Targeting ERRα promotes cytotoxic effects against acute myeloid leukemia through suppressing mitochondrial oxidative phosphorylation

Wonhyoung Seo¹,²†, Seungyeul Yoo⁶†, Yi Zhong⁶, Sang-Hee Lee⁸, Soo-Yeon Woo⁹, Hee-Seon Choi⁹, Minho Won¹⁰, Taylor Roh¹,², Sang Min Jeon¹,², Kyeong Tae Kim¹,², Prashanta Silwal¹,², Min Joung Lee³, Jun Young Heo³, Nathan Lawlor⁶, Sup Kim¹¹, Dongjun Lee⁹, Jin-Man Kim¹,², Ik-Chan Song⁵*, Jun Zhu⁶,⁷*, and Eun-Kyeong Jo¹,²*,†

Abstract
Acute myeloid leukemia (AML) is an aggressive blood cancer with poor clinical outcomes. Emerging data suggest that mitochondrial oxidative phosphorylation (mtOXPHOS) plays a significant role in AML tumorigenesis, progression, and resistance to chemotherapies. However, how the mtOXPHOS is regulated in AML cells is not well understood. In this study, we investigated the oncogenic functions of ERRα in AML by combining in silico, in vitro, and in vivo analyses and showed ERRα is a key regulator of mtOXPHOS in AML cells. The increased ERRα level was associated with worse clinical outcomes of AML patients. Single cell RNA-Seq analysis of human primary AML cells indicated that ERRα-expressing cancer cells had significantly higher mtOXPHOS enrichment scores. Blockade of ERRα by pharmacologic inhibitor (XCT-790) or gene silencing suppressed mtOXPHOS and increased anti-leukemic effects in vitro and in xenograft mouse models.

Keywords: AML, ERRα, Mitochondrial oxidative phosphorylation, Apoptosis

To the Editor,
Acute myeloid leukemia (AML) is the most common type of leukemia with an unsatisfactory clinical outcomes (5-year survival = 24%) [1, 2]. While recent studies have highlighted the significance of excessive mitochondrial respiration, metabolism, and oxidative phosphorylation (mtOXPHOS) in leukemogenesis [3–5], the key regulators of mitochondrial function in leukemic cells remain unknown. In this study, we report that, estrogen-related receptor-α (ERRα), an orphan nuclear receptor involved in mitochondrial biogenesis and metabolic homeostasis [6, 7], plays an oncogenic role in AML by combining in silico, in vitro, and in vivo analyses.

We first investigated whether ERRα expression is associated with AML tumorigenesis and progression. ERRα expression was significantly higher in leukemic cells than in hematopoietic stem and progenitor cells from healthy donors (5-year survival = 24%) [1, 2]. While recent studies have...
Immunohistochemistry staining further confirmed ERRα is expressed in bone marrow of AML patients but not of non-leukemia controls (Fig. 1D). Furthermore, ERRα expression was associated with patient survival rates in two independent AML cohorts (Fig. 1E). These results together suggest that ERRα plays an important role in AML tumorigenesis and progression. As a transcription factor binding promoter regions of its target genes [6–8], ERRα target genes in myeloid leukemia cells were identified by intersecting genes with predicted ERRα binding sites in their promoter regions, and genes co-expressed with ERRα in AML cell lines (Fig. 1F, Additional file 1: Data 1). ERRα activity scores based on the target genes were associated with patients’ survival (Additional file 3: Fig. S1A and B). The ERRα target genes were significantly enriched in the mtOXPHOS pathway (Fig. 1G, Additional file 3: Table S1) suggesting ERRα as a regulator of the mtOXPHOS pathway in AML cells.

At the single-cell level, ERRα was expressed significantly higher in aneuploid compared to diploid cells (Fig. 1H and I). mtOXPHOS genes were expressed at significantly higher levels in aneuploid than diploid cells (Fig. 1J) and ERRα-expressing aneuploid cells showed significantly higher mtOXPHOS enrichment scores than aneuploid cells without ERRα expression (Fig. 1K). In the three AML samples from van Galen et al. [9], mtOXPHOS genes were expressed at higher levels in the ERRα-expressing malignant cells than in normal or other malignant cells (Additional file 3: Fig. S1C and D) confirming that ERRα expression is associated with higher mtOXPHOS in AML cells. From the transcriptomic profiling of KG1α cells with control and treatment of XCT-790 (an ERRα inverse agonist [10, 11]), the differentially expressed genes (Additional file 2: Data 2) significantly overlapped with the ERRα target genes, validating that transcription levels of the ERRα target genes were regulated by ERRα. XCT-790 treatment significantly downregulated the mtOXPHOS pathway and mitochondrial genes (Fig. 2A, Additional file 3: Table S2).

