Polar phase of superfluid 3He: Dirac lines in the parameter and momentum spaces

G.E. Volovik1,2

1Low Temperature Laboratory, Aalto University, P.O. Box 15100, FI-00076 Aalto, Finland
2Landau Institute for Theoretical Physics, acad. Semyonov av., 1a, 142432, Chernogolovka, Russia

(Dated: March 15, 2022)

The time reversal symmetric polar phase of the spin-triplet superfluid 3He has two types of Dirac nodal lines. In addition to the Dirac loop in the spectrum of the fermionic Bogoliubov quasiparticles in the momentum space (p_x, p_y, p_z), the spectrum of bosons (magnons) has Dirac loop in the 3D space of parameters – the components of magnetic field (H_x, H_y, H_z). The bosonic Dirac line lives on the border between the type-I and type-II.

PACS numbers:

Originally the topology of the points and lines of level crossing has been investigated in a parameter space. In particular, while encircling a diabolical point in the space of two parameters, the wavefunction changes sign. Typically this has been applied to electronic spectrum in molecular systems. Later the topological methods have been applied to the diabolical points in the spectrum of fermionic quasiparticles (Bogoliubov quasiparticles) in gapless superfluids and superconductors, where the parameter space is the space of linear momentum in superfluids and quasimomentum in superconductors. In particular, the topologically protected diabolical point in 3D momentum space – the Weyl point – gives rise to Weyl fermions and effective gauge and gravitational points in 3D momentum in superconductors, or the extended phase space.

Here we show that the spectrum of spin waves (magnons) – the Goldstone modes of the polar phase – also experiences the topologically protected Dirac nodal line, but now in the parameter space, see Fig. 1 (right). At this topologically protected line $(p_z = 0, p = p_F)$ the energy of the Bogoliubov quasiparticles in Eq. (1) is zero.

In momentum space the polar phase contains the Dirac nodal line in the quasiparticle spectrum determined by the 2×2 Bogoliubov-Nambu Hamiltonian:

$$\mathcal{H}(\mathbf{p}) = v_F(p - p_F)\tau^3 + \Delta_\mathbf{p} \hat{\mathbf{m}} \cdot \hat{\mathbf{p}} \tau^1. \quad (1)$$

Here τ^a are the Pauli matrices in the Bogoliubov-Nambu space; p_F and v_F are the Fermi momentum and Fermi velocity in the normal state of liquid 3He; $\Delta_\mathbf{p}$ is the gap amplitude in the polar phase; $\hat{\mathbf{p}} = \mathbf{p}/|p|$; $\hat{\mathbf{m}}$ is the unit vector of uniaxial anisotropy axis provided by the direction of the aerogel strands, and we choose the coordinate systems with $\hat{z} = \hat{\mathbf{m}}$; we ignore here the spin structure of the order parameter (but later it will be important for the consideration of spin dynamics).

The nodal line, where the spectrum of negative energy states touches the spectrum of positive energy states, is at $p_z = 0$ and $p = p_F$, see Fig. 1 (left). In the vicinity of the Dirac line there emerges the peculiar type of quantum electrodynamics with the non-analytic action for the effective electromagnetic field, $(B^2 - E^2)^{3/4}$.

Here we show that the spectrum of spin waves (magnons) – the Goldstone modes of the polar phase – also experiences the topologically protected Dirac nodal line, but now in the parameter space, see Fig. 1 (right). This spectrum at different magnitudes and orientations of magnetic field has been measured in Ref.

![FIG. 1: (Color online) Exceptional lines of level crossing analyzed by von Neumann and Wigner in the polar phase of superfluid 3He. The geometric Berry phase around these lines changes by π.](image)

Left: Dirac line in the quasiparticle spectrum in space of the components of momentum (p_x, p_y, p_z). At this topologically protected line $(p_z = 0, p = p_F)$ the energy of the Bogoliubov quasiparticles in Eq. (1) is zero.

