Silicon flow from root to shoot in pepper: a comprehensive in silico analysis reveals a potential linkage between gene expression and hormone signaling that stimulates plant growth and metabolism

Fernando Carlos Gómez-Merino¹,*, Libia Iris Trejo-Téllez¹,*, Atonaltzin García-Jiménez⁴, Hugo Fernando Escobar-Sepúlveda³ and Sara Monzerrat Ramírez-Olvera²

¹ Department of Soil Science, Laboratory of Plant Nutrition, College of Postgraduates in Agricultural Sciences, Texcoco, State of Mexico, Mexico
² Department of Plant Physiology, College of Postgraduates in Agricultural Sciences, Texcoco, State of Mexico, Mexico
³ Institute of Biological Sciences, University of Talca, Talca, Maule, Chile
* These authors contributed equally to this work.

ABSTRACT

Background: Silicon (Si) is categorized as a quasi-essential element for plants thanks to the benefits on growth, development and metabolism in a hormetic manner. Si uptake is cooperatively mediated by Lsi1 and Lsi2. Nevertheless, Lsi channels have not yet been identified and characterized in pepper (Capsicum annuum), while genes involved in major physiological processes in pepper are Si-regulated. Furthermore, Si and phytohormones may act together in regulating plant growth, metabolism and tolerance against stress. Our aim was to identify potential synergies between Si and phytohormones stimulating growth and metabolism in pepper, based on in silico data.

Methods: We established a hydroponic system to test the effect of Si (0, 60, 125 and 250 mg L⁻¹) on the concentrations of this element in different pepper plant tissues. We also performed an in silico analysis of putative Lsi genes from pepper and other species, including tomato (Solanum lycopersicum), potato (Solanum tuberosum) and Arabidopsis thaliana, to look for cis-acting elements responsive to phytohormones in their promoter regions. With the Lsi1 and Lsi2 protein sequences from various plant species, we performed a phylogenetic analysis. Taking into consideration the Lsi genes retrieved from tomato, potato and Arabidopsis, an expression profiling analysis in different plant tissues was carried out. Expression of Si-regulated genes was also analyzed in response to phytohormones and different plant tissues and developmental stages in Arabidopsis.

Results: Si concentrations in plant tissues exhibited the following gradient: roots > stems > leaves. We were able to identify 16 Lsi1 and three Lsi2 genes in silico in the pepper genome, while putative Lsi homologs were also found in other plant species. They were mainly expressed in root tissues in the genomes analyzed. Both Lsi and Si-regulated genes displayed cis-acting elements responsive to diverse phytohormones. In Arabidopsis, Si-regulated genes were transcriptionally active in...
most tissues analyzed, though at different expressed levels. From the set of
Si-responsive genes, the NOCS2 gene was highly expressed in germinated seeds,
whereas RABH1B, and RBES-1A, were moderately expressed in developed flowers.
All genes analyzed showed responsiveness to phytohormones and phytohormone
precursors.

Conclusion: Pepper root cells are capable of absorbing Si, but small amounts of
this element are transported to the upper parts of the plant. We could identify
putative Si influx (Lsi1) and efflux (Lsi2) channels that potentially participate in
the absorption and transport of Si, since they are mainly expressed in roots. Both
Lsi and Si-regulated genes exhibit *cis*-regulatory elements in their promoter regions,
which are involved in phytohormone responses, pointing to a potential connection
among Si, phytohormones, plant growth, and other vital physiological processes
triggered by Si in pepper.

Subjects Agricultural Science, Bioinformatics, Genomics, Molecular Biology, Plant Science

Keywords Solanaceae, *Capsicum annuum*, in silico analysis, Gene expression, Beneficial elements, Silicon, Hormesis

INTRODUCTION

Silicon (Si), the 14th element in the periodic table, is the seventh most common element in
the universe and the second most abundant element on Earth (making up 28–32%
of its mass), while silicon dioxide (SiO₂) is the most abundant compound in the Earth’s crust
(Krebs, 2006). However, plants cannot utilize Si in the form of SiO₂ (Zargar et al., 2019), with
silicic acid or mono silicic acid (Si(OH)₄ or H₄SiO₄) being the Si forms that plants can
take up (Mitani, Jian & Iwashita, 2005; Sahebi et al., 2015; Zargar et al., 2019). After absorbed,
Si is transported and deposited mainly in the cell apoplast, since Si transport and distribution
follows that of water (Handreck & Jones, 1968), thus potentially influencing the physical
and chemical properties of the apoplast (Rogalla & Römheld, 2002; Coskun et al., 2019a).

Silicon concentrations in plant tissues exhibit a large variability within and among
plant species, which may fluctuate from 0.1% to 10% of the plant biomass on a dry
matter basis, depending primarily on the species (Epstein, 1994; Epstein, 1999; Hodson
et al., 2005) and secondly on soil properties as a source of Si (Coskun et al., 2019a). Among
angiosperms, monocots are the group of plants displaying the highest Si concentrations
and dicots are generally less effective at absorbing and transporting Si within their cells and
tissues (Guntzer, Keller & Meunier, 2012).

It is worth mentioning that seven out of the ten most produced crops in the world
(ranked by quantity) are Si accumulators (Guntzer, Keller & Meunier, 2012) and most of
them positively respond to Si applications (Gómez-Merino & Trejo-Téllez, 2018). These
crops include rice (*Oryza sativa*; with 4.18% Si on a dry matter basis), wheat (*Triticum
aestivum*; 2.45% Si), barley (*Hordeum vulgare*; 1.82% Si), sugarcane (*Saccharum* spp.;
1.60% Si), soybean (*Glycine max*; 1.40% Si), and sugarbeet (*Beta vulgaris* subsp. *vulgaris*;
1.26% Si) (Elsokkary, 2018; Guntzer, Keller & Meunier, 2012; Artyszak, Gozdowski
& Kucińska, 2019). Nevertheless, the mechanisms underlying the acquisition and use of Si
within plant cells are not yet well understood. Consequently, the role of Si in physiological, biochemical and molecular processes of plants deserves further attention.

Silicon acquisition and transport within the plant cells are carried out by various influx (Lsi1) and efflux (Lsi2) channels, which are encoded by specific genes active in different cell compartments (Elsokkary, 2018; Kaur & Greger, 2019). The presence and activity of Lsi1 and Lsi2 channels determine the capacity of plants to uptake and transport Si (Ma & Yamaji, 2015; Manivannan & Ahn, 2017). In tomato both types of Si channels have been identified (Ma & Yamaji, 2015). However, tomato exhibits no tendency towards saturation kinetics in total Si uptake, suggesting a lack of the active component of Si uptake in the cortex of this species (Nikolic et al., 2007). Since only a very small part (less than 10%) of total root Si can be found in the symplast, tomato is considered a Si excluder species (Heine, Tikum & Horst, 2005). Indeed, a recent study demonstrated that the tomato influx channel SILsi1 was constitutively expressed and enzymatically active in the roots, whereas the two SILsi2-like proteins found did not show efflux transport activity for Si (Sun et al., 2020). In pepper, Si has been proved to enhance shoot length and diameter, root length, number of roots, fresh and dry biomass weight, net photosynthesis, stomatal conductance, transpiration rate, antioxidant activity and stomatal opening, stimulating the accumulation of 40 proteins involved in several metabolic processes (Manivannan et al., 2016). Coincidentally, we also found improved growth and metabolism in pepper plants treated with Si (Trejo-Téllez et al., 2020). Nonetheless, Lsi1 and Lsi2 homologs have not been reported in pepper so far. Whether those influx and efflux channels are widespread in other crop plants (including chilies and peppers) and how these channels interact with other genes and proteins remain open questions.

In diverse horticultural crops, the positive effects of Si as a biostimulant have been described (Savvas & Ntatsi, 2015), although the mechanisms through which this element can stimulate metabolic changes in plants are not fully understood (Luyckx et al., 2017a; Muneer et al., 2017; Pontigo et al., 2017). In particular, the effect of Si on phytohormone biosynthesis and degradation has been poorly explored (Luyckx et al., 2017a), though there is evidence that Si may increase cytokinin biosynthesis thus delaying senescence (Markovich et al., 2017). As well, a synergic interaction between Si and gibberellic acid has been found (Khan et al., 2020). In the present work, we grow pepper plants in the presence of different levels of Si in order to analyse the concentrations of this element in roots, stems and leaves. Moreover, we explored the pepper genome in order to identify putative Si channels (Lsi) potentially involved in Si uptake and transport. The corresponding promoter regions of the putative Lsi genes were also identified and characterized in silico, while all relevant cis-acting elements and putative motifs responsive to phytohormones were determined to prove the role of these molecules on the growth stimulation triggered by Si. As well, we looked for Lsi homologs in other plant species and performed a phylogenetic analysis. Moreover, taking into consideration 40 proteins differentially expressed in response to Si in pepper previously reported by Manivannan et al. (2016), we performed a more in-depth analysis of the promoter regions of the corresponding genes. Since we were not able to find any platforms or databases containing information on pepper gene expression profiles, we took advantage of the eFP Browser.
tool from the Bio-Analytic Resource (http://bar.utoronto.ca/) (Winter et al., 2007; Waese & Provart, 2016; Waese et al., 2017) to explore expression data of homolog Lsi genes from tomato (http://bar.utoronto.ca/efp_tomato/cgi-bin/efpWeb.cgi) and potato (http://bar.utoronto.ca/efp_potato/cgi-bin/efpWeb.cgi), two phylogenetically closely related species to pepper, all of them belonging to the family Solanaceae. We also analyzed data on expression profiles of Lsi and Si-regulated homolog genes in Arabidopsis thaliana in different tissues, developmental stages and phytohormones through the eFP Brower (http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi) and the Genevestigator platform (https://genevestigator.com/gv/index.jsp) (Hruz et al., 2008; Zimmermann et al., 2014). With this, we aimed at seeking cis-acting elements and motifs responsive to phytohormones, in order to elucidate a possible connection between the enhanced growth stimulated by Si and plant growth regulators, which may potentially affect other vital physiological processes such as water relations, photosynthetic gas exchange, carboxylation, and nutrient balance, among others.

MATERIALS AND METHODS

Plant material, growing conditions and experimental data analyses

The study was carried out in a greenhouse under the experimental conditions previously described (Trejo-Téllez et al., 2020) and summarized herein for the reader’s convenience. Briefly, thirty-d-old pepper (Capsicum annuum) cv. Mysterio seedlings were transplanted into a hydroponic system using the Steiner nutrient solution (Steiner, 1984) at 20% of the original strength (pH 5.5), which was supplemented with micronutrients. Plants were maintained in those conditions for seven days as an adaptation period. After that, the nutrient solution was completely replaced and treatments were applied in the renewed nutrient solution. During the whole experiment, the nutrient solution was aerated every 2 h for 15 min, and totally replaced every seven days. The Si treatments consisted of 60, 125 and 250 mg L$^{-1}$ Si (calcium silicate, CaSiO$_3$), while the control treatment was the Steiner nutrient solution without adding Si.

A completely randomized experimental design was used, where a single plant, with 12 replicates per treatment, represented the experimental unit. Once normality and homogeneity of the variances were proven, a one-way analysis of variance (ANOVA) was performed. Means were compared using the Duncan test with $\alpha = 0.05$. All analyses were conducted using the SAS software (SAS, 2011).

Measurements of Si concentrations in leaves, stems and roots of pepper plants

The concentrations of silicon (Si) were determined in the dry biomass of leaves, stems, and roots. A wet acid digestion was used with a mixture of perchloric and nitric acids (Alcántar & Sandoval, 1999). Subsequently, samples were analyzed with an inductively coupled plasma optical emission spectrometer (Agilent 725 ICP-OES; Mulgrave, V1, Australia).
Identification of Si channels and Si-regulated genes in pepper

In order to identify putative Si channels in pepper, we used the protein sequences of the silicon channels Lsi1 (Ma et al., 2006) and Lsi2 (Ma et al., 2007) identified in rice, as well as Lsi1 and Lsi2 homologs reported in strawberry (Fragaria x ananassa) (Ouellette et al., 2017). The multiple alignments for the comparison of protein sequences found were done using the Protein BLAST program from NCBI (https://blast.ncbi.nlm.nih.gov/Blast.cgi) (Altschul et al., 1990) and UniProtKB (The UniProt Consortium, 2019), with all the default parameters already set. Moreover, taking into consideration the set of Si-regulated genes previously reported by Manivannan et al. (2016), we further searched for those genes and analyzed their promoter regions and expression profiles in silico in different plant species. We listed the Lsi proteins identified in silico in the pepper genome, and complemented the information on Si-regulated genes. Detailed data and information regarding these analyses are enclosed as File SF1.

