Classifying superconductivity in ThH-ThD superhydrides/superdeuterides

E F Talantsev1,2, R C Mataira3
1 M.N. Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, 18, S. Kovalevskoy St., Ekaterinburg, 620108, Russia
2 NANOTECH Centre, Ural Federal University, 19 Mira St., Ekaterinburg, 620002, Russia
3 Robinson Research Institute, Victoria University of Wellington, 69 Gracefield Rd., Lower Hutt, 5010, New Zealand
E-mail: evgeny.talantsev@imp.uran.ru

Keywords: hydrogen-rich superconductors, superconducting coherence length, high pressure, fermi temperature in superconductors

Abstract

Satterthwaite and Toepke (1970 Phys. Rev. Lett. 25 741) discovered that Th4H15-Th4D15 superhydrides are superconducting but exhibit no isotope effect. As the isotope effect is a fundamental prediction of electron-phonon mediated superconductivity described by Bardeen, Cooper, and Schrieffer (BCS) its absence alludes to some other mechanism. Soon after this work, Stritzker and Buckel (1972 Zeitschrift für Physik A Hadrons and nuclei 257 1–8) reported that superconductors in the PdHx-PdDx system exhibit the reverse isotope effect. Yussouff et al (1995 Solid State Communications 94 549) extended this finding in PdHx-PdDx-PdTx systems. Renewed interest in hydrogen- and deuterium-rich superconductors is driven by the discovery of near-room-temperature superconductivity in highly-compressed H3S (Drozdov et al 2015 Nature 525 73) and LaH10 (Somayazulu et al 2019 Phys. Rev. Lett. 122 027001). Here we attempt to reaffirm or disprove our primary idea that the mechanism for near-room-temperature superconductivity in hydrogen-rich superconductors is not BCS electron-phonon mediated. To that end, we analyse the upper critical field data, $B_{c2}(T)$, in Th4H15-Th4D15 (Satterthwaite and Toepke 1970 Phys. Rev. Lett. 25 741) as well as two recently discovered high-pressure hydrogen-rich phases of ThH9 and ThH10 (Semenok et al 2019 Materials Today, DOI: 10.1016/j.mattod.2019.10.005). We conclude that all known thorium super-hydrides/deuterides, to date, are unconventional superconductors—along with the heavy fermions, fullerenes, pnictides, cuprates—where we find they have T_c/T_F ratios within a range of $0.008 < T_c/T_F < 0.120$, where T_c is the superconducting transition temperature and T_F is the Fermi temperature.

1. Introduction

The discovery of near-room-temperature (NRT) superconductivity in highly-compressed H3S ($T_c = 203$ K) [1], and the following discovery of superconductivity in LaH10 ($T_c = 250$ K, $P = 150$ GPa) [2] (current status of the research in the field can be found elsewhere [3–7]), is widely held [8] as a success of the predictions of Ashcroft [9] and Ginzburg [10]. These predictions were based on electron-phonon interactions of Bardeen, Cooper, and Schrieffer’s (BCS) theory of superconductivity [11]. This prediction, of NRT T_c hydrides under pressure, and its subsequent discovery in H3S and LaH10 were taken as affirmations that these systems were indeed conventional (BCS electron-phonon mediated) superconductors. However, as we have shown previously [12, 13] the available data for these superhydrides can be successfully interpreted in the phenomenology of unconventional (non-BCS) superconductivity—suggesting that the mechanism is not BCS electron-phonon coupling. To further our analysis, and hopefully reiterate the need for new experimental data on the H3S-D3S system, we revisit the thorium-based hydrides Th4H15-Th4D15, ThH9, and ThH10 to see if a similar conclusion has been overlooked.

The isotope effect in Bardeen–Cooper–Schrieffer (BCS) theory of superconductivity can be expressed in the form:
\[T_c \cdot M^\beta = \text{const}, \]

