A B_{12}-dependent radical SAM enzyme involved in oxetanocin A biosynthesis

Jennifer Bridwell-Rabb1,2,3,4, Aoshu Zhong1,2,5,6, He G. Sun1,4,5, Catherine L. Drennan1,2,3 & Hung-wen Liu4,5

Oxetanocin A (OXT–A) is a potent antitumour, antiviral and antibacterial compound. Biosynthesis of OXT–A has been linked to a plasmid–borne Bacillus megaterium gene cluster that contains four genes: oxsA, oxsB, oxsA and oxrB. Here we show that both the oxsA and oxsB genes are required for the production of OXT–A. Biochemical analysis of the encoded proteins, a cobalamin (Cbl)–dependent S–adenosylmethionine (AdoMet) radical enzyme, OxSb, and an HD–domain phosphohydrolase, OxSA, reveals that OXT–A is derived from a 2′–deoxyadenosine phosphate in an OxSB–catalysed ring contraction reaction initiated by hydrogen atom abstraction from C2′. Hence, OxSB represents the first biochemically characterized non–methylating Cbl–dependent AdoMet radical enzyme. X–ray analysis of OxSB reveals the fold of a Cbl–dependent AdoMet radical enzyme, a family of enzymes with an estimated 7,000 members. Overall, this work provides a framework for understanding the interplay of AdoMet and Cbl cofactors and expands the catalytic repertoire of Cbl–dependent AdoMet radical enzymes.

OXT–A (1) is a nucleoside analogue produced by Bacillus megaterium NK84–01281. The phosphorylated forms of OXT–A inhibit cellular and viral DNA polymerases2 and have shown activity against hepatitis B3 and herpes simplex viruses1, among others. The plasmid–borne gene cluster for OXT–A biosynthesis and resistance is located within the BglII–D fragment4 and contains four open reading frames that encode two HD–domain phosphohydrolases (oxsA and oxsB), a Cbl–dependent AdoMet radical enzyme (oxsA), and a pentapeptide repeat protein (oxrA). The simplicity of the cluster suggests that OXT–A may be produced through the rearrangement of a purine nucleoside co–opted from a primary metabolic pathway. Since AdoMet radical enzymes catalyse some of the most challenging chemical transformations, OxSB is a likely candidate for catalysing formation of the eponymous oxetane ring.

AdoMet radical enzymes contain a [4Fe–4S] cluster that, when reduced, cleaves AdoMet and produces a highly reactive 5′–deoxyadenosyl radical (5′–dAdo5,6)7,8. Cbl–binding proteins, on the other hand, generate 5′–dAdo9 through homolytic Co–C bond cleavage of adenosylcobalamin10,11 and methylate nucleophilic substrates through heterolytic Co–C bond cleavage of methylcobalamin (MeCbL)12,13. With over 7,000 AdoMet radical enzymes now annotated as Cbl–dependent, these dual–cofactor enzymes are emerging as a new superfamily14–16. Characterized Cbl–dependent AdoMet radical enzymes catalyse methylation of unactivated C-- and P-centres17–20 but not all reactions attributed to this family involve methylation21. Here we describe the first characterization of a non–methylating Cbl–dependent AdoMet radical enzyme and the first structure of a superfamily member.

oxsA and oxsB are OXT–A biosynthetic genes

A variety of nucleosides and sugars were tested for competence as substrates of OxSB; however, no turnover was observed with any of the compounds tested (Extended Data Fig. 1). These negative results prompted us to use a genetic approach to determine if other gene products are required for OxSB activity. A non–producing, OXT–A–resistant strain, B. megaterium NRS 269, and an Escherichia coli–Bacillus shuttle vector pMM1522 were used in these experiments (Extended Data Fig. 2a). B. megaterium NRS 269 carrying the BglII–D fragment produces OXT–A (Extended Data Fig. 2b). Deletion of oxsA or oxsB, however, abolishes OXT–A formation, whereas deletion of oxrA or oxsB has no effect on OXT–A production (Fig. 1a). Notably, both OxSA and OxSB are annotated as HD–domain phosphohydrolases, but the lack of OXT–A production in the oxsA deletion experiment indicates that OxSB cannot fulfill the functional role of OxSA (Fig. 1a). In a separate experiment, B. megaterium NRS 269 carrying only oxsA, oxsB, or the oxsA/oxsB pair was tested for OXT–A production. Here, OXT–A formation was observed only when both oxsA and oxsB were present, demonstrating again that oxsA and oxsB are required for OXT–A biosynthesis (Extended Data Fig. 2c).

