Harmonization and standardization of malnutrition screening for all adults – A systematic review initiated by the Norwegian Directorate of Health

Torunn Holm Totland, Henriette Walaas Krogh, Guro Berge Smedshaug, Ragnhild Agathe Tornes, Asta Bye, Ingvild Paur

PII: S2405-4577(22)00498-3
DOI: https://doi.org/10.1016/j.clnesp.2022.09.028
Reference: CLNESP 1527

To appear in: Clinical Nutrition ESPEN

Received Date: 6 April 2022
Revised Date: 5 September 2022
Accepted Date: 27 September 2022

Please cite this article as: Totland TH, Krogh HW, Smedshaug GB, Tornes RA, Bye A, Paur I, Harmonization and standardization of malnutrition screening for all adults – A systematic review initiated by the Norwegian Directorate of Health, Clinical Nutrition ESPEN, https://doi.org/10.1016/j.clnesp.2022.09.028.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2022 The Author(s). Published by Elsevier Ltd on behalf of European Society for Clinical Nutrition and Metabolism.
Harmonization and standardization of malnutrition screening for all adults – A systematic review initiated by the Norwegian Directorate of Health

Torunn Holm Totlanda,b, Henriette Walaas Krogha, Guro Berge Smedshauga, Ragnhild Agathe Tornesc, Asta Bye de, Ingvild Paur PG, Ing.

a Department of Non-Communicable Diseases, Division of Prevention and Public Health, Norwegian Directorate of Health, Oslo, Norway

b Department of Physical Health and Ageing, Division of Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway

c Department of Library Services, Norwegian Institute of Public Health, Oslo, Norway

d Department of Nursing and Health Promotion, Faculty of Health Sciences, OsloMet - Oslo Metropolitan University, Oslo, Norway

e European Palliative Care Research Centre (PRC), Dept. of Oncology, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway

f Norwegian Advisory Unit on Disease-related Undernutrition, Oslo University Hospital, Oslo, Norway

g Dept. of Clinical Services, Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway

Corresponding author: Torunn Holm Totland, Department of Physical Health and Ageing, Norwegian Institute of Public Health, Post box 222 Skøyen, 0213 OSLO, Norway. e-mail: TorunnHolm.Totland@fhi.no
Abstract

Background & Aims: The Norwegian Directorate of Health has identified a need to harmonize and standardize the malnutrition screening practice in Norwegian hospitals and primary health care settings, in order to provide a seamless communication of malnutrition screening along the patient pathway. Our aim was to perform a systematic review of the validity and reliability of screening tools used to identify risk of malnutrition across health care settings, diagnoses or conditions and adult age groups, as a first step towards a national recommendation of one screening tool.

Methods: A systematic literature search for articles evaluating validity, agreement, and reliability of malnutrition screening tools, published up to August 2020, was conducted in: MEDLINE, Embase, APA PsycInfo, Cinahl, Cochrane Databases, Web of Science, Epistemonikos, SveMed+, and Norart. The systematic review was registered in PROSPERO (CRD42022300558). For critical appraisal of each included article, the Quality Criteria Checklist by The Academy of Nutrition and Dietetics was used.

Results: The review identified 105 articles that fulfilled the inclusion and exclusion criteria. The most frequently validated tools were Mini Nutritional Assessment short form (MNA), Malnutrition Universal Screening Tool (MUST), Malnutrition Screening Tool (MST), and Nutritional Risk Screening 2002 (NRS-2002). MNA, MST and NRS-2002 displayed overall moderate validity, and MUST low validity. All four tools displayed low agreement. MST and MUST were validated across health care settings and age groups. In general, data on reliability was limited.

Conclusions: The screening tools MST and NRS-2002 displayed moderate validity for the identification of malnutrition in adults, of which MST is validated across health care settings. In addition, MNA has moderate validity for the identification of malnutrition in adults 65 years or older.

Keywords: malnutrition screening tool, systematic reviews, MNA, MST, MUST, NRS-2002

Introduction

Malnutrition is a common condition and can be both a cause and a consequence of disease. Malnutrition also negatively affects the prognosis of disease. The Global Leadership Initiative on Malnutrition (GLIM) criteria are international consensus-based diagnostic criteria for malnutrition (1). The first step in diagnosing malnutrition in GLIM is screening to identify individuals at risk of malnutrition using a validated screening tool (1). Thus, tools used for screening are not diagnostic tools, but identifies persons at risk of becoming malnourished or persons who already are malnourished. Several malnutrition screening tools are available, but with a large variation in level of validity, reliability, and generalizability, that will affect the ability to accurately identify adults who are malnourished and in need of nutritional treatment (2).

Internationally, a wide array of screening tools are used to identify the risk of malnutrition. Since 2009, the Norwegian Directorate of Health has recommended the use of Malnutrition Universal Screening Tool (MUST), Nutritional Risk Screening 2002 (NRS-2002), Mini Nutritional Assessment Long form (Full MNA), Subjective Global Assessment (SGA) or “Ernæringsjournal” [translates to “Nutrition journal”] depending on the health care setting (3). The use of various screening tools complicates the comparison of both clinical evaluations and research results on malnutrition. Additionally, the use of several screening tools may lead to miscommunication between health care providers and may pose a risk to patient safety. Discontinuities of care in the transition between different levels in the health care systems have been identified as risk factors for increased readmission rates and adverse medical events (4). A harmonization and standardization of the screening method may lead to more accurate screening practice and comparison of the risk of malnutrition (5) during the patients' journey from one health care setting to another (6). The harmonization and standardization of the malnutrition screening may also facilitate a national overview of the burden of malnutrition and its distribution across care settings and regions (6).

The Norwegian Directorate of Health has therefore identified a need to harmonize the malnutrition screening practice across health care settings, diagnoses or conditions and adult age groups. Such a harmonization is in line with former work in other countries. The British Association for Parenteral and Enteral Nutrition (BAPEN) has since 2003 implemented MUST as the recommended screening tool (7;8) providing comparable data across care
settings (8). The American Academy of Nutrition and Dietetics (9) recommended the Malnutrition Universal Screening tool (MST) to screen adults for malnutrition regardless of their age, medical history or setting (2;10). However, one specific malnutrition screening tool with outstanding validity, reliability, and strong supportive evidence across all care settings among adults has not yet been identified.

As a first step towards a national recommendation of one screening tool for the risk of malnutrition in the entire Norwegian health care system, we conducted a systematic review as an update and extension of the systematic review performed by Skipper et al. (10), by adding more recent literature, revising the comparison standard (including GLIM), and expanding with a Scandinavian literature search. The aim of this systematic review was to summarize the validity of commonly used screening tools to identify risk of malnutrition across health care settings, diagnoses or conditions, and adult age groups.

Materials and Methods

The PRISMA (Preferred reporting Items for Systematic Reviews and Meta-Analysis) statement was used as the guideline for the review and reporting (11) to ensure objectivity, transparency, and reproducibility of the process. The systematic review has been registered in PROSPERO (CRD42022300558). For critical appraisal of each included article, the Quality Criteria Checklist (12) by The Academy of Nutrition and Dietetics (9) was used.

Research question and eligibility criteria

The research question was formed using the population, intervention, comparison intervention and outcome (PICO) format, to ensure specificity and relevance to the aim of the project (Table 1). The population criteria for eligibility of studies were adults 18 years or older, any health care settings, and any diagnoses or conditions. The inclusion criteria for studies were quantitative validation studies, published in peer-reviewed journals, written in English, Norwegian, Swedish or Danish language, and at least 20 participants for each comparison. Exclusion criteria were studies using country-specific or modified versions of a tool, tools exclusively consisting of laboratory values and studies only published as abstracts.

The intervention included the 15 common screening tools used in relevant care settings, listed in Table 1. There is no agreed upon gold standard in order to compare the validity of
screening tools (6). Therefore, a set of comparison standards for the validation of screening tools were used, as listed in Table 1. The comparison standards were defined based on well validated “semi-gold standards”, and as defined by Skipper et al. (10) in order to facilitate comparison. Furthermore, the GLIM criteria (1) were added as a “semi-gold standard” during the literature review. When used as the sole criterion, BMI was not considered an acceptable gold standard for malnutrition.

The usefulness of a malnutrition screening tool can be measured as the ability to measure the important dimensions of malnutrition in the population at quest (content validity), test-retest and inter-observer variation (reliability), and ability to measure the agreement between the screening tool and the gold-standard or semi-gold-standard (concurrent validity) (6). Concurrent validity refers to the ability of the screening tool to identify malnutrition, and can be quantified through: sensitivity (the probability of a positive screening result given that the person is malnourished), specificity (the probability of a negative screening result given that the person is not malnourished), positive predictive value (PPV) (the proportion of true positive screening tests among all positive tests), negative predictive value (NPV) (the proportion of true negative tests among all negative tests), and kappa values (the agreement between tools using Cohen’s kappa coefficient). In addition, reliability (consistency of results when using the screening tool) was included in the search. All relevant outcomes are listed in Table 1, and in the complete search strategies in Supplementary Table 1.

To be able to harmonize and standardize the malnutrition screening practice for all adults, the tool needed to be validated across adult age groups, health care settings, and diagnoses or conditions.

Systematic literature search

A systematic literature search was performed in: Ovid MEDLINE(R) and Epub Ahead of Print, Embase, APA PsycInfo, Cinahl, Cochrane Database of Systematic Reviews, Cochrane Central Register of Controlled Trials, Web of Science, Epistemonikos, SveMed+, and Norart. The searches were performed by a librarian (RAT) at the Library for the Healthcare Administration, Norwegian Institute of Public Health, Oslo, Norway, after peer-internal review by another librarian from the same library. The search strategies combined search terms for the screening tools and comparison standards for the validation of screening tools (in Table 1) with search terms to identify validation studies. Synonyms with appropriate
truncations and abbreviations combined with search terms for malnutrition was used for searching title, abstract, and author keywords. The search strategy was tailored to each database’s search interference. The strategies were limited to English, Swedish, Danish, and Norwegian languages. No further limits were applied. The searches were performed for articles published from the earliest published articles in the databases, and up until the search dates of the 17th-19th of August 2020. In August of 2022, an expanded search was performed where also GLIM was included among the search terms. In this expanded search, 33 additional records were identified, of which all were excluded during literature review. The complete search strategies can be found in Supplementary Table 1.

All identified records were added, sorted, screened for duplicates (using different combinations of fields in preferences), and organized in the EndNote x9 software by Clarivate Analytics, Web of Science TM. The list of records was independently screened based on title and abstract, and on eligibility criteria identified by the PICO, by two reviewers (THT, IP) blinded for each other’s decisions. In the case of disagreement on screening status, consensus was reached between the two reviewers through a third common review.

One additional record was identified through the reviews of relevant literature. The tools Nutritional Risk Index (NRI) and Prognostic Nutritional Index (PNI) were excluded during the review process (after the literature search) since both tools exclusively assess laboratory values. There were no articles validating the tool “Ernæringsjournal” (Norwegian) [translates to “Nutrition journal”].

Review of the evidence and data extraction

The identified records that met the eligibility criteria were systematically reviewed full-text by both reviewers (independently and blinded) according to inclusion and exclusion criteria, quality of evidence, and outcome of interest. One reviewer (IP) extracted the data, and another reviewer (THT) double checked the extracted data. The following data was retrieved from each eligible research article: reference, publication year, quality of evidence, sample size, country, setting, condition/ward/diagnosis, mean/median age, lower age limit for inclusion, intervention tool, comparison tool, and relevant results of sensitivity, specificity, PPV, NPV, correlation coefficient (CC) and concordance (Cohen’s kappa values) (Table 2). Each separate performance indicator (sensitivity, specificity, PPV, NPV, agreement (Cohen’s kappa)) was evaluated based on pre-defined cut-off values as listed in Table 2 (13;14), while overall
validity of each screening tool was determined using an algorithm based on the algorithm developed by Skipper et al. (10).

Quality of evidence

The quality of articles was critically appraised independently by both reviewers for each of the included articles, using the Academy’s Quality Criteria Checklist of The Academy of Nutrition and Dietetics (12). The reviewers were blinded for the results of the other reviewer. The critical appraisal includes issues of inclusion/exclusion, bias, and data collection and analysis. When there was initial disagreement between the researchers on the quality assessment, consensus was reached through a third common review. Each article was graded as positive (+) indicating that the report has clearly addressed the issues, negative (-) indicating that these issues have not been adequately addressed, and neutral (ø) indicating that the report is neither exceptionally strong nor exceptionally weak in quality.

Reliability

Studies reporting on the reliability of Mini Nutritional Assessment Short Form (MNA), MST, MUST or NRS-2002 were summarized in Supplementary Table 2 either with test-retest or inter-rater reliability of the respective tools. One reviewer (THT) extracted the data from each eligible research article, and the other reviewer (IP) checked the extracted data. The following data were extracted: reference, publication year, sample size, country, setting, condition/ward/diagnosis, mean/median age, lower age limit for inclusion, intervention tool, observer comparison, comparison period, and relevant results of CC, intraclass correlation coefficient (ICC), and agreement coefficients (Gwet’s AC1 and Cohen’s kappa values). To summarize the evidence only agreement coefficients were comparable and were interpreted as described in Table 2.

