The St. Veit Klippen Unit in Vienna (Austria) – Jurassic to Cretaceous biostratigraphy and facies based on historical fossil collections

Alexander LUKENEDER1), Petra LUKENEDER1) and Mathias HARZHAUSER1)
1) Museum of Natural History Vienna, Burgring 7, 1010 Vienna, Austria
*) Corresponding author: alexander.lukeneder@nhm-wien.ac.at

Abstract

Historical fossil assemblages from the Lower Jurassic to Lower Cretaceous of the Sankt Veit Klippen Unit (SVK) on the western outskirts of Vienna were re-evaluated. Collections of the material from the St. Veit Klippen Unit comprise 3497 specimens. An appropriate nomenclature was used, and the taxonomy was partly revised. Historical collections from Franz Toula (1845–1920) and Friedrich Trauth (1883–1967) were investigated in the collections of the Natural History Museum Vienna, the Geological Survey Vienna, the Department of Geology and the Department of Palaeontology (both University Vienna). Additional collections were studied in the district museums Hietzing (13th district Vienna) and Liesing (23rd district Vienna), in the district municipal office of Hietzing and in the Wienerwald Museum (Eichgraben, Lower Austria).

The study area is situated in the easternmost part of the St. Veit Klippen Unit in the Wienerwald (Vienna Woods), part of the 13th Viennese district Hietzing. New data allowed a revision of the biostratigraphy of several lithological units of the SVK. Two main fossil complexes could be distinguished: 1) the Hohenauer Wiese assemblage from the wildlife park Lainz (= "Lainzer Tiergarten") and 2) the Glasauer quarry assemblage from St. Veit.

KEYWORDS

biostratigraphy; facies; Jurassic; Cretaceous; ammonites; St. Veit Klippen Unit; Vienna

1. Introduction

The St. Veit Klippen Unit (SVK - the term “unit” is used herein to replace the ambiguous term “zone” as used by former authors in “klippen zones”) is one of the most enigmatic tectonic units in the Alpine area of Austria. The St. Veit Klippen Unit has been traditionally referred to as St. Veit Klippen Zone in the geological literature. In modern geological nomenclature the term “zone” should be restricted to biostratigraphy (e.g. Steiniger and Piller, 1999). A similar case is the so-called “Waschberg Zone”, which is nowadays treated as Waschberg-Ždánice Unit or “Einheit” (Schneider et al., 2013; Gebhart, 2016; Knierzinger et al., 2018). We follow this strict use of the term “zone” and therefore, refer to the St. Veit Klippen Unit.

The SVK represents an intermittent element between the Rhenodanubian Flysch in the north and the Northern Calcareous Alps in the south. In fact, the SVK is draped by Flysch deposits of the Hüttdorf and Kahlenberg formations of the “Satzberg-Schuppe”, whose tectonic relation within the Rhenodanubian Flysch is in discussion (pers. comm. W. Schnabel, August 2020). The generally NE/SW striking complex tectonic style, mirrored by intermingled rock complexes of siliceous limestones, radiolarites or crinoidal limestones into sandstones and conglomerates of the Rhenodanubian Flysch units characterizes the Wienerwald (Vienna Woods) area (Vetters, 1910; Schaffer, 1904, 1906, 1942; Kober, 1955; Thenius, 1974; Prey, 1987; Plöchinger and Prey, 1992; Schnabel, 1992a, b, 2002; Ślączka et al., 2018). Complicated by disconnected tectonic elements of meter- to kilometer-sized blocks (= block-in-matrix structure of Ślączka et al., 2018) without visible contacts or continuation in lithological evidence the SVK is difficult to handle. This special tectonic feature was already described by Trauth (1907).

Since Cžjžek (1849, 1852), who introduced the "St. Veiter Klippenhügel", referring to the village St. Veit near Vienna, the work and interest on the geology of the SVK has a long tradition. Hauer (1850) described red limestones from St. Veit with small fossil assemblages comprising aptychi. Peters (1854) also noted aptychi from St. Veit. Lower Jurassic deposits were reported by Paul (1859) from St. Veit with Ammonites conybeari, Pleurotomaria expansa and Lima punctata. Griesbach (1868, 1869) was the first who subdivided the limestones, since then called “Der Jura von St. Veit”. He first distinguished 1) the Gresten limestone, 2) the Lower Jurassic (Liassic o), 3) the “Jura von St Veit” and 4) Upper Jurassic (= Malmian) above the Triassic Kössen Formation. Within the “Jura of St. Veit” he determined the Ammonites sauzei, the Ammonites humphriesianus and the Ammonites parkinsoni zones. Hochstetter (1898), Schaffer (1904, 1906), Vetters (1910)
and Spitz (1910) continued this work on the geology and tectonics of the SVK. More recently Götzinger (1954), Grill and Küpper (1954), Kober (1955), Janoschek et al. (1956), Küpper (1968), Theunis (1974), Prey (1985, 1987), Plöchinger and Prey (1992), Schnabel (1992a, b, 1999, 2002), Wessely (2006), Egger and Wessley (2014), Pfersmann (2013) and Słączka et al. (2018) tried to solve the problematic SVK zone.

Fossil assemblages were described by Hochstetter (1898) and Trauth (1923a, b, 1928, 1948), who proposed a preliminary biostratigraphy. Trauth (1948) published material, which has been collected in 1900 by Franz Toula from the St. Veit Klippe for the "Mineralogisch-Geologische Lehrkanzel" of the Technical University Vienna. Janoschek et al. (1956), Prey (1975, 1979, 1987), Schnabel (1999, 2002), Schnabel et al. (1997), and more recently Pfersmann (2013) adapted largely Trauth’s biostratigraphic concept of the SVK. Only Słączka et al. (2018) presented new biostratigraphic data based on radiolarians and few nannofossils.

All published lithological schemes and logs were compiled from literature data or based on close-by but geographically separated historic outcrops and localities (e.g. Janoschek et al., 1956; Schnabel, 2002; Pfersmann, 2013; Słączka et al., 2018). Today, no sections are available exposing lithological formations with lower or upper boundaries. Therefore, no formalization of lithostratigraphic units at Formation or Member rank can be performed, which would fulfil the formal requirements of Hedberg (1976), Salvador (1994) and Steininger and Piller (1999). For the sake of stability and readability, however, we use the established lithostratigraphic names as informal units.

Only temporary construction projects for tunnels, roads and houses serve as small, local windows into the deposits of the SVK. Compiled sections indicate a succession of Lower to Middle Jurassic sandy-silty grey marlstones and limestones of the Hohenauer Wiese Formation (pro parte), Middle to Upper Jurassic red radiolarites to cherts and red marly shales of the Rotenberg Formation, followed by Upper Jurassic to Lower Cretaceous grey marls to argillaceous limestones of the lower Fassergрабen Formation, and the Lower Cretaceous “Aptychus limestone” of the upper Fassergрабen Formation, comprising grey to white siliceous limestones and green cherts (Janoschek et al., 1956; Prey, 1975, 1979; Słączka et al., 2018).

Jurassic deposits are known to form a small but significant tectonic element of the afforested and covered klippen terrain adjacent to the Northern Calcareous Alps (NCA; Janoschek et al., 1956; Prey, 1975, 1979, 1987; Schnabel, 1999, 2002; Schnabel et al., 1997; Pfersmann, 2013; Słączka et al., 2018). In the SVK comprising the Lower Jurassic to Lower Cretaceous Sankt Veit localities, Lower Jurassic (= “Lias”) and Middle Jurassic (= “Dogger”) cephalopod-bearing deposits are mainly recorded in grey fine-grained deep-water limestones, hemipelagic variegated (red, grey) crinoidal limestones and grey silty crinoidal limestones.

The grey Lower Jurassic marly limestones show similarities to the Austroalpine Allgäu Formation (= “Lias Fleckemergel”). Such Sinemurian sediments are composed of grey, intensely burrow-mottled limestones with intercalated marls and frequent allogenic crinoid limestone layers (Müller, 1987; Egger, 1988; Egger and van Husen, 2011; Lukeneder and Lukeneder, 2018). Lower Jurassic (i.e. Sinemurian) ammonite faunas are rare in the SVK and the Northern Calcareous Alps.

Fossil assemblages from red crinoidal limestones from the “Teichhaus Klippe” in a wildlife preserve area of the western wildlife park Lainz are known since the late 19th century (Griesbach, 1869; Trauth, 1923a, 1948). The fauna is dominated by ammonites and brachiopods, which derive from red limestones with considerable quantities of crinoid fragments.

Most of the collected fossils like ammonites, nautilids, gastropods and bivalves derive from the historic Glasauer quarry (= Glassauer Steinbruch; Schaffer, 1906) in St. Veit. Unfortunately, the historical material was not collected bed-by-bed or with any information on position within the sections. Grey silicious, partly silty, limestones with sponge spiculae and radiolarians appear with remarkable amount of detrital quartz.

The SVK represents a tectonic key-area between the “Klippen zones” in Austria and the corresponding units in the Pieniny Klippen Belt in the Western Carpathians of Slovakia, Poland and Ukraine (Słączka et al., 2018). Herein, we re-evaluate the existing fossil inventory with focus on the ammonite assemblages and partly revised previous taxonomic identifications. This resulted in a new biostratigraphic concept for the deposits of the SVK. Thus, the aim of this work is 1) to describe the lithologies of the SVK in the St. Veit and wildlife park Lainz areas, 2) to revise the taxonomy where appropriate, 3) to present an integrated stratigraphy based on data from lithology, microfacies (from thin sections) and biostratigraphy, 4) to record all data from official collections, 5) and to make the dataset available online in an open access database.

2. Geographical setting

Rock samples and fossils were investigated from two main outcrops located in the westernmost district of Vienna, the 13th district Hietzing (ÖK 1:50 000, sheet 58 Baden; AutoMap Online 2020; Fig. 1). In the 1890ies, St. Veit was an independent municipality, which later became part of the City of Vienna. Today, St. Veit is one of 89 cadastre municipalities of Vienna. One locality, the so called “Teichwiese”, “Teichhaus” or “Teichwiese Klippe locality” (295 m above sea level, N 48°55.5′ E 16°14′39.9″) is situated in the wildlife park Lainz (“Lainzer Tiergarten”; “Kaiserlicher Tiergarten” in Suess, 1897), a wildlife preserve covered by 80% of woodland. It is a protected area and sampling is prohibited without permit from the official municipality. The name refers to a small pond, the Hohenauer Teich, located near the Lainzer Tor entry (265 m, N 48°10′00.8″ E 16°15′25.6″). Most of the fossil material was collected in the 1890ies until 1900. Nowadays, the historical outcrop is inaccessible and overgrown.
Two small localities in the area yielded also historic material: “Klippe 2” (290 m, N 48°09′50.3″ E 16°14′50.5″) approx. 300 m WNW of the Teichwiese Klippe locality and the “Doppehlügelklippe” (“double-hill-chain”) another 200 m to the west, ranging from N 48°09′54.6″ E 16°14′41.3″ in the north (290 m) to N 48°09′46.9″ E 16°14′41.9″ in the south (320 m).

The second important locality is the historical Glasauer quarry in St. Veit (250 m N 48°10′51.5″ E 16°16′3.2″) on the southeastern slope of the Girzenberg and the southwestern base of the Roter Berg (= Rother Berg, Schaffer 1942; Amon, 1930; Plöchinger and Prey, 1992) at the crossroad Jagdschloßgasse und Veitingergasse (approx. house number 68). The Glasauer quarry yielded the bulk of the entire ammonite assemblage. The historic quarry with a front wall of 15 metres height is now inaccessible and located within settlement area.

Numerous other fossil localities within the wildlife park Lainz are known from literature. The Stockwiese (325 m, N 48°9′32.8″ E 16°13′34.9″), the nearby Fasselgraben (310 m, 22°/135°, N 48°9′22.4″ E 16°13′47.2″), the Dorotheerwiese (305 m, 65°/113°; N 48°9′49.4″ E 16°14′22.6″), the Saulackentürl (295 m, N 48°10′18.4″ E 16°15′22.7″), and the Saulackenschütt (295 m, N 48°10′31.3″ E 16°14′50.1″).

Fossil material from St. Veit is known from several localities as the Roter Berg (262 m, N 48°10′56.4″ E 16°16′11.3″), the Gemeindeberg (320 m, N 48°10′43.4″ E 16°15′38.3″), and numerous distinct but scattered localities from roadworks and house constructions in St. Veit (Schaffer, 1906; Götzinger, 1954). Additionally, there was a short-dated chance to sample during construction of the Lainz Tunnel (“Lainzer Tunnel”) by the ÖBB Infrastruktur GmbH for rail traffic in 2007–2009 (Pfersmann, 2013).

3. Geological setting

The Mesozoic Klippen belt on western Vienna territory is referred to as St. Veit Klippen Unit (Geological map 1:50.000, sheet 58 Baden; Schnabel et al., 1997; Fig. 1). On the Stratigraphic Chart of Austria (Piller et al., 2004) the following Jurassic and Cretaceous lithologies and formations are given for the St. Veit Klippen Unit: bioclastic limestones (Hettangian-Bajocian), the Hohenauer Wiese Formation (Bajocian-Bathonian), red crinoidal limestones (Callovian), the Rotenberg Formation (Oxfordian-Kimmeridgian) and the Fasslgraben Formation (Tithonian-Valanginian; see Schnabel et al., 1997; Wessely, 2006; Egger and Wessely, 2014; Fig. 2).
The hilly ground of the St. Veit Klippen Unit has a strongly sheared tectonic contact with the surrounding Rhenodanubian Flysch units represented by the Hütteldorf and Kahlenberg formations. As noted by Ślączka et al. (2018), no primary sedimentary contact of the SVK with the Flysch nappes can be observed. The area is bordered in the south along the Lainzer Tor (Lainz Gate) by Miocene deposits of the Vienna Basin.

