Dark information in black hole with mimetic dark matter

Yu-Xiao Liu, Yu-Han Ma, Yong-Qiang Wang, Shao-Wen Wei, Chang-Pu Sun

Institute of Theoretical Physics & Research Center of Gravitation, Lanzhou University, Lanzhou 730000, China
Beijing Computational Science Research Center, Beijing 100193, China
Graduate School of China Academy of Engineering Physics,
No. 10 Xibeiwang East Road, Haidian District, Beijing, 100193, China

It has been shown that the nonthermal spectrum of Hawking radiation will lead to information-carrying correlations between emitted particles in the radiation. The mutual information carried by such correlations cannot be locally observed and hence is dark. With dark information, the black hole information is conserved. In this paper, we look for the spherically symmetric black hole solution in the background of dark matter in mimetic gravity and investigate the radiation spectrum and dark information of the black hole. The black hole has a similar spacetime structure to the Schwarzschild case, while its horizon radius is decreased by the dark matter. By using the statistical mechanical method, the nonthermal radiation spectrum is calculated. This radiation spectrum is very different from the Schwarzschild case at its last stage because of the effect of the dark matter. The mimetic dark matter reduces the lifetime of the black hole but increases the dark information of the Hawking radiation.

I. INTRODUCTION

It is well known that gravitation, quantum theory, and thermodynamics were connected deeply by Hawking radiation of black holes and a lot of success has been achieved. However, black hole radiation also raises some puzzles. One serious puzzle is the information loss paradox proposed by Hawking [1]. By using the semiclassical approximation, he found that the emitted radiation is exactly thermal and is determined only by the geometry of the black hole outside the horizon. So the radiation has nothing to do with the detailed structure of the body that collapsed to form the black hole. Since there are correlations between the accessible degrees of freedom outside the horizon and the inaccessible degrees of freedom behind the horizon, the radiation detected by observers outside the horizon is in a mixed state. After the black hole completely evaporates, the radiation is the whole system. Therefore, an initially pure quantum state of the body that can be precisely known has evolved to a mixed state that cannot be predicted with certainty. There is a contradiction that the usual principles of relativity and quantum theory forbid the evolution of a pure state to a mixed state. This is the information loss paradox [2].

In order to solve the information loss puzzle, some resolutions have been proposed. In some resolutions, the information could come out with the Hawking radiation and all of the information could come out at the end of the Hawking radiation. In other resolutions, it could be retained by a stable black hole remnant [3] or be encoded in “quantum hair” [4, 5]. The information even can escape to a “baby universe” [6, 7]. However, there was no satisfactory resolution at an early stage [2]. Later development indicates that this paradox can be resolved in string theory by a new picture of black hole: fuzzballs, i.e., black hole microstates are horizon sized quantum gravity objects called ‘fuzzballs’ [8]. In this fuzzball paradigm, the black hole is replaced by an object with no horizon and singularity. Besides, there are other ideas such as firewalls [10] and Entanglement [11].

In 2000, Parikh and Wilczek [12] presented a consistent derivation of Hawking radiation as a tunneling process and found that the Hawking radiation spectrum is non-thermal because of conservation laws. This nonthermality of the radiation allows the possibility of information-carrying correlations between subsequently emitted particles in the radiation.

Zhang and Cai et al. [13] discovered correlations among Hawking radiations from a black hole by using standard statistical method. Then by considering the mutual information carried by such correlations, they found that the black hole evaporation process is unitary and the black hole information is conserved. It was found that there is an even deep origin of nonthermal nature of Hawking radiation without referring to the horizon geometry [14]. Recently, by considering the canonical typicality, Ma and Sun et al. [15] showed that the nonthermal radiation spectrum is independent of the detailed quantum tunneling dynamics, and the black hole information paradox can be naturally resolved with the correlations between the black hole and its radiation.

The correlation information is dark because it can not be locally observed in principle even though the Hawking radiation can be finally measured experimentally [16]. This information is called dark information, which can be measured nonlocally only with two or more detectors. Such coincidence measurement is similar to the Hanbury-Brown-Twiss experiment for the coincidence counting in quantum optics [17].

Recently, the influence of dark energy on black hole radiation and dark information was studied in Ref. [16] by the approach of canonical typicality. It was found that, with the existence of dark energy, the black hole has lower Hawking temperature and hence longer lifetime.
more, dark energy will enhance the nonthermal effect of the black hole radiation and rise the dark information of the radiation \[10\].

In this paper, inspired by the work of Ref. \[10\], we would like to investigate the effect of dark matter around a black hole on the Hawking radiation and dark information of the black hole. It is well known that dark matter comprises about 27% of our universe. Dark matter effects and accounts for the evolution of our universe, the formation of large-scale structure of the universe, and galaxy rotation curves. Especially, there is a great deal of dark matter in each galaxy. As the case of dark energy, we have also many candidates for dark matter, such as weakly interacting massive particles (WIMPs), super WIMPs, light gravitinos, sterile neutrinos, hidden dark matter, axions, and primordial black holes \[18–21\]. Here, we are interesting in a new candidate called mimetic dark matter proposed by Chamseddine and Mukhanov \[22\]. It is the conformal degree of freedom of Einstein’s gravity and can mimic cold dark matter. We will consider such scalar degree of freedom in Einstein’s gravity and find a black hole on the Hawking radiation and dark information of the black hole under background of mimetic dark matter. Then, we will study the Hawking radiation and dark information for the black hole.

This paper is organized as follows. In Sec. II, we review the mimetic gravity theory briefly and derive the Einstein equations for a spherically symmetric metric. In Sec. III, we look for an analytical black hole solution in an asymptotic flat spacetime and analyse its properties. In Sec. IV we calculate the black hole mass, temperature and entropy. Then, the radiation spectrum and dark information of the black hole with mimetic dark matter are calculated in Sec. V and Sec. VI respectively. In the end, conclusions and discussions are given in Sec. VII.

