A Validated UPLC-MS/MS Multi-mycotoxin Method for Nuts and Cereals for the Official Control in Cyprus within the EU Requirements

Demetris Kafouris*, Maria Christofidou, Markela Christodoulou, Eftychia Christou and Eleni Ioannou-Kakouri
State General Laboratory, Ministry of Health, Kimonos 44, 1451 Nicosia, Cyprus

Abstract

The validation of a rapid, reliable and sensitive method for the simultaneous determination of Aflatoxins (AFB1, AFB2, AFG1, AFG2), Ochratoxin A, Zearalenone, Deoxynivalenol, Fumonisins B1 and B2, T-2 and HT-2 toxins, in nuts (peanuts, pistachio and almonds) and cereals (maize and wheat) is reported. The method was developed and validated to fulfill the requirements of the official control of mycotoxins according to EU legislation. This method is based on a single extraction step using an acetonitrile/water mixture followed by the analysis of the diluted crude extract using ultra high performance liquid chromatography with tandem mass spectrometry (UPLC-MS/MS). The MS/MS detection was carried out using an electro spray-ionization interface (ESI) in positive ion mode. Matrix-matched calibration was used for the quantification of the mycotoxins, because of the absence of further clean up steps that reduce suppression/enhancement matrix effects. The method performance characteristics were determined after spiking blank samples on multiple levels. The mean recoveries of mycotoxins in spiked nuts ranged from 74.4% to 131.7%, while in cereals ranged from 52.8% to 113.9%. Relative standard deviations were lower than 20.4% for all target mycotoxins. Limits of detection and quantification for nuts and cereals ranged 0.08-30.0 and 0.25-99.0 μg/Kg, respectively.

Keywords: Multicmycotoxin analysis; UPLC-MS/MS; Nuts; Cereals; Aflatoxins; Ochratoxin A, Zearalenone; Deoxynivalenol; Fumonisins; T-2 toxin; HT-2 Toxin

Introduction

Mycotoxins are natural chemical contaminants produced as toxic secondary metabolites by some fungal species such as Aspergillus, Penicillium and Fusarium. Mycotoxin formation is affected by several biological factors, by harvesting, storage and processing conditions, insect damage in agricultural crops and finally by climate changes (temperature, humidity) [1,2]. Consumption of food and feed contaminated with mycotoxins can cause severe effects on animal and human health, from allergic responses to cancer and death. Due to their high occurrence, the most common and widely investigated mycotoxins in food and feed, regulated by the European Union legislation [3,4] are: Aflatoxins (AFB1, AFB2, AFG1, AFG2), Ochratoxin A (OTA), trichotheccenes [Deoxynivalenol (DON), T-2 and HT-2 toxins], Fumonisins (FB1, FB2) and Zearalenone (ZON) [5-7]. AFs are primarily produced by Aspergillus flavus and Aspergillus parasiticus and are among the most carcinogenic substances known. AFs are significant in nuts, maize and cereal grains [1,8]. OTA has been found in cereals (wheat, barley, oats and maize), spices and dried fruits and is primarily nephrotoxic and considered to be a possible human carcinogen. OTA is produced by Aspergillus ochraceus, Penicillium verrucosum and Penicillium viridicatum. Fumonisins, trichothecenes and ZON are produced by Fusarium species. These mycotoxins are mostly found in cereals, especially in maize [1,8]. Fumonisins have cancer promoting activity and mostly responsible for esophageal carcinoma. ZON can cause oestrogenic effects such as infertility, abortion and cervical cancer. Trichothecenes are related with fatal and chronic toxicoses. They inhibit DNA and protein synthesis, and they are responsible for outbreaks of acute diseases of the digestive system such as nausea, vomiting, diarrhea, dizziness and headache [1,7].

Several analytical (chemical and biochemical) methods have been developed for the determination of individual mycotoxins after immunoaffinity column clean-up [9-15]. Chromatographic methods commonly used for the quantitative determination of mycotoxins in foodstuffs includes thin layer chromatography (TLC) [16], high performance liquid chromatography (HPLC) coupled with ultraviolet (UV), photo diode array (PDA), fluorescence detectors (FLD) or mass spectrometry (MS), and gas chromatography (GC) coupled with electron capture (ECD), flame ionization (FID) or MS detectors [17]. Due to the high toxicity and occurrence of mycotoxins, rapid and reliable screening methods need to be developed for their identification and quantification in foodstuff in order to ensure safety and compliance with the legislation.

