A micro-sterile inflammation array as an adjuvant for influenza vaccines

Ji Wang1, Dilip Shah1, Xinyuan Chen1, R. Rox Anderson1,2 & Mei X. Wu1,2

There is an urgent need of adjuvants for cutaneous vaccination. Here, we report that micro-sterile inflammation induced at inoculation sites can augment immune responses to influenza vaccines in animal models. The inoculation site is briefly illuminated with a handheld, non-ablative fractional laser before the vaccine is intradermally administered, which creates an array of self-healing microthermal zones (MTZs) in the skin. The dying cells in the MTZs send ‘danger’ signals that attract a large number of antigen-presenting cells, in particular, plasmacytoid dendritic cells (pDCs) around each MTZ forming a micro-sterile inflammation array. A pivotal role for pDCs in the adjuvanticity is ascertained by significant abrogation of the immunity after systemic depletion of pDCs, local application of a TNF-α inhibitor or null mutation of IFN regulatory factor7 (IRF7). In contrast to conventional adjuvants that cause persistent inflammation and skin lesions, micro-sterile inflammation enhances efficacy of influenza vaccines, yet with diminished adverse effects.
We have made tremendous progress in the past decade in understanding sterile inflammation, which is induced by danger signals released from dying cells as a natural response to invaders or injuries to protect our body. The danger signals, known as damage-associated molecular patterns, include uric acid, dsDNA, RNA and others, and they can attract and activate antigen-presenting cells (APCs). The sterile inflammation is one of the primary mechanisms behind aluminium salt, also called alum, and MF59 adjuvants, two licensed vaccine adjuvants, and forms the basis for today’s adjuvant development. The ability of sterile inflammation to augment immune responses against vaccines raises an intriguing possibility that skin injury can serve as an ‘adjuvant’ for cutaneous vaccination, provided that the injury is well under control. Non-ablative fractional laser (NAFL) can controllably injure the dermis at the site of vaccine inoculation. The laser treatment generates an array of self-renewal microthermal zones (MTZs) in a desirable number, size and depth without damaging skin’s outer protective layer, so that skin barrier function can be well preserved. Each MTZ is so small that it can heal within days by fast-growing epithelial cells surrounding each MTZ, resulting in youngster-looking skin. NAFL technology is a mature industry for dermatologic treatment applications. The micro-skin injury sharply contrasts with the injury induced by intradermal (ID) injection of adjuvants that often evokes severe and persistent inflammation and overt skin lesions, making them not acceptable for routine vaccination. However, whether this fast healing micro-injury in the skin is sufficient to strengthen immune responses has not been yet explored.

Skin is prone to adjuvant-induced inflammation, which causes severe local reactogenicity including erythema, swelling and ulceration that can persist for weeks. Because of these unwanted adverse events, most current adjuvants such as alum, oil-in-water emulsion adjuvants and several agonists of Toll-like receptor (TLR) are not suitable for skin vaccination. If we are to take advantages of cutaneous vaccination as a more efficient route over conventional intramuscular (IM) immunization, effective adjuvants that do not cause overt skin inflammation are an urgent need.

We present here that NAFL induces sterile inflammation at a micro-scale that causes no overt skin lesions while greatly augmenting immune responses to influenza vaccines ID administered. The danger signals released by dying cells in laser-generated MTZs preferably attract plasmacytoid dendritic cells (pDCs) that are subsequently activated by topically applied imiquimod (IMIQ) cream, an agonist for TLR-7, leading to synergistic augmentation of the immune response against influenza vaccine in adult and old mice as well as in pigs.

Results

NAFL/IMIQ adjuvant augments vaccine-induced immune responses. An over-the-counter, handheld, cosmetic NAFL generated a 6 × 9 array of 54 MTZs, in a 7 mm × 10 mm rectangular area of the skin as illustrated in Supplementary Fig. 1a,b. Each MTZ was a thermal injury about the size and shape of a hair, approximately 200 μm in diameter and 300 μm in depth. The MTZs heal quickly, giving rise to new and younger skin. The sterile inflammation induced by laser-damage cells was restricted around each MTZ, leaving a majority of tissues unaffected, warranting a quick resolution of the inflammation. To test whether this transient, micro-scale inflammation was sufficient to augment immunity stimulated by various vaccines, a clinical H1N1 influenza vaccine (A/California/7/2009) was ID inoculated into the site of laser illumination. As shown in Fig. 1a, hemagglutinin inhibition (HAI) antibody titres were significantly higher in the presence as compared with the absence of laser treatment (P < 0.05, analysis of variance (ANOVA)/Bonferroni). There was a slightly greater immune response evoked with ID than IM immunization, similar to previous investigations (Fig. 1a) (refs 12,13,18). Comparable results were also attained with the protein model antigen ovalbumin, hepatitis B surface antigen vaccine or recombinant influenza hemagglutination (HA) protein, raising specific antibody titres by six- (P < 0.001, t-test), ten- (P < 0.05, t-test) and threefold (P < 0.01, t-test), respectively (Supplementary Fig. 1c,d,e). The adjuvant effect of NAFL was primarily ascribed to laser-mediated cell damage. Hence, when influenza vaccine was mixed with a small number of heat (65 or 95 °C)-damaged skin cells and ID administered, the heat-damaged cells enhanced immune responses against the co-injected influenza vaccine at a level comparable to that of laser treatment (P < 0.01 for 65 °C and P < 0.05 for 95 °C, ANOVA/Bonferroni, Supplementary Fig. 2). Moreover, the laser illumination conferred similar adjuvant effects as that of topical IMIQ cream (Aldara, 3 M Pharmaceuticals), which is a Food and Drug Administration (FDA)-approved topical drug for treatment of some skin diseases (Fig. 1a) (ref. 19). Strikingly, when laser-treated skin was inoculated with the influenza vaccine, followed by topical application of IMIQ cream, the combination synergistically enhanced HAI titres by sevenfold or fourfold over IM or ID vaccination, respectively (Fig. 1a, P < 0.001, ANOVA/Bonferroni). This robust response was greater than that induced by IM immunization of a 10 × higher amount of the vaccine, suggesting at least 10 × dose-sparing over the current IM influenza vaccination (Fig. 1a). Similar trends were attained in total serum IgG and IgA levels (Fig. 1b,c). The adjuvant effect was also confirmed in outbred Swiss Webster mice in which IgG and HAI titres were greatly higher with laser pre-illumination than without the illumination (Supplementary Fig. 3).

