data instances into independent embedding sub-spaces, where different sub-spaces represent different attributes of the input data (Locatello et al., 2019). By combining or switching the different subspace embedding parts, one can obtain new latent codes with sufficient information of the desired attributes. Then the operated latent codes can be further fed into a decoder to generate new instances with the target attributes. With the effective control of generated attributes, DRL has been widely applied in style transfer tasks (Lee et al., 2018; John et al., 2019; Yuan et al., 2020). Among DRL-based style transfer methods, Yuan et al. (2020) learn disentangled style embedding s and content embedding c of each data point x from an information-theoretic perspective. More specifically, the mutual information (MI) (Kullback, 1997) $I(s; c)$ is utilized to measure the information overlap between style embedding s and content embedding c:

$$I(s; c) = \mathbb{E}_{P(s, c)} \left[\log \frac{P(s, c)}{P(s)P(c)} \right],$$

where $P(s, c)$ is the joint distribution of style and content, $P(s)$ and $P(c)$ are the marginal distributions of style and content, respectively. Therefore, maximizing $I(s; c)$ encourages the independence between style and content.
which computes the difference between joint distribution $P(s, c)$ and the product of marginal distributions $P(s)P(c)$. The learning objective is to minimize the MI between style embedding c and content embedding c, while maximize the MI between combined latent (s, c) and the observation x:

$$\min I(s; c) - I(x; s, c).$$ (4)

If the objective in equation [4] is well-learned, one can replace the source style s_{source} with the target style embedding s_{target}, and combine it with the source content c_{source} as (s_{source}, c_{target}) without losing any content semantics. Then the joint (s_{source}, c_{target}) already contains sufficient style and content information to generate the transferred sentence $x_{transfer}$. However, calculating MI values are challenging without distribution closed-forms provided (Poole et al., 2019). Details about the implementation of equation [4] with MI estimators are in Section 3.3.

3 REPLACING LANGUAGE MODEL

Given a sentence $X = (x_0, x_1, \ldots, x_{n-1})$ and a target style $s \in S$, text style transfer is to generate a corresponding $Y = (y_0, y_1, \ldots, y_{m-1})$, which has the similar content meaning but is rewritten in style s. We aim to introduce the replacing language model (RLM) to learn the probability $P(Y|X, s)$ under the unsupervised setup, where only raw-text x and its source style label $s \in S$ are provided.

The main idea of RLM is to iteratively replace each $x_i \in X$ with a new text span that has the same content meaning but in the target style s. By accumulating the generated new spans, we can obtain the transferred sentence Y. To describe the RLM process in details, in Section 3.1, we first discuss style transfer with a constraint that the target Y has the same length as the source X. The model design and learning loss of RLM are introduced in Section 3.2 and Section 3.3 respectively. Then we extend the framework into more general unequal-length transfer scenarios in Section 3.4.

3.1 RLM FOR EQUAL-LENGTH TRANSFER

In this part, we first limit the transferred sentence Y to have the same length as the original input X, which is a simpler transfer scenario for discussion. The target of RLM is to autoregressively (AR) replace each x_i in X with a corresponding y_i, such that y_i has the same content meaning as x_i but in target style s (y_i can equal x_i if not style-related). We first present the sequence-to-sequence modeling of style transfer in the autoregressive paradigm:

$$P(Y|X, s) = \prod_{i=0}^{n-1} P(y_i|X_{0:i}, Y_{0:i}, s),$$ (5)

where $Y_{0:i} = (y_0, y_1, \ldots, y_{i-1})$ is the generated prefix of y_i. Based on our objective of RLM, each y_i and x_i are supposed to have the same content information, so $Y_{0:i}$ also contains (ideally) the equivalent content meaning as $X_{0:i}$ does. We apply the Bayes’ rule (Box and Tiao, 2011) on the token variable pair (x_i, y_i) in each probabilistic term $P(y_i|X_{0:i}, Y_{0:i}, s)$ of equation [5] and obtain:

$$P(y_i|X_{0:i}, s) = P(y_i|x_i, X_{-i}, Y_{0:i}, s) = \frac{P(y_i|X_{-i}, Y_{0:i}, s) \cdot P(x_i|X_{-i}, Y_{0:i+1}, s)}{P(x_i|X_{-i}, Y_{0:i}, s)},$$ (6)

where $X_{-i} = X - \{x_i\} = X_{0:i} \cup X_{i+1:n}$ denotes sequence X without token x_i.

To further simplify, we analyze the three probabilistic terms on the right-hand side of equation [6] respectively:

(i) For $P(y_i|X_{-i}, Y_{0:i}, s)$, note that $Y_{0:i}$ should have the equivalent content information as $X_{0:i}$. Besides, target style information s is given. One can select either $X_{0:i}$ or $Y_{0:i}$ to provide sufficient prefix information (with style s) for target token y_i prediction. Our choice is $Y_{0:i}$, leading $P(y_i|X_{-i}, Y_{0:i}, s) = P(y_i|Y_{0:i}, X_{i+1:n}, s)$, for sequence $Y_{0:i}$ offering more coherence than $X_{0:i}$ to generate the target y_i.

(ii) For $P(x_i|X_{-i}, Y_{0:i+1}, s)$, $X_{0:i}$ includes the same content as $Y_{0:i}$, and s has the style information of $Y_{0:i}$. Hence, we can use $(X_{0:i}, s)$ to represents all the information from $Y_{0:i}$, with only y_i remained, $P(x_i|X_{-i}, Y_{0:i+1}, s) = P(x_i|X_{0:i}, y_i, X_{i+1:n}, s)$. Moreover, the original x_i does not depend on the target style s, and X_{-i} is supposed to have sufficient information of the source style. Therefore, we further use $P(x_i|X_{0:i}, y_i, X_{i+1:n}, s)$ to approximate $P(x_i|X_{0:i}, y_i, X_{i+1:n}, s)$.

