Heightened resistance to type 1 interferons characterizes HIV-1 at transmission and following analytical treatment interruption

Marcos V. P. Gondim†, Scott Sherrill-Mix†, Frederic Bibollet-Ruche1,2, Ronnie M. Russell1,2, Stephanie Trimboli, Andrew G. Smith1, Yingying Li1, Weimin Liu1, Alexa N. Avitto1, Julia DeVoto1, Jesse Connell1,2, Angharad E. Fenton-May3, Pierre Pellegrino4, Ian Williams4, Emmanouil Papasavvas6, Julio C. C. Lorenzi6, D. Brenda Salantes1, Felicity Mampe1, M. Alexandra Monroy1, Yehuda Z. Cohen6, Sonya Heath7, Michael S. Saag7, Luis J. Montaner5, Ronald G. Collman1,2, Janet M. Siliciano8, Robert F. Siliciano8,9, Lindsey Plenderleith10,11, Paul M. Sharp10,11, Marina Caskey6, Michel C. Nussenzweig6,12, George M. Shaw1,2, Persephone Borrow3, Katharine J. Bar1,2, Beatrice H. Hahn1,2*

1Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
2Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
3Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, UK.
4Centre for Sexual Health and HIV Research, University College London, London WC1E 6JB, United Kingdom.
5Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA.
6Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA.
7Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
8Department of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
9Howard Hughes Medical Institute, Johns Hopkins University, Baltimore, MD 21205, USA.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom.

Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom.

Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.

*To whom correspondence should be addressed: bhahn@pennmedicine.upenn.edu.

†These authors contributed equally to this work.

One Sentence Summary

HIV-1 resistance to IFN-I is highest during acute infection and following analytic treatment interruption, indicating a dynamic interplay between host innate immunity and virus biology.
Abstract

Type 1 interferons (IFN-I) are potent innate antiviral effectors that constrain HIV-1 transmission. However, harnessing these cytokines for HIV-1 cure strategies has been hampered by an incomplete understanding of their anti-viral activities at later stages of infection. Here, we characterized the IFN-I sensitivity of 500 clonally-derived HIV-1 isolates from plasma and CD4+ T cells of 26 individuals sampled longitudinally following transmission and/or after antiretroviral therapy (ART) and analytical treatment interruption (ATI). Determining the concentration of IFNα2 and IFNβ that reduced HIV-1 replication by 50% (IC$_{50}$), we found remarkably consistent changes in the sensitivity of viruses to IFN-I inhibition, both across individuals and over time. IFN-I resistance was uniformly high during acute infection, decreased in all subjects in the first year post-infection, was reacquired concomitant with CD4+ T cell loss, and remained elevated in subjects with accelerated disease. Isolates obtained by viral outgrowth during suppressive ART were relatively IFN-I sensitive, resembling viruses circulating just prior to ART initiation. However, viruses that rebounded following treatment interruption displayed the highest levels of IFNα2 and IFNβ resistance observed at any time during the infection course. These findings indicate a dynamic interplay between host innate immune responses and the evolving HIV-1 quasispecies, with the relative contribution of IFN-I to HIV-1 control impacted by both ART and ATI. Although elevated at transmission, IFN-mediated pressures are the highest during viral rebound, limiting the viruses that successfully reactivate from latency.
Introduction

Type 1 interferon (IFN-I) comprises a family of pro-inflammatory and immunomodulatory cytokines with potent antiviral activity (1, 2). In humans, this family includes 13 IFNα subtypes as well as IFNβ, IFNε, IFNκ, and IFNω, of which IFNα and IFNβ are the best characterized (3). IFN-I is rapidly up-regulated in response to pathogen exposure and infection (4, 5), and mediates its activity by binding to the heterodimeric IFNAR receptor expressed on all nucleated cells (6). This binding results in the activation of signal transduction cascades that trigger the expression of hundreds of interferon-stimulated genes (ISGs), which have direct and indirect antiviral activity, and regulate the activation state, function, proliferation and survival of host immune cells (7, 8). Although all IFN-I subtypes bind to the same receptor, they differ in their affinity for the two IFNAR subunits and elicit different patterns of ISG expression, suggesting that they vary in their in vivo activity and potency (9-12).

Up-regulation of IFN-I expression is one of the earliest innate responses to infection with both human (HIV-1) and simian (SIV) immunodeficiency viruses (13-17). In acute HIV-1 infection, maximal IFN-I levels are detected in the plasma prior to peak viremia (18). In acute SIVmac infection of macaques, plasmacytoid dendritic cells (pDCs) are actively recruited to mucosal sites, where they produce high levels of both IFNα and IFNβ (19, 20). IFN-I is known to control HIV/SIV replication in CD4+ T cells and macrophages by targeting multiple steps in the viral lifecycle (8). Consistent with this, pre-treatment of rhesus macaques with exogenous IFNα2 increased the number of intrarectal challenges required to achieve systemic SIVmac infection (21) and vaginal administration of IFNβ protected rhesus macaques from recombinant simian/human immunodeficiency virus (SHIV) infection (22). Likewise, blocking IFN-I during acute SIVmac infection led to higher viral titers, more rapid decline of CD4+ T cells, and faster
disease progression (23). Thus, numerous studies in both humans and primates have shown that IFN-I play a key role in controlling HIV/SIV replication during the earliest stages of infection.

In contrast to the beneficial effects of IFN-I upregulation during acute HIV-1 infection, sustained IFN-I signaling during chronic infection appears to have an overall negative effect (17, 24-28). In untreated subjects, plasma IFNα levels are positively correlated with HIV-1 viral load and inversely correlated with CD4+ T cell counts, and individuals with higher viral loads and faster disease progression frequently exhibit higher ISG expression (24, 27) and heightened IFNβ production in the gut (29). Continuous IFN-I signaling increases the number of susceptible CD4+ target cells, induces CD4 T cell apoptosis, limits antigen specific CD4+ and CD8+ T cell responses, and contribute to immune exhaustion (15, 30, 31). In SIVmac infected macaques, prolonged IFNα2 treatment resulted in decreased antiviral ISG expression, an increased SIVmac reservoir size, and the loss of CD4+ T cells (21). Indeed, sustained IFN-I signaling and ISG up-regulation differentiates pathogenic from non-pathogenic SIV infections (32-34) and drives systemic immune activation in HIV-1 infection, which is associated with poor CD4+ T-cell recovery and a predictor of disease progression (35).

Given the highly pleiotropic and context-dependent effects of IFN-I, it is not surprising that clinical studies evaluating its therapeutic benefits have yielded mixed results (14, 16, 36). IFNα2 administration can suppress HIV-1 replication, blunt rebound viremia, and extend viral control following analytic treatment interruptions (ATI) (37-40). However, various combinations of anti-retroviral and IFN-I treatments have not led to long-term improvements of CD4 T cell reconstitution or clinical outcome (14). Moreover, blocking rather than stimulating IFN-I signaling, or selectively counteracting only certain ISGs, had beneficial effects in HIV-1 infected humanized mice (41, 42). Thus, it seems clear that effective manipulation of the IFN-I system to prevent, treat or cure HIV-1 infection will require a much more detailed understanding of the kinetics, potency and quality of the endogenous IFN-I response.
One approach to gain insight into the in vivo IFN-I response is to test the IFN sensitivity of plasma viruses, which are reliable indicators of selection pressures that act on virions and virus-infected cells (43-48). Such studies have shown that transmitted founder (TF) viruses are highly IFN-I resistant (49) and that this resistance constitutes a major determinant of HIV-1 transmission fitness (50). In contrast, viruses isolated during chronic infection are generally IFN-I sensitive (45, 46, 47), although this sensitivity seems to revert as subjects progress toward AIDS (51, 52). Here, we performed a systematic analysis of the IFN-I sensitivity of plasma and CD4+ T cell derived viral isolates from prospectively sampled subjects before and after antiretroviral therapy (ART), and following analytical treatment interruption (ATI). We found that the in vivo IFN-I response is much more dynamic than previously assumed and places varying pressures on the viral population at different stages of the infection. In particular, the high IFN-I resistance of rebound viruses indicates intensified IFN-I activity during viral recrudescence.

Results

Generation of plasma isolates from longitudinally sampled individuals

To characterize the kinetics of IFN-I resistance over the course of HIV-1 infection, we generated plasma isolates from 10 prospectively sampled individuals, who were followed from shortly after transmission until 4.1 - 12.4 years post-infection (table S1). All participants were men-who-have-sex-with-men (MSM) who presented with symptomatic primary subtype B infection. Peripheral blood was collected at regular intervals immediately following onset of symptoms and continued for 74 to 318 weeks (1.6 to 6.2 years) in the absence of antiretroviral treatment. At each time point, patients underwent clinical evaluation, including viral load and CD4+ T cell count determinations (table S1). Six individuals experienced a gradual loss of their CD4+ T cells over the study period (typical progressors; Fig. 1A), two individuals maintained high CD4+ T cell
counts and low viral loads throughout their 3.6- and 5.6-year clinical follow-up (non-progressors; Fig. 1B), and two individuals developed AIDS (CD4 T cells < 300 cell/µl) within 0.7 and 1.5 years of infection (rapid progressors; Fig. 1C). ART was initiated in eight participants between 85 and 323 weeks post onset of symptoms based on the standard-of-care at the time (shaded in Fig. 1).

We also characterized the evolving HIV-1 quasispecies in these subjects. This was done by amplifying viral RNA directly from the plasma using single genome amplification (SGA), which retains genetic linkage across viral genes and generates sequences devoid of PCR-induced artifacts (53, 54). For each individual, 3’ half genomes or env gene sequences were amplified from sequential plasma samples, with sequences from the earliest time point used for TF enumeration (fig. S1). This analysis showed that seven participants acquired a single TF virus, while the remaining three became infected with two or more TF viruses (table S1). Sequences from subsequent time points exhibited the expected patterns of viral diversification (55-57), except for MM14, MM23 and MM33, who became superinfected with additional subtype B strains 5 to 29 weeks following the initial infection (Fig. 1 and fig. S2).

To determine the IFN sensitivity of individual quasispecies members at different stages of HIV-1 infection, we generated 277 limiting dilution plasma isolates from five of the 10 subjects (table S1). Plasma samples were end-point diluted, co-cultured with healthy donor CD4+ T-cells, and the resulting isolates sequenced to ensure that they were indeed single virion-derived (50). In phylogenetic trees of env gene sequences, the limiting dilution isolates were completely interspersed with sequences amplified directly from the plasma, thus confirming their authenticity (fig. S2). To characterize their sensitivity to IFN-I inhibition, we determined the IFNα2 and IFNβ concentrations that reduced virus replication in vitro by 50% (50). Briefly, donor CD4+ T cells were treated with increasing quantities of IFNα2 and IFNβ, and then infected with equal amounts of virus (50). Cells were cultured for 7 days, with the IFN-containing media replenished every second day. Virus replication was measured for each IFN-I concentration by
quantifying p24 antigen in supernatants and used to calculate the half-maximal inhibitory concentrations (IC$_{50}$) (Fig. S3).

Since the IFNα2 and IFNβ IC$_{50}$ values for limiting dilution isolates from the same plasma sample were very similar (Fig. 2), we reasoned that conventional (bulk) virus isolation was likely sufficient to capture the IFN-I sensitivity of the circulating virus pool. To test this, we generated 18 bulk isolates from 11 of these plasma samples (Table S1) and determined their IFN-I resistance (Table S2). All bulk isolates yielded IC$_{50}$ values that fell within 5-fold of the mean of the corresponding limiting dilution isolates (Fig. 2; note that the IC$_{50}$ range spanned over 1,000-fold for IFNα2 and over 40,000-fold for IFNβ). Moreover, the mean interferon resistance of the bulk isolates was highly correlated with that of the corresponding limiting dilution isolates (IFNα2 r=0.95 and IFNβ r=0.96). We thus used the less labor-intensive conventional approach to generate 79 plasma isolates for the remaining five subjects.

Kinetics of IFN-I resistance in untreated HIV-1 infection

Analysis of 374 plasma isolates from 10 prospectively sampled subjects revealed marked differences in their sensitivity to IFNα2 and IFNβ inhibition over the course of the infection (Fig. 2). To quantify these dynamic changes, we developed a Bayesian hierarchical change point model (50, 58), which allowed us to infer the temporal patterns of IFNα2 and IFNβ IC$_{50}$ values and their associations with CD4+ T cell counts across different individuals while accounting for differences in sampling times and frequencies (Supplementary Methods, Fig. S4).

Consistent with previous results (49, 50, 59), isolates obtained during acute HIV-1 infection were uniformly IFN-I resistant, yielding mean IC$_{50}$ values for IFNα2 of 0.90 pg/ml and for IFNβ of 19 pg/ml (Fig. 2). This resistance decreased in all subjects, with IFNα2 and IFNβ IC$_{50}$ values falling in typical progressors on average 180-fold (95% Credible Interval [CrI]: 100 - 340-fold) and 3,500-fold (95% CrI: 1500 - 8900-fold) within 340 days (95% CrI: 250 - 490 days).
and 460 days (95% CrI: 310 - 700 days), respectively. Isolates from non-progressing individuals fell to similar levels, but reached a nadir earlier at an estimated 100 days (95% CrI: 50 - 200 days) for IFNα2 and 110 days (95% CrI: 50 - 240 days) for IFNβ. The time to nadir for fast progressing individuals was difficult to determine because IFNα2 and IFNβ IC50 values decreased only 2.8-fold (95% CrI: 0.78 - 10.5-fold) and 2.7-fold (95% CrI: 0.52 - 16-fold), respectively, resulting in 39-fold and 1,000-fold higher levels than in subjects with more typical disease progression (Fig. 2C and fig. S4, A and B).

Plasma virus from typical progressors exhibited a consistent rise in IFNα2 and IFNβ resistance during the later stages of infection (Fig. 2). This rise and other fluctuations in resistance during chronic infection (e.g., MM34 in Fig. 2), appeared to associate with changes in CD4+ T cell counts. Each decrease of 100 CD4+ T cells/µl was associated with a 2.3-fold (95% CrI: 1.3 - 4.4-fold) increase in mean IFNα2 IC50 and a 4.0-fold (95% CrI: 1.9 - 8.7-fold) increase in mean IFNβ IC50 values (Fig. 2A and fig. S4, C and D). The two non-progressing individuals maintained their CD4+ T cell counts at relatively high levels and the two fast progressing individuals were largely depleted of CD4+ T cells early in infection. Thus, the model predicted little association between IFN-I resistance and CD4+ T cell counts in these participants (Fig. 2, B and C and Fig. S4, C and D).

Overall, the temporal changes in IFN-I resistance were remarkably similar among the different individuals. Without exception, viral IFN-I resistance was high during acute infection, decreased during early chronic infection, and increased again during later stages concomitant with CD4+ T cell loss and disease progression. Remarkably, neither the number of transmitted founder viruses at transmission nor subsequent superinfection events appeared to influence these kinetics (Fig. 2). In all analyses, IFNα2 and IFNβ IC50 values were highly correlated (fig. S5), although IFNβ IC50 values spanned nearly four orders of magnitude compared to two orders of magnitude for IFNα2 (Fig. 2). These findings thus indicate a highly dynamic interplay between host innate immune responses and the evolving HIV-1 quasispecies, with the relative
contribution of IFN-I to HIV-1 control varying markedly, but predictably, over the course of HIV-1 infection.

IFN-I sensitivity of ex vivo reactivated latent viruses

Having characterized the IFN-I response of plasma virus during untreated infection, we next used a quantitative viral outgrowth assay (QVOA) to generate reactivated latent viruses from some of the same individuals after they were placed on therapy. For five of the 10 longitudinally followed subjects, cryopreserved peripheral blood mononuclear cells (PBMCs) collected 1 to 4 years after ART initiation were available (Fig. 1). These were stimulated, co-cultured with primary CD4+ T cells from healthy donors, and tested for viral replication by monitoring p24 levels in culture supernatants (60). Due to limited numbers of cryopreserved cells, only eight QVOA isolates were recovered (Fig. 2 and table S1). All isolates were sequenced (fig. S2) and their IFN-I resistance determined (table S2). Although participant WEAU received zidovudine (AZT) beginning 1.6 years post infection (Figs. 1 and 2), this monotherapy was not sufficient to maintain suppression of plasma viral loads (table S1). Thus, post-treatment samples from this individual were not suitable for QVOA analyses.

As shown in Fig. 2, seven of the eight QVOA isolates were moderately IFN-I resistant, exhibiting IC_{50} values very similar to plasma isolates obtained from the same individuals immediately prior to ART initiation. This was true for individuals with single as well as multiple QVOA isolates, including viruses collected several months apart (MM34). A single QVOA isolate from a rapidly progressing subject (MM15) was more IFN-I resistant, but again plasma virus obtained just prior to treatment initiation displayed the same elevated IFN-I resistance. Phylogenetic analyses confirmed these findings, showing that the eight outgrowth isolates did not cluster with viruses recovered during acute or early infection, but were most closely related to plasma viruses replicating during late infection (Fig. 3 and fig. S2). Thus, both IFN-I and
phylogenetic analyses indicated that the QVOA derived viruses had entered the latent reservoir near the time of therapy initiation.

To increase the number of outgrowth viruses for IFN-I phenotypic analyses, we obtained cryopreserved PBMCs or previously generated QVOA isolates from 9 additional ART suppressed individuals who participated in different HIV-1 treatment interruption and/or latency studies (table S3). Two individuals were leukapheresed after prolonged ART suppression for a qualitative and quantitative analysis of their replication competent HIV-1 reservoir (61); four individuals were leukapheresed before (~2 weeks) and during (12 weeks) ATI, but prior to viral rebound while receiving the two human broadly neutralizing antibodies 3BNC117 and 10-1074 (62); and three individuals were leukapheresed before and six months after ATI and infusion of the broadly neutralizing antibody VRC01 (63, 64). From the available material, we were able to generate or expand 52 QVOA isolates and test their IFN-I sensitivity (table S4). The results showed a range of IFNα2 and IFNβ IC50 values that was very similar to that of the eight QVOA isolates from the longitudinally sampled cohort, with most isolates exhibiting low or moderate IFN-I resistance (Fig. 4, A and C). There were only two outgrowth viruses that displayed an unusually high IFN-I resistance, especially for IFNα2, both of which were isolated from the post-ATI leukapheresis sample of a single individual (A08).

IFN-I sensitivity of rebound viruses following treatment interruption

Some of the individuals for whom QVOA isolates were available also underwent treatment interruptions, which allowed the comparison of the IFN-I sensitivity of in vitro and in vivo reactivated viruses. Using plasma samples collected shortly after detection of recrudescent viremia, we generated 37 limiting dilution isolates from six such individuals (table S3). In addition, we obtained plasma samples from seven individuals who participated in other treatment interruption trials (table S3). Three of these underwent successive ATI cycles of increasing duration, but without further intervention (65); one individual was infused with the
broadly neutralizing human monoclonal antibody 3BNC117 prior to and during ATI (66); and
three individuals received a 20 week course of pegylated IFNα2 (1µg/kg) prior to and during
ART interruption (67). Again, using samples collected shortly after detectable viremia, we were
able to generate 29 additional limiting dilution isolates (table S3). All rebound isolates formed
individual-specific clusters in a phylogenetic tree (fig. S6) and grew efficiently in CD4+ T cells
(table S4). However, analysis of their IFNα2 and IFNβ IC50 values yielded unexpected results:
All 66 rebound isolates were highly IFN-I resistant, exceeding even highly resistant isolates from
acute infection (Fig. 4).

To quantify differences in IFN-I sensitivity between viral groups, we developed a
hierarchical Bayesian model (Supplementary Methods), which combined the data from the
QVOA and rebound isolates with results from the longitudinal cohort and previously published
transmission pairs (50). Specifically, we compared IFN-I IC50 values of acute infection isolates
(<30 days after onset of symptoms) with those from rebound, chronic (>300 days after onset of
symptoms) and outgrowth viruses, dividing the latter into pre- and post-ATI isolates (Fig. 4, B
and D). Two apparent outliers isolated from the CD4+ T cells of participant A08 six months after
re-initiation of therapy suggested that viruses phenotypically resembling rebound viruses might
be present in post-ATI samples (Fig. 4, A and C). To account for this possibility, we included a
mixture term into the model that allowed for some proportion of post-ATI viruses to derive from
the rebound population. This mixture term was also included for pre-ATI samples to allow
comparison between pre- and post-ATI viruses.

Comparing all available IFN-I IC50 data, we determined the fold-change in IFNα2 and
IFNβ IC50 values of acute, rebound, chronic as well as pre-ATI and post-ATI isolates (Fig. 4, B
and D). Acute infection isolates from untreated individuals were on average 18-fold (95% CrI:
9.3 – 31-fold) more IFNα2 and 99-fold (33 – 230-fold) more IFNβ resistant than chronic
isolates. This was also the case for pre-ATI QVOA isolates, which exhibited 13-fold (7.5 – 21-
fold) lower IFNα2 and 50-fold (19 – 107-fold) lower IFNβ IC50 values than acute infection
isolates. Remarkably, rebound viruses were the most IFN-I resistant, exhibiting on average 3.0-fold (2.3 - 3.8-fold) and 6.4-fold (3.8 - 10-fold) higher IFNa2 and IFNb IC\textsubscript{50} values than acute infection isolates, respectively. These differences were highly significant and observed regardless of whether ART interruption was combined with additional interventions, such as the administration of broad neutralizing antibodies. Interestingly, the IFNa2 IC\textsubscript{50} values of rebound isolates from individuals who were treated with pegylated IFNa2 (1\,\mu g/kg) before and during ART interruption (subjects 004, 030, 044) were on average 1.8-fold (1.2 - 2.6-fold) higher than those of rebound viruses from IFNa2 untreated individuals, while no significant differences were observed for the corresponding IFNb IC\textsubscript{50} values. The fact that IFNa2 administration had a measurable effect suggests that the in vivo concentrations of IFNa2 were not saturating. However, the increase in viral IFNa2 resistance resulting from exogenous administration was modest compared to that driven by endogenous IFNa2 and lacked a concomitant IFNb response. Taken together, it seems clear that treatment interruption and viral recrudescence trigger a vigorous IFN-I response that places near-maximal pressures on the rebounding virus.

\textit{IFN-I sensitivity of post-ATI outgrowth viruses}

Given the heightened IFN-I resistance of rebound viruses, we examined post-ATI isolates for an enrichment of such viruses. Post-ATI outgrowth viruses had mean IFN-I resistance values that were very similar to those of pre-ATI viruses, but appeared to comprise two populations (Fig. 4, B and D), primarily because of two post-ATI outgrowth viruses from one individual (A08) that displayed an unusually high IFN-I resistance. The model estimated the proportion of "rebound-like" viruses in post-ATI isolates to be 13\% (2.9 - 29\%) for IFNa2 and 4\% (0.1\% - 15\%) for IFNb. While no "rebound-like" highly resistant viruses were detected in pre-ATI samples, this group had large credible intervals that overlapped those estimated for post-ATI samples. Thus,
existing data are insufficient to determine whether “rebound-like” isolates are exclusively observed in post-ATI samples.

To further characterize the two post-ATI QVOA isolates with elevated IC\textsubscript{50} values (Fig. 4), we compared their sequences to those of other QVOA and rebound viruses from the same individual (Fig. 5). As previously reported (63, 64), participant A08 initiated ART during chronic infection, underwent treatment interruption and VRC01 monoclonal antibody treatment, and was restarted on ART after detection of rebound viremia. Phylogenetic analysis of viral sequences obtained before, during and after treatment interruption identified multiple rebound lineages, some of which were closely related to both pre-ATI and post-ATI QVOA isolates (Fig. 5). When 20 of these QVOA isolates were phenotypically tested, 18 exhibited very low IFN\textalpha\textsubscript{2} and IFN\beta IC\textsubscript{50} values, indicating that they were highly IFN-I sensitive (Fig. 4). The exception were the two post-ATI QVOA isolates (3D8 and 6F6), which were not only more IFN-I resistant, but also shared identical \textit{env} sequences with three rebound viruses (highlighted in Fig. 5). Further sequencing of the entire genome showed that the two QVOA isolates differed from the closest rebound virus (2F4) by only three nucleotides, which conferred single amino acid changes in Pol and Vpr, and a nucleotide substitution in the LTR (table S5). These genetic and phenotypic relationships suggest that treatment interruption in participant A08 may have re-seeded the reservoir with IFN-I resistant viruses.

Discussion

In untreated HIV-1 infected individuals, plasma virus has a half-life of less than one hour and the cells that are producing most of this virus have a half-life of less than one day (43, 47, 48, 68). Thus, virus circulating in the plasma of infected individuals is a sensitive real time indicator of the \textit{in vivo} selection pressures that act on virus and virally infected cells, such as neutralizing antibodies (Nab), cytotoxic T lymphocytes (CTL), and antiviral drugs (43-46). Here, we
characterized the resistance of plasma viruses to IFNa2 and IFNβ in prospectively sampled individuals and show that the relative contribution of these cytokines to HIV-1 control varies markedly throughout the infection course (Fig. 2). IFNa2 and IFNβ IC_{50} values were uniformly high during acute infection, consistent with the rapid induction of a potent innate antiviral state that selects for founder viruses that are highly IFN-I resistant (18, 50). IFNa2 and IFNβ IC_{50} values declined in all individuals in the first year post infection (Fig. 2), at least in part because of viral escape from adaptive immune responses (45, 46, 69, 70). Recent studies showed that HIV-1 resistance to interferon-induced transmembrane proteins (IFITMs), and IFN-I itself, decreased over the first 6 months of infection as a direct result of acquiring neutralizing antibody (Nab) escape mutations (69). Although a similar causal relationship has not yet been shown for escape from cellular immune pressures, CTL responses are known to place strong pressure on the viral quasispecies during early HIV-1 infection and rapidly select for escape variants (45, 46). Thus, some of the same mutations that allow HIV-1 to successfully evade potent Nab, CTL and other adaptive immune pressures likely result in a loss of IFN-I resistance, even if IFN-I signaling is maintained at a higher than normal level (26, 32, 71, 72). IFN-I resistance is re-acquired during later stages of infection due to a decline in cellular immunity and increasing IFN-I production, fueled in part by microbial translocation in the gut (29, 73). Thus, there is a dynamic interplay between innate and adaptive immune pressures, with the circulating virus reflecting the predominant selective forces at any given time.

Although IFN-I IC_{50} values varied by orders of magnitude, the observed temporal changes were surprisingly similar across all individuals (Fig. 2). Plasma viruses from all typical progressors displayed the same initial decline of IFNa2 and IFNβ IC_{50} values irrespective of the multiplicity of infection (number of TF viruses), followed by the gradual reacquisition of IFN-I resistance during later stages of infection (Fig. 2A). In most individuals, a nadir was reached for both IFNa2 and IFNβ within two years of symptom onset, with a large overlap in credible intervals suggesting that the respective times were not significantly different. Surprisingly,
superinfection did not change this trajectory, although minor differences in IC\textsubscript{50} values could have been missed due to infrequent sampling. A similar course was also observed in the two rapid progressors, although the fall and rise of IFN-I IC\textsubscript{50} values was much less pronounced (Fig. 2C). Plasma viruses from the two non-progressors displayed the same initial IC\textsubscript{50} decline, but then maintained low resistance values (Fig. 2B). These varying kinetics are most likely explained by differences in the quality, magnitude and duration of the adaptive immune response. In the two rapid progressors, the initial reduction in IFN-I resistance was likely curtailed by rapidly declining adaptive responses (43, 45). In the non-progressors, IFN-I resistance remained low after the initial decline because adaptive responses maintained effective anti-viral control (74). Thus, despite differences in disease progression, similar dynamics in IFN-I resistance suggest common patterns of virus-host interactions.

The balance between innate and adaptive immune pressures is also reflected in the IFN-I phenotype of outgrowth and rebound viruses. The latent reservoir is largely comprised of proviruses that are transcriptionally and translationally silent and are therefore not subject to ongoing innate or adaptive immune pressures. Moreover, adaptive immune responses are reduced under suppressive ART due to reduced viremia and may require time for reactivation after treatment interruption (75, 76). This likely explains the importance of rapidly induced innate responses at the time of viral recrudescence (77) and the resulting striking IFN-I resistance of rebound viruses (Fig. 4). The fact that rebound viruses were uniformly IFN-I resistant, irrespective of the clinical trial or type of treatment interruption, supports this hypothesis (38, 62, 64-66). Whether the superior IFN-I resistance of rebound viruses confers enhanced transmissibility is not known, but the occurrence of unintended transmissions during treatment interruption suggests that this possibility needs to be investigated (78, 79).

Recent studies by Abrahams and colleagues showed that 71% of outgrowth viruses are genetically most similar to viruses replicating in the plasma just prior to ART initiation (80). Since this proportion is far greater than would be expected if the reservoir formed continuously,
treatment appears to alter the host environment to facilitate the formation of latently infected cells (80). By characterizing the pathways of viral evolution in the longitudinally studied participants, we also found that outgrowth viruses isolated years after ART suppression were genetically most similar to viruses replicating late in untreated infection (Fig. 3 and fig. S2). Moreover, these outgrowth viruses exhibited IFN-I IC$_{50}$ values that were near identical to those of viruses circulating in the plasma just prior to ART (fig. S2). Our data thus confirm and extend these earlier findings, showing that outgrowth viruses are not only genetically, but also phenotypically, most similar to viruses replicating late in infection and provide additional evidence for the preferential entry of HIV-1 into the latent reservoir near the time of ART initiation.

The viral determinants that confer IFN-I resistance during HIV-1 infection are not known. Studying infectious molecular clones of transmitted founder and six-month consensus viruses from the same individual, a previous study failed to identify resistance or sensitivity signatures that were common among the different virus pairs (59). Sequence changes occurred at many sites throughout the viral genome, suggesting differential responses to numerous ISGs. Given the myriad of IFN-I effector pathways and the plasticity of the HIV-1 quasispecies, these results are not surprising. Moreover, IFN-I resistance levels can be altered by a small number of sequence changes (Fig. 5). Thus, it is unlikely that a set of universal IFN-I resistance determinants will be identified. Instead, the path to resistance for any one HIV-1 strain is likely context-dependent and driven by the particular viral and immunological circumstances.

A critical question in cure research is whether treatment interruption and the associated transient viremia have an impact on the composition and size of the latent reservoir. Comparing pre-ATI and post-ATI QVOA isolates, a previous study found only minimal changes in the abundance of replication-competent viruses, with little genetic evidence of rebound viruses significantly enriching the post-ATI reservoir (64). The exception was one individual (A08), who harbored a subset of post-ATI viruses that were genetically closely related to rebound viruses.
Examining existing and newly derived QVOA isolates from this same individual, we found that pre-ATI and post-ATI viruses had largely similar IFN-I resistance values (Fig. 4). However, the post-ATI QVOAs included two isolates with elevated IFN-I resistance, which were genetically very similar to a subset of rebound viruses (highlighted in Fig. 5). Thus, the post-ATI outgrowth viruses in this individual comprised two viral populations, one of which represented “rebound-like” viruses based on genetic and phenotypic analyses (Fig. 4, B and D and Fig. 5).

Treatment interruptions are the gold standard to evaluate promising cure strategies (81) and are employed with increasing frequency. Thus, it is essential that they are safe and well designed. Consistent with results from previous studies (64, 66), we found that pre-ATI QVOA isolates were neither predictive nor representative of the viruses that subsequently rebounded in vivo. This disconnect reinforces the clinical importance of ATIs since merely testing cure strategies in vitro on reactivated latent viruses may generate misleading results. A comprehensive analysis of post-ATI isolates in participant A08 suggested that treatment interruption may have re-seeded the reservoir with IFN-I resistant viruses, although the existence of these variants prior to ART could not be formally excluded. Although rebound-like (IFN-resistant) viruses comprised only a minor subset of the sampled post-ATI reservoir, this possibility requires further exploration in additional participants and cohorts to assure the safety of ATIs.

