Review Paper. Utilization of Low-Cost Adsorbents for the Adsorption Process of Chromium ions.

Mohammed Jaafar Ali Alatabe¹*, Ahmed Alaa Hussein¹
¹Department Environmental Engineering, University of Mustansiriyah, Baghdad, Iraq.
Email: mohammedjjafer@uomustansiriyah.edu.iq.

Abstract. This review is aimed at exploring the possibilities of recovering Chromium ions using several low-cost adsorbents through wastewater processing. In the past, several traditional methods were employed for removing Chromium ions. These included precipitation, evaporation, electroplating and ion exchange. However, these processes were associated with various limitations, which included the treatments to be restricted to a certain concentration of the Chromium ions. Therefore, the process of using low-cost adsorbents can be deemed as an eco-friendly one. At the moment, an enormous amount of natural materials and agricultural waste are produced, which extremely harmful to the environment. Thus, adsorption is an alternate process for removing Chromium ions. Based on the enhanced characteristics of the process of adsorption, such as cost-effectiveness, improved adsorptive properties, and increased availability, the process is definitely an economical one for removing Chromium ions. This review provides a brief appraisal of the relevant literature which exists on the low-cost adsorption for removing Chromium from polluted wastewaters. Additionally, in order to comprehend the overall adsorption process of low-cost adsorbents, this review will also explore the various existing adsorption models. These include the isotherm, kinetics, and thermodynamics along with the impact of various factors on the process of adsorption.

Keywords: Adsorption, Chromium ions, Conventional methods, Low-cost adsorbent.

1. Introduction
Rapid industrial development causes huge pollution on our planet especially contamination in the heavy metals that result from the mining industries, large world traffic...etc, that Chromium to passive effects on the plants and ecology [1-3]. One of the higher toxicity elements is the Chromium, it's contaminating the water, soil and the ecology system in general. Chromium discharges mostly coming from the textile, leather tanning, metal extraction factory, and electroplating as effluents [4]. Common states of the Chromium oxidation are trivalent state and hexavalent state, they are more stable and constant [5]. The Chromium in the hexavalent state considered higher toxicity than the Chromium in the trivalent state due to form a complex compound with Oxygen such as Cr₂O³⁻ and CrO₄²⁻ oxoanions [6]. Experimentally, the trivalent Chromium state is highly related to the organic substances in soil, it has less toxicity and less activity. Literature review of the manuscripts showing that Chromium in the trivalent state easily enters in leaves and or the plant cell organs then changes to Chromium in the hexavalent state [7]. Analyzing, the Chromium is collecting in the plants' roots 100 once more than the leaf, branches, and Leg [8,9]. The high accumulation of Chromium in the plants that grow in the serpentine soils found Collecting was Herniaria hirsute [10]. Chromium is transferring to plant by
soil with different harvest crops like to the transfer mechanisms of the Chromium in the hexavalent state to the barley, this process has been notifying [11-13]. Hexavalent Chromium has a larger impact on environmental assessment due to the insoluble of the hexavalent Chromium is regularly engrossed further simply a cross the cell of body membranes more willingly [14-15]. Therefore, it is more poisonous and steadier than chromium (III). Global environmental values in wastewater involve chromium should not go above 0.05 mg/L for hexavalent Chromium and 5mg/L for trivalent Chromium. The chromium(III) compounds are mainly toxic components of tannery wastewater, and they are used in various industries such as metallurgy, production of pigments, electroplating, pesticide, painting aircraft, preservative of wood, Textile manufacturing, dyeing, cement industry, metal finishing, photography industry, leather tanning …etc, by applications for conservation stabilization of proteins of animal hides [16]. Chromium is a transition element, it’s in various oxidation states, the main popular ones are the trivalent chromium in formed ([Cr(H2O)6]3−) and hexavalent chromium in form (CrO2−4 or Cr2O7−2) states [17]. The first type is more stable, and small quantities are required for the satisfactory performance of certain biological functions in human beings [18]. Hexavalent Chromium has a harmful and adverse effect on human health, it founds at a low concentration in different products [19]. Therefore, chromium removal from wastewater excite big interest. Many approaches to remove chromium like chemical precipitation [20-21], ion exchange [22-23], electro-coagulation [24-28], Reverse Osmosis (Membrane) technique [29-32], foam flotation [33-35], electrolysis [36-37] and Electrochemical [38-39] these have been notified, however, these methods have disadvantages like costly, great feed solution input of chemicals and the removal incomplete [40]. Adsorption operation utilized for treating wastewater that contains toxic ions of heavy metal is a suitable and efficient mechanism [41-42]. Utilizing different materials for chromium removal by adsorption, there are many types of research and manuscript published deal with the adsorption process onto activated aluminum [43], activated carbon & elution with sulfuric acid [44], superabsorbant polymer [45], Iron Oxide/Mesoporous Silica Nanocomposites [46], aluminum oxide hydroxide [47], Metal-Organic Framework [48], Blast Furnace Dust [49], hydrous chromium dioxide [50], iron oxide magnetic nanoparticle [51], PEI-silica nanocomposite [52], polyacrylonitrile-based porous carbon [53], Synthetic and Natural Polymers [54], carboxymethyl cellulose-based hydrogel [55], diatomite treated with micro emulsion [56], nanoscale zero-valent metal [57], calcium alginate as biopolymer [58], Surface Modified Nanozeolite [59], Scolecite Natural Zeolite [60], Biosorbents Supported on Zeolites [61], Beta vulgaris or Celery (Apium graveolens) after the Addition of Modified Zeolites [62], Zeolite/Chitosan Hybrid Composite [63], zeolite NaX [64], natural clinoptilolite zeolite [65], HDTMA-modified zeolites [66], surfactant-modified Sabzevar nano-zeolite [67], Zeolite and Agro-industrial Waste [68], amino-functionalized nano-Fe3O4 magnetic polymers [69], crystalline hydrous titanium oxide [70], aminated polyacrylonitrile fibers [71], New cross linked hydrazide–based polymers [72], Different Nanoporous Materials [73] and manganese oxide coated sand grain (MOCSG) [74]. Many treatments for wastewater polluted with Chromium ions have been proposed, including an adsorption process, which does not have high effectiveness, unless the adsorbent material shows certain physicochemical and mechanical properties [75]. In recent years, some physical, chemical, and biological treatments on natural raw minerals have been performed in order to modify their structure, thus increasing the adsorption capacity or the selectivity [76]. Overall, adsorption is known as an efficient process for purifying contaminated waters. Also, treating wastes containing Chromium is an increasing concern for the industries and hence an effective solution needs to be found for the successful elimination of harmful metals from wastewaters. One solution is also to use activated granular carbon [77]. Over the last few years, several investigative works have been in order to explore an alternative to the expensive methods for treating wastewaters. Several kinds of materials have been used for the adsorption process to test their adsorption abilities. According to studies results it appears that the elimination of Chromium ions by utilize the low-cost adsorbents is increasingly favorable, especially in the long term [78]. This is because several materials are readily available, i.e. these exist naturally or are found in agricultural waste and manufacturing wastes, used as low-cost materials adsorbent. Previous researches show that there is increasing attention in investigating different materials that can serve as
low-cost adsorbent [79]. These include River bed Sediments [80], Sweet Orange (Citrus Sinensis) Peels [81], Orange Peel Activated with Potassium Carbonate [82], lignin [83], Spheroidal Cellulose [84], Arthrobacter nicotianae Cells [85], commercial grade granular activated carbon [86], Biogenic Magnetite Nanoparticles [87], modified sugarcane bagasse[88], vesicular basalt rock [89], bentonite [90], Composites of polyaniline with rice husk and sawdust [91], Cellulose from Wood Powder [92], Carbon [93], Sorghum Bicolor [94], Alligator weed [95], Boehmite Nano-powder [96], Ligand [97], goethite and kaolinite [98], Lewatit [99], Cane Papyrus [100], Rhizophora apiculata Tannins [101], modified coconut husk [102], tea residue [103], spent tea leaves [104], modified walnut shells [105], walnut, hazelnut and almond shell [106], groundnut hull [107], wheat bran [108], modified palm branches [109], natura and calcined rice husks [110], carrots (Daucus carota) [111], rice bran [112], soya cake [113], Tamarindus indica seeds [114], tamarind hull-based [115], coir pith [116], modified red pine sawdust [117], sugar beet pulp [118], Lentinus sajor-caju mycelia [119], activated carbon from the industrial waste of sugar [120], preparing activated carbon from biomass of walnut shell [121], preparing activated carbons from agricultural wastes [122], preparing activated carbon from bamboo locally available waste (Oxytenanthera abyssinica) [123], Hazelnut Shell Activated Carbon [124], Acid Activated Low Cost Carbon [125], activated carbon [126], microporous activated carbon from biomass [127], deriving activated carbon from agricultural waste materials and cloth fabric of activated carbon [128], Charcoal, Attapulgite and Date Palm Leaflet Powder [129], biomaterial-based activated carbons [130], bone charcoal [131], bentonite and expanded perlite [132], Natural Clay [133], kaolinite [134], inorganic-organic clay [135], green alga unicellular, Chlorella sorokiniana immobilized in loofa sponge [136], biological wastes and vermiculite [137], dead fungal biomass of Aspergillus niger [138], agricultural waste biomass [139], basalt-inhabiting bacteria [140], Aeromonas caviae [141], Arthrobacter oxydans [142], Brown Seaweed Ecklonia Biomass [143], fermentation waste [144], red, green and brown seaweed biomass [145], Arthrobacter Viscosus [146], shelled Morina oleifera seeds [147], bagasse fly-ash—a sugar industry waste [148], Potential tea factory waste [149], pomace-an olive oil industry waste [150], using response surface methodological approach treating sugarcane bagasse [151], membrane bioreactor with immobilized Pseudomonas cells [152], Lentinus sajor-caju, free and immobilized biomass [153], Eggshell [154], brown seaweed biomass [155], boehmite [156], biochars in different environmental conditions [157], Agave Lechuguilla biomass [158], multi-walled carbon nanotubes [159],nanohydroxyapatite [160], inorganic materials [161], moss chlorophyll fluorescence [162], graphite furnace atomic [163], natural biomaterials [164] and eucalyptus bark [165]. Using low-cost adsorbents like waste materials is very interesting because it's contributing to reducing waste disposal costs. Even though there has been a variety of adsorption studies. In addition, Chromium appears to be one of the major risk factors for several deadly diseases if the concentrations of Chromium go over the allowable boundary, as World Health Organization (WHO) recommendations. Basically, the health's effects can be largely specified by the oxidation condition, various values of guideline to trivalent chromium and hexavalent chromium must be derived. But the current analytical approach and the chromium changing speciation in water support the total chromium values guideline. Due to the carcinogenicity of hexavalent chromium through the inhalation and genotoxicity, questioned in current guideline value 0.05 mg/L, but for a new value, the available data of toxicology doesn't back up the conclusion. Practically measurement, 0.05 mg/L, that is considering to be away to give rise to significant risks to health, has been retained as a temporary guideline value until further information becomes available and chromium can be re-evaluated [166]. The presence of Chromium ions in waterways produced by industries can also affect water bodies, which further presents an unsafe effect on the marine and extra-terrestrial bodies. Amongst the exhaustive list of issues related to Chromium poisoning, one most common issue led by the exposure of Chromium is the occurrence of miscarriages and neonatal deaths [167]. Therefore, the utilization of these materials as low-cost adsorbents is acknowledged as a possible and economical application for wastewater treatment. This is reflected in the increasing numbers of periodicals, that show using low-cost materials as adsorbents in the literature. These mainly conclude the immense interest in finding appropriate adsorbents for the process of adsorption [168]. This review aims to provide an outline of the adsorption processes utilizing low-cost
adsorbents for eliminating Chromium ions from different sources. This will be achieved by underlining the characteristics of the adsorbents, their optimum parameters, and their adsorption capacity. The major aim of the manuscript is to offer a survey about the latest studies which are related to the adsorption processes using low-cost materials as adsorbents to Chromium ions elimination.

