Abstract: Offline learning is a key part of making reinforcement learning (RL) useable in real systems. Offline RL looks at scenarios where there is data from a system’s operation, but no direct access to the system when learning a policy. Recent work on training RL policies from offline data has shown results both with model-free policies learned directly from the data, or with planning on top of learnt models of the data. Model-free policies tend to be more performant, but are more opaque, harder to command externally, and less easy to integrate into larger systems. We propose an offline learner that generates a model that can be used to control the system directly through planning. This allows us to have easily controllable policies directly from data, without ever interacting with the system. We show the performance of our algorithm, Model-Based Offline Planning (MBOP) on a series of robotics-inspired tasks, and demonstrate its ability leverage planning to respect environmental constraints. We are able to find near-optimal policies for certain simulated systems from as little as 50 seconds of real-time system interaction, and create zero-shot goal-conditioned policies on a series of environments.

Keywords: Reinforcement Learning, Offline Learning, Robotics, Model-Based Control

1 Introduction

Learnt policies for robotic and industrial systems have the potential to both increase existing systems’ efficiency & robustness, as well as open possibilities for systems hitherto considered too complex to control. Learnt policies also afford the possibility for non-experts to program controllers for systems that would currently require weeks of specialized work. Currently, however, most approaches for learning controllers require significant interactive time with a system to be able to converge to a performant policy. This is often either undesirable or impossible due to operating cost, safety issues, or system availability. Fortunately, many systems are designed to log sufficient data about their state and control choices to create a dataset of operator commands and resulting system states. In these cases, controllers could be learned off-line, using algorithms that produce a good controller using only these logs, without ever interacting with the system. In this paper we propose such an algorithm, which we call Model-Based Offline Planning (MBOP), which is able to learn policies directly from logs of a semi-performant controller without interacting with the corresponding environment. It is able to leverage these logs to generate a more performant policy than the one used to generate the logs, which can subsequently be goal-conditioned or constrained dynamically during system operation.

As its name indicates, MBOP is a planning-based algorithm whose various elements can be learned entirely off-line. It combines three main elements: a learnt world model, a learnt behavior-cloning policy, and a learnt fixed-horizon value-function. It leverages Model-Predictive Control (MPC) [1] and extends the MPPI [2] trajectory optimizer to provide a goal or reward-conditioned policy. MBOP has several advantages: 1) it is data-efficient, capable of learning improved policies from as little as 100 seconds of simulated system time (equivalent to 5000 steps), 2) it can generate policies that are more performant than the policy that generated the offline data, 3) once learned, the same model can be conditioned with a reward function, a goal state, as well as state-based constraints, all of which can be non-stationary, allowing for easy control by a human operator or a larger system. Given this set of capabilities, we believe it to be a good candidate for real-world use in control systems.
We begin by a complete description of the MBOP algorithm in Section 2, then look at how similar offline works compare to MBOP in Section 3, and then demonstrate MBOP performance in various benchmarked offline control tasks from RL Unplugged [3] and D4RL [4].

2 Model-Based Offline Planning

Our proposed algorithm, MBOP (Model-Based Offline Planning), is a model-based RL algorithm able to produce performant policies entirely from logs of a less-performant policy, without ever interacting with the actual environment. MBOP learns a world model and leverages a particle optimizer and model-predictive control (MPC) to produce a control action conditioned on the current state. It can be seen as an extension of PDDM [5], with a behavior-cloned policy used as a prior on action sampling, and a fixed-horizon value function used to extend the planning horizon.

In this following sections, we introduce the Markov Decision Process (MDP) formalism, briefly explain planning-based approaches, discuss offline learning, and then introduce the elements of MBOP before describing the algorithm in full.

2.1 Markov Decision Process

Let us model our tasks as a Markov Decision Process (MDP), which can be defined as a tuple \((\mathcal{S}, \mathcal{A}, p, r, \gamma)\), where an agent is in a state \(s_t \in \mathcal{S}\) and takes an action \(a_t \in \mathcal{A}\) at timestep \(t\). When in state \(s_t\) and taking an action \(a_t\), an agent will arrive in a new state \(s_{t+1}\) with probability \(p(s_{t+1} | s_t, a_t)\), and receive a reward \(r(s_t, a_t, s_{t+1})\). The cumulative reward over a full episode is called the return \(R\) and can be truncated to a specific horizon as \(R_H\). Generally reinforcement learning and control aim to provide an optimal policy function \(\pi^* : \mathcal{S} \rightarrow \mathcal{A}\) which will provide an action \(a_t\) in state \(s_t\) which will lead to the highest long-term return:
\[
\pi^*(s_t) = \arg\max_{a \in \mathcal{A}} \sum_{t=1}^{\infty} \gamma^t r(s_t, \pi^*(s_t))
\]
where \(\gamma\) is a time-wise discounting factor that we fix to \(\gamma = 1\), and therefore only consider finite-horizon returns.

2.2 Planning with Learned Models

A large body of the contemporary work with MDPs involves Reinforcement Learning (RL) [6] with model-free policies [7, 8, 9, 10]. These approaches learn some form of policy network which provides its approximation of the best action \(a_t\) with model-free policies [7, 8, 9, 10]. These approaches learn some form of policy network which provides an action \(a_t\) in state \(s_t\) which will lead to the highest long-term return:
\[
\pi^*(s_t) = \arg\max_{a \in \mathcal{A}} \sum_{t=1}^{\infty} \gamma^t r(s_t, \pi^*(s_t))
\]
These approaches learn some form of policy network which provides an action \(a_t\) in state \(s_t\) which will lead to the highest long-term return:
\[
\pi^*(s_t) = \arg\max_{a \in \mathcal{A}} \sum_{t=1}^{\infty} \gamma^t r(s_t, \pi^*(s_t))
\]

2.3 Offline Learning

Most previous work in both reinforcement learning and planning with learned models has assumed repeated interactions with the target environment. This assumption allows the system to gather increased data along trajectories that are more likely, and more importantly to provides counterfactuals, able to contradict prediction errors in the learned policy, which is fundamental to policy improvement. In the case of offline learning, we consider that the environment is not available during the learning phase, but rather that we are given a dataset \(D\) of interactions with the environment, representing a series of timestep tuples \((s_t, a_t, r_t, s_{t+1})\). The goal is to provide a performant policy \(\pi\) given this particular dataset \(D\). Existing RL algorithms do not easily port over to the offline learning setup, for a varied set of reasons well-covered in Levine et al. [16]. In our work, we use the real environment to benchmark the performance of the produced policy. It is important to point out that oftentimes there is nevertheless a need to evaluate the performance of a given policy \(\pi\) without

1This approach is often called Model-Based Reinforcement Learning (MBRL) in the literature, but we chose to talk more generally about planning with learned models as the presence of a reward is not fundamentally necessary and the notion of reinforcement is much less present.
providing access to the final system, which is the concern of Off Policy Evaluation (OPE) [17, 18] and Offline Hyperparameter Selection (OHS) [19] which are outside the scope of our contribution.

