Current Trends in Deep Learning for Earth Observation:
An Open-source Benchmark Arena for Image Classification

Ivica Dimitrovski\textsuperscript{a,b}, Ivan Kitanovski\textsuperscript{a,b}, Dragi Kocev\textsuperscript{a,c}, Nikola Simidjievski\textsuperscript{a,c,d}

\textsuperscript{a}Bias Variance Labs, d.o.o., Ljubljana, Slovenia
\textsuperscript{b}Faculty of Computer Science and Engineering, University Ss Cyril and Methodius, Skopje, N. Macedonia
\textsuperscript{c}Department of Knowledge Technologies, Jožef Stefan Institute, Ljubljana, Slovenia
\textsuperscript{d}Department of Computer Science and Technology, University of Cambridge, Cambridge, United Kingdom

Correspondence to: [ivica,ivan,dragi,nikola]@bvlabs.ai

Abstract

We present AiTLAS: Benchmark Arena – an open-source benchmark framework for evaluating state-of-the-art deep learning approaches for image classification in Earth Observation (EO). To this end, we present a comprehensive comparative analysis of more than 400 models derived from nine different state-of-the-art architectures, and compare them to a variety of multi-class and multi-label classification tasks from 22 datasets with different sizes and properties. In addition to models trained entirely on these datasets, we also benchmark models trained in the context of transfer learning, leveraging pre-trained model variants, as it is typically performed in practice. All presented approaches are general and can be easily extended to many other remote sensing image classification tasks not considered in this study. To ensure reproducibility and facilitate better usability and further developments, all of the experimental resources including the trained models, model configurations and processing details of the datasets (with their corresponding splits used for training and evaluating the models) are publicly available on the repository: https://github.com/biasvariancelabs/aitlas-arena.

1 Introduction

Recent trends in machine learning (ML) have ushered in a new era of image-data analyses, repeatedly achieving great performance across a variety of computer-vision tasks in different domains \cite{1,2}. Deep learning (DL) approaches have been at the forefront of these efforts – leveraging novel, modular and scalable deep neural network (DNN) architectures able to process large amounts of data. The inherent capabilities of these approaches also extend to various areas of remote sensing, in particular Earth Observation (EO), employed for analyzing different types of large-scale satellite data \cite{3}. Many of these contributions are instances of image-scene classification, such as land-use and/or land-cover (LULC) identification tasks, focusing on image-scene analyses, characterizations, and classifications of changes in the landscape, caused either by human activities or by the elements.

Historically, from the perspective of ML, many of these tasks have been addressed mostly through the paradigms of either pixel-level \cite{4,5} or object-level classification tasks \cite{6}. The former refers to classification tasks focusing on each pixel in the image, associating it with the appropriate semantic label. Such approaches typically do not scale well on high-resolution images, but more importantly, many times struggle to capture more high-level patterns in the image that can span over many pixels \cite{7}. The latter, object-level classification methods, focus on analyzing distinguishable and meaningful objects in the image (as a collection of pixels) rather than independent pixels. This, in general, allows for better scalability and performance, however, such approaches may struggle with images containing more diverse, and hardly-distinguishable objects, which prevail in most high-resolution remote-sensing data. Methods based on both pixel-level and object-level paradigms have shown decent performance and are still actively researched, mostly as instances of image segmentation and object detection tasks, respectively. More recently, however, methods based on a new paradigm of scene-level classification \cite{8,9} have shown significant performance improvements, focusing on learning semantically meaningful representations of more sophisticated patterns in an image by leveraging the capabilities of deep learning.
In this context, DL approaches have been successfully applied in various scenarios, by learning models from scratch or via transfer learning[10, 11], in a fully supervised or self-supervised setting [12, 13], exploiting the heterogeneity [14] and temporal properties [15] of the available data. As a result, this synergy of accurate DL approaches, on the one hand, and accessible high-resolution aerial/satellite imagery, on the other, has led to important contributions in various domains ranging from agriculture [16, 17, 18], ecology [19, 20], geology [21] and meteorology [22, 23, 11] to urban mapping/planning [24, 25, 26] and archaeology [27].

Nevertheless, most of these efforts typically focus on very narrow tasks, stemming from domain-specific and/or spatially-constrained datasets. As a result, models have been evaluated in different settings and under different conditions [28] – hardly reproducible and comparable. These persistent challenges, akin to a lack of standardized and consistent validation and evaluation of novel approaches, have also been identified by the community [29]. Citing the lack of available documentation on the design and evaluation of the employed machine learning approaches, the community highlights the urgent need for standardized benchmarks, that will not only enable proper and fair model comparison across datasets and similar tasks, but will also facilitate faster progress in designing better and more accurate modeling approaches.

Motivated by this, in this work, we introduce AiTLAS: Benchmark Arena – an open-source EO benchmark framework for evaluating state-of-the-art DL approaches for EO image classification. To this end, we present extensive comparative analyzes of models derived from nine different state-of-the-art architectures, comparing them on a variety of multi-class and multi-label classification tasks from 22 datasets with different sizes and properties. We benchmark models trained from scratch as well as in the context of transfer learning, leveraging pre-trained model variants as it is typically performed in practice. While in this work we mostly focus on EO-image classification tasks, such as LULC, all of the presented approaches are general and easily extendable to other remote-sensing image classification tasks. More importantly, to ensure reproducibility, facilitate better usability and further exploitation of the results from our work, we provide all of the experimental resources - freely available on our repository [1]. The repository includes the complete study details, such as the trained models, model parameters, train/evaluation configurations, measured performance scores, as well as the details on all of the datasets and their prepossessed versions (with the appropriate train/validation/test splits) used for training and evaluating the models.

To our knowledge, we present a unique systematic review and evaluation of different state-of-the-art DL methods in the context of EO image classification across many classification problems – benchmarked in the same conditions and using the same hardware. Related efforts, while relevant, have mostly focused on evaluating approaches on particular datasets [8, 28, 30, 31]; evaluating different aspects of method-design [32, 14] relevant to remote-sensing classification tasks; or providing a more general overview of the common tasks at hand [33, 34]. In particular, Cheng et al. [9] introduce a dataset and surveys several ML representation-learning approaches, commonly used for remote-sensing classification tasks, comparing their performance when combined with traditional convolutional neural network (CNN) architectures. Xia et al. [31] also introduce a benchmark dataset for aerial-image classification, providing a comparison similar to [8] of representation-learning approaches combined with three deep networks. Another, more recent, study [28], discusses and compares more recent DL approaches and surveys several applications on three different datasets. In particular, the authors showcase the performance of the different methods for each dataset, as reported in the respective papers. The underlying, persistent, conclusions from these studies show that model performances are associated with a respective dataset and study design, presenting difficulties for fair and general model comparisons. This is expected, but in our work, we seek to remedy this issue, by training and evaluating all models under the same conditions.

In this context, our work is related to the one of Zhai et al. [32], which present a large-scale study on more recent representation-learning approaches, benchmarking different aspects of method design and model parameters. However, Zhai et al. [32] consider a rather wide scope of different datasets with only a few relevant to remote-sensing and LULC classification, thereof. Neumann et al. [14] present a large-scale study on five different benchmark datasets, however, they aim at investigating the effect of transfer learning on these tasks. More specifically, they evaluate different variants of the same model architecture, trained under different circumstances, rather than comparing different model architectures. Another related study by Stewart et al. [35] reports on comparison of different variants of ResNets on EO-image classification tasks from four datasets. More recently, and arguably most related to our work in

[1] https://github.com/biasvariancelabs/aitlas-arena
terms of the number of evaluated models, Papoutsis et al. [30] present an extensive empirical evaluation of different state-of-the-art DL architectures suitable for EO-image classification tasks, specifically LULC tasks, focusing exclusively on the BigEarthNet [36] dataset. Namely, the authors benchmark different classes of model architectures across different criteria and introduce an efficient and well-performing model, specifically tailored for BigEarthNet.

In this work, we go beyond all the aforementioned studies, largely extending the scope under study in two directions: the number of model architectures (and model variants) being evaluated and datasets being considered. This results in evaluating more than 400 different models with varying architectures, designs, and learning paradigms across 22 datasets. We also provide essential study-design principles and model training details that will aid in more systematic and rigorous experiments in future work. The proposed AiTLAS: Benchmark Arena builds on the AiTLAS toolbox [37], a recent open-source library for exploratory and predictive analysis of satellite imagery pertaining to different remote-sensing tasks. AiTLAS implements a variety of methods and libraries for data handling, processing, and analysis, with PyTorch [38] as a backbone for constructing and learning DL models. By having all of the methods and datasets under the same umbrella, we provide the means for a fair, unbiased, and reproducible comparison of approaches across different criteria that include: overall model performance, data- and task-dependent model performance, model size, and learning efficiency as well as the effect of transfer learning via model pre-training.

The results, summarized in Figure 1, show that many of the current state-of-the-art architectures for vision tasks can lead to decent predictive performance when applied to EO image classification tasks. While training models from

---

[30] Papoutsis, et al. (2020)

[36] BigEarthNet

[37] AiTLAS

[38] PyTorch

---

https://aitlas.bvlabs.ai
scratch, leads to satisfactory performance in some cases, fine-tuning pre-trained models on each dataset leads to the best performance. We observed this in (almost) all cases, regardless of dataset properties, type of the classification tasks, or the model architecture. We found more considerable performance gains on tasks from smaller datasets, which, as expected, benefited more from the pre-training process than models trained on larger datasets. In terms of model architectures, our experiments showed that the Vision Transformer [39] and DenseNet [40] models, were generally able to achieve the best performance, with the latter requiring twice the training time. Throughout the paper, we further evidence and discuss these findings.

In summary, we make several contributions in this paper. In particular, we:

- We introduce AiTLAS:Benchmark Arena, an open-source benchmark framework that allows standardized evaluation of machine learning models for Earth Observation (EO) applications;
- We provide study-design principles for training and evaluating state-of-the-art deep learning models on various supervised EO image classification tasks from 22 datasets with different size and properties;
- We implement and benchmark more than 400 models stemming from 9 state-of-the-art architectures, including models trained from scratch as well as their pre-trained variants;
- We provide an open-source access to all of the experimental details, including trained models, dataset details, train/evaluation configurations and detailed performance scores.

2 Data & models

2.1 Data description

With the ever-growing availability of remote sensing data, there has been a significant effort by many research groups into preparing, labeling, and providing proper datasets that will support the development and evaluation of sophisticated machine learning methods. While there are many such datasets, both proprietary and publicly available, in this work we focus on the latter. We select 22 such datasets, with varying sizes (number of images), varying image types, image sizes, and formats, and more importantly, related to different classification tasks.

Namely, we consider datasets related to both multi-class and multi-label classification tasks, mainly addressing LULC applications. The objective of multi-class classification tasks is to predict one (and only one) class (label) from a set of predefined classes for each image in a dataset. Multi-label classification, on the other hand, refers to predicting multiple labels from a predefined set of labels for each image in the dataset [41] (eg. an image can belong to more than one class simultaneously). In our experimental study, we consider 15 multi-class and 7 multi-label datasets.

Tables 1 and 2 summarize the properties of the considered multi-class (MCC) and multi-label (MLC) classification datasets, respectively. The number of images across datasets is quite diverse, ranging from datasets with \(\sim 2\,K\) images to datasets with \(\sim 500\,K\) images. This also extends towards the number of labels per image, ranging from 2 to 60. Figure 1a visualizes the datasets with respect to their size-properties, with x-axis denoting the number of images (on a log-scale) and y-axis denoting the number of labels (with marker-size denoting the number of labels per image) for each of the different datasets. Most of the datasets are comprised of Aerial RGB images (with only few comprised of satellite multi-spectral data) that are different in the spatial resolution, size and format. Finally, we note the datasets that include predefined splits (for training, validation and testing) given by the original authors, and provide the splits for the ones that are missing as further discussed in Section 3.1. More detailed description of each dataset are given in Appendix C.

2.2 Model architectures

Current trends in EO image classification leverage the capabilities of DL architectures for computer vision, learning data representations that very often lead to superior predictive performance. We recognize that there are many different approaches, stemming from different model architectures and model variants. These can differ in various 'finer' details (e.g., number and width of layers, hyper-parameter values, and learning regimes), often developed for a particular task at hand. Rather than seeking a state-of-the-art performance for each individual EO problem/dataset, in
Table 1: Multi-class classification (MCC) datasets.

| Name                        | Image type | #Images | Image size   | Spatial resolution | #Labels | Predefined splits | Image format |
|-----------------------------|------------|---------|--------------|--------------------|---------|-------------------|--------------|
| UC Merced [9]               | Aerial RGB | 2100    | 256x256      | 0.3m               | 21      | No                | tif          |
| WHU-RS19 [42]               | Aerial RGB | 1005    | 600x600      | 0.5m               | 19      | No                | jpg          |
| AID [31]                    | Aerial RGB | 10000   | 600x600      | 0.3m - 8m          | 30      | No                | jpg          |
| Eurosat [43]                | Sat. Multispectral | 27000   | 64x64        | 10m                | 10      | No                | jpg/tif      |
| PatternNet [44]             | Aerial RGB | 30400   | 256x256      | 0.06m - 4.69m      | 38      | No                | jpg          |
| Reissc35 [45]               | Aerial RGB | 31500   | 256x256      | 0.2m - 30m         | 45      | No                | jpg          |
| RST-CB256 [46]              | Aerial RGB | 24747   | 256x256      | 0.3 - 3m           | 35      | No                | jpg/tif      |
| RSSCN7 [47]                 | Aerial RGB | 2800    | 400x400      | na                 | 7       | No                | jpg          |
| SATX [48]                   | RGB + NIR  | 405000  | 20x28        | 1m                 | 6       | Yes               | mat          |
| Sin-Whu [49]                | Aerial RGB | 2400    | 200x200      | 2m                 | 12      | No                | jpg          |
| CLRS [50]                   | Aerial RGB | 15000   | 256x256      | 0.26m - 8.85m      | 25      | No                | jpg          |
| RSOD46-WHU [51]             | Aerial RGB | 116893  | 256x256      | 0.5m - 2m          | 46      | Yes               | jpg          |
| Optimal 31 [52]             | Aerial RGB | 1860    | 256x256      | na                 | 31      | No                | jpg          |
| Brazilian Coffee Scenes (BSC) [53] | Aerial RGB | 2876    | 64x64        | 10m                | 2       | No                | jpg          |
| SO2Sat [54]                 | Sat. Multispectral | 400673  | 32x32        | 10m                | 17      | Yes               | h5           |

Table 2: Multi-label classification (MLC) datasets.

| Name                        | Image type | #Images | Image size   | Spatial resolution | #Labels | #Labels per image | Predefined splits | Image format |
|-----------------------------|------------|---------|--------------|--------------------|---------|-------------------|-------------------|--------------|
| UC Merced (MLC) [55]        | Aerial RGB | 2100    | 256x256      | 0.3m               | 17      | 3.3               | No                | tif          |
| MLRSNet [56]                | Aerial RGB | 109161  | 256x256      | 0.1m - 10m         | 60      | 5.0               | No                | jpg          |
| DFC15 [57]                  | Aerial RGB | 3342    | 600x600      | 0.05m              | 8       | 2.8               | Yes               | png          |
| BigEarthNet 19 [56]         | Sat. Multispectral | 519284  | 20x20        | 60m                | 19      | 2.9               | Yes               | tif, json    |
| BigEarthNet 43 [58]         | Sat. Multispectral | 519284  | 20x20        | 60m                | 43      | 3.0               | Yes               | tif, json    |
| AID (MLC) [59]              | Aerial RGB | 3000    | 600x600      | 0.5m - 8m          | 17      | 5.2               | Yes               | jpg          |
| PlanetUAS [60]              | Aerial RGB | 40479   | 256x256      | 3m                 | 17      | 2.9               | No                | jpg/tif      |

In this study, we are interested in providing a more general evaluation framework, and benchmarking models by analyzing their characteristics and unique properties through the lens of their predictive performance and learning efficiency across all datasets.

Therefore, our model-architecture (and parameter) choices are motivated by different architecture 'classes', such as the traditional convolutional architectures as well as the more recent attentional and mlp-based architectures. This also renders models with different sizes, training/inference time, different abilities in a transfer-learning setting, etc. More specifically, we investigate several architectures which have been traditionally used for EO image classification tasks such as: AlexNet [61], VGG16 [62], ResNet [63] and DenseNet [40]. Moreover, we investigate more recent architectures which include EfficientNet [64], ConvNeXt [65], Vision Transformer [39] and MLPMixer [66], that have shown state-of-the-art performance in various vision tasks. In the following, we provide a brief overview of these architectures, highlighting their properties in Table 3.
Table 3: Summary of the representative model architectures considered in this study.

| Model                  | Year | #Layers | #Parameters   | Based on |
|------------------------|------|---------|---------------|----------|
| AlexNet [61]           | 2012 | 8       | ~57.0M        | [67]     |
| VGG16 [62]             | 2014 | 16      | ~134.2M       | [67]     |
| ResNet50 [63]          | 2015 | 50      | ~23.5M        | [67]     |
| ResNet152 [63]         | 2015 | 152     | ~58.1M        | [67]     |
| DenseNet161 [40]       | 2017 | 161     | ~26.4M        | [67]     |
| EfficientNet B0 [64]   | 2019 | 237     | ~5.2M         | [67] version: B0 |
| Vision Transformer (ViT) [39] | 2020 | 12      | ~86.5M        | [68] version: b_16,224 |
| MLPMixer [66]          | 2021 | 12      | ~59.8M        | [68] version: b_16,224 |
| ConvNeXt [65]          | 2022 | 174     | ~28M          | [67] version: tiny |

The first class of models we consider, rely on convolutional architectures, which, in recent years, have driven many of the advances in computer vision. The architecture of convolutional neural networks (CNN) consists of many (hidden) layers stacked together, designed to process (image) data in the form of multiple arrays. Most typically, CNNs consist of a series of convolutional layers, which apply convolution operation (passing the data through a kernel/filter), forwarding the output to the next layer. This serves as a mechanism for constructing feature maps, with former layers typically learning low-level features (such as edges and contours), subsequently increasing the complexity of the learned features with deeper layers in the network. Convolutional layers are typically followed by pooling operations, which serve as a downsampling mechanism, by aggregating the feature maps through local non-linear operations. In turn, these feature maps are fed to fully-connected layers, which perform the ML task at hand – in this case classification. All the layers in a network employ an activation function. In practice, the intermediate, hidden, layers employ a non-linear function such as rectified linear unit (ReLU) or Gaussian Error Linear Unit (GELU) as common choices. The choice of activation function in the final layer relates to the tasks at hand, typically a sigmoid function in the case of classification. CNN architectures can also include different normalization and/or dropout operators embedded among the different layers, which can further improve the performance of the network.

CNN architectures have been widely researched, with models applied in many contexts of remote sensing, and in particular EO image classification [11, 69, 70, 30]. This includes AlexNet [61], a pioneering architecture that introduced and successfully demonstrated the utility of the aforementioned blueprint of CNNs for computer vision tasks. Namely, even though the architecture of AlexNet has a modest depth (relative to more recent architectures) consisting of eight layers, it remains an efficient baseline approach for a variety of EO tasks [8, 10], leading to decent performance, especially when pre-trained with large image datasets [71]. We also consider the more sophisticated VGG [62], which employs a deeper architecture inspired by AlexNet. VGG has shown great performance in a variety of vision tasks, including EO-image classification problems [72, 73, 44]. There are two variants of VGG in practice, VGG16 and VGG19; both of which extend AlexNet mainly by increasing the depth of the network with 13 and 16 convolutional layers, respectively. In this study, we evaluate the performance of the former VGG16. VGGs employ kernels with smaller sizes than the ones typically used in AlexNet, demonstrating that stacking multiple smaller kernels are able to better extract more complex representations, than one larger filter. While, in general, increasing the network depth by adding convolutional layers helps for learning more complex and more informative representations, thereof, in practice this can lead to several issues such as the vanishing gradient problem [74], which impairs the network training.

The Residual neural networks (ResNets) [63, 75] tackle this issue explicitly, by employing skip connections between blocks, therefore enabling better backprop gradient flow; better training, and, in general, better predictive performance. ResNet architecture follows a typically CNN blueprint: Stacking residual blocks (typically same-size CNN layers) and convolutional blocks (typically introducing a bottleneck via different-size CNN layers) together, followed by fully-connected layers. By employing skip connections, the ResNet architecture allows stacking multiple layers in a block, therefore training models with much deeper architectures. Here we investigate two such variants with varying depths, ResNet50 and ResNet152, with 50 and 152 layers, respectively. Since their inception, ResNets have been a very popular choice in practice. This also extends towards their utility for EO tasks, applied in the context of image classification and semantic segmentation [76, 77, 35, 30]. Dense Convolutional Networks (DenseNets) [40] are another well-performing architecture variant of ResNets, that has demonstrated state-of-the-art results on many clas-
sification tasks, including applications in the domain of remote sensing [78,79,80]. As the name suggests, DenseNets consist of dense blocks, where each layer is connected to every preceding layer, taking an additional (channel-wise) concatenated input of the feature maps learned in the former layers. This is different from the ResNets, which propagate (element-wise) aggregated feature maps through the network layers. The architecture of DenseNets encourages feature reuse throughout the network, leading to well-performing and more compact models (with fewer trainable parameters than a ResNet of equivalent size), albeit at the cost of increased memory during training.

EfficientNets [64] are a recent class of lightweight architecture that alleviate such common computational difficulties, typical when scaling deep architectures on larger and/or harder problems. Namely, rather than scaling the architecture in one aspect of increasing the depth (number of layers) [63], width (number of channels) [75] or (input image) resolution [81]: EfficientNets implement compound scaling, that uniformly scales the architecture along the three dimensions simultaneously. Compound scaling seeks an optimal balance between these 3 dimensions given the available resources and task at hand. In turn, such an approach leads to substantially smaller models (than CNN variants of equivalent performance), while retaining state-of-the-art predictive performance. In the context of EO tasks, (variants of) EfficientNets have been successfully applied in different settings [82, 83, 84, 80], and have also been thoroughly investigated in the context of multi-label image classification tasks from BigEarthNet [30]. While there are eight variants of EfficientNets, differing in the size and complexity of the architectures, here we investigate the performance of the baseline EfficientB0 architecture with 5.2M parameters, substantially lower than any of the other competing model architectures. Most recently, [65] introduce ConvNeXt, a novel class of convolutional architectures, that leverage various successful design decisions of many preceding architectures with a proven track record on vision tasks. Namely, ConvNeXt implement various techniques at different levels: from reconfiguring details like activation functions and normalization layers; redesigning more general architecture details that relate to residual and convolutional blocks; to modifications in the training strategies. This, in turn, leads to models with state-of-the-art performance, not only better than popular models from the same class of convolutional architectures but also better than the more recent attentional architectures, discussed next. While there are several variants of the ConvNeXt architecture that differ in their size, in this study we evaluate the performance of the smallest variant, namely ConvNeXt_tiny. Note that, to our knowledge, this is the first application of ConvNeXt on EO-image classification tasks.

We next take the notion of the recent success of the class of attentional network architectures and study the performance of Vision Transformers (ViT) [39] in the context of EO-image classification tasks. Namely, ViTs inspire by the popular NLP (natural language processing) Transformer architecture [85], leveraging an attention mechanism for vision tasks. Much like the original Transformer that seeks to learn implicit relationships in sequences of word-tokens via multi-head self-attention, ViTs focus on learning such relationships between image patches. Typically they employ a standard transformer encoder that takes a lower-dimensional (linear) representation of these image patches together with additional positional embedding from each, in turn, feeding the encoder output to a standard MLP head. ViTs have shown great performance on a variety of vision tasks, particularly when combined with pre-training from large datasets. This also includes several applications in remote sensing [86, 30, 87].

An attention mechanism, in the context of vision tasks, can be achieved differently (e.g., attending over channels and/or spatial information, etc.) and even employed with typically convolutional architectures [88, 89, 84]. One such alternative, that builds only on the classical MLP architecture, is the MLPMixer [65]. Namely, similar to a ViT, an MLPMixer operates on image patches; and contains two main components: A block of MLP layers for ‘mixing’ the spatial, patch-level, information on every channel; and a block of MLP layers for ‘mixing’ the channel-information of an image. This renders lightweight models, with performance on par with many much more sophisticated architectures, on a variety of vision problems, both more general as well as EO tasks [90, 30, 87]. We employ an MLPMixer with an input size of 224x224 and a patch resolution of 16x16 pixels.

From each of the nine highlighted architectures, we evaluate two model versions: trained entirely on a given dataset and fine-tuned models that have been pre-trained on a different image dataset. This results in comparing 18 models on each predictive task, which are available on our repository.

3 Experimental design

3.1 Training and evaluation protocol

To establish a unified evaluation framework and to support the reproducibility of the results, we generated train, validation, and test splits using 60%, 20%, and 20% fractions, respectively. All of the data splits were obtained using
stratified sampling. This technique ensures that the distribution of the target variable(s) among the different splits remains the same \[97\]. We performed such stratification for all datasets, except the ones which include predefined splits provided by the original authors. More specifically, for the BigEarthNet and SO2Sat datasets, we use the train, validation, and test splits as provided in \[58\] \[35\] \[54\]. Since SAT6, RSD46-WHU, DFC15 and AID datasets consist only with predefined train and test splits, we further take 20% from the train part for validation. Finally, note that the PlanetUAS dataset was part of a competition, and as such, the test data is not publicly available. Therefore, from the original train data, we generated train, validation, and test splits using the 60%, 20%, and 20% fractions, respectively.

All the models are trained using the train splits, with parameters selection/search performed using the validation splits. Additionally, to overcome over-fitting, we perform early stopping on the validation split for each dataset, the best checkpoint/model found (with the lowest validation loss) is saved and then applied on the original test split to obtain the final assessment of the predictive performance. All the train/validation/test splits for each dataset are available in our repository.

Note that, during training we perform data augmentation for each dataset, by first resizing all the images to 256x256, followed by selecting a random crop of size 224x224. We then perform random horizontal and/or vertical flips. During evaluation/testing, we first resize the images to 256x256, followed by a central crop of size 224x224. We believe that this, in general, helps our models to generalize better on a given dataset. Also note that, in the study we are using only RGB images. In the case of the multispectral datasets (Eurosat, SO2Sat and BigEarthNet) we computed the images in the RGB color space by combining the red (B04), green (B03) and blue (B02) bands. For the Brazilian Coffee Scenes dataset we use images in green, red and near-infrared spectral bands, since these are most useful and representative for distinguishing vegetation areas as suggested by the authors.

Since we train models on 22 datasets, with a different number of classes, different training samples, and class-distributions (as shown in Tables [1] and [2]), we perform a hyperparameters search for each model and each dataset, to account for these variations. Namely, we search over different values of learning rate: 0.01, 0.001, and 0.0001. We use ReduceLROnPlateau as a learning scheduler which reduces the learning rate when the loss has stopped improving. Models often benefit from reducing the learning rate by a factor once learning stagnates. This scheduler tracks the values of the loss measure, reducing the learning rate by a given factor when there is no improvement for a certain number of epochs (denoted as ‘patience’). In our experiments, we track the value of the validation loss, with patience set to 5 and a reduction factor set to 0.1 (the new learning rate will be $lr \times factor$). Additionally, we also apply early stop criteria if no improvements in the validation loss are observed over 10 epochs. Finally, we use fixed values for some of the hyperparameters such as batch size which was set to 128. For optimization, we use RAdam optimizer \[92\] without weight decay. RAdam is a variant of the standard Adam \[93\], which employs a mechanism that rectifies the variance from the adaptive learning rate. This, in turn, allows for an automated warm-up, tailored to the particular dataset at hand.

For each model architecture, we train two variants: (i) models trained entirely on a given dataset and (2) fine-tuned models previously trained on a different (and larger) image dataset. The former, which we refer to as models ”trained from scratch”, refer to models trained only on the dataset at hand and initialized with random weights in the training procedure. The latter leverages transfer learning via model pre-training. In the next section, we provide further details on how we use and fine-tune these pre-trained models. All models were trained on NVIDIA A100-PCIe GPUs with 40 GB of memory running CUDA version 11.5. We used the AiTLAS toolbox \[8\] to configure and run the experiments. All configuration files for each experiment are also available in our repository along with the trained models. We believe this provides a standardized evaluation framework for EO image classification tasks.

### 3.2 Transfer learning strategy

In this study, we take the notion of transfer learning as a strategy that can lead to performance improvements of vision models on image classification tasks \[32\], in particular in EO domains \[94\]. In our problem setting, transfer learning allows downstream, task-specific, models to leverage learned representations from model architectures that have been pre-trained on much larger image datasets. This, in turn, often leads to (fine-tuned) models with much better generalization power using fewer training data (and training iterations), which is especially useful for tasks that stem from smaller datasets. Often, in the case of DL models for image classification, there are two strategies for

---

\[8\] https://github.com/biasvariancelabs/aitlas
performing transfer learning that is being used: (1) fine-tuning the model weights only for the last, classifier layer or (2) fine-tuning the model weights of all layers in the network. The former approach retains the values of all but the last layer’s weights of the model from the pre-training, keeping them ‘frozen’ during fine-tuning. The latter, on the other hand, allows the weights to change throughout the entire network during fine-tuning.

In our experiments, we implement the latter approach and fine-tune each network entirely for each specific dataset. Note that, the choice of the pre-training dataset, and its relation to the domain of the downstream task, may also influence the predictive performance of the fine-tuned model \cite{14}. However, since here we are interested in a more general evaluation that takes into account 22 different datasets, we take a standard approach, using pre-trained model architectures on the ImageNet-1K \cite{61} dataset (version V1). More specifically, we use implementations from the PyTorch vision catalog \cite{67} for most models, except ViT and MLPMixer for which we base the implementations on \cite{68}. In turn, we fine-tune the entire parameter set. In practice, this can lead to better generalization and higher accuracy \cite{95, 96}, thereof.

