A new marine woodground ichnotaxon from the Lower Cretaceous Mannville Group, Saskatchewan, Canada

Scott Melnyk, Stephen Packer, John-Paul Zonneveld, and Murray K. Gingras

Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6E 2E3, Canada <smelnyk@ualberta.ca> <packer@ualberta.ca> <zonnevel@ualberta.ca> <mgingras@ualberta.ca>

Abstract.—A new wood-boring ichnospecies is described from transgressive (lagoonal) deposits of the Lower Cretaceous Sparky Formation (Mannville Group) in west-central Saskatchewan, Canada. *Apectoichnus lignummasticans* new ichnospecies is a trace fossil that occurs in a thin coal bed and that was emplaced in an in situ xylic substratum (woodground). The ichnofossil is thin, elongate, unbranched, and straight to gently curved with a circular cross section and uniform diameter. *Apectoichnus lignummasticans* n. isp. is similar in many respects to modern borings in wood that are produced by marine isopods, e.g., *Limnoria lignorum* Rathke, 1799, for feeding and refugia. The recognition of *Apectoichnus lignummasticans* n. isp. in the rock record aligns with the modern observation that fossilized wood-boring assemblages should display higher ichnofossil diversities than commonly reported. Additionally, the stratigraphic occurrence of *Apectoichnus lignummasticans* n. isp. in association with other evidence of marine deposition reaffirms that certain wood boring morphologies (i.e., ichnotaxa) are useful as indicators of marine transgressions.

UUID: http://zoobank.org/880e722f-8944-42d7-bc38-423cc5a46413

Introduction

Woodground ichnofossils show a range of morphologies that reflect a variety of living strategies. The diversity of these strategies is more apparent in modern than in fossil ichnocoenoses. Fossil suites from marginal marine environments are exemplified by clasts and surfaces that exhibit putative bivalve borings (e.g., Kelly and Bromley, 1984; Plint and Pickerill, 1985; Savrda and King, 1993; Savrda et al., 1993; Mikuláš et al., 1995; Pirrie et al., 1998; Pickerill et al., 2003). Modern intertidal settings can show additional borings into the xylic substrata, including those of shrimp, isopods, barnacles, and even sponges (Gingras et al., 2004). The bivalve borings, referable to *Apectoichnus longissimus* (Kelly and Bromley, 1984) and *Teredolites clavatus* Leymerie, 1842, are almost exclusively associated with woody substrata and marginal to shallow marine environments (Bromley et al., 1984; Kiteley and Field, 1984; Savrda, 1991; Savrda et al., 1993; Pirrie et al., 1998; Pickerill et al., 2003; Mayoral et al., 2020; among others). However, Shipway et al. (2019) described a new freshwater species of teredinid bivalve that bores into carbonate substrata. *Apectoichnus* Donovan, 2018 and *Teredolites* Leymerie, 1842 are each characterized as elongate tunnels with approximately circular cross sections, but *Teredolites* differs from *Apectoichnus* in its overall turbinate morphology (Leymerie, 1842; Kelly and Bromley, 1984; Pickerill et al., 2003; Donovan, 2018).

Geologic setting

Apectoichnus lignummasticans new ichnospecies occurs within the Lower Cretaceous (early Albian stage) Sparky Formation of the Mannville Group in the Western Canadian Sedimentary Basin. The Mannville Group was deposited during an overall transgression of the Boreal Sea. The Sparky Formation has bounding discontinuities that correspond to marine flooding surfaces, which separate it from the underlying General Petroleum and overlying Waseca formations (Morshedian et al., 2012; Fig. 1). The trace fossils were present in a wood clast in a coal bed within a cored well bore from west-central Saskatchewan. The coal bed in which *Apectoichnus lignummasticans* n. isp. was found was truncated during a marine incursion and is demarcated by a transgressive surface of erosion. Locally bioturbated, shallow-marine sandstone and mudstone units overlie the bored surface (Fig. 1).

