A brief review on anti diabetic plants: Global distribution, active ingredients, extraction techniques and acting mechanisms

Chung-Hung Chan, Gek-Cheng Ngoh, Rozita Yusoff
University of Malaya, Department of Chemical Engineering, Kuala Lumpur, Malaysia

Submitted: 13-06-2011 Revised: 09-08-2011 Published: 08-05-2012

ABSTRACT

A study has been conducted with the aim to provide researchers with general information on anti diabetic extracts based on relevant research articles collected from 34 reliable medical journals. The study showed that Asian and African continents have 56% and 17% share of the worldwide distribution of therapeutic herbal plants, respectively. In Asia, India and China are the leading countries in herbal plants research, and there has been an increase in medicinal research on plants extract for diabetes treatment since 1995 in these regions. The information collected shows that plant leaves are about 20% more favorable for storing active ingredients, as compared to other parts of herbal plants. A brief review on the extraction techniques for the mentioned parts is also included. Furthermore, the acting mechanisms for the anti diabetic activity were described, and the related active ingredients were identified. The findings reveal that most of the anti diabetic research is focused on the alteration of glucose metabolism to prevent diabetes.

Key words: Active ingredient; Anti diabetic treatment; extraction technique; herbal plants extract

INTRODUCTION

Research on diabetes treatment is gaining ground as the world population with diabetes is rising each year, and is expected to hit 439 million adults by 2030.[1] The awareness on the issue has led to a vast discovery of new medications as well as natural products extracted from herbal plants. Many active ingredients extracted from herbal plants possess therapeutic values, i.e. hypoglycemic activity, antioxidant action, etc and they are yet to be discovered. In view of that, a study has been performed on anti diabetic plant extracts and the focuses are on: the global distribution of the plants; the parts in which therapeutic elements are located; and, also the acting mechanism for diabetic treatment. This study not only provides researchers with the information pertaining to anti diabetic plants, but also to evaluate their related research activities. The papers reviewed in this article are selected from the medicinal journals as tabulated in Table 1 due to their popularity and reliable reputation in medicinal research on herbal plant extract. The research papers were extracted from the selected journals under key words of “Plant extract for diabetes treatment”.

The information extracted from the 34 journals listed was compiled and arranged into respective sections as guidance for any interested parties.

GLOBAL DISTRIBUTION OF ANTI DIABETIC PLANTS

Anti diabetic plants were widely distributed in six continental regions, and some specific regions around the world such as in Caribbean, Mediterranean and Middle East. This section lists the areas of distribution of the anti diabetic plants with the intention to identify and deduce their locations. The worldwide distribution of anti diabetic plants is depicted in Figure 1. This figure shows that Asia (56%) and Africa (17%) dominated the global distribution of the anti diabetic plants. This is not surprising as the two continents are located in the tropic and sub-tropic regions, and have large coverage of tropical rain forests. Moreover, these regions have their long established traditional medicine systems. As the activity of herbal plant researches in
certain regions is proportional to the plant distribution, American continent has a 10% research performed on the medicinal plants. European countries led by Germany are closely behind with 6%. Besides, some strategic regions such as Caribbean, Mediterranean and Middle East, have individually engaged to around 2 to 4% research on herbal plants, and Australian continent has contributed 1 % to the anti diabetic herbal plants research. Based on the records for 20 years of research on plants possessing anti diabetic properties [Figure 2], Asia and Africa demonstrate an increase in the trends and research activities since 1995, and this rise is further expected to continue. Comparing between these two continents, the increment of the research on herbal plants in Asia is about 40% higher than that in the African continent. On the other hand, North America, South America and Europe show stable increase in the research activity towards the year 2010, whereas Australia remains unchanged in its research activity on anti diabetic plants for the last 20 years. From this figure, it is clear that Asia and Africa which are rich in plants effective for diabetes treatment, have carried out maximum research in the past few years.

The distribution in Figure 2 indicates that Asia has the most herbal plants which corresponds to the large numbers of researches conducted in the region. The detail distribution of the anti-diabetic herbal plants in this continent is charted in Figure 3. South Asia has a large distribution of 36% followed by East Asia and South East Asia which dominate 27% and 17% respectively. The leading countries for the herbal plant research here are India and China. Many of the research hypotheses have been based on traditional medicine system such as Chinese Herbology and Ayurveda’. These two traditional medicine systems are the foundation for the herbal plant medicinal research in their respective regions. Northern Asia has the least distribution of the herbal plants due to its temperate zone and Siberian influence.
whilst, South Asia and East Asia are the potential regions of herbal plants, and so is their intermediate, South East Asia.

