Mitochondria are essential for brain development. While previous studies linked dysfunctional mitochondria with autism spectrum disorder (ASD), the role of the mitochondrial genome (mtDNA) in ASD risk is largely unexplored. This study investigates the association of mtDNA heteroplasmies (co-existence of mutated and unmutated mtDNA) and content with ASD, as well as its inter-generational transmission and sex differences among two independent samples: a family-based study ($n = 1,938$ families with parents, probands and sibling controls) and a prospective birth cohort ($n = 997$ mother-child pairs). In both samples, predicted pathogenic (PP) heteroplasmies in children are associated with ASD risk ($\text{Meta-OR} = 1.56$, $P = 0.00068$). Inter-generational transmission of mtDNA reveals attenuated effects of purifying selection on maternal heteroplasmies in children with ASD relative to controls, particularly among males. Among children with ASD and PP heteroplasmies, increased mtDNA content shows benefits for cognition, communication, and behaviors ($P \leq 0.02$). These results underscore the value of exploring maternal and newborn mtDNA in ASD.
O
ver the past eight years, most genetic studies of autism spectrum disorder (ASD) have focused on the nuclear genome, and have identified associations of common polymorphisms, rare copy number variants, and damaging mutations with the risk of ASD. Collectively, these identified genomic variants may account for about 20% to 40% of ASD risk, leaving a large fraction of ASD unexplained. More recently, there is growing evidence pointing to the potentially important role of mitochondria in the etiology of ASD. The 16.6-kb human mitochondrial genome (aka mitochondrial DNA; mtDNA) encodes 13 evolutionarily conserved proteins in four of the five oxidative phosphorylation (OXPHOS) protein complexes and 24 RNA genes essential for translation of mitochondrial proteins. Recent studies indicate that purifying selection (the selective removal of deleterious alleles) act on germline mtDNA protecting against the irreversible accrual of damaging mutations in its inter-generational transmission. Notably, mtDNA heteroplasmies (a state in which mutated mtDNA and unmutated mtDNA co-exist), either inherited from the mother or associated with de novo mutations in the maternal germline, were linked with mitochondrial disorders, mostly affecting tissues with heavy reliance on mitochondrial function, such as the brain. In animal studies, mice with heteroplasmic mtDNA were more susceptible to cognitive and behavioral deficits compared to their counterparts with homoplasmic mtDNA; mitochondrial mutator mice born with inherited mtDNA mutations showed abnormal brain development; transgenic mice carrying a non-synonymous mtDNA mutation affecting OXPHOS complex I had impaired social interaction and repetitive behavioral defects resembling those of ASD, indicating a potentially causal role of mtDNA variations in the pathogenesis of ASD, and perhaps, in other neurodevelopmental disabilities as well.

In humans, biochemical studies showed altered enzyme activities of varying OXPHOS complexes in brain tissues as well as peripheral tissues and cell lines with homoplasmic mtDNA; mitochondrial mutator mice born with inherited mtDNA mutations showed abnormal brain development; transgenic mice carrying a non-synonymous mtDNA mutation affecting OXPHOS complex I had impaired social interaction and repetitive behavioral defects resembling those of ASD, indicating a potentially causal role of mtDNA variations in the pathogenesis of ASD, and perhaps, in other neurodevelopmental disabilities as well.

In humans, biochemical studies showed altered enzyme activities of varying OXPHOS complexes in brain tissues and peripheral tissues and cell lines with homoplasmic mtDNA; mitochondrial mutator mice born with inherited mtDNA mutations showed abnormal brain development; transgenic mice carrying a non-synonymous mtDNA mutation affecting OXPHOS complex I had impaired social interaction and repetitive behavioral defects resembling those of ASD, indicating a potentially causal role of mtDNA variations in the pathogenesis of ASD, and perhaps, in other neurodevelopmental disabilities as well.

Here, by analyzing ultra-deep mtDNA sequencing data in two independent and complementary cohorts (SSC and BBC) in relation to ASD, we confirm that predicted pathogenic (PP) heteroplasmies increase the risk of ASD. Our results from the BBC further indicate that preferential transmission of mtDNA heteroplasmies with elevated pathogenicity, especially to male offspring, may be not only observed for ASD, but also for a broader range of NDD, including attention-deficit/hyperactivity disorder (ADHD) and other developmental delay (DD).

Results

Ultradeep mtDNA sequencing data. We obtained an average sequencing depth of 3778-fold (interquartile range: 3249x–4225x, Fig. 1b) on mitochondrial genome (mtDNA) from the whole-genome sequencing (WGS) data of the SSC. We sequenced mtDNA in maternal and newborn samples from the BBC by using a targeted method called STAMP and achieved an average mtDNA sequencing depth of 4868x (interquartile range: 3482x–5879x, Fig. 1c). We identified 5628 mtDNA heteroplasmies in the SSC and 1574 mtDNA heteroplasmies in the BBC.

Elevated pathogenicity of mtDNA heteroplasmies in ASD. In line with our previous study, we did not find a significant difference in the overall heteroplasmy number between probands and any other family members in the SSC (P ≥ 0.11, Fig. 2a and Supplementary Fig. 1); nor did we observe a significant increase in heteroplasmies in oxidative phosphorylation (OXPHOS) genes (P ≥ 0.057, Supplementary Table 1) among probands. However, medium-to-high-fraction (variant allele fraction [VAF] ≥ 5%) heteroplasmies in probands were more likely than those in siblings, to be detected at non-polymorphic mtDNA sites in the general population (Fisher’s exact test, odds ratio [OR] = 1.56, P = 0.011), which we previously found to be enriched for deleterious changes in OXPHOS genes. In RNA genes, probands carried more heteroplasmies affecting tRNA genes relative to their siblings (P = 0.024) and parents (P ≤ 8.2 × 10−6, Supplementary Table 1). Since there are disproportionally more mtDNA mutations in tRNA genes known to cause mitochondrial disorders than those in rRNA genes (Fisher’s exact test, OR = 38.8, P = 2.2 × 10−16) or in OXPHOS genes (OR = 6.6, P < 2.2 × 10−16), we surmised that mtDNA heteroplasmies in probands might have elevated pathogenicity.

We confirmed that the number of predicted pathogenic (PP) heteroplasmies in mtDNA was increased in probands as...
Study mtDNA heteroplasmies and content in 4,873 mother-child pairs

1. SSC (simplex families):

Mother – Newborn – Proband (ASD) n=1,938

Father – Newborn – Sibling (NT) n=1,938

- Maternal inheritance of mtDNA
- Longitudinal changes of mtDNA

□ Samples with mtDNA assessed (black border)

2. BBC (prospective birth cohort):

Mother – Newborn – Child (NT) n=376

Mother – Newborn – Child (NDD) n=621

- Box plots for the average mtDNA sequencing coverage among 1938 families in the SSC (as illustrated in a) using whole-genome sequencing (WGS) (b), and among 997 dyads of mothers and children in the BBC (as illustrated in a) using mtDNA-targeted sequencing (STAMP) (c).

Fig. 1 Study design and mtDNA evaluation in the SSC and BBC. a A schematic diagram of families (mother, father, sibling, and proband with ASD) in the SSC (n = 1938) and mother-child dyads in the BBC (n = 997). The square, circle, and diamond represent male, female, and both sexes, respectively. For both the SSC and BBC, the inter-generational transmission of mtDNA is represented by solid lines and the individual child longitudinal change in mtDNA is illustrated by dotted lines. b, c Box plots for the average mtDNA sequencing coverage among 1938 families in the SSC (as illustrated in a) using whole-genome sequencing (WGS) (b), and among 997 dyads of mothers and children in the BBC (as illustrated in a) using mtDNA-targeted sequencing (STAMP) (c). Box plots in b and c show the median as the center line, 95% confidence interval of the median as the notch, the first (Q1) and third (Q3) quartiles as the boundaries of the box, the values of the largest and smallest data points within the range between Q1 and Q3 as the boundaries of the whiskers, and the outliers beyond this range as the gray points. ASD: autism spectrum disorder; NT: neurotypical; NDD: neurodevelopmental disorder.

