AMBROSETTI-PRODI TYPE RESULTS FOR DIRICHLET PROBLEMS OF THE FRACTIONAL LAPLACIAN

ANUP BISWAS AND JÓZSEF LŐRINCZI

Abstract. We establish Ambrosetti–Prodi type results for nonlinear Dirichlet problems for the fractional Laplace operator. In the choice of nonlinearities we consider semi-linear and super-linear growth cases separately. Our techniques use a combination of analytic and probabilistic tools.

1. Introduction and statement of results

In this paper our goal is to present a counterpart for the fractional Laplacian of the classical Ambrosetti-Prodi problem studied for a class of elliptic differential operators with nonlinear terms. First we briefly recall the original problem, then state our results, and in the next section present the proofs. In contrast with topological and variational methods used in the classical context, we develop here a combined analytic-probabilistic approach, using Feynman-Kac type representations for non-local operators.

Let $D \subset \mathbb{R}^d$ be a bounded open domain with a $C^{2,\alpha}(D)$ boundary, $\alpha \in (0,1)$, and consider the Dirichlet problem

\[
\begin{cases}
\Delta u + f(u) = g(x) & \text{in } D, \\
u = 0 & \text{on } \partial D,
\end{cases}
\]

where Δ is the Laplacian, $f \in C^2(\mathbb{R})$, and $g \in C^{0,\alpha}(\bar{D})$. In the pioneering paper [2] Ambrosetti and Prodi studied the operator $L = \Delta + f(\cdot)$ as a differentiable map between $C^{2,\alpha}(D)$ and $C^{0,\alpha}(\bar{D})$, and discovered the following phenomenon. Let $\lambda_1 < \lambda_2 \leq \lambda_3 \leq \ldots$ denote the Dirichlet eigenvalues of the Laplacian for the domain D. The authors have shown that provided f is strictly convex, with $f(0) = 0$, and

\[
0 < \lim_{z \to -\infty} \frac{f(z)}{z} < \lambda_1 < \lim_{z \to \infty} \frac{f(z)}{z} < \lambda_2,
\]

then

(1) there is a closed connected manifold $M_1 \subset C^{0,\alpha}(\bar{D})$ of codimension 1, with the property that there exist M_0, M_2 such that $C^{0,\alpha}(\bar{D}) \setminus M_1 = M_0 \cup M_2$,

(2) the Dirichlet problem (1.1) has no solution if $g \in M_0$, has a unique solution if $g \in M_1$, and has exactly two solutions if $g \in M_2$.

The problem formulates in the wider context of invertibility of differentiable maps between Banach spaces, in fact, M_1 is the set of elements u on which the Fréchet derivative of L is not locally invertible. Also, as it is seen from condition (1.2), this split behaviour shows that the existence and multiplicity of solutions is conditioned by the crossing of the nonlinear term with the principal eigenvalue of the linear part.
Following this fundamental observation, much work has been done in the direction of relaxing the conditions or generalizing to further non-linear partial differential equations or systems. A first contribution has been made by Berger and Podolak proposing a useful reformulation of the problem. Write
\[L_1 u = \Delta u + \lambda_1 u, \quad f_1(u) = f(u) - \lambda_1 u, \quad g = \rho \varphi_1 + h, \]
where \(\varphi_1 \) is the principal eigenfunction of the Dirichlet Laplacian, \(h \) is in the orthogonal complement of \(\varphi_1 \), \(L^2 \)-normalized to 1, and \(\rho \in \mathbb{R} \), so that (1.1) becomes
\[L_1 u + f_1 u = \rho \varphi_1 + h \quad \text{in} \ D, \quad u = 0 \quad \text{in} \ \partial D. \quad (1.3) \]
In [6] it is then shown that there exists \(\rho^*(h) \in \mathbb{R} \), continuously dependent on \(h \), such that for \(\rho > \rho^*(h) \) the equivalent Dirichlet problem has no solution, for \(\rho = \rho^*(h) \) it has a unique solution, and for \(\rho < \rho^*(h) \) it has exactly two solutions. For further early developments we refer to the works of Kazdan and Warner [19] relaxing the assumptions, Dancer [13], Amann and Hess [1] identifying a suitable growth condition on \(f_1 \), and Ruf and Srikant [26] turning to the super-linear case. More recent papers exploring different perspectives include [3, 12, 16, 17, 22, 27], and for useful surveys we refer to de Figueiredo [15] and Mahwin [21]. For non-local Hamilton-Jacobi equations see [14], and for systems of non-local equations [23].

Let \(D \subset \mathbb{R}^d \) be a bounded domain with \(C^2 \) boundary, \(s \in (0,1) \), and consider the fractional Laplacian \((-\Delta)^s \). Motivated by the problem (1.3), in this paper we are interested in the existence and multiplicity of solutions of
\[
\begin{cases}
(-\Delta)^s u = f(x,u) + \rho \Phi_1 + h(x) & \text{in} \ D, \\
u = 0 & \text{in} \ D^c,
\end{cases}
(P_\rho)
\]
where \(\Phi_1 \) is the Dirichlet principal eigenfunction of \((-\Delta)^s \) in \(D \), \(\rho \in \mathbb{R} \), and \(h \in C^\alpha(D) \) for some \(\alpha > 0 \). We also assume that \(\|\Phi_1\|_\infty = 1 \). Below we will consider viscosity solutions, however, we will also impose a sufficient condition on \(f \) so that every viscosity solution becomes a classical solution.

Let \(V \in C(\bar{D}) \), which will be referred to as a potential. We use the notation \(C_{b,+}(\mathbb{R}^d) \) for the space of non-negative bounded continuous functions on \(\mathbb{R}^d \). Also, we denote by \(C^{2s,+}(D) \) the space of continuous functions on \(D \) with the property that if \(\psi \in C^{2s,+}(D) \), then for every compact subset \(K \subset D \) there exists \(\gamma > 0 \) with \(f \in C^{2s+}(K) \). Define
\[
\mathfrak{F}(\lambda,D) = \left\{ \psi \in C_{b,+}(\mathbb{R}^d) \cap C^{2s,+}(D) : \psi > 0 \text{ in } D, \text{ and } -(-\Delta)^s \psi - V \psi + \lambda \psi \leq 0 \right\}.
\]
The principal eigenvalue of \((-\Delta)^s + V \) is defined as
\[
\lambda^* = \sup \left\{ \lambda : \mathfrak{F}(\lambda,D) \neq \emptyset \right\}.
\]
For easing the notation, we will simply write \(\lambda^* \) for the above. This widely used characterization of the principal eigenvalue originates from the seminal work of Berestycki, Nirenberg and Varadhan [4]. Descriptions in a similar spirit for a different class of non-local Schrödinger operators have been obtained in [5], while in [8] non-local Pucci operators have been considered. Recently, we proposed in [10] a probabilistic approach using a Feynman-Kac representation to establish characterizations of the principal eigenvalue and the corresponding semigroup solutions.

Our first result concerns the existence of the principal eigenfunction and of a solution of the Dirichlet problem.

Theorem 1.1. Suppose that \(V, g \in C^\alpha(\bar{D}) \) for some \(\alpha > 0 \). The following hold:

(a) There exists a unique \(\Psi_1 \in C^{2s,+}(D) \cap C_{b,+}(\mathbb{R}^d) \), \(\|\Psi_1\|_\infty = 1 \), satisfying
\[
(-\Delta)^s \Psi_1 + V \Psi_1 = \lambda^* \Psi_1 \text{ in } D, \quad \Psi_1 > 0 \text{ in } D, \quad \Psi_1 = 0 \text{ in } D^c. \quad (1.4)
\]

(b) Suppose \(\lambda^* > 0 \). Then there exists a unique \(u \in C^{2s,+}(D) \cap C(\mathbb{R}^d) \) satisfying
\[
(-\Delta)^s u + Vu = g \text{ in } D, \quad u = 0 \text{ in } D^c. \quad (1.5)
\]
We will also need the following refined weak maximum principle for viscosity solutions.

Theorem 1.2. Suppose that \(V \in C^\alpha(\bar{D}) \) and \(\lambda^* > 0 \). Let \(u \in C_0(\mathbb{R}^d) \) be a viscosity subsolution of \((-\Delta)^su + Vu \leq 0\) and \(v \in C_0(\mathbb{R}^d) \) be a viscosity supersolution of \((-\Delta)^sv + Vv \geq 0\) in \(D \). Furthermore, assume that \(u \leq v \) in \(D^c \). Then \(u \leq v \) in \(\mathbb{R}^d \).

Next we impose the following Ambrosetti-Prodi type condition on \(f \).

