A Note on the Dimensions of the Structural Invariant Subspaces of the Discrete-Time Singular Hamiltonian Systems

G. Marro
Dipartimento di Elettronica, Informatica e Sistemistica, Università di Bologna
Viale Risorgimento 2, 40136 Bologna - Italy
E-mail: giovanni.marro@unibo.it

Abstract
The structural invariant subspaces of the discrete-time singular Hamiltonian system are used in [1] to give an analytic nonrecursive expression of all the admissible trajectories. A deeper insight into the features of these subspaces, particularly focused on the dimensionality issue, is the object of this note.

I. MAIN CONTENT
In [1], the structural invariant subspaces \(V_1 \) and \(V_2 \), defined by (17) and (18) respectively, are used in (19), that is the analytic nonrecursive expression of the set of the admissible solutions of the discrete-time singular Hamiltonian system (10) over the time interval \(0 \leq k \leq k_f - 1 \).

In this note it will be shown that the dimension of the subspace \(V_2 \) may be lower than \(n \), where \(n \) denotes the dimension of the state space of the original system as defined in (1), (2). In particular, the possible loss of dimension of \(V_2 \) (or, equivalently, the possible loss of rank of the matrix \(V_2 \) defined by (18)) depends on the properties of the original system (1), (2) (under assumptions \(A.1 - A.4 \)).

Let us consider system (1), (2) and perform the similarity transformation \(T = [T_1 \ T_2] \), where \(\text{im} \ T_1 = \mathcal{R} \), the reachable subspace of \((A, B)\). With respect to the new basis,

\[
A = \begin{bmatrix} A_c & A_{cu} \\ 0 & A_u \end{bmatrix}, \quad B = \begin{bmatrix} B_c \\ 0 \end{bmatrix}, \\
C = \begin{bmatrix} C_c & C_u \end{bmatrix}, \quad D = D.
\]

Moreover, the solution \(P_+ \) of the Riccati equation (11), (12), partitioned accordingly, is

\[
P_+ = \begin{bmatrix} P_c & P_{cu} \\ P_{cu}^\top & P_u \end{bmatrix},
\]

where \(P_c \) is the stabilizing solution of the Riccati equation restricted to the sole reachable part of the original system: i.e.,

\[
P_c = A_c^\top P_c A_c + C_c^\top C_c - (A_c^\top P_c B_c + C_c^\top D)(D^\top D + B_c^\top P_c B_c)^{-1}(B_c^\top P_c A_c + D^\top C_c),
\]

with

\[
D^\top D + B_c^\top P_c B_c > 0.
\]

The stabilizing feedback is partitioned as

\[
-K_+ = \begin{bmatrix} K_c & K_u \end{bmatrix}.
\]
Similarly, the solution W of the discrete Lyapunov equation has the structure

$$W = \begin{bmatrix} W_c & O \\ O & O \end{bmatrix},$$

where W_c is the solution of the discrete Lyapunov equation restricted to the sole reachable part of the original system: i.e.,

$$(A_c + B_c K_c) W_c (A_c + B_c K_c)^\top + B_c (D^\top D + B_c^\top P_c B_c)^{-1} B_c^\top = W_c.$$

Simple algebraic manipulations, where these partitions are taken into account, yield the following structure for the matrix V_2:

$$V_2 = \begin{bmatrix} W_c(A_c + B_c K_c)^\top & O \\ O & O \\ * & O \\ * & -A_u^\top \\ * & O \end{bmatrix},$$

where the symbol $*$ denotes a possibly nonzero submatrix. The structure pointed out in the partitioned matrix V_2 shows that the rank of V_2 may be lower than n. This circumstance occurs, for instance, if A_u has a zero row, like in the illustrative example considered in the following section.

It is worth noting that, by contrast, the subspace

$$\bar{V}_2 = \text{im} \begin{bmatrix} W \\ P_c W - I \end{bmatrix},$$

that is used in (20) of [1] in order to express the sole state and costate trajectories over the time interval $0 \leq k \leq k_f$, has dimension n.

In fact, the corresponding partitioned matrix is

$$\bar{V}_2 = \begin{bmatrix} W_c & O \\ O & O \\ * & O \\ * & -I \end{bmatrix}.$$

The rank of \bar{V}_2 is n, since the symmetric positive definite W_c, being the solution of the restricted Lyapunov equation above, has the same rank of the controllability Gramian of the pair $(A_c + B_c K_c, B_c)$, which is completely controllable by construction.

II. An Illustrative Example

This section presents a numerical example where the rank of matrix V_2 is lower than the dynamic order n of the original system, while n is the rank of matrix \bar{V}_2. The variables are displayed in scaled fixed point format with five digits, although computations are made in floating point precision. Consider system (1), (2) in [1], with

$$A = \begin{bmatrix} 0.3 & -0.4 & 0.5 & 0.6 \\ 0.1 & 0.2 & 0.1 & 0.1 \\ 0 & 0 & 0.5 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 0.2 \\ 2 & 3 \\ 0 & 0 \\ 0 & 0 \end{bmatrix},$$

$$C = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 5 & 6 \end{bmatrix}, \quad D = \begin{bmatrix} 10 & 0 \\ 0 & 0 \end{bmatrix},$$

respectively.
By pursuing the procedure illustrated in [1], one gets, in particular

\[
V_2 = \begin{bmatrix}
0.3661 & -0.4314 & 0 & 0 \\
-0.7323 & 0.8629 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
-0.0000 & 0.0000 & 0 & 0 \\
0.0000 & -0.0000 & 0 & 0 \\
1.8443 & -1.1885 & -0.5000 & 0 \\
-0.0000 & 0.0000 & 0 & 0 \\
0.1098 & -0.1294 & 0 & 0 \\
-0.2088 & 0.4374 & 0 & 0 \\
\end{bmatrix},
\]

and

\[
\tilde{V}_2 = \begin{bmatrix}
0.4708 & -0.5165 & 0 & 0 \\
-0.5165 & 1.1828 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
-0.0000 & 0.0000 & 0 & 0 \\
0.0000 & -0.0000 & 0 & 0 \\
3.6885 & -2.3770 & -1.0000 & 0 \\
2.7295 & 0.5411 & 0 & -1.0000 \\
\end{bmatrix}.
\]

III. Conclusions

In this note, it has been shown that the dimension of the structural invariant subspace \(V_2 \) may be lower than the dynamic order \(n \) of the original system. The result has been illustrated by a numerical example. This is the reason why the only-if part of the proof of Theorem 1 in [1] does not rely on a dimensionality count, but on the maximality of the subspace \(V_2 \) (and of the subspace \(V_1 \)). In fact, maximality follow from Property 2 (and Property 1, respectively), according to [2, Section 5.4].

References

[1] E. Zattoni, “Structural invariant subspaces of singular Hamiltonian systems and nonrecursive solutions of finite-horizon optimal control problems,” *IEEE Transactions on Automatic Control*, vol. 53, no. 5, pp. 1279–1284, June 2008.

[2] V. Ionescu, C. Oară, and M. Weiss, *Generalized Riccati Theory and Robust Control: A Popov Function Approach*. Chichester, England: John Wiley & Sons, 1999.