SOIL MICROBIOTA UNDER THE CONDITIONS OF AN OPEN FIELD EXPERIMENT OF FERTILIZING SOIL BY ENERGY WILLOW

Kryvtsova M., Bobryk N., Simon L.

1 Uzhhorod National University, Ukraine
2 University of Nyíregyháza, Hungary
The aim of the work was to study the soil agrochemical indices, soil microbiocoenosis, in case of growing of energy cultures and based on the mineralization coefficient, to make a conclusion on the speed of mineralization processes in the soils under study. In conditions of continuous field experiment (2011–2016), the dynamics of soil microbial associations was studied for willow (Salix triandra x Salix viminalis 'Inger') cultivation with application of experimental fertilizers of different types. In the research fertilizers there were used sulfuric urea, municipal biocompost, municipal sewage sludge compost, rhyolite tuff and willow ash. The soil microbiotic communities analysis was conducted by the method of serial dilutions of soil suspension with the use of differentially diagnostic nutrient media: meat-peptone agar, starch-ammonium agar, Ashby medium, potato agar, Czapek Dox medium, starvation agar, Ploskirev medium. The direction of the microbiological processes in the soils determined.

According to the results, it was established that the most promising for the purpose of improving the metabolic activitiof the soil (in the growth of energy willow) is a municipal sewage sludge compost and a municipal biocompost. In case of the use of municipal sewage sludge compost, the number of intestinal bacteria, ammonifiers, micromycetes and actinomycetes was doubled as compared with the control. In case of the use of municipal biocompost, the levels of microscopic fungi and cellulolytic bacteria doubled, and those of intestinal bacteria and pedotrophs tripled as compared with the control. While calculating the mineralization/immobilization index, it was shown that the most significant deviation from the control plot was found in the rhyolite tuff treated soil – a decrease by 6 times, and in case of willow ash by 2.3 times, which proved the inhibition of mineralization of the organic substances in the soil.

Key words: energy willow, organic and inorganic soil additives, soil microbiocoenosis, mineralization coefficient.

© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2019

{ spoiler title=References}

1. Kuffner M., De Maria S., Puschenreiter M., Fallmann K., Wieshammer G., Gorfer M., Strauss J., Rivelli A. R., Sessitsch A. Culturable bacteria from Zn- and Cd-accumulating Salix caprea with differential effects on plant growth and heavy metal availability. J. Appl. Microbiol.
2. Mahar J., Mahar M., Khan M. Comparative study of feature extraction methods with K-NN for off-line signature verification. Emerging Technologies, 2006. ICET’06. International Conference on. 2006, P. 115–120. https://doi.org/10.1109/ICET.2006.335945

3. Rod’kin O. I. Production of renewable biofuel in agrarian landscapes: ecological and technological aspects. – Minsk: MGEHU im. A. D. Saharova. 2011, 212 p. (In Russian).

4. Xue K., van Nostrand J. D., Vangronsveld J., Witters N., Janssen J. O., Kumpiene J., Siebielec G., Galazka R., Giagnoni L., Arenella M., Zhou J. Z., Renella G. Management with willow short rotation coppice increase the functional gene diversity and functional activity of a heavy metal polluted soil. Chemosphere. 2015, V. 138, P. 469–477. https://doi.org/10.1016/j.chemosphere.2015.06.062

5. Pulford I. D., Dickinson N. M. Phytoremediation technologies using trees. In: Trace Elements in the Environment. Biogeochemistry, Biotechnology, and Bioremediation. (Eds.: Prasad M. N. V., Sajwan K. S., Naidu R.). CRC Press. Taylor and Francis Group. Boca Raton. Florida. 2006, P. 383–403. https://doi.org/10.1201/9781420032048.sec4

6. Simon L. Cultivation and utilization of giant reed (Arundo donax L.) Növénytermelés. 2017, 66 (2), P. 89–109. (In Hungarian).

7. Berndes F., Fredrikson F., Börjesson P. Cadmium accumulation and Salix-based phytoextraction on arable land in Sweden. Agriculture, Ecosystems & Environment. 2004, 103 (1), P. 207–223.
8. Mazurenko N. A., Maurer V. M. Distribution of representatives of the genus Salix l. in Ukraine and prospects of their use in landscaping. *Naukovyy visnyk NUBIP Ukrayiny. Seriya: Lisivnytstvo ta dekoratyvne sadivnytstvo.* 2013, 187 (1), 93–99. (In Ukrainian).

