Representation theory of the α-determinant and zonal spherical functions

Kazufumi KIMOTO

December 14, 2007

Abstract

We prove that the multiplicity of each irreducible component in the $\mathcal{U}(\mathfrak{gl}_n)$-cyclic module generated by the l-th power $\det(\alpha)(X)^l$ of the α-determinant is given by the rank of a matrix whose entries are given by a variation of the spherical Fourier transformation for $(\mathfrak{S}_n, \mathfrak{S}_n^l)$. Further, we calculate the matrix explicitly when $n = 2$. This gives not only another proof of the result by Kimoto-Matsumoto-Wakayama (2007) but also a new aspect of the representation theory of the α-determinants.

Keywords: Alpha-determinant, cyclic modules, irreducible decomposition, Gelfand pair, zonal spherical functions, Jacobi polynomials.

2000 Mathematical Subject Classification: 22E47, 43A90.

1 Introduction

Let n be a positive integer. We denote by \mathfrak{S}_n the symmetric group of degree n. For a permutation $\sigma \in \mathfrak{S}_n$, we define

$$\nu(\sigma) \eqdef \sum_{i \geq 1} (i - 1)m_i(\sigma) \quad (\sigma \in \mathfrak{S}_n),$$

where $m_i(\sigma)$ is the number of i-cycles in the disjoint cycle decomposition of σ. We notice that $\nu(\cdot)$ is a class function on \mathfrak{S}_n. It is easy to see that $(-1)^{\nu(\sigma)} = \text{sgn} \sigma$ is the signature of a permutation σ.

Let α be a complex number and $A = (a_{ij})_{1 \leq i, j \leq n}$ an n by n matrix. The α-determinant $\det^{(\alpha)}(A)$ of A is defined by

$$\det^{(\alpha)}(A) \eqdef \sum_{\sigma \in \mathfrak{S}_n} \alpha^{\nu(\sigma)} a_{\sigma(1)} a_{\sigma(2)} \cdots a_{\sigma(n)} n.$$ \hfill (1.1)

We readily see that the α-determinant $\det^{(\alpha)}(A)$ coincides with the determinant $\det(A)$ (resp. permanent $\text{per}(A)$) of A when $\alpha = -1$ (resp. $\alpha = 1$). Hence we regard the α-determinant as a common generalization of the determinant and permanent.

The α-determinant is first introduced by Vere-Jones [11]. He proved the identity

$$\det(I - \alpha A)^{-1/\alpha} = \sum_{k=0}^{\infty} \frac{1}{k!} \sum_{1 \leq i_1, \ldots, i_k \leq n} \det^{(\alpha)} \begin{pmatrix} a_{i_1 i_1} & \cdots & a_{i_1 i_k} \\ \vdots & \ddots & \vdots \\ a_{i_k i_1} & \cdots & a_{i_k i_k} \end{pmatrix}$$ \hfill (1.2)

for an n by n matrix $A = (a_{ij})_{1 \leq i, j \leq n}$ such that the absolute value of any eigenvalue of A is less than 1. Here I denotes the identity matrix of suitable size. His intention of the study of the α-determinant is an application to probability theory. Actually, the identity (1.2) supplies a unified treatment of the multivariate binomial and negative binomial distributions. Further, Shirai and Takahashi [10] proved a Fredholm determinant version of (1.2) for a trace class integral operator and use it to define a certain one-parameter family of point processes. We note that a pfaffian analogue of the Vere-Jones identity (1.2) has been also established and is applied to
probability theory by Matsumoto [7]. It is also worth noting that (1.2) is obtained by specializing \(p_i(x) = \alpha^{i-1} \) and regarding \(y_1, \ldots, y_n \) as eigenvalues of \(A \) in the Cauchy identity
\[
\prod_{i,j \geq 1} \frac{1}{1 - x_i y_j} = \sum_{\lambda} \frac{1}{z_{\lambda}} p_\lambda(x) p_\lambda(y),
\]
where \(\lambda \) in the right-hand side runs over the set of all partitions, \(z_\lambda \) denotes the cardinality of the centralizer of a permutation whose cycle type is \(\lambda \), and \(p_\lambda \) denotes the power-sum symmetric function corresponding to \(\lambda \) (see [8] for detailed information on symmetric functions). In fact, under the specialization, the left-hand side of (1.3) becomes \(\det(1 - \alpha t)^{-1/\alpha} \) and the right-hand side represents its expansion in terms of \(\alpha \)-determinants (see also [3]).

