Screening of antibacterial activities of *Bacillus* spp. isolated from the Parangkusumo coastal sand dunes, Indonesia

Almando Geraldi¹,²*, Margareth Famunghui³, Mercyana Abigail³, Chesa Febrizky Siona Saragh³, Devina Febitania³, Henrietta Elmarthenez², Cinantya Aulia Putri³, Ummi Amaliatush Sholichah Putri Merdekawati², Aliffa Yusti Sadila² and Nabilla Hapsari Wijaya²

Abstract

Background: The emergence of multidrug-resistant bacteria because of poor understanding of the issue and the misuse of antibiotics has become global health concern. Therefore, the discovery of novel antibacterial drugs is urgently needed. New antibacterial compounds may be found in the *Bacillus* species, which are abundant in sand dune ecosystems. Herein, we examined samples from the Parangkusumo coastal sand dunes in Indonesia.

Methods: Samples were collected from three areas in the sand dunes (the area closest to the sea, the core area of sand dunes, and the area farthest from the sea). The samples were inoculated on Luria Bertani agar. Morphological and molecular identification was performed on the basis of 16S rRNA. The samples’ antimicrobial activity was evaluated with the disc diffusion method and compared with that of opportunistic pathogenic bacteria.

Results: Five species of *Bacillus* were successfully isolated from the Parangkusumo coastal sand dunes. To our knowledge, this is the first report of the isolation of *Bacillus aryabhattai* in Indonesia. All samples showed antimicrobial activity against pathogenic bacteria. *B. velezensis* and *B. subtilis* showed antibacterial activity against Gram-positive bacteria, whereas *B. aryabhattai* and *B. megaterium* showed antibacterial activity against Gram-negative bacteria, and *B. spizizenii* showed antibacterial activity toward Gram-positive and Gram-negative bacteria.

Conclusion: Five *Bacillus* species were successfully isolated from the Parangkusumo coastal sand dunes, Indonesia, and all samples showed antimicrobial activity toward opportunistic pathogenic bacteria. The crude antimicrobial compounds from *B. megaterium*, *B. aryabhattai*, *B. subtilis*, and *B. spizizenii* showed the highest growth-inhibition activity against *E. coli*, *P. aeruginosa*, *B. cereus*, and *S. aureus*, respectively.

Statement of Significance

This research is the first attempt to isolate and screen the antibacterial activity of bacterial species from the Parangkusumo sand dunes, Indonesia, one of the few tropical coastal sand dunes. The notable discoveries in this research included the first isolation of *B. aryabhattai* in Indonesia and the determination of the potential of this species to produce crude antimicrobial compounds (CACs) that inhibit the growth of pathogenic *Pseudomonas aeruginosa*.

Keywords

Antibacterial activity, *Bacillus*, Bioprospecting, Coastal sand dunes, Infectious disease.

Introduction

The emergence of multidrug-resistant bacteria because of poor understanding of the issue and the misuse of antibiotics has become a global health concern [1, 2]. Every year, millions of cases of multidrug-resistant bacterial infections occur, causing tens of thousands of deaths and economic losses [3, 4]. Thus, the discovery of novel antibacterial drugs is urgently needed [5].

Studies aiming to discover new antibacterial compounds have shifted toward under-explored ecosystems, particularly marine and extreme environments [6]. One such ecosystem is the Parangkusumo coastal sand dunes in Yogyakarta, Indonesia, which are the only sand dunes in tropical Southeast Asia [7]. Coastal sand dunes are defined as...
mounds and narrow strips of sand with distinct boundaries determined by the sea and landward limits of sand transport [8]. The ecosystem is characterized by high salinity, low moisture, and low organic-matter content, and is hostile toward life forms including microorganisms [8–10]. One abundant genus in the coastal sand dune ecosystem is *Bacillus* [11, 12].

The *Bacillus* genus consists of more than 300 species of Gram-positive, rod-shaped, spore-forming bacteria that produce numerous antibacterial compounds [13], including bacteriocins, polyketides, and surfactins [14, 15].

Here, we conducted the first investigation of the antibacterial activity of bacterial isolates from Indonesian coastal sand dunes. The antibacterial activity of five *Bacillus* spp. isolated from the sand dunes were tested against four infectious-disease-causing bacteria.

