Low serum parathyroid hormone is a risk factor for peritonitis episodes in incident peritoneal dialysis patients: a retrospective study

Yuqi Yang
Guizhou Provincial People's Hospital
https://orcid.org/0000-0003-4364-8010

Jingjing Da
Guizhou Provincial People's Hospital

Yi Jiang
Guizhou Provincial People's Hospital

Jing Yuan
Guizhou Provincial People's Hospital

Yan Zha (✉ zhayan72@126.com)
https://orcid.org/0000-0002-1185-455X

Research article

Keywords: parathyroid hormone, peritonitis, peritoneal dialysis

DOI: https://doi.org/10.21203/rs.3.rs-55536/v2

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background: Serum parathyroid hormone (PTH) levels have been reported to be associated with infectious mortality in peritoneal dialysis (PD) patients. Peritonitis is the most common and fatal infectious complication, resulting in technique failure, hospital admission and mortality. Whether PTH is associated with peritonitis episodes remains unclear.

Methods: We examined the association of PTH levels and peritonitis incidence in a 7-year cohort of 270 incident PD patients who were maintained on dialysis between January 2012 and December 2018 using Cox proportional hazard regression analyses. Patients were categorized into three groups by serum PTH levels as follows: low-PTH group, PTH<150pg/mL; middle-PTH group, PTH=150-300pg/mL; high-PTH group, PTH>300pg/mL.

Results: During a median follow-up of 29.5 (interquartile range 16-49) months, the incidence rate of peritonitis was 0.10 episodes per patient-year. Low PTH levels were associated with older age, higher calcium levels and lower alkaline phosphatase levels. After multivariate adjustment, lower PTH levels were identified as an independent risk factor for peritonitis episodes [hazard ratio 1.643, 95% confidence interval 1.014-2.663, P=0.044].

Conclusions: Low PTH levels are independently associated with peritonitis in incident PD patients.

Background

Abnormalities in serum parathyroid hormone (PTH) are exceedingly common in end-stage renal disease (ESRD) patients on maintenance dialysis and associated with cardiovascular disease, disturbances in bone mineral disorders, even increased morbidity and mortality in most epidemiologic studies [1, 2]. The role of PTH has been investigated as a traditional biomarker of chronic kidney disease-mineral bone disorder (CKD-MBD) in dialysis patients for decades [2, 3]. However, PTH, influenced by age, inflammation and nutrition [4], is also an important factor influencing immunologic dysfunction for infectious diseases, which are important causes of mortality in dialysis patients. More attention has been attracted to an increased understanding of the role of PTH in inflammation status that extends beyond MBD. A recent study demonstrated that PTH could be a pro-inflammatory parameter independent from the degree of renal dysfunction [5]. Low PTH levels can induce inflammation, malnutrition and protein-energy wasting [6], besides, inflammation can induce suppression of PTH secretion [7]. Dukkipati et al [8] have proven an association between low PTH levels (< 150 pg/mL) and malnutrition-inflammation-complex (MICS) in dialysis patients. In a large prospective cohort of 1771 incident dialysis patients, Hong et al [9] identified that low PTH levels (< 150 pg/mL) were an independent risk factor for infection-related mortality in dialysis patients both with hemodialysis and with PD and was even more meaningful in infection-related mortality than all-cause mortality.

PD-related peritonitis remains the most major and life-threatening infection-related complication and is closely related to loss of catheter function, impairment of the peritoneal membrane, eventually
discontinuation of PD therapy, conversion to hemodialysis [10, 11]. The 2016 International Society for Peritoneal Dialysis (ISPD) guidelines recommend a benchmark of 0.5 episodes per year or one episode every 2 years [12]. Peritonitis results in an overall mortality rate of up to 15% of PD patients [13]. Risk factors associated with peritonitis, including older age, diabetes, hypoalbuminemia [14, 15], also reflect a status of malnutrition in PD patients. Therefore, we suspect that low serum PTH levels may play a role in incidence of PD-related peritonitis. To our knowledge, there are no data available about the association of PTH with peritonitis in PD patients.

