Abstract

Introduction: Urinary tract infection (UTI) is common among patients with diabetes mellitus and the aetiological agents are often extended-spectrum beta-lactamase (ESBL) producing bacteria. Diabetic patients with UTI are sometimes complicated by bacteraemia. This study was designed to evaluate whether UTI due to ESBL-positive organisms is a risk factor for bacteraemia among patients with type 2 diabetes mellitus.

Methods: This was a cross-sectional analytical study, done in BIRDEM General Hospital, Dhaka, Bangladesh from January to April 2016. Adult (≥ 18 years) type 2 diabetic subjects of either sex with culture proven UTI were included in this study. All study participants were subjected to undergo blood cultures as well. ESBL-positivity of the infective organisms for UTI was evaluated as possible risk factor for bacteraemia.

Results: Total patients were 145 including 119 (82%) females. Eshcerichia coli (112, 77.2%) was the most common aetiological agents followed by Klebsiella pneumoniae (28, 19.3%). In 54 (37.2%) patients UTI was due to ESBL-positive organisms. Ten (6.9%) patients were complicated by bacteraemia [7 (7/54, 13%) among patients with UTI due to ESBL-positive organisms and 3 (3/91, 3.3%) among patients with UTI due to non-ESBL organisms]. UTI due to ESBL-positive organisms appeared as a significant risk factor for bacteraemia (OR 4.37, 95% CI 1.08-17.38, p = 0.03).

Conclusion: Nearly two-fifths of UTI cases were due to ESBL-positive organisms in this study. ESBL-positivity of the causative organisms was a significant risk factor for bacteraemia among type 2 diabetic subjects.

Key words: Bacteraemia, extended-spectrum beta-lactamase, pyelonephritis, risk factor, type 2 diabetes mellitus, urinary tract infection.

Received: 05 August 2019
Accepted: 18 December 2019
DOI: https://doi.org/10.3329/bjmed.v31i1.44747
Moreover, UTI complicated by bacteraemia indicates complicated infection and merits intravenous antimicrobials in hospital settings; thus increasing treatment cost by many folds. So, this study was designed to evaluate whether UTI due to ESBL-positive organisms is a risk factor for bacteraemia among patients with type 2 diabetes mellitus.

Methods

This cross-sectional analytical study was done in the Department of Nephrology, Bangladesh Institute of Research and Rehabilitation in Diabetes, Endocrine and Metabolic Disorders (BIRDEM) General Hospital, Dhaka, Bangladesh from January to April 2016. Hospitalized adult (≥18 years) type 2 diabetic subjects of either sex, who got admitted with features of pyelonephritis, were primarily enrolled for the study purpose. A clean catch technique was applied for collection of urine in a sterile container and sent to the microbiology laboratory of the institute within half an hour for culture and a blood sample of the patient was also sent for culture before starting any antibiotic. Urine and blood cultures and antibiotic sensitivity tests were performed following standard microbiological procedures. Other investigations were done as per hospital protocol and as indicated. Patients with culture proven UTI were finally included in this study. ESBL-positivity of the infective organisms was tested by double disc diffusion method described elsewhere. Pregnancy, patients with kidney and ureteric stones, enlarged prostate, indwelling urinary catheter and recurrent UTI were excluded from the study. ESBL-positivity of the infective organisms was evaluated as possible risk factor for bacteremia. Data were analyzed by statistical package for social scientists (SPSS) version 16.0 and the results

Results

Total patients were 145 including 119 (82%) females. Mean age of the study participants was 59.2 years. Base-line characteristics are shown in Table I.

Characteristics	Parameters
Mean (range) age	59.2 (21-72) years
Male: Female	1: 4.6
Mean (range) duration of diabetes	6.3 (1-13) years
Random blood glucose at admission	13.1 (7.2-21.3) mmol/L
Mean (range) HbA1c	9.7 (8.1-11.5) %
Hypertension	68 (46.9%)
Chronic kidney disease	41 (28.3%)

Table II

Patterns of infective organisms for UTI (N=145)

Organism	ESBL-positive	Non-ESBL	Total
E. coli	38 (33.9)	74 (66.1)	112
K. pneumoniae	11 (39.3)	17 (60.7)	28
Enterobacter	4 (100)	0 (0)	4
Citrobacter	1 (100)	0 (0)	1

Table III

ESBL-positivity as a risk factor for sepsis among patients with UTI (N=145)

ESBL positivity	Sepsis	No sepsis	OR, 95% CI, p value
Yes (54)	7	47	4.37, 1.08-17.38, 0.03
No (91)	3	88	

Discussion

Bacteremia is not uncommon in UTI, both in community and hospital settings and in all age groups—adults, elderly and neonates; but the burden varied widely in different studies. Generally, outcome of UTI complicated by bacteremia is worse than those without. In the present study, we found nearly 7% of our type 2 diabetic subjects diagnosed with UTI had concomitant bacteremia. In different studies percentage of patients of UTI complicated by bacteremia was much higher; elderly patients are likely to have urinary obstruction that might explain such high rates in western studies.

