Mutations in the Aptx gene lead to a neurological disorder known as ataxia oculomotor apraxia-1. The product of Aptx is Aprataxin (Aptx), a DNA-binding protein that resolves abortive DNA ligation intermediates. Aprataxin catalyzes the nucleophilic release of adenylate groups covalently linked to 5′ phosphate termini, resulting in termini that can again serve as substrates for DNA ligases. Here we show that Aprataxin acts preferentially on adenylated nicks and double-strand breaks rather than on single-stranded DNA. Moreover, we show that the catalytic activity of Aptx resides within the HIT domain, the C-terminal zinc finger domain provides stabilizing contacts that lock the enzyme onto its high affinity AMP-DNA target site. Both domains are therefore required for efficient AMP-DNA hydrolase activity. Additionally, we find a role for Aprataxin in base excision repair, specifically in the removal of adenylates that arise from abortive ligation reactions that take place at incised abasic sites in DNA. We suggest that Aprataxin may have a general proofreading function in DNA repair, removing DNA adenylates as they arise during single-strand break repair, double-strand break repair, and in base excision repair.

Ataxia oculomotor apraxia-1 (AOA1) is a human autosomal recessive syndrome whose clinical features include early onset cerebellar ataxia, oculomotor apraxia, and late peripheral neuropathy (1). The cause of AOA1 is linked to mutations in a gene that encodes a 342- amino acid protein called Aprataxin (2, 3). Aptx-defective cell lines are sensitive to DNA-damaging agents such as methyl methanesulfonate, hydrogen peroxide, and camptothecin (4–7), indicating a role for Aprataxin in DNA repair. Recently, it was shown that Aprataxin resolves abortive DNA ligation intermediates (8), such as those that arise at “dirty” single-strand breaks formed by oxygen radical attack. Abortive ligation leads to the covalent attachment of an AMP moiety to the 5′ terminus at the break site. Aprataxin repairs these lesions by catalyzing the nucleophilic release of 5′-adenylate groups from the single-strand breaks, resulting in the restoration of 5′ phosphate termini that can be efficiently rejoined. Aprataxin protein has three distinct domains: an N-terminal FHA domain, a central histidine triad (HIT) domain, and a C-terminal domain with a zinc finger motif (3). The FHA domain mediates the association of Aprataxin with two distinct DNA repair complexes, as it specifically interacts with XRCC1 and XRCC4 (4–6, 9). The catalytic HIT domain (Fig. 1A, upper sequence) is responsible for adenylate hydrolase activity (8, 10), which is abolished by a mutation in the histidine triad motif (8). Finally, although the C-terminal domain of Aprataxin has been implicated in possessing general DNA binding capacity (11), the importance of the zinc finger motif (lower sequence) for DNA binding, DNA adenylate binding, and DNA de-adenylation activity has not been addressed. Here, we define the substrate specificity of Aptx and show that the zinc finger motif plays an important role in DNA adenylate recognition and hydrolysis. Furthermore, we show that Aptx fulfills a more general proofreading function in DNA repair, extending beyond the repair of dirty oxidative single-strand breaks.

EXPERIMENTAL PROCEDURES

Proteins—Human Aprataxin was PCR-amplified from a HeLa cDNA library (Invitrogen) and cloned into pET41 using the Spel and BamHI restriction sites. This plasmid expressed recombinant Aptx with an N-terminal GST and a C-terminal His6 tag. The mutants Aptx(H260A), Aptx(C319A,C322A), and Aptx(H260A,C319A,C322A) were generated using the QuikChange II site-directed mutagenesis kit (Stratagene). Wild-type and mutant GSTAptxHis proteins were expressed in Escherichia coli BL21-CodonPlus RIL cells at 30 °C for 2 h following induction with 0.2 mM isopropyl-1-thio-β-D-galactopyranoside. Cells were lysed and Aprataxin purified using nickel-nitritotriacetic acid-agarose (Qiagen) and glutathione-Sepharose (GE Healthcare).