In humans, a majority of people are primed with influenza viral antigens either via vaccination or natural infections. To test if the NAFL or NAFL/IMIQ adjuvant could boost the immune response efficiently in antigen-primed subjects, mice were primed with H1N1 influenza vaccine with or without NAFL or NAFL/IMIQ, followed by an immunization booster 2 weeks later. As expected, the adjuvant boosted the immune response in primed subjects as effectively as in naïve ones, regardless of whether the primary vaccination was given influenza vaccine alone or the vaccine in combination with NAFL or NAFL/IMIQ adjuvant (Supplementary Fig. 4).

Measurement of serum IgG1 and IgG2a antibody titres revealed Th1-skewed immune responses in the presence of NAFL/IMIQ adjuvant. The adjuvant elevated IgG2a production by 15-fold, and only a fivefold increase was seen with IMIQ alone (Fig. 1d, P < 0.001, ANOVA/Bonferroni). In contrast, NAFL alone stimulated mainly IgG1 production with barely detectable IgG2a, indicative of Th2 immune responses. Apparently, topical application of IMIQ cream on the NAFL-treated site is not simply a combination of Th2 and Th1 responses, rather converting it into a stronger Th1 immune response that is required for more effective protection against viral infection (Supplementary Fig. 5a,b).

The superior humoral immune response at a high HAI titre of more than 1:100 was sustained for at least 9 months without any sign of decline (Fig. 1e), a period of time longer than an influenza season which typically lasts for 6 months in the most part of the world. NAFL alone was also able to retain a HAI titre above the standard protective level (1:40) for more than 9 months (Fig. 1e). In comparison, topical IMIQ was not as strong as NAFL in sustaining HAI production, and the HAI titre started to decline after 3 months of immunization and reached similar levels as non-adjuvanted influenza vaccine three more months later.
were intranasally challenged with 10\(^{4}\) H1N1 virus. The NAFL/IMIQ adjuvant greatly reduced lung viral titre to 2.2 \times 10^{2} plaque-forming unit (PFU) per 1 mg tissue \((P<0.001, \text{ANOVA/Bonferroni})\), which was 1,000 times lower than that attained in mice receiving the vaccine alone (Fig. 1h).

Moreover, the body weight dropped by more than 17% in 8 days post infection in all groups except for the NAFL/IMIQ group (Fig. 1i). The latter showed a decline in their body weight at the slowest pace, yet recovered at the fastest pace (Fig. 1j). All mice died within 8 days in non-immunized controls or mice immunized with a same dose (IM) or a 10 \times \text{higher dose} (0.6 \text{mg}) of the vaccine. Humoral immune responses were measured 4 weeks later including HAI titre (Fig. 1g). A horizontal grey line indicates a standard protective titre of HAI. \(n=8\), except for NAFL and NAFL/IMIQ groups \((n=10)\). HAI titres and CD4\(^{+}\)T cells secreting IFN-\(\gamma\) in the periphery were intranasally challenged with 10 \times \text{LD}_{50} \text{of A/California/7/2009 H1N1 virus 5 weeks post immunization. The infected mice were euthanized 4 days post infection to determine lung viral titres by TCID\(_{50}\) assays using MDCK cells (h). \(n=6\). Body weight (i) and survival (j) were monitored daily for 14 days. Percentages of body weight dropped relative to a pre-infection level and percentages of survival were compared between NAFL/IMIQ and NAFL or IMIQ groups by \(t\)-test or Logrank test respectively. \(n=6\), except for NAFL and NAFL/IMIQ groups \((n=8)\). Data are presented as mean \pm \text{s.e.m. Statistical significance was analysed by ANOVA/Bonferroni unless noted otherwise.} \(*P<0.05; **P<0.01\) or ***\(P<0.001\), respectively.

All experiments were repeated twice with similar results.

Enhanced protection against viral infection. The immunized mice were challenged with a mouse-adapted A/California/7/2009 H1N1 virus. The NAFL/IMIQ adjuvant greatly reduced lung viral titre to 2.2 \times 10^{2} plaque-forming unit (PFU) per 1 mg tissue \((P<0.001, \text{ANOVA/Bonferroni})\), which was 1,000 times lower than that attained in mice receiving the vaccine alone (Fig. 1h).

Comparisons between NAFL/IMIQ and a squalene-based adjuvant. NAFL/IMIQ adjuvant was further compared with...
AddaVax (Invrogen), which has a similar formulation and physical/chemical feature as MF59 (ref. 4). IM inoculation of influenza vaccine emulsified with an equal amount of AddaVax provoked immune responses slightly inferior to those of the NAFL/IMIQ adjuvant, as measured by IgG and HAI titres (Fig. 2a,b), suggesting that the laser-based adjuvant is equal to or somewhat better than this specific squalene-based adjuvant in augmentation of influenza vaccines. However, NAFL/IMIQ caused no overt skin lesions at the inoculation site, although mild inflammation was noticed in 1 day and disappeared within 3 days with histological examination (Fig. 2c right panel). Similar to previous investigation, small-diameter, thermally coagulated columns were generated in dermis by the laser, with intact stratum corneum and epidermis in place (Fig. 2c right panel). In contrast, IM administration of AddaVax mixed with influenza vaccine caused inflammation that persisted for more than 1 week (Fig. 2c left panel). Moreover, NAFL/IMIQ induced a much lower level of proinflammatory cytokine responses systemically as manifested by a relatively lower level of circulating interleukin-6 (IL-6), an important mediator of fever (Fig. 2d). IL-6 concentration peaked after 8 h of immunization and reached as high as 134 pg ml\(^{-1}\) in mice receiving the squalene-adjuvanted influenza vaccine, which was four times higher than the 32 pg ml\(^{-1}\) IL-6 seen in mice immunized by the same amount of vaccines with the NAFL/IMIQ adjuvant (Fig. 2d, \(P<0.01\) t-test). Besides, the squalene-adjuvanted vaccine elevated the body temperature by 1°C that lasted for 9 h, when compared with mice receiving the vaccine alone (Fig. 2e). In sharp contrast, no fever was measurable over the influenza vaccine alone in the NAFL/IMIQ group (Fig. 2e). The safety profile requires further confirmation with licensed MF59 in place of commercial AddaVax in future study.

