Computation of maximal reachability submodules

Wiland Schmale

Fachbereich Mathematik, Carl von Ossietzky Universität,
D-26111 Oldenburg, Germany;
email: wiland.schmale@uni-oldenburg.de

Keywords: Reachability submodule, linear systems, systems over rings, symbolic computation

Abstract

A new and conceptually simple procedure is derived for the computation of the maximal reachability submodule of a given submodule of the state space of a linear discrete time system over a Noetherian ring R. The procedure is effective if R is effective and if kernels and intersections can be computed. The procedure is compared with a rather different procedure by Assane et al. published recently.

1 Introduction

Let $A \in R^{n \times n}$, $B \in R^{n \times m}$ where for the moment R is just a commutative ring. As usual, we associate to the pair (A, B) the linear discrete time control processes

$$x_0, \quad x_1 = Ax_0 + Bu_0, \quad \cdots, \quad x_{k+1} = Ax_k + Bu_k, \quad \cdots \quad (1)$$

with states $x_k \in R^n$, inputs $u_k \in R^m$ and $k \in \mathbb{N}$.

A submodule U of R^n is called (A, B)-invariant if $AU \subseteq U + \text{im } B$. An (A, B) invariant submodule U is called reachable or reachability submodule if every state in U can be reached from zero within U. The latter means:

$$\forall x \in U \ \exists r \in \mathbb{N}, \ u_0, \ldots, u_{r-1} \in R^m : \quad x_1 = Bu_0, \ldots, \ x_r = A^{r-1}Bu_0 + \ldots + Bu_{r-1} \in U \quad \text{and} \quad x_r = x.$$
It was shown (see e.g. [Hi, Theorem 2.15]) that this rather natural definition is equivalent to the definition of pre-controllability submodules in [CoPe] which is still more commonly known but less intuitive from a control point of view.

The zero-module is trivially \((A, B)\)-invariant and reachable. From the definitions it is clear that sums of \((A, B)\)-invariant or reachable submodules, respectively, are again \((A, B)\)-invariant or reachable. These facts imply that any submodule \(M\) of \(R^n\) contains a unique maximal \((A, B)\)-invariant submodule \(M^*\) and a unique maximal reachability submodule \(M^*_0\), where always \(M^*_0 \subseteq M^*\).

Maximal reachability submodules play an important role in the solutions to classical control problems such as disturbance decoupling. See [CoPe] and [AsPe] to give only two examples. It is therefore of practical importance to have methods at hand for the computation of generating systems of such modules. In [AsLaPe] for the first time a finite procedure was given for principal ideal domains and then strongly modified in [AsLaPe2] to work for Noetherian rings. The latter works as follows:

\(R\) is now supposed to be Noetherian.

First step (precalculation): \(S_0 := \text{im}\ B\)
and for \(k \geq 1\): \(S_k := \text{im}\ B + A(S_{k-1} \cap M)\).

This ascending sequence of modules stabilizes after finitely many steps and gives a submodule \(M_s\) which contains the image of \(B\). If \(M\) is represented as the kernel of some matrix \(C \in R^{n \times p}\), then \(M_s\) appears as the 'minimal \((C, A)\)-invariant submodule' containing the image of \(B\), see e.g. [AsLaPe2].

Second step and main procedure: \(W_0 := M_s \cap M \cap A^{-1}(\text{Im} B)\)
and for \(k \geq 1\): \(W_k := M_s \cap M \cap A^{-1}(W_{k-1} + \text{Im} B)\).

Once more, this gives an ascending sequence and an interesting proof in [AsLaPe2] shows that its limit is actually \(M^*_0\).

Of course - and the same is valid for the new procedure to be developed in this note - such a procedure can be realized in a concrete computation only if the ring \(R\) and all the occurring operations like \("A^{-1}\", \("\cap\") are effective in the sense of [CoCuSt, p.1].
2 New procedure via finite \((A, B)\)-cyclic submodules

Based on results from [BrSch] a quite different and conceptually simpler approach is possible. A submodule \(U\) of \(R^n\) is called \((A, B)\)-cyclic if for some \(u_k \in R^m\) and \(x_k\) from (1) with \(x_0 = 0\) one has

\[U = \langle x_k : k \geq 0 \rangle. \]

(2)

Thus an \((A, B)\)-cyclic submodule can be generated by the states of one single control process which begins with the zero-state.

It is shown in [BrSch] that \((A, B)\)-cyclic submodules are reachability submodules and that finitely generated reachability submodules are even finite \((A, B)\)-cyclic. The latter means that in addition to (2) one has \(x_k = 0\) for \(k > d\) and some \(d \in \mathbb{N}\).

