Advanced teaching-learning-based optimization algorithm for actual power loss reduction

Kanagasabai Lenin
Department of EEE, Prasad V. Potluri Siddhartha Institute of Technology, India

ABSTRACT
In this work Advanced Teaching-Learning-Based Optimization algorithm (ATLBO) is proposed to solve the optimal reactive power problem. Teaching-Learning-Based Optimization (TLBO) optimization algorithm has been framed on teaching learning methodology happening in classroom. Algorithm consists of “Teacher Phase”, “Learner Phase”. In the proposed Advanced Teaching-Learning-Based Optimization algorithm non-linear inertia weighted factor is introduced into the fundamental TLBO algorithm to manage the memory rate of learners. In order to control the learner’s mutation arbitrarily during the learning procedure a non-linear mutation factor has been applied. Proposed Advanced Teaching-Learning-Based Optimization algorithm (ATLBO) has been tested in standard IEEE 14, 30 bus test systems and simulation results show the proposed algorithm reduced the real power loss effectively.

This is an open access article under the CC BY-SA license.

1. INTRODUCTION
Reactive power problem plays an important role in secure and economic operations of power system. Numerous types of methods [1-6] have been utilized to solve the optimal reactive power problem. However many scientific difficulties are found while solving problem due to an assortment of constraints. Evolutionary techniques [7-16] are applied to solve the reactive power problem. This paper proposes Advanced Teaching-Learning-Based Optimization algorithm (ATLBO) to solve optimal reactive power problem. Teaching-Learning-Based Optimization (TLBO) optimization algorithm has been framed on teaching learning methodology happening in classroom. Algorithm consists of “Teacher Phase”, “Learner Phase”. In the proposed Advanced Teaching-Learning-Based Optimization algorithm (ATLBO) non-linear inertia weighted factor is introduced into the fundamental TLBO algorithm to manage the memory rate of learners. In order to control the learner’s mutation arbitrarily during the learning procedure a non-linear mutation factor has been applied. Preceding information gathering of learners is determined by the weight factor ω_2 and through that new-fangled values are calculated. In a learning cycle individuals will try to explore various regions of the exploration space in initial phase. Afterwards individuals progress in a little range to regulate the trial solution to certain extent such that it can investigate reasonably little local space. Proposed Advanced Teaching-Learning-Based Optimization algorithm (ATLBO) has been tested in standard IEEE 14, 30, bus test systems and simulation results show the projected algorithm reduced the real power loss effectively.
2. PROBLEM FORMULATION

Objective of the problem is to reduce the true power loss:

$$F = P_L = \sum_{k \in \text{nebr}} B_k (V_i^2 + V_j^2 - 2V_iV_j \cos \theta_{ij})$$ (1)

Voltage deviation given as follows:

$$F = P_L + \omega_v \times \text{Voltage Deviation}$$ (2)

Voltage deviation given by:

$$\text{Voltage Deviation} = \sum_{i=1}^{Npq} |V_i - 1|$$ (3)

Constraint (equality):

$$P_L = P_B + P_L$$ (4)

Constraints (inequality):

$$p_{\text{gslack}}^{\text{min}} \leq p_{\text{gslack}} \leq p_{\text{gslack}}^{\text{max}}$$ (5)

$$q_{\text{gi}}^{\text{min}} \leq q_{\text{gi}} \leq q_{\text{gi}}^{\text{max}}, i \in N_g$$ (6)

$$V_i^{\text{min}} \leq V_i \leq V_i^{\text{max}}, i \in N$$ (7)

$$T_i^{\text{min}} \leq T_i \leq T_i^{\text{max}}, i \in N_T$$ (8)

$$Q_{\text{c}}^{\text{min}} \leq Q_{\text{c}} \leq Q_{\text{c}}^{\text{max}}, i \in N_C$$ (9)

3. ADVANCED TEACHING-LEARNING-BASED OPTIMIZATION ALGORITHM

Teaching-Learning-Based Optimization (TLBO) optimization algorithm has been framed on teaching learning methodology happening in classroom. Algorithm consists of “Teacher Phase”, “Learner Phase” [17].

