Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Mini-Symposium: Asthma Phenotypes

Steroid responsiveness and wheezing phenotypes

Francine M. Ducharme 1,2,3,*, Maja Krajinovic 4

1 Departments of Pediatrics and of Social Preventive Medicine, University of Montreal, Montreal, Quebec, Canada
2 Applied Clinical Research Unit, Research Centre, CHU Sainte-Justine, Montreal, Quebec, Canada
3 Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
4 Research Center CHU Sainte-Justine, Departments of Pediatrics and Pharmacology, University of Montreal, Montreal, Quebec, Canada

Oral corticosteroids are the cornerstone of management of acute, moderate or severe asthma whilst preventive inhaled corticosteroids are the mainstay of daily management of children with asthma. Yet, variation in the magnitude of response to corticosteroids has been observed. There is increasing evidence that preschool-aged children with viral-induced asthma may display a certain degree of corticosteroid resistance, requiring higher doses of corticosteroids to overcome it. The identification of determinants of responsiveness is complicated by design issues, including heterogeneous populations of children with asthma and bronchiolitis or of children with viral-induced and multi-trigger asthma phenotypes in published trials. Potential key determinants of responsiveness may include age, trigger, phenotype, tobacco smoke exposure and genotype. The mechanistic pathway for corticoresistance may originate from a gene-environment interaction, leading to non-eosinophilic airway inflammation. The clinician should carefully confirm the diagnosis of asthma and ascertain the phenotype to select appropriate phenotype-specific therapy.

Keywords: asthma, adrenal cortex hormones, child phenotype, inflammation, genotype, respiratory tract infections, tobacco smoke pollution

SUMMARY

Oral corticosteroids are the cornerstone of management of acute, moderate or severe asthma whilst preventive inhaled corticosteroids are the mainstay of the preventive management of children with asthma. Yet, variation in the magnitude of response to corticosteroids has been observed. There is increasing evidence that preschool-aged children with viral-induced asthma may display a certain degree of corticosteroid resistance, requiring higher doses of corticosteroids to overcome it. The identification of determinants of responsiveness is complicated by design issues, including heterogeneous populations of children with asthma and bronchiolitis or of children with viral-induced and multi-trigger asthma phenotypes in published trials. Potential key determinants of responsiveness may include age, trigger, phenotype, tobacco smoke exposure and genotype. The mechanistic pathway for corticoresistance may originate from a gene-environment interaction, leading to non-eosinophilic airway inflammation. The clinician should carefully confirm the diagnosis of asthma and ascertain the phenotype to select appropriate phenotype-specific therapy.

© 2011 Elsevier Ltd. All rights reserved.
significant reversibility to inhaled β2-agonists or corticosteroids.11 The only exception is evidenced by a recent multicentre bronchiolitis trial reporting no response to each individual drug, but unexpectedly, a significant response with the combination of high-dose oral steroids (dexamethasone) and nebulised adrenergic agonist (epinephrine); the study is currently being replicated to confirm the findings.12 To reduce the risk of misclassification with bronchiolitis, two or three wheezing episodes are commonly required for the diagnosis of asthma for children aged 12 (or 24) months or less.

In general, therapeutic studies of preschool wheezing are often difficult to interpret as they generally included heterogeneous wheezing groups. Indeed, the inclusion of children with bronchiolitis and asthma probably explain the poor response to oral corticosteroids in studies including infants and toddlers.13 Careful attention to the population under study is thus critical in the interpretation of the literature.

PHENOTYPE

While many classifications have been proposed, two main phenotypes have been considered.14 Viral-induced asthma refers to children with exacerbations solely triggered by viral respiratory infections with no symptoms between episodes. This phenotype pertains almost exclusively to very young children, those aged 1 to 3 years, with symptoms resolved by the age 6 years.9 In a recent trial, 85% of children with viral-induced asthma were aged 1 to 3 years; those aged 4-6 years evolved towards multi-trigger asthma during the course of the study.4 In contrast, children with symptoms triggered by two or more factors (e.g., viral infection, weather, activity, allergens) usually have symptoms between episodes; they are referred to as having multi-trigger asthma (formerly called “persistent” asthma).

