Modification of Anti-acne Bawang Dayak (*Eleutherine bulbosa* [Mill.])Urb.) Cream to *Propionibacterium acnes*

Abstract

Bawang dayak is one of the traditional medicines in Central Kalimantan, used to treat acne vulgaris. Previous research reported that a cream made with bawang dayak extract's active ingredient could inhibit *Propionibacterium acnes*’ growth. However, bawang dayak has a pungent odor that causes discomfort, where the cream separates after 3 days of storage, which decreases its potency. This study aims to improve the quality of the anti-acne cream formulation of bawang dayak extract from previous studies with the addition of cinnamon, honey, and peppermint. The modified formula of bawang dayak extract cream was evaluated and tested for its antibacterial activity *in vitro*. The results showed an increase in the organoleptic test, especially the smell, which gave a more comfortable fragrance than the previous formula. The pH measurement of the cream shows the results suitable for topical applications. However, the homogeneity observations show that all the formulas are homogeneous, seen from uniform colors but contain coarse grains. The antibacterial activity test of all cream formulations against *P. acnes* showed inhibition zone diameter between 14.85 and 17.10 mm, all of which were moderate and larger than previous studies. It can be concluded that the modification of the cream formula with the active ingredient of bawang dayak extract showed an increase in the inhibition zone against *P. acnes* and improved organoleptic properties.

Key words: Acne, Bawang dayak, cream, *Propionibacterium acnes*

INTRODUCTION

Acne vulgaris or acne is a skin condition that causes non-inflammatory symptoms such as blackheads or inflammatory lesions such as papules, pustules, and nodules.[1] There are many acne causes, including bacteria such as *Propionibacterium acnes*, fats, skin oils, and hormone levels changes. Acne due to *P. acnes* infection generally occurs in the skin area of the face, chest, and back. *P. acnes* is a Gram-positive bacteria with anaerobic properties and is found in hair follicles and skin pores.[2] In addition, *P. acnes* is usually found in prepubertal young children, whose colonization increases from adolescence to twenties, when sebaceous gland function begins to mature.[3,4]

Bawang dayak (*Eleutherine bulbosa* [Mill.] Urb) is one of the traditional medicinal plants in Central Kalimantan, which is used to treat various diseases, including acne. Based on previous research, the cream formulation with the active ingredient of bawang dayak’s ethanol extract can inhibit *P. acnes*’ growth. However, bawang dayak has a pungent odor that causes discomfort to its users. Furthermore, the formulation of the tested cream was reported separately.
after 3 days of storage, which may reduce *P. acnes*’ inhibitory potential. This study aims to improve the quality of the anti-acne cream formulation of bawang dayak extract from previous studies. In this study, the cream formulation from previous studies was modified with the addition of honey, cinnamon, and peppermint to make the cream formulation more stable and improve its organoleptic properties, mainly to disguise the smell of bawang dayak. Besides, the antibacterial activity of honey, cinnamon, and peppermint is also known to support the cream formulation because it has antibacterial activity.

METHODS

Plants materials and sample collection

The plant part used is the farmer collected bulbs of bawang dayak in Sei Gohong, Bukit Batu, Palangka Raya, Central Kalimantan. Specimens were prepared and sent for determination to the Indonesian Institute of Sciences Research Center for Biology.

Preparation of bulbs extract

The extract was prepared by cutting the bulbs and drying in the sun no later than 10 in the morning. A grinding machine mashed dry bulbs until a coarse powder is obtained. The powder was extracted by percolator with 96% ethanol, and once the process has finished, all extracts were concentrated in a rotary evaporator.

Formulation preparation

The formulation components used are listed in Table 1. These components consist of the oil phase (stearic acid, adeps lanae, and paraffin liquid) and the water phase (triethanolamine, nipagin, peppermint, and distilled water). Each phase was heated up to 55°C until melted. Bawang dayak ethanol extract is then dissolved in distilled water, added with cinnamon powder dissolved in warm water, and then filtered. The mixture was put into the water phase and stirred until it was homogeneous in the mortar, then gradually added to the oil phase and stirred until a cream base was formed. Finally, honey was added and stirred a little at a time until homogeneous.