2.4 Learning Dynamics, Action Priors, and Values

MBOP uses three parameterized function approximators for its planning algorithm. These are:

1. $f_m : \mathcal{S} \times \mathcal{A} \rightarrow \mathcal{S} \times \mathbb{R}$, a single-timestep model of environment dynamics such that $(\hat{r}_t, s_{t+1}) = f_m(s_t, a_t)$. This is the model used by the planning algorithm to roll out potential action trajectories.

2. $f_b : \mathcal{S} \times \mathcal{A} \rightarrow \mathcal{A}$, a behavior-cloned policy network which produces $a_t = f_b(s_t, a_{t-1})$, and is used by the planning algorithm as a prior to guide trajectory sampling.

3. $f_R : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$ is a truncated value function, which provides the expected return over a fixed horizon R_H of taking a specific action a in a state s, as $\hat{R}_H = f_R(s_t, a_{t-1})$.

Each one is a bootstrap ensemble [20] of size K feed-forward neural networks, thus f_m is composed of $f_{m,i} \forall i \in [1, K]$, where each $f_{m,i}$ is trained with a different weight initialization but from the same dataset D. This approach has been shown to work well empirically to stabilize planning [5, 12]. Each of the ensemble member networks is optimized to minimize the L_2 loss on the predicted values in the dataset D in a standard supervised manner.

2.5 MBOP-Policy

MBOP uses Model-Predictive Control [1] to provide actions for each new state as $a_t = \pi(s_t)$. MPC works by running a fixed-horizon planning algorithm at every timestep, which returns a trajectory T of length H. MPC selects the first action from this trajectory and returns it as a_t. This fixed-horizon planning algorithm is effectively a black box to MPC, although in our case we have the MPC loop carry around a global trajectory buffer T. A high-level view of the policy loop using MPC is provided in Algorithm 1.

```
Algorithm 1 High-Level MBOP-Policy
1: Let $D$ be a dataset of $E$ episodes
2: Train $f_m, f_b, f_R$ on $D$
3: Initialize planned trajectory: $T^0 = [0_0, \ldots, 0_{H-1}]$.
4: for $t = 1, \infty$ do
5: Observe $s_t$
6: $T^t = \text{MBOP-Trajopt}(T^{t-1}, s_t, f_m, f_b, f_R)$ ▷ Update planned trajectory $T^t$ starting at $T_0$.
7: $a_t = T_0^t$ ▷ Use first action $T_0$ as $\pi(s_t)$
8: end for
```

The MBOP-Policy loop is straightforward, and only needs to keep around T at each timestep. MPC is well-known to be a surprisingly simple yet effective method for planning-based control. Finding a good trajectory is however more complicated, as we will see in the next section.

2.6 MBOP-Trajopt

MBOP-Trajopt extends ideas used by PDDM [5] by adding policy prior (provided by f_b) and value prediction (provided by f_R). In essence it is an iterative guided-shooting trajectory optimizer with refinement. MBOP-Trajopt shoots out N trajectories of length H using f_m as an environment model. Each trajectory n uses the same model head $f_{m,i}$ for simulating the full trajectory. We use our policy prior f_b to roll out our trajectory, but mix it in with our previous trajectory using a mixture coefficient β. At every timestep we use the average reward of the ensemble across all heads to accumulate the expected trajectory reward R. At the end of a trajectory, we append the predicted return for the final state and action using f_R.

3
Algorithm 2 MBOP-Trajopt

1: procedure MBOP-Trajopt(s, T; f_m, f_b, f_R; H, N, σ^2, β, κ)
2: Set R_N = 0
3: Set A_{N,H} = 0
4: for n = 1..N do
5: l = n \mod K
6: s_1 = s, a_0 = T_0, R = 0
7: for t = 1..H do
8: ϵ ~ N(0, σ^2)
9: a_t = f_b(s_t, a_{t-1}) + ϵ
10: A_{n,t} = (1 − β)a_t + βT_{min(t,H-1)}
11: s_{t+1} = f_m(s_t, a_t)
12: R = R + \frac{1}{K} \sum_{i=1}^{K} f_R(s_{t+1}, a_t)
13: Append predicted return and store.
14: end for
15: R_n = R + \frac{1}{K} \sum_{i=1}^{K} f_R(s_{H+1}, a_H)
16: end for
17: Compute weighted trajectory: T'_t = \frac{\sum_{n=1}^{N} e^{R_n} A_{n,t+1}}{\sum_{n=1}^{N} e^{R_n}}, ∀t \in [0, H-1]
18: return T'
19: end procedure

Once we have a set of trajectories and their associated return, we generate an average action for timestep t by re-weighting the actions of each trajectory according their exponentiated return, as in Nagabandi et al. [5] and Williams et al. [2]: T_t = \frac{\sum_{n=1}^{N} e^{R_n} A_{n,t+1}}{\sum_{n=1}^{N} e^{R_n}}, ∀t \in [1, H].

By maintaining T from one MPC step to another we maintain a refinement prior that allows us to amortize refinement over time. We did not use the time-correlated noise in Nagabandi et al. [5]. The full algorithm is described in Algorithm 2.