VARIATION IN TREATMENT EFFECTIVENESS ACROSS PHENOTYPES

Maintenance inhaled corticosteroids

National and international guidelines recommend daily inhaled corticosteroids as the cornerstone of the therapy for children with multi-trigger asthma. In school-aged children and adults, this recommendation is based on solid evidence, derived from several randomized controlled trials15 and meta-analyses of randomised trials, which confirmed its superiority over placebo and leukotriene receptor antagonists.16,17 In preschool children with multi-trigger asthma, the evidence supporting the efficacy of maintenance inhaled corticosteroids is less abundant but no less convincing. The PEAK trial involved 285 children aged 2 to 3 years with a high risk of asthma, that is, with four episodes or more in the prior year, and either one major risk factor (parental history of asthma or personal history of atopic dermatitis) or two of three minor risk factors (allergic rhinitis, eosinophilia, and wheezing without colds). More than 57% of enrolled children had positive aeroallergen skin tests, suggesting allergic or multi-trigger asthma in the majority of children.18 Low dose daily fluticasone for two years was associated with a significant reduction in episode-free days, rescue bronchodilator use, and exacerbations requiring rescue oral corticosteroids and significantly improved lung function over placebo. The efficacy of daily maintenance inhaled corticosteroids to improve symptoms and prevent exacerbations in patients of all ages with multi-trigger asthma is clearly established.

In preschool-aged children with viral-induced asthma, daily inhaled corticosteroids have not been shown to be superior to placebo. In a study involving 161 children with viral-induced wheezing and no or minimal symptoms between episodes, there was no group difference in rescue oral corticosteroids, admission, symptom severity, and duration of episodes between treatment with low dose Budesonide (400 μg/day) vs. placebo (Figure 1A).19 Indeed, the study was small and underpowered to identify a significant difference in important outcomes such as episodes requiring rescue oral corticosteroids. Of interest, in 549 children aged 2 to 5 years with viral-induced asthma, but including children with symptoms between exacerbations, daily montelukast did not show any group difference in rescue oral corticosteroids it appeared more effective than placebo for reducing the frequency and severity of exacerbations.20 As the latter study included children with interim symptoms between episodes, it is unclear whether the observed benefits primarily apply to children with multi-trigger or those with viral-induced asthma.

Although the literature is scarce, there is no current evidence supporting the efficacy of daily maintenance corticosteroids in preschool-aged children with viral-induced asthma, while this strategy is clearly effective in children with multi-trigger asthma.

Pre-emptive high dose inhaled corticosteroids

For several years, national and international consensus statements had recommended the dose-doubling of inhaled corticosteroids as home management of exacerbation in children and adults with multi-trigger asthma.21–23 Only recently has this recommendation been withdrawn in the view of the lack of effectiveness reported by several randomized controlled trials.1,6,24 Indeed, a 2010 Cochrane review reported no evidence of the superiority of dose-doubling and dose-quadrupling of inhaled corticosteroids over placebo as home management of exacerbations; one small paediatric trial of dose-doubling contributed data to this review (Figure 2).25 Only a subgroup analysis performed per protocol suggested that quadrupling the dose of inhaled corticosteroids may be beneficial for reducing the need for physician-initiated rescue oral corticosteroids in adults; caution is advised however, for the interpretation of subgroup analyses. Overall, the evidence would suggest that, in patients with multi-trigger asthma, the most effective strategy for preventing and reducing the severity of exacerbations remains simply the daily intake of inhaled corticosteroids.

