FEW-SHOT TEXT CLASSIFICATION WITH DUAL CONTRASTIVE CONSISTENCY TRAINING

Liwen Sun
University of Illinois at Urbana-Champaign, IL, USA
liwens3@illinois.edu

Jiawei Han
University of Illinois at Urbana-Champaign, IL, USA
hanj@illinois.edu

ABSTRACT
In this paper, we explore how to utilize pre-trained language model to perform few-shot text classification where only a few annotated examples are given for each class. Since using traditional cross-entropy loss to fine-tune language model under this scenario causes serious overfitting and leads to sub-optimal generalization of model, we adopt supervised contrastive learning on few labeled data and consistency-regularization on vast unlabeled data. Moreover, we propose a novel contrastive consistency to further boost model performance and refine sentence representation. After conducting extensive experiments on four datasets, we demonstrate that our model (FTCC) can outperform state-of-the-art methods and has better robustness.

Keywords Few-Shot Learning · Contrastive Learning · Consistency Training

1 Introduction
Text classification is a fundamental task in natural language processing with various applications such as question answering [1], spam detection [2] and sentiment analysis [3]. With the advancement of deep learning, fine-tuning pre-trained language model [4, 5] achieved significant success. However, it still requires a large amount of labeled data to reach optimal generalization of model. Thus, researcher gradually focus on semi-supervised text classification where only a few annotated data is provided. The success of semi-supervised methods results from the usage of abundant unlabeled data: Unlabeled documents in training dataset provide natural consistency regularization by constraining the model predictions to be invariant to small noises in text input [6, 7, 8]. Despite mitigating the annotation burden, these methods are highly unstable in different runs and can still easily overfit on the very limited labeled data.

Inspired by the success of supervised contrastive learning under few-shot settings [9, 10], we hypothesize that the learned contrastive representation under this scenario can help us tackle aforementioned high variance issue and impose additional constraints to the model. Label information and feature structure can simultaneously be propagated from labeled examples to unlabeled ones. Thus, we devised a novel contrastive consistency schema to further boost model performance. To validate the effectiveness and robustness of FTCC, we conduct extensive experiments on four datasets. The result of our experiments confirms that FTCC can be leveraged to improve the performance of the few-shot text classification.

Based on this motivation, the contributions of this paper are as follows:

• We integrate supervised contrastive learning objective into consistency-regularized semi-supervised framework to perform text classification under few-shot scenario.

• We devised a novel contrastive consistency schema to propagate feature structure from labeled data to unlabeled data dynamically.

• We demonstrated our model’s superiority over state-of-the-art semi-supervised methods and analyze the contribution of each component of FTCC through ablation study and also visualize the learned instance representations, showing the necessity of each loss and the advantage of FTCC on representation learning over BERT fine-tuning with cross-entropy.
2 Related Work

2.1 Semi-supervised Text Classification

Increasing attention are paid to semi-supervised text classification, since abundant unlabeled data are easier to obtain compared to labeled data. For instance, [7] adds perturbations to word embedding from bidirectional LSTM [11] and employs adversarial and virtual adversarial training in the text domain. [6] enforces consistency regularization between unlabeled data and augmented data after back-translation. [8] introduces an interpolation-based augmentation and regularization technique to extend consistency training work and better leverage vast unlabeled data.

2.2 Contrastive Learning

Contrastive Learning recently achieves remarkable success in self-supervised representation learning on computer vision [12, 13] and natural language processing [14, 15]. The basic idea of unsupervised contrastive learning is that after generating different views of the sample example, the model adopts a loss function that can pull an anchor and a positive view closer and push the anchor away from other negative examples in the embedding space. Its effectiveness on downstream linear classification is justified through alignment and uniformity [16, 17]. Learning good generic representation is widely investigated. For example, in natural language field, [14, 18] adopt data augmentations such as word substitution, back translation, word reordering to generate different views of samples. [19, 15] adjust dropout ratio to generate positive pairs. Subsequently, researcher proposes supervised contrastive learning [20] loss that enforces representations of examples from the same class to be similar and the ones from different classes to be distinct. [9] adopts this loss to fine-tune pre-trained language model and brings astonishing improvement in low-resource scenario. [10] introduces label-aware data augmentation and utilizes supervised contrastive learning to simultaneously obtain discriminative feature representations of input examples and corresponding classifiers in the same space.

3 Methodology

3.1 Problem Formulation

The task of our model is to train a text classifier that efficiently utilizes both annotated data and unannotated data in semi-supervised learning. We denote that $D^l = \{(x^l_i, y^l_i) : i = 1, ..., n\}$ as labeled training data and $D^u = \{x^u_i : i = 1, ..., m\}$ as unlabeled training data where n is the number of the labeled examples, m is the number of the unlabeled examples and $n \ll m$.

