Newton numbers and residual measures of plurisubharmonic functions

ALEXANDER RASHKOVSIIK

Abstract. We study the masses charged by \((dd^c u)^n\) at isolated singularity points of plurisubharmonic functions \(u\). It is done by means of the local indicators of plurisubharmonic functions introduced in \([15]\). As a consequence, bounds for the masses are obtained in terms of the directional Lelong numbers of \(u\), and the notion of the Newton number for a holomorphic mapping is extended to arbitrary plurisubharmonic functions. We also describe the local indicator of \(u\) as the logarithmic tangent to \(u\).

1991 Mathematics Subject Classification: 32F05, 32F07.

Key words and phrases: plurisubharmonic function, directional Lelong number, local indicator, Monge-Ampère operator, Newton polyhedron

1 Introduction

The principal information on local behaviour of a subharmonic function \(u\) in the complex plane can be obtained by studying its Riesz measure \(\mu_u\). If \(u\) has a logarithmic singularity at a point \(x\), the main term of its asymptotics near \(x\) is \(\mu_u(\{x\}) \log |z - x|\). For plurisubharmonic functions \(u\) in \(\mathbb{C}^n\), \(n > 1\), the situation is not so simple. The local properties of \(u\) are controlled by the current \(dd^c u\) (we use the notation \(d = \partial + \bar{\partial}\), \(d^c = (\partial - \bar{\partial})/2\pi i\)) which cannot charge isolated points. The trace measure \(\sigma_u = dd^c u \wedge \beta_{n-1}\) of this current is precisely the Riesz measure of \(u\); here \(\beta_p = (p!)^{-1}2^p(dd^c|z|^2)^p\) is the volume element of \(\mathbb{C}^p\). A significant role is played by the Lelong numbers \(\nu(u, x)\) of the function \(u\) at points \(x\):

\[
\nu(u, x) = \lim_{r \to 0} (\tau_{2n-2r^{2n-2}})^{-1} \sigma_u[B^{2n}(x, r)],
\]

where \(\tau_{2p}\) is the volume of the unit ball \(B^{2p}(0, 1)\) of \(\mathbb{C}^p\). If \(\nu(u, x) > 0\) then \(\nu(u, x) \log |z - x|\) gives an upper bound for \(u(z)\) near \(x\), however the difference between these two functions can be comparable to \(\log |z - x|\).

Another important object generated by the current \(dd^c u\) is the Monge-Ampère measure \((dd^c u)^n\). For the definition and basic facts on the complex
Monge-Ampère operator \((dd^c)^n\) and Lelong numbers, we refer the reader to the books [12], [14] and [8], and for more advanced results, to [2]. Here we mention that \((dd^c)^n\) cannot be defined for all plurisubharmonic functions \(u\), however if \(u \in \text{PSH}(\Omega) \cap L^\infty_{\text{loc}}(\Omega \setminus K)\) with \(K \subset \subset \Omega\), then \((dd^c)^n\) is well defined as a positive closed current of the bidimension \((0, 0)\) (or, which is the same, as a positive measure) on \(\Omega\). This measure cannot charge pluripolar subsets of \(\Omega \setminus K\), and it can have positive masses at points of \(K\), e.g. \((dd^c \log |z|)^n = \delta(0)\), the Dirac measure at 0, \(|z| = (\sum |z_j|^2)^{1/2}\). More generally, if \(f : \Omega \to \mathbb{C}^N, N \geq n\), is a holomorphic mapping with isolated zeros at \(x^{(k)} \in \Omega\) of multiplicities \(m_k\), then \((dd^c \log |f|)^n|_{x^{(k)}} = m_k \delta(x^{(k)})\).

So, the masses of \((dd^c)^n\) at isolated points of singularity of \(u\) (the residual measures of \(u\)) are of especial importance.

Let a plurisubharmonic function \(u\) belong to \(L^\infty_{\text{loc}}(\Omega \setminus \{x\})\); its residual mass at the point \(x\) will be denoted by \(\tau(u, x)\):

\[
\tau(u, x) = (dd^c u)^n|_{\{x\}}.
\]

The problem under consideration is evaluation of this value.

The following well-known relation compares \(\tau(u, x)\) with the Lelong number \(\nu(u, x)\):

\[
\tau(u, x) \geq [\nu(u, x)]^n.
\]

The equality in (1) means that, roughly speaking, the function \(u(z)\) behaves near \(x\) as \(\nu(u, x) \log |z - x|\). In many cases however relation (1) is not optimal; e.g. for

\[
u(u, 0) = k_1 k_2 > k_2^2 = [\nu(u, 0)]^2.
\]

As follows from the Comparison Theorem due to Demailly (see Theorem A below), the residual mass is determined by asymptotic behaviour of the function near its singularity, so one needs to find appropriate characteristics for the behaviour. To this end, a notion of local indicator was proposed in [15]. Note that \(\nu(u, x)\) can be calculated as

\[
\nu(u, x) = \lim_{r \to -\infty} r^{-1} \sup \{ \nu(z) : |z - x| \leq e^r \} = \lim_{r \to -\infty} r^{-1} \mathcal{M}(u, x, r),
\]

where \(\mathcal{M}(u, x, r)\) is the mean value of \(u\) over the sphere \(|z - x| = e^r\), see [4]. In [3], the refined, or directional, Lelong numbers were introduced as

\[
\nu(u, x, a) = \lim_{r \to -\infty} r^{-1} \sup \{ \nu(z) : |z_k - x_k| \leq e^{ra_k}, 1 \leq k \leq n \}
\]

\[
= \lim_{r \to -\infty} r^{-1} g(u, x, ra),
\]
\[a = (a_1, \ldots, a_n) \in \mathbb{R}_+^n \] and \(g(u, x, b) \) is the mean value of \(u \) over the set \(\{ z : |z_k - x_k| = \exp b_k, 1 \leq k \leq n \} \). For \(x \) fixed, the collection \(\{ \nu(u, x, a) \}_{a \in \mathbb{R}_+^n} \) gives a more detailed information about the function \(u \) near \(x \) than \(\nu(u, x) \) does, so one can expect for a more precise bound for \(\tau(u, x) \) in terms of the directional Lelong numbers. It was noticed already in [5] that \(a \mapsto \nu(u, x, a) \) is a concave function on \(\mathbb{R}_+^n \). In [15], it was observed that this function produces the following plurisubharmonic function \(\Psi_{u, x} \) in the unit polydisk \(D = \{ y \in \mathbb{C}^n : |y_k| < 1, 1 \leq k \leq n \} \):

\[\Psi_{u, x}(y) = -\nu(u, x, (-\log |y_k|)), \]

the local indicator of the function \(u \) at \(x \). It is the largest negative plurisubharmonic function in \(D \) whose directional Lelong numbers at 0 coincide with those of \(u \) at \(x \), \((dd^c \Psi_{u, x}) = \tau(\Psi_{u, x}, 0) \delta(0) \), and finally,

\[\tau(u, x) \geq \tau(\Psi_{u, x}, 0), \]

so the singularity of \(u \) at \(x \) is controlled by its indicator \(\Psi_{u, x} \).

Since \(\tau(\Psi_{u, x}, 0) \geq [\nu(\Psi_{u, x}, 0)]^n = [\nu(u, x)]^n \), (4) is a refinement of (1).

The main tool used to obtain these bounds is the Comparison Theorem due to Demailly. To formulate it we give the following

Definition 1. A \(q \)-tuple of plurisubharmonic functions \(u_1, \ldots, u_q \) is said to be in general position if their unboundedness loci \(A_1, \ldots, A_q \) satisfy the following condition: for all choices of indices \(j_1 < \ldots < j_k, k \leq q \), the \((2q - 2k + 1)\)-dimensional Hausdorff measure of \(A_{j_1} \cap \ldots \cap A_{j_k} \) equals zero.

