A Multi-Horizon Quantile Recurrent Forecaster

Ruofeng Wen Kari Torkkola Balakrishnan Narayanaswamy Dhruv Madeka

Abstract
We propose a framework for general probabilistic multi-step time series regression. Specifically, we exploit the expressiveness and temporal nature of Sequence-to-Sequence Neural Networks (e.g., recurrent and convolutional structures), the nonparametric nature of Quantile Regression and the efficiency of Direct Multi-Horizon Forecasting. A new training scheme, forking-sequences, is designed for sequential nets to boost stability and performance. We show that the approach accommodates both temporal and static covariates, learning across multiple related series, shifting seasonality, future planned event spikes and cold-starts in real life large-scale forecasting. The performance of the framework is demonstrated in an application to predict the future demand of items sold on Amazon.com, and in a public probabilistic forecasting competition to predict electricity price and load.

1. Introduction

Classical time series forecasting models aim to predict \(y_{t+1} \) given recent history \(y_t = (y_t, \cdots, y_0) \). Common approaches include Box-Jenkins method, i.e. ARIMA models (Box et al., 2015). In practice, forecasting problems are far more complex. Many related time series are present. Inputs involve multiple covariates such as dynamic historical features, static attributes for each series and known future events. Series often have long term dependency such as yearly seasonality pattern, with nonlinear relationships between inputs and outputs. Usually, multi-step, long-horizon forecasts are needed, together with precise prediction intervals to quantify forecast uncertainties required to estimate risks in decision making. Modern methods have been proposed to attack these issues individually.

Recurrent Neural Networks (RNN, Elman, 1990) have recently demonstrated state-of-art performance in various applications. An RNN learns a fixed-length nonlinear representation from multiple sequences of arbitrary length. Historically, RNN fits into the Nonlinear Autoregressive Moving Average framework (Connor et al., 1992). The most popular variant, Long-Short-Term-Memory networks (LSTM, Gers et al., 1999) were designed to cope with the vanishing gradient problem, which is essential to capturing long-term dependency. Graves, 2013 introduced Sequence-to-Sequence RNN (Seq2Seq) with the ability to generate a future sequence, usually a sentence, given the previous one. Such architecture is intimately related to multi-step time series forecasting, a connection which has been well investigated in recent studies (Cinar et al., 2017 and Flunkert et al., 2017). Notably, Convolutional neural networks (CNN) with Seq2Seq structures have gained recent popularity, after the success of WaveNet (Van Den Oord et al., 2016) in the field of audio generation, and have also been studied under the topic of forecasting (Borovykh et al., 2017).

Most applications of Neural Networks to time series, including Seq2Seq with both RNN and CNN, build on one approach: they train a model to predict the one-step-ahead estimate \(\hat{y}_{t+1} \) given \(y_t \), and then iteratively feed this estimate back as the ground truth to forecast longer horizons. This is known as the Recursive strategy to generate multi-step forecasts, also sometimes referred to as iterative or read-outs in literature. Due to its similar form to autoregressive or Markovian assumptions in modeling, the Recursive strategy is usually taken for granted. Bengio et al., 2015 and Lamb et al., 2016 pointed out that a carefully designed training scheme is needed when the Recursive strategy is applied with RNN, to avoid the discrepancy between consuming actual data versus estimates during prediction, since the latter leads to error accumulation. In the field of forecasting, Chevillon, 2007 showed that the Direct strategy, where a model directly predicts \(y_{t+k} \) given \(y_t \) for each \(k \), is less biased, more stable and more robust to model mis-specification. A comprehensive comparison by Taieb and Atiya, 2016 investigated different multi-step strategies with Neural Networks, and recommended the Direct Multi-Horizon strategy: directly train a model with a multivariate target \((y_{t+1}, \cdots, y_{t+k})\). The Multi-Horizon strategy avoids error accumulation, yet retains efficiency by sharing parameters.
Many decision making scenarios require the richer information provided by a probabilistic forecast model that returns the full conditional distribution \(p(y_{t+k} \mid y_{t}) \), rather than a point forecast model that predicts only the conditional mean \(\mathbb{E}(y_{t+k} \mid y_{t}) \). A canonical example is a task with asymmetric costs for over and under-prediction. Then the symmetric Mean Squared Error, which the conditional mean minimizes, does not reflect the true loss. For real-valued time series, probabilistic forecast is traditionally achieved by assuming an error distribution or stochastic process, usually Gaussian, on the residual series \(\epsilon_t = y_t - \hat{y}_t \). However, an exact parametric distribution is often not directly relevant in applications. Instead, particular quantiles of the forecast distribution are useful in making optimal decisions, both to quantify risks and minimize losses (e.g. risk management, power grid capacity optimization), leading to the use of Quantile Regression (QR, Koenker and Gilbert, 1978). QR learns to predict the conditional quantiles \(q(y_{t+k} \mid y_{t}) \) of the target distribution, i.e. \(\mathbb{P}(y_{t+k} \leq q(y_{t+k} \mid y_{t})) = q \). QR is robust since it does not make distributional assumptions, produces accurate probabilistic forecasts with sharp prediction intervals, and often serves as a post-processor for prediction calibration (Taylor, 2000).

