SOME GENERAL STATISTICAL APPROXIMATION RESULTS FOR
\(\lambda \)-BERNSTEIN OPERATORS

FARUK ÖZGER

Department of Engineering Sciences, İzmir Katip Çelebi University, 35620, İzmir, Turkey
farukozger@gmail.com

ABSTRACT. In this article, we achieve some general statistical approximation results for \(\lambda \)-Bernstein operators in addition to some other approximation properties. We prove a statistical Voronovskaja-type approximation theorem. We also construct bivariate \(\lambda \)-Bernstein operators and study their approximation properties.

Keywords: Rate of weighted \(A \) statistical convergence, \(\lambda \)-Bernstein operators, bivariate \(\lambda \)-Bernstein operators, statistical approximation properties, GrüssVoronovskaja-type theorem, weighted \(A \)-statistical Voronovskaja-type theorem, weighted space

MSC: 40A05, 41A25, 41A36

1. Introduction

Bernstein used famous polynomials nowadays called Bernstein polynomials, in 1912, to obtain an alternative proof of Weierstrass’s fundamental theorem [2]. Approximation properties of Bernstein operators and their applications in Computer Aided Geometric Design and Computer Graphics have been extensively studied in many articles.

Bernstein basis of degree \(n \) on \(x \in [0, 1] \) is defined by

\[
b_{n,i}(x) = \binom{n}{i} x^i (1-x)^{n-i}, \quad i = 0, \ldots, n,
\]

and \(n \)th order Bernstein polynomial is given by

\[
B_n(f; x) = \sum_{i=0}^{n} f \left(\frac{i}{n} \right) b_{n,i}(x)
\]

for any continuous function \(f(x) \) defined on \([0, 1]\).

In 2018, Cai et al. have introduced a new type \(\lambda \) Bernstein operators [4]

\[
B_{n,\lambda}(f; x) = \sum_{i=0}^{n} f \left(\frac{i}{n} \right) \tilde{b}_{n,i}(\lambda; x)
\]

with Bézier bases \(\tilde{b}_{n,i}(\lambda; x) \) [15]:

\[
\begin{align*}
\tilde{b}_{n,0}(\lambda; x) &= b_{n,0}(x) - \frac{\lambda}{n+1} b_{n+1,1}(x), \\
\tilde{b}_{n,i}(\lambda; x) &= b_{n,i}(x) + \lambda \left(\frac{n - 2i + 1}{n^2 - 1} b_{n+1,i}(x) - \frac{n - 2i - 1}{n^2 - 1} b_{n+1,i+1}(x) \right), \quad i = 1, 2, \ldots, n - 1, \\
\tilde{b}_{n,n}(\lambda; x) &= b_{n,n}(x) - \frac{\lambda}{n+1} b_{n+1,n}(x),
\end{align*}
\]

where shape parameters \(\lambda \in [-1, 1] \).
2. Preliminary Results

In this part, we obtain global approximation formula in terms of Ditzian-Totik uniform modulus of smoothness of first and second order and give a local direct estimate of the rate of convergence by Lipschitz-type function involving two parameters for \(\lambda \) Bernstein operators. We also give a Grüss-Voronovskaja function and a quantitative Voronovskaja-type theorem.

Results in the following lemma were obtained for \(\lambda \) Bernstein operators in \([4, \text{Lemma 2.1}].\)

Lemma 2.1. We have following equalities for \(\lambda \) Bernstein operators:

\[
B_{n,\lambda}(1; x) = 1;
\]

\[
B_{n,\lambda}(t; x) = x + \frac{1 - 2x + x^{n+1} - (1 - x)^{n+1}}{n(n-1)} \lambda;
\]

\[
B_{n,\lambda}(t^2; x) = x^2 + \frac{2x - 4x^2 + 2x^{n+1}}{n(n-1)} + \frac{x^{n+1} + (1 - x)^{n+1} - 1}{n^2(n-1)} \lambda;
\]

