LUMINOSITY EVOLUTION OF EARLY-TYPE GALAXIES TO \(z = 0.83\): CONSTRAINTS ON FORMATION EPOCH AND \(\Omega\)

Pieter G. van Dokkum,1,2 Marin J. Franx,1,2 Daniel D. Kelson,3,4 and Garth D. Illingworth4

Received 1998 May 28; accepted 1998 July 1; published 1998 July 23

ABSTRACT

We present deep Keck telescope spectroscopy of eight galaxies in the luminous X-ray cluster MS 1054–03 at \(z = 0.83\). The data are combined with imaging observations from the Hubble Space Telescope (HST). The spectroscopic data are used to measure the internal kinematics of the galaxies, and the HST data are used to measure their structural parameters. Six galaxies have early-type spectra, and two have \("E + A"\) spectra. The galaxies with early-type spectra define a tight fundamental plane (FP) relation. The evolution of the mass-to-light ratio is derived from the FP. The \(M/L\) ratio evolves as \(\Delta \log M/L_\odot \propto -0.40z\) (\(\Omega_m = 0.3, \Omega_\Lambda = 0\)). The observed evolution of the \(M/L\) ratio provides a combined constraint on the formation redshift of the stars, the initial mass function (IMF), and cosmological parameters. For a Salpeter IMF (\(x = 2.35\)), we find that \(z_{\text{form}} > 2.8\) and \(\Omega_m < 0.86\) with 95% confidence. The constraint on the formation redshift is weaker if \(\Omega_m > 0\): \(z_{\text{form}} > 1.7\) if \(\Omega_m = 0.3\) and \(\Omega_m = 0.7\). At present, the limiting factor in constraining \(z_{\text{form}}\) and \(\Omega\) from the observed luminosity evolution of early-type galaxies is the poor understanding of the IMF. We find that if \(\Omega_m = 1\), the IMF must be significantly steeper than the Salpeter IMF (\(x > 2.6\)).

Subject headings: galaxies: clusters: individual (MS 1054–03) — galaxies: elliptical and lenticular, cD — galaxies: evolution — galaxies: structure

1. INTRODUCTION

Measurements of the masses and mass-to-light (\(M/L\)) ratios of early-type galaxies in distant clusters provide important constraints on galaxy evolution. The luminosity evolution of early-type galaxies can be determined by comparing the luminosities of galaxies of similar masses at different redshifts. Also, mass measurements can be used to constrain the merger rate.

The evolution of the \(M/L\) ratio can be measured from the evolution of the fundamental plane of early-type galaxies. The fundamental plane (FP) is a tight correlation between the structural parameters and the velocity dispersion of the form \(r_e \propto L^{0.83} \sigma^{1.20}\) in the B band (Djorgovski & Davis 1987; Dressler et al. 1987; Jørgensen, Franx, & Kjærgaard 1996, hereafter JKF). Assuming homology, the existence of the FP implies that \(M/L \propto M^{0.25} \sigma^{-0.04}\), with low scatter (Faber et al. 1987). Therefore, the evolution of the intercept of the FP is proportional to the evolution of the mean \(M/L\) ratio (see Franx 1995a).

Studies of the FP out to \(z \approx 0.6\) have shown that the \(M/L\) ratio of massive cluster galaxies evolves slowly (van Dokkum & Franx 1996, hereafter vDF; Kelson et al. 1997; hereafter KvDF; Bender et al. 1998; Pace 1998). The implication is that the stars in massive cluster galaxies were probably formed at much higher redshifts. These results are consistent with other studies of the evolution of the luminosities, colors, and absorption-line strengths of bright cluster galaxies (see, e.g., Aragon-Salamanca et al. 1993; Bender, Ziegler, & Bruzual 1996; Schade, Barrientos, & Lopez-Cruz 1997; Ellis et al. 1997; Stanford, Eisenhardt, & Dickinson 1998).

