Dynamics and Correlations among Soft Excitations in Marginally Stable Glasses

Le Yan,1 Marco Baity-Jesi,2,3,4 Markus Müller,5,6 and Matthieu Wyart1

1Department of Physics, Center for Soft Matter Research, New York University, 4 Washington Place, New York, New York 10003, USA
2Departamento de Física Teórica I, Universidad Complutense, 28040 Madrid, Spain
3Dipartimento di Fisica, La Sapienza Università di Roma, 00185 Roma, Italy
4Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), 50009 Zaragoza, Spain
5The Abdus Salam International Center for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
6Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland

(Published 18 June 2015)

Marginal stability is the notion that stability is achieved, but only barely so. This property constrains the ensemble of configurations explored at low temperature in a variety of systems, including spin, electron, and structural glasses. A key feature of marginal states is a (saturated) pseudogap in the distribution of soft excitations. We examine how such pseudogaps appear dynamically by studying the Sherrington-Kirkpatrick (SK) spin glass. After revisiting and correcting the multi-spin-flip criterion for local stability, we show that stationarity along the hysteresis loop requires soft spins to be frustrated among each other, with a correlation diverging as $C(\lambda) \sim 1/\lambda$, where λ is the stability of the more stable spin. We explain how this arises spontaneously in a marginal system and develop an analogy between the spin dynamics in the SK model and random walks in two dimensions. We discuss analogous frustrations among soft excitations in short range glasses and how to detect them experimentally. We also show how these findings apply to hard sphere packings.

DO: 10.1103/PhysRevLett.114.247208

PACS numbers: 75.10.Nr, 05.10.Gg, 05.65.+b, 05.70.Ln

Introduction.—In glassy materials with sufficiently long-range interactions, stability at low temperature imposes an upper bound on the density of soft excitations [1]. In electron glasses [2–7], stability towards hops of individual localized electrons requires that the density of states vanishes at the Fermi level, exhibiting a so-called Coulomb gap. Likewise, in mean-field spin glasses [8–15], stability towards flipping several “soft” spins implies that the distribution of local fields vanishes at least linearly. In hard sphere packings, the distribution of forces between particles in contact must vanish analogously, preventing collective motions of particles from leading to denser packings [16–18]. Often, these stability bounds appear to be saturated [6,9,15,17,19,20]. Such marginal stability can be proven for dynamical, out-of-equilibrium situations under slow driving at zero temperature [1] if the effective interactions do not decay with distance. This situation occurs in the Sherrington-Kirkpatrick (SK) model [see Eq. (1) below], but also in finite-dimensional hard sphere glasses, where elasticity induces nondecaying interactions [21]. Marginality is also found for the ground state or for slow thermal quenches by replica calculations for spin glass [10,22] and hard sphere systems [23,24], assuming infinite dimensions.

The presence of pseudogaps strongly affects the physical properties of these glasses. The Coulomb gap alters transport properties in disordered insulators [2,3], while its cousin in spin glasses suppresses the specific heat and susceptibility. It was recently proposed that the singular rheological properties of dense granular and suspension flows near jamming are controlled by the pseudogap exponents in these systems [25]. More generally, an argument of Ref. [1] shows that a pseudogap implies an avalanche-type response to a slow external driving force, called cracking [26], for a range of applied forcing. Such behavior is, indeed, observed in these systems [6,9,27] and in the plasticity of crystals [28], and contrasts with depinning or random field Ising models where cracking occurs only at one specific value of forcing [29–31]. Despite the central role of pseudogaps, it has not been understood how they emerge dynamically, even though some important elements of the athermal dynamics of the SK spin glass have been pointed out in earlier works [11,12].

In this Letter, we identify a crucial ingredient that was neglected in previous dynamical approaches and, also, in considerations of multispin stability: Soft spins are strongly frustrated among each other, a correlation that becomes nearly maximal for spins in the weakest fields. We expect analogous correlations in short range spin glasses, which can be probed experimentally. These correlations require revisiting earlier multispin stability arguments that assumed opposite correlations. We then argue, assuming stationarity along the hysteresis loop, that the correlation $C(\lambda)$ between the softest spins and spins in local fields of magnitude λ must follow $C(\lambda) \sim 1/\lambda^\gamma$, with $\gamma = 1$. Using this in a Fokker-Planck description of the dynamics, we predict the statistics of the number of times a given spin flips in an avalanche.

