The Histone Demethylase Jarid1b (Kdm5b) Is a Novel Component of the Rb Pathway and Associates with E2f-Target Genes in MEFs during Senescence

Jeroen H. Nijwening*, Ernst-Jan Geutjes*, Rene Bernards, Roderick L. Beijersbergen

Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands

Abstract

Senescence is a robust cell cycle arrest controlled by the p53 and Rb pathways that acts as an important barrier to tumorigenesis. Senescence is associated with profound alterations in gene expression, including stable suppression of E2f-target genes by heterochromatin formation. Some of these changes in chromatin composition are orchestrated by Rb. In complex with E2f, Rb recruits chromatin modifying enzymes to E2f target genes, leading to their transcriptional repression. To identify novel chromatin remodeling enzymes that specifically function in the Rb pathway, we used a functional genetic screening model for bypass of senescence in murine cells. We identified the H3K4-demethylase Jarid1b as novel component of the Rb pathway in this screening model. We find that depletion of Jarid1b phenocopies knockdown of Rb1 and that Jarid1b associates with E2f-target genes during cellular senescence. These results suggest a role for Jarid1b in Rb-mediated repression of cell cycle genes during senescence.

Introduction

Senescence is a robust cell cycle arrest that can be triggered by various stress signals such as telomere attrition, oncogene activation or DNA damage, which functions to protect cells against malignant transformation [1,2]. Senescent cells undergo a series of events leading to marked morphological changes, the expression of senescence-associated β-galactosidase (SA-β-gal) and profound changes in gene expression, including activation of the INK4A-ARF locus. The INK4A-ARF locus is a potent activator of the p53 and RB tumor suppressor networks that enforce an intricate program including the repression of E2f-target genes required for proliferation [3,4]. Not surprisingly, the p53 and RB proteins are commonly inactivated by viral oncoproteins such as E1A or SV40LT thereby contributing to cellular transformation. In human fibroblasts it has been found that senescence induction is associated with dramatic changes in chromatin organization and genes in senescent cells. Concordantly, RB depletion prevents heterochromatinization of E2f-target genes in senescent cells. Recently, it has been found that RB has a specific and non-redundant role during senescence in the repression of transcription of E2f-target genes involved in DNA replication [17]. Moreover, an RB mutant unable to associate with chromatin modifying enzymes could not repress DNA replication during oncogene-induced senescence [18]. However, this RB mutant was not compromised in its ability to repress DNA replication during quiescence or differentiation, underscoring the significant role of chromatin modifying enzymes in repression of DNA replication during senescence.

Based on the observations described above and the association of Rb with several different chromatin remodeling enzymes, we argued that Rb may recruit additional chromatin remodeling enzymes that associate with E2f-target genes during senescence. Senescence is associated with profound changes in gene expression, including stable suppression of E2f-target genes by heterochromatin formation. Some of these changes in chromatin composition are orchestrated by Rb. In complex with E2f, Rb recruits chromatin modifying enzymes to E2f target genes, leading to their transcriptional repression. To identify novel chromatin remodeling enzymes that specifically function in the Rb pathway, we used a functional genetic screening model for bypass of senescence in murine cells. We identified the H3K4-demethylase Jarid1b as novel component of the Rb pathway in this screening model. We find that depletion of Jarid1b phenocopies knockdown of Rb1 and that Jarid1b associates with E2f-target genes during cellular senescence. These results suggest a role for Jarid1b in Rb-mediated repression of cell cycle genes during senescence.

Citation: Nijwening JH, Geutjes E-J, Bernards R, Beijersbergen RL (2011) The Histone Demethylase Jarid1b (Kdm5b) Is a Novel Component of the Rb Pathway and Associates with E2f-Target Genes in MEFs during Senescence. PLoS ONE 6(9): e25235. doi:10.1371/journal.pone.0025235

Editor: Mary Bryk, Texas A & M University, United States of America

Received June 22, 2011; Accepted August 29, 2011; Published September 27, 2011

Copyright: © 2011 Nijwening et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work has been supported by Top Institute Pharma (project T3-105). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: r.beijersbergen@nki.nl

These authors contributed equally to this work.
enzymes that contribute to the suppression of E2f-target genes. The identification of such enzymes is potentially compromised by the notion that inactivation of the RB pathway only is not sufficient to bypass senescence in both murine and human cells [1]. Using a functional genetic screen in murine models in which abrogation of the Rb pathway is sufficient to bypass senescence we discovered that the histone demethylase Jarid1b (Kdm5b) is a critical component of the Rb-E2f pathway. In addition, we found that Jarid1b (Kdm5b) associates with E2f-target genes during senescence, suggesting it may contribute to the repression of E2f-target genes during senescence.

