Short Paper

Phase variable DNA repeats in *Neisseria gonorrhoeae* influence transcription, translation, and protein sequence variation

Marta A. Zelewska, Madhuri Pulijala, Russell Spencer-Smith, Hiba-Tun-Noor A. Mahmood, Billie Norman, Colin P. Churchward, Alan Calder and Lori A. S. Snyder

School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, UK

Correspondence: Lori A. S. Snyder (l.snyder@kingston.ac.uk)

DOI: 10.1099/mgen.0.000078

There are many types of repeated DNA sequences in the genomes of the species of the genus *Neisseria*, from homopolymeric tracts to tandem repeats of hundreds of bases. Some of these have roles in the phase-variable expression of genes. When a repeat mediates phase variation, reversible switching between tract lengths occurs, which in the species of the genus *Neisseria* most often causes the gene to switch between on and off states through frame shifting of the open reading frame. Changes in repeat tract lengths may also influence the strength of transcription from a promoter. For phenotypes that can be readily observed, such as expression of the surface-expressed Opa proteins or pili, verification that repeats are mediating phase variation is relatively straightforward. For other genes, particularly those where the function has not been identified, gathering evidence of repeat tract changes can be more difficult. Here we present analysis of the repetitive sequences that could mediate phase variation in the *Neisseria gonorrhoeae* strain NCCP11945 genome sequence and compare these results with other gonococcal genome sequences. Evidence is presented for an updated phase-variable gene repertoire in this species, including a class of phase variation that causes amino acid changes at the C-terminus of the protein, not previously described in *N. gonorrhoeae*.

Keywords: gonococcus; phase variation; C-terminal variation; homopolymeric tract; simple sequence repeats.

Data statement: All supporting data, code and protocols have been provided within the article or through supplementary data files.

Data Summary

1. Sequence data for *Neisseria gonorrhoeae* strains investigated are available in GenBank under the following accession numbers: FA1090 (NC_002946.2; url – http://www.ncbi.nlm.nih.gov/nuccore/NC_002946.2); NCCP11945 (NC_011035.1; url – http://www.ncbi.nlm.nih.gov/nuccore/NC_011035.1; & CP001050.1; url – http://www.ncbi.nlm.nih.gov/nuccore/CP001050.1); MS11 (NC_022240.1; url – http://www.ncbi.nlm.nih.gov/nuccore/NC_022240.1); FA19 (NZ_CP012026.1; url – http://www.ncbi.nlm.nih.gov/nuccore/NZ_CP012026.1); FA6140 (NZ_CP012027.1; url – http://www.ncbi.nlm.nih.gov/nuccore/NZ_CP012027.1); 35/02 (NZ_CP012028.1; url – http://www.ncbi.nlm.nih.gov/nuccore/NZ_CP012028.1). These were accessed on the 15th of April 2016 for use in this study.

2. Sequence data were assessed via BLAST interrogation of the nr database restricted to the *N. gonorrhoeae* species (url – http://www.ncbi.nlm.nih.gov/).

3. Genome resequencing data for *N. gonorrhoeae* strain NCCP11945 has been deposited under BioProject PRJNA322254 (url – http://www.ncbi.nlm.nih.gov/bioproject/322254).

4. Genome resequencing data was assessed via Galaxy (url – usegalaxy.org).
Introduction

In Neisseria gonorrhoeae, the causative agent of gonorrhoea, DNA repeats are intimately linked to the biology of the organism. N. gonorrhoeae, and the closely related bacterial species Neisseria meningitidis, undergo phase-variable stochastic switching of gene expression for several surface structures, contributing to antigenic variation and immune evasion as well as niche adaptation in the course of infection (Bhat et al., 1991; Moxon et al., 2006; Carbonnelle et al., 2009; Srikhanta et al., 2009; Omer et al., 2011). Phase variation is mediated by simple sequence repeats associated with genes. In the species of the genus Neisseria the vast majority contain homopolymeric tracts within the coding sequences (Snyder et al., 2001).

Comparative sequence analysis between a single N. gonorrhoeae and several N. meningitidis genome sequences identified over 100 potentially phase-variable genes (Snyder et al., 2001), some of which have later been demonstrated to be phase-variable experimentally (Jordan et al., 2005). Transcriptional and translational phase variation have been extensively studied in the species of the genus Neisseria, however an additional class of simple sequence repeat-mediated phase variation has been described in Helicobacter canadensis following whole-genome analysis (Snyder et al., 2010). Simple sequence repeat-mediated changes in the presence or absence of C-terminal cell wall attachment motifs has also been described in Streptococcus agalactiae (Janulczyk et al., 2010). In N. meningitidis, a gene fusion between pgIB2 and the downstream phosphoglycosyltransferase gene appears to be mediated by a poly-A repeat tract (Viburiene et al., 2013).

With the availability of additional gonococcal genome sequences, the gonococcal phase-variable repertoire has here been re-assessed. As a result, phase variation in which repeats at the 3’ ends of genes mediate changes in the C-terminal sequence of the proteins is described as part of a refined phase-variable gene repertoire.

Methods

Identification of phase-variable genes. Using the previous phase-variable gene repertoires reported for N. gonorrhoeae and N. meningitidis (Snyder et al., 2001; Martin et al., 2003; Jordan et al., 2005), the homologues in N. gonorrhoeae strain NCCP11945 were sought (CP00150.1; Chung et al., 2008). In addition, pattern search in xBASE (Chaudhuri et al., 2008) was used to identify other repeats, based on previous evidence of phase variation in the species of the genus Neisseria: ≥(G)8; ≥(C)8; ≥(GAAACAC)3; ≥(CAAATAC)3; ≥(CCCAA)3; ≥(GCA)3; ≥(A)9; ≥(T)9; ≥(AAGC)3; ≥(TTC)3; and ≥(CTTCT)3. No other repeats have been demonstrated to cause phase variation in this species. Genome sequences for N. gonorrhoeae strains NCCP11945 (NC_011035.1), FA1090 (NC_002946.2), FA19 (NZ_CP012026.1), FA6140 (NZ_CP012027.1), 35/02 (NZ_CP012028.1), and MS11 (NC_022240.1) were downloaded on 15th April 2016 and compared using progressive Mauve v2.3.1 (Darling et al., 2004) to identify orthologues (Table S1, available in the online Supplementary Material).

Impact Statement

Phase variation plays a vital role in the ability of Neisseria gonorrhoeae to adapt to the various niche environments encountered. Through stochastic switching in the expression of key genes and regulatory systems, mediated by simple sequence repeats, the population of bacteria are diverse and readily able to survive in the face of selective pressures. Not all simple sequence repeats within the genome mediate phase variation. Previous investigations have sought to define the phase-variable repertoire of the species of the genus Neisseria and have identified a large number of candidates using a small number of genome sequences. With the availability of more genome sequence data and additional experimental data, we have refined the original repertoire to include those most likely to be phase-variable in N. gonorrhoeae. As these genes are important for survival, their definition as phase-variable is important for understanding pathogenesis and for potential future therapies. The advent of high-throughput sequencing has the potential to reveal additional cases of within-strain variations in repeat tracts, supporting phase-variable candidacy of genes.

