CASE

A 22-year-old female with sickle cell disease presented with fevers, bilateral knee pain, and lethargy. Laboratory data revealed a leukocytosis and lactic acidosis. Blood and synovial fluid cultures grew a non-toxin-producing strain of *Clostridium difficile*. This case highlights the fact that nontoxigenic *Clostridium difficile* can cause significant disease.

Keywords. bacteremia; *Clostridium difficile*; hemoglobin SS disease; septic arthritis; sickle cell disease.
nontoxicigenic strains. As a result, this isolate had no amplification for the tcdC-encoding gene. PCR ribotyping confirmed that the isolate was Ribotype 039. The isolate was sent to ARUP laboratories for a cytotoxin cell assay, which provided confirmation that, phenotypically, no toxin was being produced.

DISCUSSION

The genus *Clostridium* comprises obligately anaerobic (or occasionally aerotolerant), Gram-positive rods. *C. difficile* causes symptoms ranging from mild self-limiting diarrhea to the development of full-scale pseudomembranous colitis [1]. Extra-intestinal *C. difficile* infections account for less than 0.2% of all *C. difficile* infections [2]. *C. difficile* bacteremia is even more uncommon and is generally part of a polymicrobial bacteremia involving other intestinal flora [2]. A recent literature review identified only 44 cases of *C. difficile* bacteremia between 1962 and 2015 [2]. Moreover, while review of the literature describes postinfectious sterile inflammatory arthritis as a complication of gastrointestinal *C. difficile* infection [3–5], cases of septic arthritis due to the organism itself are rare (Table 1). When it does occur, the majority of published septic arthritis cases [3, 6] involve prosthetic joints [7–12]. Review of the literature yielded only 1 case report of native large joint septic arthritis in an 11-year-old boy, also with Hemoglobin SS disease, who experienced right-sided shoulder discomfort and was found to be bacteremic with *C. difficile* despite having no gastrointestinal symptoms [13]. This publication did not describe ribotyping on the bacterial isolate in that case to assess for toxin production.

C. difficile diagnostic assays are designed to detect the absence or presence of organisms or toxins in patient fecal samples. However, these tests are unable to differentiate asymptomatic carriers from those patients with veritable disease. The majority of clinical laboratories utilize Food and Drug Administration–approved molecular tests that detect genes encoding *C. difficile* toxins. These nucleic acid amplification tests are rapid and highly sensitive, yet the positive predictive value can be low if the test is not ordered in the appropriate clinical context. The ProGastro Cd test (Prodesse, Waukesha, WI) and the GeneOhm Cdiff assay (BD Diagnostics, San Diego, CA) target toxin B (tcdB), while the Xpert *C. difficile* test (Cepheid) is a multiplex assay that amplifies 2 genes, tcdB and a gene that regulates toxin production (tcdC). In addition, multiplex gastrointestinal panels such as BioFire FilmArray (Biomerieux, Inc., Durham, NC) include a *C. difficile* toxin gene as one of its targets. Less expensive, less sensitive membrane enzyme immunoassays like the C. DIFF QUIK CHEK COMPLETE (Alere North America, LLC, Orlando, FL) have been used in some laboratories as screening tests before performing the molecular tests. In addition to assaying for toxins A and B in fecal samples, the test detects *C. difficile* antigen, glutamate dehydrogenase, as a screen for the presence of *C. difficile* in the stool. Clinicians may attempt to recover *C. difficile* from clinical samples, also called toxigenic culture, but the process is laborious and time consuming, requiring multiple days for isolation and identification. If isolates are recovered, whole-genome sequencing and ribotyping may be performed using research-only assays.

Only strains that carry the pathogenicity locus (PaLoc) possess the genetic information for the *C. difficile* enterotoxin, TcdA, and the cytotoxin, TcdB. Historically, only strains producing TcdA and/or TcdB were thought to cause *C. difficile* infection [1]. Outbreaks with more virulent strains such as B1/NAP1/027 and ribotype78 are associated with significant mortality [14, 15]. This case highlights that a non-toxin-producing isolate can be responsible for severe extra-intestinal disease due to *C. difficile*.