Safety and effectiveness in swine. Safety and potency of the adjuvant were further evaluated in swine because porcine skin resembles human skin in term of anatomy, skin reactogenicity, immune responses and pharmacokinetics. Since the skin of pigs is thicker than mice, we used a higher power cosmetic NAFL, named Fraxel SR-1500 (Solta Medical) for pig studies. After one pass of the laser treatment, the pigs were ID vaccinated with 3 μg HA of 2009 H1N1 vaccine, equivalent to a full dose of ID influenza vaccine in humans on the basis of body weight. The immunization enhanced HAI titres by approximately twofold compared with ID vaccine alone (Fig. 3a). The laser treatment also increased the production of hepatitis B surface antigen vaccine-specific antibodies by more than five to sevenfold in both primary and booster immunizations (Supplementary Fig. 6). Topical IMIQ further enhanced the immunogenicity in pigs, similarly as described in mice (Fig. 3a), but remarkably, concurred with diminished local skin reactogenicity. As shown in Fig. 3b, 1st column, ID influenza vaccine caused wheals with a diameter of 0.5–1 cm right after immunization, concomitant with significant erythema and swelling at the injection site, which peaked on day 3 and resolved by day 7 post immunization, similar to what has been described in humans\(^{21,22}\). In comparison with influenza vaccine alone, similar or less skin reaction was observed at the injection site immediately (day 0, < 30 min) and days 1 and 3 after immunization at laser-treated site (Fig. 3b 2nd column). Diminished skin irritation was further appreciated on days 1 and 3 by combination of NAFL and IMIQ (Fig. 3b 4th column), in sharp contrast to the peaking skin irritation seen in the ID group during the same period of time (Fig. 3b 1st column). The milder skin reactogenicity was measured by 50% reduction in the mean area of erythema at the inoculation site in the NAFL/IMIQ group as compared with the influenza vaccine alone.
respectively. HAI titres were measured in 2 weeks (Fig. 3a). Each symbol represents data from individual animals, horizontal bars indicate mean, and a dash line marks the standard protective titre of HAI. n = 4. (b) Photos were taken right (day 0) and 1, 3 and 7 days after immunization and representative results were shown with four pigs in each group. Scale bar, 5 mm. (c) The erythema areas of injection sites were analysed by Image Pro Premier software 3 days after immunization. Each symbol represents a mean value of one injection site analysed for three times. Horizontal bars indicate the mean. From left to right, n = 11, 8, 8 and 12, respectively. (d) Haematoxylin and eosin slides showing infiltrated cells at the inoculation site, representative of six similar results in two separate experiments. Scale bar, 200 μm. Statistical significance was analyzed by ANOVA/Bonferroni. **P<0.01 or ***P<0.001, respectively.

Figure 3 | NAFL/IMIQ adjuvant in swine study. The exterior hind legs of yorkshire pigs were shaved, cleaned and ID vaccinated with 100 μl of the influenza vaccine (3 μg HA content) only (no adjuvant) or following one pass of laser illumination with Fraxel SR-1500 (NAFL), after which IMIQ was applied to the immunization site (NAFL/IMIQ). Alternatively, the immunization site receiving the vaccine alone was topically applied with IMIQ directly (IMIQ). HAI titres were measured in 2 weeks (a). Each symbol represents data from individual animals, horizontal bars indicate mean, and a dash line marks the standard protective titre of HAI. n = 4. (b) Photos were taken right (day 0) and 1, 3 and 7 days after immunization and representative results were shown with four pigs in each group. Scale bar, 5 mm. (c) The erythema areas of injection sites were analysed by Image Pro Premier software 3 days after immunization. Each symbol represents a mean value of one injection site analysed for three times. Horizontal bars indicate the mean. From left to right, n = 11, 8, 8 and 12, respectively. (d) Haematoxylin and eosin slides showing infiltrated cells at the inoculation site, representative of six similar results in two separate experiments. Scale bar, 200 μm. Statistical significance was analyzed by ANOVA/Bonferroni. **P<0.01 or ***P<0.001, respectively.

group (Fig. 3c, 11 versus 23 mm², P<0.001, ANOVA/Bonferroni). In parallel, histology examination of the inoculation sites confirmed drastic diminishment of infiltrated inflammatory cells in pigs receiving influenza vaccine adjuvanted by NAFL/IMIQ as compared with the pigs receiving influenza vaccine alone (Fig. 3d).

