Compressed Sensing With Combinatorial Designs: Theory and Simulations

Darryn Bryant, Charles J. Colbourn, Daniel Horsley, and Padraig Ó Catháin

Abstract—We use deterministic and probabilistic methods to analyze the performance of compressed sensing matrices constructed from Hadamard matrices and pairwise balanced designs, previously introduced by a subset of the authors. In this paper, we obtain upper and lower bounds on the sparsity of signals for which our matrices guarantee recovery. These bounds are tight to within a multiplicative factor of at most $4\sqrt{2}$. We provide new theoretical results and detailed simulations, which indicate that the construction is competitive with Gaussian random matrices, and that recovery is tolerant to noise. A new recovery algorithm tailored to the construction is also given.

Index Terms—Compressed sensing, combinatorial designs, signal recovery.

I. OVERVIEW

In 2006 Candés et al. [1], [2] and Donoho [3] laid the foundations for a revolutionary new signal sampling paradigm, which is now called compressed sensing. Their key insight was that many real-world signals have the special property of being sparse — they can be stored much more concisely than a random signal. Instead of sampling the whole signal and then applying data compression algorithms, they showed that sampling and compression of sparse signals can be achieved simultaneously. This process requires dramatically fewer measurements than the number dictated by traditional thinking, but requires complex measurements that are ‘incoherent’ with respect to the signal.

Candès, Romberg and Tao established fundamental constraints for sparse recovery; one cannot hope to recover k-sparse signals of length N in less than $O(k \log N)$ measurements under any circumstances. They then established that several classes of random matrices meet this bound asymptotically. Two important examples are the random Gaussian ensemble, which has entries drawn from a standard normal distribution, and the random Fourier ensemble, which consists of a random selection of rows from the discrete Fourier transform matrix [1], [2].

In [4], a construction for compressed sensing matrices based on block designs and complex Hadamard matrices was introduced (see Construction 1 below). In this paper we give a thorough analysis of this construction. We establish bounds on the worst case performance, tight to within a multiplicative factor of $4\sqrt{2}$. We provide comprehensive simulations and a heuristic argument to suggest that the average case performance of our construction matches that of the best known constructions. The sparse nature of our matrices leads to substantial speed gains for signal recovery in comparison to Gaussian matrices. The main new contributions of this paper are the following.

1) Recall that a matrix has the (ℓ_1, t)-recovery property if every t-sparse vector m is uniquely recoverable from its image Φm by ℓ_1-minimisation. Theorem 10 of [4] establishes that an $n \times N$ matrix created via Construction 1 has the (ℓ_1, t)-recovery property for all values of $t \leq \sqrt{n}/4$, where n is the number of rows in the matrix. In Section III we use an uncertainty principle for Hadamard matrices to obtain a matching upper bound for recovery. We show that there exist vectors of sparsity at most $\sqrt{2n}$ which cannot be recovered.

2) In Section IV we give a non-rigorous analysis of Construction 1 which suggests that sufficiently large matrices created via the construction allow recovery of most vectors of sparsity $O(\sqrt{\log n})$.

3) In Section V we provide detailed simulations which suggest that the recovery performance of matrices obtained from Construction 1 is comparable to that of the Gaussian ensemble for matrices with hundreds of rows and thousands of columns. Simulations also suggest that signal recovery is robust against uniform and burst noise. Algorithm running times are better than for Gaussian matrices.

4) In Section VI we propose a new algorithm for signal recovery, tailored to Construction 1. We show that for most vectors of sparsity at most \sqrt{n}, this algorithm runs in time $O(n \log n)$.

A. Relation to Previous Work

Deterministic constructions have been sought for compressed sensing matrices since the pioneering work of

Manuscript received May 20, 2015; revised June 27, 2016; accepted March 25, 2017. Date of publication June 22, 2017; date of current version July 12, 2017. This work was supported by the Australian Research Council under Grant DP120103067.

D. Bryant is with the School of Mathematics and Physics, The University of Queensland, Brisbane, QLD 4072, Australia (e-mail: db@maths.uq.edu.au).

C. J. Colbourn is with the School of Computing, Informatics and Decision Systems Engineering, Arizona State University, Tempe, AZ 85287-8809 USA (e-mail: charles.colbourn@asu.edu).

D. Horsley is with the School of Mathematical Sciences, Monash University, Melbourne, VIC 3800, Australia (e-mail: daniel.horsley@monash.edu).

P. Ó Catháin is with the School of Mathematical Sciences, Worcester Polytechnic Institute, Worcester, MA 01609 USA (e-mail: pocathain@wpi.edu).

Communicated by Y. Ma, Associate Editor for Signal Processing.

Color versions of one or more of the figures in this paper are available online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIT.2017.2717584

0018-9448 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
Donoho [3], where low coherence was identified as a sufficient condition for good compressed sensing performance. The Welch bound was identified as the fundamental obstruction to this method.

Many authors have proposed constructions of compressed sensing matrices using combinatorial structures. Typically there are two ingredients: (i) a binary matrix coming from the incidence matrix of a design, code or other object; and (ii) a plug-in step involving near-orthogonal matrices. The first step was introduced in the very first deterministic constructions for compressed sensing matrices: De Vore showed that the incidence matrices of certain orthogonal arrays are near-optimal compressed sensing matrices [5]. The second step seems to have been first considered by Fickus, Mixon and Tremain in the context of equiangular tight frames. They substituted partial Hadamard matrices into the incidence matrices of Steiner systems [6].

Much further work has followed. Particularly notable is work of Li and Ge, who considered the transpose of the incidence matrix of a packing (generalising the Steiner systems of Fickus, Mixon and Tremain), [7]. They also observed that the condition on the plug-in matrices could be relaxed, and gave constructions for a number of systems of nearly-orthogonal matrices.

Another construction, recently proposed by Naidu, Jampana and Sastry uses a plug-in construction involving Hadamard matrices and transversal designs derived from sets of k mutually orthogonal Latin squares [9]. This construction involves the composition of multiple incidence matrices, leading to columns with different weights, which can be interpreted as blocks of differing sizes in the associated packing. To our knowledge, this idea was initially introduced in Construction 1 in [4]. Another recent note incorporating a plug-in construction for compressed sensing matrices is [10]. Their construction uses incidence matrices of bipartite graphs, though the conditions that they impose are precisely what is required for the resulting design to be a packing.

In fact, the constructions listed above can all be analysed in a manner similar to that of [4], which provides a very general framework for combinatorial constructions of this type. In particular, all matrices constructed in [6], [9], and [10] are special cases of Construction 1. The analysis in this paper makes detailed use of the structural properties of the underlying designs and Hadamard matrices to provide near-optimal guarantees on performance, as well as detailed simulations and heuristics describing average performance.

II. PRELIMINARIES

For our purposes, a Hadamard matrix of order r is an $r \times r$ matrix H such that each entry of H is a complex number with magnitude 1 and $HH^* = rI_r$ (where H^* is the conjugate transpose). The prototypical example of such a matrix is the character table of an abelian group; for a cyclic group this matrix is often referred to as a discrete Fourier transform matrix or simply a Fourier matrix. When we restrict the entries to real numbers, we state explicitly that the matrix is a real Hadamard matrix. For background on Hadamard matrices, we refer the reader to [11].