Theorem A (Comparison Theorem, [2], Th. 5.9). Let \(n \)-tuples of plurisubharmonic functions \(u_1, \ldots, u_n \) and \(v_1, \ldots, v_n \) be in general position

\[dd^c u_1 \wedge \ldots \wedge dd^c u_n \vert_{\{x\}} \geq \prod_j \nu(u_j, x, a) \frac{a_1 \ldots a_n}{a_1 \ldots a_n} \forall a \in \mathbb{R}_+^n. \]
on a neighbourhood of a point \(x \in \mathbb{C}^n \). Suppose that \(u_j(x) = -\infty, \ 1 \leq j \leq n \), and
\[
\limsup_{z \to x} \frac{v_j(z)}{u_j(z)} = l_j < \infty.
\]
Then
\[
dd^c v_1 \wedge \ldots \wedge \dd^c v_n |_{\{x\}} \leq l_1 \ldots l_n \dd^c u_1 \wedge \ldots \wedge \dd^c u_n |_{\{x\}}.
\]

We also obtain a geometric interpretation for the value \(N(u, x) \) (Theorem [7]). Let \(\Theta_{u,x} \) be the set of points \(b \in \mathbb{R}^n_+ \) such that \(\nu(u, x, a) \geq \langle b, a \rangle \) for some \(a \in \mathbb{R}^n_+ \), then
\[
\tau(u, x) \geq N(u, x) = n! Vol(\Theta_{u,x}).
\]

In many cases the volume of \(\Theta_{u,x} \) can be easily calculated, so (1) gives an effective formula for \(N(u, x) \).

To illustrate these results, consider functions \(u = \log |f|, \ f = (f_1, \ldots, f_n) \) being an equidimensional holomorphic mapping with an isolated zero at a point \(x \). It is probably the only class of functions whose residual measures were studied in details before. In this case, \(\tau(u, x) \) equals \(m \), the multiplicity of \(f \) at \(x \), and
\[
\nu(\log |f|, x, a) = I(f, x, a) := \inf \{ \langle a, p \rangle : p \in \omega_x \}
\]
where
\[
\omega_x = \{ p \in \mathbb{Z}^n_+ : \sum_j |\frac{\partial^p f_j}{\partial z^p}(x)| \neq 0 \}
\]
(see [13]). For polynomials \(F : \mathbb{C}^n \to \mathbb{C} \), the value \(I(F, x, a) \) is a known object (the index of \(F \) at \(x \) with respect to the weight \(a \)) used in number theory (see e.g. [11]).

Relation (1) gives us \(m = \tau(\log |f|, x) \geq N(\log |f|, x) \). In general, the value \(N(\log |f|, x) \) is not comparable to \(m_1 \ldots m_n \) with \(m_j \) the multiplicity of the function \(f_j \): for \(f(z) = (z_1^2 + z_2, z_2) \) and \(x = 0, m_1m_2 = 1 < 2 = N(\log |f|, x) = m \) while for \(f(z) = (z_1^2 + z_2, z_2^3) \), \(N(\log |f|, x) = 2 < 3 = m_1m_2 < 6 = m \). A more sharp bound for \(m \) can be obtained by (3) with \(u_j = \log |f_j|, \ 1 \leq j \leq n \). In this case, the left-hand side of (3) equals \(m \), and its right-hand side with \(a_1 = \ldots = a_n = m_1 \ldots m_n \). For the both above examples of the mapping \(f \), the supremum of the right-hand side of (3) over \(a \in \mathbb{R}^n_+ \) equals \(m \). For \(a_1, \ldots, a_n \) rational, relation (3) is a known bound for \(m \) via the multiplicities of weighted homogeneous initial Taylor polynomials of \(f_j \) with respect to the weights \((a_1, \ldots, a_n) \) ([11], Th. 22.7).

Recall that the convex hull \(\Gamma_+(f, x) \) of the set \(\bigcup_p \{ p + \mathbb{R}^n_+ \} \), \(p \in \omega_x \) is called the Newton polyhedron of \((f_1, \ldots, f_n) \) at \(x \), the union \(\Gamma(f, x) \) of the
compact faces of the boundary of $\Gamma_+(f, x)$ is called the Newton boundary of (f_1, \ldots, f_n) at x, and the value $N_{f,x} = n! \text{Vol}(\Gamma_-(f, x))$ with $\Gamma_-(f, x) = \{ t \in \Gamma(f, x), \ 0 \leq \lambda \leq 1 \}$ is called the Newton number of (f_1, \ldots, f_n) at x (see [4], [1]). The relation

\[m \geq N_{f,x} \]

was established by A.G. Kouchnirenko [3] (see also [1], Th. 22.8). Since $\Theta_{\log |f|, x} = \Gamma_-(f, x)$, (3) is a particular case of the relation (3). It is the reason to call $N(u, x)$ the Newton number of u at x.

These observations show that the technique of plurisubharmonic functions (and local indicators in particular) is quite a powerful tool to produce, in a unified and simple way, sharp bounds for the multiplicities of holomorphic mappings.

Finally, we obtain a description for the indicator $\Psi_{u,x}(z)$ as the weak limit of the functions $m^{-1} u(x_1 + z_1^m, \ldots, x_n + z_n^m)$ as $m \to \infty$ (Theorem 8), so $\Psi_{u,x}$ can be viewed as the tangent (in the logarithmic coordinates) for the function u at x. Using this approach we obtain a sufficient condition, in terms of C_{n-1}-capacity, for the residual mass $\tau(u, x)$ to coincide with the Newton number of u at x (Theorem 9).

2 Indicators and their masses

We will use the following notations. For a domain Ω of \mathbb{C}^n, $PSH(\Omega)$ will denote the class of all plurisubharmonic functions on Ω, $PSH_-(\Omega)$ the subclass of the nonpositive functions, and $PSH(\Omega, x) = PSH(\Omega) \cap L^\infty_{loc}(\Omega \setminus \{x\})$ with $x \in \Omega$.

Let $D = \{ z \in \mathbb{C}^n : |z_k| < 1, 1 \leq k \leq n \}$ be the unit polydisk, $D^* = \{ z \in D : z_1 \cdot \ldots \cdot z_n \neq 0 \}$, $\mathbb{R}_+^n = \{ t \in \mathbb{R}^n : \pm t_k > 0 \}$. By $\text{CNVI}_-(\mathbb{R}^n)$ we denote the collection of all nonpositive convex functions on \mathbb{R}^n increasing in each variable t_k. The mapping $\text{Log} : D^* \to \mathbb{R}^n$ is defined as $\text{Log}(z) = (\log |z_1|, \ldots, \log |z_n|)$, and $\text{Exp} : \mathbb{R}^n \to D^*$ is given by $\text{Exp}(t) = (\exp t_1, \ldots, \exp t_n)$.

A function u on D^* is called n-circled if

\[u(z) = u(|z_1|, \ldots, |z_n|), \]

i.e. if $\text{Log}^* \text{Exp}^* u = u$. Any n-circled function $u \in PSH_-(D^*)$ has a unique extension to the whole polydisk D keeping the property (9). The class of such functions will be denoted by $PSH_\circ(D)$. The cones $\text{CNVI}_-(\mathbb{R}^n_+)$ and $PSH_\circ(D)$ are isomorphic: $u \in PSH_\circ(D) \iff \text{Exp}^* u \in \text{CNVI}_-(\mathbb{R}^n_-)$, $h \in \text{CNVI}_-(\mathbb{R}^n_-) \iff \text{Log}^* h \in PSH_\circ(D)$.

