Fish as bioindicators of habitat degradation in coastal lagoons of Ghana

BADU BORTELEY EUGENIA, A. K. ARMAH, H.R. DANKWA
Institute for Environment and Sanitation Studies, University of Ghana, Legon, Accra, Ghana.
*email: akarmah@ug.edu.gh

Abstract. Eugenia BB, Armah AK, Dankwa HR. 2018. Fish as bioindicators of habitat degradation in coastal lagoons of Ghana. Bonorowo Wetlands 2: 9-26. Lagoons habitat forms an integral part of the marine fishing industry and provides essential spawning and nursery grounds for many fishes. Fish act as biological indicators of water quality and changes by summarizing information regarding their environment. Two lagoons, Laloi and Oyibi in the and Greater Accra and Central Regions of Ghana were studied to determine the ecological status using the Estuarine Fish Community Index (EFCI). Metrics assigned were the species diversity, nursery function, trophic integrity, and species abundance and composition. Water samples were obtained at the riverine, middle, and seaward portions during both high and low tides at each site. Fisherfolks were hired to fish at each of the sites. There are no significant differences between sites as measured by diversity indices. Multivariate analysis showed a considerable similarity between sites regarding species composition. This study identified eighteen species, including both finfish and shellfish. Two most abundant species during the study was the flathead grey mullet (Mugil cephalus) and the black-chinned tilapia (Sarotherodon melanotheron). Mugil cephalus dominated catches in the Laloi lagoon, whereas Sarotherodon melanotheron were dominant in the Oyibi Lagoon. The most dominant species collected for the Laloi lagoon were S. melanotheron, Lutjanus fulgens, and Eucinostomus melanopterus. Caranx hippos, L. fulgens, and M. cephalus constituted a significant part of fishes caught in the Oyibi lagoon. The carangid, Caranx hipsos contributed primarily of the biomass of fishes collected for both lagoons. In the rainy season, total fish abundance was higher than the dry season. Chlorophyll-a concentrations and condition factor of S. melanotheron were highest at both lagoons. Total organic carbon was high in the Oyibi lagoon; hence, the high numbers of S. melanotheron recorded. Tides were an essential factor affecting physicochemical parameters. Oyibi displayed a moderate site rating, suggesting that it was under mild stress with some stress factors identified were garbage dumping, defecation, land-use changes, and increased human pressure. Meanwhile, Laloi Lagoon had a poor site rating, suggesting that it was under severe stress. The principal strains identified were overfishing, garbage dumping, mangrove degradation, and increased human settlements along the sides of the lagoon. The multi-metric index described served an effective method which reflects the status of lagoon fish communities and the overall ecosystem conditions.

Keywords: bioindicator, fish, coastal lagoon

INTRODUCTION

Lagoons are an area of relatively shallow water that has been partly or wholly sealed off from the sea by the formation of barriers. The barriers are built up above high tide level by wave action and lie parallel to the shoreline (Kjerfve 1994; Hill 2001). It is highly productive coastal features that provide a range of natural services that society values. There are over 90 coastal lagoons in Ghana, which cover less than 5 km² in the surface area along the 550 km, which forms 7% of the total land area of Ghana (Armah 2005). Lagoons present unique environments and habitats supporting valuable products and services, that include the support of fisheries, flood assimilation, regulation and supply of water, and also protection of biodiversity.

Most tropical lagoons are associated with mangrove swamps. These mangroves serve as habitat for finishes, migratory birds, and hellfish. They also absorb pollutants from upland sources and coastal, protect the coast against erosion, trap sediments from rivers and accumulate washed silt to increase the ground level, stabilize shorelines and improve water quality (Entsua-Mensah 2002). In Ghana, the majority of mangrove species are Rhizophora spp and Avicennia spp. These mangroves species are threatened by salt winning and indiscriminate harvesting as fuelwood for cooking and smoking of fish. Observation has shown that the mangroves, which filter inland water as it flows to the sea and serves as nursery and habitat for many shell and finfish are being rapidly destroyed (Entsua-Mensah 1996). Lagoons in Ghana are used in artisanal fisheries and play a significant role in the economy of some coastal inhabitants, particularly during the off-season for marine fishing (Entsua-Mensah et al. 2004).

Environmental conditions underlie the productivity of fisheries (Finney et al. 2002; Wynne & Cote 2007) as well as fishing on the ecosystem. Fishing activities affect the benthic fauna and habitat, fish community structure, and trophic interaction. Overfishing and reduction of fish catches of some fish species have affected the rural fishing economies (Entsua-Mensah 2006). One of the types of over-fishing that occurs in most coastal lagoons is growth overfishing. Growth overfishing is when fish are caught at an average size that is smaller than the per recruit, and recruitment overfishing is when the mature adult population is reduced to a level where it is no longer has the reproductive capacity to replenish itself thus not enough adults to produce offspring. Overfishing impacts on fisheries livelihoods through income and profit reduction.
directly, increasing competition, and conflicts over fishing grounds, resources of the fishery, and markets (Entsua-Mensah 2006). Because of increased pressure in fish stock and dwindling stocks, small-scale fishers have started using fine mesh nets, explosives, poisons, putting further pressure on the resource (Bailey 1994; Entsua-Mensah 2006).

Some of the additional pressures in this urbanized coastal area include loss of natural habitat through physical change to the system and discharge of potentially toxic materials into the wetland that can change both aquatic species diversity and the ecosystem due to their toxicity and accumulative behavior (Heath 1987). Degradation of wetlands ultimately caused narrowing the habitat dimensions, thus, reduce the survival ability of species which cannot adapt (Jude and Pappas 1992). The complexity of fishing gears, excessive fishing pressure, and overexploitation are some of the factors which have an adverse impact on the lagoon ecosystem (Korangteng 1995).

Laé (1997) observed that fishing activities could change species composition, size class, structure, and annual fish yields. Where the fishing activity is high, fish diversity declines and alters the trophic structure.

Fish and some other species, act as biological indicators of water quality and alterations. Fish responds to the cumulative effects of both physical and chemical disturbances to the water in which they live. Bioindicators refers to organisms and their attributes, which could be utilized to assess the health of the environment (Peakall, 1992). They can be used to detect changes in the natural environment, monitor for the presence of pollution and its impact on the ecosystem in which the organisms lives, test substances like drinking water, for the existence of contaminants monitor the progress of environmental cleanup (O’Connor and Ehler 1991; Davis 1993). The most significant reasons for using bioindicators are the direct determination of synergistic and antagonistic effects of multiple pollutants on an organism, the early recognition of pollutants damage to organisms as well as toxic dangers to humans. A bioindicator is also relatively low cost as compared to technical measuring methods (Zimmermann and Umlauff-Zimmermann 1994). Bioindicators provide the following information for ecosystem management according to Lorenz, (2003): a description of ecosystem processes and structures, cause-effect relationships with an ecosystem, and ecosystem condition by comparing the ecosystem with a reference level of proper ecological functioning.

Fish has widely used in the biomonitoring of water pollution because of its special biological characters such as relatively big body size, easy to raise, and long life cycle (Qunfang et al. 2008). Moreover, fish species are at the top position in the aquatic food chain and might directly affect the health of humans, which makes biomonitoring using fish much significance. Fish health also reflects the state of pollution very well because of their limited ability to eliminate contaminants (Sucman et al. 2006). Fish serve as an excellent indicator of watershed health because all their life is spent in the water and differ in their tolerance to amount and types of pollution. Fish are easy to collect with the right equipment, easy to identify in the field and live for several years. They provide an accurate assessment of environmental health because they have long life spans and therefore can reflect long and short term water resource quality; they provide a broad spectrum of community tolerances from very sensitive to highly tolerant species. Because they spend their entire life span in water, they integrate the physical, chemical, and biological histories of the waters and they are less affected by natural microhabitat discrepancies than smaller organisms (Holt and Miller 2011).

The objectives of this research are to compare the species diversity, composition, and abundance of the Oyibi and Laloi lagoons of Ghana, determine the similarities and dissimilarities in species composition, ascertain any effects of physicochemical parameters on the distribution of species, to determine the ecological status of the Oyibi and Laloi lagoons.

MATERIALS AND METHODS

Study sites

The study sites are taken place within the central coast that has two rainy seasons, reaching its maximum in May-June and the minor seasons starts in mid-August and ends in October. The average rainfall is 735 mm. The typical economic activities in the catchment of the lagoons are salt winning and fishing. The study was conducted in the Laloi (Greater Accra) and Oyibi (Central regions of Ghana) lagoons (Figure 1-2). The sites are situated at Kpone and Nsuekyiri (near Winneba) and were chosen due to their easy accessibility and economic significance.

