Methane Carbon Supports Aquatic Food Webs to the Fish Level

Angela M. Sanseverino1,2, David Bastviken2, Ingvar Sundh3, Jana Pickova4, Alex Enrich-Prast1,2

1 Institute of Biology, University Federal of Rio de Janeiro, Rio de Janeiro, Brazil, 2 Department of Thematic Studies–Water and Environmental Studies, Linköping University, Linköping, Sweden, 3 Uppsala BioCenter, Department of Microbiology, Swedish University of Agricultural Sciences, Uppsala, Sweden, 4 Uppsala BioCenter, Department of Food Science, Swedish University of Agricultural Sciences, Uppsala, Sweden

Abstract

Large amounts of the greenhouse gas methane (CH4) are produced by anaerobic mineralization of organic matter in lakes. In spite of extensive freshwater CH4 emissions, most of the CH4 is typically oxidized by methane oxidizing bacteria (MOB) before it can reach the lake surface and be emitted to the atmosphere. In turn, it has been shown that the CH4-derived biomass of MOB can provide the energy and carbon for zooplankton and macroinvertebrates. In this study, we demonstrate the presence of specific fatty acids synthesized by MOB in fish tissues having low carbon stable isotope ratios. Fish species, zooplankton, macroinvertebrates and the water hyacinth Eichhornia crassipes were collected from a shallow lake in Brazil and analyzed for fatty acids (FA) and carbon stable isotope ratios (δ13C). The fatty acids 16:1ω8c, 16:1ω9t, 16:1ω6c, 16:1ω5t, 18:1ω9c and 18:1ω9t were used as signature for MOB. The δ13C ratios varied from −27.7% to −42.0% and the contribution of MOB FA ranged from 0.05% to 0.84% of total FA. Organisms with higher total content of MOB FAs presented lower δ13C values (i.e. they were more depleted in 13C), while organisms with lower content of MOB signature FAs showed higher δ13C values. An UPGMA cluster analysis was carried out to distinguish grouping of organisms in relation to their MOB FA contents. This combination of stable isotope and fatty acid tracers provides new evidence that assimilation of methane-derived carbon can be an important carbon source for the whole aquatic food web, up to the fish level.

Introduction

Methane (CH4) is the terminal product of anaerobic respiration when all electron acceptors except carbon dioxide (NO3−, Mo4+, Fe3+ and SO42−) have been depleted by the microbial community. The production of methane is performed by methanogens, which are microorganisms belonging to the domain Archaea.

In 1906, Sohngen [1] showed for the first time that CH4 can serve as an energy and carbon source for bacteria. Biological oxidation of CH4 is now known to occur aerobically in both terrestrial and aquatic habitats [2], and anaerobically in sediments and anoxic salt water [3]. The aerobic methane oxidizing bacteria (MOB) have been classified into the phylum Proteobacteria and recently also Verrucomicrobia (based on three strains), the latter representing thermophilic acidophiles and still being under taxonomic debate [4]. The MOB in Proteobacteria have 16 recognized genera within the classes Gammaproteobacteria (traditionally referred to as “Type I” MOB) and Alphaproteobacteria (“Type II” MOB) [5,6], although some genera do not fit these generalizations very well [4].

Aquatic food webs are supported by organic matter derived from phytoplankton, macrophytes or imported from the surrounding land (allochthonous sources) [7,8]. CH4 production accounts for a large proportion of the total organic matter degradation in freshwater lakes (20–56%) [9], and is a source of energy and carbon for aerobic MOB in the water column and the sediment, linking the anoxic and oxic communities [10–12].

Isotopic distributions in animals are generally closely related to dietary isotopic composition [13]. The stable isotopic compositions of animal tissues reflect both long-term and short-term diets in slow and fast turnover tissues [14]. Measurement of carbon stable isotope ratios (δ13C) has been a successful tool in food web studies [15–17]. Because CH4 is much depleted in 13C, low δ13C values in organisms of aquatic food webs have been considered to indicate their consumption of CH4-derived carbon [10,11]. Such low values of δ13C in animal biomass have been reported for invertebrates in various aquatic systems [11,15,18–22].

Low δ13C values have been reported for fish, and a few studies have suggested that CH4-derived carbon could be transferred in substantial amounts to higher trophic levels [11,23–26]. Calheiros ([23] unpublished data) found strongly negative δ13C values for zooplankton, aquatic insects and detritivorous fishes in a Brazilian Pantanal lake, being the first study to discuss the importance of methanotrophs for the whole food web in this wetland.

While more negative δ13C values can be an indicator of CH4 carbon, the isotopic signal from other potential sources of 13C-depleted carbon – such as primary production based on CO2 from respiration [27] – can provide alternative explanations [16,17].
Therefore, the combination of stable isotope analysis with other independent biomarkers is needed to elucidate if low δ^{13}C values are due to assimilation of carbon from biogenic CH_4 [11,28].