A pairwise balanced design (V, B) consists of a set V of points and a collection B of subsets of V, called blocks, such that each pair of points is contained in exactly one block. If $v = |V|$ and K is a finite set of integers such that $|B| \in K$ for each $B \in B$, we use the notation $PBD(v, K, \lambda)$. We denote the maximum element of K by K_{max} and the minimum element of K by K_{min}. For each point $x \in V$, the replication number r_x of x is defined by $r_x = |\{B \in B : x \in B\}|$. A set of points in a PBD is an arc if at most two of the points occur together in any block.

A $PBD(v, k, \lambda)$ is a balanced incomplete block design, denoted by $BIBD(v, k, \lambda)$. Obviously, all points of a $BIBD$ must have the same replication number. Important examples of pairwise balanced designs are Steiner triple systems and projective planes, see e.g. [12]. This paper is devoted to the study of matrices created via Construction 1, which generalises a construction from [6]. We refer the reader to [4] for a detailed discussion of the fundamental properties of these matrices, and for existence results.

Construction 1 [4]: Let (V, \mathcal{B}) be a $PBD(v, K, 1)$ with $n = |\mathcal{B}|$ and $N = \sum_{x \in V} r_x$. Then Φ is the $n \times N$ matrix constructed as follows.

- Let A be the transpose of the incidence matrix of (V, \mathcal{B});
- rows of A are indexed by blocks, columns of A by points, and the entry in row B and column x is 1 if $x \in B$ and 0 otherwise.
- For each $x \in V$, let H_x be a (possibly complex) Hadamard matrix of order r_x.
- For each $x \in V$, column x of A determines r_x columns of Φ; each zero in column x is replaced with the $1 \times r_x$ row vector $(0, 0, \ldots, 0)$, and each 1 in column x is replaced with a distinct row of $\frac{1}{\sqrt{r_x}}H_x$.

Remark 2: Suppose that an $n \times N$ matrix is created via Construction 1 using a $PBD(v, K, 1)$, \mathcal{D} with replication numbers r_1, \ldots, r_n and block sizes k_1, \ldots, k_n. We briefly discuss the behaviour of n and N in terms of the parameters of \mathcal{D} in the case where v is large and $K_{\text{min}} \sim K_{\text{max}}$, that is, there exists a constant α not depending on v such that $K_{\text{max}} \leq \alpha K_{\text{min}}$. Let $r = \frac{1}{\alpha}(r_1 + \cdots + r_n)$ and $k = \frac{1}{\alpha}(k_1 + \cdots + k_n)$ be the average replication number and average block size respectively. Obviously $K_{\text{min}}, K_{\text{max}} \sim k$, and standard counting arguments for block designs (see [12, Ch. II] for example) yield

$$n \approx r v = \alpha k n$$
$$k r \sim v$$
$$k^2 n \sim v^2$$

Combining (2) and (3), we see that $n \sim r^2$. It is known (see [13]) that any non-trivial PBD has at least as many blocks as points. So $n \geq v$, and hence k grows no faster than $O(\sqrt{v})$ by (3). Two extremes can be distinguished. When k is constant, $v \sim r \sim \sqrt{n}$ and $N \sim r^2 \sim n$ – this is the case considered in [4]. When $k \sim \sqrt{\alpha}, v \sim r^2 \sim n$ and $N \sim r^3 \sim n^2$ (this occurs when \mathcal{D} is a projective plane, for example). It is easy to see that the growth rates of v and N are bounded by these two extremes.
Except when \(n \in \{1, 2\} \), there do not exist real Hadamard matrices of order \(n \) for \(n \not\equiv 0 \pmod{4} \). If complex Hadamard matrices are employed in Construction 1, the resulting compressed sensing matrix also has complex entries. If real matrices are required for a particular application (for example, linear programming solvers generally require the ordered property of the real numbers), the isometry in Lemma 3 can be exploited. While this result is elementary and well known, we first became aware of its use in this context in [14].

Lemma 3: The map
\[
a + ib \mapsto \left(\begin{array}{cc} a & b \\ -b & a \end{array} \right)
\]
is an isometry from \(\mathbb{C} \) to \(\mathbb{M}_2(\mathbb{R}) \). It extends to an isometry from \(\mathbb{M}_{n,n}(\mathbb{C}) \) to \(\mathbb{M}_{2n,2n}(\mathbb{R}) \).

This technique allows a complex compressed sensing matrix to be converted into a real one, at the expense of doubling its dimensions. If a complex matrix recovers \(t \)-sparse vectors, so too does the corresponding real matrix. (But while a \(t \)-sparse complex vector is in general \(2t \)-sparse, we cannot, and do not claim to, recover arbitrary \(2t \)-sparse real vectors.) Where confusion may arise, we specify the field over which our matrix is defined as a subscript; thus if \(\Phi_\mathbb{C} \) is \(n \times N \), \(\Phi_\mathbb{R} \) is \(2n \times 2N \).

We require a result concerning the sparsity of linear combinations of rows of a complex Hadamard matrix, which is essentially an uncertainty principle bounding how well the standard normal basis can be approximated by the basis given by the (scaled) columns of a Hadamard matrix. In particular, if \(m \in \mathbb{C}^n \) admits an expression as a linear combination of \(u \) columns of a Hadamard matrix, and as a linear combination of \(d \) standard basis vectors, then \(du \geq n \).

Lemma 4 ([15], Lemma 2, cf. [16], Lemma 14.6): Let \(H \) be a complex Hadamard matrix of order \(n \). If \(m \) is a non-zero linear combination of at most \(u \) columns of \(H \), then \(m \) has at least \(\lceil \frac{u}{2} \rceil \) non-zero entries.

The bound in Lemma 4 is sharp. Let \(H \) be a Fourier matrix of order \(v \), and suppose that \(u \) divides \(v \). Then there exist \(u \) columns of \(H \) containing only \(u \)-th roots of unity and the sum of these columns vanishes on all but \(\frac{v}{2} \) coordinates. At the other extreme, a non-trivial linear combination of any \(u \) of the columns of a Fourier matrix of prime order vanishes on at most \(u - 1 \) coordinates.

III. Upper Bounds on Performance

The *spark* of a matrix \(\Phi \) is the smallest non-zero value of \(s \) such that there exists a vector \(m \) of sparsity \(s \) in the nullspace of \(\Phi \). In this section we provide upper and lower bounds on the spark of a matrix obtained from Construction 1.

The following well-known result bounds the \((\ell_1, t) \)-recoverability of a matrix in terms of its spark.

Proposition 5: If the spark of a matrix \(\Phi \) is \(s \) and \(\Phi \) has \((\ell_1, t) \)-recoverability, then \(t < \frac{s}{2} \).

Proof: Let \(\Phi \) be a matrix with spark \(s \) and \(m \) be an element of sparsity \(s \) in the nullspace of \(\Phi \). Write \(m = m_1 + m_2 \) where \(m_1 \) has sparsity \(\lceil \frac{s}{2} \rceil \) and \(m_2 \) has sparsity \(\lceil \frac{s}{2} \rceil \). Then
\[
\Phi m_1 + \Phi m_2 = 0.
\]

So \(\Phi(m_2) = \Phi(-m_1) \), and one of \(-m_1\) or \(m_2 \) is not recoverable. Thus \(\Phi \) does not have \((\ell_1, [\frac{s}{2}]) \)-recoverability and the result follows. \(\square \)

We can now provide upper and lower bounds on the spark of \(\Phi \).

