Synthesis and reduction chemistry of mixed-Lewis-base-stabilised chloroborylenes†

Merle Arrowsmith, a Julia I. Schweizer, b Myron Heinz, b Marcel Härterich, a Ivo Krummenacher, a Max C. Holthausen b and Holger Braunschweig a

The one-electron reduction of \((\text{CAAC}^{\text{Me}})\text{BCl}_3\) \((\text{CAAC}^{\text{Me}}) = 1-\text{diisopropylphenyl}-3,3,5,5-tetramethylpyrrolidin-2-ylidene) yields the dichloroboryl radical \([\text{CAAC}^{\text{Me}}]_{2}\text{BCl}_2\)^−. Furthermore, the twofold reduction of \((\text{CAAC}^{\text{Me}})\text{BCl}_3\) in the presence of a range of Lewis bases \((L = \text{CAAC}^{\text{Me}}, \text{N-heterocyclic carbene, phosphine})\) yields a series of doubly base-supported \((\text{CAAC}^{\text{Me}})\text{LBCl}_2\)^− chlorine haloborylenes, all of which were structurally characterised. NMR and UV–vis spectroscopic and electrochemical data for \((\text{CAAC}^{\text{Me}})\text{LBCl}_2\) show that the boron centre becomes more electron-rich and the HOMO−LUMO gap widens as \(L\) becomes less \(\pi\)-accepting. A \([\text{CAAC}^{\text{Me}}]_{2}\text{BCl}_2\)^− boryl anion coordination polymer was isolated as a potential intermediate in these reductions. In most cases the reduction of the chloroborylenes resulted in the formation of the corresponding hydroborylenes or derivatives thereof, as well as ligand C−H activation products. While the field of boron chemistry has long been dominated by the naturally occurring +3 oxidation state of this electron-deficient element, the last decade has seen tremendous advances in the accessibility of lower oxidation state boron species. Among these, borylenes (BR), which feature a highly reactive boron(i) centre with two empty p orbitals, have attracted a lot of attention owing to their similarities with organic carbenes.1 The parent borylne, BH, was first generated in the 1930s by exposure of a BCl3/H2 gas stream to an electrical discharge,2 but is so short-lived that it can only be studied spectroscopically. In contrast, boron fluoride (BF), which calculations have shown to be the most stable diatomic boron halide,3 can be generated in over 90% yield from the comproportionation of BF3 with solid boron at 1850 °C4 and trapped with a variety of small molecules, as for example acetylene (Scheme 1a).3 A variety of methods have been used to generate the significantly less stable boron chloride species, :BCl, including plasma discharge or flash photolysis of BCl3 (Scheme 1b),1a reduction of BCl3 with gaseous copper at −196 °C to generate B2Cl4, which decomposes to :BCl and BCl3 at high temperature (Scheme 1c)5 or comproportionation of Cl2(g) with laser-ablated boron(0) in a solid argon matrix (Scheme 1d).7 The even less stable heavier boron halides, :BBr and :BI, have only been studied spectroscopically.6 Like carbenes, borylenes may be stabilised by adduct formation with electron-rich metal centres. Since the report by our group of the first stable metal-free borylene in 19958 this field has rapidly expanded9 and a number of bridging haloborylene complexes have been structurally characterised10 while terminal fluoroborylene complexes have only been observed in the matrix at 6 K.11

It was not until 2011 that the first stable metal-free borylene, \((\text{CAAC}^{\text{Cy}})\text{BH} \quad (\text{I} \quad \text{CAAC}^{\text{Cy}} = 3,3\text{-dimethyl-2-(2,6-diisopropylphenyl)-2-azaspiro[4,5]dec-1-ylidene})\) was isolated by Bertrand

Scheme 1 Methods for generating and trapping transient haloborylenes.
and co-workers. Its stability is owed to the two strongly \(\sigma\)-donating/\(\pi\)-acidic cyclic (alkyl)(amino)carbene (CAAC) ligands, which compensate for the build-up of electron density at the boron(i) centre by efficient \(\pi\) delocalisation to form two partial B–CAAC \(\pi\) bonds. In recent years the field of metal-free borylenes has greatly expanded, recently culminating in the synthesis of the first bis(borylene)-stabilised borylene, (TMP) \(\text{B}([\text{CAACMe}]_2\text{Cl})\) (Fig. 1) from the tetrameric framework. The reduction of (CAACMe)BCl3 with Li and in THF at room temperature yielded a pale green solution, which displayed no \(^{11}\text{B} \text{NMR resonance (Scheme 3).}

Solvent removal and crystallisation of the hexane extract at \(-25^\circ\text{C}\) provided a small crop of orange crystals, which X-ray crystallographic analysis showed to be the \([(\text{CAACMe})_2\text{B}]^+\) chloride, compound 2 (Fig. 2a).

