Spatially Explicit Estimates of Prey Consumption Reveal a New Krill Predator in the Southern Ocean

Andrea Walters1,2*, Mary-Anne Lea3, John van den Hoff2, Iain C. Field4, Patti Virtue1,2, Sergei Sokolov5,
Matt H. Pinkerton6, Mark A. Hindell1,2

1 Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia, 2 Antarctic Climate and Ecosystems Cooperative Research Centre, Hobart, Tasmania, Australia, 3 Australian Antarctic Division, Kingston, Tasmania, Australia, 4 Marine Mammal Research Group, Department of Environment and Geography, Macquarie University, Sydney, New South Wales, Australia, 5 Commonwealth Scientific and Industrial Research Organisation Marine and Atmospheric Research, Hobart, Tasmania, Australia, 6 National Institute of Water and Atmospheric Research Ltd, Kilburnie, Wellington, New Zealand

Abstract

Development in foraging behaviour and dietary intake of many vertebrates are age-structured. Differences in feeding ecology may correlate with ontogenetic shifts in dispersal patterns, and therefore affect foraging habitat and resource utilization. Such life-history traits have important implications in interpreting tropho-dynamic linkages. Stable isotope ratios in the whiskers of sub-yearling southern elephant seals (Mirounga leonina; n = 12) were used, in conjunction with satellite telemetry and environmental data, to examine their foraging habitat and diet during their first foraging migration. The trophic position of seals from Macquarie Island (54°30’S, 158°57’E) was estimated using stable carbon (δ13C) and nitrogen (δ15N) ratios along the length of the whisker, which provided a temporal record of prey intake. Satellite-relayed data loggers provided details on seal movement patterns, which were related to isotopic concentrations along the whisker. Animals fed in waters south of the Polar Front (>60°S) or within Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) Statistical Subareas 88.1 and 88.2, as indicated by both their depleted δ13C (<−20‰) values, and tracking data. They predominantly exploited varying proportions of mesopelagic fish and squid, and crustaceans, such as euphausiids, which have not been reported as a prey item for this species. Comparison of isotopic data between sub-yearlings, and 1, 2 and 3yr olds indicated that sub-yearlings, limited by their size, dive capabilities and prey capture skills to feeding higher in the water column, fed at a lower trophic level than older seals. This is consistent with the consumption of euphausiids and most probably, Antarctic krill (Euphausia superba), which constitute an abundant, easily accessible source of prey in water masses used by this age class of seals. Isotopic assessment and concurrent tracking of seals are successfully used here to identify ontogenetic shifts in broad-scale foraging habitat use and diet preferences in a highly migratory predator.

Introduction

The interplay between the physical and biological regimes of the Southern Ocean [1] dictates the dispersal, foraging habitats and diet of higher order predators [2]. Information on diet is fundamental to better understand the diversity of linkages within Southern Ocean marine ecosystems and the response of higher order predators to large-scale ecosystem change and other anthropogenic activities such as commercial fishing [3]. Due to their marine existence, the dietary study of marine mammals is one of the most challenging of any vertebrate taxon [4]. Moreover, marine mammal species often exhibit ontogenetic shifts in dispersal patterns, foraging habitat and resource utilisation [5]. Such life-history traits have important individual and population level implications and must be taken into account when assessing the diet and trophic interactions of a species within an ecosystem.

Natal dispersal is a fundamental, but poorly understood, demographic parameter [6], particularly amongst vertebrate marine predators [7]. The mechanism which governs this phenomenon is largely unknown [8], although intra-specific competition for resources (e.g. food, space and mates) is one of the main hypotheses advanced to explain natal dispersal in the life history of most species [9].

The southern elephant seal (Mirounga leonina) is such an example of a polar species which exhibits an extreme natal dispersal strategy [10]. At weaning, adult female seals depart for remote feeding grounds, leaving pups to spend another three to eight weeks ashore before they too depart natal colonies [11,12]. The lack of maternal input into dispersal strategies means the likelihood of these young animals foraging successfully, in an unfamiliar ocean environment, is largely dependent on chance. Consequently, this may contribute to the relatively high first year mortality in this species [13].
Surviving seals disperse over many thousands of kilometres [14] to access different prey communities [15], and seem to develop site fidelity to areas known to previously provide good feeding [16]. This behaviour is also noted for their northern counterpart, the northern elephant seal (M. angustirostris) [17]. Dispersal patterns may correlate with increased intra-specific competition for resources, physiological capabilities (e.g. related to size, sex, diving capacity), familiarity with habitat, temporal shifts in haul-out behaviour and reduced mortality risks of extensive movement [5,14,18]. Adult females from Macquarie Island, constrained by breeding requirements, make directed movements south of the major Antarctic Circumpolar Current (ACC) fronts to feed over the East Antarctic continental shelf before the winter sea ice makes this habitat inaccessible [19]. In contrast, younger seals, constrained by physiological capabilities [20], make less directed travel, predominantly north of the southern limits of the ACC, closer to their natal island [10,14,21].

What is known about the diet of this species stems largely from studies of stomach contents and faecal analysis [5,22,23], but interpretation is impeded by the wide separation between feeding and haul-out sites [24]. Stable isotope analysis, which assesses ratios of carbon (13C/12C; 15N/14N; 18O/16O) in various body tissues, is being increasingly used to study the foraging habitat and trophic position of highly migratory animals [25,26,27,28,29] as it can yield a data time-series derived from assimilated, and not just ingested food [30].

Carbon (e.g. 13C) concentrations change by only ~0.8 to 2% per trophic level, reflecting the source of carbon at the base of the food chain [31,32] and thus consumer's foraging habitat. Nitrogen (e.g. 15N) concentrations in consumer tissues typically increase at ~3% per trophic level [33,34] rendering them particularly useful in estimating prey trophic position [35]. As whiskers are keratin-based tissues, which are metabolically inert after synthesis [26], they approximate a time-line of stable isotope values derived from food sources, with the tip of the whisker representing the oldest growth, and the root the most recent growth [36].

In this study, stable isotope and satellite telemetry for consumers and corresponding environmental data are combined to quantify the feeding habits and trophic position of sub-yearling elephant seals in relation to habitat during their first feeding migration from Macquarie Island. The specific aims of this study were to determine: 1) the growth rates of whiskers of sub-yearlings in the Macquarie Island. The specific aims of this study were to determine: 1) the growth rates of whiskers of sub-yearlings in the feeding habits and trophic position of sub-yearling elephant seals in relation to habitat during their first feeding migration from Macquarie Island. The specific aims of this study were to determine: 1) the growth rates of whiskers of sub-yearlings in the

Foraging Habitat and Diet of Elephant Seals

Materials and Methods

Ethics Statement

Animals in this study were cared for in accordance with the guidelines of the University of Tasmania Animals Ethics Committee that approved the fieldwork (Permit no. A0006738, M. Hindell).

Data Collection

Seal whiskers. Facial vibrissae (whiskers) were collected from southern elephant seal pups equipped with Satellite Relayed Data Loggers (SRDLs, Sea Mammal Research Unit, St Andrews, UK), which consisted of a data logger interfaced to a 0.5-W Argos radio frequency unit [37]. Satellite Relayed Data Loggers were fitted to pups during their post-weaning last at Macquarie Island (54°30’S, 158°57’E) in December 1993 (n = 6) and 1999 (n = 6). A six hour record was summarized and transmitted. One whisker was collected from each individual at SRDL deployment (pre-trip whisker; 1995 only, n = 5) and a second whisker was collected when the SRDL was retrieved approximately 4 to 7 months later (post-trip whisker; n = 12; Table 1). All animals were sampled within 7 days of their return (mean = 3.1±2.5 days, n = 12). Whiskers were not plucked but cut as close to the face as possible from the same location on the left hand side of the muzzle (C.R. McMahon, Personal communication). Details of the capture, handling and attachment of telemetry devices to study animals are provided elsewhere [38,39,40].

Prey specimens. In the absence of available prey stable isotope data for this region of the Southern Ocean we used published and unpublished values corresponding to latitudinal ranges similar to this population of juvenile southern elephant seals, although outside the current foraging range. We have assumed that despite the geographic disparity, the prey isotope values will be broadly consistent with those within the seals foraging areas. Mid-latitude (<55°S) specimens of fish (Prototypeplan tenisoni, n = 8; Electrona antarctica, n = 10; Gymnoscelus piaulos, n = 2; G. nichols, n = 10 and G. fraseri, n = 8) were collected by the RV La Coruèse during bathypelagic trawls, to the northeast of the Kerguelen Archipelago (49°07’S, 70°45’E) in June 1998 (see [41]). The samples were collected at night using an IYGPT net (International Young Gadoid Pelagic Trawl net; opening: 12 x 7 m) with a 10 mm mesh size in the cod end [42], and were sorted on deck and frozen. Lower beaks of two squid species (Martialia hyadesi, n = 66 and Histiotuthes elatinus, n = 71) were obtained from the stomach contents of juvenile southern elephant seals (one, two and three year olds) during their annual haul-out periods as they returned ashore at Macquarie Island (54°30’S, 158°57’E), from November 1997 and December 2000 (Hughes, A.R. unpubl. data). Details of the capture, handling and stomach lavaging of study animals are provided elsewhere [5,43,44]. The filtered stomach contents were stored in 70% ethanol.

