A Facile Way to Fabricate High-Performance Solution-Processed n-MoS$_2$/p-MoS$_2$ Bilayer Photodetectors

Jian Ye1, Xueliang Li2, Jianjun Zhao1, Xuelan Mei1 and Qian Li1

Abstract

Two-dimensional (2D) material has many advantages including high carrier mobilities and conductivity, high optical transparency, excellent mechanical flexibility, and chemical stability, which made 2D material an ideal material for various optoelectronic devices. Here, we developed a facile method of preparing MoS$_2$ nanosheets followed by a facile liquid exfoliation method via ethyl cellulose-assisted doping and utilizing a plasma-induced p-doping approach to generate t effectively the partially oxidized MoS$_2$ (p-MoS$_2$) nanosheets from the pristine n-type nanosheets. Moreover, an n-p junction type MoS$_2$ photodetector device with the built-in potentials to separate the photogenerated charges is able to significantly improved visible light response. We have fabricated photodetector devices consisting of a vertically stacked indium tin oxide (ITO)/pristine n-type MoS$_2$ nanosheets/p-MoS$_2$/Ag structure, which exhibit reasonably good performance illumination, as well as high current values in the range of visible wavelength from 350 to 600 nm. We believe that this work provides important scientific insights for photoelectric response properties of emerging atomically layered 2D materials for photovoltaic and other optoelectronic applications.

Keywords: Liquid exfoliation method, Partially oxidized MoS$_2$, Photodetectors

Background

Over the last decade, two-dimensional (2D) nanomaterials have drawn great attention because of their unique structures, large natural abundance, and distinctive properties compared to their bulk forms, and a broad range of applications in catalysis, electronics, energy-storage devices, optoelectronics, and so on [1–11]. In particular, the semiconducting layered transition metal dichalcogenides (LTMDs, e.g., WSe$_2$, WS$_2$, and MoS$_2$) have gained significant interest on optoelectronics due to their direct bandgaps, possessing intriguing optical properties suitable for optoelectronic applications in light-emitting diodes and photovoltaics [12–14]. Usually, LTMDs have a unique 2D X–M–X structure in which the transition metal atom layer is sandwiched between two close-packed chalcogen atom layers [1, 2, 15–17].

As a prototypical compound of LTMDs, MoS$_2$ has been extensively studied. Bulk MoS$_2$ is a typical semiconductor with an indirect bandgap. Expectedly, monolayer MoS$_2$ transistors have been demonstrated with on/off ratios of 10^6 and ultralow standby power dissipation [17–19]. However, to realize the highly efficient optoelectronic devices based on MoS$_2$, it is also important to develop a strategy to prepare ultrathin MoS$_2$ nanosheets and tune the bandgaps with facile process. Several methods, such as mechanical exfoliation (the so-called Scotch tape method), liquid exfoliation, colloidal synthesis, chemical vapor deposition, chemical exfoliation, and electrochemical exfoliation have been developed to prepare ultrathin MoS$_2$ nanosheets [2, 20–30]. Among these methods, liquid exfoliation not only produces novel materials with the same composition yet dramatically changed electrical properties but also provides a facile way to prepare thin-layer nanosheets, which offers novel opportunities in the optoelectronics applications [17, 31–34].

In this work, we report that a novel liquid exfoliation method via ethyl cellulose-assisted doping can prepare an
excellent thin MoS$_2$ nanosheets and very effective method to generate the partially oxidized MoS$_2$ (p-MoS$_2$) nanosheets from the pristine n-type nanosheets. Moreover, an n-p junction type MoS$_2$ photodetector device with the built-in potentials to separate the photogenerated charges can result in significantly improved visible light response. We have fabricated photodetector devices consisting of a vertically stacked indium tin oxide (ITO)/pristine n-type MoS$_2$ nanosheets/p-MoS$_2$/Ag structure, which exhibit reasonably good performance illumination, as well as high current values in the range of visible wavelength from 350 to 600 nm. This work provides important scientific insights for leveraging unique optoelectronic properties of 2D materials for photodetector applications.