The geometry around the boron atom is trigonal planar \((\Sigma \angle B1 359.96(13)\text{\(^{\circ}\))}, while the B1–C1 distance (1.498(3) \text{\(\AA\)}) is indicative of a double bond and significantly shorter than the precursor 1 (1.644(2) \text{\(\AA\)}, see Fig. S41 in the ESL† for the solid-state structure of 1). This has been observed previously for other CAAC-supported boryl radicals and is indicative of the delocalisation of the unpaired electron over the B–C–N \(\pi\) framework. The EPR spectrum of 2 shows a very broad singlet centred at \(g_{\text{iso}} = 2.003\) (Fig. 2c), unlike its relative [(CAACMe)B(Dur)Cl]\(^+\), which displays a triplet from the hyperfine interaction with the \(^{14}\text{N}\) nucleus \((a([^{14}\text{N}]) = 19 \text{MHz}\). A simulation of

Results and discussion

The reduction of \((\text{CAACMe})\text{BCl}_3\) (1) with one molar equivalent of Li sand in THF at room temperature yielded a pale green solution, which displayed no \(^{11}\text{B} \text{NMR resonance (Scheme 3).}

Solvent removal and crystallisation of the hexane extract at \(-25^\circ\text{C}\) provided a small crop of orange crystals, which X-ray crystallographic analysis showed to be the \([(\text{CAACMe})_2\text{B}]^+\) radical, compound 2 (Fig. 2a).

The geometry around the boron atom is trigonal planar \((\Sigma \angle B1 359.96(13)\text{\(^{\circ}\))}, while the B1–C1 distance (1.498(3) \text{\(\AA\)}) is indicative of a double bond and significantly shorter than the precursor 1 (1.644(2) \text{\(\AA\)}, see Fig. S41 in the ESL† for the solid-state structure of 1). This has been observed previously for other CAAC-supported boryl radicals and is indicative of the delocalisation of the unpaired electron over the B–C–N \(\pi\) framework. The EPR spectrum of 2 shows a very broad singlet centred at \(g_{\text{iso}} = 2.003\) (Fig. 2c), unlike its relative [(CAACMe)B(Dur)Cl]\(^+\), which displays a triplet from the hyperfine interaction with the \(^{14}\text{N}\) nucleus \((a([^{14}\text{N}]) = 19 \text{MHz}\). A simulation of

![Scheme 2](image)

Scheme 2 Halide abstraction at bromoborylene V.

![Scheme 3](image)

Scheme 3 One-electron reduction of 1.

![Fig. 1](image)

Fig. 1 Selected examples of mixed-base-stabilised (CAAC)LBR borylenes.
the EPR spectrum of 2 provided the following hyperfine coupling parameters: $a^{(14)\text{N}} = 17.3$ MHz and $a^{(11)\text{B}} = 6.70$ MHz, the latter being significantly higher than that in the simulated EPR spectrum of $[(\text{CAACMe})\text{B}[\text{Dur}])^2$ (ca. 2.7 MHz),21b which contributes to the strong signal broadening and loss of resolution. The spin density distribution in 2 was further analysed by density functional theory (DFT) calculations.7 The unpaired electron is delocalised over the B–C–N π system with atomic spin densities of 0.39, 0.33, and 0.24 on C1, B1, and N1, respectively (Fig. 2d). The lower hyperfine coupling with ^{11}B, as well as the lower spin density at boron for $[(\text{CAACMe})\text{B}[\text{Dur}])^2$ (0.277)21b versus 2 are due to the delocalisation of spin density to the duryl group in the former, whereas no such delocalisation to the chloride ligands is observed in 2. The B–C π-bonding character of the SOMO of 2 (Fig. S437) results in a partial double bond, which is reflected in a B–C Wiberg bond index of 1.16 (Fig. 2b).

Cyclic voltammetry performed on 2 showed a single irreversible reduction wave at $E_{pc} = -2.35$ V (against the ferrocene (Fc/Fc$^+$) couple) and no oxidation event, unlike $[(\text{CAACMe})\text{B}[\text{Dur}])^2$, for which a first reversible reduction wave ($E_{pc} = -2.03$ V) and an irreversible oxidation wave ($E_{pc} = -0.53$ V) were observed.21b This implies that a +1 cation is unlikely to be chemically accessible, whereas further chemical reduction of 2 should be achievable with a suitable reducing agent.

The room-temperature reduction of 1 in the presence of 1 equivalent of CAACMe$^+$ with 2.5 molar equiv. of KC8 in benzene yielded a strikingly purple-blue reaction mixture, the colour of which intensified over a period of five hours (Scheme 4).

