ВЛИЯНИЕ ФЛЮСА «ФЛЮМАГ М» НА ПРОЧНОСТНЫЕ СВОЙСТВА ЖЕЛЕЗОРУДНЫХ ОКАТЫШЕЙ

Кожухов А.А., д.т.н., доцент, заведующий кафедрой «Металлургия и металлурговедение им. С.П. Угаровой»
Тимофеева А.С., к.т.н., профессор кафедры «Металлургия и металлурговедение им. С.П.Угаровой» (uked@yandex.ru)
Никитченко Т.В., к.т.н., старший научный сотрудник, доцент кафедры «Металлургия и металлурговедение им. С.П. Угаровой»

Старооскольский технологический институт им. А.А. Угарова, филиал НИТУ МИСиС (309516, Россия, Белгородская обл., г. Старый Оскол, микрорайон Макаренко, 42)

Аннотация. Повысить прочностные свойства железорудных окатышей можно различными способами, одним из которых является применение магнийсодержащих флюсов. Применение оксида магния для получения железорудных окатышей позволяет увеличить температуру начала размягчения и уменьшить температурный интервал размягчения при прямом восстановлении железа. При обжиге с температурой около 1300 °С возможно получение готовых обожженных окатышей с высокой холодной и горячей прочностью. В настоящее время наиболее распространена такая флюсующая добавка к окатышам, как доломит CaCO₃·MgCO₃, в котором содержание оксида магния может быть от 17 до 22 %. Однако при необходимости увеличения оксида магния приходится увеличивать дозировку доломита, но при этом уменьшается содержание железа, что влечет за собой уменьшение выхода «годного» в последующем переделе. Одним из флюсов, содержащих магний, является брусит. Если его сравнить с доломитом, то в чистом брусите содержание оксида магния в три с лишним раза выше. Основой флюса «Флюмаг М» является брусит. Содержание оксида магния составляет в нем не менее 55 %. В данной работе представлены серия лабораторных исследований по влиянию дозировки флюса «Флюмаг М» на комкуемость шихты и такие свойства железорудных окатышей, как прочность на сжатие, удар и истирание. Проведены испытания по получению сырых и обожженных окатышей с применением флюса «Флюмаг М». Осуществлена сравнительная характеристика прочностных свойств полученных окатышей, офлюсованных флюсом «Флюмаг М» и известняком. Содержание связующего, бентонита и магнетитового концентратна, для всех экспериментов оставалось неизменным. Результаты данных экспериментов указывают, что «Флюмаг М» не препятствует комкуемости шихты. Прочность сырых окатышей на сброс и сжатие с флюсом «Флюмаг М» имеет небольшие отклонения от окатышей с добавлением известняка. Обожженные окатыши с добавлением флюса «Флюмаг М» обладают более высокой прочностью, чем с известняком. Самое большое различие в прочностных свойствах наблюдается при содержании 2 % флюса.

Ключевые слова: брусит, «Флюмаг М», прочностные свойства, сырые окатыши, обожженные окатыши, комкуемость, удар, сжатие, истирание, качество.

DOI: 10.17073/0368-0797-2020-6-436-442

Прогрессивным направлением современного металлургического производства является развитие технологии прямого восстановления твердофазного железа, где основной шихтой являются прочные железорудные окатыши.

Требования процессов металлизации обусловлены, главным образом, теми физико-химическими изменениями, которыми железорудный материал подвергается в ходе этих процессов. Особенно полно эти требования проанализированы авторами работ [1 – 5].

В общем виде требования к сырью для шахтных пе чей металлургии следующие:
– высокое содержание железа при низком содержании серы, фосфора, щелочей и примесей цветных металлов, оказывающих большое влияние на качество стали и технико-экономические показатели ее выплавки в электропечах;
– высокая восстановимость;
– высокая горячая прочность, определяющая способность окатышей сохранять целостность в процессе восстановления;
– малая склонность к образованию спеков, разбуханию и деформации при прямом восстановлении железа в твердофазных процессах, что определяет высокую газопроницаемость шихты в печи;
– повышенная температура начала размягчения [1, 6, 7].