5
Definition 2. A function $\Psi \in \mathcal{PSH}^c(D)$ is called an *indicator* if its convex image $\text{Exp}^*\Psi$ satisfies

$$\text{Exp}^*\Psi(ct) = c\text{Exp}^*\Psi(t) \quad \forall c > 0, \forall t \in \mathbb{R}^n. \quad (10)$$

The collection of all indicators will be denoted by I. It is a convex subcone of $\mathcal{PSH}^c(D)$, closed in D' (or equivalently, in $L^1_{\text{loc}}(D)$). Besides, if $\Psi_1, \Psi_2 \in I$ then $\sup\{\Psi_1, \Psi_2\} \in I$, too.

Every indicator is locally bounded in D^*. In what follows we will often consider indicators locally bounded in $D \setminus \{0\}$; the class of such indicators will be denoted by I_0: $I_0 = I \cap \mathcal{PSH}(D,0)$.

An example of indicators can be given by the functions $\varphi_a(z) = \sup_k a_k \log |z_k|$, $a_k \geq 0$. If all $a_k > 0$, then $\varphi_a \in I_0$.

Proposition 1 Let $\Psi \in I_0$, $\Psi \not\equiv 0$. Then

(a) there exist $\nu_1, \ldots, \nu_n > 0$ such that

$$\Psi(z) \geq \varphi_{\nu}(z) \quad \forall z \in D; \quad (11)$$

(b) $\Psi \in C(\overline{D} \setminus \{0\})$, $\Psi|_{\partial D} = 0$;

(c) the directional Lelong numbers $\nu(\Psi, 0, a)$ of Ψ at the origin with respect to $a \in \mathbb{R}^n_+$ (3) are

$$\nu(\Psi, 0, a) = -\Psi(\text{Exp}(-a)), \quad (12)$$

and its Lelong number $\nu(\Psi, 0) = -\Psi(e^{-1}, \ldots, e^{-1})$;

(d) $(dd^c\Psi)^n = 0$ on $D \setminus \{0\}$.

Proof. Let $\Psi_k(z_k)$ denote the restriction of the indicator $\Psi(z)$ to the disk $D^{(k)} = \{ z \in D : z_j = 0 \ \forall j \neq k \}$. By monotonicity of $\text{Exp}^*\Psi$, $\Psi(z) \geq \Psi_k(z_k)$. Since Ψ_k is a nonzero indicator in the disk $D^{(k)} \subset \mathbb{C}$, $\Psi_k(z_k) = \nu_k \log |z_k|$ with some $\nu_k > 0$, and (a) follows.

As $\text{Exp}^*\Psi \in C(\mathbb{R}^n_+)$, $\Psi \in C(D^*)$. Its continuity in $D \setminus \{0\}$ can be shown by induction in n. For $n = 1$ it is obvious, so assuming it for $n \leq l$, consider any point $z^0 \neq 0$ with $z^0_j = 0$. Let $z^* \to z^0$, then the points \tilde{z}^* with $\tilde{z}^*_j = 0$ and $\tilde{z}^*_m = z^*_m$, $m \neq j$, also tend to z^0, and by the induction hypothesis, $\Psi(\tilde{z}^*) \to \Psi(z^0) = \Psi(z^0)$. So, $\liminf_{s \to \infty} \Psi(z^s) \geq \lim_{s \to \infty} \Psi(\tilde{z}^s) = \Psi(z^0)$, i.e.
Ψ is lower semicontinuous and hence continuous at z^0. Continuity of $Ψ$ up to ∂D and the boundary condition follow from (11).

Equality (12) is an immediate consequence of the definition of the directional Lelong numbers (3) and the homogeneity condition (10). The relation $\nu(u, x) = \nu(u, x, (1, \ldots, 1))$ [5] gives us the desired expression for $\nu(Ψ, 0)$.

Finally, statement (d) follows from the homogeneity condition (10), see [15], Proposition 4.

For functions $Ψ \in I_0$, the complex Monge-Ampère operator $(dd^cΨ)^n$ is well defined and gives a nonnegative measure on D. By Proposition 1,

$$(dd^cΨ)^n = \tau(Ψ) \delta(0)$$

with some constant $\tau(Ψ) \geq 0$ which is strictly positive unless $Ψ \equiv 0$. In this section, we will study the value $\tau(Ψ)$.

An upper bound for $\tau(Ψ)$ is given by

Proposition 2 For $Ψ \in I_0$,

$$(13) \quad \tau(Ψ) \leq \nu_1 \ldots \nu_n$$

with $ν_1, \ldots, ν_n$ the same as in Proposition [1], (a).

Proof. The function $ϕ_ν(z) \in I_0$, and (11) implies

$$\limsup_{z \to 0} Ψ(z) \leq 1,$$

so (13) follows by Theorem A.

To obtain a lower bound for $\tau(Ψ)$, we need a relation between $Ψ(z)$ and $Ψ(z^0)$ for $z, z^0 \in D$. Denote

$$Φ(z, z^0) = \sup_k \frac{\log |z_k|}{|\log |z_k^0||}, \quad z \in D, \ z^0 \in D^*.$$

Being considered as a function of z with z^0 fixed, $Φ(z, z^0) \in I_0$.

Proposition 3 For any $Ψ \in I$, $Ψ(z) \leq |Ψ(z^0)|Φ(z, z^0)$ $∀z \in D, \ z^0 \in D^*$.

Proof. For a fixed $z^0 \in D^*$ and $t^0 = Log(z^0)$, define $u = |Ψ(z^0)|^{-1}Exp^*Ψ$ and $v = Exp^*Φ = sup_k t_k/|t^0_k|$. It suffices to establish the inequality $u(t) \leq v(t)$ for all $t \in R^n$ with $t^0_k < t_k < 0$, $1 \leq k \leq n$. Given such a t, denote $λ_0 = [1 + v(t)]^{-1}$. Since $\{t^0 + λ(t - t^0) : 0 \leq λ \leq λ_0\} \subset R^d$, the functions
$u_t(\lambda) := u(t^0 + \lambda(t - t^0))$ and $v_t(\lambda) := v(t^0 + \lambda(t - t^0))$ are well defined on $[0, \lambda_0]$. Furthermore, u_t is convex and v_t is linear there, $u_t(0) = v_t(0) = -1$, $u_t(\lambda_0) \leq v_t(\lambda_0) = 0$. It implies $u_t(\lambda) \leq v_t(\lambda)$ for all $\lambda \in [0, \lambda_0]$. In particular, as $\lambda_0 > 1$, $u(t) = u_t(1) \leq v_t(1) = v(t)$, that completes the proof.

