Prognostic utility of lipoprotein(a) combined with fibrinogen in patients with stable coronary artery disease: a prospective, large cohort study

CURRENT STATUS: UNDER REVIEW

Journal of Translational Medicine ▶ BMC

Yan Zhang
fuwai hospital

Jing-Lu Jin
fuwai hospital

Ye-Xuan Cao
fuwai hospital

Hui-Hui Liu
fuwai hospital

Hui-Wen Zhang
fuwai hospital

Yuan-Lin Guo
fuwai hospital

Na-Qiong Wu
fuwai hospital

Ying Gao
fuwai hospital

Qi Hua
Xuanwu Hospital

Yan-Fang Li
Anzhen Hospital

Rui-Xia Xu
fuwai hospital

Chuan-Jue Cui
fuwai hospital

Geng Liu
fuwai hospital

Qian Dong
fuwai hospital

Jing Sun
fuwai hospital

Jian-Jun Li
Fuwai Hospital, National Center for Cardiovascular Diseases\[Chinese Academy of Medical Sciences and Peking Union Medical College

lijianjun938@126.com Corresponding Author
ORCID: https://orcid.org/0000-0003-2536-4364

DOI: 10.21203/rs.2.22599/v1

SUBJECT AREAS
Cardiac & Cardiovascular Systems

KEYWORDS
Lp(a), fibrinogen, CAD, CVEs
Abstract

Background: Elevated lipoprotein(a) [Lp(a)] and fibrinogen (Fib) are both associated with coronary artery disease (CAD) and the atherogenicity of Lp(a) can be partly due to the potentially antifibrinolytic categories. We hypothesize that patients with higher Lp(a) and Fib may have worse outcomes.

Methods: In this prospective study, we consecutively enrolled 8,417 patients with stable CAD from March 2011 to March 2017. All subjects were divided into 9 groups according to Lp(a) (Lp(a)-Low, Lp(a)-Medium, Lp(a)-High) and Fib levels (Fib-Low, Fib-Medium, Fib-High) and followed up for CVEs, including nonfatal acute myocardial infarction, stroke, and cardiovascular mortality. Caplan-Meier, Cox regression and C-statistic analyses were performed.

Results: During a median of 37.1 months’ follow-up, 395 (4.7%) CVEs occurred. The occurrence of CVEs increased by Lp(a) (3.5% vs. 5.3% vs. 5.6%, p=0.001) and Fib (4.0% vs. 4.4% vs. 6.1%, p<0.001) categories. When further classified into 9 groups by Lp(a) and Fib levels, the CVEs were highest in the 9th (Lp(a)-High and Fib-High) compared with the 1st (Lp(a)-Low and Fib-Low) group (7.2% vs. 3.3%, p<0.001). The highest risk of subsequent CVEs was found in the 9th group (HRadjusted 2.656, 95% CI 1.628-4.333, p<0.001), which was more significant than Lp(a)-High (HRadjusted 1.786, 95% CI 1.315-2.426, p<0.001) or Fib-High (HRadjusted 1.558, 95% CI 1.162-2.089, p=0.003) group. Moreover, adding the combined Lp(a) and Fib increased the C-statistic by 0.013.

Conclusion: Combining Fib and Lp(a) enhance the prognostic value for incident CVEs beyond Lp(a) or Fib alone.

Background

Despite significant advances in the diagnosis and therapy of cardiovascular disease (CVD), patients with established coronary artery disease (CAD) are generally at higher risk of developing recurrent cardiovascular events (CVEs) than the primary prevention individuals [1]. Clinical trials revealed that in the short time window only 20-30% of patients benefit even if traditional risk factors were well managed [2, 3]. As a result, identifying additional modifiable risk factors is necessary to further
improve CVEs prediction in the management of patients with established CAD.