The constraints on the formation epoch of massive galaxies can be made stronger by extending the studies of the evolution of the \(M/L\) ratio to higher redshifts. In this Letter, we report on spectroscopic and photometric observations of eight bright galaxies in the luminous X-ray cluster MS 1054–03 at \(z = 0.83\). The fundamental plane is derived, and the evolution of the \(M/L\) ratio is established out to \(z = 0.83\), when the universe was 50% of its present age (\(q_0 = 0.15\)).

2. SPECTROSCOPY

Galaxies in MS 1054–03 were selected on the basis of their I-band flux (\(I < 22.1\)) and their location in the \(B - R\) versus \(R - I\) plane. The allowed range in color was broad, thus minimizing any bias against passively evolving blue cluster galaxies. There was no selection on morphology. The ground-based imaging data used for the selection were kindly provided by G. Luppino and are described in Luppino & Kaiser (1997).

The cluster was observed on 1997 February 11 with the LRIS (Oke et al. 1995) on the 10 m W. M. Keck telescope. The multiaperture slitlets were 1′ wide, and the seeing was 0′′9–1′0. The instrumental resolution \(\sigma_{\text{inst}} \approx 50\) km s\(^{-1}\). The total exposure time was 14,400 s. A bright blue star was included in the masks for the purpose of correcting for the H\(_2\)O absorption at 7600 Å from our atmosphere. The reduction procedures were very similar to those described by vDF and KvDF. Eight of the observed galaxies are covered by a deep Hubble Space Telescope (HST) image of the cluster core. In this Letter, we will limit the discussion to these galaxies.

The spectra of the galaxies are shown in Figure 1. Two of the eight galaxies (1430 and 1583) have strong Balmer absorption lines (\(EW > 4\) Å in the rest frame), indicating the presence of a young stellar component. Subsequent low-resolution spectroscopy covering a larger wavelength range showed that both galaxies have \(O \equiv \lambda 3727\) EW < 5 Å and hence are classified as \("E + A\) galaxies (Dressler & Gunn 1983).

We determined the central velocity dispersions of the galaxies from a fit to a convolved template star in real space, following the procedures outlined in vDF and KvDF. The spectral regions that are dominated by bright sky lines were
1583 also has a disk and a very luminous, compact bulge. It has a disk with faint spiral structure and is lopsided. Galaxy E has a disk w ith faint spiral structure and is lopsided. Galaxy E appears to be unperturbed E and S0 galaxies (Fig. 1). The two on the WFPC 2 chips. The six galaxies with early-type spectra may be interacting with the small companion galaxy to the south.

There are several galaxies with dispersions in the range of 250–300 km s⁻¹, showing that massive galaxies exist at z ≈ 0.83. The dispersions of the two E+A galaxies are 153 ± 12 and 212 ± 25 km s⁻¹. These values are significantly higher than the typical dispersions of E+A galaxies at lower redshift (∼100 km s⁻¹; Franx 1993b; KvDFIF; Kelson et al. 1998).

3. PHOTOMETRY

HST Wide Field Planetary Camera 2 (WFPC2) imaging data of the central parts of MS 1054–03 were taken by Donahue et al. (1998) on 1996 March 13 through the F814W filter. The total exposure time was 15,600 s. Following the usual reduction process, the images were deconvolved with the CLEAN algorithm (Högborn 1974), using Tiny Tim (Krist 1995) point-spread functions appropriate for the positions of the galaxies on the WFPC2 chips. The six galaxies with early-type spectra appear to be unperturbed E and S0 galaxies (Fig. 1). The two E+A galaxies have more peculiar morphologies. Galaxy 1430 has a disk with faint spiral structure and is lopsided. Galaxy 1583 also has a disk and a very luminous, compact bulge. It given low weight in the fit. The Balmer lines in the E+A galaxies were masked. The resulting dispersions, corrected to an aperture of 3.5'' at the distance of Coma (cf. vDF), are listed in Table 1. We experimented with the choice of template star, the continuum filtering, and the fitting method (e.g., fitting in Fourier space rather than in real space) in order to assess the systematic uncertainties, and we estimate them to be ≈5%.