Results

The inclusion of records is summarized in a PRISMA diagram (Figure 1). The literature search provided 12882 records as well as 33 additional records in an updated search including GLIM, and one record identified through other sources resulting in 7042 records after the removal of duplicates. After the exclusion of 6564 through the initial screening rounds, 485
full-text records were screened for the eligibility of inclusion. Of these, 380 records were excluded based on the given inclusion and exclusion criteria, resulting in the inclusion of 105 records for the summary of results (Supplementary Table 3).

The validity (sensitivity, specificity, PPV, and NPV) and agreement (Cohen’s kappa) is summarized in Table 3. In addition, validity, agreement, quality, and characteristics of all included studies can be found in the following tables: MNA (Table 4), MST (Table 5), MUST (Table 6), NRS-2002 (Table 7), and Nutritional Form for the Elderly (NUFFE), Nutriscore, Patient generated subjective global assessment short form (PG-SGA-SF), Short nutritional assessment questionnaire (SNAQ), and Simplified nutritional appetite questionnaire (SimplifiedNAQ) (Table 8). A list of the 105 included studies can be found in Supplementary Table 3, and the completed Quality Check List for all included studies is presented in Supplementary Table 4. For each tool a summary and a conclusion is presented in alphabetical order below:

Mini Nutritional Assessment short form (MNA)

MNA was validated in 34 articles and with a total of 44 comparisons of which 34 were against Full MNA, eight against SGA, and one each for Malnutrition Inflammation Score (MIS) and Patient Generated Subjective Global Assessment (PG-SGA) (Table 4). Median sample size was 250. Table 3 lists the median sensitivity, specificity, PPV, NPV, and agreement against all references, and against other references than Full MNA. The majority of comparisons (37 comparisons) were done in older adults, and the most common setting was community-dwelling (12), nursing homes (9) or inpatients (10) within a variety of conditions/wards. Risk of bias was summarized as quality of primary research in 34 articles of which 16 was graded as positive (+) and 18 was graded as neutral (ø). One article was found to report on reliability of the MNA tool, with an inter-rater reliability of 0.31 (15). In conclusion, MNA obtained moderate validity, low agreement and validation studies limited to the older adult population across health care settings and conditions or wards. The quality of research was positive in 47% of the articles, and data on reliability was limited.

Malnutrition Screening Tool (MST)

MST was validated in 26 articles and with a total of 31 comparisons, of which 16 against SGA, nine against PG-SGA, three against Full MNA, two against GLIM, and one against
McWhrter (Table 5). Median sample size was 134. Table 3 lists the median sensitivity, specificity, PPV, NPV, and agreement. Of the comparisons, 15 were in populations of 18 years or above, and seven in older adults. The most common comparison setting was inpatients (15), outpatients (12), within a variety of conditions or wards. The quality of primary research was graded as positive (+) in 17 of the articles and neutral (ø) in nine articles. Six articles were found to report on reliability of MST (16;18-22), with a total of 10 comparisons. The mean inter-rater reliability between comparisons was 0.64 (0.28-0.93) measured in kappa values and 0.8 (0.6-0.9) with Gwet’s AC1. In conclusion, MST obtained moderate validity, low agreement, and validated across age groups, health care settings, and conditions or wards. The quality of research was positive in 65% of the articles, and data on reliability was moderate.

Malnutrition Universal Screening tool (MUST)

MUST was validated in 35 articles with a total of 41 comparisons of which 21 against SGA, six against PG-SGA, 11 against Full MNA, two against GLIM, and one against a nutrition assessment including body composition and change in body weight over time (Table 6). Table 3 lists the median sensitivity, specificity, PPV, NPV, and agreement. Most of the comparisons were performed in inpatients (26) or outpatients (9), within a variety of conditions or wards. Of the comparisons, 19 were in adult populations, and 15 in older adults. Quality of primary research was graded as positive (+) in 19 articles and neutral (ø) in 16 articles. Reliability was reported in three studies (16-18), with a mean inter-rater reliability between two studies of 0.68 (0.58-0.78). In conclusion, MUST obtained low validity, low agreement, and validity across age groups, health care settings, and conditions or wards. The quality of research was positive in 56% in of the articles, and data on reliability was limited.

Nutritional Form for the Elderly (NUFFE)

NUFFE was validated in one article and with one comparison against Full MNA with a sensitivity of 70, specificity of 76, PPV of 81, and NPV of 30 (Table 3, Table 8). The validation was performed in 97 older adults in a nursing home setting. Quality of primary research was graded as positive (+) in the included article.
Nutritional Risk Screening 2002 (NRS-2002)

NRS-2002 was validated in 36 articles and with a total of 46 comparisons of which 26 against SGA, three against PG-SGA, 12 against Full MNA, three against GLIM, one against McWhriter, and one nutrition assessment including body composition and change in body weight over time (Table 7). Table 3 lists the median sensitivity, specificity, PPV, NPV, and agreement. Median sample size was 210, and the majority of comparisons (23 comparisons) were done in populations 18 years or above and in older adults (14 comparisons). Most of the comparisons were performed in inpatients (42), within a variety of conditions or wards. Quality of primary research was graded as positive (+) in 27 articles and neutral (ø) in nine articles. Reliability was reported in three studies with five comparisons (23-25). The median inter-rater reliability between comparisons was 0.78 (0.65-0.96). In conclusion, NRS-2002 obtained moderate validity, low agreement, and validation studies limited to inpatients within a variety of wards. The quality of research was positive in 75% of the articles, and data on reliability was moderate.

Nutriscore

Nutriscore was validated in one article and with comparison against PG-SGA, with a sensitivity of 97, specificity 96, PPV 85, NPV 99, and kappa 0.88 (Table 3, Table 8). The validation was performed in a population of 394 oncology outpatients. Quality of primary research was graded as positive (+) in the included article.

Patient generated subjective global assessment short form (PG-SGA-SF)

PG-SGA-SF was validated in three articles and with a total of five comparisons, all against PG-SGA (Table 8). The median sample size was 246, of which all validations were performed in populations 18 years or above. Table 3 lists the median sensitivity, specificity, PPV, NPV, and agreement. The setting for four comparisons were in oncology and one nephrology ward. It should be noted that three of the comparisons were performed with different cut-off values for risk of malnutrition in the same population. Quality of primary research was graded as positive (+) in all three articles.

Short nutritional assessment questionnaire (SNAQ)
SNAQ was validated in five articles and with a total of six comparisons of which four against SGA, one against GLIM, and one against Full MNA (Table 8). The median sample size was 170, and four validations were performed in inpatients, and one in outpatients. Four of the comparisons were in populations 18 years or above, and two in populations 65 years or above. Table 3 lists the median sensitivity, specificity, PPV, NPV, and agreement. Quality of primary research was graded as positive (+) in three articles and neutral (ø) in two articles.

Simplified nutritional appetite questionnaire (SimplifiedNAQ)

SimplifiedNAQ was validated in six articles and with a total of eight comparisons of which six against Full MNA and two against SGA (Table 8). Median sample size was 180, and all validations were performed in populations above 55, 60 or 65 years of age within different health care settings. Table 3 lists the median sensitivity, specificity, PPV, NPV, and agreement. Quality of primary research was graded as positive (+) in three articles and neutral (ø) in three articles.

Overall validity

For each screening tool, the overall validity was based on the algorithm as shown in Figure 2.

Discussion

In this systematic review, we summarized the validation of malnutrition screening tools for adults (18 years or older) in any setting and independent of medical diagnoses or conditions. The four screening tools MNA, MST, MUST, and NRS-2002 were the most frequently validated against “semi-gold standards” for malnutrition screening.

This systematic review was initiated by the Norwegian Directorate of Health as a first step towards choosing one malnutrition screening tool to be used in the entire health care system. The main objective for choosing one tool was to facilitate seamless communication of malnutrition screening along the patient pathway.

Screening for malnutrition is the first step in the approach of diagnosing malnutrition suggested in the GLIM framework (1). Thus, it is of great importance that the screening tool used can identify those at risk of malnutrition in an accurate and timely manner. The
European Society of Parenteral and Enteral Nutrition (ESPEN) guidelines for nutrition screening states that the purpose of nutritional screening is to “predict the probability of a better or worse outcome due to nutritional factors, and whether nutritional treatment is likely to influence this” (26). The screening tools MNA, MST, and NRS-2002 all displayed overall moderate validity for the identification of malnutrition. MUST had low validity due to a sensitivity below the cut-off value of 70% sensitivity, however, the sensitivity of MST and NRS-2002 was only slightly higher. Of the four most validated screening tools, the NRS-2002 had the highest, while the MNA had the lowest percentage of high-quality studies.

The validation across age groups, settings and diagnoses or conditions varied for MNA, MST, MUST, and NRS-2002. The tools MNA, MST, and MUST were validated in a broader variety of settings as compared to NRS-2002, which was almost exclusively validated in hospital settings. MST, MUST, and NRS-2002 were validated in both all adults (18 years or older) and separately for older adults, while the MNA was mostly validated for the use in older adults (65 years and older) reflecting the target population of the MNA.

According to national quality indicators in Norway, malnutrition screening is inadequate among older adults in the primary health and care service (27). Lack of time, resources and knowledge are identified as barriers to malnutrition screening and follow-up by community nurses (28) and in hospitals (29-30). Given the same validity, it will therefore be of interest if the screening tool is quick and easy to carry out in order to meet some of the barriers to conduct screening. The four tools MNA, MST, MUST, and NRS-2002 differ in time for completion and ease of use as the number of items range from two (MST) to fourteen (MNA) for initial screening, and time to complete varies from less than two minutes to about 10 minutes (31-32).

In total, our systematic review and the systematic review by Skipper et al. (10) includes 126 studies of which only 47 are included in both reviews. Even with a substantially different selection of articles, our findings are in line with the results presented in the systematic review performed by Skipper et al. (10), which summarized the findings from 67 studies published until July of 2017. We identified 58 additional studies included in our summary of which 30 were published after July of 2017. Thus, our review includes 156% more studies as compared to the review published by Skipper et al. (10). The main reason for exclusion of studies in our review, of those included in the review by Skipper et al. (10), was the use of BMI as the sole reference standard for malnutrition. We do not consider BMI alone as sufficient and adequate to identify disease-related malnutrition in adults. This decision is supported by the fact that
BMI is only one of three possible phenotypic criteria in the recently proposed GLIM diagnostic criteria for malnutrition (1), and in the diagnostic criteria for malnutrition by American Society for Parenteral and Enteral Nutrition (ASPEN) BMI is not even included (33). In addition, if BMI alone was appropriate for the diagnosis of malnutrition, we do not see the need for a screening tool.

Strengths of this publication is the ability to update and extend on previous work in the field, by including the GLIM criteria as a comparison standard, by adding articles from the Scandinavian countries (databases) and by adding additional years of publications. The literature search identified records that were in correspondence to previous work. Additionally, 30 of the included validation studies were published after July of 2017. The present review used systematically methods to ensure objectivity, transparency, and reproducibility of the process.

Possible limitations of the review process are related to the ability to select relevant inclusion and exclusion criteria, as well as relevant reference standards. Such bias may have been reduced by involving a working group appointed by the Norwegian Directorate of Health in discussing the selected inclusion and exclusion criteria. This systematic review is an extension to previous reviews in the field. Although most of the selected screening tools reported in relevant literature were included, there is a possibility that unidentified instruments capable of accurately predicting malnutrition have been excluded. Reference standards for the validation of screening tools were chosen on the basis of previous work (10), the newly introduced GLIM criteria for diagnosing malnutrition, as well as well-known validated tools for identification of malnutrition. Missing available data in the included studies may have excluded some studies from comparison with others, however the extension of such is not known.

Comparison between subgroups were limited due to lack of standardization in the reported description of age (range), setting, diagnosis or condition. In order to recommend one screening tool across health care settings, the instrument should be validated within different age groups, settings and/or conditions/wards where the tool will be implemented. This was only true in a reasonable range for two of the screening tools – MST and MUST.

Risk of bias was considered for all the included studies, of which 44 studies scored neutral indicating neither exceptionally strong nor weak data. None of the included studies were scored as negative. The reminding 61 studies scored positive, indicating clearly addressing risk of bias related issues. The most frequent negative scores were related to the lack in
description of handling withdraws of study participants. The most unclear scores were related
to whether blinding was used to prevent introduction of bias, as well as some uncertainty
regarding the likelihood of bias due to relevant funding or sponsorship. Reports on the inter-
rater reliability were available for MNA, MST, MUST, and NRS-2002, although only one
article reported reliability for the MNA tool.

