Tensor principal component analysis via sum-of-squares proofs

Sam Hopkins
Cornell

Jonathan Shi
Cornell

David Steurer
Cornell

COLT – Paris, July 2015
principal component analysis (PCA)

vanilla PCA

- basic data analysis technique
- given noisy pairwise correlation data $A \in \mathbb{R}^{n \times n}$, find direction of maximum empirical variance

 maximize $\langle x, Ax \rangle$ over all unit vectors $x \in \mathbb{R}^n$

- computationally efficient (take x to be top eigenvector of A)

variants of PCA

- restrict to sparse directions (SPARSE PCA) or exploit higher-order correlation data $A \in \mathbb{R}^{n \times n \times \cdots \times n}$ (TENSOR PCA)
- better statistical properties in important applications; huge body of works
- but: computationally challenging (NP-hard in worse case; unclear complexity in stochastic setting)
Tensor Principal Component Analysis

(k, τ)-stochastic model [Montanari-Richard]

given k-order tensor A as below, recover v (approximately)

$$A = τ \cdot v^\otimes k + Z \in \mathbb{R}^{n^k} \text{ with } Z \sim N(0,1)^\otimes k$$

Signal-to-noise ratio

Signal: rank-1 tensor of unit vector $v \in \mathbb{R}^n$

Noise: random tensor

Maximum likelihood estimation (MLE)

maximize $\langle A, x^\otimes k \rangle$ over all unit vectors $x \in \mathbb{R}^n$

$k = 2$: computationally efficient (eigenvalue problem; even in worst case)

$k = 3$: appears to capture difficulty of general k in stochastic model

(also NP-hard in worst case, but no bearing on stochastic model)
\[A = \tau \cdot v \otimes^3 + Z \in \mathbb{R}^{n^3} \text{ with } Z \sim N(0,1) \otimes^3 \]

MLE: maximize \[\langle A, x \otimes^3 \rangle \] over all unit vectors \(x \in \mathbb{R}^n \) (*)

previous results [Montanari-Richard=MRI]

information-theoretic recovery

(*) works as long as \(\tau \geq \tilde{O}(n^{1/2}) \) (tight)

computational recovery

MR algorithm: reshape \(A \) to \(n^2 \)-by-\(n \) matrix; output top right singular vector

theoretical guarantee: algorithm works as long as \(\tau \geq \tilde{O}(n) \)

empirical performance: algorithm works as long as \(\tau \geq \tilde{O}(n^{3/4}) \)

tension: theoretical analysis of MR *tight* in many ways *but* empirical performance *should be predictive* for mathematical truth (average-case problem & large input sizes)
\[A = \tau \cdot v^\otimes 3 + Z \in \mathbb{R}^{n^3} \text{ with } Z \sim N(0,1)^\otimes 3 \]

MLE: maximize \(\langle A, x^\otimes 3 \rangle \) over all unit vectors \(x \in \mathbb{R}^n \) (*)

this work

techniques: sum-of-squares meta-algorithm & proof system; powerful general approach to unsupervised learning
[Barak-Kelner-S.'12+15, Potechin-Meka-Wigderson’15, Barak-Moitra, Ge-Ma, Ma-Wigderson,...]

recovery guarantee: theoretical analysis matches empirical performance of MR, \[\tau \gg n^{3/4} \] — one algorithm very similar to MR

nearly-linear time: informed by theoretical analysis; exploit knowledge about eigenvalues to speed up eigenvector computation

lower bounds: rule out better recovery guarantees by algorithms based on broad set of techniques (deg-4 sum-of-squares proof system)
relaxation & rounding approach

relaxation: tractable (convex) optimization problem associated with (*); optimal value gives upper bound on optimal value of (*)

ounding: transform solution for relaxation to solution for (*) with approximately same objective value

failure of this approach: for \(n^{3/4} \ll \tau \ll n \),
- opt. value of MR relaxation (top singular value of \(A \)) is far from opt. value of (*)
- but (empirically)
 - opt. solution of MR relaxation is close to opt. solution of (*)

→ no rounding analysis possible (in the usual sense)

our explanation (for variant of MR relaxation)
second-order effect in opt. value of relaxation drives recovery
\[A = \tau \cdot v^\otimes 3 + Z \in \mathbb{R}^{n^3} \text{ with } Z \sim N(0,1)^\otimes 3 \]