Removal of volatiles, extraction with hexanes and subsequent solvent removal yielded a crude purple solid displaying a broad ^{11}B NMR resonance at 18.7 ppm and a single set of ^1H NMR CAACMe resonances, indicating a symmetrical compound. Crystallisation from pentane at -25 °C over a period of one week yielded large purple crystals suitable for X-ray crystallographic analysis, which provided the structure of a doubly CAACMe-stabilised chloroborylene, 3-CAACMe$^+$ presenting a trigonal planar boron centre ($\Sigma \angle_{\text{B1}} = 359.97(15)^{\circ}$, Fig. 3). The molecule is C_2 symmetric and the two B1–C1 and C1–N1 bonds (1.530(2) and 1.389(2) Å, respectively) are intermediate between typical lengths of sp^2–sp^2 single (B–C 1.56; C–N 1.47 Å)24 and double bonds (B–C 1.44; C–N 1.35 Å)24,25 suggesting delocalisation of the borylene lone pair over the entire N–C–B–N π framework. The compound is thereby reminiscent of Bertrand’s parent borylene 1, the B–C bonds of which are slightly shorter (1.5175(15) and 1.5165(15) Å),13 presumably because of the smaller size and lower electronegativity of the hydride compared to that of the chloride ligand.

The analogous reductions of 1 in the presence of one molar equivalent of IMes (1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene) or SIMes (1,3-bis(2,4,6-trimethylphenyl)-4,5-dihydroimidazol-2-ylidene) with 2.5 molar equivalents of KC8 in benzene similarly yielded deep-pink reaction mixtures from which the corresponding mixed-base chloroborylenes 3-L (L = IMes, SIMes) were extracted in moderate to good yields (58–76%). For smaller L ligands, such as IMeMe, PEt3 or PMe3 using a 1 : 1 1-to-1 ratio for the reduction resulted in mixtures of the desired chloroborylene 3-L and (CAACMe)$_2$BH ($\delta_{1\text{H}}$ 12.5 ppm, vide infra compound 5-CAACMe$^+$). For PEt3 or PMe3, a fivefold excess of the phosphine could be used to obtain the mixed CAAC-phosphine-stabilised chloroborylenes in moderate isolated yields (ca. 50%), with the excess phosphine simply being removed in vacuo prior to extraction of the product. Unlike the bis(CAAC)- or CAAC–NHC-stabilised chloroborylenes, these compounds crystallise as pale yellow solids. Finally, 3-IMe$^{\text{Me}^+}$ was obtained as a bright red compound by quantitative NHC/phosphine ligand exchange with 3-PMe3 at room temperature (Scheme 5). Ligand exchange with the more sterically demanding carbene IMes, SIMes and CAACMe was also attempted but remained limited to 2–5% conversion.8

From the attempted synthesis of the dimethylsulfide-stabilised borylene (CAACMe$_2$)(SMe2)BCl using 20 equivalents SMe2, recrystallisation of the toluene–hexane extract at -25 °C yielded a few isolated crystals of a linear coordination polymer of the dichloroboryl anion 4, $[(\text{CAACMe})\text{BCl}_2]_2K_2(\text{SMe}_2)$, as shown in Scheme 4.
The boron atoms in this structure are trigonal planar with respect to their attached chloride and CAACMe ligands ($\Sigma(\angle B1) 359.95(14)^\circ$) and present a relatively short B–CCAAC double bond (1.427(3) Å) compared to other known [(CAAC)BX] complexes ($\text{XY} = (\text{CN})_2, \text{H(CN)}, \text{HCl}, \text{H}_2\text{B–CCAAC} 1.432(6)$ to 1.473(2) Å). Each potassium cation lies in the plane of the sp2-boron atom, coordinating to both chloride ligands and bridging between three adjacent boryl anion units, once via a Cl1–K1–Cl1’ bridge and once via a Cl2–K1–Cl2” bridge. The adjacent (N1,C1,B1,Cl1,Cl2,K1) planes form an angle of 75° between each other. The two potassium cations bridging the Cl and Cl’ atoms, K1 and K1’, are further bridged by one SMes ligand and their coordination sphere is completed by π-interactions with the adjacent Dip residue. Unfortunately, due to its virtual insolubility in hydrocarbon solvents and extreme air- and moisture-sensitivity, no NMR spectroscopic or elemental analysis data could be obtained for 4.

A comparison of all six 3-L chloroborylenes shows an increasing upfield shift in the 11B NMR resonances in the following order (Table 2): CAACMe (18.7 ppm) > SIMes (11.9 ppm) > IMes (8.4 ppm) > PET$_3$ (5.6 ppm) ≈ IMeMe (5.5 ppm) > PMe$_3$ (2.8 ppm). This correlates well with the trend of the overall electron-donating nature of the ligands L, i.e., their combined σ donor and π acceptor abilities, usually determined using the Tolman electronic parameter (TEP), which is defined as the ν(CO) stretching frequency of Ni(CO)$_3$L complexes: the lower the TEP, the less electron-donating L is overall. While the TEP of IMeMe is yet to be determined experimentally, the trend in this table suggests a value close to 2062 cm$^{-1}$ and similar electronic properties to PET$_3$.