Compared to their siblings (OR = 1.51, P = 0.0012) and parents (OR ≥ 1.51, P ≤ 0.0026, Fig. 2b and Supplementary Fig. 1). The observed increase in PP heteroplasmies in probands persisted after we focused on heteroplasmies of medium-to-high fractions (versus siblings: OR = 2.15, P = 0.0012; versus parents: OR ≥ 2.20, P ≤ 0.00025; Fig. 2b). PP heteroplasmies affecting OXPHOS genes (OR = 1.50, P = 0.0083) and RNA genes (OR = 1.62, P = 0.041) were both significantly associated with ASD (Fig. 2d, e), extending our previous finding22 that not only changes in OXPHOS protein complexes but also defects in the translational machinery within mitochondria may increase ASD risk.

Moreover, PP heteroplasmies in mtDNA may not be modulated by nuclear risk factors for ASD, since neither polygenic risk scores (PRS) of ASD-associated common variants1 nor burden of damaging de novo variants in the nuclear genome2-6 previously reported in the SSC correlated with PP heteroplasmies among probands (P ≥ 0.1, Supplementary Table 2).

Remarkably, the effect of PP heteroplasmies on ASD was diminished (OR = 1.13, P = 0.62) among families with the proband in the 95th percentile for PRS of ASD1 or carrying de novo variants, including likely gene-disrupting mutations4, structural coding variants5, and excessive damaging noncoding mutations6 near ASD risk genes5, in the nuclear genome (Supplementary Table 3). The association between PP heteroplasmies and ASD was further strengthened after adjustment for ASD-associated nuclear variants in the SSC (OR = 1.59; P = 0.00052, Supplementary Table 3), indicating that PP heteroplasmies may be an independent genetic risk factor for ASD.

Biased maternal transmission of mtDNA heteroplasmies in ASD. We found that the proportion of maternally inherited heteroplasmies did not differ between probands and siblings in the SSC (chi-squared test, P = 0.46). Of PP heteroplasmies, about 25% in probands were inherited from the mother (versus siblings: VAF-adjusted P = 0.85). Both inherited and de novo PP heteroplasmies were significantly increased in probands relative to their siblings (OR ≥ 1.43, P ≤ 0.032, Fig. 2c).

Overall, nonsynonymous (NS) heteroplasmies in OXPHOS genes and heteroplasmies in tRNA genes transmitted from the mother to the sibling showed average pathogenicity below zero (P for selection <10−5, Supplementary Table 4), suggesting strong selection against pre-existing deleterious mtDNA heteroplasmies in the maternal lineage. Of note, compared to inherited NS
heteroplasmies in siblings, those transmitted solely to probands increased in pathogenicity ($P = 0.0075$, Fig. 2f; VAF-adjusted $P = 0.007$), suggesting biased transmission of NS heteroplasmies with elevated pathogenicity to children with ASD. We also found evidence of the effects of purifying selection on de novo NS heteroplasmies in both siblings and probands ($P = 0.0022$, Supplementary Table 4), indicating that purifying selection acts on new mutations in mtDNA.

In RNA genes, over 86% of PP heteroplasmies were de novo mutations, which differed significantly between probands and siblings ($P = 0.046$, Fig. 2e). Among siblings, de novo tRNA heteroplasmies were subject to purifying selection (one-sample t test, $P = 0.012$, Supplementary Table 4), despite an increase in their pathogenicity relative to inherited ones ($P = 0.0022$, Fig. 2g; VAF-adjusted $P = 0.015$). In contrast, average pathogenicity of de novo tRNA heteroplasmies among probands did not significantly deviate from that of random variants in tRNA genes ($P = 0.12$, Supplementary Table 4), suggesting attenuated effects of purifying selection on mitochondrial tRNA mutations in ASD.

Maternal age at childbirth affects mtDNA heteroplasmies. We found that mother’s age at childbirth correlated positively with the number of de novo heteroplasmies ($P \leq 0.00073$, Fig. 3a) in both probands and siblings in the SSC but did not correspond to the number of inherited ones ($P \geq 0.12$, Supplementary Table 5). The observed correlation was also tested to be significant at NS
mtDNA content decreases in ASD and modifies the impact of mtDNA heteroplasmies. We found moderate correlations of mtDNA content at \(r = 0.27 - 0.36 \) between parents and children (\(P \leq 2.2 \times 10^{-34} \), Fig. 4a) in the SSC. The narrow-sense heritability of mtDNA content in blood was 0.65 (95% confidence interval [CI]: 0.59–0.71) for siblings and was 0.63 (95% CI: 0.57–0.69) for probands (Fig. 4b), close to the heritability identified in a twin study of mtDNA content. Moreover, significant negative correlations were detected between mtDNA content and age of both probands and siblings (\(P \leq 4.4 \times 10^{-9} \), Fig. 4c). We then computed a z-score (mtCNz) of mtDNA content among children by taking the standardized residuals from regression of the offspring mtDNA content on age and the parental mean of mtDNA content.

We found a mild but statistically significant decrease in mtCNz in probands relative to their siblings (\(P = 2.9 \times 10^{-23} \), Fig. 4d). Decline in mtCNz remained significant among probands after we stratified sibling-proband pairs according to their sex or reported parental races (\(P \leq 9.6 \times 10^{-5} \), Supplementary Table 7). As compared to children in the low-tertile (T1) group of mtCNz, children in the middle-tertile group (T2) and the high-tertile group (T3) of mtCNz showed a decreased risk of ASD at \(OR = 0.57 \) (95% CI: 0.48–0.67) and \(OR = 0.42 \) (95% CI: 0.35–0.51), respectively (Fig. 4e).

After incorporating PP heteroplasmies and parental ages at childbirth into the analysis, we found that both PP heteroplasmies and low mtCNz (T1 of mtCNz) were associated with ASD risk (OR ≥ 1.50, \(P \leq 0.0024 \)). Of note, an interaction effect between PP heteroplasmies and low mtCNz on ASD risk was suggested (\(P \) for interaction≤0.083, Supplementary Table 8). Among children with low mtCNz (in T1 of mtCNz), carrying PP heteroplasmies led to an increased risk of ASD at \(OR = 2.02 \) (\(P = 0.0033 \)), and at \(OR = 4.80 \) (\(P = 0.0018 \)) if the heteroplasm was of medium-to-high fractions (VAF ≥ 5%; Fig. 4f). In contrast, among children with normal mtCNz (in T2/T3 of mtCNz), the ORs of carrying PP heteroplasmies for ASD became smaller and nonsignificant (OR = 1.22, \(P = 0.28 \); OR = 1.56, \(P = 0.12 \) for those of VAF ≥ 5%; Fig. 4f), suggesting that increased mtDNA content may partially mitigate the deleterious effects of PP heteroplasmies in ASD.

mtDNA content and heteroplasmies associated with ASD-related neurological traits. Among probands with ASD in the SSC, carrying PP heteroplasmies was associated with decreased non-verbal IQ (\(P = 0.015 \)) and verbal IQ (\(P = 0.034 \), Fig. 5a), and increased risks of intellectual disability (non-verbal IQ < 70: \(OR = 1.70 \), \(P = 0.0036 \); verbal IQ < 70: \(OR = 1.41 \), \(P = 0.05 \); Supplementary Table 9), supporting a previous report that children with ASD and co-occurring intellectual disability had characteristic OXPHOS deficiencies suggesting mitochondrial disorders.

Moreover, probands with PP heteroplasmies were more likely to score in the lower quartile in the assessment of neurodevelopmental functions as measured by the Vineland Adaptive Behavior Scales (VABS, 2nd edition; OR = 1.86, \(P = 0.0079 \); Supplementary Table 9), as well as communication and social skills as measured by the total score for the communication and social components in the Autism Diagnostic Observation Schedule (ADOS; [-] ADOS-CS: OR = 1.66, \(P = 0.0039 \); Supplementary Table 9). We then computed a severity score based on non-verbal and verbal IQ (IQ < 70) as well as the VABS and ADOS-CS (in the lower quartile of the respective assessment). Strikingly, the family-adjusted prevalence of PP heteroplasmies exceeded 15% among probands at the highest severity level (Fig. 5b).

