Entezopatie i zapalenie entez. Część II. Diagnostyka obrazowa

Enthesopathies and enthesitis. Part 2: Imaging studies

Iwona Sudo-Szopińska1,2, Brygida Kwiatkowska3, Monika Prochorec-Sobieszek4,5, Grzegorz Prać1, Marta Walentowska-Janowicz1, Włodzimierz Maśliński5

1 Department of Radiology, Institute of Rheumatology, Warsaw, Poland
2 Department of Diagnostic Imaging, Second Faculty, Warsaw Medical University, Poland
3 Early Arthritis Clinic, Institute of Rheumatology, Warsaw, Poland
4 Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
5 Department of Pathophysiology, Immunology, and Pathological Anatomy, Institute of Rheumatology, Warsaw, Poland

Correspondence: Prof. Iwona Sudo-Szopińska, MD, PhD, Department of Radiology, Institute of Rheumatology, Spartańska 1, 02-637 Warsaw, Poland, e-mail: sudolszopinska@gmail.com, tel./fax: +48 22 844 42 41

DOI: 10.15557/JoU.2015.0017

Streszczenie

Patologie przyczepów ścięgien i więzadel są określane mianem entezopatii. Jednym z rodzajów entezopatii jest zapalenie (enthesitis). Uznaje się je za charakterystyczny objaw chorób reumatycznych z grupy spondyloartropatii (spondyloarthritis), tym głównie spondyloartrtopii obwodowych. Z tego powodu enthesitis włączono do sze- regu klasyfikacji klinicznych, służących m.in. do rozpoznawania tych chorób. Klinicyści diagnozują enthesitis na podstawie mało specyficznych objawów oraz wyników badań laboratoryjnych. Duże nadzieje na poprawę możliwości diagnostycznych są wiązane z badaniami obrazowymi. Niektóre prace naukowe dowodzą możliwości różnicowania zapalenia entez z innymi procesami entezopatycznymi. Z drugiej strony szereg doniesień wskazuje na brak specyficznych zmian w badaniach obrazowych oraz typowych cech histologicznych i immunologicznych pozwalających na potwierdzenie klinicznego rozpoznania enthesitis. W pierwszej części publikacji przedstawiono teorie etiopathogenezy entezopatii (teorię zapalną, mechaniczną, kompleksu entezy i autoimunologiczna) oraz koncepcję powstawania entezoïtów (zapalną, molekularną i mechaniczną). W niniejszej, drugiej części zaprezentowano zaś przegląd wiedzy na temat możliwości badań obrazowych w rozpoznawaniu enthesitis. Jak się okazuje, żadne z kryteriów enthesitis stosowa- nych w badaniach obrazowych nie jest specyficzne dla zapalenia. Zważywszy na to, że enthesitis bywa jedynym objawem spondyloartropatii w początkowym okresie (zwłaszcza u chorych z nieobecnym antygenem HLA-B27), brak jednoznacznego obrazu w bada- niach ultrasonograficznych i rezonansu magnetycznego wymaga poszukiwania innych objawów charakterystycznych dla spondyloartropatii i bardziej specyficznych markerów w badaniach obrazowych w celu jak najszybszego ustalenia rozpoznania.

Streszczenie

Enthesopathies and enthesitis. Part 2: Imaging studies

Iwona Sudo-Szopińska1,2, Brygida Kwiatkowska3, Monika Prochorec-Sobieszek4,5, Grzegorz Prać1, Marta Walentowska-Janowicz1, Włodzimierz Maśliński5

1 Department of Radiology, Institute of Rheumatology, Warsaw, Poland
2 Department of Diagnostic Imaging, Second Faculty, Warsaw Medical University, Poland
3 Early Arthritis Clinic, Institute of Rheumatology, Warsaw, Poland
4 Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
5 Department of Pathophysiology, Immunology, and Pathological Anatomy, Institute of Rheumatology, Warsaw, Poland

Correspondence: Prof. Iwona Sudo-Szopińska, MD, PhD, Department of Radiology, Institute of Rheumatology, Spartańska 1, 02-637 Warsaw, Poland, e-mail: sudolszopinska@gmail.com, tel./fax: +48 22 844 42 41

DOI: 10.15557/JoU.2015.0017

Streszczenie

Patologie przyczepów ścięgien i więzadel są określane mianem entezopatii. Jednym z rodzajów entezopatii jest zapalenie (enthesitis). Uznaje się je za charakterystyczny objaw chorób reumatycznych z grupy spondyloartropatii (spondyloarthritis), tym głównie spondyloarthropatii obwodowych. Z tego powodu enthesitis włączono do sze- regu klasyfikacji klinicznych, służących m.in. do rozpoznawania tych chorób. Klinicyści diagnozują enthesitis na podstawie mało specyficznych objawów oraz wyników badań laboratoryjnych. Duże nadzieje na poprawę możliwości diagnostycznych są wiązane z badaniami obrazowymi. Niektóre prace naukowe dowodzą możliwości różnicowania zapalenia entez z innymi procesami entezopatycznymi. Z drugiej strony szereg doniesień wskazuje na brak specyficznych zmian w badaniach obrazowych oraz typowych cech histologicznych i immunologicznych pozwalających na potwierdzenie klinicznego rozpoznania enthesitis. W pierwszej części publikacji przedstawiono teorie etiopathogenezy entezopatii (teorię zapalną, mechaniczną, kompleksu entezy i autoimunologiczną) oraz koncepcję powstawania entezoïtów (zapalną, molekularną i mechaniczną). W niniejszej, drugiej części zaprezentowano zaś przegląd wiedzy na temat możliwości badań obrazowych w rozpoznawaniu enthesitis. Jak się okazuje, żadne z kryteriów enthesitis stosowa- nych w badaniach obrazowych nie jest specyficzne dla zapalenia. Zważywszy na to, że enthesitis bywa jedynym objawem spondyloartropatii w początkowym okresie (zwłaszcza u chorych z nieobecnym antygenem HLA-B27), brak jednoznacznego obrazu w bada- niach ultrasonograficznych i rezonansu magnetycznego wymaga poszukiwania innych objawów charakterystycznych dla spondyloartropatii i bardziej specyficznych markerów w badaniach obrazowych w celu jak najszybszego ustalenia rozpoznania.

