Euterpe oleracea fruit (Açai)-enriched diet suppresses the development of experimental cerebral malaria induced by Plasmodium berghei (ANKA) infection

Karen Renata Herculano Matos Oliveira, Marjorie Lujan Marques Torres, Nayara Kauffmann, Brenda Jaqueline de Azevedo Ataíde, Nívia de Souza Franco Mendes, Larissa Medeiros dos Anjos, Rosivaldo dos Santos Borges, Carlomagno Pacheco Bahia, Luana Ketlen Reis Leão, Adelaide da Conceição Fonseca Passos, Anderson Manoel Herculano and Evander de Jesus Oliveira Batista

Abstract

Background: Cerebral malaria is one of the most severe complications attributed to protozoal infection by Plasmodium falciparum, gaining prominence in children mortality rates in endemic areas. This condition has a complex pathogenesis associated with behavioral, cognitive and motor sequelae in humans and current antimalarial therapies have shown little effect in those aspects. Natural products with antioxidant and anti-inflammatory properties have become a valuable alternative therapeutic option in the treatment of distinct conditions. In this context, this study investigated the neuroprotective effect of Euterpe oleracea (açai) enriched diet during the development of experimental cerebral malaria induced by the inoculation of Swiss albino mice with Plasmodium berghei ANKA strain.

Methods: After Plasmodium infection, animals were maintained on a feeding with Euterpe oleracea enriched ration and parameters such as survival curve, parasitemia and body weight were routinely monitored. The present study has also evaluated the effect of açai-enriched diet on the blood-brain barrier leakage, histological alterations and neurocognitive impairments in mice developing cerebral malaria.

Results: Our results demonstrate that between 7th–19th day post infection the survival rate of the group treated with açai enriched ration was higher when compared with Plasmodium-infected mice in which 100% of mice died until the 11th days post-infection, demonstrating that açai diet has a protective effect on the survival of infected treated animals. The same was observed in the brain vascular extravasation, where Evans blue dye assays showed significantly less dye extravasation in the brains of Plasmodium-infected mice treated with açai enriched ration, demonstrating more preserved blood-brain barrier integrity. Açai-enriched diet also attenuate the histopathological alterations elicited by Plasmodium berghei infection. We also showed a decrease of the neurological impairments arising from the exposure of cerebral parenchyma in the group treated with açai diet, ameliorating motor and neuropsychiatric changes, analyzed through the SHIRPA protocol.

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
Conclusion: With these results, we conclude that the treatment with açai enriched ration decreased the mortality of infected animals, as well as protected the blood-brain barrier and the neurocognitive deficits in Plasmodium-infected animals.

Keywords: Euterpe oleracea, Açai, natural product, Cerebral malaria, Plasmodium, Neurobehavioral impairment, Blood-brain barrier

Background

Central nervous system (CNS) is often a common target to a number of tropical infectious diseases, including malaria, which is caused by infection with Plasmodium parasite and represents one of the world-leading causes of disease-related mortality in tropical regions [1, 2]. Clinical signs can vary from asymptomatic parasitaemia to a severe and fatal condition [3, 4]. Cerebral malaria (CM) is the most severe complication resulting from Plasmodium falciparum infection with a mortality rate of more than 25% of the cases [5, 6]. When untreated, patients present long-term neurological deficits which include cognitive and motor dysfunctions.

CM surviving children exhibit extensive neurocognitive impairments after recovering from the acute phase of the disease. Tasks such as attention, working memory and learning are clearly compromised in children [7, 8]. Movement disorders such as ataxia, tremors and dystonia were also detected [9, 10]. The mechanisms involved in these impairments are still unknown, although pathological events associated to CM strongly suggest the involvement of intense cerebral hemorrhaging and blood-brain barrier (BBB) disruption in those events [11, 12].

Murine model of CM with Plasmodium berghei ANKA infection displays several neurological features of human CM (HMC) and therefore may be a valuable tool to identify potential new candidates for adjunctive therapies in the human disease. Experimental cerebral malaria (ECM) can be assessed by using rodent models with susceptible mouse strains as C57BL/6 and Swiss albino mice infected with Plasmodium berghei ANKA parasites [13, 14]. Intense pro-inflammatory response, vascular obstruction and the breakdown of blood-brain barrier are the main and key pathological features observed both in HCM and ECM.

The search for new therapeutic approaches represents a new challenge since the increased number of patients resistant to now available drugs. In this context, the study and use of natural products that can attenuate or suppress neurological deficits associated with the disease has been growing in this scenario.