where \(M \) is isotope mass, and \(\beta \approx 1/2 \) (for weak-coupling limit of BCS theory [11]), is an indispensable feature of electron-phonon mediated superconductivity [1, 11]. This effect was observed in several elemental superconductors, but not in all of them [14, 15]. Geballe et al [16] were the first to find the absence of the isotope effect in ruthenium (more details can be found elsewhere [14, 15]). Later, Satterthwaite and Toepke [17] reported the absence of the isotope effect in Th\(_2\)H\(_{15}\)-Th\(_2\)D\(_{15}\) super-hydrde/deuteride phases. Soon after [17], Stritzker and Buckel [18] experimentally found that the isotope effect in the palladium-hydrogen-deuterium (PdH\(_x\)-PdD\(_x\)) system has the opposite sign (the reverse isotope effect). Yussouff et al [19] extended this discovery to the full palladium-hydrogen-deuterium-tritium (PdH\(_x\)-PdD\(_x\)-PdT\(_x\)) system. This reverse isotope effect in the PdH\(_x\)-PdD\(_x\)-PdT\(_x\) system is currently the subject of wide discussion [20, 21]. As for the thorium hydrides/deuterides systems considered herein, detailed studies by Caton and Satterthwaite [22] reported a reverse isotope effect in Th\(_2\)H\(_{15}\)-Th\(_2\)D\(_{15}\).

Discovery of NRT superconductivity in H\(_3\)S-D\(_3\)S [1] and LaH\(_{10}\) [2] has reinvigorated interest in the isotope effect in the superconducting hydrides/deuterides. It should be stressed that recent experimental results reported by Drozdov et al [23] show that La-H and La-D NRT phases have different stoichiometry, i.e. LaH\(_{10}\) versus LaD\(_{11}\)/LaD\(_{13}\), and, thus, more experimental and theoretical studies are demanded to reveal the effect of the isotope effect on \(T_c \) in La-H-La-D system, which should be separated from the effect of different chemical stoichiometry on \(T_c \) in these superhydrides/superdeuterides.

These studies will support/disprove our previous proposal that hydrogen-rich compounds (PdH\(_x\), H\(_3\)S, LaH\(_{10}\)) are unconventional superconductors [12, 13] and, thus, the superconductivity in these compounds is not related to electron-phonon interaction. We should note that, so far, we have not included the following in our analysis or proposals:

1. Highly compressed silane SiH\(_4\), first discovered by Eremets group, \(T_c = 17 \) K (observed at pressure of \(P = 96\text{–}120 \) GPa) [24].
2. Covalent hydride phosphine, PH\(_3\), with \(T_c \approx 100 \) K was discovered at \(P > 200 \) GPa [25].
3. PPH\(_x\)(\(x \approx 1 \)) recently reported to be superconducting at \(P = 30 \) GPa [26].
4. NbTiH\(_x\) [27].

Unfortunately, we have been unable to consider any of these interesting materials as fundamental experimental data, beyond \(T_c \), is unavailable.

This paper shows that all hydrogen-rich superconductors discovered to date, for which experimental data beyond \(T_c \) is available, i.e. PdH\(_x\), Th\(_2\)H\(_{15}\), Th\(_2\)D\(_{15}\), ThH\(_x\), ThH\(_{10}\), H\(_3\)S, and LaH\(_{10}\), lie in the same band \((T_c/T_f = 0.01\text{–}0.05)\) in the Uemura plot [28–30]. This is the same band as all other unconventional superconductors (heavy fermions, fullerenes, pnictides, and cuprates)—classifying these hydrogen rich compounds as unconventional superconductors. It should be stressed that under some assumptions Th\(_2\)H\(_{15}\) and Th\(_2\)D\(_{15}\) are in closed proximity to Bose–Einstein condensate (BEC) line \((T_c/T_f = 0.22)\) in the Uemura plot.

Here we repeat the analysis described in [6, 7], by using the best-known models for upper critical field behaviour we can estimate the ground state coherence length, \(\xi(0) \). With this, and the other superconducting parameters, we can calculate the Fermi velocity \(v_F \). Then with some knowledge of the effective mass, we can calculate \(T_c \) and characterise these conductors in the same manner as Uemura et al [28–30].

2. The upper critical field models

The ground state upper critical field, \(B_{c2}(0) \), in the Ginzburg–Landau theory [31] is given by:

\[B_{c2} \left(\frac{T}{T_c} = 0 \right) = \frac{\phi_0}{2 \cdot \pi \cdot \xi^2(0)}, \]

where \(\phi_0 = 2.068 \cdot 10^{-15}\) Wb is magnetic flux quantum, and \(\xi(0) \) is the ground state coherence length. For real world experiments only a part of full \(B_{c2}(T) \) temperature dependence can be measured; although there are several models were proposed to deduce extrapolated values for \(\xi(0) \) from raw \(B_{c2}(T) \) data measured at high reduced temperatures.