Для печей металлизации с целью создания опти мальных газодинамических условий, позволяющих обеспечить большую производительность и высокую степень металлургии, требуется узкий класс гранулометрического состава окискованного сырья, обладающего достаточной прочностью как в исходном состоянии, так и при восстановлении с высокой тем пературой начала размягчения и низким содержанием мелкой фракции (менее 5 мм). По практическим дан-
ным этим условиям отвечают окатыши крупностью 9 – 16 мм при содержании класса менее 5 мм не более 5 % и прочности на сжатие не ниже 250 кг/ок в холодном состоянии.

С внедрением в эксплуатацию шахтных печей металлургии с горячей выгрузкой из-за большой деформации восстановленных окатышей возникли дополнительные показатели силы внешнего и внутреннего трения, которые определяют характер схода шихты в печи. При повышении коэффициента внутреннего трения нарушается равномерность движения шихты внутри шахтной печи, что приводит к нарушениям газодинамического режима восстановления и дестабилизации качества годного продукта. Коэффициенты трения определяются состоянием и структурой поверхности, а также степенью деформации окатышей в нижних горизонтах шахты при достижении высокой степени восстановления [8 – 9].

Многолетний опыт производства железорудных окатышей показал, что одним из самых распространенных способов регулирования физических и металлургических свойств окатышей является добавка в шихту различных флюсующих или флюсоупрочняющих добавок [10 – 18].

Внесение доломита в шихту окатышей вместо известняка позволяет избежать образования легко плавящихся эвтектик, что позволяет повысить температуру восстановления окатышей в печах металлургии. Однако при сохранении температурно-временного режима общего прочности окатышей на сжатие снижается (с 242 до 160 кг/окатыш), что обусловлено недостатком образования жидкокластичной связи в процессе восстановления. На кафедре СТИ НИТУ «МИСиС» были проведены лабораторные эксперименты по применению магнезиального флюса «Флюмаг М» на основе брусита для получения железорудных окатышей [18].

Исследованиями установлено, что добавка к су пербогатому оленегорскому концентрату (0,4 – 0,6 % SiO₂) в количестве 1 – 2 % оливина (Mg, Fe)₂SiO₄ позволяет повысить как холодную (в 1,5 – 1,7 раза), так и горячую (в 1,5 – 3,0 раза) прочность окатышей [8].
Для изготовления окатышей брали по 2 кг магнетитового концентрата с целью обеспечения требуемого количества образцов для испытаний.

Сырые окатыши получали в лабораторном окомкователе (рис. 1). Затем их подвергали испытаниям на гранулометрический состав, прочность на сжатие, сброс, влагосодержание.

Прочность на сброс – \(n \), раз, вычисляли по формуле

\[
\frac{n}{10} = \sum n_i
\]

где \(n_i \) – количество сбрасываний одного окатыша до нарушения целостности, раз.

Подсчет результата испытаний производился с точностью до целого значения. Под комкуемостью шихты понимали способность материала образовывать гранулы с определенными прочностными свойствами.

Стандартизованной методики по определению комкуемости мелкодисперсного материала не существует, исследователями предлагаются различные способы определения комкуемости шихты. Сотрудниками кафедры СТИ НИТУ «МИСиС» с целью исследований процессов окомкования железорудных концентратов была предложена методика испытаний на комкуемость железорудной шихты, которая подробно представлена в работе [1]. В соответствии с этой методикой оценка комкуемости производится по выходу гранул более 5 мм, длительность процесса окомкования составляет 20 мин.

Определение данных по влажности и прочности сырых окатышей осуществлялось по методикам, принятым на промышленных предприятиях [19]. Результаты лабораторных исследований сырых окатышей представлены в табл. 2.