The lipids of the proteobacterial MOB have special fatty acid (FA) composition [5,6,29,30]. They contain a few very unusual FAs that have been used as efficient group-specific markers in studies of abundance and dynamics in methanotrophic community structure [31,32]. A fraction of the assimilated FAs of prey organisms is stored in cells rather than being degraded and the chain lengths and double bond positions in such stored FAs are preserved [33]. On a general level, variation in the FA composition using specific MOB FA can be used as a traceability tool for determining the relative dependency on bacteria versus phytoplankton in diets [34] and seasonal variation in food quality used by zooplankton [35].

Similarly, monounsaturated fatty acids, like those diagnostic for MOB, can thus be microbial biomarkers indicating transfer of carbon and energy from methane to higher food web levels. The assumption that animals actually ingest MOB has been supported by the detection of phospholipid fatty acids (PLFAs) diagnostic for MOB in tissues of chironomid larvae [36]. In addition, Deines et al. [18] experimentally confirmed that MOB carbon can be transferred to invertebrate animals. In this way, findings that FAs specific for MOB are present in tissues of 13C-depleted freshwater invertebrates have been supporting the hypothesis of a link between MOB and animal food webs [36]. However, MOB specific FAs have not been reported in fishes so far.

In this study, we tested the hypothesis that methane carbon from MOB can be transferred through food webs all the way to fish, by combining analyses of δ^{13}C and fatty acid composition in fish, benthic macroinvertebrates, zooplankton, and the dominating aquatic macrophyte from a shallow tropical lake in Pantanal, Brazil. We found specific fatty acids of methane-oxidizing bacteria in tissues of aquatic invertebrates and fish, showing that methane can in fact contribute carbon to large parts of aquatic food webs and production of fish biomass.

Results and Discussion

All δ^{13}C values ranged from -42.0 to -27.7% and the contribution of MOB FA varied from 0.05 to 0.84% of total FA (Figure 1). Based on previous studies the FAs 16:1ω8c, 16:1ω9t, 16:10ω6c, 16:10ω5t, 18:1ω8c and 18:1ω9t are signature FAs for MOB [29,30]. The total contribution of these FAs was higher in organisms with low δ^{13}C (Table 1, Figure 1). Two discrete groups arose in Figure 1: (A) organisms with a higher total content of MOB signature FAs and lower δ^{13}C values, and (B) organisms with lower content of MOB signature FAs and higher δ^{13}C values.

The former group includes Ceratopogonidae and the fish Anadoras gymus with the highest contribution of MOB fatty acids (0.84 and 0.79%, respectively), Chironomidae sp.1 (0.73%), Cyphochilus sp. (0.71%) and the ephemeropteran Campsoper sp. (0.66%). These five organisms were also depleted in δ^{13}C of -38.1, -36.5, -37.1, -36.1 and -39.7%, respectively. All these organisms can feed at oxic-anoxic interfaces where MOB abundance is likely to be high [10], which provides an explanation to the comparatively high consumption and incorporation of MOB carbon into their biomass. Zooplankton and Chaoborus sp. showed the lowest δ^{13}C values (-42.0 and -40.2%, respectively) and a MOB-specific FA contribution of 0.45 and 0.50%, respectively. Calheiros ([25] unpublished data) also found low values of δ^{13}C in zooplankton (-42.7 to -31.6%), benthic chironomids (-62 to -49%) and ephemeropterans (-41.4 to -34.3%) in another Pantanal lake, suggesting an assimilation of biogenic CH_4. Other taxa in group A include the fishes Potamorhina squamolevis, Crenichilca sp., Leporinus friderici and Steindachnerina brevifrons which had equally low δ^{13}C values (δ^{13}C $< -36\%$) and a range of MOB-specific FA content from 0.43 to 0.66%. These fishes can all have benthivorous or omnivorous or detritivorous feeding habits, except Crenichilca sp., which is mainly carnivorous.

A higher variability in FA composition than in δ^{13}C could be explained by physiological differences among taxa regarding to what extent various FAs are metabolized or stored in muscle tissue. Branched FA are often difficult to metabolize and can therefore be magnified in the tissues. Lipid composition in fish muscle varies mainly with fish diet. The metabolism of total lipids and fatty acids might be related to age, sex, reproductive cycle and capture period of the fish and influenced by environmental factors as seasonal hydrological cycle and food availability [37]. Besides, lipids are unevenly stored among tissue types throughout the year. Differences in migratory behavior and life history may explain distinctive lipid dynamics among fish species [38]. In addition, some organisms might have a more homogeneous diet which could lead to a lower isotopic variation. Calheiros ([25] unpublished data) reported low δ^{13}C values for P. squamolevis (mean -36.9%) and small variations in isotopic signals among seasons, which could be due to a more specialized diet. Wantzen [24] pointed out that seasonal variations in isotopic signal of fish species in Pantanal were more prominent in less specialized omnivores, invertivores and some carnivores, while more specialized detritivores and herbivores appeared to be more influenced by δ^{13}C changes in the diet affected by biogeochemical processes.