One such model, proposed by Werthamer, Helfand, and Hohenberg [32, 33], is an extrapolative expression:

\[B_{c2}(0) = \frac{\phi_0}{2 \cdot \pi \cdot \xi^2(0)} = -0.693 \cdot T_c \cdot \left(\frac{dB_{c2}(T)}{dT} \right)_{T \rightarrow T_c}, \]

which we designate as the WHH model.
Another model, which is based on the primary idea of the WHH model [32, 33], but accurately extrapolates the full $B_{c2}(T)$ curve from experimental data measured at high reduced temperatures, T/T_c, was proposed by Baumgartner et al [34]:

$$B_{c2}(T) = \frac{\phi_0}{2 \cdot \pi \cdot \xi^2(0)} \left(\frac{1 - \frac{T}{T_c}}{0.693} - 0.153 \cdot \left(\frac{1 - \frac{T}{T_c}}{T_c} \right)^2 - 0.152 \cdot \left(\frac{1 - \frac{T}{T_c}}{T_c} \right)^4 \right),$$

(4)

we will designate this as the B-WHH model.

Gor’kov [35] proposed $B_{c2}(T)$ model which we used in our previous papers [12, 13]:

$$B_{c2}(T) = \frac{\phi_0}{2 \cdot \pi \cdot \xi^2(0)} \left(\frac{1.77 - 0.43 \cdot \left(\frac{T}{T_c} \right)^2 + 0.07 \cdot \left(\frac{T}{T_c} \right)^4}{1.77} \right) \left[1 - \left(\frac{1 - \frac{T}{T_c}}{T_c} \right)^2 \right],$$

(5)

which we designate as the G-model. Jones et al [36], proposed so called Jones-Hulm-Chandrasekhar (JHC) model:

$$B_{c2}(T) = \frac{\phi_0}{2 \cdot \pi \cdot \xi^2(0)} \left(\frac{1 - \left(\frac{T}{T_c} \right)^2}{1 + \left(\frac{T}{T_c} \right)^2} \right).$$

(6)

3. Th$_4$H$_{15}$–Th$_4$D$_{15}$ superconductors in Uemura plot

We start our consideration with the first discovered superhydride/superdeuteride superconductors i.e. Th$_4$H$_{15}$ and Th$_4$D$_{15}$ [17]. From the author’s knowledge, experimental data available to date for the upper critical field, $B_{c2}(T)$, for Th$_4$H$_{15}$ and Th$_4$D$_{15}$ is limited by values reported by Satterthwaite and Toepke [17]. Both Th$_4$H$_{15}$ and Th$_4$D$_{15}$ compounds have ground state upper critical fields of:

$$B_{c2}(T \sim 0) = 2.5 – 3.0 \text{ T.}$$

(7)

From these values and equation (2), the ground state coherence length, $\xi(0)$, for Th$_4$H$_{15}$ and Th$_4$D$_{15}$ phases, must be:

$$\xi(0) = 11.0 \pm 0.5 \text{ nm.}$$

(8)

Miller et al [37] for both phases reported the BCS ratio within a range:

$$\alpha = \frac{2 \cdot \Delta(0)}{k_B \cdot T_c} = 3.42 – 3.47.$$

(9)

By using the superconducting transition temperature for Th$_4$H$_{15}$ and Th$_4$D$_{15}$ phases [17]:

$$T_c = 8.20 \pm 0.15 \text{ K,}$$

(10)

one can deduce ground state superconducting energy gap:

$$\Delta(0) = 1.22 \pm 0.03 \text{ meV,}$$

(11)

and by using well-known BCS expression [10]:

$$\xi(0) = \frac{h \cdot v_F}{\pi \cdot \Delta(0)},$$

(12)

where $h = h/2\pi$ is reduced Planck constant, one can calculate the Fermi velocity, v_F, in Th$_4$H$_{15}$ and Th$_4$D$_{15}$ phases:

$$v_F = \frac{\pi \cdot \xi(0) \cdot \Delta(0)}{h} = (6.4 \pm 0.2) \cdot 10^4 \text{ m s}^{-1}.$$

(13)

To classify Th$_4$H$_{15}$ and Th$_4$D$_{15}$ in the Uemura plot [28–30] we need to make assumption about the effective charge carrier mass, m^*_e, to calculate the Fermi temperature, T_F:

$$T_F = \frac{\xi(0) \cdot v_F^2}{k_B} = \frac{m^*_e \cdot v_F^2}{2 \cdot k_B}$$

(14)

