Agrometeorological Indices Requirement for Wheat Crop under Different Irrigation Levels

M.K. Nayak1, Anil Kumar1, Deepak Patil2 and Mohammad Ahatsham1

1Department of Agricultural Meteorology, CCS Haryana Agricultural University, Hisar-125004, India
2Department of Agricultural Meteorology, Anand Agricultural University, Anand, Gujarat, India 388110
*Corresponding author

ABSTRACT

The field experiment was conducted at Agronomy Farm, Anand Agricultural University, Anand (Lat.: 22°35' N, Log.: 72°55' E & 45.1 m above ms) during rabi season in 2011-2012. The treatment comprised of five levels of irrigation schedule Viz., I1 (CRI, TL, BT, FL, ML, SD), I2 (0.4 IW: CPE ratio), I3 (0.6 IW: CPE ratio), I4 (0.8 IW: CPE ratio) and I5 (1.0 IW: CPE ratio) in randomized block design (RBD) within four replications. The main aim is to quantify the agrometeorological indices of wheat crop. The different agrometeorological indices were evaluated i.e. growing degree Days (GDD), Heliothermal Unit (HTU), Photothermal Unit (PTU) and Relative temperature Disparity (RTD). The results revealed that the different irrigation level was found alter the agrometeorological indices and its efficiency at different phenophases of wheat crop. The higher GDD (3532°C day), HTU (32759°C day), and PTU (38652°C day) were found with I1 (CRI, TL, BT, FL, ML, SD) irrigation level. The relative temperature disparity (RTD) was found higher under I3 (0.6 IW: CPE ratio) irrigation level and photothermal index (PTI) was found varying as fluctuating trend among all irrigation levels.

Keywords: Wheat, Irrigation levels, GDD, HTU, PTU, PTI.

Introduction

Agrometeorological indices requirement of wheat crop was varies in different irrigation application and weather conditions. Wheat (Triticum aestivum L.) is one of the most important cereal crops globally. India covers about 30.2 million hectares area with total production of 93.5 million tonnes and productivity of 30.9 q/ha (Anonymous, 2016). Gujarat ranks sixth in wheat production in country and area, production and productivity, averaged are 0.85 million ha, 2.4 tonnes and 2.9 tonnes ha⁻¹, respectively (Anonymous, 2016). The minimum growth temperature for is 3-4 °C, the optimum temperature about 25 °C, and the maximum from about 30-32 °C.

The day and night temperature played vital role to completion the primary requirement of degree day. The minimum temperature quite high value was promoted the higher respiration and ultimately increases the water requirement and lowers the assimilation rate. Changes in climatic variables like rise in temperature and decline in rainfall may be more frequent in future as suggested by the Intergovernmental Panel on Climate Change
Pre anthesis and post-anthesis high temperature and heat may have huge impacts upon wheat growth, and stress reduced the photosynthetic efficiency of crop (Wang et al., 2011). You et al., (2009) observed significant reduction in economical yield due to rise in temperature and concluded that a 1.8°C rise in temperature caused 3-10% reduction in wheat yields. Winter crops are vulnerable to high temperature during reproductive stages especially night temperature (Tmin) and differential response of temperature change (rise) to various crops has been noticed under different production environments (Kalra, 2008). Crop is exposed to a variety of weather conditions during its different phenophases of growth, resulting in large variations in growth rate and yield. For quantifying the thermal relation of crops, thermal units approach is widely used (Ramteke et al., 1996) and has been further modified to include photothermal units and heliothermal units (Rao et al., 1999). Water is essential at every developmental phase of crop growth starting from seed germination to crop maturity for harvesting the maximum potential yield of wheat. There is a positive correlation between grain yield and irrigation frequencies at the critical phases Irrigation missing at some critical growth stage sometime drastically reduces grain yield (Chauhan et al., 2008) due to not proper drought stage attained and resulted were found to lower test weight. Similarly, over irrigation also sometimes tends to decrease grain yield instead of increasing yield (Kahlown and Azam, 2002).

