Partition regularity of a system of De and Hindman

Ben Barber*

May 11, 2014

Abstract

We prove that a certain matrix, which is not image partition regular over \mathbb{R} near zero, is image partition regular over \mathbb{N}. This answers a question of De and Hindman.

1 Introduction

Let A be an integer matrix with only finitely many non-zero entries in each row. We call A kernel partition regular (over \mathbb{N}) if, whenever \mathbb{N} is finitely coloured, the system of linear equations $Ax = 0$ has a monochromatic solution; that is, there is a vector x with entries in \mathbb{N} such that $Ax = 0$ and each entry of x has the same colour. We call A image partition regular (over \mathbb{N}) if, whenever \mathbb{N} is finitely coloured, there is a vector x with entries in \mathbb{N} such that each entry of Ax is in \mathbb{N} and has the same colour. We also say that the system of equations $Ax = 0$ or the system of expressions Ax is partition regular.

The finite partition regular systems of equations were characterised by Rado. Let A be an $m \times n$ matrix and let $c^{(1)}, \ldots, c^{(n)}$ be the columns of A. Then A has the columns property if there is a partition $[n] = I_1 \cup I_2 \cup \cdots \cup I_t$ of the columns of A such that $\sum_{i \in I_s} c^{(i)} = 0$, and, for each s,

$$\sum_{i \in I_s} c^{(i)} \in \langle c^{(j)} : j \in I_1 \cup \cdots \cup I_{s-1} \rangle,$$

where $\langle \cdot \rangle$ denotes (rational) linear span.

Theorem 1 ([Rad33]). A finite matrix A with integer coefficients is kernel partition regular if and only if it has the columns property.

*Department of Pure Mathematics and Mathematical Statistics, Centre for Mathematical Sciences, Wilberforce Road, Cambridge, CB3 0WB, UK.

b.a.barber@dpmms.cam.ac.uk
The finite image partition regular systems were characterised by Hindman and Leader [HL93].

In the infinite case even examples of partition regular systems are hard to come by: see [BHL13] for an overview of what is known. De and Hindman [DH09, Q3.12] asked whether the following matrix was image partition regular over \(N \).

\[
\begin{pmatrix}
1 & 1 & \cdots \\
1 & 1 & \cdots \\
2 & 1 & \cdots \\
2 & 1 & \cdots \\
\vdots & \vdots & \ddots & \ddots \\
\end{pmatrix}
\]

where we have omitted zeroes to make the block structure of the matrix more apparent. This matrix corresponds to the following system of linear expressions.

\[
x_{21} + x_{22} \quad x_{21} + 2y \quad y,
\]

\[
x_{22} + 2y
\]

\[
x_{41} + x_{42} + x_{43} + x_{44} \quad x_{41} + 4y
\]

\[
x_{42} + 4y
\]

\[
x_{43} + 4y
\]

\[
x_{44} + 4y
\]

\[
\vdots
\]

\[
x_{2^{n-1} + \cdots + 2^n} \quad x_{2^{n-1} + 2^n} y
\]

\[
x_{2^{n-1} + 2^n} + 2^n y
\]

\[
\vdots
\]

\[
\vdots
\]

A matrix \(A \) is called \textit{image partition regular over} \(\mathbb{R} \) near zero if, for every \(\delta > 0 \), whenever \((-\delta, \delta) \) is finitely coloured, there is a vector \(x \) with entries in \(\mathbb{R} \setminus \{0\} \) such that each entry of \(Ax \) is in \((-\delta, \delta) \) and has the same colour. De and Hindman sought a matrix that was image partition regular over \(\mathbb{N} \) but not image partition regular over \(\mathbb{R} \) near zero. It is easy to show that
the above matrix is not image partition regular over \(\mathbb{R} \) near zero, so showing that it is image partition regular over \(\mathbb{N} \) would provide an example.

The main result of this paper is that De and Hindman’s matrix is image partition regular over \(\mathbb{N} \).

Theorem 2. For any sequence \((a_n)\) of integer coefficients, the system of expressions

\[
\begin{align*}
 x_{11} & & x_{11} + a_1 y & & y, \\
 x_{21} + x_{22} & & x_{21} + a_2 y & & x_{22} + a_2 y \\
 x_{31} + x_{32} + x_{33} & & x_{31} + a_3 y & & x_{32} + a_3 y & & x_{33} + a_3 y \\
 & & & & \vdots
\end{align*}
\]

is partition regular.

Taking \(a_n = n\) implies that De and Hindman’s matrix is image partition regular.

Barber, Hindman and Leader [BHL13] recently found a different matrix that is image partition regular but not image partition regular over \(\mathbb{R} \) near zero. Their argument proceeded via the following result on kernel partition regularity.

Theorem 3 ([BHL13]). For any sequence \((a_n)\) of integer coefficients, the system of equations

\[
\begin{align*}
 x_{11} + a_1 y &= z_1 \\
 x_{21} + x_{22} + a_2 y &= z_2 \\
 & \vdots \\
 x_{n1} + \cdots + x_{nn} + a_n y &= z_n \\
 & \vdots
\end{align*}
\]

is partition regular.

