Diabetes mellitus increased integrins gene expression in rat endometrium at the time of embryo implantation

Abbas Bakhteyari¹ Ph.D. candidate, Yasaman Zarrin¹ M.D., Parvaneh Nikpour²,³ Ph.D., Zeinab Sadat Hosseiny¹ M.Sc., Fatemah Sadat Mostafavi¹ M.D, Ph.D., Nahid Eskandari⁴ Ph.D., Mohammad Matinfar⁵ M.D., Roshanak Aboutorabi¹ Ph.D.

¹Department of Anatomical Sciences, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
²Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
³Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
⁴Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
⁵Department of Internal Medicine Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.

Abstract

Background: Diabetes mellitus deeply changes the genes expression of integrin (Itg) subunits in several cells and tissues such as monocytes, arterial endothelium, kidney glomerular cells, retina. Furthermore, hyperglycemia could impress and reduce the rate of successful assisted as well as non-assisted pregnancy. Endometrium undergoes thorough changes in normal menstrual cycle and the question is: What happens in the endometrium under diabetic condition?

Objective: The aim of the current study was to investigate the endometrial gene expression of α3, α4, αv, Itg β1 and β3 subunits in diabetic rat models at the time of embryo implantation.

Materials and Methods: Twenty-eight rats were randomly divided into 4 groups: control group, diabetic group, pioglitazone-treated group, and metformin-treated group. Real-time PCR was performed to determine changes in the expression of Itg α3, α4, αv, β1, and β3 genes in rat’s endometrium.

Results: The expression of all Itg subunits increased significantly in diabetic rats’ endometrium compared with control group. Treatment with pioglitazone significantly reduced the level of Itg subunits gene expression compared with diabetic rats. While metformin had a different effect on α3 and α4 and elevated these two subunits gene expression.

Conclusion: Diabetes mellitus significantly increased the expression of studied Itg subunits, therefore untreated diabetes could be potentially assumed as one of the preliminary elements in embryo implantation failure.

Key words: Diabetes mellitus, Embryo implantation, Integrins, Endometrium.
1. Introduction

Diabetes mellitus (DM) is referred to a member of metabolic disorders whose common feature is high blood glucose level. Diabetic individuals are at more life-threatening risk than normoglycemic people which can lead to increase in their healthcare costs and reduce their quality of life (1). The dramatic increase in the number of people with diabetes is due to population aging, changes in lifestyle, obesity, and population growth (2). Type 2 diabetes mellitus (T2DM) or non-insulin-dependent diabetes mellitus (NIDDM) is diagnosed in about 90% of cases before age 30. It ought to be considered, this age is approximately in the middle range of women’s fertility age (2). Platt and colleagues have reported that the rate of abortion after the implantation of blastocyst in diabetic women is nine times more than non-diabetic and healthy women (3).

The World Health Organization has reported that 8–10% of couples in the world are suffering from infertility, which is considered as a medical problem (2). The specific mechanisms of the preliminary causes of pregnancy failure, spontaneous and frequent abortions in diabetic women have not yet been clearly identified (4).

Unexplained infertility has several potential causes, one of which may be embryo implantation failure (5). It seems that these events could probably be in relation to underlying metabolic disorders such as DM (6). In humans and animals, the embryo implantation and the onset of pregnancy requires the occurrence of temporary and extremely planned events which provide and equip the endometrium at a specific time for blastocyst acceptance. This specific time is termed as the “window of implantation” (4, 7). During this period of time, blastocyst binds to the maternal tissue and adheres to endometrial epithelium, triggering a cascade of complex events that ultimately leads to the development of the placenta and embryo (8).

Genes and proteins that are involved in several uterine mechanisms, including cytokines/chemokines, growth factors, enzymes, aquaporins, and cell adhesion molecules such as cadherins, selectins, and integrins (Itg), play roles in regulating embryo-uterine dialogue at the time of implantation (9).

Several Itg subunits including α3, α4, αv, β1, and β3 have been identified in luminal and glandular endometrial epithelium (5). α3β1 Itg has a high tendency to bind with collagen, laminin, and fibronectin in extracellular matrix. But α4β1 Itg is known as a specific receptor for laminin, and the αvβ3 Itg is a major fibronectin receptor (10, 11). Diabetes and subsequent increases in blood glucose have been reported to affect the expression of Itg (12). In diabetic nephropathy rat model, αv, β1, and β3 Itg subunits gene expression was significantly upregulated compared to the control group in the renal cortex (13). In the early stage of diabetic nephropathy in human, α3β1 Itg gene expression significantly rose (14).