Identification of repeat variation within N. gonorrhoeae strain NCCP11945. N. gonorrhoeae strain NCCP11945 was grown on GC agar (Oxoid) with Kellogg’s (Kellogg et al., 1963) and 5 % Fe(NO3)3 supplements at 37 °C in a candle tin for a period of 8 weeks with passages to fresh agar plates every 2 days or at 37 °C 5 % CO2 for a period of 20 weeks with passages to fresh agar plates every 2–3 days. At each passage, cells were scraped from the plate and resuspended in 1 ml of GC broth to a turbidity equivalent to a 0.5 McFarland standard before inoculation onto fresh plates using a sterile cotton swab. DNA was extracted from such resuspensions using the Puregene Yeast/Bacterial kit (Qiagen). A sample (1 μg or 100 ng) of the DNA was genome sequenced using the Ion Personal Genome Machine, Ion Express Fragment Library kit, Ion Express Template kit, and Ion Sequencing kit (Life Technologies) or using the Illumina-based methods of the MicrobesNG service (microbesng.uk). Sequence read data was interpreted using Galaxy on usegalaxy.org (Afgan et al., 2016). Briefly, the reference sequence (NC_011035.1), Ion Torrent data for eight-week passages (KU1-4, KU1-45), Ion Torrent data for 20-week passages (KU1-95, KU1-96), and Illumina data for 20-week passages (2928-NS1_1 & 2929-NS2_2) were uploaded to Galaxy. The Ion Torrent bam format files were converted to fastq format using BAMTools Convert (Barnett et al., 2011). FASTQ Groomer was used on all NGS data (Blankenberg et al., 2010). Bowtie2 was used to map the reads against the reference (Langmead et al., 2009; Langmead et al., 2012) before visualisation using the Integrated Genomics Viewer (Robinson et al., 2011; Thorvaldsdottir et al., 2013).
Phase variable genes of *Neisseria gonorrhoeae*

Results and Discussion

Phase variable genes

The phase-variable gene repertoire of *N. gonorrhoeae* strain NCCP11945 was investigated and compared against gonococcal strains FA1090, FA19, FA6140, 35/02, and MS11 to assess the presence of similar repeat tracts across the species and variations in repeat tract lengths between strains.

Transcriptional phase variation is mediated by repeats within or associated with the promoter region (Fig. 1a). Changes in the repeat alters the level of transcription of the gene, as in *fetA* (*frpB; NGK_2557*) where differences in the \(-35\) \((C)^n\) \(-10\) (C) repeat tract alter the facing and spacing of the \(-10\) and \(-35\) promoter elements and the level of transcription of the gene. Phase variation of *fetA* is used as an example, where it has been shown that differences in spacing of the \(-10\) and \(-35\) elements due to changes in the poly-C repeat tract alter expression levels, represented by the widths of the arrows (Carson *et al*., 2000). (b): Translational phase variation, in which changes in a repeat tract towards the 5’ end of the coding sequence alter the reading frame of a coding region and switch expression on and off due to frame-shift. Phase variation of *pilC* is used as an example, where it has been shown that changes in the poly-G repeat tract generate frame-shifts which switch protein expression on and off (Jonsson *et al*., 1991). (c): C-terminal phase variation, in which changes in a repeat tract towards the 3’ end of the coding sequence alter the reading frame of a coding region and switch the encoded C-terminal amino acids between the three reading frames. In the example NGK_1211, two of the reading frames result in different C-terminal ends to the protein, while the third generates a fusion with the downstream coding sequence, NGK_1212. Only some examples of C-terminal phase variation result in this type of fusion (Table 3).

Fig. 1. Illustrations of the types of phase variation in *N. gonorrhoeae*. (a): Transcriptional phase variation, in which changes in a repeat tract alter the facing and spacing of the \(-10\) and \(-35\) promoter elements and the level of transcription of the gene. Phase variation of *fetA* is used as an example, where it has been shown that differences in spacing of the \(-10\) and \(-35\) elements due to changes in the poly-C repeat tract alter expression levels, represented by the widths of the arrows (Carson *et al*., 2000). (b): Translational phase variation, in which changes in a repeat tract towards the 5’ end of the coding sequence alter the reading frame of a coding region and switch expression on and off due to frame-shift. Phase variation of *pilC* is used as an example, where it has been shown that changes in the poly-G repeat tract generate frame-shifts which switch protein expression on and off (Jonsson *et al*., 1991). (c): C-terminal phase variation, in which changes in a repeat tract towards the 3’ end of the coding sequence alter the reading frame of a coding region and switch the encoded C-terminal amino acids between the three reading frames. In the example NGK_1211, two of the reading frames result in different C-terminal ends to the protein, while the third generates a fusion with the downstream coding sequence, NGK_1212. Only some examples of C-terminal phase variation result in this type of fusion (Table 3).
Table 1. Transcriptional phase variable genes in *N. gonorrhoeae*

| Gene | FA1090 locus* | Repeat in FA1090* | NCCP11945 locus† | Repeat in NCCP11945† | Repeat in FA19‡ | Repeat in FA6140§ | Repeat in 35/02|| | Repeat in MS11¶ | N. gonorrhoeae candidacy# | Reference |
|--------|---------------|-------------------|-------------------|----------------------|----------------|-------------------|-------------------|----------------|------------------------|-----------------|
| porA | NGO_04715 | (T)11C(G)6T | NGK_0906 & NGK_0907** | (T)9C(G)6T | (T)8C(G)8T | (T)9C(G)6T | (T)9C(G)6T | (T)9C(G)6T | Yes | Known | van der Ende et al. (1995) |
| Lipoprotein | NGO2047 | (A)9 | NGK_2186†† | (A)8 | (A)8 | (A)9 | (A)9 | (A)8 | Yes | Known | Carson et al. (2000) |
| fetA / frpB | NGO2093 | (C)13 | NGK_2557 | (C)14 | (C)10 | (C)11 | (C)11 | (C)11 | Yes | Known | Carson et al. (2000) |

*From the *N. gonorrhoeae* strain FA1090 genome sequence (NC_002946.2).
†From the *N. gonorrhoeae* strain NCCP11945 genome sequence (CP00150.1).
‡From the *N. gonorrhoeae* strain FA19 genome sequence (NZ_CP012026.1).
§From the *N. gonorrhoeae* strain FA6140 genome sequence (NZ_CP012027.1).
||From the *N. gonorrhoeae* strain 35/02 genome sequence (NZ_CP012028.1).
¶From the *N. gonorrhoeae* strain MS11 genome sequence (NC_022240.1).
#Gene phase variation candidacy in *N. gonorrhoeae*. Known, phase variation has been reported in the literature. Yes, there is evidence of repeat tract variation between strains supporting phase variation.
**This coding sequence appears to be frame-shifted and annotated as two coding sequences.
††NGK_2186 and NGO2047 annotations are on opposite strands.
Table 2. Translational phase-variable genes in *N. gonorrhoeae*

