Not far enough: Public health policies to combat COVID-19 in Mexico's states

Felicia Knaul1,2,3,4, Héctor Arreola-Ornelas1,3,4,5, Thalia Porteny1,6, Michael Touchton1,7*, Mariano Sánchez-Talanquer8, Óscar Méndez1,4, Salomón Chertorivski9, Sonia Ortega3,4, Mariana Chudnovsky9, Pablo Kuri10, the group from the Observatory for the Containment of COVID-19 in the Americas§

1 Institute for the Advances Study of the Americas, University of Miami, Miami, Florida, United States of America, 2 Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, United States of America, 3 Tómateo a Pecho, A.C., Ciudad de México, México, 4 Consejo Promotor de Universalidad y Competitividad en Salud, Fundación Mexicana para la Salud, A.C., Ciudad de México, México, 5 Research Center for Health Sciences, Anahuac University North Campus, Mexico City, Mexico, 6 Department of Community Health, Tufts University, Medford, MA, United States of America, 7 Department of Political Science, School of Arts and Sciences, University of Miami, Miami, Florida, United States of America, 8 Division of Political Science, Colegio de Mexico, Mexico City, Mexico, 9 Division of Public Administration, Center for Economic Research and Teaching (CIDE), Mexico City, Mexico, 10 Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico

§Membership of the group from the Observatory for the Containment of COVID-19 in Latin America is provided in the Acknowledgments.

* miketouchton@miami.edu

Abstract

Background
Mexican state governments’ actions are essential to control the COVID-19 pandemic within the country. However, the type, rigor and pace of implementation of public policies have varied considerably between states. Little is known about the subnational (state) variation policy response to the COVID-19 pandemic in Mexico.

Material and methods
We collected daily information on public policies designed to inform the public, as well as to promote distancing, and mask use. The policies analyzed were: School Closure, Workplace Closure, Cancellation of Public Events, Restrictions on Gatherings, Stay at Home Order, Public Transit Suspensions, Information Campaigns, Internal Travel Controls, International Travel Controls, Use of Face Masks We use these data to create a composite index to evaluate the adoption of these policies in the 32 states. We then assess the timeliness and rigor of the policies across the country, from the date of the first case, February 27, 2020.

Results
The national average in the index during the 143 days of the pandemic was 41.1 out of a possible 100 points on our index. Nuevo León achieved the highest performance (50.4); San Luis Potosí the lowest (34.1). The differential between the highest versus the lowest performance was 47.4%.
Conclusions
The study identifies variability and heterogeneity in how and when Mexican states implemented policies to contain COVID-19. We demonstrate the absence of a uniform national response and widely varying stringency of state responses. We also show how these responses are not based on testing and do not reflect the local burden of disease. National health system stewardship and a coordinated, timely, rigorous response to the pandemic did not occur in Mexico but is desirable to contain COVID-19.

Introduction
Latin America became a global epicenter of SARS-CoV2 virus infections and deaths from its associated disease, COVID-19, over the summer of 2020. The pandemic that started in Wuhan, China, at the beginning of 2020, quickly passed to Europe, Canada and the USA [1–3]. Despite the fact that Latin America only has 8% of the global population, since the last week of May it has consistently contributed more than 40% of the daily deaths in the world [4, 5]. Mexico has become an epicenter within the epicenter [6–8] with total accumulated deaths and daily deaths at levels that are highly disproportionate to its population [6–8]. Mexico accounts for roughly 20% of Latin America’s population. The current total deaths in Mexico due to COVID-19 (approximately 320,000), is roughly 40% of the regional total of ~723,000, which is disproportionate to Mexico’s population [9]. The federal response has been limited in each country, placing the public health policymaking burden on the states. The states have responded in widely distinct ways, with substantial variability in policies as well as in the number of cases, deaths and public health responses from authorities [10]. The result in Mexico is 32 distinct pandemics, not one, and important lessons for countries across the region and around the world.

Mexico is a federal country comprised of 32 partially self-governing states. Legal regulations grant states broad responsibilities as health authorities within the National Health System. These responsibilities include containing epidemics. As stated in the General Health Law [11], state governments have the obligation to implement health security measures according to the magnitude of the epidemic and establish mechanisms to reduce the mobility of inhabitants within its borders. This important role has been reinforced throughout the COVID-19 pandemic. When the national government declared the country to be in phase 3 on April 21, the Ministry of Health ratified it through an agreement published in the Official Gazette of the Federation. The agreement gives state governments the responsibility to implement the necessary and adequate public policies to achieve the physical distancing of the population [12].

Mexican state governments’ actions are essential to control the pandemic within the country [13]. However, the type, rigor and pace of implementation of public policies have varied considerably between states, despite the fact that the World Health Organization (WHO) and the international scientific community recommended implementing immediate hygiene and physical distancing measures to reduce the speed of contagion [14–18]. In turn, we expect that the differences in states’ implementation of health measures to control COVID-19 will have a direct and important impact on the health of the Mexican population, as well as on the possibility of controlling the pandemic at the national level. Moreover, the heterogeneity in the governmental response between the states of the country has occurred against the background of pre-existing territorial and social inequalities in the coverage and quality of health services [19, 20]. The result will likely be broad heterogeneity in health outcomes across the Mexican states.
with some states far outperforming others in containing the pandemic, treating infected citizens, and supporting their recovery.

In Mexico, federal measures to institute physical distancing or the so-called "National Healthy Distance Day" began on March 23, 2020, more than three weeks after the first recorded case in the country. On March 14th, public education authorities announced that activities were suspended beginning on the 20th of the same month. On March 24, the official beginning of phase 2, "community transmission", was declared at the national level, thus suspending non-essential government activities and reinforcing confinement measures. During the months of March, April, May and the first weeks of June, 2020, the national health authorities did not recommend the use of face masks for the general population, despite the evidence suggesting that their use is effective in mitigating contagion [2, 15, 21–23]. Thus, compared to most Latin American countries, Mexico lagged behind in the application of national measures of physical distancing and containment of the epidemic, starting from the date of the first detected case of COVID-19. However, the Mexican states each reacted differently relative to the federal response. Fig 1 in S1 Appendix presents Mexico’s national policy response over the course of the pandemic compared to seven other Latin American countries for the indicators we collect.