High latitude (>60°S) specimens of fish (E. antarctica, n = 10), euphausiids (Euphausia tricusathen, n = 10), hyperiid amphipods (Themisto gaudichaudii, n = 7) and squid (Bathyteuthis abysicola, n = 2 and Psychroteuthis glacialis, n = 3) were collected by the Japanese TRV Uniteka Maru using pelagic trawls in the Dumont d’Urville Sea, ranging from Terre Adélie to the Mertz Glacier tongue, in George V Land (61°45’ to 67°30’S, 140° to 143°E) as part of the Collaborative East Antarctic Marine Census (CEAMARC) in January/February 2008 [45,46]. Samples were collected at night and day using an IYGPT net (opening: 5.5 x 12 m) with a mesh of 100 mm in the front, then tapering through 80 mm to 20 mm to 10 mm mesh in the cod end and were sorted on deck and frozen. Samples were stored at −80°C until analysis.

Foraging Habitat

We fitted a first-difference correlated random walk switching (DCRWS) model [47] incorporating Argos error to elephant seal satellite location data originating and terminating at Macquarie Island (n = 14). Using 360 minute time step intervals, the model indexed movement parameters (differences in latitude and longitude between consecutive positions along the track) according to two behavioural modes [48]: transit and Area Restricted Search (ARS) modes. Area Restricted Search corresponded to periods of reduced travel speed and increased turning rate (parameter estimates between 1.8 and 2.0), which are more likely to be associated with foraging movements as opposed to transit movement (parameter estimates between 1.0 and 1.2) [48]. Locations which did not fit these criteria (i.e. parameter estimates between 1.2 and 1.8; 14.2% of all locations at sea) were discarded. The methodology used to fit the model to elephant seal location data is described in detail in Jonsen et al. [49].
Using the ARS locations, we calculated the proportion (%) of
time spent by the seals in defined ACC Inter-Frontal Zones (IFZs).
To map the position of ACC fronts, we used 19 years (1992 to
2011) of weekly sea surface height (SSH) gradients. The approach
used to identify fronts in SSH data is described in detail by
Sokolov and Rintoul [50,51] and summarized briefly here.

To map fronts in the Southern Ocean, twelve SSH contours
were used, as in Sokolov and Rintoul [51]. Of these, nine contours
are associated with the ACC itself and three contours correspond
to elevated SSH gradients associated with subtropical western
boundary currents and their extension along the northern edge of
the Southern Ocean. The ACC front positions inferred from
satellite SSH maps were validated using independent data from
Argo floats and high resolution hydrographic sections as described
in detail in Sokolov and Rintoul [50,51].

Each elephant seal satellite location was ascribed to an IFZ
[50,51,53] defined as: (1) south of sBdy, (2) sBdy to SACC-S, (3)
SACC-S to SACC-N, (4) SACC-N to PF-S, (5) PF-S to PF, (6)
PF to PF-N, (7) PF-N to SAF-S, (8) SAF-S to SAF, (9) SAF to SAF-
N, (10) SAF-N to SAZ, (11) SAZ to STZ-S, (12) STZ-S to STZ-N
and (13) N STZ-N, where sBdy: southern Boundary Current;
ACC: Antarctic Circumpolar Current; N: north; S: south; PF:
Polar Front; SAF: sub-Antarctic Front; SAZ: sub-Antarctic Zone
and STZ: sub-Tropical Zone.

These IFZs were summarised into seven distinct zones as
follows: 1. S of SACC-S (IFZ 1,2); 2. ACC to PF-S (IFZ 3,4); 3.
PF (IFZ 5,6); 4. PF to SAF (IFZ 7); 5. SAF (IFZ 8,9); 6. SAF-N to
SAZ (IFZ 10), and 7. SAZ to STZ-S (IFZ 11). Numbers in brackets
correspond to IFZs above.

Sample Preparation and Stable Isotope Analysis

Seal whiskers. The whiskers were cleaned with successive
rinses in a 2:1 chloroform:methanol solution, and then dried in an
oven at 60°C for 72 hours. The twelve post-trip whiskers were
weighed and sectioned into approximately 2 mm sections. The
sections from each whisker were numbered sequentially, starting
from the base, in order to track the temporal integration of isotope
values along the length of the whisker.

Prey specimens. Isotopic analysis was performed on the
white muscle of fish, the mantle and lower beaks of squid, and
whole specimens of amphipods and euphausiids. Muscle tissues
(fish and squid) and whole specimens were freeze dried and ground
to fine powder before lipids were removed from all samples [54],
and carbonates were removed from amphipod and euphausiid
samples [55]. Different ratios of chitin (15N-depleted molecule)
to protein are found in undarkened, darkening and darkened parts
of squid beaks, with much more chitin in undarkened than in
darkened parts [56,57]. Consequently, the darkened wings of
lower beaks are less impoverished in 15N relative to diet and were
therefore used for stable isotope analysis. The lower beaks of squid
were cleaned with successive rinses of distilled water, before the
wing parts of beaks were cut away using scissors. Wings of lower
beaks were then dried in oven at 60°C for a minimum of 16 hours
and ground to fine powder. Relative abundance of 13C and 15N
were determined using an Isoprime (Micromass, UK) continuous-
flow isotope-ratio mass spectrometer. Results are reported using
standard δ notation in parts per thousand (‰) relative to Pee Dee
Belemnitite (PDB) for δ13C and atmospheric N2 (Air) for δ15N as
follows:

\[\delta X = \left(\frac{R_{\text{sample}}}{R_{\text{standard}}} \right) - 1 \times 1000 \]

where \(\delta X \) is δ13C or δ15N, and R is the ratio of 15N/12C or
15N/14N.

Replicate measurements of internal laboratory standards
(Alanine) indicate measurement errors <0.20 % and <0.21 %
for δ13C and δ15N, respectively. Stable isotope analysis was
performed by the Environmental Biology Group, Research School

| Table 1. Morphometric, tag deployment and tracking details for 12 weaned southern elephant seals from Macquarie Island, including the number of days (mean±SD) spent in transit and Area Restricted Search (ARS) by seals. |
|---|---|---|---|---|---|
| Seal ID No. | Sex | Weaning Mass (Kg) | Deployment Mass (Kg) | Transit duration (days) | ARS duration (days) | Total duration (days) |
| 1995/1996 | | | | | | |
| J226 | F | 78.0 | 62.0 | 47.0 | 70.0 | 126.0 |
| J263 | M | 143.0 | 107.0 | 45.0 | 86.0 | 149.0 |
| J373 | F | 92.0 | 73.0 | 56.0 | 66.0 | 130.0 |
| J375 | F | 89.0 | 68.0 | 12.0 | 62.0 | 146.0 |
| J492 | F | 88.0 | 62.0 | 50.0 | 72.0 | 148.0 |
| J503 | M | 92.0 | 66.0 | 46.0 | 81.0 | 137.0 |
| Mean | | 97.0±23.1 | 73.0±17.2 | 42.7±15.5 | 72.8±9.0 | 139.3±9.8 |
| 1999/2000 | | | | | | |
| T719 | F | 195.0 | 123.0 | 42.0 | 108.0 | 178.0 |
| T825 | F | 104.0 | 96.0 | 57.0 | 105.0 | 182.0 |
| T839 | F | 101.0 | 71.0 | 56.0 | 79.0 | 139.0 |
| T867 | F | 90.0 | 62.0 | 50.0 | 95.0 | 179.0 |
| T875 | F | 85.0 | 60.0 | 76.0 | 62.0 | 155.0 |
| T887 | F | 93.0 | 70.0 | 63.0 | 94.0 | 169.0 |
| Mean | | 111.3±41.6 | 80.3±24.5 | 57.3±11.6 | 90.5±17.3 | 167.0±16.9 |
| Overall mean | | 104.2±32.9 | 78.7±20.5 | 50.0±15.1 | 81.7±16.1 | 153.2±19.5 |

doi:10.1371/journal.pone.0086452.t001
of Biological Sciences, Australian National University (ANU), Canberra, Australia.

Whisker Growth Dynamics and Isotopic Values of Sub-yearlings

Southern elephant seals undergo a 24 day lactation period [58] in which post-partum pup growth is fuelled exclusively by energy from stored reserves in fasting mothers [12]. Isotope values along the length of a pre-trip whisker are therefore derived from in-utero development and post-partum, while isotopic values in the post-trip whisker reflect a shift from maternal investment to independent foraging. As pups mature, the process of weaning leads to a change in isotopic signal when the assimilation of carbon and nitrogen shifts to sources other than mother’s milk, such as free-ranging prey [59,60,61] and/or energy stores (fasting) post-weaning and post-departure [11]. Thus, weaning essentially represents a change in trophic level from mother’s milk (higher trophic level) to free ranging prey (lower trophic level).

