Physical Activity and Breast Cancer: A Qualitative Study on the Barriers to and Facilitators of Exercise Promotion from the Perspective of Health Care Professionals

Jenna Smith-Turchyn, PhD(c), PT;* Julie Richardson, PhD, PT;* Richard Tozer, MD, PhD;† Margaret McNeely, PhD, PT;‡ Lehana Thabane, MD, PhD§

ABSTRACT

Purpose: We determined the barriers to and facilitators of exercise promotion by health care professionals (HCPs) for women with breast cancer (BC).

Methods: The study was a qualitative descriptive study. Semi-structured interviews were conducted with HCPs who treat individuals with BC in Ontario. The interviews were recorded and transcribed. Two reviewers independently used content analysis to determine codes and themes developed in the interviews. NVivo 10 was used during the coding process.

Results: A total of 24 HCPs participated in this study. The data from the interviews were grouped into five main categories: (1) institutional barriers, (2) HCP barriers, (3) perceived patient barriers, (4) facilitators (resource and service needs), and (5) patient characteristics. A graphic depiction of the interaction was created for these categories and how they affect the promotion of exercise for women with BC.

Conclusions: Participants in this study identified several barriers to exercise promotion at the institutional, professional, and patient levels and suggested several strategies to facilitate exercise promotion. These findings can inform future exercise interventions to increase exercise adherence and engagement in this population.

Key Words: breast cancer; exercise; health promotion; rehabilitation.

Breast cancer (BC) is the most prevalent form of cancer in women in North America:1,2 One in eight women is expected to develop BC in their lifetime.1–3 In addition, the projected burden of this disease continues to increase with the aging population, and it is predicted that, by 2032, the number of new BC cases among women will increase by 55%.4 BC and the associated treatments result in numerous side effects, including pain, fatigue, nausea, weakness, lymphedema, and decreased range of motion.5–11 and these side effects affect a person’s quality of life and overall functioning.

Recent research has shown that regular moderate-intensity exercise of various forms can ameliorate many of these physical side effects.9,12–27 Despite this evidence, only 30% of individuals with cancer take part in regular physical activity.28–31 Therefore, to enhance quality-of-life outcomes, strategies in the clinical setting that support changing physical activity behaviour are paramount.
The literature has thoroughly explored the barriers to and facilitators of exercise participation from the patient’s perspective. Known barriers include individual factors, such as physical symptoms and fatigue, and educational barriers resulting from a lack of general knowledge about the need to stay physically active during and after treatment, proper exercise prescriptions, and available exercise programs. One of the most startling findings is the lack of education being provided to patients on the benefits of exercise during and after treatment. In Ontario, it was reported that 83% of patients received no form of education from their oncologist about exercise, and 88% received no education from their primary care nurse about physical activity or exercise at any point in their cancer treatment. Physiotherapists (PTs) are currently not a usual part of the health care team that treats and manages women with BC in Ontario.

Because these educational and knowledge barriers are common, and because past research has shown the significant influence of the health care team in changing lifestyle behaviours of women with BC, it is important to examine the barriers to and facilitators of exercise promotion from the perspective of health care professionals (HCPs).

METHODS

Study design

This study used a descriptive qualitative design. In descriptive qualitative studies, the researcher deliberately chooses to describe an event in terms of a conceptual or philosophical framework, and descriptive qualitative studies are therefore not highly interpretive. These types of qualitative studies are the method of choice when clear descriptions of phenomena are desired. In this form of research, participants’ perspectives and ideas are processed by generating codes, which are then grouped into thematic categories. The Hamilton Integrated Research Ethics Board in Hamilton, Ontario, approved this study.

Participant recruitment

We recruited English-speaking HCPs who work with women with BC who are treated as outpatients at cancer centres in southwestern Ontario. The HCPs recruited included oncologists, general practitioners in oncology, nurses, radiation therapists, social workers, and dieticians. We sought a diversity of HCPs in our sampling.