During a normal and natural menstrual cycle, the Itg α4, αv, β1, and β3 subunits should be periodically expressed in the endometrium at the exact site and appropriate amount (15). In cases with implantation failures, down regulation of αvβ3 expression were observed in endometrium (5, 16). In mice and rabbits, blockage of Itg αv and β3 subunits could lead to reduction in the number of implantation sites (17) and implantation failure could occur at the time of endometrial penetration in β1 subunit null mice (18). As mentioned earlier, DM could impress on Itg subunits gene expression in different tissues and organs (12, 19).

Metformin is considered as the first line for treatment in DM, if there is no contraindication (20). Pioglitazone is one of the subsets of thiazolidinedione (TZDs) family which is widely used for the treatment of DM. This drug has attracted the attention due to its multiple impressions beyond controlling hyperglycemia in liver, muscle, and adipose tissue by cell insulin-sensitizing activity.
and its effect on peroxisome proliferator-activated receptor-gamma (PPARγ) (21).

The aim of the current study was to investigate the endometrial gene expression of \(\text{Itg} \alpha3, \text{Itg} \alpha4, \text{Itg} \alpha\text{v}, \text{Itg} \beta1, \text{and}\ \text{Itg} \beta3 \) subunits in diabetic rat model at the time of embryo implantation. We furthermore assessed the effects of metformin and pioglitazone treatment on the expression level of these \(\text{Itg} \) subunits in the endometrium tissue of diabetic rats.

2. Materials and Methods

2.1. Animals

This interventional experimental study was performed on diabetic rat models at the central laboratory of Isfahan University of Medical Sciences in 2018. Adult virgin female Wistar rats weighting 200 ± 25 gr, aged around six weeks were purchased from the Pasteur Institute of Iran. Animals were maintained in constant humidity (40-70%), air-conditioned quarters (temperature 22-24°C) and 12 hr light/dark photoperiod (22).

2.2. Study design and sampling

Twenty eight rats were randomly divided into four groups with seven rats each as follows: Control group, STZ + NA-induced diabetic group without any treatment (FBS ≥ 250 mg/dl), diabetic group that received Pioglitazone 20 mg/kg/day by orogastric gavage, and diabetic rats that received metformin 100 mg/kg/day by orogastric gavage.

2.3. Induction of diabetes

In order to induce experimental T2DM in animals, Nicotinamide (NA, Sigma-Aldrich, Germany) and Streptozotocin (STZ, Sigma-Aldrich, Germany) were used. First, Nicotinamide (200-230 mg/kg) and 15 min later, 60 mg/kg Streptozotocin were intraperitoneally injected (23). After three days, blood samples were taken to measure fasting blood sugar (FBS) using a glucometer (HemoCue Glucose 201+, Sweden). Animals with a blood glucose level above 250 mg/dl were considered as a diabetic model. Animals were maintained in diabetic condition for four weeks. Then during the next four weeks, they received hypoglycemic drugs. FBS levels were measured every four days using glucometer (HemoCue Glucose 201+, Sweden) and glucose reagent strips (ACCU-CHEK Active, Germany) through the dorsal vein of rats’ tail. Twenty four days after the administration of metformin or pioglitazone, two female and one male rats were placed in one cage in all study groups in order to mate animals. The day after that, the rats’ vagina was checked. The presence of the vaginal plug revealed the first day of pregnancy and the time of implantation window was considered four days later (28th day after the beginning of the treatment by both drugs). Four weeks after the treatment with metformin or pioglitazone, the time of implantation, animals fasted overnight and were then sacrificed by intraperitoneal injection of Ketamine hydrochloride (50 mg/kg) and Xylazine hydrochloride (7 mg/kg). Uterine horns were dissected and removed in a sterile condition. Uteri were washed with Hanks’ balanced salt solution and chopped in several fragments. Tissues were then snap-frozen and kept in -80°C until performing further experiments.