To identify which part of the post-trip whisker reflected independent foraging at sea, we therefore compared δ15N values along the length of the post-trip whisker to the basal section of the pre-trip whisker (containing the isotopic signal of in-utero development and post-partum; red symbol, Fig. 1). The horizontal solid line indicates where the pre-trip basal segment intercepts the δ15N values along the length of the post-trip whisker (10.8%). Note that the point of interception occurs during the drop of 3.9% in δ15N from 12.4 to 8.5%, which we interpret as a trophic level shift from mother’s milk and/or fasting to independent foraging at sea. Once the lowest δ15N is reached (i.e. the transition is complete), we consider this and all subsequent samples to represent amino acids derived from independent foraging. The proportion (mm) of post-trip whisker that represents δ15N values incorporated during independent foraging at sea is 14 mm (Fig. 1).

Variation in Habitat and Trophic Position (δ13C and δ15N) of Seals with the Location of Foraging

Within the Southern Ocean, there is a well defined geographical δ13C gradient in particulate organic matter (POM) surface waters, ranging from high δ13C values in warm subtropical waters in the north, to depleted values in cold Antarctic waters in the south [62,63,64,65,66]. This is subsequently transferred to higher levels within the food chain [67,68]. In order to relate isotopic signatures to foraging habitat we therefore took into account the latitudinal gradient in tissue δ13C values of top predators in the Southern Ocean [67,68] and the location of the major oceanographic frontal zones, e.g. SAF, PF and sBdy [53] of the Southern Ocean.

The greatest proportion of seal ARS locations occurring in a particular IFZ defined their habitat use. Isotopic signatures of elephant seals were then grouped according to habitat.

Inferred Prey Consumption during the First Six Months

We used δ13C and δ15N values of marine organisms from mid- and high latitude Southern Ocean waters to infer the diet of elephant seals in relation to foraging habitat [69,70,71,72], this study; Table S1). For mid-latitude waters, we used a combination of pelagic fish (myctophids), squid and euphausiids from waters located around the PF in the Indian and Atlantic Ocean sectors of the Southern Ocean.

The beaks of two species of squid (M. hyadesi and H. eltaniana) contained in stomach lavage samples of returning juvenile Macquarie Island southern elephant seals were also examined (Hughes, A.R. unpubl. data). Cephalopod beak structure is species specific [73] and the lower beak rostral length (LRL) can be used to estimate mantle length and mass of squid from allometric data [74]. To assess the size of squid consumed by sub-yearlings we therefore used mean δ13C and δ15N values of small, medium and large LRL sized beaks according to species (for details see Table S1).

From high latitude waters (>60°S) north of Adélie and George V Land in the Indian Ocean sector, we used myctophids (Electrona antarctica), euphausiids (Euphausia superba) and amphipods (The sonea gnathochaeta) sampled in pelagic waters at depths of <500 m (62 to 65°30’S, 140 to 143°E); the deep-sea squid Bathyleuthis abyssicola, sampled at depths of <1000 m (63°S, 140°E), and the glacial squid Psychroteuthis glacialis, sampled at depths of <200 m in high latitude waters (65°30’S, 140°E). Values of Antarctic krill (Euphausia superba) sorted from emperor penguin (Aptenodytes forsteri) regurgitates from Adélie Land [71], and of pelagic squid from the northern Ross Sea area in the Pacific Ocean sector, were also used [72].

We used whisker-specific isotopic fractionation values for δ13C and δ15N of 3.2% and 2.8%, respectively, as obtained from a study of captive pinnipeds [30], since studies reporting the isotopic fractionation for δ13C and δ15N between diet and whiskers for wild populations of elephant seals or other pinniped species are absent. Correction factors of 3.2% and 2.8% were therefore applied to δ13C and δ15N values, respectively, when comparing seal values to the isotopic values of marine organisms. Cephalopod beaks are depleted in 15N, due to the presence of chitin (a 15N depleted molecule) and accordingly, contain lower δ15N values compared to the mantle (~3.5%) and buccal mass (~2.6%) soft tissue of cephalopods [56]. A correction factor of 3.5% was therefore applied to the δ15N values of H. eltaniana and M. hyadesi beaks prior to isotopic comparison with elephant seals and other marine organisms.

Variation in Habitat and Trophic Position (δ13C and δ15N) of Seals with Age

To assess age-related shifts in trophic level and diet structure we compared the isotopic signatures in whiskers of sub-yearlings (n = 12; this study) to that of one (n = 5), two (n = 40) and three (n = 27) year old elephant seals sampled between 1999 and 2000 from Macquarie Island [75]. Isotopic signatures of one, two and three year old seals were derived from a single, randomly selected 2 mm section from each whisker.

Statistical Analyses

We performed all statistical analysis using R version 2.15.0 [76]. To determine if the stable isotopic signatures (δ13C and δ15N) of migratory, sub-yearling elephant seal whiskers were influenced by sampling year or the location of foraging (as inferred by the proportion of ARS locations occurring in IFZs) we used multivariate analyses of variance (MANOVA) fitted with the MANOVA function in R. To determine if δ13C or δ15N values were influenced by sampling year or the location of foraging separately, we used a linear model fitted with the lm function in R, with whisker δ13C or δ15N values as the dependent variables, year and foraging location as factors and the two way interaction term. We used Analysis of Variance (ANOVA) along with Tukey’s Honestly Significant Difference (HSD) post-hoc analysis to indicate where response variables differed. Proportional data were arcsine transformed prior to statistical analysis.

Linear mixed-effects models were used to examine the effects of age class and sex on variation of stable isotope values. The dependent variable was either δ13C or δ15N, with sampling year as a random factor, and age and sex as fixed factors. If the distribution was significantly different from normality, the data

PLOS ONE | www.plosone.org 4 January 2014 | Volume 9 | Issue 1 | e86452
were log-transformed and normality verified. Interactions between sampling year and dependent variables were examined. Effects of age and sex were, likewise, tested systematically in all analyses. We further assessed qualitative patterns of variation in habitat and trophic position through graphical examination of $\delta^{13}C$ and $\delta^{15}N$ values, respectively. We assessed significance for statistical tests at the 0.05 level. Mean values are given ± standard deviation (SD).

Results

Whisker Growth Dynamics and Isotopic Values of Sub-yearlings
Post-trip whiskers ranged in length from 42 to 144 mm (mean = 113.7 ± 19.2 mm; n = 12; Table 2) with the number of segments per whisker ranging from 17 to 55 (mean = 33 ± 9.4). Overall, a total of 551 sections were cut and analysed.

Isotopic values of whisker segments ranged from −22.9 to −16.0‰ (a difference of 6.9‰) for $\delta^{13}C$, and from 7.9 to 13.9 (a difference of 6‰) for $\delta^{15}N$ (Fig. 2). From the distal to proximal regions of the whiskers, $\delta^{13}C$ values showed an initial rise and then plateau in 13C abundance, before starting to fall again (Fig. 2). The number of segments and fall in 13C abundance varied among individuals. This pattern was even more pronounced in $\delta^{15}N$ values, with seven seals showing a distinct peak and ~4.0‰ drop in 15N abundance (range = 3.8 to 4.8‰). A difference of ~4.0‰ in $\delta^{15}N$ values reflects more than one trophic level of difference (~3.0‰). The decline in $\delta^{15}N$ values (grey symbols, Fig. 2) coincided with the point of interception with the pre-trip basal segment (red symbol and line, Fig. 2; n = 5), indicating a shift in food source from maternal milk and/or fasting (black symbols, Fig. 2) to independent prey acquisition (open symbols, Fig. 2).

Other seals (J373, T719, T825, T839 and T887) showed only an initial increase in 15N abundance along the temporal span (Fig. 2), with whiskers on average 21.4 mm shorter than that of other seals (101.2 ± 20.9 mm, n = 5 versus 122.6 ± 12.7 mm, n = 7; Table 3). For the latter group of seals, this indicates that the portion of whisker that contains the subsequent decline in 15N abundance (Fig. 1) was still beneath the skin, and thus not sampled.

The portion of post-trip whisker grown during in-utero/lactation/fasting ranged in length from 85 to 102 mm (mean = 93.4 ± 6.9 mm; 77.2 ± 5.7% of total whisker length; n = 8; Table 3) with the number of segments per whisker ranging from 24 to 31 (mean = 26.8 ± 2.3), while the portion of post-trip whisker grown during independent foraging at sea ranged in length from 4 to 30 mm (mean = 11.7 ± 9.5 mm; 9.1 ± 6.4% of total whisker length; n = 7; Table 3) with the number of segments per whisker ranging from 2 to 9 (mean = 4.4 ± 2.5).