Assumption [AP]. Let \(f : \bar{D} \times \mathbb{R} \to \mathbb{R} \) be such that

1. \(f \) is Hölder continuous in \(x \), locally with respect to \(u \), and locally Lipschitz continuous in \(u \), uniformly in \(x \in \bar{D} \),
2. there exist \(V_1, V_2 \in C^\alpha(\bar{D}) \), for some \(\alpha > 0 \), such that
 \[
 \lambda^* ((-\Delta)^s - V_1) > 0 \quad \text{and} \quad \lambda^* ((-\Delta)^s - V_2) < 0,
 \]
 \[
 f(x, q) \geq V_1(x)q - C \quad \text{for all } q \leq 0, \ x \in \bar{D},
 \]
 \[
 f(x, q) \geq V_2(x)q - C \quad \text{for all } q \geq 0, \ x \in \bar{D},
 \]
3. \(f \) has at most linear growth, i.e., there exists a constant \(C > 0 \) such that
 \[
 |f(x, q)| \leq C(1 + |q|),
 \]
 for all \((x, q) \in \bar{D} \times \mathbb{R} \)

(3') \(d > 1 + 2s \) and there exists a positive continuous function \(a_0 \) such that

\[
\lim_{q \to \infty} \frac{f(x, q)}{q^p} = a_0(x), \quad \text{for some } p \in \left(1, \frac{d + 2s}{d - 2s}\right),
\]

where the above limit holds uniformly in \(x \in \bar{D} \).

When referring to Assumption [AP] below, we will understand that conditions (1), (2) and one of (3) or (3') hold. In what follows, we assume with no loss of generality that \(f(x, 0) = 0 \), otherwise \(h \) can be replaced by \(h - f(\cdot, 0) \).

Now we are ready to state our main result on the fractional Ambrosetti-Prodi problem.

Theorem 1.3. Let Assumption [AP] hold. Then there exists \(\rho^* = \rho^*(h) \in \mathbb{R} \) such that for \(\rho < \rho^* \) the Dirichlet problem \((P_\rho) \) has at least two solutions, at least one solution for \(\rho = \rho^* \), and no solution for \(\rho > \rho^* \).

Below we will develop a combined analytic and probabilistic technique to prove Theorem 1.3. Like in classic proofs such as in \([15, 16]\), in our context too the viscosity characterization of the principal eigenfunction plays a key role in dealing with these problems. In Theorem 1.1 first we obtain such a characterization. To achieve our goals, we rely on our recent work \([10]\), in which we proposed a probabilistic method based on Feynman-Kac representations to establish Alexandrov-Bakelman-Pucci (ABP) estimates for semigroup solutions of non-local Dirichlet problems for a large class of operators, going well beyond the fractional Laplacian. In the present paper we show that every classical solution is also a semigroup solution and thus a generalized ABP estimate can be established for these solutions, which is essential for obtaining the a priori estimates. While here we only consider the fractional Laplacian, in view of the framework in \([10]\) we expect that the probabilistic approach will be useful to treat Ambrosetti-Prodi type problems for a large class of non-local operators. This will be further pursued in a future work.
2. Proofs

2.1. Preliminaries

We begin by recalling some notations and results from [9, 10], which will be used below. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a complete probability space and $(X_t)_{t \geq 0}$ be an isotropic $2s$-stable process, $s \in (0, 1)$, on this space. Given a function $V \in \mathcal{C}(\bar{D})$ called potential, the corresponding Feynman-Kac semigroup is given by

$$T_t^{D,V} f(x) = \mathbb{E}^x \left[e^{-\int_0^t V(X_s) \, ds} f(X_t) \mathbb{I}_{\{t < \tau_D\}}\right], \quad t > 0, \ x \in D, \ f \in L^2(D),$$

where

$$\tau_D = \inf \{t > 0 : X_t \not\in D\}$$

is the first exit time of the process $(X_t)_{t \geq 0}$ from the domain D. It is shown in [9, Lem 3.1] that $T_t^{D,V}$, $t > 0$, is a Hilbert-Schmidt operator on $L^2(D)$ with continuous integral kernel in $(0, \infty) \times D \times D$. Moreover, every operator T_t has the same purely discrete spectrum, independent of t, whose lowest eigenvalue is the principal eigenvalue λ^* having multiplicity one, and the corresponding principal eigenfunction $\Psi \in L^2(D)$ is strictly positive. We also have from [9, Lem. 3.1] that $\Psi \in \mathcal{C}_0(D)$, where $\mathcal{C}_0(D)$ denotes the class of continuous functions on \mathbb{R}^d vanishing in D^c. Since Ψ is an eigenfunction in semigroup sense, we have for all $t > 0$ that

$$e^{-\lambda^*_t} \Psi(x) = T_t \Psi(x) = \mathbb{E}^x \left[e^{-\int_0^t V(X_s) \, ds} \Psi(X_t) \mathbb{I}_{\{t < \tau_D\}}\right], \quad x \in D. \quad (2.1)$$

Let $(D_n)_{n \in \mathbb{N}}$ be a collection of strictly decreasing domains with the property that $\cap_{n \geq 1} D_n = D$, and each D_n having its boundary satisfying exterior cone condition. Denote by λ_n^* the principal eigenfunction in semigroup sense for D_n. The following result shown in [10, Lem. 4.2] will be useful below.

Proposition 2.1. The following hold:

1. For every $n \in \mathbb{N}$ we have $\lambda^* > \lambda_n^*$ and $\lim_{n \to \infty} \lambda_n^* = \lambda^*$.
2. Let $\tilde{V} \geq V$ and suppose that for an open set $U \subset D$ we have $\tilde{V} > V$ in U. Then $\lambda_U^* > \lambda_V^*$, where λ_U^* and λ_V^* denote the principal eigenvalues corresponding to the potentials V and \tilde{V}, respectively.

Since the theory developed in [9] is probabilistic while here we are concentrating on viscosity solutions, we point out the relationship between these notions of solution (compare also with [10, Rem. 3.2]).

Lemma 2.1. Suppose that $V, g \in \mathcal{C}(\bar{D})$, and let u satisfy

$$(-\Delta)^s u + Vu \leq g \quad \text{in} \ D. \quad (2.2)$$

We have the following:

1. If $u \in \mathcal{C}_0(\mathbb{R}^d)$ is a semigroup sub-solution (resp., super-solution) of (2.2), then it is also a viscosity sub-solution (resp., super-solution).
2. If $u \in \mathcal{C}^{2s+}(D) \cap \mathcal{C}_0(\mathbb{R}^d)$ is a classical sub-solution (super-solution) of (2.2), then it is also a viscosity sub-solution (resp., super-solution).

Proof. Consider part (1). Choose a point $x \in D$, and let $\varphi \in \mathcal{C}^2(D)$ be a test function that (strictly) touches u at x from above, i.e., for a ball $B_r(x) \subset D$ we have $\varphi(x) = u(x)$, and $\varphi(y) > u(y)$ for $y \in B_r(x) \setminus \{x\}$. Define

$$\varphi_r(y) = \begin{cases} \varphi(y) & y \in B_r(x), \\ u(y) & y \in B^c_r(x). \end{cases}$$
To show that u is viscosity solution, we need to show that $(-\Delta)^s \varphi_r(x) + V(x)u(x) \leq g(x)$. Consider a sequence of functions $(\varphi_{r,n})_{n \in \mathbb{N}} \subseteq C^2(B_r(x)) \cap C(\mathbb{R}^d)$ with the property that $\varphi_{2,n} = \varphi_r$ outside $B_{r+\frac{1}{n}}(x) \setminus B_r(x)$, $\varphi_{r,n} \geq u$, and $\varphi_{r,n} \rightarrow \varphi_r$ almost surely, as $n \rightarrow \infty$. Since u is a semigroup subsolution, we have that

$$u(x) \leq \mathbb{E}^x \left[e^{-\int_0^{t\wedge T_D} V(X_s) \, ds} u(X_{t\wedge T_D}) \right] + \mathbb{E}^x \left[\int_0^{t\wedge T_D} e^{-\int_0^s V(X_p) \, dp} g(X_s) \, ds \right], \quad t \geq 0.$$

It is direct to show that $(Y_t)_{t \geq 0}$, $Y_t = e^{-\int_0^{t\wedge T_D} V(X_s) \, ds} u(X_{t\wedge T_D}) + \int_0^{t\wedge T_D} e^{-\int_0^s V(X_p) \, dp} g(X_s) \, ds$, is a submartingale with respect to the natural filtration of $(X_t)_{t \geq 0}$, see also [10], hence by optional sampling we obtain that

$$u(x) \leq \mathbb{E}^x \left[e^{-\int_0^{t\wedge \tau_r} V(X_s) \, ds} u(X_{t\wedge \tau_r}) \right] + \mathbb{E}^x \left[\int_0^{t\wedge \tau_r} e^{-\int_0^s V(X_p) \, dp} g(X_s) \, ds \right], \quad t \geq 0,$$

where τ_r denotes the first exit time from the ball $B_r(x)$. On the other hand, by applying Itô's formula on $\varphi_{r,n}$ we obtain

$$\mathbb{E}^x \left[e^{-\int_0^{t\wedge \tau_r} V(X_s) \, ds} \varphi_{r,n}(X_{t\wedge \tau_r}) \right] - \varphi_{r,n}(x) = \mathbb{E}^x \left[\int_0^{t\wedge \tau_r} e^{-\int_0^s V(X_p) \, dp} (\varphi_{r,n} - V\varphi_{r,n})(X_s) \, ds \right],$$

for all $t \geq 0$. Combining this with (2.3) gives

$$\mathbb{E}^x \left[\int_0^{t\wedge \tau_r} e^{-\int_0^s V(X_p) \, dp} (\varphi_{r,n} - V\varphi_{r,n})(X_s) \, ds \right] + \mathbb{E}^x \left[\int_0^{t\wedge \tau_r} e^{-\int_0^s V(X_p) \, dp} g(X_s) \, ds \right] \geq 0.$$

By dividing both sides by t and letting $t \rightarrow 0$, it follows that

$$-(-\Delta)^s \varphi_{r,n}(x) - V(x)\varphi_{r,n}(x) + g(x) \geq 0.$$

Thus by letting $n \rightarrow \infty$, we obtain

$$(-\Delta)^s \varphi_r(x) + V(x)\varphi_r(x) \leq g(x),$$

which proves the first part of the claim.