For the past years, multi-target methods for the simultaneous detection and quantification of different, co-occurring mycotoxins have been developed to replace the single analyte methods. Most of these methods are based on the combination of high- or ultra-high-performance liquid chromatography with tandem [18-21] or high-resolution [22,23] mass spectrometry. A major advantage of LC-MS-based multi-target methods is the elimination of the need for sample derivatization, in addition with the high selectivity and sensitivity. Furthermore, such multi-target methods are suitable for the analysis of highly variable mycotoxin concentrations. Mycotoxins present a great diversity in their physicochemical properties, therefore the optimization of an effective and efficient extraction procedure is of great importance. Mixtures of water with high amounts of methanol or acetonitrile (>70 %) are appropriate as extraction solvents for most mycotoxins. However, for fumonisins, higher extraction recoveries are achieved when the water proportion is increased and/or the pH of the solvent is decreased [19]. For the cleanup, multi-target methods use simple “dilute-and-shoot” approaches [19-20,24,25], solid phase extraction [21,26,27], immunoaffinity columns [28,29] and, more recently QuEChERS methodology (Quick, Easy, Cheap, Effective, Reliable).

Received April 15, 2015; Accepted May 14, 2015; Published May 21, 2015

Citation: Kafouris D, Christofidou M, Christodoulou M, Christou E, Ioannou-Kakouri E (2015) A Validated UPLC-MS/MS Multi-mycotoxin Method for Nuts and Cereals for the Official Control in Cyprus within the EU Requirements. J Food Process Technol 6: 464. doi:10.4172/2157-7110.1000464

Copyright: © 2015 Kafouris D, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Rugged and Safe) [23,29]. However, multi-analyte methods with very simple sample preparation are leading to matrix effects which have to be considered for the quantification. In some cases these multi target methods are used just for semiquantitative screening purposes, due to the fact that such methods require extensive validation which is time- and cost-consuming.

In Cyprus, the occurrence of AFs, O TA, DON, T-2, HT-2, FB1, FB2, and ZON in locally produced and imported foodstuffs were monitored and controlled systematically and effectively, using single analyte methods with immunosaffinity column clean up [30-32] since 1990. The aim of this study was to develop and validate a simple, fast UPLC-MS/MS multianalyte method based on a single extraction step without any clean up steps for the simultaneous determination of 11 mycotoxins. The method was validated to fulfil the requirements for the official control of mycotoxins according to the relevant EU legislation [3,33,34].

Materials and Methods

Samples and sampling plan

Samples of nuts (peanuts, almonds and pistachio) and cereals (wheat and maize) were collected at critical control points (import, primary storage and market) by the Competent Authority (Health Services of Ministry of Health of Cyprus) according to a sampling plan, within the multiannual control plans. It has preventing nature in order to prohibit unfit products entering the Cyprus and EU market and fulfills the requirements of the relevant EU legislation [33-36]. This sampling plan is based on the categorization and prioritization of the risk i.e. known safety and violation problems, toxicity or severity of risks, increased consumption, especially by high risk or vulnerable population groups (e.g. children). From each lot (15000-40000 Kg) of imported nuts, three aggregated samples (1-10 Kg) are collected and the laboratory sample is collected from the market. The laboratory sample was analysed as slurry, which was prepared with the homogenization of the sample with the appropriate amount of water in room temperature. Homogenization was done using a high shear mixer, Silverson EX, producing a slurry with nutrient pieces of approximately 2-3 mm. Peanuts were prepared as 1 part sample to 1 part water, whilst almonds and pistachios were prepared as 1 part sample to 1.5 parts water, and was placed in the refrigerator until analysis. The concentration of the stock solution was measured using a UPLC-MS/MS system (Agilent, USA) and was directly injected into the UPLC-MS/MS system. The same extraction method described above was used for the preparation of ground samples, however in this case 25 g were mixed with 100 ml of a 1:1.5 w/v slurry. The solution was filtered using a 0.45μm membrane syringe filter (Agilent, USA) and was directly injected into the UPLC-MS/MS system. The extraction method was based on an earlier published study [20] and was carried out as follows: 40g slurry (1:1 w/v) or 50g slurry (1:1.5 w/v) were mixed with 60 ml acetonitrile, and the mixture was shaken for 2 h in a horizontal shaker. After filtration, 1 ml of the extract was taken and diluted in 3 ml of water (in the case of 1:1 w/v slurry) or 2.55 ml (in the case of 1:1.5 w/v slurry). The solution was filtered using a 0.45μm membrane syringe filter (Agilent, USA) and was directly injected into the UPLC-MS/MS system. The same extraction method described above was used for the preparation of ground samples, however in this case 25 g were mixed with 100 ml of a mixture of acetonitrile/water (70:30 v/v).

