Permutations that separate close elements

Simon R. Blackburn
Royal Holloway University of London

Joint work with Tuvi Etzion (Technion)

22–23 May 2023
Algebraic phrasing

For $i, j \in \mathbb{Z}_n$, let $||i, j||_n$ be the distance between i and j when the elements of \mathbb{Z}_n are written in a circle.
Algebraic phrasing

For $i, j \in \mathbb{Z}_n$, let $||i, j||_n$ be the distance between i and j when the elements of \mathbb{Z}_n are written in a circle.

$$||i, j||_n = \min\{(i - j) \mod n, (j - i) \mod n\}.$$
Algebraic phrasing

For \(i, j \in \mathbb{Z}_n \), let \(||i, j||_n|| \) be the distance between \(i \) and \(j \) when the elements of \(\mathbb{Z}_n \) are written in a circle.

\[||i, j||_n = \min\{(i - j) \mod n, (j - i) \mod n\}. \]

Definition (An overlapping rectangle)

A permutation \(\pi : \mathbb{Z}_n \rightarrow \mathbb{Z}_n \) has an \((s, k)\)-clash if there exist distinct \(i, j \in \mathbb{Z}_n \) with \(||i, j||_n < s\) and \(||\pi(i), \pi(j)||_n < k\).
Algebraic phrasing

For $i, j \in \mathbb{Z}_n$, let $||i, j||_n$ be the distance between i and j when the elements of \mathbb{Z}_n are written in a circle.

$$||i, j||_n = \min\{(i - j) \mod n, (j - i) \mod n\}.$$

Definition (An overlapping rectangle)

A permutation $\pi : \mathbb{Z}_n \rightarrow \mathbb{Z}_n$ has an (s, k)-clash if there exist distinct $i, j \in \mathbb{Z}_n$ with $||i, j||_n < s$ and $||\pi(i), \pi(j)||_n < k$.

Definition (No overlapping rectangles)

A permutation $\pi : \mathbb{Z}_n \rightarrow \mathbb{Z}_n$ is (s, k)-clash-free if it has no (s, k)-clashes.
Related work

- Generalisations of $k = 2$ case: cyclic matching sequencability for graphs: Alspach, *Bull. ICA* 2008, Brualdi–Kiernan–Meyer, *Australas. J. Comb.* 2012; Kreher–Pastine–Tollefson, *Australas. J. Comb.* 2015.

- Non-cyclic case (cylinder or square, not torus): Mammoliti–Simpson, *Australas. J. Comb.* 2020.

- Packing diamonds rather than rectangles (large distance in the Manhattan metric): Aspvell–Liang *Stanford Tech. Report* 1980; Bevan–Homberger–Tenner *JCT-A* 2018; SRB–Homberger–Winkler *JCT-A* 2019.
Related work

- Generalisations of $k = 2$ case: cyclic matching sequencability for graphs: Alspach, *Bull. ICA* 2008, Brualdi–Kiernan–Meyer, *Australas. J. Comb.* 2012; Kreher–Pastine–Tollefson, *Australas. J. Comb.* 2015.

- Non-cyclic case (cylinder or square, not torus): Mammoliti-Simpson, *Australas. J. Comb.* 2020.
Related work

- Generalisations of $k = 2$ case: cyclic matching sequencability for graphs: Alspach, *Bull. ICA* 2008, Brualdi–Kiernan–Meyer, *Australas. J. Comb.* 2012; Kreher–Pastine–Tollefson, *Australas. J. Comb.* 2015.

- Non-cyclic case (cylinder or square, not torus): Mammoliti-Simpson, *Australas. J. Comb.* 2020.

- Packing diamonds rather than rectangles (large distance in the Manhattan metric): Aspvell–Liang *Stanford Tech. Report* 1980; Bevan–Homberger–Tenner *JCT-A* 2018; SRB–Homberger–Winkler *JCT-A* 2019.
The main question

Definition (How wide can rectangles be?)

Let n and k be fixed. Define $\sigma(n, k)$ to be the largest s such that an (s, k)-clash-free permutation π of \mathbb{Z}_n exists.