2.4. Total RNA isolation and cDNA synthesis

Total RNA was extracted from endometrium tissue using RNX-plus solution (Sinaclon, Iran) as stated in manufacturer’s protocol. To determine RNA integrity, 1% agarose gel electrophoresis was used and total RNA concentrations were evaluated by Nanodrop instrument (Nanolytik, Germany) at
an optical density of 260 nm and stored at -80°C for the next steps. Using DNase set (Fermentas, Lithuania), DNase I treatment was performed in order to eliminate genomic DNA in the RNA samples. Synthesis of cDNA was performed from 1 µg of total RNA, by means of PrimeScriptTM RT reagent Kit (TaKaRa, Japan) as stated in the protocol.

2.5. Quantitative real-time polymerase chain reaction

The expression level of Itg α3, α4, αv, β1, and β3 genes were assessed by quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR). Specific primers (Table I) were designed utilizing GeneRunner software, version 4.0 (Hastings Software, Inc.) and tested by BLAST (Basic Local Alignment Search Tool (http://blast.ncbi.nlm.nih.gov/Blast.cgi)) for specific attachment to the genome. The β-actin gene was considered as the housekeeping gene (24). Real-time PCR was carried out with RealQ Plus x2 Master Mix, green (high ROX) (AMPLIQON, Denmark) on an Applied Biosystems StepOnePlus™ instrument. Standard cycling steps were used to perform Real-time PCR. Amplification conditions included of the first denaturation at 95°C for 10 min, 40 cycles of denaturation at 95°C for 15 sec, annealing at a specific temperature for each gene, according to Table I, for 60 sec, then an extension for 15 sec at 72°C.

Table I. Primer sequences used in the Real-time PCR technique

Primer name	Sequence	Tm (°C)	Annealing temperature (°C)	Amplicon size (bp)
β-actin-F	5´-GCCTTCCTCTCCTGGGTATG-3´	63.4	60	178
β-actin-R	5´-AGGAGGAGGGAGGAGTAATC-3´	63	56.8	176
Itg α3-F	5´-AGCAGCTCGACAGATTTACGAG-3´	61.2	56.4	142
Itg α3-R	5´-GGAGGTATATGAGACAGATC-3´	59.8	54.4	128
Itg α4-F	5´-GCATACTGATTTCAAGCAG-3´	57.7	53.1	174
Itg α4-R	5´-CTCTGTGTTTCGTTTGGTG-3´	57.4	53.1	174
Itg αv-F	5´-TGTAACGGGAGTAGGATC-3´	56.1	56.4	191
Itg αv-R	5´-ACTGCTGCTGTGGGCAGT-3´	56.6	56.4	191
Itg β1-F	5´-TGTGCTCTAGTCCGT-3´	61.3	53.3	164
Itg β1-R	5´-GTCGCTGCTACAGGATC-3´	59.4		
Itg β3-F	5´-GTCGCTAGGTCTTTACCAG-3´	56.5		
Itg β3-R	5´-GAGATCGCCCTCTCCAG-3´	56.3		
2.6. Ethical consideration

The Isfahan University of Medical Sciences Institutional Animal Ethical Committee approved all the experimental procedures (IR.MUI.REC.1394.1.184).

2.7. Statistical analysis

In order to quantify the relative values of gene expression, 2-ΔΔCT method (25) was used. Statistical analysis was performed using Statistical Package for the Social Sciences (SPSS) software, version 16.0. All experiments were performed at least twice or thrice and final results were expressed as means ± standard deviation (SD). One-Sample Kolmogorov–Smirnov Test was performed in order to evaluate normality. One-way ANOVA and Bonferroni post-test were performed to detect statistical significance which was considered as p < 0.05.

3. Results

3.1. The gene expression of α3 integrin

The expression of Itg α3 was significantly increased in diabetic group in comparison with control group (p < 0.001, Figure 1). Following the treatment by metformin, α3 gene expression was significantly raised. A significant decrease was observed after pioglitazone treatment compared with the diabetic group (p < 0.001).

3.2. The gene expression of α4 integrin

As Figure 2 shows, the Itg α4 gene expression in the diabetic group was significantly higher than in the control group (p < 0.001). The level of Itg α4 gene expression in the pioglitazone-treated group was lower than the diabetic group; however, this difference was not significant (p = 1.00). On the contrary, the level of Itg α4 gene expression in metformin-treated group was higher than the diabetic group, and a significant difference was observed in comparison with the diabetic group (p < 0.002).