This systematic review was not able to identify one outstanding screening tool for
malnutrition with high validity, agreement, and reliability for use across health care settings,
diagnoses or conditions, and adult age groups. The MST was supported by a considerable
amount of evidence, had a moderate ability to predict malnutrition in the adult population, had
supportive evidence of reliable results, was validated across health care settings, and a limited
risk of bias. This evidence may guide decision-making for the choice of one tool for screening
of malnutrition in all levels of the health care system in order to minimize discontinuities of
care in the transition between them. The Norwegian Directorate of Health utilized the results
of this review in the process of revising the Norwegian guideline for prevention and treatment
of malnutrition from 2009. The revised guideline was published in 2022 (34). The decision-
making process for the screening recommendation is co-published in this number of Clinical
Nutrition ESPEN (REF).

As such, these results have the potential to improve communication and optimalization of
nutritional care along the patient pathway, and thus ultimately reduce the burden of
malnutrition. The results can contribute to the process of establishing a national overview of
the burden and distribution of malnutrition across health care settings and regions, and may
set an example for a standardized, systematic malnutrition screening practice as the first step
in the implementation of GLIM in clinical practice. This may be a starting point towards a
harmonization of screening and diagnosing for malnutrition also in other countries.

Conclusions

The screening tools MST and NRS-2002 display moderate concurrent validity for the
identification of malnutrition in adults, of which MST is validated across health care settings.
In addition, MNA has moderate validity for the identification of malnutrition in adults 65
years or older.

Acknowledgements
We thank the working group for the revision of the Norwegian guidelines on prevention and treatment of malnutrition (as appointed by the Norwegian Directorate of Health) for advice during the review process.

Statement of Authorship

THT: Methodology, Investigation, Validation, Formal analysis, Writing original draft, Writing review & editing. HWK: Conceptualization, Methodology, Writing review & editing, Project administration. GBS: Conceptualization, Methodology, Writing review & editing. RAT: Methodology, Data Curation, Writing review & editing. AB: Conceptualization, Methodology, Writing review & editing. IP: Conceptualization, Methodology, Investigation, Validation, Formal analysis, Visualization, Supervision, Writing original draft, Writing review & editing.

Conflict of Interest Statement

The authors declare no conflicts of interest.

Funding sources

The Norwegian Directorate of Health funded the literature review.

References

1. Cederholm T, Jensen GL, Correia M, Gonzalez MC, Fukushima R, Higashiguchi T, et al. GLIM criteria for the diagnosis of malnutrition - A consensus report from the global clinical nutrition community. Clin Nutr. 2019;38(1):1-9. doi:10.1016/j.clnu.2018.08.002
2. Skipper A, Coltman A, Tomesko J, Charney P, Porcari J, Piemonte TA, et al. Position of the Academy of Nutrition and Dietetics: Malnutrition (Undernutrition) Screening Tools for All Adults. J Acad Nutr Diet. 2020;120(4):709-13. doi:10.1016/j.jand.2019.09.011
3. Norwegian Guidelines for Prevention and Treatment of Malnutrition [Internet]. Oslo: The Norwegian Directorate of Health; 2009. Available from: https://www.helsedirektoratet.no/tema/underernaering
4. Starr KNP, McDonald SR, Bales CW. Nutritional Vulnerability in Older Adults: A Continuum of Concerns. Curr Nutr Rep. 2015;4(2):176-84. doi:10.1007/s13668-015-0118-6
5. Leij-Halfwerk S, Verwijs MH, van Houdt S, Borkent JW, Guaitoli PR, Pelgrim T, et al. Prevalence of protein-energy malnutrition risk in European older adults in community, residential and hospital settings, according to 22 malnutrition screening tools validated for use in adults ≥65 years: A systematic review and meta-analysis. Maturitas. 2019;126:80-9. doi:10.1016/j.maturitas.2019.05.006
6. Elia M, Stratton RJ. Considerations for screening tool selection and role of predictive and concurrent validity. Curr Opin Clin Nutr Metab Care. 2011;14(5):425-33. doi:10.1097/MCO.0b013e328348ef51

7. Stratton RJ, Hackston A, Longmore D, Dixon R, Price S, Stroud M, et al. Malnutrition in hospital outpatients and inpatients: prevalence, concurrent validity and ease of use of the 'malnutrition universal screening tool' ('MUST') for adults. Br J Nutr. 2004;92(5):799-808.

8. Russell CA, Elia M. Malnutrition in the UK: where does it begin? Proc Nutr Soc. 2010;69(4):465-9. doi:10.1017/s0029665110001850

9. Eat right [Internet]. Ohio: Academy of Nutrition and Dietetics; 2022. Available from: https://www.eatright.org/.

10. Skipper A, Colman A, Tomesko J, Charney P, Porcari J, Piemonte TA, et al. Adult Malnutrition (Undernutrition) Screening: An Evidence Analysis Center Systematic Review. J Acad Nutr Diet. 2020;120(4):669-708. doi:10.1016/j.jand.2019.09.010

11. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clin Epidemiol. 2009;62(10):e1-34. doi:10.1016/j.jclinepi.2009.06.006

12. Handu D, Moloney L, Wolfram T, Ziegler P, Acosta A, Steiber A. Academy of Nutrition and Dietetics Methodology for Conducting Systematic Reviews for the Evidence Analysis Library. J Acad Nutr Diet. 2016;116(2):311-8. doi:10.1016/j.jand.2015.11.008

13. Neelemaat F, Meijers J, Kruizenga H, van Ballegooijen H, van Bokhorst-de van der Schueren M. Comparison of five malnutrition screening tools in one hospital inpatient sample. J Clin Nurs. 2011;20(15-16):2144-52. doi:10.1111/j.1365-2702.2010.03667.x

14. McHugh ML. Interrater reliability: the kappa statistic. Biochem Med 2012;22(3):276-82.

15. Kaiser R, Winning K, Uter W, Lesser S, Stehle P, Sieber CC, et al. Comparison of two different approaches for the application of the mini nutritional assessment in nursing homes: resident interviews versus assessment by nursing staff. J Nutr Health Aging. 2009;13(10):863-9. doi:10.1007/s12603-009-0243-2

16. Lawson CS, Campbell KL, Dimakopoulos I, Dockrell ME. Assessing the validity and reliability of the MUST and MST nutrition screening tools in renal inpatients. J Ren Nutr. 2012;22(5):499-506. doi:10.1053/j.jrn.2011.08.005

17. Mosli MH, Albeshti MA, Alsolami AA, Addas FA, Qazli AM, Alsahafi M, et al. Arabic translation and psychometric testing of the self-screening malnutrition universal screening tool in inflammatory bowel disease patients. Saudi Med J. 2019;40(8):828-35. doi:10.15537/smj.2019.8.24427

18. Nor Azian MZ, Suzana S, Romzi MA. Sensitivity, Specificity, Predictive Value and Inter-Rater Reliability of Malnutrition Screening Tools in Hospitalised Adult Patients. Malays J Nutr. 2014;20(2):209-19.

19. Ferguson M, Capra S, Bauer J, Banks M. Development of a valid and reliable malnutrition screening tool for adult acute hospital patients. Nutrition. 1999;15(6):458-64. doi:10.1016/s0899-9007(99)00084-2

20. Wester P, Angus R, Easlea D, Lin M, Chen B, Bisset L. Use of the malnutrition screening tool by non-dietitians to identify at-risk patients in a rehabilitation setting: A validation study. Nutr Diet. 2018;75(3):324-30. doi:10.1111/1747-0080.12416

21. Bell JJ, Bauer JD, Capra S. The malnutrition screening tool versus objective measures to detect malnutrition in hip fracture. J Hum Nutr Diet. 2013;26(6):519-26. doi: 10.1111/jhn.12040

22. Nursal TZ, Noyan T, Atalay BG, Köz N, Karakayali H. Simple two-part tool for screening of malnutrition. Nutrition. 2005;21(6):659-65. doi:10.1016/j.nut.2004.10.016

23. Bolayir B, Arik G, Yeşiļ Y, Kuyumcu ME, Varan HD, Kara Ö, et al. Validation of Nutritional Risk Screening-2002 in a Hospitalized Adult Population. Nutr Clin Pract. 2019;34(2):297-303. doi:10.1002/ncp.10082
24. Tevik K, Thürmer H, Husby MI, de Soysa AK, Helvik AS. Nutritional risk screening in hospitalized patients with heart failure. Clin Nutr. 2015;34(2):257-64. doi:10.1016/j.clnu.2014.03.014

25. Cuong TQB, M.; Hannan-Jones, M.; Diep, D.T.N.; Gallegos, D. Validity, reliability and feasibility of nutrition screening tools NRS-2002 and MST administered by trained medical doctors in routine practice. Hosp Pract. 2019;47(5):259-66. doi:10.1080/21548331.2019.1699760

26. Kondrup J, Allison SP, Elia M, Vellas B, Plauth M. ESPEN guidelines for nutrition screening 2002. Clin Nutr. 2003;22(4):415-21. doi:10.1016/s0261-5614(03)00098-0

27. National Health Care Quality Indicators [Internet]. Oslo: The Norwegian Directorate of Health; 2022. Available from: https://www.helsedirektoratet.no/english/national-health-care-quality-indicators#nationalqualityindicator.

28. Green SM, James EP, Latter S, Sutcliffe M, Fader MJ. Barriers and facilitators to screening for malnutrition by community nurses: a qualitative study. Journal of human nutrition and dietetics : the official journal of the British Dietetic Association. 2014;27(1):88-95. doi:10.1111/jhn.12104

29. Paulsen MM, Varsi C, Paur I, Tangvik RJ, Andersen LF. Barriers and Facilitators for Implementing a Decision Support System to Prevent and Treat Disease-Related Malnutrition in a Hospital Setting: Qualitative Study. JMIR formative research. 2019;3(2):e11890. doi:10.2196/11890

30. Fjeldstad SH, Thoresen L, Mowe M, Irtun O. Changes in nutritional care after implementing national guidelines-a 10-year follow-up study. Eur J Clin Nutr. 2018. doi:10.1038/s41430-017-0050-5

31. van Venrooija LMWdV, R.; Borgmeijer-Hoelen, A.M.M.J.;, Kruizenga HMJ-S, C.F.; de Mol, B.A.M.I. . Quick-and-easy nutritional screening tools to detect disease-related undernutrition in hospital in- and outpatient settings: A systematic review of sensitivity and specificity. E Spen Eur E J Clin Nutr Metab. 2007;2(2):21-37. doi:10.1016/j.eclnm.2007.03.001

32. Cunha CD, Sampaio ED, Varjao ML, Factum CS, Ramos LB, Barreto-Medeiros JM. Nutritional assessment in surgical oncology patients: a comparative analysis between methods. Nutr Hosp. 2015;31(2):916-21. doi:10.3305/nh.2015.31.2.7715

33. White JV, Guenter P, Jensen G, Malone A, Schofield M. Consensus statement: Academy of Nutrition and Dietetics and American Society for Parenteral and Enteral Nutrition: characteristics recommended for the identification and documentation of adult malnutrition (undernutrition). JPEN J Parenter Enteral Nutr. 2012;36(3):275-83. doi:10.1177/0148607112440285

34. The National Guideline for Prevention and Treatment of Malnutrition (Nasjonal faglig retningslinje for forebygging og behandling av underernæring [Norwegian])[Internet]. Oslo: Norwegian Directorate of Health; 2022. Available from: https://www.helsedirektoratet.no/retningslinjer/forebygging-og-behandling-av-underernaering.

35. Guigoz Y, Vellas B, Garry P. Assessing the nutritional status of the elderly: The Mini Nutritional Assessment as part of the geriatric evaluation. Nutrition Reviews. 1996;54(1 II):S59-S65. doi:10.1111/j.1753-4887.1996.tb03793.x

36. Detsky AS, Baker JP, Mendelson RA, Wolman SL, Wesson DE, Jeejeebhoy KN. Evaluating the accuracy of nutritional assessment techniques applied to hospitalized patients: methodology and comparisons. JPEN J Parenter Enteral Nutr. 1984;8(2):153-9. doi:10.1177/0148607184008002153

37. Detsky AS, McLaughlin JR, Baker JP, Johnston N, Whittaker S, Mendelson RA, et al. What is subjective global assessment of nutritional status? JPEN J Parenter Enteral Nutr. 1987;11(1):8-13. doi:10.1177/014860718701100108

38. Jager-Wittenaar H, Ottery FD. Assessing nutritional status in cancer: role of the Patient-Generated Subjective Global Assessment. Curr Opin Clin Nutr Metab Care. 2017;20(5):322-9. doi:10.1097/mco.0000000000000389
39. Ottery FD. Definition of standardized nutritional assessment and interventional pathways in oncology. Nutrition. 1996;12(1, Supplement):S15-S9. doi:10.1016/0899-9007(95)00067-4

40. McWhirter JP, Pennington CR. Incidence and recognition of malnutrition in hospital. BMJ. 1994;308(6934):945-8. doi:10.1136/bmj.308.6934.945

41. Kalantar-Zadeh K, Kopp J, Block G, Humphreys MH. A malnutrition-inflammation score is correlated with morbidity and mortality in maintenance hemodialysis patients. Am J Kidney Dis. 2001;38(6):1251-63. doi:10.1053/ajkd.2001.29222

42. Albay VB, Tutuncu M. MNA-SF is not sufficient without questioning protein and fruit-vegetable consumption to detect malnutrition risk in Parkinson's Disease. Acta Neurol Belg. 2020;05:05. doi:10.1007/s13760-020-01350-1

43. Borowiak E, Kostka T. Usefulness of short (MNA-SF) and full version of the Mini Nutritional Assessment (MNA) in examining the nutritional state of older persons. New Medicine. 2003;6(4):125-9.