However, probands carrying PP heteroplasmies did not show an increase in restricted and repetitive behaviors as measured by the ADOS ([-] ADOS-RB: \(P \geq 0.31 \); Fig. 5a and Supplementary Table 9). Instead, they were more likely to report improvements in...
mtDNA content and heteroplasmies in cord blood of children diagnosed with NDD. As the study in the SSC was designed for cross-sectional research, to establish the temporal relationship between mtDNA variations and autism, we sequenced mtDNA in a total of 1067 pairs of umbilical cord blood and maternal blood samples collected at childbirth in the BBC. After quality filtering, we obtained samples from 621 children with at least one diagnosis of NDD at postnatal visits: 82 with ASD; 221 with attention-deficit/hyperactivity disorder (ADHD) without co-occurring ASD; and 318 with development delay (DD) or other NDD without co-occurring ASD and ADHD. We observed a moderate correlation of mtDNA content at gestation between newborns and their mothers (P = 4.9 × 10⁻¹⁷; r ≥ 0.24 among NT children and children with NDD, separately; Supplementary Fig. 2). mtDNA content in cord blood also showed negative correlations with gestational age in both NT children and children with NDD (P ≤ 0.017, Supplementary Fig. 2). We then computed a z-score (mtCNz) of mtDNA content in cord blood for adjustment of mother’s mtDNA content and gestational age.

We found that mtCNz was decreased among children with NDD relative to NT children (P = 0.096) and was negatively correlated with the number of NDD conditions (P = 0.045, Supplementary Fig. 2). Notably, the decline in mtCNz was significant and more pronounced among children with NDD born preterm (P ≤ 0.036), suggesting an interaction effect between low mtDNA content and prematurity on NDD (P for interaction ≤ 0.048; likelihood-ratio test for mtCNz and the interaction term, P ≤ 0.025). Comparable interaction effects were also observed for each of the three NDD groups in the BBC: ASD, ADHD not ASD, and DD/other only (P for interaction ≤ 0.089, Supplementary Table 10). These results imply that the influence
of deficient mitochondrial function on neurodevelopment may be more profound if the child is born prematurely.20

Supporting our finding in the SSC, PP heteroplasmies showed higher family-adjusted prevalence among children with ASD as compared to NT children (OR = 2.32, P = 0.049; Fig. 6a). After performing a fixed-effect meta-analysis to combine results from the SSC and BBC, we estimated an OR of carrying PP heteroplasmies for ASD to be 1.56 (P = 0.00068), and 2.28 (P = 0.00016) if the heteroplasmia was of medium-to-high fractions. Neither was significantly altered after control for mtDNA content and maternal age at childbirth (P ≤ 0.00098; model 2 in Table 1). The population-attributable risk proportion (PAR) of carrying PP heteroplasmies for ASD was estimated to be 2.9% (95% CI: 1.2–4.7%), of which about one third (PAR = 1.0%; 95% CI: 0.35–2.0%) resulted from inherited heteroplasmies and two thirds (PAR = 1.9%; 95% CI: 0.41–3.5%) was due to de novo mtDNA mutations.

However, the associations between mtDNA heteroplasmies and the risks of other NDD were not revealed until we focused on heteroplasmies with high fractions in cord blood. For example, the associations of heteroplasmies at NS sites in OXPHOS genes and in tRNA genes with NDD other than ASD grew to be significant after we focused on heteroplasmies of VAF ≥ 20% (OR = 2.39, P = 0.035; OR for ADHD = 2.75, P = 0.038; Supplementary Table 11).

Germline selection and maternal age affect mtDNA heteroplasmies in cord blood. Of heteroplasmies detected in cord blood of children, 47% were shared with their mothers, and 23% showed an increase in VAF relative to their mothers’ heteroplasmies (children with NDD versus NT children: chi-squared test, P ≥ 0.33). Among NT children, transmission of a heteroplasmia from the mother was negatively associated with its pathogenicity z-score (VAF-adjusted P = 0.030). Both inherited and de novo heteroplasmies in cord blood of NT children showed evidence of purifying selection (P for selection ≤ 0.012, Supplementary Table 4), supporting that selective removal of deleterious mtDNA heteroplasmies occurs in the germline or the embryo.

Of note, the effect of purifying selection on mothers’ heteroplasmias was weakened among children with NDD, with pathogenicity of transmitted heteroplasmies indistinguishable from that of untransmitted ones (P ≥ 0.40 among children with ASD, ADHD, and DD/other, separately, Fig. 6b). Based on related results from the SSC and BBC (Fig. 6b), we estimated that one standard deviation increase in pathogenicity z-scores of maternal heteroplasmias was associated with reduced odds of transmission to NT children (Meta-OR = 0.64, P = 1.1 × 10−5) but did not affect mtDNA transmission to children with ASD (Meta-OR = 0.98, P = 0.84; versus NT children: P for heterogeneity = 0.0041, I² = 88%) and to children with other NDD (Meta-OR = 1.09, P = 0.72; versus NT children: P for heterogeneity = 0.038, I² = 77%).

Moreover, the number of de novo heteroplasmies in cord blood increased with maternal age at childbirth (P ≤ 0.0082) at similar rates in NT children and children with NDD (Fig. 6d; P for heterogeneity = 0.52). Both rates were comparable to the rates identified in peripheral blood of children in the SSC (P for heterogeneity ≥ 0.28, Supplementary Table 12). Accordingly, we estimated mtDNA mutation rate to be 2.4 × 10−7 per site per generation (Supplementary Table 13), close to the findings from previous studies (2.7–4.7 × 10−7 per site per generation)10,40. We further found that de novo heteroplasmies among children born to mothers aged under 30 years showed decreased pathogenicity as compared to those among children born to older mothers (P = 0.075, Fig. 6c; P = 0.043 for nonsynonymous heteroplasmies
Fig. 6 Replication of findings on mtDNA heteroplasmy prevalence and transmission as well as maternal age effect in the BBC.
a Bar plots for the family-adjusted prevalence of predicted pathogenic (PP) heteroplasmies and heteroplasmies at nonsynonymous sites in oxidative phosphorylation genes or at all sites in tRNA genes (OXPHOS/tRNA), respectively. Error bars represent bootstrapped SEM. Two-sided P values are from logistic regression further adjusted for mtDNA content z-score.

b Forest plots for the effects of per standard deviation increase in pathogenicity z-score on transmission of maternal mtDNA heteroplasmy to the child. Horizontal black lines represent the 95% confidence interval of the odds ratio (OR) among children indicated by the label on the y axis (from top to bottom: BBC: n = 376, 82, 221, and 318 children; SSC: n = 1938 siblings and 1938 probands; Meta: n = 2314, 2020, and 539 children). Combined effects were estimated based on a fixed-effect meta-analysis (Meta) of the results from the SSC and BBC. Values on the x axis are shown on a logarithmic scale.

c Box plots for the distribution of pathogenicity z-scores among de novo heteroplasmies (from left to right, NT: MA < 30 years, MA ≥ 30 years).

d Forest plots for the effects of per standard deviation increase in pathogenicity z-score on maternal transmission of maternal heteroplasmies (from left to right, NT: n = 242, 134; ASD: n = 82, 45; ADHD not ASD: n = 221, 183; DD/other only: n = 318, 202; NDD: neurodevelopmental disorder).

Table 1 Association of predicted pathogenic heteroplasmies with ASD risk in the SSC and BBC, respectively, and in combined samples of the SSC and BBC.

PP heteroplasm	Model 1		Model 2					
	SSC	BBC	Meta	SSC	BBC	Meta		
	OR [95% CI]	OR [95% CI]	OR* [95% CI]	P (het)*	OR [95% CI]	OR [95% CI]	OR* [95% CI]	P (het)*
All	1.50 [1.14–1.96]	2.32 [1.00–5.38]	1.56 [1.21–2.02]	0.33	1.50 [1.14–1.97]	2.20 [0.94–5.16]	1.55	0.40
VAF ≥ 5%	2.17 [1.39–3.38]	4.04 [0.89–18.35]	2.28 [1.49–3.49]	0.44	2.16	3.96	2.27	0.45
Inherited	2.13 [1.35–3.92]	2.17 [0.32–14.81]	2.13 [1.19–3.82]	0.90	2.13	2.57	2.24	0.89
De novo	1.40 [1.04–1.88]	1.88 [0.75–4.68]	1.44 [1.08–1.91]	0.54	1.38 [1.02–1.87]	1.67 [0.66–4.25]	1.41	0.70

Model 1: SSC = carrying PP heteroplasmies + mtCNz + sex + mtDNA-inferred ancestry; BBC = carrying PP heteroplasmies + mtCNz + sex + mtDNA-inferred ancestry; Model 2: SSC: model 1 + maternal age at childbirth + parental age at childbirth + child age at the time of sample collection; BBC: model 1 + maternal age at childbirth.

