Melanoma Metamorphoses: Advances in Biology and Therapy

Arthur E. Frankel* and Eugene P. Frenkel

University of Texas Southwestern Medical Center at Dallas, Internal Medicine, TX 75390, USA

Abstract

Melanoma is a malignancy of melanocytes of cutaneous, uveal or mucosal origins. This review discusses advances in biology and new approaches in staging and advanced disease therapy.

Keywords: Melanoma biology; Melanoma targeted therapy; Melanoma immunotherapy

Risk Factors

Risk factors for cutaneous melanoma have been well described and a partial risk algorithm is available [4]. Higher risk ratios are seen for people with xeroderma pigmentosum (2000x), FAMMM syndrome-133x, previous melanoma-12.4x, multiple nevi-5.5x, tanning bed use-3.9x, Parkinson's disease-3.6x, blond or red hair-1.8x, family history of melanoma-1.7x, pale or freckled skin-1.6x, blistering sunburn history-1.3x [5-8]. Interesting correlations have been observed between melanoma and airline pilot/crew occupation, immunosuppression, and living in lower latitudes [9-13]. Dietary factors have been extensively studied with equivocal results- the most recent implicate beneficial effects of vitamin D containing foods, butter, and oregano on melanoma incidence [14,15]. There is a strong interaction between genetic presence of DNA repair errors and UV exposure [16-18].

Etiology

More is known about the photochemistry and genetics leading to cutaneous melanoma than about the origins of uveal or mucosal melanosomes. The solar fusion reaction generating helium yields highly energetic photon products that excite the coronal hydrogen electron to higher energy states. When these electrons return to lower quantum states, light photons are emitted towards the earth including UV A, UVB, UVC and visible light. Water molecules and other particles in the atmosphere block UVC and some UVB. Most UV A and visible light reaches the earth and humans. Primitive humans were protected from excessive photo-damage by hair or eumelanin skin pigmentation. However, human migration, pigmentation gene mutations, cultural dress norms and recreational activities have led to heightened skin exposure to UV A. A long-known paradox was the association of melanoma with UV A rather than UVB light. Only UVB light has the energy necessary to directly induce cyclobutane pyrimidine dimers. These DNA adducts are the precursors for the genetic lesions associated with melanoma. In the last year, Brash and colleagues at Yale discovered a pheomelanin-dependent pathway that converts UV A exposure into melanocyte cyclobutane pyrimidine dimers [19]. UV A induces expression of nitric oxide synthetase, NADPH oxidase and melanin synthetases. These enzymes produce nitric oxide, superoxide, peroxynitrite, and pheomelanin in the cytosol and melanosomes, respectively. These products combine to yield melanin degradation products and dioxetane-containing molecules in the cytosol (Figure 1) [20]. Dioxetane products persist and diffuse to the nucleus where they undergo thermolysis to excited-state triplet carbenyls-n->π*.

This species participates in Dexter triplet-triplet energy transfer to...
Somatic cell DNA sequencing revealed a dominant mutation signature associated with melanoma-Signature 7 due to C>T substitutions on the untranscribed strand. This signature is caused by cyclobutane pyrimidine dimer repair by transcription-coupled nucleotide-excision repair [23]. BRAF mutations occur from error-prone recombination repair by pol η/pol ζ from nearby CPD formation [24]. Founder mutations occur in mitogen-activated protein kinase-MAPK proliferation control genes yielding four melanoma subtypes-mutant BRAF; mutant RAS, mutant NF1, and triple wild-type containing KIT, GNAQ/11 [25,26]. Further mutations in cell cycle checkpoint-CDKN2A, immortalization- TERT promoter, and other pathway genes-p53, PTEN, BAP1, ARID1, YAP1 provide a growth advantage [27-29]. In fact, a careful study of multiple biopsies of evolving melanocytic lesions showed progression from BRAF/NRAS/ NF1 mutations nevus to PTERT/CDKN2A/RID1A mutations in in situ melanoma to PTEN/p53/YAP1/BAP1 invasive melanomas [30]. Acquisition of a neural crest stem cell phenotype with LOX10 and SETDB1 overexpression further contributes to invasive melanoma [31,32]. GNA11/Q and c-KIT are preferentially mutated in uveal and mucosal melanomas, respectively. Melanoma has the highest mutation burden of any cancer.

Screening and Prevention

Because of the location of cutaneous melanomas, screening for early detection is feasible, non-invasive, and relatively inexpensive. Visual examination focuses on the "ABCDE" mnemonic-asymmetry, border irregularity, color variegation, diameter>6 mm, and evolution with rapid morphologic changes [33]. However, observer training is required to distinguish benign from malignant moles with the best exam sensitivity and specificity achieved by dermatologists. Further, more and less thick lesions are discovered by more frequent examinations with yearly better than biannual better than every five years better than once only. Ophthalmology exams are needed to screen for uveal melanomas [34]. There is no effective screening for mucosal melanomas. Results are improved with addition of supplemental dermoscopy and total body photography [35]. In a meta-analysis, dermoscopy increased sensitivity of diagnosis from 74% by naked eye to 90% with the instrument without a significant decrease in specificity. Addition of total body photography led to removal of thinner melanomas (note change in size of lesion as shown below). Further, 40% of discovered lesions were not being followed by visual or dermatoscopic surveillance [36]. There are sobering limitations. Nodular melanomas grow rapidly and may advance to late stage between examinations complicating periodic monitoring. Amelanotic and desmoplastic melanomas lack most of the ABCDE features often leading to delayed diagnosis. Nevertheless, screening saves lives as demonstrated in the Schleswig-Holstein study with a single standardized whole-body examination where a 48% decline in melanoma mortality was reported compared to unscreened adjacent regions of Germany [37]. Preventive measures centre on reduced UV skin exposure with avoiding sun exposure between 10 AM and 2 PM, wearing light colored, dry, synthetic material, high ultraviolet protection factor-UPF clothing with UV absorbers in laundry detergent, wide-brimmed hats and applying high sun protection factor-SPF UVA-UVB broad spectrum sunscreens in adequate amounts-one teaspoon each for face, neck, and two teaspoons each for abdomen, back and limbs and frequency every 2-3 h [38,39]. UVB blockers include physical barriers-titanium dioxide and chemical absorbers-oxybenzone. UVA blockers include the chemicals-avobenzone/oxecrylene, eascume, silitrizzol, and bemetrizinol. Only the avobenzone/oxecrylene is available in U.S [40]. Uveal melanoma protection includes orange/yellow sunglasses and blue light-blocking lens replacements [22].