Instrumentation

The analysis of the 11 mycotoxins was carried out using a UPLC system (Agility I-Class, Waters, Milford, MA, USA) coupled with a triple quadrupole mass spectrometer (Xevo TQ-S, Waters Micromass, Manchester, UK) using an orthogonal Z-spray-electrospray interface (ESI). The chromatographic separation was attained using an Acquity UPLC BEH C18 analytical column (2.1 mm × 100 mm, 1.7 μm particle size, Waters), at a flow rate of 0.4 mL min⁻¹, with an injection volume of 10 μL.

Preparation of standard solutions

Table 1:

Mycotoxins	RT (min)	Quantitation transition *	Confirmation transition *	Cone voltage (V)
Aflatoxin B1	3.10	313.2 > 285.1	313.2 > 241.2	65
Aflatoxin B2	2.91	315.1 > 287.2	315.1 > 259.1	75
Aflatoxin G1	2.90	329.1 > 243.2	329.1 > 311.1	34
Aflatoxin G2	2.71	331.1 > 313.1	331.1 > 169.1	14
Ochratoxin A	4.30	404.1 > 239.0	404.1 > 358.1	14
Fumonisin B1	2.88	723.3 > 352.4	723.3 > 334.4	15
Fumonisin B2	3.38	706.3 > 336.4	706.3 > 318.4	17
Zearalenone	4.30	319.2 > 283.2	2319.2 > 187.1	25
Deoxynivalenol	1.36	297.2 > 249.1	297.2 > 231.1	22
T-2 toxin	4.12	467.2 > 305.2	467.2 > 245.2	18
HT-2 toxin	3.43	425.2 > 263.2	425.2 > 245.2	22

*Collision energies (V) are given in the brackets

Table 1: Retention time (RT) and UPLC-MS/MS parameters under optimized conditions.
Method validation

Method validation was carried out for the 11 mycotoxins in nuts (peanuts, almonds, pistachio) and cereals (maize, wheat), according to the requirements of the accreditation standard EN ISO/IEC 17025:2005 and the performance criteria of the Commission Regulation (EC) 401/2006, by analyzing six or more replicates of spiked samples of the matrices mentioned above. The method applies external quantification. Linearity of the method was evaluated by taking at least five matrix-matched standard solutions which were analyzed in duplicate in the following ranges: 0.01-1 ng mL⁻¹ for AFs, 0.01-2 ng mL⁻¹ for OTA, 0.25-40 ng mL⁻¹ for FB₁, FB₂ and ZON, 0.3-100 ng mL⁻¹ for DON, T-2 and HT-2. Recoveries were determined by analyzing the spiked blank samples at several spiking levels as shown in Tables 2-6. Intraday precision (expressed as relative standard deviation in %) was calculated from the results generated by the repeatability conditions, whilst interday precision was calculated from the results generated by the reproducibility conditions. The limit of detection (LOD) and limit of quantification (LOQ) were estimated by analyzing the spiked samples at the lowest concentration. The whole method is already accredited by the Greek Accreditation Body, ESYD. The laboratory in addition to internal quality control using spiked samples, also applies external quality control by successful participation in a proficiency test (PT) organized by FAPAS. The results of the participation in FAPAS PT 04246 (maize) are shown below: AFB₁ (z-score: 0.8), OTA (z-score: 0.2), DON (z-score: 0.4), ZON (z-score: 0.5), FB₁ (z-score: -0.1), FB₂ (z-score: 1.3), Total FBs (z-score: 0.7), T-2 (z-score: 0.1), HT-2 (z-score: -1.2) and SUM T-2 / HT-2 (z-score: -0.4).