*The OR (odds ratio) of carrying predicted pathogenic (PP) heteroplasmies for ASD were estimated based on fixed-effect meta-analysis (Meta) of the results from the SSC and BBC; the ORs of carrying inherited PP heteroplasmies and de novo PP heteroplasmies were assessed jointly as: de novo heteroplasmy + inherited heteroplasmy + covariates.

*Q statistic P values for heterogeneity in the ORs estimated between the SSC and BBC. The null distribution of Q statistic follows a chi-square distribution with 1 degree of freedom.
in OXPHOS genes). These results thus point to a germline or prenatal origin for these maternal-age-associated mtDNA changes.

Sex differences in the association of mtDNA heteroplasmies and inter-generational transmission with ASD. Interestingly, the weakened effect of purifying selection on maternal heteroplasmies in children with NDD relative to controls was most prominent among boys (versus controls: $I^2 = 89\%$, P for heterogeneity = 0.0021) but not among girls (versus controls: $I^2 = 0\%$, P for heterogeneity = 0.46) (Supplementary Table 14). Accordingly, we found that maternally inherited PP heteroplasmies conferred a risk for ASD only among boys (Meta-OR = 3.81, $P = 0.0057$, Supplementary Table 15) in the SSC and BBC. Likewise, in the BBC, we noted a greater impact of PP heteroplasmies on ADHD and/or other DD after focusing on inherited PP heteroplasmies in cord blood of boys (OR \geq 3.90, Supplementary Table 16). We also noted slightly higher prevalence of PP heteroplasmies among girls with neurotypical development in both the SSC and BBC relative to boys with neurotypical development (chi-squared test, $P = 0.25$; Supplementary Table 17). These results suggest that, compared to males, females may be resilient to deleterious effects of PP heteroplasmies, supporting a female protective effect in ASD and other NDD. But due to smaller numbers of females with ASD/NDD in the current study, future studies are needed to verify our observation.

Discussion. In the SSC and BBC, the impact of PP heteroplasmies on ASD was found to be similar (P for heterogeneity \geq0.33, Table 1 and Supplementary Table 18), despite racial and ethnic differences between these two cohorts. While the PAR of PP heteroplasmies estimated to be 2.9% for ASD is small, it is comparable to the PARs of damaging coding or non-coding variants in the nuclear genome $^{4-6}$. Given that mtDNA is less than one-thousandth of the nuclear genome and five-millionths of the nuclear genome in size, our finding points towards an enrichment of risk variants for ASD in mtDNA, showing that mtDNA-encoded genes may play an important role in the pathogenesis of ASD.

PP heteroplasmies in OXPHOS genes and in RNA genes were of comparable influence on ASD (Supplementary Table 19), whose locations in mtDNA spanned 33 genes and affected all four mtDNA-encoded OXPHOS complexes among children with ASD in the current study (Supplementary Fig. 3). The heterogeneous locations of these heteroplasmies echo the varying deficiencies of OXPHOS complexes previously found in patients with ASD $^{15-21}$.

Some confirmed mitochondrial disorder (MD)-causing mtDNA mutations 36 were identified among children with ASD (Supplementary Fig. 3). m.3243A>G in MT-TL1 (tRNALeu[UUR]), the most frequent pathogenic mutation causing MELAS (mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes) 41, affected two children with ASD. Previous studies indicated that an intermediate level of m.3243A>G (fraction $<30\%$) may cause mild mitochondrial dysfunction in ASD 42,43. Another tRNA mutation, m.8313G>A in MT-TK (tRNAlys), which causes mtDNA deletion syndrome and mitochondrial neurogastrointestinal disorder with progressive mental regression in early childhood 44, was observed in three children with ASD. Moreover, we identified five MD-causing mutations (m.3460G>A, m.10663T>C, m.11778G>A, m.13042G>A, and m.13513G>A) in genes of OXPHOS complex I among children with ASD. All these mutations are responsible for LHON (Leber hereditary optic neuropathy) 45, some of which also result in MELAS and/or Leigh disease 46, a progressive, childhood-onset neurometabolic disorder. A mouse mtDNA model of LHON was recently shown to express impaired social interactions and increased repetitive behaviors 44. Surprisingly, mitochondrial dysfunction and abnormal electroencephalogram were found to be most pronounced in the cortex and hippocampus of affected mice 44, suggesting that mtDNA defects may have systemic impact on the brain and on neuropsychiatric functions. Overall, we found that carrying PP heteroplasmies that have been reported to be associated with any disease 36,47 increased the risk of ASD by 88% (OR = 1.88, $P = 0.0096$), and more than doubled ASD risk (OR = 2.78, $P = 0.0022$) if the associated disease has a neurological manifestation (Supplementary Table 19).

Among children with ASD carrying PP heteroplasmies, over 90% had only one PP heteroplasmy detected (Supplementary Fig. 1), which is contradictory to an age-related burden of low-fraction heteroplasmies in somatic tissues 48. We also found increased effects of PP heteroplasmies of medium-to-high fractions on ASD (Table 1), reflecting a threshold effect of heteroplasmies. But a clinically significant threshold for heteroplasmies detected in blood of patients with ASD may be lower than the threshold for classic mitochondrial disorders such as MELAS 41, supporting mild mitochondrial dysfunction in ASD 49. Because previous studies showed reduced mtDNA heteroplasmic fraction in blood 41, low-fraction pathogenic heteroplasmies detected in the blood of the child, especially maternally inherited heteroplasmies, may warrant evaluation of the heteroplasmy in non-blood tissues.

In the SSC and BBC, neither mtDNA mutation rate nor the pattern of nucleotide changes among de novo heteroplasmies significantly differed between affected children and controls (Supplementary Tables 12 and 20). A lack of change in mtDNA mutation rate in ASD rules out the possibility of heightened mtDNA mutagenesis due to oxidation of mtDNA polymerase y 50. A minimal proportion of transversion changes among de novo heteroplasmies (\leq3.1%, Supplementary Table 20) further contradicts the signature of mutations created by misincorporation of bases against mtDNA damages 48.

Besides increased incidence, de novo mtDNA heteroplasmies among children born to older mothers showed elevated pathogenicity. Recent studies indicated that most de novo germline mutations in mtDNA arise during oocyte meiotic arrest 10,51. Oocytes from aged mice showed impaired mitochondrial fission affecting embryonic development 32. In humans, ovarian aging was associated with decreased mtDNA content in unfertilized oocytes 53. These age-related mitochondrial changes may affect selective removal of deleterious mtDNA mutations 54 during subsequent maturation of the oocyte and development of the embryo 55,56.

In the SSC, we observed that high mtDNA content in peripheral blood samples mitigated the deleterious effects of PP heteroplasmies on ASD. Similar modifying effects of high mtDNA content were also observed in MD, leading to incomplete penetrance of MD-causing mtDNA mutations and reduced disease severity 41,57. A recent study showed that the protective role of increased blood mtDNA content in neurological disorders may be ascribed to its connection with global gene expression beyond the immune system 58. Functional assessment using fibroblasts and postmortem specimens of patients with LHON and asymptomatic carriers showed that increased mtDNA content in blood was attributed to a greater capacity of activating mitochondrial biogenesis globally, which better ameliorated some pathogenic phenotypes of the causative mtDNA mutation in the optic nerve 57. In Picard et al.’s study 42, cybrid cells with an intermediate level of m.3243A>G exhibited dynamic capacity of mtDNA to adjust to mild mitochondrial dysfunction via changes in its content and gene expression. However, none of the ASD risk genes in the nuclear genome 3 are directly implicated in the
pathway of mitochondrial biogenesis. Future studies are needed to identify potential nuclear modifiers for diseases associated with pathogenic mtDNA variants.