DISTRIBUTION OF ACTIVE ANTI DIABETIC COMPOUNDS IN PLANTS AND THEIR EXTRACTION TECHNIQUES

The parts of plants that possess active compounds for diabetic treatment and various types of extraction techniques applied are presented in this section. In some cases in which the active ingredients are scattered all over the plants, the entire plants were prepared and extracted for the desired ingredient. More than 80 plants with printed records from the 34 related journals reviewed in this manuscript involved the extraction of the whole plant for desired compounds in the last one decade. Generally, leaves are the favorable storage site for desired compounds and more than 35% of the plants extractions for diabetic treatment can be obtained from these parts as illustrated in Figure 4. Besides, fruits contain substantial amount of active ingredients, and thus, in many occasions they are consumed as juice via oral administration to obtain the desired compounds. Other parts of plants that can be extracted for therapeutic compounds are root, aerial parts, flowers, seeds, stem barks, etc.

Most of the extractions used in plants extract research are associated with the conventional techniques. The techniques employed in the extraction are tabulated in Table 2. In conventional extraction, the release of the desired compounds traditionally required soaking and maceration in mild solvents. In traditional Chinese medicine practices, decoction in water is broadly employed and is an effective method to be considered in cases where the presence of a chemical solvent is undesired.[2-6] In addition to the soaking/maceration technique, percolations using methanol and ethanol on the stem were also applied.[7-12] Other solvents such as acetone, petroleum ether and hexane have also been used as solvents in the conventional extraction.[13-15] Moreover, extraction by liquid nitrogen was also witnessed in some research works.[16] The soxhlet technique for extracting anti-diabetic ingredient was not popular until 2005, after which the extraction technique was incorporated with ethanol and light petroleum.[17,18] Other than solvent extraction, techniques such as lyophilization [19,20] and sonification[21,22] have also been employed. Furthermore, supercritical fluid extraction and microwave assisted techniques have also been used in recent years. For instances, supercritical fluid extraction on lotus gem were carried out by Taiwanese research teams to investigate the antioxidant activity of the extract,[23] and microwave-assisted extraction was employed to investigate the bioactivity of tea flower polysaccharides.[24] These two advanced, non conventional techniques offer attractive advantages of short extraction time and solvent free active compounds, respectively. The extraction techniques normally used in plant research are lacking in the involvement of the engineering aspect as well, and hence the processes are not optimized. As a result, the therapeutic efficacy of the plants under investigation might be affected.

THE PLANT EXTRACTS FOR DIABETES TREATMENT AND RELATED ACTING MECHANISM

Most of the medicinal researches have aimed to evaluate the therapeutic value of plants and to identify the related active ingredients extracted. The active ingredients from flavonoids (e.g. quercetin and kaempferol), alkaloids such as dieckol, etc which are potential for diabetes treatment have been discovered and their therapeutic functions have been described in Table 3. Besides that, some polysaccharides[25,26] from plants are also beneficial to humans in fighting diabetes.

In this study, the anti diabetic acting mechanisms of the active ingredients are categorized into 6 groups for the ease of compilation as shown in Figure 5. The acting mechanisms are namely: alteration of glucose metabolism; hypolipidemic effect; pancreatic effect; antioxidative effect; diabetes complication treatment; and, insulin-like effect. Figure 5 gives an overall picture on the trend of plant research for anti diabetic treatment based on the information gathered for the past 20 years. The figure indicates the percentage distribution of anti diabetic acting

Table 2: Various techniques employed in plant extraction as seen in the study

Conventional extraction	Non conventional extraction
Water Soaking	Soxhlet extraction involved
Maceration by water, ethanol, methanol	solvents
Solvent extraction (ethanol, methanol, pectroleum ether, hexane, acetone,etc)	Lyophilization
Percolation by water	Sonification
	Supercritical fluid extraction (carbon dioxide)

Figure 4: The percentage distribution of anti diabetic ingredients in plant parts as seen in the study

Figure 5: The percentage distribution of various anti diabetic acting mechanisms as seen in the study
emphasized on the alteration of glucose metabolism. By altering mechanisms possessed by herbal plant extracts in descending order.