Consider now the function

$$P(z) = -\prod_{1 \leq k \leq n} |\log |z_k||^{1/n} \in I.$$

Theorem 1 For any $\Psi \in I_0$,

$$\tau(\Psi) \geq \frac{\Psi(z^0)}{P(z^0)} \quad \forall z^0 \in D^*.$$

Proof. By Proposition 3,

$$\frac{\Psi(z)}{\Phi(z, z^0)} \leq |\Psi(z^0)| \quad \forall z \in D, \ z^0 \in D^*.$$

By Theorem A,

$$\langle dd^c \Psi \rangle^\star \leq |\Psi(z^0)| \langle dd^c \Phi(z, z^0) \rangle^\star,$$

and the statement follows from the fact that

$$\langle dd^c \Phi(z, z^0) \rangle^\star = \prod_{1 \leq k \leq n} |\log |z^0_k||^{-1} = |P(z^0)|^{-n}.$$

Remarks. 1. One can consider the value

$$A_\Psi = \sup_{z \in D} \frac{\Psi(z)}{P(z)};$$

by Theorem 4,

$$\tau(\Psi) \geq A_\Psi.$$

2. Let $I_{0,M} = \{ \Psi \in I_0 : \tau(\Psi) \leq M \}, \ M > 0$. Then (14) gives the lower bound for the class $I_{0,M}$:

$$\Psi(z) \geq M^{1/n} P(z) \quad \forall z \in D, \ \forall \Psi \in I_{0,M}.$$

Let now $\Psi_1, \ldots, \Psi_n \in I$ be in general position in the sense of Definition 1. Then the current $\wedge_k dd^c \Psi_k$ is well defined, as well as $(dd^c \Psi)^\star$ with $\Psi = \sup_k \Psi_k$. Moreover, we have
Proposition 4 If $\Psi_1, \ldots, \Psi_n \in I$ are in general position, then
\begin{equation}
\bigwedge_k dd^c \Psi_k = 0 \text{ on } D \setminus \{0\}.
\end{equation}

Proof. For $\Psi_1, \ldots, \Psi_n \in I_0$, the statement follows from Proposition (d), and the polarization formula
\begin{equation}
\bigwedge_k dd^c \Psi_k = \frac{(-1)^n}{n!} \sum_{j=1}^{n} (-1)^j \sum_{1 \leq i_1 < \cdots < i_j \leq n} \left(dd^c \sum_{k=1}^{j} \Psi_{j_k} \right)^n.
\end{equation}

When the only condition on $\{\Psi_k\}$ is to be in general position, we can replace $\Psi_k(z)$ with $\Psi_{k,N}(z) = \sup \{\Psi_k(z), N \sup_j \log |z_j| \} \in I_0$ for which $\bigwedge_k dd^c \Psi_{k,N} = 0$ on $D \setminus \{0\}$. Since $\Psi_{k,N} \rightarrow \Psi_k$ as $N \rightarrow \infty$, it gives us (17).

The mass of $\bigwedge_k dd^c \Psi_k$ will be denoted by $\tau(\Psi_1, \ldots, \Psi_n)$.

Theorem 2 Let $\Psi_1, \ldots, \Psi_n \in I$ be in general position, $\Psi = \sup_k \Psi_k$. Then
\begin{enumerate}[(a)]
\item $\tau(\Psi) \leq \tau(\Psi_1, \ldots, \Psi_n)$;
\item $\tau(\Psi_1, \ldots, \Psi_n) \geq |P(z^0)|^{-n} \prod_k |\Psi_k(z^0)| \quad \forall z^0 \in D^*$.
\end{enumerate}

Proof. Since
\[
\frac{\Psi(z)}{\Psi_k(z)} \leq 1 \quad \forall z \neq 0,
\]
statement (a) follows from Theorem A.

Statement (b) results from Proposition (a) exactly like the statement of Theorem A.

3 Geometric interpretation

In this section we study the masses $\tau(\Psi)$ of indicators $\Psi \in I_0$ by means of their convex images $Exp^* \Psi \in CNVI_-(\mathbb{R}^n)$.

Let $V \in PSH^c(rD) \cap C^2(rD)$, $r < 1$, and $v = Exp^* V \in CNVI_-(((\mathbb{R}_- + \log r)^n)$. Since
\[
\frac{\partial^2 V(z)}{\partial z_j \partial \bar{z}_k} = \frac{1}{4\bar{z}_j \bar{z}_k} \frac{\partial^2 v(t)}{\partial t_j \partial t_k} \bigg|_{t = \log(z)}, \quad z \in rD^*;
\]
\[
\det \left(\frac{\partial^2 V(z)}{\partial z_j \partial \bar{z}_k} \right) = 4^{-n} |z_1 \ldots z_n|^{-2} \det \left(\frac{\partial^2 v(t)}{\partial t_j \partial t_k} \right) \bigg|_{t = \log(z)}.
\]
By setting $z_j = \exp\{t_j + i\theta_j\}$, $0 \leq \theta \leq 2\pi$, we get $eta_n(z) = |z_1 \ldots z_n|^2 dt d\theta$, so

$$(19) (dd^c V)^n = n! \left(\frac{2\pi}{n} \right)^n \det \left(\frac{\partial^2 V}{\partial z_j \partial \bar{z}_k} \right) \beta_n = n! (2\pi)^{-n} \det \left(\frac{\partial^2 v}{\partial t_j \partial \bar{t}_k} \right) dt d\theta.$$

Every function $U \in PSH_c(D) \cap L^\infty(D)$ is the limit of a decreasing sequence of functions $U_l \in PSH_c(E) \cap C^2(E)$ on an n-circled domain $E \subset D$, and by the convergence theorem for the complex Monge-Ampère operators,

$$(20) (dd^c U_l)^n|_E \rightarrow (dd^c U)^n|_E.$$

On the other hand, for $u_l = \exp^* U_l$ and $u = \exp^* U$,

$$(21) \det \frac{\partial^2 u_l}{\partial t_j \partial \bar{t}_k} dt \bigg|_{Log(D^* \cap E)} \rightarrow \mathcal{MA}[u]|_{Log(D^* \cap E)},$$

the real Monge-Ampère operator of U.

Since $(dd^c U_l)^n$ and $(dd^c U)^n$ cannot charge pluripolar sets, (19) with $V = U_l$ and $(20), (21)$ imply

$$(dd^c U)^n(E) = n! (2\pi)^{-n} \mathcal{MA}[u] d\theta (Log(E) \times [0, 2\pi]^n)$$

for any n-circled Borel set $E \in D$, i.e.

$$(22) (dd^c U)^n(E) = n! \mathcal{MA}[u](Log(E)).$$

This relation allows us to calculate $\tau(\Psi)$ by using the technique of real Monge-Ampère operators in \mathbb{R}^n (see [16]).

Let $\Psi \in I$. Consider the set

$$B_\Psi = \{ a \in \mathbb{R}_+^n : \langle a, t \rangle \leq \exp^* \Psi(t) \ \forall t \in \mathbb{R}_+^n \}$$

and define

$$\Theta_\Psi = \mathbb{R}_+^n \setminus B_\Psi.$$

Clearly, the set B_Ψ is convex, so $\exp^* \Psi$ is the restriction of its support function to \mathbb{R}^n. If $\Psi \in I_0$, the set Θ_Ψ is bounded. Indeed, $a \in \Theta_\Psi$ if and only if $\langle a, t^0 \rangle \geq \exp^* \Psi(t^0)$ for some $t^0 \in \mathbb{R}_+^n$, that implies $|a_j| \leq |\exp^* \Psi(t^0)/t^0_j| \forall j$. By Proposition [4], (a), $|\exp^* \Psi(t^0)| \leq \nu_j |t_j|$ and therefore $|a_j| \leq \nu_j \forall j$.

Given a set $F \in \mathbb{R}^n$, we denote its Euclidean volume by $Vol(F)$.

