From genotype to phenotype: adaptations of *Pseudomonas aeruginosa* to the cystic fibrosis environment

Laura Camus¹, François Vandenesch¹,²,³ and Karen Moreau¹*

Abstract

Pseudomonas aeruginosa is one of the main microbial species colonizing the lungs of cystic fibrosis patients and is responsible for the decline in respiratory function. Despite the hostile pulmonary environment, *P. aeruginosa* is able to establish chronic infections thanks to its strong adaptive capacity. Various longitudinal studies have attempted to compare the strains of early infection with the adapted strains of chronic infection. Thanks to new ‘-omics’ techniques, convergent genetic mutations, as well as transcriptomic and proteomic dysregulations have been identified. As a consequence of this evolution, the adapted strains of *P. aeruginosa* have particular phenotypes that promote persistent infection.

DATA SUMMARY

Supporting data are available in Table S1, available with the online version of this article.

INTRODUCTION

The ability of *Pseudomonas aeruginosa* to establish a chronic infection in cystic fibrosis (CF) lungs despite a wide range of stress sources highlights its high adaptability. In fact, the high plasticity of the *P. aeruginosa* core and accessory genome allows the bacterium to colonize a wide variety of environments, such as soils, water or abiotic surfaces [1–4]. However, *P. aeruginosa* adaptive processes have been especially described in the context of pulmonary infections. Indeed, the chronicity of *P. aeruginosa* CF lung infections and the difficulty in treating them make it essential to understand the mechanisms of the persistence. Moreover, this chronic infectious disease offers a rare opportunity to study long-term microbial evolution within a human host. The creation of CF centres has facilitated the conservation of the different micro-organisms isolated from CF patient sputa, allowing the constitution of longitudinal isolate banks from numerous subjects. This also contributed to the identification of highly transmissible *P. aeruginosa* strains such as the lineages DK2, AUST-02, LES (Liverpool epidemic strain) and C that are epidemic in Denmark, Australia and the UK, respectively [5].

Thanks to the development of next-generation sequencing methods, many studies have focused on longitudinal genetic adaptation of *P. aeruginosa* to the CF lung environment (Table 1). In 2006, Smith and colleagues were the first to describe a genetic evolution of a clonal lineage of *P. aeruginosa* in *vivo* by sequencing two *P. aeruginosa* strain isolates collected 7.5 years apart from the same patient [6]. Following studies were performed on a broader range of isolates from unique patients [7–12] or on transmissible lineages such as DK2 or AUST-02 [13–15]. Finally, Marvig *et al*. and Klockgether *et al*. combined both approaches to study the genomics of, respectively, 474 and 262 isolates from more than thirty patients [16–18].

By gathering the results of these different longitudinal studies, we aim to provide an updated description of the main genetic adaptations of *P. aeruginosa* to the CF lung environment. In this review, we will also discuss how these alterations affect transcriptomic and proteomic profiles of *P. aeruginosa* thanks to the latest studies performed on clinical CF isolates. Finally, common phenotypes of CF-adapted *P. aeruginosa* will be described.
GENOMIC ADAPTATION OF P. AERUGINOSA

P. aeruginosa genome accumulates mutations during establishment of chronic colonization

Types and frequency of mutational events
Longitudinal genomic studies highlighted that late isolates of P. aeruginosa present numerous genetic modifications in comparison to early isolates. Small mutational events such as SNPs or short insertions and deletions (indels) have been described as the major driver of these modifications. Indeed, the P. aeruginosa genome was shown to accumulate a median of 3 SNPs per year, varying between 0.5 and 14 SNPs per year [6–9, 12, 14–18]. Small indels have also been reported at rates ranging from 0.4 to 2.7 indels per year (0.1 to 0.28 indels per SNP) [12, 14, 17]. These modifications could be observed on both core and accessory genomes of clinical isolates, depending on the use of a reference strain for gene annotation. Indeed, while several studies focused on the annotated genes in PAO1 or PA14 [6, 7, 13, 16, 17], others were able to identify SNPs in clone-specific genes using a related ancestral isolate as a reference [8, 9, 12, 14, 17]. The presence of accessory elements such as genomic islands and prophages could also be predicted in silico [10, 11].

The role of the accessory genome is in fact increasingly considered for understanding P. aeruginosa adaptive processes, due to its plasticity and the richness of its encoded functions [4, 19]. Indeed, the P. aeruginosa pathogenic islands (PAPIs) and several LES prophages were shown to affect diversification processes and important pathoadaptive phenotypes of P. aeruginosa, including its ability to establish in vivo and its antibiotic resistance [20–25]. Such elements can be horizontally transferred between P. aeruginosa or even between different microbial species through mechanisms of phage infection or pilus-mediated conjugation of excised and circularized genomic islands [4, 26–30]. However, acquisition of novel DNA through horizontal gene transfer remains rare [31, 32] and the genome of P. aeruginosa rather tends to shrink during its adaptation in CF lungs. Rau et al. described that the P. aeruginosa DK2 lineage underwent a loss of a mean of 4.2 kbp per year [31]. Deletions of more than 1000 bp have been observed in other lineages (in 10 out of 12 lineages in the study of Klockgether and colleagues), with the size of deleted regions reaching 188 kb [6, 7, 11, 17]. Here again, these deletions were shown to affect both core and accessory genomes, as prophages and genomic islands were shown to be partially or totally lost during P. aeruginosa adaptation to the CF environment [11, 27, 28, 31, 33–35]. Notably, the genomic islands PAPI-1 and the P. aeruginosa genomic island-2 (PAGI-2) were found either excised or impacted by deletions in CF isolates [27, 28]. In contrast, other elements of the accessory genome seem less prone to deletions, as the toxin–antitoxin systems, the clustered regularly interspersed short palindromic repeats (CRISPR) spacers and the genomic island PAGI-1 are well conserved in CF isolates [36–38].

In addition to deletions, the P. aeruginosa genome can undergo important chromosomal rearrangements that often involve accessory mobile elements, such as transposons and integrons [4, 19]. The insertion sequence IS6100 was identified as the main perpetrator of the frequent chromosomal inversions observed in the CF strains from clone C [35, 39]. Besides disrupting the reading frame of neighbouring genes [39], such chromosomal rearrangements can have pleiotropic consequences through modifications of regulatory regions or DNA topology [40]. By assessing the phenotype-genotype relationship of 44 isolates from a single patient, Darch et al. highlighted that the phenotypic diversity observed between CF isolates was mainly due to homologous recombination mechanisms [41]. However, this result and the high recombination rate obtained were then shown to mainly arise from false-positive events. New bio-informatics analyses of the same sequencing data with correcting filters indeed indicated lower recombination rates [42, 43]. These discrepancies emphasize the importance of bio-informatics tools and settings for the identification of recombination events, and more broadly for all genomic comparisons. In that respect, the detection of genetic alterations can be improved by combining second- and third-generation sequencing methods: while second-generation sequencing such as Illumina provides short reads with low error rates, the longer reads generated by third-generation sequencing allow a better detection of recombination events and large chromosomal rearrangements.

Impact Statement
The chronic lung infections caused by Pseudomonas aeruginosa are associated with the deterioration of pulmonary functions and general health of cystic fibrosis (CF) patients. The difficulty of efficiently eradicating this pathogen comes from its ability to evolve towards high-persistence phenotypes through genetic adaptation. Understanding the basis and the determinants of this evolution is, thus, essential for the identification of new strategies to limit lung colonization by P. aeruginosa. The sequencing studies performed on CF isolates have highlighted numerous different evolutionary paths taken by the bacterium, leading to an intense intrapatient and interpatient diversification of P. aeruginosa populations. Fortunately, the identification of convergent patterns of adaptation is now possible thanks to the increasing number of research studies focused on CF isolates worldwide. Previous reviews on the topic often focused on particular aspects of P. aeruginosa adaptation, such as the genome dynamic, diversification processes or metabolism. In the present review, all the different aspects, as well as the latest publications on the topic, have been compiled to provide an updated and broader viewpoint of P. aeruginosa adaptation to the CF environment. This review also highlights convergent adaptation patterns involving intergenic regions, and transcriptomic and proteomic profiles of P. aeruginosa, not fully explored until now.
Hypermutability

The rate of spontaneous mutations can be affected by the genetic background of the strain, and even enhanced by previous mutational events. For instance, the high rates of deletion observed by Rau et al. can be attributed to stochasticity or the presence of missense mutations in the coding sequences of the exonucleases $sbcB$ and $sbcC$ implicated in recombination [31]. In the same way, the well-known hypermutable phenotype of $P. aeruginosa$ arises from genetic alterations of DNA repair systems. Indeed, mutations in $mutS/mutL$ and $uvrD$ genes are commonly observed in CF isolates and induce a significant increase of the mutation rate [44]. Chromosomal inversions were also shown to disrupt the reading frame of $mutS$ and induce hypermutability in clinical strains from the C lineage [39]. Hypermutable isolates, thus, accumulate a mean of 16-fold more mutations, with a median of 48 SNPs per year (range of 2 to more than 350 SNPs per year) [7, 8, 15, 17, 45].

Hypermutability increases the genetic diversity of the $P. aeruginosa$ population in CF lungs, an advantageous feature for adaptability to stressful conditions [8, 14, 16, 17, 46, 47]. Indeed, it has been shown that antibiotic exposure promotes the emergence of hypermutability in $P. aeruginosa$, then favouring acquisition of antibiotic resistance [45, 48–51]. However, Mehta and colleagues also observed that some hypermutable lineages would spontaneously decline and disappear from the evolving population [49]. This phenomenon could be explained by an accumulation of neutral and/or slightly deleterious mutations whose probability is also increased by hypermutability. Moreover, the fitness benefit of hypermutators seems to be restricted to the conditions in which they evolved, as the accumulated hitchhiking mutations can constitute a burden in non-selective conditions [49, 50].

Hypermutability is, thus, a double-edged sword that does not ensure the success of $P. aeruginosa$ adaptation. Indeed, hypermutators rarely dominate the colonizing population and coexist with normo-mutable isolates in CF lungs, potentially through colonization of specific niches [8, 9, 14]. Compensation of the hypermutator phenotype through secondary mutations has also been reported during adaptation to CF environment [8], suggesting an importance of the phenotype at certain stages of evolution. This hypothesis is supported by

Sequencing type	No. of patients	No. of sequenced isolates	Time span of isolate evolution (years)	No. of studied lineages or clone types	Identification of positively selected genes	Reference
Whole-genome	1	2	7.5	1	No	[6]
Gene-targeted	29	58	5–20	ND	No	
Whole-genome	1	45	20	1 (PA14)	No	[7]
	1	63	23	1 (C)	No	
Whole-genome	6*	12*	35 max.*	1 (DK2)*	No	[13]*
Whole-genome	21*	55*	36*	1 (DK2)*	Yes	[14]*
Whole-genome	1	18	32	1 (DK1)	No	[9]
Whole-genome	1	13	6	1	Yes	[8]
	1	14	20	1	No	
Whole-genome	34	474	1–8	53 (36 for PE)	Yes	[16]
Whole-genome	4	26	17–19	6	Yes	[18]
Whole-genome	1	2	6.9	1 (OC4A)	No	[10]
Whole-genome	1	2	3	1	No	[12]
Whole-genome	32 (12 for PE)	262	<15–35	12	Yes	[17]
Whole-genome	13 (6 for PE)	63	3–4	1 (AUST-02)	Yes	[15]
Whole-genome	1	40	8	1	Yes	[11]
Reanalysis of whole-genome sequencing	68	534	ND	44	Yes	[81]

ND, Not determined in the study; PE, parallel evolution.