Materials and methods

Specimens.—The specimens were observed in a core from a wellbore near Bushy Lake, west-central Saskatchewan, Canada (Fig. 1). Two samples, UAI 0179 (Fig. 2.1, 2.3) and 0180 (Figs. 2.2, 3), comprise a single piece of gregariously bored wood that is 98 x 67 x 15 mm at its maximum. The trace fossils occurred within the Lower Cretaceous Mannville Group (Sparky Formation) in association with a transgressive surface of marine erosion.

Computed tomography scan analysis.—Computed Tomography (CT) is a nondestructive method whereby X-rays are directed through a rotating sample. X-ray attenuation that occurs at each angle is recorded and used for tomographic reconstruction (see Wildenschild and Sheppard, 2013 for detailed discussion). Previous studies have used similar techniques quite effectively.
in analyzing various bioerosion features (e.g., Beuck et al., 2007, 2008; Schönberg and Shields, 2008; Tapanila, 2008). CT scanning is particularly suitable for substrata with empty borings due to the low attenuation of the tunnels relative to the substratum. This results in images with burrows that are easy to visualize and can be analyzed spatially across multiple dimensions. Although the specimens cannot be viewed directly in full relief, Micro-CT imaging allows observation of additional detail, trace morphology, and overall trace length.

Repositories and institutional abbreviations.—Specimens examined in this study are housed in the Ichnology Research Group Trace Fossil Collection in the Department of Earth and Atmospheric Sciences, University of Alberta (UAI), Alberta, Canada. BM(NH) = The Natural History Museum, London.

Systematic ichnology

Borehole excavation in different substrata requires different behaviors and abilities (e.g., Dorgan, 2015). Thus, although ichnotaxa differ markedly from biological taxa, no paleontological, paleoecological, or taphonomic goal is achieved by lumping together traces excavated in lithic, osteic, and xylic substrata. This view was contested by Donovan and Ewin (2018), who considered *Teredolites clavatus* (xylic substratum) and *Gastrochaenolites turbinatus* Kelly and Bromley, 1984 (lithic substratum) to be synonyms because they are morphologically comparable. For the reasons discussed above, we consider substratum to be useful in taxonomic differentiation and advocate retaining both ichnotaxa (see also Zonneveld et al., 2015; Wisshak et al., 2019).

Ichnogenus *Apectoichnus* Donovan, 2018

Type ichnospecies.—*Teredolites longissimus* Kelly and Bromley, 1984.

Emended diagnosis.—Elongate borings in xylic substrata and associated resins, nearly circular in cross section, with an approximately constant diameter. Borings are straight to sinuous or contorted and intertwined and predominantly occur parallel to the fibers of xylic substrata (modified from Donovan, 2018; Mayoral et al., 2020).

Remarks.—Kelly and Bromley (1984) proposed *Teredolites longissimus* as a new ichnospecies commonly associated with boring bivalves. This combination was recently challenged by Donovan (2018) who proposed the ichnogenus *Apectoichnus* to describe wood borings that lack the clavate morphology of *Teredolites clavatus*. Donovan (2018) retained the species-level taxonomy of *Apectoichnus longissimus* and thus, prior to the present work, *Apectoichnus* has been a monospecific ichnogenus. Subsequent contributions have validated the ichnotaxon *Apectoichnus* (e.g., Donovan and Ewin, 2018; Donovan and Portell, 2019; Wisshak et al., 2019). Mayoral et al. (2020) revised the diagnosis of *Apectoichnus* to include amber and other solid resins as possible host substrata. We further emend the genus-level diagnosis to recognize that the trace fossils are generally aligned wood fiber-parallel, which was previously considered diagnostic at the ichnospecies level (Mayoral et al., 2020).
Apectoichnus longissimus (Kelly and Bromley, 1984)

Holotype.—BM(NH) Bensted Collection 38019, Kentish Rag, Lower Cretaceous (Aptian stage), Hythe, Kent, England, UK (Kelly and Bromley, 1984, figs. 9B, 11A, B).

Emended Diagnosis.—Apectoichnus with large (> 2 mm) diameter and relatively small length-to-width ratio.

