A combined chloroplast atpB–rbcL and trnL-F phylogeny unveils the ancestry of balsams (Impatiens spp.) in the Western Ghats of India

P. P. Shajitha1 · N. R. Dhanesh1 · P. J. Ebin2 · Joseph Laly3 · Devassy Aneesha1 · John Reshma1 · Jomy Augustine2 · Mathew Linu1

Received: 27 October 2016 / Accepted: 23 November 2016 / Published online: 2 December 2016 © The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Only a few Impatiens spp. from South India (one of the five centers of diversity for Impatiens species) were included in the published datum of molecular phylogeny of the family Balsaminaceae. The present investigation is a novel attempt to reveal the phylogenetic association of Impatiens species of South India, by placing them in the global phylogeny of Impatiens based on a combined analysis of two chloroplast genes. Thirty species of genus Impatiens were collected from different locations of South India. Total genomic DNA was extracted from fresh plant leaf, and polymerase chain reaction was carried out using atpB–rbcL and trnL-F intergenic spacer-specific forward and reverse primers. Thirteen sequences of Impatiens species from three centers of diversity were obtained from GenBank for reconstructing the evolutionary relationships within the genus Impatiens. Bayesian inference analysis was carried out in MrBayes v.3.2.2. This analysis supported Southeast Asia as the ancestral place of origin of extant Impatiens species. Molecular phylogeny of South Indian Impatiens spp. based on combined chloroplast sequences showed the same association as that of morphological taxonomy. Sections Scapigerae, Tomentosae, Sub-Umbellatae, and Racemosae showed Southeast Asian relationship, while sections Annuae and Microsepalae showed African affinity.

Keywords Impatiens species · Molecular phylogeny · atpB–rbcL intergenic spacer · trnL-F spacer · Maximum parsimony · Bayesian inference

Introduction

Two genera, namely, Impatiens and Hydrocera, are the sole members of the family Balsaminaceae. The genus Hydrocera is monotypic. Impatiens is a large genus containing more than 1000 species with a distribution pattern in the mountain areas of old world tropics and subtropics (Janssens et al. 2006). The five biodiversity hotspots for this highly endemic genus have been identified as Southeast Asia, Southern India and Sri Lanka, tropical Africa, Madagascar, and the Eastern Himalayas (Yuan et al. 2004; Janssens et al. 2006). Several novel species, belonging to this explosively speciating plant, are recognized in these regions every year (Kuang et al. 2014; Gogoi and Borah 2014; Luo et al. 2015). The genus Impatiens contains more than 210 species in India with amazing localization in two biodiversity hotspots, namely, Himalayas in the north of India and the Western Ghats in the south of India. Over half of these occur in the Western Ghats of India and at least 103 species of Impatiens are endemic to the Western Ghats alone (Bhaskar 2012).

Molecular phylogeny of balsams based on ITS sequences (Yuan et al. 2004) proposed that extant Impatiens species are of Southeast Asian origin, from where it dispersed to other parts of the globe in several dispersal events. Contrarily, atpB–rbcL intergenic spacer
sequences based on phylogenetics of Janssens et al. (2006) suggested that *Impatiens* originated in South China from which it colonized the nearby regions and afterwards dispersed to north America, India, Africa, the Southeast Asian peninsula, and the Himalayan area. All these published data of molecular phylogeny and biogeography of *Balsaminaceae* inferred from ITS sequences (Yuan et al. 2004) and chloroplast *atpB–rbcL* spacer sequences (Janssens et al. 2006) contained only a few samples of *Impatiens* species from South India, creating a gap in the existing phylogeny of balsams. Hence, this work is a novel attempt on the molecular phylogeny of *Impatiens* species with representatives from six sections of balsams from South India.

Table 1

Species used in this study with location, voucher no., and GenBank accession no. of *atpB–rbcL* and *trnL-F* sequences

