BONE DIAGENESIS IN VIA XVII INHUMATIONS (BRACARA AUGUSTA): IDENTIFICATION OF TAPHONOMIC AND ENVIRONMENTAL FACTORS IN DIFFERENTIAL SKELETAL PRESERVATION

LUÍS MIGUEL MARADO(1)(2), CRISTINA BRAGA(1) & LUÍS FONTES(1)

Abstract:
Bone decomposition in archaeological contexts is differential and dependent on geological and taphonomic variables. The present work analyses evidences of skeletal diagenesis in 25 inhumations (3rd-1st centuries AD) from the Via XVII necropolis of Bracara Augusta (Braga, Portugal). Bracara Augusta is located in the Minho region, Northwest Portugal. Minho’s granitic soils are characterized by high acidity. Precipitation is high in cold seasons and markedly reduced in the summer. The influence of these factors on bone preservation of Via XVII inhumations was analyzed through the comparison between graves with different structural traits (box presence, box material, sediment presence, chronology, coffin/stretchers presence or material, and cover presence or type), using the chi squared test. None of the comparisons showed significant differences in skeletal preservation frequencies. Yet, the comparison between graves that structurally limit skeletal contact with sediment (sealed/undisturbed boxes) or water flow (gable roof boxes) (100%) and the remaining graves (43.8%) presented significantly different frequencies ($\chi^2 = 7.910; p = 0.005$).

The taphonomic conditions of Via XVII inhumations are inadequate for bone preservation. In graves preserving osteological material, the presence of a box structure is essential, yet only of determining influence if kept sealed or covered with a gable roof. The continued study of taphonomic factors influencing bone diagenesis will allow the preparation of archaeological excavations in Braga funerary contexts to account for the needed specialists and materials.

Keywords: Bioarchaeology; Funerary archaeology; Bone decomposition; Late Roman/paleochristian.

Resumo:

diagnéstese óssea nas inumações da Via XVII (Bracara Augusta): Identificação de fatores tafonómicos e ambientais na preservação esquelética diferencial

A decomposição dos ossos em contexto arqueológico é diferencial, dependente de variáveis geológicas e tafonómicas. O presente trabalho analisa evidências relativas à diagnéstese esquelética em 25 inumações (séculos III-IV) da necrópole da Via XVII de Bracara Augusta (Braga). Bracara Augusta localiza-se no Minho, região no noroeste de Portugal Continental de solos graníticos caracterizados por elevada acidez. A precipitação é elevada nas estações frías, reduzindo-se marcadamente em períodos quentes. A influência destes fatores na preservação óssea das inumações escavadas na Via XVII foi pesquisada pela comparação entre sepulturas de diferentes características estruturais (presença de caixa, material da caixa, contacto com sedimento, cronologia, presença de caixão/padiola, tipo e presença de cobertura), recorrendo ao chi quadrado. Nenhuma das comparações revelou diferenças significativas nas frequências de preservação óssea. A presença de uma caixa é fundamental para a preservação óssea, mas apenas de determinante se mantiver selada ou tiver cobertura de duas águas. A continuação do estudo dos tafonómicos que mediam a diagnéstese óssea permitirá que a preparação das escavações arqueológicas de contexto funerário em Braga determine os especialistas e instrumentos adequados ao projeto.

Keywords: Bioarqueologia; Arqueologia funerária; Decomposição óssea; Período tardío-romano/paleocristão.

1. INTRODUCTION

Bone preservation and diagenesis is highly variable in archaeological contexts. Diagenetic alterations are related to extrinsic factors, such as (1) soil type and characteristics (particle size, composition, humidity, or acidity) (Hedges & Millard 1995; López-Costas et al. 2016), (2) funerary gestures (treatment previous to deposition, type of deposition, depth, and occurrence of funerary recipient or grave goods) (Jans et al. 2004; Pokines & Baker 2014), (3) environment (temperature, rainfall) (Manifold 2012), (4) bio-turbation (influence of plant roots, burrowing animals and annelids) (Pokines & Baker 2014) and (5) time length of interment (Hedges & Millard 1995). These alterations are also mediated by bone characteristics (intrinsic factors), such as size, density, porosity, or the occurrence of pathology (Manifold 2012).

