Preliminary assessment of *Tripneustes gratilla* populations in Seagrass Beds of the Spermonde Archipelago, South Sulawesi, Indonesia

Hartati Tamti¹,³, Rohani Ambo-Rappe², Sharifuddin Bin Andy Omar², Budimawan²

¹Doctoral Student, Faculty of Marine Science and Fisheries, Universitas Hasanuddin, Makassar 90245, Indonesia
²Faculty of Marine Science and Fisheries, Universitas Hasanuddin, Makassar 90245, Indonesia
³Balik Diwa Institute of Maritime Technology and Business, Makassar 90245, Indonesia

Email: rohani.amborappe@gmail.com

Abstract. Many sea urchins, including *Tripneustes gratilla*, are well known for their role as herbivores, contributing to the control of fast growing macroalgae that can potentially overgrow and dominate seagrass beds and reef flats. *T. gratilla* is a short-spined sea urchin that can be easily found and collected by hand from the seagrass meadows which are their main habitat, especially during low tide. The exploitation of this species in Indonesia began to expand several years ago when the demand for *T. gratilla* gonads started to rise, for both commercial purposes and household consumption. This study aimed to determine the population and distribution of *T. gratilla* in seagrass ecosystems across the Spermonde Archipelago, South Sulawesi, Indonesia. The results indicate that the abundance and size distribution of *T. gratilla* are affected by several factors, i.e. seagrass condition, water quality, and the intensity of sea urchin collection. The results also emphasize the urgent need for developing and implementing effective management to ensure the sustainability of this important sea urchin species.

1. Introduction

The role of sea urchins as one of the main herbivore groups is crucial for coral reef and seagrass ecosystem health [1–3]. Heavy fishing pressure combined with high nutrient loads will result in multiple stressors on coral reef and seagrass ecosystems, and may eventually lead to a phase shift from seagrass or coral reef to a new state, typically macroalgal dominated habitats [4–6]. Fisheries management in the Spermonde Archipelago [7], as in Indonesia more generally [8–10], has been very challenging and often lacking in effectiveness, especially when dealing with small scale artisanal fisheries in the coastal area. The use of multiple gears, catching multiple species, without quotas and/or size limitations has caused many coral reef and seagrass ecosystems to become heavily overfished [7,11]. While people in some countries, such as Australia, do not in general prefer herbivorous fishes, fishermen and the general public in Indonesia tend to consume almost all kinds of...
fish, including herbivores such as rabbitfish and parrotfish [12,13]. Consequently, in many places herbivory has been largely taken over by invertebrate herbivores such as sea urchins (e.g. Diadema sp. and Tripneustes gratilla). The role of sea urchins as key herbivores was well documented during the Diadema antillarum die off in the Caribbean, which resulted in an uncontrollable take-over of many reefs by macroalgae [14]. In other cases, the roles of herbivores has been able to compensate the impacts from nutrient loading in seagrass beds through grazing on the fast growing epiphytic algae that can cover the seagrass leaves [15].

Despite their critical roles, scientific information is still lacking on the dynamics of sea urchin populations in Indonesia, especially in the Spermonde Archipelago. Few studies have explored and predicted sea urchin population dynamics and their relative abundance in Indonesia [16,17]. Insufficient data and analyses of the distribution and abundance of these species indicate very little, if any, attention by government to the management of sea urchin resources, many of which may have been overexploited without it being realized [18,19]. Introducing total protection for sea urchins without a sound scientific basis is also not strategic, because a total ban is difficult to implement and will not always be directly beneficial to seagrass or coral reef ecosystems. For example, sea urchin outbreaks might result in overgrazing and can be unfavourable for the surrounding ecosystems [20,21].

