Evaluation of Captured Rainwater and Irrigation Runoff for Greenhouse Foliage and Bedding Plant Production

Jianjun Chen¹ and Richard C. Beeson, Jr.²
Mid-Florida Research and Education Center, IFAS, University of Florida, 2725 Binion Road, Apopka, FL 32703

Thomas H. Yeager¹
Department of Environmental Horticulture, IFAS, University of Florida, P.O. Box 110670, Gainesville, FL 32611

Robert H. Stamps³
Mid-Florida Research and Education Center, IFAS, University of Florida, 2725 Binion Road, Apopka, FL 32703

Liz A. Felter⁴
Orange County Extension, University of Florida, 2350 E. Michigan Street, Orlando, FL 32806

Additional index words. electrical conductivity, pH, tropical foliage plants, water conservation, water quality

Abstract. Irrigation runoff water from a containerized landscape plant production bed was blended with rainwater from greenhouse roofs in a constructed collection basin. Water from both the collection basin and an on-site potable well were characterized and used to grow foliage and bedding plants with overhead and ebb-and-flow irrigation systems. Over a 2-year period, a total of 18 foliage and 8 bedding plant cultivars were produced with plant growth and quality quantified. Alkalinity, electrical conductivity, hardness, and concentrations of nutrients of water from both sources were well within desired levels for greenhouse crop production. Turbidity and pH were relatively high from algal growth in the collection basin. However, substrate pH, irrigated by either water source, remained between 6 and 7 throughout the production periods. All plants at the time of finishing were of marketable sizes and salable quality independent of water source. No disease incidences or growth disorders related to water sources were observed. Results suggest that captured irrigation runoff blended with rainwater can be an alternative water source for greenhouse crop production.

Ornamental plant production is traditionally a heavy user of water; on an average, 1.883 to 6.276 mm ha⁻¹ of potable water per year may be applied as irrigation (Harrison, 1976). However, only 15% to 85% of surface-applied irrigation water enters containers, depending on irrigation methods, plant size, and container spacing (Beeson and Knox, 1991). If an overhead method is used, more than 50% either leaches through containers or becomes runoff between containers (Neal and Henley, 1992). Runoff, leachate, and rainfall water could be captured (collectively called captured water) and used as an irrigation source for nursery crop production.

Below average rainfall since the early 1960s, coupled with a concurrent population increase from 5 million to 13 million in Florida, resulted in the loss of aquifer recharge areas and led to heavy competition between the public and agriculture for potable water in the early 1990s (Burney et al., 1998). The Water Management Districts have encouraged the use of alternative water sources for crop production for nearly a decade (Neal and Henley, 1992). In addition to water conservation, capture of irrigation runoff can reduce the potential for nitrate and phosphorus contamination of ground and surface water. However, information on the quality of captured water and its effects on commercial containerized plant production is limited. Most studies have dealt with treated municipal water or reclaimed water (Berry et al., 1980; Fitzpatrick et al., 1986; Wu et al., 1995) or captured irrigation runoff for the production of containerized landscape ornamental plants (Camper et al., 1994; Quist et al., 1999; Skimina, 1986; Yeager et al., 1989). There have been no previous reports on the use of the captured water for greenhouse containerized plant production.

The objective of this study was to compare growth and quality of container-grown foliage and bedding plants irrigated with captured water to those irrigated with well water in greenhouse production conditions.

Materials and Methods

Water collection basin and irrigation systems. A collection basin, 9.1 m long, 3.7 m wide, and 1.1 m deep, was excavated at the Univ. of Florida’s Mid-Florida Research and Education Center in Apopka. Concrete was used to form the walls, and three layers of 0.15-mL black polyethylene sheets were used to line the basin, which had a capacity of 26.5 m³ of water. Soil excavated from the collection basin was used to elevate an existing containerized landscape plant production area to facilitate the recovery of irrigation water runoff and leaches into the collection basin. This production area was covered with two layers of 0.15-mL black polyethylene over-laid with black polypropylene woven ground cloth (VJ Growers, Apopka, Fla.). The outdoor container area was 54.6 m² and connected to the collection basin with PVC pipe. This production area was filled with plants of five landscape species: azalea (Rhododendron simsi Planch.), Mexican heather (Cuphea hyssopifolia HBK.), hibiscus (Hibiscus rosa-sinensis (L.) Ker-Gawl.), sweet viburnum (Viburnum odoratissimum Ker-Gawl.), and Japanese holly (Ilex crenata (L.) Planch.)