Results

A screen for bypass of senescence in MN-tslT cells identifies Jarid1b

To identify novel chromatin remodeling enzymes that specifically cooperate with Rb in tumor suppression, we used a senescence model in which abrogation of the Rb pathway is sufficient to bypass senescence (Figure 1A). The primary mouse striatum cell line MN-tslT has been conditionally immortalized through the expression of a temperature-sensitive mutant (tsA58) of SV40 large-T antigen (tsLT) [19]. At the permissive temperature MN-tslT cells proliferate rapidly but they enter into a synchronous senescence-like arrest when shifted to the non-permissive temperature (39°C). MN-tslT cells arrested at 39°C display several hallmarks of cellular senescence including SA-β-gal positivity, senescent morphology, decreased expression of E2f-target genes and activation of the p53 target gene and cell cycle inhibitor Cdkn1a (p21cip1) (Figure 2C and D, Supplementary Figure S1B-E). However, similar to murine embryonic fibroblasts (MEFs) and in contrast to human cells [13], senescence-associated heterochromatin foci (SAHF) cannot be detected in MN-tslT cells. It has been shown previously that inhibition of the p19ARF-p53 pathway is sufficient to bypass senescence in this model [20,21,22](Figure 1A). We tested whether loss of Rb1 expression in MN-tslT cells was sufficient to bypass senescence. As can be seen in Figure 1, the expression of an shRNA targeting Rb1 (Supplementary Figure S1A) results in the rescue of the senescence phenotype analogous to inactivation of the Ink4a-Arf locus or knockdown of p53. As such, the dependency on either p53 or Rb in MN-tslT cells offers an opportunity to find novel components of the p16INK4A-Rb pathway.

For this purpose we constructed a retroviral shRNA library consisting of multiple independent shRNAs directed against 50 known and putative chromatin binding and modifying enzymes:

![Image of experimental setup](image_url)

Figure 1. A functional shRNA screen in conditionally immortalized cells. (A) Colony formation assay at 39°C of MN-tslT cells transduced with pRS-GFP, pRS-Ink4a (targeting both Ink4a and Arf), pRS-p53 and pRS-Rb (B) Schematic outline of the senescence bypass screen using MN-tslT cells. Cells were transduced at the permissive temperature (32°C) with 50 pools of retroviral knockdown vectors targeting candidate chromatin binding and modifying enzymes. Each pool contains 4 unique shRNAs targeting a single transcript. The transduced cells were seeded at the non-permissive temperature (39°C) for a colony formation assay. After 2 weeks cells were fixed and stained with crystal violet. (C) Quantification of the colony formation assay of the shRNA screen in MN-tslT cells shown are the average absorption and 2x standard deviations (SD) from the median of the samples.

doi:10.1371/journal.pone.0025235.g001
Jumonji C (JmjC)-domain-containing proteins, the lysine specific demethylase 1 (LSD1)-like family members, methyl CpG binding proteins and DNA methylases [23,24]. The shRNAs were pooled in 50 sets of 4 vectors, in which each set of vectors was designed to target a single transcript (Supplementary Table S1).

MN-tsLT cells were transduced at 32°C with the 50 individual sets of shRNAs in a single-well format and seeded for long term clonogenic outgrowth assays (Figure 1B). As a positive control we used a functional shRNA targeting p53 that was used in previous studies [21,22]. We used an shRNA targeting green fluorescent protein (GFP) as a negative control throughout this study. As expected, knockdown of p53 prevented senescence induction of MN-tsLT cells (Figure 1A and 1C). Clonogenic outgrowth was quantified by measuring crystal violet absorption. Only wells with an absorption value greater than the median plus 2× standard deviation were considered as hits (Figure 1C). Except for the positive control, only the shRNA pool targeting Jarid1b (Kdm5b, Plu-1, Rbp2-h1) [25,26] fitted these criteria. Jarid1b is a member of the Jarid1 family of H3K4 demethylases [27,28,29,30,31]. This family encompasses four members (Jarid1a-d) with a high degree of homology [32], all capable of demethylating tri- and dimethylated H3K4 and function as transcriptional repressors. Although shRNA pools against Jarid1 family members a, c and d were present in the library they did not score as hits. On one hand, this could be due to inefficient knock-down of their respective targets but, in contrast to Jarid1b, we did not detect expression of Jarid1a, c or d in MN-tsLT cells (data not shown).

