Magnetization process of atacamite: a case of weakly coupled $S = 1/2$ sawtooth chains

L. Heinze,1 H. O. Jeschke,2 I. I. Mazin,3,4 A. Metavitsiadis,5 M. Reehuis,6 R. Feyerherm,6 J.-U. Hoffmann,6 M. Bartkowiak,6 O. Prokhmenko,6 A. U. B. Wolter,7 X. Ding,8 V. S. Zapf,8 C. Corvalán Moya,8 F. Weickert,8 M. Jaime,8 K. C. Rule,9 D. Menzel,1 I. I. Mazin,1 R. Valentí,10 W. Brenig,2 and S. Siillow1

1Institut für Physik der Kondensierten Materie, TU Braunschweig, D-38106 Braunschweig, Germany
2Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
3Department of Physics and Astronomy, George Mason University, Fairfax, Virginia 22030, USA
4Quantum Science and Engineering Center, George Mason University, Fairfax, Virginia 22030, USA
5Institut für Theoretische Physik, TU Braunschweig, D-38106 Braunschweig, Germany
6Herbertsmithite, azurite or linarite [8–13].
7Institute for Solid State and Materials Research, Leibniz IFW Dresden, D-01069 Dresden, Germany
8National High Magnetic Field Laboratory, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
9Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234, Australia
10Institut für Theoretische Physik, Goethe-Universität Frankfurt, D-60438 Frankfurt am Main, Germany

We present a combined experimental and theoretical study of the mineral atacamite Cu$_2$Cl(OH)$_6$. Density functional theory yields a Hamiltonian describing anisotropic sawtooth chains with weak 3D connections. Experimentally, we fully characterize the antiferromagnetically ordered state. Magnetic order shows a complex evolution with the magnetic field, while, starting at 31.5 T, we observe a plateau-like magnetization at about $M_{sat}/2$. Based on complementary theoretical approaches, we show that the latter is unrelated to the known magnetization plateau of a sawtooth chain. Instead, we provide evidence that the magnetization process in atacamite is a field-driven canting of a 3D network of weakly coupled sawtooth chains that form giant moments.

Frustrated low-dimensional quantum spin systems offer a unique opportunity to study complex quantum phases [1–4]. In the search for novel and exotic ground and field-induced states, such as spin liquids, magnetization plateaus or nematic phases, a multitude of models have been studied, including the kagome lattice, the diamond chain or the frustrated J_1-J_2 chain [5–7]. Experimental efforts to identify materials to test these theoretical concepts are exemplified by work on natural minerals such as herbertsmithite, azurite or linarite [8–13]. Through this combined effort a new level of insight into complex topics of quantum magnetism is achieved.

The Δ-, or sawtooth chain represents one of the fundamental models of frustrated quantum magnetism. It consists of a chain of spin triangles, with the Hamiltonian

\[
\mathcal{H} = \sum_i J S_i \cdot S_{i+2} + J' \left(S_i \cdot S_{i+1} + S_{i+1} \cdot S_{i+2} \right) - h \cdot S_i. \tag{1}
\]

S$_i$ represents a spin $S = 1/2$ at site i; the sites i and $i + 2$ are neighbors in the chain “spine” while J' is the interaction between spine sites and the sawteeth tips. h is the external magnetic field. This model has been studied theoretically for decades [14–34]. Real materials, however, are inevitably more complex than this simplified model. Delafossite and euchroite have more than two relevant couplings [35, 36], certain metalorganic systems have a ferromagnetic intra-spine J [27, 37], and in Rb$_2$NaTi$_3$F$_{12}$ the Δ-chain is coupled to an antiferromagnetic (AFM) chain [38]. In this Letter, based on a combined experimental and theoretical study of atacamite, Cu$_2$Cl(OH)$_6$, we show that its magnetic behavior originate from an intricate and rather unusual 3D connectivity of Δ-chains, not previously addressed.

We have measured magnetization, magnetic susceptibility and specific heat of atacamite in fields up to 13 T. Neutron scattering was carried out at the HZB BER II reactor using the instruments E2, E5 and HFM/EXED for fields up to 25 T [39, 41]. We have determined both the magnetic and crystallographic structures of our mineral single crystals [42, 43, 44]. In addition, we have performed a high-field magnetostriction and magnetization study in fields up to 65 T at the Pulsed Field Facility of the NHMFL, Los Alamos. In the present work, we focus on data taken in magnetic fields applied along the crystallographic b axis.