In this article, we focus our attention on the representation-theoretic aspect of the \(\alpha \)-determinant. Let \(\mathcal{U}(\mathfrak{gl}_n) \) be the universal enveloping algebra of the general linear Lie algebra \(\mathfrak{gl}_n = \mathfrak{gl}_n(\mathbb{C}) \), and \(\mathcal{P}(\text{Mat}_n) \) be the polynomial algebra in the \(n^2 \) variable \(x_{ij} \) \((1 \leq i, j \leq n) \). We put \(X = (x_{ij})_{1 \leq i, j \leq n} \) and write an element in \(\mathcal{P}(\text{Mat}_n) \) as \(f(X) \) in short. The algebra \(\mathcal{P}(\text{Mat}_n) \) becomes a left \(\mathcal{U}(\mathfrak{gl}_n) \)-module via
\[
E_{ij} \cdot f(X) = \sum_{s=1}^n x_{is} \frac{\partial f(X)}{\partial x_{js}},
\]
for \(f(X) \in \mathcal{P}(\text{Mat}_n) \) where \(\{E_{ij}\}_{1 \leq i, j \leq n} \) is the standard basis of \(\mathfrak{gl}_n \). Now we regard the \(\alpha \)-determinant \(\det^{(\alpha)}(X) \) of \(X \) as an element in \(\mathcal{P}(\text{Mat}_n) \) and consider the cyclic submodule
\[
V_{n,l}(\alpha) \overset{\text{def}}{=} \mathcal{U}(\mathfrak{gl}_n) \cdot \det^{(\alpha)}(X)^l
\]
of \(\mathcal{P}(\text{Mat}_n) \). Since
\[
V_{n,1}(-1) = \mathcal{U}(\mathfrak{gl}_n) \cdot \det(X) \cong \mathcal{M}_n^{(1^n)}, \quad V_{n,1}(1) = \mathcal{U}(\mathfrak{gl}_n) \cdot \det(X) \cong \mathcal{M}_n^{(n)},
\]
the module \(V_{n,1}(\alpha) \) is regarded as an interpolation of these two irreducible representations. Here we denote by \(\mathcal{M}_n^{(\lambda)} \) the irreducible \(\mathcal{U}(\mathfrak{gl}_n) \)-module whose highest weight is \(\lambda \). We notice that we can identify the dominant integral weights with partitions as far as we consider the polynomial representations of \(\mathcal{U}(\mathfrak{gl}_n) \).

Our main concern is to solve the

Problem 1.1. Describe the irreducible decomposition of the \(\mathcal{U}(\mathfrak{gl}_n) \)-module \(V_{n,l}(\alpha) \) explicitly.

In [4], the following general result on \(V_{n,l}(\alpha) \) is proved.

Theorem 1.2. For each \(\lambda \vdash nl \) such that \(\ell(\lambda) \leq n \), there exists a certain square matrix \(F_{n,l}^{\lambda}(\alpha) \) of size \(K_{\lambda(l^n)} \) whose entries are polynomials in \(\alpha \) such that
\[
V_{n,l}(\alpha) \cong \bigoplus_{\lambda \vdash nl \atop \ell(\lambda) \leq n} (\mathcal{M}_n^{\lambda})^\oplus \otimes \mathcal{F}_{n,l}^{\lambda}(\alpha).
\]

Here \(K_{\lambda\mu} \) denotes the Kostka number and \(\ell(\lambda) \) is the length of \(\lambda \).

We call this matrix \(F_{n,l}^{\lambda}(\alpha) \) the transition matrix for \(\lambda \) in \(V_{n,l}(\alpha) \). We notice that the transition matrix is determined up to conjugacy. Thus, Problem 1.1 is reduced to the determination of the matrices \(F_{n,l}^{\lambda}(\alpha) \) relative to a certain (nicely chosen) basis. Up to the present, we have obtained an explicit form of \(F_{n,l}^{\lambda}(\alpha) \) in only several particular cases.