II. EINSTEIN EQUATIONS IN MIMETIC THEORY

In this section, we will give a brief introduction to the mimetic theory and derive the Einstein equations for a spherically symmetric spacetime. In the mimetic theory, the conformal degree of freedom of the metric is isolated in a covariant way. This is done by rewriting the physical metric $g_{\mu\nu}$ in terms of an auxiliary metric $\tilde{g}_{\mu\nu}$ and a scalar field $\phi$ \[22\]. The explicit relation between them is given by

$$g_{\mu\nu} = -\tilde{g}_{\mu\nu}\tilde{g}^{\alpha\beta}\partial_\alpha\phi\partial_\beta\phi.$$  

As a consequence, the scalar field satisfies the following constraint

$$g^{\mu\nu}\partial_\mu\phi\partial_\nu\phi = -1.$$ \hspace{1cm} (2)

It can be shown that the physical metric is invariant under the conformal transformation of the auxiliary one: $\tilde{g}_{\mu\nu} \rightarrow \Omega^2(x^\alpha)\tilde{g}_{\mu\nu}$, with $\Omega(x^\alpha)$ a function of the space-time coordinate. Then, the action of a four-dimensional mimetic gravity is of the form

$$S = \int d^4x\sqrt{-g(\tilde{g}_{\mu\nu}, \phi)} [M_{Pl}^2 R(g_{\mu\nu}(\tilde{g}_{\mu\nu}, \phi)) + \mathcal{L}_m],$$ \hspace{1cm} (3)

where $M_{Pl}$ is the Planck mass and $\mathcal{L}_m$ is the Lagrangian of the matter fields.

By varying the action with respect to the physical metric $g_{\mu\nu}$, one can derive the gravitational field equations. However, it should be noted that the variation of the physical metric is not independent since the physical metric has been rewritten in terms of the auxiliary metric and scalar field. In fact, the action for the gravity part can also be written equivalently in the following Lagrange multiplier formulation

$$S = M_{Pl}^2 \int d^4x\sqrt{-g} \left[ R + \lambda (\partial^\mu\phi\partial_\mu\phi + 1) \right],$$ \hspace{1cm} (4)

from which one can easily obtain the field equations. Here $\lambda$ is a Lagrange multiplier. It is clear that the constraint equation \[2\] can be obtained by varying the above action with respect to $\lambda$.

In this paper, we consider the following generalized action for the mimetic gravity theory

$$S = M_{Pl}^2 \int d^4x\sqrt{-g} \left[ R + L(\phi) \right],$$ \hspace{1cm} (5)

where

$$L(\phi) = \lambda (\partial^\mu\phi\partial_\mu\phi - U(\phi)) - V(\phi)$$ \hspace{1cm} (6)

with $U(\phi)$ and $V(\phi)$ two potentials for the scalar degree of freedom. The equations of motion (EoMs) are obtained by varying the above action \[5\] with respect to $g_{\mu\nu}$, $\phi$ and $\lambda$, respectively:

$$G_{\mu\nu} + 2\lambda\partial_\mu\phi\partial_\nu\phi - L(\phi)g_{\mu\nu} = 0,$$ \hspace{1cm} (7)

$$2\lambda\Box\phi + 2\nabla_\mu\lambda\nabla^\mu\phi + \lambda U_\phi + V_\phi = 0,$$ \hspace{1cm} (8)

$$g^{\mu\nu}\partial_\mu\phi\partial_\nu\phi = U = 0.$$ \hspace{1cm} (9)

Here the notation $P_\phi$ is defined as $P_\phi \equiv \partial P/\partial \phi$ and the d’Alembert operator is given by $\Box \equiv g^{\mu\nu}\nabla_\mu\nabla_\nu$.

We consider the following spherically symmetric metric

$$ds^2 = -k(r)dt^2 + \frac{dr^2}{f(r)} + r^2d\Omega_2^2,$$ \hspace{1cm} (10)

where $d\Omega_2^2 = d\theta^2 + \sin^2\theta d\varphi^2$. With this metric assump-
tion, Eqs. (7)-(9) read
\[
rf' + f + r^2 V - 1 = 0, \quad (11)
\]
\[
\left( \frac{r k'}{k} + 2r^2 \lambda \phi'^2 + 1 \right) f + r V - 1 = 0, \quad (12)
\]
\[
\left( \frac{r k'}{k} + 2 \right) f' + \left( \frac{2r k''}{k} - \frac{r k'^2}{k^2} + \frac{2 k'}{k} \right) f + 4 r V = 0, \quad (13)
\]
\[
\lambda \left[ \left( \frac{k'}{k} + \frac{4}{r} \right) f \phi' + 2f \phi'' + f' \phi' + U \phi \right] + 2f \lambda \phi' + V \phi = 0, \quad (14)
\]
\[
f \phi'^2 - U = 0, \quad (15)
\]

where the primes denote the derivatives with respect to the coordinate \( r \). Equations (11) and (15) give respectively the solutions of the scalar potentials \( V(\phi(r)) \) and \( U(\phi(r)) \) as functions of \( r \) after the metric function \( f(r) \) and the scalar field \( \phi(r) \) are known:
\[
V = 1 - f - rf', \quad (16)
\]
\[
U = f \phi'^2. \quad (17)
\]

Substituting the above solution (16) into Eqs. (12) and (14), we get the solution of the Lagrange multiplier
\[
\lambda = \frac{1}{2r \phi'^2} \left( \frac{f'}{f} - \frac{k'}{k} \right) \quad (18)
\]
and the relationship between \( k(r) \) and \( f(r) \):
\[
\left( \frac{k'}{k} - \frac{2}{r} \right) f' + \left( \frac{2k''}{k} - \frac{k'^2}{k^2} + \frac{2 k'}{k r} - \frac{4}{r^2} \right) f + \frac{4}{r^2} = 0. \quad (19)
\]

Then, considering \( V_\phi = V'/\phi' \), \( U_\phi = U'/\phi' \) and substituting Eqs. (16)-(19) into Eq. (15), one can easily show that the equation of motion of the scalar field \( \phi(r) \) (15) is satisfied automatically. Therefore, there are only four independent field equations, e.g., Eqs. (10)-(19). Usually, by giving the expressions of the scalar potential \( U(\phi) \) and \( V(\phi) \), we can solve all of the field equations. But it is very hard to obtain an analytic solution via this method. Note that the field equation for the function \( \lambda(r) \) is of second order, once \( k(r) \) and \( \phi(r) \) are given, we could get the analytic solution for \( f(r) \), \( \lambda(r) \), \( U(\phi) \) and \( V(\phi) \). Next, we will look for a black hole solution.