Remarks.—Previous ichnospecific ichnotaxobases include length-to-width ratios > 5 and a tendency for the borings to

Figure 2. *Apectoichnus lignummasticans* n. isp. assemblage in fossil wood: (1) sample UAI 079 (arrow indicates holotype); (2) Sample UAI 080; (3) close-up of UAI 079 showing the holotype and surrounding forms. Scale bars show 1 mm divisions.
align parallel to the wood fibers (see Mayoral et al., 2020). These characteristics are observed in the nonmolluscan borings examined herein and are therefore considered diagnostic at the ichnogenus level.

Apectoichnus lignummasticans new ichnospecies

Holotype.—UAI 0179 (Fig. 2.1, 2.3).

Diagnosis.—Straight to gently curved *Apectoichnus* with small (< 2 mm) diameter and relatively large (usually > 10) length-to-width ratio.

Occurrence.—Lower Cretaceous (early Albian stage) Mannville Group (Sparky Formation), near Bushy Lake, west-central Saskatchewan, Canada (Dominion Land Survey 16-15-44-20W3M; 52°47′45.0″N, 108°48′55.6″W [NAD83]; 630.0 m depth).

Description.—The holotype and associated borings comprise an assemblage of *Apectoichnus lignummasticans* n. isp. emplaced in fossil wood. The gently curved holotype is displayed in the elevation view of sample UAI 0179 (Fig. 2.1, 2.3). It has a preserved length of 22.8 mm, which is the longest of the assemblage, and a diameter of 0.9 mm (length-to-width ratio ∼25). An additional 20 borings were measured. Although the specimens cannot be viewed directly in full relief, Micro-CT imaging allows observation of additional detail, trace morphology, and overall trace length (Fig. 3). The preserved lengths vary considerably, averaging ∼12 mm. The
assemblage displays a range in diameter from 0.4–1.2 mm (mean = 0.9 mm, N = 21). The length-to-width ratio ranges from 7–38 (mean = 15, N = 21); 17 of the ratios are between 10 and 25.

Etymology.—The species name is derived from the Latin *lignum masticando* (‘wood chew’).

Remarks.—Although size alone is not normally an ichnotaxonomic character, the small diameters of *Apectoichnus lignummasticans* n. isp., paired with large length to width ratios, make it readily discernible from *Apectoichnus longissimus*. The small diameters and the large length-to-width ratios of *Apectoichnus lignummasticans* n. isp. are not ascribable to the teredinid bivalves that made *Apectoichnus longissimus*. The absence of radial bioglyphs that are sometimes associated with teredinid borings, and the lack of space available for calcareous boring linings or anterior caps further suggest a nonbivalve trace maker. The morphology of the structure is more consistent with mobile wood-boring marine arthropods (e.g., isopods, discussed below).

Discussion

Above we ascribe the occurrence of *Apectoichnus lignummasticans* n. isp. to marine and marginal-marine animals, owing to its similarity to borings made by the extant limnoid isopod genus.

Figure 4. Extant *Limnoria lignorum* borings: (1, 2) teredinid-bored wood with *Limnoria lignorum* borings on the exterior (note that the borings generally follow the grain of the wood); (3) example of branching *Limnoria lignorum* borings. Scale bars = 1 cm.
limiting salinity for boring activity varies inversely with water temperature and ceases altogether in salinities < 10 ppt (Eltringham, 1961); the optimal salinity at 20°C ranges from 30–34 ppt (Borges et al., 2009). The amount of boring activity could also be directly related to dissolved oxygen content and is significantly reduced at levels < 3.0 ppm (Anderson and Reish, 1967).

The presence of bored woodgrounds in the rock record is associated with transgressive coastal settings (Panos and Skacel, 1966; Bromley et al., 1984; Savrda, 1991; Shanley et al., 1992; Savrda et al., 1993; Gingras et al., 2004). Indeed, the colonization of in situ woodgrounds by marginal marine and marine organisms requires a rise in relative sea level (e.g., Gingras et al., 2004). Importantly, Limnoria can survive for only ~24 hours without water and thus commonly inhabits the intertidal zone (Menzies, 1957); populations are generally highest at low-tide levels where log-ground and woodground substrata are readily available.