Results and Discussion

UPLC-MS/MS optimization

Mixtures of two different solvents namely A (water + formic acid (0.1%)) and B (acetonitrile + formic acid (0.1%)) at different flow rates (0.2-0.4 mL min⁻¹) were used for the elution of 11 mycotoxins in UPLC-MS/MS. The best chromatograms for all mycotoxins with the lowest noise were obtained using a mobile phase at a flow rate of 0.4 mL min⁻¹ with the gradient elution program mentioned above. Full scan and MS/MS spectra of the analytes were obtained from the infusion.
The evaluation of the chromatographic process resulted in the determination of the most abundant product ion for each compound for quantification, while the second least abundant transition (target or confirmatory) ion was used for identification by calculating the ratio obtained for the eleven mycotoxins in pistachio.

Table 4: Average recovery values (R), relative standard deviation (RSD), LODs and LOQs (μg Kg⁻¹) obtained for the eleven mycotoxins in pistachio.

Mycotoxins	Conc. Range (μg Kg⁻¹)	Repeatability a R ± RSDr (%)	Reproducibility a R ± RSDR (%)	LOD (μg Kg⁻¹)	LOQ (μg Kg⁻¹)
Aflatoxin B₁	0.25-16.0	98.8 ± 5.7 (4.0), 98.7 ± 2.5 (8.0)	0.18 ± 2.4 (10.0)	0.15	0.49
Aflatoxin B₂	0.25-16.0	91.2 ± 7.7 (4.0), 88.8 ± 5.5 (8.0)	0.14 ± 2.4 (10.0)	0.14	0.45
Aflatoxin G₁	0.25-16.0	100.7 ± 3.5 (4.0), 96.4 ± 2.3 (8.0)	0.15 ± 2.4 (10.0)	0.15	0.49
Aflatoxin G₂	0.25-16.0	96.0 ± 6.3 (4.0), 97.7 ± 6.3 (8.0)	0.17 ± 2.4 (10.0)	0.17	0.56
Ochratoxin A	0.3-32.0	112.2 ± 10.5 (2.5), 108.6 ± 7.2 (5.0)	0.15 ± 2.4 (10.0)	0.15	0.49
Fumonisin B₁	5.0-640	118.1 ± 5.3 (250), 122.6 ± 1.8 (500)	2 ± 2.4 (10.0)	2	8
Fumonisin B₂	5.0-640	131.7 ± 3.2 (250), 123.5 ± 8.5 (500)	3 ± 2.4 (10.0)	3	10
Zearalenol	5.0-640	97.4 ± 4.1 (350), 101.7 ± 7.0 (750)	3.1 ± 2.4 (10.0)	3.1	10.2
Deoxynivalenol	12.0-800	100.5 ± 5.0 (250), 100.2 ± 2.3 (500)	7.1 ± 2.4 (10.0)	7.1	23.3
T-2 toxin	12.0-800	108.4 ± 8.2 (500), 96.8 ± 9.6 (100)	7.5 ± 2.4 (10.0)	7.5	24.7
HT-2 toxin	12.0-800	107.4 ± 1.8 (500), 104.5 ± 3.4 (100)	6.3 ± 2.4 (10.0)	6.3	20.7

a Spiking levels (μg Kg⁻¹) are given in the brackets

Table 5: Average recovery values (R), relative standard deviation (RSD), LODs and LOQs (μg Kg⁻¹) obtained for the eleven mycotoxins in peanuts.