Diagnosis

A punch or excisional biopsy with histologic and sometimes immunohistochemical analysis is required for cutaneous melanoma diagnosis [41]. Morphological/histological findings of cutaneous melanomas include pagetoid cells or atypical cells with branching dendritic structures, broadened honeycombed pattern or cerebriform clusters [42,43]. Melanomas are assigned to superficial spreading melanoma, lentigo maligna, nodular melanoma and desmoplastic melanoma. Cytologically atypical melanocytes in epidermis and dermis with mitoses and necrosis or inflammation are seen. Desmoplastic melanomas have abnormal melanocytes surrounded by fibrous tissue [44]. Markers for melanocytic differentiation include HMB45, Melan-A/Mart, tyrosinase, MTIF and SOX10. Both radial growth-superficial spreading melanoma and vertical growth-nodular melanoma predominant patterns are seen. Uveal melanomas are diagnosed by ophthalmoscopy and scans rather than biopsy. Mucosal melanomas require tissue biopsy confirmation for diagnosis.

Staging

For cutaneous melanomas, patient history, the patient's gender and age are determined. The physical exam and punch biopsy provide evidence of location of disease (extremity or axial), ulceration, tumor thickness, and mitotic rate. Once the biopsy confirms the diagnosis, blue dye + radiocolloid (e.g., "99mTc tilmanocept) infusion with sentinel node biopsy is performed [45]. For clinically positive nodal metastases and for mucosal or uveal melanomas, PET/CT and brain MRI scans are done to assess visceral metastases. Tumor specimens should be sent for oncogene studies-BRAF or c-KIT for node positive cutaneous melanomas or mucosal melanomas, respectively. Several prognosis algorithms are available online for cutaneous melanomas including http://melanomaprognosis.org and www.melanomacalculator.com [46,47]. As noted below, cutaneous melanoma-free survival is shortened by older age, male gender, thicker tumor, ulceration, measurable mitoses/mm^2, positive sentinel nodes, multiple or macroscopic nodal metastases, any distant metastases-particularly non-lung visceral lesions, and poor prognosis gene expression profile (Figure 2) [48-52]. The 31-gene expression panel of Castle Biosciences combined with sentinel node status was the most accurate predictor of disease-free, metastasis-free and overall survival. Staging provides important...
Cutaneous melanoma local control is achieved by excisional surgery. For cutaneous melanomas ≤ 1 mm thickness, 1 cm margins are sufficient. For melanomas between 1 and 2 mm, 1-2 cm margins are done. For melanomas ≥ 2 mm thickness, 2 cm margins are required. These excision margins yield a 4% local recurrence rate that is not improved by wider margins based on multiple randomized trials [56].

Local Therapy

Cutaneous melanoma primary therapy includes local excision with 2 cm margins for disease confined to the vulva [60]. For advanced disease, pelvis exenteration is done. Sinus melanomas are treated with wide local excision followed by external beam radiotherapy (Ming, 2014). Anal melanomas may be treated by either wide excision or abdominoperineal resection without differences in five-year survival [61].

Regional Therapy

Cutaneous melanomas have a 20% frequency of nodal and regional subcutaneous involvement, and efforts to control regional disease are an important part of care. Sentinel node sampling is done for cutaneous melanomas but not uveal or mucosal melanomas. If either positive sentinel nodes or clinically enlarged nodes are found, lymphadenectomy is carried out. Dissections are limited to the target lymph node basin-cervical, axillary, inguinal, iliac, epitrochlear or popliteal. In the setting of microscopically positive sentinel nodes, lymphadenectomy results in improved regional control, and for intermediate thickness primary tumors (1.2-3.5 mm), better overall survival [62]. However, lymphadenectomy is associated with a significant morbidty rate of 23%. Patients experience lymphedema, seroma formation, dyesthesias, and motor dysfunction. The post-adenectomy recurrence rate is 20% [63]. The German DeCOG-SLT trial demonstrated no superiority for lymphadenectomy in sentinel node positive patients and concluded adenectomy was not indicated for ≤ 1 mm micrometastases [64]. An ongoing MSLT-2 randomized clinical trial is comparing immediate lymphadenectomy for sentinel node positive disease versus ultrasound monitoring followed by lymphadenectomy on clinical recurrence. This study will address the value of early lymphadenectomy for all patients. For patients post-lymphadenectomy with positive parotid node or extra-nodal tumor spread or ≥ 3 cm cervical nodes or ≥ 4 cm axillary/inguinal nodes or ≥ 2 involved cervical/axillary nodes or ≥ 3 involved inguinal nodes, adjuvant 48 Gy external beam radiation over 20 fractions over 4 weeks, was well tolerated and reduced regional relapse from 55% to 25% [65]. There is no survival advantage for lymphadenectomy in vulvar, uveal, sinus or anal melanoma patients. Sinus melanoma adjuvant radiotherapy reduces regional recurrence two-fold [66]. Anal melanoma adjuvant radiotherapy to the extended field after wide excision reduces regional recurrence three-fold but does not impact distant relapse and may be associated with severe toxicities including lymphedema and proctitis.