*Isolates sequenced by Yang et al. were also used in the study by Marvig et al., making the results of these two studies interconnected [13, 14].
the high prevalence of hypermutators in CF cohorts. Since the first estimations by Oliver [44], several studies in European and American cohorts confirmed that a mean of 28% of CF patients were infected by at least one hypermutable isolate of *P. aeruginosa* [44, 52–55]. Finally, despite a high prevalence and an increased ability to develop antibiotic resistance, the impacts of infection by hypermutable *P. aeruginosa* on clinical outcome are unclear. While an association between the presence of hypermutators and the deterioration of lung function was described in English and French cohorts [56, 57], such a result was not confirmed in an Israeli cohort [55]. Moreover, Klockgether and colleagues did not highlight a correlation between annual rate of sequence variation and the severity of the clinical course of German CF patients [17].

Accumulation of mutations relies on selection mechanisms

The accumulation of mutations in the *P. aeruginosa* genome could be the result of genetic drift or neutral selection, during which mutations are stochastically fixed regardless of their impact. However, due to the stressful conditions inherent to the CF lung environment, mutations are actually selected because of their beneficial effect on bacterial fitness. As non-synonymous mutations are more likely to affect protein function and eventually fitness, selective mechanisms can be quantified by the non-synonymous to synonymous mutations ratio (*d*_s/d_s). This ratio can be calculated over different scales—from all coding regions of the pangenome to specific coding regions. Three type of selective mechanisms, thus, can be observed: (i) a *d*_s/d_s value over one testifies to positive selection, (ii) a value under one indicates purifying or negative selection, and (iii) a close to one ratio depicts typical genetic drift.

These three selective mechanisms have been observed for the *P. aeruginosa* genome during adaptation to the CF environment. Several studies have highlighted positive selection mechanisms at the genome scale (*d*_s/d_s of 1.4 and 2) [6, 12], whereas negative selection was observed in others (*d*_s/d_s between 0.33 and 0.79) [7–9, 14]. In fact, selective mechanisms appear to vary according to the colonization time and clinical status of patients, affecting the accumulation of mutations and the composition of the accessory genome. Klockgether and colleagues observed that the *P. aeruginosa* genome presented *d*_s/d_s ratios ranging from 0.39 to 1.66 according to the colonization time, mutability of isolates and the severity of infection [17]. A fluctuation of positive, neutral and negative selections with time was depicted for hypermutable strains causing severe and mild infections, and for normo-mutable isolates from mildly affected patients. Interestingly, only genomes of normo-mutable isolates from patients with severe infection presented a signature of positive selection during almost all the course [17]. A relationship between the severity and the accessory genome was also observed as isolates causing severe and mild infections presented divergent repertoires of accessory genes. Similar observations were previously made for persistent and eradicated CF isolates [17, 32]. In addition, Cramer *et al.* and Markussen *et al.* observed a rapid genetic diversification during the first clades followed by coexistence of more stable sublineages of PA14 and DK1, respectively [7, 9]. Similarly, the DK2 lineage was shown to have accumulated most mutations before 1979 in order to ensure its success in several hosts, after which negative selection was observed [13]. In both studies, late *P. aeruginosa* isolates tended to accumulate fewer mutations than early ones, suggesting modifications of selection mechanisms over the time [7, 9, 11, 13]. Mutations are indeed less likely to improve fitness and, thus, to be fixed once *P. aeruginosa* is adapted to the CF environment. Compensation of the hypermutable phenotype by secondary mutations observed by Feliziani and colleagues [8] supports this notion, as it can rebalance the mutation rate to a regular level after a stage of rapid diversification and adaptation. Finally, several recent research studies on non-CF infections reported that *P. aeruginosa* adaptive mechanisms occur at the very beginning of the colonization, emphasizing the underappreciated role of genetic adaptation in acute infections [51, 58, 59]. Altogether, these results indicate that different modes of selection arise with time, according to infection stage and severity. Thus, we suggest that positive selection first occurs during acute infections, which often severely affect patient clinical status. Thereafter, neutral or negative selection is promoted as *P. aeruginosa* adapts and the infection becomes chronic.

Although general trends of positive or negative selection can be observed for the global genome, it is important to note that selection can vary considerably according to the DNA segment. Thus, genes from the antibiotic resistome can appear positively selected despite negative selection at the genome scale [8, 45]. In contrast, negative selection is particularly depicted in the accessory genome of *P. aeruginosa*, where loss of DNA and accumulation of synonymous SNPs are promoted by mutational hotspots and genomic instability [6, 10, 31, 32, 60, 61]. However, the negative selection in accessory segments compared to the core genome can sometimes be offset by DNA acquisition through horizontal gene transfer, as described in the clones C and PA14 [10, 60]. Finally, the genetic background of *P. aeruginosa* can also influence selection and fixation of mutations in particular genes through epistatic mechanisms. Certain genetic alterations, thus, may be positively selected due to their compensatory effect on former polymorphisms or in a given genetic background, as depicted in several cases. Damkiaer and colleagues observed that a single *rpoD* mutation induced alginate overproduction only in a particular genetic background of the DK2 lineage and, thus, was positively selected [62]. Genic alterations of *mexT* were shown to compensate the effects of *lasR* inactivation, suggesting that positive selection of this mutation may be promoted in *lasR*-negative isolates [63–66]. In the same way, mutations reverting the mutator phenotype might be positively selected only after alteration of the genes from DNA repair systems [8].
Besides colonization time, infection severity and the genetic background of isolates, spatial isolation can affect the dynamics of selection mechanisms. Indeed, it is now well understood that micro-organisms can be subject to highly different selective pressures according to the environment. The heterogeneity of the CF lung ecosystem generates ecological microniches with variable physicochemical and biotic characteristics and, thus, variable selective forces. As a result, a phenomenon of adaptive radiation can be observed during P. aeruginosa adaptation to the CF environment. Divergent evolutionary patterns have indeed been depicted between clonally related isolates that have evolved in sinuses or in lungs [9], and even between clones isolated from different lung regions [67]. In both studies, isolates evolved independently within the different regions, as no phenomenon of convergent evolution could be observed. Instead, genotypic and phenotypic diversification was shown to be driven by the spatial isolation of strains [9, 67]. This diversification leads to the coexistence of numerous clonal lineages in the CF airways, as excellently reviewed by Winstanley and colleagues [46].

In addition to this intra-clonal diversification, the heterogeneity of P. aeruginosa populations is promoted by the coexistence of several lineages within the lungs of CF patients. Thus, from a single sputum sample, different P. aeruginosa lineages are frequently isolated that were independently acquired from the environment or from other CF patients, especially for LES-derived lineages [46, 68, 69]. Williams and colleagues observed that the prevalence of each lineage within a patient was highly dynamic during the course of infection, affecting considerably the diversification processes of P. aeruginosa [69]. On the one hand, the lung colonization by divergent lineages was shown to bring more genetic diversity than the in situ evolution of P. aeruginosa. On the other hand, competition between lineages appeared to select for particular genotypes and, thus, influence the diversification processes of P. aeruginosa. In a CF patient, the replacement of a LES lineage by another, thus, could be associated with an increased frequency of pathoadaptive mutations in the lasR gene [69]. The other way round, one would also expect that the presence of certain genotypes within lungs can either promote or limit superinfection by other P. aeruginosa lineages and, thus, interclonal diversification. This phenomenon can be extended to the colonization by other microbial species, as they have to cope with heterogeneous, adapted and niche-specialized populations of P. aeruginosa.

This genetic and phenotypic diversification of P. aeruginosa raises important issues concerning the sampling and the study of bacterial colonies from CF expectorations: a single colony is not representative of the infecting P. aeruginosa metapopulation [46]. In the case of longitudinal genomic studies, the sequencing of a single strain per time point is an important limitation and provides only a restricted fraction of the different evolutionary paths that the bacterium has taken. This issue obviously feeds through to all genotypic and phenotypic characterizations of CF P. aeruginosa strains, but is increasingly taken into account for sequencing studies and the determination of antibiotic-resistance profiles [34, 45, 68, 69].

CF-adapted P. aeruginosa present pathoadaptive mutations

Coding regions

Despite the diversification processes of P. aeruginosa, the high number of genomic studies (Table 1) performed on sequential isolates allowed the identification of convergent patterns of adaptation. In addition to the d_s/d_i calculation, genes under positive selection were brought out through different approaches: Marvig and colleagues determined genes that accumulated more mutations than what would be predicted if mutations were randomly distributed across the genome [14, 16, 18]. In other studies, thresholds were set to establish lists of genes that were hit by a minimum quantity of independent mutations and/or in a minimum number of lineages [8, 11, 17].

In order to have a global overview of the mutated genes during P. aeruginosa adaptation, the results of 13 longitudinal studies were examined (Table 1). Table 2 provides a list of 48 P. aeruginosa coding regions that have been identified as non-synonymously mutated in at least three of these studies. Different types of mutations, thus, were highlighted (missense, frameshift and stop), but their impacts also rely on their position in the gene. Despite the change of a single amino acid, missense mutations can indeed have drastic consequences on translation efficiency or protein function, especially when they affect important functional domains [6, 17, 63]. Missense mutations were notably predicted to drastically affect the protein function of RpoB and GyrB [17], or even induce total loss-of-function of MexS [6] (Fig. 1).

Nonsense mutations and frameshifts induced by insertions and deletions are predicted as high-impact mutations as they induce a disruption and/or an interruption of translation. Most of the genes described in Table 2 have been shown to accumulate high-impact mutations during P. aeruginosa adaptation during longitudinal studies (Fig. 1). It is especially the case for numerous global regulators, such as mcaA, algU, rpoN and lasR, but also regulators related to antibiotic resistance (nfxB, mexZ) or type III secretion (retS, exsA).

The role of these genes in P. aeruginosa adaptation to the CF environment was confirmed in larger cohorts of clinical isolates, but through a wide variety of mutations. In that respect, 173 unique lasR variants have been detected by gene-targeted sequencing of 2583 CF isolates, with most of them inducing a loss of function [63]. Mutations in mucoid related genes have also been researched in P. aeruginosa isolates from CF patients [70–73]. A recent study in a Brazilian cohort identified 30 new mutations in the algUmucABD operon and confirmed the high frequency of the mcaA22 mutation, inducing a premature stop codon in the mcaA gene [74]. However, it is noteworthy that high-impact mutations do not inevitably induce a complete loss of function. Feltner and colleagues indeed observed a retained LasR activity in 25% of cases despite missense or even nonsense mutations in the lasR
Table 2. *P. aeruginosa* genes identified as non-synonymously mutated in at least three independent longitudinal studies

The characteristics of the 13 studies used for the intragenic regions are listed in Table 1.