The mechanism of action of NAFL/IMIQ adjuvant. To determine the underlying mechanism, we tracked MHC II⁺ cells at the inoculation site with or without laser treatment in mice expressing MHC II infused with green fluorescent protein (GFP)²³. The MHC II⁺ cells in the skin are mainly DCs, Langerhans cells and macrophages, broadly defined as APCs²⁴,²⁵. An increase in the motility of APCs was noticed soon after laser treatment and these cells were gradually recruited to the vicinity of MTZs. Their accumulation around individual MTZs became apparent as early as 3 h and peaked 24 h after laser illumination (Fig. 4a, upper panel). As expected, the MTZ-induced recruitment of APCs was well separated spatially (Fig. 4a, left panel). To our surprise, IMIQ did not augment, but rather reduced NAFL-induced accumulation of APCs around the MTZs (Fig. 4a, lower panel), raising a possibility that IMIQ might promote migration of APCs. In an attempt to address this, whole-mount histology of the inoculation site was performed to determine entrances of APCs into lymphatic vessels. It was found that the number of GFP⁺ cells in lymphatic vessels was significantly elevated by IMIQ and to a lesser extent, by NAFL, but it was the combination that led to the highest number of APCs entering into the lymphatic vessels among all the groups at all time points tested (Fig. 4b,c). Consistent with the highest number of GFP⁺ cells in the lymphatic vessels was the lowest percentage of CD11c⁺ DCs in the skin, in parallel to a corresponding increase in the number of CD11c⁺ DCs in the draining lymph nodes (dLNs) in mice receiving the vaccine and NAFL/IMIQ adjuvant (Fig. 4d,e). Accelerated migration of APCs to dLNs may be crucial on two fronts: (1) augmentation of influenza vaccine-induced immunity and (2) reduction of local inflammation because a smaller number of mature APCs at the inoculation site can facilitate inflammation resolution, whereas a higher number of mature DCs in dLNs are pivotal for heightened immune responses.

We also found that CD11c⁺ cells only accumulated in ipsilateral, but not in contralateral, lymph nodes indicating that the adjuvant effects of NAFL/IMIQ impacts locally rather than systemically (Supplementary Fig. 7). Therefore, we focused on local events to investigate synergistic adjuvant effects of NAFL and IMIQ. The active recruitment of APCs around each MTZ promoted us to study local chemokine production stimulated by NAFL treatment. Six out of nine chemokines examined were elevated 6 h after NAFL treatment, peaked in 24 h, and dwindled down thereafter (Fig. 5a), in agreement with resolving inflammation at the inoculation site in 2 days (Fig. 2c). Among these chemokines, CCL2, CCL20, CXCL19, CXCL10, CXCL12 and Chemerin are known to preferably attract pDCs²⁶–²⁹. pDCs, characterized as CD11c⁺ CD11b⁻ B220⁺ Ly6C⁺ PDCA-1⁺ cells
(Supplementary Fig. 8a), accumulated at the inoculation site at a level four times higher after 24 h of NAFL treatment when compared with non-laser-treated skin (Fig. 5b). The pDC recruitment was further enhanced by topical IMIQ leading to an eightfold increase in the percentage of pDCs at the inoculation site (Fig. 5b and Supplementary Fig. 8b). The pDCs mainly accumulated in the vicinity of MTZs as evidenced by strong immunohistological staining around each MTZ with an antibody against a pDC-specific marker, Siglec H (Fig. 5c, upper). NAFL/IMIQ might also attract other immune cells, but pDCs were preferable targets of IMIQ because of a high level of TLR-7 expression on the cells. Preferable mobilization of pDCs explained a relatively high level of IFN-α/β, tumour-necrosis factor-α (TNF-α), and IL-6 at the inoculation site 6 h after the immunization in the presence of NAFL/IMIQ adjuvant (Fig. 5d), since pDCs, but not conventional DCs, produced high levels of these proinflammatory cytokines on activation by IMIQ (Supplementary Fig. 9). In contrast, IMIQ alone failed to vigorously increase the expression of these cytokines under similar conditions, in agreement with previous investigation.27.

Among these cytokines induced at the inoculation site, TNF-α has been demonstrated to promote migration of dermal DCs into dLNs.31 We thus ID injected a TNF-α inhibitor, soluble TNF-Receptor Type I (TNFR1) into the inoculation site (Fig. 5a, left panel). A representative MTZ was tracked at 0, 3, 8 and 24 h after immunization of influenza vaccine with NAFL treatment (upper panel) or NAFL/IMIQ (lower panel) in (a), representative of 6 similar results in two separate experiments. White dash circles highlight MTZs. Scale bar, 200 μm. (b) Monitoring APCs within lymphatic vessels. Ears were prepared and stained by confocal microscopy, representative of six similar results in two separate experiments. Scale bar, 100 μm. Average number of APCs within each lymphatic vessel were determined by manual counting GFP+ cells inside the lymphatic vessels in 20 randomly selected fields with a total of more than 40 lymphatic vessels counted (c) during which three-D scanning was performed to confirm the intra-vessel localization of each APC (b). (d,e) Proportions of CD11c+ DCs in the skin (d) and a total number of DCs in each dLN (e). CD11c+ DCs in the dorsal skin and dLNs were quantified by flow cytometry at indicated times after immunizing with the influenza vaccine alone or in the presence of indicated adjuvants as Fig. 1. n = 6, except for NAFL/IMIQ group (n = 8). Data are presented as mean ± s.e.m. Statistical significance was analysed by ANOVA/Bonferroni. *P < 0.05; **P < 0.01 or ***P < 0.001, respectively. All experiments were repeated twice with similar results.