Theorem (Mammoliti–Simpson, Australian J. Comb. 2020)

$\sigma(n, k) \leq \left\lfloor \frac{n - 1}{k} \right\rfloor$

Proof.

$nsk \leq n^2$.

We can't have $sk = n$.

So $sk \leq n - 1$.

Simon R. Blackburn (RHUL)

Permutations that separate close elements
The main question

Definition (How wide can rectangles be?)

Let n and k be fixed. Define $\sigma(n, k)$ to be the largest s such that an (s, k)-clash-free permutation π of \mathbb{Z}_n exists.

Theorem (Mammoliti–Simpson, *Australian J. Comb.* 2020)

$$\sigma(n, k) \leq \lfloor (n - 1)/k \rfloor$$
The main question

Definition (How wide can rectangles be?)

Let n and k be fixed. Define $\sigma(n, k)$ to be the largest s such that an (s, k)-clash-free permutation π of \mathbb{Z}_n exists.

Theorem (Mammoliti–Simpson, *Australian J. Comb.* 2020)

$$\sigma(n, k) \leq \lfloor (n - 1)/k \rfloor$$

Proof.

$$nsk \leq n^2.$$
The main question

Definition (How wide can rectangles be?)
Let n and k be fixed. Define $\sigma(n, k)$ to be the largest s such that an (s, k)-clash-free permutation π of \mathbb{Z}_n exists.

Theorem (Mammoliti–Simpson, Australian J. Comb. 2020)

$$\sigma(n, k) \leq \lfloor (n - 1)/k \rfloor$$

Proof.

$$nsk \leq n^2.$$ We can’t have $sk = n$:
The main question

Definition (How wide can rectangles be?)

Let n and k be fixed. Define $\sigma(n, k)$ to be the largest s such that an (s, k)-clash-free permutation π of \mathbb{Z}_n exists.

Theorem (Mammoliti–Simpson, *Australian J. Comb.* 2020)

$$\sigma(n, k) \leq \lfloor (n - 1)/k \rfloor$$

Proof.

$$nsk \leq n^2.$$

We can’t have $sk = n$:

So $sk \leq n - 1$.

Mammoliti–Simpson conjecture

Theorem (SRB, JCT-A 2023)

\[\left\lfloor \frac{n-1}{k} \right\rfloor - 1 \leq \sigma(n, k) \leq \left\lceil \frac{n-1}{k} \right\rceil \]

Proof. \((n, k, s) = (76, 6, 11)\).

Set \(\rho(0) = 0\), \(\rho(1) = 12\), and so on. \(\rho\) is \((k, s)\)-clash-free.

Set \(\pi = \rho - 1\). Then \(\pi\) is \((s, k)\)-clash-free.
Mammoliti–Simpson conjecture

Theorem (SRB, JCT-A 2023)

\[\lfloor (n - 1)/k \rfloor - 1 \leq \sigma(n, k) \leq \lfloor (n - 1)/k \rfloor \]

Proof. \((n, k, s) = (76, 6, 11)\).
Mammoliti–Simpson conjecture

Theorem (SRB, JCT-A 2023)

\[\lfloor \frac{(n - 1)}{k} \rfloor - 1 \leq \sigma(n, k) \leq \lfloor \frac{(n - 1)}{k} \rfloor \]

Proof. \((n, k, s) = (76, 6, 11)\).

Set \(\rho(0) = 0, \rho(1) = 12, \text{ and so on.} \)

\(\rho\) is \((k, s)\)-clash-free.

Set \(\pi = \rho - 1\).

Then \(\pi\) is \((s, k)\)-clash-free.
Mammoliti–Simpson conjecture

Theorem (SRB, JCT-A 2023)

\[\lfloor (n - 1)/k \rfloor - 1 \leq \sigma(n, k) \leq \lfloor (n - 1)/k \rfloor \]

Proof. \((n, k, s) = (76, 6, 11)\).

Set \(\rho(0) = 0\), \(\rho(1) = 12\), and so on. \(\rho\) is \((k, s)\)-clash-free.
Mammoliti–Simpson conjecture

Theorem (SRB, JCT-A 2023)

\[\left\lfloor \frac{(n - 1)}{k} \right\rfloor - 1 \leq \sigma(n, k) \leq \left\lfloor \frac{(n - 1)}{k} \right\rfloor \]

Proof. \((n, k, s) = (76, 6, 11)\).

