Diverse responses of *Symbiodinium* types to menthol and DCMU treatment

Jih-Terng Wang Curresp., 1, Shashank Keshavmurthy 2, Tzu-Ying Chu 1, Chaolun Allen Chen Curresp. 2, 3

1 Graduate Institute of Biotechnology, Tajen University, Pingtung, Taiwan
2 Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
3 Institute of Oceanography, National Taiwan University, Taipei, Taiwan

Corresponding Authors: Jih-Terng Wang, Chaolun Allen Chen
Email address: jtwtaiwan@gmail.com, cac@gate.sinica.edu.tw

To understand the mechanism of photosynthetic inhibition and generation of reactive oxygen species (ROS) in *Symbiodinium* types under stress, chemicals such as dichlorophenyl dimethylurea (DCMU) are widely used. Moreover, DCMU and recently menthol were used to generate aposymbiotic cnidarian hosts. While the effects of DCMU on *Symbiodinium* cells have been extensively studied, no studies have shown the mechanism behind menthol-induced coral bleaching. Moreover, no study has compared the effects of DCMU and menthol treatments on photosystem II (PSII) activity and generation of ROS in different *Symbiodinium* types. In this study, we utilized five freshly isolated *Symbiodinium* types (*S. minutum* (B1), *S. goreaui* (C1), C3, C15, and *S. trenchii* (D1a)) to compare the effects of DCMU and menthol treatments. *Symbiodinium* cells were exposed to DCMU and menthol at different concentrations for 4 h. Results showed that values of the 50% inhibitory concentration (IC$_{50}$) for PSII inhibition were 0.72~1.96 mM for menthol-treated cells compared to 29~74 pM for DCMU-treated cells. Diverse responses of *Symbiodinium* types were displayed in terms of PSII tolerance to menthol (*S. minutum*>*S. trenchii=*=C15>C3=*=S. goreaui*), and also in the response curves. In contrast, responses were not so diverse when the different types were treated with DCMU. Three of five menthol-treated *Symbiodinium* types showed instant and significant ROS generation when PSII activity was inhibited, compared to no ROS being generated in DCMU-treated *Symbiodinium* types. Both results indicated that menthol inhibited *Symbiodinium* PSII activity through *Symbiodinium* type-dependent mechanisms, which were also distinct from those with DCMU treatment. This study further confirmed that photosynthetic functions *Symbiodinium* have diverse responses to stress even within the same clade.
Diverse responses of *Symbiodinium* types to menthol and DCMU treatment

Jih-Terng Wang¹, Shashank Keshavmurthy ², Tzu-Ying Chu¹, Chaolun Allen Chen²,³

¹Graduate Institute of Biotechnology, Tajen University, Pingtung 907, Taiwan
²Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan
³Institute of Oceanography, National Taiwan University, Taipei 10617, Taiwan

Corresponding authors:
Jih-Terng Wang¹, Email address: jtw@tajen.edu.tw
Chaolun Allen Chen²,³, Email address: cac@gate.sinica.edu.tw
Abstract
To understand the mechanism of photosynthetic inhibition and generation of reactive oxygen species (ROS) in Symbiodinium types under stress, chemicals such as dichlorophenyl dimethylurea (DCMU) are widely used. Moreover, DCMU and recently menthol were used to generate aposymbiotic cnidarian hosts. While the effects of DCMU on Symbiodinium cells have been extensively studied, no studies have shown the mechanism behind menthol-induced coral bleaching. Moreover, no study has compared the effects of DCMU and menthol treatments on photosystem II (PSII) activity and generation of ROS in different Symbiodinium types. In this study, we utilized five freshly isolated Symbiodinium types (S. minutum (B1), S. goreaui (C1), C3, C15, and S. trenchii (D1a)) to compare the effects of DCMU and menthol treatments. Symbiodinium cells were exposed to DCMU and menthol at different concentrations for 4 h. Results showed that values of the 50% inhibitory concentration (IC$_{50}$) for PSII inhibition were 0.72~1.96 mM for menthol-treated cells compared to 29~74 pM for DCMU-treated cells. Diverse responses of Symbiodinium types were displayed in terms of PSII tolerance to menthol (S. minutum $>$ S. trenchii=C15$>$C3$=$S. goreaui), and also in the response curves. In contrast, responses were not so diverse when the different types were treated with DCMU. Three of five menthol-treated Symbiodinium types showed instant and significant ROS generation when PSII activity was inhibited, compared to no ROS being generated in DCMU-treated Symbiodinium types. Both results indicated that menthol inhibited Symbiodinium PSII activity through Symbiodinium type-dependent mechanisms, which were also distinct from those with DCMU treatment. This study further confirmed that Symbiodinium photochemical responses to stress are diverse even within the same clade.