Proposition 6: Let \(D \) be a PBD\((v, K, 1)\) whose smallest replication number is \(r_1 \) and let \(\Phi \) be a matrix obtained from Construction 1 using \(D \). Then the spark \(s \) of \(\Phi \) satisfies \(r_1 \leq s \).

Proof: Suppose that \(m \) is in the nullspace of \(\Phi \). For each \(i \in \{1, \ldots, v\} \), let \(m_i \) be the vector which is equal to \(m \) on those coordinates corresponding to point \(i \) of \(D \) and has each other coordinate equal to 0. Let \(T = \{ i : \text{supp}(m_i) \neq \emptyset \} \), and \(t = |T| \). Now, \(\sum_{i \in T} \Phi m_i = \Phi m = 0 \) and, because any two points of \(D \) occur together in exactly one block, \(|\text{supp}(\Phi m_i) \cap \text{supp}(\Phi m_j)| \leq 1 \) for any distinct \(i, j \in T \). Thus it must be that \(|\text{supp}(\Phi m_i)| \leq t - 1 \) for each \(i \in T \). By Lemma 4, this implies that \(|\text{supp}(m_i)| \geq \frac{r_1}{t} \) for each \(i \in T \). So, because \(r_1 \geq r_1 \) for each \(i \in T \), we have that \(|\text{supp}(m)| = \sum_{i \in T} |\text{supp}(m_i)| \geq \frac{r_1}{t} \geq r_1 \).

Proposition 7: Let \(D \) be a PBD\((v, K, 1)\) whose two smallest replication numbers are \(r_1 \) and \(r_2 \) (possibly \(r_1 = r_2 \)) and let \(\Phi \) be a matrix obtained from Construction 1 using \(D \). Then the spark \(s \) of \(\Phi \) satisfies \(s \leq r_1 + r_2 \).

Proof: Let \(p_1 \) and \(p_2 \) be points of \(D \) with replication numbers \(r_1 \) and \(r_2 \) respectively, and let \(\Phi_1 \) and \(\Phi_2 \) be the submatrices of \(\Phi \) consisting of the columns corresponding to \(p_1 \) and \(p_2 \) respectively. We establish the result by showing that the columns of the block matrix \([\Phi_1 \Phi_2] \) are linearly dependent.

There is a unique row \(\rho \) of the matrix \([\Phi_1 \Phi_2] \) that contains no zero entries (corresponding to the unique block that contains \(p_1 \) and \(p_2 \)). For \(i \in \{1, 2\} \), let \(\Phi_i' \) be the matrix obtained by scaling the columns of \(\Phi_i \) so that all entries in \(\rho \) have the value \(\frac{1}{r_i} \) if \(i = 1 \) and \(-\frac{1}{r_i} \) if \(i = 2 \). For \(i \in \{1, 2\} \), because the rows of \(\Phi_i \) are pairwise orthogonal, the rows of \(\Phi_i' \) are too. In particular, row \(t \) of \(\Phi_1 \) is orthogonal to each other non-zero row of \(\Phi_1 \) and thus the sum of any row of \(\Phi_i' \) other than row \(t \) is zero. Clearly, the sum of row \(\rho \) of \(\Phi_1 \) is 1 and the sum of row \(\rho \) of \(\Phi_2 \) is \(-1 \). Thus the columns of \([\Phi_1' \Phi_2'] \) add up to the zero vector.

The bound of Proposition 7 is sharp. Let \(D \) be a PBD\((v, K, 1)\) with every replication number prime, and let \(\Phi \) be a matrix obtained from Construction 1 taking \(\{V, E\} \) to be \(D \) and \(H_x \) to be a Fourier matrix of order \(r_x \) for each \(x \in V \). Using the fact that a non-trivial linear combination of \(u \) columns of a prime order Fourier matrix vanishes on at most \(u - 1 \) coordinates, it can be shown that the spark of \(\Phi \) is exactly \(r_1 + r_2 \). We say that a Hadamard matrix is *optimal* if no linear combination of \(k \) rows has more than \(k \) zero entries. By this criterion the Fourier matrices of prime order are optimal. The next remark shows that, in general, the spark of \(\Phi \) depends both on the choices of the design and the Hadamard matrices used in Construction 1.

Remark 8: Let \(D \) be a PBD\((v, K, 1)\) with every replication number equal to some \(r \equiv 0 \pmod{4} \), and let \(\Phi \) be a matrix obtained from Construction 1 taking \(\{V, E\} \) to be \(D \) and \(H_x \) to be a real Hadamard matrix of order \(r \) for each \(x \in V \). Denote by \(1 \) a vector of 1s of length \(\frac{n}{2} \). Consider the submatrix \(\Phi' \) of
The vector $m = (0, 1, 0, -1, 0, 1)^T$ is in the nullspace of Φ'. This is easily verified for the displayed rows, and follows for the remaining rows from the orthogonality of Hadamard matrices (the vector m is a linear combination of the displayed rows of the Hadamard matrix when restricted to any set of columns corresponding to a point). It follows that the nullspace of Φ contains elements of sparsity $\frac{\sqrt{n}}{2}$.

Real Hadamard matrices are never optimal, by Remark 8. The obvious questions here concern the existence of optimal or near optimal complex Hadamard matrices; some discussion is contained in [15].

Now we combine our results so far to determine an upper bound for the (t_1, t)-recoverability of Φ. Recall that MIP-based results are sufficient conditions for (t_1, t)-recoverability, but are not necessary in general. Thus, while the Welch bound forms a fundamental obstacle to using MIP to prove that vectors of sparsity exceeding $\frac{\sqrt{n}}{2}$ sampled by an $n \times N$ matrix can be recovered, it does not guarantee that such vectors cannot be recovered. We show that there exist vectors of sparsity at most $\sqrt{2n}$ which cannot be recovered by matrices obtained via Construction 1.

Proposition 9: Let D be a PBD($v, K, 1$) such that $K_{\text{max}} \leq \sqrt{2}(K_{\text{min}} - 1)$ and the two smallest replication numbers of D are r_1 and r_2 (possibly $r_1 = r_2$). Let Φ be an $n \times N$ matrix obtained from Construction 1 using D. If Φ has (t_1, t)-recoverability, then $t < \sqrt{2n}$.

Proof: By Proposition 7, the spark s of Φ is at most $r_1 + r_2$. The replication number of any point is at most $s = \frac{n - 1}{K_{\text{min}} - 1}$, so

$$s \leq \frac{2(v - 1)}{K_{\text{min}} - 1}.$$

Because n is the number of blocks in D and $K_{\text{max}} \leq \sqrt{2}(K_{\text{min}} - 1)$, we have

$$n \geq \frac{v(v - 1)}{K_{\text{max}}(K_{\text{min}} - 1)} > \frac{(v - 1)^2}{K_{\text{max}}} \geq \frac{(v - 1)^2}{2(K_{\text{min}} - 1)^2} \geq \frac{s^2}{8},$$

and thus $s < 2\sqrt{2n}$. The result now follows by Proposition 5. \square

Combining Proposition 9 with [4, Th. 10] we can specify the (t_1, t)-recoverability of a matrix obtained from Construction 1 to within a multiplicative factor of $\sqrt{2}$.

Theorem 10: Let D be a PBD($v, K, 1$) such that $K_{\text{max}} \leq \sqrt{2}(K_{\text{min}} - 1)$ and the two smallest replication numbers of D are r_1 and r_2 (possibly $r_1 = r_2$). Let Φ be an $n \times N$ matrix obtained from Construction 1 using D and let t^* be the greatest integer t such that Φ has (t_1, t)-recoverability. Then $t^* = \frac{c\sqrt{n}}{1 + \sqrt{2}}$ for some c in the real interval $[\frac{1}{2}, \sqrt{2}]$.