The associations between ERRα and the mtOXPHOS pathway were further investigated using 3 AML cell lines with high ERRα expression and mixed CD34 expression (Additional file 3: Fig. S2A) and primary cells (Additional file 3: Table S3). First, ERRα inhibition by either XCT-790 or shRNA specific to ERRα (shERRα) significantly reduced the mRNA expression of mtOXPHOS complexes (NDUFS3, UQCRFS1, COX5A, and COX5B) (Fig. 2B, and Additional file 3: Fig. S2B). In addition, ERRα blockade suppressed protein levels of mtOXPHOS complexes in AML cell lines (Fig. 2C and Additional file 3: Fig. S2C; Complex I, III, and IV by XCT-790 and Complex I and III by shERRα, respectively). Notably, XCT-790 treatment decreased the levels of mtOXPHOS complexes (Complex I, III, and IV in THP-1 cells) in the presence or absence of Z-VDAD (Additional file 3: Fig. S2D), a pan-caspase inhibitor, suggesting that these proteins are suppressed by ERRα inhibition, not by cell death (Additional file 3: Fig. S2D). Further, cellular respiration and ATP generation were significantly decreased with ERRα targeting either by genetic knockout (Fig. 2D) or XCT-790 treatment (Additional file 3: Fig. S2E) in AML cell lines. Again, a decrease in basal/maximal respiration as well as a loss of ATP production was observed in XCT-790-treated cells independent from Z-VDAD treatment (Additional file 3: Fig. S2E), indicating that the OCR differences were driven by ERRα inhibition rather than cell death. ERRα silencing also increased the number of damaged mitochondria with swollen and distorted cristae structures (Fig. 2E and Additional file 3: Fig. S2F), leading to decrease cell proliferation (Additional file 1: Fig. S2G). XCT-790 treatment decreased cell viability in AML cells (Fig. 2F and 2G, Additional file 3: Fig. S2H). More importantly, XCT-790 showed significantly stronger cytotoxicity to AML cells compared to normal monocytes (Fig. 2G), highlighting its potential as a therapeutic target. XCT-790 treatment in AML cells stimulated caspase 9 cleavage and apoptosis (Fig. 2H and I, Additional file 3: Fig S2I–K). ERRα knockdown in HL-60 also induced...
Fig. 1 (See legend on previous page.)
Fig. 2 (See legend on next page.)
mitochondria-associated apoptosis (Additional file 3: Fig. S2L and M). Our data suggest that blockade of ERRα can induce apoptotic cell death in AML cells.

Lastly, we tested the effects of ERRα inhibition using in vivo xenograft mouse models. First, we evaluated the effect of tumor progression depending on ERRα expression using two different AML xenograft mouse models (Fig. 2J and K; heterotopic and orthotopic murine models of AML, respectively). In NOD/SCID mice, the tumor growth of ERRα target genes in CCLE AML cell lines.

Abbreviations
AML: Acute myeloid leukemia; CCLE: Cancer cell line encyclopedia; DEG: Differentially expressed genes; FDR: False discovery rate; LRT: Log-rank test; OCR: Oxygen consumption rate; OR: Odd ratio; OXPHOS: Oxidative phosphorylation; qRT-PCR: Real-time quantitative PCR; TCGA: The cancer genome atlas.

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/s13045-022-01372-7.

Acknowledgements
Authors wish to thank members in Data Science Department at Semax for helpful discussion on this work and thank to Prof. Jae-Young Lee and the “Formulation design & development” lab (College of Pharmacy, CNU, Korea) to kindly provide the solvent of XCT-790 for in vivo experiments.

Author contributions
WS, SY, ICS, JZ, and EKJ conceived and designed the experiments. WS, SY, YZ, SHL, SYW, HSC, MW, TR, SMJ, KTK, PS, MJL, JYH, NL, SK, JMK, and DL performed the experiments. WS, SY, ICS, JZ, and EKJ wrote the manuscript. WS, SY, PS, ICS, JZ, and EKJ supervised the project. All authors reviewed and approved the final version of the manuscript.

Funding
This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) and by the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant number: HI20C0021). This research was supported by the Korea Basic Science Institute under the R&D program (Project No. C140440) supervised by the Ministry of Science and ICT. This research was supported by a grant of the MD-PhD/Medical Scientist Training Program through the Korea Health Industry Development Institute, funded by the Ministry of Health & Welfare, Republic of Korea.