### III. SOLUTIONS

In this section, we look for an analytical solution with asymptotic flat spacetime for the case of a constant La-
have
\[ k(r) = 1 - \frac{2M}{r} - \left( \frac{1}{10r^3} - \frac{M}{2r^4} \right) s \]
\[ + \left( \frac{1}{160r^6} + \frac{M}{12r^7} \right) s^2 + O(s^3), \]
\[ f(r) = 1 - \frac{2M}{r} + \left( \frac{9}{10r^3} - \frac{3M}{2r^4} \right) s \]
\[ + \left( \frac{63}{160r^6} - \frac{7M}{12r^7} \right) s^2 + O(s^3), \]
(27)

which shows that the above black hole solution will become the Schwarzschild one when the scalar parameter vanishes. The relation of the parameter \( M \) (the mass of the black hole, see the discussion later) and the horizon radius of the black hole is given by
\[ M = \frac{\sqrt{s}}{18} \left[ \Gamma \left( -\frac{1}{3} \right) \left( 2^{2/3} - 2^{-2/3} \right) \right] \]
\[ + 2e^{2h} \Gamma \left( -\frac{1}{3} \frac{s}{r_h} \right) - 2^{2/3} \Gamma \left( -\frac{1}{3} \frac{s}{r_h} \right) \].
(29)

which can be approximated as
\[ M = \frac{r_h}{2} \left[ 1 + \frac{3s}{20r_h^3} - \frac{s^2}{960r_h^6} + O((s/r_h^3)^3) \right] \]
(30)

for small \( s/r_h^3 \). Note that, since \( M = r_h/2 \) in the lowest order of \( s/r_h^3 \), we can replace \( O((s/r_h^3)^3) \) in the above expression with \( O(s^3) \). Hereinafter we omit the term \( O(s^3) \). From the above expression (29), we can get the approximate solution of the horizon radius
\[ r_h = 2M \left( 1 - \frac{3s}{160M^3} - \frac{83s^2}{153600M^6} \right). \]
(31)

For simplicity, we define a new dimensionless parameter
\[ \tilde{s} = \frac{3\bar{s}}{160} = \frac{3s}{160M^3} \]
(32)

and rewrite the horizon radius as
\[ r_h = 2M \left( 1 - \tilde{s} - \frac{83}{54} \frac{s^2}{M^6} \right). \]
(33)

The relation between the horizon radius \( r_h \) and the scalar parameter \( s \) is shown in Fig. 2(a), from which it can be seen that the expression (33) is accurate for \( \tilde{s} < 0.1 \) or \( \tilde{s} < 5 \). Especially, the horizon radius will rapidly decrease to zero when the scalar parameter reaches its maximum \( s_{\text{max}} \) given in (28). Our result shows that the mimetic dark matter will decrease the horizon radius of the black hole. This could be understood from the attraction effect of dark matter, which is opposite to the repulsive effect of dark energy driving the expansion of the universe [10].

The asymptotic behaviors at spatial infinity \( r \to \infty \)

and at origin \( r \to 0 \) are respectively
\[ k(r \to \infty) = 1 - \frac{2M}{r} - \frac{s}{10r^3} + O((M/r)^4), \]
(34)
\[ f(r \to \infty) = 1 - \frac{2M}{r} + \frac{9s}{10r^3} + O((M/r)^4), \]
(35)

and
\[ k(r \to 0) \to -\frac{4\tilde{s}}{9s} \left( 9M + \sqrt[3]{s} \Gamma \left( \frac{1}{3} \right) \right), \]
(36)
\[ f(r \to 0) \to -\frac{4\tilde{s}}{9s} \left( 9M + \sqrt[3]{s} \Gamma \left( \frac{1}{3} \right) \right) e^{2\tilde{s}r}. \]
(37)

From the last two expressions, one can see that \( k(r \to 0) \to 0 \) and \( f(r \to 0) \to -\infty \) for \( 9M + \sqrt[3]{s} \Gamma \left( \frac{1}{3} \right) > 0 \), which can be confirmed from Fig. 1. Therefore, for a given mass \( M \), the condition for having an event horizon is
\[ 0 \leq s < s_{\text{max}} \equiv \left( \frac{9M}{-\Gamma \left( \frac{1}{3} \right)} \right)^3 \approx 10.8741M^3. \]
(38)

Figure 2(a) shows that the horizon radius approaches its maximum \( r_h = 2M \) and minimum \( r_h = 0 \) when the scalar parameter approaches its minimum \( s = 0 \) and its maximum \( s = s_{\text{max}} \), respectively. On the other hand, for a fixed scalar parameter \( s \), the condition (38) becomes
\[ M \geq M_{\text{min}}(s) \equiv \frac{1}{9} \Gamma \left( -\frac{1}{3} \right) s^{1/3} = 0.451373 s^{1/3}, \]
(39)

which is different from the case of the Schwarzschild solution for nonvanishing \( s \). Figure 2(b) shows that the horizon radius decreases linearly with the decrease of the mass \( M \) for large \( M \), i.e., \( r_h \approx 2M \). But when the mass approaches to its minimum given in (38), the horizon radius drops quickly to zero.

The invariant of the combinations of the Riemann curvature, the Kretschman scalar, for small \( \tilde{s} \ll 1 \) is
\[ R_{\mu\nu\lambda\rho}R^{\mu\nu\lambda\rho} = \frac{48M^2}{r^6} + \frac{24(2M - r)Ms}{r^9} + O(s^2), \]
(40)

where the first term on the right-hand side is the result of the Schwarzschild solution. However, note that the singularity behavior of the above invariant at \( r \to 0 \)
\[ R_{\mu\nu\lambda\rho}R^{\mu\nu\lambda\rho} \to \frac{16}{3} \left( 9M + \sqrt[3]{s} \Gamma \left( \frac{1}{3} \right) \right)^2 e^{2\tilde{s}r}, \]
(41)

is very different from that of the Schwarzschild black hole
\[ R_{\mu\nu\lambda\rho}R^{\mu\nu\lambda\rho} \to \frac{48M^2}{r^6}. \]
(42)

It is clear that there is another singularity factor \( e^{2\tilde{s}r} \) in (41) besides \( \frac{1}{r^6} \). The shapes of the scalar curvature \( R \) and \( R_{\mu\nu\lambda\rho}R^{\mu\nu\lambda\rho} \) are shown in Fig. 3.
Next, we analyze the spacetime structure of the black hole solution. For convenience, we let
\[ k(r) = \psi(r)f(r), \]
where
\[ \psi(r) = e^{-s/r^3}. \]