As there is no available experimental m^*_e values for Th$_4$H$_{15}$ and Th$_4$D$_{15}$ phases, we chose a reasonable lower and upper bound for m^*_e. For lower bound we use the value for another ambient pressure hydrogen-rich superconductor, PdH$_x$ [38]:

3
which leads to the Fermi temperature:

\[T_f = \frac{\varepsilon_F}{k_B} = \frac{m^{*}_e v_F^2}{2 \cdot k_B} = 67 \pm 4 \text{ K}, \]

and upper bound to the \(T_c / T_f \) ratio:

\[\frac{T_c}{T_f} = 0.12 \pm 0.01. \]

For an upper bound on \(m^{*}_e \) we use the highest value reported for a highly compressed hydrides, \(m^{*}_e = 3.0 \cdot m_e \) \[39\]. The corresponding lower bound for the \(T_c / T_f \) value is then:

\[\frac{T_c}{T_f} = 0.020 \pm 0.002. \]

The above analysis is shown in an Uemura plot, Figure 1. For one extreme, \(m^{*}_e = 0.49 \cdot m_e \), Th\(_4\)H\(_{15}\) and Th\(_4\)D\(_{15}\) are located in close proximity to Bose–Einstein condensate (BEC) superfluid line, together with \(^{4}\)He and \(^{46}\)K, and thus these two phases cannot be described by BCS theory. For the other bound, \(m^{*}_e = 3.0 \cdot m_e \), Th\(_4\)H\(_{15}\) and Th\(_4\)D\(_{15}\) are still within the band of unconventional superconductors (i.e. heavy fermions, fullerens, pnictides and cuprates) are located.

In Figure 1 the BCS \(\left(\frac{T_c}{T_f} < 10^{-3} \right) \) and the BEC \(\left(\frac{T_c}{T_f} = 0.22 \right) \) boundary lines are plotted to show where all conventional and unconventional superconductors are located.

4. Th\(_4\)H\(_9\) \((P = 170 \text{ GPa})\) in Uemura plot

Semenok et al \[44\] reported the discovery of a high-temperature superconducting phase of Th\(_4\)H\(_9\) at \(P = 170 \text{ GPa} \) which exhibits \(P6_3/mmc \) crystallographic symmetry and superconducting transition temperature of \(T_c = 146 \text{ K} \). They also performed first principles calculations and deduced the effective mass in this superconductor:
which is remarkably close to the effective mass of $m_{\text{eff}}^* = 2.76 \cdot m_e$ in compressed H_3S \cite{45}. Furthermore, they proposed that ThH_9 has BCS ratio:

$$\alpha = \frac{2 \cdot \Delta(0)}{k_B \cdot T_c} = 4.74 - 4.89.$$ \hspace{0.5cm} (20)

As we mentioned in our previous papers \cite{12, 13, 46, 47}, first principles calculations \cite{39, 48, 49} always provide α-values near 5, which is the very strong-coupling limit for s-wave symmetry (also note that other superconducting gap symmetries have weak-coupling limits of $\alpha \sim 5$ \cite{50–52}).
Despite the orthodox view, several new, alternative, approaches were developed to explain NRT superconductivity in compressed hydrides: Hirsch and Marsiglio [53], Souza and Marsiglio [54], Harshman and Fiory [55], as well as Kaplan and Imry [56]. For instance, Kaplan and Imry [56] showed that in the case of highly compressed H3S their model gives an \(\alpha \) within the weak-coupling BCS limit:

\[
\alpha = \frac{2 \cdot \Delta(0)}{k_B \cdot T_c} = 3.53
\]

(21)

This \(\alpha \) value is in a good agreement with ones deduced from experimental \(B_{c2}(T) \) [12] and the self-field critical current density, \(J_c(sf, T) \), data [46, 57]. Assuming all hydrogen-rich superconductors have the same primary mechanism for the superconductivity, the value of \(\alpha = 3.53 \) was taken as the lower bound for our calculations.