Laloi Lagoon

The Laloi lagoon is located within latitude 5.42.30 N and longitude 0.04.35 E, with a total area of 0.695 km² (Gordon et al. 1998). It is situated at Prampram and enters the sea at Kpone which lies in the Tema Export Processing Zone. The lagoon serves as an essential economic role in the community by providing fish for domestic purposes and income. The typical economic activity in this area is salt mining and fishing. The lagoon is opened all year round, but it is not fished on Tuesdays. Fish landed from the lagoon can only be boiled or smoked. The main fishing gears employed are the dragnets, cast nets, and traps mainly for crabs. The traps are mostly used by boys for the blue-swimming legged crab, Callinectes sp. The trap is baited and allowed to float in the area. The lagoon is fed by the Gao lagoon.

Oyibi Lagoon

The Oyibi lagoon falls within latitude 5°21’N, and longitude 1°36” E with a size of 0.300 km² and a mean depth of 0.5 m (Gordon et al. 1998). It is located at the mouth of the Ayensu River and closes to Winneba. The lagoon joins the sea at Warabeba, a fishing village with Essuekyir at the northern side of the lagoon and the women mostly fishmongers. There is extensive mangrove cover around the lagoon with mangrove species including...
Rhizophora racemosa and Avicennia germinans. The major economic activity at the site is fishing and salt production. The lagoon water is not used in the production of salt, but seawater is pumped into pans. The lagoon is open throughout the year but is not fished on Wednesdays. The main fishing gears used in the lagoon are the cast and drag nets.

Field methods
Each of the sites was visited once a month during the six months. Tide predictions were made from the Ghana Ports and Harbour Authority (GHAPOHA). Water samples were collected from the seaward end, riverine end, and the middle reaches during the period of low and high tides to ascertain any effect of tidal influence on physicochemical parameters.

Sampling
Sampling was performed from January to May 2012.

Fish sampling methods
Fisherfolks were hired to fish at each location, and the fish samples were also bought from fisherfolks to give a representative of the fish species at each location. The main fishing gears used at the sites was the cast net of mesh size 2.5 cm. Fishing was done during high and low tides. Fish harvested were sorted out according to species and stored in an ice-chest prior to transport to the laboratory for further identification. Fish samples were done from January to May.

Water sampling methods
Water samples were acquired from February to May. The physicochemical parameters measured were BOD, DO, the nutrients (nitrates, and phosphates), chlorophyll-a, pH, salinity, temperature, TSS, and TDS. Sub-surface water samples were obtained at three points (lower, middle, and upper reaches) from each site and kept in a 250 mL tight plastic bottle for nutrient analysis. DO was calculated using the Winkler method. Water samples collected were fixed as soon as possible with 2 mL of Winkler 1 (Manganese sulfate) and Winkler 2 (Alkaline iodide-azide reagent) solutions and firmly corked, ensuring no air bubbles were trapped in the bottle. Temperature and pH were calculated in-situ using YOKOGAWA pH meter model PH 82. Salinity was measured using the ATAGO 2SE refractometer, then analyzed with HACH Spectrophotometer.

Sediment sampling method
A digger was used for sediment sampling. A cylindrical PVC pipe with both sides open was placed vertically in the lagoon and pressed to about 2 cm deep. The sediment was then stored in transparent polyethylene bags and transported to the laboratory for analysis. Sediment samples were taken at three locations; middle portions, upper reaches, and the seaward end of both lagoons. Sediment was taken once during the study period at low tide.
Laboratory methods

Length-weight analysis

The total length (TL) of the dominant fish was calculated from the snout to the extended tip of the caudal fin using a meter rule calibrated in centimeters. The relationship between TL and weight (W) of fish was expressed by formula (Pauly 1983).

\[W = aL^b \]

Where,

\[W = \text{Weight of fish in (g)} \]
\[L = \text{Total Length of fish in (cm)} \]
\[a = \text{Constant (intercept)} \]
\[b = \text{The Length exponent (slope)} \]

The values of constants “a” and “b” were predicted from a linear regression of the length and weight of fish after a logarithmic transformation of equation 1. The correlation \(r^2 \) that is the degree of correlation between the length and weight was calculated from the linear regression analysis.

The condition factor (CF) of the fish was analyzed by the formula Condition Factor (CF) = \(W / L^3 \) * 100% (Pauly 1983)

Water analysis

The water samples were allowed to reach room temperature before laboratory analysis. Nitrates and phosphates content was measured using a direct reading spectrophotometer based on protocols provided in the manual of HATCH 2800 and 2007 and the standard methods for the examination of water and wastewater (AWWA 1998). The sample blanks utilized deionized water to which reagents were added.

Total suspend solids & total dissolved solids

A photometric method determined the TSS level. 500 mL of the sample was blended for precisely 2 minutes at high speed, then poured into a 600 mL beaker and stirred. A 10 mL was poured into a sample cell, swirl to remove any gas bubbles and suspend any residue. TDS was analyzed using the gravimetric method. The weight includes liquids, solids, and materials that have passed through the filter media that were not volatilized during the drying process (APHA 1998).

Nitrates and phosphates

Analysis of nitrates was done using the cadmium reduction method. Cadmium metal reduces nitrates to nitrite. The nitrite reacts in an acidic medium with sulphuric acid creating an intermediate diazonium salt that couples with the acid to create an amber-colored product, the intensity of which depends on the concentration of nitrates in the sample. Ten mL of each sample was poured into a sample cell, and the contents of one NitraVer 5 nitrate reagent pillow powder was added and stopped. The sample was shaken vigorously to aid in the dissolution of the reagents and inserted into the cell reader.

Phosphates were analyzed using ascorbic acid methods. Phosphates in the sample react with molybdate in an acidic medium to produce a phosphomolybdate complex acid reagent that reduces the compexion giving the molybdenum blue color which is proportional in intensity to the concentration of phosphates in the sample. Ten mL of each sample was measured into an example, and then PhosVer 3 reagent pillow powder was added, corked, shaken vigorously for 30 seconds and inserted into the cell holder.

DO and BOD determination

Water samples were added with 2 mL of concentrated sulphuric acid (\(H_2SO_4 \)) and shaken until dissolution was complete. A 50 mL of the solution was titrated with a standard concentration of 0.0125 M sodium thiosulphate (\(Na_2S_2O_3 \) 5H2O) solution until a pale yellow color was obtained. Then, 2mL of the starch indicator was added to the solution, which gave the solution blue color, and titration was continued until the solution became colorless (APHA 1998). For BOD calculation, the initial DO was measured and then incubated in the dark at 20°C for five days. After, the five days the DO was measured again. BOD is the difference between the DO consumed by microorganisms during the incubation period and the initial DO.

Chlorophyll a

Water samples were filtered using filter papers. The filtrate was extracted carefully using 90% acetone. The filtrate and acetone solution was read using the spectrophotometer at wavelengths 630 nm, 647 nm, 664 nm, and 750 nm.

Total organic carbon (TOC)

TOC was calculated using the wet oxidation method. A 10 mL of dichromate solution was mixed to 0.5g of the sediment. 20 mL of concentrated \(H_2SO_4 \) was mixed to the sediment, swirled, then allowed to stand for 30 minutes. 200 mL of distilled water, 10mL of orthophosphoric acid and 2 mL of barium diphenylamine sulphonate indicator were added to the sample. The solution was then titrated with ferrous ammonium sulfate. The percentage of carbon was calculated as follows:

\[\% \text{ Carbon} = \frac{(10.0-(\text{vN})\times0.3)}{\text{W}} \]

V: volume of ferrous ammonium for titration
N: Normality of Ferrous ammonium
W: Weight of sediment in grams

Health and safety assurance

The following quality assurance procedures used: (i) Sampling bottles were washed thoroughly and then rinsed with deionized water to get rid of all traces of soap. (ii) Blank samples were prepared using deionized water. (iii)
Water samples were equilibrated to room temperature before analysis. (iv) Personal protective equipment was used to prevent damage from chemicals.

Data analysis
The environmental parameters and fish communities were described by using univariate and multivariate techniques. A multi-metric fish index describes the condition of the water bodies that include species diversity and composition, trophic integrity, species abundance, and nursery function following after Harrison and Whitfield, (2004).

Metric selection
A metric represents some aspect of biological assemblage structure, function, or another community component that can be measured (USEPA 2000). Community structure and function refers to biological measures such as species dominance, species diversity, faunal abundance and biomass, presence of indicator species, and trophic function or structure (Krebbs 1985; Elliot et al. 2002). The metrics were selected based on work done by Harrison and Whitfield (2004). A total of 10 parameters were chosen from the 14 metrics because of lack of information on the feeding habits and fisheries of the study sites.

