Ambivalent response in pathogen defense: A double-edged sword?

Chi-Yeol Kim1,2,3, Hyeunjeong Song4 and Yong-Hwan Lee1,2,3,4,5,*
1Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
2Plant Immunity Research Center, Seoul National University, Seoul 08826, Korea
3Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
4Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul 08826, Korea
5Center for Fungal Genetic Resources, Seoul National University, Seoul 08826, Korea
*Correspondence: Yong-Hwan Lee (yonglee@snu.ac.kr)
https://doi.org/10.1016/j.xplc.2022.100415

ABSTRACT

Plants possess effective immune systems that defend against most microbial attackers. Recent plant immunity research has focused on the classic binary defense model involving the pivotal role of small-molecule hormones in regulating the plant defense signaling network. Although most of our current understanding comes from studies that relied on information derived from a limited number of pathosystems, newer studies concerning the incredibly diverse interactions between plants and microbes are providing additional insights into other novel mechanisms. Here, we review the roles of both classical and more recently identified components of defense signaling pathways and stress hormones in regulating the ambivalence effect during responses to diverse pathogens. Because of their different lifestyles, effective defense against biotrophic pathogens normally leads to increased susceptibility to necrotrophs, and vice versa. Given these opposing forces, the plant potentially faces a trade-off when it mounts resistance to a specific pathogen, a phenomenon referred to here as the ambivalence effect. We also highlight a novel mechanism by which translational control of the proteins involved in the ambivalence effect can be used to engineer durable and broad-spectrum disease resistance, regardless of the lifestyle of the invading pathogen.

Key words: ambivalence effect, crop protection, hormone crosstalk, pathogen, plant defense, susceptibility (S) gene

Kim C.-Y., Song H., and Lee Y.-H. (2022). Ambivalent response in pathogen defense: A double-edged sword? Plant Comm. 3, 100415.

INTRODUCTION

In nature, plants encounter a vast array of insects and pathogenic microorganisms, including fungi, bacteria, oomycetes, viruses, and nematodes (Jones and Dangl, 2006; Howe and Jander, 2008). Despite the large number of microorganisms that inhabit the surroundings of plants, only a few taxa constitute pathogens that are able to attack specific plant species. Plants protect themselves well against microbes, such that disease is the exception rather than the rule. Based on their lifestyles, plant pathogens are classified as biotrophs, necrotrophs, and hemibiotrophs. Biotrophic pathogens feed on living cells and cause limited injury, mainly at the cell wall during penetration. Necrotrophs first destroy host cells, often through the production of phytoxins and cell wall-degrading enzymes, and then feed on the contents; by contrast, hemibiotrophs have an initial biotrophic phase that is followed by a necrotrophic phase (Thaler et al., 2004). Insect pests also cause mechanical damage to plants, which also triggers a specific defense response. Plants produce volatile organic compounds in response to insect feeding; these may repel harmful insects or attract predatory insects that prey on the harmful pests.

Studies focusing on plants under pathogen attack have improved our knowledge of plant–pathogen interactions. Pathogens prefer host cells as a source of the nutrients required for their growth. Plants possess an innate ability to sense and recognize potential invading microorganisms and to mount successful defenses (Pandey et al., 2017). After pathogen recognition, plant cells broadly reprogram their metabolic activities and switch on their defense mode. Substantial evidence supports the prevailing
Phytohormones are small molecules produced within plants that govern diverse physiological processes and act as central players in triggering the plant immune signaling network (Howe and Jander, 2008; Bari and Jones, 2009; Pieterse et al., 2009; Katagiri and Zipfel et al., 2006). Activated immune responses (e.g., production of reactive oxygen species [ROS], callose deposition, activation of mitogen-activated protein kinases [MAPKs], transcriptional reprogramming, and production of phytohormones) occur in both PTI and ETI; however, they exhibit temporal and quantitative differences (Cui et al., 2015).

Antagonistic or synergistic interactions among diverse hormone signal transduction pathways enable a plant to finely regulate its immune response to any invader encountered. However, a concept that has received increasing interest over the past few years is the complex crosstalk among different classes of hormones that may enhance resistance against a particular pathogen but could also have a strong negative effect on resistance; the overall effects depend on the lifestyle and overall infection biology of the invading pathogen, as well as the specialized features of each interaction. Furthermore, emerging evidence shows that these complex pleiotropic effects that arise from a plant’s defense response are caused by hormone signaling and multiple genes (Jarosch et al., 1999; Bacete et al., 2020; Kim et al., 2022). Hereafter, we use the term “ambivalence effect” to refer to phenomena in which gene/hormone relationships result in both positive and negative effects from immune responses because of the diversity of plant pathogen lifestyles; we contrast such phenomena with “trade-off,” which refers to growth defects modulated by hormonal pathways that may or may not be accompanied by a resistance-enhancing effect.

In this review, we have surveyed recent advances in deciphering the ambivalent outcomes of immune signaling network interac-

DAMP molecules regulate the ambivalence effect

DAMPs in both mammals and plants are recognized by a diverse set of germline-encoded PRRs and trigger early immunity-related signals, including MAPK activation, cytosolic Ca^{2+} influx, ROS production, and various phenotypic resistance responses (Heil and Land, 2014; Tanaka et al., 2014; Acevedo et al., 2015; Choi and Klessig, 2016; Duran-Flores and Heil, 2016; Gust et al., 2017; Li et al., 2020). In contrast to the large number of known mammalian tissue injury-derived danger signals, surprisingly few plant DAMPs have been identified thus far. These include proteins and small peptides (Choi et al., 2016; Souza et al., 2017), extracellular DNA (Duran-Flores and Heil, 2016; Vega-Muñoz et al., 2018), nucleotides such as extracellular adenosine triphosphate (Tanaka et al., 2014; Chen et al., 2017), and carbohydrates such as extracellular sucrose (Cooksey et al., 1983; Duran-Flores and Heil, 2016). In plants, the responses triggered by endogenous elicitors or DAMPs largely overlap with responses activated by PAMPs/effectors, similar to the findings in other eukaryotic organisms (Hein et al., 2009; Heil and Land, 2014). For instance, different PAMP- and DAMP-induced signaling pathways converge at early stages by sharing their main signaling components, such as NADPH oxidase, MAPK cascades, several defense genes (Navarro et al., 2004; Zipfel et al., 2006; Denoux et al., 2008), and ion channels (Krol et al., 2010). Collectively, the discovery and characterization of diverse immunogenic triggers and their receptors have revealed that plant-derived oligogalacturonides (OGs) and microbial PAMPs induce largely overlapping patterns of plant defenses and prime the plant immune system against pathogens. Emerging evidence indicates that DAMP-mediated signaling may modulate disease resistance, with outcomes dependent on the pathogen’s lifestyle and the genetic constitution of the host.
Phytosulfokines (PSKs), which were purified from plant cell culture media, are secreted sulfated pentapeptides (Matsubayashi and Sakagami, 1996). PSY1 (an 18-amino-acid sulfated and glycosylated peptide) and PSKα (a bisulfated 5-amino-acid peptide) are perceived by the LRR-receptor kinases PSY1R and PSKR1 (PSK receptors (Figure 1A), respectively; both reactions generate a feedback loop that opposes immunity and promotes growth (Matsubayashi et al., 2002; Mosher et al., 2013). PSKα and PSY1 negatively regulate PAMP-mediated defense. The pskr1 and psy1r mutants exhibited enhanced defense gene expression and heightened resistance against the biotrophic pathogen \textit{Pseudomonas syringae} and the fungus \textit{Fusarium oxysporum}. Conversely, \textit{pskr1} mutants exhibited enhanced susceptibility to the necrotrophic fungus \textit{Alternaria brassicicola} (Table 1) (Mosher et al., 2013; Shen and Diener, 2013). Earlier studies have shown that PSK attenuates the pathogen-triggered immune response induced upon detection of \textit{P. syringae pv. tomato} (Pst). Furthermore, \textit{pskr1} mutations led to the suppression of seedling growth and enhanced defense gene expression (Igarashi et al., 2012). Taken together, these results suggest that PSK has a role in balancing the trade-off between the maintenance of growth and the induction of costly pathogen defense systems, considering the wide range of pathogen lifestyles.

Other intracellular or extracellular matrix-derived DAMPs that are passively released upon wounding or microbial infection also exist. Homogalacturonan is the main component of pectins. It consists of a linear polymer of 1,4-linked \(\alpha\)-galacturonic acid and \(\alpha\)-D-galacturonic acid and passively released upon wounding or microbial infection. Homogalacturonan is the main component of pectins, which often attack and propagate in apoplastic spaces within plant tissues. (A) The perception of pathogen-derived, non-self, pathogen-associated molecular patterns (PAMPs; flagellin, elongation factor-Tu, and chitin) by pattern-recognition receptors (PRRs) such as BAK1 activates several signaling events, which include signaling pathways mediated by mitogen-activated protein kinases (MAPKs). Plant-derived damage-associated molecular patterns (DAMPs) such as PSKα and PSY1 are perceived by PSKR1 and PSY1R, respectively. DAMP and PRR recognition can trigger immune responses and may overlap with PTI. (B) Plant MAPK cascades in signaling effector-triggered defense response. Pathogens use effectors that are delivered to the plant cell to suppress plant immunity. Plants utilize resistance (R) proteins to sense the presence of these effectors, thereby triggering effector-triggered immunity (ETI). The activation of pathogen-responsive MAPK cascades is one of the earliest signaling events in ETI. Perception of PAMPs/MAMPs by cell surface-localized PRRs activates two branches of MAPK cascades in plants, the MEKK1–MKK1/MKK2–MPK4 and MEKK7–MKK4/MKK5–MPK3/MPK6 cascades. The MKK4/MKK5–MPK3/MPK6 branch contributes to PTI, whereas the MEKK1–MKK1/MKK2–MPK4 branch is guarded by SUMM2 through monitoring of MPK4 substrates. The \textit{Pseudomonas syringae} type III effector HopA1 inactivates MPK3/4/6 through dephosphorylation of the activation loop. Inhibition of MPK3/MPK6 causes impaired PTI, whereas inhibition of MPK4 induces SUMM2 activation and ETI. Through phosphorylation of target proteins, including the transcription factor WRKY33, MAPKs control the synthesis and/or activation of defense genes and the synthesis of antimicrobial metabolites, among other defense responses. (C and D) Some effectors specifically bind to the promoter regions of target genes, inducing and/or decreasing their expression. The effector victorin binds to the host virulence target Trx-h5 and activates LOV1 (a nucleotide-binding leucine-rich repeat protein)-mediated susceptibility to \textit{Colletotrichum graminicola}. The transcription of \textit{Trx-h5} is regulated by the transcription factor YY1 through its interaction with the mediator MED18 (Q). The fungus \textit{Magnaporthe oryzae} delivers hundreds of effector proteins into the plant cytoplasm during infection. The effectors MoHTR1 and MoHTR2 target the nucleus and reprogram the transcription of immunity-associated genes, such as MYB4 and WRKY45, respectively, to promote \textit{M. oryzae} infection (D). Arrows and lines with bars indicate positive and negative regulatory actions, respectively. “X” indicates blocked processes. See the text and Table 1 for further details.