Methods

Material Synthesis

Molybdenum disulfide (MoS$_2$) nanosheets were synthesized by liquid ultrasound exfoliation as reported in the literature [35, 36]. Typically, MoS$_2$ powder (0.25 g, Aladdin) was dispersed in ethyl cellulose (EC) isopropanol solution (1 % w/v dispersion, 100 ml) in a SEBC bottle. The dispersion was sonicated for 24 h at 60 W in water bath. The resulting dispersion was centrifuged (Desktop High-speed Refrigerated Centrifuge Model TGL-16) at 5000 rpm for 15 min, and then the supernatant liquid was directly collected. Deionized water was mixed with the supernatant liquid (3:4 weight ratio) and subsequently centrifuged at 7500 rpm for 10 min. Whereafter, the lower precipitation was collected and dried. Deionized water was mixed with the supernatant liquid (3:4 weight ratio) and subsequently centrifuged at 7500 rpm for 8 min, discarding the supernatant. To debride any residual salt, the resulting MoS$_2$ precipitation was washed with deionized water and collected by vacuum filtration (0.45 μm filter paper). Finally, the MoS$_2$ nanosheet product was dried as a fine black powder. The final MoS$_2$ nanosheets were defined as n-MoS$_2$. For the preparation of p-MoS$_2$ nanosheets, the n-MoS$_2$ powder was taken a UV-ozone plasma treatment for 40 min to completely change to p-MoS$_2$ nanosheets.

Characterizations

TEM images were taken by a FEI TECNAI G2 F20-TWIN TEM. Raman spectra were recorded on inVia Raman microscope. XPS and UPS measurements were conducted using an ESCALAB 250Xi (Thermo) system. X-ray diffraction (XRD) patterns of the MoS$_2$ was carried out on a Bruker D8 Focus X-ray diffractometer operating at 30 kV and 20 mA with a copper target (λ=1.54 Å) and at a scanning rate of 1°/min.

Photodetector Device Fabrication

All devices were fabricated on pre-treatment ITO glass substrates [37] (sheet resistance <10 Ωsq$^{-1}$, ShenZhen NanBo Display Technology Co., Ltd.); cleaned sequentially using sonication in acetone, detergent, deionized water, and isopropanol; and then dried under a nitrogen stream, followed by ultraviolet light irradiation. Then, the n-MoS$_2$ nanosheets (10 mg/ml, in isopropanol) spin coated with 2000 rpm and thermally annealed at 150 °C for 15 min receive a thickness of 80 nm. Thereafter, the p-MoS$_2$ nanosheets (15 mg/ml, in isopropanol) was spin coated on n-MoS$_2$ nanosheets layer, followed by thermal annealing at 150 °C for 10 min in atmospheric environment. Eventually, Argentum Ag (150 nm) was deposited over the p-MoS$_2$ nanosheets layer by thermal.
evaporation under a vacuum of 6×10^{-6} Torr to accomplish the device fabrication. The effective area of one cell was $\sim 1 \text{ cm}^2$. The photocurrent-voltage curves and I-T curves were measured with a Keithley 2400 source meter and a 150-W Xe lamp light source. The dark current-voltage curves were measured by Keithley 2400 source meter under dark. All the measurements were performed under ambient atmosphere at room temperature. The incident photo-to-electron conversion efficiency spectrum (IPCE) were detected under monochromatic illumination (Oriel Cornerstone 260 1/4 m monochromator equipped with Oriel 70613NS QTH lamp), and the calibration of the incident light was performed with a monocrystalline silicon diode.

Results and Discussion

The equal concentration of pristine MoS$_2$ and MoS$_2$ nanosheets after the liquid ultrasound exfoliation solution

![Fig. 2](image1.png)

Fig. 2 The transmission electron microscopy (TEM) images of (a) pristine MoS$_2$ and (b) MoS$_2$ nanosheets films on glass substrate, and the inset is selected area electron diffraction (SAED) pattern of the MoS$_2$ nanosheets. The scanning electron microscopy (SEM) images of (c) pristine MoS$_2$ and (d) MoS$_2$ nanosheets films on glass substrate.

![Fig. 3](image2.png)

Fig. 3 (a) XRD patterns of the MoS$_2$ films on glass substrate. (b) Raman spectrum of MoS$_2$ films on glass substrate.
(10 mg/ml) was treated with ultrasound in ethanol for 30 min, respectively. The detailed process is demonstrated in experimental section. The photographs of pristine MoS$_2$ and MoS$_2$ nanosheets isopropanol dispersion solutions after ultrasound treatment are shown in Fig. 1. After storing for 48 h, humorous aggregation can be observed in pristine MoS$_2$ solution (Fig. 1a) and evident MoS$_2$ particles adhere to the sidewall. In contrast, the MoS$_2$ nanosheets after the liquid ultrasound exfoliation solution show a highly uniform and homogeneous suspension solution (Fig. 1b), indicating the successful preparation of MoS$_2$ nanosheets with the good dispensability.