In Section 2 we show that Theorem 2 can almost be deduced directly from Theorem 3. The problem we encounter motivates the proof of Theorem 2 that appears in Section 3.
2 A near miss

In this section we show that Theorem 2 can almost be deduced directly from Theorem 3.

Let \(\mathbb{N} \) be finitely coloured. By Theorem 3 there is a monochromatic solution to the system of equations

\[
\tilde{x}_{11} - a_1 y = z_1 \\
\tilde{x}_{21} + \tilde{x}_{22} - 2a_2 y = z_2 \\
\vdots \\
\tilde{x}_{n1} + \cdots + \tilde{x}_{nn} - na_n y = z_n \\
\vdots
\]

Set \(x_{ni} = \tilde{x}_{ni} - a_n y \). Then, for each \(n \) and \(i \),

\[
x_{n1} + \cdots + x_{nn} = \tilde{x}_{n1} + \cdots + \tilde{x}_{nn} - na_n y = z_n,
\]

and

\[
x_{ni} + a_n y = \tilde{x}_{ni},
\]

so we have found a monochromatic image for System 1. The problem is that we have not ensured that the variables \(x_{ni} = \tilde{x}_{ni} - a_n y \) are positive. In Section 3 we look inside the proof of Theorem 3 to show that we can take (most of) the \(x_{ni} \) to be as large as we please.

3 Proof of Theorem 2

The proof of Theorem 3 used a density argument. The (upper) density of a set \(S \subseteq \mathbb{N} \) is

\[
d(S) = \limsup_{n \to \infty} \frac{|S \cap [n]|}{n},
\]

where \([n] = \{1, 2, \ldots, n\}\). The density of a set \(S \subseteq \mathbb{Z} \) is \(d(S \cap \mathbb{N}) \). We call \(S \) dense if \(d(S) > 0 \). We shall use three properties of density.

1. If \(A \subseteq B \), then \(d(A) \leq d(B) \).

2. Density is unaffected by translation and the addition or removal of finitely many elements.

3. Whenever \(\mathbb{N} \) is finitely coloured, at least one of the colour classes is dense.
We will also use the standard notation for sumsets and difference sets

\[A + B = \{ a + b : a \in A, b \in B \} \]
\[A - B = \{ a - b : a \in A, b \in B \} \]
\[kA = \underbrace{A + \cdots + A}_{k \text{ times}} \]

and write \(m \cdot S = \{ ms : s \in S \} \) for the set obtained from \(S \) under pointwise multiplication by \(m \).

We start with two lemmas from [BHL13].

Lemma 4 (BHL13). Let \(A \subseteq \mathbb{N} \) be dense. Then there is an \(m \) such that, for \(n \geq 2/d(A) \), \(nA - nA = m \cdot \mathbb{Z} \).

Lemma 5 (BHL13). Let \(S \subseteq \mathbb{Z} \) be dense with \(0 \in S \). Then there is an \(X \subseteq \mathbb{Z} \) such that, for \(n \geq 2/d(S) \), we have \(S - nS = X \).

The following consequence of Lemmas 4 and 5 is mostly implicit in [BHL13]. The main new observation is that the result still holds if we insist that we only use large elements of \(A \). Write \(A_{>t} = \{ a \in A : a > t \} \).

Lemma 6. Let \(A \) be a dense subset of \(\mathbb{N} \) that meets every subgroup of \(\mathbb{Z} \), and let \(m \) be the least common multiple of \(1, 2, \ldots, \lfloor 1/d(A) \rfloor \). Then, for \(n \geq 2/d(A) \) and any \(t \),

\[A_{>t} - nA_{>t} \supseteq m \cdot \mathbb{Z} \]

Proof. First observe that, for any \(t \), \(d(A_{>t}) = d(A) \). Let \(n \geq 2/d(A) \), and let \(X = A_{>t} - nA_{>t} \). For any \(a \in A_{>t} \), we have by Lemma 5 that

\[(A_{>t} - a) - n(A_{>t} - a) = (A_{>t} - a) - (n + 1)(A_{>t} - a), \]

and so

\[X = X - A_{>t} + a. \]

Since \(a \in A_{>t} \) was arbitrary it follows that \(X = X + A_{>t} - A_{>t} \), whence \(X = X + l(A_{>t} - A_{>t}) \) for all \(l \). By Lemma 4 there is an \(m_l \in \mathbb{Z} \) such that, for \(l \geq 2/d(A) \), \(l(A_{>t} - A_{>t}) = m_l \cdot \mathbb{Z} \). Hence \(X = X + m_l \cdot \mathbb{Z} \), and \(X \) is a union of cosets of \(m_l \cdot \mathbb{Z} \). Since \(A \) contains arbitrarily large multiples of \(m_l \), one of these cosets is \(m_l \cdot \mathbb{Z} \) itself.