Theorem 3 $\forall \Psi \in I_0$,

$$(23) \tau(\Psi) = n! Vol(\Theta_\Psi).$$
Proof. Denote \(U(z) = \sup\{\Psi(z), -1\} \in PSH_{c}(D) \cap C(D), \ u = \text{Exp}^{*} U \in CNVI_{-}(\mathbb{R}^{n})\). Since \(U(z) = \Psi(z)\) near \(\partial D\),

\[
\tau(\Psi) = \int_{D} (dd^{c} U)^{n}.
\]

Furthermore, as \((dd^{c} U)^{n} = 0\) outside the set \(E = \{z \in D : \Psi(z) = -1\}\),

\[
\tau(\Psi) = \int_{E} (dd^{c} U)^{n}.
\]

In view of (22),

\[
\int_{E} (dd^{c} U)^{n} = n! \int_{\text{Log}(E)} \mathcal{M}A[u].
\]

As was shown in [16], for any convex function \(v\) in a domain \(\Omega \subset \mathbb{R}^{n}\),

\[
\int_{F} \mathcal{M}A[v] = \text{Vol}(\omega(F, v)) \quad \forall F \subset \Omega,
\]

where

\[
\omega(F, v) = \bigcup_{v^{0} \in F} \{a \in \mathbb{R}^{n} : v(t) \geq v(t^{0}) + \langle a, t - t^{0} \rangle \forall t \in \Omega\}
\]

is the gradient image of the set \(F\) for the surface \(\{y = v(x), x \in \Omega\}\).

We claim that

\[
\Theta_{\Psi} = \omega(\text{Log}(E), u).
\]

Observe that

\[
\Theta_{\Psi} = \{a \in \mathbb{R}^{n}_{+} : \sup_{\psi(t) = -1} \langle a, t \rangle \geq -1\}
\]

where \(\psi = \text{Exp}^{*} \Psi\).

If \(a \in \omega(\text{Log}(E), u)\), then for some \(t^{0} \in \mathbb{R}^{n}\) with \(\psi(t^{0}) = 1\) we have \(\langle a, t^{0} \rangle \geq \langle a, t \rangle\) for all \(t \in \mathbb{R}^{n}\) such that \(\psi(t) < -1\). Taking here \(t_{j} \to -\infty\) we get \(a_{j} \geq 0\), i.e. \(a \in \mathbb{R}^{n}_{+}\). Besides, \(\langle a, t^{0} \rangle \geq \langle a, t \rangle - 1 - \psi(t)\) for all \(t \in \mathbb{R}^{n}\) with \(\psi(t) > -1\), and applying this for \(t \to 0\) we derive \(\langle a, t^{0} \rangle \geq -1\).

Therefore, \(a \in \Theta_{\Psi}\) and \(\Theta_{\Psi} \supset \omega(\text{Log}(E), u)\).

Now we prove the converse inclusion. If \(a \in \Theta_{\Psi} \cap \mathbb{R}^{n}_{+}\), then

\[
\sup\{\langle a, t^{0} \rangle : t^{0} \in \text{Log}(E)\} \geq -1.
\]

Let \(t\) be such that \(\psi(t) = -\delta > -1\), then \(t/\delta \in \text{Log}(E)\) and thus

\[
\langle a, t \rangle - 1 - \psi(t) = \delta(a, t/\delta) - 1 + \delta \leq \delta \sup_{t^{0} \in \text{Log}(E)} \langle a, t^{0} \rangle - 1 + \delta \leq \sup_{t^{0} \in \text{Log}(E)} \langle a, t^{0} \rangle = \sup_{z^{0} \in E} \langle a, \text{Log}(z^{0}) \rangle.
\]
Since E is compact, the latter supremum is attained at some point z^0. Furthermore, $z^0 \in E \cap D^*$ because $a_k \neq 0$, $1 \leq k \leq n$. Hence $\sup_{t \in \log(E)} (a, t^0) = \langle a, t^0 \rangle$ with $t^0 = \log(z^0) \in \mathbb{R}^n_+$, so that $a \in \omega(\log(E), u)$ and $\Theta_\Psi \cap \mathbb{R}^n_+ \subset \omega(\log(E), u)$. Since $\omega(\log(E), u)$ is closed, this implies $\Theta_\Psi = \omega(\log(E), u)$, and (27) follows.

Now relation (23) is a consequence of (24)–(27). The theorem is proved.

Note that the value $\tau(\Psi_1, \ldots, \Psi_n)$ also can be expressed in geometric terms. Namely, if $\Psi_1, \ldots, \Psi_n \in I_0$, the polarization formula (18) gives us, by Theorem 3,

$$\tau(\Psi_1, \ldots, \Psi_n) = (-1)^n \sum_{j=1}^n (-1)^j \sum_{1 \leq i_1 < \ldots < i_j \leq n} \text{Vol}(\Theta_{\sum_k \Psi_{i_k}}).$$

We can also give an interpretation for the bound (16). Write A_Ψ from (15) as

$$A_\Psi = \sup_{a \in \mathbb{R}^n_+} \frac{|\psi(-a)|^n}{a_1 \ldots a_n} = \sup_{a \in \mathbb{R}^n_+} |\psi(-a/a_1) \ldots \psi(-a/a_n)|,$$

$\psi = \text{Exp}^* \Psi$. For any $a \in \mathbb{R}^n_+$, the point $a^{(j)}$ whose jth coordinate equals $|\psi(-a/a_j)|$ and the others are zero, has the property $\langle a^{(j)}, -a \rangle = \psi(-a)$. This remains true for every convex combination $\sum \rho_j a^{(j)}$ of the points $a^{(j)}$, and thus $r \sum \rho_j a^{(j)} \in \Theta_\Psi$ with any $r \in [0, 1]$. Since $$(n!)^{-1} |\psi(-a/a_1) \ldots \psi(-a/a_n)|$$ is the volume of the simplex generated by the points $0, a^{(1)}, \ldots, a^{(n)}$, we see from (28) that $(n!)^{-1} A_\Psi$ is the supremum of the volumes of all simplices contained in Θ_Ψ.

Besides, $(n!)^{-1} [\nu(\Psi, 0)]^n$ is the volume of the simplex

$$\{a \in \mathbb{R}^n_+ : \langle a, (1, \ldots, 1) \rangle \leq \nu(\Psi, 0) \} \subset \Theta_\Psi.$$
It is a geometric description for the "standard" bound $\tau(\Psi) \geq [\nu(\Psi, 0)]^n$.

4 Singularities of plurisubharmonic functions

Let u be a plurisubharmonic function in a domain $\Omega \subset \mathbb{C}^n$, and $\nu(u, x, a)$ be its directional Lelong number (3) at $x \in \Omega$ with respect to $a \in \mathbb{R}^n_+$. Fix a point x. As is known [3], the function $a \mapsto \nu(u, x, a)$ is a concave function on \mathbb{R}^n_+. So, the function

$$\psi_{u,x}(t) := -\nu(u, x, -t), \quad t \in \mathbb{R}^n_-,$$
belongs to $CNVI_-(\mathbb{R}^n_+)$ and thus

$$
\Psi_{u,x} := \log^* \psi_{u,x} \in PSH^c_-(D).
$$

Moreover, due to the positive homogeneity of $\nu(u, x, a)$ in a, $\Psi_{u,x} \in I$. The function $\Psi_{u,x}$ was introduced in [15] as (local) indicator of u at x. According to (3),

$$
\Psi_{u,x}(z) = \lim_{R \to +\infty} R^{-1} \sup \{ u(y) : |y_k - x_k| \leq |z_k|^R, \ 1 \leq k \leq n \} = \lim_{R \to +\infty} \frac{1}{(2\pi)^n} \int_{[0,2\pi]^n} u(x_k + |z_k|^R e^{i\theta_k}) d\theta_1 \ldots d\theta_n.
$$

Clearly, $\Psi_{u,x} \equiv 0$ if and only if $\nu(u, x) = 0$. It is easy to see that $\Psi(\Phi, 0) = \Phi \forall \Phi \in I$. In particular,

$$
(29) \quad \nu(u, x, a) = \nu(\Psi_{u,x}, 0, a) = -\Psi_{u,x}(Exp(-a)) \ \forall a \in \mathbb{R}^n_+.
$$

So, the results of the previous sections can be applied to study the directional Lelong numbers of arbitrary plurisubharmonic functions.