3.3. The gene expression of αv integrin

As Figure 3 illustrates, the results of the expression of Itg αv gene show that the expression in the diabetic group is higher than the other groups and is statistically significant in comparison with the control group (p < 0.001), metformin-treated group (p < 0.001), and pioglitazone-treated group (p < 0.001). Both the metformin and pioglitazone decreased the amount of αv gene expression compared with the diabetic group (p < 0.001).

3.4. The gene expression of β1 integrin

As Figure 4 reveals, the mean of Itg β1 gene expression in diabetic group has significant difference in comparison with the control group (p < 0.001), metformin-treated group (p < 0.001), and pioglitazone-treated group (p < 0.001). After the treatment with both metformin and pioglitazone, the level of Itg β1 gene expression significantly decreased (p < 0.001).

3.5. The gene expression of β3 integrin

Figure 5 demonstrates that its expression in the diabetic group has significant difference with the control group (p < 0.001) and significantly decreased after the treatment with metformin (p = 0.001) and pioglitazone (p < 0.001).
Figure 1. Comparison of Itg α3 gene expression at the time of embryo implantation in the rat endometrium. All values were presented as mean ± SD; p < 0.05 was considered statistically significant; Diab + met = diabetic group treated with metformin and Diab + Pi = diabetic group treated with piglitazone; * shows significant difference between diabetic group and control group; # shows significant difference between diabetic group compared with Diab + met group and Diab + Pi group.

Figure 2. Comparison of Itg α4 gene expression at the time of embryo implantation in the rat endometrium. All values were presented as mean ± SD; p < 0.05 was considered statistically significant; Diab + met = diabetic group treated with metformin and Diab + Pi = diabetic group treated with piglitazone. * shows significant difference between diabetic group and control group; # shows significant difference between diabetic group compared with Diab + met group and Diab + Pi group.

Figure 3. Comparison of Itg αv gene expression at the time of embryo implantation in the rat endometrium. All values were presented as mean ± SD; p < 0.05 was considered statistically significant; Diab + met = diabetic group treated with metformin and Diab + Pi = diabetic group treated with piglitazone. * shows significant difference between diabetic group and control group. # shows significant difference between diabetic group compared with Diab + met group and Diab + Pi group.
4. Discussion

DM is swiftly going to become one of the serious health problems around the world affecting several tissues and organs (2). The association of DM with Itg subunits genes and proteins expression changes has already been proven in various tissues and organs such as kidney, retina, arterial endothelium, and astrocytes (26, 27). The current study revealed that the expression of Itg α3, α4, αv, β1, and β3 subunits was significantly increased in comparison with the control group in the diabetic rat model.

Zhou and colleagues illustrated that Itg αv, β1, and β3 subunits genes expression rose in renal cortex of diabetic nephropathy rat model (13). Similarly, Sawada and colleagues reported in the early stage of human diabetic nephropathy, α3 and β1 genes expression increased (14). From our point of view, effects of metabolic disorders such
as DM probably highlight the reasons and causes of unexplained infertility. In female reproductive system, hormonal changes during the proliferative phase and secretory phase leads to the presence of Itg family molecules in different levels (5, 28). For this reason, the exact time for evaluation of gene expression in the endometrium has high importance. Our study reveals that DM could affect Itg genes expression at the time of implantation window. It means the expression of Itg α3, α4, αv, β1, and β3 subunits in diabetic rat models has increased significantly in comparison with the control group. Previously, the dysregulation of Itg genes expression subunits has been accepted as a reason for the reduction in conception rate and receptivity of the endometrium. Also, it could decrease the chance of embryo adhesion to the endometrial epithelium (29). According to the literature, increasing blood glucose levels could modulate the synthesis and function of Itg in various tissues which by self can lead to the disorganized cell-to-cell- or cell-to-matrix adhesion. These molecular disarrangements could change the natural behavior of these tissues and cells (30). Therefore, DM, as a metabolic disease, deeply impress on the structural status of all of the tissues. Due to the high expression of Itg subunits gene in DM and the possibility of increased adhesion of endometrial cells to each other and extracellular matrix, it seems the invasion of the blastocyst into endometrial epithelium could be reduced and the implantation rate probably falls down (24).