Interestingly, the deleterious effect of an mtDNA variant may be modulated by sex hormones such as estrogens\(^\text{59,60}\). Receptors of estrogens (ER), such as ER\(\beta\), have been shown to be localized to mitochondria and bind mtDNA\(^\text{61}\). In the brain of children with autism, the levels of ER\(\beta\), estrogen synthetase, and ER co-activators were significantly decreased relative to controls\(^\text{62}\). Treatments using estrogens have been shown to have neuroprotective effects against mtDNA defects in LHON\(^\text{64}\) and, more recently, against nuclear genetic defects in autism\(^\text{63}\).

From an evolutionary perspective, a female protective effect may dampen purifying selection and cause accumulation of deleterious mtDNA variants in females. They may lead to the associated disease when transmitted to a male offspring, illustrating a contribution of the “mother’s curse” to a male-dominant disease like LHON\(^\text{64}\). Future studies may be needed to examine how estrogens and other sex-related factors impact inter-generational transmission and selection of mtDNA heteroplasmies and their roles in sexual dimorphism in NDD.

Our study has some limitations. First, we used DNA samples from peripheral blood collected in the SSC and cord blood collected in the BBC rather than brain tissue. It is uncertain to what extent blood mtDNA can reflect mtDNA in brain tissue. In Li et al.’s study\(^\text{65}\), among 62 young and middle-aged study participants (age \(< 55\) years) all 26 mtDNA heteroplasmies, detected with VAF \(\geq 5\%) in blood, were shared among more than eight postmortem tissues of the same participant, including the cerebellum, cerebral cortex, and cortex of the brain. Our findings thus lend support for the utility of blood mtDNA as a biomarker of ASD risk. Second, although our study utilized two large population samples, our analyses may still be underpowered due to the relatively low frequencies of mtDNA heteroplasmies and small numbers of females with ASD in the SSC and BBC. Third, different methods were used to sequence mtDNA in the SSC and BBC. Remarkably, the findings from the two cohorts were consistent. This study thus demonstrates the utility of STAMP\(^\text{33}\) as a cost-effective tool for studying mtDNA heteroplasmies and content in large population samples. Fourth, our study on mtDNA heteroplasmies and content in ADHD and other DD was exploratory among a relatively small number of affected children only from the BBC. The related results suggest that mtDNA variations may have a broader impact on other NDD besides ASD at childhood, which requires further research.

In conclusion, this study analyzed two independent and racially and ethnically diverse cohorts, and revealed consistent findings regarding the role of mitochondrial genome quality (mtDNA heteroplasmies) and quantity (mtDNA content), germline selection, advanced maternal age, and child sex and their inter-relationships with the risk of ASD specifically and NDD in general. In the BBC, we showed that mtDNA variations measured at birth are prospectively associated with a child’s risk of developing ASD in childhood. These findings, if further confirmed, indicate the utility of maternal peripheral blood and cord blood mtDNA biomarkers as identified through ultradisperse sequencing for the early risk assessment and prediction of a newborn’s future risk of developing ASD, and perhaps, other NDD, in childhood.

Methods

Processing of whole-genome sequencing data in the SSC

The details of the SSC were previously described\(^\text{20}\). We downloaded the files containing whole-genome sequencing (WGS) data (aligned to the complete human genome: genome assembly GRCh38; last access in June 2019) of 7768 participants from 1942 families recruited in the Simpons Simplex Collection (SSC) after receiving data access from the SFARI base (https://base.sfari.org/). We used an established method\(^\text{22}\) to analyze mtDNA variations (Supplementary Table 21). We first extracted paired-end reads from the SSC and map them to the mitochondrial genome (mtDNA) in the aligned chromosome (mtDNA) using samtools (v1.65)\(^\text{66}\). We then aligned these reads, using “bwa mem” (v0.7.17)\(^\text{67}\), to a modified mtDNA, which have the final 150-bp of the Revised Cambridge Reference Sequence (rCRS) of human mtDNA copied to the start to allow for a complete alignment of reads in the D-loop region in mtDNA. We further performed local re-alignment with freebayes (v1.1.48)\(^\text{68}\) and base quality recalibration using samtools (calmd)\(^\text{66}\). The resulting bam files were converted to the corresponding pileup files using “samtools mpileup” for variant calling.

mtDNA variants were called using unique reads identified by “picard MarkDuplicates” (v1.138)\(^\text{69}\)-identified unique reads in the pre-existing de-identified files using samtools (v1.65)\(^\text{66}\). We then aligned these reads, using “bwa mem” (v0.7.17)\(^\text{67}\), to a modified mtDNA, which have the final 150-bp of the Revised Cambridge Reference Sequence (rCRS) of human mtDNA copied to the start to allow for a complete alignment of reads in the D-loop region in mtDNA. We further performed local re-alignment with freebayes (v1.1.48)\(^\text{68}\) and base quality recalibration using samtools (calmd)\(^\text{66}\). The resulting bam files were converted to the corresponding pileup files using “samtools mpileup” for variant calling.

mtDNA variants were called using unique reads identified by “picard MarkDuplicates” (v1.138)\(^\text{69}\)-identified unique reads in the pre-existing de-identified files using samtools (v1.65)\(^\text{66}\). We then aligned these reads, using “bwa mem” (v0.7.17)\(^\text{67}\), to a modified mtDNA, which have the final 150-bp of the Revised Cambridge Reference Sequence (rCRS) of human mtDNA copied to the start to allow for a complete alignment of reads in the D-loop region in mtDNA. We further performed local re-alignment with freebayes (v1.1.48)\(^\text{68}\) and base quality recalibration using samtools (calmd)\(^\text{66}\). The resulting bam files were converted to the corresponding pileup files using “samtools mpileup” for variant calling.

We replicated \(>99.9\%(83,750/83,760)\) of mtDNA homoplasmies identified using the whole-exome sequencing (WES) data from 810 families from the SSC in our previous study\(^\text{22}\). Of mtDNA heteroplasmies previously reported\(^\text{22}\), 95.1% (345/373) were confirmed using the WGS data from the SSC at comparable variant allele frequencies (VAF \(\geq 1.5\%\)) (Pearson’s \(r = 0.98\) and Spearman’s \(p = 0.94\), \(p < 10^{-16}\); Supplementary Table 41), among which \(94\)\% had high VAFs \(\geq 5\%\) in both studies. mtDNA haplogroup information was determined using haplogrep2 (v2.1.16)\(^\text{69}\) based on the major mtDNA sequence (with VAF \(>50\%)\) of each sample. Supporting the maternal transmission of mtDNA, all major mtDNA sequences of participants in the same maternal lineage were classified into identical mtDNA haplogroups. Among parents in the SSC, 82% had mtDNA belonging to European macro-haplogroups; 12% had Asian or Native American macro-haplogroups; and 5% had African macro-haplogroups. Ancestry information inferred from mtDNA macro-haplogroups also corresponded to self-reported races or ethnicities (Supplementary Fig. 5).

We estimated the number of mtDNA copies in relation to the nuclear DNA by using the ratio of sequencing depth between mtDNA and nuclear DNA (Supplementary Table 21). In brief, we calculated sequencing depth at each site of the reference nuclear genome by using the “samtools depth -a” command\(^\text{66}\) after filtering out reads duplicates, reads not in a proper pair, reads with low MAPQ scores (>20), reads with low BAQ scores (<16). To avoid regions in nuclear DNA with large deletions or ambiguous alignments, we computed average sequencing depth in sliding windows of 100-kb with step size of 50-kb. Average read coverage on each chromosome was estimated based on windows with \(>80\%\) sites covered with reads. mtDNA content was then computed as two times the average ratio of read coverage between mtDNA and each of the 22 autosomal chromosomes.

At the individual level, we removed families with participants having (i) excessive \((n > 15)\) de novo heteroplasmies (\(n = 2\)); (ii) mismatched mtDNA haplogroup information between the mother and child (\(n = 10\)); and (iii) medium sequencing coverage on mtDNA \(<50X\) (\(n = 0\)). Two families were excluded from analysis per request to withdraw from the SSC.