Atacamite magnetically orders at low temperatures and we found a complex field-induced spin reorientation behavior. Magnetic fields of ~30 T suppress the ordered state, taking the system to nearly half its saturation magnetization, where it persists up to the highest field reached in this study. To rationalize these results, we have investigated the electronic structure and magnetic interactions using Density Functional Theory (DFT) with full potential local orbital (FPLO) basis [47] and generalized gradient approximation (GGA) functional [48]; electronic correlations on Cu$^{2+}$ were accounted for by the GGA+U method [49]. The Hamiltonian thus obtained consists of strongly coupled Cu Δ-chains, forming a weakly coupled network. We consider the uncoupled chains in a magnetic field using infinite
system time-evolving block decimation (iTEBD) \cite{40} as well as exact diagonalization (ED). The results justify our subsequent evaluation of the magnetization process within a 3D mean-field approximation (MFA), and accounting for the inter-chain coupling.

Atacamite Cu$_2$Cl(OH)$_3$ crystallizes in a \textit{Pnma} orthorhombic structure (lattice constants $a = 6.02797$ Å, $b = 6.86383$ Å, $c = 9.11562$ Å; Fig. 1 (a)) \cite{42,51,52}. There are two inequivalent Cu sites (dark (Cu(1)) and light (Cu(2)) blue spheres). Previously, this crystal structure was derived from a network of pyrochlore tetrahedra built up by Cu$^{2+}$ ions \cite{52,54}. Our DFT calculations, however, indicate that the symmetry of the magnetic Hamiltonian is dramatically lower than the one anticipated from the bond lengths only. Indeed, the bonds derived from the 1st, 2nd and 3rd pyrochlore coordination shells vary in length by $\pm 10\%$ within each set, but the calculated exchange parameters (corresponding to 4, 6 and 7 distinct Cu-Cu distances, respectively), vary by two orders of magnitude. As we show below, our calculated Hamiltonian provides an excellent explanation of the experimental observations.

First evidence of the existence of ordered magnetism in atacamite was reported previously \cite{40,52,54}. Furthermore, we present zero-field specific heat measurements, with an anomaly indicating a magnetic transition at $T_N = 8.4$ K (Fig. 2 (a)). An antiferromagnetic anomaly is also observed at $T_N = 8.4$ K in the low-field (0.1 T) susceptibility as maximum in $d(\chi(T))/dT$ (Fig. 2 (b)) \cite{53}. In neutron diffraction, we find magnetic intensity below a slightly higher $T_N = 8.9$ K with a magnetic propagation vector $\mathbf{q} = (1/2, 0, 1/2)$ (Fig. 2 (c)).

We also detect an additional hump in the specific heat at $T \sim 5$ K (Fig. 2 (a)) hinting at a more complex temperature evolution of the magnetic state, involving, for instance, spin reorientations. A calculation of the magnetic entropy from our data (ignoring a phonon contribution) gives a value $\sim 0.65 R \ln(2)$ at T_N \cite{42}. Such a small value is typical for magnetically ordered states in frustrated magnets with the magnetic entropy being distributed over the temperature scale set by the dominant coupling strengths, here J_4 and J_3 (Fig. 1 (c)).

In magnetic fields $H \parallel b$, the features in the specific heat and the susceptibility are shifted to lower temperatures and the AFM anomaly is sharpened (Fig. 2 (a)–(b)). This shift is supported by neutron scattering in 6.5 T (Fig. 2 (c)). Field-dependent neutron scattering at the HFM/EXED instrument yields a suppression of AFM order at 24 T ($T = 3.5$ K) (Fig. 2 (d)). Altogether, an external magnetic field leads to a suppression of the AFM phase, with T_N fully suppressed in ~ 30 T.

The low-T susceptibility in high fields is larger than in low fields (Fig. 2 (b)). It reflects a metamagnetic transition occurring at a few Tesla (see below). Since for the other crystallographic directions we find no such transition, it suggests that the b axis is the easy magnetic axis and this is a spin-flop transition \cite{42}. This is consistent with our refined magnetic structure.

From the magnetic Bragg peak intensities, we derive the magnetic structure in Fig. 1 (b) \cite{42,50}. On the Cu(1) site, the ordered magnetic moments of 0.34(4) μ_B are arranged in a nearly perfect AFM pattern with the Cartesian components $\mu_{\text{ord,Cu(1)}}(x, y, z) = [0.09(9), 0.04(2), 0.32(7)] \mu_B$. The ordering vector corresponds to alternating signs for the x and z moment components, while the y component stays the same within
FIG. 2. (color online) (a) Specific heat \(c_p/T \), (b) magnetic susceptibility \(\chi \), and normalized intensity of the \((1/2 0 1/2)_{\text{M}} \) neutron scattering reflection as function of (c) temperature and (d) magnetic field \((H \parallel b)\). Data in (b) are shifted for clarity by values denoted in the plot; lines in (d) are guides to the eye, dashed line indicates the plateau field.

