On rainbow trees and cycles

Alan Frieze ∗ Michael Krivelevich †

Submitted: April 23, 2007; Accepted: March 26, 2008
Mathematics Subject Classification: 05C15

Abstract
We derive sufficient conditions for the existence of rainbow cycles of all lengths in edge colourings of complete graphs. We also consider rainbow colorings of a certain class of trees.

1 Introduction

Let the edges of the complete graph K_n be coloured so that no colour is used more than max $\{b, 1\}$ times. We refer to this as a b-bounded colouring. We say that a subset S of the edges of K_n is rainbow coloured if each edge of S is of a different colour. Various authors have considered the question of how large can $b = b(n)$ be so that any b-bounded edge colouring contains a rainbow Hamilton cycle. It was shown by Albert, Frieze and Reed [1] (see Rue [7] for a correction in the claimed constant) that b can be as large as $n/64$. This confirmed a conjecture of Hahn and Thomassen [5]. Our first theorem discusses the existence of rainbow cycles of all sizes. We give a kind of a pancyclic rainbow result.

Theorem 1 There exists an absolute constant $c > 0$ such that if an edge colouring of K_n is cn-bounded then there exist rainbow cycles of all sizes $3 \leq k \leq n$.

Having dealt with cycles, we turn our attention to trees.

Theorem 2 Given a real constant $\varepsilon > 0$ and a positive integer Δ, there exists a constant $c = c(\varepsilon, \Delta)$ such that if an edge colouring of K_n is cn-bounded, then it contains a rainbow copy of every tree T with at most $(1 - \varepsilon)n$ vertices and maximum degree Δ.

∗Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh PA15213, U.S.A. Supported in part by NSF grant CCF0502793.

†School of Mathematical Sciences, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel. E-mail: krivelev@post.tau.ac.il. Research supported in part by USA-Israel BSF Grants 2002-133 and 2006-322, by grant 526/05 from the Israel Science Foundation and by the Pazy memorial award.

THE ELECTRONIC JOURNAL OF COMBINATORICS 13 (2006), #R00
We conjecture that there is a constant \(c = c(\Delta) \) such that every \(cn \)-bounded edge colouring of \(K_n \) contains a rainbow copy of every spanning tree of \(K_n \) which has maximum degree at most \(\Delta \). We are far from proving this and give a small generalisation of the known case where the tree in question is a Hamilton path. Let \(T^* \) be an arbitrary rooted tree with \(\nu_0 \) nodes. Assume that \(\nu_0 \) divides \(n \) and let \(\nu_1 = n/\nu_0 \). We define \(T(\nu_1) \) as follows: It has a spine which is a path \(P = (x_0, x_1, \ldots, x_{\nu_1 - 1}) \) of length \(\nu_1 - 1 \). We then have \(\nu_1 \) vertex disjoint copies \(T_0, T_1, \ldots, T_{\nu_1 - 1} \) of \(T^* \), where \(T_i \) is rooted at \(x_i \) for \(i = 0, 1, \ldots, \nu_1 - 1 \). \(T(\nu) \) has \(n \) vertices. The edges of \(T(\nu_1) \) are of two types, spine-edges in \(P \) and teeth-edges.

We state our theorem as

\[\text{Theorem 3} \text{ If an edge colouring of } K_n \text{ is } k \text{-bounded and } \left(\frac{\nu_1 - 2}{\nu_1} \right) > 16kn \text{ then there exists a rainbow copy of every possible } T(\nu_1). \]

2 Proof of Theorem 1

We will not attempt to maximise \(c \) as we will be far from the optimum.

The following lemma is enough to prove the theorem:

\[\text{Lemma 4} \]

(a) Let \(c_0 = 2^{-7} \) and suppose that \(n \geq 2^{21} \). Then every \(2c_0n \)-bounded edge colouring of \(K_n \) contains rainbow cycles of length \(k \), \(n/2 \leq k \leq n \).

(b) If \(n \geq e^{1000} \) and \(cn \geq n^{2/3} \) and an edge colouring of \(K_n \) is \(cn \)-bounded, then there exists a set \(S \subseteq [n] \) such that \(|S| = N = n/2 \) and the induced colouring of the edges of \(S \) is \(cN \)-bounded where \(c' = c(1 + 1/(\ln n)^2) \).