Gene	FA1090 locus*	Repeat in FA1090*	NCCP11945 locus†	Repeat in NCCP11945†	Repeat in FA19‡	Repeat in FA6140§	Repeat in 35/02∥	Repeat in MS115	N. gonorrhoeae candidacy#	Reference	
pIC2	NGO0055	(G)13	NGK_0054	(G)9	(G)13	(G)9CAGG	(G)12	Known	Jonsson et al., 1991		
opa	NGO0066a	(CTTCT)	NGK_0096	(CTTCT)	(CTTCT)4CTTCC	(CTTCT)6CTTCC	(CTTCT)2	Known	Stem & Meyer, 1987		
opa	NGO0070	13CTTCTG	NGK_0102	8CTTCC	(CTTCT)8CTTCC	(CTTCT)17CTTCC	7CTT CC	Known	Stem & Meyer, 1987		
pglE	NGO0086	(C)10	NP	no repeat	no repeat	no repeat	NP	Known	Power et al., 2003		
pgG	NGO0087	A(C)7	NP	A(C)9	A(C)6	A(C)6	NP	Known	Power et al., 2003		
hsdS	NGO_02155	(G)7	NGK_0571	(G)7	(G)8	(G)7	(G)7	Known	Adamczyk-Poplawska et al., 2011		
Hypothetical	NGO0527	(C)6A(C)9GC	NGK_1405	(C)6A(C)8GC	(C)7A(C)4T(C)3GC	(C)7A(C)4T(C)3GC	(C)7A(C)4T(C)3GC	Yes	Srikhanta et al., 2009		
modB	NGO0545	(CCCAA)12	NGK_1384	(CCCAA)11	(CCCAA)12	(CCCAA)4	(CCCAA)7	Known	Srikhanta et al., 2009		
Replication initiation factor	NGO_06135	8TTATCTCAACA (G)7	NGK_1957	11TTATCTCAACA (G)8	(C)7TTATCTACA (A)G7	(C)6TTATCT AA(A)G8	(C)11TTATCT AA(A)G8	Yes	Srikhanta et al., 2009		
modA	NGO0641	(GCCA)37	NGK_1272	(GCCA)18	(GCCA)24TCA	(GCCA)24	(GCCA)19	(GCCA)24	Known	Srikhanta et al., 2009	
Replication initiation factor	NGO_06695	8TTATCTCAACA (G)7	NGK_1486	9TTATCTCAACA (G)7	(C)7TTATCTACA (A)G7	(C)9TTATCT AA(A)G8	(C)11TTATCT AA(A)G8	Yes	Srikhanta et al., 2009		
opa	NGO0950a	(CTTCT)	NGK_0847	(CTTCT)	(CTTCT)13CTTCC	(CTTCT)16CTTCC	(CTTCT)8CTTCC	(AAGC)7	Yes	Srikhanta et al., 2009	
Hypothetical	NGO0964	(AAGC)4	NGO_0831a	(AAGC)8	(AAGC)15	(AAGC)7	(AAGC)9	Yes	Srikhanta et al., 2009		
virG	NGO0985	(AAGC)3	NGO_0804	(AAGC)3	(AAGC)2	(AAGC)3	(AAGC)3	Yes	Srikhanta et al., 2009		
opa	NGO1040a	(CTTCT)	NGO_0749	(CTTCT)	(CTTCT)10CTTCC	(CTTCT)7CTTCC	(CTTCT)12CT T CC	Known	Stem & Meyer, 1987		
Adhesion	NGO1073a	(CTTCT)	NGO_0693	(CTTCT)	(CTTCT)11CTTCC	(CTTCT)12CTTCC	(CTTCT)18CT T CC	Known	Stem & Meyer, 1987		
opa	NGO1277a	(CTTCT)	NGO_1495	10CTTCC	(CTTCT)11CTTCC	(CTTCT)12CTTCC	7CTT CC	Known	Stem & Meyer, 1987		
Adhesion	NGO1445	(CAAG)	NGO_1705	7CTTCC	(CAAG)12CAA	(CAAG)12CAA	(CAAG)6CAA	Yes	Known		
Table 2. cont.

| Gene | FA1090 locus* | Repeat in FA1090† | NCCP1945 locus‡ | Repeat in NCCP11945† | Repeat in FA19‡ | Repeat in FA6140§ | Repeat in 35/02|| | Repeat in MS115 | N. gonorrhoeae candidacy# | Reference |
|----------|---------------|-------------------|-----------------|----------------------|-----------------|-------------------|-------------------|----------------|---------------------|----------------|--------------------------------|
| *opa* | NGO1463a | 20CAAA | NGK_1729 | (CTTCT) | (CTTCT)11CTTCC | (CTTCT)12CTTCC | 9CAAA | (CTTCT)12CTTCC | TCC | (CTTCT)10CTTCC | Known | Stern & Meyer, 1987 |
| *opa* | NGO1513 | 10CTTCC | NGK_1799 | (CTTCT) | CTT(CTTCT) | NP | | (CTTCT) | TCC | (CTTCT) | Known | Stern & Meyer, 1987 |
| *opa* | NGO1553a | 12CTTCC | NGK_1847 | (CTTCT)9CTTCC | (CTTCT)12CTTCC | 6CTT CC | 2CTT CG | (CTTCT)14CTTCC | TCC | (CTTCT)14CTTCC | Known | Stern & Meyer, 1987 |
| *autA* | NGO1689 | 4CTTCC | NGK_2082 | (AAGC)3 | (AAGC)14 | (AAGC)3 | | | | (AAGC)3 | Known | Peak et al., 1999; Arenas et al., 2015 |
| pgtA | NGO1765 | (G)11 | NGK_2516 | GGGAGCGGG | (G)19 | GGGAGCGGG | GGGAGCGGG | Known | (G)7 | (G)7 | Known | Banerjee et al., 2002 |
| Repetitive large surface lipoprotein *opa* | NGO1861a | (CTTCT)13CTTCC | NGK_2410 | (CTTCT)13CTTCC | (CTTCT)2CTTCC | (CTTCT)13CTTCC | TCC | (CTTCT)30CTTCC | TCC | (CTTCT)30CTTCC | Known | Stern & Meyer, 1987; Jonsson et al., 1991 |
| *pilA* | NGO1912 | (G)11 | NGK_2342 | GGAGC(G)11 | (G)11 | GGGC(G)11 | | | | | Known | Jonsson et al., 1991 |
| Hypothetical *opa* | NGO1953 | (C)8 | NGK_2297 | CAAACCCC | CAAACCCC | CAAACCCC | | | | | Known | Jonsson et al., 1991 |
| Pyrimidine 5'-nucleotidase *opa* | NGO2055 & NGO2054** | (CTTCT)10CTTCC | NGK_2176 | CAAACCCC | CAAACCCC | CAAACCCC | | | | | Known | Mackinnon et al., 2002 |
| *opa* | NGO2060a | NP | NGK_2170 | (CTTCT)14CTTCC | (CTTCT)12CTTCC | 6CTT CC | 7CTT CC | | | | Known | Stern & Meyer, 1987; Stern & Meyer, 1987 |
| *lgtG* | NGO2072 | (C)11 | NGK_2534 | (CTTCT)14CTTCC | (CTTCT)12CTTCC | | | | | | Known | Chen et al., 1998 |
| *lgtA* | NGO2110 | (G)9 | NGK_2581 | (G)10 | (G)10 | (G)10 | (G)8 | (G)8 | (G)8 | Known | Erwin et al., 1996 |
| *lgtC* | NGO2156 | (G)14 | NGK_2632 | (G)13 | (G)13 | (G)10 | (G)16 | (G)16 | (G)8 | Known | Shafer et al., 2002 |
| *lgtD* | NGO2158 | (A)14 | NGK_2634 | A(G)16 | (A(G)12 | (A(G)12 | (A(G)18 | (A(G)18 | (A(G)13 | Known | Shafer et al., 2002 |