Figure 1. Schematic representation of the molecular components involved in the ambivalence effect in plants. Plants face continuous challenges from several biotrophic, hemibiotrophic, and necrotrophic pathogens, which often attack and propagate in apoplastic spaces within plant tissues. (A) The perception of pathogen-derived, non-self, pathogen-associated molecular patterns (PAMPs; flagellin, elongation factor-Tu, and chitin) by pattern-recognition receptors (PRRs) such as BAK1 activates several signaling events, which include signaling pathways mediated by mitogen-activated protein kinases (MAPKs). Plant-derived damage-associated molecular patterns (DAMPs) such as PSKα and PSY1 are perceived by PSKR1 and PSY1R, respectively. DAMP and PRR recognition can trigger immune responses and may overlap with PTI. (B) Plant MAPK cascades in signaling effector-triggered defense response. Pathogens use effectors that are delivered to the plant cell to suppress plant immunity. Plants utilize resistance (R) proteins to sense the presence of these effectors, thereby triggering effector-triggered immunity (ETI). The activation of pathogen-responsive MAPK cascades is one of the earliest signaling events in ETI. Perception of PAMPs/MAMPs by cell surface-localized PRRs activates two branches of MAPK cascades in plants, the MEKK1–MKK1/MKK2–MPK4 and MEKK7–MKK4/MKK5–MPK3/MPK6 cascades. The MKK4/MKK5–MPK3/MPK6 branch contributes to PTI, whereas the MEKK1–MKK1/MKK2–MPK4 branch is guarded by SUMM2 through monitoring of MPK4 substrates. The \textit{Pseudomonas syringae} type III effector HopA1 inactivates MPK3/4/6 through dephosphorylation of the activation loop. Inhibition of MPK3/MPK6 causes impaired PTI, whereas inhibition of MPK4 induces SUMM2 activation and ETI. Through phosphorylation of target proteins, including the transcription factor WRKY33, MAPKs control the synthesis and/or activation of defense genes and the synthesis of antimicrobial metabolites, among other defense responses. (C and D) Some effectors specifically bind to the promoter regions of target genes, inducing and/or decreasing their expression. The effector victorin binds to the host virulence target Trx-h5 and activates LOV1 (a nucleotide-binding leucine-rich repeat protein)-mediated susceptibility to \textit{Colletotrichum graminicola}. The transcription of \textit{Trx-h5} is regulated by the transcription factor YY1 through its interaction with the mediator MED18 (Q). The fungus \textit{Magnaporthe oryzae} delivers hundreds of effector proteins into the plant cytoplasm during infection. The effectors MoHTR1 and MoHTR2 target the nucleus and reprogram the transcription of immunity-associated genes, such as MYB4 and WRKY45, respectively, to promote \textit{M. oryzae} infection (D). Arrows and lines with bars indicate positive and negative regulatory actions, respectively. “X” indicates blocked processes. See the text and Table 1 for further details.
Protein function	Gene	Gene product	Plant species	Pathogen species	Pleiotropic effect
Transcription factor	WRKY33	WRKY transcription factor	Arabidopsis	Pseudomonas syringae	increased susceptibility to Botrytis cinerea and Alternaria brassicicola
	WRKY45	WRKY transcription factor	rice	Cochliobolus miyabeanus	increased susceptibility to Magnaporthe oryzae and Xanthomonas oryzae pv. oryzae in MoHTR2 (Magnaporthe oryzae effector that represses OsWRKY45 expression) overexpression (OX) transgenic rice
	WRKY70	WRKY transcription factor	Arabidopsis	Alternaria brassicicola	increased resistance to Erysiphe cichoracearum
	WRKY50, WRKY51	WRKY transcription factor	Arabidopsis	Pseudomonas syringae	increased susceptibility to Botrytis cinerea
	MYB4	MYB transcription factor	rice	Cochliobolus miyabeanus	increased susceptibility to Magnaporthe oryzae and Xanthomonas oryzae pv. oryzae in MoHTR1 (Magnaporthe oryzae effector that represses OsMYB4 expression) OX transgenic rice
Kinase	PSY1R, PSKR1	leucine-rich repeat receptor kinase (LRR-RK)	Arabidopsis	Fusarium oxysporum/Pseudomonas syringae	increased susceptibility to Alternaria brassicicola
	BIK1	plasma membrane-localized ser/thr protein kinase involved in early PTI signaling	Arabidopsis	Pseudomonas syringae	increased susceptibility to Botrytis cinerea and Alternaria brassicicola
	MPK4	MAP kinase	Arabidopsis	Pseudomonas syringae	increased susceptibility to Alternaria brassicicola
DELLA protein	Sin1c	DELLA protein	barley	Blumeria graminis	increased susceptibility to Oculimacula spp. (eyespot)
	Sin1d	DELLA protein	barley	Oculimacula spp.	increased susceptibility to Blumeria graminis

Table 1. Genes that contribute to the ambivalence effect.
Protein function	Gene	Gene product	Plant species	Pathogen species	Pleiotropic effect
Hypersensitive response-based programmed cell death and cell wall-based defense	BI-1	transmembrane protein, Bax inhibitor-1	barley/carrot	*Blumeria graminis/Thielaviopsis basicola*	increased susceptibility to *Botrytis cinerea* in carrots, reduced *Chalara elegans* root symptoms
	HvMLO	membrane-anchored protein	barley	*Blumeria graminis*	increased susceptibility to *Bipolaris* and *Cochliobolus*
Resistance protein	Pc-2	NBS-LRR (nucleotide binding leucine rich repeat) resistance gene	oats	confers resistance to the rust fungus *Puccinia coronata* in oats	increased susceptibility to *Cochliobolus victoriae*
Others	ARR6	type-A response regulator	Arabidopsis	*Plectosphaerella cucumerina*	increased susceptibility to the bacterial wilt *Ralstonia solanacearum*
	MKP2	MAP kinase phosphatase	Arabidopsis	*Ralstonia solanacearum*	increased susceptibility to *Botrytis cinerea*
	MED19a	mediator of RNA polymerase II transcription subunit 19a-like protein	Arabidopsis	*Hyaloperonospora arabidopsidis*	increased resistance to *Botrytis cinerea* in *HaRxL44* (*Hyaloperonospora arabidopsidis* effector that interacts with MED19a) OX plants
	LACS2	Acyl-CoA synthetase for cutin synthesis	Arabidopsis	*Botrytis cinerea*	increased susceptibility to *Pseudomonas syringae*

Table 1. Continued
Adenosine-5’-triphosphate (ATP) is an energy-rich metabolite of fundamental importance in all organisms. It is a key substrate and cofactor in a wide range of intracellular biochemical processes. Surprisingly, given its value as a biochemical intermediate, ATP is secreted by plant, animal, and microbial cells. This extracellular ATP (eATP) can act as a signal in response to various biotic and abiotic stresses (Dark et al., 2011; Ramachandran et al., 2019). Pathogen infection, wounding, or insect infestation also causes plants to release high levels of ATP (approximately 40 μM) into the extracellular matrix, where it is recognized as a DAMP to initiate plant resistance responses (Chivasa et al., 2009; Choi et al., 2014a,b; Medina-Castellanos et al., 2014). Indeed, eATP induces various defense responses in parallel with plant defense hormones and through an independent mechanism (Jewell et al., 2019). Some of these responses are involved in enhancing resistance against the necrotroph B. cinerea mediated by eATP-JA-mediated synergistic signaling that requires ROS as well as other second messengers, nitrous oxide, and calcium (Tripathi et al., 2018; Tripathi and Tanaka, 2018). Moreover, eATP also regulates gene expression through pathways independent of CORONATINE-INSENSITIVE 1 (COI1) but reliant on MYC transcription factors and CALMODULIN-BINDING TRANSCRIPTION ACTIVATOR 3 (CAMTA3) (Jewell et al., 2019). SA is also involved in eATP-induced intracellular responses. A complex relationship appears to exist between eATP, SA, and the signaling pathways that they control (Chivasa et al., 2009). Application of exogenous ATP into leaves caused a decrease in basal SA levels, whereas SA treatment of tobacco cell cultures caused a collapse in the concentration of ATP in the medium (Chivasa et al., 2009). Conversely, under appropriate illumination conditions, enzymatic depletion of eATP by apyrase induced pathogenesis-related gene expression and increased resistance to Pseudomonas syringae pv. tabaci and tobacco mosaic virus (Chivasa et al., 2009). Thus, eATP may suppress pathogenesis-related responses by inhibiting intracellular SA signaling.

Ambivalence effect with mutations in PTI components

Phosphorylation is central to defense in signal transduction (Jagodzik et al., 2018); the activation of the MAPKs MPK3, MPK4, and MPK6 (MPK3/4/6) is a hallmark of immune system activation and is crucial for establishing disease resistance (Bi et al., 2018). All known PRRs activate two MAPK cascades consisting of MAPK kinase kinase (MAPKKK), MAPK kinase (MKK), and MAPKs: MAPKKK3/MAPKKK5-MKK4/MKK5-MPK3/MPK6, which positively regulates defense, and MEKK1-MKK1/MPK2-MPK4, which negatively regulates immune responses (Petersen et al., 2000; Berrieri et al., 2012; Kong et al., 2012; Genot et al., 2017; Bi et al., 2018). Plants with mutations in signal transduction pathway genes, for example, BIK1, MPK4, MPK2, EDR1, and AtWRKY4/8/18/33/40/60, exhibit enhanced biotrophic resistance but reduced necrotrophic resistance. For instance, mutations in WRKY33, which is targeted by MPK4 in Arabidopsis (Figure 1B), caused enhanced susceptibility to B. cinerea together with decreased PDF1.2 expression (Table 1). Conversely, the overexpression of WRKY33 increased the level of resistance against two necrotrophic fungal pathogens. The wrky33 mutants did not exhibit changes in their response to a virulent strain of the bacterial pathogen P. syringae, although the ectopic expression of WRKY33 resulted in enhanced susceptibility to this pathogen (Table 1) (Petersen et al., 2008; Birkenbihl et al., 2012). WRKY33 is a substrate of
The ambivalence effect

MPK3/6 that activates transcription of PHYTOALEXIN DEFICIENT 3 (PAD3); PAD3 encodes a cytochrome P450 enzyme (CYP 71B15) that carries out the last step of camalexin biosynthesis, causing induction of camalexin, which has anticrobial effects (Zhou et al., 1999; Mao et al., 2011). Moreover, MPK4 is targeted by P. syringae bacterial type III effector HopA1, and the MPK4 cascade was originally considered to be a negative regulatory pathway of defense responses because its disruption leads to autoimmune phenotypes characterized by spontaneous cell death, constitutive defense responses, and dwarf morphology (Petersen et al., 2000; Ichimura et al., 2006; Qiu et al., 2008). However, it was discovered that the autoimmune responses in the MPK4 cascade mutants are caused by ETI activation mediated by SUPPRESSOR OF MKK1/MKK2 2 (SUMM2), an NLR protein (Zhang et al., 2012). Mutations in SUMM2 almost completely suppress the autoimmune phenotypes in mpk4, mkk1/mkk2, and mekk1 mutants. In addition to SUMM2, the TIR-type NLR protein RPS6 can also partially suppress the autoimmune phenotypes of mekk1 and mpk4 plants (Takagi et al., 2019). Interestingly, a recent study showed that disruption of both SUMM2 and RPS2 fully suppresses the autoimmune response of mpk4 mutants (Takagi et al., 2022). As a result, the MPK4 cascade is proposed to be a “guardian” of SUMM2 (Zhang et al., 2017).

BOTRYTIS CINEREA-INDUCED KINASE 1 (BIK1), a kinase involved in early PTI signaling, is a positive regulator of resistance against B. cinerea (Veronese et al., 2006). The inactivation of BIK1 (bik1) resulted in susceptibility to B. cinerea and A. brassicicola, although it enhanced resistance against P. syringae (Table 1) (Veronese et al., 2006). However, during the initiation of immune signaling after pathogen recognition, loss of BIK1, like that of MPK4, results in autoimmune responses and resistance rather than a lack of immune activation (Couto and Zipfel, 2016). These results are consistent with the hypothesis that crucial components in the initiation of immune signaling may be “guarded” by NLRs. The autoimmune phenotype of bik1 mutants may thus reflect the consequence of an improper activation of an NLR, rather than resulting from loss of BIK1 kinase activity. bik1 plants were also reported to have a higher basal SA level than wild-type plants (Veronese et al., 2006; Lei et al., 2014), suggesting that this ambivalent effect may be attributable to the SA pathway and other unknown pathways.

Another example of the ambivalence effect involves the gene encoding MAPK PHOSPHATASE 2 (MKP2), which dephosphorylates phospho-MPK3 and phospho-MPK6 in vitro (Figure 1B) (Lee and Ellis, 2007; Lumbreras et al., 2010). Mutant plants in which MKP2 was disrupted exhibited a delay in the development of wilt symptoms after infection with R. solanacearum, whereas more prominent disease symptoms were observed after infection with B. cinerea (Table 1) (Lumbreras et al., 2010).

AMBIGUITY EFFECT OF THE HOST PROTEINS TARGETED BY EFFECTORS

Effectors modulate S genes

Plant genes that facilitate pathogen infection and contribute to susceptibility are termed susceptibility genes (S genes) (Zaidi et al., 2018). Loss-of-function mutations in S genes substantially reduce the compatibility between hosts and pathogens; such mutations enable resistance against a diverse array of pathogens. Pathogens transmit effector proteins to the host to manipulate host processes that are important for plant–pathogen interactions. Filamentous pathogens are predicted to secrete up to several hundred effectors, whereas bacteria produce a few dozen (Bozkurt et al., 2012; Donofrio and Raman, 2012; Xin and He, 2013). After secreting effectors, filamentous pathogens require the effectors to be taken up by host cells (Bozkurt et al., 2012; Donofrio and Raman, 2012), and most effectors appear to act inside the host cell; bacteria can inject effectors using a type III secretion system (Xin and He, 2013). The identification of effector–target interactions in the host is thus essential for fully understanding the interactions between plant susceptibility and pathogen virulence. To increase virulence, many pathogen effectors suppress host factors involved in resistance (Deslandes and Rivas, 2012). Some effectors, such as members of the transcription activator-like effector family secreted by the bacterial pathogen Xanthomonas, bind to specific genomic sequences in their host plant and manipulate the expression of susceptibility factors encoded by S genes (Kay et al., 2007; Chen et al., 2010; Römer et al., 2010; Noel et al., 2013; Streubel et al., 2013).