Euterpe oleracea (EO) is a large palm tree of the Arecaceae family found in native forests of Brazilian Amazon. Fruit pulp, known popularly as açai or juçara, is widely consumed by the Amazonian population and is also used to prepare energy drinks and dietary supplements with increasing nutraceutical potential [15, 16]. Bromatological analyses have shown that açai present high nutritional values with elevated concentrations of antioxidants such as tocopherol and polyphenolic compounds as anthocyanins and flavonoids [17, 18]. Medicinal and pharmacological properties of the fruit have already been reported in several experimental studies showing remarkable antioxidant, anti-inflammatory and antimicrobial effects [16, 19–21].

Recently, açai methanolic extract demonstrated an antimicrobial effect against clinical strain of Staphylococcus aureus, showing synergistic effect with classical antimicrobial drugs [22]. Also, a study demonstrated the anti-leishmanial activity of EO treatment without any cytotoxic effect in the murine host cell [23]. In CNS, the treatment with açai evokes a remarkable anticonvulsivant effect, protecting against seizures and electrocortical alterations [20].

Although a number of studies described the protective effect of açai, no systematic research points out the potential protective effects of the fruit in neurological disorders induced by infectious diseases. In this context, the aim of the present study was to investigate whether an açai-enriched diet is able to prevent the outcome of CM and the neurobehavioral alterations induced by the disease.

Methods

Animals

Healthy Swiss albino mice aged 5–6 weeks and weighing 25–30g were obtained from local Institutional (Federal University of Para) Animal Care Facilities. Male and female mice were used in the study once both develop a similar neurological response pattern to malaria infection. Animals were housed in groups of three to five per cage in pathogen-free conditions and controlled room temperature (23 ± 3°C). Filtered water and standard food was offered ad libitum until the beginning with Euterpe oleracea diet. The study was approved by the Animal Ethics Committee Federal University of Para under the protocol number 6211241117 and was carried out in accordance with the guidelines for the ethical use of laboratory animals (Animal Ethics Committee Federal University of Para). The work has also been reported in
accordance with the ARRIVE guidelines (Animals in Research: Reporting In Vivo Experiments). All the plant collections were conducted in accordance to standard protocols and were properly authorized. All efforts were made to minimize potential suffering and to reduce the number of animals used in all experiments.

**Preparation of *Euterpe oleracea*-enriched ration**

Fruits from *Euterpe oleracea* were obtained from a local farm (Santa Fé) at Santa Izabel County (Para state, Brazil) and plant species were properly identified. Fresh açai pulp was processed from the raw fruits present in the clusters of palm trees. The protocol used to prepare açai pellets was adapted from Brasil et al., [15]. Briefly, açai-enriched ration (AER) was produced by mixing standard commercial feed (Nuvital) with the açai pulp in the proportion of 10:1 (g/g) to produce the pellets. These pellets were slightly heated to remove humidity, weighed and stored in hermetically sealed plastic bags and kept under refrigeration for periods not exceeding 3–5 days.

**Infection with *Plasmodium berghei* ANKA strain and experimental groups**

Mice were infected with *Plasmodium berghei* ANKA (PbA) strain using the protocol previously described by Oliveira et al. [24]. Briefly, the animals received an intraperitoneal (i.p) injection of $10^6$ parasitized erythrocytes, suspended in 0.1 mL of phosphate-buffered saline (PBS). Control animals received the same volume of PBS. Body weight variation and survival rates curve were evaluated throughout the experimental period. The evolution of the infection was also monitored daily by determining the parasitemia by Giemsa-stained slides obtained from mice tail blood as described by Ataide et al. [25]. Animals positive to CM show symptoms as poor reflexes, roll-over, ataxia, limb paralysis, seizures and coma between 6- and 10-days post infection. All observations were conducted using a double-blind assessment.

To evaluate the effect of açai-enriched diet in the clinical progression of CM, animals were first fed with either standard commercial ration ($n=17$) or AER ($n=17$) 10 days prior to PbA infection until the last day of the experiment. At day 11, mice from both control (standard ration) and AER group were reassigned to either non-infected (control) or PbA-infected groups. All the experiments were repeated at least three times (Fig. 1).

**Brain vascular permeability assay**

To evaluate brain vascular leakage Evans blue dye extravasation was measured as previously described by Kim et al. [26]. On 7th day post-infection, mice from all experimental groups were anesthetized with ketamine/xylazine solution (1:1 mg/kg; i.p) and transcardially injected with 2% Evans Blue solution (EB) for approximately 5 min. Animals were then perfused with saline solution for 30 min through the left ventricle and the

---

**Fig. 1** A schematic representation of the experimental timeline. Swiss albino mice were fed with açai enriched ration for 11 days before the inoculation with *Plasmodium berghei* ANKA strain (PbA) and continued with the diet until the last day of experiment. After the inoculation with $10^6$ parasitized erythrocytes, the animals from distinct groups were submitted to the biochemical and neurobehavioral analysis.
whole brains removed. Dye was extracted from the brain with dimethyl formamide for 48 h at 37 °C (in the dark). Formamide concentration was quantified spectrophotometrically at 620 nm, and results normalized to the brain dry weight.