Streszczenie

Patologie przyczepów ścięgien i więzadel są określane mianem entezopatii. Jednym z rodzajów entezopatii jest zapalenie (enthesitis). Uznaje się je za charakterystyczny objaw chorób reumatycznych z grupy spondyloartropatii (spondyloarthritis), tym głównie spondyloarthropatii obwodowych. Z tego powodu enthesitis włączono do sze- regu klasyfikacji klinicznych, służących m.in. do rozpoznawania tych chorób. Klinicyści diagnozują enthesitis na podstawie mało specyficznych objawów oraz wyników badań laboratoryjnych. Duże nadzieje na poprawę możliwości diagnostycznych są wiązane z badaniami obrazowymi. Niektóre prace naukowe dowodzą możliwości różnicowania zapalenia entez z innymi procesami entezopatycznymi. Z drugiej strony szereg doniesień wskazuje na brak specyficznych zmian w badaniach obrazowych oraz typowych cech histologicznych i immunologicznych pozwalających na potwierdzenie klinicznego rozpoznania enthesitis. W pierwszej części publikacji przedstawiono teorie etiopathogenezy entezopatii (teorię zapalną, mechaniczną, kompleksu entezy i autoimunologiczną) oraz koncepcję powstawania entezoïtów (zapalną, molekularną i mechaniczną). W niniejszej, drugiej części zaprezentowano zaś przegląd wiedzy na temat możliwości badań obrazowych w rozpoznawaniu enthesitis. Jak się okazuje, żadne z kryteriów enthesitis stosowa- nych w badaniach obrazowych nie jest specyficzne dla zapalenia. Zważywszy na to, że enthesitis bywa jedynym objawem spondyloartropatii w początkowym okresie (zwłaszcza u chorych z nieobecnym antygenem HLA-B27), brak jednoznacznego obrazu w bada- niach ultrasonograficznych i rezonansu magnetycznego wymaga poszukiwania innych objawów charakterystycznych dla spondyloartropatii i bardziej specyficznych markerów w badaniach obrazowych w celu jak najszybszego ustalenia rozpoznania.
Abstract

The pathologies of tendon and ligament attachments are called enthesopathies. Enthesitis is one of enthesopathies and it is considered a characteristic sign of rheumatic diseases from the spondyloarthritis group, including peripheral spondyloarthritis. Therefore, enthesitis has been included in a number of clinical classifications for diagnosing these diseases. Clinical diagnosis of enthesitis is based on rather non-specific clinical signs and results of laboratory tests. It is believed that imaging examinations might improve diagnosis, particularly because numerous papers prove that differentiating enthesitis from other enthesopathic processes is possible. On the other hand, a number of authors report the lack of specific signs in imaging as well as typical histological and immunological features that would enable confirmation of clinical diagnosis of enthesitis. The first part of the publication presented theories on the etiopathogenesis of enthesitis (inflammatory, mechanical, autoimmune and associated with the synovio-enthesal complex) as well as on the formation of enthesophytes (inflammatory, molecular and mechanical). This paper – the second part of the article, is a review of the state-of-the-art on the ability of imaging examinations to diagnose enthesitis. It turns out that none of the enthesitis criteria used in imaging examinations is specific for inflammation. As enthesitis may be the only symptom of early spondyloarthritis (particularly in patients with absent HLA-B27 antigen), the lack of its unambiguous picture in ultrasound and magnetic resonance imaging prompts the search for other signs characteristic of spondyloarthritis and more specific features in imaging in order to make a diagnosis as early as possible.

Wstęp

Zapalenie przyczepów ścięgien, więzadeł, powięzi albo torebki (enthesitis) jest uznawane za kluczowy objaw jednej z najczęstszych grup chorób reumatycznych – spondyloartropathii (spondyloarthritis, SpA). Klinicy rozpoznają zapalenie na podstawie mało specyficznych objawów, tj. danych z wywiadu i wyniku badania badania ultrasonograficznych (bądź sami je wykonują), w którym rozpoznanie enthesitis stawia się na podstawie cech równie często obserwowanych w entezopatiach innego typu. To o tyle zastanawiające, że wiele prac histopatologicznych, anatomopathologicznych i immunologicznych nie potwierdza obecności procesu zapalnego entez – albo wiedza w tym zakresie nie jest jeszcze dostateczna\(^{(3)}\).

Zmiany entezopatyczne w badaniach obrazowych

Podstawowymi cechami zmian entezopatycznych (interpretowanych także jako enthesitis) w badaniach obrazowych są: rozwarstwieniowe uszkodzenia, obecne naczyńnia, bliźni powodujące złomki, części entezy i sąsiadujących z nią strefy ścieżne oraz nadzegierki i torbiele części włóknisto-chrześcijnej (fibrocartilage, FC) i kostnej\(^{(4)}\). Z powodu obecności rozwarstwień i zaburzenia uporządkowanej struktury włókien kolagenu entezopatycznie zmienione entezy są pogrubiałe, zawierają naczyńnica – biorąc udział w procesie zapalno-naprawczym, a potem naprawczym – oraz tkankę ziominową\(^{(5)}\).

W badaniach histopatologicznych w takich przypadkach stwierdza się cechy uszkodzenia włókien kolagenowych, bliźni, zmiany zwyrodnieniowe (obejmujące obszary ubogomórkowe, szkliwienie, zwyrodnienie tęsztcowe) oraz...
pęknięcia i ślady po procesach naprawczych\(^{14,15}\) (ryc. 1). Rufai i wsp.\(^{15}\) w badaniach histopatologicznych entezopatycznie zmienionych przyczepów ściegien Achillesa u osób starszych wykazyali obecność zmian degeneracyjnych we wszystkich trzech lokalizacjach chrząstki włóknistej. Stwierdzali entezofity (w naszej praktyce w badaniach USG zazwyczaj czoło przeciwnie zmineralizowanymi bliznami po przebytych uszkodzeniach), rozwarstwieniowe uszkodzenia oraz fragmentację trzewiskowatej, okostnowej i wiązadłowej FC.

Na wczesnym etapie zmian entezopatycznych w badaniu RTG uwidoczniają się osteoporosa kostnej części entezy i pogrubienie cienia tkanki miękkich, a w bardziej zaawansowanym okresie – zmiany w postaci sklerotyzacji podchrzęstnej, entezofity i nadżerk (ryc. 2).

W badaniu MR część włóknista entez zasadniczo nie jest dobrze widoczna – z uwagi na małą zawartość wody. Lepiej widać zmiany w tkankach otaczających entezy (np. kiałkach, tkance tłuszczowej). MR pozwala na rozpoznanie obrzęku szpiku (bone marrow edema, BME) w tkance podchrzęstnej\(^{80}\) (ryc. 3).