Adjuvant Systemic Therapy

Melanoma-related death is due to systemic metastases present at diagnosis. After local-regional therapy, adjuvant therapy to prolong disease-free survival and improve overall survival has been tested. The only FDA approved agents are interferon α2b and pegylated interferon
Interferon-α2b is a secreted glycoprotein that binds cell surface receptors with two distinct subunits. The bound complex phosphorylates Janus kinase 1-JAK1 and tyrosine kinase 2. Phosphorylated JAK phosphorylates the cytoplasmic transcription factors signal transducers and activators of transcription 1 and 2-STAT1/2. STAT1/2-P attaches to interferon-stimulated gene factor 3 and translocates to the nucleus where it reacts with interferon-stimulated response elements in the promoters of interferon-responsive genes and activates transcription promoting a pro-inflammatory state [67]. Meta-analyses of multiple randomized trials showed a one-year improvement in disease-free survival and a 3% benefit in overall survival for interferon versus placebo [68]. The subset of patients with ulcerated melanomas either ≥ 2 mm or with microscopic nodal disease also had a ten months disease-free survival benefit but a 20% benefit in overall survival for interferon [69,70]. Interferon toxicities are fatigue, anorexia, hepatotoxicity and flu-like symptoms and are controlled by dose modification and aggressive symptom control [71,72].

Based on the success of interferon, adjuvant ipilimumab (an anti-CTLA-4 immune checkpoint antibody discussed in more detail below) has been tested in node positive patients in U.S. and European randomized trials compared to interferon and placebo, respectively. Preliminary results of the European study at 2.5 years of follow-up show an ipilimumab nine months improvement in disease-free survival [73]. Similar to interferon, the greatest benefit was in ulcerated primaries with microscopic nodal involvement. Survival data is not yet available. Ipilimumab toxicities led to half of patients discontinuing treatment within three months. The most common side effects were autoimmunity hepatitis, colitis and hypophysitis. The FDA approved adjuvant use of ipilimumab 10 mg/kg q 3wk x 4 then q12 wks x 3 years for node positive melanoma post-lymphadenectomy on 10/28/2015. An ongoing SWOG 1404 trial will compare high dose interferon, ipilimumab and pembrolizumab for adjuvant therapy of high-risk, resected stage III/IV melanomas.

Therapy of In-transit/Satellite Metastases

Isolated loco-regional skin metastases occur in 7% of melanoma patients and are associated with a 50% ten-year survival [74,75]. Thus, in-transit or satellite disease has an intermediate prognosis-some patients live decades with only regional recurrences and other patients rapidly progress with systemic metastases and death. The diagnosis is based on location of skin lesions between the primary tumor and draining lymph node basin. Possible causes include unique tumor genetics or lymphatic tumor emboli. Therapies yielding the highest disease control rate include intra-lesional recombinant interleukin-2 or talimogene laverparevoc genetically engineered herpes simplex virus, CO2 laser lesion ablation, and hyperthermic or normothermic isolated tissue/node, lung, or non-lung viscera metastases, 58%, 23% and 15% of patients, respectively, had disease amenable to metastasectomy. Compared with control patients matched for number of metastases and number of organ systems affected, metastasectomy yielded a median survival of 16 months and a 21% four-year survival versus 7 months and 7% survival in the control population in the MSLT-1 trial [80]. Best results were seen for skin/soft tissue/nodal metastatic patients with a hazard ratio of 0.24 favoring surgery. An international phase III trial (NCT01013623) is randomizing patients with ≤ 6 metastases in ≤ 3 organs to surgery versus systemic medical therapy alone to confirm the survival advantage of metastasectomy and identify patient subsets with maximal benefit.

Radiation Therapy for Metastatic Melanoma to Brain

Close to half of metastatic melanoma patients develop symptomatic brain metastases, and these lesions contribute to death in a fourth of all metastatic melanoma patients [81]. Unless surgery is needed for diagnosis, stereotactic radiosurgery-SRS is the established treatment for single and multiple brain metastases. 20-24 Gy single fraction or 25-30 Gy multiple fractions is administered. SRS has been shown to yield equal overall survival with improved neurocognitive function relative to whole brain radiation therapy-WBRT [82]. Frequent brain MRIs are employed to monitor for recurrence. 45% of SRS-treated patients required further brain radiation-either additional SRS or WBRT [83]. Death due to brain disease occurred in 11% of patients [84]. A graded prognostic assessment tool is available at www.brainmetgpa.com and provides melanoma median survival based on performance status and number of brain lesions [85]. A rare side effect (2%) is radiation necrosis that can be treated with corticosteroids, bevacizumab and/or surgery. Chemotherapies for Metastatic Melanoma

Cytotoxic chemotherapies selectively target proliferating cells. The rationale is that tumor cells divide more frequently than normal tissues. While likely true for many hematologic malignancies and germ cell tumors, most tumors including melanomas have variable growth fractions. Thus, melanoma chemotherapy remissions are uncommon and normal tissue toxicities including myelosuppression and GI toxicities are frequent. A range of single agents and combination chemotherapies have been tested yielding response rates of 10-26%, progression-free survivals-PFS of 2-7 months, and overall survivals of 6-12 months (Figure 4) [86-90].

Because of the low response rates and minimal impact on overall
Pathway Inhibitor Therapy for Metastatic Melanoma

All living cells communicate with their environment via hormones and receptors. Mammalian cells possess cell surface receptors that transmit and amplify signals into the cytoplasm by secondary messengers including kinases. The signals modify gene transcription and translation, alter protein structure and change metabolism. Thus, cells are poised to adjust to changes in the extracellular milieu. Mutations in pathways can lead to neoplastic cell proliferation, differentiation and proliferation [112]. Rosenberg and others tested high doses of IL2 in metastatic melanoma patients [113]. Patients administered 600,000 IU/kg/IV bolus every eight hours for up to 14 doses in cycles separated by 1-4 weeks achieved a response rate of 16% including 6% complete responses-CRs. Remarkably, most of the CRs have remained disease-free for decades. Unfortunately, the treatment is associated with neutrophil paralysis and severe capillary leak syndrome. Toxocities are sepsis, hypotension, uremia, pulmonary edema, hepatic and GI toxicities, thrombocytopenia and 1% deaths. Prophylactic antibiotics and a stringent protocol for dosing, fluid supplements and pressors have reduced side effect severity [114]. Predictors of CR include N-RAS mutation, better pre-treatment performance status, normal LDH and only skin/subcutaneous metastases [115]. Pre-treatment stereotactic body radiotherapy may improve CR rate [116]. Nevertheless, the severe toxicities and limited efficacy discourage most patients from this treatment.