Phenotypic data, including age, sex, reported ancestry of all participants, as well as verbal IQ, non-verbal IQ, scores of the VABS and ADOS, and medical records of the probands were extracted from the SFARI phenotype database (version 13; https://base.sfari.org/) and the related datasets on NDAR (collections: 2042, 2068; https://nda.nih.gov/). Nuclear risk factors for ASD reported using the SSC, including polygenic risk scores of ASD-associated common variants\(^\text{70}\), de novo coding mutations\(^\text{4}\), de novo mutations in the noncoding regions of the nuclear genome\(^\text{71}\), and de novo structural variants\(^\text{4}\), were obtained from previous studies of the SSC. The related methods were detailed in Supplementary Table 2.

Our research using only pre-existing de-identified data in the SSC was exempted from Institutional Review Board (IRB) review (Protocol ID# 1703007002) for human subject research by the IRB office at Cornell University prior to the current study.

Processing of mitochondrial genome sequencing data in the BBC

The details of the study design, recruitment and follow-up of study participants, and ascertainment of diseases in the BBC have been published\(^\text{20,26,27}\) and were described in Supplementary Notes. We followed a previously published protocol\(^\text{32}\) in preparing sequencing libraries and processing paired-end reads for BBC samples. Briefly, we captured the entire 16.6-kb mtDNA sequence with 46 pairs of oligonucleotide probes targeting mtDNA and five pairs of probes targeting independent, single-copy regions on five autosomal chromosomes (Integrated DNA Technologies, Supplementary Table 24)\(^\text{33}\). We performed the hybridization reaction on 50 ng genomic DNA with 4 μl STAMP probe mix and 1× Amplisense buffer (Epiphen, catalog #A1905B) in a 10 μl volume. Thermal

10 NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30805-7 | www.nature.com/naturecommunications
conditions were 10 min at 95°C for denaturation, followed by a decrease of 1°C per min to 55°C and 20°C at 55°C for hybridization. We then added 6 μl gap-filling mix containing 0.4 μl T7 oligo primer (6 μM Biotinylated), 0.6 μl Biotinylated T7 oligo primer, and 0.5 units of AmpliSeq DNA polymerase (Invitrogen, catalog #11448024), and 0.5 units of AmpliSeq DNA polymerase (Thermo Scientific, catalog #F549L). PCR thermal conditions were 30 s at 98°C for initial denaturation, followed by 25 cycles of 10 s at 98°C, 15 s at 65°C, and 15 s at 72°C. We purified STAMP sequences using capture primers with AMPure XP magnetic beads (Beckman Coulter, catalog #A63881) and sequenced them on HiSeq 2500 (Illumina) with 2 × 250-bp reads.

Paired-end reads were analyzed using “staple toolkit”33 (Supplementary Table 22). We first sorted paired-end reads into clusters of capture products according to the probe arm sequences and sample barcodes identified. We then trimmed molecular barcode and probe sequences from each read pair before alignment. Following a similar mapping strategy used for the WGS data from the SSC, we aligned the resulting reads, using “bwa mem” (v0.7.17), to the complete human genome (assembly genome GRCh38) and subsequently to a modified mtDNA sequence based on tCRS. Paired-end reads aligned to the target segments as specified by their arm sequences were locally realigned using freebayes (v1.1.0)68, and their base qualities were recalibrated using samtools (calmd)69. For paired-end reads with the same molecular barcode, we employed a Bayesian approach to merge base information at each alignment site and generated a consensus read representing the captured DNA product33.

mtDNA variants were identified using consensus reads aligned to mtDNA that (i) had MAPQ ≥ 20 and BAQ ≥ 30; (ii) did not contain an excess of nucleotide mismatches (>5 in the coding region and >8 in the D-loop region) relative to the major mtDNA sequence; and (iii) were not marked as nuclear mitochondrial segments72 (Supplementary Table 22). We determined heteroplasmies based on similar quality filtering of the WGS data (i.e., >300X depth of coverage, >900% of the bases having RAQ ≥ 30; and (iv)) in low-complexity regions: (v) ≥2% minor alleles and log-likelihood, BAQ-based quality score ≥5, and two other filters based on consensus read information in STAMP: (vi) VAF among consensus reads constructed from multiple paired-end reads comparable to that among consensus reads constructed from single paired-end reads (Fisher’s exact test P ≥ 0.05 and decrease in VAF ≤ 0.05 fold); and (vii) not at low-quality sites defined as those having >50% of variants failed in quality filter vi (Supplementary Table 23).

We estimated, based on 102 pairs of technical replicates, that the true positive rate was 100% (5,003/5,003) for detecting homoplasmic and was 98.6% (70/71) for detecting heteroplasmies (correlation in VAF, r = 0.99 and p = 0.96, P < 2.2 × 10−16; Supplementary Fig. 4); the average coefficient of variation in repeated measurements of VAF was 7.6% among heteroplasmies of VAF ≥ 5% and was 19.2% among heteroplasmies of VAF between 1.5% and 5%. In the BBC, 69% of parents had mtDNA macro-haplotype segments representing Nuclear DNA were from probe-target regions as previously described33,72. We found a correlation of mtDNA content at mtDNA segments72 (Supplementary Table 22). We determined heteroplasmies based on mtDNA content at mtDNA segments72 (Supplementary Table 22). We determined heteroplasmies based on mtDNA content at 16; Supplementary Fig. 4); the average coefficient due to mtDNA polymorphisms in probe-annealing regions33,72 varied across targets (mean ± SE = 0.83 ± 0.05; Supplementary Table 23). By using this criterion to assess heteroplasmy transmission in mother-child pairs, we found clear separation of variant quality scores between de novo and inherited hetertoplasmas, as well as between transmitted and untransmitted heteroplasmies (Supplementary Fig. 5).

The probability of heteroplasmy sharing among mother-child pairs was at least 15 times higher than that among father-child pairs and among father-mother pairs (≥3.4%; Supplementary Fig. 5). None of the predicted pathogenic heteroplasmies identified in probands, siblings and/or mothers were shared with the father from the same family in the SSC (Supplementary Data 1).

In total, we identified 7202 heteroplasmies, including 724 secondary heteroplasmies detected based on heteroplasmy sharing among family members in the SSC or mother-child pairs in the BBC (Supplementary Table 23). We defined mtDNA heteroplasmies with VAF ≥ 1.5% in children that were not shared with participants in the same maternal lineage as de novo heteroplasmies.

Bioinformatics analysis of mtDNA variation. We annotated mtDNA variants’ function by using the ANNOVAR pipeline32. Consistent with our previous study of the SSC27, we relied on multiple pathogenicity predictors to assess the functional impact of nonsynonymous heteroplasmies in OXPHOS genes, and (i) CADD74 Phred score (version 1.3) ≥15, (ii) PolyPhen-2 of “possibly or probably damaging”55, and (iii) MutPred66 score >6.0. We used (iv) Mitto77 raw score >12.66 as recommended to predict the pathogenic potential of nucleotide changes in mtDNA-encoded tRNAs. We further evaluated pathogenicity and population frequency of all mtDNA variants in OXPHOS genes and tRNA genes (Supplementary Notes and Supplementary Fig. 7). Predicted pathogenic (PP) variants were then defined as those that (1) are predicted to be pathogenic in pathogenicity assessments i-v, or (2) are confirmed as mitochondrial disorder (MD) in the MITOMAP database65 (Supplementary Table 23).

Moreover, we converted CADD74 and Mitto77 raw scores, by using rank-based inverse normal transformation, to normally distributed z-scores that represent the pathogenicity rank of each variant among all possible nucleotide changes in OXPHOS genes and tRNA genes, respectively. We then used two methods to test the existence of selection of mtDNA heteroplasmies. First, we used a one-sample t test to assess whether the mean pathogenicity z-score of a set of heteroplasmies is significantly deviated from the median pathogenicity. Second, we employed a bootstrapping-based test that compares the mean pathogenicity z-score to those from 10⁶ random resamples of nucleotide changes that match the number of changes in OXPHOS genes and tRNA genes as well as the number of transition and transversion changes among the set of heteroplasmies observed. The resulting P values are denoted as “P for selection”.

