NON-POLYNOMIAL ENTIRE SOLUTIONS TO σ_k EQUATIONS

MICAH WARREN

ABSTRACT. For $2k = n + 1$, we exhibit non-polynomial solutions to the Hessian equation

$$\sigma_k(D^2u) = 1$$

on all of \mathbb{R}^n.

1. INTRODUCTION

In this note, we demonstrate the following.

Theorem 1. For

$$n \geq 2k - 1,$$

there exist non-polynomial elliptic entire solutions to the equation

$$\sigma_k(D^2u) = 1$$

on \mathbb{R}^n.

Corollary 2. For all $n \geq 3$, there exist on \mathbb{R}^n non-polynomial entire solutions to

$$\sigma_2(D^2u) = 1.$$

For $k = 1$, the entire harmonic functions in the plane arising as real parts of analytic functions are classically known. For $k = n$, the famous Bernstein result of Jörgens [5], Calabi [1], and Pogorelov [6] states that all entire solutions to the Monge-Ampère equation are quadratic. Chang and Yuan [2] have shown that any entire convex solution to (2) in any dimension must be quadratic. To the best of our knowledge, for $1 < k < n$, the examples presented here are the first known non-trivial entire solutions to σ_k equations.

The special Lagrangian equation is the following

$$\sum_{i=1}^{n} \arctan \lambda_i = \theta$$

(here λ_i are eigenvalues of D^2u) for

$$\theta \in \left(-\frac{n}{2} \pi, \frac{n}{2} \pi \right)$$

a constant. Fu [3] showed that when $n = 2$ and $\theta \neq 0$ all solutions are quadratic. When $n = 2$ and $\theta = 0$ the equation (3) becomes simply the Laplace equation, which admits well-known non-polynomial solutions. Yuan [8] showed that all convex solutions to special Lagrangian equations are quadratic.

The critical phase for special Lagrangian equations is

$$\theta = \frac{n - 2}{2} \pi.$$

The author’s work is supported in part by the NSF via DMS-1161498.
Yuan [9] has shown that for values above the critical phase, all entire solutions are quadratic. On the other hand, by adding a quadratic to a harmonic function, one can construct nontrivial entire solutions for phases

\[|\theta| < \frac{n-2}{2} \pi. \]

By [4] when \(n = 3 \), the critical equation

\[\sum_{i=1}^{3} \arctan \lambda_i = \frac{\pi}{2} \]

is equivalent to the equation (2). Thus Corollary 2 answers the critical phase Bernstein question when \(n = 3 \). In the process, we also show the following.

Theorem 3. There exists a special Lagrangian graph in \(\mathbb{C}^3 \) over \(\mathbb{R}^3 \) that does not graphically split.

Harvey and Lawson [4], show that a graph

\[(x, \nabla u(x)) \subset \mathbb{C}^n\]

is special Lagrangian and a minimizing surface if and only if \(u \) satisfies (3). We say a graph splits graphically when the function \(u \) can be written the sum of two functions in independent variables.

There are still many holes in the Bernstein picture for \(\sigma_k \) equations. To begin with, when \(n = 4 \) the existence of interesting solutions to \(\sigma_3 = 1 \). For special Lagrangian equations the existence of critical phase solutions when \(n \geq 4 \) is open.

2. **Proof**

We will assume that \(n \) is odd and

\[2k = n + 1. \]

We construct a solution \(u \) on \(\mathbb{R}^n \). The general result will follow by noting that if we define

\[\tilde{u} : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R} \]

via

\[\tilde{u}(z, w) = u(z) \]

then

\[\sigma_k (D^2 \tilde{u}) = \sigma_k (D^2 u) = 1. \]

Consider functions on \(\mathbb{R}^{n-1} \times \mathbb{R} \) of the form

\[u(x, t) = r^2 e^t + h(t) \]

where

\[r = (x_1^2 + x_2^2 + \ldots + x_{n-1}^2)^{1/2}. \]
Compute the Hessian, rotating \mathbb{R}^{n-1} so that $x_1 = r$:

$$
D^2u = \begin{pmatrix}
2e^t & 0 & \ldots & 0 & 2re^t \\
0 & 2e^t & 0 & \ldots & 0 \\
\ldots & 0 & \ldots & 0 & \ldots \\
0 & \ldots & 0 & 2e^t & 0 \\
2re^t & 0 & \ldots & 0 & r^2 e^t + h''(t)
\end{pmatrix}
$$

