Language Modeling at Scale

Mostofa Patwary, Milind Chabbi, Heewoo Jun,
Jiaji Huang, Gregory Diamos, and Kenneth Church

Silicon Valley AI Lab, Baidu Research
Sunnyvale, California, USA

Corresponding Author: patwarystofa@baidu.com

Abstract—We show how Zipf’s Law can be used to scale up language modeling (LM) to take advantage of more training data and more GPUs. LM plays a key role in many important natural language applications such as speech recognition and machine translation. Scaling up LM is important since it is widely accepted by the community that there is no data like more data. Eventually, we would like to train on terabytes (TBs) of text (trillions of words). Modern training methods are far from this goal, because of various bottlenecks, especially memory (within GPUs) and communication (across GPUs). This paper shows how Zipf’s Law can address these bottlenecks by grouping parameters for common words and character sequences, because $U \ll N$, where U is the number of unique words (types) and N is the size of the training set (tokens). For a local batch size K with G GPUs and a D-dimension embedding matrix, we reduce the original per-GPU memory and communication asymptotic complexity from $\Theta(GKD)$ to $\Theta(GK + UD)$. Empirically, we find $U \propto (GK)^{0.64}$ on four publicly available large datasets. When we scale up the number of GPUs to 64, a factor of 8, training time speeds up by factors up to $6.7 \times$ (for character LMs) and $6.3 \times$ (for word LMs) with negligible loss of accuracy. Our weak scaling on 192 GPUs on the Tieba dataset shows a 35% improvement in LM prediction accuracy by training on 93 GB of data ($2.5 \times$ larger than publicly available SOTA dataset), but taking only $1.25 \times$ increase in training time, compared to 3 GB of the same dataset running on 6 GPUs.

I. INTRODUCTION

This paper will show how Zipf’s Law [1–3] can be used to help scale up language modeling (LM) to take advantage of more training data and more GPUs. Zipf’s law is known to hold across many languages and wide variety of data sets [4], [5]. Zipf’s law makes it clear that there are many more tokens than types, as illustrated in Figure 1. It is common in language modeling to distinguish types (unique words) from tokens (non-unique words). For example, the phrase, “to be or not to be,” consists of four types and six tokens.

In general, the number of unique words in a training step is significantly smaller than the total number of tokens (the per-GPU batch size times the number of GPUs) and grows as a power law. Figure 1 shows the number of types (unique words, U) on the y-axis as a function of tokens (non-unique words, N) along the x-axis. The figure shows four datasets: 1-Billion word [6] (1b), Gutenberg [7] (gb), Common crawl [8] (cc), and Amazon review [9] (ar). All four lines fall well below the red line ($x = y$), labeled batch. This gap indicates an important opportunity for improvement. The data fit a power law: $U \propto N^{0.64}$. When N is 40-million total tokens in a training step, the number of unique words, U, is $\sim 100 \times$ smaller; and the gap continues to grow with N.

Language modeling is a fundamental task in natural language processing (NLP) and language understanding. It predicts the next token (e.g. words, sub-words, or characters) given the context (a sequence of surrounding tokens). Language modeling plays an important role in so-called noisy channel applications such as speech recognition, OCR and spelling correction [11]. The noisy channel was introduced by Shannon [12], [13], and continues to be used in a number of more recent applications such as: natural language generation [14], machine translation [15], speech recognition [16], and text summarization [17], to name a few. In the rest of this paper we use the abbreviation LM to mean Language Modeling or Language Model, which will be obvious from the context.

There is no data like more data. More data (and larger models) produce better estimates of sentence probabilities. Recent techniques leverage such large corpora by pre-training a neural language model and using the learned hidden representations...
to fine-tune on various NLP tasks. This simple but highly
effective approach has achieved state-of-the-art results across
many natural language understanding tasks that have benefited
from domain expertise and specialized architectures [18], [19].

Unfortunately, more data and larger models also increase the
training time [20], [21]. It is therefore of significant interest
to accelerate the training time of language modeling, specially
by scaling the models to take advantage of the compute
capability of high performance computing (HPC) resources
such as GPUs. Although there have been several recent efforts
to scale deep learning models in computer vision applications
[22]–[24], less has been written on scaling language models
and natural language processing applications. There are a
couple of recent papers that scale LM implementations to a
small number of GPUs [25], [26]. If we are going to scale
up to terabytes, we will need to find a way to scale up to
take advantage of many more GPUs. This work presents an
important step in that direction.

Scaling is challenging because the vocabulary (number of
types) is large, and the training corpus (number of tokens) is
even larger. Modern neural network based methods make use
of word or character embeddings that tend to be large enough
to run into memory and communication bottlenecks. Unlike
vision-related application, which employ an ALLREDUCE over
the gradients on all GPUs to update the local param-
eters, LM-based applications cannot employ ALLREDUCE due to the word/char embeddings. Instead, NLP
applications use ALLGATHER operation over the embedding
gradients, which results in memory demands and communica-
tion volume to grow proportional to the product of the number
of GPUs and the batch size per GPU. We elaborate more on
the challenges in Section II.

Prior work on scaling LMs tend to simplify the problem by
limiting the size of the vocabulary, or limited the number of
GPUs. For example, [25] limited the vocabulary to just \(\sim 24K \)
words, a small fraction of the words in the corpus, a large
common crawl dataset [8]. Another example, [26], uses a large
vocabulary, \(\sim 260K \), but only four GPUs. The most recent
study on large scale language modeling [21] demonstrates a
scaling of up to 128 GPUs but considers only character
language models, where the vocabulary is tiny (\(\sim 400 \)).

This work will introduce three optimizers for scaling up:
1) Uniqueness: There are many fewer types than tokens
\((U \ll N) \) because of Zipf’s law. This observation allows
us to turn a large, expensive ALLGATHER operation, employed in the input word embedding layer, into a small
ALLGATHER followed by an ALLREDUCE operation,
which changes the asymptotic complexity of memory and
communication needed for updating gradients.

2) Seeding: The so-called sampled softmax [27] employed in
LMs to reduce the computational demands renders the
uniqueness technique useless in LM’s output word
embedding layer, because each GPU chooses a random
subset of words, disobeying the word-frequency distribution.
We enforce a controlled randomization that obeys the
power-law of word frequency distribution, which
allows us to reap the benefits of uniqueness in the output
word embedding layer.