The finding that rebound viruses are uniformly IFN-I resistant is also relevant to the design of cure strategies that directly or indirectly engage IFN-I pathways. These approaches attempt to harness the antiviral activity of IFN-I either by administering these cytokines directly (38) or by eliciting IFN-I responses via immunomodulators, such as TLR 7 and 9 agonists (82, 83), and other latency reversal agents (84). The fact that ART cessation likely induces near-maximal IFN-I responses at the sites of virus recrudescence will need to be factored into the design of these strategies. Consistent with this, a recent study found that activation of NK cell cytotoxicity,
and not the induction of interferon stimulated genes, correlated with exogenous IFNα2-mediated HIV-1 control (85).

A limitation of the present study is the lack of diversity among the study participants, all but one of them were men-who-have-sex-with-men from the US and western Europe. This is a longstanding issue in translational HIV-1 research that will have to be addressed by enrolling trial participants who are more representative of the gender, ethnicity, co-morbidity, disease progression and viral subtype composition of the HIV-1 pandemic. Our study also focused on INFα2 and IFNβ, because the potency of these cytokines has previously been demonstrated both in vitro (50) and in vivo (29). However, additional IFN-I subtypes will need to be analyzed to elucidate the full spectrum of relevant innate immune pressures on HIV-1. It will also be important to perform viral outgrowth assays in the presence and absence of IFN-I to see whether pre-treatment of latently infected CD4+ T cells activates viruses that genetically or phenotypically resemble rebound viruses. Similarly, integration site analysis will be important to determine whether IFN-I resistant proviruses preferentially integrate in chromatin regions that restrict viral gene expression in the absence of high levels of IFN-I. The striking IFN-I resistance of rebound viruses also reinforces the need for nonhuman primate models that faithfully recapitulate this key feature of HIV-1 persistence. Studies are underway to determine whether SIVmac or SHIV infected rhesus macaques recapitulate the IFN-I kinetics observed in humans, and if so, whether these models can be used to trace the provenance and activation requirements of rebound viruses.

In summary, we show here that IFN-I play an important role in the control of HIV-1, not only during acute, but also later stages of infection. The IFN-I resistance of plasma viruses reflects the contribution of IFN-I mediated activity relative to other antiviral forces at the site of virus production. The kinetics of the IFN-I response vary over the course of infection, from very high levels in acute infection to low levels in early infection to elevated levels prior to ART initiation and near maximal levels during viral rebound following ART cessation. Although the
tissue and cell origins of rebound viruses remain to be determined, our data indicate that they arise either from a cryptic reservoir of highly IFN-I resistant viruses or rapidly evolve at the sites of viral recrudescence by acquiring IFN-I resistance.

Materials and Methods

Study design
The role of IFN-Is in the control of HIV-1 during infection was determined by generating 500 plasma and PBMCs derived viral isolates from 26 individuals sampled prospectively before and after antiretroviral therapy (ART) and/or during treatment interruption. Viruses were genetically characterized and their susceptibility to IFNα2 and IFNβ inhibition (IC50) was determined. Sample sizes were dependent on availability and not predetermined by power calculations.

Study participants
Participants MM14, MM15, MM23, MM33, MM34, MM39, MM40, MM55, and MM62 were recruited to an acute HIV-1 infection cohort at the Mortimer Market Centre for Sexual Health and HIV Research in London, United Kingdom, while participant WEAU was followed at the 1917 Clinic of the University of Alabama at Birmingham. Six individuals who experienced a gradual loss of their CD4+ T cells, were classified as typical progressors; two individuals who maintained high CD4+ T cell counts and low viral loads, were classified as non-progressors; and two individuals, who developed AIDS within 8 and 18 months post-infection, respectively, were classified as rapid progressors (Fig. 1). Peripheral blood was collected in EDTA-containing tubes following onset of symptoms and at regular intervals thereafter (table S1). Plasma was separated by centrifugation, while PBMCs were isolated using a Histopaque 1.077 density gradient and cryopreserved. Subjects provided informed consent and were offered antiretroviral
therapy based on the standard-of-care at the time. Ethical approval for the London cohort study was provided by the National Health Service Camden/Islington Community Local Research Ethics Committee. The use of stored (de-identified) samples from participant WEAU was approved by the University of Alabama at Birmingham Institutional Review Board. Plasma and viably frozen PBMC samples were also obtained from 16 individuals who participated in six different treatment interruption and latency trials (MNU-0628, NCT02825797, NCT0246322, NCT00051818, NCT02227277, NCT02588586). These materials were obtained from existing repositories and their use was approved by the respective Institutional Review Boards as previously described (61-67).

Virus isolation from plasma

For limiting dilution isolation, plasma samples were end-point diluted and used to infect 1×10^6 activated CD4+ T cells from multiple healthy donors in 24-well plates (50). To generate bulk isolates, plasma aliquots containing 1,500 - 20,000 viral RNA copies were used to infect 4×10^6 healthy donor CD4+ T cells in 6-well plates. Cultures were maintained for 21 days and tested weekly for the presence of p24 antigen in the supernatant. Virus positive cultures were expanded in pooled healthy donor CD4+ T cells (1×10^7) and the resulting viral stocks were used for all genetic and biological analyses.

Quantitative viral outgrowth assay

Virus isolations were performed essentially as described (60) with minor modifications. CD4+ T cells were isolated from viably frozen PBMC, incubated in RPMI media containing 15% FBS without IL-2 for 24 hours, and stimulated for 24 hours using a combination of anti-CD2, CD3 and CD28 antibody-coated beads (Miltenyi Biotec T Cell Activation/Expansion Kit). Cells were then cocultured with healthy donor CD4+ T cells (1:10 patient:donor cells) and cultured for 3 weeks with weekly monitoring of p24 production. Positive cultures were expanded and viral stocks
generated as described above. In cases where QVOA isolates were already available (61-64), supernatants were obtained and used to generate viral stocks in healthy donor CD4+ T cells (table S3).

Single genome amplification

Single genome amplification of 3’ half genomes or viral *env* genes from plasma RNA and proviral DNA was performed as previously described (54, 86). Briefly, ~20,000 copies of viral RNA were extracted from plasma using QIAamp Viral RNA kit (Qiagen) and reverse transcribed using SuperScript III Reverse Transcriptase (Invitrogen). PBMC DNA was extracted using a DNeasy Blood and Tissue kit (Qiagen). Viral cDNA and PBMC DNA were then endpoint diluted and amplified using nested PCR using primers and conditions as previously reported (54, 86).

Isolate sequencing

Viral RNA was extracted from isolate stocks, reverse-transcribed, and the resulting cDNA used to amplify overlapping 5’ and 3’ genome halves in separate PCR reactions (50). Amplicons were sequenced using Illumina MiSeq and paired-end reads assembled to generate a sample-specific reference sequence. Viral reads were mapped to this reference, and the extent of genetic diversity was examined for each position along the alignment. Isolates that exhibited more than 15% diversity at any one position were judged to contain more than one variant.

Phylogeny

Plasma viral, proviral and isolate derived sequences for each subject were aligned with Clustal Omega (87) and inspected for misassemblies, overly truncated sequences and sequences with abundant G to A mutations (considered to be the result of APOBEC hypermutation). Alignments were trimmed to the shortest sequence and positions with gaps in any sequence were masked in all sequences. Trees were generated using RAxML v8.2.12 (88) with model GTRGAMMA and
bootstrap values calculated from 1,000 replicates. Potential recombinants from superinfected subjects were identified in alignments using Recco (89) using default parameters; recombinants were reported if they had an alignment p-value <0.05 and contained at least 10 recombination induced mutations.

Interferon IC$_{50}$ *determinations*

To determine the IFNα2 and IFNβ concentrations required to inhibit virus replication by 50% (IC$_{50}$), pooled activated CD4$^+$ T cells were left untreated or cultured in the presence of increasing amounts of IFNα2 or IFNβ for 24 hours, essentially as described (50). Cultures (2.5x105 cells) were then infected overnight with equal amounts of virus (0.25 ng of RT) and maintained for 7 days in IL-2 (30 U/ml) media, while replenishing IFN-I every 48 hours. Virus replication was measured as the amount of p24 produced at day 7 and IC$_{50}$ was calculated as the amount of IFN necessary to reduce viral growth by 50% from levels measured in the absence of IFN-I (Fig. S3).

Statistical analyses

We developed hierarchical Bayesian models to analyze the longitudinal changes of interferon resistance while avoiding bias from differential sampling (50, 58). These models assumed that the data were log normally distributed with the resistance observed in each individual deriving from a common population-level distribution (Supplementary Methods). For the longitudinal analysis, IFN-I resistance was assumed to start at an acute infection level, fall (or rise) to some nadir change point, and then rise (or fall) based on changes in CD4$^+$ T cell counts (fig. S4). For comparisons of outgrowth and rebound viruses, each isolate was assumed to be a random sample from the viruses circulating within an individual, and each individual was assumed to be representative of a larger population. Outgrowth isolates were assumed to represent mixed populations that could include rebound-like viruses (Supplementary Methods). Data was
processed and analyzed using R v3.4.4 (90). Posterior probability distributions were estimated using Markov chain Monte Carlo sampling as implemented in Stan v2.23 (91). Statistical significance was assessed by determining if the 95% credible interval overlapped the null hypothesis.

References and Notes

1. D. B. Stetson, R. Medzhitov, Type I interferons in host defense. *Immunity* **25**, 373-381 (2006). https://doi.org/10.1016/j.immuni.2006.08.007.

2. S. Pestka, C. D. Krause, M. R. Walter, Interferons, interferon-like cytokines, and their receptors. *Immunol Rev* **202**, 8-32 (2004). https://doi.org/10.1111/j.0105-2896.2004.00204.x.

3. H. M. Lazear, J. W. Schoggins, M. S. Diamond, Shared and distinct functions of type I and type III interferons. *Immunity* **50**, 907-923 (2019). https://doi.org/10.1016/j.immuni.2019.03.025.

4. E. V. Mesev, R. A. LeDesma, A. Ploss, Decoding type I and III interferon signalling during viral infection. *Nat Microbiol* **4**, 914-924 (2019). https://doi.org/10.1038/s41564-019-0421-x.

5. G. Schreiber, The molecular basis for differential type I interferon signaling. *J Biol Chem* **292**, 7285-7294 (2017). https://doi.org/10.1074/jbc.R116.774562.

6. C. Thomas, I. Moraga, D. Levin, P. O. Krutzik, Y. Podoplelova, A. Trejo, C. Lee, G. Yarden, S. E. Vleck, J. S. Glenn, G. P. Nolan, J. Piehler, G. Schreiber, K. C. Garcia, Structural linkage between ligand discrimination and receptor activation by type I interferons. *Cell* **146**, 621-632 (2011). https://doi.org/10.1016/j.cell.2011.06.048.

7. T. Doyle, C. Goujon, M. H. Malim, HIV-1 and interferons: who's interfering with whom? *Nat Rev Microbiol* **13**, 403-413 (2015). https://doi.org/10.1038/nrmicro3449.
8. J. W. Schoggins, S. J. Wilson, M. Panis, M. Y. Murphy, C. T. Jones, P. Bieniasz, C. M. Rice, A diverse range of gene products are effectors of the type I interferon antiviral response. *Nature* **472**, 481-485 (2011). https://doi.org/10.1038/nature09907.

9. C. M. Berry, Understanding Interferon Subtype Therapy for Viral Infections: Harnessing the power of the innate immune system. *Cytokine Growth Factor Rev* **31**, 83-90 (2016). https://doi.org/10.1016/j.cytogfr.2016.08.001.

10. T. B. Lavoie, E. Kalie, S. Crisafulli-Cabatu, R. Abramovich, G. DiGioia, K. Moolchan, S. Pestka, G. Schreiber, Binding and activity of all human alpha interferon subtypes. *Cytokine* **56**, 282-289 (2011). https://doi.org/10.1016/j.cyto.2011.07.019.

11. H. P. Moll, T. Maier, A.Zommer, T. Lavoie, C. Brostjan, The differential activity of interferon-alpha subtypes is consistent among distinct target genes and cell types. *Cytokine* **53**, 52-59 (2011). https://doi.org/10.1016/j.cyto.2010.09.006.

12. R. Szubin, W. L. Chang, T. Greasby, L. Beckett, N. Baumgarth, Rigid interferon-alpha subtype responses of human plasmacytoid dendritic cells. *J Interferon Cytokine Res* **28**, 749-763 (2008). https://doi.org/10.1089/jir.2008.0037.

13. P. Borrow, Innate immunity in acute HIV-1 infection. *Curr Opin HIV AIDS* **6**, 353-363 (2011). https://doi.org/10.1097/COH.0b013e3283495996.

14. S. E. Bosinger, N. S. Utay, Type I interferon: understanding its role in HIV pathogenesis and therapy. *Curr HIV/AIDS Rep* **12**, 41-53 (2015). https://doi.org/10.1007/s11904-014-0244-6.

15. K. Nganou-Makamdop, D. C. Douek, Manipulating the interferon signaling pathway: Implications for HIV infection. *Virol Sin* **34**, 192-196 (2019). https://doi.org/10.1007/s12250-019-00085-5.

16. N. S. Utay, D. C. Douek, Interferons and HIV infection: The Good, the Bad, and the Ugly. *Pathog Immun* **1**, 107-116 (2016). https://doi.org/10.20411/pai.v1i1.125.
17. S. E. Bosinger, D. L. Sodora, G. Silvestri, Generalized immune activation and innate immune responses in simian immunodeficiency virus infection. *Curr Opin HIV AIDS* 6, 411-418 (2011). https://doi.org/10.1097/COH.0b013e3283499cf6.

18. A. R. Stacey, P. J. Norris, L. Qin, E. A. Haygreen, E. Taylor, J. Heitman, M. Lebedeva, A. DeCamp, D. Li, D. Grove, S. G. Self, P. Borrow, Induction of a striking systemic cytokine cascade prior to peak viremia in acute human immunodeficiency virus type 1 infection, in contrast to more modest and delayed responses in acute hepatitis B and C virus infections. *J Virol* 83, 3719-3733 (2009). https://doi.org/10.1128/JVI.01844-08.

19. K. Abel, D. M. Rocke, B. Chohan, L. Fritts, C. J. Miller, Temporal and anatomic relationship between virus replication and cytokine gene expression after vaginal simian immunodeficiency virus infection. *J Virol* 79, 12164-12172 (2005). https://doi.org/10.1128/JVI.79.19.12164-12172.2005.

20. Q. Li, J. D. Estes, P. M. Schlievert, L. Duan, A. J. Brosnahan, P. J. Southern, C. S. Reilly, M. L. Peterson, N. Schultz-Darken, K. G. Brunner, K. R. Nephew, S. Pambuccian, J. D. Lifson, J. V. Carlis, A. T. Haase, Glycerol monolaurate prevents mucosal SIV transmission. *Nature* 458, 1034-1038 (2009). https://doi.org/10.1038/nature07831.

21. N. G. Sandler, S. E. Bosinger, J. D. Estes, R. T. Zhu, G. K. Tharp, E. Boritz, D. Levin, S. Wijeyesinghe, K. N. Makamdop, G. Q. del Prete, B. J. Hill, J. K. Timmer, E. Reiss, G. Yarden, S. Darko, E. Contijoch, J. P. Todd, G. Silvestri, M. Nason, R. B. Norgren, Jr., B. F. Keele, S. Rao, J. A. Langer, J. D. Lifson, G. Schreiber, D. C. Douek, Type I interferon responses in rhesus macaques prevent SIV infection and slow disease progression. *Nature* 511, 601-605 (2014). https://doi.org/10.1038/nature13554.

22. R. S. Veazey, H. A. Pilch-Cooper, T. J. Hope, G. Alter, A. M. Carias, M. Sips, X. Wang, B. Rodriguez, S. F. Sieg, A. Reich, P. Wilkinson, M. J. Cameron, M. M. Lederman, Prevention of SHIV transmission by topical IFN-beta treatment. *Mucosal Immunol* 9, 1528-1536 (2016). https://doi.org/10.1038/mi.2015.146.
23. D. Carnathan, B. Lawson, J. Yu, K. Patel, J. M. Billingsley, G. K. Tharp, O. M. Delmas, R. Dawoud, P. Wilkinson, C. Nicolette, M. J. Cameron, R. P. Sekaly, S. E. Bosing, G. Silvestri, T. H. Vanderford, Reduced chronic lymphocyte activation following interferon alpha blockade during the acute phase of simian immunodeficiency virus infection in rhesus macaques. *J Virol* **92**, (2018). https://doi.org/10.1128/JVI.01760-17.

24. G. A. Hardy, S. Sieg, B. Rodriguez, D. Anthony, R. Asaad, W. Jiang, J. Mudd, T. Schacker, N. T. Funderburg, H. A. Pilch-Cooper, R. Debernardo, R. L. Rabin, M. M. Lederman, C. V. Harding, Interferon-alpha is the primary plasma type-I IFN in HIV-1 infection and correlates with immune activation and disease markers. *PLoS One* **8**, e56527 (2013). https://doi.org/10.1371/journal.pone.0056527.

25. A. R. Sedaghat, J. German, T. M. Teslovich, J. Cofrancesco, Jr., C. C. Jie, C. C. Talbot, Jr., R. F. Siliciano, Chronic CD4+ T-cell activation and depletion in human immunodeficiency virus type 1 infection: type I interferon-mediated disruption of T-cell dynamics. *J Virol* **82**, 1870-1883 (2008). https://doi.org/10.1128/JVI.02228-07.

26. H. Rempel, B. Sun, C. Calosing, S. K. Pillai, L. Pulliam, Interferon-alpha drives monocyte gene expression in chronic unsuppressed HIV-1 infection. *AIDS* **24**, 1415-1423 (2010). https://doi.org/10.1097/QAD.0b013e32833ac623.

27. S. Fernandez, S. Tanaskovic, K. Helbig, R. Rajasuriar, M. Kramski, J. M. Murray, M. Beard, D. Purcell, S. R. Lewin, P. Price, M. A. French, CD4+ T-cell deficiency in HIV patients responding to antiretroviral therapy is associated with increased expression of interferon-stimulated genes in CD4+ T cells. *J Infect Dis* **204**, 1927-1935 (2011). https://doi.org/10.1093/infdis/jir659.

28. G. Silvestri, D. L. Sodora, R. A. Koup, H. M. McClure, S. I. Staprans, M. B. Feinberg, Nonpathogenic SIV infection of sooty mangabeys is characterized by limited bystander immunopathology despite chronic high-level viremia. *Immunity* **18**, 441-452 (2003). https://doi.org/https://doi.org/10.1016/S1074-7613(03)00060-8.
29. S. M. Dillon, K. Guo, G. L. Austin, S. Gianella, P. A. Engen, E. A. Mutlu, J. Losurdo, G. Swanson, P. Chakradeo, A. Keshavarzian, A. L. Landay, M. L. Santiago, C. C. Wilson, A compartmentalized type I interferon response in the gut during chronic HIV-1 infection is associated with immunopathogenesis. *AIDS* **32**, 1599-1611 (2018). https://doi.org/10.1097/QAD.0000000000001863.

30. J. P. Herbeuval, A. Boasso, J. C. Grivel, A. W. Hardy, S. A. Anderson, M. J. Dolan, C. Chougnet, J. D. Lifson, G. M. Shearer, TNF-related apoptosis-inducing ligand (TRAIL) in HIV-1-infected patients and its in vitro production by antigen-presenting cells. *Blood* **105**, 2458-2464 (2005). https://doi.org/10.1182/blood-2004-08-3058.

31. D. Sauce, C. Elbim, V. Appay, Monitoring cellular immune markers in HIV infection: from activation to exhaustion. *Curr Opin HIV AIDS* **8**, 125-131 (2013). https://doi.org/10.1097/COH.0b013e32835d08a9.

32. S. Lederer, D. Favre, K. A. Walters, S. Proll, B. Kanwar, Z. Kasakow, C. R. Baskin, R. Palermo, J. M. McCune, M. G. Katze, Transcriptional profiling in pathogenic and non-pathogenic SIV infections reveals significant distinctions in kinetics and tissue compartmentalization. *PLoS Pathog* **5**, e1000296 (2009). https://doi.org/10.1371/journal.ppat.1000296.

33. S. E. Bosinger, Q. Li, S. N. Gordon, N. R. Klatt, L. Duan, L. Xu, N. Francellia, A. Sidahmed, A. J. Smith, E. M. Cramer, M. Zeng, D. Masopust, J. V. Carlis, L. Ran, T. H. Vanderford, M. Paiardini, R. B. Isett, D. A. Baldwin, J. G. Else, S. I. Staprans, G. Silvestri, A. T. Haase, D. J. Kelvin, Global genomic analysis reveals rapid control of a robust innate response in SIV-infected sooty mangabeys. *J Clin Invest* **119**, 3556-3572 (2009). https://doi.org/10.1172/JCI40115.

34. B. Jacquelin, V. Mayau, B. Targat, A. S. Liovat, D. Kunkel, G. Petitjean, M. A. Dillies, P. Roques, C. Butor, G. Silvestri, L. D. Giavedoni, P. Lebon, F. Barre-Sinoussi, A. Benecke, M. C. Muller-Trutwin, Nonpathogenic SIV infection of African green monkeys...
induces a strong but rapidly controlled type I IFN response. J Clin Invest 119, 3544-3555 (2009). https://doi.org/10.1172/JCI40093.

35. P. W. Hunt, HIV and inflammation: mechanisms and consequences. Curr HIV/AIDS Rep 9, 139-147 (2012). https://doi.org/10.1007/s11904-012-0118-8.

36. A. Soper, I. Kimura, S. Nagaoka, Y. Konno, K. Yamamoto, Y. Koyanagi, K. Sato, Type I interferon responses by HIV-1 infection: Association with disease progression and control. Front Immunol 8, 1823 (2017). https://doi.org/10.3389/fimmu.2017.01823.

37. D. M. Asmuth, R. L. Murphy, S. L. Rosenkranz, J. J. Lertora, S. Kottilil, Y. Cramer, E. S. Chan, R. T. Schooley, C. R. Rinaldo, N. Thielman, X. D. Li, S. M. Wahl, J. Shore, J. Janik, R. A. Lempicki, Y. Simpson, R. B. Pollard, A. C. T. G. A. Team, Safety, tolerability, and mechanisms of antiretroviral activity of pegylated interferon Alfa-2a in HIV-1-monoinfected participants: a phase II clinical trial. J Infect Dis 201, 1686-1696 (2010). https://doi.org/10.1086/652420.

38. L. Azzoni, A. S. Foulkes, E. Papasavvas, A. M. Mexas, K. M. Lynn, K. Mounzer, P. Tebas, J. M. Jacobson, I. Frank, M. P. Busch, S. G. Deeks, M. Carrington, U. O'Doherty, J. Kostman, L. J. Montaner, Pegylated Interferon alfa-2a monotherapy results in suppression of HIV type 1 replication and decreased cell-associated HIV DNA integration. J Infect Dis 207, 213-222 (2013). https://doi.org/10.1093/infdis/jis663.

39. F. Boue, J. Reynes, C. Rouzioux, D. Emilie, F. Souala, R. Tubiana, C. Goujard, R. Lancar, D. Costagliola, Alpha interferon administration during structured interruptions of combination antiretroviral therapy in patients with chronic HIV-1 infection: INTERVAC ANRS 105 trial. AIDS 25, 115-118 (2011). https://doi.org/10.1097/QAD.0b013e328340a1e7.

40. C. Goujard, D. Emilie, C. Roussillon, V. Godot, C. Rouzioux, A. Venet, C. Colin, G. Pialoux, P. M. Girard, V. Boilet, M. L. Chaix, P. Galanaud, G. Chene, A.-I. S. Group, Continuous versus intermittent treatment strategies during primary HIV-1 infection: the
randomized ANRS INTERPRIM Trial. AIDS 26, 1895-1905 (2012).

https://doi.org/10.1097/QAD.0b013e32835844d9.

41. A. Zhen, V. Rezek, C. Youn, B. Lam, N. Chang, J. Rick, M. Carrillo, H. Martin, S. Kasparian, P. Syed, N. Rice, D. G. Brooks, S. G. Kitchen, Targeting type I interferon-mediated activation restores immune function in chronic HIV infection. J Clin Invest 127, 260-268 (2017). https://doi.org/10.1172/JCI89488.

42. L. Cheng, J. Ma, J. Li, D. Li, G. Li, F. Li, Q. Zhang, H. Yu, F. Yasui, C. Ye, L. C. Tsao, Z. Hu, L. Su, L. Zhang, Blocking type I interferon signaling enhances T cell recovery and reduces HIV-1 reservoirs. J Clin Invest 127, 269-279 (2017). https://doi.org/10.1172/JCI90745.

43. X. Wei, J. M. Decker, S. Wang, H. Hui, J. C. Kappes, X. Wu, J. F. Salazar-Gonzalez, M. G. Salazar, J. M. Kilby, M. S. Saag, N. L. Komarova, M. A. Nowak, B. H. Hahn, P. D. Kwong, G. M. Shaw, Antibody neutralization and escape by HIV-1. Nature 422, 307-312 (2003). https://doi.org/10.1038/nature01470.

44. K. J. Bar, C. Y. Tsao, S. S. Iyer, J. M. Decker, Y. Yang, M. Bonsignori, X. Chen, K. K. Hwang, D. C. Montefiori, H. X. Liao, P. Hraber, W. Fischer, H. Li, S. Wang, S. Sterrett, B. F. Keele, V. V. Ganusov, A. S. Perelson, B. T. Korber, I. Georgiev, J. S. McLellan, J. W. Pavlicek, F. Gao, B. F. Haynes, B. H. Hahn, P. D. Kwong, G. M. Shaw, Early low-titer neutralizing antibodies impede HIV-1 replication and select for virus escape. PLoS Pathog 8, e1002721 (2012). https://doi.org/10.1371/journal.ppat.1002721.

45. P. Borrow, H. Lewicki, X. Wei, M. S. Horwitz, N. Peffer, H. Meyers, J. A. Nelson, J. E. Gairin, B. H. Hahn, M. B. Oldstone, G. M. Shaw, Antiviral pressure exerted by HIV-1-specific cytotoxic T lymphocytes (CTLs) during primary infection demonstrated by rapid selection of CTL escape virus. Nat Med 3, 205-211 (1997). https://doi.org/10.1038/nm0297-205.
46. N. Goonetilleke, M. K. Liu, J. F. Salazar-Gonzalez, G. Ferrari, E. Giorgi, V. V. Ganusov, B. F. Keele, G. H. Learn, E. L. Turnbull, M. G. Salazar, K. J. Weinhold, S. Moore, C. C. C. B. N. Letvin, B. F. Haynes, M. S. Cohen, P. Hraber, T. Bhattacharya, P. Borrow, A. S. Perelson, B. H. Hahn, G. M. Shaw, B. T. Korber, A. J. McMichael, The first T cell response to transmitted/founder virus contributes to the control of acute viremia in HIV-1 infection. *J Exp Med* **206**, 1253-1272 (2009). https://doi.org/10.1084/jem.20090365.

47. A. S. Perelson, A. U. Neumann, M. Markowitz, J. M. Leonard, D. D. Ho, HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. *Science* **271**, 1582-1586 (1996). https://doi.org/10.1126/science.271.5255.1582.

48. B. Ramratnam, S. Bonhoeffer, J. Binley, A. Hurley, L. Zhang, J. E. Mittler, M. Markowitz, J. P. Moore, A. S. Perelson, D. D. Ho, Rapid production and clearance of HIV-1 and hepatitis C virus assessed by large volume plasma apheresis. *Lancet* **354**, 1782-1785 (1999). https://doi.org/10.1016/S0140-6736(99)02035-8.

49. N. F. Parrish, F. Gao, H. Li, E. E. Giorgi, H. J. Barbian, E. H. Parrish, L. Zajic, S. S. Iyer, J. M. Decker, A. Kumar, B. Hora, A. Berg, F. Cai, J. Hopper, T. N. Denny, H. Ding, C. Ochsenbauer, J. C. Kappes, R. P. Galimidi, A. P. West, Jr., P. J. Bjorkman, C. B. Wilen, R. W. Doms, M. O'Brien, N. Bhardwaj, P. Borrow, B. F. Haynes, M. Muldoon, J. P. Theiler, B. Korber, G. M. Shaw, B. H. Hahn, Phenotypic properties of transmitted founder HIV-1. *Proc Natl Acad Sci U S A* **110**, 6626-6633 (2013). https://doi.org/10.1073/pnas.1304288110.

50. S. S. Iyer, F. Bibollet-Ruche, S. Sherrill-Mix, G. H. Learn, L. Plenderleith, A. G. Smith, H. J. Barbian, R. M. Russell, M. V. Gondim, C. Y. Bahari, C. M. Shaw, Y. Li, T. Decker, B. F. Haynes, G. M. Shaw, P. M. Sharp, P. Borrow, B. H. Hahn, Resistance to type 1 interferons is a major determinant of HIV-1 transmission fitness. *Proc Natl Acad Sci U S A* **114**, E590-E599 (2017). https://doi.org/10.1073/pnas.1620144114.
51. M. S. Kunzi, H. Farzadegan, J. B. Margolick, D. Vlahov, P. M. Pitha, Identification of human immunodeficiency virus primary isolates resistant to interferon-alpha and correlation of prevalence to disease progression. *J Infect Dis* **171**, 822-828 (1995). https://doi.org/10.1093/infdis/171.4.822.

52. B. R. Edlin, M. H. St Clair, P. M. Pitha, S. M. Whaling, D. M. King, J. D. Bitran, R. A. Weinstein, In-vitro resistance to zidovudine and alpha-interferon in HIV-1 isolates from patients: correlations with treatment duration and response. *Ann Intern Med* **117**, 457-460 (1992). https://doi.org/10.7326/0003-4819-117-6-457.

53. J. F. Salazar-Gonzalez, E. Bailes, K. T. Pham, M. G. Salazar, M. B. Guffey, B. F. Keele, C. A. Derdeyn, P. Farmer, E. Hunter, S. Allen, O. Manigart, J. Mulenga, J. A. Anderson, R. Swanstrom, B. F. Haynes, G. S. Athreya, B. T. Korber, P. M. Sharp, G. M. Shaw, B. H. Hahn, Deciphering human immunodeficiency virus type 1 transmission and early envelope diversification by single-genome amplification and sequencing. *J Virol* **82**, 3952-3970 (2008). https://doi.org/10.1128/JVI.02660-07.

54. B. F. Keele, E. E. Giorgi, J. F. Salazar-Gonzalez, J. M. Decker, K. T. Pham, M. G. Salazar, C. Sun, T. Grayson, S. Wang, H. Li, X. Wei, C. Jiang, J. L. Kirchherr, F. Gao, J. A. Anderson, L. H. Ping, R. Swanstrom, G. D. Tomaras, W. A. Blattner, P. A. Goepfert, J. M. Kilby, M. S. Saag, E. L. Delwart, M. P. Busch, M. S. Cohen, D. C. Montefiori, B. F. Haynes, B. Gaschen, G. S. Athreya, H. Y. Lee, N. Wood, C. Seoighe, A. S. Perelson, T. Bhattacharya, B. T. Korber, B. H. Hahn, G. M. Shaw, Identification and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection. *Proc Natl Acad Sci U S A* **105**, 7552-7557 (2008). https://doi.org/10.1073/pnas.0802203105.

55. F. Gao, M. Bonsignori, H. X. Liao, A. Kumar, S. M. Xia, X. Lu, F. Cai, K. K. Hwang, H. Song, T. Zhou, R. M. Lynch, S. M. Alam, M. A. Moody, G. Ferrari, M. Berrong, G. Kelsoe, G. M. Shaw, B. H. Hahn, D. C. Montefiori, G. Kamanga, M. S. Cohen, P. Hraber, P. D. Kwong, B. T. Korber, J. R. Mascola, T. B. Kepler, B. F. Haynes, Cooperation of B
cell lineages in induction of HIV-1-broadly neutralizing antibodies. *Cell* **158**, 481-491 (2014). https://doi.org/10.1016/j.cell.2014.06.022.