To reconcile and improve upon these separate methods, we propose MQ-R(C)NN: a Seq2Seq framework that generates Multi-horizon Quantile forecasts. The model is designed to solve the large scale time series regression problem:

\[
p(y_{t+k} \mid y_{t}, x_{t}) = \frac{\text{softmax}(h(y_{t+k} \mid y_{t}, x_{t})))}{\text{softmax}(h(y_{t+k} \mid y_{t}, x_{t})))}
\]

where \(y_{t,i} \) is the \(i \)th time series to forecast, \(x_{t,i} \) are the temporal covariates available in history, \(x_{t,i}^{(f)} \) is the knowledge about the future, and \(x_{t,i}^{(s)} \) are the static, time-invariant features. Each series is considered as one sample fed into a single RNN or CNN, even if they correspond to different items. This enables cross-series learning and cold-start forecasting for items with limited history. For readability, the sample/series subscript \(i \) will be dropped from now on.

To our best knowledge, this is the first work to combine sequential nets like RNNs and one-dimensional CNNs with either QR or Multi-Horizon forecasts. We demonstrate in details how the individual attributes of each methods combine seamlessly in the framework, and achieve better performance than state-of-art models in multiple forecasting applications. The major contributions of this paper also include:

- We design a network sub-structure to accommodate a previously little-attended issue: how to account for known future information, including the alignment of shifting seasonality and known events that cause large spikes and dips.

The rest of this paper is organized as follows. In Section 2 we discuss prior work, and highlight the novel aspects of our work. In Section 3, we describe our proposed MQ-R(C)NN framework in detail, together with variants that we have found useful in practice. In particular, we describe the generality and how different sequential structures can be used fruitfully in practice. In Section 4, we demonstrate the value of MQ-R(C)NN on a large dataset of retail demand time series from Amazon, and on data from a public electricity forecasting competition, where we beat the state of the art. Section 5 draws some conclusions and outlines possible directions for future research.

2. Related Work

RNNs and CNNs have been recently applied to time series point forecasting. Lngkvist et al, 2014 reviewed on time series modeling with deep learning in various fields of study. Bianchi et al, 2017 presented a comparative study on the performance of various RNNs applied to the Short Term Load Forecasting problem. Cinar et al, 2017 investigated the attention model for Seq2Seq on both univariate and multivariate time series. Borovykh et al, 2017 applied dilated CNNs on financial time series. However, these efforts are all built on the Recursive strategy. Taieb and Atiya, 2016 analyzed the performance of different multi-step strategies on a Multi-Layer Perceptron (MLP), where the Direct Multi-Horizon strategy stands out.