3) Compression: Finally, we employ half-precision floating-
point (FP16) numbers for data used in communication
to further reduce bandwidth demands. FP16 reduces the
communication volume by 50%. We recover the accuracy
loss due to the lower precision via compression-scaling.

Uniqueness and seeding reduce the asymptotic bounds of
both communication volume and GPU memory size. Compress-
ion reduces the communication volume by a constant factor.

We evaluate our optimizations on four large datasets (three
publicly available and one internal). Experimental evaluation
demonstrates significant reduction in memory (within a GPU)
and communication (across GPUs). Our technique shows 8.6×
memory reduction, which leads to 6.3X speedup for word
LMs. We demonstrate 6.7× (character LM) and 6.3× (word
LM) speedup by scaling to 64 GPUs (8× more) with negligible
loss of accuracy. Finally, we demonstrate weak scaling on
Baidu Tieba [1] Chinese corpus (internal). This paper will use
a relatively small sample of what’s available. But even so, the
sample of 93 GB we use is large enough to raise interesting
scaling challenges: 2.5× larger than the publicly available
state-of-the-art dataset. Compared to a 3GB of the same
dataset using 6 GPUs, when we scale to 32× more GPUs and
data (192 GPUs and 93 GB, respectively), the running
time increases by only 1.25×, but provides an accuracy
improvement of 35%.

The paper is organized as follows. Section III describes the
LM scaling challenges; Section IV describes our techniques for
scaling LM. Section V and VI provide experimental setting
and empirical results, respectively. Section VII discusses the
related works, and Section VIII concludes the paper.

II. BACKGROUND: CHALLENGES IN SCALING LM

In this section we overview the state-of-the-art workflow for
RNN-based language modeling. Figure 2 represents an anec-
dotal RNN-based language model akin to Bengio et al. [28].
It consists of an input embedding, several feed-forward or
recurrent (i.e. RNN) layers, an output embedding, followed by
a softmax classifier layer.

A. Language Model Basics

LMs employ dictionary of commonly used terms. For
example, all letters (alphabets, numbers, punctuation) in a
language forms the vocabulary for a character LM, whereas
all words in the dictionary form the vocabulary for a word
LM. A “word” is a unique entry in the vocabulary and a “token”
is an instantiation of a word in a training set.

Assume a vocabulary \(V \) of \(|V| \) words. Given a sequence of
\(K \) training tokens \(w_1, w_2, w_3, \ldots, w_K \), where each \(w_i \in V \),
one can naively produce a \(K \times |V| \) activation matrix \(A \)
as an input to RNN layers. In this matrix, if \(i^{th} \) input token is
the \(j^{th} \) word in \(V \), \(A[i][j] \) will be set to 1. Such matrix will
be extremely large for a large vocabulary, filled largely with
https://tieba.baidu.com
Input sentence: I want a pen and a

The input to the neural network is a sequence of tokens, where each token is mapped to a D-dimensional vector in a dense matrix E of size $V \times D$ (where V is the size of the vocabulary). The activation function is used to transform these vectors into a representation that can be processed by the neural network layers.

The softmax layer is used to compute the probability of each word in the vocabulary. The output of the softmax layer is a normalized probability distribution over all words in the vocabulary, where the probability of a word w at a time step t is calculated as $p(w|t) = \frac{\exp(o_w)}{\sum_{v \in V} \exp(o_v)}$, where o_w is the output score for the last layer for the word w at t.

The softmax calculation is computationally most expensive because the denominator is computed over all words in the vocabulary. Typical implementations reduce the computational complexity with various techniques, the simplest and yet effective is sampled softmax [29], which computes the probability over a smaller, random subset over V. The sampled softmax is facilitated by making the output embedding choose a subset, e.g., 1% of the words in the entire vocabulary; typically, the words in the input are additionally included.

Because of the sampling, during back propagation, the gradients coming from the softmax later do not match the dimensionality of the output embedding layer. Hence, the gradients are mapped back to the set of randomly chosen words during the forward pass, which is functionally similar to the back-propagation performed in the input embedding. The uniform randomness does not ensure uniqueness of the chosen set of words in the output embedding.

B. Parallelism in Language Models

We now divert our attention to parallelizing the training process. Data parallelism is the most common form of parallelism in neural networks; each processing entity (GPU in our case) holds the model but works on different K input token sequences, drawn randomly from the entire training corpus. In fact, each GPU also consumes K/c number of input sequences, where each sequence is of length c, and processes them in parallel; for brevity we refer to the entire data fed to a GPU as the local batch size and represent its size with the symbol K. While the forward propagation through the model can proceed unsynchronized across all GPUs, the gradient updates in each layer following the backward propagation needs to synchronize with all GPUs. The synchronization ensures that the model parameters on all GPUs are the same during the next training step. The so-called asynchronous gradient update is an active research area and out-side the scope of our work.

To update the RNN parameters, the models perform an ALLREDUCE [30] to accumulate the gradients from all GPUs. The accumulated gradients are used in updating the local weights. The communication is over large gradient matrices (e.g., LSTM layers) and hence bandwidth bound; efficient implementations use a ring all-reduce technique [31]. The input and output embedding connections are special and pose additional challenges.

During the same time step, each GPU i can have its own K training tokens: $w_{i1}, w_{i2}, \ldots, w_{iK}$, different from the K training tokens on another GPU j represented by $w_{j1}, w_{j2}, \ldots, w_{jK}$, which is the reason for complication in the embedding layers.
If the \(p \)th tokens is not an instantiation of the same word on the two GPUs, (that is, \(w_{ip} \neq w_{jp} \)), which is often the case, then the gradients computed for the \(p \)th tokens (\(\Delta_{ip} \) and \(\Delta_{jp} \)) on two different GPUs do not map to the same row of the embedding matrix during the reverse mapping step. This is depicted in Figure 3 where the gradient for the first tokens on GPU 1 maps to the 1234th row of the embedding matrix, whereas the gradient for the first tokens on GPU 2 maps to the 9854th row of the embedding matrix. Furthermore, since the words need not be unique across the GPUs, the gradient for the second tokens on GPU 2 maps to the 1234th row of the embedding matrix. We remind that the two embedding matrices \(\mathcal{E}_1 \) and \(\mathcal{E}_2 \) must remain the same across updates.