Recombinant human DNA ligase III-XRCC1 complex was a gift from Dr. Tomas Lindahl. T4 DNA ligase was from New England Biolabs and human DNA polymerase β from Trevigen.

DNA Substrates—Oligo 1, 5′-ATTCCGATAGTGACTACA-3′; oligo 2, 5′-TTGATGACTAATCGGGAATGAGGGCGACA-CGGATATG-3′; oligo 3, 5′-CATATCCGTCGCTCCTCC-3′; oligo 4, 5′-CATATCCGTGCCTCCTATCCGAGTGGACTACA-3′; oligo 5, 5′-TTGATGACTAATCGGGAAT-3′; and abasic oligo 1 with a 5′-deoxyribosylphosphate (dRP) residue, 5′-dRP-TTCCGATAGTGACTACA-3′, were purchased from Sigma and purified by denaturing gel electrophoresis. 5′-32P-labeling was carried out using T4 polynucleotide kinase (New England Biolabs) and [γ-32P]ATP (GE Healthcare). Terminal
deoxynucleotidyl transferase (New England Biolabs) and [α-32P]ddATP (GE Healthcare) were used for 3'-32P labeling. 5'-32P-labeled oligo 4, alone or annealed to oligo 2, was used in DNA binding assays. The nicked substrate was prepared by annealing 5'-32P-labeled oligo 1 with oligos 2 and 3. 5'-32P-labeled oligo 1 was adenylated as described (8), purified and used as AMP-single-stranded DNA, or annealed with oligo 5 to create AMP-double-stranded DNA or oligos 2 and 3 to create AMP-nicked DNA.

For the abasic nicked DNA substrate, abasic oligo 1 was 3'-labeled using [32P]ddATP and annealed with oligos 2 and 3. The abasic nicked DNA was then adenylated with human DNA ligase III-XRCC1, and the adenylated 184-bp oligo 1 was purified and annealed with oligos 2 and 3 to form the final substrate. For the nicked control, oligo 1 (in this case synthesized with a 5'-phosphate) was 3'-32P-labeled and the adenylated nicked substrate was prepared essentially as described (8).

Ligation Reactions—Reactions (5 μl) contained DNA (50 nM) and 5 nM DNA ligase-II-XRCC1, or 20 nM T4 DNA ligase, in 50 mM Tris-HCl, pH 7.5, 100 mM NaCl, 10 mM MgCl2, 5 mM DTT, 25 μg/ml bovine serum albumin, 1 mM ATP. After 1 or 2 min of incubation at 37 °C, reactions were stopped by addition of formamide and heated for 3 min at 90 °C. Products were analyzed by 10% denaturing PAGE, and 32P-labeled DNA products were detected by autoradiography.

DNA Adenylate Hydrolysis—Unless stated otherwise, reactions (10 μl) contained DNA (50 nM) and recombinant Aprataxin in 50 mM Tris-HCl, pH 8.0, 40 mM NaCl, 5 mM EDTA, 1 mM DTT, 100 μg/ml bovine serum albumin, and 5% glycerol. Incubation was for 2 min at room temperature. Reactions were stopped by addition of formamide loading buffer, and denatured DNA was analyzed by 10% denaturing PAGE followed by autoradiography. For time course experiments, reactions (25 μl) contained 50 nM DNA and 0.2 nM ApxDNA. DNA was analyzed by 10% denaturing PAGE and quantified using a Storm 840 phosphorimaging system (GE Healthcare). Hydrolysis reactions using whole cell extracts were performed as described (8) in a buffer containing 50 mM Tris-HCl, pH 8.0, 40 mM NaCl, 10 mM MgCl2, 1 mM DTT, 100 μg/ml bovine serum albumin, and 5% glycerol.

