A simple analytical method for in-plane and out-of-plane coupled vibration of curved panels
(Vibration analysis as combination of straight and curved beam coupled structure)

Takahiro TOMIOKA*1, Tadao TAKIGAMI*2, Yuki AKIYAMA*2 and Ken-Ichiro AIDA*2

*1 Faculty of Systems, Science and Technology
84-4 Tsuchiya-ebinokuchi, Yuzhongyo-shi, Akita 015-0055, Japan
*2 Vehicle Noise and Vibration Lab., Railway Technical Research Institute
2-8-38 Hikari-cho, Kokubunji-shi, Tokyo 185-8540, Japan

Received: 15 November 2018; Revised: 18 April 2019; Accepted: 27 June 2019

Abstract
This paper presents an analytical method for in-plane and out-of-plane coupled vibration in thin curved panels. To treat such vibrations simply, a structure consisting of the combination of straight and curved beams is proposed and the connecting conditions of these beams are satisfied by means of artificial springs introduced at their joints. Firstly, the strain energy of the curved beam is derived based on a shell theory, and the validity is checked by comparing the modal characteristics with those obtained by beam theory. Then the straight and curved beam coupled system (SCBS) is introduced. The analytical procedure to derive the equation of motion of the SCBS is described in detail. Numerical result shows that the SCBS can successfully express the coupling effect between roof-floor relative vertical displacement and side panel’s lateral deformation. As some numerical examples, vibration responses for the different bending rigidities and loss factors in the SCBS are calculated. The influence of the loss factors in the curved beams is observed upon the vibration response of the floor section, particularly in the motion with large relative displacement between roof and floor.

Keywords: Elastic vibration, Curved beam, Coupled vibration, Energy method, Cylindrical shell

1. 緒 言

鉄道車両や自動車、航空機などに見られる曲率を持ったパネル構造では、面外と面内方向の変形が連成する弾性振動が問題となることが多い。鉄道車両の車体上下弾性振動を例に取れば、屋根と床の変形が異なる弾性振動が乗り心地に影響することがある。その場合、屋根と床の上下方向変形の差に応じて側面の左右方向の面外変形が生じる（藤上，富岡，2002，相田他，2015）。すなわち、側面のパネル構造に関して屋根と床の上下変形は側面の面内変形に対応するが、それが面外変形と連成する。

試験・測定に制約の多い鉄道車両の車体弾性振動低減の検討には、数値手法の活用が重要となる。鉄道車両の車体は、例えば標準的な新幹線で長さ約25m，幅約3.4mと細長いため，車体を一様なばかりとみなし，その1次の曲げ振動で車体弾性振動を近似する扱いが用いられてきた（Richard, 1980, 谷藤他, 1988, 鈴木, 長南, 1996, Dumitriu, 2017, Gong et al., 2017）。しかし最近の詳細な振動特性調査により，車体断面のせん断変形を伴うもの

No.18-00453 [DOI:10.1299/transjsme.18-00453], J-STAGE Advance Publication date : 5 July, 2019
本論文は，Dynamic and Design Conference 2018講演論文集(2018), No.134の掲載内容に基づいた論文である。
*1 正員, 秋田県立大学システム科学技術学部（〒015-0055 秋田県由利本荘市土谷字海老ノ口 84-4）
*2 正員, 鉄道総合技術研究所車両振動研究室（〒185-8540 東京都国分寺市光町 2-8-38）
E-mail of corresponding author: tomioka@akita-pu.ac.jp

© 2019 The Japan Society of Mechanical Engineers
や、屋根と床が異なる形状や方向に変形するものなど、ほりの振動で表現できない複雑な弾性振動が乗り心地に影響していることがわからっている（瀬上，富岡，2002，相田他，2015）。このような車体の立体構造を考慮した解析法として有限要素法（FEM）が一般的に使われている（例えば，岩波他，1999，Carlomb，2001，Diana et al.，2002，Ribeiro et al.，2013，日本機械学会，2017）。

大型構造物である鉄道車両の車体FEMモデルは一般に大規模になる。計算機の高性能化により、大規模FEMモデルによる解析は容易になっているが、詳細で精度のよいFEMモデルの作成には多大な労力が必要である。また、解析モデルの精度確保には実験データのコーディネーショングの不可欠であるが、モデルの規模が大きいとコーディネーションが困難になる。さらに、パラメータスタディなどの試行回数の多い計算にも不向きとなる。したがって、詳細なFEMモデルは別に、より簡便に立体構造物としての車体振動解析が可能なモデルが求められている。この点に関して、著者らは平板とりびの接続系として車体をモデル化する手法（Tomioka et al.，2006，日本機械学会，2017，以下、箱形モデルと呼ぶ）および、車体を非円形断面を持つ筒状のシェル構造としてモデル化する手法（Ishiguri et al.，2008，小林他，2009，以下、シェルモデル）を提案している。

このうちシェルモデルは、車体の全体的な構造の特徴（材料や板厚の変化など）と固有振動数の定常的な関係を調べるために検討しているもので、計算に必要な行列のサイズは8 x 8と非常に大規模でパラメータスタディに適している。ただし現状では任意の加振力に対する応答解析に制約がある。

一方、図1に示す箱形モデルは、計算規模が数百元程度とパラメータスタディも可能なコンパクトさを持ち、かつ実車にみられる複雑な固有振動モードや加振応答を比較的良く表現できることが示されている。ただし車体側面の変形に関しては実車の測定結果との対応が不十分と考えられる部分があった。すなわち図1から分かるように従来の箱形モデルは、直直りを傾斜にすることで側面の構造をモデル化しており、屋根と床の変形と側面の変形との連成は側柱に相当する積分方向の直直りと屋根・床を構成する平板の角度変化により考慮している。また、屋根と床の相対変位は側柱の伸縮により吸収するものとしている。これが解析の簡便さを優先したためであるが、図2に示すように、実車の測定データの蓄積により屋根と床の相対変位が大きいモードの重要性が認識されることになったこと、屋根と床の相対変位は側面の面外（車体左右）方向の変形により吸収されがちが明確になり、側面のモデル化に戻検討が必要になってきた。

そこで本論文では、屋根と床の上下相対変位と側面の左右変形との連成効果を表現するため側柱に曲がりを導入することを想定した検討を行う。まずシェル理論に基づき曲がりのひずみエネルギーを導出する。つぎに、それを用いて曲がりは単体の固有振動特性を求める。これら理論から得られるものと比較することでその妥当性を確認する。そして鉄道車両の車体側面のパネル構造を模擬した真直じと曲がりはの接続系の振動解析を行い、固有振動モードと変位加振力に対する振動応答の計算方法を示す。数値例として、新しい線の半車体に相当する条件における固有振動モード解析と応答解析を実施し、屋根と床の上下相対変位と側面の左右変形の連成効果を適切に表現できることを示すとともに、剛性や構造減衰などの配分が応答に及ぼす影響を検討する。

Fig. 1 Schematic view of a railway vehicle carbody as combination of elastic plates and straight beams (Box typed model: Tomioka et al., 2006). Connecting conditions of the components are satisfied by means of the artificial springs introduced at their joints. This model can express three dimensional elastic vibration modes with a small degree of freedom compared with the detailed finite element model.
Fig. 2 Cross sectional deformation of the Box type model (Tomioka et al., 2006) and actual vehicle carbody. In the Box type model, deformation of side wall interacts with deformation of roof and floor panels via angular variation between the faces. However, in the real-life carbody, lateral deformation of side wall interacts with relative vertical deformation between roof and floor. The objective of this study is to show a simple way which can express the actual situation by introducing curved beam.

