In-plane magnetic penetration depth in NbS$_2$
Pascale Diener, Maxime Leroux, Laurent Cario, Thierry Klein, Pierre Rodiere

To cite this version:
Pascale Diener, Maxime Leroux, Laurent Cario, Thierry Klein, Pierre Rodiere. In-plane magnetic penetration depth in NbS$_2$. Physical Review B: Condensed matter and materials physics, American Physical Society, 2011, 84, pp.054531. hal-00771744

HAL Id: hal-00771744
https://hal.archives-ouvertes.fr/hal-00771744
Submitted on 9 Jan 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
In-plane magnetic penetration depth in NbS$_2$

P. Diener1, M. Leroux1, L. Cario2, T. Klein1,3, P. Rodière1

1 Institut Néel, CNRS/UJF 25 rue des Martyrs BP 166 38042 Grenoble cedex 9, FRANCE
2 Institut des Matériaux Jean Rouel (IMN), Université de Nantes, CNRS, 2 rue de la Houssinière, BP3229, 44322 Nantes, France
3 Institut Universitaire de France and Université J. Fourier-Grenoble 1, France

We report on the temperature dependence of the in-plane magnetic penetration depth (λ_{ab}) and first penetration field ($H_f \propto 1/\chi_{ab}(T)$) for $H_\parallel c$ in 2H-NbS$_2$ single crystals. An exponential temperature dependence is clearly observed in $\lambda_{ab}(T)$ at low temperature, signifying the presence of a fully open superconducting gap. This compound is the only superconducting 2H-dichalcogenide which does not develop a charge density wave (CDW). However as previously observed in 2H-NbSe$_2$, this gap ($\Delta_1 = 1.1\; k_B T_c$) is significantly smaller than the standard BCS weak coupling value. At higher temperature, a larger gap ($\Delta_2 = 1.8\; k_B T_c$) has to be introduced to describe the data which are compatible with a two gap model. The superconducting gaps are hence very similar in NbS$_2$ and NbSe$_2$ and we show here that both of them open in the strongly coupled Nb tubular sheets independently of the presence of a CDW or not.

I. INTRODUCTION

In numerous strongly correlated systems, superconductivity appears in the vicinity of a second electronic instability. These superconductors then often show deviations from the weak coupling BCS theory which raises the question of the interplay between the two orders. This question is particularly well illustrated in dichalcogenides. Indeed, in 1T-TiSe$_2$-3, 2H-TaS$_2$-3,5 or 2H-NbSe$_2$ superconductivity coexists with a charge density wave (CDW). In 2H-NbSe$_2$ the charge density wave develops for instance at $T_D = 33\; K$ and coexists with superconductivity (SC) below $T_c = 7.1\; K$.

In parallel, specific heat, tunneling spectroscopy as well as de Haas van Alphen measurements$^{6-10}$ showed that NbSe$_2$ is characterized by the coexistence of two superconducting gaps : $\Delta_1 = 1.0 \pm 0.1 k_B T_c$ which is much smaller than the BCS weak coupling value ($\Delta/k_B T_c \sim 1.7$) and $\Delta_2 = 2.0 \pm 0.3 k_B T_c$. It was then initially suggested that the CDW might be at the origin of $\Delta_1$$^{11-14}$.

However, scanning tunneling spectroscopy (STS) and specific heat measurements clearly indicated the presence of a reduced superconducting gap (of similar amplitude) in the NbS$_2$ system as well15,16 showing that this interpretation does not hold the ground. Indeed, this iso-electronic compound is particularly interesting to probe the possible influence of the CDW on the superconducting states in dichalcogenides, as it is the only system among the four 2H layered superconducting transition-metal dichalcogenides17 MX$_2$ (M=Nb, Ta; X=S, Se) which does not exhibit a CDW transition. Those measurements hence clearly showed that the presence of two superconducting gaps in 2H-dichalcogenides is not a direct consequence of the presence of a CDW in some of them.