A matter of practical concern is whether, despite the presence of vectors of a certain sparsity that cannot be recovered, one can nonetheless recover many vectors of larger sparsity. We consider a sample computation.

Example 11: An arc of maximal size in PG(2, q) is called an oval. When q is odd, a celebrated result of Segre shows that an oval is the set of points on a conic and has size $q + 1$ (see [17, Ch. 8]). A convenient construction for ovals is as the negation of a Singer set ([12, Proposition VII.5.12]). The projective plane PG(2, 7) corresponds to a BIBD(57, 8, 1). Remove eight points of an oval to produce a PBD(49, {6, 7, 8}, 1). Apply Construction 1 with (V, B) as the PBD using Fourier matrices of order 8, to create a 57 × 392 matrix Φ_C. Apply Lemma 3 to create a 114 × 784 matrix Φ_{GR}. The spark of Φ_C is at most 16 by Proposition 7. So, by Proposition 5, there exist 8-sparse vectors that cannot be recovered by Φ_C -- this is in agreement with the bounds $1 \leq t \leq 10$ obtained from Theorem 10 (with $n = 57$).

Figure 1 shows the number of successful recoveries of vectors of sparsity t sampled by Φ_{GR} out of 1,000 attempted recoveries using an OMP algorithm [18] for each $t \in \{1, 2, \ldots, 50\}$. (See Section V for details of all simulations.)

Example 11 suggests that although there are vectors of sparsity less than $\sqrt{2n}$ which cannot be recovered by an $n \times N$ matrix Φ obtained from Construction 1, such vectors are rare. In fact, the typical performance of Φ is much better. In the next section we explore heuristic arguments for why this should be so.

IV. HEURISTIC ARGUMENTS FOR SMALL SPARSITIES

Throughout this section we suppose that Φ is an $n \times N$ matrix obtained from Construction 1 using a PBD D with all replication numbers equal to r. As in Example 11, simulations suggest that although there are vectors of sparsity $2r$ in the nullspace of Φ, and hence there exist vectors of sparsity r which cannot be recovered, such vectors are rare. In this section, we give a heuristic justification, inspired by techniques from random matrix theory. The exposition in [19] is relevant here.

A. Random Matrix Theory

Let M be an $n \times n$ Hermitian matrix. Then the eigenvalues $\lambda_1(M) \geq \cdots \geq \lambda_n(M)$ of M are real and the function $L_M(a) = \frac{1}{2}\left|\{i : \lambda_i(M) \leq a\sqrt{n}\}\right|$ defines the density function of a (discrete) probability distribution on \mathbb{R}.

One of the central problems of random matrix theory is to describe the function L_M when M is drawn from some specific class of matrices. The fundamental result, due to Wigner, concerns real symmetric $n \times n$ matrices with all
lower triangular entries drawn independently from a Gaussian (0, 1)-distribution. His main result was that as \(n \to \infty \), \(L_M \) converges to the semi-circle distribution:

\[
L(s) = \frac{1}{2\pi} \int_{-1}^{1} \sqrt{1-s^2} \, ds.
\]

Wigner originally demonstrated pointwise convergence and later contributors obtained stronger results, weakening assumptions on the probability distribution of the entries of \(M \) and establishing convergence of measure. We require only one of the bounds on the eigenvalues of \(M \), though there is ample scope for further application of random matrix theory to the analysis of deterministic matrix constructions. The operator norm of a Hermitian matrix \(M \), denoted \(\|M\|_{op} \), is the maximum absolute value of an eigenvalue of \(M \). Following \cite{19} we will say that an event \(E \) depending on a parameter \(t \) occurs with high probability if \(\mathbb{P}(E) > 1 - o(1) \) and with overwhelming probability if, for every fixed \(A > 0 \), \(\mathbb{P}(E) > 1 - C_A t^{-A} \) for some \(C_A \) not depending on \(t \).

Lemma 12 (\cite{19}, Corollary 2.3.6): Let \(M = (m_{ij}) \) be a random \(2t \times 2t \) Hermitian matrix such that the entries \(m_{ij} \) for \(1 \leq i \leq j \leq 2t \) are jointly independent with mean 0 and magnitude uniformly bounded by 1. Then there exist absolute constants \(C, c > 0 \) such that for any real number \(A \geq C \),

\[
\mathbb{P} \left(\|M\|_{op} > A\sqrt{2t} \right) \leq C e^{-cAt}.
\]

In particular, for large \(t \), \(\|M\|_{op} = O(\sqrt{t}) \) with overwhelming probability.

B. RIP Bounds and Signal Recovery

We recall that \(\Phi \) has the restricted isometry property with constants \(t, \delta \), abbreviated RIP(\(t, \delta \)) if and only if for each \(t \)-sparse vector \(m \),

\[
(1-\delta)\|m\|_2^2 \leq \|\Phi m\|_2^2 \leq (1+\delta)\|m\|_2^2.
\]

This is equivalent to the statement that, for each set \(S \) of at most \(t \) columns of \(\Phi \), the eigenvalues of the matrix \(\Phi_S^*\Phi_S \) all lie in the interval \([1-\delta, 1+\delta]\), where \(\Phi_S \) is the submatrix of \(\Phi \) containing only the columns in \(S \).

RIP conditions have been used extensively to provide sufficient conditions for \((\ell_1, t)\)-recoverability \cite{1}, \cite{20}. For our purposes it is enough to note that if \(\Phi \) satisfies the RIP(2\(r \), \(\sqrt{2} - 1 \)), then \(\Phi \) has \((\ell_1, t)\)-recoverability. In the next subsection, we develop a simple model for signal recovery, which suggests that \(\Phi \) recovers vectors of sparsity \(O(\sqrt{\ln \log n}) \) with high probability.

C. A Heuristic Model

We begin by developing a model for signals \(m \) with the property that all non-zero coordinates occur in columns of \(\Phi \) corresponding to different points of the design \(D \). Recall that we are assuming that all points in \(D \) have equal replication number \(r \).

Let \(S \) be a set of \(2t \) columns of \(\Phi \), no pair corresponding to the same point, and denote by \(\Phi_S \) the submatrix of \(\Phi \) consisting of the columns in \(S \). With these assumptions, \(\Phi_S^*\Phi_S \) is of the form \(I + \Psi_S \) where \(\Psi_S \) is a Hermitian matrix with zero diagonal, and all off-diagonal entries of magnitude \(1/\sqrt{r} \). We lack information on the phase of the entries of \(\Psi_S \). Consider the space of matrices \(\Psi_S \) as \(S \) varies over all sets of \(2t \) columns of \(\Phi \) with no pair corresponding to the same point. Our heuristic is that a typical element of this space behaves as the matrix \(1/M \), where \(M \) is a \(2t \times 2t \) random Hermitian matrix with zero diagonal in which the strictly upper triangular entries have magnitude 1 and uniformly random phase.