Participants were recruited through a combination of purposive and snowball sampling. First, a recruitment letter was sent by email to members of a cancer centre’s “breast disease” team. Interested respondents were contacted to schedule an interview date. Participants also suggested other potential participants for the study, and these individuals were sent a follow-up email to request an interview. The sample size for this study was determined on the basis of the need to recruit participants until saturation of the interview data was achieved.

Data collection

One researcher (JST) conducted semi-structured interviews with participants, one on one, in person (n = 21), by telephone (n = 2), or by videoconference (n = 1). An interview guide was created on the basis of the study’s purpose and the results of a literature review. The interview guide was pilot tested on the first two participants, and minor revisions were made before implementing the final version (see Box 1). Additional probing questions were used when necessary to ensure that the participants understood what the interviewer was asking or to elicit more information when needed. Before each interview, informed consent was obtained. Each interview lasted approximately 30 minutes, and all interviews were audio-recorded. After each interview, the interviewer made field notes to record her overall impression of the participant in regard to mood, gestures, and other noteworthy occurrences. (Notes on gestures could not be made for telephone interviews.)

Data analysis

The analyses and reporting were performed according to conventional methods for descriptive qualitative studies. After the interviews had been conducted, the
audio recordings were transcribed verbatim by an independent transcriptionist; the transcripts were then checked for accuracy and completeness by the interviewer. The first five transcripts were coded independently using line-by-line analysis by two researchers (JST, JR), who then met to discuss the emerging themes and develop a coding manual for subsequent analysis. After the coding manual was developed, one researcher (JST) independently coded the remaining transcripts as they were completed. All transcripts were uploaded to NVivo 10 (QSR International Pty Ltd., Doncaster, VIC, Australia), and the coded data were aggregated into nodes and grouped into meaningful categories on the basis of the patterns that emerged. Discussions between the researchers occurred periodically during the transcription to consider how well the codes being developing addressed the research question. See Box 2 for an example of the coding process for the parent node “Barriers.”

RESULTS

Description of participants

A total of 24 HCPs from four urban cancer centres agreed to participate in this study (see Table 1 for participant details). The participants were knowledgeable about the benefits of exercise for this population; however, they gave a range of responses about how much they actually knew. All but 1 participant had a positive response to the use of exercise for BC survivors. The majority of HCPs acknowledged that they discussed physical activity and exercise with their patients, but most admitted that they did so inconsistently (data not shown).

Findings

Overall, the HCPs interviewed in this study were supportive of the use of exercise for women with BC. Interestingly, when we compared how the health professions perceived the benefits of exercise, we found that physicians related the benefits and importance of exercise to recurrence risk and mortality, whereas non-physicians (nurses and other HCPs) related the benefits and importance of exercise to symptom management and quality of life. Neither focus is suggested to be better, but this comparison reveals a difference in the treatment these professionals offer and the emphasis of their training.

To determine the barriers to and facilitators of promoting exercise for this population, the data from the interviews were coded and grouped into five main categories: (1) institutional barriers, (2) HCP barriers, (3) perceived patient barriers, (4) facilitators (resource and service needs), and (5) patient characteristics (see Table 2).

Institutional barriers

Institutional barriers reported by HCPs in relation to promoting exercise for women with BC include (1) time with each patient, (2) a lack of identification of who should be discussing exercise with the patient, and (3) a lack of funding for exercise interventions and for the role of rehabilitation professionals in an institution. Lack of time and the higher priority of other issues related to their own profession was the most commonly mentioned barrier preventing HCPs from discussing exercise with their patients. The need to discuss so many issues in such a short time meant that HCPs had to prioritize.

Sometimes it’s just, you’ve got a 15-minute appointment. In that 15-minute appointment, you’re expected to do so much … you just can’t get it all in…. It’s not because people don’t want to, it’s just—the reality is that there isn’t time. (general practitioner in oncology)
Another barrier commonly mentioned was a lack of definition of whose job it was to discuss exercise and physical activity levels in an institution: “I see it as partly my role, my responsibility, but I can’t pinpoint one group of people right now who I think it’s their duty and role to consistently do that” (medical oncologist [MO]).