Received: 30 January, 2018; Accepted: 19 October, 2018

(1) Unidade de Arqueologia, Lab2P2, Universidade do Minho. Autor correspondente - Luís Miguel Marado, luismarado@gmail.com
(2) CIAS, Universidade de Coimbra
After interment, osteological materials are unlikely to preserve for extended lengths of time, so ultimately leave very little trace due to their decomposition. Bone that undergoes funerary treatment (such as cremation:

MAYS, 1998) before deposition is more likely to endure. Under good conditions, bone can be well preserved and even fossilize, yet this is a rare outcome (NIELSEN-MARSH et al. 2007). In archaeological excavations of funerary contexts it is important to predict the existence and the conditions of bone, since these factors are related with excavation length and which staff and materials (for excavation and preservation) are needed.

The aim of this work is to understand the factors affecting bone preservation in the Late Roman and early post-Roman inhumations of the Via XVII necropolis of Bracara Augusta, in current Braga, northern Portugal (Northwest Iberian Peninsula).

2. MATERIALS AND METHODS

Twenty-five inhumations were excavated in the Roman city of Bracara Augusta, from the Via XVII necropolis (Figure 1). Via XVII was the road connecting Bracara Augusta (current Braga) to Asturica Augusta (current Astorga). These inhumations are dated from 4th to 5th/6th centuries CE (Late Roman to early post-Roman periods) through archaeological materials and absolute dating (see BRAGA 2010; MARTINS et al. 2009). The archaeological campaigns that obtained the present data took place in the last decades. Besides inhumations, 244 depositions related to cremation rituals (1st to 5th/7th centuries CE) were found, yet are not studied in this work due to their different pre-deposition treatment (cremation at temperatures over 600°C), which can enhance bone preservation (MAYS 1998).

The Via XVII inhumations are divided in seven types (and several subtypes) of graves, according to the structures and materials surrounding the deposition (Table 1; Figure 2). Four inhumations were either disturbed or could not be evaluated in full due to the physical limits of the archaeological excavation. In those instances, the inhumations were considered of undetermined type and subtype.

Preservation was initially described using Bello and Andrew’s (2006) six-class method, the Anatomical Preservation Index (API). The API found was dichotomous, since bones were either absent (API class 1: 0% of bone preserved) or poorly preserved (API class 2: 1-24% of bone preserved). Further considerations made use of this dichotomy in a simplified form, identifying skeletons as either absent (0% preservation) or poorly preserved (1-24% preservation) within each grave.

The generalized poor preservation of the inhumed remains made it impossible to estimate the biological profile (sex, age or morphological characteristics).

Relationships between skeletal preservation and the different grave variables (including: box presence, box material, deposition cover, chronology, wood/lead coffin/stretch occurrence, sediment infiltration; see Table 2) were tested using the chi squared (χ²) test.
Tab. 1. Inhumation identification, type, chronology, skeletal API (Anatomical Preservation Index) and site acronym for the *Via XVII* necropolis.

ID	Type	Relative chronology	API	Acronym
I001	3A	5th-7th century	1-24%	CTT/LSF
I002	3A	5th-7th century	1-24%	CTT/LSF
I003	3A	5th-7th century	1-24%	CTT/LSF
I004	3B	5th-7th century	1-24%	CTT/LSF
I005	4A	4th-5th century	1-24%	CTT/LSF
I006	1A	4th-5th century	1-24%	CTT/LSF
I007	4A	4th-5th century	0%	CTT/LSF
I008	5B	4th-5th century	1-24%	CTT/LSF
I009	7B	5th-7th century	1-24%	CTT/LSF
I010	2A	4th-5th century	0%	CTT/LSF
I011	5A	4th-5th century	1-24%	CTT/LSF
I012	4A	4th-5th century	0%	CTT/LSF
I013	4D	4th-5th century	1-24%	CTT/LSF
I014	4E	Second half of 3rd-Early 4th cent.	1-24%	CTT/LSF
I015	7A	4th-5th century	1-24%	CTT/LSF
I016	Undetermined	4th-5th century	0%	CTT/LSF
I017	4B	4th-5th century	1-24%	CTT/LSF
I018	4B	4th-5th century	0%	CTT/LSF
I019	Undetermined	4th-5th century	0%	CTT/LSF
I020	Undetermined	Second half of 3rd-Early 4th cent.	1-24%	CTT/LSF
I021	6A	4th-5th century	0%	CTT/LSF
I022	5C	5th-7th century	1-24%	CTT/LSF
I023	Undetermined	4th-5th century	0%	TAVL
I024	1A	5th-7th century	0%	CTT/LSF
I025	5D	4th-5th century	1-24%	CTT/LSF
Fig. 2. Types and subtypes of Via XVII inhumations structures (Braga 2010).
Fig. 2. Tipo e subtipos das estruturas de inumação da Via XVII (Braga 2010).
3. RESULTS AND DISCUSSION