The Antonshöhe hill is located approximately 1 km southeast of the Stockwiese and 2 km south from the Lainzer Tor, and exposes Upper Jurassic deposits of the Northern Calcareous Alps. The Antonshöhe is tectonically isolated from the main area of the St. Veit Klippen Unit and interpreted to be a northern tectonic alpine unit (see also Plöchinger and Prey, 1992; Ślączka et al., 2018). Contrastingly, Kupper (1968), Prey (1987, 1991), Schnabel (1992a, b) and more recently Egger and Wessely (2014) indicated a connection of the Antonshöhe area to the St. Veit Klippen Unit. Today, most of the historic outcrops are inaccessible (e.g. Glasauer quarry; Hohenauer Wiese Klippe) and are overgrown.

4. Material and methods

4.1 Fossil material

The historical material was collected in the late 19th century by Carl Ludolph Griesbach, in 1900 by Franz Toula (see Trauth, 1923a) and Egbert Wilhelm von Hochstetter. Recently, additional findings were made by Oliver Schmitsberger, Martin Maslo, Alexander Lukeneder and Petra Lukeneder.

The aim of this project was to acquire all data of fossil and rock samples from the SVZ in public collection such as:

Natural History Museum in Vienna (NHMW): 2354 fossil remains comprising 1049 ammonite specimens, 151 aptychi, 59 nautilids, 189 belemnites, 3 oegopsids, 328 bivalves, 20 gastropods, 3 polychaets, 32 echinoids, 29 crinoids, 11 indeterminate echinoderms, 420 brachiopods, 1 trace fossil, 1 vertebrate, 57 rock samples and 1 indeterminate fossil.

Geological Survey of Vienna (GBA): 518 fossil remains comprising 179 ammonite specimens, 116 aptychi, 9 nautilids, 78 belemnites, 1 oegopsid, 77 bivalves, 3 gastropods, 6 crinoids, 40 brachiopods, 1 trace fossil, 3 vertebrates, 1 rock sample and 3 indeterminate fossils.

Figure 2: Composite vertical biostratigraphic and lithologic units of the St. Veit Klippen Unit in Vienna. Column 1 after the Austrian Stratigraphic Chart (Piller et al., 2004), column 2 after Ślączka et al. (2018): FF: Fasselgraben Formation; RF: Rotenberg Formation; HF: Hohenauer Wiese Formation; GF: Gresten Formation; rC: red crinoidal limestones. Column 3 from data presented in this paper: bl bioclastic limestones; sp spiculites; rc red crinoidal limestones; sl silicious limestones; cl crinoidal limestones, gl grey limestones; Classification of facies zones and standard microfacies types (FZ types and SMF types, Dunham, 1962; Wilson, 1975; Flügel, 2004).
Department of Geology of the University Vienna (IGUW): 190 fossil remains comprising 98 ammonite specimens, 3 aptychi, 3 nautilids, 29 belemnites, 9 bivalves, 1 echinoid, 29 brachiopods, 1 vertebrate and 17 rock samples.

Department for Palaeontology of the University Vienna (IPUW): 336 fossil remains comprising 161 ammonite specimens, 20 aptychi, 4 nautilids, 12 brachiopods, 7 oegopsids, 29 bivalves, 7 gastropods, 17 echinoids, 77 brachiopods, 1 vertebrate, 3 rock samples and 1 indeterminate fossil.

Smaller collections are stored in the district museums of Hietzing (13th district Vienna; 8 fossils and rock samples) and Liesing (23rd district Vienna; 8 fossils and rock samples), at the district municipal office of Hietzing (55 fossils and rock samples) and the Wienerwald Museum (Eichgraben, Lower Austria; 28 fossils and rock samples).

In total, 3393 fossil specimens and 104 rock samples were photographed in the collections comprising 1509 ammonites, 1 indeterminate cephalopod, 290 aptychi, 76 nautilids, 333 belemnites, 11 oegopsids, 452 bivalves, 30 gastropods, 3 polychaets, 47 echinoids, 38 crinoids, 11 indeterminate echinoderms, 574 brachiopods, 2 trace fossils, 4 porifera, 6 vertebrates, 1 plant remain and 5 indeterminate fossils from St. Veit and wildlife park Lainz. Ammonoids are moderately preserved (mostly compressed internal casts without shell but often with well-preserved suture lines) and account for almost half of the macrofauna (44%).

4.2 Thin sections

43 thin sections have been obtained from characteristic lithologies and fossils with matrix to examine microfossil content and microfacies (Figs. 3, 4, 5). Thin sections were taken from historical material and from recent field samples (construction sites in Ober St. Veit and the wildlife park Lainz) if possible. Digital high-quality photomicrographs of the thin sections were taken with a Discovery. V20 Stereo Zeiss microscope. Specific magnifications are x4.7, x10.5 and x40 in transmitted light mode. Data from the AxioCam MRc5 Zeiss were processed and documented by using the AxioVision SE64 Rel. 4.9 imaging system. Classification of facies zones and standard microfacies types (FZ types and SMF types) follows Dunham (1962), Wilson (1975) and Flügel (2004). Carbonate classification follows Dunham (1962).

All specimens in Figures 6, 7 and 8 were coated with ammonium chloride before photographing.

Abbreviations:
- BST OSV, Baustelle Ober St. Veit
- FZ, facies zone
- GBA, Geological Survey of Vienna
- IGUW, Department of Geology Vienna
- IPUW, Department of Palaeontology Vienna
- NCA, Northern Calcareous Alps
- NHMW, Natural History Museum Vienna
- OSV, Ober St. Veit
- SMF, microfacies type
- SVK, St. Veit Klippen Unit

5. Results

5.1. Lithologies and microfacies types in the St. Veit Klippen Unit

The lithological descriptions are arranged according to interpreted stratigraphic age, starting from older facies types. Detailed information to localities of analysed thin sections are given in figure captions of Figure 3 and Figure 4. Data were compared with lithological descriptions and columns given in Trauth (1939), Janoschek et al. (1956), Prey (1975), Tollmann (1985), Schnabel (1997, 2000), Piller et al. (2004), Pfersmann (2013), and Ślączka et al. (2018).

5.1.1. Transported crinoidal slope deposits

Bioclastic limestones (former Gresten Formation)

Samples: OSV 1 (Fig. 3A), OSV 4 (Fig. 3B), OSV 5 (Fig. 3C).

Validity: invalid, first mentioned by Hauer (1853).

Type area: Gresten Klippen/Main Klippen Zone

Type section: no type section defined.

Synonyms: Gresten limestone in Griesbach (1868, 1869), Gresten Formation, Grestener Kalke, Grestener Schichten.

Lithology: Brown to grey wacke-, pack- and grainstones; silty crinoidal limestones with micritic matrix (Götzing, 1954).

Facies: crinoid-rich wacke- to packstone, reworked fragments and lithoclasts, shallow water and deeper water elements, ammonites (e.g. Echioceras cf. quenstedti), crinoids (e.g. Pentacrinus) show extensive dissolution on edges (Fig. 5A), frequent echinoid spines, rare foraminifera such as Frondicularia, Nodosaria, Involutina liassica (Figs. 5B, C), Duotaxis metula, Trocholina turris (Figs. 5D, 5E) and Trocholina umbo (Fig. 5F), frequent ostracods (Fig. 5G), numerous filaments, bivalves (Gryphaea arcuata, Lima punctata, Lima gigantea, Cardinia sp., Pecten spp.), high amount of scattered pyrite grains, frequent detrital angular quartz grains.

Microfacies type and facies zone: SMF 4 and SMF 11; FZ 3-6. Thickness: tens of metres.

Age: Early Jurassic, Hettangian-Sinemurian.

Underlying unit: Rhaetian Keuper (= “Rhät Keuper” in Piller et al., 2004).

Overlying unit: overlain in the St. Veit Klippen Unit by the Bajocian to Bathonian Hohenauer Wiese Formation.

Geographic distribution: Gresten Klippen Zone to St. Veit area.

References: Griesbach (1868), Hochstetter (1898), Toula (1897), Schaffer (1906), Trauth (1907, 1908, 1909, 1923a, b), Vetters (1910), Götzing (1954), Grill and Küpper (1954), Küpper (1968), Tollmann (1963, 1976), Faupl (1975), Piller et al. (2004) and Egger and Wessely (2014).

5.1.2. Silicious hemipelagites

Silicious spicula rich limestones

Samples: BST OSV 1, BST OSV 1.2 m (Fig. 3D), and BST OSV Base.

Synonyms: Liasspongit, Liaskieselkalk, similar to Kirchstein limestone (Kalksburg beds; see Tollmann (1976).
The St. Veit Klippen Unit in Vienna (Austria) – Jurassic to Cretaceous biostratigraphy and facies based on historical fossil collections

Figure 3: Thin sections from the Jurassic deposits St. Veit Klippen Unit in St. Veit and wildlife park Lainz, Vienna. A – crinoid-rich packstone to grainstone to encrinites, fragments with dissolution seams, frequent echinoid spines (es), rare foraminifera, frequent detrital angular quartz grains (q), Lower Jurassic, Veitingergasse St. Veit, OSV 1 – bioclastic limestone; B – redeposited biogenous grainstone, with frequent crinoids, gastropods, bivalves (b), ostracods, serpulid tubes, and oncoids, lithoclasts, detrital angular quartz grains, note the presence of *Involutina liassica* (i), Lower Jurassic, SW Teichhaus LT, OSV 4 – bioclastic limestone; C – redeposited biogenous grainstone, with frequent crinoids, gastropods, bivalves, ostracods (o), serpulid tubes, and oncoids, lithoclasts, detrital angular quartz grains, frequent foraminifera (f) with *Trocholina turris* and *Trocholina umbo*, Lower Jurassic, Saulackenschütt LT, OSV 5 – bioclastic limestone; D – spiculite wackestone, silicious limestones, predominantly composed of monaxone megascleres (sp), frequent triaxone spicules (sp) and radiolaria, with disseminated pyrite, Lower Jurassic, Josef-Heinzl-Gasse, BST OSV 1.2 m - grey spiculite limestones; E – redeposited crinoid-rich wackestone to packstone, encrinites with oncoids and lithoclasts, detrital angular quartz grains, high amount of scattered pyrite, with echinoid spines, ostracods and foraminifera (various types), Lower Jurassic, Josef-Heinzl-Gasse, BST OSV 0 – gray allodapic encrinites; F – bioturbated wackestone, with frequent spicula and frequent radiolarians, rare crinoids, ostracods, foraminifera and filaments, recrystallized radiolaria and spiculae, high amount of scattered pyrite grains (py), frequent detrital angular quartz grains, Middle Jurassic, St. Veit, OSV 9 – Lower Hohenauer Wiese Formation; G – bioturbated wackestone, with abundant spicules (sp) and frequent radiolarians (ra), rare crinoids, filaments and ostracods, recrystallized radiolaria and spiculae, high amount of scattered pyrite grains (py), frequent detrital angular quartz grains; cloudy appearance of cherty areas, Middle Jurassic, Glasauer quarry, OSV 10 – Lower Hohenauer Wiese Formation; H – silicious wackestone to packstone, rich in biogenes, transported and partly reworked elements, abundant spiculae (sp) and crinoids (cr), strong bioturbation, frequent recrystallized spiculae and rare radiolaria, rare foraminifera with *Planispirillina* sp., high amount of scattered pyrite grains, frequent detrital angular quartz grains, wackestones to packstones, Middle Jurassic, Glasauer quarry, OSV 14 – Hohenauer Wiese Formation. Scale bars 1 mm.
Lithology: Grey silicious spiculate wackestone, spiculates. Facies: spicula-rich wacke-to-packstone with radiolarians, echinoderm fragments, rare foraminifer fragments, numerous filaments, high amount of scattered pyrite grains, crinoids recrystallized, partly filled by amorphous silicium. Microfacies type and facies zone: SMF 1; FZ 1. Age: Early Jurassic. Underlying unit: transported crinoidal slope deposits. Overlying unit: marly radiolarian/spiculae limestones. Geographic distribution: St. Veit Klippen Unit. Refernces: Tollmann (1976); Gniewek (1997).

5.1.3. Biosparites
Silicious crinoid-rich limestones
Samples: BST OSV 0 (Fig. 3E), BST OSV B. Synonyms: No synonyms. Lithology: Grey silty crinoidal limestones. Facies: redeposited crinoid-rich wacke-to-packstone, encrinites, oncoinds, lithoclasts, detrital angular quartz grains, high amount of scattered pyrite grains, crinoids, echinoid spines, bryozoans, foraminifera (e.g. Duotaxis metula; Figs. 5J, K), frequent gastropods, serpentules. Microfacies type and facies zone: SMF 12-crin; FZ 2-5. Thickness: tens of metres. Age: Early Jurassic. Underlying unit: Bioclastic limestones (partly). Overlying unit: Crinoidal/brachiopod limestones. Geographic distribution: St. Veit. References: Tollmann (1976); Gawlick et al. (2009).