The alteration of S gene expression appears to be a preferred and viable strategy, particularly in Xanthomonas bacteria. Other pathogen effectors also target S genes and contribute to the ambivalence effect in the host. Victorin, a fungal effector of the necrotrophic fungus Cochliobolus victoriae, the pathogen responsible for Victoria blight in oats, specifically targets Arabidopsis TRXh5 (Lorang et al., 2004, 2007). Victorin binds to TRXh5 via the first Cys of its active site (Cys39), resulting in inhibition of TRXh5 activity (Sweet and Wolpert, 2007). This is recognized by LOCUS ORCHESTRATING VICTORIN EFFECTS1 (LOV1), an NB-LRR that guards TRXh5, and in turn activates programmed cell death (PCD) (Lorang et al., 2007, 2012; Sweet and Wolpert, 2007; Sweet et al., 2008). As necrotrophs kill host cells before feeding, TRXh5-victorin-induced cell death promotes disease susceptibility to C. victoriae. Consequently, victorin inhibits TRXh5 activity and can cause susceptibility to biotrophic pathogens, providing a clue as to why LOV1 guards TRXh5 and demonstrating that C. victoriae hijacks a redox-dependent immune response to biotrophs to promote its own virulence (Figure 1C and Table 1) (Lorang et al., 2012). Victorin sensitivity in oats is conferred by a single dominant gene named Vb (Wolpert et al., 1985). Interestingly, the oat Pc-2 gene confers disease resistance against the biotrophic crown rust fungus Puccinia coronata and is tightly linked to the Vb gene, complicating breeding efforts against both rust and blight diseases (Meehan and Murphy, 1946; Litzenberger, 1949). Pc-2 and Vb genes are now considered to be the same gene, which confers resistance to P. coronata but susceptibility to C. victoriae (Wolpert et al., 2002; Lorang et al., 2012). This is a remarkable example of how necrotrophs can evolve mechanisms to highjack R genes against biotrophs for their own benefit. In conclusion, although effectors are usually known for their suppression of resistance, a substantial number of effectors activate S genes and sometimes regulate the ambivalence effect.

Effectors targeting phytohormone crosstalk

Hormonal signaling pathways in plant immunity are often interconnected, and this can lead to antagonistic or synergistic
interactions (Weiss and Ori, 2007; Choi et al., 2010; Jiang et al., 2010; Argueso et al., 2012; Pieterse et al., 2012; Naseem et al., 2014, 2015; Berens et al., 2017). An example is the antagonism between the SA and JA pathways (Pieterse et al., 2009; Tsuda et al., 2009). Within this context, we describe our current understanding of effector proteins that directly influence SA/JA-mediated pathways. The effects of other hormones (including hormones in the SA and JA response pathways) on the ambivalence effect are discussed below.

The downy mildew pathogen of Arabidopsis, Hyaloperonospora arabidopsisidis (Hpa), employs an intriguing tactic to combat host SA-mediated immune responses. The Hpa effector HaRxL44 specifically interacts with Arabidopsis MEDIATOR COMPLEX SUBUNIT 19a (MED19a), resulting in the degradation of MED19a in a proteasome-dependent manner in host cell nucleoplasm. By degrading MED19a, HaRxL44 shifts the defense balance between the SA and JA/ET pathways while inducing JA/ET-responsive genes and suppressing SA-responsive PR1 gene expression (Figure 2). Thus, HaRxL44-elicited MED19a degradation provides immunity against necrotrophs by means of an enhanced JA/ET response but favors the growth of biotrophs (such as Hpa) through suppression of the SA response (Table 1) (Caillaud et al., 2013).

The ambivalence effect was also observed upon the expression of pathogen effector genes in transgenic plants (Kim et al., 2020). Recently, we described two M. oryzae-specific nuclear effectors, MoHTR1 and MoHTR2, that modulate the expression of the target genes OsMYB4 and OsWRKY45, respectively (Figure 1D and Table 1) (Kim et al., 2020). The overexpression of these effectors in rice conferred protection only against the necrotrophic fungus C. miyabeanus while increasing susceptibility to M. oryzae and Xanthomonas oryzae pv. oryzae (Xoo) (Kim et al., 2020).

CONSERVED ROLES OF PHYTOHORMONES IN PLANT DEFENSE

In the model plant A. thaliana, with some exceptions, SA is predominantly associated with resistance against biotrophic and hemibiotrophic pathogens, whereas JA- and ET-driven defenses positively regulate immunity against necrotrophic pathogens (Glazebrook, 2005; Pieterse et al., 2009; Robert-Seilianiitz et al., 2011). Other hormones, such as ABA, GAs, auxin, and CKs, modulate the ambivalence effect in hormone signaling networks mainly through interactions with SA and JA (Pieterse et al., 2009; Robert-Seilianiitz et al., 2011).

SA, JA, and ET as conserved regulators of the ambivalence effect in plant defense

SA is a natural phenol compound (synthesized by plants in response to a wide range of pathogens) that is well known for its roles in thermogenesis, flowering, plant-defense signaling, and systemic acquired resistance (Loake and Grant, 2007; Vlot et al., 2009). JA is an oxygenated fatty acid (oxylipin) involved in resistance against necrotrophic pathogens and insect infestation (Thaler et al., 2004). JA and its structurally related metabolites, collectively known as jasmonates, are lipid-derived regulators that fulfill essential roles in numerous physiological processes (e.g., biotic and abiotic stress defenses, wound responses, and secondary metabolite syntheses). The small gaseous hormone ET controls diverse developmental processes, as well as responses to environmental stimuli (Johnson and Ecker, 1998; Wang et al., 2002). In plant immunity, ET is generally presumed to act in concert with JA to induce resistance against necrotrophs while antagonizing SA-mediated resistance against biotrophs (Derksen et al., 2013). However, there is increasing evidence that ET can interact both positively and negatively with SA, depending on the lifestyle of the invading pathogen (Van der Ent and Pieterse, 2012; Derksen et al., 2013).

The first indications of the antagonistic nature of the crosstalk between the SA and JA pathways came from studies in tomato; those studies revealed that SA and aspirin, its acetylated form, are potent suppressors of the JA-dependent wound response (Doherty et al., 1988; Peña-Cortés et al., 1993). Since its discovery in tomato, the antagonism between the SA and JA pathways has been demonstrated in many plant species, including Arabidopsis (Van Wees et al., 1999; Spoel et al., 2003). SA-JA crosstalk has been demonstrated in experiments in which inoculation with the hemibiotrophic pathogen Pst DC3000 rendered plants more susceptible to the necrotrophic pathogen A. brassicicola and led to decreased expression of the JA/ET markers PDF1.2, HEL, and CHI-B (Spoel et al., 2007). Similarly, prior inoculation with the SA-inducing biotrophic pathogen Hpa suppressed JA-mediated defenses that were activated upon feeding by caterpillars of Pieris rapae (Koornneef et al., 2008). This reciprocal antagonistic crosstalk between the SA and JA pathways, initially demonstrated in Arabidopsis, has also been observed in other plant species; phylogenetic studies indicate that it may have evolved with the development of angiosperms (Berens et al., 2017).

Several other proteins play roles in regulating SA-mediated suppression of the JA pathway, including NPR1, nuclear TGA and WRKY transcription factors, and MAPKs (Pieterse et al., 2012). Functional data (primarily based on gene expression analyses) revealed that NPR1 modulates the balance between the SA and JA response pathways in Arabidopsis, rice, and tomato, implying that this subfunction of NPR1 may have an ancient origin (e.g., in the common ancestor of monocots and eudicots) (Glazebrook et al., 2003; Spoel et al., 2003; Johansson et al., 2006; Mao et al., 2007; Yuan et al., 2007; Stein et al., 2008; Leon-Reyes et al., 2009; Ramirez et al., 2010).

Downstream of NPR1, several WRKY transcription factors have important roles in the regulation of SA-dependent defense responses; many of them are upregulated by SA (Rushton et al., 2010). Several WRKY transcription factors have been implicated in SA-JA crosstalk (Li et al., 2004, 2006). Arabidopsis WRKY33, a positive regulator of JA/ET-mediated defense response signaling and a negative regulator of SA-mediated defense response signaling, has an important role in plant defense against necrotrophs and biotrophs (Table 1) (Zheng et al., 2006). Gao et al. (2011) showed that WRKY50 and WRKY51 mediate SA- and low oleic acid (18:1)-dependent repression of JA signaling. Signaling induced by a decrease in oleic acid levels simultaneously upregulated SA-mediated responses and inhibited JA-inducible defenses (Figure 2), resulting in enhanced resistance against biotrophs and increased susceptibility to necrotrophs (Table 1) (Gao et al., 2011). Moreover, the overexpression of WRKY70
activated several SA-responsive genes (Figure 2) and compromised resistance against the necrotrophic fungus A. brassicicola, while enhancing SA-dependent resistance against the biotrophic fungus Erysiphe cichoracearum (Table 1) (Li et al., 2006; Ren et al., 2008).

In plant immunity, ET generally obstructs symptom development caused by necrotrophic pathogens while promoting cell death caused by biotrophic and hemibiotrophic pathogens (Bent et al., 1992; Hoffman et al., 1999; Thomma et al., 1999; Derksen et al., 2013). For example, ET-insensitive soybean mutants displayed less severe symptoms when infected with the hemibiotrophs P. syringae pv. glycinea and Phytophthora sojae; they exhibited more severe symptoms when infected with the necrotrophic fungi Septoria glycines and Rhizoctonia solani (Hoffman et al., 1999).

Similarly, Arabidopsis mutants with decreased ET sensitivity exhibited enhanced resistance against the hemibiotrophic pathogen Pst and the biotrophic pathogen Xanthomonas campestris pv. campestris; they demonstrated enhanced susceptibility to the necrotrophic fungus B. cinerea (Bent et al., 1992; Thomma et al., 1999). These findings support the notion that JA- and ET-controlled responses have ambivalent roles in Arabidopsis resistance against diverse pathogens with different lifestyles.

Modulation of the ambivalence effect by other plant hormones
In contrast to the classic defense hormones SA, JA, and ET, other hormones (e.g., ABA, GAs, auxins, and CKs) have historically been studied primarily because of their roles in regulating major physiological processes, abiotic stress, growth, and development (Schwartz et al., 2003; Aloni et al., 2005; Sakakibara, 2006; Adie et al., 2007; Benjamins and Scheres, 2008; Sun, 2011); thus, they have only recently emerged as additional participants in plant–microbe interactions. Although their functions and precise roles in regulating plant defense have not yet been clarified, recent data are now beginning to reveal how these hormones modulate the ambivalence effect.

In addition to its role in plant development and adaptation to abiotic stress, particularly salinity and drought stress, ABA has emerged as an important modulator of the plant immune signaling network (Asselbergh et al., 2008; Ton et al., 2009; Cao et al., 2011). In rice, the application of ABA suppressed basal immunity against both blast and bacterial blight (Koga et al., 2004; Jiang et al., 2010; Xu et al., 2013) while inducing resistance against the brown spot fungus (De Vleesschauwer et al., 2010). Moreover, successful infection with these pathogens is commonly associated with extensive reprogramming of ABA-responsive and -biosynthesis genes, implying that these pathogens hijack the rice ABA pathway to cause disease (Koga et al., 2004; Jiang et al., 2010; Yazawa et al., 2012; Xu et al., 2013). Therefore, similar to ET, ABA appears to have an ambivalent role in rice immunity, acting as either a positive or negative regulator of disease resistance by interfering at multiple levels with biotic and abiotic stress signaling cascades.

Although they were first discovered in a fungal plant pathogen, GAs and their signaling components have only recently been implicated in plant responses to pathogen attack. According to current concepts, GAs promote plant growth by inducing the degradation of a class of nuclear proteins known as DELLAs (Sun, 2011). Research with Arabidopsis has indicated that DELLAs may have ambivalence effects, including the alteration of responses to pathogens. Arabidopsis mutants lacking four of the five DELLAs exhibited increased levels of resistance against the hemibiotrophic bacterium Pst, together with elevated levels of SA (Navarro et al., 2008). By contrast, a correlation between attenuated induction of the JA marker gene PDF1.2 and enhanced susceptibility to the necrotrophic fungus A. brassicicola was observed in the same quadruple mutants (Navarro et al., 2008). The role of DELLAs in response to pathogens is also generally conserved in the monocots wheat and barley; experiments on the effects of differential DELLAs status have revealed similar resistance ambivalence involving increased susceptibility to biotrophs and enhanced resistance against necrotrophs (Saville et al., 2012). In barley cv. Himalaya, a gain-of-function, GA-insensitive allele at the DELLA-encoding Slender 1 locus, Sn1d, exerted similar effects to Rht genes in wheat: enhanced susceptibility to the biotrophic fungus Blumeria graminis mildew, as well as reduced susceptibility to a necrotrophic pathogen of the stem base, Oculilmaucula spp. (eyespot), and to Fusarium graminearum head blight. A loss-of-function allele, sln1c, had opposite effects, increasing resistance against mildew associated with the spread of necrotic lesions while enhancing susceptibility to eyespot (Table 1). Importantly, DELLA proteins modulate plant immunity via competitive binding to JAZ proteins (Jasmonate, Zim Domain), a family of JA-signaling repressors (Hou et al., 2010; Wild et al., 2012; Yang et al., 2012). JAZ proteins bind to and inhibit the activities of a wide array of transcription factors, including the key JA transcriptional activator MYC2 (Kazan and Manners, 2012, 2013). DELLA proteins close off JAZ1 by binding to it, thereby reducing JAZ–MYC2 interactions and releasing free MYC2, which then activates JA-responsive gene expression and enhances resistance against necrotrophic pathogens (Navarro et al., 2008; Hou et al., 2010; Wild et al., 2012; Yang et al., 2012). On the basis of these findings, GAs are presumed to suppress cellular competence in response to jasmonates and thus to shift the balance between SA- and JA-dependent signaling, resulting in resistance ambivalence in the response to pathogens with different lifestyles.