Table 1. Summary of formally recognized ichnospecies associated with wood substrata. *Type ichnospecies.*

Ichnospecies	Inferred tracemaker	Diagnosis/description
Continental woodground ichnospecies		
Asthenopodia (L. lignorum)	Family Pinidae	1–1.5 mm wide; smooth cylindrical tunnels with circular cross sections
Asthenopodia (L. tripunctata)	Family Gammeridea (scud)	U-shaped sprints or pouch-like tunnels of 1.5–3 mm diameter; aligned perpendicular to substratum and penetrating wood to 20 mm
Asthenopodia (L. quadripunctata)	Kingdom Fungi	Shallow, elongate, lensoid to almond-shaped scoops; oriented parallel to wood grain; commonly occurring in clusters
Asthenopodia (L. lignorum)	Family Kalotermitidae (drywood termite)	Boxwork of anastomosed longitudinal borings; interconnected by short tangential tunnels; lacking outer layer but filled with hexagonal fecal pellets
Glochidion (L. lignorum)	Class Insecta	2–4 mm wide, smooth, unbranched, slightly kink-bent, cylindrical borings with circular cross sections and hemispherical terminations; aligned perpendicular to wood grain; fill massive
Paleobuprestis (L. lignorum)	Family Buprestidae (jewel beetle)	10 mm wide channels occurring just under bark and aligned perpendicular to wood grain; cuttings visible; borings filled with castings
Paleobuprestis (L. tripunctata)	Family Buprestidae (jewel beetle)	2 mm wide channels aligned perpendicular to wood grain; variably filled with castings
Paleobuprestis (L. quadripunctata)	Family Buprestidae (jewel beetle)	Straight to gently curved, shallow, narrow, randomly oriented channels of 2–4 mm diameter; unfilled
Paleoiodius (L. lignorum)	Subfamily Scolytinae (bark beetle)	5 mm wide tunnels with square to rectangular outlines and oval cross sections, each with one flat side; penetrating deep into wood; unfilled
Paleoiodius (L. tripunctata)	Subfamily Scolytinae (bark beetle)	2–3 mm wide tunnels with oval cross sections; filled with castings
Paleoiodius (L. quadripunctata)	Subfamily Scolytinae (bark beetle)	5 mm wide channels occurring just under bark, lacking preferred orientation; lacking cuttings and castings
Pecinolites (L. lignorum)	None	Large, straight to gently curved, tubular borings with reasonably constant diameters, finger-like terminations, and rare branching at 60–90°; unfilled
Scolytolarvarium (L. lignorum)	Subfamily Scolytinae (bark beetle)	1.5 mm wide borings diverging from central chamber; apparently filled with cuttings and castings
Scolytolarvarium (L. tripunctata)	Subfamily Scolytinae (bark beetle)	Subround plate with longitudinal-cylindrical mater tunnel with foveae on both sides and radiating larval tunnels
Scolytolarvarium (L. quadripunctata)	Subfamily Scolytinae (bark beetle)	Strongly entangled galleries, at least 13 mm wide, branching from parent gallery; unfilled
Stipitichnus (L. lignorum)	Rhinostomus barbriostris	Unbranched longitudinal borings with circular cross sections; lacking outer layer; unfilled
Xylotrechus (L. lignorum)	Fabricius, 1775 (bearded weevil)	Kidney-shaped borings with apertures oriented perpendicular to wood surface
Xylocreus (L. lignorum)	Suborder Archostomatata	
Xylonichus (L. lignorum)	Family Buprestidae (jewel beetle)	Longitudinal borings with rectangular cross sections and rounded corners (height: width = 1:4); interconnected by tangential tunnels; with outer layer and filled with frass, or with meniscus structure
Xylonichus (L. tripunctata)	Family Cerambycidae (longhorn beetle)	Longitudinal borings with oval cross sections (height:width = 1:3); interconnected by tangential tunnels, with radial tunnels of different sizes connecting to exterior; containing frass that is sometimes packed in backfill meniscae
Iptes (L. lignorum)	Genus Iptes De Geer, 1775 (bark beetle; engraver beetle)	Regularly branched borings with larger central tunnel and smaller radiating tunnels; aligned parallel to substratum
Marine woodground ichnospecies		
Apectoichnus (L. lignummaticans)	Family Teredinidae (shipworm)	Elongate, curved to contorted borings with circular cross sections and relatively constant diameter
Apectoichnus (L. lignummaticans)	Family Limnoriidae (grille)	Small, straight to gently curved borings with circular cross sections and uniform diameter
Teredoites (L. lignummaticans)	Family Pholadidae (piddock)	Clavate borings with more or less circular cross sections, evenly tapered from aperture to base