Group B (Figure 1), formed by the less δ^{13}C-depleted fish species Tetroagapopterus argenteus (-27.7%), Astyanax cf. bimaculatus (-28.0%), and the fish T. argenteus (0.66%). These five groups included the following taxa: (1) Astyanax spp., (2) T. argenteus, (3) Leporinus friderici, (4) Steindachnerina brevifrons, (5) Potamorhina squamolevis, (6) Cyphochilus sp., (7) Anadoras gymus, (8) Leporinus friderici, (9) Steindachnerina brevifrons, (10) Eichhornia crassipes, (11) Leporinus friderici, (12) Steindachnerina brevifrons, (13) Anthochaeta sp., (14) Leporinus friderici, (15) Steindachnerina brevifrons, (16) Eichhornia crassipes, and (17) Zooplankton. Fishes are represented by squares, macroinvertebrates by circles, zooplankton by cross and the plant by diamond. The different colors indicate the type of food sources expected to dominate: green indicates herbivory on plant material, blue herbivory on bottom filamentous algae, red carnivory and brown detritivory. Other types of feeding may occur and can result in variability. The data points separate into two major groups, denoted A and B.

doi:10.1371/journal.pone.0042723.g001
and *Parauchenipterus galeatus* (−28.4%), had lower contents of MOB-specific FA (0.05, 0.40 and 0.37%, respectively). The higher δ13C values in combination with lower MOB FA content of these three fishes indicate a lower incorporation of MOB biomass. This conclusion is in accordance with their feeding habits. These taxa are known to be pelagic or living close to aquatic plants, presenting omnivorous habits with tendency to herbivory-invertivory [39,40]. Wantzen et al. [24] found similar isotopic signatures for *T. argenteus* and *A. crassipes*. Anadoras grypus in Pantanal. Although aquatic C₄ plants were not the major carbon source, they suggested that at least part of the *A. bimaculatus* diet would be derived from aquatic C₃ grasses, which have higher δ13C values than C₃ plants and occur in small patches among large mats of C₄ macrophytes [24]. The water hyacinth *Eichhornia crassipes*, a C₃ plant that totally dominates the macrophyte community in the studied environment, had a similar δ13C signature (−27.8%). Therefore, a combination of carbon sources from C₃ plants, C₄ plants and MOB could yield a 13C signature similar to C₃ plants.

Traces of MOB FA found in plant samples might have two different causes. First, MOB FA in plant samples could be due to the difficulty to completely remove biofilms from the plant surface, especially those attached to the submerged roots. Second, there are studies that revealed the presence of MOB inside living tissues of submerged aquatic plants (*Sphagnum* mosses) [41,42]. Methane-derived carbon was incorporated into plant lipids when mosses were submerged [42]. Even though *E. crassipes* is a floating macrophyte and not a moss, we cannot exclude the possibility of this phenomenon.

The dendrogram in Figure 2 illustrates the clustering of organisms based on contributions of the different MOB FAs only (i.e. with no consideration to 13C signatures). In contrast to the grouping based on total MOB FA and 13C values illustrated in Figure 1, this clustering approach depends on the relative contribution of the individual MOB FAs, but yields a similar overall result. Four arbitrary “cutoff” lines, at Bray-Curtis similarities of 0.4, 0.6, 0.8 and 0.87 were used as reference points for identifying clusters.

At a similarity of 0.4, two distinct clusters can be seen. Cluster 1 grouped organisms with the lowest contributions of MOB FA, i.e. *E. crassipes* and *T. argenteus*. This is in accordance with the fact that *T. argenteus* is an omnivorous fish with tendency to herbivory-invertivory, feeding mainly on vascular plants [43], plant debris and terrestrial insects [39,44]. Cluster 2 was formed by all other organisms with higher MOB FA values.

At a similarity of 0.6, cluster 2 was divided into two new clusters: One had a high contribution of the FA 18:1₀c, which is highly specific for type II MOB [5], and was therefore named Type II MOB. The other cluster was based on high contribution of specific FA markers for MOB type I, and named Type I MOB. Inside cluster Type II MOB, Chaoborus sp. and zooplankton were grouped together since they presented the highest contributions of 18:1₀c and 18:1₀t, expressed as percentage of total fatty acids. MOB FA % represents the sum of the MOB FA markers. doi:10.1371/journal.pone.0042723.t001

Table 1. Isotope ratios of carbon and contribution of the methane oxidizing bacteria fatty acid markers.