This study was carried out to estimate the association of serum PTH levels with PD-related peritonitis. We hypothesized that lower PTH might be associated with higher incidence rate of peritonitis in PD patients.

Methods

Study population

This was a single-center and retrospectively designed study. Patients older than 18 years old who started maintenance PD in the PD clinic of Guizhou Provincial People's Hospital between 1 January 2012 and 31 December 2018 were recruited in the study. Patients with PD treatment < 3 months, unavailable data of baseline PTH levels, and lack of proper follow up were excluded. Accordingly, the final study consisted of 270 incident PD patients. The study fulfilled the ethic requirements of Guizhou Provincial People's Hospital's institutional committee on human experimentation for observational, retrospective studies. Oral informed consents from PD patients were obtained if we followed up by telephone. The study complied with the principles of the Declaration of Helsinki for medical research.

Patient Characteristics

All data were obtained from the electronic medical records of dialysis facilities. A review of basic demographic and clinical variables of the patients, including age, sex, body mass index (BMI), primary cause of ESRD, presence of diabetes mellitus, systolic and diastolic blood pressure levels, was undertaken. The primary renal diseases were composed of the following classes: golmerulonephritis, diabetes mellitus, vascular renal disease, polycystic pyelonephritis, uncertain aetiology and others. BMI was calculated as weight/height2(kg/m2). Residual renal function expressed as estimated glomerular filtration rate (eGFR) was analyzed using the simplified Modification of Diet in Renal Disease (MDRD) study equation [16].

The laboratory parameters within three months after initiation of PD, as baseline of this study, were collected. These are white blood cell, neutrophil, lymphocyte, platelet counts and hemoglobin levels; serum total protein, albumin, urea nitrogen, creatinine and urine acid; calcium, phosphorus, alkaline phosphatase and PTH; total cholesterol and triglyceride; C-reactive protein levels. All PD therapies were
done using Y-set and double-bag disconnect system with 2L exchange four or five times a day. The dialysis dose was estimated by weekly total and peritoneal K_t/V_{urea} using urea kinetic model.

Exposure And Endpoints

The primary exposure was PTH during PD treatment. All patients had a baseline PTH measurement. In all analyses, PTH was categorized into three groups: <150 pg/mL, 150–300 pg/mL, >300 pg/mL. The categories and the reference of PTH (150–300 pg/mL) were chosen, according to the recommendation of 2016 ISPD. Patients were followed up from the initiation of PD until withdrawal from PD or the end period on 31 December 2019. The primary endpoint was the first episode of peritonitis.

Related Definitions

Peritonitis was diagnosed if at least two of the following were present: (1) clinical features consistent with peritonitis (e.g. abdominal pain and/or cloudy effluent), (2) dialysis effluent white cell count >100 cells/μL, with >50% polymorphonuclear leukocytes, and (3) positive dialysis effluent culture [12].

Statistical Analyses

Continuous variables were expressed by mean values with standard deviation (SD) if normally distributed or median (first and third quartiles) if not normally distributed and categorical variables by frequencies and percentages. The normality of distribution for continuous variables was confirmed with the Kolmogorov-Smirnov test. For comparison among different categories of PTH, Chi-squared, one-way ANOVA, or Kruskal-Wallis tests were used as appropriate. Stepwise logistic regression analyses were applied to explore the association of low PTH with other clinical characteristics. Incidence of peritonitis curves for PTH levels were generated using the Kaplan-Meier analyses, and significance of the survival curve was assessed by log rank test. By Cox proportional hazard regression analyses, we calculated hazard ratios (HRs) with 95% confidence intervals (95%CIs) for incidence of peritonitis. The Cox proportional hazard regression models were adjusted for significant parameters showing a P < 0.1 in univariate Cox regression analysis. Low PTH levels were defined as those that were lower than the ISPD-recommended PTH levels, which were between two- and night- times the upper limit of the normal PTH levels. Therefore, we chose 150 pg/mL as the cutoff value for low PTH levels. A two-tailed P value < 0.05 was considered to indicate a statistically significant difference. SPSS version 23.0 (IBM Corp., Armonk, NY, USA) was employed for all statistical analyses.