(iii) For the denominator $P(x_i|X_{-i}, Y_{0:i}, s)$, similarly to analysis in (ii), we can remove condition $Y_{0:i}$, so that $P(x_i|X_{-i}, Y_{0:i}, s) = P(x_i|X_{-i}, s)$. Furthermore, $P(x_i|X_{-i}, s)$ is not related to any model output y_i, which can be treated as a constant to model parameters.
the content embedding c_i at [MASK] position, and fuse it with target style embedding y_i to predict the i-th token y_i, providing $P(y_i|Y_{0:i}, X_{i+1:n}, y_i, X_{i+1:n})$. Then y_i is inserted back at [MASK] position and x_{i+1} will be masked for the $(i + 1)$-th generation setup. (b) Reconstruction term: The prediction candidate y_i is set in front of masked sequence $X_{i+1:n}$. RLM reconstructs original x_i based on content c_i at [MASK] position with the probability $p(x_i|X_{0:i}, y_i, X_{i+1:n})$.

Based on the above discussion, we can simplify the right-hand side of equation 6 as follows:

$$P(y_i|X, Y_{0:i}) \propto P(y_i|Y_{0:i}, X_{i+1:n}, s) \cdot P(x_i|X_{0:i}, y_i, X_{i+1:n}).$$

The prediction term $P(y_i|Y_{0:i}, X_{i+1:n}, s)$ provides the i-th token y_i in the target sentence based on the generated $Y_{0:i}$ and the remained $X_{i+1:n}$. While the reconstruction term $P(x_i|X_{0:i}, y_i, X_{i+1:n})$ gives the probability to reconstruct original x_i with the new y_i inserted back to the i-th position of the source sentence.

Intuitively, prediction term $P(y_i|Y_{0:i}, X_{i+1:n}, s)$ induces y_i to be coherent with the prefix $Y_{0:i}$ in target style s, and consistent with the contextual information of $(Y_{0:i}, X_{i+1:n})$. Different from directly predicting $P(y_i|X, Y_{0:i}, s)$ (Lample et al., 2018; Lai et al., 2021), term $P(y_i|Y_{0:i}, X_{i+1:n}, s)$ utilizes less but sufficient semantic information from the source sentence, with the position i highlighted for a more accurate token-level generation. Meanwhile, $P(x_i|X_{0:i}, y_i, X_{i+1:n})$ measures the content information y_i carrying from original x_i, by letting y_i reconstruct x_i with contexts $X_{0:i}$ and $X_{i+1:n}$. Consequently, we obtain **Replacing Language Model (RLM)** for equal-length transfer:

$$P(Y|X, s) \propto P_{RLM}(Y|X, s) = \prod_{i=0}^{n-1} P(y_i|Y_{0:i}, X_{i+1:n}, s) \cdot P(x_i|X_{0:i}, y_i, X_{i+1:n}).$$

Practically in the i-th generation step, we select y_i^* that maximizes $P(y_i|X, Y_{0:i}, s)$ as the i-th prediction. Within our RLM scheme, we can predict y_i^* from:

$$\max_{y_i \in \mathcal{Y}} P(y_i|Y_{0:i}, X_{i+1:n}, s) \cdot P(x_i|X_{0:i}, y_i, X_{i+1:n}).$$

Theoretically, the candidate set \mathcal{Y} can have the same size as the whole vocabulary \mathcal{V}. To reduce the computational complexity, we approximate the candidates in \mathcal{Y} with tokens y_i that have the top-K logits of term $P(y_i|Y_{0:i}, X_{i+1:n}, s)$ as $\mathcal{Y}^K = \{y \in \mathcal{V} | \text{value } P(y|Y_{0:i}, X_{i+1:n}, s) \text{ is top-K}\}$.

3.2 Model Design

Next, we describe how to parameterize the prediction term $P(y_i|Y_{0:i}, X_{i+1:n}, s)$ and the reconstruction term $P(x_i|X_{0:i}, y_i, X_{i+1:n})$ in equation 7 with neural networks. Both terms generate one token at the i-th position of the input sequence, offering us the convenience to parameterize both of them with similar model structures. As in Figure 1, we build the RLM encoder $E_{RLM}()$ based on a BERT (Kenton and Toutanova, 2019) encoder pretrained on masked language modeling tasks.

In Figure 1(a), we insert a [MASK] token between the generated $Y_{0:i}$ and the remained $X_{i+1:n}$, then feed this mixed sequence through the RLM encoder $E_{RLM}()$. The output at the masked position is the content embedding $c_i = E_{RLM}(Y_{0:i}, [\text{MASK}], X_{i+1:n})$, where c_i is supposed to be filtered with any input style information and only contains the content information of the masked input position.
Next we combine c_i with the target style embedding s to obtain an overall representation $e_i = f(s, c_i)$ (as shown in Figure 3(b)), and make the y_i prediction with a prediction head $H_{\text{pred}}()$:

$$P_{\text{RLM}}(y_i|s, c_i) = \text{Softmax}(H_{\text{pred}}(f(s, c_i))) = P_{\text{RLM}}(y_i|Y_{0:i}, X_{i+1:n}, s).$$

(10)

In Figure 3(b), we reconstruct x_i based on X_{-i} and y_i also within a masked language modeling scheme. We do not directly place y_i at the i-th token position between $X_{0:i}$ and $X_{i+1:n}$. Instead, we set y_i at the start of the sentences as a prompt (Gao et al., 2021). Practically we find that putting y_i at the i-th position always results in the same output as the model prediction, which is probably because pretrained MLM transformers learn over-strong hidden representation. Therefore, we obtain the content embedding at the masked position as,

$$c_i = E_{\text{RLM}}(y_i; X_{0:i}, [\text{MASK}], X_{i+1:n}).$$

This time we directly reconstruct x_i from content c_i' via another prediction head $H'_{\text{pred}}()$:

$$P_{\text{RLM}}(x_i|c_i') = \text{Softmax}(H'_{\text{pred}}(c_i')) = P_{\text{RLM}}(x_i|X_{0:i}, y_i, X_{i+1:n}).$$

(12)