Eighty rooted cuttings of each species were transplanted singly into 10.2-L containers on 1 Apr. 1999 and placed in the area with a pot-to-pot spacing and 45-cm walkway between species. The substrate comprised 60% pine bark, 30% Florida sedge peat, and 10% coarse sand and amended with micronutrients (0.89 kg·m⁻³, Peter’s Fritted Trace Minerals, Scotts Co., Marysville, Ohio) and dolomite (2.3 kg·m⁻³ dolomite limestone). Four controlled-release fertilizers [Meister’s Hi-Temp Nursery Fertilizer (16–5–10 with micronutrients (16.0N–2.6P–8.3K, 5–6 months), Pursel Technologies, Sylacauga, Ala., Polyon 16–5–10 with micronutrients (16.0N–2.2P–8.3K, 5–6 months), Helena Chemical Co., Memphis, Tenn., Polyon’s 16–5–10 with micronutrients (16.0N–2.2P–8.3K, 5–6 months), Pursel Technologies, Sylacauga, Ala., Polyon’s 17–5–11 without micronutrients (17.0N–2.2P–9.1K, 12 months), and Osmocote 18–6–12 with micronutrients (18.0N–0.6P–10.0K, 8–9 months), The Scotts Co., Marysville, Ohio] were surface-applied at rates of 7.2, 10.9, 14.4, and 18.1 g of N per container. Plants were irrigated daily at 12 mm through overhead sprinklers using water from an on-site well (49 m depth). The numbers of plants were reduced by one third when the containers were spaced 45 cm on center by the end of Nov. 1999. Each container of the five landscape plant species received the aforementioned Osmocote 18–6–12 controlled release fertilizer at a rate of 7.0 g of N in Dec. 1999 and Sept. 2000, respectively. No pesticides were
used in this production area except for two applications of Banner Maxx (Propiconazole; Novartis, Greensboro, N.C.) to azaleas in Summer 1999 for leaf scorch disease (Septoria azalea). These plants continued to grow in this container production area until the last of the greenhouse plants were harvested.

Rainwater from a greenhouse roof (surface area of 27.3 m²) was also collected into the basin. The ratio of outdoor production surface area to the greenhouse roof area was 2:1. This was the ratio requested by the St. Johns River Water Management District, Fla., to represent potential sources of collection basin water for the average production nursery-greenhouse operations within its jurisdiction.

Captured water, filtered through a micro screen (130 µm) filter, and the on-site well water (the well mentioned above) were delivered to containers of greenhouse-grown foliage and bedding plants through overhead sprinkler and ebb-and-flow systems. For the ebb-and-flow system, grooved 2.4 m² ebb- and-flow trays were leveled on greenhouse benches. Both captured water and well water were stored in closed polybutylene 75-L receptacles (Rubbermaid, Winchester, Va.). Initially, 24.0N–3.5P–13.3K water-soluble fertilizer (Peter’s, 24–8–16, Grace-Sierra Horticultural Products, Milpitas, Calif.) with micronutrients was added to the receptacles at a rate of 0.5 g·L⁻¹, resulting in a N concentration of 120 mg·L⁻¹ and electrical conductivity (EC) of 1.0 dS·m⁻¹. Each receptacle was equipped with a submersible pump, controlled by an automatic timer. Plants grown on ebb-and-flow trays were fertigated with this water-soluble fertilizer only by pumping stored solution into the trays to a depth of 2.5 cm for 10 min one to three times a week, depending on plant growth and season. Solutions were then permitted to drain back into the storage receptacles (COLE-Parmer, 1992). Soluble salts in receptacles were monitored weekly. Ammonium and nitrate were examined biweekly using the methods described by Nelson (1983) and West and Ramachandran (1966), respectively. An appropriate amount of fertilizer was added to maintain soluble salt levels at <0.5 dS·m⁻¹ and N levels of 100 to 120 mg·L⁻¹.

Plants watered using overhead irrigation were placed in 929 cm² water collectors (Landmark Plastics, Akron, Ohio) to channel water falling between the containers into the container bottoms. These overhead-irrigated plants received an 18.0N–2.6P–10.0K controlled-release fertilizer with micronutrients (Osmocote 16–6–12, 8–9 month duration, The Scotts Co., Maryville, Ohio) only by applying 2 g and 5 g per 10-cm and 15-cm container, respectively, to the surface of substrate. Controlled-release fertilizer was used to comply with the Best Management Practices (BMPs, 1997) to reduce groundwater contamination from nitrate and phosphorus. Water from the collection basin or well was overhead irrigated one to three times a week at 6.7 mm per application, depending on plant growth and season. To contain irrigation overspill, curtains were installed around overhead-irrigated bench sections and were closed only during irrigation. Water volumes applied through ebb-and-flow or overhead, regardless of water source, were separately recorded based on irrigation method by water meters.