2. Sources and toxicity of Chromium ions.
A wide distribution for Chromium into a crust of the earth. It is found in oxidation conditions from +2 to +6. Little chromium quantities may consist in rocks and soils, it's in the trivalent state nearly. The compounds distribution content for trivalent chromium and chromium depending on potential redox, pH, the appearance of reducing or oxidizing compounds, total chromium concentration, trivalent chromium complexes formation of insoluble salts of trivalent chromium, and redox reactions kinetics. Trivalent chromium exists generally into an environment, as Cr(OH)₃(3-n)+ and hexavalent chromium as CrO₄²⁻ or Hcno₄⁻. Trivalent chromium predominates in the soil. in the organic matter, reduction of hexavalent chromium to trivalent chromium (III) is very easy, for instance, results of human's activities occurrences in soil [169]. Trivalent chromium forms a positive ion in water from complexes and hydroxides and at relatively high pH values is adsorb. The ratio is widely different between hexavalent chromium and trivalent chromium in the surface water, it's found in ecology at a high concentration. Generally, salts of hexavalent chromium are more dissolved from salts of trivalent chromium, which means the hexavalent chromium more activity. chromium present in the air into aerosols form and, it's possibly eliminated with dry and wet sedimentation from the atmosphere, it's emitted to the ambient both the hexavalent and trivalent chromium. Rarely available data of chromium types in the atmosphere due to the difficulties in analytical, but the hexavalent chromium percentage is about 0.01% to 30% that's according to the last studies. The chromium concentration in the rainwater is estimated between 0.2g/l to 1g/l. In seawater measured the natural concentration of chromium, it's between 0.04 µg/l to 0.5 µg/l, the chromium concentration has been found equal to 0.7 µg/l in the North Sea [170]. In natural surface water, the approximate total content of chromium is between 0.5 µg/l to 2 µg/l and between 0.02 µg/L to 0.3 µg/l for dissolved chromium content. In Antarctica lakes, the chromium concentration increases with depth between> (0.6 to 30) µg/l, and the chromium content in most surface waters is between (1-10) µg/l [171]. Industrial activity is the guide to polluted the surface water with chromium content, in the United States of America were found a levels of chromium up to 84µg/l; (0.2 to 44) µg/l the level of water concentrations in central Canada "[data from the National Water Quality Data Bank (NAQUADAT), Water Directorate Interior, Canadian Ministry of Environment, 1985]". Less than 10 µg/l of chromium levels in the Rhine and, in India, 50% of natural sewage contents less than 2µg/l of chromium [172]. Generally, in groundwater the concentration of chromium estimates to (> 1 µg/l). 0.7 µg/l is a mean concentration and 5 µg/L a maximum concentration has been measures in the Netherlands [170-172]. there are 1473 samples contains dug well water in India, only 50% had below 2 µg/l chromium concentration. In the USA groundwater, notified that the level of chromium concentration (>50 µg/l) in shallow groundwater also founds (2-10) µg/l media levels. Most providers in the USA contain fewer than 5 µg/L. In 1986, levels in 17 groundwater supplies and one surface water supply exceeded 50 µg/L. Approximately 18% of the population of the USA are exposed to drinking-water levels between 2 and 60 µg/l and > 0.1% to levels between 60 and 120 µg/l. In the Netherlands, the chromium concentration of 76% of the supplies was below 1 µg/land of 98% below 2 µg/l. A survey of Canadian drinking-water supplies gave an overall median level of 2 µg of chromium per liter, with maxima of 14 µg/l (raw water) and 9 µg/l (treated water) [173-174].The values for oral acute exposure (LD₅₀) to the rats are estimate between (185–615) mg of trivalent chromium per kg of body weight and (20–250) mg of hexanelant chromium per kg of body weight, depends on tests of the dichromats and chromic compounds, respectively [175]. Short-term exposure Three-month-old inbred BD rats (5–14 per sex per dose) were exposed for 90 days, 5 'd' per week, to 0, 2%, or 5% of insoluble, non-hydrated chromium (III) oxide (Cr₂O₃) pigment in feed [176]. The dose levels are equivalent to 0, 480, and 1210 mg of chromium (III) per kg of body weight per 20 'd'. Survival, body and organ weights, feed intake, blood analysis, and the macroscopic and microscopic appearance of major organs were not affected.
The only effect observed was a dose-related decrease in liver and spleen weights, ranging from 15% to 35% [177-178]. The emission of Chromium ions into the environment from industrial processes and car exhaust will pollute the surface and also underground waterways. This can result in pollution of soil while enhancing the overall pollution rate, especially when ores from mining processes are disposed of in landfill sites [179]. In addition, agricultural wastes in soils can consist of metals, which would then be consumed by plants thus resulting in the accumulation of such harmful substances in their tissues. It is expected that animals, which feed on the aquatic and plant life may also be poisoned due to the presence of harmful Chromium ions. Hence, it is vital that strict wastewater regulations are laid to reduce the environmental risks of dangerous substances [180].

3. Removal of Chromium ions

3.1 Traditional processes.

Several processes have been used for eliminating Chromium ions from polluted waters. These consist of biological, chemical and physical treatments. It is worth mentioning that usually these processes are mainly based on physical and chemical treatments. The overall traditional method to remove Chromium ions involves ion exchange, electro-dialysis, oxidation, chemical precipitation, membrane filtration, evaporation, reverse osmosis, solvent-extraction, and adsorption onto activated carbon. Chemical precipitation is the commonly used process for Chromium ions removal from inorganic effluents depending on the pH alteration in a basic solution [181]. Nevertheless, the chemical precipitation disadvantages are manifold. For details, discharge of too much sludge produced needs additional treatments, which slows the metal precipitation, chromium to inadequate settling and the aggregation of metal precipitates. In addition, there are several long-term ecological concerns with the disposal of sludge. Coagulation-flocculation is also used to process wastewaters with Chromium ions by adding a coagulant in the coagulation process. However, this treatment has the possibility of destabilizing colloidal particles and thus resulting in sedimentation. The several advantages and disadvantages of the conventional method are provided below in Table 1. In spite of these approaches being expensive, these are mostly the ones that can have a positive impact on the commonly occurring discharge issues [182]. Additionally, these methods are also feasible for treating polluted waters containing Chromium ions. It is known that issues usually are found in the traditional methods where there is increased usage of the reagent and energy, a low selectivity, increased operational costs and production of secondary pollutants taking place. Asides the traditional methods, it is vital now to explore alternatives for replacing these traditional approaches of eliminating Chromium ions from polluted water sources [183].

Traditional treatments	Benefits	Limitations
Ion-exchange	Metal-selective, Increased regeneration of materials.	Increased initial capital and maintenance costs
Chemical precipitation	Simple operation, Non-metal selective, Cheap.	Increased production of sludge, Increased costs of disposal sludge.
Membrane filtration	Reduced production of solid waste Reduced chemical consumption.	Increased initial capital and maintenance cost, Low flow rate.
Electro-chemical treatment	Metal-selective, Potential for treating effluent >2000 mg dm3.	Increased initial capital cost.
3.2 Adsorption

Over the past few years, the process of adsorption has attracted great interests, as it appears to be a favorable methodology for long-term effective treatments along with being an economical approach for chromium ions removal. Depending on the flexible design and simplicity of operation, adsorption is an important process nowadays. The term “adsorption” refers to the mass transfer from the solution (liquid phase) to adsorbent surface. Advantages of the adsorption approach in removing or minimizing the Chromium ions, also in soft concentrations involve the enhancement of the application of adsorption as a useful and practical approach. The effectiveness of the adsorption processes is almost categorized depend on the solution nature in which pollutants are spread, the molecule sizes and the polarity of the contaminant along with the type of adsorbent used. Adsorption also occurs based on the interactions between surfaces and species being adsorbed at certain molecular levels [184]. Adsorption can be classified for two methods; physical adsorption and chemisorption. Physical adsorption is a reversible phenomenon, which results due to intermolecular forces of attraction that take place in molecules of the adsorbent and the adsorbate. Meanwhile, chemisorption occurs as a result of the chemical interactions amongst solid and adsorbed substances. Chemisorption is an irreversible method that is also known by activated adsorption. Increased physical adsorption occurs at a temperature in the range of the critical temperature of a known gas while chemisorption takes place at a higher temperature than the critical temperature. Moreover, depending on the situation, it is probable that both processes take place either separately or at the same time [185]. It is important to ensure that various variables are monitored in the adsorption processes occurring between adsorbate and adsorbent. This includes the characteristics of physical and chemical for adsorbate and adsorbent, the concentration of adsorbate in a liquid solution, temperatures, pH and also contact times. In terms of pH, this accounts for the most important factor as compared to other parameters because of its capability for control on distribution of charge on surface of adsorbent among adsorbate ion. However, in most related studies, it's should be taking the zero-charge point (pHzpc) in the consideration for perform a comparison with pH as pHzpc regulates the limits of the pH of the adsorbent. pHzpc is the charge an adsorbent’s surface carries and can be known by the protonation and deprotonation of the adsorbate ion. Also, the surface charge density is dependent on the specific metal ions that respond in a direct manner with the adsorbent surface [186]. For instance, in cases of the pH values of the solutions being more than pHzpc, the adsorbent’s surface charge will be negative. Or else, the pH rise within a certain range can result in increasing the rate of adsorption rate. However, any additional increase in pH can result in the reduction of the adsorption rate. This is due to some adsorbate ions being unaltered by pH changes. As an alternative to pH, the adsorbent dosage is an additional feature, which influences the adsorption process. Moreover, with a rise in the adsorbent’s dosage, the adsorption rate also tends to increase. Nevertheless, the adsorption rates can reduce if the adsorbent’s dosage rises more. Due to available a larger number of occupied effective places, while the adsorbate concentration gradients are maintained constant. A higher adsorption rate can be obtained when the temperature increases, the surface area growth and adsorbent pore volume [146]. Initial metal concentration can be the mainspring to avoid mass transfers through the adsorbent surface and solution. The initial chromium concentration has an influence on the adsorption rate depending on the presence of the explicit functional groups surface and capability of functional groups surface for connect chromium ions (mostly when concentrations increases). Thus, any parameters influencing the adsorptive capacity of adsorbent should be considered during the adsorption process [185].