3.3 Learning Objective

To learn the parameterized terms $P_{\text{RLM}}(y_i|Y_{0:i}, X_{i+1:n}, s)$ and $P_{\text{RLM}}(x_i|X_{0:i}, y_i, X_{i+1:n})$, we can only access raw-text sentences X and their source label \bar{s} under the unsupervised setup, without paralleled target Y provided. Based on our model design, the RLM encoder $E_{\text{RLM}}()$ only encodes the content information of the masked position. Therefore, we can encode the source sentence to obtain the content embedding instead, which is:

$$c_i = E_{\text{RLM}}(Y_{0:i}, [\text{MASK}], X_{i+1:n}) = E_{\text{RLM}}(X_{0:i}, [\text{MASK}], X_{i+1:n}),$$

(13)

$$c_i' = E_{\text{RLM}}(y_i; X_{0:i}, [\text{MASK}], X_{i+1:n}) = E_{\text{RLM}}(x_i, X_{0:i}, [\text{MASK}], X_{i+1:n}).$$

(14)

For the prediction term $P_{\text{RLM}}(y_i|Y_{0:i}, X_{i+1:n}, s)$, inspired by Yuan et al. (2020), we design our learning loss from an information-theoretic perspective to eliminate style information from the content embeddings. We minimize the mutual information (MI) $I(\bar{s}; c_i)$ to reduce the information overlap of \bar{s} and c_i. Meanwhile, \bar{s} and c_i should have rich semantic information from the input token x_i, so we maximize $I(x_i; \bar{s}, c_i)$. The overall learning objective is:

$$\min I(\bar{s}; c_i) - I(x_i; \bar{s}, c_i).$$

(15)

Practically, the MI values are difficult to calculate without knowing the distribution closed-forms (Poole et al., 2019), so we utilized two sample-based MI bounds to estimate. To maximize $I(x; s, c_i)$, we maximize a variational lower bound (Agaokov, 2004) instead:

$$I(x; s, c_i) \geq E_{P(x)}[\log P_{\text{RLM}}(x_i|\bar{s}, c_i)] - E_{P(x)}[\log P(x_i)],$$

(16)

where $P_{\text{RLM}}(x|s, c)$ is the prediction head defined in equation [10] and $E_{P(x)}[\log P(x_i)]$ is a constant based on input x_i. Therefore, we can maximize the log-likelihood $E[\log P_{\text{RLM}}(x_i|\bar{s}, c_i)]$ for $I(x; s, c_i)$ maximization. To minimize $I(\bar{s}; c_i)$, we follow Cheng et al. (2020a) and minimize a variational MI upper bounds:

$$I(\bar{s}; c_i) \leq E_{P(\bar{s})} [\log Q(\bar{s}|c_i)] - E_{P(\bar{s})} P(c_i)[\log Q(\bar{s}|c_i)],$$

where $Q(\bar{s}|c_i)$ is an variational approximation to the conditional distribution $P(\bar{s}|c_i)$.

To learn $P_{\text{RLM}}(x_i|X_{0:i}, y_i, X_{i+1:n})$, we collect the candidates y_i with the top-K logits of $P_{\text{RLM}}(y_i|Y_{0:i}, X_{i+1:n}, s)$, and replace x_i with each of them as in equation [4] then maximize the probability of $P_{\text{RLM}}(x_i|c_i')$ to reconstruct the original x_i. More details about learning objective are provided in the Supplementary Materials.

Unlike prior TST methods attempting to learn a sentence-level disentangled content vector and transfer the whole sentence with it, we disentangle style and content information at word-level, making it easier for deep networks to fit and infer. Moreover, our learning objective limits the generation at the masked positions, providing more fine-grained guidance to the transfer model.
We make some modifications to the equal-length RLM framework. For reconstruction term (b) Fusion of style and content embeddings. The target style P in equation 11, then the output logits at P obtain the general RLM form:

For generation term [MASK] in equation 11, then the output logits at P still provides $P_{RLM}(x_i | X_{0:i}, Y_{T_i:T_{i+1}}, X_{i+1:n})$. For generation term $P(Y_{T_i:T_{i+1}} | Y_{0:T_i}, X_{i+1:n}, s)$, we consider three different situations:

(i) If $T_{i+1} - T_i = 0$, which means $Y_{T_i:T_{i+1}}$ is the target sentence, P_{pred} will output a special [PAD] token at the [MASK] input position, as shown in Figure 2(a).

(ii) If $T_{i+1} - T_i = 1$, which means only one token y_{T_i} is in the text span $Y_{T_i:T_{i+1}}$ for replacing x_i, the situation is exactly the same as equal-length RLM in Figure 1(a).

(iii) If $T_{i+1} - T_i > 1$, besides predicting y_{T_i}, we should insert more token into the span $Y_{T_i:T_{i+1}}$. We introduce an insertion head $H_{insert}(\cdot)$ which takes the fused embedding e_i and outputs a binary prediction of [MASK] or [PAD]. As shown in Figure 2(b), besides the prediction head H_{pred} providing y_{T_i}, the insertion head H_{insert} will output a [MASK] token. In the next generation step, RLM will generate with the predicted [MASK] from H_{insert}, instead of masking x_{i+1}. This insertion process continues until H_{insert} outputs a [PAD] token.

Figure 2: Unequal-length transfer. (a) Deletion: if token x_i is supposed to be deleted in the target sentence, RLM will output a [PAD] token at the [MASK] position. (b) Insertion: to insert a token in the target sentence, the next-token prediction head will output a [MASK] token. Then the generated y_{T_i} and new [MASK] tokens are inserted back into the input, and the next-step masked language model generation will be conducted on the generated [MASK] token, instead of masking x_{i+1}.

Figure 3: (a) An example of sentence alignment. The blue sequence is the source and the green one is the target. Each T_i points token x_i to the start position of the same-content transferred text span. (b) Fusion of style and content embeddings. The target style s is concatenated to every content token. Then a self-attention is conducted on the combined embedding sequence. The attention results are added to the original content embedding with layer normalization.