The purpose of this paper is to present an analysis of the state-level variation in the public health response to the epidemic in Mexico. The analysis is drawn from a unique, daily database of ten public policy measures and how they were implemented sub-nationally. These measures are: 1. School closings; 2. Working from home for non-essential workers, 3. Cancellation of public events, 4. Suspension of public transport, 5. The development of information campaigns, 6. Restriction of trips within the state, 7. Control of international trips, 8. Stay at home guidelines, 9. Restrictions on the size of gatherings and 10. Guidelines for mask coverage.

Our analysis is comprised of a three-step process. First, we analyze each of these 10 policies for each state. Second, we build a composite index, taking data from February 27 (the first case reported in the country) to July 19, 2020. Third, we describe the heterogeneity between the states, in terms of the efficacy and promptness of their response to contain population mobility and promote the use of public health measures among the population.

Materials and methods
Public health policy variables

We developed an ecological study design, with data collection beginning in April 2020 and extending backward to the first recorded case in the country. The study extends to November 30th, 2020. We analyzed 10 variables that are part of the array of policies to contain SARS-CoV2 in each of the 32 Mexican states. Daily data on these policies begins on February 27th, which corresponds to the date of the first case reported in Mexico up until November 30th. We focus on indicators specific to the mobility restrictions and containment of the virus, as these can help explain the health impact in terms of the cases and deaths brought by COVID-19.

We examined whether each measure was being implemented each day, from the date of the first case detected in the country. If it was, we ascertained how rigorously the policy was implemented by coding its application as partial or full. To ensure the quality of the data, a double-blind review was carried out between two of the members of the group. In cases of discrepancy, the whole working group deliberated on the coding until consensus was reached. The breakdown of sources by entity is presented in the methodological appendix (Table 1A in S1 Appendix). Finally, we weigh the timeliness of each of these measures, determined by the date of their adoption.
Table 1 describes the 10 variables and the possible values in their measurement. We assign several discrete levels to the variables to achieve greater granularity in the analysis. These values were determined through deliberations with the research team and advice from external scientists such as the OxCGRT COVID policy tracking team at Oxford University. The variables "school closings", "work from home", "cancellation of public events", "suspension of public transport and / or closure of public transport systems" are categorical and take values of 0 when they have not been implemented, 0.5 when implementation is partial and 1 when it is total. The variable "development of information campaigns" is evaluated through the relative presence or absence of an informational strategy about the virus, the disease, its consequences and containment measures. Values of 0 are assigned if there were no campaigns; 0.5 represents

Identifier	Name	Description	Coding
I1	Record of School and University Closures	0: No Closure; 0.5: Partial Closure; 1: Complete Closure	
	School Closure		
I2	Record of Work-Place Closures	0: No Closure; 0.5 = Partial Business Closure 1 = Complete Closure	
	Workplace Closure		
I3	Record of the Cancellation of Public Events	0: No Closure; 0.5: Partial Closure; 1: Complete Closure	
	Cancellation of Public Events		
I4	Record of Legal Restrictions on Private Gatherings	0: No Restrictions; 0.25: Bans on Gatherings of More than 1000 People; 0.5: Bans Restricting Gatherings between 100 and 1000; 0.75: Bans Restricting Gatherings between 50 and 100; 1: Bans on Gatherings of More than 10 People	
	Restrictions on Gatherings		
I5	Record of "Shelter in Place" and other Orders Instructing Individuals to Stay at Home	0: No Order; 0.5: Partial Order; 1: Full Order	
	Stay at Home Order		
I6	Record of Suspension of Public Transit	0: No Closure; 0.5: Partial Closure; 1: Full Closure	
	Public Transit Suspensions		
I7	Record of Public Information/Health Campaigns	0: No Campaign; 0.5: Very Limited Campaign 1: Full Campaign	
	Information Campaigns		
I8	Record of Restrictions on Internal Travel	0: No Closure; 0.5: Partial Closure; 1: Full Closure	
	Internal Travel Controls		
I9	Record of Restrictions on International Travel	0: No Closure; 0.5: Partial Closure; 1: Full Closure	
	International Travel Controls		
I10	Record of Mask Mandates	0: No Masks Required 0.5: Masks Recommended 1: Masks Required in Public	
	Use of Face Masks		

https://doi.org/10.1371/journal.pone.0251722.t001
the existence of campaigns only of a federal nature; and 1 when there is a state campaign. The variable "travel restrictions within the state" records the implementation of restrictions on internal movement in the state and takes values of 0 when they are not applied; 0.5 when restriction of movement is recommended; and 1 when the state restricted internal movement.

The variable "international travel control guidelines" records international movement restrictions, taking values of 0 when no action was taken; 0.33 when only screening and/or monitoring is applied to international travelers; 0.66 when mandatory quarantine is ordered for travelers in high-risk regions; and 1 when the travel ban to and from high-risk regions is implemented. However, some states may not respond adequately to this variable because they do not have an international sea or airport; Consequently, giving a value of 0 to the states that do not have borders, ocean ports or airports would penalize the state unfairly. For this reason, states without forms of international travel were assigned the value of the daily national average, which corresponds to the states that did respond to said public policy. The stay-at-home guidelines variable measures orders to shelter or confine oneself to the home and takes values of 0 when no recommendation has been issued; 0.33 when there is a recommendation not to leave the house; 0.66 when the instruction is not to leave home except in "essential" cases; and 1 when the closure is complete or requires not leaving the home with minimal exceptions. The variable “restrictions on the size of meetings” refers to the cut-off size on the prohibitions of private meetings, taking values of 0 in the absence of any indication in this regard; 0.25 when the restriction is for meetings of more than 1,000 people; 0.5 applies when the meetings are between 100 and 1,000 people; 0.75 to meetings between 10 and 100; and 1 to meetings of less than 10 people. Table 1 presents the coding for each indicator included in our public policy index. Table 3 presents the mean and standard deviation for each indicator, by state, for the duration of the timeframe under investigation.

As of April 6, the WHO recommended the use of face masks. Therefore, from that date on, we retrospectively added a variable to describe its implementation in each state [24, 25]. This variable takes values of 0 if there are no guidelines; 0.5 when there is a recommendation to use masks; and 1 when mask use is mandatory.

Public policy adoption index

We generated an index that combines the ten variables to create a summary view of state governments’ actions and allows for direct comparisons of how they inform the public, restrict population mobility, maintain public safety, and manage the economic re-opening.

The index is constructed as presented in the following Eq 1:

\[
IPP_i = \left\{ \sum_{j=1}^{n} I_j \star \left[\left(\frac{d_j}{D_t} \right)^\frac{1}{2} \right] /10 \right\} * 100
\]

Whereby:

\(IPP_i\) = Public policy adoption index in country/state \(i\) in time \(t\).