Evaluation of cream

Organoleptic properties

The cream was observed for color, odor, and appearance.

Homogeneity observed

The cream was observed on the glass object, the test was done by physical touch with hands; preparations should be had a homogenous composition.

pH observation

The pH of cream was being calculated by pH meter.

Spreadability test

As much as 0.5 g of cream is put into a circle 1 cm in diameter that has been marked on a glass plate, then a second glass is placed on it (in the middle between two horizontal glass plates) and left to stand for 5 min. A standard weight of 50 g was applied to the top plate for 1 min, and the diameter of the spread was measured. The same is repeated for 100 and 150 g of cream. The size of the spread is determined when the cream spread has a fixed diameter. Each formulation was tested three times.

Adhesion test

The adhesion test is carried out by applying 0.5 g of cream on one glass object with another glass object. The cream is applied between two glass objects and then pressed with a load of 1 kg for 1 min on the test instrument. After 1 min, the load is removed, and the time it takes for the second glass object to come off is recorded.

Evaluation of antibacterial activity by zone of inhibition by well-diffusion method

Dayak cream onion was evaluated for its antibacterial activity against *P. acnes* (ATCC 11827) with different

| Table 1: Various cream formula of ethanolic extract bawang dayak |
|------------------|------------------|------------------|------------------|------------------|
| | F1 (5%) | F2 (10%) | F3 (15%) | F4 (20%) |
| Extract ethanol of bawang dayak | 1250 | 2500 | 3750 | 5000 |
| Cinnamon powder | 2500 | 2500 | 2500 | 2500 |
| Honey | 2000 | 2000 | 2000 | 2000 |
| Oil phase | | | | |
| Stearic acid | 5000 | 5000 | 5000 | 5000 |
| Adeps lanae | 750 | 750 | 750 | 750 |
| Paraffin liquid | 6250 | 6250 | 6250 | 6250 |
| Aqueous phase | | | | |
| Triethanolamine | 375 | 375 | 375 | 375 |
| Nipagin | 25 | 25 | 25 | 25 |
| Peppermint | 20 | 20 | 20 | 20 |
| Aquadest ad | 25,000 | 25,000 | 25,000 | 25,000 |
combinations of Dayak concentrations with the addition of cinnamon, honey, and peppermint.

Bacterial isolates were subcultured into nutrients. Bacterial cultures were standardized using the McFarland 0.5 standard after 24 h. The bacterial bioassay in this study was Mueller-Hinton agar (MHA). Sterilization is carried out using an autoclave. Plates containing MHA were prepared and bacterial strains inoculated with a cotton swab followed by clindamycin with concentrations ranging from 0.5%–4%, and then with a creamy formula applied to the empty disc. All plates were then incubated at 37°C for 24 h. The diameter of the drag zone is then calculated and recorded.

RESULTS AND DISCUSSION

Evaluation test of cream formula

Organoleptic appearance
The organoleptic test results showed a brown cream color, where the addition of cinnamon and peppermint caused the smell of bawang dayak to be less pungent [Figure 1].

Homogeneity observation
Observation of the cream showed that all formulations were homogeneous, indicated by the uniform color. However, the cream still contains coarse grain due to the addition of cinnamon powder. The formulation can be modified again, one of which is using cinnamon extract to replace the powder, so that the cream does not appear to have coarse grains.

pH observation
The pH observation showed that all cream formula was 6. The pH that suitable for topical applications is the same as the pH of the skin. Skin pH is naturally acidic, ranging between 4 and 6.

Spreadability and adhesion test
The spreadability test of all cream formulations showed that all formulations were easy to apply with an average distribution of >5 cm. Adhesion tests from F1 to F4 are 3”, 5”, 5”, and 8”, respectively. The more bawang dayak extract shows stronger adhesion properties.