2. 曲がりはりの導入

2.1 シェル理論に基づくひずみエネルギーの定式化

箱形モデルによる解析はエネルギー法に基づいて行うことから、まず曲がりはりのひずみエネルギーの定式化を行う。その際、曲がりはりは弧の中心と曲がりはりからなる平面内の変形だけを考慮する。曲がりはりの面内振動についてはこれまで多くの検討例があり、例えば文献（高橋, 1963）にはひずみエネルギーの表示式が示されているが、ここでは円筒シェル理論に基づく定式化を試みる。

図3に示すように、半径R、肉厚hの円筒シェルの軸方向にx座標をとり、円周方向および半径方向座標をθ, zとする。ここで$z=0$をシェルの中央面とり、中央面上の(x, θ, z)方向の変位を(u, v, w)とすると、中央面からzの面におけるひずみと応力は次式で表される（鈴木他, 1996）。

\[
\begin{align*}
\varepsilon_{xx} &= \frac{\partial u}{\partial x} - z \frac{\partial^2 w}{\partial x^2} - \frac{\partial v}{R \partial \theta}, \\
\varepsilon_{\theta \theta} &= -\frac{z}{R^2} \frac{\partial^2 w}{\partial \theta^2} + \frac{1}{R \left(1 + \frac{z}{R}\right)^2} \frac{\partial w}{\partial \theta}, \\
\varepsilon_{x \theta} &= \frac{1}{R \left(1 + \frac{z}{R}\right)} \left(\frac{\partial u}{\partial \theta} - z \frac{\partial^2 w}{\partial x \partial \theta}\right) + \left(1 + \frac{z}{R}\right) \frac{\partial v}{\partial x} - \frac{z}{\partial \theta} \frac{\partial^2 w}{\partial x \partial \theta}, \\
\sigma_{xx} &= \frac{E}{(1 - \nu^2)} (\varepsilon_{xx} + \nu \varepsilon_{\theta \theta}), \\
\sigma_{\theta \theta} &= \frac{E}{(1 - \nu^2)} (\varepsilon_{\theta \theta} + \nu \varepsilon_{xx}), \\
\sigma_{x \theta} &= \frac{E}{2(1 + \nu)} \varepsilon_{x \theta}
\end{align*}
\]

ただし、$\varepsilon_{xx}, \varepsilon_{\theta \theta}$はそれぞれ$x, \theta$方向の垂直ひずみ、$\varepsilon_{x \theta}$は$x\theta$面内のせん断ひずみであり、$E, \nu$はそれぞれヤング率とポアソン比、そして$\sigma_{ij}$は$i = j$のときは$i$方向の垂直応力、$i \neq j$のときは$j$方向のせん断応力である。

Fig. 3 Schematic view of a cylindrical shell and curved beam as a part of the shell. Part of a cylinder can be considered a curved beam by neglecting the width of the partial cylindrical shell.
ここで扱う円弧状の曲がりばかりは、幅 d が高さ a、曲率半径 R に比べて小さく、面内の変形のみを考えるものとして、u, x に関する項は無視し、$\varepsilon_{\theta\theta}$ のみを考慮する。さらに (z/R) は微小量として $\varepsilon_{\theta\theta}$ を展開し、$(z/R)^2$ の項までで打ち切ると、z 面でのひずみは次のようにする。

$$\varepsilon_{xx} = 0, \ \varepsilon_{x\theta} = 0, \ \varepsilon_{\theta\theta} = \frac{\partial v}{R \partial \theta} + \frac{w}{R} - \frac{z}{R} \left(\frac{\partial^2 w}{R \partial \theta^2} + \frac{w}{R} \right) + \left(\frac{z}{R} \right)^2 \left(\frac{\partial^2 w}{R \partial \theta^2} + \frac{w}{R} \right)$$

これを用いると、曲がりばかりのひずみエネルギー U_s は、以下のようになる。

$$U_s = \frac{1}{2} \frac{EdR}{1-v^2} \int_{-h/2}^{h/2} \alpha_{\theta\theta} \varepsilon_{\theta\theta} \left(1 + \frac{z}{R} \right) dz d\theta$$

$$= \frac{1}{2} \frac{EdR}{1-v^2} \int_{-h/2}^{h/2} \varepsilon_{\theta\theta} \left(1 + \frac{z}{R} \right) dz d\theta$$

$$= \frac{1}{2} \frac{EdR}{1-v^2} \int_{-h/2}^{h/2} \frac{\partial v}{R \partial \theta} + \frac{w}{R} - \frac{z}{R} \left(\frac{\partial^2 w}{R \partial \theta^2} + \frac{w}{R} \right) + \left(\frac{z}{R} \right)^2 \left(\frac{\partial^2 w}{R \partial \theta^2} + \frac{w}{R} \right) \left(1 + \frac{z}{R} \right) dz d\theta$$

ただし θ_0 は曲がりばかりの中心角である。この式の右辺 1 項目は円筒シェルの軸方向（θ 方向）の伸びなし変形における曲げのひずみエネルギー、右辺 2 項目は中央面の周方向の伸びによるひずみエネルギーにそれぞれ対応する（チモシェンコ、ギア, 1974）。

2.2 任意境界条件を持つ曲がりばかりの自由振動

仮想的なばねにより曲がりばかりを他の部材と結合する方法の検討と式 (4) の妥当性確認のため、任意境界条件の自由振動解析を行う。

曲がりばかりの変位 $v(\theta, t), w(\theta, t)$ を $v(\theta, t) = \hat{v}(\theta)e^{i\omega t}, w(\theta, t) = \hat{w}(\theta)e^{i\omega t}$ と変数分離の形で表すと、曲がりばかりの運動エネルギーの最大値 $T_{s\text{max}}$ は次式で表される。

$$T_{s\text{max}} = \frac{1}{2} \rho A \omega^2 \int_{0}^{\theta_0} (\hat{v}^2 + \hat{w}^2) R d\theta$$

ここで、ρA は単位長さ当たりの曲がりばかりの質量、ω は角振動数、i は虚数単位である。同様に、式 (4) より、ひずみエネルギーの最大値は次式となる。

$$U_{s\text{max}} = \frac{G_b}{2} \int_{0}^{\theta_0} \left(\frac{d^2 \hat{w}}{d\theta^2} + \hat{w} \right)^2 d\theta + \frac{G_e}{2} \int_{0}^{\theta_0} \left(\frac{d\hat{v}}{d\theta} + \hat{\omega} \right)^2 d\theta$$

ただし、$G_b = Eh^4d/12(1-v^2)R^3, G_e = Ehd/(1-v^2)R$ とおいた。なお、はり理論から導かれる曲がりばかりのひずみエネルギーの最大値は次式となる（高橋, 1963）。

$$U_{b\text{max}} = \frac{G_b'}{2} \int_{0}^{\theta_0} \left(-\frac{d^2 \hat{w}}{d\theta^2} + \frac{d\hat{v}}{d\theta} + \hat{\omega} \right)^2 d\theta + \frac{G_e'}{2} \int_{0}^{\theta_0} \left(\frac{d\hat{v}}{d\theta} + \hat{\omega} \right)^2 d\theta$$

ここで $G_b' = Eh'd/12R^3, G_e' = Eh'd/R$ である。シェル理論による定式化は、はり理論と同様の変位場を仮定していることから、両者はポアソン効果による影響を除けば本質的には同等と考えられるが、このようにシェル理論とはより理論から導かれるひずみエネルギーは曲げに関する部分が異なる表現となっている。

つぎに、図 4 に示すように、曲がりばかり両端における y, z 方向変位およびたわみ角を拘束するばね k_{xy}, k_{yz}, k_{zz} ($i = 1, 2$) を導入すると、それぞれのばねに蓄えられる総ポテンシャルエネルギーの最大値は以下のようになる。
Fig. 4 A cued beam and artificial springs at both ends. Artificial springs constraining translational and angular deformations are introduced to treat the boundary conditions of the curved beam.

\[
V_{\text{max}} = \frac{1}{2} k_2 \left(-\tilde{v} \big|_{\theta = \theta_0} \sin \left(\frac{\theta_0}{2} \right) + \tilde{w} \big|_{\theta = \theta_0} \cos \left(\frac{\theta_0}{2} \right) \right)^2 + \frac{1}{2} k_2 \left(-\tilde{v} \big|_{\theta = 0} \sin \left(-\frac{\theta_0}{2} \right) + \tilde{w} \big|_{\theta = 0} \cos \left(-\frac{\theta_0}{2} \right) \right)^2
\]

\[
+ \frac{1}{2} k_3 \left(\tilde{v} \big|_{\theta = \theta_0} \cos \left(\frac{\theta_0}{2} \right) + \tilde{w} \big|_{\theta = \theta_0} \sin \left(\frac{\theta_0}{2} \right) \right)^2 + \frac{1}{2} k_2 \left(\tilde{v} \big|_{\theta = 0} \cos \left(-\frac{\theta_0}{2} \right) + \tilde{w} \big|_{\theta = 0} \sin \left(-\frac{\theta_0}{2} \right) \right)^2
\]

\[
+ \frac{1}{2} k_2 \left[\frac{1}{R} \left(\frac{d\tilde{v}}{d\theta} + \tilde{\theta} \right) \right]_{\theta = \theta_0}^2 + \frac{1}{2} k_2 \left[\frac{1}{R} \left(\frac{d\tilde{w}}{d\theta} + \tilde{\theta} \right) \right]_{\theta = 0}^2
\]

(8)

ただし、添字の前には無次元量を表し、\(A \) は無次元振動数パラメータであり、\(EI = Eh^3d/12, l_b = R\theta_0 \) とおいた。ここで、\(\tilde{v} \) は変位の変数を次式のような未定係数 \(A_m, B_n \) を含むべき関数で仮定する。これは、両端自由（拘束なし）の境界条件を持つ許容関数に対応する。

\[
\tilde{v} (\tilde{\theta}) = \sum_{m=1}^{M} A_m \tilde{\theta}^{m-1}, \quad \tilde{w} (\tilde{\theta}) = \sum_{n=1}^{N} B_n \tilde{\theta}^{n-1}
\]