Since gradients at the same index on two different GPUs may map to two different rows of the embedding matrix, one cannot perform an \textsc{AllReduce} operation over all \(\Delta_i = K \times D \)-dimensional dense gradients. State-of-the-art implementations, hence, perform an \textsc{AllGather}, which collects all \(K \times D \) matrices from all \(G \) GPUs (\(G - 1 \) other GPUs to be precise) and then applies the gradients to the local embedding matrix. The \textsc{AllGather} operation requires \(\Theta(G \times K \times D) \) local memory to hold \(G \) number of \(\Delta \) matrices, and the communication time is also bounded by \(\Theta(G \times K \times D) \). Finally, the time to update each \(\mathcal{E}_i \) is also bounded by the \(\Theta(G \times K \times D) \). Not all \(G \times K \) words are unique; words can repeat within a token sequence both on the same GPU and on different GPUs. Hence, while concurrently updating different rows of \(\mathcal{E} \) using the parallelism on GPUs, the rows under update are locked to prevent races. Such locking is necessary even in the single GPU case since the words can repeat within a sequence presented to the same GPU.

The updates to the output embedding is analogous to the input embedding in the presence of sampled softmax due to random, sparse word selection. If each GPU computes the probability of \(S \) randomly chosen output words, during the gradient update, it has to gather the updates from all other \(G \) GPUs and then update the local output embedding matrix. The number of samples is proportional to the local batch size, that is \(S \propto K \). As before, implementations perform an \textsc{AllGather} to accomplish this task. If the output embedding is a vector of size \(D \), the \textsc{AllGather} operation requires \(\Theta(G \times K \times D) \) local memory to hold the entire update; the communication and local update time are bounded by \(\Theta(G \times K \times D) \). Implementations may use different dimensions for input and output embeddings, but it is less common.

In summary, embedding layers are the performance limiters in LM implementations. LMs’ local memory footprint grows proportional to the product of local batch size and the number of GPUs (\(\Theta(G \times K) \)). Since, GPUs have a limited memory (~16GB), one cannot scale LMs beyond a handful of GPUs. LM’s communication volume and GPU memory footprint grow proportional to the number of GPUs times the local batch size. Thus, large-scale language modeling (whether using a large batch size or a large number of GPUs or both) becomes communication bound, runs out of memory, and consequently fails to scale beyond a few GPUs or suffers from poor parallel efficiency; Section VI provides empirical data in this regard.

III. Methodology: Scalable Language Modeling

We, now, describe how we overcome the fundamental limiting factors in scaling LMs. Although, at the outset, the algorithmic complexities seem to limit scalability, studying the word distribution in a training corpus offers optimization insights. Word distribution empirically follows the well-known Zipf’s power law [1]–[3]: “given some corpus of natural language utterances, the frequency of any word is inversely proportional to its rank in the frequency table. Thus, the most frequent word will occur approximately twice as often as the second most frequent word, three times as often as the third most frequent word”. We exploit this domain knowledge on the word distribution to reduce the previously shown complexity bounds on scalability. The larger the batch size or the number of GPUs, higher the opportunity to exploit the Zipf’s law frequency distribution, discussed in [4], [5].

The rest of this section describes our strategy exploiting this observation for achieving better scalability. We first explain its application to the input embedding layer. We then describe an additional optimization—controlled seeding—to make scheme applicable to the output embedding layer. We end the section with an orthogonal optimization, half-precision communication, which provides an additional improvement in scaling.

A. Exploiting word uniqueness to reduce communication and memory demands of embedding layer.

Figure 4 depicts our strategy. To give a high-level intuition, we perform an \textsc{AllGather} over the \textit{word indices} to know all unique words presents in a training step. Then, each GPU re-arrange its local gradients into a matrix such that a gradient vector corresponding to a given word appears at the same position (row) across all GPUs. We then perform an \textsc{AllReduce} over the re-organized gradients.

Let the local batch of \(K \) tokens on GPU \(i \) contain \(U_i \leq K \) unique words. Let the \(K \)-dimension vector \(\mathcal{J} \) on each GPU hold the word index corresponding to each token in its input sequence. Our strategy can be described in the following sequential steps.
1) On each GPU, compute the vector \(\hat{J} \), which holds the word indices of only unique words in its input sequence. In other words, \(\hat{J} \) is a vector of “types” present on that GPU.

2) On each GPU \(i \), perform a local reduction of the gradient vectors, so that the gradient vectors corresponding to the same words are accumulated into a single vector. Now, each GPU \(i \) has a gradient matrix \(\hat{\Delta}_i \) of dimension \(U_i \times D \).

3) Perform an ALLGATHER over \(\hat{J} \) vectors from all GPUs. This ALLGATHER consumes only \(\Theta(G \times K) \) memory as opposed to the traditional ALLGATHER that required \(\Theta(G \times K \times D) \) memory. Let the resulting vector be \(\hat{I} \), which is same on all GPUs.

4) On each GPU, perform a local filter operation over the \(G \times K \) indices (vector \(\hat{I} \)) to extract all unique word indices to produce vector \(\hat{\Delta} \). In other words, \(\hat{\Delta} \) holds all “types” in a training step. Let the elements in the \(\hat{\Delta} \) be totally ordered and let us maintain a mapping from an entry in \(\hat{J} \) to the corresponding entry in \(\hat{\Delta} \) and transitively from \(\hat{\Delta} \) to \(\hat{I} \), which are local operations. Now, each GPU has a consistent view of all word indices present in this time step; if the \(p^{th} \) entry of \(\hat{\Delta} \) on GPU \(i \) points to \(q^{th} \) row of its \(\hat{I} \), so does the \(p^{th} \) entry of \(\hat{\Delta} \) on another GPU \(j \). Let each GPU infer that in total there are \(U_g \) unique words in this time step.

5) On each GPU \(i \), expand the \(\hat{\Delta}_i \) matrix obtained in step 2 from a \(U_i \times D \) matrix into a \(U_g \times D \) matrix via a local scatter operation. The non-existing entries are filled with zeros. Let this expanded matrix be called \(\hat{M}_i \). Note that \(U_i \leq U_g \ll G \times K \ll |V| \).

6) Perform an ALLREDUCE over all \(\hat{M}_i \), each of which is of the same \(U_g \times D \) dimension. This step has communication cost of \(\Theta(U_g \times D) \). Let the resulting matrix be \(\hat{\bar{M}} \).