In order to analyse the causal structure of the black hole, we calculate the metric in Kruskal-Szekeres coordinates. First, we define the tortoise coordinate \( r^* \):
\[ dr^* = \frac{d\Phi(r)}{r}, \]
with \( \Phi(r) = \sqrt{\psi(r)f(r)} \). In order to integrate the above equation, we expand the function \( \Phi(r) \) around the horizon to first order:
\[ \Phi(r) = \Phi'(r_h)(r - r_h) \]
where we have used the fact \( \Phi(r_h) = 0 \). Note that the parameter \( \Phi'(r_h) \) is a function of \( M \) and \( s \). Therefore, when \( r \to r_h \), the relation between \( r^* \) and \( r \) has the following form:
\[ r^* = \ln \left( \frac{r}{r_h} - 1 \right) \Phi'(r_h) \to -\infty, \]
which shows that the surface at the horizon has been pushed to infinity in the tortoise coordinate. For the case of \( s = 0 \), we have \( \Phi'(r_h) = 1/r_h = 1/2M \). When \( r \to +\infty \), the relation becomes
\[ r^* = r + 2M \ln \left( r/2M - 1 \right) \to +\infty. \]

With the coordinate translation (45), the metric (10) is given by
\[ ds^2 = \psi f \left( -dt^2 + dr^*^2 \right) + r^2 d\Omega^2. \]

It is clear that the causal structure outside the horizon, which is described by \( dt = \pm \frac{dr}{\Phi'(r)} = \pm dr^* \), is almost the same as the Schwarzschild black hole for the case of \( s \ll 1 \). The tortoise coordinate is only sensibly related to the coordinate \( r \) when \( r \geq r_h \). Therefore, we introduce coordinates \( u \) and \( v \):
\[ u = t - r^*, \]
\[ v = t + r^*. \]

It can be seen that \( u = \)constant and \( v = \)constant denote outgoing and ingoing radial null geodesics, respectively. In terms of Eddington-Finkelstein coordinates (50)-(51), the metric (49) is further rewritten as
\[ ds^2 = -\psi f du^2 - \sqrt{\psi} (du dr + dr du) + r^2 d\Omega^2, \]
or
\[ ds^2 = -\psi f dv^2 + \sqrt{v}(dvdr + drdv) + r^2d\Omega^2. \quad (53) \]

The radial null curves are given by
\[ \frac{du}{dr} = \left\{ \begin{array}{c} 0 \\ -\frac{2}{\Phi'(r)} \end{array} \right. \quad (54) \]

or
\[ \frac{dv}{dr} = \left\{ \begin{array}{c} 0 \\ \frac{2}{\Phi'(r)} \end{array} \right. \quad (55) \]

In the \((v,r)\) coordinates, one can cross the event horizon on future-directed curves, while in the \((u,r)\) coordinates, one can pass through the event horizon along past-directed ones. In fact, spacetime has been extended in two different directions, the future and the past.

In the \((u,v)\) coordinates, the metric reads
\[ ds^2 = -\psi f dudv + v^2d\Omega^2, \quad (56) \]

and the horizon \(r = r_h\) is infinitely far away and it is at either \(u = +\infty\) or \(v = -\infty\). We can pull them into finite positions by the following transformation:
\[ \bar{u} = -e^{-\Phi'(r_h)u/2} = -e^{\Phi'(r_h)(r^*-t)/2}, \quad (57) \]
\[ \bar{v} = e^{\Phi'(r_h)v/2} = e^{\Phi'(r_h)(r^*+t)/2}. \quad (58) \]

Now the metric becomes
\[ ds^2 = -\mathcal{F}(r)d\bar{u}d\bar{v} + r^2d\Omega^2, \quad (59) \]

where
\[ \mathcal{F}(r) = \frac{4k(r)}{(\Phi'(r_h))^2}e^{-\Phi'(r_h)r^*}. \quad (60) \]

At last, we transform the null coordinates \(\bar{u}\) and \(\bar{v}\) to one timelike coordinate \(T\) and one spacelike coordinate \(R\):
\[ T = \frac{1}{2}(\bar{v} + \bar{u}) = e^{\Phi'(r_h)r^*/2} \sinh \left( \Phi'(r_h)t/2 \right), \quad (61) \]
\[ R = \frac{1}{2}(\bar{v} - \bar{u}) = e^{\Phi'(r_h)r^*/2} \cosh \left( \Phi'(r_h)t/2 \right). \quad (62) \]

Then the metric in Kruskal-Szekeres coordinates becomes
\[ ds^2 = \mathcal{F}(r) \left( -dT^2 + dR^2 \right) + r^2d\Omega^2, \quad (63) \]

where \(r\) is defined from
\[ T^2 - R^2 = e^{\Phi'(r_h)} r^*(r). \quad (64) \]

It is clear that the function \(\mathcal{F}(r)\) is smooth for \(r > 0\) and \(r \neq r_h\). We need to know whether it is also smooth at \(r = r_h\). To this end, we consider Eqs. \(110\) and \(117\) and expand \(\mathcal{F}(r)\) around \(r = r_h\):
\[ \mathcal{F}(r \to r_h) = \frac{4r_h}{\Phi'(r_h)}e^{-r_h\Phi'(r_h)s/(2r_h^2)} + \mathcal{O}(r - r_h), (65) \]

which shows that \(\mathcal{F}(r)\) is smooth at \(r = r_h\). Therefore, \(\mathcal{F}(r)\) is a smooth function of \(r\) for \(r > 0\). When \(s \to 0\), \(\Phi'(r_h) = 1/r_h = 1/2M\) and hence \(\mathcal{F}(r \to r_h) = 4r_h^2e^{-1}\).

At last, with the following transformation
\[ T + R = \tan(\xi + \chi), \quad (66) \]
\[ T - R = \tan(\xi - \chi), \quad (67) \]

we obtain the following metric
\[ ds^2 = \mathcal{F}(r) \frac{-d\xi^2 + d\chi^2}{\cos^2(\xi + \chi)\cos^2(\xi - \chi)} + r^2d\Omega^2. \quad (68) \]

Note that the range of the coordinates \(\xi\) and \(\chi\) is \(-\pi/2 < \xi + \chi < \pi/2\), \(-\pi/2 < \xi - \chi < \pi/2\), and \(-\pi/4 < \xi < \pi/4\). From the metric \(68\), we draw the Penrose-Carter diagram (also called conformal diagram) in the \((\xi, \chi)\) coordinates for the black hole solution in Fig. 4 which is similar to the Schwarzschild case.

![FIG. 4: The Penrose-Carter diagram.](image)

IV. BLACK HOLE MASS, TEMPERATURE AND ENTROPY

In this paper, we consider the effect of the scalar parameter \(s\) on the mass, Hawking temperature, entropy, radiation spectrum, lifetime, and dark information of the radiation of the hairy black hole. In this section, we calculate the black hole mass, temperature and entropy.