Evidence have established high lipoprotein(a) (Lp[a]) levels are associated with high risk of CVD, observationally and causally from human genetics [4–6]. Multiple studies have indicated that high Lp(a) cause CVD in a primary prevention setting, moreover, Lp(a)-lowering by 50 mg/dL may reduce CVD by 20% in a secondary prevention setting [7]. AS well known, Lp(a) is composed of an LDL-like particle in which apoB is covalently bound by a single disulfide bond to apolipoprotein(a) (apo[a]). Therefore, the pathogenic role of Lp(a) was supposed to be involved in atherosclerosis and thrombosis formation [8]. In fact, the recent study implied that the mortality effect of high lipoprotein(a) is above that explained by its cholesterol content but the number of KIV-2 repeats in the apo(a) [9]. Originally, apo(a) has evolved from the plasminogen gene through duplication and remodeling. Unlike apolipoprotein B, apo(a) does not contain lipid domains or transport lipid, but instead, it potentiates atherothrombosis through additional pathways including proinflammatory, and potentially antifibrinolytic effects by inhibiting plasminogen activation [10]. As one of the important components of fibrinolytic system, plasma fibrinogen (Fib) has been proved to be a pivotal CVD risk factor [11–13]. However, little is known about the inter-relationship of Lp(a) and Fib in the CVEs risk prediction in the secondary prevention setting.

As a consequence, we hypothesize that there is a risk interaction between Lp(a) and Fib, and patients with high Lp(a) and Fib may have worse outcomes. We thereby sought to investigate the association of Lp(a) and Fib in predicting CVEs in patients with stable CAD (SCAD) in the current study.

Methods

Study Population

Our study complied with the Declaration of Helsinki and was approved by the hospital’s ethics review board (Fu Wai Hospital, National Center for Cardiovascular Diseases). Informed written consents were collected from all patients obtained in this study.

From March 2011 to March 2017, a total of 10,042 patients with clinical symptoms such as angina pectoris, or chest distress were recruited in our study. The inclusion criteria were patients with stable and angiography-proven CAD (coronary stenosis ≥50% of at least one coronary artery). The exclusion
criteria were as follows: (1) acute coronary syndrome (ACS); (2) previous myocardial infarction (MI), previous percutaneous coronary artery intervention or bypass grafting; (3) heart failure; (4) other disease status such as severe liver and/or renal insufficiency, thyroid dysfunction, systematic inflammatory disease, and malignant disease. Therefore, 8,417 patients were finally enrolled in the current analysis.

Patients were followed up at 6-months intervals by means of direct interview or telephone. The follow-up was performed by trained nurses or physicians who were blinded to the clinical data. The primary end points were cardiovascular mortality, nonfatal MI, and stroke. Nonfatal MI including ST-segment-elevation MI and non-ST-segment-elevation MI was diagnosed as positive cardiac troponins along with typical chest pain or typical electrocardiogram serial changes. Stroke was confirmed by specialist physicians according to the presence of typical symptoms and imaging.

Diabetes mellitus (DM) was diagnosed by fasting plasma glucose ≥7.0 mmol/L, the 2h plasma glucose of the oral glucose tolerance test ≥11.1 mmol/L, or current use of hypoglycemic drugs or insulin. Hypertension was defined as self-reported, currently taking antihypertensive drugs, or recorded systolic blood pressure ≥140 mmHg or diastolic blood pressure ≥90 mmHg three or more consecutive times. Information regarding other disease, family history, and prior therapy of every patient was collected from self-reported medical history.

Laboratory Analysis

Blood samples were obtained from each patient from the cubital vein after at least 12 h of fasting. Concentrations of total cholesterol (TC), triglyceride (TG), low-density lipoprotein-cholesterol (LDL-C), and high-density lipoprotein-cholesterol (HDL-C) were measured using an automatic biochemistry analyzer (7150; Hitachi, Tokyo, Japan) in an enzymatic assay. Lp(a) was determined by immunoturbidimetry method [LASAY Lp(a) auto; SHIMA Laboratories Co., Ltd] with a normal value of <30 mg/dL. An Lp(a) protein validated standard was used to calibrate the examination, and the coefficient of variation value of repetitive measurements was <10%. Concentrations of fibrinogen were measured using a Stago auto
analyzer by the Clauss method with an STA Fibrinogen kit (Diagnostica Stago, Taverny, France).

Statistical Analysis

The values were expressed as the mean ± SD or median (25th–75th percentile) for the continuous variables and the number (percentage) for the categorical variables. The Kolmogorov-Smirnov test was used to test the distribution pattern. The differences in clinical characteristics between groups were analyzed using Student t test, Mann-Whitney U test, χ² tests, or Fisher exact test when appropriate. The event-free survival rates among groups were estimated by the Kaplan-Meier method and compared by the log-rank test. Univariate and multivariate Cox regression analyses were performed to calculate the hazard ratios (HRs). A P value of less than 0.05 was considered statistically significant. The statistical analyses were performed with SPSS, version 22.0, software (SPSS, Chicago, IL) and R language, version 3.5.2 (Feather Spray).