Results

Patient characteristics
Table 1 shows the baseline clinical characteristics of PD patients. In total, 315 ESRD patients who started maintenance PD therapy for the first time between 1 January 2012 and 31 December 2018 were followed-up at our PD center, of whom 7 patients were younger than 18 years, 12 patients were on PD less than 3 months, and 26 patients had not available data of baseline PTH levels. The remaining 270 patients were enrolled in this study. The mean (± SD) age was 39.9 ± 13.3 years, 55.9% of patients were male, and 8.9% of patients were diabetic. The primary cause of ESRD was primary glomerulonephritis (71.5%) followed by diabetes nephropathy (8.9%) and hypertension (11.1%).
Characteristic	Total (n = 270)	Baseline PTH levels (pg/mL)	P-value		
		< 150 (n = 78)	150–300 (n = 69)	> 300 (n = 123)	
Age(years)	39.9 ± 13.3	44.0 ± 14.0	37.8 ± 11.6	38.6 ± 13.2	0.005
Male	151(55.9%)	47(60.3%)	35(50.7%)	61(50.4%)	0.307
BMI(kg/m²)	21.6 ± 3.9	21.8 ± 3.9	21.4 ± 4.0	21.6 ± 3.8	0.814
Primary cause of ESRD			0.067	0.022	0.633
Glomerulonephritis	193(71.5%)	48(61.5%)	53(76.8%)	92(74.8%)	0.067
Diabetic kidney disease	24(8.9%)	12(15.4%)	7(10.1%)	5(4.1%)	0.022
Hypertensive kidney disease	30(11.1%)	8(10.3%)	6(8.7%)	16(13.0%)	0.633
Vasculitis kidney disease	8(3.0%)	5(6.4%)	1(1.4%)	2(1.6%)	0.151
Others	21(7.8%)	6(7.7%)	5(7.2%)	10(8.1%)	0.976
SBP (mmHg)	141.4 ± 19.7	137.5 ± 18.6	143.3 ± 20.8	142.7 ± 19.5	0.187
DBP (mmHg)	91.6 ± 15.7	88.8 ± 14.2	94.3 ± 17.0	91.8 ± 15.5	0.158
White blood cell (× 10⁹/L)	6.6 ± 2.1	6.9 ± 2.2	6.5 ± 2.2	6.5 ± 1.9	0.220
Neutrophil (× 10⁹/L)	4.5 ± 1.7	4.8 ± 1.8	4.6 ± 2.0	4.4 ± 1.5	0.321
Lymphocyte (× 10⁹/L)	1.5 ± 0.5	1.6 ± 0.6	1.4 ± 0.4	1.4 ± 0.5	0.103
Hemoglobin (g/L)	100.8 ± 22.0	107.3 ± 21.7	98.3 ± 21.7	98.1 ± 21.6	0.008
Platelet (× 10⁹/L)	195.7 ± 74.9	202.1 ± 73.0	205.3 ± 83.9	186.3 ± 70.1	0.160
Urea nitrogen (mmol/L)	14.9 ± 7.6	13.7 ± 7.3	15.4 ± 8.1	15.4 ± 7.4	0.272

Data are presented as mean ± SD, median (interquartile ranges) or percentages.