Species diversity and composition
Species diversity is an attribute of faunal communities used in most biological assessments of environmental health. It tends to be reduced in stressed biotic communities (Odum,1983). The total number of species (metric 1) showed the most straightforward measure of species diversity. The presence of rare or threatened species was selected on the basis that their existence imparts additional conservation value to the ecosystem. Because rare species are fragile, they may become endangered or even locally extinct with higher anthropogenic stress (Costello et al. 2002). The presence of exotic or introduced species (metric 3) provides a potential threat to naturally occurring taxa through competitive exclusion and predation. They also serve a direct measure of human interference.

Species abundance
The relative abundance of species (metrics 5) in water in relation to a reference fish community results in a quantitative assessment. Environmental stress generally changes the relative abundance from „diverse“ communities which consist of many species in relatively low proportions to „simple“ assemblages dominated by a few species (Odum 1983; Fausch et al. 1990). The concept of dominance is linked to this idea: the number of taxa required to make up 90% of the total abundance (metric 6) represents a simple measure of dominance.

Nursery functions
Lagoons are important nursery sites for marine species, as well as serving as essential habitat for resident taxa (Wallace et al. 1984; Whitefield 1998). The number of estuarine or resident taxa (metrics 7) identified two groups of fishes that are most likely susceptible to lagoon degradation by characteristics of their strong dependency or association with these environments. The number of estuarine-dependent marine taxa (metric 8) showed how well an estuary is fulfilling its role as a nursery habitat. Undisturbed water is expected to maintain a relatively balanced fish community that consists of representatives of both groups. An extremely low numerical abundance or unexpected high dominance by one particular group often implies an imbalance or disturbance within a system (Begg 1984a). The relatively high number of both estuarine-dependent marine species (metric 10) and estuarine resident species (metric 9) are complementary measures to quantitatively assess estuarine habitat quality and nursery function for these two major groups.

Trophic integrity
Lagoons are among the most productive ecosystems in the earth (Odum 1983; McHugh 1985). They provide abundant food resources for filter and deposit-feeding invertebrate prey as well as a variety of fish species including detritivorous, zooplankivorous, herbivorous, benthic invertebrate feeders and piscivorous taxa by acting as detritus traps (Whitfield 1998). For this study, the condition factor and chlorophyll-a concentration were used for the measurement of trophic integrity.

Univariate analysis
The community structure was analyzed using abundance and diversity indices, e.g., Shannon-Wiener diversity index (H′), Margalef’s species richness (d) and Pielou’s evenness index (J) were counted. The Shannon-Wiener diversity index is a combination of measurement of both species richness and evenness, a minimum value of 0 for this index shows a community with single species, and it increases as species evenness and richness increases (Hamilton 2005).

The Shannon-Wiener diversity index (H′) was calculated as

\[H' = \sum P_i (\log p_i) \]

Where \(p \) = the proportion of the total count coming from the \(i \)th species, the index was calculated using the natural logarithmic base (loge). The Shannon Diversity Index usually falls between 1.5-3.5 and rarely surpasses 4.5 (Margalef 1972).

Pielou’s evenness is a calculation of the relative abundance of species in the community; the number of individuals and biomass and how it is distributed among the other species (Ludwig and Reynolds 1988).

Species Evenness as Pielou’s index (J) was calculated as

\[J = H' (\text{observed})/H'_{\text{max}} \]

Where \(H' \) is the Shannon-Wiener diversity and \(H'_{\text{max}} \) is the maximum possible diversity which would be achieved if all species were equally abundant.
Margalef’s richness is an expression of the number of species constitute the community. Species Richness as Margalef’s index (d) was calculated as

\[D = \frac{(S-1)}{\log N} \]

where:
- \(S \) = total number of species
- \(N \) = total number of individuals

These diversity indices were calculated using the PRIMER v.6.0 software package (Plymouth Routine in Marine Ecological Research) (Carr 1996).

Diversity indices compare the statistical associations of organisms and allow populations; they are generally a more reliable indicator of environmental health or stress than are individual indicator species (Cain and Dean 1976). Abundance and distribution graphs were generated using Microsoft Office Excel (v.2010).

Multivariate Analysis

Bray-Curtis similarity index

Multivariate analysis was done using the PRIMER v.6.0 software package (Plymouth Routine In Marine Ecological Research) (Carr 1996). The similarity matrix for the classification among the Laloi and Oyibi was analyzed as Bray-Curtis similarity indices (Bray and Curtis 1957). The results were then described in the form of a dendrogram. The Similarity Coefficients are based on the presence or absence of data. They may vary from 0 when the pair of sampling units are entirely different to 1 when sampling units are identical. The Bray-Curtis similarity indices allow all species to contribute to the definition of similarity while retaining some of the information on the prevalence of a species ensuring that the widespread species are usually given higher weight than the rare ones.

A 4th root transformation was applied to fish abundance data in order to keep information regarding relative abundance but also to minimize differences in scale among variables in the standardization of the data on species diversity (Clarke 1993; Anderson and Underwood 1997). The similarity indices of species composition among stations do not consider the double absences usually found in the data and it’s calculation is also unaffected by difference in sample size (Clarke and Green 1988).

Metric calculation

The metrics score assigned 1, 3, or 5. High scores indicate an unpolluted site not suffering from stress, while low scores reflect a polluted site under pressure. The scores are summed to point out sites ratings which are interpreted as follows: 0-15: Critical and no fish, 16-20: the site is very poor, 22-38: the site is rated poor, 40-44: site is rated moderately stressed, 46-62: the site is rated excellent and 64-68: the site is rated very good.

RESULTS AND DISCUSSION

Fish composition and abundance

This study identified a total of 19 species, consisting of 17 finishes and two shellfishes. The finfishes are classified into 14 families, and 17 genera while the shellfish belong to 2 families and two genera. *Magil cephalus* was the dominant fish species for the Laloi Lagoon, and *Sarotherodon melanotheron* was majorly found at Laloi. *Callinectes latimanus* and *Penaeus* sp. were the only shellfishes found during the period of the study from Laloi and Oyibi, respectively. The total number of individuals recorded was 532 (Oyibi), and that of Laloi was 437. The number of species recorded at Oyibi was 15 fin fishes and two shellfishes. A lower number of species was identified at Laloi comprising 12 fin-fishes and a shellfish (Table 1). Species encountered at Oyibi was consist of *S. melanotheron* making up 56% of the total species followed *Tilapia guineensis* (4%), *Lujanus fulgens* (6%), *Magil cephalus* (7%), and *Caranx hippos* (17%). Species found at Laloi was made up of *M. cephalus* (41%), and followed by *S. melanotheron* (20%), *Caranx hippos* (3%), *L. fulgens* (16%), *C. latimanus* (5%), *Eucinostomus melanopterus* (5%), and *T. guineensis* (3%) (Figure 4).

Metric selection

Nursey functions

The number of adventitious marine species found in the Oyibi lagoon was seven species, and six was found in Laloi. The highest number of estuarine resident species recorded was 5 in Oyibi and a least of 3 in Laloi. The number of freshwater species found at both locations was 2 (Figure 3).

Trophic Integrity

Chlorophyll-a concentrations were higher at Oyibi than Laloi. For Oyibi lagoon, the highest chlorophyll-a level was 0.20 mg/L recorded in the riverine end in April at high tide and the least value recorded was 0.00028 mg/L in May at the middle portion. For Laloi lagoon, the highest chlorophyll-a level was 0.015 mg/L recorded in the riverine end in March at low tide and the least value recorded was 0.0010 mg/L in April at the seaward end at low tide (Figure 5).

Metric calculation

From the metrics assigned, Laloi scored 34, indicating a poor site rating, suggesting that it was under severe stress and Oyibi scored 40, stating a moderate site rating, implying that it was under mild stress (Table 2).

Species diversity

The Shannon Wiener Index (H”) calculated for Oyibi shows the highest value of 1.64 and the least value of 0.42 recorded at Oyibi were in the months of April and February respectively. Laloi recorded the highest amount of 1.51 (May) and the least amount of 1.24 (February). The average for Laloi was 1.81±0.53 (Figure 6).

Pielou’s species evenness index (J) at Oyibi had the least value of 0.36 on May and the highest amount of 0.71 in April. The average value recorded at Oyibi was 0.57±0.13. For Laloi, the highest value was recorded in April and the least amount recorded in February. The average recorded for Laloi was 0.67±0.10 (Figure 7).