\(I_j\) = Public Policy Index \(j\), where \(j\) goes from 1 to \(n = 10\).

\(D_t\) = Days from the first registered case until time \(t\).

\(d_j\) = Days from the implementation of policy \(j\) until time \(t\).

The \(IPP_i\) is constructed with the sum of each of the values from the 10 variables, weighted by the day of implementation of each one in relation to the appearance of the first case; the index gives greater weight to early implementation relative to the first case in the country. As such, the index acquires higher values the earlier a certain measure has been implemented.
The ratio \(\frac{dt}{Dt} \) is continuous and goes from 0, when policy \(j \) has not yet been implemented in state \(i \) at time \(t \), up to 1, in instances where public policy has been implemented at the same time \(t \) in which the first case appears. This makes it possible to take into account that public containment policies have less effect on containing the virus the later they are adopted. To this end, we raise the ratio \(\frac{dt}{Dt} \) to the power \((1/2) \), to reflect decreasing policy efficacy with delays in policy implementation. For more detail, please review the methodological S1 Appendix.

In the aggregate, each state \(i \) receives a daily score between 0 and 10, which reflects the sum of the different policy dimensions and then normalized to 100. The maximum value of the index is 100 but obtaining it would not be realistic or desirable since it would imply a total closure of the state the day after the first case.

Sources of information

We gathered data from three types of publicly available sources. First, we reviewed official government websites and state registers for each of the 32 states and the federal district, to capture laws, decrees, and news items specifying implementation of each public policy variable. Then, we cross-referenced this material against multiple news’ outlets’ database of Mexican state laws and decrees. We also used official newspapers, local newspapers and news shared by representatives on social media accounts such as Twitter. Finally, we used Table 1A in S1 Appendix for the breakdown of sources by entity. The data that we present in this article are from February 26 to November 30th, 2020.

A double-blind review was carried out by two of the authors to ensure the quality of the data. The review first consisted of randomly selecting members of the group to review randomly selected scores from among those that others coded. Next, these coders re-coded data for those states without having seen the original scores. The second coder did not know who coded the original data and the original coder did not know who would do the review. In cases of discrepancy, the whole working group deliberated on the coding until consensus was reached.

Results

Table 2 presents the main sociodemographic statistics by state [26, 27].

Table 3 presents descriptive statistics of the 10 public policy variables, up to November 30, 2020. Results indicate that “School closing” was the most homogeneously implemented policy. The national weighted average for this variable is 0.92, with 255 days of implementation. However, the length of time the policy has been in place ranges from 243 days of implementation in Puebla, to 200 days in Querétaro and Tlaxcala.

This measure was followed by “Public information campaigns” policy, with a national level of 0.89 and 257 days of implementation, and “mask-wearing guidelines”, with 0.69 and 227 days of implementation. The public policy with the lowest rate of implementation was “international travel restrictions”, which only reached a national level of 0.08, with 90 days of implementation. The Mexican federal government endorsed the use of facemasks on April 10th, later than other policies. There is substantial variation in its implementation. In this case, the values range from 0.24 in Chiapas, to 0.86 in Nuevo León, the state with the best score, followed by the Ciudad de México, Quintana Roo, and Tamaulipas with 0.84, and Puebla (83.1). The national average for this variable since the period the policy was implemented is 0.69. This is higher than restrictions on international travelers, travel restrictions within the state, suspension of public transport, and suspension of work, that some states implemented in the first days of March.
Table 2. Main sociodemographic statistics by state.

State	Population (2020)	Marginalization Index (2015)	Level of marginalization (2015)	GDP Per Capita (2018)	% Population Below the Poverty Line (2018)	Public spending on health (as % of GDP) (2018)	Public Health Spending Per Capita (2018)
Aguascalientes	1,434,635	-0.89	Low	218,086	26.2	2.4	5,633
Baja California	3,634,868	-1.1	Very Low	204,619	23.3	2.5	5,065
Baja California Sur	804,708	-0.6	Low	289,263	18.1	2.3	6,524
Campeche	1,000,617	0.46	High	549,456	46.2	1.0	6,020
Coahuila	5,730,367	2.41	Very High	145,958	22.5	2.0	5,381
Colima	3,801,487	-0.6	Low	36,546	30.9	3.2	5,841
Chiapas	3,218,720	-1.1	Very Low	105,820	76.4	5.3	3,294
Chihuahua	785,153	-0.73	Low	955,086	26.3	2.8	5,575
Mexico City	9,053,990	-1.45	Very Low	401,060	30.6	2.9	11,947
Durango	1,868,996	0.05	Medium	137,777	37.3	3.4	4,863
Guanajuato	6,228,175	-0.07	Medium	157,075	43.4	2.8	4,538
Guerrero	3,657,048	2.56	Very High	83,837	66.5	4.9	4,181
Hidalgo	3,086,414	0.5	High	120,988	43.8	3.2	4,056
Jalisco	8,409,693	-0.82	Low	187,299	28.4	2.4	4,646
State of Mexico	17,427,790	-0.57	Low	112,403	42.7	3.8	4,233
Michoacan	4,825,401	0.5	High	115,901	46.0	3.2	3,821
Morelos	2,044,058	-0.2	Medium	121,557	50.8	3.5	4,396
Nayarit	1,288,571	0.31	Medium	119,990	34.8	4.0	4,779
Nuevo Leon	5,610,153	-1.39	Very Low	302,258	14.5	1.6	5,033
Oaxaca	4,143,593	2.12	Very High	84,957	66.4	4.6	3,943
Puebla	6,889,660	0.69	High	110,751	58.9	3.1	3,709
Queretaro	2,279,637	-0.49	Low	231,246	27.6	1.9	4,734
Quintana Roo	1,723,259	-0.37	Medium	205,234	27.6	2.4	4,918
San Luis Potosi	2,866,142	0.58	High	175,802	43.4	2.3	4,033
Sinaloa	3,156,674	-0.24	Medium	155,199	30.9	2.9	4,681
Sonora	3,074,745	-0.7	Low	243,736	28.2	2.5	6,013
Tabasco	2,572,287	0.3	Medium	191,878	53.6	2.6	5,234
Tamaulipas	3,650,602	-0.62	Low	178,564	35.1	3.1	5,563
Tlaxcala	1,380,011	-0.2	Medium	91,855	48.4	4.3	4,140
Veracruz	8,539,862	1.14	High	117,845	61.8	3.8	4,606
Yucatan	2,259,098	0.51	High	144,795	40.8	4.3	6,405
Zacatecas	1,666,426	0.01	Medium	121,356	46.8	3.8	4,729
National	128,112,840	-0.02	Medium	173,216	41.9	2.8	5,223