In a first scenario, those two gaps can be considered as being the limiting values of one single anisotropic superconducting gap (without nodes) whereas in an alternative scenario they can be related to different values of the electron phonon coupling constants (λ_{e-ph}) on different sheets of the Fermi surface (FS) (so called multiband superconductivity18).

Clear evidence for multiband superconductivity were first obtained in MgB$_2$ for which λ_{e-ph} varies from ~ 1.2 for the 2D-σ band to ~ 0.4 for the 3D-π band19,20. Since the FS of NbSe$_2$ is composed of four strongly coupled quasi-2D Nb-derived cylinders (bands 17 and 18 with λ_{e-ph} ranging from 0.8 to 1.9) and one Se-derived pancake sheet with a much smaller λ_{e-ph} value ~ 0.3 (band 16)8, it was tempting to ascribe the small superconducting gap to this reduced λ_{e-ph}. However ARPES measurements11,14 suggested that, in NbSe$_2$, both gaps open on the tubular sheets and the situation seems to be quite different from that of MgB$_2$ as the two gaps could both be associated to the same (strongly coupled) FS sheets. However, an experimental confirmation that the two gaps are also related to the same FS sheets in NbS$_2$ was still lacking.

In order to address this issue, we have performed in-plane penetration depth and penetration field measurements in NbS$_2$ single crystals. Indeed, λ is a directional probe and corresponding measurements are only sensitive to supercurrents flowing perpendicularly to the direction of the applied magnetic field. Band structure calculations in NbSe$_2$ have for instance shown that the tubular sheets contribute to 98% of the transport current in the basal plane23, and the present measurements will hence only probe the superconducting properties of those strongly couple sheets. We show here that the temperature dependence of λ_{ab} are remarkably identical in NbSe$_2$ and NbS$_2$. This temperature dependence clearly confirms the presence of a small superconducting gap $\Delta_1 = 1.1\; k_B T_c$ (being much smaller than the standard BCS weak coupling value) and that, as previously observed in NbSe$_2$, this gap opens on at least one of the Nb sheets. At higher temperature the superfluid density can be deduced from $\lambda(T)$ introducing a calibration factor (see below) which can be accurately obtained combining $\lambda(T)$ and first penetration field measurements. We then also show that a second gap value is required to describe the tempera-
ture dependence of this superfluid density which can be well described by a two gap model introducing gap values very similar to those previously obtained in specific heat measurements. We hence confirm that the presence of two well defined superconducting gap values, both open-
measurements. W e hence confirm that the presence of two well described by a two gap model introducing gap values
ture dependence of this superfluid density which can be

STS and specific heat (C_p) measurements clearly showed that NbSe$_2$ and NbS$_2$ systems share the partic-
ularity of having both two superconducting gaps but also highlighted some fundamental differences. Indeed,
whereas vortices exhibit a clear stellar shape in NbSe$_2$, they appear to be isotropic in NbS$_2$. Moreover, the two
systems have very different anisotropies of their upper critical fields increasing from ~ 3.2 in NbSe$_2$ to ~ 8.1 in
NbS$_2$.
However, the vortex shape and H_{c2} values are
determined by the coherence length (ξ) which is related
to the superconducting gap but also to electronic prop-
erties of the normal state (Fermi velocity and possibly
electronic mean free path in the so-called dirty limit).
On the contrary the temperature dependence of the pen-
etration depth is determined only by the superconducting
gap structure. Those later measurements hence provide
very valuable information to understand those differences
which will be discussed at the end of the paper.