DNA Binding Assays—Binding reactions (15 μl) contained DNA (50 nM) and Aprataxin in 50 mM Tris-HCl, pH 8.0, 30 mM NaCl, 5 mM EDTA, 1 mM DTT, 100 μg/ml bovine serum albumin, and 5% glycerol. Where indicated, reactions contained 300 ng of poly[dIdC]. Incubation was for 10 min at room temperature. Reactions were then put on ice and analyzed immediately by 4% non-denaturing PAGE using 0.5× Tris borate-EDTA as the running buffer at 4 °C followed by autoradiography.

RESULTS

Substrate Specificity of Aprataxin—It was shown previously that Aprataxin acts upon adenylated nicked duplex DNA to remove covalently bound AMP, leaving a 5'-phosphate at the nick that can be ligated to a proximal 3'-OH group (8). To further characterize the DNA de-adenylation activity of human Aprataxin and to define the specific contribution of each domain of the protein, we used a mutational analysis approach to produce four forms of Aprataxin: 1) the wild-type protein (Aptx), 2) an active site mutant AptxH260A with a non-functional HIT domain, 3) AptxC319A,322A, which is mutated for the critical cysteine residues in the putative C-terminal zinc finger motif, and 4) AptxH260A,C319A,C322A, in which the mutation in the active site HIT domain is combined with mutations in the zinc finger motif (Fig. 1, A and B). For direct comparison, all proteins carried an N-terminal GST tag and a C-terminal His6 tag, which allowed their purification to near homogeneity (Fig. 1, C). For direct comparison, all proteins carried an N-terminal GST tag and a C-terminal His6 tag, which allowed their purification to near homogeneity (Fig. 1, C).

FIGURE 1. Substrate specificity of Aprataxin. A, ClustalW alignment of the amino acid sequences comprising the conserved active site histidine triad motif (HXHHX, upper panel) and C-terminal zinc finger motif (C2H2; lower panel) of Aprataxin orthologs from human (Hs, Homo sapiens), mammal (Mm, Mus musculus), fish (Dr, Danio rerio), plant (At, Arabidopsis thaliana), and yeast (Sc, Saccharomyces cerevisiae). Conserved and similar amino acids are indicated by black and gray shadings, respectively. B, schematic representation of Apx proteins used in this study highlighting the tripartite domain structure. The wild-type protein (1) contains an N-terminal FHA domain, a central histidine triad domain (HIT), and a C-terminal domain with a zinc finger motif (2). Mutant proteins were created to disrupt the HIT domain (2) (AptxH260A), the zinc finger motif (3) (AptxC319A,C322A), and both domains simultaneously (4) (AptxH260A,C319A,C322A). C, four N-terminal GST- and C-terminal His-tagged Aprataxin proteins (~0.3 μg/lane) were purified using nickel-nitrilotriacetic acid agarose and glutathione-Sepharose. They were then analyzed by SDS-PAGE followed by Coomassie blue staining. Lane numbers correspond to the proteins indicated in panel B. Lane M, molecular mass markers (kDa). D, GSTApxHis proteins have an apparent molecular mass of ~60 kDa. D, activity of Apx on adenylated single- and double-stranded linear DNA and adenylated nicked duplex DNA. Products were analyzed by denaturing PAGE and detected by autoradiography. 5',3'P labels are indicated with asterisks. E, quantification of Apx activity on adenylated single-stranded (open triangles), double-stranded linear (filled triangles), and nicked duplex (circles) DNA under limiting enzyme concentrations.
adenylated DNA is comparable with that of untagged Aprataxin (data not shown).

First, we compared the activity of wild-type Aprataxin on single- and double-stranded DNA. In these experiments, each substrate contained the same ^{32}P-labeled adenylated 18-mer oligonucleotide, and de-adenylation was monitored by its increased mobility through a denaturing gel following removal of covalently bound AMP. We found that Aprataxin acted preferentially on duplex DNA containing an adenylate residue at the 5’ terminus of a nick (Fig. 1D, lanes 9–12) or double-strand break (lanes 5–8) compared with adenylated single-stranded DNA (lanes 1–4). Time course experiments using limiting enzyme concentrations showed that the de-adenylation activity with double-stranded DNA was $\sim 3\times$ greater than that observed with single-stranded DNA (Fig. 1E).