/1 Consejo Nacional de Población (CONAPO). (2019). “Cuadernillos Estatales de las Proyecciones de la Población de México y de las Entidades Federativas, 2016–2050. Proyecciones de la Población en México y de las Entidades Federativas”. Recuperado el 26 de junio de 2020 de https://www.gob.mx/conapo/documentos/cuadernillos-estatales-de-las-proyecciones-de-la-poblacion-de-mexico-y-de-las-entidades-federativas-2016-2050-208243?idiom=es
/2 Consejo Nacional de Población (CONAPO). (2016). “Índice de marginación por entidad federativa y municipio 2015”. Recuperado el 26 de junio de 2020 de https://www.gob.mx/conapo/documentos/indice-de-marginacion-por-entidad-federativa-y-municipio-2015
3/ Instituto Nacional de Estadística y Geografía (INEGI). (2019). “PIB por Entidad Federativa (PIBE). Base 2013”. Recuperado el 26 de junio de 2020 de https://www.inegi.org.mx/programas/pibent/2013/
4/ Consejo Nacional de Evaluación de la Política de Desarrollo Social (CONEVAL). (s.f). “Pobreza en México. Resultados de pobreza en México 2018 a nivel nacional y por entidades federativas”. Recuperado el 26 de junio de 2020 de https://www.coneval.org.mx/Medicion/MP/ Paginas/Pobreza-2018.aspx
5/ Dirección General de Información en Salud—Secretaría de Salud (DGIS-SS)). (s.f). “Recursos en Salud. Cubos Dinámicos”. Recuperado el 26 de junio de 2020 de http://www.dgis.salud.gob.mx/contenidos/basededatos/bdc_recursos_gobmx.html

https://doi.org/10.1371/journal.pone.0251722.t002
Table 3. Descriptive statistics of the 10 public policy variables by state. From February 27 to November 30, 2020.

State	School closing Mean	Workplace closing Mean	Cancel public events Mean	Close public transport Mean	Public information campaigns Mean	Restrictions on internal movement Mean	International travel restrictions Mean	Stay at home measures Mean	Restrictions on sizes of gatherings Mean	Mask-wearing guidelines Mean
Aguascalientes	0.92	0.40	0.66	0.14	0.91	0.00	0.00	0.68	0.66	0.82
Abílmaría	0.27	0.07	0.27	0.29	0.00	0.00	0.39	0.24	0.36	
Days of implementation	256	252	263	248	253	0	0	253	246	237
Baja California	0.92	0.36	0.94	0.00	0.91	0.21	0.19	0.68	0.66	0.41
Abílmaría	0.27	0.15	0.25	0.29	0.25	0.24	0.24	0.39	0.24	0.19
Days of implementation	249	245	253	246	242	106	243	239	221	
Baja California Sur	0.92	0.40	0.83	0.00	0.91	0.13	0.17	0.68	0.66	0.77
Abílmaría	0.27	0.16	0.30	0.29	0.22	0.24	0.24	0.39	0.24	0.42
Days of implementation	256	252	258	253	244	262	253	246	213	
Campeche	0.92	0.21	0.58	0.00	0.46	0.16	0.16	0.40	0.45	0.81
Abílmaría	0.26	0.22	0.34	0.14	0.23	0.23	0.36	0.34	0.39	
Days of implementation	256	246	264	253	259	257	252	246	225	
Coahuila	0.92	0.36	0.63	0.00	0.90	0.12	0.00	0.73	0.67	0.79
Abílmaría	0.27	0.15	0.30	0.30	0.21	0.00	0.35	0.24	0.41	
Days of implementation	256	252	257	251	235	0	252	247	220	
Colima	0.93	0.45	0.93	0.17	0.93	0.32	0.00	0.68	0.66	0.40
Abílmaría	0.25	0.13	0.25	0.25	0.15	0.00	0.38	0.24	0.20	
Days of implementation	259	259	259	259	242	0	254	246	225	
Chiapas	0.92	0.33	0.94	0.26	0.87	0.00	0.00	0.73	0.64	0.238
Abílmaría	0.27	0.16	0.24	0.25	0.30	0.00	0.35	0.26	0.12	
Days of implementation	256	252	261	241	256	0	0	250	246	221
Chihuahua	0.91	0.31	0.64	0.12	0.86	0.20	0.46	0.63	0.67	0.82
Abílmaría	0.29	0.20	0.36	0.21	0.34	0.21	0.32	0.22	0.38	
Days of implementation	253	252	251	226	240	249	256	253	252	231
Estado de México	0.92	0.33	0.73	0.13	0.91	0.00	0.00	0.68	0.69	0.8345
Abílmaría	0.27	0.15	0.31	0.22	0.29	0.00	0.39	0.19	0.36	
Days of implementation	256	256	259	241	253	0	0	253	261	236
Durango	0.91	0.29	0.54	0.19	0.93	0.30	0.16	0.73	0.66	0.82
Abílmaría	0.29	0.18	0.34	0.23	0.26	0.18	0.34	0.25	0.38	
Days of implementation	253	252	243	250	258	251	251	255	243	229
Guanajucho	0.93	0.27	0.76	0.32	0.93	0.31	0.00	0.59	0.68	0.42
Abílmaría	0.25	0.20	0.36	0.24	0.25	0.24	0.00	0.33	0.20	0.19
Days of implementation	259	252	259	243	259	235	0	247	259	232
Guerrero	0.91	0.34	0.57	0.11	0.91	0.16	0.15	0.57	0.67	0.41
Abílmaría	0.29	0.14	0.35	0.21	0.29	0.23	0.23	0.28	0.22	0.19
Days of implementation	253	252	252	215	253	242	244	255	252	228

Continued
Table 3. (Continued)