In ith learner the jth parameter is assigned values capriciously found by

$$X_{(i,j)} = X_j^{\text{min}} + \text{rand} \times (X_j^{\text{max}} - X_j^{\text{min}})$$ (10)

For the production “g” parameters of the ith learner are given by,

$$X_{(i)}^g = [X_{(i,1)}^g, X_{(i,2)}^g, X_{(i,3)}^g, ..., X_{(i,J)}^g]$$ (11)

3.1. Teacher Phase

Creation of “g” : mean parameter E_g of each subject learners in the class is defined by,

$$E_g = [e_1^g, e_2^g, ..., e_J^g]$$ (12)

New set of better learners are found by

$$X_{\text{new}}_{(i)}^g = X_{(i)}^g + \text{random} \times (X_{\text{Teacher}}^g - Te_F E_g)$$ (13)

Value of mean to be altered is decided by “Te_F” - teaching factor. Value of Te_F can be 1 or 2.

$$Te_F = \text{round} [1 + \text{rand} (0.1) (2 - 1)]$$ (14)

3.2. Learner Phase

For a specified learner $X_{(i)}^g$ a different learner $X_{(r)}^g$ is capriciously chosen($i \neq r$). In the learner stage the X_{new} is given as:
In the proposed Advanced Teaching-Learning-Based Optimization algorithm (ATLBO) non-linear inertia weighted factor is introduced into the fundamental TLBO algorithm to manage the memory rate of learners. In order to control the learner’s mutation arbitrarily during the learning procedure a non-linear mutation factor has been applied. Preceding information gathering of learners is determined by the weight factor \(\omega_c \) and through that new-fangled values are calculated. \(T \) is number of iteration in single learning cycle. Then the inertia weight factor is described by,

\[
\omega_c = 1 - \exp \left(\frac{-\text{mod}(\text{iter}, T)^2}{2 \times (T/8)^2}\right) \times (1 - \omega_{c\, \text{minimum}}), T \leq \text{maximum iteration}
\]

In a learning cycle individuals will try to explore various regions of the exploration space in initial phase. Afterwards individuals progress in a little range to regulate the trial solution to certain extent such that it can investigate reasonably little local space. Subsequently replicate the learning cycle over and over again. The random number \(\text{"r"} \) is modified by

\[
r' = \frac{1 + \text{random}(0, 1)}{2}
\]

\(r' \): Dynamic inertia weight. The mean value of the novel random number is amplified from 0.5 to 0.75, and then the stochastic variations are augmented. Mainly difference value added to the current learners. In the meantime, \(\omega_c \) augment from little to big in single learning cycle. Underneath of joint outcome of \(\omega_c \), \(r' \) the projected algorithm will not engender premature convergence. It will perk up population diversity, shun prematurity in the exploration procedure and augment the capability of the fundamental TLBO to flee from local optima.

In teaching phase new-fangled set of enhanced learners are defined by,

\[
X^{\text{new}}_{i,j} = \omega_c X^{\text{old}}_{i,j} + r' \left(X_{\text{Teacher},j} - T e_f E^g\right)
\]

In learner stage, the new-fangled set of enhanced learners is defined by,

\[
X^{\text{new}} = \begin{cases}
 \omega_c X^{\text{old}}_{i,j} + r' \left(X_{i,j} - X_{q,i}\right) & \text{if } f(X_i) < f(X_q) \\
 \omega_c X^{\text{old}}_{i,j} + r' \left(X_{q,j} - X_{i,j}\right) & \text{otherwise}
\end{cases}
\]

Mutation procedure is very easy, and design variables are initialized arbitrarily in the exploration space:

\[
P_c = 0.5 \exp \left(\frac{-\text{iteration}^2}{2 \times (\text{maximum iteration}/8)^2}\right)
\]

Step a: parameters are initialized
Step b: population generated
Step c: non-linear inertia weight factor, dynamic inertia weight computed by

\[
\omega_c = 1 - \exp \left(\frac{-\text{mod}(\text{iter}, T)^2}{2 \times (T/8)^2}\right) \times (1 - \omega_{c\, \text{minimum}}), T \leq \text{maximum iteration} ; r' = \frac{1 + \text{random}(0, 1)}{2}
\]

Step d: individual with the most excellent fitness is chosen and average value is computed
Step e: new marks of the learners are computed by \(X^{\text{new}}_{i,j} = \omega_c X^{\text{old}}_{i,j} + r' \left(X_{\text{Teacher},j} - T e_f E^g\right) \) and modernize the old values of the individuals by \(X^{\text{new}}_{i,j} = X^{\text{old}}_{i,j} + \text{random} \times \left(X^{\text{old}}_{\text{Teacher}} - T e_f E^g\right) \)
Step f: compute the new-fangled values of the students;

\[
X^{\text{new}}_{i,j} = \begin{cases}
 \omega_c X^{\text{old}}_{i,j} + r' \left(X_{i,j} - X_{q,i}\right) & \text{if } f(X_i) < f(X_q) \\
 \omega_c X^{\text{old}}_{i,j} + r' \left(X_{q,j} - X_{i,j}\right) & \text{otherwise}
\end{cases}
\]

and modernize the old values of the individuals by

\[
X^{\text{new}}_{i,j} = X^{\text{old}}_{i,j} + \text{random} \times \left(X^{\text{old}}_{\text{Teacher}} - T e_f E^g\right)
\]