We will first show that the lemma implies the theorem. Assume first that \(n \geq e^{1000} \). We let \(N_i = 2^{-i}n \) for \(0 \leq i \leq r = \lceil \log_2(ne^{-1000}) \rceil \) and note that \(N_i \geq e^{1000} > 2^{21} \) for all \(i \leq r \). Now define a sequence \(c_0, c_1, c_2, \ldots, c_r \) by

\[c_{i+1} = c_i \left(1 + \frac{1}{(\ln N_i)^2} \right). \]
Then for $i \geq 1$ we have:
\[
c_i = c_0 \prod_{s=1}^{i} \left(1 + \frac{1}{\ln n - s \ln 2 + 1}\right)
\leq c_0 \exp \left\{ \frac{1}{(\ln n)^2} \sum_{s=1}^{i} \left(1 - \frac{s}{\ln 2}\right)^2 \right\}
= c_0 \exp \left\{ \left(\frac{\log_2 n}{\ln n}\right)^2 \sum_{s=1}^{i} \frac{1}{(\log_2 n - s)^2} \right\}.
\]

Then for all $0 \leq i \leq r$ we have:
\[
c_0 \leq c_i \leq c_0 \exp \left\{ \left(\frac{\log_2 n}{\ln n}\right)^2 \sum_{t=21}^{\infty} \frac{1}{t^2} \right\} \leq c_0 \exp \left\{ 2.1 \int_{t=20}^{\infty} t^{-2} dt \right\} = c_0 \exp \left\{ \frac{2.1}{20} \right\} \leq 2c_0.
\]

Furthermore, for $0 \leq i \leq r$ we have
\[
\frac{c_i}{N_i^{1/3}} \geq \frac{c_0 n^{1/3}}{2i^{1/3}} \geq 1,
\]
which implies that $c_i N_i \geq N_i^{2/3}$.

Assume now we are given a $c_0 n$-bounded coloring of K_n and that $n \geq e^{1000}$. Then by part (a) of the lemma we can find rainbow cycles of length k, $n/2 \leq k \leq n$. By part (b) there exists a subset S, $|S| = n/2 = N$, such that the induced coloring on S is $c_1 n$-bounded. Now we can apply part (a) of the lemma to the induced subgraph $G[S]$ to find rainbow cycles of length k, $n/4 \leq k \leq n/2$. We can continue this halving process for r steps, thus finding rainbow cycles of length k, $N_r \leq k \leq n$ where $e^{1000} \leq N_r \leq 2e^{1000}$.

To summarise: Assuming the truth of Lemma 4, if $n \geq e^{1000}$ and $c \leq 2^{-7}$ then any cn-bounded coloring of K_n contains a rainbow cycle of length $2e^{1000} \leq k \leq n$.

Up to this point, the value of c is quite reasonable. We now choose a very small value of c in order to finish the proof without too much more effort.

Suppose now that $c \leq e^{-3001}$, $n \geq e^{1000}$ and $3 \leq k \leq \min \{2e^{1000}, n\}$. Suppose that K_n is edge colored with q colors and that color i is used $m_i \leq cn$ times. Choose a set S of k vertices. Let \mathcal{E} be the event S contains two edges of the same color. at random. Then,
\[
\Pr(\mathcal{E}) \leq \left(\binom{k}{3}\right)^2 \sum_{i=1}^{q} \left(\frac{m_i}{\binom{n}{2}}\right)^2 + \left(\binom{k}{3}\right) \sum_{i=1}^{q} \left(\frac{m_i}{\binom{2}{2}}\right) \binom{n}{2} \binom{3}{2}
\leq \frac{ck^2}{n-1} + \frac{ck^3}{4} < 1.
\]
The two sums in (1) correspond to having two disjoint edges with the same color and to two edges of the same color sharing a vertex, respectively.

All that is left is the case $n \leq e^{1000}$ but now c is so small that $cn < 1$ and all edges have distinct colors.

2.1 Proof of Lemma 4

Part (a) follows immediately from [1] ($n \geq 2^{21}$ is easily large enough for the result there to hold). We can apply the main theorem of that paper to any subset of $[n]$ with at least $n/2$ vertices.

