HERMITIAN TOEPLIZ DETERMINANTS FOR THE CLASS S OF UNIVALENT FUNCTIONS

MILUTIN OBRADOVIĆ AND NIKOLA TUNESKI

Abstract. Introducing a new method we give sharp estimates of the Hermitian Toepliz determinants of third order for the class S of functions univalent in the unit disc. The new approach is also illustrated on some subclasses of the class S.

1. Introduction

Let A be the class of functions f that are analytic in the open unit disc $D = \{ z : |z| < 1 \}$ normalized such that $f(0) = f'(0) - 1 = 0$ and let $S \subset A$ be the class of univalent functions in the unit disc D (functions that are analytic, one-on-one and onto).

For functions $f \in A$ of the form $f(z) = z + a_2 z^2 + a_3 z^3 + \cdots$ and positive integers q and n, the Toepliz matrix is defined by

$$T_{q,n}(f) = \begin{bmatrix} a_n & a_{n+1} & \cdots & a_{n+q-1} \\ \overline{a_{n+1}} & a_n & \cdots & a_{n+q-2} \\ \vdots & \vdots & \ddots & \vdots \\ \overline{a_{n+q-1}} & \overline{a_{n+q-2}} & \cdots & a_n \end{bmatrix},$$

where $\overline{a_k} = \overline{a_k}$. Thus, the second Toepliz determinant is

$$|T_{2,1}(f)| = 1 - |a_2|^2$$

and the third is

$$|H_{3,1}(f)| = \begin{vmatrix} 1 & a_2 & a_3 \\ \overline{a_2} & 1 & a_2 \\ \overline{a_3} & \overline{a_2} & 1 \end{vmatrix} = 2 \text{Re}(a_2 \overline{a_3}) - 2|a_2|^2 - |a_3|^2 + 1.$$

The concept of Toeplitz matrices plays an important role in functional analysis, applied mathematics as well as in physics and technical sciences (for more details see [24]).

If a_n is real, then the Toeplitz matrix $T_{q,n}(f)$ is an Hermitian one, i.e., it is equal to its conjugate transpose: $T_{q,n}(f) = [T_{q,n}(f)]^T$. Determinants of Hermitian matrices are real numbers. Additionally, if $n = 1$, the determinant $|T_{q,1}(f)|$ is rotationally invariant, i.e., for any real θ, the determinants $|T_{q,1}(f)|$ and $|T_{q,1}(f_\theta)|$ of the Hermitian Toeplitz matrices of functions $f \in A$ and $f_\theta(z) := e^{-i\theta}f(e^{i\theta}z)$ have same values.

1 corresponding author; ORCID no.: 0000-0003-3889-0048.
2000 Mathematics Subject Classification. 30C45, 30C50, 30C55.

Key words and phrases. univalent, Hermitian Toepliz determinant of second order, Hermitian Toepliz determinant of third order, class U, convex functions.
Recently, various problems of finding upper bounds, preferably sharp, of determinants of coefficients of classes of univalent functions, were rediscovered and attract significant interest. The highest focus is on the Hankel determinant and valuable references with overview of older results and the new ones are [2, 3,5–9,14–21,23–25].

Naturally rises the question of finding lower and upper bound estimates of the determinant of the Hermitian Toeplitz matrices for the class of univalent functions and its subclasses. This problem was successfully solved sharp estimates in [4] for the classes of starlike and convex functions of order \(\alpha \), \(0 \leq \alpha < 1 \), defined respectfully by

\[S^\ast(\alpha) = \left\{ f \in A : \Re \left[\frac{zf'(z)}{f(z)} \right] > \alpha, \ z \in \mathbb{D} \right\} \]

and

\[C(\alpha) = \left\{ f \in A : \Re \left[1 + \frac{zf''(z)}{f'(z)} \right] > \alpha, \ z \in \mathbb{D} \right\}. \]

For finding sharp estimates of the Hermitian Toeplitz determinant of second order it is enough to know sharp estimate for the second coefficient. The same question for the third order determinant turns out to be more complicated.

In this paper we introduce new method for obtaining estimates of the Hermitian Toeplitz determinants of third order and receive sharp result for the general class \(S \) of univalent functions.