A lack of available funding for new programs in Ontario was also mentioned repeatedly.

[The] challenge in introducing supports that deal with exercise ... is not in convincing those with the ability to make [funding] decisions that these are worthwhile causes; everyone is going to agree to that. ... The problem is there are a lot of [issues] that are [seen as] a higher priority in the view of those that are making [funding] decisions. (radiation oncologist)

### Table 2  Barriers to and Facilitators of Exercise Promotion

| Barriers                        | Time with each patient | So many issues to discuss | Lack of identification of who in the institution should be discussing exercise | Lack of funding for exercise interventions and/or rehabilitation professionals |
|--------------------------------|------------------------|---------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Health care professional barriers | Lack of specific knowledge about exercise | Discussion of exercise is a low priority | Forget to discuss exercise | Personal limitations |
| Perceived patient barriers | Negative attitude toward exercise | Lack of accessibility | Cost | Transportation | Weather constraints | Patient side effects and symptoms | Patient time |

Facilitators: resource and service needs

| Institutional supports | Inclusion of a rehabilitation professional as part of the breast disease site team |
|------------------------|--------------------------------------------------------------------------------|
|                        | Exercise programs housed at the institutional level |
|                        | Health care professional education |
|                        | Champion leaders |
| Individual supports    | Patient education materials: |
|                        | Pamphlets |
|                        | Posters |
|                        | Prescription pad |
|                        | Handouts |

Other considerations

| Patient characteristics | Risk groups |
|-------------------------|-------------|
|                         | Comorbidities |
|                         | Psychosocial issues |
|                         | Pre-cancer fitness level |
|                         | Treatments received |

Another barrier commonly mentioned was a lack of specific knowledge about exercise so as to educate patients effectively and with details. This was demonstrated repeatedly by statements such as “There is evidence that exercise is beneficial. ... I can’t quote the evidence. ... I think strengthening as well as a little bit of aerobic” (nurse [N]).

Many also commented that although they appreciated the benefits of exercise for symptom management, it was a low priority on their list of things to discuss with their patients (a list that includes topics such as treatment and medication regimes, possible side effects, side effect management, and prognosis), especially at initial diagnosis.

There’s a lot going on when you first see a patient, and ... telling a patient about chemotherapy for the first time, right before they’re about to start. ... I’m not sure how effective it is to talk about exercise at that point. (MO)

It was also noted that although they thought it was important, many simply forgot to talk about exercise because it has not been a part of their regular daily practice.

### Health care professional barriers

HCP barriers identified by participants include (1) lacking specific exercise knowledge, (2) seeing exercise as a low priority in relation to their other professional responsibilities, (3) forgetting to discuss physical activity, and (4) having personal limitations, for example, not exercising themselves. The most commonly reported HCP barrier reported by participants was the lack of specific knowledge about exercise so as to educate patients effectively and with details. This was demonstrated repeatedly by statements such as “There is evidence that exercise is beneficial. ... I can’t quote the evidence. ... I think strengthening as well as a little bit of aerobic” (nurse [N]).

Many also commented that although they appreciated the benefits of exercise for symptom management, it was a low priority on their list of things to discuss with their patients (a list that includes topics such as treatment and medication regimes, possible side effects, side effect management, and prognosis), especially at initial diagnosis.

There’s a lot going on when you first see a patient, and ... telling a patient about chemotherapy for the first time, right before they’re about to start. ... I’m not sure how effective it is to talk about exercise at that point. (MO)

It was also noted that although they thought it was important, many simply forgot to talk about exercise because it has not been a part of their regular daily practice.