Twenty-five inhumation graves were excavated in Braga, in the new necropolis sector of *Via XVII* (see BRAGA 2010). Of these, sixteen graves (64%) preserved osteological material. The effect of grave structure variables (box presence, box material, sediment presence, chronology, coffin/stretcher presence or material, and cover presence or type) in skeletal preservation is analyzed in Table 3. All the results of chi squared tests are not statistically significant (p > 0.05). This suggests the different grave structural choices do not result in preservation frequencies that differ from the expected frequencies. Yet, this statistical interpretation is limited because of the small sample size. Some results are interesting despite the non-significant χ^2 results (Table 3). The frequency of graves with boxes that preserve skeletal material is much higher (71.4%) than the frequency of graves without boxes preserving bone (25%). The χ^2 result (3.144; p = 0.076) approaches significance. Box materials do not seem to play a role in preservation, since stone (66.7%) and brick or tegulae (73.3%) present similar frequencies.

Cover types are fairly similar, since stone

ID	Box presence	Box material	Cover	Coffin/stretcher	Sediment infiltration
I001	Yes	Brick/tegulae	Brick gable roof	None	Yes
I002	Yes	Brick/tegulae	Brick gable roof	Wood stretcher	Yes
I003	Yes	Brick/tegulae	Brick gable roof	None	Yes
I004	Yes	Brick/tegulae	Brick gable roof	None	Yes
I005	Yes	Brick/tegulae	Brick/tegulae	None	Yes
I006	No	None	None	None	Yes
I007	Yes	Brick/tegulae	Brick/tegulae	None	Yes
I008	Yes	Brick/tegulae	Brick gable roof	Wood stretcher	Yes
I009	Yes	Stone	Stone	Lead coffin	No
I010	No	None	Brick/tegulae	Wood stretcher	Yes
I011	Yes	Brick/tegulae	Brick/tegulae	None	No
I012	Yes	Brick/tegulae	Brick/tegulae	None	Yes
I013	Yes	Brick/tegulae	Brick gable roof	None	Yes
I014	Yes	Brick/tegulae	Brick/tegulae	Wood stretcher	Yes
I015	Yes	Stone	Stone	None	Yes
I016	Yes	Stone	Stone	None	Yes
I017	Yes	Stone	None	Wood coffin	Yes
I018	Yes	Brick/tegulae	Brick/tegulae	Wood stretcher	Yes
I019	Yes	Brick/tegulae	Brick/tegulae	None	Yes
I020	Yes	Brick/tegulae	Brick/tegulae	None	Yes
I021	Yes	Stone	Stone	None	Yes
I022	Yes	Stone	Brick/tegulae	Wood stretcher	No
I023	No	None	None	Wood coffin	Yes
I024	No	None	Brick/tegulae	Wood stretcher	Yes
I025	Yes	Brick/tegulae	Brick/tegulae	Wood stretcher	Yes
(50%) and brick/tegulae (50%) show equal result (curiously lower than the preservation in uncovered graves: 66.7%), yet gable roofs provide higher preservation (100%). Graves (without boxes or with disturbed/unsealed boxes) where bones were in contact with sediment show lower skeletal preservation (59.1%) than those void of sediment (100%). The use of coffins or stretchers does not seem to have an effect on bone preservation, since wood coffins (50%), wood stretchers (62.5%) and their absence (64.3%) present similar results.