To rule out off target effects [33], each of the individual knockdown vectors of the Jarid1b shRNA pool were introduced into MN-tsLT cells and tested for their ability to bypass senescence and their efficiency of knocking down Jarid1b. We found two independent shRNAs targeting Jarid1b (pRS-Jarid1b#1 and #3) that allowed bypass of senescence in MN-tsLT cells. Both shRNAs reduced Jarid1b mRNA levels, confirming Jarid1b as an on-target hit (Figures 2A and B). In addition, we found that Jarid1b mRNA expression is highly induced when MN-tsLT cells are shifted to the non-permissive temperature, suggesting a role for Jarid1b in the execution of senescence (Figure 2B). Importantly, the expression of Jarid1b is not a surrogate marker for the absence of cellular proliferation as MN-tsLT cells that express knockdown vectors against p53, and cycling at 39°C, retain high levels of Jarid1b.

Next, we analyzed MN-tsLT cells transduced with the two functional Jarid1b-knockdown vectors for typical senescence markers [1]. Whereas the negative control vector transduced cells stained highly positive for β-galactosidase, cells expressing the functional Jarid1b-knockdown vectors did not or stained weak for β-galactosidase (Figures 2C and 2D). Moreover, Jarid1b-knockdown cells did not show a typical senescent morphology observed in the control vector-transduced cells (Supplementary Figure S1B). Expression of two bona fide cell cycle markers Cen1 and Peno was restored in Jarid1b knockdown cells (Supplementary Figure S1C and S1D). Remarkably, levels of Cdc24a, a marker of slowly cycling and senescent cells, remained high in proliferating Jarid1b-knockdown cells (Supplementary Figure S1E). Taken together,
these data demonstrate that MN-tsLT cells with *Jarid1b* knockdown do not undergo senescence when shifted to the restrictive temperature.

Jarid1b functions in the Rb pathway

Suppression of either the p16^INK4A-Rb or the p19^ARF-p53-p21^WAF1 pathways can mediate bypass of senescence in MN-tsLT cells (Figure 1A). To determine in which of these two pathways Jarid1b operates, we examined gene expression profiles of senescent MN-tsLT cells and MN-tsLT cells with knockdown of p33, Rbl1, Ink4a (Ink4a-Arf locus) or the *Jarid1b* shRNA pool. Unsupervised hierarchical clustering of mRNA expression profiling revealed that the transcriptional profiles of *Jarid1b*-knockdown and Rb-knockdown cells were highly similar (Figure 3A), suggesting that Rb and Jarid1b may operate in the same pathway. Concordantly, expression of established E2F-target genes was downregulated in senescent cells but restored in Rbl1 and *Jarid1b*-knockdown cells similar to p53-knockdown cells (Figure 3B). To ask whether Jarid1b also functions in the p33 pathway we looked for the expression of bona fide p33-target genes in our micro-array data sets. As expected, p53-target genes were upregulated in senescent cells and downregulated in p53-knockdown cells (Figure 3C). In contrast, p53-target genes were induced in both Rb1-knockdown and *Jarid1b*-knockdown cells to a similar extent as in senescent MN-tsLT cells. These data may indicate that Jarid1b does not function in the p19^ARF-p53-p21^WAF1 pathway. Moreover, *Jarid1b* is not a transcriptional target of p53 as knockdown of p53 does not affect the expression of *Jarid1b* in MN-tsLT cells (Figure 2B).

Interestingly, it was previously reported that the protein product of a *JARID1B* splice variant binds to RB in co-immunoprecipitation experiments in MCF7 human breast cancer cells [54]. However, the functional significance of *JARID1B* in RB-mediated suppression of E2F-target genes was not explored. This is not a trivial question as over 150 proteins are known to interact with RB (www.hprd.org) but many of those do not modulate E2F-target genes. Rb1, Rb2, and Rbl2 (Figure 3C). Next, we tested whether *Jarid1b* associates with Rb during senescence to remove the activating H3K4me3 mark at promoters of E2F-target genes. We confirmed that MEFs at passage 8 (P8) were senescent as they displayed hallmarks of senescence that were not observed in passage 5 (P5) MEFs, such as positive staining for p16, p19^ARF-p53-p21^WAF1, and p21^WAF1, p27^KIP1, and p14^ARF-Arf^ during senescence, which is correlated with a strong reduction of positive staining of Jarid1b to E2F-target gene promoters in senescent MN-tsLT cells (Figure 5D). In support of our hypothesis, we found an increased association of Jarid1b with promoters of E2F-target genes but not at promoters of control genes in senescent MEFs (Figure 5C). Next, we tested whether *Jarid1b* occupancy at E2F-target gene promoters was correlated with decreased H3K4 methylation at these promoters, by performing a ChIP experiment with an antibody specific for Jarid1b. We confirmed that MEFs at passage 8 (P8) were senescent as they displayed hallmarks of senescence that were not observed in passage 5 (P5) MEFs, such as positive staining for p16, p19^ARF-p53-p21^WAF1, and p21^WAF1, p27^KIP1, and p14^ARF-Arf^ associated tumor suppressor genes Ink4a, Arf and Cdkn1a, and downregulation of E2f-target genes Ccne1, Mcm3, Pena and Rbl1 (Figures 5A and B). In support of our hypothesis, we found an increased association of Jarid1b with promoters of E2F-target genes but not at promoters of control genes in senescent MEFs (Figure 5C). Next, we tested whether *Jarid1b* occupancy at E2F-target gene promoters was correlated with decreased H3K4 methylation at these promoters, by performing a ChIP experiment with an antibody specific for H3K4me3 in the same chromatin fractions. Indeed, we found that H3K4me3 was severely depleted at promoters of E2F-target genes in senescent cells (Figure 5D). Similar to MEFs, we observed an enhanced occupancy of Jarid1b at E2F-target gene promoters in senescent MN-tsLT cells associated with depletion of H3K4me3 levels (Supplementary Figure S3A and S3B). Taken together, these results demonstrate that there is increased binding of Jarid1b to E2F-target genes during senescence, which is correlated with a strong reduction of H3K4me3 of these E2F-target genes.