We now prove part (b). Let S be a random $n/2$-subset of $[n]$. Now for each colour i we orient the i-coloured edges of K_n so that for each $v \in [n]$,

$$|d_i^+(v) - d_i^-(v)| \leq 1$$

where $d_i^+(v)$ (resp. $d_i^-(v)$) is the out-degree (resp. in-degree) of v in the digraph $D_i = ([n], E_i)$ induced by the edges of colour i. Now fix a colour i and let

$$L_i = \{v : d_i^+(v) \geq (\ln n)^6\}.$$

Then with (v, w) denoting an edge oriented from v to w we let

$$A_1 = \{(v, w) \in E_i : v \in L_i\}$$

$$A_2 = \{(v, w) \in E_i : v \notin L_i, w \in L_i \text{ and } \exists \geq (\ln n)^6 \text{ edges of colour } i \text{ from } \overline{L}_i \text{ to } w\}$$

$$A_3 = E_i \setminus (A_1 \cup A_2).$$

Let $|A_j| = \alpha_j n$ where $\alpha_1 + \alpha_2 + \alpha_3 \leq c$.

Let $Z_j, j = 1, 2, 3$, be the number of edges of A_j which are entirely contained in S and let $Z = Z_1 + Z_2 + Z_3$. We write

$$Z_1 = \sum_{v \in L_i} 1_{v \in S} X_{1,v}$$

where $X_{1,v}$ is the number of neighbours of v in D_i that are included in S.

Now

$$\Pr(X_{1,v} \geq 1/2d_i^+(v) + 1/4d_i^+(v)^{1/2}\ln n) \leq e^{-(\ln n)^2/24}.$$

This follows from the Chernoff bounds (more precisely, using Hoeffding’s lemma [6] about sampling without replacement).

Note that

$$1/2d_i^+(v) + 1/4d_i^+(v)^{1/2}\ln n \leq 1/2d_i^+(v) \left(1 + \frac{1}{2(\ln n)^2}\right).$$

So, on using $n \geq e^{1000}$, we see that with probability at least

$$1 - n e^{-(\ln n)^2/24} = 1 - n^{1-(\ln n)/24} \geq 9/10.$$
we have

\[Z_1 \leq \frac{1}{2} \alpha_1 n \left(1 + \frac{1}{2(\ln n)^2} \right). \]

The edges of \(A_2 \) are dealt with in exactly the same manner and we have that with probability at least \(9/10 \),

\[Z_2 \leq \frac{1}{2} \alpha_2 n \left(1 + \frac{1}{2(\ln n)^2} \right). \]

To deal with \(Z_3 \) we observe that if we delete a vertex \(v \) of \(S \) then \(Z_3 \) can change by at most \(2(\ln n)^6 \). This is because the digraph induced by \(A_3 \) has maximum in-degree and out-degree bounded by \((\ln n)^6 \). Applying a version of Azuma’s inequality that deals with sampling without replacement (see for example Lemma 11 of [4]) we see that for \(t > 0 \),

\[\Pr \left(Z_3 \geq \frac{1}{4} \alpha_3 n + t \right) \leq \exp \left\{ -\frac{2t^2}{n(\ln n)^{12}} \right\}. \]

So, putting \(t = n^{3/5} \) and using \(n \geq e^{1000} \) and \(cn \geq n^{2/3} \) we see that with probability at least \(9/10 \),

\[Z \leq \frac{1}{2}(\alpha_1 + \alpha_2)n \left(1 + \frac{1}{2(\ln n)^2} \right) + \frac{1}{4} \alpha_3 n + n^{3/5} \leq \frac{1}{2} cn \left(1 + \frac{1}{(\ln n)^2} \right). \]

So, with probability at least \(7/10 \) the colouring of the edges of \(S \) is \(c(1 + 1/(\ln n)^2)n/2 \)-bounded and Lemma 4 is proved.

\[\square \]

3 Proof of Theorem 2

We proceed as follows. We choose a large \(d = d(\varepsilon, \Delta) > 0 \) and a small \(c \ll \frac{1}{d^{3/2}} \) and consider a \(cn \)-bounded edge colouring of \(K_n \). We then define \(G_1 = G_{n,p} \), \(p = d/n \). We remove any edge of \(G_1 \) which has the same colour as another edge of \(G_1 \). Call the remaining graph \(G_2 \). The edge set of \(G_2 \) is rainbow coloured. We then remove vertices of low and high degree to obtain a graph \(G_3 \). We then show that \(G_3 \) satisfies the conditions of a theorem of Alon, Krivelevich and Sudakov [2], implying that \(G_3 \) contains a copy of every tree with \(\leq (1 - \varepsilon)n \) vertices and maximum degree \(\leq \Delta \). The theorem we need from [2] is the following:

