INTRODUCTION

Dopamine (DA) signaling underlies many neural functions. Dopaminergic afferents from the midbrain DA nuclei innervate the striatum, amygdala, hippocampus and prefrontal cortex (PFC), where D1- and D2-like receptors differentially regulate neuronal function. D1 receptors are exclusively post-synthetically expressed, and D1 binding activates intracellular signaling cascades that tend to increase the likelihood of neuronal firing.1 In contrast, D2 receptors are expressed both pre-synthetically, where they act as autoreceptors that regulate DA release, and post-synthetically, where their binding inhibits the same intracellular cascades enhanced by D1 binding.2,3 In the PFC, where D1 expression predominates,4 the ‘dual state’ theory holds that D1 and D2 receptors oppose each other in their effects on cognitive function: when PFC signaling is dominated by D2 binding, cortical networks favor flexible processing, whereas when signaling is D1-dominated, networks favor stabilizing information and protecting it from interference.5 Striatal DA signaling, which is more D2-dependent, has greater effects on the former kind of cognition,6 although corticostriatal connections allow interactions between striatal and cortical DA neurons.7 In contrast, phasic DA release in the PFC, which increases D1 and reduces D2 activation,8 modulates cognitive functions that depend on the PFC, including working memory, selective attention and executive function.9 Many theories posit that the relationship between cortical DA and PFC-dependent cognitive function is inverted-U-shaped, with both high and low cortical DA tone associated with impaired function.9–12

In most brain areas, including the striatum, synaptic DA is rapidly inactivated primarily through active reuptake at the presynaptic DA transporter (DAT). In the PFC, however, the DAT is not highly expressed,13 and the principal method of DA inactivation is enzymatic degradation by catechol-O-methyltransferase (COMT).14 COMT inactivates DA more slowly than the DAT, causing DA effects to persist much longer in the PFC and allowing the DA signal to stabilize and protect information. A common single nucleotide polymorphism (SNP) at codon 158 in COMT, the gene that encodes this enzyme, has been associated with differential COMT function, and, accordingly, differential cortical synaptic DA accumulation. Specifically, the met (A) allele of the val158met SNP (rs4680), which causes a valine to methionine amino acid substitution, is associated with a three- to fourfold reduction in COMT efficacy, and thus greater cortical DA tone, relative to the val (G) allele.15,16 The higher DA met allele may also be associated with a more optimal D1/D2 balance, while the lower DA val allele may be associated with a low D1/high D2 state5,17 (see Figure 1).

The val158met SNP is among the most thoroughly studied genetic variants in psychiatry.18,19 Disruption of corticostriatal DA signaling is a core feature of neuropsychiatric disorders characterized by cognitive symptoms, including attention-deficit/hyperactivity disorder (ADHD) and schizophrenia,20,21 and early studies tested the association between val158met variation and these disorders. However, meta-analyses ultimately revealed no associations with these diagnoses.22,23 Attention then turned to associations between val158met and cognitive function, an intermediate phenotype theoretically more proximal to the neuronal level than diagnostic phenotypes. Although initial studies suggested an association between val158met variation and cognition in both clinical samples and healthy controls,24–26 subsequent meta-analyses also found no effect on this phenotype.27 Thus, despite the SNP’s clear proximal effects on enzymatic function, its distal effects on behavior have remained ambiguous.28

One factor that may account for these mixed findings is that COMT val158met variation is only one of many influences on cognitive function, which, although ‘intermediate’ between neuronal signaling and disease outcomes, is a highly complex phenotype.29

The relationship between dopamine (DA) tone in the prefrontal cortex (PFC) and PFC-dependent cognitive functions (for example, working memory, selective attention, executive function) may be described by an inverted-U-shaped function, in which both excessively high and low DA is associated with impairment. In the PFC, the COMT val158met single nucleotide polymorphism (rs4680) confers differences in catechol-O-methyltransferase (COMT) efficacy and DA tone, and individuals homozygous for the val allele display significantly reduced cortical DA. Many studies have investigated whether val158met genotype moderates the effects of dopaminergic drugs on PFC-dependent cognitive functions. A review of 25 such studies suggests evidence for this pharmacogenetic effect is mixed for stimulants and COMT inhibitors, which have greater effects on D1 receptors, and strong for antipsychotics, which have greater effects on D2 receptors. Overall, COMT val158met genotype represents an enticing target for identifying individuals who are more likely to respond positively to dopaminergic drugs.
In contrast, drug response phenotypes, while themselves complex, are, relative to diagnostic phenotypes, potentially more strongly affected by variation in genes that directly control the neurobiological systems the drugs entrain. Broadly speaking, D₁ agonists enhance PFC-dependent cognitive functions, while D₁ antagonists impair them. D₂ antagonist effects are more mixed, perhaps due to these drugs’ dose-dependent effects on pre- vs post-synaptic D₂ receptors. Recent reviews have summarized the interaction between val158met genotype and the effects of tolcapone and risperidone, but neither addressed drug effects on cognitive function specifically, and the most recent systematic review of val158met effects on all dopaminergic drugs was published a decade ago. Thus, this manuscript critically reviews studies that have tested the pharmacogenetic interaction between COMT val158met genotype and the effects of dopaminergic drugs on PFC-dependent cognitive functions.