Discussion

Chromatin is extensively modified during senescence to allow selective repression of E2F-target genes that control cellular
A

MN-tsLT

shRNA	temp.	phenotype
pRS-GFP	32 C	proliferation
pRS-Rb	39 C	proliferation
pRS-Jarid1b	39 C	proliferation
pRS-INK4	39 C	proliferation
pRS-p53	39 C	proliferation
pRS-GFP	39 C	senescence

B

E2f-target genes

relative mRNA expression
CCNE1
MCM3
MCM5
CDC25A
CDC2
p107
CDK2

C

p53-target genes

relative mRNA expression
MDM2
CCNG1
p21
Ddit4I
p53inp1
wig1
PTP4A3

D

Input IgG-IP Jarid1b-IP

anti-Rb
proliferation. E2F-target gene promoters become targets for heterochromatin formation that are enriched for H3K9 methylation but depleted in H3K4 methylation [3,13]. H3K4me3 is exclusively associated with the 5 ′ regions of practically all active genes whereas H3K9me3 is invariably enriched in transcriptionally silent regions [42,43]. Several studies suggest that the formation of an epigenetic landscape that induces silencing of E2F-target genes during senescence is orchestrated by RB. In contrast to proteins responsible for H3K9 methylation of E2F-target genes, it is unknown which enzymes selectively demethylate H3K4me3 of E2F-target genes. Our data suggest that Jarid1b functions in a repressive complex with Rb to remove the H3K4 activation mark from E2F-target genes, a process that could contribute to their stable silencing during senescence in murine cells.

Recently, Lowe and colleagues, identified a non-redundant role for RB, but not p107 and p130, in promoting senescence by specifically repressing E2F-target genes involved in DNA replication [17], providing a rationale for why RB, but not its family members p107 and p130, is disabled in many, if not all, tumor cells [44]. Although near complete loss of RB may delay senescence induction [17], inactivation of Rb is not sufficient to bypass senescence in almost all models of senescence [4,45]. We find here that suppression of Jarid1b can substitute for Rb loss in override of senescence in mouse fibroblasts that can be bypassed by knockdown of Rbl1 alone, indicating a role for Jarid1b in the Rb pathway.

Jarid1b has been implicated as an oncogene in breast and prostate cancer but as a tumor suppressor in melanoma, which may be attributed to tissue-specific regulation of genes that control carcinogenesis by Jarid1b. For example, Jarid1b was reported to transcriptionally regulate Brca1 in breast cancer, via direct interaction with promoter sites [40,41,46]. Jarid1b is highly expressed in benign human melanocytic nevi, which invariably harbor oncogenic mutations but are protected from progressing into malignant tumors by oncogene-induced senescence [47,48]. Importantly, it was found that the RB tumor suppressor network and not the p14ARF-p53-p21cip1 axis has a key role in the induction of senescence in naevi [48]. This study provided a rationale for the frequent genetic alterations in the p16INK4A-RB pathway in melanoma and the genetic predisposition of patients with germline mutations of the p16INK4A-RB tumor suppressor network to melanoma [49]. It was reported that RB recruits HDAC1, HP1β and SUV39H1 to induce senescence in naevi [39]. We speculate that Jarid1b assists RB in senescent naevi to aid in the execution of senescence. Indeed, Jarid1b is downregulated in malignant melanoma that progressed from a senescent naevus, while restoration of Jarid1b expression in malignant melanoma inhibits proliferation [50]. It was recently found that in contrast to the bulk of melanoma tumor cells expressing very low levels of Jarid1b, a small slow-growing subpopulation expresses high levels of Jarid1b. The Jarid1b expressing subpopulation was found to act as tumor-initiating cells, giving rise to highly proliferative progeny with low Jarid1b expression [47]. We speculate that the high proliferation rate of melanoma cells with low Jarid1b expression may be caused by depression of E2F-target genes and the consequential activation of the cell cycle.