Next consider part (2). By the property of u we note that $(-\Delta)^s u$ is continuous in D. Consider a sequence of open sets $K_n \subseteq K_{n+1} \subseteq D$ and $\cup_n K_n = D$. For fixed n, let $(\psi_m)_{m \in \mathbb{N}} \subseteq C^2(D) \cap C_b(\mathbb{R}^d)$ be a sequence of functions satisfying

$$\sup_{x \in K_n} |(-\Delta)^s u(x) - (-\Delta)^s \psi_m(x)| + \sup_{x \in \mathbb{R}^d} |u(x) - \psi_m(x)| \rightarrow 0, \quad \text{as} \quad m \rightarrow \infty.$$

Applying Itô’s formula to ψ_m, we get that

$$\mathbb{E}^x \left[e^{-\int_0^{t\wedge \tau_n} V(X_s) \, ds} \psi_m(X_{t\wedge \tau_n}) \right] - \psi_m(x) = \mathbb{E}^x \left[\int_0^{t\wedge \tau_n} e^{-\int_0^s V(X_p) \, dp} (-(-\Delta)^s \psi_m - V\varphi_m)(X_s) \, ds \right],$$

where τ_n denotes the first exit time from the set K_n. First letting $m \rightarrow \infty$ and then $n \rightarrow \infty$ above, and using the fact that $\tau_n \uparrow \tau_D$ almost surely, we obtain

$$\mathbb{E}^x \left[e^{-\int_0^{t\wedge T_D} V(X_s) \, ds} u(X_{t\wedge T_D}) \right] - u(x) \geq -\mathbb{E}^x \left[\int_0^{t\wedge T_D} e^{-\int_0^s V(X_p) \, dp} g(X_s) \, ds \right], \quad t \geq 0.$$

This shows that u is a semigroup subsolution. \qed
2.2. Proof of Theorem 1.1

Now we are ready to prove our first theorem.

Proof. First consider (a). From [9] (see also the discussion in the previous section) it is known that there exists an eigenpair $(\lambda^*, \Psi) \in \mathbb{R} \times C_0(D)$ with $\Psi > 0$ in D, satisfying (2.1). Then by Lemma 2.1 we see that Ψ is a viscosity solution of
\[
(-\Delta)^s \Psi = (\lambda^* - V) \Psi \quad \text{in } D, \quad \text{and} \quad \Psi = 0 \quad \text{in } D^c.
\] (2.4)
Thus by [25] we have $\Psi \in C^a(\mathbb{R}^d)$. Since V is Hölder continuous, it follows that $(\lambda^* - V)\Psi$ is Hölder continuous in D. A combination of (2.4) and [25, Prop. 1.4] gives that $\Psi \in C^{2s+}(D)$, implying existence for (1.4).

Next we show that
\[
\lambda^* = \lambda^*((-\Delta)^s + V) = \sup\{ \lambda : \mathcal{F}(\lambda, D) \neq \emptyset \}.
\] (2.5)
Suppose that there exist $\lambda \geq \lambda^*$ and $\psi \in \mathcal{F}(\lambda, D)$. From Lemma 2.1 it is seen that ψ is a semigroup super-solution of $(-\Delta)^s \psi + (V - \lambda)\psi \geq 0$ in D. Using [10, Prop. 4.1] we obtain that $\Psi = C\psi$ in D for a suitable constant $C > 0$. Hence the only way $(-\Delta)^s \psi + (V - \lambda)\psi \geq 0$ can hold in D is when $\lambda = \lambda^*$ and $\psi = 0$ in D^c. This proves (2.5). The same argument also establishes that λ^* has geometric multiplicity one.

Next we consider (b). The main idea in proving (1.5) is to use Schauder’s fixed point theorem. Consider a map $\mathcal{T} : C_0(D) \to C_0(D)$ defined such that for every $\varphi \in C_0(D)$, $\mathcal{T}\varphi = \varphi$ is the unique viscosity solution of
\[
(-\Delta)^s \varphi = g - V\varphi \quad \text{in } D, \quad \text{and} \quad \varphi = 0 \quad \text{in } D^c.
\] (2.6)
Using [25] we know that
\[
\|\mathcal{T}\varphi\|_{C^a(\mathbb{R}^d)} \leq c_1(\|g\|_{\infty} + \|V\varphi\|_{\infty}),
\]
for a constant $c_1 = c_1(D, d, s)$. This implies that \mathcal{T} is a compact linear operator. It is also easy to see that \mathcal{T} is continuous.

In a next step we show that the set
\[
\mathcal{B} = \{ \varphi \in C_0(D) : \varphi = \mu\mathcal{T}\varphi \text{ for some } \mu \in [0,1] \}
\]
is bounded in $C_0(D)$. For every $\varphi \in \mathcal{B}$ we have
\[
(-\Delta)^s \varphi = \mu g - \mu V\varphi \quad \text{in } D, \quad \text{and} \quad \varphi = 0 \quad \text{in } D^c,
\] (2.7)
for some $\mu \in [0,1]$. Then applying [25] as above, we get that $\varphi \in C^{2s+}(D) \cap C_0(D)$. Thus by Lemma 2.1 we see that φ is a semigroup solution of (2.7). To show boundedness of \mathcal{B} it suffices to show that for a constant c_2, independent of μ, we have
\[
\sup_{x \in D} |\varphi(x)| \leq c_2 \sup_{x \in D} |g(x)|.
\] (2.8)
Once (2.8) is established, the existence of a fixed point of \mathcal{T} follows by Schauder’s fixed point theorem. Since every solution of (1.5) is a semigroup solution and $\lambda^* > 0$, the uniqueness of the solution follows from [10, Th. 4.2]. To obtain (2.8) recall from [10, Cor. 4.1] that
\[
\lambda_{\mu V}^* = -\lim_{t \to \infty} \frac{1}{t} \log \mathbb{E}_x \left[e^{-\int_0^t \mu V(X_s)ds} \mathbb{1}_{\{\tau_D > t\}} \right], \quad x \in D.
\] (2.9)
Let $\lambda_{0}^* > 0$ be the principal eigenvalue corresponding to the potential $V = 0$. Then from the concavity of the map $\mu \mapsto \lambda_{\mu V}^*$ (see [10, Lem. 4.3]) it follows that
\[
\lambda_{\mu V}^* \geq \lambda_V^* \wedge \lambda_0^* = 2\delta > 0.
\]
Hence by using (2.9) and the continuity of $\mu \mapsto \lambda^s_{\mu V}$, we find constants $c_3 > 0, \mu_0 > 1$, such that for every $\mu \in [0, \mu_0]$ we have
\[
\mathbb{E}^x \left[e^{-\int_0^t \mu V(X_s) \, ds} \mathbbm{1}_{\{\tau_D > t\}} \right] \leq c_3 e^{-\delta t}, \quad t \geq 0, \; x \in D. \tag{2.10}
\]
Since φ is a semigroup solution, we have that
\[
\varphi(x) = \mathbb{E}^x \left[e^{-\int_0^t \mu V(X_s) \, ds} \varphi(X_t) \mathbbm{1}_{\{\tau_D > t\}} \right] + \int_0^t T^D_{s,t} \mu V g(x) \, ds.
\]
Letting $t \to \infty$, using (2.10) and Hölder inequality, it is easily seen that the first term at the right hand side of the above vanishes. Again by (2.10), we have for $x \in D$
\[
\left| T^D_{s,t} \mu V g(x) \right| \leq c_3 \sup_{x \in D} |g| e^{-\delta t}, \quad t \geq 0.
\]
Thus finally we obtain
\[
\sup_{x \in D} |\varphi(x)| \leq \frac{c_3}{\delta} \sup_{x \in D} |g(x)|,
\]
yielding (2.8). \qed

2.3. Proof of Theorem 1.2

First we show that the C^2-class of test functions can be replaced by functions of class C^{2s+} in the definition of the viscosity solution.