In Arabidopsis, auxins, such as indole-3-acetic acid, have been shown to interact antagonistically with SA, thereby increasing the susceptibility to biotrophic pathogens (Kazan and Manners, 2009). Thus far, auxin attenuates resistance against (hem) biotrophs but enhances plant defenses against necrotrophic pathogens (Fu and Wang, 2011). Accordingly, a rice transgenic line with reduced levels of free indole-3-acetic acid, caused by overexpression of the auxin-conjugating GRETCHEN HAGEN 3 (GH3) protein, exhibited enhanced resistance against M. oryzae and Xoo (Ding et al., 2008; Domingo et al., 2009; Fu et al., 2011); however, it was susceptible to C. miyabeanus (Fonteyne, 2011). However, in contrast to Arabidopsis, in which auxin is presumed to repress SA levels and signaling, auxin-induced susceptibility to biotrophs in rice is not associated with changes in SA or JA signaling. Instead, it has been proposed that pathogen-induced auxin triggers the expression of cell wall-loosening expansins, thereby facilitating pathogen entry and causing increased nutrient leakage (Ding et al., 2009). In addition, auxins can negatively impact plant defense by interfering with other hormone signaling
Plant Communications

pathways or with PTI (Robert-Seilaniantz et al., 2011). The bacterial PAMP flg22, a peptide from flagellin protein (Boiler and Felix, 2009; Pel and Pieterse, 2012), induces an Arabidopsis microRNA (miR393) that targets the auxin receptors TRANSPORT INHIBITOR RESPONSE1 (TIR1), AUXIN SIGNALING F-BOX 2 (AFB2), and AFB3, leading to repressed auxin signaling (Jones-Rhoades and Bartel, 2004; Sunkar and Zhu, 2004; Navarro et al., 2006; Huot et al., 2014). Plants constitutively expressing MIR393 are less susceptible to the bacterial pathogen Pst DC3000. By contrast, activation of auxin signaling through overexpression of an auxin receptor that is partially refractory to miR393-mediated transcript cleavage enhanced susceptibility to Pst DC3000 (Navarro et al., 2006). Collectively, these data demonstrate that auxins play a central role in balancing plant resistance responses.

CKs are some of the most recent development hormones to be linked to plant immunity. Together with SA, plant-derived CKs stimulate defense responses to biotrophs. In Arabidopsis, CKs activate the transcriptional regulator ARR2, which positively modulates SA signaling by interacting with TGA1A-RELATED GENE 3 (TGA3), a transcription factor critical for defense gene activation (Choi et al., 2010). Indeed, ARR2 binds directly to the promoters of PR1 and PR2 to induce their expression. The anti-biotrophic effect of CKs largely depends on SA biosynthesis and is probably dose-dependent (Argueso et al., 2012). Argueso et al. (2012) proposed a model of plant defense in which high concentrations of CKs increase SA-mediated resistance against biotrophic pathogens, whereas lower concentrations of CKs result in increased susceptibility to biotrophs, which is partially regulated by type-A ARRs (ARR3, ARR4, ARR5, ARR6, ARR8, and ARR9).

OVERLAPPING AMBIVALENT IMMUNE RESPONSES IN PTI AND ETI

PTI and ETI were traditionally considered to be independent immunity sectors contributing to pathogen resistance and converging on transcriptional defenses (Tao et al., 2003; Cui et al., 2015). However, PTI and ETI are interconnected and play synergistic roles to induce a set of downstream responses, such as the generation of ROS and global transcriptional reprogramming, for pathogen defense (Lu and Tsuda, 2021; Ngou et al., 2021; Yuan et al., 2021). PTI components are necessary for mounting an efficient ETI response, and, vice versa, ETI components are required for PTI; the interlink between PTI and ETI is crucial for the overall plant immune network (Ngou et al., 2021; Pruitt et al., 2021; Tian et al., 2021; Yuan et al., 2021). However, to date, evidence of PTI-ETI connectivity is mainly limited to Arabidopsis, and the underlying mechanisms remain unclear.

ROS function as key defense and signaling molecules and are induced in both PTI and ETI. ROS may function as signaling molecules, triggering plant immune and cell death responses (Tenhaken et al., 1995; Jabs, 1999; Torres, 2010). As major early signaling products, through activation of NADPH oxidases as well as peroxidases, ROS have been proposed to act as defense molecules that kill pathogens, as well as signaling molecules that activate additional immune responses (Figure 2) (Qi et al., 2017; Yuan et al., 2021). Recognition of a pathogen expressing an effector that is recognized by an R protein elicits biphasic ROS accumulation with an initial low-amplitude, transient phase (probably triggered by PAMPs), followed by a sustained phase of much higher magnitude, which is triggered based on effector recognition by the R protein (Torres et al., 2006). Plants resist invading pathogenic fungi, often biotrophs, by induction of the hypersensitive response, a PCD that results from pathogen recognition and is generally associated with the induction of ROS. Cell death increases resistance against biotrophic pathogens but helps necrotrophs, such as B. cinerea and Sclerotinia sclerotiorum, proliferate (Govrin and Levine, 2000). Recently, we reported that ROS are detected in the host plant during infection by M. oryzae and Xoo hemibiotrophs. Whereas ROS-mediated plant cell death is detrimental for hemibiotrophic pathogens, generation of ROS seems advantageous for a necrotrophic pathogen such as C. miyabeanus (Kim et al., 2022).

CELL WALL-ASSOCIATED AMBIVALENT RESPONSES TO PATHOGENS

The resistance conferred by R genes is based on pathogen recognition, followed by the induction of defense responses. Another type of resistance, based on the loss of function of S genes, has recently been identified (Eckardt, 2002; Pavan et al., 2011). S genes are a promising, emerging research focus because they are strong determinants of disease outcomes from plant–pathogen interactions (Van Schie and Takken, 2014). They can modulate core plant processes; in some instances, attenuation of these genes can lead to ambivalent immune responses that are dependent on pathogen lifestyles. An example of host genes that support the ambivalence effect is the SWEET genes; SWEET sugar transporters transport sucrose out of plant cells for sugar reallocation. SWEETs are S genes because they can be overexpressed in pathogen interactions and function in providing nutrients for the pathogen (Chandran, 2015). In summary, host cellular processes support certain demands of pathogens that feed from live tissue, and the components of these processes can be S genes.

Cuticle and cell wall structure

The cuticle and cell wall constitute the first layers of defense against microbial pathogens. They serve as physical barriers against pathogen penetration, as well as sensitive sensors for the timely activation of intracellular and systemic defense responses; the leaf cuticle contains components that are used by filamentous pathogens as essential developmental cues for pathogenicity (Hansjakob et al., 2011; Uppalapati et al., 2012; Wang et al., 2012). Plant genes encoding enzymes and other compounds involved in the synthesis of such components contribute to susceptibility and can also be regarded as S genes. Cutin-deficient Arabidopsis mutants bearing mutations in LONG-CHAIN ACYL-COA SYNTHETASE 2 (LACS2), a gene involved in cuticle biosynthesis, exhibited enhanced resistance against B. cinerea (Bessiere et al., 2007). In this situation, increased cuticular permeability appeared to enhance the diffusion of inoculum-derived elicitors that induced the production of small, polar antifungal compounds; these compounds inhibited B. cinerea growth (Bessiere et al., 2007). Conversely, the lacs2 mutation resulted in increased susceptibility to avirulent strains of P. syringae (Table 1) (Tang et al., 2007), indicating
that cutin has an important role as a physical barrier against hemibiotrophic pathogens. However, the cutinase transgenic lines form a defective cuticle in *Arabidopsis* and can result in increased resistance against necrotrophic fungal pathogens through a secondary (but poorly understood) mechanism involved in the ambivalence effect (Tang et al., 2007).

Negative regulators of cell death are involved in the ambivalence effect

PCD plays an important role in a wide range of developmental processes and in responses to biotic and abiotic stresses in plants (Dickman and Fluhr, 2013). PCD is essential for growth and development of multicellular organisms as well as for proper response to the environment, including the hypersensitive response to biotrophic pathogens (Gadjev et al., 2008). On the other hand, necrotrophs can also cause disease symptoms and trigger PCD in plant tissues by producing phytotoxins (Coffeen and Wolpert, 2004). The ambivalence effect toward diseases caused by biotrophic and necrotrophic pathogens has been observed in experiments with BAX INHIBITOR-1 (BI-1), which is a PCD suppressor in eukaryotes (Huckelhoven, 2004; Watanabe and Lam, 2009). BI-1 is localized to the endoplasmic reticulum; it is conserved in both plants and animals (Huckelhoven, 2004). BI-1 controls the hypersensitive response, a well-characterized form of plant defense against pathogens (Jakimova et al., 2005); it is also involved in susceptibility to penetration by powdery mildew (*Blumeria graminis*) in barley (Eichmann et al., 2004, 2010). BI-1 is considered a candidate susceptibility factor because its transient or stable overexpression favored the penetration of the biotrophic pathogen *Blumeria graminis* f. sp. *hordei* (*Bgh*) into host epidermal cells, thereby weakening the oxidative defense response and allowing consequent putrol development (Eichmann et al., 2004, 2006; Babaeizad et al., 2009). Moreover, BI-1 was expressed in carrots susceptible to the necrotroph *B. cinerea*, mediated resistance against fungal-induced leaf cell death, and decreased root symptoms and fungal sporulation after infection with the hemibiotrophic pathogen *Chalara elegans* (Thielaviopsis basicola) (Table 1) (Irani et al., 2006). In addition, stable expression of a green fluorescent protein-BI-1 fusion protein in barley leaves corresponded with limited development of the necrotroph *F. graminearum* and less severe infection (Babaeizad et al., 2009). These findings indicate that BI-1 has an ambivalent role in plant strategies against pathogen infection.

One of the best-known S genes is **MILDEW RESISTANCE LOCUS O** (*mlo*) in barley, which is required for powdery mildew penetration of epidermal cells and encodes a protein with seven transmembrane domains (Büsches et al., 1997). The *mlo* mutant bearing a loss-of-function mutation at the *MLO* locus exhibits broad-spectrum resistance against *Bgh*; thus, it has been widely used in European countries to protect barley from powdery mildew for almost four decades (Büsches et al., 1997; Kusch and Panstruga, 2017). However, the greatest limitation to its use is the ambivalence effect that comprises both resistance against powdery mildew and susceptibility to non-biotrophic pathogens. For instance, a new *mlo* allele of the S genes was precisely controlled in wheat through genome editing, and a new germplasm with broad-spectrum powdery mildew resistance and high yield was obtained (Li et al., 2022). However, such genes may inadvertently become a double-edged sword for plant health by creating unintended susceptibility to non-target pathogens.

Plants containing the *mlo* allele were more susceptible to diseases with necrotrophic stages, such as rice blast caused by *M. oryzae* (Jaroch et al., 1999), spot blotch disease caused by *Bipolaris sorokiniana* (Table 1) (Kumar et al., 2001), head blight caused by *F. graminearum* (Jansen et al., 2005), and Ramularia leaf spot caused by *Ramularia collo-cygni* (McGrann et al., 2014). In particular, the incidence of Ramularia leaf spot epidemics has increased over the past few decades in all major barley-growing regions, and the disease has become a major threat to barley production (Havis et al., 2015); this phenomenon highlights the existence of a pleiotropic effect that differentially regulates the manifestation of disease symptoms in barley upon infection by a facultative fungal pathogen. *MLO* is a well-known S gene, but its fundamental biochemical activity remains unknown. Studies of *MLO* will improve our understanding of the mechanisms underlying the ambivalence effect as it relates to host cell death and disease development in plants, enhancing the development of disease-resistance strategies in plant breeding programs.