3.2.1 Adsorption Mechanism

Adsorption mechanisms are complex due to the non-existence of any simplified theory on Chromium ions adsorption onto surface of adsorbent. Earlier works have been observed to report on several models, which describe the mechanism between the adsorbute and the adsorbent. The Langmuir and Freundlich models, both, are often employed for describing the sorption isotherms [186]. In regard to kinetics, the pseudo-first-order and pseudo-second-order kinetic models can be employed for describing the sorption
kinetics. The thermodynamics of the metal ion sorption can be explained based on thermodynamic factors, for example, free energy (ΔG°), enthalpy (ΔH°) and entropy changes (ΔS°) based on the endo-thermal and exothermal sorption processes [187].

3.2.2 Adsorption Isotherm

Sorption isotherm can be referred to as the process of the interaction of adsorbate ions on the adsorbent’s surface. In the literature, various isotherm equations exist, which can be used to analyze the relevant experimental parameters. However, one of the well-known adsorption isotherm models, which is commonly employed for the single solute system, is the Langmuir [188] and Freundlich isotherm [189]. These are models more feasible to explaining the association between the adsorbed material quantity on equilibrium state, q, in mg/g and the remaining adsorbate concentrations at equilibrium for the bulk solution, C, in mg/l.

3.2.2.1 Langmuir Isotherms

Depending on the Langmuir adsorption theory, particles tend to adsorb at known well-defined sites that are consistently dispersed over the adsorbent’s surface. These sites also have similar affinities for monomolecular layer adsorption along without interactions existing among molecules of adsorbed [18].

For Langmuir equation, it is written as:

$$\frac{1}{q_e} = \frac{1}{q_{\text{max}}} + \left(\frac{1}{b q_{\text{max}}}\right) \frac{1}{C_e} \quad \cdots \cdOTS
temperatures can be used to control the various thermodynamic variables. These include (ΔH°) enthalpy, (ΔG°) free energy change and and (ΔS°) entropy change [190-191].

The adsorption free energy (ΔG°) can be associated with the Langmuir adsorption constant through the following equations:

\[
\Delta G^o = -RT\ln K_c
\]

\[
\ln k_c = \frac{\Delta S^o}{R} - \frac{\Delta H^o}{RT}
\]

The value obtained from the thermodynamic parameters was numerically analyzed to forecast the sorption operations characteristics. The various heavy metal ions adsorption onto different adsorbents is a complex process where the thermodynamic variables of the metal ion sorption are influenced by the type of metal ion, type of sorbents, solution conditions, ionic strength and experimental circumstances [192].

For study the rate-limiting step in the adsorption operations, it’s should consider the contact time for experimental parameters as a based, relating to the kinetic energy. Overall adsorption processes can be regulated through steps such as pore diffusion, surface diffusion or a mix of more steps. Lagergen's first-order equation and Ho’s second-order equation are instances of kinetic models, which are oftentimes utilized to characterize these models of kinetic adsorption [193]. The pseudo-first-order kinetic equation of Lagergen's model is given as [193]:

\[
\frac{dq_t}{dt} = k_1(q_e - q_t)
\]

when \(q_e\) and \(q_t\) are adsorbed waste quantities(mg/g) in a balanced state, in any period instant \(t\) ‘min’, correspondingly. \(k_1\) is the pseudo-first-order rate constant of adsorption operation 'min'. Pseudo-first-order equation refers to "the assumption of the rate of change of solute’s uptake with time which is in direct relation to the change in the saturation concentration and the amounts of solid uptake overtime” [194]. The equation of pseudo-second-order kinetic given as:

\[
\frac{dq_t}{dt} = k(q_e-q_t)^2
\]

The model of pseudo-second-order is dependent on "proposition that the rate-limiting step may arise from the chemical adsorption", which involves the valence forces that take place due to the distribution or exchanging of electrons in the adsorbent and adsorbate [194]. In regard to removing Chromium ions, researchers in the past have also considered the soya cake removing these ions from the wastewaters. This was carried out at various optimal conditions for the initial metal concentrations, adsorbent doses, the solution’s pH and particle sizes. It was revealed that the ratio of adsorbent to the solution along with the metal ion concentration can have an effect into a metal ions quality removed. Most Chromium ions adsorption was about 98%, as the adsorbent doses were increased between (0.5 - 2.5) g per 500 ml at various concentrations of the ions, i.e., 100 mg/l, 200 mg/l, and 300 mg/l. The adsorption increases take place with the electrolyte concentration increases. It was noticed that the most metal uptake in soya cake waste took place at 125mg/gm, 105 mg/l and 85 mg/gm for Chromium ions, for pH reaching between (5.5-6.5), correspondingly. The isotherm adsorption analyzing for the data achieved at 25°C demonstrated that the equilibrium data for Chromium ions appropriate fit with both, the Langmuir and Freundlich isotherms. Also, Chromium ions were seen to have an increased affinity and adsorption rates at all experimental circumstances. Moreover, the study of kinetics revealed that Chromium ions uptake was faster with 95% or even a higher percentage of adsorption taking place within the first (20 – 30) 'min' of contact times. In addition, the kinetics statistics is suitable well with the model of pseudo-second-order, where correlation coefficients were found to be higher than 0.98 [113]. Table 2 lists some of the equation of the empirical models above [188-194].

The rise in the overall adsorption rate and capacity of Chromium was observed when smaller adsorbent particles(sawdust) [91]were used. In addition, investigative research was performed with varying pH (i.e. pH of 3, 6 and 7), varying temperatures (i.e.20°C,30°C, 40°C and 50°C) and adsorbent doses (i.e. 5gm to 20gm). The outcomes of this investigative study showed that adsorption capacities of clays were increased the chromium removal with increased in the solution’s temperature. The maximum capacity of adsorption revealed was 135mg/g in temperature of 50°C. Also, the adsorption process exhibited a Langmuir and Freundlich behavior, which was shown by the coefficient (i.e. R² > 0.985). An increase
in the percentage of trivalent chromium removal in the minimum pH solution is possible because of chromium ions lower content [91].

In modeling, the kinetic data is proportional to the first pseudo-rank model contrasted with the model of second pseudo-rank. Works on adsorption of Chromium (III) by inorganic and organic slurry waste in terms of isothermal, kinetic and thermodynamics, verified operation, which has endothermic (H°> 0), spontaneous (G° <0) and irreversible (S >> 0) [135] properties. Moreover, the Orange Peel Activated with Potassium Carbonate was also considered for removing Chromium from water and wastewater [82]. The works were performed as a function of: pH (i.e. with pH values in the range of 1.18 to 13.5), particle sizes (i.e. with sizes of 600, 420, 300, 150, 75 and <75 µm), doses (of 0.05, 0.1, 0.2, 0.5 and 1 g), contact time (of 3 'h') and temperature (in the range of 30-70°C). Findings revealed, adsorption optimum conditions are achieved when pH =6.5, particle size 75 µm, dosage =0.5g/100ml and 1 'h' contact time. Orange Peel Activated with Potassium Carbonate adsorption capacities used to Chromium removal reduces with a rise in the solution temperature, which shows that the adsorption process is impulsive [82]. The type of adsorbent is an important factor. Adsorption capacity depends on activated carbons, which is not feasible for use, currently, based on its highly expensive cost of production and operations. Activated carbon also needs a somewhat complicated mix of agents for improving the inorganic matters removal process from. As a result, the difficulties stated earlier, latest researches have looked into an alternative adsorbent with high regeneration capability, obtainability and cost-effectiveness to substitute the expensive activated carbons like (activated carbon prepared from walnut shell biomass) [121]. Up to the present time, several works have investigated the low-cost adsorbents to utilize. Agrarian wastelands along with natural materials all were examined as potentially low-cost adsorbents for treating wastewaters, plagued with Chromium ions [151].

Types of mechanism	Equations	Nomenclature	Ref.
a. Adsorption			
Isotherm			
i) Langmuir	\(\frac{1}{qe} = \frac{1}{q_{\text{max}}} + \frac{1}{(bq_{\text{max}})} \frac{1}{Ce} \)	qe is capacity of metal sorption in equilibrium, C is concentration of solute in solution at equilibrium, qmax and b are Langmuir constants linked to highest sorption capacity (monolayer capacity) and bonding energy of adsorption	[188]
ii) Freundlich	\(qe = k_F C e^{ln} \)	KF is constant of a bio-sorption at equilibrium, qe is the capacity of sorption, n is a bio-sorption strength indicative constant.	[189]
b. Adsorption			
kinetics			
i) Pseudo first-order	\((qe - qt) = logqe - \left(\frac{Kt}{2.303} \right) \)	qe & qt are the capacity of sorption in equilibrium and at time t, k is the constant of rate.	[193]
ii) Pseudo second-order	\(\frac{t}{qt} = \frac{1}{K2qt2} + \left(\frac{1}{qe} \right) \)	qe & qt are the capacity of sorption in equilibrium and at time t, k is the rate constant of pseudo-second-order sorption.	[194]
3.2.4 Low-Cost Adsorbents

Recently, quite a significant amount of research has been carried out for obtaining materials, which can be utilized as low-cost adsorbents. These consist of natural materials, agricultural waste, and wastes produced from industries. Low-cost adsorbents refer to those materials, which are found abundantly in the environment or are byproducts or wastes from industries. Moreover, adsorbents are known as low-costs if they have reduced processing requirements. Previous adsorption works concentrated on plant wastes such as, the Peat and coconut fiber [195], carrots [111], rice husks [110], Cane papyrus [100], modified coconut husk [102], rice bran [112], and others, which can be utilized each on the normal compose or change several alterations physical or chemical. Converting these materials into adsorbents is an effective way of reducing the costs of waste disposal and for providing alternate treatments for replacing the commercially activated carbons [78]. Table 3 provides a summary of the outcomes of different works on adsorption, utilizing several adsorbents.