Phylogenesis and domain analyses of Lsi channels

With the protein sequences of pepper (Capsicum annuum) Lsi channels, henceforth denoted as CaLsi1 and CaLsi2, and their homologs identified in other plant species, we performed a phylogenetic analysis. To this end, first we performed a multiple sequence alignment by using the Clustal Omega software from EMBL-EBI (ebi.ac.uk/Tools/msa/clustalo) (Sievers et al., 2011). Then, the identification and corresponding mapping of the conserved domains found in the CaLsi1 and CaLsi2 proteins were carried out by using the HMMER3.2.1 software (Potter et al., 2018).

Acquisition of promoter sequences

The lists of Lsi and Si-regulated genes were necessary and sufficient to obtain their respective promoters. These nucleotide sequences were downloaded from NCBI through the Gene database (www.ncbi.nlm.nih.gov/gene/), considering 2,000 base pairs (bp) upstream of the coding region. Promoter sequences of the Lsi genes are listed in File SF2, while those of the Si-regulated genes are included in File SF3. In addition, the promoter sequences of genes encompassing an external group are included in File SF4. This external group of genes was considered in our promoter analysis in order to validate our data for each species analyzed, since they encode proteins other than Lsi channels, and are mainly expressed in the shoot system (with lower or no transcriptional activity in the root system as compared to the Lsi genes).

Promoter analysis

Taking into consideration the nucleotide sequences of Si channels, Si-regulated genes, and the set of genes considered as an external group, the corresponding cis-acting elements in each promoter were revealed through the PlantCARE database (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/) (Lescot et al., 2002). According to the differential gene expression reported by Manivannan et al. (2016),
the sequences were divided into induced and repressed genes. Since we quantified the frequency of the motif sequences, their distribution in the promoter was not considered as a parameter in our analysis.

Analysis of gene expression

Expression profiles of *Lsi* homolog genes in tomato, potato and *Arabidopsis* in different tissues were retrieved from the eFP Browser tool from the Bio-Analytic Resource (http://bar.utoronto.ca/affydb/BAR_instructions.html) (Waese & Provart, 2016; Waese et al., 2017). Furthermore, for *Arabidopsis*, expression data on *Lsi* homolog genes according to developmental stages and environmental stimuli under the “Hormone” section were analyzed through the Genevestigator platform (https://genevestigator.com/) (Hruz et al., 2008; Zimmermann et al., 2014). It is worth mentioning that for this purpose, only data from *Arabidopsis thaliana* (as a eudicot) were taken into consideration, since no information on pepper could be retrieved from our search.

RESULTS

Silicon concentrations in leaves, stems and roots

In roots, the average Si concentrations in Si-treated plants was nearly 130 mg kg\(^{-1}\) Si on a dry basis, while stems had nearly 37 mg kg\(^{-1}\) Si and leaves approximately 31 mg kg\(^{-1}\) Si. In general, in control plants Si concentrations fluctuated from 18 to 35 mg kg\(^{-1}\) Si (Fig. 1). In roots, Si concentrations were significantly higher in plants supplied with Si; as the Si concentration increased, the Si levels in the roots also increased. In stems, no significant differences were observed among treatments, while in leaves, higher concentrations were recorded in Si-treated plants as compared to the control. Detailed data on the corresponding analyses are enclosed as SF1 Raw Data (for roots, stems and leaves).
Identification of putative Si influx and efflux channels

We have previously demonstrated that Si induces hormetic dose-response effects on growth and metabolism in pepper plants during the early developmental stage (Trejo-Téllez et al., 2020), which coincides with other findings previously reported for this species (Manivannan et al., 2016). Hence, in this study we aimed to determine if this species was indeed a Si-competent one following the recent characterization of the properties of Si channels. Based on genomic data, we were able to conclude that pepper contains both influx (Lsi1) and efflux (Lsi2) channels for Si uptake and transport.

The protein sequences were obtained by using the Protein BLAST program from NCBI (blast.ncbi.nlm.nih.gov/Blast.cgi) and UniProtKB (The UniProt Consortium, 2019) taking into consideration Lsi proteins exhibiting the highest homology to the strawberry FaNIP2-1 and FaLsi2 genes previously reported (Ouellette et al., 2017). As a result, the amino acid sequences of 16 Lsi1 influx channels were obtained: CaLsi1.1, CaLsi1.2, CaLsi1.3, CaLsi1.4, CaLsi1.5, CaLsi1.6, CaLsi1.7, CaLsi1.8, CaLsi1.9, CaLsi1.10, CaLsi1.11, CaLsi1.12, CaLsi1.13, CaLsi1.14, CaLsi1.15 and CaLsi1.16. As well, we were able to retrieve three Lsi2 efflux channels from these platforms: CaLsi2.1a, CaLsi2.1b and CaLsi2.3 (Table 1). From the sequences of each one of the aforementioned proteins, the corresponding Lsi homologs were obtained for tomato, potato, Arabidopsis, maize (Zea mays), rice and sorghum (Sorghum bicolor) (Table 1). Selection criterion for each homolog protein was defined taking into consideration two variables: (1) the Percentage of Query Coverage (%QC) and the Percentage of Maximum Identity (%ID). For instance, in the case of CaLsi1 we selected the %QC and %ID equal or higher than 90% (%QC >= 90; %ID >= 90) for tomato and potato; in Arabidopsis, %QC = 100 and %ID >= 70; in maize, %QC >= 98 and %ID >= 79.8; in rice, %QC = 100 and %ID >= 70; in sorghum, % QC >= 80 and %ID >= 70. In the case of CaLsi2, we obtained %QC >= 83 and %ID >= 75 for potato; in tomato, %QC >= 83 and %ID >= 74; in Arabidopsis, %QC >= 99 and %ID >= 68; in maize, rice and sorghum, %QC >= 99 and %ID >= 60. In our phylogenetic analysis, apart from the 16 CaLsi1 and three CaLsi2 proteins, we included 20 homolog sequences for CaLsi1 and 30 homolog sequences for CaLsi2, which were retrieved from the tomato, potato, Arabidopsis, maize, rice and sorghum proteomes. File SF1 comprises the full list of Lsi channels we found in our search.

Phylogenetic analysis and domain organization of Lsi channels

Once we obtained the protein sequences of CaLsi1, CaLsi2 and their homologs, we performed a phylogenetic analysis with all sequences listed in Table 1. To this end, we first performed a multiple sequence alignment by using the Clustal Omega software from EMBL-EBI (ebi.ac.uk/Tools/msa/clustalo) (Sievers et al., 2011). The corresponding results from this analysis are shown in Fig. 2. The identification and corresponding mapping of the conserved domains found in the CaLsi1 and CaLsi2 proteins were carried out by using the HMMER3.2.1 software (Potter et al., 2018). All CaLsi1 sequences and their homologs contain a Major Intrinsic Protein (MIP) domain and six Transmembrane (TM) domains, with the exception of CaLsi1.14 that contains only five TM domains. Furthermore, in CaLsi1, we could detect the presence of a conserved aromatic/arginine
Table 1 List of putative Low silicon influx (Lsi1) and efflux (Lsi2) channels identified in silico in the pepper genome and their homologs in potato, tomato, *Arabidopsis*, maize, rice and sorghum.

Gene name	Gene locus	GenBank/UniProtKB accession	Protein length (aa)	Molecular mass (kDa)	cDNA/EST/mRNA
CaLsi1.1	XP_016559617.1	XM_016704131.1/A0A2G3A7U2	274	28.95	LOC107859207
CaLsi1.2	XP_016570571.1	XM_016715085.1/A0A1U8GZG8	284	30.17	LOC107868397
CaLsi1.3	PHT61911	PHT61911.1/A0A2G2XX71	283	30.11	T459_34224
CaLsi1.4	XP_016556948.1	XM_016701462.1/A0A1U8FKV2	251	26.92	LOC107856450
CaLsi1.5	XP_016556947.1	XM_016701461.1/A0A1U8FC86	271	29.06	LOC107856450
CaLsi1.6	PHT88450.1	PHT88450.1/A0A2G3A2M0	305	31.37	LOC107861995
CaLsi1.7	XP_016562905.1	XM_016707419.1/A0A1U8FVN4	305	31.43	LOC107861995
CaLsi1.8	PHT79955.1	PHT79955.1/A0A2G2ZDK0	290	31.63	LOC107860944
CaLsi1.9	XP_016561864.1	XM_016706378.1/A0A1U8G1K6	280	29.76	LOC107856450
CaLsi1.10	XP_016556947.1	XM_016701461.1/A0A1U8FC86	271	29.06	LOC107856450
CaLsi1.11	PHT88450.1	PHT88450.1/A0A2G3A2M0	305	31.37	LOC107861995
CaLsi1.12	XP_016562905.1	XM_016707419.1/A0A1U8FVN4	305	31.43	LOC107861995
CaLsi1.13	PHT79955.1	PHT79955.1/A0A2G2ZDK0	290	31.63	LOC107860944
CaLsi1.14	XP_016561864.1	XM_016706378.1/A0A1U8G1K6	280	29.76	LOC107856450

Gómez-Merino et al. (2020), *PeerJ*, DOI 10.7717/peerj.10053
Selective filter and two Asn-Pro-Ala (NPA) motifs, with the exception CaLsi1.14 that only contains a single NPA (Fig. 3). These two motifs play a critical role in the selectivity of Si by the Lsi channels (Deshmukh et al., 2015; Vatansever et al., 2017).

Nevertheless, we could observe that not one of the CaLsi1 sequences analyzed contained the (G/A)SGR motif, which is present in the Lsi1 sequences of high and moderate Si accumulators. Therefore, the species we analyze herein can be categorized as low Si accumulators. After the protein sequences were aligned and a detailed phylogenetic analysis was carried out, we could detect two major clusters based on the amino acid

Table 1 (continued)

Gene name*	Gene locus	GenBank/UniProtKB accession	Protein length (aa)	Molecular mass (kDa)	cDNA/EST/mRNA
SlLsi2	XP_010317628.1	XM_010319326.3/A0A3Q7FEL4	516	56.3	LOC10259123
SlLsi2x1	XP_004240725.1	XM_004240677.4/A0A3Q7GUH1	528	57.33	LOC10163323
SlLsi2x2	XP_025887220.1	XM_026031435.1	450	50.98	LOC10163323
SlLsi2x2	XP_025887219.1	XM_026031434.1	466	51.11	LOC10163323
AtUPP1	CAA0156383.1	CACSHJ010000087.1	502	54.65	C24_LOCUS167
AtUPP2	VYS44749.1	CACSRJ010000104.1/A0A654E638	499	54.48	AN1_LOCUS259
AtDIS	NP_001320653.1	NM_001331329.1/A0A384QKY8	502	54.72	AT1G02260
ZmUp1	NP_001151517.1	NM_001158045.1/B6U1B5	556	60.20	LOC100285151
ZmCTFP1	ACG43196.1	EU971078.1/B6U1G3	556	60.21	EU971078.1
ZmUp2	NP_001147885.1	NM_001154413.2/B6SS18	574	61.39	LOC100281495
ZmARSB1	PWZ55837.1	NCVQ0100000.1/A0A317YAZ4	574	61.41	Zm00014a_001976
ZmUp3	XP_008679680.1	XM_008681458.2/B8A307	535	58.04	XM_008681458
ZmCTFP2	ACG28034.1	EU955916.1/B6ST51	575	61.46	EU955916.1
ZmARSB2	PWZ22675.1	NCVQ01000016.1/A0A3L6ENZ5	550	59.09	Zm00014a_004231
ZmLsi2x2	XP_008644817.1	XM_008646595.3/A0A1D6GPX1	550	59.11	LOC10362193
ZmLsi2x1	XP_008644816.1	XM_008646594.2	653	70.77	LOC10362193
ZmARSB3	PWZ25127.1	NCVQ01000005.1/A0A3L6FE9	527	56.19	Zm00014a_028813
ZmATSB	NP_001148124.1	NM_001154652.2/B6SY85	527	56.23	LOC100281732
OsLsi2x1	XP_015630657.1	XM_015775171.2/Q10RS7	557	60.24	LOC4331617
OsLsi2x2	XP_015630663.1	XM_015775177.2/Q10RS6	527	57.11	LOC4331617
OsLsi2x2	XP_015614851.1	XM_015759365.2/A0A0P0XU1	567	61.36	LOC4348760
OsLsi2x3	XP_015626922.1	XM_015771436.2/Q6K6Z6	530	56.78	LOC4331184
OsHYP3	KAB8089565.1	CM012942.1	530	56.8	EE612_014533
OsHYP4	EEC74268.1	CM000127.1/B8AF47	485	51.78	OsL_09493
ShARS1x1	XP_021307248.1	XM_021451573.1	556	60.24	LOC110431862
ShARS1x2	XP_021306519.1	XM_021450844.1	564	60.84	LOC8071382
ShARS1x2	XP_021307254.1	XM_021451579.1	535	58.07	LOC110431862
ShARS1x3	XP_002453063.1	XM_002453018.2/C5XW09	494	52.83	LOC8059699