State	Mean	Std. Dev.	Days of implementation
	0.91	0.29	253 252 252 255 255 243 0 259 252 221
Hidalgo	0.93	0.25	259 252 263 259 259 259 252 256 263 228
Jalisco	0.91	0.29	253 252 260 237 259 238 0 253 260 237
Mexico City	0.91	0.29	258 252 258 244 274 235 0 264 252 234
Michoacan	0.91	0.29	253 252 260 259 269 259 259 269 252 229
Morelos	0.93	0.26	258 252 258 244 274 235 0 264 252 234
Nayarit	0.91	0.29	253 252 260 259 269 259 259 269 252 229
Nuevo Leon	0.91	0.29	253 251 260 231 260 226 0 260 252 229
Oaxaca	0.91	0.29	253 252 263 245 245 242 265 254 252 228
Puebla	0.91	0.29	243 246 252 224 259 222 0 253 252 231
Queretaro	0.94	0.25	260 252 254 228 266 0 0 264 252 229
Quintana Roo	0.91	0.29	253 253 245 242 239 252 0 278 252 232
San Luis Potosi	0.91	0.29	253 253 260 231 253 0 0 253 259 224

(Continued)
The second and third least implemented measures were "close public transport", with an average level of 0.17 and 212 days, and "restrictions on internal movement", with an average level of 0.21 and 205 days.

It should be noted that the correlation of each of the 10 individual public policy variables in the observed period (February 27 to November 30) was very high, ranging between 0.70 and 0.95. The use of face masks behaves differently from the others as expected (see methodological S1 Appendix). Please also see Table 2A in S1 Appendix for state-level data on total deaths, mortality rate, and fatality rate. See Table 3A in S1 Appendix of the Appendix for correlations.

Table 3. (Continued)

State	School closing	Workplace closing	Cancel public events	Close public transport	Public information campaigns	Restrictions on internal movement	International travel restrictions	Stay at home measures	Restrictions on sizes of gatherings	Mask-wearing guidelines
Sinaloa	Mean 0.92	0.29	0.41	0.21	0.27	0.00	0.60	0.68	0.40	
	Std. Dev. 0.27	0.21	0.15	0.25	0.27	0.22	0.00	0.33	0.21	0.20
Days of	256	252	256	252	256	241	0	253	256	223
implementation										
Sonora	Mean 0.93	0.26	0.62	0.21	0.26	0.21	0.71	0.93	0.43	
	Std. Dev. 0.25	0.23	0.36	0.25	0.25	0.23	0.25	0.33	0.25	0.17
Days of	259	253	259	248	259	255	211	253	259	241
implementation										
Tabasco	Mean 0.91	0.28	0.43	0.26	0.47	0.28	0.00	0.58	0.68	0.81
	Std. Dev. 0.24	0.24	0.19	0.25	0.12	0.24	0.00	0.28	0.20	0.39
Days of	253	252	262	250	263	255	253	262	225	
implementation										
Tabasco	Mean 0.93	0.27	0.66	0.24	0.93	0.28	0.00	0.51	0.93	0.83453
	Std. Dev. 0.25	0.24	0.36	0.25	0.25	0.24	0.00	0.31	0.24	0.37
Days of	259	249	262	250	259	258	0	253	262	231
implementation										
Tabasco	Mean 0.94	0.26	0.58	0.17	0.94	0.18	0.00	0.51	0.89	0.80
	Std. Dev. 0.25	0.23	0.37	0.24	0.25	0.22	0.00	0.31	0.31	0.40
Days of	260	252	248	226	260	208	0	253	248	222
implementation										
Veracruz	Mean 0.93	0.27	0.41	0.24	0.94	0.26	0.00	0.51	0.65	0.43
	Std. Dev. 0.25	0.24	0.14	0.25	0.25	0.24	0.00	0.31	0.19	0.17
Days of	259	252	262	245	260	244	0	253	262	239
implementation										
Yucatan	Mean 0.93	0.35	0.65	0.17	0.93	0.36	0.18	0.73	0.68	0.79
	Std. Dev. 0.25	0.16	0.33	0.24	0.25	0.15	0.24	0.33	0.21	0.40
Days of	259	252	249	255	259	262	0	253	253	221
implementation										
Zacatecas	Mean 0.91	0.37	0.53	0.11	0.91	0.30	0.00	0.72	0.68	0.79
	Std. Dev. 0.29	0.15	0.24	0.21	0.26	0.19	0.00	0.36	0.22	0.41
Days of	252	252	254	224	261	212	0	253	254	220
implementation										
National	Mean 0.92	0.32	0.65	0.17	0.89	0.21	0.08	0.64	0.69	0.69
	Std. Dev. 0.27	0.18	0.30	0.21	0.25	0.18	0.08	0.34	0.23	0.33
Days of	255.06	251.38	256.56	212.28	257.06	204.84	90.03	255.19	253.09	227.31
implementation										

Maximum: Green
Minimum: Red

https://doi.org/10.1371/journal.pone.0251722.t003

The second and third least implemented measures were "close public transport", with an average level of 0.17 and 212 days, and "restrictions on internal movement", with an average level of 0.21 and 205 days.

It should be noted that the correlation of each of the 10 individual public policy variables in the observed period (February 27 to November 30) was very high, ranging between 0.70 and 0.95. The use of face masks behaves differently from the others as expected (see methodological S1 Appendix). Please also see Table 2A in S1 Appendix for state-level data on total deaths, mortality rate, and fatality rate. See Table 3A in S1 Appendix of the Appendix for correlations.
Table 4. Index scores for physical distancing policy adoption and containment of COVID-19 in Mexico by state. From February 27 to November 30, 2020.

State	Mean Index Score	Jalisco	Nuevo León	Nayarit	Colima	Sonora	Yucatán	Tamaulipas	Guanajuato	Baja California	Hidalgo	Chiapas	Baja California Sur	Chihuahua	Zacatecas	Puebla	Querétaro	Ciudad de México	Aguascalientes	Tlaxcala	Coahuila	Sinaloa	Veracruz	Guerrero	Quintana Roo	San Luis Potosí	Tabasco	Campeche	Nacional
Until February 29th	47.3569	63.2827	67.3357	51.4893	52.4419	53.1777	53.59325	64.55663	68.4975	52.5969314																			
Until March 31	42.46835	57.95165	62.07162	64.30029	65.43574	51.55481	51.91467	52.24049	52.46473	52.2020393																			
Until April 30	43.53207	56.1614	60.02799	64.52032	65.6061	51.6267	52.00305	52.2933	38.50625	51.1981949																			
Until May 31	33.34629	49.8996	54.40194	56.10257	57.32844	58.15503	58.71015	59.13877	57.3154	50.016975																			
Until June 30	40.52565	59.30546	66.47271	69.48065	56.95437	40.26375	40.59581	40.85262	41.04552	48.665318																			
Until July 31	39.75408	58.88987	60.66591	49.06281	59.27524	50.85899	51.34493	51.72027	38.2079	48.3334657																			
Until August 30	41.74946	54.12225	58.04113	52.28958	67.6600	40.38455	40.69994	40.94324	41.12603	47.0477256																			
Until September 30	31.74693	49.12234	55.79036	60.48778	61.96772	62.95732	37.86012	38.11201	38.30112	46.819219																			
Until October 31	28.57295	44.46365	48.93438	57.39548	51.77824	53.84047	54.37518	55.47343	56.24260	46.1803971																			
Until November 30	28.57644	48.04688	53.45245	60.51312	54.89345	50.60292	51.12647	51.53058	51.83369	46.0242238																			