In contrast, in preschool-aged children with viral-induced asthma (with no symptoms between exacerbations), high-dose inhaled corticosteroids (1,600 to 3,200 μg/day of budesonide) at the onset of an upper respiratory tract infection appears effective. Indeed, a Cochrane review of three trials showed a non-significant
trend towards a 50% reduction in the rate of rescue oral corticosteroids, with improved symptoms and parent preference.3 (Figure 1B) The efficacy of the approach was recently confirmed in a recent trial where the initiation of high-dose fluticasone (1500 µg/day) at the onset of an exacerbation was associated with a 50% reduction in the need for rescue oral corticosteroids and a 20% reduction in other markers of severity and duration of exacerbations.4 While clearly effective this strategy was associated with a small but significant reduction in growth.

\textbf{Leukotriene receptor antagonists}

In terms of alternate treatment, the Pre-empt trial suggested modest effect of intermittent montelukast over placebo. The parallel-group placebo-controlled trial involved 220 children aged 2 to 14 years of age with physician-diagnosed intermittent asthma and who, between episodes, were asymptomatic with no asthma medications. Intermittent montelukast was associated with a 28.5% reduction in health care utilisation, modest reductions in symptoms, medications. Intermittent montelukast was associated with a 28.5% reduction in health care utilisation, modest reductions in symptoms, and a small but significant reduction in growth.

\textbf{Oral corticosteroids}

The evidence-based management of acute asthma includes oral corticosteroids for those with moderate and severe asthma or unsatisfactory response to oral corticosteroids, and repeated doses of oral corticosteroids for severe exacerbations.1,6 The latter two recommendations independently reduce admission rates by 25% in studies of combining preschool- and school-aged children as well as adults.30,31 Of all treatments, oral corticosteroids are by far the most effective for preventing hospital admissions.

Of note, recommendations are severity-specific; patients with mild asthma do not appear to benefit from oral corticosteroids. The delay of action of oral corticosteroids of 3 to 4 hours, spearheaded the concept of the “golden first hour of treatment,” supporting early and aggressive asthma management.31 This explains the apparent ineffectiveness of clinical care pathways in which the early timing of corticosteroids was not stressed or applied. Although recommendations are relatively similar across age groups, the evidence for preschool-aged children is weaker due to their underrepresentation in relevant trials.32,33

Importantly, the accumulating evidence suggests heterogeneity in the magnitude of response to oral corticosteroids. Indeed, while most children and adults with moderate or severe acute asthma respond sufficiently well to be discharged within 5-6 hours of intake, a substantial proportion (36%) are admitted,33 presumably because of a delayed or poorer response to oral corticosteroids. Moreover, in a large placebo-controlled randomized controlled trial of 700 children aged 10-60 months with mild-to-moderate viral-induced wheezing, oral corticosteroid was not superior to placebo for reducing the length of stay in hospital or improving the Pediatric Respiratory Assessment Measure clinical score, despite adequate power.3 Critics have suggested that the absence of responsiveness to oral corticosteroids may due to: (1) a large proportion of children with bronchiolitis (with asthma documented in only 16% of children); (2) mild disease severity not requiring corticosteroids; (3) insufficient corticosteroids dosage (1 mg/kg of prednisolone) and (4) the prolonged stay in hospital perhaps not supported by severity.13 Yet, this study elicited a major discomfort regarding acute asthma management in young children, raising the possibility that preschool-age and/or viral triggers may be responsible for the poor apparent responsiveness.

Similar concerns could be raised in view of the non-response of children to home-administered oral corticosteroids. Indeed, a Cochrane review aggregated two trials testing parent-initiated oral corticosteroids vs. placebo in 303 children aged 1 to 18 years with
intermittent wheezing illness including asthma and "viral wheeze". Oral corticosteroids failed to reduce hospital admissions, unscheduled medical reviews, symptoms scores, bronchodilator use, or days lost from work or school. In fact, in a subgroup analysis, preschoolers treated with prednisolone paradoxically experienced a higher rate of unscheduled medical visits compared to those receiving placebo. Although preschool age and perhaps viral trigger may again be cited as causal, the following hypotheses were also raised to explain the lack of efficacy of parent-initiated treatment in view of the efficacy of physician-initiated oral corticosteroids: (1) the lower severity of exacerbations managed at home compared to those leading to a physician visit and (2) the difficulty for parents of making an accurate assessment of severity and need for oral corticosteroid treatment in their child.

