Local noncentrosymmetric structure of Bi$_2$Sr$_2$CaCu$_2$O$_{8+y}$
by X-ray magnetic circular dichroism at Cu K-edge XANES

Andrey A. Ivanov1, Valentin G. Ivanov1, Alexey P. Menushenkov1, Fabrice Wilhelm2, Andrei Rogalev2, Alessandro Puri3, Boby Joseph4, Wei Xu5, Augusto Marcelli6,7, Antonio Bianconi1,7,8

1National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe sh. 31, 115409 Moscow, Russia
2European Synchrotron Radiation Facility (ESRF), CS40220, F-38043 Grenoble Cedex 9, France
3CNR-IOM-OGG c/o ESRF LISA CRG, 71 Avenue des Martyrs 38000 Grenoble, France
4Sincrotrone Elettra, Strada Statale 14 - Km 163.5 Area Science Park, 34149 Basovizza, Trieste, Italy
5Beijing Synchrotron Radiation Facility Institute of High Energy Physics Chinese Academy of Sciences Beijing, 100049 P. R. China
6Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, 00044 Frascati (RM), Italy
7Rome International Centre for Material Science Superstripes, RICMASS, via dei Sabelli 119A, 00185 Rome, Italy
8Institute of Crystallography, Consiglio Nazionale delle Ricerche, CNR-IC, via Salaria, Km 29.300, 00015 Monterotondo, Roma, Italy

Abstract
The two-dimensional Bi$_2$Sr$_2$CaCu$_2$O$_{8+y}$ (Bi2212), the most studied prototype cuprate superconductor, is a lamellar system made of a stack of two-dimensional corrugated CuO$_2$ bilayers separated by Bi$_2$O$_{2+y}$Sr$_2$O$_2$ layers. While the large majority of theories, proposed to interpret unconventional high T$_c$ superconductivity in Bi$_2$Sr$_2$CaCu$_2$O$_{8+y}$, assume a centrosymmetric tetragonal CuO$_2$ lattice for the [CuO$_2$]Ca[CuO$_2$] bilayer here we report new compelling results providing evidence for local non-centrosymmetric symmetry at the Cu atom. We have measured polarized Cu K-edge XANES (x-ray absorption near edge structure) and the K-edge X-ray magnetic circular dichroism (XMCD) of a Bi2212 single crystal near optimum doping. The Cu K edge XMCD signal was measured at ID12 beamline of ESRF with the k-vector of x-ray beam parallel to c-axis i.e. with the electric field of x-ray beam E//ab, using a 17 T magnetic field parallel to the c-axis of a Bi2212 single crystal. Numerical simulations of the XMCD signal of Bi2212 by multiple scattering theory have shown agreement with the experimental XMCD signal only for the local structure with non-centrosymmetric Bb2b space group of Bi$_2$Sr$_2$CaCu$_2$O$_{8+y}$.
Introduction

Bi$_2$Sr$_2$CaCu$_2$O$_{8+y}$ (Bi-2212) is considered the prototype of copper-based high-temperature superconductors in which all key features of these systems are clearly manifested. The crystal structure of Bi2212 is made of superconducting CuO$_2$ bilayers which are separated by oxide insulating layers SrO$_2$BiO$_{2+y}$ layers forming a superlattice of quantum wells with a 3 nm periodicity. While Bi2212 has been object of many experimental investigations spanning about three decades its structure has remained enigmatic. The earliest space-group assignment for the Bi2212 structure was the tetragonal I4/mmm with a=b=0.3817 nm, c=3.06 nm [1-2] or the orthorhombic Fmmm (a=b=0.54 nm, c=3.08 nm) [3] as expected by the standard BCS theory developed for a homogeneous single band superconductor where the disorder induces a decrease of the critical temperature toward zero. These early reports have been falsified by many experiments which have shown on the contrary that the macroscopic quantum coherence giving 90K superconductivity in Bi2212 emerges in a very complex disordered inhomogeneous phase from atomic scale to micron scale which it an hot topic today after 30 years of research in this field. The refinements of the crystal structure by electron, x-ray and neutron diffraction [4-12] and resonant x-ray scattering at the Cu K-edge [13] revealed a monoclinic structure and an incommensurate modulation along the long b axis with period \(\lambda/b \sim 4.7 \) as shown in Fig. 1.

Two different space groups for the average structures of Bi2212 have been proposed in the literature: first, noncentrosymmetric Bb2b or A2aa space group [5,6] and second, centrosymmetric Bbmb space group [7-13] proposed by teams neglecting the weak reflections probing the non-centric orthorhombic cell, which permits the oxygen in the BiO plane to move off the center of the Bi square approaching within 2.2 Å a pair of Bi atoms [5,6]. The Cu edge resonant elastic x-ray scattering [13] has shown that the Cu plane follows large amplitude incommensurate displacements with different modulations of the Cu and planar oxygen atoms.

After thirty years of intense studies till date there is no consensus on the crystallographic space group of Bi2212. Therefore we have carried out x-ray magnetic circular dichroism (XMCD) measurements at the Cu K-edge x-ray absorption near edge structure (XANES) spectra which can select between the two proposed space groups: non-centrosymmetric versus the centrosymmetric.
Cu K-edge XANES spectra in a range of 30 eV above the absorption threshold are determined by the multiple scattering resonances of the excited photoelectron with p orbital symmetry excited from the 1s core level of the absorbing atom [14-19]. It was shown in the seventies that the photoelectron with kinetic energy in the range 10-50 eV has a very short lifetime, short mean free path and strong scattering probability by neighbor atoms therefore at the multiple scattering resonant energy it is confined in a nanoscale cluster [20].

