Voxel-based analysis of the metabolic asymmetrical and network patterns in hypermetabolism-associated crossed cerebellar diaschisis

Yuankai Zhu a, Ge Ruan b, Sijuan Zou a, Zhaoting Cheng a, Xiaohua Zhu a,∗

a Department of Nuclear Medicine and PET Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
b Department of Radiology, Hospital, Hubei University, Wuhan 430062, China

ARTICLE INFO

Keywords:
- Crossed cerebellar diaschisis
- Asymmetry index
- Hypermetabolism
- Positron emission tomography
- Statistical parametric mapping
- Metabolic brain network

ABSTRACT

Crossed cerebellar diaschisis (CCD) has been widely investigated in patients with supratentorial hypometabolism, however, the available evidence about the metabolic feature of CCD in patients with contralateral supratentorial hypermetabolism is lacking. This study aimed to assess the metabolic asymmetrical profile, network pattern and predisposing factors for the hypermetabolism-associated CCD, by using voxel-based asymmetry index (AI) and brain network analyses. Seventy CCD positive (CCD+) and 99 CCD negative (CCD−) patients with unilateral supratentorial hypermetabolism were introduced. Among different brain regions with Aimax or Almin at striatum & thalamus was accompanied by the highest positive rate of CCD (85.7% or 70.1%, respectively). CCD+ group had significantly greater Aimax (median [IQR], 0.62 [0.44–0.84] vs. 0.47 [0.35–0.61]), supratentorial hypermetabolic volume (1183.5 [399.3–3026.8] vs. 386.0 [152.0–1193.0]) and hypometabolic volume (37796.5 [24741.8–53278.0] vs. 3337.0 [1020.0–17193.0]), and lower Almin (~0.85 [−1.05–−0.73]) vs. ~0.49 (~−0.68–−0.35) compared with CCD− group (all P < 0.001). Logistic regression analysis manifested that patients with Amax located at striatum & thalamus were 16.4 times more likely to present CCD than those at frontal lobe (OR = 16.393; 95% CI, 4.463–60.207; P < 0.001), and the occurrence of CCD was also associated with Amax (OR = 49.594; 95% CI, 5.519–445.653; P < 0.001) and Almin (OR = 3.133 × 10−4, 95% CI, 1.693 × 10−5–5.799 × 10−3, P < 0.001). Brain network analysis indicated that the relative hypermetabolism in the contralateral supplementary motor cortex (SMC) and precuneus gyrus were constant in the CCD related patterns. These results demonstrated that the greater Amax, lower Almin and Amax located at striatum & thalamus should be predisposing factors for CCD in patients with unilateral supratentorial hypermetabolism. Relative increased activities in the contralateral SMC and precuneus gyrus might be attributed to a compensatory mechanism for the abnormal brain network related to CCD.

1. Introduction

Crossed cerebellar diaschisis (CCD), firstly reported in cerebral infarction patients, was defined as coupled hypometabolism and hypoperfusion in the cerebellar hemisphere contralateral to the supratentorial lesions (Baron et al., 1981; Sebok et al., 2021). In addition to the ataxic hemiparesis, cerebellar dysfunction within CCD may be involved in the abnormal posture, shoulder subluxation, and impairment of non-motor functions as well (Chang et al., 2017; Hsieh et al., 2020; Inatomi et al., 2021; Kwon et al., 2015; Nishida et al., 2019; Yoshida et al., 2018). Consequently, more extensive investigations are required for the better intervention of CCD and its associated comorbidities.

At present, the determinant factors for the occurrence of CCD remains inconclusive. A large number of studies related to CCD have focused on the patients with supratentorial hypoperfusion or hypometabolism. It was suggested that the presence of CCD was associated with larger infarct volume and greater severity of symptoms (Kang et al., 2017; Wang et al., 2020). Whereas, other studies showed that the asymmetrical magnitude of cerebral perfusion and hypoperfusion volume were the determinants of CCD (Lee et al., 2017; Nocu et al., 2013). The phenomenon of hyperperfusion/hypermetabolism-associated CCD has been described in patients with epilepsy, glioma, lymphoma and postoperative patients after bypass surgery for moyamoya disease.

* Corresponding author at: Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Ave, Wuhan 430030, China.
E-mail address: evazhu@vip.sina.com (X. Zhu).

https://doi.org/10.1016/j.nicl.2022.103032
Received 9 February 2022; Received in revised form 6 April 2022; Accepted 2 May 2022
Available online 6 May 2022
2213-1582/© 2022 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
(Hokari et al., 2012; Liu et al., 2018; Nelissen et al., 2006; Teoh et al., 2014; Uchino et al., 2021). Due to the limited number of reported cases, evidence of predisposing factors for hypermetabolism-associated CCD is yet lacking. Besides, hypermetabolic foci were usually accompanied by peripheral and/or remote hypometabolism. It has not been yet investigated whether hypermetabolic or hypometabolic features in these patients are more relevant to the occurrence of CCD.

Asymmetry index (AI) was the most commonly used indicator for evaluating the severity of CCD (Kang et al., 2015; Ma et al., 2022; Sebök et al., 2021; Takahashi and Horiguchi, 2020; Wang et al., 2020). Region of interest (ROI or VOI) can be defined to calculate the AI parameter of supratentorial lesions responsible for CCD (Hou et al., 2021). Drawing the outline of VOI manually, however, has poor repeatability, and is time-consuming and laborious. Although automatic segmentation by using neurourography atlas is considered to be more objective, no contour of the metabolic abnormality is exactly the same as any standard brain region. Accordingly, AI calculation based on VOI may give rise to controversial results, especially in specific standard brain regions containing both hypermetabolic and hypometabolic lesions. These dilemmas underscore the need for more precise calculation of AI at the voxel level, which has been utilized for the objective localization of the metabolic abnormalities in epilepsy patients (Zhu et al., 2017). To our knowledge, voxel-based analysis of AI has been used for evaluating the asymmetrical profile only in the hyperperfusion- or hypermetabolism-associated CCD (Noceti et al., 2013).