For probabilistic forecasting with encoder-decoder models, Flunkert et al, 2017 propose DeepAR, a Seq2Seq architecture with an identical encoder and decoder. DeepAR directly outputs parameters of a Negative Binomial. This is similar to Ng et al, 2017 where an MLP predicts Gaussian parameters, and such a strategy dates back to Bishop, 1994. DeepAR is trained by maximizing likelihood and Teacher Forcing (feeding ground truth recursively in training), and during prediction time it is fed a sample drawn from the estimated parametric distribution. This sampling is performed multiple times to generate a series of sample paths, as the empirical distribution of forecasts. Our method differs from DeepAR by using the more practically relevant Multi-Horizon strategy, a more efficient training strategy and directly generating accurate quantiles.
A Multi-Horizon Quantile Recurrent Forecaster

For quantile forecasts with neural nets, Taylor, 2000 used an MLP to generate quantile forecasts for financial returns. The model was used to process the innovations of another GARCH model, to obtain calibrated Value-at-Risk. Xu et al, 2016 designed a quantile autoregressive neural net for stock price prediction. Instead of feeding the mean estimate or a sampled instance, they fed previously estimated quantiles into the model. Neither of the approaches used sequential nets and exploit their temporal nature. The former depends on an external model while in the latter feeding back in quantiles is difficult to justify.

3. Method

In this section, we describe the loss function, neural network architecture, how the network is trained, encoder extensions to further enhance model performance and some practical consideration in the design of of input features.

3.1. Loss Function

In Quantile Regression, models are trained to minimize the total Quantile Loss (QL):

\[L_q(y, \hat{y}) = q(y - \hat{y})_+ + (1 - q)(\hat{y} - y)_+ \]

where \((\cdot)_+ = \max(0, \cdot)\). When \(q = 0.5\), the QL is simply the Mean Absolute Error, and its minimizer is the median of the predictive distribution. Let \(K\) be the number of horizons of forecast, \(Q\) be the number of quantiles of interest, then the \(K \times Q\) matrix \(\hat{Y} = \{\hat{y}_{t+k}^{(q)}\}_{k,q}\) is the output of a parametric model \(g(y_t, x_t, \theta)\), e.g. an RNN. The model parameters are trained to minimize the total loss, \(\sum_t \sum_q \sum_k L_q(y_{t+k}, \hat{y}_{t+k}^{(q)})\), where \(t\) iterates through all forecast creation times (FCTs). Depending on the problem, components of the sum can be assigned different weights, to highlight or discount different quantiles and horizons.

3.2. Network Architecture

For simplicity, we consider the design of an RNN Seq2Seq model in this section. The MQ-RNN architecture resembles the Seq2Seq with context (Seq2SeqC, Figure 1a) proposed by Cho et al, 2014. We here also use a vanilla LSTM to encode all history into hidden states \(h_t\). Instead of using an LSTM as the recursive decoder, MQ-RNN has a design of two MLP branches. The first (global) MLP summarize the encoder output plus all future inputs into two contexts: a series of horizon-specific contexts \(c_{t+k}\) for each of the \(K\) future points, and a horizon-agnostic context \(c_a\) which captures common information:

\[(c_{t+1}, \cdots, c_{t+K}, c_a) = m_G(h_t, x_t^{(f)})\]

Figure 1. Neural net architectures for multi-step forecasts. Circles and squares denote observed and hidden nodes, respectively. Dashed box flattens nodes into a vector. Dashed line means replication. Dashed arrow is the loss, which links network output and targets. \(x_t = (x_t^{(b)}, x_t^{(f)}, x_t^{(s)})\). Layer depth is not shown. (a) Seq2SeqC, where the loss function is likelihood (e.g. Multinomial for text generation, Gaussian for numeric values), parameterized by \(\theta_t\). At prediction time, \(y_{t+k}\) is fed into decoder, instead of \(h_{t+k}\) as in training. (b) MQ-RNN, where the total loss function is sum of individual quantile loss, and the output is all the quantile forecasts for different values of \(q\). During training, the time sequence is forked: there is a decoder corresponding to each recurrent layer with identical weights (shaded boxes).
At first glance, the two types of global context seem redundant. Unlike many other sequential modeling problems, time series forecasting at which a forecast for future horizons must be generated.

forecast creation time exchange information. In forecasting, this stopping symbol language, and that end point is where encoder and decoder to the input sequence, e.g. a stopping symbol in natural language, and that end point is where encoder and decoder exchange information. In forecasting, this stopping symbol is naturally a forecast creation time (FCT), the time step at which a forecast for future horizons must be generated. Unlike many other sequential modeling problems, time series forecasts often need to be generated at each possible time point, i.e. a forecast is required each day or week. Most applications use cutting-sequences: split the time series at a set of randomly chosen FCTs and use each series/FCT pair as a training example. This is also known as moving-window scheme in forecasting, and requires substantial data augmentation.