Materials and Methods

Study Identification and Selection

Studies were identified via PubMed searches conducted in April 2016 that included pairwise combinations of the terms ‘COMT’, ‘catechol-O-methyltransferase’, ‘val158met’ or ‘rs4680’, and ‘dopamine’, ‘medication’, ‘drug’, ‘stimulant’ or ‘antipsychotic’. Studies that tested an interaction between val158met genotype and therapeutic drug effects on PFC-dependent cognitive functions (working memory, selective attention and/or executive function) were included; whether these functions were evaluated in isolation or as part of larger cognitive batteries or symptom measures (for example, a broader IQ assessment that included a working memory subtest or an ADHD symptom measure that assessed inattention). Studies of non-cognitive therapeutic effects (for example, mood symptoms, COMT blood levels) were not included, nor were those of adverse effects, such as antipsychotic-induced tardive dyskinesia. This process ultimately identified 25 studies, which were grouped according to whether the effects of the drugs used were more D₁ (for example, stimulants, COMT inhibitors) or D₂-dependent (for example, antipsychotics).

Study Designs

Identified studies employed both double-blind, placebo-controlled designs and quasi-experimental designs, which used no placebo and compared cognitive function either between genotype groups or as a function of genotype and time. Most of the placebo-controlled studies also used within-subjects crossover designs. Nearly all studies employed longitudinal designs, but treatment length and number of assessment points varied widely. Several studies used prospective genotyping to employ an ‘extreme groups’ design in which only individuals with homozygous genotypes (for example, val/val or met/met) were included, but most genotyping was conducted post hoc, suggesting that experimenters were blind to genotype during outcome measure assessment. However, the use of genotype blinding was inconsistently reported across studies, precluding identification of those that used a double-blind approach.

Results

Stimulants and COMT Inhibitors

Two classes of drugs that have been analyzed for COMT val158met pharmacogenetic effects acutely increase DA concentrations, leading to increased cortical D₁ binding: stimulants (for example, amphetamine, methylphenidate), which increase DA directly in the striatum through competitive reuptake at the DAT and indirectly in the PFC through downstream D₁ effects; and COMT inhibitors, which, in the treatment of Parkinson’s disease, are commonly co-administered with L-DOPA to prevent its peripheral metabolism, but which also increase brain DA (primarily in the PFC) if they cross the blood–brain barrier. Table 1 lists studies that have tested moderation of the cognitive effects of these drugs by COMT val158met variation.

Several large, placebo-controlled studies of amphetamine among healthy controls suggest weak evidence for pharmacogenetic moderation of stimulant effects. Although one early study of amphetamine demonstrated greater improvement in executive function and working memory, relative to placebo, among val/val subjects administered amphetamine, subsequent larger studies have mostly failed to find this interaction. Notably, although one larger study reported greater amphetamine-induced improvements in selective attention among val-allele carriers, an attempted replication of this finding by the same group was negative. The authors attributed this discrepancy to a failure to fully correct for multiple testing and to their own bias for publishing a positive pharmacogenetic effect but not negative ones; these issues represent challenges for many pharmacogenetic studies.

Evidence for pharmacogenetic moderation of stimulant effects is somewhat stronger among psychiatric populations. Most studies have focused on methylphenidate effects on ADHD symptoms among children with this disorder. Of seven such studies, four found greater reduction in ADHD symptoms among val/val subjects administered methylphenidate. All four studies used ADHD symptom rating scales, which combine inattentive and hyperactive symptoms, as endpoints; two analyzed these symptom clusters separately, and identified pharmacogenetic effects specifically for hyperactive symptoms, while the other two analyzed only total scale scores. Park et al also reported greater methylphenidate effects on a measure of inattention (response time variability on a continuous performance task) among val/val children. Of the remaining three studies of children with ADHD, two reported no pharmacogenetic interactions and one reported an interaction only among orval/val individuals.

© 2016 Macmillan Publishers Limited, part of Springer Nature.

The Pharmacogenomics Journal (2016), 430 – 438
Table 1. Studies of stimulants and COMT inhibitors and moderation by COMT val158met genotype
Population
Stimulants: healthy controls
Mattay et al.
Hamidovic et al.
Hart et al.
Wardle et al.
Stimulants: psychiatric populations
Cheon et al.
Keresztturi et al.
Sengupta et al.
McGough et al.
Froehlich et al.
Salatino-Oliveira et al.
Contini et al.
McCracken et al.
Park et al.
COMT inhibitors: healthy controls
Apud et al.
Giakoumaki et al.
Farrell et al.
COMT inhibitors: psychiatric populations
Ashare et al.