The Margalef’s species richness index (d) recorded for Oyibi had the highest value recorded in March and the least...
value in February. The mean value recorded for Oyibi during the study was 2.39±0.63. The highest amount of the species richness for Laloi was recorded in February and the least amount recorded in April. The mean value recorded for Laloi during the entire study was 2.30±0.28 (Figure 8). The species diversity indices for the whole of the study are represented in Figure 8.

Physico-chemical parameters

BOD recorded in the Oyibi lagoon fell between 0.20-2.8mg/L. DO values recorded in the Oyibi lagoon ranged between 3.3-6.5 mg/L with an average of 4.7±0.97 mg/L for the Oyibi lagoon. DO values were highest at high tide than low tide. BOD observed in the Laloi lagoon ranged between 0.1-4.5 mg/L with an average of 1.80±1.04 mg/L for the entire study. DO values recorded in the Laloi lagoon ranged between 3.0-7.5 mg/L (Figure 10-11).

![Figure 3. Comparison of the number of taxa of the study locations in 1997 and 2012. Note: O: Oyibi, L: Laloi](image)

Figure 4. a and b Relative abundance of species found in the (A) Oyibi and (B) Laloi lagoons, Ghana

Fish Family	Species	Common Name	Oyibi Lagoon	Laloi Lagoon	% Composition	Category
Bothiade	Syacium microrum	Rock sole	+	+	0.9	MA
Carangidae	Caranx hippos	Horse mackerel	+	+	10	MA
Cichlidae	Sarotherodon melanotheron	Black-chinned tilapia	+	+	39	ER
	Tilapia guineensis	Guinean tilapia	+	+	4	FW
	Hemichromis fasciatus	Banded jewelfish	+		0.1	FW
	Oreochromis niloticus	Nile tilapia	+		0.1	FW
Clupeidae	Ethamalosa fimbriata	Bonga shad	+		0.8	MA
Cyprinodontidae	Epiphytus sexfasciatus	Sixbar panchax	+		0.3	FW
Eleotridae	Eleotris vittata	Eleotrid	+	-	0.6	ER
Eolidae	Elops lacerta	Ten pounder	+	-	0.2	ER
Gerreidae	Eucinostomus melanopterus	Flagfin mojarra	+	-	3	MA
Gobiidae	Chonophorus lateristriga	West african freshwater goby	+	+	0.2	FW
Lutjanidae	Lutjanus goreensis	Green snapper	+		1	MS
	Lutjanus fulgens	Golden african snapper	+		11	MS
Mugilidae	Mugil cephalus	Flathead grey mullet	+		22	ER
	Mugil carema	White mullet	+		0.7	ER
Penidae	Peneaus sp	Shrimp	+		1	FW
Portunidae	Callinectes latimanus	Blue-legged swimming crab	+	+	3	ER
Serranidae	Epinephelus aeneus	Common white grouper	+		0.8	MA
Lethrinidae	Lethrinus atlanticus	Atlantic emperor	+		0.1	MA
Scaridae	Callionymus hoefleri	Parrot wrasse	+		0.5	MA

Note: MA: Marine species, FW: Freshwater species, ER: Estuarine species, X: present
Table 2. Estuarine fish community index calculation for the lagoons

Estuarine Fish Community Index Metric	Score	Oyibi	Laloi
Species diversity and composition		3	3
1. Total number of taxa		3	3
2. Species composition		3	3
3. Exotic or introduced species		3	3
4. Rare or threatened species		3	3
Species abundance		3	3
5. Species relative abundance		3	3
6. Number of species that make up 90% of the abundance		3	3
Nursery function		3	3
7. Number of estuarine resident taxa		3	3
8. Number of estuarine-dependent marine taxa		3	3
9. The relative abundance of estuarine resident taxa		3	3
10. The relative abundance of estuarine-dependent marine taxa		3	3
Trophic Integrity		3	3
11. Condition factor		3	3
12. Chlorophyll a		3	3
Total	**40**	**34**	

Figure 5. Average Chlorophyll a in the Oyibi and Laloi lagoons. (vertical bars = ±SD)

TSS recorded for the Oyibi lagoon fell between 10-105 mg/L with an average value of 31.1±21.90 mg/L for the entire study period. The average TSS values recorded for Oyibi lagoon during high tides was 31.1±19.70 mg/L and during low tides was 31.1±24.79 mg/L. TSS recorded for the Laloi lagoon ranged between 5.0-80 mg/L with an average value of 19.7±14.81 mg/L for the entire study. The mean for the Laloi lagoon during high and low tide during study as the whole was 23.3±19.94 mg/L and 16±5.64 mg/L respectively. The physicochemical parameters measurement is represented in Figures 12.

TDS recorded for the Oyibi lagoon fell between 0.15-37.0 mg/L with an average value of 11.9±11.74 mg/L for the entire study. The mean TDS values recorded the lagoon during high tides was 10.7±10.67 mg/L, and low tides were 13.1±13.08 mg/L. TDS observe for the Laloi lagoon ranged between 15.0-152.0 mg/L. The average TDS values observed for Laloi lagoon during high and low were 54.7±1.59 mg/L and 38.7±20.72 mg/L, respectively. TDS was highest at Laloi than Oyibi (Figure 13).

Figure 6. Shannon Wiener Index for the Laloi and Oyibi lagoons

Figure 7. Pielou’s species evenness for the Laloi and Oyibi lagoons

Figure 8. Margalef species richness for the Laloi and Oyibi lagoons

Figure 9. Average Diversity indices for the Oyibi and Laloi lagoons. (vertical bars = ±SD). Note: d: Magarlefs’s species richness index, J: Pielou’s species evenness, H: Shannon Wiener Index
The temperature recorded in the Oyibi lagoon ranged between 22.2°C and 32.4°C with an average 27.7±0.60°C for the entire study. Temperatures were high at the riverine end than the middle and seaward end at Oyibi. The temperature recorded in the Laloi lagoon ranged between 21.3°C and 33.6°C with an average of 26.7±3.17°C for the study period. The average temperature at Laloi lagoon during both high tide and low tides were 27.4±3.36°C and 26.1±3.03°C, respectively. Average temperatures measured for these sections of the lagoon were 27.1±3.77°C, 26.8±3.53°C, and 26.2±2.49°C, respectively (Figure 14).

Salinity observed in the Oyibi lagoon ranged between 5‰ and 40‰ with an average of 22.0±7.46‰. The seaward end at Oyibi recorded the least value of 7‰ in March during low tide. The mean salinity values for Oyibi during the high tides was 20.6±6.08‰ and low tides were 23.5±6.08‰. Salinity recorded in the Laloi lagoon ranged from 20.0‰ to 40.0‰ with an average of 37.0±3.40‰ during the entire study period. The mean salinity values for Laloi during the high and low tides were 37.8±1.47‰ and 36.2±4.54‰, respectively (Figure 15).

The pH recorded in this study ranged between 7.0-9.0 for the Oyibi lagoon, with an average of 7.97±0.40. The average pH values during both high and low tides were 8.07±0.39 and 8.02±0.43, respectively. The pH recorded in Laloi lagoon ranged between 8.0-8.6, with an average of 8.60±0.25. The average pH values for the Laloi lagoon during high tide and low tide were 8.50±0.25 and 8.60±0.26, respectively. Mean pH values recorded for these sections of the lagoon were 8.60±0.22, 8.6±0.17, and 8.4±0.31, respectively (Figure 16).

Nitrate levels observed at the Laloi lagoon ranged between 0.30-5.2 mg/L with an average value of 1.77±1.24 mg/L. Nitrate levels observed for the Oyibi lagoon ranged between 0.20-9.9 mg/L with an average value of 3.25±4.59 mg/L. Phosphate levels observed for Laloi lagoon ranged between 0.07-1.98 mg/L with an average value of 0.61±0.35 mg/L. Phosphate levels observed for the Oyibi lagoon ranged between 0.15-1.12 mg/L with an average value of 0.61±0.24 mg/L. The results for the nutrients are shown in Figures 17-24.

Length-weight relationship

From the length-weight relationship, the condition factor of *Sarotherodon melanotheron* at Oyibi lagoon fell in the range between 1.50 and 2.40, with an average value of 2.07±0.20 for the entire study period. The condition factor observed at Laloi lagoon was measured between 1.40-2.0, with an average value of 1.72±0.12 (Figure 25).
Figure 15. Average salinity concentrations in the Oyibi and Laloi lagoons. (Vertical bars =±SD)

Figure 16. Average pH in the Oyibi and Laloi lagoons. (vertical bars =±SD)

Figure 17.A-B. Nitrates and Phosphates concentrations in the Oyibi and Laloi lagoons for the month of February. Note: N: Nitrates. P: Phosphates L: Laloi. O: Oyibi. H: High tide. L: Low tide.