Under neuropathological state, brain functional networks across the whole brain might be altered in a characteristic pattern (Schindlbeck et al., 2020). And disease related network patterns have been identified in patients with neurodegenerative disorders (Eidelberg, 2009). The determination of CCD related pattern (CCDRP) would be crucial to gain more insight into the pathophysiological foundation for CCD and its associated symptoms.

The study presented herein aimed to assess the metabolic asymmetrical profile, specific CCDRP and predisposing factors for hypermetabolism-associated CCD, by using voxel-based analysis approach in a variety of diseases. In addition, the discrepancies in metabolic asymmetrical pattern and CCDRP expression between CCD positive and CCD negative patients with unilateral supratentorial hypermetabolic lesions were also investigated.

2. Materials and methods

2.1. Subjects

Clinical and image data were retrospectively collected via electronic medical record system and PET/CT database between Jan 2014 to Dec 2021. Patients with unilateral supratentorial hypermetabolic lesion detected by 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) imaging were included. Patients were excluded if they had any contralateral brain structural abnormality (including cerebrum and cerebellum) or contralateral supratentorial metabolic abnormality. Another exclusion criterion was that PET image did not cover the entire cerebrum or cerebellum. Finally, 169 patients (75 females; median [IQR] age, 58 [50–67] years) were introduced in this study. In addition, 116 normal brain 18F-FDG PET images of healthy controls (39 females; median [IQR] age, 50 [41–60] years) were extracted from the open source image datasets (Wang et al., 2021).

2.2. Image acquisition and reconstruction

Static PET/CT images were acquired on a clinical PET/CT scanner (Discovery 690 Elite, GE Medical Systems, USA), at 60 min after intravenous injection of 18F-FDG (3.7 MBq/kg). The algorithm of SharpR + VUE point HD was used for the PET data reconstruction. The matrix size of reconstructed brain PET images was 192 × 192 × 47 with a voxel size of 1.56 × 1.56 × 3.27 mm³.

2.3. Image analysis

2.3.1. AI parameter images

All reconstructed brain PET images were flipped around the x-axis to create the mirrored PET images. Both raw and flipped PET images were spatially normalized into a homemade symmetric brain template of tissue probability map (TPM) through statistical parametric mapping 12 (SPM12) software package (Welcome Trust Centre for Neuroimaging, London, UK; https://www.fil.ion.ucl.ac.uk/spm), according to the sophisticated protocol (Kurth et al., 2015). These normalized PET data with a voxel size of 1.5 × 1.5 × 1.5 mm³, were then smoothed using an 8 mm isotropic Gaussian kernel. For the subjects with left supratentorial lesions, AI parameter images were calculated at the voxel level according to the following formula (Didelot et al., 2010; Kurth et al., 2015):

$$AI = \frac{(\text{unflipped} - \text{flipped})}{(\text{unflipped} + \text{flipped})}/2$$

For the subjects with right supratentorial lesions, the calculation was according to the following formula:

$$AI = \frac{(\text{flipped} - \text{unflipped})}{(\text{unflipped} + \text{flipped})}/2$$

By this means, all the AI parameters for hypermetabolic lesions were confined to the left side, facilitating the subsequent comparison between CCD+ and CCD- groups. After a second smoothing using an isotropic 4 mm Gaussian kernel, the brain AI parameter images of CCD+ group were compared with those of CCD- group using voxel-wise SPM analysis (AI-SPM) (Didelot et al., 2010; Zhu et al., 2017). Family-wise error (FWE) corrected P value under 0.05 with cluster level above 50 voxels was regarded as statistically significant.

Besides, AI parameter image of each patient was also compared with those of control group using SPM software (Didelot et al., 2010; Zhu et al., 2017). This procedure was conducted to further determine the maximum of AI (Aimax), minimum of AI (Aimin) and the brain regions of Aimax and Aimin for each individual patient. Since AI represents the relative FDG uptake compared with that of mirrored brain region, the Aimax and Aimin located at different brain regions refer to the value of the most asymmetric hypermetabolic and hypometabolic regions, respectively. The higher the Aimax the more significant the extreme value of asymmetric hypermetabolism. In contrast, the lower the Aimin, the more significant the extreme value of asymmetric hypometabolism. Both supratentorial hypermetabolic and hypometabolic volumes of all clusters exceeding the threshold were obtained as well.

2.3.2. VOI-based AI

All reconstructed PET images were also spatially normalized to the default TPM template embedded in SPM12 package. VOI for bilateral cerebellum exterior, caudate, putamen, pallidum and thalamus proper, were automatically segmented on both brain hemispheres by the neurourography atlas matching the default TPM template, and originating from the OASIS project (https://www.oasis-brains.org/). Based on the lateralization of supratentorial lesions, AI for the ipsilateral caudate, putamen, pallidum and thalamus proper was calculated according to the following formula (Takahashi and Horiguchi, 2020):

$$AI = \frac{(\text{ipsilateral} - \text{contralateral})}{(\text{ipsilateral} + \text{contralateral})}/2$$

But the calculation of AI for the contralateral cerebellum exterior was according to the following formula:

$$AI = \frac{(\text{contralateral} - \text{ipsilateral})}{(\text{ipsilateral} + \text{contralateral})}/2$$

The determination of CCD was based on the value of cerebellar AI. Patients with cerebellar AI < −0.1 were considered as CCD+, and those with cerebellar AI between −0.1 and 0.1 as CCD-. None subjects had cerebellar AI exceeding 0.1. Besides, the presence of supratentorial...
hypermetabolism were visually evaluated by two experienced nuclear medicine physicians separately. Discordant results were adjudicated by VOI-AI analysis taking 0.1 as the threshold.