### Perceived patient barriers

HCPs also reported perceived barriers on the part of their patients that prevented them from promoting
exercise. These perceived barriers included patients (1) having a negative attitude toward exercise, (2) lacking access to exercise programs (because of cost and transportation), (3) experiencing weather constraints, (4) experiencing side effects, and (5) having little time to commit to exercise. This was expressed by HCPs in many ways, including that their patients are afraid to exercise, doubt their exercise capability, have misconceptions about what exercise is, and think that exercise will make them feel worse. For example, one HCP said,

> I think that people are still under the impression it means that you’ve got to go work out . . . you’ve got to lift weights . . . and then I think that sort of stops a lot of people. They think, “I can’t ever do that” or “I’ve never done that,” and I think that’s a psychological barrier on how . . . they . . . view the exercise because even walking around the block is a form of exercise. Taking the stairs at work is a form of exercise. (N)

Many HCPs were also concerned about their patients’ ability to access exercise programs. This came up in relation to describing patients’ ability to pay for both exercise programs and transportation to them: “I’ve had lots of patients who just . . . don’t have money to pay for joining a program” (N).

**Facilitators: Resource and service needs**

Many participants suggested that having facilitators (in the form of additional resources and services) would aid in promoting exercise for individuals with BC; these facilitators included an increase in both institutional supports (services needed in a cancer centre) and individual supports (resources needed by patients). In regard to institutional supports, four main suggestions were made: (1) including a rehabilitation professional on the team that works with individuals with BC, (2) housing exercise interventions in the institution, (3) creating content-specific education for HCPs, and (4) using “champion leaders.” Many participants acknowledged that referring patients to exercise programs would be easier if exercise programs were run in house. For example,

> You know, we have often mentioned that, especially in [the] chemo [waiting rooms], that we should have an area that’s got some stationary bikes . . . because people do a lot of waiting—you know, to have something that is accessible. (N)

They also acknowledged the importance of having someone in house to refer patients to for exercise education: “In an ideal world, if someone were here that we could actually just send [patients to] in the supportive care department, having a person to connect them with. That would be nice” (MO).

Numerous individual supports for patients were also suggested. These supports included educational resources that HCPs could give patients, such as pamphlets, posters, prescription pads, or handouts.

**Patient characteristics**

While discussing the barriers to and facilitators of exercise promotion, many HCPs highlighted the complexity of this patient group and the numerous variables that needed to be considered when discussing exercise. More specifically, they highlighted the various risk groups in this population (from estrogen receptor status to age), the various comorbidities that many of these patients have (from obesity to cardiovascular disease), the high prevalence of psychosocial issues to consider (self-image, anxiety, depression), and the variability in pre-cancer fitness levels and BC treatments received (a combination of surgery, chemotherapy, radiation therapy, and hormone replacement). In fact, these factors could increase the complexity for HCPs when promoting exercise and could themselves be a barrier to its promotion. One participant described patient complexity by saying,

> Take a young lady . . . Everything’s good . . . she has a young family . . . she’s just been shocked by having this diagnosis of breast cancer; it’s the first major illness of her life. She’s thinking, “I’m going to die,” and the next thing she starts to realize is the cancer’s got control of her life. . . . She gets depressed. . . . Then we make her physically sick with the chemotherapy, screw up her sex life. . . . It’s almost like we’ve created an illness. . . . She becomes very dependent, and then we finish our treatment and try to get the patient integrated back into normal life. The patient is a changed patient, and we’ve created a psychological and emotional wreck. . . . Now she’s wondering, when’s the cancer going to come back. . . . So now, try to put into that whole scenario, introducing exercise. (MO)

This type of patient complexity will increase the difficulty of promoting exercise. One participant highlighted this, saying, “A lot of the times, they have concerns that are more pressing than exercise, and so what time you do have with them, you devote to whatever their [main] physical . . . or emotional concerns are” (radiation therapist).