Materials and Methods

Isolation and morphological characterization of the bacterial isolates

Soil samples were aseptically collected from three areas (the area closest to the sea, the core area of sand dunes, and the area farthest from the sea) of the Parangkusumo coastal sand dunes, at a depth of approximately 10 cm. Ten-gram soil samples from each sampling area were suspended in 90 ml sterile saline solution (0.85% NaCl) in 250-ml conical flasks and shaken on an orbital shaker at 180 rpm to obtain a homogenized soil suspension. One milliliter of each suspension was spread onto Luria-Bertani (LB) agar (10 g/L tryptone, 5 g/L yeast extract, 10 g/L sodium chloride, and 15 g/L bacto agar) plates and incubated at 37°C for 24 h. Five different dominant colonies were chosen and identified from the plates. Five different dominant colonies were chosen and characterized through Gram’s staining.

Molecular identification of bacterial isolates

Genomic DNA of the five isolates was extracted and purified with a Wizard® Genomic DNA Purification Kit (Promega, USA). Amplification of the target region of the 16S rRNA 27F gene was performed with 27F (5′-AGA GTT TGA TCM TGG CTC AG-3′) and 1492R (5′-TAC GGY TAC CTT GTT ACG T-3′) primers [16]. Purification of the PCR products was performed through DNA Clean & Concentrator™-5 (Zymo Research, USA) cleanup. The purified PCR products were sequenced by First Base (Singapore).

The deduced sequences were compared for 16S ribosomal RNA sequence homology against the NCBI database with Nucleotide BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi). The results of BLAST analysis were also confirmed with 16S-based ID from EZBioCloud (https://www.ezbiocloud.net/) [17].

Results and discussion

Identification of bacterial isolates

Macroscopic, microscopic, and molecular identification was performed for five isolated bacteria from the Parangkusumo coastal sand dunes (Table 1). All isolates were rod-shaped,
Gram-positive bacteria of the genus *Bacillus*. As reported previously, *Bacillus* is a dominant genus in sand dune environments that produces antimicrobial compounds [19]. Interestingly, one isolate was identified as *B. aryabhattai*. To our knowledge, this is the first report of the isolation of *B. aryabhattai* in Indonesia. This species was previously isolated from the upper atmosphere in India, and soil in South Korea and Spain [20–22].

Isolate Code	Colony Characterization	Microscopic Characterization
PSD 1.2	White and opaque colonies with small size, circular shape, raised elevation, entire margin, smooth glis-tening surface, and moist consistency	Rod-shaped, Gram-positive
PSD 2.1	White and opaque colonies with moderate size, circular shape, raised elevation, entire margin, smooth glis-tening surface, and viscid consistency	Rod-shaped, Gram-positive
PSD 2.2	White and opaque colonies with moderate size, circular shape, flat elevation, entire margin, wrinkled surface, and viscid consistency	Rod-shaped, Gram-positive
PSD 3.1	White and opaque colonies with moderate size, circular shape, raised elevation, entire margin, smooth glis-tening surface, and viscid consistency	Rod-shaped, Gram-positive
PSD 40.1	White and opaque colonies with moderate size, circular shape, raised elevation, entire margin, smooth glis-tening surface, and viscid consistency	Rod-shaped, Gram-positive
Antimicrobial activity of crude antimicrobial compounds produced by the Bacillus isolates

The antibacterial activity of CACs produced from 24- and 48-h culture of isolate PSD 1.2 was evaluated (Figure 1). The inhibition zone was observed only when CACs from 48-h culture were used. Previous reports have used an incubation time of 40–48 h for producing CACs from *B. velezensis* [23, 24]. Therefore, 48-h incubation was used for production of CACs from other *Bacillus* isolates.

The disc diffusion assay results indicated that all five *Bacillus* isolates showed antimicrobial activity toward some of the tested bacteria (Table 2). However, compared with that of gentamicin, the wide-spectrum-antibiotic positive control, the *Bacillus* spp. CACs had weak antibacterial activity (Table 3).

Isolates 1.2 (*B. velezensis*) and 3.1 (*B. subtilis*) showed growth inhibition against only Gram-positive test bacteria. These results were consistent with previous reports in which the supernatants of *B. velezensis* and *B. subtilis* showed antibacterial activity against Gram-positive bacteria [25–27]. However, *B. velezensis* has also been reported to inhibit Gram-negative bacteria [23]. *B. subtilis* has been reported to produce antimicrobial compounds, such as gageostatin linear lipopeptides and difficidin macrolides, that inhibit the growth of Gram-negative bacteria [15]. The production conditions used in this study might have favored the production of antimicrobial compounds from *B. velezensis*, such as antimicrobial peptides [27], surfactin lipopeptide [28], and macrolactin [29], and from *B. subtilis*, such as bacilysin, surfactins, and subtilosin [30], which effectively inhibit the growth of Gram-positive bacteria.