Although in all trials, study design or confounding issues were raised, the possibility that preschool-aged children with viral-induced phenotype may show decreased responsiveness to oral corticosteroids cannot be dismissed. The untangling of age vs. trigger(s) prompted us to examine potential determinants of responsiveness.

POTENTIAL CLINICAL DETERMINANTS OF RESPONSE

Upper respiratory tract infections (URTIs)

URTIs, usually viral in origin, are the most frequent (60-80%) triggers of asthma exacerbation in children of all ages. RSV, parainfluenza virus, and rhinovirus are frequently implicated in children under two years old, while picornavirus, coronavirus, and influenza are usually associated with asthma in older children. In adults with acute asthma, viral infection is associated with longer hospital admission and increased sputum neutrophils, suggesting that a predominantly neutrophilic airway inflammation may respond poorly to oral corticosteroids. In a study of children aged 3-36 months, those infected with rhinovirus showed fewer relapses when treated with oral prednisone compared to placebo, suggesting that rhinovirus did not impair responsiveness to corticosteroids. In a placebo-controlled trial of 283 young children with wheezing, prednisolone did not significantly decrease the overall time to discharge; however, it reduced by half the length of stay in children infected with picornavirus and by fourfold that of children with enterovirus, suggesting that response may be organism-dependant. Clearly, oral corticosteroids may not be as effective in patients with viral infections as in those without, perhaps due to neutrophilic airway inflammation, a condition associated with poor response to corticosteroids. Moreover, response may be organism-specific, a hypothesis that requires careful documentation of aetiology in future studies.

Exposure to tobacco smoke

In an adequately powered trial, a 2-week treatment with prednisone showed marked blunting of response in adult smokers, with an improvement in forced expiratory volume in 1 second of 237 mL (95% CI: 43, 431) in never-smokers compared to no significant change that is, 47 (148, 243) mL in current smokers. A blunted response to inhaled corticosteroids was also documented in adult smokers in randomized controlled trials. While the mechanism behind the lack of response is not known, one can certainly point to smoking's direct toxicity, pro-inflammatory action, or interference with the transcription of genes associated with corticosteroid response. Indeed, smoking has frequently been associated with airway neutrophilia. In paediatrics, exposure to tobacco smoke has been associated with a higher incidence of URTIs and prevalence of asthma, and a greater severity of exacerbations. However, the impact on the therapeutic response has not been documented in children, as asthma trials have not examined or failed to report subgroup analyses on environmental tobacco smoke exposure or active smoking. Yet, heavier environmental tobacco smoke exposure in preschoolers who spend more time at home than school-aged children may explain a poorer response in young children. The questions to be addressed are whether smoking adolescents with a short smoking history and children with environmental tobacco exposure would respond as well to oral corticosteroids as those not exposed.

Other determinants

In addition to age, perceived asthma phenotype, alleged trigger(s), and tobacco smoke exposure, a number of other factors could possibly modulate the responsiveness to oral corticosteroids, including gender, race, and other environmental triggers.
were shown to correlate with response to corticosteroids, with associations replicated in several cohorts.\(^{51-53}\) Identified polymorphisms are summarized in Table 1. Genotyping should be strongly considered in clinical therapeutic studies to advance our understanding of the heterogeneity of response to corticosteroids and importantly, to better characterize the phenotypes of responders and poor responders for the clinician.