![Diagram of Bi2Sr2CaCu2O8+y crystal structure](image_url)

Figure 1. The structure of the unit cell of the Bi 2212 crystal plotted in the bc plane. The two blocks of thickness c/2 are kept together by van der Waals interactions between the bismuth layers forming the unit cell. The layers have the 1D structural corrugation driven by the misfit strain between the Bi-Sr spacer layers and the metallic Cu-Ca-Cu bilayers. Oxygen is not shown for simplicity.

X-ray magnetic circular dichroism (XMCD) is a very powerful element-selective technique which makes possible to study magnetic properties of materials at microscopic scale [21-27]. The XMCD spectrum is a difference between x-ray absorption near edge structure (XANES) spectra recorded at the selected x-ray absorption edge of a specific atomic element collected for two opposite helicities of the incident beam [21-27]. This effect may be due to intrinsic properties of a system, such as noncentrosymmetric average structure, sawtooth shape of the charge density, or orbital density wave in the presence of a strong external magnetic field, which orients the magnetic moments inside the sample. The technique is based on the fact that the absorption coefficient of the material under study depends on the helicity of the absorbed light. As a rule we have registered two sets of XMCD spectra for an external magnetic field being parallel or antiparallel to the x-ray beam to rule out possible instrumental artifacts since the variation of the XANES spectrum for the
two opposite helicities of the incident beam is very small. A previous investigation of the XNCD of a cuprate superconductor has been reported in Ref. [28] but the results have been questioned by theoretical calculations of Norman [29]. Moreover Di Matteo and Varma [30,31] provided calculated XNCD and XMCD spectra for possible signatures of time-reversal breaking, the chiral order and the pseudogap phase.

XMCD at the Cu $L_{2,3}$-edges of x-ray absorption spectra in both undoped La$_2$CuO$_4$ and doped YBa$_2$Cu$_3$O$_7$ films with T_c=90K have been reported [32]. The photon beam was normal to the sample surface and parallel to the c axis and to the external magnetic field. At the L_2-edge and L_1-edge x-ray absorption process a 2p core electron is excited to 3d empty states of Cu with different spin polarization [33-35] therefore it is the ideal tool to investigate the spin polarization of 3d orbitals. The origin of the detected dichroism [32] could not be explained by the authors through a purely paramagnetic canting of the spins induced by the field, which would require at least a ten times higher magnetic fields to give the measured dichroic signal in the c direction.

We report here measurements of x-ray magnetic circular dichroism (XMCD) at Cu K-edge of the Bi$_2$Sr$_2$CaCu$_2$O$_{8+x}$ (Bi2212), a sample close to optimal doping with T_c= 87K. Bi$_2$Sr$_2$CaCu$_2$O$_{8+x}$ (Bi2212) is a very complex material with a misfit strain between the metallic atomic layers and the spacer layers [36-39], the short range charge density wave CDW puddles [40-44] and the nanoscale phase separation [45-53]. These interesting phenomena provide a really complex landscape of unconventional superconductivity in metallic 2D layers coupled by Josephson junctions [54-57] in Bi2212.

The metallic 2D layers of Bi2212 are decorated by 1D quantum wires [45,46] arising from the incommensurate modulation.

The misfit strain modulation and the charge density wave modulation induce local lattice fluctuations revealed by anisotropic response of photoemission [58,59] and by anisotropic x-ray absorption probing the local structure [60,61]. The CuO$_2$ lattice fluctuations could be driven by sawtooth modulations of the oxygens in the Bi2O2 slabs [62-67] which could produce a noncentrosymmetric superconducting phase in the CuO$_2$ planes. To study such lattice distortions one can use XMCD technique which is the ideal tool to detect the local noncentrosymmetric structure in layered materials [68-70].

There is a large interest today in superconductivity in noncentrosymmetric materials [71-73], where standard BCS approximations fail, giving unconventional non-BCS scenarios. Noncentrosymmetric superconductivity has been observed mostly in heavy fermions intermetallic noncentrosymmetric structures however a local noncentrosymmetric symmetry
Ivanov, A. A., et a. Local noncentrosymmetric structure of Bi2Sr2CaCu2O8+y … J Supercond Nov Magn (2017) doi:10.1007/s10948-017-4418-5 https://arxiv.org/abs/1711.00397

has been observed in oxides [74-77]. This work shows the local noncentrosymmetric Cu site in the case of Bi2212 complex 2D quantum matter opening the possibility of local noncentrosymmetric condensates where local Rashba spin–orbit coupling should play a subtle role.

Materials and Methods

Here we have investigated Bi$_2$Sr$_2$CaCu$_2$O$_{8+x}$ single crystals grown by traveling-solvent-floating-zone method. Lamellar samples of mm thickness and lateral dimensions of few mm2 with the orientation of the surface plane (001) have been selected. The single crystallinity of the samples was confirmed by XRD analysis. The oxygen content is hard to determine directly in Bi$_2$Sr$_2$CaCu$_2$O$_{8+y}$, however magnetic susceptibility measurements have shown that the temperature of superconducting transition of the selected sample, is 87 K which corresponds to doping close to the optimum doping.