Mycotoxins	Conc. Range (μg Kg⁻¹)	Repeatability a R ± RSDr (%)	Reproducibility a R ± RSDR (%)	LOD (μg Kg⁻¹)	LOQ (μg Kg⁻¹)
Aflatoxin B₁	0.25-16.0	100.8 ± 5.0 (50.0), 98.9 ± 4.3 (300.0)	15.3 ± 2.4 (10.0)	15.3	50.4
Aflatoxin B₂	0.25-16.0	98.9 ± 6.6 (5.0), 104.3 ± 2.6 (10.0)	11.7 ± 2.4 (10.0)	11.7	38
Ochratoxin A	0.3-32.0	112.2 ± 10.5 (2.5), 108.6 ± 7.2 (5.0)	0.15 ± 2.4 (10.0)	0.15	0.49
Fumonisin B₁	5.0-640	118.1 ± 5.3 (250), 122.6 ± 1.8 (500)	2 ± 2.4 (10.0)	2	8
Fumonisin B₂	5.0-640	131.7 ± 3.2 (250), 123.5 ± 8.5 (500)	3 ± 2.4 (10.0)	3	10
Zearalenol	5.0-640	97.4 ± 4.1 (350), 101.7 ± 7.0 (750)	3.1 ± 2.4 (10.0)	3.1	10.2
Deoxynivalenol	12.0-800	100.5 ± 5.0 (250), 100.2 ± 2.3 (500)	7.1 ± 2.4 (10.0)	7.1	23.3
T-2 toxin	12.0-800	108.4 ± 8.2 (500), 96.8 ± 9.6 (100)	7.5 ± 2.4 (10.0)	7.5	24.7
HT-2 toxin	12.0-800	107.4 ± 1.8 (500), 104.5 ± 3.4 (100)	6.3 ± 2.4 (10.0)	6.3	20.7

a Spiking levels (μg Kg⁻¹) are given in the brackets

Table 6: Average recovery values (R), relative standard deviation (RSD), LODs and LOQs (μg Kg⁻¹) obtained for the eleven mycotoxins in almonds.

Mycotoxins	Conc. Range (μg Kg⁻¹)	Repeatability a R ± RSDr (%)	Reproducibility a R ± RSDR (%)	LOD (μg Kg⁻¹)	LOQ (μg Kg⁻¹)
Aflatoxin B₁	0.5-16.0	88.3 ± 6.8 (0.8), 97.4 ± 3.3 (4.0)	0.09 ± 2.4 (10.0)	0.09	0.32
Aflatoxin B₂	0.5-16.0	96.3 ± 8.2 (0.8), 107.2 ± 3.4 (4.0)	0.25 ± 2.4 (10.0)	0.25	0.81
Ochratoxin A	0.2-32.0	94.3 ± 12.5 (0.5)	0.15 ± 2.4 (10.0)	0.15	0.5
Fumonisin B₁	10.0-640	79.1 ± 2.6 (20.0)	n.a.	4.8	15.8
Fumonisin B₂	10.0-640	92.7 ± 3.0 (20.0)	n.a.	5.6	18.5
Zearalenone	10.0-640	101.8 ± 3.6 (8.0)	0.25 ± 2.4 (10.0)	0.25	0.81
Deoxynivalenol	12.0-800	101.8 ± 4.9 (2.0)	0.15 ± 2.4 (10.0)	0.15	0.5
T-2 toxin	12.0-800	103.1 ± 3.7 (8.0)	0.23 ± 2.4 (10.0)	0.23	0.77
HT-2 toxin	12.0-800	103.1 ± 3.7 (8.0)	0.23 ± 2.4 (10.0)	0.23	0.77

a Spiking levels (μg Kg⁻¹) are given in the brackets

The evaluation of the chromatographic process resulted in the reduction of the analysis time, achieving a detection of all mycotoxins in less than 5 min. However, it was not possible to avoid the co-elution of individual 1 μg mL⁻¹ acetonitrile solutions (without matrix) of each compound at a flow rate of 20 μL min⁻¹ combined with the mobile phase at a flow rate of 0.09 mL min⁻¹. Experiments were carried out with ESI ionization in positive mode due to the satisfactory fragmentation patterns of all mycotoxins. Full-scan mass spectra were acquired in order to obtain at least one precursor ion and the optimum cone voltage. Furthermore, product ion scan at different collision energies was carried out to determine the most abundant product ion for each compound for quantification and identification purposes, according to the European Commission (EC) criteria. In the MRM mode, the transition of the most abundant product transition (quantitative) ion was selected for quantification, while the second least abundant transition (target or confirmatory) ion was used for identification by calculating the ratio obtained for the eleven mycotoxins in pistachio.
Method validation

Method validation was performed in terms of selectivity, linearity, accuracy, repeatability, reproducibility, LODs and LOQs. The presence of matrix components can affect the ionisation of the target compounds, reducing or enhancing the response compared with the pure compounds dissolved in solvents. Furthermore, this matrix effect is strongly depended on the mycotoxin and the matrix, and consequently for the analysis of different mycotoxins in several matrices, one matrix-matched calibration should be prepared for each matrix in order to obtain accurate results. Matrix-matched standards were prepared by spiking blank extract samples at different concentration levels. Peak area was selected as peak response and good linearity was found for all the mycotoxins, with the determination coefficients being higher than 0.98 for low concentration levels and higher than 0.99 for high concentration levels.