Table 1. Review of Cases of Septic Arthritis due to *C. difficile*

Case No.	Ref	Year	Sex	Age	Joint	Prosthetic	Comorbid Conditions	Diarrhea	C. difficile Bacteremia	C. difficile Therapy	Surgical Intervention	Outcome
1	13	1994	F	31	Hip	Yes	Sickle cell disease	No	No	Metronidazole	Incision and drainage	Died
2	8	1995	M	16	Knee	Yes	Osteosarcoma of femur on chemotherapy	No	No	Ornidazole	Above knee amputation	Survived
3	12	1999	F	83	Hip	Yes	Unknown	Yes (toxin negative)	No	Metronidazole	Prosthesis removal	Survived
4	15	2009	M	11	Shoulder	No	Sickle cell disease	No	No	Metronidazole	Incision and drainage	Survived
5	14	2010	F	66	Hip	Yes	Chronic kidney disease	Unknown	Yes	Metronidazole	Incision and drainage	Survived
6	11	2013	F	61	Knee	Yes	Hypothyroidism	No	No	Metronidazole	Above knee amputation	Survived
7	10	2013	F	47	Shoulder	Yes	Alcoholic hepatitis	No	No	Metronidazole	Prosthesis removal	Unknown
8	9	2013	M	61	Hip	Yes	AIDS, type 2 diabetes	No	Yes	Metronidazole	Incision and drainage	Survived
CONCLUSION

To our knowledge, this is the first reported case indicating that non-toxin-producing strains of *C. difficile* can cause severe extraintestinal disease, including septic arthritis of a native large joint. In order to provide timely and appropriate therapy, it is important for clinicians and microbiologists to be aware of the various potential manifestations of infection with *C. difficile*.

Acknowledgments

The authors would like to acknowledge the microbiology technicians at Clements University Hospital and David Lonsway, Ashley Paulick, and Preeta Kutty at the Centers for Disease Control and Prevention, Atlanta, Georgia, for their assistance.

Potential conflicts of interest. All authors: no reported conflicts of interest. All authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Conflicts that the editors consider relevant to the content of the manuscript have been disclosed.

References

1. Jorgensen J, Pfaller M, Carroll K, et al. Manual of Clinical Microbiology. 11th ed. Washington, DC: ASM Press; 2015.
2. Kazanji N, Gjorgjievscl M, Yadav S, et al. Monomicrobial vs polymicrobial *Clostridium difficile* bacteremia: a case report and review of the literature. Am J Med 2015; 128:e19–26.
3. Jacobs A, Barnard K, Fishel R, Gradon JD. Extracolonic manifestations of *Clostridium difficile* infections. Presentation of 2 cases and review of the literature. Medicine (Baltimore) 2001; 80:88–101.
4. Legendre P, Lalande V, Eckert C, et al. *Clostridium difficile* associated reactive arthritis: case report and literature review. Anaerobe 2016; 38:76–80.
5. Townes JM. Reactive arthritis after enteric infections in the United States: the problem of definition. Clin Infect Dis 2010; 50:247–54.
6. Pron B, Merezek J, Touzet P, et al. Chronic septic arthritis and osteomyelitis in a prosthetic knee joint due to *Clostridium difficile*. Eur J Clin Microbiol Infect Dis 1995; 14:599–601.
7. Brassinnes L, Rodriguez-Villalobos H, Jonckheere S, et al. Early infection of hip joint prosthesis by *Clostridium difficile* in an HIV-1 infected patient. Anaerobe 2014; 27:96–9.
8. Ranganath S, Midturi MK. Unusual case of prosthetic shoulder joint infection due to *Clostridium difficile*. Am J Med Sci 2013; 346:422–3.
9. Curtis L, Lipp MJ. *Clostridium difficile* infection of a prosthetic knee joint requiring amputation. Surg Infect (Larchmt) 2013; 14:163–4.
10. McCarthy J, Stingemore N. *Clostridium difficile* infection of a prosthetic joint presenting 12 months after antibiotic-associated diarrhoea. J Infect 1999; 39:94–6.
11. Achong DM, Oates E. Periprosthetic *Clostridium difficile* hip abscess imaged with In-111 WBCs. Clin Nucl Med 1994; 19:860–2.
12. Lee NY, Huang YT, Hsueh PR, Ko WC. *Clostridium difficile* bacteremia, Taiwan. Emerg Infect Dis 2010; 16:1204–10.
13. Gregg KS, Alexander KA. Native joint septic arthritis caused by *Clostridium difficile* in an 11-year old with hemoglobin SS disease. Pediatr Infect Dis J 2009; 28:853.
14. Dubberke ER, Haslam DB, Lanzas C, et al. The ecology and pathobiology of *Clostridium difficile* infections: an interdisciplinary challenge. Zoonoses Public Health 2011; 58:4–20.
15. Kuijper EI, van den Berg RJ, Debast S, et al. *Clostridium difficile* ribotype 027, toxinotype III, the Netherlands. Emerg Infect Dis 2006; 12:827–30.