The studies were performed at the ESRF beamline ID12 (Grenoble, France). A single-crystal sample was attached on a cold finger of a helium continuous flow cryostat and mounted so that the incident x-ray beam was perpendicular to the sample surface in order to have the wave vector parallel to the crystallographic axis c. The size of the beam at the sample was 0.4x0.3 mm2. A magnetic field of 17 T was applied parallel to the incident beam, and measurements were made for two opposite directions of the magnetic field. The XANES spectra were recorded in the fluorescence detection mode at the K edge of Cu. The measurements were carried out at sample temperatures of 50K, 80K, 100K and 200K. The XMCD spectrum is the difference between two XANES spectra collected with two opposite circular polarizations of the incident beam. In the experiment, as a rule, such a spectrum is obtained by consecutive switching the polarization of the incident beam (+) (-), obtaining a XMCD spectrum from each pair of XANES spectra and repeating the procedure until the required signal-to-noise ratio is obtained. Since the magnitude of the expected XMCD signal was not more than 10$^{-4}$, another approach was used to reduce various instabilities and drifts, which may not be eliminated by averaging. Each individual XMCD spectrum was obtained by processing a group of four successively taken XANES spectra, for which the polarization of the incident beam varied as (+) (-) (-) (+), a magnetic field was also changed and then this acquisition sequence was repeated several times for two opposite magnetic field directions.
As the result of the accumulation of several such spectra (their number varied from 40 to 100), the measurement error was lower than 2×10^{-5}.

Results and discussion

The polarized E//ab Cu K-edge XANES spectra of the Bi2212 crystal are shown in Fig.3. XANES spectra probe the structure of a nanoscale cluster centered at the absorbing Cu atom [20] shown in Fig. 2 via full multiple scattering of the excited photoelectron with p-orbital symmetry. The present experimental data are in good agreement with previous experiments [20]. The weak shoulder in the pre-edge range of the Cu K-edge XANES spectrum probes the unoccupied Cu(ep) states near the Fermi level [33].

![Figure 2. The local nanoscale structure of Bi 2212 centered at the Cu site of the atomic cluster probed by Cu K-edge XANES. This nanoscale cluster is defined as the spatial range where the excited photoelectrons with kinetic energy 10 eV $<E<$50 eV is confined within its short lifetime. Only atoms in this cluster, contribute to the multiple scattering resonances (MSR) giving peaks in the XANES spectrum. The cluster is made of the central absorbing Cu atom, its nearest 4 oxygen atoms in the first shell and Cu, Sr, Ca, Bi, O atoms in the further neighboring shells.](image)

The very weak intensity as in other Cu K-edge spectra of cuprate superconductors [18] indicates the lack of itinerant Cu(ep) states at the Fermi level and it is due to the quadrupole transition Cu($1s$) to Cu($3d$) which is very weak. Experimental Cu K-edge XANES and XMCD spectra presented in Fig. 3 have been taken at 80 K, 100 K and 200 K.
Figure 3. Cu K-edge XMCD signal of Bi$_2$Sr$_2$CaCu$_2$O$_{8+y}$ (Bi2212) (solid line) in a magnetic field B of $\mu_0H=17$ T aligned along the c-axis (i.e., B//c) and polarized E/ab Cu K-edge XANES (point – dashed line) measured at three different temperatures: a) 80K; b) 100K; c) 200K. At 80K the high magnetic field drives the 87K superconducting phase into the normal phase.
The measurements show that though rather small, a clear and reproducible XMCD signal. Its magnitude $\sim 8 \times 10^{-4}$ a.u. with respect the unitary edge jump is well above the detectivity limit. It is noteworthy that its energy profile does not coincide with the derivative of the XANES spectrum.

Figure 4. Upper panel: experimental XMCD spectrum at Cu K-edge polarized XANES of Bi2212 taken at 100K in magnetic field of $\mu_0 H = 17T$; Center panel: calculated XMCD spectra in the Cu XANES spectra using the non-centrosymmetric clusters using the crystallographic data measured by Bordet et al. [5] (red points) and by Petricek et al. [6] (blue points); Bottom panel: simulated XMCD spectra calculated using the centrosymmetric crystallographic structures reported by Gao et al. [7], Beskrovnyi et al. [9], Yamamoto et al. [10] and Miles et al. [12]. The signal for the centrosymmetric structures is 3 orders of magnitude smaller than that of the non-centrosymmetric structures. Therefore the XMCD signal predicted for a centrosymmetric is expected hidden in the background noise.
The experimental data have been interpreted by theoretical calculations performed using FEFF9 code, which uses full multiple scattering theory (FMST) and self-consistent field method (SCF) with the muffin-tin approximation for the atomic potential. The Hedin-Lundqvist exchange-correlation potential was selected for correction. The radii of atomic clusters around the central absorber atom were 10 and 5 Å for FMST and SCF respectively.