3.3 Evaluation measures

Assessing the performance of machine learning models is a non-trivial task, specific to the learning task at hand and dependent on the general objectives of the model being learned. Different evaluation measures capture different aspects of the models’ behavior and their predictive power on novel examples, not used for training. Since the goal of this study analyzing the predictive performance of different DL models across different datasets on multi-class and multi-label classification tasks – we examine the experimental work through the lens of evaluation measures most suitable for these two tasks.

More specifically, for multi-class classification tasks, we report the following measures: Accuracy, Macro Precision, Weighted Precision, Macro Recall, Weighted Recall, Macro F1 score, and Weighted F1 score. Note that, since for these tasks the micro-averaged measures such as F1 score, Micro Precision, and Micro Recall have values equal to accuracy, we do not report them. Note that, for image classification tasks is customary to report top-n accuracy (typically n is set to 1 or 5) \cite{61}, where the score is computed based on the correct label being among the n most probable labels outputted by the model. In this paper, we report top-1 accuracy, denoted as ’Accuracy’ unless stated otherwise. For multi-label classification tasks, we report Micro Precision, Macro Precision, Weighted Precision, Micro Recall, Macro Recall, Weighted Recall, Macro F1 score, Micro F1 score, Weighted F1 score, and mean average precision (mAP). Since all measures, but mAP, require setting a threshold on the predictions, we choose a threshold value of 0.5 for all models and settings. Further details and definitions of the evaluation measures used in the study are given in Appendix A. We also provide additional performance details in terms of confusion matrices of each experiment, allowing for a more detailed (per class/label) analysis of model performance (reported in Appendix C).

4 Results

We present the results of a large-scale study in which we compare different DL models for multi-class (MCC) and multi-label classification (MLC) tasks from 22 datasets. To this end, we evaluate models from 9 architectures: AlexNet, VGG16, ResNet50, ResNet152, DenseNet162, EfficientNetB0, ConvNeXt, Vision Transformer (ViT), and MLPMixer. For each model architecture, we evaluate two variants: (i) models trained from scratch and (2) fine-tuned models previously trained on the ImageNet-1K dataset. In the reminder, we outline and discuss:

1. The performance of models trained from scratch with respect to the two types of tasks
2. The benefits of pre-training models of different architectures, and their effect in view of the dataset properties
3. The ‘performance vs. cost of model training’ trade-off between the considered modeling approaches

Detailed results of each experiment, with additional performance measures, are presented in Appendices B and C.

4.1 Training models from scratch

We begin by analyzing the performance of models trained from scratch, i.e., models initialized with random weights during training. Tables 4 and 5 present these results for the MCC and MLC tasks, respectively. Table 4 reports the accuracy (%) of the models learned from scratch for the 15 MCC datasets. It also reports the rank of the models, estimated based on their performance and averaged over the 15 datasets. In general, the results show
Table 4: Accuracy (%) of models trained from scratch on multi-class classification datasets. Bold indicates best performing model for a given dataset. We report the average rank of a model (lower is better), ranked based on the performance and averaged across the 15 datasets.

| Dataset | Model       | AlexNet | VGG16 | ResNet50 | ResNet152 | DenseNet161 | EfficientNetB0 | ViT | MLP-Mixer | ConvNeXt |
|---------|-------------|---------|-------|----------|-----------|-------------|---------------|-----|-----------|----------|
| WHU-RS19|             | 66.169  | 68.657| 79.602   | 80.597    | 80.597      | 75.622        | 74.627 | 69.652    | 72.139   |
| UC Merced|             | 81.190  | 78.571| 85.238   | 84.048    | 86.190      | 84.286        | 83.095 | 82.381    | 84.286   |
| SIRI-WHU|             | 83.750  | 84.792| 88.958   | 88.750    | 86.667      | 86.042        | 86.250 | 82.500    | 84.167   |
| RSCCN7  |             | 85.536  | 81.607| 82.679   | 82.679    | 89.321      | 83.929        | 86.071 | 83.214    | 83.036   |
| BCS     |             | 89.410  | 89.410| 88.542   | 89.799    | 85.417      | 87.847        | 85.845 | 86.285    | 84.375   |
| AI.D    |             | 95.108  | 56.720| 67.204   | 62.903    | 71.237      | 68.548        | 62.634 | 59.140    | 58.871   |
| UC Merced|             | 95.108  | 56.720| 67.204   | 62.903    | 71.237      | 68.548        | 62.634 | 59.140    | 58.871   |
| SIRI-WHU|             | 95.108  | 56.720| 67.204   | 62.903    | 71.237      | 68.548        | 62.634 | 59.140    | 58.871   |
| RSCCN7  |             | 95.108  | 56.720| 67.204   | 62.903    | 71.237      | 68.548        | 62.634 | 59.140    | 58.871   |
| BCS     |             | 95.108  | 56.720| 67.204   | 62.903    | 71.237      | 68.548        | 62.634 | 59.140    | 58.871   |

that convolutional architectures, especially the DenseNet, the EfficientNet, and the two ResNets, consistently perform well. This is even more evident for datasets such as PatternNet, RSI-CB256, and SAT6, where the DenseNet (and the other top-ranked models) lead to near-perfect results (accuracy greater than 99%). More specifically, DenseNet is the best performing model in more than half of the tasks (9 out of 15) and achieves accuracy greater than 90% in 8 of the tasks. For smaller datasets, such as WHU-RS19, Optimal31, UC Merced, SIRI-WHU, RSCCN7 and CLRS, these performances are generally much lower. However, the most challenging task is So2Sat, where EfficientNetB0 achieves the highest accuracy of 65.17%, while many of the models trail behind with performance of 55-60%. While these results are consistent with previous findings [35], this is a clear sign of over-fitting, influenced by the quality and size of the images in the dataset. The ViT, MLP-Mixer, and the latest ConvNeXt models are ranked in the bottom 4 (only better than AlexNet). Their performance is lower, but still practically competitive with the leading DenseNet for many datasets.

The general conclusions outlined above also apply to MLC tasks. Table 5 reports on the mean average precision (%) of the models learned from scratch across the 7 MLC datasets. The DenseNets rank the best (they provide the best result for 2 out of 7 tasks). However, unlike the MCC tasks, the performance difference to other convolutional models (i.e., the two ResNets and the EfficientNetB0) is much smaller. Moreover, models were only able to achieve high performance (above 90%) on two tasks, DFC15 and MLRSNet, with DenseNet and ResNet50 achieving the best results. However, this is an expected result, as MLC tasks are generally more challenging than MCC tasks. This can be attributed to two things in particular: First, in many cases, the semantic labels can be very similar, which makes many of the models to struggle. Second, MLC datasets tend to have a greater class/label imbalance, in contrast to the more uniform class distribution in MCC datasets. In this context, the most challenging MLC tasks overall are PlanetUAS and BigEarthNet43, where the best performing models (the two ResNets) achieve mAP od 64.96% and 64.34%.

Table 5: Mean average precision (mAP %) of models trained from scratch on multi-label classification datasets. Bold indicates best performing model for a given dataset. We report the average rank of a model (lower is better), ranked based on the performance and averaged across the 7 datasets.

| Dataset | Model       | AlexNet | VGG16 | ResNet50 | ResNet152 | DenseNet161 | EfficientNetB0 | ViT | MLP-Mixer | ConvNeXt |
|---------|-------------|---------|-------|----------|-----------|-------------|---------------|-----|-----------|----------|
| AID     |             | 68.780  | 69.206| 70.867   | 69.646    | 71.218      | 72.889        | 65.581 | 64.235    | 65.959   |
| UC Merced|             | 75.516  | 76.797| 79.687   | 73.657    | 85.414      | 79.874        | 87.142 | 75.677    | 72.271   |
| DFC15   |             | 88.099  | 89.871| 94.675   | 94.188    | 95.848      | 93.973        | 94.164 | 91.663    | 89.564   |
| PlanetUAS|             | 60.282  | 60.682| 64.192   | 64.956    | 64.738      | 63.868        | 59.414 | 58.550    | 61.277   |
| MLRSNet |             | 90.850  | 91.524| 95.259   | 93.982    | 94.745      | 94.395        | 87.250 | 85.281    | 90.710   |
| BigEarthNet19 |           | 75.711  | 77.989| 78.726   | 78.519    | 79.725      | 79.211        | 75.871 | 77.005    | 77.909   |
| BigEarthNet43 |             | 56.082  | 58.969| 64.343   | 62.736    | 63.390      | 62.173        | 57.410 | 58.772    | 60.472   |

Avg. Rank | 7.57  | 5.57  | 2.43  | 3.86  | 1.71  | 3.14  | 6.43  | 7.57  | 6.71  |
Figure 2: Comparison of average performance improvement of models from the 9 different architectures when (red) trained from scratch and (blue) employing pre-trained models across (left) MCC and (right) MLC datasets. Error bars indicate confidence interval of 68%. Models are ordered (worst to best) based on the average performance-rank of the pre-trained variants across all of the 22 datasets. Model pre-training leads to substantial performance improvements.

4.2 The benefits of using pre-trained models

While training models from scratch leads to decent performance (in general), in practice, leveraging pre-trained models can lead to significant performance improvements on image classification tasks [32], and in particular on tasks in EO domains [94].

This is also the general conclusion from our analysis. When using models that were first pre-trained on ImageNet-1K and then fine-tuned on the specific datasets, we found that: Pre-trained models lead to substantial performance improvements compared to models trained from scratch. Figure 2 illustrates this performance-improvement trend for different models across the 22 MCC and MLC tasks. We find that pre-training significantly improves the performance of all the evaluated models. Notably, we observe that ViT models benefit the most from pre-training, followed by MLPMixer and ConvNeXt models. This is a significant improvement over the models trained from scratch. These results, especially for the case of ViT, are consistent with previously reported findings [39, 30].

Tables 5 and 7 present the detailed results of these analyses for MCC and MLC tasks, respectively. Similarly to the analyses in the previous section, we report model accuracy (%) in the case of MCC tasks and mean average precision (%) in the case of MLC tasks. We also report the rank of the models, averaged over the respective datasets. Considering MCC tasks (Table 6), the models achieve very good performance (accuracy over 90%) on 14 (out of 15) tasks, with (almost) perfect results in five of those. Notably, we observed significant performance improvements, compared to model-counterparts trained from scratch, on smaller datasets (such as WHU-RS19, Optimal31, UC Merced, SIRI-WHU, RSSCN7, and CLRS), reaffirming the utility of transfer learning from large datasets in the context of EO image classification tasks. In terms of model architectures, DenseNet ranks at the top among the model architectures. However, in contrast to our previous analysis of models trained from scratch, here the ranking is not the clearest indicator of overall performance: In many cases, the performance of ViTs is practically identical to DenseNets, achieving best performance in 6 out of 15 cases. This is further highlighted for the case of the challenging So2SAT task, where the ViT model leads to an accuracy of 68.55%, in contrast to DenseNet with an accuracy of 65.75%. In this specific case, we observed that over-fitting remains an issue, even for pre-trained models. Our inspection of the train/vali-
Table 6: Accuracy (%) of models pre-trained on ImageNet-1K on multi-class classification datasets. Bold indicates best performing model for a given dataset. We report the average rank of a model (lower is better), ranked based on the performance and averaged across the 15 datasets.

| Dataset    | AlexNet | VGG16 | ResNet50 | ResNet152 | DenseNet161 | EfficientNetB0 | ViT | MLP-Mixer | ConvNeXt |
|------------|---------|-------|----------|-----------|-------------|----------------|-----|-----------|----------|
| WHU-RS19   | 93.532  | 99.005| 99.502   | 98.010    | 100         | 99.502         | 99.502| 98.507    | 99.005   |
| Optimal31  | 80.914  | 88.710| 92.204   | 92.473    | 94.355      | 91.667         | 94.042| 92.742    | 93.011   |
| UC merced  | 92.143  | 95.476| 98.571   | 98.810    | 98.910      | 98.571         | 98.910| 98.333    | 97.857   |
| SIRI-WHU   | 92.892  | 93.958| 95.003   | 95.003    | 95.003      | 95.003         | 95.003| 95.003    | 95.003   |
| BCs        | 89.583  | 90.972| 92.014   | 92.361    | 92.708      | 91.319         | 92.014| 93.056    | 91.493   |
| AID        | 92.900  | 96.100| 96.550   | 97.200    | 97.750      | 97.200         | 97.750| 96.700    | 96.950   |
| CLRS       | 84.100  | 89.900| 91.567   | 91.900    | 92.200      | 90.500         | 91.900| 91.100    | 91.100   |
| RSI-CB256  | 99.354  | 99.051| 99.677   | 99.859    | 99.737      | 99.717         | 99.758| 96.657    | 96.596   |
| Eurosat    | 97.574  | 98.148| 98.833   | 99.000    | 98.889      | 98.907         | 98.722| 98.741    | 98.778   |
| PatternNet | 99.161  | 99.424| 99.737   | 99.737    | 99.539      | 99.655         | 99.704| 99.704    | 99.704   |
| RESISC45   | 90.492  | 93.905| 96.460   | 96.506    | 94.873      | 97.079         | 97.952| 98.270    | 98.270   |
| BigEarthNet19 | 90.646 | 92.422| 94.158   | 94.404    | 94.597      | 93.387         | 93.438| 93.627    | 93.627   |
| So2Sat     | 59.203  | 63.375| 61.903   | 65.169    | 65.756      | 65.801         | 68.551| 67.066    | 66.169   |
| SAT6       | 99.980  | 99.993| 100      | 100       | 100         | 99.988         | 99.995| 99.995    | 99.999   |

*Avg. Rank* | 8.93 | 7.67 | 4.07 | 3.27 | 2.60 | 5.13 | 2.73 | 4.67 | 4.80 |

Table 7: Mean average precision (mAP %) of models pre-trained on ImageNet-1K on multi-label classification datasets. Bold indicates best performing model for a given dataset. We report the average rank of a model (lower is better), ranked based on the performance and averaged across the 7 datasets.

| Dataset    | AlexNet | VGG16 | ResNet50 | ResNet152 | DenseNet161 | EfficientNetB0 | ViT | MLP-Mixer | ConvNeXt |
|------------|---------|-------|----------|-----------|-------------|----------------|-----|-----------|----------|
| AID        | 75.906  | 79.893| 80.758   | 80.942    | 81.708      | 78.002         | 81.539| 80.879    | 82.298   |
| UC Merced  | 92.638  | 92.848| 95.665   | 96.010    | 96.056      | 95.384         | 96.499| 96.346    | 96.431   |
| DPC15      | 94.057  | 96.566| 97.678   | 97.061    | 97.526      | 96.787         | 97.617| 97.941    | 97.994   |
| Planet UAS | 64.048  | 65.584| 65.528   | 64.825    | 66.339      | 64.157         | 66.804| 67.330    | 66.447   |
| MLRSNet    | 93.399  | 94.633| 96.272   | 96.432    | 96.306      | 95.391         | 96.410| 95.049    | 95.807   |
| BigEarthNet19 | 77.147 | 78.418| 79.983   | 79.776    | 79.686      | 80.221         | 77.310| 77.288    | 77.147   |
| BigEarthNet43 | 58.554 | 61.205| 66.256   | 64.066    | 64.229      | 64.589         | 58.997| 59.648    | 66.166   |

*Avg. Rank* | 8.86 | 6.71 | 4.00 | 4.29 | 3.86 | 5.13 | 3.71 | 4.57 | 3.14 |

dation loss trends showed that, with training errors decreasing, validation errors increased almost instantly (after 1-2 epochs) regardless of the model at hand. This fortunately is not the case for the remaining tasks, where we observed a decent overall performance. The models, especially the top-half ranked, achieved stable and mostly comparable performance.

The benefits of pre-training models extend also to MLC tasks (Table 7), although, the performance gains, compared to model counterparts trained from scratch, are not as large as for MCC tasks. In particular, we found that pre-training can lead to small improvements (1%-2%) on challenging tasks such as PlanetUAS and BigEarthNet43 (mAP of 67.33% and 66.26% achieved by Resnet50 and EfficientNetB0, respectively); to more considerable improvements (up to 10%) in some cases such as AID and UCMerced (mAP of 82.29% and 96.7% obtained by ConvNeXt and ViT, respectively). We also found that the ConvNeXt models benefited the most from pre-training - they ranked the best overall and achieved best performance on 2 (out of the 7) tasks. They are followed by ViT and DenseNet, which perform comparably on most tasks.

### 4.3 The 'performance vs. training cost' trade-off

Having established the baseline performance of our evaluated models and demonstrated the clear benefits of using pre-trained models, we focus here on another line of comparison - the cost of model training. Recall from Section 2.2, and in particular Table 3, that we study model architectures that differ significantly in the number of learnable parameters. Typically, larger models require, not only more computing resources, but also much more training time than smaller models. In our experimental setup, we train all models on the same computing infrastructure, under the same conditions, and with the same training/evaluation setup (in terms of hyperparameters and data partitioning). Therefore we can directly analyze the 'performance vs. training cost' (in terms of total training time) trade-off, for each model variant from the 9 different architectures (either pre-trained or trained from scratch), across the 22 datasets. This way,
we can explicitly measure the benefits of each model and make further modeling decisions based on the performance of the models and the ‘cost’ of training them.

Figure 3 illustrates the trade-off for the top-3 performing model architectures, overall: DenseNet, ViT, and ResNet152. More specifically, it shows all trained models of these 3 architectures, including pre-trained and trained from scratch variants, applied on MCC and MLC tasks. While the performance analyzes showed many similarities between these models, in terms of training times, the difference between them is much more obvious. In general, ViT requires less training time than both DenseNets and ResNet152, even though DenseNets have near a quarter of the number of parameters of ViT. This difference is even more pronounced for pre-trained models. Here, ViT models usually lead to comparable/better predictive performance than DenseNet models, requiring (in some cases) up to half the number of parameters of ViT. This difference is even more pronounced for pre-trained models. Here, ViT models require less training time than both DenseNets and ResNet152, archiving comparable performance esp. with pre-trained model variants.

Figure 3: **Performance vs. total training time** comparison of the top-3 overall ranked model architectures, (left) when trained from scratch and (right) when employing pre-trained models on (top) MCC and (bottom) MLC tasks. Performance is reported as accuracy (%) and mean average precision (mAP %) for MCC and MLC tasks, respectively. Note that log scale of the total training time (seconds). The models are denoted with different colors and markers, with the size of the marker denoting *model momentum*: The Ratio between the model size (in terms of number of parameters) and average time per training epoch taken by the model. Generally, ViTs are faster to train than DenseNet and ResNet152, archiving comparable performance esp. with pre-trained model variants.
to training them from scratch (see Appendix). This, in general, is an expected behavior, which nevertheless can help designing and planning DL pipelines for similar EO applications. Note, however, that we do not take into account the time needed to pre-train each model, which will certainly increase the total training times significantly.

5 Conclusions

We present a systematic review and evaluation of several modern DL architectures applied in the context of Earth Observation. More specifically, we introduce AiTLAS: Benchmark Arena – an open-source EO benchmark framework and demonstrate its utility with a comprehensive comparative analysis of models from nine different state-of-the-art DL architectures, comparing them to a variety of multi-class and multi-label image classification tasks from 22 datasets. We compare models trained from scratch as well as pre-trained models under the same conditions and with the same hardware. We evaluate more than 400 different models with different architectures and learning paradigms across tasks from 22 datasets with different sizes and properties. To our knowledge, the evaluation of these different setups (in terms of machine learning tasks, model setups, model architectures, and datasets) makes this the largest and most comprehensive empirical studies of deep learning methods applied to EO datasets to date. All of the important details about the study design as well as the results and trained models are freely available. This will contribute to more systematic and rigorous experiments in future work and, more importantly, will enable better usability and faster development of novel approaches. We believe that both this study and the associated repository can serve as a starting point and a guiding design principle for evaluating and documenting machine learning approaches in the different domains of EO. More importantly, we hope that with further involvement from the community, AiTLAS: Benchmark Arena can become a reference point for further studies in this highly active research area.

More broadly, we believe that this work, along with the resources developed, will have a strong impact on the AI and EO research communities. First, such ready-to-use resources containing trained models, clear experimental designs, and detailed results will facilitate better adoption of sophisticated modeling approaches in the EO community - bringing the EO and AI communities closer together. Second, it demonstrates the FAIRification process of AI4EO resources, i.e., making resources adhere to the FAIR principles (Findable, Accessible, Interoperable, and Reusable). Finally, it contributes to the ‘Green AI’ initiative by saving additional computational overhead. Since all experimental details, especially the trained models, are publicly available – other experts and researchers can compare, reproduce, and reuse these resources - reducing the need to repeatedly run unnecessary experiments.
Reproducibility

All the necessary details, in terms of the trained models, model parameters and implementations as well as details on all of the used datasets and their preprocessed versions are available at https://github.com/biasvariancelabs/aitlas-arena. All the models were trained/fine-tuned on NVIDIA A100-PCIE-40GB GPUs, running CUDA Version 11.5 (www.nvidia.com/en-gb/data-center/a100/). Note that, we do not host the datasets. To obtain them, please refer to each of the respective studies (referenced in Tables 1 and 2) or follow the links provided in our repository. The study was performed using the AiTLAS Toolbox [37], a library for exploratory and predictive analysis of satellite imagery pertaining to different remote-sensing tasks, available at https://aitlas.bvlabs.ai.

Acknowledgements

We acknowledge the support of the European Space Agency ESA through the activity AiTLAS - AI4EO rapid prototyping environment. We thank Sofija Dimitrovska for her thoughtful feedback.

References

[1] A. Khan, A. Sohail, U. Zahoora, A. S. Qureshi, A survey of the recent architectures of deep convolutional neural networks, Artificial Intelligence Review 53 (2020) 5455–5516.
[2] S. Khan, M. Naseer, M. Hayat, S. W. Zamir, F. S. Khan, M. Shah, Transformers in vision: A survey, ACM Comput. Surv. (2021).
[3] J. E. Ball, D. T. Anderson, C. S. Chan Sr., Comprehensive survey of deep learning in remote sensing: theories, tools, and challenges for the community, Journal of Applied Remote Sensing 11 (2017) 1 – 54.
[4] D. Tuia, F. Ratle, F. Pacifici, M. F. Kanevski, W. J. Emery, Active learning methods for remote sensing image classification, IEEE Transactions on Geoscience and Remote Sensing 47 (2009) 2218–2232. doi:10.1109/TGRS.2008.2010404
[5] M. Li, S. Zang, B. Zhang, S. Li, C. Wu, A review of remote sensing image classification techniques: the role of spatio-contextual information, European Journal of Remote Sensing 47 (2014) 389–411. doi:10.5721/EuJRSE20144723
[6] T. Blaschke, Object based image analysis for remote sensing, Isprs Journal of Photogrammetry and Remote Sensing 65 (2010) 2–16.
[7] T. Blaschke, J. Strobl, What's wrong with pixels? some recent developments interfacing remote sensing and gis, 2001.
[8] G. Cheng, J. Han, X. Lu, Remote sensing image scene classification: Benchmark and state of the art, Proceedings of the IEEE 105 (2017) 1865–1883. doi:10.1109/JPROC.2017.2675998
[9] Y. Yang, S. Newsam, Bag-of-visual-words and spatial extensions for land-use classification, in: Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, Association for Computing Machinery, 2010, p. 270–279.
[10] D. Marmanis, M. Datu, T. Esch, U. Still, Deep learning earth observation classification using imagenet pretrained networks. IEEE Geoscience and Remote Sensing Letters 13 (2016) 105–109. doi:10.1109/LGRS.2015.2499239
[11] H. Chen, V. Chandrasekar, H. Tan, R. Cicelli, Rainfall estimation from ground radar and trmm precipitation radar using hybrid deep neural networks, Geophysical Research Letters 46 (2019) 10669–10678. doi:https://doi.org/10.1029/2019GL084771
[12] J. Castillo-Navarro, B. Le Saux, A. Boulic, S. Lefèvre, Energy-based models in earth observation: From generation to semisupervised learning, IEEE Transactions on Geoscience and Remote Sensing 60 (2022) 1–11. doi:10.1109/TGRS.2021.3126428
[13] Y. Wang, C. M. Albrecht, N. A. A. Braham, L. Mou, X. Z. Zhu, Self-supervised learning in remote sensing: A review (2022). doi:10.48550/ARXIV.2206.13188
[14] M. Neumann, A. S. Pinto, X. Zhai, N. Houlsby, Training general representations for remote sensing using in-domain knowledge, in: IGARSS 2020 – 2020 IEEE International Geoscience and Remote Sensing Symposium, 2020, pp. 6730–6733. doi:10.1109/IGARSS59984.2020.934591
[15] D. Jenco, R. Gaetano, C. Dupuquier, P. Maurel, Land cover classification via multitemporal spatial data by deep recurrent neural networks, IEEE Geoscience and Remote Sensing Letters 14 (2017) 1685–1689. doi:10.1109/LGRS.2017.2728698
[16] A. Chilingaryan, S. Sukkarieh, B. Whelan, Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review, Computers and Electronics in Agriculture 151 (2018) 61–69. doi:https://doi.org/10.1016/j.compag.2018.05.012
[17] Crop yield forecasting on the canadian prairies by remotely sensed vegetation indices and machine learning methods, Agricultural and Forest Meteorology 218-219 (2016) 74–84. doi:https://doi.org/10.1016/j.agrimet.2015.11.003
[18] J. Xu, J. Yang, X. Xiong, H. Li, J. Huang, K. Ting, Y. Ying, T. Lin, Towards interpreting multi-temporal deep learning models in crop mapping, Remote Sensing of Environment 264 (2021) 112599. doi:https://doi.org/10.1016/j.rse.2021.112599
[19] B. Ayyan, C. Kwan, B. Badavari, L. Kwan, Y. Lu, D. Perez, J. Li, D. Skarlatos, M. Vlachos, Vegetation detection using deep learning and conventional methods, Remote Sensing 12 (2020). doi:10.3390/rs12152502
[20] Y.-H. Jo, D. W. Kim, H. Kim, Chlorophyll concentration derived from microwave remote sensing measurements using artificial neural network algorithm, Journal of Marine Science and Technology 26 (2018). doi:10.6119/JMST.2018.02_(1).0004
[21] H. Shirmard, E. Farahbakhsh, R. D. Müller, R. Chandra, A review of machine learning in processing remote sensing data for mineral exploration, Remote Sensing of Environment 268 (2022) 112750. doi:https://doi.org/10.1016/j.rse.2021.112750
[51] Y. Long, Y. Gong, Z. Xiao, Q. Liu, Accurate object localization in remote sensing images based on convolutional neural networks, IEEE Transactions on Geoscience and Remote Sensing 55 (2017) 2486–2498.

[52] Q. Wang, S. Liu, J. Chaussoot, X. Li, Scene classification with recurrent attention of vhr remote sensing images, IEEE Transactions on Geoscience and Remote Sensing 57 (2019) 1155–1167.

[53] O. A. Penatti, K. Nogueira, J. A. Dos Santos, Do deep features generalize from everyday objects to remote sensing and aerial scenes domains?, in: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, 2015, pp. 44–51.

[54] X. X. Zhu, J. Hu, C. Qiu, Y. Shi, J. Kang, L. Mou, H. Bagheri, M. Haberle, Y. Hua, R. Huang, L. Hughes, H. Li, Y. Sun, G. Zhang, S. Han, M. Schmitt, Y. Wang, S0sat lcz42: A benchmark data set for the classification of global local climate zones [software and data sets], IEEE Geoscience and Remote Sensing Magazine 8 (2020) 76–89.

[55] B. Chaudhuri, B. Demir, S. Chaudhuri, L. Bruzzone, Multilabel remote sensing image retrieval using a semisupervised graph-theoretic method, IEEE Transactions on Geoscience and Remote Sensing 56 (2018) 1144–1158.

[56] X. Qi, P. Zhu, Y. Wang, L. Zhang, J. Peng, M. Wu, J. Chen, X. Zhao, N. Zang, P. T. Mathiopoulou, Misrnet: A multi-label high spatial resolution remote sensing dataset for semantic scene understanding, ISPRS Journal of Photogrammetry and Remote Sensing 169 (2020) 337–350.

[57] Y. Hua, L. Mou, X. X. Zhu, Recursively exploring class-wise attention in a hybrid convolutional and bidirectional LSTM network for multi-label aerial image classification, ISPRS Journal of Photogrammetry and Remote Sensing 149 (2019) 188–199.

[58] G. Sumbul, M. Charfuelan, B. Demir, V. Markl, Bigearthnet: A large-scale benchmark archive for remote sensing image understanding, IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium (2019) 5901–5904.

[59] Y. Hua, L. Mou, X. X. Zhu, Relation network for multilabel aerial image classification, IEEE Transactions on Geoscience and Remote Sensing 58 (2020) 4558–4572.

[60] Kaggle, Planet: Understanding the amazon from space, 2022. URL: https://www.kaggle.com/competitions/planet-understanding-the-amazon-from-space last accessed 21 May 2022.

[61] A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet classification with deep convolutional neural networks, Advances in neural information processing systems 25 (2012) 1097–1105.

[62] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, arXiv preprint arXiv:1409.1556 (2014).

[63] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.

[64] M. Tan, Q. Le, Efficientnet: Rethinking model scaling for convolutional neural networks, in: International conference on machine learning, PMLR, 2019, pp. 6105–6114.

[65] Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, S. Xie, A convnet for the 2020s, arXiv preprint arXiv:2201.03545 (2022).

[66] I. O. Tolstikhin, N. Houlsby, A. Kolesnikov, L. Beyer, X. Zhai, T. Unterthiner, J. Yung, A. Steiner, D. Keysers, J. Uszkoreit, et al., Mlp-mixer: An all-mlp architecture for vision, Advances in Neural Information Processing Systems 34 (2021).