Example 1.3. When \(l = 1 \), Problem 1.1 is completely solved in [8] as follows: For each positive integer \(n \), we have
\[
V_{n,1}(\alpha) = \mathcal{U}(\mathfrak{gl}_n) \cdot \det^{(\alpha)}(X) \cong \bigoplus_{\lambda \vdash n \atop f_\lambda(\alpha) \neq 0} \mathcal{M}_n^{\lambda} \otimes f^\lambda,
\]
(1.5)
where \(f_\lambda(\alpha) \) is a (modified) content polynomial

\[
f_\lambda(\alpha) \overset{\text{def}}{=} \prod_{i=1}^{\ell(\lambda)} \prod_{j=1}^{\lambda_i} (1 + (j - i)\alpha).
\]

In other words, for each \(\lambda \vdash n \), we have

\[
\text{multiplicity of } M^\lambda_n \text{ in } V_{n,1}(\alpha) = \begin{cases} 0 & \alpha \in \{1/k, 1 \leq k < \ell(\lambda)\} \cup \{-1/k, 1 \leq k < \lambda_1\}, \\ f^\lambda & \text{otherwise.} \end{cases}
\]

The transition matrix \(F^\lambda_{n,1}(\alpha) \) in this case is given by \(f_\lambda(\alpha)I \).

Example 1.4. When \(n = 2 \), the transition matrix \(F^\lambda_{2,l}(\alpha) \) is of size 1 (i.e. just a polynomial) and it is shown in [4, Theorem 4.1] that

\[
V_{2,l}(\alpha) = \mathcal{U}(\mathfrak{gl}_2) \cdot \det^{(\alpha)}(X)^l \cong \bigoplus_{k < \lambda, x} M^{(2l-s,s)}_2(\alpha) \neq 0,
\]

where we put

\[
F^{(2l-s,s)}_{2,l}(\alpha) = (1 + \alpha)^{l-s} G^l_s(\alpha),
\]

\[
G^l_s(\alpha) = \sum_{j=0}^l \frac{(-s)_j (l - s + 1)_j (-\alpha)^j}{(-l)_j j!}.
\]

Here \((a)_j = \Gamma(a + j)/\Gamma(a)\) is the Pochhammer symbol. We note that \(G^l_s(\alpha) \) is written by a Jacobi polynomial as

\[
G^l_s(\alpha) = \binom{s - l - 1}{s}^{-1} P^{(-l-1,2l-2s+1)}(1 + 2\alpha).
\]

In this paper, we show that the entries of the transition matrices \(F^\lambda_{n,l}(\alpha) \) are given by a variation of the spherical Fourier transformation of a certain class function on \(S_{nl} \) with respect to the subgroup \(\mathfrak{S}^\circ_n \) (Theorem 2.9). This result also provides another proof of Theorem 1.2. Further, we give a new calculation of the polynomial \(F^{(2l-s,s)}_{2,l}(\alpha) \) in Example 1.4 by using an explicit formula for the values of zonal spherical functions for the Gelfand pair \((\mathfrak{S}_{2n}, \mathfrak{S}_n \times \mathfrak{S}_n) \) due to Bannai and Ito (Theorem 3.1).

2 Irreducible decomposition of \(V_{n,l}(\alpha) \)

Fix \(n, l \in \mathbb{N} \). Consider the standard tableau \(T \) with shape \((l^n)\) such that the \((i,j)\)-entry of \(T \) is \((i-1)l + j\). For instance, if \(n = 3 \) and \(l = 2 \), then

\[
T = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}.
\]

We denote by \(K = R(T) \) and \(H = C(T) \) the row group and column group of the standard tableau \(T \) respectively. Namely,

\[
K = \{ g \in \mathfrak{S}_{nl} ; [g(x)] = [x], x \in [nl] \}, \quad H = \{ g \in \mathfrak{S}_{nl} ; g(x) \equiv x \pmod{l}, x \in [nl] \},
\]

where we denote by \([nl]\) the set \(\{1, 2, \ldots, nl\} \). We put

\[
e = \frac{1}{|K|} \sum_{k \in K} k \in \mathbb{C}[\mathfrak{S}_{nl}].
\]
This is clearly an idempotent element in $\mathbb{C}[S_{nl}]$. Let φ be a class function on H. We put

$$\Phi \overset{\text{def}}{=} \sum_{h \in H} \varphi(h)h \in \mathbb{C}[S_{nl}].$$