Crinoid/brachiopod limestones
Samples: OSV 6, SE Teichhaus A (Nannolytoceras), SE Teichhaus B (Parkinsonia, Fig. 4A). Synonyms: red crinoidal limestones (Piller et al., 2004; Pfersmann, 2013) and/or partly Hohenauer Wiese Formation, Vils limestone of St. Veit (Trauth, 1948). Lithology: red and grey crinoidal packstones to grainstones. Facies: transported and partly redeposited crinoid-rich packstones to grainstones, matrix sparry calcite, with lithoclasts, coated grains, oncoinds, ooliths, high amount of scattered pyrite grains, frequent detrital angular quartz grains, crinoids and lithoclasts are strongly affected by bioerosion (borings are filled by pyrite), frequent ammonites, frequent brachiopods with terebratulids, Loboidothyris perovalis and Cymatothyris quadriplicata, rare spiculae, rare foraminifera with Trocholina (Figs. 5H, I), rare radiolarians, rare bivalves, frequent filaments. Most of the ammonites collected from the wildlife park Lainz derive from these deposits (Trauth, 1948). Microfacies type and facies zone: SMF 9; FZ 2 and 8. Thickness: tens of metres. Age: Early to Middle Jurassic, Toarcian to Bajocian. Underlying unit: marly radiolarian/spiculae limestones. Overlying unit: crinoidal limestones. Geographic distribution: St. Veit Klippen Unit. References: Trauth (1948), Schnabel (2002), Pfersmann (2013).

5.1.4. Pelagic radiolarites/spiculites
Radiolarian/spiculae limestones
Samples: OSV 7, OSV 9 (Fig. 3F), OSV 10 (Fig. 3G), OSV 14 (Glasauer quarry; Fig. 3H). Synonyms: partly Hohenauer Wiese formation; Neuhaus beds in Grill and Küpper (1954) and Götzinger (1954); “grau Ammonitenkalke” (grey Ammonite limestones) in Vettres (1910). Lithology: grey silicious spiculæe rich wackestone to packstones, crinoidal limestones. Facies: bioturbated wackestones to packstones, with abundant spiculae and frequent radiolarians, frequent crinoidal fragments, partly redeposited crinoid-rich spiculites, recrystallized Radiolaria and spiculae, micritic matrix, high amount of scattered pyrite grains, frequent detrital angular quartz grains, frequent ammonites, rare to frequent crinoids, rare foraminifera (e.g. Planispirillina sp.), rare ostracods, rare filaments, bioturbation. Most of the ammonites collected from St. Veit derive from these deposits exposed in the Glasauer quarry. Microfacies type and facies zone: SMF 1; FZ 1-2. Thickness: 10-30 m thick layers, dipping 30-35°/290°. Age: Middle Jurassic, Bajocian. Underlying unit: siliaceous crinoid-rich limestones and marly radiolarian/spiculae limestones. Overlying unit: siliaceous crinoidal/radiolarian limestones, red marls and radiolarites of the Rotenberg formation. Geographic distribution: St. Veit Klippen Zone; Glasauer quarry, wildlife park Lainz and Hohenauer Wiese. References: Vettres (1910), Trauth (1928), Schaffer (1906, 1942), Thenius (1974), Faupl (1975), Pfersmann (2013).

Grey limestones
Samples: OSV 8. Synonyms: comparable to the “Lias Fleckenmergel” from St. Veit. Lithology: Grey spiculæe rich limestones. Facies: mud-, wacke- to packstone, micritic matrix, rare microfossil content with spiculae, radiolarians, and foraminifera, frequent scattered pyrite grains, frequent detrital angular quartz grains, frequent ammonites, Arnioceras ceratitoides, Echioceras cf. quenstedti. Microfacies type and facies zone: SMF 1; FZ 1-2. Thickness: tens of metres. Age: Early Jurassic, Sinemurian to Toarcian. Underlying unit: marly radiolarian/spiculae limestones. Overlying unit: siliaceous crinoidal limestone of the Glasauer quarry. Geographic distribution: St. Veit Klippen Unit. References: Trauth (1908, 1909, 1948).
The St. Veit Klippen Unit in Vienna (Austria) – Jurassic to Cretaceous biostratigraphy and facies based on historical fossil collections

Figure 4: Thin sections from the Jurassic deposits St. Veit Klippen Unit in St. Veit and wildlife park Lainz, Vienna. A – crinoidal packstone to grainstone, redeposition of lithoclasts and oncoids, bioerosion of fragments, with frequent crinoids and brachiopods, gastropods, bivalves, ostracods (o), lithoclasts, detrital angular quartz grains (q), frequent foraminifera, Middle Jurassic, Bajocian, SE Teichhaus, SE Teichhaus Parkinsonia – Upper Hohenauer Wiese Formation. B – red condensed biogenous wackestone to packstone, nodular fabric of “Klaus-Formation” type, abundant bivalve filaments, frequent ammonite fragments and juvenile specimens, frequent gastropods, frequent planktonic foraminifera (f), rare ostracods (o), frequent spiculae and in situ sponge skeletons visible, extensive bioerosion on shell fragments, strong dissolution seams and stylolites, Middle Jurassic, St. Veit, OSV 2 - Hohenauer Wiese Formation; C – red condensed biogenous wackestone, with fine disseminated crinoid fragments (cr), frequent echinoid spines and nodosarid foraminifera (nf), numerous filaments, solution seams in sediment impregnated with residual material, lower Middle Jurassic, SW Teichhaus, OSV Ammonioli - Hohenauer Wiese Formation; D – fine red crinoidal packstone, crinoidal hash from saccoconid fragments (cr), abundant Laevaptychus, Upper Jurassic, Kimmeridgian to Tithonian, Roter Berg in St. Veit, OSV 12 - Rotenberg Formation; E – red wackestones to packstones, cherty radiolarians and siliceous radiolarian-rich limestones, radiolarians (ra) partly filled by calcite and amorphous silicium, Podubrusa sp., Hiscocapsa sp. and Spongocapsula sp., cloudy appearance of silicious material, Upper Jurassic, Roter Berg in St. Veit, OSV 11 - Rotenberg Formation; F – wackestone to packstone, crinoid-rich (cr) biogenous limestones, with frequent aptychi (ap) of Lamellaptychus sp. and Laevaptachus sp., scattered grains of pyrite, redeposition and transport indicated, Upper Jurassic, Kimmeridgian to Tithonian, Stockwiese LT, OSV 3 – lower Fasselgraben Formation; G – cherty radiolarian-rich packstone, radiolarian (ra) partly filled by calcite and amorphous silicium, Sethocapsa sp. and Striatogonopocapsa sp., cloudy appearance of siliceous material, Upper Jurassic, Saulackentürl quarry LT, OSV 13 - Fasselgraben Formation; H – fine calpionellid mudstone to wackestone, micritic matrix, abundant calpionellids (ca), frequent radiolarian, rare foraminifera, late Berriasian, ÖBB tunnel St. Veit, LT31-869,5 m – upper Fasselgraben Formation. Scale bars 1 mm.
5.1.5. Bathypelagic radiolarites and cherts

Red radiolarites with cherts

Samples: OSV 11 (Fig. 4E).
Synonyms: Hornsteinkalke, Rotenberg Schichten (Rotenberg beds), Rotenberg Formation (Schnabel, 2002; Pfersmann, 2013).
Lithology: red radiolarites, cherts and silicic packstones.
Facies: cherty radiolarites and radiolarian-rich limestones, abundant radiolarians with Archaeodictyomitra sp., Pantanellum sp., Spongocapsula sp. and Triritabs sp., radiolarian partly filled by calcite and amorphous silicium, frequent spiculae, rare aptychi, cloudy appearance of siliceous material.
Microfacies type and facies zone: SMF 1; FZ 1-3.
Thickness: tens of metres.
Age: Late Jurassic, Oxfordian to Early Tithonian.
Underlying unit: red radiolarites with cherts.
Overlying unit: grey limestones of the Fasselgraben Formation.
Geographic distribution: St. Veit.
Note: Archaeological artefacts from the St. Veit area from these deposits (Schmitsberger et al., 2019).
References: Grill and Kükper (1954), Schnabel (2002), Pfersmann (2013), Ślączka et al. (2018), Ožvoldová and Faupl (1993).

Cherty limestones with aptychi of the lower Fasselgraben Formation

Samples: OSV 13 (Fig. 4G), BST OSV A.
Synonyms: Fasslgraben beds, Fasselgraben formation; Aptychenkalke, see also Blassenstein Schichten in Kühn (1962) and Trauth (1948).
Lithology: grey mudstones, radiolarian-rich wacke- to packstones with chert nodules.
Facies: mudstones to cherty radiolarian-rich limestones, radiolarians with different morphologies (Fig. 5P) are partly filled by calcite and amorphous silicium, cloudy appearance of siliceous material, packstone, rare aptychi, frequent spiculae.
Microfacies type and facies zone: SMF 1; FZ 1-3.
Thickness: tens of metres.
Age: Late Jurassic, Tithonian.
Underlying unit: red radiolarites with cherts.
Overlying unit: grey limestones of the Fasselgraben Formation.
Geographic distribution: St. Veit Klippen Unit.
References: Vetters (1910), Hochstetter (1898), Schaffer (1906).

Red marlstones with aptychi

Samples: OSV 12 (Fig. 4D).
Synonyms: “rote Aptychenmergel” (Spitz, 1910).
Lithology: red packstones with abundant crinoids and aptychi.
Facies: crinoid-rich biogenous limestones, abundant fragments of aptychi with Lamellaptychus and Laevaptychus, rare fragmented foraminifera, rare radiolarians, scattered grains of pyrite, redeposition and transport indicated.
Microfacies type and zone: SMF 3; FZ 1-3.
Thickness: tens of metres.
Age: Late Jurassic, Tithonian.
Underlying unit: crinoid/brachiopod limestones.
Overlying unit: grey limestones of the Lower Cretaceous part of the Fasselgraben Formation.
Geographic distribution: St. Veit Klippen Unit.
References: Hochstetter (1898), Trauth (1948), Pfersmann (2013).

5.1.6. Red condensed cephalopod limestones

Red limestone

Samples: OSV 2 (Fig. 4B).
Synonyms: Klaus beds (= “Klaus Schichten”), “ammoniten-reiche Klauskalke” of Vetters (1910, see Fig. 11 therein).
Lithology: red limestones.
Facies: red filament rich biogenous wacke- to packstones, with lithoclasts, extensive signs of reworking and dissolution seams at stylolites, partly graded, abundant bivalves and filaments, frequent ammonite fragments and juvenile specimens, frequent gastropods, frequent benthic ophthaldal foraminifera (Fig. 5N), rare ostracods, frequent spiculae and in situ sponge skeletons, extensive, bioerosion on shell fragments. The facies shows similarities to the “Klaus-Formation” from the Northern Calcareous Alps. Microfacies type and facies zone: MF 4-5; FZ 3-4.
Thickness: approx. ten metres.
Age: Middle Jurassic, Bajocian and younger.
Underlying unit: red radiolarites with cherts.
Overlying unit: grey limestones of the Fasselgraben Formation.
Geographic distribution: St. Veit Klippen Unit.
References: Vetters (1910), Hochstetter (1898), Schaffer (1906).
Figure 5: Significant microfossils from thin sections of Jurassic deposits in the St. Veit Klippen Unit in St. Veit and wildlife park Lainz, Vienna. A – crinoid fragments and echinoid, Lower Jurassic, OSV 1 – bioclastic limestone; B – benthic foraminifera *Involutina liassica*, Lower Jurassic, OSV 4 – bioclastic limestone; C – *Involutina liassica* and bivalve fragment left, Lower Jurassic, OSV 4 – bioclastic limestone; D – foraminifera with *Trocholina turris*, Lower Jurassic, OSV 5 – bioclastic limestone; E – benthic foraminifera *Trocholina turris*, Lower Jurassic, OSV 5 – bioclastic limestone; F – benthic foraminifera *Trocholina umbo*, Lower Jurassic, OSV 5 – bioclastic limestone; G – double valued ostracod, Lower Jurassic, OSV 5 – bioclastic limestone; H – *Trocholina sp.*, Lower Jurassic, OSV 5 – crinoidal limestone; I – *Trocholina sp.*, Lower Jurassic, OSV 6 – crinoidal limestone; J – *Duotaxis metula*, Lower Jurassic, Josef-Heinzl-Gasse, BST OSV 0 – grey allogenic encrinites; K – *Duotaxis metula*, Lower Jurassic, Josef-Heinzl-Gasse, BST OSV 0 – grey allogenic encrinites; L – predominantly monaxon megacleres, frequent triaxone spicules and radiolaria, with disseminated pyrite, Lower Jurassic, Josef-Heinzl-Gasse, BST OSV 1.2 m – grey spiculitic limestones; M – frequent triaxone spicule, Lower Jurassic, BST OSV 1.2 m – grey spiculitic limestone; N – filaments and benthic ophthalmid foraminifera, Middle Jurassic, OSV 2 – Hohenauer Wiese Formation; O – crinoid fragments, lower Middle Jurassic, SW Teichhaus, OSV Ammo Oli – Hohenauer Wiese Formation; P – various radiolaria types, Upper Jurassic, OSV 13 – Fasselgraben Formation; Q – *Colomisphaera carpathica* (Borza, 1946), late Berriasian, OSV LT31-869,5 m – upper Fasselgraben Formation; R – *Colomisphaera carpathica* (Borza, 1946), late Berriasian, OSV LT31-869,5 m – upper Fasselgraben Formation; S – *Tintinnopsis carpathica* (Murgeanu and Filipescu, 1933), late Berriasian, OSV LT31-869,5 m – upper Fasselgraben Formation; T – *Calpionella elliptica* Cadisch 1932, late Berriasian, OSV LT31-869,5 m – upper Fasselgraben Formation. Scale bars 0.1 mm.
Red condensed limestones with ammonites

Samples: OSV Amo Oli (Fig. 4C).
Synonyms: red crinoidal limestones (Piller et al., 2004; Pfeffermann, 2013) and partly Hohenauer Wiese Formation.