Abbreviations: ABC, aberrant behavior checklist; ADHD, attention-deficit/hyperactivity disorder; ADHD-RS, ADHD rating scale IV; CANTAB ID/ED, Cambridge neuropsychological test automated battery intradimensional/extradimensional set-shifting test; CGI-C, clinical global impression: global improvement; CGI-S, clinical global impression severity; CPT, continuous performance test; DLPFC, dorsolateral prefrontal cortex; DSST, digit symbol substitution Test; LNS, letter-number sequencing; PERMP, permanent product measure of performance math test; POMS, profile of mood states; RASS, restricted academic sorting task. *Excluded val/met subjects. †Second figure refers to the combined total of val/met and met/met subjects; study combined these groups for analysis. Bold and italic values signify visually differentiate val/val, val/met, and met/met groups.
interaction for combined symptoms,52,53 and one found greater reduction in oppositional symptoms among male children with the val/met and met/met genotypes administered methylphenidate, although this effect did not persist beyond 1 month of treatment.54 A large study of adults with ADHD reported no pharmacogenetic effect on combined symptoms,55 but a smaller study of methylphenidate effects on hyperactivity among children with autism spectrum disorders found greater drug effects among val/val subjects.56 Study size and outcome measures did not predict whether studies reported a pharmacogenetic effect, but study design and population did. Only two of the four studies that used a stronger placebo-controlled crossover design reported a pharmacogenetic effect. Further, although the two studies that included only Korean subjects both reported pharmacogenetic effects,56,57 the significantly lower frequency of the val158met met allele among individuals of East Asian descent raises the possibility that the small number of met-allele homozygotes in these studies may have driven these effects.

In contrast to the findings for stimulants, there is stronger evidence of pharmacogenetic moderation of COMT inhibitors, although studies have been limited by small samples, and have included mostly healthy controls. Three placebo-controlled studies of tolcapone among healthy controls found better performance on executive function, working memory and decision-making tasks, as well as greater prepulse inhibition of the startle response, among val/val subjects administered tolcapone.57–59 However, one of these studies also examined a large number of cognitive measures, including other executive function and working memory measures, for which no pharmacogenetic effects were found. The two others included only homozygous subjects; thus, val/val subjects’ tolcapone-induced cognitive improvement was in comparison to met/met subjects’ decline. However, the only COMT inhibitor study that included a psychiatric population (treatment-seeking cigarette smokers) found better working memory measures, for which no pharmacogenetic effects were found. The other four studies of psychiatric populations found pharmacogenetic effects on specific cognitive functions. A small placebo-controlled crossover study of antipsychotics found pharmacogenetic moderation of drug effects on the N-back working memory task, but not other cognitive domains, such that antipsychotics, relative to placebo, improved performance only among met/met subjects.60 A study of olanzapine effects on changes in working memory over 4 weeks of treatment also found greater N-back improvement among met/met subjects relative to val-allele carriers.61 Because reduced tolcapone activation during the N-back was accompanied by performance improvements, greater reduction in DLPCF activation among met/met subjects was interpreted as evidence of increased cortical efficiency (for example, less activation was required to produce better performance). In addition, a study of patients who received both an antipsychotic and cognitive remediation therapy for 12 weeks found greater improvement among met-allele carriers relative to val/met subjects in processing speed, but not other cognitive functions.62 However, the pharmacogenetic interaction was only present for patients taking antipsychotics other than clozapine, and was driven by significantly worse performance among val/met subjects. In contrast, clozapine, which has greater D1 affinity than other antipsychotics, improved cognition irrespective of COMT genotype, suggesting that val158met pharmacogenetic effects might be specific to drugs with greater D2 effects.

The other four studies of psychiatric populations found pharmacogenetic effects on broader indices of cognitive function. In contrast to the Bosia et al.63 finding, another clozapine study reported greater improvement on a neurocognitive factor comprised of attention and verbal fluency measures among met-allele carriers relative to val/met subjects after 6 months of treatment.64 A study of antipsychotic effects on cognition found less ‘cognitive deterioration’ (that is, scores on ‘hold’ tests that are stable in adulthood and insensitive to acquired brain damage, such as WAIS Vocabulary and Information, relative to tests that are sensitive to brain damage, such as WAIS Digit Symbol) among met/met subjects.65 Similarly, met-allele carriers treated with greater antipsychotic doses demonstrated higher WAIS verbal IQ, but not performance IQ, scores relative to val/val subjects administered the same doses.66 Finally, a small study of patients with bipolar spectrum disorders assessed change in cognition as a function of genotype and antipsychotic use during a 2-year period. For subjects who used antipsychotics, there was less deterioration over time in a composite measure comprised of verbal learning and memory, selective attention and working memory tasks among met/met subjects relative to val-allele carriers.67 Thus, taken together, it appears that val-allele homozygotes with psychotic disorders are most susceptible to interferences in cognitive function from antipsychotic medications, perhaps because these individuals’ D1/D2 balance is too low for antipsychotics to rescue.