Entezopatie w badaniu USG

Badanie USG jest metodą z wyboru do oceny entez\(^{9,10–12}\), Cechami uznawanymi w literaturze za objawy enthesitis w USG są: obniżenie echogeniczności entezy (spowodowane zaburzeniem struktury włóknkowej), jej pogrubienie (wynikające z uszkodzeń włókien kolagenowych), obecność zmian strukturalnych, tj. wielokierunkowych uszkodzeń, i blizen po tych uszkodzeniach (od zbliżonych strukturą do ścieżną albo wąszy od szkliwiających, zminalizowanych bądź skostniałych, czyli entezolitów) oraz nadżerek w kostnej części entezy, a także wzmożone unaczynienie w badaniu dopplerowskim\(^{9,11,12}\) (ryc. 4).

Obecność unaczynienia w entezach uznaje się za element potwierdzający enthesitis i specyficzny dla SpA\(^{10,13–16}\). D’Agostino i wsp.\(^{16}\) przebadali 164 pacjentów cierpiących na SpA i 64 z grupy kontrolnej; 34 z mechanicznym bólem pleców (mechanical back pain, MBP) i 30 z reumatoidalnym zapaleniem stawów (rheumatoid arthritis, RA). Unaczynienie entez stwierdzili wyłącznie u chorych na SpA (81%). W wynikach pracy autorzy niestety nie spręczywali, które entezy były unaczynione, m.in. czy stwierdzili unaczynione entezy ściegną Achillesa i rozciągną podszewcową, niewystępujące w naszej praktyce\(^{17}\). Odnosili natomiast cechy zapalenia kaletki ściegą Achillesa – i uznały je za niespecyficzne dla SpA. U osób ze SpA nie wykazywali unaczynienia ściegą\(^{16}\), które my obserwujemy w badaniach własnych ściegłem Achillesa – wówczas do zapalenia kaletki ściegą lub tkanki tłuszczowej trójkąta Kagera oraz uszkodzeń entezy i sąsiadującej z nią strefy ściegą. Są to, notabene, jedyne przypadki nieprawidłowego unaczynienia odnotowane przez nas u pacjentów z klinicznym rozpoznaniem enthesitis guza piętowego\(^{17}\). Na podstawie wymienionych elementów obrazu USG entez (interpretowanych jako enthesitis) czułość i specyficzność

In histopathological examinations of enthesopathically altered Achilles tendon entheses in elderly patients. They observed enthesophytes (in US examination in our practice they are called mineralized scars following past damage) and delamination of the sesamoid, periosteal and ligament FC.

In the initial phase of enthesopathies, radiographs shows osteoporosis of the enthesal bony component and thickening of the soft tissues. In advanced stadia, we observe subchondral sclerosis, enthesophytes and erosions (Fig. 2).

In MRI, the fibrous part of entheses is poorly visible due to low water content. More evident are changes in the tissues adjacent to an enthesis (e.g. those localized in the bursae or adipose tissue). MRI is the only imaging modality that enables identification of bone marrow edema (BME) in the subchondral tissue\(^{10}\) (Fig. 3).

Enthesopathies in US

US is the modality of choice in assessing entheses\(^{9,10–12}\). The US features that are considered signs of enthesitis in the literature are: reduced echogenicity of an enthesis (due to disordered fibrillar structure), enthesis thickening (due to damage to the collagen fibers), presence of structural lesions, i.e. multidirectional injuries, and scars following such injuries (ranging from those similar in their structure to a tendon or ligament, to hyalinizing, mineralized or ossified ones, i.e. enthesophytes) as well as erosions in the bony component of an enthesis and increased vascularity seen in a Doppler examination\(^{9,11,12}\) (Fig. 4).

The presence of vessels in entheses is considered a sign specific for SpA that confirms enthesitis\(^{10,13–16}\). D’Agostino et al.\(^{16}\) examined 164 patients with SpA and 64 in a control group: 34 with mechanical back pain (MBP) and 30 with rheumatoid arthritis (RA). Vascularized entheses were identified only in SpA patients (81%). Unfortunately, the authors did not specify which entheses were vascularized, i.e. whether vessels were present in the plantar fascia and Achilles tendon entheses, which has not been observed in our practice\(^{17}\). Nevertheless, they noted signs of bursitis of the Achilles tendon and considered them non-specific for SpA. They did not observe vascularization of the tendon\(^{16}\), which we did observe in our own studies concerning the Achilles tendon – secondary to bursitis or inflammation of the Kager’s fat pad as well as damage to the enthesis and its adjacent tendon zone. In fact, these are the only cases of abnormal vascularity noted in our study in patients with clinically diagnosed calcanear tuberosity enthesitis\(^{17}\).

Based on the aforementioned US features in entheses (regarding as enthesitis), the sensitivity and specificity of the US in diagnosing enthesitis were as follows\(^{15}\): Lehtinen – 37.5% and 92.7%, Balint et al. – 22.5% and
Fig. 1. A. Fibrous inflammatory granulation tissue in the tendon encompasses the fibrous connective tissue: fibrosis, scarce fibroblasts and slight blood vessels; B. degenerative changes within the tendon at the attachment site with a focal necrosis (lower right corner). H&E stain, 200x

Fig. 2. X-ray: A. mineralized scar (enthesophyte, so-called lower spur) on the lower surface of the calcaneal tuberosity at the flexor digitorum brevis enthesis, erosions on the medial malleoli with concomitant ossification reactions; B. erosion in the bony part of the Achilles tendon enthesis on the left side; C. mineralized scars in the patellar entheses of the quadriceps femoris tendon and patellar ligament
USG w diagnostyce enthesitis wyniosły odpowiednio\(^1\): Lehtinen – 37,5% i 92,7%, Balint i wsp. – 22,5% i 79,7%, D’Agostino – 41% i 65%. Wielu innych badających\(^1\) analizuje wartość powyższych kryteriów w ocenie enthesitis, ale wyniki tych prac jest trudno porównać – z uwagi na brak ujednoliconej metodyki. Dla większości autorów diagnostycznym objawem enthesitis jest sama obecność entezoitów (zmineralizowanych albo skostniałych blizn, bony spurs). Prace wskazujące na potrzebę wykazania unaczynienia entezy jako bezwzględnej metodyki. Dla wielu wyniki tych prac jest trudno porównywać wartości (entezofitów) w pasma biodrowo-piszczelowego pogrubia entezy nierówna; d) enteza ramienka ścięgna wspólnego prostowników pogrubia i hipoechogeniczna z powodu śródściennistych uszkodzeń, obecne naczynia procesu zapalno-naprawczego.