Figure 18.A-B. Average Nitrates and Phosphate concentrations in the Oyibi and Laloi lagoons for the month of February. (vertical bars =±SD). Note: Phosphates. N: Nitrates H: High tide. L: Low tide

Figure 19.A-B. Nitrates and Phosphates concentrations in the Oyibi and Laloi lagoons for the month of March. Note: N: Nitrates. P: Phosphates L: Laloi. O: Oyibi. H: High tide. L: Low tide
Similarity analysis

A Bray-Curtis similarity analysis of species abundance data by applying group averaged linking of Bray-Curtis similarities calculated on standardized fourth root transformed data was employed to show similarities in sites sample (Bray & Curtis, 1957; Cormack, 1971; Everitt, 1980). The sites which exhibit similarities in terms of species composition and abundance will cluster close together. Figures 26 demonstrated the dendrogram for hierarchical clustering of the similarities between months for the locations. Most of the clustering existed between the 35-70 % Bray-Curtis similarity scale for the months while clustering was observed more than 60 % scale for the entire study. The dendrogram shows the similarity in species composition on a monthly basis and the overall similarity in species composition between the sites.
Figure 23.A-B. Nitrates and Phosphates concentrations in the Oyibi and Laloi lagoons in May. Note: N: Nitrates. P: Phosphates L: Laloi. O: Oyibi. H: High tide. L: Low tide

Figure 24.A-B. Average Nitrates and Phosphate concentrations in the Oyibi and Laloi lagoons in May (vertical bars =±SD). Note: P: Phosphates. N: Nitrates H: High tide. L: Low tide

Figure 25. Condition Factor for S. melanotheron in the Oyibi and Laloi lagoons for the entire study period

Figure 26. Bray-Curtis similarity between sampling months. Note: J: January; F: February; M: March; A: April; MA: May, O: Oyibi, and L: Laloi

Total organic carbon

Total organic carbon recorded for the Oyibi lagoon ranged between 15-20% with a mean value of 16.92±0.23%. Total organic carbon was higher at Oyibi than Laloi. The seaward end showed the highest percentage of organic carbon (17.18%), and the least value of 16.74% recorded in the middle portion for Oyibi. Total organic carbon observed at Laloi lagoon ranged between 10-13% with an average value of 12.24±1.68%. For Laloi lagoon, the highest percentage of organic carbon was 13.73% at the seaward end, and the least value of 10.42% found in the middle portion (Figure 27).
Discussion

Species composition and abundance

The total number of species observed consisted of 16 finfishes and two shellfishes. *Sarotherodon melanotheron* represents an essential part of lagoon fisheries in Ghana (Eyeson 1983; Blay and Ameyaw 1993; Koranteng 1995) and makeup about 80%-90% of all fishes caught in lagoons (Pauly 1975, 1976; Denyoh 1982). The type of species encountered was close to the species that exist in almost all coastal lagoons in Ghana as described by (Dankwa and Entsua-Mensah 1996; Koranteng et al. 1998; Entsua-Mensah 2003). The *Callinectes latimanus* and *Peneaus sp* were the only shellfish encountered during the study.

The species encountered can be classified in three categories based on their salinity tolerance: marine stenohaline species, freshwater stenohaline species, and euryhaline species (Pauly 1975; Welcomme 1979; Pauly and Yanez-Arancibia, 1994). The freshwater stenohaline species found were O. niloticus, T. zilli, and H. fasciatus. The euryhaline species found was *S. melanotheron* and *Elops lacerta*. The typical marine stenohaline species encountered were *Mugil cephalus*, *Caranx hippos*, *Lutjanus fulgens*, *L. goreensis*, *Syacium microrum* and *Epinephelus aeneus*.

An example of the genuinely resident lagoon species found was *S. melanotheron*, *Caranx hippos* and *Etheostoma fimbriata* were the only marine seasonal migrant species found. The adventitious marine species found were *Syacium microrum*, *Leithrinus atlanticus* and *Callyodon hoeferi*, some diadromous species found were *Eucinostomus melanopterus* and *Elops lacerta*. The freshwater species found were *Hemichromis fasciatus*, *Oreochromis niloticus*, and *Epilampus sexfasciatus*.

Oyibi recorded the highest number of species while Laloi was having the least amount of species. From the 29 shell and finfish species, 15 was recorded at Oyibi and 12 at Laloi. There has been a significant alteration in the number of species as compared to the result of baseline studies (Dankwa et al. 1997). Dankwa et al. (1997) reported the number of species at Oyibi to be 12 and that of Laloi to be 15. There has been an increasing number of species in Oyibi (from 12 to 16) and a reduced number of species at Laloi from 17 to 14. He observed that both closed and opened lagoons with extensive mangrove cover had high species diversity. Theses lagoons were Kpani (28 species), Domini (24 species), Oyibi (12 species), Kpeshie (15) and Brenu and Kako (12 species). This result ascertains that mangroves provide feeding and breeding sites for various fish species. The practical implementation of traditional beliefs in management and conservation might contribute to the high mangrove forest at Oyibi. By comparing the size composition of *S. melanotheron* and *T. fuscius* in Djange and Sakumo lagoons, a group clearly showed the traditional beliefs, and associated taboos can be useful tools for conservation if they are adhered to (Ntiamoah-Baidu 1991).

The difference in species abundance and composition in both lagoons can be due to the variation of physicochemical parameters such as pH, salinity, temperature, environmental characteristics of the habitats, the size of local human populations, effort, the type of fishing gear, and the associated fishing pressure. *S. melanotheron* was confined more to the upper reaches of the Oyibi lagoon and in Laloi the upper and middle reaches. The marine stenohaline mostly live in the lower ranges when the tides came in.

The tolerance and preference against salinity can influence the abundance and distribution of fish species. In 1978, Yanez-Arancibia who was working in Mexican estuarine lagoons reported major declines in fish species diversity, densities, and biomass when the salinities rose above 34% or declined below 15% (Wallace 1975) said that species diversity and abundance in the estuarine lake St. Lucia in South Africa declined during hypersaline periods. Thiel et al. (1995) also observed that decreasing salinity upstream would be followed by a decrease in species diversity. Salinity recorded between the two lagoons showed no significant difference and had no impact on the fisheries of the range ~ 34.5% or 35.5% (Anang 1979). The higher salinity towards the eastern coast of Ghana is due to variation in rainfall patterns (Entsua-Mensah 2003). At the seaward end of the Oyibi lagoon, salinity was lowest as a result of dilution from the Ayensu River.

The pH recorded in this study was optimal for the growth and survival of most aquatic species (Addy et al. 2004). The highest DO at the seaward end is as a result of mixing and the turbulence by the sea. The TDS values fell in the range which could not be harmful to fisheries (below the background values of 50.0-1000 mg/L). The TSS values were above the background levels of 0.5-10.0 mg/L, hence could affect primary production by attenuating light penetration. The decrease in light penetration through the water column could restrict the rate at which periphyton, emergent, and submerged macrophytes can assimilate the energy through photosynthesis which will impact directly on primary consumers (Bilotta and Brazier 2008).

Land use practices around these lagoons may be a contributing factor to the increased nutrients concentrations in these lagoons. The primary land-use methods along these lagoons are salt mining, farming, harvesting of mangroves for firewood, and housing construction. The high concentration of nitrates and phosphates in the two lagoons is an indication of increased human activities in the

Figure 27. Total Organic carbon for the lagoons during the study period.
catchment region and the high loading from the rivers into the lagoon. High concentration of nitrate at the riverine end of Oyibi lagoon might be caused by agricultural activities as well as other domestic activities and has been described as mildly eutrophic using the Carlson’s TSI scale of 56) and the seaward being moderately clear with a TSI score 42 (Ansa-Asare et al. 2007). It can also be associated with their proximity to population centers and because of their historical importance as sources of protein and as an area for disposal of human waste (Kennish 2002).

Human population density alone has also been reported to account for a significant amount of the variation in riverine transport of nitrogen and phosphorus (Howarth 1988; Caraco 1995) from a wide variety of large watersheds. The high concentration of phosphates can be possibly due to industrial and domestic effluents entering the lagoon from the surrounding area. This may not favor the development of fishes in the lagoons because, at a certain threshold of phosphates, phytoplankton diversity is known to decline; thus, affecting primary productivity (Biney 1990).