Sea urchin exploitation has a very long history around the world, especially for the consumption of their gonads, for example in Chile, Japan, and the Philippines [22,23]. Although there are very few published scientific journals on Indonesian sea urchins, the fact is that, to date, almost no specific management or policies are in place to ensure their sustainable use [16,24–26]. Sea urchin exploitation is mostly through gleaning, a technique which is very easy for Indonesian fishermen and other coastal community members, including woman and children [27,28]. Basically they only need to walk in the seagrass areas during low tide, and then they can collect the sea urchins, putting them into a basket and bringing them to shore. If they keep doing this over the long term, without any management in place, it is very likely that the sea urchin populations can be endangered [19,29,30]. The lack of attention by key stakeholders, especially the government, regarding the urgency of managing sea urchin resources, is likely attributed to several factors, such as (i) misunderstanding of the critical roles of sea urchins in maintaining ecosystem balance and productivity [2], indeed people sometimes even consider sea urchins as ‘pest organisms’; (ii) sea urchin gonad exploitation is not specifically recorded, hence their total economic value is also unknown. Therefore, it is crucial to improve our understanding of the population status, distribution, and the utilization of sea urchins in general, and in particular the species Tripneustes gratilla. The general aim of this study was to investigate the variability in T. gratilla abundance and size in relation to seagrass condition and anthropogenic impacts in the Spermonde Archipelago.

2. Methods
This study was conducted from June to August 2020 in the Spermonde Archipelago, off the western coast of South Sulawesi Province, Indonesia. The Archipelago can be divided into three zones representing inshore-offshore water quality gradients [31]. Two sites were selected in each of these three zones: Lae Lae and Samalona in the inshore zone, Barang Lompo and Bone Batang in the mid-shelf zone, Lankai and Lanjukan in the offshore/outer zone (Figure 1).

We used secondary data (summarized from the published literature) to describe the inshore-offshore water quality gradient of the Spermonde Archipelago [32–35]. Water quality close to Makassar City (e.g. Lae Lae and Kayangan Islands) is much more turbid with relatively higher nutrient concentrations compared to offshore areas such as the reefs around Lanjukan and Kapoposang Islands, especially during the rainy season (Table 1). Therefore, the sites selected for this study which range from inshore to off shore zones can be considered to be affected by a water quality gradient in the following order (decreasing magnitude of impact): Lae Lae, Samalona, Barang Lompo, Bone Batang, Lankai, and Lanjukan.
Figure 1. Study sites along the inshore-offshore gradient of the Spermonde Archipelago, Makassar Strait, Indonesia) with two sites in each zone; Lae Lae and Samalona Islands (inshore zone), Barang Lompo Island and Bone Batang (mid-shelf zone), Lankai and Lanjukan Islands (outer zone)

Table 1. Water quality gradient measured at different zones (inshore, mid-shelf, offshore) in the Spermonde Archipelago.

Parameters	Inshore	Mid-shelf	Offshore	Source (sites)
Water Clarity (m)	< 6	17-18	> 20	[32,33] (Kayangan,
Chl. a (mg/m3)	1.52	0.75-0.82	0.47	Samalona, Barang
NO$_3$ (µM)	0.85	0.49-0.63	0.34	Lompo,
PO$_4$ (µM)	0.41	0.3-0.31	0.18	Kapopoulos)
SPM	19.25	8.22-8.62	5.26	
Sediment Traps (mg/cm2/day)	2.8	0.6-0.7	NA	
NO$_3$ (µg/L)	69.6-136.05	43.4-75.35	33.8-42.4	[34] (33 sites;
PO$_4$ (µg/L)	37.56-42.23	23.0-44.15	27.2-39.52	inshore, mid-shelf,
Chl. a (µg/L)	0.83-4.4	0.58-1.6	0.46-0.58	offshore)
Chl. a (µg/L)	0.62-1.59	0.32-1.07	0.56-1.17	
POC (µg/L)	130-236.3	60.7-126.9	52.8-104.8	Samalona, Bone
DOC (µM)	61.7-95.4	52.2-147.1	68.0-133.8	Batang, Lanjukan)
C$_{org}$/N ratio	6.72-7.84	6.69-9.57	5.65-9.76	