56. M. Bonsignori, E. F. Kreider, D. Fera, R. R. Meyerhoff, T. Bradley, K. Wiehe, S. M. Alam, B. Aussedat, W. E. Walkowicz, K. K. Hwang, K. O. Saunders, R. Zhang, M. A. Gladden, A. Monroe, A. Kumar, S. M. Xia, M. Cooper, M. K. Louder, K. McKe, R. T. Bailer, B. W. Pier, C. A. Jette, G. Kelsoe, W. B. Williams, L. Morris, J. Kappes, K. Wagh, G. Kamanga, M. S. Cohen, P. T. Hraber, D. C. Montefiori, A. Trama, H. X. Liao, T. B. Kepler, M. A. Moody, F. Gao, S. J. Danishefsky, J. R. Mascola, G. M. Shaw, B. H. Hahn, S. C. Harrison, B. T. Korber, B. F. Haynes, Staged induction of HIV-1 glycan-dependent broadly neutralizing antibodies. *Sci Transl Med* **9**, (2017). https://doi.org/10.1126/scitranslmed.aai7514.

57. K. Wagh, E. F. Kreider, Y. Li, H. J. Barbian, G. H. Learn, E. Giorgi, P. T. Hraber, T. G. Decker, A. G. Smith, M. V. Gondim, L. Gillis, J. Wandzilak, G. Y. Chuang, R. Rawi, F. Cai, P. Pellegrino, I. Williams, J. Overbaugh, F. Gao, P. D. Kwong, B. F. Haynes, G. M. Shaw, P. Borrow, M. S. Seaman, B. H. Hahn, B. Korber, Completeness of HIV-1 envelope glycan shield at transmission determines neutralization breadth. *Cell Rep* **25**, 893-908 e897 (2018). https://doi.org/10.1016/j.celrep.2018.09.087.

58. A. Gelman, J. B. Carlin, H. S. Stern, D. B. Rubin, *Bayesian Data Analysis, Second Edition (Texts in Statistical Science)*. (Chapman & Hall/CRC 2003).

59. A. E. Fenton-May, O. Dibben, T. Emmerich, H. Ding, K. Pfafferott, M. M. Aasa-Chapman, P. Pellegrino, I. Williams, M. S. Cohen, F. Gao, G. M. Shaw, B. H. Hahn, C. Ochsenbauer, J. C. Kappes, P. Borrow, Relative resistance of HIV-1 founder viruses to control by interferon-alpha. *Retrovirology* **10**, 146 (2013). https://doi.org/10.1186/1742-4690-10-146.
60. G. M. Laird, E. E. Eisele, S. A. Rabi, J. Lai, S. Chioma, J. N. Blankson, J. D. Siliciano, R. F. Siliciano, Rapid quantification of the latent reservoir for HIV-1 using a viral outgrowth assay. *PLoS Pathog* **9**, e1003398 (2013). https://doi.org/10.1371/journal.ppat.1003398.

61. J. C. Lorenzi, Y. Z. Cohen, L. B. Cohn, E. F. Kreider, J. P. Barton, G. H. Learn, T. Oliveira, C. L. Lavine, J. A. Horwitz, A. Settler, M. Jankovic, M. S. Seaman, A. K. Chakraborty, B. H. Hahn, M. Caskey, M. C. Nussenzweig, Paired quantitative and qualitative assessment of the replication-competent HIV-1 reservoir and comparison with integrated proviral DNA. *Proc Natl Acad Sci U S A* **113**, E7908-E7916 (2016). https://doi.org/10.1073/pnas.1617789113.

62. P. Mendoza, H. Gruell, L. Nogueira, J. A. Pai, A. L. Butler, K. Millard, C. Lehmann, I. Suarez, T. Y. Oliveira, J. C. C. Lorenzi, Y. Z. Cohen, C. Wyen, T. Kummerle, T. Karagounis, C. L. Lu, L. Handl, C. Unson-O'Brien, R. Patel, C. Ruping, M. Schlotz, M. Witmer-Pack, I. Shimeliovich, G. Kremer, E. Thomas, K. E. Seaton, J. Horowitz, A. P. West, Jr., P. J. Bjorkman, G. D. Tomaras, R. M. Gulick, N. Pfeifer, G. Fatkenheuer, M. S. Seaman, M. Klein, M. Caskey, M. C. Nussenzweig, Combination therapy with anti-HIV-1 antibodies maintains viral suppression. *Nature* **561**, 479-484 (2018). https://doi.org/10.1038/s41586-018-0531-2.

63. K. J. Bar, M. C. Sneller, L. J. Harrison, J. S. Justement, E. T. Overton, M. E. Petrone, D. B. Salantes, C. A. Seamon, B. Scheinfeld, R. W. Kwan, G. H. Learn, M. A. Proschan, E. F. Kreider, J. Blazkova, M. Bardsley, E. W. Refsland, M. Messer, K. E. Clarridge, N. B. Tustin, P. J. Madden, K. Oden, S. J. O'Dell, B. Jarocki, A. R. Shiakolas, R. L. Tressler, N. A. Doria-Rose, R. T. Bailer, J. E. Ledgerwood, E. V. Capparelli, R. M. Lynch, B. S. Graham, S. Moir, R. A. Koup, J. R. Mascola, J. A. Hoxie, A. S. Fauci, P. Tebas, T. W. Chun, Effect of HIV antibody VRC01 on viral rebound after treatment interruption. *N Engl J Med* **375**, 2037-2050 (2016). https://doi.org/10.1056/NEJMoa1608243.
64. D. B. Salantes, Y. Zheng, F. Mampe, T. Srivastava, S. Beg, J. Lai, J. Z. Li, R. L. Tressler, R. A. Koup, J. Hoxie, M. Abdel-Mohsen, S. Sherrill-Mix, K. McCormick, E. T. Overton, F. D. Bushman, G. H. Learn, R. F. Siliciano, J. M. Siliciano, P. Tebas, K. J. Bar, HIV-1 latent reservoir size and diversity are stable following brief treatment interruption. *J Clin Invest* **128**, 3102-3115 (2018). https://doi.org/10.1172/JCI120194.

65. E. Papasavvas, J. R. Kostman, K. Mounzer, R. M. Grant, R. Gross, C. Gallo, L. Azzoni, A. Foulkes, B. Thiel, M. Pistilli, A. Mackiewicz, J. Shull, L. J. Montaner, Randomized, controlled trial of therapy interruption in chronic HIV-1 infection. *PLoS Med* **1**, e64 (2004). https://doi.org/10.1371/journal.pmed.0010064.

66. Y. Z. Cohen, J. C. C. Lorenzi, L. Krassnig, J. P. Barton, L. Burke, J. Pai, C. L. Lu, P. Mendoza, T. Y. Oliveira, C. Sleckman, K. Millard, A. L. Butler, J. P. Dizon, S. A. Belblidia, M. Witmer-Pack, I. Shimeliovich, R. M. Gulick, M. S. Seaman, M. Jankovic, M. Caskey, M. C. Nussenzweig, Relationship between latent and rebound viruses in a clinical trial of anti-HIV-1 antibody 3BNC117. *J Exp Med* **215**, 2311-2324 (2018). https://doi.org/10.1084/jem.20180936.

67. L. Azzoni, E. Papasavvas, J. Kostman, P. Tebas, K. Mounzer, I. Frank, K. M. Lynn, L. Lalley-Chareczko, R. Feng, S. Appel, B. Howell, D. Holder, S. L. Goh, G. Wu, L. M. Montaner, paper presented at the Conference on Retroviruses and Opportunistic Infections, Seattle Washington, 2019. Interferon α2b reduces inducible CD4-associated HIV in ART-suppressed individuals.

68. M. Markowitz, M. Louie, A. Hurley, E. Sun, M. Di Mascio, A. S. Perelson, D. D. Ho, A novel antiviral intervention results in more accurate assessment of human immunodeficiency virus type 1 replication dynamics and T-cell decay in vivo. *J Virol* **77**, 5037-5038 (2003). https://doi.org/10.1128/jvi.77.8.5037-5038.2003.

69. T. L. Foster, H. Wilson, S. S. Iyer, K. Coss, K. Doores, S. Smith, P. Kellam, A. Finzi, P. Borrow, B. H. Hahn, S. J. D. Neil, Resistance of transmitted founder HIV-1 to IFITM-
mediated restriction. *Cell Host Microbe* **20**, 429-442 (2016).

https://doi.org/10.1016/j.chom.2016.08.006.

70. D. R. Collins, G. D. Gaiha, B. D. Walker, CD8(+) T cells in HIV control, cure and prevention. *Nat Rev Immunol*, (2020). https://doi.org/10.1038/s41577-020-0274-9.

71. L. D. Harris, B. Tabb, D. L. Sodora, M. Paiardini, N. R. Klatt, D. C. Douek, G. Silvestri, M. Muller-Trutwin, I. Vasile-Pandrea, C. Apetrei, V. Hirsch, J. Lifson, J. M. Brenchley, J. D. Estes, Downregulation of robust acute type I interferon responses distinguishes nonpathogenic simian immunodeficiency virus (SIV) infection of natural hosts from pathogenic SIV infection of rhesus macaques. *J Virol* **84**, 7886-7891 (2010).

https://doi.org/10.1128/JVI.02612-09.

72. Q. Li, A. J. Smith, T. W. Schacker, J. V. Carlis, L. Duan, C. S. Reilly, A. T. Haase, Microarray analysis of lymphatic tissue reveals stage-specific, gene expression signatures in HIV-1 infection. *J Immunol* **183**, 1975-1982 (2009).

https://doi.org/10.4049/jimmunol.0803222.

73. M. von Sydow, A. Sonnerborg, H. Gaines, O. Strannegard, Interferon-alpha and tumor necrosis factor-alpha in serum of patients in various stages of HIV-1 infection. *AIDS Res Hum Retroviruses* **7**, 375-380 (1991). https://doi.org/10.1089/aid.1991.7.375.

74. M. R. Betts, J. F. Krowka, T. B. Kepler, M. Davidian, C. Christopherson, S. Kwok, L. Louie, J. J. Eron, H. Sheppard, J. A. Frelinger, Human immunodeficiency virus type 1-specific cytotoxic T lymphocyte activity Is inversely correlated with HIV type 1 viral load in HIV type 1-infected long-term survivors. *AIDS Res Hum Retroviruses* **15**, 1219-1228 (2004). https://doi.org/10.1089/088922299310313.

75. J. A. Warren, G. Clutton, N. Goonetilleke, Harnessing CD8(+) T cells under HIV antiretroviral therapy. *Front Immunol* **10**, 291 (2019).

https://doi.org/10.3389/fimmu.2019.00291.
76. M. Bonsignori, M. A. Moody, R. J. Parks, T. M. Holl, G. Kelsoe, C. B. Hicks, N. Vandergrift, G. D. Tomaras, B. F. Haynes, HIV-1 envelope induces memory B cell responses that correlate with plasma antibody levels after envelope gp120 protein vaccination or HIV-1 infection. *J Immunol* **183**, 2708-2717 (2009). https://doi.org/10.4049/jimmunol.0901068.

77. J. L. Mitchell, H. Takata, R. Muir, D. J. Colby, E. Kroon, T. A. Crowell, C. Sacdalan, S. Pinyakorn, S. Puttasawin, K. Benjaponpong, R. Trichavaroj, R. L. Tressler, L. Fox, V. R. Polonis, D. L. Bolton, F. Maldarelli, S. R. Lewin, E. K. Haddad, P. Phanuphak, M. L. Robb, N. L. Michael, M. de Souza, N. Phanuphak, J. Ananworanich, L. Trautmann, R. V. Rv, R. V. S. Groups, Plasmacytoid dendritic cells sense HIV replication before detectable viremia following treatment interruption. *J Clin Invest* **130**, 2845-2858 (2020). https://doi.org/10.1172/JCI130597.

78. A. Ugarte, Y. Romero, A. Tricas, C. Casado, C. Lopez-Galinex, F. Garcia, L. Leal, Unintended HIV-1 infection during analytical therapy interruption. *J Infect Dis* **221**, 1740-1742 (2020). https://doi.org/10.1093/infdis/jiz611.

79. J. D. Lelievre, L. Hocqueloux, Unintended HIV-1 transmission to a sex partner in a study of a therapeutic vaccine candidate. *J Infect Dis* **220**, S5-S6 (2019). https://doi.org/10.1093/infdis/jiz012.

80. M. R. Abrahams, S. B. Joseph, N. Garrett, L. Tyers, M. Moeser, N. Archin, O. D. Council, D. Matten, S. Zhou, D. Doolabh, C. Anthony, N. Goonetilleke, S. A. Karim, D. M. Margolis, S. K. Pond, C. Williamson, R. Swanstrom, The replication-competent HIV-1 latent reservoir is primarily established near the time of therapy initiation. *Sci Transl Med* **11**, (2019). https://doi.org/10.1126/scitranslmed.aaw5589.

81. B. Julg, L. Dee, J. Ananworanich, D. H. Barouch, K. Bar, M. Caskey, D. J. Colby, L. Dawson, K. L. Dong, K. Dube, J. Eron, J. Frater, R. T. Gandhi, R. Gelezunimas, P. Goulder, G. J. Hanna, R. Jefferys, R. Johnston, D. Kuritzkes, J. Z. Li, U. Likhitwonnawut,
J. van Lunzen, J. Martinez-Picado, V. Miller, L. J. Montaner, D. F. Nixon, D. Palm, G. Pantaleo, H. Peay, D. Persaud, J. Salzwedel, K. Salzwedel, T. Schacker, V. Sheikh, O. S. Sogaard, S. Spudich, K. Stephenson, J. Sugarman, J. Taylor, P. Tebas, C. T. Tiemessen, R. Tressler, C. D. Weiss, L. Zheng, M. L. Robb, N. L. Michael, J. W. Mellors, S. G. Deeks, B. D. Walker, Recommendations for analytical antiretroviral treatment interruptions in HIV research trials-report of a consensus meeting. *Lancet HIV* 6, e259-e268 (2019). https://doi.org/10.1016/S2352-3018(19)30052-9.

82. E. N. Borducchi, J. Liu, J. P. Nkolola, A. M. Cadena, W. H. Yu, S. Fischinger, T. Broge, P. Abbink, N. B. Mercado, A. Chandrashekar, D. Jetton, L. Peter, K. McMahan, E. T. Moseley, E. Bekerman, J. Hesselgesser, W. Li, M. G. Lewis, G. Alter, R. Gelezunias, D. H. Barouch, Antibody and TLR7 agonist delay viral rebound in SHIV-infected monkeys. *Nature* 563, 360-364 (2018). https://doi.org/10.1038/s41586-018-0600-6.

83. L. K. Vibholm, C. V. Konrad, M. H. Schleimann, G. Frattari, A. Winckelmann, V. Klastrup, N. M. Jensen, S. S. Jensen, M. Schmidt, B. Wittig, K. Zuwala, K. Mack, R. Olesen, S. Hua, M. Lichterfeld, L. Ostergaard, P. W. Denton, M. Tolstrup, O. S. Sogaard, Effects of 24-week Toll-like receptor 9 agonist treatment in HIV type 1+ individuals. *AIDS* 33, 1315-1325 (2019). https://doi.org/10.1097/QAD.0000000000002213.

84. D. M. Margolis, J. V. Garcia, D. J. Hazuda, B. F. Haynes, Latency reversal and viral clearance to cure HIV-1. *Science* 353, aaf6517 (2016). https://doi.org/10.1126/science.aaf6517.

85. E. Papasavvas, L. Azzoni, A. V. Kossenkov, N. Dawany, K. H. Morales, M. Fair, B. N. Ross, K. Lynn, A. Mackiewicz, K. Mounzer, P. Tebas, J. M. Jacobson, J. R. Kostman, L. Showe, L. J. Montaner, NK response correlates with HIV decrease in pegylated IFN-alpha2a-treated antiretroviral therapy-suppressed subjects. *J Immunol* 203, 705-717 (2019). https://doi.org/10.4049/jimmunol.1801511.
86. J. F. Salazar-Gonzalez, M. G. Salazar, B. F. Keele, G. H. Learn, E. E. Giorgi, H. Li, J. M. Decker, S. Wang, J. Baalwa, M. H. Kraus, N. F. Parrish, K. S. Shaw, M. B. Guffey, K. J. Bar, K. L. Davis, C. Ochsenbauer-Jambor, J. C. Kappes, M. S. Saag, M. S. Cohen, J. Mulenga, C. A. Derdeyn, S. Allen, E. Hunter, M. Markowitz, P. Hraber, A. S. Perelson, T. Bhattacharya, B. F. Haynes, B. T. Korber, B. H. Hahn, G. M. Shaw, Genetic identity, biological phenotype, and evolutionary pathways of transmitted/founder viruses in acute and early HIV-1 infection. *J Exp Med* **206**, 1273-1289 (2009). https://doi.org/10.1084/jem.20090378.

87. F. Sievers, A. Wilm, D. Dineen, T. J. Gibson, K. Karplus, W. Li, R. Lopez, H. McWilliam, M. Remmert, J. Soding, J. D. Thompson, D. G. Higgins, Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. *Mol Syst Biol* **7**, 539 (2011). https://doi.org/10.1038/msb.2011.75.

88. A. Stamatakis, RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. *Bioinformatics* **30**, 1312-1313 (2014). https://doi.org/10.1093/bioinformatics/btu033.

89. J. Maydt, T. Lengauer, Recco: recombination analysis using cost optimization. *Bioinformatics* **22**, 1064-1071 (2006). https://doi.org/10.1093/bioinformatics/btl057.

90. The R Project for Statistical Computing. https://www.r-project.org/.

91. B. Carpenter, A. Gelman, M. D. Hoffman, D. Lee, B. Goodrich, M. Betancourt, M. Brubaker, J. Guo, P. Li, A. Riddell, Stan: A Probabilistic Programming Language. *Journal of Statistical Software* **76**, (2017). https://doi.org/10.18637/jss.v076.i01.
Acknowledgments

We thank G. H. Learn for sequence analysis, S.S. Iyer for expertise in IFN-I resistance testing, K. Ruffin for preparation of the manuscript and the participants who generously volunteered for these studies.

Funding

This work was supported in part by grants from the National Institutes of Health (U01 AI 129825 to M.C., U01 AI 065279 to L.J.M., UM1 AI 126620 to L.J.M., K.J.B., and B.H.H., P30 AI 045008 to R.G.C, L.J.M., K.J.B., and B.H.H., UM1 AI 126619 to P.B., UM1 Al100663 to M.C.N., R01 AI 111789 to B.H.H., R01 AI 114266 to B.H.H.), the Medical Research Council (MR/K012037 to P.B.) and the Bill and Melinda Gates Foundation (Collaboration for AIDS Vaccine Discovery grant OPP1092074 to M.C. N.). S.S.-M. and R.M.R. were supported by a training grant (T32 AI 007632). P.B. is a Jenner Institute Investigator.

Author contributions

M.V.P.G., S.S.-M., F.B.-R., R.M.R., G.M.S., P.B., K.J.B. and B.H.H. conceived and planned the study; M.V.P.G., F.B.-R., S.T., A.G.S., Y.L., W.L., A.N.A., J.D., and J.C. performed sequence analyses; M.V.P.G, S.S.-M., F.B.-R., R.M.R. and S.T. isolated virus and determined IFN-I IC50 values; L.J.P. and P.M.S. performed evolutionary analyses; S.S.-M. performed statistical analyses; A.E.F-M., P.P., I.W., E.P., J.C.C.L., D.B.S., F. M., M.A.M., Y.Z.C., S.H., M.S.G., L.J.M., R.G.C., J.M.S., R.F.S., M.C., M.C.N., P.B., K.J.B. conducted clinical trials, provided patient material, performed serological analyses, and performed outgrowth assays; M.V.P.G., S.S.-M. P.B., K.J.B. and B.H.H. coordinated the contributions of all authors and wrote the manuscript.

Competing interests
The authors declare no competing financial interests.

Data and materials availability

HIV-1 sequences have been deposited in GenBank as listed in table S5. Analysis code is available at https://github.com/sherrillmix/ifnDynamicsModels and will be archived on Zenodo prior to publication.

Figure captions

Fig. 1. HIV-1 viral loads and CD4+ T cell counts in prospectively studied individuals. Viral loads (RNA copies/ml; red) and CD4+ T cell counts (cells/µl; blue) are shown for 10 acutely infected individuals (y-axis), who were followed from the onset of symptoms until 213 - 645 weeks (4.1 - 12.4 years) post-infection (x-axis). Participants are grouped based on disease progression, with (A) including typical progressors, (B) non-progressors, and (C) rapid progressors. Gray shading indicates suppressive antiretroviral therapy (alternating shading in WEAU indicates non-suppressive zidovudine monotherapy). Purple arrows denote the time points of PBMC samples that yielded QVOA isolates, open triangles denote superinfection, and dashed vertical lines indicate termination of the study or loss to follow up.

Fig. 2. Kinetics of IFN-I resistance over the course of HIV-1 infection. IFNα2 (A-C) and IFNβ (D-F) IC50 values (pg/ml) are shown for limiting dilution (circles) and bulk culture-derived (squares) plasma isolates from the onset of symptoms until 140 - 466 weeks (2.7 – 8.9 years) post-infection (yellow squares indicate bulk isolates from plasma samples that also yielded limiting dilution isolates). Colored lines denote the average IC50 values as estimated by a Bayesian model, with darker shading indicating the 95% credible and lighter shading the 95% prediction intervals, respectively. Gray shading indicates suppressive antiretroviral therapy
(alternating shading in WEAU indicates non-suppressive zidovudine monotherapy). Blue circles indicate isolates obtained by viral outgrowth from CD4+ T cells after years of suppressive ART. Open triangles denote superinfection (fig. S2). Participants are grouped as in Fig. 1, with panels A, B and C showing typical progressors (orange), non-progressors (green), and rapid progressors (pink), respectively.

Fig. 3. Position of QVOA isolates within the evolving HIV-1 quasispecies. The evolutionary relationships of env nucleotide sequences generated by SGA either directly from plasma viral RNA or plasma viral isolates of participant MM34 are shown for a 6-year time period. Samples are colored by time point, with blue sequences derived early and red sequences derived late in infection. Purple leaves indicate the position of QVOA isolates obtained 2 and 3 years following ART initiation, while grey leaves indicate proviral sequences amplified from the corresponding PBMC sample (more detailed versions of this and phylogenetic trees from other participants are shown in fig. S2). One hypermutated PBMC-derived sequence is shown with a gap in the branch. The scale bar indicates 0.05 substitutions per site.

Fig. 4. IFN-I resistance of QVOA versus rebound viruses. (A, C) IFNα2 (A) and IFNβ (C) IC\textsubscript{50} values are shown for plasma isolates of individuals experiencing rebound viremia after ART cessation (red) and QVOA isolates generated from the PBMCs of ART suppressed individuals before (blue) or after (turquoise) ATI. Isolates are grouped by individuals (shaded boxes), with pre-ATI, rebound, and post-ATI isolates depicted in temporal order when available (see table S4 for details). Also shown are the IFNα2 (A) and IFNβ (C) IC\textsubscript{50} values for outgrowth isolates (blue) and plasma viruses (grey) from the longitudinal cohort (Fig. 2) as well as previously reported donor-recipient transmission pairs (50). For the latter, IC\textsubscript{50} values were adjusted to account for potency differences among commercial IFN-I batches. Squares indicate isolates from fast progressing individuals. (B, D) The fold-change in IFNα2 and IFNβ IC\textsubscript{50} values from acute
infection isolates is shown for rebound (red), chronic (grey), and pre-ATI (blue) and post-ATI (turquoise) QVOA isolates (see Supplementary Methods for a description of the Bayesian model). Violin plots indicate the estimated posterior probability of the mean fold change between isolate types, with the darker shading indicating the 95% credible interval and the lighter the 95% prediction interval. Dashed horizontal line indicates a fold change of 1 (which indicates no change).

Fig. 5. Genotype and IFN-I phenotype of rebound and outgrowth viruses before and after treatment interruption in a single individual. The phylogenetic relationships of env gene sequences from pre-ATI QVOA (blue), plasma rebound (red) and post-ATI QVOA (turquoise) isolates are shown for participant A08, along with available IFNα2 and IFNβ IC₅₀ values (pg/ml). Asterisks indicate bootstrap values >90%; the scale bar indicates 0.01 substitution per site. A clade of near identical rebound and QVOA isolates is highlighted by a bracket, with the two post-ATI QVOA isolates with elevated IFN-I resistance denoted by arrows.

Supplementary Materials

Supplementary Methods

Fig. S1. Transmitted founder virus inference and enumeration. Highlighter (v2.1.1) plots and associated phylogenetic trees of SGA and limiting dilution isolate derived env gene sequences are shown for the first available plasma sample of eight study participants. Tick marks indicate differences from the inferred TF sequence depicted in bold on top (red, T; green, A; blue, C; orange, G; gray, indel). Participants MM14, MM34 and MM40 were infected with more than one transmitted founder virus (highlighted in bold). Trees were constructed using the neighbor-joining method implemented in the Highlighter v2.1.1 software (hiv.lanl.gov).
Sequences obtained from plasma isolates are indicated by an asterisk. The scale bar indicated 1 base pair. Participants MM39 and WEAU were each infected with a single transmitted founder virus as reported previously (54, 57).

Fig. S2. HIV-1 quasispecies diversification over time. A maximum likelihood tree depicting the phylogenetic relationships of env nucleotide sequences amplified either directly from uncultured plasma (PLAS.SGS) or PBMCs (PBMC.SGS), or generated from limiting dilution-derived plasma (PLAS.ISO) and PBMC (PBMC.QVOA) viral isolates, is shown for each of 10 prospectively sampled individuals. Sequences are colored by time point (indicated in the sequence name), with blue (earliest samples) transitioning to red (latest samples) as in Fig. 3. Purple leaves indicates PBMC derived outgrowth viruses obtained after years of suppressive ART, while grey leaves indicate SGA sequences amplified directly from the corresponding PBMCs. Each leaf is labeled to indicate the individual, source, days post onset of symptoms, and a sequence or isolate identifier (see tables S1 and S2 for details). Asterisks indicate recombinants. A gap in a branch accommodates hypermutated sequences. The scale bar indicates 0.05 substitutions per site.

Fig. S3. Determination of IFN-I IC\textsubscript{50} values. Dose response curves showing the effect of increasing amounts of IFNα2 (A) and IFNβ (B) on the replication potential of limiting dilution plasma viral isolates from participant MM33 are shown for individual timepoints with days following onset of symptoms (DFOXs) indicated or combined (last panel). Curves are colored by timepoint. Dashed horizontal lines indicate the half-maximal inhibitory concentration (IC\textsubscript{50}).

Fig. S4. Dynamic changes in IFN-I resistance over the course of HIV-1 infection. A hierarchical Bayesian change point model was used to estimate the IFN-I resistance of plasma viral isolates in 10 longitudinally sampled HIV-1 infected study participants. The model allowed
the inference of longitudinal patterns of IFN\(\alpha\)2 and IFN\(\beta\) IC\(50\) values across individuals by first predicting resistance as a fall from acute levels to a nadir point and then as variation from nadir levels based on changes in CD4+ T cell counts. (A-B) Predicted mean IFN\(\alpha\)2 (A) or IFN\(\beta\) (B) IC\(50\) values (lines) are shown for plasma virus isolates modelled for typical progressor (orange), non-progressor (green) and rapid progressor (pink) participants from the time of transmission over the early course of infection (the x-axis shows weeks from onset of symptoms), along with corresponding 95% credible (darker shading) and prediction (lighter shading) intervals. (C-D) Predicted mean IFN\(\alpha\)2 (C) or IFN\(\beta\) (B) IC\(50\) values (lines) are shown for plasma virus isolates modeled for individual typical progressor (orange), non-progressor (green) and rapid progressor (pink) participants based on changes in CD4+ T cell counts following the nadir (the x-axis shows decreases and increases from the nadir which is set to 0), along with corresponding 95% credible (darker shading) and prediction (lighter shading) intervals. Individual data points indicate virus isolates from the respective individuals, with shading indicating the estimated posterior probability that the time of nadir preceded the plasma collection time point (from white, probability of 0, to black, probability of 1). Isolates estimated to have less than 5% probability of following the time of nadir are not shown. For display, the nadir CD4+ T cell count was estimated as the posterior mean for that individual.

Fig. S5. Correlation of IFN\(\alpha\)2 and IFN\(\beta\) IC\(50\) values. The IFN\(\alpha\)2 and IFN\(\beta\) IC\(50\) of all longitudinal, outgrowth and rebound isolates are compared. Isolates from longitudinally studied individuals as well as participants in latency and/or treatment interruption trials are represented by points colored as indicated in the legend.

Fig. S6. Phylogenetetic relationships of rebound isolates. A maximum likelihood tree depicting the phylogenetic relationships of 3' half-genome sequences of rebound isolates from
different study participants is shown. Isolates are colored according to the respective study (red, NCT02825797; green, NCT02463227; orange, NCT00051818; turquoise, NCT02227277; black, NCT02588586) as indicated in tables S3 and S4. Asterisks indicate bootstrap values of >90%; the scale bar indicates 0.01 substitution per site. Isolate 004.REB.4E3 was not sequenced.

Table S1. Generation of HIV-1 isolates from plasma and peripheral blood mononuclear cells of 10 individuals sampled from acute infection throughout their clinical course.

Table S2. IFN-1 resistance of plasma and QVOA isolates from longitudinally sampled study participants.

Table S3. Generation of viral isolates from ART suppressed individuals with and without treatment interruption.

Table S4. IFN-1 resistance of viral outgrowth and rebound isolates.

Table S5. Genbank accession numbers.
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Supplementary Methods

Bayesian models of IFN-I resistance of HIV-1 plasma isolates from longitudinally sampled participants

To create a simple model of the temporal dynamics of type I interferon (IFN-I) resistance, IFNα2 and IFNβ IC₅₀ values were each modeled using a Bayesian change point hierarchical model. The model is based on a segmented regression of the log IC₅₀ making the following simplifying assumptions:

- Each participant has a level of resistance at the acute infection stage drawn from separate population-level distributions for typical, non- or fast progressors.
- Each participant has a drop (or rise) in IFN-I resistance from acute levels drawn from separate population-level distributions for typical, non- or fast progressors.
- Each participant has a time to nadir drawn from separate population-level distributions for typical, non- or fast progressors.
- Resistance changes linearly from onset of symptoms to time of nadir.
- The nadir of IFN-I resistance represents a changepoint in the data. Following this point, changes in IFN-I resistance are modeled as a linear function of CD4+ T cell count changes away from the count found at nadir.
- Where data is not present, CD4+ T cell counts are assumed to be linearly interpolated between adjacent observations.