II. SAMPLE AND EXPERIMENTS

2H-NbS$_2$ samples were grown using the vapo-
rt port growth technique with a large sulphur excess, as
described elsewhere. Single crystals have a flat hex-
agonal or triangular shape and typical dimensions of $150 \times
30 \mu m$. The large flat faces grow perpendicular to the c-
axis. The 2H crystallographic structure has been checked
on each sample using a four-circle diffractometer. The
bulk critical temperature was checked on several sam-
ples of each batch by ac specific heat measurements. ΔT_c varied from 0.3 K at $T_c = 6.05 \pm 0.2$ K emphasizing the
excellent bulk homogeneity of each crystal. Previous scanning
tunnelling microscopy measurements on single crystals of
the same origin confirmed the absence of CDW down to
0.1 K. To avoid a contamination by oxygen intercalation
between layers which would reduce T_c and smears the transition, samples were kept in vacuum. All the
measurements were carried out in the first month follow-
ing the growth of the samples.

A high stability LC oscillator operating at 14 MHz,
driven by a Tunnel Diode has been used to measure the
variation of the magnetic penetration depth. The tiny sample, placed in the center of the solenoid coil, acts
as a small perturbation to the inductance (L). By changing the temperature of the sample, the magnetic penetra-
tion depth variations produce a change of the inductance,
leading to a change in the LC resonant frequency $\delta f(T)$. The amplitude of the AC excitation field is smaller than
$1 \mu T$ (that is εH_{c1}) to keep the sample in the Meissner
state. This technique enables to measure the variation of λ with an excellent sensitivity as our setup can detect
relative frequency changes, $\delta f/f_0$ of a few 10^{-5}, which corresponds to changes in λ on the order of 1 Å in mm2 samples. The sample is glued with vacuum grease at
the bottom of a sapphire cold finger whose temperature
is regulated between $T_{min} = 0.5$ K and 10 K whereas the
LC oscillator remains at fixed temperature (3K). The fre-
quency shift $\delta f = f(T) - f(T_{min})$ is then proportional to
the magnetic penetration depth :

$$\delta \lambda(T) = R \frac{\delta f(T)}{\Delta f_0}$$

where Δf_0 is the change induced by the introduction of
the superconducting sample in the coil (measured in-situ
by extracting the cold finger from the coil at the lowest
temperature), and R an effective dimension which
depends on the sample geometry. In principle, R can
be evaluated by using the formula proposed by Prozorov
and al. in the case of cylinders. However, recent mea-
measurements in pnictides highlighted the difficulties of evalu-
ating this effective dimension, in particular for mag-
netic fields perpendicular to the ab-planes (main sample surface). Indeed, very different $\delta \lambda(T)$ were obtained by
different groups, most probably due to the roughness of
the sample edges which undermines this evaluation.

To overcome this difficulty we have performed first pen-
etration field (H_f) measurements using miniature GaAs-
based quantum well Hall probe arrays. The reman-
ent local DC field ($B_{rem}(H_a)$) in the sample has been mea-
ured after applying a magnetic field H_a and sweeping
the field back to zero. In the Meissner state, no vortices
penetrate the sample and B_{rem} remains equal to zero up
to $H_a = H_f$. A finite B_{rem} value is then obtained for
$H_a \geq H_f$ due to vortices which remain pinned in the
sample. As H_f is directly proportional to the first criti-

\[
\rho_{ab}(T) = \frac{\lambda_0^2}{\lambda_{ab}(T)} = \frac{1}{(1 + \frac{E}{\lambda_0 \Delta f_0} \delta f(T)/\lambda_0)^2} \quad (2)
\]

is expected to vary as \(H_f(T)/H_f(0)\) (\(\lambda_0\) being the zero temperature penetration depth). Even though the uncertainties on the \(H_f\) values hinders any precise determination of the gap values, those measurements can then be used as milestones to obtain the \(R/\lambda_0 \Delta f_0\) coefficient (see inset of Fig.3).