Массовую долю влаги (\(W \)) в процентах вычисляли по формуле

\[
W = \frac{m_1 - m_2}{m_1 - m}
\]

где \(m_1 \) – масса емкости с навеской до высушивания, г; \(m_2 \) – масса емкости с навеской после высушивания, г; \(m \) – масса пустой емкости, г.

Вычисления производили с точностью до второго десятичного знака.

Расхождение между результатами двух параллельных измерений не превышало 0,3 %. Расхождение между результатами трех измерений не превышало 0,4 %.

Подсчет результата испытаний осуществлялся с точностью до целого значения.

Термическая обработка окатышей производилась в лабораторной печи в соответствии с разработанным температурно-временным режимом, который во всех экспериментах поддерживался одинаковым. Максимальная температура обжига составляла 1280 °С (рис. 2).

Прочность окатышей на сжатие определялась по методике согласно ГОСТ [20] с помощью гидравлическо-
Прочность окатыша на сжатие P_{cp} вычисляли по формуле

$$P_{cp} = \frac{\sum P_i}{n},$$

где P_i — прочность на сжатие одного окатыша, кг (Н); n — количество окатышей, применяемых для определения прочности, шт.

Результаты округляли до одного десятичного знака, кг/ок. Прочность окатышей на дробление и истирание [21] проводили в лабораторном барабане и определяли по формуле

$$\Pi_{1,5} = \frac{m_1}{m_1 + m_2 + m_3} \cdot 100,$$

где m_1 — масса фракции >5 мм после испытания в барабане, кг; m_2 — масса фракции <5 мм и >0,5 мм после испытания в барабане, кг; m_3 — масса фракции <0,5 мм после испытания в барабане, кг.

Сопротивление окатышей истиранию вычисляли по формуле

$$I_{1,5} = \frac{m_3}{m_1 + m_2 + m_3} \cdot 100.$$

Определение прочности на удар и истирание проводили на двух пробах. За окончательный результат принимали среднее арифметическое результатов двух параллельных определений.

Анализ полученных результатов испытаний показал, что флюс «Флюмаг М» может быть использован при производстве железорудных окатышей. Учитывая особенности концентратов различных месторождений,
Качественные показатели экспериментальных обожженных окатышей с добавлением флюса «Флюмаг М»

Номер пробы	Флюсирующая добавка	Прочность обожженных окатышей на сжатие, кг/ок	Прочность обожженных окатышей на удар (класс +5мм), %	Прочность обожженных окатышей на истирание (класс –0,5мм), %
1	«Флюмаг М» 1 %	324,7	87,60	6,90
2	Известняк 1 %	276,4	86,10	7,01
3	«Флюмаг М» 2 %	328,2	91,29	2,51
4	Известняк 2 %	335,6	91,26	5,50
5	«Флюмаг М» 3 %	309,4	90,24	5,54
6	Известняк 3 %	326,9	89,27	6,85
7	Известник 1 % + «Флюмаг М» 1 %	295,5	90,47	4,87
8	Известняк 0,5 % + «Флюмаг М» 1,5 %	245,6	91,10	4,52

Выводы. Флюс «Флюмаг М» при добавлении в железорудный концентрат в качестве шихтовой составляющей не препятствует процессу окомкования. Флюс «Флюмаг М» (брусит) является технологически чистым поставщиком оксида магния в железорудную шихту и в процессе окомкования позволяет получить сырые окатыши без ухудшения их качественных характеристик.

Анализ физических характеристик обожженных окатышей показывает, что при введении флюса «Флюмаг М» прочность обожженных окатышей на сжатие несколько снижается, что можно объяснить уменьшением количества жидкодиффузионной связки при использовании оксида магния в качестве флюса. Данный фактор подтверждает необходимость увеличения температуры обжига окатышей при использовании магнезиальных флюсов до температур 1300 – 1330 °С.

Прочность обожженных окатышей на удар и истирание при введении флюса «Флюмаг М» несколько выше, чем при использовании известняка. Самое высокое различие в прочностных свойствах на истирание наблюдаются при содержании 2 % «Флюмаг М».