2.3.3. Metabolic brain network analysis

Based on the location of supratentorial hypermetabolic lesions, both CCD+ and CCD- patients were classified into 6 categories, i.e. frontal lobe, parietal lobe, temporal lobe, occipital lobe, cingulate gyrus and striatum & thalamus. As described above, brain PET images with right supratentorial lesions were flipped around the x-axis to create the mirrored PET images, thus the hypermetabolic lesions of all images were confined to the left side. Voxel-based metabolic brain network analysis was conducted by scan analysis and visualization processor (ScAnVP) software package (Center for Neuroscience, Feinstein Institute for Medical Research, NY; https://www.feinsteinnanuroscience.org). Briefly, CCDRP was determined from the combined control and CCD+ groups for each category, by applying the scaled subprofile model of principal component analysis (SSM-PCA) (Ma et al., 2007). Maximum separation in the expression of CCDRP between the control and CCD+ subjects was achieved, and the principal components expression in each individual case was transformed into Z score. In addition, The CCDRP expressions in the PET data from CCD- subjects calculated through the algorithm of topographic profile rating, were represented by a Z-transformed score as well.

2.4. Statistical analysis

Statistical analyses were conducted by using SPSS software (version 25.0; IBM SPSS Statistics). Group differences for continuous variables were tested using the Mann–Whitney test or Kruskal-Wallis test followed by post-hoc Bonferroni correction, while categorical variables using the chi-square test or Fisher exact test as appropriate. Correlation analyses were performed using Pearson or Spearman correlation coefficients when appropriate. Multivariate logistic regression analysis was conducted to determine the effects of multiple variables on hypermetabolism-associated CCD. P values < 0.05 were considered statistically significant.

3. Results

3.1. The demographics of CCD+ and CCD- groups

CCD was confirmed in 70 (41.4%) patients with unilateral supratentorial hypermetabolism. As shown in Table 1, no significant differences in age (P = 0.494), gender (χ² = 1.530, P = 0.216) or lateralization of hypermetabolic lesions (χ² = 0.120, P = 0.729) were found between CCD+ and CCD- groups. A significant difference in positive rate of hypermetabolism-associated CCD was found among the 5 types of brain disorders (Fisher exact test, χ² = 12.341, P < 0.01). Without considering the encephalitis with only 1 case, patients with glioma and epilepsy had the highest (63.0%) and lowest (0%) positive rate of CCD, respectively. Compared with CCD- group, no significant increase of metabolic AI was confirmed in CCD+ group (P[FWE-corrected] < 0.05, cluster size > 50). Whereas, CCD+ group had significantly lower metabolic AI mainly in ipsilateral thalamus, insula, inferior frontal gyrus and pons and contralateral cerebellum than CCD- group (P[FWE-corrected] < 0.05, cluster size > 50; Fig. 1 and Table 2). Only 3 local maxima >8 mm apart were displayed for each cluster in Table 2. Besides, significant reduction of metabolic AI was also found in ipsilateral frontal lobe (33740 voxels), parietal lobe (7377 voxels), temporal lobe (5584 voxels), putamen (2213 voxels), caudate (1051 voxels), pallidum (478 voxels) and midbrain (723 voxels) including the red nucleus (75 voxels).

Table 1

Clinical characteristics	CCD+ group (n = 70)	CCD- group (n = 99)	P value	χ²	
Gender	Female/Male	35/35	40/59	0.216	1.530*
Age (years)	59 (50-68)	58 (49-67)	0.494	N/A	
Lateralization (L/R)	37/33	55/44	0.729	0.120*	
Disease category					
Epilepsy	0	8	0.008	12.341*	
Glioma	17	10			
Lymphoma	8	9			
Metastatic tumor	45	71			
Encephalitis	0	1			
Region with AI_max					
Frontal lobe	40	43	0.016	13.564*	
Parietal lobe	7	21			
Temporal lobe	7	18			
Occipital lobe	5	12			
Insula & cingulate gyrus	5	4			
Striatum & thalamus	6	1			
Region with AI_min			<0.001	38.634*	
Frontal lobe	13	36			
Parietal lobe	6	20			
Temporal lobe	3	18			
Occipital lobe	1	3			
Insula & cingulate gyrus	0	2			
Striatum & thalamus	47	20			

AI = asymmetry index; CCD = crossed cerebellar diaschisis; L = left cerebral hemisphere; R = right cerebral hemisphere; * Pearson chi-square test; * Fisher exact test.

3.3. Analysis of the individual metabolic asymmetrical profile for hypermetabolism-associated CCD

Compared with control group, individual metabolic asymmetrical profile of each patient (both CCD+ and CCD- group) with unilateral supratentorial hypermetabolism was analyzed, in order to obtain asymmetrical parameters including AI_max, AI_min, brain region with AI_max or AI_min, and volume of supratentorial hypermetabolism or hypometabolism. The metabolic asymmetrical profile of a single CCD+ patient with glioma was demonstrated as an example in Fig. 2 and Table 3 (P[FWE-corrected] < 0.05, cluster size > 50). As shown in Table 1, significant difference in positive rate of CCD was found among 6 brain regions with AI_max (Fisher exact test, χ² = 13.564, P < 0.05), as well as regions with AI_min (Fisher exact test, χ² = 38.634, P < 0.001). Among different brain regions with AI_max or AI_min, striatum & thalamus was accompanied by the highest positive rate of CCD (85.7% or 70.1%, respectively). In addition, CCD+ group had significantly greater AI_max (median [IQR], 0.62 [0.44–0.84] vs. 0.47 [0.35–0.61], P < 0.001), supratentorial hypermetabolic volume (median [IQR], 1183.5 [399.3–3026.8] vs. 386.0 [152.0–1193.0], P < 0.001) and hypometabolic volume (median [IQR], 37796.5 [24741.8–53278.0] vs. 3337.0 [10220.0–17193.0], P < 0.001) compared with CCD- group (Fig. 3). AI_min of CCD+ group was significantly lower than that of CCD- group (median [IQR], −0.85 [−1.05–−0.73] vs. −0.49 [−0.68–−0.35], P < 0.001).