Step g: Compute probability of variation by \(P_c = 0.5 \exp \left(\frac{-\text{iteration}^2}{2 \times (\text{maximum iteration}/8)^2}\right) \)
Step h: If the end condition is reached then stop or else go to Step c.
4. SIMULATION RESULTS

At first in standard IEEE 14 bus system [18] the validity of the proposed Advanced Teaching-Learning-Based Optimization algorithm (ATLBO) has been tested, Table 1 shows the constraints of control variables Table 2 shows the limits of reactive power generators and comparison results are presented in Table 3. Then the proposed ATLBO has been tested, in IEEE 30 Bus system. Table 4 shows the constraints of control variables, Table 5 shows the limits of reactive power generators and comparison results are presented in Table 6.

Table 1. Constraints of control variables

System	Variables	Minimum (PU)	Maximum (PU)
IEEE 14 Bus	Generator Voltage	0.95	1.1
	Transformer Tap	0.9	1.1
	VAR Source	0	0.20

Table 2. Constrains of reactive power generators

System	Variables	Q Minimum (PU)	Q Maximum (PU)
IEEE 14 Bus	1	0	10
	2	-40	50
	3	0	40
	6	-6	24
	8	-6	24

Table 3. Simulation results of IEEE -14 system

Control variables	Base case	MPSO [19]	PSO [19]	EP [19]	SARGA [19]	ATLBO
V G –1	1.060	1.100	1.100			
V G –2	1.045	1.085	1.085			
V G –3	1.010	1.055	1.055			
V G –6	1.070	1.069	1.069			
V G –8	1.090	1.074	1.074			
Tap 8	0.978	1.018	1.018			
Tap 9	0.969	0.975	0.975			
Tap 10	0.932	1.024	1.024			
Q C –9	0.19	14.64	14.64			
P G	272.39	271.32	271.32			
Q G (Mvar)	82.44	75.79	75.79			
Reduction in PLoss (%)	0	9.2	9.1	1.5	2.5	26.18
Total PLoss (Mw)	13.550	12.293	12.315	13.346	13.216	10.002

NR* - Not reported.

Table 4. Constraints of control variables

System	Variables	Minimum (PU)	Maximum (PU)
IEEE 30 Bus	Generator Voltage	0.95	1.1
	Transformer tap	0.9	1.1
	VAR source	0	0.20

Table 5. Constrains of reactive power generators

System	Variables	Q Minimum (PU)	Q Maximum (PU)
IEEE 30 Bus	1	0	10
	2	-40	50
	5	-40	40
	8	-10	40
	11	-6	24
	13	-6	24

Table 6. Simulation results of IEEE –30 system

Control variables	Base case	MPSO [19]	PSO [19]	EP [19]	SARGA [19]	ATLBO
V G –1	1.060	1.101	1.100			
V G –2	1.045	1.086	1.086			
V G –5	1.010	1.047	1.047			
V G –8	1.010	1.057	1.057			
V G –12	1.082	1.048	1.048			
V G –13	1.071	1.068	1.068			
Tap 11	0.978	0.983	0.983			
Tap 12	0.969	1.023	1.023			
Tap 15	0.932	1.020	1.020			
Tap 36	0.968	0.988	0.988			
QC 10	0.19	0.077	0.077			
QC 24	0.043	0.119	0.119			
P G (MW)	300.9	299.54	299.54			
Q G (Mvar)	133.9	130.83	130.94			
Reduction in PLoss (%)	0	8.4	7.4	6.6	8.3	20.11
Total PLoss (Mw)	17.55	16.07	16.25	16.38	16.09	14.020

Advanced teaching-learning-based optimization algorithm... (Kanagasabai Lenin)
5. CONCLUSION

In this paper Advanced Teaching-Learning-Based Optimization algorithm (ATLBO) successfully solved the optimal reactive power problem. In order to control the learner’s mutation arbitrarily during the learning procedure a non-linear mutation factor has been applied. Preceding information gathering of learners is determined by the weight factor ω, and through that new-fangled values are calculated. In a learning cycle individuals explored various regions of the exploration space in initial phase. Proposed Advanced Teaching-Learning-Based Optimization algorithm (ATLBO) has been tested in standard IEEE 14, 30 bus test systems and simulation results show the projected algorithm reduced the real power loss. Per centage of real power loss reduction has been improved when compared to other standard algorithms.