INTRODUCTION
Symbiodinium spp. are associated with marine invertebrate hosts, including Protista, Porifera, Cnidaria, and Mollusca (Coffroth & Santos 2005), and play important functional roles in providing photosynthesis-derived carbon and conserving or recycling host nitrogen metabolites (Davy et al. 2012). To date, nine (A~I) Symbiodinium clades and numerous subcladal types have been identified with distinguishable genetic identities and physiological characteristics (reviewed in Stat and Gates 2011). Among these, only clades A, B, C, and D are widely associated with scleractinian corals. Different Symbiodinium types are known to show variations in their photosynthesis functions (Rowan 2004; Tchernov et al. 2004; Robinson & Warner 2006; Sampayo et al. 2008; Wang et al. 2012b; Suggett et al. 2015), resulting in different contributions to their symbiotic associations (Sat et al. 2008; Yuyama & Higuchi 2014; Pernice et al. 2015). Various stress tolerabilities among different Symbiodinium types were also revealed by high antioxidant plasticity (Krueger et al. 2014).

The association between corals and Symbiodinium is highly vulnerable to physical and chemical disturbances. For example, only 1~2°C above the summer average under moderate to high irradiance is enough to disrupt the symbiotic relationship and end up with loss of symbionts from coral hosts, resulting in ‘coral bleaching’ (Fitt et al. 2001; Lesser & Farrell 2004). The mechanism of Symbiodinium depletion (reviewed in Weis 2008), from cnidarian host cells, is generally attributed to damage by reactive oxygen species (ROS) generated from photoinhibition of Symbiodinium during stress (e.g., high temperature, irradiance, or herbicides, e.g., dichlorophenyl dimethylurea (DCMU) treatment) (Jones et al. 1998; Jones 2004, 2005) or stress on the coral host's metabolism (Jones 2004). Disruption of Symbiodinium-coral symbiosis can also be achieved by some chemicals such as heavy metals (Jones 1997) and sunscreen contamination (Danovaro et al. 2008). However, there is no direct evidence to indicate coral
bleaching caused by ROS generated by DCMU-treated \textit{Symbiodinium} (Jones 2004).

While use of DCMU to generate aposymbiotic cnidarian hosts and the effects of DCMU on \textit{Symbiodinium} cells have extensively been studied (Murata et al. 2007, Takahashi et al. 2013, Fransolet et al. 2014, Aihara et al. 2016, Parrin and Blackstone 2017), use of menthol as an efficient bleaching agent has only recently been established. In recent years, menthol was found to successfully induce bleaching in coral and sea anemone hosts (Wang \textit{et al.} 2012a; Dani \textit{et al.} 2016; Matthews \textit{et al.} 2016).

Menthol is a cyclic terpene alcohol which can cause local anesthetic effects in neuronal and skeletal muscles by blocking voltage-operated sodium channels (Haeseler \textit{et al.} 2002). This effect has led to its use as a marine anesthetic (Moore 1989; Lauretta \textit{et al.} 2014). A variety of different membrane receptors are known to respond to menthol stimulation, including transient receptor potential (TRP)M8 that results in an increase in intracellular Ca$^{2+}$ concentrations and causes a cold sensation in vertebrates (McKemy \textit{et al.} 2002; Okazawa \textit{et al.} 2000; Peier \textit{et al.} 2002, Hans \textit{et al.} 2012). Menthol is also a cytotoxic compound to plant tissues (Muller & Hauge 1967; Brown \textit{et al.} 1987), causing a drastic reduction in the number of intact mitochondria and Golgi bodies in seedling roots (Lorber & Muller 1976), inhibiting respiration and photosynthesis (Pauly \textit{et al.} 1981), and decreasing cell membrane permeability (Muller \textit{et al.} 1969).

Recently, Wang \textit{et al.} (2012a) demonstrated that menthol can be used to effectively to induce bleaching in the corals \textit{Isopora palifera} and \textit{Stylophora pistillata}. Dani \textit{et al} (2016) further hypothesized that menthol-induced activation of a host TRP receptor might increase the intracellular calcium concentration. Modulation of calcium homeostasis, which is known to upregulate the autophagic pathway (Smaili \textit{et al.} 2013), could therefore trigger \textit{Symbiodinium} depletion through a phagolysosomal process. Whether the PSII breakdown in the endosymbiotic
Symbiodinium in corals is directly or indirectly caused by menthol needs to be clarified. Moreover, no studies have compared responses of different Symbiodinium types to both menthol and DCMU, which would investigate the important but under-explored topic of functional diversity among Symbiodinium species.