We will see in Section 4 that the combination of these elements makes for planning algorithm capable of generating improved trajectories of the behavior trajectories in D, especially in low-data regimes. In higher-data regimes, variants of MBOP without the BC prior can also be used for goal & constraint-based control. Further work will consider the addition of goal-conditioned f_b and f_R to allow for more data-efficient goal and constraint-based control.

3 Related Works

Model-Based approaches with neural networks have shown promising results in recent years. Williams et al. [13] show that a simple model-based controller can quickly learn to drive a vehicle on a dirt track, the BADGR robot [21] also uses Model-Predictive Path Integral (MPPI) [22] with a learned model to learn to navigate to novel locations. Yang et al. [23] show good results learning legged locomotion policies using MPC with learned models, and [24] demonstrate flexible robot arm controllers leveraging learned models with image-based goals. Silver et al. [25] have shown the power of additional explicit planning in various board games including Go. More recently planning-based algorithms such as PlaNet [14] have shown strong results in pixel-based continuous control tasks by leveraging latent variational RNNs. Simpler approaches such as PDDM [5] or PETS [12] have shown good results using full state information both in simulation and on real robots. MBOP is strongly influenced by PDDM [5] (itself an extension on PETS [12]), in particular with the use of ensembles and how they are leveraged during planning. PDDM was not designed for off-line use, and MBOP adds a value function composition as well as a policy prior during planning to increase data efficiency and strengthen the set of priors for offline learning. It leverages the same trajectory re-weighting approach used in PDDM and takes advantage of its beta-mixture of the T trajectory buffer.
Both MoREL [26] and MOPO [27] leverage model-based approaches for offline learning. Both of them, however, use models to train a model-free learner by using a surrogate MDP which penalizes for underlying model uncertainty. They do not use the models for direct planning on the problem, thus making the final policy task-specific. MOPO demonstrate the ability of their algorithm to alter the reward function and re-train a new policy according to this reward, but cannot leverage the final policy to dynamically adapt to an arbitrary goal or constrained objective. Matsushima et al. [28] use a model-based policy for deployment efficient RL. Their use case is a mix between offline and online RL, where they consider that there is a limited number of deployments. They share a similarity in the sense that they also use a behavior-cloning policy π_β to guide trajectories in a learned ensemble model, but perform policy improvement steps on a parametrized policy initialized from π_β using a behavior-regularized objective function. Similarly to MoREL and MOPO their approach learns a parameterized policy for acting in the real system.

The use of a value function to extend the planning horizon of a planning-based policy has been previously proposed by Lowrey et al. [15] with the POLO algorithm. POLO uses a ground-truth model (e.g. physics simulator) with MPPI/MPC for trajectory optimization. POLO additionally learns an approximate value-function through interaction with the environment which is then appended to optimized trajectories to improve return estimation. Aside from the fact that MBOP uses an entirely approximate & learned model, it uses a similar idea but with a fixed-horizon value function to avoid bootstrapping, and separate heads of the ensemble during trajectory optimization. BC-trained policies as sampling priors have been looked at by POPLIN [29]. POPLIN does not use value bootstrapping, and re-samples an ensemble head at each timestep during rollouts, which likely provides less consistent variations in simulated plans. They show strong results relative to a series of model-based and model-free approaches, but do not manage to perform on the Gym Walker environment. Additionally, they are overall much less data efficient than MBOP and do not demonstrate performance in the offline setting.

Previous approaches all look at various elements present in MBOP but none consider the full combination of a BC prior on the trajectory optimizer with a value-function initialization, especially in the case of full offline learning. Along with this high-level design, many implementation details such as choosing a constant ensemble member for rollouts, or averaging returns over ensemble heads, seem to be important for a stable controller from our experience and according to results from PDDM [5].

4 Experimental Results

We look at two operating scenarios to demonstrate MBOP performance and flexibility. First we consider the standard off-line settings where the evaluation environment and task are identical to the behavior policy’s. We show that MBOP is able to perform well with very little data. We then look at MBOP’s ability to provide controllers that can naturally transfer to novel tasks with the same system dynamics. We use both goal-conditioned tasks (that ignore the original reward function) and constrained tasks (that require optimising for the original reward under some state constraint) to demonstrate the MBOP’s transfer abilities. Accompanying videos are available here: n.b. see sup. materials.

4.1 Methodology

We use standard datasets from the RL Unplugged (RLU) [3] and D4RL [4] papers. For both RLU and D4RL, policies are trained from offline datasets and then evaluated on the corresponding environment. For datasets with high variance in performance, we discard episodes that are below a certain threshold for the training of f_b and f_R. They are still used for training f_s. We perform a grid-search to find optimal parameters for each dataset, but for most tasks these parameters are mostly uniform. The full set of parameters for each experiment can be found in the Appendix Sec. 5.2. For experiments on RLU, we generated additional smaller datasets to increase the difficulty of the problem. On all plots we also report the performance of the behavior policy used to generate the data (directly from the episode returns in the datasets) and label it as the DATA policy. All non-standard datasets will be available publicly.

For RLU the datasets are generated using a 70% performant MPO [10] policy on the original task, and smaller version of the datasets are randomly sampled contiguous episodes [30, 3]. D4RL has 4 behavior policies, ranging from random behavior to expert demonstrations, and are fully described.
in Fu et al. [4]. On all datasets, training is performed on 90% of data and 10% is used for validation.

4.2 Performance on RL-Unplugged & D4RL

For experiments on RLU we consider the unperturbed RWRL cartpole-swingup, walker and quadruped tasks [30]. For D4RL we consider the halfcheetah, hopper, walker2d and Adroit tasks. Results for the RLU tasks as well as Adroit are presented in Figure 1. On the remaining D4RL tasks, results are compared to those presented by MOPO [27] in Table 1 for four different data regimes (medium, medium-expert, medium-replay, random). For all experiments we report MBOP performance as well as the performance of a behavior cloning (BC) policy. The BC policy is simply the policy prior \(f_b \), with the control action as the average ensemble output. We use this baseline to demonstrate the advantages brought about by planning beyond simple cloning.