Maximum: Green
Minimum: Red

https://doi.org/10.1371/journal.pone.0251722.t004

between Covid-19 deaths and lagged policy index scores, by state, to assess the possibility that the burden of disease is driving policy choices among the states.

We analyze the performance of the states in the public policy index considering cuts at different dates (Table 4). As of June 14, some of these public policies began to relax with the implementation of the weekly epidemiological “traffic light”, approved by the General Health Council and put into effect by the federal government on June 1st. For this reason, we begin to see a drop in the index for some states. For example, until May 31 Jalisco had the highest score
in the index; However, due to the relaxation of some policies, its average index fell and was surpassed by Nuevo León, with an average level of 50.4.

To compare performance between states, we used the global average for the entire period as the indicator of the accumulated trend during the 277 days of the pandemic. Jalisco is the state with the highest average index (52.6), followed by Nuevo León (52.2), Nayarit (51.2), Colima (50.0), Sonora (48.7), Yucatán (48.3) and Tamaulipas (47.0). In contrast, we see the lowest scores in the index in the period in Campeche (31.7), followed by Tabasco (38.3), San Luis Potosí (39.0), Quintana Roo (41.0), Guerrero (41.4) and Veracruz (41.4). The national average in the period reached a level of 44.8. As shown, there are considerable differences in policy implementation across the country; the average index value for the state with the highest score is 65.7% greater than that of the lowest state.

Fig 1 provides a description of the timing and rigor in the adoption of policies in Mexican states in the first months of the pandemic. The graph reflects great heterogeneity in the timing of policy implementation to mitigate the spread of COVID-19. Some states, such as Nuevo León, Morelos, Nayarit, and Quintana Roo, anticipated federal instructions that devolved public health responsibility to the states and were the first to introduce policies to contain the virus. Others, such as Guerrero, Chihuahua, Sinaloa and Zacatecas, did not expect to be given this responsibility and acted later than the rest of the entities.

The graph also shows that states such as Sonora, Jalisco, and Nuevo León have implemented public policy measures with the greatest rigor. It is worth noting that the variance has increased during the period of time reported in this paper. This indicates that the difference in the number and rigor of public policies between states increased over time but began to converge as the national epidemiological traffic light came into effect.
Durango and Chihuahua, among others, adopted public health measures later than the other states, but showed improvement in the index towards the second and third week of April. For example, Chihuahua went from one of the worst states in the country to slightly above the national average in late May. In Durango, the policy correction was such that the state reached the ninth position (out of 32) in the average index as of June 12.

An additional group of states remained near the national average throughout the period and maintained regular policy implementation. These include the State of Mexico, Guanajuato, Tlaxcala, Puebla, Chihuahua, Michoacán, Colima, Querétaro, Guerrero, and Mexico City. Finally, some states have consistently underperformed in the index throughout the period, such as San Luis Potosí, Zacatecas, Chiapas, Coahuila, Baja California, Sinaloa, and Tabasco.

Finally, eighteen states had already begun to relax some of their policies, especially restrictions on public transportation, the suspension of work, and the directive to stay at home, during the latter portion of the timeframe under investigation. These relaxations are reflected in a considerable drop in policy index scores for Aguascalientes, Baja California Sur, Campeche, Chihuahua, Coahuila, Durango, Guerrero, Hidalgo, Jalisco, Michoacán, Morelos, Oaxaca, Querétaro, Quintana Roo, Tamaulipas, Veracruz, Yucatán, Zacatecas.

Discussion

The governments of some states decided to implement public policies to combat COVID-19 before others and before national measures were implemented. Eight states of the republic—Guanajuato, Jalisco, Michoacán, Nuevo León, Tamaulipas, Tlaxcala, Veracruz and Yucatán—suspended classes and request their populations remain at home to avoid spreading the virus before the start of the National Healthy Distance Day. In this context, Nuevo León and Jalisco and its metropolitan areas of Monterrey and Guadalajara, respectively, stand out as positive examples. In both cases, state governments established policies to promote distancing, such as the cancellation of classes and mass events, before national measures were enacted. Other states, in contrast, limited themselves to following the guidelines of the federal government; these states reacted slowly and incompletely. Thus, both the number of public measures to contain contagion as well as their rigor and implementation time have varied considerably within the country during the health emergency.

In Mexico, the policy decisions of the state governments are essential to understand the evolution of the epidemic in the country. Given their legal powers, the state governments were the first line of defense in the face of the pandemic. Subnational governments acted at different times and with very different degrees of effectiveness. But, it is important to take into account the different socioeconomic circumstances facing the different states [28]. In some states, such as Quintana Roo, Baja California Sur, and Nayarit, whose main economic activity is tourism, governments implemented information campaigns and international travel restrictions.

State-level variation in terms of poverty is high in Mexico. Yet, we do not find a clear association between policy index scores and the states’ levels of poverty or marginalization. Chiapas, for example, has a similar level of poverty and marginalization to Oaxaca. Even though Chiapas’ average score improves in the latter dates of our reporting period, Chiapas displays a lower average performance than Oaxaca. Oaxaca demonstrates an average performance above the national value overall, but its index score fell in the last two weeks of the study due to the relaxation of its policies.

Our results point to the need for timely and rigorous state-level responses to contain the spread of infectious disease, particularly during a pandemic. Moving forward, it remains fundamental for states to be able to implement mitigation measures from the beginning of a pandemic, without having to wait for their state-powers to be ratified at the federal level. Our findings thus also show the need for clear mechanisms that guarantee states such ability and
authority. Moreover, better coordination between states and multi-lateral organizations, like the Pan American Health Organization (PAHO) and the World Health Organization (WHO), is needed, especially in the absence of a consistent national response.