Foraging Habitat

The number of days that the sub-yearling elephant seals spent at sea ranged from 126 to 182 days (mean = 153.2 ± 19.5 d; Table 1). The time spent in transit mode ranged from 12 to 76 days (mean = 50.0 ± 15.1 d; 32.4% of all locations at sea), while the time spent in ARS mode ranged from 62 to 108 days (mean = 81.7 ± 16.1 d; 53.2% of all locations at sea).
Table 2. Proportion of time spent (percentage) in Area Restricted Search (ARS) by seals in Inter-Frontal Zones (IFZs), including the Antarctic zone south of the southern Antarctic Circumpolar Current front—Southern Branch (S of SACCF-S), the ACC to Polar Front—Southern Branch (ACC to PF-S), the Polar Front (PF), the Polar Front to sub-Antarctic Front (PF to SAF) and the sub-Antarctic Front (SAF).

Seal ID No.	Sex	Proportion of ARS locations occurring in IFZs (%)	Habitat group						
		S of SACCF-S	ACC to PF-S	PF	PF to SAF	SAF	Total	IFZ	Latitude (°S)
1995/1996									
J226	F	0.0	0.0	47.8	5.7	2.0	55.5 (Dec–Apr)	PF	62.41'
J265	M	0.0	28.6	23.1	6.0	0.0	57.7 (Dec–Mar)	ACC to PF-S	64.60'
J375	M	0.0	0.0	46.3	4.4	0.0	50.7 (Dec–Feb)	PF	62.97'
J375	F	0.0	3.1	19.8	19.1	0.0	42.0 (Dec–Mar)	PF	63.19'
J492	F	0.0	13.9	24.2	10.3	0.0	48.4 (Dec–Mar)	PF	62.98'
J503	M	0.0	0.0	40.7	18.7	0.0	59.5 (Dec–Mar)	PF	62.84'
Mean		0.0	7.6 ± 11.6	33.6 ± 12.7	10.7 ± 6.7	0.3 ± 0.8	52.2 ± 6.6		63.17' ± 0.75'
1999/2000									
T719	F	0.0	0.0	49.3	7.8	3.4	60.5 (Jan–May)	PF	56.46'
T825	F	34.6	22.8	0.0	0.0	0.0	57.4 (Feb–May)	S of SACCF-S	61.64'
T839	F	0.0	56.5	0.0	0.0	0.0	56.5 (Jan–Mar)	ACC to PF-S	64.57'
T867	F	11.3	29.6	9.9	2.2	0.0	53.0 (Jan–Apr)	ACC to PF-S	64.80'
T875	F	0.0	24.6	14.6	1.0	0.0	40.1 (Jan–Apr)	ACC to PF-S	59.43'
T887	F	0.0	36.3	18.7	0.4	0.0	55.5 (May–Jan)	ACC to PF-S	62.43'
Mean		7.6 ± 13.9	28.3 ± 18.5	15.4 ± 18.3	1.9 ± 3.0	0.6 ± 1.4	53.9 ± 6.5		61.55' ± 3.19'
Overall mean		3.8 ± 10.2	18.0 ± 18.3	24.5 ± 17.8	6.3 ± 6.7	0.4 ± 1.1	53.1 ± 6.3		62.36’ ± 2.36’

The greatest proportion of seal ARS locations occurring in a particular IFZ defined their habitat group.

doi:10.1371/journal.pone.0086452.t002

Area Restricted Search locations for sub-yearlings in the 1995/1996 deployment occurred between December 1995 and April 1996, and between January and May 2000 in the 1999/2000 deployment (Table 2). Area Restricted Search locations occurred primarily at the distal portion of tracks (Fig. 3A; see Fig. S1 for individual tracks). The highest proportion of sub-yearlings (1995/1996: n = 6; 1999/2000: n = 2) utilized waters southeast of Macquarie Island, parallel with the Mid-Ocean ridge (MOR), ranging from 55°S to 66°S and 160°E to 170°W (Fig. 3A). In 1999/2000, three individuals utilized waters further to the southeast ranging from 59°S to 64°S and 160°E to 160°W, while one individual (T719) utilized waters southwest of Macquarie Island, associated with the Southeast Indian Ridge (SEIR), ranging from 53°S to 58°S and 130°E to 160°E (Fig. 3A). The majority of ARS locations of seals occurred within Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) Statistical Subareas 58.4.1, to the southwest of Macquarie Island, and 88.1 and 88.2 to the southeast (Fig. 3A).

Of the seven summarised IFZs utilised by sub-yearlings during migration from Macquarie Island (Fig. 3B), five were used by young seals while in ARS mode (Table 2). Of these, the PF was the most commonly used, with 24.5 ± 17.8% of all ARS locations occurring in this zone, followed by the ACC to PF-S (18.0 ± 18.3%), the PF to SAF (6.3 ± 6.7%), the S of SACCF-S (3.8 ± 10.2%) and lastly, the SAF (0.4 ± 1.1%). Between deployment years, the PF was the most commonly used zone in 1995/1996 (n = 5), while the ACC to PF-S was the most commonly used zone in 1999/2000 (n = 5). A single individual in 1999/2000 however, predominantly utilized waters south of the SACCF-S, with 34.6% of all search locations occurring in this zone (Table 2). The mean latitude of ARS locations occurring in each zone ranged from 56°5’S to 63°2’S in the PF, from 59°4’S to 64°6’S in the ACC to PF-S, and 61°6’S in the S of SACCF-S. We therefore identified two main habitat groups, the ‘ACC to PF-S’ (n = 5) and the ‘PF’ (n = 6; Table 2). The small sample size of seals utilizing the region south of the SACCF-S (n = 1) however, precluded further statistical comparison of this IFZ.

Variation in Habitat and Trophic Position (δ¹³C and δ¹⁵N) of Seals with the Location of Foraging

There was considerable overlap in δ¹³C and δ¹⁵N whisker values between individuals, with no significant differences in isotopic means and variances between years or IFZs detected in multivariate (MANOVA, Wilk’s λ: Year: F₁,₅ = 1.150, P = 0.426; Zone: F₁,₂ = 0.499, P = 0.650) and in uni-variate analysis (ANOVA: δ¹³C: all P > 0.688; δ¹⁵N: all P > 0.514). Mean isotopic values of sub-yearling elephant seal whiskers foraging in both the ACC to PF-S and PF were −21.2 ± 0.4‰ (range = −21.3 to −20.6‰, a difference of 1.2‰) for δ¹³C, and 9.4 ± 0.7‰ (range = 8.1 to 10.3‰, a difference of 2.2‰) for δ¹⁵N (Table 3, Fig. 4A).

As latitude is central in relating isotopic signatures in the tissues of consumers to foraging habitat in the Southern Ocean, we looked at the potential relationships between isotopic signatures (δ¹³C and δ¹⁵N) of elephant seal whiskers and the mean latitude of their foraging locations (i.e. habitat group, Table 2). No significant relationship between whisker isotopic values and mean latitude of foraging was detected (ANOVA: δ¹³C: F₁,₅ = 0.263, P = 0.630; δ¹⁵N: F₁,₅ = 0.004, P = 0.950), with considerable overlap in both
\[\delta^{13}C \text{ and } \delta^{15}N \text{ values} \]

$\text{d}^{13}C$ and $\text{d}^{15}N$ values and mean latitude of foraging location among seals (Fig. 4). Foraging locations of sub-yearlings encompassed a narrow latitudinal band (~60 to $65^\circ S$), with mean latitude of locations ranging from $62^\circ42'$ to $63^\circ19'S$ for seals foraging in the PF zone ($n=4$), and from $59^\circ43'$ to $64^\circ30'S$ for seals foraging in the ACC to PF-S zone ($n=3$; Fig. 4B).

Inferred Prey Consumption during the First 6 Months

Mean $\delta^{13}C$ and $\delta^{15}N$ values for seal whiskers (corrected for trophic discrimination) and potential prey items were plotted together (Fig. 5; Table S1). Seals foraging in the two IFZs showed similar isotope values to a mixture of intermediate trophic level mesopelagic fish, such as *E. antarctica* ($\delta^{13}C$: -22.3% and $\delta^{15}N$: 8.3%), *G. fraseri* ($\delta^{13}C$: -22.5% and $\delta^{15}N$: 8.0%), *Krefftichthys anderssoni* ($\delta^{13}C$: -22.3% and $\delta^{15}N$: 7.6%), and the squid *Kondakovia longimana* ($\delta^{13}C$: -25.1% and $\delta^{15}N$: 7.6%) and *Galiteuthis glacialis* ($\delta^{13}C$: -24.7% and $\delta^{15}N$: 8.1%), and lower trophic level mesopelagic fish, such as *P. tensioni* ($\delta^{13}C$: -22.1% and $\delta^{15}N$: 6.4%), and the squid *M. hyadesi* ($\delta^{13}C$: -21.6% and $\delta^{15}N$: 6.6%).

The $\delta^{13}C$ and $\delta^{15}N$ values recorded in the seals (as shown in Fig. 5) strongly suggest that crustaceans, such as euphausiids, are consumed. This is because the isotopic values of seals are (to varying degrees) intermediate between crustaceans, such as *E. triacantha* ($\delta^{13}C$: -23.6% and $\delta^{15}N$: 6.3%), *E. superba* ($\delta^{13}C$: -25.8% and $\delta^{15}N$: 5.5%) and *T. gaudichaudii* ($\delta^{13}C$: 8.8%).