In conclusion, we identified a novel component of the Rb-repressor complex that associates with E2F-target genes during senescence correlating with a strong decrease of H3K4me3 at the same promoters. Jarid1b binds to Rb in senescent cells and Jarid1b-knockdown can substitute for Rbl1-knockdown in senescence models that are solely dependent on functional Rb. We speculate that one of the functions of Jarid1b is to repress E2F-target genes, providing a possible explanation for the differential expression of Jarid1b in distinct tumors although additional research is needed to dissect the functional role of the plasticity in Jarid1b expression in different tumor types.

Materials and Methods

shRNA Library Design

Design of oligonucleotides was done as previously described [51]. Multiple independent oligonucleotides (4 oligos/transcript) were designed to target the Jumonji C (JmjC)-domain-containing proteins, the lysine specific demethylase 1 (LSD1)-like family members, methyl CpG binding proteins and DNA methylases (see Supplemental table S1 for sequences). The oligonucleotides were pooled in 50 sets of 4 vectors, where each set of vectors was designed to target a single transcript, and cloned into the pRISC retroviral vector as previously described [51,52]. More information and protocols on the oligo design and vector can be found at: http://www.screeninc.nl. (see Supplementary Table S1 for sequences).

Cell Lines and Cell Culture

All cell lines were cultured in Dulbecco’s modified Eagle’s medium supplemented with 10% fetal calf serum and antibiotics. MN-tsLT mouse striatum cells express a mutant version of the huntingtin protein with an expanded polyglutamine repeat from a knock-in MN-tsLT allele and a stably introduced temperature sensitive mutant (tsA58) of SV40T antigen [19]. Primary MEFS deficient for the pocket proteins encoding genes Rbl1 and Rbl2 (DKO MEFS) were obtained from Dannenberg [37].

Viral Transduction

Retroviral supernatants for each shRNA-pool were produced by transfection of phoenix packaging cells using the calcium phosphate precipitation method. Forty-eight hours post-transfection, supernatants were harvested, filtered through a 0.45-μm filter and used for infection of target cells.

shRNA library Screen, Colony Formation and Proliferation Assays

MN-tsLT cells grown at the permissive temperature (32°C) were seeded at a density of 2×104 cells per well of a 6-well dish and used for viral infection the next day. After infection cells were selected with puromycin (1 μg/ml) for 2 days. The puromycin selected MN-tsLT cells were seeded at a density of 1×104 cells per well of a 6-well dish and 6 hrs after plating shifted to the non-permissive temperature 39°C. After 2 weeks, cells were fixed with 4% formaldehyde, stained with 0.1% crystal violet and photogaphed. Crystal violet was extracted using 10% acetic acid and quantified at OD 590 nm.
Primary MEFs of FVB genetic background were transduced with retroviral shRNA constructs at passage 3, selected for two passages and subsequently seeded at a density of 1×10^4 per 10 cm Ø dish for a colony formation assay. Cells were fixed and stained after 3 weeks. Growth curves were performed according to the 3T4 protocol and counted every 4 days. DKO MEFs (passage 2) were transduced with retroviral shRNA constructs at passage 3 and selected for two more passages with puromycin (1 µg/ml).
Figure 5. Jarid1b associates with the promoters of E2f-target genes during senescence. (A) Analysis of cycling, passage 5 (P5) and senescent, passage 8 (P8), primary MEFs for hallmarks of senescence. Shown are a proliferation curve of MEFs according to the 3T4 protocol (left panel, results shown as means ± SD), β-galactosidase staining of P5 and P8 MEFs (center panel) and quantification of β−galactosidase positive cells (right panel). (B) Analysis of mRNA expression of the indicated genes from P5 and P8 MEFs. Values are normalized to P5 and shown as means ± SD. (C) Jarid1b ChIP in P5 MEFs and P8 MEFs. The degree of enrichment at indicated promoters of E2f-target genes and control genes was measured by qPCR, non-specific binding of rabbit IgG controls was subtracted and results are presented as percentage of bound/input normalized to P5 samples for each gene. (D) H3K4me3 ChIP in P5 MEFs and P8 MEFs, performed as in (C). Non-specific binding of rabbit IgG controls was subtracted and quantification of H3K4me3 samples was normalized to H3-immunoprecipitations in the same experiment. PD: passage doubling, P: passage.