The point is now that finite \((A, B)\)-cyclic submodules can be determined via the kernel of \([yE - A, -B]\) in \(R[y]^{n+m}\). If for \(f \in R[y]^n\), \(g \in R[y]^m\) one has \((yE - A)f =Bg\), then the coefficient vectors of \(f\) generate a finite \((A, B)\)-cyclic submodule and every finite \((A, B)\)-cyclic submodule \(U = \langle x_1, \ldots, x_d, 0, \ldots \rangle\) leads to a kernel element \([f \ g]\) with \(f = x_1 y^{d-1} + \ldots + x_d\) and \(g = u_0 y^d + \ldots + u_d\). Note that \(x_{d+1} = A_d x_d + B u_d = 0\). More details can be found in [BrSch].

For any \(f = x_1 y^{d-1} + \ldots + x_d \in R[y]^n\) let \(U_f := \langle x_1, \ldots, x_d \rangle\). Of course, \(U_f\) is contained in a given submodule \(M\) if and only if the coefficient vectors of \(f\) are from \(M\). Let \(\pi\) be the projection of \(R[y]^{n+m} = R[y]^n \oplus R[y]^m\) onto the first \(n\) components and let

\[M := \text{Ker} [yE - A, -B] \cap (M[y] \times R[y]^m). \]

(3)

Here \(M[y]\) is the submodule of \(R[y]^n\) of those polynomial vectors which have all their coefficient vectors from \(M\).

One arrives now at the following results:

Observation. (i) For every \(h \in M\) the submodule \(U_{\pi(h)}\) is a reachability submodule of \(M\) (true for any \(R\)).

(ii) Let \(R\) be Noetherian. For every reachability submodule \(U\) of \(M\) there is \(h \in M\) such that \(U = U_{\pi(h)}\).
Proposition. Let \(h_1, \ldots, h_s \) generate \(M \) as an \(R[y] \)-module, then the family of coefficient vectors of \(\pi(h_1), \ldots, \pi(h_s) \) generates \(M^*_0 \).

Proof of Observation. (i): By construction \(U_{\pi(h)} \) is finite \((A, B)\)-cyclic and thus by Proposition 1.5 in [BrSch] a reachability submodule.

(ii): Since \(R \) is Noetherian, \(U \) is finitely generated and reachable. By Proposition 1.7 in [BrSch] this implies that \(U \) is finite \((A, B)\)-cyclic. The foregoing discussion shows how to construct the desired \(h \in M \).

Proof of Proposition. Let \(f_1 = \pi(h_1), \ldots, f_s = \pi(h_s) \) and \(\tilde{M} = \sum_{i=1}^{s} U_{f_i} \).

We have to show \(\tilde{M} = M^*_0 \). \(M^*_0 \) is the sum of all reachability submodules of \(M \). Since \(R \) is Noetherian, all reachability submodules \(U \) of \(M \) are finitely generated. By part (ii) of the Observation such modules \(U \) can be represented as \(U = U_{\pi(h)} \) with some \(h \in M \). Since \(h = r_1 h_1 + \ldots + r_s h_s \) with some \(r_1, \ldots, r_s \in R[y] \), we obtain \(U \subseteq \tilde{M} \) for an arbitrary reachability submodule \(U \) of \(M \) and thus \(M^*_0 \subseteq \tilde{M} \).

The converse inclusion comes from the fact that by part (i) of the Observation \(U_{f_i} \) is a reachability submodule of \(M \) and therefore contained in \(M^*_0 \) for \(1 \leq i \leq s \). The latter implies: \(\tilde{M} \subseteq M^*_0 \).

One main advantage of the approach via (3) is that one can (for appropriate rings \(R \)) compute the kernel of \([yE - A, -B]\) once for all independently of \(M \). This gives us a first result a module which is of use not only for determining \(M^*_0 \), see e.g. [BrSch]. In order to determine \(M^*_0 \) for some specific \(M \) it remains to calculate an intersection of two modules and after that one merely truncates the results and extracts the coefficient vectors.. Explicit calculation is - of course - only possible over an effective Noetherian ring with an effective method to determine the kernel and intersection in (3). Examples of such rings are \(\mathbb{Z}, \mathbb{Q}[t_1, \ldots, t_n], \mathbb{F}[t_1, t_n] \) where \(\mathbb{F} \) is a finite field. The determination of \(\text{Ker} [yE - A, -B] \) can then be done with the help of Gröbner basis calculations as indicated in [BrSch]. A standard technique also via Gröbner bases for the computation of the intersections of modules is (e.g.) described in [AdLou]. In both cases any generating system would do as well. Several current software packages for symbolic computation can be utilized to perform explicit calculations.