Lemma 2.2. Let $u \in C_0^0(\mathbb{R}^d)$ be a viscosity subsolution of $(-\Delta)^s u + Vu \leq g$ in D. Consider $x \in D$. Suppose that there exists an open set $N \Subset D$, containing x, and a function $\varphi \in C^{2s+}(N)$ satisfying $\varphi(x) = u(x)$ and $\varphi > u$ in $N \setminus \{x\}$. Define
\[
\varphi_N(y) = \begin{cases}
\varphi(y) & \text{for } y \in N, \\
u(y) & \text{for } y \in \mathbb{R}^d \setminus N.
\end{cases}
\]
Then we have $(-\Delta)^s \varphi_N(x) + V(x)u(x) \leq g(x)$.

Proof. Consider a sequence of functions in $(\varphi_m)_{m \in \mathbb{N}}$, C^2 in a neighbourhood of x, and such that $\|\varphi_m - \varphi\|_{C^{2s+\alpha}(\bar{N})} \to 0$, for some $\alpha > 0$, as $m \to \infty$. This is possible since $\varphi \in C^{2s+}(\bar{N})$. Let
\[
\delta_m = \min_{\bar{N}} (\varphi_m - u).
\]
Then $\hat{\varphi}_m = \varphi_m - \delta_m$ touches u from above in \bar{N}. Since $\sup_{\bar{N}} |\hat{\varphi}_m - u| \to 0$, it follows that there exists a sequence $(x_m)_{m \in \mathbb{N}} \in N$ such that $x_m \to x$, $\delta_m \to 0$, as $m \to \infty$, and $\hat{\varphi}_m(x_m) = u(x_m)$. Set
\[
\varphi_{N,m}(y) = \begin{cases}
\hat{\varphi}_m(y) & \text{for } y \in N, \\
u(y) & \text{for } y \in \mathbb{R}^d \setminus N.
\end{cases}
\]
By the definition of the viscosity subsolution we find
\[
- \frac{C(d,s)}{2} \int_{B_{r}(x)} \frac{\varphi_{N,m}(x_m + y) + \varphi_{N,m}(x_m - y) - 2\varphi_{N,m}(x_m)}{|y|^{d+2s}} \, dy \\
- \frac{C(d,s)}{2} \int_{B_{c}(x)} \frac{\varphi_{N,m}(x_m + y) + \varphi_{N,m}(x_m - y) - 2\varphi_{N,m}(x_m)}{|y|^{d+2s}} \, dy \\
+ V(x_m)u(x_m) \leq g(x_m),
\]
where $C(d,s)$ is the normalizing constant for fractional Laplacian and $r > 0$ is chosen to satisfy $B_{2r}(x) \subseteq N$. It is easily seen that we can let $m \to \infty$ above and use the continuity of V,g,u to obtain

$$(-\Delta)^s \varphi_N(x) + V(x)u(x) \leq g(x).$$

This completes the proof. □

Next we prove our second theorem stated in the previous section.

Proof. Let $w = u - v$. By [11, Th. 5.9] it then follows that

$$(-\Delta)^s w + Vw \leq 0 \quad \text{in } D,$$

in viscosity sense. Note that $w \leq 0$ in D^c, while we need to show that $w \leq 0$ in \mathbb{R}^d. Suppose, to the contrary, that $w^+ > 0$ in D. Using Proposition 2.1, we find a domain $D_1 \ni D$ with a C^1-boundary and $\lambda^*_1 > 0$, where λ^*_1 is the principal eigenvalue for D_1 and potential V. In fact, we may take V as a C^α-extension from D to D_1. Let $\Psi_1 \in C^{2s+}(D_1) \cap C_0(D_1)$ be the corresponding positive principal eigenfunction. Thus we have

$$(-\Delta)^s \Psi_1 + V\Psi_1 = \lambda^*_1 \Psi_1 \quad \text{in } D_1 \quad \text{and} \quad \Psi_1 = 0 \quad \text{in } D^c.$$

Define

$$c_0 = \inf \{ c \in (0,\infty) : c\Psi_1 - w > 0 \text{ in } D \}.$$

Since $\min_D \Psi_1 > 0$, it follows that c_0 is finite, and $w^+ > 0$ implies that $c_0 > 0$. Then $\Phi = c_0 \Psi_1 - w$ necessarily vanishes at some point, say $x_0 \in D$. This follows from the fact that $w^+ = 0$ on ∂D. Thus $c_0 \Psi_1$ lies above u on all of \mathbb{R}^d and touches w at x_0. Hence by (2.11) and Lemma 2.2 it follows that

$$(-\Delta)^s (c_0 \Psi_1(x_0)) + V(x_0)(c_0 \Psi_1(x_0)) \leq 0.$$

This leads to a contradiction as the left hand side of the above expression equals $\lambda^*_1(c_0 \Psi_1(x_0)) > 0$ by (2.12).

□

2.4. Proof of Theorem 1.3

Now we turn to proving our main result on the fractional Ambrosetti-Prodi phenomenon. The strategy of proof will be divided in the following steps.

1. First we find ρ_1 such that for every $\rho \leq \rho_1$ there exists a minimal solution of (P_ρ). This will be done in Lemmas 2.3 and 2.4 below.

2. Next we find $\rho_2 > \rho_1$ such that no solution of (P_ρ) above ρ_2 exists. This is the content of Lemma 2.7 and Lemma 2.8.

3. Finally, we follow the arguments in [15] to find the bifurcation point ρ_0.

We begin by showing the existence of a sub/super-solution, which will be used for constructing a minimal solution.

Lemma 2.3. Let Assumption [AP] hold. The following hold:

1. For every $\rho \in \mathbb{R}$ there exists $\hat{u} \in C^{2s+}(D) \cap C_0(D)$ satisfying $\hat{u} \leq 0$ in D and

$$(-\Delta)^s \hat{u} \leq f(x,\hat{u}) + \rho \Phi_1 + h(x) \quad \text{in } D.$$

2. There exists $\bar{\rho}_1 < 0$ such that for every $\rho \leq \bar{\rho}_1$ there exists $\bar{u} \in C^{2s+}(D) \cap C_0(D)$ satisfying $\bar{u} \geq 0$ in D and

$$(-\Delta)^s \bar{u} \geq f(x,\bar{u}) + \rho \Phi_1 + h(x) \quad \text{in } D.$$

3. We can construct \tilde{u} to satisfy $\tilde{u} \leq \bar{u}$, for every super-solution \bar{u} of

$$(-\Delta)^s \bar{u} \geq f(x,\bar{u}) + \rho \Phi_1 + h(x) \quad \text{in } D,$$

with $\tilde{u} \in C^{2s+}(D) \cap C_0(D)$.

Proof. Consider $\rho \in \mathbb{R}$. Let $C_1 = 2 \sup_{D} |h| + 2|\rho| + C$, where C is the same constant as in (1.7)-(1.8). Since $\lambda^* ((-\Delta)^s V_1) > 0$ by (1.6), it follows from Theorem 1.1(2) that there exists a unique $w \in \mathcal{C}^{2s+}(D) \cap C_0(D)$ satisfying
\[
(-\Delta)^s w - V_1 w = -C_2 + h(x) + \rho \Phi_1 \quad \text{in } D.
\] (2.13)
Recalling that $\Phi_1 \in \mathcal{C}^s(\mathbb{R}^d) \cap C_0(D)$ by [25], the right hand side of the (2.13) is Hölder continuous in D. By our choice of C_2 we see that
\[
(-\Delta)^s w - V_1 w \leq 0,
\]
and hence, by Theorem 1.2 we have $w \leq 0$ in \mathbb{R}^d. Therefore, by making use of (1.7) we get that
\[
(-\Delta)^s w \leq f(x, w) + h(x) + \rho \Phi_1 \quad \text{in } D, \quad \text{and } w = 0 \quad \text{in } D^c.
\]
This proves part (1).

Now we proceed to establish (2). Due to Assumption [AP] there exists a constant C_1 satisfying $f(x, q) \leq C_1 (1 + q^p)$, for all $(x, q) \in D \times [0, \infty)$. We consider the unique function $\bar{u} \in \mathcal{C}^{2s+}(D) \cap C_0(D)$ satisfying
\[
(-\Delta)^s \bar{u} - h^+ - C_1 = 0 \quad \text{in } D.
\] (2.14)
Using [25, Th. 1.2] we find $c_1 = c_1(d, s, D) > 0$, such that
\[
\sup_{x \in \mathbb{D}} \frac{|\bar{u}(x)|}{d^s(x)} \leq c_1,
\] (2.15)
where $d(\cdot)$ is the distance function from the boundary of D. Since $(-\Delta)^s \bar{u} \geq 0$, it also follows from Hopf’s lemma [8, Th. 2.4] that $\bar{u} > 0$ in D. Since $(-\Delta)^s \Phi_1 = \lambda^*_0 \Phi_1 \geq 0$ in D, another application of Hopf’s lemma gives a constant $c_2 > 0$ satisfying
\[
\frac{\Phi_1(x)}{d^s(x)} \geq c_2, \quad x \in D.
\]
Combining the above with (2.15) and choosing $\bar{\rho}_1 > 0$ large, we find for every $\rho \leq \bar{\rho}_1$ that
\[
-\rho \Phi_1 \geq C_1 c_1^p d^{sp} \geq C_1 \bar{u}^p, \quad \text{for } x \in D.
\]
Hence by (2.14) we have for $\rho \leq \rho_0$
\[
(-\Delta)^s \bar{u} \geq f(x, \bar{u}) + \rho \Phi + h \quad \text{in } D.
\]
This proves (2).