Plant materials and container substrate. Uniform foliage plant liners derived from either tissue culture or cuttings were selected and transplanted in 15-cm containers using Vego Container Mix A (Verlite Co. Tampa, Fla.). Bedding plant seedlings were transplanted into 10-cm containers with the same substrate. The components of the substrate, by volume, were 60% Canadian peat, 20% vermiculite, and 20% perlite. Over a 2-year period, a total of 18 foliage and 8 bedding plant species/cultivars were evaluated (Table 1), of which the same cultivar of Arrowhead Vine, English Ivy, Philodendron, and Umbrella Tree were evaluated twice. Different species were grown on the same benches or ebb-and-flow trays. Once one crop of a species was harvested, another crop was planted into all the space.

Plant growth environment and growth measurements. All plants were grown in a shaded and evaporated pad cooled greenhouse under a maximum photosynthetically active radiation of 285 µmol·m⁻²·s⁻¹. Temperatures ranged from 18.3 to 32.2 °C and relative humidity (RH) from 50% to 80%.

Plant growth was closely monitored, including daily inspection for plant growth disorders. Initial plant height and widths were recorded. After attaining marketable sizes, plant height and widths were again measured. Growth index (GI) was calculated as GI = [(canopy widest width + width perpendicular) / 2] / plant height. Plants were graded visually for overall quality, as described by Stamps and Evans (1999), where: 1 = poor; 2 = sub standard, unsalable; 3 = good, salable; 4 = very good; and 5 = excellent. Plant shoots were harvested by cutting at the substrate surface, and weight was then determined after drying in a forced-air oven for 48 h at 80 °C.

Water quality analysis. Water from the collection basin and well were sampled by staff from St. Johns River Water Management District (SRWMD), Fla., on 22 Sept. and 7 Oct., May 7, June 2, July 6, and Aug 21, 1999, and on May 7, June 2, July 6, and Aug 21, 2000. Water alkalinity, EC, pH, dissolved oxygen, toxicity, turbidity, and hardness, as well as NO₃-N, NH₄-N, Kjeldahl N, PO₄, total P, Ca, Mg, Fe, Cu, Zn, Cl, and SO₄ concentrations were determined based on the U.S. Environmental Protection Agency (EPA) methods (U.S. EPA, 1993). Rainfall during the course of this study was obtained from a Florida Automated Weather Network (FAWN) station situated on site.

The pH of captured water in the collection basin and in greenhouse pipes, well water in greenhouse pipes, and substrate irrigated using captured water and well water by both irrigation systems was monitored monthly during 2000. Soluble salts and pH in these substrates were tested by extracting bulk solution from randomly sampled containers using the VPI pour-through method (Yeager et al., 1983). The experimental design was a randomized block design with three replications. Plant quality rating, growth index, and dry weight were analyzed separately by species and trials (for those species utilized twice) as a 2 × 2 factorial consisting of water source and irrigation method with three blocks of three plants each using the Statistical Analysis System (SAS Inst., 1992, Cary, N.C.). When significant (P < 0.05) differences occurred within a measured parameter, means were separated using Fisher’s Protected Least Significant Differences at the 5% level.

Results and Discussion

Water capture. The collection basin reached full capacity in Apr. 1999 after its completion in early Mar. 1999. The basin was uncovered, and algae soon bloomed but were not treated by any physical or chemical means. The volume of water ranged from 24 to 26 mm, with several occasional overflows due to heavy rain.

Water quality. Means and ranges of measured characteristics of captured and well water are presented in Table 2. Alkalinity, EC, hardness, Cl, Ca, Mg, and SO₄ of captured water initially were lower than those of well water, then rose to reach or exceed those of well water around May 2000, and finally stabilized or declined slightly to those levels of well water in Aug. 2000. The change of these variables could be explained by the relationship between rainfalls and EC readings during the period of water sampling (Fig. 1). Total rainfall during this experimental period was 1,667 mm. Daily average rainfalls decreased from 5.6 mm during 1 Apr. to 22 Sept. 1999 to 0.2 mm in early June 2000. Conversely, EC readings of captured water increased from 0.15 dS·m⁻¹ to above 0.4 dS·m⁻¹ during the corresponding sampling period. When rainfall increased in June and July 2000, EC correspondingly decreased. The EC readings of well water slightly varied with time.