Note: Data were retrieved from NCBI and UniProtKB. *For each Lsi gene name, we considered the scientific name of pepper: *Capsicum annuum* (Ca); potato: *Solanum tuberosum* (St); tomato: *Solanum lycopersicum* (Sl); Arabidopsis: *Arabidopsis thaliana* (At); maize: *Zea mays* (Zm); rice: *Oryza sativa* (Os); and sorghum: *Sorghum bicolor* (Sb). *The meaning of the acronym for Lsi homologous proteins is as follows: Nodulin 26-like Intrinsic Protein (NIP), Unnamed Product Protein (UPP), Nucleotide Oligomerization Domain (NOD), Hypothetical Protein (HYP), Arsenical Pump Membrane Protein (ARSB), Divalent Ion Symporter (DIS), Uncharacterized Protein (UP), Citrate Transporter Family Protein (CTFP), Arsenic Transport Subunit B (ATSB). This table presents the Lsi channels with the highest homology to strawberry FaNIP2-1 and FaLsi2 proteins previously reported (Ouellette et al., 2017) and their homologs. The complete list of putative Lsi and Lsi2 channels is included as File SF1.
Figure 2: Protein sequence alignment of pepper CaLsi1 channels and their homologs. The Major Intrinsic Protein (MIP) domain and six Transmembrane (TM) domains are indicated. Two Asn-Pro-Ala (NPA) motifs and a conserved aromatic/arginine (ar/R) selective filter, made up at the secondary structure level of the helix 2 (H2), helix 5 (H5), loop E1 (LE1) and loop E2 (LE2), were also detected in most Lsi1 sequences analyzed, but the (G/A)SGR motif, which is crucial to enhance the capacity of plant species to accumulate Si, was not present. The dashes represent gaps introduced to optimize the alignment. Motif/residues discussed in the text are highlighted in different colors. Full-size DOI: 10.7717/peerj.10053/fig-2
residues that form part of the ar/R filter (Fig. 5). Cluster I encompasses the protein sequences containing the WVAR motif: CaLsi1.4, CaLsi1.5, StNIP1.3, SbNIP1x2, CaLsi1.12, CaLsi1.9, CaLsi1.13, SbNIP1.2, SbNIP1.3, SbNIP1.1, CaLsi1.1, CaLsi1.2,
CaLsi1.3, StNIP1.2 and SnNIP1.1; the exception in this cluster was CaLsi1.14, which lacks the first amino acid residue W. Cluster II comprises the following motifs: WIAR (CaLsi1.8 and CaLsi1.11), WSAR (CaLsi1.15 and CaLsi1.16), AIAR (AtUPP and AtNOD26.6), SIAR (CaLsi1.6, CaLsi1.7, StNIP5.1 and SnNIP5.1), TIAR (StNIP6.1 and SnNIP6.1) and AIGR (AtNOD26.5, CaLsi1.10, ZmUPP, ZmNIP3.1, OsHYP1, OsNIP3.1, OsNOD26.3 and OsHYP2) (Figs. 3 and 5).

The CaLsi2 proteins exhibit a simpler domain organization as compared to CaLsi1. Indeed, all the CaLsi2 proteins and their homologs contain a Citrate-Mg\(^{2+}\):H\(^+\) (CitM) – Citrate-Ca\(^{2+}\):H\(^+\) (CitH) Symporter (CitMHS) domain (involved in ion transport), and nine conserved TM domains (Fig. 4). The corresponding phylogenetic tree of the CaLsi2 proteins and their homologs is depicted in Fig. 6.

Promoter analysis of the CaLsi1 and CaLsi2 genes

Promoter analysis of the Lsi1 and Lsi2 genes revealed the presence of cis-acting elements involved in response to plant hormones including abscisic acid (ABRE), jasmonic acid (G-box, CGTCA-motif and TGACG-motif), ethylene (ERE), salicylic acid (TCA-element), auxins (AuxRR-core and TGA-element) and gibberellic acid (GARE-motif, P-Box and TATC-Box) (Table 2). The sequences of promoters analyzed in this section are enclosed as File SF2, while File SF5 encompasses additional information on this analysis.

Promoter analysis of Si-regulated genes

A total of 40 proteins were previously found to be differentially expressed in response to Si in pepper (Manivannan et al., 2016). In general, the gene ontology analysis revealed that these proteins are involved in vital physiological processes, including photosynthesis, carbohydrate metabolism, catabolic processes, protein modification, DNA metabolism, signal transduction, and transport, to name some. A summary of the characteristics of these proteins is included as File SF6. The analysis of the promoter regions of the corresponding genes revealed that some of them exhibit cis-acting elements and motifs responsive to phytohormones, which suggests a possible connection between the enhanced growth stimulated by Si and phytohormones. In a similar manner to the elements found in the promoter regions of Lsi genes, the corresponding Si-regulated genes exhibited responsiveness to abscisic acid, jasmonic acid, ethylene, salicylic acid, auxins and gibberellic acid (Table 3). File SF2 includes the promoters sequences of Si-regulated genes considered for this analysis, while File SF7 encompasses additional information on this section.

Promoter analysis of the set of genes comprising the external group

The promoter regions of the set of genes included as an external group for the purpose of this study revealed the presence of cis-acting elements responsive to phytohormones. Nonetheless, the frequency of the regulatory elements responsive to gibberellins was lower in the external group as compared to the Lsi genes. In fact, only a P-box and a TATC-box were found in the promoter region of the external group in our search (Table 4), while the promoter region of the Lsi (Table 2) and the Si-regulated genes (Table 3) contained up
to three P-box and 5 TATC-box elements. Indeed, the combined application of Si and gibberellic acid stimulates plant growth and metabolic regulation, and boosts tolerance mechanisms against stress, thus representing a novel sustainable approach aimed at

Figure 4 Protein sequence alignment of pepper CaLsi2 channels and their homologs Part II. Five (TM4-TM9) of the nine conserved TM domains as well as the end of the CitMHS domain. The dashes represent gaps introduced to optimize the alignment. Motif/residues discussed in the text are highlighted in different colors.
Figure 5 Phylogenetic analysis of the pepper (*Capsicum annuum*) CaLsi1 channels and their homologs. Cluster I encompasses the Lsi1 channels harboring the WVAR conserved domain, while Cluster II comprises the WIAR, WSAR, AIAR, SIAR, TIAR and AIGR motifs. The phylogenetic tree was constructed by using the Neighbor-Joining method (*Saitou & Nei, 1987*). We used 10,000 bootstrap replicates to assess the robustness of phylogenetic inferences and to place confidence intervals to the model developed through the values indicated in each node (*Felsenstein, 1985*). The validation analysis was carried out with the Mega7.0 program (*Kumar, Stecher & Tamura, 2016*).

Full-size DOI: 10.7717/peerj.10053/fig-5
overcoming extreme environmental conditions imposed by global climate change (Khan et al., 2020). Since climate change exerts adverse effects on crop production, the identification of solutions that minimize the negative impacts of climate change on crops...
are of paramount importance to achieve crop productivity and hence food security (Pareek, Dhankher & Foyer, 2020).

Expression analysis of Lsi homologs in tomato, potato and Arabidopsis and Si-regulated genes in Arabidopsis

We explored different databases to retrieve expression-profiling data on Lsi genes from pepper. Since we were unable to find information on the pepper genome, we took data from other species closely related to pepper such as tomato and potato, all three belonging to the plant family Solanaceae. When no information on species of the family Solanaceae was found, or no detailed information was available, then we took data from Arabidopsis thaliana as a dicot species. Arabidopsis has been the major plant model system for the last three decades, giving rise to tremendous advances in our understanding of plant physiology and metabolism. As a eudicot species, discoveries in Arabidopsis can be applicable to many other plant species (Chang, Bowman & Meyerowitz, 2016).

In our first search, we used the eFP Browser (Hawkins et al., 2017) to explore different tomato plant tissues: epidermis, collenchyma, vascular, parenchyma, endodermis, unopened flower bud, fully opened flower, leaves, roots, 1 cm fruits, 2 cm fruits, 3 cm fruits, mature green fruits and breaker fruits. In potato, we analyzed stamens, mature whole fruits, tubers, immature whole fruits, petals, roots, carpels, whole in vitro plants, young tubers, whole mature flowers, inside of fruit tissues (mesocarp and endocarp), stolons, sepals, tuber peel, shoot apex, whole flowers, tuber sprouts, leaves, petioles, shoots in vitro, whole leaves, whole petiole, stems, tuber cortex and tuber pith. In Arabidopsis, we analyzed dry seeds, imbibed seeds, stamens, cauline leaves, cotyledons, roots, entire rosette after transition to flowering, carpels, petals, sepals, stamen, pedicels, petiole, distal and proximal

Gene locus	ABRE	Aux-RR-core	CGTCA-motif	ERE	G-box	GARE-motif	P-box	TATC-box	TCA-element	TGA-element	TGACG-motif
XP_016559617	2	–	6	2	–	–	–	–	–	–	–
XP_016570571	4	–	6	5	–	–	–	2	1	6	–
XP_016556948	1	1	2	1	–	–	–	–	–	–	–
XP_016556947	1	1	2	1	–	–	–	–	–	–	–
XP_016562905	3	–	4	1	1	1	–	–	–	–	–
XP_016561864	4	–	2	3	1	–	–	1	2	–	–
XP_016556163	–	–	10	–	–	–	–	–	–	–	–
XP_016576910	1	–	1	1	1	3	–	–	–	1	–
XP_016560837	6	–	2	3	–	–	–	1	2	–	–
XP_016558304	4	–	1	3	–	3	–	–	3	1	–
XP_016564559	–	–	1	–	–	1	1	5	3	1	–
XP_016564560	–	–	1	–	–	1	1	5	3	1	–

Note: Abscisic acid: ABRE; jasmonic acid: G-box, CGTCA-motif and TGACG-motif; ethylene: ERE; salicylic acid: TCA-element; auxins: AuxRR-core and TGA-element; and gibberellic acid: GARE-motif, P-Box and TATC-Box.
half in leaf, hypocotyl, rosette leaves, senescing leaf, inflorescence/transition/vegetative shoot apex, mature pollen and vegetative rosette. File SF8 contains additional data concerning the analysis for Lsi1 genes, whereas File SF9 comprises those for Lsi2 genes.

In order to validate our data analysis, we also considered a set of genes comprising an external group for each species analyzed. Such genes were chosen because they do not encode for Lsi channels, and are predominantly expressed in the aboveground parts of the plant. Instead, Lsi1 and Lsi2 genes are mainly expressed in roots (Vatansever et al., 2017), which distinguish them from the external group analyzed. In this external group, we took into consideration the SlC2H2, SlCP3 and SlRD19A genes from tomato; the StC2H2, StRD19A, StRD21A and StCP3 genes from potato; and the C2H2 (At5g54630) and three cysteine proteases (At4g16190, At5g60360 and At1g47128) genes from Arabidopsis. This set of external genes from Arabidopsis shared 60% identity with their

Gene locus	ABRE	Aux-RR-core	CGTCA-motif	ERE	G-box	GARE-motif	P-box	TATC-box	TCA-element	TGA-element	TGACG-motif
XP_004249273 (PURA)	4	-	1	5	2	-	1	-	1	-	1
XP_008793948	4	-	-	-	2	1	1	-	1	-	3
XP_010243911	1	-	1	1	-	-	-	-	-	-	1
XP_010655136	-	-	5	-	-	-	-	-	-	-	-
XP_009393059 (GME)	9	-	2	3	6	-	2	-	2	-	2
XP_003058724	9	-	5	5	-	-	-	-	-	1	5
XP_006647478 (CML5)	3	-	2	1	2	-	-	-	1	-	2
XP_009398204	4	-	-	3	-	-	-	-	-	-	1
XP_010517956 (MOCS2)	5	-	-	2	-	3	-	-	1	-	-
XP_008677250	2	2	2	1	1	-	-	1	3	1	2
XP_010046336	1	1	4	-	-	1	-	-	1	-	4
XP_004951624	4	-	-	1	5	2	1	-	2	-	-
XP_009588622	3	-	-	1	3	1	1	-	1	-	-
XP_009797912	3	-	1	1	-	-	-	-	-	-	1
XP_009147561	2	-	-	5	1	-	-	-	-	-	-
XP_012064817 (DBR2)	2	-	-	5	1	-	-	-	1	-	-
XP_006450493	1	-	1	1	1	-	-	1	-	-	1
XP_009588623	3	-	-	1	3	1	1	-	1	-	-
XP_006485364 (RABH1B)	1	-	1	-	1	-	-	-	2	-	1
XP_003598507 (AT3G23880)	4	-	1	1	3	-	1	-	1	1	1

Note: Abscisic acid: ABRE; jasmonic acid: G-box, CGTCA-motif and TGACG-motif; ethylene: ERE; salicylic acid: TCA-element; auxins: AuxRR-core and TGA-element; and gibberellic acid: GARE-motif, P-Box and TATC-Box. Gene locus were retrieved from Manivannan et al. (2016).
corresponding homologs in tomato and potato. The transcriptional activity of these external genes from *Arabidopsis* has been well demonstrated in the aerial parts of the plants but not in roots (Balazadeh, Riaño-Pachón & Mueller-Roeber, 2008; Bhalerao et al., 2003) (File SF10). With this, we aimed to prove that the *Lsi* genes have a different expression pattern in plant tissues and differential responsiveness to phytohormones through the analysis of their promoter regions, as compared to the set of external genes.