Fig. 3. MRI of the foot: bone marrow edema at the bony part of the plantar aponeurosis enthesis, the enthesis is thickened and its adjacent soft tissues are swollen

Fig. 4. Enthesopathic lesions in US: a) thickened, hypoechoic enthesis of the plantar fascia with a minor goode in the bony part; b) hypoechoic Achilles tendon enthesis with mineralized scars (enthesophytes) in the fibrous and fibrocartilaginous parts and with scars following delamination damage; c) thickened and hypoechoic tibial enthesis of the iliotibial band due to intratendinous damage with inflammatory-repair process vessels; uneven bony part; d) thickened and hypoechoic humeral enthesis of the common extensor tendon due to intratendinous damage with inflammatory-repair process vessels.
Doppler ultrasonography (PDUS). Obecnie systemy te są na etapie waliadacji, chociaż uwzględniają elementy obrazu entezopatycznie zmienionych przyczepów, również często występujące, częstokroć w mikro- i częściowym uszkodzeniu entez.

Publikacje z zakresu reumatologii, w których nie używa się określenia „enthesitis”, należą do rzadkości. Reprezentuje je praca Spadaro i wsp. (9), oparta na dużym materiale. Autorzy zbadali 432 różne entezy, klinicznie bezobjawowe i objawowe, u pacjentów chorych na ZZSK (zesztywniające zapalenie stawów kręgosłupa, ankylosypondylitis, AS). W analizowanej grupie najczęściej stwierdzano obecność entezofitów (zmineralizowanych blizn) i zwątpień oraz pogrubienie entezy. Nadżerki wykryto u 9,7% badanych, przekrzewienie entez – zaledwie u 6%. W odniesieniu do entez ścięgną Achillesa najczęściej nieprawidłowością były entezofity (31,9%), pogrubienie entezy (27,7%), jej unaczynienie (8,3%) i zapalenie kaletki ścięgną (13,9%). W odniesieniu do entez rozciągniętego podszewowego naj częściej stwierdzano jej pogrubienie (13,9%) i zwątpienia (autorzy rozróżniają entezofity i zwątpienia – te pierwsze to przypuszczalne skostnienia, a drugie – zmineralizowane blizny zlokalizowane w pewnej odległości od pola przyczepu) oraz obserwację echogeniczności (9,7%) (17). U pacjentów z podejrzeniem zapalenia entez u większości nie wykazano żadnych zmian: 63,1% entez ścięgną Achillesa i 60% entez rozciągany podszewowy okazało się prawidłowe. Spośród pozostałych entez nieprawidłowych w badaniu B-mode wzmożono unaczynienie stwierdzono tylko w jednej entezie piętowej ścięgną Achillesa (5,3%). Takiego unaczynienia nie zaobserwowano w żadnym przypadku rozciąganej podszewowej.

Niestety bardziej jednoznaczne wnioski wyciągają kolejni autorzy (10-19). Saibani i wsp., Sebes i wsp. oraz Genc i wsp. Wykazali oni, że zmiany entezopatyczne kończyn dolnych, takie jak pogrubienie entez i nadżerki, a zwłaszcza entezofity, nie pozwalają różnicować RZS i ZZSK oraz równie często występują u osób zdrowych. Liczba takich zmian zwiększa się z wiekiem, jako wyraz przewlekłych uszkodzeń i nieprawidłowej przebudowy, prowadzących do degeneracji entez.

Podobnie ostrożne konkluzje formułują badacze analizujące unaczynienie entez, uznanie za objaw swoisty dla enthesitis w chorobach reumatycznych (10-19). Badania PDUS i MR, które przeprowadzili w 2011 r. Feydy i wsp. (20), dowiodły, że zmiany entezopatyczne ścięgną Achillesa i rozciąganej podszewowej oceniane w PDUS i MR nie są specyficzne dla SpA i równie często występują u osób z grupy kontrolnej, czyli tych, które mechanicznych bólu pleców, o czym pisali wcześniej inni autorzy (20). Identycznie jak w chorobach reumatycznych wygląda naczynia procesu naprawczego w przebiegu gojenia uszkodzeń. Feydy i wsp. (20) wykazali hiperwaskularyzację entez ścięgną Achillesa u zaledwie 5% pacjentów ze SpA i u 6% osób z grupy kontrolnej. Podobnie jak Spadaro i wsp. (9), nie stwierdzili obecności naczyń w entezie rozciąganej podszewowej. Naczynia w entezie ścięgną Achillesa obserwowali u osób z nadżer kami w skońcej części entezy.

Rheumatology publications lacking the term “enthesitis” are extremely rare. They are represented by the study of Spadaro et al. (9) based on large material. The authors examined 432 different entheses, both clinically symptomatic and asymptomatic, in patients with AS (ankylosing spondylitis). The most common findings were enthesophytes (mineralized scars) and calcifications as well as thickened entheses. Erosions were detected in 9.7% of the subjects and hyperemia of entheses – merely in 6%. As for the Achilles tendon enthesis, the most common abnormalities were enthesophytes (31.9%), thickened enthesis (27.7%), its vascularity (8.3%) and tendon’s bursitis (13.9%). In the plantar fascia enthesis, the most common signs were its thickening (13.9%) and calcifications (the authors distinguish enthesophytes from calcifications – the former being probable ossifications, the latter – mineralized scars localized in a certain distance from the attachment) as well as reduced echogenicity (9.7%) (17). In the majority of patients with suspected enthesisitis, no abnormalities were detected: 63.1% of the Achilles tendon entheses and 60% of the plantar fascia entheses were found normal. Of the remaining entheses altered in a B-mode examination, enhanced vascularity was found in only one calcaneal enthesis of the Achilles tendon (5.3%). Such vascularity was not observed in any case of the plantar aponeurosis.

Saibani et al., Sebes et al. and Genc et al. draw even more direct conclusions (10-19). They demonstrated that enthesisitopathic lesions in the lower extremities, such as thickened entheses and erosions, especially enthesophytes, do not enable differentiation between RA and AS and are as often found in healthy individuals. The number of such lesions increases with age as a result of chronic damage and improper remodeling leading to enthesis degeneration.