To determine whether Aprataxin exhibits a different binding affinity for the various DNAs, we carried out electrophoretic mobility shift assays. Aprataxin bound linear (Fig. 2, lanes 6–8) or nicked (lanes 10–12) duplex DNA more tightly than single-stranded DNA (lanes 2–4), consistent with previous studies (11).

When electrophoretic mobility shift assays were carried out using nicked duplex DNA substrates, we observed three distinct protein-DNA complexes (designated I, II, and III). These complexes were observed with both nicked duplex (Fig. 3, lanes 2–4) and adenylated nicked duplex (lanes 15–17) DNA. Given that Aprataxin is catalytically active under the conditions of this assay and de-adenylation occurs (data not shown), it was necessary to carry out similar reactions with ApxH260A, containing an inactivating mutation in the HIT domain. Using ApxH260A we observed enhanced complex formation with the nicked adenylated substrate (compare lanes 8–10 with lanes 21–23).

Furthermore, in contrast to complexes formed by wild-type Apx, we found that the protein-DNA complexes formed between ApxH260A and the adenylated substrate were resistant to competition with a 30-fold excess of poly[dI-dC] (lanes 24–26). We also found that the poly[dI-dC] converted complexes II and III to the least retarded complex I. Control reactions with catalytically active Apx, and with ApxH260A and unadenylated nicked duplex DNA, showed that complex formation was competed away by the presence of poly[dI-dC] (lanes 5–7, 11–13, and 18–20). Based on these results, we suggest that complex I represents Aprataxin bound at the site of the nick, an interaction that is stabilized by the adenylate moiety, and that complexes II and III are formed by the binding of Aprataxin to flanking regions of DNA. Poly[dI-dC] competes away the general DNA binding but is unable to disrupt the specific complex formed between catalytically inactive ApxH260A and its target, the adenylated residue.

These results show that Aprataxin has the ability to bind duplex DNA, possibly enabling the protein to scan the genome for sites of adenylation. When such a site is encountered, Aprataxin forms a high affinity complex that (with wild-type protein) leads to rapid de-adenylation.

Binding of Apx to Duplex DNA

Is Mediated by the C-terminal Zinc Finger—To date, the precise role of the putative zinc finger motif of Aprataxin has not been established. We therefore assessed the contribution of the zinc finger

FIGURE 2. DNA binding by Aprataxin. Reactions contained single-stranded DNA, double-stranded DNA, or nicked DNA and Aprataxin (50, 250, and 500 nM) as indicated. Protein-DNA complexes were analyzed by electrophoretic mobility shift assay and detected by autoradiography. Roman numerals mark the position of three distinct protein-DNA complexes.

FIGURE 3. Specific interaction of Aprataxin with adenylated residues. Reactions contained the indicated nicked or adenylated nicked substrates and either wild-type or catalytically inactive ApxH260A (50, 250, and 500 nM). Poly[dI-dC] was present where indicated. Protein-DNA complexes were analyzed as described in Fig. 2 legend.
Proofreading Role for Aprataxin in DNA Repair