[67] S. Marcel, Y. Rodriguez, Torchvision the machine-vision package of torch, in: Proceedings of the 18th ACM international conference on multimedia, 2010, pp. 1485–1488.

[68] R. Wightman, Pytorch image models, [https://github.com/rwightman/pytorch-image-models]. 2019. doi:10.5281/zenodo.4414861

[69] Q. Weng, Z. Mao, J. Lin, W. Guo, Land-use classification via extreme learning classifier based on deep convolutional features, IEEE Geoscience and Remote Sensing Letters 14 (2017) 704–708. doi:10.1109/LGRS.2017.2672643

[70] M. Castelluccio, G. Poggi, C. Sansone, L. Verdoliva, Land use classification in remote sensing images by convolutional neural networks (2015). doi:10.48550/ARXIV.1508.0092.

[71] X. Han, Y. Zhong, L. Cao, L. Zhang, Pre-trained alexnet architecture with pyramid pooling and supervision for high spatial resolution remote sensing image scene classification, Remote Sensing 9 (2017). doi:10.3390/rs9080848

[72] J. Kang, M. K¨orner, Y. Wang, H. Taubenb¨ock, X. X. Zhu, Building instance classification using street view images, ISPRS journal of Photogrammetry and Remote Sensing 55 (2017) 2486–2498.

[73] J. Zhang, C. Lu, X. Li, H.-J. Kim, J. Wang, A full convolutional network based on densenet for remote sensing scene classification, Mathematical Biosciences and Engineering 16 (2019) 3345–3367. doi:10.3934/mbe.2019167.

[74] W. Tong, W. Chen, W. Han, X. Li, L. Wang, Channel-attention-based densenet network for remote sensing image scene classification, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 13 (2020) 4121–4132. doi:10.1109/JSTARS.2020.299352

[75] F. Chen, J. Y. Tsou, Drsnet: Architecture for small patch and low-resolution remote sensing scene image classification, International Journal of Applied Earth Observation and Geoinformation 104 (2021) 102577. doi:https://doi.org/10.1016/j.jag.2021.102577

[76] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, S. Belongie, Feature pyramid networks for object detection, in: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 936–944. doi:10.1109/CVPR.2017.166

[77] S. Liu, C. He, H. Bai, Y. Zhang, J. Cheng, Light-weight attention semantic segmentation network for high-resolution remote sensing images, in: IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium, IEEE, 2020, pp. 2595–2598.

[78] Z. Tian, W. Wang, B. Tian, R. Zhan, J. Zhang, Resolution-aware network with attention mechanisms for remote sensing object detection., IEEE Transactions on Multimedia, 2010, pp. 1485–1488.

[79] H. Alhichri, A. S. Alswayed, Y. Bazi, N. Ammour, N. A. Alajlan, Classification of remote sensing images using efficientnet-b3 cnn model with attention, IEEE Access 9 (2021) 14078–14094. doi:10.1109/ACCESS.2021.3051865
[85] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, Bert: Pre-training of deep bidirectional transformers for language understanding, arXiv preprint arXiv:1810.04805 (2018).

[86] Y. Bazi, L. Bashmal, M. M. A. Rahhal, R. A. Dayil, N. A. Ajlan, Vision transformers for remote sensing image classification, Remote Sensing 13 (2021). doi:10.3390/rs13030516

[87] N. Gong, C. Zhang, H. Zhou, K. Zhang, Z. Wu, X. Zhang, Classification of hyperspectral images via improved cycle-mlp, IET Computer Vision 16 (2022) 468–478. doi:https://doi.org/10.1049/cvi2.12164

[88] S. Liu, C. He, H. Bai, Y. Zhang, J. Cheng, Light-weight attention semantic segmentation network for high-resolution remote sensing images, in: IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium, 2020, pp. 2595–2598. doi:10.1109/IGARSS39084.2020.9324723

[89] Z. Xu, W. Zhang, T. Zhang, Z. Yang, J. Li, Efficient transformer for remote sensing image segmentation, Remote Sensing 13 (2021). doi:10.3390/rs13183585

[90] Z. Meng, F. Zhao, M. Liang, Ss-mlp: A novel spectral-spatial mlp architecture for hyperspectral image classification, Remote Sensing 13 (2021). doi:10.3390/rs13204060

[91] K. Sechidis, G. Tsoumakas, I. Vlahavas, On the stratification of multi-label data, in: Proceedings of the 2011 European Conference on Machine Learning and Knowledge Discovery in Databases - Volume Part III, Springer-Verlag, 2011, p. 145–158.

[92] L. Liu, H. Jiang, P. He, W. Chen, X. Liu, J. Gao, J. Han, On the variance of the adaptive learning rate and beyond, in: Proceedings of the Eighth International Conference on Learning Representations (ICLR 2020), 2020.

[93] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv preprint arXiv:1412.6980 (2014).

[94] V. Risojevic, V. Stojnic, do we still need imagenet pre-training in remote sensing scene classification? (????).

[95] J. Yosinski, J. Clune, Y. Bengio, H. Lipson, How transferable are features in deep neural networks?, in: Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2, 2014, p. 3320–3328.

[96] S. Kornblith, J. Shlens, Q. V. Le, Do better imagenet models transfer better?, in: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 2656–2666.

[97] M. D. Wilkinson, M. Dumontier, I. J. Aalbersberg, G. Appleton, M. Axton, A. Baak, N. Blomberg, J.-W. Boiten, L. B. da Silva Santos, P. E. Bourne, et al., The FAIR guiding principles for scientific data management and stewardship, Scientific Data 3 (2016) 1–9.
## Appendix

### Table of Contents

| Section                                      | Page |
|----------------------------------------------|------|
| A Evaluation metrics                         | 20   |
| B Training Time Details                      | 22   |
| C Detailed data descriptions & extended results | 25   |
| C.1 UC Merced                                | 25   |
| C.2 WHU-RS19                                 | 25   |
| C.3 AID                                      | 31   |
| C.4 Eurosat                                  | 31   |
| C.5 PatternNet                               | 33   |
| C.6 Resisc45                                 | 41   |
| C.7 RSI-CB256                                | 45   |
| C.8 RSSCN7                                   | 49   |
| C.9 SAT6                                     | 52   |
| C.10 Siri-Whu                                | 52   |
| C.11 CLRS                                    | 53   |
| C.12 RSD46-WHU                               | 63   |
| C.13 Brazilian Coffee Scenes                 | 66   |
| C.14 Optimal 31                              | 68   |
| C.15 So2Sat                                  | 72   |
| C.16 UC Merced multi-label                   | 72   |
| C.17 BigEarthNet                             | 75   |
| C.18 MLRSNet                                 | 75   |
| C.19 DFC15                                   | 80   |
| C.20 Planet UAS                              | 92   |
| C.21 AID multi-label                         | 95   |
A Evaluation metrics

The predictive performance of machine learning models is typically assessed using different evaluation measures that capture different aspects of the models’ behavior. Selecting the proper evaluation measures requires knowledge of the task and problem at hand. In order to have an unbiased and fair view of the performance, one needs to consider the models’ performance along several measures and then compare their performance. In this study, we assess the performance of the models using a variety of different measures available for the machine learning tasks studied here: multi-class and multi-label classification.

Multi-class classification refers to the task where a sample can be assigned to exactly one class/label selected from a predefined set of possible classes/labels. Here, we overview several evaluation measures used for this task. Most widely used evaluation measure is accuracy due to its intuitive interpretation and straightforward calculation. It denotes the percentage of correctly labeled samples. Precision and Recall are defined for binary tasks (two classes, often called positive and negative class) by default. To extend the binary measures to multi-class classification tasks, we adopt the One-vs-Rest (One-vs-All) approach which converts a multi-class task into a series of binary tasks for each class/label in the target. Within this approach the sample from given class/label is treated as positive, and the samples from all the other classes/labels are treated as negative.

To calculate most of the evaluation measures, we need to define the following concepts: True Positives (TP), True Negatives (TN), False Positives (FP) and False Negatives (FN). These concepts combined together form the confusion matrix for the performance of a given model over a given dataset. The TP, TN, FP and FN are defined as follows:

• TP: the label is positive and the prediction is also positive
• TN: the label is negative and the prediction is also negative
• FP: the label is negative but the prediction is positive
• FN: the label is positive but the prediction is negative

Precision is then calculated as the fraction of correctly predicted positive observations from the total predicted positive observations:

\[ \text{Precision} = \frac{TP}{TP + FP} \]

Recall is calculated as the fraction of correctly predicted positive observations from the available positive observations:

\[ \text{Recall} = \frac{TP}{TP + FN} \]

F1 score is also a common evaluation measure used in machine learning tasks, basically it combines precision and recall through a weighted average. Therefore, this score takes both false positives and false negatives into account and is very useful, especially if we have an imbalanced class/label distribution. The F1 score can be calculated as:

\[ F1 = 2 \cdot \frac{\text{Precision} \cdot \text{Recall}}{\text{Precision} + \text{Recall}} \]

These evaluation measures can then be aggregated across the multiple classes using three strategies:

• Macro averaging: calculate the evaluation measures for each class/label separately and then average the individual values,

• Micro averaging: calculate the class wise confusion matrices and then aggregate the confusion matrices into a single one (i.e., add together the TP, FP, FN and FP values for each class). The aggregated confusion matrix is then used to calculate the values for the different evaluation measures, and

• Weighted averaging: based on macro averaging but using the frequency of the class/label as a weight in the average calculation.
Using these aggregation strategies, we then obtain macro-averaged, micro-averaged and weighted-averaged precision, recall and F1 score. Note that micro F1 score, micro precision and micro recall yield the same values as accuracy for the multi-class classification task. Taking into account this, for the multi-class classification tasks we report the following evaluation measures: Accuracy, Macro Precision, Weighted Precision, Macro Recall, Weighted Recall, Macro F1 score and Weighted F1 score.

**Multi-label classification** refers to the task where a sample can be assigned to multiple class/label from a predefined set of possible classes/labels. To transform the multi-label classification task to binary classification and apply the same metrics previously defined, we adopt the binary relevance method [41] that considers each label as an independent binary problem. In our case, in each node from the output layer, we use the sigmoid activation function to obtain a probability of the input image being labeled with each of the classes/labels. In order to use these probabilities to predict the classes/labels of the image, we need to define a threshold value. The model predicts that the image contains the classes/labels with probabilities that exceed the given threshold. The threshold value controls the rate of false positives versus false negatives. Increasing the threshold reduces the number of false positives, whereas decreasing the threshold reduces the number of false negatives. In our experiments, we use threshold value of 0.5. Taking into account this transformation, we can apply the formulas from above to calculate the same evaluation measures for multi-label classification tasks. While these evaluation measures are threshold dependent, we additionally use the mean average precision (mAP) - a threshold independent evaluation measure widely used in image classification tasks. mAP is calculated as the mean over the average precision values of the individual labels. Average precision summarizes a precision-recall curve as the weighted mean of the precision values obtained at each threshold, with the increase in recall from the previous threshold used as the weight:

\[
AP = \sum_n (R_n - R_{n-1}) P_n
\]

Where \(P_n\) and \(R_n\) are the precision and recall at the n-th threshold. It is a useful metric to compare how well models are ordering the predictions, without considering any specific decision threshold.

For the multi-label classification task, we report the following evaluation measures: Micro Precision, Macro Precision, Weighted Precision, Micro Recall, Macro Recall, Weighted Recall, Micro F1 score, Macro F1 score, Weighted F1 score and mean average precision (mAP). All measures but mAP, require setting a threshold on the predictions. Here, we set the threshold value at 0.5 for all the models and settings.

For both tasks, we provide the means to perform even more detailed analysis of the performance by reporting the confusion matrices as a performance summary of the models. The confusion matrices provide detailed per class/label view of the models’ performance.
### Table B.8: Multi-class classification tasks.

| Dataset | AID | WHU-RS19 | SIRI-WHU | RESISC45 |
|---------|-----|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| AveNet  | 3.19 | 2.78     | 4.28     | 12.03    | 3.83     | 4.28     | 3.83     | 2.78     | 4.28     | 12.03    | 3.83     | 4.28     | 3.83     | 2.78     | 4.28     | 12.03    | 3.83     | 4.28     | 12.03    | 3.83     | 4.28     | 3.83     |
| VGG16   | 3.19 | 2.78     | 4.28     | 12.03    | 3.83     | 4.28     | 3.83     | 2.78     | 4.28     | 12.03    | 3.83     | 4.28     | 3.83     | 2.78     | 4.28     | 12.03    | 3.83     | 4.28     | 12.03    | 3.83     | 4.28     | 3.83     |
| ResNet50| 3.19 | 2.78     | 4.28     | 12.03    | 3.83     | 4.28     | 3.83     | 2.78     | 4.28     | 12.03    | 3.83     | 4.28     | 3.83     | 2.78     | 4.28     | 12.03    | 3.83     | 4.28     | 12.03    | 3.83     | 4.28     | 3.83     |
| ResNet52| 3.19 | 2.78     | 4.28     | 12.03    | 3.83     | 4.28     | 3.83     | 2.78     | 4.28     | 12.03    | 3.83     | 4.28     | 3.83     | 2.78     | 4.28     | 12.03    | 3.83     | 4.28     | 12.03    | 3.83     | 4.28     | 3.83     |
| DenseNet121| 3.19 | 2.78     | 4.28     | 12.03    | 3.83     | 4.28     | 3.83     | 2.78     | 4.28     | 12.03    | 3.83     | 4.28     | 3.83     | 2.78     | 4.28     | 12.03    | 3.83     | 4.28     | 12.03    | 3.83     | 4.28     | 3.83     |
| EfficientNetB0| 3.19 | 2.78     | 4.28     | 12.03    | 3.83     | 4.28     | 3.83     | 2.78     | 4.28     | 12.03    | 3.83     | 4.28     | 3.83     | 2.78     | 4.28     | 12.03    | 3.83     | 4.28     | 12.03    | 3.83     | 4.28     | 3.83     |
| VT      | 3.19 | 2.78     | 4.28     | 12.03    | 3.83     | 4.28     | 3.83     | 2.78     | 4.28     | 12.03    | 3.83     | 4.28     | 3.83     | 2.78     | 4.28     | 12.03    | 3.83     | 4.28     | 12.03    | 3.83     | 4.28     | 3.83     |
| MLPNet  | 3.19 | 2.78     | 4.28     | 12.03    | 3.83     | 4.28     | 3.83     | 2.78     | 4.28     | 12.03    | 3.83     | 4.28     | 3.83     | 2.78     | 4.28     | 12.03    | 3.83     | 4.28     | 12.03    | 3.83     | 4.28     | 3.83     |
| ConvNet | 3.19 | 2.78     | 4.28     | 12.03    | 3.83     | 4.28     | 3.83     | 2.78     | 4.28     | 12.03    | 3.83     | 4.28     | 3.83     | 2.78     | 4.28     | 12.03    | 3.83     | 4.28     | 12.03    | 3.83     | 4.28     | 3.83     |

### Additional Details

**Training Time Details**

- **Eurosat**
  - Avg time/epoch (sec.): 8.88
  - Total training time (sec.): 23.47
  - Best epoch: 16
- **UCM**
  - Avg time/epoch (sec.): 1.29
  - Total training time (sec.): 34.19
  - Best epoch: 4
- **AID**
  - Avg time/epoch (sec.): 23.06
  - Total training time (sec.): 725
  - Best epoch: 24
- **RSCN7**
  - Avg time/epoch (sec.): 3.19
  - Total training time (sec.): 725
  - Best epoch: 24
- **WHU-RS19**
  - Avg time/epoch (sec.): 2.78
  - Total training time (sec.): 725
  - Best epoch: 24
- **SIRI-WHU**
  - Avg time/epoch (sec.): 4.28
  - Total training time (sec.): 725
  - Best epoch: 24
- **RESISC45**
  - Avg time/epoch (sec.): 12.03
  - Total training time (sec.): 725
  - Best epoch: 24
- **PATTERN**
  - Avg time/epoch (sec.): 15.17
  - Total training time (sec.): 725
  - Best epoch: 24
- **CLRS**
  - Avg time/epoch (sec.): 20.48
  - Total training time (sec.): 725
  - Best epoch: 24
- **RSDN6-WHU**
  - Avg time/epoch (sec.): 48.03
  - Total training time (sec.): 725
  - Best epoch: 24
- **SAR6**
  - Avg time/epoch (sec.): 92.48
  - Total training time (sec.): 725
  - Best epoch: 24
- **Optimal3I**
  - Avg time/epoch (sec.): 1.12
  - Total training time (sec.): 725
  - Best epoch: 31
- **BCS**
  - Avg time/epoch (sec.): 1.48
  - Total training time (sec.): 725
  - Best epoch: 19
- **So2Sat**
  - Avg time/epoch (sec.): 158.09
  - Total training time (sec.): 725
  - Best epoch: 31
### Table B.9: Multi-Label classification tasks.

| Model          | AID | UCMerced | DFC15 | MLRSNet | PlanetUAS | BigEarthNet 19 | BigEarthNet 43 |
|----------------|-----|----------|-------|---------|-----------|----------------|---------------|
| **Avg time/epoch (sec.)** | 5.55 | 1.31 | 7.74 | 34.09 | 17.45 | 90.43 | 89.85 |
| **Total training time (sec.)** | 172 | 71 | 325 | 1125 | 576 | 5245 | 9104 |
| **Best epoch** | 21 | 71 | 32 | 23 | 23 | 48 | 48 |

| Model          | VGG16 | ResNet50 | ResNet152 | DenseNet161 | EfficientNetB0 | ConvNeXt | ViT | MLPMixer |
|----------------|-------|----------|-----------|-------------|---------------|----------|-----|---------|
| **Avg time/epoch (sec.)** | 6.33 | 5.94 | 6.33 | 7.97 | 6.15 | 6.63 | 6.63 | 6.35 |
| **Total training time (sec.)** | 190 | 190 | 239 | 366 | 345 | 345 | 345 | 345 |
| **Best epoch** | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 |

| Model          | AlexNet | Pt | Sc | VGG16 | Pt | Sc | ResNet50 | Pt | Sc | ResNet152 | Pt | Sc | DenseNet161 | Pt | Sc | EfficientNetB0 | Pt | Sc | ConvNeXt | Pt | Sc | ViT | Pt | Sc | MLPMixer | Pt | Sc |
|----------------|---------|----|----|-------|----|----|----------|----|----|------------|----|----|-------------|----|----|---------------|----|----|---------|----|----|--------|----|----|--------|----|----|
| **Avg time/epoch (sec.)** | 5.82 | 6.33 | 5.94 | 8.08 | 8.71 | 8.47 | 6.15 | 6.63 | 6.95 | 6.82 | 6.35 | 6.41 |
| **Total training time (sec.)** | 190 | 190 | 239 | 366 | 345 | 345 | 345 | 345 | 345 | 345 | 345 | 345 |
| **Best epoch** | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 |

Note: The table provides a comparison of average time per epoch and total training time for different models across various datasets.
Figure B.5: **Total training time** of models trained from scratch and pre-trained models for each of the (a,b) MCC and (d,e) MLC datasets. The training time of each model architecture (denoted with different colors) is depicted as a fraction (%) of the cumulative training time for each dataset. Furthermore, (c) and (f) illustrate the average time per epoch of each model variant on (e) MCC and (f) MLC tasks, comparing the (red) pre-trained model variants (from (a) and (b)) to their counterparts (blue) trained from scratch.
C Detailed data descriptions & extended results

C.1 UC Merced

The UC Merced dataset [9] consists of 2100 images divided into 21 land-use scene classes. Each class has 100 RGB aerial image which are 256x256 pixels and have a spatial resolution of 0.3m per pixel. The images were manually extracted from large images from the United States Geological Survey (USGS) National Map of the following US regions: Birmingham, Boston, Buffalo, Columbus, Dallas, Harrisburg, Houston, Jacksonville, Las Vegas, Los Angeles, Miami, Napa, New York, Reno, San Diego, Santa Barbara, Seattle, Tampa, Tucson, and Ventura. Samples from the datasets can be seen on Figure C.6.

The 21 classes are: agricultural, airplane, baseball diamond, beach, buildings, chaparral, dense residential, forest, freeway, golf course, harbor, intersection, medium density residential, mobile home park, overpass, parking lot, river, runway, sparse residential, storage tanks, and tennis courts. The authors have not set predefined train-test splits, so we have made such for our study (Figure C.7).

The detailed results for all pre-trained models are shown on Table C.10 and for all the models learned from scratch are presented on Table C.11. The best performing model is the pre-trained ResNet152. The results on a class level are show on Table C.12 along with a confusion matrix on Figure C.8.

![Figure C.6: Example images with labels from the UC Merced dataset.](image-url)
Figure C.7: Class distribution for the UC Merced dataset.

Table C.10: Detailed results for pre-trained models on UCMerced

| Model          | Metric       | Accuracy | Macro Precision | Weighted Precision | Macro Recall | Weighted Recall | Macro F1 score | Weighted F1 score | Avg. time / epoch (sec.) | Total time (sec.) | Best epoch |
|----------------|--------------|----------|-----------------|--------------------|--------------|-----------------|----------------|-------------------|--------------------------|------------------|------------|
| AlexNet        |              | 92.14    | 92.24           | 92.14              | 92.14        | 92.03           | 92.03          | 1.29              | 44                        | 24               | 22         |
| VGG16          |              | 95.48    | 95.64           | 95.48              | 95.48        | 95.48           | 95.48          | 3.16              | 101                       | 22               | 22         |
| ResNet50       |              | 98.57    | 98.64           | 98.57              | 98.57        | 98.59           | 98.59          | 2.85              | 111                       | 29               | 29         |
| RestNet152     |              | 98.81    | 98.86           | 98.81              | 98.81        | 98.80           | 98.80          | 5.05              | 202                       | 30               | 30         |
| DenseNet161    |              | 98.33    | 98.40           | 98.33              | 98.33        | 98.34           | 98.34          | 5.41              | 357                       | 56               | 56         |
| EfficientNetB0 |              | 98.57    | 98.61           | 98.57              | 98.57        | 98.57           | 98.57          | 2.46              | 214                       | 77               | 77         |
| ConvNeXt       |              | 97.86    | 97.99           | 97.86              | 97.86        | 97.87           | 97.87          | 3.68              | 173                       | 37               | 37         |
| Vision Transformer |         | 98.33    | 98.44           | 98.33              | 98.33        | 98.36           | 98.36          | 4.00              | 112                       | 18               | 18         |
| MLP Mixer      |              | 98.33    | 98.40           | 98.33              | 98.33        | 98.34           | 98.34          | 3.10              | 130                       | 32               | 32         |

Table C.11: Detailed results for models trained from scratch on the UC Merced dataset.

| Model          | Metric       | Accuracy | Macro Precision | Weighted Precision | Macro Recall | Weighted Recall | Macro F1 score | Weighted F1 score | Avg. time / epoch (sec.) | Total time (sec.) | Best epoch |
|----------------|--------------|----------|-----------------|--------------------|--------------|-----------------|----------------|-------------------|--------------------------|------------------|------------|
| AlexNet        |              | 81.19    | 81.30           | 81.30              | 81.19        | 80.87           | 80.87          | 1.30              | 126                       | 82               | 82         |
| VGG16          |              | 78.57    | 78.96           | 78.96              | 78.57        | 78.30           | 78.30          | 4.66              | 466                       | 85               | 85         |
| ResNet50       |              | 85.24    | 85.20           | 85.20              | 85.24        | 84.75           | 84.75          | 2.54              | 178                       | 55               | 55         |
| RestNet152     |              | 84.05    | 84.02           | 84.02              | 84.05        | 83.68           | 83.68          | 5.02              | 467                       | 78               | 78         |
| DenseNet161    |              | 86.19    | 86.42           | 86.42              | 86.19        | 85.75           | 85.75          | 5.46              | 415                       | 61               | 61         |
| EfficientNetB0 |              | 84.29    | 85.27           | 85.27              | 84.29        | 84.16           | 84.16          | 2.53              | 253                       | 93               | 93         |
| ConvNeXt       |              | 84.29    | 84.51           | 84.51              | 84.29        | 84.14           | 84.14          | 3.75              | 375                       | 92               | 92         |
| Vision Transformer |          | 83.10    | 83.64           | 83.64              | 83.10        | 82.76           | 82.76          | 4.44              | 413                       | 78               | 78         |
| MLP Mixer      |              | 82.38    | 82.12           | 82.12              | 82.38        | 82.01           | 82.01          | 3.06              | 269                       | 73               | 73         |
Table C.12: Per class results for the pre-trained ResNet152 model on the UC Merced dataset.

| Label               | Precision | Recall | F1 score |
|---------------------|-----------|--------|----------|
| agricultural        | 100.00    | 100.00 | 100.00   |
| airplane            | 100.00    | 100.00 | 100.00   |
| baseballdiamond     | 100.00    | 100.00 | 100.00   |
| beach               | 100.00    | 100.00 | 100.00   |
| buildings           | 94.74     | 90.00  | 92.31    |
| chaparral           | 100.00    | 100.00 | 100.00   |
| denseresidential    | 90.91     | 100.00 | 95.24    |
| forest              | 100.00    | 100.00 | 100.00   |
| freeway             | 100.00    | 100.00 | 100.00   |
| golfcourse          | 100.00    | 100.00 | 100.00   |
| harbor              | 100.00    | 100.00 | 100.00   |
| intersection        | 100.00    | 100.00 | 100.00   |
| mediumresidential   | 100.00    | 90.00  | 94.74    |
| mobilehomepark      | 100.00    | 95.00  | 97.44    |
| overpass            | 100.00    | 100.00 | 100.00   |
| parkinglot          | 100.00    | 100.00 | 100.00   |
| river               | 100.00    | 100.00 | 100.00   |
| runway              | 100.00    | 100.00 | 100.00   |
| sparseresidential   | 95.24     | 100.00 | 97.56    |
| storagetanks        | 95.24     | 100.00 | 97.56    |
| tenniscourt         | 100.00    | 100.00 | 100.00   |

Figure C.8: Confusion matrix for the pre-trained ResNet152 model on the UC Merced dataset.
C.2 WHU-RS19

WHU-RS19 is a set of satellite images exported from Google Earth, which provides high-resolution satellite images up to 0.5m and red, green and blue spectral bands \[42\]. It contains 19 classes of meaningful scenes in high-resolution satellite imagery, including: airport, beach, bridge, commercial area, desert, farmland, football field, forest, industrial area, meadow, mountain, park, parking lot, pond, port, railway station, residential area, river, and viaduct. For each class, there are about 50 samples with a total of 1005 images in the entire dataset. The data does not come with predefined train and test splits, so per standard we have made splits (Figure C.10).

The size of images is 600x600 pixel. The image samples of the same class are collected from different regions in satellite images of different resolutions and then might have different scales, orientations and illuminations. This makes the dataset challenging, however, the number of images is relatively small compared to the other datasets. Sample images from the dataset are shown in Figure C.9.

Detailed results for all pre-trained models are shown on Table C.13 and for all the models learned from scratch are presented on Table C.14. The best performing model is the pre-trained DenseNet161. The results on a class level are show on Table C.15 along with a confusion matrix on Figure C.11.