Figure 5 show that 28% of the anti diabetic researches emphasized on the alteration of glucose metabolism. By altering the glucose metabolism, it helps to regulate the blood sugar levels to normal and thus prevent diabetes, whereas other anti diabetic mechanisms assist in treating diabetes and its complications. Several active ingredients belonging to this category are: basic acid, an active compound isolated from *Bumelia sartorum*; and,

Table 3: Potential anti diabetic active compounds extracted from plants in the study

Active ingredients	Plants	Therapeutic function	References
Quercetin	*Euonymus alatus* (leaves), *Kalanchoe pinnata* (leaves), *Eucommia ulmoides* (leaves)	Exhibit hypoglycaemic effect through stimulation of insulin for glucose uptake, regeneration of the pancreatic islets and prevent against dementia associated with vascular and neurodegenerative disorders.	[27-31]
kaempferol	*Gynura procumbens* (leaves), *Euonymus alatus* (leaves), *Equisetum myriochaetum* (aerial parts)	Promote hypoglycaemic effect	[27,32,33]
4-hydroxybenzopzoic acid	*Pandanus odoros* (roots)	Enhance serum insulin level and liver glycogen content	[34]
3-hydroxymethyl xylitol	*Casarea esculenta* (roots)	Possess antihyperglycaemic effect	[35]
Malvidin-3-O-glucoside	*Vaccinium angustifolium* Aiton (fruits)	Exhibit hypoglycaemic activity	[36]
Apigenin	*Tinospora cisa* (stems)	Improve glucose tolerance and increase plasma insulin level	[37]
Bassic acid	*Bumelia sartorum* (root bark)	Enhance secretion of insulin from the islets of Langerhans, increase glucose uptake process and glycosyn synthesis.	[38]
Catechin	*Cassia fistula* (bark), *green tea* (leaves)	Exhibit hypoglycaemic, glucose oxidizing and insulin mimetic activities	[39,40]
Chlorogenic acid	*Cecropia pachystachya* (leaves), *cecropia obtusifolia* (leaves)	Possess hypoglycaemic effect	[41,42]
Comatin	*Coprinus comatus* broth (whole plants)	Maintain a low level of blood glucose and improve glucose tolerance	[43]
Curcumin	*Curcuma longa* (rhizomes)	As an adjuvant therapy for the prevention and treatment of diabetic endophalopathy	[44]
Dieckol	*Ecklonia cava* (whole plants)	Potential inhibitor for α-glucosidase and α-amylase	[45]
Enhydrin	*Smallanthus sonchifolius* (leaves)	Exhibit hypoglycaemic effect	[46]
Eremanthin	*Costus speciosus* (rhizomes)	Possess hypoglycaemic and hypolipidemic activities	[47]
Gensenoside	*Panax ginseng* (roots)	Enhance glucose uptake, anti hyperglycaemic and anti obse activities by improving insulin and leptin sensitivity	[48,49]
Gugulsterone	*Commiphora mukul* (barks)	Exhibit hypoglycaemic and hypolipidemic effect	[50]
Gugulpid	*Commiphora whightihi* (barks)	Potential anti dementia drug	[51]
Gymnemic acid	*Gynrema sylvestre* (leaves)	Increase the regeneration of β-cells	[52]
Lsoorientin	*Gentiana olivieri* (leaves), *Cecropia pachystachya* (leaves), *Cecropia obtusifolia* (aerial parts)	Exhibit hypoglycaemic and anti hyperglycaemic activity	[41,42,53]
Kinsenoside	*Anoectochilus roxburghii* (whole plants)	Repairing β-cells in pancreatic islet injury and improving its function	[54]
Anthocyanins (Malvidin, delphinidin, cyanidin, peludinin, peonidin) 3-glucoside	*Slacia oblonga* (stems), *Ajuga iva* (whole plants), *Pongamia pinnata* (fruits), *Pongamia pinnata* (fruits), *soy bean*	Decrease fasting blood glucose level	[56]
Mangiferin	*Combretum conophyllum* (stems)	Reducing lipid peroxidation and enhancing antioxidant enzymes activities in plasmainocytes and tissues	[57]
Naringenin	*Pongamia pinnata* (fruits)	Possess significant anti hyperglycemic activity	[58]
Pongamol	*Pongamia pinnata* (fruits)	Possess significant anti hyperglycemic activity	[58]
Karangin	*Pongamia pinnata* (fruits)	Beneficial for correcting the hyperglycaemia and preventing diabetic complications	[59]
Genistein	*Hemionitis arfolia* (whole plants), *Clausena anisata* (roots)	Exhibit hypoglycaemic effect through stimulation of pancreatic β-cells and subsequent secretion of insulin	[60,61]
Coumarin	*Taxus yunnanensis* (wood)	Exhibit blood glucose lowering effect	[62]
Lignans (isotaxisresinol, secolisinol and taxiresinol)	*Leandra lacunosa* (aerial parts)	Inhibit the increase in blood glucose level	[63]
natural flavonoids such as quercetin and kaempferol as they can promote hypoglycemia through increase glucose uptake and glycogen synthesis. Recently, researchers found that dieckol, a compound isolated from Ecklonia cava, is a potential inhibitor for α-glucosidase and α-amylase. It exhibits hypoglycaemia by reducing the impact of carbohydrates on blood sugar and is claimed to be comparable to Acarbose, a medical anti diabetic drug. In addition, the effect of enhancing glucose tolerance and homeostasis have been reported in the root extracts of Berberis aristata and in comatin, an active ingredient extracted from Coprinus comatus broth. Both extracts can prevent diabetes by reducing the severity of insulin resistance.