Results

Baseline Characteristics

The baseline characteristics of the study participants were shown in Table 1. Over a median of 37.1 months (25th–75th percentile 22.5–55.4 months) follow-up period, 395 CVEs occurred (160 died, 78 suffered non-fatal MI, and 157 had strokes). Patients suffered CVEs tended to be older (p<0.001), with higher prevalence of hypertension (p=0.005), DM (p<0.001), and stroke (p<0.001). There was no significant difference regarding the baseline lipid profiles (TG, TC, LDL-C, HDL-C, apoA1, apoB, all p>0.05) except Lp(a) levels (p=0.001). Significantly, the concentration of Fib, D-dimer, and hs-CRP were higher in patients with CVEs (all p<0.05). Meanwhile, the rate of statin usage was lower in CVEs compared with patients without events (p=0.005).

Association of plasma Lp(a) Levels and CVEs

In the current analysis, the subjects were assigned to 3 groups according to Lp(a) levels (Lp(a)-L: <10mg/dL, Lp(a)-M:10-29.9mg/dL, Lp(a)-H ≥30mg/dL). As shown in Fig. 1, the prevalence of CVEs in the Lp(a)-L, Lp(a)-M, and Lp(a)-H groups was 3.5%, 5.3%, and 5.6%, respectively (p<0.001). Kaplan-
Meier analysis (Fig. 2A) showed that Lp(a)-H subjects had the lowest event-free survival rate among the three groups (p=0.001). As presented in Table 2, univariate Cox regression models showed that Lp(a)-M, and Lp(a)-H group had 1.468-fold and 1.580-fold higher risk of CVEs compared with Lp(a)-L group (Lp(a)-M: HR [95% CI] 1.468 [1.142-1.886], p=0.003; Lp(a)-H: HR[95% CI] 1.580[1.227-2.033], p<0.001). Additional adjustment for other variables in the multivariate Cox regression models did not change the significance of the association (Lp(a)-M: HR[95% CI] 1.564 [1.149-2.129], p=0.005); Lp(a)-H: HR[95% CI] 1.773[1.299-2.419], p<0.001; Table 3).

Association of plasma Fib Levels and CVEs

Similarly, patients were divided into 3 groups according to Fib levels (Fib-L:<2.84g/L, Fib-M:2.85-3.42 g/L, Fib-H:≥3.43 g/L). The prevalence of CVEs in the Fib-L, Fib-M, and Fib-H groups was 4.0%, 4.4%, and 6.1%, respectively (p<0.001). The event-free survival rate was lowest in the Fib-H group (p<0.001, Fig. 2B). Compared to Fib-L group, the Fib-H group had 1.613-fold higher risk of CVEs (HR [95% CI] 1.613 [1.282-2.074], p<0.001) even after adjusting for potential confoundings (HR [95% CI] 1.547 [1.151-2.079], p<0.001).

Inter-relationship of Lp(a), Fib Levels and CVEs

To evaluate an interaction between plasma Lp(a) and Fib levels on the risk of CVEs, the subjects were assigned to 9 groups according to Lp(a) and Fib levels (G1(Lp(a)-L+Fib-L, G2(Lp(a)-L+Fib-M, G3(Lp(a)-L+Fib-H, G4(Lp(a)-M+Fib-L, G5(Lp(a)-M+Fib-M, G6(Lp(a)-M+Fib-H, G7(Lp(a)-H+Fib-L, G8(Lp(a)-H+Fib-M, G9(Lp(a)-H+Fib-H).

The occurrence of CVEs in the 9 groups was 3.3%, 3.5%, 4.0%, 4.1%, 4.9%, 7.0%, 4.8%, 5.4%, and 7.2%, respectively (p<0.001, Figure 1). Hazard ratios were calculated for each group using the G1 (group 1, Lp(a)-L and Fib-L) as a reference (Table 2). After adjusting for potential confoundings, the 6th group (Lp(a)-M and Fib-H) and 9th group (Lp(a)-H and Fib-H) had 2.383-fold and 2.621-fold higher risk of CVEs (HR [95% CI] 2.383 [1.445-3.930], p=0.001; 2.621 [1.590-4.322], p<0.001, respectively, Table 3).
In the original model, the C-statistic values were 0.633 (95% CI 0.603-0.664) with traditional risk factors, (Table 4). Addition of Lp(a) categories to the original model induced slightly improvement in C-statistic (ΔC-statistic 0.010 [-0.001-0.023], p= 0.088) but did not reach statistical significance. When added Fib categories to the original model did not improve the C-statistic (ΔC-statistic 0.003 [-0.005-0.012], p= 0.443). Nonetheless, the combined Lp(a) and Fib categories resulted in a significant improvement in C-statistic (ΔC-statistic 0.013 [0.002–0.027], p=0.033).