Figure 4 | Accelerated migration of APCs into dLNs in the presence of NAFL/IMIQ. MHC II-EGFP transgenic mice were ID inoculated in one ear with influenza vaccine adjuvanted with NAFL or NAFL/IMIQ. Accumulation of MHC II+ APCs around individual MTZs was visualized by intravitral confocal microscopy at varying times after immunization and the one captured at 8 h post immunization was shown in a, left panel. A representative MTZ was tracked at 0, 3, 8 and 24 h after immunization of influenza vaccine with NAFL treatment (upper panel) or NAFL/IMIQ (lower panel) in (a), representative of 6 similar results in two separate experiments. White dash circles highlight MTZs. Scale bar, 200 μm. (b) Monitoring APCs within lymphatic vessels. Ears were prepared and stained by whole-mount immunohistology 8 h post immunization. APCs (green), lymphatic vessels (blue and/or red) and blood vessels (red) were visualized by confocal microscopy, representative of six similar results in two separate experiments. Scale bar, 100 μm. Average number of APCs within each lymphatic vessel were determined by manual counting GFP+ cells inside the lymphatic vessels in 20 randomly selected fields with a total of more than 40 lymphatic vessels counted (c) during which three-D scanning was performed to confirm the intra-vessel localization of each APC (b). (d,e) Proportions of CD11c+ DCs in the skin (d) and a total number of DCs in each dLN (e). CD11c+ DCs in the dorsal skin and dLNs were quantified by flow cytometry at indicated times after immunizing with the influenza vaccine alone or in the presence of indicated adjuvants as Fig. 1. n = 6, except for NAFL/IMIQ group (n = 8). Data are presented as mean ± s.e.m. Statistical significance was analysed by ANOVA/Bonferroni. *P < 0.05; **P < 0.01 or ***P < 0.001, respectively. All experiments were repeated twice with similar results.
NAFL/IMIQ. The increase in mature DCs was also corroborated with a relatively high laser intensity of CD40 and CD86 staining on the cells (Supplementary Fig. 12a,b). Notably, the percentages of CD40+ and CD86+ DCs were significantly higher in the IMIQ group at 6 or 18 h or in the NAFL group at 6 h after immunization, but the total number of mature DCs in dLNs were much more prominent in the NAFL/IMIQ group, which translated into a strong acquired immunity in the animals (Fig. 5f, and Supplementary Fig. 12). Strikingly, not all proinflammatory cytokines were synergistically elevated by NAFL/IMIQ, and rather, IL-1 family (IL-1α, IL-1β, IL-18, IL-33) and thymic stromal lymphopoietin (TSLP) were diminished considerably as compared with mice immunized with the vaccine alone, or along with either topical IMIQ or NAFL (Fig. 5d). The selective decrease in these mediators may be another reason behind a limited local reaction in the presence of NAFL/IMIQ, because both IL-1 family and TSLP are mediators of local inflammation and dermatitis as demonstrated by a number of studies.33,34

To directly address a pivotal role of pDCs in the synergistic adjuvant effect of NAFL and IMIQ, we depleted pDCs in Balb/c mice by injection of anti-mPDCA-1 antibody before immunization.35 pDC depletion did not affect IgG1 levels, but profoundly impaired IgG2a production in the NAFL/IMIQ group (Fig. 5g upper panel, *P<0.01 t-test). In addition to diminished production of IgG2a, pDC depletion compromised cell-mediated...
immune responses as well, reflected by significant decreases in the percentages of CD4+ and CD8+ T cells secreting IFN-γ (Fig. 5g middle and lower panels, *P<0.01* t-test). Interestingly, the impairment was not evidenced in the IMIQ group, indicating that the effect of topical IMIQ relied primarily on dermal resident APCs, because pDCs were almost undetectable in normal, non-laser-treated skin36. In contrast to IMIQ, pDC depletion resulted in a significant decrease in the percentages of both CD4+ (*P<0.01* t-test) and CD8+ T (*P<0.05* t-test) cells producing IFN-γ in mice immunized with NAFL-adjuvanted influenza vaccine (Fig. 5g). The results argue strongly that NAFL-mediated recruitment of pDCs into the inoculation site is key for the observed adjuvant effect of NAFL/IMIQ.

Increasing vaccine-induced immune responses in aged mice.

Given the strong cell-mediated immune response evoked by the new adjuvant, we extended our investigation to old mice, because elderly people respond poorly to current seasonal influenza vaccines. Unfortunately, the elderly suffer from a high level of morbidity and mortality after influenza viral infection and need the vaccine most. As shown in Fig. 6a and Supplementary Fig. 13, old BALB/c mice elicited a rather weak immune response compared with adult mice after IM immunization with H1N1 influenza vaccine alone. The weak immune response of the old mice was not improved by ID vaccination regardless of whether NAFL or IMIQ was employed. In contrast, the combination of NAFL/IMIQ adjuvant elicited vigorous humoral (*P<0.001, ANOVA/Dunnett’s*) and cellular (*P<0.01, ANOVA/Dunnett’s*) immune responses in these old animals (Fig. 6a–c and Supplementary Fig. 13a). The levels of humoral and cell-mediated responses were arguably greater than those provoked by AddaVax-adjuvanted influenza vaccine or in adult mice IM immunized with the same amount of the influenza vaccine (Fig. 6a–c, *P<0.01, ANOVA/Dunnett’s*). Similar to what occurred in adult mice, the NAFL/IMIQ adjuvant increased pDCs in number at the inoculation site and provoked predominantly Th1 immune response in old mice as suggested by a higher ratio of IgG2a to IgG1 and greater percentages of IFN-γ-producing CD8+ and CD4+ T cells in the presence versus. the absence of NAFL/IMIQ adjuvant (Fig. 6b,c, Supplementary Fig. 13b,c). As a result, ~80% (10/13) of the old mice were protected from lethal H1N1 viral infection after ID immunization of the influenza vaccine with the NAFL/IMIQ adjuvant, which was superior to the 17% (1/6) protection in the mice IM immunized with squalene-adjuvanted influenza vaccine (Fig. 6d,e). There was no protection against the viral challenge if the animals were ID immunized with influenza vaccine alone or along with either adjuvant (Fig. 6d,e).