There are several galaxies with dispersions in the range of 250–300 km s⁻¹, showing that massive galaxies exist at z ≈ 0.83. The dispersions of the two E+A galaxies are 0.83 ± 0.02 and 0.023 ± 0.005 for C L 0024 and for C L 1358, respectively. The six open circles are the two E+A galaxies. The small dots are galaxies in Coma at z = 0.023, taken from JFK. The line is the fit from JFK. The six galaxies with early-type spectra define a clear FP, with low scatter and the slope reliably. The offset of the FP from the Coma Cluster. A larger sample is needed to determine the scatter and the slope reliably. The offset of the FP of MS 1054–03 with respect to the FP of Coma is due to the evolution of the M/L ratio between z = 0.83 and the present.

The E+A galaxies are overluminous with respect to the prediction from the FP defined by the other galaxies in MS 1054–03, which is consistent with the presence of a young population. The E+A galaxies have lower masses than the other galaxies in the sample. In the following analysis, we will only consider the galaxies with early-type spectra. Therefore, our conclusions may only apply to a subset of the galaxy population. We will return to this point in § 5.

We determined the evolution of the M/L ratio from the FP. In Figure 3, the evolution of the M/L ratio from z = 0.02 to z = 0.83 is plotted. Included in the figure are data for Coma at z = 0.02 from JFK, for CL 0024+16 at z = 0.39 from vDF, and for CL 1358+62 at z = 0.33 and MS 2053+03 at z = 0.58 from KvDFIF. All data were transformed to a common

Identification Number	σ	log r_e	μ_e	Spectral Type
1294	316 ± 21	-0.200	22.62	Early type
1359	225 ± 19	-0.350	22.33	Early type
1405	259 ± 21	0.015	23.34	Early type
1430	153 ± 12	0.183	23.88	E+A
1457	210 ± 24	-0.220	22.88	Early type
1484	330 ± 20	0.274	23.84	Early type
1567	261 ± 27	-0.283	22.65	Early type
1583	212 ± 25	-0.733	20.16	E+A
in the FP is very small, the error bars in Figure 3 are mainly due to systematic errors. We have assumed that the systematic errors in the dispersions, in the photometric zero points, and the errors caused by the sample selection (see vDF) can be added in quadrature. The MIL ratio evolves as $\Delta \log M/L_\odot \propto (-0.40 \pm 0.04)z$ if $\Omega_m = 0.3$, or $\Delta \log M/L_\odot \propto (-0.31 \pm 0.04)z$ if $\Omega_m = 1$. This is consistent with other measurements of the luminosity evolution of early-type galaxies to $z \approx 0.8$ (see, e.g., Schade et al. 1997). However, our measurement has a much smaller uncertainty, because of the low scatter in the FP.

5. Discussion

The observed evolution of the MIL ratio with redshift can be compared with predictions for the evolution of single-age stellar populations formed at redshift z_{form}. The luminosity evolution of a single-age stellar population behaves as a power law: $L \propto (t - t_{\text{form}})^\kappa$. The evolution depends on κ, the cosmology, and z_{form} (vDF). The value of κ depends on the passband, the initial mass function (IMF), and the metallicity. The models of Bruzual & Charlot (1998), Vazdekis et al. (1996), and Worthey (1998) give $0.86 < \kappa < 1.00$ for a Salpeter (1955) IMF ($x = 2.35$) and $-0.5 < [\text{Fe/H}] < 0.5$. Model predictions are shown in Figure 3 for $z_{\text{form}} = 2$ (open area) and $z_{\text{form}} = \infty$ (shaded area), for a universe with $\Omega_m = 0.3$ and no cosmological constant ($q_0 = 0.15$). Note that the models as well as the data points in Figure 3 are independent of the value of H_0. The formal 95% confidence lower limit on the formation redshift is $z_{\text{form}} > 2.8$, for solar metallicity, a Salpeter IMF, and $q_0 = 0.15$.