The atomic cluster shown in Fig. 2 was large enough to achieve good convergence. The calculations were made for several different variants of Bi2212 structures, including both Bb2b and Bbmb. Theoretical XANES spectra have been calculated starting from structural data for the noncentrosymmetric crystallographic structures of Bordet et al. [5] and Petricek et al. [6], and for the centrosymmetric crystallographic structures reported by Gao et al. [7], Beskrovnyi et al. [9], Yamamoto et al. [10] Kan and Moss [11] and Miles et al. [12]. Theoretical XANES spectra starting from different crystallographic structures [5-13] grab the key experimental features with small differences but there is no evident correlation between the spectrum shape and the space group of the starting structure. On the contrary the calculated XMCD reported in Fig. 4 show a dramatic sensitivity to the symmetry of the crystal space group. Indeed, for a nonzero XMCD signal related with a magnetic signal in the E1-E1 channel, parity even, [31] we need a lattice with a magnetic structure with a net magnetization. Therefore we expect no XMCD signal for structural clusters with centrosymmetric space group due to symmetry considerations and a non zero signal for local noncentrosymmetric clusters.

Our calculations confirmed that this is the case for Bi2212. The simulated XMCD spectra for different diffraction data refinements together with the experimental XMCD spectrum measured at 100K in a magnetic field of $\mu_0 H=17$ T are presented in Fig 4.

According to simulations shown in Fig. 4 (lowest panel), the centrosymmetric Bbmb refinements give the magnitude of XMCD signal of the order of 10^{-6} shown in Fig. 4 (lowest panel), almost three orders smaller than simulated XMCD for noncentrosymmetric Bb2b refinements (Fig. 4 - central panel). The XMCD signal given by the noncentrosymmetric structure found by Petricek is ten times smaller than that given by Bordet et al. due to smaller noncentrosymmetric atomic displacements therefore it has been increased by a factor 10.

Thus based on experimental data and in comparison with the results of simulation we can state that the Bi2212 structure belongs to noncentrosymmetric Bb2b space group.
If we compare then the experimental XMCD spectrum with simulated ones based on different $Bb2b$ refinements we point out that in spite of a discrepancy in the magnitude, the version of structural data given by Bordet et al. [6] provides a better agreement with the energy profile of the experimental spectrum. The issue that remains unaddressed is the nature of magnetic moments that are oriented in the applied external magnetic field, and deserves further work taking into account the very complex multiscale phase separation with multiple lattice and electronic components [51-53] driven by the proximity to Lifshitz electronic topological transition [49-51] in a strongly correlated quasi 2D metal.

Conclusions

We have reported a study of x-ray magnetic circular dichroism (XMCD) at the K edge of Cu in the high-temperature superconductor $\text{Bi}_2\text{Sr}_2\text{CaCu}_2\text{O}_{8+x}$ (Bi2212). The measurements revealed a XMCD signal with magnitude about 8×10^{-4} a.u. in a magnetic field of 17 T. Numerical simulations of the XMCD signal for a series of BSCO lattice distortions showed that only the local noncentrosymmetric structure is the responsible of the non-zero XMCD signal in Bi2212 for our measurement layout. Therefore, this experiment supports the early assignment of the non-centrosymmetric $Bb2b$ space group for the Bi2212 crystal structure. Moreover, we propose that the local noncentrosymmetric structure in the Cu site could be driven by sawtooth modulations of the oxygens in the Bi_2O_2 slabs [62-67] which will result in a noncentrosymmetric superconducting phase in the 2D CuO_2 layers Finally, taking into account that Bi2212 is characterized by a local non-centrosymmetric structure like in few other oxides [75-77], we suggest to confirm these results by spin resolved ARPES experiments and by further experiments looking for the unique features of superconductivity in non-centrosymmetric systems [78-87] on Bi2212 samples.

Acknowledgements

The experiment has been supported by superstripes-onlus. The experiments were performed on beamline $ID12$ at the European Synchrotron Radiation Facility (ESRF), Grenoble, France. We are grateful to ESRF for beam time allocation, traveling support and ESRF staff for providing assistance in using beamline. Wei Xu acknowledges the financial support from NSFC (Grant No. U1532128) and LNF from the framework of INFN&IHEP collaboration.
References

1. Maeda, H., Tanaka, Y., Fukutom, M. & Asano, T. A new high-Tc oxide superconductor without a rare earth element. Jpn. J. Appl. Phys. 27, L209 (1988). doi:10.1143/jjap.27.1209

2. Tarascon, J. M. et al. Crystal substructure and physical properties of the superconducting phase Bi$_2$(Sr,Ca)Cu$_2$O$_{8+x}$. Phys. Rev. B 37, 9382 (1988). doi:10.1103/physrevb.37.9382

3. Bordet, P. et al. Powder x-ray and neutron diffraction study of the superconductor Bi$_2$Sr$_2$CaCu$_2$O$_y$. Physica C: Superconductivity 153-155, 623 (1988). doi:10.1016/s0921-4534(88)80006-6.