A placebo-controlled study of the D2 antagonist sulpiride among healthy controls68 reported contrasting findings to the antipsychotic studies among psychiatric subjects. Neurophysiological measures of error reactivity (for example, electroencephalographic error-related negativity, error-related increases in delta/theta power and post-error slowing) were obtained during a selective attention task. Under placebo, these measures were reduced in met/met subjects relative to val-allele carriers, suggesting more optimal cognitive function in the met/met group. Sulpiride reduced each measure in val-allele carriers but increased each in met/met subjects, suggesting that healthy...
Table 2. Studies of antipsychotics and moderation by COMT val158met genotype

First author	Drug	Placebo-controlled	Population	Total N (val/val, val/met, met/met)	Outcome measure(s)	Significant COMT × drug interaction	Group(s) w/ best outcome
Psychiatric populations							
Bertolino et al.	Olanzapine	No	Adults w/ SZ or schizophreniform disorder	30 (8, 17, 5)	Working memory (fMRI during N-back)	Greater improvement on N-back, less DLPFC activation during N-back in met/met	Met/met
Weickert et al.	Antipsychotics	Yes (crossover)	Adults w/ SZ or schizoaffective disorder	20 (5, 11, 4)	Working memory (N-back), executive function (WCST), verbal fluency, overall cognitive function (WAIS-R FSIQ, WMS-R)	Better N-back performance in met/met; no effects on other measures	Met/met
Mata et al.	Antipsychotics	No	Adults w/ non-affective psychotic disorders	87 (23, 47, 17)	Overall cognitive function (WAIS-III vocabulary, information, digit symbol)	Less cognitive deterioration (score on digit-symbol relative to vocab and info) in met/met	Met/met
Woodward et al.	Clozapine	No	Adults w/ SZ	86 (29, 35, 21)	Attention and verbal fluency (CIGT, COWAT, DSST), memory (ACTT, BSRT, WISC-R Mazes), executive function (WCST)	Greater improvement in attention and verbal fluency in met/met and val/met; no effects on memory, executive function	Met/met, val/met
Rebollo-Mesa et al.	Antipsychotics	No	Adults w/ SZ (some concordant identical twins)	68 (17, 36, 15)	Overall cognitive function (WAIS-III VIQ, PIQ)	Greater antipsychotic dose associated with greater VIQ in met/met and val/met; no effect on PIQ	Met/met, val/met
Arts et al.	Antipsychotics	No	Adults w/ bipolar spectrum disorders	51 (7, 32, 12)	Verbal learning and memory (VLT), selective attention (Flanker CPT), working memory (WAIS-III digit span backward)	Less deterioration on composite of all three measures in met/met	Met/met
Bosia et al.	Antipsychotics + cognitive remediation therapy	No	Adults w/ SZ (all Caucasian)	98 (24, 50, 24)	Verbal memory, working memory, motor coordination, processing speed, verbal fluency, executive function (BAC-S)	Greater improvement on processing speed in met/met, val/met treated w/ antipsychotics other than clozapine; no effects on other subtests	Met/met, val/met
Healthy controls							
Mueller et al.	Sulpiride	Yes	Healthy adult males	169 (33, 86, 50)	Selective attention (EEG during Flanker CPT)	Smaller error-related negativity, delta/theta power and post-error slowing in val/val, val/met	Val/val, val/met

Abbreviations: ACTT, auditory consonant trigram test; BAC-S, brief assessment of cognition in schizophrenia; BSRT, Buschke selective reminding task; CIGT, category instance generation test; CPT, continuous performance test; COWAT, controlled oral word association test; DLPFC, dorsolateral prefrontal cortex; DSST, digit symbol substitution test; EEG, electroencephalogram; FSIQ, full scale intelligence quotient; GAF, global assessment of functioning; PIQ, performance intelligence quotient; SZ, schizophrenia; VIQ, verbal intelligence quotient; VLT, verbal learning test; WAIS, Wechsler adult intelligence scale (revised, III, third edition); WCST, wisconsin card-sorting task; WISC-R, Wechsler intelligence scale for children—Revised; WMS-R, Wechsler memory scale—Revised. *Subjects prescribed various first- and second-generation antipsychotics were included. Bold and italic values signify visually differentiate val/val, val/met, and met/met groups.
controls, relative to individuals with schizophrenia spectrum disorders, might display a right-shifted inverted-U-shaped function under which D₂ antagonism worsens met/met subjects’ more optimal D₁/D₂ balance.

Overall, extant data indicate strong evidence for val158met moderation of antipsychotic effects on cognitive function. Studies have included a broad range of individuals with psychotic disorders, as well as a broad range of drugs. However, only one study has used a placebo-controlled crossover design, likely due to the difficulty of changing or discontinuing medications among individuals with severe and persistent mental illness. In addition, although extant studies have reported pharmacogenetic effects on a variety of cognitive outcomes, few specific findings have been replicated; there is inconsistent evidence for a pharmacogenetic effect on any specific neurocognitive domain. Nonetheless, the COMT val158met SNP holds promise for predicting the effects of antipsychotics on cognitive function.

DISCUSSION

This paper reviewed 25 studies of the moderating influence of the COMT val158met SNP on dopaminergic drug effects on PFC-dependent cognitive functions. These studies examined medications that modulate cortical D₁ and D₂ binding among both psychiatric populations and healthy controls. There was mixed evidence of pharmacogenetic effects for stimulants and COMT inhibitors, but stronger evidence for antipsychotics. COMT inhibitors improved cognitive function the most among val-allele homozygotes, while antipsychotics improved it the most among met-allele homozygotes (see Figure 2). The implications of these findings in the context of the dual state theory of prefrontal DA and the inverted-U-shaped hypothesis are discussed below, as are directions for future work in this area.