In order to verify the degree of dispersion of exfoliated MoS$_2$ nanosheets by ethyl cellulose ethanol solution via liquid ultrasound exfoliation, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were performed (Fig. 2). For comparison, the morphologies of the pristine MoS$_2$ nanosheets prepared by 150 °C thermal annealing for 10 min were also determined. All of samples were spin-coated on ITO and tested in the same testing conditions. Figure 2a shows a rough morphology of the pristine MoS$_2$ and clearly stacked MoS$_2$ can be seen. However, Fig. 2b displays an individual MoS$_2$ sheet with six spot pattern in the selected-area electron diffraction (SAED) of MoS$_2$, suggesting that MoS$_2$ is scattered as individual MoS$_2$ nanosheet [38, 39]. Also, the severe aggregation of the pristine MoS$_2$ can be observed in SEM images (Fig. 2c), intriguingly, after being treated by ethyl cellulose ethanol solution via liquid ultrasound exfoliation, MoS$_2$ nanosheets can fully cover and tightly attach on the ITO substrate with a quite smooth surface morphology (Fig. 2d).

To further verify morphology results, the XRD patterns of pristine and exfoliated MoS$_2$ nanosheets (Fig. 3a)
only the peaks of (103) and (002) plane remain after li-
quid exfoliation which confirms that the MoS₂ nano-
sheets were successfully striped [40, 41]. Moreover, the
disappearance of other peaks could prove that ultrathin
MoS₂ nanosheets are tightly deposited on the ITO glass
with preferred ductility. The Raman spectrum can once
again prove the exfoliation of MoS₂ nanosheets. The two
peaks (1 and 2 g) between 360 and 430 cm⁻¹ are the
main peak of MoS₂ [42–44]. After liquid exfoliation, the
obvious decrease of the intensity of the two peaks was
observed.

It is well known that the MoS₂ nanosheets are n-type
semiconductor materials and several researches have
been reported that MoS₂ could be changed as a p-type
semiconductor material with a relative high work func-
tion after UV-ozone plasma treatment. Thus, the prop-
ties of MoS₂ nanosheets with or without the UV-ozone
plasma treatment were also investigated. Figure 4a is
the X-ray photoelectron spectroscopy (XPS) profile of
n-MoS₂ nanosheets (without plasma treatment) and p-
MoS₂ nanosheets (with plasma treatment). The Mo 3D
spectra of pristine MoS₂ nanosheets demonstrate out-
standing Mo⁴⁺3d⁵/₂ and Mo⁴⁺3d³/₂ bands at 228.7 and
231.5 eV, in agreement with the other works for n-MoS₂
nanosheets. However, the two strong peaks have a notable
shift to 235.3 and 232.5 eV, respectively, which is simi-
lar with the spectra of MoO₃ [45, 46]. Therefore, it
proved that n-MoS₂ nanosheets can be successfully ox-
idized to p-type materials after UV-ozone plasma
treatment. Since the MoS₂ layer is very thin via the
spin-coating method, it is important to analyze the bi-
layer junction existing at the interface of n-MoS₂/p-
MoS₂. To gain insight into the electronic structures of
the n-MoS₂/p-MoS₂ bilayer junction, we have per-
formed the UPS analysis. The work function was cal-
culated through the difference between the cutoff of
the highest binding energy and the photon energy of
the exciting radiation. The valence band (VB) can be
calculated from the cutoff from the lowest binding en-
ergy. As shown in Fig. 4b, after UV-ozone plasma
treatment, the work function of the MoS₂ nanosheets
has increased from 4.3 to 5.2 eV. The energy

![Fig. 6](image)

Fig. 6 Current-voltage curves of the device **a** under a 150-W Xe lamp light source illumination and **b** in dark

![Fig. 7](image)

Fig. 7 **a** The output signal of photocurrent under alternating light on and light off, where the entire device was illuminated by a 150-W Xe lamp
irradiation. **b** Photoresponse of MoS₂-based photodetector at a 0-V DC bias voltage. **b** Photoresponse of MoS₂-based photodetector at 1-V DC bias
voltage. **c** The spectral photoresponse vs. wavelength, showing a broad photosresponse range from 350 to 650 nm, which is, the absorption
spectrum of the nanohybrid covers the whole energy range of visible light.
difference between the Fermi level and valence band maximum is decreased from 1.4 to 0.4 eV, demonstrating the n-type MoS$_2$ nanosheets change to p-type MoS$_2$ nanosheets [47].