3.4 Adoptions to Unequal-Length Transfer

In more general scenarios, transferred sentence Y usually has different lengths than the original sentence. For unequal-length transfer, we relax the objective of RLM, so that x_i can be replaced by a variable-length text span $Y_{T_i:T_{i+1}}$, where alignment T_i is the starting index of the i-th generated span in Y, $T_i \leq T_{i+1}$, as shown in Figure 3(a). Similarly to Section 3.1, we can split the sequence Y at each position T_i, and apply the Bayes’ Rule to each token x_i and its corresponding $Y_{T_i:T_{i+1}}$ to obtain the general RLM form:

$$P_{RLM}(Y|X, s) = \prod_{i=0}^{n-1} \left[P(Y_{T_i:T_{i+1}} | Y_{0:T_i}, X_{i+1:n}, s) \cdot P(x_i | Y_{T_i:T_{i+1}}, X_{i+1:n}) \right].$$

(17)

We make some modifications to the equal-length RLM framework. For reconstruction term $P(x_i | X_{0:i}, Y_{T_i:T_{i+1}}, X_{i+1:n})$, we change the input sequence to $(Y_{T_i:T_{i+1}}, X_{0:i}, [MASK], X_{i+1:n})$ in equation 11 then the output logits at [MASK] still provides $P_{RLM}(x_i | X_{0:i}, Y_{T_i:T_{i+1}}, X_{i+1:n})$. For generation term $P(Y_{T_i:T_{i+1}} | Y_{0:T_i}, X_{i+1:n}, s)$, we consider three different situations:

(i) If $T_{i+1} - T_i = 0$, we let the prediction head H_{pred} output a special [PAD] token at the [MASK] input position, as shown in Figure 2(a).

(ii) If $T_{i+1} - T_i = 1$, which means only one token y_{T_i} is in the text span $Y_{T_i:T_{i+1}}$ for replacing x_i, the situation is exactly the same as equal-length RLM in Figure 1(a).

(iii) If $T_{i+1} - T_i > 1$, besides predicting y_{T_i}, we should insert more token into the span $Y_{T_i:T_{i+1}}$. We introduce an insertion head $H_{insert}(\cdot)$ which takes the fused embedding e_i and outputs a binary prediction of [MASK] or [PAD]. As shown in Figure 2(b), besides the prediction head H_{pred} providing y_{T_i}, the insertion head H_{insert} will output a [MASK] token. In the next generation step, RLM will generate with the predicted [MASK] from H_{insert}, instead of masking x_{i+1}. This insertion process continues until H_{insert} outputs a [PAD] token.
To train H_{insert}, we can remove more than one token from the input sequence X, and let H_{insert} predict whether new tokens should be inserted. For input $(X_{0:k-1}, \text{[MASK]}, X_{i+k:n})$, if $k \geq 2$, H_{insert} has to predict a [MASK] token, otherwise H_{insert} should output a [PAD] token.

4 RELATED WORK

Sentence-level: Sentence-level methods generate the entire sentence with neural network based generators. Among sentence-level TST, Shen et al. (2017) learn a shared content embedding space across sentences with different styles, in which style information is eliminated. Then the neural generator combines the disentangled content embedding and target style to predict the transferred sentence. Hu et al. (2017) build a variational auto-encoding (Kingma and Welling, 2013) framework to encode the disentangled content embedding, and further adds style discriminators to induce the generator to output sentences with the target style. Different from the disentangling methods, Dai et al. (2019) propose a style transformer trained with cycle-consistency losses, and conducts direct transfer with source sentence and target style fed together into a transformer model. He et al. (2019) treat the target sentence as a sequence of latent variables of the observed source sentence, then applies the variational inference to learn the latent-observation mapping.

Word-level: Word-level TST methods make fine-grained edits on the original source sentence, where style-related words are usually removed, or replaced by other words in the target style. Li et al. (2018) detect style-related words based on the word occurrence frequencies in corpus with different styles, then deletes high correlation words to retrieve a new sentence in the target style. Sudhakar et al. (2019) extend the delete-retrieve-generate method (Li et al., 2018) with transformers, where keyword prompts are used to further improve content preservation. Wu et al. (2019) utilize the pretrained masked language model to generate target-related words at the masked positions, in which source-related words are originally located. Malmi et al. (2020) extend mask-and-refill which enables variable-length generation at the masked positions. Li et al. (2022) iteratively replace a source style related span with a generated target-style span, until the pretrained text classifier outputs a high probability on the target style label. All the mentioned word-level TST methods have heuristic pre-processes to detect style-related words.

5 EXPERIMENTS

We first describe the implementation details of the RLM model. Next, the three commonly-used automatic evaluation metrics and human evaluation are introduced to test the transfer performance. Then we compare our RLM with other baselines and further discuss the impact of hyper-parameters in the ablation study.

5.1 IMPLEMENTATION DETAILS

Model Details We construct our RLM based on pretrained transformer-based sentence encoder BERT (Kenton and Toutanova, 2019). More specifically, the pretrained BERT takes the masked sentence sequence (described in equation 13) as input, and output the last hidden state at the masked position as h_i. We use an attention block to extract only the content information c_i from h_i. The style embeddings are set to learnable vectors and initialized by style description word embeddings from the pretrained language models. The fused embedding e_i is output by a residual block (He et al., 2016) as shown in Figure 3(b). Instead of simply combining s and c_i, we consider the contextual influence of s on c_i. More specifically, we concatenate s to every content embedding of the input sequences, then process a single-head self-attention on all concatenated embeddings. Then we add the attention results back to the content embedding sequence with layer normalization.

Follow the setting in Kenton and Toutanova (2019) and Liu et al. (2019b), the style and content embedding dimension is set to 768, which equals the dimension of transformer hidden states. The prediction head H_{pred} is initial with the pretrained masked language modeling head from BERT. The insertion head H_{insert} is a pretrained pooling module from BERT following by a single fully connected layer, outputting the probability of next-token insertion.

