INTRODUCTION

The diminishment of agricultural products caused by different phytopathogenic agents remains a severe challenge in recent years. Among the pathogens, fungi have the most significant role in crop production losses (Bebber & Gurr, 2015). *Fusarium graminearum*, as a causal agent of Fusarium head blight, has become a major limiting factor for sustainable wheat production around the world (Davari et al., 2013). *Sclerotinia sclerotiorum* and *Botrytis cinerea* are common necrotrophic fungal plant pathogens that can attack a wide range of plant species during crop cultivation and harvested productions (Amselem et al., 2011). Although synthetic fungicides are widely...
utilized for fungal plant diseases management, some disadvantages such as harmful effects on the environment and human health, high production costs, and appearance of resistant strains have attracted researchers to design more efficient strategies (Bartlett et al., 2002; Joo, 2005; Le & Bach, 2019; Sharma et al., 2009).

Nowadays, the use of nanomaterials as efficient and eco-friendly agents in the control of plant pathogens has been successfully studied (Balaure et al., 2017; Hayles et al., 2017; Khan & Rizvi, 2014; Servin et al., 2015; Singh et al., 2015; Sinha et al., 2017; Worrall et al., 2018). Among the nanomaterials, titanium dioxide (TiO$_2$) has been gained great attention compared to CuO, ZnO, etc. to reduce the fungal diseases, because of its low cost, eco-friendly nature, unique physicochemical properties, and high stability (Darbari et al., 2011; Huang et al., 2013). Despite the appealing features, TiO$_2$ revealed low antifungal efficiency in practical applications (Beltrán-Partida et al., 2017). To overcome this problem and boost the antifungal activity, the integration of TiO$_2$ with suitable nanomaterials has been suggested. Silver-based semiconductors are an excellent choice to increase the antifungal activity of TiO$_2$ due to their high antifungal properties (Liu et al., 2017). Antimicrobial activity of TiO$_2$ or in binary compositions carried out in medicine or food science. The TiO$_2$/ZnO supported in 4A zeolite showed superior activity as antimicrobial agent (Azizi-Lalabadi et al., 2019). Ansari et al. (2020) showed that TiO$_2$ nanofibers were more active against Gram-negative Pseudomonas aeruginosa cells than Gram-positive Staphylococcus aureus. Also, the antibacterial and antibiofilm results suggested that TiO$_2$ can be utilized for coating different inanimate objects, in food packaging and in wastewater treatment, and purification for preventing bacterial growth. In other research, the Fe-doped TiO$_2$/bamboo exhibited a much higher inhibition ability to mold fungi compared with original bamboo and TiO$_2$/bamboo, under the natural environment (Li et al., 2017). Based on Kim et al. (2019) results, thorn-like TiO$_2$ nanoarrays physically punctured the cell membrane of bacteria.

As far as we know, there is no report about the antifungal activity of TiO$_2$/AgBr nanocomposites. Given the above discussions, we prepared binary TiO$_2$/AgBr nanocomposites by a simple ultrasonic-aided method. Then, these nanocomposites were studied by different instruments such as FT-IR, SEM, EDX, and XRD. The antifungal activity of TiO$_2$/AgBr nanocomposites was evaluated against F. graminearum, B. cinerea, and S. sclerotiorum. The results exhibited that the TiO$_2$/AgBr (20%) sample acts as a highly effective nanocomposite for antifungal property compared to the other samples.

2 | MATERIALS AND METHODS

2.1 | Instruments

The phase structure of the materials was studied by Philips Xpert XRD, applying CuK$_\alpha$ radiation. The morphological features and chemical composition of the samples were characterized by LEO 1430 VP SEM/EDX instrument. The FT-IR spectra were provided by a PerkinElmer Spectrum RX I instrument. The ultrasonic treatment was applied with a Bandelin ultrasound generator HD 3100.

2.2 | Preparation of the nanocomposites

All chemicals had high purity, and deionized water was used during this study. The TiO$_2$/AgBr nanocomposites, with the AgBr content of 20 wt%, were synthesized as follows: 0.4 g TiO$_2$ (P25) was first sonicated in water (150 ml) with ultrasonication for 10 min. Then, 0.09 g AgNO$_3$ (Loba Chemie) was added into the solution with stirring. Next, afterward, a 20 ml aqueous solution containing 0.054 g NaBr (Loba Chemie) was drop-wise appended into the solution and followed for 1 hr vigorous stirring and the suspension was sonicated for 60 min. Finally, the produced precipitate was filtered and washed two times with water, and then air-dried at 60°C (Figure 1).