Both the volume ratio of hypometabolism to hypermetabolism (median [IQR], 35.36 [8.39–121.11] vs. 7.66 [2.08–35.57], P < 0.001) and the total volume of metabolic abnormalities (median [IQR], 40318.5 [26090.0–55456.0] vs. 5177.0 [1545.0–19352.0], P < 0.001) of CCD+ group were significantly greater than those of CCD- group. Furthermore, significant difference in the volume ratio of hypometabolism to hypermetabolism (P = 0.007), as well as in the total volume of metabolic abnormalities (P = 0.001), were found among the 4...
types of brain disorders (excluding the only one encephalitis patient). The post hoc analysis indicated that the volume ratio of hypometabolism to hypermetabolism in both glioma (median [IQR], 21.45 [6.80–56.42], \(P = 0.023 \)) and metastatic tumor (median [IQR], 20.49 [5.14–75.15], \(P = 0.009 \)) patients, was significantly greater than that in epilepsy patients (median [IQR], 2.31 [0.14–4.71]), while the total volume of metabolic abnormalities in both metastatic tumor (median [IQR], 18973.5 [2907.3–40697.0] \(P = 0.022 \)) and epilepsy (median [IQR], 5450.0 [975.3–12849.0], \(P = 0.002 \)) patients was significantly lower than that in glioma patients (median [IQR], 34155.0 [18846.0–55756.0]).

Logistic regression analysis was performed with relevant factors, including disease category, \(A_{\text{max}} \), \(A_{\text{min}} \) region with \(A_{\text{max}} \) region with \(A_{\text{min}} \), supratentorial hypermetabolic and hypometabolic volumes, volume ratio of hypometabolism to hypermetabolism and total volume of metabolic abnormalities, which were significantly different between CCD+ and CCD- groups in the univariate analysis. Patients with \(A_{\text{min}} \) located at striatum & thalamus were 16.4 times more likely to present hypermetabolism-associated CCD than those at frontal lobe (odds ratio [OR] = 16.393; 95% CI, 4.463–60.207; \(P < 0.001 \), Table 4). The occurrence of CCD was also significantly associated with the values of \(A_{\text{max}} \) (OR = 49.594; 95% CI, 5.519–445.653; \(P < 0.001 \)) and \(A_{\text{min}} \) (OR = 3.133 \times 10^{-4}; 95% CI, 1.693 \times 10^{-5}–5.799 \times 10^{-2}; \(P < 0.001 \)).

3.4. Correlation between metabolic AI of ipsilateral striatum & thalamus and that of contralateral cerebellum

Among CCD+ group, metabolic AI of contralateral cerebellum was significantly positively correlated with that of ipsilateral caudate,
putamen, pallidum and thalamus proper (r = 0.317, 0.333, 0.345 and 0.373, respectively, all P < 0.01; Fig. 4). Whereas among CCD- group, metabolic AI of contralateral cerebellum was significantly positively correlated only with that of ipsilateral caudate (r = 0.252, P < 0.05) and putamen (r = 0.339, P < 0.01).

3.5. Metabolic brain network analysis for hypermetabolism-associated CCD

Since hypermetabolic lesion located at insula lobe was found only in 1 CCD+ subject, this subject was not included in the establishment of CDDRPs. Hypermetabolism-associated CDDRPs was determined for each category based on the location of supratentorial hypermetabolic lesions (Fig. 5).

The frontal lobe associated CDDRPs accounting for 40.02% of the subject × voxel variance, was characterized by relative increases in contralateral supplementary motor cortex (SMC) and precuneus gyrus (PrG) metabolism, associated with relative reductions in ipsilateral frontal lobe, insula lobe, caudate, putamen, anterior cingulate gyrus and contralateral cerebellum (Fig. 5a). The parietal lobe associated CDDRPs accounting for 20.57% of the subject × voxel variance, was characterized by relative increases in contralateral SMC, PrG, precentral gyrus and postcentral gyrus metabolism, associated with relative reductions in ipsilateral parietal lobe, frontal lobe, temporal lobe, occipital lobe, cingulate gyrus, insula lobe, thalamus and contralateral cerebellum (Fig. 5b). The temporal lobe associated CDDRPs accounting for 23.82% of...
the subject \times voxel variance, was characterized by relative increases in contralateral SMC and PrG metabolism, associated with relative reductions in ipsilateral temporal lobe, occipital lobe, insula lobe, putamen, pallidum, thalamus and contralateral cerebellum (Fig. 5c). The occipital lobe associated CCDRP accounting for 17.40% of the subject \times voxel variance, was characterized by relative increases in contralateral SMC and superior temporal gyrus metabolism, associated with relative reductions in ipsilateral temporal lobe, occipital lobe, insula lobe, putamen, pallidum, thalamus and contralateral cerebellum (Fig. 5d). The cingulate gyrus associated CCDRP accounting for 18.01% of the subject \times voxel variance, was characterized by relative increases in ipsilateral parietal lobe, frontoparietal lobes (including SMC and PrG) metabolism, associated with relative reductions in ipsilateral frontal lobe, parietal lobe, occipital lobe, insula lobe, temporal lobe and contralateral cerebellum (Fig. 5f).

Significant differences in the CCDRP expressions represented by subject Z scores were found among control, CCD+ and CCD- groups, for each category based on the location of supratentorial hypermetabolic lesions (all $P < 0.01$), and the Bonferroni multiple comparisons were shown in Fig. 6. CCD+ group had significantly higher pattern expressions than control group for each category (all $P < 0.01$). CCD- group had significantly higher pattern expressions than control group, for the frontal lobe (Fig. 6a), parietal lobe (Fig. 6b), temporal lobe (Fig. 6c) or occipital lobe (Fig. 6d) associated CCDRP (all $P < 0.001$). No significant difference in the CCDRP expression was found between control and CCD- groups for the parietal lobe (Fig. 6b, $P = 0.539$), temporal lobe (Fig. 6c, $P = 0.210$), occipital lobe (Fig. 6d, $P = 1.000$) or cingulate gyrus associated CCDRP (Fig. 6e, $P = 0.111$).

Table 4

Logistic regression analysis of risk factors for hypermetabolism-associated CCD.