(10)

これらを上述のエネルギー式に代入し、ラグランジ関数

\[
L = \dot{V}_{\text{max}} + \ddot{V}_{\text{max}} - T_{\text{max}}
\]

(11)

の停留条件

\[
\frac{\partial L}{\partial A_{m'}} = 0, \quad \frac{\partial L}{\partial B_{n'}} = 0, \quad (m' = 1, \ldots, M, n' = 1, \ldots, N)
\]

(12)

を適用すると次式の振動数方程式を得る。

\[
[U + \Lambda^2 T] \mathbf{v} = 0
\]

(13)

この一般固有値問題の固有値より振動数パラメータ \(\Lambda \) が、その固有ベクトル \(\mathbf{v} \) として未定係数が得られ、固有振動モードを描画することができる。

[DOI: 10.1299/transjsme.18-00453] © 2019 The Japan Society of Mechanical Engineers
表1に両端固定（C-C）および一端固定・他端自由（C-F）の曲がり方に対する固有値の計算結果を示す。ここでは拘束のための無次元数定数は、固定端に対しては全て10^{6}とし、自由端では全て0とした。この表の4カラム目と5カラム目が本解析法（M = N = 10）によるもので、前者はひずみエネルギーに式（6）を用いた場合、後者は式（7）を用いた場合である。ただし、これらの式における係数G_{0}, G_{1}, G_{2}の定義の違いを考慮して、前者はΛ/[h_{b}(1 - v^{2})^{1/4}], 後者はΛ/θ_{0}の値を表示している。この表から、ひずみエネルギーとして式（6）と（7）のいずれを用いても固有値には大きな差はみられなかった。両端にねじを導入することで境界条件を表現する本解析法の結果は、より厳密な取り扱いをした文献（振動工学ハンドブック編集委員会, 1976）の値と少なくとも3次モードまではよく一致していることがわかる。

図5に両端自由の曲がり方（θ_{0} = π/2）の弾性振動モードを示す。このほかに剛体モードも得られているが割愛した。この図の赤線、青線はそれぞれ式（6）、（7）によるものであり、黒線は変形前の形状である。このように両者による振動モードも非常によく一致していることがわかる。したがって本研究の目的である屋根と床の上下対称位と側面の左右変形の連成を表現するという点に関しては、いずれを用いてもよいことがわかった。以降ではシェル理論に基づくひずみエネルギー（式（6））を用いる。

B.C.	θ_{0}	Mode	Eigenvalues	Ref.（Vibration Engineering Handbook, 1976）	
C-C	π/2	1st	4.753	4.753	4.757
		2nd	6.381	6.380	6.581
		3rd	8.419	8.421	8.868
C-F	π/4	1st	2.093	2.092	2.094
		2nd	3.099	3.098	3.109
		3rd	4.293	4.284	4.236
C-F	π/2	1st	2.402	2.402	2.402
		2nd	5.782	5.782	5.784
		3rd	9.861	9.860	9.871
C-F	π/2	1st	1.224	1.224	1.224
		2nd	2.687	2.686	2.688
		3rd	4.771	4.770	4.778

Fig. 5 Mode shapes of a Free-Free curved beam. (θ_{0} = π/2) The mode shapes obtained by proposed theory based on a shell theory agree well with those of beam theory.
3. 組合わせはりの振動解析

3.1 解析モデル

まず、曲がりはりを含む組合せはりの振動解析を行う。図6に、ここでは扱う振動解析モデルを示す。これは曲がりはりと真直はりの組合せで構成された構造で、鉄道車両の車体や航空機の機体の側面などを模擬している。全体系の長さをL、高さをaとし、真直はりの長さは全てLとする。曲がりはりは側面の柱に相当する構造を表現しているため以下では側柱と呼ぶことにし、その本数をJとする。側柱の上端と下端に接続された真直はりは屋根と床の変形を模擬するためのもので、それぞれ軸に、傾きをとるかにし、以下ではそれぞれに関する変数等を各々添え字c、sを付与する。また側柱の中間部にもK本の真直はりを配置し、側柱長手部材と呼ぶ。側柱と側柱長手材の組合せで曲面を形成するパネルを模倣する。側柱は添字j(j = 1, ..., J)により、側柱長手材はk(k = 1, ..., K)により区別する。はりどうしは図7に示すように結合部にばね並進と回転を拘束する仮想的なばねを導入して結合する。この組合せはり系は側はりの2箇所で上下方向をねじれと粘性減衰要素で支持され、この支持端から上下方向の変位入力を受けるものとする。本論文では軌道変位を走行する鉄道車両が受ける変位加振を想定し、同一の調和変位が時間差を伴って入力される場合について考える。この調和変位の角振動数をωとし、これが変位加振入力の加振周波数となる。

Fig. 6 Schematic view of a straight and curved beam coupled system. This coupled system assumes thin curved panel such as side structures of railway vehicle carbody. The cantrail and the side beam are representing the roof and floor structures, respectively. Each beam is connected by means of artificial springs introduced at the joints. O−XYZ is the global co-ordinate sytem of the whole structure.

Fig. 7 Artificial springs at the connection between beams. By introducing these springs, selection of admissible functions which express elastic deformations of the beams can become greatly easy.
3.2 エネルギー法による定式化

組合せはり系の全体座標系は図6の $O-XYZ$ のようにとると、各々のはりはその一端に原点を持つ局所座標系（真直はり：$O_m - x_m y_m z_m$）、曲がりはり：$O_j - r_j \theta_j$、ただし、図7および以下では直はりを区別する添え字$m=c,s,k$、$k=1,\ldots,J$ と、曲がりはりを区別する添え字 $j=1,\ldots,J$ は省略）に関して定式化され、部材どうしの結合条件は仮想的なばねによる拘束で満たされる。変形の自由度は、軸了たと側はりは上下変位 (w_c, w_s)、側長手部材は左右および上下変位 (w_k, w_k)、そして側柱は接線方向および曲率半径方向の変位 (v_j, w_j) とする。以下では、曲がりはり、直はりともに一様なはりとし、密度を ρ、断面積を A、ヤング率を E、断面二次モーメントを I で表し、添え数をはり（および方向）を区別する。また、変位の時間 t による微分をドット（')で示す。

側柱は図6右に示す円弧状の曲がりはり PQ とし、円弧の半径 R と中心角 θ_0 は全ての側柱で同一とする。このとき側柱1本あたりの運動エネルギーとひずみエネルギー $T_j, U_j (j=1,\ldots,J)$ はそれぞれ次式で表される。

$$T_j = \frac{1}{2} \rho_j A_j \int_0^{\theta_0} (v_j^2 + w_j^2)^2 R \, d\theta$$

$$U_j = \frac{G_{bj}}{2} \int_0^{\theta_0} \left(\frac{\partial^2 w_j}{\partial \theta^2} + w_j \right)^2 d\theta + \frac{G_{cj}}{2} \int_0^{\theta_0} \left(\frac{\partial v_j}{\partial \theta} + w_j \right)^2 d\theta$$

ただし、G_{bj}, G_{cj} はそれぞれ曲がりはりの曲げとびすみに関する剛性であり、曲がりはりのヤング率 E_j、断面の高さ h_j、断面の幅 d_j、ポアソン比 v_j を用いて次のように書ける。

$$G_{bj} = \frac{E_j h_j^3 d_j}{12R^3(1-v_j^2)} \quad G_{cj} = \frac{E_j h_j d_j}{R(1-v_j^2)}$$

ここでヤング率に付したチダ（'）は複素数であることを表し、これは後述するように構造減衰をモデル化した損失係数を導入することによる。以下、直はりや仮想ばね、支持ばねについてもチダは複素数を表す。

同様に直はりの運動エネルギーと曲げのひずみエネルギーは以下のようになる。

$$T_{cs} = \frac{1}{2} \rho_c A_c \int_0^L w_c^2 dx + \frac{1}{2} \rho_s A_s \int_0^L w_s^2 dx$$

$$T_k = \frac{1}{2} \rho_k A_k \int_0^L (v_k^2 + w_k^2) dx$$

$$U_{cs} = \frac{1}{2} E_c I_c \int_0^L \left(\frac{\partial^2 w_c}{\partial x^2} \right)^2 dx + \frac{1}{2} E_s I_s \int_0^L \left(\frac{\partial^2 w_c}{\partial x^2} \right)^2 dx$$

$$U_k = \frac{1}{2} E_{ck} I_{ck} \int_0^L \left(\frac{\partial^2 v_k}{\partial x^2} \right)^2 dx + \frac{1}{2} E_{ck} I_{ck} \int_0^L \left(\frac{\partial^2 w_k}{\partial x^2} \right)^2 dx$$