Consider the tensor product space $V = (\mathbb{C}^n)^{\otimes nl}$. We notice that V has a $(U(\mathfrak{gl}_n), \mathbb{C}[S_{nl}])$-module structure given by

$$E_{ij} \cdot e_{i_1} \otimes \cdots \otimes e_{i_{nl}} \overset{\text{def}}{=} \sum_{s=1}^{nl} \delta_{i,j} e_{i_1} \otimes \cdots \otimes e_i \otimes \cdots \otimes e_{i_{nl}},$$

where $\{e_i\}_{i=1}^n$ denotes the standard basis of \mathbb{C}^n. The main concern of this section is to solve the

Problem 2.1. Describe the irreducible decomposition of the left $U(\mathfrak{g}l_n)$-module $V \cdot e\Phi e$.

Here we show that Problem 2.1 includes Problem 1.1 as a special case. We consider the group isomorphism $\theta : H \rightarrow S_n$ defined by

$$\theta(h) = (\theta(h)_1, \ldots, \theta(h)_l): \quad \theta(h)_i(x) = y \iff h((x-1)i) = (y-1)i + i.$$

We also define an element $D(X; \varphi) \in \mathcal{P}(\text{Mat}_n)$ by

$$D(X; \varphi) \overset{\text{def}}{=} \sum_{h \in H} \varphi(h) \prod_{p=1}^{l} \prod_{q=1}^{n} x_{\theta(h)_p(q)}.q = \sum_{h \in H} \varphi(h) \prod_{p=1}^{l} \prod_{q=1}^{n} x_{q,\theta(h)_p^{-1}(q)}.$$

We note that $D(X; \alpha^{(\nu)}) = \det^{(\nu)}(X)^I$ since $\nu(\theta^{-1}(\sigma_1, \ldots, \sigma_l)) = \nu(\sigma_1) + \cdots + \nu(\sigma_l)$ for $(\sigma_1, \ldots, \sigma_l) \in S^n_l$.

Take a class function δ_H on H defined by

$$\delta_H(h) = \begin{cases} 1 & h = 1 \\ 0 & h \neq 1. \end{cases}$$

We see that $D(X; \delta_H) = (x_1 x_2 \ldots x_n)^I$. We need the following lemma (see [3] Lemma 2.1) for the proof of (1). The assertion (2) is immediate.

Lemma 2.2. (1) It holds that

$$U(\mathfrak{g}l_n) \cdot e_{i_1}^{\otimes l} \otimes \cdots \otimes e_{i_n}^{\otimes l} = V \cdot e = \text{Sym}^l(\mathbb{C}^n)^{\otimes n},$$

$$U(\mathfrak{g}l_n) \cdot D(X; \delta_H) = \bigoplus_{i_{pq} \in \{1, \ldots, n\}} \mathbb{C} : \prod_{p=1}^{l} \prod_{q=1}^{n} x_{i_{pq}q} \cong \text{Sym}^l(\mathbb{C}^n)^{\otimes n}.$$

(2) The map

$$\mathcal{T} : U(\mathfrak{g}l_n) \cdot D(X; \delta_H) \ni \prod_{p=1}^{l} \prod_{q=1}^{n} x_{i_{pq}q} \mapsto (e_{i_1} \otimes \cdots \otimes e_{i_1}) \otimes \cdots \otimes (e_{i_n} \otimes \cdots \otimes e_{i_n}) \cdot e \in V \cdot e$$

is a bijective $U(\mathfrak{g}l_n)$-intertwiner.
Lemma 2.3. It holds that
\[\mathcal{U}(\mathfrak{gl}_n) \cdot D(X; \varphi) \cong V \cdot e\Phi e \]
as a left \(\mathcal{U}(\mathfrak{gl}_n) \)-module. In particular, \(V \cdot e\Phi e \cong V_{n,\ell}(\alpha) \) if \(\varphi(h) = \alpha^{\nu(h)} \).