Abbreviations: BMI body mass index, ESRD end stage renal disease, SBP systolic blood pressure, DBP diastolic blood pressure, eGFR estimated glomerular filtration rate, PTH parathyroid hormone.
Characteristic	Total (n = 270)	Baseline PTH levels (pg/mL)	P-value		
		<150 (n = 78)	150–300 (n = 69)	>300 (n = 123)	
Creatinine (umol/L)	764.1(590.4-1017.4)	701.9(539.3-909.7)	786.8(628.3-1094.6)	791.7(613.2-1084.6)	0.023
eGFR (/kg/m\(^2\))	8.1(6.0-10.3)	9.2(6.7-11.3)	7.7(6.3-9.4)	7.8(5.7-9.9)	0.069
Uric acid (umol/L)	421.1 ± 108.8	420.3 ± 95.9	423.3 ± 116.1	420.3 ± 112.9	0.981
Calcium (mmol/L)	2.2 ± 0.2	2.3 ± 0.2	2.2 ± 0.2	2.1 ± 0.2	0.000
Phosphate (mmol/L)	1.4 ± 0.5	1.3 ± 0.5	1.5 ± 0.4	1.5 ± 0.5	0.001
PTH (pg/mL)	260.05(121.7-447.0)	74.5(28.3-109.9)	226.7(185.8-258.9)	475.3(364.0-694.7)	0.000
Alkaline phosphatase (U/L)	74.0(60.0-98.5)	64.0(56.0-83.3)	70.0(61.5-89.5)	82.5(68.0-122.5)	0.000
Cholesterol (mmol/L)	4.7 ± 1.1	4.8 ± 1.2	4.8 ± 1.2	4.7 ± 1.0	0.788
Triglyceride (mmol/L)	1.7 ± 0.9	1.9 ± 1.1	1.6 ± 0.8	1.6 ± 0.8	0.063
Total protein(g/L)	64.1 ± 8.5	64.4 ± 9.5	63.8 ± 6.9	64.1 ± 8.7	0.925
Albumin(g/L)	35.3 ± 6.0	35.9 ± 6.7	35.4 ± 5.2	34.9 ± 6.0	0.519
C-reactive protein(mmol/L)	1.17(0.61,4.91)	2.02(0.61,11.2)	1.1(0.5,6.2)	1.1(0.7,4.9)	0.768

Data are presented as mean ± SD, median (interquartile ranges) or percentages.

Abbreviations: BMI body mass index, ESRD end stage renal disease, SBP systolic blood pressure, DBP diastolic blood pressure, eGFR estimated glomerular filtration rate, PTH parathyroid hormone.

All enrolled patients were divided into three groups Low-PTH group (n = 78), middle-PTH group (n = 69) and high-PTH group (n = 123). Differences in baseline characteristics were observed between patients with different PTH levels. PD patients with low serum PTH levels were significantly older, with a higher proportion of diabetes mellitus as the primary cause of ESRD. Moreover, lower PTH patients tended to have higher levels of hemoglobin, calcium and lower levels of creatinine, phosphate, alkaline phosphatase at baseline.

Association Of Pth Levels With Clinical Parameters
Table 2 shows the association of PTH with clinical parameters. In univariate logistic regression analysis, the variables that were associated with an increased risk of PTH < 150 pg/mL included older age (OR = 0.968, P = 0.002), diabetes mellitus (OR = 0.367, P = 0.020), high hemoglobin (OR = 0.981, P = 0.003), creatinine (OR = 1.001, P = 0.002), calcium (OR = 0.040, P = 0.000) levels, low phosphate (OR = 3.586, P = 0.000), triglyceride (OR = 0.718, P = 0.029), alkaline phosphatase (OR = 1.017 P = 0.003). In a multivariate logistic regression model, older age (OR = 0.960, P = 0.001), higher calcium levels (OR = 0.023, P = 0.000), lower alkaline phosphatase levels (OR = 1.018, P = 0.003) remained statistically significant.

Clinical factors	Univariate analysis	Multivariate analysis						
	OR	95%CI	P value	OR	95%CI	P value		
Age	0.968	0.949	0.988	0.002	0.960	0.937	0.984	0.001
Diabetes mellitus	0.367	0.157	0.857	0.020				
White blood cell	0.895	0.790	1.015	0.084				
Hemoglobin	0.981	0.969	0.993	0.003				
Creatinine	1.001	1.000	1.002	0.009				
eGFR	0.925	0.870	0.984	0.014				
Calcium	0.040	0.011	0.151	0.000	0.023	0.005	0.111	0.000
Phosphate	3.586	1.769	7.267	0.000				
Triglyceride	0.718	0.534	0.966	0.029				
Alkaline phosphatase	1.017	1.006	1.028	0.003	1.108	1.006	1.029	0.003

Abbreviations: eGFR estimated glomerular filtration rate.