Surveys were conducted at all six study sites (Figure 1) to assess the general condition of seagrass meadows (percentage cover) as well as the number and the size of $T. gratilla$ observed. The data were collected from three 100 m transects at each site, laid perpendicular to the shoreline from the coast towards the sea and separated from each other by a distance of 50 m. To estimate seagrass condition, 50x50 cm quadrats were placed every 10 m starting at the beginning of the transect. Seagrass percentage cover was estimated in 4 of the 25x25 cm grids of each quadrat, with seagrass percentage cover categories of 0, 12.5, 25, 50, 75, and 100% (LIPI, 2016). Sea urchins ($T. gratilla$) were counted within a 5m x 100m belt transect, extending 2.5 m to the left and to the right of the transect line.
500 m²). The diameter of each *T. gratilla* found in the belt transect was measured with a precision of 0.1 mm using callipers. One-way Anova was performed to evaluate between site differences on each parameter measured.

3. Results and Discussion

Seagrass percentage cover (%) at the six study sites (inshore, mid-self, and offshore) is presented in Figure 2. Seagrass cover in the inshore zone close to Makassar City was only ≈1% around Lae Lae Island and ≈5.3% around Samalona Island. The highest seagrass percentage cover was found around Barang Lompo (≈44.3%), significantly higher (P<0.05) compared to Bone Batang (≈32.6%) and Lankai (≈31.1%).

![Figure 2. Seagrass percentage cover (%) along the gradient from inshore to mid-shelf and offshore zones of the Spermonde Archipelago](image)

The low seagrass percentage cover around *Lae Lae* (≈1%) was likely influenced by long-term exposure to high turbidity due to sedimentation and eutrophication close to the Makassar City mainland. Although sedimentation and eutrophication are not very high in Samalona, the geomorphology of this small island is not very suitable for seagrass development, for example the reef flat is small in extent and sand movement around the island is dynamic. A combination of all of these factors could have caused the relatively low (only 5.3%) seagrass cover around Samalona. On the other hand, the low seagrass percentage cover around Lanjukan (1%) at the outer zone of Spermonde Archipelago was most likely mainly due to the high exposure of the reef flat to large waves and strong currents around this island.

The higher seagrass percentage cover around Barang Lompo (44.3%), Bone Batang (32.6%), and Lankai (31.1%) could most likely be attributed to several factors. These include relatively better water quality as indicated in Table 1 (low sedimentation, low nutrient concentrations, and higher water clarity), more suitable geomorphology (wider reef flat zones with sandy substrates), and relatively lower exposure to wave action and currents. The seagrass meadow at these three sites were dominated by mix of two dominant species *Enhalus acoroides* and *Thalassia hemprichii* with a lesser density of *Cymodocea rotundata*. Reports of anthropogenic seagrass degradation also indicate the need for serious attention to seagrass ecosystem management, including the restoration of degraded meadows [36–38].

The numbers of *T. gratilla* found varied along the inshore to offshore zone, as shown in Figure 3. The number of *T. gratilla* found in Bone Batang (9.3/500m²) was significantly higher (P<0.05) compared to Barang Lompo (6.3/500m²) and Lankai (5.7/500m²). At the other three sites (Lae Lae,
Samalona and Lanjukang) *T. gratilla* were not found. The observed absence of sea urchins at these three sites could likely be attributed to the very low percentage cover of seagrass (Fig. 2) as the main habitat for this species.

![Figure 3](image3.png)

Figure 3. Average number of *T. gratilla* found on 500m2 transects along the gradient from inshore to mid-shelf and offshore zones of the Spermonde Archipelago. Error bars denote standard deviation (SD).

The average diameter of *T. gratilla* observed at each site is presented in Figure 4. Among the three sites where *T. gratilla* were found, the largest mean sea urchin diameter was recorded from Bone Batang (68.6 mm) but was not significantly different from Lankai (62.6 mm). Interestingly, *T. gratilla* from those two sites were significantly larger ($P < 0.05$) compared to those from Barang Lompo (51.3 mm). This result is particularly interesting when taking into account that seagrass percentage cover was in fact highest around Barang Lompo (Figure 2).