44. Charlton KE, Kolbe-Alexander TL, Nel JH. The MNA, but not the DETERMINE, screening tool is a valid indicator of nutritional status in elderly Africans. Nutrition. 2007;23(7-8):533-42.

45. Charlton KE, Nichols C, Bowden S, Lambert K, Barone L, Mason M, et al. Older rehabilitation patients are at high risk of malnutrition: evidence from a large Australian database. J Nutr Health Aging. 2010;14(8):622-8. doi:10.1007/s12603-010-0307-3

46. Christner S, Ritt M, Volkert D, Wirth R, Sieber CC, Gaßmann KG. Evaluation of the nutritional status of older hospitalised geriatric patients: a comparative analysis of a Mini Nutritional Assessment (MNA) version and the Nutritional Risk Screening (NRS 2002). J Hum Nutr Diet. 2016;29(6):704-13. doi:10.1111/jhn.12376

47. Cohendy R, Rubenstein LZ, Eledjam JJ. The Mini Nutritional Assessment-Short Form for preoperative nutritional evaluation of elderly patients. Aging Clin. 2001;13(4):293-7. doi:10.1007/BF03353425

48. Cuervo M, García A, Ansorena D, Sánchez-Villegas A, Martínez-González M, Astiasarán I, et al. Nutritional assessment interpretation on 22,007 Spanish community-dwelling elders through the Mini Nutritional Assessment test. Public health nutr. 2009;12(1):82-90. doi:10.1017/s136898000800195x

49. De La Montana J, Miguez M. Suitability of the short-form Mini Nutritional Assessment in free-living elderly people in the northwest of Spain. J Nutr Health Aging. 2011;15(3):187-91. doi:10.1007/s12603-010-0332-2

50. Dent E, Chapman I, Plantadosi C, Viswanathan R. Screening for malnutrition in hospitalised older people: Comparison of the Mini Nutritional Assessment with its short-form versions. Australas J Ageing. 2017;36(2):E8-E13. doi:10.1111/ajag.12402

51. Donini LM, Poggiogalle E, Molfino A, Rosano A, Lenzì A, Fanelli FR, et al. Mini-Nutritional Assessment, Malnutrition Universal Screening Tool, and Nutrition Risk Screening Tool for the Nutritional Evaluation of Older Nursing Home Residents. J Am Med Dir Assoc. 2016;17(10):959.e11-.e18. doi:10.1016/j.jamda.2016.06.028

52. Duran-Alert P, Mila-Villarroel R, Formiga F, Virgili Casas N, Vilarasau Farre C. Assessing risk screening methods of malnutrition in geriatric patients: Mini Nutritional Assessment (MNA) versus Geriatric Nutritional Risk Index (GNRI). Nutr Hosp. 2012;27(2):590-8. doi:10.1590/S0212-16121200002000036

53. García-Meseguer MJ, Serrano-Urrea R. Validation of the revised mini nutritional assessment short-forms in nursing homes in Spain. J Nutr Health Aging. 2013;17(1):26-9. doi:10.1007/s12603-012-0079-z

54. Holvoet E, Vanden Wynaert K, Van Craenenbroeck AH, Van Biesen W, Elloot S. The screening score of Mini Nutritional Assessment (MNA) is a useful routine screening tool for malnutrition risk in patients on maintenance dialysis. PLoS One. 2020;15(3):e0229722. doi:10.1371/journal.pone.0229722
55. Isenring EA, Banks M, Ferguson M, Bauer JD. Beyond malnutrition screening: appropriate methods to guide nutrition care for aged care residents. J Acad Nutr Diet. 2012;112(3):376-81. doi:10.1016/j.jada.2011.09.038

56. Joaquin C, Puig R, Gastelurrutia P, Lupon J, de Antonio M, Domingo M, et al. Mini nutritional assessment is a better predictor of mortality than subjective global assessment in heart failure out-patients. Clin Nutr. 2019;38(6):2740-6. doi:10.1016/j.clnu.2018.12.001

57. Kaiser MJ, Bauer JM, Uter W, Donini LM, Stange I, Volkert D, et al. Prospective validation of the modified mini nutritional assessment short-forms in the community, nursing home, and rehabilitation setting. J Am Geriatr Soc. 2011;59(11):2124-8. doi:10.1111/j.1532-5415.2011.03659.x

58. Keller H, Vucea V, Slaughter SE, Jager-Wittenaar H, Lengyel C, Ottery FD, et al. Prevalence of Malnutrition or Risk in Residents in Long Term Care: Comparison of Four Tools. J Nutr Gerontol Geriatr. 2019;38(4):329-44. doi:10.1080/21551197.2019.1640165

59. Kiesswetter E, Pohlhausen S, Uhlig K, Diekmann R, Lesser S, Uter W, et al. Prognostic differences of the Mini Nutritional Assessment short form and long form in relation to 1-year functional decline and mortality in community-dwelling older adults receiving home care. J Am Geriatr Soc. 2014;62(3):512-7. doi:10.1111/jgs.12683

60. Kostka J, Borowiak E, Kostka T. Validation of the modified mini nutritional assessment short-forms in different populations of older people in Poland. J Nutr Health Aging. 2014;18(4):366-71. doi:10.1007/s12603-013-0393-0

61. Lei Z, Qingyi D, Feng G, Chen W, Hock RS, Changli W. Clinical study of mini-nutritional assessment for older Chinese inpatients. J Nutr Health Aging. 2009;13(10):871-5. doi:10.1007/s12603-009-0244-1

62. Lilamand M, Kelaiditi E, Cesari M, Raynaud-Simon A, Ghisolfi A, Guyonnet S, et al. Validation of the Mini Nutritional Assessment-Short Form in a Population of Frail Elders without Disability. Analysis of the Toulouse Frailty Platform Population in 2013. J Nutr Health Aging. 2015;19(5):570-4. doi:10.1007/s12603-015-0457-4

63. Lomivorotov VV, Efremov SM, Boboshko VA, Nikolaev DA, Vedernikov PE, Shilova AN, et al. Evaluation of nutritional screening tools among patients scheduled for heart valve surgery. J Heart Valve Dis. 2013;22(2):239-47.

64. Lomivorotov VV, Efremov SM, Boboshko VA, Nikolaev DA, Vedernikov PE, Lomivorotov VN, et al. Evaluation of nutritional screening tools for patients scheduled for cardiac surgery. Nutrition. 2013;29(2):436-42. doi:10.1016/j.nut.2012.08.006

65. Martín A, Ruiz E, Sanz A, García J, Gómez-Candela C, Burgos R, et al. Accuracy of different mini nutritional assessment reduced forms to evaluate the nutritional status of elderly hospitalised diabetic patients. J Nutr Health Aging. 2016;20(4):370-5. doi:10.1007/s12603-015-0618-5

66. Montejano Lozoya R, Martínez-Alzamora N, Clemente Marin G, Guirao R, Ferrer-Diego RM. Predictive ability of the Mini Nutritional Assessment Short Form (MNA-SF) in a free-living elderly population: a cross-sectional study. PeerJ. 2017;5:e3345. doi:10.7717/peerj.3345

67. Olivares J, Ayala L, Salas-Salvado J, Muniz MJ, Gamundi A, Martinez-Indart L, et al. Assessment of risk factors and test performance on malnutrition prevalence at admission using four different screening tools. Nutr Hosp. 2014;29(3):674-80. doi:10.3305/nh.2014.29.3.7120

68. Rubenstein LZ, Harker JO, Salva A, Guigoz Y, Vellas B. Screening for undernutrition in geriatric practice: developing the short-form mini-nutritional assessment (MNA-SF). J Gerontol A Biol Sci Med Sci. 2001;56(6):M366-72.

69. Santin FG, Bigogno FG, Dias Rodrigues JC, Cuppari L, Avesani CM. Concurrent and Predictive Validity of Composite Methods to Assess Nutritional Status in Older Adults on Hemodialysis. J Ren Nutr. 2016;26(1):18-25. doi:10.1053/j.jrn.2015.07.002

70. Schrader E, Grosch E, Bertsch T, Sieber C, Volkert D. Nutritional and functional status in geriatric day hospital patients-MNA short form versus full MNA. J Nutr Health Aging. 2016;20(9):918-26. doi:10.1007/s12603-016-0691-4
71. Sheard JM, Ash S, Mellick GD, Silburn PA, Kerr GK. Nutrition screening and assessment in Parkinson’s disease: A comparison of methods. ESPEN J. 2013;8(5):e187-e92. doi:10.1016/j.clinm.2013.08.001

72. Sheean PM, Peterson SJ, Chen Y, Liu D, Lateef O, Braunschweig CA. Utilizing multiple methods to classify malnutrition among elderly patients admitted to the medical and surgical intensive care units (ICU). Clin Nutr. 2013;32(5):752-7. doi:10.1016/j.clnu.2012.12.012

73. Simsek H, Sahin S, Ucku R, Sieber CC, Meseri R, Tosun P, et al. The diagnostic accuracy of the Revised Mini Nutritional Assessment Short Form for older people living in the community and in nursing homes. J Nutr Health Aging. 2014;18(8):725-9. doi:10.1007/s12603-014-0460-1

74. Wikby K, Ek A-C, Christensson L. The two-step Mini Nutritional Assessment procedure in community resident homes. J Clin Nurs. 2008;17(9):1211-8. doi:10.1111/j.1365-2702.2007.02012.x

75. Young AM, Kidston S, Banks MD, Mudge AM, Isenring EA. Malnutrition screening tools: comparison against two validated nutrition assessment methods in older medical inpatients. Nutrition. 2013;29(1):101-6. doi:10.1016/j.nut.2012.04.007

76. Abe Vicente M, Barao K, Silva TD, Forones NM. What are the most effective methods for assessment of nutritional status in outpatients with gastric and colorectal cancer? Nutr Hosp. 2013;28(3):585-91. doi:10.3305/nh.2013.28.3.6413

77. Almeida AI, Correia M, Camilo M, Ravasco P. Nutritional risk screening in surgery: valid, feasible, easy! Clin Nutr. 2012;31(2):206-11. doi:10.1016/j.clnu.2011.10.003

78. Bellanti F, Lo Buglio A, Quiete S, Pellegrino G, Dobrakowski M, Kasperczyk A, et al. Comparison of Three Nutritional Screening Tools with the New Glim Criteria for Malnutrition and Association with Sarcopenia in Hospitalized Older Patients. J Clin Med. 2020;9(6):17. doi:10.3390/jcm9061898

79. Bobčíková K, Lukšová H. Nutritional Status of Hospitalized elderly with coronary heart disease. Cent Eur J Nurs Midw. 2020;11(2):70-7. doi:10.15452/CEJNM.2020.11.0012

80. Boleo-Tome C, Monteiro-Grillo I, Camilo M, Ravasco P. Validation of the Malnutrition Universal Screening Tool (MUST) in cancer. Br J Nutr. 2012;108(2):343-8. doi:10.1017/S000711451100571X

81. Diekmann R, Winning K, Uter W, Kaiser MJ, Sieber CC, Volkert D, et al. Screening for malnutrition among nursing home residents - a comparative analysis of the Mini Nutritional Assessment, the Nutritional Risk Screening, and the Malnutrition Universal Screening Tool. J Nut Health Aging. 2013;17(4):326-31. doi:10.1007/s12603-012-0396-2

82. Fiorindi C, Luceri C, Dragoni G, Piemonte G, Scaringi S, Staderini F, et al. GLIM Criteria for Malnutrition in Surgical IBD Patients: A Pilot Study. Nutrients. 2020;12(8). doi:10.3390/nu12082222

83. Georgiou A, Papatheodoridis GV, Alexopoulos A, Deutsch M, Vlachogiannakos I, Ioannidou P, et al. Evaluation of the effectiveness of eight screening tools in detecting risk of malnutrition in cirrhotic patients: the KIRRHOs study. Br J Nutr. 2019;122(12):1368-76. doi:10.1017/S0007114519002277

84. Gibson S, Sequeira J, Cant R, Ku C. Identifying malnutrition risk in acute medical patients: Validity and utility of Malnutrition Universal Screening Tool and Modified Malnutrition Screening Tool. Nutr Diet. 2012;69(4):309-14. doi:10.1111/j.1747-0080.2012.01605.x