Discussion
In this prospective, large-cohort study, we investigated the association of plasma Lp(a) and Fib on the prediction of CVEs in angiography-proven stable CAD patients. Our data clearly found that both Lp(a) and Fib were independent predictors of CVEs in patients with stable CAD. More interestingly, the study firstly indicated that the combined Lp(a) and Fib categories enhanced the predicting values by incrementally increasing risk of CVEs in this population. The adjusted HR for CVEs was 2.621-fold and 2.383-fold higher among stable CAD patients in the Fib-H with Lp(a)-H or Lp(a)-M group, respectively. Finally, adding Lp(a) and Fib to the Cox model increased the C-statistic by 0.013 beyond that achieved with any single biomarker. These findings suggested that the combination of Lp(a), a complex marker of cholesterol and anti-fibrinolysis, and Fib, a marker of coagulation state, could enhance the predictive value, which would help the future risk stratification of stable CAD patients.

It is uncertain whether plasma Lp(a) levels are associated with CVEs in patients with stable CAD although several studies have suggested an association of elevated Lp(a) concentrations with the risk of CVD including the primary prevention population, familial hypercholesterolemia, statin-treated patients, and so forth. Concerning the secondary prevention setting, especially in patients with stable CAD, the results were controversial due to unknown causes. The Copenhagen City Heart Study showed that for patients with Lp(a) concentrations between 30 and 76 mg/dL, 77 and 117 mg/dL, and above 117 mg/dL, the risk of MI increased by a 1.6-fold, 1.9-fold, and 2.6-fold compared with those below 5 mg/dL in the primary prevention setting [4]. Data in patients with FH showed that the high cardiovascular risk in these patients is further increased by their unusual Lp(a) concentrations, which tend to be 2–3-fold higher than in the general population [14]. Of note, in the secondary prevention
setting for patients with established CAD, inconsistent data were observed [15, 16]. Among 569 patients having undergone PCI and LDL-C levels were well-controlled (< 100 mg/dL), those with higher Lp(a) levels had significantly higher risk of MACEs compared to patients with lower Lp(a) levels, while elevated Lp(a) values were an independent predictor of mortality and recurrence of ACS [17]. Recently, our data proved that elevated Lp(a) levels were significantly associated with the risk of MACEs in patients with CAD combined with DM or pre-DM [18]. However, for patients with recent ACS who are treated with statins, Lp(a) concentration was not associated with MACEs [19]. Based on this situation, we consecutively enrolled 8,417 patients who had angiography-proven stable CAD and followed up for a median of 37.1 months. The data clearly showed that high Lp(a) (≥30 mg/dL) was resulted in 1.773-fold CVEs risk compared with low Lp(a) levels (< 10 mg/dL).

Next, previous including our studies supported the notion that Fib, a coagulation factor, is also a marker for risk of CVD [20, 21]. In this study, we re-examined the role of Fib in prediction of CVEs, and finally proved that high Fib was related to 1.613-fold higher risk of CVEs compared with the low Fib level. Till now, Lp(a) is thought to mediate clinical events by 3 main mechanisms, pro-atherogenic effects via its LDL-C moiety [3, 22], pro-inflammatory effects via its content of oxidized phospholipids [23] and anti-fibrinolytic effects via its apolipoprotein(a) component [24]. Lp(a) has high homology (75–99%) to plasminogen but lacks protease activity, and therefore has been hypothesized to inhibit fibrinolysis and mediate prothrombotic potential. Therefore, we hypnotized that there might be an enhanced impact of Lp(a) and Fib due to their pathophysiological action and previous evidence. A previous study indicated that high Fib associated with high Lp(a) levels significantly increased the risk of CAD [25], the study was designed for the primary prevention and was restricted by the male population. Hence, in this secondary prevention population, we divided our patients into 9 subgroups and found that the Fib-H with Lp(a)-H or Lp(a)-M group had 2.621-fold and 2.383-fold higher risk of CVEs, and the combination of Lp(a) and Fib categories improved the predictive value for CVEs beyond any biomarker alone.