Gene name	PAO1 locus	Product	Positive selection	No.	Reference
gyrB	PA0004	DNA gyrase subunit B	Yes	8	[6, 7, 9, 11, 14–16, 18]
pvdS	PA2426	Sigma factor	No	8	[6, 7, 9, 10, 13, 16–18]
mexA	PA0425	RND multidrug efflux membrane fusion protein MexA precursor	No	6	[6, 7, 15–18]
mexY	PA2018	Multidrug efflux protein	No	6	[6–8, 10, 13, 14, 17]
mexZ	PA2020	Transcriptional regulator of multidrug efflux pump	Yes	6	[6, 9, 13, 16–18]
gyrA	PA3168	DNA gyrase subunit A	No	6	[9, 10, 13, 14, 16–18]
ftsI	PA4418	Penicillin-binding protein 3	No	6	[8–10, 13–15, 17]
oprD	PA0958	Basic amino acid, basic peptide and imipenem outer-membrane porin	No	6	[6, 7, 14, 16–18]
migA	PA0705	α-1,6-Rhamnosyltransferase	No	5	[7, 9, 12–15]
algU	PA0762	RNA polymerase sigma factor	Yes	5	[9, 13, 14, 16–18]
lasR	PA1430	Transcriptional regulator of QS	Yes	5	[6, 9, 16–18]
pmrB	PA4777	Two-component regulator system signal sensor kinase	No	5	[7, 10, 11, 13–15]
mucA	PA0763	Anti-sigma factor	Yes	5	[6, 13, 16–18]
algG	PA3545	Alginate-C5-mannuronan-epimerase	No	5	[7, 9, 12, 13, 17]
mexS	PA2491	Probable oxidoreductase	Yes	4	[6, 15–17]
mexT	PA2492	Transcriptional regulator of multidrug efflux pump	No	4	[6, 10, 12, 15]
rpoB	PA4270	DNA-directed RNA polymerase β chain	No	4	[6, 7, 13, 14, 17]
chpA	PA0413	Component of chemotactic signal transduction system	No	4	[7, 10, 11, 17]
wbpM	PA3141	Nucleotide sugar epimerase/dehydratase	No	4	[9, 10, 16, 17]
fasAI	PA4266	Elongation factor G	Yes	4	[8, 9, 12, 17]
rpoN	PA4462	RNA polymerase C-54 factor	Yes	4	[6, 13, 15, 18]
pagL	PA4661	Lipid A 3-O-deacylase	Yes	4	[9, 12, 13, 17]
retS	PA4856	Regulator of exopolysaccharide and type III secretion	No	4	[7, 10, 16, 18]
rpmC	PA4269	DNA-directed RNA polymerase subunit β	No	3	[7, 13, 14, 17]
essA	PA1713	Transcriptional regulator of T3SS	No	3	[6, 7, 12]
ampC	PA4110	β-Lactamase/α-alanine carboxypeptidase	Yes	3	[8, 9, 13, 14]
atsA	PA0183	Aroyl sulfatase	No	3	[7, 10, 13]
pilJ	PA0411	Twitching motility protein	Yes	3	[9, 13, 17]
xdhB	PA1523	Xanthine dehydrogenase	No	3	[7, 8, 10]
dnaX	PA1532	DNA polymerase subunits γ and τ	No	3	[6, 10, 16]
pcoA	PA2065	Copper resistance protein A precursor	No	3	[7, 10, 16]
pvdJ	PA2424	Non-ribosomal peptide synthase, pyoverdine biosynthesis	No	3	[9–11]
clpA	PA2620	ATP-binding protease component	Yes	3	[9, 13, 17]
pelA	PA3064	Glycohydrolase involved in Pel biosynthesis	No	3	[10, 14, 16]
hasR	PA3408	Haem uptake outer-membrane receptor precursor	No	3	[7, 10, 17]

Continued
sequence [63]. Similarly, *P. aeruginosa* strains carrying the nonsense *mucA22* mutation were recently shown to respond highly differently than Δ*mucA* mutants to acidified nitrite conditions [75]. These results highlight the complexity of fully evaluating the consequences of mutations on protein features, even for ones predicted to induce a drastic impact or a loss of protein function. It is particularly the case for global transcriptomic regulators as their alteration, however small, can affect the expression and function of numerous other genes.

Synonymous mutations can also have beneficial or detrimental impacts on fitness through alteration of protein folding, translation efficiency and rate [76, 77]. Adaptive synonymous mutations with an associated gain of fitness have been highlighted during experimental evolution of *Pseudomonas fluorescens* [78, 79]. Thus, it would not be surprising that synonymous mutations also contribute to *P. aeruginosa* adaptation in CF lungs, although their impact is still rarely considered.

Intergenic regions

None of the previous studies assessed whether positive selection also occurred in non-coding regions, although intergenic mutations were identified. Recently, an analogous ratio to \(d_{s}/d_{a}\) was described to assess selective mechanisms occurring in non-coding regions, where \(d_{a}\) is replaced by the number of intergenic SNPs per intergenic site (\(d_{i}\)) [80]. Even though this method has not been used on a *P. aeruginosa* genome yet, the signature of purifying selection was observed for intergenic mutations occurring in non-coding regions, where \(d_{i}\) is replaced by the number of intergenic SNPs per intergenic site (\(d_{i}\)) [80]. Even though this method has not been used on a *P. aeruginosa* genome yet, the signature of purifying selection was observed for intergenic mutations occurring in non-coding regions with great variations in its composition and its organization [4, 19]. As a result, accessory elements present a higher sequence diversity [27, 32, 60, 82], limiting the establishment of convergent evolutionary patterns within the accessory genome. Nonetheless, it needs to be kept in mind that some accessory genes can have homologous functions other than those present in the core genome [4, 19] and, thus, sometimes compensate a mutation in a conserved gene.

Interestingly, some of the adaptive intergenic regions identified have been found to be mutated in other longitudinal studies of which the sequencing data were not used in the analysis by Khademi *et al.* [7, 9, 18], supporting their role in *P. aeruginosa* adaptation. Table 3 presents the 15 adaptive intergenic regions most frequently mutated, i.e. regions that accumulated the highest number of mutations, in the most elevated number of lineages and longitudinal studies. The complete table is shown in Table S1. Mutations in the *phuS/phuR* intergenic region were identified in the largest number of studies and at significant rates. Finally, we notice that mutations occurred in the intergenic region between *ampR* and *ampC*, a gene that was also identified as pathoadaptive (Table 2). Genetic modifications of intergenic regions, thus, appear to also play a role in *P. aeruginosa* adaptation to the CF environment, potentially through the transcriptomic dysregulation of surrounding genes [81].

It is noteworthy that the sequencing results of the 13 longitudinal studies analysed in this review could be connected thanks to the genomic annotations from the reference strains PAO1 or PA14. Thus, Tables 2 and 3 are not representative of the numerous mutations occurring within genes or intergenic regions specific to clinical isolates. Moreover, the accessory genome of *P. aeruginosa* presents very divergent profiles according to the isolates, with great variations in its composition and its organization [4, 19]. As a result, accessory elements present a higher sequence diversity [27, 32, 60, 82], limiting the establishment of convergent evolutionary patterns within the accessory genome. Nonetheless, it needs to be kept in mind that some accessory genes can have homologous functions other than those present in the core genome [4, 19] and, thus, sometimes compensate a mutation in a conserved gene.

Table 2. Continued

Gene name	PAO1 locus	Product	Positive selection	No.	Reference
wspA	PA3708	Chemotaxis transducer	No	3	[10, 16, 17]
PA3728	PA3728	ATPase	Yes	3	[8, 13, 17]
purL	PA3763	Phosphoribosylformylglycinamidine synthase	Yes	3	[8, 13, 17]
bfnS	PA4102	Histidine kinase sensor	No	3	[9, 12, 15]
recC	PA4285	Exodeoxyribonuclease V subunit γ	No	3	[7, 8, 10]
ampD	PA4522	N-Acetyl-2-anhydromuramyl-l-alanine amidase	No	3	[6, 7, 17]
nfsB	PA4600	Transcriptional regulator	Yes	3	[16–18]
phuR	PA4710	Putative haem/hemoglobin uptake outer-membrane receptor	No	3	[7, 15, 17]
cbrA	PA4725	Two-component sensor CbrA	No	3	[10, 11, 17]
cbrB	PA4726	Two-component response regulator CbrB	No	3	[7, 9, 13]
folP	PA4750	Dihydropteroate synthase	No	3	[7, 10, 15]
spoT	PA5338	Guanosine-3',5'-bis(diphosphate) 3'-pyrophosphohydrolase	Yes	3	[9, 13, 17]
PHENOTYPICAL SIGNATURES OF CF-ADAPTED P. AERUGINOSA

P. aeruginosa adapts its expression profiles to the CF environment

Gene expression

The comparison of transcriptomes or proteomes of sequential clinical isolates seems to be the most suitable for assessing impacts of P. aeruginosa adaptation on global expression profiles. Several longitudinal studies indeed performed transcriptional profiling and observed differences of global transcript abundance between early and late isolates [9, 13], but also on specific expressed genes [12, 13, 83–85]. Table 4(a) lists 41 P. aeruginosa genes differentially expressed between early and late CF isolates. Convergent patterns of expression could be identified in vitro in late isolates in comparison to related early isolates, for instance, a down-regulation of genes involved in secretion (Hcp secretion island I), the pseudomonas quinolone signal (PQS) and phenazine biosynthesis. Interestingly, more than a half of dysregulated genes presented in Table 4 have been shown to be part of RpoN, AlgU or LasR regulons, underscoring their significance in P. aeruginosa adaptive mechanisms [86–89].

It is important to remember that gene expression relies highly on growth conditions and that in vitro patterns are not necessarily representative of what happens in vivo. Thanks to the advance of transcriptomic methods, recent studies evaluated P. aeruginosa global gene expression in vivo, i.e. directly on clinical populations within sputum [90–92], ex-planted lungs from CF patients [93], or during non-human infection models [94]. Transcriptomic patterns induced by in vivo conditions are presented in Table 4(b). Comparable transcriptomic dysregulations to those observed for in vitro transcriptomic analyses were depicted for more than a half of the genes listed in Table 4(a, b), including the down-regulation of genes from the Hcp secretion island. Interestingly, these dysregulations seem to be specific to CF clinical isolates. The PAO1 reference strain, not adapted to the CF-environment, was shown to present a very divergent, if not opposite, transcriptomic pattern during in vivo infection. These results were nonetheless obtained using a murine model of acute pneumonia and should be confirmed in a chronic infection context [95] (Table 4c). Altogether, these transcriptomic studies underscored the role of several genes in P. aeruginosa adaptation to the CF environment due to: (i) convergent expression in CF-adapted isolates in comparison to non-adapted ones, (ii) convergent expression in vivo in comparison to in vitro growth, and (iii) specific dysregulations in vivo in comparison to PAO1. Genes meeting these three criteria are highlighted in Table 4.

Protein expression

P. aeruginosa protein expression during CF infections was mainly assessed by evaluating proteomic changes between clinical and reference strains or under certain conditions, as reviewed by Hare and Cordwell and by Kamath et al. [96, 97]. More recently, this approach was used to evaluate proteome responses of a set of clinical isolates cultivated under different conditions of nutrient and oxygen availability [98–100]. Clinical P. aeruginosa isolates presented a distinct proteome profile from PAO1, with convergent expression of many proteins despite a high genomic and phenotypic diversity between isolates. An over-expression of proteins involved in amino acid biosynthesis or drug resistance, with the example of MexY was specifically noted for clinical isolates [98, 99]. Several proteins involved in motility, chemotaxis and adhesion features were also down-regulated, including proteins from the Fli and Pil systems, confirming previous observations [96, 97].