Figure 3. Superconducting upper critical field, \(B_{c2}(T) \) data and fits to three different models (equations (3)–(6)) for ThH\(_{10}\) superhydride compressed at pressure \(P = 174 \) GPa (raw data is from [44]). (a) Fit to WHH and B-WHH models, for latter the fit quality is \(R = 0.992 \). (b) Fit to Gor’kov model, \(R = 0.992 \). (c) Fit to JHC model, \(R = 0.997 \). 95% confidence bars are shown.
Semenok et al [44] measured $B_{c2}(T)$ for ThH$_{10}$ at $P = 174$ GPa, which we fit to equations (3)–(6) in figure 2. This gives T_c / T_F ratios that are within usual range of unconventional superconductors band, see figure 1.

5. ThH$_{10}$ ($P = 174$ GPa) in Uemura plot

Semenok et al [44] also reported on the discovery of another high-temperature superconducting phase of ThH$_{10}$ at $P = 174$ GPa, which exhibits $Fm\bar{3}m$ crystallographic symmetry and superconducting transition temperature of $T_c = 159$ K. In figure 3 we show upper critical field, $B_{c2}(T)$, data for this phase [44] and data fit to equations (3)–(6).

As expected, highly-compressed ThH$_{10}$ superconductor is located within unconventional superconductors band of the Uemura plot, see figure 1.

6. Conclusions

Recent interest in the near-room-temperature superconductivity has revived interest in the hydride superconductors. While the latest generation of hydride superconductors, H$_3$S-D$_3$S and LaH$_{12}$-LaD$_{12}$, are widely considered to be conventional BCS conductors, we point out that this is not supported in other hydrides such as the Th$_4$H$_{15}$, Th$_4$D$_{15}$, and PdH$_x$-PdD$_x$-PdTe$_x$. Critically, these previously discovered hydride systems exhibit the reverse isotope effect, which cannot be explained in BCS theory. In addition, we stress that the isotope effect in LaH-LaD system should be further studied, as available experimental data show that at high-pressure conditions La-H and La-D NRT superconducting phases have different stoichiometry [23].

To further this analysis, we have classified (conventional versus unconventional) the superconductivity in the thorium hydrides. We analyse experimental $B_{c2}(T)$ data for several thorium based superhydrides and Th$_4$D$_{15}$ superdeuteride. This analysis was completed for thorium hydrides where fundamental superconducting parameters beyond T_c were available (i.e., T_{c1}, T_{c2}, T_{c3}, and T_{c4}). For all these materials—all thorium hydrides where analysis is possible—we find that they fall into the band of unconventional superconductors, as seen in an Uemura plot. This along with similar analysis of other hydrides, previously done, further necessitates understanding the hydrides outside of conventional BCS theory.

Acknowledgments

Author thanks financial support provided by the state assignment of Minobrnauki of Russia (theme ‘Pressure’ No. AAAA-A18-118020190104-3) and by Act 211 Government of the Russian Federation, contract No. 02. A03.21.0006.

ORCID iDs

E F Talantsev @ https://orcid.org/0000-0001-8970-7982
R C Mataira @ https://orcid.org/0000-0003-0892-5430