Moreover, for L = carbene, the 11B NMR shifts of 3-L decrease with the 77Se NMR shifts for the corresponding L–Se adducts, which are a measure of the π acidity of the corresponding carbene: the more downfield the 77Se NMR chemical shift, the more π-accepting the carbene. Consequently, the 11B NMR shift of 3-L represents a reliable measure of the relative electron-donating ability of L.

Another measure of the relative σ donor and π acceptor abilities of L is provided by a comparison of the X-ray structural data of 3-L (Fig. 3, Table 1). For the carbene ligands, this is linked to the degree in which the CAACMe and L π frameworks, respectively, are rotated out of the plane of the borylene core, represented by the torsion angles (N1,C1,B1,Cl1) and (N2,C21,B1,Cl1), respectively, as well as the relative B–CCAAC and B–Cl bond lengths. In the C$_2$-symmetric 3-CAACMe the (N1,C1,B1,Cl1) torsion angles are only 14.51(16)$^\circ$, which enables...
a large overlap between the borylene lone pair and the empty p_z orbitals on both carbene carbon atoms. As a result, the borylene lone pair is fully delocalised over the C–B–C π orbital, which is further confirmed by the B–C bond lengths of 1.530(2) Å, which are intermediate between a single and double bond. While the \(\text{N}_1, \text{C}_1, \text{B}_1, \text{C}_1 \) torsion angle remains very small for all the other derivatives \((-5^\circ)\), allowing for excellent \(\pi \) overlap of CAACMe with the borylene lone pair, the \(\text{N}_2, \text{C}_2, \text{B}_1, \text{C}_1 \) torsion angle increases in the following order: CAACMe \((14.5(2)^\circ)\) < SIMes \((44.4(2)^\circ)\) < IMes \((53.5(6)^\circ)\) = avg. of the two molecules present in the asymmetric unit < IMeMe \((79.3(2)^\circ)\). This is in agreement with the decrease in π acidity in this ligand series (see Table 2). As the \(\text{N}_2, \text{C}_2, \text{B}_1, \text{C}_1 \) torsion angle grows closer to orthogonality, π overlap decreases until it becomes negligible for \(L = \text{IMeMe} \). This is also apparent in the lengthening of the B–C bond from 1.530(2) Å in 3-CACMe to 1.578(3) Å in 3-IMeMe, which suggests a typical dative bond, concomitant with a shortening of the B–C bond to 1.440(3) Å in the IMeMe analogue, indicating a typical B–C double bond,\(^{25}\) as the entire π electron density from the borylene lone pair is employed in π backbonding from boron to CAACMe. A similar trend can also be observed in the structural data from Bertrand’s (CAAC)LBH hydroborylenes, I\(^3\) and IV-L (Fig. 1)\(^{11}\) for which the torsion angles between the borylene plane and π framework of \(L \) increase in the order of CAAC\(^{30} \) < Bl\(^{16} \) < BAC\(^{16} \), which fits with the decreasing π acidity of \(L \), concomitant with a shortening of the B–C bond lengths of 1.456(2) \((R = \text{Et})\) and 1.449(2) \((R = \text{Me})\) A indicate a B–C double bond,\(^{25}\) similarly to the 3-IMeMe derivative. In the only structurally characterised CAAC-phosphine-stabilised borylene, compound II-PET\(_3\) (Fig. 1), the B–C bond is slightly longer \((1.484(6) \text{ Å})\) due to a small amount of π backbonding to the π-acidic cyano ligand.\(^{16}\)

Table 1: Relevant bond lengths (Å) and angles (°) for 3-L, \(L = \text{CAACMe, IMes, SIMes, IMeMe, PET}_3, \text{and PMe}_3 \)

3-L, \(L = \)	CAACMe	IMes	SIMes	IMeMe	PET\(_3\)	PMe\(_3\)
B1–C1	1.530(2)	1.437(7), 1.450(7)	1.843(3)	1.575(7), 1.570(7)	1.389(2)	1.439(3), 1.428(6)
B1–C1	1.843(3)	1.605(5), 1.879(6)	1.854(2)	1.855(2)	1.408(2)	1.432(2)
B1–C21	—	1.575(7), 1.570(7)	1.550(3)	1.578(3)	—	—
B1–P1	—	—	—	—	1.912(2)	1.9114(17)
C1–N1	1.389(2)	1.429(5), 1.428(6)	1.550(3)	1.578(3)	—	—
\(\angle \text{CB1} \)	133.9(2)	132.1(4)	128.49(17)	122.96(18)	129.06(16)	131.54(12)
\(\text{N}_1, \text{C}_1, \text{B}_1, \text{C}_1 \)\(^a\)	14.5(16)	4.9(8), 1.3(7)	3.2(3)	2.8(3)	3.0(3)	0.6(2)
\(\text{N}_2, \text{C}_2, \text{B}_1, \text{C}_1 \)\(^a\)	—	57.5(7), 49.2(6)	44.4(2)(4)	79.3(2)	—	—