For the RLU datasets (Fig. 1), we observe that MBOP is able to find a near-optimal policy on most dataset sizes in Cartpole and Quadruped with as little as 5000 steps, which corresponds to 5 episodes, or approximately 50 seconds on Cartpole and 100 seconds on Quadruped. On the Walker datasets MBOP requires 23 episodes (approx. 10 minutes) before it finds a reasonable policy, and with sufficient data converges to a score of 900 which is near optimal. On most tasks, MBOP is able to generate a policy significantly better than the behavior data as well as the BC prior.

For the Adroit task, we show that MBOP is able to outperform the behavior policy after training on a dataset of 50k data points generated by an expert policy (Fig. 1d). For other D4RL datasets, we compare to the performance of MOPO [27]. We show that on the medium and medium-expert data regimes MBOP outperforms MOPO, sometimes significantly. However on higher-variance datasets such as random and mixed MBOP is not as performant. This is likely due to the reliance on policy-conditioned priors, which we hope to render more flexible in future work.
Table 1: Results for MBOP on D4RL tasks compare to MOPO [27] and MBPO [27], with values taken from the MOPO paper [27]. As in Fu et al. [4], we normalize the scores according to a converged SAC policy, reported in their appendix. Scores are reported averaged over 5 random seeds, with 20 episode runs per seed. ± is one standard deviation and represents variance due to seed and episode. We have inserted our BC prior as the BC baseline, and have set performance to 0.0 when it is negative. We include the performance of behavior cloning (BC) from the batch data for comparison. We bold the highest mean.

Dataset type	Environment	BC (Ours)	MBOP (Ours)	MOPO	MBPO
random	halfcheetah	0.0 ± 0.0	6.3 ± 4.0	31.9 ± 2.8	30.7 ± 3.9
random	hopper	9.0 ± 0.2	10.8 ± 0.3	13.3 ± 1.6	4.5 ± 6.0
random	walker2d	0.1 ± 0.0	8.1 ± 5.5	13.0 ± 2.6	8.6 ± 8.1
medium	halfcheetah	35.0 ± 2.5	44.6 ± 0.8	40.2 ± 2.7	28.3 ± 22.7
medium	hopper	48.1 ± 26.2	48.8 ± 26.8	26.5 ± 3.7	4.9 ± 3.5
medium	walker2d	15.4 ± 24.7	41.0 ± 29.4	14.0 ± 10.1	12.7 ± 7.6
mixed	halfcheetah	0.0 ± 0.0	42.3 ± 0.9	54.0 ± 2.6	47.3 ± 12.6
mixed	hopper	9.5 ± 6.9	12.4 ± 5.8	92.5 ± 6.3	49.8 ± 30.4
mixed	walker2d	11.5 ± 7.3	9.7 ± 5.3	42.7 ± 8.3	22.2 ± 12.7
med-expert	halfcheetah	90.8 ± 26.9	105.9 ± 17.8	57.9 ± 24.8	9.7 ± 9.5
med-expert	hopper	15 ± 8.7	55.1 ± 44.3	51.7 ± 42.9	56.0 ± 34.5
med-expert	walker2d	65.5 ± 40.2	70.2 ± 36.2	55.0 ± 19.1	7.6 ± 3.7

4.3 Goal-based control and Constrained Operation

One of the primary advantages of planning-based methods is that they are easy to adapt to multiple, varying objectives. In the case of MBOP these would be novel objectives different from the objectives of the behavior policy used to generate the training dataset. To utilize these new objectives, we compute a secondary objective return as follows: \(R'_n = \sum_t f_{obj}(s_t) \) where \(f_{obj} \) is a user-provided function that computes a scalar objective reward given a state. We adapt the trajectory update rule to take into account the secondary objective: \(T_t = \frac{\sum_{n=1}^{N} e^{\kappa R_n + \kappa_{obj} R'_n} A_{n,t}}{\sum_{n=1}^{N} e^{\kappa R_n + \kappa_{obj} R'_n}}, \forall t \in [1, H] \).

To demonstrate this, we run MBOP on two types of modified objectives: goal-conditioned control, and constrained control. In goal-conditioned control, we ignore the original reward function (\(\kappa = 0 \)) and define a new goal (such as a velocity vector) and optimize trajectories relative to that goal. In constrained operation, we add a state-based constraint which we penalize during planning, while maintaining the original objective and find a reasonable combination of \(\kappa \) and \(\kappa_{obj} \)

We define three tasks: position-constrained Cartpole, where we penalize the cart’s position to encourage it to stay either on the right or the left of the track; heading-conditioned Quadruped, where we provide a target heading to the policy (Forward, Backwards, Right & Left); and finally height-constrained Walker, where we penalize the policy for bringing the torso height above a certain threshold. Results on Cartpole & Quadruped are presented in Figure 2.

We show that MBOP successfully integrates constraints that were not initially in the dataset and is able to perform well on objectives that are different from the objective of the behavior policy. Walker performs similarly, obtaining nearly 80% constraint satisfaction while maintaining a reward of 730. More analysis with different \(\kappa \) tradeoffs are available in the Appendix Section 5.5.

4.4 Algorithmic Investigations

Ablations

To better understand the benefits of MBOP’s various elements, we perform three ablations: MBOP–NOPP which replaces \(f_R \) with a Gaussian prior, MBOP–NOVF which removes \(f_R \)’s estimated returns, and PDDM which removes both, thus recovering the PDDM controller. We show performance of these four ablations in Fig. 3.

Figure 3: MBOP ablations’ performance on RLU Walker Dataset. We observe that MBOP is consistently more performant than its ablations.
Figure 2: The above figures describe performance of MBOP on constrained & goal-conditioned tasks. Figure 2a illustrates a sequences of frames from the RLU Cartpole task with constrained and unconstrained MBOP controllers. In the constrained cases MBOP prevents the cart from crossing the middle of the rail (dotted red line) and contains it to one side. Figure 2b displays cart trajectories for constrained and unconstrained versions of the same controller. MBOP can maintain a performant policy (above 750) while respecting these constraints. Figure 2c displays goal-conditioned performance on the RLU Quadruped. We ignore the original reward function and optimize directly for trajectories that maximize a particular velocity vector. Influence from f_B and f_R biases the controller to maintain forward direction, but we can still exert significant goal-directed influence on the policy.