The log IC₅₀ observation from each viral isolate \(i \) was modeled as a normal distribution

\[
\text{IC}50_i \sim \text{Normal}(\mu_i, \sigma)
\]

with mean \(\mu_i \) where:

\[
\mu_i = \begin{cases}
\alpha_{\text{person}_i} + \delta_{\text{person}_i} \frac{\text{time}_i}{s_{\text{person}_i}} & \text{if } \text{time}_i < s_{\text{person}_i} \\
\alpha_{\text{person}_i} + \delta_{\text{person}_i} + \beta_{\text{person}_i} (\text{CD}4_{\text{person}_i, \text{time}_i} - \text{CD}4_{\text{person}_i, s_{\text{person}_i}}) & \text{if } \text{time}_i \geq s_{\text{person}_i}
\end{cases}
\]

where the parameters \(\alpha_j \) represent the level of IFN-I resistance at symptom onset, \(\delta_j \) represents the change from symptom onset to nadir and \(s_j \) represents the time of nadir in person \(j \). Study participant data is represented by \(\text{time}_i \) corresponding to the time since onset of symptoms and \(\text{person}_i \) recording the participant from which isolate \(i \) was collected, CD4\(_{j,k}\) containing the estimated CD4+ T cell count for person \(j \) at time \(k \) and progression \(j \) is the disease progression type (fast/non/typical) for participant \(j \). The hierarchical probabilities
for these parameters were:

\[\sigma \sim \text{Gamma}(1, 0.1) \]

\[\alpha_j \sim \begin{cases}
\text{Normal}(\theta_{\alpha,\text{typical}}, \tau_{\alpha}) & \text{if progression}_j = \text{typical} \\
\text{Normal}(\theta_{\alpha,\text{typical}} + \theta_{\alpha,\text{fast}}, \tau_{\alpha}) & \text{if progression}_j = \text{fast} \\
\text{Normal}(\theta_{\alpha,\text{typical}} + \theta_{\alpha,\text{non}}, \tau_{\alpha}) & \text{if progression}_j = \text{non}
\end{cases} \]

\[\delta_j \sim \begin{cases}
\text{Normal}(\theta_{\delta,\text{typical}}, \tau_{\delta}) & \text{if progression}_j = \text{typical} \\
\text{Normal}(\theta_{\delta,\text{typical}} + \theta_{\delta,\text{fast}}, \tau_{\delta}) & \text{if progression}_j = \text{fast} \\
\text{Normal}(\theta_{\delta,\text{typical}} + \theta_{\delta,\text{non}}, \tau_{\delta}) & \text{if progression}_j = \text{non}
\end{cases} \]

\[\beta_j \sim \begin{cases}
\text{Normal}(\theta_{\beta,\text{typical}}, \tau_{\beta}) & \text{if progression}_j = \text{typical} \\
\text{Normal}(\theta_{\beta,\text{fast}}, \tau_{\beta}) & \text{if progression}_j = \text{fast} \\
\text{Normal}(\theta_{\beta,\text{non}}, \tau_{\beta}) & \text{if progression}_j = \text{non}
\end{cases} \]

where \(j \) indicates each participant and \(\text{NegativeBinomial}(x, y) \) represents a negative binomial distribution parameterized such that the expected value is \(x \) and the variance is \(x + \frac{x^2}{y} \). All hyperparameters were given prior probabilities of \(\theta_x \sim \text{Normal}(0, 10) \) for parameters representing the means of a distribution and \(\tau_x \sim \text{Gamma}(1, 0.1) \) for parameters representing standard deviations other than \(\theta_{\alpha,\text{typical}} \) and \(\theta_{s,\text{typical}} \) which were given a flat prior and \(\tau_s \sim \text{Cauchy}(0, 10) \).

For computational efficiency, the nadir time parameter \(s \) was discretized to weekly intervals, assumed to fall within 1 to 150 weeks after symptom onset and marginalized out of the joint probability:

\[
p(\text{IC50}, \ldots) = p(\ldots) \prod_{i=1}^{n} \sum_{s=1}^{150} \text{Normal}(\text{IC50}_i | \mu_{i,s}, \sigma) \text{NegativeBinomial}(s | \theta_s, \tau_s)
\]

where ... represents all parameters other than \(s \) and \(\mu_{i,s} \) is defined the same as \(\mu_i \):

\[
\mu_{i,s} = \begin{cases}
\alpha_{\text{person}_i} + \frac{\text{time}_i}{s} \delta_{\text{person}_i} & \text{if time}_i < s \\
\alpha_{\text{person}_i} + \delta_{\text{person}_i} + \beta_{\text{person}_i} (\text{CD4}_{\text{person}_i,\text{time}_i} - \text{CD4}_{\text{person}_i,s}) & \text{if time}_i \geq s
\end{cases}
\]

Posterior probabilities were estimated with 50 Markov chain Monte Carlo chains of 5000 iterations each using Stan (91).
Bayesian models of IFN-I resistance of outgrowth and rebound HIV-1 isolates

To compare the IFN-I resistance of viral isolates derived from plasma samples collected during acute, chronic and rebound infections, as well as from viably frozen PBMCs collected during ART suppression (QVOA), IFN\(\alpha_2\) and IFN\(\beta\) IC\(_{50}\) values were modeled using a Bayesian hierarchical model. The model is based on the assumptions that:

- Isolates found at acute infection form a base level of IFN-I resistance for a given person. Resistances in virus isolated from chronic, ART suppressed and rebound infection for this person are modelled as changes from this initial level.
- The mean IC\(_{50}\) level within each person for acute isolates and the change from acute levels for chronic, QVOA and rebound isolates are drawn from a population-level distribution for that type.
- QVOA isolates are separated into two populations; a “pre” group composed of QVOA viruses isolated from study participants prior to or in the absence of treatment interruption (ATI) and a “post” group of QVOA viruses isolated from participants following ATI and reinitiation of ART.
- In both QVOA populations, the viruses can include some proportion of rebound-like isolates. This mixture is modeled in both pre- and post-treatment so that differences in mixture proportion between the two populations can be assessed.
- Variation in the potency of INF-I used to experimentally determine IC\(_{50}\) values may shift the inferred resistance for isolates tested in other studies. This effect is modeled as a multiplicative shift in IC\(_{50}\) for all isolates measured outside this study (acute recipient and chronic donor isolates from ref. 50).
- Isolates from participants who received exogenous IFN\(\alpha_2\) during treatment interruption may display altered interferon resistance. This effect is modeled as a multiplicative shift in IC\(_{50}\) for all rebound isolates from such participants (participants 004, 030, and 044 from ref. 38).

The log IC\(_{50}\) observation from each viral isolate \(i\) from acute, chronic and rebound isolates was modeled as a normal distribution:

\[
\text{IC50}_i \sim \text{Normal}(\mu_{\text{type}_i, \text{person}_i}, \sigma_{\text{type}_i})
\]

with the mean resistance for isolate type \(j\) from person \(k\):

\[
\mu_{j,k} \sim \begin{cases}
\text{Normal}(\alpha_k + \beta_{\text{batch}_k}, \psi_j) & \text{if } j = \text{acute} \\
\text{Normal}(\alpha_k + \beta_{j,k} + \beta_{\text{batch}_k} + \beta_{\text{IFN}_k}, \psi_j) & \text{if } j = \text{rebound} \\
\text{Normal}(\alpha_k + \beta_{j,k} + \beta_{\text{batch}_k}, \psi_j) & \text{otherwise}
\end{cases}
\]
where type\textsubscript{i} indicates whether isolate \textit{i} was isolated during acute, chronic, QVOA or rebound infection from participant person\textsubscript{i}, batch\textsubscript{k} indicates when isolates from person \textit{k} were tested in another study and IFN\textsubscript{k} indicates when person \textit{k} was treated with exogenous IFN\textsubscript{α2} prior to and during treatment interruption. Parameters are included for the mean resistance level during acute infection for each person \(\alpha_{k}\), standard deviation of isolates of type \(j\) within a person \(\sigma_{j}\), standard deviation of mean resistance for type \(j\) isolates among people \(\psi_{j}\), change from acute levels in isolates of type \(j\) in a given participant \(\beta_{j,k}\), the effects of exogenous IFN treatment \(\beta_{ifn}\) and batch to batch variation in IFN in isolates assayed in previous studies \(\beta_{batch}\).

For QVOA isolates, the IC\textsubscript{50} was modeled as a mixture of two populations such that:

\[
p(\text{IC50}_i|\mu_{\text{qvoa}}, \sigma_{\text{qvoa}}, \mu_{\text{rebound}}, \sigma_{\text{rebound}}, \phi_{\text{prePost}_i}) = \\
\phi_{\text{prePost}_i}\text{Normal}(\text{IC50}_i|\mu_{\text{rebound}}, \sigma_{\text{rebound}}) \\
+ (1 - \phi_{\text{prePost}_i})\text{Normal}(\text{IC50}_i|\mu_{\text{qvoa}}, \sigma_{\text{qvoa}})
\]

where prePost\textsubscript{i} indicates whether isolate \textit{i} was isolated pre- or post-ATI and and \(\phi_{\text{pre}}\) and \(\phi_{\text{post}}\) represent the proportion of rebound-like virus present in pre- and post-ATI QVOA isolates.

The hierarchical parameter priors were modeled as:

\[
\sigma_{j} \sim \text{Gamma}(1, 0.1) \\
\psi_{j} \sim \text{Gamma}(1, 0.1) \\
\phi_{\text{pre}} \sim \text{Uniform}(0, 1) \\
\phi_{\text{post}} \sim \text{Uniform}(0, 1)
\]

where \(j\) indicates the isolate type (acute, chronic, QVOA, rebound). All \(\alpha_{k}\), \(\beta_{j,k}\) were given flat priors and \(\beta_{ifn} \sim \text{Normal}(0, 10)\) and \(\beta_{batch} \sim \text{Normal}(0, 10)\).

Posterior probabilities were estimated with 50 Markov chain Monte Carlo chains of 5,000 iterations each using Stan (91).
Supplemental Figure S5
Supplemental Figure S6
Table S1. Generation of HIV-1 isolates from plasma and peripheral blood mononuclear cells of 10 individuals sampled from acute infection throughout their clinical course

Participant	Number of TF viruses	Date	DFOx*	Viral load (copies/ml)	CD4 count (cells/µl)	Number of SGA derived viral sequences (plasma)	Number of SGA derived viral sequences (PBMC)	Number of limiting dilution isolates (plasma)	Number of bulk isolates (plasma)	Number of outgrowth viruses (PBMC)
2	11	21-Jun-01	6,235,600	420	3 (2)	36,711,800	430	9		
MM14	1	12-Jul-01	1,850,600	420	3	27,612,800	420	9		
	2	27-Jul-01	2,162,300	460	2	413,600	490	2		
	2	2-Aug-01	613,400	530	2	55,000	600	5	2 (1)	
	2	9-Aug-01	268,000	490	2	24,500	540	2		
SI	1	26-Oct-01	138	480	9	2	2	2		
	1	6-Dec-01	27,200	380	9	2	2	2		
	1	1-Mar-02	52,700	290	3	2	2	2		
	1	11-Nov-02	46,300	390	14	2	2	2		
	1	9-Jan-03	16,600	420	5	2	2	2		
	2	2-Jun-03	44,400	240	5	2	2	2		
	2	6-Oct-03	30,100	330	2	2	2	2		
	2	20-Apr-04	1,045	3	2 (1)	2	2	2		
	2	4-Oct-04	1,212	32	2	2	2	2		
	2	24-Jan-05	1,324	210	3	2	2	2		
	2	4-Apr-05	1,394	340	4	2	2	2		
	2	1-Aug-05	1,513	210	3	2	2	2		
	2	19-Sep-05	1,562	200	2	2	2	2		
	2	15-Jan-06	1,981	280	2	2	2	2		
	2	13-Feb-06	1,759	340	2	2	2	2		
	2	27-Mar-06	1,751	380	2	2	2	2		
	2	29-Jun-06	1,842	270	2	2	2	2		
	2	21-Nov-06	1,996	440	2	2	2	2		
	2	19-Feb-07	2,080	630	2	2	2	2		
	2	18-Jun-07	2,199	620	2	2	2	2		
	2	19-Nov-07	2,363	660	2	2	2	2		
	2	30-Sep-08	2,689	610	2	2	2	2		
	2	9-Mar-09	2,829	520	2	2	2	2		
	2	18-Aug-09	2,917	530	2	2	2	2		
	2	9-Nov-09	3,074	770	2	2	2	2		
	2	8-Mar-10	3,193	630	2	2	2	2		
	2	15-Mar-12	3,531	790	2	2	2	2		
	2	22-Oct-13	4,517	640	2	2	2	2		
MM15	1	6-Sep-01	39,000	2	2	2	2	2		
	1	21-Sep-01	10,600	1,070	2	2	2	2		
	1	1-Sep-01	10,600	1,070	2	2	2	2		
	1	1-Mar-02	11,105,300	330	4	2	2	2		
	1	11-Mar-02	8,671,700	410	4	2	2	2		
	1	18-Mar-02	5,140,100	410	4	2	2	2		
	1	2-Apr-02	946	460	4	2	2	2		
	1	29-Apr-02	200,500	590	4	2	2	2		
	1	17-Jun-02	147,700	510	4	2	2	2		
SI	1	16-Sep-02	117,600	500	4	2	2	2		
	1	6-Jan-03	76,700	500	4	2	2	2		
	1	7-Jan-03	76,350	500	4	2	2	2		
	1	30-Sep-03	111,200	220	4	2	2	2		
	1	17-Nov-03	74,700	500	4	2	2	2		
	1	16-Feb-04	52,900	9	4	2	2	2		
	1	18-May-04	41,600	9	4	2	2	2		
Date	Value 1	Value 2	Value 3	Value 4	Value 5	Value 6				
------------	---------	---------	---------	---------	---------	---------				
7-Jul-03	12	1,451,400	940	42	8					
14-Jul-03	19	215,700	940	44						
21-Jul-03	26	183,800	1,070	22						
28-Jul-03	33	100,500	840	28						
4-Aug-03	40	129,800	810	29						
2-Sep-03	69	147,400	1,000	19						
29-Sep-03	96	62,200	860	14	4					
12-Jan-04	201	80,000	770	8	2					
6-Apr-04	286	83,200	740	13						
29-Jul-04	391	31,200	670	21						
29-Nov-04	523	43,500	710							
7-Mar-05	621	65,100	830	20						
13-Jun-05	719	63,200	640	7	1					
26-Sep-05	824	42,600	670							
27-Mar-06	1,096	72,100	660	5	7					
19-Sep-06	1,182	41,800	740	15						
19-Feb-07	1,335	105,200	510							
5-Jun-07	1,441	131,000	600							
5-Nov-07	1,564	30,000	440							
11-Mar-08	1,741	110,000	480	9	2					
12-Jun-08	1,814	23,000	390							
24-Jul-08	1,856	180,000	200							
19-Sep-08	1,913	110,000	340	22						
15-Jan-09	2,031	28,000	240	19	15					
16-Feb-09	2,096	390	130	11						
23-Feb-09	2,098	50	640							
23-Apr-09	2,129	50	470							
17-Jul-09	2,214	50	460							
6-Oct-09	2,295	50	560							
26-Jan-10	2,407	50								
23-Feb-10	2,435	50	640							
16-Apr-10	2,609	50	680							
15-Feb-11	2,792	50	810							
13-Feb-12	3,105	50	870							
23-Aug-12	3,347	50	780							
15-Jan-13	3,492	50	720							
7-Oct-13	3,757	50	710							
13-Jan-14	3,855	50	1,130							
21-Jul-03	17	29,900	570	40	11					
29-Jul-03	25	19,900	780							
5-Aug-03	32	21,400	690							
14-Aug-03	41	16,900	620							
18-Aug-03	45	6,800	730							
16-Sep-03	74	2,400	620	10	1					
14-Oct-03	102	5,500	670							
12-Jan-04	192	9,600	630	40	5					
21-Jun-04	353	5,500	560	19						
20-Sep-04	444	8,200	500							
3-Mar-05	608	5,500	480							
2-Aug-05	760	5,500	470	13	4					
16-Feb-06	958	50	590							
6-Apr-06	1,007	11,400	600	6						
6-Feb-07	1,313	40,700	450	12	7					
3-May-07	1,389	14,000	490		9					
19-Feb-08	1,691	13,000	420	6						
26-Mar-09	2,092	440								
7-May-09	2,104	100								
10-Aug-09	2,229	14,000	340	14						
14-Sep-09	2,264									
12-Oct-09	2,292		480							
9-Nov-09	2,320	50	480							
22-Feb-10	2,426	50	540							
25-Oct-10	2,670	50	530							
19-Jan-11	2,747	50	620							
23-Jun-11	2,911									
3-Nov-11	3,044	50	890							
7-Jun-12	3,261	50	780	38	2					
21-Feb-13	3,520	50	730							

Table S1
Date	Value	Description

Table S1

Date	Value	Description

It is made available under a CC-BY-NC 4.0 International license.
All subjects were men-who-have-sex-with-men (MSM) from the United Kingdom (MM) or the United States (WEAU), who were diagnosed with symptomatic primary subtype B infection and longitudinally followed before and after (shading) antiretroviral therapy.

The number of transmitted founder (TF) viruses was inferred as previously described (54) from single genome amplification (SGA) derived viral sequences from the first available plasma sample (fig. S1); subjects MM14, MM23 and MM33 were superinfected (SI) with additional subtype B strains at the timepoints indicated.

Visit date; grey shading indicates time on suppressive antiretroviral therapy; subject WEAU received AZT monotherapy (indicated by ☊), which did not reduce viral loads.

Days following onset of symptoms (DFOSx).

Number of SGA derived 3' half genome or Env sequences amplified directly from plasma (Genbank accession number are listed in table S5); Env sequences for subjects MM39 and WEAU that have previously been reported (43, 54, 57, 86) are indicated by asterisks.

Number of SGA derived 3' half genome or Env sequences amplified directly from peripheral blood mononuclear cells (PBMCs) (Genbank accession number are listed in table S5).

Number of conventional (bulk) plasma isolates; most isolates were sequenced and those that represent single virion derived strains are shown in parentheses (Genbank accession number are listed in table S5).

Number of limiting dilution derived outgrowth viruses from peripheral blood mononuclear cells (PBMCs); all isolates were confirmed to be single virion derived by sequence analysis (Genbank accession number are listed in table S5).
Isolate	Sequence ID	DFOSx	Replicative capacity (ng p24/ml)	IFNα2 IC50 (pg/ml)	IFNβ IC50 (pg/ml)
MM14.02.2C3.bulk	MM14.PLAS.ISO.00040.003	40	1,148	0.639	8.160
MM14.02.2B4.bulk	MM14.PLAS.ISO.00040.002	40	899	0.682	8.666
MM14.02.2A1.bulk	MM14.PLAS.ISO.00040.001	40	924	0.800	7.161
MM14.06.2B1.bulk	MM14.PLAS.ISO.00138.001	138	525	0.010	0.021
MM14.06.2B2.bulk	MM14.PLAS.ISO.00138.002	138	394	0.003	0.032
MM14.08.2B3.bulk	MM14.PLAS.ISO.00270.001	270	447	0.007	0.050
MM14.08.2B4.bulk	MM14.PLAS.ISO.00270.002	270	511	0.004	0.023
MM14.10.2C1.bulk	MM14.PLAS.ISO.00519.001	519	449	0.004	0.007
MM14.10.2C2.bulk	MM14.PLAS.ISO.00519.002	519	251	0.006	0.001
MM14.12.1A1.bulk	MM14.PLAS.ISO.00722.001	722	414	0.015	0.060
MM14.12.1A2.bulk	MM14.PLAS.ISO.00722.002	722	476	0.019	0.248
MM14.14.1A1.bulk	MM14.PLAS.ISO.01045.001	1,045	273	0.007	0.006
MM14.14.1A2.bulk	MM14.PLAS.ISO.01045.002	1,045	215	0.007	0.003
MM14.16.1B1.bulk	MM14.PLAS.ISO.01324.001	1,324	688	0.028	0.133
MM14.16.1B2.bulk	MM14.PLAS.ISO.01324.002	1,324	725	0.032	0.128
MM14.17.1B3.bulk	MM14.PLAS.ISO.01394.001	1,394	304	0.011	0.007
MM14.17.1B4.bulk	MM14.PLAS.ISO.01394.002	1,394	253	0.011	0.012
MM14.23.1A3.QVOA	MM14.PBMC.QVOA.03193.001	3,193	347	0.029	0.067
MM15.02.2B5.bulk	MM15.PLAS.ISO.00027.002	27	876	0.577	18.246
MM15.02.2A2.bulk	MM15.PLAS.ISO.00027.001	27	904	0.523	20.371
MM15.03.2B6.bulk	MM15.PLAS.ISO.00037.002	37	729	0.412	18.431
MM15.03.2A3.bulk	MM15.PLAS.ISO.00037.001	37	571	0.439	14.984
MM15.03.1B2.bulk	MM15.PLAS.ISO.00037.003	37	387	0.407	19.592
MM15.03.2B1.bulk	MM15.PLAS.ISO.00037.004	37	389	0.273	21.927
MM15.06.2A1.bulk	MM15.PLAS.ISO.00079.001	79	603	0.326	14.380
MM15.07.2A3.bulk	MM15.PLAS.ISO.00107.001	107	1,317	0.489	15.166
MM15.08.2B1.bulk	MM15.PLAS.ISO.00191.001	191	668	0.194	7.782
MM15.11.2B4.bulk	MM15.PLAS.ISO.00373.001	373	645	0.153	3.676
MM15.13.2C1.bulk	MM15.PLAS.ISO.00548.001	548	879	0.247	9.677
MM15.14.2C3.bulk	MM15.PLAS.ISO.00720.001	720	589	0.224	9.385
MM15.16.1B2.QVOA	MM15.PBMC.QVOA.01403.001	1,403	467	0.332	11.236
MM23.01.2A3	MM23.PLAS.ISO.00009.011	9	142	1.114	
MM23.01.2C2	MM23.PLAS.ISO.00009.012	9	186	0.925	
MM23.01.11A3	MM23.PLAS.ISO.00009.001	9	283	0.635	
MM23.01.11A6	MM23.PLAS.ISO.00009.002	9	249	0.784	
MM23.01.11B5	MM23.PLAS.ISO.00009.003	9	232	0.730	
MM23.01.11C4	MM23.PLAS.ISO.00009.004	9	168	0.765	
MM23.01.13A4	MM23.PLAS.ISO.00009.005	9	321	0.708	
MM23.01.13A5	MM23.PLAS.ISO.00009.006	9	331	0.614	17.458
MM23.01.13B3	MM23.PLAS.ISO.00009.007	9	524	0.735	15.166
MM23.01.13C2	MM23.PLAS.ISO.00009.008	9	960	1.189	15.293
MM23.01.13D2	MM23.PLAS.ISO.00009.009	9	926	0.891	14.955
MM23.01.14D5	MM23.PLAS.ISO.00009.010	9	1,392	0.673	
MM23.05.2C1	MM23.PLAS.ISO.00064.004	64	245	0.542	14.380
MM23.05.14B3	MM23.PLAS.ISO.00064.001	64	591	0.356	10.750
MM23.05.14C3	MM23.PLAS.ISO.00064.002	64	218	0.389	11.426
MM23.05.14D2	MM23.PLAS.ISO.00064.003	64	317	0.355	8.262
MM23.07.1C3	MM23.PLAS.ISO.00204.001	204	499	0.042	
MM23.07.2A2	MM23.PLAS.ISO.00204.002	204	119	0.048	
MM23.07.2A4	MM23.PLAS.ISO.00204.003	204	151	0.083	0.181
MM23.07.2A6	MM23.PLAS.ISO.00204.004	204	292	0.191	1.766
MM23.07.2B2	MM23.PLAS.ISO.00204.005	204	177	0.029	2.090
MM23.07.2B3	MM23.PLAS.ISO.00204.006	204	100	0.257	
MM23.07.2B5	MM23.PLAS.ISO.00204.007	204	526	0.007	0.186
MM23.07.2C6	MM23.PLAS.ISO.00204.008	204	397	0.187	
MM23.08.13C6	MM23.PLAS.ISO.00316.001	316	168	0.006	0.013
MM23.08.21B6	MM23.PLAS.ISO.00316.004	316	362	0.004	
MM23.08.22A3	MM23.PLAS.ISO.00316.005	316	144	0.003	0.006
MM23.08.22B4	MM23.PLAS.ISO.00316.006	316	434	0.003	0.006
MM23.08.22B5	MM23.PLAS.ISO.00316.007	316	477	0.004	
MM23.08.22C6	MM23.PLAS.ISO.00316.008	316	431	0.002	0.002
MM23.11.1A1	MM33.PLAS.ISO.00012.001	12	418	0.734	0.133
MM23.11.1A5	MM33.PLAS.ISO.00012.002	12	358	0.002	0.006
MM23.11.1C3	MM33.PLAS.ISO.00012.003	12	361	0.004	
MM23.11.1D3	MM33.PLAS.ISO.00012.004	12	157	0.002	0.007
MM23.11.1D4	MM33.PLAS.ISO.00012.005	12	165	0.002	0.004
MM23.11.1D6	MM33.PLAS.ISO.00012.006	12	128	0.002	0.008
MM23.11.2B2	MM33.PLAS.ISO.00012.007	12	403	0.008	
MM23.11.2B3	MM33.PLAS.ISO.00012.008	12	268	0.006	
MM23.11.2C2	MM33.PLAS.ISO.00012.009	12	290	0.009	
MM23.12.21B1	MM33.PLAS.ISO.00012.010	1,065	300	0.023	0.011
MM23.12.22A3	MM33.PLAS.ISO.00012.011	1,065	284	0.033	0.023
MM23.12.22C6	MM33.PLAS.ISO.00012.012	1,065	231	0.026	0.073
MM23.13.1B4	MM33.PLAS.ISO.00012.013	1,534	335	0.068	
MM23.13.2B1	MM33.PLAS.ISO.00012.014	1,534	157	0.053	0.246
MM23.13.2B3	MM33.PLAS.ISO.00012.015	1,534	290	0.045	
MM23.13.2C3	MM33.PLAS.ISO.00012.016	1,534	374	0.046	0.130
MM23.13.2D1	MM33.PLAS.ISO.00012.017	1,534	272	0.052	0.256
MM23.13.2D4	MM33.PLAS.ISO.00012.018	1,534	284	0.038	
MM23.13.2D6	MM33.PLAS.ISO.00012.019	1,534	302	0.050	
MM23.13.2D8	MM33.PLAS.ISO.00012.020	1,534	427	0.027	0.064
MM23.18.1A1.QVOA	MM23.PBMC.QVOA.02738.001	2,738	354	0.059	0.099
MM23.18.2A1.QVOA	MM23.PBMC.QVOA.02738.002	2,738	284	0.044	0.046

Table S2
MM33.08.1D4	MM33.PLAS.ISO.00201.005	201	533	0.057⁵	0.061
MM33.08.1D5	MM33.PLAS.ISO.00201.006	201	791	0.043⁵	
MM33.08.2A3	MM33.PLAS.ISO.00201.007	201	436	0.018³	
MM33.08.2B6	MM33.PLAS.ISO.00201.008	201	587	0.043⁵	0.052
MM33.08.1A4.bulk	MM33.PLAS.ISO.00201.010	201	344	0.025	0.016
MM33.13.1D3	MM33.PLAS.ISO.00719.004	719	681	0.008	0.006
MM33.13.1D6	MM33.PLAS.ISO.00719.005	719	244	0.004⁵	
MM33.13.2A4	MM33.PLAS.ISO.00719.006	719	507	0.004	0.003
MM33.13.2D6	MM33.PLAS.ISO.00719.007	719	174	0.005⁵	0.006
MM33.13.11B1	MM33.PLAS.ISO.00719.008	719	684	0.009	
MM33.13.12A4	MM33.PLAS.ISO.00719.009	719	598	0.003	
MM33.14.1A1.bulk	MM33.PLAS.ISO.01006.008	719	121	0.003	0.006
MM33.14.1A2.bulk	MM33.PLAS.ISO.01006.009	1,006	682	0.009⁵	0.004
MM33.14.11B1	MM33.PLAS.ISO.01006.010	1,006	682	0.005	
MM33.14.11B4	MM33.PLAS.ISO.01006.011	1,006	645	0.004	
MM33.14.11C6	MM33.PLAS.ISO.01006.012	1,006	690	0.004	
MM33.14.12A2	MM33.PLAS.ISO.01006.013	1,006	580	0.004	0.008
MM33.14.12A4	MM33.PLAS.ISO.01006.014	1,006	559	0.004⁵	0.009
MM33.14.12C6	MM33.PLAS.ISO.01006.015	1,006	639	0.005⁵	0.008
MM33.14.1A1.bulk	MM33.PLAS.ISO.01006.016	1,006	106	0.004	0.014
MM33.14.1A2.bulk	MM33.PLAS.ISO.01006.017	1,006	536	0.003	0.012
MM33.17.1D2	MM33.PLAS.ISO.01721.009	1,721	493	0.019	0.005
MM33.17.1D6	MM33.PLAS.ISO.01721.010	1,721	260	0.014	0.017
MM33.17.2A4	MM33.PLAS.ISO.01721.011	1,721	639	0.017⁵	0.015
MM33.17.2B3	MM33.PLAS.ISO.01721.012	1,721	140	0.019⁵	
MM33.17.2B4	MM33.PLAS.ISO.01721.013	1,721	59	0.028⁵	0.007
MM33.17.2B5	MM33.PLAS.ISO.01721.014	1,721	114	0.017⁵	
MM33.17.2C3	MM33.PLAS.ISO.01721.015	1,721	50	0.009	
MM33.17.2D4	MM33.PLAS.ISO.01721.016	1,721	356	0.025⁵	0.003
MM33.17.2D5	MM33.PLAS.ISO.01721.017	1,721	484	0.008	0.006
MM33.17.1A1.bulk	MM33.PLAS.ISO.01721.018	1,721	381	0.031	0.022
MM33.17.1A2.bulk	MM33.PLAS.ISO.01721.019	1,721	615	0.040	0.019
MM33.19.1A2	MM33.PLAS.ISO.02031.001	2,031	565	0.015	
MM33.19.1A4	MM33.PLAS.ISO.02031.002	2,031	331	0.018	
MM33.19.1B1	MM33.PLAS.ISO.02031.003	2,031	616	0.017	
MM33.19.1C2	MM33.PLAS.ISO.02031.004	2,031	274	0.011	0.089
MM33.19.2A4	MM33.PLAS.ISO.02031.005	2,031	244	0.027	0.047
MM33.19.2B1	MM33.PLAS.ISO.02031.006	2,031	224	0.016	0.028
MM33.19.2B5	MM33.PLAS.ISO.02031.007	2,031	689	0.010	0.133
MM33.19.2C1	MM33.PLAS.ISO.02031.008	2,031	621	0.018	
MM33.19.2D2	MM33.PLAS.ISO.02031.009	2,031	591	0.032	
MM33.19.3A1	MM33.PLAS.ISO.02031.010	2,031	220	0.036	
MM33.19.3B4	MM33.PLAS.ISO.02031.011	2,031	242	0.035	
MM33.19.3D2	MM33.PLAS.ISO.02031.012	2,031	551	0.024	
MM33.19.4A5	MM33.PLAS.ISO.02031.013	2,031	149	0.022	
MM33.19.4B5	MM33.PLAS.ISO.02031.014	2,031	655	0.033	
MM33.19.4D1	MM33.PLAS.ISO.02031.015	2,031	628	0.046	
MM33.19.1B1.bulk	MM33.PLAS.ISO.02031.016	2,031	267	0.029	0.057

MM34.01.1A5	MM34.PLAS.ISO.00017.002	17	176	0.518	9.675
MM34.01.1B3	MM34.PLAS.ISO.00017.003	17	154	0.425	17.497
MM34.01.1B6	MM34.PLAS.ISO.00017.004	17	279	0.485	
MM34.01.1C2	MM34.PLAS.ISO.00017.001	17	135	1.485	17.631