Set \(\rho(0) = 0\), \(\rho(1) = 12\), and so on. \(\rho\) is \((k, s)\)-clash-free. Set \(\pi = \rho^{-1}\). Then \(\pi\) is \((s, k)\)-clash-free.
Theorem (SRB–Etzion, 2023+)

Let n and k be fixed positive integers, with $k < n$. Write $s = \lfloor \frac{n-1}{k} \rfloor$, so $n = sk + r$ where $1 \leq r \leq k$.

Define $d_k = \gcd(n, k)$ and $d_s = \gcd(n, s)$.

If $r \geq s$ or $k = r$, then $\sigma(n, k) = \lfloor \frac{n-1}{k} \rfloor$.

If $r < s$ and $r < k$ and d_sd_k divides n, then $\sigma(n, k) = \lfloor \frac{n-1}{k} \rfloor$.

If $r < s$ and $r < k$ and d_sd_k does not divide n, then $\sigma(n, k) = \lfloor \frac{n-1}{k} \rfloor - 1$.

Which case occurs?
Which case occurs?

Theorem (SRB–Etzion, 2023+)

Let n and k be fixed positive integers, with $k < n$. Write $s = \left\lfloor \frac{(n - 1)}{k} \right\rfloor$, so $n = sk + r$ where $1 \leq r \leq k$.
Which case occurs?

Theorem (SRB–Etzion, 2023+)

Let n and k be fixed positive integers, with $k < n$. Write $s = \lfloor (n - 1)/k \rfloor$, so $n = sk + r$ where $1 \leq r \leq k$. Define $d_k = \gcd(n, k)$ and $d_s = \gcd(n, s)$.

- If $r \geq s$ or $k = r$, then $\sigma(n, k) = \lfloor (n - 1)/k \rfloor$.
- If $r < s$ and $r < k$ and $d_s d_k$ divides n, then $\sigma(n, k) = \lfloor (n - 1)/k \rfloor$.
- If $r < s$ and $r < k$ and $d_s d_k$ does not divide n, then $\sigma(n, k) = \lfloor (n - 1)/k \rfloor - 1$.

Simon R. Blackburn (RHUL)
Which case occurs?

Theorem (SRB–Etzion, 2023+)

Let n and k be fixed positive integers, with $k < n$. Write $s = \lfloor (n - 1)/k \rfloor$, so $n = sk + r$ where $1 \leq r \leq k$. Define $d_k = \gcd(n, k)$ and $d_s = \gcd(n, s)$.

- If $r \geq s$ or $k = r$, then $\sigma(n, k) = \lfloor (n - 1)/k \rfloor$.

- If $r < s$ and $r < k$ and $d_s \nmid n$, then $\sigma(n, k) = \lfloor (n - 1)/k \rfloor - 1$.

Simon R. Blackburn (RHUL)
Which case occurs?

Theorem (SRB–Etzion, 2023+)

Let n and k be fixed positive integers, with $k < n$. Write $s = \lfloor (n - 1)/k \rfloor$, so $n = sk + r$ where $1 \leq r \leq k$. Define $d_k = \gcd(n, k)$ and $d_s = \gcd(n, s)$.

- If $r \geq s$ or $k = r$, then $\sigma(n, k) = \lfloor (n - 1)/k \rfloor$.
- If $r < s$ and $r < k$ and $d_s d_k$ divides n, then $\sigma(n, k) = \lfloor (n - 1)/k \rfloor - 1$.
Which case occurs?

Theorem (SRB–Etzion, 2023+)

Let \(n \) and \(k \) be fixed positive integers, with \(k < n \). Write \(s = \lfloor (n - 1)/k \rfloor \), so \(n = sk + r \) where \(1 \leq r \leq k \). Define \(d_k = \gcd(n, k) \) and \(d_s = \gcd(n, s) \).