By the Schur-Weyl duality, we have
\[V \cong \bigoplus_{\lambda \vdash nl} \mathcal{M}_n^{\lambda} \boxtimes S^{\lambda}. \]

Here \(S^{\lambda} \) denotes the irreducible unitary right \(S_{nl} \)-module corresponding to \(\lambda \). We see that
\[\dim (S^{\lambda} \cdot e) = \langle \text{ind}_K^{\mathfrak{gl}_n} 1_K, S^{\lambda} \rangle_{S_{nl}} = K_{\lambda(n)}^{(n)} \]
where \(1_K \) is the trivial representation of \(K \) and \(\langle \pi, \rho \rangle_{S_{nl}} \) is the intertwining number of given representations \(\pi \) and \(\rho \) of \(S_{nl} \). Since \(K_{\lambda(n)}^{(n)} = 0 \) unless \(\ell(\lambda) \leq n \), it follows the

Theorem 2.4. It holds that
\[V \cdot e\Phi e \cong \bigoplus_{\lambda \vdash nl, \ell(\lambda) \leq n} \mathcal{M}_n^{\lambda} \boxtimes (S^{\lambda} \cdot e\Phi e). \]

In particular, as a left \(\mathcal{U}(\mathfrak{gl}_n) \)-module, the multiplicity of \(\mathcal{M}_n^{\lambda} \) in \(V \cdot e\Phi e \) is given by
\[\dim (S^{\lambda} \cdot e\Phi e) = \text{rk}_{\text{End}(S^{\lambda} \cdot e\Phi e)}(e\Phi e). \]

Let \(\lambda \vdash nl \) be a partition such that \(\ell(\lambda) \leq n \) and put \(d = K_{\lambda(n)}^{(n)} \). We fix an orthonormal basis \(\{e_1^{\lambda}, \ldots, e_f^{\lambda}\} \) of \(S^{\lambda} \) such that the first \(d \) vectors \(e_1^{\lambda}, \ldots, e_d^{\lambda} \) form a subspace \((S^{\lambda})^K \) consisting of \(K \)-invariant vectors and left \(f^{\lambda} - d \) vectors form the orthocomplement of \((S^{\lambda})^K \) with respect to the \(S_{nl} \)-invariant inner product. The matrix coefficient of \(S^{\lambda} \) relative to this basis is
\[\psi_{ij}^{\lambda}(g) = \langle e_i^{\lambda}, g e_j^{\lambda} \rangle_{S^{\lambda}} \quad (g \in S_{nl}, 1 \leq i, j \leq f^{\lambda}). \tag{2.3} \]

We notice that this function is \(K \)-bi-invariant. We see that the multiplicity of \(\mathcal{M}_n^{\lambda} \) in \(V \cdot e\Phi e \) is given by the rank of the matrix
\[\left(\sum_{h \in H} \varphi(h) \psi_{ij}^{\lambda}(h) \right)_{1 \leq i, j \leq d}. \]

As a particular case, we obtain the
Theorem 2.5. The multiplicity of the irreducible representation \mathcal{M}_n^λ in the cyclic module $U(\mathfrak{gl}_n) \cdot \det^{(\alpha)}(X)^l$ is equal to the rank of

$$F_{n,l}^\lambda(\alpha) = \left(\sum_{h \in H} \alpha^{\nu(h)} \psi_{ij}^\lambda(h) \right)_{1 \leq i, j \leq d}, \quad (2.4)$$

where $\{\psi_{ij}^\lambda\}_{i,j}$ denotes a basis of the λ-component of the space $C(K\backslash\mathfrak{S}_{nl}/K)$ of K-biinvariant functions on \mathfrak{S}_{nl} given by (2.3).

Remark 2.6. (1) By the definition of the basis $\{\psi_{ij}^\lambda\}_{i,j}$ in (2.3), we have $F_{n,l}^\lambda(0) = I$.

(2) Since $\alpha^{\nu(g^{-1})} = \alpha^{\nu(g)}$ and $\psi_{ij}^\lambda(g^{-1}) = \psi_{ji}^\lambda(g)$ for any $g \in \mathfrak{S}_{nl}$, the transition matrices satisfy $F_{n,l}^\lambda(\alpha)^* = F_{n,l}^\lambda(\overline{\alpha})$.

(3) In Examples 1.3 and 1.4, the transition matrices are given by diagonal matrices. We expect that any transition matrix $F_{n,l}^\lambda(\alpha)$ is diagonalizable in $\text{Mat}_{K^l(n)}(\mathbb{C}[\alpha])$.