III. EVIDENCE FOR A SMALL GAP VALUE IN NBS₂

Fig. 1 shows typical \(\delta f(T)\) curves between 0.08\(T_c\) and 0.85\(T_c\) for three NBS₂ single crystals (see inset of Fig. 1). The magnetic field is applied perpendicularly to the layers, i.e. along the crystallographic \(c\) axis, so that supercurrents are flowing in the layers, probing the in-plane penetration depth, \(\lambda_{ab}\). Samples B and D were grown in the same batch, and have, in-plane dimensions equal to 110 \(\mu\)m and 140\(\mu\)m, respectively and a thickness \(t = 30\mu\text{m}\) (resp. 25\(\mu\text{m}\)). Sample C8 was grown in a second batch and has a larger size (430² \(\times\) 110 \(\mu\)m²). The frequency shift is ten times higher for C8 than for other samples due to its larger volume but all renormalized curves are fully identical underlying the excellent reproducibility of the temperature dependence discussed below.

In the local London theory, at low temperature (typically \(T < T_c/3\)), the temperature dependence of the gap can be neglected and \(\lambda(T)\) is given by:

\[
(\lambda(T) - \lambda_0)/\lambda_0 = \sqrt{\frac{\pi \Delta(0)}{2k_B T}} e^{-\Delta(0)/k_B T} \quad (3)
\]

where \(k_B\) is the Boltzmann constant and \(\Delta(0)\) the value of the smalles superconducting gap at 0 K. Indeed, due to this exponential dependence only the smallest gap is expected to show up at low temperature. As shown in Fig.2 a very poor agreement to the data is obtained if the gap parameter is fixed to the weak coupling BCS gap of 1.76\(k_B T_c\). A much better fit is obtained taking \(\Delta/k_B = 7.2\text{K} \approx 1.2 T_c\). Note that this gap value does not depend on the renormalization constant. The assumption \(\lambda(T_{\text{min}}) \approx \lambda_0\), where \(T_{\text{min}}\) is the lowest experimental temperature, is valid here, since an extrapolation of Eq.(3) gives \((\lambda(0.5K) - \lambda_0)/\lambda_0 < 10^{-3}\). Since the superfluid current mainly originates from the Nb sheets for \(H\parallel c\), those measurements hence directly show that this small gap is associated with those sheets in NBS₂ as well.

In order to get information on the larger gap, it is necessary to perform a detailed analysis of the temperature dependence at higher temperature. The inset of Fig.3 displays the temperature dependence of the superfluid density \(\rho_{ab}(T)\) up to \(T_c\) deduced from Eq.(2) for different \(R/\lambda_0 \Delta f_0\) values compared to \(H_f/H_f(0)\). Note that if a small change in \(R/\lambda_0 \Delta f_0\) will modify strongly the normalized superfluid density, the curvature of \(H_f(T)\) is utterly independent of \(\lambda_0\). \(H_f(T)\) can hence be used to determine \(R/\lambda_0 \Delta f_0\) with good accuracy and, as shown, a good agreement between \(H_f\) and the superfluid density is obtained taking \(R/\lambda_0 \Delta f_0 = 0.02 H_{\text{e}}^{-1}\). Clear deviations from the BCS weak coupling theoretical curve (dashed line) are visible on the entire temperature range. In particular, the BCS values exceed the experimental data at low temperature due to the small value of the gap.

In the multigap model, \(\tilde{\rho}\) is phenomenologically assumed to be the sum of two independent superfluid densities

\[
\tilde{\rho} = \omega \tilde{\rho}_1 + (1 - \omega) \tilde{\rho}_2 \quad (4)
\]

where \(\omega\) is the weight of band 1 and \(\tilde{\rho}_i\) are given by

\[
\tilde{\rho}_i(T) = 1 - \int \frac{\partial f}{\partial E} \frac{E}{\sqrt{E^2 - \Delta^2_i(T)}} \quad (5)
\]