![Schematic plots of $\delta^{13}C$ and $\delta^{15}N$ values along the post-trip whiskers of 12 sub-yearling southern elephant seals.](https://example.com/image.png)

We used stable carbon and nitrogen isotope values incorporated along the length of the whisker (mm). Values are colour-coded according to shift in food source along the temporal span of whisker presented in Fig. 1. Black symbols: *in-utero*/lactation/fasting; grey symbols: diet shift from mother’s milk and/or fasting to other food sources; open symbols: independent foraging at sea.

doi:10.1371/journal.pone.0086452.g002
Table 3. Stable isotopic characteristics of post-trip whiskers for each sub-yearling elephant seal (n = 12).

Seal ID No.	Whisker Sex	Pre-trip basal segment	Overall (mm) δ¹³C (‰) δ¹⁵N (‰)	In-utero/lactation/fasting (range) δ¹³C (‰) δ¹⁵N (‰)	Length (mm) C:N ratio	Independent foraging at sea (mm) δ¹³C (‰) δ¹⁵N (‰)	Habitat group					
1995/1996												
J226	F	−20.0	10.8	−20.5±1.0	10.5±1.0	10.2±0.9	10.6±0.9	12.0 (20)	−21.4±0.5	9.1±0.4	PF	
J263	M	−20.3	10.5	−20.6±0.5	10.9±0.8	20.4±0.5	10.8±0.7	4.0 (2)	−21.0±0.5	9.3±0.7	ACC to PF-FS	
J373	F	−19.9	10.6	−20.2±0.4	10.2±0.4	85.0 (27)	−20.1±0.3	10.2±0.4	- - -	PF		
J375	F	−19.6	10.3	−20.2±1.1	10.9±0.9	19.5±0.2	10.9±0.8	30.0 (5)	−21.8±0.7	10.3±1.5	PF	
J492	F	−20.4	11.2	−20.2±0.3	10.0±0.7	20.1±0.3	10.2±0.5	4.0 (2)	−20.6±0.0	8.1±0.3	PF	
J503	M	-	-	−19.7±0.8	11.1±1.0	19.5±0.6	11.1±0.9	6.0 (3)	−21.1±0.1	9.3±0.2	PF	
Mean			10.7±0.3	−20.2±0.8	10.6±0.9	20.0±0.6	10.7±0.8	11.2±1.0	−21.5±0.7	9.6±1.3	PF	
1999/2000												
T719	F	-	-	−17.6±0.5	11.9±0.6	129.0 (39)*	−17.7±0.5	11.9±0.6	- - -	PF		
T825	F	-	-	−20.7±0.3	10.4±0.7	104.0 (32)*	−20.7±0.4	10.4±0.7	- - -	S of SACCF-FS		
T839	F	-	-	−20.9±0.4	10.1±0.7	90.0 (24)*	−20.9±0.4	10.1±0.8	- - -	ACC to PF-FS		
T867	F	-	-	−20.7±0.5	11.4±1.3	102.0 (27)	−20.5±0.5	11.2±1.1	8.0 (4)	ACC to PF-FS		
T875	F	-	-	−19.4±1.3	11.3±1.2	85.0 (24)	−18.6±0.5	11.5±0.9	18.0 (9)	21.3±0.4	9.7±0.3	ACC to PF-FS
T887	F	-	-	−20.5±0.3	10.6±0.8	76.0 (19)*	−20.6±0.3	10.7±0.8	- - -	ACC to PF-FS		
Mean			10.7±0.3	−19.8±1.4	11.1±1.1	93.5±120	−19.6±1.1	11.3±1.0	13.0±7.1	21.4±0.4	9.7±1.0	ACC to PF-FS
Overall mean			113.7±19.2	−20.0±1.1	10.8±1.0	93.4±6.9	−19.9±0.8	10.8±0.9	11.7±9.5	21.4±6.0	96.1±0.6	

*Seals showed incomplete whisker growth (mm) during in-utero/lactation/fasting. Results for these animals are not included in the mean and overall mean (± standard deviation). doi:10.1371/journal.pone.0086452.t003
and $d^{15}N$ value: 5.4%), and higher trophic level fish and squid (Fig. 5). In at least four individuals (J263, J226, J503 and J492) they appear to have had some euphausiids in their diets. The interpretation of the other three individuals (J375, T867 and T875) is more ambiguous as their position on the plot could be due to either a mixture of squid, such as *P. glacialis* ($d^{13}C$: 225.3% and $d^{15}N$ value: 7.9%) and *M. hyadesi* or euphausiids and squid, such as *E. frigida* ($d^{13}C$: 224.3% and $d^{15}N$ value: 4.9%) and *P. glacialis* or even a combination of fish, squid and crustaceans.

Variation in Habitat and Trophic Position ($d^{13}C$ and $d^{15}N$) of Seals with Age

Stable carbon values in whiskers showed significant variation with age (mixed-effects ANOVA: $F_{3,126} = 10.116$, $P = 0.001$), reflecting spatial variability in foraging habitat between age classes. Mean $d^{13}C$ values ranged from $-21.4 \pm 0.6\%$ (range = -21.9 to -20.5%) for sub-yearlings, compared to $-20.2 \pm 0.9\%$ (range = -21.7 to -17.7%), $-20.2 \pm 1.0\%$ (range = -22.3 to -18.2%) and $-20.7 \pm 0.9\%$ (range = -23.0 to -19.1%) for one, two and three year olds, respectively (Fig. 6). Post-hoc analysis indicated sub-yearlings were significantly depleted in $d^{13}C$ compared to three olds, however no significant variation was detected ($P = 0.06$).

Stable nitrogen isotopic values in whiskers showed significant variation with age (mixed-effects ANOVA: $F_{3,126} = 8.720$, $P < 0.0001$). Mean $d^{15}N$ values ranged from 9.6 $\pm 1.0\%$ (range = 7.9 to 13.9%) for sub-yearlings, compared to 11.0 $\pm 1.3\%$ (range = 8.8 to 13.3%), 11.2 $\pm 1.4\%$ (range = 8.7 to 13.8%), and 10.7 $\pm 1.1\%$ (range = 9.4 to 13.2%) for one, two and three year old age classes, respectively (Fig. 6). Post-hoc analysis indicated sub-yearlings were significantly depleted in $d^{15}N$ compared to one, two and three year old seals (Tukey’s HSD post-hoc difference tests, all $P < 0.01$). Some one and two year old seals however, showed similar depleted $d^{13}C$ and $d^{15}N$ values as sub-yearlings, indicating overlap in both foraging habitat and trophic position.

Discussion

The foraging range and prey intake of air-breathing marine predators is largely dictated by their physiological capabilities, most often related to body size [77,78,79]. The diet of young, independent offspring during their first foraging migration may therefore, differ substantially from that of older and larger conspecics. This is particularly true for species where physiological and behavioural attributes can take several years to reach

Figure 3. Tracks of 12 weaned southern elephant seals during their first migration from Macquarie Island. Tracks are colour-coded according to (A) behavioural state estimates from the two-state first-difference correlated random walk switching (DCRWS) model overlaid in yellow (Transit) and red (Area Restricted Search) and (B) Inter-Frontal Zones (IFZs). From south to north, IFZs included the Antarctic zone south of the southern Antarctic Circumpolar Current Front-Southern branch (S of SACCF-S), the ACC to Polar Front-Southern branch (ACC to PF-S), the PF, the PF to sub-Antarctic Front (PF to SAF), the SAF, and the SAF-Northern branch to sub-Antarctic Zone (SAF-N to SAZ). Dashed lines indicate the boundaries of CCAMLR Statistical Subareas 58.4.1, 88.1 and 88.2. All seal tracks originated and terminated at Macquarie Island, located in the South-West Pacific Ocean sector of the Southern Ocean. doi:10.1371/journal.pone.0086452.g003
adult capacity. In southern elephant seals the dive durations and depth of newly weaned seals are known to be limited by their body size [20,40].

Using a combination of tracking and stable isotope data, we found the diet of sub-yearling southern elephant seals from Macquarie Island, foraging predominantly in waters at or south of the PF (60°S) and within CCAMLR Statistical Subareas 88.1 and 88.2, to be consistent with the consumption of mesopelagic fish and squid, and crustaceans. The predominance of mesopelagic fish and squid in the diet of older juvenile and adult seals has been well documented [5,80,81,82,83,84] however, the likely importance of crustaceans, such as euphausiids, in the diet of young seals feeding inside the CCAMLR management zone, is a significant, new finding for this species. Comparison of whisker isotopic values of sub-yearlings and older juvenile age classes (one, two and three year olds) ([75], this study) showed sub-yearlings to be relatively depleted in both δ¹³C and δ¹⁵N. This is indicative of younger seals (constrained by their size, dive capabilities and prey capture skills) unable to access larger, higher trophic level prey deep in the water column (>300 m), feeding closer to the surface where lower trophic level crustaceans, such as euphausiids, offer an abundant source of prey in addition to fish and squid.