The NH₄⁺-N concentrations in both captured and well waters were almost negligible, even though captured water’s NH₄⁺-N was higher than that of well water. Levels of NH₄⁺-N in well water were 1.2 to 2.1 mg·L⁻¹, but was barely detectable in captured water. Total Kjeldahl N in captured water increased from 1.7 to 5.1 mg·L⁻¹ over the sampling period with a mean of 3.4 mg·L⁻¹. Captured water also had higher PO₄-P and total P than well water. These data imply that N and P were accumulated in this basin, which is largely attributed to irrigation water runoff carrying nutrients from the controlled-release fertilizers. Iron concentrations were initially high in both the captured and well waters, declined in May 1999, and stabilized around 10 µg·L⁻¹ during 2000 for both sources. Zinc concentrations of the well water ranged from 16.6 to 162 µg·L⁻¹ with a mean of 104.6 µg·L⁻¹, which was higher than the mean of captured water. Copper concentrations varied but were generally <5 µg·L⁻¹ in both water sources.

Turbitity of captured water increased from 7.8 to 48.4 ntu (nephelometric turbidity unit) during the sampling period, which
ably explains the low concentrations of NH₄⁺ in the range, algae grew and collected basin, and appropriate temperature from 9.3 to 10.3 during the sampling period. (Badger and Price, 1994; Stumm and Morgan, algal growth led to an increased pH in captured water and NO₃-N and high levels of Kjeldahl N in plant production of greenhouse foliage and bedding plants.

Table 2. Characteristics of captured (rainwater and irrigation runoff) and well water used for the production of greenhouse foliage and bedding plants.

Characteristic	Unit	Captured water	Mean	Range	Well water	Mean	Range
Alkalinity	mg L⁻¹	95.0	49.7–125.2	111.8	106.5–119.2		
EC	dS m⁻¹	0.34	0.15–0.43	0.37	0.36–0.44		
pH		9.7	9.3–10.3	7.6	7.3–8.0		
Turbidity	ntu	26.4	7.8–48.4	0.5	0.2–1.3		
Hardness	mg L⁻¹	126.6	58.0–167.0	140.8	135.0–146.0		
Dissolved O₂	---⁻	10.2	6.2–13.2	3.8	3.1–5.7		
NH₄-N	---	0.06	0.015–0.127	0.004	0.003–0.009		
NO₃-N	---	0.04	0.002–0.08	1.56	1.15–2.09		
Kjeldahl N	---	3.4	1.7–5.1	1.6	1.2–2.4		
Cl	---	12.8	5.67–19.05	13.4	13.56–14.16		
P	---	0.45	0.18–0.81	0.11	0.10–0.13		
Total N		0.87	0.48–1.42	0.12	0.11–0.13		
Ca	mg L⁻¹	28.5	12.3–42.2	33.7	29.3–35.8		
Mg	---	13.4	6.7–21.4	13.7	12.9–15.0		
SO₄²⁻	---	29.1	10.6–45.8	23.4	19.6–28.7		
Fe	µg L⁻¹	55.2	9.6–106	49.4	7.9–126		
Cu	---	2.8	1.4–4.2	6.6	0.07–23.4		
Zn	---	18.9	6.1–35.0	104.6	16.6–162.0		

The range indicated the maximum and minimum values of measured parameters across the sampling period from 22 Sept. 1999 to 21 Aug. 2000.

The same unit as the previous characteristics.

Table 1. Plants grown with captured (rainwater and irrigation runoff) and well water in a shaded greenhouse.

Common name	Scientific name	Cultivar	Production period (week)	Initiation date
Snapdragon	Antirrhinum majus L.	Floral Show Mix	7	5/04/99
Wax Begonia	Begonia xspeculum-cultorum	Ambassador Scarlet	7	5/04/99
Vinca	Catharanthus roseus L.	Cooler Peppermint	9	10/13/99
---	Catharanthus roseus L.	Pacifica Lipstick	9	3/00/00
---	Catharanthus roseus L.	Pacifica Pink	9	3/00/00
New Guinea Impatiens	Impatiens hawkeri Bull.	Accent Red	9	5/04/99
New Guinea Impatiens	Impatiens hawkeri Bull.	Super Elfin Pink	7	7/26/99
New Guinea Impatiens	Impatiens hawkeri Bull.	Super Elfin White	8	3/09/00