Data Preparation We conduct the experiment on two real-world sentiment transfer datasets: Yelp and Amazon Review. Yelp contains 450K restaurant reviews and business reviews. Each review is labeled as positive or negative. Amazon review contains 550K product reviews and each is labeled as positive or negative similar to Yelp. We follow the data pre-processing setup from (Li et al., 2018).
Table 1: Automatic and human evaluation of transfer results on the Yelp datasets.

Model	Automatic Evaluation	Human Evaluation						
	ACC	R-BLEU	S-BLEU	GM	SA	CP	SF	GM
CrossAlign (Shen et al., 2017)	74.2	4.2	13.2	16.0	3.4	2.1	4.1	3.1
DRG (Li et al., 2018)	88.3	23.1	44.4	44.9	3.5	2.9	4.2	3.5
S-Transformer (Dai et al., 2019)	87.3	19.8	55.2	45.7	4.0	3.8	4.3	4.0
CPVAE (Xu et al., 2020)	55.4	26.4	48.4	41.4	3.5	2.7	4.4	3.5
RACoLN (Lee et al., 2021)	91.3	20.0	59.4	47.7	4.1	3.7	4.2	4.0
RLM (Ours)	91.0	30.6	51.7	52.4	4.5	3.7	4.3	4.2

for a fair comparison. To prepare the training data for masked language model fine-tuning, for each training sample, we randomly select one word for masking, then reform the input sequence as in equation [1] and equation [14]. To enhance the quality of the masked training samples, when masking we skip all numbers and the pronouns defined in NLTK (Bird, 2006), which are high-frequency words with no style-related information. Apart from that, we also skip words that are less style-related by following the design of attribute markers from (Li et al., 2018). Samples within the same batch are of similar lengths to avoid noise in mask prediction brought by unnecessary lengthy paddings.

Training Setups: We finetune the pretrained BERT base model with AdamW (Loshchilov and Hutter, 2018) as the training optimizer, with the learning rate set to 5×10^{-5}. The batch size is set to 16. Other parameters follow the initial settings of the pre-trained base BERT.

5.2 Evaluation Metrics

Style Transfer Accuracy: Each transferred sentence is sent into a pretrained style classifier to test whether it can be recognized correctly with the target style. The classification accuracy (ACC) is reported. This is evaluated by a RoBerTa (Liu et al., 2019a) classifier which achieves an accuracy of 97.2% on Yelp and 86.1% on Amazon.

Content Preservation: We use two metrics to measure the transfer content preservation: (1) Self-BLEU (S-BLEU) (Papineni et al., 2002) is calculated between the generated sentence and the input source sentence, providing a rough criterion of content preservation; (2) Ref-BLEU (R-BLEU) is calculated between the generated sentence and man-made transfer results provided on the testing set, which reflects the similarity between the model’s transfer and human rewriting.

Overall Quality: Following Lee et al. (2021), we take the geometric mean (GM) of the above automatic evaluation metrics as an overall transfer quality score.

Human Evaluation: We also ask annotators to score 1-5 to the transferred sentences, from the perspectives of style transfer accuracy (SA), content preservation (CP) and sentence fluency (SF). The overall quality is also computed as the geometric mean (GM) of SA, CP, and SF.

5.3 Performance

We compared our replacing language model with several competitive baselines: CrossAlign (Shen et al., 2017), DRG (Li et al., 2018), Style-Transformer (Dai et al., 2019), CPVAE (Xu et al., 2020), and RACoLN (Lee et al., 2021). The left-hand side of Table 1 and Table 2 show the automatic evaluation results on both Yelp and Amazon datasets, respectively. Besides, Table 2 demonstrates the automatic evaluation on Amazon Review.

For automatic evaluation, on the Yelp dataset, our RLM reaches the highest Ref-BLEU score with a significant gap with baseline methods, which indicates our RLM’s generation ability to transfer sentences with higher naturalness and closer to the human-made references. For style transfer accuracy, our RLM is competitive with the state-of-the-art baseline RACoLN (Lee et al., 2021). Although not conspicuous enough on the Self-BLEU metric, our RLM still outperforms previous methods distinctly with respect to the overall performance (the geometric mean of ACC, R-BLEU, and S-BLEU). On the Amazon review dataset, CrossAlign (Shen et al., 2017) reaches the highest style transfer accuracy, but performs poorly under the Ref-BLEU and Self-BLEU measurements. In contrast, RACoLN (Lee et al., 2021) achieves the best Ref-BLEU and Self-BLEU scores. However, the style transfer accuracy of RACoLN is apparently at a disadvantage. Although our RLM does not reach the highest score on any of the three metrics, the overall performance (GM) score is the highest among all the methods, indicating RLM with a better style-content trade-off.
Table 2: Automatic evaluation on the Amazon dataset.

Method	ACC	R-BLEU	S-BLEU	GM
CrossAlign	65.0	9.2	20.7	23.1
S-Transformer	58.3	27.7	57.3	45.2
CPVAE	40.0	28.6	39.7	35.7
RACoLN	48.7	36.1	54.5	45.7
RLM	57.5	30.9	54.7	46.0

On the right-hand side of Table 1, we report the human evaluation results of sentiment transfer on the Yelp review dataset. From the results, our RLM reaches the best style transfer accuracy (SA) with an average score 4.5, which distinctly outperforms other baselines. Besides, the content preservation (CP) score (with average 3.7) and the sentence fluency (SF) score (with average 4.3) are competitive to the best records among all the baselines (CP average 3.8 and SF average 4.4). The geometric mean (GM) shows the overall transfer performance under the human judgement, where our RLM also surpasses other baselines evidently.

Based on the reported results above, we find that our RLM consistently remain a better overall transfer performance compared to other methods, supporting the claim that our RLM has a comprehensive transfer ability with more balanced rewriting results.

5.4 Ablation Study

For the ablation study, we first consider the impact of the hyper-parameter K in the top-K selection of equation 9. We choose different K values, and report the evaluation results in Table 3. From the results, we discover a clear trade-off between the style transfer accuracy (ACC) and the self-BLEU score. As the hyper-parameter K goes larger, the style transfer accuracy increases. Because the prediction candidate set inflates, the RLM model has more flexibility to select word candidates to fit the target style. At the same time, the self-BLEU score goes down since the more prediction candidates, the lower probability for RLM to select the original input tokens.