*From the N. gonorrhoeae strain FA1090 genome sequence (NC_002946.2).
†From the N. gonorrhoeae strain NCCP11945 genome sequence (CP00150.1).
length of the poly-C homopolymeric tract between the −10 and −35 promoter regions alters expression (Carson et al., 2000). There are three transcriptional phase-variable genes in \textit{N. gonorrhoeae} strain NCCP11945 (Table 1), \textit{fetA} (NGK_2557), a lipoprotein (NGK_2186), and \textit{porA} (NGK_0906/NGK_0907), yet in gonococci \textit{porA} does not have an intact coding region. Variation in the repeats between gonococcal strains is found for all three transcriptional phase-variable genes (Table 1).

Most common in the species of the genus \textit{Neisseria} is translational phase-variation where, as in \textit{pilC}, the repeat is within the 5′ portion of the coding region of the gene (Fig. 1b). Changes in the repeat tract generate frame-shift mutations in two of the three open reading frames, with the gene only being translated into protein when the repeat tract length puts the gene in-frame. Whilst many phase-variable genes in the species of the genus \textit{Neisseria} contain homopolymeric tracts, some experience copy number changes in repetitive sequences, such as the CTTCT repeat in \textit{opa} (Muralidharan et al., 1987; Bhat et al., 1991) or the AAGC repeat in \textit{autA} (Peak et al., 1999; Arenas et al., 2015). In the \textit{N. gonorrhoeae} strains examined here, the AAGC repeat in \textit{virG} (NGK_0804) is only present in two or three copies (Table 2), rather than several copies as in NGK_0831a and \textit{autA} (NGK_2082). Although \textit{virG} has low copy number for the repeat, variations between strains are observed and strains with many copies may yet be identified [there are currently none >\textit{(AAGC)}3 in the NCBI nt database], therefore it is placed amongst the phase-variable genes even though this may be at low frequency or be a strain-specific effect. There are 36 translational phase-variable genes in \textit{N. gonorrhoeae} based on the species examined (Table 2).

In addition, a third class of repeat-mediated phase-variable gene was identified (Snyder et al., 2010). In these C-terminal phase-variable genes, a repeat tract towards the 3′ of the coding region is able to alter the sequence at the C-terminus of the encoded protein (Fig. 1c). In \textit{N. gonorrhoeae} strain NCCP11945, four of these C-terminal phase-variable genes were identified (Table 3). It is likely that in the case of the pilin sequence (NGK_2161), changes in the repeat are causing pilus protein changes, mediating antigenic variation through a phase-variable mechanism. Comparisons also show repeat tract variation in a membrane protein (NGK_1211) and \textit{mafB} cassette (NGK_1624), supporting C-terminal phase variation in the species of the genus \textit{Neisseria} Variations in the products of \textit{mafB} cassettes are believed to contribute to competition between species within the niche (Jamet et al., 2015). Although no variation was observed in these strains in \textit{ispH} (NGK_0106), (G)8 repeats are known to vary in lgtC (NGK_1632), \textit{hpuA} (NGK_2581), and \textit{hsdS} (NGK_0571) (Table 2), therefore it is highly likely that the repeat in \textit{ispH} also has the capacity to vary.

A number of previously reported candidates are not supported by evidence of phase variation, based on the absence

*From the \textit{N. gonorrhoeae} strain FA19 genome sequence (NZ_CP002036.1).
\textdollar{}From the \textit{N. gonorrhoeae} strain FA61 genome sequence (NZ_CP002087.1).
\textdollar{}From the \textit{N. gonorrhoeae} strain MS11 genome sequence (NC_CP012028.1).
\textdollar{}From the \textit{N. gonorrhoeae} strain F119 genome sequence (NZ_CP002027.1).
\|From the \textit{N. gonorrhoeae} strain 35/02 genome sequence (NC_CP002240.1).
*, The coding sequence is not present in this strain.
\#This coding sequence appears to be frame-shifted and annotated as two coding sequences.
\‡From the \textit{N. gonorrhoeae} strain FA19 genome sequence (NZ_CP002036.1).
\§From the \textit{N. gonorrhoeae} strain FA61 genome sequence (NZ_CP002087.1).
\||From the \textit{N. gonorrhoeae} strain MS11 genome sequence (NC_CP012028.1).
\¶From the \textit{N. gonorrhoeae} strain MS11 genome sequence (NC_CP012028.1).
\#Gene phase variation candidacy in \textit{N. gonorrhoeae}. Known: phase variation has been reported in the literature. Yes, there is evidence of repeat tract variation between strains supporting phase variation. **This coding sequence appears to be frame-shifted and annotated as two coding sequences.
Table 3. C-terminal phase-variable genes in *N. gonorrhoeae*

Gene	FA1090 locus*	Repeat at in FA1090*	NCCP11945 locus†	Repeat in NCCP11945†	Amino acids after the repeat in each frame of *N. gonorrhoeae* candidacy**	NCCP11945‡‡‡
ispH	NGO0072	(G)8	NGK_0106	(G)8	26 50 61 (G)8 (G)8 (G)8 (G)8 (G)8	(Yes)
Membrane protein	NGO0691	(G)6	NGK_1211	(G)7	23 8 186 (G)7 (G)6 (G)7 (G)7 (G)7	Yes
m a/B cassette	WX61_RS02820	(C)7	NGK_1624	(C)9	46 2 37 deletion†† (C)10 (C)8 (C)10	Yes
Pilin cassette	WX61_RS02820	CCGC	NGK_2161	(C)8	20 8 91§ (C)5GCC CCGCC (C)5 CCT	Yes