Data retrieved from the eFP Browser were normalized to percentage scale. Afterwards, data were graphed as heatmaps with the help of a script in the R software (R Core Team, 2016), using the packages “gplots” and “RColorBrewer”.

From this analysis, we detected different expression levels in the tomato *SlNIP1*, *SlNIP5.1*, *SlLsi2* and *SlLsi2x1* genes; in the potato *StNIP1.2*, *StNIP1.3*, *StNIP6.1* and *StARSBx1* genes; and in the *Arabidopsis* *AtNOD26.5*, *AtNOD26.6* and *AtDIS* genes (Table 1). In particular, in tomato, the *SlNIP5.1*, *SlLsi2* and *SlLsi2x1* genes displayed higher expression levels in roots as compared to leaves, flowers and fruits, while the *SlNIP1* genes was most expressed in roots and flowers (Fig. 7). In potato, the *StNIP1.2* gene exhibited the highest expression level in roots, though it was also expressed in leaves, while the expression of *StNIP1.3* was mainly detected in flowers, and *StNIP6.1* genes were mainly expressed in petioles of leaves, tubers and roots (Fig. 8). In *Arabidopsis*, the *AtNOD26.5* was mainly expressed in senescent leaves and roots; whereas *AtNOD26.6* had higher expression levels in the first node and internode in the stems; and *AtNOD26.5* was also expressed in senescent leaves and roots. The *AtDIS* gene was transcriptionally active in roots and senescent leaves, though it was also expressed in other tissues in a similar pattern as the external group of genes did (Fig. 9).

Table 4

Gene locus	ABRE	AuxRRcore	CGTCA-motif	ERE	G-box	GARE-motif	P-box	TATC-box	TCA-element	TGA-element	TGACG-motif
At1g47128	1	6	3	1	–	–	1	2	–	–	6
At5g60360	4	–	3	1	3	–	–	1	1	1	3
At4g16190	–	–	1	7	–	–	1	1	–	–	1
At4g14540	8	2	2	–	–	–	1	1	–	–	1
At5g54630	3	–	2	1	2	–	–	–	–	2	2
At5g43060	2	1	–	2	2	–	–	–	–	–	–
At5g45890	–	–	–	1	–	–	–	–	–	–	–
At4g39090	1	–	–	–	–	–	–	1	–	–	–
At3g45310	3	–	2	1	2	1	–	–	–	–	2
At1g02300	–	1	–	–	–	–	–	–	–	–	–
At4g01610	4	–	1	–	–	1	–	1	–	1	1
At4g11320	1	–	1	4	1	–	–	–	2	1	1

Note:

Abscisic acid: ABRE; jasmonic acid: G-box, CGTCA-motif and TGACG-motif; ethylene: ERE; salicylic acid: TCA-element; auxins: AuxRR-core and TGA-element; and gibberellic acid: GARE-motif, P-Box and TATC-Box.
Regarding the set of genes of the external group in tomato (*Solanum lycopersicum*) *SILsi* genes homologs to pepper (*Capsicum annuum*) *CaLsi* genes. The *SIC2H2*, *SICP3* and *SIRD19A* genes were considered as an external group for the purpose of this comparative analysis, since they do not encode Lsi channels. The heatmap was constructed with a script in the R v4.0.1 software using the functions of the packages "gplots" and "RColorBrewer". The heatmap was constructed with a script in the R v4.0.1 software using the functions of the packages "gplots" and "RColorBrewer".

Figure 7 Tissue-specific expression patterns of tomato (*Solanum lycopersicum*) *SILsi* genes homologs to pepper (*Capsicum annuum*) *CaLsi* genes. The heatmap was constructed with a script in the R v4.0.1 software using the functions of the packages "gplots" and "RColorBrewer".

Regarding the set of genes of the external group in tomato (*SIC2H2*, *SICP3* and *SIRD19A*), potato (*StC2H2*, *StRD19A*, *StRD21A* and *StCP3*), and *Arabidopsis* (*C2H2, At4g16190, At5g60360* and *At1g47128*), they all exhibited a similar expression pattern, mainly evident in the aboveground shoot system and repressed in the underground root system. The exception was the tomato *SIRD19A*, which was expressed both in shoot and root tissues (Fig. 7). This finding demonstrated that the set of genes of the external group were indeed differentially expressed as compared to the *Lsi* genes evaluated.

Furthermore, expression-profiling data on the Si-regulated genes reported by *Manivannan et al.* (2016) were retrieved from Genevestigator (https://genevestigator.com/gv/index.jsp). Since this platform does not contain data on the pepper genome,
expression-profiling analysis was based on *Arabidopsis thaliana* homologs to Si-regulated genes previously reported. Identification of homolog genes was carried out using the BlastP program (https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins). From the aforementioned 40 Si-regulated genes (Table 5), we were able to retrieve expression patterns of their homologs in potato (*Solanum tuberosum)* and pepper (*Capsicum annuum*) using a heatmap constructed with a script in the R v4.0.1 software using the functions of the packages “gplots” and “RColorBrewer”.

Figure 8 Tissue-specific expression pattern of potato (*Solanum tuberosum*) *StLsi* genes homologs to pepper (*Capsicum annuum*) *CaLsi* genes. The *StC2H2, StRD19A, StRD21A* and *StCP3* genes were considered as an external group for the purpose of this comparative analysis, since they do not encode Lsi channels. The heatmap was constructed with a script in the R v4.0.1 software using the functions of the packages “gplots” and “RColorBrewer”.

DOI: 10.7717/peerj.10053/
data of 14. Expression patterns of the corresponding genes were analyzed according to different plant tissues (Fig. 10; File SF11), development stages (Fig. 11; File SF12) and phytohormones (Fig. 12; File SF13).
Table 5 List of Si-regulated proteins found in different plant species and their homologs in *Arabidopsis* (*Arabidopsis thaliana*).

Si-regulated proteins	Accession number	Organism	Homolog proteins in *Arabidopsis thaliana*			
			Accession number	Coverage (%)	Identity (%)	Gene name
XP_004249273	Solanum lycopersicum	NP_191320.1	89	83.88	PURA	
XP_008793948	Phoenix dactylifera	OAP08906.1	99	51.36	–	
XP_010243911	Nelumbo nucifera	–	–	–	–	
XP_010655136	Vitis vinifera	NP_001322422.1	100	79.63	–	
AHL68475	*Androcymbium* cf. capense Chacon 20	NP_051067.1	100	95.16	RBCL	
KG29665	*Gossypium* arboreum	–	–	–	–	
XP_009393059	*Musa* acuminata subsp. malaccensis	NP_198236.1	100	90.79	GME	
XP_003058724	*Micromonas* pusilla	–	–	–	–	
XP_006647478.1	*Oryza* brachyantha	NP_565996	97	55.84	CML5	
EMT25898	*Aegilops* tauschii	NP_176880.1	94	66.46	RBCS-1A	
EMS51364	*Triticum* urartu	OAP06165.1	62	37.5	–	
XP_009398204	*Musa* acuminata subsp. malaccensis	–	–	–	–	
XP_010517956	*Camelina* sativa	NP_181904.1	97	92.78	MOCS2	
XP_008677250	*Zea* mays	AAC49085.1	88	44.00	–	
XP_010046336	*Eucalyptus* grandis	AAM90865.1	88	25.46	–	
XP_004951624	*Setaria* italica	–	–	–	–	
AFB70663	*Weingartia* kargliana	ANW47827.1	99	81.20	–	
AEJ73201	*Nandina* domestica	–	–	–	–	
XP_009588622	*Nicotiana* tomentosiformis	NP_176074.2	100	48.31	–	
XP_004979712	*Setaria* italica	ABF09984.1	90	27.90	–	
ABS87384	*Lactuca* sativa	NP_566720.1	90	85.93	PKPI	
BAF01042	*Arabidopsis* thaliana	BAF01042.1	100	100.00	–	
KIY92373	*Monoraphidium* neglectum	AAB60303.1	79	76.61	–	
AAR08850	*Vitis* amurensis	–	–	–	–	
AAL83898	*Zea* mays	NP_564905.1	91	44.21	KCR1	
AAF72909	*Medicago* sativa	NP_001331467	100	34.18	–	
AIF71068	*Actiniopteris* semiflabellata	NP_051044.1	100	90.10	ATPA	
CAC87838	*Nicotiana* tabacum	–	–	–	–	
XP_009147561	*Brassica* rapa	NP_001031521.1	93	43.55	–	
XP_012064817	*Jatropha* curcas	NP_565672.1	72	66.58	DRB2	
XP_006450493	*Citrus* clementina	–	–	–	–	
Q2RAX3	*Oryza* sativa subsp. japonica	NP_850095.2	99	75.17	CIPK3	
XP_009588623	*Nicotiana* tomentosiformis	–	–	–	–	
BAB40826	*Zea* mays	BAB40828.1	100	86.71	–	
KHG25806	*Gossypium* arboreum	–	–	–	–	
AIU48281	*Ilicium* henryi	AIU48266.1	100	74.69	–	
AKL82244	*Rosa* soulieana	BAD94800.1	100	90.00	–	
KHN40347	*Glycine* soja	NP_974104.1	88	57.30	CCOAMT	
XP_006485364	*Citrus* sinensis	NP_181989.1	94	95.65	RABH1B	
XP_003598507	*Medicago* truncatula	NP_189030.1	94	28.91	AT3G23880	

Note: Accession numbers of Si-regulated genes were as described by Manivannan et al. (2016). Further details of this list are described in File SF7.
The homolog genes in *Arabidopsis thaliana* were expressed in most tissues analyzed, although at different levels. Protoplasts exhibited higher expression levels of the Ras-related small GTP-binding family protein (*RABH1B*; NP_181989.1), Calcium-binding EF-hand family protein (*CML5*; NP_565996), and Beta-ketoacyl reductase 1 (*KCR1*; NP_564905.1). In root protoplasts, transcripts of GDP-mannose-3', 5'-epimerase (*GME*; NP_198236.1), *RABH1B*, *CML5*, *KCR1*, dsRNA-binding protein 2 (*DRB2*; NP_565672.1), and F-box and associated interaction domains-containing protein (*AT3G23880*; NP_189030.1) were more abundant. In leaf protoplasts, expression levels of the genes *CML5* and Ribulose bisphosphate carboxylase small chain 1A (*RBCS-1A*; NP_176880.1) were more notable. In root cells, the genes Adenylosuccinate synthase (*PURA*; NP_191320.1) and *KCR1* were highly expressed, while in shoot cells the genes *PURA*, *RBCS-1A*, *KCR1*, CBL-interacting protein kinase 3 (*CIPK3*; NP_850095.2), and *AT3G23880* exhibited higher transcript levels as compared to the rest of the genes analyzed. In leaves, the gene *AT3G23880* was notably expressed. In the abscission zone of inflorescences, high expression of the genes molybdopterin biosynthesis MoaE protein (*MOCS2*; NP_181904.1), *RABH1B* and *PURA* was detected. In siliques and seeds, the genes Ribulose bisphosphate carboxylase small chain 1A (*RBCS-1A*; NP_176880.1), *GME*, Pyruvate kinase family protein (*PKP1*; NP_566720.1), *RBCS-1A* and *DRB2* were highly expressed. In senescent plants, we detected high expression of *PKP1* and *DRB2*, while in shoot apex and axillary shoot the gene *DRB2* was also highly expressed. Finally, in roots, the genes *PURA* and *KCR1* displayed higher expression as compared to the rest of the genes evaluated (Fig. 10).

Regarding development stages, higher levels of expression were observed in the gene *MOCS2* in germinated seeds as compared to other tissues analyzed, while the genes *RABH1B* and *RBCS-1A* were moderately expressed in developed flowers. The rest of the genes analyzed displayed very low expression levels or were indeed repressed in the tissues evaluated (Fig. 11).