CONCLUDING REMARKS AND PERSPECTIVES

It is critical to understand the fundamental mechanisms underlying plant disease resistance—this understanding will promote sustainable agriculture and aid in the maintenance of human health. Fueled by the advent of large-scale “omics” technologies and advances in computational biology for investigations of the model plant *Arabidopsis*, our understanding of the plant immune signaling network has improved greatly over the past decade. The tight coregulation of phytohormones, at least in the case of SA–JA antagonism, is widely evolutionarily conserved across land plant species (Thaler et al., 2012). Antagonistic effects between SA and JA signaling pathways are considered to provide plants with the regulatory potential to survive in their complex biological environments in a resource cost-effective manner (Thaler et al., 2012). This can be realized by shifting defense responses to either the SA- or JA-signaling pathway according to the lifestyle of the particular invading pathogen (Pieterse et al., 2012), referred to here as the ambivalence effect. Interestingly, attackers have evolved to manipulate JA–SA antagonism; hormone pathways not only protect against pathogen invasion but also can be utilized by pathogens to facilitate disease. Coronatine, which is produced by *P. syringae*, is a functional mimic of jasmonoyl-L-isoleucine (JA-Ile; one of the conjugated forms of JA) and therefore induces the JA pathway to suppress the SA pathway for bacterial infection (Geng et al., 2014). Several aspects of the ambivalence effect that contribute to JA–SA antagonism have been reported (Jimenez-Lizana and Solano, 2013): recent reports show that NPR3 and NPR4, which are SA receptors, interact directly with several JA proteins to trigger JAZ degradation in a COI1-independent manner (Liu et al., 2016) and that JA activates a signaling cascade that inhibits SA accumulation (Zheng et al., 2012). Thus, more strategies by which pathogens trick host plants within hormone pathways require further study to better help with the improvement of plant resistance.
Plant Communications

Several S genes appear to regulate the ambivalence effect. For the optimal exploitation of S genes, future research should focus on further clarifying the molecular mechanisms that underlie S-gene-modulated resistance. This is essential for the identification of novel susceptibility factors that can increase the capabilities of plant breeding programs. Furthermore, intensive research is required to control (or diminish, if possible) pleiotropic effects, such that S genes can be fully exploited. One approach would be to identify partial S gene mutants. Such mutations may provide low levels of resistance that remain sufficient to mitigate any pleiotropic effect on immunity while conferring resistance against pathogens. Recently, quantitative regulation of gene expression was achieved by genome editing of cis-regulatory elements (Rodrı´gu ez-Leal et al., 2017; Bisht et al., 2019). This may be a strategy for limiting the negative impacts associated with reduced S gene function through modifications of the timing, pattern, and/or level of S gene expression. Another way to engineer resistance without causing such pleiotropic side effects is to tightly control the timing and location of gene expression. One recent study tested this approach in rice, in which AtNPR1 expression was controlled by two pathogen-responsive upstream open reading frames of the TL1-BINDING FACTOR 1 (TBF1) gene, thereby providing pathogen-induced translational increases in NPR1. The combined effects of transcriptional and translational control produced resistance to Xoo/Xanthomonas oryzae pv. oryzicola as assessed by disease lesion symptoms in both field and greenhouse conditions without a notable yield penalty (Xu et al., 2017). Therefore, the timely and tissue-localized induction of immunity is a potential strategy for engineering resistance if pleiotropic effects on yield can be avoided.

In conclusion, despite substantial recent progress, there is a considerable lack of understanding regarding the regulation of the ambivalence effect and its impacts. Deepening our knowledge in this area will advance our overall understanding of how plants integrate and balance immune system function in response to diverse pathogens. It will also be instrumental in developing novel strategies for the establishment of durable, environmentally friendly, and biologically based disease resistance in various agricultural settings.

FUNDING
This work was supported by grants from the National Research Foundation of Korea (NRF) (2018R1A5A1023599, 2020R1A2B5B03096402, and 2021M3H9A1096935 to Y.-H.L. and 2019R1I1A1A01059802 to C.-Y.K.). C.-Y.K. is grateful for a graduate fellowship from the Brain Korea 21 Plus Program. The authors declare no competing interests.

AUTHOR CONTRIBUTIONS
C.-Y.K. wrote the manuscript. H.S. prepared the figures with input from C.-Y.K. and Y.-H.L. designed and edited the manuscript.

ACKNOWLEDGMENTS
We apologize to those authors whose papers cannot be cited here owing to space limitations. The authors declare no conflicts of interest that might be perceived as affecting the objectivity of this review.

REFERENCES
Acevedo, F.E., Rivera-Vega, L.J., Chung, S.H., Ray, S., and Felton, G.W. (2015). Cues from chewing insects: the intersection of DAMPs, HAMPs, MAMPs and effectors. Curr. Opin. Plant Biol. 26:80–86.
Adio, B.A.T., Pérez-Pérez, J., Pérez-Pérez, M.M., Godoy, M., Sánchez-Serrano, J.J., Schmelz, E.A., and Solano, R. (2007). ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis. Plant Cell 19:1665–1681.
Aloni, R., Langhans, M., Aloni, E., Dreieicher, E., and Ulrich, C.I. (2005). Root-synthesized cytokinin in Arabidopsis is distributed in the shoot by the transpiration stream. J. Exp. Bot. 56:1535–1544.
Argueso, C.T., Ferreira, F.J., Apple, P., To, J.P.C., Hutchinson, C.E., Schaller, G.E., Dangi, J.L., and Kieber, J.J. (2012). Two-component elements mediate interactions between cytokinin and salicylic acid in plant immunity. PLoS Genet. 8:e1002448.
Asselbergh, B., De Vleeschauwer, D., and Höfte, M. (2008). Global switches and fine-tuning-ABA modulates plant pathogen defense. Mol. Plant Microbe Interact. 21:709–719.
Babaeizad, V., Imani, J., Kogel, K.H., Eichmann, R., and Hucklehoven, R. (2009). Overexpression of the cell death regulator BAX inhibitor-1 in barley confers reduced or enhanced susceptibility to distinct fungal pathogens. Theor. Appl. Genet. 118:455–463.
Bacete, L., Mérida, H., López, G., Dabos, P., Tremousaygue, D., Denancé, N., Miedes, E., Balone, V., Goffner, D., and Molina, A. (2020). Arabidopsis response regulator 6 (ARR6) modulates plant cell-wall composition and disease resistance. Mol. Plant Microbe Interact. 33:767–780.
Bardol, B.W., Van der Ent, S., Pel, M.J.C., Tommassen, J., Pieterse, C.M.J., van Kessel, K.P.M., and van Strijp, J.A.G. (2011). Pseudomonas evades immune recognition of flagellin in both mammals and plants. PLoS Pathog. 7:e1002206.
Bari, R., and Jones, J.D.G. (2009). Role of plant hormones in plant defence responses. Plant Mol. Biol. 69:473–488.
Benjamins, R., and Scheres, B. (2008). Auxin: the looping star in plant development. Annu. Rev. Plant Biol. 59:443–465.
Bellincampi, D., Dippierro, N., Calvi, G., Cervone, F., and De Lorenzo, G. (2000). Extracellular H2O2 induced by oligogalacturonides is not involved in the inhibition of the auxin-regulated rolB gene expression in tobacco leaf explants. Plant Physiol. 122:1379–1385.
Bent, A.F., Innes, R.W., Ecker, J.R., and Staskawicz, B.J. (1992). Disease development in ethylene-insensitive Arabidopsis thaliana infected with virulent and avirulent Pseudomonas and Xanthomonas pathogens. Mol. Plant Microbe Interact. 5:372–378.
Berens, M.L., Berry, H.M., Mine, A., Argueso, C.T., and Tsuda, K. (2017). Evolution of hormone signaling networks in plant defense. Annu. Rev. Phytopathol. 55:401–425.
Berriri, S., Garcia, A.V., Frei, D., Rozhon, W., Pateyron, S., Leonhardt, N., Montillet, J.-L., Leung, J., Hirt, H., and Colcombet, J. (2012). Constitutively active mitogen-activated protein kinase versions reveal functions of Arabidopsis MPK4 in pathogen defense signaling. Plant Cell 24:4281–4293.
Bessire, M., Chassot, C., Jacquot, A.C., Humphry, M., Borel, S., Petetot, J.M.C., Métraux, J.P., and Nawrath, C. (2007). A permeable cuticle in Arabidopsis leads to a strong resistance to Botrytis cinerea. EMBO J. 26:2158–2168.
Bi, G., Zhou, Z., Wang, W., Li, L., Rao, S., Wu, Y., Zhang, X., Menke, F.L.H., Chen, S., and Zhou, J.-M. (2018). Receptor-like cytoplasmic kinases directly link diverse pattern recognition receptors to the activation of mitogen-activated protein kinase cascades in Arabidopsis. Plant Cell 30:1543–1561.
The ambivalence effect

Baker, T., Diezel, C., and Somssich, I.E. (2012). Arabidopsis WRKY33 is a key transcriptional regulator of hormonal and metabolic responses toward Botrytis cinerea infection. Plant Physiol. 159:266–285.

Bisht, D.S., Bhatia, V., and Bhattacharya, R. (2019). Improving plant-resistance to insect-pests and pathogens: the new opportunities through targeted genome editing. Semin. Cell Dev. Biol. 96:65–76.

Boström, T., and Felix, G. (2009). A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu. Rev. Plant Biol. 60:379–406.

Boutrot, F., and Zipfel, C. (2017). Function, discovery, and exploitation of plant pattern recognition receptors for broad-spectrum disease resistance. Annu. Rev. Phytopathol. 55:257–286.

Bozkurt, T.O., Schornack, S., Banfield, M.J., and Kamoun, S. (2012). Oomycetes, effectors, and all that jazz. Curr. Opin. Plant Biol. 15:483–492.

Broekgaert, W.F., and Peumans, W.J. (1988). Pectic polysaccharides elicit chitinase accumulation in tobacco. Physiol. Plant. 74:740–744.

Buschges, R., Hohlricher, K., Panstruga, R., Simons, G., Wolpert, M., Frijters, A., Van Daelen, R., Van der Lee, T., Diergaarder, P., Groenendijk, J., et al. (1997). The barley Mlo gene: a novel control element of plant pathogen resistance. Cell 88:695–705.

Caillaud, M.C., Asai, S., Rallapalli, G., Piquerez, S., Fabro, G., and Jones, J.D.G. (2013). A downy mildew effector attenuates salicylic acid-triggered immunity in Arabidopsis by interacting with the host mediator complex. PLoS Biol. 11:e1001732.

Cao, F.Y., Yoshioka, K., and Desveaux, D. (2011). The roles of ABA in plant-pathogen interactions. J. Plant Res. 124:489–499.

Cervone, F., Hahn, M.G., De Lorenzo, G., Darvill, A., and Albersheim, P. (1989). Host-pathogen interactions : XXXIII. A plant protein converts a fungal pathogenesis factor into an elicitor of plant defense responses. Plant Physiol. 90:542–548.

Chandran, D. (2015). Co-option of developmentally regulated plant SWEET transporters for pathogen nutrition and abiotic stress tolerance. IUBMB Life 67:461–471.

Chen, D., Cao, Y., Li, H., Kim, D., Ahsan, N., Thelen, J., and Stacey, G. (2017). Extracellular ATP elicits DORN1-mediated RBOHD phosphorylation to regulate stomatal aperture. Nat. Commun. 8:2265.

Chen, L.Q., Hou, B.H., Lalonde, S., Takanaga, H., Hartung, M.L., Qu, X.Q., Guo, W.J., Kim, J.G., Underwood, W., Chaudhuri, B., et al. (2010). Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 468:527–532.

Chen, K., Wang, Y., Zhang, R., Zhang, H., and Gao, C. (2019). CRISPR/Cas genome editing and precise plant breeding in agriculture. Annu. Rev. Plant Biol. 70:667–697.

Chivas, S., Murphy, A.M., Hamilton, J.M., Lindsey, K., Carr, J.P., and Slabas, A.R. (2009). Extracellular ATP is a regulator of pathogen defence in plants. Plant J. 60:436–448.

Choi, H.W., and Klessig, D.F. (2016). DAMPs, MAMPs, and NAMPs in plant innate immunity. BMC Plant Biol. 16:232.

Choi, H.W., Manohar, M., Manosalpa, P., Tian, M., Moreau, M., and Klessig, D.F. (2016). Activation of plant innate immunity by extracellular high mobility group box 3 and its inhibition by salicylic acid. PLoS Pathog. 12:e1005518.

Choi, J., Huh, S.U., Kojima, M., Sakakibara, H., Paek, K.H., and Hwang, I. (2010). The cytokinin-activated transcription factor ARR2 promotes plant immunity via TGA3/NPR1-dependent salicylic acid signaling in Arabidopsis. Dev. Cell 19:284–295.

Choi, J., Tanaka, K., Cao, Y., Qi, Y., Qiu, J., Liang, Y., Lee, S.Y., and Stacey, G. (2014a). Identification of a plant receptor for extracellular ATP. Science 343:290–294.

Choi, J., Tanaka, K., Liang, Y., Cao, Y., Lee, S.Y., and Stacey, G. (2014b). Extracellular ATP, a danger signal, is recognized by DORN1 in Arabidopsis. Biochem. J. 463:429–437.