Limitations

This work has some limitations. First, the analysis relies on a weighted index, based on the date of the first national case, suggesting that all states had to act at the same time. The index "penalizes" or "rewards" every state equally in terms of when policies began to be implemented. However, every state did not have its first case at precisely the same time. Second, the index weighs variables or policies as equally important in the containment of COVID-19. Yet, this is an assumption that requires empirical evaluation, once additional, accurate data on the number of cases, mortality, health services, case diagnosis, and mortality, become available. Third, the available data provides information on when policies were implemented but not on when decisions were made and the justifications that policymakers provided. Such information would be useful to better understand how decision-making processes impacted the course of the pandemic at the subnational level, which remains a goal for future research. Finally, we also acknowledge possible sources of bias from our sources, such as: vague language in state decrees, delays in posting decrees on government websites, failure to post decrees on websites, and failure to update websites when decrees were relaxed, abandoned, or re-implemented. As such, we maintained careful documentation of sources, cross-checked data, and documented all precedent-setting coding decisions to minimize such inconsistencies. Data included herein reflect the information available at the time of manuscript submission; new information is emerging rapidly during the pandemic, and states’ trajectories could shift over time.

Conclusion

Our analysis shows how evaluating public policies at the national level hides important heterogeneity between states. This diversity of policy responses has a direct impact on the how effectively states contain the virus. The lack of policy uniformity for physical distancing and containment of COVID-19 in the country shows that state governments have been the main sources for policy in the area.

The heterogeneity in the states’ policy response highlights the need for a subnational approach to analyze government action to the COVID-19 pandemic—especially in the absence of a consistent national response. It is in this sense that the data and analysis presented here make an original and fundamental contribution [29, 30]. Other efforts to document, analyze and measure the effectiveness of the implementation of public policies in the face of COVID-19 have adopted a national vision [31], Those studies offer a useful overview, but are subject to what in the social sciences has been called the "whole country bias" [32]. Instead, we showcase the limitations of national-level, aggregate analyses by focusing on the subnational level in Mexico, a country with extensive territories and where subnational governments have played a crucial role to mitigate the spread of the pandemic.

A timely, rigorous, coordinated response to the pandemic has been missing in Mexico. The national government and many state governments have not gone far enough to implement NPI in a way that slows the spread of COVID-19.

Supporting information

S1 Appendix.
(DOCX)
Acknowledgments

The Group from the Observatory of COVID-19 containment in the Americas: Salvador Acevedo Gómez, Raymond Balise, Miguel Betancourt Cravioto, Layla Bouzoubaa, Karen Jane Burke, Alberto Cairo, Carmen Elena Castañeda Farill, Fernanda Da Silva, Daniel Alberto Díaz Martínez, Javier Dorantes Aguilar, Ariel García Terrón, L. Lizette González Gómez, Kim Grinfeld, Héctor Hernández Llamas, Sallie Hughes, Karen L. Luján López, Lenny Martínez, Víctor Arturo Matamoros Gómez, Cesar Arturo Méndez Lizárraga, Gerardo Pérez Castillo, Julio Rosado Bautista.

Author Contributions

Data curation: Héctor Arreola-Ornelas, Michael Touchton, Óscar Méndez.

Formal analysis: Héctor Arreola-Ornelas, Michael Touchton, Mariano Sánchez-Talanquer, Óscar Méndez, Pablo Kuri.

Funding acquisition: Felicia Knaul.

Investigation: Héctor Arreola-Ornelas, Thalia Porteny, Michael Touchton, Mariano Sánchez-Talanquer, Óscar Méndez, Sonja Ortega.

Methodology: Felicia Knaul, Héctor Arreola-Ornelas, Michael Touchton, Mariano Sánchez-Talanquer, Óscar Méndez, Sonja Ortega, Pablo Kuri.

Project administration: Felicia Knaul, Michael Touchton.

Supervision: Thalia Porteny.

Writing – original draft: Felicia Knaul, Thalia Porteny, Michael Touchton, Mariano Sánchez-Talanquer, Salomón Chertorivski, Sonja Ortega, Mariana Chudnovsky.

Writing – review & editing: Felicia Knaul, Michael Touchton, Salomón Chertorivski, Mariana Chudnovsky.

References

1. Liu Y., Gayle A.A., Wilder-Smith A., and Rocklöv J.: ‘The reproductive number of COVID-19 is higher compared to SARS coronavirus’, J Travel Med, 2020, 27, (2) https://doi.org/10.1093/jtm/taaa021 PMID: 32052846

2. Mathur C.: ‘COVID-19 and India’s Trail of Tears’, Dialectical Anthropology, 2020, 44, (3), pp. 239–242

3. Munster V.J., Koopmans M., van Doremalen N., van Riel D., and de Wit E.: ‘A Novel Coronavirus Emerging in China—Key Questions for Impact Assessment’, N Engl J Med, 2020, 382, (8), pp. 692–694 https://doi.org/10.1056/NEJMp2000929 PMID: 31978293

4. https://www.ft.com/content/a26fbf7e-48f8-11ea-aeb3-955839e06441, accessed 7/23/2020

5. Dyer O.: ‘Covid-19 hot spots appear across Latin America’, Bmj, 2020, 369, pp. m2182 https://doi.org/10.1136/bmj.m2182 PMID: 32482681

6. Rodríguez-Morales A.J., Gallego V., Escalera-Antezana J.P., Méndez C.A., Zambrano L.J., Franco-Paredes C., et al.: ‘COVID-19 in Latin America: The implications of the first confirmed case in Brazil’, in Editor (Ed.) et al. (Eds.): ‘Book COVID-19 in Latin America: The implications of the first confirmed case in Brazil’ (Elsevier USA, 2020, edn.), pp. 101613–101613

7. Lancet T.: ‘COVID-19 in Brazil: “So what?”’, Lancet (London, England), 2020, 395, (10235), pp. 1461

8. https://covid19.healthdata.org/mexico, accessed 7/23/2020

9. ‘The Guardian. Mexico Covid death toll leaps 60% to reach 321,000. March 28th, 2020. Accessed on April 19th, 2020 https://www.theguardian.com/world/2021/mar/28/mexico-covid-death-toll-rise-60-percent

10. Dong E., Du H., and Gardner L.: ‘An interactive web-based dashboard to track COVID-19 in real time’, The Lancet infectious diseases, 2020, 20, (5), pp. 533–534 https://doi.org/10.1016/S1473-3099(20)30120-1 PMID: 32067114
11. ‘Diario Oficial de la Federación. ACUERDO por el que se modifica el similar por el que se establecen acciones extraordinarias para atender la emergencia sanitaria generada por el virus SARS-CoV2’, in Editor (Ed.)^(Eds.): ‘Book Diario Oficial de la Federación. ACUERDO por el que se modifica el similar por el que se establecen acciones extraordinarias para atender la emergencia sanitaria generada por el virus SARS-CoV2’ (publicado el 31 de marzo de 2020, edn.), pp.