Table 3. Adsorption capacities of Chromium (III) ions utilizing several different adsorbents.

Type of adsorbent	pH	Contact time 'min'	Temperature (°C)	qmax (mg/g)	References
Peat and coconut fiber	7	80	25	1.25	[195]
Carrots	2	>120	22	26.2	[111]
Rice husk	4	>120	25	102.96	[110]
Cane papyrus	6	90	25	154.76	[100]
Modified coconut husk	60	40	9.91	9.91	[102]
Rice bran	60	6	6.8	6.8	[112]
Sweet Orange Peels	60	40	82.31	82.31	[81]
Coir pith	6	60	79.6	79.6	[116]
Groundnut hull	6	60	40	40	[107]
Spherical Cellulose	6	60	16.35	16.35	[84]
kaolinite	6	60	24.24	24.24	[134]
Carbon	5.5	60	14.97	14.97	[93]
fermentation waste	6	90	35.17	35.17	[144]
eucalyptus bark	6.5	60	45.5	45.5	[165]
Soya cake	5	90	23.4	23.4	[113]
Eggshell	6	120	49.5	49.5	[154]

3.2.5 Effects of pH

Metal ions adsorption from wastewaters is usually dominated by the solution’s pH. It is worth mentioning that the pH of the solution influences the surface charges on the adsorbent, the extent of ionization along the class of adsorbates. Over a known pH range, mostly metal sorption is improved with pH. However, this is valid for a known increase in pH, after which an additional rise in pH can lead
to a reduction in the metal sorption. The medium influences pH value on the system’s equilibrium, as the pH correlation can be expressed as Eq. [146]:

$$pH = pK_a - \log \frac{[AH]}{[A]}$$

where [A] and [AH], refer to deprotonated and protonated surface groups concentrations. Equilibrium constant, pKa, resembles carboxyl groups. The effects of pH on the Chromium ion uptake are also investigated for removing Chromium ions in utilizing the Cane Papyrus [100].

The pH values used were in the range of 3 to 7. It was seen that the highest bio-sorption occurs when the pH value was in the range of 2.5 to 5. The possibly by reason of a fact, a low pH value leads to the detachment of carboxylic acids, which further results in the production of carboxylate groups plus H+. A further rise in the pH results in an increase in the metallic ion bio-sorbed. Moreover, for a pH more than 6, a strong reduction is observed in the metal uptake. This is mainly because of the hydrolysis of the metal ion. The effects of pH on banana peels have also been looked into [100]. Furthermore, in terms of the Chromium Ions, the pH effects were also monitored, and it was observed that the adsorption abilities rose from 0.5 mg/g to around 3.25 mg/g with a rise in pH from 2 to 6. This can be based on the availability of the free ion, which exists at a pH lower than 6. Nevertheless, the adsorption capacities decrease after a further rise in pH (i.e. from a pH of 6 to 12). To elaborate, at lower pH values, the adsorption abilities are lesser than Chromium ions, which are competing with hydrogen ions for the binding site on the surfaces of the adsorbent. On the contrary, at increased pH values, the Chromium ions tend to precipitate in the solutions [196].

3.2.6 Effects of Temperature

Based on the adsorbent utilized, the relative temperatures can have an influence on the adsorption capacities. To elaborate, the thermal value is able to alter the adsorptive equilibrium based on the type of the procedure (i.e. whether it is exo or endothermic). Hence, it is vital to determine factors such as enthalpies, entropies and Gibbs free energies, prior to the conclusion of the procedure [74].

Gibbs free energy (ΔG°) is measured as the impulsiveness pointer of a chemical reaction. The connection between Gibbs free energy change, (ΔG°) [192], temperature and equilibrium constant, K_a, is expressed by Eq. (10):

$$\Delta G^\circ = -RT\ln K$$

The enthalpy, ΔH°, and entropy, ΔS° changes on the adsorption procedure can be found from equilibrium constants as functions of temperature through the Van't Hoff equation, as can be referred to in Eq. (11):

$$\ln K_a = \frac{\Delta S^\circ}{R} - \frac{\Delta H^\circ}{RT}$$

The percentage of Chromium ions adsorption by dried Gamma plant that increases with the rising temperatures from 25°C to 40°C has been investigated. Negative free energy change (ΔG°) values designate the impulsive characteristics of the adsorption process. Whereas, positive values of the enthalpy change (ΔH°) suggest the endothermic characteristics of the adsorption procedure. These findings are also reported due to a rise in the uptake capacities of the adsorbent with an increase in temperature. It has been found that the rising sorption capacities of the sorbent with temperature are due to the increase of pores and/or the activation of the sorbent surface [192]. Additionally, positive values of entropy (ΔS°) show the increased extents of free active sites at the solid-liquid interface during the adsorption of Chromium ions on dried plants.

3.2.7 Effects of Contact Time

Adsorption of Chromium ions adsorbent also is dependent on the connections of functional groups concerning the solution and the surface of the adsorbent. Adsorptions can be considered to conclude when an equilibrium stage is obtained with the solute of the solution and the adsorbent. Nevertheless, a certain period of time is required to maintain the equilibrium connections to confirm that the adsorption process has been completed. The effects of contact times on walnut, hazelnut and almond shell for the
adsorption elimination of Chromium ions from aqueous solutions are observed [106]. The experiment measures the effects of contact times under the initial concentrations of the batch adsorption as 25 mg/L and a pH of 5.5 for Chromium ions. The increased contact time improved the adsorption of chromium ions. Conversely, the quick adsorption had an initial effect on the overall required time to obtain equilibrium. For walnut, hazelnut and almond shell, the equilibrium time was 2.5 'h', for Chromium adsorption while for Cane papyrus, 2 'h' were required to attain an equilibrium for the adsorption of chromium ions. Hence, a 3 'h' contact time was maintained as an optimal time for future studies. The adsorption of Chromium ions on Cane Papyrus is observed to have taken 120 'min' as the optimal time for future studies. The ranges of contact times ranged from a minute to 3 'h'. However, the significant removal of Chromium ions occurred during the first 30 'min' where no considerable variations in terms of the removal were observed after 2 'h'. The adsorption of Chromium ions is originally higher mainly because of the existence of increased surface areas of Cane Papyrus for adsorption. All further experimental works maintained an equilibrium time of 2 'h' for removing Chromium ions onto Cane Papyrus [100].

3.2.8 Effects of Adsorbent Dose
Adsorbent dosage is a useful variable in determining the adsorbent’s capacities at known concentrations of the adsorbate. The effects of adsorbent doses on Cane Papyrus powder for adsorbing Chromium ions from aqueous solutions are examined. At room temperature, the adsorbent dosages were changed from (5 to 30) mg/l along with an initial concentration of 10 mg/l. Results achieved from this work describe the adsorption of Chromium ions, which improves and advances when doses of Cane Papyrus powder are amplified from (5 to 20) mg/l. This explains the increased accessibility of surface areas at increased adsorbent concentrations. Additional increases in the adsorbents will not have any effect on the adsorption because of the overlying adsorbent particles’ sites [197].

3.2.9 Effects of Initial Concentration
Initial concentrations of Chromium ions can modify the effectiveness in terms of removing metals based on a mix of features. These include the existence of specific surface functional groups in addition to the capability of these groups to bind Chromium ions. Moreover, this initial solution concentration can act as a vital factor in overcoming the mass transfer resistances of Chromium ions concerning the aqueous and solid phases [198-199]. The rapid adsorption of Chromium using Cane papyrus after 30 minutes before it continues at a faster rate and achieves saturation has been examined [100]. As the initial concentration of Chromium rises from 10, 20 and 30 ppm, the adsorption removal decreased, which was mainly because of the lower concentrations, where almost all Chromium ions were adsorbed rapidly on the outer surface. Nevertheless, a further rise in the Chromium ions initial concentration resulted in rapid adsorbent saturation [201].

4. Conclusions
The discharge of wastewater containing chromium from many different industrial processes to the environment has been on the rise. Chromium removal from wastewater varying techniques have been developed. Some effective electrochemical strategies for the reduction of Chromium in aqueous solutions were reported herein, such as electrode-ionization, electro-dialysis, reduction, and electro-coagulation. A detailed review of severing allow-cost adsorbents is discussed in this paper, which reveals the efficiency and scope of using low-cost adsorbents for removing Chromium ions utilizing an adsorption procedure. The adsorptive capacity depends on the adsorbent utilized nature also on type of wastewaters under treatment. Further investigative works need to be performed in order to develop an improved understanding of the adsorption processes of low-cost adsorbents as an alternative to endorsing the use of non-conventional adsorbents on a large scale. These works involve the structure works of adsorbents, batch investigations on the parameters that influence adsorption, adsorption modeling's like isotherm, kinetics, and thermodynamics, the Chromium ions recovery and the improvement of adsorption capacities through the alteration of adsorbents.
References

[1] Novak M, Chrustny V, Sebek O, Martinova E, Prechova E, Curik J, Veselovsky F, Stepanova M, Dousova B, Buzek F and Farkas J 2017 Chromium isotope fractionations resulting from electroplating, chromating and anodizing: Implications for groundwater pollution studies. Applied geochemistry. 80 134-42.

[2] Hussein, AA and Alatabe, M. J. A 2019 Remediation of Lead-Contaminated Soil, Using Clean Energy in Combination with Electro-Kinetic Methods. Pollution. 5 859-69.

[3] Alatabe M. J. A. and Kariem NO 2019 Thorns, a Novel Natural Plants for Adsorption of Lead Ions from Wastewater. Eurasian Journal of Analytical Chemistry. 14 163-74.

[4] Jun R, Ling T and Guanghua Z 2009 Effects of chromium on seed germination, root elongation and coleoptile growth in six pulses. Int. J. of Environ. Sci. Technol. 6 571-78.

[5] Lukina AO, Boutin C, Rowland O and Carpenter DJ 2016 Evaluating trivalent chromium toxicity on wild terrestrial and wetland plants. Chemosphere. 162 355-64.

[6] Antoniadis V, Zanni AA, Levizou E, Shaheen SM, Dimirkou A, Bolan N and Rinklebe J 2018 Modulation of hexavalent chromium toxicity on Origanum vulgare in an acidic soil amended with peat, lime, and zeolite. Chemosphere. 195 291-300.