85. Hettiarachchi J, Madubhashini P, Miller M. Agreement between the Malnutrition Universal Screening Tool and the Patient-Generated Subjective Global Assessment for Cancer Outpatients Receiving Chemotherapy: A Cross-Sectional Study. Nutr Cancer. 2018;70(8):1275-82. doi:10.1080/01635581.2018.1539186
87. Holst M, Yifter-Lindgren E, Surowiak M, Nielsen K, Mowe M, Carlsson M, et al. Nutritional screening and risk factors in elderly hospitalized patients: association to clinical outcome. Scand J Caring Sci. 2013;27(4):953-61. doi:10.1111/scs.12010

88. Jackson HS, MacLaughlin HL, Vidal-Diez A, Banerjee D. A new renal inpatient nutrition screening tool (Renal iNUT): a multicenter validation study. Clin Nutr. 2019;38(5):2297-303. doi:10.1016/j.clnu.2018.10.002

89. Kosters CM, van den Berg MGA, van Hamersvelt HW. Sensitive and practical screening instrument for malnutrition in patients with chronic kidney disease. Nutrition. 2020;72:110643. doi:10.1016/j.nut.2019.110643

90. Kozakova R, Zelenikova R. Assessing the nutritional status of the elderly living at home. Eur Geriatr Med. 2014;5(6):377-81. doi:10.1016/j.egerm.2014.07.003

91. Kyle UG, Kossovsky MP, Karsegard VL, Pichard C. Comparison of tools for nutritional assessment and screening at hospital admission: a population study. Clin Nutr. 2006;25(3):409-17. doi:10.1016/j.clnu.2005.11.001

92. Martin Palmero A, Serrano Perez A, Chinchetru Ranedo MJ, Camara Balda A, Martinez de Salinas Santamari MA, Villar Garcia G, et al. Malnutrition in hospitalized patients: results from La Rioja. Nutr Hosp. 2017;34(2):402-6. doi:10.20960/nh.458

93. Naik R, Dudeja P, Thamban N, Jain C, Aggarwal V. Nutrition assessment of elderly residing in urban areas and urban slum: A comparative study. Indian J Community Health. 2018;30(4):390-4.

94. Pereira Borges N, D'Alegria Silva B, Cohen C, Portari Filho PE, Medeiros FJ. Comparison of the nutritional diagnosis, obtained through different methods and indicators, in patients with cancer. Nutr Hosp. 2009;24(1):51-5.

95. Raupp D, Silva FM, Marcadenti A, Rabito El, da Silva Fink J, Becher P, et al. Nutrition screening in public hospital emergency rooms: Malnutrition Universal Screening Tool and Nutritional Risk Screening-2002 can be applied. Public Health. 2018;165:6-8. doi:10.1016/j.puhe.2018.07.005

96. Sharma Y, Thompson C, Kaambwa B, Shahi R, Miller M. Validity of the Malnutrition Universal Screening Tool (MUST) in Australian hospitalized acutely unwell elderly patients. Asia Pac J Clin Nutr. 2017;26(6):994-1000. doi:10.6133/apjcnn.022017.15

97. Tripathy S, Mishra JC. Assessing nutrition in the critically ill elderly patient: A comparison of two screening tools. Indian J Crit Care Med. 2015;19(9):518-22. doi:10.4103/0972-5229.164798

98. Tu MY, Chien TW, Chou MT. Using a nutritional screening tool to evaluate the nutritional status of patients with colorectal cancer. Nutr Cancer. 2012;64(2):323-30. doi:10.1080/01635581.2012.650778

99. Vallen C, Hagell P, Westergren A. Validity and user-friendliness of the minimal eating observation and nutrition form - version II (MEONF - II) for undernutrition risk screening. Food Nutr Res. 2011;55:12. doi:10.3402/fnr.v55i0.5801

100. Velasco C, Garcia E, Rodriguez V, Frias L, Garriga R, Alvarez J, et al. Comparison of four nutritional screening tools to detect nutritional risk in hospitalized patients: a multicentre study. Eur J Clin Nutr. 2011;65(2):269-74. doi:10.1038/ejcn.2010.243

101. Abbott J, Teleni L, McKavanagh D, Watson J, McCarthy A, Isenring E. A novel, automated nutrition screening system as a predictor of nutritional risk in an oncology day treatment unit (ODTU). Support Care Cancer. 2014;22(8):2107-12. doi:10.1007/s00520-014-2210-7

102. Arribas L, Hurtos L, Sendros MJ, Peiro I, Salleras N, Fort E, et al. NUTRISCORE: A new nutritional screening tool for oncological outpatients. Nutrition. 2017;33:297-303. doi:10.1016/j.nut.2016.07.015

103. Byrnes A, Young A, Banks M, Mudge A, Bauer J. Use of hand grip strength in nutrition risk screening of older patients admitted to general surgical wards. Nutr Diet. 2018;75(5):520-6. doi:10.1111/1747-0080.12422
104. Clark AB, Reijnierse EM, Lim WK, Maier AB. Prevalence of malnutrition comparing the GLIM criteria, ESPEN definition and MST malnutrition risk in geriatric rehabilitation patients: RESORT. Clinical Nutrition. 2020;23:23. doi:10.1016/j.clnu.2020.03.015

105. De Groot LM, Lee G, Ackerie A, van der Meij BS. Malnutrition Screening and Assessment in the Cancer Care Ambulatory Setting: Mortality Predictability and Validity of the Patient-Generated Subjective Global Assessment Short form (PG-SGA SF) and the GLIM Criteria. Nutrients. 2020;12(8):30. doi:10.3390/nu12082287

106. Ferguson ML, Bauer J, Gallagher B, Capra S, Christie DR, Mason BR. Validation of a malnutrition screening tool for patients receiving radiotherapy. Australas Radiol. 1999;43(3):325-7.

107. Gabrielson DK, Scaffidi D, Leung E, Stoyanoff L, Robinson J, Nisenbaum R, et al. Use of an abridged scored Patient-Generated Subjective Global Assessment (abPG-SGA) as a nutritional screening tool for cancer patients in an outpatient setting. Nutr Cancer. 2013;65(2):234-9. doi:10.1080/01635581.2013.755554

108. Hogan D, Lan LT, Diep DT, Gallegos D, Collins PF. Nutritional status of Vietnamese outpatients with chronic obstructive pulmonary disease. Journal of human nutrition and dietetics : the official journal of the British Dietetic Association. 2017;30(1):83-9. doi:10.1111/jhn.12402

109. Isenring E, Cross G, Daniels L, Kellett E, Koczwar B. Validity of the malnutrition screening tool as an effective predictor of nutritional risk in oncology outpatients receiving chemotherapy. Support Care Cancer. 2006;14(11):1152-6. doi:10.1007/s00520-006-0070-5

110. Isenring EA, Bauer JD, Banks M, Gaskill D. The Malnutrition Screening Tool is a useful tool for identifying malnutrition risk in residential aged care. J Hum Nutr Diet. 2009;22(6):545-50. doi:10.1111/j.1365-277X.2009.01008.x

111. Leipold CE, Bertino SB, L’Huillier HM, Howell PM, Rosenkotter M. Validation of the Malnutrition Screening Tool for use in a Community Rehabilitation Program. Nutr Diet. 2018;75(1):117-22. doi:10.1111/1747-0080.12365

112. Morris NF, Stewart S, Riley MD, Maguire GP. A comparison of two malnutrition screening tools in acute medical inpatients and validation of a screening tool among adult Indigenous Australian patients. Asia Pac J Clin Nutr. 2018;27(6):1198-206. doi:10.6133/apjcn.201811_27(6).0005

113. Mourao F, Amado D, Ravasco P, Vidal PM, Camilo ME. Nutritional risk and status assessment in surgical patients: a challenge amidst plenty. Nutr Hosp. 2004;19(2):83-8.

114. Shaw C, Fleuret C, Pickard JM, Mohammed K, Black G, Wedlake L. Comparison of a novel, simple nutrition screening tool for adult oncology inpatients and the Malnutrition Screening Tool (MST) against the Patient-Generated Subjective Global Assessment (PG-SGA). Support Care Cancer. 2015;23(1):47-54. doi:10.1007/s00520-014-2319-8

115. Ulltang M, Vivanti AP, Murray E. Malnutrition prevalence in a medical assessment and planning unit and its association with hospital readmission. Aust Health Rev. 2013;37(5):636-41. doi:10.1071/AH13051

116. Wu ML, Courtney MD, Shortridge-Baggett LM, Finlayson K, Isenring EA. Validity of the malnutrition screening tool for older adults at high risk of hospital readmission. J Gerontol Nurs. 2012;38(6):38-45. doi:10.3928/00989134-20120509-03

117. Badia-Tahull MB, Cobo-Sacristan S, Leiva-Badosa E, Miquel-Zurita ME, Mendez-Cabalerio N, Jodar-Masanes R, et al. Use of Subjective Global Assessment, Patient-Generated Subjective Global Assessment and Nutritional Risk Screening 2002 to evaluate the nutritional status of non-critically ill patients on parenteral nutrition. Nutr Hosp. 2014;29(2):411-9. doi:10.3305/nh.2014.29.2.7045

118. Bauer JM, Vogl T, Wicklein S, Trogner J, Muhlberg W, Sieber CC. Comparison of the Mini Nutritional Assessment, Subjective Global Assessment, and Nutritional Risk Screening (NRS 2002) for nutritional screening and assessment in geriatric hospital patients. Z Gerontol Geriatr. 2005;38(5):322-7. doi:10.1007/s00391-005-0331-9

119. Boulhosa R, Lourenco RP, Cortes DM, Oliveira LPM, Lyra AC, de Jesus RP. Comparison between criteria for diagnosing malnutrition in patients with advanced chronic liver disease: GLIM group
proposal versus different nutritional screening tools. J Hum Nutr Diet. 2020;07:07. doi:10.1111/jhn.12759

120. Chavez-Tostado M, Cervantes-Guevara G, Lopez-Alvarado SE, Cervantes-Perez G, Barbosa-Camacho FJ, Fuentes-Orozco C, et al. Comparison of nutritional screening tools to assess nutritional risk and predict clinical outcomes in Mexican patients with digestive diseases. BMC Gastroenterol. 2020;20(1):79. doi:10.1186/s12876-020-01214-1

121. Demirel B, Atasoy BM. Comparison of Three Nutritional Screening Tools to Predict Malnutrition Risk and Detect Distinctions Between Tools in Cancer Patients Receiving Radiochemotherapy. Nutr Cancer. 2018;70(6):687-73. doi:10.1080/01635581.2018.1491606

122. Hartz LLK, Stroup BM, Bibelnieks TA, Shockey C, Ney DM. ThedaCare Nutrition Risk Screen Improves the Identification of Non-Intensive Care Unit Patients at Risk for Malnutrition Compared With the Nutrition Risk Screen 2002. JPN J Parenter Enteral Nutr. 2019;43(1):70-80. doi:10.1002/jpen.1315

123. Javid Mishamandani Z, Norouzy A, Hashemian SM, Khoundabi B, Rezaeisadrabadi M, Safarian M, et al. Nutritional status of patients hospitalized in the intensive care unit: A comprehensive report from Iranian hospitals, 2018. J Crit Care. 2019;54:151-8. doi:10.1016/j.jcrc.2019.08.001

124. Juntac C, Shaohuang Y, Yongjian Z, Fengli G, Xinna S, Zhenlan S, et al. A Comparison of the Nutritional Risk Screening 2002 Tool With the Subjective Global Assessment Tool to Detect Nutritional Status in Chinese Patients Undergoing Surgery With Gastrointestinal Cancer. Gastroenterology Nursing. 2017;40(1):19-25. doi:10.1097/SGA.0000000000000157

125. Leandro-Merhi VA, Braga de Aquino JL. Comparison of nutritional diagnosis methods and prediction of clinical outcomes in patients with neoplasms and digestive tract diseases. Clin Nutr. 2015;34(4):647-51. doi:10.1016/j.clnu.2014.07.001

126. Leandro-Merhi VA, de Aquino JLB, Reis LO. Predictors of Nutritional Risk According to NRS-2002 and Calf Circumference in Hospitalized Older Adults with Neoplasms. Nutr Cancer. 2017;69(8):1219-26. doi:10.1080/01635581.2017.1367942

127. Martins CP, Correia JR, do Amaral TF. Undernutrition risk screening and length of stay of hospitalized elderly. J Nutr Elder. 2005;25(2):5-21.