Several factors may account for the weak evidence of pharmacogenetic effects for stimulants. First, stimulants’ mechanism of action is not PFC-specific; stimulants non-selectively increase DA throughout the brain, most notably in the striatum. Thus, the beneficial effect of increasing cortical DA among individuals with low D₁/high D₂ occupancy (for example, val-allele homozygotes) may be counteracted by increases in striatal DA, which, although it increases behavioral flexibility, is also associated with impulsivity and risky decision making. Data that suggest that midbrain and striatal DA concentrations are positively associated with cortical blood flow in val-allele carriers but negatively associated in met/met subjects support this notion. Second, and relatedly, the primary outcome in most of the stimulant studies, ADHD symptoms, includes both PFC-mediated ‘cognitive’ symptoms (for example, inattention, distractibility) and motor and hyperactivity symptoms that are likely striatally mediated. Finally, in contrast to the antipsychotic studies, most of the stimulant studies reviewed had large sample sizes and employed placebo-controlled crossover designs, suggesting that weaker designs could lead to false-positive findings. However, these design considerations were possible in part because of the greater prevalence of ADHD relative to schizophrenia spectrum disorders and the lower clinical risk in administering placebo medications to ADHD patients.

In contrast to the findings for stimulants, there was stronger evidence of pharmacogenetic moderation of the COMT inhibitor tolcapone. Studies were small and mostly limited to healthy controls, but consistently demonstrated greater drug effects among val/val subjects. As noted previously, tolcapone acutely increases DA most prominently in the PFC; thus, it is logical that val158met genotype would moderate its effects more powerfully than stimulants. Tolcapone has been used sparingly in clinical practice due to hepatoxicity concerns, but the findings reviewed here, as well as data suggesting that tolcapone may improve cognitive function independent of COMT genotype, have increased interest in its potential clinical utility.

Evidence of a pharmacogenetic effect for antipsychotics was also strong. All seven studies of antipsychotics among psychiatric populations suggested that these drugs improved cognition (or prevented its deterioration) the most among met-allele homozygotes. Since antipsychotics increase cortical D₁ binding and the COMT met allele may be associated with a more optimal D₁/D₂ balance, this pattern of results might seem counterintuitive. One possibility is that val158met variation may differentially impact D₁/D₂ balance among individuals with schizophrenia spectrum disorders as a function of the reduced cortical D₁ function that may characterize these disorders. Individuals with these disorders may be shifted leftward on the inverted-U-shaped function, leaving met-allele homozygotes’ D₁/D₂ balance on the near left edge of the function and amenable to antipsychotic effects, but val-allele homozygotes’ balance so dysregulated that antipsychotics cannot remediate it. Interestingly, the one antipsychotic study that included healthy controls, among whom cortical DA function is presumably normal, reported deleterious drug effects in met/met subjects, suggesting the pharmacogenetic interaction may indeed be population-specific. Alternatively, the relationship between cortical DA and some of the cognitive functions measured in these studies may not be inverted-U-shaped.

In the antipsychotic studies, there was considerable variability regarding the specific cognitive domains affected by the pharmacogenetic interaction. Data were most consistent for working memory; three of the four studies that examined this construct found pharmacogenetic effects on it. However, despite this strong evidence, there is limited evidence (not reviewed here) that val158met genotype moderates overall antipsychotic treatment response (for example, decrease in schizophrenia symptoms or improvement in global functioning). Impairments in cognitive function represent only one aspect of schizophrenia spectrum disorders, and improving cognition may be of limited clinical benefit for individuals with these disorders.

Several factors limit interpretation of the data reviewed here. First, publication bias remains problematic for the pharmacogenetic literature, and effect sizes are often lower in replication studies. The val158met SNP is a sound candidate gene for moderation of dopaminergic drug effects—it has downstream functional effects and is related to the mechanism of action for these drugs—but studies of its potential pharmacogenetic effects must adhere to strong experimental design to reduce the likelihood of false-positive findings. Second, it is unclear whether race or ethnicity may influence val158met effects. The val allele is significantly more common among individuals of African and Asian descent, and the frequency of other polymorphisms that affect DA signaling also varies by race and ethnicity. These factors could result in differential epistatic interactions between
val158met and these other polymorphisms. Thus, differences in pharmacogenetic effects by race and ethnicity should be examined when possible. Finally, none of the studies reviewed here addressed pharmacogenetic moderation of adverse drug effects. The val/val genotype may confer liability to the development of antipsychotic-induced tardive dyskinesia. Similarly, several of the studies reviewed here suggested that val-allele homozygotes with schizophrenia spectrum disorders administered antipsychotics experienced decreased cognitive function from these drugs, but this phenomenon has not been systematically reviewed.