Organisms	δ13C	16:1₀c	16:1₀t	16:1₈c	16:1₈t	18:1₀c	18:1₀t	MOB FA %
Eichhornia crassipes	−27.8	0.0546	0.0098	0.00977	0.00559	0.043	0.0081	0.12
Invertebrates								
Chironomidae sp.1	−37.1	0.242	0	0.0862	0.153	0.23	0.0175	0.73
Chironomidae sp.2	−36.2	0.209	0.00866	0.0533	0.0938	0.236	0.0102	0.61
Chaoborus sp.	−40.2	0.0432	0	0.0199	0.0146	0.428	0	0.50
Ceratopogonidae	−38.1	0.32	0.02	0.0856	0.17	0.237	0.0094	0.84
Campsusp. sp.	−39.7	0.0697	0.00881	0.0648	0.268	0.248	0	0.66
Zooplankton	−42.0	0.118	0	0.0102	0.0106	0.308	0	0.45

δ13C, carbon stable isotope ratios relative to the PeeDee Belemnite standard and expressed as a per mil (%) deviation; MOB FA, methane oxidizing bacteria fatty acid markers; 16:1₀c, 16:1₀t, 16:1₈c, 16:1₈t, 18:1₀c and 18:1₀t, expressed as percentage of total fatty acids. MOB FA % represents the sum of the MOB FA markers.

Methane Supports Fishes
collectors/gatherers [48] and construct their tunnels in soft substrates like mud or sand [49].

b) A cluster of organisms with the highest contributions of 16:1\(\text{v}_{8c}\) which are mainly benthivorous and iliophagous ("mud eaters"; *Cyphocharax* sp., *Chironomidae* sp.1, *Ceratopogonidae*, *L. friderici* and *S. brevipinna*). Inside this cluster, two sub-groups emerged: one formed by *Cyphocharax* sp., *Ceratopogonidae* and *Chironomidae* sp.1, and another with *L. friderici* and *S. brevipinna*. Species of *Cyphocharax* pick mainly biofilms from the bottom substrates [50]. Larvae of the aquatic insects *Ceratopogonidae* and *Chironomidae* rely on different food sources. Some are detritivorous while others may feed also on periphyton [51]. Both families have collector and scraper feeding habits, live close to the bottom and/or associated to roots of aquatic plants [48]. The presence of MOB signature FAs in benthic aquatic insects, planktonic organisms as chaoborids and zooplankton, and fishes showed the importance of biogenic methane to different aquatic compartments in this Pantanal ecosystem (Figure 3). We used a simple two-source mixing model based on 13C signatures to estimate the relative importance of methane-derived carbon as described by Trimmer et al. [22]. Assuming *E. crassipes* and MOB as end members, it was estimated that methane oxidation contributes on average 13% and 1% to the carbon content in fishes from group A and B respectively (Figure 1). However, this value is only an estimate, as the 13C signature of many important carbon sources (phytoplankton, terrestrial DOM from C\(_3\) and C\(_4\) plants) were not determined and could not be included in this model. The flood pulse also changes the lake dynamics, and may affect the relative importance of MOB for the food chain. We applied the same model for aquatic insects and zooplankton from

The presence of MOB signature FAs in benthic aquatic insects, planktonic organisms as chaoborids and zooplankton, and fishes showed the importance of biogenic methane to different aquatic compartments in this Pantanal ecosystem (Figure 3). We used a simple two-source mixing model based on 13C signatures to estimate the relative importance of methane-derived carbon as described by Trimmer et al. [22]. Assuming *E. crassipes* and MOB as end members, it was estimated that methane oxidation contributes on average 13% and 1% to the carbon content in fishes from group A and B respectively (Figure 1). However, this value is only an estimate, as the 13C signature of many important carbon sources (phytoplankton, terrestrial DOM from C\(_3\) and C\(_4\) plants) were not determined and could not be included in this model. The flood pulse also changes the lake dynamics, and may affect the relative importance of MOB for the food chain. We applied the same model for aquatic insects and zooplankton from
this lake and obtained a contribution of 16% and 22% as carbon source respectively, a similar value as the results reported by Ravinet et al. [23] and Trimmer et al. [22].