Coffeen, W.C., and Wolpert, T.J. (2004). Purification and characterization of serine proteases that exhibit caspase-like activity and are associated with programmed cell death in Avena sativa. Plant Cell 16:857–873.

Cooksey, C.J., Garratt, P.J., Dahiya, J.S., and Strange, R.N. (1983). Sucrose: a constitutive elicitor of phytoalexin synthesis. Science 220:1398–1400.

Coutu, D., and Zipfel, C. (2016). Regulation of pattern recognition receptor signalling in plants. Nat. Rev. Immunol. 16:537–552.

Cui, H., Tsuda, K., and Parker, J.E. (2015). Effector-triggered immunity: from pathogen perception to robust defense. Annu. Rev. Plant Biol. 66:487–511.

Dark, A., Demidchik, V., Richards, S.L., Shabala, S., and Davies, J.M. (2011). Release of extracellular purines from plant roots and effect on ion fluxes. Plant Signal. Behav. 6:1855–1857.

Davis, K.R., Darvill, A.G., Albersheim, P., and Dell, A. (1986). Host-pathogen interactions : XXIX. Oligogalacturonides released from sodium polypectate by endopolygalacturonic acid lyase are elicitors of phytoalexins in soybean. Plant Physiol. 80:568–577.

Davis, K.R., and Hahlbrock, K. (1987). Induction of defense responses in cultured parsley cells by plant cell wall fragments. Plant Physiol. 84:1286–1290.

De Jonge, R., Van Esse, H.P., Kombrink, A., Shinya, T., Desaki, Y., Bours, R., Van der Krol, S., Shibuya, N., Joosten, M.H.A.J., and Thomma, B.P.H.J. (2010). Conserved fungal LysM effector Ecp6 prevents chitin-triggered immunity in plants. Science 329:953–955.

Denoux, C., Galletti, R., Mammarella, N., Gopalian, S., Werck, D., De Lorenzo, G., Ferrari, S., Ausubel, F.M., and Dewdney, J. (2008). Activation of defense response pathways by OGs and Flg22 elicitors in Arabidopsis seedlings. Mol. Plant 1:429–445.

Derkson, H., Rampitsch, C., and Daayf, F. (2013). Signaling cross-talk in plant disease resistance. Plant Sci. 207:79–87.

Deslandes, L., and Rivas, S. (2012). Catch me if you can: bacterial effectors and plant targets. Trends Plant Sci. 17:644–655.

Dickman, M.B., and Fluhr, R. (2013). Centrality of host cell death in plant-microbe interactions. Annu. Rev. Phytopathol. 51:543–570.

Ding, X., Cao, Y., Huang, L., Zhao, J., Xu, C., Li, X., and Wang, S. (2008). Activation of the indole-3-acetic acid-amido synthetase GH3-8 suppresses expansin expression and promotes salicylate- and jasmonate-independent basal immunity in rice. Plant Cell 20:228–240.

Dodds, P.N., and Rathjen, J.P. (2010). Plant immunity: towards an integrated view of plant-pathogen interactions. Nat. Rev. Genet. 11:539–548.

Doherty, H.M., Selvendran, R.R., and Bowles, D.J. (1988). The wound response of tomato plants can be inhibited by aspirin and related hydroxy-benzoic acids. Physiol. Mol. Plant Pathol. 33:377–384.

Domingo, C., Andrés, F., Tharreau, D., Iglesias, D.J., and Talón, M. (2009). Constitutive expression of OsGH3.1 reduces auxin content and enhances defense response and resistance to a fungal pathogen in rice. Mol. Plant Microbe Interact. 22:201–210.

Donofrio, N.M., and Raman, V. (2012). Roles and delivery mechanisms of fungal effectors during infection development: common threads and new directions. Curr. Opin. Microbiol. 15:692–698.

Duran-Flores, D., and Heil, M. (2016). Sources of specificity in plant disease susceptibility genes? Plant Cell 14:1983–1986.
Plant Communications

Eichmann, R., Bischof, M., Weis, C., Shaw, J., Lacomme, C., Schweizer, P., Duchkov, D., Hensel, G., Kumlehn, J., and Huckelhoven, R. (2010). BAX INHIBITOR-1 is required for full susceptibility of barley to powdery mildew. Mol. Plant Microbe Interact. 23:1217–1227.

Eichmann, R., Deichert, C., Kogel, K.H., and Huckelhoven, R. (2006). Transient overexpression of barley BAX Inhibitor-1 weakens oxidative defence and MLA12-mediated resistance to Blumeria graminis f. sp. hordei. Mol. Plant Pathol. 7:543–552.

Eichmann, R., Schultheiss, H., Kogel, K.H., and Huckelhoven, R. (2004). The barley apoptosis suppressor homologue BAX inhibitor-1 compromises nonhost penetration resistance of barley to the inappropriate pathogen Blumeria graminis f. sp. tritici. Mol. Plant Microbe Interact. 17:484–490.

Ferrari, S., Galletti, R., Denoux, C., De Lorenzo, G., Ausubel, F.M., and Dewdney, J. (2007). Resistance to Botrytis cinerea induced in Arabidopsis by elicitors is independent of salicylic acid, ethylene, or jasmonate signaling but requires PHYTOALEXIN DEFICIENT3. Plant Physiol. 144:367–379.

Fonteyne, S. (2011). The Role of Ethylene, Auxin and Abscisic Acid in the Interaction of Rice With the Brown Spot Pathogen Cochliobolus miyabeanus. Master’s Thesis (Ghent University). [In Dutch.]

Fu, J., Liu, H., Li, Y., Yu, H., Li, X., Xiao, J., and Wang, S. (2011). Manipulating broad-spectrum disease resistance by suppressing pathogen-induced auxin accumulation in rice. Plant Physiol. 155:589–602.

Fu, J., and Wang, S. (2011). Insights into auxin signaling in plant-pathogen interactions. Front. Plant Sci. 2:74–77.

Gadjev, I., Stone, J.M., and Gechev, T.S. (2008). Chapter 3: programmed cell death in plants: new insights into redox regulation and the role of hydrogen peroxide. Int. Rev. Cell Mol. Biol. 270:87–144.

Galletti, R., Denoux, C., Gambetta, S., Dewdney, J., Ausubel, F.M., De Lorenzo, G., and Ferrari, S. (2008). The AtbboH-D-mediated oxidative burst elicited by oligogalacturonides in Arabidopsis is dispensable for the activation of defense responses effective against Botrytis cinerea. Plant Physiol. 148:1695–1706.

Gao, Q.M., Venugopal, S., Navarre, D., and Kachroo, A. (2011). Low oleic acid-derived repression of jasmonic acid-inducible defense responses requires the WRKY90 and WRKY51 proteins. Plant Physiol. 155:464–476.

Geng, X., Jin, L., Shimada, M., Kim, M.G., and Mackey, D. (2014). The phytotoxin coronatine is a multifunctional component of the virulence armament of Pseudomonas syringae. Planta 240:1149–1165.

Genet, B., Lang, J., Berriri, S., Garmier, M., Gilard, F., Pateyron, S., Haustre, K., Van Der Straeten, D., Hirt, H., and Colcombet, J. (2017). Constitutively Active Arabidopsis MAP kinase 3 triggers defense responses involving salicylic acid and SUMM2 resistance protein. Plant Physiol. 174:1238–1249.

Gimenez-Ibanez, S., and Solano, R. (2013). Nuclear jasmonate and salicylate signaling and crosstalk in defense against pathogens. Front. Plant Sci. 4:72.

Glazebrook, J. (2005). Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 43:205–227.

Glazebrook, J., Chen, W., Estes, B., Chang, H.S., Nawrath, C., Metraux, J.P., Zhu, T., and Katagiri, F. (2003). Topology of the network integrating salicylate and jasmonate signal transduction derived from global expression phenotyping. Plant J. 34:217–228.

Govrin, E.M., and Levine, A. (2000). The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Curr. Biol. 10:751–757.

Gust, A.A., Pruitt, R., and Nurnberger, T. (2017). Sensing danger: key to activating plant immunity. Trends Plant Sci. 22:779–791.

Hansjakob, A., Riederer, M., and Hildebrandt, U. (2011). Wax matters: absence of very-long-chain aldehydes from the leaf cuticular wax of the glossy11 mutant of maize compromises the prepenetration processes of Blumeria graminis. Plant Pathol. 60:1151–1161.

Havis, N.D., Brown, J.K.M., Clemente, G., Frei, P., Jedrzychka, M., Kaczmarek, J., Kaczmarek, M., Matusinsky, P., McGrann, G.R.D., Pereyra, S., et al. (2015). Ramularia collo-cygni—an emerging pathogen of barley crops. Phytopathology 105:895–904.

Heil, M., and Land, W.G. (2014). Danger signals—damaged-self recognition across the tree of life. Front. Plant Sci. 5:578.

Hein, I., Gilroy, E.M., Armstrong, M.R., and Birch, P.R.J. (2009). The zig-zag-zig in oomycete-plant interactions. Mol. Plant Pathol. 10:547–562.

Hoffmann, T., Schmidt, J.S., Zheng, X., and Bent, A.F. (1999). Isolation of ethylene-insensitive soybean mutants that are altered in pathogen susceptibility and gene-for-gene disease resistance. Plant Physiol. 119:935–950.

Hou, X., Lee, L.Y.C., Xia, K., Yan, Y., and Yu, H. (2010). DELLLs modulate jasmonate signaling via competitive binding to JAZs. Dev. Cell 19:884–894.

Howe, G.A., and Jander, G. (2008). Plant immunity to insect herbivores. Annu. Rev. Plant Biol. 59:41–66.

Huckelhoven, R. (2004). BAX Inhibitor-1, an ancient cell death suppressor in animals and plants with prokaryotic relatives. Apoptosis 9:299–307.

Huot, B., Yao, J., Montgomery, B.L., and He, S.Y. (2014). Growth-defense tradeoffs in plants: a balancing act to optimize fitness. Mol. Plant 7:1267–1287.

Iakimova, E.I., Michalczuk, L., and Woltering, E.J. (2005). Hypersensitive cell death in plants—its mechanisms and role in plant defense against pathogens. J. Fruit Ornam. Plant Res. 13:135–158.

Ichimura, K., Casais, C., Peck, S.C., Shinozaki, K., and Shirasu, K. (2006). MEKK1 is required for MPK4 activation and regulates tissue-specific and temperature-dependent cell death in Arabidopsis. J. Biol. Chem. 281:36969–36976.

Igarashi, D., Tsuda, K., and Katagiri, F. (2012). The peptide growth factor, phytosulfokine, attenuates pattern-triggered immunity. Plant J. 71:194–204.

Imani, J., Baltruschat, H., Stein, E., Jia, G., Vogelsberg, J., Kogel, K.H., and Huckelhoven, R. (2006). Expression of barley BAX Inhibitor-1 in carrots confers resistance to Botrytis cinerea. Mol. Plant Pathol. 7:279–284.

Jabs, T. (1999). Reactive oxygen intermediates as mediators of programmed cell death in plants and animals. Biochim. Pharmacol. 57:231–245.

Jagodzik, P., Tajdel-Zielinska, M., Ciesla, A., Marczak, M., and Ludwikow, A. (2018). Mitogen-activated protein kinase cascades in plant hormone signaling. Front. Plant Sci. 9:1387.

Jansen, C., Von Wettstein, D., Schafer, W., Kogel, K.H., Felk, A., and Maier, F.J. (2005). Infection patterns in barley and wheat spikes inoculated with wild-type and trichodiene synthase gene disrupted Blumeria graminis f. sp. hordei enhance susceptibility to the rice blast fungus Magnaporthe grisea. Mol. Plant Microbe Interact. 12:508–514.

Jewell, J.B., Sowders, J.M., He, R., Willis, M.A., Gang, D.R., and Tanaka, K. (2019). Extracellular ATP shapes a defense-related
The ambivalence effect

transcriptome both independently and along with other defense signaling pathways. Plant Physiol. 179:1144–1158.

Jiang, C.J., Shimono, M., Sugano, S., Kojima, M., Yazawa, K., Yoshida, R., Inoue, H., Hayashi, N., Sakakibara, H., and Takatsuiji, H. (2010). Abscisic acid interacts antagonistically with salicylic acid signaling pathway in rice—Magnaporthe grisea interaction. Mol. Plant Microbe Interact. 23:791–798.

Johannson, A., Staal, J., and Dixelius, C. (2006). Early responses in the Arabidopsis-Verticillium longisporum pathosystem are dependent on NDR1, JA- and ET-associated signals via cytosolic NPR1 and RFO1. Mol. Plant Microbe Interact. 19:958–969.

Johnson, P.R., and Ecker, J.R. (1998). The ethylene gas signal transduction pathway: a molecular perspective. Annu. Rev. Genet. 32:227–254.