These observations opened the possibility of long-term remissions from expanding cytotoxic T lymphocytes in patients. However, once reaching the tumor, very few remissions were obtained. The immunosuppressive tumor microenvironment was due in part to local immune checkpoints-CTLA4 blocking CD28 co-stimulation and PDL1 inhibiting T cell activation. Human monoclonal antibodies blocking the immune checkpoints were developed--ipilimumab and tremelimimub for anti-CTLA4 and nivolumab and pembrolizumab for anti-PD1. The combination of nivolumab and ipilimumab--FDA approved 9/30/15 produced a 61% response rate and a 12 months PFS for anti-PD1. The combination of nivolumab and ipilimumab--FDA approved 9/30/15 produced a 61% response rate and a 12 months PFS for anti-PD1. Nevertheless, the severe toxicities and limited efficacy discourage most patients from this treatment.

Pathway Inhibitor Therapy for Metastatic Melanoma

Mutations in pathways can lead to neoplastic cell proliferation, differentiation and proliferation [112]. Rosenberg and others tested high doses of IL2 in metastatic melanoma patients [113]. Patients administered 600,000 IU/kg/IV bolus every eight hours for up to 14 doses in cycles separated by 1-4 weeks achieved a response rate of 16% including 6% complete responses-CRs. Remarkably, most of the CRs have remained disease-free for decades. Unfortunately, the treatment is associated with neutrophil paralysis and severe capillary leak syndrome. Toxocities are sepsis, hypotension, uremia, pulmonary edema, hepatic and GI toxicities, thrombocytopenia and 1% deaths. Prophylactic antibiotics and a stringent protocol for dosing, fluid supplements and pressors have reduced side effect severity [114]. Predictors of CR include N-RAS mutation, better pre-treatment performance status, normal LDH and only skin/subcutaneous metastases [115]. Pre-treatment stereotactic body radiotherapy may improve CR rate [116]. Nevertheless, the severe toxicities and limited efficacy discourage most patients from this treatment.

These observations opened the possibility of long-term remissions from expanding cytotoxic T lymphocytes in patients. However, once reaching the tumor, very few remissions were obtained. The immunosuppressive tumor microenvironment was due in part to local immune checkpoints-CTLA4 blocking CD28 co-stimulation and PDL1 inhibiting T cell activation. Human monoclonal antibodies blocking the immune checkpoints were developed--ipilimumab and tremelimimub for anti-CTLA4 and nivolumab and pembrolizumab for anti-PD1. The combination of nivolumab and ipilimumab--FDA approved 9/30/15 produced a 61% response rate and a 12 months PFS for anti-PD1. The combination of nivolumab and ipilimumab--FDA approved 9/30/15 produced a 61% response rate and a 12 months PFS for anti-PD1. Nevertheless, the severe toxicities and limited efficacy discourage most patients from this treatment.

These observations opened the possibility of long-term remissions from expanding cytotoxic T lymphocytes in patients. However, once reaching the tumor, very few remissions were obtained. The immunosuppressive tumor microenvironment was due in part to local immune checkpoints-CTLA4 blocking CD28 co-stimulation and PDL1 inhibiting T cell activation. Human monoclonal antibodies blocking the immune checkpoints were developed--ipilimumab and tremelimimub for anti-CTLA4 and nivolumab and pembrolizumab for anti-PD1. The combination of nivolumab and ipilimumab--FDA approved 9/30/15 produced a 61% response rate and a 12 months PFS for anti-PD1. The combination of nivolumab and ipilimumab--FDA approved 9/30/15 produced a 61% response rate and a 12 months PFS for anti-PD1. Nevertheless, the severe toxicities and limited efficacy discourage most patients from this treatment.

These observations opened the possibility of long-term remissions from expanding cytotoxic T lymphocytes in patients. However, once reaching the tumor, very few remissions were obtained. The immunosuppressive tumor microenvironment was due in part to local immune checkpoints-CTLA4 blocking CD28 co-stimulation and PDL1 inhibiting T cell activation. Human monoclonal antibodies blocking the immune checkpoints were developed--ipilimumab and tremelimimub for anti-CTLA4 and nivolumab and pembrolizumab for anti-PD1. The combination of nivolumab and ipilimumab--FDA approved 9/30/15 produced a 61% response rate and a 12 months PFS for anti-PD1. The combination of nivolumab and ipilimumab--FDA approved 9/30/15 produced a 61% response rate and a 12 months PFS for anti-PD1. Nevertheless, the severe toxicities and limited efficacy discourage most patients from this treatment.

These observations opened the possibility of long-term remissions from expanding cytotoxic T lymphocytes in patients. However, once reaching the tumor, very few remissions were obtained. The immunosuppressive tumor microenvironment was due in part to local immune checkpoints-CTLA4 blocking CD28 co-stimulation and PDL1 inhibiting T cell activation. Human monoclonal antibodies blocking the immune checkpoints were developed--ipilimumab and tremelimimub for anti-CTLA4 and nivolumab and pembrolizumab for anti-PD1. The combination of nivolumab and ipilimumab--FDA approved 9/30/15 produced a 61% response rate and a 12 months PFS for anti-PD1. The combination of nivolumab and ipilimumab--FDA approved 9/30/15 produced a 61% response rate and a 12 months PFS for anti-PD1. Nevertheless, the severe toxicities and limited efficacy discourage most patients from this treatment.

These observations opened the possibility of long-term remissions from expanding cytotoxic T lymphocytes in patients. However, once reaching the tumor, very few remissions were obtained. The immunosuppressive tumor microenvironment was due in part to local immune checkpoints-CTLA4 blocking CD28 co-stimulation and PDL1 inhibiting T cell activation. Human monoclonal antibodies blocking the immune checkpoints were developed--ipilimumab and tremelimimub for anti-CTLA4 and nivolumab and pembrolizumab for anti-PD1. The combination of nivolumab and ipilimumab--FDA approved 9/30/15 produced a 61% response rate and a 12 months PFS for anti-PD1. The combination of nivolumab and ipilimumab--FDA approved 9/30/15 produced a 61% response rate and a 12 months PFS for anti-PD1. Nevertheless, the severe toxicities and limited efficacy discourage most patients from this treatment.