In the present study, the relationship between contribution of MOB FAs and $\delta^{13}C$ seems to be driven more by the MOB type II FA (18C) than by MOB Type I FAs (16C). It is possible that MOB type II dominates over type I in this wetland and the Pantanal floodplain in general. Sundh et al. [31] pointed out that most studies in temperate and boreal lakes show a predominance of type I over type II, while a few studies reported dominance of MOB type II in tropical freshwaters (e.g. [57,58]). Along the same lines, a recent study indicated that type II MOB might drive CH$_4$ oxidation in flood-pulsed wetlands [59].

The two groups of MOB have different growth characteristics and respond differently to variation in temperature, pH and concentrations of oxygen and methane. Low temperatures seem to favor the development MOB type I over type II [60]. With respect to oxygen and methane supply, MOB type II often dominates at relatively high methane and low oxygen concentrations, while MOB type I dominates at low CH$_4$ and high oxygen concentrations [61].

The Pantanal floodplain is characterized by conditions that together favor production and emissions of CH$_4$, such as high primary productivity, shallow depth of inundation, and high temperature [62]. Such conditions could be expected to be favorable for aerobic methane oxidizers with a probable selection for type II, in line with our results. However, although FAs of MOB type II showed a stronger correlation with $\delta^{13}C$ signatures, we have to be careful to draw the conclusion that MOB type II dominates fish consumption of MOB in Pantanal as the actual levels of MOB type I and type II FAs in the fishes were overall quite similar.

This study showed, by combining two independent tracers (MOB FA and $\delta^{13}C$), that MOB carbon was transferred through the food web up to the fish level. Hence, our data demonstrate that CH$_4$ can be a significant carbon source not only for the microbial food web and invertebrates, but also for higher trophic levels. The Pantanal region is characterized by high CH$_4$ production [63] and emissions [62], and transfer of CH$_4$ carbon throughout the food web to various fish species could be a common phenomenon in CH$_4$-rich ecosystems.

Materials and Methods

The Pantanal ecosystem is situated in the Northern part of the Paraguay River basin and is the largest freshwater wetland in
South America. The Pantanal wetland forms a gradient from areas flooded by rainwater to areas flooded by river water [64]. The strong fluctuations between dry and flood periods throughout the year markedly affect aquatic and terrestrial communities of micro- and macro-organisms, primary and secondary production as well as nutrient dynamics. The Pantanal region is a very important environment in terms of global methane fluxes because the emissions from their aquatic systems are among the highest rates measured in tropical areas [62].

Different species of fishes, zooplankton, aquatic invertebrates and the aquatic macrophyte Eichhornia crassipes were collected from a shallow lake (average depth 1.8 m) in the Paraguay River floodplain near Ladário, Mato Grosso do Sul, Brazil. The fishes were provided by local inhabitants using hand-thrown nets. The captured fishes were killed instantaneously to minimize suffering and we were allowed to document the fish taxonomy and take subsamples immediately after fishing, before further use of the fish by the locals. A piece of fish dorsal muscle was cut out and freeze dried. Zooplankton were collected with a zooplankton net (150 μm mesh), rinsed thoroughly with deionized water, hand-picked into 2 ml sterile Eppendorf tubes, and freeze dried. Eichhornia crassipes was the totally dominating macrophyte in and around the lake and whole plants including roots were sampled (this plant is floating and roots are detached from the sediment). The plants were rinsed in water and biofilms were removed from their surfaces. Sediment was collected by diving and sieved for sampling of benthic invertebrates. All benthic invertebrates were kept in filtered (Whatman GF/F) lake water for 24 hours for gut clearance, and were then rinsed and freeze dried.

Samples for stable isotope analysis were analyzed with a Carlo Erba NC2500 analyzer connected to a Finnigan MAT Delta plus mass spectrometer. Carbon stable isotope ratios were reported relative to the PDB (Peedee Belemnite) standard and expressed as a per mil (‰) deviation according to the equation
\[\delta^{13}C = \left(\frac{R_{\text{sample}}}{R_{\text{standard}}} - 1 \right) \times 1000 \]
where 13C and 12C are the isotope values measured in the sample and standard, respectively.

Lipids from biological samples were extracted following the method of Hara and Radin [65]. For GC analysis of fatty acids, the total lipids were methylated according to Appelqvist [66] and the FAMEs (fatty acid methyl ester) were analysed on a Varian CP-3800 Gas Chromatograph system (Agilent Technologies, USA) using the same column and conditions as in Trattner et al. [67]. Fatty acid peaks were identified by comparison with retention times obtained for the standard fatty acid mixture GLC standard 461 (Nu-Chek Prep, Elysian, MN, USA). Peak area integration was performed using Star chromatography workstation software version 5.5 (Varian AB, Stockholm, Sweden). The relative contributions of the different double bond positions and isomers of the monounsaturated FAs were determined after DMDMS derivatization and GC-MS analyses as described previously [68,69]. These data were then used to split the total amounts of monounsaturated FAs obtained in the GC-FID analyses of the FAMEs into the different double-bond positions and isomers. The fatty acids 16:1ω6c, 16:1ω9t, 16:1ω6c, 16:1ω3t, 18:1ω9c and 18:1ω9t were considered markers for MOB [3,29,30].