Biological oxygen demand (BOD) has been employed as a measure of the number of organic materials in aquatic solution with maximum values due to high organic matter. Lagoon with BOD concentration below 4 mg/L is considered as unpolluted and those in excess of 12 mg/L as grossly polluted (Biney 1982). The high BOD concentrations measured at the riverine sections of Oyibi and Laloi lagoons can be attached to the increased human activities at these sections. The smallest value of BOD recorded in April in the Laloi lagoon was due to the decrease in temperatures. Low temperatures tend to retard the rate of reproduction of organisms that break down organic matter. For the whole study period, high levels of BOD were recorded at Laloi than Oyibi. The high concentration of BOD in the Laloi lagoon might be caused by the location of the Laloi, which is in an urban area and hence increase human pressure on its resources. The poor water quality is a strong indication of pollution.

There is a positive relationship between primary productivity and fish production (Boyd 1990). Chlorophyll-a concentrations provide an indication of the trophic status, maximum photosynthetic rate, and water quality. Here, the seaward end of both lagoons recorded the least concentrations of chlorophyll-a. This result can be attached to the tides or influx of seawater. Tidal mixing reduces the residence time of algae in the photic zone and also makes up fine sediment to resuspend, reducing the amount of light available for photosynthesis (Brando et al. 2012). Flushing dilutes nutrients and moves them away from plants, making them less available (Monbet 1992). It can be said that higher chlorophyll-a concentration increases species abundance and biomass. Therefore, the increased number of species and biomass from the Oyibi lagoon can be attributed to high chlorophyll-a concentrations recorded in the lagoon.

Metric selection

The number of resident species in Laloi reduced from eight to three species. This phenomenon supports the assumption that environmental stress caused by pollution results in the decrease in the number of species (Harrison and Whitfield 2004). The decline in brackish water species in Laloi might due to the increased environmental stress. This supports the hypothesis that the relative abundance of species decreases in disturbed systems (Harrison and Whitfield 2004). In the Oyibi lagoon, the number of estuarine-dependent marine taxa identified showed a vast improvement over time while that of Laloi decreased. The assumption that disturbed systems have simple communities, dominated by a few taxa. Meanwhile, more natural systems have a more diverse population, with many species dominating was not supported by the study. These phenomena suggest that the Laloi lagoon recorded more taxa that make up 90% of the total abundance than the Oyibi lagoon. The minimum of information on the total number of individual species in the reference study on these lagoons fisheries became a major setback to the metric selection. The total for Oyibi is 40 and Laloi is 34. From the metric evaluation and other biological data such as condition factor and length-weight relationship, Oyibi was observed to be moderately stressed, and Laloi poorly stressed.

Deposition of organic matter to the sediment by mangroves along with high nutrient concentrations contribute to the high chlorophyll-a concentration at Oyibi. In fact, the growth of planktonic algae in a water body is related to the presence of nutrients in particular nitrates and phosphates (Brando et al. 2006). This result was supported by the high nitrates and phosphates concentrations recorded in the Oyibi lagoon. Excessive water column productivity, expressed by high chlorophyll-concentrations, can supply large amounts of easily organic decomposition matter to the sediments as observed by Duarte (1995). Elevated chlorophyll-levels indicate high numbers of phytoplankton and free-floating macroalgae and can translate into changes in animal and plant species diversity (Duarte 1995; Nielson and Jernakoff 1996).

Species Diversity

Species diversity is an indicator of the well-being of ecological systems (Magurran 1988). The differences in species diversity can be attached to abiotic and biotic factors. The variety of nutrient levels can also be an influencing factor. Increased salts such as phosphates and nitrates are important in supporting phytoplankton growth, which serves as the basis in the primary food chain and eventually enhances fish production greatly.

The high species richness in Laloi can be attached to the number of fishers that exploit different niches. There were five fishers at Laloi while for Oyibi on average, there were three fishers. Fishing contributes to the reduced abundance of species that spend all or part of their life cycle in estuaries (Lotze et al. 2006).

The diversity of fish species within a region is partly a function of the number of available niches and area size (Wootton 1990). Here, Oyibi had the highest species richness, which might be related to the presence of extensive mangrove forest that supports microhabitats for species (Connor et al. 1997). The size of the catchment area
has been identified as a significant factor governing both fish species diversity and abundance in South African water (Marais 1988). Biotic factors such as cannibalism, density-dependent predator mortality, intraguild predation, grazer-resistance of algae, and predator-dependent functional responses tend to increase bottom-up effects hence affect species diversity in aquatic systems (McCauly et al. 1988; Gatto 1991; Ginzburg and Aşçakaya 1992; McCann et al. 1998 and Hart 2002).

Length-Weight relationship

The Length-Weight relationship provides information that the fishes were isometric in their growth, meaning that the length increases in equal proportions with body weight and with a regression ci-efficient of „whiles values greater or less than „X” indicate allometric grow (Gayando and Pauly 1997). The condition factor of *S. melanotheron* compares favorably with that from Sakumo, Muni, and Densu of values (2.61-2.77) as seen by Koranteng (1995) and Fosu lagoon of value 2.65 as observed by Blay and Asabere-Ameyaw (1993).

The month of January (Oyibi) and April (Laloi) showed the highest value for the co-efficient of growth. The highest value recorded in January can be attached to the upweeling season in the coastal waters (January-February). The mixture of surface and bottom waters raise nutrients salts such as phosphates and nitrates, which increase primary productivity. The highest value observed in April (Laloi) can be attached to the rainfall that occurred on the day of sampling. Rainfall affects fisheries by making nutrients available and influencing salinity regimes. Koranteng (1995) research on the Sakumo II lagoon, showed that rainfall affects condition factor and species diversity. In his study, he showed that the number of species decreased from 59 in March to 26 in June resulting in a decrease in species diversity whiles the condition factor increased from 3.12 in March to 3.72 in June during the onset of the rains.

Condition factor provides information when used to compare two populations living in certain feeding, climate, density. Other condition also serves significant information such as when determining the period of gonad maturation and when following up the degree of feeding activity of a species to verify whether it is making good use of its feed source (Weatherly 1972). The condition factor of *S. melanotheron* improved during the study period which can be attributed to seasonal variability of the environment, as well as food availability or habitat suitability (Mommsen 1998; Henderson 2005; Nieto-Navarro et al. 2010). The high nutrient concentration at Oyibi boosting primary productivity may be one accounting for the high condition factor of the fishes. Biological factors such as nutrition and reproduction can possibly cause the discrepancies in the condition factor. Higher values may imply the accumulation of fat and gonadal development (Le Cren 1951) whiles lowest values suggest the transfer of resource to the gonads during the reproductive period (Vazzoler 1996).

Similarity analysis

There was no variation in species within the months of sampling as seen via the Bray-Curtis similarity analysis, though, there was a significant similarity between the sites. These results suggest that lagoons experience great environmental variation in temperature, salinity, dissolved oxygen, and turbidity due to the influx of fresh and marine waters. Fish species that live in lagoons must be able to cope with these rapid and extensive environmental changes. If fishes in water respond to the environment in a consistent manner, then the communities occupying similar types of estuaries in a particular region would be expected to reflect the similarity (Whitfield 1999).

Total Organic Carbon

The small numbers of *Sarotherodon melanotheron* found in the Laloi lagoon can be attached to the low organic matter content in the sediment of the lagoon. This reason also confers with fisher folks at the site revealed that for the past three years, *this species was missing in catches as compared to previous years. S. melanotheron* are bottom feeders in the food pyramids, and low organic matter content indicates less food for the species. The stomachs of adult *S. melanotheron* contain the fine fraction of bottom mud, comprising pennte diatoms, inorganic granules of 50-100 μ diameter, and organic detritus (Pauly 1976). Meanwhile, the high levels of organic matter in the sediment at Oyibi can be attributed to the extensive mangrove cover. Because organic carbon is an organic pollutant, the high total organic carbon in these lagoons can be attributed to domestic wastes, human excreta, and litter from the mangroves forests. The degradation of these wastes in the water column releases organic carbon that accumulates in the sediments. The high total organic matter measured at the seaward end can be attributed to the tidal influx that induces flow and transport of sediments (Blondeaux and Vittori 2005). Sediment transport and its deposition may be strongly affected by tide-induced residual currents (Byun and Wang 2003). Ocean water deposits sediments and leaves them behind when the tide goes out during high tide (SlideShare Inc. 2009).