The angle between two Cu(1) neighbors is thus \(\theta = 166.3^\circ \), close to \(180^\circ \). All Cu(2) sites carry a moment \(\mu_{\text{ord,Cu(2)}}(x, y, z) = [0, 0.59(2), 0] \) \(\mu_B \) where moments are parallel to \(y \) within one set of sawtooth sites of a single chain (details in Ref. [42]).

To assess the magnetic phase diagram, we used magnetometry in pulsed magnetic fields for \(H \parallel b \) [57, 58]. In Fig. 2 (a)–(b) we summarize the magnetostriction and magnetization, respectively. Below \(T_N \) and fields of \(\mu_0 H_1 \lesssim 4 \) T, a kink in the magnetization indicates a spin-flip transition. When increasing temperature the kink becomes weaker and shifts to higher fields in the AFM phase [42]. For temperatures below \(\sim 5 \) K, a weak shoulder appears (inset Fig. 3 (b)), which corresponds to shallow minima in the magnetostriction [42]. This might indicate a splitting of the spin-flip transition due to a weak three-axes exchange anisotropy.

Immediately after the spin-flip transition, \(M(H) \) grows linearly with \(dM/dH \approx 0.013 \mu_B/\text{T} \), but starts bending upwards up to a field of \(\mu_0 H_2 = 31.5 \) T, where the slope reaches \(0.042 \mu_B/\text{T} \) (Fig. 3 (b)). After that, a wide magnetization plateau-like behavior at about \(0.45 \mu_B/\text{Cu} \) sets in. The plateau, also detected in the magnetostriction (Fig. 3 (a)), reaches up to highest measured fields and is not perfectly flat, but rising at a rate of \(0.001 \mu_B/\text{T} \).

From our data, we construct the magnetic phase diagram of atacamite for \(H \parallel b \) (Fig. 3). The AFM phase exists below \(T_N \) and up to \(\sim 30 \) T. It is separated into a low-field regime with the magnetic structure described before and a high-field regime for fields above the spin-flip transition. In the limit \(T \rightarrow 0 \) K, the suppression of AFM order possibly coincides with the appearance of a magnetization plateau-like behavior. To fully establish the magnetic phase diagram in this field region, it requires a determination of the magnetocaloric effect in pulsed magnetic fields [59, 60]. At highest fields of 65 T the system is still far from saturation.

It is now instructive to establish the Hamiltonian of atacamite and connect it to the observations. To this end, we used an energy mapping technique [61, 63] to calculate 17 exchange interactions, derived from the first three coordination shells of the parent pyrochlore struc-
The gapped phase. This is consistent with ED [42] and with Mermin-Wagner’s theorem. Rephrasing, we seem to have a finite value as predicted before: in the small-
\(J’/J \leq 2 \) we observe the famous quantum half-magnetization plateau [26] [28] [64]. However, it is practically invisible for \(J’/J \approx 0.5 \), relevant for atacamite. Moreover, its field scale is of \(O(J) \sim O(250 \text{T}) \). Therefore, while tempting, the observed flattening of \(M(H) \) around 31.5 T in atacamite is not related to the half-magnetization plateau physics. On the other hand, the 3D exchange among the chains proves to be relevant. The second finding in Fig. 3 (c) is far more striking and has not been appreciated before: in the small-
\(J’ \) gapless phase, e.g., at \(J’/J = 0.5 \), the low-\(h \) susceptibility appears singular and the magnetization approaches a non-quantized finite value as \(h \to 0 \). For the relevant \(J’/J \sim 0.3 \), the inset of Fig. 3 (c) shows iTEBD versus increasing imaginary simulation times \(\tau = n_e d\tau \) in terms of \(d\tau = 0.01/J \). Since iTEBD inherits the limit of system size \(N \to \infty \) by construction, and by identifying \(\tau^{-1} \sim T \) with a quasi-temperature, we extract the following order of limits \(\lim_{n_e \to 0} \lim_{N \to \infty} (S^z)_T := M_0(T) \) from the inset. For \(T \neq 0 \), we find \(M_0(T) = 0 \), however as \(T \to 0 \), very likely, \(M_0(T = 0)/\text{cell} \approx 0.435 \neq 0 \), all of which is consistent with Mermin-Wagner’s theorem. Rephrasing, we seem to observe ferromagnetic order at \(T = 0 \) for the \(\Delta \)-chain at \(J’/J \sim 0.3 \). This likely holds for the entire small-
\(J’ \) gapless phase. This is consistent with ED [42] and with a classical treatment of the \(\Delta \)-chain.