\[
B_{n,\lambda}(t^3; x) = x^3 + \frac{3x^2(1 - x)}{n} + \frac{2x^3 - 3x^2 + x}{n^2} + \frac{6x^{n+1} - 6x^3 + 3x^2 - 3x^{n+1}}{n(n-1)} \\
+ \frac{9x^{n+1} - 9x^2}{n^2(n-1)} + \frac{4x^{n+1} - 4x}{n^3(n-1)} + \frac{1 - x^{n+1} + (1 - x)^{n+1}}{n^3(n-1)} \lambda;
\]

\[
B_{n,\lambda}(t^4; x) = x^4 + \frac{6x^3(1 - x)}{n} + \frac{7x^2 - 18x^3 + 11x^4}{n^2} + \frac{x - 7x^2 + 12x^3 - 6x^4}{n^3} \\
+ \frac{6x^2 - 2x^3 - 8x^4 + 4x^{n+1}}{n^2} + \frac{17x^{n+1} + 16x^4 - 32x^3 - x^2}{n^3} + \frac{x - x^{n+1}}{n^4} \\
+ \frac{7x^2 - 7x^{n+1}}{n^2(n-1)} + \frac{x - 23x^2 + 22x^{n+1}}{n^3(n-1)} + \frac{(1 - x)^{n+1} + x - 1}{n^4} \lambda.
\]

2.1. Global and local approximations. First we obtain global approximation formula in terms of Ditzian-Totik uniform modulus of smoothness of first and second order defined by

\[
\omega_1(f, \delta) := \sup_{0 < |h| \leq \delta} \sup_{x, x + h \xi(x) \in [0,1]} \{|f(x + h \xi(x)) - f(x)|\}
\]

and

\[
\omega_2(f, \delta) := \sup_{0 < |h| \leq \delta} \sup_{x, x + h \phi(x) \in [0,1]} \{|f(x + h \phi(x)) - 2f(x) + f(x - h \phi(x))|\},
\]

respectively, where \(\phi \) is an admissible step-weight function on \([a, b] \), i.e. \(\phi(x) = [(x - a)(b - x)]^{1/2} \) if \(x \in [a, b] \). \([5]\). Corresponding \(K \)-functional is

\[
K_{2,\phi(x)}(f, \delta) = \inf_{g \in W^2(\phi)} \{||f - g||_{C[0,1]} + \delta||\phi^2 g''||_{C[0,1]} : g \in C^2[0,1]\},
\]

where \(\delta > 0, W^2(\phi) = \{g \in C[0,1] : g' \in AC[0,1], \phi^2 g'' \in C[0,1]\} \) and \(C^2[0,1] = \{g \in C[0,1] : g', g'' \in C[0,1]\} \). Here, \(g' \in AC[0,1] \) means that \(g' \) is absolutely continuous on \([0,1]\). It is known by \([7]\) that there exists an absolute constant \(C > 0 \), such that

\[
C^{-1} \omega_2^2(f, \sqrt{\delta}) \leq K_{2,\phi(x)}(f, \delta) \leq C \omega_2^2(f, \sqrt{\delta}). \tag{2.2}
\]

Theorem 2.2. Let \(\lambda \in [-1, 1], f \in C[0,1] \) and \(\phi (\phi \neq 0) \) be an admissible step-weight function of Ditzian-Totik modulus of smoothness such that \(\phi^2 \) is concave. Then we have

\[
|B_{n,\lambda}(f; x) - f(x)| \leq C \omega_2^2 \left(f, \frac{\delta_n(x)}{2\phi(x)}\right) + \omega_1 \left(f, \frac{\beta_n(x)}{\xi(x)}\right)
\]

for \(x \in [0,1] \) and \(C > 0 \).
Theorem 2.4. and a quantitative Voronovskaja-type theorem for B_{ϕ} where
\[B_{\phi}(f; x) = \lim_{n \to \infty} \sum_{k=0}^{n-1} \left(f(x + k) - f(x) \right) \]
for $k_1 \geq 0, k_2 > 0$, where $\eta \in (0, 1]$ and M is a positive constant (see [11]).