Isolates 2.1 (*B. aryabhattai*) and 40.1 (*B. megaterium*) showed inhibition against the growth of only Gram-negative test bacteria. In previous studies, *B. aryabhattai* and *B. megaterium* have been reported to show antibacterial activity against Gram-negative and Gram-positive bacteria [31, 32] by producing antimicrobial compounds such as megacins and tyrocidines [33], respectively. Moreover, isolate 2.2 was the only isolate showing antibacterial activity toward Gram-negative and Gram-positive bacteria. This result was consistent with findings from previous reports on the antimicrobial activity of *Bacillus spizizenii* [34, 35].

Microbial bioprospecting is the investigation of microbial biodiversity of an ecosystem to search new resources of commercial value which involves multidisciplinary approaches such as microbiology, molecular biology, pharmacy, medicine, and even social studies [36, 37]. Exploring unexplored or less explored ecosystems, such as coastal sand dunes, may increase the possibility of identifying microorganisms producing biologically active metabolites [38, 39]. Five *Bacillus* spp. isolated from the Parangkusumo sand dunes were found to be potential anti-bacterial compounds producers, despite the weak antibacterial activities of their CACs observed in the current study. In further studies, the antibacterial activities may be improved by optimizing production parameters such as the composition of the medium, incubation temperature, and time. More detailed and accurate evaluations of antibacterial activity, such as the determination of minimum inhibitory concentration and minimum bactericidal concentration of extracted compounds must also be performed.

Table 2 Molecular Identification Results of the Isolates

Isolate Code	Closest Species	Identity (%)
PSD 1.2	*Bacillus velezensis*	98.13
PSD 2.1	*Bacillus aryabhattai*	99.72
PSD 2.2	*Bacillus spizizenii*	99.45
PSD 3.1	*Bacillus subtilis*	99.86
PSD 40.1	*Bacillus megaterium*	99.79

Table 3 Antimicrobial Activity of *Bacillus* Species Toward Test Bacteria

Bacillus Species (code)	*E. coli*	*P. aeruginosa*	*B. cereus*	*S. aureus*
Bacillus velezensis (PSD 1.2)	NI	NI	9.7 ± 0.4*	8.3 ± 0.2*
Bacillus aryabhattai (PSD 2.1)	NI	9.3 ± 2.2*	NI	NI
Bacillus spizizenii (PSD 2.2)	NI	8.9 ± 2.9*	NI	8.7 ± 0.1*
Bacillus subtilis (PSD 3.1)	NI	NI	10.9 ± 2.2*	8.4 ± 0.3*
Bacillus megaterium (PSD 40.1)	9.8 ± 0.8*	7.2 ± 0.3*	NI	NI
Gentamicin (positive control)	31.2 ± 1.0*	28.4 ± 1.4*	27.9 ± 1.2*	26.7 ± 2.2*
LB medium (negative control)	NI	NI	NI	NI

NI: no inhibition.

*Values are the means ± standard deviations of duplicate measurements.
Furthermore, the mass production of single antibacterial compounds from those isolates are of great interest. One of the compounds is surfactins which not only showed broad spectrum antibacterial activities, but also antiviral, antifungal, and antitumoral activities [29, 40, 41]. Surfactins also utilized in food, pharmaceutical, and cosmetic industries as surfactant and emulsifier [42], as well as in petrochemical industries for enhancing oil recovery and bioremediation purposes [43, 44]. In order to produce single antibacterial compound of interest, such as surfactins, the optimization of fermentation conditions using the Bacillus isolates, as well as extraction and characterization methods of the compound need to be conducted.

Conclusions

Five CAC-producing Bacillus isolates were successfully isolated from the soil of the Parangkusumo sand dunes, Indonesia. The highest inhibitory activities against E. coli, P. aeruginosa, B. cereus, and S. aureus were shown by the CACs from B. megaterium PSD 40.1, B. aryabhatai PSD 2.1, B. subtilis PSD 3.1, and B. spizizenii PSD 2.2, respectively. This report of the first screening of the antimicrobial activity of bacterial isolates from Indonesian coastal sand dunes is expected to encourage further exploration of beneficial microorganisms from this ecosystem.