The same cultivars were evaluated twice during the 2 years of experimentation. The second evaluation began: English Ivy 11 Jan. 2000; Philodendron 25 Sept. 2000; Umbrella Tree 11 Oct. 1999; Arrow-Head Vine 9 Oct. 2000.

was ascribed to growth of algae. With the flow of nutrients, particularly N and P, to the collection basin, and appropriate temperature range, algae grew and flourished. This probably explains the low concentrations of NH₄⁺ and NO₃⁻-N and high levels of Kjeldahl N in the captured water. Photosynthetic activity of algae led to an increased pH in captured water (Badger and Price, 1994; Stumm and Morgan, 1996). The pH of water ranged from 7.3 to 8.0, whereas that of the captured water ranged from 9.3 to 10.3 during the sampling period. Concomitantly, dissolved O₂ increased from 6.2 mg L⁻¹ in Sept. 1999 to 13.2 mg L⁻¹ in May 2000 and stabilized at ≤10 mg L⁻¹ from June to Aug. 2000 in captured water, which was markedly higher than that of well water.

There is a general agreement on the level of alkalinity (≤100 mg L⁻¹), EC (<0.5 dS m⁻¹), pH (5 to 7), NH₄⁺-, NO₃⁻-N, P, and SO₄²⁻ (<5 mg L⁻¹), Cl (<140 mg L⁻¹), Ca (<120 mg L⁻¹), Mg (<24 mg L⁻¹) of water that is considered to be desirable for irrigation of greenhouse crops (Argo et al., 1997; Peterson and Kramer, 1994), and the water-soluble fertilizer and Osmocote peat and vermiculite (Handreck and Black, 1996) likely due to the strong buffering capacity of the greenhouse pipes due to the minimization of algae in the pipes due to the filtration. The drop of the pH in substrate was likely due to the strong buffering capacity of the substrate, consisting mainly of sphagnum peat and vermiculite (Handreck and Black, 1994) and also to the fertilizer effects since the water-soluble fertilizer and Osmocote used have 7.2% and 9.7% ammoniac nitrogen, respectively.

Plant production. Liners or seedlings of the same species potted at the same time attained marketable sizes concurrently regardless of water source or irrigation system (data not shown). No disease incidences were observed throughout the 2-year production period, although pathogenic Erwinia chrysanthemi and E. c. subsp. carotovora were identified in captured water using a PCR fingerprinting method (Norman et al., 2001). No growth disorders appeared except in Philodendron ‘Black Cardina’ which manifested small yellowish and well water were well within the desired levels except that the pH and turbidity of the captured water were in excess.

Monthly monitoring of pH of captured water in the collection basin, in greenhouse pipes, and in the substrate suggested pH values fluctuated over time (Fig. 2). The mean value was 9.7 in the collection basin, 8.8 in greenhouse pipes, and 6.5 in the substrate irrigated with captured water; the mean was 7.4 for well water in greenhouse pipes and 6.3 in well-water-irrigated substrate, regardless of irrigation system. In addition to the relatively low alkalinity of both captured and well water, indicating weak buffering capacity, the pH differences between collection basin and greenhouse pipes could be explained by the minimizing of algae in the pipes due to the filtration. The drop of the pH in substrate was likely due to the strong buffering capacity of the substrate, consisting mainly of sphagnum peat and vermiculite (Handreck and Black, 1994) and also to the fertilizer effects since the water-soluble fertilizer and Osmocote used have 7.2% and 9.7% ammoniac nitrogen, respectively.

HORTScience, Vol. 38(2), April 2003
Fig. 1. The relationship between rainfall and electrical conductivity (EC) readings of captured rainwater and irrigation runoff in the collection basin and of well water. Daily average rainfall was the total rainfall during the periods indicated on the horizontal axis divided by the number of days. The EC was read from water sampled on the last day of each period indicated.