A sound comparison of the different procedures for the computation of maximal reachability submodules requires a detailed investigation of their complexities. This remains as a future task.
The following two examples are over $\mathbb{Q}[t]$ and $\mathbb{Q}[t,w]$. Computations have been done combining the well-known packages Macaulay2 and MapleV Release 5.1.

Examples

(A) Let $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & t \\ 0 & 0 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 1 & -t \\ t & 0 \\ 0 & t \end{bmatrix}$ and $M = \text{im} \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$ as in Example 1 of [AsLaPe2].

To determine M^*_0 we first obtain

$$\text{Ker} [yE - A, -B] = \text{im} \begin{bmatrix} t & -t - y \\ -t & -ty \\ -t & 0 \\ t & -y^2 \\ -y & 0 \end{bmatrix}$$

This leads to $M = hR[y]$ with $h = t[t, -t, -t, t, -y]$, which in turn leads to with $f = \pi(h) = t[t, -t, -t]$. There is only one coefficient vector to be extracted from f (viewed as a polynomial vector in the variable y). Therefore the final result is: $M^*_0 = fR$. By [AsLaPe2] we know $M^* = \begin{bmatrix} 1 \\ -1 \end{bmatrix} R$ and thus $M^*_0 \subseteq M^*$.

This example is interesting also since here the classical Wonham-algorithm to determine M^* does not converge and up to now no general finite procedure is known. For principal ideal domains, however, a procedure has been developed in [AsLaLoPe].

(B) In the second example we start with matrices from [AsLaPe2], Example 4.3, where a system with two incommensurable delays is investigated.

Let

$$A = \begin{bmatrix} w^4 & t & 0 \\ x^3 & 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} t & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix}, \quad \text{and } M = \text{im} \begin{bmatrix} 1 & 0 \\ 0 & w \\ 0 & 1 \end{bmatrix}.$$

Here Macaulay2 computes

$$\text{Ker} [yE - A, -B] = \text{im} \begin{bmatrix} 0 & -t + y \\ 0 & w^4 \\ -t & -ty + y^2 \\ -ty & 0 \\ -ty & (-w^4 t + t^4) - t^3 y - ty^2 + y^3 \end{bmatrix}.$$
which leads to $M = hR[y]$ with

$$h = \left[t^2 - ty, -w^4t, -w^3t, -w^3 + ty - y^2, (w^4t^2 - t^5) + (-w^3t + t^4)y \right].$$

Now $\pi(h) = x_1y + x_2$ where $x_1 = [t, -t, 0, 0]$ and $x_2 = [t^2, -w^4t, -w^3t]$ and according to the Proposition we obtain as final result: $M_0^* = \langle x_1, x_2 \rangle$ (compare with R_2^* in [AsLaPe2, 4.3]). Note that by the new procedure we automatically get M_0^* represented as an (A, B)-cyclic subspace. In more complex examples one obtains M_0^* as a sum of (A, B)-cyclic modules. For reasons of space I do not give an example for this.

References

[AdLou] W. Adams, P. Loustaunau: An Introduction to Gröbner Bases, AMS Providence, 1994.

[AsLaPe1] J. Assan, J. Lafay, A. Perdon: An algorithm to compute maximal pre-controllability submodules over a p.i.d., Proc. IFAC Workshop on Linear Time Delay Systems, pp. 123–128, Grenoble, France, 1998.

[AsLaPe2] J. Assan, J. Lafay, A. Perdon: Computation of maximal precontrollability submodules over a Noethenian ring, Systems & Control Letters 37 (1999) 153–161.

[AsLaLoPe] J. Assan, J. Lafay, J. Loiseau, A. Perdon: Effective computation of maximal controlled invariant submodules over a principal ideal ring, 38th IEEE-Conference on Decision and Control, Phoenix, Arizona, 1999

[AsPe] J. Assan, A. Perdon: An efficient computation of the solution of the block decoupling problem with coefficient assignment over a ring, to appear in: Kybernetika

[BrSch] J. Brewer, W. Schmale: (A, B)-cyclic submodules, to appear in: Linear Algebra and Applications; obtainable as a pdf-file via: http://www.uni-oldenburg.de/math/personen/schmale/schmalep.html

[CoCuSt] A. Cohen, H. Cuypers, H. Sterk (Eds): Some Topas of Computer Algebra, Springer, 1999.

[CoPe] G. Conte, M. Perdon: The decoupling problem for systems over a ring, Proceedings of 34th IEEE-Conference on Decision and Control, Vol. 2, pp. 2041–2045, New Orleans, Lousiana, December 1995.

[It] N. Ito: Decoupling problems for linear systems over rings, Dissertation, Denki University, Tokyo, 1998.