In the MFA, the ground state of a single \(\Delta \)-chain has the same pattern as observed experimentally, with \(\theta = 360^\circ - 2 \arccos \left(-J’/2J \right) = 162.5^\circ \), in excellent agreement with our neutron data, with the \(\text{Cu}^{2+} \) net moment, \(M_{\text{eff}} = (M_2 - M_1 J’/2J)/2 \) [42]. If the moment of each copper is taken to be \(M_2 = M_1 = 1 \mu_B \), then \(M_{\text{eff}} = 0.42 \mu_B \). We know from experiment though that these moments are suppressed by fluctuations to \(M_1 = 0.34 \mu_B \), \(M_2 = 0.59 \mu_B \). This reduces the net moment to \(M_{\text{eff}}(H = 0) = 0.27 \mu_B/\text{Cu} [42] \). On the other hand, \(M_{\text{eff}} \) agrees very well with the magnetization at \(\approx 30 \text{T} \), indicating that in such fields the fluctuations are mostly quenched. In the following we used \(M_{\text{eff}}(H) \) and \(M_{1,2}(H) \) linearly interpolating between the two limits.

We are now in a position to describe an effective 3D magnetic model that can be addressed by classical mean-field calculations. These treat the \(\Delta \)-chains as emergent, rigid macroscopic objects, carrying a large magnetic moment. Classically, the latter arises primarily from \(\text{Cu}(2) \) moments being aligned ferromagnetically along \(b \) (Fig. 1 (b)). These large moments are AFM stacked into a 2D crystal and coupled via the small subleading exchange interactions. Their projection onto the \(ac \) plane forms an anisotropic triangular lattice with three effective AFM couplings, \(J_B \leq J_A \ll J_c \) [42]. For our selected value of \(U = 8.24 \text{eV} \), \(J_c \approx 8 \text{K} \), \(J_A \approx 0.5 \text{K} \) and \(J_B \approx 0 \text{K} \). The classical ground state of this model is collinear with Néel order along \(C \) and \(B \), and FM order along \(A \), as observed experimentally (Fig. 1 (b)). We note, however, that \(J_{A,B} \) rapidly rise with decreasing \(U \), and at \(U = 7 \text{eV} \) (still an admissible value for \(\text{Cu}^{2+} \)), \(J_A \approx J_B \approx J_C \approx 10 \text{K} \). In that case, the MFA ground state would have been the \(120^\circ \) order.

We focus on the 2D collinear Néel order along the \(C \) direction. Since \(b \) is the easy axis, the MFA predicts a spin-flop at low fields \(\mathbf{H} \parallel b \), whereupon all magnetic moments rigidly rotate so that the \(\text{Cu}(2) \) moments are \(\perp \mathbf{H} \). The classical spin-flop field is \(\mu_0 H_1 = M_{\text{eff}(0)}(0) \sqrt{2K/J_{A,-\Delta}} \), where \(K \) measures the uniaxial anisotropy (given here for simplicity as an effective single-site term), and the effective coupling \(J_{A,-\Delta} \approx J_c + J_B \approx 8.5 \text{K} \) for \(U = 8.24 \text{eV} \). To reproduce the experimentally observed \(\mu_0 H_1 \approx 3.5 \text{T} \), one needs \(K \approx 0.04 \text{K} \) (a typical energy scale for \(\text{Cu}^{2+} \) [65]). The low symmetry of atacamite allows also for some in-plane magnetic anisotropy. A possible splitting of \(H_1 \) into two close transitions likely reflects such anisotropies.

As the field increases, the spin-flopped state gradually cants, generating a net magnetic moment of \(H M_{\text{eff}}(H)/M_{\text{eff}}(H) J_{A,-\Delta} \). In an uncorrected MFA, \(M(H) \) is linear. However, accounting for quantum fluctuations and their gradual quenching with field leads to deviation from linearity. These deviations are visible in experiment [42]. At a field \(H_2 \) the moments cant into the
“plateau” configuration, where all Δ-chains are ordered ferromagnetically, and the total moment is \(M = M_{\text{eff}}^{\text{MFA}} \). For our calculated parameters, \(\mu_0H_2 = 30.1 \, \text{T} \), to be compared to the experimental value of 31.5 T. In this state, the total moment does not remain constant but keeps rising as \(M_{\text{eff}}(H) = (1/2 - J'/4J + H/4J)\mu_0H \). The differential susceptibility \(dM/dH \) calculated this way, is much smaller than in the experiment, yet is qualitatively consistent with the latter [22].

The overall dependence of \(M(H) \) as calculated in MFA, adjusted for the quenching of the fluctuations, and using the DFT exchange couplings, exhibits an excellent agreement with the experiment (Fig. 3 (d)), giving credence to the calculation and to the described scenario.