Such method is not necessary in an RNN thanks to its temporal nature. As illustrated in Figure 1b, our framework creates multi-horizon forecasts by placing a series of decoders, with shared parameters, at each recurrent layer (time point) in the encoder, and computes the loss against the corresponding targets (future series relative to that time point; can be populated on-the-fly in implementation). Thus we planted the nature of forecasting-at-each-time application structurally into the neural net training. Then one back-propagation-through-time can gather the multi-horizon error gradients of different FCTs in one pass over a sample, with little additional cost. In the MQ-RNN example, forking can be expressed mathematically as: ∀t, h_t = encoder(x_t, y_t), \hat{y}_{t}^{(q)} = decoder(h_t, x_{t}^{(f)}), where encoder(·) is an LSTM and decoder(·) is the global/local MLPs discussed in the previous subsection, and the parameters of both are invariant of t.

As a result of forking-sequences, each time series of arbitrary length serves as a single sample in our model training, eliminating the need of data augmentation, and dramatically reducing the training time. Note that the prediction tasks at each FCT are highly correlated, so by updating the gradients together, the optimization process is stabilized. Empirically, this training scheme greatly boosts model performance and regularizes learning stability by efficiently using all information in one shot, while previous algorithms need to cut and down-sample data. The benefit behind forking-sequences may also be related to ideas described in Lipton et al, 2015, where a scalar categorical target is replicated to each recurrent layer in a time series classification problem. Our approach differs by utilizing the nature of the multi-step time series prediction problem to implement the actual forecasting task at each time point, and thus enable the recurrent layers to convey both concepts of observed time points and forecast creation time.

The Direct strategy is often criticized as not being able to use the data between \(T - K\) and \(T\), where \(T\) is the end of training period, since the Multi-Horizon target is not available beyond \(T\). We resolve this issue by masking all the error terms after that point, so the model can still learn shared parameters from the available short-horizon partial targets when near the boundary of training period. This target masking strategy is a general approach to remove any cases when a (part of) multi-horizon forecast is unwanted or shouldn’t be evaluated, depending on application specifics.

where \(m_{G}(·)\) is the global MLP and contexts \(c(·)\) each can have arbitrary dimension. The second (local) MLP applies to each specific horizon. It combines the corresponding future input and the two contexts from the global MLP described earlier, then outputs all the required quantiles for that specific future time step:

\[
(\hat{y}_{t+k}^{(q_1)}, \cdots, \hat{y}_{t+k}^{(q_Q)}) = m_{L}(c_{t+k}, c_{a}, x_{t+k}^{(f)})
\]

where \(m_{L}(·)\) is the local MLP with its parameters shared across all horizons \(k \in \{1, \cdots, K\}\), and \(q(·)\) denotes each of the \(Q\) quantiles. The overall structure is illustrated in Figure 1b.

The local MLP is the key to aligning future seasonality and events and the capability to generate sharp spiky forecasts. Since the parameters are shared across horizons, it is tempting to replace it with another (bidirectional) LSTM. However, this is unnecessary and expensive: the flow of latent temporal information has already been captured by the Direct Multi-Horizon-specific context. Furthermore, feeding predictions recursively as surrogate of ground truth is not recommended since the corresponding quantile outputs are non-additive and combining them requires learning complicated functions.

At first glance, the two types of global context seem redundant. We argue that the horizon-specific context is always necessary: it carries network-structural awareness of the temporal distance between a forecast creation time point and a specific horizon. This is essential to aspects like seasonality mapping. In Seq2SeqC, only horizon-agnostic context exists, and horizon awareness is indirectly enforced by recursively feeding predictions into the cell for the next time step. The horizon-agnostic context is still included in our model, based on the idea that not all relevant information is time-sensitive. Empirically, we find that adding this structure to the model improves the stability of learning and the smoothness of generated forecasts. In cases where there is no meaningful future information, or sharp and spiky forecasts is not desired, the local MLP can be removed, and a simplified global MLP with \(\text{vec}(\hat{Y}) = m_{G}(h_t, x_{t}^{(f)})\) still retains all other advantages described above.