Example 2.7 (Example 1.3). If $l = 1$, then $H = G = \mathfrak{S}_n$ and $K = \{1\}$. Therefore, for any $\lambda \vdash n$, we have

$$F_{n,1}^\lambda(\varphi) = \frac{n!}{f_{\lambda}} \langle \varphi, \chi^\lambda \rangle_{\mathfrak{S}_n} I \quad (2.5)$$

by the orthogonality of the matrix coefficients. Here χ^λ denotes the irreducible character of \mathfrak{S}_n corresponding to λ. In particular, if $\varphi = \alpha^{\nu(\cdot)}$, then

$$F_{n,1}^\lambda(\alpha) = f_{\lambda}(\alpha)I \quad (2.6)$$

since the Fourier expansion of $\alpha^{\nu(\cdot)}$ (as a class function on \mathfrak{S}_n) is

$$\alpha^{\nu(\cdot)} = \sum_{\lambda \vdash n} \frac{f_{\lambda}}{n!} f_{\lambda}(\alpha) \chi^\lambda, \quad (2.7)$$

which is obtained by specializing the Frobenius character formula for \mathfrak{S}_n (see, e.g. [3]).

The trace of the transition matrix $F_{n,l}^\lambda(\alpha)$ is

$$F_{n,l}^\lambda(\alpha) \overset{\text{def}}{=} \text{tr} \ F_{n,l}^\lambda(\alpha) = \sum_{h \in H} \alpha^{\nu(h)} \omega^\lambda(h), \quad (2.8)$$

where ω^λ is the zonal spherical function for λ with respect to K defined by

$$\omega^\lambda(g) \overset{\text{def}}{=} \frac{1}{|K|} \sum_{k \in K} \chi^\lambda(kg) \quad (g \in \mathfrak{S}_{nl}).$$

This is regarded as a generalization of the modified content polynomial since $F_{n,1}^\lambda(\alpha) = f^\lambda f_{\lambda}(\alpha)$ as we see above. It is much easier to handle these polynomials than the transition matrices. If we could prove that a transition matrix $F_{n,l}^\lambda$ is a scalar matrix, then we would have $F_{n,l}^\lambda = d^{-1} F_{n,l}^\lambda(\alpha)I$ and hence we see that the multiplicity of \mathcal{M}_n^λ in $V_{n,l}(\alpha)$ is completely controlled by the single polynomial $F_{n,l}^\lambda(\alpha)$. In this sense, it is desirable to obtain a characterization of the irreducible representations whose corresponding transition matrices are scalar as well as to get an explicit expression for the polynomials $F_{n,l}^\lambda(\alpha)$. We will investigate these polynomials $F_{n,l}^\lambda(\alpha)$ and their generalizations in [3].

Example 2.8. Let us calculate $F_{n,l}^{(n-1,1)}(\alpha)$. We notice that $\chi^{(n-1,1)}(g) = \text{fix}_{nl}(g) - 1$ where fix_{nl} denotes the number of fixed points in the natural action $\mathfrak{S}_{nl} \curvearrowright [nl]$. Hence we see that

$$F_{n,l}^{(n-1,1)}(\alpha) = \sum_{h \in H} \alpha^{\nu(h)} \frac{1}{|K|} \sum_{k \in K} (\text{fix}_{nl}(kh) - 1) = \sum_{h \in H} \alpha^{\nu(h)} \frac{1}{|K|} \sum_{k \in K} \sum_{x \in [nl]} \delta_{khx,x} - \sum_{h \in H} \alpha^{\nu(h)}.$$
It is easily seen that \(khx \neq x\) for any \(k \in K\) if \(hx \neq x\) \((x \in [n]l)\). Thus it follows that
\[
\frac{1}{|K|} \sum_{k \in K} \sum_{x \in [n]l} \delta_{khx,x} \sum_{x \in [n]l} \delta_{hx,x} \frac{1}{|K|} \sum_{k \in K} \delta_{kh,x} = \frac{1}{l} \tilde{h}x_{nm}(h) \quad (h \in H).
\]
Therefore we have
\[
F_{n,l}^{(n-1,1)}(\alpha) = \frac{1}{\sqrt{\gamma}} \sum_{h \in H} \alpha^{\nu(h)} \tilde{h}x_{nm}(h) - \sum_{h \in H} \alpha^{\nu(h)} = F_{n,1}^{(n)}(\alpha)^{l-1} F_{n,1}^{(n-1,1)}(\alpha)
\]
\[
= (n-1)(1-\alpha)(1-(n-1)\alpha)^{l-1} \prod_{i=1}^{n-2} (1+i\alpha)^{l}.
\]
We note that the transition matrix \(F_{n,l}^{(n-1,1)}\) is a scalar one (see [3]), so that the multiplicity of \(\mathcal{M}_{\alpha}^{(n-1,1)}\) in \(V_{n,l}(\alpha)\) is zero if \(\alpha \in \{1, -1, -1/2, \ldots, -1/(n-1)\}\) and \(n-1\) otherwise.