Model.—We consider the SK model with N Ising spins $(s_i = \pm 1)$ in an external field h...
\begin{equation}
\mathcal{H} = -\frac{1}{2} \sum_{i \neq j} J_{ij} s_i s_j - h \sum_{i=1}^{N} s_i.
\end{equation}

All spins are coupled to each other by a symmetric matrix \(J_{ij} \), whose elements are independent and identically distributed Gaussian random variables with zero mean and variance \(1/N \). The total magnetization is \(M \equiv \sum_i s_i \). We define the local field \(h_i \) and the local stability \(\lambda_i \) of spin \(i \) by

\begin{equation}
h_i = -\frac{\partial \mathcal{H}}{\partial s_i} = \sum_{j \neq i} J_{ij} s_j + h, \quad \lambda_i = h_is_i.
\end{equation}

The spin \(s_i \) is called stable when it aligns with the local field, i.e., if \(\lambda_i > 0 \), and unstable, otherwise. The energy to flip the spin \(s_i \to -s_i \) (and hence, \(\lambda_i \to -\lambda_i \)) is

\begin{equation}
\Delta \mathcal{H}_i(i) = \mathcal{H}(-s_i) - \mathcal{H} = 2s_i \left(\sum_{j \neq i} J_{ij} s_j + h \right) = 2\lambda_i.
\end{equation}

As in Ref. [9], we consider the hysteresis loop at zero temperature obtained by quasistatically increasing the field, as shown in Fig. 1(a). When a spin turns unstable, we apply a greedy Glauber dynamics that relaxes the system in an avalanchelike process towards a new one-spin-flip stable state by sequentially flipping the most unstable spin. Such hysteretic field ramping has also been used to find approximate ground states [32,33]. Those states empirically exhibit a pseudogap in the distribution of the \(\lambda_i \) [9,11,15]

\begin{equation}
\rho(\lambda) = A\lambda^\theta + O(N^{-\theta/(1+\theta)}),
\end{equation}

with \(\theta = 1 \) for \(\lambda < 1 \), as shown in Fig. 1(b), but with a slope \(A \) significantly larger than in equilibrium [10,12,34]. The avalanche size is power-law distributed [9]

\begin{equation}
D(n) = n^{-\tau} d(n/N^n)/\Xi(N),
\end{equation}

where \(n \) is the number of flips in an avalanche. The scaling function \(d(x) \) vanishes for \(x \gg 1 \). \(N^\sigma \) is the finite size cutoff, and \(\Xi(N) \) is a size dependent normalization if \(\tau \leq 1 \). Numerical studies of the dynamics of the SK model indicate that \(\tau = \sigma = 1 \) and \(\Xi = \ln N \) [9,15], as shown by the finite size collapse in Fig. 1(c). While one can argue that \(\theta = 1 \) along the hysteresis curve [1], the exponents \(\tau \) and \(\sigma \) have been derived theoretically for the dynamics (unlike for “equilibrium avalanches,” for which \(\tau = 1 \) has been obtained analytically [13,14]).

Below, we present a theoretical analysis of the dynamics. We assume that the average number of times a spin flips along the hysteresis loop diverges with \(N \) for any finite interval of applied field \([h, h + \Delta h] \) if \(h = O(1) \). This assures that a stationary regime is reached rapidly. [For \(\tau = 1 \) this condition simply reads \(\sigma + 1/(1 + \theta) > 1 \) [35].

Further, we rely on \(\theta < \infty \). This implies a diverging number of avalanches in the hysteresis loop, each contributing a subextensive amount of dissipation [35]. The latter rules out avalanches running into strongly unstable configurations, with an extensive number of spins with negative stability \(|\lambda| = O(1) \). Thus, the lowest local stability encountered in an avalanche, \(\lambda_0 \), must satisfy \(\lambda_0 \to 0 \) as \(N \to \infty \), as we confirm, numerically, in Fig. 2(a).