Nevertheless, our study had several limitations. First of all, this is a study among Chinese population with stable CAD in the statin era, and whether the data applied to other populations need to be
testified. Secondly, the Lp(a) and Fib concentrations were only measured at baseline, and the
alterations of these biomarkers may also be clinically significant during the follow-up period. Finally,
as this was an observational study, further investigations are needed to clarify the underlying
mechanism of the associations.

Conclusions

In conclusion, according to the functional similarity of Lp(a) and Fib in pro-atherogenic and anti-
fibrinolytic effects, we examined the potential role of combining Lp(a) with Fib for predicting CVE in
8,417 patients with stable CAD and follow up a average of 37.1 months. Data firstly suggested that
Lp(a) plus Fib could significantly enhanced predicting value for cardiovascular outcome in patients
with stable CAD compared to that of Lp(a) or Fib alone.

Abbreviations
CVD, cardiovascular disease
CAD, coronary artery disease
CVEs, cardiovascular events
Lp[a], lipoprotein(a)
Apo(a), apolipoprotein(a)
Fib, fibrinogen
ACS, acute coronary syndrome
MI, myocardial infarction
TC, total cholesterol
TG, triglyceride
LDL-C, low-density lipoprotein-cholesterol
HDL-C, high-density lipoprotein-cholesterol

Declarations
Ethics approval and consent to participate: Our study was approved by the hospital’s ethics
review board (Fu Wai Hospital, National Center for Cardiovascular Diseases). All patients provided
informed written consents in this study.

Consent for publication: All the authors and participants have approved the manuscript for publication.

Availability of data and materials: The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Competing interests: The authors declare that they had no conflicts of interests to disclosure.

Funding: This work was partially supported by the Capital Health Development Fund (201614035), CAMS Major Collaborative Innovation Project (2016-I2M-1-011), the Fundamental Research Funds for the Central Universities (2018-F05), and Youth Research Fund of Peking Union Medical College (2018-XHQN03).

Authors’ contributions: Y. Z. completed the project, analyzed data, and wrote the manuscript. J.-L.J., Y.X.-C., and H.-W.Z. contributed to data collection. Q.H. and Y.-F.L. contributed to the collections of data. Y.-L.G., N.-Q.W., C.-G.Z. and Y. G. contributed to recruitment of patients, clinical diagnosis of disease, and data collection. H.-H.L., R.-X. X., C.-J. C., G. L., Q.D., and J. S. contributed to the collections of clinical data and procedure of laboratory examination. J.-J.L. designed the study, interpreted data, and contributed to critically revising the manuscript.

Acknowledgements: The authors wish to thank the participants and staff of this prospective population study.

References

1. Omland T, and White HD: State of the art: blood biomarkers for risk stratification in patients with stable ischemic heart disease. Clin Chem. 2017;63:165-176.

2. Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Das SR, Delling FN, Djousse L, Elkind MSV, Ferguson JF, Fornage M, Jordan LC, Khan SS, Kissela BM, Knutson KL, Kwan TW, Lackland DT, Lewis TT, Lichtman JH, Longenecker CT, Loop MS, Lutsey PL, Martin SS, Matsushita K, Moran AE, Mussolino ME, O’Flaherty M, Pandey A, Perak AM,
Rosamond WD, Roth GA, Sampson UKA, Satou GM, Schroeder EB, Shah SH, Spartano NL, Stokes A, Tirschwell DL, Tsao CW, Turakhia MP, VanWagner LB, Wilkins JT, Wong SS, Virani SS; and American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee: Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association. Circulation. 2019;139:e56-e528.

3. Tsimikas S: A Test in Context: Lipoprotein(a): Diagnosis, Prognosis, Controversies, and Emerging Therapies. J Am Coll Cardiol. 2017;69(6):692-711.

4. Kamstrup PR, Tybjaerg-Hansen A, Steffensen R, and Nordestgaard BG: Genetically elevated lipoprotein(a) and increased risk of myocardial infarction. JAMA. 2009;301:2331.

5. Clarke R, Peden JF, Hopewell JC, Kyriakou T, Goel A, Heath SC, Parish S, Barlera S, Franzosi MG, Rust S, Bennett D, Silveira A, Malarstig A, Green FR, Lathrop M, Gigante B, Leander K, de Faire U, Watkins H, and Farrall M: Genetic variants associated with Lp(a) lipoprotein level and coronary disease. N Engl J Med. 2009;361:2518-2528.