Antibacterial activity
Shahbazi (2017) classified antibacterial activity into three levels based on the differences in the diameter of the inhibition zone, consisting of weak (<12 mm), moderate (12–20 mm), and strong (>20 mm) activity. The inhibition test results showed that F1 had an inhibition zone diameter of 16.15 ± 0.45 mm, F2 = 14.85 ± 1.75 mm, F3 = 15.05 ± 1.45 mm, and F4 = 17.10 ± 0.8 mm [Figure 2 and Table 2]. The cream test results were then compared with the control, where the inhibition zone diameter of the modified cream formulation was still not as big as clindamycin. However, this cream formulation is still feasible to be developed because it has moderate inhibition zone activity [Figure 2 and Table 3].

Previous research reported that the preliminary phytochemical screening of the ethanol extract of bawang dayak contained metabolites in the form of flavonoids, saponins, alkaloids, and tannins. Flavonoids are potent antibacterial compounds against various types of bacteria. Their antibacterial activity can be caused by three mechanisms: Inhibition of energy metabolism, suppressing nucleic acids, and damage to the cytoplasmic membrane.

Other antibacterial mechanisms of bawang dayak are also being tested: Eleutherol A, a flavonoid from bawang dayak, which is known to inhibit cell wall synthesis from bacteria. Alkaloids have antibacterial ability generally work through efflux pump inhibition activity. Most of the alkaloids are found to be bactericidal rather than bacteriostatic. One of the saponin antibacterial mechanisms is a decrease in the efficiency of glucose utilization in bacteria, affecting

Table 2: Inhibition zone diameter of the cream formulation
Cream formulation

F1
F2
F3
F4

SD: Standard deviation

Figure 1: Various modification cream formulas

Figure 2: Zone of inhibition modification cream formulas (a); Zone of inhibition clindamycin (b)
Table 3: Inhibition zone diameter of clindamycin

Concentration of clindamycin (%)	Inhibition zone diameter (mm)±SD	Activity classification
0.5	40.20±1.9	Strong activity
1	43.40±0.8	Strong activity
2	45.10±0.7	Strong activity
4	47.60±0.6	Strong activity

SD: Standard deviation

their proliferation or growth and ultimately causing an antibacterial effect.[31] Furthermore, several studies have shown that tannins have antioxidant properties, both Gram-negative and Gram-positive.[32,33]

Apart from that, cinnamon also has vigorous antioxidant activity. Several studies have reported that cinnamon shows potential activity against acne-causing bacteria. This therapeutic effect is mainly due to the content of cinnamaldehyde. Cinnamaldehyde also has anti-inflammatory activity by blocking PGE2 production, suppressing synthesis, spreading inflammatory mediators, and reducing ROS release from immune cells.[7,34] On the other hand, honey also plays a vital role in this cream formulation with its antimicrobial, anti-inflammatory, and immunomodulatory potential.[30] The advantages of using honey tend to contribute to its antibacterial effects through high osmolarity, increased acidity (low pH), and the content of hydrogen peroxide ($H_{2}O_{2}$), which is toxic to many microbes.[36,37]

CONCLUSION

Modification of bawang dayak’s anti-acne cream formulation combined with cinnamon, honey, and peppermint made the inhibition zone diameter for P. $acnes$ higher than without the combination of the three. However, the homogeneity test evaluation showed that the cream contained coarse grain due to cinnamon powder. Thus, this research can be further developed to increase the cream’s homogeneity by replacing the cinnamon powder with its extract.

Acknowledgment

The authors would like to thank Muhammadiyah University of Palangkaraya for funding this article.

Financial support and sponsorship

This study was financially supported by Muhammadiyah University of Palangkaraya.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