\(^{a}\) Torsion angles. \(^{b}\) C1–B1–C1. \(^{c}\) The asymmetric unit contains two structurally distinct borylene molecules. \(^{d}\) Torsion angle \(\text{N}_3, \text{C}_2, \text{B}_1, \text{C}_1 \). \(^{e}\) C1–B1–P1.
With the exception of the two phosphine derivatives, compounds 3-L were intensely coloured (Fig. 6, top). Furthermore, whereas the NHC and phosphine derivatives were highly air-sensitive, solutions of 3-CAACMe exposed to air retained their colour for several hours at room temperature, thus demonstrating the unusual stability of this species. An overlay of the UV-vis spectra of all 3-L compounds (Fig. 6, bottom) shows that the wavelength of the most red-shifted absorbance maximum decreases in the order of Lphosphine derivatives, which present no amount of the HOMO and/or (b) the positions from the four orbitals (MOs) to four most red-shifted system of the cyano ligands and the aromatic Dip substituents (538 nm, pink) > IMeMe (470 nm, orange-red) > PMe3 (350 nm, pale yellow) > PEt3 (336 nm, pale yellow). A TD-DFT study of our compounds chemically. The room temperature reduction of 3-CAACMe and 3-IMes show irreversible reduction waves at Epc = −2.68 V and Epc = −3.17 V, respectively, whereas 3-IMes and 3-IMeMe show no reduction wave down to −3.30 V. Here again, the trend correlates with the overall electron-donating ability of L: the less electron-rich the borylene centre, the more facile its reduction.

These results prompted us to attempt to reduce these compounds chemically. The room temperature reduction of either 3-IMes or 3-IMeMe with KC8 in benzene resulted in conversion to new red-coloured species displaying broad 11B NMR resonances at 1.4 and −3.0 ppm respectively (Scheme 6a).

Table 2 11B NMR shifts (ppm) for 3-L, experimentally determined TEP (cm−1) for L and 77Se NMR shifts (ppm) of L=Se

L	11B NMR shift (ppm) of 3-L	TEP of L 27 (cm−1)	77Se NMR shift (ppm) of L=Se
CAACMe	18.7	2046.0	492
SIMes	11.9	2051.5	116
IMes	8.4	2050.7	35
PEt3	5.6	2061.7	n.a.
IMeMe	5.5	—	3
PMe3	2.8	2064.1	n.a.

* Only a calculated TEP of 2051.7 cm−1 has been reported for IMeMe 27,28

(C) 2019 The Author(s). This article is licensed under a Creative Commons Attribution 4.0 International License. View Article Online

Fig. 5 (a) Optimised structure of 3-PMe3: Wiberg bond indices in blue, NPA charges in red. (b) Plot of the HOMO of 3-PMe3 (isovales ±0.05a0−3/2).