Discussion

Many vaccine adjuvants are being developed in preclinical studies or in various stages of clinical trials and the potency of these conventional adjuvants often comes at the expense of safety37. The current investigation explores a novel adjuvant that limits adverse effects locally and systemically, while augmenting efficacy of influenza vaccines in both small and large, young and old animal models. The handheld NAFL device we used is self-applicable and FDA approved for facial wrinkle removal at home, which requires a higher safety standard than laser illumination of a tiny spot on the upper arm used for vaccination in a medical office. The laser parameters in our swine study are well below those normally used in a clinical practice for skin resurfacing, and can be readily incorporated into the existing design of the small device. The 1,410 nm light works in a stamp/scanning fashion and is equally effective regardless of skin color, in contrast to the 532 nm laser adjuvant described previously38,39. Its microprobe is tightly sealed by a thin plastic that prevents any skin materials from contaminating the probe, and the sealer is readily cleaned aseptically to prevent person-to-person contamination. The laser does not damage the stratum corneum, the outermost layer of epidermis, so that integrity of the skin barrier is preserved17. Another advantage of this adjuvant is its standalone feature, like a topical adjuvant, which means there is no requirement for...
pre-mixture or reformulation to use it with existing or new vaccines. The adjuvant can also be readily incorporated into portable and/or self-vaccination procedures with various needle-free, painless, microneedle-array patches.

IMIQ cream (Aldara) was initially approved by FDA more than 15 years ago as a topical treatment for genital/perianal warts at age 12 or older. The drug has also been approved for the treatment of superficial basal cell carcinoma and actinic keratosis as of 2004. In those treatments, the cream is applied three times a week for up to 12 weeks or daily for several weeks, and in many cases a relatively large area of the skin is affected. In contrast, for use as an adjuvant along with NAFL, IMIQ is topically applied only once to a skin area of smaller than 1 cm², so the systemic absorption or local reaction is extremely limited. In this preclinical study, we showed that a combination of NAFL and topical IMIQ apparently alleviates, rather than worsens, skin irritation provoked by influenza vaccine in pigs. NAFL/IMIQ not only blunts local inflammation but also raises little circulating IL-6 or body fever over influenza vaccines. In contrast, a fever was clearly presented along with a significantly higher level of IL-6 and IL-12, peaking at 24 h and subsiding in 48 h, but this short period of local sterile inflammation induced by NAFL occurs only briefly, peaking at around 10–20 min and subsiding in 30 min. The immune response can be provoked by transient micro-sterile inflammation at the inoculation site and is of highly clinical significance for cutaneous vaccination. A growing body of evidence has shown that cutaneous vaccination is more effective than IM vaccination, as the skin is enriched in APCs and in networks of lymphatic vessels, in contrast to the muscle where few APCs reside.

Methods

Animals. Inbred BALB/c mice and outbred Swiss Webster mice at 6–8 weeks of age were purchased from Charles River Laboratories. Mice of both genders were used randomly with no notable difference. Eighteen-month-old BALB/c mice (old mice) were purchased from National Institute of Aging (NIA). Irf7−/− mice on C57BL/6J background were a kindly gift of Dr T. Taniguchi, Tokyo University and were purchased from Jackson Laboratories. MHC II-EGFP mice expressing MHC class II molecule infused into enhanced GFP was a kind gift from Drs Boes and Ploegh, Harvard Medical School and Male Yorkshire pigs at 4 months of age were obtained from the Teaching and Research Resources at Tufts University. The animals were housed in the specific pathogen-free animal facilities of Massachusetts General Hospital (MGH) in compliance with institutional, hospital and NIH guidelines. All studies were reviewed and approved by the MGH Institutional Animal Care and Use Committee.

Laser adjuvant. A FDA-approved, home-use NAFL laser was used in mice (PalioVia Skin Renewing Laser, Palomar Medical Technologies). The hand held device emits a 1,410-nm laser light and two passes at the medium power were used to generate overlapped MTZs at the inoculation site. Pigs were treated with one facility of Exilis 1500 laser (Solta Medical). This clinical device emitted an array of laser with 17% coverage, 93 MTZ/cm² per pass and 30 mJ per microbeam.

Influenza virus and vaccine. Pandemic A/California/7/2009 H1N1 influenza virus was obtained from American Type Culture Collection (ATCC, #FR-201). The virus was expanded in 10-day-old embryonated chicken eggs at 35°C for 3 days, collected by ultra centrifugation and frozen at −80°C until use. Its infectivity was determined with a 50% tissue culture infectious dose (TCID₅₀) in Madin–Darby canine kidney cells (ATCC, #CCL-34). To challenge mice, the virus was adapted in mice for three cycles of intranasal instillation-hung homogenate preparation and infectivity of the resultant virus was assayed by a 50% lethal dose (LD₅₀) in adult BALB/c mice following a standard protocol. Monovalent A/California/7/2009 H1N1 influenza virus vaccine (Sanofi Pasteur, Inc.) was obtained from MGH pharmacy and BEI Resources, used at 0.06 μg HA per mouse or 3 μg HA per pig unless otherwise indicated.

Immunizations and challenges. Mice to be immunized were hair removed on the lower dorsal skin and ID inoculated on the next day with influenza vaccine or illuminated with laser before the vaccine was ID administered. After ID immunization, the inoculation site was either left alone or topically applied with IMIQ (Alldara, 3 M Pharmaceuticals). The inoculation site was then covered with a 3 M Tegaderm film to protect it. For IM injection of adjuvanted influenza vaccine, AddaVax, a squalene-based nano-emulsion adjuvant (Inviogen) with a formulation similar to licensed MF59 adjuvant, was mixed with influenza vaccine at 1:1 ratio and IM injected in a total volume of 20 μl. Body temperature was monitored before and after challenge in some of the mice by a temperature control device (FITC). Blood cytokines were measured by enzyme-linked immunosorbent assay (ELISA) kit (eBiosciences). The immunized and control mice were challenged by intranasal instillation of
Analysis of dermal DCs or pDCs by flow cytometry. Skin at the inoculation site was excised, minced and digested with Dispase II (Life Technologies) and collagenase D (Roche) for 2 h at 37 °C. The digested skin tissues were passed through a 100-μm cell strainer to prepare single-cell suspensions. The resultant cells were treated with anti-CD16/CD32 antibody (clone 93, Biologend, dilution 1:50) for 20 min, followed by staining with the following fluorescence-conjugated antibodies for 30 min on ice: APC-antCD11c (clone N418, eBioscience, dilution 1:100), BV421-anti-CD11b (clone M170, dilution 1:100), FITC-anti-MHCII (clone M5/114.15.2, dilution 1:200), FITC-anti-Ly6C (clone HK4.1, dilution 1:200), and APC/Cy7-anti-B220 (clone RA3-682, dilution 1:100). All antibodies were purchased from Biologend unless otherwise stated. The stained cells were acquired on a FACSAria (BD) and analysed using Flowjo software (Tree Star).