Table S2
MM34.01.1D1	MM34.PLAS.ISO.00017.006	17	128	1.094
MM34.01.2A4	MM34.PLAS.ISO.00017.007	17	237	0.725
MM34.01.2B3	MM34.PLAS.ISO.00017.008	17	343	0.386
MM34.01.2C2	MM34.PLAS.ISO.00017.009	17	200	0.944
MM34.01.2D4	MM34.PLAS.ISO.00017.010	17	218	0.691
MM34.01.2D5	MM34.PLAS.ISO.00017.011	17	503	0.821
MM34.06.21C6	MM34.PLAS.ISO.00074.001	74	266	0.478
MM34.08.11B5	MM34.PLAS.ISO.00192.001	192	392	0.032
MM34.08.11C2	MM34.PLAS.ISO.00192.002	192	439	0.037
MM34.08.11D3	MM34.PLAS.ISO.00192.004	192	409	0.04
MM34.12.21A1	MM34.PLAS.ISO.00760.001	760	340	0.026
MM34.12.21C5	MM34.PLAS.ISO.00760.002	760	236	0.012
MM34.12.21D1	MM34.PLAS.ISO.00760.003	760	59	0.03
MM34.12.21D3	MM34.PLAS.ISO.00760.004	760	100	0.028
MM34.13.11A1	MM34.PLAS.ISO.01007.001	1007	66	0.005
MM34.13.11A2	MM34.PLAS.ISO.01007.002	1007	268	0.006
MM34.13.11B1	MM34.PLAS.ISO.01007.003	1007	154	0.004
MM34.13.11C5	MM34.PLAS.ISO.01007.004	1007	640	0.017
MM34.13.11D2	MM34.PLAS.ISO.01007.005	1007	143	0.002
MM34.13.11D5	MM34.PLAS.ISO.01007.006	1007	214	0.007
MM34.14.1A4	MM34.PLAS.ISO.01313.001	1313	482	0.072
MM34.14.1B2	MM34.PLAS.ISO.01313.002	1313	389	0.018
MM34.14.1B3	MM34.PLAS.ISO.01313.003	1313	354	0.062
MM34.14.1C6	MM34.PLAS.ISO.01313.004	1313	646	0.036
MM34.14.1D4	MM34.PLAS.ISO.01313.005	1313	478	0.022
MM34.14.2A1	MM34.PLAS.ISO.01313.006	1313	596	0.041
MM34.14.2B1	MM34.PLAS.ISO.01313.007	1313	153	0.05
MM34.15.11A1	MM34.PLAS.ISO.01399.001	1399	188	0.007
MM34.15.11C1	MM34.PLAS.ISO.01399.002	1399	242	0.008
MM34.15.11D3	MM34.PLAS.ISO.01399.003	1399	384	0.004
MM34.16.11A5	MM34.PLAS.ISO.01691.002	1691	414	0.017
MM34.16.11C1	MM34.PLAS.ISO.01691.003	1691	278	0.048
MM34.16.11C3	MM34.PLAS.ISO.01691.004	1691	591	0.032
MM34.16.11D1	MM34.PLAS.ISO.01691.005	1691	413	0.026
MM34.16.11D2	MM34.PLAS.ISO.01691.006	1691	255	0.056
MM34.18.1A4	MM34.PLAS.ISO.02229.003	2229	619	0.072
MM34.18.1A6	MM34.PLAS.ISO.02229.004	2229	588	0.088
MM34.18.1C5	MM34.PLAS.ISO.02229.006	2229	232	0.098
MM34.18.2A4	MM34.PLAS.ISO.02229.009	2229	274	0.058
MM34.18.2A6	MM34.PLAS.ISO.02229.010	2229	102	0.106
MM34.18.2C2	MM34.PLAS.ISO.02229.011	2229	258	0.052
MM34.18.2D1	MM34.PLAS.ISO.02229.013	2229	118	0.073
MM34.18.2D2	MM34.PLAS.ISO.02229.014	2229	276	0.062
MM34.23.1B2.QVOA	MM34.PBMC.QVOA.02911.001	2911	392	0.059
MM34.25.3A5.QVOA	MM34.PBMC.QVOA.03261.002	3261	303	0.033
MM34.25.2B5.QVOA	MM34.PBMC.QVOA.03261.001	3261	254	0.026

Table S2
Experiment	Description	Value	CC-BY-NC 4.0 International license		
MM39.02.13D6	MM39.PLAS.ISO.00011.008	11	453	0.731	
MM39.02.14C1	MM39.PLAS.ISO.00011.010	11	637	0.897	
MM39.02.14C2	MM39.PLAS.ISO.00011.011	11	566	0.787	
MM39.02.14C3	MM39.PLAS.ISO.00011.012	11	828	0.767	
MM39.02.14C5	MM39.PLAS.ISO.00011.013	11	758	0.652	
MM39.02.14D4	MM39.PLAS.ISO.00011.014	11	132	0.929	
MM39.02.14D5	MM39.PLAS.ISO.00011.015	11	228	0.850	
MM39.07.11A3	MM39.PLAS.ISO.00179.001	179	288	0.104	
MM39.07.11A4	MM39.PLAS.ISO.00179.002	179	178	0.042	
MM39.07.11C1	MM39.PLAS.ISO.00179.003	179	117	0.185	
MM39.10.11B3	MM39.PLAS.ISO.00354.001	354	94	0.007	
MM39.10.11B4	MM39.PLAS.ISO.00354.002	354	298	0.007	
MM39.10.11D1	MM39.PLAS.ISO.00354.003	354	415	0.006	
MM39.10.11D4	MM39.PLAS.ISO.00354.004	354	198	0.004	
MM39.10.11D6	MM39.PLAS.ISO.00354.005	354	129	0.007	
MM39.10.12A2	MM39.PLAS.ISO.00354.006	354	127	0.007	
MM39.10.12A6	MM39.PLAS.ISO.00354.007	354	143	0.003	
MM39.10.12B5	MM39.PLAS.ISO.00354.008	354	91	0.007	
MM39.10.12C3	MM39.PLAS.ISO.00354.009	354	121	0.004	
MM39.10.12C4	MM39.PLAS.ISO.00354.010	354	130	0.005	
MM39.10.12D3	MM39.PLAS.ISO.00354.011	354	271	0.008	
MM39.10.12D4	MM39.PLAS.ISO.00354.012	354	80	0.005	
MM39.10.14B4	MM39.PLAS.ISO.00354.013	354	86	0.007	
MM39.10.14C5	MM39.PLAS.ISO.00354.014	354	206	0.005	
MM39.10.1C1,bulk	MM39.PLAS.ISO.00354.016	354	121	0.004	
MM39.13.1B1	MM39.PLAS.ISO.00639.001	639	594	0.008	
MM39.13.11A2	MM39.PLAS.ISO.00639.002	639	180	0.006	
MM39.13.11A4	MM39.PLAS.ISO.00639.003	639	349	0.007	
MM39.13.11B1	MM39.PLAS.ISO.00639.004	639	188	0.005	
MM39.13.11B2	MM39.PLAS.ISO.00639.005	639	124	0.007	
MM39.13.11C3	MM39.PLAS.ISO.00639.006	639	167	0.010	
MM39.13.11C5	MM39.PLAS.ISO.00639.007	639	247	0.005	
MM39.13.11D1	MM39.PLAS.ISO.00639.008	639	66	0.003	
MM39.13.1C3,bulk	MM39.PLAS.ISO.00639.009	639	107	0.042	
MM39.14.1A2	MM39.PLAS.ISO.00821.001	821	107	0.042	
MM39.14.1A5	MM39.PLAS.ISO.00821.002	821	339	0.040	
MM39.14.1B3	MM39.PLAS.ISO.00821.003	821	547	0.039	
MM39.14.2A3	MM39.PLAS.ISO.00821.004	821	233	0.026	
MM39.14.2B1	MM39.PLAS.ISO.00821.005	821	455	0.035	
MM39.14.2B5	MM39.PLAS.ISO.00821.007	821	318	0.023	
MM39.14.2D4	MM39.PLAS.ISO.00821.006	821	93	0.022	
MM39.16.1A4	MM39.PLAS.ISO.01206.002	1,206	189	0.009	
MM39.16.1B2	MM39.PLAS.ISO.01206.003	1,206	239	0.024	
MM39.16.1B4	MM39.PLAS.ISO.01206.004	1,206	167	0.017	
MM39.16.1C4	MM39.PLAS.ISO.01206.005	1,206	107	0.016	
MM39.16.2A5	MM39.PLAS.ISO.01206.006	1,206	172	0.022	
MM39.16.2C3	MM39.PLAS.ISO.01206.007	1,206	539	0.026	
MM39.16.2D2	MM39.PLAS.ISO.01206.008	1,206	635	0.018	
MM39.16.13A2	MM39.PLAS.ISO.01206.013	1,206	426	0.068	
MM39.16.13A5	MM39.PLAS.ISO.01206.014	1,206	113	0.037	
MM39.16.13B1	MM39.PLAS.ISO.01206.015	1,206	117	0.059	
MM39.16.13B3	MM39.PLAS.ISO.01206.016	1,206	270	0.020	
MM39.16.14B3	MM39.PLAS.ISO.01206.011	1,206	183	0.023	
MM39.16.14C1	MM39.PLAS.ISO.01206.012	1,206	617	0.010	0.123
MM39.16.1A1.bulk	MM39.PLAS.ISO.01206.014	1,206	80	0.010	0.205
MM39.16.1A2.bulk	MM39.PLAS.ISO.01206.015	1,206	493	0.041	0.669
MM39.16.1A3.bulk	MM39.PLAS.ISO.01206.016	1,206	628	0.046	0.349
MM40.01.1A1	MM40.PLAS.ISO.00011.001	11	518	0.712	5.287
MM40.01.1A2	MM40.PLAS.ISO.00011.002	11	736	0.741	5.455
MM40.01.1A4	MM40.PLAS.ISO.00011.003	11	557	0.736	5.736
MM40.01.1A5	MM40.PLAS.ISO.00011.004	11	709	0.722	
MM40.01.1A6	MM40.PLAS.ISO.00011.005	11	654	0.782	
MM40.01.1B1	MM40.PLAS.ISO.00011.006	11	315	0.723	5.736
MM40.01.1B2	MM40.PLAS.ISO.00011.007	11	727	0.999	
MM40.01.1B3	MM40.PLAS.ISO.00011.008	11	532	0.653	
MM40.01.1B4	MM40.PLAS.ISO.00011.009	11	132	0.233	
MM40.01.1B5	MM40.PLAS.ISO.00011.010	11	685	0.627	
MM40.01.1C6	MM40.PLAS.ISO.00011.011	11	538	0.528	
MM40.01.1D1	MM40.PLAS.ISO.00011.012	11	484	0.652	
MM40.01.2A1.bulk	MM40.PLAS.ISO.00011.018	11	1,254	0.732	11.993
MM40.01.2A2.bulk	MM40.PLAS.ISO.00011.019	11	583	0.394	13.197
MM40.07.11A3	MM40.PLAS.ISO.00095.004	95	421	0.429	1.899
MM40.07.11A4	MM40.PLAS.ISO.00095.001	95	319	0.590	
MM40.07.11B1	MM40.PLAS.ISO.00095.002	95	314	0.750	
MM40.07.11B3	MM40.PLAS.ISO.00095.005	95	387	0.701	
MM40.07.11B4	MM40.PLAS.ISO.00095.003	95	287	0.149	
MM40.07.11B5	MM40.PLAS.ISO.00095.006	95	266	0.208	1.598
MM40.07.11C1	MM40.PLAS.ISO.00095.008	95	200	0.120	2.256
MM40.07.12A1	MM40.PLAS.ISO.00095.007	95	233	0.154	2.568
MM40.12.13A6	MM40.PLAS.ISO.00747.001	747	166	0.006	0.008
MM40.12.13C1	MM40.PLAS.ISO.00747.002	747	176	0.002	0.012
MM40.12.13D1	MM40.PLAS.ISO.00747.003	747	178	0.004	
MM40.12.14C5	MM40.PLAS.ISO.00747.004	747	192	0.006	0.006
MM40.12.14D2	MM40.PLAS.ISO.00747.005	747	219	0.006	0.007
MM40.12.1A1.bulk	MM40.PLAS.ISO.00747.006	747	267	0.010	0.011
MM40.12.1A2.bulk	MM40.PLAS.ISO.00747.007	747	529	0.003	0.011
MM40.13.11A1	MM40.PLAS.ISO.01166.002	1,166	289	0.009	5.125
MM40.13.11A5	MM40.PLAS.ISO.01166.003	1,166	237	0.017	5.125
MM40.13.11B3	MM40.PLAS.ISO.01166.004	1,166	208	0.008	5.125
MM40.13.11D4	MM40.PLAS.ISO.01166.005	1,166	238	0.011	0.009
MM40.13.12A1	MM40.PLAS.ISO.01166.006	1,166	182	0.007	0.025
MM40.13.12B2	MM40.PLAS.ISO.01166.007	1,166	189	0.006	0.009
MM40.13.12B5	MM40.PLAS.ISO.01166.008	1,166	195	0.009	0.010
MM40.13.12C2	MM40.PLAS.ISO.01166.009	1,166	263	0.010	0.010
MM40.13.12C3	MM40.PLAS.ISO.01166.010	1,166	251	0.006	0.008
MM40.13.13D5	MM40.PLAS.ISO.01166.001	1,166	162	0.028	0.008
MM40.15.1A3	MM40.PLAS.ISO.01530.001	1,530	192	0.048	0.008
MM40.15.1A5	MM40.PLAS.ISO.01530.002	1,530	241	0.032	0.008
MM40.15.1B1	MM40.PLAS.ISO.01530.003	1,530	230	0.025	0.034
MM40.15.1B6	MM40.PLAS.ISO.01530.004	1,530	251	0.042	
MM40.15.1C1	MM40.PLAS.ISO.01530.005	1,530	423	0.067	0.008
MM40.15.2A2	MM40.PLAS.ISO.01530.006	1,530	126	0.043	

Table S2
MM40.15.2B1	MM40.PLAS.ISO.01530.007	1,530	257	0.0515	
MM40.15.2B5	MM40.PLAS.ISO.01530.008	1,530	247	0.0255	
MM40.15.2B6	MM40.PLAS.ISO.01530.009	1,530	606	0.0335	
MM40.15.2C1	MM40.PLAS.ISO.01530.010	1,530	235	0.0095	0.031
MM40.15.2C3	MM40.PLAS.ISO.01530.011	1,530	465	0.0695	0.084
MM40.15.2D1	MM40.PLAS.ISO.01530.012	1,530	290	0.0425	
MM40.15.2D6	MM40.PLAS.ISO.01530.013	1,530	267	0.0485	0.035
MM40.15.13B6	MM40.PLAS.ISO.01530.014	1,530	217	0.041	
MM40.15.13C1	MM40.PLAS.ISO.01530.015	1,530	210	0.043	
MM40.15.14B3	MM40.PLAS.ISO.01530.016	1,530	212	0.061	0.159
MM40.15.14C3	MM40.PLAS.ISO.01530.017	1,530	273	0.034	
MM40.15.1.bulk	MM40.PLAS.ISO.01530.018	1,530	235	0.0095	0.031
MM40.18.1C7.QVOA	MM40.PBMC.QVOA.02041.001	2,041	373	0.030	0.066
MM55.01.1A3.bulk	MM55.PLAS.ISO.00031.001	31	210	0.019	
MM55.03.2B4.bulk	MM55.PLAS.ISO.00051.002	51	265	0.0215	0.0735
MM55.03.2A1.bulk	MM55.PLAS.ISO.00051.001	51	310	0.0815	0.4225
MM55.09.2A1.bulk	MM55.PLAS.ISO.00348.001	348	184	0.008	0.074
MM55.11.2A3.bulk	MM55.PLAS.ISO.00661.001	661	133	0.002	0.007
MM55.12.2B1.bulk	MM55.PLAS.ISO.00831.001	831	174	0.0055	0.0295
MM55.12.2B2.bulk	MM55.PLAS.ISO.00831.002	831	181	0.007	0.11
MM55.14.1B4.bulk	MM55.PLAS.ISO.01300.003	1,300	475	0.003	0.10
MM55.14.2B5.bulk	MM55.PLAS.ISO.01300.001	1,300	477	0.003	0.10
MM55.15.1A3.bulk	MM55.PLAS.ISO.01858.001	1,858	222	0.007	0.009
MM55.15.1A4.bulk	MM55.PLAS.ISO.01858.002	1,858	209	0.005	0.047
MM55.16.1C2.bulk	MM55.PLAS.ISO.02054.001	2,054	402	0.006	0.006
MM55.16.1E1.bulk	MM55.PLAS.ISO.02054.002	2,054	513	0.007	0.004
MM62.01.1A3.bulk	MM62.PLAS.ISO.00022.003	22	404	0.2005	1.7235
MM62.01.1C4.bulk	MM62.PLAS.ISO.00022.001	22	227	0.160	1.614
MM62.01.2C6.bulk	MM62.PLAS.ISO.00022.002	22	238	0.260	1.808
MM62.02.1B1.bulk	MM62.PLAS.ISO.00057.002	57	295	0.090	0.751
MM62.02.2D1.bulk	MM62.PLAS.ISO.00057.001	57	223	0.081	0.871
MM62.03.1B3.bulk	MM62.PLAS.ISO.00074.001	74	255	0.008	0.014
MM62.03.2D2.bulk	MM62.PLAS.ISO.00074.002	74	245	0.010	0.022
MM62.04.1C1.bulk	MM62.PLAS.ISO.00120.001	120	298	0.0055	0.0045
MM62.04.1D3.bulk	MM62.PLAS.ISO.00120.002	120	243	0.007	0.008
MM62.04.1E5.bulk	MM62.PLAS.ISO.00120.003	120	279	0.007	0.008
MM62.05.2C1.bulk	MM62.PLAS.ISO.00185.001	185	358	0.0165	0.0215
MM62.05.2D5.bulk	MM62.PLAS.ISO.00185.002	185	374	0.030	0.079
MM62.06.1C3.bulk	MM62.PLAS.ISO.00304.001	304	267	0.006	0.007
MM62.08.2A1.bulk	MM62.PLAS.ISO.00668.001	658	362	0.009	0.011
MM62.10.1D6.bulk	MM62.PLAS.ISO.01130.001	1,130	258	0.012	0.022
MM62.10.1G6.bulk	MM62.PLAS.ISO.01130.002	1,130	246	0.014	0.018
MM62.11.2B5.bulk	MM62.PLAS.ISO.01331.001	1,331	298	0.010	0.016
MM62.11.2A2.bulk	MM62.PLAS.ISO.01331.002	1,331	307	0.015	0.022
WEAU.02.1A1.bulk	WEAU.PLAS.ISO.-0004.001	-4	257	0.843	19.873
WEAU.02.1A2.bulk	WEAU.PLAS.ISO.-0004.002	-4	464	0.854	20.646
WEAU.03.1A4.bulk	WEAU.PLAS.ISO.00000.001	0	260	1.006	18.580
WEAU.03.1A5.bulk	WEAU.PLAS.ISO.00000.002	0	146	0.972	17.459
WEAU.08.1B1.bulk	WEAU.PLAS.ISO.00024.001	24	283	0.302	9.336
WEAU.08.1B2.bulk	WEAU.PLAS.ISO.00024.002	24	295	0.298	8.530
WEAU.11.1B5.bulk	WEAU.PLAS.ISO.00052.001	52	228	0.264	6.061

Table S2
Accession	Description	Days	Concentration of p24	Concentration of IFNα2 and IFNβ
WEAU.11.1B6	bulk	52	287	0.215
	WEAU.PLAS.ISO.00052.002			4.924
WEAU.14.1C1	bulk	371	306	0.151
	WEAU.PLAS.ISO.00371.001			7.139
WEAU.14.1C3	bulk	371	158	0.302
	WEAU.PLAS.ISO.00371.002			4.073
WEAU.15.1C4	bulk	520	140	0.266
	WEAU.PLAS.ISO.00520.001			8.100
WEAU.15.1C5	bulk	520	121	0.333
	WEAU.PLAS.ISO.00520.002			8.758
WEAU.17.1D1	bulk	752	146	0.298
	WEAU.PLAS.ISO.00752.001			11.100
WEAU.17.1D2	bulk	752	189	0.353
	WEAU.PLAS.ISO.00752.002			7.279
WEAU.18.1D4	bulk	771	245	0.241
	WEAU.PLAS.ISO.00771.001			6.080
WEAU.18.1D5	bulk	771	178	0.431
	WEAU.PLAS.ISO.00771.002			8.211
WEAU.19.1A1	bulk	981	299	0.466
	WEAU.PLAS.ISO.00981.001			11.906
WEAU.19.1A3	bulk	981	380	0.533
	WEAU.PLAS.ISO.00981.002			11.227

1 For GenBank accession numbers see Table S5.
2 Days following onset of symptoms
3 Concentration of p24 in culture supernatant at day 7 in the absence of IFN treatment.
4 Concentration of IFNα2 and IFNβ that reduced virus replication by 50%.
5 Average of multiple biological replicates.

Table S2
Table S3. Generation of viral isolates from ART suppressed individuals with and without treatment interruption

Virus	Subjects	Gender	Years on ART before ATI	Sample time point	Viral load (copies/µl)	CD4 count (cells/µl)	Sample Eff	Number of Limiting dilution virus Isolates	Study Number	References
QVOA	B199	M	4	second leukapheresis	<20	200	QVOA Supernatant	1	MNJU-0628	Lorenzi et al., 2016
QVOA	B106	M	7	first and second leukapheresis	<20	390	QVOA Supernatant	2		
QVOA	9242	M	2	during ATI (12 weeks) before rebound	<20	987	QVOA Supernatant	2		
QVOA	9243	M	5	during ATI (12 weeks) before rebound	<20	546	QVOA Supernatant	1		
QVOA	9244	M	5	2 weeks pre ATI	<20	726	QVOA Supernatant	4		
QVOA	9244	M	5	during ATI (12 weeks) before rebound	<20	796	QVOA Supernatant	2		
QVOA	9241	M	5	during ATI (12 weeks) before rebound	<20	709	QVOA Supernatant	1		
QVOA	9241	M	5	2 weeks pre ATI	<20	QVOA Supernatant	4			
Rebound	9241	M	2	16 weeks post ATI	85,300	450	Plasma	5		
Rebound	9242	M	5	21 weeks post ATI	16,110	350	Plasma	1		
Rebound	9243	M	5	22 weeks post ATI	126,230	730	Plasma	3		
Rebound	9244	M	5	22 weeks post ATI	13,250	500	Plasma	1		
QVOA	A06	M	>3.6	2.5 weeks pre ATI	<50	>470	QVOA Supernatant and cryopreserved PBMC	6		
QVOA	A06	M	>3.6	during 1st ATI	<50	>470	QVOA Supernatant	3		
QVOA	A06	M	>3.6	4 weeks pre ATI	<50	>470	QVOA Supernatant	4		
QVOA	A06	M	>3.6	11 months post ATI	<50	>470	QVOA Supernatant	4		
QVOA	A09	M	>3.6	1 week post ATI	<50	>470	QVOA Supernatant	4		
QVOA	A09	M	>3.6	6 weeks post ATI	<50	>470	QVOA Supernatant	2		
Rebound	A09	M	>3.6	3 weeks post ATI	2,370	>350	Plasma	8		
Rebound	A09	M	>3.6	5 weeks post ATI	21,000	>350	Plasma	9		
Rebound	S22	M	8	during 2nd ATI	730,000	440	Plasma	5		
Rebound	S23	M	5	during 3rd ATI	517,475	487	Plasma	2		
Rebound	S30	M	5	during 4th ATI	517,475	487	Plasma	4		
Rebound	S30	M	5	during 5th ATI	517,475	487	Plasma	4		
Rebound	004	M	>1	4 weeks post ATI (week 12 of study)	33,812	794	Plasma	4		
Rebound	030	M	>1	4 weeks post ATI (week 12 of study)	16,886	377	Plasma	4		
Rebound	041	M	>1	4 weeks post ATI (week 12 of study)	28,810	496	Plasma	4		
Rebound	601	M	20	5 weeks post ATI (week 29 of study)	113,160	707	Plasma	6		

1All subjects were recruited in the US and had subtype B infections, except for subject A09 who also harbored a subtype A strain (only subtype B viruses were isolated)
2M, male; F, female.
3ATI, analytical treatment interruption
4QVOA, quantitative viral outgrowth assay
5Viral isolates were confirmed by sequence analysis to be single virion-derived (Genbank accession number are shown in table S5)

Table S3. Generation of viral isolates from ART suppressed individuals with and without treatment interruption

Notes:
- **Gender:** M, male; F, female.
- **ATI:** Analytical Treatment Interruption
- **QVOA:** Quantitative Viral Outgrowth Assay
- **Supernatant:** Plasma
- **PBMC:** Peripheral Blood Mononuclear Cells
- **Genbank Accession Number:** Provided for viral isolates confirmed by sequence analysis.
| Type | Isolate ID | Study number | Replicative capacity (ng p24/ml) | IFNα2 IC₅₀ (pg/ml) | IFNγ IC₅₀ (pg/ml) |
|-------------|------------------|--------------|----------------------------------|--------------------|------------------|
| QVOA | B199.2.C.BF.1 | MNU-0628 | 80 | 0.04 | 0.12 |
| QVOA | B106.1.C.3.8 | | 100 | 0.18 | 3.12 |
| QVOA | B106.2.C.D6.S8.8 | | 195 | 0.16 | 1.96 |
| QVOA - week 12 | 9242.QVOA.12F23 | | 386 | 0.02 | 0.04 |
| QVOA - week 12 | 9242.QVOA.12M6 | | 641 | 0.01 | 0.01 |
| QVOA - week 12 | 9243.QVOA.12Y10 | | 679 | 0.02 | 0.04 |
| QVOA - week 12 | 9244.QVOA.12I10 | | 492 | 0.02 | 0.04 |
| QVOA - week 12 | 9244.QVOA.12J17 | | 483 | 0.02 | 0.09 |
| QVOA - week -2 | 9244.QVOA.G12 | | 694 | 0.01 | 0.10 |
| QVOA - week -2 | 9244.QVOA.H1 | | 496 | 0.02 | 0.06 |
| QVOA - week -2 | 9244.QVOA.K2 | | 404 | 0.02 | 0.15 |
| QVOA - week -2 | 9244.QVOA.P11 | | 423 | 0.02 | 0.11 |
| QVOA - week 12 | 9241.QVOA.12AU7 | | 360 | 0.03 | 0.25 |
| QVOA - week -2 | 9241.QVOA.D2 | | 445 | 0.02 | 0.09 |
| QVOA - week -2 | 9241.QVOA.A10 | | 315 | 0.04 | 0.13 |
| QVOA - week 12 | 9241.QVOA.C19 | | 282 | 0.04 | 0.09 |
| QVOA - week -2 | 9241.QVOA.C8 | | 278 | 0.04 | 0.10 |
| Rebound | 9242.REB.6B8 | | 299 | 1.13 | 45.04 |
| Rebound | 9242.REB.6A7 | | 309 | 1.05 | 21.99 |
| Rebound | 9242.REB.6B2 | | 286 | 1.93 | 30.49 |
| Rebound | 9242.REB.13B1 | | 547 | 1.26 | 61.88 |
| Rebound | 9242.REB.13B8 | | 418 | 1.70 | 58.24 |
| Rebound | 9243.REB.13F7 | | 554 | 1.56 | 49.26 |
| Rebound | 9244.REB.7A8 | | 499 | 1.53 | 54.25 |
| Rebound | 9244.REB.7A1 | | 459 | 1.59 | 31.67 |
| Rebound | 9244.REB.7C1 | | 567 | 1.72 | 34.43 |
| Rebound | 9244.REB.9D3 | | 578 | 1.35 | 48.06 |
| Rebound | 9244.REB.9E6 | | 535 | 1.70 | 77.03 |
| Rebound | 9241.REB.7D4 | | 626 | 1.62 | 82.64 |
| QVOA - Pre ATI | A06.QVOA.M5 | | 139 | 0.15 | 1.70 |
| QVOA - Pre ATI | A06.QVOA.M10 | | 144 | 0.11 | 1.57 |
| QVOA - Pre ATI | A06.QVOA.M30 | | 158 | 0.09 | 1.81 |
| QVOA - Pre ATI | A06.QVOA.M28 | | 97 | 0.09 | 1.17 |
| QVOA - Pre ATI | A06.QVOA.M19 | | 150 | 0.08 | 1.40 |
| QVOA - Pre ATI | A06.QVOA.M29 | | 124 | 0.07 | 2.99 |
| QVOA - Post ATI | A06.QVOA.2B | | 143 | 0.07 | 0.85 |
| QVOA - Post ATI | A06.QVOA.M20 | | 126 | 0.09 | 1.67 |
| QVOA - Post ATI | A06.QVOA.M3 | | 117 | 0.09 | 1.10 |
| QVOA - Post ATI | A08.QVOA.1E2 | | 99 | 0.04 | 0.32 |
| QVOA - Post ATI | A08.QVOA.M1 | | 1548 | 0.02 | 0.01 |
| QVOA - Post ATI | A08.QVOA.M4 | | 965 | 0.01 | 0.04 |
| QVOA - Post ATI | A08.QVOA.M5 | | 665 | 0.01 | 0.10 |
| QVOA - Post ATI | A08.QVOA.M17 | | 977 | 0.01 | 0.60 |
| QVOA - Post ATI | A08.QVOA.M20 | | 620 | 0.01 | 0.08 |
| QVOA - Post ATI | A08.QVOA.1B5 | | 122 | 0.03 | 0.90 |
| QVOA - Post ATI | A08.QVOA.1C8 | | 152 | 0.03 | 0.08 |
| QVOA - Post ATI | A08.QVOA.1F8 | | 163 | 0.03 | 0.07 |
| QVOA - Post ATI | A08.QVOA.3D8 | | 65 | 1.47 | 5.17 |
| QVOA - Post ATI | A08.QVOA.4A1 | | 103 | 0.02 | 0.15 |
| QVOA - Post ATI | A08.QVOA.4E4 | | 120 | 0.02 | 0.09 |
| QVOA - Post ATI | A08.QVOA.5C3 | | 83 | 0.03 | 0.39 |
| QVOA - Post ATI | A08.QVOA.5E2 | | 142 | 0.02 | 0.03 |
| QVOA - Post ATI | A08.QVOA.5E4 | | 119 | 0.04 | 0.49 |
| QVOA - Post ATI | A08.QVOA.6D3 | | 120 | 0.03 | 0.04 |
| QVOA - Post ATI | A08.QVOA.6E2 | | 86 | 0.02 | 0.08 |
| QVOA - Post ATI | A08.QVOA.6F6 | | 66 | 1.23 | 8.24 |
| QVOA - Post ATI | A08.QVOA.7F8 | 150 | 0.04 | 0.14 |
| QVOA - Post ATI | A08.QVOA.8E8 | 50 | 0.03 | 0.03 |
| Rebound | A08.REB.1A3 | 451 | 1.06 | 83.13 |
| Rebound | A08.REB.1D1 | 496 | 1.45 | 51.37 |
| Rebound | A08.REB.5C2 | 125 | 1.22 | 80.62 |
| Rebound | A08.REB.5D2 | 250 | 1.44 | 45.44 |
| Rebound | A08.REB.6B3 | 125 | 0.85 | 55.84 |
| Rebound | A08.REB.6D6 | 728 | 1.22 | 46.83 |
| Rebound | A08.REB.7A3 | 504 | 1.51 | 75.85 |
| Rebound | A08.REB.7C1 | 707 | 1.43 | 68.06 |
| Rebound | A08.REB.7C2 | 176 | 2.07 | 44.85 |
| Rebound | A08.REB.7D3 | 309 | 1.65 | 38.78 |
| Rebound | A08.REB.8A5 | 768 | 1.59 | 41.98 |
| Rebound | A08.REB.8B3 | 763 | 1.61 | 41.17 |
| Rebound | A08.REB.BD1 | 425 | 1.33 | 31.24 |
| Rebound | A08.REB.BB5 | 510 | 2.28 | 64.49 |
| Rebound | A08.REB.BB5 | 510 | 1.94 | 69.78 |
| Rebound | A08.REB.2F4 | 420 | 3.01 | 92.25 |
| Rebound | A08.REB.1A5 | 506 | 1.69 | 42.34 |
| QVOA - Pre ATI | A09.QVOA.M25 | 194 | 0.26 | 1.29 |
| QVOA - Pre ATI | A09.QVOA.M22 | 206 | 0.05 | 0.19 |
| QVOA - Pre ATI | A09.QVOA.M2 | 254 | 0.05 | 0.46 |
| QVOA - Pre ATI | A09.QVOA.M6 | 171 | 0.06 | 0.70 |
| QVOA - Post ATI | A09.QVOA.M9 | 171 | 0.21 | 0.69 |
| QVOA - Post ATI | A09.QVOA.M16 | 285 | 0.05 | 0.69 |
| Rebound | A09.REB.BB5 | 275 | 3.16 | 58.67 |
| Rebound | A09.REB.1D5 | 101 | 2.19 | 51.20 |
| Rebound | A09.REB.2B2 | 171 | 2.79 | 26.36 |
| Rebound | A09.REB.1A1 | 376 | 2.40 | 46.03 |
| Rebound | A09.REB.1A3 | 227 | 1.78 | 58.57 |
| Rebound | A09.REB.1A4 | 238 | 2.48 | 70.36 |
| Rebound | A09.REB.1A5 | 249 | 2.55 | 61.27 |
| Rebound | A09.REB.2A2 | 221 | 2.54 | 83.45 |
| Rebound | S22.REB.2A4C | 399 | 1.64 | 90.59 |
| Rebound | S22.REB.1E2 | 389 | 1.03 | 61.14 |
| Rebound | S22.REB.1F5 | 374 | 1.62 | 93.32 |
| Rebound | S22.REB.3A6 | 487 | 1.45 | 97.27 |
| Rebound | S22.REB.3B6 | 378 | 1.00 | 75.65 |
| Rebound | S23.REB.3D1 | 358 | 1.70 | 66.56 |
| Rebound | S23.REB.2A4A | 475 | 1.25 | 76.30 |
| Rebound | S30.REB.BD1 | 407 | 1.21 | 84.20 |
| Rebound | S30.REB.2D1 | 303 | 2.14 | 87.20 |
| Rebound | S30.REB.2D2 | 350 | 1.54 | 70.82 |
| Rebound | S30.REB.7D1 | 336 | 1.72 | 72.69 |
| Rebound | 004.REB.4D4 | 413 | 2.58 | 93.58 |
| Rebound | 004.REB.4E6 | 263 | 2.54 | 63.21 |
| Rebound | 004.REB.4D1 | 259 | 2.65 | 97.87 |
| Rebound | 004.REB.4E3 | 252 | 5.55 | 111.80 |
| Rebound | 030.REB.3E1 | 371 | 2.99 | 56.49 |
| Rebound | 030.REB.2E1 | 396 | 2.84 | 47.24 |
| Rebound | 030.REB.4E1 | 427 | 3.48 | 70.43 |
| Rebound | 030.REB.8E1 | 308 | 2.84 | 69.21 |
| Rebound | 044.REB.6F1 | 283 | 3.42 | 79.99 |
| Rebound | 044.REB.5F1 | 348 | 2.75 | 69.41 |
| Rebound | 044.REB.7F1 | 329 | 2.80 | 72.71 |
| Rebound | 044.REB.8F1 | 355 | 2.48 | 91.45 |
| Rebound | 601.REB.4B7 | 497 | 2.15 | 64.85 |
| Rebound | 601.REB.4C3 | 483 | 2.03 | 33.29 |
| Rebound | 601.REB.4B4 | 468 | 2.17 | 65.81 |
| Rebound | 601.REB.4A8 | 546 | 1.81 | 42.24 |

Table S4
Rebound	601.REB.4A7	562	2.25	60.84
Rebound	601.REB.4C1	536	2.02	54.66

1Isolates were obtained by expanding previously generated quantitative viral outgrowth assay (QVOA) supernatants, or generated de novo from cryopreserved PBMCs or plasma samples (61-67).