Fig. 6 (Top) Colours of 1.2 mM benzene solutions of 3-L. (Bottom) Superposition of the UV-vis absorption spectra (highest absorbance normalised to 1) of 3-L.
identity of 5-CAACMe was further confirmed by X-ray crystallographic analysis (see Fig. S42 in the ESI†). The reduction of 3-IMes with excess Li sand in THF also proceeded cleanly to a red-orange compound presenting a broad 11B NMR resonance at 2.8 ppm (compound 6, Scheme 6b). X-ray crystallographic analysis of 6 revealed a planar hydroborylene ($\Sigma(\angle B1) 359.8(8)$°) stabilised on the one side by a strongly π-accepting CAACMe ligand (B1–C1 1.454(4) Å) and on the other side by a σ-donating IMes ligand (B1–C21 1.583(4) Å) lithiated at the backbone C4 position, the coordination sphere of the lithium atom being completed by three THF residues (Fig. 7, top). Such metatation of unsaturated NHC backbones in the presence of strong, non-nucleophilic bases or reducing agents has been well documented over the last decade.29 Brief exposure of a C6D6 solution of 6 to air led to an immediate colour change from red to orange and NMR spectra showed clean conversion to 5-IMes (Scheme 6c). Interestingly, this route is more reliable and selective than the reduction of 3-IMes with KC8 (Scheme 6b) or the reduction of (CAACMe)BH2X2 (X = Cl, Br) in the presence of one equiv. IMes, which besides 5-IMes also yields the dihydrodiborene (CAACMe)2B2H2. The boron-bound hydrides in 5-L and 6 presumably arise from hydrogen abstraction from the reaction solvent by intermediate dicoordinate boron-centred radicals.** The reduction of 3-SIMes with KC8 in benzene or Li in THF or 1,2-dimethoxyethane (DME) did not proceed selectively, as evidenced by the appearance of multiple new 11B NMR resonances. Recrystallisation of the product mixture of the Li-based reduction in DME, however, yielded a few red crystals of the alkylideneborate 7 with a Li(dme)$_3$ counteranion (Scheme 6d, Fig. 7, bottom). The boron centre is planar ($\Sigma(\angle B1) 359.96(2)$°) and displays a B1–C1 single bond to the now sp3-hybridised C1 atom (B1–C1 1.615(3); C1–N1 1.500(3) Å) and a formal B1–C21 double bond (1.435(3) Å) to the former SIMes ligand. Alkylidene borates are typically generated by α-deprotonation of a suitable sp3-borane precursor with a strong, non-nucleophilic base,30a by nucleophilic quaternisation of a neutral alkylidene borane,30b or by tautomerisation of intramolecular frustrated Lewis pair systems involving an α-proton transfer from a highly electron-withdrawing CH$_n$–B(C$_6$F$_5$)$_2$ moiety to the Lewis basic site.30c In contrast, the formation of 7 presumably results from the 2e$^-$ reduction of 3-SIMes to a highly reactive dicoordinate [(CAACMe)$^\Sigma$(SIMes)B]$^-$ anion (proposed intermediate in Scheme 6), which undergoes intramolecular ortho-methyl C–H activation of the mesityl substituent, followed by a 1,2-hydride activation from the boron centre to the adjacent CAAC carbene carbon atom. Similar mesityl-CH$_n$-activations have been observed previously in the reduction of IMes-stabilised or mesityl-substituted boranes,30m as has the 1,2-hydride migration in
CAAC-supported hydroboranes. Unfortunately, the other products of this reduction could not be cleanly isolated. No tractable products were obtained from various reduction attempts of the phosphate derivatives 3-PMe₃ and 3-PET₃.

Conclusions

To conclude, we have described a facile synthetic route towards a series of metal-free haloborylenes, (CAAC)LBCl₂, by twofold reduction of a (CAAC)BCl₃ precursor with KC₈ in the presence of a donor ligand L. Two likely intermediates in these reduction reactions were isolated in the form of a [(CAAC)BCl₂]⁺ radical and a [(CAACMe)BCl₂]⁻ anion, the potassium countercation of which is coordinated by L. Variation of L from a highly π-accepting CAAC ligand via moderately π-accepting NHCS to purely σ-donating phosphines provides a series of borylenes displaying more or less sterically shielded and electron-rich boron centres, as determined by X-ray crystallographic analyses, NMR and UV-vis spectroscopy and cyclic voltammetry. The PMe₃ derivative undergoes facile phosphine–NHC ligand exchange with a small NHC but not with the more sterically demanding ones. DFT calculations show that in the absence of possible π backbonding to L, the borylene lone pair is stabilised solely by π backbonding to the CAAC ligand. Finally, the room-temperature reduction of the CAAC and NHC derivatives led to the isolation of several hydroborylenes and the product of an intramolecular C–H activation, suggesting the formation of radical and anionic dicoordinate “[[(CAAC)[NHC]B]⁺” reduction intermediates. We are currently studying the reactivity of these compounds, in particular 3-PMe₃, towards Lewis acids and bases, unsaturated small molecules and electrophilic substitution, and will be reporting our results in a follow-up study.

Conflicts of interest

The authors declare no conflict of interest.

Acknowledgements

The authors thank the Deutsche Forschungsgemeinschaft (HB) for financial support. Quantum-chemical calculations were performed at the Centre for Scientific Computing (CSC) Frankfurt on the FUCHS and LOEWE-CSC high-performance computer clusters.