Passage 5 DKO MEFs were seeded 1 × 10⁴ cells per well of a 6-well plate for a colony formation assay. Cells were fixed and stained after 2 weeks.

Chromatin Immunoprecipitation

ChIP assays were performed using a commercially available ChIP assay kit (Simple ChIP Cell Signaling Technology, #9002) following the manufacturer’s instructions. In short, MEFs and MN-tsLT cells were cultured in 15 cm Ø dishes and fixed with 1% formaldehyde (Sigma-Aldrich) for 10 min, followed by 2 washes with ice-cold PBS containing 1 mM PMSE. For each sample 4 × 10⁷ isolated nuclei were resuspended in 1 ml buffer B and treated with 6 μl micrococcal nuclease (2000 gel units/μl) for 20 min at 37°C, followed by sonication with a Branson Sonifier 250 for 3 times 10 s with 30 s off intervals at output setting 2 for MEFs, and 5 times 15 s with 30 s off intervals at output setting 2 for MN-tsLT cells. DNA was recovered from immune complexes on protein A-agarose beads with the following antibodies: Jarid1b (#3273, Cell Signaling Technology), H3K4me3 (ab1012, Abcam), H3 (#4206, Cell Signaling Technology) and normal rabbit IgG (#2729, Cell Signaling Technology). Real-time qPCR was performed using FastStart Universal SYBR Green Master (Roche) in a 7500 Fast Real-Time PCR System (Applied Biosystems). ChIP primers used are derived from Blais [53], Rowland [54] and Barradas [12] and listed in Supplementary Table S1. Data are presented as percentage of bound minus IgG controls divided by input and normalized to the proliferating condition (P5 for MEFs and 32°C for MN-tsLT cells) of 3 independent ChIPs on a single chromatin fraction. For MN-tsLT cells, the experiments were performed in 3 biological triplicates and for the MEFs in biological duplicates.

β-Galactosidase Staining

Cells were washed with PBS and fixed with 0.5% gluteraldehyde (in PBS) for 15’ at RT. Fixed cells were washed with PBS containing 1 mM MgCl₂. Cells were subsequently incubated 4–6 hrs (for MN-tsLT cells) or 10–12 hrs (for MEFs) at 37°C in staining solution [PBS pH 6.0, 5 mM K₃Fe(CN)₆, *3H₂O, 5 mM K₄Fe(CN)₅, 1 mM MgCl₂, 1 mg/ml X-Gal]. All cells were processed simultaneously to allow comparison. A total of 1000 cells were counted per plate and scored for SA-β-Gal positive cells. For all SA-β-Gal stainings, the representative of at least two independent experiments is shown.

Supervised Hierarchical Clustering

MN-tsLT cells were transduced with the indicated shRNAs, puromycin selected and shifted to the non-permissive temperature as indicated. RNA samples were made in TriZOL (Invitrogen) according to the manufacturer’s instructions, RNA was cleaned as indicated. RNA samples were made in TriZOL (Invitrogen) according to the manufacturer’s protocols. RNA was amplified using the Illumina TotalPrep RNA amplification Kit (Part Number AM1791) and subsequently hybridized to an Illumina HumanWG-6 V3 beadchip (BD-101-0603). Supervised hierarchical clustering analysis was performed after background subtraction and normalization with BeadStudio analysis software from Illumina.

Supporting Information

Figure S1 Jarid1b-knockdown prevents senescence in MN-tsLT cells without affecting the induction of CDKNA1 expression. (A) Protein expression of Rb in senescent MN-tsLT cells transduced with a control vector (pRS-GFP) or an Rb1-knockdown vector (pRS-Rb), l.c.: loading control. (B) Brightfield images of MN-tsLT cells transduced with the indicated knockdown vectors and stained with X-Gal, the representative of at least two independent experiments is shown.

(TIF)

Figure S2 Jarid1b-knockdown can replace Rbl1-knockdown to prevent cellular senescence in Rb1−/−, Rbl1−/−, Rbl2−/− (DKO) MEFs. (A) Colony formation assay of primary MEFs transduced with the indicated knockdown vectors. Late passage infected MEFs were seeded at low density in a 10 cm dish allowed for colony formation for 2 weeks and colonies were visualized by crystal violet.