In conclusion, Oyibi, the lagoon with extensive mangrove cover, exhibited the highest species diversity than in the lagoon without mangroves (Laloi). The size of the lagoon was also found to be a possible factor that affects the abundance and distribution of species. The two most abundant species during the study was the flathead grey mullet (*Mugil cephalus*) and the black-chinned tilapia (*Sarotherodon melanotheron*). In the Laloi lagoon, *Mugil cephalus* dominated catches while *Sarotherodon melanotheron* dominated catches in the Oyibi lagoon. *Lutjanus fulgens*, *S. melanotheron*, and *Eucinostomus melanopterus* were the most abundant species collected for the Laloi lagoon Laloi lagoon. *L. fulgens*, *Caranx hippos*, and *M. cephalus* constituted a major part of fishes caught in the Oyibi lagoon. The *Caranx hippos* contributed much of the biomass of fishes collected from both lagoons. The total fish number was most significant in the rainy season. From the metrics assigned, Oyibi demonstrated a moderate site rating, suggesting that it was under mild stress probably caused by garbage dumping, defecation, land-use changes, and increased human pressure. Laloi lagoon showed a poor site rating, suggesting that it was under severe stress.
probably due to overfishing, mangrove degradation, deforestation, garbage dumping, mangrove harvesting, and increased human settlements along the banks of the lagoon. From the multi-attribute index assigned, it reflects the status of lagoon fish communities and the overall ecosystem conditions. Oyibi lagoon with extensive mangrove cover had high Chlorophyll-α level and top condition factor of fish species. Anthropicographic activities and tidal influx are possible factors that affect nutrients value in coastal lagoons. The tidal regime was an important factor that influences phytochemical-parameters in coastal lagoons. Total organic carbon in sediments was an essential factor in determining the abundance of *S. melanotheron*.

REFERENCE

Addy KGL, Heron E. 2004. pH and Alkalinity. URI Watershed WATCH. Cooperative Extension College of environment and life Science (CELS), Department of Natural Resource Science (NRS), Coastal Institute in Kingston, University of Rhode Island, Kingston, Rhode Island.

Anderson MJ, Underwood AJ. 1997. Effects if gastropods recruitment and determining the abundance of *S. melanotheron*. adjacent to the Great Barrier Reef: spatial and temporal assessment using remote sensing. Cooperative Research Centre for Coastal Zone, Estuary and Waterway Management Technical Report 74.

Brago V, Moss A, Radke L, Rissik D, Rose T, Scanes P, Wellman S. 2012. Chlorophyll a concentrations. Retrieved on 10th January 2012 from http://www.oceangov.co.za/austrlin/chlorophyll_a.jsp.

Bray JR, Curtis JT. 1957. An ordination of the upland forest communities of structure South West Wisconsin. Ecol Monogr 27: 325-349.

Burger J, Gochfeld M. 1999. On developing biomarkers for human and ecological Health. Environ Monit Assess 66 (1): 23-46.

Byun DS, Wang XH. 2003. Tide-induced sediment dynamics. EGS-AGU-EUG Joint Assembly, abstracts from the meeting held in Nice, France, 6-11 April, 2003, abs #4832.

Cann RL, Dean JM. 1976. Annual abundance and diversity of fish in a South Carolina Intertidal Creek. Mar Biol 36: 369-379.

Caraco NF. 1995. Influence of human populations on P transfers to aquatic ecosystems: a regional scale study using large rivers. In: Tiessen H (ed.), Phosphorus in the Global Environment. John Wiley, New York.

Carr MR. 1996. PRIMER User Manual: Plymouth Routines in Multivariate Ecological Research. Plymouth Marine Laboratory, Plymouth.

Chaphekar SB. 1991. An overview on biondicators. J Environ Biol 12: 163-168.

Clarke KR, Green RH. 1988. Statistically design and analysis for a biological effects study. Mar Ecol Prog Ser 46: 710-23.

Clarke KR. 1993. Non parametric multivariate analyses of changes in the community structure. Aust J Ecol 8: 117-143.

Connor DW, Brazier DP, Hill TO, N. 1994. PRIMER User Manual, 4th Edition, American Public Health Association (APHA) Washington.

Dankwa H, Entsua Mensah A, Asmah R. 1997. Fish species composition and richness of lagoons and estuaries in Ghana. IAB Tech. Report 161: 24.

Dankwa H, Entsua Mensah M. 1996. “Fishing gears and methods used in Lagoons and estuaries in Ghana.” IAB Tech. Report 155: 24.

Dankwa HR, Abban EK, Teugels GG. 1998. Freshwater fishes of ghanian: Identification, ecological and economic importance. Anales Sciences Zoologiques 283.

Davis GE. 1993. Design elements of monitoring programs: the necessary ingredients for success. Environ Monit Assess 26: 99-105.

Dawson PMK. 1982. The utilization of coastal areas for aquaculture development in Ghana, p 31-51. In A. Coche (ed) Coastal aquaculture. CIFRA Tech. Pap. 9.

Dickson KB, Benneh G. 1980. A new geography of Ghana. Longman Group Ltd, London.

Duarte CM. 1995. Submerged aquatic vegetation in relation to different nutrient regimes. Ophelia 41: 87-112.

Elliot M, Dewailly F. 1995. The structure and components of European estuarine fish assemblages. Netherlands J Aquat Ecol 29 (3-4): 397-417.

Elliot M, Hemmingsway KL (eds.). Fishes in Estuaries, Blackwell Science, Oxford.

Entsua Mensah M. 2006. The Importance of sustainable Fisheries in Rural Economies. Intl J Ecol Environ Sci 32 (1): 119-125.

Entsua-Mensah M. 1996. “The importance of Mangroves as transitional ecosystems in Ghana”. In: Evans SM, Vanderpuye CJ, Armatk AH (eds.), The Coastal Zone of West Africa: Problems and Management, Accra, March 1996.

Entsua-Mensah M. 1998. Comparative studies of the dynamics and management of fish populations in an open and closed lagoon in Ghana. [Dissertation]. University of Ghana, Accra.

Entsua-Mensah M. 2002. The Contribution of Lagoons to the Continental Shelf of Ghana. In: McClade JM, Curay P, Koranteng KA, Hardman-Mountford NJ, (eds.) The Gulf of Guinea Large Marine Ecosystems, Environmental Forcing and Sustainable Development of Marine Resources. Elsevier Science, Netherlands.