Table 3: Ablation study of RLM on the Yelp dataset.

RLM	ACC	R-BLEU	S-BLEU	GM
Top-1	89.7	30.0	53.5	52.4
Top-3	90.7	29.5	51.8	51.8
Top-5	91.0	30.6	51.7	52.4
Top-10	91.0	29.5	51.5	51.7
No $I(s; c)$	74.6	27.7	38.2	42.9
No Insert	89.6	31.0	50.1	51.8
No Delete	85.1	29.7	49.9	50.1
No Delete&Insert	88.7	29.1	53.3	51.6

Besides, we test the effectiveness of different parts in RLM. We fix model with $K = 5$ and train it without the disentangling loss $I(s; c)$. From Table 3 without the disentangling term $I(s; c)$, the performance goes much worse, which means the model cannot learn disentangled style and content representations without the mutual information minimization process. Also, we remove the insertion and deletion mechanism, leading to slightly lower transfer performance, because the sentiment transfer on Yelp does not require large amount of text reorganizing. In addition, the reference sentences have heavy overlaps with the source sentences, leaving little space for inserting and deleting operation.

6 Conclusion

This paper introduces a new sequence-to-sequence framework for text style transfer called replacing language model (RLM). In virtue of pretrained language models such as BERT, our model autoregressively predicts a target text span based on the generated prefix and the remaining source suffix in the masked language modeling (MLM) paradigm, and further scores the newly generated span based on the probability of reconstructing the corresponding word in the original sentence. Moreover, unlike prior sentence-level disentangling methods, we eliminate the style information from the word-level content embeddings with information-theoretic guidance, providing fine-grained control to generate transferred tokens. The empirical results on Yelp and Amazon review dataset demonstrate the
effectiveness of the proposed RLM. As a novel generation scheme, RLM combines autoregressive generators’ flexibility and non-autoregressive models’ accuracy. However, a potential limitation is about the transfer diversity, that RLM does not rewrite sentences with different word orders (e.g., active voice to passive voice), which might be an advantage in contrast to other sequence-sequence tasks requiring order preservation, such as voice conversion. From this perspective, we believe the replacing language model will have a further impact in broader sequence-to-sequence modeling scenarios such as machine translation, text rewriting, and speech processing.

REFERENCES

David Barber Felix Agakov. The im algorithm: a variational approach to information maximization. Advances in neural information processing systems, 16(320):201, 2004.

Kushal Arora, Layla El Asri, Hareesh Bahuleyan, and Jackie Chi Kit Cheung. Why exposure bias matters: An imitation learning perspective of error accumulation in language generation. In Findings of the Association for Computational Linguistics: ACL 2022, pages 700–710, 2022.

Yoshua Bengio, Réjean Ducharme, and Pascal Vincent. A neural probabilistic language model. Advances in neural information processing systems, 13, 2000.

Steven Bird. Nltk: the natural language toolkit. In Proceedings of the COLING/ACL 2006 Interactive Presentation Sessions, pages 69–72, 2006.

George EP Box and George C Tiao. Bayesian inference in statistical analysis. John Wiley & Sons, 2011.

Peter F Brown, Stephen A Della Pietra, Vincent J Della Pietra, Jennifer C Lai, and Robert L Mercer. An estimate of an upper bound for the entropy of english. Computational Linguistics, 18(1):31–40, 1992.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Sabrina Campano and Nicolas Sabouret. A socio-emotional model of impoliteness for non-player characters. In 2009 3rd International Conference on Affective Computing and Intelligent Interaction and Workshops, pages 1–7. IEEE, 2009.

Pengyu Cheng, Weituo Hao, Shuyang Dai, Jiachang Liu, Zhe Gan, and Lawrence Carin. Club: A contrastive log-ratio upper bound of mutual information. In International conference on machine learning, pages 1779–1788. PMLR, 2020a.

Pengyu Cheng, Martin Renqiang Min, Dinghan Shen, Christopher Malon, Yizhe Zhang, Yitong Li, and Lawrence Carin. Improving disentangled text representation learning with information-theoretic guidance. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 7530–7541, 2020b.

Ning Dai, Jianze Liang, Xipeng Qiu, and Xuan-Jing Huang. Style transformer: Unpaired text style transfer without disentangled latent representation. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 5997–6007, 2019.

Tianyu Gao, Adam Fisch, and Danqi Chen. Making pre-trained language models better few-shot learners. In Association for Computational Linguistics (ACL), 2021.

Junxian He, Xinyi Wang, Graham Neubig, and Taylor Berg-Kirkpatrick. A probabilistic formulation of unsupervised text style transfer. In International Conference on Learning Representations, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.
Ari Holtzman, Jan Buys, Maxwell Forbes, Antoine Bosselut, David Golub, and Yejin Choi. Learning to write with cooperative discriminators. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1638–1649, 2018.

Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan Salakhutdinov, and Eric P Xing. Toward controlled generation of text. In International conference on machine learning, pages 1587–1596. PMLR, 2017.

Fei Huang, Zikai Chen, Chen Henry Wu, Qihan Guo, Xiaoyan Zhu, and Minlie Huang. Nast: A non-autoregressive generator with word alignment for unsupervised text style transfer. In Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 1577–1590, 2021.

Vineet John, Lili Mou, Hareesh Bahuleyan, and Olga Vechtomova. Disentangled representation learning for non-parallel text style transfer. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 424–434, 2019.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of NAACL-HLT, pages 4171–4186, 2019.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.

Solomon Kullback. Information theory and statistics. Courier Corporation, 1997.

Huiyuan Lai, Antonio Toral, and Malvina Nissim. Thank you bart! rewarding pre-trained models improves formality style transfer. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers), pages 484–494, 2021.

Guillaume Lample, Sandeep Subramanian, Eric Smith, Ludovic Denoyer, Marc’Aurelio Ranzato, and Y-Lan Boureau. Multiple-attribute text rewriting. In International Conference on Learning Representations, 2018.