![Sample images from the WHU-RS19 dataset.](image-url)

Figure C.9: Example images with labels from the WHU-RS19 dataset.
### Table C.13: Detailed results for pre-trained models the WHU-RS19 dataset.

| Model       | Accuracy | Macro Precision | Weighted Precision | Macro Recall | Weighted Recall | Macro F1 score | Weighted F1 score | Avg. time / epoch (sec.) | Total time (sec.) | Best epoch |
|-------------|----------|-----------------|--------------------|--------------|-----------------|---------------|------------------|------------------------|------------------|------------|
| AlexNet     | 93.53    | 94.44           | 94.30              | 93.63        | 93.73           | 93.53         | 93.73            | 2.78                   | 142              | 41         |
| VGG16       | 99.00    | 99.08           | 99.09              | 99.02        | 99.01           | 99.00         | 99.00            | 3.00                   | 144              | 38         |
| ResNet50    | 99.50    | 99.56           | 99.54              | 99.52        | 99.54           | 99.50         | 99.50            | 2.95                   | 285              | 96         |
| ResNet152   | 98.01    | 98.21           | 98.22              | 97.99        | 98.01           | 98.01         | 98.03            | 4.02                   | 253              | 53         |
| DenseNet161 | 100.00   | 100.00          | 100.00             | 100.00       | 100.00          | 100.00        | 100.00           | 4.04                   | 400              | 89         |
| DenseNet161 | 100.00   | 100.00          | 100.00             | 100.00       | 100.00          | 100.00        | 100.00           | 4.04                   | 400              | 89         |
| EfficientNetB0 | 99.50    | 99.56           | 99.54              | 99.47        | 99.50           | 99.49         | 99.50            | 2.76                   | 276              | 100        |
| ConvNeXt    | 99.50    | 99.56           | 99.54              | 99.52        | 99.50           | 99.50         | 99.50            | 2.76                   | 276              | 100        |
| Vision Transformer | 99.50 | 99.56 | 99.54 | 99.52 | 99.50 | 99.50 | 99.50 | 2.76 | 276 | 100 |
| MLP Mixer   | 98.51    | 98.64           | 98.64              | 98.47        | 98.51           | 98.49         | 98.50            | 2.84                   | 247              | 77         |

### Table C.14: Detailed results for models trained from scratch the WHU-RS19 dataset.

| Model       | Accuracy | Macro Precision | Weighted Precision | Macro Recall | Weighted Recall | Macro F1 score | Weighted F1 score | Avg. time / epoch (sec.) | Total time (sec.) | Best epoch |
|-------------|----------|-----------------|--------------------|--------------|-----------------|---------------|------------------|------------------------|------------------|------------|
| AlexNet     | 66.17    | 67.93           | 67.68              | 66.28        | 66.17           | 66.53         | 66.36            | 2.53                   | 223              | 73         |
| VGG16       | 68.66    | 70.53           | 70.25              | 68.69        | 68.66           | 69.02         | 68.87            | 4.79                   | 479              | 96         |
| ResNet50    | 79.60    | 82.28           | 81.91              | 79.75        | 79.60           | 79.88         | 79.67            | 3.85                   | 300              | 63         |
| ResNet152   | 80.60    | 82.62           | 82.27              | 80.63        | 80.60           | 81.08         | 80.91            | 4.29                   | 343              | 65         |
| DenseNet161 | 80.60    | 82.75           | 82.44              | 80.59        | 80.60           | 80.75         | 80.60            | 4.04                   | 271              | 52         |
| EfficientNetB0 | 75.62 | 77.50 | 77.00 | 76.08 | 75.62 | 76.02 | 75.54 | 2.78 | 189 | 53 |
| ConvNeXt    | 72.14    | 73.09           | 72.63              | 72.41        | 72.14           | 72.36         | 71.99            | 3.03                   | 303              | 90         |
| Vision Transformer | 74.63 | 75.96 | 75.69 | 74.89 | 74.63 | 75.05 | 74.78 | 3.44 | 303 | 73 |
| MLP Mixer   | 69.65    | 70.70           | 70.51              | 69.91        | 69.65           | 69.10         | 68.83            | 3.86                   | 386              | 89         |
Table C.15: Per class results for the pre-trained DenseNet161 model on the WHU-RS19 dataset.

| Label        | Precision | Recall | F1 score |
|--------------|-----------|--------|----------|
| Airport      | 100.00    | 100.00 | 100.00   |
| Beach        | 100.00    | 100.00 | 100.00   |
| Bridge       | 100.00    | 100.00 | 100.00   |
| Commercial   | 100.00    | 100.00 | 100.00   |
| Desert       | 100.00    | 100.00 | 100.00   |
| Farmland     | 100.00    | 100.00 | 100.00   |
| footballField| 100.00    | 100.00 | 100.00   |
| Forest       | 100.00    | 100.00 | 100.00   |
| Industrial   | 100.00    | 100.00 | 100.00   |
| Meadow       | 100.00    | 100.00 | 100.00   |
| Mountain     | 100.00    | 100.00 | 100.00   |
| Park         | 100.00    | 100.00 | 100.00   |
| Parking      | 100.00    | 100.00 | 100.00   |
| Pond         | 100.00    | 100.00 | 100.00   |
| railwayStation| 100.00    | 100.00 | 100.00   |
| Residential  | 100.00    | 100.00 | 100.00   |
| River        | 100.00    | 100.00 | 100.00   |
| Viaduct      | 100.00    | 100.00 | 100.00   |

Figure C.11: Confusion matrix for the pre-trained DenseNet161 model on the WHU-RS19 dataset.
C.3 AID

Aerial Image Dataset (AID) is a large-scale aerial image dataset generated by collecting sample images from Google Earth imagery. The goal of AID is to advance the state-of-the-art in scene classification of remote sensing images. For creating AID, more than ten thousands aerial scene images have been collected and annotated. It consists of 10000 RGB images with 600x600 pixels resolution (Figure C.12). The dataset is made up of the following 30 classes (aerial scene types): airport, bare land, baseball field, beach, bridge, center, church, commercial, dense residential, desert, farmland, forest, industrial, meadow, medium residential, mountain, park, parking, playground, pond, port, railway station, resort, river, school, sparse residential, square, stadium, storage tanks and viaduct.

All the images were labeled by the specialists in the field of remote sensing image interpretation. All samples from each class are chosen from different countries and regions around the world, but mainly in China, USA, England, France, Italy, Japan, Germany etc. They are extracted at different time and seasons under different image conditions. Although, all images have a 600x600 pixels resolution, their spatial resolution varies from 8 to 0.5 meters.

The dataset has no predefined train-test splits, so for properly conducting the study we have made train, test and validation splits. The distribution of the splits is presented on Figure C.13. Detailed results for all pre-trained models are shown on Table C.16 and for all the models learned from scratch are presented on Table C.17. The best performing model is the pre-trained ViT model. The results on a class level are show on Table C.18 along with a confusion matrix on Figure C.14.
Table C.16: Detailed results for pre-trained models on the AID dataset.

| Model      | Accuracy | Macro Precision | Weighted Precision | Macro Recall | Weighted Recall | Macro F1 score | Weighted F1 score | Avg. time / epoch (sec.) | Total time (sec.) | Best epoch |
|------------|----------|-----------------|--------------------|--------------|-----------------|---------------|-------------------|--------------------------|-------------------|------------|
| AlexNet    | 92.90    | 92.90           | 92.94              | 92.65        | 92.90           | 92.72         | 92.87             | 21.32                    | 725               | 24         |
| VGG16      | 96.10    | 95.95           | 96.11              | 95.91        | 96.10           | 95.90         | 96.08             | 21.35                    | 854               | 30         |
| ResNet50   | 96.55    | 96.48           | 96.56              | 96.26        | 96.55           | 96.30         | 96.50             | 20.29                    | 1035              | 41         |
| RestNet52  | 97.20    | 97.14           | 97.24              | 97.07        | 97.20           | 97.08         | 97.19             | 22.20                    | 1132              | 41         |
| DenseNet161| 97.25    | 97.25           | 97.30              | 97.10        | 97.25           | 97.12         | 97.23             | 24.36                    | 1072              | 34         |
| EfficientNetB0 | 96.25 | 96.24           | 96.26              | 96.15        | 96.25           | 96.16         | 96.23             | 20.00                    | 800               | 30         |
| ConvNeXt   | 96.95    | 96.95           | 96.97              | 96.81        | 96.95           | 96.85         | 96.93             | 23.06                    | 807               | 25         |
| Vision Transformer | 97.75  | 97.56           | 97.76              | 97.53        | 97.75           | 97.52         | 97.73             | 20.45                    | 1145              | 46         |
| MLP Mixer  | 96.70    | 96.58           | 96.74              | 96.52        | 96.70           | 96.51         | 96.69             | 19.78                    | 811               | 31         |

Table C.17: Detailed results for models trained from scratch on the AID dataset.

| Model       | Accuracy | Macro Precision | Weighted Precision | Macro Recall | Weighted Recall | Macro F1 score | Weighted F1 score | Avg. time / epoch (sec.) | Total time (sec.) | Best epoch |
|-------------|----------|-----------------|--------------------|--------------|-----------------|---------------|-------------------|--------------------------|-------------------|------------|
| AlexNet     | 81.35    | 81.23           | 81.32              | 81.14        | 81.35           | 81.07         | 81.23             | 19.46                    | 1927              | 84         |
| VGG16       | 81.95    | 81.80           | 82.04              | 81.52        | 81.95           | 81.50         | 81.84             | 19.65                    | 1356              | 54         |
| ResNet50    | 89.05    | 89.09           | 89.23              | 88.82        | 89.05           | 88.85         | 89.04             | 19.66                    | 1514              | 62         |
| RestNet52   | 89.90    | 90.08           | 90.09              | 89.60        | 89.90           | 89.73         | 89.88             | 22.25                    | 1513              | 53         |
| DenseNet161 | 93.30    | 93.32           | 93.42              | 93.13        | 93.30           | 93.17         | 93.30             | 24.48                    | 2228              | 76         |
| EfficientNetB0 | 90.05 | 90.19           | 90.32              | 89.88        | 90.05           | 89.92         | 90.08             | 19.33                    | 1121              | 43         |
| ConvNeXt    | 81.10    | 81.51           | 81.18              | 80.87        | 81.10           | 80.98         | 81.53             | 19.15                    | 1913              | 96         |
| Vision Transformer | 79.35  | 79.27           | 79.27              | 79.51        | 79.35           | 79.30         | 79.21             | 19.63                    | 1060              | 39         |
| MLP Mixer   | 71.75    | 72.02           | 71.87              | 72.01        | 71.75           | 71.73         | 71.52             | 19.06                    | 953               | 35         |
Table C.18: Per class results for the pre-trained Vision Transformer on the AID dataset.

| Label            | Precision | Recall | F1 score |
|------------------|-----------|--------|----------|
| Airport          | 98.61     | 98.61  | 98.61    |
| BareLand         | 98.41     | 100.00 | 99.20    |
| BaseballField    | 97.78     | 100.00 | 98.88    |
| Beach            | 100.00    | 100.00 | 100.00   |
| Bridge           | 98.00     | 100.00 | 99.00    |
| Center           | 87.72     | 96.15  | 91.74    |
| Church           | 93.48     | 89.58  | 91.49    |
| Commercial       | 95.71     | 95.71  | 95.71    |
| DenseResidential | 98.80     | 100.00 | 99.39    |
| Desert           | 100.00    | 100.00 | 100.00   |
| FarmLand         | 100.00    | 100.00 | 100.00   |
| Forest           | 100.00    | 100.00 | 100.00   |
| Industrial       | 94.94     | 96.15  | 95.54    |
| Meadow           | 100.00    | 100.00 | 100.00   |
| MediumResidential| 98.28     | 98.28  | 98.28    |
| Mountain         | 100.00    | 100.00 | 100.00   |
| Park             | 94.44     | 97.14  | 95.77    |
| Parking          | 100.00    | 100.00 | 100.00   |
| Playground       | 98.63     | 97.30  | 97.96    |
| Pond             | 98.81     | 98.81  | 98.81    |
| Port             | 97.44     | 100.00 | 98.70    |
| RailwayStation   | 98.23     | 99.08  | 98.64    |
| Resort           | 94.12     | 82.76  | 88.07    |
| River            | 98.80     | 100.00 | 99.39    |
| School           | 93.38     | 88.33  | 90.33    |
| SparseResidential| 98.36     | 100.00 | 99.17    |
| Square           | 98.44     | 95.45  | 96.92    |
| Stadium          | 96.49     | 94.83  | 95.65    |
| Storage Tanks    | 100.00    | 100.00 | 100.00   |
| Viaduct          | 98.81     | 98.81  | 98.81    |

Figure C.14: Confusion matrix for the pre-trained Vision Transformer model on the AID dataset.
C.4 Eurosat

EuroSAT [43] is a land use and land cover classification dataset based on Sentinel-2 satellite images covering 13 spectral bands and consisting out of 10 classes with in total 27000 labeled and geo-referenced images. The dataset provides RGB and multi-spectral (MS) version of the data. The spectral bands and their respective spatial resolutions are presented on Table C.19. The 10 image classes are the following: Annual Crop, Forest, Herbaceous Vegetation, Highway, Industrial, Pasture, Permanent Crop, Residential, River, Sea/Lake. Some samples from the dataset are presented on Figure C.15. The class distribution of our train, test and validation splits are provided on Figure C.16.

Detailed results for all pre-trained models are shown on Table C.20 and for all the models learned from scratch are presented on Table C.21. The best performing model is the pre-trained ResNet152 model. The results on a class level are show on Table C.22 along with a confusion matrix on Figure C.17.

![Example images with labels from the Eurosat dataset.](image-url)
Table C.19: Eurosat bands and spatial resolutions.

| Band            | Spatial resolution m |
|-----------------|----------------------|
| B01 - Aerosols  | 60                   |
| B02 - Blue      | 10                   |
| B03 - Green     | 10                   |
| B04 - Red       | 10                   |
| B05 - Red edge 1| 20                   |
| B06 - Red edge 2| 20                   |
| B07 - Red edge 3| 20                   |
| B08 - NIR       | 10                   |
| B08A - Red edge 4| 20                  |
| B09 - Water vapor| 60                  |
| B10 - Cirrus    | 60                   |
| B11 - SWIR 1    | 20                   |
| B12 - SWIR 2    | 20                   |

Table C.20: Detailed results for pre-trained models on the Eurosat dataset.

| Model          | Accuracy | Macro Precision | Weighted Precision | Macro Recall | Weighted Recall | Macro F1 score | Weighted F1 score | Avg. time / epoch (sec.) | Total time (sec.) | Best epoch |
|----------------|----------|-----------------|--------------------|--------------|-----------------|----------------|-------------------|------------------------|------------------|------------|
| AlexNet        | 97.57    | 97.48           | 97.58              | 97.48        | 97.57           | 97.57          | 8.88              | 426                    | 38               |            |
| VGG16          | 98.15    | 98.14           | 98.15              | 98.06        | 98.15           | 98.15          | 33.69             | 977                    | 19               |            |
| ResNet50       | 98.83    | 98.82           | 98.83              | 98.77        | 98.83           | 98.83          | 26.56             | 1912                   | 62               |            |
| ResNet152      | 99.00    | 99.00           | 99.00              | 99.00        | 99.00           | 99.00          | 56.00             | 1904                   | 24               |            |
| DenseNet161    | 98.89    | 98.88           | 98.89              | 98.82        | 98.89           | 98.85          | 61.12             | 2078                   | 24               |            |
| EfficientNetB0 | 98.91    | 98.91           | 98.91              | 98.86        | 98.91           | 98.88          | 98.91             | 23.47                  | 1056             | 35         |
| ConvNeXt       | 98.78    | 98.76           | 98.78              | 98.75        | 98.78           | 98.75          | 40.38             | 1050                   | 16               |            |
| Vision Transformer | 98.72   | 98.71           | 98.73              | 98.64        | 98.72           | 98.68          | 43.19             | 1123                   | 16               |            |
| MLP Mixer      | 98.74    | 98.73           | 98.74              | 98.65        | 98.74           | 98.68          | 30.41             | 669                    | 12               |            |
Table C.21: Detailed results for models trained from scratch on the Eurosat dataset.

| Model        | Accuracy  | Macro Precision | Weighted Precision | Macro Recall  | Weighted Recall | Macro F1 score | Weighted F1 score | Avg. time / epoch (sec.) | Total time (sec.) | Best epoch |
|--------------|-----------|----------------|--------------------|---------------|----------------|----------------|-------------------|------------------------|------------------|------------|
| AlexNet      | 96.17     | 96.02          | 96.18              | 96.10         | 96.06          | 96.17          | 8.02              | 802                    | 95               |            |
| VGG16        | 97.19     | 97.17          | 97.19              | 97.04         | 97.19          | 97.10          | 33.62             | 2622                   | 63               |            |
| ResNet50     | 97.00     | 96.93          | 97.01              | 96.85         | 97.00          | 96.88          | 26.45             | 2619                   | 84               |            |
| RestNet152   | 97.41     | 97.36          | 97.41              | 97.27         | 97.41          | 97.31          | 56.21             | 4328                   | 62               |            |
| DenseNet161  | 97.63     | 97.57          | 97.64              | 97.51         | 97.63          | 97.54          | 62.50             | 5125                   | 67               |            |
| EfficientNetB0 | 97.80   | 97.76          | 97.80              | 97.72         | 97.80          | 97.74          | 24.19             | 2032                   | 69               |            |
| ConvNeXt     | 95.43     | 95.25          | 95.44              | 95.29         | 95.43          | 95.27          | 40.03             | 2642                   | 51               |            |
| Vision Transformer | 95.04 | 94.86          | 95.02              | 94.80         | 95.04          | 94.82          | 44.22             | 2963                   | 52               |            |
| MLP Mixer    | 95.50     | 95.29          | 95.50              | 95.35         | 95.50          | 95.49          | 31.45             | 2327                   | 59               |            |

Table C.22: Per class results for the pre-trained ResNet152 model on the Eurosat dataset.

| Label                  | Precision | Recall | F1 score |
|------------------------|-----------|--------|----------|
| Annual Crop            | 98.66     | 98.33  | 98.50    |
| Forest                 | 99.17     | 99.50  | 99.33    |
| Herbaceous Vegetation  | 98.01     | 98.67  | 98.34    |
| Highway                | 99.20     | 98.80  | 99.00    |
| Industrial             | 99.40     | 99.00  | 99.20    |
| Pasture                | 98.74     | 98.25  | 98.50    |
| Permanent Crop         | 98.59     | 97.60  | 98.09    |
| Residential            | 99.50     | 100.00 | 99.75    |
| River                  | 99.20     | 99.60  | 99.40    |
| Sea Lake               | 99.50     | 99.83  | 99.67    |

Figure C.17: Confusion matrix for the pre-trained ResNet152 model on the Eurosat dataset.
C.5 PatternNet

PatternNet is a large-scale remote sensing dataset that was collected specifically for Remote sensing image retrieval. It contains 38 classes: airplane, baseball field, basketball court, beach, bridge, cemetery, chaparral, christmas tree farm, closed road, coastal mansion, crosswalk, dense residential, ferry terminal, football field, forest, freeway, golf course, harbor, intersection, mobile home park, nursing home, oil gas field, oil well, overpass, parking lot, parking space, railway, river, runway, runway marking, shipping yard, solar panel, sparse residential, storage tank, swimming pool, tennis court, transformer station and wastewater treatment plant. There are a total of 38 classes with 800 images of size 256×256 pixels for each class. The class distribution of the train, test and validation splits we generated is presented on Figure C.19 since the dataset does not have predefined ones.

PatternNet dataset has the following main characteristics: It’s the largest publicly available dataset specifically designed for remote sensing image retrieval. It has a higher spatial resolution, so that the classes of interest constitute a larger portion of the image. It has high inter-class similarity and high intra-class diversity. Some sample images are shown on Figure C.18.

Detailed results for all pre-trained models are shown on Table C.23 and for all the models learned from scratch are presented on Table C.24. The best performing models are the pre-trained DenseNet161 and ResNet50 models. The results on a class level are show on Table C.25 along with a confusion matrix on Figure C.20.

![Figure C.18: Example images with labels from the PatternNet dataset.](insert_image_url)
Table C.23: Detailed results for pre-trained models on the PatternNet dataset.

| Model    | Metric         | Accuracy | Macro Precision | Weighted Precision | Macro Recall | Weighted Recall | Macro F1 score | Weighted F1 score | Avg. time / epoch (sec.) | Total time (sec.) | Best epoch |
|----------|----------------|----------|-----------------|---------------------|--------------|-----------------|----------------|-------------------|--------------------------|------------------|------------|
| AlexNet  |                | 99.16    | 99.17           | 99.16               | 99.16        | 99.16           | 99.16          | 15.17                     | 637                  | 32         |
| VGG16    |                | 99.42    | 99.43           | 99.43               | 99.42        | 99.42           | 99.42          | 37.74                     | 1321                 | 25         |
| ResNet50 |                | 99.74    | 99.74           | 99.74               | 99.74        | 99.74           | 99.74          | 29.10                     | 1193                 | 31         |
| ResNet52 |                | 99.49    | 99.49           | 99.49               | 99.49        | 99.49           | 99.49          | 62.94                     | 1070                 | 7          |
| DenseNet161 |            | 99.74  | 99.74           | 99.74               | 99.74        | 99.74           | 99.74          | 68.87                     | 3168                 | 36         |
| EfficientNetB0 |         | 99.54  | 99.54           | 99.54               | 99.54        | 99.54           | 99.54          | 25.86                     | 569                  | 12         |
| ConvNeXt |                | 99.67    | 99.67           | 99.67               | 99.67        | 99.67           | 99.67          | 45.93                     | 1378                 | 20         |
| Vision Transformer |         | 99.65  | 99.66           | 99.66               | 99.65        | 99.65           | 99.65          | 48.50                     | 1067                 | 12         |
| MLP Mixer|                | 99.70    | 99.71           | 99.71               | 99.70        | 99.70           | 99.70          | 33.80                     | 1521                 | 35         |
Table C.24: Detailed results for models trained from scratch on the PatternNet dataset.

| Model           | Accuracy | Macro Precision | Weighted Precision | Macro Recall | Weighted Recall | Macro F1 score | Weighted F1 score | Avg. time / epoch (sec.) | Total time (sec.) | Best epoch |
|-----------------|----------|-----------------|--------------------|--------------|-----------------|----------------|-------------------|--------------------------|------------------|------------|
| AlexNet         | 97.83    | 97.83           | 97.83              | 97.83        | 97.82           | 97.82          | 13.75             | 1141                     | 68               |            |
| VGG16           | 97.91    | 97.93           | 97.93              | 97.91        | 97.91           | 97.91          | 37.47             | 2061                     | 40               |            |
| ResNet50        | 99.06    | 99.07           | 99.07              | 99.06        | 99.06           | 99.06          | 35.65             | 3030                     | 70               |            |
| RestNet152      | 98.88    | 98.89           | 98.89              | 98.88        | 98.88           | 98.88          | 69.05             | 6905                     | 88               |            |
| DenseNet161     | 99.24    | 99.25           | 99.25              | 99.24        | 99.24           | 99.24          | 71.08             | 5260                     | 59               |            |
| EfficientNetB0  | 98.83    | 98.84           | 98.84              | 98.83        | 98.83           | 98.83          | 27.54             | 2286                     | 68               |            |
| ConvNeXt        | 97.82    | 97.83           | 97.83              | 97.82        | 97.82           | 97.82          | 45.06             | 4326                     | 81               |            |
| Vision Transformer | 96.69   | 96.69           | 96.69              | 96.69        | 96.69           | 96.68          | 49.05             | 3237                     | 51               |            |

Table C.25: Per class results for the pre-trained DenseNet161 model on the PatternNet dataset.

| Label                     | Precision | Recall | F1 score |
|---------------------------|-----------|--------|----------|
| airplane                  | 100.00    | 100.00 | 100.00   |
| baseball field            | 100.00    | 100.00 | 100.00   |
| basketball court          | 99.37     | 98.75  | 99.06    |
| beach                     | 100.00    | 100.00 | 100.00   |
| bridge                    | 98.77     | 100.00 | 99.38    |
| cemetery                  | 100.00    | 100.00 | 100.00   |
| chaparral                 | 100.00    | 100.00 | 100.00   |
| christmas tree farm       | 100.00    | 100.00 | 100.00   |
| closed_road               | 99.38     | 100.00 | 99.69    |
| coastal_mansion           | 98.73     | 97.50  | 98.11    |
| crosswalk                 | 100.00    | 100.00 | 100.00   |
| dense_residential         | 100.00    | 100.00 | 100.00   |
| ferry terminal            | 100.00    | 98.75  | 99.37    |
| football field            | 100.00    | 100.00 | 100.00   |
| forest                    | 100.00    | 100.00 | 100.00   |
| freeway                   | 100.00    | 100.00 | 100.00   |
| golf course               | 100.00    | 100.00 | 100.00   |
| harbor                    | 100.00    | 100.00 | 100.00   |
| intersection              | 99.38     | 100.00 | 99.69    |
| mobile_home park          | 100.00    | 100.00 | 100.00   |
| nursing home              | 100.00    | 99.38  | 99.69    |
| oil gas field             | 100.00    | 100.00 | 100.00   |
| oil well                  | 100.00    | 100.00 | 100.00   |
| overpass                  | 100.00    | 100.00 | 100.00   |
| parking lot               | 100.00    | 100.00 | 100.00   |
| parking space             | 100.00    | 100.00 | 100.00   |
| railway                   | 100.00    | 100.00 | 100.00   |
| river                     | 100.00    | 100.00 | 100.00   |
| runway                    | 100.00    | 99.38  | 99.69    |
| runway marking            | 99.38     | 100.00 | 99.69    |
| shipping yard             | 100.00    | 100.00 | 100.00   |
| solar panel               | 100.00    | 100.00 | 100.00   |
| sparse residential        | 98.91     | 98.13  | 97.52    |
| storage tank              | 99.38     | 99.38  | 99.38    |
| swimming pool             | 100.00    | 100.00 | 100.00   |
| tennis court              | 100.00    | 99.38  | 99.69    |
| transformer station       | 99.38     | 100.00 | 99.69    |
| wastewater treatment plant| 99.38     | 99.38  | 99.38    |
Figure C.20: Confusion matrix for the pre-trained DenseNet161 model on the PatternNet dataset.
C.6 Resisc45

Resisc45 dataset is a publicly available benchmark for Remote Sensing Image Scene Classification (RE-SISC), created by Northwestern Polytechnical University (NWPU). This dataset contains 31500 images, covering 45 scene classes with 700 images in each class. The 45 scene classes are as follows: airplane, airport, baseball diamond, basketball court, beach, bridge, chaparral, church, circular farmland, cloud, commercial area, dense residential, desert, forest, freeway, golf course, ground track field, harbor, industrial area, intersection, island, lake, meadow, medium residential, mobile home park, mountain, overpass, palace, parking lot, railway, railway station, rectangular farmland, river, roundabout, runway, sea ice, ship, snowberg, sparse residential, stadium, storage tank, tennis court, terrace, thermal power station, and wetland. Accordingly, these classes contain a variety of spatial patterns, some homogeneous with respect to texture, some homogeneous with respect to color, others not homogeneous at all.

The images are with a size of 256x256 pixels in the RGB color space. The spatial resolution varies from about 30m to 0.2m per pixel for most of the scene classes except for the classes of island, lake, mountain, and snowberg that have lower spatial resolutions. The 31500 images cover more than 100 countries and regions all over the world, including developing, transition, and highly developed economies (Figure C.21). Our generated train, test and validation splits distribution is show on Figure C.22.

Detailed results for all pre-trained models are shown on Table C.26 and for all the models learned from scratch are presented on Table C.27. The best performing model is the pre-trained Vision Transformer model. The results on a class level are show on Table C.28 along with a confusion matrix on Figure C.23.

![Example images with labels from the Resisc45 dataset.](image)

Figure C.21: Example images with labels from the Resisc45 dataset.
Table C.26: Detailed results for pre-trained models on the Resisc45 dataset.

| Model         | Metric       | Accuracy  | Macro Precision | Weighted Precision | Macro Recall | Weighted Recall | Macro F1 score | Weighted F1 score | Avg. time / epoch (sec.) | Total time (sec.) | Best epoch |
|---------------|--------------|-----------|-----------------|--------------------|--------------|-----------------|----------------|-------------------|--------------------------|-----------------|------------|
| AlexNet       |              | 90.49     | 90.56           | 90.49              | 90.49        | 90.49           | 90.49          | 90.49             | 12.03                    | 385             | 22         |
| VGG16         |              | 93.90     | 93.91           | 93.90              | 93.90        | 93.89           | 93.89          | 93.89             | 39.87                    | 1196            | 20         |
| ResNet50      |              | 96.46     | 96.50           | 96.50              | 96.46        | 96.46           | 96.46          | 96.46             | 30.61                    | 1163            | 28         |
| ResNet152     |              | 96.54     | 96.57           | 96.57              | 96.54        | 96.54           | 96.54          | 96.54             | 65.11                    | 2409            | 27         |
| DenseNet161   |              | 96.51     | 96.53           | 96.53              | 96.51        | 96.51           | 96.51          | 96.51             | 72.05                    | 3098            | 33         |
| EfficientNetB0|              | 94.87     | 94.93           | 94.93              | 94.87        | 94.87           | 94.87          | 94.87             | 27.12                    | 678             | 15         |
| ConvNeXt      |              | 96.27     | 96.28           | 96.28              | 96.27        | 96.27           | 96.27          | 96.27             | 46.79                    | 1778            | 28         |
| Vision Transformer |         | 97.08   | 97.10           | 97.10              | 97.08        | 97.08           | 97.08          | 97.08             |                          |                 |            |
| MLP Mixer     |              | 95.95     | 95.99           | 95.99              | 95.95        | 95.96           | 95.96          | 95.96             | 35.62                    | 1033            | 19         |

Table C.27: Detailed results for models trained from scratch on the Resisc45 dataset.

| Model          | Metric       | Accuracy  | Macro Precision | Weighted Precision | Macro Recall | Weighted Recall | Macro F1 score | Weighted F1 score | Avg. time / epoch (sec.) | Total time (sec.) | Best epoch |
|----------------|--------------|-----------|-----------------|--------------------|--------------|-----------------|----------------|-------------------|--------------------------|-----------------|------------|
| AlexNet        |              | 82.16     | 82.29           | 82.29              | 82.16        | 82.16           | 82.10          | 82.10             | 10.91                    | 633             | 43         |
| VGG16          |              | 83.89     | 84.00           | 84.00              | 83.89        | 83.89           | 83.84          | 83.84             | 38.37                    | 2990            | 63         |
| ResNet50       |              | 92.33     | 92.40           | 92.40              | 92.33        | 92.33           | 92.33          | 92.33             | 31.31                    | 1941            | 47         |
| ResNet152      |              | 90.68     | 90.79           | 90.79              | 90.68        | 90.69           | 90.69          | 90.69             | 64.83                    | 4084            | 48         |
| DenseNet161    |              | 93.46     | 93.50           | 93.50              | 93.46        | 93.46           | 93.46          | 93.46             | 71.22                    | 5484            | 62         |
| EfficientNetB0 |              | 91.37     | 91.47           | 91.47              | 91.37        | 91.38           | 91.38          | 91.38             | 27.66                    | 2102            | 61         |
| ConvNeXt       |              | 85.94     | 86.30           | 86.30              | 85.94        | 85.94           | 85.94          | 85.94             | 46.51                    | 2279            | 34         |
| Vision Transformer |         | 81.02    | 81.18           | 81.18              | 81.02        | 81.02           | 81.02          | 81.02             | 50.21                    | 2611            | 37         |
| MLP Mixer      |              | 69.41     | 69.67           | 69.67              | 69.41        | 69.41           | 69.22          | 69.22             | 35.69                    | 1285            | 21         |
Table C.28: Per class results for the pre-trained Vision Transformer model on the Resisc45 dataset,

| Label                | Precision | Recall | F1 score |
|----------------------|-----------|--------|----------|
| airplane             | 99.28     | 98.57  | 98.92    |
| airport              | 95.89     | 100.00 | 97.90    |
| baseball_diamond     | 97.89     | 99.29  | 98.58    |
| basketball_court     | 97.22     | 100.00 | 98.59    |
| beach                | 98.59     | 100.00 | 99.29    |
| bridge               | 97.87     | 98.57  | 98.22    |
| chaparral            | 97.90     | 100.00 | 98.94    |
| church               | 90.85     | 92.14  | 91.49    |
| circular_farmland    | 98.59     | 100.00 | 99.29    |
| cloud                | 100.00    | 99.29  | 99.64    |
| commercial_area      | 95.07     | 96.43  | 95.74    |
| dense_residential    | 94.20     | 92.86  | 93.53    |
| desert               | 97.86     | 97.86  | 97.86    |
| forest               | 97.79     | 95.00  | 96.38    |
| freeway              | 99.27     | 97.14  | 98.19    |
| golf_course          | 98.58     | 99.29  | 98.93    |
| ground_track_field   | 100.00    | 99.29  | 99.64    |
| harbor               | 100.00    | 100.00 | 100.00   |
| industrial_area      | 94.96     | 94.29  | 94.62    |
| intersection         | 97.86     | 97.86  | 97.86    |
| island               | 98.59     | 100.00 | 99.29    |
| lake                 | 93.75     | 96.43  | 95.07    |
| meadow               | 95.00     | 95.00  | 95.00    |
| medium_residential   | 91.61     | 93.57  | 92.58    |
| mobile_home_park     | 97.22     | 100.00 | 98.59    |
| mountain             | 95.74     | 96.43  | 96.09    |
| overpass             | 99.25     | 94.29  | 96.70    |
| palace               | 91.91     | 89.29  | 90.58    |
| parking_lot          | 99.28     | 98.57  | 98.92    |
| railway              | 93.84     | 97.86  | 95.80    |
| railway_station      | 96.30     | 92.86  | 94.55    |
| rectangular_farmland | 91.95     | 97.86  | 94.81    |
| river                | 99.24     | 92.86  | 95.94    |
| roundabout           | 99.29     | 100.00 | 99.64    |
| runway               | 100.00    | 95.71  | 97.81    |
| sea_ice              | 100.00    | 98.57  | 99.28    |
| ship                 | 97.22     | 100.00 | 98.59    |
| snowberg             | 98.59     | 100.00 | 99.29    |
| sparse_residential   | 96.43     | 96.43  | 96.43    |
| stadium              | 97.90     | 100.00 | 98.94    |
| storage_tank         | 98.56     | 97.86  | 98.21    |
| tennis_court         | 98.54     | 96.43  | 97.47    |
| terrace              | 96.21     | 90.71  | 93.38    |
| thermal_power_station| 96.45     | 97.14  | 96.80    |
| wetland              | 97.01     | 92.86  | 94.89    |
Figure C.23: Confusion matrix for the pre-trained Vision Transformer model on the Resisc45 dataset.
C.7 RSI-CB256

RSI-CB256 [46] is a large scale remote sensing image classification benchmark via crowdsource data such as Open Street Map (OSM) data, ground objects in remote sensing images etc. It contains 35 categories and more than 24000 images with a size of 256x256 pixels (Figure C.24). A strict object category system according to the national standard of land-use classification in China and the hierarchical grading mechanism of ImageNet-1K has been established. Using crowd-source data as a supervisor facilitates machine self-learning through the Internet. The class distribution of the train, test and validation splits is presented in Figure C.25.