はりどうしを結合するばねと支持部のばねに蓄えられるポテンシャルエネルギーは次のようになる。

$$V_{csj} = \frac{1}{2} \bar{k}_{rcs} \left[w_j \bigg|_{\theta=\theta_0} \cos \left(\frac{\theta_0}{2} \right) - v_j \bigg|_{\theta=\theta_0} \sin \left(\frac{\theta_0}{2} \right) \right]^2$$

$$+ \frac{1}{2} \bar{k}_{rsj} \left[w_j \bigg|_{\theta=\theta_0} \cos \left(\frac{-\theta_0}{2} \right) - v_j \bigg|_{\theta=\theta_0} \cos \left(\frac{-\theta_0}{2} \right) \right]^2$$

$$+ \frac{1}{2} \bar{k}_{vsj} \left[w_j \bigg|_{\theta=\theta_0} \cos \left(\frac{-\theta_0}{2} \right) - v_j \bigg|_{\theta=\theta_0} \sin \left(\frac{-\theta_0}{2} \right) \right]^2$$

$$+ \frac{1}{2} \bar{k}_{wsj} \left[w_j \bigg|_{\theta=\theta_0} \cos \left(\frac{-\theta_0}{2} \right) - v_j \bigg|_{\theta=\theta_0} \sin \left(\frac{-\theta_0}{2} \right) \right]^2$$

$$+ \frac{1}{2} \bar{k}_{Rsj} \left[\frac{1}{R} \left(\frac{\partial w_j}{\partial \theta} + v_j \right) \bigg|_{\theta=\theta_0} \right]^2 + \frac{1}{2} \bar{k}_{Rsj} \left[\frac{1}{R} \left(\frac{\partial w_j}{\partial \theta} + v_j \right) \bigg|_{\theta=\theta_0} \right]^2$$

[DOI: 10.1299/transjsme.18-00453] © 2019 The Japan Society of Mechanical Engineers
式 (22) の \(\phi_k \) は、曲がりばかりの弧の中心を通る全体座標系の \(Y \) 軸に平行な軸から測った \(k \) 番目の側面後端部材の位置であり、式 (23) では支持剛性に並列に粘性減衰を考慮した次のような複素ばねを用いた。

\[
\tilde{k}_{a1} = k_{a1} + i \omega c_{a1}, \quad \tilde{k}_{a2} = k_{a2} + i \omega c_{a2}.
\]

ここで、以降の解析を簡単するために、以下のよう無次元化を行う。

\[
\begin{align*}
\xi &= \frac{x}{L}, \quad \theta = \frac{\theta_0}{\theta_0}, \quad [v, \omega] = \left(\frac{1}{L} \right) [v, \omega], \quad \bar{z} = \frac{z}{L}, \quad \tau = \omega \tau, \quad \Lambda^4 = \frac{\rho_0 A_0 L^4}{E_0 I_0 \omega^2}, \\
[T \ U \ \bar{V}] &= \left(\frac{L}{E_0 I_0} \right) [T \ U \ V], \quad \bar{k}_T = \left(\frac{L^3}{E_0 I_0} \right) k_T, \quad \bar{k}_R = \left(\frac{L}{E_0 I_0} \right) k_R
\end{align*}
\]

ただし、\(\tau \) は時間の無次元量、\(\Lambda \) は無次元振動数パラメータであり、\(\rho_0, A_0, E_0, I_0 \) は無次元化のために導入した任意の振の密度、断面積、ヤング率、断面二次モーメントで、\(\Gamma = \) を付した変数は無次元量を表す。また、\(v, w \) はそれぞれ全体座標系の \(Y \) および \(Z \) 方向の変位を表し、\(T, U, V \) はそれぞれ運動エネルギー、ひずみエネルギー、仮想ペースと支持ばねに蓄えられるポテンシャルエネルギーであり、\(k_T, k_R \) はそれぞれ変位と回転角を拘束するばね要素を表す。変位、エネルギー、ばね要素については、はりや支持部に応じて付加すべきを省略している。式 (25) を用いると式 (14)(15), (17)\textendash{}(23) は以下のようになる。

\[
\begin{align*}
T_j &= \frac{1}{2} \Lambda^4 \rho \Lambda C_R \theta_0 \int_0^1 \left(\bar{v}_j^2 + \bar{w}_j^2 \right) d \theta \\
\dot{U}_j &= \frac{1}{2} C_{Bj} \int_0^1 \left(\frac{1}{\theta^2} \frac{\partial^2 \bar{v}_j}{\partial \theta^2} + \bar{w}_j \right)^2 d \theta + \frac{1}{2} C_{Ej} \int_0^1 \left(\frac{1}{\theta_0^2} \frac{\partial \bar{v}_j}{\partial \theta} + \bar{w}_j \right)^2 d \theta \\
\bar{F}_{\text{cs}} &= \int_0^1 \frac{L^2}{E_0 I_0} \left(\frac{\partial^2 \bar{v}_c}{\partial \xi^2} \right)^2 d \xi + \frac{1}{2} C_{\text{El}c} \int_0^1 \left(\frac{\partial^2 \bar{w}_c}{\partial \xi^2} \right)^2 d \xi \\
\bar{F}_k &= \frac{1}{2} C_{\text{El}k} \int_0^1 \left(\frac{\partial^2 \bar{v}_k}{\partial \xi^2} \right)^2 d \xi + \frac{1}{2} C_{\text{El}k} \int_0^1 \left(\frac{\partial^2 \bar{w}_k}{\partial \xi^2} \right)^2 d \xi \\
\bar{V}_{\text{csj}} &= \frac{1}{2} \kappa_{\text{csj}} \left[\bar{w}_j \left|_{\theta = 1} \cos \left(\frac{\theta_0}{2} \right) - \bar{v}_j \left|_{\theta = 1} \sin \left(\frac{\theta_0}{2} \right) \right) \right]^2 \\
&\quad + \frac{1}{2} \kappa_{\text{csj}} \left[\bar{w}_c \left|_{\xi = \xi_j} - \bar{w}_j \left|_{\theta = 1} \sin \left(\frac{\theta_0}{2} \right) - \bar{v}_j \left|_{\theta = 1} \cos \left(\frac{\theta_0}{2} \right) \right) \right]^2 \\
&\quad + \frac{1}{2} \kappa_{\text{csj}} \left[\bar{w}_k \left|_{\theta = 0} \cos \left(- \frac{\theta_0}{2} \right) - \bar{v}_j \left|_{\theta = 1} \cos \left(- \frac{\theta_0}{2} \right) \right) \right]^2 \\
&\quad + \frac{1}{2} \kappa_{\text{csj}} \left[\bar{w}_k \left|_{\xi = \xi_j} - \bar{w}_j \left|_{\theta = 0} \sin \left(- \frac{\theta_0}{2} \right) - \bar{v}_j \left|_{\theta = 1} \cos \left(- \frac{\theta_0}{2} \right) \right) \right]^2 \\
&\quad + \frac{1}{2} \kappa_{\text{Rsj}} \left[\frac{1}{\theta_0} \frac{\partial \bar{w}_j}{\partial \theta} + \bar{v}_j \right]_{\theta = 1}^2 + \frac{1}{2} \kappa_{\text{Rsj}} \left[\frac{1}{\theta_0} \frac{\partial \bar{v}_j}{\partial \theta} + \bar{w}_j \right]_{\theta = 0}^2
\end{align*}
\]
ただし、式(26)(28)(29)におけるドットは無次元時間 \(\tau \)に関する微分を表し、各式の係数は以下の置き換えを行っている。

\[
\begin{align*}
C_{\rho A_n} &= \frac{\rho_c A_c}{\rho_0 A_0}, \quad C_{\rho A_s} = \frac{\rho_c A_c}{\rho_0 A_0}, \quad C_{\rho A_j} = \frac{\rho_c A_c}{\rho_0 A_0}, \quad C_R = \frac{R}{L}, \\
\tilde{C}_{elk} &= \frac{\tilde{E}_j}{\tilde{E}_0} = \frac{C_{elk}}{E_0}, \quad \tilde{C}_{elk} = \frac{\tilde{E}_j}{\tilde{E}_0}, \quad C_{elk} = \frac{\tilde{E}_j}{E_0}, \quad C_{elk} = \frac{\tilde{E}_j}{E_0}, \quad C_{elk} = \frac{\tilde{E}_j}{E_0}, \quad C_{elk} = \frac{\tilde{E}_j}{E_0}
\end{align*}
\] (35)