2For GenBank accession numbers see Table S5.

3Concentration of p24 in culture supernatant at day 7 in the absence of IFN treatment.

4Dose of IFN that reduced viral replication in CD4+ T cells by 50%.

5Samples from the NCT02825797 study were collected before (-2 week) and during (12 week) treatment interruption, but prior to any detectable rebound virus.

6B106.1.C.3.8 was isolated from the first and 106.2.C.D6.S8 from the second leukapheresis sample.

Table S4
Table S5. GenBank accession numbers of viral sequences

Type	Sequence ID	Region Sequenced	Genbank Accession Number	Original Isolate Designation
Pre-ART	MM14.PLAS.ISO.00040.002	env	pending	this study
Pre-ART	MM14.PLAS.ISO.00040.003	env	pending	this study
Plasma SGS	MM14.PLAS.SGS.00040.003	env	pending	this study
Plasma SGS	MM14.PLAS.SGS.00040.004	env	pending	this study
Plasma SGS	MM14.PLAS.SGS.00040.005	env	pending	this study
Plasma SGS	MM14.PLAS.SGS.00040.006	env	pending	this study
Plasma SGS	MM14.PLAS.SGS.00040.007	env	pending	this study
Plasma SGS	MM14.PLAS.SGS.00040.008	env	pending	this study
Plasma SGS	MM14.PLAS.SGS.00040.009	env	pending	this study
Plasma SGS	MM14.PLAS.SGS.00040.010	env	pending	this study
Plasma SGS	MM14.PLAS.SGS.00040.011	env	pending	this study
Plasma SGS	MM14.PLAS.SGS.00041.001	env	pending	this study
Plasma SGS	MM14.PLAS.SGS.00041.002	env	pending	this study
Plasma SGS	MM14.PLAS.SGS.00041.003	env	pending	this study
Plasma SGS	MM14.PLAS.SGS.00041.004	env	pending	this study
Plasma SGS	MM14.PLAS.SGS.00041.005	env	pending	this study
Plasma SGS	MM14.PLAS.SGS.00041.006	env	pending	this study
Plasma SGS	MM14.PLAS.SGS.00041.007	env	pending	this study
Plasma SGS	MM14.PLAS.SGS.00041.008	env	pending	this study
Plasma SGS	MM14.PLAS.SGS.00041.009	env	pending	this study
Plasma SGS	MM14.PLAS.SGS.00041.010	env	pending	this study
Plasma SGS	MM14.PLAS.SGS.00041.011	env	pending	this study
Plasma SGS	MM14.PLAS.SGS.00041.012	env	pending	this study
Plasma SGS	MM14.PLAS.SGS.00041.013	env	pending	this study
Plasma SGS	MM14.PLAS.SGS.00041.014	env	pending	this study
Pre-ART	MM14.PLAS.ISO.00072.001	env	pending	this study
Plasma SGS	MM14.PLAS.SGS.00072.002	env	pending	this study
Plasma SGS	MM14.PLAS.SGS.00072.003	env	pending	this study
Plasma SGS	MM14.PLAS.SGS.00072.004	env	pending	this study
Plasma SGS	MM14.PLAS.SGS.00072.005	env	pending	this study
Plasma SGS	MM14.PLAS.SGS.00072.006	env	pending	this study
Plasma SGS	MM14.PLAS.SGS.00072.007	env	pending	this study
Plasma SGS	MM14.PLAS.SGS.00072.008	env	pending	this study
Plasma SGS	MM14.PLAS.SGS.00072.009	env	pending	this study
Plasma SGS	MM14.PLAS.SGS.00072.010	env	pending	this study
Plasma SGS	MM14.PLAS.SGS.00072.011	env	pending	this study
Plasma SGS	MM14.PLAS.SGS.00072.012	env	pending	this study
Plasma SGS	MM14.PLAS.SGS.00072.013	env	pending	this study
Plasma SGS	MM14.PLAS.SGS.00072.014	env	pending	this study
Plasma SGS	MM14.PLAS.SGS.00072.015	env	pending	this study
Plasma SGS	MM14.PLAS.SGS.00072.016	env	pending	this study
Pre-ART	MM15.PLAS.ISO.00027.003	env	pending	this study
Plasma SGS	MM15.PLAS.SGS.00027.002	env	pending	this study
Plasma SGS	MM15.PLAS.SGS.00027.003	env	pending	this study
Plasma SGS	MM15.PLAS.SGS.00027.004	env	pending	this study
Plasma SGS	MM15.PLAS.SGS.00027.005	env	pending	this study
Plasma SGS	MM15.PLAS.SGS.00027.006	env	pending	this study
Plasma SGS	MM15.PLAS.SGS.00027.007	env	pending	this study
Plasma SGS	MM15.PLAS.SGS.00027.008	env	pending	this study
Plasma SGS	MM15.PLAS.SGS.00027.009	env	pending	this study
Plasma SGS	MM15.PLAS.SGS.00027.010	env	pending	this study
Plasma SGS	MM15.PLAS.SGS.00027.011	env	pending	this study
Plasma SGS	MM15.PLAS.SGS.00027.012	env	pending	this study
Plasma SGS	MM15.PLAS.SGS.00027.013	env	pending	this study
Plasma SGS	MM15.PLAS.SGS.00027.014	env	pending	this study
Plasma SGS	MM15.PLAS.SGS.00027.015	env	pending	this study
Plasma SGS	MM15.PLAS.SGS.00027.016	env	pending	this study
Pre-ART	MM15.PLAS.ISO.00037.003	env	pending	this study
Plasma SGS	MM15.PLAS.SGS.00037.002	env	pending	this study
Plasma SGS	MM15.PLAS.SGS.00037.003	env	pending	this study
Plasma SGS	MM15.PLAS.SGS.00037.004	env	pending	this study
Plasma SGS	MM15.PLAS.SGS.00037.005	env	pending	this study
Plasma SGS	MM15.PLAS.SGS.00037.006	env	pending	this study
Plasma SGS	MM15.PLAS.SGS.00037.007	env	pending	this study
Plasma SGS	MM15.PLAS.SGS.00037.008	env	pending	this study
Plasma SGS	MM15.PLAS.SGS.00037.009	env	pending	this study
Plasma SGS	MM15.PLAS.SGS.00037.010	env	pending	this study
Plasma SGS	MM15.PLAS.SGS.00037.011	env	pending	this study
Plasma SGS	MM15.PLAS.SGS.00037.012	env	pending	this study
Plasma SGS	MM15.PLAS.SGS.00037.013	env	pending	this study
Plasma SGS	MM15.PLAS.SGS.00037.014	env	pending	this study
Plasma SGS	MM15.PLAS.SGS.00037.015	env	pending	this study
Plasma SGS	MM15.PLAS.SGS.00037.016	env	pending	this study

Table S5
| Plasma SGS MM23.PLAS.SGS.00009.002 3' half pending this study |
|-----------------------------|-----------------------------|
| Plasma SGS MM23.PLAS.ISO.00009.012 env pending this study |
| Plasma SGS MM23.PLAS.ISO.00009.013 env pending this study |
| Plasma SGS MM23.PLAS.ISO.00009.011 env pending this study |
| Plasma SGS MM23.PLAS.ISO.00009.009 full-length pending this study |
| Plasma SGS MM23.PLAS.ISO.00009.008 full-length pending this study |
| Plasma SGS MM23.PLAS.ISO.00009.007 full-length pending this study |
| Plasma SGS MM23.PLAS.ISO.00009.006 full-length pending this study |
| Plasma SGS MM23.PLAS.ISO.00009.005 full-length pending this study |
| Plasma SGS MM23.PLAS.ISO.00009.003 full-length pending this study |
| Plasma SGS MM23.PLAS.ISO.00009.002 full-length pending this study |
| Plasma SGS MM23.PLAS.SGS.00009.001 3' half pending this study |
| Plasma SGS MM23.PLAS.ISO.00009.001 full-length pending this study |
| Plasma SGS MM23.PLAS.SGS.00037.003 env pending this study |
| Plasma SGS MM23.PLAS.SGS.00037.002 env pending this study |
| Plasma SGS MM23.PLAS.SGS.00037.001 env pending this study |

Table S5
Plasma SGS	MM23.PLAS.SGS.00009.003	3' half	pending	this study
Plasma SGS	MM23.PLAS.SGS.00009.004	3' half	pending	this study
Plasma SGS	MM23.PLAS.SGS.00009.005	3' half	pending	this study
Plasma SGS	MM23.PLAS.SGS.00009.006	3' half	pending	this study
Plasma SGS	MM23.PLAS.SGS.00009.007	3' half	pending	this study
Plasma SGS	MM23.PLAS.SGS.00009.008	3' half	pending	this study
Plasma SGS	MM23.PLAS.SGS.00009.009	3' half	pending	this study
Plasma SGS	MM23.PLAS.SGS.00009.010	3' half	pending	this study
Plasma SGS	MM23.PLAS.SGS.00009.011	3' half	pending	this study
Plasma SGS	MM23.PLAS.SGS.00009.012	3' half	pending	this study
Plasma SGS	MM23.PLAS.SGS.00009.013	3' half	pending	this study
Plasma SGS	MM23.PLAS.SGS.00009.014	3' half	pending	this study
Plasma SGS	MM23.PLAS.SGS.00009.015	3' half	pending	this study
Plasma SGS	MM23.PLAS.SGS.00009.016	3' half	pending	this study
Plasma SGS	MM23.PLAS.SGS.00009.017	env	pending	this study
Plasma SGS	MM23.PLAS.SGS.00009.018	env	pending	this study
Plasma SGS	MM23.PLAS.SGS.00009.019	env	pending	this study
Plasma SGS	MM23.PLAS.SGS.00009.020	env	pending	this study
Plasma SGS	MM23.PLAS.SGS.00009.021	env	pending	this study
Plasma SGS	MM23.PLAS.SGS.00009.022	env	pending	this study
Plasma SGS	MM23.PLAS.SGS.00009.023	env	pending	this study
Plasma SGS	MM23.PLAS.SGS.00009.024	env	pending	this study
Plasma SGS	MM23.PLAS.SGS.00009.025	env	pending	this study
Plasma SGS	MM23.PLAS.SGS.00009.026	env	pending	this study
Plasma SGS	MM23.PLAS.SGS.00009.027	env	pending	this study
Plasma SGS	MM23.PLAS.SGS.00009.028	env	pending	this study
Plasma SGS	MM23.PLAS.SGS.00009.029	env	pending	this study
Plasma SGS	MM23.PLAS.SGS.00009.030	env	pending	this study
Plasma SGS	MM23.PLAS.SGS.00009.031	env	pending	this study
Plasma SGS	MM23.PLAS.SGS.00009.032	env	pending	this study
Plasma SGS	MM23.PLAS.SGS.00009.033	env	pending	this study
Plasma SGS	MM23.PLAS.SGS.00009.034	env	pending	this study
Plasma SGS	MM23.PLAS.SGS.00009.035	env	pending	this study
Plasma SGS	MM23.PLAS.SGS.00009.036	env	pending	this study
Plasma SGS	MM23.PLAS.SGS.00009.037	env	pending	this study
Plasma SGS	MM23.PLAS.SGS.00009.038	env	pending	this study
Plasma SGS	MM23.PLAS.SGS.00009.039	env	pending	this study
Plasma SGS	MM23.PLAS.SGS.00009.040	env	pending	this study
Plasma SGS	MM23.PLAS.SGS.00009.041	env	pending	this study
Plasma SGS	MM23.PLAS.SGS.00009.042	env	pending	this study
Pre-ART	MM23.PLAS.ISO.00064.001	full-length	pending	this study
Pre-ART	MM23.PLAS.ISO.00064.002	full-length	pending	this study
Pre-ART	MM23.PLAS.ISO.00064.003	full-length	pending	this study
Pre-ART	MM23.PLAS.ISO.00064.004	full-length	pending	this study
Pre-ART	MM23.PLAS.ISO.00064.005	full-length	pending	this study
Pre-ART	MM23.PLAS.ISO.00064.006	full-length	pending	this study
Pre-ART	MM23.PLAS.ISO.00064.007	full-length	pending	this study
Pre-ART	MM23.PLAS.ISO.00064.008	full-length	pending	this study
Pre-ART	MM23.PLAS.ISO.00064.009	full-length	pending	this study
Pre-ART	MM23.PLAS.ISO.00064.010	full-length	pending	this study
Pre-ART	MM23.PLAS.ISO.00064.011	full-length	pending	this study
Pre-ART	MM23.PLAS.ISO.00064.012	full-length	pending	this study
Pre-ART	MM23.PLAS.ISO.00064.013	full-length	pending	this study
Pre-ART	MM23.PLAS.ISO.00064.014	full-length	pending	this study
Pre-ART	MM23.PLAS.ISO.00064.015	full-length	pending	this study
Pre-ART	MM23.PLAS.ISO.00064.016	full-length	pending	this study
Pre-ART	MM23.PLAS.ISO.00064.017	full-length	pending	this study
Pre-ART	MM23.PLAS.ISO.00064.018	full-length	pending	this study
Pre-ART	MM23.PLAS.ISO.00064.019	full-length	pending	this study
Pre-ART	MM23.PLAS.ISO.00064.020	full-length	pending	this study
Pre-ART	MM23.PLAS.ISO.00064.021	full-length	pending	this study
Pre-ART	MM23.PLAS.ISO.00064.022	full-length	pending	this study
Pre-ART	MM23.PLAS.ISO.00064.023	full-length	pending	this study
Pre-ART	MM23.PLAS.ISO.00064.024	full-length	pending	this study

Table S5
| Plasma SGS MM23.PLAS.SGS.00204.026 env pending this study |
|---------------------------|---------------------------|
| Plasma SGS MM23.PLAS.SGS.00204.027 env pending this study |
| Plasma SGS MM23.PLAS.SGS.00204.028 env pending this study |
| Plasma SGS MM23.PLAS.SGS.00204.029 env pending this study |
| Plasma SGS MM23.PLAS.SGS.00204.030 env pending this study |
| Plasma SGS MM23.PLAS.SGS.00204.031 env pending this study |
| Plasma SGS MM23.PLAS.SGS.00204.032 env pending this study |
| Plasma SGS MM23.PLAS.SGS.00204.033 env pending this study |
| Plasma SGS MM23.PLAS.SGS.00204.034 env pending this study |
| Plasma SGS MM23.PLAS.SGS.00204.035 env pending this study |
| Plasma SGS MM23.PLAS.SGS.00204.036 env pending this study |
| Plasma SGS MM23.PLAS.SGS.00204.037 env pending this study |
| Plasma SGS MM23.PLAS.SGS.00204.038 env pending this study |
| Plasma SGS MM23.PLAS.SGS.00204.039 env pending this study |
| Plasma SGS MM23.PLAS.SGS.00204.040 env pending this study |
| Plasma SGS MM23.PLAS.SGS.00204.041 env pending this study |
| Plasma SGS MM23.PLAS.SGS.00204.042 env pending this study |
| Plasma SGS MM23.PLAS.SGS.00204.043 env pending this study |
| Pre-ART MM23.PLAS.ISO.00316.001 full-length pending this study |
| Pre-ART MM23.PLAS.ISO.00316.002 3' half pending this study |
| Pre-ART MM23.PLAS.ISO.00316.003 3' half pending this study |
| Pre-ART MM23.PLAS.ISO.00316.004 full-length pending this study |
| Pre-ART MM23.PLAS.ISO.00316.005 full-length pending this study |
| Pre-ART MM23.PLAS.ISO.00316.006 full-length pending this study |
| Pre-ART MM23.PLAS.ISO.00316.007 full-length pending this study |
| Pre-ART MM23.PLAS.ISO.00316.008 full-length pending this study |
| Pre-ART MM23.PLAS.ISO.00316.009 full-length pending this study |
| Pre-ART MM23.PLAS.ISO.00316.010 3' half pending this study |
| Pre-ART MM23.PLAS.ISO.00316.011 3' half pending this study |
| Pre-ART MM23.PLAS.ISO.00722.001 full-length pending this study |
| Pre-ART MM23.PLAS.ISO.00722.002 full-length pending this study |
| Pre-ART MM23.PLAS.ISO.00722.003 full-length pending this study |
| Pre-ART MM23.PLAS.ISO.00722.004 full-length pending this study |
| Pre-ART MM23.PLAS.ISO.00722.005 full-length pending this study |
| Pre-ART MM23.PLAS.ISO.00722.006 full-length pending this study |
| Pre-ART MM23.PLAS.ISO.00722.007 full-length pending this study |
| Pre-ART MM23.PLAS.ISO.00722.008 full-length pending this study |
| Pre-ART MM23.PLAS.ISO.00722.009 full-length pending this study |
| Pre-ART MM23.PLAS.ISO.00722.010 3' half pending this study |
| Pre-ART MM23.PLAS.ISO.00722.011 full-length pending this study |
| Pre-ART MM23.PLAS.ISO.00722.012 full-length pending this study |
| Pre-ART MM23.PLAS.ISO.00722.013 full-length pending this study |
| Pre-ART MM23.PLAS.ISO.00722.014 full-length pending this study |
| Pre-ART MM23.PLAS.ISO.00722.015 full-length pending this study |
| Pre-ART MM23.PLAS.ISO.00722.016 full-length pending this study |
| Pre-ART MM23.PLAS.ISO.00722.017 full-length pending this study |
| Pre-ART MM23.PLAS.ISO.00722.018 full-length pending this study |
| Pre-ART MM23.PLAS.ISO.00722.019 full-length pending this study |
| Pre-ART MM23.PLAS.ISO.00722.020 env pending this study |
| Pre-ART MM23.PLAS.ISO.00722.021 env pending this study |
| Pre-ART MM23.PLAS.ISO.00722.022 env pending this study |
| Pre-ART MM23.PLAS.ISO.00722.023 env pending this study |
| Pre-ART MM23.PLAS.ISO.00722.024 env pending this study |
| Pre-ART MM23.PLAS.ISO.00722.025 env pending this study |
| Pre-ART MM23.PLAS.ISO.00722.026 env pending this study |
| Pre-ART MM23.PLAS.ISO.00722.027 env pending this study |
| Pre-ART MM23.PLAS.ISO.00722.028 env pending this study |
| Pre-ART MM23.PLAS.ISO.00722.029 env pending this study |
| Pre-ART MM23.PLAS.ISO.00722.030 env pending this study |
| Pre-ART MM23.PLAS.ISO.00722.031 3' half pending this study |
| Pre-ART MM23.PLAS.ISO.00722.032 3' half pending this study |

Table S5
PBMC SGS	MM23.PLL.ISO.00012.003 3' half pending this study
Pre-ART	MM33.PLL.ISO.00012.001 full-length pending this study
Pre-ART	MM33.PLL.ISO.00012.002 full-length pending this study
Pre-ART	MM33.PLL.ISO.00012.003 full-length pending this study
Pre-ART	MM33.PLL.ISO.00012.004 full-length pending this study
Pre-ART	MM33.PLL.ISO.00012.005 full-length pending this study
Pre-ART	MM33.PLL.ISO.00012.006 full-length pending this study
Pre-ART	MM33.PLL.ISO.00012.007 full-length pending this study
Pre-ART	MM33.PLL.ISO.00012.008 full-length pending this study
Plasma SGS	MM33.PLL.ISO.00012.009 env pending this study
Plasma SGS	MM33.PLL.ISO.00012.010 env pending this study
Plasma SGS	MM33.PLL.ISO.00012.011 env pending this study
Plasma SGS	MM33.PLL.ISO.00012.012 env pending this study
Plasma SGS	MM33.PLL.ISO.00012.013 env pending this study
Plasma SGS	MM33.PLL.ISO.00012.014 env pending this study
Plasma SGS	MM33.PLL.ISO.00012.015 env pending this study
Plasma SGS	MM33.PLL.ISO.00012.016 env pending this study
Plasma SGS	MM33.PLL.ISO.00012.017 env pending this study
Plasma SGS	MM33.PLL.ISO.00012.018 env pending this study
Plasma SGS	MM33.PLL.ISO.00012.019 env pending this study
Plasma SGS	MM33.PLL.ISO.00012.020 env pending this study
Plasma SGS	MM33.PLL.ISO.00012.021 env pending this study
Plasma SGS	MM33.PLL.ISO.00012.022 env pending this study
Plasma SGS	MM33.PLL.ISO.00012.023 env pending this study
Plasma SGS	MM33.PLL.ISO.00012.024 env pending this study
Plasma SGS	MM33.PLL.ISO.00012.025 env pending this study
Plasma SGS	MM33.PLL.ISO.00012.026 env pending this study
Plasma SGS	MM33.PLL.ISO.00012.027 env pending this study
Plasma SGS	MM33.PLL.ISO.00012.028 env pending this study
Plasma SGS	MM33.PLL.ISO.00012.029 env pending this study
Plasma SGS	MM33.PLL.ISO.00012.030 env pending this study
Plasma SGS	MM33.PLL.ISO.00012.031 env pending this study
Plasma SGS	MM33.PLL.ISO.00012.032 env pending this study
Plasma SGS	MM33.PLL.ISO.00012.033 env pending this study
Plasma SGS	MM33.PLL.ISO.00012.034 env pending this study
Plasma SGS	MM33.PLL.ISO.00012.035 env pending this study
Plasma SGS	MM33.PLL.ISO.00012.036 env pending this study
Plasma SGS	MM33.PLL.ISO.00012.037 env pending this study
Plasma SGS	MM33.PLL.ISO.00012.038 env pending this study
Plasma SGS	MM33.PLL.ISO.00012.039 env pending this study
Plasma SGS	MM33.PLL.ISO.00012.040 env pending this study
Plasma SGS	MM33.PLL.ISO.00012.041 env pending this study
Plasma SGS	MM33.PLL.ISO.00012.042 env pending this study
Plasma SGS	MM33.PLL.ISO.00019.001 env pending this study
Plasma SGS	MM33.PLL.ISO.00019.002 env pending this study
Plasma SGS	MM33.PLL.ISO.00019.003 env pending this study
Plasma SGS	MM33.PLL.ISO.00019.004 env pending this study
Plasma SGS	MM33.PLL.ISO.00019.005 env pending this study
Plasma SGS	MM33.PLL.ISO.00019.006 env pending this study
Plasma SGS	MM33.PLL.ISO.00019.007 env pending this study
Plasma SGS	MM33.PLL.ISO.00019.008 env pending this study
Plasma SGS	MM33.PLL.ISO.00019.009 env pending this study
Plasma SGS	MM33.PLL.ISO.00019.010 env pending this study
Plasma SGS	MM33.PLL.ISO.00019.011 env pending this study
Plasma SGS	MM33.PLL.ISO.00019.012 env pending this study
Plasma SGS	MM33.PLL.ISO.00019.013 env pending this study
Plasma SGS	MM33.PLL.ISO.00019.014 env pending this study
Plasma SGS	MM33.PLL.ISO.00019.015 env pending this study
Plasma SGS	MM33.PLL.ISO.00019.016 env pending this study
Plasma SGS	MM33.PLL.ISO.00019.017 env pending this study
Plasma SGS	MM33.PLL.ISO.00019.018 env pending this study
Plasma SGS	MM33.PLL.ISO.00019.019 env pending this study
Plasma SGS	MM33.PLL.ISO.00019.020 env pending this study
Plasma SGS	MM33.PLL.ISO.00019.021 env pending this study
Plasma SGS	MM33.PLL.ISO.00019.022 env pending this study
Plasma SGS	MM33.PLL.ISO.00019.023 env pending this study
Plasma SGS	MM33.PLL.ISO.00019.024 env pending this study
Plasma SGS	MM33.PLL.ISO.00019.025 env pending this study
Plasma SGS	MM33.PLL.ISO.00019.026 env pending this study
Plasma SGS	MM33.PLL.ISO.00019.027 env pending this study
Plasma SGS	MM33.PLL.ISO.00019.028 env pending this study
Plasma SGS	MM33.PLL.ISO.00019.029 env pending this study
Plasma SGS	MM33.PLL.ISO.00019.030 env pending this study
Plasma SGS	MM33.PLL.ISO.00019.031 env pending this study
Plasma SGS	MM33.PLL.ISO.00019.032 env pending this study

Table S5
Plasma SGS MM33.PLAS.SGS.00019.034 env	pending this study
Plasma SGS MM33.PLAS.SGS.00019.035 env	pending this study
Plasma SGS MM33.PLAS.SGS.00019.036 env	pending this study
Plasma SGS MM33.PLAS.SGS.00019.037 env	pending this study
Plasma SGS MM33.PLAS.SGS.00019.038 env	pending this study
Plasma SGS MM33.PLAS.SGS.00019.039 env	pending this study
Plasma SGS MM33.PLAS.SGS.00019.040 env	pending this study
Plasma SGS MM33.PLAS.SGS.00019.041 env	pending this study
Plasma SGS MM33.PLAS.SGS.00019.042 env	pending this study
Plasma SGS MM33.PLAS.SGS.00019.043 env	pending this study
Plasma SGS MM33.PLAS.SGS.00019.044 env	pending this study
Plasma SGS MM33.PLAS.SGS.00019.045 env	pending this study
Plasma SGS MM33.PLAS.SGS.00026.001 env	pending this study
Plasma SGS MM33.PLAS.SGS.00026.002 env	pending this study
Plasma SGS MM33.PLAS.SGS.00026.003 env	pending this study
Plasma SGS MM33.PLAS.SGS.00026.004 env	pending this study
Plasma SGS MM33.PLAS.SGS.00026.005 env	pending this study
Plasma SGS MM33.PLAS.SGS.00026.006 env	pending this study
Plasma SGS MM33.PLAS.SGS.00026.007 env	pending this study
Plasma SGS MM33.PLAS.SGS.00026.008 env	pending this study
Plasma SGS MM33.PLAS.SGS.00026.009 env	pending this study
Plasma SGS MM33.PLAS.SGS.00026.010 env	pending this study
Plasma SGS MM33.PLAS.SGS.00026.011 env	pending this study
Plasma SGS MM33.PLAS.SGS.00026.012 env	pending this study
Plasma SGS MM33.PLAS.SGS.00026.013 env	pending this study
Plasma SGS MM33.PLAS.SGS.00026.014 env	pending this study
Plasma SGS MM33.PLAS.SGS.00026.015 env	pending this study
Plasma SGS MM33.PLAS.SGS.00026.016 env	pending this study
Plasma SGS MM33.PLAS.SGS.00026.017 env	pending this study
Plasma SGS MM33.PLAS.SGS.00026.018 env	pending this study
Plasma SGS MM33.PLAS.SGS.00026.019 env	pending this study
Plasma SGS MM33.PLAS.SGS.00026.020 env	pending this study
Plasma SGS MM33.PLAS.SGS.00026.021 env	pending this study
Plasma SGS MM33.PLAS.SGS.00026.022 env	pending this study
Plasma SGS MM33.PLAS.SGS.00026.023 env	pending this study
Plasma SGS MM33.PLAS.SGS.00026.024 env	pending this study

Table S5
Table S5

Plasma SGS	MM33.PLAS.SGS.00040.025 env	pending this study
Plasma SGS	MM33.PLAS.SGS.00040.029 env	pending this study
Plasma SGS	MM33.PLAS.SGS.00040.027 env	pending this study
Plasma SGS	MM33.PLAS.SGS.00040.028 env	pending this study
Plasma SGS	MM33.PLAS.SGS.00040.029 env	pending this study
Plasma SGS	MM33.PLAS.SGS.00040.030 env	pending this study
Plasma SGS	MM33.PLAS.SGS.00040.031 env	pending this study
Plasma SGS	MM33.PLAS.SGS.00040.032 env	pending this study
Plasma SGS	MM33.PLAS.SGS.00040.033 env	pending this study
Plasma SGS	MM33.PLAS.SGS.00040.034 env	pending this study