Right: Dirac line in the space of parameters – components of magnetic field (H_x, H_y, H_z), which determine the frequency of magnons in Eqs. (3) and (4). At this topologically protected line $(H_z = 0, \gamma H = \Omega_P$, where Ω_P is the Leggett frequency) the branch of optical magnon and the branch of light Higgs modes cross each other, see Fig. 2.

\[F = \frac{1}{2} \chi_{ab} M_a M_b - \mathbf{M} \cdot \mathbf{H} + \frac{\chi_1}{2\gamma^2} \Omega_P^2 (\mathbf{d} \cdot \mathbf{m})^2. \quad (2) \]

Here \mathbf{H} is the external magnetic field; γ is gyromagnetic ratio; the unit vector \mathbf{d} is the spin part of the order pa-
parameter, which determines the easy axis of spontaneous anisotropy of spin susceptibility χ_{ab}. The last term in Eq. (2) is the spin-orbit coupling, where Ω_P is the so-called Leggett frequency, the frequency of the longitudinal NMR. The equation for magnetization has the following matrix form\cite{22}:

$$\begin{align*}
\omega^2 \Psi &= \mathcal{H}(H) \Psi, \quad (3) \\
\mathcal{H}(H) &= \frac{(\gamma H)^2 + \Omega_P^2}{2} + \left(\frac{(\gamma H)^2 - \Omega_P^2}{2} + \Omega_P^2 \cos^2 \lambda \right) \tau^3 - \Omega_P^2 \sin \lambda \cos \lambda \tau^1. \quad (4)
\end{align*}$$

Here the two-component function is $\Psi = (M_\perp, M_\parallel - M)$, where M_\perp and M_\parallel are the transverse and longitudinal components of magnetization with respect to the direction of magnetic field, and $M = \chi_\perp H$ is an equilibrium magnetization; τ^a are the Pauli matrices connecting the two components of magnetization; $\omega_L = \gamma H$ is Larmor frequency; λ is the angle of magnetic field with respect to anisotropy axis \hat{m}, i.e. cos $\lambda = \hat{m} \cdot H/H$.

For $\lambda = \pi/2$, the two branches do not interact with each other and may cross each other, see Fig. 2. In the mode with $\omega = \gamma H$, the transverse component M_\perp oscillates. This mode is excited in transverse NMR experiments. The mode with $\omega = \Omega_P$ and with oscillating M_\parallel is excited in longitudinal NMR experiments. In the other language these two branches correspond respectively to the optical magnon and the light Higgs mode\cite{25,26}. The modes do not interact with each other only at $\lambda = \pi/2$ and at $\lambda = 0$. Otherwise, these modes interact producing the observed parametric decay of Bose-Einstein condensate of optical magnons to light Higgs modes\cite{25} and the repulsion of the levels – the observed avoiding crossing\cite{23}.

At $\lambda = \pi/2$ and $\gamma H = \Omega_P$ these two branches cross each other. This is the degeneracy point of the level crossing – the Dirac diabolical point in the space of the two parameters, $\gamma H = \Omega_P$ and $\lambda = \pi/2$. If one takes into account all three components of magnetic field H, one obtains the Dirac line (circle) $H_z = 0$, $\gamma H = \Omega_P$ in the 3D space of magnetic field (H_x, H_y, H_z) in Fig. 1 (right), where the spectrum is degenerate. Close to the Dirac line, the Hamiltonian in Eq.(4) transforms to:

$$\mathcal{H} - \Omega_P^2 \approx \Omega_P(\gamma H - \Omega_P) + \Omega_P(\gamma H - \Omega_P)\tau^3 - \Omega_P^2 \hat{m} \cdot \tau^1,$$

where $\hat{m} = H/H$. Equation (5) is analogous to Eq.(1), with $\gamma \Omega_P$ and Ω_P/γ playing the roles of Fermi velocity and Fermi momentum, and Ω_P^2 being the analog of gap amplitude. Since the analog of the Fermi velocity coincides with the derivative of the first term in the righthand side with respect to H, the Hamiltonians (1) and (5) describe the bosonic Dirac system, which is on the border between the type-I and type-II.