The second, third and fourth categories of the acting mechanisms respectively focus on hypolipidemic effect, pancreatic effect and antioxidative effect. The interactions among them are important focal points for anti diabetic research; for instance, a common secondary cause of hyperlipidemia is associated with diabetes. On one hand, some herbal plants extract such as guggulsterone isolated from Commiphora mukul and isoorientin obtained from Gentiana olivieri possess hypoglycemic and hypolipidemic properties which are suitable for obese diabetes patients; on the other, herbal plants extract with pancreatic effect helps to enhance insulin secretion through insulin sensitizing mechanism. Furthermore, it has been reported that mangiferin and Enhance insulin secretion through insulin sensitizing mechanism. As for antioxidative effect, plant extracts such as green tea, apple, grape and mango, exhibit hypoglycemic activity through enhancing insulin signaling pathway. As for antioxidative effect, plant extracts such as green tea, exhibit hypoglycemic activity through enhancing insulin signaling pathway. Another acting mechanism based on antioxidants such as kinsenoside, gymnemic acid and quercerin are helpful in preventing and treating Type I diabetes as they can regenerate the beta cells in islets of Langerhans in pancreas.

The last two acting mechanisms associate with diabetic complication treatment and insulin-like active ingredients administration. There are a lot of diabetic complications; however, only a few are involved in research attributing to their severity. For example, Piper sarmentosum extract is more effective compared to Ocimum sanctum extract as it exhibits better anti cataract effect for diabetic complication treatment. Moreover, some extracts, i.e. garlic and ginger extracts, can be used to prevent and attenuate the development of nephropathy. In addition, extracts isolated from Syzygium plants, i.e. S. cumini and S. aromatica, are potential active ingredients for insulin substitutes.

CONCLUSIONS

The identified sources of plants with therapeutic value indicate that Asia has dominated more than 50% of the distribution followed by African continents which are estimated to be at 17%. Asian giants, e.g. India and China lead the research on anti diabetic plants, and correspondingly shown an increase in the related anti diabetic research trend. From the information gathered on various parts of plant, leaves are the most favorable storage sites for active ingredients. The extraction methods commonly employed in anti diabetic plant extraction are conventional methods involving solvents. However, the engineered extraction techniques such as supercritical extraction and microwave assisted extraction are gaining more attention due to the high efficiency of these techniques, and also because they produce a better yield of the active ingredients. This review article also implies that the alteration of glucose metabolism by herbal plants is crucial as far as preventing diabetes is concerned.

REFERENCES

1. Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract 2010;87:4-14.