2.3 | The utilized fungi

Two phytopathogenic fungal strains B. cinerea (FCUM672), and S. sclerotiorum (FCUM373) provided by the Fungal Collection of University of Mohaghegh Ardabili. Fusarium graminearum (CBS130604) was obtained from the CBS Culture Collection (CBS-KNAW Westerdijk.

![Figure 1](image-url)
Fungal Biodiversity Centre, Utrecht, Netherland). All strains were cultured on PDA (potato dextrose agar, Merck) medium and were preserved on SNA (slant synthetic nutrient-poor agar) at 4°C.

2.4 Effect of nanocomposites on the fungi spores in the bioreactor

The growth of *F. graminearum* spores was realized on the SNA at 25°C for 7 days. After washing the plates with sterile water and separating spores by mechanical agitation, the spore suspension was set on 1 x 10⁴ spores/ml via a hemacytometer. The antifungal effect of the nanocomposite on the *F. graminearum* spores was carried out according to the related method (Sichel et al., 2007). A wooden enclosure and a two-walled Pyrex reactor were attached to a thermostat and the solution temperature was kept at 25°C. To avoid the adverse light effects, the experiments were performed in the dark condition. The fungal spore suspension and 0.002 g of the nanocomposite were transferred to one reactor, and the fungal spore suspension alone as control was added to the other reactor. At different time intervals, the sampling from each reactor was performed using a micro sampler. Samples were inoculated into pellets containing MEA (Malt Extract Agar) medium and incubated in the dark medium for 15 hr. Germinated spores were counted and compared with the control using a stereo microscope.

2.5 Effects of nanocomposite on fungi mycelial growth

The nanocomposite was mixed with PDA medium according to the method known as the microdilution (Kaur et al., 2012). A 5-mm mycelial disk from fresh cultures of target fungi was placed in the middle of with PDA medium containing 100, 150, 200, 300, and 400 ppm of the nanocomposite. The inoculated and the control (PDA medium without the nanocomposite) Petri dishes were incubated at 25°C for 16 hr light and 8 hr dark. The growth of the mycelial colony in each fungus was measured daily until filled by the fungi grown in the control plates. It was elongated 4, 5, and 7 days for *S. sclerotiorum*, *B. cinerea*, and *F. graminearum*, respectively. Three replicates were considered for each treatment, and mycelial growth inhibition percentages of different concentrations were calculated using the following formula:

\[
\text{Inhibition Percentage} \ (\%) = \frac{(R - r)}{R},
\]

where \(R\) and \(r\) are the diameter of the fungus colony in control and treated plates, respectively. Analysis of variance and probit analysis of inhibition percentage were performed using SPSS software version 24. Also, the observed rate constant \(k_{obs}\) of the inactivation processes over the materials were obtained by the slope of \(\ln (N_t/N_0) = -kt\), in which \(N_0\) and \(N_t\) are the initial and at time of \(t\) fungus population (in cfu/ml), respectively.

RESULTS

To investigate the phase structure and purity of the materials, the XRD tests were used. The XRD patterns of the as-fabricated samples are shown in Figure 2. For the TiO₂, the diffraction peaks belong to the tetragonal phase (JCPDS no. 04-0477) (Feizpoor et al., 2019). For the TiO₂/AgBr nanocomposites, in addition to the peaks belonged to TiO₂, characteristic peaks of AgBr were also observed (JCPDS no. 79-0149) (Pirhashemi & Habibi-Yangjeh, 2016). Because of the small amount of AgBr in the TiO₂/AgBr (5%) sample, no characteristic peaks for AgBr were detected in the TiO₂/AgBr (5%) sample. These patterns show the successful combining of TiO₂ and AgBr to build the TiO₂/AgBr nanocomposites.

To evaluate the presence of expected elements in the samples, EDX analyses were employed. The corresponding EDX spectra of TiO₂ and TiO₂/AgBr (20%) samples are provided in Figure 3a, indicating Ti and O elements in the TiO₂ sample without any impurities, whereas the TiO₂/AgBr (20%) sample consists of Ti, O, Br, and Ag elements. The above results indicated that AgBr grows on the surface of the TiO₂ sample. EDX mapping was obtained to investigate further the distribution of the elements in the TiO₂/AgBr (20%) sample (Figure 3(b-f)). Based on the results, Ti, O, Br, and Ag elements are realized distributed in the sample, confirming that the TiO₂/AgBr (20%) sample has been successfully synthesized.