Exposure to silicon has been correlated with changes in plant hormonal balance. In particular, a positive correlation between Si exposure and active cytokinin concentrations has been reported (*Markovich et al., 2017*). Our in silico analysis based on the Genevestigator platform demonstrated that Si-regulated genes identified in *Arabidopsis thaliana* (homologs to those identified in *Capsicum annuum*) are responsive to phytohormones and phytohormone precursors (Fig. 12). For instance, the combination of 2,4-dichlorophenoxyacetic acid (2,4-D) and kinetin induced the expression of *RBCS-1A* but repressed that of *KCR1* and *AT3G23880*. The cytokinin 6-benzylaminopurine (BA) downregulated the expression of *GME* and *CML5*. The expression of the genes caffeoyl-CoA 3-O-methyltransferase (*CCOAMT*; NP_974104.1), *CIPK3* and *AT3G23880*...
was repressed by 24-epibrassinolide (24 eBL), while \textit{PKP1}, \textit{PURA}, \textit{KCR1} and \textit{DRB2} were induced by this brassinosteroid. Ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (\textit{RBCL}; NP_051067.1), \textit{GME}, \textit{ATPA}, \textit{PKP1}, \textit{PURA}, \textit{CML5}, \textit{RBCS-1A} and \textit{AT3G23880} were transcriptionally induced by brassinolide (BL) as compared to mock treated seedlings, while when comparing to untreated cell cultures, BL reduced the expression of \textit{CML5}, \textit{KCR1} and \textit{CCOAMT}. The ethylene precursor 1-aminocyclopropane-1-carboxylate (ACC) and ethylene itself had low impact on the expression of the genes under study, though a slight induction of \textit{AT3G23880} and a very low repression of \textit{RBCL}, \textit{ATPA} and \textit{CML5} were observed. Gibberellic acid (GA) induced the expression of \textit{CML5} and \textit{AT3G23880}, while that of \textit{CIPK3} was slightly repressed. The auxin indole-3-acetic acid (IAA) notably induced the expression of \textit{CML5} and \textit{CCOAM}. Interestingly, IAA both induced and repressed the expression of \textit{RBCS-1A} and \textit{AT3G23880}, depending on the experimental conditions imposed: the combination of IAA with fatty acid-amino acid conjugates (FACS) induced the expression of \textit{RBCS-1A} in roots, whereas it was repressed in seedlings. As for \textit{AT3G23880}, its expression was induced in leaves, while in seedlings it was repressed in response to IAA. Absciscic acid (ABA) also exhibited contrasting effects on gene expression depending on the experimental conditions tested. For instance, in combination with \textit{N,N}-dimethylthiourea (DMTU, a H$_2$O$_2$ scavenger), ABA induced the expression of \textit{RBCL} in cell suspensions, while \textit{DRB2} was repressed.

![Expression patterns of homolog Si-regulated genes in Arabidopsis (Arabidopsis thaliana) from different developmental stages. All genes were selected based on their responsiveness to Si in Capsicum annum. Germinated seeds (1), seedlings (2), young rosette leaves (3), developed rosette leaves (4), bolting (5), young flowers (6), developed flowers (7), flowers and siliques (8), mature siliques (9) and senescent plants (10). Data were retrieved from Genevestigator (https://genevestigator.com/gv/index.jsp). Colors represent the intensity of the expression (percentage of expression potential), from white (0%) to dark blue (100%). More information regarding these experiments is included in File S12.](https://genevestigator.com/gv/index.jsp)
Conversely, in seeds, ABA downregulated the expression of RBCL and ATPA. ABA also upregulated the expression of CML5 and KCR1, but downregulated that of AT3G23880. Similarly, jasmonic acid (JA), methyl jasmonate (MeJa) and salicylic acid triggered contradictory responses in most genes evaluated.

DISCUSSION

Silicon is mostly concentrated in roots, and little is transported to stems and leaves

In our study, Si concentration in roots was significantly higher in Si-treated plants. Indeed, the higher the Si supply, the greater the Si concentration found in tissues analyzed. In stems, no differences among treatments were observed, while in roots, Si-treated plants displayed higher Si concentrations, but all of them were lower than those observed in stems and roots. Thus, pepper plants retain Si in the roots while only small amounts of this element are transported to the leaves, which is a biologically limiting factor that can be responsible for many plants not responding to Si applications (*Deshmukh & Bélanger, 2016*). In tomato, SILsi1 influx channel transports Si in the roots, while two Lsi2-like proteins did not show efflux transport activity for Si, thus Si imported by SILsi1 could not be exported from roots to shoots (*Sun et al., 2020*). Nevertheless, tomato has been shown to increase productivity in response to Si applications, which results in more erect leaves, improved photosynthetic activity, and higher concentrations of chlorophylls (*Pereira, Vitti & Korndorfer, 2003; Braga et al., 2009; Marodin et al., 2014*). If Si is not transported from the roots to the shoots, and even though stimulatory effects are observed, then the Si deposition in the apoplast could trigger the beneficial effects observed, with hormetic dose-response effects, which is in agreement with the apoplastic obstruction hypothesis postulated by *Coskun et al. (2019a)*.

Si-accumulator species such as rice can accumulate Si in the aerial part (including grains and straw) by increasing the applied dose of Si (*Cuong et al., 2017*). Similarly, wheat can transfer approximately 90% of the Si from the roots to the shoots, and the Si concentration in roots displays lower levels as compared to aerial parts (*Abdel Latef & Tran, 2016*).
There is a wide variation in the concentration of Si in the aerial part in different plant species, ranging from 0.1 to 10% of dry biomass weight, and these differences have been attributed to the capacity of roots to absorb Si and the internal cellular mechanisms to mobilize it within the plant (Takahashi, Ma & Miyake, 1990; Song et al., 2009; Ma & Yamaji, 2015; Sahebi et al., 2015). Within the angiosperms, the families Cyperaceae, Poaceae and Balsaminaceae show high accumulation of Si (i.e., more than 4% Si on a dry matter basis), while the families Cucurbitaceae, Fabaceae, Urticaceae and Commelinaceae accumulate moderate levels of this element (i.e., 2–4% Si on a dry matter basis). Most plant species, particularly dicots, accumulate Si at a relatively low level. The difference in Si accumulation among plant genotypes can be explained, at least partially, by the differences in the Si uptake ability of the roots attributed to the existence, density and localization of Si channels (Ma & Takahashi, 2002; Hodson et al., 2005; Ma & Yamaji, 2006). Consequently, agricultural crops may display marked differences with regard to their capacity to absorb Si and transport it from the roots to upper parts of the plant (Marschner, 2012; Tubaña & Heckman, 2015; Tubaña, Babu & Datnoff, 2016).

As aforementioned, the genotypic difference in Si accumulation results from the differences in abundance of Lsi channels (both Lsi1 and Lsi2) in roots (Ma, 2010) involved in the uptake and distribution of Si within the plant (Ma et al., 2006; Ma et al., 2007; Ma & Yamaji, 2015; Sasaki, Yamaji & Ma, 2016). These two groups of channels are localized to the plasma membrane. Among plant species, the Lsi channels exhibit divergent abundance, expression patterns and localization within cells and tissues, which concomitantly result in different capacities of Si accumulation (Ma & Yamaji, 2015). A recently developed model of Si dynamics in rice reproduced the gradual decrease and diurnal variation of channel gene expression levels, demonstrating that a considerable reduction in the expression of Si channel genes during the night increases investment efficiency (Sakurai et al., 2017).

It is worthwhile mentioning that a genotypic variation of Si concentration in shoot has been found both within and among plant species, although the former variation is usually much lower (Deren, 2001; Ma et al., 2006; Ali, 2009; Broadley et al., 2012). The distinct capacities of Si accumulation in the plant kingdom is attributed to the activity of Lsi channels (Yan et al., 2018). Indeed, crop species such as tomato, potato and flax (Linum usitatissimum), which exhibit Si contents between 0.2% and 0.5% on a dry basis (thus classified as poor Si accumulators), are devoid of functional Lsi2 channels (Shivaraj et al., 2017).

Once within the plants, Si can trigger numerous beneficial effects, including an increase in water absorption through the roots, maintenance of nutrient balance, a decrease in water loss through the leaves, and stimulation of a higher photosynthetic rate (Zhu & Gong, 2014). Furthermore, Si can induce resistance or tolerance mechanisms in response to stress conditions through the regulation of genes involved in photosynthesis, water absorption and use, transcription, secondary metabolism, and polyamines biosynthesis (Manivannan & Ahn, 2017; Abdel-Haliem et al., 2017).

Nevertheless, such statements are currently being challenged since there is limited genetic variability for Si accumulation, at least within the germplasm studied.
Thus, it has been well established that Si accumulation displays limited within-species variability, representing a genetic trait tightly regulated by the expression and activity of Lsi proteins (Deshmukh et al., 2015). Interestingly, Si is not translocated to strawberry fruit, thereby eliminating concerns about Si potentially affecting fruit firmness or quality (Ouellette et al., 2017).

Although the beneficial effects of Si have been widely reported, the mode of action and biological function of Si in plants have been the subject of continuing scientific debate (Coskun et al., 2019b; Exley & Guerriero, 2019).

The pepper genome contains putative Lsi channels potentially involved in Si uptake and transport

In the family Solanaceae, to which crop species such as pepper, tomato, potato, tobacco (Nicotiana tabacum), and eggplant (Solanum melongena) belong, putative Lsi channels have been identified, as described below.

The pepper genome contains at least 16 influx channels (named CaLsi1 for Capsicum annum Low silicon channel 1) and three efflux ones (CaLsi2) involved in Si uptake and transport within the plant cell. Importantly, all Lsi1 and Lsi2 isogenes found in the pepper genome are transcriptionally active, as was evident from the EST/mRNA/cDNA data analysis we performed (Table 1). Nevertheless, the low abundance of Lsi2 genes (only three putative genes found), suggest a poor capacity of pepper to translocate Si from roots to shoots.

The Lsi1 proteins mediate the transport of Si across the plasma membrane between the external solution and the plant cell. Their length varies between 191 and 344 amino acid residues, with 20.59 and 37.35 kDa in molecular mass, respectively. They belong to the Nodulin-26-like intrinsic protein (NIP) III subgroup of the aquaporin membrane protein family and display distinct selectivity (Ma & Yamaji, 2015), facilitating the passive transport of water as well as other uncharged solutes such as glycerol (Wallace & Roberts, 2005), ammonia and urea (Beitz et al., 2006), boric acid (Takano et al., 2006), lactic acid (Choi & Roberts, 2007), selenite (Zhao et al., 2010), arsenite and silicic acid (Mitani-Ueno et al., 2011). Mechanisms responsible for the specificity of transport substrates between different NIP subgroups have been identified, revealing that the serine residue (S) at the H5 position of the aromatic/arginine (ar/R) pore of NIP III proteins determines the permeability to Si and B, but not to arsenite (Mitani-Ueno et al., 2011).

Other nightshade species such as tomato and potato also contain NIP III representatives (Ma & Yamaji, 2015). Just recently, a functional Lsi1 channel, NtNIP2;1, was identified and characterized in tobacco, which is a low Si accumulator belonging to the family Solanaceae as well (Zellner et al., 2019). Moreover, in tomato, the protein SlLsi1 was found to be transcriptionally and enzymatically active in the roots, but did not alter the Si concentration in the shoots. Instead, the two SlLsi2-like proteins identified did not transport Si (Sun et al., 2020). These findings may help explain that the low Si concentrations found in the upper parts of tomato plants are due to the absence of functional Si efflux channels. Nevertheless, tomato positively responds to silicon applications, as proven in various studies (Ali et al., 2018; Khan et al., 2019; Wu et al., 2015;
Zhang et al., 2018a). From our search, we discovered that other dicotyledonous species such as cucumber (Cucumis sativus), soybean, strawberry and wild strawberry (Fragaria vesca) also contain Lsi1 representatives in their corresponding genomes.

The Lsi2 efflux channels are responsible for the transport of Si out of the cell within the plant (Ma & Yamaji, 2015). They belong to the citrate transporter family and demonstrate neutral or slightly basic properties. Their length fluctuates between 491 and 532 amino acids, with a molecular mass between 52.9 and 57.89 kDa, respectively. They are predicted to localize in the plasma membrane with 10–11 putative TMDs, having extracellular N- and extracellular/cytoplasmic C-terminal regions. Lsi2 transcripts contained the 2–4 exons but mostly with 2–3. All identified Lsi2 homologs showed the high e-value in blastp search, implying their other roles in Si transport because they were also highly preserved even in low Si-accumulators (File SF1).

The coordinated activity of Lsi1 and Lsi2 allow Si to enter the plant and to be loaded into the xylem, thus facilitating root-to-shoot translocation (Coskun et al., 2019a). Consequently, the abundance and activity of Lsi2 channels determine the capacity of the plant to move Si from the root to the shoot. In our case, the pepper genome contains 16 putative Lsi1 and three putative Lsi2 channels. Therefore, one would expect that pepper is efficient at absorbing Si from the soil solution, but deficient at translocating it from the root to the shoot, as observed in our experimental data.