To verify the above observation, substrate screening was retried using OxSA and reconstituted OxSB. A new product, P\textsubscript{2}, could be detected in the reaction mixture when 2′–deoxyadenosine–5′–monophosphate (dAMP), or its 5′–diphosphate (dADP) or 5′–triphosphate (dATP) form were employed as substrates (Extended Data Fig. 3a). P\textsubscript{2} was characterized using mass spectrometry (MS) and 1H nuclear magnetic resonance (NMR) spectroscopy and shown to be the aldehyde form of OxSA–catalysed ring contraction was observed only when both oxrA and oxsB were present, demonstrating again that OxSA and OxSB are required for OXT–A biosynthesis (Extended Data Fig. 2c).

oxsA and oxsB are OXT–A biosynthetic genes

Oxetanocin A (OXT–A) is a potent antitumour, antiviral and antibacterial compound. Biosynthesis of OXT–A has been linked to a plasmid–borne Bacillus megaterium gene cluster that contains four genes: oxsA, oxsB, oxsA and oxrB. Here we show that both the oxsA and oxsB genes are required for the production of OXT–A. Biochemical analysis of the encoded proteins, a cobalamin (Cbl)–dependent S–adenosylmethionine (AdoMet) radical enzyme, OxSB, and an HD–domain phosphohydrolase, OxSA, reveals that OXT–A is derived from a 2′–deoxyadenosine phosphate in an OxSB–catalysed ring contraction reaction initiated by hydrogen atom abstraction from C2′. Hence, OxSB represents the first biochemically characterized non–methylating Cbl–dependent AdoMet radical enzyme. X–ray analysis of OxSB reveals the fold of a Cbl–dependent AdoMet radical enzyme, a family of enzymes with an estimated 7,000 members. Overall, this work provides a framework for understanding the interplay of AdoMet and Cbl cofactors and expands the catalytic repertoire of Cbl–dependent AdoMet radical enzymes.
recently shown to catalyse the sequential hydrolysis of mono-, di- and tri-phosphorylated OXT-A compounds into OXT-A22 (3→1, Fig. 1b), supporting the ability of the OxsB/OxsA pair to turnover dAMP, dADP and dATP.

Importantly, OxsB has all of the hallmarks of an AdoMet radical enzyme; both AdoMet and reductant are required for product formation (Extended Data Fig. 3a) and 5′-dAdoH is generated (Extended Data Fig. 5a). Additionally, when OxsB is incubated with [2′,3′-H]2′-dAMP, AdoMet, OxsA and reductant, mono-deuterated 5′-dAdoH is formed (Extended Data Fig. 5b), consistent with AdoMet radical chemistry that initiates with hydrogen atom abstraction from C2′ of dAMP. Additional experiments performed using OxsB, OxsA, and [3′-H]-2′-dAMP show label retention in OXT-A (Extended Data Fig. 5c), further implicating C2′ as the site of hydrogen atom abstraction. All of these results are consistent with the classification of OxsB as an AdoMet radical enzyme. Furthermore, product formation requires Cbl (Extended Data Fig. 3a), consistent with Cbl-dependent AdoMet radical chemistry.

A new mode of Cbl binding in OxsB

Structures of apo-OxsB (87 kDa), [4Fe–4S] cluster reconstituted OxsB with aquaCbl bound (OxsB–Cbl/[4Fe–4S]), and OxsB–Cbl/[4Fe–4S]/AdoMet were solved to 2.55, 1.80, and 1.85 Å resolution, respectively (Extended Data Table 1). These structures show that OxsB is composed of four modular domains (Fig. 2, Extended Data Fig. 6). Cbl is bound to domain II, a Rossman fold, which is similar (r.m.s.d. of 3.10 Å for 565 atoms) to the Cbl-binding domain of methionine synthase (MetH) despite sharing only 14% sequence identity. As in MetH23, Cbl is bound to OxsB with its dimethylbenzimidazole (DMB) base displaced (that is, ‘base-off’) from Co (Fig. 3a, Extended Data Fig. 7). However, OxsB does not use the classic ‘His-on’ Cbl binding sequence motif (Asp-X-His-X-Gly) defined by the MetH structure from which a His residue on the loop that follows β1 (II–β1 loop) replaces DMB as the lower ligand to Co (ref. 23). In OxsB, the II–β1 loop has no His, is fourteen residues long instead of six, and is flexible, changing conformations between apo and Cbl-bound structures to cap the Cbl-binding site (Fig. 3b, Extended Data Fig. 8a). The closest protein residue to Co, Asn186, is too far (6.4 Å) to serve as a lower ligand, but does make through-water contacts to Co (Fig. 3a). Surprisingly, Asn186 does not

![Figure 1](https://nature.nature.com/)

Figure 1 | oxsA and oxsB encode OXT-A biosynthetic enzymes. a, In vivo product profiles of *B. megaterium* NRS 269 strains with the designated genes deleted. The top trace is an OXT-A standard. b, Proposed pathway for OXT-A biosynthesis, which requires OxsA, OxsB and aldehyde reduction for completion.

![Figure 2](https://nature.nature.com/)

Figure 2 | Structure of OxsB. The monomer contains four domains: an N-terminal domain of unknown function (domain I, yellow), a Rossman fold that houses Cbl (domain II, pink), a partial triose phosphate isomerase barrel AdoMet radical domain (domain III, cyan), and a C-terminal helix bundle (domain IV, blue). See also Extended Data Fig. 6. Cbl in pink, AdoMet in cyan, [4Fe–4S] cluster in orange/yellow.
hydrogen-bond to Cbl (Extended Data Fig. 8b, c). Similarly, a residue of the GGE AdoMet binding motif (Ala361–Glu363) has taken on an auxiliary role; in addition to providing a backbone carbonyl to hydrogen bond with the amino group of AdoMet, the side-chain of Glu363 also interacts with an acetamide moiety of Cbl, tethering Cbl near the [4Fe–4S] cluster (Fig. 3a, Extended Data Fig. 7e). Thus, two classic AdoMet radical motifs serve to hold the [4Fe–4S] cluster, AdoMet and Cbl close to each other in OxsB.