4. Sleight, A. W. Chemistry of High-Temperature Superconductors, Science 242, 1519 (1988). doi:10.1126/science.242.4885.1519

5. Bordet, P. et al. A note on the symmetry and Bi valence of the superconductor Bi$_2$Sr$_2$CaCu$_2$O$_y$. Physica C: Superconductivity 156, 189 (1988). doi:10.1016/0921-4534(89)90126-8

6. Petricek, V., Gao, Y., Lee, P., Coppens, P., X-ray analysis of the incommensurate modulation in the 2:2:1:2 Bi-Sr-Ca-Cu-O superconductor including the oxygen atoms. Phys. Rev. B 42, 387 (1990). doi:10.1103/physrevb.42.387

7. Gao, Y., Lee, P., Coppens, P., Subramania, M. A. & Sleight, A. W. The incommensurate modulation of the 2212 Bi-Sr-Ca-Cu-O superconductor. Science 241, 954 (1988). doi:10.1126/science.241.4868.954

8. Le Page, Y., McKinnon, W., Tarascon, J. M., Barboux, P., Origin of the incommensurate modulation of the 80-K superconductor Bi$_2$Sr$_2$CaCu$_2$O$_y$, derived from isostructural commensurate Bi$_2$Sr$_2$Fe$_2$O$_{8+y}$. Phys. Rev. B 40, 6810 (1989). doi:10.1103/physrevb.40.6810

9. Beskrovnyi, A. Neutron diffraction study of the modulated structure of Bi$_2$(Sr, Ca)Cu$_2$O$_{y+2}$. Physica C: Superconductivity 166, 79 (1990). doi:10.1016/0921-4534(90)90556-t

10. Yamamoto, A. et al. Rietveld analysis of the modulated structure in the superconducting oxide Bi$_2$(Sr,Ca)Cu$_2$O$_{y-}$, Phys. Rev. B 42, 4228 (1990). doi:10.1103/physrevb.42.4228

11. Kan, X.B., Moss, S.C., Four-dimensional crystallographic analysis of the incommensurate modulation in a Bi$_2$Sr$_2$CaCu$_2$O$_8$ single crystal. Acta Crystal. B48, 122 (1992). doi:10.1107/s0108768191011333

12. Miles, P. A. et al. Refinement of the incommensurate structure of high quality Bi-2212 single crystals from a neutron diffraction study. Physica C: Superconductivity 294, 275 (1998). doi:10.1016/s0921-4534(97)01682-1

13. Bianconi, A., Lusignoli, M., Saini, N. L., Bordet, P., Kvick, Å., Radaelli, P. G., Stripe structure of the CuO$_2$ plane in Bi$_2$Sr$_2$CaCu$_2$O$_{y+2}$ by anomalous x-ray diffraction. Phys. Rev. B 54, 4310 (1996). doi:10.1103/physrevb.54.4310

14. Balzarotti, A. et al. Core transitions from the Al 2p level in amorphous and crystalline Al$_2$O$_3$. Physica Status Solidi (b) 63, 77 (1974). doi:10.1002/pssb.2220630106

15. Bianconi, A., Doniach, S., Lublin, D., X-ray Ca K-edge of calcium adenosine triphosphate system and of simple Ca compounds. Chemical Physics Letters 59, 121 (1978) doi:10.1016/0009-2614(78)85629-2

16. Bianconi, A. Surface X-ray absorption spectroscopy: Surface EXAFS and surface XANES. Applications of Surface Science 63, 392 (1980). URL: http://www.sciencedirect.com/science/article/pii/0379677X89900240.

17. Garcia, J., et al. Coordination geometry of transition metal ions in dilute solutions by XANES. Le Journal de Physique Colloques 47 (C8), C8-49 (1986) doi:10.1051/jphyscol:1986807

18. Bianconi, A. et al. Lack of delocalized Cu p states at the Fermi level in the high-Tc superconductor YBa$_2$Cu$_3$O$_y$ by XANES spectroscopy. Zeitschrift für Physik B Condensed Matter 67, 307 (1987). doi:10.1007/BF01307254

19. Kas, J. J., Jorissen, K., Rehr, J. J., Real-Space Multiple-Scattering Theory of X-Ray Spectra, 51-72 (John Wiley & Sons, Ltd, Chichester, UK, 2016). doi:10.1002/9781118844243.ch3

20. Bianconi, A. et al., Cu K-edge polarized x-ray-absorption near-edge structure of Bi$_2$CaSr$_2$Cu$_2$O$_8$. Phys. Rev. B 44, 4560 (1991). doi:10.1103/physrevb.44.4560

21. Ebert, H., Strange, P. & Gyorffy, B. L. Theory of circularly polarized x-ray absorption by ferromagnetic Fe. Journal of Applied Physics 63, 3055 (1988). doi:10.1063/1.340894

22. Juhan, A. et al. X-ray magnetic circular dichroism measured at the Fe K-edge with a reduced intrinsic broadening: x-ray absorption spectroscopy versus resonant inelastic x-ray scattering measurements. Journal of Physics: Condensed Matter 28, 505202 (2016). doi:10.1088/0953-8984/28/50/505202.

23. Chaboy, J. et al. X-ray magnetic circular dichroism at the iron K-edge in rare-earth-transition-metal intermetallics: Experimental probe of the rare-earth magnetic moment. Physical Review B 54, R15637 (1996). doi:10.1103/physrevb.54.r15637.

24. Subías, G., García, J. & Sánchez, M. C. Mn K-Edge XMCD study of the Mixed-Valence state of Mn-Based molecular nanomagnets. In AIP Conference Proceedings, 783 (AIP, 2007). http://dx.doi.org/10.1063/1.2644663.