Jones, J.D.G., and Dangl, J.L. (2006). The plant immune system. Nature 444:323–329.

Jones-Rhoades, M.W., and Bartel, D.P. (2004). Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol. Cell 14:787–799.

Katagiri, F., and Tsuda, K. (2010). Understanding the plant immune system. Mol. Plant Microbe Interact. 23:1531–1536.

Kay, S., Hahn, S., Marois, E., Hause, G., and Bonas, U. (2007). A bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science 318:648–651.

Kazan, K., and Manners, J.M. (2009). Linking development to defense: auxin in plant–pathogen interactions. Trends Plant Sci. 14:373–382.

Kazan, K., and Manners, J.M. (2012). JAZ repressors and the orchestration of phytohormone crosstalk. Trends Plant Sci. 17:22–31.

Kazan, K., and Manners, J.M. (2013). MYC2: the master in action. Mol. Plant 6:686–703.

Kim, C.Y., Park, J.Y., Choi, G., Kim, S., Vo, K.T.X., Jeon, J.-S., Kang, S., and Lee, Y.H. (2022). A rice gene encoding glycosyl hydrolase plays contrasting roles in immunity depending on the type of pathogens. Mol. Plant Pathol. 23:400–416.

Kim, S., Kim, C.Y., Park, S.Y., Kim, K.T., Jeon, J., Chung, H., Choi, G., Kwon, S., Choi, J., Jeon, J., et al. (2020). Two nuclear effectors of the rice blast fungus modulate host immunity via transcriptional reprogramming. Nat. Commun. 11:5845.

Koga, H., Dohi, K., and Mori, M. (2004). Abscisic acid and low temperatures suppress the whole plant-specific resistance reaction of rice plants to the infection of Magnaporthe grisea. Physiol. Mol. Plant Pathol. 65:3–9.

Kong, O., Qu, N., Gao, M., Zhang, Z., Ding, X., Yang, F., Li, Y., Dong, O.X., Chen, S., Li, X., et al. (2012). The MEKK1-MKK1/MKK2-MPK4 kinase cascade negatively regulates immunity mediated by a mitogen-activated protein kinase kinase kinase in Arabidopsis. Plant Cell 24:2225–2236.

Koornneef, A., Leon-Reyes, A., Ritsema, T., Verhage, A., Den Otter, F.C., Van Loon, L.C., and Pieterse, C.M.J. (2008). Kinetics of salicylate-mediated suppression of jasmonate signaling reveal a role for redox modulation. Plant Physiol. 147:1358–1368.

Krol, E., Mentzel, T., Chinchilla, D., Boller, T., Felix, G., Kemmerling, B., Postel, S., Arens, M., Jawurutzki, E., Al-Rasheid, K.A.S., et al. (2016). Perception of the Arabidopsis danger signal peptide 1 involves the pattern recognition receptor ALPPEPR1 and its close homologue AIPPEPR2. J. Biol. Chem. 285:13471–13479.

Kumar, J., Hackelhoven, R., Beckhove, U., Nagarajan, S., and Kogel, K.H. (2001). A compromised Mlo pathway affects the response of barley to the necrotrophic fungus Bipolaris sorokiniana (teleomorph: Cochliobolus sativus) and its toxins. Phytopathology 91:127–133.
Matsubayashi, Y., Ogawa, M., Morita, A., and Sakagami, Y. (2002). An LRR receptor kinase involved in perception of a peptide plant hormone, phytosulfokine. Science 296:1470–1472.

Matsubayashi, Y., and Sakagami, Y. (1996). Phytosulfokine, sulfated peptides that induce the proliferation of single mesophyll cells of Asparagus officinalis L. Proc. Natl. Acad. Sci. USA 93:7623–7627.

McGrann, G.R.D., Stavrinides, A., Russell, J., Corbitt, M.M., Booth, A., Chartrain, L., Thomas, W.T.B., and Brown, J.K.M. (2014). A trade off between mlo resistance to powdery mildew and increased susceptibility of barley to a newly important disease, Ramularia leaf spot. J. Exp. Bot. 65:1025–1037.

Medina-Castellanos, E., Esquivel-Naranjo, E.U., Heil, M., and Herrera-Estrella, A. (2014). Extracellular ATP activates MAPK and ROS signaling during injury response in the fungus Trichoderma atroviride. Front. Plant Sci. 5:659.

Meehan, F., and Murphy, H.C. (1946). A new Helmitheosporium blight of oats. Science 104:413–414.

Mosher, S., Seybold, H., Rodriguez, P., Stahl, M., Davies, K.A., Dayaratne, S., Morillo, S.A., Wierzb, M., Favery, B., Keller, H., et al. (2013). The tyrosine-sulfated peptide receptors PSKR1 and PSY1R modify the immunity of Arabidopsis to biotrophic and necrotrophic pathogens in an antagonistic manner. Plant J. 73:469–482.

Naseem, M., Kaltdorf, M., and Dandekar, T. (2015). The nexus between growth and defence signalling: auxin and cytokinin modulate plant immune response pathways. J. Exp. Bot. 66:4885–4896.

Naseem, M., Wollfing, M., and Dandekar, T. (2014). Cytokinins for immunity beyond growth, galls and green islands. Trends Plant Sci. 19:481–484.

Navarro, L., Bari, R., Achard, P., Lisón, P., Nemri, A., Harberd, N.P., and Jones, J.D.G. (2008). DELLAs control plant immune responses by modulating the balance and salicylic acid signaling. Curr. Biol. 18:650–655.

Navarro, L., Dunoyer, P., Jay, F., Arnold, B., Dharmasiri, N., Estelle, M., Voinnet, O., and Jones, J.D.G. (2006). A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439.

Navarro, L., Zipfel, C., Rowland, O., Keller, I., Robatzek, S., Boller, T., and Jones, J.D.G. (2004). The transcriptional innate immune response to fig22. Interplay and overlap with Avr gene-dependent defense responses and bacterial pathogenesis. Plant Physiol. 135:1113–1128.

Ngou, B.P.M., Ahn, H.K., Ding, P., and Jones, J.D.G. (2021). Mutual potentiation of plant immunity by cell-surface and intracellular receptors. Nature 592:110–115.

Noel, L.D., Denance, N., and Szurek, B. (2013). Predicting promoters targeted by TAL effectors in plant genomes: from dream to reality. Front. Plant Sci. 4:333.

Orozco-Cardenas, M., and Ryan, C.A. (1999). Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proc. Natl. Acad. Sci. USA 96:6553–6557.

Pandey, P., Iraluppan, V., Bagavathianan, M.V., and Senthil-Kumar, M. (2017). Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physiologically relevant traits. Front. Plant Sci. 8:537.

Pavan, S., Savioli, A., Appiano, M., Marcorigliano, A.R., Cillo, F., Visser, R.G.F., Bai, Y., Lotti, C., and Ricciardi, L. (2011). Pea powdery mildew er1 resistance is associated to loss-of-function mutations at a MLO homologous locus. Theor. Appl. Genet. 123:1425–1431.

Pel, M.J.C., and Pieterse, C.M.J. (2012). Microbial recognition and evasion of host immunity. J. Exp. Bot. 64:1237–1248.

Peña-Cortés, H., Albrecht, T., Prat, S., Weiler, E.W., and Willmitzer, L. (1993). Aspirin prevents wound-induced gene expression in tomato leaves by blocking jasmonic acid biosynthesis. Planta 191:123–128.

Petersen, K., Fili, B.K., Mundy, J., and Petersen, M. (2008). Downstream targets of WRKY33. Plant Signal. Behav. 3:1033–1034.

Petersen, M., Brodersen, P., Naested, H., Andreassen, E., Lindhart, U., Johansen, B., Nielsen, H.B., Lacy, M., Austin, M.J., Parker, J.E., et al. (2000). Arabidopsis MAP Kinase 4 negatively regulates systemic acquired resistance. Cell 103:1111–1120.

Pieterse, C.M.J., Leon-Reyes, A., Van der Ent, S., and Van Wees, S.C.M. (2009). Networking by small-molecule hormones in plant immunity. Nat. Chem. Biol. 5:308–316.

Pieterse, C.M.J., Van der Does, D., Zamioudis, C., Leon-Reyes, A., and Van Wees, S.C.M. (2012). Hormonal modulation of plant immunity. Annu. Rev. Cell Dev. Biol. 28:489–521.

Pruitt, R.N., Locci, F., Wanke, F., Zhang, L., Saile, S.C., Joe, A., Karellina, D., Hua, C., Frohlich, K., Wan, W.L., et al. (2021). The EDS1-PAD4-ADR1 node mediates Arabidopsis pattern-triggered immunity. Nature 598:495–499.

Qi, J., Wang, J., Gong, Z., and Zhou, J.M. (2017). Apoplastic ROS signaling in plant immunity. Curr. Opin. Plant Biol. 38:92–100.

Qiu, J.L., Zhou, L., Yun, B.W., Nielsen, H.B., Fili, B.K., Petersen, K., Mackinlay, J., Loake, G.J., Mundy, J., and Morris, P.C. (2008). Arabidopsis mitogen-activated protein kinase kinases MKK1 and MKK2 have overlapping functions in defense signaling mediated by MEK1, MPK4, and MKS1. Plant Physiol. 148:212–222.

Ramachandran, S.R., Kumar, S., and Tanaka, K. (2019). Quantification of extracellular ATP in plant suspension cell cultures. Methods Mol. Biol. 1991:43–54.

Ramirez, V., Van der Ent, S., Garcia-Andrade, J., Coego, A., Pieterse, C.M.J., and Vera, P. (2010). OCP3 is an important modulator of NPR1-mediated jasmonic acid-dependent induced defenses in Arabidopsis. BMC Plant Biol. 10:199.

Ren, C.M., Zhu, Q., Gao, B.D., Ke, S.Y., Yu, W.C., Xie, D.X., and Peng, W. (2008). Transcription factor WRKY70 displays important but not indispensable roles in jasmonate and salicylic acid signaling. J. Integr. Plant Biol. 50:630–637.

Robert-Seilanianz, A., Grant, M., and Jones, J.D.G. (2011). Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annu. Rev. Phytopathol. 49:317–343.

Rodriguez-Leal, D., Lemmon, Z.H., Man, J., Bartlett, M.E., and Lippman, Z.B. (2017). Engineering quantitative trait variation for crop improvement by genome editing. Cell 171:470–481.e8.

Romer, P., Recht, S., Strauss, T., Elsaesser, J., Schornack, S., Boch, J., Wang, S., and Lahaye, T. (2010). Promoter elements of rice susceptibility genes are bound and activated by specific TAL effectors from the bacterial blight pathogen, Xanthomonas oryzae pv. oryzae. New Phytol. 187:1048–1057.

Rushton, P.J., Sommers, L.M., Ewing, L., and Shen, Q.J. (2010). WRKY transcription factors. Trends Plant Sci. 15:247–258.

Sakakibara, H. (2006). Cytokinins: activity, biosynthesis, and translocation. Annu. Rev. Plant Biol. 57:431–449.

Saville, R.J., Gosman, N., Burt, C.J., Makepeace, J., Steed, A., Corbitt, M., Chandler, E., Brown, J.K.M., Boulton, M.I., and Nicholson, P. (2012). The ‘Green Revolution’ dwarfing genes play a role in disease resistance in Triticum aestivum and Hordeum vulgare. J. Exp. Bot. 63:1271–1283.

Schwartz, S.H., Qin, X., and Zeevaart, J.A.D. (2003). Elucidation of the indirect pathway of abscisic acid biosynthesis by mutants, genes, and enzymes. Plant Physiol. 131:1591–1591.
The ambivalence effect

Shigenaga, A.M., Berens, M.L., Tsuda, K., and Argueso, C.T. (2017). Towards engineering of hormonal crosstalk in plant immunity. Curr. Opin. Plant Biol. 38:164–172.

Shigenaga, A.M., and Argueso, C.T. (2016). No hormone to rule them all: interactions of plant hormones during the responses of plants to pathogens. Semin. Cell Dev. Biol. 58:174–189.

Souza, C.d.A., Li, S., Lin, A.Z., Boutrot, F., Grossmann, G., Zipfel, C., and Somerville, S.C. (2017). Cellulose-derived oligomers act as damage-associated molecular patterns and trigger defense-like responses. Plant Physiol. 173:2383–2398.

Spoel, S.H., Johnson, J.S., and Dong, X. (2007). Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. Proc. Natl. Acad. Sci. USA 104:18842–18847.

Spoel, S.H., Koornneef, A., Claesens, S.M.C., Korzelius, J.P., Van Pelt, J.A., Mueller, M.J., Buchala, A.J., Métraux, J.P., Brown, R., Kazan, K., et al. (2003). NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell 15:760–770.

Stein, E., Molitor, A., Kogel, K.H., and Waller, F. (2008). Systemic resistance in Arabidopsis conferred by the mycorrhizal fungus Piriformospora indica requires jasmonic acid signaling and the cytoplasmic function of NPR1. Plant Cell Physiol. 49:1747–1751.