The most substantial variation in an AdoMet radical motif is the replacement of β6 with a long loop. This loop connecting the 310 helix to III–α6* lies approximately where β6 ends in PFL-AE, and like β6 in PFL-AE contributes two hydrogen bonds to the AdoMet adenosine ring fulfilling the AdoMet binding function (Fig. 4a, b). AdoMet radical enzyme BtrN28 also uses a loop replacement for a missing β6, but in this case, the loop follows β5 with no intervening helices. Notably, OxsB has higher overall structural homology to PFL-AE than BtrN (DALI server29), suggesting that loss of β6 may have occurred more than once.

Domain III concludes with a 25-residue loop that follows III–α6* (Fig. 4a) and serves to partially bury the [4Fe–4S] cluster. Even with this loop, however, the active site is quite open (Extended Data Fig. 8d–f). We suspect that once substrate binds, a conformational change will close the active site. A comparison of apo- and holo-OxsB structures reveals that the helix bundle domain can swing towards the active site, as occurs in MetH23,30,31 (Extended Data Fig. 8d).

AdoMet samples different conformations
AdoMet binds to the [4Fe–4S] cluster in two conformations, which differ by a 4.0 Å shift in the position of the AdoMet sulfur atom (Fig. 4c, orientations. d. One AdoMet orientation is not poised for electron transfer (wheat), whereas the other conformation appears to be radical-competent (cyan). e. The non-radical-competent orientation places the methyl group close to Co. f. The putative substrate-binding site of OxsB (yellow).
Extended Data Fig. 9). In one conformation, the ‘radical-competent conformation’, the S atom of AdoMet is 3.0 Å away from the [4Fe–4S] cluster (Fig. 4d), comparable to the average 3.4 Å S–to–Fe distance seen in other AdoMet radical enzymes that permits reductive cleavage of AdoMet. In the second orientation, AdoMet does not engage with the GGE motif and does not appear capable of performing radical chemistry as the S atom is 6.5 Å away from the cluster (Fig. 4d). Instead, this binding mode places AdoMet approximately where one would expect it to bind to methylate Cbl; the methyl is 5.8 Å from Co (Fig. 4e), a similar distance to that found in the reactivation complex of MetH). As OxsB does not catalyse a methylation reaction, this second AdoMet conformation is unlikely to be catalytically relevant. However, it could represent an orientation sampled to minimize uncoupled AdoMet cleavage. Regardless, these structural data on OxsB show that the active site of a Cbl-dependent AdoMet radical enzyme is designed such that two AdoMet binding modes can be populated, one in which AdoMet is positioned for radical chemistry and one in which the methyl group of AdoMet is close to Co. Indeed, recent studies performed on TsrM describe a new mode of AdoMet binding: AdoMet binds close to the [4Fe–4S] cluster, but not with traditional coordination through either the amino or carboxylate moieties.

Although we have been unable to obtain a structure of OxsB with substrate bound, structures of other AdoMet radical enzymes show that substrate sits in the lateral opening of the barrel such that the site of hydrogen atom abstraction is 3.7–4.0 Å from the S position of AdoMet. Using the substrate-bound structure of PFL-2 as a guide, we can map the approximate site of hydrogen atom abstraction to a position in OxsB that is equidistant from the S carbon of AdoMet (the radical-competent orientation) and Co of Cbl (Fig. 4f, Extended Data Fig. 8g). This close juxtaposition of the substrate-binding site to both cofactors (3.7 Å in both cases) suggests that a hydrogen atom abstraction step catalysed by Co could be followed by a Cbl-dependent reaction without any movement of the substrate or protein. Thus, OxsB may use two common strategies of radical enzymes: a conformational change seals an open active site before radical generation, and an arrangement of cofactors that limits the need for conformational changes once highly reactive radical intermediates are formed.

Proposed mechanisms for OXT-A synthesis

The above structural and biochemical data support the involvement of Cbl-dependent AdoMet radical chemistry in formation of the four-membered ring of OXT-A from phosphorylated forms of deoxyadenosine, thereby taking advantage of prevalent compounds in the cell (Figs 1b and 5). On the basis of the deuterium labelling experiments, catalysis is initiated via hydrogen atom abstraction from C2' of dAdo' by OxsA. Rearrangement of the resulting substrate radical (4) to the product radical (5) may proceed via an intermediate enol radical (4 → 5 → 6) (Fig. 5), analogous to the Cbl-dependent mutases. Steps 4 → 6 are expected to be thermodynamically unfavourable owing to the contraction of a five-membered furanosyl ring to an oxetanyl ring. Coupling of this unfavourable reaction to the favourable OxsA phosphate hydrolysis reaction could shift the equilibrium towards the product. Additionally, Cbl could play a role in lowering the activation energy barrier for these steps, either through a direct or indirect coordination of a substrate-bound radical. Steps 6 → 2 require an electron acceptor, and Cbl is one possible acceptor; formation of a Cbl-product radical complex could provide a conduit by which the unpaired electron in Cbl is transferred to Cob(II) to form 2 and Cob(1). Subsequent electron transfer from Cob(1) to [4Fe–4S] would reset the redox state of the catalytic centre. Alternatively, an electron acceptor could be involved, or [4Fe–4S] could accept the electron from 6 as has been proposed for DesII (ref. 35). Finally, the aldehyde product 2 is converted to 3 by a cellular component, which along with dephosphorylation by OxsA completes OXT-A production.