[7] Molla K, Dimirkou A and Antoniadis V 2012 Hexavalent chromium dynamics and uptake in manure-added soil. Water, Air, & Soil Poll. 223 6059-67.

[8] Faisal AA and Hussein A.A 2015 An Acidic Injection Well Technique for Enhancement of the Removal of Copper from Contaminated Soil by Electrokinetic Remediation Process Separation Sci. and Technol. 50 2578-86.

[9] Gheju M and Baleu I 2017 Assisted green remediation of chromium pollution. J. of Environ. manag. 203 920-24.

[10] Polti MA, Atjían MC, Amoroso MJ and Abate CM 2011 Soil chromium bioremediation: synergic activity of actinobacteria and plants. Int. Biodeterioration & Biodegradation. 65 1175-81.

[11] Sinha V, Pakshirajan K and Chaturvedi R 2018 Chromium tolerance, bioaccumulation and localization in plants: an overview. J. of Environ. management. 206 715-30.

[12] Fritzen MB, Souza AJ, Silva TA, Souza L, Nome RA, Fiedler HD and Nome F 2006 Distribution of hexavalent Cr species across the clay mineral surface–water interface. J. of Colloid and Interface Sci. 296 465-71.

[13] Kim JG, Dixon JB, Chusuei CC and Deng Y 2002 Oxidation of chromium (III) to (VI) by manganese oxides. Soil Sci. Society of Amer. J. 66 306-15.

[14] Acharya J, Kumar U and Rafi PM 2018 Removal of heavy metal ions from wastewater by chemically modified agricultural waste material as potential adsorbent: A review. Int. J. of Current Eng. and Tech. 8 526-30.

[15] Ikram M, Rauf MA and Rauf N 2002 Trace level removal studies of Cr (III) from aqueous solution. J. of trace and microprobe techniques. 20 119-25.

[16] Sutton R 2010 Chromium-6 in US tap water. Washington, DC: Environmental Working Group; 1-22.

[17] Fandeur D, Juillot F, Morin G, Olivi L, Cognigni A, Webb SM, Ambrosi JP, Fritsch E, F, Brown and Jr GE 2009 XANES evidence for oxidation of Cr (III) to Cr (VI) by Mn- in a lateritic regolith developed on serpentinitized ultramafic rocks of New Caledonia. Environ.l sci. & techn. 43 7384-90.

[18] Feng XH, Zhai LM, Tan WF, Zhao W, Liu F and He JZ 2006 The controlling effect of pH on oxidation of Cr (III) by manganese oxide minerals. J. of Colloid and Interface Sci. 298 258-66.

[19] Landrot G, Ginder-Vogel M, Livi K, FITTS JP and Sparks DL 2012 Chromium (III) oxidation by three poorly-crystalline manganese (IV) oxides. 1. Chromium (III)-oxidizing capacity. Environ. sci. & techn. 46 11594-600.
[20] Hintermeyer BH, Lacour NA, Perez Padilla A and Tavani EL 2008 Separation of the chromium (III) present in a tanning wastewater by means of precipitation, reverse osmosis and adsorption. Latin Ameri. applied res. 38 63-71.

[21] Abass E, Alireza M and Reza V 2005 Chromium (III) removal and recovery from tannery wastewater by precipitation process. Amer. J. of Appl. Sciences. 2 1471-73.

[22] Rengaraj S, Yeon KH and Moon SH 2001 Removal of chromium from water and wastewater by ion exchange resins. J.I of hazardous materials. 87 273-87.

[23] Tiravanti G, Petruzelli D and Passino R 1997 Pretreatment of tannery wastewaters by an ion exchange process for Cr (III) removal and recovery. Water Sci. and Techn. 36 197-207.

[24] Schulz MC, Baygents JC and Farrell J 2009 Laboratory and pilot testing of electrocoagulation for removing scale-forming species from industrial process waters. Int. J. of Environ. Sci. &Techn. 6 521-26.

[25] Akbal F and Camci S 2011 Copper, chromium and nickel removal from metal plating wastewater by electrocoagulation. Desalination. 269 214-22.

[26] Shahriari T, Bidhendi GN, Mehradni N and Torabian A 2014 Removal of chromium (III) from wastewater by electrocoagulation method. KSCE J. of Civ. eng. 18 949-55.

[27] Prasetyaningrum A, Jos B, Dharmawan Y, Prabowo BT and Fathurrazan M 2018 The influence of electrode type on electrocoagulation process for removal of chromium (VI) metal in plating industrial wastewater. In J. of Phys.: Conference Series IOP Publishing. 1025 21-26.

[28] Cheballah K, Sahmoune A, Messaoudi K, Drouiche N and Lounici H 2015 Simultaneous removal of hexavalent chromium and COD from industrial wastewater by bipolar electrocoagulation. Chem. Eng. and Proc.: Process Intensification. 96 94-99.

[29] Hafez AI, El-Manharawy MS and Khedr MA 2002 RO membrane removal of unreacted chromium from spent tanning effluent. A pilot-scale study, Part 2. Desalination. 144 237-42.

[30] Ranganathan K and Kabadgi SD 2011 Studies on feasibility of reverse osmosis (membrane) technology for treatment of tannery wastewater. J. of Environ. Protection. 2 37-46.

[31] Cassano A, Della Pietra L and Drioli E 2007 Integrated membrane process for the recovery of chromium salts from tannery effluents. Indus. & Eng. Chem.Res. 46 6825-30.

[32] Chaudry MA, Ahmad S and Malik MT 1998 Supported liquid membrane technique applicability for removal of chromium from tannery wastes. Waste Management. 17 211-18.

[33] Shojaei V and Khoshdast H 2018 Efficient chromium removal from aqueous solutions by precipitate flotation using rhamnolipid biosurfactants. Physicochemical Problems of Mineral Processing. 54 1014-25.

[34] Barnes JC, Brown JM, Mumallah NA and Wilson DJ 1979 Floc flotation of nickel, chromium, cobalt, and manganese. Interaction in surface adsorption. Separation Sci. and Techn. 14 777-94.

[35] Qurie M, Khamis M, Manassra A, Ayyad I, Nir S, Scrano L, Bufo SA and Karaman R 2013 Removal of Cr (VI) from aqueous environments using micelle-clay adsorption. The Scientific Wor. J. 2013 1-7.

[36] Chaudhary AJ, Goswami NC and Grimes SM 2003 Electrolytic removal of hexavalent chromium from aqueous solutions. J. of Chem. Techn. & Biotechn.: Int. Res. in Process, Envi. & Clean Techn. 78 877-83.

[37] Chopra AK, Sharma AK and Kumar V 2011 Overview of Electrolytic treatment: An alternative technology for purification of wastewater. Arch. of Appl. Sci. Res. 3 191-206.

[38] Zhao Y, Kang D, Chen Z, Zhan J and Wu X 2018 Removal of Chromium Using Electrochemical Approaches: A. Int. J. Electrochem. Sci. 13 1250-59.

[39] Li S, Hu Z, Xie S, Liu H and Liu J 2018 Removal of Cr (VI) from electroplating industry effluent via electrochemical reduction. Int. J. Electrochem. Sci. 13 655-63.

[40] Owlad M, Aroua MK, Daud WA and Baroutian S 2009 Removal of hexavalent chromium-contaminated water and wastewater: a review. Water, Air, and Soil Poll. 200 59-77.
[41] Charlet L and Manceau AA 1992 X-ray absorption spectroscopic study of the sorption of Cr (III) at the oxide-water interface: II. Adsorption, coprecipitation, and surface precipitation on hydrous ferric oxide. J. of colloid& interface sci. 148 443-58.

[42] Fendorf SE 1995 Surface reactions of chromium in soils and waters. Geoderma. 67 55-71.

[43] Rajurkar NS, Gokarn AN and Dimya K 2011 Adsorption of chromium (III), nickel (II), and copper (II) from aqueous solution by activated alumina. CLEAN–Soil, Air, Water. 39 767-73.

[44] Hintermeyer BH and Tavani EL 2017 Chromium (III) recovery from tanning wastewater by means of adsorption on activated carbon and elution with sulfuric acid. Environ. Eng. Res.; 22 149-56.

[45] Ouass A, Essaadaoui Y, Kadiiri L, Lebkiri I, Lafreme C, Cherkaoui M, Lebkiri A and Rifi EH 2018 Adsorption of Cr (III) from aqueous solution by two forms of a superabsorbant polymer: parametric study and effect of activation mode. InE3S Web of Conferences EDP Sciences. 37 02001.

[46] Egodawatte I, Datt A, Burns EA and Larsen SC 2015 Chemical insight into the adsorption of chromium (III) on iron oxide/mesoporous silica nanocomposites. Langmuir. 31 7553-62.

[47] Bedemo A, Chandravanshi BS and Zewge F 2016 Removal of trivalent chromium from aqueous solution using aluminum oxide hydroxide. SpringerPlus. 5 1288.

[48] Rather SU, Muhammad A, Al-Zahrani AA and Youssef TE 2018 Synthesis, Characterization and CO2 Adsorption of Cr (III)-Based Metal-Organic Framework. Sci. of Adv. Materials. 10 1669-74.

[49] Pedroza FR, Aguilar MD, Castillo MA, Luévano AM and Rodríguez NG 2017 Adsorption of chromium from steel plating wastewater using blast furnace dust. Revista Internacional De Contaminacion Ambiental. 33 591-603.

[50] Kouji Y, Matsuda T and Nagai T 1987 ADSORPTION OF CHROMIUM (VI) AND CHROMIUM (III) ON HYDROUS LEAD DIOXIDE. Bunseki Kagaku. 36 356-61.

[51] Shahriari T, Bidhendi GN and Mehrdadi N 2014 Torabian A. Effective parameters for the adsorption of chromium (III) onto iron oxide magnetic nanoparticle. Int. J. of Envi. Sci. and Techn. 11 349-56.

[52] Choi K, Lee S, Park JO, Park JA, Cho SH, Lee SY, Lee JH and Choi JW 2018 Chromium removal from aqueous solution by a PEI-silica nanocomposite. Scientific reports.;8(1):1-10.

[53] Feng B, Shen W, Shi L and Qu S 2018 Adsorption of hexavalent chromium by polyacrylonitrile- based porous carbon from aqueous solution. Royal Society open science. 5 171662.