Streubel, J., Pesce, C., Hutin, M., Koebnik, R., Boch, J., and Szurek, B. (2013). Five phylogenetically close rice SWEET genes confer TAL effector-mediated susceptibility to Xanthomonas oryzae pv. New Phytolet. 200:808–819.

Sun, T.P. (2011). The molecular mechanism and evolution of the GA-GID1-DELLA signaling module in plants. Curr. Biol. 21:338–345.

Sunkar, R., and Zhu, J.K. (2004). Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019.

Sweat, T.A., Lorang, J.M., Bakker, E.G., and Wolpert, T.J. (2008). Characterization of natural and induced variation in the LOV1 gene, a CC-NB-LRR gene conferring victorin sensitivity and disease susceptibility in Arabidopsis. Mol. Plant Microbe Interact. 21:7–19.

Sweat, T.A., and Wolpert, T.J. (2007). Thioredoxin h5 is required for victorin sensitivity mediated by a CC-NBS-LRR gene in Arabidopsis. Plant Cell 19:673–687.

Takagi, M., Hamano, K., Takagi, H., Morimoto, T., Akimitsu, K., Terauchi, R., Shirasu, K., and Ichimura, K. (2019). Disruption of the MAMP-induced MEKK1-MKK1/MKK2-MPK4 pathway activates the TNL immune receptor SNN1/RPS5. Plant Cell Physiol. 60:778–787.

Takagi, M., Nagai, S., Kaminaka, H., Akimitsu, K., Shirasu, K., and Ichimura, K. (2022). Simultaneous mutations in SMN1 and SUMM2 fully suppress the dwarf and autoimmune phenotypes of Arabidopsis mpk4 mutant. Plant Signal. Behav. 17:2046412.

Tanaka, K., Choi, J., Cao, Y., and Stacey, G. (2014). Extracellular ATP acts as a damage-associated molecular pattern (DAMP) signal in plants. Front. Plant Sci. 5:446.

Tang, D., Simonich, M.T., and Innes, R.W. (2007). Mutations in LACS2, a long-chain acyl-Coenzyme A synthetase, enhance susceptibility to avirulent Pseudomonas syringae but confer resistance to Botrytis cinerea in Arabidopsis. Plant Physiol. 144:1093–1103.

Tao, Y., Xie, Z., Chen, W., Glazebrook, J., Chang, H.S., Han, B., Zhu, T., Zou, G., and Katagiri, F. (2003). Quantitative nature of Arabidopsis responses during compatible and incompatible interactions with the bacterial pathogen Pseudomonas syringae. Plant Cell 15:317–330.

Tenhaken, R., Levine, A., Brisson, L.F., Dixon, R.A., and Lamb, C. (1995). Function of oxidative burst in hypersensitive disease resistance. Proc. Natl. Acad. Sci. USA 92:4158–4163.

Thaler, J.S., Owen, B., and Higgins, V.J. (2004). The role of the jasmonate response in plant susceptibility to diverse pathogens with a range of lifestyles. Plant Physiol. 135:530–538.

Thaler, J.S., Humphrey, P.T., and Whiteman, N.K. (2012). Evolution of jasmonate and salicylate signal crosstalk. Trends Plant Sci. 17:260–270.

Thomma, B.P., Eggermont, K., Tiersen, K.F., and Broekaert, W.F. (1999). Requirement of functional ethylene-insensitive 2 gene for efficient resistance of Arabidopsis to infection by Botrytis cinerea. Plant Physiol. 121:1093–1102.

Tian, H., Wu, Z., Chen, S., Ao, K., Huang, W., Yaghmaiean, H., Sun, T., Xu, F., Zhang, Y., Wang, S., et al. (2021). Activation of TIR signalling boosts pattern-triggered immunity. Nature 598:500–503.

Ton, J., Flors, V., and Mauch-Mani, B. (2009). The multifaceted role of ABA in disease resistance. Trends Plant Sci. 14:310–317.

Torres, M.A. (2010). ROS in biotic interactions. Physiol. Plant. 138:414–429.

Torres, M.A., Jones, J.D.G., and Dangl, J.L. (2006). Reactive oxygen species signaling in response to pathogens. Plant Physiol. 141:373–378.

Tripathi, D., and Tanaka, K. (2018). A crosstalk between extracellular ATP and jasmonate signaling pathways for plant defense. Plant Signal. Behav. 13:e1432229.

Tripathi, D., Zhang, T., Koo, A.J., Stacey, G., and Tanaka, K. (2018). Extracellular ATP acts on jasmonate signaling to reinforce plant defense. Plant Physiol. 176:511–523.

Tsuda, K., Sato, M., Stoddard, T., Glazebrook, J., and Katagiri, F. (2009). Network properties of robust immunity in plants. PLoS Genet. 5:e1000772.

Uppalapati, S.R., Ishiga, Y., Doraiswamy, V., Bedair, M., Mittal, S., Chen, J., Nakashima, J., Tang, Y., Tadege, M., Ratet, P., et al. (2012). Loss of abaxial leaf epicuticular wax in Medicago truncatula irg1/palm1 mutants results in reduced spore differentiation of anthracnose and nonhost rust pathogens. Plant Cell 24:353–370.

Van der Ent, S., and Pieterse, C.M.J. (2012). Ethylene: multitasker in plant-attacker interactions. In Annual Plant Reviews: The Plant Hormone Ethylene, M.T. McManus, ed. (Blackwell Publishing), pp. 343–377.

Van Schie, C.C., and Takken, F.L.W. (2014). Susceptibility genes 101: how to be a good host. Annu. Rev. Phytopathol. 52:551–581.

Van Wees, S.C.M., Luijendijk, M., Snoorenburg, I., Van Loon, L.C., and Pieterse, C.M. (1999). Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis is not associated with a direct effect on expression of known defense-related genes but stimulates the expression of the jasmonate-inducible gene Atvsp upon challenge. Plant Mol. Biol. 41:537–549.

Vega-Muñoz, I., Feregrino-Pérez, A.A., Torres-Pacheco, L., and Guevara-González, R.G. (2018). Exogenous fragmented DNA acts as a damage-associated molecular pattern (DAMP) inducing changes in CpG DNA methylation and defense-related responses in Lactuca sativa. Funct. Plant Biol. 45:1065–1072.

Veronese, P., Nakagami, H., Bluhm, B., Abuqamar, S., Chen, X., Salmeron, J., Dietrich, R.A., Hirt, H., and Mengiste, T. (2008). The membrane-anchored BOTRYTIS-INDUCED KINASE1 plays distinct roles in Arabidopsis resistance to necrotrophic and biotrophic pathogens. Plant Cell 18:257–273.

Plant Communications 3, 100415, November 14 2022 © 2022 The Authors.
Plant Communications

Vlot, A.C., Dempsey, D.A., and Klessig, D.F. (2009). Salicylic acid, a multifaceted hormone to combat disease. Annu. Rev. Phytopathol. 47:177–206.

Voxeur, A., Habrylo, O., Guénin, S., Miart, F., Soulé, M.C., Rihouey, C., Pau-Roblot, C., Domon, J.M., Gutierrez, L., Pelloux, J., et al. (2019). Oligogalacturonide production upon Arabidopsis thaliana-Botrytis cinerea interaction. Proc. Natl. Acad. Sci. USA 116:19743–19752.

Wang, E., Schornack, S., Marsh, J.F., Gobbato, E., Schwessinger, B., Eastmond, P., Schultze, M., Kamoun, S., and Oldroyd, G.E.D. (2012). A common signaling process that promotes mycorrhizal and oomycete colonization of plants. Plant Physiol. 159:2242–2246.

Wang, K.L.C., Li, H., and Ecker, J.R. (2002). Ethylene biosynthesis and signaling networks. Plant Cell 14:S131–S151.

Watanabe, N., and Lam, E. (2009). Bax Inhibitor-1, a conserved cell death suppressor, is a key molecular switch downstream from a variety of biotic and abiotic stress signals in plants. Int. J. Mol. Sci. 10:3149–3167.

Weiss, D., and Ori, N. (2007). Mechanisms of cross talk between gibberellin and other hormones. Plant Physiol. 144:1240–1246.

Wild, M., Davière, J.M., Cheminant, S., Regnault, T., Baumberger, N., Heintz, D., Baltz, R., Genschik, P., and Achard, P. (2012). The Arabidopsis DELLA RGA-LIKE3 is a direct target of MYC2 and modulates jasmonate signaling responses. Plant Cell 24:3307–3319.

Wolpert, T.J., Dunkle, L.D., and Ciuffetti, L.M. (2002). Host-selective toxins and avirulence determinants: what’s in a name? Annu. Rev. Phytopathol. 40:251–285.

Wolpert, T.J., Macko, V., Acklin, W., Jaun, B., Seibi, J., Meili, J., and Arigoni, D. (1985). Structure of victorin C, the major host-selective toxin from Cochliobolus victoriae. Experientia 41:1524–1529.

Xin, X.F., and He, S.Y. (2013). Pseudomonas syringae pv. tomato DC3000: a model pathogen for probing disease susceptibility and hormone signaling in plants. Annu. Rev. Phytopathol. 51:473–498.

Xu, J., Audenaert, K., Hofte, M., and De Vleesschauder, D. (2013). Abscisic acid promotes susceptibility to the rice leaf blight pathogen Xanthomonas oryzae pv. oryzae by suppressing salicylic acid-mediated defenses. PLoS One 8:e67413.

Xu, G., Yuan, M., Ai, C., Liu, L., Zhuang, E., Karapetyan, S., Wang, S., and Dong, X. (2017). uORF-mediated translation allows engineered plant disease resistance without fitness costs. Nature 545:491–494.

Yang, D.L., Yao, J., Mei, C., Tong, X.H., Zeng, L.J., Li, Q., Xiao, L.T., Sun, T.P., Li, J., Deng, X.W., et al. (2012). Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade. Proc. Natl. Acad. Sci. USA 109:1192–1200.

Yazawa, K., Jiang, C.J., Kojima, M., Sakakibara, H., and Takatsuji, H. (2012). Reduction of abscisic acid levels or inhibition of abscisic acid signaling in rice during the early phase of Magnaporthe oryzae infection decreases its susceptibility to the fungus. Physiol. Mol. Plant Pathol. 78:1–7.

Yuan, M., Jiang, Z., Bi, G., Nomura, K., Liu, M., Wang, Y., Cai, B., Zhou, J.M., He, S.Y., and Xin, X.F. (2021). Pattern-recognition receptors are required for NLR-mediated plant immunity. Nature 592:105–109.

Yuan, Y., Zhong, S., Li, Q., Zhu, Z., Lou, Y., Wang, L., Wang, J., Wang, M., Li, Q., Yang, D., et al. (2007). Functional analysis of rice NPR1-like genes reveals that OsNPR1/NH1 is the rice orthologue conferring disease resistance with enhanced herbivore susceptibility. Plant Biotechnol. J. 5:313–324.

Zaidi, S.S.E.A., Mukhtar, M.S., and Mansoor, S. (2018). Genome editing: targeting susceptibility genes for plant disease resistance. Trends Biotechnol. 36:898–906.

Zhang, Z., Liu, Y., Huang, H., Gao, M., Wu, D., Kong, Q., and Zhang, Y. (2017). The NLR protein SUMM2 senses the disruption of an immune signaling MAP kinase cascade via CRCK3. EMBO Rep. 18:292–302.

Zhang, Z., Wu, Y., Gao, M., Zhang, J., Kong, Q., Liu, Y., Ba, H., Zhou, J., and Zhang, Y. (2012). Disruption of PAMP-induced MAP kinase cascade by a Pseudomonas syringae effector activates plant immunity mediated by the NB-LRR protein SUMM2. Cell Host Microbe 11:253–263.

Zheng, Z., Qamar, S.A., Chen, Z., and Mengiste, T. (2006). Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. Plant J. 48:592–605.

Zheng, X.Y., Spivey, N.W., Zeng, W., Liu, P.P., Fu, Z.Q., Klessig, D.F., He, S.Y., and Dong, X. (2012). Coronatine promotes Pseudomonas syringae virulence in plants by activating a signaling cascade that inhibits salicylic acid accumulation. Cell Host Microbe 11:587–596.

Zhou, N., Toole, T.L., and Glazebrook, J. (1999). Arabidopsis PAD3, a gene required for camalexin biosynthesis, encodes a putative cytochrome P450 monooxygenase. Plant Cell 11:2419–2428.

Zipfel, C., Kunze, G., Chinchilla, D., Caniard, A., Jones, J.D.G., Bolier, T., and Felix, G. (2006). Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125:749–760.

De Vleesschauder, D., Yang, Y., Cruz, C.V., and Hofte, M. (2010). Abscisic acid-induced resistance against the brown spot pathogen Cochliobolus miyabeanus in rice involves MAP kinase-mediated repression of ethylene signaling. Plant Physiol. 152:2036–2052.