On the basis of the above results, we have constructed an energy diagram showing the band bending behavior at the n-MoS$_2$/p-MoS$_2$ bilayer junction interface, as shown in Fig. 5a. The n-MoS$_2$/p-MoS$_2$ bilayer junction with a built-in potential promises an excellent photodetector performance with a ITO/n-MoS$_2$/p-MoS$_2$/Ag device structure (Fig. 5b) which will be discussed later. The photocurrent-voltage curves and the photocurrent-voltage were measured with the Keithley 2400 source meter. As shown in Fig. 6a, b, the device shows the photovoltaic response under a 150-W Xe lamp light source illumination. The result shows the device has a p-n junction inside. In order to understand the photodetector properties in more detail and detect potential application in photoelectronic fields, we have performed further experiments of photodetector at a 1-V DC bias as shown in Fig. 7a, b. As seen from Fig. 7a, b, the photocurrent increases at an applied dc bias voltage of 0 and 1 V. Moreover, the photoreponse is steady, prompt, and reproducible during repeated on/off cycles of visible light illumination. More importantly, the n-MoS$_2$/p-MoS$_2$ bilayer junction-based device shows a very broad photoelectric response range from 350 to 600 nm, as shown in Fig. 7c, and therefore, the n-MoS$_2$/p-MoS$_2$ bilayer junction can harvest nearly the whole energy range of visible light.

Conclusions
We have demonstrated a high-quality n-MoS$_2$/p-MoS$_2$ bilayer junction-based device to achieve the high-performance photoreponse which can harvest nearly the whole energy range of visible light. Excellent, thin exfoliated MoS$_2$ nanosheets are realized by a facile liquid exfoliation, changing the n-type MoS$_2$ nanosheets to p-type MoS$_2$ nanosheets via a simple plasma treatment. This work shows that thin MoS$_2$ nanosheets can be fully integrated into the photodetector manufacturing process, which holds promise for realizing 2D materials in a variety of optical electronic and optical devices.

Competing Interests
The authors declare that they have no competing interests.

Authors’ Contributions
JY carried out the experiments. JY, XL, JZ, and QL participated in the design of the study. JY and XL conceived of the study, participated in its design and coordination, and helped draft the manuscript. All authors read and approved the final manuscript.

Acknowledgements
This study was financially supported by the Natural Science Research Projects Funded of Anhui Colleges and Universities (KJ2015A224) and Scientific Research Fund of Anhui Province Education Department (KJ2016B104).

Author details
1 Department of Chemistry and Environmental Engineering, Bengbu College, Bengbu, Anhui 233030, China. 2 School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China.