[54] Wiśniewska M, Ostolska I, Szewczuk-Karpisz K and Nosal-Wiercińska A 2015 Adsorption and Stability Properties of Aqueous Suspension of Chromium (III) Oxide in the Presence of Synthetic and Natural Polymers: Possibilities of Solid Removal. Adsorption Sci. & Techn. 33 693-700.

[55] Anah L and Astrini N 2017 Influence of pH on Cr (VI) ions removal from aqueous solutions using carboxymethyl cellulose-based hydrogel as adsorbent. InIOP Conference Series: Earth and Environmental Science. IOP Publishing. 60 012010.

[56] Dantas TD, Neto AD and Moura MD 2001 Removal of chromium from aqueous solutions by diatomite treated with microemulsion. Water Res. 35 2219-224.

[57] Fang Z, Qiu X, Huang R, Qiu X and Li M 2011 Removal of chromium in electroplating wastewater by nanoscale zero-valent metal with synergistic effect of reduction and immobilization. Desalination. 280 224-31.

[58] Pandey A, Bera D, Shukla A and Ray L 2007 Studies on Cr (VI), Pb (II) and Cu (II) adsorption– desorption using calcium alginate as biopolymer. Chem. Speciation & Bioavailability. 19 17-24.

[59] Tashauoei HR, MOVAHEDIAN AH, Kamali M, Amin MM and NIKAEIN M 2010 Removal of hexavalent chromium (VI) from aqueous solutions using surface modified nanozeolite A. International Journal of Environmental Research. 4 491–500.
[60] Salunkhe BH and Raut SJ 2012 REMOVAL OF HEAVY METAL Ni(II) AND Cr(VI) FROM AQUEOUS SOLUTION BY SCOLECITE NATURAL ZEOLITE. Int.J. of Chem. Sci. 10 1133-148.

[61] Silva B, Figueiredo H, Quintelas C, Neves IC and Tavares T 2008 Iron and chromium removal from binary solutions of Fe (III)/Cr (III) and Fe (III)/Cr (VI) by biosorbents supported on zeolites. In. materials science forum. 587:463-67.

[62] Brozou E, Ioannou Z and Dimirkou A 2018 Removal of Cr (VI) and Cr (III) From Polluted Water and Soil Sown with Beet () or Celery () after the Addition of Modified Zeolites. Int J Waste Resour. 8 359.

[63] Pang M, Kano N and Imaizumi H 2015 Adsorption of chromium (VI) from aqueous solution using zeolite/chitosan hybrid composite. J. Chem. Chem. Eng. 9 433-41.

[64] Pandey PK, Sharma SK and Sambi SS 2010 Kinetics and equilibrium study of chromium adsorption on zeoliteNaX. Int. J. of Envi. Sci. & Techn. 7 395-404.

[65] Jorfi S, Ahmadi MJ, Pourfadaykari S, Jaafarzadeh N, Soltani RD and Akbari H 2017 Adsorption of Cr (VI) by natural clinoptilolite zeolite from aqueous solutions: isotherms and kinetics. Polish J. of Chem. Techn.. 19 106-114.

[66] Swarnakar V, Agrawal N and Tomar R 2011 Sorption of Cr (VI) & As (V) on HDTMA-modified zeolites. Int. J. of Scientific & Eng. Res. 2 1-9.

[67] Razmgar K and Mokhtari Hosseini ZB 2016 Removal of As (V), Cr (VI) and Pb (II) from aqueous solution using surfactant-modified Sabzcevar nanozeolite. Advances in Envir. Techn. 2 105-09.

[68] Kučić D, Simonič M and Furač L 2017 Batch adsorption of Cr (VI) ions on zeolite and agroindustrial waste. Chem. and biochem. eng. quarterly. 31 497-507.

[69] Shen H, Pan S, Zhang Y, Huang X and Gong H 2012 A new insight on the adsorption mechanism of amino-functionalized nano-Fe3O4 magnetic polymers in Cu (II), Cr (VI) co-existing water system. Chem. Eng. J. 183 180-91.

[70] Debnath S and Ghosh UC 2008 Kinetics, isotherm and thermodynamics for Cr (III) and Cr (VI) adsorption from aqueous solutions by crystalline hydrous titanium oxide. The J. of Chem. Thermodynamics. 40 67-77.

[71] Deng S and Bai R 2004 Removal of trivalent and hexavalent chromium with aminated polyacrylonitrile fibers: performance and mechanisms. Water research. 38 2424-432.

[72] Dautoo UK, Shandil Y and Chauhan GS 2017 New crosslinked hydrazide–based polymers as Cr (VI) ions adsorbents. J. of envi. chem. eng. 5 5815-826.

[73] Ghashghaee M and Farzaneh V 2016 Removal of Cr (VI) species from aqueous solution by different nanoporous materials. Iranian J. of Toxicology. 10 15-21.

[74] Chaudhry SA, Khan TA and Ali I 2017 Equilibrium, kinetic and thermodynamic studies of Cr (VI) adsorption from aqueous solution onto manganese oxide coated sand grain (MOCSG). J. of Molecular Liquids. 236 320-30.

[75] Ho YS and McKay G 1998 A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Trans IChemE. 76 332-40.

[76] Dakiky M, Khamis M, Manassra A and Mer’Eb M 2002 Selective adsorption of chromium (VI) in industrial wastewater using low-cost abundantly available adsorbents. Adv. in envi.l res. 6 533-40.

[77] Satapathy D, Natarajan GS and Patil SJ 2005 Adsorption characteristics of chromium (VI) on granular activated carbon. J. of the Chinese Chem. Society. 52 35-44.

[78] Bhattacharya AK, Naiya TK, Mandal SN and Das SK 2008 Adsorption, kinetics and equilibrium studies on removal of Cr (VI) from aqueous solutions using different low-cost adsorbents. Chem. eng. j. 137 529-41.

[79] Mohan D and Pittman Jr CU 2006 Activated carbons and low cost adsorbents for remediation of tri-and hexavalent chromium from water. J. of hazardous materials. 137 762-11.

[80] Merabet S, Boukhalfa C, Chellat S and Boulift A 2016 Characterization of chromium (III)
removal from water by river bed sediments: Kinetic and Equilibrium studies. J. Mater. Environ. Sci. 7 1624-632.

[81] Pam AA, Adu U, Onakpa S and Muhammad A 2014 Thermodynamic study of the competitive adsorption of chromium (III) ions and halides onto sweet orange (citrus sinensis) peels as adsorbent. J. Environ. Anal. Chem.;1 114.

[82] Arslan Y, Kendüzler E, Kabak B, Demir K and Tomul F 2017 Determination of Adsorption Characteristics of Orange Peel Activated with Potassium Carbonate for Chromium (III) Removal. J. of the Turkish Chem. Society, Section A: Chemistry. 4 51-64.

[83] Wu Y, Zhang S, Guo X and Huang H 2008 Adsorption of chromium (III) on lignin. Bioresource techn. 99 7709-715.

[84] Liu M, Zhang H, Zhang X, Deng Y, Liu W and Zhan H 2001 Removal and recovery of chromium (III) from aqueous solutions by a spheroidal cellulose adsorbent. Water environ.. res. 73 322-28.

[85] Hatano T and Tsuruta T 2017 Removal and recovery of chromium (III) from aqueous chromium (III) using Arthrobacter nicotianae cells. Advances in Microbiology. 7 487-97.

[86] Murugesan A, Vidhyadevi T, Kirupha SD, Ravikumar L and Sivanesan S 2013 Removal of chromium (VI) from aqueous solution using chemically modified corncob-activated carbon: Equilibrium and kinetic studies. Environ. Progress & Sustainable Energy. 32 673-80.

[87] Kim Y and Roh Y 2019 Environmental Application of Biogenic Magnetite Nanoparticles to Remediate Chromium (III/VI)-Contaminated Water. Minerals. 9 260.

[88] Santos VC, Salvado AD, Dragunski DC, Peraro DN, Tarley CR and Caetano J 2012 Highly improved chromium (III) uptake capacity in modified sugarcane bagasse using different chemical treatments. Quimica Nova. 35 1606-611.

[89] Alemu A, Lemma B and Gabbiye N 2019 Adsorption of chromium (III) from aqueous solution using vesicular basalt rock. Cogent Environ. Sci. 5 1650416.

[90] Chen YG, He Y, Ye WM, Lin CH, Zhang XF and Ye B 2012 Removal of chromium (III) from aqueous solutions by adsorption on bentonite from Gaomiaozi, China. Environ.earth sci. 67 1261-268.

[91] Kanwal F, Rehman R, Mahmud T, Anwar J and Ilyas R 2012 Isothermal and thermodynamical modeling of chromium (III) adsorption by composites of polyaniline with rice husk and saw dust. J. of the Chilean Chem. Society. 57 1058-063.

[92] Mohadi R, Hidayati N and Lesbani A 2014 Adsorption Desorption of Chromium (III) Ion on Cellulose from Wood Powder. Int. J. of Sci. and Eng. 7 77-80.

[93] Heydari S, Sharififard H, Nabavinia M, Kiani H and Parvizi M 2013 Adsorption of chromium ions from aqueous solution by carbon adsorbent. Int. J. of Environ. and Ecological Eng. 7 913-16.

[94] Adewoye LT, Mustapha SI, Adeniyi AG, Tijani JO, Amoloye MA and Ayinde LJ 2017 Optimization of nickel (II) and chromium (III) removal from contaminated water using Sorghum bicolor. Nigerian J. of Techn. 36 960-72.

[95] Wang XS, Tang YP and Tao SR 2009 Kinetics, equilibrium and thermodynamic study on removal of Cr (VI) from aqueous solutions using low-cost adsorbent Alligator weed. Chem. Eng. J. 148 217-25.

[96] Sharawy H, Ossman ME and Mansour MS 2013 Kinetics modeling and Adsorption isotherm studies for Cr (III) removal using Boehmite Nano-powder. Int. J. of Chem. and Biochem. Sci. 3 9-18.

[97] Pamukoglu MY and Karabuga MC 2018 Removal of Cr (III) ions from wastewater by using ligand adsorption. Environ. Eng. Sci. 35 703-09.

[98] Zhong L, Yang J, Liu L and Xing B 2015 Oxidation of Cr (III) on birnessite surfaces: The effect of goethite and kaolinite. J. of environ. sci. 37 8-14.

[99] Gode F and Pehlivan E 2006 Removal of chromium (III) from aqueous solutions using Lewatit S 100: the effect of pH, time, metal concentration and temperature. J. of hazardous
[100] Alatabe MJ and Hussein A.A 2017 Isotherm and Kinetics studies, Adsorption of Chromium (III) Ions from Wastewater Using Cane Papyrus. Themed Section: Eng. and Techn. 3 2394

[101] Oo CW and Jain K 2007 Chromium (III) adsorption from aqueous solution by Rhizophora apiculata tannins. Indonesian J. of Chem. 7 180-84.