Precaution must be taken in interpreting dietary trends inferred from isotopic results, as the combination of prey types using this technique can never be accurately quantified [85,86,87]. The most plausible explanation for the low mean δ¹³C and δ¹⁵N values of sub-yearlings however is the consumption of euphausiids (and copepods and amphipods). Moreover, tracking data confirms that the foraging range of sub-yearlings at this time of year overlaps with the maximum sea-ice extent and known distribution of euphausiids in this region of east Antarctica [88,89,90]. Further, the known dive depth and diurnal migrations of sub-yearlings (dive depth ~100 m) [40] is consistent with the vertical distribution of krill in the Western Antarctic Peninsula during winter [91,92].

From a conservation and management viewpoint, our findings have important implications. We provide evidence of a new crustacean (krill) predator, the southern elephant seal, within waters managed under CCAMLR. Our findings show that regions associated with the Ross Sea constitute important foraging grounds for southern elephant seals during their critical, first year of life in which they transition to independent foraging.

Whisker Growth Dynamics

Bio-logging and natural biochemical tracers are increasingly being used to provide spatially explicit dietary information for highly migratory marine predators [93,94,95,96]. Whiskers, collected from animals tracked by satellite, contain a time-series of stable isotope ratios of carbon and nitrogen which can potentially be related to individual telemetry tracks, establishing a means to link diet to remote feeding grounds. To interpret this

Figure 4. Area Restricted Search locations and whisker δ¹³C and δ¹⁵N values reflecting independent foraging at sea. (A) Mean δ¹³C and δ¹⁵N whisker values and (B) Area Restricted Search locations for 7 sub-yearling elephant seals during their first migration from Macquarie Island are colour-coded according to foraging location (Inter-Frontal Zones, IFZs, presented in Fig. 2). Bathymetric features including the Southeast Indian Ridge, Australian-Antarctic Basin and Mid-Ocean Ridge are indicated in (B). Values are mean±SD.

doi:10.1371/journal.pone.0086452.g004
dietary information in a spatio-temporal context however requires knowledge of the growth history of the whisker [36,97,98]. Accounting for the growth dynamics of whiskers enables the correct interpretation of the time-series of diet information incorporated along the length of the whisker [36]. In all sub-yearling elephant seals we found a similar pattern in isotopic enrichment along the temporal span of the whisker, i.e. from the distal to proximal region. However, this pattern was more pronounced in δ^{15}N values, with an initial rise and distinct peak in δ^{15}N abundance indicative of the shift in food source from in-utero development to mother’s milk during lactation. Nursing offspring essentially feed at a higher trophic level than their mothers do as has been shown in several species, including pinnipeds [99,100,101]. In northern elephant seals, Habran et al. [100] found young pups to be increasingly enriched in δ^{15}N compared to that of their mothers from early (+0.6‰, day 5) to late lactation (+1.3‰, day 22), while in Steller sea lions (Eumetopias jubatus), Steggall et al. [101] recorded the root of the whisker (representing current growth) of young pups to be δ^{15}N enriched (+2.0‰) over their diet (ingested mother’s milk) during lactation.

Of the twelve sub-yearlings with concurrent isotopic and tracking data, seven seals showed a subsequent fall in δ^{15}N values, equivalent to more than one trophic level of a difference (−3‰) and indicative of a diet shift from mother’s milk and/or fasting to free ranging prey. We suggest that the reason we do not see this decline in δ^{15}N values in the other five seals is that slower whisker growth meant that the new material, synthesized after weaning, never appeared above the skin and was therefore not sampled. The portion of whisker grown during independent foraging at sea accounted for 11.7 ± 6.9 mm or 9.1 ± 6.4% of total growth, indicating that an average of 12 mm of growth is contained under the skin for the latter group of seals. In contrast, the portion of post-trip whisker grown during in-utero/lactation/fasting accounted for 93.4 ± 6.9 mm or 77.2 ± 5.7% of total whisker growth (n = 8). In elephant seals, whiskers are established early during in-utero development with foetal whiskers growing as much as 27 mm in length, and are not shed during their annual pelage moult but randomly after seals are at least two years of age [102]. Moreover, whisker growth rates (0.87 mm per day) of new born, nursing bearded seals (Erignathus barbatus) suggest periods of rapid, somatic growth may be reflected in the growth of the whiskers [103]. These results therefore suggest that like other phocid species, the rapid accumulation of energy reserves as blubber by nursing elephant seals [11,104], may be reflected in the growth of the whiskers.
In summary, we found whiskers to be extremely useful tools for accessing time integrated diet information of elephant seals during their first year of life as we can trace the origin of the signature incorporated along the length of the whisker, i.e. from maternal investment to independent foraging. A significant finding of this study was that whiskers collected after the first foraging trip were predominantly still composed of in-utero and pre-weaning material as a result of relatively slow whisker growth rates during the 3 to 4 month foraging trip. The results of this study also highlight the need to sample plucked and not cut whiskers for future isotopic dietary analysis in order to capture the most recent isotopic information contained in the root of the whisker under the skin.

Foraging Habitat

The foraging behaviour of a predator can change in response to the distribution of prey resources in a large heterogeneous environment. Identifying changes in the movement behaviour of a predator can therefore be informative as to the distribution and consumption of prey resources at a range of temporal scales. Over a period of 4 to 6 months satellite tracking data showed that sub-yearling elephant seals dispersed, in some cases thousands of kilometres, to the southeast of Macquarie Island ([10,40], this study) apart from one individual which travelled to the southwest of Macquarie Island. Area Restricted Search locations, used as a proxy for foraging areas of sub-yearling elephant seals, occurred at the distal portion of tracks.

Foraging locations in the southeast group were primarily associated with ACC frontal branches of the PF (PF-S to PF-N, summarised as the PF; n = 5) and the SACCF (SACCF-S to PF-S, summarised as the ACC to PF-S; n = 6) and bathymetric features such as the MOR. The foraging locations of the single seal which travelled to the southwest of Macquarie Island were primarily associated with frontal branches of the PF and the SEIR. In this study, the foraging locations of only one seal were primarily

![Figure 6. Whisker δ^{13}C and δ^{15}N values of juvenile southern elephant seals from Macquarie Island. Stable carbon (δ^{13}C) and nitrogen (δ^{15}N) isotope values from a randomly selected 2 mm section of whisker from (A) sub-yearling (n = 7; colour coded by foraging locations (IFZs) presented in Fig. 4), (B) one year (n = 35; light grey symbols), (C) two year (n = 40; dark grey symbols) and (D) three year old (n = 27; black symbols) age classes of elephant seals from Macquarie Island ([75], this study). Also shown are marginal frequency distributions for the δ^{13}C and δ^{15}N values for each age class.](http://www.plosone.org/doi/10.1371/journal.pone.0086452.g006)

doi:10.1371/journal.pone.0086452.g006
associated with waters to the south of the sBdy (south of sBdy to SACCF-S, summarised as S of SACCF-S).

The movement and foraging behaviour of sub-yearling elephant seals from this site has been previously investigated [10,21,40,103]. Two studies in particular, detail the movement, foraging areas [10,40] and dive behaviour [40] of seals, including animals from this study. In this study, we separated travel into two phases, transit and ARS. Area Restricted Search behaviour is thought to occur in response to the patchy distribution of resources in an environment [106]. This behaviour corresponds with periods of reduced travel speed and increased turning rate, which are more likely to be associated with movements associated with feeding as opposed to transit [48]. McConnell et al. [10] and Hindell et al. [40] separated travel into three phases (initial outbound transit, intermediate movement and final return transit) based upon daily travel rates for a large number of sub-yearlings (n = 30 for both studies). Intermediate tracks, presumed to represent feeding, corresponded to slower and less directed travel, interrupted by occasional bouts of increased travel [10,40]. The dive behaviour of seals during this time consisted of relatively shallow and short dives (117 ± 48 m and 5.9 ± 1.4 min, respectively; [40]). Concentrated activity (locations of feeding) were centred on localised patches up to 1900 km from Macquarie Island, with the southern boundary of tracks in the southeast group aligned with the SACCF [10,40]. These foraging areas (mean duration 67 days) matched well with the ARS areas (mean duration 81 days) of the sub-yearlings in this study.

Variation in Habitat ($\delta^{13}C$) of Seals with the Location of Foraging

We found that the most depleted $\delta^{13}C$ values incorporated along the temporal span of the whisker (as represented by the growth of the whisker) were contained in the portion of whisker grown during independent foraging at sea (−21.4 ± 0.6‰, n = 7; Fig. 2), while the most enriched $\delta^{13}C$ values were contained in the portion of whisker grown during in-utero/lactation/fasting (−19.3 ± 1.1‰, n = 12; Table 2). In oceanic waters of the Southern Ocean, the POM $\delta^{13}C$ values become more depleted with increasing latitudes, and these latitudinal changes are subsequently transferred to higher levels within the food chain [67,68]. The decline in $\delta^{13}C$ values towards the proximal region of the whisker is therefore consistent with the southward migration of seals (outward transit tracks) to high latitude foraging areas (ARS tracks) located at or south of the PF (~60°S) to the southeast of Macquarie Island (Fig. 4B; Fig. S1.).