With the above asymptotic behaviors \(111\)-\(115\) of the metric functions \(k\) and \(f\), we can calculate the Komar integral associated with the timelike Killing vector \(K^\mu = (1, 0, 0, 0)\), i.e., the total energy of the correspond-
ing static spacetime,

\[ E_R = \frac{1}{4\pi} \int_{\Sigma} \sqrt{-g} \epsilon^{\mu\nu} \nabla_{\mu} \xi_{\nu} \]

\[ = \frac{r^2}{2} \left( \frac{f(r)}{k(r)} \right)_{r \to \infty} \]

\[ = M. \quad (69) \]

Therefore, the parameter \( M \) is the mass of the black hole. The relation of the black hole mass and the horizon radius is given in Eqs. (60) and (61).

Next we calculate the Hawking temperature of the black hole. From the formula

\[ T_H = \frac{1}{2\pi} \left( \frac{1}{2} (\nabla_{\mu} \xi_{\nu}) (\nabla^\mu \xi^\nu) \right) \bigg|_{\Sigma} \]

\[ = \frac{1}{4\pi} \sqrt{-g} g^{rr} (\partial_r g_{tt})^2 \bigg|_{\Sigma} \]

\[ = \frac{1}{4\pi} \sqrt{\psi(r_h) \partial_r f} \bigg|_{\Sigma}, \quad (70) \]

where \( \xi_{\mu} \) is a Killing vector on the Killing horizon \( \Sigma \), we can calculate the Hawking temperature with the existence of the mimetic dark matter

\[ T_H = \frac{\sqrt{\frac{s}{3}} Y}{12\pi r_h^2 X}, \quad (71) \]

where

\[ X = 1 - e^{-\frac{2\pi}{r_h}}, \quad (72) \]

\[ Y = \left( 2^{2/3} - 2 \right) \Gamma \left( -\frac{1}{3} \right) \]

\[ - 2^{2/3} \Gamma \left( -\frac{1}{3} \frac{s}{2r_h^2} \right) + 2 \Gamma \left( -\frac{1}{3} \frac{s}{r_h^2} \right). \quad (73) \]

For small scalar parameter \( s \), it becomes

\[ T_H = \frac{1}{4\pi r_h} \left( 1 - \frac{s}{20r_h^2} + \frac{3s^2}{160r_h^4} \right) \]

\[ = \frac{1}{8\pi M} \left( 1 + \frac{2}{3} \frac{s}{3} + \frac{55}{27} s^2 \right). \quad (74) \]

The above result shows that, compared with the Schwarzschild case \( T_H = \frac{1}{8\pi M} \), the mimetic dark matter increases the Hawking temperature of the black hole.

At last, we calculate the black hole entropy. The scalar parameter \( s \) should be treated as a new thermodynamic variable. Then the black hole first law reads

\[ dM = T_H dS + \lambda ds, \quad (75) \]

where \( \lambda \) is a thermodynamic quantity conjugated to \( s \).

For fixed \( s \), the entropy can be calculated with

\[ S = \int \frac{dM}{T_H} = \int \left( \frac{1}{T_H} \frac{\partial M}{\partial r_h} \right) dr_h \]

\[ = \int \frac{\pi s}{r_h^2} \left( e^{\frac{2\pi}{r_h}} - 1 \right) dr_h. \quad (76) \]

To second order of \( \bar{s} \), it is given by

\[ S = \pi r_h^2 \left( 1 + \frac{s}{2r_h^2} - \frac{s^2}{90r_h^4} \right), \quad (77) \]

or

\[ S = 4\pi M^2 \left( 1 + \frac{4}{3} \bar{s} + \frac{43}{54} s^2 \right). \quad (78) \]

It is obvious that the relation \( S = A/4 = \pi r_h^2 \) of the Schwarzschild black hole has been modified in the mimetic gravity.

V. BLACK HOLE RADIATION SPECTRUM WITH MIMETIC DARK MATTER

It is known that nothing can escape from the horizon of a black hole in classical general relativity. However, by considering the effect of quantum field theory, Hawking found that a positive energy particle from a pair created virtually around the black hole horizon can escape out of the horizon through tunneling and this process results in the famous Hawking radiation. It was shown that the black hole radiation spectrum obeys the thermal distribution [23, 24]. This will result in the black hole information paradox since the entropy will increase through the Hawking process.

In Ref. [13], the authors showed that the black hole radiation spectrum is not perfectly thermal but nonthermal if the constraint of energy conservation is introduced, and the problem of the information paradox can be solved. In fact, there were other different schemes for this problem, see Refs. [25, 32] for examples.

In this section, we use the statistical mechanical method introduced in Refs. [13, 16] to calculate the nonthermal black hole radiation spectrum, which describes the statistical distribution of particle’s energy after the particles cross the horizon through the Hawking process. This method is based on canonical typicality [15, 18, 35]. We first give a brief review of this method.

The density matrix of a black hole \( B \) with mass \( M \), charge \( Q \) and angular momentum \( J \) is given by

\[ \rho_B = \sum_i \frac{1}{\Omega(M,Q,J)} |M,Q,J_i \rangle \langle M,Q,J_i|, \quad (79) \]

where \( |M,Q,J_i \rangle \) and \( \Omega(M,Q,J) \) are the \( i \)th eigenstate and the number of microstates of the black hole, respectively. Now we consider Hawking radiation. When par-
particles are radiated from the black hole, the black hole system can be viewed as two parts, the radiation field $R$ with mass $\omega$, charge $q$, and angular momentum $j$, and the remaining black hole $B'$ with mass $M - \omega$, charge $Q - q$, and angular momentum $J - j$. By considering the conservation of black hole “hairs” and tracing over all the degree of freedom of $B'$, one can obtain the density matrix of $R$ [12, 16]:

$$
\rho_R = \sum_{\omega, q, j} p(\omega, q, j, M, Q, J) |\omega, q, j\rangle \langle \omega, q, j|,
$$

where $|\omega, q, j\rangle$ is the eigenstate of the radiation field, and the distribution probability of the radiation is turned out to be [16]

$$
p(\omega, q, j, M, Q, J) = \exp\left(-\delta S_{BB'}(\omega, q, j, M, Q, J)\right),
$$
with the entropy difference between $B$ and $B'$ given by

$$
\delta S_{BB'} = S_B(M, Q, J) - S_{B'}(M - \omega, Q - q, J - j).$$

We can calculate the radiation spectrum of a black hole with the above expressions (80)-(82).

The corrected radiation spectrum of a Schwarzschild black hole is a function of the black mass or the horizon radius:

$$
p(\omega, M) = e^{-\pi[r_h^2(M) - r_h^2(M - \omega)]}
= e^{-8\pi M \omega + 4\pi \omega^2},
$$
which is in accord with the result derived through the quantum tunneling method [28]. The corrected term $4\pi \omega^2$ comes from the higher order of the energy $\omega$.