ここで \(\rho_0 A_0, E_0 \) は基準に用いる任意のよりの単位長さあたりの質量と曲げ剛性である。

各エネルギー式においてカタログを付けた係数に関して、ここでの変形に関するものと接続面に関するものについては構造減衰を模倣する損失係数 \(\eta \)を導入（添え字で部材を区別）、虚数単位 \(i \) を用いて以下のように表す。

\[
\begin{align*}
\tilde{E}_j &= E_j(1 + i \eta_j), \quad \tilde{E}_c &= E_c(1 + i \eta_c), \quad \tilde{E}_s &= E_s(1 + i \eta_s), \quad \tilde{E}_e &= E_e(1 + i \eta_e), \\
\tilde{k}_{rcj} &= k_{rcj}(1 + i \eta_{rcj}), \quad \tilde{k}_{rcj} &= k_{rcj}(1 + i \eta_{rcj}), \quad \tilde{k}_{ycj} &= k_{ycj}(1 + i \eta_{ycj}), \quad \tilde{k}_{ycj} &= k_{ycj}(1 + i \eta_{ycj}),
\end{align*}
\] (36)

また、支持部 1,2 に入力される加振変位をそれぞれ次式のようにおく。

\[
\xi_1 \equiv \xi_1(\tau) = \tilde{Z}_0 \exp(i \tau), \quad \xi_2 \equiv \xi_2(\tau) = \tilde{Z}_0 \exp[i(\tau - \Delta \tau)],
\] (37)

ここで、\(\tilde{Z}_0 \) は加振周波数成分 \(\omega \)に対する変位入力の大きさ（加振変位の振幅）で時間に依存しない量であり、\(\Delta \tau \)は支持部 1 に対する支持部 2 の入力変位の時間差である。この式は、同一変位が時間差を伴って 2 つの支持部から系に与えられる条件を示す。

この変位加振入力に対するよりの無次元応答変位を次のような級数の形で仮定する。

\[
\begin{align*}
\tilde{v}_j(\bar{\theta}, \tau) &= \sum_{m=1}^{M} A_{mj}(\bar{\theta}) \bar{\theta}^{m-1}, \quad \tilde{v}_j(\bar{\theta}, \tau) &= \sum_{n=1}^{N} B_{nj}(\bar{\theta}) \bar{\theta}^{n-1} \\
\tilde{w}_c(\bar{\xi}, \tau) &= \sum_{n=1}^{N} B_{nc}(\bar{\xi}) \bar{\xi}^{n-1}, \quad \tilde{w}_c(\bar{\xi}, \tau) &= \sum_{n=1}^{N} B_{nc}(\bar{\xi}) \bar{\xi}^{n-1} \\
\tilde{v}_c(\bar{\xi}, \tau) &= \sum_{m=1}^{M} A_{mc}(\bar{\xi}) \bar{\xi}^{m-1}, \quad \tilde{v}_c(\bar{\xi}, \tau) &= \sum_{n=1}^{N} B_{nc}(\bar{\xi}) \bar{\xi}^{n-1}
\end{align*}
\] (38)

各変位の空間分布を表す「べき関数」のそれぞれの「べき」に対応した未定係数は無次元時間 \(\tau \) の関数である。これらを上記の各エネルギーの式に代入し、次式で表されるその和

\[
\begin{align*}
T_{\text{total}} &= \sum_{j=1}^{J} T_j + T_{cs} + \sum_{k=1}^{K} T_k, \quad C_{\text{total}} = \sum_{j=1}^{J} C_j + C_{cs} + \sum_{k=1}^{K} C_k, \quad \tilde{V}_{\text{total}} = \sum_{j=1}^{J} \left(\tilde{v}_{csj} + \sum_{k=1}^{K} \tilde{v}_{jk} \right) + \tilde{V}_a
\end{align*}
\] (39)

に対して、変位関数中の未定係数を一般化座標とするラグランジュ方程式

\[
\frac{d}{d\tau} \left(\frac{\partial \tilde{T}_{\text{total}}}{\partial \bar{q}} \right) - \left(\frac{\partial \tilde{T}_{\text{total}}}{\partial \bar{q}} \right) + \left(\frac{\partial \tilde{U}_{\text{total}}}{\partial \bar{q}} \right) + \left(\frac{\partial \tilde{V}_{\text{total}}}{\partial \bar{q}} \right) = 0
\] (40)
を適用することで、次式のような運動方程式が得られる。

\[\Lambda^4 \dot{T} q + \Lambda^2 V_{vd} q + (U + V_{re} + V_{sd}) q = z \] \((41) \)

ただし、\(q \) は一般化座標で、ここでは式 (38) の変位関数中未定係数を並べたベクトルであり、\(T, U \) はそれぞれ \(T_{total}, C_{total} \) から導かれる係数行列、\(V_{vd} \) は \(V_{total} \) の粘性減衰に関わる項から得られる係数行列、\(V_{re}, V_{sd} \) は \(V_{total} \) の実部と構造減衰に関わる項から得られる係数行列、\(z \) は入力変位に関するベクトルである。調和的変位加振力に対する定常応答を求めるため、式 (38) の各未定係数の時間関数を \(\exp(\omega t) \) とし、時間に依存しない係数をあらためてハッタ（）を付して表すと、一般化座標と外力ベクトルは

\[
q = q(\tau) = q \exp(\omega t), \quad z = z(\tau) = 2 \exp(\omega t),
\]

と書くことができる。これらを用いて式 (41) を書き出すと、次式の \(\dot{q} \) に関する連立一次方程式を得る。

\[
[-\Lambda^4 T + i\Lambda^2 V_{vd} + (U + V_{re} + V_{sd})] \dot{q} = 2 \]

角周波数 \(\omega \) に対応する \(\Lambda \) を指定し、その角周波数における変位加振振幅と入力の時間差 \(\Delta t \) を与えれば、左辺の係数行列と右辺の要素が全て決まるため、この方程式を解くことができる。応答変位を求めることがで、変位加振振幅を \(1 \) とすれば、単位加振変位入力に対する応答を求めることになり、その大きさを周波数に対してプロットすれば、周波数応答関数が得られる。

また、式 (43) 右辺の外力と左辺の粘性減衰と損失係数に関する要素を \(0 \) として得られる次式実有価問題、

\[
[U_{re} + V_{re} - \Lambda^4 T] \dot{q} = 0 \]

を解くことでこの系の固有振動モードを計算することができる。ただし、\(U_{re} \) は \(U \) の実部である。

本論文では数値計算のために式 (40) を用いて運動方程式 (43) を導出する部分に MATLAB Symbolic Math Toolboxによる数式処理を用いた。

3.3 数値計算例

3.3.1 数値計算条件および固有値解析結果との比較による妥当性確認

前節で導いた運動方程式 (43) を用いて数値計算を行う。そこで対象とする曲がりよりと真直よりの接続系を図 2 に示す。6 本の側柱と軸けたと側時ははこれに 2 本の開柱と側柱部材を有し、長さ \(L = 24.5 \text{m} \)、高さ \(a = 3 \text{m} \)、全体の質量は \(10,700 \text{kg} (10.7 \text{ton}) \) 岩鉄車両の半車体相当のイメージであるが、質量や剛性の配分は特定の車両を想定したものではない。以下では損失係数の値を全て 0.05 とした場合を標準（以下、基準条件）とする。

まず、式 (44) を用いて固有振動モードを計算した結果を図 8 に示す。ここでは式 (38) の経路の限界数は \(M = N = 10 \) とした。この図の細い黒線は変形前の形状を表し、青線は軸けたおよび側時は、赤線は側柱部材、そして黒線は側柱の変形を表す。この図から、軸けたと側時はの相対距離が大きくならなる場合に側柱が内側に変形していること、など基本的に実際の車体でみられるような変形形状が再現されていることがわかる。すなわち、当初の図に通り、真直よりの接続系では充分に表していないかった変形状況を表現できていることが示された。したがって、このような曲がりよりと真直よりの接続系で体側面をモデル化することにより、より実的に近い車体全体の変形状態を表現できる可能性があるといえる。なお、表 2 の条件で求めた図 8 の (a)～(f) の 6 つの固有振動モードの固有振動数に関し、式 (38) の許容震の変数 \(M, N \) と、ほうどうを接続するばね定数による収束状況を付録 B の表 5 に示す。

図 9 に、側時は上の 2 本（支持部 1 直上と中央、位置はそれぞれ \(x = 3.5 \text{m} \) と 12.25 m の上下変位、側柱 3 中央 \(j = 3, \theta = \theta_{3/2} \) の面外（Y 方向）変位、および側柱部材 1 中央 \(k = 1, x = 12.25 \text{m} \) の左右変位の、加振変位に対する周波数応答関数（以下、FRF）を表す。ここでは線形は加振条件の違いを表し、灰色と緑色はそれぞれ支持部 1.2 に同位相、逆位相で加振力が入力された場合である。前後支持部逆相加振（緑色）の条件では、(b) と(c)の真直より中央部の応答が非常に小さいが、これはこの加振条件ではこれらの点は節になるためである。
Table 2 Dimensions of a straight and curved beam coupled system for the numerical examples. \((J = 6, K = 2)\)