3.3. Training Scheme

One major performance gain of our model over Seq2Seq is achieved by the forking-sequences training scheme we describe below. Note that all Seq2Seq style models put an end to the input sequence, e.g. a stopping symbol in natural language, and that end point is where encoder and decoder exchange information. In forecasting, this stopping symbol is naturally a forecast creation time (FCT), the time step at which a forecast for future horizons must be generated. Unlike many other sequential modeling problem, time series
Figure 2. Alternative Encoders for MQ-RNN (compare to and contrast with Figure 1b). For clarity, all forking decoders are not shown, and connections that do not contribute to the last decoder are in gray. Note that h_t in LSTM encoders are from LSTM cells, while in WaveNet all hidden states are from dilated causal convolutions.

3.4. Encoder Extensions

In previous sections, the core design of MQ-RNN was described: a series of multi-horizon, future-aligned forked decoders that forecast quantiles. Here we discuss some practical extensions to the encoder, to go beyond a vanilla LSTM and further improve performance. An illustration of the structures described below can be found in Figure 2.

LSTMs were proposed to avoid gradient vanishing and expand the long-term memory capacity of RNNs. Many forecasting problems have long periodicity (e.g., 365 days) and may suffer from memory loss during recurrent forward propagation. Another not as well-known type of recurrent net to solve the same long dependency issue is NARX RNN (DiPietro et al., 2017), which computes hidden state h_t not only based on h_{t-1}, but also a specific set of other past states, e.g., $(h_{t-D}, \cdots, h_{t-D})$. This is also known as skip-connections. The presence of past states reduces the requirement on RNN cell’s ability to memorize long dependencies. A simple modification in MQ-RNN to enable a NARX-ish encoder is to put an extra linear layer on top of the LSTM to summarize past states: $\tilde{h}_t = m(h_{t-D}, \cdots, h_{t-D})$, and then feed \tilde{h}_t instead into the global MLP decoder. Note this operation is compatible with the forking-sequences optimization by placing the same $m(\cdot)$ on each recurrent layer and its trailing states.

The NARX-ish encoder does bring improvement over vanilla LSTM in experiments. But a seemingly naive alternative performs even better: just feed past series $(y_{t-D}, \cdots, y_{t-D})$ as lagged feature inputs, along with y_t, into the recurrent layer at t. In fact, this effectively constructs skip-connections to past values of the input series before passing them through the recurrent layer, as opposed to having skip-connections after RNN. The reason why this simple lag-series trick works well could be due to the nature of forecasting: the historical values of the time series is the most predictive information we have for its future values, and thus have the most influence on the hidden states. Therefore the lag-series can better approximate a real NARX encoder with h_t being updated by the distant past.

The choice of encoder is not restricted to recurrent networks. Any neural net that has sequential or temporal structure and is compatible with forking-sequences, can serve as an encoder in the MQ-framework. Van Den Oord et al., 2016 proposed WaveNet to process and generate audio sequences, with a stack of dilated causal 1D convolution layers. The higher-level dilated convolution layers can reach far into the past summary in lower levels, acting as another alternative of direct long-term memory connection. Since these convolution kernels have stride 1 and the local structure is step-invariant to allow forking-sequences, a WaveNet or stacked dilated convolutional encoder can be seamlessly plugged into our model framework (i.e., MQ-CNN) and yield excellent forecasting performance in our experiments, as shown in Section 4.1.

3.5. Future and Static Features

There are typically two kinds of known future information. Seasonal features are simply (linear) kernels centered at a specific day of the week, a moving holiday or any other seasonality labels. They are commonly used in Generalized Additive Models for time series. Event features are binary or numeric temporal indicators of if and how a certain type of event happens (e.g., price adjustment, censoring). If these events are sufficiently frequent in training data, the model can learn their effects from data and generate sharp changes in forecasts. If the event can be planned (e.g., promotion campaign), the model can simulate its effect for decision making. In practice, we found that distant future information (e.g., a holiday) can have retrospective impact on near future horizons (anticipation), which is why the global MLP also uses future summaries.