Pre-ART	MM33.PLAS.ISO.00096.001 full-length	pending this study
Pre-ART	MM33.PLAS.ISO.00096.002 full-length	pending this study
Pre-ART	MM33.PLAS.ISO.00096.003 full-length	pending this study
Pre-ART	MM33.PLAS.ISO.00096.004 full-length	pending this study
Pre-ART	MM33.PLAS.ISO.00096.005 full-length	pending this study
Pre-ART	MM33.PLAS.ISO.00096.006 full-length	pending this study
Pre-ART	MM33.PLAS.ISO.00096.007 full-length	pending this study
Pre-ART	MM33.PLAS.ISO.00096.008 full-length	pending this study
Pre-ART	MM33.PLAS.ISO.00096.009 full-length	pending this study
Pre-ART	MM33.PLAS.ISO.00096.010 full-length	pending this study
Pre-ART	MM33.PLAS.ISO.00096.011 full-length	pending this study
Pre-ART	MM33.PLAS.ISO.00096.012 full-length	pending this study
Pre-ART	MM33.PLAS.ISO.00096.013 full-length	pending this study
Pre-ART	MM33.PLAS.ISO.00096.014 full-length	pending this study
Pre-ART	MM33.PLAS.ISO.00096.015 full-length	pending this study
Pre-ART	MM33.PLAS.ISO.00096.016 full-length	pending this study
Pre-ART	MM33.PLAS.ISO.00096.017 full-length	pending this study
Pre-ART	MM33.PLAS.ISO.00096.018 full-length	pending this study
Pre-ART	MM33.PLAS.ISO.00096.019 full-length	pending this study
Pre-ART	MM33.PLAS.ISO.00096.020 full-length	pending this study
Pre-ART	MM33.PLAS.ISO.00096.021 full-length	pending this study
Pre-ART	MM33.PLAS.ISO.00096.022 full-length	pending this study
Pre-ART	MM33.PLAS.ISO.00096.023 full-length	pending this study
Pre-ART	MM33.PLAS.ISO.00096.024 full-length	pending this study
Pre-ART	MM33.PLAS.ISO.00096.025 full-length	pending this study
Pre-ART	MM33.PLAS.ISO.00096.026 full-length	pending this study
Pre-ART	MM33.PLAS.ISO.00096.027 full-length	pending this study
Pre-ART	MM33.PLAS.ISO.00096.028 full-length	pending this study
Pre-ART	MM33.PLAS.ISO.00096.029 full-length	pending this study
Pre-ART	MM33.PLAS.ISO.00096.030 full-length	pending this study
Pre-ART	MM33.PLAS.ISO.00096.031 full-length	pending this study
Pre-ART	MM33.PLAS.ISO.00096.032 full-length	pending this study
Pre-ART	MM33.PLAS.ISO.00096.033 full-length	pending this study
Pre-ART	MM33.PLAS.ISO.00096.034 full-length	pending this study

It is made available under a CC-BY-NC 4.0 International license.
Plasma SGS MM33.PLAS.SGS.00391.015	env	pending	this study
Plasma SGS MM33.PLAS.SGS.00391.016	env	pending	this study
Plasma SGS MM33.PLAS.SGS.00391.017	env	pending	this study
Plasma SGS MM33.PLAS.SGS.00391.018	env	pending	this study
Plasma SGS MM33.PLAS.SGS.00391.019	env	pending	this study
Plasma SGS MM33.PLAS.SGS.00391.020	env	pending	this study
Plasma SGS MM33.PLAS.SGS.00391.021	env	pending	this study
Plasma SGS MM33.PLAS.SGS.00391.022	env	pending	this study
Plasma SGS MM33.PLAS.SGS.00391.023	env	pending	this study
Plasma SGS MM33.PLAS.SGS.00391.024	env	pending	this study
Plasma SGS MM33.PLAS.SGS.00391.025	env	pending	this study
Plasma SGS MM33.PLAS.SGS.00391.026	env	pending	this study
Plasma SGS MM33.PLAS.SGS.00391.027	env	pending	this study
Plasma SGS MM33.PLAS.SGS.00391.028	env	pending	this study
Plasma SGS MM33.PLAS.SGS.00391.029	env	pending	this study
Plasma SGS MM33.PLAS.SGS.00391.030	env	pending	this study
Plasma SGS MM33.PLAS.SGS.00391.031	env	pending	this study
Plasma SGS MM33.PLAS.SGS.00391.032	env	pending	this study
Plasma SGS MM33.PLAS.SGS.00391.033	env	pending	this study
Plasma SGS MM33.PLAS.SGS.00391.034	env	pending	this study
Plasma SGS MM33.PLAS.SGS.00391.035	env	pending	this study
Plasma SGS MM33.PLAS.SGS.00391.036	env	pending	this study
Plasma SGS MM33.PLAS.SGS.00391.037	env	pending	this study
Plasma SGS MM33.PLAS.SGS.00391.038	env	pending	this study
Plasma SGS MM33.PLAS.SGS.00391.039	env	pending	this study
Plasma SGS MM33.PLAS.SGS.00391.040	env	pending	this study
Plasma SGS MM33.PLAS.SGS.00391.041	env	pending	this study
Plasma SGS MM33.PLAS.SGS.00391.042	env	pending	this study
Plasma SGS MM33.PLAS.SGS.00391.043	env	pending	this study
Plasma SGS MM33.PLAS.SGS.00391.044	env	pending	this study

Table S5
Sample Type	Study ID	Env Status	Pending Status
Plasma SGS	MM33.PLAS.SGS.01913.016	env	pending this study
	MM33.PLAS.SGS.01913.017	env	pending this study
	MM33.PLAS.SGS.01913.018	env	pending this study
	MM33.PLAS.SGS.01913.019	env	pending this study
	MM33.PLAS.SGS.02013.020	env	pending this study
	MM33.PLAS.SGS.02013.021	env	pending this study
	MM33.PLAS.SGS.01913.022	env	pending this study
	MM33.PLAS.ISO.02031.001	full-length	pending this study
	MM33.PLAS.ISO.02031.002	full-length	pending this study
	MM33.PLAS.ISO.02031.003	full-length	pending this study
	MM33.PLAS.ISO.02031.004	full-length	pending this study
	MM33.PLAS.ISO.02031.005	full-length	pending this study
	MM33.PLAS.ISO.02031.006	full-length	pending this study
	MM33.PLAS.ISO.02031.007	full-length	pending this study
	MM33.PLAS.ISO.02031.008	full-length	pending this study
	MM33.PLAS.ISO.02031.009	full-length	pending this study
	MM33.PLAS.ISO.02031.010	full-length	pending this study
	MM33.PLAS.ISO.02031.011	full-length	pending this study
	MM33.PLAS.ISO.02031.012	full-length	pending this study
	MM33.PLAS.ISO.02031.013	full-length	pending this study
	MM33.PLAS.ISO.02031.014	full-length	pending this study
	MM33.PLAS.ISO.02031.015	full-length	pending this study
	MM33.PLAS.ISO.02031.016	full-length	pending this study
	MM33.PLAS.ISO.02031.017	full-length	pending this study
	MM33.PLAS.ISO.02031.018	full-length	pending this study
	MM33.PLAS.ISO.02031.019	full-length	pending this study
	MM33.PLAS.ISO.00017.001	3' half	pending this study
	MM33.PLAS.ISO.00017.002	3' half	pending this study
	MM33.PLAS.ISO.00017.003	3' half	pending this study
	MM33.PLAS.ISO.00017.004	env	pending this study
	MM33.PLAS.ISO.00017.005	env	pending this study
	MM33.PLAS.ISO.00017.006	env	pending this study
	MM33.PLAS.ISO.00017.007	env	pending this study
	MM33.PLAS.ISO.00017.008	env	pending this study
	MM33.PLAS.ISO.00017.009	env	pending this study
	MM33.PLAS.ISO.00017.010	env	pending this study
	MM33.PLAS.ISO.00017.011	env	pending this study
	MM33.PLAS.ISO.00017.012	env	pending this study
	MM33.PLAS.ISO.00017.013	env	pending this study
	MM33.PLAS.ISO.00017.014	env	pending this study
	MM33.PLAS.ISO.00017.015	env	pending this study
	MM33.PLAS.ISO.00017.016	env	pending this study
	MM33.PLAS.ISO.00017.017	env	pending this study
	MM33.PLAS.ISO.00017.018	env	pending this study
	MM33.PLAS.ISO.00017.019	env	pending this study
	MM33.PLAS.ISO.00017.020	env	pending this study
	MM33.PLAS.ISO.00017.021	env	pending this study
	MM33.PLAS.ISO.00017.022	env	pending this study
	MM33.PLAS.ISO.00017.023	env	pending this study
	MM33.PLAS.ISO.00017.024	env	pending this study
	MM33.PLAS.ISO.00017.025	env	pending this study
	MM33.PLAS.ISO.00017.026	env	pending this study
	MM33.PLAS.ISO.00017.027	env	pending this study
	MM33.PLAS.ISO.00017.028	env	pending this study
	MM33.PLAS.ISO.00017.029	env	pending this study
	MM33.PLAS.ISO.00017.030	env	pending this study
	MM33.PLAS.ISO.00017.031	env	pending this study
	MM33.PLAS.ISO.00017.032	env	pending this study
	MM33.PLAS.ISO.00017.033	env	pending this study

Table S5
Pre-ART	MM34.PLAS.ISO.01691.001 3' half pending this study
Pre-ART MM34	MM34.PLAS.ISO.01691.002 full-length pending this study
Plasma SGS	MM34.PLAS.SGS.00760.001 env pending this study
Plasma SGS	MM34.PLAS.SGS.00760.002 env pending this study
Plasma SGS	MM34.PLAS.SGS.00760.003 env pending this study
Plasma SGS	MM34.PLAS.SGS.00760.004 env pending this study
Plasma SGS	MM34.PLAS.SGS.00760.005 env pending this study
Plasma SGS	MM34.PLAS.SGS.00760.006 env pending this study
Plasma SGS	MM34.PLAS.SGS.00760.007 env pending this study
Plasma SGS	MM34.PLAS.SGS.00760.008 env pending this study
Plasma SGS	MM34.PLAS.SGS.00760.009 env pending this study
Plasma SGS	MM34.PLAS.SGS.00760.010 env pending this study
Plasma SGS	MM34.PLAS.SGS.00760.011 env pending this study
Plasma SGS	MM34.PLAS.SGS.00760.012 env pending this study
Plasma SGS	MM34.PLAS.SGS.00760.013 env pending this study
Pre-ART MM34	MM34.PLAS.ISO.01007.002 full-length pending this study
Pre-ART MM34	MM34.PLAS.ISO.01007.003 full-length pending this study
Pre-ART MM34	MM34.PLAS.ISO.01007.004 full-length pending this study
Pre-ART MM34	MM34.PLAS.ISO.01007.005 full-length pending this study
Pre-ART MM34	MM34.PLAS.ISO.01007.006 full-length pending this study
Pre-ART MM34	MM34.PLAS.ISO.01313.001 full-length pending this study
Pre-ART MM34	MM34.PLAS.ISO.01313.002 full-length pending this study
Pre-ART MM34	MM34.PLAS.ISO.01313.003 full-length pending this study
Pre-ART MM34	MM34.PLAS.ISO.01313.004 full-length pending this study
Plasma SGS	MM34.PLAS.SGS.01313.001 env pending this study
Plasma SGS	MM34.PLAS.SGS.01313.002 env pending this study
Plasma SGS	MM34.PLAS.SGS.01313.003 env pending this study
Plasma SGS	MM34.PLAS.SGS.01313.004 env pending this study
Plasma SGS	MM34.PLAS.SGS.01313.005 env pending this study
Plasma SGS	MM34.PLAS.SGS.01313.006 env pending this study
Plasma SGS	MM34.PLAS.SGS.01313.007 env pending this study
Plasma SGS	MM34.PLAS.SGS.01313.008 env pending this study
Plasma SGS	MM34.PLAS.SGS.01313.009 env pending this study
Plasma SGS	MM34.PLAS.SGS.01313.010 env pending this study
Plasma SGS	MM34.PLAS.SGS.01313.011 env pending this study
Plasma SGS	MM34.PLAS.SGS.01313.012 env pending this study
Pre-ART MM34	MM34.PLAS.ISO.01999.001 full-length pending this study
Pre-ART MM34	MM34.PLAS.ISO.01999.002 full-length pending this study
Pre-ART MM34	MM34.PLAS.ISO.01999.003 full-length pending this study
Pre-ART MM34	MM34.PLAS.ISO.01999.004 full-length pending this study
Pre-ART MM34	MM34.PLAS.ISO.01999.005 full-length pending this study
Pre-ART MM34	MM34.PLAS.ISO.01999.006 full-length pending this study
Pre-ART MM34	MM34.PLAS.ISO.01999.007 full-length pending this study
Pre-ART MM34	MM34.PLAS.ISO.01999.008 full-length pending this study
Pre-ART MM34	MM34.PLAS.ISO.01999.009 full-length pending this study
Pre-ART MM34	MM34.PLAS.ISO.02229.001 3' half pending this study
Pre-ART MM34	MM34.PLAS.ISO.02229.002 3' half pending this study
Pre-ART MM34	MM34.PLAS.ISO.02229.003 3' half pending this study
Pre-ART MM34	MM34.PLAS.ISO.02229.004 3' half pending this study
Pre-ART MM34	MM34.PLAS.ISO.02229.005 3' half pending this study
Pre-ART MM34	MM34.PLAS.ISO.02229.006 3' half pending this study
Pre-ART MM34	MM34.PLAS.ISO.02229.007 3' half pending this study
Pre-ART MM34	MM34.PLAS.ISO.02229.008 3' half pending this study
Pre-ART MM34	MM34.PLAS.ISO.02229.009 3' half pending this study
Pre-ART MM34	MM34.PLAS.ISO.02229.010 3' half pending this study
Pre-ART MM34	MM34.PLAS.ISO.02229.011 3' half pending this study
Pre-ART MM34	MM34.PLAS.ISO.02229.012 3' half pending this study
Pre-ART MM34	MM34.PLAS.ISO.02229.013 3' half pending this study
Pre-ART MM34	MM34.PLAS.ISO.02229.014 3' half pending this study
QVOA	MM34.PBMC.QVOA.03261.001 full-length pending this study
QVOA	MM34.PBMC.QVOA.03261.002 full-length pending this study
PMBC SGS	MM34.PBMC.SGS.03261.001 3' half pending this study
PMBC SGS	MM34.PBMC.SGS.03261.002 3' half pending this study
PMBC SGS	MM34.PBMC.SGS.03261.003 3' half pending this study
PMBC SGS	MM34.PBMC.SGS.03261.004 3' half pending this study
PMBC SGS	MM34.PBMC.SGS.03261.005 3' half pending this study
PMBC SGS	MM34.PBMC.SGS.03261.006 3' half pending this study
PMBC SGS	MM34.PBMC.SGS.03261.007 3' half pending this study
PMBC SGS	MM34.PBMC.SGS.03261.008 3' half pending this study
PMBC SGS	MM34.PBMC.SGS.03261.009 3' half pending this study
PMBC SGS	MM34.PBMC.SGS.03261.010 3' half pending this study
PMBC SGS	MM34.PBMC.SGS.03261.011 3' half pending this study
PMBC SGS	MM34.PBMC.SGS.03261.012 3' half pending this study
PMBC SGS	MM34.PBMC.SGS.03261.013 3' half pending this study
PMBC SGS	MM34.PBMC.SGS.03261.014 3' half pending this study
PMBC SGS	MM34.PBMC.SGS.03261.015 3' half pending this study
PMBC SGS	MM34.PBMC.SGS.03261.016 3' half pending this study
PMBC SGS	MM34.PBMC.SGS.03261.017 3' half pending this study
PMBC SGS	MM34.PBMC.SGS.03261.018 3' half pending this study
PMBC SGS	MM34.PBMC.SGS.03261.019 3' half pending this study
PMBC SGS	MM34.PBMC.SGS.03261.020 3' half pending this study

Table S5
Sample Type	MM34.PBMC.SGS.03261.001	3' half	pending	this study
Sample Type	MM34.PBMC.SGS.03261.022	3' half	pending	this study
Sample Type	MM34.PBMC.SGS.03261.023	3' half	pending	this study
Sample Type	MM34.PBMC.SGS.03261.024	3' half	pending	this study
Sample Type	MM34.PBMC.SGS.03261.025	3' half	pending	this study
Sample Type	MM34.PBMC.SGS.03261.026	3' half	pending	this study
Sample Type	MM34.PBMC.SGS.03261.027	3' half	pending	this study
Sample Type	MM34.PBMC.SGS.03261.028	3' half	pending	this study
Sample Type	MM34.PBMC.SGS.03261.029	3' half	pending	this study
Sample Type	MM34.PBMC.SGS.03261.030	3' half	pending	this study
Sample Type	MM34.PBMC.SGS.03261.031	3' half	pending	this study
Sample Type	MM34.PBMC.SGS.03261.032	3' half	pending	this study
Sample Type	MM34.PBMC.SGS.03261.033	3' half	pending	this study
Sample Type	MM34.PBMC.SGS.03261.034	3' half	pending	this study
Sample Type	MM34.PBMC.SGS.03261.035	3' half	pending	this study
Sample Type	MM34.PBMC.SGS.03261.036	3' half	pending	this study
Sample Type	MM34.PBMC.SGS.03261.037	3' half	pending	this study
Sample Type	MM34.PBMC.SGS.03261.038	3' half	pending	this study

Sample Type	MM34.PBMC.SGS.03261.021	3' half	pending	this study
Sample Type	MM34.PBMC.SGS.03261.022	3' half	pending	this study
Sample Type	MM34.PBMC.SGS.03261.023	3' half	pending	this study
Sample Type	MM34.PBMC.SGS.03261.024	3' half	pending	this study
Sample Type	MM34.PBMC.SGS.03261.025	3' half	pending	this study
Sample Type	MM34.PBMC.SGS.03261.026	3' half	pending	this study
Sample Type	MM34.PBMC.SGS.03261.027	3' half	pending	this study
Sample Type	MM34.PBMC.SGS.03261.028	3' half	pending	this study
Sample Type	MM34.PBMC.SGS.03261.029	3' half	pending	this study
Sample Type	MM34.PBMC.SGS.03261.030	3' half	pending	this study
Sample Type	MM34.PBMC.SGS.03261.031	3' half	pending	this study
Sample Type	MM34.PBMC.SGS.03261.032	3' half	pending	this study
Sample Type	MM34.PBMC.SGS.03261.033	3' half	pending	this study
Sample Type	MM34.PBMC.SGS.03261.034	3' half	pending	this study
Sample Type	MM34.PBMC.SGS.03261.035	3' half	pending	this study
Sample Type	MM34.PBMC.SGS.03261.036	3' half	pending	this study
Sample Type	MM34.PBMC.SGS.03261.037	3' half	pending	this study
Sample Type	MM34.PBMC.SGS.03261.038	3' half	pending	this study

Sample Type	MM34.PBMC.SGS.03261.021	3' half	pending	this study
Sample Type	MM34.PBMC.SGS.03261.022	3' half	pending	this study
Sample Type	MM34.PBMC.SGS.03261.023	3' half	pending	this study
Sample Type	MM34.PBMC.SGS.03261.024	3' half	pending	this study
Sample Type	MM34.PBMC.SGS.03261.025	3' half	pending	this study
Sample Type	MM34.PBMC.SGS.03261.026	3' half	pending	this study
Sample Type	MM34.PBMC.SGS.03261.027	3' half	pending	this study
Sample Type	MM34.PBMC.SGS.03261.028	3' half	pending	this study
Sample Type	MM34.PBMC.SGS.03261.029	3' half	pending	this study
Sample Type	MM34.PBMC.SGS.03261.030	3' half	pending	this study
Sample Type	MM34.PBMC.SGS.03261.031	3' half	pending	this study
Sample Type	MM34.PBMC.SGS.03261.032	3' half	pending	this study
Sample Type	MM34.PBMC.SGS.03261.033	3' half	pending	this study
Sample Type	MM34.PBMC.SGS.03261.034	3' half	pending	this study
Sample Type	MM34.PBMC.SGS.03261.035	3' half	pending	this study
Sample Type	MM34.PBMC.SGS.03261.036	3' half	pending	this study
Sample Type	MM34.PBMC.SGS.03261.037	3' half	pending	this study
Sample Type	MM34.PBMC.SGS.03261.038	3' half	pending	this study
Plasma SGS	MM39.PLAS.SGS.00354.003 3' half	MG902616 MM39_d0364_ipe015_SGA_1029		
----------------	---------------------------	----------------------------------		
Plasma SGS	MM39.PLAS.SGS.00354.004 3' half	MG902615 MM39_d0364_ipe015_SGA_1030		
Plasma SGS	MM39.PLAS.SGS.00354.005 3' half	MG902619 MM39_d0364_ipe015_SGA_1024		
Plasma SGS	MM39.PLAS.SGS.00354.006 3' half	MG902627 MM39_d0364_ipe015_SGA_1037		
Plasma SGS	MM39.PLAS.SGS.00354.007 3' half	MG902631 MM39_d0364_ipe015_SGA_312		
Plasma SGS	MM39.PLAS.SGS.00354.008 3' half	MG902629 MM39_d0364_ipe015_SGA_1040		
Plasma SGS	MM39.PLAS.SGS.00354.010 3' half	MG902622 MM39_d0364_ipe015_SGA_1027		
Plasma SGS	MM39.PLAS.SGS.00354.011 env pending this study			
Plasma SGS	MM39.PLAS.SGS.00354.012 3' half	MG902617 MM39_d0364_ipe015_SGA_1022		

Table S5
Plasma SGS ID	MM39.PLAS.SGS.00354.013	3' half	MG902626	MM39_d0364_iso15_SGA_1024
Plasma SGS ID	MM39.PLAS.SGS.00354.014	3' half	MG902625	MM39_d0364_iso15_SGA_1025
Plasma SGS ID	MM39.PLAS.SGS.00354.015	3' half	MG902625	MM39_d0364_iso15_SGA_1026
Plasma SGS ID	MM39.PLAS.SGS.00354.016	3' half	MG902633	MM39_d0364_iso15_SGA_1037
Plasma SGS ID	MM39.PLAS.SGS.00354.017	3' half	MG902624	MM39_d0364_iso15_SGA_1038
Plasma SGS ID	MM39.PLAS.SGS.00354.018	3' half	MG902618	MM39_d0364_iso15_SGA_1039
Plasma SGS ID	MM39.PLAS.SGS.00354.019	3' half	MG902626	MM39_d0364_iso15_SGA_1040
Plasma SGS ID	MM39.PLAS.SGS.00354.020	3' half	MG902621	MM39_d0364_iso15_SGA_1041
Plasma SGS ID	MM39.PLAS.SGS.00354.021	3' half	MG902653	MM39_d0469_iso15_SGA_1042
Plasma SGS ID	MM39.PLAS.SGS.00354.022	3' half	MG902658	MM39_d0469_iso15_SGA_1043
Plasma SGS ID	MM39.PLAS.SGS.00354.023	3' half	MG902668	MM39_d0469_iso15_SGA_1044
Plasma SGS ID	MM39.PLAS.SGS.00354.024	3' half	MG902668	MM39_d0469_iso15_SGA_1045

Table S5
Plasma SGS	MM39.PLAS.SGS.00821.001	full-length pending this study
Plasma SGS	MM39.PLAS.SGS.00821.002	env pending this study
Plasma SGS	MM39.PLAS.SGS.00821.003	env pending this study
Plasma SGS	MM39.PLAS.SGS.00821.004	env pending this study
Plasma SGS	MM39.PLAS.SGS.00821.005	env pending this study
Plasma SGS	MM39.PLAS.SGS.00821.006	env pending this study
Plasma SGS	MM39.PLAS.SGS.00821.007	env pending this study
Plasma SGS	MM39.PLAS.SGS.00821.008	env pending this study
Plasma SGS	MM39.PLAS.SGS.00821.009	env pending this study
Plasma SGS	MM39.PLAS.SGS.00821.010	env pending this study
Plasma SGS	MM39.PLAS.SGS.00821.011	env pending this study
Plasma SGS	MM39.PLAS.SGS.00821.012	env pending this study
Plasma SGS	MM39.PLAS.SGS.00821.013	env pending this study
Plasma SGS	MM39.PLAS.SGS.00821.014	env pending this study
Plasma SGS	MM39.PLAS.SGS.00821.015	env pending this study
Plasma SGS	MM39.PLAS.SGS.00821.016	env pending this study
Plasma SGS	MM39.PLAS.SGS.00821.017	env pending this study
Plasma SGS	MM39.PLAS.SGS.00821.018	env pending this study
Plasma SGS	MM39.PLAS.SGS.00821.019	env pending this study
Plasma SGS	MM39.PLAS.SGS.00821.020	env pending this study
Plasma SGS	MM39.PLAS.SGS.00821.021	env pending this study
Plasma SGS	MM39.PLAS.SGS.00821.022	env pending this study
Plasma SGS	MM39.PLAS.SGS.00821.023	env pending this study

Pre-ART	MM39.PLAS.ISO.01206.001	full-length pending this study
Pre-ART	MM39.PLAS.ISO.01206.002	full-length pending this study
Pre-ART	MM39.PLAS.ISO.01206.003	full-length pending this study
Pre-ART	MM39.PLAS.ISO.01206.004	full-length pending this study
Pre-ART	MM39.PLAS.ISO.01206.005	full-length pending this study
Pre-ART	MM39.PLAS.ISO.01206.006	full-length pending this study
Pre-ART	MM39.PLAS.ISO.01206.007	full-length pending this study
Pre-ART	MM39.PLAS.ISO.01206.008	full-length pending this study
Pre-ART	MM39.PLAS.ISO.01206.009	full-length pending this study
Pre-ART	MM39.PLAS.ISO.01206.010	full-length pending this study
Pre-ART	MM39.PLAS.ISO.01206.011	full-length pending this study
Pre-ART	MM39.PLAS.ISO.01206.012	full-length pending this study
Pre-ART	MM39.PLAS.ISO.01206.013	full-length pending this study
Pre-ART	MM39.PLAS.ISO.01206.014	full-length pending this study
Pre-ART	MM39.PLAS.ISO.01206.015	full-length pending this study
Pre-ART	MM39.PLAS.ISO.01206.016	full-length pending this study

Plasma SGS	MM39.PLAS.SGS.01206.001	env pending this study
Plasma SGS	MM39.PLAS.SGS.01206.002	env pending this study
Plasma SGS	MM39.PLAS.SGS.01206.003	env pending this study
Plasma SGS	MM39.PLAS.SGS.01206.004	env pending this study
Plasma SGS	MM39.PLAS.SGS.01206.005	env pending this study
Plasma SGS	MM39.PLAS.SGS.01206.006	env pending this study
Plasma SGS	MM39.PLAS.SGS.01206.007	env pending this study
Plasma SGS	MM39.PLAS.SGS.01206.008	env pending this study
Plasma SGS	MM39.PLAS.SGS.01206.009	env pending this study
Plasma SGS	MM39.PLAS.SGS.01206.010	env pending this study
Plasma SGS	MM39.PLAS.SGS.01206.011	env pending this study
Plasma SGS	MM39.PLAS.SGS.01206.012	env pending this study
Plasma SGS	MM39.PLAS.SGS.01206.013	env pending this study
Plasma SGS	MM39.PLAS.SGS.01206.014	env pending this study
Plasma SGS	MM39.PLAS.SGS.01206.015	env pending this study
Plasma SGS	MM39.PLAS.SGS.01206.016	env pending this study

Pre-ART	MM40.PLAS.ISO.00011.001	full-length pending this study
Pre-ART	MM40.PLAS.ISO.00011.002	full-length pending this study
Pre-ART	MM40.PLAS.ISO.00011.003	full-length pending this study
Pre-ART	MM40.PLAS.ISO.00011.004	full-length pending this study
Pre-ART	MM40.PLAS.ISO.00011.005	full-length pending this study
Pre-ART	MM40.PLAS.ISO.00011.006	full-length pending this study
Pre-ART	MM40.PLAS.ISO.00011.007	full-length pending this study
Pre-ART	MM40.PLAS.ISO.00011.008	full-length pending this study
Pre-ART	MM40.PLAS.ISO.00011.009	full-length pending this study
Pre-ART	MM40.PLAS.ISO.00011.010	full-length pending this study
Pre-ART	MM40.PLAS.ISO.00011.011	full-length pending this study
Pre-ART	MM40.PLAS.ISO.00011.012	full-length pending this study
Pre-ART	MM40.PLAS.ISO.00011.013	full-length pending this study
Pre-ART	MM40.PLAS.ISO.00011.014	full-length pending this study
Pre-ART	MM40.PLAS.ISO.00011.015	full-length pending this study
Pre-ART	MM40.PLAS.ISO.00011.016	full-length pending this study
Pre-ART	MM40.PLAS.ISO.00011.017	full-length pending this study
Pre-ART	MM40.PLAS.ISO.00011.018	full-length pending this study
Pre-ART	MM40.PLAS.ISO.00011.019	full-length pending this study
Pre-ART	MM40.PLAS.ISO.00011.020	full-length pending this study

Plasma SGS	MM40.PLAS.SGS.00011.001	env pending this study
Plasma SGS	MM40.PLAS.SGS.00011.002	env pending this study
Plasma SGS	MM40.PLAS.SGS.00011.003	env pending this study
Plasma SGS	MM40.PLAS.SGS.00011.004	env pending this study
Plasma SGS	MM40.PLAS.SGS.00011.005	env pending this study
Plasma SGS	MM40.PLAS.SGS.00011.006	env pending this study
Plasma SGS	MM40.PLAS.SGS.00011.007	env pending this study
Plasma SGS	MM40.PLAS.SGS.00011.008	env pending this study
Plasma SGS	MM40.PLAS.SGS.00011.009	env pending this study
Plasma SGS	MM40.PLAS.SGS.00011.010	env pending this study
Plasma SGS	MM40.PLAS.SGS.00011.011	env pending this study
Plasma SGS	MM40.PLAS.SGS.00011.012	env pending this study
Plasma SGS	MM40.PLAS.SGS.00011.013	env pending this study
Plasma SGS	MM40.PLAS.SGS.00011.014	env pending this study
Plasma SGS	MM40.PLAS.SGS.00011.015	env pending this study
Plasma SGS	MM40.PLAS.SGS.00011.016	env pending this study
Plasma SGS	MM40.PLAS.SGS.00011.017	env pending this study
Plasma SGS	MM40.PLAS.SGS.00011.018	env pending this study
Plasma SGS	MM40.PLAS.SGS.00011.019	env pending this study
Plasma SGS	MM40.PLAS.SGS.00011.020	env pending this study