Discussion

This work confirms that oxrA and oxrB are the essential OXT-A biosynthetic genes; we show here that OxsB uses AdoMet radical chemistry to catalyse ring contraction of a deoxyadenosine phosphate and recently showed that OxsA catalyses hydrolysis of the resulting phosphorylated OXT-A compounds. Although we do not know the roles of the remaining two genes located within the OXT-A gene cluster, our genetic experiments confirm that they are not required for OXT-A production. We suspect that oxrA and oxrB are resistance genes in agreement with their annotation. However, it is interesting to consider why resistance genes are necessary in light of our observation that OxsB requires OxsA for activity. The coupling of the two enzyme activities itself protects the producing organism from the toxic phosphorylated forms of OXT-A; OxsB does not produce phosphorylated OXT-A unless OxsA can dephosphorylate and render the compound inert. However, OXT-A must be quickly exported before endogenous kinases can re-phosphorylate the compound. We hypothesize that the gene products of oxrA and oxrB represent the organism’s safety net if export is hindered.

We further demonstrate that OxsB catalysis requires Cbl, although the exact role of Cbl in this nonmethylase is not yet clear. The fact that the apo-OxsB structure is almost identical (0.98 Å r.m.s.d.) to holo OxsB argues against a structural role for Cbl, and the location of Cbl in the OxsB active site is certainly consistent with a catalytic role. The OxsB structure reveals adaptions of both the classic AdoMet radical and Cbl motifs that result in the adjacent positioning of cofactors in the active site. These structural features may have evolved to allow for AdoMet-radical-mediated Cbl-methylation, and may have been appropriated to assist in the unfavourable ring contraction with Cbl retained to facilitate the radical-based rearrangement or to accept an electron. The latter possibility would seem to be a mundane use for a cofactor that requires 30 enzymes in its biosynthesis.

We still have much to learn about the approximately 7,000 enzymes that comprise the Cbl-dependent AdoMet radical enzyme superfamily. Already, with only a handful of these enzymes characterized, a long list of functions has emerged, ranging from production of antiviral compounds to bacteriochlorophylls. Outside of this enzyme family, there is no precedent for radical-based methylation, or for any of the functions suggested here for Cbl of OxsB. Thus, regardless of the mechanistic details that emerge, new chemical territory will be charted as we continue to explore this enzyme family.
Received 12 July 2016; accepted 3 February 2017.

Published online 27 March 2017.