The best fit to the data using Eq.(4) and Eq.(5) (solid line in Fig.3) is obtained with \(\Delta_1 = 1.05 \pm 0.05 \times k_B T_c\) and \(\Delta_2 = 1.8 \pm 0.1 \times k_B T_c\), with \(\omega \approx 0.5\). Those values are in very good agreement with those deduced from tunneling spectroscopy measurements which revealed a distribution of gaps having two main values at 0.53 meV\(\approx 6.15\text{K} \approx 1 k_B T_c\) and 0.98 meV\(\approx 10.8\text{K} \approx 1.8 k_B T_c\). Moreover, the temperature dependence of the specific heat measured on
sample C8 can be well described taking $\Delta_1 \sim 1.05 \times k_B T_c$, $\Delta_2 \sim 2.1 \times k_B T_c$ and $\omega \sim 0.6^{16}$. Even if this two gap model well reproduces the temperature dependence of ρ_\parallel, it is worth noting that this temperature dependence is also compatible with a single anisotropic in-plane superconducting gap. The simplest model which respects the symmetry of the crystal has an in-plane 6-fold shape, $\Delta(\phi) = \Delta_1 + \frac{\Delta_2}{2} (1 + \cos(6\phi))$ where the extremum of the superconducting gap define two characteristics energy scales. With this model, we find $\Delta_1 \sim 0.9(1) \times k_B T_c$ and $\Delta_2 \sim 1.9(3) \times k_B T_c$.

IV. COMPARISON BETWEEN NBS$_2$ AND NBSE$_2$

We have also reported in Fig.3 the temperature dependence of ρ_{ab} deduced from penetration depth measurements in 2H-NbSe$_2$.12 Since the critical temperatures are slightly different in the two compounds, the data have been plotted as a function of T/T_c with $T_c = 6.05$ K and 7.1 K for NbSe$_2$ and NbSe$_2$, respectively. In both case, the presence of two characteristic gap values are necessary to fit the temperature dependence of the in-plane superfluid density. We hence show that in both compounds the exotic superconducting gap structure is related to the Nb tubular sheets and that, even if the charge density wave is perturbing those sheets in NbSe$_2$ (but not in NbS$_2$ which does not exhibit any CDW), this CDW does not affect the superconducting gap structure. Our results hence contradict the ARPES measurements on NbSe$_2$ which suggested a strong correlation between the gap structure and the CDW formation. The presence of an identical exotic gap structure in two different compounds (even of the same family) is particularly rare which highlights the robustness of the underlying mechanism at its origin. It’s worth noting that there exists a $R/\lambda_0 \Delta f_0$ value ($\sim 0.02 Hz^{-1}$, see above) for which the temperature dependence obtained on both compounds are very similar on the whole temperature range.

Note that this strong similitude in the gap structure is not in contradiction with the fact that the vortex cores have an isotropic shape in NbS$_2$.15, and 6-fold shape in NbSe$_2$. Indeed, in this later case, the particular shape could be due to an anisotropic Fermi velocity34 caused by the presence of the Charge Density Wave.

Finally, It is interesting to note that even with similar superconducting gaps, it is possible to understand the large difference of the anisotropy of the upper critical field in the two systems. In case of NbSe$_2$, the anisotropy of the upper critical field can be understood by the anisotropy of the two set of Nb-bands. Indeed, the coherence length related to the pancake band is larger due to a large renormalised Fermi velocity and a small gap8. According to band structure calculations, the anisotropy of the Fermi velocities ($v_F^{\perp}/v_F^{ \parallel}$) of the two tubular sheets are on the order of 2 (Band 1735) and 10 (Band 18) in NbSe$_2$, none of which corresponding to the experimental value of the anisotropy of the upper critical field (~ 3.2)23. However, $\mu_0 H_{c2}^{\perp}(0) = \Phi_0/2\pi v_F^{\perp}$, is defined by the band having the smallest ξab value. All bands have quite similar in plane Fermi velocities but if one assumes that Δ_2 is associated with band 17 and Δ_1 to band 18, on gets $\xi_{ab,17} \sim (\Delta_1/\Delta_2) \xi_{ab,18} \sim \xi_{ab,18}/1.7$ and H_{c2}^{\perp} will be defined by band 17. Moreover, for $\mu_0 H_{c2}^{\parallel}(0) = \Phi_0/2\pi v_F^{\parallel}$, and the very small value of c-axis Fermi velocity of band 18, will imply that H_{c2}^{\parallel} will be defined by this latter band. One hence gets $H_{c2}^{\parallel}/H_{c2}^{\perp} = (v_F^{\parallel}/v_F^{\perp}) \times (\Delta_1/\Delta_2)^2 \sim 10/(1.7)^2 \sim 3$ in good agreement with the experimental value. Note that this situation strongly differs from the one observed in MgB$_2$ in which the anisotropy of H_{c2} is defined only by the σ-band (for $T < T_c$). As NbSe$_2$ and NbS$_2$ have similar H_{c2}^{\parallel} values, one can conclude that band 18 is not affected by the chemical substitution and the increase of the H_{c2} anisotropy to ~ 8.1 in NbS$_2$ is hence due to an increase of v_F^{\perp} but this change in the Fermi velocity does not affect the superconducting gap structure.