9. Kryvtsova M., Bobryk N., Kolesnik A., Simon L. Microbiota of upper soil in a long-term open-field fertilization experiment with energy willow (*Salix* sp.). Proceedings of Abstracts. International Conference on Long-term Field Experiments (Ed. Makádi M.). *Nýregyháza, Hungary.* 27–28 September 2017, P. 42.

10. Kryvtsova M., Simon L., Bobryk N., Timoshok N., Spivak N., Doctor K. The influence of energy willow (*Salix viminalis* L.) cultivation on soil microbiota. Proceedings of Abstracts. *Permaculture and organic agriculture.* International scientific and practical conference. *Uzhhorod, Ukraine.* 24–25 February 2018, P. 23–25.

11. Gyuricza Cs., Hegyesi J., Kolhelb N. Rövid vágásfordulójú fűz (*Salix* sp.) energiaültetvény termesztésének tapasztalatai és életciklus-elemzésének eredményei. (Experience drawn from the production of short harvest cycle willow (*Salix* sp.) as energy crop and results of its life cycle analysis) – *Növénytermelés.* 2011, 60 (2), P. 45–65. https://doi.org/10.1556/Novenyterm.60.2011.2.3

12. Simon L. *et al.* Effect of various soil amendments on the mineral nutrition of *Salix viminalis* and *Arundo donax*
energy crops.

Eur. Chem. Bull.

2013, 2 (1), 18–21.

13. *Simon L. et al.* Impact of ammonium nitrate and rhyolite tuff soil application on the photosynthesis and growth of energy willow. In: International Multidisciplinary Conference. 10th edition. May 22–24, 2013. Baia Mare, Romania – Nyíregyháza, Hungary. (Eds.: Ungureanu N., Cotetiu R., Sikolya L., Páy G.). Scientific Bulletin, Serie C, Fascicle: Mechanics, Tribology, Machine Manufacturing Technology. P. 143–146. Bessenyei Book Publisher. Nyíregyháza (Hungary).

14. *Simon L. et al.* Examination of nutritional supply of energy and arable crops, with particular reference to the combined effect of nitrogen fertilizers, biowastes and soil additives. Research Final Report prepared for Nitrogénművek Vegyipari Co. (Pétfürdő, Hungary) on behalf of Nyír-Inno-Spin Ltd. (Nyíregyháza, Hungary). College of Nyíregyháza. 2015, P. 1–123. (manuscript).

15. *Aseeva I. V., Babieva I. P., Byzov B. A.* Methods of soil microbiology and biochemistry. Ed. D. G. Zvyagintseva. *MGU. Moscow.* 1991, P. 1-304. (In Russian).

16. *Andreyuk K. I., Iutyn'ska H. O., Antypchuk A. F., Valahurova O. V., Kozyrytska V. E., Ponomarenko S. P.*

Functioning of microbial cenoses under anthropogenic load.

Kyiv : Oberehy

2001, 240 p. (In Ukrainian).

17. *Joniec J., Kwiatkowska E.* Microbiological activity of soil amended with granulated fertilizer from sewage sludge. *J. Elem.* 2012, V. 1, P. 143–154. https://doi.org/10.5601/jelem.2014.19.1.586

18. *Truu M., Truu J., Heinsoo K.* Changes in soil microbial community under willow coppice: The effect of irrigation with secondary-treated municipal wastewater.
19. Malynovs'ka I. M. Composition of microbial communities of root zone of the plant communities of different types. *Mikrobiolahia i biotekhnolohia*. 2011, V. 4, P. 60–68. (In Ukrainian).
https://doi.org/10.1016/j.ecoleng.2008.08.010

20. Romanchuk L. D., Borysyuk L. B., Shvayka O. V. The stability of energy willow agrocenoses on reclaimed lands in Polissya of Ukraine. *Visnyk ZhNAEU*. 2016, 2 (56), 37–43. (In Ukrainian).
https://doi.org/10.18524/2307-4663.2011.4(16).93560