In both cases of fermionic and bosonic spectrum in Fig. 1, the Dirac nodal line has nontrivial topological charge $N_2 = 1$, see e.g.\cite{31,32}:

$$N_2 = \frac{1}{4\pi i} \text{Tr} \oint_C dl \tau_3 \tilde{H}^{-1} \partial_l \tilde{H}. \quad (6)$$

Here \tilde{H} is the traceless part of the matrix H, and the integral is along the loop C in momentum or parameter space enclosing the Dirac line. The nontrivial topology means that when the momentum p in Fig. 1 (left) or magnetic field H in Fig. 1 (right) adiabatically evolves along this loop, the corresponding geometric Berry phase Φ changes by π.

In conclusion, there are two topologically protected Dirac lines in the polar phase of superfluid 3He. One of them is fermionic, which lives in the 3D momentum space (p_x, p_y, p_z). It gives rise to the peculiar type of the effective quantum electrodynamics. The other one is bosonic and lives in the 3D parameter space (H_x, H_y, H_z). The NMR spectrum near this Dirac line has been experimentally studied in Ref.\cite{23}.

The next task should be to combine the effects of the two Dirac lines, which form the 2D degeneracy manifold in the extended 6D momentum-parameter space $(p_z, P_y, P_z, H_x, H_y, H_z)$. This will involve the effects related to dynamics of Bogoliubov quasiparticles near the fermionic Dirac line interacting with the spin waves in vicinity of the bosonic Dirac line, such as adiabatic Thouless pumping\cite{33,34}.
I thank Tero Heikkilä for interesting discussions, which resulted in this paper. This work has been supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 694248).