The slow evolution of massive galaxies in clusters not only provides a constraint on their formation redshift but also on cosmological models (see, e.g., Bender et al. 1998). This is illustrated in Figure 3b, which shows the same models as in Figure 3a for $z_{\text{form}} = 1$ ($q_0 = 0.5$) rather than $z_{\text{form}} = 0.3$. The models fail to fit the data in this cosmology, and we find $\Omega_m < 0.86$ (95% confidence). The constraint on Ω_m is considerably stronger than the constraint derived by Bender et al. (1998) from the combination of the Mg b-σ relation and the fundamental plane at $z = 0.375$, because of the higher redshift of MS 1054–03.

These results are based on the assumption that massive early-
type galaxies in clusters have a Salpeter IMF. There is considerable uncertainty in the slope and form of the IMF in the mass range around \(\sim 1 M_\odot \) (Scalo 1997), and there are only indirect constraints on the IMF of massive ellipticals in clusters (see, e.g., Gibson & Matteucci 1997). The value of \(x \), and hence the rate of evolution, is quite sensitive to the logarithmic slope of the IMF: the Worthy (1998) models give \(\Delta \alpha = -0.22 \Delta x \).

Since the IMF is very uncertain, we express our results as a combined constraint on \(\Omega_m \) and the slope of the IMF in Figure 4. The IMF is steep if \(\Omega_m = 1 \). The 95% confidence lower limit on the slope is \(x > 2.6 \) for \(\Omega_m = 1 \). As an illustration, the dotted line in Figure 3b indicates a model with \(\Omega_m = 1 \) and \(\alpha = 2.35 \). This model fits the data very well. The case \(\alpha = 3 \) is extreme; the dependence on the formation redshift of the constraints on \(\Omega_m \) and \(\alpha \) is indicated with an arrow in Figure 4. For lower formation redshifts (or higher metallicities), the constraints are stronger. As an example, for \(\alpha = 5 \) rather than \(\infty \), we find that \(\Omega_m < 0.60 \) for \(x = 2.35 \) and \(x > 3.0 \) for \(\Omega_m = 1 \).

We note that if \(\Omega_m > 0 \), as is indicated by distant supernovae (Riess et al. 1998), the constraints on \(\alpha \) and the slope of the IMF are much weaker. Figure 3c shows the evolution of the M/L ratio if \(\Omega_m = 0.3 \) and \(\Omega_m = 0.7 \). The lower limit on the formation redshift is \(\alpha > 1.7 \). In this cosmology, the data provide no meaningful constraint on the slope of the IMF. The implicit assumption in this type of study, i.e., that the set of high-redshift early types is similar to the set of low-redshift early types (see, e.g., Kauffmann 1995 and vDFF), is probably justified for the high-mass galaxies considered here. It seems unlikely that a significant fraction of the high-mass galaxies in clusters at \(z = 0 \) was added to the sample between \(z = 0.83 \) and \(z = 0 \), given the tightness of the color-magnitude relation of luminous galaxies in intermediate-\(z \) clusters (see, e.g., Ellis et al. 1997 and van Dokkum et al. 1998) and the low masses of the \(E + A \) galaxies (Franx 1993b; KvdFF). However, our conclusions may not hold for low-mass galaxies: there is good evidence that a significant fraction of the low-luminosity early-type galaxies at \(z = 0 \) was accreted from the field at \(z < 1 \) (see, e.g., Abraham et al. 1996 and van Dokkum et al. 1998). The two \(E + A \) galaxies in our sample may be galaxies that were recently accreted. Larger samples to fainter magnitudes are needed to assess the fraction of galaxies with young populations in \(z \approx 0.8 \) clusters and their masses.

In conclusion, the luminosity evolution of massive early-type galaxies to \(z \approx 0.8 \) has now been determined with sufficient accuracy to place strong constraints on the epoch of the formation of the galaxies and on cosmological models. The main uncertainty in the interpretation is the poor understanding of the IMF in the mass range around \(1 M_\odot \). Other applications of the FP suffer from the same uncertainty (see, e.g., Bender et al. 1998). Nevertheless, our current measurement can be used directly to correct the evolution of the luminosity function for the brightening of the stellar populations with redshift. This can provide direct constraints on the mass evolution of galaxies.