**Putting it all together: A graphic depiction of the determinants of exercise promotion**

Figure 1 illustrates the likelihood of HCPs promoting exercise for women with BC. It depicts the three categories of barriers mentioned in the interviews and the interaction of each with one another. In addition to these established barriers, two other components (patient complexity and availability of resources and services) have an effect on the consequences that these barriers will have on the likelihood of a HCP promoting exercise. A patient who is highly complex would enhance the barriers described and decrease the likelihood of exercise promotion, whereas a patient who is less complex would have the opposite effect, minimizing the barriers and
increasing the likelihood of exercise promotion. In addition, a low availability of resources and services would enhance the described barriers and diminish the likelihood of exercise promotion by HCPs, whereas having resources and services available would minimize these barriers. Accordingly, HCPs working with an individual who is highly complex and who does not have easy access to resources and services have a low likelihood of promoting exercise and vice versa. A continuum exists between these two extremes. Therefore, to increase the likelihood of exercise promotion by HCPs for women with BC, rehabilitation professionals not only have to create interventions to minimize the barriers but also consider the complexity of this patient group and provide, or facilitate easy access to, sustainable resources and services.

**DISCUSSION**

To our knowledge, this is the first qualitative study to examine the barriers to and facilitators of promoting exercise for women with BC from the perspective of HCPs. Although HCPs were knowledgeable about the benefits of exercise for this population, their exercise advice was general. For example, some would recommend that patients stay active, but they did not give specific details (e.g., following the FITT principles of frequency, intensity, time, and type) to encourage patients to follow their recommendations. This is important because research has shown that patients’ adherence to exercise is improved when the instructions they receive are specific and understandable. This finding is also interesting because it relates to previous research on patient barriers to exercise participation, which found that both a lack of knowledge of the sort of exercise being prescribed and fear of doing unsuitable exercises were barriers to participation.

While conducting this study, it became clear that how individuals in the same profession promote exercise is inconsistent. Also, it is unclear whose role it is to discuss exercise with patients; many HCPs assume that someone else is doing it. This lack of role definition is likely preventing HCPs from giving patients a detailed and consistent message in regard to the importance of regular exercise. A possible solution would be to include PTs on the health care team to fill this role at institutions across Ontario because PTs specialize in prescribing exercise for individuals with chronic conditions. It has been reported that only 17 oncology rehabilitation programs across all of Canada employ a PT; this shows a lack of access to physiotherapy for Canadians undergoing cancer treatment, despite the evidence for the benefits of rehabilitation for cancer survivors.

Because of financial constraints in Ontario hospitals, it may not be feasible to incorporate PTs into all cancer institutions. An alternative solution is to have PTs act in consultation roles in institutions, providing education to HCPs employed in this setting so that they can act as the knowledge translators on this topic. This would allow the information given to patients to be more specific and the delivery of exercise promotion to be more efficient, and the role of other HCPs would simply be to reinforce the message.
Another question raised in these interviews was “What is the right time to promote exercise with these patients?” There is evidence to support the use of exercise interventions both during and after cancer treatment. However, many HCPs suggested that it was inappropriate in the beginning stages of treatment (before and during chemotherapy) because of the volume of information being given at that time and because of the physical and emotional changes the individual is going through. We acknowledge this difficulty, but on the basis of the benefits shown in the research, it is necessary to incorporate this education into all stages of cancer treatment. The challenge will be to devise ways to frame the interventions at each stage to be sensitive to the challenges the individual is experiencing.

Future directions
Future research should take these findings, together with the previous research on the barriers to and facilitators of exercise participation from the perspective of BC patients, and suggest novel interventions in cancer institutions in Ontario. These interventions should consist of exercise programs run by PTs and include effective educational strategies to promote exercise with this population. Because the number of individuals surviving BC is expected to increase substantially in the next decade, promoting healthy behavioural change is important to decrease the individual and societal burden of the disease and return survivors to at least their pre-cancer level of functioning at work and at home.

Our study had several limitations. First, all participants were from southwestern Ontario. Participants from other parts of Canada may have other important perspectives on this topic because of variations in provincial and territorial health care systems and funding of rehabilitation professionals, so this will be important to explore in future research. Second, no PTs were interviewed as part of this study because there are currently no PTs who are part of the breast disease teams at the participating institutions. However, given PTs’ expertise in therapeutic exercise, their perspectives are important to consider in determining future needs and ideas for promoting exercise interventions for this population. Finally, including participants who responded to the recruitment email may have led us to recruit individuals who were especially interested in the topic or who supported the content of this research study.