Finally, let us discuss the finite-\(T \) phase diagram. Since temperature effects might slightly change the ratios between \(J_A \), \(J_B \), \(J_C \), we note that a tuning towards the region \(J_A \approx J_B \approx J_C \) opens the possibility of multiple phases with various degrees of non-collinearity, some of them only emerging at finite temperatures [2]. While our current observations do not yield hints as to the specific nature of this phase, we note that the phase diagram for the simple isotropic triangular lattice is similar to our Fig. 4 (see Fig. 3 in Ref. [2]). This is a subject for future investigations.

We have studied the natural mineral \(\text{Cu}_3\text{Cl(OH)}_3 \) and found that it is well described as a weakly coupled asymmetric triangular lattice of \(S = 1/2 \) \(\Delta \)-chains. We find an unusual magnetic behavior, with a magnetization deceivingly reminiscent of the quantum half-magnetization plateau, which however turns out to be a classical effect, well described by MFA. A magnetic Hamiltonian derived from first-principles calculations predicts a spin flop, a magnetization plateau, and weak deviation from the plane behavior in high fields. This compound therefore represents a unique example of strongly-coupled 1D ferromagnetic objects coordinated by weak and anisotropic 2D interactions. We hope that this discovery will encourage more studies of this class of magnetic models.

We gratefully acknowledge the financial support from HZB. This work has partially been supported by the DFG under Contract Nos. WO1532/3-2 and SU229/9-2. We gratefully acknowledge T. Reimann for fruitful discussions. S. Gerischer, R. Wahle, S. Kempfer, P. Heller and P. Smeibidl for their support at the HFM/EXED at HZB as well as experimental support by G. Bastien in the initial stages of this work. We thank G. Paskalis and J. McAllister for supplying us with two of the atacamite crystals used for this study. W.B. and A.U.B.W. have been supported in part by the DFG through projects A02 and B01 of SFB 1143 (project-id 247310070), respectively. W.B. acknowledges partial support by QUANOMET and hospitality of the PSM, Dresden. The National High Magnetic Field Pulsed Field user facility is supported by the National Science Foundation through cooperative grant DMR 1157490, the State of Florida, and the US Department of Energy. V.S.Z. was supported by the Laboratory-Directed Research and Development program at Los Alamos National Laboratory. S.S. acknowledges support by the Magnet Lab. Visiting Scientist Program of the NHMFL. I.I.M. acknowledges support by the Research Institute for Interdisciplinary Science through the Okayama University visiting scientist program and from DOE through the grant DE-SC0021089.

[1] C. Lacroix, P. Mendels, and F. Mila, Introduction to Frustrated Magnetism, Springer Series in Solid-State Sciences (Springer-Verlag, Berlin, 2011).
[2] O. A. Starykh, Unusual ordered phases of highly frustrated magnets: a review, Rep. Prog. Phys. 78, 052502 (2015).
[3] J. Wosnitza, S. A. Zyvagin, and S. Zherlitsyn, Frustrated magnets in high magnetic fields selected examples, Rep. Prog. Phys. 79, 074504 (2016).
[4] L. Savary, and L. Balents, Quantum spin liquids: a review, Rep. Prog. Phys. 80, 016502 (2017).
[5] A. B. Harris, C. Kallin, and A. J. Berlinsky, Possible Neel orderings of the Kagomé antiferromagnet, Phys. Rev. B 45, 2899 (1992).
[6] K. Takano, K. Kubo, and H. Sakamoto, Ground states with cluster structures in a frustrated Heisenberg chain, J. Phys. Condens. Matter 8, 6405 (1996).
[7] T. Tonegawa, and I. Harada, Ground-State Properties of the One-Dimensional Isotropic Spin-1/2 Heisenberg Antiferromagnet with Competing Interactions, J. Phys. Soc. Jpn. 56, 2153 (1987).
[8] A. Olariu, P. Mendels, F. Bert, F. Duc, J. C. Trombe, M. A. de Vries, and A. Harrison, 17O NMR Study of the Intrinsic Magnetic Susceptibility and Spin Dynamics of the Quantum Kagome Antiferromagnet \(\text{ZnCu}_3(\text{OH})_6\text{Cl}_2 \), Phys. Rev. Lett. 100, 087202 (2008).
[9] H. Kikuchi, Y. Fujii, M. Chiba, S. Mitsudo, T. Idehara, T. Tonegawa, K. Okamoto, T. Sakai, T. Kuwai, and H. Ohta, Experimental Observation of the 1/3 Magnetization Plateau in the Diamond-Chain Compound \(\text{Cu}_3(\text{CO}_3)_2(\text{OH})_2 \), Phys. Rev. Lett. 94, 227201 (2005).
[10] K. C. Rule, D. A. Tennant, J.-S. Caux, M. C. R. Gibson, M. T. F. Telling, S. Gerischer, S. Süllow, and M. Lang, Dynamics of azurite \(\text{Cu}_3(\text{CO}_3)_2(\text{OH})_2 \) in a magnetic field as determined by neutron scattering, Phys. Rev. B 84, 184419 (2011).
[11] H. O. Jeschke, I. Opahle, H. Kandpal, R. Valentí, H. Das, T. Saha-Dasgupta, O. Janson, H. Rosner, A. Brühl, B. Wolf, M. Lang, J. Richter, S. Hu, X. Wang, R. Peters, Th. Pruschke, and A. Honecker, Multi-step approach to microscopic models for frustrated quantum magnets – the case of the natural mineral azurite, Phys. Rev. Lett. 106, 217201 (2011).
[12] B. Willenberg, M. Schäpers, A. U. B. Wolter, S.-L. Drechsler, M. Reehuis, J.-U. Hoffmann, B. Büchner, A. J. Studer, K. C. Rule, B. Ouladdiad, S. Süllow, and S. Nishimoto, Complex Field-Induced States in Linarite \(\text{PbCuSO}_4(\text{OH})_2 \) with a Variety of High-Order Exotic Spin-Density Wave States, Phys. Rev. Lett. 116, 047202.
(2016).