In the present study, almost two-fifths of the study participants had UTI due to ESBL-positive organisms which is lower than a previous report from Bangladesh. Patients with diabetes mellitus and specially those with poor glycaemic control are at increased risk for infection with ESBL-positive organisms. The percentage of ESBL-positive...
organisms was higher in our study compared to some other international reports. Inadvertent and non-judicious use of antimicrobials may be one of the most important contributory factors for such findings in the present study.

Community acquired UTI cases are generally treated at outpatients with oral fluoroquinolones, cephalosporins and nitrofurantoin. ESBL-positive organisms are resistant to penicillins and cephalosporins. One-third of our patients had chronic kidney disease, but nobody was on renal replacement therapy in any form. Patients with chronic kidney disease are not suitable for prescriptions with nitrofurantoin or aminoglycosides. So, carbapenems remain the option, thus increasing treatment cost by many folds.

Bacteramia itself implies severe disease. Published reports varied regarding outcome of UTI cases complicated by sepsis; some authors found worse outcome while others did not. Morbidity and mortality evaluation was beyond the scope of the present study but we feel outcome evaluation in UTI complicated by bacteramia remains area for further exploration in our setting.

Published literatures indicated urinary obstruction like enlarged prostate, indwelling catheters, stone disease and lithotripsy as risk factors for bacteramia and sepsis in UTI. We excluded all these confounders in our study during selection of study participants. We assume duration of diabetes and status of glycaemic control could be further confounders in our study, which could be adjusted during analysis. Moreover, small sample size, short term study in a single center—all these remain as limitations of present study.

In conclusion, almost two-fifths of UTI cases were due to ESBL-positive organisms in this study and ESBL-positivity of the causative organisms for UTI was a significant risk factor for bacteramia among type 2 diabetic subjects.

Conflict of interest: Nothing to declare.

References

1. Nicolle LE. Urinary Tract Infections in the Older Adult. Clin Geriatr Med 2016 Aug;32(3):523-538. https://doi.org/10.1016/j.cger.2016.03.002. PMID:27394021

2. Rahim MA, Mitra P, Zaman S, Habib SH, Afroz SR, Samad T, et al. Frequency, Risk Factors and Antibiotic Sensitivity Pattern of Extended-Spectrum Beta-Lactamase Producing Escherichia coli and Klebsiella pneumoniae Causing Urinary Tract Infection: Experience from a Tertiary Care Hospital of Bangladesh. BJM Med J 2017;7(2):155-159. https://doi.org/10.3329/bjmedj.v7i2.32455

3. Nitzan O, Elias M, Chazan B, Saliba W. Urinary tract infections in patients with type 2 diabetes mellitus: review of prevalence, diagnosis, and management. Diabetes Metab Syndr Obes 2015;8:129-136. https://doi.org/10.2147/DMSO.S51792. PMID:25759592. PMCID: PMC4346284

4. Artero A, Ingla L, Gómez-Belda A, Capdevila JA, Diez LF, Arca A, et al. The clinical impact of bacteremia on outcomes in elderly patients with pyelonephritis or urinary sepsis: A prospective multicenter study. PLoS ONE 2018;13(1):e0191066. https://doi.org/10.1371/journal.pone.0191066. PMID:29364923. PMCID: PMC5783370

5. Peach BC, Garvan GJ, Garvan CS, Cimioti JP. Risk Factors for Urosepsis in Older Adults: A Systematic Review. Gerontol Geriatr Med 2016 Jan-Dec;2:233721416639890. https://doi.org/10.1177/233721416639890. PMID:28138493. PMCID: PMC519864

6. Fennell J, Vellinga A, Hanahoe B, Morris D, Boyle F, Higgins F, et al. Increasing prevalence of ESBL production among Irish clinical Enterobacteriaceae from 2004 to 2008: an observational study. BMC Infect Disease 2012;12:116-123. https://doi.org/10.1186/1471-2334-12-116. PMID:22587773. PMCID: PMC3462136

7. Kang C-I, Cha MK, Kim SH, Ko KS, Wi YM, Chung DR, et al. Clinical and Molecular Epidemiology of Community-Onset Bacteremia Caused by Extended-Spectrum Beta-Lactamase-Producing Escherichia coli over a 6-Year Period. J Korean Med Sci 2013; 28:998-1004. https://doi.org/10.3346/jkms.2013.28.7.998. PMID:23853481. PMCID: PMC3708098

8. Iqbal S, Rahim MA, Samad T, Ananna MA, Mitra P, Chowdhury TA. Extended-Spectrum Beta-Lactamase Producing Escherichia coli and Klebsiella pneumoniae are Emerging as Major Pathogens Responsible for Urinary Tract Infection. Bangladesh Crit Care J September 2015;3(2):49-52. https://doi.org/10.3329/bccj.v3i2.25109

9. Fernando MMPSC, Luke WANG, Mitthhinda JKN, Wickramasinghe RDDS, Sebastiampillai BS, Gunathilake MPM, et al. Extended spectrum beta lactamase producing organisms causing urinary tract infections in Sri Lanka and their antibiotic susceptibility pattern –A hospital based cross sectional study. BMC Infectious Diseases 2017;17:138. https://doi.org/10.1186/s12879-017-2250-y. PMID:28187754. PMCID: PMC5303299

