Development of tsunami inundation map for the coast of Palu City

M R Purnama1,*, M B Adityawan2,3, M Farid2,3, A Chrysanti2,3, B T Rayadi4 and Y Suryadi2

1 Water Resources Engineering and Management Undergraduate Program, Faculty of Civil and Environmental Engineering, Institut Teknologi Bandung, Bandung, Jawa Barat, Indonesia
2 Water Resources Engineering Research Group, Faculty of Civil and Environmental Engineering, Institut Teknologi Bandung, Bandung, Jawa Barat, Indonesia
3 Center for Coastal and Marine Development, Faculty of Civil and Environmental Engineering, Institut Teknologi Bandung, Bandung, Jawa Barat, Indonesia
4 Geotechnical Engineering Research Group, Faculty of Civil and Environmental Engineering, Institut Teknologi Bandung, Bandung, Jawa Barat, Indonesia

*mrizkipurnama@students.itb.ac.id

Abstract. The 2018 Sulawesi Earthquake and Tsunami severely damaged the coast of Palu City, Indonesia. The city did not have adequate mitigation system for a tsunami. A tsunami inundation map is required. This study based on modelling four scenarios of possible earthquake-induced tsunami. The earthquakes were identified based on data from PUSGEN. The generated tsunami wave is simulated using Delft3D and Delft Dashboard. The wave propagation is modeled using nesting method. This method couples different grid sizes. Nesting process helps to ensure the model efficiency and accuracy. The results provide the maximum inundation map along the Palu City Coast. These results can be used by decision maker to develop the coastal zone management of Palu City. Furthermore, they can be utilized to propose a disaster risk management plan.

1. Introduction
Tsunami may cause severe damages to coastal area. Past incident such as The Great Indian Ocean Tsunami 2004 [1] and The Great North East Japan Tsunami 2011 [2] had shown the massive destruction of coastal area. On September 28, 2018, a shallow strike-slip earthquake of 7.4 Mw struck Central Sulawesi, Indonesia [3]. The epicenter was located at 27 km northeast from Donggala with a 10 km depth. This event triggered a tsunami with a height of 10 meter that damaged coastal areas along the Palu City Coast [4]. It has been speculated that the tsunami was generated by an underwater landslide [5]. The tsunami caused heavy loss in the affected area due to the lack of mitigation system. Thus, tsunami inundation map is very important for future mitigation plan.

Probabilistic Tsunami Hazard Assessment (PTHA) studies showed that Palu City Coast has a probability of 1/50 to 1/10 for 0.5-3.0 m wave [6]. In this study, a set of scenarios are simulated to obtain inundation map for earthquake-induced tsunami in the coast of Palu City. The tsunami sources
are determined based on data from Pusat Gempa Nasional PUSGEN [7]. The wave propagation is simulated using Delft3D and Delft Dashboard [8].

2. Research methodology
The study was carried out in the Coast of Palu City, Central Sulawesi as can be seen in Figure 1. As a capital city, this area had approximately 367,424 people living inside and 395.06 km² of total area [9].

![Figure 1. Study area.](image)

Tsunami propagation and inundation were simulated using Delft3D and Delft Dashboard. The model generates tsunami using finite fault deformation by Okada [10]. This method assumes that an earthquake can occur due to the failure of fault. This failure is explained further in seismic parameters [11]. The wave propagation overland is highly influenced by its landcover. The surface roughness value (Manning) is determined based on the landcover. Manning value of 0.1 is used for the housing area, 0.03 for vegetation area, [12] and 0.002 for seaward area [13].

PUSGEN identifies 3 tectonic thrust or reverse faults around Palu Bay that may trigger a tsunami wave as shown by yellow line in Figure 1. They are North Sulawesi Megathrust, Makassar Strait North, Makassar Strait Central. There are 4 scenarios in this study based on those faults. The scenarios are given in Table 1. The simulation results produce information on the tsunami propagation and inundation. Two numerical wave gauges are placed in the Palu Bay as shown in Figure 1.

Scenario	Fault	Mw (max)	Depth (max)	Dip degree	Rake Degree	Length (km)
1	North Sulawesi Megathrust	8.5	20	22	80	480
	Makassar Strait North					
2	Makassar Strait Central	7.1	14	45	75	100
3	Makassar Strait North+	7.5	14	25	83	170
4	Makassar Strait Central	8.35	14	25	83	270
The model uses three different grids, as shown in Figure 2. The first grid (GRID 1) covers domain from the source. The second grid (GRID 2) covers Palu Bay. The last grid (GRID 3) is the finest covering Palu City Coast. The grids are nested in the simulation. The data for bathymetry and topography of Indonesia are available from Badan Informasi Geospasial (BIG). BIG data has a resolution of 8 meters and 20 meters, for topography and bathymetry, respectively. However, the data may not covered area in the deep sea. Therefore, the data were combined to those available from General Bathymetric Chart of The Oceans (GEBCO) which has a resolution of 30 m. GRID 1 uses bathymetry data from GEBCO. GRID 2 contains bathymetry and topography data from GEBCO and BIG. GRID 3 uses only BIG.

3. Results and discussions

3.1. Tsunami wave propagation and inundation simulation

3.1.1. Scenario 1. Tsunami wave propagation and inundation simulation were carried out with 8.5 Mw earthquake magnitude parameters. The maximum initial height of tsunami wave at the fault failure, shown in Figure 3 and Figure 4, is 2.5 to 4 meters.
3.1.2. **Scenario 2.** Tsunami wave propagation and inundation simulation were carried out with 7.1 Mw earthquake magnitude parameters. As can be seen in Figure 5 and Figure 6, the maximum initial height of tsunami wave at the fault failure is 0 to 1 meter.