Multispin stability criterion.—A static bound for the pseudogap exponent \(\theta \) is obtained by considering two of the softest spins \(i, j \) (with stabilities \(\lambda_{\min} \sim 1/N^{1/(1+\theta)} \)) [1,36,37]. Their simultaneous flip costs an energy \(2(\lambda_i + \lambda_j - 2s_is_js_{ij}) \). The last term scales as \(1/\sqrt{N} \) and is negative if the two spins are unfrustrated. If this occurs with finite probability, a strong enough pseudogap, \(\theta \geq 1 \), is necessary to prevent the last term from overwhelming the stabilizing terms. The extension of this argument to multispin stability reveals its subtle nature. Flipping a set \(\mathcal{F} \) of \(m \) spins in a one-spin flip stable state costs

\begin{equation}
\Delta \mathcal{H} (\mathcal{F}) = 2 \sum_{i \in \mathcal{F}} \lambda_i - 2 \sum_{i,j \in \mathcal{F}} J_{ij} s_is_j.
\end{equation}

The initial state is unstable to multifold excitations if \(\Delta \mathcal{H} < 0 \) for some \(\mathcal{F} \). References [36,37] considered just...
Fig. 1(d). Postulating that estimate akin to the random energy model [40]. The assumption of Eq. (4) imply the scaling of the maximal \(\lambda \) to \(X \), measure of the typical value of the stability of most unstable spins, \(\lambda_0(n) \). Thus, in the thermodynamic limit, \(\lambda_0 \sim \ln n/\sqrt{N} \ll 1 \) even for very large avalanches. (b) The average number of times, \(F(n) \), spins active in avalanches of size \(n \) reflip later on in the avalanche.

the set of the \(m \) softest spins. Extremal statistics and the assumption of Eq. (4) imply the scaling of the maximal stabilities \(\lambda(m) \sim (m/N)^{1/(1+\theta)} \) and thus, \(\sum_{i \leq m} \lambda_i \sim m\lambda(m) \). The term \(\sum_{i \leq m} J_{ij} s_i s_j \sim m(m/N)^{1/2} \) was erroneously argued to be positive on average, which yielded the bound \(\theta \geq 1 \) to guarantee \(\Delta H_m > 0 \). However, numerically, we find that, on average, \(\sum_{i \leq m} J_{ij} s_i s_j \) is negative for soft spins. More precisely, the correlation \(C(\lambda) = -2(J_{ij} s_i s_j) \) between a spin of stability \(\lambda \), and the softest spin in the system is positive for small \(\lambda \), as shown in Fig. 1(d). Postulating that

\[
C(\lambda) \sim \lambda^{-\gamma}N^{-\delta},
\]

it is straightforward to estimate that \(\langle \sum_{i \leq m} J_{ij} s_i s_j \rangle \sim m^2 C(\lambda(m)) \sim m^{2-\gamma/(1+\theta)}N^{\gamma/(1+\theta)-\delta} \). A more complete characterization of correlations is given in the Supplemental Material, Secs. A and B [38].

It follows that the average rhs of Eq. (6) is always positive. We argue that the stability condition, nevertheless, leads to a nontrivial constraint because the last term of Eq. (6) can have large fluctuations. Indeed, consider all sets \(F \) of \(m \) spins belonging to the \(m' \) \(m \) softest spins, and, for definiteness, we choose \(m' = 2m \) here. To determine the probability that the optimal set leads to a negative \(\Delta H \) in Eq. (6), we use an approximate estimate akin to the random energy model [40]. The variance of the fluctuation \(X = \sum_{i,j \in F} J_{ij} s_i s_j - \langle \sum_{i,j \in F} J_{ij} s_i s_j \rangle \) is of order \(m/\sqrt{N} \). Since there are \(2^{2m} \) sets \(F \), the number density having fluctuation \(X \) follows \(N(X) \sim \exp[2m \ln(2) - X^2/m^2] \).