1. Tan AU, Schlosser BJ, Paller AS. A review of diagnosis and treatment of acne in adults female patients. Int J Women’s Dermatol 2018;4:56-71.
2. Weber N, Biehler K, Schwabe K, Haarhaus B, Quirin KW, Frank U, et al. Hop extract acts as an antioxidant with antimicrobial effects against Propionibacterium $acnes$ and Staphylococcus aureus. Molecules 2019;24:1-13.
3. Eshtiaghi MN, Kuldkole J. Formulation of anti-acne cream containing natural antimicrobials. Int Res Pharm 2013;4:20-5.
4. Feng Liu P, Dung Hsieh Y, Ching Lin Y, Aimee Two, Wen Shu C, Ming Huang C. Propionibacterium $acnes$ in the pathogenesis and immunotherapy of acne vulgaris. Curr Drug Metab 2015;16:254-4.
5. Ardhany SD, Novaryatiin S. Antibacterial activity of ethanolic extract bawang dayak (Eleuthere bulbosa (Mill.). Urb) in cream against Propionibacterium $acnes$. Int J Adv Pharm 2019;11:1-4.
6. Novaryatiin S, Ardhany SD. Potential anti-acne: Bawang dayak (Eleutherine bulbosa (Mill.) urb.) from central kalimantan-Indonesia. Pharmacogn J 2020;12:52-7.
7. Julianti E, Rajah KK, Fidrianny I. Antibacterial activity of ethanolic extract of cinnamon bark, honey, and their combination effects against acne-causing Bacteria. Sci Pharm 2017;85:1-8.
8. Reddy DN, Al-Rajab AJ, Sharma M, Moses MM, Reddy GR, Albratty M. Chemical constituents, in vitro antibacterial and antifungal activity of Mentha Piperita L. (peppermint) essential oils. J King Saud Univ Sci 2019;31:328-33.
9. Nazliniwaty N, Arianto A, Nasution KR. Formulation and anti-aging effect of cream containing breadfruit (Artocarpus altilis (Parkinson) Forsberg) leaf extract. Int J Pharm Tech Res 2016;8:524-30.
10. Mendhekar SY, Danqat SD, Phalke PK, Jadhav SL, Gaikwad DD. Development and evaluation of cream contain green tea extract, aloe gel and vitamin E: As skin toner. Indo Am J Pharm Sci 2017;49:4265-71.
11. Awad EI-Cied AA, Abdelkareem AM, Hamednelien EI. Investigation of cream and ointment on antimicrobial activity of Mangifera indica extract. J Adv Pharm Technol Res 2015;6:53-7.
12. Kawarkhe PR, Deshmante SV, Biyani KR. Formulation and evaluation of antioxidant face cream containing raspberry fruit and grape seeds extract. Cosmeceuticals 2017;4:166-70.
13. Chen MX, Alexander KS, Baki G. Formulation and evaluation of antibacterial creams and gels containing metal ions for topical application. J Pharm (Cairo) 2016;2016:5754349:1-10.
14. Maru AD, Lahoti SR. Formulation and evaluation of moisturizing cream containing sunflower wax. Int J Pharm Sci 2018;10:54-9.
15. Safitori FW, Syahreza A, Farah HS, Satrio BM, Sulistyaningrum IH. Antioxidant activities and antioxidant cream formulation of corn silk (Zea Mays L) extract. Sains Medika 2016;7:64-9.
16. Wuryandari T, Sugihartini N, Kintoko K. Emulgel formulation of cream and ointment on antimicrobial activity of Aegle marmelos (Bael). Int J App Pharm 2019;11:1-4.
17. Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro antimicrobial activity screening of pathogenic bacteria. J Pharmacogn Phytochem 2020;24:1-13.
18. Weber N, Biehler K, Schwabe K, Haarhaus B, Quirin KW, Frank U, et al. Hop extract acts as an antioxidant with antimicrobial effects against Propionibacterium $acnes$ and Staphylococcus aureus. Molecules 2019;24:1-13.
19. Alemu F, Tilahun A, Elias E. Antibacterial activity of ethanolic extracts of $Aegle marmelos$ (Bael). Int J Pharm Pharm Sci 2014;6:575-9.
20. Menhede SR, Jadhav SL, Gaikwad DD. Development and evaluation of cream contain green tea extract, aloe gel and vitamin E: As skin toner. Indo Am J Pharm Sci 2017;49:4265-71.
21. Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: A review. J Pharm Anal 2016;6:71-9.
