Experimental Characterization of a Bearing-only Sensor for Use With the PHD Filter

Philip Dames and Vijay Kumar

Abstract

This report outlines the procedure and results of an experiment to characterize a bearing-only sensor for use with PHD filter. The resulting detection, measurement, and clutter models are used for hardware and simulated experiments with a team of mobile robots autonomously seeking an unknown number of objects of interest in an office environment.

1 Introduction

We are interested in applications such as environmental monitoring, search and rescue, precision agriculture, and landmark registration, in which teams of mobile robots can be used to explore an environment to search for objects of interest. In each of these scenarios, the number of objects is not known a priori, and can potentially be very large. Such situations are not a trivial extension of the single object case. In general, the sensor can experience false negatives (i.e., missing objects that are actually there), false positives (i.e., seeing objects that are not actually there), and even when a true detection is made it is potentially a very noisy estimate. Another challenge faced in multi-target tracking is the task of data association, or matching measurements to objects. The number of such associations grows combinatorially with the number of objects and measurements, and it is often not possible to uniquely identify individual objects.

We track the distribution of multiple objects using the Probability Hypothesis Density (PHD) filter. The PHD models the density of objects in the environment [4] and the PHD filter, from Mahler [3], simultaneously estimates the number of objects and their locations in a computationally tractable manner. We use the sensor models from this report in hardware and simulated experiments where a team of mobile robots autonomously detects and localizes an unknown number of objects using an information-based, receding horizon control law [2]. See Dames and Kumar [2] for further motivation of the problem area and detail on the problem formulation and the estimation and control algorithms.

Each robot is equipped with a sensor that is able to detect objects within its field of view. The probability of a sensor with pose q detecting a target at x is given by $p_d(x; q)$ and is identically zero outside of the field of view. Note the dependence on the sensor’s position, denoted by the argument q. If a target at x is detected by a robot at q then it returns a measurement $z \sim g(z \mid x ; q)$. The false positive, or clutter, model consists of a PHD $c(z ; q)$ describing the likelihood of clutter measurements in measurement space and the expected clutter cardinality. Note that in general the clutter may depend on environmental factors. The remainder of this report details the experimental system, descriptions of the three sensor models, and the resulting best-fit models to the collected data.

*This work will also appear in [1].

†Philip Dames and Vijay Kumar are with the Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, 19104 USA e-mail: \{pdames,kumar\}@seas.upenn.edu.
2 Experimental System

We conduct experiments using a small team of ground robots (Scarabs), pictured in Fig. 1. The Scarabs are differential drive robots with an onboard computer with an Intel i5 processor and 4GB of RAM, running Ubuntu 12.04. They are equipped with a Hokuyo UTM-30LX laser scanner, used for self-localization and for target detection. The robots communicate with a central computer, a laptop with an Intel i7 processor and 16GB of RAM running ROS on Ubuntu 12.04, via an 802.11n network. The team explores in an indoor hallway, shown in Fig. 2, seeking the reflective objects pictured with the robot in Fig. 1.

We use a simple sensor, by converting the Hokuyo into a bearing-only sensor. This may be thought of as a proxy to a camera, but it avoids common problems with visual sensors such as variable lighting conditions and distortions. The objects are 1.625 in outer diameter PVC pipes with attached 3M 7610 reflective tape. The tape provides high intensity returns to the laser scanner, allowing us to pick out objects from the background environment. However, there is no way to uniquely identify individual objects, making this the ideal setting to use the PHD filter.

The hallway features a variety of building materials such as drywall, wooden doors, painted metal (door frames), glass (office windows), and bare metal (chair legs, access panels, and drywall corner protectors, like that in the right side of Fig. 1). The reflective properties of the environment vary according to the material and the angle of incidence of the laser. The intensity of bare metal and glass surfaces at low angles of incidence is similar to that of the reflective tape. Fig. 4 shows an example laser scan from the environment, with the robot at (0, 0) and oriented along the x-axis. The objects show up as clear, high intensity sections in the laser scan, though the intensity decreases with distance to the robot (objects 1–5 are placed 1–5 m from the robot, respectively).

Motivated by this, we select a threshold on the laser intensity of 11000 (shown as a black dotted line in the plots) to be able to reliably detect objects within a 5 m range of the robot. At low angles of incidence, bare metal and glass have laser returns of similarly intensity to the true objects, creating clutter measurements. Note that glass has an extremely narrow band of angles of incidence ($\approx 0.02^\circ$) that create high intensity returns, while the metal has a slightly wider range ($\approx 2.5^\circ$). If we were to eliminate the clutter detections, then the effective sensing range of the robots would only be less than 2 m, significantly decreasing the utility of the system.
To turn a laser scan into a set of bearing measurements, we first prune the points based on the laser intensity threshold, retaining only those with sufficiently high intensity returns. The points are clustered spatially using the range and bearing information, with each cluster having a maximum diameter d_t. The range data is otherwise discarded. The bearings to each of the resulting clusters form a measurement set Z.