(B) β−galactosidase staining of DKO MEFs from wt, Rbl1−/−, Rbl2−/− (DKO) MEFs.
Jarid1b Controls E2f-Target Genes

References

1. Campisi J, Alimova EA (2007) Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8: 729–740.
2. Prieur A, Peiper DS (2008) Cellular senescence in vivo: a barrier to tumorigenesis. Curr Opin Cell Biol 20: 150–155.
3. Adams PD (2007) Remodeling of chromatin structure in senescent cells and its potential impact on tumor suppression and aging. Gene 397: 84–93.
4. Courtois-Cox S, Jones SL, Chichowski K (2008) Many roads lead to oncogene-induced senescence. Oncogene 27: 2081–2089.
5. Pasini D, Hansen KH, Christensen J, Agger K, Cloos PA, et al. (2008) Members of a family of JmjC-domain-containing oncoproteins immortalize mouse embryonic fibroblasts by repressing the Ink4a/Arf locus. Proc Natl Acad Sci U S A 105: 2641–2646.
6. Bracken AP, Kleine-Kohlbrecher D, Dietrich N, Pasini D, Gargiulo G, et al. (2011) The Rb/chromatin connection and epigenetic control: opinion. Oncogene 20: 693–705.
7. Agger K, Cloos PA, Pasini D, Rose S, et al. (2007) RBP2 belongs to a family of demethylases, specific for tri- and dimethylated histone 3 on 4 histones. Cell 128: 1077–1176.
8. Klose RJ, Yan Q, Tothova Z, Yamane K, Erdjument-Bromage H, et al. (2007) H3K4 demethylase and Polycomb-Repressive Complex 2. Genes Dev 21: 1345–1355.
9. Tzatsos A, Pfau R, Kampranis SC, Tsichlis PN (2009) Ndy1/KDM2B controls E2f-Target Gene Expression and New Aspects Regarding the Interaction with Chromatin Remodeling Enzymes. EMBO J 28: 1637–1648.
10. Prieur A, Peiper DS (2008) Cellular senescence in vivo: a barrier to tumorigenesis. Curr Opin Cell Biol 20: 150–155.
11. Agger K, Cloos PA, Rudkjær I, Williams K, Andersen G, et al. (2009) The H3K27me3 demethylase JMJD3 contributes to the activation of the INK4A-ARF locus in response to oncogene- and stress-induced senescence. Genes Dev 23: 1171–1176.
12. Barradas M, Anderton E, Acosta JC, Li, S, Banito A, et al. (2009) Histone demethylase JMJD1B contributes to epigenetic control of INK4A/ARF by oncogenic RAS. Genes Dev 23: 1177–1182.
13. Narita M, Nunez S, Heard E, Lin AW, Heem S, et al. (2003) RB-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113: 703–716.
14. Ferreira R, Naguibneva I, Pritchard LL, Ait-Si-Ali S, Harel-Bellan A (2001) The unique role of the retinoblastoma tumor suppressor during cellular senescence. Cancer Cell 17: 376–387.
15. Tzutsu A, Wang X, Zhang C, McCurrach M, Zhao Z, et al. (2010) Dissecting the negative regulator of p19ARF and inhibits senescence. J Biol Chem 277: 6567–6572.
16. Epping MT, Meijer LA, Krügmann O, Box JE, Pandolfi PP, et al. (2011) TSPYL3 suppresses p53 levels and function by physical interaction with USP7. Nat Cell Biol 13: 102–106.
17. Shy W, Whetstine JR (2007) Dynamic regulation of histone lysine methylation by demethylases. Mol Cell 23: 1–14.
18. Kouzarides T (2007) Chromatin modifications and their function. Cell 128: 693–705.
19. Vogt T, Kroiss M, McClelland M, Gruss C, Becker B, et al. (1999) Deficiency of a novel retinoblastoma binding protein 2-homolog is a consistent feature of sporadic human melanoma skin cancer. Lab Invest 79: 1615–1627.
20. Lu PJ, Sundquist K, Backstrom D, Poulsom R, Hanby A, et al. (1999) A novel gene (PLU-1) containing highly conserved putative DNA/chromatin binding motifs is specifically up-regulated in breast cancer. J Biol Chem 274: 13633–13643.
21. Christensen J, Agger K, Cloos PA, Pasini D, Rose S, et al. (2007) RBP2 belongs to a family of demethylases, specific for tri- and dimethylated histone 3 on 4 histones. Cell 128: 1077–1088.
22. Klose R, Xie Y, Xiong Y, Yamanaka K, Eslarzorn-Brongage H, et al. (2007) The retinoblastoma binding protein RBP2 is an H3K4 demethylase. Cell 126: 899–900.
23. Furgier C, de la Torre-Ureta B, Luarte S, et al. (2007) The X-linked mental retardation gene SMG5/JARID1C defines a family of histone H3 lysine 4 demethylases. Cell 128: 1077–1088.
24. Saavedra J, Van H, Tothova Z, Yamane K, Eslarzorn-Brongage H, et al. (2007) The retinoblastoma binding protein RBP2 is an H3K4 demethylase. Cell 126: 899–900.
25. Roesch A, Becker B, Meyer S, Wild P, Hafner C, et al. (2005) Retinoblastoma-binding protein 2-homolog 1: a retinoblastoma-binding protein downregulated in malignant melanomas. Mod Pathol 18: 1249–1257.
26. Cloos PA, Christensen J, Agger K, Heun K (2008) Erasing the methyl mark: histone demethylases at the center of cellular differentiation and disease. Genes Dev 22: 1115–1140.
27. Echeverri J, Beathy PA, Baum B, Boutros M, Buchholz F, et al. (2006) Minimizing the risk of reporting false positives in large-scale RNAi screens. Nat Methods 3: 777–779.
28. Maksymiuk OZ, Schmickel RD, Pineda-Moreno C, et al. (2005) Histone demethylases at the center of cellular differentiation and disease. Genes Dev 19: 15633–15645.
29. Sage J, Mulligan GJ, Attard LD, Miller A, Chen S, et al. (2010) Targeted disruption of the three Rb-related genes leads to loss of G1 control and immortalization. Genes Dev 14: 3037–3050.
30. Sandenbergh JH, Schaffii I, de Le R, Hiele H (2000) Ablation of the retinoblastoma gene family deregulates G1 control causing immortalization and increased cell turnover under growth-restricting conditions. Genes Dev 14: 2490–2492.
31. Xiang Y, Zhu Z, Han G, Ye X, Xu B, et al. (2007) JARID1B is a histone H3 lysine 4 demethylase up-regulated in prostate cancer. Proc Natl Acad Sci U S A 104: 19226–19231.
32. Cloos PA, Christensen J, Agger K, Heun K (2008) Erasing the methyl mark: histone demethylases at the center of cellular differentiation and disease. Genes Dev 22: 1115–1140.
implications for the growth arrest of human melanocytic nevi. Aging Cell 6: 577–591.