Detailed results for all pre-trained models are shown on Table C.29 and for all the models learned from scratch are presented on Table C.30. The best performing model is the pre-trained ResNet152 model. The results on a class level are show on Table C.31 along with a confusion matrix on Figure C.26.

![Figure C.24: Example images with labels from the RSI-CB256 dataset.](image1)

![Figure C.25: Class distribution for the RSI-CB256 dataset.](image2)
Table C.29: Detailed results for pre-trained models on the RSI-CB256 dataset.

| Model    | Accuracy | Macro Precision | Weighted Precision | Macro Recall | Weighted Recall | Macro F1 score | Weighted F1 score | Avg. time / epoch (sec.) | Total time (sec.) | Best epoch |
|----------|----------|-----------------|--------------------|--------------|-----------------|----------------|-------------------|--------------------------|------------------|------------|
| AlexNet  | 99.35    | 99.13           | 99.36              | 99.06        | 99.35           | 99.09          | 99.34             | 34.84                    | 1568             | 35         |
| VGG16    | 99.05    | 98.93           | 99.07              | 98.75        | 99.05           | 98.83          | 99.05             | 34.04                    | 885              | 16         |
| ResNet50 | 99.68    | 99.53           | 99.68              | 99.54        | 99.68           | 99.53          | 99.68             | 33.69                    | 1078             | 22         |
| ResNet152| 99.86    | 99.85           | 99.86              | 99.82        | 99.86           | 99.83          | 99.86             | 51.90                    | 1609             | 21         |
| DenseNet161 | 99.74     | 99.68           | 99.74              | 99.64        | 99.74           | 99.66          | 99.74             | 56.60                    | 2717             | 38         |
| EfficientNetB0 | 99.72 | 99.63           | 99.72              | 99.65        | 99.72           | 99.64          | 99.72             | 33.50                    | 1340             | 30         |
| ConvNeXt | 99.60    | 99.50           | 99.60              | 99.55        | 99.60           | 99.52          | 99.60             | 40.35                    | 1977             | 39         |
| Vision Transformer | 99.76 | 99.75           | 99.76              | 99.71        | 99.76           | 99.73          | 99.76             | 41.18                    | 1400             | 24         |
| MLP Mixer | 99.66    | 99.54           | 99.66              | 99.61        | 99.66           | 99.57          | 99.66             | 35.29                    | 1235             | 25         |

Table C.30: Detailed results for models trained from scratch on the RSI-CB256 dataset.

| Model       | Accuracy | Macro Precision | Weighted Precision | Macro Recall | Weighted Recall | Macro F1 score | Weighted F1 score | Avg. time / epoch (sec.) | Total time (sec.) | Best epoch |
|-------------|----------|-----------------|--------------------|--------------|-----------------|----------------|-------------------|--------------------------|------------------|------------|
| AlexNet     | 97.35    | 96.55           | 97.39              | 96.54        | 97.35           | 96.51          | 97.34             | 34.99                    | 2414             | 54         |
| VGG16       | 98.83    | 98.51           | 98.84              | 98.36        | 98.83           | 98.43          | 98.83             | 34.90                    | 2757             | 64         |
| ResNet50    | 98.83    | 98.51           | 98.84              | 98.36        | 98.83           | 98.43          | 98.83             | 36.39                    | 3166             | 72         |
| ResNet152   | 99.15    | 98.98           | 99.15              | 98.81        | 99.15           | 98.89          | 99.15             | 51.86                    | 4472             | 72         |
| DenseNet161 | 99.13    | 98.80           | 99.13              | 98.71        | 99.13           | 98.75          | 99.13             | 56.75                    | 4029             | 56         |
| EfficientNetB0 | 99.11 | 98.85           | 99.12              | 98.91        | 99.11           | 98.87          | 99.11             | 26.50                    | 2123             | 71         |
| ConvNeXt    | 98.44    | 97.75           | 98.45              | 97.74        | 98.44           | 97.73          | 98.44             | 36.93                    | 2622             | 56         |
| Vision Transformer | 98.12   | 97.52           | 98.13              | 97.12        | 98.12           | 97.31          | 98.12             | 41.08                    | 3204             | 63         |
| MLP Mixer   | 98.42    | 97.81           | 98.43              | 97.80        | 98.42           | 97.79          | 98.42             | 29.00                    | 2900             | 86         |
Table C.31: Per class results for the pre-trained ResNet152 model on the RSI-CB256 dataset.

| Label                  | Precision | Recall | F1 score |
|------------------------|-----------|--------|----------|
| airplane               | 100.00    | 100.00 | 100.00   |
| airport_runway         | 100.00    | 100.00 | 100.00   |
| artificial_grassland   | 100.00    | 100.00 | 100.00   |
| avenue                 | 100.00    | 99.08  | 99.54    |
| bare_land              | 98.30     | 100.00 | 99.47    |
| bridge                 | 98.95     | 100.00 | 99.47    |
| city_building          | 100.00    | 100.00 | 100.00   |
| coastline              | 100.00    | 98.91  | 99.45    |
| container              | 100.00    | 99.24  | 99.62    |
| crossroads             | 99.11     | 100.00 | 99.55    |
| dam                    | 100.00    | 100.00 | 100.00   |
| desert                 | 100.00    | 98.62  | 99.31    |
| dry_farm               | 100.00    | 100.00 | 100.00   |
| forest                 | 100.00    | 100.00 | 100.00   |
| green_farmland         | 100.00    | 100.00 | 100.00   |
| highway                | 100.00    | 97.73  | 98.85    |
| hirst                  | 100.00    | 100.00 | 100.00   |
| lakeshore              | 100.00    | 100.00 | 100.00   |
| mangrove               | 100.00    | 100.00 | 100.00   |
| marina                 | 100.00    | 100.00 | 100.00   |
| mountain               | 100.00    | 100.00 | 100.00   |
| parkinglot             | 98.94     | 100.00 | 99.47    |
| pipeline               | 100.00    | 100.00 | 100.00   |
| residents              | 100.00    | 100.00 | 100.00   |
| river                  | 100.00    | 100.00 | 100.00   |
| river_protection_forest| 100.00    | 100.00 | 100.00   |
| sand_dune              | 100.00    | 100.00 | 100.00   |
| sapling                | 100.00    | 100.00 | 100.00   |
| sea                    | 99.52     | 100.00 | 99.76    |
| shrubwoof              | 100.00    | 100.00 | 100.00   |
| snow_mountain          | 100.00    | 100.00 | 100.00   |
| sparce_forest          | 100.00    | 100.00 | 100.00   |
| storage_room           | 100.00    | 100.00 | 100.00   |
| stream                 | 100.00    | 100.00 | 100.00   |
| town                   | 100.00    | 100.00 | 100.00   |
Figure C.26: Confusion matrix for the pre-trained ResNet152 model on the RSI-CB256 dataset.
C.8  RSSCN7

RSSCN7 [47] is a scene classification dataset. The images are obtained from Google Earth. This dataset was collected for academic research. It contains a total of 2800 remote sensing images, which are organized into 7 scene classes: grass land, forest, farm land, parking lot, residential region, industrial region, and river/lake (Figure C.27). For each class there are 400 RGB images that are cropped on four different scales with 100 images per scale. Each image has a 400x400 pixels size. The main challenge of this dataset is the scale variations of the images. The class distribution over the train, test and validation splits is presented on Figure C.28.

Detailed results for all pre-trained models are shown on Table C.32 and for all the models learned from scratch are presented on Table C.33. The best performing model is the pre-trained Vision Transformer model. The results on a class level are shown on Table C.34 along with a confusion matrix on Figure C.29.

Figure C.27: Example images with labels from the RSSCN7 dataset.

Figure C.28: Class distribution for the RSSCN7 dataset.
Table C.32: Detailed results for pre-trained models on the RSSCN7 dataset.

| Model     | Accuracy | Macro Precision | Weighted Precision | Macro Recall | Weighted Recall | Macro F1 score | Weighted F1 score | Avg. time / epoch (sec.) | Total time (sec.) | Best epoch |
|-----------|----------|-----------------|--------------------|--------------|-----------------|----------------|-------------------|--------------------------|----------------|------------|
| AlexNet   | 91.96    | 92.05           | 92.05              | 91.96        | 91.96           | 91.92          | 91.92             | 3.19                     | 118            | 27         |
| VGG16     | 93.93    | 93.95           | 93.95              | 93.93        | 93.90           | 93.90          | 4.68              | 159                      | 19            | 24         |
| ResNet50  | 95.00    | 95.08           | 95.08              | 95.00        | 94.99           | 94.99          | 3.90              | 121                      | 21            | 21         |
| RestNet152| 95.00    | 95.07           | 95.07              | 95.00        | 95.01           | 95.01          | 7.09              | 241                      | 24            | 24         |
| DenseNet161 | 94.82  | 94.83           | 94.83              | 94.82        | 94.82           | 94.82          | 7.59              | 220                      | 19            | 19         |
| EfficientNetB0 | 95.54 | 95.56           | 95.56              | 95.54        | 95.54           | 95.54          | 3.79              | 163                      | 33            | 33         |
| ConvNeXt  | 94.64    | 94.76           | 94.76              | 94.64        | 94.61           | 94.61          | 5.23              | 183                      | 25            | 25         |
| Vision Transformer | 95.89 | 95.95           | 95.95              | 95.95        | 95.91           | 95.91          | 5.54              | 227                      | 31            | 31         |
| MLP Mixer | 95.18    | 95.23           | 95.23              | 95.18        | 95.17           | 95.17          | 4.30              | 86                       | 10            |           |

Table C.33: Detailed results for models trained from scratch on the RSSCN7 dataset.

| Model     | Accuracy | Macro Precision | Weighted Precision | Macro Recall | Weighted Recall | Macro F1 score | Weighted F1 score | Avg. time / epoch (sec.) | Total time (sec.) | Best epoch |
|-----------|----------|-----------------|--------------------|--------------|-----------------|----------------|-------------------|--------------------------|----------------|------------|
| AlexNet   | 80.54    | 80.64           | 80.64              | 80.54        | 80.45           | 80.45          | 6.97              | 697                      | 85             | 85         |
| VGG16     | 81.61    | 81.50           | 81.50              | 81.61        | 81.41           | 81.41          | 6.74              | 526                      | 63             | 63         |
| ResNet50  | 82.68    | 82.65           | 82.65              | 82.68        | 82.41           | 82.41          | 3.76              | 316                      | 69             | 69         |
| RestNet152 | 82.68  | 82.65           | 82.65              | 82.68        | 82.41           | 82.41          | 6.90              | 407                      | 44             | 44         |
| DenseNet161 | 87.32 | 87.55           | 87.55              | 87.32        | 87.38           | 87.38          | 8.50              | 595                      | 55             | 55         |
| EfficientNetB0 | 83.93 | 84.03           | 84.03              | 83.93        | 83.87           | 83.87          | 3.65              | 365                      | 93             | 93         |
| ConvNeXt  | 83.04    | 82.84           | 82.84              | 83.04        | 82.90           | 82.90          | 5.43              | 543                      | 87             | 87         |
| Vision Transformer | 86.07 | 86.17           | 86.17              | 86.07        | 86.00           | 86.00          | 5.52              | 453                      | 67             | 67         |
| MLP Mixer | 83.21    | 83.29           | 83.29              | 83.21        | 83.17           | 83.17          | 4.08              | 408                      | 100            |           |

Table C.34: Per class results for the pre-trained Vision Transformer model on the RSSCN7 dataset.

| Label       | Precision | Recall | F1 score |
|-------------|-----------|--------|----------|
| farm_land   | 97.40     | 93.75  | 95.54    |
| forest      | 100.00    | 98.75  | 99.37    |
| grass_land  | 91.57     | 95.00  | 93.25    |
| industrial_region | 92.59 | 93.75  | 93.17   |
| parking_lot | 94.94     | 93.75  | 94.34    |
| residential_region | 100.00 | 98.75  | 99.37   |
| river_lake  | 95.12     | 97.50  | 96.30    |
Figure C.29: Confusion matrix for the pre-trained Vision Transformer model on the RSSCN7 dataset.
C.9 SAT6

SAT-6 [48] consists of a total of 405000 image patches each of size 28x28 and covering 6 land cover classes - barren land, trees, grassland, roads, buildings and water bodies (Figure C.30). The authors of the dataset selected 324000 images for the training dataset and 81000 were selected as testing dataset. Additionally we have selected 20% of the images from the train dataset to create the validation split. The training and test datasets were selected from disjoint National Agriculture Imagery Program (NAIP) tiles. The specifications for the various land cover classes of SAT-6 were adopted from those used in the National Land Cover Data (NLCD) algorithm. The class distribution of the train, test and validation splits is presented on Figure C.30.

Detailed results for all pre-trained models are shown on Table C.35 and for all the models learned from scratch are presented on Table C.36. All pre-trained model obtained excellent result on the dataset with ResNet50, ResNet152, DenseNet161, ConvNeXt, Vision Transformer and MLPMixer achieving 100% accuracy. The results on a class level are show on Table C.37 along with a confusion matrix on Figure C.32 for the DenseNet161 model.

Figure C.30: Example images with labels from the SAT6 dataset.

![Example images with labels from the SAT6 dataset.](image)

Table C.35: Detailed results for pre-trained models on the SAT6 dataset.

| Model    | Accuracy  | Macro Precision | Weighted Precision | Macro Recall | Weighted Recall | Macro F1 score | Weighted F1 score | Avg. time / epoch (sec.) | Total time (sec.) | Best epoch |
|----------|-----------|-----------------|--------------------|--------------|-----------------|----------------|-------------------|-------------------------|------------------|------------|
| AlexNet  | 99.98     | 99.98           | 99.98              | 99.97        | 99.98           | 99.97         | 99.98             | 92.48                   | 5364            | 48         |
| VGG16    | 99.99     | 99.99           | 99.99              | 99.99        | 99.99           | 99.99         | 99.99             | 550.04                  | 29702           | 44         |
| ResNet50 | 100.00    | 100.00          | 100.00             | 100.00       | 100.00          | 100.00        | 100.00            | 410.33                  | 37340           | 81         |
| ResNet152| 100.00    | 100.00          | 100.00             | 100.00       | 100.00          | 100.00        | 100.00            | 872.87                  | 61974           | 61         |
| DenseNet161 | 100.00 | 100.00          | 100.00             | 100.00       | 100.00          | 100.00        | 100.00            | 970.39                  | 55312           | 47         |
| EfficientNetB0 | 99.99 | 99.99          | 99.99              | 99.99        | 99.99           | 99.99         | 99.99             | 363.00                  | 25702           | 44         |
| ConvNeXt | 100.00    | 100.00          | 100.00             | 100.00       | 100.00          | 100.00        | 100.00            | 580.04                  | 37340           | 81         |
| Vision Transformer | 100.00 | 100.00          | 100.00             | 100.00       | 100.00          | 100.00        | 100.00            | 692.50                  | 42262           | 57         |
| MLP Mixer | 100.00    | 100.00          | 100.00             | 100.00       | 100.00          | 100.00        | 100.00            | 476.34                  | 15243           | 22         |
Figure C.31: Class distribution for the SAT6 dataset.

Table C.36: Detailed results for models trained from scratch on the SAT6 dataset.

| Model          | Metric | Accuracy | Macro Precision | Weighted Precision | Macro Recall | Weighted Recall | Macro F1 score | Weighted F1 score | Avg. time / epoch (sec.) | Total time (sec.) | Best epoch |
|----------------|--------|----------|-----------------|--------------------|--------------|-----------------|----------------|-------------------|------------------------|------------------|------------|
| AlexNet        |        | 99.27    | 98.67           | 99.27              | 98.65        | 99.27           | 98.66          | 99.27             | 107.26                 | 10726            | 98         |
| VGG16          |        | 99.56    | 99.42           | 99.56              | 99.42        | 99.56           | 99.42          | 99.56             | 579.10                 | 57910            | 98         |
| ResNet50       |        | 100.00   | 100.00          | 100.00             | 100.00       | 100.00          | 100.00         | 100.00            | 457.04                 | 45704            | 99         |
| RestNet152     |        | 100.00   | 100.00          | 100.00             | 100.00       | 100.00          | 100.00         | 100.00            | 987.21                 | 98721            | 94         |
| DenseNet161    |        | 100.00   | 100.00          | 100.00             | 100.00       | 100.00          | 100.00         | 100.00            | 956.03                 | 95603            | 85         |
| EfficientNetB0 |        | 100.00   | 100.00          | 100.00             | 100.00       | 100.00          | 100.00         | 100.00            | 420.37                 | 42037            | 95         |
| ConvNeXt       |        | 100.00   | 100.00          | 100.00             | 100.00       | 100.00          | 100.00         | 100.00            | 627.69                 | 62769            | 97         |
| Vision Transformer |    | 100.00   | 100.00          | 100.00             | 100.00       | 100.00          | 100.00         | 100.00            | 687.12                 | 68712            | 95         |
| MLP Mixer      |        | 100.00   | 100.00          | 100.00             | 100.00       | 100.00          | 100.00         | 100.00            | 479.37                 | 47937            | 95         |

Table C.37: Per class results for the pre-trained DenseNet model on the SAT6 dataset.

| Label         | Precision | Recall | F1 score |
|---------------|-----------|--------|----------|
| buildings     | 100.00    | 100.00 | 100.00   |
| barren land   | 100.00    | 100.00 | 100.00   |
| trees         | 100.00    | 100.00 | 100.00   |
| grassland     | 100.00    | 100.00 | 100.00   |
| roads         | 100.00    | 100.00 | 100.00   |
| water bodies  | 100.00    | 100.00 | 100.00   |
Figure C.32: Confusion matrix for the pre-trained DenseNet161 model on the SAT6 dataset.
The SIRI-WHU dataset is a scene classification dataset comprised of 2400 images organized into 12 classes. Each class contains 200 images with a 2m spatial resolution and a size of 200×200 pixels (Figure C.33). It was collected from Google Earth (Google Inc.) by the Intelligent Data Extraction and Analysis of Remote Sensing (RS_IDEA) Group in Wuhan University. The 12 land-use classes contain agriculture, commercial, harbor, idle land, industrial, meadow, overpass, park, pond, residential, river, and water. This dataset mainly covers urban areas in China, which means it lacks diversity and is less challenging. The class distribution is presented on Figure C.34.

Detailed results for all pre-trained models are shown on Table C.38 and for all the models learned from scratch are presented on Table C.39. The best performing model is the pre-trained ResNet152 model. The results on a class level are shown on Table C.40 along with a confusion matrix on Figure C.35.

Figure C.33: Example images with labels from the SIRI-WHU dataset.
Table C.38: Detailed results for pre-trained models on the SIRI-WHU dataset.

| Model     | Accuracy | Macro Precision | Weighted Precision | Macro Recall | Weighted Recall | Macro F1 score | Weighted F1 score | Avg. time / epoch (sec.) | Total time (sec.) | Best epoch |
|-----------|----------|----------------|--------------------|--------------|-----------------|----------------|-------------------|-------------------------|------------------|-----------|
| AlexNet   | 92.29    | 92.64          | 92.64              | 92.29        | 92.29           | 92.31          | 92.31             | 4.28                    | 197              | 36        |
| VGG16     | 93.96    | 94.08          | 94.08              | 93.96        | 93.96           | 93.96          | 93.96             | 4.98                    | 214              | 33        |
| ResNet50  | 95.00    | 95.12          | 95.12              | 95.00        | 95.00           | 95.01          | 95.01             | 4.66                    | 191              | 31        |
| RestNet152| 96.25    | 96.27          | 96.27              | 96.25        | 96.25           | 96.24          | 96.24             | 6.65                    | 226              | 24        |
| DenseNet161| 95.63   | 95.64          | 95.64              | 95.63        | 95.63           | 95.61          | 95.61             | 7.30                    | 365              | 40        |
| EfficientNetB0 | 95.00 | 95.09          | 95.09              | 95.00        | 95.00           | 95.01          | 95.01             | 4.57                    | 329              | 62        |
| ConvNeXt  | 96.25    | 96.34          | 96.34              | 96.25        | 96.25           | 96.24          | 96.24             | 5.64                    | 203              | 26        |
| Vision Transformer | 95.63 | 95.73          | 95.73              | 95.63        | 95.63           | 95.63          | 95.63             | 5.37                    | 122              | 50        |
| MLP Mixer | 95.21    | 95.36          | 95.36              | 95.21        | 95.21           | 95.23          | 95.23             | 4.55                    | 150              | 23        |

Table C.39: Detailed results for models trained from scratch on the SIRI-WHU dataset.

| Model        | Accuracy | Macro Precision | Weighted Precision | Macro Recall | Weighted Recall | Macro F1 score | Weighted F1 score | Avg. time / epoch (sec.) | Total time (sec.) | Best epoch |
|--------------|----------|----------------|--------------------|--------------|-----------------|----------------|-------------------|-------------------------|------------------|-----------|
| AlexNet      | 83.75    | 83.83          | 83.83              | 83.75        | 83.75           | 83.66          | 83.66             | 3.54                    | 326              | 77        |
| VGG16        | 84.79    | 85.05          | 85.05              | 84.79        | 84.79           | 84.70          | 84.70             | 7.32                    | 732              | 93        |
| ResNet50     | 88.96    | 89.14          | 89.14              | 88.96        | 88.96           | 88.94          | 88.94             | 3.81                    | 305              | 65        |
| RestNet152   | 88.75    | 88.67          | 88.67              | 88.75        | 88.75           | 88.62          | 88.62             | 6.54                    | 608              | 78        |
| DenseNet161  | 86.67    | 87.38          | 87.38              | 86.67        | 86.67           | 86.56          | 86.56             | 7.49                    | 749              | 94        |
| EfficientNetB0 | 86.04 | 86.23          | 86.23              | 86.04        | 86.04           | 85.94          | 85.94             | 3.61                    | 238              | 51        |
| ConvNeXt     | 84.17    | 84.32          | 84.32              | 84.17        | 84.17           | 84.09          | 84.09             | 11.99                   | 1007             | 69        |
| Vision Transformer | 86.25 | 86.31          | 86.31              | 86.25        | 86.25           | 86.14          | 86.14             | 5.08                    | 503              | 84        |
| MLP Mixer    | 82.50    | 82.40          | 82.40              | 82.50        | 82.50           | 82.34          | 82.34             | 3.92                    | 392              | 98        |
Table C.40: Per class results for the pre-trained ResNet152 model on the SIRI-WHU dataset.

| Label      | Precision | Recall | F1 score |
|------------|-----------|--------|----------|
| agriculture| 100.00    | 100.00 | 100.00   |
| commercial | 100.00    | 97.50  | 98.73    |
| harbor     | 90.48     | 95.00  | 92.68    |
| idle_land  | 97.50     | 97.50  | 97.50    |
| industrial | 100.00    | 97.50  | 98.73    |
| meadow     | 92.11     | 87.50  | 89.74    |
| overpass   | 95.24     | 100.00 | 97.56    |
| park       | 92.31     | 90.00  | 91.14    |
| pond       | 100.00    | 100.00 | 100.00   |
| residential| 97.56     | 100.00 | 98.77    |
| river      | 92.50     | 92.50  | 92.50    |
| water      | 97.50     | 97.50  | 97.50    |

Figure C.35: Confusion matrix for the pre-trained ResNet152 model on the SIRI-WHU dataset.
C.11 CLRS

This dataset [50] is a database designed for the task named Continual/Lifelong learning for remote sensing image scene classification. The proposed CLRS dataset consists of 15000 remote sensing images divided into 25 scene classes covering over 100 countries (Figure C.36). The images have a spatial resolution between 0.26 8.85 meters. The data is acquired from multiple sources such as: Google Earth, Bing Map, Google Map, and Tianditu. The class distribution of the train, test and validation splits is presented on Figure C.37.

Detailed results for all pre-trained models are shown on Table C.41 and for all the models learned from scratch are presented on Table C.42. The best performing model is the pre-trained Vision Transformer model. The results on a class level are show on Table C.43 along with a confusion matrix on Figure C.38.

Figure C.36: Example images with labels from the CLRS dataset.
Figure C.37: Class distribution for the CLRS dataset.