Hyperparameter Stability We visualise MBOP performance as a function of the planning horizon and Kappa for the RLU tasks in Figure 4. We observe reasonable stability for varying values of Kappa and Horizon variables, which correspond to the planning horizon as well as the variance of trajectory reweighting (intuitively concentrating more aggressively towards the more successful trajectories). Additional analysis is present in the Appendix’s Section 5.5.

Execution Speed A frequent concern with planning-based methods is their slower response time prohibiting practical use. We calculate the average control frequency of MBOP on the RLU Walker task and find that MBOP can operate at frequencies ranging from 106 Hz for $h = 4$ to 40 Hz for a $h = 40$, with BC operating at 362 Hz. Additional values are presented in Appendix Sec. 5.4.

5 Conclusion

Planning-based methods provide significantly more flexibility for external systems to interact with the learned controller. Bringing them into the offline data regime opens the door to their use on more real-world systems for which on-line training is not an option.

MBOP is an easy to implement, data-efficient, stable, and flexible algorithm for policy generation from offline data. We show that MBOP can perform competitively in various data regimes, and can provide easily adaptable policies for more complex goal-conditioned or constrained tasks, even if the original data does not provide prior experience. Future work intends to ameliorate performance by investigating the use of goal-condition policy priors and value estimates, as well as looking at effective ways to perform offline model selection and evaluation. We hope that MBOP can be useful as an out-of-the-box algorithm for learning stable and parametrizable control policies for real systems.
Acknowledgments

The authors wish to thank Robert Dadashi, Yuval Tassa and DeepMind friends for feedback, as well as Anusha Nagabandi for opensourcing the code for PDDM which provided a good prototyping base.

References

[1] J. Rault, A. Richalet, J. Testud, and J. Papon. Model predictive heuristic control: application to industrial processes. *Automatica*, 14(5):413–428, 1978.

[2] G. Williams, A. Aldrich, and E. Theodorou. Model predictive path integral control using covariance variable importance sampling. *arXiv preprint arXiv:1509.01149*, 2015.

[3] C. Gulcehre, Z. Wang, A. Novikov, T. L. Paine, S. G. Colmenarejo, K. Zolna, R. Agarwal, J. Merel, D. Mankowitz, C. Paduraru, et al. Rl unplugged: Benchmarks for offline reinforcement learning. *arXiv preprint arXiv:2006.13888*, 2020.

[4] J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine. D4rl: Datasets for deep data-driven reinforcement learning. *arXiv preprint arXiv:2004.07219*, 2020.

[5] A. Nagabandi, K. Konolige, S. Levine, and V. Kumar. Deep dynamics models for learning dexterous manipulation. In *Conference on Robot Learning*, pages 1101–1112, 2020.

[6] R. S. Sutton and A. G. Barto. *Reinforcement learning: An introduction*. MIT press, 2018.

[7] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep reinforcement learning. *nature*, 518(7540):529–533, 2015.

[8] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra. Continuous control with deep reinforcement learning. *arXiv preprint arXiv:1509.02971*, 2015.

[9] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

[10] A. Abdolmaleki, J. T. Springenberg, Y. Tassa, R. Munos, N. Heess, and M. Riedmiller. Maximum a posteriori policy optimisation. *arXiv preprint arXiv:1806.06920*, 2018.

[11] M. Deisenroth and C. E. Rasmussen. Pilco: A model-based and data-efficient approach to policy search. In *Proceedings of the 28th International Conference on machine learning (ICML-11)*, pages 465–472, 2011.

[12] K. Chua, R. Calandra, R. McAllister, and S. Levine. Deep reinforcement learning in a handful of trials using probabilistic dynamics models. In *Advances in Neural Information Processing Systems*, pages 4754–4765, 2018.

[13] G. Williams, N. Wagener, B. Goldfain, P. Drews, J. M. Rehg, B. Boots, and E. A. Theodorou. Information theoretic mpc for model-based reinforcement learning. In *2017 IEEE International Conference on Robotics and Automation (ICRA)*, pages 1714–1721. IEEE, 2017.

[14] D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and J. Davidson. Learning latent dynamics for planning from pixels. In *International Conference on Machine Learning*, pages 2555–2565, 2019.

[15] K. Lowrey, A. Rajeswaran, S. Kakade, E. Todorov, and I. Mordatch. Plan online, learn offline: Efficient learning and exploration via model-based control. *arXiv preprint arXiv:1811.01848*, 2018.

[16] S. Levine, A. Kumar, G. Tucker, and J. Fu. Offline reinforcement learning: Tutorial, review, and perspectives on open problems. *arXiv preprint arXiv:2005.01643*, 2020.

[17] D. Precup. Eligibility traces for off-policy policy evaluation. *Computer Science Department Faculty Publication Series*, page 80, 2000.
[18] O. Nachum, Y. Chow, B. Dai, and L. Li. Dualdice: Behavior-agnostic estimation of discounted stationary distribution corrections. In *Advances in Neural Information Processing Systems*, pages 2318–2328, 2019.

[19] T. L. Paine, C. Paduraru, A. Michi, C. Gulcehre, K. Zolna, A. Novikov, Z. Wang, and N. de Freitas. Hyperparameter selection for offline reinforcement learning. *arXiv preprint arXiv:2007.09055*, 2020.

[20] B. Lakshminarayanan, A. Pritzel, and C. Blundell. Simple and scalable predictive uncertainty estimation using deep ensembles. In *Advances in neural information processing systems*, pages 6402–6413, 2017.

[21] G. Kahn, P. Abbeel, and S. Levine. Badgr: An autonomous self-supervised learning-based navigation system. *arXiv preprint arXiv:2002.05700*, 2020.

[22] G. Williams, A. Aldrich, and E. A. Theodorou. Model predictive path integral control: From theory to parallel computation. *Journal of Guidance, Control, and Dynamics*, 40(2):344–357, 2017.

[23] Y. Yang, K. Caluwaerts, A. Iscen, T. Zhang, J. Tan, and V. Sindhwani. Data efficient reinforcement learning for legged robots. In *Conference on Robot Learning*, pages 1–10, 2020.