Chronological differences are apparent due to the high preservation of older contexts (100%) between the second half of 3rd century to early 4th century) which contrast with only half the graves showing preservation in 4th/5th centuries (50%), while again more 5th to 7th century graves (85.7%) show skeletal preservation. There is no apparent reason for this variation. The chronological similarity between the phases suggest the variation may be random, supporting the statistical result of non-significance. The small number of graves from the first phase (second half of 3rd century to early 4th century) may also bias these results.

In Braga, soil diagenetic conditions promote bone dissolution. Soils are predominantly of granitic origin (COSTA et al. 1998; VIEIRA et al. 2011) and therefore usually acidic (with low pH) and low on nutrients (OSMAN 2013). Monthly average precipitation varies greatly throughout the year, from over 150 mm between October and February to below 80 mm between June and September in the years 1971 to 2000 (Figure 3). Temperatures are mild, with a yearly average of only 11.9 days with temperature below 0ºC and 29.3 days above 30ºC between 1971 and 2000 (according to the “Climate normals” for Braga: http://www.ipma.pt/en/oclima/normanis.clima/1971-2000/004/). The effects of such soil acidity and cycles of soil humidification and dehumidification (due to the flow of water or the rising level of phreatic waters in winter) are detrimental to bone preservation (GORDON & BUIKSTRA 1981; CONARD et al. 2008; CROW 2008; HUISMAN et al. 2017).

Bone diagenesis is complex, depending on multiple factors which influence the rate of decomposition. Microstructural changes to bone can occur after few months, depending on the environmental conditions of the deposition (BELL et al. 1996). These factors are mainly pH (soil acidity), groundwater flow, organic activity and temperature, all of them interdependent.

The presence of water by itself is not detrimental to bone preservation. Waterlogging can promote bone and even soft tissue preservation (FIEDLER et al. 2009; HUISMAN et al. 2017). Even neutral or moderately acidic waters only slightly affect preservation (at least in the first year: CHRISTENSEN & MYERS, 2011), because anaerobic environments prevent microbial attack (JANS et al. 2004; POKINES & BAKER 2014). However, cycles of wetting and drying facilitate the dissolution of bone, since water absorbs nutrients until reaching a saturated solution; if water is continuously re-

Tab. 3. Bone preservation according to six variables and respective chi squared (χ^2) test results.
Box presence
Yes
No
χ^2 = 3.144
Chronology
3rd-4th c.
4th-5th c.
5th-7th c.
χ^2 = 3.919
Coffin/stretch
Wood coffin
Lead coffin
Wood stretcher
No coffin/stretch
χ^2 = 0.741

% - Percentage of inhumations with preserved osteological material; k - Number of inhumation graves with preserved osteological material; n - Number of inhumation graves in sample; χ^2 - Chi squared test result; p - Probability value; c. - Century.
Bone diagenesis in Via XVII inhumations (Bracara Augusta): Identification of taphonomic and environmental factors in differential skeletal preservation

Lead coffins are typically associated with good bone preservation in inhumations (Gray 1922; Fleuriot & Giot 1977; Charlesworth 1978; Barber et al. 1990; Lucy 2005; Clapés Salmoral et al. 2016) or even cremations (Wheeler 1929). Waldron and colleagues (1979) have shown lead usually does not transfer from the soil to bones; yet, in situations with particularly high lead concentrations, such as inhumations in lead coffins, lead from the soil contaminates bones (Waldron 1981; Molleson et al. 1998). Lead then limits the action of bacteria, promoting bone preservation (Molleson et al. 1998). In this Braga sample, even the existence of a lead coffin did not prevent the dissolution of the majority of the inhumed skeleton. Lead coffins sometimes even promote soft tissue preservation (Celoria 1966; Zigarovich 2009), but when these coffins are not sealed, bone dissolution is likely to occur (Taylor 1993; Pokines & Baker 2014). This was the case in Via XVII, since the lead coffin never had a lid and the massive granite box around it allowed water flow, as testified by the slight accumulation of low caliber sediment and by the bones floated out of anatomical connection.