![Figure 4](image4.png)

Figure 4. Average diameter of *T. gratilla* found on 500m2 transects along the gradient from inshore to mid-shelf and offshore zones of the Spermonde Archipelago. Error bars denote standard deviation (SD).
Sea urchin gleaning is a common practice in Indonesia and in many parts of the world \cite{19,22,27,28,39,40}. A rapid survey on the exploitation of sea urchins at the study sites indicated that only people living on Barang Lompo Island regularly collected \textit{T. gratilla} and used their gonads as a complementary food or source of protein.

The well-established habit of gleaning for \textit{T. gratilla} in Barang Lompo, as compared to no sea urchin gonad consumption at the other sites (Bone Batang and Lankai), was most probably the main reason for the significantly smaller size (diameter) of \textit{T. gratilla} compared to the other two sites. This trend indicates that the exploitation of sea urchins in this area could be posing a risk to the sustainability of the populations and the gleaning fishery \cite{41}. Similarly to other exploited organisms, due to the importance of sea urchins for their ecological roles and as a source of protein or income, there is a need for further study and to develop management strategies and implement management actions to ensure their sustainable use.

4. Conclusion

The distribution and the abundance of the sea urchin \textit{Tripneustes gratilla} in the Spermonde Archipelago appear to be determined by several key factors. These include the condition of seagrass meadows, with higher \textit{T. gratilla} abundance found where the seagrass percentage cover was higher. The diameter of \textit{T. gratilla} population was affected by anthropogenic factors, with smaller sea urchins associated with frequent harvesting for human consumption around Barang Lompo Island. The water quality gradient appeared to have a negative effect on seagrass distribution and percentage cover, especially in the inshore zone, which in turn also affected the distribution and abundance of \textit{T. gratilla}. Due to its strategic role as an important herbivore in seagrass ecosystems, there is an urgent need to manage the populations of this sea urchin.

Acknowledgments

We would like to thank and acknowledge the following who contributed to this research: (i) The Ministry of Education and Culture of the Republic of Indonesia, for providing a BPPDN scholarship for HT; (ii) this also was partly supported by 4D-REEF Project funded by the European Union’s Horizon 2020 research and innovation programme; (iii) Halwi and J. Jompa who helped with collecting data in the field.

References

\cite{1} Mumby P J, Hedley J D, Zychaluk K, Harborne A R and Blackwell P G 2006 Revisiting the catastrophic die-off of the urchin Diadema antillarum on Caribbean coral reefs: Fresh insights on resilience from a simulation model \textit{Ecol. Modell.} \textbf{196} 131–48

\cite{2} Rustici M, Ceccherelli G and Piazzi L 2017 Predator exploitation and sea urchin bistability: Consequence on benthic alternative states \textit{Ecol. Modell.} \textbf{344} 1–5

\cite{3} Francis F T, Filbee-Dexter K, Yan H F and Côté I M 2019 Invertebrate herbivores: Overlooked allies in the recovery of degraded coral reefs? \textit{Glob. Ecol. Conserv.} e00593

\cite{4} Jompa J and McCook L J 2002 The effects of nutrients and herbivory on competition between a hard coral (Porites cylindrica) and a brown alga (Lobophora variegata) \textit{Limnol. Oceanogr.} \textbf{47}

\cite{5} McClanahan T R, Aronson R B, Precht W F and Muthiga N A 1999 Fleshy algae dominate remote coral reefs of Belize \textit{Coral Reefs} \textbf{18} 61–2

\cite{6} Kriegisch N, Reeves S E, Johnson C R and Ling S D 2019 Top-down sea urchin overgrazing overwhelsms bottom-up stimulation of kelp beds despite sediment enhancement \textit{J. Exp. Mar. Bio. Ecol.} \textbf{514–515} 48–58

\cite{7} Ferse S C A, Glaser M, Neil M and Schwerdtner Máñez K 2014 To cope or to sustain? Eroding long-term sustainability in an Indonesian coral reef fishery \textit{Reg. Environ. Chang.} \textbf{14} 2053–65

\cite{8} Gunawan B I and Visser L E 2012 Permeable Boundaries: Outsiders and Access to Fishing Grounds in the Berau Marine Protected Area \textit{Anthropol. Forum A J. Soc. Anthropol. Comp.}
Sociol. 22 187–207