A cluster analysis was performed to recognize grouping of organisms according to their contents of the different MOB FA markers 16:1ω6c, 16:1ω9t, 16:1ω6c, 16:1ω3t, 18:1ω9c and 18:1ω9t (% of total FA) and to identify differences among those groups. The hierarchical clustering was carried out on a Bray-Curtis similarity matrix (organisms as objects and MOB FA as descriptors) and represented by a dendrogram produced by UPGMA (Unweighted Pair-Group Method with Arithmetic averages) clustering of this resultant matrix. The cluster analysis was performed using the software package PAST version 2.12 [70].

In order to make an approximation of the relative contribution of CH4-derived carbon for fish, macroinvertebrates and zooplankton, a simple two-source mixing model was used (\(x = (c-b)/\{(c+a) b\} \)) as suggested by Trimmer et al. [22]. We assumed E. crassipes (a) and MOB (b) as dietary end members. The \(\delta^{13}C \) values of fish, zooplankton and aquatic insects represented the mixture (c). Trophic fractionation was assumed to be negligible. The \(\delta^{13}C \) values of MOB were derived from methane \(\delta^{13}C \) values measured for the lake (mean: −80.9‰) by Conrad et al. [63] with a further fractionation by the MOB of 0–16% to give a potential range for MOB of −96.9 to −80.9‰ [22,71].

Acknowledgments

AMS and AEP thank the Brazilian Institute of Environment and Renewable Natural Resources (IBAMA) and Chico Mendes Institute for Biodiversity Conservation (ICMBio)/Ministry of Environment (MMA) for collecting permits no. 17269-1 and 17269-5. The authors would like to thank the two anonymous reviewers and the Academic Editor for their helpful suggestions and comments that improved the manuscript.

Author Contributions

Conceived and designed the experiments: AEP DB. Performed the experiments: DB IS JP. Analyzed the data: AMS DB IS JP AEP. Wrote the paper: AMS DB IS JP AEP.

References

1. Sohngen NL (1906) Über Bakterien, welche Methan als Kohlenstoffnahrung und Energiequelle gebrauchen. Centrallbl Bakteriol Parasitenk Infektionskr Abt 1: 513–517.
2. King GM (1992) Ecological aspects of methane oxidation, a key determinant of global methane dynamics. Adv Microb Ecol 12: 431–468.
3. Boettis A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, et al. (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407: 623-628.
4. Op den Camp HJM, Islam T, Stott MB, Harhangi HR, Hynes A, et al. (2009) Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. Environ Microbiol Rep 1: 293–306.
5. Bodelier PLE, Gillissen MJ, Hordijk K, Damsté JSS, Rijpstra WIC, et al. (2009) A reanalysis of phospholipid fatty acids as ecological biomarkers for methanotrophic bacteria. ISME J 3: 606–617.
6. Bowman JP (2006) The methanotrophs – the families Methylcococcaceae and Methylbacteriaceae. In: Dowquin M, Falkow S, Rosenberg E, Schleifer KH, Strachanring E, editors. The prokaryotes. New York: Springer. pp. 266-289.
7. Pace ML, Cole JJ, Carpenter SR, Kitchell JF, Hodgson JR, et al. (2004) Whole-lake carbon-13 additions reveal terrestrial support of aquatic food webs. Nature 430: 240–243.
8. Cole JJ, Carpenter SR, Kitchell JF, Pace ML, Solomon CT, et al. (2011) Strong evidence for terrestrial support of zooplankton in small lakes based on stable isotopes of carbon, nitrogen, and hydrogen. Proc Natl Acad Sci USA 108: 1975–1980.
9. Bastviken D (2009) Methane. In: Likens GE, editor. Encyclopedia of inland waters. Oxford: Elsevier. pp. 783–805.
10. Bastviken D, Elsaesser R, Sundh I, Tranvik L (2005) Methane as a source of carbon and energy for lake pelagic food webs. Ecology 84: 969–981.
11. Jones RI, Grey J (2011) Biogenic methane in freshwater food webs. Freshwater Biol 56: 213–229.
12. Jones RI, Carter GE, Kelly A, Ward S, Kelly DJ, et al. (2008) Widespread contribution of methane-cycle bacteria to the diets of lake profoundal chironomid larvae. Ecology 89: 857–864.
13. Fry B (1988) Food web structure on Georges Bank from stable C, N, and S isotopic compositions. Limnol Oceanogr 33: 1182–1190.
20. Grey J, Kelly A, Jones RI (2004) High intraspecific variability in carbon and nitrogen stable isotope ratios of lake chironomid larvae. Limnol Oceanogr 49: 1126–1134.