[102] Olayinka OK, Oyedele OA and Oyeyiola A 2009 Removal of chromium and nickel ions from aqueous solution by adsorption on modified coconut husk. African J. of Environ. Sci. and Techn. 3 294-300.

[103] Dizadji N and Anaraki NA 2011 Adsorption of chromium and copper in aqueous solutions using tea residue. Int. J. of Environ. Sci. & Techn. 8 631-38.

[104] Nur-E-Alam M, Mia MA, Ahmad F and Rahman MM 2018 Adsorption of chromium (Cr) from tannery wastewater using low-cost spent tea leaves adsorbent. Applied Water Sci. 8 129.

[105] Altun T and Pehlivani E 2012 Removal of Cr (VI) from aqueous solutions by modified walnut shells. Food Chemistry. 132 693-700.

[106] Pehlivani E and Altun T 2008 Biosorption of chromium (VI) ion from aqueous solutions using walnut, hazelnut and almond shell. J. of hazardous materials. 155 378-84.

[107] Qaiser S, Saleemi AR and Umar M 2009 Biosorption of lead (II) and chromium (VI) on groundnut hull: Equilibrium, kinetics and thermodynamics study. Electronic j. of Biotechnology. 12 3-4.

[108] Nameni M, Moghadam MA and Arami M 2008 Adsorption of hexavalent chromium from aqueous solutions by wheat bran. Int. J. of Environ. Sci. & Techn. 5 161-68.

[109] Shouman MA, Fathy NA, Khedr SA and Attia AA 2013 Comparative biosorption studies of hexavalent chromium ion onto raw and modified palm branches. Adv. in Phys. Chem. 2013 159712

[110] Vieira MG, de Almeida Neto AF, Silva MG, Nóbrega CC and Melo Filho AA 2012 Characterization and use of in natura and calcined rice husks for biosorption of heavy metals ions from aqueous effluents. Brazilian J. of Chem. Eng. 29 619-34.

[111] Lilli MA, Syranidou E, Palliou A, Nikolaidis NP, Karatzas G and Kalogerakis N 2017 Assessing the impact of geogenic chromium uptake by carrots (Daucus carota) grown in Asopos river basin. Environ. Res. 152 96-101.

[112] Singh KK, Rastogi R and Hasan SH 2005 Removal of Cr (VI) from wastewater using rice bran. J. of Colloid and Interface Sci. 290 61-68.

[113] Daneshvar N, Salari D and Aber S 2002 Chromium adsorption and Cr (VI) reduction to trivalent chromium in aqueous solutions by soya cake. J. of Hazardous Materials. 94 49-61.

[114] Agarwal GS, Bhuptawat HK and Chaudhari S 2006 Biosorption of aqueous chromium (VI) by Tamarindus indica seeds. Bioresource Techn. 97 949-56.

[115] Verma A, Chakraborty S and Basu JK 2006 Adsorption study of hexavalent chromium using tamarind hull-based adsorbents. Separation& Purification Techn. 50 336-41.

[116] Suksabye P, Thiravetyan P, Nakbanpote W and Chayabutra S 2007 Chromium removal from electroplating wastewater by coir pith. J. of Hazardous Materials. 141 637-44.

[117] Gode F, Atalay ED and Pehlivani E 2008 Removal of Cr (VI) from aqueous solutions using modified red pine sawdust. J. of Hazardous Materials. 152 1201-07.

[118] Altundogan HS 2005 Cr (VI) removal from aqueous solution by iron (III) hydroxide-loaded sugar beet pulp. Process Biochem. 40 1443-52.

[119] Bayramoğlu G, Çelik G, Yalçın E, Yılmaz M and Arıca MY 2005 Modification of surface properties of Lentinus sajor-caju mycelia by physical and chemical methods: evaluation of their Cr6+ removal efficiencies from aqueous medium. J. of hazardous materials. 119 219-229.

[120] Fahim NF, Barsoum BN, Eid AE and Khalil MS 2006 Removal of chromium (III) from tannery wastewater using activated carbon from sugar industrial waste. J. of Hazardous
[121] Nethaji S and Sivasamy A 2014 Removal of hexavalent chromium from aqueous solution using activated carbon prepared from walnut shell biomass through alkali impregnation processes. Clean Technologies and Environ. Policy. 16 361-68.

[122] Demirbas E, Kobya M, Senturk E and Ozkan T 2004 Adsorption kinetics for the removal of chromium (VI) from aqueous solutions on the activated carbons prepared from agricultural wastes. Water Sa. 30 533-39.

[123] Dula T, Siraj K and Kitte SA 2014 Adsorption of hexavalent chromium from aqueous solution using chemically activated carbon prepared from locally available waste of bamboo(Oxytenanthera abyssinica). ISRN Environ.Chem. 2014 438245.

[124] Kobya M 2004 Adsorption, kinetic and equilibrium studies of Cr (VI) by hazelnut shell activated carbon. Adsorption Sci. & Techn. 22 51-64.

[125] Arivoli S, Hema M, Karuppaiah M and Saravanan S 2008 Adsorption of chromium ion by acid activated low cost carbon-kinetic, mechanistic, thermodynamic and equilibrium studies. J. of chem. 5 820-31.

[126] Yavuz R, Orbak I and Karatepe N 2006 Factors affecting the adsorption of chromium (VI) on activated carbon. J. of Environ. Sci. and Health Part A. 41 1967-80.

[127] Gottipati R 2012 Preparation and characterization of microporous activated carbon from biomass and its application in the removal of chromium (VI) from aqueous phase[dissertation]. Rourkela, Odisha: National Institute of Technology.

[128] Mohan D, Singh KP and Singh VK 2006 Trivalent chromium removal from wastewater using low cost activated carbon derived from agricultural waste material and activated carbon fabric cloth. J. of hazardous materials. 135 280-95.

[129] Abdulla FH 2014 Removal of Chromium (III) Ions from its Aqueous Solution on Adsorbent Surfaces: Charcoal, Attapulgite and Date Palm Leaflet Powder. Iraqi J. of Sci. 55 1415-430.

[130] Park D, Yun YS and Park JM 2006 Mechanisms of the removal of hexavalent chromium by biomaterials or biomaterial-based activated carbons. J. of hazardous materials. 137 1254-57.

[131] Dahbi S, Azzi M, Saib N, De la Guardia M, Faure R and Durand R 2002 Removal of trivalent chromium from tannery waste waters using bone charcoal. Analy. and bioanaly. chem. 374 540-46.

[132] Chakir A, Bessiere J, Kacemi KE and Marouf B 2002 A comparative study of the removal of trivalent chromium from aqueous solutions by bentonite and expanded perlite. J. of hazardous materials. 95 29-46.

[133] Al-atabe MJ and Hussein AA 2018 Adsorption of Nickel Ions From Aqueous Solution Using Natural Clay. Al-Nahrain J. for Eng. Sci. 21 223-29.

[134] Turan P, Doğan M and Alkan M 2007 Uptake of trivalent chromium ions from aqueous solutions using kaolinite. J. of Hazardous materials. 148 56-63.

[135] Rathnayake SI, Martens WN, Xi Y, Frost RL and Ayoko GA 2017 Remediation of Cr (VI) by inorganic-organic clay. J. of colloid and interface sci. 490 163-173.

[136] Akhtar N, Iqbal M, Zafar SI and Iqbal J 2008 Biosorption characteristics of unicellular green alga Chlorella sorokiniana immobilized in loofa sponge for removal of Cr (III). J. of Environ. Sci. 20 231-39.

[137] Sumathi KM, Mahimairaja S and Naidu R 2005 Use of low-cost biological wastes and vermiculite for removal of chromium from tannery effluent. Bioresource Techn. 96 309-16.

[138] Park D, Yun YS, Jo JH and Park JM 2005 Mechanism of hexavalent chromium removal by dead fungal biomass of Aspergillus niger. Water Res. 39 533-40.

[139] Garg UK, Kaur MP, Garg VK and Sud D 2007 Removal of hexavalent chromium from aqueous solution by agricultural waste biomass. J.of Hazardous materials. 140 60-68.

[140] Kalabegishvili TL, Tsibakashvili NY and Holman HY 2003 Electron spin resonance study of chromium (V) formation and decomposition by basalt-inhabiting bacteria. Environ. sci. & techn. 37 4678-684.
[141] Loukidou MX, Zouboulis AI, Karapantsios TD and Matis KA 2004 Equilibrium and kinetic modeling of chromium (VI) biosorption by Aeromonas caviae. Colloids and Surfaces A: Physicochemical and Eng. Aspects. 242 93-104.

[142] Asatiani NV, Abuladze MK, Kartvelishvili TM, Bakradze NG and Sapojnikova NA 2004 Tsibakashvili NY, Tabatadze LV, Lejava LV, Anashvili LL, Holman HY. Effect of chromium (VI) action on Arthrobacter oxydans. Current Microbiology. 49 321-26.

[143] Park D, Yun YS and Park JM 2004 Reduction of hexavalent chromium with the brown seaweed Ecklonia biomass. Environ. sci. & techn. 38 4860-864.

[144] Park D, Yun YS, Kim JY and Park JM 2008 How to study Cr (VI) biosorption: Use of fermentation waste for detoxifying Cr (VI) in aqueous solution. Chem. Eng. J. 136 173-79.

[145] Murphy V, Hughes H nd McLoughlin P 2008 Comparative study of chromium biosorption by red, green and brown seaweed biomass. Chemosphere. 70 1128-134.

[146] Silva BA, Figueiredo H, Neves IC and Tavares MT 2009 The role of pH on Cr (VI) reduction and removal by Arthrobacter viscous. Int. J. of Chem. and Biolog. Eng. 2 100

[147] Sharma P, Kumari P, Srivastava MM and Srivastava S 2007 Ternary biosorption studies of Cd (II), Cr (III) and Ni (II) on shelled Moringa oleifera seeds. Bioresource Techn. 98 474-77.

[148] Gupta VK and Ali I 2004 Removal of lead and chromium from wastewater using bagasse fly ash—a sugar industry waste. J. of colloid and interface sci. 271 321-28.

[149] Malkoc E and Nuhoglu Y 2007 Potential of tea factory waste for chromium (VI) removal from aqueous solutions: Thermodynamic and kinetic studies. Separation and purification techn. 54 291-98.