In this study, two common oral hypoglycemic drugs, that is, metformin and pioglitazone were administrated in diabetic rats. Our results reveal that pioglitazone had a better effect on the reduction of all Itg subunit genes expression due to its impression on genes expression pathway, which previously rose in the diabetic group, while metformin reduced the level of αv, β1, and β3 gene expression but elevated the values of α3 and α4 subunit genes. From our point of view, these different effects between two drugs are due to their functional mechanisms. The family of TZDs drug, such as pioglitazone, attaches to PPARγ. Pioglitazone is a “highly selective” agonist for PPARγ. The activation of this receptor activates several DNA transcription factors that are involved in several biological and metabolic pathways such as differentiation, atherosclerosis, adipogenesis, and insulin sensitivity (31). That is why, nowadays, pioglitazone attract more attention and clinical interest. These results indicate that pioglitazone (as a member of the TZDs family) has a more effective impression on controlling the expression of Itg genes. Which may be due to interaction with PPARγ (a key regulator of some genes expression) and effect on DNA transcription in endometrial tissue (24).

5. Conclusion

DM significantly increased the expression of all the studied Itg subunits, therefore untreated diabetes could be potentially considered as one of the elements in embryo implantation failure. Our study suggests that if no clinical contraindication exists and after evaluation of the Itg proteins expression, pioglitazone could be assumed as the elective drug choice to control the upregulation of endometrial Itg in diabetic rat models at the time of implantation.

Acknowledgments

The authors would like to express their appreciation to the Isfahan University of Medical Sciences for the financial support under the projects nos194184 and 196258.

Conflict of Interest

The authors declare that there is no conflict of interest.
References

[1] Baena-Diez JM, Peñafiel J, Subirana I, Ramos R, Elosua R, Marín-Ibáñez A, et al. Risk of cause-specific death in individuals with diabetes: a competing risks analysis. Diabetes Care 2016; 39: 1987–1995.

[2] Basmatzou T, Hatziveiaks K. Diabetes mellitus and influences on human fertility. Int J Caring Sci 2016; 9: 371–379.

[3] Platt MJ, Stanisstreet M, Casson IF, Howard CV, Walkinshaw S, Pennycook S, et al. St vincent’s declaration 10 years on: outcomes of diabetic pregnancies. Diabet Med 2002; 19: 216–220.

[4] Albaghdadi AJ, Kan FW. Endometrial receptivity defects and impaired implantation in diabetic NOD mice. Biol Reprod 2012; 87: 30.

[5] Elmagar A, Farag AH, Gaber ME, Hafeez MA, Ali MS, Atef AM. AlphaVBeta3 Integrin expression within uterine endometrium in unexplained infertility: a prospective cohort study. BMC Women’s Health 2017; 17: 90.

[6] Seaward AV, Burke SD, Croy BA. Interferon gamma contributes to preimplantation embryonic development and to implantation site structure in NOD mice. Hum Reprod 2010; 25: 2829–2839.

[7] Murphy CR, Shaw TJ. Plasma membrane transformation: a common response of uterine epithelial cells during the peri-implantation period. Cell Biol Int 1994; 18: 1115–1128.

[8] Aplin JD, Ruane PT. Embryo-epithelium interactions during implantation at a glance. J Cell Sci 2017; 130: 15–22.

[9] Bazer FW, Spencer TE, Johnson GA, Burghardt RC, Wu G. Comparative aspects of implantation. Reproduction 2009; 138: 195–209.

[10] Pan L, Zhao Y, Yuan Z, Qin G. Research advances on structure and biological functions of integrins. Springerplus 2016; 5: 1094.

[11] Van der Flier A, Sonnenberg A. Function and interactions of integrins. Cell Tissue Res 2001; 305: 285–298.

[12] Kostidou E, Koliakos G, Kaloyianni M. Increased monocyte alphaL, alphaM and beta2 integrin subunits in diabetes mellitus. Clin Biochem 2009; 42: 634–640.

[13] Zhou X, Zhang J, Haimbach R, Zhu W, Mayer–Ezell R, Garcia–Calvo M, et al. An integrin antagonist (MK–0429) decreases proteinuria and renal fibrosis in the ZSF1 rat diabetic nephropathy model. Pharmacol Res Perspect 2017; 5: doi: 10.1002/prp2.354.

[14] Savada K, Toyoda M, Kaneyama N, Shiraawa S, Moriya H, Miyatake H, et al. Upregulation of α3β1-integrin in podocytes in early-stage diabetic nephropathy. J Diabetes Res 2016; 2016: 9265074.