[13] D. Inosov, Quantum magnetism in minerals, Adv. Phys. 67, 149 (2018).

[14] T. Hamada, J. Kane, S. Nakagawa, and Y. Natsume, Exact Solution of Ground State for Uniformly Distributed RVB in One-Dimensional Spin-1/2 Heisenberg Systems with Frustration, J. Phys. Soc. Jpn. 57, 1891 (1988).

[15] K. Kubo, Excited states and the thermodynamics of a fully frustrated quantum spin chain, Phys. Rev. B 48, 10552 (1993).

[16] H. Otsuka, Thermodynamic properties of the Δ-chain model in a uniform magnetic field, Phys. Rev. B 51, 305 (1995).

[17] T. Nakamura, and Y. Saita, Thermodynamic property of the Δ-chain, J. Phys. Soc. Jpn. 64, 695 (1995).

[18] T. Nakamura, and K. Kubo, Elementary excitations in the Δ chain, Phys. Rev. B 53, 6393 (1996).

[19] D. Sen, B. S. Shastry, R. E. Walstedt, and R. Cava, Quantum solitons in the sawtooth lattice, Phys. Rev. B 53, 6401 (1996).

[20] K. Maisinger, and U. Schollwöck, Thermodynamics of Frustrated Quantum Spin Chains, Phys. Rev. Lett. 81, 445 (1998).

[21] S. A. Blundell, and M. D. Núñez-Regueiro, Quantum topological excitations: from the sawtooth lattice to the Heisenberg chain, Eur. Phys. J. B 31, 453 (2003).

[22] M. E. Zhitomirsky, and H. Tsunetsugu, Exact low-temperature behavior of a kagomé antiferromagnet at high fields, Phys. Rev. B 70, 100403(R) (2004).

[23] T. Tonegawa, and M. Kaburagi, Ground-state properties of an $S = \frac{1}{2}$ Δ-chain with ferro- and antiferromagnetic interactions, J. Magn. Magn. Mat. 272–276, 898 (2004).

[24] O. Derzhko, and J. Richter, Finite low-temperature entropy of some strongly frustrated quantum spin lattices in the vicinity of the saturation field, Phys. Rev. B 70, 104415 (2004).

[25] V. R. Chandra, D. Sen, N. B. Ivanov, and J. Richter, Antiferromagnetic sawtooth chain with spin-$\frac{3}{2}$ and spin-1 sites, Phys. Rev. B 69, 214406 (2004).

[26] J. Richter, J. Scholenburg, A. Honecker, J. Schnack, and H.-J. Schmidt, Exact eigenstates and macroscopic magnetization jumps in strongly frustrated spin lattices, J. Phys. Condens. Matter 16, S77 (2004).

[27] Y. Inagaki, Y. Narumi, K. Kindo, H. Kikuchi, T. Kamikawa, T. Kunitomo, S. Okubo, H. Ohta, T. Saito, M. Azuma, M. Takano, H. Nojiri, M. Kaburagi, and T. Tonegawa, Ferro-Antiferromagnetic Delta-Chain System Studied by High Field Magnetization Measurements, J. Phys. Soc. Jpn. 74, 2831 (2005).

[28] J. Richter, O. Derzhko, A. Honecker, The sawtooth chain: From Heisenberg spins to Hubbard electrons, Int. J. Modern Phys. B 22, 4418 (2008).