Accuracy and precision were estimated by means of recovery experiments at different spiking levels. The method was validated for the five food matrices selected in this work (maize, wheat, almonds, peanuts, and pistachio), by spiking blank samples at different concentration levels. The results obtained were satisfactory in all five matrices, with most of the recoveries being between 70-110% and relative standard deviation (RSD) below 20% (Tables 2-6), that fulfils the requirements established by the European Union legislation [33]. In particular, the mean recoveries of mycotoxins were within the acceptable recovery range, which depends on the concentration of the analyte. According to Commission Regulation (EC) No 401/2006, the acceptable recovery values for AFs and OTA range between 50-120%, for fumonisins, DON and ZON range between 60-120% and for T-2 and HT-2 range between 60-130%. Repeatability and reproducibility for recovery studies were evaluated at one or more concentration levels, by performing six replicates for each level (Tables 2-6). It was observed that repeatability (RSDr) and reproducibility (RSD R) were much lower than 20% for all the mycotoxins and matrices evaluated, the exception being T-2 toxin in almonds that had an RSD value of 20.4%. The above results were similar to those of other studies in the literature [8,18,19,25,27,29] obtained using different sample preparation procedures and instrumentation.

The lowest level validated for each compound with satisfactory precision and recovery was used for the estimation of LOD and LOQ.

Figure 1: UPLC-MS/MS chromatograms of a matrix-matched maize standard solution of mycotoxins at AF1 (1 ng mL⁻¹), OTA (2 ng mL⁻¹), DON, T-2, HT-2 (50 ng mL⁻¹) and ZON, FB1, FB2 (20 ng mL⁻¹).

Figure 2: UPLC-MS/MS chromatogram for the eleven mycotoxins in a spiked wheat sample. Spiking level in brackets.
multiple analysis of a blank sample containing a very low concentration of DON. In particular, the lowest LODs and LOQs obtained for AFs and OTA ranged between 0.1 and 0.8 µg Kg⁻¹ for all matrices, whereas higher values were achieved for the other mycotoxins, where LOD and LOQ values ranged from 1.5-30.0 and 5.0-99.0 µg Kg⁻¹, respectively. In all cases, LOQs were always far below (10 times or more) the maximum residue limits of the European regulations [3,4], indicating the suitability of the method for the determination of trace concentration of these compounds. Tables 2-6 show the LODs and LOQs estimated for all eleven mycotoxins in the five matrices.

The selectivity of the method was evaluated by the analysis of blank samples. The absence of any chromatographic signal at the same retention time as the target compounds indicated the absence of chemical or matrix interferences. Identification of the mycotoxins was carried out by the comparison of the ion ratios of the two transitions (RTWs), defined as the retention time ± 5%, and confirmation was carried out by the comparison of the ion ratios of the two transitions (quantification and confirmation), with those obtained using matrix-matched standards.

Conclusions

A selective, sensitive, rapid and reliable multi-target method involving a liquid-solid extraction, followed by the dilution of the crude extract and analysis using an ultra high performance liquid chromatography coupled to tandem mass spectrometry with triple quadruple was employed for the determination of AFs, OTA, ZON, DON, FB₁, FB₂, T-2 and HT-2 toxins. The dilution of the extract was necessary for the reduction of matrix-effects, whereas matrix-matched calibration was used to correct the remaining matrix effects. Method performance characteristics were determined after spiking blank samples of nuts and cereals on multiple levels. The mean recoveries of mycotoxins in spiked nuts and cereals, as well as the relative standard deviations and limits of detection and quantification were in agreement with the requirements of the relevant EU legislation for official control of mycotoxins.