*From the *N. gonorrhoeae* strain FA1090 genome sequence (NC_002946.2).
†From the *N. gonorrhoeae* strain NCCP11945 genome sequence (CP00150.1).
‡In each column are the number of amino acids encoded 3' of the repeat before the closest termination codon in each of the three reading frames.
§From the *N. gonorrhoeae* strain FA19 genome sequence (NZ_CP012026.1).
||From the *N. gonorrhoeae* strain FA6140 genome sequence (NZ_CP012027.1).
¶From the *N. gonorrhoeae* strain 35/02 genome sequence (NZ_CP012028.1).
#From the *N. gonorrhoeae* strain MS11 genome sequence (NC_022240.1).
**Gene phase variation candidacy in *N. gonorrhoeae*. Yes, there is evidence of repeat tract variation between strains supporting phase variation. (Yes), although there is no variation between strains investigated here, tracts of this length vary in other genes (Chen et al., 1998; Shafer et al., 2002; Adamczyk-Poplawska et al., 2011).
††There is a 400 bp deletion in this strain encompassing the region that would contain this repeat.
Table 4. Genes for which there is no evidence of phase variation in *N. gonorrhoeae*

| Gene | FA1090 locus* | Repeat in FA1090* | NCCP11945 locus† | Repeat in NCCP11945† | Repeat in FA19‡ | Repeat in FA6140§ | Repeat in 35/02|| | Repeat in MS11§ | N. gonorrhoeae candidacy#$ |
|------|---------------|-------------------|------------------|----------------------|----------------|------------------|------------------|--------------------------|--------------------------|--------------------------|
| Prolyl endopeptidase | NGO0026 | GGGGC GG | NGO_0034 | GGGGC GG | No. Replacement tract |
| Phosphoesterase | NGO0065 | (C)6 | NGO_0089* | (C)6 | (C)6 | (C)6 | (C)6 | (C)6 | No. No variation. |
| Hypothetical | NGO0081 | (C)7 | NGO_0 n 9 | (C)7 | (C)7 | (C)7 | (C)7 | (C)7 | No. No variation. |
|篡A | NGO0121 | (A)6 | NGO_0167 | (A)6 | (A)6 | (A)6 | (A)6 | (A)6 | No. No variation. |
| potD ‐2 | NGO0123 | (C)4 | NGO_0168 | (C)4 | (C)4 | (C)4 | (C)4 | (C)4 | No. No variation. |
| Hypothetical | NGO0206 | AA(C)5 | NGO_0833 | AA(C)5 | AA(C)5 | AA(C)5 | AA(C)5 | AA(C)5 | No. No variation. |
| nifS | NGO0352 | AACCGGCAAACA | NGO_0000 | AACCGGCAAACA | AACCGGCAAACA | AACCGGCAAACA | AACCGGCAAACA | AACCGGCAAACA | No. Replacement tract |
| IllD | NGO0639 | (G)7 | NGO_0727 | (G)7 | (G)7 | (G)7 | (G)7 | (G)7 | No. No variation. |
| Methylese | NGO0676 | (A)9 | NGO_0720 | (A)9 | (A)9 | (A)9 | (A)9 | (A)9 | No. No variation. |
| dnaX | NGO0743 | (C)7 | NGO_1135 | (C)7 | (C)7 | (C)7 | (C)7 | (C)7 | No. No variation. |
| nfeA | NGO0754 | GGAAGG | NGO_1123 | GGAAGG | GGAAGG | GGAAGG | GGAAGG | GGAAGG | No. Replacement tract |
| ppx | NGO0104 | (C)7 | NGO_0745 | (C)7 | (C)7 | (C)7 | (C)7 | (C)7 | No. No variation. |
| fso/ecoP | NGO0137 | (AT)5 | NGO_1607 | (AT)5 | (AT)5 | (AT)5 | (AT)5 | (AT)5 | No. No variation. |
| Hypothetical | NGO1384 | G(A)7 | NGO_1622 | G(A)7 | (A)8 | (A)8 | (A)8 | (A)8 | No. No variation in length. |
| pntA | NGO1470 | CCGTGCTGG | NGO_1735 | CCGTGCTGG | CCGTGCTGG | CCGTGCTGG | CCGTGCTGG | CCGTGCTGG | No. Replacement tract |
| amiC | NGO1501 | TTCGCCC | NGO_1783 | TTCGCCC | TTCGCCC | TTCGCCC | TTCGCCC | TTCGCCC | No. Replacement tract |
| dca | NGO1540 | TGTTGGGGG | NGO_1830 | TGTTGGGGG | TGTTGGGGG | TGTTGGGGG | TGTTGGGGG | TGTTGGGGG | No. Replacement tract |
| anmK | NGO1583 | (C)7 | NGO_1884 | (C)7 | (C)7 | (C)7 | (C)7 | (C)7 | No. No variation. |
| dinG | NGO1708 | (C)7 | NGO_2016 | (C)7 | (C)7 | (C)7 | (C)7 | (C)7 | No. No variation. |
| pflK | NGO1855 | (C)7 | NGO_2416 | (C)7 | (C)7 | (C)7 | (C)7 | (C)7 | No. No variation. |
| Hypothetical | NGO1970 | (TA)5 | NGO_2274 | (TA)5 | (TA)5 | (TA)5 | (TA)5 | (TA)5 | No. No variation. |
| naiA ‐3 | NGO1972 | (G)5 | NGO_2270 | (G)5 | (G)5 | (G)5 | (G)5 | (G)5 | No. No variation. |
| map | NGO1983 | (C)6 | NGO_2258 | (C)6 | (C)6 | (C)6 | (C)6 | (C)6 | No. No variation. |
| pbX | NGO2171 | (TTCC)3 | NGO_2652 | (TTCC)3 | (TTCC)3 | (TTCC)3 | (TTCC)3 | (TTCC)3 | No. No variation. |
| lbpA | NGO0260 | NR | NGO_0401 | GGGGC GG | No. Replacement tract |

*From the *N. gonorrhoeae* strain FA1090 genome sequence (NC_002946.2).
†From the *N. gonorrhoeae* strain NCCP11945 genome sequence (CP00150.1).
of tract length changes between the strains (Table 4). For example, although tract variation was reported for cvaA (NGK_0168), mafA-3 (NGK_2270), and daa (NGK_1830) in N. meningitidis (Martin et al., 2003), there are no changes observed in the short (C)4 and (G)5 tracts in these genes in N. gonorrhoeae (Table 4). They are therefore unlikely to be phase-variable in this species. Likewise, neither of the dinucleotide-repeat-containing genes (NGK_1607 and NGK_2274) show variations (Table 4); dinucleotides are not likely to be phase-variable in the species of the genus Neisseria (Martin et al., 2003). All of these genes contain short repeats that do not vary or alternative nucleotide sequences in the strains investigated (Table 4).

This analysis identified 29 genes that are known to be phase variable (Tables 1, 2), either in N. gonorrhoeae or N. meningitidis including 12 paralogues of opa (11 in each strain; Muralidharan et al., 1987; Bhat et al., 1991) and 17 other known phase-variable genes (Stern et al., 1987; Jonsson et al., 1991; Van der Ende et al., 1995; Erwin et al., 1996; Chen et al., 1998; Peak et al., 1999; Carson et al., 2000; Banerjee et al., 2002; Mackinnon et al., 2002; Shafer et al., 2002; Power et al., 2003; Srikhanta et al., 2009; Adamczyk-Poplawska et al., 2011; Arenas et al., 2015). Thirteen additional genes have variations in the repeat tracts when the six N. gonorrhoeae genome sequences are compared, one transcriptional, nine translational, and three C-terminal repeats. Based on homology and presence of conserved domains, these genes are believed to encode two replication initiation factors, an adhesion protein, a pyrimidine 5’-nucleotidase, two lipoproteins, two membrane proteins, two secreted proteins, and three hypothetical proteins (Tables 1–3).

