A solution to the old puzzle of 0^+ resonances above the 0^+_2 Hoyle state in 12C — A new analysis with complex-scaled 3α OCM —

To cite this article: S Ohtsubo et al 2014 J. Phys.: Conf. Ser. 569 012070

View the article online for updates and enhancements.
A solution to the old puzzle of 0^+ resonances above the 0^+_2 Hoyle state in 12C
— A new analysis with complex-scaled 3α OCM —

S Ohtsubo1, Y Fukushima1, M Kamimura2 and E Hiyama2

1 Department of Applied Physics, Fukuoka University, Fukuoka 814-0180, Japan
2 RIKEN Nishina Center, RIKEN, Wako 351-0198, Japan
E-mail: mkamimura@riken.jp

Abstract. We have developed the complex-scaling method (CSM) by using the complex-range (or oscillating) Gaussian basis functions that are suited for describing highly oscillating few-body wave functions. The eigenvalue distribution of the complex scaled Hamiltonian becomes much more precise and the maximum scaling angle becomes drastically larger than those given by the use of real-range Gaussians. Owing to this advantage, we were able to isolate the S-matrix pole of the new broad 0^+_3 resonance from the 3α continuum. This confirms the Kurokawa-Kato’s prediction (2005) of the new 0^+_3 resonance, which is considered to correspond to the newly observed 0^+_3 resonance ($E_x = 9.04$ MeV, $\Gamma = 1.45$ MeV) by Itoh et al. (2013). As a result the long-standing puzzle for the 0^+ and 2^+ resonances above the 0^+_2 Hoyle state in 12C was solved. In this paper, the negative parity resonances with $J = 1^-, 2^-, 3^-, 4^-$ and 5^- are newly calculated.

1. Introduction

There was a long-standing puzzle, as shown in Fig. 1, for the 0^+ and 2^+ resonances above the 0^+_2 Hoyle state in 12C; observation [1] and the typical 3α-cluster-model calculations are inconsistent. Recently, this puzzle has been almost solved by the new cluster-model calculation by Kurokawa and Kato [2] and the new experiment by Itoh et al. [3] as shown in Fig. 2.

The authors of Ref. [2] predicted a new broad 0^+_3 resonances at $E_x = 8.95$ MeV with $\Gamma = 1.48$ MeV using the complex-scaling method (CSM) (see Ref. [4] for a review) within the 3α orthogonality-condition model (OCM). However, the prediction is not very satisfactory from the following point: Their CSM calculation was performed at the scaling angle of 16° that is the largest angle available in their calculation using the real-range Gaussian basis. Since the angle is not enough for separating the low-lying broad 0^+_3 resonance from the continuum eigenvalues, they made an extrapolation by the method of analytic continuation of the coupling constant (ACCC) [5] to derive the complex energy of the 0^+_3 resonance (cf. Fig. 6 below).

In order to overcome this difficulty and confirm the prediction in Ref. [2], we proposed [6] to use the complex-range Gaussian basis functions [7, 8],
Figure 1. The 0^+ and 2^+ resonances in 12C above the 0^+_2 Hoyle state that were inconsistent between the experiments [1] and the typical cluster-model calculations.

Long-standing puzzle for the J=0+, 2+ levels in 12C

Energy	J	Mode	Ref.
11.7	0^+		
9.5	2^+		
7.74	0^+_2 Hoyle		

α - Cluster model

EXP

12C

The puzzle in 12C almost solved

Energy	J	Mode	Ref.
11.87(1.1)	0^+		[3]
10.56(1.42)	0^+		
9.57(1.1)	2^+		
9.84(1.01)	0^+_2		
8.95(1.48)	0^+		
9.04(1.45)	0^+_2		
10.56(1.42)	0^+		

Figure 2. The new cluster-model calculation for the 0^+_3 resonance [2] and the new experiment for the 0^+_3, 2^+_2 and 0^+_4 resonances [3]. All the calculated results are cited from Ref. [2]. The energy E_x and the width Γ are in MeV.

\[r_l e^{-(1+\omega)(r/r_n)^2} Y_{lm}(\hat{r}), \quad \text{or equivalently} \quad r_l e^{-(r/r_n)^2 \{\cos \omega (r/r_n)^2 \} Y_{lm}(\hat{r})} \tag{1} \]

with r_n in a geometric progression, in the calculation of three-body resonances with CSM in which use is often made of the real-range Gaussian basis functions [9, 7, 4],

\[r_l e^{-(r/r_n)^2} Y_{lm}(\hat{r}). \tag{2} \]

Though the latter set is suitable for describing the short-distance structure and the asymptotic decaying behavior of few-body systems [7], the former basis set is more powerful when describing the resonant and non-resonant continuum states in CSM with highly oscillating amplitude at large scaling angles θ.