Acknowledgments

The authors gratefully acknowledge the Cyprus Government and Ministry of Health for financial support. The director of State General Laboratory is also thanked for support.

References

1. Milani JM (2013) Ecological conditions affecting mycotoxin production in cereals: a review. Veterinarni Medicina 58: 405-411.
2. Van Der Fels-Klerx HJ, Klensdal S, Hietaniemi V, Lindblad M, Ioannou-Kakouri E, et al. (2012) Mycotoxin contamination of cereal grain commodities in relation to climate in North West Europe. Food Addit. Contam. Part A 29: 1581-1592.
3. Commission Regulation (EC) (2006) setting maximum levels for certain contaminants in foodstuffs.
4. Commission Recommendation (EC) (2013) On the presence of T-2 and HT-2 toxin in cereals and cereal products.
5. Varga E, Glauer T, Berthiller F, Kraka R, Schuhmacher R, et al. (2013) Development and validation of a (semi-)quantitive UHPLC-MS/MS method for the determination of 191 mycotoxins and other fungal metabolites in almonds, hazelnuts, peanuts and pistachios. Anal Bioanal Chem 405: 5087-5104.
6. Schatzmayr G, Streil E (2013) Global occurrence of mycotoxins in the food and feed chain: facts and figures. World Mycotoxin Journal 6: 213-222.
7. Afsah-Hejl J, Jinap S, Hajej P, Radu S, Shakibazadeh S (2013) A review on mycotoxins in food and feed: Malaysia case study. Comprehensive Reviews in Food Science and Food Safety 12: 629-651.
8. Martos PA, Thompson W, Diaz GJ (2010) Multiresidue mycotoxin analysis in wheat, barley, oats, rye and maize grain by high-performance liquid chromatography-tandem mass spectrometry. World Mycotoxin Journal 3: 205-223.
9. Official Methods of Analysis (2010) 18th Ed., AOAC International, USA.
10. Cano-Sanco G, Sanchez V, Marin S, Ramos AJ (2013) Occurrence and exposure assessment of aflatoxins in Catalonia (Spain). Food and Chemical Toxicology 51: 188-193.
11. Majeed S, Iqbal M, Rafique Asi M, Zafar Iqbal S (2013) Aflatoxins and ochratoxin A contamination in rice, corn and corn products from Punjab, Pakistan. J. Cereal Sci. 58: 446-450.
12. Li R, Wang Z, Zhou T, Yang D, Wang Q, et al. (2014) Occurrence of four mycotoxins in cereal oil products in Yangtze Delta region of China and their safety risks. Food Control 35: 117-122.
13. Stroka J, Otterdijk R, Ankam E (2000) Immunofluorimetry column clean-up prior to thin layer chromatography for the determination of aflatoxins in various food matrices. J Chromatogr A 904: 251-256.
14. Sheppard GS, Berthiller F, Burdasal PA, Crews C, Jonker MA, et al. (2012) Developments in mycotoxin analysis: an update for 2010-2011. World Mycotoxin Journal 5: 3-30.
15. Soleimany F, Jinap S, Faridah A, Khatib A (2012) A UPLC-MS/MS for simultaneous determination of aflatoxins, ochratoxin A, zearalenone, DON, fumonisins, T-2 toxins and HT-2 toxins, in cereals. Food Control 25: 647-653.
16. Sulyok M, Berthiller F, Kriska R, Schuhmacher R (2006) Development and validation of a liquid chromatography/tandem mass spectrometric method for the determination of 39 mycotoxins in wheat and maize. Rapid Commun. Mass Spectrom 20: 2649-2659.
17. Spanjer MC, Rensen PM, Scholten JM (2008) LC-MS/MS multi-method for mycotoxins after single extraction, with validation data for peanut, pistachio, wheat, maize, cornflakes, raisins and figs. Food Addit. Contam. Part A 25: 472-489.

18. Mol HGJ, Plaza-Bolanos P, Zomer P, de Rijk TC, Stolker AAM, et al. (2008) Towards a generic extraction method for simultaneous determination of pesticides, mycotoxins, plant toxins, and veterinary drugs in feed and food matrices. Anal Chem 80: 9450-9459.