These observations opened the possibility of long-term remissions from expanding cytotoxic T lymphocytes in patients. However, once reaching the tumor, very few remissions were obtained. The immunosuppressive tumor microenvironment was due in part to local immune checkpoints-CTLA4 blocking CD28 co-stimulation and PDL1 inhibiting T cell activation. Human monoclonal antibodies blocking the immune checkpoints were developed--ipilimumab and tremelimimub for anti-CTLA4 and nivolumab and pembrolizumab for anti-PD1. The combination of nivolumab and ipilimumab--FDA approved 9/30/15 produced a 61% response rate and a 12 months PFS for anti-PD1. The combination of nivolumab and ipilimumab--FDA approved 9/30/15 produced a 61% response rate and a 12 months PFS for anti-PD1. Nevertheless, the severe toxicities and limited efficacy discourage most patients from this treatment.

These observations opened the possibility of long-term remissions from expanding cytotoxic T lymphocytes in patients. However, once reaching the tumor, very few remissions were obtained. The immunosuppressive tumor microenvironment was due in part to local immune checkpoints-CTLA4 blocking CD28 co-stimulation and PDL1 inhibiting T cell activation. Human monoclonal antibodies blocking the immune checkpoints were developed--ipilimumab and tremelimimub for anti-CTLA4 and nivolumab and pembrolizumab for anti-PD1. The combination of nivolumab and ipilimumab--FDA approved 9/30/15 produced a 61% response rate and a 12 months PFS for anti-PD1. The combination of nivolumab and ipilimumab--FDA approved 9/30/15 produced a 61% response rate and a 12 months PFS for anti-PD1. Nevertheless, the severe toxicities and limited efficacy discourage most patients from this treatment.

These observations opened the possibility of long-term remissions from expanding cytotoxic T lymphocytes in patients. However, once reaching the tumor, very few remissions were obtained. The immunosuppressive tumor microenvironment was due in part to local immune checkpoints-CTLA4 blocking CD28 co-stimulation and PDL1 inhibiting T cell activation. Human monoclonal antibodies blocking the immune checkpoints were developed--ipilimumab and tremelimimub for anti-CTLA4 and nivolumab and pembrolizumab for anti-PD1. The combination of nivolumab and ipilimumab--FDA approved 9/30/15 produced a 61% response rate and a 12 months PFS for anti-PD1. The combination of nivolumab and ipilimumab--FDA approved 9/30/15 produced a 61% response rate and a 12 months PFS for anti-PD1. Nevertheless, the severe toxicities and limited efficacy discourage most patients from this treatment.
tumor TCR clonality, absence of Wnt/β-catenin pathway activation, elevated PD-L1 level, and elevated circulating lymphocytes, monocyte or eosinophil levels predict response (Goldmeyer, 2016) [119-132]. Relapse to anti-PD1 therapy has been linked to loss-of-function mutations in JAK1, JAK2, and beta-2microglobulin [133]. Similar efficacy was observed in acral and mucosal metastatic melanomas, but not in uveal metastatic melanomas [134-136].

Another method to ameliorate the immunosuppressive melanoma microenvironment is intra-lesional injections of modified herpes simplex virus type 1 carrying deletions of virulence genes ICP34.5 and ICP47 and insertion of human granulocyte-macrophage colony stimulating factor, talimogene laherparepvec or T-VEC. T-VEC selectively replicates in melanoma cells and lyses the cells promoting systemic anti-tumor immunity. T-VEC has been given at 10⁶ pfu/mL and then 10⁷ pfu/mL up to 4 mL at 2 weeks intervals for up to 18 months. For patients with subcutaneous and nodal lesions and limited visceral metastases, the response rate was 23% and median OS was 24 months vs 6% and 19 months with subcutaneous GM-CSF [137]. T-VEC was FDA approved on 10/27/2015. With these exciting developments, the stage is set for exploratory studies to further improve response rates and response duration in different patient subsets.

Novel Areas of Melanoma Clinical Research

Preclinical melanoma research employing in vivo models has focused on the syngeneic B16 melanoma in C57BL/6 mice, human melanoma cells or patient derived tissue sample xenografts in immunocompromised mice, and genetically engineered mouse models with RAS, p16INK4A, p19ARF, CDK4, p53, RET, BRAF, GNAQ, glutamate receptor GRM1 and/or PTEN mutations [138-140]. The syngeneic model and genetically engineered mice models offer metastatic variants including luciferase transmants for live animal imaging. Each model has advantages and disadvantages with similar patient biology in the patient derived xenografts and relevant immunology in the syngeneic models. In this review, we focused on translational research currently in patient studies.

Visual and palpable clues are used in radical surgery to differentiate melanoma from healthy tissue and are limited to node or tumor deposits of approximately 3-5 mm diameter. Thus, as noted earlier many patients relapse locally in the same organ. Jinming Gao and colleagues synthesized a nanoparticle composed of polyethylene glycol-polyethylene glycol methyl carbonate copolymers with attached fluorescent dye molecules and tertiary amines [141]. In the acid environment of tumor deposits, the micellar particles invert and expose the attached dye. With infrared illumination, tumors deposits as small as 1 mm are detected. Similar or better resolution to that obtained with cetuximab-IRDye800 [142] may occur but with better application for melanoma and other cancers. These nanopores will enter clinical trials in 2017 and may improve detection of small metastatic melanoma deposits at lymphadenectomy and metastasectomy.

Staging tests include BRAF mutation analysis to determine patient suitability for pathway inhibitors. However, a third of BRAF mutant melanoma patients are intrinsically resistant to inhibitors. A five-gene expression profile that identifies resistant patients has been reported [143]. Combining gene expression profiles of resistant patient samples and cell lines with RNAi high throughput screening for BRAF/MEK inhibitor resistance and chromatin immunoprecipitation sequencing, a pattern of gene expression in patients was discovered that correlated with primary clinical resistance to inhibitors--Sox10-independent (Figure 5). Further testing patient's tumors with the five-gene profile and measuring BRAF inhibitor progression-free survival is underway. This will permit better therapeutic decision making in BRAF mutant metastatic melanoma patients.