2. Das AK, Bag S, Sahu R, Dua TK, Sinha MK, Gangopadhyay M, et al. Protective effect of Corchorus olitorius leaves on sodium arsenite-induced toxicity in experimental rats. Food Chem Toxicol 2010;48:326-35.

3. Hamafi H, Aziz M, Amrani S. Sweet basil (Ocimum basilicum L.) improves lipid metabolism in hypercholesterolemic rats. E Spen Eur E J Clin Nutr Metab 2009:4:181-6.

4. Khan SA, Priyamvada S, Farooq N, Khan S, Khan MW, Yusuf AN. Protective effect of green tea extract on gentamicin-induced nephrotoxicity and oxidative damage in rat kidney. Pharmacol Res 2009;59:254-62.

5. Meddah B, Ducroc R, Faouzi ME, Eto B, Mahraoui L, Benhaddou-Andaloussi A, et al. Nigella sativa inhibits intestinal glucose absorption and improves glucose tolerance in rats. J Ethnopharmacol 2009;121:419-24.

6. Sefi M, Fetouli H, Makni M, Zeghal N. Mitigating effects of antioxidant properties of Artemisia campestris leaf extract on hyperlipidemia, advanced glycation end products and oxidative stress in alloxan-induced diabetic rats. Food Chem Toxicol 2010;48:1986-93.

7. Cunha AM, Menon S, Couto AG, Burger C, Biavatti MW. Hypoglycemic activity of dried extracts of Bauhinia forficata Link. Phytomedicine 2010;17:37-41.

8. Ghaisas M, Navghare V, Takawale A, Zope V, Tanwar M, Deshpande A. Effect of Tectona grandis Linn. on dexamethasone-induced insulin resistance in mice. J Ethnopharmacol 2009;122:304-7.

9. Jung SH, Seol HJ, Son KH, Lee JR. Insulin-sensitizing activities of tanashinones, diterpene compounds of the root of Salvia miltiorrhiza Bunge. Phytomedicine 2009;16:327-35.

10. Oh KS, Ryu SY, Lee S, Seo HW, Oh BK, Kim YS, et al. Melanin-concentrating hormone-1 receptor antagonism and anti-obesity effects of ethanolic extract from Morus alba leaves in diet-induced obese mice. J Ethnopharmacol 2009;122:216-20.

11. Pandikumar P, Babu NP, Ignacimuthu S. Hypoglycemic and antihyperglycemic effect of Begonia malabarica Lam. in normal and streptozotocin induced diabetic rats. J Ethnopharmacol 2009;124:1-11.

12. Paula FS, Kubeya LM, Kanashiro A, Figueriedo AS, Azzolini AE, Uyemura SA, et al. Modulation of human neutrophil oxidative metabolism and degranulation by extract of Tamarindus indica L. fruit pulp. Food Chem Toxicol 2009;47:163-70.

13. Badole SL, Bodhankar SL. Investigation of antihyperglycaemic activity of aqueous and petroleum ether extract of stem bark of Pongamia pinnata on serum glucose level in diabetic mice. J Pharmacognosy Reviews | January-June 2012 | Vol 6 | Issue 11
14. Bamuambo K, Gammon DW, Meyers P, Franca MG, Scott G: Anti-mycobacterial activity of five plant species used as traditional medicines in the Western Cape Province (South Africa). J Ethnopharmacol 2008;117:385-90.

15. Ntandou GF, Banzouzi JT, Mbatchi B, Elion-Ilou RD, Etou-Ossibi AW, Ramos S, et al. Analgesic and anti-inflammatory effects of Cassia siamea Lam. stem bark extracts. J Ethnopharmacol 2010;127:108-11.

16. Sree BK, Rajendrakumar CS, Reddy AR. Aldose reductase in rice (Oryza sativa L.): Stree response and developmental specificity. Plant Sci 2000;160:149-57.

17. Kurian GA, Paddikkala J. Oral delivery of insulin with Desmodium gangeticum root aqueous extract protects rat hearts against ischemia reperfusion injury in streptozotocin induced diabetic rats. Asian J Trop Med 2010;3:94-100.

18. Lakshmi BV, Sudhakar M. Attenuation of acute and chronic restraint stress-induced perturbations in experimental animals by Zingiber officinale Rosc. Food Chem Toxicol 2010;48:530-5.