19. Zachariasova M, Lacina O, Malachova A, Kostelanska M, Poustka J, et al. (2010) Novel approaches in analysis of Fusarium mycotoxins in cereals employing ultra performance liquid chromatography coupled with high resolution mass spectrometry. Anal Chim Acta 662: 51-61.

20. Rupert J, Dzuman Z, Vaclavikova M, Zachariasova M, Soler C, et al. (2012) Analysis of mycotoxins in barley using ultra high liquid chromatography high resolution mass spectrometry: Comparison of efficiency and efficacy of different extraction procedures. Talanta 99: 712-719.

21. Frenich AG, Vidal JLM, Roberfonds R, Aguilar-Luiz M (2009) Simple and high throughput method for the multiclass mycotoxin analysis in cereals and related foods by ultra-high-performance liquid chromatography/tandem mass spectrometry. Food Chem 117: 705-712.

22. Beltrán E, Ibáñez M, Sancho JV, Hernández F (2009) Determination of mycotoxins in different food commodities by ultra-high-pressure liquid chromatography mass spectrometry. Rapid Commun. Mass Spectrom 23: 1801-1809.

23. Cavaliere C, Foglia P, Pastorini E, Sampieri R, Lagana A (2005) Development of a multiresidue method for analysis of major Fusarium mycotoxins in corn meal using liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom 19: 2085-2093.

24. Vaclavikova M, MacMahon S, Zhang K, Begley TH (2013) Application of single immunoaffinity clean-up for simultaneous determination of regulated mycotoxins in cereals and nuts. Talanta 117: 345-351.

25. Liao CD, Lin HY, Chiueh LC, Shih DYF (2011) Simultaneous quantification of aflatoxins, ochratoxin A and zearalenone in cereals by LC-MS/MS. J Food Drug Anal 19: 259-268.

26. Arroyo-Manzanares N, Huertas-Pérez JF, Gámiz-Gracia L, Carcíá-Campana AM (2013) A new approach in sample treatment combined with UPLC-MS/MS for the determination of multiclass mycotoxins in edible nuts and seeds. Talanta 115: 61-67.

27. Ioannou-Kakouri E, Aletrari M, Christou E, Ralli A, Kolios A, et al. (1999) Surveillance and control of aflatoxins B1, B2, G1, and G2 in foodstuffs in the Republic of Cyprus: 1992-1996. J AOAC International 82: 883-892.

28. Ioannou-Kakouri E, Aletrari M, Christou E, Ralli A, Kolios A, et al. (2004) An Overview on Toxigenic Fungi and Mycotoxins in Europe. Springer Netherlands, USA.

29. Ioannou-Kakouri E, Christodoulidou M, Christou E, Constantinidou E (1995) Immunoaffinity column/HPLC determination of Aflatoxin M1 in milk. Food Agric. Immunology 7:131-137.

30. Commission Regulation (EC) (2006) laying down the methods of sampling and analysis for the official control of the levels of mycotoxins in foodstuffs.

31. Commission Regulation (EC) (2004) of the European Parliament and of the Council of 29 April 2004 on official controls performed to ensure the verification of compliance with feed and food law, animal health and animal welfare rules.

32. Commission Regulation (EC) (2009) of July 2009 implementing Regulation (EC) No 882/2004 of the European Parliament and of the Council as regards the increased level of official controls on imports of certain feed and food of non-animal origin and amending Decision 2006/504/EC.

33. Guidance Document for Competent Authorities for the competent authorities for the Control of Compliance with EU Legislation on Aflatoxins (2010) Mycotoxin News letter.

34. Commission Decision 2002/657/EC of 2002. Implementing Council Directive (96/23/EC) concerning the performance of analytical methods and the interpretation of results.

35. MacDonald SJ, Chan D, Bretenon P, Damant A, Wood R (2005) Determination of deoxynivalenol in cereals and cereal products by immunoaffinity column cleanup with liquid chromatography: interlaboratory study. J AOAC International 88: 1197-1204.

36. MacDonald SJ, Anderson S, Breton P, Wood R, Damant A (2005) Determination of zearalenone in barley, maize and wheat flour, polenta, and maize-based baby food by immunoaffinity column cleanup with liquid chromatography: interlaboratory study. J AOAC International 88: 1733-1740.