Adenylated Abasic Nicks Constitute a Novel Substrate for Aprataxin—Previously, we showed that Aprataxin acts upon nicked adenylated DNA substrates such as those that might be produced by abortive ligation reactions that take place at sites of oxidative damage (8). An additional and important target substrate might also arise from premature ligation of nicked abasic sites (AP sites) resulting from the removal of damaged bases by monofunctional DNA glycosylases such as human UNG, SMUG-1, MPG, TDG, and MYH, followed by AP endonuclease 1 incision. To test this hypothesis, we first determined whether abortive ligation reactions occurred at base excision repair (BER) intermediates and therefore synthesized a model substrate with a dRP residue at the 5’ terminus of the nick. When incubated with human DNA ligase III-XRCC1 complex, we found that ligation of the abasic nick took place (Fig. 5A, lanes 2–3) with an efficiency that was ∼5–10 times below that observed with normal nicked DNA (lanes 7–8 and data not shown). Similar results were observed with T4 DNA ligase (lanes 4–5 and 9–10) as described previously (12, 13). However, in reactions containing human DNA ligase III-XRCC1 and the abasic substrate, we also observed abortive ligation reactions culminating in the accumulation of DNA adenylates (indicated as AMP-18′dRP in Fig. 5A, lanes 2–3).

To test whether these DNA adenylates lacking a 5′-terminal base at the nick serve as a substrate for Aprataxin, ligation reactions with human DNA ligase III-XRCC1 were supplemented with Aprataxin (Fig. 5B). In these reactions, we did not observe the presence of any DNA adenylates but instead observed an increase in ligation products (lane 3). These results indicate that without the actions of Aprataxin, abortive ligation events at BER intermediates could lead to a relatively high incidence of DNA adenylate formation.

When the efficiency of AMP hydrolysis by Aprataxin at normal and abasic nicks was compared, we found that the abasic DNA adenylate served as a substrate for Aprataxin and was hydrolyzed with an efficiency that was ∼5 times lower than that observed with normal adenylated nicked DNA (Fig. 5C, compare lanes 2–4 with 6–8). Taken together, these data lead us to suggest that abortive ligation reactions that take place at BER intermediates may require Aprataxin for efficient repair and restoration of the DNA backbone. This notion is supported by the observation that adenylated abasic nicks persist in whole cell extracts prepared from the AOA1 patient cell lines Ap1 and Ap3 (Fig. 5D, lanes 3 and 4), while AMP hydrolysis can be observed in normal extracts (lane 2). In agreement with this, we found that human DNA polymerase β, which is known to add dNTPs to 3′ termini at dRP sites (14), is unable to utilize its lyase activity to remove adenylated dRP termini (Fig. 5E, lane 2).

DISCUSSION

In this work we have shown that Aprataxin forms specific complexes with nicked adenylated DNA and promotes the repair and restoration of 5′ termini that are adenylated by abortive ligation reactions. The actions of Aprataxin are essential in non-replicative cells, such as neuronal cells, which otherwise as a consequence of oxidative damage would accumulate adenylates that may pose a block to the transcriptional machinery. Analyses of the DNA binding capacity of Aprataxin revealed that the protein binds undam-

FIGURE 4. The zinc finger motif of Apx is required for substrate recognition and hydrolysis. A, electrophoretic mobility shift assay reactions contained wild-type or mutant Apx and linear, nicked, or adenylated nicked DNA as indicated. Poly[dI–dC] was included in the reactions of lanes 10–12. Protein-DNA complexes were analyzed as described in the Fig. 2 legend. B, DNA de-adenylation reactions contained wild-type Apx or the zinc finger mutant Apx^{319A,C322A} with adenylated nicked duplex DNA. Products were analyzed by denaturing PAGE and detected by autoradiography.
aged duplex DNA in agreement with previous observations (11). However, competition studies using catalytically inactive AptoXH260A showed that the protein forms a specific and stable complex with nicked adenylated duplex DNA. The binding and de-adenylation of single-stranded DNA was less than that observed with duplex substrates.

As far as we are aware, Aprataxin is the only enzyme capable of de-adenylating AMP-DNA substrates. However, like other members of the HIT superfamily, Aprataxin can act upon AMP-NH2 or AppppA, but the catalytic activity observed with these substrates is 3–4 orders of magnitude less than that observed with adenylated DNA (8, 11). It is therefore our opinion that the neurological disorder (AOA1) associated with Aprataxin loss relates to the loss of DNA de-adenylation activity.