6. Nordestgaard BG, and Langsted A: Lipoprotein(a) as a cause of cardiovascular disease: insights from epidemiology, genetics, and biology. J Lipid Res. 2016;57:1953-1975.

7. Madsen CM, Kamstrup PR, Langsted A, Varbo A, and Nordestgaard BG: Lp(a) (Lipoprotein[a])-Lowering by 50 mg/dL (105 nmol/L) May Be Needed to Reduce Cardiovascular Disease 20% in Secondary Prevention: A Population-Based Study. Arterioscler Thromb Vasc Biol. 2019 Oct 3:ATVBAHA119312951.

8. Nordestgaard BG, Chapman MJ, Ray K, Boren J, Andreotti F, Watts GF, Ginsberg H, Amarenco P, Catapano A, Descamps OS, Fisher E, Kovanen PT, Kuivenhoven JA, Lesnik P, Masana L, Reiner Z, Taskinen MR, Tokgozoglu L, and Tybjaerg-Hansen A: Lipoprotein(a) as a cardiovascular risk factor: current status. Eur Heart J. 2010;31:2844–2853.

9. Langsted A, Kamstrup PR, and Nordestgaard BG: High lipoprotein(a) and high risk of mortality. Eur Heart J. 2019;40(33):2760-2770.

10. Schmidt K, Noureen A, Kronenberg F, and Utermann G: Structure, function, and genetics of lipoprotein(a). J Lipid Res. 2016;57:1339–1359.

11. Danesh J, Lewington S, Thompson SG, Lowe GD, Collins R, Kostis JB, and et al: Plasma fibrinogen level and the risk of major cardiovascular diseases and nonvascular mortality: an individual participant meta-analysis. JAMA. 2005;294:1799-1809.

12. Mjelva OR, Svingen GFT, Pedersen EKR, Seifert R, Kvaloy JT, Midttun O, Ueland PM, Nordrehaug JE, Nygård O, and Nilsen DWT: Fibrinogen and neopterin is associated with future myocardial infarction and total mortality in patients with stable coronary artery disease. Thromb Haemost. 2018;118:778-790.
13. Ang L, Behnamfar O, Palakodeti S, Lin F, Pourdjabbar A, Patel MP, Reeves RR, and Mahmud E: Elevated baseline serum fibrinogen: effect on 2-year major adverse cardiovascular events following percutaneous coronary intervention. J Am Heart Assoc. 2017;6.

14. Jansen AC, van Aalst-Cohen ES, Tanck MW, Trip MD, Lansberg PJ, Liem AH, van Lennep HW, Sijbrands EJ, and Kastelein JJ: The contribution of classical risk factors to cardiovascular disease in familial hypercholesterolaemia: data in 2400 patients. J Intern Med. 2004;256:482-490.

15. Schwartz GG, Ballantyne CM, Barter PJ, and et al: Association of lipoprotein(a) with risk of recurrent ischemic events following acute coronary syndrome: analysis of the dal-Outcomes Randomized Clinical Trial. JAMA Cardiol. 2018;3:164-168.

16. Zhou BY, Sun D, Wang C, Wu NQ, Guo YL, Zhu CG, Gao Y, Liu G, Dong Q, and Li JJ: Plasma Lipoprotein(a) Concentration Is Associated With the Coronary Severity but Not With Events in Stable Coronary Artery Disease Patients: A Chinese Cohort Study. Heart Lung Circ. 2019;28:1009-1017.

17. Konishi H, Miyauchi K, Kasai T, Tsuboi S, Ogita M, Naito R, Sai E, Fukushima Y, Katoh Y, Okai I, Tamura H, Okazaki S, and Daida H: Impact of lipoprotein(a) as residual risk on long-term outcomes in patients after percutaneous coronary intervention. Am J Cardiol. 2015;115:157-160.

18. Jin JL, Cao YX, Zhang HW, Sun D, Hua Q, Li YF, Guo YL, Wu NQ, Zhu CG, Gao Y, Dong QT, Liu HH, Dong Q, and Li JJ: Lipoprotein(a) and Cardiovascular Outcomes in Patients With Coronary Artery Disease and Prediabetes or Diabetes. Diabetes Care. 2019;42:1312-1318.

19. Schwartz GG, Ballantyne CM, Barter PJ, Kallend D, Leiter LA, Leitersdorf E, McMurray JJV, Nicholls SJ, Olsson AG, Shah PK, Tardif JC, and Kittelson J: Association of lipoprotein(a) with risk of recurrent ischemic events following acute coronary syndrome: analysis of the dal-Outcomes Randomized Clinical Trial. JAMA Cardiol. 2018;3:164-168.