The structure and morphology of the TiO₂/AgBr (20%) sample were inspected using SEM analysis. Figure 4 reveals the corresponding SEM image of the TiO₂/AgBr (20%) sample. From this figure, the TiO₂/AgBr (20%) nanocomposite presents spherical morphology with high aggregation.

To investigate the functional structure of the samples, FT-IR technique was performed. As shown in Figure 5, all materials show absorption bands at 3400–3600 cm⁻¹ and in the 400–700 cm⁻¹ area, which are assigned to the O–H and Ti–O bonds, as the vibrational stretching modes (Fang et al., 2017; Zhu et al., 2015). Finally, like to the other articles about silver halides in the FT-IR spectra, the peaks for the Ag–Br bond in 400–4000 cm⁻¹ are not observed (Pirhashemi & Habibi-Yangjeh, 2016).
The antifungal activity of as-obtained samples was studied by the inactivation of *F. graminearum* spores, as are shown in Figure 6. It is evident that under the provided conditions, no considerable inactivation of *F. graminearum* was taken in the absence of nanocomposite, indicating the fungus possesses high stability. Interestingly, the TiO$_2$/AgBr samples exhibited enhanced activity than the bare TiO$_2$. By increasing the weight percentage of AgBr to 20%, the antifungal activity of binary samples was quickly enhanced, and then reduced with adding further AgBr. Inactivation of fungal spores after 60 min was 35.2%, 97.8%, 98.9%, and 98.7%, respectively, for the 5%, 10%, 20%, and 30% of AgBr, while the inhibition rate was 13.4% for the pure TiO$_2$. Thus, the outcomes demonstrated that the 20% TiO$_2$/AgBr nanocomposite exhibited the best antifungal performance.

Inactivation rate constants of *F. graminearum* obey the pseudo-first-order kinetics model, as displayed in Figure 7a. The rate constant over the TiO$_2$ sample is 33.6×10^{-4} min$^{-1}$. The 20% TiO$_2$/AgBr sample displayed the highest rate of constant (744×10^{-4} min$^{-1}$), which is 22.1 times higher than the TiO$_2$ sample. The order of the antifungal activity is TiO$_2$ < TiO$_2$/AgBr (5%) < TiO$_2$/AgBr (30%) < TiO$_2$/AgBr (10%) < TiO$_2$/AgBr (20%). The results demonstrate that the integration of TiO$_2$ with AgBr can greatly enhance the antifungal property.

The preparation time of samples could primarily affect their crystallinity and size of the particles. Thus, the 20% TiO$_2$/AgBr sample was fabricated by ultrasonic irradiations for 15, 30, 60, 90, and 120 min. As can be seen in Figure 7b, the antifungal activity reduces with increased preparation time, and the sample fabricated by ultrasonic irradiation for 30 min possesses the highest antifungal activity.

The influence of calcination temperature on the antifungal activity of the 20% TiO$_2$/AgBr sample was studied, and the results are shown in Figure 7c. The sample fabricated by ultrasonic irradiation for 30 min was calcined for 120 min at 200, 400, and 600°C. It can
be seen that the inactivation rate constant of the noncalcined nano-
composite is much higher than that of the calcined samples.

The TiO2/AgBr nanocomposites also has considerable inhibition
on the mycelial growth of phytopathogenic fungi (Figure 8). Analysis
of variance revealed that different concentrations of the nano-
composite \(F = 142.051, df = 3, 24, p < .0001 \) for \(S. \) sclerotiorum;
\(F = 17.727, df = 3, 32, p < .0001 \) for \(F. \) graminearum; and \(F = 17.797, df = 2, 24, p < .0001 \) for \(B. \) cinerea) significantly inhibited the mycelial growth of fungi. The in-
teraction of nanocomposite concentrations and exposure times was
also significant on the mycelial growth inhibition of \(S. \) sclerotiorum
\((F = 6.320, df = 6, 24, p = .0004) \) and \(B. \) cinerea \((F = 7.280, df = 6, 24, p = .0001) \), but it was not significant in the case of \(F. \) graminearum
\((F = 0.881, df = 9, 32, p = .5514) \).