References

[1] Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V and Shylin S I 2015 Conventional superconductivity at 203 kelvin at high pressures in the sulphur hydride system Nature 525 73–6
[2] Somayazulu M, Ahart M, Mishra A K, Geballe H Z, Baldini R J and Prozorov R 2010 Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures Phys. Rev. Lett. 102 027001
[3] Liu B et al 2018 Effect of covalent bonding on the superconducting critical temperature of the H–S–Se system Phys. Rev. B 98 174101
[4] Yao Y and Tse J S 2018 Superconducting hydrogen sulphide Chemistry—A European Journal 24 1769–78
[5] Durajski A P and Szczepaniak R 2018 Gradual reduction of the superconducting transition temperature of H$_3$S by partial replacing sulfur with phosphorus Physica. C 554 38–43
[6] Shimizu K et al 2018 Superconductivity and structural studies of highly compressed hydrogen sulfide Physica. C 552 27–9
[7] Chen J, Cui W, Shi J, Xu M, Hao J, Durajski A P and Li Y 2019 Computational design of novel hydrogen-rich YS–H compounds ACS Omega 4 14317–23
[8] Mazin I I 2015 Extraordinarily conventional Nature 525 40–1
[9] Ashcroft N W 1968 Metallic hydrogen: a high-temperature superconductor Phys. Rev. Lett. 21 1748
[10] Ginsburg V I 1969 Superfluidity and superconductivity in the Universe J. Stat. Phys. 1 3–24
[11] Bardeen J, Cooper L N and Schrieffer J R 1957 Theory of superconductivity Phys. Rev. 108 1175–204
[12] Talantsev E F 2019 Classifying superconductivity in compressed H$_2$S Mod. Phys. Lett. B 33 1950195
[13] Talantsev E F 2019 Classifying hydrogen-rich superconductors Mater. Res. Express 6 106002
[14] Poole P P, Farach H A, Creswick R J and Prozorov R 2007 Superconductivity 2nd edn (London, UK: Cambridge: Academic)
[15] Hirsch J E 2019 Superconducting materials: the whole story Journal of Superconductivity and Novel Magn 32 307–7
[16] Gehalle T H, Matthias B T, Hull G W Jr and Corenzwit E 1961 Absence of an isotope effect in superconducting ruthenium Phys. Rev. Lett. 6 275–7
[17] Satterthwaite C B and Toepke I L 1970 Superconductivity of hydrides and deuterides of thorium Phys. Rev. Lett. 25 741–3
[18] Stritzker B and Buckel W 1972 Superconductivity in the palladium-hydrogen and the palladium-deuterium systems Zeitschrift für Physik A Hadrons and Nuclei 257 1–8
[19] Yussouf M, Rao B K and Jena P 1995 Reverse isotope effect on the superconductivity of PdH, PdD, and PdD2 Solid State Commun. 94 549–53
[20] Villa-Cortés S and Baquero R 2018 On the calculation of the inverse isotope effect in PdH(D): a Migdal-Eliashberg theory approach J. Phys. Chem. Solids 119 80–4
[21] Ostanin S, Borisov V, Fedorov D V, Salamatov E I, Ernst A and Mertig I 2019 Role of tetrahedrally coordinated dopants in palladium hydrides on their superconductivity and inverse isotope effect J. Phys. Condens. Matter 31 075703
[22] Caton R and Satterthwaite C B 1977 Preparation and characterization of massive ThH1.5 and ThD1.5 Journal of the Less Common Metals 52 307
[23] Drozdov A P et al 2019 Superconductivity at 250 K in lanthanum hydride under high pressures Nature 569 528–31
[24] Eremets M I, Talantsev E F, Iida K, Ohmura T, Matsumoto T, Strickland N M, Wimbush S C and Ikuta H 2019 Matsuoka T
[25] Baumgartner T, Eisterer M, Weber H W, Fluekiger R, Scheuerlein C and Bottura L 2014 Effects of neutron irradiation on pinning force Phys. Rev. B 99 144511
[26] Antonov V E, Belash I T, Zharkov M S, Orlov V A and Rashupkin V I 1986 Int. J. Hydrogen Energy 11 475
[27] Uemura Y et al 1989 Universal correlations between T_c and ρ_{xx} (carrier density over effective mass) in high-T_c cuprate Phys. Rev. Lett. 62 2317–20
[28] Uemura Y 2004 Condensation, excitation, pairing, and superfluid density in high-T_c superconductors: the magnetic resonance mode as a roton analogue and a possible spin-mediated pairing J. Phys. Condens. Matter 16 84515–40
[29] Uemura Y 2019 Dynamic superconductivity responses in photoexcited optical conductivity and Nernst effect Phys. Rev. Materials 3 104801
[30] Ginzburg V L and Landau L D 1930 On the theory of superconductivity Z. E. Phys. 20 1064–82
[31] Helfand E and Werthamer N R 1966 Temperature and purity dependence of the superconducting critical field, H_{ci} II Phys. Rev. 147 288–94