1 M. Born and R. Oppenheimer, Zur Quantentheorie der Molekeln, Annalen der Physik 389, 457–484 (1927).
2 J. von Neumann und E.P. Wigner, Über das Verhalten von Eigenwerten bei adiabatischen Prozessen, Phys. Zeit. 30, 467–470 (1929).
3 M.V. Berry, Quantizing a classically ergodic system: Sinai’s billiard and the KKR method, Ann. Phys. 131, 163–216 (1981).
4 M.V. Berry, Quantal phase factors accompanying adiabatic changes, Proceedings of the Royal Society of London, Series A 392, 45–57 (1984).
5 G. E. Volovik, Zeroes in the fermion spectrum in superfluid systems as diabatical points, Pisma ZhETF 46, 81–84 (1987); JETP Lett. 46, 98–102 (1987).
6 M.M. Salomaa, G. E. Volovik, Cosmiclike domain walls in superfluid 3He-B: Instantons and diabatical points in (k, r) space, Phys. Rev. B 37, 9298–9311 (1988).
7 P.G. Grinevich, G. E. Volovik, Topology of gap nodes in superfluid 3He: π_3 homotopy group for 3He-B disclination,” J. Low Temp. Phys. 72, 371–380 (1988).
8 Shinsei Ryu, A.P. Schnyder, A. Furusaki and A.W.W Ludwig, Topological insulators and superconductors: tenfold way and dimensional hierarchy, New J. Phys. 12, 065010 (2010).
9 C.D. Froggatt and H.B. Nielsen, Origin of Symmetry, World Scientific, Singapore (1991).
10 P. Horava, Stability of Fermi surfaces and K-theory, Phys. Rev. Lett. 95, 016405 (2005).
11 G.E. Volovik, The Universe in a Helium Droplet, Clarendon Press, Oxford (2003).
12 S. Adler, Axial-vector vertex in spinor electrodynamics, Phys. Rev. 177, 2426–2438 (1969).
13 J.S. Bell and R. Jackiw, A PCAC puzzle: $\pi_0 \to \gamma \gamma$ in the σ model, Nuovo Cim. A 60, 47–61 (1969).
14 T.D.C. Bevan, A.J. Manninen, J.B. Cook, J.R. Hook, H.E. Hall, T. Vachaspati and G.E. Volovik, Momentum creation by vortices in superfluid 3He as a model of primordial baryogenesis, Nature 386, 689–692 (1997).
15 M.F. Lapa, Chao-Ming Jian, Peng Ye and T.L. Hughes, Topological electromagnetic responses of bosonic quantum Hall, topological insulator, and chiral semimetal phases in all dimensions, Phys. Rev. B 95, 035149 (2017).
16 K. Nakata, Se Kwon Kim, J. Klinovaja and D. Loss, Magnonic topological insulators in antiferromagnets, Phys. Rev. B 96, 224414 (2017).
17 J. Fransson, A.M. Black-Schaffer and A.V. Balatsky, Magnon Dirac materials, Phys. Rev. B 94, 075401 (2016).
18 Y. Takahashi, T. Kariyado and Y. Hatsugai, Edge states of mechanical diamond and its topological origin, New J. Phys. 19, 035003 (2017).
19 O. Zilberberg, Sheng Huang, J. Guglielmon, Mohan Wang, Kevin P. Chen, Ya.E. Kraus and M.C. Rechtsman, Photonic topological boundary pumping as a probe of 4D quantum Hall physics, Nature 533, 59–62 (2018).
20 V.V. Dmitriev, A.A. Senin, A.A. Soldatov and A.N. Yudin, Polar phase of superfluid 3He in anisotropic aerogel, Phys. Rev. Lett. 115, 165304 (2015).
21 J. Nissinen and G.E. Volovik, Dimensional crossover of effective orbital dynamics in polar distorted 3He-A: Transitions to antispacetime, Phys. Rev. D (2018), arXiv:1710.07616.
22 V.V. Dmitriev, A.A. Soldatov and A.N. Yudin, Interaction of two magnetic resonance modes in polar phase of superfluid 3He, Pisma ZhETF 103, 727–731 (2016); JETP Lett. 103, 643–647 (2016), arXiv:1604.06233.
23 V.V. Zavjalov. Linear NMR in the polar phase of 3He in aerogel, arXiv:1601.04190.
24 V.V. Zavjalov
25 V.V. Zavjalov, S. Autili, V.B. Eltsov, P. Heikkinen, G.E. Volovik, Light Higgs channel of the resonant decay of magnon condensate in superfluid 3He-B, Nature Communications 7, 10294 (2016).
26 G.E. Volovik and M.A. Zubkov, Scalar excitation with Leggett frequency in 3He-B and the 125 GeV Higgs particle in top quark condensation models as pseudo–Goldstone bosons, Phys. Rev. D 92, 055004 (2015).
27 G.E. Volovik and M.A. Zubkov, Emergent Weyl spinors in multi-fermion systems, Nuclear Physics B 881, 514–538 (2014), arXiv:1402.5700.
28 A.A. Soluyanov, D. Gresch, Zhijun Wang, QuanSheng Wu, M. Troyer, Xi Dai, B.A. Bernevig, Type-II Weyl semimetals, Nature 527, 495–498 (2015).
29 G. Autes, D. Gresch, A. A. Soluyanov, M. Troyer and O.V. Yazyev, Robust type-II Weyl semimetal phase in transition metal diphosphides XP$_2$ (X = Mo, W), Phys. Rev. Lett. 117, 066402 (2016).
30 G.E. Volovik and Kuang Zhang, Lifshitz transitions, type-II Dirac and Weyl fermions, event horizon and all that, J. Low Temp. Phys. 189, 276–299 (2017), arXiv:1604.00849.
31 T.T. Heikkilä, N.B. Kopnin, and G.E. Volovik, Flat bands in topological media, Pis’ma ZhETF 94, 252–258 (2011); JETP Lett. 94, 233–239 (2011).
32 M. Sato and Y. Ando, Topological superconductors: a review, Rep. Prog. Phys. 80, 076501 (2017).
33 D. J. Thouless, Quantization of particle transport, Phys. Rev. B 27, 6083 (1983).
34 P.L. e S. Lopes, Pouyan Ghaemi, Shinsei Ryu, and T.L. Hughes, Competing adiabatic Thouless pumps in enlarged parameter spaces, Phys. Rev. B 94, 235160 (2016).