We applied the new basis functions (both for the two Jacobi coordinates, r and R) to the 3α OCM-CSM calculation [6] of the 3α resonances with $J = 0^+, 2^+$ and 4^+ in 12C (see Ref. [6] for details). In this paper, we newly calculate the negative parity resonances with $J = 1^-, 2^-, 3^-, 4^-$ and 5^-. We took the same model and the Hamiltonian as used in the 3α OCM-CSM calculation in Ref. [2].

2. The broad new 0^+_3 resonance

Figure 3, taken from Ref. [2], shows the 0^+ eigenvalue distribution of the complex scaled Hamiltonian calculated with the real-range Gaussian basis functions. The scaling angle $\theta = 16^\circ$ was the maximum angle available in the calculation. The new broad 0^+_3 state was predicted at $E_{\text{res}} = 8.95 - i 0.74$ MeV ($E_x = 8.95 - i 0.74$ MeV) but this complex energy is not isolated from the continuum states in Fig. 3 at $\theta = 16^\circ$. The energy was derived by an extrapolation based on the method of analytic continuation of the coupling constant [5] (cf. Fig. 6 below).

Figure 4 illustrates the result of our CSM calculation [6] for the $J = 0^+$ states at $\theta = 16^\circ$ and 26°. The distribution of the S-matrix becomes very much improved and precise. However, even at $\theta = 26^\circ$, the 0^+_3 resonance is not isolated from the continuum states.
Figure 3. The 0^+ eigenvalue distribution of the complex scaled Hamiltonian for the 3α system obtained by Kurokawa and Katō [2] using the real-range Gaussian basis functions. The scaling angle is $\theta = 16^\circ$. The 0^+_1 state was predicted at $E = 1.66 - i 0.74$ MeV (see the text).

Figure 4. The 0^+ eigenvalue distribution of the complex scaled Hamiltonian for the 3α system with the use of the complex-range Gaussian basis functions [6]. The scaling angles are $\theta = 16^\circ$ (black) and 26° (blue). This figure is to be compared with Fig. 3.

Figure 5. The 0^+ eigenvalue distribution of the complex scaled Hamiltonian, where the angle θ is varied from 22° to 36° [6]. The 0^+_1 resonance appears, as the closed blue circle (36°), at $E = 0.79 - i 0.84$ MeV. Only for $\theta = 36^\circ$ both the continua of $[\alpha + \alpha + \alpha]$ (open blue boxes) and $[^{12}\text{Be}(0^+) + \alpha]$ (open blue circles) are illustrated, but the former is omitted for $\theta < 36^\circ$ for clarity of the figure.

Figure 6. Trajectory of the 0^+_1 state obtained by changing the strength parameter δ of the auxiliary three-body potential [6]. The blue closed circle at $\delta = 0$ corresponds to the 0^+_1 resonance in Fig. 5. The green box denotes the 0^+_1 state predicted by Kurokawa and Katō [2] on the basis of the extrapolation (the dash-dotted green curve) using the ACCC+CSM.
We illustrate, in Fig. 5, the 0^+ distribution of complex eigenvalues. Only for $\theta = 36^\circ$ both the $[\alpha + \alpha + \alpha]$ continuum (open blue boxes) and the $[{}^9\text{Be}(0^+) + \alpha]$ continuum (open blue circles) are given, but the former is omitted for $\theta < 36^\circ$ to avoid complexity of the figure. We observe a converged resonance pole at $E_{\text{res}} = 0.79 - i 0.84$ MeV as shown by the closed blue circle. We identify it as the third 0^+ state that was predicted in Ref. [2]. The position and width of the resonance, however, differ slightly from the result of Ref. [2], $E_{\text{res}} = 1.66 - i 0.74$ MeV.