[9] Khasanah M, Nurdin N, Sadovy de Mitcheson Y and Jompa J 2019 Management of the Grouper Export Trade in Indonesia Rev. Fish. Sci. Aquac. 1–15

[10] von Heland F and Clifton J 2017 Whose Threat Counts? Conservation Narratives in the Wakatobi National Park, Indonesia Conserv. Soc. 13 154–65

[11] Ferse S C A, Knittweis L, Krause G, Maddusila A and Glaser M 2012 Livelihoods of Ornamental Coral Fishermen in South Sulawesi/Indonesia: Implications for Management Coast. Manag. 40 525–55

[12] Suwarni, Tresnati J, Tuwo A and Omar S B A 2020 Morphometric characteristics of rabbit fish (Siganus canaliculatus park, 1797) in makassar strait, flores sea, and bone gulf AACL Bioflux 13 2343–54

[13] Tresnati J, Yasir I, Aprianto R, Yanti A, Rahmani P Y and Tuwo A 2019 Long-Term Monitoring of Parrotfish Species Composition in the Catch of Fishermen from the Spermonde Islands, South Sulawesi, Indonesia IOP Conf. Ser. Earth Environ. Sci. 370 012015

[14] Hughes T P, Reed D C and Boyle M-J 1987 Herbivory on coral reefs: community structure followong mass mortalities of sea urchins J. Exp. Mar. Bio. Ecol. 113 39–59

[15] McSkimming C, Tanner J E, Russell B D and Connell S D 2015 Compensation of nutrient pollution by herbivores in seagrass meadows J. Exp. Mar. Bio. Ecol. 471 112–8

[16] Toha A H A, Sumitro S B, Hakim L and Widodo W 2012 Kondisi habitat bulu babi Tripneustes gratilla linnaeus 1758 di Teluk Cenderawasih J. Biol. Res. 17 139–45

[17] Wulandewi N L E, Subagio J N and Wiryatno J 2015 Jenis Dan Densitas Bulu Babi (Echinoidea) Di Kawasan Pantai Sanur Dan Serangan Denpasar- Bali J. Simbiosis III 269–80

[18] Moore A M, Tassakka A C M, Ambo-Rappe R, Yasir I, Smith D J and Jompa J 2019 Unexpected discovery of Diadema clarki in the Coral Triangle Mar. Biodivers. 49 1–19

[19] Moore A M, Ndobe S, Yasir I, Ambo-Rappe R and Jompa J 2019 Banggai cardinalfish and its microhabitats in a warming world: A preliminary study IOP Conf. Ser. Earth Environ. Sci. 253 012021

[20] Eklöf J S, de la Torre-Castro M, Gullström M, Uku J, Muthiga N, Lyimo T and Bandeira S O 2008 Sea urchin overgrazing of seagrasses: A review of current knowledge on causes, consequences, and management Estuar. Coast. Shelf Sci. 79 569–80

[21] Wallner-Hahn S, de la Torre-Castro M, Eklöf J S, Gullström M, Muthiga N A and Uku J 2015 Cascade effects and sea-urchin overgrazing: An analysis of drivers behind the exploitation of sea urchins predators for management improvement Ocean Coast. Manag. 107 16–27

[22] Hur S, Hunter M, Hebert K, Botsford L, Johnson C, Einarsson S, Campbell A, Ballesteros E, Andrew N, Gerrin P, Dixon J, Bazhin A, Junio-MeV≥ez M, Barnes D, Creaser E, Bradbury A, Agatsuma Y, Kalvass P, Miller R, Moreno C, Palleiro J, Rivas D, Robinson S, Schroeter S, Steneck R, Vadas R, Woody D and Xiaoqi Z 2002 Status and Management of World Sea Urchin Fisheries

[23] Talae-McManus L and Kesner K 1995 Valuation of a Philippine municipal sea urchin fishery and implications of its collapse Philippine Coastal Resources Under Stress pp 229–39