Lsi channels display responsiveness to phytohormones

Plant growth stimulation triggered by Si can be (at least in part) explained by the Si-mediated action on phytohormone biosynthesis (Luyckx et al., 2017b) and metabolism (Haddad et al., 2019). If Si-responsive genes were also regulated by phytohormones, then a possible convergence between the signaling pathways mediated by phytohormones and the role of Si in growth regulation could be elicited. Indeed, our promoter analysis revealed that both Lsi1 and Lsi2 genes exhibit cis-acting elements and motifs responsive to abscisic acid (ABA), jasmonic acid (JA), ethylene (ETH), salicylic acid (SA), auxins (AUX), and gibberellic acid (GA) (Table 2). Likewise, Si-regulated genes also contain cis-acting elements in their promoter regions responsive to phytohormones and phytohormone precursors (Table 3). It is worthwhile noting that in the presence of toxic levels of cadmium and copper, rice plants treated with Si reduced JA and SA concentrations, while ABA was exponentially activated with increasing stress periods (Kim et al., 2014). Since ABA exerts an antagonistic effect on JA/SA biosynthesis (Luyckx et al., 2017b), the aforementioned responses could be the result of intrinsic homeostatic mechanisms triggered by Si. Moreover, short-term Si application reduced endogenous JA in rice plants exposed to wounding stress (Kim et al., 2011), while soybean plants exposed to salt stress (80 mM NaCl) in hydroponics increased gibberellin concentrations when treated with Si (Lee et al., 2010). Si has also been demonstrated to improve the biosynthesis of SA, JA and ETH in the presence of diverse pathogens (Fauteux et al., 2005, 2006; Ghereeb et al., 2011). In rice, Si amendment differently regulated the expression of 221 genes, including genes controlling ethylene signal transduction pathways (Brunings et al., 2009). Si increases cytokinin biosynthesis in Arabidopsis and sorghum (Sorghum
In licorice (*Glycyrrhiza uralensis*) exposed to salt stress, Si improves phytohormonal balance, especially that of indole-3-acetic acid (IAA) and GA (*Zhang et al., 2018b*). Since phytohormones influence vital biological mechanisms within the plant, interactions among them are of paramount importance to regulate numerous processes involved in plant growth, development, and response to biotic and abiotic stresses. Currently, we are carrying out biochemical, physiological and molecular approaches aimed at determining variations of main phytohormones in response to Si and other beneficial elements in crop plants such as rice, maize, pepper and tomato.

Homolog Lsi genes are mainly expressed in root tissues in tomato, potato and Arabidopsis

Information on the expression pattern of *Lsi* genes in pepper was not available in the platforms we explored. Therefore, we analyzed expression data on tomato and potato, which also belong to the family Solanaceae, and the eFP Browser contained information on them but not on pepper. When no data on either tomato or potato were found, we collected data from *Arabidopsis thaliana* as a dicot species. From our search, we found that the tomato *SINIP5.1, S1Lsi2* and *S1Lsi2.1* genes were mainly expressed in roots, whereas *SINIP1* was transcriptionally active in roots and leaves. In potato roots and tubers, high expression of the *SINIP1.2, SINIP1.3* and *SINIP6.1* genes was found. During the seedling stage of *Arabidopsis*, the *AtNOD26.5* and *AtNOD26.6* genes were expressed in all tissues, whereas *AtNOD26.5* is more expressed in root tissues. The *AtDIS* gene was also mainly expressed in roots and stems of *Arabidopsis* seedlings, whereas in plants it was mainly expressed in leaves. The external group of genes was mainly expressed in the shoot system and repressed in the root system. This evidence confirms that the *Lsi* genes are mainly expressed in root tissues, which coincides with other reports (*Deshmukh et al., 2013; Vatansever et al., 2017; Sun et al., 2020*).

Si-regulated genes involved in major physiological processes also exhibit phytohormone responsiveness and are expressed in different tissues and developmental stages in Arabidopsis

There is plenty of evidence demonstrating the beneficial effects of Si on vital physiological plant processes. In canola (*Brassica napus*), Si differentially regulated genes involved in different metabolic pathways, especially in cell wall synthesis, phytohormone metabolism, and stress response, leading to a better adaptation to challenging environments (*Haddad et al., 2019*). In pepper, Si affected the expression of key enzymes such as Adenylosuccinate synthetase (involved in nucleotide biosynthesis); E3 ubiquitin-protein ligase PUB23-like (negative regulator of water stress responses); Zinc finger protein 160-like (transcriptional regulation); Vacuolar protein sorting-associated protein 53 A isoform X2 (endocytic recycling); Ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (key photosynthetic enzyme); GDP-mannose 3,5-epimerase 2-like (part of vitamin C biosynthesis in plants); Nucleoporin-like protein (component of the nuclear pore complexes); Calcium-binding protein CML17-like (root hair elongation);
Oxygen-evolving enhancer protein 3-1, chloroplastic-like (photosystem II assembly/stability and photoautotrophic growth); Molybdopterin synthase catalytic subunit-like (conversion of precursor Z into molybdopterin); MADS-box transcription factor 26 isoform X2 (positive regulation of transcription of RNA polymerase II); Disease resistance protein RPS2-like (pathogen defense responses); Mediator of RNA polymerase II transcription subunit 11-like (regulation of the RNA polymerase II transcription machinery); Mitochondrial calcium uniporter regulatory subunit MCUb-like isoform (calcium uptake into the mitochondrion); Disease resistance RPP13-like protein 3-like (defense responses); F-box only protein 8-like (signal transduction); Double-stranded RNA-binding protein (nucleocytoplasmic transport), Tudor-like RNA-binding protein (RNA binding); Calcium uniporter (calcium transport); Ras-related protein RABH1b-like (protein transport and cell growth); and F-box/kelch-repeat protein (phenylpropanoid metabolic process) (Manivannan et al., 2016). Some of the corresponding homolog genes found in *Arabidopsis thaliana* demonstrated differential expression among tissues, developmental stages and hormone treatments. Furthermore, the promoter regions of genes encoding some of these enzymes exhibit cis-acting elements responsive to phytohormones, pointing to a role of Si in the regulation of growth mediated by phytohormones.

Just recently, Coskun et al. (2019a) proposed a working model named ‘apoplastic obstruction hypothesis’, which established that Si deposits in the apoplast both interferes with and promotes a number of biological events leading to its beneficial role, with important cascading effects on plant morphology and physiology in a hormetic manner. Indeed, orthosilicic acid (the only Si available form for plants) can be soluble in water up to ca. 2 mM at 25 °C, above which polymerization into silica (SiO$_2$) gel begins to occur (Ma, Miyake & Takahashi, 2001), which can be toxic for plants (Exley, 2015; Montpetit et al., 2012). This may explain, at least in part, the negative effects of Si applied at higher levels in our previous study (Trejo-Téllez et al., 2020) and point to a role of Si in triggering hormesis in plants. Hormesis is a biphasic dose-response phenomenon triggered by an environmental agent, with low doses stimulating beneficial effects and high doses inhibitory or toxic effects, which has wide implications for risk assessment, plant stress biology, and agriculture (Agathokleous, Kitao & Calabrese, 2020). Therefore, since hormesis can also result in phenotypic changes and adaptation strategies in plants under challenging environments (Macias-Bobadilla et al., 2020), this phenomenon has the potential to enhance agricultural sustainability in a changing world (Agathokleous & Calabrese, 2019). Importantly, even under non-stressful environmental conditions, Si has been proven to stimulate plant growth and metabolism (Trejo-Téllez et al., 2020; Xu et al., 2020), though its beneficial effects are more evident under stress conditions (Ahanger et al., 2020; Bui, Duong & Nguyen, 2020; Mandlik et al., 2020; Singh et al., 2020; Vaculík et al., 2020).

CONCLUSIONS

In pepper plants, Si concentrates mainly in the root, while only a small part is translocated to the stems and leaves.
We were able to identify Lsi1 and Lsi2 candidate genes in the *Capsicum annuum* genome. Importantly, they proved to be transcriptionally active. The higher number of Lsi1 than Lsi2 genes suggests that this species can indeed absorb Si in the root cells, but lacks the molecular mechanisms to translocate it to the shoot system. Molecular cloning of the Lsi2 channels should, hypothetically, shed light on their enzymatic activity and efficiency at translocating Si from roots to shoots.

Analysis of the promoter regions of *CaLsi1* and *CaLsi2* revealed the presence of cis-acting elements and motifs responsive to phytohormones. Homolog Lsi channels found in tomato, potato and *Arabidopsis* display higher expression levels in roots as compared to other tissues analysed. Furthermore, cis-active elements responsive to phytohormones were more abundant in the promoter regions of these genes as compared to the set of genes of the external group evaluated, thereby providing new insights into the connection existing among Si, phytohormone signaling and stimulation of plant growth and metabolism.

Furthermore, Si-regulated genes in *Arabidopsis* (homologs to those found in pepper) were active in different tissues and developmental stages, and differentially regulated by phytohormones and phytohormone precursors such as 2,4-D, BA, 24-EBL, BL, ACC, GA, GA3, IAA, JA, MeJa and SA. These genes are involved in vital physiological processes including transcription, nucleotide biosynthesis, endocytic recycling, photosynthesis, carbon metabolism, nutrient metabolism, signal transduction, intracellular transport, cell growth, phenylpropanoid metabolism, and stress responses.

To the best of our knowledge, this study represents the first attempt to provide an in-depth evaluation correlating Si-driven responses and phytohormones in pepper, supported by in vivo and in silico data analyses.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This study was funded by Mexico’s National Science and Technology Council (CONACYT) and its Secretariat of Foreign Affairs, through the Mexican Agency for International Development Cooperation (AMEXCID), for the scholarships granted to Atonaltzin García-Jiménez and Hugo Fernando Escobar-Sepúlveda, respectively.

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Mexico’s National Science and Technology Council (CONACYT).
Mexican Agency for International Development Cooperation (AMEXCID).

Competing Interests
The authors declare that they have no competing interests.
Author Contributions

- Fernando Carlos Gómez-Merino conceived and designed the experiments, authored or reviewed drafts of the paper, and approved the final draft.
- Libia Iris Trejo-Téllez performed the experiments, analyzed the data, authored or reviewed drafts of the paper, and approved the final draft.
- Atonaltzin García-Jiménez performed the experiments, prepared figures and/or tables, and approved the final draft.
- Hugo Fernando Escobar-Sepúlveda performed the experiments, analyzed the data, prepared figures and/or tables, and approved the final draft.
- Sara Monzerrat Ramírez-Olvera performed the experiments, prepared figures and/or tables, and approved the final draft.

Data Availability

The following information was supplied regarding data availability:

The raw measurements are available in the Supplemental Files.

Supplemental Information

Supplemental information for this article can be found online at http://dx.doi.org/10.7717/peerj.10053#supplemental-information.

REFERENCES

Abdel Latef AA, Tran LSP. 2016. Impacts of priming with silicon on the growth and tolerance of maize plants to alkaline stress. *Frontiers in Plant Science* 7:243 DOI 10.3389/fpls.2016.00243.

Abdel-Haliem MEF, Hegazy HS, Hassan NS, Naguib DM. 2017. Effect of silica ions and nano silica on rice plants under salinity stress. *Ecological Engineering* 99:282–289 DOI 10.1016/j.ecoleng.2016.11.060.

Agathokleous E, Calabrese EJ. 2019. Hormesis can enhance agricultural sustainability in a changing world. *Global Food Security* 20:150–155 DOI 10.1016/j.gfs.2019.02.005.

Agathokleous E, Kitao M, Calabrese EJ. 2020. Hormesis: highly generalizable and beyond laboratory. *Trends in Plant Science* 20(30188–6):S1360–S1385 DOI 10.1016/j.tplants.2020.05.006.

Ahanger MA, Bhat JA, Siddiqui MH, Rinklebe J, Ahmad P. 2020. Silicon and secondary metabolites integration in plants: a significant association in stress tolerance. *Journal of Experimental Botany* 246:eraa291 DOI 10.1093/jxb/eraa291.

Alcántar GG, Sandoval MV. 1999. *Handbook of chemical analysis of plant tissues*. Vol. 10. Chapingo: Mexican Society of Soil Science.

Ali A. 2009. Influence of silicon on wheat grown under saline environments. M. Sc. Thesis, University of Agriculture, Faisalabad, Pakistan. Available at https://www.researchgate.net/publication/41491126_Influence_of_Silicon_on_Wheat_Grown_Under_Saline_Environments.

Ali N, Schwarzenberg A, Yvin JC, Hosseini SA. 2018. Regulatory role of silicon in mediating differential stress tolerance responses in two contrasting tomato genotypes under osmotic stress. *Frontiers in Plant Science* 9:1475 DOI 10.3389/fpls.2018.01475.

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. *Journal of Molecular Biology* 215(3):403–410 DOI 10.1016/S0022-2836(05)80360-2.
Artyszak A, Gozdowski D, Kucińska K. 2019. Impact of foliar fertilization on the content of silicon and macronutrients in sugar beet. *Plants* 8(5):136 DOI 10.3390/plants8050136.

Balazadeh S, Riaño-Pachón DM, Mueller-Roeber B. 2008. Transcription factors regulating leaf senescence in *Arabidopsis thaliana*. *Plant Biology* 10:63–75 DOI 10.1111/j.1438-8677.2008.00088.x.