The results of probit analysis for data obtained from the TiO2/
AgBr nanocomposites on the mycelial growth inhibition of phyto-
pathogenic fungi at different exposure times are shown in Table 1. The concentration needed for 50% mycelial growth inhibition (IP50
value) of \(F. \) graminearum was 429.94 and 143.80 ppm after 4 and
7 days, respectively. On the other hand, the IP50 values were sig-
nificantly decreased according to the increase of exposure time.
The same condition can be found for \(B. \) cinerea, while in the case of
\(S. \) sclerotiorum, the IP50 values were enhanced as the exposure time
increased. Furthermore, it can be seen that \(S. \) sclerotiorum with its
low IP50 (319.992 ppm) was more susceptible than \(B. \) cinerea after
4 days.

4 | DISCUSSION

Briefly, binary TiO2/AgBr nanocomposites were synthesized using
a facile ultrasonic irradiation route, and they were characterized by
various instruments. After adding AgBr nanoparticles to the surface
of TiO2, the antifungal activity was markedly enhanced. This boosted
antifungal activity in the binary nanocomposite was ascribed to the
synergistic interactions between TiO2 and AgBr. Silver bromide, as
an Ag-based material, possesses antifungal activity. Silver ions in
AgBr have a broad antimicrobial spectrum and can inhibit the growth
of fungi (Zhang et al., 2017). The weight percentage of silver bromide
affects the antifungal activity of binary nanocomposites. The sample
with 20 wt% of silver bromide represented the highest inhibitory on the mycelial growth of *F. graminearum*.

Furthermore, the inactivation rate decreased with increasing ultrasound irradiation time. Reducing the antifungal properties of the nanocomposite by increasing the preparation time can be ascribed to the aggregation of nanoparticles (Hoseinzadeh et al., 2016). It was also found that the antifungal activity of the nanocomposite without calcination was higher than those of the calcined samples. It is in accordance with the report of Hoseinzadeh et al. (2016) which attributed to the reduction of the nanocomposite surface area at high temperatures due to particle agglomeration and the size growth (Hoseinzadeh et al., 2016; Singh et al., 2014). The TiO$_2$/AgBr nanocomposites also have significant inhibition on the survival of fungi mycelium. The nanocomposite concentration and exposure time were also significant effects on the mycelial growth inhibition of *S. sclerotiorum* and *B. cinerea*. The results illustrated that the TiO$_2$/AgBr (20%) sample possesses notably higher antifungal abilities than the other related works. For example, Hoseinzadeh et al. (2016) prepared Fe$_3$O$_4$/ZnO/AgBr nanocomposites with a microwave-assisted approach and displayed an inactivation rate constant 395×10^{-4} min$^{-1}$ against *F. graminearum* over the Fe$_3$O$_4$/ZnO/AgBr (1:8) under visible-light irradiation. The antifungal activity of the present nanocomposite is 9.8-folds higher than the Fe$_3$O$_4$/ZnO/AgBr (1:8) sample in the inactivation of *F. graminearum*. According to the notable antifungal activity, simple synthesis, and eco-friendly nature, TiO$_2$/AgBr nanocomposites can be recommended as safe and sound alternatives to synthetic chemicals in the management of the plant-pathogenic fungi. Also, the investigation
FIGURE 8 Inhibition effect of TiO$_2$/AgBr (20%) on the mycelial growth of phytopathogenic fungi: (a) *Botrytis cinerea*, (b) *Fusarium graminearum*, and (c) *Sclerotinia sclerotiorum*. Above row: treatment with 400 ppm of the nanocomposite and below row: control

TABLE 1 Probit analysis of TiO$_2$/AgBr nanocomposite on the mycelial growth inhibition of *Fusarium graminearum*, *Botrytis cinerea*, and *Sclerotinia sclerotiorum* at different exposure times