spots on the leaves. The cause of this problem was unknown but independent of water source or irrigation method since all plants in two separate trials showed the same symptom. In addition, all marketable plants were graded high, ranging from 4 to 5. There was no water addition, all marketable plants were graded separately. In both trials, there was no difference in dry weight indicated that water source or irrigation system related difference was not significant. Statistical analyses of growth indices and shoot dry weight indicated that water source and irrigation system had no significant (P > 0.05) effects individually or interactively on the production of bedding plants Antirrhinum majus ‘Floral Show Mix’, Begonia xsemperflorens-cultorum ‘Ambassador Scarlet’, Catharanthus roseus ‘Cooler Peppermint’ and ‘Pacific Pink’, or foliage plants Cissus rhombifolia ‘Grape Ivy’, Chrysalidocarpus lutescens, Dieffenbachia ‘Snow Flake’, Dracaena marginata ‘Bicolor’ and ‘Tricolor’, Epipremnum aureum ‘Golden Pothos’, Hedera helix ‘Pia’ (two trials), Nephrolepis exaltata ‘Bostoniensis compacta’ and ‘Blue Bell’, Philodendron ‘Black Cardinal’ (two trials), and Syngonium podophyllum ‘Pink Allusion’ (two trials) (data not shown). For other species and trials, the interaction of water sources and irrigation systems were significant (P < 0.05). Thus, analyses were focused on the interactions (Snedecor and Cochran, 1980).

Plant growth indices that were significantly (P < 0.05) affected by the interaction between water source and irrigation system are listed in Table 3. In general, plants irrigated using the ebb-and-flow system exhibited larger growth indices than those irrigated overhead except for Cordyline terminalis ‘Baby Doll’ and Dieffenbachia maculata ‘Perfection Compacta’, which had larger growth indices with overhead irrigation. Among this group of plants, captured water resulted in larger Impatiens hawkeri ‘Super Elfin White’ than well water when irrigated through the ebb-and-flow system.

The interaction between water source and irrigation system also significantly (P < 0.05) affected dry weight accumulation of some species (Table 4). Ebb-and-flow irrigation produced more dry weight than overhead irrigation except for Cordyline terminalis ‘Baby Doll’ and Dieffenbachia maculata ‘Perfection Compacta’, whose dry weights were greater when irrigated overhead. Moreover, dry weight of Cordyline terminalis ‘Baby Doll’ irrigated overhead with captured water was greater than that irrigated with well water. Captured water also produced more dry weights of Impatiens hawkeri ‘Super Elfin White’ and ‘Accent Red’ as well as Scheflera actinophylla ‘Amata’ (first trial) when irrigated using the ebb-and-flow system.

Irrigation method-related differences in growth indices or dry weight (Table 3 and 4) could be attributed to interactions of irrigation methods with fertilizer formulations and plant genetic makeup. Most plants listed in either Table 3 or 4 had larger growth indices or greater dry weights when irrigated using ebb-and-flow than when irrigated through overhead. This could result from more consistent concentrations of nutrients and water supplied through ebb-and-flow, as opposed to controlled-release fertilizer and overhead irrigation. The amount and duration of nutrient release from controlled-release fertilizer may vary depending on temperature. Released nutrients may also have been partially leached by overhead irrigation even though, overall, similar amounts of N were applied, regardless of fertilizer type, irrigation method, and plant species/cultivars. Argi and Biernbaum (1995) reported that N rates in subirrigation could be reduced by 50% compared to traditional overhead irrigation in poinsettia production. However, Cordyline terminalis ‘Baby Doll’ and Dieffenbachia maculata ‘Perfection Compacta’ had larger growth indices and greater dry weight when irrigated overhead. Irrigation system and fertilizer interactions influencing plant performance have also been demon-

Fig. 2. Monthly pH (as is) in captured rainwater and irrigation runoff (CW) in the collection basin and in the greenhouse pipe, and in well water (WW) in greenhouse pipe as well as in random selected substrate irrigated using the captured water and well water through ebb-and-flow irrigation in 2000. Bars represent SE of three replications.

HortScience, Vol. 38(2), April 2003
Table 3. Mean growth indices (cm²) of plants irrigated through ebb-and-flow or overhead irrigation using captured (rainwater and irrigation runoff) and well water sources.

Plant	Overhead	Ebb-and-flow		
	Captured	Captured	Well	Well
I. hawkeri Super Elfin Pink	454 b	470 b	689 a	517 ab
I. hawkeri Super Elfin White	858 b	677 b	1232 a	852 b
I. hawkeri Accent Red	450 b	474 b	1118 a	1036 a
C. roseus Pacific Lipstick	389 b	447 b	575 b	493 b
Anthurium Cotton Candy	1254 b	1356 b	1471 ab	1588 a
Aglaonema Maria	1605 b	1465 b	2354 a	2135 a
C. terminals Baby Doll	1956 a	1830 ab	1603 bc	1588 c
D. macrophyllum Parvisetum	1422 a	1278 a	1010 c	1044 a
F. benjamina Common	7606 b	8579 b	13669 a	1288 a
S. actinophylla Amate (2nd trial)	3083 bc	2681 c	4102 a	3964 ab

*Means within rows followed by different letters are significant (P < 0.05) based on Fisher’s protected least significant difference.