Materials and Methods

The field experiment was conducted at Agronomy Farm, Anand Agricultural University, (AAU), Anand, Gujarat (Lat.: 22°35’ N, Log.: 72°55’ E and 45.1 m above msl) during *rabi* season in 2011-2012. The treatment comprised of five levels of irrigation schedule *viz.*, I₁ (CRI, TL, BT, FL, ML, SD), I₂ (0.4 IW: CPE ratio), I₃ (0.6 IW: CPE ratio), I₄ (0.8 IW: CPE ratio) and I₅ (1.0 IW: CPE ratio) in randomized block design (RBD) within four replications. The number of days to attain various phenophases was determined from randomly selected five plants (with followed the sampling method) in all the plots visually by the number of days taken from the sowing date to attain respective phenophases up to maturity. Maximum and minimum temperatures used for study were taken from agro meteorological observatory that is near from the experimental site. The growing degree days (GDD) and heliothermal unit (HTU) was calculated according to the formula of Rajput (1980) and photothermal and relative temperature disparity (RTD) unit was calculated by using the formula of Major et al., (1975) for different phenophases of wheat [viz. Crown root initiation (CRI), tillering (TL), booting (BT), anthesis (AT), milking (ML), dough stage (DS) and physiological maturity (PM)].

\[
\text{GDD} = \sum_{i=1}^{n} \left[\frac{T_{\text{max}} + T_{\text{min}}}{2} - T_{\text{b}} \right]
\]

Where

- \(T_{\text{max}} \) = Maximum Temperature (°C)
- \(T_{\text{min}} \) = Minimum Temperature (°C)
- \(T_{\text{b}} \) = Base Temperature

\[
\text{HTU} = \sum_{i=1}^{n} \text{GDD} \times \text{SSH}
\]

\[
\text{PTU} = \sum_{i=1}^{n} \text{GDD} \times \text{Daylength}
\]

\[
\text{RTD} = \sum_{i=1}^{n} \frac{T_{\text{max}} - T_{\text{min}}}{T_{\text{max}}} \times 100
\]

\[
\text{PTI} = \text{GDD} \div \text{Growing days}
\]
GDD	Growing Degree Days (°C day)
HTU | Heliothermal Units (°C day)
PTU | Photothermal Units (°C day)
RTD | Relative Temperature Disparity
PTI | Photothermal index (°C day)
Tmax | Maximum temperature (°C)
Tmin | Minimum temperature (°C)
Tb | Base temperature (°C)
SSH | Bright sunshine hours (hrs/day)

Results and Discussion

Growing degree day (GDD)

The results were revealed that the agrometeorological indices i.e. growing degree day (GDD) from date of CRI to physiological maturity (PM) accounted higher with \(I_1 \) (CRI, TL, BT, FL, ML, DS) than \(I_4 \) (0.8IW: CPE) irrigation level while lowest GDD observed when crop irrigated with \(I_2 \) (0.4 IW: CPE) and \(I_3 \) (0.6 IW: CPE) irrigation level. Moreover from anthesis to physiological maturity higher GDD were recorded with \(I_1 \) irrigation level than the rest of treatments. At physiological maturity of the crop highest GDD (3532 °C day) was accounted with \(I_1 \) irrigation level than \(I_4 \) (3500 °C day) while lowest GDD were recorded in case of \(I_2 \) (3168 °C day) irrigation level (Table 1).

The different irrigation application during critical phenophases was very much influencing on grain size and its comparative economical weight along with boldness in size of grain in \(I_1 \) irrigation level treatment. The regular irrigation applied treatment (II) were observed the vigorous plant with dark green in colour with quite higher leaf area index as well chlorophyll contain in the leaves and less reflectivity of PAR wave length at advance phases was observed in \(I_1 \). In the Table 1 showed the various phenophases attained the degree day. The higher GDD was observed at physiological maturity stage in all the irrigation levels.

Heliothermal units (HTU)

Heliothermal units (HTU) were gradually increased from CRI to physiological maturity in all the irrigation level. During the period of study among all the irrigation level maximum HTU was recorded with \(I_1 \) (CRI, TL, BT, FL, ML, DS) irrigation level 32759 °C day while the lowest HTU were recorded (29563 °C day) in case of irrigation level \(I_2 \) (Table 2). The HTU were found at par during different phenophases with all irrigation level. The slandered deviation were observed quite increasing trend from CRI to physiological maturity (PM) in all irrigation levels.