25. Rogalev, A. & Wilhelm, F. Magnetic circular dichroism in the hard x-ray range The Physics of Metals and Metallography, 116, 1285 (2015), doi:10.1134/s0039191815130013
26. Matsuda, Y. et al. High-Magnetic-field XMCD as a novel tool for the study of valence fluctuation Phenomena—Application to Eu-based intermetallic compounds. Journal of Low Temperature Physics 159, 292 (2010). doi:10.1007/s10909-009-0129-z

27. Mathon, O. et al. XMCD under pressure at the Fe K edge on the energy-dispersive beamline of the ESRF. Journal of Synchrotron Radiation 11, 423-427 (2004). URL http://dx.doi.org/10.1107/s0909049504018862

28. Kubota, M., Ono, K., Oohara, Y. & Eisaki, H. X-ray optical activity in underdoped Bi-Based high-Tc superconductor. Journal of the Physical Society of Japan 75, 053706 (2006). doi:10.1143/jpsj.75.053706

29. Norman M. R., X-ray natural dichroism and chiral order in underdoped cuprates. Phys. Rev. B 87, 180506 (2013). doi:10.1103/physrevb.87.180506

30. Di Matteo, S., Varma, C. M., Symmetry considerations for detection of time-reversal breaking phases in cuprates by x-ray diffraction and absorption Phys. Rev. B 67, 134502 (2003). doi:10.1103/physrevb.67.134502

31. Di Matteo, S., Norman, M. R., X-ray dichroism and the pseudogap phase of cuprates. Phys. Rev. B 76, 014510 (2007). doi:10.1103/physrevb.76.014510

32. De Luca, G. M., Ghiringhelli, G., Moretti Sala, M., Di Matteo, S., Haverkort, M. W., Berger, H., Bisogni, V., Cezar, J. C., Brookes, N. B., Salluzzo, M., Weak magnetism in insulating and superconducting cuprates. Phys. Rev. B 82, 214504 (2010). doi:10.1103/physrevb.82.214504

33. Balzarotti, A., Bianconi, A. & Burattini, E. Role of the density of conduction states on the L2,3 absorption spectrum of aluminum. Phys. Rev. B 9, 5003 (1974). doi:10.1103/physrevb.9.5003

34. Bianconi, A., et al. Symmetry of the hole states in BiCaSrCuO High-Tc superconductors. Modern Physics Letters B (MPLB) 2, 1313 (1988). http://www.worldscinet.com/mplb/02/0211n12/S0217984988001302.html

35. Bianconi, A., Della Longa, S., Li, Pompa, M., Congiu-Castellano, A., Udron, D., Flank, A.M., Lagarde, P., Linearly polarized Cu L-edge x-ray-absorption near-edge structure of Bi2Sr2CaCu2O8y. Phys. Rev. B Condens. Matter 44, 10126 (1991). doi:10.1103/physrevb.44.10126

36. Zeljkovic, I., et al. Nanoscale interplay of strain and doping in a high-temperature superconductor. Nano Lett. 14, 6749 (2014). doi:10.1021/nl501890k

37. Di Castro, D., Bianconi, G., Colapietro, M., Pifferi, A., Saini, N. L., Agrestini, S., Bianconi, A., Evidence for the strain critical point in high Tc superconductors. The European Physical Journal B - Condensed Matter and Complex Systems 18, 617 (2000). doi:10.1007/s100510070010

38. Bianconi, A., Agrestini, S., Bianconi, G., Di Castro, D., Saini, N. L., A quantum phase transition driven by the electron lattice interaction gives high Tc superconductivity. Journal of Alloys and Compounds 317-318, 537 (2001). doi:10.1016/s0925-8388(00)01383-9

39. Bianconi, A., Saini, N. L., Agrestini, S., Di Castro, D., Bianconi, G., The strain quantum critical point for superstripes in the phase diagram of all cuprate perovskites. International Journal of Modern Physics B 14, 3342 (2000). doi:10.1142/S0217979200003812

40. Gabovich, A.M., Voitenko, A.I., Annett, J.F., Ausloos, M.: Charge- and spin-density-wave superconductors. Supercond. Sci. Technol. 14, R1 (2001). doi:10.1088/0953-2048/14/4/201

41. Bianconi, A., On the Fermi liquid coupled with a generalized Wigner polaronic CDW giving high Tc superconductivity. Solid State Communications 91, 1 (1994). doi:10.1016/0038-1098(94)90831-1

42. Lanzarà, A., Saini, N., Brunelli, M., Valletta, A., Bianconi, A.: Evidence for onset of charge density wave in the La-based perovskite superconductors. J. Supercond. Nov. Magn. 10, 319 (1997). doi:10.1007/bf02765711

43. Pouget, J.-P.: Bond and charge ordering in low-dimensional organic conductors. Phys. B Condens. Matter 407, 1762 (2012). doi:10.1016/j.physb.2012.01.025

44. Monceau, P., Electronic crystals: an experimental overview. Adv. Phys. 61, 325 (2012). doi:10.1080/00018732.2012.719674

45. Bianconi, A. et al. Stripe structure in the CuO2 plane of perovskite superconductors. Phys. Rev. B 54, 12018 (1996). doi:10.1103/physrevb.54.12018