Lithology: Red crinoid-rich wackestones.

Facies: crinoids show extensive dissolution on edges, frequent echinoid spines, frequent crinoids (Fig. 5Q), frequent foraminifera with Nodosaria sp., rare ostracods, rare radiolarian, numerous filaments, high amount of scattered pyrite grains, frequent detrital angular quartz grains, ammonites partly with manganese crusts.

Microfacies type and zone: SMF 3; FZ 1–3.

Thickness: tens of metres.

Age: Middle Jurassic, Aalenian to Bajocian.

Underlying unit: Bioclastic limestones.

Overlying unit: Bajocian to Bathonian Hohenauer Wiese Formation.

Geographic distribution: St. Veit Klippen Unit.

References: Hochstetter (1898), Trauth (1948), Pfersmann (2013).

Grey limestones of the upper Fasselgraben Formation

Samples: LT31-869.5 m (ÖBB tunnel, Fig. 4H).
Synonyms: upper part of the Fasselgraben Formation.

Lithology: grey to reddish and reddish brown mud- to wackestones.

Facies: foraminifera, rare aptychi, rare crinoids and bivalves, rare ostracods and radiolarians, frequent calcareous dinoflagellate cysts with Colomisphaera carpathica (Figs. 5Q and R), partly abundant calpionellids with e.g., Calpionella alpina, C. elliptica (Fig. 5T), C. minuta, Tintinnopsis carpathica (Fig. 5S), Calpionellopsis oblonga, Remaniella borzai, R. cadischina, Lorenziella hungarica).

Microfacies type and zone: SMF 3; FZ 1–3.

Thickness: tens of metres.

Age: Calpionellid assemblage indicative for the Calpionellopsis Zone in the Late Berriasian, quantity of calpionellids with e.g., Calpionella alpina, C. elliptica (Fig. 5T), C. minuta, Tintinnopsis carpathica (Fig. 5S), Calpionellopsis oblonga, Remaniella borzai, R. cadischina, Lorenziella hungarica).

6. Historical collections and fossil material

The studied material (Figs. 6, 7, 8) derives mainly from two neighbouring areas in the west of Vienna. Both localities are historical and due to overgrowth or housing cannot be resampled today. The first one is in the east of the wildlife park Lainz near the Lainzer Tor entrance, called the Teichhau Wiese or Hohenauer Wiese Klippe (Hochstetter, 1897; Trauth, 1923a, 1948; Janoschek, 1956; Schnabel 1992a, b). The second one is located two kilometres to the northeast at the historic Glasauer quarry (abandoned since mid of 20th century; Schaffer, 1906). Both localities were described by Schnabel et al. (1997) and Schnabel (2002) who listed the deposits as “Hohenauer Wiese-Formation”, following the lithostratigraphic concept of Prey (1975). This unit, however, has never been formalized; lower and upper boundaries are unknown, and no type section can be designated. Therefore, we use the Hohenauer Wiese Formation as informal term. Re-evaluated taxa are given in brackets following original designations in historical papers as for example the original Ammonites tenuicostatum and the new assigned (= Lokuticeras cf. lissajousi).

Ammonite zones used in the following: Lower Jurassic with Echioceras raricostatum Zone = Raricostatum Zone; Middle Jurassic Hyperiiceras discites Zone = Discites Zone, Concaum Zone, Witchellia laeviussula Zone = Laeviuscula Zone, Stephanoeceras humphriesianum Zone = Humphriesianum Zone, the Strenoceras niortense Zone = Niortense Zone, the Garantiana garantiana Zone = Garantiana Zone, Parkinsonia parkinsoni Zone = Parkinsoni Zone (for zonation see Schweigert, 2015; Fig. 2).

6.1 Hohenauer Wiese Klippe and Teichhaus Klippe area

Fossil assemblages from red crinoidal limestones from the area around the western “Teichhaus Klippe” or the southwestern “Hohenauer Wiese Klippe” in a wildlife preserve area of the western wildlife park Lainz are known since the late 19th century (Cžjžek, 1849; Griesbach, 1868; Trauth, 1923a, b; 1948; Schaffer, 1942). Cžjžek (1849, 1852) described the small klippen summit (approx. 75 m length and 25 m width, Trauth, 1923a) in the wildlife park Lainz as “rich in crinoid fragments, sometimes entirely made of them”, but he mentioned no other fossils. The fauna from the main locality, approx. 280 m SE of the foresters house Teichhaus (e.g., SE Teichhaus on original labels from Toula, 1900) is dominated by ammonites and brachiopods (Figs. 6, 7, 8), which derive from red limestones with considerable quantities of crinoidal fragments (dipping 20°–30°/135°). As noted by Trauth (1923a), the fauna described by Griesbach (1869) and the collected material by Toula (1900) is from the same locality at SE Teichhaus (= Juraklippe der Hohenauer Wiese Klippe in Trauth, 1923a). Griesbach (1869) already noted the presence of 26 different mollusc taxa, such as Belenmites sp., Nautilus sp. (= Canoceras sp., Fig. 8A), Ammonites haloricus, Lithoceras adaele, A. tripartitus (= Nannolytoceras polyhelicum, Figs. 6D, E, F), A. subradiatus, A. parkinsoni, Hamites baculatus (“Baculatenlager”; = Spiroceras aff. baculatum; Fig. 7L) and numerous specimens of bivalves and brachiopods. Griesbach (1869) assigned the deposits of that area to the Zone of Ammonites parkinsoni. Trauth (1923a, 1928) revised this fauna and identified “A. haloricus” as Phylloceras rosiwali (= Lytoceras lissajousi) (Fig. 6A), “A. tripartitus” as Lytoceras tripartitus (= N. polyhelicum) and “A. subradiatus” as Oppelia subradiata. Trauth (1923a) described 95 taxa of echinoderms with Collyrites ovalis (= Pygomasus cf. ovalis, Fig. 8P; see Hochstetter, 1897) and Pseudodiadema sp. (= Diplopodia cf. jobae, Fig. 8Q), serpulids, brachiopods
The St. Veit Klippen Unit in Vienna (Austria) – Jurassic to Cretaceous biostratigraphy and facies based on historical fossil collections

Figure 6: Ammonite fauna from the Lower Jurassic to Middle Jurassic of O. St Veit (OSV) and the Lainzer Tiergarten (LT), St. Veit Klippen Unit. A – Phyllo­ceras rosiwali Trauth 1923a, upper Bajocian, Garantiana Zone or Parkinsoni Zone, SE Teichhaus, LT, NHMW 1927/0004/0108. B – Holophylloceras zigno­dianum d’Orbigny 1848, Bajocian, Humphriesianum Zone, Glasauer quarry, OSV, NHMW 2019/0184/0462. C – Calliphylloceras disputabile (Zittel, 1869), upper Bajocian, Garantiana Zone or Parkinsoni Zone, SE Teichhaus, LT, NHMW 1927/0004/0102. D – Nannolytoceras polyhelictum (Böckh, 1881), upper Bajocian, SE Teichhaus, LT, NHMW 1927/0004/0123f. E – Nannolytoceras polyhelictum (Böckh, 1881), upper Bajocian, Garantiana Zone or Parkinsoni Zone, SE Teichhaus, LT, NHMW 1927/0004/0126b. F – Nannolytoceras polyhelictum (Böckh, 1881), originally figured in Trauth (1923a, Pl. 2, Fig. 6), upper Bajocian, Garantiana Zone or Parkinsoni Zone, SE Teichhaus, LT, NHMW 1927/0004/0121. G – Stephanoceras cf. humphriesianum, lower Bajocian, Humphriesianum Zone, Glasauer quarry, OSV, NHMW 2015/0344/0304. H – Stephanoceras aff. vindobonense (Griesbach, 1868), originally figured in Suess (1897, p. 3, Fig. 1), lower Bajocian, Humphriesianum Zone, Glasauer quarry, OSV, NHMW 1934/0002/0011. I – Lokuticeras cf. lissajousi Roche, 1939, upper Bajocian, Niortense Zone, Glasauer quarry, OSV, NHMW 1934/0002/0005. J – Vermisphinctes martusii (d’Orbygny, 1845), originally figured in Trauth (1923a, Pl. 2, Figs. 7a, b) as holotype of Perisphinctes leederi, upper Bajocian, Garantiana Zone or Parkinsoni Zone, SE Teichhaus, LT, NHMW 1927/0004/0148. K – Parkinsonia toulai Trauth 1923a, originally figured in Trauth (1923a, Pl. 2, Figs. 8a, b and Fig. 9), upper Bajocian, Garantiana Zone or Parkinsoni Zone, SE Teichhaus, LT, NHMW 1927/0004/0162. L – Parkinsonia ferruginea (Oppel, 1857), upper Bajocian, Parkinsoni Zone, SE Teichhaus, LT, NHMW 1927/0004/0155
with Terebratula perovalis (= Loboidothyris perovalis, Fig. 8N) and Rhynchonella quadripecta (= Cymatothyris quadripecta, Fig. 8O), bivalves with Pholadomya corrugata (Fig. 8K) and gastropods with Amberleya elongata (Fig. 8J) and Pleurotomaria elongata (= Pygrotrochus elongatae, Fig. 8I) and frequent cephalopod elements with 333 specimens (299 ammonites, 21 belemnites and 16 nautilids).

Most important are the occurrences of the parkinsoniids Parkinsonia toulai (Fig. 6K) and Pa. ferruginea (Fig. 6L), Pa. neufennis, Pa. aff. acr. and Pa. sp. Additional Stephanoceras aff. baylei, S. braikenridgi, St. humpriesianum and S. rectelobatus (= Cadomites rectelobatus) and Perispinhinctes aff. triplicata, Pe. leederi (= Vermissiphinctes martiusii, Fig. 6J) and Pe. sp., Sphaeroceras cf. sauzei was reported by Trauth (1923a; = Otoites sp.).

Trauth (1923a, 1928) reported extensive macrofossil assemblages from the SVK of the natural reserve wildlife park Lainz and St. Veit (see Grill and Küpper, 1954; Götzinger, 1954). Trauth's faunae comprise ammonites with Phylloceras demidoffi (= Calliphylloceras disputabile, Fig. 6C), Phylloceras viator (= Phyllophycyssia viator), Oppelus fascia, Perispinhinctes leederi (= Vermissiphinctes martiusii, Fig. 6J), Parkinsonia toulai (Fig. 6K), Ariettes (Arnioceras) falcaries (= Arnioceras ceratoides), aptychi, nautilids with Nautilus clausus (= Somalinautus clausus), N. obesus, gastropods, bivalves with Pecten (Chlamys) ambiguous (= Chlamys textoria, Fig. 8L), and brachiopods with Rhynchonella plicatella and R. pseudoobsolata. Trauth (1923a, 1928) indicated the presence of the typical Middle Jurassic ammonite Strigoceras dorcocavatum (= Phylticeras enigmaticum, Fig. 7A). A single specimen was found in 2019 by a private collector west of the SW Teichhaus outcrop which appears to be a specimen of the lowermost Bajocian Graphoceras cf. limu-tatum (Fig. 7B), of the Discites Zone.

Red crinoidal limestones with frequent brachiopods like Terebratula aff. bifrons, Terebratula antiplecta and Rhyn­chonella sp. were defined as being younger, hence Callovian in age, similar to the Vils Limestone of the NCA. On the top of the Middle Jurassic sequence red and grey Upper Jurassic “Aptychen Schichten und Kalke” from the Tithonian to Berriasian was reported from the Stock­wiese with Phylloceras sp. and Lytoceras cf. quadrisculum (Götzinger, 1954).

6.2 The Glasauer quarry area

Most of the collected fossils derive from the historic Glas­sauser quarry (= Glasauser Steinbruch, figured on Plate II in Schaffer, 1906) in St. Veit (Cžjžek, 1849; Stur, 1894; Trauth, 1907). It must be noted that in most ammonite specimens only one side (lower flank to sediment) is preserved. The top side was eroded. Cžjžek (1849, p. 72) described a specimen of “Ammonites Humphriesianus” (= Stephanoceras cf. humpriesianum, Fig. 6G) from sandstones, which he considered to be the easternmost extensions of the “Alpenkalke” (= alpine limestones) and assumed a Middle Jurassic age for the “Cephalopodenkalke” of that locality. In contrast, Trauth (1928), Götzinger (1954), Grill and Küpper (1954) and Faupl (1975) correlated the deposits with the sandy Neuhaus Formation of the Helvetic Gresten Klippen Zone. These beds range from the Bathonian to the Lower Callovian (Piller et al., 2004), and therefore, belong to a different tectonic element.