1. Shimada, N. et al. Oxetanocin, a novel nucleoside from bacteria. J. Antimicrob. Chemother. (Tokyo) 39, 1623–1625 (1986).
2. Izuta, S. et al. Inhibitory effects of triphosphate derivatives of oxetanogin G and related compounds on eukaryotic and viral DNA polymerases and human immunodeficiency virus reverse transcriptase. J. Biochem. 112, 81–87 (1992).
3. Ueda, K., Tsurimoto, T., Nagahata, T., Chisaka, O. & Matsubara, K. An accession numbers 5UL2 (SeMet apo-OxsB), 5UL3 (OxsB-Cbl/[4Fe-4S]), and 5UL4 (OxsB-Cbl/[4Fe-4S]/AdoMet).
4. Morita, M. et al. Cloning of oxetanocin A biosynthetic and resistance genes that reside on a plasmid of Bacillus megaterium strain NRB4-0128. Biosci. Biotechnol. Biomed. 63, 563–566 (1999).
5. Magnusson, O. T., Reed, G. H. & Frey, P. A. Characterization of an allylic analogue of the 5′-deoxyadenosyl radical: an intermediate in the reaction of lysine 2,3-aminomutase. Biochemistry 40, 7773–7782 (2001).
6. Frey, P. A. In Comprehensive Natural Products II. Chemistry and Biology (eds Mander, L. & Liu, H.-W.) Vol. 7, 501–546 (Elsevier, 2010).
7. Blodgett, J. A., Zhang, J. K. & Metcalf, W. W. Molecular cloning, sequence analysis, and heterologous expression of the phosphoorthocin tripeptide biosynthetic gene cluster from Streptomyces viridochromogenes DSM 40736. Antimicrob. Agents Chemother. 49, 230–240 (2005).
8. Kamigiri, K., Hideka, T., Imai, S., Murakami, T. & Seto, H. Studies on the biosynthesis of bialaphos (SF-1293) II. C-P bond formation mechanism of bialaphos: discovery of a P-methylation enzyme. J. Antibiot. (Tokyo) 45, 781–787 (1992).
9. Kelly, W. L., Pan, L. & Li, C. Thiostrepton biosynthesis: prototyope for a new family of bacteriocins. J. Am. Chem. Soc. 131, 4327–4334 (2009).
10. Kim, H. J. et al. GenK-catalyzed C-6′ methylation in the biosynthesis of gentamicin: isolation and characterization of a cobalamin-dependent radical SAM enzyme. J. Am. Chem. Soc. 135, 8093–8096 (2013).
11. Liao, R. et al. Thiopseudolate biosynthesis featuring ribosomally synthesized precursor peptides and conserved posttranslational modifications. Chem. Biol. 16, 141–147 (2009).
12. Marous, D. R. et al. Consecutive radical S-adenosylmethionine methylations form the ethyl side chain in thienamycin biosynthesis. Proc. Natl Acad. Sci. USA 112, 10354–10358 (2015).
13. Werner, W. J. et al. In vitro phosphinate methylation by PhoK from Kitasatospora phosalaicina. Biochemistry 50, 8986–8988 (2011).
14. Westrich, L., Heide, L. & Li, S. M. ClpN6. A novel methyltransferase catalysing the methylation of the pyrrole-2-carboxylyl moiety of chlorobin. ChemBioChem 5, 1623–1625 (2004).
15. Woodyer, R. D., Li, G., Zhao, H. & van der Donk, W. A. A new insight into the mechanism of methyl transfer during catalysis by methionine synthase. Proc. Natl Acad. Sci. USA 101, 3729–3736 (2004).
16. Evans, J. C. et al. Structures of the N-terminal modules imply large domain motions during catalysis by methionine synthase. Proc. Natl Acad. Sci. USA 108, 2395–2399 (2009).
17. Shiba, N., Masuda, J., Morimoto, Y., Yasuoka, N. & Toraya, T. Substrate-induced conformational change of a coenzyme B12-dependent enzyme: crystal structure of the substrate-free form of diol dehydratase. Biochemistry 41, 12607–12617 (2002).
18. Berkovich, F., Nicolet, Y., Wan, J. T., Jarrett, J. T. & Drennan, C. L. Crystal structure of bialaphos synthetase, an S-adenosylmethionine-dependent radical enzyme. Science 303, 76–79 (2004).

Supplementary Information is available in the online version of the paper.

Acknowledgements This work was supported by National Institute of Health Grants F32-GM101819 (J.B.-R.) and GM035906 (H.-w.L.), and the Welch Foundation Grant F-1511 (H.-w.L.). C.L.D. is a Howard Hughes Medical Institute Investigator. This work is based upon research conducted at the Northeastern Collaborative Access Team beamlines, which are funded by the National Institute of General Medical Sciences from the National Institutes of Health (P41 GM103409). The Pilatus 6M detector on 24-ID-C beam line is funded by a NIH-ORIP HEI grant ($10 RR029205). This research used resources of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11377.

Author Contributions J.B.-R. performed crystallography, A.Z. performed genetic requests for materials should be addressed to C.L.D. (cdrennan@mit.edu) or Publisher’s note: Springer Nature remains neutral with regard to jurisdictional requests for materials should be addressed to C.L.D. (cdrennan@mit.edu) or h-w.liu@mail.utexas.edu.

Author Information Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests. Readers are welcome to comment on the online version of this paper.
Extended Data Figure 1 | Putative substrates tested in the OxsB and OxsA/OxsB reactions. Reductants used to test these substrates were sodium dithionite, hexa-ammineruthenium(II) chloride, nicotinamide adenine dinucleotide phosphate (NADPH)/methyl viologen, titanium(III) citrate/methyl viologen, and a flavodoxin/flavodoxin–NADPH reductase system.

8. Ewall, R. X. & Bennett, L. E. Reactivity characteristics of cytochrome c(III) adduced from its reduction by hexaammineruthenium(II) ion. J. Am. Chem. Soc. 96, 940–942 (1974).

9. Parthasarathy, A. et al. Biochemical and EPR-spectroscopic investigation into heterologously expressed vinyl chloride reductive dehalogenase (VcrA) from Dehalococcoides mccartyi strain VS. J. Am. Chem. Soc. 137, 3525–3532 (2015).
Extended Data Figure 2 | *In vivo* gene expression and HPLC analysis reveal *oxsA* and *oxsB* are required for OXT-A biosynthesis.

a. To probe which genes located within the *BglII-D* fragment are responsible for OXT-A (chemical structure shown in left panel) production, *B. megaterium* NRS 269 was transformed using the E. coli–Bacillus shuttle vector pMM1522.

b. *In vivo* product profiles of *B. megaterium* NRS 269 strains transformed with pMM1522 empty vector (as a control) (i) or transformed with pMM1522 that contains the *BglII-D* (*oxsA*, *oxsB*, *oxrA*, *oxrB*) fragment (ii).

