The International Conference on Materials Research and Innovation

IOP Conf. Series: Materials Science and Engineering 526 (2019) 012008
doi:10.1088/1757-899X/526/1/012008

Effect of Acetic Acid Pre-Treatment on the Growth Temperature of Graphene on Copper by Thermal Chemical Vapor Deposition

P Kokmat1, N Donnuea2, N Nuntawong3, AWisitsoraat3 and A Ruammaitree1,*

1 Department of Physics, Faculty of Science and Technology, Thammasat University, Pathumthani, 12120, Thailand
2 Department of Gems and Jewelry, Faculty of Gems, Burapha University, Chanthaburi IT Campus, Chanthaburi 22170, Thailand
3 Carbon-based Devices and Nanoelectronics Laboratory, National Electronics and Computer Technology Center, National Science and Technology Development Agency, Pathumthani, 12120, Thailand

* Corresponding author: u4605070@hotmail.com

Abstract. Graphene is a flat monolayer of carbon atoms arranged in a honeycomb lattice. Graphene has many outstanding properties such as high electron mobility [1], superb strength [2], transparency [3] and great flexibility [4]. These exotic properties make graphene a promising candidate for solar cell, fuel cell, battery, supercapacitor and so on. In this report, we have studied the effect of acetic acid pre-treatment on the growth temperature of graphene on copper by thermal chemical vapor deposition (CVD). In case of graphene growth without acetic acid pre-treatment, the high temperature of 1000 °C is needed for the growth of graphene by CVD. In contrast, the growth temperature can be decreased to 800 °C for graphene growth with acetic acid pre-treatment. We found that acetic acid pre-treatment can eliminate copper oxide from the sample surface resulting in the growth temperature of graphene decreases.

1. Introduction
Graphene is a flat monolayer of carbon atoms arranged in a honeycomb lattice. Graphene has many outstanding properties such as high electron mobility [1], superb strength [2], transparency [3] and great flexibility [4]. These exotic properties make graphene a promising candidate for solar cell [5], fuel cell [6], battery [7], supercapacitor [8] and so on. Graphene can be fabricated in many methods such as mechanical exfoliation of graphite [9], annealing SiC substrates [10-13] and chemical vapor deposition (CVD) of hydrocarbon gas on metal surface [14-15]. The growth of graphene on copper by CVD has been attracted attention since the high-quality monolayer graphene can be grown on copper due to its low carbon solubility [16]. However, the growth of high-quality and large-area monolayer graphene is still challenging because the conditions of CVD and copper surface have to be controlled intensively.

Pre-treatment of copper surface is a necessary process for the growth of graphene on commercial copper by CVD because it can remove the impurity and copper oxide from the copper surface.
Chemical etching is a popular procedure for etching of copper surface [17]. Nevertheless it cannot treat the extreme-thin copper because the chemical etching reduces the thickness of copper. Boiling copper in acetic acid is a pre-treatment for eliminating oxide layer from the copper surface without etching. Therefore, the acetic acid pre-treatment becomes a suitable method for cleaning the copper surface. In this report, the effect of acetic acid pre-treatment on the growth of graphene on copper by CVD is studied. The presence of copper oxide is confirmed using Raman spectroscopy and energy dispersive X-ray spectroscopy (EDX).

2. Experiment
Copper plates with the thickness of 0.18 mm were cut to dimension of 40 mm×30 mm followed by boiling in acetic acid at 100 °C for 20 minutes. After that, the copper plates were cleaned by ultrasonic cleaner in acetone for 5 minutes. After the acetone evaporated, a copper plate was put in a quartz tube of CVD furnace. The air was evacuated from the quartz tube until the base pressure reached ~10⁻³ torr and then heated to 800-1000 °C with an average heating rate of 15 °C per minute. At the growth temperature, acetylene gas with flow rate of 200 sccm was introduced into the quartz tube. The copper plate was annealed for 30 minutes under a pressure of 1 torr. After that the acetylene gas was stopped and the sample was cooled down rapidly to room temperature.

The presence of graphene and copper oxide on the copper plate was confirmed by Raman measurements carried out at room temperature using a Renishaw spectrometer with a 100x objective and a 532 nm laser. The laser beam size is 1 μm in diameter. Surface morphology and element analysis were measured using field-emission scanning electron microscope (FE-SEM) equipped with an energy dispersive analysis of X-rays (EDX) facility (Jeol) at incident beam of 15 keV.