[24] F. Ebert, C. Finn, S. Dusari, A. Xie, A. Lee, and S. Levine. Visual foresight: Model-based deep reinforcement learning for vision-based robotic control. *arXiv preprint arXiv:1812.00568*, 2018.

[25] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mastering the game of go with deep neural networks and tree search. *nature*, 529(7587):484–489, 2016.

[26] R. Kidambi, A. Rajeswaran, P. Netrapalli, and T. Joachims. Morel: Model-based offline reinforcement learning. *arXiv preprint arXiv:2005.05951*, 2020.

[27] T. Yu, G. Thomas, L. Yu, S. Ermon, J. Zou, S. Levine, C. Finn, and T. Ma. Mopo: Model-based offline policy optimization. *arXiv preprint arXiv:2005.13239*, 2020.

[28] T. Matsushima, H. Furuta, Y. Matsuo, O. Nachum, and S. Gu. Deployment-efficient reinforcement learning via model-based offline optimization. *arXiv preprint arXiv:2006.03647*, 2020.

[29] T. Wang and J. Ba. Exploring model-based planning with policy networks. *arXiv preprint arXiv:1906.08649*, 2019.

[30] G. Dulac-Arnold, N. Levine, D. J. Mankowitz, J. Li, C. Paduraru, S. Gowal, and T. Hester. An empirical investigation of the challenges of real-world reinforcement learning. *arXiv preprint arXiv:2003.11881*, 2020.
Appendix

5.1 MBOP Pertinence to Robotics

MBOP provides a general model-based approach for offline learning. We have considered only physics-bound tasks in this paper as the underlying methods (MPC, MPPI) are known to work well on real systems [5, 2, 21]. Although this paper does not implement MBOP on actual robots, this is upcoming work, and we believe that by having shown MBOP’s performance over 6 different environments (cartpole, walker, quadruped, Adroit, halfcheetah, hopper) involving under-actuated control, locomotion, and manipulation, MBOP’s potential for applicability on a real systems is promising.

More specifically, we believe MBOP provides a couple key contributions specifically interesting to the robotics community:

- Ability to learn entirely off-line without a simulator.
- Ability to constrain policy operation.
- Ability to completely rephrase the policy’s goal according to an arbitrary cost function.

These aspects make MBOP a unique contribution that potentially opens a series of interesting research questions around zero-shot adaptation, leveraging behavior priors, using sub-optimal models, leveraging uncertainty, and more generally exploring the additional control opportunities provided by model-based methods that are much more difficult with model-free learnt controllers.

As mentioned above it is our intent to quickly try out MBOP on various robotic systems. If results are available by the time of CoRL 2020 they will be presented as well.

5.2 Performance of MBOP ablations and associated hyperparameters

We present mean evaluation performance and associated hyper parameters for runs of MBOP and its ablations in a set of tables. For RLU: Table 2 for Cartpole, 3 for Quadruped, 4 for Walker. For D4RL:

# Points	Policy	Horizon	# Samples	Kappa	Sigma	Beta	Mean	1-STD
5000	CLONING	-	-	-	-	-	-	-
5000	MBOP	64	100	2.34	0.8	0.2	229.2	71.7
5000	MBOP-NOPP	128	100	0.23	0.8	0.2	803.1	117.7
5000	MBOP-NOVF	128	100	1.17	0.8	0.2	715.2	183.7
5000	PDIM	128	100	0.7	0.8	0.2	726.6	131.8
25000	CLONING	-	-	-	-	-	-	-
25000	MBOP	64	100	0.5	0.8	0.2	350.7	168.2
25000	MBOP-NOPP	128	100	2.3	0.1	0.2	463.6	284.0
25000	MBOP-NOVF	128	100	0.7	0.8	0.2	776.5	128.7
25000	PDIM	128	100	0.7	0.4	0.2	720.2	69.3
10000	CLONING	-	-	-	-	-	-	-
10000	MBOP	64	100	2.3	0.8	0.2	567.4	123.6
10000	MBOP-NOPP	64	100	1.4	0.2	0.2	832.1	51.1
10000	MBOP-NOVF	128	100	1.2	1.6	0.2	733.6	150.3
10000	PDIM	128	100	1.2	0.2	0.2	725.5	124.8
20000	CLONING	-	-	-	-	-	-	-
20000	MBOP	64	100	0.5	1.6	0.2	644.3	78.9
20000	MBOP-NOPP	64	100	2.3	0.2	0.2	840.7	7.5
20000	MBOP-NOVF	128	100	1.2	1.6	0.2	767.0	83.6
20000	PDIM	128	100	1.2	0.2	0.2	797.6	47.1
50000	CLONING	-	-	-	-	-	-	-
50000	MBOP	64	100	1.4	1.6	0.2	612.0	63.9
50000	MBOP-NOPP	64	100	2.3	0.2	0.2	845.7	6.7
50000	MBOP-NOVF	128	100	1.2	1.6	0.2	823.2	44.2
50000	PDIM	128	100	1.2	0.2	0.2	783.9	96.6

Table 2: RLU Cartpole Performance
# Points	Policy	Horizon	# Samples	Kappa	Sigma	Beta	Mean	1-STD
5000	CLONING	-	-	-	-	-	974.1	9.9
5000	MBOP	8	1000	3.8	0.8	0.2	561.6	233.2
5000	MBOP-NOPP	16	1000	1.9	1.6	0.2	569.8	269.9
5000	PDDM	32	1000	0.9	1.6	0.2	796.0	17.0

25000	CLONING	-	-	-	-	-	966.5	10.9
25000	MBOP	8	1000	3.8	0.8	0.2	983.8	3.6
25000	MBOP-NOPP	16	1000	1.9	1.6	0.2	866.6	87.4
25000	MBOP-NOVF	16	1000	1.9	0.8	0.2	561.6	233.2
25000	PDDM	32	1000	0.9	1.6	0.2	728.1	120.7

100000	CLONING	-	-	-	-	-	966.5	15.1
100000	MBOP	8	1000	3.8	0.8	0.2	989.4	3.2
100000	MBOP-NOPP	16	1000	1.9	1.6	0.2	935.3	35.2
100000	MBOP-NOVF	16	1000	1.9	0.8	0.2	983.8	2.2
100000	PDDM	32	1000	0.9	1.6	0.2	967.1	12.5