3 Irreducible decomposition of \(V_{2,l}(\alpha)\) and Jacobi polynomials

In this section, as a particular example, we consider the case where \(n = 2\) and calculate the transition matrix \(F_{2,l}^{(\alpha)}\) explicitly. Since the pair \((\mathcal{G}_2, K)\) is a Gelfand pair (see, e.g., [6]), it follows that
\[
K_{\lambda(l)} = \left[\text{ind}_{\mathcal{G}_2}^{\mathcal{G}_2} 1_{K}, S^{\lambda} \right]_{\mathcal{G}_2} = 1
\]
for each \(\lambda \vdash 2n\) with \(\ell(\lambda) \leq 2\). Thus, in this case, the transition matrix is just a polynomial and is given by
\[
F_{2,l}^{(\alpha)} = \text{tr} F_{2,l}^{(\alpha)} = \sum_{h \in H} \alpha^{\nu(h)} \omega^{\lambda}(h) = \sum_{s=0}^{l} \binom{l}{s} \omega^{\lambda}(g_s) \alpha^s.
\] \(\text{(3.1)}\)

Here we put \(g_s = (1, l+1)(2, l+2)\ldots(s, l+s) \in \mathcal{G}_2\). Now we write \(\lambda = (2l-p, p)\) for some \(p\) \((0 \leq p \leq l)\). The value \(\omega^{(2l-p, p)}(g_s)\) of the zonal spherical function is calculated by Bannai and Ito [2, p.218] as
\[
\omega^{(2l-p, p)}(g_s) = Q_p(s; -l-1, -l-1, l) = \sum_{j=0}^{p} (-1)^j \binom{p}{j} \binom{2l-p+1}{j} \binom{l}{j}^2 \binom{s}{j},
\]
where
\[
Q_n(x; \alpha, \beta, N) \overset{\text{def}}{=} \tilde{\frac{3}{2}} F_2 \left(-n, n+\alpha+\beta+1, -x \atop \alpha+1, -N \right) \overset{\text{def}}{=} \sum_{j=0}^{N} (-1)^j \binom{n}{j} \left(-n - \alpha - \beta - 1 \atop j \right) \left(-\alpha - 1 \atop j \right)^{-1} \left(N \atop j \right)^{-1} \left(x \atop j \right)
\]
is the Hahn polynomial (see also [6, p.399]). We also denote by \(n+1 \tilde{F}_p \left(a_1, \ldots, a_p \atop b_1, \ldots, b_q \right)_{(-N, x)}\) \((b_1, \ldots, b_q, -N) \in \mathbb{N}\) the hypergeometric polynomial
\[
\tilde{F}_p \left(a_1, \ldots, a_p \atop b_1, \ldots, b_q \right)_{(-N, x)} = \sum_{j=0}^{N} \frac{(a_1)_j \ldots (a_p)_j}{(b_1)_j \ldots (b_q)_j (-N)_j} \frac{x^j}{j!}
\]
for \(p, q, N \in \mathbb{N}\) in general (see [11]). Further, if we put
\[
G_p^{(l)}(x) \overset{\text{def}}{=} \frac{3}{2} \tilde{F}_1 \left(-p, l-p+1 \atop -l \right) = \sum_{j=0}^{p} (-1)^j \binom{p}{j} \binom{l-p+j}{j} \binom{l}{j}^{-1} x^j,
\]
then we have the
Theorem 3.1. Let \(l \) be a positive integer. It holds that
\[
F_{2l}^{(2l-p,p)}(\alpha) = \sum_{s=0}^{l} \left(\begin{array}{c} s \\ l \end{array} \right) Q_p(s; l-1, l-1, l) \alpha^s = (1 + \alpha)^{l-p} G_p^l(\alpha)
\]
for \(p = 0, 1, \ldots, l \).