To our knowledge, differences of the global proteome between early and CF-adapted clonal isolates of...
P. aeruginosa, however, have not been assessed yet, limiting the establishment of direct relationships between genetic adaptation to the CF environment and protein expression. Nonetheless, a recent study described the *P. aeruginosa* proteome directly from CF sputum. By comparing protein expression in the *P. aeruginosa* population from 35 samples, Wu and colleagues, thus, were able to identify a convergent pattern of protein expression in vivo [101] (Table 5a). Some of the proteins identified as more abundantly produced by clinical isolates than by PAO1 were found also to be highly produced in vitro, with the example of the chaperone Hfq and the phosphate transporter PtsS (Table 5b) [98, 99, 101–103]. Here again, protein expression pattern appears to largely rely on growth conditions (Table 5b).

Convergent phenotypes are selected by *P. aeruginosa* adaptation

As a result of the diversification of genetic, transcriptomic and proteomic profiles, CF-adapted *P. aeruginosa* can present various phenotypic signatures (Fig. 2) [46, 47, 104]. Although these are often found to be patient dependent [17, 105], similar phenotypes are frequently observed in adapted *P. aeruginosa* isolates, including alterations of metabolism, antibiotic resistance, biofilm and virulence. These phenotypes are associated with chronic infections as they promote bacterial persistence within lungs and have been extensively described [46, 47, 104, 106–108]. Interestingly, an analogous phenotypic diversification could be recently reproduced in vitro by experimental evolution in CF-mimicking conditions. Schick and colleagues observed that the complexity and the viscosity of the synthetic cystic fibrosis sputum medium (SCFM) containing mucin was sufficient to induce several common phenotypes of CF strains, such as antibiotic resistance, biofilm formation, loss of motility and production of virulence factors [109].

Table 3. Selection of *P. aeruginosa* intergenic regions under positive selection

Mutations in intergenic regions were identified as positively selected by Khademi *et al.* [81] and selected for this table according to their number, the number of affected lineages and the number of longitudinal studies highlighting mutations in the same intergenic region. The complete list is shown in Table S1.

Upstream/downstream genes	Upstream/downstream PAO1 locus	Upstream/downstream products	No. of intergenic mutations	No. of lineages	Reference
phuS // **phuR**	PA4709 // PA4710	PhuS/haem/haemoglobin uptake outer-membrane receptor	40	4	[7, 9, 18, 81]
PA0428 // **PA0429**	PA0428 // PA0429	Probable ATP-dependent RNA helicase/hypothetical protein	34	10	[81]
PA4786 // **PA4787**	PA4786 // PA4787	Probable short-chain dehydrogenase/probable transcriptional regulator	28	12	[81]
PA4690.5 // **PA4691**	PA4690.5 // PA4691	16S ribosomal RNA/hypothetical protein	54	6	[81]
PA2535 // **PA2536**	PA2535 // PA2536	Probable oxidoreductase/probabl e phosphatidate cytidylyltransferase	18	6	[7, 81]
motY // **pyrC**	PA3526 // PA3527	Probable outer-membrane protein precursor/dihydroorotase	32	6	[81]
PA3230 // **PA3231**	PA3230 // PA3231	Conserved hypothetical protein/conserved hypothetical protein	24	7	[81]
algL // **algI**	PA3547 // PA3548	Poly(β-D-mannuronate) lyase precursor/alginate O-acetyltransferase	14	6	[7, 81]
PA0976.1 // **PA0977**	PA0976.1 // PA0977	tRNA-Lys/hypothetical protein	26	6	[81]
rplU // **ispB**	PA4568 // PA4569	50S ribosomal protein L21/octaprenyldiphosphate synthase	22	7	[81]
phaZ // **phaA1**	PA4209 // PA4210	Probable phenazine-specific methyltransferase	12	6	[7, 81]
optO // **PA3281**	PA3280 // PA3281	Pyrophosphate-specific outer-membrane porin precursor/hypothetical protein	10	5	[7, 81]
ldh // **PA3419**	PA3418 // PA3419	Leucine dehydrogenase	10	5	[7, 81]
ampR // **ampC**	PA4109 // PA4110	Transcriptional regulator/β-lactamase precursor	12	4	[9, 81]
PA5160.1 // **rntB**	PA5160.1 // PA5161	tRNA-Thr/dTDP-6-glucose 4,6-dehydratase	16	6	[81]

Genes of which the promoter is located in the impacted intergenic region are underlined.
Table 4. *P. aeruginosa* transcriptomic alterations during adaptation to the CF lung environment

Square colour indicates gene expression: up-regulation (red), down-regulation (green), undetermined (light grey), divergent according to studies (dark grey). (a) Gene expression in late isolates in comparison to related early isolates of *P. aeruginosa*. The 41 genes with a convergent pattern identified in at least four isolates were selected [12, 13, 83–85]. (b) Gene expression in clinical CF isolates *in vivo* (CF sputum, explanted lungs or zebra fish infection) in comparison to growth *in vitro* [91–94]. (c) Gene expression in PAO1 *in vivo* (murine infection model of acute pneumonia) in comparison to growth *in vitro* [95].

Gene name	PAO1 locus	Product	(a) Expression in late isolates	(b) Expression in CF isolates *in vivo*	(c) Expression in PAO1 *in vivo*
PA1323	PA1323	Hypothetical protein		Up-regulation	
PA1324	PA1324	Hypothetical protein			
PA1471	PA1471	Hypothetical protein			
PA1559	PA1559	Hypothetical protein			
PA1592	PA1592	Hypothetical protein			
mexX	PA2019	RND multidrug efflux membrane fusion protein			
PA2485	PA2485	Hypothetical protein			
PA3691	PA3691	Hypothetical protein			
lptF	PA3692	Lipotoxin F			
PA3819	PA3819	Conserved hypothetical protein			
osmE	PA4876	Osmotically inducible lipoprotein			
PA4880	PA4880	Probable bacterioferritin			
PA5212	PA5212	Hypothetical protein			
PA0045	PA0045	Hypothetical protein			
PA0046	PA0046	Hypothetical protein			
PA0047	PA0047	Hypothetical protein			
tagQ1	PA0070	TagQ1			
pppA	PA0075	PppA			
tagF1	PA0076	Hcp secretion island I (HSI-I) T6SS			
icmF1	PA0077	Hcp secretion island I (HSI-I) T6SS			
tssL1	PA0078	Hcp secretion island I (HSI-I) T6SS			
tssK1	PA0079	Hcp secretion island I (HSI-I) T6SS			
tssJ1	PA0080	Hcp secretion island I (HSI-I) T6SS			
hcp1	PA0081	Hcp secretion island I (HSI-I) T6SS			
tagJ1	PA0086	Hcp secretion island I (HSI-I) T6SS			
tssE1	PA0087	Hcp secretion island I (HSI-I) T6SS			
tssG1	PA0089	Hcp secretion island I (HSI-I) T6SS			
clpV1	PA0090	ClpV1			
pqsC	PA0098	β-Keto-acyl-acyl-carrier protein synthase			

Continued
Metabolic alterations
The energetic metabolism of *P. aeruginosa* is largely affected by its adaptation to the CF environment. As a consequence of non-synonymous mutations in numerous metabolism-related genes, adapted *P. aeruginosa* strains present a differential and adjusted assimilation of the nutrients present in the CF lung (Fig. 2a) [17, 67, 105, 107, 110]. Auxotrophy or reduction of catabolic capacities are frequently observed and arise from either low or high molecule availability in the CF environment. Amino acid auxotrophy often arises in CF-adapted *P. aeruginosa* due to the high abundance of these molecules in CF sputum [107, 110–112]; in addition, purine auxotrophy can be established in DNA-rich sputa [113]. Development of new metabolic capacities can nonetheless arise through enrichment of the accessory genome in metabolic functions [17, 28, 60]. This adjusted metabolism increases *P. aeruginosa* fitness in the CF environment, but it often results in a slowed growth in laboratory conditions in comparison to non-adapted isolates [7, 8, 12, 13, 18, 107, 110, 114]. This modification of metabolic activities can limit effective detection and treatment of infecting *P. aeruginosa*, as illustrated by the emergence of highly resistant small colony variants (SCVs) and viable but non-culturable (VBNC) isolates [115–117].

Antimicrobial resistance and biofilm
Another feature limiting treatment of *P. aeruginosa* infection is the development of resistance mechanisms to antimicrobials. In comparison to early strains, late *P. aeruginosa* isolates present a greater antibiotic resistance acquired through different mechanisms: (i) alteration of antibiotic transport, (ii) increase of antibiotic degradation, and (iii) alteration of antibiotic targets [118]. The alteration of antibiotic transport is characterized by a decrease of antibiotic input through reduction of porin activities, and in an increase of drug output through modification of the efflux pumps activity. Particularly, *oprD* repression and *mexAB* overexpression, induced by mutations in their own coding sequences or in their regulators, are frequently responsible for β-lactam resistance in CF *P. aeruginosa* (Fig. 2b) [10, 118, 119]. Such resistance can also be promoted by the genome enrichment of accessory genes involved in multidrug secretion. The many transporters constituting the accessory genome of the LES epidemic strain, thus, contribute to its high antibiotic resistance and its epidemiological success [23]. The increase in antibiotic degradation is mainly perpetrated by an overproduction of the cephalosporinase AmpC, induced by mutations in the *ampCD* genes but also in the coding sequencing of their regulator AmpR (Fig. 2b) [118]. Finally, the increase of *P. aeruginosa* multidrug resistance can also involve the alteration of several antibiotic targets, such as the DNA gyrase GyrAB, the penicillin-binding protein FtsI or the lipopolysaccharide (LPS) of the bacterial outer membrane [11, 118, 120, 121] (Fig. 2b). The latter undergoes important alterations of its three components during *P. aeruginosa* adaptation to the CF environment. Mutations in *pmrB*, *migA* and *pagL* are associated with structural modifications of the lipid A part of the LPS, inducing resistance to polymyxins [10–12, 120, 122]. The alteration of MigA and LptF can also affect the synthesis of the core lipopolysaccharide and the transport of the mature LPS, although their impact on antibiotic resistance remains poorly understood [121, 123, 124]. Finally, CF isolates often lack the O-antigen polysaccharide of the LPS due to mutations in *wbp* genes.

Gene name	PAO1 locus	Product	(a) Expression in late isolates	(b) Expression in CF isolates in vivo	(c) Expression in PAO1 in vivo
pqsD	PA0999	Acetyl CoA ACP transacylase			
phnA	PA1001	Phenazine biosynthesis protein			
HisB2	PA1657	Conserved hypothetical protein			
hcnA	PA2193	Hydrogen cyanide synthase			
tse5	PA2684	Cell wall/membrane/envelope biogenesis			
PA3021	PA3021	Hypothetical protein			
PA3729	PA3729	Conserved hypothetical protein			
cytN	PA4133	Cytochrome c oxidase subunit			
PA4317	PA4317	Hypothetical protein			

Table 4. Continued

Genes annotated with an identical letter belong to the same operon.

Genes in bold respond to the following criteria: (i) convergent expression in CF late isolates in comparison to early ones, (ii) convergent expression in vivo in comparison to in vitro growth, and (iii) specific dysregulations in vivo in comparison to PAO1.
resulting in lower virulence and increased tolerance to gentamicin [121, 125].