128. Meireles MS, Wazlawik E, Bastos JL, Garcia MF. Comparison between nutritional risk tools and parameters derived from bioelectrical impedance analysis with subjective global assessment. J Acad Nutr Diet. 2012;112(10):1543-9. doi:10.1016/j.jand.2012.07.005

129. Miao JP, Quan XQ, Zhang CT, Zhu H, Ye M, Shen LY, et al. Comparison of two malnutrition risk screening tools with nutritional biochemical parameters, BMI and length of stay in Chinese geriatric inpatients: a multicenter, cross-sectional study. BMJ Open. 2019;9(2):e022993. doi:10.1136/bmjopen-2018-022993

130. Orell-Kotikangas H, Osterlund P, Saarilahti K, Ravasco P, Schwab U, Makitie AA. NRS-2002 for pre-treatment nutritional risk screening and nutritional status assessment in head and neck cancer patients. Support Care Cancer. 2015;23(6):1495-502. doi:10.1007/s00520-014-2500-0

131. Raslan M, Gonzalez MC, Torrinhases RS, Ravacci GR, Pereira JC, Waitzberg DL. Complementarity of Subjective Global Assessment (SGA) and Nutritional Risk Screening 2002 (NRS 2002) for predicting poor clinical outcomes in hospitalized patients. Clin Nutr. 2011;30(1):49-53. doi:10.1016/j.clnu.2010.07.002

132. Ryu SW, Kim IH. Comparison of different nutritional assessments in detecting malnutrition among gastric cancer patients. World J Gastroenterol. 2010;16(26):3310-7.
135. Sharifi F, Mirarefin M, Alizadeh-Khoei M, Nazari N, Najafi B, Fakhrzadeh H, et al. Psychometric properties of the Persian version of the nutritional form for the elderly (NUFFE) in nursing home residents. Med J Islam Repub Iran. 2018;32:105. doi:10.14196/mjiri.32.105

136. Abbott J, Teleni L, McKavanagh D, Watson J, McCarthy AL, Isenring E. Patient-Generated Subjective Global Assessment Short Form (PG-SGA SF) is a valid screening tool in chemotherapy outpatients. Support Care Cancer. 2016;24(9):3883-7. doi:10.1007/s00520-016-3196-0

137. Yaxley A, Crotty M, Miller M. Identifying Malnutrition in an Elderly Ambulatory Rehabilitation Population: Agreement between Mini Nutritional Assessment and Validated Screening Tools. Healthcare (Basel). 2015;3(3):822-9. doi:10.3390/healthcare3030822

138. Akın S, Ozer FF, Ertürk Zararsız G, Şafak ED, Mucuk S, Göçer Ş, et al. Validity of simplified nutritional appetite questionnaire for Turkish community-dwelling elderly and determining cut-off according to mini nutritional assessment. Arch Gerontol Geriatr. 2019;83:31-6. doi:10.1016/j.archger.2019.03.008

139. Rolland Y, Perrin A, Gardette V, Filhol N, Vellas B. Screening older people at risk of malnutrition or malnourished using the Simplified Nutritional Appetite Questionnaire (SNAQ): a comparison with the Mini-Nutritional Assessment (MNA) tool. J Am Med Dir Assoc. 2012;13(1):31-4. doi:10.1016/j.jamda.2011.05.003

140. İlhan B, Bahat G, Oren MM, Kılıç C, Durmazoglu S, Karan MA. Reliability and Validity of Turkish Version of the Simplified Nutritional Appetite Questionnaire (SNAQ). J Nutr Health Aging. 2018;22(9):1039-44. doi:10.1007/s12603-018-1051-3

141. Wojtceczek A, Dardzinska JA, Malgorzewicz S, Gruszeczka A, Zdrojewski Z. Prevalence of malnutrition in systemic sclerosis patients assessed by different diagnostic tools. Clinical Rheumatol. 2020;39(1):227-32. doi:10.1007/s10067-019-04810-z
Tables and Figures Legends

Figure 1 PRISMA flow chart

Figure 2 Summary of overall validity for MNA, MST, MUST, and NRS-2002.

The figure is based on the algorithm developed by Skipper et al. (10). The overall validity is given as the median for all validation studies for the respective malnutrition screening tools.

*MNA against other comparisons than Full MNA
Table 1 PICO

Population	Intervention	Comparison	Outcome
• Patients admitted to hospitals or other health institutions within	• Malnutrition Screening Tool (MST)	• Mini Nutritional Assessment Long form (Full MNA) (35)	• sensitivity
secondary care	• Malnutrition Universal Screening tool (MUST)	• Subjective Global Assessment (SGA) (36, 37)	• specificity
• Persons living in nursing home or long term care facilities within the	• Mini Nutritional Assessment short form (MNA)	• Patient-Generated Subjective Global Assessment (PG-SGA) (38, 39)	• validity
primary health care	• Nutritional Form for the Elderly (NUFFE)	• McWhirter and Pennington Criteria (40)	• reliability
• Persons receiving home based care within the primary health care system	• Nutritional Risk Index (NRI)	• A nutrition assessment including at least body composition and change	• agreement
• Persons with high risk of malnutrition who are in contact with the	• Nutritional Risk Screening 2002 (NRS-2002)	in body weight over time (10)	• generalization
primary health care system	• Patient generated subjective global assessment short form (PG-SGA-SF)	• Malnutrition Inflammation Score (MIS) (when used for nutrition assessment)	(10, 41)
	• Prognostic Nutritional Index (PNI)	• The GLIM criteria (1) (added after the original search)	
	• Short nutritional assessment questionnaire (SNAQ)		
	• Simplified nutrition appetite questionnaire (SimplifiedNAQ)		
	• Subjective global assessment (SGA)		
	• Nutriscore		
	• Ernæringsjournal [Nutrition journal]		

Table 2 Interpretation of performance indicators for overall validity and reliability of screening tools based on Neelemaat et al. and McHugh et al. (13, 14)

Validity	High	Moderate	Low
Sensitivity	≥ 90 %	70 % - 89 %	<70 %
Specificity	≥ 90 %	70 % - 89 %	<70 %
Negative predictive value	≥ 90 %	70 % - 89 %	<70 %
Positive predictive value	≥ 90 %	70 % - 89 %	<70 %
Agreement (Cohen’s kappa)	≥ 0.8	0.6-0.79	< 0.6

Reliability

- Correlation coefficient: ≥ 0.8, 0.6-0.79, < 0.6
- Reliability (Cohen’s kappa): ≥ 0.8, 0.6-0.79, < 0.6
- Gwet’s AC1: ≥ 0.8, 0.6-0.79, < 0.6
Table 3 Summary of validity

	Sensitivity	Specificity	PPV	NPV	Agreement
	Median (range)	Median (range)	Median (range)	Median (range)	(Cohen’s kappa) Median (range)
MNA (n=34)					
Against all comparisons	85.9 (64-100)	86.3 (44-100)	77.7 (16-100)	90.5 (58-100)	0.62 (0.14-0.92)
Against other comparisons than Full-MNA	84.3 (70-100)	77.9 (53-95)	57.0 (20-76)	98.4 (93-100)	0.52 (0.14-0.92)
MST (n=26)	72.9 (32-100)	84.4 (25-98)	69.9 (36-98)	87.1 (49-100)	0.59 (0.23-0.9)
MUST (n=35)	69.7 (16-100)	87.3 (45-100)	80.5 (30-100)	88.7 (34-100)	0.52 (0.16-0.91)
NUFFE (n=1)	69.8	75.7	80.8	30.3	-
NRS-2002 (n=35)	70.4 (37-97)	90.1 (30-98)	85.0 (32-99)	77.5 (35-100)	0.53 (0.13-0.89)
Nutriscore (n=1)	97.3	95.6	84.8	99.0	0.88
PG-SGA-SF (n=3)	89.0 (78-94)	72.3 (62-94)	41 (31-91)	98.0 (84-98)	0.39 (0.31-0.49)
SNAQ (n=5)	79.0 (51-92)	90.3 (81-100)	80.0 (29-100)	86.9 (56-100)	-
SimplifiedNAQ (n=6)	69.3 (28-87)	78.9 (77-94)	89.0 (78-90)	57.1 (44-88)	0.27 (0.18-0.36)

Abbreviations: MNA: Mini Nutritional Assessment (short form); MST: Malnutrition Screening Tool; MUST: Malnutrition Universal Screening Tool; NRS-2002: NPV: negative predictive value; Nutritional Risk Screening 2002; (PG)-SGA(-SF): (Patient Generated) Subjective Global Assessment (short form); PPV: positive predictive value; SimplifiedNAQ: Simplified nutrition appetite questionnaire; SNAQ: Short nutritional assessment questionnaire
Table 4 Validation of MNA

Reference	Quality	Publication year	Sample size	Country	Setting	Condition/ward/diagnosis	Mean/Median age	Lower age limit for inclusion	Validated tool	Comparison	Sensitivity	Specificity	PPV	NPV	AUC	CC	Kappa
Albay VB, et al. (42)	Ø	2020	75	Turkey	Outpatient	Parkinson’s Disease	67	45	MNA	Full MNA	87.1	70.5	88.6	77.3			
Borowiak E, et al. (43)	Ø	2003	160	Poland	Community-dwelling	Older adults	74	65	MNA	Full MNA	73.6	93	82				
		2003	151	Poland	nursing home	Older adults	79	65	MNA	Full MNA	64.4	100	58				
Charlton KE, et al. (44)	Ø	2007	220	South Africa	community-dwelling and nursing home	Older adults	72	60	MNA	Full MNA	100.0	94.6	16.3	62.9			
Charlton KE, et al (45)	+	2010	1615	Australia	rehabilitation	rehabilitation	81	65	MNA	Full MNA	77	44	72.8	77.5	0.532		
Christner S, et al. (46)	+	2016	201	Germany	Inpatient	geriatric	83	65	MNA	Full MNA					0.7		
Cohendy R, et al. (47)	Ø	2001	408	France	day care	surgery	70	60	MNA	Full MNA	89	86	79	93			
Cuervo, M., et al. (48)	+	2009	22007	Spain	community-dwelling	Older adults	75	65	MNA	Full MNA	85.2	76.4	93.4	0.942			
De La Montana I, et al (49)	Ø	2011	728	Spain	community-dwelling	Older adults	81	65	MNA	Full MNA	81	93	96	68			
Dent E, et al. (50)	+	2017	100	Australia	inpatients	Geriatric	85	70	MNA	Full MNA					0.93	0.87	
Domini LM, et al. (51)	Ø	2016	246	Italy	nursing home	Older adults women 82, men 77	60	MNA	Full MNA	96.4	55.8	89	80.6	0.588			
Duran Alert P, et al. (52)	Ø	2012	40	Spain	inpatients	geriatric	Female: 85, male 83	MNA	Full MNA					0.81			
Reference	Year	Country	Setting	Group	Age	Method	Full MNA	PG-SGA	p value								
-----------	------	---------	---------	-------	-----	--------	---------	--------	---------								
Garcia-Meseguer, M. J., et al. (53)	2013	Spain	nursing home	Older adults	82	65	MNA	Full MNA	86.1	87.9	82.6	90.4	0.95	0.685			
Holvoet E, et al. (54)	2020	Belgium	dialysis	67	18	MNA	Full MNA	0.909									
Isenring EA, et al. (55)	2012	Australia	nursing home	83	53	MNA	Full MNA	100	56.4	0.257							
Joaquin C, et al. (56)	2019	Spain	Outpatient	heart failure	69	adult	MNA	Full MNA	71	93.8	79.4	90.5	0.67				
Kaiser MJ, et al (57)	2011	Germany	community-dwelling	Older adults	81	MNA	Full MNA	0.586									
Keller H, et al (58)	2019	Canada	nursing home	Older adults	7	65	MNA	PG-SGA	83.99	70.22							
Kiesswetter E, et al (59)	2014	Germany	community-dwelling	home care	81	65	MNA	Full MNA	0.62								
Kostka, J., et al. (60)	2014	Poland	community-dwelling	Older adults	72	65	MNA	Full MNA	82.7	88.9							
Lei Z, et al. (61)	2009	China	inpatients	68	60	MNA	Full MNA	89.6	88	0.932							
Lilamand M, et al. (62)	2015	France	day care	frail	82	65	MNA	Full MNA	0.954								
Lomivorotov VV et al (63)	2013a	Russia	inpatients	Cardiovascular disease	58	18	MNA	SGA	84.6	77.9	27.1	98.1					
Authors	Year	Country	Setting	Disease	Sample Size	Gender	MNA	SGA	Z-Score	p-value							
-------------------	------	---------	---------------	--------------------------	-------------	--------	-------	-------	---------	----------							
Lomivorotov VV et al. (64)	2013b	Russia	inpatients	Cardiovascular disease	59	18	MNA	SGA	81.8	20.4	98.6						
Martin A, et al. (65)	2016	Spain	inpatients	diabetes	78	65	MNA	Full MNA	90.6	85.1							
Montejano Lozoya, R et al. (66)	2017	Spain	community-dwelling	Older adults	74	65	MNA	Full MNA	73.4	86.6	62.4	91.4	0.88	0.78	0.54		
Olivares J, et al. (67)	2014	Spain	inpatients	medical and surgery	61	adult	MNA	SGA	69.9	94.7	75.8	93	0.666				
Rubenstein, L. Z., et al. (68)	2001	France	inpatients and community-dwelling	Older adults	79		MNA	Full MNA	98	100	0.961						
Santin FG, et al (69)	2016	Brazil	dialysis	day care	70	60	MNA	MIS			0.14						
Schrader, E., et al. (70)	2016	Germany	day care	geriatric	80	65	MNA	Full MNA			0.53						
Sheard JM, et al. (71)	2013	Australia	community-dwelling	Parkinson’s disease	70	18	MNA	SGA	94.7	78.3	58.1	98.8	0.92				
Sheean PM, et al. (72)	2013	USA	ICU	medical and surgery	65		MNA	Full MNA	72	98	0.76						
Simsek, H., et al. (73)	2014	Turkey	community-dwelling	Older adults	74	65	MNA	Full MNA	88.7	0.87	0.63						
Wikby, K., et al. (74)	2008	Sweden	nursing home	Older adults	65		MNA	Full MNA	89.00	82.00	92.00						
Young AM, et al. (75)	2013	134	Australia	inpatients	medical	80	65	MNA	Full MNA	95.6	79.1	90.5	89.5	0.96			
----------------------	------	-----	-----------	------------	---------	----	----	-----	----------	------	------	------	------	-----			
2013	134	Australia	inpatients	medical	80	65	MNA	SGA	100	52.8	64.6	100	0.95				