Beitz E, Wu B, Holm LM, Schultz JE, Zeuthen T. 2006. Point mutations in the aromatic/arginine region in aquaporin 1 allow passage of urea, glycerol, ammonia, and protons. *Proceedings of the National Academy of Sciences of the USA* 103(2):269–274 DOI 10.1073/pnas.0507225103.

Bhalerao R, Keskitalo J, Sterky F, Erlandsson R, Björkbacka H, Birve SJ, Karlsson K, Gardeström P, Gustafsson P, Lundeberg J, Jansson S. 2003. Gene expression in autumn leaves. *Plant Physiology* 131(2):430–442 DOI 10.1104/pp.012732

Braga FT, Nunes CF, Favero AC, Pasqual M, Carvalho JGD, Castro EMD. 2009. Anatomical characteristics of the strawberry seedlings micropropagated using different sources of silicon. *Pesquisa Agropecuária Brasileira* 44(2):128–132 DOI 10.1590/S0100-204X2009000200003.

Bui ATK, Duong LT, Nguyen MN. 2020. Accumulation of copper and cadmium in soil-rice systems in terrace and lowland paddies of the Red River basin, Vietnam: the possible regulatory role of silicon. Epub ahead of print 24 June 2020. *Environmental Geochemistry and Health* DOI 10.1007/s10653-020-00626-y.

Chang C, Bowman JL, Meyerowitz EM. 2016. Field guide to plant model systems. *Cell* 167(2):325–339 DOI 10.1016/j.cell.2016.08.031.

Choi WG, Roberts DM. 2007. *Arabidopsis* NIP2; 1, a major intrinsic protein transporter of lactic acid induced by anoxic stress. *Journal of Biological Chemistry* 282(33):24209–24218 DOI 10.1074/jbc.M700982200.

Coskun D, Deshmukh R, Sonah H, Menzies JG, Reynolds O, Ma JF, Kronzucker HJ, Bélanger RR. 2019a. The controversies of silicon’s role in plant biology. *New Phytologist* 221(1):67–85 DOI 10.1111/nph.15343.

Coskun D, Deshmukh R, Sonah H, Menzies JG, Reynolds O, Ma JF, Kronzucker HJ, Bélanger RR. 2019b. In defence of the selective transport and role of silicon in plants: a response to Exley & Guerriero (2019) ‘A reappraisal of biological silicification in plants?’ *New Phytologist* 223:514–516 DOI 10.1111/nph.15764.

Cuong TX, Ullah H, Datta A, Hanh TC. 2017. Effects of silicon-based fertilizer on growth, yield and nutrient uptake of rice in tropical zone of Vietnam. *Rice Science* 24(5):283–290 DOI 10.1016/j.rsci.2017.06.002.

Deren CW. 2001. Plant genotype, silicon concentration, and silicon-related responses. In: Datnoff LE, Snyder A, Korndorfer GH, eds. *Silicon in Agriculture*. Amsterdam: Elsevier, 149–158.

Deshmukh R, Bélanger RR. 2016. Molecular evolution of aquaporins and silicon influx in plants. *Functional Ecology* 30(8):1277–1285 DOI 10.1111/1365-2435.12570.

Deshmukh RK, Vivancos J, Guérin V, Sonah H, Labbé C, Belzile F, Bélanger RR. 2013. Identification and functional characterization of silicon transporters in soybean using
comparative genomics of major intrinsic proteins in *Arabidopsis* and rice. *Plant Molecular Biology* **83**(4–5):303–315 DOI 10.1007/s11103-013-0087-3.

Deshmukh RK, Vivancos J, Ramakrishnan G, Guérin V, Carpentier G, Sona H, Labbé C, Isenring P, Belzile FJ, Bélanger RR. 2015. A precise spacing between NPA domains of aquaporins is essential for silicon permeability in plants. *Plant Journal* **83**(3):489–500 DOI 10.1111/tpj.12904.

Elsokkary IH. 2018. Silicon as a beneficial element and as an essential plant nutrient: an outlook. *Alexandria Science Exchange Journal* **39**(3):534–550 DOI 10.21608/asejaiqjsae.2018.16920.

Elsokkary IH. 2018. Silicon as a beneficial element and as an essential plant nutrient: an outlook. *Alexandria Science Exchange Journal* **39**(3):534–550 DOI 10.21608/asejaiqjsae.2018.16920.

Epstein E. 1994. The anomaly of silicon in plant biology. *Proceedings of the National Academy of Sciences of the United States of America* **91**(1):11–17 DOI 10.1073/pnas.91.1.11.

Epstein E. 1995. Silicon. *Annual Review of Plant Physiology and Plant Molecular Biology* **50**(1):641–664 DOI 10.1146/annurev.arplant.50.1.641.

Epstein E. 1999. Silicon. *Annual Review of Plant Physiology and Plant Molecular Biology* **50**(1):641–664 DOI 10.1146/annurev.arplant.50.1.641.

Epstein E. 1995. Silicon. *Annual Review of Plant Physiology and Plant Molecular Biology* **50**(1):641–664 DOI 10.1146/annurev.arplant.50.1.641.

Exley C. 2015. A possible mechanism of biological silicification in plants. *Frontiers in Plant Science* **6**(112):853 DOI 10.3389/fpls.2015.00853.

Exley C, Guerriero G. 2019. A reappraisal of biological silicification in plants? A comment on Coskun et al. (2019) ‘The controversies of silicon’s role in plant biology’. *New Phytologist* **223**(2):511–513 DOI 10.1111/nph.15752.

Fauteux F, Chain F, Belzile F, Menzies JG, Bélanger RR. 2006. The protective role of silicon in the *Arabidopsis-*powdery mildew pathosystem. *Proceedings of the National Academy of Science of the USA* **103**(46):17554–17559 DOI 10.1073/pnas.0606330103.

Fauteux F, Rémus-Borel W, Menzies JG, Bélanger RR. 2005. Silicon and plant disease resistance against pathogenic fungi. *FEMS Microbiology Letters* **249**(1):1–6 DOI 10.1016/j.femsle.2005.06.034.

Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. *Evolution* **39**(4):783–791 DOI 10.1111/j.1558-5646.1985.tb00420.x.

Ghareeb H, Bozsó Z, Ott PG, Repenning C, Stahl F, Wydra K. 2011. Transcriptome of silicon-induced resistance against *Ralstonia solanacearum* in the silicon non-accumulator tomato implicates priming effect. *Physiological and Molecular Plant Pathology* **75**(3):83–89 DOI 10.1016/j.pmpp.2010.11.004.

Guntzer F, Keller C, Meunier JD. 2012. Benefits of plant silicon for crops: a review. *Agronomy for Sustainable Development* **32**(1):201–213 DOI 10.1007/s13593-011-0039-8.

Gómez-Merino FC, Trejo-Téllez LI. 2018. The role of beneficial elements in triggering adaptive responses to environmental stressors and improving plant performance. In: Vats S, ed. *Biotic and Abiotic Stress Tolerance in Plants*. Singapore: Springer Nature, 137–172.

Haddad C, Trouverie J, Arkoun M, Yvin JC, Caïus J, Brunaud V, Lainé P, Etienne P. 2019. Silicon supply affects the root transcriptome of *Brassica napus* L. *Planta* **249**(5):1645–1651 DOI 10.1007/s00425-019-03120-7.

Handreck KA, Jones LHP. 1968. Studies of silica in the oat plant: IV. Silica content of plant parts in relation to stage of growth, supply of silica, and transpiration. *Plant and Soil* **29**(3):449–458 DOI 10.1007/BF01348976.

Hawkins C, Caruana J, Li J, Zawora C, Darwish O, Wu J, Alkharouf N, Liu Z. 2017. An eFP browser for visualizing strawberry fruit and flower transcriptomes. *Horticulture Research* **4**(1):17029 DOI 10.1038/hortres.2017.29.

Heine G, Tikun G, Horst WJ. 2005. Silicon nutrition of tomato and bitter gourd with special emphasis on silicon distribution in root fractions. *Journal of Plant Nutrition and Soil Science* **168**(4):600–606 DOI 10.1002/pln.200420508.
Hodson MJ, White PJ, Mead A, Broadley MR. 2005. Phylogenetic variation in the silicon composition of plants. *Annals of Botany* 96(6):1027–1046 DOI 10.1093/aob/mci255.

Hruz T, Laule O, Szabo G, Wessendorp F, Bleuler S, Oertle L, Widmayer P, Gruissem W, Zimmermann P. 2008. Genevestigator V3: a reference expression database for the meta-analysis of transcriptomes. *Advances in Bioinformatics* 2008:420747 DOI 10.1155/2008/420747.

Kaur H, Greger M. 2019. A review on Si uptake and transport system. *Plants* 8(4):81 DOI 10.3390/plants8040081.

Khan A, Bilal S, Khan AL, Imran M, Shahzad R, Al-Harrasi A, Al-Rawahi A, Al-Azhri M, Mohanta TK, Lee IJ. 2020. Silicon and gibberellins: synergistic function in harnessing ABA signaling and heat stress tolerance in date palm (*Phoenix dactylifera* L.). *Plants* 9(5):620 DOI 10.3390/plants9050620.

Khan A, Kamran M, Imran M, Al-Harrasi A, Al-Rawahi A, Al-Amri I, Lee IJ, Khan AL. 2019. Silicon and salicylic acid confer high-pH stress tolerance in tomato seedlings. *Scientific Reports* 9(1):19788 DOI 10.1038/s41598-019-55651-4.

Kim YH, Khan AL, Hamayun M, Kang SM, Beom YJ, Lee IJ. 2011. Influence of short-term silicon application on endogenous physiohormonal levels of *Oryza sativa* L. under wounding stress. *Biological Trace Element Research* 144(1–3):1175–1185 DOI 10.1007/s12011-011-9047-4.

Kim YH, Khan AL, Kim DH, Lee SY, Kim KM, Waqas M, Jung HY, Shin JH, Kim JG, Lee IJ. 2014. Silicon mitigates heavy metal stress by regulating P-type heavy metal ATPases, *Oryza sativa* low silicon genes, and endogenous phytohormones. *BMC Plant Biology* 14(1):13 DOI 10.1186/1471-2229-14-13.

Krebs RE. 2006. *The history and use of our Earth’s chemical elements*. London: Greenwood Press.

Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. *Molecular Biology and Evolution* 33(7):1870–1874 DOI 10.1093/molbev/msw054.

Lee SK, Sohn EY, Hamayun M, Yoon JY, Lee IJ. 2010. Effect of silicon on growth and salinity stress of soybean plant grown under hydroponic system. *Agroforestry Systems* 80(3):333–340 DOI 10.1007/s10457-010-9299-6.

Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S. 2002. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. *Nucleic Acids Research* 30(1):325–327 DOI 10.1093/nar/30.1.325.

Luyckx M, Hausman JF, Lutts S, Guerriero G. 2017a. Silicon and plants: current knowledge and technological perspectives. *Frontiers in Plant Science* 8(19):411 DOI 10.3389/fpls.2017.00411.

Luyckx M, Hausman JF, Lutts S, Guerriero G. 2017b. Impact of silicon in plant biomass production: focus on bast fibres, hypotheses, and perspectives. *Plants* 6(4):37 DOI 10.3390/plants6030037.

Ma JF. 2010. Silicon transporters in higher plants. *Advances in Experimental Medicine and Biology* 679:99–109 DOI 10.1007/978-1-4419-6315-4_8.

Ma JF, Miyake Y, Takahashi E. 2001. Silicon as a beneficial element for crop plants. In: Datnoff LE, Snyder GH, Korndörfer GH, eds. *Silicon in Agriculture*. New York: Elsevier, 17–39.

Ma JF, Takahashi E. 2002. *Soil, fertilizer, and plant silicon research in Japan*. Amsterdam: Elsevier.

Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M. 2006. A silicon transporter in rice. *Nature* 440(7084):688–691 DOI 10.1038/nature04590.
Ma JF, Yamaji N. 2006. Silicon uptake and accumulation in higher plants. Trends in Plant Science 11(8):392–397 DOI 10.1016/j.tplants.2006.06.007.

Ma JF, Yamaji N. 2015. A cooperative system of silicon transport in plants. Trends in Plant Science 20(7):435–442 DOI 10.1016/j.tplants.2015.04.007.

Ma JF, Yamaji N, Tamai K, Mitani N. 2007. Genotypic difference in silicon uptake and expression of silicon transporter genes in rice. Plant Physiology 145(3):919–924 DOI 10.1104/pp.107.107599.

Macias-Bobadilla I, Vargas-Hernandez M, Guevara-Gonzalez RG, Rico-Garcia E, Ocampo-Velazquez RV, Avila-Juarez L, Torres-Pacheco I. 2020. Hormetic and xenohormetic potential in the phytobiome of the center of origin. Genetic Resources and Crop Evolution 67(5):1331–1344 DOI 10.1007/s10722-020-00912-9.

Mandlik R, Thakral V, Raturi G, Shinde S, Nikolić M, Tripathi DH, Sonah H, Deshmukh R. 2020. Significance of silicon uptake, transport, and deposition in plants. Journal of Experimental Botany 10:eraa301 DOI 10.1093/jxb/eraa301.