Besides antibiotics, LPS modifications also affect P. aeruginosa resistance to phages and bacteriocins [120]. In CF-adapted P. aeruginosa, mutations in LPS biosynthesis genes were shown to decrease phage susceptibility by hampering LPS-mediated recognition [120, 126]. In contrast, chronic CF isolates are often more susceptible to the P. aeruginosa-produced bacteriocins, pyocins, due to an improved access to the cell envelope following the structural alterations of the O-antigen [120, 127, 128]. However, pyocin production is also frequently reduced in chronic CF P. aeruginosa [126, 127].

Resistance to antimicrobials is also associated with an increased formation of biofilm. The exopolysaccharide matrix, constituted of varying proportions of Pel, Psl or alginate molecules according to the strain, indeed allows the constitution of a physical and chemical barrier against antimicrobials (Fig. 2d) [129–132]. CF-adapted strains often present an up-regulation of Pel, Psl and/or alginate exopolysaccharides production; hence, increasing biofilm formation, modifying the composition of its matrix and favouring antimicrobial resistance [130]. Pel and Psl overproduction is, thus, responsible for the persistence phenotype of rugose small colony variants (RSCVs) in CF P. aeruginosa [133, 134]. Mucoid isolates, mainly arising from mucA alterations inducing alginate overproduction, are also associated with poorer clinical outcome and greater inflammation [135–138]. Interestingly, mucoid and non-mucoid isolates are often co-isolated from CF patients, due to diversification or reversion of the phenotype through compensatory mutations, in algU for instance (Fig. 2d) [11, 18, 72]. Sessile lifestyle is also promoted by a loss of motility linked to inhibition of pili and flagella synthesis [10, 12, 18]. Alterations of these membrane components, as well as LPS modification and biofilm formation, reduce the induction of the host

Table 5. P. aeruginosa proteomic expression in vivo in comparison to in vitro conditions

Square colour indicates protein expression: up-regulation (red), down-regulation (green), undetermined (light grey). (a) Protein expression in P. aeruginosa populations from CF sputa, in comparison to populations grown in vitro [101]. The 15 proteins identified with a convergent pattern within the most samples were selected. (b) Protein expression in P. aeruginosa CF isolates in comparison to PAO1 determined in vitro in minimal medium M9 [99], rich medium LB [98, 102, 103] or in sputum-like media SCFM [99] or ASMDM (artificial sputum medium with high molecular mass DNA and mucin) [103], for the 15 proteins identified as expressed in vivo. NA, Not available.

Protein name	PAO1 locus	Product	(a) In vivo vs in vitro	(b) In vitro vs PA01			
		Expression in CF sputa	No. of samples with convergent pattern	No. of samples with detected protein	Expression in minimal medium	Expression in rich medium	Expression in sputum-like media
OprD	PA0958	Outer-membrane porin precursor	20	25			
OprH	PA1178	PhoP/Q and low Mg^2+ inducible outer-membrane protein H1 precursor	27	33			
PA1288	PA1288	Probable outer-membrane protein precursor	26	33			
OprI	PA2853	Outer-membrane lipoprotein OprI precursor	26	35			
AlgE	PA3544	Alginate production outer-membrane protein AlgE precursor	20	21			
FumC1	PA4470	Fumarate hydratase	24	30			
PhuR	PA4710	Haem/haemoglobin uptake outer-membrane receptor precursor	22	32			
PA4793	PA4793	Hypothetical protein	23	31			
PA4837	PA4837	Probable outer-membrane protein precursor	28	31			
Hfq	PA4944	Hfq	19	29			
PtsS	PA5369	Phosphate ABC transporter, periplasmic phosphate-binding protein	25	26			
NA	NA	TonB-dependent receptor	24	25			
Icd	PA2623	Isocitrate dehydrogenase	21	30			
RpsB	PA3656	30S ribosomal protein S2	20	28			
RplS	PA3742	50S ribosomal protein L19	23	26			
inflammasome and, thus, efficient bacterial elimination from the lungs [106, 108].

Virulence

In the same way, *P. aeruginosa*-adapted isolates have been shown to secrete fewer virulence factors, which are both immunogenic and costly to produce [10, 18, 108]. Iron plays a pivot role in bacterial virulence and its acquisition is affected during *P. aeruginosa* adaptation to the CF environment. Alteration of pyoverdine siderophore synthesis through mutations in the regulator *pvdS* and the *pvd* genes is often observed, inducing a loss of virulence [125, 139, 140]. In contrast, iron acquisition through haem is promoted in adapted isolates thanks to the up-regulation of Phu and Has systems (Fig. 2a) [139, 141]. Changes in the accessory genome composition also undoubtedly affect *P. aeruginosa* virulence, as chronic or eradicated CF isolates present a different repertoire of accessory functions than virulent ones [17, 32]. Alteration of the genomic islands PAPI-1 and PAPI-2 and the LES phages can greatly lower *P. aeruginosa* virulence [21, 22, 24].

In connection with this, CF isolates from chronic infection strains often lacks the PAPI-2 encoded cytotoxin ExoU. They instead harbour the type III secretion system (T3SS) effector ExoS, which is chromosomally encoded and has less virulent properties than ExoU [142–145]. However, mutations in major virulence and quorum-sensing (QS) regulators, such as retS, exsA or lasR, are the main perpetrators of the low-virulence state of chronic *P. aeruginosa* (Fig. 2c).

QS rewiring and modification of microbial interactions

The alterations of QS systems suggest that *P. aeruginosa* adaptation goes along with a reduction of social behaviours. This hypothesis is supported by the high frequency of lasR mutations that are also acquired during *in vitro* evolution of *P. aeruginosa* [146, 147]. On the one hand, the emergence of lasR-mutant social cheaters within the bacterial population suggest a loss of intra-species cooperative behaviours as these mutants will benefit from extracellular factors produced by other members without paying the energy cost [148–150]. However, this also indicates that QS activities
and social behaviours need to be considered at the whole population scale. On the other hand, several recent studies depicted that lasR mutants isolated from CF infections retained an active QS through a lasR-independent induction of the Rhl system. This phenomenon was often related to compensatory mutations in the pathoadaptive mexT gene [63–66], and not by alteration of rhl genes. The latter are indeed rarely mutated during P. aeruginosa evolution within CF lungs, underscoring the importance of maintaining a functional Rhl system during chronic infections. Instead of a loss of QS, P. aeruginosa adaptation to the CF lung rather induces a rewiring of QS networks for the benefit of a Rhl-mediated social behaviour within the bacterial population. Furthermore, the intra-species interactions of P. aeruginosa do not seem to involve pyocins anymore, since both pyocin resistance and production are frequently reduced in chronic isolates [120, 126, 127]. However, pyocins and many of the QS-regulated factors also play a critical role in interspecies interactions, such as the type VI secretion system (T6SS) and pyocyanin (Fig. 2c) [151–155]. And indeed, an increasing number of studies highlight an evolution of P. aeruginosa interactions with other co-colonizing microorganisms in the CF environment [155–160].

CONCLUDING REMARKS AND FUTURE PERSPECTIVES

The numerous sequencing studies performed on clinical isolates allowed the description of the main genetic mechanisms of P. aeruginosa adaptation to the CF environment. This adaptation mainly relies on the accumulation and the selection of small mutations in pathoadaptive genes. For the first time, this phenomenon was recently shown to occur within intergenic regions as well. As these non-coding elements were rarely taken into account in genomic studies, reanalyses of the vast amount of sequencing data already available should allow a better examination of their role in the P. aeruginosa adaptation process. At the same time, the ambiguous impact of recombination and large chromosomal rearrangements on pathoadaptation could be clarified by combining second- and third-generation sequencing methods to assemble complete genomes.

Alteration of pathoadaptive elements allows the establishment of persistence phenotypes in P. aeruginosa, such as high antibiotic resistance through an increased efficiency of antimicrobial efflux, an enhanced ability to form biofilm and a slowed metabolism. In addition, the low-virulence state of CF-adapted P. aeruginosa limits the proper functioning of the host immune responses. However, the precise relationship between these phenotypes and the P. aeruginosa genotype remains difficult to evaluate, especially due to the intense diversification occurring during adaptation and the pleiotropic effects of most mutations. The study of several isolates per time point throughout longitudinal studies would allow a better overview of the different evolutionary paths taken by the bacterium within CF lungs. Assessing the changes in gene and protein expressions during P. aeruginosa adaptation thanks to -omics methods can also address some of these issues, with particular attention to the expression conditions. Transcriptional and proteomic studies in vivo or in CF-like conditions, thus, appears essential to gain more insight in the physiological adaptation of P. aeruginosa to the CF environment.

The description of P. aeruginosa adaptive process ensures a better understanding of the selection forces that drive its evolution within the CF lung. While some of them are already known, such as antibiotic and oxidative stresses, other selective pressures remain little explored. Due to the polymicrobial nature of CF infections, the role of other microbial communities in P. aeruginosa adaptive mechanisms deserves more consideration. The activities of native or co-colonizing microorganisms can deeply affect the environment characteristics, such as the distribution and availability of nutrients, iron or antimicrobial molecules. Moreover, a range of microbial interactions can either limit or promote P. aeruginosa persistence and, thus, adaptation within CF lung infections [156–158, 160–162]. In line with this, the presence of Staphylococcus aureus has been shown to promote P. aeruginosa colonization [163], whereas the latter was negatively associated with infection by other pathogens such as Burkholderia cepacia and Stenotrophomonas maltophilia [164]. Besides pathogens, the role of the normal lung microbiota is increasingly considered since commensal anaerobes have been shown to impact the antibiotic resistance and virulence of P. aeruginosa [161, 162]. Thus, the presence of these microorganisms may influence establishment and adaptation of P. aeruginosa in the CF environment. Ultimately, the comprehensive understanding of this adaptation appears pivotal to limit the establishment of chronic P. aeruginosa infections.

Funding information
This work was supported by grants from the Fondation pour la Recherche Médicale (grant number EC020170637499 to L. C.), the Finovi foundation (to K. M.), and the associations ‘Vaincre la mucoviscidose’ and ‘Gregory Lemarchal’ to (K. M.).

Author contributions
K. M. and L. C. were primarily responsible for writing the original draft. K. M., L. C. and F. V. contributed to the review and editing of the final version.

Conflicts of interest
The authors declare that there are no conflicts of interest.

References
1. Moradali MF, Ghods S, Rehm BHA. Pseudomonas aeruginosa lifestyle: a paradigm for adaptation, survival, and persistence. Front Cell Infect Microbiol 2017;7:39.
2. Elabed H, González-Tortuero E, Ibacache-Quiroga C, Bakhrouf A, Johnston P et al. Seawater salt-trapped Pseudomonas aeruginosa survives for years and gets primed for salinity tolerance. BMC Microbiol 2019;19:142.
3. Lewenza S, Abboud J, Poon K, Kobryn M, Humplik I et al. Pseudomonas aeruginosa displays a dormancy phenotype during long-term survival in water. PLoS One 2018;13:e0198384.
4. Kung VL, Ozer EA, Hauser AR. The accessory genome of Pseudomonas aeruginosa. Microbiol Mol Biol Rev 2010;74:621–641.
5. Perkins MD, Somayaji R, Waters VJ. Epidemiology, biology, and impact of clonal Pseudomonas aeruginosa infections in cystic fibrosis. Clin Microbiol Rev 2018;31:e00019-18.