Now, observe that the eigenvectors of \(I + \Psi_S \) are those of \(\Psi_S \). By Lemma 12, for large \(t \), \(\|\Psi_S\|_{op} = O(\sqrt{t}) \) with overwhelming probability. Thus, provided that \(t = o(r^2) \) as \(r \to \infty \), the eigenvalues of \(\Phi_S^*\Phi_S = I + \Psi_S \) are all arbitrarily close to 1 with overwhelming probability. In particular, our heuristic suggests that \(\Phi \) recovers any vector with the property that its support intersects each point of the design in at most one column with high probability.

Allowing \(d \) non-zero entries in \(S \) to be labelled by the same point of \(D \) introduces \(2\binom{d}{2} \) off-diagonal zero entries in \(\Psi_S \). The eigenvectors of a matrix are continuous functions of the matrix entries (via the characteristic polynomial). So provided that the total number of zeroes introduced is not excessive, the analysis of the heuristic continues to hold. Thus, it seems reasonable to suppose that our heuristic is valid for signals of sparsity at most \(r \ln r \) with at most \(r \ln r \) non-zero coordinates corresponding to any point of the design. We call such signal vectors suitable.

What we have obtained so far is not a uniform recovery guarantee, however; it does not follow that \(\Phi \) recovers all suitable vectors with high probability. We need a slightly more careful analysis to obtain a uniform recovery guarantee. Taking \(t = r \ln r \) and \(A = \frac{1}{2}(2 - \sqrt{2})^{1/2}(\ln r)^{-1/2} \) in Lemma 12, we obtain

\[
\mathbb{P} \left(\|M\|_{op} > \sqrt{2} - 1 \right) \leq Ce^{-cr^3/2(\ln r)^{1/2}}
\]

for absolute constants \(C \) and \(c \). Now, the total number of subsets of size \(2r \ln r \) of a set of size \(N = \ln r = O(r^3) \) is bounded above by \(N^{2r \ln r} = O(e^{6r(\ln r)^2}) \). So, because \(r^3/2(\ln r)^{1/2} \) grows faster than \(6r(\ln r)^2 \), we have that \(\mathbb{P} \left(\|M\|_{op} > \sqrt{2} - 1 \right) = o(N^{-2r \ln r}) \). It follows by the union bound that for sufficiently large \(r \) the eigenvalues of \(\Phi_S \) all lie in the interval \([2 - \sqrt{2}, \sqrt{2}] \) with high probability. (Recall that \(r \) is the replication number of the design used in Construction \(I \) to obtain \(\Phi \) and that the order of \(M \) is a function of \(r \).)

Consequently, the heuristic suggests that there is a high probability that, for large \(r \), \(\Phi \) satisfies the RIP(\(2r \ln r, \sqrt{2} - 1 \)) on all suitable sets of columns, and so all suitable vectors are recoverable. By Proposition \(9 \) and Lemma \(5 \) we know that there exist vectors of sparsity \(r \) that are not recoverable, but these are far from suitable.

This analysis suggests that for large \(r \), \(\Phi \) recovers all suitable vectors of sparsity \(\sqrt{n \ln n} \) with high probability. This result is in excess of the square-root bound. The probability that \(\Phi \) fails to recover any particular random signal vector is exponentially small, being essentially the probability that many non-zero coordinates of the signal are concentrated in columns labelled by a small number of points.
V. SIMULATIONS

In this section we describe simulations using real-valued matrices and signal vectors. If Construction 1 yields a complex matrix, we apply Lemma 3 to obtain a real one. To illustrate the flexibility of Construction 1 we derive input PBDs from BIBDs in various ways.

Our matrices are stored as an array of real floating point numbers of some fixed accuracy \(l \). The entries typically consist of numbers of the form \(\cos(2\pi r/s) \) or \(\sin(2\pi r/s) \) where \(r \) is a replication number of the design used to create the matrix and \(s \in \{0,\ldots,r−1\} \). Our simulations are performed as follows.

- Vectors of sparsity \(t \) are constructed by choosing \(t \) coordinate positions uniformly at random, and populating these locations either with a value from a uniform distribution on \((0,1) \) (in \texttt{matlab}) or a uniform distribution on \(\{ i / 100 : 1 \leq i \leq 100 \} \) (in MAGMA) and then normalising. In all discussion of simulations, when we refer to a \(t \)-sparse vector we mean that it has exactly \(t \) non-zero coordinates.

- We invoke the standard implementation of one of the recovery algorithms from Section V-A to obtain a vector \(\hat{m} \) such that \(\Phi \hat{m} \approx \Phi m \). Only \(\Phi \) and \(\Phi m \) are provided to the solver; the sparsity of \(m \) is not supplied.

- The other parameters in our test are the precision to which real numbers are stored (typically 25 decimal places) and the recovery error allowed, \(\epsilon \). A trial is counted a success if \(|m − \hat{m}| < \epsilon \), and a failure otherwise. We report the proportion of successes at sparsity \(t \) as a proxy for compressed sensing performance.

Some general comments apply to all of our simulations. In essence choosing a design and Hadamard matrices for the construction is a multi-dimensional optimisation, probably application specific. After fixing a matrix \(\Phi \), one chooses the precision, the maximal entry size in a random vector and the error allowed in recovery. These all impact performance, both proportion of correct recoveries and recovery time.

The recovery process is not very sensitive to the allowable recovery error, in the sense that if the algorithm converges to the correct solution it generally does so to machine tolerance. Taking sparse vectors to be binary valued greatly improves recovery, but we focus on the model given. Numerical instability results if the precision to which real numbers are stored is too small; this is determined experimentally.

A. Recovery Algorithms

We compare the performance of two different well-established recovery methods when applied to signal vectors that have been sampled using matrices created via Construction 1.

Firstly, we employ naïve Linear Programming (LP); we consider implementations in both MAGMA and \texttt{matlab}, [21], [22]. We include implementations in two different systems to demonstrate the potential differences between solvers, which can be significant.

Secondly, we employ matching pursuit, which is a greedy algorithm for producing sparse approximations of high dimensional data in an over-complete dictionary. A well-known implementation for compressed sensing is CoSaMP [18].

We use the implementation of the basic OMP algorithm from [18] rather than the more specialised CoSaMP algorithm. It is well known that the worst case complexity of the simplex method in linear programming is exponential in the number of variables. However the expected complexity for typical examples is \(O(N^3) \). In comparison, the complexity of CoSaMP is \(O(N \log^2 N) \).

We created a \(57 \times 456 \) matrix \(\Phi_C \) using Construction 1, taking \((V, B) \) to be a BIBD\((57,8,1)\) corresponding to a PG(2,7) and \(H_1, \ldots, H_6 \) to be Fourier matrices of order 8. We then applied Lemma 3 to obtain a \(114 \times 912 \) matrix \(\Phi_R \). The allowable recovery error was \(10^{-8} \) for all algorithms. In Figure 2, we record the number of successful recoveries for 1000 randomly generated vectors sampled by \(\Phi_R \) for each algorithm and each sparsity.

Applying Theorem 10 shows that \(\Phi_C \) allows recovery of all vectors of sparsity at most \(\lceil 4\sqrt{57} \rceil = 2 \), and provides no stronger guarantee. Furthermore, \(\Phi_C \) contains real rows so, as in Remark 8, there exist \(12 \)-sparse vectors in the nullspace of \(\Phi_C \), and hence there exist \(6 \)-sparse vectors whose recovery is not permitted by \(\Phi_C \). So the recovery performance of \(\Phi_R \) is quite striking.

While there are clear differences in performance among these algorithms, they appear to behave in a broadly similar fashion. In general, running times for OMP are an order of magnitude faster than the \texttt{matlab} linear programming solver. The MAGMA solver has intermediate runtime.