**Brain histological analysis**

For histological evaluation, mice brains of each experimental group were carefully dissected, fixed in 10% formalin and embedded in paraffin wax. Serial coronal sections into 5 μm were performed using microtome and stained with hematoxylin-eosin (HE) according to standard procedures. The brain cortex was examined in the cortical-medullary area under a light microscope and photographed at 10x and 40x objective lens.

**Brain histological analysis**

For histological evaluation, mice brains of each experimental group were carefully dissected, fixed in 10% formalin and embedded in paraffin wax. Serial coronal sections into 5 μm were performed using microtome and stained with hematoxylin-eosin (HE) according to standard procedures. The brain cortex was examined in the cortical-medullary area under a light microscope and photographed at 10x and 40x objective lens.

**Brain histological analysis**

For histological evaluation, mice brains of each experimental group were carefully dissected, fixed in 10% formalin and embedded in paraffin wax. Serial coronal sections into 5 μm were performed using microtome and stained with hematoxylin-eosin (HE) according to standard procedures. The brain cortex was examined in the cortical-medullary area under a light microscope and photographed at 10x and 40x objective lens.

**Brain histological analysis**

For histological evaluation, mice brains of each experimental group were carefully dissected, fixed in 10% formalin and embedded in paraffin wax. Serial coronal sections into 5 μm were performed using microtome and stained with hematoxylin-eosin (HE) according to standard procedures. The brain cortex was examined in the cortical-medullary area under a light microscope and photographed at 10x and 40x objective lens.

**Brain histological analysis**

For histological evaluation, mice brains of each experimental group were carefully dissected, fixed in 10% formalin and embedded in paraffin wax. Serial coronal sections into 5 μm were performed using microtome and stained with hematoxylin-eosin (HE) according to standard procedures. The brain cortex was examined in the cortical-medullary area under a light microscope and photographed at 10x and 40x objective lens.

**Brain histological analysis**

For histological evaluation, mice brains of each experimental group were carefully dissected, fixed in 10% formalin and embedded in paraffin wax. Serial coronal sections into 5 μm were performed using microtome and stained with hematoxylin-eosin (HE) according to standard procedures. The brain cortex was examined in the cortical-medullary area under a light microscope and photographed at 10x and 40x objective lens.
In CM condition, the neurological signs were also accompanied by the breakdown of BBB. To assess the effect of açai-enriched diet in the integrity of BBB, Evans Blue dye extravasation was measured in the brain of mice infected with PbA. At 7 days post infection, the brain of PbA-infected animals showed remarkable extravasated vessels (26 μg/g of Evans blue) when compared to the PbA-infected mice fed with açai-enriched diet (12 μg/g of Evans blue); (Fig. 3) demonstrating that açai diet prevents BBB dysfunction in experimental CM.
Euterpe oleracea-enriched diet decreases histological alterations in PbA-infected mice

At 7 days post infection, histological analysis of brain cortical slices exhibits a disarrangement in the cellular parenchyma indicating focal alterations such as inflammatory cell infiltrates, vascular dilatation and occluded capillaries (Fig. 4). In contrast, all these pathological changes were ameliorated in PbA-infected mice treated with açai-enriched diet (Fig. 4). In the cortical regions with severe inflammation, PbA-infected mice showed more diffuse and frequent cellular infiltration and occlusion compared to the brain of PbA-infected mice treated with açai-enriched diet.

Euterpe oleracea-enriched diet attenuated neurobehavioral and motor impairments induced by PbA infection

Open field test was performed to assess the effect of açai-enriched diet in locomotor activity of mice infected with PbA. As shown in Fig. 5, PbA-infected animals fed with standard diet presented significant decrease in mobility at 7- and 9-days post-infection. Otherwise, an increase in the total distance traveled in open field task was observed in PbA-infected mice treated with açai-enriched diet exhibiting an improvement in the overall locomotor activity at 7 days post infection, although this protective effect was not observed at 9th day post infection.

Neurobehaviour impairments induced by CM were also assessed by distinct functional domains such as muscle tone and strength, motor behavior, neuropsychiatric capacity and reflex/sensorial state as described by SHIRPA protocol. Animals infected with PbA presented motor (Fig. 6B) and neuropsychiatric (Fig. 6C) impairments at 7th days post-infection, with açai-enriched diet providing protection against this deleterious cognitive impairment caused by CM.