20. Lindahl B: Markers of myocardial damage and inflammation in relation to long-term mortality in unstable coronary artery disease. FRISC Study Group. Fragmin during Instability in Coronary Artery Disease. N Engl J Med. 2000;343:1139-1147.

21. Zhang Y, Zhu CG, Guo YL, Xu RX, Li S, Dong Q, and Li JJ: Higher fibrinogen level is independently linked with the presence and severity of new-onset coronary atherosclerosis among Han Chinese population. PLoS One. 2014;9:e113460.

22. Tsimikas S, Fazio S, Ferdinand KC, Ginsberg HN, Koschinsky ML, Marcovina SM, Moriarty PM, Rader DJ, Remaley AT, Reyes-Soffer G, Santos RD, Thanassoulis G, Witztum JL, Danthi S, Olive M, and Liu L: NHLBI Working Group recommendations to reduce lipoprotein(a)-mediated risk of cardiovascular disease and aortic stenosis. J Am Coll Cardiol. 2018;71:177-192.

23. van der Valk FM, Bekkering S, Kroon J, Yeang C, Van den Bossche J, van Buul JD, Ravandi A, Nederveen AJ, Verberne HJ, Scipione C, Nieuwdorp M, Joosten LA, Netea MG, Koschinsky ML, Witztum
JL, Tsimikas S, Riksen NP, and Stroes ES: Oxidized phospholipids on lipoprotein(a) elicit arterial wall inflammation and an inflammatory monocyte response in humans. Circulation. 2016;134:611-624.

24. Boffa MB, and Koschinsky ML: Lipoprotein (a): truly a direct prothrombotic factor in cardiovascular disease? J Lipid Res. 2016;57:745-757.

25. Cantin B, Després JP, Lamarche B, Moorjani S, Lupien PJ, Bogaty P, Bergeron J, and Dagenais GR: Association of fibrinogen and lipoprotein(a) as a coronary heart disease risk factor in men (The Quebec Cardiovascular Study). Am J Cardiol. 2002;89:662-666.

Tables

Table 1 Baseline characteristics of study patients
Clinical characteristics	Total n=8417	Events n=395	No events n=8022	p value
Age, years	57.4±10.8	61.9±10.2	57.2±10.8	<0.001
Male sex, (%)	6032(71.7)	306(71.5)	5726(71.7)	0.956
BMI (kg/m²)	25.9±4.6	25.5±3.3	25.9±4.6	0.099
Hypertension, (%)	62	68.4	61.6	0.005
Dyslipidemia, (%)	74.8	72.8	74.9	0.331
Diabetes Mellitus, (%)	27.5	36.3	27	<0.001
Family history of CAD, (%)	13.6	14.3	13.5	0.097
Current smoker, (%)	54.4	52.7	54.5	0.484
Laboratory findings				
TC (mmol/L)	4.16±1.17	4.17±1.25	4.15±1.17	0.711
LDL-C (mmol/L)	2.53±1.01	2.53±1.10	2.53±1.01	0.990
HDL-C (mmol/L)	1.06±0.29	1.05±0.29	1.06±0.29	0.923
TG (mmol/L)	1.50(1.10-2.10)	1.48(1.05-2.09)	1.50(1.10-2.10)	0.446
Lipoprotein(a) (mg/dL)	15.18(6.74-36.79)	18.83(8.86-43.49)	15.01(6.66-36.39)	0.001
apoA1 (g/L)	1.33±0.29	1.34±0.30	1.33±0.29	0.306
apoB (g/L)	0.92±0.30	0.92±0.30	0.92±0.30	0.974
Fibrinogen (g/L)	3.24±0.79	3.32±0.81	3.23±0.78	0.012
D-dimer (ug/mL)	0.42±0.62	0.53±0.64	0.42±0.62	<0.001
Medications at admission				
Statins, (%)	75.5	68.6	75.8	0.005
Aspirin, (%)	83.5	81.3	83.6	0.345
ACEI, (%)	12.5	15	12.4	0.237
ARB, (%)	12.8	10.5	12.9	0.330
β-blockers, (%)	48.2	50.8	48	0.402
CCB, (%)	19.2	20.3	19.1	0.623

Data are expressed as mean ± SD or median (25th–75th percentile) unless otherwise indicated.