7) Update the local embedding matrix with the the values in \(\hat{\bar{M}} \) using \(\hat{I} \) to map index in \(\hat{\bar{M}} \) with row in \(\hat{\epsilon} \).

The total space and communication complexities are: \(\Theta((G \times K) + (U_g \times D)) \), which is a significant reduction from the original \(\Theta(G \times K \times D) \). Since \(U_g \propto (G \times K)^\alpha \), we have reduced both time and memory complexity from \(\Theta(G \times K \times D) \) to \(\Theta\left((G \times K)^\alpha \right) \), where \(\alpha \) is the exponent in Zipf’s power-law in word frequency distribution.

Consider a real-word example, where the sequence length is \(c = 150 \), the number of sequences per GPU is 128, which makes a local batch size of \(K = 150 \times 120 = 19,200 \), and the embedding dimension is 1792. In this setting, with 32-bit floating-point gradients, on 256 GPUs, the old scheme of ALLGATHER would require 35.2 GB of memory per GPU. However, with our uniqueness technique where the power-law exponent is 0.64, we would require only 0.137 GB of memory per GPU—a 256 × memory saving.

An additional benefit is that since all indices are unique when updating the local model in step 7, no two indices are simultaneously attempting to update the same embedding vector in \(\hat{\epsilon} \) and hence no serialization bottleneck. To better appreciate this fact, imagine that in a set of updates, if 50% of the tokens are all the same highest-frequency word, the updates to their corresponding embedding vector would be serialized wasting the available parallelism on a GPU. This problem is eliminated in our update scheme that has no duplicate words.

B. Controlled randomness to reduce communication and memory demands of softmax layer.

The uniqueness technique is not directly applicable when updating the output embedding matrix in the presence of sampled softmax because the sampling can choose different words on different GPUs. For a large vocabulary, the probability of choosing the same word at the same index is minuscule; and the total words selected by all the GPUs grows proportional to the number of GPUs times the local batch size. Thus, we lose the power-law distribution of words when updating the output embedding with the gradients.

An easy approach would be to force all GPUs to use the same random seed, so that they all choose the same set of random words in each time step. Although, the same seed makes the updates to the output embedding amenable to the same optimization described in Section III-A, the loss of randomness leads to loss of diversity, which results in poor learning and degrades accuracy. Thus, there is a trade-off: each GPU with a different random seed has a good accuracy but poor scalability, whereas each GPU with the same random seed has a poor accuracy but good scalability.

Interestingly, the trade-off is not binary; there is a spectrum of choices to make. Instead of all same seed or all different seeds, we make a subset of GPUs use the same seed. We evaluated the number of seeds equal to \(\log_2, \log_e, \) and \(\log_{10} \) of the number of GPUs. We empirically observed that the number of different seeds needed to produce accuracy matching all different seeds matches the power law. Meaning, with \(G \) GPUs, we only need \(G^\alpha \) unique random seeds to achieve a very good accuracy (empirically \(\alpha = 0.64 \)) while enjoying the benefits of few unique words and hence less communication and memory overhead. We present the details in Figure 7 in Section VII.

Equipped with this technique, the rest of the procedure in updating the output embedding matrix is the same as that of
the input embedding layer. When \(S \) is the number of sampled words per GPU, the total space and communication complexity of the updates performed in the output embedding layer are: \(\Theta((G \times S) + (U_g \times D)) \), which is a significant reduction from the original \(\Theta(G \times S \times D) \). Since \(U_g \propto (G \times S)^{0.64} \), in practice, we have reduced both time and memory complexity from \(\Theta(G \times S \times D) \) to \(\Theta((G \times S)^{0.64} \times D) \).

C. Lower precision to reduce communication

Deep learning models are usually trained using 32-bit floating point (FP32) numbers. However, due to the increased gap between computation required vs. delivered [32] for deep learning applications, reduced precision (e.g. 16-bit floating point numbers, FP16) is gaining popularity. Recently, [33], [34] showcased that FP16 based models can be trained with negligible loss of accuracy. It uses a loss-scaling technique, to minimize the number of gradient values becoming zeros, due to lower precision. The idea is to multiply the training loss (e.g. cross-entropy) by a scaling factor, \(F \) (e.g. 256, 512, and 1024) before computing gradients and then divide the gradients by \(F \) before updating the weights. This method reduces the memory footprint by 50% and works well on a wide range of applications including image recognition and machine translation [33].

We use the same concept of lower precision to reduce communication among the GPUs. We down-cast each FP32 tensor to FP16, communicate, and up-cast the FP16 tensor to FP32 at the receiving end. This reduces the communication by 50%. To minimize loss introduced by lower precision, we perform compression-scaling, that is, multiply the FP32 tensor by a scaling factor, \(F \) before down-casting, and divide again by \(F \) after up-casting. We call this method compression.

IV. EXPERIMENTAL SETUP

We performed all the experiments on a 50-node cluster. The software and hardware configurations are tabulated below.

# Nodes	50
Interconnect	Infiniband FDR @ 15Gb/s bidirectional bandwidth
CPUs/node	2 \times 20-core Intel Xeon E5-2660 v3 @ 2.6 GHz
Memory/node	400GB DDR
GPUs/node	8 \times GeForce GTX Titan X @ 32 GB/s PCIe bidirectional b/w 12GB HBM
peak FLOP/GPU	6.1 TFLOP/s (32-bit floating point numbers)
Software	Tensorflow 1.4 [35], CUDA 8.0.61, CUDNN 6.0.20, cuda-aware OpenMPI 2.0.1

We use one GPU per MPI process in all of our experiments. Communication among the GPUs (both inter and intra-nodes) use cuda-aware MPI collectives incorporated in Tensorflow.

A. Datasets

We used four datasets in our experiments, three in English and one in Chinese. One of them, the 1-Billion word [6], is the commonly used one to perform language modeling experiments [36]. We used the Gutenberg [7] dataset to better understand that our techniques are dataset independent. We used the Amazon Reviews dataset [9], which was used in a recent scaling paper, [21]. We finally used a subset of an internal Chinese dataset curated from Baidu’s internet forum called Tieba [10] to perform a Hero scale run using 192 GPUs.