At 9 days post-infection, data indicate PbA infection evokes a significant loss of all four domains analyzed, that was prevented by the treatment with açai-enriched diet which showed better scores when compared with PbA-infected animals fed with standard diet (Fig. 6). Taken together, data demonstrated that açai-enriched diet ameliorates clinical scores improving neurological signs of PbA-infected mice.

Discussion

The present study demonstrated, for the first time, that an açai-enriched diet suppresses the development of CM in mice attenuating the breakdown of blood-brain barrier and the neurocognitive deficits associated with the disease. Usually, natural products are important and valuable sources of compounds with medicinal properties and diets enriched by these products are known to have a countless benefit to human health [28, 29]. Biochemical studies reveal the presence of phytochemicals compounds in these products that could modulate distinct signaling pathways implicated in several pathological conditions such as cancer, vascular disturbance, some

---

**Fig. 3** Treatment with açai enriched ration maintains blood-brain barrier integrity in ECM. A Qualitative analysis of the whole brain after Evans Blue dye administration in uninfected control group, AER group, PbA-infected mice and PbA+AER group. B Quantification of Evans blue (EB) extravasated into brain at 7 days post-infection. The experiment was repeated three times and subjected to one-way ANOVA and expressed as mean ± SD; (n = 17, *p < 0.01 vs control; **p < 0.01 vs PbA)
neurodegenerative conditions as Parkinson and Alzheimer [30, 31] and infectious diseases such as leishmaniasis and malaria [32, 33].

Malaria is a very common infectious disease in children and adults living in tropical regions and many studies have already shown its deleterious effects in the CNS [2]. As motor and cognitive impairments are common neurobehavioral sequels in patients with CM [34], new adjuvant therapeutic interventions are extremely relevant to reduce neurological damages. Here, we reported a potential nutritional approach to protect the organism from the neuronal alterations associated to this condition. There is increasing evidence of potential neuroprotective properties of açai fruit, diminishing the neurodegenerative events associated with the progression of pathological conditions which affect the CNS [15, 35].

The pathophysiology of CM involves a range of cellular and histological processes, including cell sequestration, brain inflammation and the breakdown of the blood-brain barrier that can discharge major impairments in the behavior of infected animals [36]. The murine model of CM is a valuable tool to the development of effective treatments, given that mice reproduce most of the symptoms observed in humans [37]. In the present study, PbA-infected mice presented a number of symptoms characteristic of human cerebral malaria, including ataxia, poor reflexes, seizures and coma [36]. In animals fed with a normal diet (standard ration), neurological clinical signals of CM began to appear on 6-7th days after infection, succumbing to death between days 7 and 11 post infection, showing notable evidence of blood-brain barrier disruption, which confirms the development of CM in infected mice. Instead, animals treated with açai-enriched diet showed a significant improvement in the survival curve, with more than 20% of the group remaining alive until the 19th day post infection with no evidence of neurological impairments. Our work is in agreement with previous studies which demonstrated that the increase in survival rate is usually associated with improvements in neurological parameters [37, 38].
**Fig. 5** Protective effect of açai enriched diet against motor impairment induced by *Plasmodium berghei* ANKA infection. The total distance traveled was measured over 5 min in the open field test, based on the number of squares crossed on the 3rd, 5th, 7th, 9th and 12th day post-infection. 

*p < 0.01 (PbA vs. control), #p < 0.05 (PbA vs. AER + PbA). Scores presented as the mean ± SEM.

**Fig. 6** Clinical scores determined by SHIRPA protocol to assess neurobehavioral impairment elicited in Swiss albino mice infected with *Plasmodium berghei* ANKA strain (PbA) treated with açai enriched ration. Four functional categories were evaluated: **A** motor behavior; **B** neuropsychiatric state; **C** muscle tone and strength and **D** reflex and sensorial function. Scores for all the categories were recorded as the general score for each group, with the data being presented as the mean ± SEM. The analyses were based on a one-way ANOVA, with Tukey’s post-test.
We also demonstrated that the neuroprotective effects of açai-enriched diet were not associated with changes in blood parasitemia of PbA-infected mice once the rate of parasitemia did not change in the course of the disease. Different from which we observed, Ferreira et al. [39] demonstrated that oral treatment by gavage with polyphenol-rich açai fractions reduced the parasitemia of \textit{P. chabaudi}-infected mice, in an infection model in which there is no brain impairment. While recent studies have described antimicrobial activity of \textit{Euterpe oleracea} fruit [40, 41], the results of the present study indicate that açai does not have antimalarial properties, and its protective effects are probably related to the attenuation of host response to the infection. In addition, our findings are in agreement with previous studies which demonstrated the activity of natural plant extract such as Zizyphus spinacristi and \textit{Terminalia albida} against murine cerebral malaria [42, 43].