Manivannan A, Ahn YK. 2017. Silicon regulates potential genes involved in major physiological processes in plants to combat stress. Frontiers in Plant Science 8:1346 DOI 10.3389/fpls.2017.01346.

Manivannan A, Soundararajan P, Muneer S, Ko CH, Jeong BR. 2016. Silicon mitigates salinity stress by regulating the physiology, antioxidant enzyme activities, and protein expression in Capsicum annuum 'Bugwang'. BioMed Research International 2016:3076357 DOI 10.1155/2016/3076357.2016.

Markovich O, Steiner E, Kouril Š, Tarkowski P, Aharoni A, Elbaum R. 2017. Silicon promotes cytokinin biosynthesis and delays senescence in Arabidopsis and sorghum. Plant, Cell & Environment 40(7):1189–1196 DOI 10.1111/pce.12913.

Marodin JC, Resende JTV, Morales RGF, Silva MLS, Galvão AG, Zanin DS. 2014. Yield of tomato fruits in relation to silicon sources and rates. Horticultura Brasileira 32(2):220–224 DOI 10.1590/S0102-05362014000200018.

Marschner H. 2012. Marschner’s mineral nutrition of higher plants. Third Edition. Cambridge: Academic Press.

Mitani N, Ma JF, Iwashita T. 2005. Identification of the silicon form in xylem sap of rice (Oryza sativa L.). Plant and Cell Physiology 46(2):279–283 DOI 10.1093/pcp/pci018.

Mitani-Ueno N, Yamaji N, Zhao FJ, Ma JF. 2011. The aromatic/arginine selectivity filter of NIP aquaporins plays a critical role in substrate selectivity for silicon, boron, and arsenic. Journal of Experimental Botany 62(12):4391–4398 DOI 10.1093/jxb/err158.

Montpetit J, Vivancos J, Mitani-Ueno N, Yamaji N, Remus-Borel W, Belzile F, Ma JF, Belanger RR. 2012. Cloning, functional characterization and heterologous expression of TaLsi1, a wheat silicon transporter gene. Plant Molecular Biology 79(1–2):35–46 DOI 10.1007/s11103-012-9892-3.

Muneer S, Park YG, Kim S, Jeong BR. 2017. Foliar or subirrigation silicon supply mitigates high temperature stress in strawberry by maintaining photosynthetic and stress-responsive proteins. Journal of Plant Growth Regulation 36(4):836–845 DOI 10.1007/s00344-017-9687-5.

Nikolic M, Nikolic N, Liang Y, Kirkby EA, Römheld V. 2007. Germanium-68 as an adequate tracer for silicon transport in plants: characterization of silicon uptake in different crop species. Plant Physiology 143(1):495–503 DOI 10.1104/pp.106.09045.

Ouellette S, Goyette MH, Labbé C, Laur J, Gaudreau L, Gosselin A, Dorais M, Démoruk RK, Bélanger RR. 2017. Silicon transporters and effects of silicon amendments in strawberry under high tunnel and field conditions. Frontiers in Plant Science 8:949 DOI 10.3389/fpls.2017.00949.
Pareek A, Dhankher OM, Foyer CH. 2020. Mitigating the impact of climate change on plant productivity and ecosystem sustainability. *Journal of Experimental Botany* 71(2):451–456 DOI 10.1093/jxb/erz518.

Pereira HS, Vitti GC, Korndorfer GH. 2003. Behavior of different silicon sources in the soil and in tomato crop. *Revista Brasileira de Ciência de Solo* 27(1):101–108 DOI 10.1590/S0100-06832003000100011.

Pontigo S, Godoy K, Jiménez H, Gutiérrez-Moraga A, Mora MDLL, Cartes P. 2017. Silicon-mediated alleviation of aluminum toxicity by modulation of Al/Si uptake and antioxidant performance in ryegrass plants. *Frontiers in Plant Science* 8:642 DOI 10.3389/fpls.2017.00642.

Potter SC, Luciani A, Eddy SR, Park Y, Lopez R, Finn RD. 2018. HMMER web server: 2018 update. *Nucleic Acids Research* 46(W1):W200–W204 DOI 10.1093/nar/gky448.

R Core Team. 2016. *R: a language and environment for statistical computing*. Vienna: The R Foundation for Statistical Computing. Available at http://www.R-project.org/.

Rogalla H, Römheld V. 2002. Role of leaf apoplast in silicon-mediated manganese tolerance of *Cucumis sativus* L. *Plant, Cell & Environment* 25(4):549–555 DOI 10.1046/j.1365-3040.2002.00835.x.

Sahebi M, Hanafi MM, Akmar ASN, Rafii MY, Azizi P, Tengoua FF, Azwa JNM, Shabanimofrad M. 2015. Importance of silicon and mechanisms of biosilica formation in plants. *BioMed Research International* 2015:396010 DOI 10.1155/2015/396010.

Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. *Molecular Biology and Evolution* 4(4):406–425 DOI 10.1093/oxfordjournals.molbev.a040454.

Sakurai G, Yamaji N, Mitani-Ueno N, Yokozawa M, Ono K, Ma JF. 2017. A model of silicon dynamics in rice: an analysis of the investment efficiency of Si transporters. *Frontiers in Plant Science* 8:1187 DOI 10.3389/fpls.2017.01187.

SAS. 2011. *SAS/STAT users guide—version 9.3*. Cary: SAS Institute Inc.

Sasaki A, Yamaji N, Ma JF. 2016. Transporters involved in mineral nutrient uptake in rice. *Journal of Experimental Botany* 67(12):3645–3653 DOI 10.1093/jxb/erw060.

Savvas D, Ntatsi G. 2015. Biostimulant activity of silicon in horticulture. *Scientia Horticulturae* 196:66–81 DOI 10.1016/j.scientia.2015.09.010.

Shivaraj SM, Deshmukh RK, Rai R, Bélanger R, Agrawal PK, Dash PK. 2017. Genome-wide identification, characterization, and expression profile of aquaporin gene family in flax (*Linum usitatissimum*). *Scientific Reports* 7(1):46137 DOI 10.1038/srep46137.

Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD, Higgins DG. 2011. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. *Molecular Systems Biology* 7(1):539 DOI 10.1038/msb.2011.75.

Singh A, Kumar A, Hartley S, Singh IK. 2020. Silicon: its ameliorative effect on plant defense against herbivory. *Journal of Experimental Botany* 72:eraa300 DOI 10.1093/jxb/eraa300.

Song A, Li Z, Zhang J, Xue G, Fan F, Liang Y. 2009. Silicon-enhanced resistance to cadmium toxicity in *Brassica chinensis* L. is attributed to Si-suppressed cadmium uptake and transport and Si-enhanced antioxidant defense capacity. *Journal of Hazardous Materials* 172(1):74–83 DOI 10.1016/j.jhazmat.2009.06.143.

Steiner AA. 1984. The universal nutrient solution. In: *Proceedings of the Sixth International Congress on Soilless Culture*, Wageningen, The Netherlands. 633–650.
Sun H, Duan Y, Mitani-Ueno N, Che J, Jia J, Liu J, Guo J, Ma JF, Gong H. 2020. Tomato roots have a functional silicon influx transporter but not a functional silicon efflux transporter. *Plant, Cell & Environment* **43**(3):732–744 DOI 10.1111/pce.13679.

Takahashi E, Ma JF, Miyake Y. 1990. The possibility of silicon as an essential element for higher plants. *Comments on Agricultural and Food Chemistry* **2**:99–122.

Takano J, Wada M, Ludewig U, Schauf G, von Wirén N, Fujiwara T. 2006. The *Arabidopsis* major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation. *Plant Cell* **18**(6):1498–1509 DOI 10.1105/tpc.106.041640.

The UniProt Consortium. 2019. UniProt: a worldwide hub of protein knowledge. *Nucleic Acids Research* **47**(D1):D506–D515 DOI 10.1093/nar/gky1049.

Trejo-Téllez LI, García-Jiménez A, Escobar-Sepúlveda HF, Ramírez-Olvera SM, Bello-Bello JJ, Gómez-Merino FC. 2020. Silicon induces hormetic dose-response effects on growth and concentrations of chlorophylls, amino acids and sugars in pepper plants during the early developmental stage. *PeerJ* **8**(14078):e9224 DOI 10.7717/peerj.9224.

Tubaña BS, Babu T, Datnoff LE. 2016. A review of silicon in soils and plants and its role in US agriculture: history and future perspectives. *Soil Science* **181**:393–411 DOI 10.1097/SS.0000000000000179.

Tubaña BS, Beckman JR. 2015. Silicon in soils and plants. In: Rodrigues FA, Datnoff LE, eds. *Silicon and Plant Disease*. Cham: Springer, 7–51.

Vaculík M, Lukačová Z, Bokor B, Martinka M, Tripathi DK, Lux A. 2020. Alleviation mechanisms of metal(loid) stress in plants by silicon: a review. *Journal of Experimental Botany* **2**:eraa288 DOI 10.1093/jxb/eraa288.

Vatansever R, Ozyigit II, Filiz E, Gozugara N. 2017. Genome-wide exploration of silicon (Si) transporter genes, Lsi1 and Lsi2 in plants; insights into Si-accumulation status/capacity of plants. *BioMetals* **30**(2):185–200 DOI 10.1007/s10534-017-9992-2.

Waese J, Provart NJ. 2016. The Bio-Analytic Resource: data visualization and analytic tools for multiple levels of plant biology. *Current Plant Biology* **7-8**:2–5 DOI 10.1016/j.cpb.2016.12.001.

Wallace IS, Roberts DM. 2005. Distinct transport selectivity of two structural subclasses of the nodulin-like intrinsic protein family of plant aquaglyceroporin channels. *Biochemistry* **44**(51):16826–16834 DOI 10.1021/bi0511888.

Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ. 2007. An “Electronic Fluorescent Pictograph” browser for exploring and analyzing large-scale biological data sets. *PLOS ONE* **2**(8):e718 DOI 10.1371/journal.pone.0000718.

Wu J, Guo J, Hu Y, Gong H. 2015. Distinct physiological responses of tomato and cucumber plants in silicon-mediated alleviation of cadmium stress. *Frontiers in Plant Science* **6**:453 DOI 10.3389/fpls.2015.00453.

Xu D, Gao T, Fang X, Bu H, Li Q, Wang X, Zhang R. 2020. Silicon addition improves plant productivity and soil nutrient availability without changing the grass: legume ratio response to N fertilization. *Scientific Reports* **10**(1):10295 DOI 10.1038/s41598-020-67333-7.

Yan GC, Nikolic M, Ye MJ, Xiao ZX, Liang YC. 2018. Silicon acquisition and accumulation in plant and its significance for agriculture. *Journal of Integrative Agriculture* **17**(10):2138–2150 DOI 10.1016/S2095-3119(18)62037-4.
Zargar SM, Mahajan R, Bhat JA, Nazir M, Deshmukh R. 2019. Role of silicon in plant stress tolerance: opportunities to achieve a sustainable cropping system. *Biotech* 9(3):73 DOI 10.1007/s13205-019-1613-z.

Zellner W, Lutz L, Khandekar S, Leisner S. 2019. Identification of NtNIP2;1: an Lsi1 silicon transporter in *Nicotiana tabacum*. *Journal of Plant Nutrition* 42(9):1028–1035 DOI 10.1080/01904167.2019.1589500.

Zhang Y, Shi Y, Gong HJ, Zhao HL, Li HL, Hu YH, Wang YC. 2018a. Beneficial effects of silicon on photosynthesis of tomato seedlings under water stress. *Journal of Integrative Agriculture* 17(10):2151–2159 DOI 10.1016/S2095-3119(18)62038-6.

Zhang X, Zhang W, Lang D, Cui J, Li Y. 2018b. Silicon improves salt tolerance of *Glycyrrhiza uralensis* Fisch. by ameliorating osmotic and oxidative stresses and improving phytohormonal balance. *Environmental Science and Pollution Research* 25(26):25916–25932 DOI 10.1007/s11356-018-2595-9.

Zhao XQ, Mitani N, Yamaji N, Shen RF, Ma JF. 2010. Involvement of silicon influx transporter OsNIP2;1 in selenite uptake in rice. *Plant Physiology* 153(4):871–877 DOI 10.1104/pp.110.157867.

Zhu Y, Gong H. 2014. Beneficial effects of silicon on salt and drought tolerance in plants. *Agronomy for Sustainable Development* 34(2):455–472 DOI 10.1007/s13593-013-0194-1.

Zimmermann P, Bleuler S, Laule O, Martin F, Ivanov N, Campanoni P, Oishi K, Lugon-Moulin N, Wyss M, Hruz T, Gruissem W. 2014. ExpressionData—a public resource of high quality curated datasets representing gene expression across anatomy, development and experimental conditions. *BioData Mining* 7(1):18 DOI 10.1186/1756-0381-7-18.