Despite these limitations, there are many promising future directions for research in this area. First, val158met genotype will likely be most useful for predicting the cognitive effects of drugs that specifically target cortical DA. Most of the drugs used in the studies reviewed here affect DA, and other neurotransmitter systems, in areas beyond the PFC. Two notable exceptions that merit further pharmacogenetic research are COMT inhibitors, which have demonstrated some of the most promising pharmacogenetic results of any class of drugs, and second-generation antipsychotics with more prominent D₂ effects (for example, clozapine) or novel dopaminergic mechanisms of action (for example, the D₂ partial agonist aripiprazole). Second, future studies should expand the use of neuroimaging outcome measures, which are ideal intermediate phenotypes, and are arguably more likely to demonstrate genetic effects than behavioral measures. Only four studies reviewed here used fMRI, and all had among the smallest Ns of the identified studies. Large-scale imaging genetics studies that include drug challenges, though more difficult and expensive to conduct, would greatly improve confidence in extant pharmacogenetic findings. Related to this issue, the use of a common neurocognitive outcome measure (for example, the NIH Toolbox multidimensional battery) in future research would facilitate comparison between studies. Third, in placebo-blinded studies, prospective genotyping should be used to ensure equal distribution of individuals with each COMT genotype to active and placebo medications; for studies of racial or ethnic populations in which one allele is significantly less frequent, this provision would be particularly useful for preventing small cell sizes, and thus imprecise estimates of drug effects. Finally, investigation of other COMT polymorphisms may be fruitful. A synonymous COMT SNP, rs4818, forms a haplotype with val158met that may predict COMT expression beyond the effects of either variant alone, and may moderate tolcapone effects on cognitive function. Other COMT SNPs have been reported to moderate risperidone response among patients with schizophrenia, suggesting that val158met is only one of several functionally relevant COMT polymorphisms.

In conclusion, extant data suggest that variation at the COMT val158met SNP is a promising target for predicting the effects of dopamineergic drugs on PFC-dependent cognitive functions. Continued development of medications that specifically modulate cortical DA may ultimately allow this variant to guide a personalized medicine approach to cognition in a variety of neuropsychiatric disorders.

CONFLICT OF INTEREST
The authors declare no conflict of interest.

REFERENCES
1 Beaulieu JM, Gainetdinov RR. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 2011; 63: 182–217.
2 Usiello A, Baik JH, Rouge-Pont F, Picetti R, Dierich A, LeMeur M et al. Distinct functions of the two isoforms of dopamine D2 receptors. Nature 2000; 408: 199–203.
3 De Mei C, Ramos M, Itaka C, Borrelli E. Getting specialized: presynaptic and postsynaptic dopamine D2 receptors. Curr Opin Pharmacol 2009; 9: 53–58.
4 Lidow MS, Goldman-Rakic PS, Gallager DW, Rakic P. Distribution of dopaminergic receptors in the primate cerebral cortex: quantitative autoradiographic analysis using [3H]raclopride, [3H]spiperone and [3H]SCH23390. Neuroscience 1991; 40: 657–671.
5 Durstewitz D, Seamans JK. The dual-state theory of prefrontal cortex dopamine function with relevance to catechol-o-methyltransferase genotypes and schizophrenia. Biol Psychiatry 2008; 64: 739–749.
6 Cropy WL, Fujita M, Innis RB, Nathan PJ. Molecular imaging of the dopamine system and its association with human cognitive function. Biol Psychiatry 2006; 59: 898–907.
7 Haber SN. The place of dopamine in the cortico-basal ganglia circuit. Neuroscience 2014; 282C: 248–257.
8 Dreyer JR, Henrik KF, Berg RW, Houmgaard JD. Influence of phasic and tonic dopamine release on receptor activation. J Neurosci 2010; 30: 14273–14283.
9 Cools R, D’Esposito M. Inverted-U shaped dopamine actions on human working memory and cognitive control. Biol Psychiatry 2011; 69: e113–e125.
10 Amsten AF. Catecholamine regulation of the prefrontal cortex. J Psychopharmacol 1997; 11: 151–162.
11 Goldman-Rakic PS, Muly EC 3rd, Williams GV. D1 receptors in prefrontal cells and circuits. Brain Res Brain Res Rev 2000; 31: 295–301.
12 Zahr J, Taylor JR, Mathew RG, Amsten AF. Supranormal stimulation of D1 dopamine receptors in the rodent prefrontal cortex impairs spatial working memory performance. J Neurosci 1997; 17: 8528–8535.
13 Sesack SR, Hawrylak VA, Matus C, Guido MA, Levey AL. Dopamine axon varicosities in the prefrontal cortex exhibit sparse immunoreactivity for the dopamine transporters. J Neurosci 1998; 18: 2697–2708.
14 Matsumoto M, Weickert CS, Akil M, Lipska BK, Hyde TM, Herman MM et al. Catechol-O-methyltransferase mRNA expression in human and rat brain: evidence for a role in cortical neuronal function. Neuroscience 2003; 116: 127–137.
15 Lachman HM, Paplosos DF, Saito T, Yu YM, Szumlanski CL, Weinshilboum RM. Human catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenomics 1996; 6: 243–250.
16 Chen J, Lipska BK, Halim N, Ma QD, Matsumoto M, Melhem S et al. Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): effects on mRNA, protein, and enzyme activity in postmortem human brain. Am J Hum Genet 2004; 75: 807–821.
17 Silfstein M, Kolachana B, Simpson EH, Tabares P, Cheng B, Duvall M et al. COMT genotype predicts cortical-limbic D1 receptor availability measured with [11C]NMC112 and PET. Mol Psychiatry 2008; 13: 821–827.
18 Craddock N, Owen MJ, O’Donovan MC. The catechol-O-methyltransferase (COMT) gene as a candidate for psychiatric phenotypes: evidence and lessons. Mol Psychiatry 2006; 11: 446–458.
19 Lachman HM. Does COMT val158met affect behavioral phenotypes: yes, no, maybe? Neuropsychopharmacology 2008; 33: 3027–3029.
20 Grace AA. Phasic versus tonic dopamine release and the modulation of dopamine system responsiveness: a hypothesis for the etiology of schizophrenia. Neuroscience 1991; 41: 1–24.
21 Amsten AF. Toward a new understanding of attention-deficit hyperactivity disorder pathophysiology: an important role for prefrontal cortex dysfunction. CNS Drugs 2009; 23: 33–41.
22 Cheuk DK, Wong V. Meta-analysis of association between a catechol-O-methyltransferase gene polymorphism and attention deficit hyperactivity disorder. Behav Genet 2006; 36: 651–659.
23 Munafo MR, Bowes L, Clark TG, Flint J. Lack of association of the COMT (Val158/108 Met) gene and schizophrenia: a meta-analysis of case-control studies. Mol Psychiatry 2005; 10: 765–770.
24 Rosa A, Peratta V, Cuesta MJ, Zarzuela A, Serrano F, Martinez-Larrea A et al. New evidence of association between COMT gene and prefrontal neurocognitive function in healthy individuals from sibling pairs discordant for psychosis. Am J Psychiatry 2004; 161: 1110–1112.
25 Malhotra AK, Kestler LJ, Mazzanti C, Bates JA, Goldberg T, Goldman D. A functional polymorphism in the COMT gene and performance on a test of prefrontal cognition. Am J Psychiatry 2002; 159: 652–654.
26 Goldberg TE, Egan MF, Grechelidze T, Coppola R, Weickert T, Kolachana BS et al. Executive subprocesses in working memory: relationship to catechol-O-methyltransferase Val158Met genotype and schizophrenia. Arch Gen Psychiatry 2003; 60: 889–896.
27 Barnett JH, Scorel S, Munafo MR. Meta-analysis of the cognitive effects of the catechol-O-methyltransferase gene Val158/108Met polymorphism. Biol Psychiatry 2004; 60: 137–144.
28 Witte AV, Fiol E. Effects of COMT polymorphisms on brain function and behavior in health and disease. Brain Res Bull 2012; 88: 418–428.
29 Robbins TW, Amsten AF. The neuropsychopharmacology of fronto-executive function: monoaminergic modulation. Annu Rev Neurosci 2009; 32: 267–287.
methylphenidate effects on oppositional symptoms in boys with attention-deficit/hyperactivity disorder. Biol Psychiatry 2011; 70: 216–221.