We illustrate the new method also on the class of convex functions, receiving the same sharp result as in [4]. In a similar manner we study classes

\[U(\lambda) = \left\{ f \in A : \left| \frac{z}{f(z)} \right|^2 f'(z) - 1 < \lambda, \ z \in \mathbb{D} \right\} \quad (0 < \lambda \leq 1) \]

and

\[G(\delta) = \left\{ f \in A : \Re \left[1 + \frac{zf''(z)}{f'(z)} \right] < 1 + \frac{\delta}{2}, \ z \in \mathbb{D} \right\} \quad (0 < \delta \leq 1). \]

Class \(U(\lambda) \) is not included in the class of starlike functions \(S^* := S^* (0) \), nor vice versa (see [10,11]). Therefore estimates for \(S^* \) cannot be transferred to the class \(U(\lambda) \). Sharp upper bound of the Hankel determinant of second and third order for the class \(U := U(1) \) are given in [15].

2. MAIN RESULTS

Theorem 1. If \(f \in S \), then

\[-3 \leq |T_{2,1}(f)| \leq 1 \quad \text{and} \quad -1 \leq |T_{3,1}(f)| \leq 8.\]

All inequalities are sharp.

Proof. From the Bieberbach’s theorem ([11]) we have \(|a_2| \leq 2 \) for all functions from \(S \) with Koebe’s function \(k(z) = \frac{z}{(1-z)^2} = \sum_{k=1}^{\infty} k z^k \) as an extremal one. Now both estimates for \(|T_{2,1}(f)| \) directly follow, together with their sharpness.

We continue with study of the third Toeplitz determinant.

Since for the class \(S \), \(|a_3 - a_2^2| \leq 1 \) (see [21 p.5]), then

\[|a_2|^4 + |a_3|^2 - 2 \Re (\frac{2a_2}{a_3}) = |a_3 - a_2^2| \leq 1, \tag{2} \]

All inequalities are sharp.
and from here
\[2 \Re (a_2 \overline{a_3}) \geq |a_2|^2 + |a_3|^2 - 1. \]
Now, by using (1) we have
\[|T_{3,1}(f)| \geq (|a_2|^2 - 1)^2 - 1 \geq -1, \]
which is sharp as the function \(f_1(z) = \frac{z}{1 + z^2} = z + z^2 - z^4 - \cdots \) shows.

As for the upper bound of \(|T_{3,1}(f)| \), from (1), by using that \(\Re (a_2^2 a_3) \leq |a_2|^2 |a_3| \), we obtain
\[|T_{3,1}(f)| \leq -|a_3|^2 + 2|a_2|^2 |a_3| - 2|a_2|^2 + 1 =: \varphi(|a_3|), \]
where \(\varphi(t) = -t^2 + 2|a_2|^2 t - 2|a_2|^2 + 1 \quad \text{and} \quad 0 \leq t = |a_3| \leq 3. \)
We need to find \(\max \varphi(t) \) for \(t \in [0, 3] \).

In that sense we have two cases.

The first one is \(0 \leq |a_2|^2 \leq 3 \), i.e., \(0 \leq |a_2| \leq \sqrt{3} \), when
\[\max \varphi(t) = \varphi(|a_2|^2) = (|a_2|^2 - 1)^2 \leq 4. \]

The second case is \(3 \leq |a_2|^2 \leq 4 \), i.e., \(\sqrt{3} \leq |a_2| \leq \sqrt{2} \), when
\[\max \varphi(t) = \varphi(3) = 4|a_2|^2 - 8 \leq 8. \]
Therefore, \(\max \varphi(t) = 8 \), when \(t \in [0, 3] \).

The result is sharp as the Koebe function \(k(z) \) shows. \(\square \)

Remark 1.

(i) The same result as in Theorem 1 holds for the class \(S^* = S^*(0) \) (see Corollary 1 and Corollary 3 from [4]).

(ii) The same result as in Theorem 1 holds for the class \(\mathcal{U} = \mathcal{U}(1) \) since \(\mathcal{U} \subset S \) and both extremal functions \(f_1 \) and \(k \) belong to \(\mathcal{U} \).