ACEIs, ACE inhibitors; ARBs, angiotensin receptor blockers; CCB, calcium channel blocker.
Table 2 Association of fibrinogen and Lp(a) categories with clinical outcomes

Risk Factor	Tertile/Range	KM rates(%)	Hazard Ratio	(95% CI)	p value
Lp(a) categories					<0.001
Total (mg/dL)		3.5	Reference		
Lp(a)-L (<10)		5.3	1.468	1.142-1.886	0.003
Lp(a)-M (10-29.9)		5.6	1.580	1.227-2.033	<0.001
Fibrinogen categories					<0.001
Total (g/L)		4.0	Reference		
Fib-L(<2.84)		4.4	1.123	0.867-1.455	0.380
Fib-M(2.85-3.42)		6.1	1.631	1.282-2.074	<0.001
Combined categories		3.3	Reference		<0.001
G1(Lp(a)-L+Fib-L)		3.5	0.697-1.707	0.704	
G2(Lp(a)-L+Fib-M)		4.0	0.771-1.977	0.381	
G3(Lp(a)-L+Fib-H)		4.1	0.741-1.828	0.509	
G4(Lp(a)-M+Fib-L)		4.9	1.406	0.914-2.162	0.121
G5(Lp(a)-M+Fib-M)		7.0	2.135	1.446-3.152	<0.001
G6(Lp(a)-H+Fib-L)		4.8	1.348	0.849-2.140	0.206
G7(Lp(a)-H+Fib-M)		5.4	1.578	1.026-2.426	0.038
G8(Lp(a)-H+Fib-H)		7.2	2.215	1.506-3.257	<0.001

Data are expressed as HR (95%CI). L, low; M, medium, H, high.
Table 3 Adjusted association of fibrinogen and Lp(a) categories with clinical outcomes
Risk Factor	Tertile/Range	KM rates(%)	Hazard Ratio	(95% CI)	p value
Lp(a) categories	Total				0.001
	Lp(a)-L (<10)	3.5	Reference		
	Lp(a)-M (10-29.9)	5.3	1.531	1.128-2.079	0.006
	Lp(a)-H (≥30)	5.6	1.786	1.315-2.426	<0.001
Fibrinogen	Total				0.002
categories					
	Fib-L(<2.84)	4.0	Reference		
	Fib-M(2.85-3.42)	4.4	1.001	0.726-1.379	0.996
	Fib-H(≥3.43)	6.1	1.558	1.162-2.089	0.003
Combined	Total				0.002
categories					
	G1(Lp(a)-L+Fib-L)	3.3	Reference		
	G2(Lp(a)-L+Fib-M)	3.5	1.203	0.687-2.107	0.518
	G3(Lp(a)-L+Fib-H)	4.0	1.476	0.831-2.619	0.184
	G4(Lp(a)-M+Fib-L)	4.1	1.482	0.846-2.596	0.169
	G5(Lp(a)-M+Fib-M)	4.9	1.511	0.866-2.636	0.146
	G6(Lp(a)-M+Fib-H)	7.0	2.307	1.409-3.777	0.001
	G7(Lp(a)-H+Fib-L)	4.8	1.912	1.085-3.369	0.025
	G8(Lp(a)-H+Fib-M)	5.4	1.707	0.984-2.962	0.057
	G9(Lp(a)-H+Fib-H)	7.2	2.656	1.628-4.333	<0.001

Data are expressed as HR (95%CI). L, low; M, medium, H, high. Covariates used for adjustment are age, sex, BMI, diabetes mellitus, hypertension, dyslipidemia, family history of CAD, active smoking, D-dimer, and statin treatment.
Table 4 C-statistic of Lp(a) and Fib categories for predicting CVEs

Models	C-statistic (95% CI)	ΔC-statistic (95% CI)	p value
Original model	0.633(0.603-0.664)	-	-
Original model + Lp(a) categories	0.643(0.612-0.674)	0.010(-0.001-0.023)	0.088
Original model + Fib categories	0.637(0.606-0.668)	0.003(-0.005-0.012)	0.443
Original model + combined categories	0.647(0.616-0.678)	0.013(0.002-0.027)	0.033

Original model included traditional risk factors as age, sex, BMI, diabetes mellitus, hypertension, dyslipidemia, family history of CAD, active smoking
Figure 1

The KM rates of CVEs in Fib, Lp(a), and combined groups.
Figure 2
The event-free survival rate in Fib, Lp(a), and combined groups.