Static features contain series-specific information. For instance, it could be the sector of a stock, image and text description of a product, or location of a power plant. In our experience, static features are usually less predictive than time series ones, but combined with training one model on multiple series, they bridge different sets of time series behaviors and allow the model to borrow statistical
A Multi-Horizon Quantile Recurrent Forecaster

Figure 3. Experiment results. **Left:** Quantile Loss for P10, P50 and P90 forecasts as a function of horizon length. The y-axis is rescaled and not comparable between panels. **Upper right:** calibration $E(I(y_{t+k} \leq \hat{y}_{t+k}^{(q)}))$ and sharpness $E|\hat{y}_{t+k}^{(0.9)} - \hat{y}_{t+k}^{(0.1)}|$ across all t and k. The sharpness number is scaled by dividing that of MQ-RNN. For instance, a perfect calibration for a P90 forecast is 90%. If forecast is calibrated, a smaller value of sharpness (average prediction interval width) is preferable. **Lower right:** sum of test error across all quantiles by different choices of encoder within the MQ-RNN framework. The y-axis is rescaled. See text for discussion.

strength across them. Such a trained model is able to generate forecasts with little or no history (e.g. the sales of a not-yet-released item). In our framework, static features are first embedded into a lower dimensional representation (a fully-connected layer not shown in Figure 1), and then replicated as inputs across time.

4. Application

Our framework can efficiently forecast millions of time series at industrial scale and pace. We first apply MQ-RNN to the demand forecasting problem at Amazon, and design a small-scale experiment to show how our novelties, i.e. quantile loss vs likelihood, forking- vs cutting-sequences and multi-horizon vs recursive, can individually boost model performance. Improvements by using alternative encoders (e.g. MQ-CNN) is also discussed. Next, we apply our forecasting framework to the Global Energy Forecasting Competition 2014 (GEFCom2014, Hong et al, 2016) to demonstrate that the model is flexible, easy to use and powerful: our result would have won the 1st place in this competition, without much tuning.

4.1. Amazon Demand Forecasting

We first describe the dataset we use. Weekly demand series of around 60,000 sampled products from different categories within the US marketplace are gathered from year 2012 to 2017. Data before 2016 is used to train the models, and we create multi-horizon forecasts at each of the 52 weeks in 2016. Forecast horizons range from 1 to 52 weeks. Available covariates include a range of suitably chosen and standard demand drivers in three categories: history only, e.g. past demand; history and future, e.g. promotions; and static, e.g. product catalog fields. Several models are compared. MQ-RNN is the proposed model as in Figure 2b, and other benchmarks are its minimal variants, meaning we modify or knock out a single functionality to mimic state-of-the-art approaches, while keeping all other settings/hyper-parameters controlled with best effort. ML-RNN changes QL to a shifted Log-Gaussian likelihood: $\log (y + 1) \sim N(\mu, \sigma^2)$ and predicts $(\hat{\mu}, \hat{\sigma})$; MQ-RNN cut doesn’t use forking-sequences but cuts each series by a FCT; the cut is random between samples and epochs to better use all the information in the data; Seq2SeqC combines the state-of-the-art Seq2Seq structure with the pre-
dicted Log-Gaussian parameters and recursively using the one-step-ahead estimated means as inputs for subsequent forecasts, trained by teacher forcing and cutting-sequences; notably Seq2SeqC is a more general and efficient benchmark than DeepAR, in that it is not restricted to an identical LSTM encoder/decoder, and doesn’t need repeated sequential samplings, under the context of estimating the marginal multi-horizon distributions. In addition, the encoder in MQ-RNN can be replaced as described in Section 3.4, resulting in MQ_RNN_nar_x with the last 52 states skip-connected, MQ_RNN_lag with the last 52 demand values as input, and MQ_CNN_wave with layers of dilated convolutions as the encoder, respectively. Quantiles are estimated for \(q \in \{0.1, 0.5, 0.9\} \) (P10, P50 and P90 forecasts), either directly or inferred from the Log-Gaussian.