55. Contini V, Victor MM, Bertuzzi GP, Salgado CA, Picon FA, Grevet EH et al. No significant association between genetic variants in 7 candidate genes and response to methylphenidate treatment in adult patients with ADHD. J Clin Psychopharmacol 2012; 32: 820–823.

56. McCracken JT, Badashova KK, Posey DJ, Aman MG, Scabhil L, Tierney E et al. Positive effects of methylphenidate on hyperactivity are moderated by monoaminergic gene variants in children with autism spectrum disorders. Pharmacogenomics J 2014; 14: 295–302.

57. Apud JA, Mattay V, Chen J, Kolachana BS, Callcott JH, Rasetti R et al. Tolcapone improves cognition and cortical information processing in normal human subjects. Neuropsychopharmacology 2007; 32: 1011–1020.

58. Farrell SM, Tunbridge WM, Murray RM, Harrison PJ. COMT Val158Met genotype determines the direction of cognitive effects produced by catechol-O-methyltransferase inhibition. Biol Psychiatry 2012; 71: 538–544.

59. Giakoumaki SG, Roussos P, Bitsios P. Improvement of prepulse inhibition and executive function by the COMT inhibitor tolcapone depends on COMT Val158Met polymorphism. Neuropsychopharmacology 2008; 33: 3058–3068.

60. Ashare RL, Wileyto EP, Ruparel K, Goelz PM, Hopson RD, Valdez JN et al. Effects of tolcapone on working memory and brain activity in abstinent smokers: a proof-of-concept study. Drug Alcohol Depend 2013; 133: 852–856.

61. Abi-Dargham A, Laruelle M. Mechanics of action of second generation antipsychotic drugs in schizophrenia: insights from brain imaging studies. Eur Psychiatry 2005; 20: 15–27.

62. Lawler CP, Prioleau C, Lewis MM, Mak C, Jiang D, Schetz JA et al. Interactions of the novel antipsychotic aripiprazole (OFC-14697) with dopamine and serotonin receptor subtypes. Neuropsychopharmacology 1999; 20: 612–627.

63. Weickert TW, Goldberg TE, Mishara A, Apud JA, Kolachana BS, Egan MF et al. Catechol-O-methyltransferase val108/158met genotype predicts working memory response to antipsychotic medications. Biol Psychiatry 2004; 56: 677–682.