Received: 18 October 2015 Accepted: 17 November 2015

Published online: 25 November 2015

References
1. Eda, G, Fujita T, Yamaguchi H, Voiry D, Chen M, Chhowalla M (2012) Coherent atomic and electronic heterostructures of single-layer MoS$_2$. ACS Nano 6:7311–7317
2. Eda, G, Yamaguchi H, Voiry D, Fujita T, Chen M, Chhowalla M (2011) Photoluminescence from chemically exfoliated MoS$_2$. Nano Lett 11:5111–5116
3. Gu X, Cui W, Li H, Wu Z, Zeng Z, Lee ST, Zhang H, Sun B (2013) A solution-processed hole extraction layer made from ultrathin MoS$_2$ nanosheets for efficient organic solar cells. Adv Energy Mater 3:1262–1268
4. Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS (2012) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 7:699–712
5. Tan C, Liu Z, Huang W, Zhang H (2015) Non-volatile resistive memory devices based on solution-processed ultrathin two-dimensional nanomaterials. Chem Soc Rev 44:2615–2628
6. Tan C, Zhang H (2015) Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem Soc Rev 44:2713–2731
7. Huang X, Tan C, Yin Z, Zhang H (2014) 25th Anniversary article: hybrid nanostructures based on two-dimensional nanomaterials. Adv Mater 26:2185–2204
8. Huang X, Zeng Z, Zhang H (2013) Metal dichalcogenide nanosheets: preparation, properties and applications. Chem Soc Rev 42:1934–1946
9. Huang X, Yin Z, Wu S, Q X, He Q, Zhang Q, Yan Q, Boey F, Zhang H (2011) Graphene-based materials: synthesis, characterization, properties, and applications. Small 7:1876–1902
10. Zhang H (2015) Ultrathin two-dimensional nanomaterials. ACS Nano 9:9451–9469
11. Huang X, Qi X, Boey F, Zhang H (2012) Graphene-based composites. Chem Soc Rev 41:666–686
12. Buscema M, Groenendijk DJ, Blanter S, Steele GA, van der Zant HS, Castellanos-Gomez A (2014) Fast and broadband photoforw each black phosphorus field-effect transistors. Nano Lett 14:3347–3352
13. Scalise E, Houssia M, Pourotos G, Afnan D, Versans A (2012) Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS$_2$. Nano Res 5:43–48
14. Remskar M, Mrzel A, Virsek M, Godec M, Krause M, Kollitsch A, Singh A, Seabaugh A (2010) The MoS$_2$ nanotubes with defect-controlled electric properties. Nanoscale Res Lett 6:26
15. Yin Z, Li H, Li H, Jiang L, Shi Y, Sun Y, Lu G, Zhang Q, Chen X, Zhang H (2012) Single-layer MoS$_2$ phototransistors. ACS Nano 6:74–80
16. Yuwen L, Xu F, Xue B, Luo Z, Zhang Q, Bao B, Su S, Wang L, Huang W, Wang L (2014) General synthesis of noble metal (Au, Ag, Pd, Pt) nanocrystal modified MoS$_2$ nanosheets and the enhanced catalytic activity of Pd-MoS$_2$ for methanol oxidation. Nanoscale 6:5762–5769
17. Xu M, Liang T, Shi M, Chen H (2013) Graphene-like two-dimensional materials. Chem Rev 113:3766–3798
18. Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A (2013) Single-layer MoS$_2$ transistors. Nat Nanotechnol 6:147–150
19. Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A (2013) Ultrasmall photodetectors based on monolayer MoS$_2$. Nat Nanotechnol 8:497–501
20. Shi H, Yan R, Bertolazzi S, Brivio J, Gao B, Kis A, Jena D, Xing HG, Huang L (2013) Exciton dynamics in suspended monolayer and few-layer MoS$_2$ 2D crystals. ACS Nano 7:1072–1080
21. Wang H, Yu L, Lee Y-H, Shi Y, Hsu A, Chen ML, Li L, Dubey M, Kong J, Palacios T (2012) Integrated circuits based on bilayer MoS$_2$ transistors. Nano Lett 12:4674–4680
22. Conley HJ, Wang B, Ziegler JJ, Haglund RF Jr, Pantelides ST, Bolotin KI (2013) Bandgap engineering of strained monolayer and bilayer MoS$_2$. Nano Lett 13:3626–3630
et al. Nanoscale Research Letters (2015) 10:454

23. Bertolazzi S, Krasnozhon D, Kis A (2013) Nonvolatile memory cells based on MoS$_2$/graphene heterostructures. ACS Nano 7:3246–3252

24. Mak KF, He K, Shan J, Heinz TF (2012) Control of valley polarization in monolayer MoS$_2$ by optical helicity. Nat Nanotechnol 7:494–498

25. Lee Y-H, Yu L, Wang H, Fang W, Ling X, Shi Y, Lin C-T, Huang J-K, Chang M-T, Chang C-S (2013) Synthesis and transfer of single-layer transition metal disulfides on diverse surfaces. Nano Lett 13:1852–1857

26. Chen J-R, Odenthal PM, Swartz AG, Floyd GC, Henn H, Luo KY, Kawakami RK (2013) Control of Schottky barriers in single layer MoS$_2$ transistors with ferromagnetic contacts. Nano Lett 13:3106–3110

27. Li H, Wu J, Yin Z, Zhang H (2014) Preparation and applications of mechanically exfoliated single-layer and multilayer MoS$_2$ and WSe$_2$ nanosheets. Accounts Chem Res 47:1067–1075

28. Li H, Yin Z, He Q, Li H, Huang X, Lu G, Fam DWH, Tok AY, Zhang Q, Zhang H (2012) Fabrication of single- and multilayer MoS$_2$ film-based field-effect transistors for sensing at room temperature. Small 8:63–67