B. Comparison With Gaussian Matrices

Gaussian matrices are the de facto standard against which other matrix constructions are measured in compressed sensing. The projective plane PG(2,11) corresponds to a BIBD\((133,12,1)\). Removing two blocks and all points incident with either block produces a PBD\((110,\{10,11\},1)\) in which all points have replication number 12. We applied Construction 1, taking \((V, B) \) to be this PBD and \(H_1, \ldots, H_6 \) to be Fourier matrices of order 12, to obtain a \(131 \times 1320 \) matrix \(\Phi_C \). We then applied Lemma 3 to obtain a \(262 \times 2640 \) matrix \(\Phi_R \).

We compare the compressed sensing recovery performance of \(\Phi_R \) to that of a Gaussian ensemble of the same size (using the OMP algorithm). Both linear programming and OMP ran faster by an order of magnitude for \(\Phi_R \) than for the Gaussian ensemble. Our results are given in Figure 3.
C. Factors Affecting Algorithm Performance

In this section we discuss a number of factors that influence recovery performance. Specifically we consider the presence of noise in received signals, signed signal vectors (until now our signal vectors have had positive coordinates), and the effect of using different Hadamard matrices in Construction 1. In all cases, we find that the construction is robust and reductions in performance are not substantial.

1) Signed Signal Vectors: The linear programming solver in MAGMA requires variables to be positive (or at least greater than some bound). We use a standard trick to allow negative entries in x. For each variable x_i in the original problem, we introduce a pair of variables, x_i^+ and x_i^-. Then we replace each appearance of x_i with $x_i^+ - x_i^-$. When a solution has been found, we interpret x_i^+ as a positive number, and x_i^- as a negative one. This has the disadvantage of doubling the number of variables in the linear program. This results in longer run times and slightly lower performance, but the results of the simulations are broadly comparable to those in the positive case.

2) Noise: We consider both uniform and burst noise. In each case we consider positive and signed noise vectors. In general, recovery in the presence of noise is robust. Testing all algorithms in all regimes would produce an overabundance of data, so we give only a single representative example of our simulations.

The projective plane $PG(2,11)$ corresponds to a BIBD(133,12,1). Remove twelve points of an oval to produce a $PBD(121,\{10,11,12\},1)$. Apply Construction 1 taking H_1, \ldots , H_n to be Fourier matrices of order 12, and then apply Lemma 3 to construct a compressed sensing matrix Φ_R with 266 rows and 2904 columns. To examine the performance of Φ_R in the presence of uniform positive noise, we construct noise vectors with entries uniformly distributed in $(0,1)$ and scale the vector to some predetermined ℓ_2-norm. We then compare the signal vector m (of ℓ_2-norm 1) to the solution returned by the matlab linear programming solver for $\Phi_R(m+\epsilon)$. We count a recovery as a success if the reconstruction error is below 10^{-8}. Table 1 summarises our results.

Recovery decays gracefully in the presence of noise, particularly when the sparsity of the signal is not close to the limit of what can be recovered.

VI. AN EFFICIENT ALGORITHM FOR SPARSE RECOVERY

In this section we describe and investigate a new algorithm for signal recovery, tailored specifically for an $n \times N$ compressed sensing matrix created via Construction 1. It is designed to recover vectors of sparsity at most $O(\sqrt{n})$ and is not expected to be competitive with LP or CoSaMP at large sparsities. The algorithm exploits the structure of matrices created via Construction 1 in order to achieve efficiency in both running time and storage requirements. Under

Table I	NUMBER OF成功恢复RECOVERIES OUT OF 100 FOR SIGNALS OF VARIOUS SPARSITIES AND FOR DIFFERENT NOISE LEVELS				
Sparsity	ℓ_2-norm of noise vector				
-----------------	-----------------	-----------------	-----------------	-----------------	-----------------
30	10^{-12}	10^{-10}	10^{-9}	2×10^{-9}	
35	100	99	98	79	66
40	100	100	97	79	69
45	97	93	88	62	27
50	87	79	69	33	5
55	61	56	30	14	2
60	27	22	22	5	0

Table II	NUMBER OF成功恢复RECOVERIES OUT OF 100 AND THE AVERAGE RECOVERY TIME IN SECONDS FOR REAL AND FOURIER MATRICES				
Sparsity	Real matrix	Fourier matrix			
-----------------	-----------------	-----------------	-----------------	-----------------	
30	ℓ_2-norm of noise vector				
-----------------	-----------------	-----------------	-----------------	-----------------	
30	10^{-12}	10^{-10}	10^{-9}	2×10^{-9}	
35	100	99	98	79	66
40	100	100	97	79	69
45	97	93	88	62	27
50	87	79	69	33	5
55	61	56	30	14	2
60	27	22	22	5	0
certain assumptions, it can be shown to run successfully in time $O(N \log n)$ and space $O(n^2)$. (Such thresholding-based algorithms are one of the main algorithmic approaches to compressed sensing; see [24, Ch. 3]) Throughout this section we employ the notation that we introduce in the description of the algorithm.

Algorithm 13: Suppose that Φ is a matrix created via Construction 1, using a design (V, B) with replication numbers $r_1 \leq \cdots \leq r_0$ and Hadamard matrices H_1, \ldots, H_o. For each $i \in V$, let Φ_i be the submatrix of Φ consisting of the columns corresponding to point i. We store only the following information.

- For each $i \in V$, a list of the rows of Φ_i that are non-zero, and a record of which rows of H_i are located there.
- A copy of each Hadamard matrix H_i.

Suppose that Φ is used to sample some $N \times 1$ message vector m. Our algorithm runs as follows.

1. **Construct an initial estimate.** For each $i \in V$, we take the set of rows in which Φ_i is non-zero, take the $r_i \times 1$ vector y_i of the corresponding received samples, and compute $\hat{m}_i = \frac{1}{\sqrt{r_i}} H_i^* y_i$. Concatenating the vectors \hat{m}_i over all $i \in V$ we construct an initial estimate \hat{m} for the signal vector m.

2. **Guess the signal coordinates.** For some prespecified $|S| \leq r_1$, let S be the index set of the $|S|$ coordinates of \hat{m} of greatest magnitude. For each $i \in V$, let q_i be the number of columns indexed by S that are in Φ_i, and let $V' = \{ i \in V : q_i \geq 1 \}$.

3. **Identify uncontaminated samples.** For each $i \in V'$, we find a set Q_i of q_i rows of Φ_i that are non-zero in Φ_i but zero in Φ_j for each $j \in V' \setminus \{i\}$ (such rows correspond to blocks that contain i but no point in $V' \setminus \{i\}$ and, because $|V' \setminus \{i\}| \leq |S| - q_i \leq r_i - q_i$, at least q_i such blocks exist).

4. **Recover the signal.** For each $i \in V'$, we find the coordinates in the q_i positions indexed by S that correspond to columns in Φ_i by solving the $q_i \times q_i$ linear system induced by those columns and the rows in Q_i.

Remark 14: The record of the non-zero rows of Φ can be derived easily from the incidence matrix of (V, B). For many designs (for example, projective planes, designs with cyclic automorphisms, and so on) this information need not be stored explicitly. Even if the information is stored explicitly, the space used is $O(n^2)$. A similar observation holds for the Hadamard matrices; Fourier or Paley matrices need not be stored explicitly. With appropriate design choices, the storage space required can be logarithmic in n.