The most negative fluctuation \(X_{\min} \) is determined by \(N(X_{\min}) \sim 1 \), leading to \(X_{\min} \sim -m^{3/2}/\sqrt{N} \). Correlations neglected by this argument should not affect the scaling. The associated energy change is, thus, according to Eq. (6) and the subsequent estimates of each term,

\[
\Delta H(F_{\min}) = m^{(2+\theta)/(1+\theta)}/N^{1/(1+\theta)} + m^{2-\gamma/(1+\theta)}N^{\gamma/(1+\theta)-\delta} - m^{3/2}/\sqrt{N}.
\]

Multispin stability requires that, for large \(N \) and fixed \(m \), this expression be positive. This yields the conditions

\[
\theta \geq 1, \quad \text{or} \quad \gamma/(1+\theta) - \delta \geq -1/2.
\]

However, the correlation in Eq. (7) cannot exceed the typical coupling among spins, \(C \lesssim 1/\sqrt{N} \), which requires \(\gamma/(1+\theta) - \delta \leq -1/2 \). Thus, if \(\theta < 1 \), stability imposes the equality \(\gamma/(1+\theta) - \delta = -1/2 \), while the scaling with \(m \gg 1 \) additionally requires \(2 - \gamma/(1+\theta) \geq 3/2 \): or in other words, \(\gamma \leq (1+\theta)/2 \leq 1 \) and \(\delta \leq 1 \). In the relevant states, all three exponents \(\theta, \gamma, \) and \(\delta \) turn out to equal 1 and, thus, satisfy these constraints as exact equalities. We will now show how to understand this emergent marginal stability from a dynamical viewpoint.

Fokker-Planck equation.—Consider an elementary spin flip event in the greedy relaxation dynamics, cf. Fig. 3. The stability of the flipping spin 0 (red) changes from \(\lambda_0 \) to \(-\lambda_0 \) as the spin flips from \(s_0 \) to \(-s_0 \). Because of the coupling \(J_{0j} \), the stability of all other spins \(j \) (green or blue) receives a kick, \(\lambda_j \rightarrow \lambda'_j = \lambda_j - 2J_{0j} s_j \). Using an expansion in \(1/N \), we can describe the dynamics of the distribution of local stabilities \(\rho(\lambda, t) \) by a Fokker-Planck equation, similar to in Refs. [11,12]

\[
\partial_t \rho(\lambda, t) = -\partial_\lambda [v(\lambda, t) - \partial_\lambda D(\lambda, t)] \rho(\lambda, t) - \delta(\lambda - \lambda_0(t)) + \delta(\lambda + \lambda_0(t)).
\]

where \(t \) counts the number of flips per spin. The drift \(v(\lambda, t) \equiv -2N(J_{0s_0s_j}) \) is the average

\[
\Delta H(F_{\min}) = m^{(2+\theta)/(1+\theta)}/N^{1/(1+\theta)} + m^{2-\gamma/(1+\theta)}N^{\gamma/(1+\theta)-\delta} - m^{3/2}/\sqrt{N}.
\]

FIG. 2 (color online). (a) The average dissipated energy \(\Delta H \) in avalanches of size \(n \) scales as \(\Delta H \sim n \ln n/\sqrt{N} \). --\(\Delta H/n \) is a measure of the typical value of the stability of most unstable spins, \(\lambda_0(n) \). Thus, in the thermodynamic limit, \(\lambda_0 \sim \ln n/\sqrt{N} \ll 1 \) even for very large avalanches. (b) The average number of times, \(F(n) \), spins active in avalanches of size \(n \) reflip later on in the avalanche.

FIG. 3 (color online). Illustration of a step in the dynamics, in the SK model and the random walker model. Circles on the \(\lambda \) axis represent the spins or walkers. At each step, the most unstable spin (in red) is reflected to the stable side, while all others (in green or blue) receive a kick and move. The dashed and solid line outlines the density profile \(\rho(\lambda) \sim \lambda \) for \(\lambda > 1/\sqrt{N} \). The blue spins were initially frustrated with the flipping spin 0. They are stablized and are now unfrustrated with 0. In contrast, green spins become frustrated with spin 0 and are softer now. Because the motion of spins depends on their frustration with spin 0, a correlation builds up at small \(\lambda \), leading to an overall frustration of “soft” spins among each other.
positive kick received by a spin of stability λ. The diffusion constant $D(\lambda, t) \equiv 2N\langle J_{0f}^2 \rangle_{\lambda=\lambda}$ is the mean square of those kicks, where we have assumed that the random parts of successive kicks are uncorrelated, as our numerics support. For the dynamics to have a nontrivial thermodynamic limit, the scaling $\langle J_{0f}^2 \rangle_{\lambda} \sim 1/N$ must hold, i.e., $\delta = 1$ in Eq. (7). Further, we recall that $\lambda_0(t) \rightarrow 0$ as $N \rightarrow \infty$. Thus, we may replace the δ functions in Eq. (10) with a reflecting boundary condition at $\lambda = 0$

$$\left[v(\lambda, t) - \partial_\lambda D(\lambda, t)\rho(\lambda, t) \right]_{\lambda=0} = 0. \quad (11)$$