Airway inflammation

There is increasing evidence that eosinophilic asthma is more responsive to corticosteroids than non-eosinophilic asthma. Using induced sputum, three distinct inflammatory cell patterns have been reported during paediatric exacerbations: non-eosinophilic (<2.5% eosinophils) in 22%; eosinophilic (≥2.5% eosinophils) in 43%; and combined eosinophil/neutrophilic (≥2.5% eosinophils and >54% neutrophils) in 35% of children. Contrary to adult findings and criteria, paucigranular inflammation has not been described in acute paediatric asthma.\(^{24}\) A higher proportion of sputum neutrophils is associated with smoking\(^{38}\) and with viral infection.\(^{35,55}\) This non-eosinophilic inflammatory phenotype in adults has been associated with poor response to corticosteroids.\(^{56}\)

In contrast, sputum eosinophils and eosinophil cationic protein increase with exposure to allergens and decrease with corticosteroid treatment, suggesting good response of eosinophilic inflammation to corticosteroids.

Recognizing that most exacerbations in children and adults are caused by viral infections,\(^{59,93}\) the relative “corticoresistance” of neutrophilic inflammation associated with URTIs would explain both the ineffectiveness of dose-doubling of inhaled corticosteroids and the potential ineffectiveness of dose-quadrupling at the onset of exacerbations.\(^{25}\) It would also explain the efficacy of short courses of high-dose fluticasone at the onset of URTIs to decrease the severity and duration of exacerbations, in preschool-aged children who were carefully selected for viral-induced asthma phenotype,\(^{4}\) a finding supported by a prior Cochrane review.\(^{3}\)

In other words, there is increasing evidence that gene-environmental interaction influences the type and amount of airway inflammation, which in turn modulates the response to corticosteroids in children with asthma. An ongoing cohort study is testing this hypothesis in acute paediatric asthma and, importantly, exploring clinical characteristics and promising markers of poor response.
SUMMARY

Marked heterogeneity in responsiveness to corticosteroids has been observed, whether inhaled corticosteroids as daily controller therapy, pre-emptive therapy with inhaled and oral corticosteroids at onset of flare-ups, and systemic corticosteroids in the emergency management of children with acute asthma are considered. There is increasing evidence that, in contrast to those with allergic or multi-trigger asthma, preschool-aged children with viral-induced asthma may display a certain degree of corticosteroid resistance, requiring higher doses of corticosteroids to overcome it. Other than design and confounding issues including mixed diagnoses, heterogeneous phenotypes and mild severity, other determinants of responsiveness may include age, trigger, tobacco smoke exposure, and genetic make-up. The mechanistic pathway for “corticoresistance” may originate from an interaction between genetic and environment, leading to non-eosinophilic or mixed eosinophilic/neutrophilic inflammation. Maintenance low-dose inhaled corticosteroids remain the cornerstone of the management of multi-trigger asthma of any age, while they show no evidence of effectiveness in children with viral-induced asthma. If a trial of daily montelukast is insufficient to control episodes, episodic high-dose inhaled corticosteroids with careful monitoring of medication use and growth may be considered for viral-induced asthma. Phenotype-specific treatment of children with asthma should be the focus of future research endeavours.

CONFLICT OF INTEREST

Francine M. Ducharme has received research funds, travel support, fees for speaking and/or consulting fees from GlaxoSmithKline, Merck Frosst Inc, Merck Canada, Novartis, and Nycomed.

PRACTICE POINTS

- Confirm the diagnosis of asthma and ascertain the phenotype.
- For young children with viral-induced asthma, nasal hygiene and inhaled β2-agonists is the mainstay of pre-emptive management of episodes.
- Daily preventive controller medication use with low dose inhaled corticosteroids are not recommended.
- A trial of montelukast may be considered, although it has not been shown to reduce rescue oral corticosteroids.
- Pre-emptive High-dose inhaled corticosteroids could be considered in children whose episodes remain poorly controlled, with 2 or more episodes requiring rescue oral steroids and/or admission in the preceding 12 months and should be administered with careful monitoring of medication use and growth.
- Pre-emptive oral corticosteroids have not been proven effective.
- For multi-trigger asthma, daily preventive controller medication use with low dose inhaled corticosteroids is the cornerstone of the treatment; it is and the most effective means to prevent and alleviate the severity of episodes.
- Nasal hygiene and inhaled β2-agonists should be added as needed during episodes.
- Dose-doubling of inhaled corticosteroids is not recommended.
- Pre-emptive oral corticosteroids have not been proven effective.