In this study, we tested the responses of different Symbiodinium types to DCMU and menthol exposure by evaluating the concentration for 50% inhibition of PSII activity and the generation of ROS. Results of this study will provide information on diverse responses among different Symbiodinium types to menthol treatment and is a first step towards understanding mechanisms of Symbiodinium cell depletion caused by menthol treatment.

MATERIALS AND METHODS

Symbiodinium were isolated from five coral species. Parts of colonies of Acropora humilis, Galaxea fasicularis, Isopora palifera, and Porites lutea corals were collected from reefs within Kenting National Park, Taiwan (21°55′54″N, 120°44′45″E). A sample collection permit (no. 488-100-01) was obtained from the Kenting National Park Authority as part of the long-term environmental monitoring project. Coral colonies were transferred to the laboratory within 3 h in an aerated plastic box, and maintained in an aquarium tank under conditions described in Wang et al. (2011). Corals were acclimatized to laboratory aquarium (Wang et al. 2012) settings (25 °C and 70 µmol photons m^{-2}s^{-1} light) for 1 week before initiating experiments. The glass sea anemone, Exaiptasia pulchella (Grajales and Rodrigues 2014), originally collected from a discharge trench of the Tongkun Fishery Research Institute, Taiwan, had been maintained in a
tank (45×30×30 cm) equipped with illumination and temperature control for more than 1 year.

To prepare freshly isolated *Symbiodinium* (FIS), coral fragments with 5~10 cm² of live tissue and excised tentacles from sea anemones were homogenized and washed with artificial seawater (ASW) prepared from Instant Ocean (Aquarium Systems, France) as described by Wang et al. (2011). The dominant FIS types used in this study were identified as *Symbiodinium* ITS2 types C1 (*S. goreaui*), C3, C15, D1a (*S. trenchii*), and B1 (*S. minutum*) from *S. pistillata, A. humilis, P. lutea, G. fasicularis* and *E. pulchella*, respectively, based on denaturation gradient gel electrophoresis (DGGE) according to Wang et al. (2011).

PSII activities of FIS were determined by the maximum quantum yield (*F*_v/*F*_m), and the minimum (*F*₀) and maximum (*F*_m) fluorescence levels were measured to calculate the variable fluorescence [*F*_v, (*F*_v = *F*_m − *F*₀)] using a DIVING-PAM fluorometer (Walz, Germany) at a setting of 8 for the measuring light and saturating flash of actinic light.

When determining values of the half-maximal inhibitory concentration (IC₅₀), triplicate samples with 5 ml of FIS (around 10⁶ cells ml⁻¹) of each type showing *F*_v/*F*_m values of >0.6 (a value generally considered normal/healthy, Fitt et al. 2001) were transferred to a 50-ml Falcon tube and centrifuged at 417 ×g for 3 min to collect *Symbiodinium*. The algal pellet was then re-suspended in 5 ml of different concentrations of menthol- or DCMU-ASW and maintained at 25 °C under illumination of around 70 µmol photons m⁻²s⁻¹ of photosynthetically active radiation (PAR). Wang et al. (2011) suggested that the PSII activity of FIS begins to fluctuate after incubation for 4 h, so the effects of menthol and DCMU were determined as the 4-h IC₅₀. *F*_v/*F*_m values of FIS in menthol or DCMU were directly determined with the DIVING-PAM fluorometer without dark adaptation at 4 h of incubation, and were converted to PSII inhibition by comparing to values in fresh isolates as below:
PSII inhibition (%) = (1 - \((F_v/F_m)_{4h} / (F_v/F_m)_{0h}\)) \times 100%;

where \((F_v/F_m)_{0h}\) and \((F_v/F_m)_{4h}\) values were respectively measured at 0 and after 4 h of incubation.

After plotting PSII inhibition against the logarithm-transformed concentration of menthol (or DCMU), the equation for calculating the IC\(_{50}\) was obtained from the best curve-fit-model provided in SigmaPlot 10.0 software.

ROS generated in menthol- or DCMU-treated FIS were determined with a 2',7'-dichlorofluorescin diacetate (H\(_2\)DCFDA) probe. FIS (around 10\(^6\) cells ml\(^{-1}\), cells counted as in Wang et al. 2012b) of each \textit{Symbiodinium} type was incubated in ASW containing 1.73 mM menthol (for \textit{S. minutum}, this was 2.43 mM) or 130 pM DCMU as the positive control, for 4 h in which the PSII activity of FIS would be completely inhibited. The mentioned concentration used to examine ROS generation refers to the highest concentration causing maximum inhibition of PSII activity. Also, during the trials of menthol-induced bleaching of the coral hosts, the effective concentration varied between different hosts associated with different \textit{Symbiodinium} types, but all displayed significant photosystem II (PSII) breakdown in the endosymbiotic \textit{Symbiodinium} (Fig. S1). ROS in \textit{Symbiodinium} were detected by incubating 1 ml of an algal suspension with 5 \(\mu l\) H\(_2\)DCFDA (10 mM in dimethyl sulfoxide) for 30 min in the dark, followed by fluorescence microscopic examination (Mydlarz & Jacobs 2004) and fluorescence determination (Wang et al. 2011). The fluorescence data of ROS signals are expressed in arbitrary fluorescence units per cell.