Now we come to (3). Note that
\[
(-\Delta)^s \bar{u} \geq f(x, \bar{u}) - |\rho| - ||h||_{\infty} \quad \text{in } D.
\]
Since the minimum of two viscosity super-solutions is again a viscosity super-solution, we note that $w = \bar{u} \wedge 0$ is a viscosity super-solution of
\[
(-\Delta)^s w \geq f(x, w) - |\rho| - ||h||_{\infty} \geq V_1 w - C - |\rho| - ||h||_{\infty} \quad \text{in } D,
\] (2.16)
by (1.7). On the other hand, by our choice of C_2 in (2.13) we have
\[
(-\Delta)^s w - V_1 w \leq -C - |\rho| - ||h||_{\infty} \quad \text{in } D.
\] (2.17)
Combining (2.16), (2.17) and [11, Th. 5.9], we obtain
\[
(-\Delta)^s (w - \bar{u}) - V_1 (w - \bar{u}) \geq 0 \quad \text{in } D,
\]
in viscosity sense, and $w - \bar{u} = 0$ in D^c. Hence by Theorem 1.2 we have $w \geq \bar{u}$ in \mathbb{R}^d, implying $\hat{u} \geq w \geq \bar{u}$ in \mathbb{R}^d. This yields part (3).

Using Lemma 2.3 we can now prove the existence of a minimal solution.
Lemma 2.4. For \(\rho \leq \hat{\rho}_1 \), where \(\hat{\rho}_1 \) is the same value as in Lemma 2.3, there exists \(u \in \mathcal{C}^{2s+}(D) \cap C_0(D) \) satisfying

\[
(-\Delta)^s u = f(x, u) + \rho \Phi_1 + h(x) \quad \text{in } D. \tag{2.18}
\]

Moreover, the above \(u \) can be chosen to be minimal in the sense that if \(\tilde{u} \in \mathcal{C}^{2s+}(D) \cap C_0(D) \) is another solution of (2.18), then \(\tilde{u} \geq u \) in \(\mathbb{R}^d \).

Proof. The proof is based on the standard monotone iteration method. Denote \(m = \min_D u \) and \(M = \max_D \tilde{u} \). Let \(\theta > 0 \) be a Lipschitz constant for \(f(x, \cdot) \) on the interval \([m, M]\), i.e.,

\[
|f(x, q_1) - f(x, q_2)| \leq \theta |q_1 - q_2| \quad \text{for } q_1, q_2 \in [m, M], \ x \in \tilde{D}.
\]

Denote \(F(x, u) = f(x, u) + \varphi \Phi(x) + h(x) \). Consider the solutions of the following family of problems:

\[
(-\Delta)^s u^{(n+1)} + \theta u^{(n+1)} = F(x, u^{(n)}) + \theta u^{(n)} \quad \text{in } D, \quad u^{(n+1)} = 0 \quad \text{in } D^c. \tag{2.19}
\]

By Theorem 1.1(2) equation (2.19) has a unique solution, provided \(u^{(n)} \) is Hölder continuous in \(D \). We set \(u^{(0)} = \tilde{u} \). Since \(u^{(0)} \in \mathcal{C}^s(\mathbb{R}^d) \), it follows from [25] that \(u^{(1)} \in \mathcal{C}^{2s+}(D) \cap \mathcal{C}^s(\mathbb{R}^d) \). Thus by successive iteration it follows that \(u^{(n)} \in \mathcal{C}^{2s+}(D) \cap \mathcal{C}^s(\mathbb{R}^d) \), for all \(n \geq 0 \). Hence all solutions of (2.19) are classical solutions. Again, it is routine to check from (2.19) and Theorem 1.2 that \(u^{(0)} \leq u^{(n)} \leq u^{(n+1)} \leq \tilde{u} \) in \(D \). This implies \(\sup_{\mathbb{R}^d} |u^{(n)}| \leq M - m \), for all \(n \). Thus applying [25, Prop. 1.1] we obtain

\[
\sup_{n \in \mathbb{N}} \|u^{(n)}\|_{\mathcal{C}^s(\mathbb{R}^d)} \leq \kappa_1,
\]

for a constant \(\kappa_1 \). Hence there exists \(u \in \mathcal{C}^s(\mathbb{R}^d) \cap C_0(D) \) such that \(u^{(n)} \to u \) in \(C_0(D) \) as \(n \to \infty \).

Using the stability of viscosity solutions, it then follows that \(u \) is a viscosity solution to

\[
(-\Delta)^s u = F(x, u) \quad \text{in } D, \quad u = 0 \quad \text{in } D^c.
\]

We can now apply the regularity estimates from [25] to show that \(u \in \mathcal{C}^{2s+}(D) \).

To establish minimality we consider a solution \(\tilde{u} \) of (2.18) in \(\mathcal{C}^{2s+}(D) \cap C_0(D) \). From Lemma 2.3(3) we have \(\bar{u} \leq \tilde{u} \) in \(\mathbb{R}^d \). Thus \(\tilde{u} \) can be replaced by \(\bar{u} \), and the above argument shows that \(u \leq \bar{u} \). □

Now we derive a priori bounds on the solutions of \((P_\rho)\). Our first result bounds the negative part of solutions \(u \) of \((P_\rho)\). We recall that under the standing assumptions on \(f \), any viscosity solution of \((P_\rho)\) is an element of \(\mathcal{C}^{2s+}(D) \cap C_0(D) \), and thus also a classical solution.

Lemma 2.5. Let Assumption [AP](2) hold. There exists a constant \(\kappa = \kappa(d, s, D, V_1) \), such that for every solution \(u \) of \((P_\rho)\) with \(\rho \geq -\hat{\rho}, \hat{\rho} > 0 \), we have

\[
\sup_D |u^-| \leq \kappa(C + \hat{\rho} + \|h\|_\infty),
\]

where \(C \) is same constant as in (1.7).

Proof. First observe that if \(u \) is a solution to \((P_\rho)\) for some \(\rho \geq -\hat{\rho} \), then

\[
-(-\Delta)^s u + f(x, u) \leq \hat{\rho} + \|h\|_\infty \quad \text{in } D.
\]

Defining \(w = u \wedge 0 \) we see that \(w \) is a viscosity super-solution of the above equation, i.e.,

\[
-(-\Delta)^s w + f(x, w) \leq \hat{\rho} + \|h\|_\infty \quad \text{in } D, \quad \text{and } w = 0 \quad \text{in } D^c.
\]

From (1.7) it then follows that

\[
-(-\Delta)^s w + V_1 w \leq C + \hat{\rho} + \|h\|_\infty \quad \text{in } D, \quad \text{and } w = 0 \quad \text{in } D^c,
\]

in viscosity sense. Let \(v \in \mathcal{C}^{2s+}(D) \cap C_0(D) \) be the unique solution of

\[
-(-\Delta)^s v + V_1 v = C + \hat{\rho} + \|h\|_\infty \quad \text{in } D, \quad \text{and } v = 0 \quad \text{in } D^c.
\]
Existence follows from Theorem 1.1(2). Applying Theorem 1.2, we get \(-w \leq -v\) in \(\mathbb{R}^d\). Since \(v\) is also a semigroup solution by Lemma 2.1, we obtain from [10, Th. 4.7] that with a constant \(\kappa = \kappa(s,d,D,V_1)\)

\[
\sup_{x \in D}|v| \leq \kappa(C + \hat{\rho} + \|h\|_\infty)
\]

holds. Thus \(u^- = -w \leq \kappa(C + \hat{\rho} + \|h\|_\infty)\), for \(x \in D\), and the result follows. \(\square\)

Our next result provides a lower bound on the growth of the solution for large \(\rho\).