It remains unclear to what degree young seals feed on the outward transit leg of their foraging trips [19] however it is most likely that sub-yearlings are in a state of transition from mother’s milk and/or fasting to free ranging prey, as indicated by the concurrent ~3‰ drop in $\delta^{15}N$ and reduced whisker growth (~10 mm), at this time (Fig. 3). However, $\delta^{13}C$ values related to independent foraging appear to stabilise at ~−21.0‰, presumably after seals have reached their main foraging grounds. We are therefore fairly certain the $\delta^{13}C$ values contained in the portion of whisker grown during independent foraging at sea are representative of core foraging habitat use, namely waters of the PF and ACC to PF-S.

There was considerable overlap in the $\delta^{13}C$ signatures of sub-yearlings related to independent foraging, both between years and foraging locations (IFZs: PF = −21.5 ± 0.5‰, n = 4; ACC to PF-S = −21.2 ± 0.4‰, n = 3), indicating that even though seals were using similar latitudes (62°39′17″ 77′; n = 7), they were in fact in different water masses, and there was no difference in $\delta^{13}C$ between those water masses. The structure and flow of the ACC is complex, consisting of multiple frontal filaments or branches that are strongly influenced by bathymetry [52]. The PF marks the southern boundary of the PF to SAF zone and the beginning of the ACC to PF-S zone, while the sBdy delimits the southern boundary of the ACC to PF-S and the beginning of the S of SACCF-S zone. In the southwest Pacific sector, the frontal branches of the PF and SACCF merge to form a single frontal zone on the northern slope of the MOR near 170°E or where diverted to the south by obstacles like the Campbell Plateau. Frontal branches however, are clearly separated over deep ocean basins, such as the Australian – Antarctic Basin to the southwest of Macquarie Island [52]. As a consequence, the magnitude of the latitudinal variation in the boundaries of the PF and SACCF is much greater to the southwest of Macquarie Island than to the southeast of Macquarie Island [50,51,52,53,107]. This indicates that $\delta^{13}C$ signatures are not adequate to resolve habitat (water mass) at this scale and consequently, seals located to the southeast of Macquarie Island and predominantly associated with frontal branches of the PF and SACCF (i.e. PF and ACC to PF-S zones, respectively) and the MOR show similar $\delta^{13}C$ values.

Inferred Prey Consumption during the First Six Months

Very little is known about the diet of southern elephant seals during the course of their migrations, particularly in relation to core foraging areas. Lavaged stomachs of both juvenile and adult seals returning to colonies, which represent the most recent prey intake at the end of foraging trips, consist largely of mesopelagic fish and squid at Macquarie Island [5,22,80,108], and other populations across the Southern Ocean [23,81,83,84,109,110], while an increasing amount of inferential data from biochemical tracers, such as stable isotopes and fatty acids augment the dietary information corresponding to at least the first half of their foraging trips. Stable nitrogen values spanned more than one trophic level, with considerable overlap in $\delta^{15}N$ values of seals both between years and foraging locations (IFZs) suggesting that all seals fed at a similar trophic level irrespective of foraging habitat. However, there was considerable individual variability in their diet. Pronounced individual variability has also been described in diving behaviour within water masses for this species [24]. Individual specialisation in diet increases the niche breadth for a population and may offer some buffering against a changing resources base [103].

The trophic position of seals, which foraged to the southeast of Macquarie Island in waters at or south of the PF and within CCMLIR Subareas 88.1 and 88.2 (~60°S; Fig. 3) were consistent with the consumption of a mixture of intermediate trophic level mesopelagic fish and squid ($\delta^{13}C$: ~8‰, such as E. antarctica, G. frazeri, K. anderssoni, G. glaciata, K. longimana and P. glaciata), lower trophic level mesopelagic fish and squid ($\delta^{15}N$: ~5–7‰, such as M. hyadesi and P. tensoni) and lower trophic level crustaceans ($\delta^{15}N$: <6‰, such as euphausiids, copepods and amphipods) characteristic of that sampled within colder, high latitude eastern Antarctic waters [88]. The consumption of mesopelagic fish and squid is consistent with the dietary trends of elephant seals determined in previous studies. However, sub-yearlings showed lower mean $\delta^{15}N$ signatures compared to older juvenile (Fig. 6) [73] and adult seals [70]. When we compare the isotopic signatures of sub-yearlings and potential prey, the most parsimonious explanation is the consumption of lower trophic level crustaceans, such as euphausiids, in addition to fish and squid. In addition, stable isotope data
Variation in Habitat and Trophic Position (δ¹³C and δ¹⁵N) of Seals with Age

Ontogenetic changes in movement patterns, foraging habitat use and diet have been reported for older juvenile southern elephant seals from Macquarie Island [5,18,21,22,75], other populations [80,81] and in their northern counterpart, the northern elephant seal [125]. Sub-yearlings showed more depleted δ¹³C and δ¹⁵N values than older juvenile seals, indicating ontogenetic segregation in both foraging range and trophic position, respectively. These observed isotopic differences are in good agreement with sub-yearlings feeding at a lower trophic level than older seals, since their size, dive capabilities and predation skills are limited [20,40]. The increased diving capabilities of elephant seals with increasing age are well documented [126], and may give older juveniles and adults a substantial advantage in capturing prey found at greater depths. Indeed, higher trophic level cephalopod prey of elephant seals, such as P. glacialis and Alloroteuthis antarcticus [22,80], occur at high densities deep in the water column (500 to 1000 m). Sub-yearling elephant seals, limited to some extent by their physiological capabilities, are restricted to the upper 300 m of the water column (mostly 100 to 200 m depth) [40]. Lower trophic level pelagic prey, such as smaller-sized myctophid fish and crustaceans, which occur in high densities in the upper limits of the water column, may therefore provide an abundant and easily accessible source of prey for smaller seals. Crustaceans may, therefore, form a significant part of the diet of some sub-yearlings.

Supporting Information

Figure S1 Tracks overlaid with state estimates from the two-state first-difference correlated random walk switching (DCRWS) model. Tracks of 12 weaned southern elephant seals during their first foraging migration from Macquarie Island, colour coded by state estimates. Grey: transit locations; light blue, blue and green: Area Restricted Search (ARS) locations for S of SACCF-S, ACC to PF-S and PF zones, respectively. (PDF)

Table S1 Stable carbon (δ¹³C) and nitrogen (δ¹⁵N) values of various marine organisms from the Southern Ocean. (PDF)

Acknowledgments

We would like to thank the members of the 49th to 53rd Australian National Antarctic Research Expeditions (ANARE) for their assistance during field work especially Martin Buw, Margie Morrice, Rupert Davies, Clive McMahon, Mike Fedak, Bernie McConnell, Sam Thalmann, Dave Slip, and the Australian Antarctic Division for logistics support. We thank Guy Duhamel and Patrice Pruvost for the collection and identification of myctophid fish samples from waters to the northeast of the Kerguelen Archipelago. We would also like to thank one anonymous reviewer for their extensive review, comments and great interest in this manuscript.

Author Contributions

Conceived and designed the experiments: AW MH JvdH ML SS. Performed the experiments: AW SS. Analyzed the data: AW SS. Contributed reagents/materials/analysis tools: AW MH JvdH SS IF PV. Wrote the paper: AW. Obtained permission for use of published data in Figure 5: MP. Obtained permission for use of published data in Figure 6: IF. Contributed analysis tools: SS.
References

1. Constable AJ, Nicol S, Strutton PG (2003) Southern Ocean productivity in relation to spatial and temporal variation in the physical environment. Journal of Geophysical Research: Oceans 108.

2. Best CA, Cotelle R, Bailleul F, Cherel Y, Charrassin JB, et al. (2009) The importance of oceanographic fronts to marine birds and mammals of the southern oceans. Journal of Marine Systems 78: 363–376.

3. Reid K, Croxall JP (2001) Environmental response of upper trophic-level predators reveals a system change in an Antarctic marine ecosystem. Proceedings: Biological Sciences 268: 377–384.

4. Iverson SJ, Arnould JPY, Boyd IL (1997) Milk fatty acid signatures indicate both major and minor shifts in the diet of lactating Antarctic fur seals. Canadian Journal of Zoology 75: 198–207.

5. Field IJ, Braidshaw CJA, van den Hoff J, Burton HR, Hindell MA (2007) Age-related shifts in the diet composition of southern elephant seals expand overall foraging niche. Marine Biology 150: 1441–1452.

6. Li L, Hindell MA, McDonald SP, Cochrane SH, Costanzo ER, et al. (1998) Patterns of natal and breeding dispersal in birds. Journal of Animal Ecology 67: 518–536.

7. Breed G, Bowen W, Leonard M (2011) Development of foraging strategies with age in a long-lived marine predator. Marine Ecology Progress Series 431: 267–278.