CONCLUSION
The aim of this study was to describe the barriers to and facilitators of exercise promotion for women with BC from the perspective of HCPs. Participants identified several barriers at the institutional, professional, and patient levels and suggested several strategies to facilitate exercise promotion. These findings can inform future interventions to make them more meaningful for this population.

KEY MESSAGES
What is already known on this topic
BC and its treatments result in many physical and psychological side effects that affect survivors for many years after their cancer diagnosis. Exercise has been shown to mitigate many of these side effects, but only a very small percentage of women with BC take part in regular exercise. Barriers from a patient’s perspective include physical symptoms, a lack of education about the need to stay physically active, and a lack of awareness of available exercise programs.

What this study adds
This is the first study to describe the barriers to and facilitators of exercise promotion by HCPs for women with BC. Results show that there are barriers at the institutional, professional, and patient levels that need to be overcome before incorporating this effective form of treatment into the cancer care continuum for women with BC.

REFERENCES
1. Canadian Cancer Society’s Advisory Committee on Cancer Statistics. Canadian cancer statistics 2014. Toronto: Canadian Cancer Society; 2014.
2. American Cancer Society. Cancer facts and figures 2014. Atlanta: American Cancer Society; 2014.
3. American Cancer Society. Breast cancer facts and figures 2013–2014. Atlanta: American Cancer Society; 2013.
4. Canadian Cancer Society’s Advisory Committee on Cancer Statistics. Canadian cancer statistics 2015. Toronto: Canadian Cancer Society; 2015.
5. Shapiro SL, Lopez AM, Schwartz GE, et al. Quality of life and breast cancer: relationship to psychosocial variables. J Clin Psychol. 2001;57(4):501–19. http://dx.doi.org/10.1002/jclp.1026. Medline:11255204
6. Wengström Y, Häggmark C, Strander H, et al. Perceived symptoms and quality of life in women with breast cancer receiving radiation therapy. Eur J Oncol Nurs. 2009;4(2):78–88, discussion 89–90. http://dx.doi.org/10.1016/j.ejon.2009.09.007. Medline:19412668
7. Ganz PA. Monitoring the physical health of cancer survivors: a survivorship-focused medical history. J Clin Oncol. 2006;24(32):5105–11. http://dx.doi.org/10.1200/JCO.2006.05.541. Medline:17093271
8. Stava CJ, Jimenez C, Hu MI, et al. Skeletal sequelae of cancer and cancer treatment. J Cancer Surviv. 2009;3(2):75–88. http://dx.doi.org/10.1007/s11764-009-0084-4. Medline:19142668
9. Cella D, Fallowfield LJ. Recognition and management of treatment-related side effects for breast cancer patients receiving adjuvant endocrine therapy. Breast Cancer Res Treat. 2008;107(2):167–80. http://dx.doi.org/10.1007/s10549-007-9548-1. Medline:17876703
10. Ewertz M, Jensen AB. Late effects of breast cancer treatment and potentials for rehabilitation. Acta Oncol. 2011;50(2):187–93. http://dx.doi.org/10.3109/02841075.2010.533190. Medline:21231780
11. Knobf MT, Sun Y. A longitudinal study of symptoms and self-care activities in women treated with primary radiotherapy for breast cancer. Cancer Nurs. 2005;28(3):210–8. http://dx.doi.org/10.1097/00002820-200505000-00010. Medline:15915066
12. Cormie P, Pumpa K, Galvão DA, et al. Is it safe and efficacious for women with lymphedema secondary to breast cancer to lift heavy weights during exercise: a randomised controlled trial. J Cancer Surviv. 2013;7(3):413–24. http://dx.doi.org/10.1007/s11764-013-0284-8. Medline:23604998
13. Pastakia K, Kumar S. Exercise parameters in the management of breast cancer: a systematic review of randomized controlled trials. Physiother Res Int. 2011;16(4):237–44. http://dx.doi.org/10.1002/prl.505. Medline:21204162