Besides delayed the outcome of neurological signals in PbA-infected mice, açai-enriched diet also prevented the breakdown of blood-brain barrier on the 7th day post infection. Furthermore, açai-enriched diet also attenuates brain cortex histological damages induced by PbA infection. Although our data showed that diet with açai enriched ration reduces the pathological changes in the brain with characteristic areas of leukocyte infiltration, additional studies need to be performed to elucidate this anti-inflammatory effect.

Disruption of the blood-brain barrier is known to be a consequence of two main processes induced by \textit{Plasmodium} infection. First, brain vessels are obstructed by parasitized erythrocytes, evoking local hypoxia and intense oxidative stress [44]. Second, the infection can also stimulate an inflammatory response in the brain, causing overproduction of pro-inflammatory cytokines and reactive oxygen species (ROS) [45, 46]. Those events are followed by the degradation of endothelial cells, which damages the blood-brain barrier [47, 48]. A number of studies have demonstrated that the chemical composition of açai fruit confers it with valuable antioxidant and anti-inflammatory properties, and it seems likely that these compounds produce a protective effect in the brain of the PbA-infected mice fed with açai-enriched ration [49–52]. While additional studies need to be done to ratify this hypothesis, several works have shown that oral intake of açai decreases the level of IL-1β, IL-18 and TNF-α, prevents the production of thiobarbituric acid reactive substance (TBARS) and modulates antioxidant enzymes such as superoxide dismutase (SOD) and catalase [53].

Some studies attribute the anti-inflammatory and antioxidant effect of açai to the high levels of anthocyanins and other polyphenols (flavonoids) in its composition [47, 54, 55]. It is well described that the beneficial effects of açai can be attributed to several bioactive molecules, but its antioxidant activity is often associated with the phenolic compounds, among which orientin, homoorientin, catechin, epicatecin, ferrulic acid, vanillic acid, gallic acid, p- hydroxybenzoic acid and syringic acid. The phenolic compounds contribute to maintain the balance between the production and elimination of oxygen reactive species, thus reducing cell damage caused by free radicals [18, 56]. Although additional studies are required to elucidate the mechanisms by which açai diet exerts its neuroprotective effect in PbA infected mice, we suggested that phenolic content contributes to this effect.

The breakdown of blood-brain barrier is often associated with behavioral dysfunctions in the CNS [57, 58]. A number of studies have already demonstrated that \textit{Plasmodium falciparum} infection triggers long-term neurological deficits such as cognitive impairment, motor skills, visual acuity and seizures [59, 60]. Events associated with inflammation and oxidative stress could also be related to these deficits [61, 62]. In our work, we demonstrated, for the first time, that açai-enriched diet improved sensori-motor outcomes related to CM condition.

The results of the present study indicate that açai-enriched diet has a relative protective action on peripheral behavioral parameters such as motor performance, muscle tone and strength. However, açai-enriched diet has a more effective preventive action on the impairments in neuropsychiatric and sensorial function induced by PbA infection. Overall, the results of the present study indicate that açai intake was more effective in the protection of CNS impairments than in the motor system.

Thus, this preclinical study demonstrated that açai intake may minimize the deleterious effects of CM on the brain of PbA-infected animals, and an açai-enriched diet may be a potentially valuable adjuvant for the treatment of human cerebral malaria. Moreover, to further elucidate the mechanism by which açai-enriched diet exert its neuroprotective role, molecular and biochemical approaches should be performed to address the anti-inflammatory and antioxidant effects of the diet.

**Conclusion**

The present study demonstrates a significant and potent neuroprotective effect of açai enriched diet in the outcome of cerebral malaria condition, protecting the host from the blood-brain barrier disruption and neurobehavioral impairments associated with the disease. Although the mechanism of this neuroprotective effect is not fully understood, it is probably due to the anti-inflammatory and antioxidant effects of açai compounds.
Acknowledgements
We would like to thank CAPES for the academic scholarship.

Authors’ contributions
KRHMO, MLMT and NF designed the experimental protocol and wrote the manuscript. BJAA and NSFM performed the histological procedures. All authors contributed to the critical revision of the manuscript and approved the final manuscript.

Funding
This research received no specific grant from any agency.

Availability of data and materials
Authors declare that data supporting the findings of this study are available in a public database (Mendeley Data, https://doi.org/10.17632/hc785xkvfn.1).