Photothermal units (PTU)

Photothermal units (PTU) from CRI to booting (BT) stage accounted higher with \(I_1 \) (CRI, TL, BT, FL, ML, DS) and \(I_5 \) (1.0 IW: CPE) irrigation level while lowest PTU were recorded with \(I_2 \) (0.4 IW: CPE) irrigation level. From anthesis to physiological maturity higher PTU were recorded with \(I_1 \) than rest of the treatments. At physiological maturity of wheat highest PTU (38652 °C days) with \(I_1 \) irrigation level while the lowest PTU were observed in case of wheat crop \(I_2 \) (34632 °C days) irrigation level. PTU decreased as irrigation level (IW: CPE) decreased (Table 3).
Table 1: Growing degree days (°C day) required for various phenophases of wheat as affected by different irrigation levels

Irrigation levels	Phenophases						
	CRI	TL	BT	AT	ML	SD	PM
I (CRI, TL, BT, FL, ML, DS)	732	1325	1685	2081	2553	3055	3532
I2 (0.4 IW: CPE)	732	1263	1557	2001	2460	2800	3168
I3 (0.6 IW: CPE)	732	1294	1609	2032	2523	2952	3426
I4 (0.8 IW: CPE)	732	1294	1635	2058	2523	3020	3500
I5 (1.0 IW: CPE)	732	1325	1660	2058	2553	3020	3463
Mean	732	1300	1629	2046	2522	2969	3418
S.D.	0.00	25.94	49.29	30.55	37.97	101.79	145.18
C.V.	0.00	0.02	0.03	0.01	0.02	0.03	0.04

Table 2: Heliothermal units (°C day) required for various phenophases of wheat as affected by different irrigation levels

Irrigation levels	Phenophases						
	CRI	TL	BT	AT	ML	SD	PM
I (CRI, TL, BT, FL, ML, DS)	6684	12232	15182	18788	23310	28247	32759
I2 (0.4 IW: CPE)	6684	11678	14255	18064	22401	25748	29563
I3 (0.6 IW: CPE)	6684	11979	14607	18327	23025	27222	31809
I4 (0.8 IW: CPE)	6684	11979	14760	18576	23025	27900	32467
I5 (1.0 IW: CPE)	6684	12232	14945	18576	23310	27900	32140
Mean	6684	12020	14750	18466	23014	27403	31748
S.D.	0.00	229.2	350.1	277.9	371.2	997.3	1271.9
C.V.	0.000	0.019	0.024	0.015	0.016	0.036	0.040
Table 3 Photothermal units (°C day) required for various phenophases of wheat as affected by different irrigation levels

Irrigation levels	Phenophases	CRI	TL	BT	AT	ML	SD	PM
I1 (CRI, TL, BT, FL, ML, DS)		7890	14197	18035	22287	27466	33126	38652
I2 (0.4 IW: CPE)		7890	13534	16661	21424	26435	30231	34632
I3 (0.6 IW: CPE)		7890	13869	17220	21755	27130	31945	37406
I4 (0.8 IW: CPE)		7890	13869	17496	22038	27130	32729	38275
I5 (1.0 IW: CPE)		7890	14197	17763	22063	27466	32729	37841
Mean		36.6	35.0	33.4	31.7	30.8	30.5	30.8
S.D.		0.00	0.09	0.31	0.09	0.01	0.05	0.22

Table 4 Relative temperature disparity (RTD) required for various phenophases of wheat as affected by different irrigation levels

Irrigation levels	Phenophases	CRI	TL	BT	AT	ML	SD	PM
I1 (CRI, TL, BT, FL, ML, DS)		47.8	55.7	59.5	63.4	62.1	61.9	59.3
I2 (0.4 IW: CPE)		47.8	55.3	60.8	61.6	62.5	62.1	61.1
I3 (0.6 IW: CPE)		47.8	55.7	60.4	63.0	63.3	60.9	61.7
I4 (0.8 IW: CPE)		47.8	55.7	59.9	62.3	62.9	60.5	59.3
I5 (1.0 IW: CPE)		47.8	55.7	59.9	62.8	62.7	61.7	59.5
Mean		47.8	55.6	60.1	62.6	62.7	61.4	60.2
S.D.		0.00	0.18	0.50	0.69	0.45	0.69	1.14
C.V.		0.00	0.00	0.01	0.01	0.01	0.01	0.02
Table 5. Photo thermal index (°C day) required for various phenophases of wheat as affected by different irrigation levels

Irrigation levels	Phenophases						
	CRI	TL	BT	AT	ML	SD	PM
I₁(CRI, TL, BT, FL, ML, DS)	36.6	34.9	33.0	31.5	30.8	30.6	31.0
I₂ (0.4 IW: CPE)	36.6	35.1	33.8	31.8	30.8	30.4	30.5
I₃ (0.6 IW: CPE)	36.6	35.0	33.5	31.8	30.8	30.4	30.9
I₄ (0.8IW: CPE)	36.6	35.0	33.4	31.7	30.8	30.5	31.0
I₅ (1.0 IW: CPE)	36.6	34.9	33.2	31.7	30.8	30.5	30.9
Mean	36.6	35.0	33.4	31.7	30.8	30.5	30.8
S.D.	0.00	0.09	0.31	0.09	0.01	0.05	0.22
C.V.	0.00	0.00	0.01	0.00	0.00	0.00	0.01