Fungi	Time (day)	Inhibition Percentage 50% (90% Fiducial Limit) (ppm)	Chi-square (df = 2)	Slop	Significant
F. graminearum	2	901.81 (nc)	6.01	0.81	0.058a
	4	429.94 (312.91–974.75)	0.9	1.07	0.642a
	5	324.19 (254.62–570.68)	2.17	1.05	0.351a
	7	143.80 (41.034–208.88)	0.35	0.77	0.844a
B. cinerea	2	2,419.26 (nc)	0.39	0.53	0.823a
	4	522.12 (nc)	40.42	4.16	0.001b
	5	400.00 (387.61–416.43)	0.001	16.67	1.007a
S. sclerotiorum	2	229.536 (nc)	6.281	1.94	0.044b
	3	301.064 (nc)	7.029	2.555	0.030b
	4	319.992 (298.788–346.048)	2.942	5.091	0.230a

Note: nc is a noun calculated.

aBecause the significant level is greater than 0.05, no heterogeneity factor is used in the calculation of the fiducial limit.

bBecause the significant level is less than 0.05, a heterogeneity factor is used in the calculation of the fiducial limit.
of antifungal mechanism of TiO2/AgBr nanocomposites is suggested for further studies.

ACKNOWLEDGMENT
The authors express special thanks to the University of Mohaghegh Ardabili for their support in this research.

CONFLICT OF INTEREST
The authors do not have any conflict of interest to declare.

AUTHOR CONTRIBUTIONS
Aziz Habibi-Yangjeh: Conceptualization (lead); Data curation (lead); Formal analysis (equal); Funding acquisition (lead); Investigation (equal); Methodology (equal); Resources (equal); Software (equal); Validation (equal); Writing- review & editing (lead).
Mahdi Davari: Conceptualization (lead); Data curation (lead); Formal analysis (equal); Methodology (equal); Resources (equal); Software (equal); Validation (equal); Writing- original draft (equal); Writing-review & editing (lead).
Samira Enaiati: Conceptualization (equal); Formal analysis (equal); Methodology (equal); Resources (equal); Software (equal); Validation (equal); Writing- original draft (equal); Writing-review & editing (equal).
Aziz Habibi-Yangjeh: Conceptualization (equal); Formal analysis (equal); Investigation (equal); Methodology (equal); Resources (equal); Software (equal); Validation (equal); Writing- original draft (equal); Writing-review & editing (equal).
Asgar Ebadollahi: Conceptualization (equal); Data curation (equal); Formal analysis (equal); Investigation (equal); Methodology (equal); Resources (equal); Software (equal); Validation (equal); Writing- original draft (equal); Writing-review & editing (equal).