REFERENCES

[1] K. Y. Lee, “Fuel-cost minimisation for both real and reactive-power dispatches,” in Proceedings Generation, Transmission and Distribution Conference, vol. 131, no. 3, pp. 85-93, 1984.
[2] N. I. Deeb. “An efficient technique for reactive power dispatch using a revised linear programming approach,” Electric Power System Research, vol. 15, no. 2, pp. 121–134, 1998.
[3] M. R. Bjelociglic, M. S. Calovic, and B. S. Babic, “Application of Newton’s optimal power flow in voltage/reactive power control,” IEEE Trans Power System, vol. 5, no. 4, pp. 1447-1454, 1990.
[4] S. Granville. “Optimal reactive power dispatch through interior point methods,” IEEE Transactions on Power System, vol. 9, no. 1, pp. 136–146, 1994, doi: 10.1109/59.317548
[5] N. Gruzinin. “Reactive power optimization using successive quadratic programming method,” IEEE Transactions on Power System, vol. 13, no. 4, pp. 1219–1225, 1998, doi: 10.1109/59.736232.
[6] S. M. R. Ng, M.H. Sulaiman, Z. Mustaffa, and H. Danial, “Optimal reactive power dispatch solution by loss minimization using moth-flame optimization technique,” Appl. Soft Comput., vol. 59, pp. 210–222, 2017.
[7] G. Chen, L. Liu, Z. Zhang, and S. Huang, “Optimal reactive power dispatch by improved GSA-based algorithm with the novel strategies to handle constraints,” Appl. Soft Comput., vol. 50, pp. 58–70, 2017.
[8] E. Naderi, H. Narimani, M. Fathi, and M. R. Narimani, “A novel fuzzy adaptive configuration of particle swarm optimization to solve large-scale optimal reactive power dispatch,” Appl. Soft Comput., vol. 53, pp. 441–456, 2017.
[9] A. A. Heidari, R. Ali Abbaspour, and R. Jordehi, “Gaussian bare-bones water cycle algorithm for optimal reactive power dispatch in electrical power systems,” Appl. Soft Comput., vol. 57, pp. 657–671, 2017.
[10] M. Morgan, N. R. H. Abdullah, M. H. Sulaiman, M. Mustafa, and R. Samad, “Benchmark Studies on Optimal Reactive Power Dispatch (ORPD) Based Multi-objective Evolutionary Programming (MOEP) Using Mutation Based on Adaptive Mutation Adapter (AMO) and Polynomial Mutation Operator (PMO),” Journal of Electrical Systems, pp. 12-1, 2016.
[11] S. M. R. Ng, M. H. Sulaiman, and Z. Mustaffa, “Ant Lion Optimizer for Optimal Reactive Power Dispatch Solution,” Journal of Electrical Systems, no. Special Issue AMPE2015, pp. 68-74, 2016.
[12] P. Anbarasan and T. Jayabarathi, “Optimal reactive power dispatch problem solved by symbiotic organism search algorithm,” Innovations in Power and Advanced Computing Technologies, 2017, doi: 10.1109/IPACT.2017.8244970
[13] A. Gagliano and F. Nocera, “Analysis of the performances of electric energy storage in residential applications,” International Journal of Heat and Technology, vol. 35, no. Special Issue 1, pp. S41-S48, 2017, doi: 10.18280/ijht.35Sp0106.
[14] M. Caldera, P. Ungaro, G. Cammarata, and G. Puglisi, “Survey-based analysis of the electrical energy demand in Italian households,” Mathematical Modelling of Engineering Problems, vol. 5, no. 3, pp. 217-224, 2018, doi: 10.18280/mmp.050313
[15] M. Basu, “Quasi-oppositional differential evolution for optimal reactive power dispatch,” Electrical Power and Energy Systems, vol. 78, pp. 29-40, 2016.
[16] G. G. Wang, “Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems,” Memetic Comp., 2016, doi: 10.1007/s12293-016-0212-3.
[17] X. Chen, B. Xu, C. Mei, Y. Ding, and K. Li, “Teaching–learning–based artificial bee colony for solar photovoltaic parameter estimation,” Appl. Energy, vol. 212, pp. 1578–1588, 2018, doi: 10.1016/j.apenergy.2017.12.115
[18] IEEE, “The IEEE-test systems,” http://www.ee.washington.edu/research/pstca/
[19] A. N. Hussain, A. A. Abdullah, and O. M. Neda, “Modified Particle Swarm Optimization for Solution of Reactive Power Dispatch,” Research Journal of Applied Sciences, Engineering and Technology, vol. 15, no. 8, pp. 316-327, 2018, doi: 10.19026/rjaset.15.5917.