Variables	P	β	SEM	Exp(β)	95% CI
A_{max}	<0.001	3.904	1.120	49.594	5.519–445.653
A_{min}	<0.001	-8.068	1.489	3.13×10^{-4}	1.695 $\times 10^{-5}$–5.799 $\times 10^{-3}$
Region with A_{min}	<0.001				
Frontal lobe	N/A	N/A	N/A	1.000	N/A
Parietal lobe	0.199	-1.072	0.834	0.342	0.067–1.756
Temporal lobe	0.542	0.747	1.225	2.112	0.191–23.309
Occipital lobe	0.191	-1.896	1.451	0.150	0.009–2.580
Insula & cingulate gyrus	1.000	-46.821	9.143 $\times 10^{10}$	4.635 $\times 10^{-21}$	N/A
Striatum & thalamus	<0.001	2.797	0.664	16.393	4.463–60.207
Constant	<0.001	-9.525	1.655	7.299 $\times 10^{-5}$	N/A

A_I = asymmetry index; CCD = crossed cerebellar diaschisis.
4. Discussion

The current study demonstrated the involvement of both metabolic A_{max} and A_{min} in the hypermetabolism-associated CCD by using voxel-based AI analysis approach. Besides, Patients with A_{min} located at striatum & thalamus were prone to present CCD. Functional connectivities between ipsilateral striatum & thalamus and contralateral cerebellum in CCD+ patients were distinct from those in CCD- patients. Brain network analysis indicated that the relative hypermetabolism in the contralateral SMC and PrG were constant in all the identified CDDRPs.

VOI-based AI was one of the most commonly used indicators for evaluating the severity of CCD (Kang et al., 2015; Ma et al., 2022; Sebők et al., 2021; Takahashi and Horiguchi, 2020; Wang et al., 2020). The VOI can be drawn manually, but the precise definition of the boundary for the metabolic abnormality in functional images is difficult. Therefore, this time-consuming and laborious approach has poor repeatability in the AI analysis for PET images. Although automatic segmentation by using stereotype VOI is considered to be more objective, metabolic abnormality is in a nonuniform distribution and its contour cannot be exactly overlapped with any recognized standard brain region. In particular, the hypermetabolic lesion with small volume may not be detected due to the dilution by peripheral hypometabolism. In order to estimate the location, direction and magnitude of brain morphological asymmetries more precisely, standard guideline for the voxel-based AI analysis protocol was established (Kurth et al., 2015). Very little research attempted to apply this approach for the localization of epileptic foci using PET imaging (Didek et al., 2010; Zhu et al., 2017). To the best of our knowledge, not considering the conventional SPM procedure, voxel-based AI analysis approach has been used for capturing the asymmetrical profile of brain perfusion only in hyperperfusion-associated CCD using single photon imaging, and it was utilized in the assessment of hypermetabolism-associated CCD for the first time in our study (Nocu et al., 2013). Above all, greatest advantage of this approach lies in that relatively small volume of hypermetabolic lesions surrounded by widespread hypometabolism (e.g., Fig. 2) would not be detected through VOI-based AI approach.

Up to 70 of 169 (41.4%) patients presented hypermetabolism-associated CCD in our retrospective study. Significant difference in positive rate of CCD was found among different types of brain diseases, which was in line with other studies (7.5% to 57.4%) focused on unilateral supratentorial lesions with reduced metabolism/perfusion only (Franceschi et al., 2021; Hertel et al., 2021; Hou et al., 2021; Ma et al., 2022; Provost et al., 2021; Sebők et al., 2021; von Bieberstein et al., 2021; Zhang et al., 2019). Hypermetabolism-associated CCD was observed in 18.4% of moyamoya disease patients with postoperative cerebral hyperperfusion, and in 26.3% of glioma patients (Sebők et al., 2020; Uchino et al., 2021). Whereas, a majority of CCD studies on supratentorial hypermetabolic lesions were merely exhibited in the form of case report (Calabria and Schillaci, 2012; Goldwaer et al., 2020; Hokari et al., 2012; Teoh et al., 2014). In the current study, it was suggested that patients with unilateral supratentorial glioma were more likely (63.0%) to suffer from hypermetabolism-associated CCD, and had larger total volume of metabolic abnormalities compared with patients with unilateral supratentorial metastatic tumor. The possible reason may be that the AI of cerebellar perfusion/metabolism was related with the total supratentorial lesion volume, including not only the tumor but also the peritumoral edema (Liu et al., 2018). Apart from the peritumoral notable edema, remote inhibition induced by the interruption of nervous pathways could further increase the volume of reduced perfusion/metabolism (Lindegaard et al., 1986; Nelissen et al., 2006). Since there was hardly any other available evidence for the discrepancy in the susceptibility to CCD among multiple types of brain disorders, more researches are needed to explore this disparity.

Surprisingly in this study, no hypermetabolism-associated CCD was detected in any epilepsy patients. Among refractory epilepsy patients caused by focal cortical dysplasia, 23.0% of them presented CCD with unilateral supratentorial hypometabolic lesions (Hou et al., 2021). The larger range of supratentorial hypometabolism, detectable structural abnormalities and the A_{min} located at the posterior frontal & anterior temporal lobes, were considered as predisposing factors for the occurrence of CCD in epilepsy patients (Hou et al., 2021; Savic et al., 1996). In