3.2 Supervised Contrastive Learning

Unlike traditional fine-tuning pre-trained language model, we additionally includes a supervised contrastive learning term to fully leverage the supervised signals [9, 20]. This mechanism takes the samples from the same class as positive samples and the samples from different classes as negative samples. The contrastive loss and cross-entropy loss is defined as follows:

$$L_{ce} = -\frac{1}{N} \sum_{i=1}^{N} \sum_{c=1}^{C} y_{i,c} \cdot \log \hat{y}_{i,c}$$ (1)

$$L_{scl} = -\frac{1}{N y_i} \sum_{j=1}^{N} \frac{1}{N y_j} \sum_{k=1}^{N} \frac{1}{N y_k} \log \frac{\exp(x^l_i \cdot x^l_j / \tau_{scl})}{\sum_{k=1}^{N} \exp(x^l_i \cdot x^l_k / \tau_{scl})}$$ (2)

where we work with a batch of training examples of size N, $x_i \in \mathbb{R}^d$ is l_2 normalized embedding on the [CLS] token from an encoder to represent an example. N_{y_i} is the total number of examples in the batch that have the same label as y_i; $\tau_{scl} > 0$ is an adjustable scalar temperature; the \cdot symbol denotes the dot product; $y_{i,c}$ denotes the label and $\hat{y}_{i,c}$ denotes the model output for the probability of the i_{th} example belonging to the class c.

3.3 Consistency Training

Back-translations [21, 22] is common data augmentation technique and can generate diverse paraphrases while preserving the semantics of the original sentences. We utilize back translations to paraphrase the unlabeled data to get augmented noisy data. Following [6], we minimize the Kullback–Leibler divergence between the augmented view of the example
and the original view of example to encourage their consistency and enforce the smoothness of the model. FTCC adopts the loss function as follows:

\[L_{con} = D_{KL}(p(y|x^n)||p_\theta(y|a(x^n))) \]

where \(a \) is back-translation transformation, \(p(y|x^n) \) is an original example’s label distribution, \(p_\theta(y|a(x^n)) \) is the back-translated example’s label distribution. \(\theta \) denotes the stop gradient of \(\theta \), as suggested by VAT [23].

3.4 Contrastive Consistency

Inspired by [6, 24], we conjecture that consistency regularization not only can propagate label information from label data to unlabeled data, but also can propagate feature structure in their latent space. Thus, we propose to encourage the consistency between the feature pattern of original examples and their corresponding augmented examples, which further refines deep clustering and classification accuracy on augmented data.

We randomly sample a batch of \(N \) examples and perform back-translation on every example, resulting in \(2N \) data points. Given one example and its corresponding back-translated example, we treat the other \(2(N - 1) \) examples as negatives. Then we denote the similarity between the example \(x^n \) and the negatives \(i = 1, ..., 2(N - 1) \) in one batch as:

\[P(i) = \frac{\exp(x^n \cdot n_i/\tau_{cc})}{\sum_{j=1}^{2(N-1)} \exp(x^n \cdot n_j/\tau_{cc})} \]

Likewise, the similarity between the corresponding augmented example \(a(x^n) \) and the negatives \(i = 1, ..., 2(N - 1) \) in one batch as:

\[Q(i) = \frac{\exp(a(x^n) \cdot n_i/\tau_{cc})}{\sum_{j=1}^{2(N-1)} \exp(a(x^n) \cdot n_j/\tau_{cc})} \]

where \(\tau_{con} \) is a temperature hyperparameter different from \(\tau_{scl} \) and every embedding is \(l_2 \) normalized. Then we can impose the consistency between the probability distributions \(P \) and \(Q \) by using KL Divergence as the measure of disagreement:

\[L_{cc} = D_{KL}(P||Q) \]

3.5 Overall training objective

Above all, the overall training objective is:

\[L = L_{con} + \lambda_1 L_{scl} + \lambda_2 L_{con} + \alpha \lambda_3 L_{cc} \]

Motivated by [25], We also dynamically release contrastive consistency signal. During the first half of training epochs, \(\alpha \) is set to 0 to avoid false feature structure propagation. After half of the training epochs finish, the model becomes more stable on representing feature, and we gradually increase \(\alpha \) as the epoch grows: \(\alpha = \frac{T - T/2}{T} \), where \(T \) is the total number of epochs and \(t \) is the current epoch number.