c. *In vivo* product profiles of *B. megaterium* NRS 269 strains carrying only *oxsB* (i), carrying both *oxsA* and *oxsB* (ii), or carrying only *oxsA* (iii).
Extended Data Figure 3 | Enzymatic production of OXT-A. High-performance liquid chromatography (HPLC) analysis in panel a was performed using a CarboPac PA1 Dionex column whereas a C18 column was used in panels c–e. a, HPLC analysis of the reactions catalysed by OxsA and OxsB using dAMP, dADP, or dATP as substrate. Incubation with reconstituted OxsB and OxsA and dAMP, DTT, AdoMet, HO-Cbl, MgCl₂, NADPH, MV (full reaction, see Methods for details) (i); full reaction without OxsB (ii); full reaction without OxsA (iii); full reaction without dAMP (iv); full reaction without AdoMet (v); full reaction without HO-Cbl (vi); full reaction without the reductants NADPH and MV (vii); full reaction substituted with dADP instead of dAMP (viii); full reaction substituted with dATP instead of dAMP (ix). b, Mass spectrometry (MS) (ESI positive) used to confirm the identity of compound 2 as the corresponding aldehyde of OXT-A 5′-monophosphate. MS of the aldehyde compound was performed following treatment of the reaction mixture with CIP and purification by HPLC. c, HPLC analysis confirms that reduction of compound 2 results in formation of OXT-A-P (3). Isolated 2 (i); isolated 2 treated with NaBD₄ (ii); co-injection of 2 treated with NaBD₄ with a chemically synthesized standard of 3 (iii); standard of 3 (iv). d, Direct formation of OXT-A is observed when cell extract is included in the reaction conditions. HPLC analysis after incubation of reconstituted OxsB with OxsA, dATP, DTT, AdoMet, HO-Cbl, MgCl₂, NADPH, MV, and cell extract of B. megaterium NRS 269 (full reaction) (i); full reaction without OxsB (ii); full reaction without OxsA (iii); full reaction without dATP (iv); full reaction without AdoMet (v); full reaction without MgCl₂ (vi); full reaction without cell extract (vii); OXT-A (1) standard (viii). e, Direct formation of OXT-A can also be observed when alcohol dehydrogenase is included in the reaction mixture. HPLC analysis after incubation with reconstituted OxsB and OxsA and dATP, DTT, AdoMet, HO-Cbl, MgCl₂, NADPH, MV and horse liver alcohol dehydrogenase (full reaction) (i); full reaction without OxsA and OxsB (ii); OXT-A standard (iii).
Extended Data Figure 4 | Chemical synthesis of OXT-A-P (3).
Extended Data Figure 5 | Characterization of OxsB as an AdoMet radical enzyme. a, Consistent with its classification as an AdoMet radical enzyme, OxsB catalyses the reductive cleavage of AdoMet to generate 5′-dAdoH. HPLC analysis (C18 column, 2–20% CH3CN in 1% NH4OAc linear gradient elution) of reaction catalysed by OxsA and OxsB. Reaction of reconstituted OxsB with OxsA, dAMP, DTT, AdoMet, HO-Cbl, MgCl2, NADPH, MV (full reaction, see Methods for details) (i); full reaction without dAMP (ii); 5′-dAdoH standard (iii). b, MS spectrum (ESI positive) of 5′-dAdoH generated in the OxsA and OxsB reaction using [2′-2H2]-2′-dAMP as substrate shows incorporation of the deuterium label into 5′-dAdoH and thus indicates hydrogen atom abstraction occurs at C2′. The less than full deuterium incorporation is probably due to the co-occurrence of uncoupled quenching of 5′-dAdo•, a common phenomenon in many AdoMet radical enzymes. c, MS spectrum (ESI positive) of OXT-A (1) generated in the OxsA and OxsB reaction using [3′-2H]-2′-dAMP as substrate, which shows retention of the deuterium label in product, again consistent with hydrogen atom abstraction at C2′.