![Fig. 4. Correlation between metabolic AI of contralateral cerebellum and that of ipsilateral striatum & thalamus.](image)
addition, hypometabolism-associated CCD was found in 22.2% epilepsy patients with Sturge-Weber syndrome as well, and occurred more frequently (81%) in the interventional test (Griffiths et al., 1997; Kurthen et al., 1990). However, within our knowledge, canonical contralateral cerebellar hypometabolism in epilepsy patients with unilateral supratentorial hypermetabolic lesions has not been reported. Put another way, contralateral cerebellar hyperperfusion/hypermetabolism (CCH) may be the characteristic form of reverse CCD in certain epilepsy patients (Graffeo et al., 2016; Park et al., 1992; Won et al., 2018; Yokota and Ida, 2019). This interesting phenomenon was exclusively observed in the ictal state or status epilepticus, and could convert into conventional CCD or symmetrical pattern after seizure were controlled (Cui et al., 2014; Goldwaser et al., 2020; Kawai et al., 2005; Umemura and Suzuka, 2000). Accompanied by the vascular dilatation and increased perfusion, neuronal hyperactivation may be attributed to the widespread epileptiform discharges and prolonged excitatory synaptic activities via cortico-ponto-cerebellar pathway (Koy et al., 2012; Vyas et al., 2019). Along this pathway, CCD+ group had significantly lower metabolic AI within ipsilateral cerebral cortex (excluding occipital lobe), cerebral white matter, pons and contralateral cerebellum compared with CCD- group in our voxel-based AI analysis. It was suggested that both the magnitude of declined metabolism and the total supratentorial hypometabolic volume may be predisposing factors for CCD (Hou et al., 2021; Lee et al., 2017; Sommer et al., 2016). Thus, we speculated that the sufficiently low Al_{min} and large volume of supratentorial hypometabolism in CCD+ patients could allow the cortico-ponto-cerebellar pathway to be suppressed. Furthermore, our results revealed that the magnitude of elevated metabolism (Al_{max}) in brain lesions might also be related to the presence of CCD in patients with supratentorial hypermetabolism. The excessive supratentorial dysfunction could further inhibit the activity of ipsilateral pons, the relay station of this pathway, through the intrahemispheric associative neurofibrillary tangles. Eventually, the apparent decline of metabolic activity in ipsilateral pons may induce the presence of CCD, accompanied by the reduced neurological activities in the downstream contralateral cerebellum.

Interestingly, apart from the hypometabolism of the entire cortico-ponto-cerebellar pathway delineated in our AI-SPM analysis,
ipsilateral striatum, thalamus and red nucleus were also detected with declined metabolism in hypermetabolism-associated CCD. These subcortical nuclei are the key components of cortico-rubral pathway. The inhibition of this pathway would further lead to the dysfunction of successive rubro-spinal tract, resulting the symptom of hemiataxia. Logistic regression analysis also indicated that AI located at striatum & thalamus should be a pivotal predisposing factor for hypermetabolism-associated CCD, which was in accordance with the researches on hypometabolism-associated CCD (Chen et al., 2014; Lin et al., 2018; Noguchi et al., 2015; Sin et al., 2018). The neighboring internal capsule with compact fiber bundle may also be involved, inducing the inhibition of the cortico-ponto-cerebellar pathway. Moreover, striatum and thalamus were also considered to be involved in the process of cognitive function (Diehl-Schmid et al., 2019; Hirata et al., 2015; Leisman and Melillo, 2013). These findings may provide a new insight into not only the hemiataxia, but also the cognitive and behavior comorbidities of CCD (Devita et al., 2021; Leisman and Melillo, 2013).

In our VOI-based AI analysis, the correlation between contralateral cerebellar cortex and ipsilateral striatum and thalamus were appraised in both CCD+ and CCD- patients. The metabolic activity of contralateral cerebellum was positively correlated with that of ipsilateral striatum and thalamus in CCD+ patients, but with that of only ipsilateral neo-striatum in CCD- patients. The complex interactive functional network with reciprocal communication between cerebellum and basal ganglia has been verified (Bostan et al., 2013). It was also indicated that the subthalamic nucleus was the key node of the efferent projection from the basal ganglia to the cerebellum (Bostan et al., 2010). The cerebellum influenced the striatal process by the dentate nucleus (Hoshi et al., 2005). Besides, the efferent projections from the cerebellum to both contralateral cerebral cortex and basal ganglia were relayed via thalamus, influencing multiple motor and cognitive functions (Hamaide et al., 2018; Kawabata et al., 2020; Palesi et al., 2017). Therefore, we speculated that the synchronously reduced activities of ipsilateral striatum & thalamus and contralateral cerebellum could be related to the hypermetabolism-associated CCD and its symptoms.

Distinct CCDRPs were determined based on the category for the location of supratentorial hypermetabolic lesions in our study. However, the relative metabolic increases in the contralateral SMC and PrG, especially the SMC, were constant in all the established patterns. The area of SMC was supposed to be critical for the learning, execution and regulation of motor action (Bonini et al., 2014). Other non-motor functions including auditory processing, cognitive control, apraxia, and aphasia also involve the participation of SMC (Joswig et al., 2021; McGettigan et al., 2013; Sjöberg et al., 2019; Yajima and Naruse, 2021). In addition, neuroimaging evidences revealed that PrG along with its cortical and subcortical connectivity could regulate not only the motor function, but also the higher-order cognitive function, e.g., visuo-spatial imagery, memory and conscious (Cavanna and Trimble, 2006; Thibes et al., 2017). Considering the CCD associated motor and non-motor symptoms, these increased activities in contralateral SMC and PrG might be attributed to a compensatory mechanism for abnormal brain function.

Though the network pattern expressions in CCD- subjects were significantly higher than those in control group, both of them failed to reach the expression level in CCD+ subjects, for those with hypermetabolic lesion located at frontal lobe. Therefore, the expression of the established CCDRP, has the potential to distinguish the CCD- group from both control and CCD+ groups. The unexpected finding was that no significant difference in the CCDRP expression was found between CCD+ and CCD- groups, for those with hypermetabolic lesion outside the frontal area. Owing to the limited number of CCD+ subjects in these categories, the network patterns were potentially unstable, which would be a possible explanation. Further investigation with a larger sample size could provide a more convincing CCDRP, in order to develop more

Fig. 6. Comparison of CCD-related pattern (CCDRP) expressions among control, CCD+ and CCD- groups. Individual Z scores (pattern expressions of CCDRP) in CCD-group with unilateral supratentorial hypermetabolic lesions located at frontal lobe (a), parietal lobe (b), temporal lobe (c), occipital lobe (d), cingulate gyrus (e) and striatum & thalamus (f), respectively, were compared with those in control and CCD+ groups.
effective therapies targeting the key brain regions or pathways responsible for CCD.