Remark 2. It is evident that for applying the method used in the proof of Theorem 1 on other classes of univalent functions it is enough to know the sharp estimates of \(|a_2|, |a_3| \) and \(|a_3 - a_2^2| \) and apply them on
\[|T_{2,1}(f)| = 1 - |a_2|^2; \]
and on
\[|T_{3,1}(f)| \leq -|a_3|^2 + 2|a_2|^2 |a_3| - 2|a_2|^2 + 1 =: \varphi(|a_3|), \]
where \(\varphi(t) = -t^2 + 2|a_2|^2 t - 2|a_2|^2 + 1 \) and \(t = |a_3| \).

In the sense of Remark 2 for the class \(\mathcal{U}(\lambda) \), using the sharp estimates
\[|a_2| \leq 1 + \lambda, \quad |a_3| \leq 1 + \lambda + \lambda^2 \quad \text{and} \quad |a_3 - a_2^2| \leq \lambda, \]
given in [12] and [13], we receive the following theorem.
Theorem 2. If \(f \in \mathcal{U}(\lambda) \), then
\[
-\lambda(2 + \lambda) \leq |T_{2,1}(f)| \leq 1
\]
and
\[
-\lambda^2 \leq |T_{3,1}(f)| \leq \left\{ \begin{array}{ll}
1, & 0 \leq \lambda \leq \lambda_0 \\
\lambda^2(1 + \lambda)(3 + \lambda), & \lambda_0 \leq \lambda \leq 1
\end{array} \right.,
\]
where \(\lambda_0 = 0.44762 \ldots \) is the positive real root of the equation
\[
\lambda^2(1 + \lambda)(3 + \lambda) - 1 = 0.
\]
All inequalities are sharp.

Proof. The estimates of the second Hermitian Toeplitz determinant follow directly from (3) and (5) and they are sharp due to the functions \(f \) with sharpness for the function \(f \) in (5), we have
\[
|T_{3,1}(f)| \geq (|a_2|^2 - 1)^2 - \lambda^2 \geq -\lambda^2,
\]
with sharpness for the function \(f_2(z) = \frac{z}{1-z+\lambda z^2} = z + (1+\lambda)z^2 + (1+\lambda+\lambda^2)z^3 + \cdots \). Function \(f_2 \) is analytic on \(\mathbb{D} \) since \(1 - z + \lambda z^2 \) equals zero on the unit disk only when \(\lambda = 0 \) and \(\lambda = -2 \).

For the upper bound of \(T_{3,1}(f) \) we consider two cases.

In the first one, when \(0 \leq |a_2|^2 \leq 1 + \lambda + \lambda^2 \), the vertex of the parabola \(\varphi(t) \) is obtained for \(t = |a_2|^2 \) and lies in the range of \(t = |a_3| \). So,
\[
|T_{3,1}(f)| \leq \max \varphi(t) = \varphi(|a_2|^2) = (|a_2|^2 - 1)^2
\]
\[
\leq \left\{ \begin{array}{ll}
1, & |a_2|^2 \leq 2 \quad (\Leftrightarrow 0 < \lambda \leq \frac{\sqrt{5} - 1}{2}) \\
\lambda^2(1 + \lambda)^2, & 2 \leq |a_2|^2 \leq 1 + \lambda + \lambda^2 \quad (\Leftrightarrow \frac{\sqrt{5} - 1}{2} \leq \lambda \leq 1)
\end{array} \right.,
\]
Similarly, in the second case, \(1 + \lambda + \lambda^2 \leq |a_2|^2 \leq (1 + \lambda)^2 \), we have that the vertex lies on the right of the range of \(t = |a_3| \). Thus
\[
|T_{3,1}(f)| \leq \max \varphi(t) = \varphi(1 + \lambda + \lambda^2) = \lambda^2(1 + \lambda)(3 + \lambda).
\]

By using all these facts, we conclude that
\[
|T_{3,1}(f)| \leq \left\{ \begin{array}{ll}
1, & 0 < \lambda \leq \lambda_0 \\
\lambda^2(1 + \lambda)(3 + \lambda), & \lambda_0 \leq \lambda \leq 1
\end{array} \right.,
\]
where \(\lambda_0 = 0.44762 \ldots \) is the positive real root of the equation
\[
\lambda^2(1 + \lambda)(3 + \lambda) - 1 = 0.
\]

The upper bound of the third order determinant is also sharp with extremal function \(f_3 \) when \(0 < \lambda \leq \lambda_0 \) and \(f_4 \) when \(\lambda_0 \leq \lambda \leq 1 \).