Table C.41: Detailed results for pre-trained models on the CLRS dataset.

| Model          | Accuracy | Macro Precision | Weighted Precision | Macro Recall | Weighted Recall | Macro F1 score | Weighted F1 score | Avg. time / epoch (sec.) | Total time (sec.) | Best epoch |
|----------------|----------|-----------------|--------------------|--------------|-----------------|----------------|-------------------|------------------------|--------------------|------------|
| AlexNet        | 84.10    | 84.19           | 84.19              | 84.10        | 84.03           | 84.10          | 84.03             | 20.48                  | 635                | 21         |
| VGG16          | 89.90    | 89.97           | 89.97              | 89.90        | 89.90           | 89.90          | 89.90             | 20.23                  | 607                | 20         |
| ResNet50       | 91.57    | 91.67           | 91.67              | 91.57        | 91.58           | 91.58          | 91.58             | 18.60                  | 279                | 15         |
| ResNet52       | 91.90    | 91.99           | 91.99              | 91.90        | 91.91           | 91.91          | 91.91             | 31.96                  | 799                | 15         |
| DenseNet161    | 92.20    | 92.29           | 92.29              | 92.20        | 92.20           | 92.20          | 92.20             | 35.46                  | 993                | 18         |
| EfficientNetB0 | 90.50    | 90.61           | 90.61              | 90.50        | 90.49           | 90.49          | 90.49             | 19.73                  | 513                | 16         |
| ConvNetX      | 91.10    | 91.29           | 91.29              | 91.10        | 91.12           | 91.12          | 91.12             | 23.62                  | 496                | 11         |
| Vision Transformer | 93.20 | 93.29           | 93.29              | 93.20        | 93.22           | 93.22          | 93.22             | 25.32                  | 785                | 21         |
| MLP Mixer      | 90.10    | 90.21           | 90.21              | 90.10        | 90.05           | 90.05          | 90.05             | 19.75                  | 316                | 6          |
Table C.42: Detailed results for models trained from scratch on the CLRS dataset.

| Model     | Accuracy | Macro Precision | Weighted Precision | Macro Recall | Weighted Recall | Macro F1 score | Weighted F1 score | Avg. time / epoch (sec.) | Total time (sec.) | Best epoch |
|-----------|----------|-----------------|--------------------|--------------|-----------------|----------------|-------------------|--------------------------|------------------|------------|
| AlexNet   | 71.40    | 71.59           | 71.59              | 71.40        | 71.40           | 71.33          | 71.33             | 20.35                    | 2035             | 92         |
| VGG16     | 76.07    | 76.20           | 76.20              | 76.07        | 76.07           | 76.00          | 76.00             | 19.33                    | 1450             | 60         |
| ResNet50  | 85.57    | 85.72           | 85.72              | 85.57        | 85.57           | 85.57          | 85.57             | 19.43                    | 1788             | 77         |
| RestNet152| 82.30    | 82.47           | 82.47              | 82.30        | 82.30           | 82.19          | 82.19             | 32.05                    | 2373             | 60         |
| DenseNet161| 86.17   | 86.29           | 86.29              | 86.17        | 86.17           | 86.18          | 86.18             | 35.81                    | 2757             | 62         |
| EfficientNetB0| 82.27  | 82.55           | 82.55              | 82.27        | 82.27           | 82.31          | 82.31             | 20.71                    | 1512             | 58         |
| ConvNeXt  | 69.17    | 69.02           | 69.02              | 69.17        | 69.17           | 69.01          | 69.01             | 23.09                    | 2309             | 96         |
| Vision Transformer | 65.47 | 66.41           | 66.41              | 65.47        | 65.47           | 65.49          | 65.49             | 24.96                    | 1173             | 32         |
| MLP Mixer | 61.13    | 62.18           | 62.18              | 61.13        | 61.13           | 60.87          | 60.87             | 17.98                    | 809              | 30         |

Table C.43: Per class results for the pre-trained Vision Transformer model on the CLRS dataset.

| Label             | Precision | Recall | F1 score |
|-------------------|-----------|--------|----------|
| airport           | 97.48     | 96.67  | 97.07    |
| bare-land         | 92.00     | 95.83  | 93.88    |
| beach             | 99.15     | 97.50  | 98.32    |
| bridge            | 90.91     | 91.67  | 91.29    |
| commercial        | 79.84     | 85.83  | 82.73    |
| desert            | 97.50     | 97.50  | 97.50    |
| farmland          | 93.70     | 99.17  | 96.36    |
| forest            | 100.00    | 100.00 | 100.00   |
| golf-course       | 94.96     | 94.17  | 94.56    |
| highway           | 92.11     | 87.50  | 89.74    |
| industrial        | 88.79     | 85.83  | 87.29    |
| meadow            | 96.72     | 98.33  | 97.52    |
| mountain          | 99.15     | 97.50  | 98.32    |
| overpass          | 89.68     | 94.17  | 91.87    |
| park              | 85.60     | 89.17  | 87.35    |
| parking           | 98.25     | 93.33  | 95.73    |
| playground        | 95.04     | 95.83  | 95.44    |
| port              | 94.74     | 90.00  | 92.31    |
| railway           | 86.29     | 89.17  | 87.70    |
| railway-station   | 88.79     | 85.83  | 87.29    |
| residential       | 90.68     | 89.17  | 89.92    |
| river             | 90.32     | 93.33  | 91.80    |
| runway            | 98.33     | 98.33  | 98.33    |
| stadium           | 95.61     | 90.83  | 93.16    |
| storage-tank      | 96.55     | 93.33  | 94.92    |
Figure C.38: Confusion matrix for the pre-trained Vision Transformer model on the CLRS dataset.
C.12 RSD46-WHU

RSD46-WHU is a large-scale open dataset for scene classification in remote sensing images. The dataset is manually collected from Google Earth and Tianditu. The ground resolution of most classes is 0.5m, and the others are about 2m. There are 500-3000 images in each class. The RSD46-WHU dataset contains around 117000 images with 46 classes (Figure C.39). The images are not evenly distributed between classes and each class contains between 428 to 3000 images. The dataset comes with predefined train and test splits. For creating the validation split we used 20% of the images from the train split. The class distribution of the different splits is presented on Figure C.40.

Detailed results for all pre-trained models are shown on Table C.44 and for all the models learned from scratch are presented on Table C.45. The best performing model is the pre-trained DenseNet161 model. The results on a class level are shown on Table C.46 along with a confusion matrix on Figure C.41.

![Example images with labels from the RSD46-WHU dataset.](image)

### Table C.44: Detailed results for pre-trained models on the RSD46-WHU dataset.

| Model         | Accuracy | Macro Precision | Weighted Precision | Macro Recall | Weighted Recall | Macro F1 score | Weighted F1 score | Avg. Time / epoch (sec.) | Total time (sec.) | Best Epoch |
|---------------|----------|-----------------|--------------------|--------------|-----------------|----------------|-------------------|--------------------------|-------------------|------------|
| AlexNet       | 90.65    | 90.43           | 90.61              | 90.35        | 90.36           | 90.61          | 90.61             | 58.03                    | 2031              | 25         |
| VGG16         | 92.42    | 92.30           | 92.38              | 92.25        | 92.42           | 92.22          | 92.37             | 158.32                   | 4433              | 18         |
| ResNet50      | 94.16    | 94.07           | 94.15              | 94.18        | 94.16           | 94.11          | 94.14             | 123.27                   | 3205              | 16         |
| RestNet152    | 94.40    | 94.33           | 94.40              | 94.41        | 94.40           | 94.36          | 94.39             | 269.45                   | 7814              | 19         |
| DenseNet161   | 94.51    | 94.36           | 94.49              | 94.44        | 94.51           | 94.36          | 94.48             | 297.70                   | 68.47             | 13         |
| EfficientNetB0| 93.39    | 93.20           | 93.38              | 93.39        | 93.39           | 93.26          | 93.35             | 111.55                   | 2231              | 10         |
| ConvNeXt      | 93.63    | 93.61           | 93.67              | 93.47        | 93.63           | 93.48          | 93.60             | 196.20                   | 3924              | 10         |
| Vision Transformer | 94.24  | 94.38           | 94.23              | 94.08        | 94.24           | 94.16          | 94.20             | 210.37                   | 3997              | 9          |
| MLP Mixer     | 93.67    | 93.77           | 93.69              | 93.47        | 93.67           | 93.55          | 93.65             | 148.25                   | 3558              | 14         |
Table C.45: Detailed results for models trained from scratch on the RSD46-WHU dataset.

| Model         | Accuracy | Macro Precision | Weighted Precision | Macro Recall | Weighted Recall | Macro F1 score | Weighted F1 score | Avg time / epoch (sec.) | Total time (sec.) | Best epoch |
|---------------|----------|-----------------|--------------------|--------------|-----------------|-----------------|-------------------|------------------------|-----------------|------------|
| AlexNet       | 86.03    | 85.83           | 86.03              | 85.67        | 86.03           | 85.71           | 85.99             | 58.84                  | 3707            | 48         |
| VGG16         | 88.62    | 88.37           | 88.56              | 88.37        | 88.62           | 88.32           | 88.55             | 162.89                 | 8796            | 39         |
| ResNet50      | 90.55    | 90.40           | 90.53              | 90.26        | 90.55           | 90.30           | 90.52             | 127.53                 | 8672            | 53         |
| ResNet152     | 89.94    | 89.84           | 89.99              | 89.77        | 89.94           | 89.78           | 89.95             | 272.70                 | 19907           | 58         |
| DenseNet161   | 92.21    | 92.11           | 92.23              | 92.03        | 92.21           | 92.06           | 92.21             | 301.16                 | 15318           | 36         |
| EfficientNetB0| 90.61    | 90.57           | 90.61              | 90.23        | 90.61           | 90.37           | 90.58             | 113.93                 | 6446            | 40         |
| ConvNeXt      | 88.69    | 88.66           | 88.67              | 88.33        | 88.69           | 88.46           | 88.66             | 194.93                 | 11891           | 46         |
| Vision Transformer | 86.47  | 86.22           | 86.45              | 85.94        | 86.47           | 86.02           | 86.42             | 211.93                 | 9325            | 29         |
| MLP Mixer     | 81.25    | 81.56           | 81.59              | 80.11        | 81.25           | 80.51           | 81.19             | 148.42                 | 4149            | 12         |
Table C.46: Per class results for the pre-trained DenseNet161 model on the RSD46-WHU dataset.

| Label                                  | Precision | Recall  | F1 score |
|----------------------------------------|-----------|---------|----------|
| Airplane                               | 99.56     | 99.78   | 99.67    |
| Airport                                | 98.39     | 99.19   | 98.79    |
| Artificial dense forest land           | 87.11     | 86.90   | 87.01    |
| Artificial sparse forest land          | 87.06     | 82.55   | 84.75    |
| Bare land                              | 94.12     | 96.00   | 95.05    |
| Basketball court                       | 90.37     | 92.39   | 91.37    |
| Blue structured factory building       | 96.57     | 97.83   | 97.19    |
| Building                               | 82.44     | 83.40   | 82.92    |
| Construction site                      | 82.11     | 79.43   | 80.75    |
| Cross river bridge                     | 99.70     | 99.70   | 99.70    |
| Crossroads                             | 97.74     | 98.70   | 98.22    |
| Dense tall building                    | 94.35     | 94.35   | 94.35    |
| Dock                                   | 98.94     | 98.73   | 98.83    |
| Fish pond                              | 97.52     | 97.93   | 97.72    |
| Footbridge                             | 99.49     | 99.24   | 99.36    |
| Graff                                  | 98.37     | 93.79   | 96.03    |
| Grassland                              | 95.07     | 95.52   | 95.29    |
| Low scattered building                 | 96.15     | 97.49   | 96.82    |
| Lrregular farmland                     | 97.68     | 98.51   | 98.09    |
| Medium density scattered building      | 76.98     | 68.15   | 72.30    |
| Medium density structured building     | 89.58     | 92.11   | 90.82    |
| Natural dense forest land              | 95.40     | 96.89   | 96.14    |
| Natural sparse forest land             | 93.16     | 97.98   | 95.51    |
| Oiltank                                | 90.66     | 96.68   | 93.57    |
| Overpass                               | 99.19     | 98.13   | 98.66    |
| Parking lot                            | 96.49     | 96.07   | 96.28    |
| Plasticgreenhouse                      | 100.00    | 99.34   | 99.67    |
| Playground                             | 96.85     | 95.84   | 96.34    |
| Railway                                | 99.14     | 99.14   | 99.14    |
| Red structured factory building        | 97.78     | 98.66   | 98.22    |
| Refinery                               | 92.84     | 87.72   | 90.21    |
| Regular farmland                       | 95.20     | 94.80   | 95.00    |
| Scattered blue roof factory building   | 94.44     | 96.72   | 95.57    |
| Scattered red roof factory building    | 93.28     | 97.73   | 95.45    |
| Sewage plant-type-one                  | 95.06     | 96.25   | 95.65    |
| Sewage plant-type-two                  | 88.73     | 98.44   | 93.33    |
| Ship                                   | 99.56     | 99.33   | 99.45    |
| Solar power station                    | 99.78     | 99.78   | 99.78    |
| Sparse residential area                | 91.42     | 88.14   | 89.75    |
| Square                                 | 94.52     | 97.38   | 95.93    |
| Steelsmelter                           | 90.48     | 90.89   | 90.68    |
| Storage land                           | 99.03     | 96.52   | 97.76    |
| Tennis court                           | 95.93     | 91.38   | 93.60    |
| Thermal power plant                    | 88.95     | 85.19   | 87.03    |
| Vegetable plot                         | 94.12     | 92.59   | 93.35    |
| Water                                  | 99.02     | 99.51   | 99.26    |
Figure C.41: Confusion matrix for the pre-trained DenseNet161 model on the RSD46-WHU dataset.
C.13 Brazilian Coffee Scenes

The Brazilian Coffee Scenes dataset \cite{ref} consists of only two classes: coffee and non-coffee class. Each class has 1438 images with 64x64 pixels cropped from SPOT satellite images over four counties in the state of Minas Gerais, Brazil: Arceburgo, Guaranesia, Guaxupe, and Monte Santo (Figure C.42). The images in the dataset are in green, red and near-infrared spectral bands, since these are most useful and representative for distinguishing vegetation areas. The dataset is manually annotated by agricultural researchers. Images which contain coffee pixels in at least 85% of the image were assigned to the coffee class. Image with less than 10% of coffee pixels are assigned to the non-coffee class. The number of classes and the degree to which the data is tailored, should make this less challenging dataset. The class distribution is presented on Figure C.43.

Detailed results for all pre-trained models are shown on Table C.47 and for all the models learned from scratch are presented on Table C.48. The best performing model is the pre-trained MLPMixer model. The results on a class level are shown on Table C.49 along with a confusion matrix on Figure C.44.

Figure C.42: Example images with labels from the Brazilian Coffee Scenes dataset.

Figure C.43: Class distribution for the Brazilian Coffee Scenes dataset.
Table C.47: Detailed results for pre-trained models on the Brazilian Coffee Scenes dataset.

| Model       | Accuracy | Macro Precision | Weighted Precision | Macro Recall | Weighted Recall | Macro F1 score | Weighted F1 score | Avg. time / epoch (sec.) | Total time (sec.) | Best epoch |
|-------------|----------|-----------------|--------------------|--------------|----------------|----------------|------------------|------------------------|------------------|------------|
| AlexNet     | 89.58    | 89.59           | 89.59              | 89.58        | 89.58          | 89.58          | 1.48             | 43                     | 19               |            |
| VGG16       | 90.97    | 91.00           | 91.00              | 90.97        | 90.97          | 90.97          | 4.17             | 121                    | 19               |            |
| ResNet50    | 92.01    | 92.06           | 92.06              | 92.01        | 92.01          | 92.01          | 3.45             | 76                     | 12               |            |
| ResNet152   | 92.36    | 92.37           | 92.37              | 92.36        | 92.36          | 92.36          | 6.61             | 119                    | 8                |            |
| DenseNet161 | 92.71    | 92.81           | 92.81              | 92.71        | 92.71          | 92.71          | 7.33             | 176                    | 14               |            |
| EfficientNetB0 | 91.32    | 91.32           | 91.32              | 91.32        | 91.32          | 91.32          | 3.17             | 133                    | 32               |            |
| ConvNeXt    | 91.49    | 91.58           | 91.58              | 91.49        | 91.49          | 91.49          | 5.08             | 132                    | 16               |            |
| Vision Transformer | 92.01   | 92.03           | 92.03              | 92.01        | 92.01          | 92.01          | 5.07             | 76                     | 5                |            |
| MLP Mixer   | 93.06    | 93.07           | 93.07              | 93.06        | 93.05          | 93.05          | 3.94             | 67                     | 7                |            |

Table C.48: Detailed results for models trained from scratch on the Brazilian Coffee Scenes dataset.

| Model       | Accuracy | Macro Precision | Weighted Precision | Macro Recall | Weighted Recall | Macro F1 score | Weighted F1 score | Avg. time / epoch (sec.) | Total time (sec.) | Best epoch |
|-------------|----------|-----------------|--------------------|--------------|----------------|----------------|------------------|------------------------|------------------|------------|
| AlexNet     | 89.41    | 89.62           | 89.62              | 89.41        | 89.40          | 89.40          | 1.53             | 115                    | 60               |            |
| VGG16       | 89.41    | 89.45           | 89.45              | 89.41        | 89.41          | 89.41          | 5.95             | 440                    | 59               |            |
| ResNet50    | 89.24    | 89.39           | 89.39              | 89.24        | 89.23          | 89.23          | 4.55             | 296                    | 50               |            |
| ResNet152   | 88.54    | 88.56           | 88.56              | 88.54        | 88.54          | 88.54          | 7.95             | 469                    | 44               |            |
| DenseNet161 | 90.80    | 90.80           | 90.80              | 90.80        | 90.80          | 90.80          | 7.31             | 373                    | 36               |            |
| EfficientNetB0 | 85.42    | 85.71           | 85.71              | 85.42        | 85.39          | 85.39          | 3.26             | 326                    | 98               |            |
| ConvNeXt    | 84.38    | 84.39           | 84.39              | 84.38        | 84.37          | 84.37          | 5.09             | 509                    | 95               |            |
| Vision Transformer | 87.85   | 87.89           | 87.89              | 87.85        | 87.84          | 87.84          | 5.55             | 322                    | 43               |            |
| MLP Mixer   | 86.28    | 86.29           | 86.29              | 86.28        | 86.28          | 86.28          | 4.47             | 201                    | 30               |            |

Table C.49: Per class results for MLPMixer on the Brazilian Coffee Scenes dataset.

| Label | Precision | Recall | F1 score |
|-------|-----------|--------|----------|
| coffee | 92.18   | 94.10  | 93.13    |
| noncoffee | 93.97  | 92.01  | 92.98    |

Figure C.44: Confusion matrix for MLPMixer on the Brazilian Coffee Scenes dataset.
C.14 Optimal 31

The Optimal 31 dataset [52] is for remote sensing image scene classification. The dataset contains 31 classes, each class contains 60 images with a size of 256×256 pixels. Totaling 1860 aerial RGB images (Figure C.45). These classes include: airplane, airport, basketball court, baseball field, bridge, beach, bushes, crossroads, church, round farmland, business district, desert, harbor, dense houses, factory, forest, freeway, golf field, island, lake, meadow, medium houses, mountain, mobile house area, overpass, playground, parking lot, roundabout, runway, railway, and square farmland. It is considered challenging due to small number of images dispersed across many classes. We have generated train, test and validation splits for our study and their class distribution is presented on Figure C.46.

Detailed results for all pre-trained models are shown on Table C.50 and for all the models learned from scratch are presented on Table C.51. The best performing model is the pre-trained Vision Transformer model. The results on a class level are show on Table C.52 along with a confusion matrix on Figure C.47.

![Example images with labels from the Optimal 31 dataset.](image)

Figure C.45: Example images with labels from the Optimal 31 dataset.
Figure C.46: Class distribution for the Optimal 31 dataset.

Table C.50: Detailed results for pre-trained models on the Optimal 31 dataset.

| Model          | Metric   | Accuracy | Macro Precision | Weighted Precision | Macro Recall | Weighted Recall | Macro F1 score | Weighted F1 score | Avg. time / epoch (sec.) | Total time (sec.) | Best epoch |
|----------------|----------|----------|------------------|--------------------|--------------|-----------------|----------------|------------------|--------------------------|-----------------|------------|
| AlexNet        |          | 80.91    | 81.90            | 81.90              | 80.91        | 80.91           | 80.74          | 80.74            | 1.10                     | 45              | 31         |
| VGG16          |          | 88.71    | 89.58            | 89.58              | 88.71        | 88.79           | 88.71          | 88.79            | 2.97                     | 95              | 22         |
| ResNet50       |          | 92.20    | 92.85            | 92.85              | 92.20        | 92.25           | 92.25          | 92.25            | 2.58                     | 129             | 40         |
| ResNet152      |          | 92.47    | 92.99            | 92.99              | 92.47        | 92.47           | 92.47          | 94.43            | 4.62                     | 217             | 37         |
| DenseNet161    |          | 94.35    | 94.92            | 94.92              | 94.35        | 94.43           | 94.43          | 94.43            | 5.02                     | 306             | 51         |
| EfficientNetB0 |          | 91.67    | 92.04            | 92.04              | 91.67        | 91.67           | 91.60          | 91.60            | 2.25                     | 187             | 73         |
| ConvNeXt       |          | 93.01    | 93.33            | 93.33              | 93.01        | 92.99           | 92.99          | 92.99            | 3.50                     | 203             | 48         |
| Vision Transformer |      | 94.62    | 94.85            | 94.85              | 94.62        | 94.56           | 94.56          | 94.56            | 3.71                     | 126             | 24         |
| MLP Mixer      |          | 92.74    | 93.17            | 93.17              | 92.74        | 92.74           | 92.74          | 92.74            | 2.82                     | 141             | 40         |

Table C.51: Detailed results for models trained from scratch on the Optimal 31 dataset.

| Model          | Metric   | Accuracy | Macro Precision | Weighted Precision | Macro Recall | Weighted Recall | Macro F1 score | Weighted F1 score | Avg. time / epoch (sec.) | Total time (sec.) | Best epoch |
|----------------|----------|----------|------------------|--------------------|--------------|-----------------|----------------|------------------|--------------------------|-----------------|------------|
| AlexNet        |          | 55.11    | 55.61            | 55.61              | 55.11        | 55.11           | 54.24          | 54.24            | 1.23                     | 101             | 67         |
| VGG16          |          | 56.72    | 58.89            | 58.89              | 56.72        | 56.58           | 56.58          | 56.58            | 4.81                     | 409             | 70         |
| ResNet50       |          | 67.20    | 69.56            | 69.56              | 67.20        | 67.17           | 67.17          | 67.17            | 2.60                     | 161             | 47         |
| ResNet152      |          | 62.90    | 64.95            | 64.95              | 62.90        | 62.78           | 62.78          | 62.78            | 5.92                     | 314             | 38         |
| DenseNet161    |          | 71.24    | 72.01            | 72.01              | 71.24        | 71.24           | 70.65          | 70.65            | 5.16                     | 330             | 49         |
| EfficientNetB0 |          | 68.55    | 70.59            | 70.59              | 68.55        | 68.70           | 68.70          | 68.70            | 2.36                     | 156             | 51         |
| ConvNeXt       |          | 58.87    | 60.69            | 60.69              | 58.87        | 58.92           | 58.92          | 58.92            | 3.59                     | 330             | 77         |
| Vision Transformer |      | 62.63    | 63.89            | 63.89              | 62.63        | 62.32           | 62.32          | 62.32            | 3.79                     | 235             | 47         |
| MLP Mixer      |          | 59.14    | 60.36            | 60.36              | 59.14        | 58.47           | 58.47          | 58.47            | 3.26                     | 326             | 98         |
Table C.52: Per class results for the pre-trained Vision Transformer model on the Optimal 31 dataset.

| Label                     | Precision | Recall | F1 score |
|---------------------------|-----------|--------|----------|
| airplane                  | 100.00    | 100.00 | 100.00   |
| airport                   | 100.00    | 100.00 | 100.00   |
| baseball_diamond         | 92.31     | 100.00 | 96.00    |
| basketball_court         | 100.00    | 100.00 | 100.00   |
| beach                     | 100.00    | 100.00 | 100.00   |
| bridge                    | 100.00    | 91.67  | 95.65    |
| chaparral                 | 100.00    | 91.67  | 95.65    |
| circular_farmland        | 92.31     | 100.00 | 96.00    |
| commercial_area          | 85.71     | 100.00 | 92.31    |
| dense_residential        | 84.62     | 91.67  | 88.00    |
| desert                   | 100.00    | 91.67  | 95.65    |
| forest                   | 91.67     | 91.67  | 91.67    |
| freeway                  | 100.00    | 91.67  | 95.65    |
| golf_course              | 91.67     | 91.67  | 91.67    |
| ground_track_field       | 92.31     | 100.00 | 96.00    |
| harbor                   | 85.71     | 100.00 | 92.31    |
| industrial_area          | 84.62     | 91.67  | 88.00    |
| intersection             | 100.00    | 100.00 | 100.00   |
| island                   | 100.00    | 100.00 | 100.00   |
| lake                     | 91.67     | 91.67  | 91.67    |
| meadow                   | 83.33     | 83.33  | 83.33    |
| medium_residential       | 88.89     | 66.67  | 76.19    |
| mobile_home_park         | 90.91     | 83.33  | 86.96    |
| mountain                 | 100.00    | 100.00 | 100.00   |
| overpass                 | 92.31     | 100.00 | 96.00    |
| parking_lot              | 100.00    | 100.00 | 100.00   |
| railway                  | 92.31     | 100.00 | 96.00    |
| rectangular_farmland     | 100.00    | 83.33  | 90.91    |
| roundabout               | 100.00    | 100.00 | 100.00   |
| runway                   | 100.00    | 91.67  | 95.65    |
Figure C.47: Confusion matrix for the pre-trained Vision Transformer model on the Optimal 31 dataset.
C.15 So2Sat

This dataset [54] consists of co-registered synthetic aperture radar and multispectral optical image patches acquired by the Sentinel-1 and Sentinel-2 remote sensing satellites, and the corresponding local climate zones (LCZ) label. So2Sat has a total of 400673 images of size 32x32 pixels organized into 17 classes. Sample images are shown on Figure C.45.

The dataset is distributed over 42 cities across different continents and cultural regions of the world. The classes include: compact high rise, compact middle rise, compact low rise, open high rise, open middle rise, open low rise, lightweight low rise, large low rise, sparsely built, heavy industry, dense trees, scattered trees, bush scrub, low plants, bare rock or paved, bare soil or sand, and water.

The creators of So2Sat have provided different versions for train, test and validation splits for the dataset. The class distribution of the splits is depicted on Figure C.49. We are using Version 2 with only Sentinel 2 data. Version 2 provides a training set covering 42 cities around the world, a validation set covering western half of 10 other cities covering 10 cultural zones and a test set containing the eastern half of the 10 other cities.

Detailed results for all pre-trained models are shown on Table C.53 and for all the models learned from scratch are presented on Table C.54. The best performing model is the pre-trained Vision Transformer model. The results on a class level are shown on Table C.55 along with a confusion matrix on Figure C.50.

![Example images with labels from the So2Sat dataset.](https://github.com/zhu-xlab/So2Sat-LCZ42)

---

4available at So2Sat-LCZ42 repo [https://github.com/zhu-xlab/So2Sat-LCZ42]
Figure C.49: Class distribution for the So2Sat dataset.

Table C.53: Detailed results for pre-trained models on the So2Sat dataset.

| Model      | Metric       | Accuracy | Macro Precision | Weighted Precision | Macro Recall | Weighted Recall | Macro F1 score | Weighted F1 score | Avg. time / epoch (sec.) | Total time (sec.) | Best epoch |
|------------|--------------|----------|-----------------|--------------------|--------------|-----------------|----------------|-------------------|------------------------|---------------------|------------|
| AlexNet    | Accuracy     | 59.20    | 46.01           | 59.31              | 42.70        | 59.20           | 41.57          | 57.59             | 158.09                 | 1790                | 1          |
| VGG16      | Accuracy     | 65.38    | 57.30           | 64.34              | 50.00        | 65.38           | 49.64          | 63.00             | 716.09                 | 7877                | 1          |
| ResNet50   | Accuracy     | 61.90    | 51.01           | 60.88              | 48.45        | 61.90           | 48.35          | 60.41             | 565.55                 | 6221                | 1          |
| ResNet152  | Accuracy     | 65.17    | 56.66           | 64.48              | 53.42        | 65.17           | 52.93          | 63.75             | 1,200.64                | 13207               | 1          |
| DenseNet161| Accuracy     | 65.76    | 55.47           | 64.58              | 48.59        | 65.76           | 48.67          | 63.81             | 1,324.09                | 14784               | 1          |
| EfficientNetB0 | Accuracy | 65.80 | 56.30 | 65.64 | 53.37 | 65.80 | 53.65 | 64.77 | 510.45 | 5615 |
| ConvNeXt   | Accuracy     | 66.17    | 59.11           | 64.48              | 53.42        | 66.17           | 52.93          | 63.75             | 1,200.64                | 13207               | 1          |
| Vision Transformer | Accuracy | 65.80 | 56.30 | 65.64 | 53.37 | 65.80 | 53.65 | 64.77 | 510.45 | 5615 |
| MLP Mixer  | Accuracy     | 67.07    | 63.74           | 64.25              | 51.34        | 67.07           | 51.94          | 65.66             | 643.91                 | 7278                | 1          |

Table C.54: Detailed results for models trained from scratch on the So2Sat dataset.

| Model        | Metric       | Accuracy | Macro Precision | Weighted Precision | Macro Recall | Weighted Recall | Macro F1 score | Weighted F1 score | Avg. time / epoch (sec.) | Total time (sec.) | Best epoch |
|--------------|--------------|----------|-----------------|--------------------|--------------|-----------------|----------------|-------------------|------------------------|---------------------|------------|
| AlexNet      | Accuracy     | 56.51    | 41.86           | 54.97              | 40.70        | 56.51           | 39.72          | 54.65             | 174.74                 | 3320                | 4          |
| VGG16        | Accuracy     | 62.27    | 51.36           | 61.08              | 45.40        | 62.27           | 45.54          | 59.78             | 273.72                 | 13027               | 3          |
| ResNet50     | Accuracy     | 59.59    | 46.54           | 59.35              | 43.94        | 59.59           | 43.37          | 58.18             | 558.79                 | 10617               | 4          |
| ResNet152    | Accuracy     | 61.48    | 49.43           | 62.30              | 48.71        | 61.48           | 46.98          | 60.22             | 1,198.37                | 22769               | 4          |
| DenseNet161  | Accuracy     | 55.43    | 48.87           | 60.98              | 42.53        | 55.43           | 40.76          | 54.11             | 1,325.67                | 23862               | 3          |
| EfficientNetB0 | Accuracy | 65.17 | 53.75 | 64.00 | 50.34 | 65.17 | 50.36 | 63.88 | 499.21 | 11981 |
| ConvNeXt     | Accuracy     | 60.15    | 50.97           | 61.52              | 48.03        | 60.15           | 47.17          | 59.73             | 851.06                 | 15319               | 3          |
| Vision Transformer | Accuracy | 55.33 | 43.56 | 55.31 | 37.42 | 55.33 | 37.01 | 52.20 | 926.50 | 14824 |
| MLP Mixer    | Accuracy     | 53.58    | 42.31           | 53.80              | 36.73        | 53.58           | 36.61          | 51.19             | 651.31                 | 10421               | 1          |
Table C.55: Per class results for the pre-trained Vision Transformer model on the So2Sat dataset.

| Label                  | Precision | Recall | F1 score |
|------------------------|-----------|--------|----------|
| Compact high rise      | 62.37     | 21.80  | 32.31    |
| Compact middle rise    | 70.74     | 61.49  | 65.79    |
| Compact low rise       | 68.52     | 75.33  | 71.77    |
| Open high rise         | 76.54     | 59.39  | 66.89    |
| Open middle rise       | 76.54     | 59.39  | 66.89    |
| Open low rise          | 47.29     | 54.52  |          |
| Lightweight low rise   | 57.14     | 39.76  | 46.89    |
| Large low rise         | 87.11     | 84.87  | 85.98    |
| Sparsely built         | 67.30     | 45.80  | 54.51    |
| Heavy industry         | 39.39     | 69.49  | 50.28    |
| Dense trees            | 97.11     | 73.86  | 83.91    |
| Scattered trees        | 26.16     | 55.89  | 35.64    |
| Bush or scrub          | 15.22     | 1.80   | 3.22     |
| Low plants             | 60.68     | 90.55  | 72.66    |
| Bare rock or paved     | 79.38     | 37.56  | 50.99    |
| Bare soil or sand      | 62.05     | 32.87  | 42.97    |
| Water                  | 97.10     | 97.60  | 97.35    |

Figure C.50: Confusion matrix for the pre-trained Vision Transformer model on the So2Sat dataset.
The UC Merced dataset was extended in [55] for multi-label classification. The dataset still has the same number of 2100 images of 256x256 pixels size (Figure C.51). The difference is in the number of classes (labels) and the number of annotations (classes) an image belongs to. Each image in the dataset has been manually labeled with one or more (maximum seven) labels based on visual inspection in order to create the ground truth data (the multilabels are available at http://bigearth.eu/datasets). The total number of distinct class labels in the dataset is 17. The labels are: airplane, bare-soil, buildings, cars, chaparral, court, dock, field, grass, mobile-home, pavement, sand, sea, ship, tanks, trees, water. The average number of labels per image is 3.3. This dataset has no predefined train-test splits by the authors. For our study, we made appropriate splits and their distribution is presented on Figure C.52.