Statistical methods. We assessed mitochondrial exposures for NDD, including the number of mtDNA heteroplasmies (heteroplasmy incidence), a binary variable representing carrying PP heteroplasmies, and the standardized mtDNA content z-score (mtCNz). We considered a child carrying PP heteroplasmies in the SSC if the fraction of the heteroplasm was higher than that in the sibling. As paired sibbing data was unavailable in the BBC, we considered a child carrying PP heteroplasmies if the fraction of heteroplasm was higher than that in the mother. We then computed the family-adj usted prevalence of PP heteroplasmies accordingly. We standardized mtDNA content in peripheral blood from children in the SSC with adjustment for age at the time of sample collection and the parental mean of mtDNA content, and standardized mtDNA content in cord blood from children in the BBC with adjustment for gestational age and maternal mtDNA content.

Among children whose age information was unavailable (215 siblings in the SSC), we adjusted mtDNA content with the mean age of the respective group.
In the SSC, we used conditional logistic regression to assess the association of ASD with mitochondrial exposures among matched probands and siblings within SSC families:

\[
\logit(\text{ASD}) \sim \text{mitochondrial exposure(s) + strata(family id)}
\]

In the BBC, we employed logistic regression to assess the association of NDD with mitochondrial exposures among unrelated children:

\[
\logit(\text{NDD}) \sim \text{mitochondrial exposure(s) + sex + mtDNA inferred ancestry}
\]

We also performed sex- or race-stratified analyses of mitochondrial exposures in relation to ASD or NDD in the SSC and BBC. The population-attributable risk proportion (PAR)\(^2\) was computed based on the family-adjusted prevalence of PP heteroplasmy among controls and the combined effect estimated from the SSC and BBC using fixed-effect meta-analysis\(^7\). The 95% confidence interval of PAR was estimated based on 1000 bootstrap resamples of families from the SSC as well as mother-child pairs from the BBC. Transmission of mtDNA heteroplasmies in relation to pathogenicity of maternal heteroplasmy was assessed in logistic regression as:

\[
\logit(\text{transmitted}) \sim \text{pathogenicity z score + RNA or OXPHOS + maternal VAF + sex}
\]

Age-dependent changes in pathogenicity of de novo mtDNA heteroplasmies in children was examined in linear regression as:

\[
\text{pathogenicity z score} \sim \text{maternal age groups + RNA or OXPHOS + VAF + sex + (disease status if tested using all samples)}
\]

Among children with ASD in the SSC, we examined the associations of carrying PP heteroplasmy with ASD-related traits by using logistic or linear regression with control for age at the time of sample collection, sex, and mtDNA-inferred ancestry. Paternal and maternal ages at childbirth were further considered as additional covariates in the test of disease status and ASD-related traits (i.e., model 2 in Table 1 and Supplementary Tables 8 and 9). Among children whose paternal or maternal age information was unavailable (5 probands and 215 siblings in the SSC), we imputed data with the mean value of the respective group for covariate adjustment.

Other statistical methods and models used are indicated in the main text. All tests were performed using R (version 3.5.0). The R package survival (version 2.41-3) was used for conditional logistic regression (the cloget function). Box plots were generated using the box-plot function in R. Nominal P values from two-sided tests are reported.

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability

The data on mtDNA heteroplasmies of the SSC generated in this study are provided in the Supplementary data file (Supplementary Data 1). The raw whole-genome sequencing data and phenotype data of the SSC used in this study are available in the SFARI Base (https://base.sfari.org/) under Resource: SSC Whole-genome 2 and Simons Simplex Collection. The related phenotype data of the SSC are also available in NADR database under collections 2042 (https://nda.nih.gov/edit_collection.html?id=2042) and 2068 (https://nda.nih.gov/edit_collection.html?id=2068). The data of the BBC are only available under restricted access due to the informed consent and Institutional Review Board (IRB) guidance of the BBC which is an on-going birth cohort study with study participants still being under follow-up. All the study participants signed informed consent form; and the study protocol and its data and analyses are under the oversight of two IRBs: Johns Hopkins University and Boston Medical Center. Access to the BBC data (including the raw mtDNA sequencing data, the phenotype data used, and the data on mtDNA generated in this study) can be obtained from the corresponding author, Dr. Xiaobin Wang (email: xwang82@jhu.edu), after the data access request and a study proposal related to mtDNA and neurodevelopmental disorders are reviewed and approved by the two IRBs. A download link and access for the BBC data will be provided shortly after approval.

Code availability

The computational pipeline developed to process mtDNA reads and call mtDNA variations in the SSC and BBC are available on GitHub under the repository "stamp toolkit" (https://github.com/mtstamp/stamp).