6. Smith EE, Buckley DG, Wu Z, Saenphimma Ch, Hoffman LR et al. Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc Natl Acad Sci USA 2006;103:8487–8492.

7. Cramer N, Klockgether J, Wrzesanek K, Schmidt M, Davenport CF et al. Microevolution of the major common Pseudomonas aeruginosa clones C and PA14 in cystic fibrosis lungs. Environ Microbiol 2011;13:1690–1704.

8. Feliziani S, Marvig RL, Luján AM, Moyano AJ, Di Rienzo JA et al. Coexistence and within-host evolution of diversified lineages of hypermutable Pseudomonas aeruginosa in long-term cystic fibrosis infections. PLoS Genet 2014;10:e1004651.

9. Markussen T, Marvig RL, Gómez-Lozano M, Aanaes K, Burleigh AE et al. Environmental heterogeneity drives within-host diversification and evolution of Pseudomonas aeruginosa. mBio 2014;5:e01592-14.

10. Bianconi I, Jeukens J, Freschi L, Alcalá-Franco B, Facchini M et al. Comparative genomics and biological characterization of sequential Pseudomonas aeruginosa isolates from persistent airways infection. BMC Genomics 2015;16:1185.

11. Bianconi I, D’Arcangelo S, Esposito A, Benedet M, Piffer E et al. Persistence and microevolution of Pseudomonas aeruginosa in the cystic fibrosis lung: a single-patient longitudinal genomic study. Front Microbiol 2018;9:3924.

12. van Mansfeld R, de Been M, Paganelli F, Yang L, Bonten M et al. Within-host evolution of the Dutch high-prevalent Pseudomonas aeruginosa clone ST406 during chronic colonization of a patient with cystic fibrosis. PLoS One 2016;11:e0158106.

13. Yang L, Jelsbak L, Marvig RL, Damkiaer S, Workman CT et al. Evolutionary dynamics of bacteria in a human host environment. Proc Natl Acad Sci USA 2011;108:7481–7486.

14. Marvig RL, Johansen HK, Molin S, Jelsbak L. Genome analysis of a transmissible lineage of Pseudomonas aeruginosa reveals pathoadaptive mutations and distinct evolutionary paths of hypermutators. PLoS Genet 2013;9:e1003741.

15. Wei BA, Tai AS, Sherrard LJ, Ben Zakour NL, Hanks KR et al. Whole genome sequencing reveals the emergence of a Pseudomonas aeruginosa shared strain sub-lineage among patients treated within a single cystic fibrosis centre. BMC Genomics 2018;19:644.

16. Marvig RL, Sommer LM, Molin S, Johansen HK. Convergent evolution and adaptation of Pseudomonas aeruginosa within patients with cystic fibrosis. Nat Genet 2015;47:57–64.

17. Klockgether J, Cramer N, Fischer S, Wiehlmann L, Tümmler B. Long-term microevolution of Pseudomonas aeruginosa differs between mildly and severely affected cystic fibrosis lungs. Am J Respir Cell Mol Biol 2018;59:246–256.

18. Marvig RL, Dolce D, Sommer LM, Petersen B, Ciofu O et al. Within-host microevolution of Pseudomonas aeruginosa in Italian cystic fibrosis patients. BMC Microbiol 2015;15:218.

19. Qiu X, Kulasekara BR, Lory S. Role of horizontal gene transfer in the evolution of Pseudomonas aeruginosa virulence. Genome Dyn 2009;6:126–139.

20. Brockhurst MA, Buckling A, Rainey PB. The effect of a bacteriophage on diversification of the opportunistic bacterial pathogen, Pseudomonas aeruginosa. Proc Biol Sci 2005;272:1385–1391.

21. Winstanley C, Langille MGI, Fothergill JL, Kukavica-Ibrulj J, Paradis-Bleau C et al. Newly introduced genomic proche islands are critical determinants of in vivo competitiveness in the Liver-pool epidemic strain of Pseudomonas aeruginosa. Genome Res 2009;19:12–23.

22. Harrison EM, Carter MEK, Luck S, Ou H-Y, He X et al. Pathogenicity islands PAPI-1 and PAPI-2 contribute individually and synergistically to the virulence of Pseudomonas aeruginosa strain PA14. Infect Immun 2010;78:1437–1446.

23. Dettman JR, Rodrigue N, Aaron SD, Kassen R. Evolutionary genomics of epidemic and nontropical strains of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 2013;110:21065–21070.

24. Lemiux A-A, Jeukens J, Kukavica-Ibrulj J, Fothergill JL, Boyle B et al. Genes required for free phage production are essential for Pseudomonas aeruginosa chronic lung infections. J Infect Dis 2016;213:395–402.

25. Subedi D, Vijay AK, Kohli GS, Rice SA, Willcox M. Comparative genomics of clinical strains of Pseudomonas aeruginosa strains isolated from different geographic sites. Sci Rep 2018;8:15668.

26. Qi X, Gurkar AU, Lory S. Interstrain transfer of the large pathogenicity island (PAPI-1) of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 2006;103:19830–19835.

27. Klockgether J, Würdemann D, Reva O, Wiehlmann L, Tümmler B. Diversity of the abundant pK1K102/PAGI-2 family of genomic islands in Pseudomonas aeruginosa. J Bacteriol 2007;189:2443–2459.

28. Mathe K, Naraismihan G, Valdes C, Qi X, Matewish JM et al. Dynamics of Pseudomonas aeruginosa genome evolution. Proc Natl Acad Sci USA 2008;105:3100–3105.

29. Carter MQ, Chen J, Lory S. The Pseudomonas aeruginosa pathogenicity island PAPI-1 is transferred via a novel type IV pilus. J Bacteriol 2010;192:3249–3258.

30. James CE, Fothergill JL, Kalwij H, Hall AJ, Cottell J et al. Differential infection properties of three inducible prophages from an epidemic strain of Pseudomonas aeruginosa. BMC Microbiol 2012;12:216.

31. Rau MH, Marvig RL, Ehrlich GD, Molin S, Jelsbak L. Detection and acquisition of genomic content during early stage adaptation of Pseudomonas aeruginosa to a human host environment. Environ Microbiol 2012;14:2200–2211.

32. Beuzit OKI, Klockgether J, Elsen S, Attree I, Davenport CF et al. Intraclonal genome diversity of Pseudomonas aeruginosa clones CHA and TB. BMC Genomics 2013;14:416.

33. Sharma P, Gupta SK, Rolain J-M. Whole genome sequencing of bacteria in cystic fibrosis as a model for bacterial genome adaptation and evolution. Expert Rev Anti Infect Ther 2014;12:343–355.

34. Fothergill JL, Mowat E, Ledson MJ, Wallis MV, Winstanley C. Fluctuations in phenotypes and genotypes within populations of Pseudomonas aeruginosa in the cystic fibrosis lung during pulmonary exacerbations. J Med Microbiol 2010;59:472–481.

35. Römling U, Schmidt KD, Tümmler B. Large genome rearrangements discovered by the detailed analysis of 21 Pseudomonas aeruginosa clone C isolates found in environment and disease habitats. J Mol Biol 1997;271:386–404.

36. Harmer C, Alnassafi K, Hu H, Etikins M, Bye P et al. Modulation of gene expression by Pseudomonas aeruginosa during chronic infection in the adult cystic fibrosis lung. Microbiology 2013;159:2354–2363.

37. Andersen SB, Gholu M, Griffin AS, Petersen B, Johansen HK et al. Diversity, prevalence, and longitudinal occurrence of type II toxin-antitoxin systems of Pseudomonas aeruginosa infecting cystic fibrosis lungs. Front Microbiol 2017;8:1180.

38. England WE, Kim T, Whitaker RJ. Metapopulation structure of CRISPR-Cas immunity in Pseudomonas aeruginosa and its viruses. mSystems 2018;3:e00075-18.

39. Kresse AU, Dinesh SD, Larbig K, Römling U. Impact of large chromosomal inversions on the adaptation and evolution of Pseudomonas aeruginosa chronically colonizing cystic fibrosis lungs. Mol Microbiol 2003;47:145–158.

40. Dorman CJ, Bogue MM. The interplay between DNA topology and accessory factors in site-specific recombination in bacteria and their bacteriophages. Sci Prog 2016;99:420–437.

41. Darch SE, McNally A, Harrison F, Corander J, Barr HL et al. Recombination is a key driver of genomic and phenotypic diversity in a Pseudomonas aeruginosa population during cystic fibrosis infection. Sci Rep 2015;5:7649.
42. Williams D, Paterson S, Brockhurst MA, Winstanley C. Refined analyses suggest that recombination is a minor source of genomic diversity in *Pseudomonas aeruginosa* chronic cystic fibrosis infections. *Microb Genom* 2016;2:e000051.

43. Darch SE, McNally A, Corander J, Diggle SP. Response to ‘Refined analyses suggest that recombination is a minor source of genomic diversity in *Pseudomonas aeruginosa* chronic cystic fibrosis infections’ by Williams et al. (2016). *Microb Genom* 2016;2:e000054.

44. Oliver A. Mutators in cystic fibrosis chronic lung infection: prevalence, mechanisms, and consequences for antimicrobial therapy. *Int J Med Microbiol* 2020;300:563–572.

45. Colque CA, Albarraín Orio AG, Feliziani S, Marvig RL, Tobraes AR et al. Hypermutator *Pseudomonas aeruginosa* exploits multiple genetic pathways to develop multidrug resistance during long-term infections in the airways of cystic fibrosis patients. *Antimicrob Agents Chemother* 2020;64:e02142-19.

46. Winstanley C, O’Brien S, Brockhurst MA. *Pseudomonas aeruginosa* evolutionary adaptation and diversification in cystic fibrosis chronic lung infections. *Trends Microbiol* 2016;24:327–337.

47.Clark ST, Gottman DS, Hwang DM. Diversification of *Pseudomonas aeruginosa* within the cystic fibrosis lung and its effects on antibiotic resistance. *FEMS Microbiol Lett* 2018;365:fny026.

48. Davies EV, James CE, Brockhurst MA, Winstanley C. Evolutionary diversification of *Pseudomonas aeruginosa* in an artificial sputum model. *BMC Microbiol* 2017;17:3.

49. Mehta HH, Prater AG, Beaboot K, Elworth RAL, Karavis M. The essential role of hypermutation in rapid adaptation to antibiotic stress. *Antimicrob Agents Chemother* 2019;63:e00744-19.

50. Cabot G, Zamorano L, Moya B, Juán C, Navas A et al. Evolution of *Pseudomonas aeruginosa* antimicrobial resistance and fitness under low and high mutation rates. *Antimicrob Agents Chemother* 2016;60:1767–1778.

51. Khil PP, Dulanto Chiang A, Ho J, Youn J-H, Lemon JK et al. Dynamic emergence of mismatch repair deficiency facilitates rapid evolution of ceftazidime-avibactam resistance in *Pseudomonas aeruginosa* acute infection. *mBio* 2019;10:e01822-19.

52. Hall LMC, Henderson-Begg SK. Hypermutable bacteria isolated from humans—a critical analysis. *Microbiology* 2006;152:2505–2514.

53. Oliver A, Mena A. Bacterial hypermutation in cystic fibrosis, not only for antibiotic resistance. *Clin Microbiol Infect* 2010;16:798–808.