For \(\lambda = 1 \) we receive the following corollary with the same estimates as for the class \(\mathcal{S} \) already discussed in Remark (ii).

Corollary 1. If \(f \in \mathcal{U} \), then
\[-3 \leq |T_{2,1}(f)| \leq 1 \quad \text{and} \quad -1 \leq |T_{3,1}(f)| \leq 8. \]
All inequalities are sharp.
We conclude with two more applications of Remark 2.

Theorem 3. If \(f \in C := C(0) \), then \(0 \leq |T_{3,1}(f)| \leq 1 \). The estimate is sharp.

Proof. For the class \(C \) of convex functions we know that

\[
|a_3 - a_2^2| \leq \frac{1}{3}(1 - |a_2|^2)
\]

(see [22]). So, from (4) we have

\[
|T_{3,1}(f)| \geq \frac{8}{9}(1 - |a_2|^2)^2 \geq 0.
\]

The function \(f_5(z) = \frac{z - z^{-1}}{2} = z + z^2 + z^3 + \cdots \) shows that this result is sharp.

On the other hand, since \(0 \leq |a_2| \leq 1 = \max |a_3| \), we have

\[
|T_{3,1}(f)| \leq \max \varphi(t) = \varphi(|a_2|^2) = (|a_2|^2 - 1)^2 \leq 1,
\]

with equality for \(f_5(z) = z \).

Therefore, \(0 \leq |T_{3,1}(f)| \leq 1 \) which is the same result as in Corollary 6 from [4]. \(\square \)

Theorem 4. If \(f \in G := G(1) \) we have sharp estimates \(\frac{1}{2} \leq |T_{3,1}(f)| \leq 1 \).

Proof. For the class \(G \) we have

\[
|a_2| \leq \frac{1}{2}, \quad |a_3| \leq \frac{1}{6} \quad \text{and} \quad |a_3 - a_2^2| \leq \frac{1}{4}
\]

(see [12]). Then

\[
|T_{3,1}(f)| \geq (1 - |a_2|^2)^2 - \frac{1}{16} \geq \left(\frac{3}{4} \right)^2 - \frac{1}{16} = \frac{1}{2}.
\]

The result is sharp as the function \(f_6(z) = z - \frac{1}{2}z^2 \) shows.

As for the upper bound, for \(0 \leq |a_2|^2 \leq \frac{1}{6} = \max |a_3| \) we have

\[
\max \varphi(t) = \varphi(|a_2|^2) = (|a_2|^2 - 1)^2 \leq 1,
\]

while for \(\frac{1}{6} \leq |a_2|^2 \leq \frac{1}{4} \),

\[
\max \varphi(t) = \varphi \left(\frac{1}{6} \right) = \frac{35}{36} - \frac{5}{3} |a_2|^2 \leq \frac{35}{36} - \frac{5}{3} \cdot \frac{1}{6} = \frac{25}{36},
\]

which implies that \(|T_{3,1}(f)| \leq \max \varphi(t) = 1 \) for \(0 \leq t = |a_3| \leq \frac{1}{6} \). The result is sharp for \(f_5(z) = z \).

This result can be easily generalized on the class \(G(\delta) \) using the sharp estimates require for the method given in [12]. \(\square \)
References

1. L. Bieberbach. Über die Koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln, Sitzungsber. Preuss. Akad. Wiss. Phys-Math., 158:940-955, 1916.

2. Babalola K.O., On $H_3(1)$ Hankel determinant for some classes of univalent functions, Inegual. Theory Appl. 2010, 6, 1-7.

3. Bello R.A., Opoola T.O., Upper Bounds for Fekete-Szego functions and the Second Hankel Determinant for a Class of Starlike functions, IOSR Journal of Mathematics, 13 (2) Ver. V, (2017) 34–39.

4. Cudna, K., Kwon, O.S., Lecko, A. et al., The second and third-order Hermitian Toeplitz determinants for starlike and convex functions of order α, Bull. Soc. Math. Mex. (2019) doi:10.1007/s40590-019-00271-1

5. Kowalczyk B., Lecko A., Sim Y.J., The sharp bound of the Hankel determinant of the third kind for convex functions, Bull. Aust. Math. Soc., 97 (2018), no. 3, 435–445.