Lemma 2.6. Let Assumption [AP](1)-(2) hold. For every \(\hat{\rho} > 0\) there exists \(C_3 > 0\) such that for every solution \(u\) of \((P_\rho)\) with \(\rho \geq -\hat{\rho}\) we have

\[
\rho^+ \leq C_3(1 + \|u^+\|_\infty) \leq C_3(1 + \|u\|_\infty).
\]

Proof. Let \(\varphi = u - \frac{x}{\lambda_0^*} \Phi_1\). Then we have \(\varphi \in C^{2s+}(D) \cap C^0(D)\). Also,

\[
(-\Delta)^s \varphi(x) = f(x,u) + \rho \Phi_1(x) + h - \rho \Phi_1(x)
\]

\[
= f(x,u) - h \geq f(x,u^-) + f(x,-u^-) - \|h\|_\infty \geq -C_4(1 + u^+(x)),
\]

with a constant \(C_4 = C_4(\|h\|_\infty, \|V_2\|_\infty, C)\), where in the last estimate we used Lemma 2.5 and (1.8). Thus

\[
(-\Delta)^s(-\varphi) \leq C_4(1 + u^+) \quad \text{in } D.
\]

By an application of [10, Th. 4.7] it then follows that with a constant \(C_5\),

\[
\sup_D (-\varphi)^+ \leq C_5 C_4(1 + \|u^+\|_\infty)
\]

holds. Pick \(x \in D\) such that \(\Phi_1(x) = 1\); this is possible since \(\|\Phi_1\|_\infty = 1\) by assumption. It gives

\[
\frac{\rho}{\lambda_0} - u(x) \leq (-\varphi(x))^+ \leq C_5 C_4(1 + \|u^+\|_\infty),
\]

which, in turn, implies

\[
\rho \leq \lambda_0^* \left(C_4 C_5 + (1 + C_4 C_5)\|u^+\|_\infty\right),
\]

proving the claim. \(\square\)

One may notice that we have not used the second condition in (1.6) so far. The next result makes use of this condition to establish an upper bound on the growth of \(u\).

Lemma 2.7. Let Assumption [AP](3) hold. For every \(\hat{\rho} > 0\) there exists \(C_0\) such that for every solution \(u\) of \((P_\rho)\), for \(\rho \geq -\hat{\rho}\) we have

\[
\|u\|_\infty \leq C_0.
\]

In particular, there exists \(\rho_2 > 0\) such that \((P_\rho)\) does not have any solution for \(\rho \geq \rho_2\).

Proof. Suppose, to the contrary, that there exists a sequence \((\rho_n, u_n)_{n \in \mathbb{N}}\) satisfying \((P_\rho)\) with \(\rho_n \geq -\hat{\rho}\) and \(\|u_n\|_\infty \to \infty\). From Lemma 2.5 it follows that \(\|u_n^+\|_\infty = \|u_n\|_\infty\). Define \(v_n = \frac{u_n}{\|u_n\|_\infty}\). Then

\[
(-\Delta)^s v_n = H_n(x) = \frac{1}{\|u_n\|_\infty} (f(x,u_n) + \rho_n \Phi_1 + h) \quad \text{in } D.
\]

Since \(\|H_n\|_\infty\) is uniformly bounded by Lemmas 2.5-2.6, it follows by [25, Prop. 1.1] that

\[
\sup_{n \geq 1} \|v_n\|_{C^{s}(\mathbb{R}^d)} < \infty.
\]

Hence we can extract a subsequence of \((v_n)_{n \in \mathbb{N}}\), denoted by the original sequence, such that it converges to a continuous function \(v \in C_0(D)\) in \(C(\mathbb{R}^d)\). Denote

\[
G_n(x) = \frac{1}{\|u_n\|_\infty} (f(x,-u_n^-(x)) + h(x) - C + V_2(x)u_n^-(x) - \rho_n \Phi_1(x)).
\]
Then using (1.8) and (2.21), we get
\[(-\Delta)^s v_n - V_2 v_n \geq G_n \quad \text{in } D. \]

Using Lemma 2.1 we have that \(v_n \) is a semigroup super-solution, i.e., for every \(t > 0 \)
\[v_n(x) \geq \mathbb{E}^x \left[\int_0^{t \wedge \tau_D} e^{\int_0^s V_2(X_p) dP} G_n(X_s) \, ds \right] + \mathbb{E}^x \left[e^{\int_0^t V_2(X_p) \, ds} v_n(X_t) \mathbb{1}_{\{t < \tau_D\}} \right]. \tag{2.22} \]

Letting \(n \to \infty \) in (2.22) and using the uniform convergence of \(G_n \) and \(v_n \), we obtain
\[v(x) \geq \mathbb{E}^x \left[e^{\int_0^t V_2(X_p) \, ds} v(X_t) \mathbb{1}_{\{t < \tau_D\}} \right] \quad \text{for all } x \in D, \ t \geq 0. \tag{2.23} \]

Since \(\|v\|_{\infty} = 1 \) and \(v \geq 0 \) in \(\mathbb{R}^d \), it is easily seen from (2.23) that \(v > 0 \) in \(D \). Hence by [10, Prop. 4.1] it follows that \(\lambda^*((-\Delta)^s - V_2) \geq 0 \), contradicting (1.6). This proves the first part of the result. The second part follows by Lemma 2.6 and (2.20).

The following result will be useful for tackling the super-linear case.

Lemma 2.8. Let Assumption [AP](3') hold. Then for every \(\hat{\rho} > 0 \) there exists \(C_0 \) such that for every solution \(u \) of \((P_\rho) \), with \(\rho \geq \hat{\rho} \) we have
\[\|u\|_{\infty} \leq C_0 \max \left\{ 1, |\rho|^{\frac{1}{p}} \right\}. \tag{2.24} \]

In particular, there exists \(\rho_2 > 0 \) such that \((P_\rho) \) does not have any solution for \(\rho \geq \rho_2 \).

Proof. First we establish (2.24) for all \(\rho \geq 1 \). Suppose, to the contrary, that there exists \((u_n, \rho_n)_{n \in \mathbb{N}} \), \(\rho_n \geq 1 \), satisfying \((P_\rho) \) with the property that
\[\|u_n\|_{\infty} \geq n \rho_n^{\frac{1}{p}}, \ n \geq 1. \tag{2.25} \]

This then implies that \(\|u_n\|_{\infty} \to \infty \) as \(n \to \infty \), and
\[\|u_n\|_{\infty}^{p \rho_n} \to 0 \quad \text{as} \quad n \to \infty. \tag{2.26} \]

Let \(x_n \in D \) be such that \(u(x_n) = u^+(x_n) = \|u_n\|_{\infty} \). Such a choice is possible due to Lemma 2.5. Write
\[\gamma_n = \|u_n\|_{\infty}^{\frac{p \rho_n}{p}} \quad \text{and} \quad \theta_n = \text{dist}(x_n, \partial D). \]

Using compactness, we may also assume that \(x_n \to x_0 \in \bar{D} \) as \(n \to \infty \). We split the proof into two cases.

Case 1. Suppose that \(\limsup_{n \to \infty} \theta_n \gamma_n = +\infty \). Define \(w_n(x) = \frac{1}{\|u_n\|_{\infty}} u_n(\gamma_n x + x_n) \). We then have in \(\frac{1}{\gamma_n}(D - x_n) \) that
\[(-\Delta)^s w_n = \frac{1}{\|u_n\|_{\infty}} (f(\gamma_n x + x_n, u_n(x)) + \rho_n \Phi(\gamma_n x + x_n) + h(\gamma_n x + x_n)). \tag{2.27} \]

We choose a subsequence, denoted is the same way, such that \(\lim_{n \to \infty} \frac{\theta_n}{\gamma_n} = +\infty \). Then for any given \(k \in \mathbb{N} \) there is a large enough \(n_0 \) satisfying \(B_k(0) \subseteq \frac{1}{\gamma_n}(D - x_n) \) for all \(n \geq n_0 \). Therefore, the right hand side of (2.27) is uniformly bounded in \(B_k(0) \). Since \(\|w_n\| = w_n(0) = 1 \), it follows that for some \(\alpha > 0 \), \(\|w_n\|_{C^\alpha(B_k(0))} \) is bounded uniformly in \(n \) (see [11]). Thus we can extract a subsequence \((w_n)_{n \in \mathbb{N}} \) such that \(w_n \to w \in C_{b, +}(\mathbb{R}^d) \) locally uniformly. Hence, by the stability of viscosity solutions
\[(-\Delta)^s w = a_0(x_0) w^p \quad \text{in } \mathbb{R}^d, \ w(0) = 1. \]

By the strong maximum principle we also have \(w > 0 \). However, no such solution can exist due to the Liouville theorem [24, Th. 1.2], and hence we have a contradiction in this case.
Case 2. Suppose that \(\limsup_{n \to \infty} \frac{\theta_n}{\gamma_n} < +\infty \). First we show that for a positive constant \(\kappa \)

\[
\liminf_{n \to \infty} \frac{\theta_n}{\gamma_n} \geq \kappa. \tag{2.28}
\]

Note that using Lemma 2.5 and Assumption \([\text{AP}](3')\) we can find a constant \(\kappa_1 \) satisfying

\[
\kappa_1(1 + \|u_n\|_\infty^{p-1}) \text{sgn}(u_n)u_n \geq f(x, u_n) \quad \text{for } x \in \Omega, \ n \geq 1.
\]