Declarations

Ethics approval and consent to participate
The study was approved by the Animal Ethics Committee_Federal University of Para under the protocol number 6211241117 and was carried out in accordance with the guidelines for the ethical use of laboratory animals (Animal Ethics Committee_Federal University of Para). The work has also been reported in accordance with the ARRIVE guidelines (Animals in Research: Reporting In Vivo Experiments). All the plant collections were conducted in accordance to standard protocols and were properly authorized.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Laboratory of Experimental Neuropharmacology, Biological Science Institute, UFPa, Belém, PA, Brazil. 2 Laboratory of Protozoology, Topical Medicine Nucleus, UFPa, Belém, PA, CEP: 66055-240, Brazil. 3 Laboratory of Pharmaceutical Chemistry, Health Science Institute, UFPa, Belém, PA, Brazil. 4 Laboratory of Neuroplasticity, Health Science Institute, UFPa, Belém, PA, Brazil.

Received: 21 April 2021 Accepted: 7 December 2021
Published online: 11 January 2022

References
1. Postels DG, Soldatos A, LaRovere KL. Outcomes measures in children after acute central nervous system infections and malaria. Curr Opin Pediatr. 2019;31(6):756–62.
2. World Health Organization (WHO). World Malaria Report, 2019.
3. Danny A, Milner JR. Malaria Pathogenesis. Cold Spring Harb Perspect Med. 2018;11(1):a025569.
4. Luzolo AL, Ngovi DM. Cerebral malaria. Brain Res Bull. 2019;145:53–8.
5. Maglino A, Kolpflisch R, Seeberger PH, Lepenies B. The C-type lectin receptor DCIR is crucial for the development of experimental cerebral malaria. J Immunol. 2013;191(5):2551–9.
6. Ponsford MJ, Medana IM, Prapansilp P, Hien TT, Ward NI, Fink M, et al. Identification of (pol) phenol treatments that modulate the release of pro-inflammatory cytokines by human lymphocytes. Br J Nutr. 2016;115(10):1699–710.
7. Souza-Monteiro JR, Hamoy M, Santana-Coelho D, Aznar J, Iaquinta FL, Menezes AA, et al. Antiviral activities of the Euterpe oleracea (Açaí) fruit. Mediators Inflamm. 2018;2018:7127967.
8. Oliveira KRHM, Kauffmann N, Mendes NSF, Torres M, Silva EO. Selective effects of Euterpe oleracea (açaí) on Leishmania amazonensis and Leishmania infantum. Biomed Pharmacother. 2018;97:1613–21.
9. Oliveira KRHM, Kauffmann N, Mendes NSF, Torres M, Silva EO. Competitive effects of Euterpe oleracea (açaí) on Leishmania amazonensis and Leishmania infantum. Biomed Pharmacother. 2018;97:1613–21.
10. Pace AA, Edwards S, Weatherby S. A new clinical variant of the post-malaria neurological syndrome. J Neurol Sci. 2013;334(1–2):183–5.
11. Hoffmann A, Pfeil J, Mueller AK, Jin J, Deumelandt K, Helluy X, et al. MRI of iron oxide nanoparticles and myeloperoxidase activity links inflammation to brain edema in experimental cerebral malaria. Radiology. 2019;209(2):359–67.
12. Tunon-Ortiz A, Lamb TJ. Blood brain barrier disruption in cerebral malaria: beyond endothelial cell activation. PLoS Pathog. 2019;15(6):e1007786.
13. Ghazianfari N, Mueller SN, Heath WR. Cerebral Malaria in Mouse and Man. Front Immunol. 2018 Sep;10:2016.
14. Tritten L, Keiser J, Karwa T, Utzinger J, Holmes E, Saric J. Comparing systemic metabolic responses in mice to single or dual infection with Plasmodium berghei and Heligmosomoides bakeri. Mol BioSyst. 2014;10(9):2358–67.
15. Brasil A, Rocha FA, Gomes BD, Oliveira KRHM, Carvalho TS, Batista EJC, et al. Diet enriched with the Amazon fruit açaí (Euterpe oleracea) prevents electrophysiology deficits and oxidative stress induced by methyl-mercury in the rat retina. Nutr Neurosci. 2017;20:265–72.
16. Cesar LT, Cabral MF, Maia GA, Figueiredo RW, Miranda MRA, Sousa PHM, et al. Effects of clarification on physicochemical characteristics, antioxidant capacity and quality attributes of açaí (Euterpe oleracea Mart.) juice. J Food Sci Technol. 2014;51(11):3293–300.
17. Matta FV, Xiong J, Lila MA, Ward NI, Felipe-Sotelo M, Esposito D. Chemical composition and bioactive properties of commercial and non-commercial purple and White Açaí berries. Foods. 2020;9(10):1481.
18. Schulz M, Borges GSC, Gonzaga LV, Costa ACO, Fett R. Jacurá fruit (Euterpe edulis Mart.) sustainable exploitation of a source of bioactive compounds. Food Res Int. 2016;89(Pt 1):14–26.
19. Ford CT, Richardson S, McDade S, Prieto B, Crozier A, McDade A, et al. Identification of (pol) phenol treatments that modulate the release of pro-inflammatory cytokines by human lymphocytes. Br J Nutr. 2016;115(10):1699–710.
20. Souza-Monteiro JR, Hamoy M, Santana-Coelho D, Arifffano GPF, Paraense RSO, Costa-Malaquias A, et al. Antiviral effects of açaí. Acta Neuropathol Commun. 2018;6:200.
21. Zhou J, Zhang J, Wang C, Gu S, Zhu Y, Yang Z, et al. Açaí (Euterpe oleracea Mart.) attenuates alcohol-induced liver injury in rats by alleviating oxidative stress and inflammatory responses. Exp Ther Med. 2018;15(1):166–72.
22. Dias-Souza MV, Santos CM, Ceravolo IP, Cosenza G, Marçal PHF, Flávio Jr Barbosa Figueiredo. Euterpe oleracea pulp extract: chemical analyses, antibiofilm activity against Staphylococcus aureus, cytotoxicity and interference on the activity of antimicrobial drugs. Microb Pathog. 2018;114:29–35.
23. Silva BM, Souza-Monteiro JR, Rodrigues E, Crespo-López ME, Nascimento JLM, Silva EO. Selective effects of açaí (Euterpe oleracea (açaí) on Leishmania amazonensis and Leishmania infantum. Biomed Pharmacother. 2018;97:1613–21.
24. Oliveira KRHM, Kauffmann N, Leão LKR, Passos ADCF, et al. Melatonin Prevents Brain Damage and Neurocognitive Impairment Induced by Plasmodium Berghei ANKA Infection in Murine Model of Cerebral Malaria. J Neuroimmunol. 2018;319:169. doi: 10.1016/j.jneuroim.2018.02.014.
25. Ataide BJA, Kauffmann N, Mendes NSF, Torres M, Silva EO. Selective effects of açaí on Leishmania amazonensis and Leishmania infantum. Biomed Pharmacother. 2018;97:1613–21.
26. Silva BM, Souza-Monteiro JR, Rodrigues E, Crespo-López ME, Nascimento JLM, Silva EO. Selective effects of Euterpe oleracea (açaí) on Leishmania amazonensis and Leishmania infantum. Biomed Pharmacother. 2018;97:1613–21.
27. Martins YC, Wernerch GL, Carvalho LJ, Silva BPT, Andrade BG, Souza TM, et al. Antioxidant and quality attributes of açaí (Euterpe oleracea) juice. J Food Sci Technol. 2014;51(11):2551–9.
28. Santos AC, Rodrigues E, Crespo-López ME, Nascimento JLM, Silva EO. Selective effects of açaí (Euterpe oleracea) on Leishmania amazonensis and Leishmania infantum. Biomed Pharmacother. 2018;97:1613–21.
29. Valls M, Bolzani VS. The potential contribution of the natural products from Brazilian biodiversity to bioeconomy. An Acad Bras Cien. 2018;90(1):763–78. doi: 10.1590/1679-4508-2017-0581.
30. Valls M, Bolzani VS. The potential contribution of the natural products from Brazilian biodiversity to bioeconomy. An Acad Bras Cien. 2018;90(1):763–78. doi: 10.1590/1679-4508-2017-0581.
microglia activation implicated in neurodegenerative. Histol Histopathol. 2019;34(9):965–83.