Pth Levels And Peritonitis

Table 3 shows the incidence of peritonitis during the follow-up period. After a 7-years of follow-up (median follow-up duration: 29.5 months; interquartile range: 16 to 49 months), 73 (27%) patients had peritonitis. The incidence rate in patients with low PTH levels was significantly highest compared to other two groups (P = 0.000).
Table 3
Proportion of peritonitis episodes by PTH categories

Characteristic	Total (n = 270)	Baseline PTH levels (pg/mL)	P-value		
		<150 (n = 78)	150–300 (n = 69)	>300 (n = 123)	
Follow-up (months)	29.5 (16.0, 49.0)	28.0 (15.5, 49.0)	37.0 (16.5, 49.5)	30.0 (16.0, 49.0)	0.810
Peritonitis (n,%)	73 (27.0%)	32 (41.0%)	23 (33.3%)	18 (14.6%)	0.000

Figure 1 shows the peritonitis-free survival for patients with different PTH levels during 7-year follow-up in the Kaplan-Meier analyses. Compared with other two groups, incidence rate of peritonitis was significantly highest in low-PTH group. Table 4 shows a increase in the incidence and hazard of peritonitis according to baseline PTH categories. A univariate Cox analyses comparing three groups were performed. Data points that met the P < 0.1 threshold during univariate analysis were included in a multivariate analysis. In the adjusted multivariate Cox regression analyses, low PTH levels (< 150 pg/mL) were significantly associated with a 1.643-fold increased risk of peritonitis incidence [HR 1.643 (95%CI 1.014–2.663), P = 0.044].

Table 4
Cox regression analysis of risk factors for the first episode of peritonitis

Clinical factors	Univariate analysis	Multivariate analysis						
	HR	95% CI	P value	HR	95% CI	P value		
	lower	upper		lower	upper			
Age(years)								
≥ 65	1.023	1.005	1.041	0.013	0.600	0.247	1.458	0.259
< 65	1			1				
Diabetes mellitus(yes:no)	0.451	0.230	0.883	0.020	1.604	0.779	3.305	0.200
PTH(ng/mL)								
< 150	1.742	1.007	2.817	0.024	1.643	1.014	2.663	0.044
≥ 150	1			1				

Abbreviations: PTH parathyroid hormone.

Discussion
This present study demonstrated that lower baseline PTH levels were associated with a greater risk of peritonitis. The overall incidence rate of peritonitis was nearly 1.6-fold greater in PD patients with low PTH levels than in the comparison cohort. In addition, low PTH levels were significantly associated with older age, high serum calcium levels and low alkaline phosphatase levels. To the best of our knowledge, we report for the first time that low PTH levels can be a potential predictor of peritonitis in PD patients.

In this cohort of PD patients over a 7-year follow-up, the prevalence of low PTH (< 150 pg/mL) levels was 28.9%, which was similar to that reported from the Dialysis Outcomes and Practice Patterns Study (DOPPS) that was undertaken in the United States in which 29% patients had PTH levels of < 100 pg/mL [17], and the United Kingdom Renal Registry (UKRR) study in which 32% of the patients had PTH levels of < 150 pg/mL [18]. In dialysis patients, low PTH levels play a vital role in influencing immunologic dysfunction for infectious diseases. PD patients have high infection rate due to the continuous peritoneal exposure to peritoneal dialysate and PD catheter [19]. In a recent study, Hong et al [9] suggested that low PTH levels were risk factors of infection-related mortality in a cohort of 1771 incident dialysis patients, including 511 PD patients. Our study expanded the previous findings of the associations of PTH levels with infection-related diseases in PD patients. This study focused on the incidence of PD-related peritonitis, which was the most common and fatal infection-related implication of PD. A recent cohort study covering 1321 PD patients demonstrated that peritonitis was independently associated with near 2-fold increased risk of all-cause mortality and near 4-fold increased risk of infection-related mortality [20]. The results of the present study suggested that PD patients with lowest PTH levels had the highest incidence rates of peritonitis, and patients with highest PTH levels had the lowest incidence rates of peritonitis, which were in accordance with the associations of infectious mortality in the previous study.

The pathophysiologic mechanisms, how low PTH levels increase the susceptibility of peritonitis incidence in PD patients, are not still well explained. However, some explanations can be proposed.