Staging tests for immunotherapy response have not to date offered methods to overcome resistance. However, a novel finding may yield a low-cost method to improve efficacy. Lida and colleagues in 2013 showed germ-free or antibiotic treated tumor-bearing mice did not respond to immune or chemotherapy regimens whereas their genetically identical siblings with gut microbiota showed excellent responses that were linked to myeloid-derived macrophages that migrated from the gut to the tumor [144]. Vetizou and Sivan observed similar variations in sensitivity to anti-CTLA4 antibodies and anti-PD-L1 antibodies in tumor-bearing mice that depended upon the presence of commensal Bacteroides and Bividobacterium species, respectively [145,146]. Again, the appropriate gut bacteria induced mature intra-tumoral dendritic cells that in turn recruited and differentiated interferon-γ producing T cells. Pre-treatment human gut microbiota profiles may differ in immune checkpoint responders versus non-responders and is being examined at the University of Texas Southwestern by faecal bacterial DNA metagenomic shotgun sequencing using established techniques [147]. Subsequently, quantitative PCR analyses of key bacterial species will be done and bacterial abundance quantified [148]. These experiments will provide a complete picture of specific microbial populations and how they correlate with immune checkpoint modulator treatment and response. If specific organisms yield immunotherapy sensitivity or resistance, followup intervention studies may be designed.

Sean Morrison and colleagues explored cytotoxic activity of small molecule in melanoma [149]. They found cardiac glycosides reacted with the ATPIA1 sodium/potassium pump overexpressed on melanoma cells leading to cell death. The glycosides inhibited the plasma membrane ion transporter leading to cytosolic acidification. When combined with MEK inhibitor, mitochondrial calcium increased, and mitochondrial membrane potential, ROS, NAD+ and ATP levels fell. Melanoma cell death was seen. The digoxin plus trametinib combination yielded melanoma regressions in immunocompromised mice xenografts. Based on these results, a phase 1B trial of daily oral digoxin plus trametinib for 20 BRAF wild-type melanomas patients was completed at the University of Texas Southwestern. The most common adverse events were rash, diarrhea, nausea, and fatigue. The disease control rate including partial responses or stable disease was 13/20 or 65% of patients, including 5/6 or 83% for patients with NRAS mutant melanomas and 8/14 or 57% for NRAS wild-type melanomas.

![Figure 5: Dabrafenib/Vemurafenib treated patients](image-url)
While immunotherapy provides long-term disease control in many patients, up to half of patients fail to achieve clinical benefit. Immune checkpoint resistant melanomas lack intra-tumoral activated cytotoxic T lymphocytes [122]. A single modality-stereotactic ablative radiation-SAbR therapy provides tumor antigens and damage-associated molecular pattern agonists to dendritic cells [151,152]. The stimulated and primed antigen-presenting cells induce tumor-specific cytotoxic T cells that migrate to the melanoma metastases and alter the tumor microenvironment [153,154]. Evidence for radiation-elicted innate immunity and enhanced immunotherapy efficacy has been shown in mouse models [155,156]. Further, clinical reports document cases of SAbR synergy with immune checkpoint inhibition [157-160]. In an ongoing study at the University of Texas Southwestern, metastatic melanoma patients are treated concurrently in week one with SAbR+ipilimumab+nivolumab followed by ipilimumab+nivolumab alone. Tumor biopsies are done pre-treatment and after SAbR to measure T cell infiltration and cGAMP levels from the cGAS-STING pathway (Figure 6) [161]. Responses will be assessed by RECISTv1.1. An increase in response rate and PFS from the historical rates of 58% and 11.5 months is anticipated [117]. Irradiated tumors may show an increase in cGAMP levels and type I interferon gene signature post-SAbR [118]. An 83% disease control rate-DCR versus an expected rate of 58% DCR for MEK inhibitor alone [150].

An increase in response rate and PFS from the historical rates of 58% and 11.5 months is anticipated [117]. Irradiated tumors may show an increase in cGAMP levels and type I interferon gene signature post-SAbR [118]. An 83% disease control rate-DCR versus an expected rate of 58% DCR for MEK inhibitor alone [150].

Current research is identifying patient subgroups for novel surgery, novel pathway inhibitors and new combinations and approaches for immunotherapy. The melanoma field is leading the way both in basic and clinical oncology science.

References:
1. Howlader N, Noone AM, Krapcho M, Garshell J, Miller D, et al. (2015) SEER cancer statistics review, 1975-2012. National Cancer Institute. Bethesda, MD.
2. Andreoli MT, Mieler WF, Leiderman YI (2015) Epidemiological trends in uveal melanoma. Br J Ophthalmol 99: 1550-1553.
3. Mehra T, Grözinger G, Mann S, Guenova E, Moos R, et al. (2014) Primary localization and tumor thickness as prognostic factors of survival in patients with uveal melanoma. PLoS One 9: e112536.
4. Davies JR, Chang YM, Bishop DT, Armstrong BK, Bataille V, et al. (2015) Development and validation of a melanoma risk score based on pooled data from 16 case-control studies. Cancer Epidemiol Biomarkers Prev 24: 8.
5. Bradford PT, Goldstein AM, Tamura D, Khan SG, Ueda T, et al. (2011) Cancer and neurologic degeneration in xeroderma pigmentosum: long term follow-up characterises the role of DNA repair. J Med Genet 48: 168-176.
6. Constantinescu R, Elm J, Auinger P, Sharma S, Augustine EF, et al. (2014) Malignant melanoma in early-treated Parkinson’s disease: the NET-PD trial. Mov Disord 29: 263-265.
7. van der Leest RJ, Liu L, Coebergh JW, Neumann HA, Mool WJ, et al. (2012) Risk of second primary in situ and invasive melanoma in a Dutch population-based cohort: 1989-2008. Br J Dermatol 167: 1321-1330.
8. Vogel RI, Ahmed RL, Nelson HH, Benwick M, Weinstock MA, et al. (2014) Exposure to indoor tanning without burning and melanoma risk by sunburn history. J Natl Cancer Inst 106.
9. Coghill AE, Shiels MS, Suneja G, Engels EA (2015) Elevated Cancer-Specific Mortality Among HIV-Infected Patients in the United States. J Clin Oncol 33: 2376-2383.
10. Dahile E, Murray CA, Kitchen J, Chan AW (2014) Systemic review of melanoma incidence and prognosis in solid organ transplant recipients. Transplant Research 3: 10.
11. Greene MH, Clark WH Jr, Tucker MA, Kraemer KH, Elder DE, et al. (1985) High risk of malignant melanoma in melanoma-prone families with dysplastic nevi. Ann Intern Med 102: 458-465.
12. Kavouras I, Tina G, Marie-Cecile C (2015) UVA and cutaneous melanoma