Table 4. Mean shoot dry weight (g) of plants irrigated by ebb-and-flow or overhead using captured (rainwater and irrigation runoff) and well water sources.

Plant	Overhead	Ebb-and-flow		
	Captured	Captured	Well	Well
I. hawkeri Super Elfin Pink	2.9 b	2.9 b	4.3 a	4.8 a
I. hawkeri Super Elfin White	1.7 b	1.4 b	2.4 a	1.2 b
I. hawkeri Accent Red	1.1 c	1.3 c	2.8 a	2.1 a
C. terminals Baby Doll	18.5 a	15.7 b	13.2 c	12.6 c
D. macrophyllum Parvisetum	21.5 a	17.9 ab	13.9 b	14.6 b
F. benjamina Common	86.9 b	95.0 b	151.6 a	128.8 a
S. actinophylla Amate	35.4 a	32.5 ab	37.9 a	28.6 b
S. actinophylla Amate (2nd trial)	19.3 b	17.4 b	24.8 a	25.5 a
Spathiphyllum Petite	74.8 bc	66.8 c	91.4 a	85.2 ab

*Means within rows followed by different letters are significant (P < 0.05) based on Fisher’s protected least significant difference.

Stratified in geranium (Knights et al., 1993) and petunia (Klock-Moore and Broschat, 2001). Plant genetic makeup appears to have affected the interaction of irrigation system with fertilizer type. For example, no differences in growth index and dry weight were observed in Dieffenbachia x ‘Snow Flake’; however, Dieffenbachia maculata ‘Perfection Compacta’ grew larger with overhead compared to ebb-and-flow irrigation.

The reason for captured water resultant larger growth indices or greater dry weight within an irrigation system in some plant species (Table 3 and 4) is unclear. It does not appear to be explained by the seasonal variation of nutrient concentrations in captured water. For example, Schefflera actinophylla ‘Amate’ in the first trial, occurring from Apr. to Oct. 1999, produced significantly (P < 0.05) more dry weight when irrigated with captured water than well water (Table 4). During this period, EC readings of captured water were lower than that of well water (0.15 vs. 0.38 μS·cm⁻¹). Yet, in a second trial, occurring from Oct. 1999 to Apr. 2000, there were no water source-related dry weight differences. During the second trial period, EC readings of both captured and well water were about the same (Fig. 1).

Assessing captured water as an alternative irrigation source. Water, captured from a 54.6 m² landscape plant production area blended with rainwater collected from a 27.3 m³ greenhouse roof area, not only satisfied the need of plants in a 38 m² greenhouse year-round, but also maintained the collection basin near full capacity (26.5 m³). Average volumes of irrigation applied by the ebb-and-flow and overhead systems during this experiment were 11 and 36 m³ per 100 m² of production area per crop, respectively. If two crops were produced annually in this greenhouse, the remaining captured water should be sufficient to meet this irrigation requirement of an additional mix of species in a 120-m² production area annually using ebb-and-flow irrigation and in a 37-m² production area with the overhead irrigation system described.

All measured water-quality parameters were well within desired levels for greenhouse crop production except pH and turbidity that were high due to growth of algae in the captured water. Algae were also noticed in ebb-and-flow or overhead using captured water for production of greenhouse crops should be a viable option in regions where fresh water shortage occurs.

Literature Cited

Argo, W.R. and J.A. Biernbaum. 1995. The effect of irrigation method, water-soluble fertilizer, and preplant nutrient charge, and surface evaporation of early vegetative and root growth of poinsaitia. J. Amer. Soc. Hort. Sci. 120:163–169.

Argo, W.R., J.A. Biernbaum, and D.D. Warncke. 1997. Geographical characterization of greenhouse irrigation water. HortTechnology 7: 49–55.

Badger, M.R. and G.D. Price. 1994. The role of carbonic anhydrase in photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45:369–392.

Berr W.L., A. Wallace, and O.R. Lunt. 1980. Utilization of municipal wastewater for the culture of horticulture crops. HortScience 15: 169–171.

Beeson, R.C., Jr., and G.W. Knox. 1991. Analysis of efficiency of overhead irrigation in container production. HortScience 26:848–850.

BMPS. 1997. Best management practices: Guide for producing Container-grown plants. Southern Nursery Assn. Marietta, Ga.

Burnley, L.C., T. Swhart, and J.G. Llewellyn. 1998. Water supply planning in Florida. Fla. Water Res. J. (Oct.) 27–28.