Combined with the previous data on repeat variation within and between gonococcal strains and demonstration of phase variation (Sparling et al., 1986; Yang et al., 1996; Lewis et al., 1999; Snyder et al., 2001; Power et al., 2003; Jordan et al., 2005; Srikhanta et al., 2009), a revised repertoire of 43 transcriptional, nine translational, and three C-terminal phase-variable genes is proposed for N. gonorrhoeae as a species. This is fewer than previous predictions (76 in Jordan et al., 2005) and thus far two-thirds (67 %, 29 out of 43) have been experimentally demonstrated to be phase-variable (Tables 1, 2). The additional 14 genes, 13 of which show strain-to-strain repeat variation, require additional investigation.

Phase variable repeat copy number variation in vitro

Previously, for H. canadensis, 454 and Illumina genome sequence read data was used to support candidacy of phase-variable genes (Snyder et al., 2010). In the present study, Ion Torrent and Illumina genome sequence read data from N. gonorrhoeae strain NCCP11945 that had been passaged in the laboratory for 8 weeks or for 20 weeks was analysed for changes to phase-variable repeats for the 14 genes for which there is no within-strain evidence of phase variation (Tables 1–3). Changes were observed in known phase-
Table 5. Genes for which there is sequencing-based evidence of phase variation in *N. gonorrhoeae* strain NCCP11945

Gene	FA1090 locus*	Repeat in FA1090*	NCCP11945	Repeat in NCCP11945†	Repeat in FA19‡	Repeat in FA61‡	Repeat in 35/02§	Repeat in 35/02¶	Repeat in MS1‖	N. gonorrhoeae candidacy#	Ion Torrent*	Illumina††
ispH	NGO00072	(G)8	NGK_0106	(G)8	(G)8	(G)8	(G)8	(G)8	(G)8	(yes) Repeat varies	Repeat does not vary	Repeat varies
virG	NGO0985	(AAAG)3	NGK_0804	(AAAG)3	(AAAG)2	(AAAG)3	(AAAG)3	(AAAG)3	(AAAG)3	Yes Repeat does not vary	Repeat does not vary	Repeat varies
Hypothetical	NGO0964	(AAAG)4	NGK_083Ta	(AAAG)8	(AAAG)15	(AAAG)7	(AAAG)9	(AAAG)7	Yes Repeat varies	Repeat varies	Repeat does not vary	
Membrane protein	NGO0091	(G)6	NGK_1211	(G)7	(G)7	(G)6	(G)7	(G)7	Yes Repeat varies	Repeat varies	Repeat does not vary	
Hypothetical	NGO00527	(C)6A(C)9GC	NGK_1450	(C)6A(C)8GC	(C)7A(C)MT(C)	(C)7A(C)MT(C)	(C)7A(C)MT(C)	(C)6A(C)8GC	(C)6A(C)14GC	Yes Repeat varies	Repeat does not vary	Repeat varies
Replication initiation factor	NGO_06695	(C)7	NGK_1486	(C)7TTATCTAACA(G)7	(C)11TTATCTAACA(G)8	(C)11TTATCTAACA(G)8	(C)9TATCTAAACG(7)	(C)10	Yes Repeat varies	Repeat varies	Repeat varies	
mubB cassette	NGO1386	(C)7	NGK_1624	(C)7	(C)10	(C)8	(C)10	(C)10	Yes Repeat varies	Repeat varies	Repeat varies	
Adhesion	NGO1445	(CAAG)20CAA	NGK_1705	(CAAG)20CAA	(CAAG)20CAA	(CAAG)9GCAA	(CAAG)9GCAA	(CAAG)9GCAA	Yes Repeat varies	Repeat varies	Repeat varies	
Replication initiation factor	NGO_06135	(C)7	NGK_1957	(C)7TTATCTAACA(G)7	(C)11TTATCTAACA(G)8	(C)11TTATCTAACA(G)8	(C)10TTATCTAACA(G)7	(C)10	Yes Repeat varies	Repeat varies	Repeat varies	
Pilin cassette	NGO_11140	(C)7	NGK_2161	(C)7	(C)5	(C)5	(C)5	(C)5	Yes Repeat varies	Repeat varies	Repeat varies	
Pyrimidine 5'-nucleotidase	NGO2055 & NGO2054II	(C)6	NGK_2176	CAAACCCC	CAAACCCC	CAAACCCC	CAAACCCC	CAAACCCC	Yes No repeat No repeat	Repeat varies	Repeat varies	
Lipoprotein	NGO2047	(A)8	NGK_2186A§A§	(A)8	(A)9	(A)9	(A)9	(A)9	Yes Repeat varies	Repeat varies	Repeat varies	
Hypothetical	NGO1953	(C)8	NGK_2297	(C)8	(C)8	(C)8	(C)8	(C)8	Yes Repeat varies	Repeat varies	Repeat does not vary	
Repetitive large surfacelipoprotein	NGO_09875 & NGO_09870II	(G)8	NGK_2422 & NGK_2423	(G)7	(G)7	(G)7	(G)7	(G)7	Yes Repeat varies	Repeat does not vary	Repeat varies	
fetA / frpB	NGO2093	(C)13	NGK_2587	(C)14	(C)10	(C)11	(C)11	(C)11	Known Repeat varies	Repeat varies	Repeat varies	
pilC 1	NGO1912	(G)11	NGK_2342	(G)11	GGGG(C)11	(G)15	(G)11	(G)11	Known Repeat varies	Repeat varies	Repeat varies	
opa	NGO0950a	(CTTCT) 16	NGK_0847	(CTTCT) 16	(CTTCT) 16	(CTTCT) 8	(CTTCT) 4	(CTTCT) 4	Known No reads through repeat	Repeat varies	Repeat varies	

*From the *N. gonorrhoeae* strain FA1090 genome sequence (NC_002946.2).
†From the *N. gonorrhoeae* strain NCCP11945 genome sequence (CP00150.1).
variable genes \(pilC_1 \), \(\text{opa} \), and \(\text{fetA} \), suggesting that read data can support phase variability by demonstrating within-strain variation in tracts (Table 5). Of the 14 genes, only \(\text{virG} \) (NGK_0804) and the pyrimidine 5'-nucleotidase (NGK_2176) showed no changes in repeats (Table 5). Probably, the \(\text{virG} \) (AAGC)\(_3\) copy number is too low to vary, however there may be strains with greater copy number in which it would. Likewise, the poly-C repeat in NGK_2176 has been replaced with CAAACCCC in strain NCCP11945 and therefore would not be expected to phase vary in this strain, however phase variation is likely in strain MS11, for example.

The Ion Torrent sequencing technology has been criticised for generating homopolymer-associated indels (Loman et al., 2012) and that the tracts can be incorrect at more than eight bases (Quail et al., 2012), the optimal length for phase variation. Homopolymeric tracts in Illumina data are believed to be less error prone (Schirmer et al., 2015). However, repeat sequence data from Illumina often agreed with Ion Torrent on the presence of variation (9 of 14 genes with variation in Ion Torrent, Table 5). When the Illumina data did not show repeat variation, this often corresponded to relatively low read coverage of the region compared to the Ion Torrent data (Table S2).