4 Experiment

4.1 Set up

We conduct our experiments on following four benchmark text classification datasets. SST2 [26] is a sentiment classification dataset of movie reviews. SUBJ [27] is a review dataset with sentences labelled as subjective or objective. PC [28] is a binary sentiment classification dataset that includes Pros and Cons data. IMDB [29] is a sentiment classification dataset from IMDB movie reviews. The dataset statistics are shown in Table 1. All datasets are in English language.

In few-shot learning scenario, we set the number of training labeled examples \(K = 10 \) per class. We follow [30] to randomly split training dataset into labeled data, unlabeled data and development data in 3 different samples. During splitting, we take label distribution and the size of dataset into account and do not use all unlabeled data. Three different models are trained on these splits. Then we evaluate the average performance of these three models on given test set. We choose German as the intermediate language to perform data augmentation with Fairseq toolkit [31]. We use pre-train language model BERT as our backbone to encode all examples and use the input format "[CLS] sentence [SEP]" for all models. For three datasets SST2, SUBJ, PC, the max length are set to be the first 128, 128, and 64 tokens. In IMDB dataset, we remained the last 256 tokens, as suggested by [6, 24]. We use Adam [32] as the optimizer with linear decaying schedule. For simplicity, we set \(\lambda_1, \lambda_2, \lambda_3 \) to 1. For all datasets, the batch size of labeled data is 8 and the batch size of unlabeled data is 32, 32, 32. Detailed information on experimental hyperparameter settings can be found in Table 3. We run experiments on one NVIDIA RTX A6000 GPU.
FTCC utilizes limited labeled data to compute cross-entropy and supervised contrastive learning loss and performs augmentation on unlabeled data to compute consistency training and contrastive consistency loss. (Right): The illustration of contrastive consistency. FTCC computes the distances between the original or augmented views and the negatives in one batch to enforce their consistency and enhance the representation ability of the model.

Table 1: Statistics of four text datasets. Unlabeled and Dev dataset have even label distribution.

	#Class	#Train	#Test	#Unlabeled	#Dev
SST2	2	7447	1821	3000	1000
SUBJ	2	9000	1000	3600	1000
IMDB	2	25000	25000	10000	4000
PC	2	32097	13759	12000	4000

Table 2: Performance (test accuracy(\%)) comparison with baselines. We use 10 labeled examples for each class. The results are averaged after three random seeds to show the significance. ± denotes the Standard Error of the Mean.

K = 10	SST2	IMDB	SUBJ	PC
BERT-FT	67.76±4.37	69.58±4.75	86.73±1.48	75.80±2.39
BERT-SCL	70.01±4.69	66.97±1.98	88.56±2.51	80.79±2.14
DualCL	77.32±2.82	68.89±0.25	83.03±1.36	82.75±0.94
UDA	73.43±12.05	89.06±1.50	92.70±0.70	88.54±3.65
MixText	75.10±10.56	83.38±3.31	92.83±0.70	89.21±1.73
FTCC	86.43±1.21	90.17±0.15	93.30±0.17	90.51±0.79

4.2 Baseline

We compare our FTCC to five baselines: (1) BERT-FT: fine-tuning the pre-trained BERT-based-uncased model on the labeled texts directly. (2) BERT-SCL: fine-tuning BERT with cross-entropy loss and supervised contrastive loss. (3) DualCL: Dual contrastive learning framework learns feature representations of input examples and corresponding classifiers in the same space. It classifies documents based on their similarity with classifier representation. (4) UDA: Unsupervised Data Augmentation uses limited labeled examples for supervised training and encourages model to have consistent prediction between unlabeled examples and corresponding augmented examples. (5) MixText: MixText creates multiple augmented training examples by interpolating text in hidden space and then perform consistency training. To make fair comparison, we reproduce the results with the best hyperparameter configurations for all baselines.

4.3 Main Result

The classification accuracy of all methods is shown in Table 2. FTCC outperforms all baselines by average. Compared to two basic fine-tune baselines, FTCC outperforms them by a large margin up to 20%. Compared to DualCL, FTCC does
not use label-aware augmentation and instead uses back-translation to generate additional views of training examples. Both methods incorporate supervised contrastive learning while our method focuses on the usage of unlabeled data and achieves more competitive performance. Compared to UDA, FTCC discards its additional training techniques (Confidence-based masking, Sharpening Predictions [34], Training Signal Annealing) and uses supervised contrastive learning and contrastive consistency to prevent overfit and achieve better and more stable performance. Compared to MixText, FTCC does not redesign pre-train language model between different layers but adopts a simply but effective method to fine-tune it, which demonstrates that learning quality feature representation for data is more effective and efficient in low-resources scenario and FTCC is more robust and capable of fully leveraging labeled and unlabeled data.