Detailed results for all pre-trained models are shown on Table C.56 and for all the models learned from scratch are presented on Table C.57. The best performing model is the pre-trained Vision Transformer model. The results on a class level are show on Table C.58 along with a confusion matrix on Figure C.53.

![Figure C.51: Example images with labels from the UC Merced multi-label dataset.](image1)

![Figure C.52: Label distribution for the UC Merced multi-label dataset.](image2)
Table C.56: Detailed results for pre-trained models on the UC Merced multi-label dataset.

| Model        | mAP   | Micro Precision | Macro Precision | Weighted Precision | Micro Recall | Macro Recall | Weighted Recall | Micro F1 score | Macro F1 score | Weighted F1 score | Avg. time / epoch (sec.) | Total time (sec.) | Best epoch |
|--------------|-------|-----------------|-----------------|--------------------|--------------|--------------|-----------------|----------------|----------------|---------------------|---------------------|--------------|------------|
| AlexNet      | 92.64 | 84.78           | 84.78           | 84.78              | 84.78       | 84.78        | 84.78           | 84.78          | 84.78          | 84.78               | 1.31                | 71           | 44         |
| VGG16        | 92.85 | 86.43           | 86.43           | 86.43              | 86.43       | 86.43        | 86.43           | 86.43          | 86.43          | 86.43               | 2.67                | 132          | 30         |
| ResNet50     | 95.66 | 92.67           | 92.67           | 92.67              | 92.67       | 92.67        | 92.67           | 92.67          | 92.67          | 92.67               | 2.76                | 124          | 35         |
| ResNet152    | 96.01 | 89.19           | 89.19           | 89.19              | 89.19       | 89.19        | 89.19           | 89.19          | 89.19          | 89.19               | 5.04                | 227          | 35         |
| DenseNet161  | 96.06 | 88.82           | 88.82           | 88.82              | 88.82       | 88.82        | 88.82           | 88.82          | 88.82          | 88.82               | 7.54                | 254          | 98         |
| EfficientNetB0 | 95.38 | 87.98           | 87.98           | 87.98              | 87.98       | 87.98        | 87.98           | 87.98          | 87.98          | 87.98               | 7.54                | 254          | 98         |
| Vision Transformer | 96.43 | 88.80           | 88.80           | 88.80              | 88.80       | 88.80        | 88.80           | 88.80          | 88.80          | 88.80               | 3.30                | 254          | 98         |
| MLP Mixer    | 96.34 | 88.62           | 94.38           | 88.75              | 87.99       | 88.16        | 89.31           | 90.77          | 88.21          | 2.26                | 132          | 35         |

Table C.57: Detailed results for models trained from scratch on the UC Merced multi-label dataset.

| Model        | mAP   | Micro Precision | Macro Precision | Weighted Precision | Micro Recall | Macro Recall | Weighted Recall | Micro F1 score | Macro F1 score | Weighted F1 score | Avg. time / epoch (sec.) | Total time (sec.) | Best epoch |
|--------------|-------|-----------------|-----------------|--------------------|--------------|--------------|-----------------|----------------|----------------|---------------------|---------------------|--------------|------------|
| AlexNet      | 75.52 | 72.54           | 67.64           | 70.90              | 73.87        | 63.95        | 73.20           | 64.95          | 71.73          | 1.03                | 103                | 91           | 91         |
| VGG16        | 76.80 | 74.33           | 72.59           | 73.65              | 78.53        | 70.75        | 78.78           | 71.14          | 75.77          | 3.24                | 324                | 99           | 99         |
| ResNet50     | 79.87 | 76.72           | 77.52           | 76.42              | 78.67        | 71.21        | 78.67           | 72.73          | 76.99          | 2.76                | 276                | 99           | 99         |
| ResNet152    | 73.66 | 76.89           | 69.85           | 74.78              | 73.80        | 65.05        | 73.52           | 66.81          | 73.92          | 5.06                | 506                | 86           | 86         |
| DenseNet161  | 85.41 | 81.30           | 84.62           | 81.81              | 79.52        | 76.19        | 79.52           | 80.40          | 79.63          | 5.06                | 487                | 72           | 72         |
| EfficientNetB0 | 79.87 | 78.45           | 74.10           | 76.91              | 75.85        | 72.13        | 75.85           | 72.73          | 76.25          | 2.23                | 252                | 99           | 99         |
| ConvNeXt     | 72.27 | 72.40           | 69.27           | 71.19              | 74.65        | 62.31        | 74.65           | 63.50          | 71.89          | 3.81                | 381                | 100          | 100        |
| Vision Transformer | 96.70 | 88.87           | 94.16           | 89.09              | 89.62        | 90.55        | 89.62           | 89.24          | 89.16          | 4.13                | 132          | 35         |
| MLP Mixer    | 96.34 | 88.62           | 94.38           | 88.75              | 87.99        | 88.16        | 89.31           | 90.77          | 88.21          | 2.26                | 132          | 35         |

Table C.58: Per label results for the pre-trained Vision Transformer model on the UC Merced multi-label dataset.

| Label       | mAP   | Micro Precision | Macro Precision | Weighted Precision | Micro Recall | Macro Recall | Weighted Recall | Micro F1 score | Macro F1 score | Weighted F1 score |
|-------------|-------|-----------------|-----------------|--------------------|--------------|--------------|-----------------|----------------|----------------|-------------------|
| airplane    | 100.00| 95.00           | 97.44           |                    |              |              |                 |                |                |                   |
| bare-soil  | 86.29 | 74.31           | 79.85           |                    |              |              |                 |                |                |                   |
| buildings  | 89.61 | 89.03           | 89.32           |                    |              |              |                 |                |                |                   |
| cars        | 87.36 | 86.86           | 87.11           |                    |              |              |                 |                |                |                   |
| chaparral  | 100.00| 95.65           | 97.78           |                    |              |              |                 |                |                |                   |
| court       | 100.00| 76.19           | 86.49           |                    |              |              |                 |                |                |                   |
| dock        | 100.00| 100.00          | 100.00          |                    |              |              |                 |                |                |                   |
| field       | 100.00| 85.71           | 92.31           |                    |              |              |                 |                |                |                   |
| grass       | 87.96 | 85.71           | 86.82           |                    |              |              |                 |                |                |                   |
| mobile-home | 90.00 | 90.00           | 90.00           |                    |              |              |                 |                |                |                   |
| pavement    | 83.39 | 97.29           | 89.80           |                    |              |              |                 |                |                |                   |
| sand        | 91.38 | 91.38           | 91.38           |                    |              |              |                 |                |                |                   |
| sea         | 100.00| 100.00          | 100.00          |                    |              |              |                 |                |                |                   |
| ship        | 100.00| 95.24           | 97.56           |                    |              |              |                 |                |                |                   |
| tanks       | 100.00| 90.00           | 94.74           |                    |              |              |                 |                |                |                   |
| trees       | 89.62 | 94.06           | 91.79           |                    |              |              |                 |                |                |                   |
| water       | 95.12 | 92.86           | 93.98           |                    |              |              |                 |                |                |                   |
Figure C.53: Confusion matrix for the pre-trained Vision Transformer model on the UC Merced multi-label dataset.
BigEarthNet is a new large-scale multi-label Sentinel-2 benchmark archive [58] [36]. The BigEarthNet consists of 590326 Sentinel-2 image patches, each of which is a section of: 120x120 pixels for 10m bands; 60x60 pixels for 20m bands; and 20x20 pixels for 60m bands. Each image patch is annotated by multiple land-cover classes (i.e., multi-labels) that are provided from the CORINE Land Cover database. It was constructed by selecting 125 Sentinel-2 tiles acquired between June 2017 and May 2018. Covering different countries and seasonal period. More precisely, the number of images acquired in autumn, winter, spring and summer seasons are 154943, 117156, 189276 and 128951 respectively. The image patches are geographically distributed across 10 countries (Austria, Belgium, Finland, Ireland, Kosovo, Lithuania, Luxembourg, Portugal, Serbia, Switzerland) of Europe. The images are stored in tiff format and accompanied with additional metadata in JSON format.

The authors provide a predefined set of train-validation-test splits. Additionally, they proposed 2 versions of the labels in the dataset.

The first version of the dataset contains 43 labels with an 3.0 labels per image (Figure C.55). The labels in this version are: Continuous urban fabric, Discontinuous urban fabric, Industrial or commercial units, Road and rail networks and associated land, Port areas, Airports, Mineral extraction sites, Construction sites, Green urban areas, Sport and leisure facilities, Non-irrigated arable land, Permanently irrigated land, Rice fields, Vineyards, Fruit trees and berry plantations, Olive groves, Pastures, Annual crops associated with permanent crops, Complex cultivation patterns, Land principally occupied by agriculture, with significant areas of natural vegetation, Agro-forestry areas, Broad-leaved forest, Coniferous forest, Mixed forest, Natural grassland, Moors and heathland, Sclerophyllous vegetation, Transitional woodland/shrub, Beaches, dunes, sands, Bare rock, Sparsely vegetated areas, Burnt areas, Inland marshes, Peatbogs, Salt marshes, Salines, Intertidal flats, Water courses, Water bodies, Coastal lagoons, Estuaries, Sea and ocean. The largest class (label), Mixed forest, appeared in 217119 image, whereas the label with fewest appearances, Burnt areas, appeared in 328 images. This high imbalance should make the dataset more challenging.

Detailed results for all pre-trained models are shown on Table C.59 and for all the models learned from scratch are presented on Table C.60. The best performing model is the pre-trained ResNet50 model. The results on a class level are show on Table C.61 along with a confusion matrix on Figure C.56.

The second version of the dataset contains 19 labels with 2.9 labels per image on average (Figure C.57). The labels contained here are: Urban fabric, Industrial or commercial units, Arable land, Permanent crops, Pastures, Complex cultivation patterns, Land principally occupied by agriculture, with significant areas of natural vegetation, Agro-forestry areas, Broad-leaved forest, Coniferous forest, Mixed forest, Natural grassland and sparsely vegetated areas, Moors, heath-land and sclerophyllous vegetation, Transitional woodland, shrub, Beaches, dunes, sands, Inland wetlands, Coastal wetlands, Inland waters, Marine waters. The label Mixed forest is most commonly found and is present in 176546 images, whereas Beaches, dunes, sands appears in 1536 images and is the least frequently used label. Sample images are shown on Figure C.54.

Detailed results for all pre-trained models are shown on Table C.62 and for all the models learned from scratch are presented on Table C.63. The best performing model is the pre-trained EfficientNetB0 model. The results on a class level are show on Table C.64 along with a confusion matrix on Figure C.58.
Figure C.54: Example images with labels from the BigEarthNet dataset.
C.17.1  BigEarthNet 43

Figure C.55: Label distribution for the BigEarthNet 43 dataset.

Table C.59: Detailed results for pre-trained models on the BigEarthNet 43 dataset.

| Model        | mAP  | Mean Precision | Mean Precision | Weighted Precision | Mean Recall | Mean Recall | Weighted Recall | Mean F1 score | Weighted F1 score | Avg. time / epoch (sec.) | Total time (sec.) | Best epoch |
|--------------|------|----------------|----------------|--------------------|-------------|-------------|----------------|---------------|-------------------|---------------------|--------------|------------|
| AlexNet      | 58.55| 80.15          | 61.88          | 79.67              | 72.14       | 51.99       | 72.14          | 75.91         | 55.62             | 75.48               | 89.85        | 7188       |
| VGG16        | 61.21| 80.71          | 64.71          | 80.29              | 72.74       | 53.97       | 72.74          | 76.52         | 57.74             | 76.08               | 542.30       | 12473      |
| ResNet50     | **66.26** | 81.99       | 67.47          | 81.64              | 74.14       | 58.15       | 74.14          | 78.77         | 61.87             | 77.54               | 414.18       | 9112       |
| ResNet152    | 64.07| 82.17          | 70.42          | 81.73              | 72.08       | 52.11       | 72.08          | 76.80         | 58.27             | 76.17               | 1011.69      | 144107     |
| DenseNet161  | 64.23| 81.87          | 68.31          | 81.39              | 72.63       | 53.58       | 72.63          | 76.97         | 58.80             | 76.48               | 969.67       | 145445     |
| EfficientNetB0 | 64.99 | 82.14       | 70.75          | 73.37              | 73.37       | 55.91       | 73.37          | 77.51         | 39.71             | 77.08               | 365.40       | 7308       |
| ConvNeXt     | 66.17| 81.87          | 69.24          | 81.31              | 73.95       | 56.11       | 73.95          | 77.61         | 61.12             | 77.23               | 642.81       | 10285      |
| Vision Transformer | 59.00 | 79.77       | 65.42          | 79.39              | 71.39       | 48.98       | 71.39          | 75.33         | 54.65             | 74.81               | 302.00       | 14742      |
| MLP-Mixer    | 59.65| 81.18          | 67.47          | 80.55              | 71.30       | 48.85       | 71.30          | 75.52         | 54.95             | 75.28               | 492.84       | 12321      |

80
Table C.60: Detailed results for models trained from scratch on the BigEarthNet 43 dataset.

| Model       | mAP  | Micro Precision | Macro Precision | Weighted Precision | Micro Recall | Macro Recall | Weighted Recall | Micro F1 score | Macro F1 score | Weighted F1 score | Avg. time / epoch (sec.) | Total time (sec.) | Best epoch |
|-------------|------|-----------------|-----------------|--------------------|--------------|--------------|-----------------|----------------|----------------|---------------------|------------------------|----------------|------------|
| AlexNet     | 56.08| 79.15           | 58.19           | 78.68              | 71.41        | 50.79        | 71.41           | 75.08          | 35.54          | 34.65               | 84.18                  | 5051           | 45         |
| VGG16       | 58.97| 80.56           | 64.94           | 80.13              | 71.99        | 48.02        | 71.99           | 76.01          | 35.38          | 35.49               | 544.28                 | 15764          | 14         |
| ResNet50    | 64.34| 82.07           | 67.66           | 81.65              | 75.47        | 55.64        | 75.47           | 77.53          | 60.14          | 57.12               | 409.87                 | 18854          | 31         |
| ResNet101   | 62.74| 80.72           | 66.55           | 80.30              | 72.96        | 53.88        | 72.96           | 76.64          | 38.59          | 56.52               | 478.00                 | 32486          | 22         |
| DenseNet64  | 65.39| 82.20           | 66.27           | 81.74              | 71.83        | 53.84        | 71.83           | 76.67          | 36.40          | 56.08               | 982.63                 | 20479          | 13         |
| EfficientNet-B0 | 62.17 | 81.23 | 66.61 | 80.00 | 70.01 | 52.02 | 70.01 | 75.69 | 36.94 | 56.48 | 364.13 | 11288 | 16 |
| ResNet50    | 64.67| 80.71           | 67.02           | 80.19              | 72.40        | 51.00        | 72.40           | 76.33          | 56.53          | 57.83               | 645.51                 | 24866          | 26         |
| DenseNet64  | 63.39| 82.20           | 66.27           | 81.74              | 71.83        | 53.84        | 71.83           | 76.67          | 36.40          | 56.08               | 982.63                 | 20479          | 13         |
| EfficientNet-B0 | 62.17 | 81.23 | 66.61 | 80.00 | 70.01 | 52.02 | 70.01 | 75.69 | 36.94 | 56.48 | 364.13 | 11288 | 16 |
| Vision Transformer | 57.41 | 79.12 | 63.50 | 78.74 | 71.20 | 47.06 | 71.20 | 74.93 | 52.49 | 74.31 | 709.86 | 20586 | 14 |
| MLP Mixer   | 58.77| 80.82           | 65.97           | 80.10              | 71.12        | 48.10        | 71.12           | 75.66          | 35.38          | 34.90               | 500.77                 | 15524          | 16         |

Table C.61: Per label results for the pre-trained ResNet50 model on the BigEarthNet 43 dataset.

| Label Category                                      | mAP  | Micro Precision | Macro Precision | Weighted Precision | Micro Recall | Macro Recall | Weighted Recall | Micro F1 score | Macro F1 score | Weighted F1 score |
|-----------------------------------------------------|------|-----------------|-----------------|--------------------|--------------|--------------|-----------------|----------------|----------------|------------------|
| Continuous urban fabric                            | 86.22| 80.76           | 83.40           |
| Discontinuous urban fabric                         | 82.80| 68.65           | 75.06           |
| Industrial or commercial units                     | 71.73| 43.73           | 54.34           |
| Road and rail networks and associated land         | 45.51| 45.69           | 45.60           |
| Port areas                                          | 55.17| 40.00           | 46.38           |
| Airports                                            | 57.89| 40.15           | 47.41           |
| Mineral extraction sites                            | 40.54| 47.07           | 43.56           |
| Dump sites                                          | 40.00| 26.51           | 31.88           |
| Construction sites                                  | 51.55| 31.45           | 39.06           |
| Green urban areas                                   | 46.18| 39.66           | 42.67           |
| Sport and leisure facilities                        | 43.18| 41.39           | 42.27           |
| Non-irrigated arable land                           | 87.42| 83.84           | 85.59           |
| Permanently irrigated land                          | 78.29| 55.81           | 65.17           |
| Rice fields                                         | 58.83| 64.98           | 61.75           |
| Vineyards                                           | 68.28| 50.71           | 58.20           |
| Fruit trees and berry plantations                   | 45.71| 56.13           | 50.38           |
| Olive groves                                        | 69.20| 53.50           | 60.35           |
| Pastures                                            | 82.21| 71.58           | 76.52           |
| Annual crops associated with permanent crops        | 61.07| 35.87           | 45.20           |
| Complex cultivation patterns                        | 75.10| 68.25           | 71.51           |
| Land principally occupied by agriculture, with significant areas of natural vegetation | 74.00| 62.83           | 67.96           |
| Agro-forestry areas                                 | 80.92| 80.28           | 80.60           |
| Broad-leaved forest                                 | 82.73| 73.50           | 77.85           |
| Coniferous forest                                   | 87.69| 86.35           | 87.01           |
| Mixed forest                                        | 83.26| 81.99           | 82.62           |
| Natural grassland                                   | 74.31| 44.00           | 55.27           |
| Moors and heathland                                 | 64.08| 46.18           | 53.68           |
| Sclerophyllous vegetation                           | 76.07| 68.70           | 72.20           |
| Transitional woodland/shrub                          | 73.78| 62.74           | 67.81           |
| Beaches, dunes, sands                               | 57.50| 62.44           | 59.87           |
| Bare rock                                           | 54.67| 73.87           | 62.84           |
| Sparsely vegetated areas                            | 45.95| 41.21           | 43.45           |
| Burnt areas                                         | 10.00| 2.78            | 4.35            |
| Inland marshes                                      | 64.59| 30.62           | 41.50           |
| Peatbogs                                            | 79.99| 60.93           | 69.17           |
| Salt marshes                                        | 61.67| 54.05           | 57.61           |
| Salines                                             | 73.12| 64.76           | 68.69           |
| Intertidal flats                                    | 61.76| 62.87           | 62.31           |
| Water courses                                       | 84.35| 67.79           | 75.17           |
| Water bodies                                        | 90.36| 77.90           | 83.67           |
| Coastal lagoons                                     | 91.23| 80.98           | 85.80           |
| Estuaries                                           | 83.25| 69.32           | 75.65           |
| Sea and ocean                                       | 99.39| 98.53           | 98.96           |
Figure C.56: Confusion matrix for the pre-trained ResNet50 model on the BigEarthNet 43 dataset.
Figure C.57: Label distribution for the BigEarthNet 19 dataset.
### Table C.62: Detailed results for pre-trained models on the BigEarthNet 19 dataset.

| Model          | mAP   | Micro Precision | Macro Precision | Weighted Precision | Micro Recall | Macro Recall | Weighted Recall | Micro F1 score | Macro F1 score | Weighted F1 score | Avg. time / epoch (sec.) | Total time (sec.) | Best epoch |
|----------------|-------|-----------------|-----------------|--------------------|--------------|--------------|-----------------|----------------|----------------|--------------------|-----------------------|-----------------|------------|
| AlexNet        | 77.15 | 80.90           | 75.60           | 80.58              | 73.59        | 66.06        | 73.59           | 77.07          | 70.04          | 76.77              | 90.43                  | 5245            | 48         |
| VGG16          | 78.42 | 81.53           | 77.61           | 81.02              | 75.92        | 66.27        | 75.92           | 77.45          | 79.32          | 76.49              | 77.11                  | 537.60          | 10758      |
| ResNet50       | 79.98 | 82.65           | 78.57           | 82.37              | 73.62        | 67.74        | 73.62           | 77.88          | 72.12          | 77.51              | 413.24                  | 7025            | 7          |
| ResNet152      | 79.78 | 82.58           | 80.36           | 82.41              | 73.95        | 66.57        | 73.95           | 78.01          | 71.79          | 77.57              | 874.56                  | 13993           | 6          |
| DenseNet161    | 79.69 | 81.92           | 78.55           | 81.83              | 74.42        | 66.99        | 74.42           | 77.99          | 71.61          | 77.72              | 976.93                  | 14654           | 5          |
| EfficientNetB0 | **80.22** | 82.87         | 80.56           | 82.61              | 74.36        | 66.32        | 74.36           | 78.36          | 72.14          | 78.09              | 366.35                  | 6228            | 7          |
| ConvNeXt       | 77.13 | 80.90           | 75.60           | 80.58              | 73.59        | 66.06        | 73.59           | 77.07          | 70.04          | 76.77              | 631.67                  | 9799            | 5          |
| Vision Transformer | 77.31 | 82.31         | 76.93           | 81.85              | 70.99        | 64.06        | 70.99           | 76.23          | 69.18          | 75.70              | 698.50                  | 15367           | 12         |
| MLP Mixer      | 77.29 | 81.41           | 78.12           | 80.97              | 73.20        | 64.35        | 73.20           | 77.90          | 69.68          | 76.62              | 488.68                  | 12217           | 15         |

### Table C.63: Detailed results for models trained from scratch on the BigEarthNet 19 dataset.

| Model          | mAP   | Micro Precision | Macro Precision | Weighted Precision | Micro Recall | Macro Recall | Weighted Recall | Micro F1 score | Macro F1 score | Weighted F1 score | Avg. time / epoch (sec.) | Total time (sec.) | Best epoch |
|----------------|-------|-----------------|-----------------|--------------------|--------------|--------------|-----------------|----------------|----------------|--------------------|-----------------------|-----------------|------------|
| AlexNet        | 75.71 | 80.27           | 74.63           | 79.88              | 72.73        | 64.83        | 72.73           | 76.31          | 68.89          | 75.96              | 86.78                  | 5120            | 44         |
| VGG16          | 77.99 | 80.45           | 75.61           | 80.21              | 74.91        | 67.63        | 74.91           | 77.58          | 70.90          | 77.28              | 542.24                 | 18436           | 19         |
| ResNet50       | 78.73 | 82.94           | 78.20           | 82.44              | 72.61        | 66.15        | 72.61           | 77.44          | 71.26          | 76.99              | 413.89                 | 26469           | 49         |
| ResNet152      | 78.52 | 81.06           | 75.86           | 81.02              | 74.69        | 68.18        | 74.69           | 77.74          | 71.34          | 77.55              | 875.20                 | 43760           | 35         |
| DenseNet161    | **79.73** | 82.24         | 77.81           | 82.05              | 74.77        | 67.99        | 74.77           | 78.33          | 71.98          | 78.08              | 975.34                 | 13211           | 17         |
| EfficientNetB0 | 79.21 | 82.23           | 78.89           | 82.02              | 74.66        | 66.53        | 74.66           | 78.28          | 71.65          | 78.01              | 359.16                 | 11493           | 17         |
| ConvNeXt       | 77.91 | 81.39           | 78.16           | 81.18              | 73.57        | 64.64        | 73.57           | 77.29          | 70.08          | 76.59              | 643.66                 | 24459           | 23         |
| Vision Transformer | 75.87 | 80.48           | 75.45           | 80.14              | 71.36        | 63.85        | 71.36           | 75.65          | 68.59          | 73.23              | 702.53                 | 21076           | 15         |
| MLP Mixer      | 77.01 | 81.39           | 77.37           | 81.12              | 72.59        | 64.34        | 72.59           | 76.74          | 69.74          | 76.42              | 495.88                  | 15868           | 17         |

### Table C.64: Per label results for the pre-trained EfficientNetB0 model on the BigEarthNet 19 dataset.

| Urban fabric          | 83.86 | 72.64 | 77.85 |
|-----------------------|-------|-------|-------|
| Industrial or commercial units | 74.70 | 39.85 | 51.97 |
| Arable land           | 89.67 | 81.51 | 85.40 |
| Permanent crops       | 81.17 | 53.17 | 64.25 |
| Pastures              | 80.76 | 73.12 | 76.75 |
| Complex cultivation patterns | 75.31 | 67.58 | 71.23 |
| Land principally occupied by agriculture, with significant areas of natural vegetation | 73.83 | 61.14 | 66.89 |
| Agro-forestry areas   | 84.68 | 75.30 | 79.99 |
| Broad-leaved forest   | 81.81 | 74.04 | 77.73 |
| Coniferous forest     | 88.37 | 84.93 | 86.61 |
| Mixed forest          | 82.57 | 82.32 | 82.45 |
| Natural grassland and sparsely vegetated areas | 74.06 | 43.05 | 54.45 |
| Moors, heathland and sclerophyllous vegetation | 72.49 | 64.73 | 68.39 |
| Transitional woodland, shrub | 72.49 | 63.35 | 67.61 |
| Beaches, dunes, sands | 64.09 | 52.49 | 57.71 |
| Inland wetlands       | 80.46 | 51.43 | 62.75 |
| Coastal wetlands      | 81.07 | 44.19 | 57.20 |
| Inland waters         | 90.33 | 76.76 | 83.00 |
| Marine waters         | 99.01 | 97.96 | 98.48 |
Figure C.58: Confusion matrix for the pre-trained EfficientNetB0 model on the BigEarthNet 19 dataset.
MLRSNet [56] is a multi-label high spatial resolution remote sensing dataset for semantic scene understanding. It is composed of high-resolution optical satellite or aerial RGB images. MLRSNet contains a total of 109161 images (Figure C.59) within 46 scene categories, and each image has at least one of 60 predefined labels. The number of labels associated with each image varies between 1 and 13, but averages at 5.0 labels per image (Figure C.60). The labels annotating the images are: airplane, airport, bare soil, baseball diamond, basketball court, beach, bridge, buildings, cars, cloud, containers, crosswalk, dense residential area, desert, dock, factory, field, football field, forest, golf course, grass, greenhouse, gully, harbor, intersection, island, lake, mobile home, mountain, overpass, park, parking lot, parkway, pavement, railway station, river, road, roundabout, runway, sand, sea, ships, snow, snowberg, sparse residential area, stadium, swimming pool, tanks, tennis court, terrace, trail, transmission tower, trees, water, chaparral, wetland, wind turbine. The dataset does not have predefined train-tests splits.

Detailed results for all pre-trained models are shown on Table C.65 and for all the models learned from scratch are presented on Table C.66. The best performing model is the pre-trained ResNet152 model. The results on a class level are show on Table C.67 along with a confusion matrix on Figure C.61.

Figure C.59: Example images with labels from the MLRSNet dataset.