A team of three robots drove around the environment for 20 min collecting measurements of 15 targets at known positions. To move around the environment, the robots generated actions over length scales ranging from 1 m to 20 m, as shown in Fig. 3, and randomly selected actions from the candidate set. This allowed the robots to cover the environment much more effectively than a pure random walk. The collected data set consists of 1959 measurement sets (i.e., laser scans) containing 2630 individual bearing measurements.
Figure 4: An example laser scan from the Levine environment. (a) Shows the XY scan labeled according to the building material. Objects 1–5 are placed 1–5 m from the robot and the sources of clutter measurements are also labeled. (b) Shows the corresponding intensity plot with material labels and the resulting measurement set. (c)-(e) Show insets of specific objects of interest within the scan and the resulting measurements.

3 Experimental Sensor Models

We now develop the detection, measurement, and clutter models necessary to utilize the PHD filter using the robot, sensor, and targets from the previous section.

3.1 Detection Model

The detection model can be determined using simple geometric reasoning due to the nature of the laser scanner, as Fig. 5a shows. Each beam in a laser scan intersects a target that is within \(d_t / 2 \) of the beam. The arc length between two beams at a range \(r \) is \(r \theta_{\text{sep}} \), and the covered space is \(d_t \). Using the small angle approximation for tangent, the probability of detection is

\[
p_d(x; q) = (1 - p_{\text{fn}}) \min \left(1, \frac{d_t}{r(x, q) \theta_{\text{sep}}} \right) \mathbb{1}(b(x, q) \in [b_{\text{min}}, b_{\text{max}}]) \mathbb{1}(r(x, q) \in [0, r_{\text{max}}]) \tag{1}
\]

where \(r(x, q) \) and \(b(x, q) \) are the range and bearing of the target in the local sensor frame, \(p_{\text{fn}} \) is the probability of a false negative, and \(\mathbb{1}(\cdot) \) is an indicator function. The bearing is limited to fall within \([b_{\text{min}}, b_{\text{max}}]\) and the range to be less than some maximum value \(r_{\text{max}} \) (here due to the intensity threshold on the laser and the reflectivity of the targets).

To find the optimal parameter values, we take the collected data and determine which measurements originate from true objects. A measurement is labeled as a true detection if it is within \(3 \sigma \) of the true bearing to the target and within the field of view of the robot, given its current pose. Since the PHD filter assumes that each target creates at most one measurement per scan, once a measurement-to-target association is made, that target is no longer fit to any other measurements in a measurement set. If no measurement is associated to a target, the target is labeled as a false negative detection. The collected data contains 1588 true detections and there are 1007 false negative detections.

We bin this labeled data as a function of the true range to the target in 0.2 m increments, computing the probability of detecting a target within each range bin. We search over \(p_{\text{fn}} \) (from 0 to 1 in steps of 0.005) and \(d_t \) (from 0 in to 2 in in steps of 0.01 in), computing the sum-of-squares error between the data and the parameterized model. We find the effective target diameter \(d_t \) since the intensity is below the cutoff threshold at extremely high angles.
of incidence to the reflective tape (see Fig. 4c). Fig. 5b shows the best fit model, with $p_{fn} = 0.210$ and $d_t = 1.28$ in. These parameters are reasonable, with the effective target diameter being 78.8% of the true target diameter. This corresponds to a maximum angle of incidence of 52.0°, which is orders of magnitude larger than the for glass or metal.

3.2 Measurement Model

The sensor returns a bearing measurement to each detected target. We assume that bearing measurements are corrupted by zero-mean Gaussian noise with covariance σ, which is independent of the robot pose and the range and bearing to the target. In other words,

$$g(z \mid x; q) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(z - b(x, q))^2}{2\sigma^2}\right),$$ \hspace{1cm} \text{(2)}$$

where $b(x, q)$ is the bearing of the target in the sensor frame.

During the runs, the robots occasionally experience significant errors in localization due to occlusions by transient objects, long feature-poor hallways, and displaced semi-static objects, e.g., chairs. Since no ground-truth localization data is available in the experimental environment, we fit the noise parameter σ by searching over a range of possible values. Note that the value of σ affects the target-to-measurement association, and thus the detection and clutter model parameters.

Fig. 6 shows that the choice of σ parameter creates a frontier for the detection model SSE and the fraction of measurements classified as detections. With very low values of σ, there are few inliers, i.e., labeled detections, so the model fits well but is not meaningful. The error in the fit increases until around $\sigma = 1.25^\circ$, when it begins to decrease. From this point, the model fits increasingly well, though after a point the decrease is due to overfitting the data and there is a clear “knee” in the data. This is also the point where the fraction of inliers levels out. We select $\sigma = 2.25^\circ$ as the best fit measurement noise parameter, and use this to fit the detection and clutter models.