23. Ravinet M, Syvänta J, Jones RI, Grey JA (2010) Trophic pathway from biogenic methane supports fish biomass in a temperate lake ecosystem. Oikos 119: 419–466.

24. Grey J, Kelly A, Jones RI (2004) High intraspecific variability in carbon and nitrogen stable isotope ratios of lake chironomid larvae. Limnol Oceanogr 49: 1126–1134.

27. Rau G (1978) Carbon-13 depletion in a subalpine lake: Carbon flow and life cycle variability. Freshwater Biol 49: 681–689.

31. Sundh I, Bastviken D, Tranvik LJ (2005) Abundance, activity, and community composition of aquatic insect larvae. J Fish Biol 66: 232–240.

32. Steger K, Premke K, Gudasz C, Sundh I, Tranvik LJ (2011) Microbial biomass and life cycle variability. Freshwater Biol 49: 681–689.

33. Iverson SJ (2009) Tracing aquatic food webs using fatty acids: from qualitative to quantitative. Aquat Ecol 43: 735–755.

35. Taipale S, Kankaala P, Hämäläinen H, Jones RI (2009) Seasonal shifts in the stable isotope values of lake-dwelling chironomid larvae in relation to feeding. Freshwater Biol 54: 90–104.

36. Appelqvist LÅ (1968) Rapid methods of lipid extraction and fatty acid methyl ester preparation for seed and leaf tissue with special remarks on preventing the formation of dimethyl disulphide adducts. J Microbiol Meth 5: 49–55.

37. Bowler JP, Sly LI, Nichols PD, Hayward AC (1993) Revised taxonomy of the Stictochironomus (Diptera: Chironomidae) fauna of the Brazilian Pantanal. Oecologia 96: 85–94.

38. Arrington DA, Davidson BK, Winemiller KO, Layman CA (2006) Influence of life history and seasonal hydrology on lipid storage in three neotropical fish species (Pisces: Osphronemidae). Neotrop Ichthyol 5: 393–404.

39. Cherkaoui H, Christensen J (1999) Methane oxidation in peat moss ecosystems. Nature 401: 1153–1156.

40. Pipit N, van Wijnen JF, Fan Y, Bodrossy L, Reichart G, et al. (2010) Global prevalence of symbiotic bacterial methane oxidation in peat moss ecosystems. Nat Geosci 3: 617–621.

41. Raghoebrarsing AA, Smolders AJP, Schmid MC, Rijpstra WCJ, Wolters-Arts M, et al. (2005) Methanotroph symbionts provide carbon for photosynthesis in peat bogs. Nature 436: 1153–1156.

42. Kip N, van Winden JF, Fan Y, Bodrossy L, Reichart G, et al. (2010) Global prevalence of symbiotic bacterial methane oxidation in peat moss ecosystems. Nat Geosci 3: 617–621.

43. Corrêa CE, Albrecht MP, Hahn NS (2011) Patterns of niche breadth and feeding overlap of the fish fauna in the seasonal Brazilian Pantanal, Cuiabá River basin. Neotrop Ichthyol 9: 399–404.

44. Pereira PR, Agostinho CS, Oliveira RJ, Marques EE (2007) Trophic guilds of fishes in sandbank habitats of a Neotropical river. Neotrop Ichthyol 5: 393–404.

45. Sarther OA (1997) Diptera Chaoboridae, phantom midges. In: Nilsson A, editor. Aquatic insects of North Europe – A taxonomic handbook. Volume 2. Olofsson-Diptera. Stenstrup: Apollo Books. pp. 149–161.

46. Errington K, Brown MK, Carro SD, Karplus M (2000) Feeding habits of Chaoboridae larvae in a tropical Brazilian reservoir. Rev Bras Biol 60: 591–597.

47. Correa SB (2003) Comparative study of fish assemblages in flooded forest versus floating meadow habitats of an upper Amazon floodplain (Pacaya Samiria National Reserve, Peru) MSc. thesis, University of Florida. Website of the Florida Museum of Natural History, Project Ucama. Available: http://www.flmnh.ufl.edu/scamara/pubs/correa_2003.pdf. Accessed 2011 February 3.

48. Mittler RW, Cummins KW (1996) An introduction to the aquatic insects of North America. Dubuque: Kendall Hunt Publishing Co. 862 p.

49. Molinier C, Emmerich D (2010) New species and new stage descriptions of Camesoto hypselotomus species group (Polycentropodidae: Camptocerinae), with first report of silk-case construction in mayfly nymphs. Aquat Insects: Internat J Freshwater Ecol 32: 265–290.