Figure 6: Stereotactic ablative radiotherapy leads to tumor T cell infiltration via the cGAS-cGAMP-STING pathway [17].

Figure 7: Indoleamine 2,3 dioxygenase-mediated tryptophan metabolism.
incidences: spatial patterns and communities at risk. Journal of Environmental Health 77: 8-14.

13. Santangelo M, Wehrer MR, Linos E, Kornak J, Kainz W, et al. (2015) The risk of melanoma in airline pilots and cabin crew: a meta-analysis. JAMA Dermatol 151: 51-58.

14. Hohmann CB, Bonamigo RR, Segatto MM, Costa MM, Mastroeni S, et al. (2016) Could a specific dietary intake be a risk factor for cutaneous melanoma?. Cutis 97: 421-425.

15. Vinceti M, Malagoli C, Fiorentini C, Longo C, Crespi CM, et al. Inverse association between dietary vitamin D and risk of cutaneous melanoma in a northern Italy population. Natl Cancer 63: 506-513.

16. Han J, Colditz GA, Liu JS, Hunter DJ (2005) Genetic variation in XPD, sun exposure, and risk of skin cancer. Cancer Epidemiol Biomarkers Prev 14: 1539-1544.

17. Chen Q, Sun L, Chen ZJ (2016) Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nat Immunol 17: 1142-1149.

18. Torres SM, Luo L, Lilyquist J, Stidley CA, Flores K, et al. (2013) DNA repair variants, indoor tanning, and risk of melanoma. Pigment Cell Melanoma Res 26: 677-684.

19. Premi S, Wallisch S, Mano CM, Weiner AB, Bacchiocchi A, et al. (2015) Chemiexcitation of melanin derivatives induces DNA photoproducts long after UV exposure. Science 347: 842-847.

20. Premi S, Brash DE (2016) Chemical excitation of electrons: A dark path to melanoma. DNA Repair (Amst) 44: 169-177.

21. Holmstrom M, Lund VJ (1991) Malignant melanomas of the nasal cavity after occupational exposure to formaldehyde. Br J Ind Med 48: 9-11.

22. Logan P, Bernabeu M, Ferreira A, Burnier MN (2015) Evidence for the Role of Blue Light in the Development of Uveal Melanoma. J Ophthalmol 2015: 386986.

23. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, et al. (2013) landscapes of somatic mutations in 12 human cancers. Nature 495: 214-219.

24. Huang FW, Hodis E, Xu MJ, Kryukov GV, Chin L, et al. (2013) Highly recurrent 8q24 alterations in melanoma. Hum Mol Genet 22: 3525-3538.

25. Hill VK, Gartner JJ, Samuels Y, Goldstein AM (2013) The genetics of melanoma: recent advances. Annu Rev Genomics Hum Genet 14: 257-279.

26. Huang FW, Hodis E, Xu MJ, Kryukov GV, Chin L, et al. (2013) Highly recurrent TERT promoter mutations in human melanoma. Science 339: 957-959.

27. Pavey S, Spoerri L, Haass NK, Gabrielli B (2013) DNA repair and cell cycle checkpoint defects as drivers and therapeutic targets in melanoma. Pigment Cell Melanoma Res 26: 805-816.

28. Shain AH, Yeh I, Kovalyshyn I, Siharan A, Talevich E, et al. (2015) The Genetic Evolution of Melanoma from Precursor Lesions. N Engl J Med 373: 1926-1936.

29. Ceol CJ, Houvras Y, Jane-Valbuena J, Bilodeau S, Orlando DA, et al. (2011) The histone methyltransferase SETDB1 is recurrently amplified in melanoma and accelerates its onset. Nature 471: 513-517.

30. Kaufman CK, Mosimann C, Peng ZF, Yang S, Thomas JA, et al. (2016) A zebrafish melanoma model reveals emergence of neural crest identity during melanoma initiation. Science, In Press.

31. Bogolka WS, Tiao H, Olazagasti JM, Cordoro KM, Brewer JD, et al. (2015) Early detection of melanoma: reviewing the ABCDEs. J Am Acad Dermatol 72: 717-723.

32. Shields CL, Kels JG, Shields JA (2015) Melanoma of the eye: revealing hidden secrets, one at a time. Clin Dermatol 33: 183-196.

33. Mayer JE, Swetter SM, Fu T, Geller AC (2014) Screening, early detection, education and trends for melanoma: status (2007-2013) and future directions. Part I. Epidemiology, high-risk groups, clinical strategies, and diagnostic technology. J Am Acad Dermatol 71: 59.
103. Penna I, Molla A, Grazia G, Cleris L, Nicolini G, et al. (2016) Primary cross-resistance to BRAFV600E, MEK1/2- and PI3K/mTOR-specific inhibitors in BRAF-mutant melanoma cells counteracted by dual pathway blockade. OncoTargets 7: 3947-3965.

104. Wei BR, Michael HT, Halsey CH, Peer CJ, Adhikari A, et al. (2016) Synergistic targeted inhibition of MEK and dual PI3K/mTOR diminishes viability and inhibits tumor growth of canine melanoma underscore its utility as a preclinical model for human mucosal melanoma. Pigment Cell Melanoma Res 29: 643-655.