The presence of two characteristics gap values appears to be a robust characteristic feature in 2H dichalcogenides, but its origin is still open to questions. With the present results, the influence of the CDW also has to be excluded, underlying the necessity to propose new
V. CONCLUSION

To conclude, the temperature dependence of the in-plane magnetic penetration depth of single crystals of 2H-NbSe$_2$ has been measured, and compared to previous measurements on 2H-NbSe$_2$. The temperature dependence shows a similar curvature in both compounds evidencing a similar reduced superconducting gap structure in the sheets of the Fermi Surface where the e-ph coupling constant are the largest. The CDW, present only in NbSe$_2$, is not at the origin of the reduced superconducting gap. In the light of the discovery of a particular acoustic phonon mode observed in lead or Niobium, a more accurate knowledge of the phonon dispersion in NbS$_2$ could shed insight into the origins of the reduced superconducting gap in the dichalcogenides.

P.R. thanks R. and B. Thomas for helpful discussions. TK is most obliged to V. Mosser of ITRON, Montrouge, and M. Koczynkowski from the Laboratoire des Solides Irradiés, Palaiseau for the development of the Hall sensors used in this study.

1. G. Seyfarth, J. P. Brison, and G. K. et al., Phys. Rev. Lett. 101, 046401 (2008).
2. E. Morosan, H. W. Zandbergen, and B. S. e. a. Dennis, Nature Physics 2, 544 (2006).
3. A.F. Kusmartseva, B. Sipos, H. Berger, L. Forro, E. Tutis, Phys. Rev. Lett. 103, 236401 (2009).
4. B. Sipos, A. Kusmartseva, and A. A. et al., Nature Materials 7, 960 (2008).
5. K. E. Wagner, E. Morosan, Y. S. Hor, J. Tao, Y. Zhu, T. Sanders, T. M. McQueen, H. W. Zandbergen, A. J. Williams, D. V. West, et al., Phys. Rev. B 78, 104520 (2008).
6. P. Garoche, J. J. Veysse, P. Manuel, and P. Molinié, Solid. State Comm. 19, 455 (1976).
7. H. F. Hess, R. B. Robinson, R. C. Dynes, J. M. Valles, and J. V. Waszczak, Phys. Rev. Lett. 62, 214 (1989).
8. R. Corcoran, P. Meeson, Y. Onuki, P. A. Probst, M. Springerfog, K. Takita, H. Harima, G. Y. Guo, and B. L. Gyorffy, J. Phys.: Condens. Matter 6, 4479 (1994).
9. D. Sanchez, A. Junod, J. Muller, H. Berger, and F. Lévy, Physica B 204, 167 (1995).
10. I. Guillamon, H. Suderow, F. Guinea, and S. Vieira, Phys. Rev. B 77, 134505 (2008).
11. T. Kiss, T. Yokoya, A. Chainani, S. Shin, T. Hanaguri, M. Nohara, and H. Takagi, Nat. Phys. 3, 720 (2007).