19. Chen HL, Wang CH, Chang CT, Wang TC. Effects of Taiwanese Yam (Dioscorea japonica Thunb. var. pseudojaponica Yamamoto) on upper gut function and lipid metabolism in Balb/c mice. Nutrition 2003;19:646-51.

20. Grover JK, Vats V, Rathi SS. Medicinal plants of India with anti-diabetic potential. J Ethnopharmacol 2000;73:461-70.

21. Chukwujekwu JC, Lategan CA, Smith PJ, Heerden FR, Staden VJ. Antiplasmodial and cytotoxic activity of isolated sesquiterpene lactones from the acetone leaf extract of Vernonia colorata. S Afr J Bot 2009;75:176-9.

22. Yang B, Zhao M, Jiang Y. Anti-glycated activity of polysaccharides of longan (Dimocarpus longan Lour.) fruit pericarp treated by ultrasonic wave. Food Chem 2009;114:629-33.

23. Li J, Zhang M, Zheng T. The in vitro antioxidant activity of lotus germ oil from supercritical fluid carbon dioxide extraction. Food Chem 2009;115:939-44.

24. Wei X, Chen M, Xiao J, Yu L, Zhang H, Wang Y. Composition and bioactivity of tea flower polysaccharides obtained by different methods. Carbohydr Polymers 2010;79:418-422.

25. Yang N, Zhao M, Zhu B, Yang B, Chen C, Cui C, et al. Anti-diabetic effects of polysaccharides from Opuntia monacantha cladode in normal and streptozotocin-induced diabetic rats. Inov Food Sci Emerg Technol 2008;9:570-4.

26. Mao X, Yu F, Wang N, Wu Y, Zou F, Wu K, et al. Hypoglycemic effect of polysaccharides enriched extract of Astragalus membranaceus in diet induced insulin resistant C57BL/6J mice and its potential mechanism. Phytomedicine 2009;16:416-25.

27. Fang XK, Gao J, Zhu DN. Kaempferol and quercetin isolated from Euonymus alatus improve glucose uptake of 3T3-L1 cells without adipogenesis activity. Life Sci 2008;82:615-22.

28. Tota S, Awasthi H, Kamat PK, Nath C, Hanif K. Protective effect of quercetin against intra cerebral streptozotocin induced reduction in cerebral blood flow and impairment of memory in mice. Behav Brain Res 2010;209:73-9.

29. Vessal M, Hennati M, Vasei M. Antidiabetic effects of quercetin in streptozotocin-induced diabetic rats. Comp Biochem Physiol C 2003;135:357-64.

30. Kim HY, Moon BH, Lee HJ, Choi DH. Flavonol glycosides from the leaves of Eucommia ulmoides O. with glucation inhibitory activity. J Ethnopharmacol 2004;93:227-30.

31. Cruz EA, Da-Silva SA, Muzitano MF, Silva PM, Costa SS, Rossi-Bergmann B. Immunomodulatory pretreatment with Kalanchoe pinnata extract and its querctin flavonoid effectively protects mice against fatal anaphylactic shock. Int Immunopharmacol 2008;8:1616-21.
49. Yang C, Wang J, Zhao Y, Shen L, Jiang X, Xie Z, et al. Anti-diabetic effects of Panax notoginseng saponins and its major anti-hyperglycemic components. J Ethnopharmacol 2010;2:231-6.

50. Sharma B, Salunke R, Srivastava S, Majumder C, Roy P. Effects of guggulsterone isolated from Commiphora mukhi in high fat diet induced diabetic rats. Food Chem Toxicol 2009;47:2631-9.

51. Saxena G, Singh SP, Pal R, Singh S, Pratap R, Nath C. Gugulipid, an extract of Commiphora whightii with lipid-lowering properties, has protective effects against streptozotocin-induced memory deficits in mice. Pharmacol Biochem Behav 2007;86:797-805.

52. Ahmed AB, Rao AS, Rao MV. In vitro callus and in vivo leaf extract of Gymnema sylvestre stimulate β-cells regeneration and anti-diabetic activity in Wistar rats. Phytomedicine 2010;17:1033-9.