Since we assume that spins flip many times along the hysteresis loop, finite intervals on the loop correspond to diverging times $\Delta t \rightarrow \infty$. At those large times, a dynamical steady state (ss) must be reached. In such a state, the flux of spins must vanish everywhere

$$v_{ss}(\lambda) = D\partial_\lambda \rho_{ss}(\lambda)/\rho_{ss}(\lambda) \rightarrow 2\theta/\lambda, \quad (12)$$

where we assumed that ρ_{ss} follows Eq. (4). This result is tested in Fig. 1(d). A similar result was obtained in Ref. [12] following a quench.

Emergence of correlations.—Equation (12) implies that $\gamma = 1$ in Eq. (7). Such singular correlations are unexplained [41]. We now argue that they naturally build up in the dynamics through the spin-flip induced motion of stabilities of frustrated and unfrustrated spins, as illustrated in Fig. 3. To quantify this effect, we define, respectively, $C_f(\lambda)$ and $C_J(\lambda)$ as the correlation between the flipping spin 0 and the spins at λ before and after a flip event. As s_0 flips, the stability of spin i increases by $x_i \equiv -2J_{0i}s_0s_i$, $\lambda'_i = \lambda_i + x_i$. The correlation $C_f(\lambda)$ is an average over all spins which migrated to λ due to the flip

$$C_f(\lambda) = \frac{1}{\rho'(\lambda)} \int \rho(\lambda - x)(-x)f_{-x}(x)dx,$$

$$\rho'(\lambda) = \int \rho(\lambda - x)f_{-x}(x)dx.$$

$f_{x}(x)$ is the Gaussian distribution of kicks x given to spins of stability λ: $f_{x}(x) = \exp\left\{-\left[(x - C_f(\lambda)) \right]^2 / 4D/N \right\} / \sqrt{4\pi D/N}$. In the integrands, we expand $\rho(\lambda - x)$ and $C_f(\lambda - x)$ for small x and keep terms of order $1/N$, which yields

$$C_f(\lambda) = -C_f(\lambda) + 2\frac{D}{N} \frac{\partial \rho(\lambda)}{\rho(\lambda)}, \quad (13a)$$

$$\rho'(\lambda) = \rho(\lambda) - \partial_\lambda \left[C_f(\lambda)\rho(\lambda) - \frac{D}{N} \partial_\lambda \rho(\lambda) \right]. \quad (13b)$$

Thus, even if correlations are initially absent, $C_f(\lambda) = 0$, they arise spontaneously, $C_f(\lambda) = 2D\partial_\lambda \rho(\lambda)/N\rho(\lambda)$.

In the steady state, $\rho_{ss} = \rho_{ss}$, and Eq. (13b) implies the vanishing of the spin flux, that is, Eq. (12) with $v = NC_f$. Plugged into Eq. (13a), we obtain that the correlations are steady, too,

$$C_f(\lambda) = C_f(\lambda) = \frac{v_{ss}(\lambda)}{N} = \frac{2\theta}{N\lambda}. \quad (14)$$

These correlations are expected once the quasistatically driven dynamics reaches a statistically steady regime and, thus, should be present both during avalanches and in the locally stable states reached at their end.

Interestingly, Eq. (14) implies that all the bounds of Eq. (9) are saturated if the first one is, i.e., if $\theta = 1$. The latter value was previously derived from dynamical considerations in Ref. [1]. It is intriguing that the present Fokker-Planck description of the dynamics does not pin θ, as, according to Eqs. (12), (14), any value of θ is acceptable for stationary states. However, additional considerations on the applicability of the Fokker-Planck description discard the cases $\theta > 1$ and $\theta < 1$, as discussed in the Supplemental Material, Sec. C [38].