46. Slezak, J. A. et al. Imaging the impact on cuprate superconductivity of varying the interatomic distances within individual crystal unit cells. Proceedings of the National Academy of Sciences 105, 3203 (2008). doi:10.1073/pnas.0706795105

47. Poccia, N. et al. Spatial inhomogeneity and planar symmetry breaking of the lattice incommensurate supermodulation in the high-temperature superconductor Bi2Sr2CaCu2O8+y. Phys. Rev. B 84, 100504 (2011). doi:10.1103/physrevb.84.100504

48. Zeljkovic, I., et al. Scanning tunnelling microscopy imaging of symmetry-breaking structural distortion in the bismuth-based cuprate superconductors Nature Materials 11, 585 (2012). doi:10.1038/nmat3151

49. Bianconi, A., Agrestini, S., Campi, G., Filippi, M., Saini, N. L., Common features in high Tc cuprates and diborides. Current Applied Physics 5, 254 (2005). doi:10.1016/j.cap.2004.02.010

50. Kugel, K. I., Rakhamanov, A. L., Sboychakov, A. O., Poccia, N., Bianconi, A., Model for phase separation controlled by doping and the internal chemical pressure in different cuprate superconductors. Phys. Rev. B 78, 165124 (2008). doi:10.1103/physrevb.78.165124
51. Caivano, R., Fratini, M., Poccia, et al., Feshbach resonance and mesoscopic phase separation near a quantum critical point in multiband FeAs-based superconductors. *Superconductor Science and Technology* **22**, 014004. (2009) doi:10.1088/0953-2048/22/1/014004.

52. Campi, G., Innocenti, D. & Bianconi, A. CDW and similarity of the Mott Insulator-to-Metal transition in cuprates with the gas-to-liquid-liquid transition in supercooled water. *Journal of Superconductivity and Novel Magnetism* **28**, 1355 (2015). doi:10.1007/s10948-015-2955-3.

53. Campi, G., Bianconi, A. High-Temperature superconductivity in a hyperbolic geometry of complex matter from nanoscale to mesoscale scope. *Journal of Superconductivity and Novel Magnetism* **29**, 627 (2016). doi:10.1007/s10948-015-3326-9.

54. Yurgens, A.A., Intrinsic Josephson junctions *Supercond. Sci. Technol.* **13**, R85 (2000).

55. Romanowsky, M. B., Capasso, F., *Phys. Rev. A* **78**, 042110 (2008) doi:10.1103/physreva.78.042110.

56. Welp, U., Kadokawa, K., Kleiner, R., Superconducting emitters of THz radiation. *Nature Photonics* **7**, 702 (2013) doi:10.1038/nphoton.2013.216.

57. Laplace, Y., Cavalleri, A., Josephson plasmonics in layered superconductors. *Advances in Physics: X* **1**, 387 (2016) doi:10.1080/23761649.2016.1216271.

58. Saini, N. et al. Topology of the pseudogap and shadow bands in Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ at optimum doping. *Phys. Rev. Lett.* **79**, 3467 (1997). doi:10.1103/physrevlett.79.3467.

59. Mans, A. et al. Experimental proof of a structural origin for the shadow Fermi surface of Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$. *Phys. Rev. Lett.* **96**, 107007 (2006). doi:10.1103/physrevlett.96.107007.

60. Bianconi, A. et al. Determination of the local lattice distortions in the CuO$_2$ plane of La$_{1.65}$Sr$_{0.35}$CuO$_2$. *Phys. Rev. Lett.* **76**, 3412 (1996). doi:10.1103/physrevlett.76.3412.

61. Saini, N. L. et al. Evidence for anisotropic atomic displacements and orbital distribution in the inhomogeneous CuO$_2$ plane of the Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ system. *Journal of Physics and Chemistry of Solids* **65**, 1439 (2004). doi:10.1016/j.jpcs.2003.12.011.

62. Fu, Z. et al. Incommensurate modulations in Bi-2212 high-Tc superconductor revealed by single-crystal x-ray analysis using direct methods. *Science in China (series A)* **38**, 210 (1995).

63. Perez-Mato, J. M., Etrillard, J., Kiat, J. M., Liang, B. & Lin, C. T. Competition between composite and modulated configurations in Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ and its relation to oxygen stoichiometry. *Phys. Rev. B* **67**, 024504 (2003). doi:10.1103/physrevb.67.024504.

64. Kaneko, S., Akiyama, K., Funakubo, H. & Yoshimoto, M. Strain-amplified structural modulation of Bi-cuprate high-Tc superconductors. *Phys. Rev. B* **74**, 054503 (2006). doi:10.1103/physrevb.74.054503.

65. Kaneko, S. et al. Structural modulation in bismuth cuprate superconductor observed by x-ray reciprocal space mapping. *Journal of Crystal Growth* **287**, 483 (2006) doi:10.1016/j.jcrysgro.2005.11.063.

66. Carva, K., Legut, D. & Oppeneer, P. M. Influence of laser-excited electron distributions on the x-ray magnetic circular dichroism spectra: Implications for femtosecond demagnetization in Ni. *EPL (Europhysics Letters)* **86**, 57002 (2009) doi:10.1209/0295-5075/86/57002.