It is currently impossible to differentiate genuine biologically induced indels from sequencing errors (Narzisi & Schatz, 2015). We may find that what we ascribe to errors can also be subtle changes that are constantly being generated within the bacterial population. From this data, the expected biological variation supporting phase variation appears to be present in \(N. \) gonorrhoeae strain NCCP11945 for 12 as yet unexplored genes.

Conclusion

In conclusion, \(N. \) gonorrhoeae possesses three different mechanisms for phase variation: transcriptional; translational; and C-terminal. Stochastic systems obviously play important roles in the biology of the organism given the variety and number of genes involved. The functions of previously unexplored phase-variable genes, including one transcriptional phase-variable gene, nine translational phase-variable genes, and four C-terminal phase-variable genes require further investigation.

Acknowledgements

C. P. C. was supported by a Sparks project grant 11KIN01 and 13KIN01. Illumina genome sequencing was provided by MicrobesNG (http://www.microbesng.uk), which is supported by the BBSRC (grant number BB/L024209/1).

References

Adamczyk-Poplawska, M., Lower, M. & Piekarowicz, A. (2011). Deletion of one nucleotide within the homonucleotide tract present in the \(\text{hsdS} \) gene alters the DNA sequence specificity of type I restriction-modification system NgoAV. *J. Bacteriol.* 193, 6750–6759.
Afgan, E., Baker, D., Van den Beek, M., Blankenberg, D., Bouvier, D., Eisch, M., Chilton, J., Clements, D., Coraor, N. & other authors (2016). The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic Acids Res 44, W3–W10.

 Arenas, J., Cano, S., Nijland, R., Van Dongen, V., Rutten, L., Van der Ende, A. & Tommassen, J. (2015). The meningococcal autotransporter AutA is implicated in autoaggregation and biofilm formation. Environ Microbiol 17, 1321–1337.

 Banerjee, A., Wang, R., Supernavage, S. L., Ghosh, S. K., Parker, J., Ganesh, N. F., Wang, P. G., Gulati, S. & Rice, P. A. (2002). Implications of phase variation of a gene (pgtA) encoding a pilin galactosyl transferase in gonococcal pathogenesis. J Exp Med 196, 147–162.

 Barnett, D. W., Garrison, E. K., Quinlan, A. R., Strömborg, M. P. & Marth, G. T. (2011). BamTools: a C++ API and toolkit for analyzing and managing BAM files. Bioinformatics 27, 1691–1692.

 Bhat, K. S., Gibbs, C. P., Barrera, O., Morrison, S. G., Jähnig, F., Stern, A., Kupsch, E. M., Meyer, T. F. & Swanson, J. (1991). The opacity proteins of Neisseria gonorrhoeae strain MS11 are encoded by a family of 11 complete genes. Mol Microbiol 5, 1889–1901.

 Blankenberg, D., Gordon, A., Von Kuster, G., Coraor, N., Taylor, J., Nekutrenko, A. & Galaxy Team. (2010). Manipulation of FASTQ data with Galaxy. Bioinformatics 26, 1783–1785.

 Bolotin, D. A., Mamedov, I. Z., Britanova, O. V., Zvyagin, I. V., Shagin, D., Ustyugova, S. V., Turchaninova, M. A., Lukyanov, S., Lebedev, Y. B. & Chudakov, D. M. (2012). Next generation sequencing for TCR repertoire profiling: platform-specific features and correction algorithms. Eur J Immunol 42, 3073–3083.

 Bragg, L. M., Stone, G., Butler, M. K., Hugenholtz, P. & Tyson, G. W. (2013). Shining a light on dark sequencing: characterising errors in Ion torrent PGM data. PLoS Comput Biol 9, e1003031.

 Carbonnelle, E., Hill, D. J., Morand, P., Griffiths, N. J., Bourdoulous, S., Murtillo, I., Nassif, X. & Virji, M. (2009). Meningococcal interactions with the host. Vaccine 27, B78–89.

 Carson, S. D., Stone, B., Beucher, M., Fu, J. & Sparling, P. F. (2000). Phase variation of the gonococcal siderophore receptor FetA. Mol Microbiol 36, 585–593.

 Chaudhuri, R. R., Loman, N. J., Snyder, L. A., Bailey, C. M., Stekel, D. J. & Pallen, M. J. (2008). xBASE2: a comprehensive resource for comparative bacterial genomics. Nucleic Acids Res 36, D543–546.

 Chen, C. J, Elkins, C. & Sparling, P. F. (1998). Phase variation of hemoglobin utilization in Neisseria gonorrhoeae. Infect Immun 66, 987–993.

 Chung, G. T., Yoo, J. S., Oh, H. B., Lee, Y. S., Cha, S. H., Kim, S. J. & Yoo, C. K. (2008). Complete genome sequence of Neisseria gonorrhoeae NCCP11945. J Bacteriol 190, 6035–6036.

 Darling, A. C., Mau, B., Blattner, F. R. & Perna, N. T. (2004). Mauve: multiple alignment of conserved genome sequence with rearrangements. Genome Res 14, 1394–1403.

 Erwin, A. L., Haynes, P. A., Rice, P. A. & Gotschlich, E. C. (1996). Conservation of the lipoooligosaccharide synthesis locus lgt among strains of Neisseria gonorrhoeae: requirement for lgtE in synthesis of the 2C7 epitope and of the β chain of strain 15253. J Exp Med 184, 1233–1241.

 Jamet, A., Jousset, A. B., Euphrasie, D., Mukorako, P., Boucharlat, A., Ducoussos, A., Charbit, A. & Nassif, X. (2015). A new family of secreted toxins in pathogenic Neisseria species. PLoS Pathog 11, e1004592.

 Janulczyk, R., Masignani, V., Maione, D., Tettelin, H., Grandi, G. & Telford, J. L. (2010). Simple sequence repeats and genome plasticity in Streptococcus agalactiae. J Bacteriol 192, 3990–4000.

 Jonsson, A. B., Nyberg, G. & Normark, S. (1991). Phase variation of gonococcal pili by frameshift mutation in pilC, a novel gene for pilus assembly. EMBO J 10, 477–488.

 Jordan, P. W., Snyder, L. A. & Saunders, N. J. (2005). Strain-specific differences in Neisseria gonorrhoeae associated with the phase variable gene repertoire. BMC Microbiol 5.

 Kellogg D. S. Jr., Peacock W. L. Jr., Deacon, W. E., Brown, L. & Pirkle, D. I. (1963). Neisseria gonorrhoeae I. virulence genetically linked to clonal variation. J Bacteriol 85, 1274–1279.

 Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10, R25.

 Langmead, B. & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nat Methods 9, 357–359.

 Lewis, L. A., Gipson, M., Hartman, K., Ownbey, T., Vaughn, J. & Dyer, D. W. (1999). Phase variation of HpuAB and Hmbr, two distinct haemoglobin receptors of Neisseria meningitidis DNM2. Mol Microbiol 32, 977–989.