Indeed, using Assumption \([\text{AP}](3')\) it follows that for \(u_n(x) \geq \ell \), for some \(\ell > 0 \), we have

\[
f(x, u_n(x)) \leq 2\|a_0\|\|u_n^p(x) \leq 2\|a_0\|\|u_n\|_\infty^{p-1}u_n(x).
\]

Then the estimate follows from the local Lipschitz property of \(f \) and Lemma 2.5. Hence, using \((P_{\rho})\) we obtain

\[-(-\Delta)^su_n + \kappa_1(1 + \|u_n\|_\infty^{p-1})\text{sgn}(u_n)u_n \geq -\rho_n - \|h\|_\infty \quad \text{in } \Omega.
\]

Denote by \(C_n = \rho_n + \|h\|_\infty \). Applying Lemma 2.1 we get that for \(t \geq 0 \),

\[
\|u_n\|_\infty = u_n(x_n) \leq e^{\kappa_1(1+\|u_n\|_\infty^{p-1})t}\|u_n\|_\infty \mathbb{P}^x_n(\tau_\Omega > t) + e^{\kappa_1(1+\|u_n\|_\infty^{p-1})t}C_n.
\]

It follows from the proof of [7, Th. 1.1] that there exist constants \(\kappa_2 \) and \(\eta \in (0, 1) \), not depending on \(x_n \), such that for \(t = \kappa_2\theta_n^{2s} \) we have

\[
\mathbb{P}^x_n(\tau_\Omega > t) \leq \eta.
\]

Inserting this choice of \(t \) in the above expression we obtain

\[
1 \leq e^{\kappa_1(1+\|u_n\|_\infty^{p-1})t} \left[\eta + \kappa_2\theta_n^{2s} \frac{C_n}{\|u_n\|_\infty} \right] = e^{\kappa_1(1+\|u_n\|_\infty^{p-1})t} \left[\eta + \kappa_2\theta_n^{2s} \frac{C_n}{\|u_n\|_\infty} \right].
\]

Thus by the assertion and (2.26) it follows that for all large \(n \) we have

\[
\kappa_1\kappa_2\theta_n^{2s}(1 + \|u_n\|_\infty^{p-1}) \geq \log \frac{2}{\eta}.
\]

This gives (2.28), since \(\theta_n \to 0 \).

Hence we may assume that, up to a subsequence,

\[
\lim_{n \to \infty} \frac{\theta_n}{\gamma_n} = b \in (0, \infty)
\]

holds. Then using again an argument similar to above, we obtain a positive bounded solution

\[-(-\Delta)^su = a_0(x_0)w^p \quad \text{in } \mathbb{R}^d_+,
\]

see, for instance, the arguments in [20, Lem. 5.3]. This again contradicts [24, Th. 1.1].

Thus (2.25) can not hold and this proves our result when \(\rho \geq 1 \). For the remaining case \(\rho \in [-\bar{\rho}, 1) \), note that we can rewrite

\[
\rho\Phi_1 + h = \Phi_1 + \bar{h} \quad \text{where } \bar{h} = h - \Phi_1 + \rho\Phi_1.
\]

Note that \(\|\bar{h}\|_\infty \) is uniformly bounded for \(\rho \in [-\bar{\rho}, 1) \). Then (2.25) follows from the previous argument. The other claim follows by (2.24) and Lemma 2.6.

With the above results in hand, we can now proceed to prove Theorem 1.3. Define

\[
\mathcal{A} = \{ \rho \in \mathbb{R} : (P_{\rho}) \text{ has a viscosity solution} \}.
\]

By Lemma 2.4 we have that \(\mathcal{A} \neq \emptyset \), and Lemma 2.7 and 2.8 imply that \(\mathcal{A} \) is bounded from above. Define \(\rho_0 = \sup \mathcal{A} \). Note that if \(\rho' < \rho_0 \), then \(\rho' \in \mathcal{A} \). Indeed, there is \(\bar{\rho} \in (\rho', \rho_0) \cap \mathcal{A} \) and the corresponding solution \(u(\bar{\rho}) \) of \((P_{\rho})\) with \(\rho = \bar{\rho} \) is a super-solution at level \(\rho' \), i.e.,

\[
-(-\Delta)^su(\bar{\rho}) \geq f(x, u(\bar{\rho})) + \rho'\Phi_1 + h(x) \quad \text{in } \Omega, \quad u = 0 \quad \text{in } \Omega^c.
\]
Using Lemma 2.3(3) and from the proof of Lemma 2.4 we have a minimal solution of \((P_\rho)\) with \(\rho = \rho^*\). Next we show that there are at least two solutions for \(\rho < \rho_0\).

Recall that \(d : D \to [0, \infty)\) is the distance function from the boundary of \(D\). We can assume that \(d\) is a positive \(C^1\)-function in \(D\). For a sufficiently small \(\varepsilon > 0\), to be chosen later, consider the Banach space

\[
\mathcal{X} = \left\{ \psi \in C_0(D) : \frac{\|\psi\|}{d^\varepsilon(x)} < \infty \right\}.
\]

In fact, it is sufficient to consider any \(\varepsilon\) strictly smaller than the parameter \(\alpha < 1 - s\) in [25, Th. 1.2]. Since \(d^\varepsilon\) is \(s\)-Hölder continuous in \(D\), it is routine to check that \(\mathcal{X} \subset C^1(D)\).

For \(\rho \in \mathbb{R}\) and \(m \geq 0\) we define a map \(K_\rho : \mathcal{X} \to \mathcal{X}\) as follows. For \(v \in \mathcal{X}\), \(K_\rho v = u\) is the unique viscosity solution (see Theorem 1.1(b)) to the Dirichlet problem

\[
(-\Delta)^{\frac{\varepsilon}{2}} u + mu = f(x,v) + \rho \Phi + h(x) + mv \quad \text{in } D, \quad \text{and} \quad u = 0 \quad \text{in } D^c.
\]

It follows from [25, Th. 1.2] that \(u \in \mathcal{X}\).

Lemma 2.9. Let \(\rho < \rho_0\). Then there exist \(m \geq 0\) and an open \(O \subset \mathcal{X}\), containing the minimal solution, satisfying \(\deg(I - K_\rho, O, 0) = 1\).

Proof. We borrow some of the arguments of [15] with a suitable modification. Pick \(\tilde{\rho} \in (\rho, \rho_0)\) and let \(\tilde{u}\) be a solution of \((P_\rho)\) with \(\rho = \tilde{\rho}\). It then follows that

\[
(-\Delta)^{\frac{\varepsilon}{2}} \tilde{u} > f(x, \tilde{u}) + \rho \Phi + h(x) \quad \text{in } D \quad \text{and} \quad u = 0 \quad \text{in } D^c.
\]

and by Lemma 2.3(i) we have a classical subsolution

\[
(-\Delta)^{\frac{\varepsilon}{2}} u < f(x, u) + \rho \Phi + h(x) \quad \text{in } D \quad \text{and} \quad u = 0 \quad \text{in } D^c.
\]

Then Lemma 2.3(3) supplies \(u \leq \tilde{u}\) in \(\mathbb{R}^d\), hence the minimal solution \(u\) of \((P_\rho)\) satisfies \(u \leq u \leq \tilde{u}\) in \(\mathbb{R}^d\). Note that for every \(\psi \in \mathcal{X}\), the ratio \(\frac{\psi}{\tilde{u}}\) is continuous up to the boundary. Define

\[
O = \left\{ \psi \in \mathcal{X} : u < \psi < \tilde{u} \text{ in } D, \quad \frac{u}{d^\varepsilon} < \frac{\psi}{d^\varepsilon} < \frac{\tilde{u}}{d^\varepsilon} \text{ on } \partial D, \quad \|\psi\|_X < r \right\},
\]

where the value of \(r\) will be chosen conveniently below. It is evident that \(O\) is bounded, open and convex. Also, if we choose \(r\) large enough, then the minimal solution \(u\) belongs to \(O\). Indeed, note that

\[
(-\Delta)^{\frac{\varepsilon}{2}} (u - w) + \left(\frac{f(x,u) - f(x,w)}{u - w} \right)^+ (u - w) \geq 0 \quad \text{in } D.
\]

Hence by [18, Th. 2.1 and Lem. 1.2] we have \(u < w\) in \(D\), and

\[
\min_{\partial D} \left(\frac{w}{d^\varepsilon} - \frac{u}{d^\varepsilon} \right) > 0.
\]

Similarly, we can compare also \(u\) and \(\tilde{u}\).