Entsua-Mensah M. 2003. Lagoon Fisheries and Nutrient Data. Report prepared for Nixon Laboratory, Graduate School of Oceanography, University of Rhode Island, USA.
Eyeson KN. 1983. Eggs and fry swallowing habits of Tilapia. Aquaculture 32: 415-418.
Fausch KD, Lyons J, Karr JR, Anglemeier PL. 1990. Fish communities as indicators of environmental degradation. American Fisheries Society Symposium 8: 123-144.
Finney BP, Gregory-Eaves I, Douglas MSV, Smol JP. 2002. Fisheries productivity in the north-eastern Pacific Ocean over the past 2,200 years. Nature 416: 729-733.
Gatto M. 1991. Some remarks on models of plankton densities in lakes. Amer Natur 137: 264-267.
Gaylord FC, Pauly D. 1997. FAO ICLARM stock assessment tools (FISAT): Reference Manual, FAO Computerized Information Series (Fisheries) (8): 262.
Ginzburg L, Akçakaya H. 1992. Consequences of ratio dependent predation for steady state properties of ecosystems. Ecology 73: 1536-1543.
Gordon C, Yankson K, Biney CA, Amlalo DS, Tumbulto JW, Kpelle D. 1998. Report of the Working Group on Wetland Typology for the Ghana National Wetland Strategy. Department of Game and Wildlife, Government of Ghana, Accra.
Hamilton AJ. 2005. Species diversity or biodiversity?. J Environ Manag 75: 89-92.
Harrison TD, Whittingfield AK. 2004. A multi-metric fish index to assess the environmental condition of estuaries. J Fish Biol 65: 683-710.
Hart DR. 2002. Intraguild predation, invertebrate predators, and trophic cascades in lake food webs. J Theor Biol 218: 111-128.
Heath AG. 1987. Water Pollution and Fish physiology. CRC Press, Florida, USA.
Henderson PA. 2005. The Growth of Tropical Fishes. Vol. 21: In: Val AL, Vera MF, Randall JD (eds.). Academic Press, USA.
Hill K. What is a coastal lagoon?. Smithsonian Marine Station. Retrieved on 12th August, 2011 from http://www.sms.si.edu/rlspec/whatsab_lagoon.htm
Holt AE, Miller WS. 2011. Bioindicators: Using Organisms to Measure Environmental Impacts. Nature Education Transcript. Retrieved from http://www.sms.si.edu/rlspec/whatsab_lagoon.htm
Howarth RW. 1988. Nutrient limitation of net primary production in marine ecosystems. Ann Rev Ecol Syst 19: 89-98.
Jude DJ, Pappas J. 1992. Fish Utilization of Great Lakes Coastal Wetlands. Great Lakes Res 18(4): 651-672.
Kennis MJ. 1992. Ecology of Estuaries: anthropogenic effects. CRC Press, Boca Raton.
Kennis MJ. 2002. Environmental threats and environmental future of estuaries. Environ Conserv 29: 78-107.
Kjerfve B. 1994. Coastal Lagoons. Chapter 1. In: Kjerfve B. (ed.). Coastal lagoon processes. Elsevier Oceanographic series, Amsterdam.
Koranteng KA, Ofori-Amoah K, Afram EA. 1995. Some factors that influence fish abundance in South Ghanaian estuaries. J Environ Manag 43: 151-163.
Krebbs CJ. 1985. Ecology. The Experimental Analysis of Distribution and Abundance. Harper and Row, New York.
Lai R. 1997. Does overfishing lead to a decrease in catches and yields? An example of two West African coastal lagoons. Fisher Manag Ecol 4: 149-164.
Lamprey E. 2011. Environmental effects of Eco-Innovative coastal lagoon dredging for shoreline restoration project in Ghana, West Africa. Nova Science Publishers, Inc, New York.
Lorenz CM. 2003. Bioindicators for ecosystem management with special reference to freshwater systems. In: Markert BA, Breure AM, Ziemenn A (eds.), Bioindicators and biomonitoring: Principles, concepts and application. Elsevier Science Ltd., Oxford, UK.
Lotze HK, Lenham HS, Bourque BJ, Bradbury RG, Cooke RG, Kay MC, Kidwell SM, Kirby MX, Peterson CH, Jackson JBC. 2006. Depletion, dredging, and recovery potential of estuaries and coastal seas. Science 312: 1806-1809.
Ludwig JA, Reynolds JF. 1988. Statistical Ecology: a primer on methods of computing. Wiley InterScience, New York.
Ly CK. 1980. The role of the Akosombo Dam on the Volta River in Causing Erosion in Central and Eastern Ghana (West African). Mar Geol 37: 323-332.
Magourn AE. 1988. Ecological diversity and its measurement. Princeton University Press, Princeton, N.J.
Marais JF. 1988. Some factors that influence fish abundance in South African estuaries. South African J Mar Sci 6: 67-77.
McCann KS, Hastings A, Strong DR. 1998. Trophic cascades and trophic triclkes in pelagic food webs. Proc R Soc London B 265: 205-209.
McCauley E, Murdoch WM, Watson S. 1988. Simple models and variation in plankton densities among lakes. Amer Natur 132: 382-403.
McCueh JL. 1985. The estuarine ecosystem integrated. Foreword. In: Yanze-Aranzcharia A (ed.). Fish Community Ecology in Estuaries and Coastal Lagoons: Towards an Ecosystem Integration. UNAM Press, Mexico.
Menon-TP. 1998. Growth and Metabolic. In: Evans DH (ed.). The Physiology of Fishes. CRC Press, New York.
Monbet Y. 1992. Control of phytoplankton biomass in estuaries: A comparative analysis of microtidal and macroestuaries. Estuaries 15 (4): 563-571.
Nichols MM, Boon JD. 1994. Chapter 7. Sediment transport processes in coastal lagoons. In: Kjerfve B. (ed.). Coastal lagoon processes. Elsevier Oceanographic series, Amsterdam.
Nelson J, Jernakoff P. 1996. A review of the interaction of sediment and water quality with benthic communities. Port Phillip Bay Environmental Study. Technical Report 25: 1-130.
Nieto-Navarro JT, Zetina-Rejon M, Arreguin-Sanchez F, Arzou-Huitron E, Peria-Messina. 2010. Length-weight relationships of demersal fish from the Eastern Coast of the Mouth of the Gulf of California. J Fish Aquat Sci 5(6): 494-502.
Nikwoji JA, Igbo JK, Obienu J. 1988. Bioindicators as veritable tools in aquatic pollution management: A case study on the Lagos lagoon, Nigeria. Continental J Fisher Aquat Sci 3: 36-43.
O’Connor TP, Ehler CN. 1991. Results from the NOAA natural status and trends program on distribution and effects of chemical contamination in the coastal and estuarine, United States. Environ Monit Assess 17: 33-49.
Odhun EP. 1983. Basic Ecology. Saunders, Philadelphia, PA.
Pauly D, Yanze-Aranzcharia A. 1994. Fisheries in coastal lagoons. In: Kjerfve B. (ed.). Coastal lagoon processes. Elsevier Oceanographic series, Amsterdam.
Pauly D. 1975. On the ecology of a small West African lagoon. Ber Dt Ges Kommm Meerest. 24: 46-52.
Pauly D. 1976. The biology, fishery and potential for aquaculture of Tilapia melanotilus in a small West African lagoon. Aquaculture 7: 33-49.
Pauly D. 1983. Some simple methods for the assessment of tropical fish stock. FAO FISH Tech. Paper 234: 52.
Peakall D. 1992. Animal Biomarkers as Pollution Indicators. Chapman and Hall, London.
Qunfeng Z, Jianbin Z, Jianjie F, Jianbo S, Guibin J. 2008. Biomonitoring: An appealing tool for assessment of metal pollution in the aquatic ecosystem. State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
Ramakrishnan N. 2003. “Bio-Monitoring Approaches For Water Quality Assessment In Two Waterbodies At Tiruvannamalai,Tamil Nadu India” In Martin J. Bunch, V. Madha Suresh and T. Vasantha Kumaran, (eds) Proceedings of the Third International Conference on Environment and Health, Chennai, India, 15-17 December, 2003, Department of Geography, University of Madras, Chennai, and Faculty of Environmental Studies, York University, UK.
Roberts CM, Hawkins, JP. 1999. Extinction risk in the sea. Trends Ecol Evol 14: 241-246.
Rodwell LD, Barbier EB, Roberts CM, McClanahan TR. 2003. The importance of habitat quality for marine reserve fishery linkages. Canadian J Fisher Aquat Sci 60: 171-181.
Schor DH, Waldman JR. 1999. Historical abundance of Delaware Bay Atlantic sturgeon and potential rate of recovery. American Fisheries Society Symposium 23: 203-216.
ShareSlide Inc. 2009. Effects of waves, currents, tides-Presentation transcript.Retrieved from http://www.slideshare.net/bosch/effects-of-wavescurrents-tides-presentation on 2nd August, 2009.
Suenan E, Värová M, Gargšová ZH, Maharová M. 2006. Fish-Useful bio-indicators for evaluation of contamination in water ecosystems”. Proceedings of the Annual National International Conference on Soils, Sediments, Water and Energy.
Thiel R, Sepúlveda A, Kafeman R, Nellen W. 1995. Environmental factors as forces structuring the fish continuity of the Elbbe Estuary. J Fish Biol 46: 47-49.
US EPA. 2000. Estuaries and coastal marine waters: Biosassessment and biocriteria technical guidance. U.S. Environmental Protection Agency Report EPA-822-B-00-024. Washington DC: Office of Water.

Vazzoler AEA. 1996. Biologia da reprodução de peixes Teleósteos: teoria e prática. EDUEM, SBI, Maringá.
Wallace JH, Kok HM, Beckley LE, Bennett B, Blaber SIM, Whitfield AK. 1984. South African estuaries and their importance to fishes. South African J Sci 80: 203-207.
Weatherley AH. 1972. Growth and Ecology of Fish Populations. Academic Press, London.
Welcome RL. 1979. Fisheries Ecology of Flood Plain Rivers. Longman Press, London.
Whitfield AK. 1990. Life history styles of fishes in South African estuarine. Environ Biol Fish 28: 295-308.
Whitfield AK. 1998. Biology and ecology of fishes in southern African estuaries. Ichthyological Monograph of the J.L.B. Smith Institute of Ichthyology, Grahamstown, South Africa.
Willoughby N, Entsua-Mensah M. 1998. Artisanal and Commercial Fisheries Development. Ghana Environmental Resource Management Project Options for Coastal Wetlands. Natural Resources International (NRI), Accra.
Wooton RJ. 1990. Ecology of teleost fishes. Chapman and Hall, London.
Wynne SP, Cote IM. 2007. Effects of habitat quality and fishing on Caribbean spotted spiny lobster populations. J Appl Ecol 44: 488-494.
Zimmermann RD, Umlauf-Zimmermann R. 1994. Von der Bioindikation zum Wirkungskataster. UMSF-Z. Ökotox. 6 (1): 30-54.