We explain the reason of this difference with Fig. 6 which is to be compared with Fig. 2 of Ref. [2]. Fig. 6 illustrates the trajectory of the $0^+_{3\alpha}$ state on the complex energy plane, which was obtained by changing the strength parameter δ of the auxiliary three-body potential $V_{\text{aux}} = \delta \exp[-\mu(r_1^2 + r_2^2 + r_3^2)]$ with $\mu = 0.15$ fm$^{-2}$ (Eq. (4) of Ref. [2]) that is added to the 3α OCM Hamiltonian. The closed blue circle for $\delta = 0$ in Fig. 6 is the same as that for the $0^+_{3\alpha}$ resonance in Fig. 5. On the other hand, in Ref. [2], the direct CSM calculation of the $0^+_{3\alpha}$ resonance was not possible when the auxiliary 3α potential is less attractive than $\delta = -120$ MeV. The green box that indicates the $0^+_{3\alpha}$ state of Ref. [2] was therefore estimated by the extrapolation (the dash-dotted green curve) using the ACCC+CSM. We thus understand that the difference in the resonance-pole position between the two calculations comes from the error of the extrapolation by the ACCC.

We concluded [6] that we confirmed the prediction by Kurokawa-Katō [2] about the appearance of a new $0^+_{3\alpha}$ broad resonance which is located slightly above the Hoyle state ($0^+_{2\alpha}$).

![Figure 7](image_url)
Figure 7. The eigenvalue distribution of the complex scaled Hamiltonian for $J = 1^-, 2^-, 3^-, 4^-$ and 5^- states of the 3α system with the use of the complex-range Gaussian basis functions [6]. The scaling angles are $\theta = 16^\circ$ (black) and 26° (blue). The resonance poles are stable against the change of the scaling angle, and their energies and widths are summarized in Table 1.
3. Negative-parity states

In this paper, we newly calculated the negative parity resonances with $J = 1^-, 2^-, 3^-, 4^-$ and 5^- using the same model and interactions as those in Refs. [2, 6]. Figure 7 shows the eigenvalue distribution of the complex scaled Hamiltonian for the negative-parity states at the scaling angles $\theta = 16^\circ$ (black) and 26° (blue).

The resonance poles are stable against the change of the scaling angle, and their energies and widths are summarized in Table 1 together with the calculated result by Kurokawa and Kato [2] and the experimental data [1]. Owing to the advantage of using the complex-range Gaussian basis functions, the very broad resonances that were not given in Ref. [2] are obtained. The experimental data for $J = 1^-, 2^-, 3^-,$ and 4^- are reproduced well. Further observation of the negative-parity states are expected to examine our prediction in Table 1.

Table 1. Summary of the negative parity resonances in 12C by the present work together with the result by Ref. [2] and the experimental data [1]. All quantities are given in MeV.

12C	J^π	E_x	E_r	Γ	E_x	E_r	Γ	E_x	E_r	Γ
	present work	Ref. [2]	Experimental data [1]							
3^-_π	8.79	1.49	2.1×10^{-3}	8.80	1.51	2.0×10^{-3}	9.641(5)	2.366	3.4×10^{-2}	
1^-_π	10.98	3.68	0.35	10.94	3.65	0.30	10.84(16)	3.569	0.315(25)	
2^-_π	12.10	4.80	0.57	11.97	4.68	0.42	11.828(16)	4.553	0.260(25)	
4^-_1	13.51	6.21	0.45	12.45	5.16	0.12	13.352(17)	6.077	0.375(40)	
1^-_2	15.40	8.10	5.20							
3^-_2	17.25	9.95	0.45	18.29	11.0	0.5				
2^-_2	17.80	10.50	5.40	16.60	9.31	4.65				
5^-_1	18.66	11.36	0.29	18.69	11.4	0.3				
4^-_2	18.97	11.67	2.93							
5^-_2	19.47	12.17	6.37							
3^-_3	19.49	12.19	3.67							
4^-_3	23.15	15.85	2.34							
5^-_3	23.70	16.40	13.27							

References
[1] Ajzenberg-Selobe F 1990 Nucl. Phys. A 506 1
[2] Kurokawa C and Katô K 2005 Phys. Rev. C 71 021301(R); 2007 Nucl. Phys. A 792 87
[3] Itoh M et al. 2011 Phys. Rev. C 84 054308
[4] Aoyama S, Myo T, Katô K and Ikeda K 2006 Prog. Theor. Phys. 116 1
[5] Kukulin V I and Krasnopol’sky V M 1977 J. Phys. A 10 133
[6] Ohtsubo S Fukushima Y Kamimura M and Hiyama E 2013 Prog. Theor. Exp. Phys. 2013 073D02
[7] Hiyama E Kino Y and Kamimura K 2003 Prog. Part. Nucl. Phys. 51 223
[8] Hiyama E 2012 Prog. Theor. Exp. Phys. 2012 01A204
[9] Kamimura M 1988 Phys. Rev. A 38 621