Proposition 5 (cf. [7], Pr. 5.3) For any $u \in PSH(\Omega)$,

$$
\nu(u, x, a) \geq \nu(u, x, b) \sup_k \frac{a_k}{b_k} \ \forall x \in \Omega, \ \forall a, b \in \mathbb{R}^n_+.
$$

Proof. In view of (29), the relation follows from Proposition 4.

Given $r \in \mathbb{R}^n_+$ and $z \in \mathbb{C}^n$, we denote $r^{-1} = (r_1^{-1}, \ldots, r_n^{-1})$ and $r \cdot z = (r_1 z_1, \ldots, r_n z_n)$.

Proposition 6 ([15]). If $u \in PSH(\Omega)$ then

$$
(30) \quad u(z) \leq \Psi_{u,x}(r^{-1} \cdot z) + \sup \{ u(y) : y \in D_r(x) \}
$$

for all $z \in D_r(x) = \{ y : |y_k - x_k| \leq r_k, \ 1 \leq k \leq n \} \subset \subset \Omega$.

Proof. Let us assume for simplicity $x = 0$, $D_r(0) = D_r$. Consider the function $v(z) = u(r \cdot z) - \sup \{ u(y) : y \in D_r \} \in PSH_-(D)$. The function $g_v(R, t) := \sup \{ v(z) : |z_k| \leq \exp\{R r_k\}, \ 1 \leq k \leq n \}$ is convex in $R > 0$ and $t \in \mathbb{R}^n$, so for $R \to \infty$

$$
(31) \quad \frac{g_v(R, t) - g_v(R_1, t)}{R - R_1} > \psi_{v,0}(t),
$$

13
\[\psi_{v,0} = \text{Exp}^* \Psi_{v,0}. \]

For \(R = 1, R_1 \to 0 \), (31) gives us \(g_v(1, t) \leq \psi_{v,0}(t) \) and thus (30). The proposition is proved.

Let \(\Omega_k(x) \) be the connected component of the set \(\Omega \cap \{ z \in \mathbb{C}^n : z_j = x_j \ \forall j \neq k \} \) containing the point \(x \). If for some \(x \in \Omega, u|_{\Omega_k(x)} \neq -\infty \ \forall k \), then \(\Psi_{u,x} \in I_0 \). For example, it is the case for \(u \in \text{PSH}(\Omega, x) \).

If \(u \in \text{PSH}(\Omega, x) \), the measure \((dd^c u)^n\) is defined on \(\Omega \). Its residual mass at \(x \) will be denoted by \(\tau(u,x) \):

\[\tau(u,x) = (dd^c u)^n|_{\{x\}}. \]

Besides, the indicator \(\Psi_{u,x} \in I_0 \). Denote \(N(u,x) = \tau(\Psi_{u,x}) \).

Proposition 7 (\[15\], Th. 1). If \(u \in \text{PSH}(\Omega, x) \), then \(\tau(u, x) \geq N(u, x) \).

Proof. Inequality (30) implies

\[\limsup_{z \to x} \frac{\Psi_{u,x}(r^{-1} \cdot (z - x))}{u(z)} \leq 1, \]

and since

\[\lim_{y \to 0} \frac{\Psi_{u,x}(r^{-1} \cdot y))}{\Psi_{u,x}(y)} = 1 \ \forall r \in \mathbb{R}^n_+, \]

the statement follows from Theorem A.

So, to estimate \(\tau(u, x) \) we may apply the bounds for \(\tau(\Psi_{u,x}) \) from the previous section.

Theorem 4 If \(u \in \text{PSH}(\Omega, x) \), then

\[\tau(u,x) \geq \left[\mu(u,x,a) \right]^n \quad \forall a \in \mathbb{R}^n_+; \]

in other words, \(\tau(u, x) \geq A_{u,x} \) where \(A_{u,x} = A_{\Psi_{u,x}} \) is defined by (15).

Proof. The result follows from Theorem 4 and Proposition 7.

Let now \(u_1, \ldots, u_n \in \text{PSH}(\Omega) \) be in general position in the sense of Definition 1. Then the current \(\wedge_k dd^c u_k \) is defined on \(\Omega \) (\[4\], Th. 2.5); denote its residual mass at a point \(x \) by \(\tau(u_1, \ldots, u_n; x) \). Besides, the \(n \)-tuple of the indicators \(\Psi_{u_k,x} \) is in general position, too, that implies \(\wedge_k dd^c \Psi_{u_k,x} = \tau(\Psi_{u_1,x}, \ldots, \Psi_{u_n,x}) \delta(0) \) (Proposition 4). In view of Theorem A and Proposition 3 we have
Theorem 5 $\tau(u_1, \ldots, u_n; x) \geq \tau(\Psi u_1, \ldots, \Psi u_n, x)$.

Now Theorems 2 and 5 give us

Theorem 6

$$\tau(u_1, \ldots, u_n; x) \geq \prod_j \nu(u_j, x, a) \quad \forall a \in \mathbb{R}^n_+.$$ \hfill (32)

Remark. For $a_1 = \ldots = a_n = 1$, inequality (32) is proved in [2], Cor. 5.10.

By combination of Proposition 7 and Theorem 3 we get

Theorem 7 For $u \in PSH(\Omega, x)$,

$$\tau(u, x) \geq N(u, x) = n! V(\Theta_{u,x})$$ \hfill (33)

with

$$\Theta_{u,x} = \{ b \in \mathbb{R}^n_+ : \sup_{a \in \mathbb{Z}^n_+} [\nu(u, x, a) - \langle b, a \rangle] \geq 0 \}.$$

Remark on holomorphic mappings. Let $f = (f_1, \ldots, f_n)$ be a holomorphic mapping of a neighbourhood Ω of the origin into \mathbb{C}^n, $f(0) = 0$ be its isolated zero. Then in a subdomain $\Omega' \subset \Omega$ the zero sets A_j of the functions f_j satisfy the conditions

$$A_1 \cap \ldots \cap A_n \cap \Omega' = \{0\}, \quad \text{codim } A_{j_1} \cap \ldots \cap A_{j_k} \cap \Omega' \geq k$$

for all choices of indices $j_1 < \ldots < j_k$, $k \leq n$. Denote $u = \log |f|$, $u_j = \log |f_j|$. Then, as is known, $\tau(u, 0) = \tau(u_1, \ldots, u_n; 0) = m_f$, the multiplicity of f at 0. For $a = (1, \ldots, 1)$, $\nu(u_j, 0, a)$ equals m_j, the multiplicity of the function f_j at 0. Therefore, (32) with $a = (1, \ldots, 1)$ gives us the standard bound $m_f \geq m_1 \ldots m_n$.

For a_j rational, (32) is the known estimate of m_f via the multiplicities of weighted homogeneous initial Taylor polynomials for f_j (see e.g. [1], Th. 22.7). Indeed, due to the positive homogeneity of the directional Lelong numbers, we can take $a_j \in \mathbb{Z}^n_+$. Then by (7), $\nu(u_j, 0, a)$ is equal to the multiplicity of the function $f^{(a)}_j(z) = f_j(z^a)$.