Experiment results are summarized in Figure 3. With all the proposed structural improvements, MQ-RNN has consistently the best accuracy across all horizons. The training loss curve of MQ_RNN_cut is more volatile and flattens out early. Series-level diagnostics also indicate similar high-level behaviors between MQ_RNN and MQ_RNN_cut, but the latter has worse performance. In terms of calibration ML_RNN is slightly overbiased, and its 80% prediction interval is on average almost twice as wide as MQ-RNN. We hypothesize that this is because of the model mis-specification (e.g. tail behavior) when assuming a Log-Gaussian on this dataset, and usually further modeling is needed. The non-parametric quantile regression is robust to this, and both quantile-based models stand out for P90QL, which focuses on the tail of the distribution. Contrary to what we expected, Seq2SeqC in fact has no disadvantage at long-horizon, but its forecast curves are usually flat. We suspect the Recursive strategy is inducing too much dependency on the lag mean estimate. By extending the sequential encoder beyond vanilla LSTM, further accuracy gain is achieved within the proposed MQ-RNN framework. MQ_RNN_lag is the best RNN-type model, while MQ_CNN_wave has the highest accuracy overall, both with otherwise similar forecast behavior (not shown). Note MQ_CNN_wave is the only model here that is not a minimal variant of MQ_RNN, so the comparison could be confounded by the choice of hyperparameters. Finally, some anecdotal MQ-RNN examples are selected and presented in Figure 4, to give readers a qualitative impression of how the network deals with different use cases.

\[1) \text{they are probabilistic, 2) they are multi-horizon problems, and} \]
\[3) \text{they also contain some information about the future horizons. In this sense the structure of the problems matches quite well the demand forecasting task. The difference is} \]
\[\text{that the quantity to forecast is a single series of hour-grain price or load from several years and thus there is no static series-related information.} \]

Both problems are set with 12 different forecast creation dates. The competing metric for both is a sum of quantile losses over 99 percentiles of the predicted distributions, and the average loss over the 12 forecast dates is the final evaluation criterion. In both problems we trained MQ-RNN to predict quantiles \(\{0.01, 0.25, 0.5, 0.75, 0.99\} \). Linear interpolation is used to produce the full set of 99 quantiles.

The electricity price forecasting problem was to forecast hourly price distributions for a 24-hour horizon (24 × 99 quantile forecasts) of a particular zone. Information provided about the future consists of zonal and total load forecasts for the horizon, which were also available for the past. To this we added calendar-based features about the day of year and hour in a day, as well as weekday and US holiday indicators. We would have achieved the 1st place in the competition by our average quantile loss of 2.63, as opposed to 2.72, 2.73, and 2.82 of the winner, the 2nd, and 3rd place holders.

The electricity load forecasting problem calls for forecasts of hourly load distributions of a certain US utility for a month into the future (744 × 99 quantile forecasts). In this case the future information is solely calendar-based. Weather was available for the past as temperature measurements of 25 weather stations. In order to capture longer time dynamics
without too long RNNs, we chose to run the encoder at a daily grain, keeping the forecasting decoder grain as hours. In this problem we would have won as well, achieving average quantile loss of 7.43. The top three competitors had quantile losses of 7.45, 7.51, and 7.83.

The networks are not intensively tuned, and the final setting is based on intuitive first few tries. The major parameter choices are the duration of the time-steps that the RNN is modeling (number of recurrent layers) and the number of RNN states. These parameters determine the dynamics of the history captured by the RNN hidden state. For the price prediction task we chose 168 hours as the duration, and for the load prediction 56 days, both with a state dimension of 30. For training, mini-batches are random slices of the multi-year past data such that the durations match our choice of RNN length, and we train with forking-sequences for each slice as a sample. For each of the 12 forecast creation dates we use data prior the date for training, and then retrain from scratch for each subsequent forecast creation date. We also used the lag-series trick as $\text{MQ}_\text{RNN}_\text{lag}$ in the previous subsection: the RNN input at time t is not only the time-series value at t but a vector of lagged values of 168 past hours for price, and 7 days for load. Figure 5 shows example forecasts from each of the problem.

5. Conclusion

We presented a general framework for probabilistic time series regression, and demonstrated how the novel components can each contribute to the final performance over state-of-arts. Our findings can help in the design of both practical large-scale forecasting applications and encoder-decoder style deep learning architecture. In this work, we have not discussed some extensions, including explicit multivariate forecasting and modeling the joint distribution of horizons. These will be addressed in future texts.