Table C.65: Detailed results for pre-trained models on the MLRSNet dataset.

| Model         | mAP  | Micro Precision | Macro Precision | Weighted Precision | Micro Recall | Macro Recall | Weighted Recall | Micro F1 score | Macro F1 score | Weighted F1 score | Avg. time / epoch (sec.) | Total time (sec.) | Best epoch |
|---------------|------|-----------------|----------------|--------------------|---------------|--------------|----------------|-----------------|----------------|--------------------|------------------------|------------------|------------|
| AlexNet       | 93.40| 87.91           | 87.37          | 88.15              | 88.54         | 88.95        | 88.54          | 88.24           | 87.73          | 88.25              | 34.09                  | 1125             | 23         |
| VGG16         | 96.63| 94.56           | 93.03          | 95.73              | 99.39         | 99.06        | 99.39          | 98.48           | 98.18          | 98.48              | 132.24                 | 3306             | 15         |
| ResNet50      | 96.27| 91.33           | 91.54          | 91.72              | 91.79         | 91.79        | 91.79          | 91.03           | 92.00          | 91.00              | 101.67                 | 1726             | 16         |
| ResNet152     | 96.43| 91.83           | 91.84          | 91.74              | 92.27         | 92.27        | 92.27          | 91.28           | 92.26          | 91.25              | 214.11                 | 5781             | 17         |
| DenseNet161   | 96.31| 91.61           | 91.28          | 91.85              | 92.18         | 90.85        | 91.23          | 91.27           | 91.21          | 91.27              | 237.35                 | 6171             | 16         |
| EfficientNetB0| 95.39| 91.35           | 91.37          | 90.90              | 90.52         | 90.59        | 90.75          | 90.75           | 90.47          | 90.67              | 86.80                  | 2604             | 20         |
| ConvNeXt      | 95.81| 91.04           | 91.12          | 90.80              | 91.90         | 90.80        | 91.90          | 91.10           | 90.81          | 91.00              | 155.65                 | 3580             | 13         |
| Vision Transformer | 95.41| 91.41           | 91.89          | 91.84              | 91.75         | 91.75        | 91.75          | 91.75           | 91.75          | 91.75              | 170.90                 | 3589             | 11         |
| MLP Mixer     | 95.05| 90.77           | 91.21          | 90.83              | 89.14         | 89.23        | 89.14          | 89.95           | 89.86          | 89.86              | 121.38                 | 1942             | 6          |
Table C.66: Detailed results for models trained from scratch on the MLRSNet dataset.

| Model       | mAP  | Micro Precision | Macro Precision | Micro Recall | Macro Recall | Weighted Recall | Micro F1 Score | Macro F1 Score | Weighted F1 Score | Avg. time / epoch (sec.) | Total time (sec.) | Best epoch |
|-------------|------|-----------------|-----------------|--------------|--------------|-----------------|----------------|----------------|-------------------|--------------------------|------------------|-----------|
| AlexNet     | 90.85| 86.53           | 83.69           | 86.00        | 86.56        | 86.54           | 86.54          | 86.79          | 86.58             | 34.92                    | 2549             | 58        |
| VGG16       | 91.52| 86.61           | 83.24           | 87.00        | 87.98        | 88.23           | 87.98          | 87.30          | 85.33             | 132.22                   | 7272             | 40        |
| ResNet50    | 95.26| 90.65           | 90.76           | 90.68        | 89.42        | 89.33           | 89.42          | 90.03          | 90.37             | 102.26                   | 6238             | 46        |
| ResNet152   | 93.98| 89.47           | 89.92           | 89.54        | 88.45        | 88.55           | 88.45          | 88.96          | 88.51             | 214.47                   | 14155            | 51        |
| DenseNet161 | 94.74| 90.23           | 89.59           | 90.23        | 88.13        | 88.86           | 88.13          | 89.17          | 88.87             | 237.06                   | 11422            | 33        |
| EfficientNetB0 | 94.40| 89.90           | 89.09           | 89.99        | 89.22        | 89.19           | 89.22          | 89.56          | 89.54             | 89.34                    | 1054             | 87        |
| ConvNeXt    | 90.71| 87.86           | 84.80           | 88.00        | 85.38        | 84.73           | 85.38          | 86.60          | 84.36             | 159.35                   | 5896             | 22        |
| Vision Transformer | 97.25| 85.78           | 82.28           | 85.81        | 84.64        | 84.64           | 85.20          | 85.20          | 85.03             | 170.71                   | 5975             | 20        |
| MLP Mixes   | 85.28| 84.45           | 82.59           | 84.45        | 82.19        | 82.19           | 82.19          | 83.31          | 83.01             | 123.20                   | 3080             | 10        |

Figure C.60: Label distribution for the MLRSNet dataset.
Table C.67: Per label results for the pre-trained ResNet152 model on the MLRSNet dataset.

| Label                        | Precision 0.5 | Precision 0.7 | Recall 0.5  |
|------------------------------|---------------|---------------|------------|
| airplane                     | 88.48         | 88.10         | 88.29      |
| airport                      | 86.95         | 79.73         | 83.18      |
| bare soil                    | 83.48         | 81.75         | 82.61      |
| baseball diamond             | 98.99         | 99.39         | 99.19      |
| basketball court             | 89.32         | 92.08         | 90.68      |
| beach                        | 99.40         | 99.20         | 99.30      |
| bridge                       | 95.92         | 92.99         | 94.43      |
| buildings                    | 93.97         | 89.90         | 91.89      |
| cars                         | 85.15         | 89.91         | 87.47      |
| cloud                        | 99.17         | 99.72         | 99.45      |
| containers                   | 99.80         | 99.80         | 99.80      |
| crosswalk                    | 82.61         | 73.08         | 77.55      |
| dense residential area       | 99.70         | 95.90         | 97.76      |
| desert                       | 98.64         | 100.00        | 99.31      |
| dock                         | 99.02         | 98.27         | 98.64      |
| factory                      | 91.37         | 82.24         | 86.57      |
| field                        | 92.21         | 92.15         | 92.18      |
| football field               | 67.03         | 85.12         | 75.00      |
| forest                       | 89.22         | 91.73         | 90.46      |
| freeway                      | 99.18         | 99.42         | 99.30      |
| golf course                  | 99.14         | 97.46         | 98.29      |
| grass                        | 88.68         | 86.83         | 87.75      |
| greenhouse                   | 98.85         | 99.04         | 98.94      |
| gully                        | 90.54         | 93.17         | 91.84      |
| habor                        | 99.02         | 98.27         | 98.64      |
| intersection                 | 75.81         | 94.00         | 83.93      |
| island                       | 99.60         | 98.82         | 99.21      |
| lake                         | 97.44         | 98.80         | 98.11      |
| mobile home                  | 64.29         | 87.10         | 73.97      |
| mountain                     | 97.99         | 95.37         | 96.66      |
| overpass                     | 94.10         | 93.52         | 93.81      |
| park                         | 90.70         | 91.05         | 90.87      |
| parking lot                  | 74.81         | 57.65         | 65.12      |
| parkway                      | 90.32         | 90.69         | 90.51      |
| pavement                     | 96.36         | 96.28         | 96.32      |
| railway                      | 90.69         | 94.09         | 92.36      |
| railway station              | 88.32         | 83.07         | 85.61      |
| river                        | 98.80         | 99.20         | 99.00      |
| road                         | 91.85         | 91.41         | 91.63      |
| roundabout                   | 97.54         | 97.54         | 97.54      |
| runway                       | 99.24         | 86.95         | 92.69      |
| sand                         | 98.37         | 98.68         | 98.53      |
| sea                          | 99.06         | 98.80         | 98.93      |
| ships                        | 89.98         | 87.59         | 88.77      |
| snow                         | 96.39         | 89.90         | 93.03      |
| snowberg                     | 87.18         | 98.88         | 92.66      |
| sparse residential area      | 98.26         | 96.58         | 97.41      |
| stadium                      | 92.37         | 95.74         | 94.02      |
| swimming pool                | 93.53         | 79.49         | 85.94      |
| tanks                        | 95.10         | 100.00        | 97.49      |
| tennis court                 | 98.54         | 94.60         | 96.53      |
| terrace                      | 91.38         | 97.89         | 94.52      |
| track                        | 93.88         | 94.39         | 94.13      |
| trail                        | 79.91         | 78.92         | 79.41      |
| transmission tower           | 99.42         | 98.65         | 99.03      |
| trees                        | 91.47         | 93.29         | 92.37      |
| water                        | 95.85         | 89.58         | 92.61      |
| chaparral                    | 96.53         | 94.24         | 95.37      |
| wetland                      | 89.87         | 88.29         | 89.07      |
| wind turbine                 | 99.76         | 99.76         | 99.76      |
Figure C.61: Confusion matrix for the pre-trained ResNet152 model on the MLRSNet dataset.
C.19 DFC15

DFC15 [57] is a multi-label dataset created from the semantic segmentation dataset, DFC15 (IEEE GRSS data fusion contest, 2015), which was published and first used in 2015 IEEE GRSS Data Fusion Contest. The dataset is acquired over Zeebrugge with an airborne sensor, which is 300m off the ground. In total, 7 tiles are collected in DFC dataset, and each of them is pixels with a spatial resolution of 5cm. All tiles in DFC15 dataset are labeled in pixel-level, and each pixel is categorized into 8 distinct object classes: impervious, water, clutter, vegetation, building, tree, boat, and car. As a result of this process, the dataset contains 3342 images with a size of 600x600 pixels (Figure C.62). The images are annotated with one or more of the 8 labels in the dataset, with an average of 2.8 labels per image (Figure C.63). The most frequent labels is *impervious* and it appears in 3133 image. The label *tree* is least frequent and it appears in 258 images.

Detailed results for all pre-trained models are shown on Table C.68 and for all the models learned from scratch are presented on Table C.69. The best performing model is the pre-trained ConvNeXt model. The results on a class level are show on Table C.70 along with a confusion matrix on Figure C.64.
Table C.68: Detailed results for pre-trained models on the DFC15 dataset.

| Model      | mAP   | Micro Precision | Macro Precision | Weighted Precision | Micro Recall | Macro Recall | Weighted Recall | Micro F1 score | Macro F1 score | Weighted F1 score | Avg. time / epoch (sec.) | Total time (sec.) | Best epoch |
|------------|-------|-----------------|-----------------|--------------------|--------------|--------------|-----------------|----------------|----------------|---------------------|------------------------|-----------------|------------|
| AlexNet    | 94.06 | 92.33           | 89.03           | 92.32              | 91.01        | 91.67        | 87.52           | 91.60          | 7.74           | 325                 | 32                     |
| VGG16      | 96.57 | 94.09           | 91.75           | 94.30              | 92.60        | 93.34        | 89.79           | 93.30          | 8.94           | 286                 | 22                     |
| ResNet50   | 97.66 | 95.21           | 94.19           | 95.19              | 93.50        | 93.50        | 94.35           | 94.31          | 8.49           | 351                 | 29                     |
| ResNet152  | 97.60 | 95.08           | 93.78           | 95.04              | 93.97        | 93.97        | 94.52           | 94.46          | 9.45           | 444                 | 37                     |
| DenseNet161| 97.53 | 95.07           | 93.52           | 95.03              | 94.71        | 94.71        | 94.89           | 94.85          | 9.54           | 544                 | 47                     |
| EfficientNetB0 | 96.79 | 95.54           | 94.09           | 95.31              | 94.08        | 94.08        | 94.81           | 94.77          | 8.33           | 583                 | 60                     |
| ConvNeXt   | **97.99** | 94.99           | 93.84           | 94.98              | 94.24        | 94.24        | 94.61           | 94.58          | 8.72           | 471                 | 44                     |
| Vision Transformer | 97.82 | 96.40           | 94.75           | 96.33              | 93.34        | 93.34        | 94.84           | 94.77          | 8.76           | 219                 | 15                     |
| MLP Mixer  | 97.94 | 95.23           | 94.29           | 95.20              | 93.92        | 93.92        | 94.57           | 94.53          | 8.18           | 229                 | 18                     |

Table C.69: Detailed results for models trained from scratch on the DFC15 dataset.

| Model      | mAP   | Micro Precision | Macro Precision | Weighted Precision | Micro Recall | Macro Recall | Weighted Recall | Micro F1 score | Macro F1 score | Weighted F1 score | Avg. time / epoch (sec.) | Total time (sec.) | Best epoch |
|------------|-------|-----------------|-----------------|--------------------|--------------|--------------|-----------------|----------------|----------------|---------------------|------------------------|-----------------|------------|
| AlexNet    | 88.10 | 90.40           | 84.01           | 90.16              | 85.57        | 85.57        | 87.92           | 87.69          | 7.83           | 783                 | 99                     |
| VGG16      | 89.87 | 91.07           | 86.30           | 91.63              | 87.37        | 87.37        | 89.16           | 88.98          | 8.50           | 799                 | 79                     |
| ResNet50   | 94.67 | 92.88           | 89.33           | 92.84              | 91.75        | 91.75        | 92.32           | 92.26          | 8.92           | 464                 | 37                     |
| ResNet152  | 94.19 | 92.05           | 89.36           | 91.91              | 89.96        | 89.96        | 90.99           | 90.82          | 9.66           | 647                 | 52                     |
| DenseNet161| **95.85** | 94.23           | 92.10           | 94.19              | 92.28        | 92.28        | 93.24           | 93.15          | 9.89           | 613                 | 47                     |
| EfficientNetB0 | 93.97 | 93.90           | 91.67           | 93.77              | 91.91        | 91.91        | 92.90           | 92.75          | 8.47           | 686                 | 66                     |
| ConvNeXt   | 89.56 | 91.08           | 87.12           | 90.85              | 87.47        | 87.47        | 89.24           | 89.03          | 8.80           | 880                 | 91                     |
| Vision Transformer | 94.16 | 92.45           | 89.36           | 92.34              | 89.96        | 89.96        | 91.19           | 91.10          | 8.85           | 741                 | 69                     |
| MLP Mixer  | 91.66 | 90.43           | 86.08           | 90.27              | 88.90        | 88.90        | 89.66           | 89.56          | 8.31           | 831                 | 100                    |

Table C.70: Per label results for the pre-trained ConvNeXt model on the DFC15 dataset.

| Label     | mAP   | Micro Precision | Macro Precision | Weighted Precision | Micro Recall | Macro Recall | Weighted Recall | Micro F1 score | Macro F1 score | Weighted F1 score |
|-----------|-------|-----------------|-----------------|--------------------|--------------|--------------|-----------------|----------------|----------------|-------------------|
| impervious| 96.67 | 98.87           | 97.76           | 95.12              | 94.20        | 94.66        | 95.13           | 94.98          | 94.98          | 94.98             |
| water     | 95.12 | 94.20           | 94.66           | 95.01              | 94.26        | 95.13        | 94.12           | 94.98          | 94.98          | 94.98             |
| clutter   | 93.27 | 94.98           | 94.12           | 92.89              | 89.71        | 91.27        | 85.96           | 85.96          | 85.96          | 85.96             |
| vegetation| 93.27 | 94.98           | 94.12           | 92.89              | 89.71        | 91.27        | 85.96           | 85.96          | 85.96          | 85.96             |
| building  | 93.27 | 94.98           | 94.12           | 92.89              | 89.71        | 91.27        | 85.96           | 85.96          | 85.96          | 85.96             |
| tree      | 93.27 | 94.98           | 94.12           | 92.89              | 89.71        | 91.27        | 85.96           | 85.96          | 85.96          | 85.96             |
| boat      | 93.27 | 94.98           | 94.12           | 92.89              | 89.71        | 91.27        | 85.96           | 85.96          | 85.96          | 85.96             |
| car       | 93.27 | 94.98           | 94.12           | 92.89              | 89.71        | 91.27        | 85.96           | 85.96          | 85.96          | 85.96             |

Figure C.64: Confusion matrix for the pre-trained ConvNeXt model on the DFC15 dataset.
C.20 Planet UAS

The Planet UAS dataset [60] was created by the company, Planet - designer and builder of the world’s largest constellation of Earth-imaging satellites. The aim is to label satellite image chips with atmospheric conditions and various classes of land cover/land use. The dataset is available on Kaggle and is approximately 32 GB worth of data. The data contains 40479 satellite images organized in tiff and jpg files (Figure C.65). The jpg file show the natural light spectrum of the image, whereas the tiff files provide extra information about the infrared features of the satellite image, both with 256x256 pixels resolution. There are a total of 17 different labels with an average of 2.9 labels per image.

The imagery has a ground-sample distance (GSD) of 3.7m and an orthorectified pixel size of 3m. The data comes from Planet’s Flock 2 satellites in both sun-synchronous and ISS orbits and was collected between January 1, 2016 and February 1, 2017. All of the scenes come from the Amazon basin which includes Brazil, Peru, Uruguay, Colombia, Venezuela, Guyana, Bolivia, and Ecuador. There are a total of 17 different labels. Out of those, 4 labels correspond to weather: Clear, Cloudy, Partly Cloudy, Haze. The rest of the (13) labels correspond to land: Habitation, Bare Ground, Cultivation, Agriculture, Blow Down, Conventional Mine, Selective Logging, Slash Burn, Artisanal Mine, Blooming, Primary, Water, and None.

The dataset only has the train set publicly available and we use that to generate train, test and validation splits (Figure C.66).

Detailed results for all pre-trained models are shown on Table C.71 and for all the models learned from scratch are presented on Table C.72. The best performing model is the pre-trained MLPMixer model. The results on a class level are show on Table C.73 along with a confusion matrix on Figure C.67.

![Figure C.65: Example images with labels from the Planet UAS dataset.](image-url)
Table C.71: Detailed results for pre-trained models on the PlanetUAS dataset.

| Model     | mAP  | Micro Precision | Macro Precision | Weighted Precision | Micro Recall | Macro Recall | Weighted Recall | Micro F1 score | Macro F1 score | Weighted F1 score | Avg. time / epoch (sec.) | Total time (sec.) | Best epoch |
|-----------|------|-----------------|-----------------|--------------------|--------------|--------------|-----------------|----------------|----------------|--------------------|-----------------------------|------------------|------------|
| AlexNet   | 64.05| 90.71           | 66.56           | 89.39              | 86.29        | 54.39        | 86.29           | 88.44          | 57.73          | 87.49              | 17.45                       | 576               | 23         |
| VGG16     | 65.58| 92.09           | 64.14           | 90.90              | 86.88        | 55.99        | 86.88           | 89.41          | 59.19          | 88.58              | 50.38                       | 1058              | 11         |
| ResNet50  | 65.53| 92.17           | 67.64           | 90.91              | 86.07        | 54.98        | 86.07           | 89.02          | 58.72          | 87.91              | 37.00                       | 740               | 10         |
| ResNet152 | 64.82| 91.66           | 66.67           | 90.52              | 87.23        | 56.03        | 87.23           | 89.39          | 59.47          | 88.60              | 81.83                       | 1964              | 14         |
| DenseNet161| 66.34| 91.75          | 73.56           | 90.77              | 87.42        | 55.29        | 87.42           | 89.53          | 59.16          | 88.50              | 90.40                       | 1808              | 10         |
| EfficientNetB0 | 64.16| 92.18         | 69.45           | 90.98              | 87.18        | 52.66        | 87.18           | 89.61          | 56.02          | 88.62              | 33.52                       | 771               | 13         |
| Vision Transformer | 66.80| 91.31        | 69.63           | 90.18              | 87.79        | 56.11        | 87.79           | 89.52          | 59.95          | 88.56              | 65.71                       | 920               | 4          |
| MLP Mixer | 67.33| 92.18          | 74.70           | 91.30              | 86.68        | 56.56        | 86.68           | 89.35          | 60.79          | 88.59              | 45.94                       | 735               | 6          |

Table C.72: Detailed results for models trained from scratch on the PlanetUAS dataset.

| Model     | mAP  | Micro Precision | Macro Precision | Weighted Precision | Micro Recall | Macro Recall | Weighted Recall | Micro F1 score | Macro F1 score | Weighted F1 score | Avg. time / epoch (sec.) | Total time (sec.) | Best epoch |
|-----------|------|-----------------|-----------------|--------------------|--------------|--------------|-----------------|----------------|----------------|--------------------|-----------------------------|------------------|------------|
| AlexNet   | 60.28| 90.32           | 67.35           | 88.88              | 84.81        | 51.24        | 84.81           | 87.48          | 54.52          | 86.25              | 18.65                       | 1865              | 87         |
| VGG16     | 60.68| 90.39           | 60.11           | 88.74              | 84.97        | 50.56        | 84.97           | 87.60          | 53.21          | 86.44              | 50.68                       | 2899              | 42         |
| ResNet50  | 64.19| 92.16           | 67.02           | 90.84              | 86.52        | 54.31        | 86.52           | 89.25          | 58.47          | 88.24              | 37.57                       | 2592              | 54         |
| ResNet152 | 64.96| 91.57           | 69.14           | 90.42              | 86.97        | 55.02        | 86.97           | 89.21          | 59.06          | 88.28              | 80.86                       | 6792              | 69         |
| DenseNet161| 64.74| 91.79          | 69.52           | 90.53              | 87.01        | 55.20        | 87.01           | 89.34          | 59.12          | 88.37              | 90.11                       | 4866              | 39         |
| EfficientNetB0 | 63.87| 91.70         | 65.64           | 90.55              | 87.03        | 53.86        | 87.03           | 89.30          | 57.21          | 88.40              | 33.47                       | 2711              | 66         |
| Vision Transformer | 59.41| 90.35        | 60.32           | 88.16              | 85.12        | 47.68        | 85.12           | 86.58          | 51.94          | 84.94              | 65.52                       | 4128              | 48         |
| MLP Mixer | 58.55| 89.67           | 62.22           | 87.58              | 82.21        | 48.88        | 82.21           | 85.78          | 51.46          | 84.06              | 45.93                       | 2572              | 41         |
Table C.73: Per label results for the pre-trained MLPMixer model on the PlanetUAS dataset.

| Label                | Pre-trained | MLPMixer | Model 1 |
|----------------------|-------------|----------|---------|
| haze                 | 71.67       | 71.80    | 71.73   |
| primary              | 97.52       | 98.87    | 98.19   |
| agriculture          | 88.07       | 76.54    | 81.90   |
| clear                | 96.97       | 95.37    | 96.16   |
| water                | 87.88       | 70.59    | 78.29   |
| habituation          | 78.66       | 70.14    | 74.16   |
| road                 | 88.23       | 79.03    | 83.38   |
| cultivation          | 67.71       | 44.97    | 54.04   |
| slash_burn           | 0.00        | 0.00     | 0.00    |
| cloudy               | 83.25       | 83.25    | 83.25   |
| partly_cloudy        | 90.87       | 91.85    | 91.36   |
| conventional_mine    | 75.00       | 52.17    | 61.54   |
| bare_ground          | 45.95       | 27.57    | 34.46   |
| artificial_mine      | 66.00       | 65.15    | 74.14   |
| blooming             | 100.00      | 1.56     | 3.08    |
| selective_logging    | 45.45       | 22.73    | 30.30   |
| blow_down            | 66.67       | 10.00    | 17.39   |

Figure C.67: Confusion matrix for the pre-trained MLPMixer model on the PlanetUAS dataset.
C.21 AID multi-label

Hua et al. [59] extend the AID dataset for multi-label classification. They manually relabeled some images in the AID dataset. With extensive human visual inspections, 3000 aerial images from 30 scenes in the AID dataset were selected and assigned with multiple object labels. The dataset has 17 labels with 5.2 labels per image on average. The labels are: bare soil, airplane, building, car, charparral, court, dock, field, grass, mobile home, pavement, sand, sea, ship, tank, tree and water. The authors provide a proposed train-test split. Figure C.68 show some example images from the AID multi-label dataset. The distribution of the labels for the train, validation and test splits is shown in Figure C.69 from which we can observe an imbalanced distribution, some of the labels are heavily populated with images/samples, and some of the labels are with only few images/samples (for example the label mobile-home has only one image in the respective train, validation and test splits).

Detailed results for all pre-trained models are shown on Table C.74 and for all the models learned from scratch are presented on Table C.75. The best performing model is the pre-trained ResNet152 model. The results on a class level are show on Table C.76 along with a confusion matrix on Figure C.70.

![Figure C.68: Example images with labels from the AID multilabel dataset.](image)

![Table C.74: Detailed results for pre-trained models on AID multi-label](table)

| Model       | Micro Precision | Macro Precision | Weighted Precision | Micro Recall | Macro Recall | Weighted Recall | Micro F1 Score | Macro F1 Score | Weighted F1 Score | Avg. time / epoch (sec.) | Total time (sec.) | Best epoch |
|-------------|-----------------|-----------------|--------------------|--------------|--------------|-----------------|----------------|----------------|---------------------|------------------------|-------------------|-------------|
| AlexNet     | 75.91           | 88.34           | 87.33              | 86.04        | 87.18        | 85.10           | 86.15          | 87.04          | 86.19               | 68.61                  | 172               | 21          |
| VGG16       | 79.89           | 90.12           | 76.29              | 87.62        | 86.04        | 87.18           | 87.13          | 87.04          | 86.19               | 70.03                  | 190               | 20          |
| ResNet50    | 80.76           | 91.56           | 79.13              | 87.68        | 87.68        | 87.68           | 87.68          | 89.48          | 88.34               | 72.34                  | 190               | 22          |
| ResNet152   | 80.94           | 91.92           | 80.46              | 86.62        | 86.62        | 86.62           | 87.42          | 89.19          | 89.34               | 69.87                  | 239               | 20          |
| DenseNet161 | 81.71           | 90.77           | 80.12              | 88.84        | 88.84        | 88.84           | 88.84          | 89.80          | 88.76               | 71.80                  | 366               | 32          |
| EfficientNet80 | 81.71          | 90.77           | 80.12              | 88.84        | 88.84        | 88.84           | 88.84          | 89.80          | 88.76               | 71.80                  | 366               | 32          |
| ConvNeXt    | 82.30           | 92.23           | 86.10              | 88.07        | 88.07        | 88.07           | 88.07          | 90.10          | 89.17               | 69.40                  | 87.76             | 615         |
| Vision Transformer | 81.54          | 93.33           | 81.54              | 91.76        | 87.10        | 87.10           | 87.10          | 91.11          | 89.96               | 69.40                  | 87.76             | 615         |
| MLP Mixer   | 80.88           | 93.09           | 85.44              | 92.78        | 88.88        | 88.88           | 88.88          | 89.87          | 89.87               | 69.48                  | 88.53             | 63.5        |

95
Table C.75: Detailed results for models trained from scratch on the AID multi-label dataset.

| Model          | mAP       | Micro Precision | Macro Precision | Weighted Precision | Micro Recall | Macro Recall | Weighted Recall | Micro F1 score | Macro F1 score | Weighted F1 score | Avg. time / epoch (sec.) | Total time (sec.) | Best epoch |
|----------------|-----------|-----------------|-----------------|--------------------|--------------|--------------|-----------------|----------------|----------------|---------------------|----------------------|--------------|------------|
| AlexNet        | 68.78     | 86.93           | 69.98           | 85.45              | 84.33        | 60.45        | 84.33           | 85.61          | 63.48          | 84.42               | 5.82                 | 524          | 75         |
| VGG16          | 69.21     | 87.03           | 66.46           | 85.22              | 84.42        | 62.06        | 84.42           | 85.71          | 63.75          | 84.60               | 6.28                 | 490          | 63         |
| ResNet50       | 70.87     | 89.52           | 74.76           | 87.95              | 84.04        | 59.51        | 84.04           | 86.69          | 64.46          | 85.27               | 5.74                 | 379          | 51         |
| ResNet152      | 69.65     | 87.95           | 76.32           | 87.11              | 84.49        | 58.55        | 84.49           | 86.18          | 62.72          | 84.76               | 8.08                 | 477          | 44         |
| DenseNet161    | 71.22     | 88.51           | 71.56           | 86.66              | 84.42        | 64.45        | 84.42           | 87.45          | 67.01          | 84.22               | 5.94                 | 398          | 52         |
| EfficientNetB0 | 72.89     | 88.57           | 76.27           | 87.52              | 85.23        | 60.19        | 85.23           | 86.87          | 64.09          | 85.33               | 8.47                 | 449          | 38         |
| ConvNeXt       | 65.99     | 87.00           | 67.56           | 85.16              | 83.75        | 56.43        | 83.75           | 85.34          | 59.44          | 83.75               | 6.40                 | 576          | 75         |
| Vision Transformer | 65.58   | 88.82           | 63.05           | 83.61              | 83.94        | 56.33        | 83.94           | 84.87          | 58.63          | 83.37               | 6.82                 | 627          | 77         |
| MLP Mixer      | 64.24     | 85.72           | 66.07           | 83.70              | 83.46        | 56.52        | 83.46           | 84.58          | 59.30          | 83.02               | 6.41                 | 506          | 64         |

Table C.76: Per label results for the pre-trained ResNet152 model on the AID multi-label dataset.

| Label       | mAP       | Micro Precision | Macro Precision | Weighted Precision | Micro Recall | Macro Recall | Weighted Recall | Micro F1 score | Macro F1 score | Weighted F1 score | Avg. time / epoch (sec.) | Total time (sec.) | Best epoch |
|-------------|-----------|-----------------|-----------------|--------------------|--------------|--------------|-----------------|----------------|----------------|---------------------|----------------------|--------------|------------|
| airplane    | 100.00    | 25.00           | 40.00           |                   |              |              |                 |                |                |                     |                      |              |            |
| bare-soil   | 77.30     | 77.30           | 77.30           |                   |              |              |                 |                |                |                     |                      |              |            |
| buildings   | 93.72     | 96.64           | 95.16           |                   |              |              |                 |                |                |                     |                      |              |            |
| cars        | 94.13     | 94.13           | 94.13           |                   |              |              |                 |                |                |                     |                      |              |            |
| chaparral   | 100.00    | 2.70            | 5.26            |                   |              |              |                 |                |                |                     |                      |              |            |
| court       | 80.43     | 49.33           | 61.16           |                   |              |              |                 |                |                |                     |                      |              |            |
| dock        | 82.93     | 68.00           | 74.73           |                   |              |              |                 |                |                |                     |                      |              |            |
| field       | 85.71     | 61.54           | 71.64           |                   |              |              |                 |                |                |                     |                      |              |            |
| grass       | 95.30     | 95.71           | 95.50           |                   |              |              |                 |                |                |                     |                      |              |            |
| mobile-home | 0.00      | 0.00            | 0.00            |                   |              |              |                 |                |                |                     |                      |              |            |
| pavement    | 97.82     | 97.82           | 97.82           |                   |              |              |                 |                |                |                     |                      |              |            |
| sand        | 97.78     | 84.62           | 90.72           |                   |              |              |                 |                |                |                     |                      |              |            |
| sea         | 100.00    | 90.91           | 95.24           |                   |              |              |                 |                |                |                     |                      |              |            |
| ship        | 82.22     | 78.72           | 80.43           |                   |              |              |                 |                |                |                     |                      |              |            |
| tanks       | 100.00    | 90.48           | 95.00           |                   |              |              |                 |                |                |                     |                      |              |            |
| trees       | 95.42     | 94.82           | 95.12           |                   |              |              |                 |                |                |                     |                      |              |            |
| water       | 80.99     | 64.61           | 71.88           |                   |              |              |                 |                |                |                     |                      |              |            |
Figure C.70: Confusion matrix for the pre-trained ResNet152 model on the AID multi-label dataset.