We would also like to mention that (32) gives a lower bound for the Milnor number $\mu(F, 0)$ of a singular point 0 of a holomorphic function F (i.e. for the multiplicity of the isolated zero of the mapping $f = \text{grad } F$.)
at 0) in terms of the indices \(I(F,0,a) \) of \(F \). Since \(I(\partial F/\partial z_k,0,a) \geq I(F,0,a) - a_k \),
\[
\mu(F,0) \geq \prod_{1 \leq k \leq n} \left(\frac{I(F,0,a)}{a_k} - 1 \right).
\]

Finally, as follows from (7), the set \(\mathbb{R}^n_+ \setminus \Theta_{u,0} \) is the Newton polyhedron for the system \((f_1,\ldots,f_n)\) at 0 (see Introduction). Therefore, \(n! V(\Theta_{u,0}) \) is the Newton number of \((f_1,\ldots,f_n)\) at 0, and (33) becomes the bound for \(m_f \) due to A.G. Kouchnirenko (see \cite{1}, Th. 22.8). So, for any plurisubharmonic function \(u \), we will call the value \(N(u,x) \) the Newton number of \(u \) at \(x \).

5 Indicators as logarithmic tangents

Let \(u \in PSH(\Omega,0) \), \(u(0) = -\infty \). We will consider the following problem: under what conditions on \(u \), its residual measure equals its Newton number? Of course, the relation
\[
\exists \lim_{z \to 0} \frac{u(z)}{\Psi_{u,0}(z)} = 1
\]

is sufficient, however it seems to be too restrictive. On the other hand, as the example \(u(z) = \log(|z_1 + z_2|^2 + |z_2|^4) \) shows, the condition
\[
\lim_{\lambda \to 0} \frac{u(\lambda z)}{\Psi_{u,0}(\lambda z)} = 1 \quad \forall z \in \mathbb{C}^n \setminus \{0\}
\]
does not guarantee the equality \(\tau(u,0) = N(u,0) \).

To weaken (34) we first give another description for the local indicators. In \cite{6}, a compact family of plurisubharmonic functions
\[
u_r(z) = u(rz) - \sup\{u(y) : |y| < r\}, r > 0
\]
was considered and the limit sets, as \(r \to 0 \), of such families were described. In particular, the limit set need not consist of a single function, so a plurisubharmonic function can have several (and thus infinitely many) tangents. Here we consider another family generated by a plurisubharmonic function \(u \).

Given \(m \in \mathbb{N} \) and \(z \in \mathbb{C}^n \), denote \(z^m = (z_1^m,\ldots,z_n^m) \) and set
\[
T_m u(z) = m^{-1} u(z^m).
\]
Clearly, \(T_m u \in PSH(\Omega \cap D) \) and \(T_m u \in PSH_-(D_r) \) for any \(r \in \mathbb{R}_+^n \cap D^* \) (i.e. \(0 < r_k < 1 \)) for all \(m \geq m_0(r) \).
Proposition 8 The family \(\{T_m u\}_{m \geq m_0(r)} \) is compact in \(L^1_{loc}(D_r) \).

Proof. Let \(M(v, \rho) \) denote the mean value of a function \(v \) over the set \(\{ z : |z_k| = \rho_k, \ 1 \leq k \leq n \} \), \(0 < \rho_k \leq r_k \), then \(M(T_m u, \rho) = m^{-1}M(u, \rho^m) \).

The relation
\[
M^{-1}M(u, \rho^m) \geq \Psi_{u,0}(\rho) \text{ as } m \to \infty
\]
implies \(M(T_m u, \rho) \geq M(T_{m_0} u, \rho) \). Since \(T_m u \leq 0 \) in \(D_r \), it proves the compactness.

Theorem 8
(a) \(T_m u \to \Psi_{u,0} \) in \(L^1_{loc}(D) \);

(b) if \(u \in PSH(\Omega, 0) \) then \((dd^c T_m u)^n \to \tau(u, 0) \delta(0) \).

Proof. Let \(g \) be a partial limit of the sequence \(T_m u \), that is \(T_m u \to g \) as \(s \to \infty \) for some sequence \(m_k \). For the function \(v(z) = \sup \{ u(y) : |y_k| \leq |z_k|, \ 1 \leq k \leq n \} \) and any \(r \in \mathbb{R}^n_+ \cap D^* \) we have by (30)
\[
T_m u(z) \leq (T_m v)(z) \leq \Psi_{u,0}(r^{-1} \cdot z)
\]
and thus
\[
g(z) \leq \Psi_{u,0}(z) \forall z \in D.
\]

On the other hand, the convergence of \(T_m u \) to \(g \) in \(L^1 \) implies \(M(T_m u, r) \to M(g, r) \) (\[3\], Prop. 4.1.10). By (32), \(M(T_m u, r) \to \Psi_{u,0}(r) \), so \(M(g, r) = \Psi_{u,0}(r) \) for every \(r \in \mathbb{R}^n_+ \cap D^* \). Being compared with (36) it gives us \(g \equiv \Psi_{u,0} \), and the statement \((a) \) follows.

To prove \((b) \) we observe that for each \(\alpha \in (0, 1) \)
\[
\int_{\alpha D}(dd^c T_m u)^n = \int_{\alpha^m D}(dd^c u)^n \to \tau(u, 0)
\]
as \(m \to \infty \), and for \(0 < \alpha < \beta < 1 \)
\[
\lim_{m \to \infty} \int_{\beta D \setminus \alpha D}(dd^c T_m u)^n = \lim_{m \to \infty} \left[\int_{\beta^m D}(dd^c u)^n - \int_{\alpha^m D}(dd^c u)^n \right] = 0.
\]
The theorem is proved.

So, Theorem 8 shows us that \(\tau(u, 0) = N(u, 0) \) if and only if \((dd^c T_m u)^n \to (dd^c \Psi_{u,0})^n \). And now we are going to find conditions for this convergence.

Recall the definition of the inner \(C_{n-1} \)-capacity introduced in (17): for any Borel subset \(E \) of a domain \(\omega \),
\[
C_{n-1}(E, \omega) = \sup \{ \int_E (dd^c v)^{n-1} \wedge \beta_1 : v \in PSH(\omega), \ 0 < v < 1 \}.
\]
It was shown in [17] that convergence of uniformly bounded plurisubharmonic functions \(v_j \) to \(v \) in \(C_{n-1} \)-capacity implies \((dd^c v_j)^n \to (dd^c v)^n\). In our situation, neither \(T_m u \) nor \(\Psi_{u,0} \) are bounded, so we will modify the construction from [17].

Set
\[
E(u, m, \delta) = \{ z \in D \setminus \{0\} : \frac{T_m u(z)}{\Psi_{u,0}(z)} > 1 + \delta \}, \quad m \in \mathbb{N}, \ \delta > 0.
\]

Theorem 9 Let \(u \in PSH(\Omega, 0), \rho \in (0, 1/4), N > 0, \) and a sequence \(m_s \in \mathbb{N} \) be such that

1) \(u(z) > -Nm_s \) on a neighbourhood of the sphere \(\partial B_{\rho m_s} \), \(\forall s \);

2) \(\lim_{s \to \infty} C_{n-1}(B_{\rho} \cap E(u, m_s, \delta), D) = 0 \quad \forall \delta > 0. \)

Then \((dd^c T_m u)^n \to (dd^c \Psi_{u,0})^n \) on \(D \).

Proof. Without loss of generality we can take \(u \in PSH_-(D, 0) \). Consider the functions \(v_s(z) = \max \{ T_{m_s} u(z), -N \} \) and \(v = \max \{ \Psi_{u,0}(z), -N \} \). We have \(v_s = T_{m_s} u \) and \(v = \Psi_{u,0} \) on a neighbourhood of \(\partial B_{\rho} \), \(v_s = v = -N \) on a neighbourhood of \(0, v_s \leq v \) on \(B_{\rho} \), and \(v_s \geq (1 + \delta)v \) on \(B_{\rho} \setminus E(u, m_s, \delta) \).