Dose effects (4-h IC\(_{50}\)) of menthol and DCMU on PSII inhibition of FIS were calculated from samples of each treatment. The curve equations for IC\(_{50}\) calculation were determined by the best-fit regression curve of PSII inhibition (%) against the logarithm-transformed reagent concentration, which are described in equation (1) for menthol and (2) for DCMU treatment:
\[y = y_0 + \frac{a}{1 + e^{(x-x_0)/b}} \] (1) and

\[y = \frac{a}{1 + e^{-(x-x_0)/b}} \] (2)

Parameters and regression coefficients of the equations are listed in Table 1.

Comparisons of 4-h IC\textsubscript{50} values between \textit{Symbiodinium} types were made using a one-way analysis of variance (ANOVA) followed by Fisher’s least significance difference (LSD) test, with a significance level of 0.05. The coefficient of variance (CV) was used to evaluate the variation in IC\textsubscript{50} measurements between replicates.
RESULTS

When *Symbiodinium* algae were incubated in menthol-supplemented ASW for 4 h, all five *Symbiodinium* types (*S. minutum*, *S. goreaui*, C3, C15, and *S. trenchii*) displayed typical dose-response curves under menthol concentrations of 0.19~2.43 mM (Fig. 1A). In contrast to menthol inhibition at millimolar levels, DCMU-treated samples displayed PSII inhibition of FIS at picomolar levels (4~129 pM) (Fig. 1B).

Regression coefficients for curve fitting ranged 0.989~0.999 for menthol treatments and 0.995~0.999 for DCMU treatments. When converting parameter “b” in Table 1 to a slope factor (curve steepness) as described by Motulsky and Christopoulos (2003), values for menthol treatments were divided into two groups which included high (20.0~30.3 for *S. minutum*, types C3, and C15) and low slope factors (8.7~9.5 for *S. goreaui* and *S. trenchii*). But those for DCMU-treated FIS displayed only one group of slope factors that ranged 4.3~6.3. The 4-h IC$_{50}$ values for menthol and DCMU treatments on five *Symbiodinium* types were calculated, and results are listed in Table 2. Mean 4-h IC$_{50}$ values for menthol ranged 0.72~1.96 mM with CV values ranging 1.1%~12.3%, and those for DCMU ranged 29~74 pM with CV values of 2.3%~14.1% (Table 2). Two sets of data significantly varied among *Symbiodinium* types (menthol, $F_{4,11} = 17.54, p<0.001$; DCMU, $F_{4,10} = 12.00, p<0.01$), and *S. minutum* was found to be the most tolerant type to both menthol and DCMU irritation ($p<0.05$). In contrast to the comparable tolerability to DCMU among different *Symbiodinium* types, *S. trenchii* and type C15 were significantly more tolerant to menthol than were *S. goreaui* and C3 ($p<0.05$).

In order to explore if ROS are the cause of menthol inhibition of PSII activity of FIS, the generation of algal ROS under a condition of complete PSII activity inhibition by menthol or
DCMU treatment was further examined. According to a fluorescence microscopic examination, no DCMU-treated type displayed green fluorescence, indicating no ROS signal, as found in the ASW control (Fig. S2). However, ROS generation in menthol-treated *Symbiodinium* varied among types. As shown in Fig. 2B, *S. minutum*, consistent with the ASW control in Fig. 2A, showed almost no ROS signal. For *S. trenchii*, there were only mild ROS signals detected (Fig. 2C). In contrast to *S. minutum* and *S. trenchii*, as shown in Fig. 2D-F, types C15, C3, and *S. goreau* displayed intense green fluorescence, representing considerable ROS generation. Direct measurements of the fluorescence intensity derived from an ROS probe also indicated that the five *Symbiodinium* types had varied responses to menthol irritation (Table 3). Menthol-treated *S. goreau*, C3, and C15 types displayed almost double the extent of ROS fluorescence (with mean values of 58~68 fluorescence units cell\(^{-1}\)) of that of *S. trenchii* (35±3 fluorescence units cell\(^{-1}\)), and more than 3-times that of *S. minutum* (18±2 fluorescence units cell\(^{-1}\)) (Table 3). ROS fluorescence intensities obtained from menthol-treated *S. minutum* and all DCMU-treated types were comparable to background levels (with mean values of 18~28 fluorescence units cell\(^{-1}\)), even though *F_v/F_m* values were reduced to < 0.1. In order to monitor the times needed for *Symbiodinium* types to respond to menthol irritation, *F_v/F_m* values and ROS levels of the C3 type were examined every 5 or 10 min after suspending the alga in menthol-supplemented ASW. As shown in Fig. 3A, the *F_v/F_m* value was significantly reduced from 0.685 to < 0.2 within 5 min of incubation, and to nearly 0 after 10 min of incubation. As with the decrease in *F_v/F_m* value, ROS generation in the menthol treated *Symbiodinium* reached a maximum within 5 min of incubation (Fig. 3B).