To train the models and to test the accuracy, we split the dataset into two datasets into 99:1 and the last two into 1000:1 ratio (similar to [21]). Each split is created by sampling without replacement and a fixed random seed. The vocabulary for character language model includes all alphanumeric characters and common symbols (98 in English and \(\sim 15K \) in Chinese). For word language models, we use the 100,000 most frequent words after lower-casing and tokenization [37] as the vocabulary for each corpus. The number of unique words can range from 2M to 24M in the corpora we considered, but vocabularies created by this simple procedure account for 99% of the text in each data set. A summary of all the above datasets is presented in Table [1].

B. Model Architectures

To analyze scaling and accuracy, we take the character and word language models as test-cases for small and large vocabulary, respectively. For word language model, we use the baseline LSTM based SOTA model from [36]. The model consists of one LSTM layer with 2048 cells. The projection dimension we used is 512. The batch size per GPU is 32 and sequence length is 20. This configuration with \(\sim 800K \) vocabulary (as used in [56]) requires more than 9.8 GB of memory for the model parameters and activations. We therefore used a reduced vocabulary size of \(\sim 100K \) so that required memory is much lower (1.3 GB) and also the CPU-GPU traffic reduces significantly. In the experiments, we used stochastic gradient descent (SGD) for optimizing per-sequence word cross-entropy loss using a sampled softmax layer, with 1024 random samples per GPU. The learning rate is \(0.2 \times \log_{10}(|\text{nodes}|) \) with decay factor ranging from 0.85 to 0.95 in the experiments. In our experiments, each node consists of 8 GPUs.

For the character language model, we use the SOTA model similar to [38]. The model consists of a recurrent highway network (RHN) layer of depth 10, each with 1792 LSTM cells. The model consists of 213 million parameters. We use 128 batch size per GPU with sequence length of 150. We use Adam with weight decay and dropout for optimizing the character cross-entropy loss using a full softmax layer. We used a learning rate of \(10^{-3} \times \log_{10}(|\text{nodes}|) \) with decay factor ranging from 0.85 to 0.95 in the experiments.

V. RESULTS AND ANALYSIS

In this section, we present the experimental results obtained by our proposed methodology. We use word and character language model as test-cases for large and small vocabulary, respectively. We showcase accuracy and speedup comparison along with details analysis for 1-Billion and Gutenberg datasets using 16, 32 and 64 GPUs. We later present results of a hero-scale run on the Tieba dataset using 192 GPUs. Finally, we compare our results with existing works on the Amazon review dataset.
A. Word Language Model

We first present the accuracy and speedup achieved by the word language model with large vocabulary (~ 100K). We use three combinations of GPUs, 16, 32, and 64, to perform the scaling experiments with batch size of 512, 1024, and 2048, respectively. The sequence length used was 20, therefore, per iteration the number of tokens (words) processed was 10240, respectively. The sequence length used was 20, therefore, per iteration the number of tokens (words) processed was 10240, 20480, and 40960, respectively for the three GPU combinations. We use perplexity (lower is better) to compare accuracy, which measures how well a model is capable to compute the probability distribution to predict words or characters.

Figure 5 shows the accuracy validation perplexity up to 2 epochs for the 1-Billion dataset. The perplexity becomes indistinguishable with increasing epochs. For example, at Epoch 1, the perplexities are 84.3, 87.9, and 95.3 for 16, 32, and 64 GPUs. The values reduces to 73.5, 72.1, and 72.4, respectively at Epoch 2. We realized that 32 and 64 GPUs produce better perplexity compared to 16 GPUs run. The trend continues in the later epochs as well (e.g. 67.7, 63.7, and 63.6 at epoch 5). We achieved similar trend with accuracy for the Gutenberg dataset. For example, we found perplexity of 76.7, 77.4 and 81.1 at epoch 1 whereas these values become 63.0, 63.6, and 67.1 at epoch 3 using 16, 32, and 64 GPUs respectively. We use 0.2 as the base learning rate (for 8 GPUs) and then used a multiplying factor of \(\log_2|\text{nodes}|\) (e.g. 0.41 for 64 GPUs) as we increase the number of GPUs.

Table III shows the time taken per epoch by the word language model for 1-Billion word dataset while varying the number of GPUs, keeping the local batch size fixed. Using our techniques, we found that per epoch time using 8 GPUs is 14.6 hours. If we increase the number of GPUs by 8× (i.e. 64 GPUs), the training time reduces to 4.5 hours (3.2× speedup). Compared to the 8 GPUs run without our techniques, the speedup becomes 7.7×. Without our techniques the code struggles to achieve parallel efficiency of 29% using 24 GPUs and goes out of memory with more GPUs. In contrast, our techniques deliver 76% parallel efficiency using 24 GPUs. The value become 40% when we use 64 GPUs using our approaches (> 24 GPUs run without our techniques). We found similar results for the Gutenberg dataset (2.4× speedup using 8× more GPUs and a parallel efficiency of 30% on 64 GPUs). Compared to the 8 GPUs run without our techniques, the speedup becomes 6.3×. The lower speedup in word LM when compared to our own 8 GPUs run is due to the low computational intensity (136 GFLOP/iter) of word LMs; character LMs achieve higher speedup (2,721 GFLOP/iter) as shown in the next section. We obtained 2.44 TFLOP/sec (40% of peak FLOPS) in the experiments.

Figure 6 shows the performance improvement up by each of the three techniques—uniqueness, seeding, and compression. To do this, we present the results obtained from using 16 and 24 GPUs on 1-Billion word dataset. We considered the baseline that does not use our techniques [33]. Uniqueness delivers a 4× performance improvement (speedup). The speedup closely matches to the ratio of total and unique words (Figure 7), which is 3.4× at 16 GPUs. The seeding and compression techniques give additional 7% and 18% performance improvements, respectively, thus reaching a total of 5.1× speedup compared to the baseline. The speedup was found to be higher (e.g. 6.3× on 24 GPUs as shown in the Figure 6) as the gap of unique words vs. total words increases with the number of GPUs. The peak GPU memory in use (not shown), without our techniques, grows linearly: 3.9 GB, 7.1 GB, and 10.3 GB per GPU at 8, 16, and 24 GPUs, respectively and goes out of memory after that. In contrast, the peak GPU memory in use, with our techniques, remains almost steady—1.19 GB at 8 GPUs, 1.20 GB at 24 GPUs, and 1.21 GB at 64 GPUs. Thus, we achieve 8.6× memory reduction when using 24 GPUs.