We define \(m\) to be a Lipschitz constant of \(f(x,\cdot)\) in the interval \([\min u, \max \tilde{u}]\). Also, define

\[
\tilde{f}(x,q) = f(x, (u(x) \lor q) \land \tilde{u}(x)) + m(u(x) \lor q) \land \tilde{u}(x).
\]

Note that \(f\) is bounded and Lipschitz continuous in \(q\), and also non-decreasing in \(q\). We define another map \(\tilde{K}_\rho : \mathcal{X} \to \mathcal{X}\) as follows: for \(v \in \mathcal{X}\), \(\tilde{K}_\rho v = u\) is the unique viscosity solution of

\[
(-\Delta)^{\frac{\varepsilon}{2}} u + mu = \tilde{f}(x,v) + \rho \Phi + h \quad \text{in } D, \quad \text{and} \quad u = 0 \quad \text{in } D^c. \quad (2.29)
\]

It is easy to check that \(\tilde{K}_\rho\) is a compact mapping. Using again [25, Th. 1.2], we find \(r\) satisfying

\[
\sup \left\{ \|K_\rho v\|_X : v \in \mathcal{X} \right\} < r.
\]
We fix this choice of r. Using the regularity estimate of [25], we see that the solution u in (2.29) is in $C^{2s}(\Omega)$. Therefore,
\[(-\Delta)^s(u - u) + m(u - u) > \tilde{f}(x,v) - m\tilde{u} - f(x,u) \geq \tilde{f}(x,u) - m\tilde{u} - f(x,u) = 0. \]
Hence by [18, Th. 2.1, Lem 1.2] we have $\tilde{u} < u$ in D and
\[\min_{\partial D} \left(\frac{u}{\partial^s} - \frac{u}{\partial^s} \right) > 0. \]
The other estimates can be obtained similarly. Finally, this implies that $\tilde{K}_\rho v \in \mathcal{O}$, for all $v \in \mathcal{X}$. Moreover, $0 \notin (I - \tilde{K}_\rho)(\partial D)$. Then by the homotopy invariance property of degree we find that $\deg(I - \tilde{K}_\rho, \mathcal{O}, 0) = 1$. Since \tilde{K}_ρ coincides with K_ρ in \mathcal{O}, we obtain $\deg(I - K_\rho, \mathcal{O}, 0) = 1$.

Similarly as before, define $S_\rho : \mathcal{X} \to \mathcal{X}$ such that for $v \in \mathcal{X}$, $u = S_\rho v$ is given by the unique solution of
\[(-\Delta)^s u = f(x,v) + \rho \Phi_1 + h(x) \quad \text{in } D, \quad \text{and} \quad u = 0 \quad \text{in } D^c. \]
Then the standard homotopy invariance of degree gives that $\deg(I - S_\rho, \mathcal{O}, 0) = 1$. This observation will be helpful in concluding the proof below.

Proof of Theorem 1.3. Using Lemma 2.9 we can now complete the proof by using [15, 16]. Recall the map S_ρ defined above, and fix $\rho < \rho_0$. Denote by \mathcal{O}_R a ball of radius R in \mathcal{X}. From Lemmas 2.7 and 2.8 we find that
\[\deg(I - S_\rho, \mathcal{O}_R, 0) = 0 \quad \text{for all } R > 0, \rho \geq \rho_2. \]
Using again Lemmas 2.7, 2.8 and [25, Th. 1.2], we obtain that for every $\check{\rho}$ there exists a constant R such that
\[\|u\|_\mathcal{X} < R \]
for each solution u of (P_ρ) with $\check{\rho} \geq -\hat{\rho}$. Fixing $\hat{\rho} > |\rho|$ and the corresponding choice of R, it then follows from homotopy invariance that $\deg(I - S_\rho, \mathcal{O}_R, 0) = 0$. We can choose R large enough so that $\mathcal{O} \subset \mathcal{O}_R$. Since $\deg(I - S_\rho, \mathcal{O}, 0) = 1$, as seen above, using the excision property we conclude that there exists a solution of (P_ρ) in $\mathcal{O}_R \setminus \mathcal{O}$. Hence for every $\rho < \rho_0$ there exist at least two solutions of (P_ρ). The existence of a solution at $\rho = \rho_0$ follows from the a priori estimates in Lemmas 2.7 and 2.8, the estimate in [25, Prop. 1.1], and the stability property of the viscosity solutions. This completes the proof of Theorem 1.3.

Acknowledgments

This research of AB was supported in part by an INSPIRE faculty fellowship and a DST-SERB grant EMR/2016/004810.

REFERENCES

[1] H. Amann and P. Hess: A multiplicity result for a class of elliptic boundary value problems, *Proc. Roy. Soc. Edinburgh Sect. A* 84 (1979), 145–151
[2] A. Ambrosetti and G. Prodi: On the inversion of some differentiable mappings with singularities between Banach spaces, *Ann. Mat. Pura Appl.* 93 (1972), 231–246
[3] H. Berestycki: Le nombre de solutions de certain problèmes semi-linéaires elliptiques, *J. Funct. Anal.* 40 (1981), 1–29
[4] H. Berestycki, L. Nirenberg and S.R.S. Varadhan: The principal eigenvalue and maximum principle for second-order elliptic operators in general domains, *Commun. Pure Appl. Math.* 47 (1994), 47–92
[5] H. Berestycki, J. Coville and H.-H. Vo: On the definition and the properties of the principal eigenvalue of some nonlocal operators, *J. Funct. Anal.* 271 (2016), 2701–2751
[6] M.S. Berger and E. Podolak: On the solutions of a nonlinear Dirichlet problem, *Indiana Univ. Math. J.* 24 (1975), 837–846
[7] A. Biswas: Location of maximizers of eigenfunctions of fractional Schrödinger’s equation, *Math. Phys. Anal. Geom.* 20 (2017), p. 14
[8] A. Biswas: Principal eigenvalues of a class of nonlinear integro-differential operators, preprint, arXiv:1803.02040, 2018
[9] A. Biswas and J. Lőrinci: Universal constraints on the location of extrema of eigenfunctions of non-local Schrödinger operators, arXiv:1711.09267, 2017
[10] A. Biswas and J. Lőrinci: Maximum principles and Aleksandrov-Bakelman-Pucci type estimates for non-local Schrödinger equations with exterior conditions, arXiv:1710.11596, 2017
[11] L. Caffarelli and L. Silvestre: Regularity theory for fully nonlinear integro-differential equations, *Commun. Pure Appl. Math.* 62 (2009), 597–638
[12] M. Calanchi, C. Tomei and A. Zaccur: Global folds between Banach spaces as perturbations, arXiv:1701:07350v2, 2018
[13] E.N. Dancer: On the ranges of certain weakly nonlinear elliptic partial differential equations, *J. Math. Pures Appl.* 57 (1978), 351–366
[14] G. Dávila, A. Quass and E. Topp: Existence, nonexistence and multiplicity results for nonlocal Dirichlet problems, preprint, 2017
[15] D. de Figueiredo: Lectures on boundary value problems of the Ambrosetti-Prodi type, *Atas do 12o Sem. Bras. Anal.* (1980), 230–292
[16] D. de Figueiredo and B. Sirakov: On the Ambrosetti-Prodi problem for non-variational elliptic systems, *J. Differential Equations* 240 (2007), 357–374
[17] D. de Figueiredo and S. Solimini: A variational approach to superlinear elliptic problems, *Comm. Part. Differential Equations* 9 (1984), 699–717
[18] A. Greco and R. Servadei: Hopf’s lemma and constrained radial symmetry for the fractional Laplacian, *Math. Res. Lett.* 23 (2016), 863–885
[19] J.L. Kazdan and F.W. Warner: Remarks on some quasilinear elliptic equations, *Commun. Pure Appl. Math.* 28 (1975), 567–597
[20] E. Leite and M. Montenegro: A priori bounds and positive solutions for non-variational fractional elliptic systems, *Differential and Integral Equations* 30 (2017), 947–974
[21] J. Mawhin: Ambrosetti-Prodi type results in nonlinear boundary value problems, in: *Differential Equations and Mathematical Physics*, Lecture Notes in Mathematics 1285, Springer, 1987, pp. 290–313
[22] J. Mawhin, C. Rebelo and F. Zanolin: Continuation theorems for Ambrosetti-Prodi type periodic problems, *Commun. Contemp. Math.* 2 (2000), 87–126
[23] F.R. Pereira: Multiplicity results for fractional systems crossing high eigenvalues, *Commun. Pure Appl. Anal.* 16 (2017), 2069–2088
[24] A. Quaas and A. Xia: Liouville type theorems for nonlinear elliptic equations and systems involving fractional Laplacian in the half space, *Calc. Var. Partial Differential Equations* 526 (2014), 1–19
[25] X. Ros-Oton and J. Serra: The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary, *J. Math. Pures Appl.* 101 (2014), 275–302
[26] B. Ruf and P.N. Srikanth: Multiplicity results for superlinear elliptic problems with partial interference with the spectrum, *J. Math. Anal. App.* 118 (1986), 15–23
[27] E. Sovrano and F. Zanolin: Ambrosetti-Prodi periodic problem under local coercivity conditions, *Adv. Nonlinear Stud.* 18 (2018), 169–182