67. Wang, H., Patil, D. S., Ralston, C. Y., Bryant, C., Cramer, S. P., L-Edge x-ray magnetic circular dichroism of Ni enzymes: direct probe of Ni spin states. *Journal of Electron Spectroscopy and Related Phenomena* **114-116**, 865 (2001). doi:10.1016/s0368-2048(00)00375-3.

68. Wilhelm, F. et al. X-ray magnetic circular dichroism experiments and theory of transuranium laves phase compounds. *Physical Review B* **88**, 024424 (2013). doi:10.1103/physrevb.88.024424.

69. Bauer, E. & Sigrist, M. Non-centrosymmetric superconductors: introduction and overview. *Lecture Notes in Physics* Vol. **847** (Springer, Heidelberg, Berlin, 2012). doi:10.1007/978-3-642-24624-1.

70. Smidman, M., Salamon, M. B., Yuan, H. Q. & Agterberg, D. F. Superconductivity and spin-orbit coupling in non-centrosymmetric materials: a review preprint arXiv:1609.1038 (2016), http://arxiv.org/abs/1609.05953.

71. Sato, M. & Fujimoto, S. Topological phases of noncentrosymmetric superconductors: Edge states, Majorana fermions, and the non-Abelian statistics. *Phys. Rev. B* **79**, 094504 (2009).

72. Liu, B., Yuan, F. & Hu, X. Impurity induced resonance states at the superconducting interface LaAlO$_3$/SrTiO$_3$ *Journal of Physics and Chemistry of Solids* **72**, 380 (2011) doi:10.1016/j.jpcs.2010.10.036.

73. Qian, M., Dong, J., Xing, D. Y. Optical properties of the ferroelectric magnet YMnO$_3$ studied from first principles. *Phys. Rev. B* **63**, 155101 (2001). doi:10.1103/physrevb.63.155101.

74. Jooss, C. et al. Polaron melting and ordering as key mechanisms for colossal resistance effects in manganites. *Proceedings of the National Academy of Sciences* **104**, 13597 (2007). doi:10.1073/pnas.0702748104.

75. Šetinc, T., Spreitzer, M., Kunej, Å., Kovač, J. & Suviron, D. Temperature stable dielectric behavior of Sol-Gel derived compositionally graded SrTiO$_3$/Na$_2$B$_5$Ti$_4$O$_{11}$/SrTiO$_3$ thin films. *Journal of the American Ceramic Society* **96**, 3511 (2013). doi:10.1111/jace.12519.

76. Chang, P.-Y., Matsuura, S., Schnyder, A. P. & Ryu, S. Majorana vortex-bound states in three-dimensional noncentrosymmetric superconductors *Phys. Rev. B* **90**, 174504 (2014).

77. Fak, B., Raymond, S., Braithwaite, D., Lapertot, G. & Mignot, J. M. Low-energy magnetic response of the noncentrosymmetric heavy-fermion superconductor CePt$_3$Si studied via inelastic neutron scattering. *Phys. Rev. B* **78**, 184518 (2008) doi:10.1103/physrevb.78.184518.
Ivanov, A. A., et a. Local noncentrosymmetric structure of Bi2Sr2CaCu2O8+y ... *J Supercond Nov Magn* (2017) doi:10.1007/s10948-017-4418-5 https://arxiv.org/abs/1711.00397

80. Tada, Y., Kawakami, N. & Fujimoto, S. Colossal enhancement of upper critical fields in noncentrosymmetric heavy fermion superconductors near quantum criticality: CeRhSi3 and CeIrSi3 *Phys. Rev. Lett.* 101, 267006 (2008) http://arxiv.org/abs/0808.0545.
81. Bauer, E. *et al.* BaPtSi3: A noncentrosymmetric BCS-like superconductor. *Physical Review B* 80 (2009). doi:10.1103/physrevb.80.064504
82. Yoshida, R. *et al.* Bulk-sensitive spectroscopic studies on noncentrosymmetric superconducting system of Mg-Ir-B. *Physica C: Superconductivity* 469, 1034 (2009). doi:10.1016/j.physc.2009.05.175
83. Tafti, F. F. *et al.* Superconductivity in the noncentrosymmetric half-Heusler compound LuPtBi: A candidate for topological superconductivity. *Phys. Rev. B* 87, 184504 (2013). doi:10.1103/physrevb.87.184504
84. Isobe, M., Yoshida, H., Kimoto, K., Arai, M. & Takayama-Muromachi, E. SrAuSi3: A noncentrosymmetric superconductor. *Chem. Mater.* 26, 2155-2165 (2014). doi:10.1021/cm500032u
85. Wang, Z. *et al.* Correlation between superconductivity and bond angle of CrAs chain in non-centrosymmetric compounds A2Cr3As3 (A = K, Rb). *Scientific Reports* 6, 37878 (2016) doi:10.1038/srep37878
86. Benia, H. M. *et al.* Observation of Dirac surface states in the noncentrosymmetric superconductor BiPd. *Phys. Rev. B* 94 (2016). doi:10.1103/physrevb.94.121407
87. Singh, D., Sajilesh, K. P., Marik, S., Hillier, A. D. & Singh, R. P. Superconducting properties of the noncentrosymmetric superconductor TaOs, *preprint arXiv:1709.09591* (2017). http://arxiv.org/abs/1709.09591