8. McManus DR, Brevik MJ, Short KR, Reinardy JS, Porcelli RF, et al. (2000) Movements and foraging areas of naive, recently weaned southern elephant seal pups. Journal of Animal Ecology 71: 65–76.

9. Arribault T, Fedak MA, Boyd IL, McConnel BJ (1993) Variation in weaning mass of pups in relation to maternal mass, postweaning fast duration, and weaned pup behaviour in southern elephant seals (Mirounga leonina) at South Georgia. Canadian Journal of Zoology 71: 1727–1741.

10. Arribault T, Fedak MA, Boyd IL, McConnel BJ (1997) Factors affecting maternal expenditure in southern elephant seals during lactation. Ecology 78: 471–483.

11. McMahon CR, Best PB, Schell DM (1996) Stable isotopes in southern right whale (Eubalaena australis) assemblages off the Kerguelen Islands (Southern Ocean). Polar Biology 23: 127–135.

12. Braidshaw CJA, Hindell MA, Best NJ, Phillips KL, Wilson G, et al. (2003) You are what you eat: describing the foraging ecology of southern elephant seals (Mirounga leonina) using bladder fatty acids. Proceedings of the Royal Society of London Series B-Biological Sciences 270: 1289–1292.

13. Field IC, Braidshaw CJA, Burton HR, Hindell MA, McDonald SP (2000) Resource partitioning through oceanic segregation of foraging juvenile southern elephant seals (Mirounga leonina). Oecologia 127: 503–515.

14. van den Hoff J, Burton HR, Hindell MA, McMahon CR, Harrington J, et al. (2002) Factors affecting maternal expenditure in southern elephant seals during lactation. Ecology 83: 162–172.

15. Robinson PW, Costa DP, Gallo-Reynoso JP, Champagne CD, Crocker DE, et al. (2009) Environmental and physiological determinants of successful foraging by naive southern elephant seal pups during their first trip to sea. Canadian Journal of Zoology 77: 1897–1821.

16. Lea M-A, Nichols PD, Wilson G (2002) Fatty acid composition of lipid-rich vibrissae of the Antarctic fur seal (Callorhinus ursinus). Journal of Animal Ecology 71: 1283–1292.

17. McManus DR, Brevik MJ, Short KR, Reinardy JS, Porcelli RF, et al. (2000) Movements and foraging areas of naive, recently weaned southern elephant seal pups. Journal of Animal Ecology 71: 65–76.

18. Robinson PW, Costa DP, Gallo-Reynoso JP, Champagne CD, Crocker DE, et al. (2009) Environmental and physiological determinants of successful foraging by naive southern elephant seal pups during their first trip to sea. Canadian Journal of Zoology 77: 1897–1821.

19. Lea M-A, Nichols PD, Wilson G (2002) Fatty acid composition of lipid-rich vibrissae of the Antarctic fur seal (Callorhinus ursinus). Journal of Animal Ecology 71: 1283–1292.

20. Robinson PW, Costa DP, Gallo-Reynoso JP, Champagne CD, Crocker DE, et al. (2009) Environmental and physiological determinants of successful foraging by naive southern elephant seal pups during their first trip to sea. Canadian Journal of Zoology 77: 1897–1821.

21. Lea M-A, Nichols PD, Wilson G (2002) Fatty acid composition of lipid-rich vibrissae of the Antarctic fur seal (Callorhinus ursinus). Journal of Animal Ecology 71: 1283–1292.

22. McManus DR, Brevik MJ, Short KR, Reinardy JS, Porcelli RF, et al. (2000) Movements and foraging areas of naive, recently weaned southern elephant seal pups. Journal of Animal Ecology 71: 65–76.

23. Robinson PW, Costa DP, Gallo-Reynoso JP, Champagne CD, Crocker DE, et al. (2009) Environmental and physiological determinants of successful foraging by naive southern elephant seal pups during their first trip to sea. Canadian Journal of Zoology 77: 1897–1821.

24. McManus DR, Brevik MJ, Short KR, Reinardy JS, Porcelli RF, et al. (2000) Movements and foraging areas of naive, recently weaned southern elephant seal pups. Journal of Animal Ecology 71: 65–76.

25. McManus DR, Brevik MJ, Short KR, Reinardy JS, Porcelli RF, et al. (2000) Movements and foraging areas of naive, recently weaned southern elephant seal pups. Journal of Animal Ecology 71: 65–76.

26. McManus DR, Brevik MJ, Short KR, Reinardy JS, Porcelli RF, et al. (2000) Movements and foraging areas of naive, recently weaned southern elephant seal pups. Journal of Animal Ecology 71: 65–76.

27. McManus DR, Brevik MJ, Short KR, Reinardy JS, Porcelli RF, et al. (2000) Movements and foraging areas of naive, recently weaned southern elephant seal pups. Journal of Animal Ecology 71: 65–76.
108. Hindell MA, Bradshaw CJA, Summer MD, Michael KJ, Burton HR (2003) Dispersal of female southern elephant seals and their prey consumption during the austral summer: relevance to management and oceanographic zones. Journal of Applied Ecology 40: 703–715.

109. Boyd IL, Arnbom TA, Fedak MA (1994) Biomass and energy consumption of the South Georgia population of southern elephant seals In: Le Boeuf BJ, Laws RM, editors. Elephant seals: population ecology, behavior, and physiology. Berkeley: University of California Press. pp. 98–120.

110. Rodhouse PG, Arnbom T, Fedak MA, Yeatman J, Murray AWA (1992) Cephalopod prey of the southern elephant seal Mirounga leonina. Canadian Journal of Zoology 70: 1007–1015.

111. Newland C, Field IC, Nichols PD, Bradshaw CJA, Hindell MA (2009) Blubber fatty acid profiles indicate dietary resource partitioning between adult and juvenile southern elephant seals. Marine Ecology Progress Series 384: 303–312.

112. Newsome SD, Bentall GB, Tinker MT, Ofstedal OT, Ralls K, et al. (2010) Variation in δ13C and δ15N diet - vibrissae trophic discrimination factors in a wild population of California sea otters. Ecological Applications 20: 1744–1752.

113. Cherel Y, Putz K, Hobson K (2002) Summer diet of king penguins (Aptenodytes patagonicus) at the Falkland Islands, southern Atlantic Ocean. Polar Biology 25: 898–906.

114. Adams NJ, Klages NT (1987) Seasonal variation in the diet of the king penguin (Aptenodytes patagonicus) at sub-Antarctic Marion Island. Journal of Zoology 212: 303–324.

115. Cherel Y, Hobson KA, Guinet C, Vanpe C (2007) Stable isotopes document seasonal changes in trophic niches and winter foraging individual specialization in diving predators from the Southern Ocean. Journal of Animal Ecology 76: 826–836.

116. Wienecke B, Robertson G (2006) Comparison of foraging strategies of incubating king penguins Aptenodytes patagonicus from Macquarie and Heard islands. Polar Biology 29: 424–430.

117. Roper CFE (1969) Systematics and zoogeography of the worldwide bathypelagic squid Bathyteuthis (Cephalopoda: Oegopsida). Bulletin of the United States National Museum 291: 1–210.

118. Hopkins TL, Torres J (1989) Midwater food web in the vicinity of a marginal ice zone in the western Weddell Sea. Deep-Sea Research 36: 543–560.

119. Mayzaud P, Farber-Lorda J, Corre MC (1985) Aspects of the nutritional metabolism of two euphausiids: Euphausia superba and Thyasira maerua. In: Siegfried WR, Condy FK, Laws RM, editors. Antarctic nutrient cycles and food webs. Berlin: Springer. pp. 330–338.

120. Pfleger CF, Nelson MM, Mooney BD, Nichols PD (2002) Intervernal and between species comparison of the lipids, fatty acids and steroids of Antarctic krill from the US AMLR Elephant Island survey area. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 131: 733–747.

121. Croxall JP, Reid K, Prince PA (1999) Diet, provisioning and productivity responses of marine predators to differences in availability of Antarctic krill. Marine Ecology Progress Series 177: 115–131.

122. Pakhomov EA, Perissinotto R, McQuaid CD (1994) Comparative structure of the macrozooplankton/micronekrion communities of the Subtropical and Antarctic Polar Fronts Marine Ecology Progress Series 111: 155–169.

123. Wienecke B, Robertson G (2002) Foraging Areas of King Penguins from Macquarie Island in Relation to a Marine Protected Area. Environmental Management 29: 662–672.

124. Hull C, Hindell M, Michael K (1995) Foraging zones of royal penguins during the breeding season, and their association with oceanographic features. Marine Ecology Progress Series 153: 217–228.

125. Le Boeuf BJ, Morris PA, Blackwell SB, Crocker DE, Costa DP (1996) Diving behavior of juvenile northern elephant seals. Canadian Journal of Zoology 74: 1632–1644.

126. Slip D, Hindell MA, Burton HR (1994) Diving behaviour of southern elephant seals from Macquarie Island: an overview. In: Le Boeuf BJ, Laws RM, editors. Elephant seals: population ecology, behaviour, and physiology. Berkeley: University of California Press. pp. 66–84.