Bone preservation is related to pH in corrosive soils, diminishing as pH lowers. In alkaline soils other early taphonomic conditions are more relevant for bone dissolution (Nielsen-Marsh et al. 2007; Smith et al. 2007; Lopez-Costas et al. 2016). Hydroxyapatite recrystallization and decomposition is favored by low soil pH (Manifold 2012) and by the low nutrient levels in granitic soils, because organisms exploit the nutrients absent in the soil from bone apatite, where they abound (Crow 2008; Forbes 2008; Latham & Madonna 2014).

The conditions of deposition are also of relevance and modulate the most important factors (soil pH, water flow, organic activity and temperature). Skeletal preservation in the Via XVII necropolis is generally very poor, despite the conditions of deposition. There is an exceptional case (I009), of an unfilled lead coffin (accompanied by a wood coffin and set in box of very large granite blocks) which shows the best preserved skeletal evidence in the sample, with the only identifiable bones and teeth that subsisted excavation (Figure 4). Lead coffins are typically associated with good bone preservation in inhumations (Gray 1922; Fleuriot & Giot 1977; Charlesworth 1978; Barber et al. 1990; Lucy 2005; Clapés Salmoral et al. 2016) or even cremations (Wheeler 1929). Waldron and colleagues (1979) have shown lead usually does not transfer from the soil to bones; yet, in situations with particularly high lead concentrations, such as inhumations in lead coffins, lead from the soil contaminates bones (Waldron 1981; Molleson et al. 1998). Lead then limits the action of bacteria, promoting bone preservation (Molleson et al. 1998). In this Braga sample, even the existence of a lead coffin did not prevent the dissolution of the majority of the inhumed skeleton. Lead coffins sometimes even promote soft tissue preservation (Celoria 1966; Zigarovich 2009), but when these coffins are not sealed, bone dissolution is likely to occur (Taylor 1993; Pokines & Baker 2014). This was the case in Via XVII, since the lead coffin never had a lid and the massive granite box around it allowed water flow, as testified by the slight accumulation of low caliber sediment and by the bones floated out of anatomical connection.

The poor preservation of this sepulchral context was, however, differential. Some structures, like the lead coffin preserved skeletal evidence, while in other graves even the more resistant teeth (Hollund et al. 2015) were dissolved. According to the preservation frequencies of the necropolis of Via XVII (Table 3), the structures promoting skeletal preservation were box presence, the absence of sediment and the use of a gable roof cover. So, the
ability of structural variables to diminish water flow or the contact of bone with sediment seem essential for the preservation of (at least some) osteological material. To test that hypothesis, graves which structure presumably avoided skeletal contact with soil or limited water flow were compared with the other graves. So, the skeletal preservation frequency of graves without sediment (100%) and covered with a brick/tegulae gable roof was compared with that of disturbed/unsealed graves without gable roofs (43.8%). As seen in Table 4, the frequencies are significantly different ($\chi^2 = 7.910; p = 0.005$).

Tab. 4. Bone preservation according to limitations to water flow and contact with sediment and respective chi squared (χ^2) test results.

Sediment/Gable roof	%	k/n
Sediment absence or gable roof presence	100%	9/9
Sediment presence and no gable roof	43.8%	7/16

$\chi^2 = 7.910$ $p = 0.005^*$

% - Percentage of inhumations with preserved osteological material; k - Number of inhumation graves with preserved osteological material; n - Number of inhumation graves in sample; χ^2 - Chi squared test result; p - Probability value; * - statistical significance ($p < 0.01$).
It is interesting to note that box presence is very relevant, since all of the graves with gable roofs and sediment absence are boxed. Yet, only half (six in twelve) of the boxed inhumation graves that were disturbed or unsealed (allowing sediment contact with the skeleton) and did not have gable roofs preserved some bone fragments. Therefore, the relevance of box presence is relative. While sealed and undisturbed boxed graves preserve osteological material, if these graves allow sediment to infiltrate, only in the presence of gable roofs can there be bone preservation. All graves with gable roofs allowed sediment to seep into their boxes, which suggests these grave covers were able to promote bone preservation, probably through dissipation of water flow away from the inhumation remains, despite bone contact with acidic sediment.