Due to the limitation of the experimental design, numerous patients with bilateral supratentorial hypermetabolic lesions, mostly brain metastatic tumor, and glioma patients without obvious hypermetabolic lesions were excluded from this study. This potential selection bias may lead us unable to exactly compare the susceptibility of various brain disorders to CCD. Another limitation was that the heterogeneity either among subgroups of a specific disease or within brain metabolic asymmetrical profile in each patient was not investigated. For the former, the magnitude of cerebellar AI would be higher in high-grade than in low-grade gliomas (Liu et al., 2018; Otte et al., 1998). For the latter, applications of radiomics and artificial intelligence approaches could provide further interpretation of metabolic asymmetrical profile by extracting and analyzing the high dimensional data. Moreover, 8 epilepsy patients in our study showed neither CCH nor conventional CCD. In addition to the lowest total volume of supratentorial metabolic abnormalities, the roughly symmetrical cerebellar metabolism may also be attributed to the 18F-FDG PET imaging performed during subclinical seizure episode, rather than ictal state or status epilepticus. Despite these limitations, future research directions may be highlighted based on our preliminary results.

5. Conclusion

Voxel-based AI analysis has the potential to be served as a standard approach for assessing the asymmetrical profile of CCD in various brain disorders. Greater A_{max}, lower A_{min} and A_{\min} located at striatum & thalamus might be predisposing factors for CCD in patients with unilateral supratentorial hypermetabolic lesions. Relative increased activities in contralateral SMC and PrG could be a compensatory mechanism for the CCD associated abnormal brain network.

Ethical approval

The study protocol was approved by the Institutional Review Board of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, and the informed consent was waived.

Funding

This work was supported by the National Natural Science Foundation of China (NSFC) (grant number 81801729, 91959119 and 81873903).

CRediT authorship contribution statement

Yunkai Zhu: Conceptualization, Methodology, Software, Formal analysis, Investigation, Data curation, Writing – original draft, Visualization, Funding acquisition. Ge Ruan: Software, Validation, Investigation, Data curation, Writing – original draft, Visualization. Sijuan Zou: Validation, Investigation, Data curation, Writing – review & editing. Xiaohua Zhu: Conceptualization, Methodology, Formal analysis, Writing – review & editing, Visualization, Supervision, Project administration, Funding acquisition.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

Baron, J.C., Bouser, M.G., Comar, D., Castaigne, P., 1981. “Crossed cerebellar diaschisis” in human supratentorial brain infarction. Trans. Am. Neurol. Assoc. 105, 459–461.
Bonini, F., Burle, B., Liégeois-Chauvel, C., Régn, J., Chauvel, P., Vidal, F., 2014. Action monitoring and medial frontal cortex: leading role of supplementary motor area. Science 343, 888–891. https://doi.org/10.1126/science.1247412.
Bostan, A.C., Dum, R.P., Strick, P.L., 2010. The basal ganglia communicate with the cerebellum. Proc. Natl. Acad. Sci. 107, 8452–8456. https://doi.org/10.1073/pnas.1004961107.
Bostan, A.C., Dum, R.P., Strick, P.L., 2013. Cerebellar networks with the cerebral cortex and basal ganglia. Trends Cogn. Sci. 17, 241–254. https://doi.org/10.1016/j.tics.2013.03.003.
Calabria, F., Schilardi, O., 2012. Recurrent gliomas and crossed cerebellar diaschisis in a patient examined with 18F-DOPA and 18F-FDG PET/CT. Clin. Nucl. Med. 37, 878–879. https://doi.org/10.1097/RLU.0b013e318262fa2a.
Cavanna, A.E., Trimble, M.R., 2006. The precuneus: a review of its functional anatomy and behavioural correlates. Brain 129, 564–583. https://doi.org/10.1093/brain/awl064.
Chang, C.-C., Ku, C.-H., Chang, S.-T., 2017. Postural asymmetry correlated with lateralization of cerebellar perfusion in persons with chronic stroke: a role of crossed cerebellar diaschisis in left side. Brain Inj. 31, 90–97. https://doi.org/10.1080/02692046.2016.1210229.
Chen, S., Guan, M., Lian, H.-J., Ma, L.-J., Jiang, J.-K., He, S., Ma, M.-M., Zhang, M.-L., Li, Z.-Y., Wang, M.-Y., Shi, D.-P., Zhang, J.-W., 2014. Crossed cerebellar diaschisis detected by arterial spin-labeled perfusion magnetic resonance imaging in subtle ischemic stroke. J. Stroke Cerebrovasc. Dis. 23, 2378–2383. https://doi.org/10.1016/j.jstrokecerebrovasdis.2014.05.009.
Cui, R., Niu, N., Li, F., 2014. Crossed cerebellar hypermetabolism demonstrated by FDG PET. Clin. Nucl. Med. 39, 409–412. https://doi.org/10.1097/RLU.0000000000000388.
Devita, M., Alberti, F., Fagnani, M., Masina, F., Ara, E., Sergi, G., Mapelli, D., Coin, A., 2021. Novel insights into the relationship between cerebellum and dementia: a narrative review as a toolkit for clinicians. Ageing Res. Rev. 70, 101389. https://doi.org/10.1016/j.arr.2021.10.839.
DideLOT, A., MasguierE, F., Redoute, J., Bouvard, S., Lothe, A., Reilliac, A., Hammers, A., Costes, N., Ryvlin, P., 2010. Voxel-based analysis of asymmetry index maps increases the specificity of 18F-MPPF PET abnormalities for localizing the epileptogenic zone in temporal lobe epilepsy. J. Nucl. Med. 51, 1732–1739. https://doi.org/10.2967/jnumed.109.070938.
Diehl-Schmid, J., Licata, A., Goldhardt, O., Forstl, H., Yakubow, I., Otto, M., AndierL-Staub, S., Beer, A., Ludolph, A., Landwehrmeyer, G., Levin, J., Dunek, A., Fleinsbach, K., Spotte, A., Fabsbender, K., Kyros, E., Pradl, K., Krause, B., Volk, A., Edbauer, D., Schroeter, M., Drzezga, A., Kornhuber, J., Lauer, M., Grimmer, T., 2019. FDG-PET underscores the key role of the thalamus in frontostriatal lobar degeneration caused by CSORF72 mutations. Transl. Psychiatry 9, 54. https://doi.org/10.1038/s41398-019-0381-1.
Eidelberg, D., 2009. Metabolic brain networks in neurodegenerative disorders: a functional imaging approach. Trends Neurosci. 32, 548–557. https://doi.org/10.1016/j.tins.2009.09.003.
Franceschi, A.M., Clifton, M.A., Naser-Tavakolian, K., Ahmed, O., Bangiyev, L., Clouston, S., Franceschi, D., 2021. FDG-PET/MRI for visual detection of crossed cerebellar diaschisis in patients with dementia. Am. J. Roentgenol. 216, 165–171. https://doi.org/10.2261/ AJR.21A02617.
Goldwasser, E.L., Edwards, S., Ajith, A., Nagel, E., Eilker, J., Ferris, M., Thompson, S.J., 2020. First reported case of anti-N-methyl d-aspartate receptor encephalitis in a child with crossed cerebellar diaschisis and extreme delta brush. Psychosomatics 61, 840–845. https://doi.org/10.1016/j.psych.2019.12.003.
Grafio, C.S., Snyder, K.A., Naor, D.M., Murphy, M.E., Carr, C.M., Hocker, S.E., 2016. Prognostic and mechanistic factors characterizing seizure-associated crossed cerebellar diaschisis. Neurocrit. Care 24, 224. https://doi.org/10.1007/s00234-015-0515-4.
Griffiths, P.D., Goodman, M.B., Blaser, S., Armstrong, D., Gilday, D.L., Harwood-Nash, D., 1997. 99mTechnetium HMPAO imaging in children with the Sturge-Weber syndrome: a study of nine cases with CT and MRI correlation. Neuroradiology 39, 219–224. https://doi.org/10.1007/s002340050396.
Hamaide, J., Lukacova, K., Van Audekerke, J., Verhoye, M., Kubikova, L., Van der Horst, H., 2012. Transient crossed cerebellar diaschisis due to cerebral hyperperfusion following surgical revascularization for moyamoya disease: case report. Neurol. Med. Chir. (Tokyo) 52, 350–353. https://doi.org/10.2176/nmc.52.350.
Kwon, Y.C., Kim, J.H., Ahn, T.B., 2015. Ataxia of cortical origin via crossed cerebellar diaschisis. Acta Neurol. Scand. 81, 416–420. https://doi.org/10.1111/ane.12387.