[32] Werthamer N R, Helfand E and Hohenberg P C 1966 Temperature and purity dependence of the superconducting critical field, H_{ci} III Electron spin and spin–orbit effects Phys. Rev. 147 295–302
[33] Bauerngarten T, Eisterer M, Weber H W, Fluekiger R, Scheuerlein C and Bottura I 2014 Effects of neutron irradiation on pinning force scaling in state-of-the-art Nb3Sn wires Supercond. Sci. Technol. 27 15005
[34] Gor’kov LP 1960 The critical supercooling field in superconductivity theory Soviet Physics JETP 10 593–9
[35] Jones C K, Hulm J K and Chandrasekhar B S 1964 Upper critical field of solid solution alloys of the transition elements Rev. Mod. Phys. 36 74–6
[36] Miller J F, Caton R H and Satterthwaite C B 1976 Low-temperature heat capacity of normal and superconducting thorium hydride and thorium deuteride Phys. Rev. B 14 2795
[37] Bambakidis G, Smith R J and Ottersen D A 1968 Electrical resistivity as a function of deuterium concentration in palladium NASA Report Number TN-D-4970
[38] Kostrzewa M, Szczesniak K M, Durajski A P and Szczesniak R 2019 From LaH10 to room-temperature superconductors arXiv:1905.12308
[39] Ye J T et al 2012 Superconducting dome in a gate-tuned band insulator Science 338 1193
[40] Qian T et al 2011 Absence of a hololex Fermi surface for the iron-based $K_{3}Fe_{2}Se_{3}$ superconductor revealed by angle-resolved photoemission spectroscopy Phys. Rev. Lett. 106 187001
[41] Hashimoto K et al 2012 A sharp peak of the zero-temperature superconducting energy gap at optimal composition in BaFe2As2 P_{y}2 λ_{2s} Science 336 1554–7
[42] Sheng T, Philippe J V, Verzhak J A T, Guguchia Z, Zhao J Z, Lee M K, Gavrilyuk A D and Shi M 2019 Nodeless superconductivity and preserved time–reversal symmetry in the noncentrosymmetric Mo3P superconductor Phys. Rev. B 99 184533
[43] Semenov D, V, Kvasshin A, G, Ivanova G, Prakappen V B, Greenberg E, Gavriliuk A G, Lyubitin I, S, Struzhin V and Oganova A R 2019 Superconductivity at 161 K in thorium hydride ThH2.6: synthesis and properties Matter. Today (https://doi.org/10.1016/j.mattod.2019.10.005)
[44] Durajski A P 2016 Quantitative analysis of nonadiabatic effects in dense H3S and PH3 superconductors Sci. Rep. 6 38570
[45] Talantsev E F, Crump W P, Storey J G and Tallon J L 2017 London penetration depth and thermal fluctuations in the sulphur hydride 203 K superconductor Annalen der Physik 529 1600390
[46] Tallon J L and Talantsev E F 2018 Compressed H_2S, superfluid density and the quest for room-temperature superconductivity J. Supercond. Novel Magn. 31 619–24
[47] Nicol E and Carbotte J P 2015 Comparison of pressurized sulfur hydrides with conventional superconductors Phys. Rev. B 91 220507(R)
[48] Troyan I A, Semenov D V, Kvasshin A G, Ivanova A G, Prakappen V B, Greenberg E, Gavriliuk A G, Lyubitin I S, Struzhin V and Oganova A R 2019 Superconductivity and synthesis of yttrium hexahydride Im^3m–YH_6 arXiv:1908.01354
[49] Gross F, Chandrasekhar B S, Einzel D, Andres K, Hirschfeld P J, Ott H R, Beues J, Fisk Z and Smith J L 1986 Anomalous temperature dependence of the magnetic field penetration depth in superconducting UBe_3 Phys. Rev. B Condensed Matter 64 175–88
[50] Gross-Allfg F, Chandrasekhar B S, Einzel D, Hirschfeld P J and Andres K 1991 London field penetration in heavy fermion superconductors $\text{Zr, Pb-Condensed Matter}$ 82 245–59
[51] Talantsev E F, Iida K, Ohnura T, Matsumoto T, Crump W P, Strickland N M, Wimbush S C and Ikuta H 2019 P-wave superconductivity in iron-based superconductors Sci. Rep. 9 14245
[52] Hirsch J E and Marsiglio F 2015 Hole superconductivity in H3S and other sulfides under high pressure Physica. C 511 45–9
[53] Souza T R and Marsiglio F 2016 Systematic study of the superconducting critical temperature in two- and three-dimensional tight-binding models: a possible scenario for superconducting H3S Phys. Rev. B 94 184509
[54] Harshman D R and Fiory A T 2017 Compressed H_3S inter-sublattice Coulomb coupling in a high-T_c superconductor J. Phys. Condens. Matter 29 145702
[55] Kaplan D and Imry Y 2018 High-temperature superconductivity using a model of hydrogen bonds Proc. Nat. Acad. Sci. 115 5709–13
[56] Talantsev E F, Crump W P and Tallon J L 2017 Thermodynamic parameters of single- or multi-band superconductors derived from self-field critical currents Annalen der Physik 529 1790157