Sl. no.	Species name with section	Location*	Voucher no. of sample deposited	GenBank accession number
Section: Scapigerae				
1	*I. levingei*	Eravikulam National Park	S.P.P.4854	KU316381 KU341090
2	*I. modesta*	Eravikulam National Park	S.P.P.4857	KU530217 KU341091
3	*I. pandata*	Eravikulam National Park	S.P.P.4856	KU316383 KU513967
4	*I. scapiiflora*	Vagamon	S.P.P.4502	KF447374 KJ746922
Section: Annuae				
5	*I. aadishankarii*	Wayanad	S.P.P. 4546	KU316371 KU341086
6	*I. chinensis*	Munnar	S.P.P.4545	KU316374 KU341088
7	*I. dalzellii*	Eravikulam National Park	S.P.P.4852	KU316375 KU341089
8	*I. gardneriana*	Wayanad	S.P.P.4520	KF562062 KJ746912
9	*I. herbicola*	Neryamangalam	S.P.P.4505	KF562065 KJ746914
10	*I. ligulata*	Wayanad	S.P.P.4530	KF562063 KJ746916
11	*I. minor*	Neryamangalam	S.P.P.4504	KF447375 KJ703108
12	*I. oppositifolia*	Eravikulam National Park	S.P.P.4855	KU316382 KU341092
13	*I. raziana*	Eravikulam National Park	S.P.P.4851	KU316379 KU341093
14	*I. tomentosa*	Agasthyamala Biosphere Reserve	S.P.P.4861	KU316386 KU341094
Section: Microcepalae				
15	*I. bababudensis*	Anamudi Hills	S.P.P.4548	KU316373 KU341087
16	*I. balsamina*	Munnar	S.P.P.4517	KF582043 KJ746906
17	*I. dasysperma*	Neryamangalam	S.P.P.4506	KM360163 KJ746909
18	*I. latifolia*	Eravikulam National Park	S.P.P.4549	KU316378 KU508414
19	*I. mysoresensis*	Wayanad	S.P.P.4534	KF582048 KU508416
20	*I. pulcherrima*	Eravikulam National Park	S.P.P.4853	KU316384 KU508417
21	*I. scabriuscula*	Wayanad	S.P.P.4531	KF562058 KJ746921
22	*I. walleriana*	Munnar	S.P.P.4518	KF58205 0KJ746925
Section: Tomentosae				
23	*I. johnii*	Wayanad	S.P.P.4543	KU316377 KJ746915
24	*I. munronii*	Wayanad	S.P.P.4532	KF582047 KU508415
25	*I. neo-munronii*	Wayanad	S.P.P.4523	KF562061 KJ746919
Section: Sub-Umbellatae				
26	*I. cordata*	Munnar	S.P.P.4515	KF582044 KU508411
27	*I. disotis*	Wayanad	S.P.P.4528	KF582042 KU508412
28	*I. uncinata*	Wayanad	S.P.P.4529	KF562057 KJ746923
Section: Racemosae				
29	*I. maculata*	Devikulam	S.P.P.4507	KF562056 KJ746918
30	*I. wightiana*	Wayanad	S.P.P.4522	KF582052 KJ746926

* All locations in Kerala, India
Materials and methods

Representative samples from the different sections of Impatiens species were collected from Southern Western Ghats of India. The plants were authenticated, and voucher specimens were deposited in the Herbarium of St. Thomas College (Palai, Kerala, India). The details of the sample collection were summarized in Table 1.

Total genomic DNA was extracted using Gen Elute Plant Genomic DNA Miniprep Kit (Sigma Aldrich, St. Louis, USA). For PCR amplification, OrionX h-Taq PCR Smart Mix (Origin, India) was used. The primers used for the amplification of the chloroplast atpB–rbcL intergenic spacer gene were IMP-atpB—5’-ACATCTAGTACCCTGATTCCAGG-3’ and IMP-rbcL—5’-AACACCAGCTTTGAATCCAA-3’ (10 pM each) (Janssens et al. 2006), and trnL-F region were trnL-F—c:5’-CGAAATCGGTAGACGCTACG-3’ and trnL-F—f:5’-ATTGTGAACCTGGTGACACAGG-3’ (10 pM each) (Taberlet et al. 1991).

The temperature profile of amplification of atpB–rbcL intergenic spacer region was as per Janssens et al. (2006), and that of trnL-F region was as per Taberlet et al. (1991). Amplification reactions were carried out in an Agilent SureCycler 8800 (Agilent Technologies, USA) (ESM Figs. 1S, 2S). Amplicons (atpB–rbcL amplicon of size 900 bp and trnL-F amplicon of size 600–650 bp) were sequenced in ABI cycle sequencer (Scigenome Labs Pvt. Ltd., Cochin, Kerala, India).

All sequences generated in this study were subjected to a BLAST search (NCBI) against the GenBank nucleotide database and submitted to GenBank (Table 1). I. omeiana was selected as outgroup for phylogenetic analyses of Impatiens (Janssens et al. 2009). Sequences of Impatiens species from three diversity hotspots were collected from GenBank accessions (Table 2). The sequences were multiple aligned and edited using the CLUSTALW (Thomson et al. 1994) program incorporated in BioEdit 7.0.5.2 (Hall 1999).