REFERENCES
Amsellem, J., Cuomo, C. A., van Kan, J. A. L., Viaud, M., Benito, E. P., Couloux, A., Coutinho, P. M., de Vries, R. P., Dyer, P. S., Filinger, S., Fournier, E., Goult, L., Hahn, M., Kohn, L., Lapalu, N., Plummer, K. M., Pradier, J.-M., Quévillon, E., Sharon, A., ... Dickman, M. (2011). Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genetics, 7, e1002230. https://doi.org/10.1371/journal.pgen.1002230
Ansari, M. A., Albetran, H. M., Alheshibri, M. H., Timoumi, A., Algarou, N. A., Akhtar, S., Slimani, Y., Almessiere, M. A., Alahmari, F. S., Baykal, A., & Low, I. M. (2020). Synthesis of electrospun TiO2 nanofibers and characterization of their antibacterial and antibiotic potential against gram-positive and gram-negative bacteria. Antibiotics, 9, 572. https://doi.org/10.3390/antibiotics9090572
Azizi-Lalabadi, M., Ehsani, A., Divband, B., & Alizadeh-Sani, M. (2019). Antimicrobial activity of Titanium dioxide and Zinc oxide nanoparticles supported in 4A zeolite and evaluation the morphological characteristic. Scientific Reports, 9, 1-10. https://doi.org/10.1038/s41598-019-54025-0
Balaure, P. C., Gudovan, D., & Gudovan, I. (2017). Nanopesticides: A new paradigm in crop protection. In A. M. Grumezescu (Ed.), New pesticides and soil sensors (1st ed., pp. 129–192). Academic Press.
Bartlett, D. W., Clough, J. M., Godwin, J. R., Hall, A. A., Hamer, M., & Parr-Dobrzanski, B. (2002). The strobilurin fungicides. Pest Management Science, 58, 649–662. https://doi.org/10.1002/ps.520
Bebber, D. P., & Gurr, S. J. (2015). Crop-destroying fungal and oomycete pathogens challenge food security. Fungal Genetics and Biology, 74, 62–64. https://doi.org/10.1016/j.fgb.2014.10.012
Beltrán-Partida, E., Valdez-Salas, B., Curiel-Álvarez, M., Castillo-Uribe, S., Escamilla, A., & Nede, N. (2017). Enhanced antifungal activity by disinfected titanium dioxide nanotubes via reduced nano-adhesion bonds. Material Science and Engineering: C, 76, 59–65. https://doi.org/10.1016/j.msec.2017.02.153
Darbari, S., Abdí, Y., Haghhi, F., Mohajerzadeh, S., & Haghhi, N. (2011). Investigating the antifungal activity of TiO2 nanoparticles deposited on branched carbon nanotube arrays. Journal of Physics D: Applied Physics, 44, 245401. https://doi.org/10.1088/0022-3727/44/24/245401
Davari, M., Wei, S. H., Babai-Ahari, A., Arzanlou, M., & Waalwijk, C. (2013). Geographic differences in trichothecene chemotypes of Fusarium graminearum in the Northwest and North of Iran. World Mycotoxin Journal, 6, 137–150. https://doi.org/10.3920/WMJ2012.1493
Fang, Y., Huang, Y., Ni, Z. J., Wang, Z. L., Kang, S., Wang, Y., & Li, X. (2017). Co-modified commercial P25 TiO2 by Fe doping and g-C3N4 coating as high performance photocatalyst under visible light irradiation. International Journal of Electrochemical Science, 12, 5951–5963. https://doi.org/10.20964/2017.07.77
Feizpour, S., Habibi-Yangjeh, A., Yubuta, K., & Vadivel, S. (2019). Fabrication of TiO2/CoMoO4/PANI nanocomposites with enhanced photocatalytic performances for removal of organic and inorganic pollutants under visible light. Materials Chemistry and Physics, 224, 10–21. https://doi.org/10.1016/j.matchemphys.2018.11.076
Hayles, J., Johnson, L., Worthley, C., & Losic, D. (2017). Nanopesticides: A review of current research and perspectives. In A. M. Grumezescu (Ed.), New pesticides and soil sensors (1st ed., pp. 193–225). Academic Press.
Hoseinzadeh, A., Habibi-Yangjeh, A., & Davari, M. (2016). Antifungal activity of magnetically separable Fe2O3/ZnO/AgBr nanocomposites prepared by a facile microwave-assisted method. Progress in Natural Science: Materials International, 26, 334–340. https://doi.org/10.1016/j.pnsci.2016.06.006
Huang, Q., Jiao, Z., Li, M., Qiu, D., Liu, K., & Shi, H. (2013). Preparation, activity of magnetically separable Fe3O4/ZnO/AgBr nanocomposites and characterization of their antibacterial and antibiofilm potential. Materials Chemistry and Physics, 26, 128–136. https://doi.org/10.1016/j.matchemphys.2013.01.011
Joo, G. J. (2005). Production of an antifungal substance for biological control of Phytophthora capsici causing phytophthora blight in red-peppers by Streptomyces halstedii. Biotechnology Letter, 27, 201-205. https://doi.org/10.1007/s10529-004-7879-0
Kaur, P., Thakur, R., & Choudhary, A. (2012). An in vitro study of the antifungal activity of silver/chitosan nanoformulations against important fungal pathogens. Mycotoxin Journal, 6, 128–130. https://doi.org/10.3920/MJ2012.019

ETHICAL APPROVAL
This study does not involve any human or animal testing.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.

ORCID
Aziz Habibi-Yangjeh https://orcid.org/0000-0002-4543-2793
Mahdi Davari https://orcid.org/0000-0002-1476-1279
Asgar Ebadollahi https://orcid.org/0000-0003-2726-1608

HABIBI-YANGJEH ET AL.
seed borne pathogens. *International Journal of Engineering Science*, 1, 83–86.