[24] Wainwright B J, Arlyza I S and Karl S A 2019 Population genetics of the collector urchin, Tripneustes gratilla, in the Indonesian archipelago 1–12

[25] Ndobe S, Moore A, Yasir I and Jompa J 2019 Banggai cardinalfish conservation: Priorities, opportunities, and risks IOP Conf. Ser. Earth Environ. Sci. 253 1–13

[26] Ndobe S, Moore A M and Ambo-Rappe J 2017 Status of and threats to microhabitats of the endangered endemic Banggai Cardinalfish (Pterapogon kauderni) Coast. Ocean. J. 1 73–82

[27] Furkon, Nessa M and Ambo-Rappe R 2019 Invertebrate Gleaning: Forgotten Fisheries IOP Conf. Ser. Earth Environ. Sci. 253

[28] Furkon, Nessa N, Ambo-Rappe R, Cullen-Unsworth L C and Unsworth R K F 2020 Social-ecological drivers and dynamics of seagrass gleaning fisheries Ambio 49 1271–81

[29] Melis R, Ceccherelli G, Piazzì L and Rustici M 2019 Macroalgal forests and sea urchin
barrens: Structural complexity loss, fisheries exploitation and catastrophic regime shifts Ecol. Complex. 37 32–7

[30] Piazzi L and Ceccherelli G 2019 Effect of sea urchin human harvest in promoting canopy forming algae restoration Estuar. Coast. Shelf Sci. 219 273–7

[31] Cornils A, Schulz J, Schmitt P, Lanuru M, Richter C and Schnack-schiel S B 2010 Mesozooplankton distribution in the Spermonde Archipelago (Indonesia, Sulawesi) with special reference to the Calanoida (Copepoda) Deep. Res. II 57 2076–88

[32] Jompa J 1996 Monitoring and assessment of coral reefs in Spermonde archipelago. South Sulawesi, Indonesia (McMaster University)

[33] Edinger E E, Limmon G V., Jompa J, Widjatmoko W, Heikopp J M and Risk M J 2000 Normal Coral Growth Rates on Dying Reefs: Are Coral Growth Rates Good Indicators of Reef Health? Mar. Pollut. Bull. 40 404–25

[34] Faizal A, Amri K, Rani C, Nessa M N and Jompa J 2020 Dynamic model; the effects of eutrophication and sedimentation on the degradation of Coral Reefs in Spermonde Archipelago, Indonesia IOP Conf. Ser. Earth Environ. Sci. 564 012084

[35] Sawall Y, Richter C and Ramette A 2012 Effects of eutrophication, seasonality and macrofouling on the diversity of bacterial biofilms in equatorial coral reefs PLoS One 7

[36] Nurdin N, La Nafie Y, Umar M T, Jamal M and Moore A 2019 Preliminary study: Human trampling effects on seagrass density IOP Conference Series: Earth and Environmental Science vol 370 (Institute of Physics Publishing) p 012050

[37] Asriani N, Ambo-Rappe R, Lanuru M and Williams S L 2018 Species richness effects on the vegetative expansion of transplanted seagrass in Indonesia Bot. Mar. 61 205–11

[38] Williams S L, Ambo-Rappe R, Sur C, Abbott J M and Limbong S R 2017 Species richness accelerates marine ecosystem restoration in the Coral Triangle Proc. Natl. Acad. Sci. 114 11986–91

[39] Archana A and Babu K R 2016 Nutrient composition and antioxidant activity of gonads of sea urchin Stomopneustes variolaris Food Chem. 197 597–602

[40] Nane L 2016 Studi Keberlanjutan Perikanan Landak Laut Berdasarkan Dimensi Biologi, Ekologi Dan Teknologi Di Sekitar Pulau Tolidono Dan Pulau Sawa Kawasan Konservasi Wakatobi (Makassar: Unhas-Thesis)

[41] Johnson T R, Wilson J A, Cleaver C, Morehead G and Vadas R 2013 Modeling fine scale urchin and kelp dynamics: Implications for management of the Maine sea urchin fishery Fish. Res. 141 107–17