Similar conclusions were drawn by researchers who analyzed enthesis vascularity which is considered a specific sign of enthesisitis in rheumatic diseases (10). PDUS and MRI, conducted in 2011 by Feydy et al. (20), demonstrated that enthesisitopathic lesions of the Achilles tendon and plantar aponeurosis were not specific for SpA and as often occurred in the the control group, i.e. those with mechanical back pain. This had been previously published by other authors (20). Vessels of the repair process that appear in the course of damage healing process are identical to those in rheumatic diseases. Feydy et al. (20) demonstrated hypervascularity of the Achilles tendon enthesis in merely 5% of patients with SpA and in 6% of controls. As Spadaro et al. (9), they did not find vessels in the plantar fascia enthesis. Vessels in the Achilles tendon enthesis were observed in patients with erosions in the entheseal bony part.
Enthesopathies in MRI

The MRI features of enthesitis are bone marrow edema (BME) of the enthesal bony part as well as edema of enthesal soft tissues and adjacent tissues (Fig. 5). Authors of several studies correlated the MR image with histopathological and immunological examinations of the sacroiliac and spinal joints in the course of axial SpA. At the sites of edema, infiltrates of macrophages as well as B and T lymphocytes were observed (21–23).

As for peripheral SpA, older publications indicated that BME was the factor that differentiated spondyloarthritis from other pathologies. McGonagle et al. (25) in their knee joint MRI examinations conducted in 10 patients with SpA and in 10 patients with RA, detected BME in all patients with SpA and in none of the patients with RA. The authors assessed attachments of ligaments and tendons of the knee extensor complex, collateral and cruciate ligaments, joint capsule as well as semitendinosus, semimembranosus and biceps femoris tendons and iliotibial band. In all RA patients, edema of the soft tissues surrounding the enthesis was found, which was the case in less than a half of SpA patients.

Subsequent studies did not confirm that BME is a specific element of enthesitis (24,26). This sign is observed in the course of postrauamaic, degenerative, neoplastic as well as inflammatory changes, not only associated with SpA (8). Eshed et al. (24) observed BME both in patients with SpA and with RA, however in SpA patients edema was more extensive. A correlation between the changes and the presence of HLA-B27 antigen was noticed. Benjamin et al. (26) report that BME occurs in approximately 50% of cases of enthesis.

Bursitis rather than enthesitis?

Enthesitis-like lesions in the course of rheumatic diseases are usually found in the calcaneal tuberosity. Based on the clinical examination, it is difficult to determine the origin of pain in the plantar side (i.a. attachment of the plantar aponeurosis, tendon of the flexor digitorum brevis, plantar fat pad rupture or medial plantar nerve irritation) or its posterosuperior aspect. In the latter case, a frequent cause of clinically painful enthesis of the...
bolesnej „entezy” ściegna Achillesa jest w rzeczywistości zapalenie kaletki tego ściegna (*bursitis*), które dotyczą choreń na RZS, SpA, krystalopatie, a także osób ze zmianami przeciążeniowymi stawu i ściegna(27). W takich sytuacjach w klatce obserwuje się wysięk, pogrubienie i wzmożone unaczynienie błony maziowej(27). W kontekście *bursitis* ściegna piętowego dodatkowo mogą być stwierdzane nadżerki w ścianie kostnej kaletki i naczynia zapalne kaletki infiltrujące ściegna przymagającą do entezy (ryc. 6). Identyfikacyjne spektrum zmian występuje w przypadku pozostałych entez i ściegien sąsiadujących z kaletkami (ryc. 7).

W odniesieniu do teori koncentrujących etiopatogenezę entesitis w SpA(1) badania US i MR potwierdzały, że proces zapalny może rozpocząć się poza entezą, tj. w błonie maziowej sąsiadującej kaletki (*bursitis*), inicjowany – zgodnie z teorią mechaniczną – przez mikroraz entez (ryc. 8), w błonie maziowej pochewki ściegna (*tenosynovitis, tendovaginitis*) albo w ościeninie – zgodnie z teorią funkcjonalną enthesitis – w odpowiedzi na bodziec ściskający, przykładowo dociskanie odczuwany do entezy (ryc. 6).

Achilles tendon is the tendon’s bursitis, which occurs in patients with RA, SpA, crystalopathies and those with overload changes in the joint and tendon(27). In such situations, we observe effusion in the bursa as well as thickening and increased vascularity of the synovium(27). Additionally, in the context of Achilles tendon bursitis, one may detect erosions in the osseous wall of the bursa and inflammatory vessels infiltrating the tendon zone adjacent to the enthesis (Fig. 6). Equal changes may be found in the other entheses and tendons adjacent to bursae (Fig. 7).

Ryc. 6. Zapalenie kaletki ściegna Achillesa lewego: **A.** badanie B-mode: strona lewa – wysięk, pogrubiała błona maziowa kaletki i nadżerki w ścianie kostnej kaletki (*bursitis*), środki ściegienie uszkodzenia ściegna Achillesa, strona prawa – obraz prawidłowy; **B.** ten sam przypadek w badaniu kolorowym dopplerem: naczynia procesu zapalno-naprawczego kaletki wnikają w obręb ściegna; wzmożone unaczynienie tkanki tłuszczowej trójki Kagera wskazuje na odczynowy proces zapalny

Fig. 6. Bursitis of the left Achilles tendon: **A.** B-mode examination: on the left: effusion, thickened bursal synovium and erosions in the bony wall of the bursa (*bursitis*), intratendinous damage to the Achilles tendon; on the right: normal image; **B.** the same case in color Doppler examination: inflammatory-repair vessels permeate within the tendon; enhanced vascularity of the Kager’s adipose tissue indicates an inflammatory reaction

Ryc. 7. Badanie USG (A) i MR (B) stawu kolanowego: **A.** wysięk i pogrubiała błona maziowa kaletki podrzepkowej głębokiej, z nadżerkami w ścianie kostnej kaletki i w kostnej części entez ściegna; **B.** w badaniu MR dodatkowo widoczny obrzuk szczęka kostnej części entezy

Fig. 7. US (A) and MRI (B) of the knee joint: **A.** effusion and thickened synovium of the deep infrapatellar bursa with erosions in the bony wall of the bursa and in the bony part of the tendon enthesis; **B.** MRI additionally shows bone marrow edema in the bony part of the enthesis
ścięgna mięśnia piszczelowego tylnego do kostki przyśrodkowej[1,25] (ryc. 9). Olivieri i i wsp.[28] stwierdzili w MR cechy achillobursitis calcanei (zapalenia kaletki ścięgna i ścięgna Achillesa) u 74% pacjentów ze SpA.