For the black hole with dark matter considered in this paper, the radiation spectrum can be calculated with

$$
p(\omega, M) = e^{-\delta S(\omega, M)},
$$
where $\delta S(\omega, M) = S(M) - S(M - \omega)$. Considering the expressions of the entropy (76) and temperature (71), and mass (29) and keeping to the second order of $\omega$, we have

$$
p(\omega, M) = e^{-\beta_H \omega + \chi \omega^2},$$
where

$$
\beta_H = \frac{1}{T_H} = \frac{1}{12\pi r_h^2 X} X^n Y^n,
$$
$$
\chi = \frac{1}{2} \frac{\partial^2 S}{\partial M^2} - \frac{1}{2} \frac{\partial \beta_H}{\partial M} = \frac{1}{2} \frac{\partial \beta_H}{\partial M} - \frac{1}{2} \frac{\partial r_h}{\partial M} M
= \frac{432\pi r_h^6 X^4}{s^2 Y^3} + \frac{144\pi r_h^5 e^{2/3} X^3}{s^{5/3} Y^2} - \frac{108\pi r_h^2 X^2}{s^2/3 Y^2}.
$$

To second order of $s$,

$$
\beta_H = 8\pi M \left(1 - \frac{2}{3}s - \frac{43}{27}s^2\right),
\chi = 4\pi \left(1 + \frac{4}{3}s + \frac{215}{27}s^2\right).
$$

The radiation spectrum as a function of the black hole mass $M$ is plotted in Fig. 5 for different values of the scalar parameter $s$. The parameters are set to $s = 0, 0.1, 1, 10$ and $\omega = 10^{-3}$.

In Ref. [36], Sendouda investigated the Hawking radiation of five-dimensional small primordial black holes in the Randall-Sundrum braneworld. It was found that the Hawking temperature of a black hole will be reduced by the large extra dimension and the spectra of emitted particles via Hawking radiation are drastically changed. In Ref. [37], Dai considered the nonrotating black hole in braneworld model and showed that, for the brane with nonzero tension, the horizon radius of the black hole increases with brane tension and hence the brane tension lowers the Hawking temperature of the black hole and the average energy of the emitted particles. These effects are
also opposite to our case with mimetic dark matter.

With the expression (64) of the Hawking temperature, we can calculate the lifetime of the black hole. By following the Stefan-Boltzmann power law, we can write the radiation power of the black hole as a function of the Hawking temperature

\[ P = \sigma A_h T_H^4 = \frac{s^{4/3} Y^4}{15 \times 2^{\frac{21}{4}} \pi r_H^2 X^4} \]  

(90)

where \( \sigma = \pi^2/60 \) is the Stefan constant, \( A_h = 4 \pi r_H^2 \) is the area of the horizon, \( X \) and \( Y \) are given by Eqs. (72) and (73), respectively. The radiation power (90) as a function of the black hole mass \( M \) for different values of the scalar parameter \( s \) is plotted in Fig. 6, which shows that the radiation power will be increased rapidly at the late stage of the Hawking radiation. This is in accordance with the result given in Fig. 5. By considering the energy conservation law for the black hole, we have

\[ \frac{dM}{dt} + P = 0, \]  

(91)

which can be written as

\[ \frac{dM}{dt} = \frac{1 - \bar{s} - \frac{81}{27} \bar{s}^2 - \frac{80}{27} \bar{s}^2}{15 \times 2^{\frac{21}{4}} \pi M^2} \]  

(92)

where we have used the results of (93) and (74). Thus, the lifetime of the black hole evaporating its mass from \( M \) to \( M_{\text{min}}(s) \) can be calculated by integrating the following equation:

\[ t = - \int_{M_{\text{min}}(s)}^{M} 15 \times 2^{10} \pi M^2 \left( 1 - \frac{2}{3} \bar{s} - \frac{80}{27} \bar{s}^2 \right) dM. \]  

(93)

Note that the upper limit is \( M_{\text{min}}(s) \) rather than 0, since after the black evaporates its mass from \( M \) to \( M_{\text{min}}(s) \), it is not a black hole anymore. The result is

\[ t = 5120 \pi \left( \frac{M^3}{M^3_{\text{min}}(s)} \right) - 64 \pi s \ln \left( \frac{M^3}{M^3_{\text{min}}(s)} \right) + \frac{16}{3} \pi s^2 \left( \frac{1}{M^3} - \frac{1}{M^3_{\text{min}}(s)} \right). \]  

(94)

Consider the expressions (95) and (92), we have

\[ t = 5120 \pi M^3 \left( 1 - \varepsilon \bar{s} + \frac{80}{27} \bar{s}^2 \right), \]  

(95)

where

\[ \varepsilon = \frac{2}{3} \ln \left( \frac{-2187}{160 \Gamma^3 \left( -\frac{4}{3} \right)} \right) - \frac{16 \Gamma^3 \left( -\frac{4}{3} \right)}{2187} - \frac{81}{2\Gamma^3 \left( -\frac{4}{3} \right)} \]  

(96)

Note that the corrected term \( \varepsilon \bar{s} \) is positive. Therefore, the mimetic dark matter with small scalar parameter \( \bar{s} \ll 1 \) will speed up the Hawking radiation process, and hence will reduce the lifetime of the black hole.

VI. DARK INFORMATION REDUCED BY DARK MATTER

It has been proved that the nonthermal radiation is the origin of the information correlation between the emissions radiated out from the black hole’s horizon [13]. Different from the Hawking radiation, this information correlation can not be measured locally. Such information stored in correlation is called dark information, which was proposed to resolve the problem of the black hole information paradox [13] [15], since the total information of the black hole system is conserved by considering the dark information caused by the noncanonical statistic behavior of the Hawking radiation.

Let us consider two radiated particles \( a \) and \( b \) that escape from the black hole horizon. Their energy distributions are not independent of each other because of the nonthermal radiation spectrum. Therefore, there are correlation between the two particles. Now if we use two detectors to detect the two particles separately, then the correlation is hidden and can not be probed locally. This correlation information can be detected only through the coincidence measurement of the two detectors. Therefore, the information is dark.