Dongkyu Lee, Zhiliang Tian, Lanqing Xue, and Nevin Lianwen Zhang. Enhancing content preservation in text style transfer using reverse attention and conditional layer normalization. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, 2021.

Hsin-Ying Lee, Hung-Yu Tseng, Jia-Bin Huang, Maneesh Singh, and Ming-Hsuan Yang. Diverse image-to-image translation via disentangled representations. In Proceedings of the European conference on computer vision (ECCV), pages 35–51, 2018.

Jingjing Li, Zichao Li, Tao Ge, Irwin King, and Michael R Lyu. Text revision by on-the-fly representation optimization. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2022.

Juncen Li, Robin Jia, He He, and Percy Liang. Delete, retrieve, generate: a simple approach to sentiment and style transfer. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 1865–1874, 2018.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized BERT pretraining approach. CoRR, abs/1907.11692, 2019a.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692, 2019b.

Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Raetsch, Sylvain Gelly, Bernhard Schölkopf, and Olivier Bachem. Challenging common assumptions in the unsupervised learning of disentangled representations. In International conference on machine learning, pages 4114–4124. PMLR, 2019.
Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *International Conference on Learning Representations*, 2018.

Aman Madaan, Amrith Setlur, Tanmay Parekh, Barnabás Poczos, Graham Neubig, Yiming Yang, Ruslan Salakhutdinov, Alan W Black, and Shrimai Prabhunoye. Politeness transfer: A tag and generate approach. In *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics*, pages 1869–1881, 2020.

Eric Malmi, Aliaksei Severyn, and Sascha Rothe. Unsupervised text style transfer with padded masked language models. In *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)*, pages 8671–8680, 2020.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic evaluation of machine translation. In *Proceedings of the 40th annual meeting of the Association for Computational Linguistics*, pages 311–318, 2002.

Ben Poole, Sherjil Ozair, Aaron Van Den Oord, Alex Alemi, and George Tucker. On variational bounds of mutual information. In *International Conference on Machine Learning*, pages 5171–5180. PMLR, 2019.

Weizhen Qi, Yeyun Gong, Jian Jiao, Yu Yan, Weizhu Chen, Dayiheng Liu, Kewen Tang, Houqiang Li, Jiusheng Chen, Ruofei Zhang, et al. Bang: Bridging autoregressive and non-autoregressive generation with large scale pretraining. In *International Conference on Machine Learning*, pages 8630–8639. PMLR, 2021.

Wanhui Qian, Jinzhu Yang, and Songlin Hu. Discovering the style information in texts via a reinforced decision process. In *2021 International Joint Conference on Neural Networks (IJCNN)*, pages 1–8. IEEE, 2021.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language models are unsupervised multitask learners. *OpenAI blog*, 1(8):9, 2019.

Sudha Rao and Joel Tetreault. Dear sir or madam, may i introduce the gyafc dataset: Corpus, benchmarks and metrics for formality style transfer. In *Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)*, pages 129–140, 2018.

Machel Reid and Victor Zhong. Lewis: Levenshtein editing for unsupervised text style transfer. In *Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021*, pages 3932–3944, 2021.

Tianxiao Shen, Tao Lei, Regina Barzilay, and Tommi Jaakkola. Style transfer from non-parallel text by cross-alignment. *Advances in neural information processing systems*, 30, 2017.

Tianxiao Shen, Victor Quach, Regina Barzilay, and Tommi Jaakkola. Blank language models. In *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)*, pages 5186–5198, 2020.

Akhilesh Sudhakar, Bhargav Upadhyay, and Arjun Maheswaran. “transforming” delete, retrieve, generate approach for controlled text style transfer. In *Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)*, pages 3269–3279, 2019.

Chen Henry Wu, Yinhe Zheng, Xiaoxi Mao, and Minlie Huang. Transferable persona-grounded dialogues via grounded minimal edits. In *Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing*, pages 2368–2382, 2021.

Xing Wu, Tao Zhang, Liangjun Zang, Jizhong Han, and Songlin Hu. “mask and infill”: Applying masked language model to sentiment transfer. *arXiv preprint arXiv:1908.08039*, 2019.

Peng Xu, Jackie Chi Kit Cheung, and Yanhuai Cao. On variational learning of controllable representations for text without supervision. In *Proceedings of the 37th International Conference on Machine Learning, ICML 2020*, 13-18 July 2020, Virtual Event, volume 119, pages 10534–10543, 2020.
Zichao Yang, Zhiting Hu, Chris Dyer, Eric P Xing, and Taylor Berg-Kirkpatrick. Unsupervised text style transfer using language models as discriminators. *Advances in Neural Information Processing Systems*, 31, 2018.

Siyang Yuan, Pengyu Cheng, Ruiyi Zhang, Weituo Hao, Zhe Gan, and Lawrence Carin. Improving zero-shot voice style transfer via disentangled representation learning. In *International Conference on Learning Representations*, 2020.

Andhik Ampuh Yunanto, Darlis Herumurti, Siti Rochimah, and Imam Kuswardayan. English education game using non-player character based on natural language processing. *Procedia Computer Science*, 161:502–508, 2019.