64. Bertolino A, Cafero G, Blasi D, De Candia M, Latorre V, Petruzella V et al. Interaction of COMT (Val108/158Met) genotype and olanzapine treatment on prefrontal cortical function in patients with schizophrenia. Am J Psychiatry 2004; 161: 1798–1805.

65. Bosia M, Zanotti A, Spangaro M, Buonocore M, Bichi M, Cocchi F et al. Factors affecting cognitive remediation response in schizophrenia: the role of COMT gene and antipsychotic treatment. Psychiatry Res 2014; 217: 9–14.

66. Woodward ND, Jayathilake K, Melzer HY. COMT val108/158met genotype, cognitive function, and cognitive improvement with clozapine in schizophrenia. Schizophr Res 2007; 90: 86–96.

67. Mata I, Arranz MJ, Staddon S, Lopez-Illundain JM, Tabares-Seisdedos R, Murray RM. The high-activity Val allele of the catechol-O-methyltransferase gene predicts greater cognitive deterioration in patients with psychosis. Psychiatry Genet 2006; 16: 213–216.

68. Rebolledo-Mesa I, Picchioni M, Shailk M, Bramon E, Murray R, Troupoulou T. COMT (Val158/108Met) genotype moderates the impact of antipsychotic medication on verbal IQ in twins with schizophrenia. Psychiatrie Genet 2011; 21: 98–105.

69. Arts B, Simons CJ, Drukker M, van Os J. Antipsychotic medications and cognitive functioning in bipolar disorder: moderating effects of COMT Val108/158 Met genotype. BMC psychiatry 2013; 13: 63.

70. Mueller EM, Makeig S, Hennig J, Wacker J. Dopamine effects on human error processing depend on catechol-O-methyltransferase SLI5met genotype. J Neurosci 2011; 31: 15818–15825.

71. Volkow ND, Wang G, Fowler JS, Logan J, Gerasimov M, Maynard L et al. Therapeutic doses of oral methylphenidate significantly increase extracellular dopamine in the human brain. J Neurosci 2001; 21: RC121.

72. Ghahremani DG, Lee B, Robertson CL, Tabibnia G, Morgan AT, De Shetler N et al. Striatal dopamine D2/D3 receptors mediate response inhibition and related activity in frontostriatal neural circuitry in humans. J Neurosci 2012; 32: 7316–7324.

73. Meyer-Lindenberg A, Kohn PD, Kolachana B, Kippenhan S, Mcinerney-Leo A, Nussbaum R et al. Midbrain dopamine and prefrontal function in humans: interaction and modulation by COMT genotype. Nat Neurosci 2005; 8: 594–596.

74. Karrison T, Allen DC, Navarre JM, Franklin RS, Dampier, corticostriatal connectivity, and intertemporal choice. J Neurosci 2012; 32: 9402–9409.

75. Apud JA, Weinberger DR. Treatment of cognitive deficits associated with schizophrenia: potential role of catechol-O-methyltransferase inhibitors. CNS Drugs 2007; 21: 537–557.

76. Abi-Dargham A, Mavilavi O, Lombardo I, Gil R, Martinez D, Huang Y et al. Prefrontal dopamine receptors and working memory in schizophrenia. J Neurosci 2002; 22: 3708–3719.

77. Okubo Y, Suhara T, Suzuki K, Kobayashi K, Inoue O, Terasaki O et al. Decreased prefrontal dopamine D1 receptors in schizophrenia revealed by PET. Nature 1997; 385: 634–636.

© 2016 Macmillan Publishers Limited, part of Springer Nature.
78 Floresco SB. Prefrontal dopamine and behavioral flexibility: shifting from an “inverted-U” toward a family of functions. Front Neurosci 2013; 7: 62.
79 Ryan SG. Regression to the truth: replication of association in pharmacogenetic studies. Pharmacogenomics 2003; 4: 201–207.
80 Bakker PR, van Harten PN, van Os J. Antipsychotic-induced tardive dyskinesia and polymorphic variations in COMT, DRD2, CYP1A2 and MnSOD genes: a meta-analysis of pharmacogenetic interactions. Mol Psychiatry 2008; 13: 544–556.
81 Nackley AG, Shabalina SA, Tchivileva IE, Satterfield K, Korchynskyi O, Makarov SS et al. Human catechol-O-methyltransferase haplotypes modulate protein expression by altering mRNA secondary structure. Science 2006; 314: 1930–1933.
82 Roussos P, Giakoumaki SG, Bitsios P. Tolcapone effects on gating, working memory, and mood interact with the synonymous catechol-O-methyltransferase rs4818c/g polymorphism. Biol Psychiatry 2009; 66: 997–1004.
83 Zhao QZ, Liu BC, Zhang J, Wang L, Li XW, Wang Y et al. Association between a COMT polymorphism and clinical response to risperidone treatment: a pharmacogenetic study. Psychiatr Genet 2012; 22: 298–299.
84 Fijal BA, Kinon BJ, Kapur S, Stauffer VL, Conley RR, Jamal HH et al. Candidate-gene association analysis of response to risperidone in African-American and white patients with schizophrenia. Pharmacogenomics J 2009; 9: 311–318.