We will prove the relations
\[
(dd^c v_s)^k \wedge (dd^c v)^l \to (dd^c v)^{k+l}
\]
for \(k = 1, \ldots, n, \ l = 0, \ldots, n - k \). As a consequence, it will give us the statement of the theorem. Indeed, by Theorem 8
\[
\int_{B_{\rho}} (dd^c v_s)^n = \int_{B_{\rho}} (dd^c T_{m_s} u)^n \to \tau(u, 0)
\]
while
\[
\int_{B_{\rho}} (dd^c v)^n = \int_{B_{\rho}} (dd^c \Psi_{u,0})^n = N(u, 0),
\]
and \((37)\) with \(k = n \) provides the coincidence of the right-hand sides of these relations and thus the convergence of \((dd^c T_m u)^n\) to \((dd^c \Psi_{u,0})^n\).

We prove \((37)\) by induction in \(k \). Let \(k = 1, 0 \leq l \leq n - 1, \delta > 0 \). For any test form \(\phi \in \mathcal{D}_{n-l-1,n-l-1}(B_{\rho}) \),
\[
\left| \int dd^c v_s \wedge (dd^c v)^l \wedge \phi - \int (dd^c v)^{l+1} \wedge \phi \right| = \left| \int (v - v_s)(dd^c v)^l \wedge dd^c \phi \right|
\]
\[\leq C_\phi \int_{B_\rho} (v - v_s)(dd^c v)^l \land \beta_{n-l} \]

\[= C_\phi \left[\int_{B_\rho \setminus E_{s,\delta}} + \int_{B_\rho \cap E_{s,\delta}} \right] (v - v_s)(dd^c v)^l \land \beta_{n-l} \]

\[= C_\phi [I_1(s, \delta) + I_2(s, \delta)], \]

where, for brevity, \(E_{s,\delta} = E(u, m_s, \delta) \).

We have

\[I_1(s, \delta) \leq \delta \int_{B_\rho} |v|(dd^c v)^l \land \beta_{n-l} \leq C\delta \]

with a constant \(C \) independent of \(s \), and

\[I_2(s, \delta) \leq N \int_{B_\rho \cap E_{s,\delta}} (dd^c v)^l \land \beta_{n-l} \leq C(N, \rho, l) \cdot C_{n-1}(B_\rho \cap E_{s,\delta}, D) \to 0. \]

Since \(\delta > 0 \) is arbitrary, it proves \((37)\) for \(k = 1 \).

Let us now have got \((37)\) for \(k = j \) and \(0 \leq l \leq n - j \). For \(\phi \in \mathcal{D}_{n-1-j,n-l}(B_\rho) \),

\[\int (dd^c v_s)^{j+1} \land (dd^c v)^l \land \phi = \int (dd^c v_s)^j \land (dd^c v)^{l+1} \land \phi \]

\[+ \int [(dd^c v_s)^{j+1} \land (dd^c v)^l - (dd^c v_s)^j \land (dd^c v)^{l+1}] \land \phi. \]

The first integral in the right-hand side converges to \(\int (dd^c v)^{l+j+1} \land \phi \) by the induction assumption. The second integral can be estimated similarly to the case \(k = 1 \):

\[\left| \int [(dd^c v_s)^{j+1} \land (dd^c v)^l - (dd^c v_s)^j \land (dd^c v)^{l+1}] \land \phi \right| \leq C_\phi \left[\int_{B_\rho \setminus E_{s,\delta}} + \int_{B_\rho \cap E_{s,\delta}} \right] (v - v_s)(dd^c v_s)^j(dd^c v)^l \land \beta_{n-j-l} \]

\[= C_\phi [I_3(s, \delta) + I_4(s, \delta)]. \]

Since \((dd^c v_s)^j \land (dd^c v)^l \to (dd^c v)^{j+1}\),

\[\int (dd^c v_s)^j(dd^c v)^l \land \beta_{n-j-l} \leq C \quad \forall s \]

and

\[I_3(s, \delta) \leq \delta \int_{B_\rho} |v|(dd^c v_s)^j(dd^c v)^l \land \beta_{n-j-l} \leq CN\delta. \]

Similarly, \(I_4(s, \delta) \leq N \int_{B_\rho \cap E_{s,\delta}} (dd^c v_s)^j(dd^c v)^l \land \beta_{n-j-l} \leq C(N, \rho, j, l) \cdot C_{n-1}(B_\rho \cap E_{s,\delta}, D) \to 0, \)

and \((37)\) is proved.
References

[1] L.A. Aizenberg and Yu.P. Yuzhakov, Integral Representations and Residues in Multidimensional Complex Analysis. Nauka, Novosibirsk, 1979. English transl.: AMS, Providence, R.I., 1983.

[2] J.-P. Demailly, Monge-Ampère operators, Lelong numbers and intersection theory, Complex Analysis and Geometry (Univ. Series in Math.), ed. by V. Ancona and A. Silva, Plenum Press, New York 1993, 115-193.

[3] L. Hörmander, Notions of Convexity. Progress in Mathematics, Birkhäuser 127, 1994.

[4] C.O. Kiselman, Densité des fonctions plurisousharmoniques, Bull. Soc. Math. France 107 (1979), 295-304.

[5] C.O. Kiselman, Un nombre de Lelong raffiné, In: Séminaire d’Analyse Complexe et Géométrie 1985-87, Fac. Sci. Monastir Tunisie 1987, 61-70.

[6] C.O. Kiselman, Tangents of plurisubharmonic functions, International Symposium in Memory of Hua Loo Keng, Vol. II. Science Press and Springer-Verlag, 1991, 157-167.

[7] C.O. Kiselman, Attenuating the singularities of plurisubharmonic functions, Ann. Polon. Math. LX.2 (1994), 173-197.

[8] M. Klimek, Pluripotential theory. Oxford University Press, London, 1991.

[9] A.G. Kouchnirenko, Newton polyhedron and the number of solutions of a system of k equations with k indeterminates, Uspekhi Mat. Nauk 30 (1975), no. 2, 266-267.

[10] A.G. Kouchnirenko, Polyèdres de Newton et nombres de Milnor, Invent. Math. 32 (1976), 1-31.

[11] S. Lang, Fundamentals of Diophantine Geometry, Springer, New York, 1983.

[12] P. Lelong, Plurisubharmonic functions and positive differential forms, Gordon and Breach, New York, and Dunod, Paris, 1969.

[13] P. Lelong, Remarks on pointwise multiplicities, Linear Topologic Spaces and Complex Analysis 3 (1997), 112-119.
[14] P. Lelong and L. Gruman, Entire Functions of Several Complex Variables, Springer-Verlag, Berlin - Heidelberg - New York, 1986.

[15] P. Lelong and A. Rashkovskii, Local indicators for plurisubharmonic functions, to appear in J. Math. Pures Appl.

[16] J. Rauch and B. A. Taylor, The Dirichlet problem for the multidimensional Monge-Ampère equation, Rocky Mountain Math. J. 7 (1977), 345-364.

[17] Y. Xing, Continuity of the complex Monge-Ampère operator, Proceed. Amer. Math. Soc. 124 (1996), 457-467.

Mathematical Division, Institute for Low Temperature Physics
47 Lenin Ave., Kharkov 310164, Ukraine

E-mail: rashkovskii@ilt.kharkov.ua, rashkows@ilt.kharkov.ua