[150] Malkoc E, Nuhoglu Y and Dundar M 2006 Adsorption of chromium (VI) on pomace—an olive oil industry waste: batch and column studies. J.of Hazardous Materials. 138 142-51.

[151] Garg UK, Kaur MP, Sud D and Garg VK 2009 Removal of hexavalent chromium from aqueous solution by adsorption on treated sugarcane bagasse using response surface methodological approach. Desalination. 249 475-79.

[152] Kammani P, Aravind J and Preston D 2012 Remediation of chromium contaminants using bacteria. Int. J. of Environl Sci. and Techno. 9 183-93.

[153] Arica MY and Bayramoğlu G 2005 Cr (VI) biosorption from aqueous solutions using free and immobilized biomass of Lentinus sapor-caju: preparation and kinetic characterization. Colloids and Surfaces A: Physicochem. and Eng. Aspects. 253 203-11.

[154] Ghazy SE, El-Asmy AA and El-Nokrashy AM 2008 Separation of chromium (III) and chromium (VI) from environmental water samples using eggshell sorbent. Indian J. of Sci. and Techn. 1 1-7.

[155] Yun YS, Park D, Park JM and Volesky B 2001 Biosorption of trivalent chromium on the brown seaweed biomass. Environ. sci. & techn. 35 4353-358.

[156] Granados-Correa F and Jiménez-Becerril J 2009 Chromium (VI) adsorption on boehmite. J. of hazardous materials. 162 1178-184.

[157] Tytlak A, Olesczuk P and Dobrowolski R 2015 Sorption and desorption of Cr (VI) ions from water by biochars in different environmental conditions. Environ. Sci. and Poll. Res. 22 5985-994.

[158] Romero-González J, Gardea-Torresdey JL, Peralta-Videa JR and Rodríguez E 2005 Determination of equilibrium and kinetic parameters of the adsorption of Cr (III) and Cr (VI) from aqueous solutions to Agave Lechuguilla biomass. Bioinorganic chem. and applic. 3 55

[159] Hu J, Wang SW, Shao DD, Dong YH, Li JX and Wang XK 2009 Adsorption and reduction of chromium (VI) from aqueous solution by multiwalled carbon nanotubes. The Open Environ Poll. & Toxicology J. 1 66-73.

[160] Asgari G, Rahmani AR, Faradmal J and SEID MA 2012 Kinetic and isotherm of hexavalent chromium adsorption onto nano hydroxyapatite. 12 45–53.

[161] Rosales-Landeros C, Barrera-Díaz CE, Bilyeu B, Guerrero VV and Ure F 2013 A review on Cr (VI) adsorption using inorganic materials. 4 8–16.
[162] Chen YE, Mao HT, Ma J, Wu N, Zhang CM, Su YQ, Zhang ZW, Yuan M, Zhang HY, Zeng XY and Yuan S 2018 Biomonitoring chromium III or VI soluble pollution by moss chlorophyll fluorescence. Chemosphere. 194 220-28.

[163] Ražič S and Dogo S. 2010 Determination of chromium in Mentha piperita L. and soil by graphite furnace atomic absorption spectrometry after sequential extraction and microwave-assisted acid digestion to assess potential bioavailability. Chemosphere. 78 451-56.

[164] Park D, Lim SR, Yun YS and Park JM 2007 Reliable evidences that the removal mechanism of hexavalent chromium by natural biomaterials is adsorption-coupled reduction. Chemosphere. 70 298-305.

[165] Sarin V and Pant K 2006 Removal of chromium from industrial waste by using eucalyptus bark. Bioresource techn. 97 15-20.

[166] World Health Organisation (WHO) 2004 World Health Organisation Staff. Guidelines for drinking-water quality. Wor. Health Organization.

[167] Zhitkovich A 2011 Chromium in drinking water: sources, metabolism, and cancer risks. Chem. res. in toxicology. 24 1617-629.

[168] jaafar Al-atabi M 2018 A Novel Approach for Adsorption of Copper (II) Ions from Wastewater Using Cane Papyrus. Int. J. of Integrated Eng. 10 96-102.

[169] Levina A, Codd R, Dillon CT and Lay PA 2003 Chromium in biology: toxicology and nutritional aspects. Progress in inorganic chem. 51 145-250.

[170] Sun H , Kang W , Liang S , Ha J and Shen S 2003 Determination of chromium(III) and total chromium in water by derivative atomic absorption spectrometry using flow injection on-line preconcentration with a double microcolumn. Analytical sciences. 19 589-92.

[171] Council N R, National Academy of Sciences, Drinking Water and Health, 1982 National Academy Press, Washington, DC, 4 https://doi.org/10.17226/325.

[172] Losi ME, Amrhein C and Frankenberger WT 1994 Environmental biochemistry of chromium. InReviews of environ contamination and toxicology. 91-121.

[173] Handa BK 1988 Occurrence and distribution of chromium in natural waters of India. Adv. in environ. sci. and techn. 20 189-214.

[174] Choppala G, Bolan N and Park JH 2013 Chromium contamination and its risk management in complex environmental settings. InAdvances in agronomy. 120 129-172.

[175] Al-Zboon K, Al-Smadi B, Al-Harabsheh M and Al-Khawaldh S 2019 Adsorption Modeling of Cr on Volcanic Tuff-Based Geopolymer. JJEES. 10 35-45.

[176] Thorne MC, Jackson D and Smith AD 1986 Pharmacodynamic models of selected toxic chemicals in man. Mtp Press.

[177] Ivankovic S and Preussmann R 1975 Absence of toxic and carcinogenic effects after administration of high doses of chromic oxide pigment in subacute and long-term feeding experiments in rats. Food Cosme.Toxicol. 13 347-51.

[178] Wang ZX, Chen JQ, Chai LY, Yang ZH, Huang SH and Zheng Y 2011 Environmental impact and site-specific human health risks of chromium in the vicinity of a ferro-alloy manufactory, China. J. of hazardous materials. 190 980-85.

[179] Kornhauser C, Wrobel K, Wrobel K, MALACARA JM, NAVA LE, GÓMEZ L and GONZÁLEZ R 2002 Possible adverse effect of chromium in occupational exposure of tannery workers. Indu.1 Health. 40 207-13.

[180] Mohanty M and Patra HK 2011 Attenuation of chromium toxicity by bioremediation technology. InReviews of Environ Contamination and Toxicology. 210 1-34.

[181] Chen CP, Lee DY, Juang KW and Lin TH 2008 Phytotoxicity of soil trivalent chromium to wheat seedlings evaluated by chelating resin extraction method. Soil sci. 173 638-48.

[182] Rafati L, Mahvi AH, Asgari AR and Hosseini SS 2010 Removal of chromium (VI) from aqueous solutions using Lewatit FO36 nano ion exchange resin. Int. J. of Environ. Sci. & Techn. 7 147-56.

[183] Malakootian M, Mansoorian HJ and Moosazadeh M 2010 Performance evaluation of
electrocoagulation process using iron-rod electrodes for removing hardness from drinking water. Desalination. 255 67-71.

[184] Alatabe M. J. A. 2018 Adsorption of copper (II) ions from aqueous solution onto activated carbon prepared from cane papyrus. Pollution. 4 649-62.

[185] Arivoli S, Hema M, Karuppaiah M and Saravanan S 2008 Adsorption of chromium ion by acid activated low cost carbon-kinetic, mechanistic, thermodynamic and equilibrium studies. J. of chem. 5 820-31.

[186] Malik DS, Jain CK and Yadav AK 2017 Removal of heavy metals from emerging cellulosic low-cost adsorbents: a review. Applied water sci. 7 2113-136.

[187] Doke KM and Khan EM 2017 Equilibrium, kinetic and diffusion mechanism of Cr (VI) adsorption onto activated carbon derived from wood apple shell. Arabian j. of chem. 10S 252

[188] Langmuir I 1916 The constitution and fundamental properties of solids and liquids. Part I. Solids. J. of the Amer. chem. society. 38 2221-295.

[189] Freundlich HM 1906 Over the adsorption in solution. J. Phys. Chem. 57 1100-107.

[190] Alatabe M. J. A. 2018 Crystallization in Phase Change Materials. Int. J. of Scientific Res. in Sci., Eng. and Techn. 4 93-99.

[191] Alatabe M. J. A. 2018 A Novel Approach for Adsorption of Lead (II) Ions from Wastewater Using Cane Papyrus. J. of Petroleum Res. & Studies. 18 29-42.

[192] Liu Y 2009 Is the free energy change of adsorption correctly calculated?. J. of Chem. & Eng. Data. 54 1981-985.

[193] Lagergren SK 1898 About the theory of so-called adsorption of soluble substances. Sven. Vetenskapskad. Handingarl. 24 1-39.

[194] Ho YS 2006 Review of second-order models for adsorption systems. J. of hazardous materials. 136 681-89.

[195] Henryk K, Jaroslav C and Witold Ž 2016 Peat and coconut fiber as biofilters for chromium adsorption from contaminated wastewaters. Environ. Sci. and Poll. Res. 23 527-34.

[196] Ziaqova M, Dimitriadis G, Aslanidou D, Papaioannou X, Tzannetaki EL and Liakopoulou-Kyriakides M 2007 Comparative study of Cd (II) and Cr (VI) biosorption on Staphylococcus xylous and Pseudomonas sp. in single and binary mixtures. Bioresource techn. 98 2859-865.

[197] Alatabe M. J. A. 2018 A Novel Approach for Adsorption of Copper (II) Ions from Wastewater Using Cane Papyrus. Int. J. of Integrated Eng. 10 96-102.

[198] Oze C, Bird DK and Fendorf S 2007 Genesis of hexavalent chromium from natural sources in soil and groundwater. Proceedings of the National Academy of Sci. 104 6544-549.

[199] H. J. Hadi, Al-zobai K. M. M. and Alatabe M. J. A. 2020 Oil Removal from Produce Wastewaters Using Imperata Cylindrica as Low- Cost Adsorption. Current Applied Science and Technology. 20 494-511.

[200] Rajapaksha AU, Vithanage M, Ok YS and Oze C 2013 Cr (VI) formation related to Cr (III)-muscovite and birnnessite interactions in ultramafic environments. Environ. sci. & techn. 47 9722-729.

[201] Dotaniya ML, Thakur JK, Meena VD, Jajoria DK and Rathor G 2014 Chromium pollution: a threat to environment-a review. Agricultural Reviews. 35 153-57.

Acknowledgment
The authors would like to thank Environmental Engineering Department, Mustansiriyah University (www.uomustansiriyah.edu.iq) Baghdad-Iraq for its support in the present work.