Table S5
Plasma SGS	MM40.PLAS.SGS.00011.024.01 env	pending	this study
Plasma SGS	MM40.PLAS.SGS.00011.025.01 env	pending	this study
Plasma SGS	MM40.PLAS.SGS.00011.026.01 env	pending	this study
Plasma SGS	MM40.PLAS.SGS.00011.027.01 env	pending	this study
Plasma SGS	MM40.PLAS.SGS.00011.028.01 env	pending	this study
Plasma SGS	MM40.PLAS.SGS.00011.029.01 env	pending	this study
Plasma SGS	MM40.PLAS.SGS.00011.030.01 env	pending	this study
Plasma SGS	MM40.PLAS.SGS.00011.031.01 env	pending	this study
Plasma SGS	MM40.PLAS.SGS.00011.032.01 env	pending	this study
Plasma SGS	MM40.PLAS.SGS.00011.033.01 env	pending	this study
Plasma SGS	MM40.PLAS.SGS.00011.034.01 env	pending	this study
Pre-ART	MM40.PLAS.ISO.00095.001 full-length pending this study		
Pre-ART	MM40.PLAS.ISO.00095.002 full-length pending this study		
Pre-ART	MM40.PLAS.ISO.00095.003 full-length pending this study		
Pre-ART	MM40.PLAS.ISO.00095.004 full-length pending this study		
Pre-ART	MM40.PLAS.ISO.00095.005 full-length pending this study		
Pre-ART	MM40.PLAS.ISO.00095.006 full-length pending this study		
Plasma SGS	MM40.PLAS.SGS.00095.001.01 env	pending	this study
Plasma SGS	MM40.PLAS.SGS.00095.002.01 env	pending	this study
Plasma SGS	MM40.PLAS.SGS.00095.003.01 env	pending	this study
Plasma SGS	MM40.PLAS.SGS.00095.004.01 env	pending	this study
Plasma SGS	MM40.PLAS.SGS.00095.005.01 env	pending	this study
Plasma SGS	MM40.PLAS.SGS.00095.006.01 env	pending	this study
Plasma SGS	MM40.PLAS.SGS.00095.007.01 env	pending	this study
Plasma SGS	MM40.PLAS.SGS.00095.008.01 env	pending	this study
Plasma SGS	MM40.PLAS.SGS.00095.009.01 env	pending	this study
Plasma SGS	MM40.PLAS.SGS.00095.010.01 env	pending	this study
Plasma SGS	MM40.PLAS.SGS.00095.011.01 env	pending	this study
Plasma SGS	MM40.PLAS.SGS.00095.012.01 env	pending	this study
Plasma SGS	MM40.PLAS.SGS.00095.013.01 env	pending	this study
Plasma SGS	MM40.PLAS.SGS.00095.014.01 env	pending	this study
Plasma SGS	MM40.PLAS.SGS.00095.015.01 env	pending	this study
Plasma SGS	MM40.PLAS.SGS.00095.016.01 env	pending	this study
Plasma SGS	MM40.PLAS.SGS.00095.017.01 env	pending	this study
Plasma SGS	MM40.PLAS.SGS.00095.018.01 env	pending	this study
Pre-ART	MM40.PLAS.ISO.00747.001 full-length pending this study		
Pre-ART	MM40.PLAS.ISO.00747.002 full-length pending this study		
Pre-ART	MM40.PLAS.ISO.00747.003 full-length pending this study		
Pre-ART	MM40.PLAS.ISO.00747.004 full-length pending this study		
Pre-ART	MM40.PLAS.ISO.00747.005 full-length pending this study		
Plasma SGS	MM40.PLAS.SGS.00747.001.01 env	pending	this study
Plasma SGS	MM40.PLAS.SGS.00747.002.01 env	pending	this study
Plasma SGS	MM40.PLAS.SGS.00747.003.01 env	pending	this study
Plasma SGS	MM40.PLAS.SGS.00747.004.01 env	pending	this study
Plasma SGS	MM40.PLAS.SGS.00747.005.01 env	pending	this study
Plasma SGS	MM40.PLAS.SGS.00747.006.01 env	pending	this study
Plasma SGS	MM40.PLAS.SGS.00747.007.01 env	pending	this study
Plasma SGS	MM40.PLAS.SGS.00747.008.01 env	pending	this study
Plasma SGS	MM40.PLAS.SGS.00747.009.01 env	pending	this study
Plasma SGS	MM40.PLAS.SGS.00747.010.01 env	pending	this study
Plasma SGS	MM40.PLAS.SGS.00747.011.01 env	pending	this study
Plasma SGS	MM40.PLAS.SGS.00747.012.01 env	pending	this study
Table S5	MM40.PLAS.ISO.01166.001 full-length pending this study		
Pre-ART	MM40.PLAS.ISO.01166.002 full-length pending this study		
Pre-ART	MM40.PLAS.ISO.01166.003 full-length pending this study		
Pre-ART	MM40.PLAS.ISO.01166.004 full-length pending this study		
Plasma SGS	MM40.PLAS.SGS.01166.001.01 env	pending	this study
Plasma SGS	MM40.PLAS.SGS.01166.002.01 env	pending	this study
Plasma SGS	MM40.PLAS.SGS.01166.003.01 env	pending	this study
Plasma SGS	MM40.PLAS.SGS.01166.004.01 env	pending	this study
Plasma SGS	MM40.PLAS.SGS.01166.005.01 env	pending	this study
Plasma SGS	MM40.PLAS.SGS.01166.006.01 env	pending	this study
Plasma SGS	MM40.PLAS.SGS.01166.007.01 env	pending	this study
Plasma SGS	MM40.PLAS.SGS.01166.008.01 env	pending	this study
Plasma SGS	MM40.PLAS.SGS.01166.009.01 env	pending	this study
Plasma SGS	MM40.PLAS.SGS.01166.010.01 env	pending	this study
Plasma SGS	MM40.PLAS.SGS.01166.011.01 env	pending	this study
Plasma SGS	MM40.PLAS.SGS.01166.012.01 env	pending	this study
Plasma SGS	MM40.PLAS.SGS.01166.013.01 env	pending	this study
Pre-ART	MM40.PLAS.ISO.01530.001 full-length pending this study		
Pre-ART	MM40.PLAS.ISO.01530.002 full-length pending this study		
Pre-ART	MM40.PLAS.ISO.01530.003 full-length pending this study		
Pre-ART	MM40.PLAS.ISO.01530.004 full-length pending this study		
Pre-ART	MM40.PLAS.ISO.01530.005 full-length pending this study		
Pre-ART	MM40.PLAS.ISO.01530.006 full-length pending this study		
Pre-ART	MM40.PLAS.ISO.01530.007 full-length pending this study		
Pre-ART	MM40.PLAS.ISO.01530.008 full-length pending this study		

Table S5
Sample Type	Barcodes Description	Status	Study
Plasma SGS	MM50.PLAS.SGS.00031	env pending	this study
Plasma SGS	MM50.PLAS.SGS.00030	env pending	this study
Plasma SGS	MM50.PLAS.SGS.00029	env pending	this study
Plasma SGS	MM50.PLAS.SGS.00028	env pending	this study
Plasma SGS	MM50.PLAS.SGS.00027	env pending	this study
Plasma SGS	MM50.PLAS.SGS.00026	env pending	this study
Plasma SGS	MM50.PLAS.SGS.00025	env pending	this study
Plasma SGS	MM50.PLAS.SGS.00024	env pending	this study
Plasma SGS	MM50.PLAS.SGS.00023	env pending	this study
Plasma SGS	MM50.PLAS.SGS.00022	env pending	this study
Plasma SGS	MM50.PLAS.SGS.00021	env pending	this study
Plasma SGS	MM50.PLAS.SGS.00020	env pending	this study
Plasma SGS	MM50.PLAS.SGS.00019	env pending	this study
Plasma SGS	MM50.PLAS.SGS.00018	env pending	this study
Plasma SGS	MM50.PLAS.SGS.00017	env pending	this study
Plasma SGS	MM50.PLAS.SGS.00016	env pending	this study
Plasma SGS	MM50.PLAS.SGS.00015	env pending	this study
Plasma SGS	MM50.PLAS.SGS.00014	env pending	this study
Plasma SGS	MM50.PLAS.SGS.00013	env pending	this study
Plasma SGS	MM50.PLAS.SGS.00012	env pending	this study
Plasma SGS	MM50.PLAS.SGS.00011	env pending	this study
Plasma SGS	MM50.PLAS.SGS.00010	env pending	this study
Plasma SGS	MM50.PLAS.SGS.00009	env pending	this study
Plasma SGS	MM50.PLAS.SGS.00008	env pending	this study
Plasma SGS	MM50.PLAS.SGS.00007	env pending	this study
Plasma SGS	MM50.PLAS.SGS.00006	env pending	this study
Plasma SGS	MM50.PLAS.SGS.00005	env pending	this study
Plasma SGS	MM50.PLAS.SGS.00004	env pending	this study
Plasma SGS	MM50.PLAS.SGS.00003	env pending	this study
Plasma SGS	MM50.PLAS.SGS.00002	env pending	this study
Plasma SGS	MM50.PLAS.SGS.00001	env pending	this study

Table S5
Plasma SGS	MM55.PLAS.SGS.00348.001.01 env	pending	this study
Plasma SGS	MM55.PLAS.SGS.00681.001.01 env	pending	this study
Plasma SGS	MM55.PLAS.SGS.00681.002.01 env	pending	this study
Plasma SGS	MM55.PLAS.SGS.00816.001.01 env	pending	this study
Plasma SGS	MM55.PLAS.SGS.00681.003.01 env	pending	this study
Plasma SGS	MM55.PLAS.SGS.00681.004.01 env	pending	this study
Plasma SGS	MM55.PLAS.SGS.00681.005.01 env	pending	this study
Plasma SGS	MM55.PLAS.SGS.00681.006.01 env	pending	this study
Plasma SGS	MM55.PLAS.SGS.00681.007.01 env	pending	this study
Plasma SGS	MM55.PLAS.SGS.00681.008.01 env	pending	this study
Plasma SGS	MM55.PLAS.SGS.00681.009.01 env	pending	this study
Plasma SGS	MM55.PLAS.SGS.00681.010.01 env	pending	this study
Plasma SGS	MM55.PLAS.SGS.00681.011.01 env	pending	this study
Plasma SGS	MM55.PLAS.SGS.00681.012.01 env	pending	this study
Plasma SGS	MM55.PLAS.SGS.00681.013.01 env	pending	this study
Plasma SGS	MM55.PLAS.SGS.00681.014.01 env	pending	this study
Plasma SGS	MM55.PLAS.SGS.00681.015.01 env	pending	this study
Plasma SGS	MM55.PLAS.SGS.00681.016.01 env	pending	this study
Plasma SGS	MM55.PLAS.SGS.00681.017.01 env	pending	this study
Plasma SGS	MM55.PLAS.SGS.00681.018.01 env	pending	this study
Pre-ART	MM62.PLAS.ISO.00022.001 env	pending	this study
Pre-ART	MM62.PLAS.ISO.00022.002 env	pending	this study
Pre-ART	MM62.PLAS.ISO.00022.003 env	pending	this study
Plasma SGS	MM55.PLAS.SGS.00022.001.01 env	pending	this study
Plasma SGS	MM55.PLAS.SGS.00022.002.01 env	pending	this study
Plasma SGS	MM55.PLAS.SGS.00022.003.01 env	pending	this study
Plasma SGS	MM55.PLAS.SGS.00022.004.01 env	pending	this study
Plasma SGS	MM55.PLAS.SGS.00022.005.01 env	pending	this study
Plasma SGS	MM55.PLAS.SGS.00022.006.01 env	pending	this study
Plasma SGS	MM55.PLAS.SGS.00022.007.01 env	pending	this study
Plasma SGS	MM55.PLAS.SGS.00022.008.01 env	pending	this study
Plasma SGS	MM55.PLAS.SGS.00022.009.01 env	pending	this study
Plasma SGS	MM55.PLAS.SGS.00022.010.01 env	pending	this study
Plasma SGS	MM55.PLAS.SGS.00022.011.01 env	pending	this study
Plasma SGS	MM55.PLAS.SGS.00057.001.01 env	pending	this study
Plasma SGS	MM55.PLAS.SGS.00057.002.01 env	pending	this study
Pre-ART	MM62.PLAS.ISO.00024.001 env	pending	this study
Plasma SGS	WEAU.PLAS.SGS.-0005.001.01 env	EU577356 B.US.1990.WEAUd15_A8.EU577356	
Plasma SGS	WEAU.PLAS.SGS.-0005.002.01 env	EU577372 B.US.1990.WEAUd15_A5.EU577372	
Plasma SGS	WEAU.PLAS.SGS.-0005.003.01 env	EU577366 B.US.1990.WEAUd15_A7.EU577366	
Plasma SGS	WEAU.PLAS.SGS.-0005.004.01 env	EU577353 B.US.1990.WEAUd15_B6.EU577353	
Plasma SGS	WEAU.PLAS.SGS.-0005.005.01 env	EU577369 B.US.1990.WEAUd15_B21.EU577369	
Plasma SGS	WEAU.PLAS.SGS.-0005.006.01 env	EU577344 B.US.1990.WEAUd15_A10.EU577344	
Plasma SGS	WEAU.PLAS.SGS.-0005.007.01 env	EU577302 B.US.1990.WEAUd15_A10.EU577302	
Plasma SGS	WEAU.PLAS.SGS.-0005.008.01 env	EU577345 B.US.1990.WEAUd15_A11.EU577345	
Plasma SGS	WEAU.PLAS.SGS.-0005.009.01 env	EU577358 B.US.1990.WEAUd15_A10.EU577358	
Plasma SGS	WEAU.PLAS.SGS.-0005.010.01 env	EU577366 B.US.1990.WEAUd15_B19.EU577366	
Plasma SGS	WEAU.PLAS.SGS.-0005.011.01 env	EU577363 B.US.1990.WEAUd15_C5.EU577363	
Plasma SGS	WEAU.PLAS.SGS.-0005.012.01 env	EU577376 B.US.1990.WEAUd15_B22.EU577376	
Plasma SGS	WEAU.PLAS.SGS.-0005.013.01 env	EU577367 B.US.1990.WEAUd15_B17.EU577367	
Plasma SGS	WEAU.PLAS.SGS.-0005.014.01 env	EU577362 B.US.1990.WEAUd15_A3.EU577362	
Plasma SGS	WEAU.PLAS.SGS.-0005.015.01 env	EU577349 B.US.1990.WEAUd15_A15.EU577349	
Plasma SGS	WEAU.PLAS.SGS.-0005.016.01 env	EU577354 B.US.1990.WEAUd15_A6.EU577354	
Plasma SGS	WEAU.PLAS.SGS.-0005.017.01 env	EU577354 B.US.1990.WEAUd15_A6.EU577354	
Plasma SGS	WEAU.PLAS.SGS.-0005.018.01 env	EU577348 B.US.1990.WEAUd15_A14.EU577348	
Plasma SGS	WEAU.PLAS.SGS.-0005.019.01 env	EU577364 B.US.1990.WEAUd15_B17.EU577364	
Plasma SGS	WEAU.PLAS.SGS.-0005.020.01 env	EU577370 B.US.1990.WEAUd15_B22.EU577370	

Table S5
Plasma SGS	WEAU.PLAS.SGS.-0005.021.01 env	EU577381	B.US.1990.WEAU015, C2.EU577381
Plasma SGS	WEAU.PLAS.SGS.-0005.022.01 env	EU577385	B.US.1990.WEAU015, B13.EU577385
Plasma SGS	WEAU.PLAS.SGS.-0005.023.01 env	EU577386	B.US.1990.WEAU015, A16.EU577386
Plasma SGS	WEAU.PLAS.SGS.-0005.025.01 env	EU577387	B.US.1990.WEAU015, C11.EU577387
Plasma SGS	WEAU.PLAS.SGS.-0005.028.01 env	EU577388	B.US.1990.WEAU015, B1.EU577388
Plasma SGS	WEAU.PLAS.SGS.-0005.027.01 env	EU577389	B.US.1990.WEAU015, A7.EU577389
Plasma SGS	WEAU.PLAS.SGS.-0005.028.01 env	EU577390	B.US.1990.WEAU015, B15.EU577390
Plasma SGS	WEAU.PLAS.SGS.-0005.029.01 env	EU577391	B.US.1990.WEAU015, A4.EU577391
Plasma SGS	WEAU.PLAS.SGS.-0005.030.01 env	EU577392	B.US.1990.WEAU015, C2.EU577392
Plasma SGS	WEAU.PLAS.SGS.-0005.031.01 env	EU577393	B.US.1990.WEAU015, C7.EU577393
Plasma SGS	WEAU.PLAS.SGS.-0005.032.01 env	EU577394	B.US.1990.WEAU015, B7.EU577394
Plasma SGS	WEAU.PLAS.SGS.-0005.033.01 env	EU577395	B.US.1990.WEAU015, C8.EU577395
Plasma SGS	WEAU.PLAS.SGS.-0005.034.01 env	EU577396	B.US.1990.WEAU015, A12.EU577396
Plasma SGS	WEAU.PLAS.SGS.-0005.035.01 env	EU577397	B.US.1990.WEAU015, A13.EU577397
Plasma SGS	WEAU.PLAS.SGS.-0005.036.01 env	EU577398	B.US.1990.WEAU015, C12.EU577398
Plasma SGS	WEAU.PLAS.SGS.-0005.037.01 env	EU577399	B.US.1990.WEAU015, B20.EU577399
Plasma SGS	WEAU.PLAS.SGS.-0005.038.01 env	EU577400	B.US.1990.WEAU015, B14.EU577400
Plasma SGS	WEAU.PLAS.SGS.-0005.039.01 env	EU577401	B.US.1990.WEAU015, B16.EU577401
Plasma SGS	WEAU.PLAS.SGS.-0005.040.01 env	EU577402	B.US.1990.WEAU015, B5.EU577402
Plasma SGS	WEAU.PLAS.SGS.-0005.041.01 env	EU577403	B.US.1990.WEAU015, B4.EU577403
Plasma SGS	WEAU.PLAS.SGS.-0005.042.01 env	EU577404	B.US.1990.WEAU015, A3.EU577404
Plasma SGS	WEAU.PLAS.SGS.-0005.043.01 env	EU577405	B.US.1990.WEAU015, A8.EU577405
Plasma SGS	WEAU.PLAS.SGS.-0005.044.01 env	EU577406	B.US.1990.WEAU015, A2.EU577406
Plasma SGS	WEAU.PLAS.SGS.-0005.045.01 env	EU577407	B.US.1990.WEAU015, B18.EU577407

Pre-ART

Plasma SGS	WEAU.PLAS.ISO.-0004.001.01 env	pending	this study
Plasma SGS	WEAU.PLAS.ISO.-0004.002.01 env	pending	this study

Pre-ART

Plasma SGS	WEAU.PLAS.ISO.-0004.003.01 env	pending	this study
Plasma SGS	WEAU.PLAS.ISO.-0004.004.01 env	pending	this study
Plasma SGS	WEAU.PLAS.ISO.-0004.005.01 env	pending	this study
Plasma SGS	WEAU.PLAS.ISO.-0004.006.01 env	pending	this study

Pre-ART

Plasma SGS	WEAU.PLAS.ISO.-0004.007.01 env	pending	this study
Plasma SGS	WEAU.PLAS.ISO.-0004.008.01 env	pending	this study
Plasma SGS	WEAU.PLAS.ISO.-0004.009.01 env	pending	this study
Plasma SGS	WEAU.PLAS.ISO.-0004.010.01 env	pending	this study

Pre-ART

Plasma SGS	WEAU.PLAS.ISO.-0005.001.01 env	pending	this study
Plasma SGS	WEAU.PLAS.ISO.-0005.002.01 env	pending	this study
Plasma SGS	WEAU.PLAS.ISO.-0005.003.01 env	pending	this study
Plasma SGS	WEAU.PLAS.ISO.-0005.004.01 env	pending	this study
Plasma SGS	WEAU.PLAS.ISO.-0005.005.01 env	pending	this study

Pre-ART

Plasma SGS	WEAU.PLAS.ISO.-0005.006.01 env	pending	this study
Plasma SGS	WEAU.PLAS.ISO.-0005.007.01 env	pending	this study
Plasma SGS	WEAU.PLAS.ISO.-0005.008.01 env	pending	this study
Plasma SGS	WEAU.PLAS.ISO.-0005.009.01 env	pending	this study

Pre-ART

Plasma SGS	WEAU.PLAS.ISO.-0005.010.01 env	pending	this study
Plasma SGS	WEAU.PLAS.ISO.-0005.011.01 env	pending	this study
Plasma SGS	WEAU.PLAS.ISO.-0005.012.01 env	pending	this study
Plasma SGS	WEAU.PLAS.ISO.-0005.013.01 env	pending	this study

Pre-ART

Plasma SGS	WEAU.PLAS.ISO.-0005.014.01 env	pending	this study
Plasma SGS	WEAU.PLAS.ISO.-0005.015.01 env	pending	this study
Plasma SGS	WEAU.PLAS.ISO.-0005.016.01 env	pending	this study
Plasma SGS	WEAU.PLAS.ISO.-0005.017.01 env	pending	this study

Pre-ART

Plasma SGS	WEAU.PLAS.ISO.-0005.018.01 env	pending	this study
Plasma SGS	WEAU.PLAS.ISO.-0005.019.01 env	pending	this study
Plasma SGS	WEAU.PLAS.ISO.-0005.020.01 env	pending	this study
Plasma SGS	WEAU.PLAS.ISO.-0005.021.01 env	pending	this study
Plasma SGS	WEAU.PLAS.ISO.-0005.022.01 env	pending	this study

Table S5

medRxiv preprint doi: https://doi.org/10.1101/2020.08.24.20181149; this version posted August 28, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/finder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license.
Pre-ART	WEAU.PLAS.SGS.00010.011.01	env	EU579240	B.US.1990.WEAU030 A12 EU579240
Pre-ART	WEAU.PLAS.SGS.00010.012.01	env	EU579241	B.US.1990.WEAU030 A64 EU579215
Pre-ART	WEAU.PLAS.SGS.00010.013.01	env	EU579215	B.US.1990.WEAU030 G65 EU579215
Pre-ART	WEAU.PLAS.SGS.00010.014.01	env	EU579226	B.US.1990.WEAU030 6G7 EU579226
Pre-ART	WEAU.PLAS.SGS.00010.015.01	env	EU579239	B.US.1990.WEAU030 A11 EU579239
Pre-ART	WEAU.PLAS.SGS.00010.016.01	env	EU579238	B.US.1990.WEAU030 A16 EU579238
Pre-ART	WEAU.PLAS.SGS.00010.017.01	env	EU579223	B.US.1990.WEAU030 6E1 EU579223
Pre-ART	WEAU.PLAS.SGS.00010.018.01	env	EU579210	B.US.1990.WEAU030 6A3 EU579210
Pre-ART	WEAU.PLAS.SGS.00010.019.01	env	EU579253	B.US.1990.WEAU030 A28 EU579253
Pre-ART	WEAU.PLAS.SGS.00010.020.01	env	EU579264	B.US.1990.WEAU030 A16 EU579264
Pre-ART	WEAU.PLAS.SGS.00010.021.01	env	EU579214	B.US.1990.WEAU030 G62 EU579214
Pre-ART	WEAU.PLAS.SGS.00010.022.01	env	EU579245	B.US.1990.WEAU030 A17 EU579245
Pre-ART	WEAU.PLAS.SGS.00010.023.01	env	EU579248	B.US.1990.WEAU030 A20 EU579248
Pre-ART	WEAU.PLAS.SGS.00010.024.01	env	EU579232	B.US.1990.WEAU030 6H1 EU579232
Pre-ART	WEAU.PLAS.SGS.00010.025.01	env	EU579209	B.US.1990.WEAU030 A31 EU579209
Pre-ART	WEAU.PLAS.SGS.00010.026.01	env	EU579239	B.US.1990.WEAU030 G81 EU579239
Pre-ART	WEAU.PLAS.SGS.00010.027.01	env	EU579232	B.US.1990.WEAU030 G67 EU579232
Pre-ART	WEAU.PLAS.SGS.00010.028.01	env	EU579249	B.US.1990.WEAU030 A22 EU579249
Pre-ART	WEAU.PLAS.SGS.00010.029.01	env	EU579242	B.US.1990.WEAU030 6H2 EU579242
Pre-ART	WEAU.PLAS.SGS.00010.030.01	env	EU579243	B.US.1990.WEAU030 A15 EU579243
Pre-ART	WEAU.PLAS.SGS.00010.031.01	env	EU579236	B.US.1990.WEAU030 6H5 EU579236
Pre-ART	WEAU.PLAS.SGS.00010.032.01	env	EU579260	B.US.1990.WEAU030 6A1 EU579260
Pre-ART	WEAU.PLAS.SGS.00010.033.01	env	EU579213	B.US.1990.WEAU030 6E1 EU579213
Pre-ART	WEAU.PLAS.SGS.00010.034.01	env	EU579234	B.US.1990.WEAU030 6H1 EU579234
Pre-ART	WEAU.PLAS.SGS.00010.035.01	env	EU579263	B.US.1990.WEAU030 A9 EU579263
Pre-ART	WEAU.PLAS.SGS.00010.036.01	env	EU579224	B.US.1990.WEAU030 6E2 EU579224
Pre-ART	WEAU.PLAS.SGS.00010.037.01	env	EU579238	B.US.1990.WEAU030 A11 EU579238
Pre-ART	WEAU.PLAS.SGS.00010.038.01	env	EU579224	B.US.1990.WEAU030 A95 EU579224
Pre-ART	WEAU.PLAS.SGS.00010.039.01	env	EU579246	B.US.1990.WEAU030 A25 EU579246
Pre-ART	WEAU.PLAS.SGS.00010.040.01	env	EU579217	B.US.1990.WEAU030 6G5 EU579217
Pre-ART	WEAU.PLAS.SGS.00010.041.01	env	EU579209	B.US.1990.WEAU030 G65 EU579209
Pre-ART	WEAU.PLAS.SGS.00010.042.01	env	EU579258	B.US.1990.WEAU030 6A4 EU579258
Pre-ART	WEAU.PLAS.SGS.00010.043.01	env	EU579228	B.US.1990.WEAU030 6F6 EU579228
Pre-ART	WEAU.PLAS.SGS.00010.044.01	env	EU579261	B.US.1990.WEAU030 6B5 EU579261
Pre-ART	WEAU.PLAS.SGS.00010.045.01	env	EU579205	B.US.1990.WEAU030 6F4 EU579205
Pre-ART	WEAU.PLAS.SGS.00010.046.01	env	EU579235	B.US.1990.WEAU030 6H3 EU579235
Pre-ART	WEAU.PLAS.SGS.00010.047.01	env	EU579256	B.US.1990.WEAU030 A32 EU579256
Pre-ART	WEAU.PLAS.SGS.00010.048.01	env	EU579220	B.US.1990.WEAU030 D01 EU579220
Pre-ART	WEAU.PLAS.SGS.00010.049.01	env	EU579232	B.US.1990.WEAU030 6G8 EU579232
Pre-ART	WEAU.PLAS.SGS.00010.050.01	env	EU579260	B.US.1990.WEAU030 A61 EU579260
Pre-ART	WEAU.PLAS.SGS.00010.051.01	env	EU579250	B.US.1990.WEAU030 A23 EU579250
Pre-ART	WEAU.PLAS.SGS.00010.052.01	env	EU579231	B.US.1990.WEAU030 6G2 EU579231
Pre-ART	WEAU.PLAS.SGS.00010.053.01	env	EU579227	B.US.1990.WEAU030 6E5 EU579227
Pre-ART	WEAU.PLAS.SGS.00010.054.01	env	EU579251	B.US.1990.WEAU030 A28 EU579251
Pre-ART	WEAU.PLAS.SGS.00010.055.01	env	EU579259	B.US.1990.WEAU030 A5 EU579259
Pre-ART	WEAU.PLAS.SGS.00010.056.01	env	EU579218	B.US.1990.WEAU030 6C7 EU579218
Pre-ART	WEAU.PLAS.SGS.00010.057.01	env	EU579222	B.US.1990.WEAU030 6D5 EU579222
Pre-ART	WEAU.PLAS.SGS.00010.058.01	env	EU579226	B.US.1990.WEAU030 6F1 EU579226

Table S5
Plasma SGS	WEAU.PLAS.SGS.00192.004.01 env	AY223746	B.US.1991.WEAU12_52.AY223746
Plasma SGS	WEAU.PLAS.SGS.00192.005.01 env	EUS75143	B.US.1990.WEAU0212_60.AUS75143
Plasma SGS	WEAU.PLAS.SGS.00192.006.01 env	EUS75167	B.US.1990.WEAU0212_7F.EUS75167
Plasma SGS	WEAU.PLAS.SGS.00192.007.01 env	EUS75160	B.US.1990.WEAU0212_7F5.EUS75160
Plasma SGS	WEAU.PLAS.SGS.00192.008.01 env	EUS75146	B.US.1990.WEAU0212_6H4.EUS75146
Plasma SGS	WEAU.PLAS.SGS.00192.009.01 env	EUS75148	B.US.1990.WEAU0212_7B11.EUS75148
Plasma SGS	WEAU.PLAS.SGS.00192.010.01 env	EUS75155	B.US.1990.WEAU0212_7B5.EUS75155
Plasma SGS	WEAU.PLAS.SGS.00192.011.01 env	EUS75157	B.US.1990.WEAU0212_7E3.EUS75157
Plasma SGS	WEAU.PLAS.SGS.00192.012.01 env	EUS75158	B.US.1990.WEAU0212_7F11.EUS75158
Plasma SGS	WEAU.PLAS.SGS.00192.013.01 env	EUS75156	B.US.1990.WEAU0212_7E7.EUS75156
Plasma SGS	WEAU.PLAS.SGS.00192.014.01 env	EUS75151	B.US.1990.WEAU0212_7B4.EUS75151
Plasma SGS	WEAU.PLAS.SGS.00192.015.01 env	EUS75149	B.US.1990.WEAU0212_7B12.EUS75149
Plasma SGS	WEAU.PLAS.SGS.00192.016.01 env	EUS75138	B.US.1990.WEAU0212_6A6.EUS75138
Plasma SGS	WEAU.PLAS.SGS.00192.017.01 env	EUS75147	B.US.1990.WEAU0212_7A2.EUS75147
Plasma SGS	WEAU.PLAS.SGS.00192.018.01 env	EUS75158	B.US.1990.WEAU0212_7F1.EUS75158
Plasma SGS	WEAU.PLAS.SGS.00192.019.01 env	EUS75144	B.US.1990.WEAU0212_6H4.EUS75144
Plasma SGS	WEAU.PLAS.SGS.00192.020.01 env	EUS75150	B.US.1990.WEAU0212_7B2.EUS75150
Plasma SGS	WEAU.PLAS.SGS.00192.021.01 env	EUS75141	B.US.1990.WEAU0212_6E11.EUS75141
Plasma SGS	WEAU.PLAS.SGS.00192.022.01 env	EUS75165	B.US.1990.WEAU0212_7E3.EUS75165
Plasma SGS	WEAU.PLAS.SGS.00192.023.01 env	EUS75133	B.US.1990.WEAU0212_6F24.EUS75133
Plasma SGS	WEAU.PLAS.SGS.00192.024.01 env	EUS75145	B.US.1990.WEAU0212_6H8.EUS75145
Plasma SGS	WEAU.PLAS.SGS.00192.025.01 env	EUS75153	B.US.1990.WEAU0212_7C10.EUS75153
Plasma SGS	WEAU.PLAS.SGS.00192.026.01 env	EUS75149	B.US.1990.WEAU0212_6F4.EUS75149
Plasma SGS	WEAU.PLAS.SGS.00192.027.01 env	EUS75139	B.US.1990.WEAU0212_6B8.EUS75139
Plasma SGS	WEAU.PLAS.SGS.00192.028.01 env	EUS75142	B.US.1990.WEAU0212_6E2.EUS75142
Plasma SGS	WEAU.PLAS.SGS.00371.001.01 env	AY223748	B.US.1991.WEAU391_03.AY223748
Plasma SGS	WEAU.PLAS.SGS.00371.002.01 env	AY223749	B.US.1991.WEAU391_12.AY223749
Plasma SGS	WEAU.PLAS.SGS.00752.001.01 env	AY223750	B.US.1992.WEAU772_22.AY223750

QVOA - Pre ATI

QVOA	B109.2.C.BF.1 env	KY113419	B109.2.C.BF.1 67.07.03.16.S18
QVOA	B106.1.C.3.8 env	KY114038	B106.1.C.3.8
QVOA	B106.2.C.D6.S8 env	KY113973	B106.2.C.D6.S8

QVOA - Pre ATI

QVOA	9242.QVOA.12F23 env	MH576342	9242_W12_12F23
QVOA	9242.QVOA.12M6 env	MH576367	9242_W12_12M6
QVOA	9243.QVOA.12Y10 env	MH576268	9243_W12_12Y10
QVOA	9244.QVOA.12J10 env	MH576183	9244_W12_12J10
QVOA	9244.QVOA.G12 env	MH576181	9244_W12_12G1
QVOA	9244.QVOA.H1 env	MH576218	9244_W12_12H1
QVOA	9244.QVOA.K2 env	MH576223	9244_W12_12K2
QVOA	9244.QVOA.P11 env	MH576231	9244_W12_12P11
QVOA	9241.QVOA.12A7 env	MH575949	9241_W12_12A7
QVOA	9241.QVOA.9 env	MH576961	9241_W12_129

Table S5
QVOA - Post ATI A08	env	MH264310	A09.Q1.4M25G4
QVOA - Post ATI A09	env	MH264312	A09.Q1.5M22G6
QVOA - Post ATI A09	env	MH264313	A09.Q1.5M29A3
QVOA - Post ATI A09	env	MH264314	A09.Q1.5M60D1
QVOA - Post ATI A09	env	MH264315	A09.Q2.2M16H3

Table S5