 Loman, N. J., Misra, R. V., Dallman, T. J., Constantinidou, C., Gharbia, S. E., Wain, J & Pallen, M. J. (2012). Performance comparison of benchtop high-throughput sequencing platforms. Nat Biotechnol 30, 434–439.

 Mackinnon, F. G., Cox, A. D., Plested, J. S., Tang, C. M., Makepeace, K., Coul, P. A., Wright, J. C., Chalmers, R., Hood, D. W. & other authors (2002). Identification of a gene (lpt-3) required for the addition of phosphoethanolamine to the lipopolysaccharide inner core of Neisseria meningitidis and its role in mediating susceptibility to bactericidal killing and opsonophagocytosis. Mol Microbiol 43, 931–943.

 Martin, P., Van de Ven, T., Mouchel, N., Jeffries, A. C., Hood, D. W. & Moxon, E. R. (2003). Experimentally revised repertoire of putative contingency loci in Neisseria meningitidis strain MC58: evidence for a novel mechanism of phase variation. Mol Microbiol 50, 245–257.

 Moxon, R., Bayliss, C. & Hood, D. (2006). Bacterial contingency loci: the role of simple sequence DNA repeats in bacterial adaptation. Annu Rev Genet 40, 307–333.

 Muralidharan, K., Stern, A. & Meyer, T. F. (1987). The control mechanism of opacity protein expression in the pathogenic Neisseriae. Antonie Van Leeuwenhoek 53, 435–440.

 Narzisi, G. & Schatz, M. C. (2015). The challenge of small-scale repeats for indel discovery. Front Bioeng Biotechnol 3, 8.

 Omer, H., Rose, G., Jolley, K. A., Frapy, E., Zahar, J. R., Maiden, M. C., Bentley, S. D., Tinsley, C. R., Nassif, X. & Bille, E. (2011). Genotypic and phenotypic modifications of Neisseria meningitidis after an accidental human passage. PLoS One 6, e17145.

 Peak, I. R., Jennings, M. P., Hood, D. W. & Moxon, E. R. (1999). Tetranucleotide repeats identify novel virulence determinant homologues in Neisseria meningitidis. Microb Pathog 26, 13–23.

 Power, P. M., Roddam, L. F., Rutter, K., Fitzpatrick, S. Z., Srikantha, Y. N. & Jennings, M. P. (2003). Genetic characterization of pilin glycosylation and phase variation in Neisseria meningitidis. Mol Microbiol 49, 833–847.

 Quail, M. A., Smith, M., Coupland, P., Otto, T. D., Harris, S. R., Connor, T. R., Berton, A., Swedlow, H. P. & Gu, Y. (2012). A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics 13, 341.

 Robinson, J. T., Thorvaldsdóttir, H., Winckler, W., Gutmann, M., Lander, E. S., Getz, G. & Mesirov, J. P. (2011). Integrative genomics viewer. Nat Biotechnol 29, 24–26.
Schrimer, M., Ijaz, U. Z., D’Amore, R., Hall, N., Sloan, W. T. & Quince, C. (2015). Insight into biases and sequencing errors for amplicon sequencing with the Illumina MiSeq platform. *Nucleic Acids Res* **43**, e37.

Shafer, W. M., Datta, A., Kolli, V. S., Rahman, M. M., Balthazar, J. T., Martin, L. E., Veal, W. L., Stephens, D. S. & Carlson, R. (2002). Phase variable changes in genes *lgtA* and *lgtC* within the *lgtABCDE* operon of *Neisseria gonorrhoeae* can modulate gonococcal susceptibility to normal human serum. *J Endotoxin Res* **8**, 47–58.

Snyder, L. A., Butcher, S. A. & Saunders, N. J. (2001). Comparative whole-genome analyses reveal over 100 putative phase-variable genes in the pathogenic *Neisseria* spp. *Microbiology* **147**, 2321–2332.

Snyder, L. A., Loman, N. J., Linton, J. D., Langdon, R. R., Weinstock, G. M., Wren, B. W. & Pallen, M. J. (2010). Simple sequence repeats in *Helicobacter canadensis* and their role in phase variable expression and C-terminal sequence switching. *BMC Genomics* **11**.

Sparling, P. F., Cannon, J. G. & So, M. (1986). Phase and antigenic variation of pil and outer membrane protein II of *Neisseria gonorrhoeae*. *J Infect Dis* **153**, 196–201.

Srikhanta, Y. N., Dowideit, S. J., Edwards, J. L., Falsetta, M. L., Wu, H. J., Harrison, O. B., Fox, K. L., Seib, K. L., Maguire, T. L. & other authors (2009). Phasevarions mediate random switching of gene expression in pathogenic *Neisseria*. *PLoS Pathog* **5**, e1000400.

Stern, A. & Meyer, T. F. (1987). Common mechanism controlling phase and antigenic variation in pathogenic neisseriae. *Mol Microbiol* **1**, 5–12.

Thorvaldsdóttir, H., Robinson, J. T. & Mesirov, J. P. (2013). Integrative genomics viewer (IGV): high-performance genomics data visualization and exploration. *Brief Bioinform* **14**, 178–192.

Van der Ende, A., Hopman, C. T., Zaat, S., Essink, B. B., Berkhout, B. & Dankert, J. (1995). Variable expression of class 1 outer membrane protein in *Neisseria meningitidis* is caused by variation in the spacing between the −10 and −35 regions of the promoter. *J Bacteriol* **177**, 2475–2480.

Viburiene, R., Vik, Å., Koomey, M. & Berud, B. (2013). Allelic variation in a simple sequence repeat element of neisserial *pglB*2 and its consequences for protein expression and protein glycosylation. *J Bacteriol* **195**, 3476–3485.

Yang, Q. L. & Gotschlich, E. C. (1996). Variation of gonococcal lipooligosaccharide structure is due to alterations in poly-G tracts in *lgt* genes encoding glycosyl transferases. *J Exp Med* **183**, 323–327.

Data Bibliography

1. Zelewksa, M. A., Pulijala, M., & Snyder, L. A. S., NCBI Sequence Read Archive. Accession number SRR3547950 (2016).

2. Mahmood, H. -T. -N. A., & Snyder, L. A. S., NCBI Sequence Read Archive. Accession number SRR3547951 (2016).

3. Churchward, C. P., Calder, A., & Snyder, L. A. S., NCBI Sequence Read Archive. Accession number SRR3547952 (2016).

4. Churchward, C. P., Calder, A., & Snyder, L. A. S., NCBI Sequence Read Archive. Accession number SRR3547953 (2016).

5. Churchward, C. P., Calder, A., & Snyder, L. A. S., NCBI Sequence Read Archive. Accession number SRR3547954 (2016).

6. Churchward, C. P., Calder, A., & Snyder, L. A. S., NCBI Sequence Read Archive. Accession number SRR3547955 (2016).

7. Churchward, C. P., Calder, A., & Snyder, L. A. S., NCBI Sequence Read Archive. Accession number SRR3547956 (2016).

8. Churchward, C. P., Calder, A., & Snyder, L. A. S., NCBI Sequence Read Archive. Accession number SRR3547957 (2016).