Limnoria Rathke, 1799 (Fig. 4). Nevertheless, it is worth emphasizing that *Apectoichnus lignummaticans* n. isp. is morphologically different from terrestrial wood-boring ichnofossils (Table 1). The most common wood-boring species of *Limnoria* are *L. lignum* Rathke, 1799, *L. tripunctata* Menzies, 1951, and *L. quadripunctata* Holthuis, 1949 (e.g., Menzies and Turner, 1957; Jones, 1963; Borges et al., 2014). *Limnoria lignum* has a particularly widespread distribution due to its broad environmental tolerance (Borges et al., 2014). Environmental factors, e.g., temperature, salinity, and oxygen content, are directly related to the survival, distribution, and boring activity (i.e., egestion rate) of *Limnoria*; however, the most important constraint is the presence of an adequate food supply (i.e., wood) (Menzies, 1957). Mortality rates of *Limnoria* increase rapidly from 10–20°C, but boring activity is optimized in warmer water temperatures (20°C) and is significantly reduced below 10°C (Menzies, 1957; Eltringham, 1965). The limiting salinity for boring activity varies inversely with water temperature and ceases altogether in salinities < 10 ppt (Eltringham, 1961); the optimal salinity at 20°C ranges from 30–34 ppt (Borges et al., 2009). The amount of boring activity could also be directly related to dissolved oxygen content and is significantly reduced at levels < 3.0 ppm (Anderson and Reish, 1967).
Acknowledgments

The authors thank the Natural Science and Engineering Research Council of Canada (NSERC) for Discovery Grants awarded to MKG and JPZ that helped fund this research. Shell Canada generously donated the core that was used in this study. The manuscript has benefited greatly from the thoughtful comments of S. Donovan and two anonymous reviewers.

Accessibility of Supplemental Data

Data available from the Dryad Digital Repository: https://doi.org/10.5061/dryad.g1tvhmmn6.

References

Anderson, J.W., and Reish, D.J., 1967, The effects of varied dissolved oxygen concentrations and temperature on the wood-boring isopod genus Limnoria: Marine Biology, v. 1, p. 56–59.

Beuck, L., Vertino, A., Stepana, E., Karolczak, M., and Pfannkuche, O., 2007, Skeletal response of Lophelia pertusa (Scleractinia) to bieropeding sponge infestation visualised with micro-computed tomography: Facies, v. 53, p. 157–176, doi:10.1007/s10347-006-0094-9.

Beuck, L., Wissah, M., Munnecke, A., and Freiwald, A., 2008, A giant boring in a Silurian stromatoporoid analysed by computer tomography: Acta Palaeontologica Polonica, v. 53, p. 149–160, doi:10.4202.app.2008.0111.

Borges, L.M.S., Cragg, S.M., and Busch, S., 2009, A laboratory assay for measuring feeding and mortality of the marine wood borer Limnoria under forced feeding conditions: A basis for a standard test method: International Biodegradation & Biodegradation, v. 63, p. 289–296, doi:10.1016/j.ibiod.2008.10.007.

Borges, L.M.S., Merckelbach, L.M., and Cragg, S.M., 2014, Biogeography of wood-boring crustaceans (Isopoda: Limnoriidae) established in European coastal waters: PLoS ONE, v. 9, e. p109593, doi:10.1371/journal.pone.0109593.