14. Chan DN, Lui LY, So WK. Effectiveness of exercise programmes on shoulder mobility and lymphoedema after axillary lymph node dissection for breast cancer: systematic review. J Adv Nurs. 2010;66(9):1902–14. Medline:20626480

15. Bicego D, Brown K, Ruddick M, et al. Effects of exercise on quality of life in women living with breast cancer: a systematic review. Breast J. 2009;15(1):45–51. http://dx.doi.org/10.1111/j.1524-7415.2008.00670.x. Medline:19120381

16. McNeely ML, Campbell KL, Rowe BH, et al. Effects of exercise on breast cancer patients and survivors: a systematic review and meta-analysis. CMAJ. 2006;175(1):34–41. http://dx.doi.org/10.1503/cmaj.051073. Medline:16818906

17. Schmitz KH, Courneya KS, Matthews C, et al.; American College of Sports Medicine roundtable on exercise guidelines for cancer survivors. Med Sci Sports Exerc. 2010;42(7):1409–26. http://dx.doi.org/10.1249/MSS.0b013e3181e1bc12. Medline:20559064

18. Schmitz KH, Holtzman J, Courneya KS, et al. Controlled physical activity trials in cancer survivors: a systematic review and meta-analysis. Cancer Epidemiol Biomarkers Prev. 2005;14(7):1588–95. http://dx.doi.org/10.1158/1055-9965.EPI-04-0703. Medline:16000888

19. Courneya KS, Friedenreich CM. Physical exercise and quality of life following cancer diagnosis: a literature review. Ann Behav Med. 1999;21(2):171–9. http://dx.doi.org/10.1007/BF02908289. Medline:10499138

20. Cramp F, Byron-Daniel J. Exercise for the management of cancer-related fatigue in adults. Cochrane Database Syst Rev. 2012;2012(11):CD006145. Medline:23152233

21. Courneya KS, Segal RJ, McKenzie DC, et al. Effects of exercise during adjuvant chemotherapy on breast cancer outcomes. Med Sci Sports Exerc. 2014;46(9):1744–51. http://dx.doi.org/10.1249/MSS.0b013e318283c297. Medline:24633595

22. McNeely ML, Campbell K, Ospina M, et al. Exercise interventions for upper-limb dysfunction due to breast cancer treatment. Cochrane Database Syst Rev. 2010;2010(6):CD005211. Medline:20556760

23. Tomlinson D, Diorio C, Beyene J, et al. Effect of exercise on cancer-related fatigue: a meta-analysis. Am J Phys Med Rehabil. 2014;93(8):675–86. http://dx.doi.org/10.1097/PHM.0000000000000083. Medline:24743466

24. Zou LY, Yang L, He XL, et al. Effects of aerobic exercise on cancer-related fatigue in breast cancer patients receiving chemotherapy: a meta-analysis. Tumour Biol. 2014;35(6):5659–67. http://dx.doi.org/10.1007/s13277-014-1749-8. Medline:24570186

25. Schmitz KH, Ahmed RL, Troxel AB, et al. Weight lifting for breast cancer patients and survivors: a systematic review and meta-analysis. BMC Cancer. 2012;12:412. http://dx.doi.org/10.1186/1417-2407-12-412. Medline:22988934

26. Mustian KM, Palesh OG, Flecksteiner SA. Tai Chi Chuan for breast cancer survivors. Med Sci Sport Exerc. 2008;52:209–17. http://dx.doi.org/10.1249/01.MSS.0000313400.101599. Medline:18487900

27. Fernandez S, Franklin J, Amlani N, et al. Physical activity and cancer: A cross-sectional study on the barriers and facilitators to exercise during cancer treatment. Can Oncol Nurs J. 2015;25(1):37–42. http://dx.doi.org/10.5737/256880762513742. Medline:26642493