[29] K. Hida, Exotic ground state phases of $S = \frac{1}{2}$ Heisenberg Δ-chain with ferromagnetic main chain, J. Phys. Soc. Jpn. 77, 044707 (2008).

[30] Z. Hao, Y. Wan, I. Rousochatzakis, J. Wildeboer, A. Seidel, F. Mila, and O. Tchernyshyov, Destruction of valence-bond order in a $S = \frac{1}{2}$ sawtooth chain with a Dzyaloshinskii-Moriya term, Phys. Rev. B 84, 094452 (2011).

[31] V. Ya. Krivnöv, D. V. Dmitriev, S. Nishimoto, S.-L. Drechsler, and J. Richter, Delta chain with ferromagnetic and antiferromagnetic interactions at the critical point, Phys. Rev. B 90, 014441 (2014).

[32] D. V. Dmitriev, and V. Ya. Krivnöv, Delta chain with anisotropic ferromagnetic and antiferromagnetic interactions, Phys. Rev. B 92, 184422 (2015).

[33] D. V. Dmitriev, and V. Ya. Krivnöv, Ferrimagnetism in delta chain with anisotropic ferromagnetic and antiferromagnetic interactions, J. Phys. Condens. Matter 28, 506002 (2016).

[34] D. V. Dmitriev, and V. Ya. Krivnöv, Heisenberg-Ising delta-chain with bond alternation, J. Phys. Condens. Matter 30, 385803 (2018).

[35] O. Le Bacq, A. Pasturel, C. Lacroix, and M. D. Núñez-Regueiro, First-principles determination of exchange interactions in delafossite YCuO$_2$, Phys. Rev. B 71, 014432 (2005).

[36] H. Kikuchi, Y. Fujii, D. Takahashi, M. Azuma, Y. Shimakawa, T. Taniguchi, A. Matsuo, and K. Kindo, Spin gapped behavior of a frustrated delta chain compound euchroite, J. Phys.: Conf. Ser. 320, 012045 (2011).

[37] A. Banioede, N. Magnani, Y. Lan, G. Buth, C. Anson, J. Richter, M. Affronte, J. Schnack, A. K. Powell, High spin cycles: topping the spin record for a single moleculeverging on quantum criticality, npj Quantum Materials 3, 1 (2018).

[38] H. O. Jeschke, H. Nakano, and T. Sakai, From kagome strip to kagome lattice: Realizations of frustrated $S = 1/2$ antiferromagnets in Ti(III) fluorides, Phys. Rev. B 99, 140410(R) (2019).

[39] Helmholtz-Zentrum Berlin für Materialien und Energie, E2: The Flat-Cone Diffractometer at BER II, Journal of large-scale research facilities 4, A129 (2018).

[40] L. Heinze, R. Beltran-Rodriguez, G. Bastien, A. U. Wolter, M. Reehuis, J.-U. Hoffmann, K. C. Rule, and S. Süßow, The magnetic properties of single-crystalline atacamite, Cu$_3$Cl(OH)$_3$, Physica B 536, 377 (2018).

[41] Helmholtz-Zentrum Berlin für Materialien und Energie, HFM/EXED: The High Magnetic Field Facility for Neutron Scattering at BER II, Journal of large-scale research facilities 3, A115 (2017).

[42] See Supplemental Material for additional information on the characterization of the atacamite single crystals and the neutron diffraction experiments for crystal and magnetic structure determination. Further, we provide additional information on the electronic structure calculations as well as the classical mean field theory of an individual Δ-chain and a collection of chains. We also present additional experimental data probing the metamagnetic transition and theoretical results for a sawtooth chain with additional in-chain coupling as well as exact diagonalization results for the Δ-chain. The Supplemental Material includes Ref. [43].

[43] M. E. Zhitomirskiy and T. Nikuni, Magnetization curve of a square-lattice Heisenberg antiferromagnet, Phys. Rev. B 57, 5013 (1998).

[44] S. R. Hall, G. S. D. King, J. M. Stewart, Eds., Xtal 3.4 User’s Manual. University of Australia: Lamb, Perth (1995).

[45] V. F. Sears, in International Tables for Crystallography, ed. by A. J. C. Wilson (Kluwer Academic Publishers, Dordrecht/Boston/London, 1995), Vol. C, p. 383.

[46] P. J. Brown, in International Tables for Crystallography, ed. by A. J. C. Wilson (Kluwer Academic Publishers, Dordrecht/Boston/London, 1995), Vol. C, p. 391.

[47] K. Koepernik and H. Eschrig, Full-potential nonorthogonal local-orbital minimum-basis band-structure scheme,
[48] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77, 3865 (1996).