Parameters	Symbol	Value	Unit
Cantrail			
Length	\(L\)	24.5	m
Mass	\(M_c(= \rho_cA_cL)\)	\(2 \times 10^4\)	kg
Bending rigidity	\(E_cI_c\)	2.1 \times 10^7	Nm^2
Loss factor	\(\eta_c\)	0.05	-
Side beam			
Length	\(L\)	24.5	m
Mass	\(M_c(= \rho_cA_cL)\)	\(8 \times 10^4\)	kg
Bending rigidity	\(E_cI_c\)	1.3 \times 10^6	Nm^2
Loss factor	\(\eta_c\)	0.05	-
Side lengthwise members (SLMs)			
Number of SLMs	\(K\)	2	-
Position	\(\theta_i/\theta_0\)	0.3, 0.6	-
Length	\(L\)	24.5	m
Mass	\(M_k(= \rho_kA_kL)\)	\(0.2 \times 10^3\)	kg
Bending rigidity	\(E_kI_k\)	5.8 \times 10^5	Nm^2
Loss factor	\(\eta_k\)	0.05	-
Pillars			
Number of pillars	\(J\)	6	-
Position	\(x_j\)	0.5, 5.0, 11.5, 13.0, 19.5, 24.0	m
Height	\(a\)	3.0	m
Radius	\(R\)	11.3	m
Opening angle	\(\theta_0\)	15.3	deg.
Mass	\(M_j(= \rho_jA_jR\theta_0)\)	50	kg
Bending rigidity	\(G_{nj}\)	7.4 \times 10^2	N/m
Extensional rigidity	\(G_{j}\)	5.8 \times 10^7	N/m
Loss factor	\(\eta_j\)	0.05	-
Artificial springs			
Translational	\(k_{x_1}, k_{x_2}, k_{x_3}, k_{y_1}, k_{y_2}, k_{z_1}\)	\(1.0 \times 10^{10}\)	N/m
Rotational	\(k_{R_{x_1}}, k_{R_{x_2}}\)	\(1.0 \times 10^{10}\)	Nm/rad
Supports			
Position	\(x_1, x_2\)	3.5, 21.0	m
Spring constants	\(k_{x_1}, k_{x_2}\)	\(1.0 \times 10^7\)	N/m
Viscous damping coeffs.	\(c_{x_1}, c_{x_2}\)	\(1.0 \times 10^7\)	Ns/m

Fig. 8 Example of calculated mode shapes of the straight and curved beam coupled system. The relative vertical deformation between the cantrail and the side beam interact with the lateral deformation of the pillars and the side lengthwise members. These deformation patterns are seen to agree well with those of actual carbody’s.
3.3.2 はりの曲げ剛性および損失係数が応答に与える影響

図 10 に、全てのはりの曲げ剛性を一定に、表 2 に示した値の 1.25 倍（水色）および 1.5 倍（青色）とした場合の FRF を示す。応答を計算した部位は図 9 と同一であり、灰色線は表 2 に示す値を用いた基準条件である。この図より、曲げ剛性増大によりピーク周波数が単調に高周波数にシフトする様子が確認できる。剛性増大とともにピーク高さが低下する傾向も認められるが、その変化はわずかである。

つきに、全てのはりの損失係数を一律に、表 2 の値の 1.5 倍（桃色）、2 倍（赤色）とした場合を図 11 に示す。灰色線は基準条件で、図 9、10 の灰色線と同一条件である。この場合は、ピーク周波数変化はほとんどなく、ピーク高さが損失係数増大とともに低下することが分かる。この損失係数増大もどのように実現するかを別途検討が必要だが、このような各部材の損失係数を増大することができれば比較的大きな振動低減効果が期待できる。

図 12 に、側はり（橙色）、側長手部材（黒色）、側柱（紫色）ごとに損失係数を 2 倍とした場合の FRF を示す。灰色線はこれまでの図と同様の基準条件の場合である。(a)(b) の側はりの応答ピークをみると、10Hz 付近のピークは側はりの損失係数増大の効果が顕著に認められるが、13Hz。18Hz 付近のピークはむしろ側柱の損失係数の影響が大きいことが分かる。(c) 側長手部材、(d) 側柱の FRF でも多くのピーク高さの変化に側柱の損失係数の影響が明確に見られる。このことから両面に重ねる相互関係を特異した現象に関しては側柱の曲がりはりの構造減衰が大きく影響していることがわかる。

図 13 に、図 10～12 の各条件における 5～30Hz の周波数範囲での (a) 側はり支持部 1 直上、(b) 側はり中央における上下振動の FRF の面積（H2 ノルム）を棒グラフ、最大ピーク高さ（H∞ ノルム）を黄色のマーカーで示す。それぞれ基準条件のもので正規化して表示しており、棒グラフの色は図 10～12 の各条件の線色に対応している。この図からも、剛性増大による変化、損失係数増大による変化が大きいことがや、側はりの上下振動についても側柱の損失係数の影響が比較的大きいことが見て取れる。また、側はり支持部 1 直上と側はり中央ではほぼ同じ傾向であることも確認できる。

鉄道車両の振動乗り心地を検討する場合は床面の上下振動に着目することになるが、床に相当する部材だけで
Fig. 10 FFRs for different bending rigidities of the beams. Bending rigidities in all components are increased at a time.
z_1, z_2 simultaneous excitation without time delay: $\Delta t = 0$. As the bending rigidity becomes larger, each peak shifts towards higher; on the other side, the peak height changes are relatively small.

なく、側面の構造減衰の影響も重要と考えられること、とくに屋根と床の相対変形を伴う振動に関してはその影響が大きいと、などが分かった。なお、今回の数値計算の範囲では接続ばねに考慮している損失係数（構造減衰を模擬）による応答への影響は小さいため、結果は省略する。今後、ここで提案した曲がりばね要素を箱形モデルに組み込んだ後にあらためて接続部における構造減衰の応答への影響について検討する予定である。

4. ま と め

本論文では、鉄道車両や自動車、航空機などに見られる曲率を持ったパネル構造の面外・面内連成振動を簡単に解析することを目的として、曲がりばねばねを仮想的なばね剛性で入射して接続した解析モデルを提案し、エネルギー法による振動解析を行った。そして、鉄道車両の側面を想定したパラメータ用い、固有振動モード解析とともに変位加振を受ける場合の応答解析を行い、部材の曲げ剛性や構造減衰などが応答に及ぼす影響を調べた。ここで得られた結果をまとめると以下のようになる。

（1）屋根と床の上下対称変位と側面の左右変形との連成効果を表現するため側柱に曲がりばねを導入する検討を行った。箱形モデルの解析はエネルギー法により行うため、まず曲がりばねのひずみエネルギーをシェル理論から導き、はり理論から得られるものを照らし合わせて妥当性を確認した。

（2）つぎに車体側面を想定して真直りはりと曲がりばねを仮想的なばねにより接続した「組合せはり」について、各部材のエネルギーを定式化し、ラグランジュの方程式を用いて運動方程式を導く手順を詳細に記述した。計算機による数値計算を行っていることで応答の挙動を把握するための手法を導入できることを確認した。

（3）導出した運動方程式を用い、減衰と外力を無視した実固有値計算を実施して固有モードを計算し、屋根と床の上下対称変位と側面の左右変形の連成効果を表現できることを示した。また、支持部に変位加振を受ける場合の各部の周波数応答（FFR）を計算した結果、固有振動特性により対応したピークが発生することを確認した。
(a) On the side beam above support point 1 (x=3.5 m, vertical).

(b) At the center of the side beam (x=12.25 m, vertical).

(c) At the center of the 1st side length wise member (k=1, x=12.25 m, lateral).

(d) At the center of the 3rd pillar (j=3, θ=θ/2, lateral).

Fig. 11 FRFs for different loss factors (LFs) of the beams. LFs in all components are increased at a time. z₁, z₂ simultaneous excitation without time delay: Δτ = 0. As the LF becomes larger, each peak height reduces constantly with little frequency change.