28. Courneya KS, Katzungby PT, Bacon E. Physical activity and obesity in Canadian cancer survivors: population-based estimates from the 2005 Canadian Community Health Survey. Cancer. 2008;112(11):2475–82. http://dx.doi.org/10.1002/cncr.23455. Medline:18428195

29. Cheifetz O. Clinician’s commentary on Sing et al. Physiother Can. 2013;65(2):192–3. http://dx.doi.org/10.3138/ptc.2012-230CC. Medline:24403684

30. Blaney J, Lowe-Strong A, Rankin J, et al. The cancer rehabilitation journey: barriers to and facilitators of exercise among patients with cancer-related fatigue. Phys Ther. 2010;90(8):1135–47. http://dx.doi.org/10.2522/ptj.20090278. Medline:20558596

31. Sander AP, Wilson J, Izzo N, et al. Factors that affect decisions about physical activity and exercise in survivors of breast cancer: a qualitative study. Phys Ther. 2012;92(4):525–36. http://dx.doi.org/10.2522/ptj.201110115. Medline:22156626

32. Brunet J, Taran S, Burke S, et al. A qualitative exploration of barriers and motivators to physical activity participation in women treated for breast cancer. Disabil Rehabil. 2013;35(24):2038–45. http://dx.doi.org/10.3109/09638288.2013.802378. Medline:23772995

33. Jones LW, Courneya KS, Fairey AS, et al. Effects of an oncologist’s recommendation to exercise on self-reported exercise behavior in newly diagnosed breast cancer survivors: a single-blind, randomized controlled trial. Ann Behav Med. 2004;28(2):105–13. http://dx.doi.org/10.1207/s15324796abm2802_5. Medline:15454357

34. Courneya KS, Friedenreich CM. Utility of the theory of planned behavior for understanding exercise during breast cancer treatment. Psychooncology. 1999;8(2):112–22. http://dx.doi.org/10.1002/(SICI)1099-1611(199903/04)8:2<112::AID-PON341>3.0.CO;2-L. Medline:10335555

35. Sandelowski M. Whatever happened to qualitative description? Res Nurs Health. 2000;23(4):334–40. http://dx.doi.org/10.1002/1099-1611(200008)23:4<334:AID-NUR9>3.0.CO;2-G. Medline:10490958

36. Creswell JW. Qualitative inquiry & research design: Choosing among five approaches. 3rd ed. Thousand Oaks (CA): Sage; 2013.

37. Corbin J, Strauss A. Basics of qualitative research: techniques and procedures for developing grounded theory. 4th ed. Thousand Oaks (CA): Sage; 2015.

38. Richards L. Handling qualitative data: a practical guide. 2nd ed. Thousand Oaks (CA): Sage; 2009.

39. Taylor D. Physical activity is medicine for older adults. Postgrad Med J. 2014;90(1059):26–32. http://dx.doi.org/10.1136/postgradmedj-2012-131366. Medline:24255119

40. Canestraro A, Nakhle A, Stack M, et al. Oncology rehabilitation provision and practice patterns across Canada. Physiother Can. 2013;65(1):94–102. http://dx.doi.org/10.3138/ptc.2011-53. Medline:24381389

41. van Waart H, Stuiver MM, van Harten WH, et al. Effect of low-intensity physical activity and moderate-to high-intensity physical exercise during adjuvant chemotherapy on physical fitness, fatigue, and chemotherapy completion rates: Results of the PACEs, randomized clinical trial. J Clin Oncol. 2015;33(17):1918–27. http://dx.doi.org/10.1200/JCO.2014.59.1081. Medline:25918291

42. Hwang JH, Chang HI, Shim YH, et al. Effects of supervised exercise therapy in patients receiving radiotherapy for breast cancer. Yonsei Med J. 2008;49(3):443–50. http://dx.doi.org/10.3349/ymj.2008.49.3.443. Medline:18581595

43. Hojan K, Milecki P, Molińska-Glura M, et al. Effect of physical activity on bone strength and body composition in breast cancer premenopausal women during endocrine therapy. Eur J Phys Rehabl Med. 2013;49(3):331–9. Medline:23434652