On the one hand, the impairment of the immune system in PD patients leads to an increased incidence of infections, and PTH plays an important role in the long-term immunodeficient and inflammation state, which is the main contributor to the peritonitis episodes [21]. Previous studies in vitro and in vivo verified that PTH can stimulate the proliferation of T lymphocytes, due to its ability to augment the movement of calcium into its target cells and enhance the production of interleukin-2 [22]. Conversely, inflammation can induce the inhibition of the hormone through proinflammatory cytokines, including interleukin-1 and interleukin-6 [23, 24]. Inactivation of PTH will abolish its effects on T cells. Ozdemir et al [25] observed that low PTH levels were associated with an inadequate suppression of inflammation through impairing humoral and cellular immune response [26]. Low PTH levels have been demonstrated to be a predictor of chronic inflammation in CKD patients, especially with maintenance dialysis. A study of 748 dialysis patients implicated that PTH < 150 pg/mL was associated with elevated inflammatory markers, including tumor necrosis factor α and C-reactive protein, which were traditional evaluated parameters for peritonitis [8]. In this study, C-reactive protein levels in low-PTH group were highest among three groups, though without statistical significance. Meanwhile, low PTH levels were associated with advanced age, likely to be diabetic in this study, which can reflect clinical susceptibility to infection.
On the other hand, low PTH levels can reflect a poor nutritional state, which will decline immunity and resistance to pathogens. Low immunity provides survival environment for conditional bacteria, inducing the episodes of peritonitis. As previous studies, we observed that patients with low PTH levels (< 150 pg/mL) had worse nutritional status including advanced age, diabete mellitus, low serum creatinine, and phosphorus levels [27]. Inflammatory cytokines will increase due to immunodeficient status, and suppress PTH secretion further in a vicious circle. Fukagawa et al [6] demonstrated that low PTH levels reflected a state of malnutrition in dialysis patients. Dukkipati et al [8] advanced that low PTH levels might be a facet of the MICS, which per se was associated with chronic inflammation. In the foregoing study, patients with PTH < 150 pg/mL had higher malnutrition-inflammation score, a constellation of markers of malnutrition and inflammation, and the inflammation-induced suppression of PTH can be overcome by treatment of MICS. PD-related peritonitis may be the consequence of MICS. Meanwhile, low PTH levels were a predictor of protein-energy wasting, which also shared similar risk factors of inflammation in PD patients [4].

In addition, the interaction of microbiome with renal function is known as the gut-kidney axis. Uremic toxins originated by gut microbiota also affect the composition of gut microbiota and involve in inflammation state in dialysis patients[28]. Su et al [29] demonstrated that intestinal dysfunction was associated with increased risk for enteric peritonitis episodes. Mirzaeian et al [30] assessed the effect of synbiotics in dialysis patients, which could improve intestinal environment and decrease intestinal concentration of nitrogenous metabolites. They identified that synbiotic therapy reduced inflammation and renal insufficiency, along with a parallel increase of PTH levels. We speculated the association of low PTH and impaired gut environment. Low PTH levels usually imply diet restriction in dialysis patients, aggravating the intestinal flora imbalance. As a result, increased bacterial translocation from the intestinal lumen into the peritoneal cavity provokes peritonitis of enteric origin [31]. To clarify this mechanism, further studies are needed.

The strengths of our study include its examination of a relatively large cohort of incident PD patients. And, we demonstrated the relationship between PTH and incidence of peritonitis in PD patients.

However, several limitations of our study should be discussed. First, the present findings were observational in nature, which precluded conclusions concerning causality. Second, the study population was restricted to patients in a single PD centre of southwest China, which might limit the generalizability of the results to other ethnic groups. Third, we did not assess other biochemical markers related to CKD-MBD, such as fibroblast growth factor-23, vitamin D metabolities. Forth, we did lack the information of the prognosis of peritonitis episodes.

Conclusions

The present study demonstrates that low PTH levels are independently associated with a higher risk of peritonitis incidence in incident PD patients. Our results support the importance of maintaining proper PTH levels. Physicians should pay more attention to the predictive value of PTH on infectious events in
PD patients. Future large-scale studies should afford insights for understanding the potential mechanisms how PTH levels predict peritonitis incidence.