Definition: Given two positive numbers \(a_1 \) and \(a_2 < 1 \), a graph \(G = (V, E) \) is called an \((a_1, a_2)\)-expander if every subset of vertices \(X \subseteq V \) of size \(|X| \leq a_1 |V| \) satisfies \(|N_G(X)| \geq a_2 |X| \). Here \(N_G(X) \) is the set of vertices in \(V(G) \setminus X \) that are neighbours of vertices in \(X \).

Theorem 5 Let \(\Delta \geq 2 \), \(0 < \varepsilon < 1/2 \). Let \(H \) be a graph on \(N \) vertices of minimum degree \(\delta_H \) and maximum degree \(\Delta_H \). Suppose that

THE ELECTRONIC JOURNAL OF COMBINATORICS 13 (2006), #R00
\[T1 \]
\[N \geq \frac{480\Delta^4 \ln(2/\epsilon)}{\epsilon}. \]

\[T2 \]
\[\Delta_H^2 \leq \frac{1}{K} e^{\delta_H/(8K)-1} \text{ where } K = \frac{20\Delta^2 \ln(2/\epsilon)}{\epsilon}. \]

\[T3 \] Every subgraph \(H_0 \) of \(H \) with minimum degree at least \(\epsilon \delta_H \frac{e^{\delta_H}}{30\Delta^2 \ln(2/\epsilon)} \) is a \(\left(\frac{1}{2\Delta+2}, \Delta+1 \right) \)-expander.

Then \(H \) contains a copy of every tree with \(\leq (1-\epsilon)N \) vertices and maximum degree \(\leq \Delta \).

We now get down to details. In the following we assume that \(cd \ll 1 \ll d \). We will prove that \(\text{whp} \).

\[P1 \] The number of edges using repeated colours is at most \(d^2cn \).

\[P2 \] Every set \(X \subseteq [n], |X| \leq n/d^{1/5} \) contains less than \(\alpha d|X| \) edges of \(G_1 \) where, with \(\Delta = 2d \),
\[\alpha = \frac{\epsilon}{(100\Delta^2(\Delta+2) \ln(2/\epsilon))}. \]

\[P3 \] \(G_1 \) contains at most \(ne^{-d/10} \) vertices of degree outside \([d/2, 2d]\).

\[P4 \] Every pair of disjoint sets \(S, T \subseteq [n] \) of size \(n/d^{1/4} \) are joined by at least \(d^{1/2}n/2 \) edges in \(G_1 \).

Before proving that \(P1-P4 \) hold \(\text{whp} \), let us show that they are sufficient for our purposes. Starting with \(G_1 = G_{n,p} \) we remove all edges using repeated colours to obtain \(G_2 \). Then let \(X_0 \) denote the set of vertices of \(G_2 \) whose degree is not in \([d/3, 2d]\). It follows from \(P1, P3 \) that
\[|X_0| \leq n(e^{-d/10} + 12cd). \] (2)

Note that \(12cdn \) bounds the number of vertices that lose more than \(d/6 \) edges in going from \(G_1 \) to \(G_2 \).

Now consider a sequence of sets \(X_0, X_1, \ldots \), where \(X_i = X_{i-1} \cup \{x_i\} \) and \(x_i \) has at least \(2\alpha d \) neighbours in \(X_{i-1} \). We continue this process as long as possible. Let \(G_3 \) be the resulting graph. We claim that the process stops before \(i \) reaches \(|X_0| \). If not, we have a set with \(2|X_0| \) vertices and at least \(2\alpha d |X_0| \) edges. For this we need \(2|X_0| \geq n/d^{1/5} \) (see \(P2 \)) and this contradicts (2) if \(d \) is large and \(c < 1/d^2 \).