Bromley, R.G., Pemberton, S.G., and Rahman, R.A., 1984, A Cretaceous woodground: The Teredolites ichnofacies: Journal of Paleontology, v. 58, p. 488–498.

De Geer, C., 1775, Mémoires pour Servir à l’Histoire des Insectes 5: Stockholm, Greifing and Hesselberg, 448 p.

Donovan, S.K., 2018, A new ichnogenus for Teredolites longissimus Kelly and Bromley: Swiss Journal of Palaeontology, v. 137, p. 95–98, doi:10.1007/s13358-017-0146-0.

Donovan, S.K., and Erwin, T.A.M., 2018, Substrate is a poor ichnotaxon: A new demonstration: Swiss Journal of Palaeontology, v. 137, p. 103–107, doi:10.1007/s13358-018-01460-0.

Dorgan, K.M., 2015, The biomechanics of burrowing and boring: Journal of Experimental Biology, v. 218, p. 176–183, doi:10.1242/jeb.080983.

Eltringham, S.K., 1961, The effect of salinity upon the boring activity and survival of Limnoria (Isopoda): Journal of the Marine Biological Association of the United Kingdom, v. 41, p. 785–797.

Eltringham, S.K., 1965, The effect of temperature upon the boring activity and survival of Limnoria (Isopoda): Journal of Applied Ecology, v. 2, p. 149–157.

Fabricius, J.C., 1775, Systema Entomologiae, Sistens Insectorum Classes, Ordines, Genera, Species, Adjectis Synonymis, Locis, Descriptionibus, Observationibus: Flensburg, Germany, Libraria Kortii, 832 p.

Genise, J.F., 1995, Upper Cretaceous trace fossils in perminalized plant remains from Patagonia, Argentina: Ichnos, v. 3, p. 267–299.

Genise, J.F., and Hazeldine, P.L., 1995, A new insect trace fossil in Jurassic wood from Patagonia, Argentina: Ichnos, v. 4, p. 1–5.

Genise, J.F., Garrowe, R., Nel, P., Grandcolas, P., Maurizot, P., Cluzel, D., Corrette, R., Fabre, A.-C., and Nel, A., 2012, Astenophoichnodon ichnogen, in Boucot, J., ed., Evolutionary Paleoecology of Behaviour and Coevolution: Amsterdam, Elsevier, p. 373–376.

Karpinski, J.J., 1962, Cast of the brood galleries of fossil beetle of the Scolelyidae family from Oligocene/Miocene Sandstone at Osieczów (Lower Silesia): Prace Instytut Geologiczny, v. 30, p. 237–239.

Kelly, S.R., and Bromley, R.G., 1984, Ichnological nomenclature of clavate borings: Palaeontology, v. 27, p. 793–807.

Ketcham, R.A., and Carlson, W.D., 2001, Acquisition, optimization and interpretation of X-ray computed tomographic imagery: Applications to the geosciences: Computers & Geosciences, v. 27, p. 381–400, doi:10.1016/S0098-3004(00)00116-3.

Kieley, J.W., and Field, M.E., 1984, Shallow marine depositional environments in the Upper Cretaceous of northern Colorado, in Tillman, R.W., and Siemers, C.T., eds., Silicilastic Shelf Sediments: Society of Economic Paleontologists and Mineralogists, Special Publication 34, p. 170–204.

Leymerie, A., 1842, Suite de mémoire sur le terrain Crétacé du département de l’Albè: Mémoires de la Société Géologique de France, v. 1, sér. 4, p. 1–54.

Linck, O., 1949, Fossiele Bohrungen (Anobichnium simile n. g. n. sp.) an einen Keuperholz : Neues Jahrbuch für Mineralogie, Geognosie, Geologie und Petraktentheorie, v. B 4-6, p. 180–185.

Mayoral, E., Santos, A., Vintan, J.A.G., Wissah, M., Neumann, C., Uchman, A., and Nel, A., 2020, Biodeposition in Borings by Teredolites longissimus around the globe, with implications for the ichnogenera Teredolites and Apecticodichnus: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 538, p. e109410, doi:10.1016/j.palaeo.2019.109410.