31. De La Cruz JP, Ruiz-Moreno ML, Guerreiro A, Lopes-Vilhordes JA, Reyes JJ, Esparrtero JL, et al. Role of the catechol group in the antioxidant and neuroprotective effects of virgin olive oil components in rat brain. Nutr Biochem. 2015;26(5):549–55.

32. Araújo MV, Queiroz AC, Silva JF, Silva AE, Silva JKS, Schauss AG, et al. Flavonoids induce cell death in Leishmania amazonensis: in vitro characterization by flow cytometry and Raman spectroscopy. Analyst. 2019;144(17):5232–44.

33. Muela JM, Raimini JL, Nyeru SN, Onyango JO, Imbahale SS. Prospects for malaria control through manipulation of mosquito larval habitats and olfactory-mediated behavioural responses using plant-derived compounds. Parasit Vectors. 2017;10(1):184.

34. Plewes K, Turner GDH, Dondorp AM. Pathophysiology, clinical presentation, and treatment of coma and acute kidney injury complicating falciparum malaria. Curr Opin Infect Dis. 2018;31(1):69–77.

35. Arrifano GPF, Lichtenstein MP, Souza-Monteiro JR, Farina M, Rogez H, Carvalho JCT, et al. Clarified acai (Euterpe oleracea) juice as an antioxidant: in vitro mechanism of study of GABAergic targets. Oxidative Med Cell Longev. 2018;2018:2678089.