54. Rees VE, Deveson Lucas DS, López-Causapé C, Huang Y, Kotsimbos T. Characterization of hypermutator *Pseudomonas aeruginosa* isolates from patients with cystic osis in Australia. *Antimicrob Agents Chemother* 2019;63:e02538-18.

55. Auerbach A, Kerem E, Assous MV, Picard E, Bar-Meir M. Is infection with hypermutable *Pseudomonas aeruginosa* clinically significant? *J Cyst Fibros* 2015;14:347–352.

56. Waine DJ, Honeybourne D, Smith EG, Whitehouse JL, Dowson CG. Association between hypermutator phenotype, clinical variables, mucoid phenotype, and antimicrobial resistance in *Pseudomonas aeruginosa*. *J Clin Microbiol* 2008;46:3491–3493.

57. Ferroni A, Guillomet D, Moumille K, Bernede C, Le Bourgeois M et al. Effect of mutator *Pseudomonas aeruginosa* on antibiotic resistance acquisition and respiratory function in cystic fibrosis. *Pediatr Pulmonol* 2009;44:820–825.

58. Wang K, Chen Y-Q, Salido MM, Kohli GS, Kong J-L et al. The rapid in vivo evolution of *Pseudomonas aeruginosa* in ventilator-associated pneumonia patients leads to attenuated virulence. *Open Biol* 2017;7:170029.

59. Persyn E, Sassi M, Aubry M, Broly M, Delanou S et al. Rapid genetic and phenotypic changes in *Pseudomonas aeruginosa* clinical strains during ventilator-associated pneumonia. *Sci Rep* 2019;9:6720.

60. Fischer S, Klockgether J, Morán Losada S, Chouvarine P, Cramer N et al. Intragenomic genome diversity of the major *Pseudomonas aeruginosa* clones C and PA14. *Environ Microbiol Rep* 2016;8:227–234.

61. Wielhörm L, Wagner G, Cramer N, Siebert B, Gudowius P et al. Population structure of *Pseudomonas aeruginosa*. *Proc Natl Acad Sci USA* 2007;104:8101–8106.

62. Damkiae S, Yang L, Molin S, Jelsbak L. Evolutionary remodeling of global regulatory networks during long-term bacterial adaptation to human hosts. *Proc Natl Acad Sci USA* 2013;110:7766–7771.

63. Feltner JB, Wolter DJ, Pope CE, Groleau M-C, Smalley NE et al. LasR variant cystic fibrosis isolates reveal an adaptable quorum-sensing hierarchy in *Pseudomonas aeruginosa*. *mBio* 2017;8:e01513-16.

64. Chen R, Désiel E, Groleau M-C, Schaefer AL, Greenberg EP. Social cheating in a *Pseudomonas aeruginosa* quorum-sensing variant. *Proc Natl Acad Sci USA* 2019;116:7021–7026.

65. Kostylev M, Kim DY, Smalley NE, Salukhe I, Greenberg EP et al. Evolution of the *Pseudomonas aeruginosa* quorum-sensing hierarchy. *Proc Natl Acad Sci USA* 2019;116:7027–7032.

66. Cruz RL, Asfahl KL, Van den Bossche S, Coenye T, Crabbé A. RhlR-regulated acyl-homoserine lactone quorum sensing in a cystic fibrosis isolate of *Pseudomonas aeruginosa*. *mBio* 2020;11:e00532-20.

67. Jorth P, Staudinger BJ, Wu X, Hisert KB, Hayden H et al. Regional isolation drives bacterial diversification within cystic fibrosis lungs. *Cell Host Microbe* 2015;18:307–319.

68. Williams D, Evans B, Haldenby S, Walsh MA, Brockhurst MA et al. Divergent, coexisting *Pseudomonas aeruginosa* lineages in chronic cystic fibrosis lung infections. *Am J Respir Crit Care Med* 2015;191:775–785.

69. Williams D, Fothergill JL, Evans B, Caples J, Haldenby S et al. Transmission and lineage displacement drive rapid population genomic flux in cystic fibrosis airway infections of a *Pseudomonas aeruginosa* epidemic strain. *Microb Genom* 2018;4:000167.

70. Anthony M, Rose B, Pegler MB, Elkins M, Service H et al. Genetic analysis of *Pseudomonas aeruginosa* isolates from the sputa of Australian adult cystic fibrosis patients. *J Clin Microbiol* 2002;40:2772–2778.

71. Bragonzi A, Wielhörm L, Klockgether J, Cramer N, Worlitzsch D et al. Sequence diversity of the *mucABD* locus in *Pseudomonas aeruginosa* isolates from patients with cystic fibrosis. *Microbiology* 2006;152:3261–3269.

72. Ciouf O, Lee B, Johannesson N, Hermansen NO, Meyer P et al. Transmission and lineage displacement drive rapid population genomic flux in cystic fibrosis airway infections of a *Pseudomonas aeruginosa* epidemic strain. *Microbiology* 2008;154:103–113.

73. Pulcrano G, Iula DV, Raia V, Rossano F, Catania MR. Different mutations in *mcuA* gene of *Pseudomonas aeruginosa* mucoid strains in cystic fibrosis patients and their effect on mcuG gene expression. *New Microbiol* 2012;35:295–305.

74. Candido Caçador N, Paulino da Costa Capizzani C, Gomes Monteiro Marin Torres LA, Galetti R, Ciouf O et al. Adaptation of *Pseudomonas aeruginosa* to the chronic phenotype by mutations in the *algT* locus of *Pseudomonas aeruginosa* in *algT* operon in isolates from Brazilian cystic fibrosis patients. *PLoS One* 2018;13:e0208013.

75. Panmanee W, Su S, Schurr MJ, Lau GW, Zhu X et al. The anti-sigma factor MucA of *Pseudomonas aeruginosa*: dramatic differences of a mucA22 vs. a ΔmucA mutant in anaerobic acidified nitrite sensitivity of planktonic and biofilm bacteria in vitro and during chronic murine lung infection. *PLoS One* 2019;14:e0216401.

76. Brule CE, Grayhack EJ. Synonymous codons: choose wisely for expression. *Trends Genet* 2017;33:283–297.

77. Kristofich J, Morgenthaler AB, Kinney WR, Ebmeier CC, Snyder DJ et al. Synonymous mutations make dramatic contributions to fitness when growth is limited by a weak-link enzyme. *PLoS Genet* 2018;14:e1007615.
78. Bailey SF, Hinz A, Kassen R. Adaptive synonymous mutations in an experimentally evolved Pseudomonas fluorescens population. Nat Commun 2014;5:4076.

79. Lebeuf-Taylor E, McCluskey N, Bailey SF, Hinz A, Kassen R. The distribution of fitness effects among synonymous mutations in a gene under directional selection. Elife 2019;8:e45952.

80. Thorpe HA, Bayliss SC, Hurst LD, Feil EJ. Comparative analyses of selection operating on nontranscribed intergenic regions of diverse bacterial species. Genetics 2017;206:363–376.

81. Khademi SMH, Sazinas P, Jelsbak L. Within-host adaptation mediated by intergenic evolution in Pseudomonas aeruginosa. Genome Biol Evol 2019;11:1385–1397.

82. Ernst RK, D’Argenio DA, Ichikawa J, Bangera MG, Selgrade SE et al. Genomic mosaic organization is conserved in unique Pseudomonas aeruginosa isolates from the airways of young children with cystic fibrosis. Environ Microbiol 2003;5:1341–1349.

83. Huse HK, Kwon T, Zlosnik JEA, Speert DP, Marcotte EM et al. Parallel evolution in Pseudomonas aeruginosa over 39,000 generations in vivo. mBio 2010;1:e00199-10.

84. Rau MH, Hansen SK, Johansen HK, Thomsen LE, Workman CT et al. Early adaptive developments of Pseudomonas aeruginosa after the transition from life in the environment to persistent colonization in the airways of human cystic fibrosis hosts. Environ Microbiol 2012;14:1643–1658.

85. Michel S, Schuster M, Lostroh CP, Ogi T, Greenberg EP. Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J Bacteriol 2003;185:2066–2079.

86. Wagner VE, Bushnell D, Passador L, Brooks AI, Iglewski BH. Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulators: effects of growth phase and environment. J Bacteriol 2003;185:2080–2095.

87. Damron FH, Owings JP, Okkotsu Y, Varga JJ, Schurr JR et al. Analysis of the Pseudomonas aeruginosa region controlled by the sensor kinase KinB and sigma factor RpoN. J Bacteriol 2012;194:1317–1330.

88. Schultz A, Stiek S. Early pulmonary inflammation and lung damage in children with cystic fibrosis: early inflammation and lung damage in CF. Respir Res 2015;20:569–578.

89. Gifford AH, Willger SD, Dolben EL, Moulton LA, Dorman DB et al. Use of a multiplex transcript method for analysis of Pseudomonas aeruginosa gene expression profiles in the cystic fibrosis lung. Infect Immun 2016;84:2995–3006.

90. Rossi E, Falcone M, Molin S, Johansen HK. High-resolution in situ transcriptomics of Pseudomonas aeruginosa unveils geno-type independent patho-phenotypes in cystic fibrosis lungs. Nat Commun 2018;9:3459.

91. Cornforth DM, Dees JL, Ibberson CB, Huse HK, Mathiesen IH et al. Pseudomonas aeruginosa transcriptome during human infection. Proc Natl Acad Sci USA 2018;115:E5125–E5134.

92. Kordes A, Preusse M, Willger SD, Braubach P, Jonigk D et al. Genetically diverse Pseudomonas aeruginosa populations display similar transcriptomic profiles in a cystic fibrosis explanted lung. Nat Commun 2019;10:3397.

93. Kumar SS, Tandberg J, Peneyesan A, Elbourne LDH, Suarez-Bosche N et al. Dual transcriptomics of host-pathogen interaction of cystic fibrosis isolate Pseudomonas aeruginosa PAS51 with zebrafish. Front Cell Infect Microbiol 2018;8:406.

94. Damron FH, Ogleby-Sherrouse AG, Wilks A, Barbier M. Dual-seq transcriptomics reveals the battle for iron during Pseudomonas aeruginosa acute murine pneumonia. Sci Rep 2016;16:39172.

95. Hare NJ, Cordwell SJ. Proteomics of bacterial pathogens: Pseudomonas aeruginosa infections in cystic fibrosis - a case study. Proteomics Clin Appl 2010;4:228–248.

96. Kemith KS, Kumar SS, Kaur J, Venkatakrishnan V, Paulsen IT et al. Proteomics of hosts and pathogens in cystic fibrosis. Proteomics Clin Appl 2015;9:134–146.

97. Penesyan A, Kumar SS, Kemith K, Shathili AM, Venkatakrishnan V et al. Genetically and phenotypically distinct Pseudomonas aeruginosa cystic fibrosis isolates share a core proteomic signature. PLoS One 2015;10:e0138527.

98. Kemith KS, Pascovici D, Penesyan A, Goel A, Venkatakrishnan V et al. Pseudomonas aeruginosa cell membrane protein expression from phenotypically diverse cystic fibrosis isolates demonstrates host-specific adaptations. J Proteome Res 2016;15:2152–2163.