Khan, M. R., & Rizvi, T. F. (2014). Nanotechnology: Scope and application in plant disease management. *Plant Pathology Journal*, 13, 214–231. https://doi.org/10.3923/ppj.2014.214.231

Kim, E. J., Choi, M., Park, H. Y., Hwang, J. Y., Kim, H. E., Hong, S. W., Lee, J., Yong, K., & Kim, W. (2019). Torn-like TiO2 nanorays with broad spectrum antimicrobial activity through physical puncture and photocatalytic action. *Scientific Reports*, 9, 13697. https://doi.org/10.1038/s41598-019-50116-0

Le, V. T., & Bach, L. G. (2019). Synthesis and antifungal activity of chitosan-silver nanocomposite synergize fungicide against *Phytophthora capsici*. *Journal of Macromolecular Science, Part A*, 56, 522–528. https://doi.org/10.1080/10601325.2019.1586439

Liu, B., Xue, Y., Zhang, J., Han, B., Zhang, J., Suo, X., Mu, L., & Shi, H. (2017). Visible-light-driven TiO$_2$/AgBr$_2$PO$_4$ heterostructures with enhanced antifungal activity against agricultural pathogenic fungi *Fusarium graminearum* and mechanism insight. *Environmental Science: Nano*, 4, 255–264. https://doi.org/10.1039/C6EN00415F

Pirhashemi, M., & Habibi-Yangjeh, A. (2016). Photosensitization of ZnO by AgBr and Ag$_2$CO$_3$: Nanocomposites with tandem n-n heterojunctions and highly enhanced visible-light photocatalytic activity. *Journal of Colloid and Interface Science*, 474, 103–113. https://doi.org/10.1016/j.jcis.2016.04.022

Servin, A., Elmer, W., Mukherjee, A., De la Torre-Roche, R., Hamdi, H., White, J. C., Bindraban, P., & Dimkpa, C. (2015). A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. *Journal of Nanoparticle Research*, 17, 92. https://doi.org/10.1007/s11051-015-2907-7

Sharma, R. R., Singh, D., & Singh, R. (2009). Biological control of post-harvest diseases of fruits and vegetables by microbial antagonists: A review. *Biological Control*, 50, 205–221. https://doi.org/10.1016/j.biocontrol.2009.05.001

Sichel, C., De Cara, M., Tello, J., Blanco, J., & Fernández-Ibáñez, P. (2007). Solar photocatalytic disinfection of agricultural pathogenic fungi: *Fusarium* species. *Applied Catalysis B: Environmental*, 74, 152–160. https://doi.org/10.1016/j.apcata.2007.02.005

Singh, A., Dutta, D. P., Ballal, A., Tyagi, A. K., & Fulekar, M. H. (2014). Visible light driven photocatalysis and antibacterial activity of AgVO3 and Ag/AgVO3 nanowires. *Materials Research Bulletin*, 51, 447–454. https://doi.org/10.1016/j.materresbull.2014.01.001

Singh, S., Singh, B. K., Yadav, S. M., & Gupta, A. K. (2015). Applications of nanotechnology in agriculture and their role in disease management. *Research Journal of Nanoscience and Nanotechnology*, 5, 1–5. https://doi.org/10.3923/rjnn.2015.1.5

Sinha, K., Ghosh, J., & Sil, P. C. (2017). New pesticides: A cutting-edge view of contributions from nanotechnology for the development of sustainable agricultural pest control. In A. M. Grumezescu (Ed.), *New pesticides and soil sensors* (1st ed., pp. 47–79). Academic Press.

Worrall, E., Hamid, A., Mody, K., Mitter, N., & Pappu, H. (2018). Nanotechnology for Plant disease management. *Agronomy*, 8, 285. https://doi.org/10.3390/agronomy8120285

Zhang, Y., Chen, Y. Y., Huang, L., Chai, Z. G., Shen, L. J., & Xiao, Y. H. (2017). The antifungal effects and mechanical properties of silver bromide/cationic polymer nano-composite-modified poly-methyl methacrylate-based dental resin. *Scientific Reports*, 7, 1547–1552. https://doi.org/10.1038/s41598-017-01686-4

Zhu, L., Huang, D., Ma, J., Wu, D., Yang, M., & Komarneni, S. (2015). Fabrication of AgBr/Ag$_2$CrO$_4$ composites for enhanced visible-light photocatalytic activity. *Ceramics International*, 41, 12509–12513. https://doi.org/10.1016/j.ceramint.2015.05.118

How to cite this article: Habibi-Yangjeh A, Davari M, Manafi-Yeldagermani R, et al. Antifungal activity of TiO$_2$/AgBr nanocomposites on some phytopathogenic fungi. *Food Sci Nutr*. 2021;9:3815–3823. https://doi.org/10.1002/fsn3.2357