MLE: maximize \(\langle A, x^\otimes 3 \rangle \) over all unit vectors \(x \in \mathbb{R}^n \) (*)

sum-of-squares upper bounds

warm-up: upper bounds for homogeneous \(n \)-var. deg.-4 polynomial \(p(x) \)

consider affine linear subspace \(H_{p(x)} \) of *matrix representations* of \(p(x) \)

\[
H_{p(x)} \overset{\text{def}}{=} \left\{ P \in \mathbb{R}^{n^2 \times n^2} \left| p(x) = \langle x^\otimes 2, Px^\otimes 2 \rangle \right. \right\}
\]

\[\lambda_{\max}(P) = \max_{\|y\|=1} \langle y, Py \rangle \]

then, \(\max \limits_{\|x\|=1} p(x) \leq \lambda_{\max}(P) \) for every \(P \in H_{p(x)} \)

\(\rightarrow \) find best upper bound \(\lambda_{\max}(P) \) with \(P \in H_{p(x)} \) *(semidefinite programming)*

deg-\(d \) sum-of-squares upper bounds for general polynomial \(p(x) \)

find best upper bound \(\lambda_{\max}(P) \) with

\[
P \in \bigcup_{\text{deg } q(x) \leq d-2} H_{p(x)+q(x) \cdot (\|x\|^2-1)}
\]

run time \(n^{O(d)} \) *(semidefinite programming)*
\(A = \tau \cdot v^\otimes 3 + Z \in \mathbb{R}^{n^3} \) with \(Z \sim N(0,1)^\otimes 3 \)

MLE: maximize \(\langle A, x^\otimes 3 \rangle \) over all unit vectors \(x \in \mathbb{R}^n \) (*)

efficient upper bounds on random polynomials

can show: \(\text{deg-4 sum-of-squares gives upper bound } \tau_0 = \tilde{\Theta}(n)^{3/4} \) for random deg-3 polynomial \(z(x) = \langle Z, x^\otimes 3 \rangle \) over unit sphere

concretely: \(z(x) + \tau_0/2 \cdot (\|x\|^4 - \|x\|^2) \) has matrix representation with \(\lambda_{\text{max}}(\cdot) \leq \tau_0 \)

approach for recovery: for \(\tau \gg \tau_0 \), corresponding matrix representation of \(A \) has top eigenvector determined by signal \(v \) (eig.vec. is close to \(v^\otimes 2 \))

where does upper bound for \(z(x) \) come from?

reshape \(Z \) to \(n^2 \)-by-\(n \) matrix so that \(z(x) = \langle Zx, x^\otimes 2 \rangle \)

tempting but poor Cauchy-Schwarz bound: \(\langle Zx, x^\otimes 2 \rangle \leq \sqrt{\|Zx\|^2 \cdot \|x\|^4} \)

tight Cauchy-Schwarz bound: \(\langle x, Z^T x^\otimes 2 \rangle \leq \sqrt{\|x\|^2 \cdot \|Z^T x^\otimes 2 \|^2} \)

poor matrix representation for \(\|Z^T x^\otimes 2 \|^2 : ZZ^T \) (only rank-\(n \))

best matrix representation for \(= \sum_i \langle x, Z_i x \rangle^2 : \sum_i Z_i \otimes Z_i \)

\(Z_i \in \mathbb{R}^{n \times n} \)

\(i \)-th slice of \(Z \) use matrix Bernstein
\[A = \tau \cdot v \otimes^3 + Z \in \mathbb{R}^{n^3} \text{ with } Z \sim N(0,1) \otimes^3 \]

MLE: maximize \(\langle A, x \otimes^3 \rangle \) over all unit vectors \(x \in \mathbb{R}^n \) (*)

Conclusion

Sum-of-squares gives new perspective on spectral algorithms

Status quo: focus on spectrum of single matrix associated with problem; e.g., data matrix (matrix problems), Laplacian (graph problems)

Sum-of-squares: associate hierarchy of increasingly rich families of matrices with single problem \(\rightarrow \) **better algorithms**

Research directions

Faster algorithms via sum-of-squares

Challenge: size of matrices increases quickly in the hierarchy (albeit poly.)

Upcoming work: techniques to **significantly compress** matrices in higher levels of hierarchy (partial traces) [Hopkins-Schramm-Shi-S.'15]

deg-\(O(\log n) \) sum-of-squares enough for \(\tau \geq \tilde{O}(n)^{1/2} \)? (info.-theory limit)

Thank you!