DISCUSSION
This study indicated that millimolar levels of menthol significantly inhibited PSII activities of five freshly isolated *Symbiodinium* types. Loss of photosynthetic activity in *Symbiodinium* might explain the coral bleaching phenomenon of menthol-treated corals and sea anemones (Wang et al. 2012a; Dani et al. 2016; Matthews et al. 2016). However, various sensitivities and response modes to menthol irritation indicate that different *Symbiodinium* types did not react uniformly to the chemicals. Diverse physiological performances among different *Symbiodinium* types were observed with respect to thermal tolerance (Rowan 2004; Tchernov et al. 2004; Robinson & Warner 2006; Sampayo et al. 2008; Wang et al. 2012b; Suggett et al. 2015), thermal stress-induced reactive oxygen release and antioxidant plasticity (Krueger et al. 2014), and expression of photosynthesis-related genes (Parkinson et al. 2016). Therefore, it is reasonable to expect that different *Symbiodinium* types would exhibit diverse sensitivities to menthol (Fig. 1, Table 1).

However, when PSII activities were completely shut down by menthol, responses of the *Symbiodinium* types could be divided into two groups, ROS generating (*S. goreau*ui, C3, and C15) and non-ROS generating (*S. minutum* and *S. trenchii*). The reason for such a distinction needs to be addressed in future studies.

Menthol and other monoterpenes, because of their lipophilic nature, are known to inhibit growth of plant tissues by inducing lipid oxidation, which affects the membrane structure and function (Zunino & Zygyadlo 2004; Singh et al. 2006; Kaur et al. 2011). As proposed by Wang et al. (2012a), the mechanism of menthol-induced bleaching might be attributable to Ca$^{2+}$ stimulated exocytosis. This has been demonstrated in previous results from transcriptomic studies suggesting the disruption of calcium homeostasis in both corals and sea anemones during stress-induced bleaching (De Salvo et al. 2008, Moya et al. 2012). Also, Dani et al (2016) have
proposed that menthol treatment could be responsible in inducing symbiophagy through Ca\(^{2+}\)-
triggered mechanisms. Preliminary experiments conducted by Wang et al. (2012a) also suggest
that menthol inhibition of *Symbiodinium* PSII activity may play a role in the expulsion of the
algal cells or the digestion of the *Symbiodinium* cells by the host.

Generation of ROS in the menthol-treated clade C *Symbiodinium* might be derived from a
lipid-oxidation process or a reaction of a TRPM8-like channel receptor. In *Symbiodinium* C3,
ROS generation was initiated and reached a maximum within 5 min of incubation (Fig. 3B),
indicating a typical ROS burst reaction as found in infected plants (Wojtaszek 1997). The
production of large amounts of ROS indicates a quick defensive response to stress. As to *S.
minutum*, the lack of ROS detected in the menthol-induced PSII shutdown might be attributed to
cells containing higher antioxidant activities and/or a lack of a TRPM8-like channel receptor.
Comparisons of antioxidant networks revealed that *S. minutum* produced more superoxide
dismutase and ascorbate peroxidase than *S. goreai* when confronting heat stress (Krueger et al.
2014). No ROS generation in menthol-treated *S. trenchii* might be attributed to the “stress-
tolerant” nature of members of *Symbiodinium* clade D (Toller et al. 2001; LaJeunesse et al.
2008), in which ROS levels were found to remain unaffected by heat stress (McGinty et al.
2012).

In conclusion, activity of (TRP)M8 might not be a general phenomenon. We observed
diverse responses based on *Symbiodinium* types to menthol treatment. In addition to (TRP)M8,
menthol might also be inducing symbiophagy (Dani et al. 2016) in the hosts of certain
Symbiodinium types. Although, studies (including this one) have tried to understand the
mechanisms involved in loss of *Symbiodinium* cells when treated with menthol, the clarity as to
what really happens is still lacking and needs to be explored in more detail in future studies.
ACKNOWLEDGEMENTS

The authors would like to thank members of the Coral Reef Evolutionary, Ecology and Genetics (CREEG) Group, Biodiversity Research Center, Academia Sinica (BRCAS) for field support.
References

Coffroth MA, Santos SR. 2005. Genetic diversity of symbiotic dinoflagellates in the genus *Symbiodinium*. *Protist* 156: 19-34.