4.4 Visualization

![Visualizations](a) IMDB (b) PC (c) SST2 (d) SUBJ

Figure 2: t-SNE plots of learned sentence embeddings on four test datasets. Different colors denote different classes. The left is Cross-Entropy, The right is FTCC.

To explore how FTCC improves the quality of learning representations, we uses t-SNE [35] to visualize learned CLS embeddings on four test dataset. We shows the results in Figure 2. We can find that only using 10 examples per class to fine-tune BERT with cross-entropy loss has unstructured feature representation. However, our model can clearly separate examples from different classes and pull examples from same class closer. It demonstrates that the learned representations are more discriminative and enhance our model’s robustness and generalization.

4.5 Ablation Study

Ablations	SST2	IMDB	SUBJ	PC
w/o. SCL	73.51±9.26	87.07±1.16	90.13±2.50	86.64±4.37
w/o. CC	85.62±1.53	90.14±0.14	92.73±0.49	88.08±4.96
w/o. CON	78.56±2.25	84.88±5.73	92.40±0.17	88.84±3.12

Table 4: Ablation study of FTCC. See abbreviation meanings in texts

To further examine the effectiveness of each component, we investigate FTCC with the following ablations by removing one component at a time: (1) do not perform supervised contrastive learning (w/o. SCL) (2) do not perform contrastive consistency (w/o. CC) (3) do not perform supervised contrastive learning (w/o. CON). The results are shown in Table
We can observe that every removal causes worse performance than original model, confirming the necessity of each loss term; Moreover, simply using SCL or CON has highly variance result while jointly incorporating them in our model design successfully alleviates this issue; CC component during the second half of training process further refines deep clustering and boosts FTCC’s performance.

5 Conclusion

In this paper, we propose FTCC that can effectively utilize unlabeled data under few-shot scenario and simultaneously enforce more compact clustering of sentence embeddings with similar semantic meanings. Moreover, we propose a contrastive consistency schema that can improve the quality of feature representation and the ability of model generalization. Our model achieves competitive performance on four text classification datasets, outperforming previous methods.

References

[1] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions for machine comprehension of text. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2383–2392, Austin, Texas, November 2016. Association for Computational Linguistics.
[2] G. M. Shahariar, Swapnil Biswas, Faiza Omar, Faisal Muhammad Shah, and Samiha Binte Hassan. Spam review detection using deep learning. In 2019 IEEE 10th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), pages 0027–0033, 2019.
[3] Wei Yen Chong, Bhawani Selvaretnam, and Lay-Ki Soon. Natural language processing for sentiment analysis: An exploratory analysis on tweets. pages 212–217, 2014.
[4] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186. Association for Computational Linguistics.
[5] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692, 2019.
[6] Qizhe Xie, Zihang Dai, Eduard Hovy, Minh-Thang Luong, and Quoc V Le. Unsupervised data augmentation for consistency training. arXiv preprint arXiv:1904.12848, 2019.
[7] Takeru Miyato, Andrew M. Dai, and Ian Goodfellow. Adversarial training methods for semi-supervised text classification, 2016.
[8] Jiaao Chen, Zichao Yang, and Diyi Yang. MixText: Linguistically-informed interpolation of hidden space for semi-supervised text classification. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 2147–2157, July 2020. Association for Computational Linguistics.
[9] Beliz Gunel, Jingfei Du, Alexis Conneau, and Veselin Stoyanov. Supervised contrastive learning for pre-trained language model fine-tuning. In International Conference on Learning Representations, 2021.
[10] Qianben Chen, Richong Zhang, Yaowei Zheng, and Yongyi Mao. Dual contrastive learning: Text classification via label-aware data augmentation. arXiv preprint, 2022.
[11] Alex Graves and Jürgen Schmidhuber. Framework phoneme classification with bidirectional lstm and other neural network architectures. Neural Networks, 18(5):602–610, 2005. IJCNN 2005.
[12] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for unsupervised visual representation learning, 2019.
[13] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive learning of visual representations, 2020.
[14] Hongchao Fang and Pengtao Xie. CERT: contrastive self-supervised learning for language understanding. CoRR, abs/2005.12766, 2020.
[15] Yuanmeng Yan, Rumei Li, Sirui Wang, Fuzheng Zhang, Wei Wu, and Weiran Xu. ConSERT: A contrastive framework for self-supervised sentence representation transfer. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 5065–5075, Online, August 2021. Association for Computational Linguistics.
[35] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. *Journal of Machine Learning Research*, 9:2579–2605, 11 2008.