53. Ojewole JA. Hypoglycaemic effect of Clausena anisata (Willd) (Burm.) Moore in rats. J Ethnopharmacol 2006;106:192-7.

54. Zhang Y, Cai J, Ruan H, Pi H, Wu J. Antihyperglycemic activity of Gentiana olivieri and isolation of the active constituent through bioassay-directed fractionation techniques. Life Sci 2005;76:1223-38.

55. Sezik E, Aslan M, Yesilada E, Ito S. Hypoglycaemic activity of kinsenoside, a high yielding constituent from Anoectochilus roxburghii in streptozotocin diabetic rats. J Ethnopharmacol 2007;114:141-5.

56. Nair SA, Shylesh BS, Gopakumar B, Subramoniam A. Anti-diabetes and hypoglycaemic properties of Hemionitis arifolia (Burm.) Moore in rats. J Ethnopharmacol 2006;106:192-7.

57. Lee JS. Effects of soy protein and genistein on blood glucose, antioxidant enzyme activities, and lipid profile in streptozotocin-induced diabetic rats. Life Sci 2006;79:1578-84.

58. Alam NA, Styresh BS, Gopakumar B, Subramoniam A. Anti-diabetes and hypoglycaemic properties of Hemionitis arifolia (Burm.) Moore in rats. J Ethnopharmacol 2006;106:192-7.

59. Ojewole JA. Hypoglycaemic effect of Clausena anisata (Wild) Hook methanolic root extract in rats. J Ethnopharmacol 2002;81:231-7.

60. Banskota AH, Nguyen NT, Tezuka Y, Nobukawa T, Kadota S. Hypoglycemic effects of the wood of Taxus yunnanensis on streptozotocin-induced diabetic rats and its active components. Phytomedicine 2006;13:109-14.

61. Cunha W, Arantes GM, Ferreira DS, Lucarini R, Silva ML, Furtado NA, et al. Hypoglicemic effect of Leandra lacunosa in normal and alloxan-induced diabetic rats. Fitoterapia 2008;79:356-60.

62. Singh J, Kakkar P. Anti hyperglycemic and antioxidant effect of Berberis aristata root extract and its role in regulating carbohydrate metabolism in diabetic rats. J Ethnopharmacol 2009;123:22-6.

63. Giron MD, Sevillano N, Salto R, Haidour A, Manzano M, Jumenez ML, et al. Salacia oblonga extract increases glucose transporter 4-mediated glucose uptake in L6 rat myotubes: Role of mangiferin. Clin Nutr 2009;28:565-74.

64. Montagut G, Onnockx S, Vaque M, Blade C, Blay M, Larrea J, et al. Oligomers of grape-seed procyanidin extract activate the insulin receptor and key targets of the insulin signaling pathway differently from insulin. J Nutr Biochem 2010;21:476-81.

65. Buswara K, Ahamath B, Radha Shanmugasundaram K, Shanmugasundaram ER. Antidiabetic effect of a leaf extract from Gymnema sylvestre in non-insulin-dependent diabetes mellitus patients. J Ethnopharmacol 1990;30:295-305.

66. Vats V, Yadav SP, Biswas NR, Grover JK. Anti-cataract activity of Pterocarpus marsupium bark and Trigonella foenum-graecum seeds extract in alloxan diabetic rats. J Ethnopharmacol 2004;93:289-94.

67. Al-Qattan K, Thomson M, Ali M. Garlic (Allium sativum) and ginger (Zingiber officinale) attenuate structural nephropathy progression in streptozotocin-induced diabetic rats. E Spen Eur 2004;93:289-94.

68. Prasad RC, Herzog B, Boone B, Sims L, Law MW. An extract of Syzygium aromaticum represses genes encoding hepatic gluconeogenic enzymes. J Ethnopharmacology 2005;96:295-301.

69. Prince PS, Kamalakannan N, Menon V. Antidiabetic and antihyperlipidaemic effect of alcoholic syzygium cumini seeds extract in alloxan induced diabetic albino rats. J Ethnopharmacol 2004;91:209-13.

How to cite this article: Chan C, Ngoh G, Yusoff R. A brief review on anti diabetic plants: Global distribution, active ingredients, extraction techniques and acting mechanisms. Phcog Rev 2012;6:22-8.

Source of Support: Nil, Conflict of Interest: None declared