40. Scibetta AG, Santangelo S, Coleman J, Hall D, Chaplin T, et al. (2007) Functional analysis of the transcription repressor PLU-1/JARID1B. Mol Cell Biol 27: 7220–7235.

41. Yamane K, Tateishi K, Klose RJ, Fang J, Fabrizio LA, et al. (2007) PLU-1 is an H3K4 demethylase involved in transcriptional repression and breast cancer cell proliferation. Mol Cell 25: 801–812.

42. Rothenburg AJ, Allan CD, Wysocka J (2007) Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark. Mol Cell 25: 15–30.

43. Mikkelsen TS, Ku M, Jaffe DB, Isaac B, Lieberman E, et al. (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448: 553–560.

44. Burkhart DL, Sage J (2008) Cellular mechanisms of tumour suppression by the retinoblastoma gene. Nat Rev Cancer 8: 671–682.

45. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88: 593–602.

46. Tan K, Shaw AI, Madsen B, Jensen K, Taylor-Papadimitriou J, et al. (2003) Human PLU-1 Has transcriptional repression properties and interacts with the developmental transcription factors BF-1 and PAX9. J Biol Chem 278: 20507–20513.

47. Roesch A, Fakunaga-Kalabis M, Schmidt EG, Zabierowski SE, Brafford PA, et al. (2010) A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell 141: 583–594.

48. Michaloglou C, Vredeveld LC, Soengas MS, Denoyelle C, Kiihnan T, et al. (2005) BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436: 720–724.

49. Halaban R (2005) Rh/E2F: a two-edged sword in the melanocytic system. Cancer Metastasis Rev 24: 339–356.

50. Roesch A, Becker B, Schneider-Brachert W, Hagen I, Landthaler M, et al. (2006) Re-expression of the retinoblastoma-binding protein 2-homolog 1 reveals tumor-suppressive functions in highly metastatic melanoma cells. J Invest Dermatol 126: 1850–1859.

51. Berns K, Hijmans EM, Mullenders J, Brummelkamp TR, Velds A, et al. (2004) A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 428: 431–437.

52. Huang S, Lawokil J, Epping MT, Koster J, Holzel M, et al. (2009) ZNF423 is critically required for retinoic acid-induced differentiation and is a marker of neuroblastoma outcome. Cancer Cell 15: 328–340.

53. Blais A, van Oevelen CJ, Margueron R, Acosta-Alvear D, Dynlacht BD (2007) Retinoblastoma tumor suppressor protein-dependent methylation of histone H3 lysine 27 is associated with irreversible cell cycle exit. J Cell Biol 179: 1399–1412.

54. Rowland BD, Denisov SG, Douma S, Stunnenberg HG, Bernards R, et al. (2002) E2F transcriptional repressor complexes are critical downstream targets of p19(ARF)/p53-induced proliferative arrest. Cancer Cell 2: 53–63.