Taken together with our previous observations (8), the data presented here indicate that adenylates present in duplex DNA are the physiological substrates for Aprataxin. The specific action of AptoX on damaged duplex DNA is consistent with observations showing that AptoX associates with the DNA ligase III-XRCC1 and DNA ligase IV-XRCC4 complexes (4, 6). Our finding that AptoX hydrolyzes adenylated double-strand breaks strengthens the possibility of a role in double-strand break repair, in agreement with the observed mild sensitivity to ionizing radiation in patient-derived AptoX-deficient cell lines (4).

Aprataxin is a member of the HIT superfamily of nucleotide hydrases and transferases (15). Mutation of the histidine triad motif completely abolishes the ability of AptoX to hydrolyze AMP-DNA (8), and inactivating disease-associated mutations of AptoX are largely confined to the HIT domain (10). Other domains of Aprataxin appear to play important, though non-critical, roles in protein association, substrate recognition, and catalytic activity. First, the N-terminal FHA domain is necessary for interaction with XRCC1 and XRCC4, but not for catalytic activity. First, the N-terminal FHA domain is necessary for interaction with XRCC1 and XRCC4, but not for catalytic activity. First, the N-terminal FHA domain is necessary for interaction with XRCC1 and XRCC4, but not for catalytic activity. First, the N-terminal FHA domain is necessary for interaction with XRCC1 and XRCC4, but not for catalytic activity.
Proofreading Role for Aprataxin in DNA Repair

The damaged base (black) is removed by a monofunctional DNA glycosylase to produce an abasic site (AP site). AP endonuclease 1 incises at the 5'-side of the AP site to generate an abasic nick with a deoxyribosephosphate residue (marked dRP) at the 5' terminus. Untimely ligation reactions may be successful or could be abortive, leading to the formation of an adenylated abasic nick. Finally, DNA ligase III-XRCC1 will seal the processed nick. DNA adenylates in duplex DNA are the primary substrates for Aptx and that the C-terminal zinc finger is a key determinant for the binding of adenylated DNA. Alternatively, repair may involve “long patch repair” mechanisms in which DNA polymerases δ or ε take over from polymerase β at the gap-filling step and continue DNA synthesis, thereby displacing the strand carrying the dRP residue (14, 16). In this subpathway, a 5'-flap is created and subsequently removed by the structure-specific endonuclease FEN1. Long patch repair mechanisms may be utilized to remove any blocking 5'-adenylates, and provide an alternative to Apx actions. However, long patch repair is thought to be active mainly during S-phase (16–18) and involves proliferating cell nuclear antigen, DNA polymerases δ and ε, DNA ligase I, and FEN1, all of which function during DNA replication. This cell cycle bias could be significant with regard to AOA1, as long patch repair may not be readily available in non-proliferating neuronal cells. The dependence on Apx may be further exacerbated by the high rate of oxygen metabolism in the brain, given that reactive oxygen species contribute to base damages that can lead to the formation of abasic nicks (19). It is therefore likely that in the absence of Apx the additional accumulation of DNA adenylates at incised AP sites will contribute to the genotoxoid load faced by the cell.

In conclusion, our results provide new insight into the substrate specificity of Apx. We have shown that DNA adenylates in duplex DNA are the primary substrates for Apx and that the C-terminal zinc finger is a key determinant for the binding of adenylated DNA. Furthermore, our biochemical studies lead us to suggest that Apx activity may provide a proofreading mechanism during ligation that is utilized by several distinct DNA repair pathways, including single-strand break repair, double-strand break repair, and BER.

Acknowledgment—We thank Debbie Barnes for advice and comments on the manuscript.