Griesbach (1869) reported ten ammonite and two bel­emnite species, accompanied by the first illustration of “Ammonites Vindobonensis” (refigured in Suess, 1897; see Schlögl and Zorn, 2012). Griesbach (1868, 1869) assigned the deposits to the Ammonites sauzei Zone and the Am­monites humphriesianum Zone. Griesbach (1868) discussed the presence of the Parkinsonia Zone, based on the identi­fication of “Ammonites parkinsoni inflatus” from red crino­dal limestones with numerous specimens of Ammonites trip­artitus (= Nannolytoceras polyhelictum) and described a small fauna from the Upper Jurassic red aptychi lime­stones around the Einsiedelei area with Aptychus laevis latus (Laevapycnites longus), Aptychus lamellosus, Aptychus crassicauda, Aptychus profundus, Belemnites canaliculus, and Belemnites hastatus (= Hibolites hastatus). The youngest deposits were treated by Griesbach (1868) to be “Neocom Fleckenmergel with Aptychus didayii” from the Lower Creta­ceous in this area. The “Aptychenkalke” are red limestones with abundant aptychi and lay discordant above the Mid­dle Jurassic cephalopod limestones of the SVK.

Hochstetter (1898) later described ammonites from the SVK and stated that more than 400 specimens were distrib­uted to the NHMW and other institutes of earth sciences in Vienna. 37 ammonite species and eight belemnite spe­cies (e.g. Belemnites sp., Fig. 8C) including the most important taxa like Ariettes conybeari (= Arnioceras ceratoides, Fig. 7J), Aegoceras sp. (= Echioceras cf. quenstedti, Fig. 7K), Harpoceras mesacanthus (= Papilliceras mesacanthus, Figs. 7G, H), Harpoceras deltacalata (= Dorsetisia aff. deltacalata, Fig. 7D and Nannina romani, Fig. 7E), Harpoceras romanoides (= Sanninia sp., Fig. 7I), St. humpriesianus, Stephanoceras vindobonensis (= Stephanoceras aff. vindobonense, Fig. 6H), Spiroceras baculatus, Morphoceras polymorphum, Lytoceras tripartitus (= Nannolytoceras poly­helictum), Phylloceras haloricus and Reineckia anceps were mentioned in Hochstetter (1898). Additionally, this author designated a new species with Ammonites tenuicosatum.
Figure 7: Ammonite fauna from the Lower Jurassic to Middle Jurassic of St Veit (OSV) and the wildlife park Lainz (LT), St. Veit Klippen Unit. A – Phlycticeras aenigmaticum (Fernández-López, 1985), originally figured in Scheurlen (1928, Pl. 2, Figs. 1, 2), upper Bajocian, Garantiana Zone or Parkinsoni Zone, SE Teichhaus, LT, NHMW 1927/0004/0132. B – Graphoceras cf. limitatum (Buckman, 1902), lowermost Bajocian, Discites Zone, SW Teichhaus, LT, NHMW 2019/0184/0557. C – Graphoceras cf. limitatum (Buckman, 1902), juvenile, lowermost Bajocian, Discites Zone, Glasauer quarry, OSV, NHMW 2019/0184/0179. D – Dorsetenitites aff. deltoifalcata (Quenstedt, 1858), lower Bajocian, Humphriesianum Zone, lower Bajocian, Glasauer quarry, OSV, NHMW 2019/0184/0179. E – Nannina romani (Oppel, 1856), lower Bajocian, Humphriesianum Zone, Glasauer quarry, OSV, NHMW 2019/0184/0252. F – Oppelia aff. subradiata (Sowerby, 1823), macroconch M, upper Bajocian, Niortense Zone, SE Teichhaus, LT, NHMW 1927/0004/0137. G – Papilliceras mesacanthum (Waagen, 1867), lower Bajocian, Laeviuscula Zone, Glasauer quarry, OSV, NHMW 1843/0030/0340. H – Papilliceras mesacanthum (Waagen, 1867), lower Bajocian, Laeviuscula Zone, Glasauer quarry, OSV, NHMW 1843/0030/0340. I – Sonninia sp., lower Bajocian, Humphriesianum Zone, Glasauer quarry, OSV, NHMW 2019/0184/0389. J – Amniceras ceratothoides Quenstedt, 1848, Sinemurian, OSV Ebner-Rofensteingasse, NHMW 2019/0184/0421. K – Echioceras cf. quenstedti (Schaffhaut, 1847), Sinemurian, OSV, NHMW 2019/0184/0558. L – Spiroceras aff. baculatum (Quenstedt, 1858), upper Bajocian, Niortense Zone or Garantiana Zone, OSV Einsiedeleigasse, NHMW 2019/0184/0212.
6.3 The Roter Berg area

Cžžízek (1849, p. 72) described a small fauna from a small quarry in red cherty limestones with wavy bedding, east of the Glasauer quarry in the SVK, today known as the Roter Berg summit of St. Veit (Plöchinger and Prey, 1992). The fauna is dominated by aptychi (“Aptychus latus” = Laevaptychus longus, Fig. 8D, “Aptychus lamellosus”) and belemnites (“Belemnites canaliculatus”), originally assigned to the Oxfordian (Cžžízek, 1849).

Hauer (1850) described red limestones as „Oxfordthon“ from St. Veit with small fossil assemblages comprising “Aptychus latus”, “Aptychus lamellosus” and belemnites with “Belemnites hastatus” = Hibolites hastatus. From the Roter Berg area Grill and Küpper (1954) figured Belemnites (Belemnopsis) canaliculatus and aptychi with Laevaptychus latus and Lamellaptychus beyrichi.

The presented data from the SVK of the wildlife park Lainz and St. Veit localities allow a more precise biostratigraphy and subsequently the reconstruction of the palaeogeographic setting of the studied section. The described lithologies and facies types represent deep-water deposits of a Lower to Middle Jurassic basin, which was situated in the northernmost areas of the Jurassic Adriatic (Alpine-Apennine) Plate (Fourcade et al., 1993; Lukeneder, 2010) of the western Tethys.

The studied fauna offers one of the few opportunities to investigate historical Middle Jurassic ammonite faunas from Austria. Hence, the St. Veit and wildlife park Lainz localities represent key localities for a detailed investigation of an ammonite fauna affected by an environmental turnover during the opening of the P enhinic Ocean (= Alpine Tethys), reflected by the facies change from terrestrial influenced bioclastic limestones to deeper slope environments of the Middle Jurassic limestones. The almost Tethyan-wide or at least Western Tethyan (including the Mediterranean Province) [= alpin-mediterrane Juraprovinz in Trauth, 1923a] occurrence of the present Jurassic ammonite taxa from the SVK Unit makes these cephalopods suitable for biostratigraphic correlations within the Tethyan Realm. The occurring taxa and biostratigraphy are mainly matched to well-known and described faunas from Austrian localities (e.g. Hödl-Kritsch; Krystyn, 1970, 1971, 1972), Spain (Fernández-López et al., 2009; Sandoval, 2016), France (Pavia, 1983; Pavia and Fernández-López, 2008; Pavia et al., 2008), S Germany (Schlegelmilch, 1985; Dietze et al., 2007; Schweigert et al., 2007), Switzerland (Scheurlen, 1928), and Bulgaria (Metodiev, 2019).

In the case of the SVK cephalopod assemblages a Mediterranean character can be fixed for the ammonite fauna. The Jurassic ammonite fauna from the SVK Unit mirrors the connective palaeoceanographic position of the easternmost Austrian Klippen Unit north to the Alpine-Apennine Plate between the westernmost occurrences from Spain to the easternmost occurrences of the Mediterranean province in Bulgaria and Poland.
Figure 8: Everterbrate fauna from the Lower Jurassic to Middle Jurassic of St Veit (OSV), Roter Berg (RB) and the wildlife park Linzer Tiergarten (LT), St. Veit Klippen Unit. A – Cenoceras sp., lower Bajocian, Humphriesianum Zone, Glasauer quarry, OSV, 2019/0184/0301. B – Belemnites giganteus Schlotheim 1820, Bajocian, lower Bajocian, lower Bajocian, Humphriesianum Zone, Glasauer quarry, OSV, NHMW 2019/0184/0560. C – Belemnites sp., Bajocian, lower Bajocian, Humphriesianum Zone, Glasauer quarry, OSV, NHMW 2019/0184/0308. D – Laevaptychus longus (Meyer, 1829), Kimmeridgian to Tithonian, OSV, NHMW 2019/0184/0559. E – Lamellaptychus bajociensis Trauth 1930, lower Bajocian, Humphriesianum Zone, Glasauer quarry, OSV, 2019/0184/0307. F – Beyrichiellamellaptychus beyrichi (Oppel 1865), Tithonian, RB OSV, NHMW 2019/0184/0101. G – Beyrichiellamellaptychus beyrichi (Oppel, 1865), Tithonian, SE of Faniteum OSV, NHMW 2019/0184/0529. H – Mortilletilamellaptychus bicurvatus (Renz and Habicht, 1985), originally figured in Trauth (1938, Pl. XIV, Fig. 7), Tithonian, OSV, NHMW 1941/0001/0013. I – Pygatrotus elongatae (Sowerby, 1818), upper Bajocian, Garantiana Zone or Parkinsoni Zone, SE Teichhaus, LT, NHMW 1927/0004/0086. J – Amberleyo elongata (Hudleston, 1892), upper Bajocian, Garantiana Zone or Parkinsoni Zone, SE Teichhaus, LT, NHMW 1927/0004/0082. K – Pholadomya corrugata Koch and Dunker 1837, Sinemurian to Pliensbachian, OSV, NHMW 2019/0184/0021. L – Chlamys textoria (Schlotheim, 1820), upper Bajocian, Garantiana Zone or Parkinsoni Zone, SE Teichhaus, LT, NHMW 1927/0004/0056. M – Gryphaea arcuata Lamarck 1801, Hettangian-Sinemurian, OSV Veitingergasse, NHMW 1985/0045/0001. N – Loboidothyris perovalis (Sowerby 1823), Bajocian, LT, NHMW 1927/0004/0024. O – Cymatorhynchia quadriplicata (Zieten 1832), upper Bajocian, Garantiana Zone or Parkinsoni Zone, LT, NHMW 1927/0004/0018. P – Pygomalus cf. ovalis (Leske, 1778), Bajocian, OSV, NHMW 2019/0184/0064. Q – Diplopodia cf. jobae (d’Orbigny, 1850), upper Bajocian, Garantiana Zone or Parkinsoni Zone, LT, NHMW 1927/0004/0005.
From the Lower Jurassic of Gresten, Hochstetter (1898) reported a *Schlotheima charmassei* (= *Angulaticeras charmassei*), that would today be assigned to the Lower Sinemurian. Hochstetter reported from his “Arietitenkalk” *Ariettes conybeari* (= *Arnicoeras ceratoides*) from the Lias a along with *Pleurotomaria expansa*, *Pl. anglica*, *Pl. princeps*, *Lima punctata*, *L. deslongchampi*, *L gigantea*, and *Cardina listeri*, *Cordinia gigantea*, *Rhynchonella sp.*, *Ostrea sp.* and belemnite fragments. The “Fleckenmergel” were interpreted to be an equivalent of the Alpine “Lias Fleckenmergel” (Hochstetter, 1897). From the base of these marly, sandy limestones Trauth (1928) reported an *Aegoceras*, which is in fact a Sinemurian *Echioceras cf. quenstedti*. The most prominent and often reported bivalve *Gryphaea arcuata* is typical for the Sinemurian (Fig. 8M; Hochstetter, 1897; Trauth, 1923, 1928).

7. Palaeogeography and provincialism

The original palaeogeographic position of the St. Veit Klippen Unit is strongly debated (Trauth, 1948; Prey, 1965, 1975, 1979; Decker, 1990; Faupl and Wagreich, 1992; Schnabel, 1992, 2002; Faupl, 1996; Trautwein et al., 2001; Wagreich and Neuhuber, 2007; Mattern and Wang, 2008; Pfersmann and Wagreich, 2009; Pfersmann, 2013; Egger and Wessely, 2014). Recently, a direct connection with the western Ybbsitz Klippen Unit as assumed by Schnabel (1979, 1992a, b) and Decker (1990) was rejected by Schlaczka et al. (2018). It is not well understood to which palaeogeographic realm the St. Veit Klippen Unit (mostly cited as St. Veit Klippen Belt; see Schlaczka et al., 2018) should be attributed. The European shelf (= Helvetic Unit), the Penninic Ocean *sensu lato* (= Penninic Unit; PO = Alpine Tethys, see Stampfli and Hochard, 2009) and the Austroalpine Unit with comparable facies of the Northern Calcareous Alps are possible candidates. The Gresten Klippen Unit is interpreted to be of Helvetic origin, the Ybbsitz Klippen Unit of Penninic origin, whereas the St. Veit Klippen (SVK) Unit was correlated with southern areas of the Pieniny Klippen Belt (PKB; Neumayr, 1871a, b; Uhlig, 1891; Schnabel, 1999; Pfersmann, 2013; Schlaczka et al., 2018; Trauth, 1928; Prey, 1965; Hók et al., 2009). The PKB was formed on an intercalated swell south of the Gresten Klippen Zone and north of the Alpine elements including the SVK zone to the north of the Austroalpine plate margin (Faupl and Wagreich, 2000). According to Stampfli and Hochard (2009) the Alpine-Carpathian domain including the SVK zone to the north of the Austroalpine complex was in that period at a tectonically active position between the northern latitudes of 30°-40°. From the Cretaceous on, the active plate margin including the transpressional accretionary wedge and the northern parts of the Austroalpine microplate thereby underwent accelerated uplift and erosion, reflected by siliciclastic input into the southern adjoining marine environments (Wagreich, 2003).