105. Konieczkowski DJ, Johannessen CM, Abudayyeh Q, Kim JW, Cooper ZA, et al. (2014) A melanoma cell state distinction influences sensitivity to MAPK pathway inhibitors. Cancer Discovery 4: 816-827.

106. Van Allen EM, Wagle N, Sucker A, Treacy DJ, Johannessen CM, et al. (2014) The genetic landscape of clinical resistance to RAFl inhibition in metastatic melanoma. Cancer Discovery 4: 94-109.

107. Guo J, Ji L, Kong Y, Flaherty KT, Xu X, et al. (2011) Phase II, open-label, single-arm trial of imatinib mesylate in patients with metastatic melanoma harboring c-KIT mutation or amplification. J Clin Oncol 29: 2904-2909.

108. Rapisuwon S, Parks K, Al-Refaie W, Atkins MB (2014) Novel somatic KIT exon 8 mutation with dramatic response to imatinib in a patient with mucosal melanoma: a case report. Melanoma Res 24: 509-511.

109. Kim KB, Sosman JA, Fruehauf JP, Linette GP, Markovic SN, et al. (2012) Preclinical model for human mucosal melanoma. Pigment Cell Melanoma Res 25: 643-655.

110. Bramhall RJ, Mahady K, Peach AH (2014) Spontaneous regression of untreated advanced melanoma. J Clin Oncol 32: 1270-1271.

111. Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, et al. (2014) Predictive and Transcriptomic Features of Response to Anti-PD-1 Therapy in Metastatic Melanoma. Cell 165: 35-44.

112. Liu D, Duszoev A, Stewart CA, Smith L, Bouladoux N, et al. (2013) Commensal bacterial control cancer response to therapy by modulating the tumor microenvironment. Science 340: 970-977.

113. Higgs BW, Morehouse C, Streicher K, Rebelatto MC, Steele K, et al. (2016) Relationship of baseline tumor IFNg mRNA and PD-L1 protein expression to overall survival in durvalumab-treated NSCLC patients. J Clin Oncol 34 Suppl: 303.

114. Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM, et al. (2014) Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med 371: 2189-2199.
145. Sivan A, Comales L, Hubert N, Williams JB, Aquino-Michaels K, et al. (2015) Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350: 1079-1084.

146. Velázquez M, Pitt JM, Dailé R, Lepage R, Waldschmitt N, et al. (2015) Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350: 1079-1084.

147. Fan D, Coughlin LA, Neubauer MM, Kim J, Kim MS, et al. (2015) Activation of HIF-1α and LL-37 by commensal bacteria inhibits Candida albicans colonization. Nat Med 21: 808-814.

148. Vaishnava S, Yamamoto M, Severson KM, Ruhn KA, Yu X, et al. (2012) The antibacterial lectin RegIIIγ promotes the spatial segregation of microbiota and host in the intestine. Science 333: 259-266.

149. Eskilsson U (2016) Combinational effects of ion transporters and MAP kinase pathway inhibitors in melanoma. Nature Communications, In press.

150. Dummer R, Schadendorf D, Ascierto PA, Fernández A, Dutiaux C, et al. (2016) Results of NEM: a phase III trial of binimetinib (BINI) vs dacarbazine (DTIC) in NRAS-mutant cutaneous melanoma. J Clin Oncol 34 Suppl: 9500.

151. Kulzer L, Rubner Y, Deloch L, Allgäuer A, Frey B, et al. (2014) Norm- and hypo-fractionated radiotherapy is capable of activating human dendritic cells. J Immunotoxicol 11: 328-336.

152. Rubner Y, Wunderlich R, Rühle PF, Kulzer L, Werthmöller N, et al. (2012) How does ionizing irradiation contribute to the induction of anti-tumor immunity?. Front Oncol 2: 75.

153. Lim JY, Gerber SA, Murphy SP, Lord EM (2014) Type I interferons induced by radiation therapy mediate recruitment and effector function of CD8+ T cells. Cancer Immunol Immunother 63: 259-271.

154. Sharabi AB, Nirschl CJ, Kochel CM, Nirschl TR, Francica BJ, et al. (2015) Stereotactic radiation therapy augments antigen-specific PD-1-mediated anti-tumor immune responses via cross-presentation of tumor antigen. Cancer Immunol Res 3: 345-355.

155. Demaria S, Ng B, Devitt ML, Babb JS, Kawashima N, et al. (2004) Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int J Radiat Oncol Biol Phys 5: 862-870.

156. Teyman-Saint VC, Rech AJ, Maity A, Rengan R, Pauken KE, et al. (2015) Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature 520: 373-377.

157. Barker CA, Postow MA (2014) Combinations of radiation therapy and immunotherapy for melanoma: a review of clinical outcomes. Int J Radiat Oncol Biol Phys 88: 986-997.

158. Deng L, Liang H, Xu M, Yang X, Burnette B, et al. (2014) STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent anti-tumor immunity in immunogenic tumors. Immunity 4: 843-852.

159. Postow MA, Callahan MK, Barker CA, Yamada Y, Yuan J, et al. (2012) Immunologic correlates of the abscopal effect in a patient with melanoma. N Engl J Med 366: 925-931.

160. Salama AK, Postow MA, Salama JK (2016) Irradiation and immunotherapy: From concept to the clinic. Cancer 122: 1659-1671.

161. Shi W (2015) Role for radiation therapy in melanoma. Surg Oncol Clin N Am 24: 323-335.

162. Holmgård RB, Zamarin D, Li Y, Gasmi B, Munn DH, et al. (2015) Tumor-Expressed IDO Recruits and Activates MDSCs in a Treg-Dependent Manner. Cell Rep 13: 412-424.

163. Munn DH, Mellor AL (2013) Indoleamine 2,3 dioxygenase and metabolic control of immune responses. Trends Immunol 34: 137-143.

164. Spranger S, Koblish HK, Horton B, Scherle PA, Newton R, et al. (2014) Mechanism of tumor rejection with doublets of CTLA-4, PD-1/PD-L, or IDO blockade involves restored IL-2 production and proliferation of CD8+ T cells directly within the tumor microenvironment. J Immunother Cancer 2: 3.