In vivo depletion of pDCs. BALB/c mice were intraperitoneally injected with two doses of anti-mCD11c antibody (clone J1801C4.1, Miltenyi Biotec) at 400 μg per dose at 24 and 0 h, respectively, before immunization. Depletion efficiency was confirmed by flow cytometry of pDCs in the blood samples. Effects of pDC depletion on cellular immune responses were evaluated one week later, and humoral immune responses were analysed 2 weeks after the immunization.

Quantification of DCs in dLNs. dLNs were collected and single-cell suspensions were prepared, counted, stained with FITC-anti-CD11c (clone N418, eBiosciences, dilution 1:100), APC/anti-CD80 (clone 357.1, BD Bioc endorsing, dilution 1:100) and PerCP-Cy5.5-anti-CD86 (clone GL-1, Biologend, dilution 1:100) antibodies, followed by flow cytometric analysis as previously reported.

Histological examination. Mice were euthanized with a lethal dose of CO2 inhalation, dissected, fixed in 4% paraformaldehyde and processed for paraffin embedding. Sections were stained with haematoxylin and eosin and examined under a light microscope.

Intravital confocal imaging. The ear of MHC II-EGFP transgenic mice was treated with NFAL or NFAL/IMIQ. GFP + cells in the epidermis and dermis were imaged by intravital two-photon confocal microscopy (Olympus FV-1000). Three-D reconstruction was used to visualize accumulation of GFP + cells around individual MTZs by Image J software.

Whole-mount immune histology. The ear of MHC II-EGFP transgenic mice was inoculated with influenza vaccine in the presence of NFAL/IMIQ adjuvant or NF/IMIQ with the vaccine mixed with AddaVax. The tissues at the inoculation site were dissected at indicated days, fixed and stained by a standard haematoxylin and eosin procedure. Similar histological examination was also carried out in pigs after 3 days of immunization. The slides were scanned and analysed by NanoZoomer (Hamamatsu).

References.