[49] A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen, Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators, Phys. Rev. B 52, R5467(R) (1995).

[50] G. Vidal, Classical simulation of infinite-size quantum lattice systems in one spatial dimension, Phys. Rev. Lett. 98, 070201 (2007).

[51] J. B. Parise, and B. G. Hyde, The structure of atacamite and its relationship to spinel, Acta Cryst. C 42, 1277 (1986).

[52] X. G. Zheng, T. Mori, K. Nishiyama, W. Higemoto, H. Yamada, K. Nishikubo, and C. N. Xu, Antiferromagnetic transitions in polymorphous minerals of the natural cuprates atacamite and botallackite \(\text{Cu}_2\text{Cl(OH)}_3 \), Phys. Rev. B 71, 174404 (2005).

[53] X. G. Zheng, and E. S. Otabe, Antiferromagnetic transition in atacamite \(\text{Cu}_2\text{Cl(OH)}_3 \), Solid State Commun. 130, 107 (2004).

[54] K. Zenmyo, H. Kubo, M. Tokita, T. Hamasaki, M. Hagi-hala, X.-G. Zheng, T. Kawae, Y. Takeuchi, and M. Matsumura, Proton NMR study of atacamite \(\text{Cu}_2\text{Cl(OH)}_3 \), J. Phys. Soc. Jpn. 82, 084707 (2013).

[55] From an analysis of the low temperature magnetic susceptibility of several atacamite samples we estimate that the amount of \(S = 1/2 \) impurities is less than 0.5% as indicated by the absence of a Curie tail down to the lowest experimental temperature of \(T = 2 \) K (see Fig. 2 (b)).

[56] E. F. Bertaut, Representation analysis of magnetic structures, Acta Cryst. A 24, 217 (1968).

[57] M. Jaime, C. Corvalán Moya, F. Weickert, V. Zapf, F. Balakirev, M. Wartenbe, P. Rosa, J. Betts, G. Rodriguez, S. Crooker, and R. Daou, Fiber Bragg grating dilatometry in extreme magnetic field and cryogenic conditions, Sensors 17, 2572 (2017).

[58] J. A. Detwiler, G. M. Schmiedeshoff, N. Harrison, A. H. Lacerda, J. C. Cooley, and J. L. Smith, Magnetization of \(\text{UBe}_13 \) to 60 T, Phys. Rev. B 61, 402 (2000).

[59] T. Nomura, Y. Skourski, D. L. Quintero-Castro, A. A. Zvyagin, A. V. Suslov, D. Gorbunov, S. Yasin, J. Wosnitza, K. Kindo, A. T. M. N. Islam, B. Lake, Y. Kohama, S. Zherlitsyn, and M. Jaime, Enhanced spin correlations in the Bose-Einstein condensate compound \(\text{Sr}_3\text{Cr}_2\text{O}_8 \), Phys. Rev. B 102, 165144 (2020).

[60] Since the original experiments were completed we became aware of the existence of a strong magnetocaloric effect (MCE) in atacamite that might cause the sample to be adiabatically (as opposed to isothermically) magnetized in pulsed magnetic fields, even when immersed in liquid He at cryogenic temperatures. A detailed MCE study, outside of the scope of the present manuscript, is currently under way to establish the \((T, \mu_0 H)\) phase diagram of this material beyond ambiguities.

[61] J. K. Glashbrenner, I. I. Mazin, H. O. Jeschke, P. J. Hirschfeld, R. M. Fernandes, R. Valentí, Effect of magnetic frustration on nematicity and superconductivity in iron chalcogenides, Nature Physics 11, 953 (2015).

[62] Y. Iqbal, T. Müller, H. O. Jeschke, R. Thomale, and J. Reuther, Stability of the spiral spin liquid in \(\text{MnSe}_2\text{S}_3 \), Phys. Rev. B 98, 064427 (2018).

[63] P. Ghosh, Y. Iqbal, T. Müller, R. Thomale, J. Reuther, M. J. P. Gingras, H. O. Jeschke, Breathing chromium spinels: a showcase for a variety of pyrochlore Heisenberg Hamiltonians, npj Quant. Mater. 4, 63 (2019).

[64] A. Metavitsiadis, C. Psaroudaki, and W. Brenig, Enhancement of magnetization plateaus in low-dimensional spin systems, Phys. Rev. B 101, 235143 (2020).

[65] J. M. Tranquada, G. Shirane, B. Reimer, S. Shamoto, and M. Sato, Neutron scattering study of magnetic excitations in \(\text{YBa}_2\text{Cu}_3\text{O}_{6+x} \), Phys. Rev. B 40, 4503 (1989).