Thus \(H = G_3 \) has at least \(n(1-2(e^{-d/10} + 12cd)) \) vertices and this implies that \(T1 \) holds. Also,
\[d(1/3 - 2\alpha) \leq \delta_H \leq \Delta_H \leq 2d. \]

So if \(d \gg K^2 \), \(T2 \) will also hold.
Now consider a subgraph Γ of H which has minimum degree at least βd where $\beta = 2(\Delta + 2)\alpha$. Let $\nu = |V(\Gamma)|$. Choose $S \subseteq V(\Gamma)$ where $|S| \leq \frac{n}{\Delta + 2}$ and let $T = N_\Gamma(S)$. Suppose also that $|T| < (|\Delta| + 1)|S|$.

Suppose first that $|S| \geq n/d^{1/4}$. Then $|S \cup T| \leq \nu(\Delta + 2)/2\Delta + 2$ and so $Y = V(\Gamma) \setminus (S \cup T)$ satisfies $|Y| \geq |S| \geq n/d^{1/4}$. The fact that there are no $S : Y$ edges contradicts P_1, P_4.

Now assume that $1 \leq |S| \leq n/d^{1/4}$. Then $|S \cup T| \leq (\Delta + 2)n/d^{1/4} \leq n/d^{1/5}$ and $S \cup T$ contains at least $\beta d|S|/2 \geq \alpha d|S \cup T|$ edges, contradicting P_2.

Thus, Γ is $(1/2\Delta + 2, \Delta + 1)$-expander and the minimum degree requirement is βd which is weaker than required by T_3.

It only remains to verify P_1–P_4:

P_1: Let Z denote the number of edges using repeated colours. Let there be $m_i \leq cn$ edges with colour i for $i = 1, 2, \ldots, \ell$. Then

$$E(Z) \leq \sum_{i=1}^{\ell} \binom{m_i}{2} p^2 \leq \frac{(n/2)}{cn} \binom{cn}{2} d^2 \leq \frac{cd^2}{4} n.$$

Now whp G_1 has at most dn edges and changing one edge can only change Z by at most 2. So, by Azuma’s inequality, we have

$$\Pr(Z \geq E(Z) + t) \leq \exp\left\{-\frac{2t^2}{4dn}\right\},$$

and we get (something stronger than) P_1 by taking $t = n^{3/4}$.

P_2: The probability P_2 fails is at most

$$\sum_{k=2ad}^{n/d^{1/5}} \binom{n}{k} \left(\frac{k}{2n}\right)^{\alpha d} p^{\alpha d k} \leq \sum_{k=2ad}^{n/d^{1/5}} \left(\frac{k}{2n}\right)^{\alpha d - 1} \left(\frac{e}{\alpha}\right)^{\alpha d} e^k = o(1).$$

P_3: If now Z is the number of vertices with degrees outside $[d/2, 2d]$ then the Chernoff bounds imply that

$$E(Z) \leq n(e^{-d/8} + e^{-d/3}),$$

and Azuma’s inequality will complete the proof.

P_4: The probability P_4 fails is at most

$$\left(\binom{n}{n/d^{1/4}}\right)^{2d^{1/2}n/2} \sum_{k=0}^{n^2/d^{1/2}} \binom{n^2/d^{1/2}}{k} p^k (1 - p)^{n^2/d^{1/2} - k} \leq 4^e e^{-d^{1/2}n/8} = o(1).$$

4 Proof of Theorem 3

We will use the lop-sided Lovász local lemma as in Erdős and Spencer [3] and in Albert, Frieze and Reed [1]. We state the lemma as
Lemma 6 Let A_1, A_2, \ldots, A_N denote events in some probability space. Suppose that for each i there is a partition of $[N] \setminus \{i\}$ into X_i and Y_i. Let $m = \max\{|Y_i| : i \in [N]\}$ and $\beta = \max\{\Pr(A_i | \bigcap_{j \in S} \bar{A}_j) : i \in [N], S \subseteq X_i\}$. If $4m\beta < 1$ then $\Pr(\bigcap_{i=1}^\ell A_i) > 0$.

Suppose now that we have a k-bounded colouring of K_n and that H is chosen uniformly from the set of all copies of $T(\nu)$ in K_n where T is an arbitrary rooted tree with ν vertices. We show that the probability that H is a rainbow copy is strictly positive.