4. CONCLUSIONS

Late Imperial and paleochristian inhumation burials from the Via XVII necropolis outside Bracara Augusta show very poor bone preservation overall. Some of these graves were void of any human remains, while others preserved small shards of human bone and -- in the particular instance of a lead coffin -- some tooth crowns. This was expected, given the acidity of granitic soils and the dry/wet cycles of this Northwest Portuguese site.

This work focused on understanding the predominant factors in the preservation of bone in those cases where human remains were identified (although not always recoverable). The presence of a box could not facilitate preservation by itself. Yet, if the box was either sealed (without sediment infiltration) or covered with a gable roof, preservation was higher than expected. This result corroborates soil acidity and wetting/drying cycles as the primary elements in complete bone decomposition. Therefore, structures avoiding contact with sediment and/or flowing water are essential for bone preservation.

The diagenetic conditions of human inhumations in Northwest Portugal are detrimental for research in biological anthropology and archaeozoology, especially in periods up to the Middle Ages. Further research on this region’s diagenetic conditions affecting bone preservation in other sites and on different periods is of great interest. Such knowledge on the regional rates of bone decomposition will allow for better approach to bioarchaeological field work and maximize the potential of the laboratorial analysis of the remains.

ACKNOWLEDGMENTS

This project has the financial support of the Project Lab2PT – Landscapes, Heritage and Territory Laboratory – AUR/04509 and FCT through national funds and when applicable of the FEDER co-financing, in the aim of the new partnership agreement PT2020 and COMPETE2020 – POCI 01 0145 FEDER 007528.

LMM was granted a research scholarship by the Unit of Archaeology of the University of Minho, Portugal (reference UMINHO-UAUM/Comp. Nº 7361/2013 (Valença) / 2013). CB was granted an individual PhD scholarship by the Fundação para a Ciência e a Tecnologia (Foundation for Science and Technology), Portugal (reference SFRH / BD / 98413 / 2013).

REFERENCES

BARBER, B., BOWSHER, D. & WHITTAKER, K. 1990. Recent Excavations of a Cemetery of ‘Londinium’. Britannia, 21: 1–12. https://doi.org/10.2307/526287.

BELL, L.S., SKINNER, M.F. & JONES, S.J. 1996. The speed of post mortem change to the human skeleton and its taphonomic significance. Forensic Science International, 52: 129–140. https://doi.org/10.1016/0379-0738(96)01984-6.

BELLO, S. & ANDREWS, P. 2006. The intrinsic pattern of preservation of human skeletons and its influence on the interpretation of funerary behaviours. In: GOWLAND, R. & KNÜSEL, C. (eds.), Social Archaeology of Funerary Remains, Oxford, Oxford: 1–13.

BRAGA, C.M.V.B. 2010. Rituais Funerários Em Bracara Augusta: O Novo Núcleo de Necrópole Da Via XVII. Tese de Mestrado, Universidade do Minho.

CELORIA, F. 1966. Burials and Archaeology: A Survey of Attitudes to Research. Folklore, 77: 161–183.

CHARLESWORTH, D. 1978. Roman Carlisle. Archaeological Journal, 135: 115–137. https://doi.org/10.1080/00665983.1978.11077646.

CHRISTENSEN, A.M. & MYERS, S.W. 2011. Macroscopic observations of the effects of varying fresh water pH on bone. Journal of Forensic Sciences, 56: 475–479. https://doi.org/10.1111/j.1556-4029.2010.01646.x.

CLÁPES SALMORAL, R., CASTILLO PÉREZ DE SILES, F., TEJEDOR GARCÍA, L. & RUBIO-VALVERDE, M. 2016. El sarcófago Romano de los Jardines de la Agricultura (Córdoba): Análisis arqueológico y antropológico. ROMVLA, 15: 255–282.