Notes and references

1 M. Soleilhavoup and G. Bertrand, Angew. Chem., Int. Ed., 2017, 56, 10282.
2 W. Loehne-Holtgreven and E. S. van der Vleugel, Z. Phys., 1931, 70, 188.
3 M. Krasowska and H. F. Bettinger, J. Am. Chem. Soc., 2012, 134, 17094.
4 P. L. Timms, J. Am. Chem. Soc., 1967, 89, 1629.
5 (a) P. L. Timms, Acc. Chem. Res., 1973, 6, 118; (b) P. L. Timms, J. Am. Chem. Soc., 1968, 90, 4585.
6 (a) D. Maeder, Helv. Phys. Acta, 1943, 16, 503; (b) A. G. Maki, F. J. Lovas and R. D. Suenram, J. Mol. Spectrosc., 1982, 91, 424–429; (c) A. G. Massey and J. J. Zwolenik, J. Chem. Soc., 1963, 5354.
7 P. Hassanzadeh and L. Andrews, J. Phys. Chem., 1993, 97, 4910.
8 See for example: (a) M. Nomoto, T. Okabayashi, T. Klaus and M. Tanimoto, J. Mol. Struct., 1997, 413–414, 471; (b) J. A. Coxon and S. Naxakis, Chem. Phys. Lett., 1985, 117, 229; (c) K. K. Irikura, J. Phys. Chem. Ref. Data, 2007, 36, 389.
9 H. Braunischweig and T. Wagner, Angew. Chem., Int. Ed., 1995, 34, 825.
10 (a) H. Braunischweig, R. D. Dewhurst and V. H. Gessner, Chem. Soc. Rev., 2013, 42, 3197; (b) H. Braunischweig, R. D. Dewhurst and A. Schneider, Chem. Rev., 2010, 110, 3924; (c) H. Braunischweig, C. Kollann and F. Seeler, Transition Metal Borylene Complexes, in Contemporary Metal Boron Chemistry I. Structure and Bonding, ed. T. B. Marder and Z. Lin, Springer, Berlin, Heidelberg, 2008, vol. 130, pp. 1–27.
11 (a) K. Yuvaraj, M. Bhattacharyya, R. Prakash, V. Ramkumar and S. Ghosh, Chem.—Eur. J., 2016, 22, 8899; (b) D. Vidovic and S. Aldridge, Angew. Chem., Int. Ed., 2009, 48, 3669; (c) H. Braunischweig, M. Colling, C. Hu and K. Radacki, Angew. Chem., Int. Ed., 2002, 41, 1359.
12 (a) X. Wang, B. O. Roos and L. Andrews, Chem. Commun., 2010, 46, 1646; (b) X. Wang, B. O. Roos and L. Andrews, Angew. Chem., Int. Ed., 2010, 49, 157.
13 R. Kinjo, B. Donnadieu, M. A. Celik, G. Frenking and G. Bertrand, Science, 2011, 333, 610.
14 M. Melaimi, R. Jazzar, M. Soleilhavoup and G. Bertrand, Angew. Chem., Int. Ed., 2016, 56, 10282.
15 S. Morisako, R. Shang, Y. Yamamoto, H. Matsu and M. Nakano, Angew. Chem., Int. Ed., 2017, 56, 15234.
17 F. Dahcheh, D. Martin, D. W. Stephan and G. Bertrand, Angew. Chem., Int. Ed., 2014, 53, 13159.
18 M. Arrowsmith, D. Auerhammer, R. Bertermann, H. Braunischweig, G. Bringmann, M. A. Celik, R. D. Dewhurst, M. Finze, M. Grüne, M. Hailmann, T. Hertle and I. Krummenacher, Angew. Chem., Int. Ed., 2016, 55, 14464.
19 (a) J. Böhnke, M. Arrowsmith and H. Braunschweig, *J. Am. Chem. Soc.*, 2018, 140, 10368; (b) J. Böhnke, H. Braunschweig, T. Dellermann, W. C. Ewing, K. Hammon, T. Kramer, J. O. C.Jiménez-Halla and J. Mies, *Angew. Chem., Int. Ed.*, 2015, 54, 13801; (c) J. Böhnke, H. Braunschweig, T. Dellermann, W. C. Ewing, T. Kramer, I. Krummenacher and A. Vargas, *Angew. Chem., Int. Ed.*, 2015, 54, 4469.

20 (a) M. Nutz, B. Borthakur, C. Pranekciewicz, R. D. Dewhurst, M. Schäfer, T. Dellermann, F. Glaab, M. Thaler, A. K. Phukan and H. Braunschweig, *Chem.–Eur. J.*, 2018, 24, 6843; (b) H. Braunschweig, I. Krummenacher, M.-A. Légaré, A. Matler, K. Radacki and Q. Ye, *J. Am. Chem. Soc.*, 2017, 139, 1802; (c) H. Braunschweig, R. D. Dewhurst, F. Hupp, M. Nutz, K. Radacki, C. W. Tate, A. Vargas and Q. Ye, *Nature*, 2015, 522, 327.

21 D. A. Ruiz, M. Melaimi and G. Bertrand, *Chem. Commun.*, 2014, 50, 7837.

22 (a) H. Wang, J. Zhang, H. K. Lee and Z. Xie, *J. Am. Chem. Soc.*, 2018, 140, 3888; (b) H. Wang, L. Wu, Z. Lin and Z. Xie, *J. Am. Chem. Soc.*, 2017, 139, 13680.

23 (a) M.-A. Légaré, G. Bélanger-Chabot, R. D. Dewhurst, E. Welz, I. Krummenacher, B. Engels and H. Braunschweig, *Science*, 2018, 359, 896; (b) P. Bissinger, H. Braunschweig, A. Damme, I. Krummenacher, A. K. Phukan, K. Radacki and S. Sugawara, *Angew. Chem., Int. Ed.*, 2014, 53, 7360.