From a palaeontological point of view the macrofaunal assemblage can be assigned to the Jurassic Mediterranean Province of the Western Tethyan Realm (“alpin-mediterrane Juraprovinz” in Trauth, 1923a; see Fernández-López et al., 2009; Schweigert, 2015; Pavia and Fernández-López, 2019). The cephalopod fauna is almost identical with isochronous assemblages from other localities of Austria (Northern Calcareous Alps; Kryssyn, 1970, 1971, 1972), southern Spain (Betic Cordillera; Fernandez-Lopez, 1985; Fernández-López et al., 2009; Sandoval, 2016), southeast France (southern Subalpine Chains; Pavia, 1983; Fernández-López, 2007; De Baets et al., 2008; Pavia et al., 2008; Fernández-López et al., 2009), northern France (Pavia et al., 2013), from Italy (Apennine Mountains and Sicily; Cresta and Galácz, 1990), southern Germany (Scheurlein, 1928; Schlegelmilch, 1985; Schweigert and Dietze, 1998; Schweigert, 2007; Dietze et al., 2007; Schweigert et al., 2007), Slovakia (Western Carpathians; Slögl et al., 2009), Hungary (Bakony and Mecsek Montains; Galácz, 1980, 1991; Cresta and Galácz, 1990; Galácz and Kassai, 2012; Galácz et al., 2015), Poland (Polish Jura Chain; Zatorz, 2010; Birkenmajer and Gedl, 2017), and Bulgaria (Western and Central Balkan Mountains; Metodiev, 2019). Especially the Middle Jurassic Bajocian to Bathonian sections yield the same ammonite families and partly even the identical species.

8. Biostratigraphy

From a macrofossil point of view two different main ammonite assemblages point to two distinct time intervals present in the SVK Zone of Vienna. One Early Jurassic (late Hettangian-Sinemurian) with the indicative
ammonites *Arnioceras ceratoides* (early Sinemurian) and *Echioceras cf. quenstedti* (late Sinemurian, *Raricostatum* Zone; Schlegelmilch, 1985; Blau, 1998; Lukeneder and Lukeneder, 2018; zonations according to Ogg et al., 2012; Schweigert, 2015) accompanied by the Early Jurassic bivalve *Gryphaea arcuata* (Hettangian to Sinemurian).

The second time interval is of Middle Jurassic age, ranging from the Bajocian to Bathonian. The oldest fossiliferous deposits of this interval start with the outcrop area of the historic Glasauer quarry exhibiting deposits from the lowermost Bajocian *Discites Zone* (Ogg et al., 2012) marked by the ammonite assemblage with *Graphoceras cf. limitatum* (Cresta and Galácz, 1990; Galácz et al., 2015). It must be noted that *G. limitatum* was also reported from the upper Aalenian from SE France by Baets et al. (2007). However, the overall assemblage from the Glasauer quarry points to an early Bajocian age near the transition from the late Aalenian. The lower Bajocian *Laeviuscula* Zone appears with *Papilliceras mesacanthum* and the *Humphriesianum Zone* (Ogg et al., 2012) with *Holophyllloceras zignodina*um, *Stephanoceras cf. humphriesianum*, *Stephanoceras aff. vindobonense*, *Dorsetensia aff. deltalfacata*, *Nannina romani*, *Sonninia sp.* (Galácz, 1980, 1991; Fernandez-Lopez, 1985; Schlegelmilch, 1985; Baets et al., 2007; Dietze et al., 2007; Galácz and Kassai, 2012; Pavia et al., 2013; Galácz et al., 2015), and the upper Bajocian *Niortense Zone* with *Lokuticeras cf. lissajousi* (Metz, 1992; Galácz, 1994).

Slightly younger deposits are found at the Teichhausklippe and the Hohenauer Wiese Klippe area in the wildlife park Lainz. The deposits at the SE Teichhaus outcrop start with rare faunae of the lower upper Bajocian *Niortense Zone* (Ogg et al., 2012) with *Oppelia aff. subradiata*, the upper *Garantiana* or *Parkinsonii zones* with *Phylloceras rosivali*, *Calliphylloceras disputabile*, *Nannoptyloceras polyhelicitum*, *Vermisphinctes martiusii*, *Parkinsonia touli*, and *Phyltoceras aenigmaticum* and *Parkinsonia ferruginea* from the uppermost Bajocian *Parkinsonii Zone* (Illies, 1956; Krystyn, 1972; Schweigert and Dietze, 1998; Dietze et al., 2007; Schweigert et al., 2007). More to the west the SW Teichhaus outcrop appears with lowermost Bajocian *Graphoceras cf. limitatum* of the *Discites Zone*. An additional upper Bajocian faunal element is *Spiroceras aff. baculatum*, which appears in numerous localities in St. Veit. It belongs either to the *Niortense Zone* or the *Garantiana Zone* (Ogg et al., 2012).

The biostratigraphic classification of the Jurassic deposits from the St. Veit Klippen Unit is accompanied by microfossil analyses. Foraminifera and calpionellids are the most important groups used during this study. An Early Jurassic age (Sinemurian) of the lowermost bioclastic limestones is indicated for several samples by the presence of the benthic foraminifera *Involutina lassica*, *Trocholina turris* and *Trocholina umbo*. *Trocholina sp.* also occurs in Lower Jurassic crinoidal limestones and *Duotaxis metula* in grey allogenic encrinites from St. Veit localities. Typical associations of predominantly monaxone megascles with frequent triaxone spicules and radiolarians indicate the presence of Lower Jurassic grey spiculite limestones. Dominance of filaments with abundant benthic ophthalmid foraminifera points to a Middle Jurassic age, corresponding to the Klaus Formation-like parts of the Hohenauer Wiese Formation.

Upper Jurassic silicous limestones and cherts from the Rotenberg Formation appear as red radiolaria dominated deposits with characteristic occurrences of aptychi with *Laevepychatus longus* from Kimmeridgian to Tithonian, and Tithonian species as *Beyrichilamellaptychus beyrichi* and *Mortilletilamellaptychus bicurvatus* (Méchová et al., 2010). The fine grey to red limestones of the upper Fass-ergaben Formation yield late Berrissian assemblages of calcareous dinoflagellates with *Colomispheara carpathica* and calpionellid taxa as *Tintinnopsella carpathica* and *Calpionella elliptica* (Lukeneder and Reháková, 2004; Lukeneder et al., 2019).

The entire lithological sequence from the St. Veit Klippe in St. Veit and the wildlife park Lainz show a range from the Lower Jurassic (Sinemurian) bioclastic limestones and crinooidal/spiculoid sequences, via Middle Jurassic (Bajocian to Bathonian) silicous crinooidal/brachiopod/ammonite limestones of the Hohenauer Wiese Formation to Upper Jurassic (Kimmeridgian and Tithonian) deep water deposits of the Rotenberg Formation (Oxfordian to Tithonian) and hemipelagic to pelagic Upper Jurassic (Tithonian) to Lower Cretaceous (Berrissian) deposits of the Fassergaben Formation.

9. Conclusions

The so far imprecisely reported macrofauna of localities from St. Veit and the wildlife park Lainz (St. Veit Klippe, Hietzing, western area of Vienna) is mainly represented by abundant ammonites, frequent aptychi, belemnites, brachiopods, bivalves and gastropods. 3393 fossil specimens and 104 rock samples were photographed.

During the Jurassic the SVK lithologies and facies types document a significant facies change from the Lower Jurassic shallow water influenced bioclastic limestones, to the deep-water marly limestones and limestones of the Lower Jurassic “Lias Fleckenmergel” (comparable to the Allgäu Formation of the NCA). The Lower Jurassic grey deep-water limestones are accompanied by spiculite and crinooidal limestone deposits influenced by transport and redeposition by deep water currents. After an assumed significant hiatus, characteristic silicious spiculae and radiolaria rich wackestone to packstones and crinooidal limestones of the Glasauer quarry and red to grey crinooidal limestones of the Hohenauer Wiese Klippe appear. The latter Middle Jurassic lithologies are accompanied by rare occurrences of red condensed cephalopod limestones of „Klaus Formation“ type. The Upper Jurassic follows with deep water sedimentation of the Rotenberg Formation with cherty radiolaites and radiolarian-rich limestones. From the uppermost Jurassic to Lower Cretaceous cherty grey limestone and radiolaria-rich limestones of the Fassergaben formation prevail. Overall, the depositional sequence is similar to sections from the Northern Calcareous Alps.
The faunal assemblages are by far dominated by ammonites, hence being the base of the biostratigraphic interpretation. The ammonite fauna consists of 18 different genera, each represented by one or two species. Stephanoceratidae are the most frequent element (Stephanoceras, Lokotkiceras) followed by the Phylloceratidae (Calliphylloceras, Holocophylloceras, Phylloceras), and Lytoceratidae (Nannolytoceras). Perisphinctidae (Vermisphinctes), Parkinsoniidae (Parkinsonia), Strigoceratidae (Phlycticeras), Graphocrateridae (Graphoceras), Sonniniidae (Dorsetensia, Nannina, Sonninia), Otoitidae (Otoites), Oppelliidae (Oppelia), Arietidae (Arnioceras) and Echioceratidae (Echioceras), and the heteromorph Spiroceratidae (Spiroceras). For the first time, the fauna allows a more detailed biostratigraphy of the Jurassic deposits from the St. Veit Klippen Unit. Lower Jurassic (Sinemurian) deposits with Gryphaea assemblages are correlated with the Raricostatum Zone. The Middle Jurassic commences with the upper Aalenian Concavum Zone, the lower Bajocian with the Humphrisianum Zone, the Niortense Zone and the Lasvescula Zone and the upper Bajocian with the Garantiana Zone and Parkinsonia Zone.

Biogeographically, the SVK assemblage is reminiscent of other faunas from the Mediterranean Province in the Western Tethyan Realm. Most similarities appear with isochronous assemblages from west to east of S Spain, S France, N France, Switzerland, S Germany, Austria, Slovakia, Hungary, Poland, and Bulgaria. Georeferenced locality details for the historical sampling areas, digital images and data sets are available online at https://www2.nhm-wien.ac.at/LukenederA/OberStVeit/.

Acknowledgements
This paper is part of the project 01_MA7_2018 “Die Ammonitenfauna der St. Veiter Klippenzone auf Wiener Stadtgebiet (XIII Bezirk)” of the City of Vienna (MA 7) and was financially supported by the Austrian Academy of Sciences (ÖAW). We thank Sixto Rafael Fernández-López (Madrid), José Sandoval (Granada), Andras Galácz (Budapest), and Günter Schweigert (Stuttgart) for fruitful discussions on ammonite taxonomy. We are grateful to Luka Gale (Ljubljana) and Agnes Görög (Budapest) for the determination of foraminifera. Sincere thanks go to Oliver Schmitsberger (Vienna) for providing ammonite specimens and information about localities. We are particularly grateful to Roland Mayer, Franz Mayer, Anton Englerl and Iris Feichtinger (all Vienna) for the production of thin sections. The authors thank Irene Zorn (Vienna), Michael Wagreich (Vienna), Martin Zuschin (Vienna), Michael Götzinger (Eichgrabern), Ewald Königstein (Vienna) and Maximilian Stony (Vienna) for providing access to collections. We thank the editor in chief of AUES Kurt Stüwe (Graz) and the handling editor Michael Wagreich (Vienna) for their advice and constructive comments. The manuscript greatly benefited from two reviews by Wolfgang Schnabel (Vienna) and an anonymous reviewer.

References
Amon, R., 1930. II Teil. Der Lainzer Tiergarten und seine Umgebung. Führer für Lehrwanderungen und Schülerreisen. Deutscher Verlag für Jugend und Volk Wien, 2 maps, 89 pp.

Austromap Online 2019. Bundesamt für Eich- und Vermessungswesen, Wien. http://www.austriamap.at/amap/index.php?5KN=1&XPX=637&YPX=492, accessed 15. February 2019.

Bauer, F.K., 1987. Die Stellung der Nördlichen Kalkalpen in einem Unterschiebungsbau der Alpen. Jahrbuch der Geologischen Bundesanstalt, 130, 113–131. https://opac.geologie.ac.at/ais312/dokumente/JB1302_113_A.pdf

Birkenmajer, K., Gedl, P., 2017. The Grajcerek succession (Lower Jurassic-Mid Palaeocene) in the Pieniny Klippen belt, West Carpathians, Poland: a stratigraphic synthesis. Annales Societatis Geologorum Poloniae, 87, 55–88. http://www.asgp.pl/sites/default/files/volumes/87_1_055_088.pdf

Blau, J., 1998. Monographie der Ammoniten des Obersinemuriums (Lotharingium, Liaus) der Lienzer Dolomiten (Österreich): Biostratigraphie, Systematik und Paläobiogeographie. Revue de Paléobiologie, 17/1, 177–285.