Let $\{e_i, f_i\}, i = 1, 2, \ldots, N$, be an enumeration of all pairs of edges of K_n where e_i, f_i have the same colour (thus $N = \sum e(n_i) \ell$ where n_i is the number of edges of colour ℓ). Let A_i be the event $H \supset \{e_i, f_i\}$ for $i = 1, 2, \ldots, N$. We apply Lemma 6 with the definition

$$Y_i = \{j \neq i : (e_j \cup f_j) \cap (e_i \cup f_i) \neq \emptyset\}.$$

With this definition

$$m \leq 4kn.$$

We estimate β as follows: Fix $i, S \subseteq X_i$. We show that for each $T \in T_1 = A_i \cap \bigcap_{j \in S} \bar{A}_j$ (this means that T is a copy of $T(\nu_0, \nu_1)$ containing both e_i, f_i and at most one edge from each pair e_j, f_j for $j \in S$) there exists a set $S(T) \subseteq T_2 = A_i \cap \bigcap_{j \in S} \bar{A}_j$ such that (i) $|S(T)| > 4kn$ and (ii) $S(T) \cap S(T') = \emptyset$ for $T \neq T' \in T_1$. This shows that

$$\Pr(A_i | \bigcap_{j \in S} \bar{A}_j) \leq \frac{1}{4m + 1}$$

and proves the theorem.

Fix $H \in T_1$. If $e = (x_i, x_{i+1})$ and $f = (x_j, x_{j+1})$ are both spine-edges where $j - i \geq 2$, we define the tree $F_{\text{spine}}(H; e, f)$, which is also a copy of $T(\nu)$, as follows: We delete e, f from H and replace them by (x_i, x_j) and (x_{i+1}, x_{j+1}). Suppose now that $e = (a, b) \in T_1 \setminus x_i$ and $f = (c, d) \in T \setminus x_j$ are both teeth-edges and that $\phi(e) = f$ in some isomorphism from T_i to T_j. Then we define $F_{\text{teeth}}(H; e, f)$ as follows: We delete e, f from H and replace them by (a, d) and (b, c) to get another copy of $T(\nu)$.

Observe that if $f \neq f_i$ then $H' = F_{\sigma}(H; e_i, f) \in T_2$ for $\sigma \in \{\text{spine, teeth}\}$. This is because e_i is not an edge of H' and the edges that we added are all incident with e_i. We cannot therefore have caused the occurrence of A_j for any $j \in X_i$. Similarly, $F_\sigma(H'; f_i, g) \in T_2$ for $g \neq e_i$.

We use $F_{\text{spine}}, F_{\text{teeth}}$ to construct $S(H)$ as follows: We choose an edge $f \neq f_i$ of the same type as e_i and construct $H' = F_{\sigma}(H; e_i, f)$ for the relevant σ. We then choose $g \neq e_i$ of the same type as f_i and construct $H'' = F_{\sigma'}(H'; f_i, g)$. In this way we construct $S(H) \subseteq T_2$ containing at least $(n_i^2 - 2)$ distinct copies of $T(\nu_1)$.

Notice that knowing e_i, f_i allows us to construct H' from H'' and then H from H'. This shows that $S(H) \cap S(H') = \emptyset$. After this, all we have to do is choose k, ν_1 so that $(n_i^2 - 2) > 16kn$ in order to finish the proof of Theorem 3.
References

[1] M. Albert, A.M. Frieze and B. Reed, *Multicoloured Hamilton Cycles*, Electronic Journal of Combinatorics 2 (1995), publication R10.

[2] N. Alon, M. Krivelevich and B. Sudakov, *Embedding nearly-spanning bounded degree trees*, Combinatorica, to appear.

[3] P. Erdős and J. Spencer, *Lopsided Lovász Local Lemma and Latin transversals*, Discrete Applied Mathematics 30 (1990), 151–154.

[4] A.M. Frieze and B. Pittel, *Perfect matchings in random graphs with prescribed minimal degree*, Trends in Mathematics, Birkhauser Verlag, Basel (2004), 95–132.

[5] G. Hahn and C. Thomassen, *Path and cycle sub-Ramsey numbers and an edge-colouring conjecture*, Discrete Mathematics 62 (1986), 29–33.

[6] W. Hoeffding, *Probability inequalities for sums of bounded random variables*, Journal of the American Statistical Association 58 (1963), 13–30.

[7] R. Rue, Comment on [1].