24 F. H. Allen, O. Kennard, D. G. Watson, L. Bramer, A. G. Orpen and R. Taylor, *J. Chem. Soc., Perkin Trans. 2*, 1987, S1.

25 (a) M. M. Olmstead, P. P. Power, K. J. Weese and R. J. Doedens, *J. Am. Chem. Soc.*, 1987, 109, 2541; (b) M. Pilz, J. Allwohn, P. Willershausen, W. Massa and A. Berndt, *Angew. Chem., Int. Ed.*, 1990, 29, 1030; (c) C.-W. Chiu and F. P. Gabbai, *Angew. Chem., Int. Ed.*, 2007, 46, 6878; (d) J. Möbus, G. Kehr, C. G. Daniliuc, R. Fröhlich and G. Erker, *Dalton Trans.*, 2014, 43, 632.

26 (a) D. A. Ruiz, G. Ung, M. Melaimi and G. Bertrand, *Angew. Chem., Int. Ed.*, 2013, 52, 7590; (b) M. Arrowsmith, D. Auerhammer, R. Bertermann, H. Braunschweig, M. A. Ali Celik, J. Erdmannsdröfer, I. Krummenacher and T. Kupfer, *Angew. Chem., Int. Ed.*, 2017, 56, 11263; (c) M. Arrowsmith, J. D. Mattock, J. Böhnke, I. Krummenacher, A. Vargas and H. Braunschweig, *Chem. Commun.*, 2018, 54, 4669; (d) M. Arrowsmith, J. D. Mattock, S. Hagspiel, I. Krummenacher, A. Vargas and H. Braunschweig, *Angew. Chem., Int. Ed.*, 2018, 57, 15272.

27 (a) U. S. D. Paul, C. Sieck, M. Haehnel, K. Hammon, T. B. Marder and U. Radius, *Chem.–Eur. J.*, 2016, 22, 11005; (b) R. Dorta, E. D. Stevens, N. M. Scott, C. Costabile, L. Cavallo, C. D. Hoff and S. P. Nolan, *J. Am. Chem. Soc.*, 2005, 127, 2485; (c) C. A. Tolman, *Chem. Rev.*, 1977, 77, 313; (d) D. G. Gusev, *Organometallics*, 2009, 28, 6458.

28 (a) M. Tretiakov, Y. G. Shermolovich, A. P. Singh, P. P. Samuel, H. W. Roesky, B. Niepöter, A. Visscher and D. Stalice, *Dalton Trans.*, 2013, 42, 12940; (b) K. Verlinden, H. Buhl, W. Frank and C. Ganter, *Eur. J. Inorg. Chem.*, 2015, 2416.

29 (a) M. Uzelac and E. Hevia, *Chem. Commun.*, 2018, 54, 2455; (b) J. B. Waters and J. M. Goicoechea, *Coord. Chem. Rev.*, 2015, 293–294, 80; (c) Y. Wang, Y. Xie, M. Y. Abraham, P. Wei, H. F. Schaefer III, P. v. R. Schleyer and G. H. Robinson, *J. Am. Chem. Soc.*, 2010, 132, 14370.

30 (a) A. Hermann, J. Cid, J. D. Mattock, R. D. Dewhurst, I. Krummenacher, A. Vargas, M. J. Ingleson and H. Braunschweig, *Angew. Chem., Int. Ed.*, 2018, 57, 10091; (b) N. Arnold, H. Braunschweig, R. D. Dewhurst, F. Hupp, K. Radacki and A. Trumpp, *Chem.–Eur. J.*, 2016, 22, 13927; (c) D. P. Curran, A. Boussonniere, S. J. Geib and E. Lacote, *Angew. Chem., Int. Ed.*, 2012, 51, 1602; (d) P. Bissinger, H. Braunschweig, A. Damme, R. D. Dewhurst, T. Kupfer, K. Radacki and K. Wagner, *J. Am. Chem. Soc.*, 2011, 133, 19044; (e) Y. Segawa, Y. Suzuki, M. Yamashita and K. Nozaki, *J. Am. Chem. Soc.*, 2008, 130, 16069.

31 (a) D. Auerhammer, M. Arrowsmith, H. Braunschweig, R. D. Dewhurst, J. O. C. Jiménez-Halla and T. Kupfer, *Chem. Sci.*, 2017, 8, 7066; (b) S. Wuettermberger-Pietsch, H. Schneider, T. B. Marder and U. Radius, *Chem.–Eur. J.*, 2016, 22, 13032; (c) M. R. Momeni, E. Rivard and A. Brown, *Organometallics*, 2013, 32, 6201; (d) G. D. Frey, J. D. Masuda, B. Donnadieu and G. Bertrand, *Angew. Chem., Int. Ed.*, 2010, 49, 9444.