![Tsunami wave propagation Scenario 1](image1)

Figure 5. Tsunami wave propagation Scenario 1: a) t=5 mins, b) t=10 mins, c) t=45 mins, and d) t=120 mins.

![Tsunami wave height and observation point](image2)

Figure 6. a) Initial tsunami wave height, b) wave height at observation point.

3.1.3. **Scenario 3.** Tsunami wave propagation and inundation simulation were carried out with 7.5 Mw earthquake magnitude parameters. The maximum initial height of tsunami wave at the fault failure, as in Figure 7 and Figure 8, is 0 to 2 meters.

![Tsunami wave propagation Scenario 1](image3)

Figure 7. Tsunami wave propagation scenario 1: a) t=5 mins, b) t=10 mins, c) t=45 mins, and d) t=120 mins.

![Tsunami wave height and observation point](image4)

Figure 8. a) Initial tsunami wave height, b) wave height at observation point.
3.1.4. Scenario 4. Tsunami wave propagation and inundation simulation were carried out with 8.35 Mw earthquake magnitude parameters. As can be seen in Figure 9 and Figure 10, the maximum initial height of tsunami wave at the fault failure is 1.5 to 4 meters.

![Figure 9. Tsunami wave propagation scenario 1: a) t=5 mins, b) t=10 mins, (c) t=45 mins, and d) t=120 mins.](image1)

![Figure 10. a) Initial tsunami wave height, b) wave height at observation point.](image2)

3.2. Tsunami inundation map

Tsunami simulation provides the inundation maps for each scenario as shown in Figure 11. The maps were compared and processed further to obtain the maximum inundation map as shown in Figure 12. It was found that the total inundated area is 3.355 km2. Area closer to the coastline may experience tsunami with a height of more than 5 meter.

![Figure 11. Tsunami inundation map for: a) scenario 1, b) scenario 2, c) scenario 3, d) scenario 4.](image3)
Figure 12. Maximum tsunami inundation map.

4. Conclusion
This study assessed the tsunami hazard in Palu City. Palu Bay in general, are located near 3 possible earthquake induced tsunami sources. Palu Coast inundation map was developed based on these faults, deterministically. A combination of failures from the Makassar Strait North and Central (Scenario 4) generates a massive tsunami. The generated wave may reach Palu Coast, affecting an area of 3,355 km². The wave height at the coastline may exceed 5 meters. The developed inundation map can be used by decision maker to develop the coastal zone management of Palu City. It also provides valuable information for future mitigation plan of the city. It is also important to improve the quality of the models around the area of Palu Estuary by adding a massive structure like Palu Bridge which is contained bridge pillars. Further research is needed on tsunami propagation and inundation modelling by considering this aspect.

Acknowledgments
The authors would like to acknowledge the support given by Institute for Research and Community Services of Institut Teknologi Bandung through 2020 Multidisciplinary Research with the title of “Development of Tsunami Propagation Models for Built Coastal Areas (Pengembangan Model Rambatan Tsunami untuk Kawasan Pantai Terbangun).

References
[1] Tursina S 2019 Reconstruction of the 2004 Tsunami inundation map in Banda Aceh through numerical model and its validation with post-tsunami survey data IOP Conf. Series: Earth and Environmental Science 273
[2] Adityawan M B, Roh M, Tanaka H and Udo K 2012 Investigation of tsunami propagation characteristics in river and on land induced by the great east Japan earthquake 2011 Journal of Earthquake and Tsunami 6
[3] Paulik R, Gusman A, Williams J H, Pratama G M, Lin S, Prawirabhakti A, Sulendra K, Zachari M Y, Fortuna Z E D and Layuk N B P 2019 Tsunami hazard and built environment damage observations from Palu City after the September 28 2018 Sulawesi earthquake and tsunami Pure Appl. Geophys. 176 3305–21
[4] Muhari A, Imamura F, Arikawa T, Hakim A R and Afriyanto B 2018 Solving the puzzle of the september 2018 Palu, Indonesia Tsunami mystery: clues from the Tsunami waveform and the initial field survey data Journal of Disaster Research 13 1-3
[5] PUSGEN 2018 Kajian Gempa Palu Provinsi Sulawesi Tengah 28 September 2018 (M7,4) (Jakarta: PUPR)
[6] Horspool N and Pranantyo I Ryan 2015 A National Tsunami Hazard Assessment for Indonesia (California: Creative Commons) p 6
[7] PUSGEN 2017 Peta Sumber dan Bahaya Gempa Indonesia Tahun 2017 (Jakarta: PUPR)
[8] Alam R R R, Adityawan M B, Farid M, Chrysanti A, Widyaningtyas and Kusuma M A 2020 tsunami-induced inundation on the coast of Palu City IOP Proceeding (In Review)

[9] BAPPEDA Kota Palu 2017 The Regional Medium Term Development Plan of Palu City Period 2016-2021 (RPJMD Kota Palu) p II-2 - pII-18

[10] Okada Y 1985 Surface deformation due to shear and tensile faults Bulletin of the Seismological Society of America 75 1135-1154

[11] Lu W, Jiang Y and Lin J 2013 Modelling propagation of 2011 honshu tsunami Applications of Computational Fluid Mechanics 7 p 507-513 ISSN: 1994-2060

[12] Sihombing Y I, Adityawan M B, Widyaningtias, Chrysanti A, Farid M, Nugroho J, Kuntoro A A and Kusuma M A 2020 Tsunami overland flow characheristic and its effect on Palu Bay due to the Palu Tsunami 2018 Journal of Earthquake and Tsunami p 1-22

[13] Prawirabhakti A and Andiese V W 2015 Numerical model of manning roughness coefficient effect on water level rise in Palu Bay Jurnal Infrastruktur 5 1-8