При увеличении дозировки флюса «Флюмаг М» наблюдается тенденция к снижению прочности окатышей на сжатие, но это можно регулировать путем изменения температурно-временного режима термической обработки.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Гиммельфарб А.И., Неменов А.М., Тарасов Б.Е. Металлизация и электроплавка железорудного сырья. – М.: Металлургия, 1981. – 152 с.
2. Тулин Н.А., Кудрявцев В.С., Пчелкин С.А. и др. Развитие бескоксового металлургического производства. – Днепропетровск: МИЦ, 2015. – 335 с.
3. Carvalho R. Supply availability of DR grade pellets // 3rd World DRI & Pellet Congress, Abu Dhabi, March, 2015. Metals Bulletin. Режим доступа: https://www.metalbulletin.com/events/download.ashx/document/speaker/7663/a0ID000000X0kBmMAJ/Presentation.
4. Васильев С.С., Васильев Е.Н. Изменение прочности обожженных неофилюсованных окатышей из богатого Лебединского концентрат в процессе восстановления. – В кн.: Прямое получение железа и порошковая металлургия. Тематический отраслевой сборник. 1976. № 2. С. 5.
5. Nobuhiko T. Development of iron-making technology // Nippon Steel Technical Report. 2012. No. 101. P. 79. – 88.
6. Алексеев Л.Ф., Горбачев В.А., Кудинов Д.3., Шварц В.С. Структура и разрушение окатышей при восстановлении. – М.: Наука, 1983. – 78 с.
7. Halt J.A., Kawatra S.K. Review of organic binders for iron ore concentrate agglomeration // Mineral &Metallurgical Processing. 2014. Vol. 31. No. 2. P. 73 – 94.
8. Ковалев Д.А., Ванюкова Н.Д., Иванченко В.П. и др. Теоретические основы производства окускованного сырья. – Днепропетровск: ИМА-прес, 2011. – 476 с.
9. Chen M., Zhang W., Zhao Z. etc. High temperature softening behaviours of iron blast furnace feeds and their correlations to the microstructures // 6th Int. Symposium on High-Temperature Metallurgical Processing. – John Wiley & Sons, Inc., 2015. P. 67 – 74.
10. Okrir S.I., Onukwuli O.D. Effect of basicity on metallurgical properties of pellets produced from Itakpe iron ore concentrates // Discovery and Innovation. 1999. Vol. 11. No. 3-4. P. 170-176
11. Kalenga M.K., Garbers-Craig A.M. Investigation into how the magnesia, silica and alumina contents of iron ore sinter influence its mineralogy and properties // The Journal of The Southern African Institute of Mining and Metallurgy. 2010. Vol. 10. P. 447–456.
12. Poveromo J.J. Grade pellet quality and supply // AISTech (Assoc. Iron & Steel Technology) Annual Meeting, Indianapolis, May, 2015. P. 751 – 762.
13. Forsmo S.P.E., Samskog P.O., Bjorkman M.T. A study on plasticity and compression strength in wet iron ore green pellets related to real process variations in raw material fineness // Powder Technology. 2008. Vol. 181. No. 3. P. 321 – 330.
14. Wang Zhaocai, Mansheng Chu,Shiqiang Chen etc. Effects of B-Mg additive on metallurgical properties of oxidized pellets // Advanced Materials Research. 2011. Vol. 284-286. P. 1232 – 1236.
15. Umadevi T., Roy A.K., Prabhu P.C. Influence of magnesia on iron ore sinter properties and productivity – use of dolomite and
EFFECT OF FLUMAG M FLUX ON STRENGTH PROPERTIES OF IRON ORE PELLETS

A.A. Kozhukhov, A.S. Timofeeva, T.V. Nikitchenko

Ugarov Stary Oskol Technological Institute of National University of Science and Technology “MISiS”, Stary Oskol, Belgorod Region, Russia