Theorem 2.3. If $f \in Lip_M^{(k_1, k_2)}(\eta)$, then we have
\[|B_{n, \lambda}(f; x) - f(x)| \leq M\alpha_n^2(x)(k_1x^2 + k_2x)^{-\eta} \]
for all $\lambda \in [-1, 1], x \in (0, 1]$ and $\eta \in (0, 1]$.

Theorem 2.4. The following inequality holds:
\[|B_{n, \lambda}(f; x) - f(x)| \leq |\beta_n(x)| |f'(x)| + 2\sqrt{\alpha_n(x)}w(f', \sqrt{\alpha_n(x)}) \]
for $f \in C^1[0, 1]$ and $x \in [0, 1]$.

2.2. Voronovskaja-type theorems. In this part, we give a Grüss-Voronovskaja-type theorem and a quantitative Voronovskaja-type theorem for $B_{n, \lambda}(f; x)$.

We first obtain a quantitative Voronovskaja-type theorem for $B_{n, \lambda}(f; x)$ using Ditzian-Totik modulus of smoothness defined as
\[\omega_{\phi}(f, \delta) := \sup_{0 < h \leq \delta} \left\{ \left| f(x + \frac{h\phi(x)}{2}) - f(x) - \frac{h\phi(x)}{2} \right|, x + \frac{h\phi(x)}{2} \in [0, 1] \right\}, \]
where $\phi(x) = (x(1-x))^{1/2}$ and $f \in C[0, 1]$, and corresponding Peetre’s K-functional is defined by
\[K_{\phi}(f, \delta) = \inf_{g \in W_{\phi}[0, 1]} \{ ||f - g|| + \delta||\phi'g|| : g \in C^1[0, 1], \delta > 0 \}, \]
where $W_{\phi}[0, 1] = \{ g : g \in AC_{loc}[0, 1], ||\phi'g|| < \infty \}$ and $AC_{loc}[0, 1]$ is the class of absolutely continuous functions defined on $[a, b] \subset [0, 1]$. There exists a constant $C > 0$ such that
\[K_{\phi}(f, \delta) \leq C \omega_{\phi}(f, \delta). \]

Theorem 2.5. Assume that $f \in C[0, 1]$ such that $f', f'' \in C[0, 1]$. Then, we have
\[\left| B_{n, \lambda}(f; x) - f(x) - \beta_n f'(x) - \frac{\alpha_n + 1}{2} f''(x) \right| \leq C \frac{\rho^2(x)}{n} \omega_{\phi}(f'', n^{-1/2}) \]
for every $x \in [0, 1]$ and sufficiently large n, where C is a positive constant, α_n and β_n are defined in Theorem 2.2.

3. Statistical approximation properties by weighted mean matrix method

In this part, we study on statistical approximation properties and estimate rate of weighted A-statistical convergence. We also use statistical convergence to prove a Voronovskaja-type approximation theorem.

Theorem 3.1. Let $A = (a_{nk})$ be a weighted non-negative regular summability matrix for $n, k \in \mathbb{N}$ and $q = (q_n)$ be a sequence of non-negative numbers such that $q_0 > 0$ and $Q_n = \sum_{k=0}^{n} q_k \to \infty$ as $n \to \infty$. For any $f \in C[0, 1]$, we have
\[S_n^A - \lim_{n \to \infty} \|B_{n, \lambda}(f; x) - f(x)\|_{C[0, 1]} = 0. \]
3.1. A Voronovskaja-type approximation theorem. We prove a Voronovskaja-type approximation theorem by $\tilde{B}_{n,\lambda}(f; x)$ family of linear operators.