Abbreviations: AUC: area under the curve; CC: correlation coefficient; Full MNA: Full Mini Nutritional Assessment; ICU: Intensive Care Unit; MIS: Malnutrition Inflammation Score; MNA: Mini Nutritional Assessment (short form); NPV: negative predictive value; (PG-)SGA: (Patient Generated) Subjective Global Assessment; PPV: positive predictive value.
Reference	Quality	Publication year	Sample size	Country	Setting	Condition/ ward/ diagnosis	Mean/ Median age	Lower age limit for inclusion	Validated tool	Comparison	Sensitivity	Specificity	PPV	NPV	AUC	CC	Kappa
Abboit J, et al. (101)	Ø	2014	300	Australia	Outpatient	Oncology	59/18	MST	PG-SGA	70.6	69.5	0.77					
Abe Vicente M, et al. (76)	Ø	2013	75	Brazil	Outpatient	Oncology	60	MST	PG-SGA	52	84						
	2013	62	Brazil	Outpatient	Oncology	61	MST	PG-SGA	61.5	91.8							
Arribas L, et al. (102)	+	2017	394	Spain	Outpatient	Oncology	62/18	MST	PG-SGA	84	85.6	57.7	95.7	0.84	0.59		
Byrnes A, et al. (103)	+	2018	75	Australia	Inpatient surgery	74/65	MST	PG-SGA	86	80	50	96	0.83				
Clark, A.B., et al. (104)	+	2020	444	Australia	Hospital Geriatric rehabilitation	82	MST	GLIM	56.7	69	66.5	59.5	0.63	0.26			
De Groot LM et al. (105)	+	2020	246	Australia	Oncology	62/18	MST	PG-SGA	100	90							
Ferguson M, et al. (19)	+	1999	408	Australia	Inpatients medical and surgery	58/18	MST	SGA	93	93	98.4	72.7					
Ferguson, M. L., et al. (106)	+	1999	106	Australia	Outpatient Oncology	60/7	MST	SGA	100.00	81.00	40	100					
Fiol-Martinez L, et al. (82)	+	2017	73	Spain	Inpatients hematology	64/18	MST	SGA	72.7	65.4	72.70	90.9	0.691				
Fiorindi, C., et al. (83)	Ø	2020	53	Italy	Inpatients GI surgery	51	MST	GLIM	63.6	96.8							
Gabrielson, D. K., et al. (107)	+	2013	90	Canada	Outpatient Oncology	55/18	MST	PG-SGA	81.3	72.4							
Georgiou A, et al. (84)	+	2019	170	Greece	Outpatient Hepatology	59/18	MST	SGA	51.3	97.7	87	87.1	0.814				
Study	Year	Country	Setting	Disease/Condition	Measure	MNA Score	SGA Score	MNA Gain	SGA Gain	p-value							
---	------	-----------	--------------------------------	-------------------	---------	-----------	-----------	----------	----------	---------							
Hogan D, et al. (108)	2017	Vietnam	Outpatient pulmonary disease	70	MST	38	94	83	65								
Isenring E, et al. (109)	2006	Australia	Outpatient oncology	59	MST	PG-SGA	100.00	92.00	80.00	100.00							
Isenring EA, et al. (55)	2012	Australia	Nursing home	83	MST	Full MNA	94.1	80.9		0.501							
Isenring EA, et al. (110)	2009	Australia	Nursing home	84	MST	SGA	88.6	93.5		0.806							
Joaquin C, et al. (56)	2019	Spain	Outpatient heart failure adult	69	MST	Full MNA	31.5	91.1	54.5	79.8	0.26						
Leipold CE, et al. (111)	2012	UK	Inpatients rehabilitation	74	MST	SGA	48.7	85.5	78.7	60.2	0.335						
Morris NF, et al. (112)	2018	Australia	Inpatients medical	62	MST	SGA	72.2	83.8	69.6	85.4							
Mourão F, et al. (113)	2004	Portugal	Inpatients surgery	55	MST	McWhirter				0.72							
Nor Azian MZ et al. (18)	2014	Malaysia	Inpatients and outpatient	45	MST	SGA	93.3	80.9	54.9	98							
Shaw C et al. (114)	2015	UK	Inpatients oncology	59	MST	PG-SGA	66	83	91.00	49.00	0.83						
Ulhâng M, et al. (115)	2013	Australia	Inpatients medical	62	MST	SGA	73	76	38	93							
Wu ML, et al. (116)	2012	Australia	Inpatients rehabilitation	78	MST	SGA	94.00	89	70	98	0.74						
Young AM, et al. (75)	+	2013	134	Australia	inpatients	medical	80	65	MST	Full MNA	67.7	88.3	92.4	56.7	0.87		
----------------------	---	------	-----	-----------	------------	---------	----	----	-----	----------	------	------	------	------	-----		
2013	134	Australia	inpatients	medical	80	65	MST	SGA	90.3	84.7	83.6	91	0.92				

Abbreviations: AUC: area under the curve; CC: correlation coefficient; Full MNA: Full Mini Nutritional Assessment; GI: Gastrointestinal; GLIM: Global Leadership Initiative on Malnutrition; MST: Malnutrition Screening Tool; NPV: negative predictive value; (PG-)SGA: (Patient Generated) Subjective Global Assessment; PPV: positive predictive value
Table 6 Validation of MUST

Reference	Quality	Publication year	Sample size	Country	Setting	Condition/ward/diagnosis	Mean/ Median age	Lower age limit for inclusion	Validated tool	Comparison	Sensitivity	Specificity	PPV	NPV	AUC	CC	Kappa
Abe Vicente M, et al. (76)	Ø	2013	75	Brazil	Outpatient	Oncology	60		MUST	PG-SGA	72	48.9					
		2013	62	Brazil	Outpatient	Oncology	61		MUST	PG-SGA	72	73.4					
Almeida AL, et al. (77)	+	2012	300	Portugal	Inpatient	surgery	60	18	MUST	SGA	85	93	89	99	0.912	0.912	
Bellanti, F., et al. (78)	+	2020	152	Italy	Hospital	Internal and aging medicine	78/79	65	MUST	GLIM	64.3	81.7	75	72.8	0.89		
Boběíková K, et al. (79)	Ø	2020	103	Czech Republic	Inpatient	Cardiovascular disease	76	65	MUST	Full MNA					0.44		
Boleo-Tome C, et al. (80)	+	2012	450	Portugal	Outpatient	Oncology	62		MUST	PG-SGA	80	89	87	100	0.86		
Diekmann R et al. (81)	+	2013	200	Germany	Nursing home	Older adults	86	65	MUST	Full MNA					0.16		
Domini LM, et al. (51)	Ø	2016	246	Italy	Nursing home	Older adults	women	60	MUST	Full MNA	47.9	98.1	98.8	33.6	0.27		
Fiol-Martinez L, et al. (82)	+	2017	73	Spain	Inpatients	Hematology	64	18	MUST	SGA	90.9	75	43.5	97.5	0.83		
Fiorindi, C., et al. (83)	Ø	2020	53	Italy	Inpatients	GI surgery	51		MUST	GLIM	63.6	96.8			0.878		
Georgiou A, et al. (84)	+	2019	170	Greece	Outpatient	Hepatology	59	18	MUST	SGA	59	96.9	85.2	88.8	0.777		
Gibson S, et al. (85)	Ø	2012	262	Australia	Inpatients	Medical	71	7	MUST	SGA	80	85					
Hettiarachchi J, et al. (86)	Ø	2018	100	Sri Lanka	Outpatient	Oncology	59	18	MUST	PG-SGA	86.7	94.5	92.9	89.7	0.79		
Source	Year	Country	Setting	Diagnosis	Gender	Age	MUST	Full MNA	SGA	95% CI	P value						
--------------------------------	------	---------	-------------	----------------------------	--------	-----	------	----------	-----	--------	---------						
Holst M et al. (87)	2013	Denmark and Sweden	inpatients	Gastroenterology and Geriatric	81	65	MUST	Full MNA	0.38								
Isenring EA, et al. (55)	2012	Australia	nursing home	83	55	MUST	Full MNA	0.51									
Jackson HS, et al. (88)	2019	UK	inpatients	nephrology	64	18	MUST	SGA	0.47								
Joaquin C, et al. (56)	2019	Spain	Outpatient	heart failure, adult	69	69	MUST	Full MNA	0.36								
Kosters CM, et al. (89)	2020	Netherlands	inpatients and outpatients	nephrology	18	MUST	PG-SGA	0.65									
Kozakova R, et al. (90)	2014	Czech Republic	community y-dwelling	home care	77	65	MUST	Full MNA	0.451								
Kyle UG, et al. (91)	2006	Switzerland	inpatients	medical and surgery	LOS 1-10	61	76	65	76	0.26							
Lawson CS, et al. (16)	2012	UK	inpatients	nephrology	65	7	MUST	SGA	0.316								
Lomivorotov VV, et al. (63)	2013	Russia	inpatients	cardiovascuar disease	58	18	MUST	SGA	100								
Lomivorotov VV, et al. (64)	2013	Russia	inpatients	cardiovascuar disease	59	18	MUST	SGA	99.9								

Note: MUST, Full MNA, SGA, PG-SGA, and LOS stand for different assessment methods and lengths of stay, respectively.
Author(s) and Year	Country	Setting	Age	Domain	Measure	SGA Score	Weight Loss	P-value							
Martin Palmero A, et al. (92)	Spain	Inpatients	65	Medical and Surgery	MUST			0.422							
Naik R, et al. (93)	India	Outpatient	Older adults		MUST										
Nor Azian MZ et al. (18)	Malaysia	Inpatients and Outpatient	Medical		MUST	SGA									
Olivares J et al. (67)	Spain	Inpatients	Adult	Medical and Surgery	MUST	SGA		0.564							
Pereira Borges N, et al. (94)	Brazil	Inpatients	Oncology		MUST	SGA		0.799							
Raupp D, et al. (95)	Brazil	Inpatients	Emergency		MUST	SGA		0.67							
Sharma Y, et al. (96)	Australia	Inpatients	Medical		MUST	PG-SGA	69.70 75.80 75.40 70.10	0.73	0.45						
Stratton RJ, et al. (7)	UK	Inpatients	Medical	Under 65	MUST	SGA		0.783							
Tripathy S, et al. (97)	India	ICU	Medical and Surgery		MUST	’Standard’ based on low BMI AND unplanned weight loss	96.5 72.3 80.9 94.4	0.65							
Tu MY, et al. (98)	Taiwan	Inpatients	Oncology		MUST	SGA	96 75 82.7 93.8	0.724							
Vallen C, et al. (99)	Sweden	Inpatients	Orthopedics, Cardiovascular Disease		MUST	Full MNA	57.00 93.00 86 75								
Velasco C, et al. (100)	Spain	Inpatients	Medical and Surgery		MUST	Full MNA		0.388							
	Spain	Inpatients	Medical and Surgery		MUST	SGA	71.6 90.3 80.1 85.4	0.635							
Young AM, et al (75)	+	2013	134	Australia	inpatients	medical	80	65	MUST	Full MNA	87.1	86.1	84.4	88.6	0.89