Acknowledgment

We would like to thank Ping Xu and Charles Elkan for their helpful comments and support.

Reference

Bengio, S., Vinyals, O., Jaitly, N., & Shazeer, N. (2015). Scheduled sampling for sequence prediction with recurrent neural networks. In Advances in Neural Information Processing Systems (pp. 1171-1179).

Bianchi, F. M., Maiorino, E., Kampffmeyer, M. C., Rizzi, A., & Jenssen, R. (2017). An overview and comparative analysis of recurrent neural networks for short term load forecasting. arXiv preprint arXiv:1705.04378.

Bishop, C. M. (1994). Mixture density networks.

Borovykh, A., Bohte, S., & Oosterlee, C. W. (2017). Conditional time series forecasting with convolutional neural networks. arXiv preprint arXiv:1703.04691.

Box, G. E., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis: forecasting and control. John Wiley & Sons.

Chevillon, G. (2007). Direct multistep estimation and forecasting. Journal of Economic Surveys, 21(4), 746-785.

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078.

Cinar, Y. G., Mirisaei, H., Goswami, P., Gaßsier, E., Atrachich, A., & Strijov, V. (2017, November). Position-based content attention for time series forecasting with sequence-to-sequence rns. In International Conference on Neural Information Processing (pp. 533-544). Springer, Cham.

Connor, J., Atlas, L. E., & Martin, D. R. (1992). Recurrent networks and NARMA modeling. In Advances in Neural Information Processing Systems (pp. 301-308).

DiPietro, R., Navab, N., & Hager, G. D. (2017). Revisiting NARX Recurrent Neural Networks for Long-Term Dependencies. arXiv preprint arXiv:1702.07805.

Elman, J. L. (1990). Finding structure in time. Cognitive science, 14(2), 179-211.

Flunkert, V., Salinas, D., & Gasthaus, J. (2017). DeepAR: Probabilistic forecasting with autoregressive recurrent networks. arXiv preprint arXiv:1704.04110.

Gers, F. A., Schmidhuber, J., & Cummins, F. (1999). Learning to forget: Continual prediction with LSTM.

Graves, A. (2013). Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850.

Hong, T., Pinson, P., Fan, S., Zareipour, H., Troccoli, A., & Hyndman, R. J. (2016). Probabilistic energy forecasting: Global energy forecasting competition 2014 and beyond. International Journal of Forecasting, vol.32, no.3 (pp 896-913).

Koenker, R., & Bassett Jr, G. (1978). Regression quantiles. Econometrica: journal of the Econometric Society, 33-50.

Lambr, A. M., GOYAL, A. G. A. P., Zhang, Y., Zhang, S., Courville, A. C., & Bengio, Y. (2016). Professor forcing: A new algorithm for training recurrent networks. In Advances In Neural Information Processing Systems (pp. 4601-4609).

Lungkvist, M., Karlsson, L., & Loutfi, A. (2014). A review of unsupervised feature learning and deep learning for time-series modeling. Pattern Recognition Letters, 42, 11-24.
Lipton, Z. C., Kale, D. C., Elkan, C., & Wetzel, R. (2015). Learning to diagnose with LSTM recurrent neural networks. arXiv preprint arXiv:1511.03677.

Ng, N., Gabriel, R. A., McAuley, J., Elkan, C., & Lipton, Z. C. (2017). Predicting Surgery Duration with Neural Heteroscedastic Regression. arXiv preprint arXiv:1702.05386.

Taieb, S. B., & Atiya, A. F. (2016). A bias and variance analysis for multistep-ahead time series forecasting. IEEE transactions on neural networks and learning systems, 27(1), 62-76.

Taylor, J. W. (2000). A quantile regression neural network approach to estimating the conditional density of multi-period returns. Journal of Forecasting, 19(4), 299-311.

Van Den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., ... & Kavukcuoglu, K. (2016). Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499.

Xu, Q., Liu, X., Jiang, C., & Yu, K. (2016). Quantile autoregression neural network model with applications to evaluating value at risk. Applied Soft Computing, 49, 1-12.