We thank M. Donahue for providing us with the HST image of MS 1054–03 and G. Luppino for the ground-based images. The University of Groningen and the Leids Kerkhoven-Bosscha Fonds are thanked for support. Support from STScI grants GO 07372.01-96A, GO 05991.01-94A, and AR05798.01-94A is gratefully acknowledged.

REFERENCES

Abraham, R. G., et al. 1996, ApJ, 471, 694
Aragon-Salamanca, A., Ellis, R. S., Couch, W. J., & Carter, D. 1993, MNRAS, 262, 764
Bender, R., Saglia, R. P., Ziegler, B., Belloni, P., Greggio, L., Hopp, U., & Bruzual A., G. 1998, ApJ, 493, 529
Bender, R., Ziegler, B., & Bruzual A., G. 1996, ApJ, 463, L51
Bruzual A., & Charlot, S. 1998, in preparation
Djorgovski, S., & Davis, M. 1987, ApJ, 313, 59
Donahue, M., Voit, G. M., Gioia, I. M., Luppino, G., Hughes, J. P., & Stocke, J. T. 1998, ApJ, 502, 551
Dressler, A., & Gunn, J. E. 1983, ApJ, 270, 7
Dressler, A., Lynden-Bell, D., Burstein, D., Davies, R. L., Faber, S. M., Terlevich, R. J., & Wegner, G. 1987, ApJ, 313, 42
Ellis, R. S., Smail, I., Dressler, A., Couch, W. J., Oemler, A., Jr., Butcher, H., & Sharples, R. M. 1997, ApJ, 483, 582
Faber, S. M., Dressler, A., Davies, R. L., Burstein, D., Lynden-Bell, D., Terlevich, R., & Wegner, G. 1987, in Nearby Normal Galaxies, ed. S. M. Faber (New York: Springer), 175
Franx, M. 1993a, PASP, 105, 1058
———, 1993b, ApJ, 407, L5

Gibson, B. K., & Matteucci, F. 1997, MNRAS, 291, L8
Høgbom, J. A. 1974, AAS, 15, 417
Jørgensen, I., Franx, M., & Kristjansen, P. 1996, MNRAS, 280, 167 (JFK)
Kauffmann, G. 1995, MNRAS, 274, 153
Kelson, D. D., van Dokkum, P. G., Franx, M., Illingworth, G. D., & Fabricant, D. 1997, ApJ, 478, L13 (KvdFF)
Kelson, D. D., et al. 1998, in preparation
Krist, J. 1995, in ASP Conf. Ser. 77, Astronomical Data Analysis Software and Systems IV, ed. R. A. Shaw, H. E. Payne, & J. J. E. Hayes (San Francisco: ASP), 349
Luppino, G. A., & Kaiser, N. 1997, ApJ, 475, 20
Oke, J. B., et al. 1995, PASP, 107, 375
Pahre, M. 1998, Ph.D. thesis, Caltech
Pence, W. 1976, ApJ, 203, 39
Riess, A. G., et al. 1998, AJ, in press (astro-ph/9805201)
Salpeter, E. 1955, ApJ, 121, 161
Scalo, J. 1997, in The Stellar Initial Mass Function, Proc. 38th Herstmonceux Conf., ed. G. Gilmore, I. Parry, & S. Ryan (Provo: Brigham Young Univ.), in press (astro-ph/9712317)
Schade, D., Barrientos, L. F., & Lopez-Cruz, O. 1997, ApJ, 477, L17
Stanford, S. A., Eisenhardt, P. R., & Dickinson, M. 1998, ApJ, 492, 461
van Dokkum, P. G., & Franx, M. 1996, MNRAS, 281, 985 (vDF)
van Dokkum, P. G., Franx, M., Kelson, D. D., Illingworth, G. D., Fisher, D., & Fabricant, D. 1998, ApJ, 500, 714

Vazdekis, A., Casuso, E., Peletier, R. F., & Beckman, J. E. 1996, ApJS, 106, 307
Worthey, G. 1998, in preparation