Dani V, Priouzeau F, Pagnotta S, Carette D, Laugier J-P, Sabourault C. 2016. Thermal and menthol stress induce different cellular events during sea anemone bleaching. *Symbiosis* 69: 175-192.

Davy SK, Allemand D, Weis VM. 2012. Cell biology of cnidarian-dinoflagellate symbiosis. *Microbiology and Molecular Biology Reviews* 76: 229–261.

Desalvo MK, Voolstra CR, Sunagawa S, Schwarz JA, Stillman JH, Coffroth MA, Szmant AM, Medina M. 2008. Differential gene expression during thermal stress and bleaching in the Caribbean coral *Montastrea faveolata*. *Molecular Ecology* 17: 3952-3971.

Douglas AE. 2010. *The symbiotic habit*. New Jersey, Princeton University Press.

Grajales A, Rodríguez E. 2014. Morphological revision of the genus Aiptasia and the family Aiptasiidae (Cnidaria, Actiniaria, Metridioidea). *Zootaxa* 3826: 055–100.

Hans M, Wilhelm M, Swandulla D. 2012. Menthol suppresses nicotinic acetylcholine receptor functioning in sensory neurons via allosteric modulation. *Chemical Senses* 37: 463-469.

Jones RJ. 2004. Testing the ‘photoinhibition’ model of coral bleaching using chemical inhibitors. *Marine Ecology Progress Series* 284: 133-45.

Jones R. 2005. The ecotoxicological effects of Photosystem II herbicides on corals. *Marine Pollution Bulletin* 51: 495-506.

Jones RJ, Hoegh-Guldberg O, Larkum AWD, Schreiber U. 1998. Temperature-induced bleaching of corals begins with impairment of the CO₂ fixation mechanism in zooxanthellae. *Plant Cell & Environment* 21: 1219-30.
Kaur S, Rana S, Singh HP, Batish DN, Kohli RK. 2011. Citronellol disrupts membrane integrity by inducing free radical generation. Zeitschrift für Naturforschung C 66: 260–266.

Krueger T, Becker S, Pontasch S, Dove S, Hoegh-Guldberg O, Leggat W, Fisher PL, Davy SK. 2014. Antioxidant plasticity and thermal sensitivity in four types of Symbiodinium sp. Journal of Phycology 50: 1035–1047.

LaJeunesse T, Reyes-Bonilla H, Warner M, Wills M, Schmidt GW, Fitt WK. 2008. Specificity and stability in high latitude eastern Pacific coral–algal symbioses. Limnology and Oceanography 53: 719–727.

Matthews JL, Sproles AE, Oakley CA, Grossman AR, Weis VM, Davy SD. 2016. Menthol-induced bleaching rapidly and effectively provides experimental aposymbiotic sea anemones (Aiptasia sp.) for symbiosis investigations. Journal of Experimental Biology 219: 306-310.

McGinty ES, Pieczonka J, Mydlarz LD. 2012. Variations in reactive oxygen release and antioxidant activity in multiple Symbiodinium types in response to elevated temperature. Microbial Ecology 64: 1000-1007.

McKemy DD, Neuhausser WM, Julius D. 2002. Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416: 52-58.

Motulsky HJ, Christopoulos A. 2003. Fitting models to biological data using linear and nonlinear regression: A practical guide to curve fitting. GraphPad Software Inc., San Diego CA, www.grappad.com.

Moya A, Ganot P, Furla P, Sabourault C. 2012. The transcriptomic response to thermal stress is immediate, transient and potentiated by ultraviolet radiation in the sea anemone Anemone viridis. Molecular Ecology 21: 1158–1174.
Mydlarz LD, Jacobs RS. 2004. Comparison of an inducible oxidative burst in free-living and symbiotic dinoflagellates reveals properties of the pseudopterosins. *Phytochemistry* 65: 3231-3241.

Okazawa M, Terauchi T, Shiraki T, Matsumura K, Kobayashi S. 2000. l-Menthol-induced \([Ca^{2+}]_i\) increase and impulses in cultured sensory neurons. *Neuroreport* 11: 2151-2155.

Pang ZP, Südhof TC. 2010. Cell biology of Ca2+-triggered exocytosis. *Current Opinion in Cell Biology* 22: 496-505.

Parkinson JE, Baumgarten S, Michell CT, Baums IB, LaJeunesse TC, Christian R, Voolstra CR. 2016. Gene expression variation resolves species and individual strains among coral-associated dinoflagellates within the genus *Symbiodinium*. *Genome Biology & Evolution* 8: 665-680.