Abstract. Currently, the most common fluxing additive to pellets is dolomite CaCO₃, MgCO₃, in which the content of magnesium oxide can be from 17 to 22 %. But if it is necessary to increase magnesium oxide in pellets, it is necessary to increase the dosage of dolomite, and thus the iron content decreases, which entails a decrease in yield ratio at subsequent processing. One of the fluxes containing magnesium is brucite. Compared with dolomite, magnesium oxide content in pure brucite is more than 3 times higher. The basis of FLUMAG M flux is brucite. The content of magnesium oxide in it is not less than 55 %. The paper presents series of laboratory studies on the effect of FLUMAG M flux dosage on pelletizing ability of the charge and such properties of iron ore pellets as compressive, impact and abrasion strength. We have made the tests on raw and fired pellets with FLUMAG M flux. The comparative analysis of strength properties of the pellets obtained with the use of FLUMAG M and limestone was performed. Content of the binder – bentonite and magnetic concentrate for all experiments remained unchanged. The results of these experiments indicate that FLUMAG M does not interfere with charge pelletizing ability. The strength of raw pellets for discharge and compression with FLUMAG M flux has small deviations from the pellets with the addition of limestone. Roasted pellets with the addition of FLUMAG M flux have higher strength than ones with limestone. The higher difference in strength properties is observed at the flux content of 2 %.

Keywords: brucite, FLUMAG M, strength properties, raw pellets, roasted pellets, pelletizing ability, impact, compression, abrasion, quality.

DOI: 10.17073/0368-0797-2020-6-436-442

REFERENCES

1. Gimmel‘farb A.I., Nemenov A.M., Tarasov B.E. Metalizatsiya i elektroplavka zhelezorudnogo syr’ya [Metallization and electric smelting of iron ore raw materials]. Moscow: Metallurgiya, 1981, 152 p. (In Russ.).
2. Tulin N.A., Kudravtsev V.S., Pechkin S.A. etc. Razvitie besoksovoi metallurgii [Development of non-coke metallurgy]. Moscow: Metallurg, 1987, 328 p. (In Russ.).
3. Carvalho R. Supply availability of DR grade pellet. In: 3rd World DRI & Pellet Congress, Abu Dhabi, March, 2015. Metals Bulletin. Available at URL: https://www.metalsbulletin.com/events/download.aspx/document/speaker/7663/afa0d0000000x0kBnMAJ/Pre sentation
4. Vasil’ev S.S., Vasil’ev E.N. Changes in strength of roasted non-fluxed pellets from rich Lebedinsky concentrate during recovery process. In: Pryamoe poluchenie zheleza i poroshkovaya metal lurgiya. Tematicheskii otrasev sbornik [Direct production of iron and powder metallurgy. Thematic industrial directory]. 1976, no. 2, p. 5. (In Russ.).
5. Nobuhiko T. Development of iron-making technology. Nippon Steel Technical Report. 2012, no. 101, pp. 79–88.
6. Alekseev L.F., Gorbachev V.A., Kudinov D.Z., Shavrin S.V. Struktura i razrushenie okatyshei pri vo sostanovlenii [Structure and destruction of pellets during recovery]. Moscow: Nauka, 1983, 78 p. (In Russ.).
7. Halt J.A., Kawatra S.K. Review of organic binders for iron ore concentrate agglomeration. Mineral &Metallurgical Processing. 2014, vol. 31, no. 2, pp. 73–94.
8. Kovalev D.A., Vanyukova N.D., Ivashchenko V.P. etc. Metallurgicheskie osnovy proizvodstva okuskovannogo syr’ya [Theoretical basics for agglomerates production]. Donpetroprovsk: IMPA-press, 2011, 476 p. (In Russ.).
9. Chen M., Zhang W., Zhao Z. etc. High temperature softening behaviours of iron blast furnace feeds and their correlations to the microstructures. In: 6th International Symposium on High-Temperature Metallurgical Processing, John Wiley & Sons, Inc., 2015, pp. 67–74. Okkr S.I., Onukwuli O.D. Effect of basicity on metallurgical properties of pellets produced from Itakpe iron ore concentrates. Discovery and Innovation. 1999, vol. 11, no. 3-4, pp. 170–176.
10. Abzalov V.M., Gorbachev V.A., Evstugyn S.N. etc. Fiziko-khimicheskie i teplofizicheskie osnovy proizvodstva zhelezorudnykh okatyshei [Physico-chemical and thermal basics of iron ore pellets production]. Leont’ev L.I. ed. Ekaterinburg: MITs, 2015, 335 p. (In Russ.).
11. Kalenga M.K., Garbers-Craig A.M. Investigation into how the magnesium, silica and alumina contents of iron ore sinter influence its mineralogy and properties. The Journal of The Southern African Institute of Mining and Metallurgy. 2010, vol. 10, pp. 447–456.
12. Poveromo J.J. Grade pellet quality and supply. In: AISItech (Assoc. Iron & Steel Technology) Annual Meeting, Indianapolis, May, 2015, pp. 751–762.
13. Forsmo S.P.E., Samskog P.O., Bjorkman M.T. A study on plasticity and compression strength in wet iron ore green pellets related to real process variations in raw material fineness. Powder Technology. 2008, vol. 181, no. 3, pp. 321–330.
14. Wang Zhaocai, Mansheng Chu, Siqiang Chen etc. Effects of B-Mg additive on metallurgical properties of oxidized pellets. Advanced Materials Research. 2011, vol. 284-286, pp. 1222–1226.
15. Umadevi T., Roy A.K., Prabhu P.C. Influence of magnesium on iron ore sinter properties and productivity – use of dolomite and dunite. Steel Research International Journal. 2009, vol. 80, no. 11, pp. 800–807.
16. Zborschik A.M. Teoreticheskie osnovy metallurgicheskogo proizvodstva [Theoretical basics of metallurgical production]. Donetsk: DonNTU, 2008, 189 p. (In Russ.).
17. Timofeeva A.S., Nikitchenko T.V., Kozhukhov A.A. Role of magnesium oxide in formation of physical, chemical and metallurgical
properties of iron ore pellets. Chernaya metallurgiya. Byul. in-ta “Chermetinformatsiya”. 2018, no. 5 (1421), pp. 23–27. (In Russ.).