40. Broderick, J. B., Duftus, B. R., Duschene, K. S. & Shepard, E. M. Radical S-adenosylmethionine enzymes. Chem. Rev. 114, 4229–4317 (2014).
Extended Data Figure 6 | OxsB is organized into four modular domains. **a**, A stereoview of the entire (744 amino acids) monomer of OxsB coloured by domain. The N-terminal domain is shown in yellow, and is followed by the Cbl-binding domain displayed in pink, the AdoMet radical domain, which is coloured cyan, and the C-terminal helix bundle domain displayed in blue. **b**, A topology diagram of OxsB is shown and coloured as in panel a. The yellow sphere in domain II represents the position of Asn186, which is the closest residue to the Co of Cbl. **c**, The two observed conformations of AdoMet (cyan and wheat), Cbl, and the [4Fe–4S] AdoMet radical cluster (orange and yellow spheres) are shown with simulated annealing composite omit electron density maps contoured at 0.8σ.
Extended Data Figure 7 | Cbl interactions in OxsB and comparison to MetH. a, A stereoview of an overlay of the MetH23 Cbl-binding domain (green) with the Cbl-binding domain of OxsB (pink) shows differences in the positioning of the Cbl cofactor’s corrin ring and the length of the II-β1 loop, which for OxsB lacks a His residue to ligate Cbl. b, Residues from the Cbl-binding domain of OxsB that accommodate or make contact with the DMB tail and corrin ring of Cbl are highlighted and shown as sticks. Residues Gly216 and Ser184 are from the base-off consensus sequence and residues R135–S139 are located on the II-β1 loop. c, Residues from the Cbl-binding domain of MetH23 that interact with Cbl or make room for the DMB tail are highlighted and shown as sticks. d, Residues from panels b and c that make contact with Cbl from the Cbl-binding domains of MetH (top panel) and OxsB (bottom panel) are shown. Residues highlighted in pink are previously identified sequence fingerprints of MetH that have a conserved interaction in OxsB. Residues highlighted in blue are conserved interactions between Cbl and MetH or OxsB, which are not from the standard Cbl-binding motifs. Residues shown in black form interactions with Cbl, but are not conserved between the proteins. e, Stereoview of the contacts that Cbl makes with the Cbl-binding (pink) and AdoMet radical (cyan) domains of OxsB. All of the residues that form interactions with Cbl are highlighted as sticks, but only residues from the AdoMet radical domain are labelled for clarity.
Extended Data Figure 8 | Structural comparisons of apo-OxsB, OxsB–Cbl/[4Fe–4S]/AdoMet, and PFL-AE. a–d, Small conformational changes occur in the reconstituted structures relative to the apo-structure. The r.m.s.d. determined by PyMOL for the OxsB–Cbl/[4Fe–4S]/AdoMet structure compared to the apo structure is 0.98 Å for 4,770 atoms. a, The II–β1 loop of the Cbl-binding domain in the reconstituted OxsB structures swings outward 12.9 Å to avoid steric clashes with the corrin ring of Cbl and now caps the side of the Cbl. b, c, In the absence of a [4Fe–4S] cluster, the Cys residues of the cluster-binding loop in the apo-structure are oriented similarly to those in the reconstituted structure. Cys318 and Cys321 in the apo-structure, however, exhibit a partial occupancy disulfide linkage. At the end of the cluster binding loop, there are more substantial differences between the structures; His325 and Lys326 of OxsB–Cbl/[4Fe–4S]/AdoMet move 8.0 and 8.8 Å, respectively, from their positions in the apo structure to interact with the nucleotide tail of Cbl. d, An overlay of OxsB–Cbl/[4Fe–4S]/AdoMet (light colours) with apo-OxsB (dark colours) shows slight movements in each domain. The arrow indicates closing in of the helix bundle domain towards the cofactors. e, A surface representation of OxsB reveals the open and solvent accessible nature of the active site in OxsB–Cbl/[4Fe–4S]/AdoMet. Water molecules are shown as red spheres. f, Location of polar and aromatic residues near the active site. Presumably, positively charged residues are needed to accommodate the negatively charged phosphate moieties of substrate and an aromatic residue may stack with substrate adenine. g, An overlay of the β-strands from the AdoMet radical domains of OxsB (cyan) with those from a peptide-bound (green) structure of PFL-AE25 (grey) was used to map the approximate substrate-binding site in OxsB. The yellow sphere, which corresponds to the Co of the substrate peptide Gly residue, is 3.7 Å away from the 5′ carbon of AdoMet and 3.7 Å away from Co of Cbl.
Extended Data Figure 9 | AdoMet interactions. a, A stereoview of the AdoMet radical domain of OxsB. Each of the AdoMet radical motif is highlighted including the GGE (E363), ribose (E436), GXIXGXEX (I474), and the β6 (adenine-binding) motif (E545). The GGE motif provides a carbonyl to hydrogen bond with the amino moiety of AdoMet. In OxsB, E363 also contacts a Cbl acetamide. The ribose motif is found at the C-terminal loop following III-β4 where Glu436 forms two hydrogen bonds with the AdoMet ribose hydroxyl moieties. In the same loop, two residues upstream, the backbone amide of Gly434 contributes a hydrogen bond to the carboxyl group of AdoMet. Following a short III-α4a helix that connects III-β4 and III-α4, Lys448 interacts with the AdoMet carboxylate similar to what was previously observed in QueE, HemN, HydE, PylB, anSMEcpe, and BtrN. In terms of the GXIXGXEX motif, Ile474 from a loop following III-α5 provides hydrophobic contacts to the adenine ring of AdoMet as observed previously. However, instead of the backbone of Ile474 being stabilized by a polar residue on III-α5, as found in other AdoMet radical enzymes, the backbone of Ile474 is stabilized through interactions with the side chains of Gln442 and Tyr446 from III-α4a and the backbone of ribose motif residue Glu436. The final motif, the so-called β6 motif, is present although β6 is not. A loop substitutes for β6, with backbone atoms of E545 making hydrogen bonds to the adenine ring of AdoMet. Additional residues F320, M344, I546 and L547 that provide hydrophobic interactions to the adenine ring of AdoMet and a hydrogen bond to N6 are also shown. b, A 2Fo – Fc simulated annealing composite omit electron density map contoured at 1.0σ around the AdoMet radical [4Fe–4S] cluster. c, The radical-competent orientation of AdoMet ligates the unique Fe of the AdoMet radical [4Fe–4S] cluster, which is shown rotated approximately 90° from b. The distance between the unique Fe and the AdoMet amino and carboxylate moieties measure 2.2 Å each. d, The non-radical competent orientation also ligates the AdoMet radical [4Fe–4S] cluster with the amino and carboxylate moieties. These distances measure 2.3 and 2.0 Å, respectively. e, A 2Fo – Fc simulated annealing composite omit electron density map calculated after the radical-competent orientation of AdoMet was omitted from the refined structure of OxsB–Cbl/[4Fe–4S]/AdoMet. This map is contoured at ±3.0σ around the radical-competent orientation of AdoMet. g, A similar simulated annealing composite omit electron density map was calculated after the non-radical-competent orientation of AdoMet was omitted from the refined structure of OxsB–Cbl/[4Fe–4S]/AdoMet. This map is also contoured at ±3.0σ around the observed AdoMet conformation.