Peier AM, Moqrich A, Hergarden AC, Reeve AJ, Andersson DA, Story GM, Earley TJ, Dragoni I, McIntyre P, Bevan S. 2002. A TRP channel that senses cold stimuli and menthol. *Cell* 108: 705-715.

Pernice M, Dunn SR, Tonk L, Dove S, Domart-Coulon I, Hoppe P, Schintlmeister A, Wagner M, Meibom A. 2015. A nanoscale secondary ion mass spectrometry study of dinoflagellate functional diversity in reef-building corals. *Environmental Microbiology*. 17: 3570-3580.

Pochon X, Putnam HM, Gates RD. 2014. Multi-gene analysis of *Symbiodinium* dinoflagellates: a perspective on rarity, symbiosis, and evolution. *PeerJ* 2: e394.

Robinson JD, Warner ME. 2006. Differential impacts of photoacclimation and thermal stress on the photobiology of four different phylotypes of *Symbiodinium* (Pyrrhophyta). *Journal of Phycology* 42: 568-579.

Rowan R. 2004. Thermal adaptation in reef coral symbionts. *Nature* 430: 742.
Sampayo EM, Ridgway T, Bongaerts P, Hoegh-Guldberg O. 2008. Bleaching susceptibility and mortality of corals are determined by fine-scale differences in symbiont type. *Proceedings of National Academy of Sciences of the United States of America* 105: 1444-1449.

Stat M, Morris E, Gates RD. 2008. Functional diversity in coral–dinoflagellate symbiosis. *Proceedings of National Academy of Sciences of the United States of America* 105: 9256-9261.

Stat M, Gates RD. 2011. Clade D Symbiodinium in scleractinian corals: a “nugget” of hope, a selfish opportunist, an ominous sign, or all of the above? *Journal of Marine Biology* 2011:730715. doi:10.1155/2011/730715

Singh HP, Batish DR, Kaur S, Arora K, Kohli RK. 2006. α-Pinene inhibits growth and induces oxidative stress in roots. *Annals of Botany* 98: 1261 – 1269.

Smaili SS, Pereira GJS, Costa MM, Rocha KK, Rodrigues L, do Carmo LG, Hirata H, Hsu Y_T. 2013. The role of calcium stores in apoptosis and autophagy. *Current Molecular Medicine* 13: 252-265.

Suggett DJ, Goyen S, Evenhuis C, Szabó M, Pettay DT, Warner ME, Ralph PJ. 2015. Functional diversity of photobiological traits within the genus *Symbiodinium* appears to be governed by the interaction of cell size with cladal designation. *New Phytologist* 208: 370–381.

Tchernov D, Gorbunov MY, de Vargas C, Yadav SW, Milligan AJ, Häggblom M, Falkowski PG. 2004. Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals. *Proceedings of National Academy of Sciences of the United States of America* 101: 13531-13535.

Toller W, Rowan R, Knowlton N. 2001. Zooxanthellae of the *Montastraea annularis* species complex: patterns of distribution of four taxa of *Symbiodinium* on different reefs and across
Wang J-T, Meng P-J, Sampayo E, Tang S-L, Chen CA. 2011. Photosystem II breakdown induced by reactive oxygen species in freshly-isolated *Symbiodinium* from *Montipora* (Scleractinia; Acroporidae). *Marine Ecology Progress Series* 422: 51-62.

Wang J-T, Chen Y-Y, Tew KS, Meng P-J, Chen CA. 2012a. Physiological and biochemical performances of menthol-induced aposymbiotic corals. *PLoS ONE* 7(9): e46406.

Wang J-T, Meng P-J, Chen Y-Y, Chen CA. 2012b. Determination of the thermal tolerance of *Symbiodinium* using the activation energy for inhibiting Photosystem II activity. *Zoological Studies* 51: 137-142.

Wojtaszek P. 1997. Oxidative burst: an early plant response to pathogen infection. *Biochemistry Journal* 322: 681-692.

Yuyama I, Higuchi T. 2014. Comparing the effects of symbiotic algae (*Symbiodinium*) clades C1 and D on early growth stages of *Acropora tenuis*. *PLoS ONE* 9(6): e98999.

Zunino MP, Zygadlo JA. 2004. Effects of monoterpenes on lipid oxidation in maize. *Planta* 219: 303-309.
Figure legend

Figure 1. Dose effects of menthol and dichlorophenyl dimethylurea (DCMU) on inactivation of photosystem II (PSII) function in freshly isolated *Symbiodinium*. The means of PSII inhibition (n=3) after 4 h of incubation in menthol (A) or DCMU (B) are plotted in the presence of various reagent concentrations.