Uwzględniając obszar zajętych tkank w przebiegu SpA, Benjamin i McGonagle zaproponowali poszerzenie definicji entezy na kompleks synowio-entezalny (synovio-enthesal complex, SEC)[29]. Koncepcja SEC zakłada, że entezy tworzą czynnościową jednostkę z przylegającą błoną mazioową i tkanką tłuszczową. Według autorów ta koncepcja może dotyczyć około 82% entez, tyle bowiem są one zmiennie obciążane biomechanicznie (1,25) (ryc. 9). Olivieri i wsp.[28] stwierdzili, że prawdopodobnie mikrouraz entez: przez aktywację układu immunologicznego inicjuje on reakcję zapalną, która może dostosować się do obciążenia biomechanicznego. Zdanie, że SEC może obejmować entezę w stanie pochewkowo-ścięgnowym, jest w pełni zgodne z teorią biomechanicznej entezitis[31,32] i dotyczy wielu entez poddawanych mechaniceznemu naprężeniu, na co wskazuje obecność w nich chrząstki włóknistej. SEC może również tłumaczyć zapalenie wielu stawów, które chorują w SpA, m.in. krzyżowo-biodrowych, mostkowo-żebrowych, mostkowo-obojczykowych, barkowo-obojczykowych i skroniowo–żuchwowych, pokrytych chrząstką włóknistą i poddawanych znacznym obciążeniom ściągającym.

Taking into account the range of tissues involved in the course of SpA, Benjamin and McGonagle proposed that the definition of an enthesis should be extended to a synovio-enthesal complex (SEC)[29]. The concept of SEC assumes that entheses, adjacent synovial membrane and adipose tissue form a functional unit. The authors claim that this concept may concern approximately 82% of entheses since they are all adjacent to synovia and fat pads[30]. Inflammation is probably triggered by enthesis microdamage: by activating the immune system, it initiates an inflammatory reaction in the synovium of the bursal walls or in the overlaying adipose tissue[9,30]. The SEC theory seems to match with the biomechanical enthesis theory[1] and concerns numerous entheses that are subject to considerable mechanical stress, which is indicated by the presence of fibrocartilage. The SEC concept may also explain inflammation of numerous joints involved in SpA, such as sacroiliac, sternocostal, sternoclavicular, acromioclavicular and temporomandibular, covered with fibrocartilage and being subject to considerable mechanical shear stress.

Ryc. 8. PDUS: A. strona lewa – aktywne zmiany zapalne kaletki ścięgna Achillesa z obecnością nadzerek, w tym aktywnych w ścianie kostnej kaletki; zminimalizowana biłcza w entezie ścięgna Achillesa; B. strona prawa – śladowy wymięcie w kaletce i zaokrąglony (poczynkowy) szczęć faldy tłuszczowej kaletki

Fig. 8. PDUS: A. on the left – active inflammatory changes in the bursa of the Achilles tendon with erosions, including the active ones in the bony wall of the bursa; mineralized scar in the Achilles tendon enthesis; B. on the right – minor effusion in the bursa and rounded apex of the bursal fat fold

Ryc. 9 A, B. Badanie USG z opcją kolorowego dopplera (CDUS) u pacjenta z RZS: zapalenie pochewkowo-ścięgnowe ścięgna mięśnia piszczelowego tylnego z nadzerekami kostki przyśrodkowej

Fig. 9 A, B. Color Doppler US (CDUS) in a patient with RA: inflammation of the tendon and sheath of the tibialis posterior tendon with erosions of the medial malleolus
Benjamin M i wsp.\(^{(30)}\) przebadali histopatologicznie 49 entez na materiale 60 zwłok. Dane kliniczne były niedostępne. W 76% przyczepów autorzy stwierdzili cechy obecności zmian degeneracyjnych. Zmiany zapalne w błęźnie zmniejowej SEC odnotowano w 85% przypadków (w tym w 57% entez ściegna Achillesa), a zapalenie w entezach – w 73%: dominowały nacieki z limfoцитów i makrofagów oraz naczynia w obrębie glebki włóknistej części entez, w *endotension* lub *endoligament* (tj. w obrębie luźnej tkanki łącznej między pęczkami włókien), czasami w trzuszczowatej lub okostnowej FC, jak również w tkance tłuszczowej okolicy entezy (np. ciała tłuszczowego Hoffy, okolicy przypęczu dalszego ściegna zginacza palucha długości)\(^{(30)}\). Naczynia wnikały do ściegna od strony błony mązowej kaletki. Ponadto autorzy stwierdzali obecność naczyń w entezach niespełniających kryteriów SEC (niesiądujących z kaletką), pochodzących prawdopodobnie ze szpiku kostnego\(^{(1,30)}\). Wykazali też obecność komórek zapalnych (makrofagów) w zdrowych entezach. W przypadku uszkodzenia mogą one najpewniej przybierać innym fenotyp – przeciwpalny – i uczestniczyć w naprawie tkanek\(^{(30)}\).

Nie tylko Benjamin i McGonagle, lecz także inni autorzy podkreślają endokrynne i parakrynne znaczenie tkanki tłuszczowej, m.in. związanej z entezami, z uwagi na wydzielenie przez adipocyty czynników wzrostu i parakryny, m.in. związek zapalenia i trądziku. Gandjbakhch i matologa do rozpoznania SEC, inni ją interpretują jako podwyższoną echogeniczność, nieradko widzimy w nim naczyńa poszerzone w wyniku procesu zapalnego (ryc. 10).

Część autorów popiera koncepcję SEC, inni ją negują. Ci drudzy przywołują definicję entezy, która wyraźnie odgórza od SEC, odznaczają zmiany entezyofitowe i tendinopatii, zapalenia kaletki ściegna czy zapalenia tkanki tłuszczowej śród- albo pozastawowej\(^{(8)}\).