Camper, N.D., T. Whitwell, R. Reese, and M.B. Riley. 1994. Herbicide levels in nursery container-pot water and sediments. J. Environ. Hort. 12:8–12.

Conover, C.A. and R.T. Poole. 1992. Fertilizer levels and medium affect foliage plant growth in an ebb-and-flow irrigation system. J. Environ. Hort. 10:81–86.

Fitzpatrick, G., H. Domselmann, and N.S. Carter. 1986. Interactive effects of sewage effluent irrigation and supplemental fertilization on container-grown trees. HortScience 21:92–93.

Handreck, K.A. and N.D. Black. 1994. Growing Media for Ornamental Plants and Turf. Univ. of New South Wales Press. Randwick, NSW Australia.

Harrison, D.S. 1976. Irrigation water applied to three commercial ornamental container nurseries. Proc. Fla. State Hort. Soc. 90:306–308.

Klock-Moore, K.A. and T.K. Broschat. 2001. Irrigation systems and fertilizer affect petunia growth. HortTechnology 11:416–418.

Knights, P.R., D.J. Eakes, and C.H. Gilliam. 1993. Method of irrigation and fertilizer application influence growth and nitrogen recovery for ‘Scarlet Elite’ geranium. HortScience 28:477. (Abstr.)

Marhaba, T.F. 2000. Crystal clear. Environ. Protection 11(8):38–47.

Neal, C.A. and R.W. Henley. 1992. Water use and runoff comparison of greenhouse irrigation systems. Proc. Fla. State Hort. Soc. 105: 191–194.

Nelson, D.W. Determination of ammonium in KCl extracts by the salicylate method. Comm. Soil Sci. Plant Anal. 14:1051–1062.

Norman, D.J., J.M.F. Yuen, L. Reich, and R. Resen- diz. 2001. Use of rep-PCR fingerprinting to com- pare populations of Erwinia from ornamentals with those found in irrigation and stormwater runoff. Phytopathology 91:S66 (Abstr.).

Peterson, J.C. and L.L. Kramer. 1989. Water quality, p. 26–27. In: Tips on Growing Potted Chrysan-
thenums. Ohio Coop. Ext. Serv. Bul. FP-767.
Quist, T.M., C.F. Williams, and M.L. Robinson. 1999.
Effects of varying water quality on grown and
appearance of landscape plants. J. Environ.
Hort. 17:88–91.
Sakamoto, G. 2000. Finite and nonrenewable: UV
disinfection of reclaimed waste water. Environ.
Protection 11(10):20–25.
Skimina, C. 1986. Recycling irrigation runoff on
container ornamentals. HortScience 21:31–34.
Snedecor, G.W. and W.G. Cochran, 1980. Statis-
tical methods. 7th Edition. The Iowa State Univ.
Press, Ames.
Stamps, R.H. and M.R. Evans. 1999. Growth of
Dracaena marginata and Spathiphyllum ‘Petite’
in sphagnum peat- and coconut coir dust-based
growing media. J. Environ. Hort. 17:49–52.
Stumm, W. and J.J. Morgan. 1996. Aquatic chem-
istry: Chemical equilibria and rates in natural
water. 3rd ed. Wiley, New York.
Tayama, H. 1991. Test irrigation water to ensure
acceptable pH, alkalinity levels. Greenhouse
Manager (Oct.) 119.
West, P.W. and T.P. Ramachandran. 1966. Spect-
rophotometric determination of nitrate using
chromotropic acid. Anal. Chim. Acta 35:
317–324.
Wu, L., J. Chen, H. Lin, P. van Mantgem, M.A.
Harivandi, and J.A. Harding. 1995. Effects of
regenerated wastewater irrigation on growth
and ion uptake of landscape plants. J. Environ.
Hort. 13:92–96.
Yeager, T.H., G.W. Knox, G.W. Simone, H.M.
Gramling, and R. D. Newton. 1989. Efficacy
of chlorinated irrigation water for controlling
root rot organisms. Intl. Plant. Prop. Soc. Comb.
Proc. 39: 399–404.
Yeager, T.H., R.D. Wright, and S.J. Donohue. 1983.
Comparison of pour-trough and saturated pine
bark extract N, P, K, and pH levels. J. Amer.
Soc. Hort. Sci. 108:112–114.
United States Environmental Protection Agency.
1993. Methods for chemical analysis of water
and wasters. EPA-600/4-79-020, Environ.
Monitoring and Support Lab., Cincinnati, Ohio.