Theorem 3.2. Let $A = (a_{nk})$ be a weighted non-negative regular summability matrix and let (x_n) be a sequence of real numbers such that $\sum_{k=1}^{\infty} - \lim x_n = 0$. Also let $\tilde{B}_{n,\lambda}(f; x)$ be a sequence of positive linear operators acting from $C_B[0,1]$ into $C[0,1]$ defined by

$$ \tilde{B}_{n,\lambda}(f; x) = (1 + x_n)B_{n,\lambda}(f; x). $$

Then for every $f \in C_B[0,1]$, and $f', f'' \in C_B[0,1]$ we have

$$ \sum_{k=1}^{\infty} - \lim_{n \to \infty} n\{ \tilde{B}_{n,\lambda}(f; x) - f(x) \} = \frac{f''(x)}{2}x(1 - x). $$

4. Approximation properties for bivariate case

In this part, we construct bivariate λ Bernstein operators and study their approximation properties.

Let $I = I_1 \times I_2 = [0,1] \times [0,1]$ and $(x, y) \in I$, then we construct bivariate λ Bernstein operators as

$$ B_{n,m}(f; x, y; \lambda) = \sum_{k_1=0}^{n} \sum_{k_2=0}^{m} f \left(\frac{k_1}{n}, \frac{k_2}{m} \right) \tilde{b}_{n,k_1}(\lambda; x) \tilde{b}_{m,k_2}(\lambda; y) $$

for $f \in C(I)$, where Bézier bases $\tilde{b}_{n,k_1}(\lambda; x)$, $\tilde{b}_{m,k_2}(\lambda; x)$ ($k_1 = 0, 1, \ldots, n$; $k_2 = 0, 1, \ldots, m$) are defined in [133].

Lemma 4.1. For any natural number n ($n \geq 2$) the following equalities hold:

1. $\tilde{B}_{n,m}(1; x, y; \lambda) = 1$;

2. $\tilde{B}_{n,m}(s; x, y; \lambda) = x + \frac{1 - 2x + x^{n+1} - (1 - x)^{n+1}}{n(n - 1)} \lambda$;

3. $\tilde{B}_{n,m}(i; x, y; \lambda) = y + \frac{1 - 2y + y^{m+1} - (1 - y)^{m+1}}{m(m - 1)} \lambda$;

4. $\tilde{B}_{n,m}(s^2; x, y; \lambda) = x^2 + \frac{x(1 - x)}{n} + \frac{2x - 4x^2 + 2x^{n+1}}{n(n - 1)} \lambda$;

5. $\tilde{B}_{n,m}(i^2; x, y; \lambda) = y^2 + \frac{y(1 - y)}{m} + \frac{2y - 4y^2 + 2y^{m+1}}{m(m - 1)} \lambda$.

Theorem 4.2. The sequence $\tilde{B}_{n,m}(f; x, y; \lambda)$ of operators converges uniformly to $f(x, y)$ on I for each $f \in C(I)$.

Proof. It is enough to prove the following condition

$$ \lim_{m,n \to \infty} \tilde{B}_{n,m}(e_{ij}(x, y); x, y; \lambda) = x^iy^j, \quad (i, j) \in \{(0, 0), (1, 0), (0, 1)\} $$

converges uniformly on I. We clearly have

$$ \lim_{m,n \to \infty} \tilde{B}_{n,m}(e_{00}(x, y); x, y; \lambda) = 1. $$

We have

$$ \lim_{m,n \to \infty} \tilde{B}_{n,m}(e_{10}(x, y); x, y; \lambda) = \lim_{n \to \infty} \left[x + \frac{1 - 2x + x^{n+1} - (1 - x)^{n+1}}{n(n - 1)} \lambda \right] = e_{10}(x, y), $$

$$ \lim_{m,n \to \infty} \tilde{B}_{n,m}(e_{01}(x, y); x, y; \lambda) = \lim_{m \to \infty} \left[y + \frac{1 - 2y + y^{m+1} - (1 - y)^{m+1}}{m(m - 1)} \lambda \right] = e_{01}(x, y). $$
Theorem 4.4. Peetre’s \(\delta > \) for all \(x \), and for every \(x \) converges uniformly. Bearing in mind the above conditions and Korovkin type theorem established by Volkov [14]