CONARD, N.J., WALKER, S.J. & KANDEL, A.W. 2008. How heating and cooling and wetting and drying can destroy dense faunal elements and lead to differential preservation. 266: 236–245. https://doi.org/10.1016/j.palaeo.2008.03.036.

COSTA, J.C., AGUAR, C., CAPELO, J.J.H., LOUSA, M. & NETO, C. 1998. Biogeografia de Portugal Continental. Quercetea, 1: 5–56. https://doi.org/ctealiks-article-id-9981809.

CROW, P. 2008. Mineral weathering in forest soils and its relevance to the preservation of the buried archaeological resource. Journal of Archaeological Science, 35: 2262–2273. https://doi.org/10.1016/j.jas.2008.02.008.

FIEDLER, S., BUEGGER, F., KLAUBERT, B., ZIPP, K., DORR-MAHN, R., WITTEYER, M., ZAREI, M. & GRAW, M. 2009. Adipocere withstands 1600 years of fluctuating groundwater levels in soil. Journal of Archaeological Science, 36: 1328–1333. https://doi.org/10.1016/j.jas.2009.01.017.
FLEURIOT, L. & GIOT, P.-R. 1977. Early Brittany. Antiquity, 51: 106–116.

FORBES, S.L. 2008. Potential Determinants of Postmortem and Postburial Interval of Buried Remains. In: TIBBETT, M. & CARTER, D. O. (eds.), Soil Analysis in Forensic Taphonomy: Chemical and Biological Effects of Buried Human Remains, New York, CRC Press: 225–246.

GORDON, C.C. & BURSTRA, J.E. 1981. Soil pH, Bone Preservation, and Sampling Bias at Mortuary Sites. American Antiquity, 46: 566–571. https://doi.org/10.2307/280601.

GRAY, H.S.G. 1922. Roman Coffins discovered at Keynsham, 1922. The Antiquaries Journal, 2: 371–375. https://doi.org/10.1017/S0003581500003462.

HEDGES, R.E.M. & MILLARD, A.R. 1995. Bones and Groundwater: Towards the Modelling of Diagenetic Processes. Journal of Archaeological Science, 22: 155–164. https://doi.org/10.1016/0305-4403(95)00017-D.

HOLLAND, H.I., ARTS, N., JANS, M.M.E. & KARS, H. 2015. Are Teeth Better? Histological Characterization of Diagenesis in Archaeological Bone-Tooth Pairs and a Discussion of the Consequences for Archaeometric Sample Selection and Analyses. International Journal of Osteoarchaeology, 25: 901–911. https://doi.org/10.1002/oa.2376.

HUISMAN, H., ISMAIL-MEYER, K., SAGEDET, B.M. & JOOSTEN, I. 2017. Micromorphological indicators for degradation processes in archaeological bone from temperate European wetland sites. Journal of Archaeological Science, 85: 13–29. https://doi.org/10.1016/j.jas.2017.06.016.

JANS, M.M.E., NIELSEN-MARSH, C.M., SMITH, C.I., COLLINS, M.J. & KARS, H. 2004. Characterisation of microbial attack on archaeological bone. Journal of Archaeological Science, 31: 87–95. https://doi.org/10.1016/j.jas.2003.07.007.

LATHAM, K.E. & MADONNA, M.E. 2014. DNA Survivability in Skeletal Remains. In: POKINES, J. T. & SYMES, S. A. (eds.), Manual of Forensic Taphonomy, New York, CRC Press: 403–425.

LOPEZ-COSTAS, O., LANTES-SUAREZ, O. & MARTINEZ CORTIZAS, A. 2016. Chemical compositional changes in archaeological human bones due to diagenesis: Type of bone vs soil environment. Journal of Archaeological Science, 67: 43–51. https://doi.org/10.1016/j.jas.2016.02.001.

LUCY, S. 2005. The Archaeology of age. In: DIAZ-ANDREU, M., LUCY, S., BABIC, S. & EDWARDS, D. N. (eds.), Archaeology of Identity: Approaches to Gender, Age, Status, Ethnicity and Religion, Abingdon, Routledge: 43–66.