[15] Coughlan C, Sinagra M, Ledger W, Li T, Laird S. Endometrial integrin expression in women with recurrent implantation failure after in vitro fertilization and its relationship to pregnancy outcome. Fertil Steril 2013; 100: 825–830.

[16] Surrey ES, Minjarez DA, Schoolcraft WB. The incidence of aberrant endometrial αvβ 3 vitronectin expression in a high risk infertility population: could prolonged GnRH agonist therapy play a role? J Assist Reprod Genet 2007; 24: 553–556.

[17] Chang CC, Kuan TC, Tsieh YY, Ho YJ, Sun YL, Lin CS. Effects of diosgenin on myometrial matrix metalloproteinase-2 and-9 activity and expression in ovariectomized rats. Int J Biol Sci 2011; 7: 837–847.

[18] Stephens LE, Sutherland AE, Klimanskaya IV, Andrieux A, Meneses J, Pedersen RA, et al. Deletion of beta 1 integrins in mice results in inner cell mass failure and peri-implantation lethality. Genes Dev 1995; 9: 1883–1895.

[19] Kitsiou PV, Tzinia AK, Stetler-Stevenson WG, Michael AF, Fan WW, Zhou B, et al. Glucose-induced changes in integrins and matrix-related functions in cultured human glemorular epithelial cells. Am J Physiol Renal Physiol 2003; 284: F671–F679.

[20] Downes MJ, Bettington EK, Gunton JE, Turkstra E. Triple therapy in type 2 diabetes; a systematic review and network meta-analysis. Peer J 2015; 3: e1461.

[21] Aghamohammazadeh N, Niavar M, Dalir Abdolahinia E, NajafiGhorour F, Mohammadzadeh Gharebaghi S, Adabi K, et al. The effect of pioglitazone on weight, lipid profile and liver enzymes in type 2 diabetic patients. Ther Adv Endocrinol Metab 2015; 6: 56–60.

[22] Zavareh S, Gholizadeh Z, Lashkarbolouki T. Evaluation of changes in the expression of Wnt/β-catenin target genes in mouse reproductive tissues during estrous cycle: An experimental study. Int J Reprod Biomed 2018; 16: 69–76.

[23] Masiello P, Broca C, Gross R, Roye M, Manteghetti M, Hillaire-Buys D, et al. Experimental NIDDM: development of a new model in adult rats administered streptozotocin and nicotinamide. Diabetes 1998; 47: 224–229.

[24] Hosseiny ZS, Nikpour P, Bakhetyari A, Mostafavi FS, Matinfar M, Jahani M, et al. Evaluation of osteopontin gene expression in endometrium of diabetic rat models treated with metformin and pioglitazone. Int J Fertil Steril 2019; 12: 293–297.

[25] Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001; 25: 402–408.

[26] Yun JH, Park SW, Kim JH, Park YJ, Cho CH, Kim JH. Angiopoietin 2 induces astrocyte apoptosis via αvβ5-integrin signaling in diabetic retinopathy. Cell Death Dis 2016; 7: e2101.

[27] Almeida ME, Monteiro KS, Kato EE, Sampaio SC, Braga TT, Câmara NO, et al. Hyperglycemia reduces integrin subunits alpha v and alpha 5 on the surface of dermal fibroblasts contributing to deficient migration. Mol Cell Biochem 2016; 421: 19–28.

[28] Peyghambari F, Fayazi M, Amanpour S, Haddadi M, Muhhammadnejad S, Muhhammadnejad A, et al. Assessment of α4, αv, β1 and β3 integrins expression throughout the implantation window phase in endometrium of a mouse model of polycystic ovarian syndromes. Iran J Reprod Med 2014; 12: 687–694.
[29] Lessey BA. Endometrial integrins and the establishment of uterine receptivity. *Hum Reprod* 1998; 13 (Suppl.): 247–258.

[30] Roth T, Podesta F, Stepp MA, Boeri D, Lorenzi M. Integrin overexpression induced by high glucose and by human diabetes: potential pathway to cell dysfunction in diabetic microangiopathy. *Proc Natl Acad Sci USA* 1993; 90: 9640–9644.

[31] Fürnsinn C, Waldhäusl W. Thiazolidinediones: metabolic actions in vitro. *Diabetologia* 2002; 45: 1211–1223.