Figure 2. Diverse reactive oxygen species (ROS) generation levels among *Symbiodinium* types when treated with artificial seawater (ASW) containing menthol. Freshly isolated *Symbiodinium* (FIS) was incubated in menthol-supplemented ASW for 4 h, followed by 2',7'-dichlorofluorescein diacetate labeling and microscopic examination of fluorescence. Menthol concentrations used in FIS incubation were 1.73 mM for types C1 (*S. goreau*i), C3, C15, and D1a (*S. trenchii*), and 2.43 mM for B1 (*S. minutum*), which would cause complete breakdown of PSII activity in the algae. ROS signals in type C3 treated with the ASW control (A) and menthol-treated *Symbiodinium* types B1, D1a, C15, C3, and C1 (B–F) are presented with a representative photo. n=3, Scale bar in the photo represents 50 μm.

Figure 3. The time course of photosystem II (PSII) activity decline and reactive oxygen species (ROS) generation when treating the *Symbiodinium* C3 with menthol and artificial seawater (ASW). Changes in PSII activity (A) and ROS levels (B) in type C3 treated with 1.73 mM menthol were determined and plotted with incubation time. ASW-incubated congeneric *Symbiodinium* was used as a control.
Table 1. Parameters and regression coefficients of equations for dose-response curves derived from menthol and dichlorophenyl dimethylurea (DCMU) (equations (1) and (2) in Material and Methods) treatments on photosystem II (PSII) inhibition of different types of freshly isolated *Symbiodinium*. Data are presented as mean values (n=3).

Phylotype	Menthol	DCMU							
	a	b	x₀	y₀	r²	a	b	x₀	r²
B1 (*S. minutum*)	53.71	0.045	0.23	6.33	0.992	86.57	0.18	2.06	0.997
C1 (*S. goreau*)	98.35	0.115	-0.11	8.13	0.995	72.86	0.21	1.84	0.997
C3	94.45	0.050	-0.06	6.44	0.996	74.39	0.23	1.59	0.999
C15	96.63	0.033	0.01	2.66	0.999	75.73	0.16	1.86	0.995
D1a (*S. trenchii*)	111.22	0.105	0.07	10.15	0.989	73.53	0.22	1.57	0.998
Table 2. Values of 4-h 50% inhibitory concentration (IC$_{50}$) of menthol and dichlorophenyl dimethylurea (DCMU) to inactivate photosystem II (PSII) activity of freshly isolated *Symbiodinium* types. Data are the mean ± SD (n=3), and those with the same superscripts do not significantly differ at p=0.05 (by Fisher’s least significance difference test). CV indicates the coefficient of variation.

Phylotype	Cnidarian host	Menthol	DCMU		
		mM	CV (%)	pM	CV (%)
B1 (*S. minutum*)	*Exaiptasia pulchella*	1.96 ± 0.13a	6.4	74 ± 8a	10.9
C1 (*S. goreaui*)	*Stylophora pistillata*	0.72 ± 0.09b	12.3	29 ± 3b	9.8
C3	*Acropora humilis*	0.86 ± 0.02b	2.7	37 ± 1b	2.3
C15	*Porites lutea*	1.01 ± 0.01c	1.1	33 ± 3b	10.1
D1a (*S. trenchii*)	*Galaxea fascicularis*	1.07 ± 0.07c	6.2	52 ± 7b	14.1
Table 3. Reactive oxygen species (ROS) signals detected in menthol- or dichlorophenyl dimethylurea (DCMU)-treated freshly isolated *Symbiodinium* (FIS) labeled with 2′,7′-dichlorofluorescin diacetate. Detailed conditions of menthol and DCMU treatment are described in Fig. 2, except that the concentration used for DCMU was 0.13 mM. ROS data are expressed as the fluorescence intensity of 2′,7′-dichlorofluorescein, and are presented as the mean ± SD (n=3).

Phylotypes	ROS signal (fluorescence units cell⁻¹)	Menthol	DCMU
B1 (*S. minutum*)	18 ± 2	15 ± 2	
C1 (*S. goreaui*)	64 ± 6	12 ± 1	
C3	68 ± 9	18 ± 2	
C15	58 ± 8	18 ± 1	
D1a (*S. trenchii*)	35 ± 3	17 ± 2	

Fig. 1

(A) Menthol concentration vs. PSII inhibition (%)

(B) DCMU concentration vs. PSII inhibition (%)

- B1 (S. minutum)
- C1 (S. goreaui)
- C3
- C15
- D1a (S. trenchii)
Fig. 2
Fig. 3

(A) F_v/F_m

- \bullet ASW control
- \circ menthol treatment

Incubation Time (min)

(B) ROS (fluorescence cell$^{-1}$)

Incubation Time (min)