Availability of data and materials
Detailed description of the data and methods used in this study is available in Supplementary Information. Other information related with this study would be available upon request to corresponding authors.
Declarations

Ethics approval and consent to participate
The research is approved by IRB (CNUH2018-08-013-012) of Chungnam National University Hospital. The AML/ALL patients samples were obtained with patients informed consent. All experiments were conducted as per the declaration of Helsinki. For the mouse experiments, all animals (6–8 weeks old) were housed under a specific pathogen-free environment, and all the in vivo experiments were reviewed and approved by Institutional Animal Care and Use Committee, CNU School of Medicine, Daejeon, Korea (CNUH-020-A0054).

Consent for publication
All authors approved and directly participated in the planning, execution and/or analysis of the data presented in this study. The content of this manuscript has not been previously published and is not under consideration for publication elsewhere.

Competing interests
S.Y., Y.Z., N.L., and J.Z. are employees of Sema4, a for-profit organization that promotes personalized patient care through information-driven insights. Other authors declare that they have no competing interests.

Author details
1 Department of Medical Science and Infection Control Convergence Research Center, Chungnam National Univeristy College of Medicine, Daejeon, South Korea. 2 Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, South Korea. 3 Department of Biochemistry, Chungnam National University College of Medicine, Daejeon, South Korea. 4 Department of Pathology, Chungnam National University College of Medicine, Daejeon, South Korea. 5 Division of Hematology/Oncology, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, South Korea. 6 Sema4, Stamford, CT, USA. 7 Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA. 8 Center for Research Equipment, Korea Basic Science Institute, Cheongju, South Korea. 9 Department of Convergence Medicine, School of Medicine, Pusan National University Hospital, Yangsan, South Korea. 10 Biotechnology Process Engineering Center, Chungnam National University College of Medicine, Daejeon, South Korea. 11 Department of Radiation Oncology, Chungnam National University Hospital, Daejeon, South Korea.

Received: 11 July 2022 Accepted: 13 October 2022 Published online: 26 October 2022

References
1. Shallis RM, et al. Epidemiology of acute myeloid leukemia: recent progress and enduring challenges. Blood Rev. 2019;36:70–87.
2. Versluis J, et al. Post-remission treatment with allogeneic stem cell transplantation in patients aged 60 years and older with acute myeloid leukaemia: a time-dependent analysis. Lancet Haematol. 2019;20(5):674–88.
3. Skrtic M, et al. Inhibition of mitochondrial translation as a therapeutic strategy for human acute myeloid leukemia. Cancer Cell. 2011;20(5):674–88.
4. Farge T, et al. Chemotherapy-resistant human acute myeloid leukemia cells are not enriched for leukemic stem cells but require oxidative metabolism. Cancer Discov. 2017;7(7):716–35.
5. de Beauchamp L, Himonas E, Helgason GV. Mitochondrial metabolism as a potential therapeutic target in myeloid leukaemia. Leukemia. 2022;36(1):1–12.
6. Dufour CR, et al. Genomic convergence among ERRalpha, PROX1, and BMI1 in the control of metabolic clock outputs. PLoS Genet. 2011;7(6):e1002143.
7. Huss JM, et al. Estrogen-related receptor alpha directs peroxisome proliferator-activated receptor alpha signaling in the transcriptional control of energy metabolism in cardiac and skeletal muscle. Mol Cell Biol. 2004;24(20):9079–91.
8. Villena JA, Krali A. ERRalpha: a metabolic function for the oldest orphan. Trends Endocrinol Metab. 2008;19(8):269–76.
9. van Galen P, et al. Single-cell RNA-Seq reveals aml hierarchies relevant to disease progression and immunity. Cell. 2019;176(6):1265–1281 e24.
10. Willy PJ, et al. Regulation of PPARgamma coactivator 1alpha (PGC-1alpha) signaling by an estrogen-related receptor alpha (ERRalpha) ligand. Proc Natl Acad Sci U S A. 2004;101(24):8912–7.
11. Busch BB, et al. Identification of a selective inverse agonist for the orphan nuclear receptor estrogen-related receptor alpha. J Med Chem. 2004;47(23):5593–6.
12. Stein RA, McDonnell DP. Estrogen-related receptor alpha as a therapeutic target in cancer. Endocr Relat Cancer. 2006;13(Suppl 1):S25–32.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.