Podsumowanie

Gandjbakhch i wsp.\(^{(34)}\) przeanalizowali dane z piśmiennictwa z lat 1985–2010 ze zbiorów PubMed i Embase dotyczące *enthesis*. Najczęstszymi kryteriami *enthesis* w badaniu USG były: pogrubienie entezy, obniżenie jej echogeniczności, obecność entezofitów, nierówności entezy kostnej i nadżerk oraz zapalenie entez przylegającej do ściegna. Źadne z tych kryteriów nie jest specyficzne dla zapalenia i może odpowiadać przewlekłym uszkodzeniom i zwrotnictwu entezy, a zapalenie entez to oddzielną patologię. W roku 2003 za objaw specyficzny dla zapalenia przypuszczono jego zwiększone echogeniczności, co potwierdzali kolejni autorzy\(^{(34)}\). Jednocześnie również często jak w entezie naczynia zapalne stwierdzano w katelse lub Benjamin M *et al.*\(^{(30)}\) performed histopathological examinations of 49 entheses of 60 cadavers. The clinical data were unavailable. The authors detected features of degeneration in 76% of cases. Synovial inflammatory changes of SECs were noted in 85% of cases (including 57% of Achilles tendon entheses). Enthesitis of the Achilles tendon was found in 73% of cases with prevalent lymphocyte and macrophage infiltration and vessels within a dense fibrous part of entheses, in the endotendon and endoligament (i.e. within loose connective tissue between fiber bundles), sometimes in the sesamoid or periosteal FC as well as in the adipose tissue in the vicinity of entheses (e.g. Hoffa’s fat pad and in the region of the flexor hallucis longus tendon)\(^{(30)}\). Vessels penetrated the tendon from the side of the bursal synovium. Moreover, the authors identified the presence of vessels, probably originating from the bone marrow, in entheses that do not fulfill the criteria of SEC (i.e. are not adjacent to bursae)\(^{(1,30)}\). They also demonstrated the presence of inflammatory cells (macrophages) in normal entheses. In the case of damage, they probably can adopt an alternative phenotype – anti-inflammatory one, and participate in tissue repair processes\(^{(30)}\).

Benjamin and McGonagle are not the only authors who emphasize endocrine and paracrine relevance of adipose tissue associated among others with entheses. This is relevant since adipocytes secrete growth factors and proinflammatory cytokines to the joint cavity\(^{(31,32)}\). Due to rich vascularity and innervation, adipose tissue is susceptible to inflammation, which might develop secondary to enthesitis damage. This is manifested by pain\(^{(14,33)}\) which in turn leads rheumatologist to diagnose enthesitis. In the case of the Achilles tendon, nociceptors may be stimulated by effusion in the bursa that compresses against the Kager’s fat fold. Inflamed adipose tissue has increased signal in T2-weighted or FLASH sequences in MRI. In US, such tissues are characterized by increased echogenicity and sometimes can be observed dilated vessels resulting from the inflammatory process (Fig. 10).

Some authors accept the SEC theory, others do not. The latter refers to the definition of an enthesis which evidently separates enthesopathic lesions from tendinopathy, bursitis or inflammation of both intra-articular and peri-articular adipose tissues\(^{(8)}\).

Conclusion

Gandjbakhch *et al.*\(^{(34)}\) analyzed the literature concerning enthesitis from the period of 1985–2010 available in the PubMed and Embase. The most common criteria of enthesitis in the US examinations were: thickened entheses, its hypoechogenicity, presence of enthesophytes, irregularity of bone part of the entheses and erosions as well as bursitis adjacent to tendons. None of these criteria is specific for inflammation and they may originate from chronic damage and degeneration of entheses, and what is more bursitis is a different pathology. In 2003, increased vascularity of entheses started to be considered as a specific sign of enthesitis, which was confirmed by other authors\(^{(34)}\). At the same time, inflammatory vessels were also detected in bursae and tendons.
It was proved that the presence of vessels in entheses differentiated enthesitis from enthesis degeneration or mechanical damage and that it was specific to SpA, but numerous authors questioned the specificity of this criterion[10].

Based on the aforementioned features of the US image, clinical indices and scoring systems have been created and used mainly to monitor the efficacy of treatment: Madrid Sonographic Enthesis Index – MASEI, Glasgow Ultrasound Enthesitis Scoring System – GUESS and others[1]. It seems, however, that they should be wisely used since they are based on criteria that are non-specific to enthesitis.

There is a possibility that enthesitis is a sign of peripheral SpA, which is demonstrated by the theories on the etiopathogenesis of enthesitis presented in the first part of the article, such as genetic or autoimmune ones[1]. As enthesitis may be the only symptom of early SpA (particularly in HLA-B27 antigen-negative patients), the lack of its unambiguous picture in US and MRI still requires clinicians’ attention as well as continuing the search for other signs characteristic of SpA and more specific markers in imaging in order to make a diagnosis as early as possible.

The final diagnosis is significant for the selection of treatment method, which in case of enthesopathy is based on steroids. The presence of posttraumatic or degenerative changes is an indication for treatment with non-steroidal anti-inflammatory drugs. Administration of steroids, which combat repair processes, will bring short-lasting...
Konflikt interesów

The authors do not report any financial or personal links with other persons or organizations, which might affect negatively the content of this publication or claim authorship rights to this publication.

Conflict of interest

Enthesopathies and enthesitis. Part 2: Imaging studies

1. Sudo Pi a krótkotrwa łę, ale nasili procesy uszkadzania się tkanek, a co za tym idzie – stworzy ryzyko poważnego uszkodzenia w obrębie entęzy(4).

2. Balint PV, Kane D, Wilson H, McInnes IB, Sturrock RD: Ultrasonography of entheseal insertions in the Lower limb in spondyloarthropathy. Ann Rheum Dis 2002; 61: 905–910.

3. Goldring SR: Osteoimmunology and Bone Homeostasis: Relevance to spondyloarthitides. Curr Rheumatol Rep 2013; 15: 342.

4. Czyrny Z: Sonographic and histological appearance of heel enthesopathy of the rotator cuff. J Ultrason 2012; 12: 178–187.

5. Benjamin M, Touni H, Ralphp JR, Bydder G, Best TM, Milz S: Where tendons and ligaments meet bone: attachment sites (‘entheses’) in relation to exercise and/or mechanical load. J Anat 2006; 208: 471–490.

6. Benjamin M, McGonagle D: The anatomical basis for disease localization in seronegative spondyloarthropathy at entheses and related sites. J Anat 2001; 199: 503–526.

7. Benjamin M, Ralphp JR: Fibrocartilage in tendons and ligaments – an adaptation to compressive load. J Anat 1998; 193: 481–494.