In this section, we study the effect of the dark matter on this correlation. The correlation between the two nonindependent events \( a \) and \( b \) can be described with the mutual information [38]

\[ I(a, b) = \sum_{a,b} p_{a,b} \ln \left( \frac{p_{a,b}}{p_a p_b} \right). \]  

(97)

Here \( p_a(p_b) \) is the probability for the event \( a(b) \), and \( p_{a,b} \) the joint probability of \( a \) and \( b \). For two independent events, one has \( p_{a,b} = p_a p_b \) and so \( I(a, b) = 0 \), i.e., the mutual information vanishes. If the radiation spectrum
of a black hole is perfectly thermal, just as the one found by Hawking, then the mutual information among radiations vanishes and so there is no dark information.

Now we consider two events of the radiation process of particles $a$ and $b$ with energy $\omega_a$ and $\omega_b$, respectively. According to Eq. (85), the probability for each particle and the joint probability are given by

$$p_a = e^{-\beta_H \omega_a + \chi \omega_a^2},$$
$$p_b = e^{-\beta_H \omega_b + \chi \omega_b^2},$$
$$p_{a,b} = e^{-\beta_H (\omega_a + \omega_b) + \chi (\omega_a + \omega_b)^2},$$

where $\beta_H$ and $\chi$ are given by Eqs. (86) and (87), respectively. Substituting the above expressions into (101), we have

$$I(a, b) = 2 \chi \sum_{a,b} p_{a,b} \omega_a \omega_b.$$  \hspace{1cm} (101)

By considering the relation $p_{a,b} = p(\omega_a, M)p(\omega_b, M - \omega_a)$ and doing the replacement $M - \omega_a \to M'$, we can rewrite Eq. (101) as

$$I(a, b) = 2 \chi \left( \sum_{\omega_a=0}^{M} p(\omega_a, M) \omega_a \right) \left( \sum_{\omega_b=0}^{M'} p(\omega_b, M') \omega_b \right) = 2 \chi E_a E_b,$$  \hspace{1cm} (102)

where $E_a$ and $E_b$ are respectively the internal energy of particles $a$ and $b$:

$$E_a = \langle \omega_a \rangle = \sum_{\omega_a=0}^{M} p(\omega_a, M) \omega_a,$$  \hspace{1cm} (103)
$$E_b = \langle \omega_b \rangle = \sum_{\omega_b=0}^{M'} p(\omega_b, M') \omega_b.$$  \hspace{1cm} (104)

For the radiation process of the black hole with mimetic dark matter, the explicit form of the dark information is given by

$$I(a, b) = 8 \pi \left( 1 + \frac{4}{3} \frac{s}{\bar{s}} + \frac{215}{27} \frac{s^2}{\bar{s}^2} \right) E_a E_b.$$  \hspace{1cm} (105)

It can be seen that the dark matter will increase the dark information of the Hawking radiation $I_0(a, b) = 8 \pi E_a E_b$, which is similar to the case of dark energy found in Ref. [16]. The change of the dark information due to dark matter can be defined as

$$\delta I(a, b) = I(a, b) - I_0(a, b) = \frac{\pi E_a E_b}{5 \bar{M}^3} s + \frac{43 \pi E_a E_b}{1920 \bar{M}^6} s^2.$$  \hspace{1cm} (106)

which increases with the scalar parameter $s$. With the evaporation of the black hole due to the Hawking radiation, the black hole mass decreases and so the additional dark information resulted from dark matter increases for fixed $E_a$, $E_b$ and $s$. This is opposite to the case of dark energy [16], where the result is $\delta I(a, b) = 128 \pi \bar{M}^2 E_a E_b$. When the black hole mass reduces to its minimum $M_{\text{min}}(s)$ given by (103), the additional dark information reaches its maximum:

$$\delta I(a, b) \approx \frac{9^3 [43 \times 3^5 - 2^7 \times \Gamma^3 (-\frac{1}{3}) \pi]}{5 \times 2^7 \times \Gamma^6 (-\frac{1}{3})} E_a E_b \simeq 15.2 E_a E_b.$$  \hspace{1cm} (107)

Note that this is just an approximate estimate since it is not a small quantity anymore compared with $I_0(a, b) \simeq 25.1 E_a E_b$.

VII. CONCLUSIONS AND DISCUSSIONS

In this paper, we have investigated the spacetime structure, Hawking radiation spectrum, and dark information of a spherically symmetric black hole in the background of dark matter in mimetic gravity.

Firstly, with a general action of mimetic gravity [5], we obtained a spherically symmetric hair black hole solution with a positive scalar parameter $s$ and mass $M$. This solution has the same asymptotic behavior at spatial infinity as the Schwarzschild black hole except for a high-order correction from the mimetic dark matter, but has different behavior near the origin. However, the structure of its Penrose-Carter diagram is similar to the Schwarzschild case. For a fixed scalar parameter $s$, the black hole mass has a minimum [59]. The total energy of the black hole is $M$. The temperature and entropy of the black hole entropy were calculated. It was found that the entropy is not equal to one quarter of the area of the horizon.

Secondly, we used the statistical mechanical method based on canonical typicality [15, 16] to calculate the nonthermal black hole radiation spectrum. This spectrum describes the statistical distribution of particle’s energy after the particles cross the horizon through the Hawking process. The analytic result was given by [58-59] for general and small scalar parameter $s$. The exact numerical result was shown in Fig. [6]. It was found that, during the Hawking radiation, the distribution probability of the radiation will increase slowly at a very long stage, and then the radiation will be accelerated rapidly at the late stage of the radiation. At last, the black hole mass is reduced to its minimum but the radius is reduced to zero. The behavior of the radiation at the last stage is very different from the Schwarzschild black hole. It was also shown that the mimetic dark matter will speed up the Hawking radiation process and so reduce the lifetime of the black hole.

Lastly, we calculated the dark information reduced by mimetic dark matter by considering the information correlation between the emissions radiated out from the
black hole’s horizon. Such information correlation originates from the nonthermal radiation of the black hole and can not be measured locally. The result shows that, similar to the case of dark energy [12], the dark information of the Hawking radiation is also increased by the mimetic dark matter. However, opposite to the case of dark energy, the dark information added by the mimetic dark matter increases during the evaporation of the black hole.

Note that the analytic black hole solution in mimetic gravity obtained in this paper can only describe partly a spherically symmetric black hole around by dark matter. In fact, in order to have a more realistic black solution, one should consider the realistic distribution of the dark matter around the black hole. We will investigate this issue in future research.

VIII. ACKNOWLEDGMENTS

YXL would like to thank Hong Lü, Hai-Shan Liu, Hai-Tang Yang, and Peng Wang for helpful discussions. This work was supported by the National Natural Science Foundation of China (Grants Nos. U1930403, 11875151 and 11675064) and the Fundamental Research Funds for the Central Universities (Grants No. IzuJbk-2019-it21).