Saizheng Zhang, Emily Dinan, Jack Urbanek, Arthur Szlam, Douwe Kiela, and Jason Weston. Personalizing dialogue agents: I have a dog, do you have pets too? In *Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 2204–2213, 2018.
A **TRANSFERRED SAMPLES**

Source	Reference	Transferred
decent selection of meats and cheeses.	the meats and cheeses were **not a lot** to choose from.	**limited** selection of meats and cheeses.
anyway, we got our coffee and **will not return** to this location.	we got coffee and **we 'll think about going back**.	anyway, we got our coffee and **will definitely return** to this location.
everything we ’ve ever ordered here has been **great tasting**.	everything we’ve ever ordered here has been **horrible tasting**.	everything we’ve ever ordered here has been **horrible tasting**.
great food, low prices , and an **authentic** mexican cantina vibe.	**terrible** food , bad prices , **would not recommend** .	**terrible food**, low prices, **not an authentic mexican cantina vibe** .
i ’m **not willing** to take the chance.	im **willing to** take the chance!	i’m **going to** take the chance.
the evening started out **slow**.	the evening started out with **excitement**.	the night came out **perfect**.
overall it was a **miserable evening**.	overall it was an **exceptional evening**.	and it was a **great experience** .
the color that she uses on my girlfriend ’s hair looks **great**.	the color used on my friend was a **bad** choice.	the color that she put on my wife’s hair looked **terrible**.
pricy but the cheese pies are **delicious** !	**pricy** and these cheese pies are **disgusting** !	**pricy** and the cheese pies are **awful**!
it ’s **not my fave**, **but it ’s not awful**.	it ’s a very **pleasant surprise**.	it’s **worth my fave**, but it's definitely expensive .
so far , **great customer service** .	so far the customer **service was just rude**.	so disappointed, **very bad service** .
this place is a shit hole with **bad** service.	this place is very **nice** with **great** service.	this place is a real **gem** with **great** food.
this branch is getting **worse and worse**.	this branch is getting **better and better**.	this place is getting **better and better**.

Table 4: Examples of transferred results from RLM on the Yelp dataset. For every example, the first line is the input source sentence, the second line is the reference transferred output and the last line is the sentence generated by RLM. Stylization words are marked in bold.
Source	then both of them go into the dishwasher.
Reference	then both of them might go into the dishwasher.
Transferred	but none of them go into the dishwasher.

Source	i dropped phone once and the case held up perfectly.
Reference	i dropped phone once and the case didn’t hold up.
Transferred	i dropped phone off and the case slides off quickly.

Source	i have many oxo products, and i ‘ve always been pleased.
Reference	i have a few oxo products and have always been disappointed.
Transferred	i have used oxo products, and i ‘ve always been disappointed.

Source	just do your homework and you will end up pretty satisfied.
Reference	just do your homework and you will end up pretty dismayed.
Transferred	just play your game and you will end up very disappointed.

Source	it stays on and i unplug it when it s done.
Reference	it won’t stay on so i unplug it when it s done.
Transferred	it slides off and i unplug it when it s used.

Source	i have been missing out! this thing is so sharp.
Reference	i have not been missing out! this thing is so dull.
Transferred	i have been trying out! this thing is very bad.

Source	i have to say that it was money well spent.
Reference	money wasted i think.
Transferred	i have to say that it was very soon died.

Source	well worth the money, wouldn’t want to be without it.
Reference	not worth the money, could easily be without it.
Transferred	not worth the money, didn’t want to play with it.

Source	i like it better than any of the forman items.
Reference	i dislike it more then any of the forman items.
Transferred	i like it better than none of the forman items.

Source	overall i love them, and would probably buy them again.
Reference	overall i hate them, and would never buy them again.
Transferred	unfortunately i hate them, and would not buy them again.

Source	what a change in my life this will make.
Reference	what a bad change in my life this will make.
Transferred	what a problem in my life this will make.

Source	i give it five stars for making eating good so easy!
Reference	i give it four stars for making eating well more easy!
Transferred	i give it two stars for making eating good not easy!

Table 5: Examples of transferred results from RLM on the Amazon dataset. For every example, the first line is the input source sentence, the second line is the reference transferred output and the last line is the sentence generated by RLM. Stylization words are marked in bold.
B LEARNING OBJECTIVES

As described in Section 5.1, we can use the variational mutual information estimators to bound the MI terms in the objectives:

\[I(x; \tilde{s}, c_i) \geq \mathbb{E}_{P(x_i, \tilde{s}, c_i)}[\log P_{RLM}(x_i | \tilde{s}, c_i)] - \mathbb{E}_{P(x_i)}[\log P(x_i)] = \mathcal{L}_1, \]
\[I(\tilde{s}; c_i) \leq \mathbb{E}_{P(\tilde{s}, c_i)}[\log Q(\tilde{s} | c_i)] - \mathbb{E}_{P(\tilde{s})P(c_i)}[\log Q(\tilde{s} | c_i)] = \mathcal{L}_2, \]
\[I(x_i, c'_i) \leq \mathbb{E}_{P(x_i, c'_i)}[\log P_{RLM}(x_i | c'_i)] - \mathbb{E}_{P(x_i)}[\log P_{RLM}(x_i | c'_i)] = \mathcal{L}_3. \]

With training samples \(\{(x_u, \tilde{s}_u)\}_{u=1}^U \), we can estimate \(\mathcal{L}_1, \mathcal{L}_2, \mathcal{L}_3 \) with Monte Carlo estimation:

\[\hat{\mathcal{L}}_1 = \frac{1}{U} \sum_{u=1}^U [\log P_{RLM}(x_i^u | \tilde{s}_u^u, c_i^u)], \]
\[\hat{\mathcal{L}}_2 = \frac{1}{U} \sum_{u=1}^U \log Q(\tilde{s}_u^u | c_i^u) - \frac{1}{U^2} \sum_{u=1}^U \sum_{v=1}^U \log Q(\tilde{s}_v^u | c_i^u), \]
\[\hat{\mathcal{L}}_3 = \frac{1}{U} \sum_{u=1}^U \log P_{RLM}(x_i | c'_i) - \frac{1}{U^2} \sum_{u=1}^U \sum_{v=1}^U \log P_{RLM}(x_i^v | c_i^u). \]

In equation 21, we remove the term \(\mathbb{E}_{P(x_i)}[\log P(x_i)] \), which is a constant with respect to the model parameters. Note that \(Q(\tilde{s} | c) \) can be regarded as a prediction to style \(\tilde{s} \) based on the content embedding \(c \). Therefore, we build \(Q(\tilde{s} | c) \) as a linear style classifier, trained by the likelihood maximization:

\[\max_Q \hat{\mathcal{L}}_{\text{Var}} = \frac{1}{U} \sum_{u=1}^U Q(\tilde{s}_u^u | c_i^u). \]