10. Clinical and Laboratory Standards Institute. 2012. Performance standards for antimicrobial susceptibility testing. Twenty second informational supplement update. CLSI document M100-S22 U. Clinical and Laboratory Standards Institute, Wayne, PA.
11. Shawa E, Benitob N, Rodríguez-Bañoc J, Padillad B, Pintadoe V, Calbof E, et al. Risk factors for severe sepsis in community-onset bacteremic urinary tract infection: Impact of antimicrobial resistance in a large hospitalised cohort. J Infect March 2015;70(3):247-254. https://doi.org/10.1016/j.jinf.2014.09.011. PMid:25305497

12. Hsiao CY, Yang HY, Chang CH, Lin HL, Wu CY, Hsiao MC, et al. Risk Factors for Development of Septic Shock in Patients with Urinary Tract Infection. Biomed Res Int 2015;2015:717094.https://doi.org/10.1155/2015/717094.PMid:26380292 PMCid:PMC4561874

13. Mohseny AB, van Velze V, Steggerda SJ, Smits-Wintjens VEJH, Bekker V, Lopriore E. Late-onset sepsis due to urinary tract infection in very preterm neonates is not uncommon. Eur J Pediatr 2018;177:33-38.https://doi.org/10.1007/s00431-017-3030-9.PMid:29063210 PMCid:PMC5748400

14. Pien BC, Sundaram P, Raoof N, Costa SF, Mirrett S, Woods CW. The clinical and prognostic importance of positive blood cultures in adults. Am J Med 2010;123:819-828. https://doi.org/10.1016/j.amjmed.2010.03.021.PMid:20800151

15. Ben-Ami R, Rodríguez-Baño J, Arslan H, Pitout JDD, QuentinC, Calbo ES, et al. A Multinational Survey of Risk Factors for Infection with Extended-Spectrum à-Lactamase-Producing Enterobacteriaceae in Nonhospitalized Patients. Clin Infect Dis 2009;49(5):682-690. https://doi.org/10.1086/604713.PMid:19622043

16. Shaikh S, Fatima J, Shakil S, Rizvi SMD, Kamal MA. Risk factors for acquisition of extended spectrum beta lactamase producing Escherichia coli and Klebsiella pneumoniae in North-Indian hospitals. Saudi J Biol Sci 2015;22:37-41. https://doi.org/10.1016/j.sjbs.2014.05.006.PMid:25561881 PMCid:PMC428 1604

17. Rubio-Perez I, Martín-Perez E, García DD, Calvo MLB, Barrera EL. Extended-spectrum beta-lactamase-producing bacteria in a tertiary care hospital in Madrid: epidemiology, risk factors and antimicrobial susceptibility patterns. Emerg Health Threats J 2012;5:11589. https://doi.org/10.3402/ehtr.v5i0.11589. PMid:22822411 PMCid:PMC3400742

18. Chander A, Shrestha D. Prevalence of extended spectrum beta-lactamase producing Escherichia coli and Klebsiella pneumoniae urinary isolates in a tertiary care hospital in Kathmandu, Nepal. BMC Res Notes 2013;6:487.https://doi.org/10.1186/1756-0500-6-487. PMid:24274894 PMCid:PMC4222089

19. Artero A, Esparcia A, Eiros JM, Madrazo M, Alberola J, Nogueira JM. Effect of Bacteremia in Elderly Patients with Urinary Tract Infection. Am J Med Sci. 2016; 352:267-271. https://doi.org/10.1016/j.amjms.2016.05.031.PMid:27650231

20. Hsu CY, Fang HC, Chou KJ, Chen CL, Lee PT, Chung HM. The clinical impact of bacteremia in complicated acute pyelonephritis. Am J Med Sci 2006; 332:175-180. https://doi.org/10.1097/00000441-200610000-00004. PMid:17031242

21. Chen Y, Nitzano, Saliba W, Chazan B, Coldner R, Raz B. Are blood cultures necessary in the Management of women with complicated pyelonephritis? J Infect 2006; 53:235-240. https://doi.org/10.1016/j.jinf.2005.12.005. PMid:16434102

22. Lim CH, Hwang JS, Kim DJ, Jang SH, Son JH, Cho DS, et al. Risk Factors of Sepsis in Obstructive Acute Pyelonephritis Associated with Urinary Tract Calculi. Urogenit Tract Infect 2015;10(2):108-111.https://doi.org/10.14777/uti.2015.10.2.108

23. Orenstein R, Bross JE, Dahlmann M. Risk factors for urinary lithotripsy-associated sepsis. Infect Control Hosp Epidemiol 1993 Aug;14(8):469-472.https://doi.org/10.1086/646781 PMid:8376737

24. D’Addessi A, Vittori M, Racoppi M, Pinto F, Sacco E, Bassi PF. Complications of Extracorporeal Shock Wave Lithotripsy for Urinary Stones: To Know and to Manage Them-A Review. The Scientific World Journal 2012; Article ID 619820. https://doi.org/10.1100/2012/619820.PM id:24289195 PMCid:PMC3317539