MANIFOLD, B.M. 2012. Intrinsic and Extrinsic Factors Involved in the Preservation of Non-Adult Skeletal Remains in Archaeology and Forensic Science. Bulletin of the International Association for Paleodontology, 6: 51–69.

MARTINS, M., FONTES, L., BRAGA, C., BRAGA, J., MAGALHÃES, F. & SENDAS, J. 2010. Salvamento de Bracara Augusta. Quaderno dos CTT (BRA 08-09 CTT). Relatório Final. Trabalhos Arqueológicos da U. A. U. M. / MEMORIAS, nº 1, Braga, Unidade de Arqueologia da Universidade do Minho. https://repositorium.sdum.uminho.pt/handle/1822/10141.

MAYS, S. 1998. The Archaeology of Human Bones. London, Routledge.

MOLLESON, T.I., WILLIAMS, C.T., CRESSEY, G. & DIN, V.K. 1998. Radiographically opaque bones from lead-lined coffins at Christ Church, Spitalfields, London - an extreme example of bone diagenesis. Bulletin de la Societe Geologique de France, 169: 425–432.

Nielsen-Marsh, C.M. & Hedges, R.E. 2000. Patterns of Diagenesis in Bone I: The Effects of Site Environment. Journal of Archaeological Science, 27: 1139–1150. https://doi.org/10.1016/j.jas.1999.0537.

Nielsen-Marsh, C.M., Smith, C.I., Jans, M.M.E., Nord, A., Kars, H. & Collins, M.J. 2007. Bone diagenesis in the European Holocene II: taphonomic and environmental considerations. Journal of Archaeological Science, 34: 1523–1531. https://doi.org/10.1016/j.jas.2006.11.012.

Osman, K.T. 2013. Soils: Principles, Properties and Management. London, Springer. https://doi.org/10.1007/978-94-007-5663-2.

Pokies, J.T. & Baker, J.E. 2014. Effects of Burial Environment on Osseous Remains. In: Pokines, J.T. & Symes, S.A. (eds.), Manual of Forensic Taphonomy, New York, CRC Press: 73–114.

Smith, C.I., Nielsen-Marsh, C.M., Jans, M.M.E. & Collins, M.J. 2007. Bone diagenesis in the European Holocene I: patterns and mechanisms. Journal of Archaeological Science, 34: 1485–1493. https://doi.org/10.1016/j.jas.2006.11.006.

Surabian, D. 2012. Preservation of Buried Human Remains in Soil. Tolland, U.S. Department of Agriculture.

Taylor, A. 1993. A Roman Lead Coffin with Pipeclay Figureins from Arrington, Cambridgeshire. Britannia, 24: 191–225.

Turner-Walker, G. 2008. The Chemical and Microbial Degradation of Bones and Teeth. In: PINHASI, R. & MAYS, S. (eds.), Advances in Human Palaeopathology, Chichester, John Wiley & Sons, Ltd.: 3–29. https://doi.org/10.1002/9780470724187.ch1.

Vieira, A., Bento Goncalves, A. & Ferreira Leite, F. 2011. Geographical characterization. In: Bento Goncalves, A. & Vieira, A. (eds.), Field Trip Guidebook of the 3rd International Meeting of Fire Effects on Soil Properties, Guimarães, Universidade do Minho: 11–16.

Waldron, H.A. 1981. Postmortem absorption of lead by the skeleton. American Journal of Physical Anthropology, 55: 395–398. https://doi.org/10.1002/ajpa.1330550313.

Waldron, H.A., Khiera, A., Walker, G., Wibberley, G. & Green, C.J.S. 1979. Lead concentrations in bones and soil. Journal of Archaeological Science, 6: 295–298. https://doi.org/10.1016/0305-4403(79)90008-6.

Wheeler, R.M. 1929. A Roman pipe-burial from Caerleon, Monmouthshire. The Antiquaries Journal, IX: 1–7.

Zigarovich, J. 2009. Preserved Remains: Embalming Practices in Eighteenth-Century England. Eighteenth-Century Life, 33: 65–104. https://doi.org/10.1215/00982601-2009-004.