Those are related to the interesting fact that Eqs. (10), (11), (12) with $\theta = 1$ are equivalent to the Fokker-Planck equation for the radial component of unbiased diffusion in $d = 2$ (as derived in the Supplemental Material, Sec. D [38]), whose statistics are well known [42,43]. We can use this analogy to predict $F(n)$, the number of times an initially soft spin flips in an avalanche of size n. Indeed, a discrete random walker starting at the origin will visit that point $\ln(t)$ times after t steps in two dimensions, and thus, $F(n) \sim \ln(n)$, as supported by Fig. 2(b). Similarly, we expect times between successive flips of a given spin to be distributed as $P(\delta t) \sim 1/\{\delta t[\ln(\delta t)]^2\}$.

Short range systems and experiments.—In short range spin glasses, we expect and have numerically checked analogous frustrated correlations between pairs of directly interacting soft spins as in the SK model, except that the growth of correlations at small λ is cut off at the typical coupling between spins. This prediction can be tested in experiments akin to NMR protocols: First flip the spins of stability λ by a π pulse of appropriate frequency. Then flip those of stability λ' and observe the resulting shift in the fluorescence spectrum around λ. From our findings, we predict a systematic shift to higher frequencies.

Conclusions.—We have studied the quasistatic dynamics in a marginally stable glass at zero temperature, focusing on a fully connected spin glass as a model system. Our central result is that the pseudogap appears dynamically due to a strong frustration among the softest spins, characterized by a correlation function $C_f(\lambda)$ which scales inversely with the stability λ. We provided a Fokker-Planck description of the dynamics that explains the appearance of both the pseudogap and the singular correlation, and suggests a fruitful analogy between spin glass dynamics and random walks in two dimensions.
We expect our findings to apply to other marginally stable systems, in particular hard sphere packings that display a pseudogap with a nontrivial exponent: $P(f) \sim f^{1/1+\theta}$, where f is the contact force. Our analysis above suggests that a singular correlation function $C(f) \sim 1/f$ characterizes how contacts are affected by the opening of a contact of very weak force, the relevant excitations in packings [16,17]. Contacts with small forces should, on average, be stabilized by $C(f)$—a testable prediction. Our analysis also suggests a connection between sphere dynamics and random walks in dimension $1 + \theta_*$, which will be interesting to explore further.

We thank E. DeGiuli, J. Lin, E. Lerner, A. Front, and P. Le Doussal for discussions. This work was supported by the Materials Research Science and Engineering Center (MRSEC) Program of the National Science Foundation under Grant No. DMR-0820341, and by the National Science Foundation Grants No. CBET-1236378 and No. DMR-1105387. M. B.-J. was supported by MINCO, Spain, through Research Contract No. FIS2012-35719-C02, and by the FPU program (Ministerio de Educación, Spain). M. M. acknowledges the hospitality of the University of Basel.