(4)

$$
= e^t \begin{pmatrix}
2 & 0 & \ldots & 0 & 2r \\
0 & 2 & 0 & \ldots & 0 \\
\ldots & 0 & \ldots & 0 & \ldots \\
0 & \ldots & 0 & 2 & 0 \\
2r & 0 & \ldots & 0 & r^2 + e^{-t}h''(t)
\end{pmatrix} ,
$$

We then compute. The k-th symmetric polynomial is given by the sum of k-minors. Let

(5)

$$
S = \{ \alpha \subset \{1, \ldots, n\} : |\alpha| = k \} ,
$$

and let

$$
A = \{ \alpha \in S : 1 \in \alpha \} \\
B = \{ \alpha \in S : n \in \alpha \} .
$$

We express S as a disjoint union

$$
S = (A \cap B) \cup (B \setminus A) \cup (S \setminus B) .
$$

Define

$$
\sigma_k^{(\alpha)} = \det \left(\begin{array}{c}
\text{k \times k matrix with} \\
\text{row and columns} \\
\text{chosen from } \alpha
\end{array} \right) .
$$

For $\alpha \in (A \cap B)$ we have

$$
\sigma_k^{(\alpha)} = \det \left(e^t \begin{pmatrix}
2 & 0 & \ldots & 0 & 2r \\
0 & 2 & 0 & \ldots & 0 \\
\ldots & 0 & \ldots & 0 & \ldots \\
0 & \ldots & 0 & 2 & 0 \\
2r & 0 & \ldots & 0 & r^2 + e^{-t}h''(t)
\end{pmatrix} ,
$$

that is

$$
\sigma_k^{(\alpha)} = e^{kt} 2^{k-2} (2r^2 + 2e^{-t}h'' - 4r^2) .
$$

Next, for $\alpha \in B \setminus A$,

$$
\sigma_k^{(\alpha)} = \det \left(e^t \begin{pmatrix}
2 & 0 & \ldots & 0 \\
0 & \ldots & 0 & 0 \\
\ldots & 0 & 2 & \ldots \\
0 & \ldots & 0 & r^2 + e^{-t}h''
\end{pmatrix} ,
$$

that is

$$
\sigma_k^{(\alpha)} = e^{kt} 2^{k-1} (r^2 + e^{-t}h'') .
$$

Finally, for $\alpha \in (S \setminus B)$ we have

$$
\sigma_k^{(\alpha)} = \det \left(e^t \begin{pmatrix}
2 & 0 & \ldots \\
0 & \ldots & 0 \\
\ldots & 0 & 2
\end{pmatrix} ,
$$
that is
\[\sigma_k^{(\alpha)}(x) = e^{kt}x^k. \]

We sum these up:
\[\sigma_k(D^2u) = \sum_{\alpha \in (A \cap B)} \sigma_k^{(\alpha)} + \sum_{\alpha \in (B \setminus A)} \sigma_k^{(\alpha)} + \sum_{\alpha \in (S \setminus B)} \sigma_k^{(\alpha)}. \]

Counting, we get
\[\sigma_k(D^2u) = \sum_{\alpha \in (A \cap B)} \sigma_k^{(\alpha)} + \sum_{\alpha \in (B \setminus A)} \sigma_k^{(\alpha)} + \sum_{\alpha \in (S \setminus B)} \sigma_k^{(\alpha)}. \]

Grouping the terms, we see
\[\sigma_k(D^2u) = e^{kt}2^{k-1} \left[-\frac{(n-2)}{k-2} + \frac{(n-2)}{k-1} \right] r^2 + \left[-\frac{(n-2)}{k-2} + \frac{(n-2)}{k-1} \right] e^{-t}h'' \]
\[+ e^{kt}2^{k-1} \left(\alpha \right). \]