The Akaike information criterion (AIC) implemented in the program jModelTest version 2.1.5 (Darriba et al. 2012) was used to choose substitution models that best fit the data set. Bayesian inference analysis was carried out in MrBayes v.3.2.2 (Ronquist et al. 2012) in two independent runs, each with one heated chain and one cold chain and for one lakh generations. Convergence occurred when standard deviation (SD) of split frequencies fell below 0.05; the first 25% of MCMC generations were discarded as burn-in and a consensus phylogram was created. Posterior probability values were used to estimate branch support. Trees were visualized by Fig Tree, Tree Figure drawing tool version 1.4.2 (Rambaut 2014).

Results and discussion

Phylogenetic analysis of this study included two chloroplast regions (atpB–rbcL, trnL-F) from 30 sequences of South Indian Impatiens species. In addition, 13 sequences of each of these regions were obtained from NCBI database. To assess the level of congruence between these data sets, each data set was analyzed independently to see if they produced a similar topology. The separate analyses produced topologies similar to each other. In comparison with separate analyses, the combined phylogeny had a well-resolved topology.

The combined atpB–rbcL and trnL-F data matrix contained 1664 characters. A general time reversible model of evolution with invariant sites and a gamma distribution (GTR + I + G) was selected using jModelTest version 2.1.5. This model was used for the Bayesian inference (BI) analysis. The resulted tree by BI analysis had a well-resolved topology (Fig. 1). The resolved lineages of Impatiens species were grouped into four clades with strong Bayesian posterior probability (BPP) values. Two Southeast Asian species and the Himalayan species formed clade 1. Clade 2 included four Southeast Asian species. Two Southeast Asian species formed clade 3. Clade 4 was divided into two subclades, i.e., A and B (BPP of 1.00). Subclade A contained species of sections Racemosae, Sub-Umbellatae, Tomentosae, and Scapigerae (BPP of 1.00). Subclade B is divided into three subclades, i.e., B1, B2, and

Table 2 Details of sequences of atpB–rbcL and trnL-F of Impatiens spp. obtained from GenBank

Si. no.	Place of origin and species name	Genbank accession number	
	atpB–rbcL	trnL-F	
East and Southeast Asia			
1	I. aquatilis	DQ147811	KP776115
2	I. davidii	DQ147835	KP776129
3	I. faberi	DQ147841	KP776132
4	I. gongshanensis	KP776024	KP776135
5	I. napoensis	DQ147861	KP776146
6	I. omeiana	KQ905619	KP776152
7	I. platyclaena	DQ147867	KP776154
8	I. soulieana	DQ147880	KP776164
9	I. uliginosa	DQ147887	KP776173
Africa			
10	I. hians	DQ147849	EF649977
11	I. keilii	FJ826654	KP776138
12	I. mannii	FJ826660	EF649980
Himalaya			
13	I. scabrida	DQ147877	KP776162
B3. African species (I. hians) formed Subclade B1. Subclade B2 included African species (I. keilii and I. mannii) and South Indian species of section Microsepalae with BPP of 0.89. Species of section Annuae produced Subclade B3 with BPP of 0.94.

Implications on infrageneric classification and biogeography of Impatiens species of Western Ghats

Impatiens is considered taxonomically as one of the most difficult genera of angiosperms, mainly due to hypervariable structure and fragile nature of its flowers making examinations of dried specimen extremely difficult (Grey-Wilson 1980). The important revision of the African taxa by Grey-Wilson (1980) distinguished six informal infrageneric groups for the African species for practical diagnosis. Based on morphological and molecular data sets, Yu et al. (2015) presented a new classification of Impatiens, with the genus being divided into two subgenera, subgenus Clavicarpa and subgenus Impatiens. The subgenus Impatiens was further subdivided into seven sections.

In the taxonomic treatments of South Indian Impatiens by Bhaskar (2012), balsams of South India were classified under seven sections, i.e., Scapigerae, Epiphyticae, Annuae, Microsepalae, Tomentosae, Sub-Umbellatae, and Racemosae. Based on the present molecular phylogenetic study, species of each section formed monophyletic association with strong BPP support. This study authenticates the morphological classifications of Bhaskar (2012).

Based on several morphological similarities among species endemic to Africa and South India, close affinity
between African and South Indian taxa and a possible migration route connecting these two areas were suggested (Grey-Wilson 1980). In this study, species of sections Microsepalae and Annuae showed African affinities with sister–clade relationships. This confirms Grey-Wilson’s (1980) suggestions of affinity between African and South Indian species. Sections Scapigerae, Sub-Umbellatae, Tomentosae, and Racemosae formed a separate clade (Sub-clade A) with sister–clade relationships with the extant Southeast Asian species.