As long as S contains the positions of all the non-zero elements, the algorithm finds the right solution. In our analysis of this algorithm we focus, for the sake of simplicity, on the case in which all the replication numbers of (V, B) are equal. We first show that our estimate for a signal coordinate differs from the actual value by an error term introduced by the other non-zero signal coordinates. From this it is easy to show that Algorithm 13 recovers a signal provided that no non-zero signal coordinate has magnitude too small in comparison with the ℓ_1-norm of the signal.

Lemma 15: Let Φ be a matrix created via Construction 1 using a PBD \mathcal{D} all of whose replication numbers are equal to some integer r. Suppose that Φ is used to sample a signal m of sparsity at most r and that Algorithm 13 is applied to find an estimate \hat{m} for m. Let \hat{x} be the estimate for a coordinate x of m that corresponds to a point i of \mathcal{D}. Then

- (i) $\hat{x} = x + \frac{1}{r} (h_1 x_1 + \cdots + h_d x_d)$ where x_1, \ldots, x_d are the non-zero coordinates of m that do not correspond to point i of \mathcal{D} and h_1, \ldots, h_d are complex numbers of magnitude 1; and
- (ii) $|\hat{x} - x| \leq \frac{1}{r} \|m\|$.

Proof: Let x_1, \ldots, x_d be the non-zero coordinates of m that do not correspond to point i of \mathcal{D} and let w_i be the vector $(x_1, \ldots, x_d)^T$. Let m_i be the $r \times 1$ vector consisting of the coordinates of m corresponding to point i of \mathcal{D} and let \hat{m}_i be the estimate for m_i. Note that $y_i = \frac{1}{\sqrt{r}} H_i m_i + A_i w_i$ for some $r \times d$ matrix A_i such that each column of A_i contains exactly one complex number of magnitude 1 and every other entry of A_i is 0. So

$$\hat{m}_i = \frac{1}{\sqrt{r}} H_i^* H_i m_i + \frac{1}{\sqrt{r}} H_i^* A_i w_i = m_i + \frac{1}{\sqrt{r}} (H_i^* A_i) w_i.$$

Thus, because every entry of $H_i^* A_i$ is a complex number of magnitude 1,

$$\hat{x} = x + \frac{1}{r} (h_1 x_1 + \cdots + h_d x_d)$$

where h_1, \ldots, h_d are complex numbers of magnitude 1. Further,

$$|\hat{x} - x| = |\frac{1}{r} (h_1 x_1 + \cdots + h_d x_d)| \leq \frac{1}{r} (|x_1| + \cdots + |x_d|) \leq \frac{1}{r} \|m\|.$$

Corollary 16: Let Φ be a matrix created via Construction 1 using a PBD \mathcal{D} all of whose replication numbers are equal to some integer r. Suppose that Φ is used to sample a signal m of sparsity $t \leq r$. If each non-zero coordinate of m has magnitude at least $\frac{2}{r} \|m\|$, then Algorithm 13 with $|S| \geq t$ recovers m.

Proof: Let \hat{x}_0 and \hat{x} be the estimates obtained by Algorithm 13 for two coordinates x_0 and x_1 of the signal such that $x_0 = 0$ and $x_1 \neq 0$. It suffices to show that $|\hat{x}_0| < |\hat{x}_1|$. By Lemma 15(ii), $|\hat{x}_0| < \frac{1}{r} \|m\|$. From our hypotheses $|x_1| \geq \frac{2}{r} \|m\|$ and so by Lemma 15(ii), $|\hat{x}_1| > |x_1| - \frac{1}{r} \|m\| > \frac{1}{2} \|m\|$. Thus, $|\hat{x}_0| < |\hat{x}_1|$.

If we assume that the non-zero signal coordinates have uniformly random phase, we can improve substantially on Corollary 16. Also, if we assume that the support of the signal is chosen uniformly at random, we can establish that, for large n, the algorithm runs in $O(N \log n)$ time with high probability. We employ a simple consequence of Hoeffding’s inequality.

Lemma 17: If z_1, \ldots, z_n are independent complex random variables with uniformly random phase and magnitude at most 1, then for each positive real number c,

$$\mathbb{P}(|z_1 + \cdots + z_n| \geq c) \leq 4 \exp \left(- \frac{c^2}{n} \right).$$

Proof: If $|z_1 + \cdots + z_n| \geq c$, one of the real or imaginary parts of $z_1 + \cdots + z_n$ must have magnitude at least $\sqrt{\frac{c}{n}}$. Now apply Hoeffding’s inequality separately to the real and
imaginary parts of $z_1 + \cdots + z_n$, noting that the expected value is zero in each case. □

Theorem 18: Let Φ be an $n \times N$ matrix created via Construction I using a PBD D all of whose replication numbers are equal to some integer r. Suppose that Φ is used to sample an r-sparse signal m.

(i) If the non-zero components of m are independent random complex variables with uniformly random phase and magnitude in the interval $[e^{\frac{-1}{4}+i\epsilon}, 1]$ for a positive constant ϵ, then for large n Algorithm 13 with $|S| = r$ recovers m with high probability.

(ii) If the support of m is chosen uniformly at random, then for large n the algorithm runs in $O(N \log n)$ time with high probability.

Proof: Recall that $n \sim r^2$ and suppose that r is large.

We first prove (i). For brevity, let $a = r^{\frac{1}{2}+i\epsilon}$. Suppose that the non-zero components of m are independent random complex variables with uniformly random phase and magnitude in the unit interval $[a, 1]$. Let x be a coordinate of m and let \hat{x} be our estimate for x. By Lemma 15(ii), $\hat{x} - x = \frac{1}{2}(h_1x_1 + \cdots + h_dx_d)$ where x_1, \ldots, x_d are the non-zero coordinates of m that do not correspond to point i of D and h_1, \ldots, h_d are complex numbers of magnitude 1. Because x_1, \ldots, x_d are independent random coordinate variables with uniformly random phase and magnitude at most 1, so are h_1x_1, \ldots, h_dx_d. Thus, by Lemma 17,

$$P(\{|h_1x_1 + \cdots + h_dx_d| > \frac{\alpha}{2}\} \leq 4 \exp\left(-\frac{a^2r^2}{16}\right) \leq 4 \exp\left(-\frac{r^{1+2\epsilon}}{16d}\right).$$

Thus, using the facts that $d \leq r$ and that $r^{2\epsilon}$ grows faster than $\log N$ (by Remark 2, $N = O(r^3)$), it can be seen that $P(\{|\hat{x} - x| > \frac{\alpha}{2}\} = O\left(\frac{1}{N}\right)$. So it follows from the union bound that with high probability it is the case that $|\hat{x} - x| < \frac{\alpha}{2}$ for each coordinate x of m. Because $|x| \geq a$ for each non-zero coordinate x of m, this implies that our estimates for non-zero coordinates of m have magnitude greater than our estimates for zero coordinates of m with high probability. Then Algorithm 13 with $|S| = r$ recovers m.

We now prove (ii). Note that $|S| = r$, that $rv = N$ and that $r \sim \sqrt{n}$ (see Remark 2). The first step of the algorithm is essentially performing a Hadamard transform of order r for each point, and so can be accomplished in $O(r \log r) = O(N \log n)$ time. The second step is essentially a sorting operation and can be accomplished in $O(N)$ time. The third step can be accomplished by first creating a list of blocks that intersect exactly one point in V' (by examining r blocks for each of the at most $|S|$ points in V') and then partitioning this list into the sets Q_i. Because $|S| = r \sim \sqrt{n}$, this takes $O(n)$ time. The final step involves inverting a $q_i \times q_i$ matrix for each $i \in V'$.