200000	CLONING	-	-	-	-	-	972.9	8.6
200000	MBOP	8	1000	3.8	0.8	0.2	993.3	1.3
200000	MBOP-NOPP	16	1000	1.9	1.6	0.2	984.5	12.1
200000	MBOP-NOVF	16	1000	1.9	0.8	0.2	986.6	1.3
200000	PDDM	32	1000	0.9	1.6	0.2	946.4	29.7

500000	CLONING	-	-	-	-	-	973.1	5.6
500000	MBOP	8	1000	3.8	0.8	0.2	994.8	0.4
500000	MBOP-NOPP	16	1000	1.9	1.6	0.2	994.0	3.5
500000	MBOP-NOVF	16	1000	1.9	0.8	0.2	984.2	2.2
500000	PDDM	32	1000	0.9	1.6	0.2	965.0	12.0

Table 3: RLU-Quadruped Performance
# Points	Policy	Horizon	# Samples	Kappa	Sigma	Beta	Mean	1-STD
10000	CLONING	-	-	-	-	-	-	-
10000	MBOP	8	100	3.8	0.2	0.2	251.2	280.4
10000	MBOP-NOPP	32	100	4.7	1.6	0.2	45.7	16.6
10000	MBOP-NOVF	4	100	7.5	0.1	0.2	225.3	275.8
10000	PDIM	8	100	18.8	0.8	0.2	37.0	16.8
14000	CLONING	-	-	-	-	-	-	-
14000	MBOP	4	100	37.5	0.1	0.2	489.7	290.3
14000	MBOP-NOPP	32	100	2.8	1.6	0.2	53.1	24.0
14000	MBOP-NOVF	4	100	37.5	0.1	0.2	243.3	266.2
14000	PDIM	32	100	4.7	1.6	0.2	57.4	23.2
23000	CLONING	-	-	-	-	-	-	-
23000	MBOP	16	100	1.9	0.2	0.2	679.0	200.2
23000	MBOP-NOPP	8	100	18.8	0.8	0.2	103.0	56.2
23000	MBOP-NOVF	8	100	18.8	0.1	0.2	617.7	220.8
23000	PDIM	32	100	4.7	1.6	0.2	77.6	40.4
41000	CLONING	-	-	-	-	-	-	-
41000	MBOP	8	100	3.8	0.2	0.2	752.0	200.2
41000	MBOP-NOPP	8	100	11.3	0.2	0.2	160.9	80.5
41000	MBOP-NOVF	32	100	2.8	0.1	0.2	700.6	97.7
41000	PDIM	32	100	4.7	0.8	0.2	79.5	32.9
50000	CLONING	-	-	-	-	-	-	-
50000	MBOP	4	100	7.5	0.4	0.2	775.0	87.1
50000	MBOP-NOPP	4	100	22.5	1.6	0.2	874.7	78.2
50000	MBOP-NOVF	16	100	9.4	0.2	0.2	723.2	103.1
50000	PDIM	32	100	2.8	1.6	0.2	59.4	33.6
250000	CLONING	-	-	-	-	-	-	-
250000	MBOP	4	100	7.5	0.4	0.2	844.7	48.4
250000	MBOP-NOPP	4	100	22.5	1.6	0.2	269.1	155.9
250000	MBOP-NOVF	16	100	9.4	0.2	0.2	770.4	115.1
250000	PDIM	32	100	2.8	1.6	0.2	231.3	112.2
100000	CLONING	-	-	-	-	-	-	-
100000	MBOP	4	100	7.5	0.4	0.2	797.3	229.8
100000	MBOP-NOPP	4	100	22.5	1.6	0.2	411.2	183.5
100000	MBOP-NOVF	16	100	9.4	0.2	0.2	814.3	88.4
100000	PDIM	32	100	2.8	1.6	0.2	308.2	140.3
200000	CLONING	-	-	-	-	-	-	-
200000	MBOP	4	100	7.5	0.4	0.2	872.4	70.2
200000	MBOP-NOPP	4	100	22.5	1.6	0.2	823.8	35.5
200000	MBOP-NOVF	16	100	9.4	0.2	0.2	807.8	44.2
200000	PDIM	32	100	2.8	1.6	0.2	59.4	40.4
500000	CLONING	-	-	-	-	-	-	-
500000	MBOP	4	100	7.5	0.4	0.2	908.8	54.3
500000	MBOP-NOPP	4	100	22.5	1.6	0.2	884.0	140.8
500000	MBOP-NOVF	16	100	9.4	0.2	0.2	833.5	100.7
500000	PDIM	32	100	2.8	1.6	0.2	620.1	98.7

Table 4: RLU-Walker Performance
Dataset	Policy	Horizon	# Samples	Kappa	Sigma	Beta	Mean	1-STD
med-expert	CLONING	-	-	-	-	-	-	-
med-expert	MBOP	2	100	1	0.2	0	1265.9	2160.7
med-expert	MBOP-NOPP	2	100	1	0.2	0	-334.1	92.2
med-expert	MBOP-NOVF	40	100	1	0.2	0	7220.3	3450.9
mixed	CLONING	-	-	-	-	-	-7.0	1.6
mixed	MBOP	4	100	3	0.2	0	5135.1	107.9
mixed	MBOP-NOPP	4	100	3	0.2	0	-415.7	43.3
mixed	MBOP-NOVF	20	100	3	0.2	0	4724.6	542.8
mixed	PDIDM	20	100	3	0.2	0	-275.6	58.9
medium	CLONING	-	-	-	-	-	-156.7	1.7
medium	MBOP	2	100	3	0.2	0	5406.5	96.6
medium	MBOP-NOPP	2	100	3	0.2	0	-427.0	79.9
medium	MBOP-NOVF	20	100	3	0.2	0	4995.8	85.5
medium	PDIDM	20	100	3	0.2	0	-331.9	30.1
random	CLONING	-	-	-	-	-	-1.0	1.1
random	MBOP	4	100	3	0.8	0	768.4	491.2
random	MBOP-NOPP	4	100	3	0.8	0	254.0	567.8
random	MBOP-NOVF	40	100	3	0.8	0	495.6	534.7
random	PDIDM	40	100	3	0.9	0	-156.7	110.1