RESEARCH DIRECTIONS

- Examine whether the following factors are determinant of responsiveness to oral and inhaled corticosteroids: Age, gender, race, asthma phenotype, asthma trigger, presence and etiology of viral respiratory infection, and tobacco smoke exposure.
- Develop clinical tools to assist in correctly identifying the phenotype and key determinants of responsiveness.
- Confirm that the type and amount of airway inflammation modulates the response to corticosteroids in children with asthma.
- Identify genotype linked to the viral–induced phenotype.
- Test the hypothesis that gene-environmental interaction modulates the response to corticosteroids in children with asthma.
- Conduct intervention trials, focused on a specific phenotype or stratified on phenotype to explore phenotype-specific response to therapy.

References

1. Global Initiative for Asthma (GINA). Global strategy for asthma management and prevention Global Initiative for Asthma. [updated 2009 December 1; cited 2011 Jan 3]. Available from: http://www.ginasthma.org.

2. Panickar J, Lakanpaul M, Lambert PC, Kenia P, Stephenson T, Smyth A, et al. Oral prednisolone for preschool children with acute virus-induced wheezing. N Engl J Med 2009;360:329–38.

3. McKean M, Ducharme F. Inhaled steroids for episodic viral wheeze of childhood. Cochrane Database System Rev 2000;2:CD001107.

4. Ducharme FM, Lemiere C, Noya FL, Davis GM, Alos N, Leblond H, et al. Pre-emptive use of high-dose fluticasone for virus-induced wheezing in young children. N Engl J Med 2009;360:339–53.

5. Global strategy for asthma management and prevention. Global Initiative for Asthma (GINA). [updated 2008; cited 2009 Jul 3]. Available from: http://www.ginasthma.org.

6. British Thoracic Society, Scottish Intercollegiate Guidelines Network. British guidelines on the management of asthma - A national clinical guideline British Thoracic Society. [updated 2009; cited 2011 Jan 3]. Available from: http://www.brit-thoracic.org.uk/clinical-information/asthma/asthma-guidelines.aspx.

7. Bacharier LB, Bomer A, Carlsen KH, Eigenmann PA, Frischer T, Gotz M, et al. Diagnosis and treatment of asthma in childhood: a PRACTALL consensus report. Allergy 2008;63:5–34.

8. Myers TR. Pediatric asthma epidemiology: incidence, morbidity, and mortality. Respir Care Clin N Am 2000;6:1–14.

9. Martinez FD, Wright AL, Taussig LM, Holberg CJ, Halonen M, Morgan WJ. Asthma and wheezing in the first six years of life. The Group Health Medical Care. New Engl J Med 1995;332:133–8.

10. American Academy of Pediatrics Subcommittee on Diagnosis and Management of Bronchiolitis. Diagnosis and management of bronchiolitis. Pediatrics 2006;118:1774-93.

11. Corneli HM, Zorc JJ, Mahajan P, Shaw KN, Holubkov R, Reeves SD, et al. A multicenter, randomized, controlled trial of dexamethasone for bronchiolitis. N Engl J Med 2007;357:331–9.

12. Plint AC, Johnson DW, Patel H, Wiebe N, Correll R, Brant R, et al. Epinephrine and dexamethasone in children with bronchiolitis.[see comment]. New Engl J Med 2009;360:2079–89.

13. Ducharme FM, Zenebek RL, Schuh S. Oral corticosteroids in children with wheezing. N Engl J Med 2009;360:1674.

14. Brand PLP, Baraldi E, Bisgaard H, Bomer AL, Castro-Rodriguez JA, Custovic A, et al. Definition, assessment and treatment of wheezing disorders in preschool children: an evidence-based approach. Eur Respir J 2008;32:1096–110.