Cresta, S., Galácz, A., 1990. Mediterranean basal Bajocian ammonite faunas. Examples from Hungary and Italy. Memorie Descrittive della Carta geologica d’Italia, 40, 165–198. https://www.researchgate.net/publication/292718208_Mediterranean_basal_Bajocian_ammonite_faunas_Examples_from_Hungary_and_Italy

Cžjžek, J., 1849. Erläuterungen zur geognostischen Karte der Umgebungen Wiens. XXX + 104 Seiten, W. Braumüller, Vienna. https://opac.geologie.ac.at/ais312/dokumente/1625_80_Czicek_1849_Erl_geoogn_Karte_WU.pdf

Cžjžek, J., 1852. Aptychenschiefer in Niederösterreich. Umgebung. Führer für Lehrwanderungen und Schülerreisen. Deutscher Verlag für Jugend und Volk Wien, 269 pages.

Czymek, J., 1852. II Teil. Der Lainzer Tiergarten und seine Umgebung. Führer für Lehrwanderungen und Schülerreisen. Deutscher Verlag für Jugend und Volk Wien, 2 maps, 89 pp.

Cžjžek, J., 1852. II Teil. Der Lainzer Tiergarten und seine Umgebung. Führer für Lehrwanderungen und Schülerreisen. Deutscher Verlag für Jugend und Volk Wien, 2 maps, 89 pp.

Decker, K., 1987. Faziesanalysen der Oberjura- und Neo- komschichtfolgen der Grestener und Ybbsitzer Klippen- zone im westlichen Niederösterreich. Unpublished PhD Thesis, Universität Wien, 248 pp.

Decker, K., 1990. Plate tectonics and pelagic facies: Late Jurassic to Early Cretaceous deep-sea sediments of the Ybbsitz ophiolite unit (Eastern Alps, Austria). Sedimentary Geology, 67, 85–99. https://doi.org/10.1016/0037-0738(90)90028-R

Dercourt, J., Gaetani, M., Vrielynck, B., Barrier, E., Biju-Duval, B., Brunet, M.F., Cadet, J.P., Crasquin S., Sandulescu,
Umgebung von Wien. 1:75.000, Geologische Bundesanstalt Wien, pp. 5–85.
Griesbach, C.L., 1869. Die Klippen im Wiener Sandestein. Jahrbuch der k.k. Geologischen Reichsanstalt, 19, 217–224. https://opac.geologie.ac.at/ais312/dokumente/JB0192_217_A.pdf
Griesbach, K., 1868. Der Jura von St. Veit bei Wien. Jahrbuch der k.k. Geologischen Reichsanstalt, 18, 123–130. https://opac.geologie.ac.at/ais312/dokumente/JB0181_123_A.pdf
Grill, R., Küpper, H., 1954. Erläuterungen zur geologischen Karte der Umgebung von Wien. 1:75.000, Geologische Bundesanstalt Wien, 4 tables, 14 plates, 1–138. https://opac.geologie.ac.at/ais312/dokumente/EG0003_001_A.pdf
Hauer, F. Ritter v., 1850. Ueber die geognostischen Verhältnisse des Nordabhanges der nordöstlichen Alpen zwischen Wien und Salzburg. Jahrbuch der k.k. Geologischen Reichsanstalt, 1, 17–60. https://opac.geologie.ac.at/ais312/dokumente/JB0011_017_A.pdf
Hauer, F. Ritter v., 1853. Ueber die Gliederung der Trias-, Lias- und Juragebilde in den nordöstlichen Alpen. Jahrbuch der k.k. Geologischen Reichsanstalt, 4, 715–784. https://opac.geologie.ac.at/ais312/dokumente/JB0044_715_A.pdf
Hedberg, H.D., 1976. International Stratigraphic Guide. John Wiley and Sons, New York, 200 pp.
Hochstetter, E.W. v., 1897. Die Klippe von St. Veit bei Wien. Jahrbuch der k.k. Geologischen Reichsanstalt, 47, 95–156. https://opac.geologie.ac.at/ais312/dokumente/JB0471_095_A.pdf
Hók, J., Peškova, I., Potfaj, M., 2009. Litostratigraphická náplň a tektonická pozícia drietomskej jednotky (západný úsek bradlového pásma). Mineralia Slovaca, 41, 313–320. https://www.geology.sk/mineralia/#1524143675997-2145628a-85c6
Illies, H., 1956. Der mittlere Dogger im badischen Oberoheingebiet. Berichte der naturforschenden Gesellschaft zu Freiburg im Breisgau, 46, 5–52. https://www.zobodat.at/pdf/Berichte-naturf-Ges-Freiburg-Br_46_0005-0052.pdf
Janoschek, R., Küpper, H., Zirkl, E.J., 2018. Sinemurian biostratigraphy of the Ternberg Nappe (Northern Calcareous Alps, Austria): Facies–changes, biostratigraphy and paleoecology. Geologica Carpathica, 55/3, 227–237. http://www.geologicacarpathica.com/GeolCarp_Vol55_No3_227_237.html
Klierzeringer, W., Wagreich, M., Palzer-Khomenko, M., Gier, S., Meszar, M., Lee, E.Y., Koukal, V., Strauss, P., 2018. Provenance and palaeogeographic evolution of Lower Miocene sediments in the eastern North Alpine Foreland Basin. Swiss Journal of Geosciences, 112, 269–286. https://doi.org/10.1007/s00015-018-0312-9
Kober, L., 1955. Bau und Entstehung der Alpen, 2. Auflage, Deuticke, Wien, 379 pp.
Krystyn, L., 1971. Stratigraphie, Fauna und Fazies der Klaus-Schichten (Aalenium-Oxford) in den Östlichen Nordalpen. Verhandlungen der Geologischen Bundesanstalt, 3, 486–509. https://opac.geologie.ac.at/ais312/dokumente/VH1971_486_A.pdf
Krystyn, L., 1972. Die Oberbajocium- und Bathonium-Ammoniten der Klaus-Schichten des Steinbruches Neumühle bei Wien (Österreich). Annalen des Naturhistorischen Museums Wien, 76, 195–310. https://www.zobodat.at/pdf/ANNA_76_0195-0310.pdf
Kühler, O. (Ed.), 1962. Lexique stratigraphique international, 1, Fascicule 8, Autrique. Centre National de la Recherche Scientifique, Paris, 646 pp.
Küpper, H., 1968. Geologie der österreichischen Bundesländer in kurzgefassten Einzeldarstellungen, Wien. Bundesländerserie, Heft Wien, Verhandlungen der geologischen Bundesanstalt, + 20 tables, 23 figures, 8 fossil plates and 20 fold-plates, 206 pp. https://opac.geologie.ac.at/ais312/dokumente/Kuepper_1968_Wien.pdf
Lukeneder, A., 2010. Lithostratigraphic definition and stratotype for the Puez Formation: formalisation of the Lower Cretaceous in the Dolomites (S. Tyrol, Italy). Austrian Journal of Earth Sciences, 103/1, 138–158. https://www.univie.ac.at/ajes/archive/volume_103_1/lukeneder_ajes_v103_1.pdf
Lukeneder, A., Lukeneder, P., 2018. Sinemurian biostratigraphy of the Tannscharten section near Reichraming (Lower Jurassic, Schneeberg Syncline, Northern Calcareous Alps). Austrian Journal of Earth Sciences, 111/1, 92–110. https://doi.org/10.17738/ajes.2018.0007
Lukeneder, A., Réháková, D., 2004. Lower Cretaceous section of the Ternberg Nappe (Northern Calcareous Alps, Upper Austria): Facies–changes, biostratigraphy and paleoecology. Geologica Carpathica, 55/3, 227–237. http://www.geologicacarpathica.com/GeolCarp_Vol55_No3_227_237.html
Lukeneder, A., Lukeneder, P., Gale, L., Görög, Á., Réháková, D., 2019. Facies changes of the Upper Triassic–Lower Cretaceous Hödl-Kritsch quarry (Lunz Nappe, Northern Calcareous Alps, Austria). Jahrbuch der Geologischen Bundes-Anstalt, 159/1–4, 175–201. https://opac.geologie.ac.at/wwwopac/wwwopac.aslx?command=get-content&server=images&value=JB1591_175_A_Lukeneder%20et%20al.pdf
Mandic, O., Lukeneder, A., 2008. Dating the Penninic Ocean subduction: new data from planktonic foraminifera. Cretaceous Research, 29, 901–912. https://doi.org/10.1016/j.cretres.2008.05.007
Mattern, F., Wang, P.J., 2008. Out-of-sequence thrusts and paleogeography of the Rhenodanubian Flysch Belt (Eastern Alps) revisited. International Journal of Earth Sciences, 97, 821–833. https://doi.org/10.1007/s00015-018-0312-9
Mitterzi, L., 1969. Biogeographische Übersicht der Gänseknopf-Verbreitung in Österreich. Mitteilungen der Geologischen Bundesanstalt, 18, 123–130. https://opac.geologie.ac.at/ais312/dokumente/Kuepper_1968_Wien.pdf
Méchová, L., Vašíček, Z., Houša, V., 2010. Early Cretaceous ammonites of the Klaus-Schichten of the Cretaceous Hödl-Kritsch quarry (Lunz Nappe, Northern Calcareous Alps, Austria). Jahrbuch der Geologischen Bundes-Anstalt, 19. 217–224. https://doi.org/10.17738/ajes.2018.0007
Metodiev, L., 2019. Rare and little-known ammonites from the Lower and Middle Jurassic of the Western
and Central Balkan Mts (Bulgaria). Geologica Balcanica, 48/1, 3–41. https://www.geologica-balcanica.eu/journal/48/1/pp.3-41

Metz, M., 1992. Die Faunenhorizonte des “Subfurcata- en-Schichten” (Bajocium, Niortense-Zone) in Nordwestdeutschland. Osnabrücker naturwissenschaftliche Mitteilungen, 18, 25-95.

Müller, A.M., 1987. Bericht 1986 über geologische Aufnahmen in den Kalkalpen auf Blatt 69 Großraming. Jahrbuch der Geologischen Reichsanstalt, 121, 297–378. https://opac.geologie.ac.at/ais312/dokumente/JB0213_297_A.pdf

Neumayr, M., 1871a. I. Jurastudien. 3. Die Phylloceraten des Dogger und Malm. Jahrbuch der k.k. Geologischen Reichsanstalt, 21, 297–378. https://opac.geologie.ac.at/ais312/dokumente/JB0213_297_A.pdf

Neumayr, M., 1871b. II. Jurastudien. 5. Der penninische Klippenzug. Jahrbuch der k.k. Geologischen Reichsanstalt, 21, 451–536. https://opac.geologie.ac.at/ais312/dokumente/JB0214_451_A.pdf

Ogg, J., Hinnov, L.A., Huang, C., 2012. Jurassic. In: Gradstein, F.M., Ogg, J.G., Schmitz, M.D., Ogg, G.M. (Eds), The Geologic Time Scale 2012, 1, 731–791. https://doi.org/10.1016/B978-0-444-59425-9.00026-3

Ožvoldová, L., Faupl, P., 1993. Radiolarien aus kieseligen Schichtgliedern des Juras der Grestener und Ybbsitzer Klippenzone (Ostalpen, Niederösterreich). Jahrbuch der Geologischen Bundesanstalt, 136, 479–494. https://opac.geologie.ac.at/ais312/dokumente/JB1362_479_A.pdf

Peters, K., 1854. Aptychen der österreichischen Neo- comien- und oberen Juraschichten. Jahrbuch der k.k. Geologischen Reichsanstalt, 5, 439–444. https://opac.geologie.ac.at/ais312/dokumente/JB0052_439_A.pdf

Pfersmann, C., 2013. Stratigraphy, lithofacies and geochemistry of the St. Veit Klippenzone and the Flysch units from the Lainz Tunnel, Vienna. Unpublished PhD Thesis, University of Vienna, 209 pp.

Pfersmann, C., Wagreich, M., 2009. The geology of the western part of the Lainz Tunnel of the Rhenodanubian Flysch Zone in the Wienerwald (Austria): Kahlenberg Formation and Hüttdorf Formation (Cretaceous). Journal of Alpine Geology, 51, 59–71.

Piller, W.E., Egger, H., Erhart, C.W., Gross, M., Harzhauser, M., Hubmann, B., van Husen, D., Krenmayr, H.-G., Krystyn, L., Lein, R., Lukeneder, A., Mandl, G., Rögl, F., Roetzel, R., Rupp, C., Schnabel, W., Schönlau, H.P., Summesberger, H., Wagreich, M., 2004. Die Stratigraphische Tabelle von Österreich 2004 (sedimentäre Schichtfolgen). Kommission für die Paläontologische und stratigraphische Erforschung Österreichs. Österreichische Akademie der Wissenschaften und Österreichische Stratigraphische Kommission, Wien. http://iewarchiv.uni-graz.ac.at/palstrat/Stratigraphische_Tabelle_von_Oesterreich_2004.pdf

Plöchinger, B., Prey, S., 1992. Der Wienerwald. In: Schnabel, W. (ed.), Sammlung geologischer Führer, 2nd edition, 59, 168 pp.