22. Mhatre J, Nagaral S, Kulkarni S. Formulation and evaluation of antibacterial activity of a herbal ointment prepared from crude extracts of Aegle marmelos (Bael). Int J Pharm Pharm Sci 2014;6:575-9.
23. Alemu F, Tilahun A, Elias E. In vitro antimicrobial activity screening of punica granatum extracts against huma pathogens. Mol Med 2017;1:1-5.
24. Bhalodia NR, Shukla VJ. Antibacterial and antifungal activities from leaf extracts of Cassia fistula L.: An ethnomedicinal plant. J Adv Pharm Technol Res 2011;2:104-9.
25. Saif MM, Al-Fakah AA, Hassan MA. Antibacterial activity of selected plant (Aqueous and melanic) extracts against some pathogenic bacteria. J Pharmacogn Phytochem 2017;6:1929-35.
22. Mali AS, P Karekar, AV Yadav. Formulation and evaluation of multipurpose herbal cream. Int J Sci Res 2015;4:1495-8.
23. Prakash C, Bhargava P, Tiwari S, Majumdar B, Bhargava RK. Skin surface PH in acne vulgaris: Insights from an observational study and review of the literature. J Clin Aesthet Dermatol 2017;10:33-9.
24. Shahbaz Y. Antibacterial and antioxidant properties of methanolic extracts of apple (Malus pumila), Grape (Vitis vinifera), pomegranate (Punica granatum L.) and common fig (Ficus carica L.) fruits. Pharm Sci 2017;23:308-15.
25. Novaryatiin S, Ardhany SD. The antibacterial activity of bawang dayak (Eleutherine bulbosa (Mill.) Urb) from central Kalimantan against acne-causing bacteria. Int J App Pharm 2019;11:22-5.
26. Babii C, Mihalache G, Bahrin LG, Neagu AN, Gostin I, Mihai CT, et al. A novel synthetic flavonoid with potent antibacterial properties: In vitro activity and proposed mode of action. PLoS One 2018;13:e0194898.
27. Gorniak I, Bartoszewski R, Krolczewski J. Comprehensive review of antimicrobial activities of plant flavonoids. Phytochem Rev 2019;18:241-72.
28. Pratama MR, Aziz IR. Molecular Docking of Bawang Dayak (Eleutherine bulbosa) Secondary Metabolites as Bacterial Cell Wall Synthesis Inhibitor. Proceedings of the 1st International Conference on Science and Technology; 2019 May 2-3; Makassar, Indonesia. Ghent: EAI; 2019.
29. Thawabteh A, Juma S, Bader M, Karaman D, Scran L, Bufo SA, et al. The biological activity of natural alkaloids against herbivores, cancerous cells and pathogens. Toxins (Basel) 2019;11(11), 656:1-28.
30. Khameneh B, Iranshahy M, Soheili V, Fazly Bazzaz BS. Review on plant antimicrobials: A mechanistic viewpoint. Antimicrob Resist Infect Control 2019;8:118.
31. Zhi Hui Y, Xue Zhi D, Li Qiu X, Xiu Qing X, Zhen Ping CA, Sha X, et al. Antimicrobial activity and mechanism of total saponins from Allium Chinense. Food Sci 2013;34:75-80.
32. Kurhekar JV. Tannins-antimicrobial chemical components. Int J Technol Sci 2016;9:5-9.
33. Maisetta G, Batoni G, Caboni P, Esin S, Rinaldi AC, Zucca P. Tannin profile, antioxidant properties, and antimicrobial activity of extracts from two Mediterranean species of parasitic plant Cytinus. BMC Complement Altern Med 2019;19:82.
34. Ghovvati M, Afshari GK, Nasrollahi SA, Firooz A, Samadi A, Karimi M, et al. Efficacy of topical cinnamon gel for the treatment of facial acne vulgaris: A preliminary study. Biomed Res Ther 2019;6:2958-65.
35. Semprini A, Braithwaite I, Corin A, Sheahan D, Tofield C, Helm C, et al. Randomised controlled trial of topical kanuka honey for the treatment of acne. BMJ Open 2016;6:e009448.
36. Mandal MD, Mandal S. Honey: Its medicinal property and antibacterial activity. Asian Pac J Trop Biomed 2011;1:154-60.
37. McLoone P, Warnock M, Fyfe L. Honey: A realistic antimicrobial for disorders of the skin. J Microbiol Immunol Infect 2016;49:161-7.