- If \(r \geq s \) or \(k = r \), then \(\sigma(n, k) = \lfloor (n - 1)/k \rfloor \).
- If \(r < s \) and \(r < k \) and \(d_s d_k \) divides \(n \), then \(\sigma(n, k) = \lfloor (n - 1)/k \rfloor \).
- If \(r < s \) and \(r < k \) and \(d_s d_k \) does not divide \(n \), then
 \[
 \sigma(n, k) = \lfloor (n - 1)/k \rfloor - 1.
 \]
A sketch proof

Assume $n = sk + r$ where $1 \leq r < \min\{k, s\}$.
A sketch proof

Assume $n = sk + r$ where $1 \leq r < \min\{k, s\}$.
In every row, and every column, exactly r positions are uncovered.
A sketch proof

Assume \(n = sk + r \) where \(1 \leq r < \min\{k, s\} \).

In every row, and every column, exactly \(r \) positions are uncovered. Every rectangle touches 4 others, one on each side:
A sketch proof

Assume $n = sk + r$ where $1 \leq r < \min\{k, s\}$.
In every row, and every column, exactly r positions are uncovered.
Every rectangle touches 4 others, one on each side:

Rectangles form east-west and north-south lines: *warp and weft threads.*
A sketch proof

Assume $n = sk + r$ where $1 \leq r < \min\{k, s\}$.

In every row, and every column, exactly r positions are uncovered.

Every rectangle touches 4 others, one on each side:

Rectangles form east-west and north-south lines: *warp and weft threads*. Threads cannot change direction:
A sketch proof 2

Threads must be periodic, giving the condition that $d_s d_k$ divides n.
A sketch proof 2

Threads must be periodic, giving the condition that $d_s d_k$ divides n. The structure must look something like this:
A sketch proof 2

Threads must be periodic, giving the condition that $d_s d_k$ divides n. The structure must look something like this:

Can classify permutations by **jumpers**: two sequences determining sizes of gaps.
Definition

An \((s, k, n)\)-jumper is a pair \(((a_i), (b_i))\) of sequences of integers with the following properties:

1. \((a_i)\) has period dividing \(d_s\), and \((b_i)\) has period dividing \(d_k\).
2. We have \(1 \leq a_i < s\) and \(1 \leq b_i < k\) for \(i \geq 0\).
3. The \(d_k\) partial sums \(\sum_{i=0}^{\ell-1} b_i\) where \(0 \leq \ell < d_s\) are distinct modulo \(d_k\). Moreover, \(d_s d_k\) divides \(\sigma_b\) where \(\sigma_b = \sum_{i=0}^{d_k-1} b_i\).
4. The \(d_s\) partial sums \(\sum_{i=0}^{m-1} a_i\) where \(0 \leq m < d_s\) are distinct modulo \(d_s\). Moreover, \(d_s d_k\) divides \(\sigma_a\) where \(\sigma_a = \sum_{i=0}^{d_s-1} a_i\).
5. Defining \(\sigma_a\) and \(\sigma_b\) as above, \(\sigma_a \sigma_b = d_s d_k r\).
The classification

Theorem

Let n and k be fixed integers with $k < n$. Set $s = \lfloor (n - 1)/k \rfloor$, and define r by $n = sk + r$ for $1 \leq r \leq k$. Define $d_s = \gcd(n, s)$ and $d_k = \gcd(n, k)$. Assume that $r < k$ and $r < s$. Furthermore, suppose that $d_s d_k$ divides n.

There is a bijection between the set of clockwise (s, k)-clash-free permutations with $\pi(0) = 0$ and the set $J(s, k, n)$ of (s, k, n)-jumpers.
The classification

Theorem

Let n and k be fixed integers with $k < n$. Set $s = \lfloor (n - 1)/k \rfloor$, and define r by $n = sk + r$ for $1 \leq r \leq k$. Define $d_s = \gcd(n, s)$ and $d_k = \gcd(n, k)$. Assume that $r < k$ and $r < s$. Furthermore, suppose that $d_s d_k$ divides n. There is a bijection between the set of clockwise (s, k)-clash-free permutations with $\pi(0) = 0$ and the set $J(s, k, n)$ of (s, k, n)-jumpers.
Thanks!