There are several hypotheses related to the origin of Impatiens (Jones and Smith 1966; Grey-Wilson 1980). Bhaskar (1981) proposed that Western Ghats is the place of origin of the genus Impatiens. His hypothesis was based on the observation that Western Ghats of India contains the phylogenetically old species with primitive radial pollen grains, diploid chromosome number, and shrubby habit.

ITS phylogeny of Yuan et al. (2004) and atpB–rbcL phylogeny of Janssens et al. (2006) revealed that Impatiens spp. colonized African continent from Southwest China in three independent dispersal events. Madagascan species was derived from a single colonization event (Janssens et al. 2009). The present combined chloroplast gene analysis contained only three African and no Madagascan species. In this African species, I. keilii and I. mnnii were placed with species of section Microsepalae. Section Annuae formed a sister–clade with this section. Himalayan species (I. scabrida and I. uliginosa) showed affinity to Southeast Asian species (I. aquatilis and I. uliginosa).

The biogeographical elucidation based on the present study is mainly in accordance with the conclusion of Yuan et al. (2004). The present analysis postulated that South India was colonized by two independent dispersal events, i.e., once by Southeast Asian ancestor as shown by the sister–clade relationships of extant Southeast Asian species and the sections Scapigerae, Tomentosae, Sub-Umbellatae, and Racemosae and a more recent colonization by an ancestor with African affinities (sections Microsepalae and Annuae).

Acknowledgements We thank University Grants commission (UGC), India and Kerala state Council for Science, Technology and Environment (KSCSTE), Kerala, India for instrumentation, and Forest Department of Kerala, India for providing us the permission to collect samples of Impatiens species from Southern Western Ghats. We thank Mahatma Gandhi University, Kerala, India (U.O.No.390.A.II/2000/Academic dated 28.01.2009) for funding the research through PhD research assistance.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

Bhaskar V (1981) The genus Impatiens L. in south India: endemism and affinities. Indian Forester 107:368–376
Bhaskar V (2012) Taxonomic monograph on Impatiens L. (Balsaminaceae) of Western Ghats south India. The key genus for endemism. Centre for Plant Taxonomic Studies, Bangalore India
Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9(8):772
Gogoi R, Borah S (2014) Impatiens paramijitiana, a new species of Balsaminaceae from Arunachal Pradesh, India. Phytotaxa 175(3):171–175
Grey-Wilson C (1980) Impatiens of Africa, Rotterdam Balkema. Kew Bull 34:221–227
Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and program for Windows 95/98/NT. In: Nucleic acids symposium series 41:95–98
Janssens S, Geuten K, Yuan YM, Song Y, Kupfer P, Smets E (2006) Phylogenetics of Impatiens and Hydrocera (Balsaminaceae) using chloroplast atpB-rbcL spacer sequences. Syst Bot 31(1):171–180
Janssens SB, Knox EB, Huysmans S, Smets EF, Merckx VS (2009) Rapid radiation of Impatiens (Balsaminaceae) during Pliocene and Pleistocene: result of a global climate change. Mol Phylogenet Evol 52(3):806–824
Jones K, Smith J (1966) The cytogeography of Impatiens L. (Balsaminaceae). Kew Bull 20:63–72
Kuang RP, Duan LD, Gu JZ, Cai XZ, Cong YY, Liu KM (2014) Impatiens liboensis sp. nov. (Balsaminaceae) from Guizhou, China. Nor J Bot 32(4):463–467
Luo Q, Wang TJ, Zhao LH (2015) Impatiens menghuochengensis sp. nov. (Balsaminaceae) from Sichuan, China. Nor J Bot 32(6):839–843
Rambaut A (2014) FigTree. v. 1.4. 2: Tree drawing tool. http://tree.bio.ed.ac.uk/software/figtree/. Accessed 5 Aug 2014
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61(3):539–542. doi:10.1093/sysbio/sys029.4
Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 17(5):1105–1109
Thomson JD, Higgins DG, Gibson TJ (1994) CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position- specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680
Yu SX, Janssens SB, Zhu XY, Lidén M, Gao TG, Wang W (2015) Phylogeny of Impatiens (Balsaminaceae): integrating molecular and morphological evidence into a new classification. Cladistics 32(2):179–197
Yuan YM, Song YI, Geuten K, Rahelivololona E, Wohlhauser S, Fischer E, Kupfer P (2004) Phylogeny and biogeography of Balsaminaceae inferred from ITS sequences. Taxon 53(2):391