12. J. D. Fletcher, A. Carrington, P. Diener, P. Rodiere, J. P. Brison, R. Prozorov, T. Öhlleiser, and R. W. Giannetta, Phys. Rev. Lett. 98, 057003 (2007).
13. A. H. Castro Neto, Phys. Rev. Lett. 86, 4382 (2001).
14. S. V. Borisenko, A. A. Kordyuk, V. B. Zabolotnyy, D. S. Inosov, D. Evtushinsky, B. Bührer, A. N. Yaresko, A. Varykhalov, R. Follath, W. Eberhardt, et al., Phys. Rev. Lett. 102, 166402 (2009).
15. I. Guillamon, H. Suderow, S. Vieira, L. Cario, P. Diener, and P. Rodiere, Phys. Rev. Lett. 101, 166407 (2008).
16. J. Kacman, Z. Prihulová, C. Marcenat, T. Klein, P. Rodiere, L. Cario, and P. Samuely, Phys. Rev. B 82, 041518 (2010).
17. R. Friend and A. D. Yoffe, Adv. Phys. 36, 1 (1987).
18. H. Suhl, B. T. Matthias, and L. R. Walker, Phys. Rev. Lett. 3, 552 (1959).
19. H. Choi, D. Roundy, H. Sun, M. Cohen, L. Louie, and G. Steven, Nature 418, 758 (2002).
20. I. I. Mazin and V. P. Antropov, Physica C 385, 49 (2003).
21. T. Yokoya, T. Kiss, A. Chainani, and S. et al., Science 294, 2518 (2001).
22. E. Boaknin, M. A. Tanatar, J. Paglione, D. Hawthorn, F. Ronning, R. W. Hill, M. Sutherland, L. Tailliefer, J. Sonier, S. M. Hayden, et al., Phys. Rev. Lett. 90, 117003 (2003).
23. M. D. Johannes, I. I. Mazin, and C. A. Howells, Phys. Rev. B 73, 205102 (2006).
24. K. Onabe, M. Naito, and S. Tanaka, J. Phys. Soc. Jpn. 45, 50 (1978).
25. W. Fisher and M. Sienko, Inorg. Chem. 19, 39 (1980).
26. C. Van Degriff, Rev. Sci. Instrum. 46, 599 (1975).
27. P. Diener, P. Rodiere, T. Klein, C. Marcenat, J. Kacman, Z. Prihulová, D. J. Jang, H. S. Lee, H. G. Lee, and S. I. Lee, Phys. Rev. B 79, 220508 (2009).
28. R. Prozorov, R. W. Giannetta, A. Carrington, P. Fournier, R. L. Greene, P. Gattasarma, D. G. Hinks, and A. R. Banks, Appl. Phys. Lett. 77, 4202 (2000).
29. R. Prozorov, R. W. Giannetta, A. Carrington, F. M. Araujo-Moréira Phys. Rev. B 62, 115 (2000).
30. T. Klein, J. Braithwaite, A. Demuer, Phys. Rev. B 82, 184506 (2010).
31. B. Chandrashekar and D. Einzel, Ann. Phys. 505, 335 (1993).
32. H. F. Hess, R. B. Robinson, and J. V. Waszczak, Phys. Rev. Lett. 64, 2711 (1990).
33. I. Guillamon, H. Suderow, S. Vieira, and P. Rodiere, Physica C 468, 537 (2008).
34. F. Gygi and M. Schluter, Phys. Rev. Lett. 65, 1820 (1990).
35. the two set of Nb-bands called by Corcoran et al. 17 and 18, correspond respectively to 2 and 3 in Johannes and Mazin.
36. P. Aynajian, T. Keller, L. Boeri, S. M. Shapiro, K. Habicht, and B. Keimer, Science 319, 1509 (2008).