Now
\[-\frac{(n-2)}{k-2} + \frac{(n-2)}{k-1} = \frac{(n-2)(k-1)-(n-2)(k-2)}{(k-2)(k-1)} = \frac{(n-k)}{(k-1)!} = \frac{(n-k)}{(k-1)!}. \]

This vanishes if and only if
\[1 = \frac{(n-k)(k-2)}{(n-2)(k-2)} = \frac{(n-k)}{(k-1)!}\]
or precisely when
\[n-k = k-1 \]
\[2k = n+1. \]

Thus for this choice of \(k \), (6) becomes
\[\sigma_k(D^2u) = A_{n,k}e^{(k-1)t}h'' + B_{n,k}e^{kt} \]
for some constants \(A_{n,k}, B_{n,k} \). Setting to this expression to 1, we solve for \(h''(t) \)
\[h''(t) = \frac{1 - B_{n,k}e^{kt}}{A_{n,k}e^{(k-1)t}}, \]
noting the right-hand side is a smooth function in \(t \). Integrating twice in \(t \) yields solutions to (7) and hence to (1).

To see that the equation is elliptic, we first note that inspecting (4) the \(n-2 \) eigenvalues in the middle must be positive. Of the remaining two, at least one must be positive as the diagonal (of the \(2 \times 2 \) matrix) contains at least one positive entry. We then note the following.
Lemma 4. Suppose that
\[\sigma_k(D^2 u) > 0 \]
and \(D^2 u \) has at most 1 negative eigenvalue. Then \(D^2 u \in \Gamma^+_k \).

Proof. Diagonalize \(D^2 u \) so that \(D^2 u = \text{diag}\{\lambda_1, \lambda_2, \ldots, \lambda_n\} \) with \(0 \leq \lambda_2 \leq \lambda_3 \ldots \leq \lambda_n \). Clearly
\[\frac{d}{ds}\sigma_k(\text{diag}\{\lambda_1 + s, \lambda_2, \ldots, \lambda_n\}) \geq 0 \]
so we may deform \(D^2 u \) to a positive definite matrix \(D^2 u + M \), with \(\sigma_k(D^2 u + sM) > 0 \) for \(s \geq 0 \). Thus \(D^2 u \) is in the component of \(\sigma_k > 0 \) containing the positive cone, that is, \(D^2 u \in \Gamma^+_k \). □

Example 5. When \(n = 3 \) the function
\[u(x, y, t) = (x^2 + y^2)e^t + \frac{1}{4}e^{-t} - e^t \]
solves
\[\sigma_2(D^2 u) = 1. \]

Remark 6. This method allows one to construct solutions to complex Monge-Ampère equations as well. See [7].

References

[1] Eugenio Calabi. Improper affine hyperspheres of convex type and a generalization of a theorem by K. Jörgens. *Michigan Math. J.*, 5:105–126, 1958. folder 5.
[2] Sun-Yung Alice Chang and Yu Yuan. A Liouville problem for the sigma-2 equation. *Discrete Contin. Dyn. Syst.*, 28(2):659–664, 2010.
[3] Lei Fu. An analogue of Bernstein’s theorem. *Houston J. Math.*, 24(3):415–419, 1998.
[4] Reese Harvey and H. Blaine Lawson, Jr. Calibrated geometries. *Acta Math.*, 148:47–157, 1982.
[5] Konrad Jörgens. Über die Lösungen der Differentialgleichung \(rt - s^2 = 1 \). *Math. Ann.*, 127:130–134, 1954.
[6] A. V. Pogorelov. On the improper convex affine hyperspheres. *Geometriae Dedicata*, 1(1):33–46, 1972.
[7] Micah Warren. A Bernstein result and counterexample for entire solutions to Donaldson’s equation. *arXiv:1503.06847*.
[8] Yu Yuan. A Bernstein problem for special Lagrangian equations. *Invent. Math.*, 150(1):117–125, 2002.
[9] Yu Yuan. Global solutions to special Lagrangian equations. *Proc. Amer. Math. Soc.*, 134(3):1355–1358 (electronic), 2006.

Fenton Hall, University of Oregon, Eugene, OR 97403
E-mail address: micahw@uoregon.edu