Table 5: D4RL Door Performance
Dataset	Policy	Horizon	# Samples	Kappa	Sigma	Beta	Mean	1-STD
med-expert	CLONING	-	-	-	-	-	3006.0	1844.8
med-expert	MBOP	2	1000	1	0.05	0	3222.8	1660.7
med-expert	MBOP-NOPP	1	1000	1	0.05	0	-6.0	0.6
med-expert	MBOP-NOVF	15	1000	1	0.05	0	2309.7	1981.2
med-expert	PDDM	15	1000	1	0.05	0.2	209.4	113.1
medium	CLONING	-	-	-	-	-	528.7	335.0
medium	MBOP	4	1000	3	0.02	0	1881.9	1350.7
medium	MBOP-NOPP	8	1000	3	0.02	0	239.3	51.5
medium	MBOP-NOVF	10	1000	3	0.02	0	530.0	228.8
medium	PDDM	10	1000	3	0.02	0	246.0	5.6
mixed	CLONING	-	-	-	-	-	528.7	335.0
mixed	MBOP	8	1000	3	0.02	0	447.1	243.8
mixed	MBOP-NOPP	8	1000	3	0.02	0	239.3	51.5
mixed	MBOP-NOVF	10	1000	3	0.02	0	530.0	228.8
mixed	PDDM	10	1000	3	0.02	0	246.0	5.6
random	CLONING	-	-	-	-	-	528.7	335.0
random	MBOP	8	1000	3	0.02	0	447.1	243.8
random	MBOP-NOPP	8	1000	3	0.02	0	239.3	51.5
random	MBOP-NOVF	10	1000	3	0.02	0	530.0	228.8
random	PDDM	10	1000	3	0.02	0	246.0	5.6

Table 7: D4RL Hopper Performance

Dataset	Policy	Horizon	# Samples	Kappa	Sigma	Beta	Mean	1-STD
med-expert	CLONING	-	-	-	-	-	3006.0	1844.8
med-expert	MBOP	2	1000	1	0.05	0	3222.8	1660.7
med-expert	MBOP-NOPP	2	1000	1	0.05	0	-60.0	0.6
med-expert	MBOP-NOVF	15	1000	1	0.05	0	2302.7	1981.2
med-expert	PDDM	15	1000	1	0.05	0.2	209.4	113.1
medium	CLONING	-	-	-	-	-	528.7	335.0
medium	MBOP	4	1000	3	0.02	0	1881.9	1350.7
medium	MBOP-NOPP	10	1000	3	0.02	0	239.3	51.5
medium	MBOP-NOVF	150	1000	3	0.02	0	341.7	504.6
medium	PDDM	150	1000	3	0.02	0	246.0	5.6
random	CLONING	-	-	-	-	-	528.7	335.0
random	MBOP	8	1000	3	0.02	0	447.1	243.8
random	MBOP-NOPP	8	1000	3	0.02	0	239.3	51.5
random	MBOP-NOVF	15	1000	3	0.02	0	530.0	228.8
random	PDDM	15	1000	3	0.02	0	246.0	5.6

Table 8: D4RL Walker2d Performance
5.3 MBOP Ablations

Full results for the various ablations of MBOP are visualized in Figures ?? and 6.

(a) MBOP variants performance on RL-Unplugged RWRL Quadruped Dataset
(b) MBOP variants performance on RL-Unplugged RWRL Walker Dataset
(c) MBOP variants performance on RL-Unplugged RWRL Cartpole Dataset
(d) MBOP variants performance on D4RL - Adroit - door-expert-v0 Dataset

Figure 5: Ablation results on multi-sized datasets form RLU and D4RL.
5.4 Execution Speed

Policy	Horizon	Frequency (Hz)
BC	N/A	362
MBOP	4	106
MBOP	8	71
MBOP	16	40

Table 9: MBOP maximum control frequencies (steps/second) including simulator time on an Tesla P100 using a single core of a Xeon 2200 MHz equivalent processor.

Execution speeds on the RLU Walker task in represented in Table 9. We see that we can easily achieve control frequencies below 10Hz, but cannot currently attain 100Hz with longer horizons. For lower level control policies for which high-frequency is important, we would suggest distilling the controller into a task-specific policy similar to MoREL [26] or MOPO [27].

5.5 MBOP Parameters

All parameters were set as follows except for the D4RL Walker task where we use 15 ensemble networks.

- # FC Layers: 2
- Size FC Layers: 500
- # Ensemble Networks: 3
Continued Analysis of Constrained Tasks

We can see the height-constrained Walker performance in Figure 7a. MBOP is able to satisfy the height constraint 80% of the episode while maintaining reasonable performance. Over the various ablations we have found that MBOP is better able to maintain base task performance for similar constraint satisfaction rates.

(a) This figure describes the performance of MBOP on RLU Walker when constrained to stay below a height threshold. We see that MBOP is able to increase the rate of respect of the constraint compared to the behavior policy while maintaining similar episode returns.

(b) Cartpole task constrained to right or left half of the track. We can see that MBOP is able to respect the constraint while maintaining performance on both tasks.

Figure 7: Effects of constraints on MBOP performance.

Hyperparameter Stability

Figure 8 shows the sensitivity of MBOP and associated ablations to the Beta and Horizon parameters. Figure 9 shows the effects of Sigma to MBOP and ablations on the RLU datasets. Figure 7b shows sensitivity to Horizon and Kappa in synchrony.
Figure 8: MBOP sensitivity to Beta & Horizon on RLU datasets.
(a) Sensitivity to Sigma parameter on RLU / Quadruped.

(b) Sensitivity to Sigma parameter on RLU / Walker.

(c) Sensitivity to Sigma parameter on RLU / Cartpole.

Figure 9: MBOP sensitivity to Sigma on RLU datasets.
Figure 10: Sensitivity to Horizon x Kappa on RLU environments (full datasets).