Menzies, R.J., 1951, A new species of Limnoria (Crustacea: Isopoda) from southern California: Bulletin of the Southern California Academy of Sciences, v. 50, p. 86–88.

Menzies, R.J., 1957, The marine borer family Limnoriidae (Crustacea, Isopoda), Part 1, Northern and central North America: Systematics, distribution, and ecology: Bulletin of Marine Science of the Gulf and Caribbean, v. 7, p. 101–200.

Menzies, R.J., and Turner, R., 1957, The distribution and importance of wood borers in the United States, in Symposium on Wood for Marine Use and its Protection from Marine Organisms: West Conshohocken, Pennsylvania: ASTM International, p. 3-3-19.

Mikulaš, Š., and Dvorák, Z., 2002, Borings in xylic tissues of the tree fern Tempskya in the Bohemian Cretaceous Basin, Czech Republic: Zprávy o Geologických Výzkumech, v. 36, p. 129–131.

Mikulaš, Š., Pek, I., and Zimáč, J., 1995, Teredolites clavatus from the Cenomanian near Maletín (Bohemian Cretaceous Basin), Morava, Czech Republic: Věstník Českého Geologického Ústavu, v. 70, p. 51–58.

Morschedian, A., MacEachern, J.A., and Daughardt, S.E., 2012, Stratigraphic framework for the Lower Cretaceous Upper Mannville Group (Sparky, Waseca, and McLaren allformations) in the Lloydminster area, west-central Saskatchewan, in Summary of Investigations 2011, Volume 1: [Regina, Saskatchewan,] Saskatchewan Geological Survey Geological, Survey Saskatchewan Ministry of Resources, p. 17.

Muszer, J., and Uglič, M., 2013, Palaeoenvironmental reconstruction of the Upper Viséan Papirotina Beds (Bardo Unit, Polish Sudetes) deposition on the ichnological and palaeontological investigations: Geological Quarterly, v. 57, p. 365–384.

Nicholson, H.A., 1873, Contributions to the study of the errant annelides of the older Palaeozoic rocks: Proceedings of the Royal Society of London, v. 21, p. 266–269.

Paras, V., and Skacel, J., 1966, Zur Frage der Entstehung der Steinsauen ‘Pobiti Kami’ und anderer eigenartiger Formen zwischen Varna und Beloslav in Nordost-Bulgarien: Zeitschrift für Geomorphologie, v. 10, p. 105–118.

Petrov, A.V., 2013, New ichnogenus Megascolytus zherikhini (Coleoptera: Curculionidae: Scolytinae) from Upper Cretaceous deposits of Mongolia: Palaeontological Journal, v. 47, p. 597–600, doi:10.1134/S0030013013060051.

Pickerill, R.K., Donovan, S.K., and Portell, R.W., 2003, Teredolites longissimi Kelly & Bromley from the Miocene Grand Bay Formation of Carriacou, the Grenadines, Lesser Antilles: Scripta Geologica, v. 125, p. 1–9.

Pirrie, D., Marshall, J.D., and Crane, J.A., 1998, Marine high Mg calcite cements in Teredolites-bored fossil wood: Evidence for cool palaeoclimates.
in the Eocene La Meseta Formation, Seymour Island, Antarctica: Palaios, v. 13, p. 276.

Plint, A.G., and Pickerill, R.K., 1985, Non-marine Teredolites from the middle Eocene of southern England: Lethaia, v. 18, p. 341–347.

Rathke, J., 1799, Observations concerning the natural history of helminths and molluscs: Skrifter af Naturhist-Selskabet (København), v. 5, p. 61–148.

Savrda, C.E., 1991, Teredolites, wood substrates, and sea-level dynamics: Geology, v. 19, p. 905–908.

Savrda, C.E., and King, D.T., 1993, Log-ground and Teredolites lagerstätte in a Trangressive Sequence, Upper Cretaceous (Lower Campanian) Mooreville Chalk, central Alabama: Ichnos, v. 3, p. 69–77.