12. Cruz Reyes, G., and Patiño Fierro, M.P.: ‘Las medidas del Gobierno Federal contra el virus SARS-CoV2 (COVID-19)’, 2020

13. Ramírezde la Cruz E.E., Grin E.J., Sanabria-Pulido P., Cravacuore D., and Orellana A.: ‘The Transaction Costs of the Governments’ Response to the COVID-19 Emergency in Latin America’, Public Administration Review https://doi.org/10.1111/puar.13259 PMID: 32836458

14. Nuger, V., and Powell, A.: ‘2020 Latin American and Caribbean Macroeconomic Report: Policies to Fight the Pandemic’, in Editor (Ed.)^(Eds.): ‘Book 2020 Latin American and Caribbean Macroeconomic Report: Policies to Fight the Pandemic’ (2020, edn.), pp.

15. Setti L., Passarini F., De Gennaro G., Barbieri P., Perrone M.G., Borelli M., et al.: ‘Airborne Transmission Route of COVID-19: Why 2 Meters/6 Feet of Inter-Personal Distance Could Not Be Enough’, Int J Environ Res Public Health, 2020, 17, (8) https://doi.org/10.3390/ijerph17082932 PMID: 32340347

16. Wilder-Smith A., and Freedman D.O.: ‘Isolation, quarantine, social distancing and community containment: pivotal role for old-style public health measures in the novel coronavirus (2019-nCoV) outbreak’, Journal of travel medicine, 2020, 27, (2), pp. taaa020 https://doi.org/10.1093/jtm/taaa020 PMID: 32052641

17. Barrios J.M., Benmelech E., Hochberg Y.V., Sapienza P., and Zingales L.: ‘Civic Capital and Social Distancing during the Covid-19 Pandemic’, National Bureau of Economic Research Working Paper Series, 2020, No. 27320 https://doi.org/10.1016/j.jpubeco.2020.104310 PMID: 33199928

18. Munayco C.V., Tariq A., Rothenberg R., Soto-Cabecas G.G., Reyes M.F., Valle A., et al.: ‘Early transmission dynamics of COVID-19 in a southern hemisphere setting: Lima-Peru: February 29th–March 30th, 2020’, Infectious Disease Modelling, 2020, 5, pp. 338–345 https://doi.org/10.1016/j.idm.2020.05.001 PMID: 32399507

19. Celudo G.M., Gómez-Álvarez D., Michel C.L., Lugo D., Trujillo H., Pimienta C., et al.: ‘Federalismo en COVID-19: ¿Cómo responden los gobiernos estatales a la pandemia?’

20. Díaz de León-Martínez L., de la Sierra-de la Vega L., Palacios-Ramírez A., Rodríguez-Aguilar M., and Flores-Ramírez R.: ‘Critical review of social, environmental and health risk factors in the Mexican indigenous population and their capacity to respond to the COVID-19’, Science of the Total Environment, 2020, 733, pp. 139357–139357 https://doi.org/10.1016/j.scitotenv.2020.139357 PMID: 32416536

21. Leung N.H.L., Chu D.K.W., Shiu E.Y.C., Chan K.H., McDevitt J.J., Hau B.J.P., et al.: ‘Respiratory virus shedding in exhaled breath and efficacy of face masks’, Nat Med, 2020, 26, (5), pp. 676–680 https://doi.org/10.1038/s41591-020-0843-2 PMID: 32371934

22. Chu D.K., Akid E.A., Duda S., Solo K., Yaacoub S., and Schünemann H.J.: ‘Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis’, Lancet, 2020

23. Zhang R., Li Y., Zhang A.L., Wang Y., and Molina M.J.: ‘Identifying airborne transmission as the dominant route for the spread of COVID-19’, Proceedings of the National Academy of Sciences, 2020

24. World Health O.: ‘Advice on the use of masks in the context of COVID-19: interim guidance, 5 June 2020’, in Editor (Ed.)^(Eds.): ‘Book Advice on the use of masks in the context of COVID-19: interim guidance, 5 June 2020’ (World Health Organization, 2020, edn.), pp.

25. Sanitaria, I. d.E.C.Y.: ‘COVID-19. Información confiable para la toma de decisiones’, 2020

26. Calvo, E., and Ventura, T.: ‘Will I get COVID-19? Partisanship, Social Media Frames, and Perceptions of Health Risk in Brazil’, Political Research Quarterly 2020, 73, (1), pp. 67–81 https://doi.org/10.1177/1532795119879559

27. Pulejo, M., and Querubín, P.: ‘Electoral Concerns Reduce Restrictive Measures During the COVID-19 Pandemic’, in Editor (Ed.)^(Eds.): ‘Book Electoral Concerns Reduce Restrictive Measures During the COVID-19 Pandemic’ (2020, edn.), pp.

28. Ríos-Flores J.A., and Oceguera Hernández J.M.: ‘El efecto de la capacidad innovadora en el crecimiento económico de las entidades federativas en México’, Estudios fronterizos, 2018, 19

29. Lucchini S., Teschl M., Pinthus P., Baunez C., and Moatti J.P.: ‘Urgently Needed for Policy Guidance: An Operational Tool for Monitoring the COVID-19 Pandemic’, SSRN Electronic Journal, 2020

30. Carrillo-Larco R.M.: ‘COVID-19 data sources in Latin America and the Caribbean’, in Editor (Ed.)^(Eds.): ‘Book COVID-19 data sources in Latin America and the Caribbean’ (Elsevier USA, 2020, edn.), pp.
31. González M.J.: ‘Características iniciales de las políticas de control de la pandemia de Covid-19 en América Latina’, Gac Méd Caracas 2020, 2020; 128(2):207–21

32. Snyder R.: ‘Scaling down: The subnational comparative method’, Studies in comparative international development, 2001, 36, (1), pp. 93–110