[1] S. W. Hawking, Breakdown of predictability in gravitational collapse, Phys. Rev. D14 (1976) 2460.
[2] J. Preskill, Do Black Holes Destroy Information?, arXiv:hep-th/9209058.
[3] S. B. Giddings, Black Holes and Massive Remnants, Phys. Rev. D46 (1992) 1347.
[4] M. J. Bowick, S. B. Giddings, J. A. Harvey, G. T. Horowitz, and A. Strominger, Axionic Black Holes and an Aharonov-Bohm Effect for Strings, Phys. Rev. Lett. 61 (1988) 2823.
[5] L. M. Krauss and F. Wilczek, Discrete gauge symmetry in continuum theories, Phys. Rev. Lett. 62 (1989) 1221.
[6] S. Coleman, J. Preskill, and F. Wilczek, Growing hair on black holes, Phys. Rev. Lett. 67 (1991) 1975.
[7] Y. B. Zeldovich, A new type of radioactive decay: gravitational annihilation of baryons, Sov. Phys. JETP 45 (1977) 9.
[8] S. W. Hawking, Baby universes II, Mod. Phys. Lett. A5 (1990) 453.
[9] O. Lunin and S. D. Mathur, AdS/CFT duality and the black hole information paradox, Nucl. Phys. B623 (2002) 342, [arXiv:hep-th/0109154].
[10] A. Almheiri, D. Marolf, J. Polchinski, and J. Sully, Black Holes: Complementarity or Firewalls?, JHEP 1302 (2013) 062, [arXiv:1207.3123 [hep-th]].
[11] S. L. Braunstein, S. Pirandola, and K. Zyczkowski, Better Late than Never: Information Retrieval from Black Holes, Phys. Rev. Lett. 110 (2013) 101301, [arXiv:0907.1190 [quant-ph]].
[12] M. K. Parikh and F. Wilczek, Hawking Radiation as Tunneling, Phys. Rev. Lett. 85 (2000) 5042, [arXiv:hep-th/0007001].
[13] B. C. Zhang, Q. Y. Cai, L. You, and M. S. Zhan, Hidden Messenger Revealed in Hawking Radiation: a Resolution to the Paradox of Black Hole Information Loss, Phys. Lett. B675 (2009) 98.
[14] H. Dong, Q. Y. Cai, X. F. Liu, and C. P. Sun, One Hair Postulate for Hawking Radiation as Tunneling Process, Commun. Theor. Phys. 61 (2014) 289.
[15] Y.-H. Ma, Q.-Y. Cai, H. Dong, and C.-P. Sun, Non-thermal radiation of black hole off canonical typicility, EPL 122 (2018) 30001, [arXiv:1711.10704].
[16] Y.-H. Ma, J.-F. Chen, and C.-P. Sun, Dark information of black hole radiation raised by dark energy, Nucl. Phys. B931 (2018) 418, [arXiv:1802.01118].
[17] M. O. Scully and M. S. Zubairy, Quantum optics, Cambridge University Press, Cambridge, UK, 1997.
[18] J. L. Feng, Dark Matter Candidates from Particle Physics and Methods of Detection, Ann. Rev. Astron. Astrophys. 48 (2010) 495, [arXiv:1003.0904 [astro-ph.CO]].
[19] B. Carr, F. Kuhnel, and M. Sandstad, Primordial Black Holes as Dark Matter, Phys. Rev. D94 (2016) 083504, [arXiv:1607.06077 [astro-ph.CO]].
[20] S. Wang, Y. F. Wang, Q. G. Huang, and T. G. F. Li, Constraints on the Primordial Black Hole Abundance from the First Advanced LIGO Observation Run Using the Stochastic Gravitational-Wave Background, Phys. Rev. Lett. 120 (2018) 191102, [arXiv:1610.08725 [astro-ph.CO]].
[21] N. Bartolo, V. De Luca, G. Franciolini, A. Lewis, M. Peloso, and A. Riotto, The Primordial Black Hole Dark Matter-LISA Serendipity, Phys. Rev. Lett. 122 (2019) 211301, [arXiv:1810.12218 [astro-ph.CO]].
[22] A. H. Chamseddine and V. Mukhanov, Mimetic Dark Matter, JHEP 11 (2013) 135, [arXiv:1308.5410].
[23] S. W. Hawking, Black hole explosions?, Nature 248 (1974) 30.
[24] S. W. Hawking, Particle creation by black holes, Commun. Math. Phys 43 (1975) 199.
[25] Y. Aharonov, A. Casher, and S. Nussinov, The unitarity puzzle and Planck mass stable particles, Phys. Lett. B191 (1987) 51.
[26] N. M. Krauss and F. Wilczek, Discrete gauge symmetry in continuum theories, Phys. Rev. Lett. 62 (1989) 1221.
[27] J. D. Bekenstein, How fast does information leak out from a black hole?, Phys. Rev. Lett. 70 (1993) 3680.
[28] M. K. Parikh and F. Wilczek, Hawking Radiation As Tunneling, Phys. Rev. Lett. 85 (2000) 5042.
[29] G. T. Horowitz and J. Maldacena, The black hole final state, JHEP 02 (2004) 008.
[30] S. W. Hawking, Information Loss in Black Holes, Phys. Rev. D72 (2005) 084013.
[31] S. Lloyd, Almost Certain Escape from Black Holes in Final State Projection Models, Phys. Rev. Lett. 96 (2006) 061302.
[32] S. L. Braunstein and A. K. Pati, Quantum Information Cannot Be Completely Hidden in Correlations: Implications for the Black-Hole Information Paradox, Phys. Rev.
[33] H. Tasaki, From Quantum Dynamics to the Canonical Distribution: General Picture and a Rigorous Example, Phys. Rev. Lett. 80 (1998) 1373.

[34] S. Goldstein, J. L. Lebowitz, R. Tumulka, and N. Zanghi, Canonical Typicality, Phys. Rev. Lett. 96 (2006) 050403.

[35] S. Popescu, A. J. Short, and A. Winter, Entanglement and the foundations of statistical mechanics, Nature Phys. 2 (2006) 754.

[36] Y. Sendouda, Cosmic rays from primordial black holes in the Randall-Sundrum braneworld, AIP Conference Proceedings 861 (2006) 1023.

[37] D. C. Dai, Modified gravity in cosmology and fundamental particle physics, Case Western Reserve University School of Graduate Studies, 2008.

[38] T. M. Cover and J. A. Thomas, Elements of Information Theory, John Wiley & Sons, 2012.