Savrda, C.E., Ozalas, K., Demko, T.H., Huchison, R.A., and Scheiwe, T.D., 1993, Log-grounds and the ichnofossil Teredolites in transgressive deposits of the Clayton Formation (lower Paleocene), western Alabama: Palaios, v. 8, p. 311.

Schlirf, M., 2006, Linkichnus terebrans new ichnogenus et ichnospecies, an insect boring from the Late Triassic of the Germanic Basin, southern Germany: Ichnos, v. 13, p. 277–280, doi:10.1080/10420940600843765.

Schönberg, C.H.L., and Shields, G., 2008, Micro-computed tomography for studies on Entobia: Transparent substrate versus modern technology, in Wisshak, M., and Tapanila, L., eds., Current Developments in Bioerosion (Erlangen Earth Conference Series): Berlin, Springer, p. 147–164.

Seilacher, A., 1955, Spuren und Fazies im Unterkambrium, in Schindewolf, O.H., and Seilacher, A., eds., Beiträge zur Kenntnis des Kambriums in der Salt Range (Pakistan): Wiesbaden, Germany, Akademie der Wissenschaften und der Literatur, p. 373–399.

Shanley, K.W., McCabe, P.J., and Hettinger, R.D., 1992, Tidal influence in Cretaceous fluvial strata from Utah, USA: Key to sequence stratigraphic interpretation: Sedimentology, v. 39, p. 905–930.

Shipway, J.R., Altamia, M.A., Rosenberg, G., Concepcion, G.P., Haygood, M.G., and Distel, D.L., 2019, A rock-boring and rock-ingesting freshwater bivalve (shipworm) from the Philippines: Proceedings of the Royal Society B, Biological Sciences, v. 286, p. 20190434, doi:10.1098/rspb.2019.0434.

Tapanila, L., 2008, The medium is the message: Imaging a complex micro boring (Pyrodendrina cupra igen. n., isp. n.) from the early Paleozoic of Anticosti Island, Canada, in Wisshak, M., and Tapanila, L., eds., Current Developments in Bioerosion (Erlangen Earth Conference Series): Berlin, Springer, p. 123–145.

Tapanila, L., and Roberts, E.M., 2012, The earliest evidence of holometabolon insect pupation in conifer wood: PLoS ONE, v. 7, p. e31668, doi:10.1371/journal.pone.0031668.

Thenius, E., 1979, Lebensspuren von Ephemeropteren-Larven aus dem Jungtertiär des Wiener Beckens: Annalen Des Naturhistorischen Museums in Wien, v. 82, p. 177–188.

Torell, O., 1870, Petrificata suecana formationis cambriaca: Acta Universitatis Lundensis, Afdelning Mathematik och Naturvetenskap Arsskrift, v. 6, p. 1–14.

Walker, M.V., 1938, Evidence of Triassic insects in the Petrified Forest National Monument, Arizona: Proceedings of the United States National Museum, v. 85, p. 137–141.

Wildenschuld, D., and Sheppard, A.P., 2013, X-ray imaging and analysis techniques for quantifying porosity structure and processes in subsurface porous medium systems: Advances in Water Resources, v. 51, p. 217–246, doi:10.1016/j.advwatres.2012.07.018.

Wisshak, M., Knaust, D., and Bertling, M., 2019, Bioerosion ichnotaxa: Review and annotated list: Facies, v. 65, p. 24, doi:10.1007/s10347-019-0561-8.

Zenker, J.C., 1836, Historisch-Topographisches Taschenbuch von Jena und Seiner Umgebung Besonders in Seiner Naturwissenschaftlicher und Medicinischer Bezieh: Jena, Germany, Wackenholder, 338 p.

Zonneveld, J.P., Bartels, W.S., Gunnell, G.F., and McHugh, L.P., 2015, Borings in early Eocene turtle shell from the Wasatch Formation, South Pass, Wyoming: Journal of Paleontology, v. 89, p. 802–820, doi:10.1017/jpa.2015.61.

Accepted: 4 July 2020