It is known that if r balls are placed in r bins uniformly at random, the maximum number of balls in any bin is $\log \log_{\log r}(1 + o(1))$ with high probability (see [25], for example). In this case $q_i = o(\log r)$ for each point i, and hence the inversions take $o(r \log^2 r) = o(n)$ time. Combining these facts, the algorithm runs in $O(N \log n)$ time with high probability. □

In conclusion, we have obtained tight bounds on the worst-case performance of the compressed sensing matrices of Construction I in Theorem 10. Detailed simulations suggest that average-case performance is slightly superior to the Gaussian ensemble. We have also described an algorithm for signal recovery with running time guarantees matching the best known algorithms in Theorem 18.

Acknowledgements

The authors acknowledge the support of the Australian Research Council via grant DP120103067.

References

[1] E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory, vol. 52, no. 2, pp. 489–509, Feb. 2006.
[2] E. J. Candès, J. K. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate measurements,” Commun. Pure Appl. Math., vol. 59, no. 8, pp. 1207–1223, 2006.
[3] J. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol. 52, no. 4, pp. 1289–1306, Apr. 2006.
[4] D. Bryant and P. O’Catáin, “An asymptotic existence result on compressed sensing matrices,” Linear Algebra Appl., vol. 475, pp. 134–150, Jun. 2015.
[5] R. A. DeVore, “Deterministic constructions of compressed sensing matrices,” J. Complex., vol. 23, nos. 4–6, pp. 918–925, 2007.
[6] M. Fickus, D. G. Mixon, and J. C. Tremain, “Steiner equiangular tight frames,” Linear Algebra Appl., vol. 436, no. 5, pp. 1014–1027, 2012.
[7] S. Li and G. Ge, “Deterministic construction of sparse sensing matrices via finite geometry,” IEEE Trans. Signal Process., vol. 62, no. 11, pp. 2850–2859, Jun. 2014.
[8] S. Li and G. Ge, “Deterministic sensing matrices arising from near orthogonal systems,” IEEE Trans. Inf. Theory, vol. 60, no. 4, pp. 2291–2302, Apr. 2014.
[9] R. R. Naidu, P. Jampana, and C. S. Sastry, “Deterministic compressed sensing matrices: Construction via euler squares and applications,” IEEE Trans. Signal Process., vol. 64, no. 14, pp. 3566–3575, Jul. 2016.
[10] W. Lu and S.-T. Xia, “Construction of ternary matrices with small coherence for compressed sensing,” Electron. Lett., vol. 52, no. 6, pp. 447–448, Mar. 2016.
[11] K. J. Horadam, Hadamard Matrices and Their Applications, Princeton, NJ, USA: Princeton Univ. Press, 2007.
[12] T. Beth, D. Jungnickel, and H. Lenz, Design Theory (Encyclopedia of Mathematics and its Applications), vol. 1. Cambridge, U.K.: Cambridge Univ. Press, 1999.
[13] N. de Bruijn and P. Erdős, “A combinatorial problem [SIC],” Indagationes Math., vol. 10, pp. 421–423, 1948.
[14] J. Bourgain, S. Dilworth, K. Ford, S. Konyagin, and D. Kutzarova, “Explicit constructions of RIP matrices and related problems,” Duke Math. J., vol. 159, no. 1, pp. 145–185, 2011.
[15] P. O’Catáin and I. M. Wanless, “Trades in complex Hadamard matrices,” in Algebraic Design Theory and Hadamard Matrices (Springer Proceedings in Mathematics & Statistics), vol. 133. Cham, Switzerland: Springer, 2015, pp. 213–221.
[16] S. Jukna, Extremal Combinatorics (Texts in Theoretical Computer Science. An EATCS Series), 2nd ed. Berlin, Heidelberg: Springer, 2011.
[17] J. W. P. Hirschfeld, Projective Geometries Over Finite Fields (Oxford Mathematical Monographs), 2nd ed. New York, NY, USA: Oxford Univ. Press, 1998.
[18] D. Needell and J. A. Tropp, “CoSaMP: Iterative signal recovery from incomplete and inaccurate samples,” Appl. Comput. Harmon. Anal., vol. 26, no. 3, pp. 301–321, 2009.
[19] T. Tao, Topics Random Matrix Theory (Graduate Studies in Mathematics), vol. 132. Providence, RI, USA: AMS, 2012.
[20] E. J. Candès, “The restricted isometry property and its implications for compressed sensing,” Comp. Rendus Math., vol. 346, nos. 9–10, pp. 589–592, 2008.
[21] W. Bosma, J. Cannon, and C. Playoust, “The Magma algebra system. I. The user language,” J. Symbolic Comput., vol. 24, pp. 235–265, 1997.

[22] MATLAB, Version 8.0.0.783 (R2012b). Natick, MA, USA: The MathWorks Inc., 2012.

[23] C. J. Colbourn and A. Rosa, Triple systems (Oxford Mathematical Monographs). New York, NY, USA: Oxford Univ. Press, 1999.

[24] S. Foucart and H. Rauhut, A Mathematical Introduction to Compressive Sensing (Applied and Numerical Harmonic Analysis). New York, NY, USA: Springer, 2013.

[25] M. Raab and A. Steger, “‘Balls into bins’—A simple and tight analysis,” in Randomization and Approximation Techniques in Computer Science (Lecture Notes in Computer Science), vol. 1518. Berlin, Germany: Springer, 1998, pp. 159–170.

Darryn Bryant is a Professor in Mathematics at the University of Queensland, which is also where he earned his Ph.D. in 1993. His research interests are in graph theory and design theory, and he has authored well over 100 refereed journal papers in these areas. He is currently a Council Member of the Combinatorial Mathematics Society of Australasia since 2002.

Charles J. Colbourn earned his Ph.D. in 1980 from the University of Toronto, and is a Professor of Computer Science and Engineering at Arizona State University. He is the author of The Combinatorics of Network Reliability (Oxford), Triple Systems (Oxford), and 320 refereed journal papers focusing on combinatorial designs and graphs with applications in networking, computing, and communications. In 2004, he was awarded the Euler Medal for Lifetime Research Achievement by the Institute for Combinatorics and its Applications.

Daniel Horsley received his B.Sc. (Hons) in 2002 and his Ph.D. in 2008, both in mathematics and from the University of Queensland, Australia. He has held positions as an AARMS Postdoctoral Fellow at Memorial University of Newfoundland, Canada, and as a Postdoctoral Scholar at Arizona State University, USA. He is currently employed as a Senior Research Fellow and ARC Future Fellow in the School of Mathematical Sciences at Monash University, Australia. His research interests are focused in combinatorial design theory, particularly Steiner triple systems, graph decompositions, block designs, and combinatorial arrays.

Padraig Ó Catháin earned his Ph.D. in 2012 from the National University of Ireland, Galway and is an Assistant Professor in the School of Mathematical Sciences at Worcester Polytechnic Institute. He has been a postdoctoral researcher at the University of Queensland, Monash University and Aalto University. His research interests include algebraic design theory and applications to communications. He was awarded the Kirkman medal of the Institute of Combinatorics and its Applications in 2015.