1. Chen, G. Y. & Nunez, G. Sterile inflammation: sensing and reacting to damage. *Nat. Rev. Immunol.* 10, 826 (2010).
2. Marziali, T. et al. DNA released from dying host cells mediates aluminium adjuvant activity. *Nat. Med.* 17, 996 (2011).
3. Kool, M. et al. Alum adjuvant boosts adaptive immunity by inducing uric acid and activating inflammatory dendritic cells. *J. Exp. Med.* 205, 869 (2008).
4. O'Hagan, D. T., Ott, G. S., De Gregorio, E. & Seubert, A. The mechanism of action of M. *Vaccine* 30, 4341 (2012).
5. McKee, A. S. et al. Host DNA released in response to aluminum adjuvant enhances MHC class II-mediated antigen presentation and prolongs CD4 T-cell interactions with dendritic cells. *Proc. Natl Acad. Sci. USA* 110, E1122–E1131 (2013).
6. Eisenbarth, S. C., Colegio, O. R., O'Connor, W., Sutterwala, F. S. & Flavell, R. A. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. *Nature* 453, 1122 (2008).
7. Manstein, D., Herron, G. S., Sink, R. K., Tanner, H. & Anderson, R. R. Fractional photothermolysis: a new concept for cutaneous remodeling using microscopic patterns of thermal injury. *Lasers Surg. Med.* 34, 426 (2004).
8. Tajiri, A. L. & Goldberg, D. J. Fractional ablative laser skin resurfacing: a review. *J. Cosmet. Laser Ther.* 13, 262 (2011).
9. Saeidi, N., Petelin, A. & Zachary, C. Fractionation: a new era in laser resurfacing. *Clin. Lasers Surg.* 38, 449 vili (2011).
10. Axell-Armenka, M., Sarnoff, D., Gotkin, R. & Sadick, N. Multi-center clinical study and review of fractional ablative CO2 laser resurfacing for the.
treatment of rhytides, photoaging, scars and striae. J. Drugs Dermatol. 10, 352 (2011).
11. Chen, X. & Wu, M. X. Laser vaccine adjuvant for cutaneous immunization. Expert Rev. Vaccines 10, 352 (2011).
12. Kenney, R. T., Frech, S. A., Muenz, L. R., Villar, C. P. & Glenn, G. M. Dose sparing with intradermal injection of influenza vaccine. N. Engl. J. Med. 351, 2295 (2004).
13. Belshe, R. B. et al. Serum antibody responses after intradermal vaccination against influenza. N. Engl. J. Med. 351, 2286 (2004).
14. Fishbein, D. B. et al. Rabies preexposure prophylaxis with human diploid cell rabies vaccine: a dose-response study. J. Infect. Dis. 156, 50 (1987).
15. Pancha-Roos, I. et al. Reduced-dose intradermal vaccination against hepatitis A with an aluminum-free vaccine is immunogenic and can lower costs. Clin. Infect. Dis. 41, 1537 (2005).
16. Gibson, S. J. et al. Plasmacytoid dendritic cells produce cytokines and mature in response to the TLR7 agonists, imiquimod and resiquimod. Cell. Immunol. 218, 74 (2002).
17. Leyden, J., Stephens, T. J. & Herndon, Jr J. H. Multicenter clinical trial of a home-use nonablative fractional laser device for wrinkle reduction. J. Am. Acad. Dermatol. 67, 975 (2012).
18. Arnou, R. et al. Intradermal influenza vaccine for older adults: a randomized controlled multicenter phase III study. Vaccine 27, 7304 (2009).
19. Gupta, A. K., Cherman, A. M. & Tyring, S. K. Viral and nonviral uses of imiquimod: a review. J. Cutan. Med. Surg. 8, 338 (2004).
20. Monteiro-Riviere, N. A. & Riviere, J. in Advances in Swine in Biomedical Research (eds Tumuleson, M. E. & Schook, M. B.) 425–458 (Springer, 1996).
21. Beran, J. et al. Intradermal influenza vaccination of healthy adults using a new microinjection system: a 3-year randomised controlled safety and immunogenicity trial. BMC Med. 7, 13 (2009).
22. Leroux-Roels, I. et al. Seasonal influenza vaccine delivered by intradermal microinjection controlled safety and immunogenicity trial in adults. Vaccine 26, 6614 (2008).
23. Boes, M. et al. T-cell engagement of dendritic cells rapidly rearranges MHC class II transport. Nature 418, 983 (2002).
24. Batista, F. D. & Harwood, N. E. The who, how and where of antigen presentation to B cells. Nat. Rev. Immunol. 9, 15 (2009).
25. Itano, A. A. & Jenkins, M. K. Antigen presentation to naive CD4 T cells in the lymph node. Nat. Immunol. 4, 733 (2003).
26. Vanbervliet, B. et al. The inducible CXCR3 ligands control plasmacytoid dendritic cell responsiveness to the constitutive chemokine stromal cell-derived factor 1 (SDF-1)/CXCL12. J. Exp. Med. 198, 823 (2003).
27. Drobits, B. et al. Imiquimod clears tumors in mice independent of adaptive immunity by converting pDCs into tumor-killing effectors cells. J. Clin. Invest. 122, 575 (2007).
28. Sisuirk, V. et al. CCR6/CXCR10-mediated plasmacytoid dendritic cell recruitment to inflamed epidermis after instruction in lymphoid tissues. Blood 118, 5130 (2011).
29. Skrzeczynska-Moncznik, J. et al. Potential role of chemein in recruitment of plasmacytoid dendritic cells to diseased skin. Biochem. Biophys. Res. Commun. 380, 322 (2009).
30. Kawai, T. & Akira, S. TLR signaling. Cell Death Differ. 13, 816 (2006).
31. Alvarez, D., Vollmann, E. H. & von Andrian, U. H. Mechanisms and consequences of dendritic cell migration. Immunity 29, 325 (2008).
32. Theofilopoulos, A. N., Baccala, R., Beutler, B. & Kono, D. H. Type I interferons (alpha/beta) in immunity and autoimmunity. Annu. Rev. Immunol. 23, 307 (2005).
33. Jensen, L. E. Targeting the IL-1 family members in skin inflammation.Curr. Opin. Investig. Drugs 11, 1211 (2010).
34. Soumelis, V. et al. Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat. Immunol. 3, 673 (2002).
35. Krug, A. et al. TLR9-dependent recognition of MCMV by IPC and DC generates coordinated cytokine responses that activate antiviral NK cell function. Immunity 21, 107 (2004).
36. Gregorio, J. et al. Plasmacytoid dendritic cells sense skin injury and promote wound healing through type I interferons. J. Exp. Med. 207, 2921 (2010).
37. Petrovsky, N. & Aguilar, J. C. Vaccine adjuvants: current state and future trends. Immunol. Cell. Biol. 82, 488 (2004).
38. Chen, X. et al. A novel laser vaccine adjuvant increases the motility of antigen presenting cells. PLoS One 5, e13776 (2010).
39. Chen, X., Pravetoni, M., Bhayana, B., Pentel, P. R. & Wu, M. X. High immunogenicity of nicotine vaccines obtained by intradermal delivery with safe adjuvants. Vaccine 31, 159 (2012).
40. Cantonis, C. et al. Imiquimod 5% cream use in dermatology, side effects and recent patents. Recent Pat. Inflamm. Allergy Drug Discov. 6, 65 (2012).
41. Cumberbatch, M. & Kimber, I. Dermal tumour necrosis factor-alpha induces dendritic cell migration to draining lymph nodes, and possibly provides one stimulus for Langerhans’ cell migration. Immunology 75, 257 (1992).
42. Sundquist, M. & Wick, M. J. TNF-alpha-dependent and -independent maturation of dendritic cells and recruited CD11c(int)CD11b+ Cells during oral Salmonella infection. J. Immunol. 175, 3267 (2005).
43. Honda, K. et al. IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 434, 772 (2005).
44. Koyama, S. et al. Plasmacytoid dendritic cells delineate immunogenicity of influenza vaccine subtypes. Sci. Transl. Med. 2, 25ra3a4 (2010).
45. Hutchison, S. et al. Antigen depot is not required for alum adjuvanticity. FASEB J. 26, 1272 (2012).
46. Reed, S. G., Orr, M. T. & Fox, C. B. Key roles of adjuvants in modern vaccines. Nat. Med. 19, 1597 (2013).
47. Hong, D. K. et al. Cationic lipid/DNA complex-adjuvanted influenza A virus vaccine induces robust cross-protective immunity. J. Virol. 84, 12691 (2010).

Acknowledgements
We would like to thank Margaret Sherwood, Jenny Zhao and Danny Cao for their help in the microscopy and flow cytometry during this project. This work is supported in part by the National Institutes of Health grants AI089779, AI070785, AI097696, and DA028378 (to M.X.W.) and Bullock-Wellman Fellowship and A. Ward. Ford. Memorial Grant NSF0511 (to X.C.).

Author contributions
M.X.W. has designed and supervised the research. J.W., D.S. and X.C. designed and performed the experiments. R.R.A. helped the idea and participated in manuscript writing. M.X.W., J.W., D.S. and X.C. wrote the manuscript.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

How to cite this article: Wang, J. et al. A micro-sterile inflammation array as an adjuvant for influenza vaccines. Nat. Commun. 5:4447 doi: 10.1038/ncomms5447 (2014).