3.3 Clutter Model

As previously noted, clutter (i.e., false positive) measurements arise due to reflective surfaces within the environment, such as glass and bare metal, only at low angles of incidence. Since
Figure 7: (a) A pictogram of the clutter model, where θ_c is the width of the clutter peaks centered at $\pm \frac{\pi}{2}$, and the bearing falls within the range $[-\frac{3\pi}{4}, \frac{3\pi}{4}]$. (b) Best fit clutter probability density function, using 1010 clutter measurements from 1959 measurement sets.

These materials are mostly found on walls, which are to the side of the robot when it is driving down a hallway, there will be a higher rate of clutter detections near $\pm \frac{\pi}{2}$ rad in the laser scan. For objects such as table and chair legs there is no clear relationship between the relative pose of the object and robot, so we assume that such detections occur uniformly across the field of view of the sensor. This leads to a clutter model of the form shown in Fig. 7a.

Let θ_c be the width of the clutter peaks centered at $\pm \frac{\pi}{2}$ and let p_u be the probability that a clutter measurement was generated from a target in the uniform component of the clutter model. The clutter model is

$$c(z) = \frac{p_u \mu}{b_{\text{max}} - b_{\text{min}}} \mathbf{1}(b \in [b_{\text{min}}, b_{\text{max}}]) + \frac{(1 - p_u) \mu}{2\theta_c} \mathbf{1}(|b - \pi/2| \leq \theta_c/2),$$

where μ is the expected number of clutter measurements per scan. The clutter cardinality, m, is assumed to follow a Poisson distribution with mean μ [3].

All measurements that are not associated to a target, as described in Sec. 3.1, are considered to be clutter measurements. We bin the bearings of these clutter measurements in $\frac{\pi}{20}$ increments to create a piecewise-constant distribution. We perform a search over θ_c (from 0 rad to $\frac{\pi}{4}$ rad in steps of $\frac{\pi}{400}$ rad) and p_u (from 0 to 1 in steps of 0.005) to find the best fit parameters (using the sum-of-squares error) to the data, with Fig. 7b showing the best fit model, with $\theta_c = 0.200\pi$ rad and $p_u = 0.725$. The number of clutter measurements per scan is used to fit the clutter cardinality parameter μ, with Fig. 8 showing the best fit value, $\mu = 0.5319$.

3.4 Analysis

All of these sensor parameters depend upon the specific robot, sensor, targets, and environment. For example, the peaks in the clutter model near $\pm \frac{\pi}{2}$ arise due to the geometry and appearance of the environment. In a more open setting, or with a more limited field of view sensor, we would not expect to see these peaks in the clutter distribution. Or in an environment with more glass walls we would expect the number of clutter detections to be higher and the peaks to be more pronounced.

The detection statistics also depend highly upon our particular experimental setup. The strip of reflective tape is only 1 in tall and the sensor is planar, so a bump in the floor of only
Figure 8: Best fit model for the clutter cardinality, using 1010 clutter measurements from 1959 measurement sets.

2.5 mm will cause the robot to pitch sufficiently to fail to detect a target that is 1 m away. Any small bumps in the linoleum flooring, particularly at transitions to carpeting, cause the robot to experience false negative detections. Additional false negatives may occur due to occlusions from transient objects, e.g., passing people and other robots, and semi-static objects such as chairs.

4 Conclusion

In this report we outline an experimental setup and procedure to characterize the detection, measurement, and clutter statistics of a bearing-only sensor in an indoor office environment. While the specific values found in this work are particular to the experimental setup, we believe that by using the same parametric sensor models and by following the same experimental methodology we would be able to operate in different environments. Getting the correct sensor statistics is particularly important when using the PHD filter, as over- or under-confidence in any of the models causes a bias in the estimate of the target cardinality. The resulting sensor models will be used to run the PHD filter on a team of mobile robots in order to autonomously detect and localize an unknown number of objects.

References

[1] Philip Dames. Multi-Robot Active Information Gathering Using Random Finite Sets. PhD thesis, University of Pennsylvania, 2015. In preparation.

[2] Philip Dames and Vijay Kumar. Autonomous Localization of an Unknown Number of Targets Without Data Association Using Teams of Mobile Sensors. IEEE Transactions on Automation Science and Engineering, 2015. Conditionally accepted.

[3] Ronald Mahler. Multitarget Bayes Filtering via First-Order Multitarget Moments. IEEE Transactions on Aerospace and Electronic Systems, 39(4):1152–1178, October 2003.

[4] Ronald Mahler. Statistical Multisource-Multitarget Information Fusion, volume 685. Artech House Boston, 2007.