19. GOST 12764-73. Rudy zheleznye, kontsentratty, aglomeraty i okatyshi. Metod opredeleniya vlagi [State standard GOST 12764-73. Iron ores, concentrates, agglomerates and pellets. Method of moisture determination]. Electronic resource. Available at URL: http://docs.cntd.ru/document/1200024455 (Accessed 9.01.2019). (In Russ.).

20. Mezhgosudarstvennyi standart. Okatyshi zhelezorudnye. Metod opredeleniya prochnosti na szhatie [Interstate standard. Iron ore pellets. Method for determination of compressive strength]. Electronic resource. Available at URL: http://docs.cntd.ru/document/gost-24765-81 (Accessed 9.01.2019). (In Russ.).

21. GOST 15137-77. Rudy zheleznye i margantsevye, aglomeraty i okatyshi. Metod opredeleniya prochnosti vo vrashchayushchemsya barabane [State standard GOST 15137-77. Iron and manganese ores, agglomerates and pellets. Method for determination of strength in a rotating drum]. Electronic resource. Available at URL: http://docs.cntd.ru/document/gost-15137-77 (Accessed 9.01.2019). (In Russ.).

Information about the authors:

A.A. Kozhukhov, Dr. Sci. (Eng.), Assist. Professor, Head of the Chair “Metallurgy and Metal Science named after S.P. Ugarova”

A.S. Timofeeva, Cand. Sci. (Eng.), Assist. Professor of the Chair “Metallurgy and Metal Science named after S.P. Ugarova”

T.V. Nikitchenko, Cand. Sci. (Eng.), Senior Researcher, Assist. Professor of the Chair “Metallurgy and Metal Science named after S.P. Ugarova”

Received May 17, 2019
Revised May 20, 2019
Accepted June 2, 2020