Prey, S., 1960. Gedanken über Flysch und Klippenzonen in Österreich anlässlich einer Exkursion in die polnischen Karpaten. Verhandlungen der Geologischen Bundesanstalt, 1960, 197–214. https://opac.geologie.ac.at/ais312/dokumente/VH1960_197_A.pdf

Prey, S., 1965. Vergleichende Betrachtungen über Westkarpaten und Ostalpen im Anschluß an Exkursionen in die Westkarpaten. Verhandlungen der Geologischen Bundesanstalt, 1965, 69–107. https://opac.geologie.ac.at/ais312/dokumente/VH1965_069_A.pdf

Peyer, S., 1975. Neue Forschungsergebnisse über Bau und Stellung der Klippenzone des Lainzer Tiergartens in Wien (Österreich). Verhandlungen der Geologischen Bundesanstalt, 1975, 1–25. https://opac.geologie.ac.at/ais312/dokumente/VH1975_001_A.pdf

Prey, S., 1979. Der Bau der Hauptklippenzone und der Kahlenberger Decke im Raum Pukersdorf – Wienerwaldsee (Wienerwald). Verhandlungen der Geologischen Bundesanstalt, 1979, 205–228. https://opac.geologie.ac.at/ais312/dokumente/VH1979_205_A.pdf

Prey, S., 1987. Probleme am Flysch-Kalkalpen-Rand mit besonderer Berücksichtigung der Klippenzone von Sulz im Wienerwald. Jahrbuch der Geologischen Bundesanstalt, 621–629. https://opac.geologie.ac.at/ais312/dokumente/JB1293_621_A.pdf
Prey, S., 1991. Zur tektonischen Position der Klippe der Antonsöhle bei Mauer: Eine Richtungststellung. Jahrbuch der Geologischen Bundesanstalt, 134, 845–847. https://opac.geologie.ac.at/ais312/dokumente/JB1344_845_A.pdf

Rosenberg, G., 1961. Übersicht über den Kalkalpen-Nordostsporn um Kalksburg (Wien und Niederösterreich). Verhandlungen der geologischen Bundesanstalt, 1961, 171–176. https://opac.geologie.ac.at/ais312/dokumente/VH1961_171_A.pdf

Salvador, A., 1994. The International Stratigraphic Guide: A guide to stratigraphic classification terminology, and procedure. John Wiley, New York, 214 pp.

Sandoval, J., 2016. Ammonite assemblages and chro- nostratigraphy of the uppermost Bajocian–Callovian (Middle Jurassic) of the Murcia Region (Betic Cordillera, south-east Spain. Proceedings of the Geologists’ Association, 127/2, 230–246. https://doi.org/10.1016/j.jgeola.2015.11.007

Schaffer, F.X., 1904. Geologische Karte der k. k. Reichshaupt- und Residenzstadt Wien 1:25.000: Auf Grundlage des unter Mitwirkung des Stadtbauamtes von Carl Loos herausgegebenen Plans. Lechner, Wien.

Schaffer, F.X., 1906. Geologie von Wien. II Teil. Lechner, Wien, 234 pp.

Schaffer, F.X., 1942. Geologischer Führer für Exkursionen in der Umgebung von Wien. Sammlung geologischer Führer. 2. Auflage, Gebrüder Borntraeger, Berlin, 12, 170 pp.

Scheurlen, H., 1928. Phlycticeras und Phlycticeras. Palaeonto- graphica A, 70, 1–40.

Schlegelmilch, R., 1985. Die Ammoniten des süd- deutschen Doggers. Gustav Fischer Verlag, Jena, 284 pp.

Schlögl, J., Zorn, I., 2012. Revision of the Jurassic Ceph- alopod Holotypes in the Collections of the Geological Survey of Austria in Vienna. Jahrbuch der Geologischen Bundesanstalt, 152, 159–200. https://opac.geologie.ac.at/ais312/dokumente/JB1521_159_A.pdf

Schlögl, J., Rakús, M., Mangold, C., Elmi, S., 2005. Bajo- cian – Bathonian ammonite fauna of the Czorsztyn unit, Pieniny Klippen Belt (Western Carpathians, Slovakia); its biostratigraphical and palaeobiogeographical significance. Acta Geologica Polonica, 55/4, 339–359. https://geojournals.pgi.gov.pl/app/article/view/10269/8786

Schlögl, J., Mangold, C., Tomasovych, A., Golej, A., 2009. Early and Middle Callovian ammonites from the Pieniny Klippen Belt (Western Carpathians) in hiatal successions: unique biostratigraphic evidence from sediment-filled fissure deposits. Neues Jahrbuch für Geologie und Paläontologie, 252/1, 55–79. https://doi.org/10.1127/0077-7749/2009/0252-0055

Schmitzberger, O., Brandl, M., Penz, M., 2019. Neu entdeckte Radiolaritabbaue in Wien. Bedeutung und Nutzung der St. Veiter Klippenzone im Neolithikum. Archeologica Austriaca, 103/2019, 163–174.

Schnabel, W., 1992b. Geologische-Tektonische Über- sichtskarte der Flieschzone des Wienerwaldes. In: Plöchinger, B., Prey, S. (Schnabel, W., Ed.). Der Wiener- wald. Sammlung geologischer Führer, 59, 2 Auflage, 1 map.

Schnabel, W., 1999. 2.4. The Flysch Zone of the Eastern Alps. In: Mandl, G. (Ed.), Field trip guide, FOREGS 99 – Dachstein-Hallstatt-Salzkammergut Region, Berichte der Geologischen Bundesanstalt, 49, 27–35. https://www.zobodat.at/pdf/BerichteGeolBundesanstalt_49_0027-0035.pdf

Schnabel, W. (Ed.), 2002. Niederösterreich, Geologische Karte 1:200 000, Legende und Erläuterungen. Geologie der Österreichischen Bundesländer, Geologische Bundesanstalt, Wien.

Schneider S., Harzauer, M., Kroh, A., Lukeneder, A., Zus- chin, M., 2013. Ernstbrunn Limestone and K lentnice Beds (Kimmeridgian-Berriasian; Waschberg-Ždánice Unit; NE Austria and SE Czech Republic). State of the art and bibliography. Bulletin of Geosciences, 88, 105–130. https://doi.org/10.3140/bull.geosci.1360

Schweigert, G., Dietze, V., 1998. Revision der dimorphen Ammoniten gattungen Phlycticeras Hyatt – Oecotyp- chius Neumayr (Strigoceratidae, Mitteljura). Stuttgarter Beiträge zur Naturkunde, B, 269, 1–59.

Schweigert, G., Dietze, V., Chandler, R.B., Mitta, V., 2007. Revision of the Middle Jurassic dimorph ammonite genera Strigoceras/Cadomoceras (Strigoceratidae) and related forms. Stuttgarter Beiträge für Naturkunde, B, 373, 1–74.

Schweigert, G., 2015. Chapter 14 Ammonoid Biostratiga- phy in the Jurassic. In: Klug, C., Korn, D., Baets, K., Kruta, I., Mapes, R.H. (Eds.), Ammonoid Paleobiology: From macroevolution to palaeogeography. Topics in Geobiology, Springer, 44, pp. 389–402.

Ślączka, A., Pfersmann, C., Koukal, V., Wagreich, M., Kowalik, S., Maslo., M., 2018. Jurassic–Cretaceous radiolar- ian-bearing strata from the Gresten Klippen Zone and the St. Veit Klippen Unit (Wienerwald, Eastern Alps, Austria): Implications for stratigraphy and paleogeography. Austrian Journal of Earth Sciences, 111/2, 204–222. https://doi.org/10.17738/ajes.2018.0013

Spitz, A., 1910. Der Höllensteinzug bei Wien. Mitteilun- gen der Geologischen Gesellschaft in Wien, 3, 351–433. https://geologie.or.at/index.php/downloads2/category/7-archiv-mitteilungen

Stampfli, G.M., Hochard, C., 2009. Plate tectonics of the Alpine realm. In: Murphy, J.B., Keppie, J.D., Hynes, A.J. (Eds.), Ancient Orogens and Modern Analogues. Geo- logical Society, London, Special Publications, 327, pp. 89–111. http://dx.doi.org/10.1144/SP327.6

Steininger, F.F., Piller, W.E., 1999. Empfehlungen (Richt- linien) zur Handhabung der stratigraphischen
Trauth, F., 1923b. II Teil. Die geologische Geschichte des Trauth, F., 1923a. Über eine Doggerfauna aus dem Lainzer Trauth, F., 1921. Über die Stellung der „pieninischen Trauth, F., 1909. Die Grestener Schichten der österr. Trauth, F., 1908. Zur Tektonik der subalpinen Grestener Trauth, F., 1907. Ein neuer Aufschluss im Klippengebiet von Wien. Blatt IV (Baden-Neulengbach). Erläuterungen zur Geologischen Spezialkarte der Umgebung von Wien Colonne XIV, XVI, Zone 12, 13, der Spezialkarte der österr.-ungar. Monarchie im Massstab von 1:75.000. Aufgenommen 1889/90. Geologische Reichsanstalt, 59 S., Wien. Suess, E., 1897. Der Boden der Stadt und sein Relief. 1 Geschichte der Stadt Wien, 1, Alterthumsverein der Stadt Wien, 26 pp. https://opac.geologie.ac.at/ais312/dokumente/142,20_Der_Boden_der_Stadt_und_sein_Relief.pdf Thenius, E., 1974. Niederösterreich. Geologie der österreichischen Bundesländer in kurzgefassten Einzeldarstel- lungen, Bundesländerserie, Verhandlungen der geologischen Bundesanstalt, erweiterte 2. Auflage, 280 pp. https://opac.geologie.ac.at/ais312/dokumente/Bundeslaenderserie_NOE.pdf Tollmann, A., 1963. Ostalpensynthese. Franz Deuticke, Wien, 256 pp. Tollmann, A., 1976. Analyse des klassischen nordalpinen Mesozoikums. Franz Deuticke, Wien, 580 pp. Toulæ, F., 1871. I. Beiträge zur Kenntnis des Randgebirges der Wienerbucht bei Kalksburg und Rodaun. Jahrbuch der k.k. Geologischen Reichsanstalt, 21, 437–450. https:// opac.geologie.ac.at/ais312/dokumente/JB0214_437_A.pdf Toulæ, F., 1897. Bemerkungen über den Lias der Umge- bung von Wien. Neues Jahrbuch für Mineralogie, Geo- logie und Paläontologie, 1897, 216–219. Trauth, F., 1907. Ein neuer Aufschluss im Klippengebiete von St. Veit (Wien). Verhandlungen der Verhandlun- gen der k.k. Geologischen Reichsanstalt, 10, 241–245. https://opac.geologie.ac.at/ais312/dokumente/VH1907_241_A.pdf Trauth, F., 1908. Zur Tektonik der subalpinen Grestener Schichten Oesterreichs. Mitteilungen der Geologischen Gesellschaft, 1, 112–134. https://geologie.or.at/index.php/downloads2/category/7-archiv-mitteilungen Trauth, F., 1909. Die Grestener Schichten der österreichischen Voralpen und ihre Fauna: Eine stratigraphisch-paläontologische Studie. Beiträge zur Paläontologie und Geologie Österreich-Ungarns und des Orients, 22, 142 pp. https://opac.geologie.ac.at/ais312/doku- mente/BPG_Band_22_001.pdf Trauth, F., 1910. Die geologischen Verhältnisse der weit- eren Umgebung Wiens und Erläuterungen zur Geologi- schen Bundesanstalt, 40, 549–824. https://opac.geologie.ac.at/ais312/dokumente/VH1948_145_A.pdf Trautwein, B., Dunkl, I., Frisch, W., 2001. Accretionary his- tory of the Rhenodanubian Flysch zone in the Eastern Alps - evidence from apatite fission-track geochronol- ogy. International Journal of Earth Sciences, 90, 703–713. https://doi.org/10.1007/s005310000184 Uhlig, V., 1891. Ergebnisse geologischer Aufnahmen in den westgalizischen Karpathen. II. Theil: Der pieninische Klippenzug. Jahrbuch der k.k. Geologischen Reichsan- stalt, 40, 549–824. https://opac.geologie.ac.at/ais312/dokumente/VH0403_559_A.pdf Vetters, H., 1910. Die geologischen Verhältnisse der weit- eren Umgebung Wiens und Erläuterungen zur Geologi- sch-gtektonischen Uebersichtskarte des Wiener Beck- ens und seiner Randgebirge im Maßstab 1:100.000. Österreichische Lehrmittel-Anstalt, 106 pp. https:// opac.geologie.ac.at/ais312/dokumente/Geol_Ver_weit_Umgeb_Wiens_001_106.pdf Wagreich, M., Neuhuber, S., 2007. Stratigraphie und Facies von Helvetikum und Ultrahelvetikum in Oberösterreich. Arbeitstagung 2007 der Geologischen Bundesanstalt Blatt 67 Grünau im Almtal und Blatt 47 Ried im Innkreis: Linz, 7. - 11. Mai, 27–40. https://opac.geologie.ac.at/ais312/dokumente/ATA_2007_027.pdf Wesely, G., 2006. Niederösterreich. Geologie der Öster- reichischen Bundesländer. Geologische Bundesanstalt Wien, 415 pp. Wilson, J.L., 1975. Carbonate Facies in Geological History. Springer, Berlin-Heidelberg, New York, 471 pp. Zatori, M., 2010. Bajocian-Bathonian (Middle Jurassic) ammonites from the Polish Jura. Palaeontographica A, 292, 65–113.

Received: 04.05.2020 Accepted: 30.11.2020 Editorial Handling: Michael Wagreich