41. Dowling, D. P. et al. Radical SAM enzyme QueE defines a new minimal core fold and metal-dependent mechanism. Nat. Chem. Biol. 10, 106–112 (2014).
42. Nicolet, Y., Amara, P., Mouesca, J. M. & Fontecilla-Camps, J. C. Unexpected electron transfer mechanism upon AdoMet cleavage in radical SAM proteins. Proc. Natl Acad. Sci. USA 106, 14867–14871 (2009).
43. Quitterer, F., List, A., Eisenreich, W., Bacher, A. & Groll, M. Crystal structure of methylornithine synthase (PylB): insights into the pyrrolysine biosynthesis. Angew. Chem. Int. Ed. Engl. 51, 1339–1342 (2012).
44. Goldman, P. J. et al. X-ray structure of an AdoMet radical activase reveals an anaerobic solution for formylglycine postranslational modification. Proc. Natl Acad. Sci. USA 110, 8519–8524 (2013).
Extended Data Table 1 | Data collection and refinement statistics of OxsB

Data collection	Apo-OxsB Native data used for SIRAS	SeMet Apo-OxsB[†] (Se-peak, dataset 1)	SeMet Apo-OxsB[†] (Se-peak, dataset 2)	SeMet Apo-OxsB[†] (Se-peak, dataset 3)	OxsB-Cbl/ [4Fe-4S]	OxsB-Cbl/ [4Fe-4S]/ AdoMet
Space group	P2₁2₁2₁	P2₁2₁2₁	P2₁2₁2₁	P2₁2₁2₁	P2₁2₁2₁	P2₁2₁2₁
Cell dimensions	94.5, 105.2, 118.3	94.3, 103.3, 117.0	94.7, 107.4, 116.9	94.4, 107.0, 117.6	89.4, 99.6, 121.4	89.4, 99.6, 121.4
α, β, γ (°)	90.0, 90.0, 90.0	90.0, 90.0, 90.0	90.0, 90.0, 90.0	90.0, 90.0, 90.0	89.0, 89.0, 89.0	89.0, 89.0, 89.0
Resolution (Å)	50-3.20	50-3.40	50-2.90	50-2.55	50-1.80	50-1.85
R_{merge}*	0.086	0.13	0.14	0.097	0.059	0.052
l/σl	22.1 (3.0)	12.1 (2.8)	13.1 (3.0)	15.4 (2.7)	22.9 (2.5)	23.1 (1.9)
Completeness (%)	98.4 (99.2)	99.8 (100)	99.8 (100)	99.8 (99.2)	100 (100)	99.2 (99.2)
Redundancy	6.6 (6.8)	4.4 (4.4)	5.8 (5.9)	6.5 (6.5)	13.3 (13.2)	3.7 (3.7)
CC1/2	†	†	†	†	(0.89)	(0.77)

Refinement

Resolution (Å)	2.55	1.80	1.85
No. reflections[*]	38972	100830	92300
R_{work}/ R_{free}	0.186, 0.181	0.192, 0.232	
No. atoms	5991	5854	6082
Protein	5991	5854	6082
Cbl	-	91	91
[4Fe-4S]	-	8	8
AdoMet	-	-	54
DTT	-	8	-
MES	-	12	12
Ethylene glycol	120	120	64
Water	203	664	517
B-factors	53.33	37.49	44.66
Protein	53.33	37.49	44.66
Cbl	-	29.80	38.93
[4Fe-4S]	-	26.32	31.89
AdoMet[†]	-	-	A: 40.36
DTT	-	41.89	-
MES	-	48.20	50.91
Ethylene glycol	61.54	50.68	54.36
Water	53.85	44.99	49.33
R.m.s deviations	0.002	0.010	0.010
Bond lengths (Å)	0.50	1.176	1.306
Bond angles (°)			

[*] Highest resolution shell is shown in parentheses.

† Bijvoet pairs were not merged during data processing.

Value not reported in the version of scalepack used for scaling.

Structure not refined to completion.

| B-factors for two orientations of AdoMet refined at occupancy — 0.5 are listed (A — non-radical competent and B — radical competent). When the B-factors are set at 35, the occupancy of each orientation refines to A = 0.46 and B = 0.54, and when the B-factors are set at 30, the occupancy of each orientation refines to A = 0.47 and B = 0.53. |