3. Results and discussion
Figure 1 shows Raman spectra of the samples annealed at 800-1000 °C with/without acetic pre-treatment. In the case of samples annealed at 800 °C and 900 °C without acetic pre-treatment, the Raman peaks at 280, 330 and 612 cm⁻¹ are clearly appeared. The presence of these Raman peaks reveals that the surfaces of these samples are covered by CuO [18]. The absence of G peak (~1584 cm⁻¹) and 2D (~2700 cm⁻¹) confirms that there is no graphene on these samples. For the sample annealed at 1000 °C without acetic pre-treatment and the sample annealed at 800 °C and 900 °C with acetic pre-treatment, the Raman spectra show D, G and 2D peaks at ~1350 cm⁻¹, ~1584 cm⁻¹ and ~2700 cm⁻¹, respectively. The presence of G and 2D peaks of these samples confirms the presence of graphene on the sample surfaces. Figure 2 shows SEM images of the sample annealed at 800 °C and 900 °C with/without acetic pre-treatment. The presence of oxide on the surfaces is also confirmed by EDX as shown in Table 1. However, the Raman spectroscopy and EDX are measured at different position therefore the appearance of little weight% of oxygen in the sample annealed at 800 °C with acetic pre-treatment is possible.

The results of Raman spectroscopy and EDX reveal that the presence of CuO on the sample surface obstructs the formation of graphene therefore the elimination of CuO before the growth of graphene on Cu is needed. The sample annealed at 1000 °C shows that the CuO can be removed from the surface at annealing temperature of 1000 °C. In addition, the acetic pre-treatment can eliminate CuO by reacting with CuO to form cupric acetate by the following reactions [19]

\[
\text{CuO} + 2\text{CH}_3\text{COOH} \rightarrow \text{Cu(CH}_3\text{COO)}_2 + \text{H}_2\text{O}
\]

The cupric acetate can be eliminated from the surface at low temperature (~240 °C) therefore the acetic acid pre-treatment can lower the growth temperature of graphene on copper.
Figure 1. Raman spectra of as prepared copper with/without acetic pre-treatment at growth temperature from 800°C to 1000°C.

Figure 2. SEM images measured on the as prepared copper with/without acetic pre-treatment at annealing temperature of 800°C and 900°C.
Table 1. EDX analysis of as prepared copper with/without acetic pre-treatment at annealing temperature from 800°C to 1000°C.

Acetic pre-treatment	Growth temperature	Weight%	Atomic%	
		C	O	Cu
	800	10.99	1.12	87.88
	900	4.00	19.35	76.65
	1000	63.52	-	36.48
No	800	18.97	0.66	80.37
	900	10.82	-	89.18
Yes	800	18.97	0.66	80.37
	900	10.82	-	89.18

4. Conclusion
In this report, the effect of acetic acid pre-treatment on the growth of graphene on copper by CVD is studied. The acetic acid pre-treatment can eliminate copper oxide from the copper surface resulting in reduction of the growth temperature of graphene on copper.

5. References
[1] Hass J, Heer W A D and Conrad E H 2008 J. Phys.: Condens. Matter 20 323202
[2] Lee C, Wei X, Kysar J W and Hone J 2008 Sci. 321 385
[3] Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R and Geim A K 2008 Sci. 320 1308.
[4] Lee S M, Kim J H and Ahn J H 2015 Mater. Today 18 336
[5] Lang F, Gluba M A, Albert S, Rappich J, Korte L, Rech B and Nickel N H 2015 J. Phys. Chem. Lett. 6 2745
[6] Yazici M S, Azder M A, Salihoglu O and San F G B 2018 International journal of hydrogen energy 43 18572
[7] Agostini M, Bruttu S and Hassoun J 2016 ACS Appl. Mater. Interfaces 8 10850
[8] Singh R and Tripathi C C 2018 Mater. Today: Proceedings 5 1125
[9] Hayes W I, Lubarsky G, Li M and Papakonstantinou P 2014 Journal of Power Sources 271 312
[10] Ruammitree A, Nakahara H, Akimoto K, Soda K and Saito Y 2013 Applied Surface Science 282 297
[11] Hu H, Ruammitree A, Nakahara H, Asaka K and Saito Y 2012 Surf. Interface Anal. 44, 793
[12] Ruammitree A, Nakahara H and Saito Y 2014 Applied Surface Science 307 136
[13] Ruammitree A, Nakahara H and Saito Y 2014 Surf. Interface Anal. 46, 1156
[14] Ruammitree A, Phokharatkul D, Nuntawong N and Wisitsoraat A 2018 Surface Review and Letters 1840003 DOI: 10.1142/S0218625X18400036
[15] Ruammitree A, Phokharatkul D and Wisitsoraat A 2018 Solid State Phenomena 283 173
[16] Mattevi C, Kim H and Chhowalla M 2011 J. Mater. Chem. 21 3324
[17] Yoshihara N and Noda M 2017 Chemical Physics Letters 685 40
[18] Rashad M, Rüsing M, Berth G, Lischka K and Pawlis A 2013 Journal of Nanomaterials 2013 714853, http://dx.doi.org/10.1155/2013/714853
[19] Chavez K L and Hess D W 2001 Journal of The Electrochemical Society, 148 (11) G640

Acknowledgements
This work was supported by Energy conservation fund Thailand (contract no. FDA-CO-2560-3737-TH) and Research fund of Thammasat University (contract no. 6/2561). The authors thank Center of scientific equipment for advanced research, Thammasat University for SEM measurement.