(4) 数値計算例として，組合せわり各部の曲げ剛性や損失係数の变化による応答への影響を調べた。曲げ剛性を一律に増大すると FRF の応答ピークは周波数側に移動するが，ピーク高さの変化は少なく，各部の損失係数を一律に増大すると FRF の応答ピークの高さは大きく低下することを示した。また，部材ごとに損失係数を変化させた場合，側柱の損失係数変化による影響が大きく屋根と床の相対変形が大きい振動に対応するピークにおいて比較的大きく見られた。このことから，屋根と床の相対変形，すなわち曲率を有する板状構造の面内と面外変形の連成振動に関わる曲がりはりの損失係数の影響が大きいと考えられる。

5. 結 言

ここで提案した手法により，屋根と床の上下相対変位と側面の左右変形の連成効果を表現できることができた。本論文では，曲がりはりを導入するための定式化とその妥当性の検討に重点を置いたため，今回示した数値計算例はごく限定的なものであるが，床に相当する部材である側柱の応答にも側面の面外変形の影響が認められ，とくに曲がりはりの損失係数による側柱の応答に対する効果が明確に見られた。このような曲がりはりの取り扱いによって，真直はりを用いて側柱を表現する場合と計算自由度は大きく変わらないことから，箱形モデルに組み込んだ場合の計算量の増大も問題ないものと考えられる。なお FEM でも例えればはり要素を用いることで解析モデルのサイズを抑え，計算負荷を低減できるが，そのような扱いをすることの妥当性を別途検証する必要がある。また，一般に数値解析モデルの精度を確保するには実測データとのコリレーションが必要となり，その際には繰り返し計算が行われることが多いが，本解析法のように計算規模が小さく，かつ，ブラックボックスではない手法に一定の優位性があると思われる。著者らは，部材の個別の形状や材料特性を詳細に表現できることが特徴の FEM は，各部材の寸法や材料等を決定するための詳細解析に用い，振動モードの特徴に応じて手を加えるべき部分を検討する場合には本解析法のような構造体としての見通しがつけやすい簡易モデルを用いるという使い分けが合理的な設計につながると考えている。
今後は各種最適化手法を適用して、各部材の剛性や構造減衰パラメータの最適配分について検討するとともに、この曲がりはりと直はりの接続系を鉄道車両の車体の振動解析モデルの側面を表すモデルとして組み込み、実車に見られる振動をより適切に表現するための振動解析手法の高度化を目指す予定である。

Fig. 12 FRFs for different loss factors (LFs) of the beams. LFs in all components are increased separately. \(z_1, z_2 \)

simultaneous excitation without time delay: \(\Delta t = 0 \). Relatively large peak reduction in (c) side lengthwise member and (d) side beam is observed when the LF of pillars are increased.

Fig. 13 \(H_2 \) (bars; representing average of vibration response in the considering frequency range) and \(H^* \) (yellow circles; representing maximum vibration response in the considering frequency range) norms of the FRF at the center of the side beam in the range of 5–30 Hz. These norms are normalized as the base condition \(l. z_1, z_2 \) simultaneous excitation without time delay: \(\Delta t = 0 \). These graphs show the tendency of vibration acceleration change in the frequency range of 5 – 30 Hz. From here, it can be seen LFs of pillars have comparatively large effect on the vibration of side beam. The tendencies of vibration changes are almost the same at the two different observation points shown here.
文 献
相田健一郎, 富岡隆弘, 瀧上唯夫, 秋山裕喜, 鉄道車両の走行時車体上下振動における弾性振動の影響, 日本機械学会機械力学・計測制御 USB 論文集 (D&D2015) , No.15-7(2015), 734.

Carlbom, P.F., Combining MBS with FEM for rail vehicle dynamics analysis, Multibody System Dynamics, Vol.6 (2001), pp.291–300.
Diana, G., Cheli, E., Andrea, C., Corradi, R. and Melzi, S., The development of a numerical model for railway vehicles comfort assessment through comparison with experimental measurements, Vehicle System Dynamics, Vol.38 (2002), pp.165–183.

Dumitriu, M., A new passive approach to reducing the carbody vertical bending vibration of railway vehicles, Vehicle System Dynamics, Vol.55 (2017), pp.1787–1806.

Gong, D., Zhou, J. and Sun, W., Passive control of railway vehicle car body flexural vibration by means of underframe dampers, Journal of Mechanical Science and Technology, Vol.31 (2017), pp.555–564.

Ishiguri, K., Kobayashi, Y., Tomioka, T. and Hoshino, Y., Vibration analysis of a railway carbody using a shell model, Journal of System Design and Dynamics, Vol.2, No.1 (2008), pp.93–104, DOI:10.1299/jsdd.2.93.

岩波健, 堀野勝利, 長松昭男, 鉄道車両の振動低減に関する研究（上下振動の予測と検証）, 日本機械学会論文集 C 編, Vol.65, No.630 (1999), pp.658–665.
小林幸徳, 石黒長太郎, 星野洋平, 富岡隆弘, 瀧上唯夫, 相田健一郎, シエルモデルを用いた鉄道車体弾性振動解析 (屋根–側結合部の剛性が振動特性に及ぼす影響), 日本機械学会論文集 C 編, Vol.75, No.753 (2009), pp.1287–1294.

Ribeiro, D., Calçada, R., Delgado, R., Brehm, M. and Zabel, V., Finite-element model calibration of a railway vehicle based on experimental modal parameters, Vehicle System Dynamics, Vol.51 (2013), pp.821–856.

Richard, J., Natural frequencies of Bernoulli-Euler beams resting on two elastic supports: Application to railway vehicles, Vehicle System Dynamics, Vol.9 (1980), pp.309–326.

鈴木勝義, 山田元, 成田吉弘, 斎藤俊, シエルの振動入門 (1996), p.61, コロナ社.

鈴木康文, 長南俊二, 鉄道車両の車体曲げ振動制振法に関する理論解析, 日本機械学会論文集 C 編, Vol.62, No.598 (1996), pp.2132–2139.

高橋伸, 円弧形棒の平面内の振動（固定–固定）, 日本機械学会論文集, Vol.29, No.197 (1963), pp.179–186.

瀧上唯夫, 富岡隆弘, 最近の軽量車両の有効振動モード特性, 鉄道総研報告, Vol.16, No.5 (2002), pp.23–28.

谷藤克也, 桜井賢一, 小林正樹, 横瀬景司, ポギー車の車体上下曲げ振動に及ぼす支持ばねの影響（第 1 報, 振動モードの形と有効振動数）, 日本機械学会論文集 C 編, Vol.54, No.502 (1988), pp.1164–1169.

日本機械学会編, 鉄道車両のダイナミクスとモデリング (2017), pp.146–155, 丸善出版.

チモシェンコ, ギャー, 弾性安定の理論 (1974), pp.421–425, ブレイン図書.

Tomioka,T., Kobayashi,Y. and Yamada,G., Analysis of free vibration of rotating disk-blade coupled systems by using artificial springs and orthogonal polynomials, Journal of Sound and Vibration, Vol.191, No. 1 (1996), pp.53–73.

Tomioka,T., Takigami,T. and Suzuki,Y., Numerical analysis of three-dimensional flexural vibration of railway vehicle car body, Vehicle System Dynamics, Vol.44, Supplement (2006), pp.272–285.

振動工学ハンドブック編集委員会編, 振動工学ハンドブック (1976), pp.90–91, 養賢堂.

References
Aida, K., Tomioka, T., Takigami, T. and Akiyama, Y., Influence of the flexural vibration on the vertical vibration of a railway vehicle carbody at running, Proceedings of Dynamics and Design Conference 2015 （D&D2015）, No.15-7(2015), 734 (in Japanese).

Carlbom, P.F., Combining MBS with FEM for rail vehicle dynamics analysis, Multibody System Dynamics, Vol.6 (2001), pp.291–300.

Diana, G., Cheli, E., Andrea, C., Corradi, R. and Melzi, S., The development of a numerical model for railway vehicles comfort assessment through comparison with experimental measurements, Vehicle System Dynamics, Vol.38 (2002), pp.165–183.
Dumitriu, M., A new passive approach to reducing the carbody vertical bending vibration of railway vehicles, Vehicle System Dynamics, Vol.55 (2017), pp.1787–1806.

Gong, D., Zhou, J. and Sun, W., Passive control of railway vehicle car body flexural vibration by means of underframe dampers, Journal of Mechanical Science and Technology, Vol.31 (2017), pp.555–564.

Ishiguri, K., Kobayashi, Y., Tomioka, T. and Hoshino, Y., Vibration analysis of a railway carbody using a shell model, Journal of System Design and Dynamics, Vol.2, No.1 (2008), pp.93–104, DOI:10.1299/jsdd.2.93.

Iwanami, K., Horihata, K. and Nagamatsu, A., Study for decrease of vibration of railway vehicle: Estimation and verification of vertical vibration, Transactions of the Japan Society of Mechanical Engineers, Series C, Vol.65, No.630 (1999), pp.658–665 (in Japanese).

Kobayashi, Y., Ishiguri, K., Hoshinoi, Y., Tomioka, T., Takigami, T. and Aida, K., Elastic vibration analysis of a railway vehicle carbody by using a shell model (Effect of bending rigidity of connecting parts between roof and side panels), Transactions of the Japan Society of Mechanical Engineers, Series C, Vol.75, No.753 (2009), pp.1287–1294 (in Japanese).