Abbreviations

PTH
Parathyroid hormone
PD
Peritoneal dialysis
ESRD
End-stage renal disease
CKD-MBD
Chronic kidney disease-mineral bone disorder
MICS
Malnutrition-inflammation-complex syndrome
ISPD
International Society for Peritoneal Dialysis
BMI
Body mass index
eGFR
Estimated glomerular filtration rate
MDRD
Modification of Diet in Renal Disease
SBP/DBP
Systolic/diastolic blood pressure

Declarations

Acknowledgements

The help of NHC Key Laboratory of Pulmonary immunological diseases in accessing the database is gratefully acknowledged.

Conflict of Interest Statement:

None declared.

Funding

This work was supported by the Guizhou provincial health commission project (gzwjkj2018-1-015) and the Guizhou Provincial Science and Technology Department (QKHLH2016-7158).
Author information

Affiliations

Renal Division, Department of Medicine, Guizhou Provincial People's Hospital, Guiyang, China
Yuqi Yang, Jingjing Da, Jing Yuan, Yan Zha

NHC Key Laboratory of Pulmonary Immunologic Disease, Guizhou Provincial People's Hospital, Guiyang, China
Yuqi Yang, Jingjing Da, Yi Jiang, Jing Yuan, Yan Zha

Information section, Provincial People's Hospital, Guiyang, China
Yi Jiang

Author's Contributions

Y Yang: design. Analysis and interpretation of the data. Drafting of the article. J Da, Y Jiang: Analysis and interpretation of the data. J Yuan: Concept and design. Revising of the article. Y Zha: Critical revision of the article. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yan Zha.

Ethics approval and consent to participate

The study complied with the Declaration of Helsinki and was approved by Guizhou Provincial People's Hospital's institutional committee.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

References

1. Hruska KA, Sugatani T, Agapova O, et al. The chronic kidney disease-Mineral bone disorder (CKD-MBD): Advances in pathophysiology. Bone. 2017;100:80–6.
2. Bover J, Bailone L, Lopez-Baez V, et al. Osteoporosis, bone mineral density and CKD-MBD: treatment considerations. J Nephrol. 2017;30:677–87.
3. Torres PAU, Cohen-Solal M. Evaluation of fracture risk in chronic kidney disease. J Nephrol. 2017;30:653–61.

4. Kalantar–Zadeh K, Shah A, Duong U, et al. Kidney bone disease and mortality in CKD: revisiting the role of vitamin D, calcimimetics, alkaline phosphatase, and minerals. Kidney Int Suppl. 2010;117:10–21.

5. Toraman A, Aras F, Hekimsoy Z, et al. Is there a relationship between parathyroid hormone and neutrophil lymphocyte ratio or platelet lymphocyte ratio? Acta Endocrinol(Buchar). 2019;5:96–101.

6. Fukagawa M, Akizawa T, Kurokawa K. Is aplastic osteodystrophy a disease of malnutrition? Curr Opin Nephrol Hypertens. 2000;9:363–7.

7. Carlstedt E, Ridefelt P, Lind L, et al. Interleukin-6 induced suppression of bovine parathyroid hormone secretion. Biosci Rep. 1999;19:35–42.

8. Dukkipati R, Kovesdy CP, Colman S, et al. Association of relatively low serum parathyroid hormone with malnutrition-inflammation complex and survival in maintenance hemodialysis patients. J Ren Nutr. 2010;20:243–54.

9. Hong YA, Kim JH, Kim YK, et al. Low parathyroid hormone level predicts infection-related mortality in incident dialysis patients: a prospective cohort study. Korean J Intern Med. 2020;35:160–70.

10. Cho Y, Johnson DW. Peritoneal dialysis-related peritonitis: towards improving evidence, practices, and outcomes. Am J Kidney Dis. 2014;64:278–89.

11. Crepaldi C, Possidoni A, Caputo F, et al. Clinical management of patients on peritoneal dialysis in Italy: results from the ATENA study. Clinical Kidney Journal. 2018;11:275–82.

12. Li PK, Szeto CC, Piraino B, et al. ISPD peritonitis recommendations: 2016 update on prevention and treatment. Perit Dial Int. 2016;36:481–508.