Relative temperature disparity (RTD)

The effect of relative temperature disparity (RTD) was found no significant with different irrigation levels. Among irrigation levels values of RTD were increased from CRI to anthesis (AT) thereafter decreased up to physiological of crop but standard deviation higher at PM. Irrigation level I₃ and I₂ was accredited more RTD values than I₅, I₄ and I₁ irrigation level during the study period. The value of RTD increases with growing of the crop up to vegetative stage thereafter reduction in RTD was observed with physiological maturity of the crop; it might be due to lower value of night temperature and quite increased the day temperature. The high values of RTD were signal of higher mean temperature and comparatively low mean temperature (Table 4).

Photo thermal index (PTI)

Photo thermal index (PTI) for consecutive phenophases was computed and presented in table 5. PTI is expressed as degree days per growth day (Sastry and Chakravartty, 1982). Photo thermal index gradually decreased from emergence to physiological maturity (Kingra and Kaur 2012). Among the irrigation level the highest PTI value was found for I₁ (CRI, TL, BT, FL, ML, DS) and I₄ (0.8IW: CPE) and lowest value for I₂ (Table 5).

It was concludes that I₁ (CRI, TL, BT, FL, ML, DS) irrigation level was recorded maximum GDD, HTU, PTU and PTI as compare to other irrigation levels for wheat crop. Delayed irrigation application reduced the wheat production. So amount and time of irrigation water should be kept in mind for higher yield. I₁ irrigation level proved to be beneficial for farmers to keep good harvest. The potential yield of any variety can attain where provided the efficient irrigations at critical growth stages without the situation of stress at Anand conditions.

References

Anonymous. 2016. Progress report of all India coordinated wheat and barley
improvement project 2015-16, Director’s report ed. G P Singh, ICAR-Indian institute of wheat and barley research, Karnal, India, p 96.
Chauhan, C.P.S., Singh, R.B. and Gupta, S.K. 2008. Supplemental irrigation of wheat with saline water. *Agric. Water Manage.*, 95: 253-258.
IPCC. 2007. Parry, M.L., Canziani, O.F., Palutikof, P.J., Van der Linden P. and Hanson, C.E. (Eds.). *Climate change: Impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change*. Cambridge University Press. Cambridge, UK, 976pp.
Kahlown and Azam 2002. Individual and combined effect of water logging and salinity on crop yields in the Indus basin. *J. Int. Comm. Irrig. Drain.*, 51(4): 329-338.
Kalra, N. 2008. Effect of increasing temperature on yield of some winter crops in North West India. *Curr. Sci.*, 94(1): 82-88.
Kingra, P.K. and Kaur, Prabhjyot. 2012. Effect of dates of sowing on thermal utilisation and heat use efficiency of groundnut cultivars in central Punjab. *J. Agril. Physics*, 12(1): 54-62.
Rajput, R.P. 1980. Response of Soybean crop to climatic and soil environments. Ph.D. Thesis, IARI, New Delhi, India.
Ramteke, S.D., Chetti, M.B. and Salimath, P.M. 1996. Heat unit requirement of chickpea genotypes for various phenological stages during kharif and rabi seasons, *Annals of Plant Physiol*, 10(2): 176-181.
Rao, V.U.M., Singh, D. and Singh, R. 1999. Heat use efficiency of winter crops in Haryana, *J. Agrometeorol.*, 1(2): 143-148.
Sastry, P.S.N. and Chakravarty, N.V.K. 1982. Energy summation indices for wheat crop in India. *Agri. Meteorol.*, 27: 45-48.
Wang, X., Cai, J., Jiang, D., Liu, F., Dai, T. and Cao, V. 2011. Pre-anthesis high-temperature acclimation alleviates damage to the flag leaf caused by post-anthesis heat stress in wheat. *J. Plant Physiol.*, 168(6): 585-593.
You, L., Rosegrant, M.W., Wood, S. and Sun, D. 2009. Impact of growing season temperature on wheat productivity in China. *Agri. Meteorol.*, 149: 1009-1014.