Received: 26 August 2021; Accepted: 19 May 2022; Published online: 01 July 2022

References

1. Grove, J. et al. Identification of common genetic risk variants for autism spectrum disorder. Nat. Genet. 51, 431–444 (2019).
2. Coe, B. P. et al. Neurodevelopmental disease genes implicated by de novo mutation and copy number variation morbidity. Nat. Genet. 51, 106–116 (2019).
3. Satterstrom, F. K. et al. Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. Cell 180, 568–584.e23 (2020).
4. Issaiov, I. et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature 515, 216–221 (2014).
5. Krumm, N. et al. Excess of rare, inherited truncating mutations in autism. Nat. Genet. 47, 582–588 (2015).
6. Zhou, J. et al. Whole-genome deep-learning analysis identifies contribution of noncoding mutations to autism risk. Nat. Genet. 51, 973–980 (2019).
7. Wallace, D. C. & Chalkia, D. Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease. Cold Spring Harb. Perspect. Biol. 5, a021220 (2013).
8. Floros, V. L. et al. Segregation of mitochondrial DNA heteroplasmy through a developmental genetic bottleneck in human embryos. Nat. Cell Biol. 20, 144–151 (2018).
9. Wei, W. et al. Germline selection shapes human mitochondrial DNA diversity. Science 364, eaau6520 (2019).
10. Zaidi, A. et al. Bottleneck and selection in the germline and maternal age influence transmission of mitochondrial DNA in human pedigrees. Proc. Natl Acad. Sci. USA 116, 25172–25178 (2019).
11. Stewart, J. B. & Chinnery, P. F. The dynamics of mitochondrial DNA heteroplasm: implications for human health and disease. Nat. Rev. Genet. 16, 530–542 (2015).
12. Sharpley, M. S. et al. Heteroplasmy of mouse mtDNA is genetically unstable and results in altered behavior and cognition. Cell 151, 333–343 (2013).
13. Ross, J. M. et al. Germline mitochondrial DNA mutations aggravate ageing and can impair brain development. Nature 501, 412–415 (2013).
14. Yardeni, T. et al. An mtDNA mutant mouse demonstrates that mitochondrial dysfunction can result in complex endophenotypes. Proc. Natl Acad. Sci. USA 118, e2021421918 (2021).
15. Chauhan, A. et al. Brain region-specific deficit in mitochondrial electron transport chain complexes in children with autism. J. Neurochem. 117, 209–220 (2011).
16. Gu, F. et al. Alterations in mitochondrial DNA copy number and the activities of electron transport chain complexes and pyruvate dehydrogenase in the frontal cortex from subjects with autism. Transl. Psychiatry 3, e299 (2013).
17. Giulivi, C. et al. Mitochondrial dysfunction in autism. JAMA 304, 2389–2396 (2010).
18. Rossignol, D. A. & Frye, R. E. Mitochondrial dysfunction in autism spectrum disorders: a systematic review and meta-analysis. Mol. Psychiatry 17, 290–314 (2012).
19. Guevara-Campos, J., González-Guevara, L. & Caulli, O. Autism and intellectual disability associated with mitochondrial disease and hyperlactacidemia. Int. J. Mol. Sci. 16, 3870–3884 (2015).
20. Goldenthal, M. J. et al. Mitochondrial enzyme dysfunction in autism spectrum disorders: a novel biomarker revealed from buccal swab analysis. Biomark. Med. 9, 957–965 (2015).
21. Delhoy, L. et al. Bioenergetic variation is related to autism symptomatology. Metab. Brain Dis. 1–11, https://doi.org/10.1007/s11017-008-0787-0 (2017).
22. Wang, Y., Picard, M. & Gu, Z. Genetic evidence for elevated pathogenicity of mitochondrial DNA heteroplasm in autism spectrum disorder. PLoS Genet. 12, e1006391 (2016).
23. Chalkia, D. et al. Association between mitochondrial DNA haplogroup variation and autism spectrum disorders. JAMA Psychiatry 19104, 1–8 (2017).
24. Valiente-Pallejà, A. et al. Genetic and clinical evidence of mitochondrial dysfunction in autism spectrum disorder and intellectual disability. Hum. Mol. Genet. 0, 1–10 (2018).
25. Chen, S. et al. Elevated mitochondrial DNA copy number in peripheral blood cells is associated with childhood autism. BMC Psychiatry 15, 30 (2015).
26. Fischbach, G. D. & Lord, C. The Simons Simplex Collection: a resource for identification of autism genetic risk factors. Neuron 68, 192–195 (2010).
27. Panjwani, A. A. et al. Maternal obesity/diabetes, plasma branched-chain amino acids, and autism spectrum disorder risk in urban low-income children: evidence of sex difference. Autism Res. 12, 1562–1573 (2019).
28. Li, Y. et al. Association of cord plasma biomarkers of in utero acetaminophen exposure with risk of attention-deficit/hyperactivity disorder and autism spectrum disorder in childhood. JAMA Psychiatry 77, 180–189 (2020).
29. Pearson, C. et al. Boston Birth Cohort Profile: Rationale and Study Design. Proct. Nutr. 1, doi:10.1097/PN.00000000000000811 (2022).
30. Christensen, D. L. et al. Prevalence and characteristics of autism spectrum disorder among children aged 8 years—Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2012. Mmwr. Surveill. Summ. 65, 1–23 (2016).
31. Krueger, G., Yohannes, K. & Abrahm, M. Epidemiology of attention-deficit/ hyperactivity disorder (ADHD) in children and adolescents in Africa: a systematic review and meta-analysis. Ann. Gen. Psychiatry 19, 21 (2020).
32. Polyan, A., Rosenfeld, J. A. & Girirajan, S. An assessment of sex bias in neurodevelopmental disorders. Genome Med. 7, 94 (2015).
33. Guo, X., Wang, Y., Zhang, R. & Gu, Z. STAMP: a multiplex sequencing method for simultaneous evaluation of mitochondrial DNA heteroplasmic and content. NAR Genomics Bioinforma. 2, lqa065 (2020).
34. Rubino, F. et al. HmtDB, a genomic resource for mitochondrion-based human variability studies. Nucleic Acids Res. 40, D1150–D1159 (2012).
35. Kaverina, K. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).
36. Lott, M. T. et al. mtDNA variation and analysis using Mitomap and Mitomaster. Curr. Protoc. Bioinforma. 41, 1.23.1–26 (2013).
37. Xing, J. et al. Mitochondrial DNA content: its genetic heritability and association with renal cell carcinoma. J. Natl Cancr Inst. 100, 1104–1112 (2008).
38. Frye, R. E. et al. Prenatal air pollution influences neurodevelopment and behavior in autism spectrum disorder by modulating mitochondrial physiology. Mol. Psychiatry 26, 1561–1577 (2021).
39. Tan, J., Boskovic, D. & Angeles, D. The energy costs of prematurity and the neonatal intensive care unit (NICU) experience. Antioxidants 7, 37 (2018).
40. Rebolledo-Jaramillo, J. et al. Maternal-age effect and severe germ line bottleneck in the inheritance of human mitochondrial DNA. Proc. Natl Acad. Sci. USA 111, 15474–15479 (2014).
41. Grady, J. P. et al. mtDNA heteroplasy level and copy number indicate disease burden in m.3243A>G mitochondrial disease. EMBO Mol. Med. 10, e8262 (2018).
42. Picard, M. et al. Progressive increase in mtDNA 3243A > G heteroplasmca causes abrupt transcriptional reprogramming. Proc. Natl Acad. Sci. USA 111, E4033–E4042 (2014).
43. Pons, R. et al. Mitochondrial DNA abnormalities and autistic spectrum disorders. J. Pediatr. 144, 81–85 (2004).
44. Verma, A. et al. A novel mitochondrial G8313A mutation associated with prominent initial gastrointestinal symptoms and progressive encephaloneuropathy. Pediatr. Res. 42, 448–454 (1997).
45. Maresca, A., la Morgia, C., Caporalii, L., Valentino, M. L. & Carelli, V. The optic nerve: a mito-window on mitochondrial neurodegeneration. Mol. Cell. Neurosci. 55, 62–76 (2013).
46. Blok, M. J. et al. Mutations in the ND5 subunit of complex I of the mitochondrial optic nerve: a genetic cause of hereditary optic neuropathy. J. Med. Genet. 44, e74 (2007).
47. Landrum, M. J. et al. ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res. 42, D980–D985 (2014).
48. Kennedy, S. R., Salk, J. J., Schmitt, M. W. & Loeb, L. A. Ultra-sensitive genotyping reveals an age-related increase in somatic mitochondrial mutations. Proc. Natl Acad. Sci. USA 112, 2491–2496 (2015).
49. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
50. Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26, 589–595 (2010).
51. Garrison, E. & Marth, G. HaploReg-based variant detection from short-read sequencing. Preprint at https://arxiv.org/abs/1207.3907 (2012).
52. Weissensteiner, H. et al. HaploGrep 2: mitochondrial haplogroup classification in the era of high-throughput sequencing. Nucleic Acids Res. gkw233, https://doi.org/10.1093/nar/gkw23 (2016).
53. Wilfert, A. B. et al. Recent ultra-rare inherited variants implicate new autism candidate risk genes. Nat. Genet. 53, 1125–1134 (2021).
54. Liu, M. et al. The association of maternal obesity and diabetes with autism and other developmental disabilities. Pediatrics 137, e20152206 (2016).
55. Wang, Y., Guo, X., Ye, K., Ortzh, M. & Gu, Z. Accelerated expansion of pathogenic mitochondrial DNA heteroplasmies in Huntington’s disease. Proc. Natl Acad. Sci. USA 118, e2014610118 (2021).
56. Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164 (2010).
57. Kircher, M. et al. A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. 46, 310–315 (2014).
58. Adzhubei, I., Jordan, D. M. & Sunyaev, S. R. Predicting functional effect of human missense mutations using PolyPhen-2. Curr. Protoc. Hum. Genet. 76, 7.20.1–7.20.41 (2013).
59. Li, B. et al. Automated inference of molecular mechanisms of disease from amino acid substitutions. Bioinformatics 25, 2744–2750 (2009).
60. Sonney, S. et al. Predicting the pathogenicity of novel variants in mitochondrial tRNA with MitoTOP. PLoS Comput. Biol. 13, 1–8 (2017).
61. Taylor, J. W. Simple estimation of population attributable risk from case-control studies. Am. J. Epidemiol. 106, 260 (1977).
62. Borenstein, M., Hedges, L. V., Higgins, J. P. T. & Rothstein, H. R. A basic introduction to fixed-effect and random-effects models for meta-analysis. Res. Synth. Methods 1, 97–111 (2010).

Acknowledgements
We are grateful to the participants of the Simons Foundation Autism Research Initiative (SFARI) and the Boston Birth Cohort. This work is supported by the SFARI Pilot Award (ID: 514517; Z.G.). The Boston Birth Cohort is supported in part by the Health Resources and Services Administration (HRSA) of the U.S. Department of Health and Human Services (HHS) under grant number U24MC31074 (X.W.), Autism Single Investigator Innovation Program; and by the National Institutes of Health (NIH) grants: R01HD086013 (X.W.), 2R01HD041702 (X.W.), R01HD098232 (X.W.), R01ES031272 (X.W.), and 1R01ES031521 (X.W.). This information or content and ideas and insights; and X.H., G.W., C.P., B.Z., A.G.C., and K.O.O. provided feedback and critically reviewed the paper.

Author contributions
Y.W., X.W., and Z.G. designed research; X.G. and Z.G. performed experiments; Y.W., X.G., H.W., G.P., and B.Z. contributed new reagents/analytic tools; Y.W. and Z.G. analyzed data; Y.W., X.W., and Z.G. wrote the paper; A.G.C. and K.O.O. contributed ideas and insights; and X.H., G.W., C.P., B.Z., A.G.C., and K.O.O. provided feedback and critically reviewed the paper.

Competing interests
The authors declare no competing interests.
Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-022-30805-7.

Correspondence and requests for materials should be addressed to Xiaobin Wang or Zhenglong Gu.

Peer review information Nature Communications thanks Douglas Wallace and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.