13. Johnson DW, Dent H, Hawley CM, et al. Associations of dialysis modality and infectious mortality in incident dialysis patients in Australia and New Zealand. Am J Kidney Dis. 2009;53:290–7.

14. Fan X, Huang R, Wang J, et al. Risk factors for the first episode of peritonitis in southern Chinese continuous ambulatory peritoneal dialysis patients. PLoS One. 2014;9:e107485.

15. Tian Y, Xie X, Xiang S, et al. Risk factors and outcomes of high peritonitis rate in continuous ambulatory peritoneal dialysis patients: a retrospective study. Medicine. 2016;95(49):e5569.

16. Levey AS, Bosch JP, Lewis JB, et al. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of diet in renal disease study group. Ann Intern Med. 1999;130:461–70.

17. Tentori F, Blayney MJ, Albert JM, et al. Mortality risk for dialysis patients with different levels of serum calcium, phosphorus, and PTH: the Dialysis Outcomes and Practice Patterns Study (DOPPS). Am J Kidney Dis. 2008;52:519–30.

18. Tangri N, Wagner M, Griffith JL, et al. Effect of bone mineral guideline target achievement on mortality in incident dialysis patients: an analysis of the United Kingdom Renal Registry. Am J Kidney Dis. 2011;57:415–21.
19. Collins AJ, Hao W, Xia H, et al. Mortality risks of peritoneal dialysis and hemodialysis. Am J Kidney Dis. 1999;34:1065–74.

20. Ye H, Zhou Q, Fan L, et al. The impact of peritoneal dialysis-related peritonitis on mortality in peritoneal dialysis patients. BMC Nephrology. 2017;18:186.

21. Alemzadeh R, Kichler J. Parathyroid hormone is associated with biomarkers of insulin resistance and inflammation, independent of vitamin D status, in obese adolescents. Metab Syndr Relat Disord. 2012;10:422–9.

22. Lewin E, Ladefoged J, Brandi L, et al. Parathyroid hormone dependent T cell proliferation in uremic rats. Kidney Int. 1993;44:379–84.

23. Carlstedt E, Ridefelt P, Lind L, et al. Interleukin-6 induced suppression of bovine parathyroid hormone secretion. Biosci Rep. 1999;19:35–42.

24. Nielsen PK, Rasmussen AK, Butters R, et al. Inhibition of PTH secretion by interleukin-1 beta in bovine parathyroid glands in vitro is associated with an up-regulation of the calcium-sensing receptor mRNA. Biochem Biophys Res Commun. 1997;238:880–5.

25. Ozdemir FN, Yakupoglu U, Turan M, et al. Role of parathormone levels on T-cell response in hemodialysis patients. Transplant Proc. 2002;34:2044-5.

26. Akchurin OM, Kaskel F. Update on inflammation in chronic kidney disease. Blood Purif. 2015;39:84–92.

27. Guhn JY, Chen HC, Chuang HY, et al. Risk factors ans risk for mortality of mild hypothyroidism in hemodialysis patients. Am J Kidney Dis. 2002;1245–54.

28. Evenepoel P, Poesen R, Meijers B. The gut–kidney axis. Pediatr Nephrol. 2017;32:2005–14.

29. Su CY, Pei J, Lu XH, et al. Gastrointestinal symptoms predict peritonitis rates in CAPD patients. Clin Nephrol. 2012;77:267–74.

30. Mirzaeian S, Saraf-Bank S, Entezari MH, et al. Effect of synbiotic supplementation on microbiota-derived protein-bound uremic toxins, systemic inflammation, and biochemical parameters in hemodialysis patients: A double-blind placebo-controlled randomized clinical trial. Nutrition. 2020;73:110713.

31. Kosmadakis G, Albaret J, Correia EC, et al. Gastrointestinal Disorders in Peritoneal Dialysis Patients. Am J Nephrol. 2018;48:319–25.

Figures
Figure 1
Kaplan-Meier curves for incidence of peritonitis by PTH categories

Supplementary Files
This is a list of supplementary files associated with this preprint. Click to download.

- revisedmanuscript.pdf