We now divert attention how our techniques may influence accuracy. The uniqueness technique only changes the flow of

![Fig. 5. Accuracy of word language model on the 1-Billion word dataset using 16, 32, and 64 GPUs.](image)

![Fig. 6. Speedup achieved using our techniques, uniqueness, seeding, and compression (lower precision) compared to the baseline (without these techniques) word language model on 16 and 24 TitanXx8 GPUs.](image)

Table III

GPUs	Without Our Technique	With Our Technique		
	Time (hours)	Parallel Efficiency	Time (hours)	Parallel Efficiency
8	35.1	100%	14.4	100%
16	41.1	43%	8.1	90%
24	40.4	29%	6.4	76%
32	∗	∗	5.4	67%
64	∗	∗	4.5	40%

Per epoch time (hours) on Titan X GPUs for word LM using 1-Billion word dataset. 8-GPUs is the baseline for computing parallel efficiency. ∗ => out of GPU memory.
computation as discussed in Section III-A and hence produces the same accuracy as the baseline for word language model.

Figure 7 shows the impact of different seeding techniques on accuracy, which is used in the output embedding layer to compute sampled softmax for word language model. We used a different seed on each GPU (line with label G) and also the number of seeds equal to \log_2, \log_e, and \log_{10} of the number of GPUs. We have also performed experiments where the number of seeds follows the word frequency distribution (line with label Zipf’s-freq). Decreasing the number of seeds makes the accuracy of the training curve less stable (e.g. \log_2 shows more close perplexity as G than \log_{10}). Seeding with Zipf’s-freq produces similar perplexities as G seeds and offers a pareto optimal setting.

The compression technique loses lower precision bits, hence accuracy is expected to be lower. But compression-scaling (Section III-C) regains the same accuracy. For example, the perplexity of word language model after 1 epoch on 16 GPUs with and without compression are 84.12 and 84.68, respectively.

B. Character Language Model

Figure 8 shows the accuracy (perplexity) up to 2 epochs for character language model with small vocabulary (~ 100) on the 1-Billion dataset. Similar to the word language model, we use 16, 32, and 64 GPUs, to perform the scaling experiments with a batch size of 2048, 4096, and 8192 (hence 0.3M, 0.6M and 1.2M total characters), respectively. As the figure shows, our three sets of experiments produce similar perplexities. We observe that gap of perplexities reduces as we progress towards further epochs. For example, perplexity difference between 16 and 32 GPUs at epoch 1 is 4%, whereas at epoch 2 and 4, the gap becomes 2% and 0.01%, respectively. We observe similar results when comparing 16 GPUs with 64 GPUs (the gap is 5% at epoch 1 and 1% at epoch 5). Although the perplexity with higher GPUs has higher perplexity at any point in the figure, running a few additional iterations produces the same accuracy as the lower number of GPUs (e.g. perplexity of 2.27 using 16 and 32 GPUs at epoch 3 and 3.4, respectively).

We observe similar results on the Gutenberg dataset. At epoch 1, the perplexity of 16 and 32 GPUs are 2.78 and 2.85, respectively. However, at epoch 3, the corresponding values become 2.53 and 2.54. Similar results have been observed when comparing the accuracy of 16 vs. 64 GPUs. Note that we increased the base learning learning rate (10^{-3} for 8 GPUs) by a multiplying factor of $\log_e|\text{nodes}|$ (e.g. 2.07×10^{-3} for 64 GPUs), similar to the word LM.

We now discuss how the training time per epoch for the 1-Billion word dataset reduces as we increase the number of GPUs, while keeping the local batch size fixed. Table IV shows the taken time and parallel efficiency with and without our techniques. We use the runtime using 8 GPUs as the baseline for comparison among the experiments. Our techniques take 23.2 hours per epoch using 8 GPUs and increasing the GPUs to 64, the time reduces to 3.5 hours. We achieve $6.6 \times$ speedup (with 82% parallel efficiency) using $8 \times$ more GPUs. At 24 GPUs, while our technique delivers 94% parallel efficiency, without our techniques, the baseline delivers 81% parallel efficiency. Beyond 24 GPUs, the baseline goes out of memory, whereas our implementation continues to scale—a demonstration of the usefulness of our uniqueness and compression techniques detailed in Section III. Note that seeding technique was not used for character LM as the vocabulary size is small, hence full softmax was used instead of sampled softmax layer. We achieved similar speedup ($6.7 \times$ using $8 \times$ GPUs compared to 8 GPUs baseline) when we experiment on the Gutenberg dataset. We obtained 3.95 TFLOP/sec (64% of peak FLOPS) in the character LM experiments. We mention in passing that the number of unique characters becomes constant (reaching the size of the small vocabulary) as we keep increasing the batch size (thus GPUs) in character language model.

Table IV shows an improvement in performance when compared to the same number of GPUs without our techniques. For example, on 16 GPUs, we found uniqueness contributes to 23% runtime reduction. We observe limited gain (e.g. 2% on 16 GPUs) using the compression technique for character LM. This is mainly due to the fact that the character language model has higher number of tensors (> 20), each needs to down-cast (FP32 → FP16) and up-cast (FP16 → FP32), thus adds an overhead to get benefit of the compression technique.
When we compared the accuracy, we found our compression-scaling (Section III-C) technique regains the same accuracy as without using compression. For example, the perplexity of character language model after 1 epoch on 64 GPUs with and without compression are 2.58 and 2.59, respectively.

C. Hero Scale Run (Tieba dataset, 192 GPUs)

In this section, we apply our techniques to train massive data that was impractical previously. We improve the accuracy of language modeling on the Tieba [10] dataset, keeping the training time in a reasonable range while scaling to more GPUs and hence training on more data.

We take two subsets, 1 and 4 Billion Chinese characters from the Tieba dataset [10] (32 Billion). We use the same validation set to test accuracy of all three datasets. The vocabulary we used consists of 15,437 characters (∼150 times larger than English, thus a demonstration of scaling character language model with large vocabulary). We perform weak scaling using 6, 24, and 192 GPUs for the 1B, 4B, and 32B datasets respectively. The corresponding learning rate is 2×10^{-4}, 4×10^{-4}, and 5×10^{-4}. Table V shows that increasing the data size from 1B by 4× and 32×, the training taken time per epoch increases by only 1.04× and 1.25×, respectively. We achieve a total of 0.76 PFLOP/s using 192 GPUs. Compared to 6 GPUs with 3GB corpus, a 12 GB corpus on 24 GPUs delivers a 20% accuracy improvement and a 93 GB corpus on 192 GPUs delivers 35% accuracy improvement.