36. Hora R, Kapoor P, Thind KK, Mishra PC. Cerebral malaria – clinical manifestations and pathogenesis. Metab Brain Dis. 2016;31(2):225–37.

37. Souza TL, Grauncke ACB, Ribeiro LR, Mello FK, Oliveira SM, Brant F, et al. Cerebral malaria causes enduring behavioral and molecular changes in mice brain without causing gross histopathological damage. Neuroscience. 2018;369:66–75.

38. Reis PA, Estatto V, da Silva TL, DAvila JC, Siqueira LD, Assis EF, et al. Statins Decrease Neuroinflammation and Prevent Cognitive Impairment after Cerebral Malaria. PLoS Pathog. 2012;8(12):e1003099.

39. Ferreira LT, Venancio VP, Kawano T, Abdou LCC, Tavealla TA, Almeida LD, et al. Chemical genomic profiling unveils the in vitro and in vivo Antiplasmodial mechanism of Acai (Euterpe oleracea Mart.) polyphenols. ACS. Omega. 2019;4(13):15628–35.

40. Poulouse SM, Fisher DR, Larson J, Bielinski DF, Rimando AM, Carey AN, et al. Anthocyanin-rich acai (Euterpe oleracea Mart.) fruit pulp fractions attenuate inflammatory stress signaling in mouse brain BV-2 microglial cells. J Agric Chem Food. 2012;60(4):1084–93.

41. Xie C, Kang J, Li Z, Schauss AG, Badger TM, Nagarajan S, et al. The acai flavonoid velutin is a potent anti-inflammatory agent: blockade of LPS-mediated TNF-alpha and IL-6 production through inhibiting NF-kappaB activation and MAPK pathway. J Nutr Biochem. 2012;23(9):1184–91.

42. Mubashari MA, Hafza TA, Al-Quraishy S, Dihit MA. Oxidative stress and genes regulation of cerebral malaria upon Ziziphus spina-christi treatment in a murine model. Microb Pathog. 2017;107:69–74.

43. Camara A, Haddad M, Reybier K, Traoré MS, Bâlde MA, Royo J, et al. Termination of albusa treatment improves survival in experimental cerebral malaria through reactive oxygen species scavenging and anti-inflammatory properties. Malar J. 2019;18(1):431.

44. Gun SY, Claser C, Teo TH, Howland SW, Poh CM, Chye RRY, et al. Interferon gamma-mediated TNF-alpha and IL-6 production through inhibiting NF-kappaB activation and MAPK pathway. J Nutr Biochem. 2012;23(9):1184–91.

45. Dunst J, Kamena F, Matuschewski K. Cytokines and chemokines in cerebral malaria pathogenesis. Front Cell Infect Microbiol. 2017;7:324.

46. Kariuki SN, Nanigi S, Njuguna J, Kariuki SM, Abubakar A, Newton CR, et al. Impact of flavonoids on the brain: direct versus indirect effects. Neurochem Res. 2019;45:1457–74.

47. Guha SK, Gillon P, Patil PD, Vaye D, Sengupta A, et al. Single episode of mild murine malaria induces neuroinflammation, alters microglial profile, implies adult neurogenesis, and causes deficits in social and anxiety-like behavior. Brain Behav Immun. 2014;42:123–37.

48. Christensen SS, Eslick GD. Cerebral malaria as a risk factor for the development of epilepsy and other long-term neurological conditions: a meta-analysis. Trans R Soc Trop Med Hyg. 2015;109(4):233–8.

49. Oluwayemi IJ, Oluwayemi OA. Cerebral malaria: role of lipid mediators and subacute treatments with acai pulp (Euterpe oleracea Mart.) gel in physically active individuals. Food Sci Technol. 2017;6:1–8.

50. Mbagwu SI, Filgueira L. Differential expression of CD31 and Von Willebrand factor on endotelial cells in different regions of the human retina: potent implications for cerebral malaria pathogenesis. Brain Sci. 2020;10(1):31.

51. Lima MN, Oliveira HA, Filgueira L, Estato V, Silva AYD, Freitas RJX, et al. Meneschymal stromal cells protects against vascular damage and depression-like behavior in mice surviving cerebral malaria. Stem Cell Res Ther. 2020;11(1):367.

Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

BMC Complementary Medicine and Therapies  (2022) 22:11

Ready to submit your research? Choose BMC and benefit from:
• fast, convenient online submission
• thorough peer review by experienced researchers in your field
• rapid publication on acceptance
• support for research data, including large and complex data types
• gold Open Access which fosters wider collaboration and increased citations
• maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.
Learn more: biomedcentral.com/submissions