Proof. Let us put \(x = -1/\alpha \). Then we have
\[
\sum_{s=0}^{l} \left(\begin{array}{c} s \\ l \end{array} \right) Q_p(s; l-1, l-1, l) \alpha^s = \sum_{j=0}^{p} (-1)^j \binom{p}{j} \binom{2l-p+1}{j} \binom{l}{j}^{-1} \alpha^j (1 + \alpha)^{l-j} = x^{-l} (x-1)^{l-p} \sum_{j=0}^{p} \binom{p}{j} \binom{2l-p+1}{j} \binom{l}{j}^{-1} (x-1)^{p-j}
\]
and
\[
(1 + \alpha)^{l-p} G_p^l(\alpha) = x^{-l} (x-1)^{l-p} \sum_{j=0}^{p} (-1)^j \binom{p}{j} \binom{l-p+j}{j} \binom{l}{j}^{-1} (-x)^{p-j}.
\]
Here we use the elementary identity
\[
\sum_{s=0}^{l} \left(\begin{array}{c} s \\ l \end{array} \right) \left(\begin{array}{c} l \\ j \end{array} \right) \alpha^s = \left(\begin{array}{c} l \\ j \end{array} \right) \alpha^j (1 + \alpha)^{l-j}.
\]
Hence, to prove the theorem, it is enough to verify
\[
\sum_{i=0}^{p} \binom{p}{i} \binom{l-p+i}{i} \binom{l}{i}^{-1} x^{p-i} = \sum_{j=0}^{p} \binom{p}{j} \binom{2l-p+1}{j} \binom{l}{j}^{-1} (x-1)^{p-j}.
\] (3.2)
Comparing the coefficients of Taylor expansion of these polynomials at \(x = 1 \), we notice that the proof is reduced to the equality
\[
\sum_{i=0}^{r} \binom{l-i}{l-r} \binom{l-p+i}{l-p} = \binom{2l-p+1}{r}
\] (3.3)
for \(0 \leq r \leq p \), which is well known (see, e.g. (5.26) in [9]). Thus we have the conclusion. \(\square \)

Thus we give another proof of the irreducible decomposition (1.7).

References
[1] G. E. Andrews, R. Askey and R. Roy: Special Functions. Encyclopedia of Mathematics and its Applications, 71. Cambridge University Press, Cambridge, 1999.
[2] E. Bannai and T. Ito: Algebraic Combinatorics I, Association Schemes. The Benjamin/Cummings Publishing Co., Inc., Menlo Park, CA, 1984.
[3] K. Kimoto: Generalized content polynomials toward \(\alpha \)-determinant cyclic modules. Preprint (2007).
[4] K. Kimoto, S. Matsumoto and M. Wakayama: Alpha-determinant cyclic modules and Jacobi polynomials. arXiv: 0710.3669.
[5] K. Kimoto and M. Wakayama: Invariant theory for singular \(\alpha \)-determinants. J. Combin. Theory Ser. A 115 (2008), no.1, 1–31.
[6] I. G. Macdonald: Symmetric Functions and Hall Polynomials, Second edition. Oxford Univ. Press, 1995.

[7] S. Matsumoto: Alpha-pfaffian, pfaffian point process and shifted Schur measure. Linear Algebra Appl. 403 (2005), 369–398.

[8] S. Matsumoto and M. Wakayama: Alpha-determinant cyclic modules of $\mathfrak{gl}_n(\mathbb{C})$. J. Lie Theory 16 (2006), 393–405.

[9] R. L. Graham, D. E. Knuth and O. Patashnik: Concrete Mathematics. A foundation for computer science. Second edition. Addison-Wesley Publishing Company, Reading, MA, 1994.

[10] T. Shirai and Y. Takahashi: Random point fields associated with certain Fredholm determinants I: fermion, Poisson and boson point processes. J. Funct. Anal. 205 (2003), 414–463.

[11] D. Vere-Jones: A generalization of permanents and determinants. Linear Algebra Appl. 111 (1988), 119–124.

KAZUFUMI KIMOTO
Department of Mathematical Science, University of the Ryukyus
Senbaru, Nishihara, Okinawa 903-0231, Japan
kimoto@math.u-ryukyu.ac.jp