8. Francois RJ, Braun J, Khan MA: Entheses and enthesitis: a histopathologic review and relevance to spondyloarthritides. Curr Opin Rheumatol 2001; 13: 255–264.

9. Spadaro A, Iagnocco A, Perrotta FM, Modesti M, Scarno A, Valesini G: Clinical and ultrasonography assessment of peripheral enthesitis in ankylosing spondylitis. Rheumatology 2011; 50: 2080–2088.

10. Maftulli N, Kader D: Tendinopathy of tendo Achillis. J Bone Joint Surg 2002; 84: 1–8.

11. Czyrny Z: Diagnostic anatomy and diagnostics of enthesal pathologies of the rotator cuff. J Ultrason 2012; 12: 178–187.

12. Dębek A, Nowicki P, Czyrny Z: Ultrasonographic diagnostics of pain in the lateral cubital compartment and proximal forearm. J Ultrason 2012; 12: 188–201.

13. D’Agostino MA: Enthesis. Best Pract Res Clin Rheumatol 2006; 20: 473–486.

14. D’Agostino MA, Aegerter P, Bechara K, Salliot C, Judet O, Chimenti MS et al.: How to diagnose spondyloarthritides early? Accuracy of peripheral enthesis detection by power doppler ultrasonography. Ann Rheum Dis 2011; 70: 1433–1440.

15. Balint PV, Kane D, Wilson H, McInnes IB, Sturrock RD: Ultrasonography of entheseal insertions in the lower limb in spondyloarthropathy. Ann Rheum Dis 2002; 61: 905–910.

16. D’Agostino MA, Said-Nahal R, Haegard-Boudier C, Brashear JL, Dougdados M, Breban M: Assessment of peripheral enthesis in the spondyloarthropathies by ultrasonography combined with power Doppler: a cross-sectional study. Arthritis Rheum 2003; 48: 523–533.

17. Sudol-Szopińska I, Zaniewicz-Kaniewska K, Kwiatkowska B: Spectrum of ultrasound pathologies of Achilles tendon, plantar aponeurosis and flexor digitorum brevis entheses in patients with clinically suspected enthesitis. Pol J Radiol 2014; 79: 402–408.

18. D’Agostino MA, Palazzi C, Olivieri I: Enthesal involvement. Clin Exp Rheumatol 2009; 27 (Suppl. 55): S50–S55.

19. Genc H, Cakit BD, Tuncbilek I, Erdem HR: Ultrasonographic evaluation of tendons and entheseal sites in rheumatoid arthritis: comparison with ankylosing spondylitis and healthy subjects. Clin Rheumatol 2005; 24: 272–277.

20. Feedy A, Lavie-Brion MC, Gossec L, Lavie F, Guerini H, Nguyen C et al.: Comparative study of MRI and power Doppler ultrasonography of the heel in patients with spondyloarthritides with and without heel pain and in controls. Ann Rheum Dis 2012; 71: 498–503.

21. Hermann KG, Baralakos X, van der Heijde DM, Jurik AG, Landewé R, Marzo-Ortega H et al.: Descriptions of spinal MRI lesions and definition of a positive MRI of the spine in axial spondyloarthritides: a consensual approach by the ASAS/OMERACT MRI study group. Ann Rheum Dis 2012; 71: 1278–1288.

22. Bollow M, Fischer T, Reischauer H, Backhaus M, Sieper J, Hamm B et al.: Quantitative analyses of sacroiliac biopsies in spondyloarthropathies: T cells and macrophages predominate in early and active sacroiliitis; cellularity correlates with the degree of enhancement detected by magnetic resonance imaging. Ann Rheum Dis 2000; 59: 135–140.

23. Appel H, Loddenkemper C, Grozdanovic E, Ehrhardt H, Drei- mann M, Hempting A et al.: Correlation of histopathological findings and magnetic resonance imaging in the spine of patients with ankylosing spondylitis. Arthritis Res Ther 2006; 8: R143.

24. Eshed I, Bollow M, McGonagle D, Tan AL, Althoff CE, Asbach P et al.: MRI of enthesitis of the appendicular skeleton in spondyloarthropathies. Ann Rheum Dis 2007; 66: 1533–1539.

25. McGonagle D, Gibbon W, O’Connor P, Green M, Emery P: Characteristic magnetic resonance imaging enthesal changes of knee synovitis in spondyloarthropathy. Arthritis Rheum 1998; 41: 694–700.

26. Benjamin M, McGonagle D: Entheses, enthesitis and enthesopathy. ARC, Topical Reviews 2009; 4: 1–6.

27. Pierre-Jerome C, Moncayo V, Terk M: MRI of the Achilles tendon: a comprehensive review of the anatomy, biomechanics, and imaging of overuse tendinopathies. Acta Radiol 2010; 51: 438–454.

28. Olivieri I, Barozzi L, Padula A, De Matteis M, Pirolo A, Cantini F et al.: Retrocubanear bursitis in spondyloarthropathy: assessment with ultrasonography and magnetic resonance imaging. J Rheumatol 1998; 25: 1352–1357.

29. Benjamin M, McGonagle D: The enthesis organ concept and its relevance to the spondyloarthropathies. In: Lopez-Larrea C, Diaz-Pena R (eds.): Molecular mechanisms of spondyloarthropathies. Springer-Science + Business Media LLC, New York 2009: 57–70.

30. Benjamin M, McGonagle D: Histopathological changes at ‘synovio-enthesal complexes” suggesting a novel mechanism for synovitis in osteoarthritis and spondyloarthropathies. Arthritis Rheum 2007; 56: 3601–3609.

31. Sudol-Szopińska I, Kontny E, Zaniewicz-Kaniewska K, Prohorec-Sobieszek M, Saied F, Masliński W: Role of inflammatory factors and adipose tissue in pathogenesis of rheumatoid arthritis and osteoarthritis. Part I: Rheumatoid adipose tissue. J Ultrason 2013; 13 (54): 319–328.

32. Benjamin M, Redman S, Buttner A, Amin A, Morrigl B, Brenner E et al.: Adipose tissue at enthesis: the rheumatological implications of its distribution. A potential site of pain and stress dissipation? Ann Rheum Dis 2004; 63: 1549–1555.

33. Gandjbakhch E, Teskev L, Joshua F, Wakefield RJ, Nardo E, D’Agostino MA: Ultrasound in the evaluation of enthesis: status and perspectives. Arthritis Res Ther 2011; 13: R188.