Kuro, M., Matsuura, K., Yonehara, T., Kato, N., Yonehara, H., Nakamura, M., 2013. Hypometabolism in patients with complex partial seizures. Epilepsia 54, 1190–1195. https://doi.org/10.1111/epi.12402.

Kawashima, M., Irie, H., 2015. Arterial spin-labeling MR imaging of cerebral hemorhages. Neuroradiology 57, 1135–1144. https://doi.org/10.1007/s00286-014-1039-y.

Otto, A., Roelcke, U., von Ammon, K., Hausmann, O., Maguire, R.P., Missimer, J., Müller-Brandt, J., Radi, E.W., Leenders, K.L., 1998. Crossed cerebellar diaschisis and brain tumor biology studied with positron emission tomography, [18F] fluorodeoxyglucose and [11C]methionine. J. Neurol. Sci. 156, 73–77. https://doi.org/10.1016/s0022-510x(97)00207-9.

Palei, F., De Rinaldis, A., Castellazzi, G., Calamante, F., Muhler, N., Chard, D., Tourjéod, M.D., Megenes, G., D’Angelo, E., Gandini Wheeler-Kingh, C.A.M., 2017. Crossed cerebellar diaschisis: motor and cognitive relationships in a large cohort of motor- and non-motor area patients. Neuroimage Clin. 17, 255–265. https://doi.org/10.1016/j.nicl.2017.05.018.
Wang, J., Pan, L.-J., Zhou, B., Zu, J.-Y., Zhao, Y.-X., Li, Y., Zhu, W.-Q., Li, L., Xu, J.-R., Chen, Z.-A., 2020. Crossed cerebellar diaschisis after stroke detected noninvasively by arterial spin-labeling MR imaging. BMC Neurosci. 21, 46. https://doi.org/10.1186/s12868-020-00595-z.

Won, J., Choi, D.S., Hong, S.J., Shin, H.S., Baek, H.J., Choi, H.C., Kim, M., Kim, R.B., 2018. Crossed cerebellar hyperperfusion in patients with seizure-related cerebral cortical lesions: an evaluation with arterial spin labelling perfusion MR imaging. Radiol. Med. 123, 843–850. https://doi.org/10.1007/s11547-018-0921-4.

Yajima, R., Naruse, S., 2021. Corticobasal syndrome with supplementary motor area aphasia. Intern. Med. 60, 1799–1800. https://doi.org/10.2169/internalmedicine.6212-20.

Yokota, H., Ida, Y., 2019. Crossed cerebellar diaschisis in status epilepticus. Neurochirurgie 65, 425–426. https://doi.org/10.1016/j.neuchi.2019.08.001.

Yoshida, J., Komoribayashi, N., Oikawa, K., Ohmama, S., Kojima, D., Shimada, Y., Ogawara, K., 2018. ¹²³I-Iomazenil Single-photon emission computed tomography imaging in a patient with mild traumatic subdural hematoma accompanied by delayed transient aphasia. No Shinkei Geka 46, 1081–1086. https://doi.org/10.11477/mf.1436203872.

Zhang, M., Cao, Y., Wu, F., Zhao, C., Ma, Q., Li, K., Lu, J., 2019. Characteristics of cerebral perfusion and diffusion associated with crossed cerebellar diaschisis after acute ischemic stroke. Jpn. J. Radiol. 38, 126–134. https://doi.org/10.1007/s11604-019-00898-0.

Zhu, Y., Feng, J., Ji, J., Hou, H., Chen, L., Wei, S., Liu, Q., Yao, Q., Du, P., Zhang, K., Chen, Q., Chen, Z., Zhang, H., Tian, M., 2017. Alteration of monoamine receptor activity and glucose metabolism in pediatric patients with anticonvulsant-induced cognitive impairment. J. Nucl. Med. 58, 1490–1497. https://doi.org/10.2967/jnumed.116.189290.