50. Varti RP (1992) Systematics of the Neotropical characiform genus Cichla (Pisces: Osphronemidae). J Fish Biol 40: 135–143.

51. Coffman WP, Ferrington LC Jr (1996) Chaoboridae. In: Merritt RW, Cummins KW, editors. An introduction to the aquatic insects of North America. Dubuque: Kendall Hunt Publishing Co. pp. 635–754.

52. Albrecht MP, Sazima I (1987) Feeding ecology of Lepomis fideci (Teleostei; Anostomiidae) in the upper Tocantins River, Central Brazil, before and after installation of a hydroelectric plant. Stud Neotrop Fauna Environ 33: 38–40.

53. Lopes CA, Benedito E, Martinelli LA (2009) Trophic position of bottom-feeding fish in the upper Paraná River floodplain. Braz J Biol 69: 573–581.

54. Pereira RAC, Rancic EK (1998) Peixes detritivores da planicie inundável do Rio Miranda, Pantanal, Mato Grosso do Sul, Brasil. Embrapa Bol Pesq 12: 1–50.

55. Esteves KE, Galetti PM (1995) Food partitioning among some characids of a small Brazilian floodplain lake. Environ Biol Fishes 42: 373–380.

56. Sazima I (1986) Simplicity in feeding behaviour between some marine and freshwater fishes in two tropical riparian communities. J Fish Biol 29: 53–65.

57. Dumestre JF, Vaquer A, Gose P, Richard S, Labroue L (1999) Bacterial ecology of a young equatorial hydroelectric reservoir (Petit Saut, French Guiana). Hydrobiologia 400: 75–83.

58. Dumestre JF, Casamayor EO, Massana R, Pedro-Álvaro C (2001) Changes in bacterial and archaeal assemblages in an equatorial river induced by the water extraporation of Petit Saut dam reservoir (French Guiana). Aquat Microb Ecol 26: 209–220.

59. Chowdhury TR, Dick R (2011) Type II aerobic methane oxidizing bacteria (AMO) drive methane oxidation in pulsed wetlands as indicated by 13C-phospholipid fatty acid composition. Available from Nature Precedings http://dx.doi.org/10.1038/npre.2011.6291.1. Accessed 07 June 2012.

60. Biogeo B, Sunden I, Seppälä M (2004) Microbial oxidation of CH4, at different temperatures in landfill cover soils. FEMS Microbiol Ecol 48: 305–312.

61. Amaral JA, Knowles R (1995) Growth of methanotrophs in methane and oxygen counter gradients. FEMS Microbiol Lett 126: 215–220.

62. Baustiken D, Sartori AL, Mejutoa H, Paulo L, Calheiros DF, et al. (2010) Methane emissions from Pantanal, South America, during the low water season: toward more comprehensive sampling. Environ Sci Technol 44: 5450–5455.

63. Conrad R, Noll M, Claus P, Klose M, Bastos WR, et al. (2011) Stable carbon isotope discrimination and microbiology of methane formation in tropical anoxic lake sediments. Biogeosciences 8: 795–814.

64. Junk WJ, Furch K (1993) A general review of tropical South American floodplains. Wetlands Ecol Manage 2: 231–238.

65. Hara A, Radin NS (1978) Lipid extraction of tissue with low toxicity solvent. J Microbiol Meth 5: 49–55.

66. Appelqvist LÅ (1968) Rapid methods of lipid extraction and fatty acid methyl ester preparation for seed and leaf tissue with special remarks on preventing the formation of dimethyl disulphide adducts. Anal Biochem 90: 420–426.

67. Appelqvist LÅ (1968) Rapid methods of lipid extractions and fatty acid methyl ester preparation for seed and leaf tissue with special remarks on preventing the accumulation of lipids contaminants. Ark Kemi 28: 551–570.

68.ARCHEA utilizes algae for the production of biofuels. Nature 436: 1153–1156.

69. Nichols PD, Guckert JB, White DC (1986) Determination of monounsaturated fatty acid double-bond position and geometry for microbial monounsaturated and complex consortia by capillary GC-MS of their dimethyl disulfide adducts. J Microbiol Meth 5: 49–52.

70. Virtue P, Nichols PD, Beon PI (1996) Simultaneous estimation of microbial phospholipid fatty acids and diether lipids by capillary gas chromatography. J Microbiol Meth 25: 177–185.
70. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeont Electron 4: 1–9.

71. Summons RE, Jahnke LL, Roksandic Z (1994) Carbon isotopic fractionation in lipids from methanotrophic bacteria: Relevance for interpretation of the geochemical record of biomarkers. Geochim Cosmochim Acta 58: 2853–2863.