29. Li H, Wu J, Yin Z, He Q, Li H, Zhang Q, Zhang H (2012) Optical identification of single- and few-layer MoS$_2$ sheets. Small 8:888–896

30. Li H, Wu J, Huang X, Lu G, Yang J, Lu X, Xiong Q, Zhang H (2013) Rapid and reliable thickness identification of two-dimensional nanosheets using optical microscopy. ACS Nano 7:10344–10353

31. Lee HS, Min S-W, Chang Y-G, Park MK, Nam T, Kim H, Kim JH, Ryu S, Im S (2012) MoS$_2$ nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett 12:3695–3700

32. Yoon Y, Ganapathi K, Salahuddin S (2011) How good can monolayer MoS$_2$ transistors be? Nano Lett 11:3768–3773

33. Zeng Z, Yin Z, Huang X, Li H, He Q, Lu G, Boey F, Zhang H (2011) Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. Angew Chem Int Edit 50:11093–11097

34. Liu J, Zeng Z, Cao X, Lu G, Wang L-H, Fan Q-L, Huang W, Zhang H (2012) Preparation of MoS$_2$-polyvinylpyrrolidone nanocomposites for flexible nonvolatile rewritable memory devices with reduced graphene oxide electrodes. Small 8:3517–3522

35. Viculis LM, Mack JJ, Mayer OM, Hahn HT, Kaner RB (2005) Intercalation and exfoliation routes to graphite nanoplatelets. J Mater Chem 15:974–978

36. Coleman JN, Lota M, O’Neill A, Bergin SD, King PJ, Khan U, Young K, Gaucher A, De S, Smith RJ (2011) Fabrication of layered materials. Science 331:568–571

37. Hsu C-L, Tsai T-Y (2011) Fabrication of fully transparent indium-doped ZnO thin film-based field-effect transistors. Small 8:3517–3522

38. Fu W, Du F-H, Su J, Li X-H, Wei X, Ye T-N, Wang K-X, Chen J-S (2014) In situ catalytic growth of large-area multilayered graphene/MoS$_2$ heterostructures. Sci Rep-UK 4:4673

39. Yu X, Prévot MS, Sivula K (2014) Multiflake thin film electronic devices of solution processed 2D MoS$_2$ enabled by sonopolymer assisted exfoliation and surface modification. Chem Mater 26:5892–5899

40. Zheng X, Xu J, Yan K, Wang H, Wang Z, Yang S (2014) Space-confined growth of MoS$_2$ nanosheets within graphene: the layered hybrid of MoS$_2$ and graphene as an active catalyst for hydrogen evolution reaction. Chem Mater 26:2344–2353

41. Nguyen EP, Carey BJ, Daeneke T, Ou JZ, Latham K, Zhuykov S, Kalantar-Zadeh K (2014) Investigation of two-solvent grinding-assisted liquid phase exfoliation of layered MoS$_2$. Chem Mater 26:97–103

42. Terrones H, Del Corro E, Feng S, Poumirol J, Rhodes D, Smimov D, Pradhan N, Lin Z, Nguyen M, Elias A (2014) New first order raman-active modes in few layered transition metal dichalcogenides. Sci Rep-UK 4:44215

43. Chen C, Qiao H, Lin S, Luk CM, Liu Y, Xu Z, Song J, Xie Y, Li D, Yuan J (2015) Highly responsive MoS$_2$ photodetectors enhanced by graphene quantum dots. Sci Rep-UK 5:11830

44. Wang S, Rong Y, Fan Y, Pacios M, Bhaskaran H, He K, Warner JH (2014) Shape evolution of monolayer MoS$_2$ crystals grown by chemical vapor deposition. Chem Mater 26:6589–6599

45. Varlita E, Backes C, Patton KR, Harvey A, Gholamvand Z, McCauley J, Coleman JN (2015) Large-scale production of size-controlled MoS$_2$ nanosheets by shear exfoliation. Chem Mater 27:1129–1139

46. Alov NV (2015) XPS study of MoO$_3$ and WO$_3$ oxide surface modification by low-energy Ar$^+$ ion bombardment. Phys Status Solidi C 12:263–266

47. Chuang S, Battaglia C, Azcatl A, McDonnell S, Kang JS, Yin X, Tosun M, Kapadia R, Fang H, Wallace RM (2014) MoS$_2$ p-type transistors and diodes enabled by high work function MoO$_3$ contacts. Nano Lett 14:1337–1342