[1] M. Müller and M. Wyart, Annu. Rev. Condens. Matter Phys. 6, 177 (2015).
[2] A. L. Efros and B. I. Shklovskii, J. Phys. C 8, L49 (1975).
[3] M. Pollock, M. Ortnuo, and A. Frydman, The Electron Glass (Cambridge University Press, Cambridge, England, 2013).
[4] M. Müller and L. B. Ioffe, Phys. Rev. Lett. 93, 256403 (2004).
[5] M. Müller and S. Pankov, Phys. Rev. B 75, 144201 (2007).
[6] M. Palassini and M. Goethe, J. Phys. Conf. Ser. 376, 012009 (2012).
[7] J. C. Andreus, Y. Pnamuda, H. G. Katzgraber, C. K. Thomas, G. T. Zimányi, and V. Dobrosavljević, arXiv:1309.2887.
[8] D. Thouless, P. Anderson, and R. Palmer, Philos. Mag. 35, 593 (1977).
[9] F. Pázmann, G. Zaránd, and G. T. Zimányi, Phys. Rev. Lett. 83, 1034 (1999).
[10] S. Pankov, Phys. Rev. Lett. 96, 197204 (2006).
[11] P. R. Eastham, R. A. Blythe, A. J. Bray, and M. A. Moore, Phys. Rev. B 74, 020406 (2006).
[12] H. Horner, Eur. Phys. J. B 60, 413 (2007).
[13] P. L. Doussal, M. Müller, and K. J. Wiese, Europhys. Lett. 91, 57004 (2010).
[14] P. Le Doussal, M. Müller, and K. J. Wiese, Phys. Rev. B 85, 214402 (2012).
[15] J. C. Andreus, Z. Zhu, R. S. Andrist, H. G. Katzgraber, V. Dobrosavljević, and G. T. Zimányi, Phys. Rev. Lett. 111, 097203 (2013).
[16] M. Wyart, Phys. Rev. Lett. 109, 125502 (2012).
[17] E. Lerner, G. Düring, and M. Wyart, Soft Matter 9, 8252 (2013).
[18] E. DeGiuli, E. Lerner, C. Brito, and M. Wyart, Proc. Natl. Acad. Sci. U.S.A. 111, 17054 (2014).
[19] E. Lerner, G. Düring, and M. Wyart, Europhys. Lett. 99, 58003 (2012).
[20] P. Charbonneau, E. I. Corwin, G. Parisi, and F. Zamponi, Phys. Rev. Lett. 114, 125504 (2015).
[21] M. Wyart, Ann. Phys. (Paris) 30, 1 (2005).
[22] M. Mezard, G. Parisi, and M. A. Virasoro, Spin Glass Theory and Beyond (World Scientific, Singapore, 1987).
[23] P. Charbonneau, J. Kurchan, G. Parisi, P. Urbani, and F. Zamponi, Nat. Commun. 5, 3725 (2014).
[24] P. Charbonneau, J. Kurchan, G. Parisi, P. Urbani, and F. Zamponi, J. Stat. Mech. (2014) P10009.
[25] E. DeGiuli, G. Düring, E. Lerner, and M. Wyart, Phys. Rev. E 91, 062206 (2015).
[26] J. Sethna, K. Dahmen, and C. Myers, Nature (London) 410, 242 (2001).
[27] G. Combe and J.-N. Roux, Phys. Rev. Lett. 85, 3628 (2000).
[28] P. D. Ispánovity, L. Laurson, M. Zaiser, I. Groma, S. Zapperi, and M. J. Alava, Phys. Rev. Lett. 112, 235501 (2014).
[29] O. Perković, K. Dahmen, and J. P. Sethna, Phys. Rev. Lett. 75, 4528 (1995).
[30] D. Dhar, P. Shukla, and J. P. Sethna, J. Phys. A 30, 5259 (1997).
[31] S. Sabhapandit, D. Dhar, and P. Shukla, Phys. Rev. Lett. 88, 197202 (2002).
[32] S. Boettcher, Eur. Phys. J. B 46, 501 (2005).
[33] K. F. Pál, Physica (Amsterdam) 367A, 261 (2006).
[34] G. Parisi, J. Phys. Condens. Matter 15, S765 (2003).
[35] The typical external field increment triggering an avalanche is $h_{\min} \sim \lambda_{\min} \sim N^{-1/(1+\theta)}$, so there are $N_A \sim 1/h_{\min} \sim N^{1/(1+\theta)}$ avalanches in a finite range of external field dh. Each avalanche contains, on average, $N_{\text{flip}} \sim \int n_d(n)dn \sim N^{(2-\gamma_c)/2}$ flip events. The total number of flip events along the hysteresis curve is $N_{\text{ave}} N_{\text{flip}} \sim N^{(2-\gamma_c)/(1+\theta)}$, which we assume to be $\gg N$.
[36] R. G. Palmer and C. M. Pond, J. Phys. F 9, 1451 (1979).
[37] P. W. Anderson, Ill-Condensed Matter, edited by R. Balian, R. Maynard, and G. Toulouse (North-Holland, Amsterdam, 1979), p. 159.
[38] See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.114.247208 for detailed discussions on the stability criterion, correlations among spins, dynamic constraints on the exponent θ, and a mapping to a d dimensional random walk, which includes Refs. [1,39].
[39] The Fokker-Planck Equation: Methods of Solution and Applications, edited by H. Risken (Springer, New York, 1996).
[40] B. Derrida, Phys. Rev. B 24, 2613 (1981).
[41] The approximation Eq. (21) in Horner yields an incorrect scaling behavior for $C(\lambda)$, assuming a pseudogap.
[42] S. Redner, A Guide to First-Passage Processes (Cambridge University Press, Cambridge, England, 2001).
[43] A. J. Bray, S. N. Majumdar, and G. Schehr, Adv. Phys. 62, 225 (2013).