6. Kwon O.S., Lecko A., Sim Y.J., The bound of the Hankel determinant of the third kind for starlike functions, Bull. Malays. Math. Sci. Soc. 42 (2019), no. 2, 767–780.

7. Kwon O.S., Sim Y.J., The Sharp Bound of the Hankel Determinant of the Third Kind for Starlike Functions with Real Coefficients, Mathematics 2019, 7, 721.

8. Lee S.E., Ravichandran V., Supramaniam S., Bounds for the second Hankel determinant of certain univalent functions, J. Inequal. Appl. 2013, 2013:281, 17 pp.

9. Mishra A.K., Prajapat J.K., Maharana S., Bounds on Hankel determinant for starlike and convex functions with respect to symmetric points, Cogent Math. 3 (2016), Art. ID 1160557, 9 pp.

10. M. Obradovi´c and S. Ponnusamy, New criteria and distortion theorems for univalent functions, Complex Variables Theory Appl. 44(2001), 173–191. (Also Reports of the Department of Mathematics, Preprint 190, June 1998, University of Helsinki, Finland).

11. M. Obradovi´c and S. Ponnusamy, On the class U, Proc. 21st Annual Conference of the Jammu Math. Soc. and a National Seminar on Analysis and its Application, 11–26, 2011.

12. Obradovi´c M., Ponnusamy S., Wirths K.J., Characteristics of the coefficients and partial sums of some univalent functions. (Russian) translated from Sibirs. Mat. Zh. 54 (2013), no. 4, 852–870 Sib. Math. J. 54 (2013), no. 4, 679–696

13. Obradovi´c M., Ponnusamy S., Wirths K.J., Logarithmic coefficients and a coefficient conjecture for univalent functions, Monatsh. Math. 185 (2018), no. 3, 489–501.

14. Obradovi´c M., Tuneski N., Hankel determinant for a class of analytic functions, Advances in Mathematics: Scientific Journal, Vol. 8 No. 1 (2019), 1–6.

15. Obradovi´c M., Tuneski N., Some properties of the class U, Annales. Universitatis Mariae Curie-Skodowska. Sectio A - Mathematica, accepted.

16. Obradovi´c M., Tuneski N., Hankel determinant of second order for some classes of analytic functions, preprint.

17. Obradovi´c M., Tuneski N., Hankel determinants of second and third order for the class S of univalent functions, preprint.

18. Selvaraj C., Kumar T.R.K., Second Hankel determinant for certain classes of analytic functions, Int. J. Appl. Math. 28 (2015), no. 1, 37–50.

19. Shi L., Srivastava H.M., Arif M., Hussain S., Khan H., An Investigation of the Third Hankel Determinant Problem for Certain Subfamilies of Univalent Functions Involving the Exponential Function, Symmetry 2019, 11, 598.

20. Sokol J., Thomas D.K., The second Hankel determinant for alpha-convex functions, Lith.Math. J., 58 (2), (2018), 212-218.

21. Thomas D.K., Tuneski N., Vasudeva Rao A., Univalent Functions: A Primer, De Gruyter Studies in Mathematics 69, De Gruyter, Berlin, Boston, 2018.

22. Trimble S.Y., A coefficient inequality for convex univalent functions, Proc. Amer. Math. Soc. 48 (1975), 266–267.

23. Vamshee Krishna D., Venkateswarlu B., Ramreddy T., Third Hankel determinant for starlike and convex functions with respect to symmetric points, Ann. Univ. Mariae Curie-Skodowska Sect. A 70 (2016), no. 1, 37–45.

24. Ye K., Lim L.-H., Every matrix is a product of Toeplitz matrices, Found. Comput. Math. 16 (2016), 577-598.
25. Zaprawa P., Third Hankel determinants for subclasses of univalent functions, *Mediterr. J. Math.* 14 (2017), no. 1, Art. 19, 10 pp.

Department of Mathematics, Faculty of Civil Engineering, University of Belgrade, Bulevar Kralja Aleksandra 73, 11000, Belgrade, Serbia

E-mail address: obrad@grf.bg.ac.rs

Department of Mathematics and Informatics, Faculty of Mechanical Engineering, SS. Cyril and Methodius University in Skopje, Karpoš II b.b., 1000 Skopje, Republic of North Macedonia.

E-mail address: nikola.tuneski@mf.edu.mk