99. Kemith KS, Krisp C, Chick J, Pascovici D, Gygi SP et al. Pseudomonas aeruginosa proteome under hypooxic stress conditions mimicking the cystic fibrosis lung. J Proteome Res 2017;16:3917–3928.

100. Wu X, Siehnel RJ, Garudathri J, Staudinger BJ, Hisert KB et al. In vivo proteome of Pseudomonas aeruginosa in airways of cystic fibrosis patients. J Proteome Res 2019;18:2601–2612.

101. Hare NJ, Solis N, Harmer C, Marzook NB, Rose B et al. Proteomic profiling of Pseudomonas aeruginosa AES-1R, PA01 and PA14 reveals potential virulence determinants associated with a transmissible cystic fibrosis-associated strain. BMC Microbiol 2012;12:16.

102. Hare NJ, Seo C, Rose B, Harbour C, Cord R et al. Proteomics of Pseudomonas aeruginosa Australian epidemic strain 1 (AES-1) cultured under conditions mimicking the cystic fibrosis lung reveals increased iron acquisition via the siderophore pyochelin. J Proteome Res 2012;11:776–795.

103. Sousa AM, Pereira MO. Pseudomonas aeruginosa diversification during infection development in cystic fibrosis lungs – a review. Pathogens 2014;3:680–703.

104. Klockgether J, Miethke N, Kubesch P, Bohn Y-S, Brockhausen I et al. Intracranial diversity of the Pseudomonas aeruginosa cystic fibrosis airway isolates TBCF10839 and TBCF121838: distinct signatures of transcriptome, proteome, metabolome, adherence and pathogenicity despite an almost identical genome sequence. Environ Microbiol 2015;13:191–210.

105. Faure E, Kwong K, Nguyen D. Pseudomonas aeruginosa in chronic lung infections: how to adapt within the host? Front Immunol 2018;9:2416.

106. La Rosa R, Johansen HK, Molin S. Adapting to the airways: metabolic requirements of Pseudomonas aeruginosa during the infection of cystic fibrosis patients. Metabolites 2019;9:234.

107. Riquelme SA, Wong Fok Lung T, Prince A. Pulmonary pathogens adapt to immune signaling metabolites in the airway. Front Immunol 2020;11:385.

108. Schick A, Kassen R. Rapid diversification of Pseudomonas aeruginosa in cystic fibrosis lung-like conditions. Proc Natl Acad Sci USA 2018;115:10714–10719.

109. La Rosa R, Johansen HK, Molin S. Convergent metabolic specialization through distinct evolutionary paths in Pseudomonas aeruginosa. mBio 2018;9:e00269-18.

110. Palmer KL, Aye LM, Whiteley M. Nutritional cue control Pseudomonas aeruginosa multicellular behavior in cystic fibrosis sputum. J Bacteriol 2007;189:8079–8087.

111. Barth AL, Pitt TL. The high amino-acid content of sputum from cystic fibrosis patients promotes growth of auxotrophic Pseudomonas aeruginosa. J Med Microbiol 1996;45:110–119.

112. Kumar SS, Peneyesan A, Elbourne LDH, Gillings MR, Paulsen IT. Catalobolism of nucleic acids by a cystic fibrosis Pseudomonas aeruginosa isolate: an adaptive pathway to cystic fibrosis sputum environment. Front Microbiol 2019;10:1199.

113. Cramer N, Fischer S, Hedtfield S, Dorda M, Tümmler B. Intracellular competitive fitness of longitudinal cystic fibrosis Pseudomonas aeruginosa airway isolates in liquid cultures. Environ Microbiol 2020;22:2536-.
115. Evans TJ, Small colony variants of Pseudomonas aeruginosa in chronic bacterial infection of the lung in cystic fibrosis. Future Microbiol 2015;10:231–239.

116. Mangiaterra G, Amiri M, Di Cesare A, Pasquaroli S, Manso E et al. Detection of viable but non-culturable Pseudomonas aeruginosa in cystic fibrosis by qPCR: a validation study. BMC Infect Dis 2018;18:701.

117. Al Ahmar R, Kirby BD, Yu HD. Culture of small colony variant of Pseudomonas aeruginosa and quantitation of its alginate. J Vis Exp 2020;156:e60466.

118. López-Causapé C, Cabot G, Del Barrio-Tofiño E, Oliver A. The versatile mutational resistome of Pseudomonas aeruginosa. Front Microbiol 2018;9:685.

119. Suresh M, Nithya N, Jayasree PR, Vimal KP, Manish Kumar PR. Mutational analyses of regulatory genes, mexR, nalC, nalD and mexZ of mexAB-oprM and mexXY operons, in efflux pump hyper-expressing multidrug-resistant clinical isolates of Pseudomonas aeruginosa. World J Microbiol Biotechnol 2018;34:83.

120. López-Causapé C, Valvanca I, Millan M et al. Evolutionary trade-offs associated with loss of PmrB function in host-adapted Pseudomonas aeruginosa. Front Microbiol 2016;7:138.

121. RpmlB function in host-adapted P. aeruginosa. FEMS Microbiol Rev 2019;43:66–78.

122. Bricio- Moreno L 2016;40:480–493.

123. Evans TJ, Small colony variants of Pseudomonas aeruginosa in chronic bacterial infection of the lung in cystic fibrosis. Future Microbiol 2015;10:231–239.

124. Suresh M, Nithya N, Jayasree PR, Vimal KP, Manish Kumar PR. Mutational analyses of regulatory genes, mexR, nalC, nalD and mexZ of mexAB-oprM and mexXY operons, in efflux pump hyper-expressing multidrug-resistant clinical isolates of Pseudomonas aeruginosa. World J Microbiol Biotechnol 2018;34:83.

125. RpmlB function in host-adapted P. aeruginosa. FEMS Microbiol Rev 2019;43:66–78.

126. PmrB function in host-adapted P. aeruginosa. FEMS Microbiol Rev 2019;43:66–78.

127. Bricio- Moreno L 2016;40:480–493.

128. Suresh M, Nithya N, Jayasree PR, Vimal KP, Manish Kumar PR. Mutational analyses of regulatory genes, mexR, nalC, nalD and mexZ of mexAB-oprM and mexXY operons, in efflux pump hyper-expressing multidrug-resistant clinical isolates of Pseudomonas aeruginosa. World J Microbiol Biotechnol 2018;34:83.

129. RpmlB function in host-adapted P. aeruginosa. FEMS Microbiol Rev 2019;43:66–78.

130. Bricio- Moreno L 2016;40:480–493.

131. Suresh M, Nithya N, Jayasree PR, Vimal KP, Manish Kumar PR. Mutational analyses of regulatory genes, mexR, nalC, nalD and mexZ of mexAB-oprM and mexXY operons, in efflux pump hyper-expressing multidrug-resistant clinical isolates of Pseudomonas aeruginosa. World J Microbiol Biotechnol 2018;34:83.

132. RpmlB function in host-adapted P. aeruginosa. FEMS Microbiol Rev 2019;43:66–78.

133. Bricio- Moreno L 2016;40:480–493.

134. Suresh M, Nithya N, Jayasree PR, Vimal KP, Manish Kumar PR. Mutational analyses of regulatory genes, mexR, nalC, nalD and mexZ of mexAB-oprM and mexXY operons, in efflux pump hyper-expressing multidrug-resistant clinical isolates of Pseudomonas aeruginosa. World J Microbiol Biotechnol 2018;34:83.

135. RpmlB function in host-adapted P. aeruginosa. FEMS Microbiol Rev 2019;43:66–78.

136. Bricio- Moreno L 2016;40:480–493.

137. Suresh M, Nithya N, Jayasree PR, Vimal KP, Manish Kumar PR. Mutational analyses of regulatory genes, mexR, nalC, nalD and mexZ of mexAB-oprM and mexXY operons, in efflux pump hyper-expressing multidrug-resistant clinical isolates of Pseudomonas aeruginosa. World J Microbiol Biotechnol 2018;34:83.

138. RpmlB function in host-adapted P. aeruginosa. FEMS Microbiol Rev 2019;43:66–78.

139. Bricio- Moreno L 2016;40:480–493.
153. Nguyen AT, Oglesby-Sherrouse AG. Interactions between Pseudomonas aeruginosa and Staphylococcus aureus during co-cultivations and polymicrobial infections. Appl Microbiol Biotechnol 2016;100:6141–6148.

154. Hotterbeekx A, Kumar-Singh S, Goossens H, Malhotra-Kumar S. In vivo and in vitro interactions between Pseudomonas aeruginosa and Staphylococcus spp. Front Cell Infect Microbiol 2017;7:106.

155. Fourie R, Pohl CH. Beyond Antagonism: The Interaction Between Candida Species and Pseudomonas aeruginosa. J Fungi 2019;5:34.

156. Baldan R, Cigana C, Testa F, Bianconi I, De Simone M et al. Adaptation of Pseudomonas aeruginosa in cystic fibrosis airways influences virulence of Staphylococcus aureus in vitro and murine models of co-infection. PLoS One 2014;9:e89614.

157. Michelsen CF, Christensen A-MJ, Bojer MS, Haiby N, Ingmer H et al. Staphylococcus aureus alters growth activity, autolysis, and antibiotic tolerance in a human host-adapted Pseudomonas aeruginosa lineage. J Bacteriol 2014;196:3903–3911.

158. Frydenlund Michelsen C, Hossein Khademi SM, Krogh Johansen H, Ingmer H, Dorrestein PC et al. Evolution of metabolic divergence in Pseudomonas aeruginosa during long-term infection facilitates a proto-cooperative interspecies interaction. ISME J 2016;10:1323–1336.

159. Briaud P, Camus L, Bastien S, Doléans-Jordheim A, Vandenesch F et al. Coexistence with Pseudomonas aeruginosa alters Staphylococcus aureus transcriptome, antibiotic resistance and internalization into epithelial cells. Sci Rep 2019;9:16564.

160. Camus L, Briaud P, Bastien S, Elsen S, Doléans-Jordheim A et al. Trophic cooperation promotes bacterial survival of Staphylococcus aureus and Pseudomonas aeruginosa. ISME J 2020;14:3093–3105.

161. Flynn JM, Cameron LC, Wiggen TD, Dunitz JM, Harcombe WR et al. Disruption of cross-feeding inhibits pathogen growth in the sputa of patients with cystic fibrosis. mSphere 2020;5:e00343-20.

162. Scott JE, O’Toole GA. The yin and yang of Streptococcus lung infections in cystic fibrosis: a model for studying polymicrobial interactions. J Bacteriol 2019;201:e00115-19.

163. Cigana C, Bianconi I, Baldan R, De Simone M, Riva C et al. Staphylococcus aureus impacts Pseudomonas aeruginosa chronic respiratory disease in murine models. J Infect Dis 2018;217:933–942.

164. Granchelli AM, Adler FR, Keogh RH, Kartsonaki C, Cox DR. Microbial interactions in the cystic fibrosis airway. J Clin Microbiol 2018;56:e00354-18.

Five reasons to publish your next article with a Microbiology Society journal

1. The Microbiology Society is a not-for-profit organization.
2. We offer fast and rigorous peer review – average time to first decision is 4–6 weeks.
3. Our journals have a global readership with subscriptions held in research institutions around the world.
4. 80% of our authors rate our submission process as ‘excellent’ or ‘very good’.
5. Your article will be published on an interactive journal platform with advanced metrics.

Find out more and submit your article at microbiologyresearch.org.