Since the internal Tieba dataset does not have public baseline on accuracy, we compute the compression ratio as a metric to demonstrate the competitiveness of our results on this corpus. We chose this metric as perplexity is an indication of performance in text compression. We compute the compression ratio by dividing the corpus size by the product of bits per character and total number of characters in the corpus. [21] showed a bit per character (i.e. \log_2(perplexity)) of 1.11 for the Amazon review dataset with comparable batch size, which equates to a compression ratio of 6.8. For the Tieba dataset (93GB, 34 Billion Characters), we achieve a comparable compression ratio (e.g. the perplexity of 11.1 equates to compression ratio of 6.3).

D. Comparison with the Existing Results

We compare our results with a recent work on scaling language modeling [21], despite the fact that our implementation is capable of scaling on more GPUs and larger vocabularies (i.e. 192 GPUs, 15K and 100K vocabulary for character and word LM, respectively) than [21] (128 GPUs and small vocabulary of 100). Although the dataset they used in the experiments is publicly available (e.g. Amazon review [9]), the infrastructure is the most recent one (October, 2018) and specialized. For example, the 128 GPUs used were V100 (peak 125 TFLOP/s, 16GB of HBM2 memory, and NVLink to communicate among GPUs). Since we do not have access to such infrastructure, we perform experiments using 64 Titan X GPUs (peak 6.1 TFLOP/s, 12GB of HBM2 memory, and PCIe for communication). Using the above discussed RHN based character LM, we achieve an accuracy of 1.208 BPC (bit per character) compared to 1.218 reported in [21] after 1 epoch. When compared the training time, we take 17.6 hours, 14× longer than [21], but using 41X less powerful infrastructure (16 PFLOP/s vs. 0.39 PFLOP/s), leading to a rough gain of 2.9×. The gain increases to 3.3× as we train to 3 epochs with an accuracy of 1.11 BPC.

VI. RELATED WORK

Compute required to train deep neural networks jumped 15× and compute delivered by GPUs increased by 10×, just in 2 years, 2015-2017 [32]. Large-scale training has been of significant interest to reduce the training time. Most of the recent scaling efforts are centered around vision applications, such as image recognition and segmentation. For example, [24] trains ResNet-50 model using ImageNet dataset (1.2 million images) [39] in an hour using 256 Tesla P100 GPUs. [24] reduces the training time to 20 minutes using 2048 Intel Xeon Phi coprocessors. [22] goes further reducing the training time to 15 minutes using 1024 Tesla P100 GPUs.

The importance of scaling has also been realized in the neural language processing (NLP) domain, specially in language modeling, which plays a key role in traditional NLP tasks [36]. For example, [36] performs experiments on a wide range of RNN based models and proposed a CNN based softmax loss computation, which improves accuracy on 1-Billion word dataset. The paper uses 32 Tesla K40 GPUs with asynchronous gradient updates. However, it has been shown that synchronous SGD can often converge to a better final accuracy than asynchronous SGD [40]. Moreover, asynchrony could effectively increase the momentum which is part of why it tends to diverge so easily [41], [42], [25] explores an online distillation-based large-scale distributed training method. The paper shows that codistillation works well on a wide range of applications including language modeling using 128 GPUs. But in the distillation approach, multiple models are trained in parallel, which significantly increases computation. [26] scales both on word and character language model using eight NVIDIA Volta GPUs. The dataset for character LM were
~ 90M and for word LM, it was ~ 100M.[21] scales character LM (small vocabulary of 100) using up to 128 NVIDIA Volta GPU using mixed precision training on 40 GB of Amazon review dataset.

VII. CONCLUSIONS

Language modeling is a central problem in natural language processing, which is used in many applications such as speech recognition and machine translation. Prior work on language modeling has achieved limited scalability. The ALLGATHER operations performed in the input and output embedding layers of language models require large memory footprint which quickly grows out of GPU memory limits and demand large volume data exchange among GPUs. In this paper, we showed how Zipf’s law can be used to reduce the asymptotic complexity of both memory (within a GPU) and communication (across GPUs) and hence scale up language modeling to take advantage of more training data and more GPUs. Using several datasets, we demonstrate 6.7× (character LM) and 6.3× (word LM) speedup by scaling to 8× more GPUs with negligible loss of accuracy. Finally, we weak scale LM from six to 192 GPUs, which allows us to scale training from 3GB to 93GB (across GPUs) and hence scale up language modeling to take only 1.25× more training time. This weak scaling delivers 35% more accuracy in predictions.