REFERENCES

1. Le Ber, I., Moreira, M. C., Rivaux-Pechoux, S., Chamayou, C., Ochsner, F., Kuntzer, T., Tardieu, M., Said, G., Habert, M. O., Demarquay, G., Tanner, C., Beis, J.-M., Brice, A., Koenig, M., and Dürr, A. (2003) Brain 126, 2761–2772
2. Date, H., Onodera, O., Tanaka, H., Iwabuchi, K., Uekawa, K., Igarashi, S., Koike, R., Hiroi, T., Yasuda, T., Awaya, Y., Sakai, T., Takahashi, T., Nagatomo, H., Sekijima, Y., Kawachi, I., Takiyama, Y., Nishiizawa, M., Fukuhara, N., Saito, K., Sugano, S., and Tsuji, S. (2001) Nat. Genet. 29, 184–188
3. Moreira, M. C., Barbot, C., Tachi, N., Kozuka, N., Uchida, E., Gibson, T., Mendona, P., Costa, M., Barros, J., Yanagisawa, T., Watanabe, M., Ikeda, Y., Anki, M., Nagata, T., Coutinho, P., Sequeiros, J., and Koenig, M. (2001) Nat. Genet. 29, 189–193
4. Clements, P. M., Breslin, C., Deeks, E. D., Byrd, P. J., Ju, L., Bieganowski, P., Brenner, C., Moreira, M. C., Taylor, A. M., and Caldecott, K. W. (2004) DNA Repair 3, 1493–1502
5. Gueven, N., Recherel, O. J., Kijas, A. W., Chen, P., Howe, O., Rudolph, J. H., Gatti, R., Date, H., Onodera, O., Taucher-Scholz, G., and Lavin, M. F. (2004) Hum. Mol. Genet. 13, 1081–1093
6. Luo, H., Chan, D. W., Yang, T., Rodriguez, M., Chen, B. P., Leng, M., Mu, J. J., Chen, D., Songyang, Z., Wang, Y., and Qin, J. (2004) Mol. Cell. Biol. 24, 8356–8365
7. Mosesso, P., Piana, M., Palitti, F., Pepe, G., Penna, S., and Chessa, L. (2005) Cell. Mol. Life Sci. 62, 485–491
8. Ahel, I., Rass, U., El-Khamisy, S. F., Kytayal, S., Clements, P. M., McKinnon, P. J., Caldecott, K. W., and West, S. C. (2006) Nature 443, 713–716
9. Sano, Y., Date, H., Igarashi, S., Onodera, O., Oyake, M., Takahashi, T., Hayashi, A., Morimatsu, M., Takahashi, H., Makifuchi, T., Fukuhara, N., and Tsuji, S. (2004) Ann. Neurol. 55, 241–249
10. Seidle, H. F., Bieganowski, P., and Brenner, C. (2005) J. Biol. Chem. 280, 20927–20931
11. Kijas, A. W., Harris, J. L., Harris, J. M., and Lavin, M. F. (2006) J. Biol. Chem. 281, 13939–13948
12. Goffin, C., Bailly, V., and Verly, W. G. (1987) Nucleic Acids Res. 15, 875–8771
13. Bogenhagen, D. F., and Pinz, K. G. (1998) J. Biol. Chem. 273, 7888–7893
14. Barnes, D. E., and Lindahl, T. (2004) Annu. Rev. Genet. 38, 445–476
15. Brenner, C. (2002) Biochemistry 41, 9003–9014
16. Caldecott, K. W. (2001) BioEssays 23, 447–455
17. Otterlei, M., Warbrick, E., Nagelhus, T. A., Haug, T., Slupphaug, G., Akbari, M., Aas, P. A., Steinsbekk, K., Bakke, O., and Krokan, H. E. (1999) EMBO J. 18, 3834–3844
18. Slupphaug, G., Kavli, B., and Krokan, H. E. (2003) Mutat. Res. 531, 231–251
19. Boorstein, R. J., Cumming, A., Marenstein, D. R., Chan, M. K., Ma, Y. M., Neubert, T. A., Brown, S. M., and Teebor, G. W. (2001) J. Biol. Chem. 276, 41991–41997

9474