Abbreviations: AUC: area under the curve; BMI: Body Mass Index; CC: correlation coefficient; Full MNA: Full Mini Nutritional Assessment; GLIM: Global Leadership Initiative on Malnutrition; ICU: Intensive Care Unit; GI: Gastrointestinal; LOS: Length of stay; MUST: Malnutrition Universal Screening Tool; NPV: negative predictive value; (PG-)SGA: (Patient Generated) Subjective Global Assessment; PPV: positive predictive value
Reference	Quality	Publication year	Sample size	Country	Setting	Condition/ward/diagnosis	Mean/ Median age	Lower age limit for inclusion	Validated tool	Comparison	Sensitivity	Specificity	PPV	NPV	AUC	CC	Kappa
Almeida AI et al. (77)	+	2012	300	Portugal	Inpatient	surgery	60	18	NRS-2002	SGA	80	89	87	100	0.854	0.853	
Badia-Tahull MB, et al. (117)	+	2014	45	Spain	Inpatient	digestive surgery patients on parenteral nutrition	65	18	NRS-2002	PG-SGA	0.31						
		2014	45	Spain	Inpatient	digestive surgery patients on parenteral nutrition	65	18	NRS-2002	SGA	0.53						
Bauer JM, et al. (118)	+	2005	121	Germany	Inpatient	geriatric	80	65	NRS-2002	Full MNA	39.3	83.3	84.6	37			
		2005	121	Germany	Inpatient	geriatric	80	65	NRS-2002	SGA	70.4	84.6	79.2	77.5			
Bellanti, F., et al. (78)	+	2020	152	Italy	Inpatient	Internal and Aging Medicine clinic Malnourished 78, not malnourished 80	58	18	NRS-2002	GLIM	54.7	91	90	60	0.62		
Boulhosa, R., et al. (119)	+	2020	166	Brazil	Inpatient	advanced chronic liver disease	58	18	NRS-2002	GLIM	54.7	91	90	60	0.43		
Chavez-Tostado M, et al. (120)	+	2020	196	Mexico	Inpatient	Gastroenterology	46	18	NRS-2002	SGA	0.53						
Cunha CD, et al. (32)	Ø	2015	173	Brazil	Inpatient	oncology	70	18	NRS-2002	PG-SGA	0.322						
		2015	173	Brazil	Inpatient	oncology	70	18	NRS-2002	SGA	0.345						
Demirel B, et al. (121)	+	2018	124	Turkey	Inpatient and outpatients	Oncology	52	?	NRS-2002	Full MNA	96.5	92.1	96.5	92.1	0.886		
------------------------	----	-------	-----	--------	---------------------------	----------	----	---	-------------	----------	-------	-------	-------	-------	-------		
Diekmann R, et al (81)	+	2013	200	Germany	Nursing home	Older adults	86	65	NRS-2002	Full MNA	0.13						
Donni LM, et al (51)	Ø	2016	246	Italy	Nursing home	Older adults men	77	60	NRS-2002	Full MNA	0.291						
Fiorindi, C., et al. (83)	Ø	2020	53	Italy	Inpatients	GI surgery	51	18	NRS-2002	GLIM	0.919						
Georgiou A, et al. (84)	+	2019	170	Greece	Outpatient	Hepatology	59	18	NRS-2002	SGA	0.747						
Hartz LLK, et al. (122)	+	2019	594	USA	Inpatients	Medical and surgery	63	18	NRS-2002	Assessment incl. NFPE	0.56						
Holst M, et al. (87)	+	2013	233	Denmark and Sweden	Inpatients	Gastroenterology and geriatric	81	65	NRS-2002	Full MNA	0.52						
Javid Mishamandani Z, et al. (123)	Ø	2018	1311	Iran	ICU	?	16	NRS-2002	SGA	0.226							
Juntao Chi, J., et al. (124)	+	2017	280	China	Inpatients	Oncology	63	18	NRS-2002	SGA	0.54						
Kyle UG, et al. (91)	+	2006	995	Switzerland	Inpatients	Medical and surgery	LOS 1-10 days 51; LOS >11d 65; LOS unknown 44	Adult	NRS-2002	SGA	0.48						
Leandro-Merhi VA, et al. (125)	+	2015	210	Brazil	Inpatients	Gastroenterology	?	20	NRS-2002	SGA	0.461						
		2015	290	Brazil	Inpatients	Oncology	?	20	NRS-2002	SGA	0.526						
Reference	Year	Country	Setting	Diagnosis	NRS-2002	SGA	Full MNA	SGA	PG-SGA	MNA	Prevalence						
-----------------------------------	------	---------	--------------------	----------------------------	----------	---------	----------	---------	--------	---------	------------						
Leandro-Merhi VA, et al. (126)	2017	Brazil	inpatients	oncology	72	65	NRS-2002	SGA			0.528						
	2017	Brazil	inpatients	oncology	72	65	NRS-2002	SGA			0.239						
Lomivorotov VV, et al. (63)	2013	Russia	inpatients	cardiovascular disease	58	18	NRS-2002	SGA	43.6	93.5	39.5	94.5	0.784				
Lomivorotov VV, et al. (64)	2013	Russia	inpatients	cardiovascular disease	59	18	NRS-2002	SGA	38.3	93.4	31.6	96.5	0.567				
Martin Palmero A et al (92)	2017	Spain	inpatients	medical and surgery	65	18	NRS-2002	SGA			0.758						
Martins CP, et al. (127)	2005	Portugal	inpatients	orthopedic	74	65	NRS-2002	Full MNA	81.7	84.6	92.1	67.9	0.62				
	2005	Portugal	inpatients	orthopedic	74	65	NRS-2002	SGA	85.9	69.2	85.9	69.2	0.55				
Mereles MS, et al (128)	2012	Brazil	inpatients	surgery	52	19	NRS-2002	SGA			0.49						
Miao JP, et al. (129)	2019	China	inpatients	geriatric	81	70	NRS-2002	Full MNA			0.521						
Mourão F, et al. (113)	2004	Portugal	inpatients	surgery	55	18	NRS-2002	McWhirter			0.29						
	2004	Portugal	inpatients	surgery	55	18	NRS-2002	SGA	96	30			0.39				
Olivares J, et al. (67)	2014	Spain	inpatients	medical and surgery	61	adult	NRS-2002	SGA	68.9	90.1	62.3	92.4	0.567				
Orell-Kotikangas H, et al. (130)	2015	Finland	outpatient	oncology	61	?	NRS-2002	PG-SGA	77.3	97.7	94.4	89.4	0.784				
Raslan M, et al. (131)	2011	Brazil	inpatients	medical and surgery	57	18	NRS-2002	SGA			0.56						
Raupp D, et al. (95)	2018	Brazil	inpatients	emergency	54	18	NRS-2002	SGA			0.62						
Authors	Year	Country	Setting	N	Nutritional Test	Score N	Score SGA	p_value									
---------	------	---------	---------	---	-----------------	---------	-----------	---------									
Ryu SW, et al. (132)	2010	South Korea	inpatients oncology subtotal gastrectomy: 58.5; total gastrectomy: 56.5	80	NRS-2002	80	96	0.685									
Sheean PM, et al (72)	2013	USA	ICU medical and surgery Medical ICU 75; surgical ICU 74	232	NRS-2002 Full MNA	87	44	0.78									
Velasco C, et al. (100)	2011	Spain	inpatients medical and surgery	400	NRS-2002 Full MNA	74.4	87.2	76.1	86.2	0.392							
2011	Spain	inpatients medical and surgery	67	NRS-2002 SGA	76.1	86.2	0.62										
Wang F, et al. (133)	2016	China	inpatients gastroenterology	332	NRS-2002 SGA	90.3	83.3	82.4	90.9	0.514							
Westergren, A., et al (134)	2011	Sweden	inpatients medical and surgery	85	NRS-2002 Full MNA	72.2	95.3	97	62.1	0.9							
Young AM et al. (75)	2013	Australia	inpatients medical	134	NRS-2002 Full MNA	90.3	83.3	82.4	90.9	0.89							

Abbreviations: AUC: area under the curve; CC: correlation coefficient; Full MNA: Full Mini Nutritional Assessment; GLIM: Global Leadership Initiative on Malnutrition; ICU: Intensive Care Unit; LOS: Length of stay; NFPE: Nutritional Focused Physical Exam; NPV: negative predictive value; NRS-2002: Nutritional Risk Screening 2002; (PG-)SGA: (Patient Generated) Subjective Global Assessment; PPV: positive predictive value
Reference	Quality	Publication year	Sample size	Country	Setting	Condition/ ward/ diagnosis	Mean/ Median age	Lower age limit for inclusion	Validated tool	Comparison	Sensitivity	Specificity	PPV	NPV	AUC	CC	Kappa
Sharifi F, et al. (135)	+	2018	97	Iran	nursing home	Older adults	74/60		NUFFE	Full MNA	69.8	75.7	80.8	30.30	0.796		
Arribas L, et al. (102)	+	2017	394	Spain	Outpatient	oncology	62/18		Nutriscore	PG-SGA	97.3	95.6	84.8	99	0.95	0.88	
De Groot LM, et al. (105)	+	2020	246	Australia	?	oncology	62/18		PG-SGA- SF (≥3)	PG-SGA	94	62	31	98	0.311		
									PG-SGA- SF (≥4)	PG-SGA	92	71	37	98	0.387		
									PG-SGA- SF (≥5)	PG-SGA	89	80	45	98	0.493		
Abbott, J., et al. (136)	+	2016	300	Australia	Outpatient	Oncology	59		PG-SGA-SF	PG-SGA	80.4	72.3			0.85		
Kosters CM, et al. (89)	+	2020	123	Netherlands	inpatients and outpatients	nephrology	?/18		PG-SGA-SF (≥6)	PG-SGA	78	94	91	84			
Yaxley, A., et al. (137)	+	2015	185	Australia	community-dwelling	rehabilitation	78/60		Simplified NAQ	Full MNA	28	94	89	44	0.176		
Akin S, et al. (138)	Ø	2019	871	Turkey	community-dwelling	Older adults	71/65		Simplified NAQ	Full MNA					0.725		
Young AM, et al. (75)	+	2013	134	Australia	inpatients	medical	80/65		Simplified NAQ	Full MNA	69.3	83.7	89.7	57.1	0.83		
									Simplified NAQ	SGA	86.9	78.9	77.9	87.5	0.87		
Rolland Y, et al. (139)	Ø	2012	175	France	inpatients and outpatients	Older adults	78/65		Simplified NAQ	Full MNA					0.767	0.48	
Isenring EA, et al. (55)	Ø	2012	127	Australia	nursing home		83/55		Simplified NAQ	Full MNA	70.6	77.3			0.32		
Year	Country	Setting	Age Group	Age	Survey	Short NAQ	Simplified NAQ	SGA	GLIM	CC	AUC						
------	---------	---------	-----------	-----	--------	-----------	---------------	-----	------	----	-----						
2012	Australia	nursing home	83	55	Simplified NAQ	SGA	45.7	77.2	0.225								
2018	Turkey	Outpatient	Older adults	77	60	Simplified NAQ	Full MNA	0.355									
2013	Australia	inpatients	medical	80	65	Short NAQ	Full MNA	62.2	100	100	55.8	0.89					
2013	Australia	inpatients	medical	80	65	Short NAQ	SGA	79	90.3	87.5	83.3	0.93					
2013	Russia	inpatients	Cardiovascular disease	58	18	Short NAQ	SGA	92.3	81.3	32.4	99.1						
2013	Russia	inpatients	cardiovasculardisease	59	18	Short NAQ	SGA	91.5	87.5	28.9	99.5						
2019	Greece	Outpatient	hepatology	59	18	Short NAQ	SGA	51.3	96.2	80	86.9	0.81					
2020	Poland	Systemic sclerosis	54	18	Short NAQ	GLIM	0.52										

Abbreviations: AUC: area under the curve; CC: correlation coefficient; Full MNA: Full Mini Nutritional Assessment; GLIM: Global Leadership Initiative on Malnutrition; MNA: Mini Nutritional Assessment (short form); NUFFE: Nutritional Form for the Elderly; NPV: negative predictive value; (PG-)SGA: (Patient Generated) Subjective Global Assessment; SNAQ: Short nutritional assessment questionnaire; SimplifiedNAQ: Simplified nutrition appetite questionnaire; PPV: positive predictive value
List of Supplementary material

Supplementary Table 1 Complete search

Supplementary Table 2 Reliability

Supplementary Table 3 List of included references

Supplementary Table 4 Quality Check List for all included studies
PRISMA 2009 Flow Diagram

Records identified through database searching (n = 12882)

Additional records identified through other sources (n = 1)

Additional records identified through updated database searching (n = 33)

Records after duplicates removed (n = 7009)

Records screened (n = 7042)

Records excluded (n = 6564)

Full-text articles assessed for eligibility (n = 478)

Studies included in qualitative synthesis (n = 105)

Full-text articles excluded (n = 373) with reasons:
- Local tool (n = 10)
- Abstracts (n = 186)
- Duplicates (n = 1)
- Not relevant tool (n = 8)
- Not relevant comparison (n = 122)
- Participants under 18 years (n = 1)
- Less than 20 participants (n = 1)
- Reviews (n = 27)
- Language other than those included (n = 1)
- Not relevant outcome (n = 16)