Since \(lA_{>t} - lA_{>t} \) contains a translate of \(A_{>t} \),

\[1/m_l = d(m_l \cdot \mathbb{Z}) \geq d(A), \]

and \(m_l \leq 1/d(A) \). So \(m_l \) divides \(m \) and

\[A_{>t} - nA_{>t} \supseteq m \cdot \mathbb{Z}. \]

\[\square \]
Lemma 6 will allow us to find a monochromatic image for all but a finite part of System 1. The remaining finite part can be handled using Rado’s theorem, provided we take care to ensure that it gives us a solution inside a dense colour class.

Lemma 7 (BHL13). Let \mathbb{N} be finitely coloured. For any $l \in \mathbb{N}$, there is a $c \in \mathbb{N}$ such that $c \cdot [l]$ is disjoint from the non-dense colour classes.

We can now show that System 1 is partition regular.

Proof of Theorem 2. Let \mathbb{N} be r-coloured. Suppose first that some colour class does not meet every subgroup of \mathbb{Z}; say some class contains no multiple of m. Then $m \cdot \mathbb{N}$ is $(r - 1)$-coloured by the remaining colour classes, so by induction on r we can find a monochromatic image. So we may assume that every colour class meets every subgroup of \mathbb{Z}.

Let d be the least density among the dense colour classes, and let m be the least common multiple of $1, 2, \ldots, \lfloor 1/d \rfloor$. Then for any dense colour class A, any t and $n \geq 2/d$,

$$A > t - nA > t \supseteq m \cdot \mathbb{Z}. $$

Now let $N = \lceil 2/d \rceil - 1$. We will find a monochromatic image for the the expressions containing only y and x_{ni} for $n \leq N$ using Rado’s theorem. Indeed, consider the following system of linear equations.

\[
\begin{align*}
 u_1 &= x_{11} & v_{11} &= x_{11} + a_1 y \\
 u_2 &= x_{21} + x_{22} & v_{21} &= x_{21} + a_2 y \\
 & & v_{22} &= x_{22} + a_2 y \\
 & & \vdots & & \vdots \\
 u_N &= x_{N1} + \cdots + x_{NN} & v_{N1} &= x_{N1} + a_N y \\
 & & \vdots & & \vdots \\
 & & v_{NN} &= x_{NN} + a_N y
\end{align*}
\]

The matrix corresponding to these equations has the form

$$\begin{pmatrix} B & -I \end{pmatrix}$$

where B is a top-left corner of the matrix corresponding to System 1 and I is an appropriately sized identity matrix. It is easy to check that this matrix has the columns property, so by Rado’s theorem there is an l such that, whenever a progression $c \cdot [l]$ is r-coloured, it contains a monochromatic solution to System 2.
Apply Lemma 7 to get c with $c \cdot [ml]$ disjoint from the non-dense colour classes. Then $mc \cdot [l] \subseteq c \cdot [ml]$ is also disjoint from the non-dense colour classes, and by the choice of l there is a dense colour class A such that $A \cap (md \cdot [l])$ contains a solution to System 2. Since the u_n, v_{ni} and y are all in A, y and the corresponding x_{ni} make the first part of System 1 monochromatic.

Now y is divisible by m, so for $n > N$ we have that
\[-na_ny \in A_{>a_ny} - nA_{>a_ny},\]
so there are \tilde{x}_{ni} and z_n in $A_{>a_ny}$ such that
\[-a_ny = z_n - \tilde{x}_n1 - \cdots - \tilde{x}_{nn}.\]
Set $x_{ni} = \tilde{x}_{ni} - a_ny$. Then
\[x_{n1} + \cdots + x_{nn} = \tilde{x}_{n1} + \cdots + \tilde{x}_{nn} - na_ny = z_n,\]
and
\[x_{ni} + a_ny = \tilde{x}_{ni},\]
for each $n > N$ and $1 \leq i \leq n$. Since \tilde{x}_{ni} and z_n are in A it follows that the whole of System 1 is monochromatic.

It remains only to check that all of the variables are positive. But for y and x_{ni} with $n \leq N$ this is guaranteed by Rado’s theorem; for $n > N$ it holds because $\tilde{x}_{ni} > a_ny$.

\section*{References}

[BHL13] Ben Barber, Neil Hindman, and Imre Leader. Partition regularity in the rationals. \textit{J. Combin. Theory Ser. A}, 120:1590–1599, 2013.

[DH09] Dibyendu De and Neil Hindman. Image partition regularity near zero. \textit{Discrete Math.}, 309(10):3219–3232, 2009.

[HL93] Neil Hindman and Imre Leader. Image partition regularity of matrices. \textit{Combin. Probab. Comput.}, 2(4):437–463, 1993.

[Rad33] Richard Rado. Studien zur Kombinatorik. \textit{Math. Z.}, 36(1):424–470, 1933.