REFERENCES

[1] G. K. Zipf, Human Behaviour and the Principle of Least Effort: an Introduction to Human Ecology. Addison-Wesley, 1949.
[2] Wikipedia, “Zipf’s law,” https://en.wikipedia.org/wiki/Zipf%27s_law (Accessed on 10/12/2018).
[3] G. K. Zipf, “The Psycho-Biology of Language,” Linguistic Society of America, vol. 12, no. 3, pp. 196–210, 1936.
[4] S. Yu, C. Xu, and H. Liu, “Zipf’s law in 50 languages: its structural pattern, linguistic interpretation, and cognitive motivation,” arXiv:1807.01835, 2018.
[5] M.-S. Isabel, F.-C. Francesc, and C. Alvaro, “Large-Scale Analysis of Zipf’s Law in English Texts,” PLOS ONE, 2016.
[6] C. Chelba, T. Mikolov, M. Schuster, Q. Ge, T. Brants, P. Kohrn, and T. Robinson, “One billion word benchmark for measuring progress in statistical language modeling,” arXiv preprint arXiv:1312.3605, 2013.
[7] P. di Miceli, “Project Gutenberg,” https://www.gutenberg.org/, 2018.
[8] C. Buck, K. Heffard, and B. van Ooyen, “N-gram Counts and Language Models from the Common Crawl,” in Proceedings of the Language Resources and Evaluation Conference, Reykjavik, Iceland, May 2014. [Online]. Available: http://commoncrawl.org/.
[9] J. McAuley, C. Targett, Q. Shi, and A. van den Hengel, “Image-Based Recommendations on Styles and Substitutes,” ser. SIGIR ’15. New York, NY, USA: ACM, 2015, pp. 43–52.
[10] BAIDU, “Baidu Tieba Log File,” https://tieba.baidu.com/index.html, 2018.
[11] K. W. Church and R. L. Mercer, “Introduction to the Special Issue on Computational Linguistics Using Large Corpora,” Computational Linguistics, vol. 19, no. 1, pp. 1–24, Mar. 1993. [Online]. Available: http://dl.acm.org/citation.cfm?id=972340.972342.
[12] C. Shannon, “The mathematical theory of communication,” Bell System Technical Journal, vol. 27, pp. 379–423, 1948.
[13] S. Claude, “Prediction and entropy of printed English,” Bell System Technical Journal, vol. 30, pp. 50–64.
[14] S. Merity, B. McCann, and R. Socher, “Revisiting Activation Regularization for Language RNNs,” CoRR, vol. abs/1708.01009, 2017.
[15] M. Luong, H. Pham, and C. D. Manning, “Effective Approaches to Attention-based Neural Machine Translation,” CoRR, vol. abs/1508.04025, 2015. [Online]. Available: http://arxiv.org/abs/1508.04025
[16] D. Amodei and et. al., “Deep Speech 2: End-to-End Speech Recognition in English and Mandarin,” CoRR, vol. abs/1512.02595, 2015.
[17] A. M. Rush, S. Chopra, and J. Weston, “A Neural Attention Model for Abstractive Sentence Summarization,” CoRR, vol. abs/1509.00685, 2015.
[18] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettlemoyer, “Deep contextualized word representations,” in Proc. of NAACL, 2018.
[19] R. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving language understanding by generative pre-training,” https://blog.openai.com/language-unsupervised/, 2018, accessed: 2018/10/15.
[20] M. Banko and E. Brill, “Scaling to very very large corpora for natural language disambiguation,” in 39th annual meeting on association for computational linguistics, 2001, pp. 26–33.
[21] R. Puri, R. Kirby, N. Yakovenko, and B. Catanaro, “Large Scale Language Modeling: Converging on 40GB of Text in Four Hours,” ArXiv e-prints, Aug. 2018.
[22] T. Akiba, S. Suzuki, and K. Fukuda, “Extremely Large Minibatch SGD: Training ResNet-50 on ImageNet in 15 Minutes,” CoRR, vol.abs/1711.04325, 2017.
[23] Y. You, Z. Zhang, C. Hsieh, and J. Demmel, “100-epoch ImageNet Training with AlexNet in 24 Minutes,” CoRR, vol.abs/1709.05011, 2017.
[24] P. Goyal, P. Dollár, R. B. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola, A. Tulloch, Y. Jia, and K. He, “Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour,” CoRR, vol.abs/1706.02677, 2017.
[25] L. Ami, G. Pereyra, A. Passos, R. Ormándi, G. E. Dahl, and G. E. Hinton, “Large scale distributed neural network training through online distillation,” CoRR, vol.abs/1804.03125, 2018.
[26] S. Merity, N. S. Keskar, and R. Socher, “An Analysis of Neural Language Modeling at Multiple Scales,” CoRR, vol.abs/1803.08240, 2018.
[27] M. Stephen, S. K. Nitish, and S. Richard, “Regularizing and Optimizing LSTM Language Models,” CoRR, vol.abs/1708.02182, 2017.
[28] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, “A neural probabilistic language model,” Journal of machine learning research, vol. 3, no. Feb, pp. 1137–1155, 2003.
[29] W. Chen, D. Grangier, and M. Auli, “Strategies for training large vocabulary neural language models,” arXiv:1512.04906, 2015.
[30] Y. Ueno and K. Fukuda, “Technologies behind Distributed Deep Learning: AllReduce,” https://preferredresearch.jp/2018/07/10/technologies behind-distributed-deep-learning-allreduce/2018.
[31] A. Gribiansky, “Bringing HPC techniques to deep learning,” http://research.baidu.com/bringing-hpc-techniques-deep-learning, 2017.
[32] R. Kim, “Flashblade Now 5X Bigger, 5X Faster,” https://blog.purestorage.com/flashblade-now-5x-bigger-5x-faster/2017.
[33] P. Micikevicius, S. Narang, J. Alben, G. Diamos, E. Elenis, D. Garcia, B. Ginsburg, M. Houston, O. Kuchaev, G. Venkatesh et al., “Mixed precision training,” arXiv preprint arXiv:1710.03740, 2017.
[34] M. Patwary, S. Narang, E. Undersander, J. Hestness, and G. Diamos, “Experimental Evaluation of Mixed Precision Training for End to End Applications,” http://research.baidu.com/Blog/index-view/id=103.
[35] M. Abadi et al., “TensorFlow: Large-scale machine learning on heterogeneous systems,” 2015, software available from tensorflow.org. [Online]. Available: https://www.tensorflow.org/.
[36] R. Józefowicz, O. Vinyals, M. Schuster, N. Shazeer, and Y. Wu, “Exploring the Limits of Language Modeling,” vol.abs/1602.02410, 2016.
[37] S. Bird, E. Klein, and E. Loper, Natural Language Processing with Python, 1st ed. O’Reilly Media, Inc., 2009.
[38] J. Hestness, S. Narang, N. Ardalanil, G. F. Diamos, E. Juen, H. Kianinejad, M. M. A. Patwary, Y. Yang, and Y. Zhou, “Deep Learning Scaling is Predictable, Empirically,” CoRR, vol.abs/1712.00409, 2017.
[39] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A Large-Scale Hierarchical Image Database,” in CVPR09, 2009.
[40] J. Chen, X. Pan, R. Monga, S. Bengio, and R. Józefowicz, “Revisiting distributed synchronous SGD,” arXiv preprint arXiv:1604.00987, 2016.
[41] I. Mitliagkas, C. Zhang, S. Hadsis, and C. Rã, “Asynchrony begets momentum, with an application to deep learning,” in Communication, Control, and Computing (Allerton). IEEE, 2016, pp. 997–1004.
[42] P. H. Jin, Q. Yuan, F. Iandola, and K. Keutzer, “How to scale distributed deep learning?” arXiv preprint arXiv:1611.04581, 2016.