Ribeiro, D., Calcada, R., Delgado, R., Brehm, M. and Zabel, V., Finite-element model calibration of a railway vehicle based on experimental modal parameters, Vehicle System Dynamics, Vol.51 (2013), pp.821–856.

Richard, J., Natural frequencies of Bernoulli-Euler beams resting on two elastic supports: Application to railway vehicles, Vehicle System Dynamics, Vol.9 (1980), pp.309–326.

Suzuki, K., Yamada, G., Narita, Y. and Saito, T., Introduction to Vibration of Shells (1996), p.61, Corona Publishing Co., Ltd. (in Japanese).

Suzuki, Y. and Chonan, S., Theoretical analysis for flexural vibration damping method of rolling stock carbody, Transactions of the Japan Society of Mechanical Engineers Series C, Vol.62, No.598 (1996), pp.2132–2139 (in Japanese).

Takahashi, S., Vibration of a circular arc bar in its plane: Both ends built-in, Transactions of the Japan Society of Mechanical Engineers, Vol.29, No.197 (1963), pp.179–186 (in Japanese).

Takigami, T. and Tomioka, T., Elastic vibration characteristics of recent light-weighted vehicles, RTRI report, Vol.16, No.5 (2002), pp.23–28 (in Japanese).

Tanifuji, K., Sakurai, M., Kobayashi, M. and Yokose, K., The effects of resilient support on the vertical body-bending vibration of a bogie car (1st report, Mode shapes and natural frequencies), Transactions of the Japan Society of Mechanical Engineers Series C, Vol.54, No.502 (1988), pp.1164–1169 (in Japanese).

The Japan Society of Mechanical Engineers (Ed.), Railway Vehicle Dynamics and Modeling (2017), pp.146–155, Maruzen Publishing Co., Ltd. (in Japanese).

Timoshenko, S. P. and Gere, J. M., Theory of Elastic Stability (Japanese Translation Edition) (1974), pp.421–425, Brain Publishing (in Japanese).

Tomioka,T., Kobayashi,Y. and Yamada,G., Analysis of free vibration of rotating disk-blade coupled systems by using artificial springs and orthogonal polynomials, Journal of Sound and Vibration, Vol.191, No. 1 (1996), pp.53–73.

Tomioka,T.,Takigami,T. and Suzuki,Y., Numerical analysis of three-dimensional flexural vibration of railway vehicle car body, Vehicle System Dynamics, Vol.44, Supplement (2006), pp.272–285.

Vibration Engineering Handbook Editorial Comittee (Ed), Vibration Engineering Handbook (1976), pp.90–91, Yokendo Co. Ltd. (in Japanese).
付録 A：曲がりばかりの固有値の級数の項数および拘束のための無次元ばね定数による収束状況

式(10)の級数の項数による曲がりばかり（θ₀ = π/2 とする）の固有値の収束状況を表3に示す。境界条件がC-CとC-Fの場合は拘束のための無次元ばね定数は全て10⁶とした。本解析法の本来の目的では、両端自由（F-F）の場合が重要となるため（箱形モデルに組み込んだ場合には、他の部材との接続剛性も設計パラメータとなる可能性がある）、この表ではF-Fの境界条件についても示している。この表より、F-F, C-Fの境界条件では3次までの固有数のM = N = 10 と12の場合との変化は0.1%以内、C-Fの場合でも0.3%以内となり、実用上充分な収束が得られていると判断できるから、M = N = 10を採用した。

つきに、M = N = 10として拘束のための無次元ばね定数による曲がりばかり（θ₀ = π/2）固有値の収束状況を表4に示す。この表から、無次元拘束ばねの値が10⁶と10⁷の場合との固有値の変化は0.03%未満と非常にわずかであることが分かる。したがって、実用上は10⁶で充分であると判断した。

Table 3 Convergence of eigenvalue of a curved beam with θ₀ = π/2 versus the numbers of terms M, N in admissible functions (Eq. (10)). Non dimensional translational and rotational spring coefficients for clamped end are set as 10⁶.

B.C.	Mode	M = N = 6	8	10	12	14
F-F	1st	2.912	2.897	2.897	2.897	2.897
	2nd	5.170	4.898	4.891	4.891	4.891
	3rd	9.484	7.156	6.920	6.913	6.913
C-C	1st	5.464	4.761	4.753	4.753	4.753
	2nd	7.966	6.472	6.381	6.377	6.377
	3rd	13.253	8.624	8.419	8.395	8.391
C-F	1st	1.224	1.224	1.224	1.224	1.224
	2nd	2.697	2.687	2.687	2.687	2.687
	3rd	5.187	4.778	4.771	4.771	4.771

Table 4 Convergence of eigenvalue of a curved beam with θ₀ = π/2 versus non dimensional translational and rotational spring coefficients. Subscript i denotes i = 1 and 2 for C-C, and i = 1 or 2 for C-F.

B.C.	Mode	k_11 = k_22 = k_33 =					
C-C	1st	4.407	4.748	4.753	4.753	4.753	4.745
	2nd	4.714	6.069	6.358	6.381	6.381	6.389
	3rd	5.833	7.542	8.295	8.419	8.422	8.446
C-F	1st	1.223	1.224	1.224	1.224	1.224	1.224
	2nd	2.679	2.686	2.687	2.687	2.687	2.687
	3rd	4.626	4.763	4.770	4.771	4.771	4.772
付録 B：組合せはりの固有振動数の級数の項数および接続のためのばね定数による収束状況

表 2 の条件で求めた、図 8 の (a)～(f) の 6 つの固有振動モードの固有振動数に関し、式 (38) の許容関数の項数 M,N と、はりどうしを接続するばね定数による収束状況を表 5 に示す。接続ばねの剛性は、表 2 の表記に合わせて有次元の値とした。組合せはり（曲がりはりと直はりの接続系）の場合、回転を拘束するばね定数など接続ばね剛性の一部は無限大（剛性）と言えず、実際の構造物との対応に合わせて調整すべきパラメータであるが、ここでは全て一様に変化させるものとした。この表でモードを区別する a から f の記号は図 8 の (a) から (f) の各モードに対応している。

この表から、接続ばねの値がある程度大きくなると、級数の項数変化による影響のほうが支配的といえることが分かる。モードにより状況に違いが見られるものの、級数の項数に関しては 10 項（接続ばねの剛性は 10^{10}）とすれば、項数が 12 の場合との変化量は概ね 0.5% 以内となって実用上充分な収束状況だと判断した。なお、和モードについては項数が 12 とした場合との変化が 1.4% となっているが、接続ばねを 10^{10} とし、項数を 12 とした場合、絶対値が 0 に近くない負の固有値が生じたため（この表では省略）、数値の不安定が生じている可能性があると判断した。また、一般に拘束を強めることで固有振動数は大きくなると考えられるが、接続ばねの剛性を 10^{11} にした場合、10^{10} の場合より固有振動数の値が低下していることも認められることから、これも数値の不安定が生じている可能性がある。以上より、項数は $M = N = 10$、接続ばねの剛性は 10^{10} とした。なお、許容関数を式 (38) のような通常のべき関数ではなく、直交多項式を用いることでこのような数値的不安定を回避することができると考えられるが（Tomioka et al., 1996）、本論文の目的の範囲ではそこまでの取り扱いは不要と判断した。

Mode	$M = N =$					
a	6	7.533	10.193	10.229	10.229	10.229
	8	7.457	10.119	10.154	10.154	10.154
	10	5.843	10.075	10.111	10.112	10.111
	12	7.446	10.044	10.082	10.094	10.178
b	6	6.492	12.536	12.738	12.740	12.740
	8	6.481	12.178	12.357	12.359	12.358
	10	6.471	12.009	12.180	12.201	12.279
	12	6.470	12.004	12.176	12.197	12.133
c	6	5.869	13.224	13.482	13.484	13.484
	8	10.813	13.035	13.287	13.289	13.289
	10	7.449	12.959	13.204	13.207	13.207
	12	5.824	12.785	13.022	13.116	13.494
d	6	11.326	18.949	19.245	19.248	19.248
	8	12.705	17.444	17.701	17.704	17.704
	10	10.788	17.410	17.669	17.674	17.683
	12	10.788	17.396	17.665	17.671	17.677
e	6	12.818	18.690	18.990	18.993	18.993
	8	18.002	18.322	18.606	18.608	18.609
	10	12.701	18.124	18.391	18.395	18.393
	12	12.698	18.038	18.301	18.333	18.662
f	6	31.843	37.677	38.072	38.076	38.076
	8	19.978	27.064	27.381	27.384	27.384
	10	17.648	25.719	26.017	26.029	26.031
	12	17.550	25.597	25.888	25.939	26.368