Let \(\lambda \) be the space of all functions defined on the real axis provided for every \((x, y) \in I_{ab}\) is defined as follows:

\[
\lim_{n,m \to \infty} B_{n,m} (f_{ij}(x, y); x, y; \lambda) = x^i y^j
\]

Peetre’s \(K \)-functional is given by

\[
K(f, \delta) = \inf_{g \in C^2(I_{ab})} \{\|f - g\|_{C(I_{ab})} + \delta\|g\|_{C^2(I_{ab})}\}
\]

for \(\delta > 0 \), where \(C^2(I_{ab}) \) is the space of functions of \(f \) such that \(f, \frac{\partial^2 f}{\partial x^2} \) and \(\frac{\partial^2 f}{\partial y^2} \) \((j = 1, 2)\) in \(C(I_{ab}) \) [12]. We now give an estimate of the rates of convergence of operators \(\bar{B}_{n,m}(f; x, y; \lambda) \).

Theorem 4.3. Let \(f \in C(I) \), then we have

\[
\lim_{n,m \to \infty} B_{n,m}(f; x, y; \lambda) - f(x, y) = 0
\]

for all \(x \in I \).

Now we investigate convergence of the sequence of linear positive operators \(\bar{B}_{n,m}(f; x, y; \lambda) \) to a function of two variables which defined on weighted space.

Let \(\rho(x, y) = x^2 + y^2 + 1 \) and \(B_{\rho} \) be the space of all functions defined on the real axis provided with \(|f(x, y)| \leq M f \rho(x, y) \), where \(M_f \) is a positive constant depending only on \(f \).

Theorem 4.4. For each \(f \in C^0_{\rho} \) and for all \((x, y) \in I \), we have

\[
\lim_{n \to \infty} \| B_{n,m}(f; x, y; \lambda) - f(x, y) \|_{\rho} = 0.
\]

References

[1] Acar, T., Aral, A., Rasa, I. The new forms of Voronovskaya’s theorem in weighted spaces. Positivity (2016) no. 20(1), 2540.
[2] Bernstein, S.N. Demonstration du theoreme de Weierstrass fondee sur le calcul des probabilites, Communications of the Kharkov Mathematical Society (1912) no. 13(2), 12.
[3] Butzer, PL, and Berens, H. Semi-groups of operators and approximation, Springer, New York, 1967.
[4] Cai, Q-B., Lian, B-Y. and Zhou, G. Approximation properties of \(\lambda \)-Bernstein operators, J. Ineq. and App. (2018) no. 2018:61.
[5] Ditzian, Z. and Totik, V. Moduli of Smoothness, Springer, New York, 1987.
[6] Fast, H. Sur la convergence statistique, Colloq. Math. no. 2, (1951) 241-244.
[7] DeVore, R.A. and Lorentz, G.G. Constructive Approximation, Springer, Berlin, 1993.
[8] Gadjiev, AD. Linear positive operators in weighted space of functions of several variables, Izvestiya Acad of Sciences of Azerbaijan (1980) no. 1, 32-37.
[9] Gadjiev, AD. and C. Orhan, Some approximation properties via statistical convergence, Rocky Mountain J. Math. (2002) no. 32, 129-138.
[10] Mohiuddine S.A., Alotaibi A. and Hazarika B. Weighted A-statistical convergence for sequences of positive linear operators, Sci. World J. (2014) no. 437863.
[11] Ozarslan, M.A. and Aktuğlu, H. Local approximation for certain King type operators, Filomat (2013) no. 27(1), 173-181.
[12] Peetre, J. Theory of interpolation of normed spaces. Notas Mat. Rio de Janeiro (1963) no. 39, 186.
[13] Steinhaus, H. Sur la ordinaire et la convergence asymptotique, Colloq. Math. (1951) no. 2, 73-74.
[14] Volkov, V.J. On the convergence of linear positive operators in the space of continuous functions of two variables (Russian), Doklakad Nauk SSSR (1957) no. 115, 17-19.
[15] Ye, Z., Long, X., Zeng, X.-M. Adjustment algorithms for Bzier curve and surface, International Conference on Computer Science and Education (2010) 17121716.