References

[1] Sivalingam P, Hong K, Pote J, Prabaker K. Extreme environment streptomycetes: potential sources for new antibacterial and antiviral drug leads? Int J Microbiol 2019;1:20. [PMID: 5283948 DOI: 10.1155/2019/5283948]
[2] Hunter P. A war of attrition against antibiotic resistance. EMBO Rep 2020;21:e50807. [PMID: 32449264 DOI: 10.15252/embr.202050807]
[3] Serra-Burriel M, Keys M, Campillo-Artero C, Agodi A, Barchitta M, et al. Impact of multiple-Drug resistant bacteria on economic and clinical outcomes of healthcare-associated infections in adults: Systematic review and meta-analysis. PLoS One 2020;15(2):e0227139 [PMID: 3192281 DOI: 10.1371/journal.pone.0227139]
[4] Dunachie SJ, Day NPJ, Dolecek C. The challenges of estimating the human global burden of disease of antimicrobial resistant bacteria. Curr Opin Microbiol 2020;57:95-101. [PMID: 5283948 DOI: 10.1016/j.mib.2020.04.011]
[5] Deng Y, Huang R, Huang S, Xiong M. Nanoparticles enable efficient delivery of antibacterial peptides for the treatment of deep infections. BIo Integr 2021;2:50-6. [DOI: 10.15212/bioi-2021-0003]
[6] Hug JJ, Bader CD, Remškar M, Cirnski K, Müller R. Concepts and methods to access novel Antibiotics from Actinomycetes. Antibiot (Basel, Switzerland) 2018;7:44. [PMID: 29789481 DOI: 10.3390/antibiotics7020044]
[7] Patri RP, Wirabranja S, Gariash SR. Sand dune conservation assessment in coastal area using alos palaris DinSr technique. J Urban Environ Eng 2017;11:9-29. [DOI: 10.4090/juee.2014.v1n1.00299]
[8] Nayak S, Behara S, Dash PK. Potential of microbial diversity of coastal sand dunes: need for exploration in odisha coast of India. ScientificWorldJournal 2019;2019:278501. [PMID: 31391794 DOI: https://doi.org/10.1155/2019/278501]
[9] Wasserstrom H, Kubik S, Wasserstrom R, Schulz S, Schloter M, et al. Bacterial community composition in coastal dunes of the Mediterranean along a gradient from the sea shore to the inland. Sci Rep 2017;7:40266. [DOI: 10.1038/srep40266]
[10] Kusuma AB, Nouiou I, Klenk H-P, Goodfellow M. Streptomycetes harenosi sp. nov., a home for a gifted strain isolated from Indonesian sand dune soil. Int J Syst Evol Microbiol 2020;70:4874-82. [PMID: 32821037 DOI: 10.1099/ijsem.0.004346]
[11] Abdul Majid S, Graw MF, Zahiﬁelmiou AO, Nguyen H, Richer R, et al. Microbial characterization of Qatari Barchan Sand Dunes. PLoS One 2016;11:e0161836. [PMID: 27653399 DOI: 10.1371/journal.pone.0161836]
[12] Ouala M, Bibi S, Sulaiman M, Zouari N. Microbiologically induced calcite precipitation in calcareous soils by endogenous Bacillus cereus, at high pH and harsh weather. J Environ Manage 2020;257:109965. [PMID: 31866851 DOI: 10.1016/j.jenvman.2019.109965]
[13] Caulier S, Nannan C, Gillis A, Lucciardi F, Bragard C, et al. Overview of the antimicrobial compounds produced by members of the Bacillus subtilis group. Front Microbiol 2019;10:302. [PMID: 30873135 DOI: 10.3389/fmicb.2019.00302]
[14] Wang T, Liang Y, Wu M, Chen Z, Lin J, et al. Natural products from Bacillus subtilis with antimicrobial properties. Chinese J Chem Eng 2015;23:744-54. [DOI: 10.1016/j.cjche.2014.05.020]
[15] Kaspar F, Neubauer P, Gimpel M. Bioactive secondary metabolites from bacillus subtilis: a comprehensive review. J Nat Prod 2019;82:2038-53. [PMID: 31287310 DOI: 10.1021/acs.jnatprod.9b00110]
[16] Satyapal GK, Mishra SK, Srivastava A, Ranjan RK, Prakash K, et al. Possible bioremediation of arsenic toxicity by isolating indigenous bacteria from the middle Gangetic plain of Bihar, India. Biotechnol Rep 2018;17:117-25. [PMID: 29541605 DOI: 10.1016/j.btre.2018.02.002]
[17] Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y, et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613. [PMID: 5283948 DOI: 10.1099/ijsem.0.001755]
[18] Sabeek MMSM, Awang MS, Bustami Y, Hamid ZAA. Gentamicin loaded PLA microspheres susceptibility against Staphylococcus aureus and Escherichia coli by Kirby-Bauer and micro-dilution methods. AIP Conf Proc 2020;2267:20032. [DOI: 10.1063/5.0017438]
[19] Neelam DK, Agrawal A, Tomer AK, Dadheek P. Characterization, phylogenetic analysis and potential applications of heterotrophic bacteria inhabit sand dunes of thar desert, India. J Pure Appl Microbiol 2018;12:1887-94. [DOI: 10.22207/JPAM.12.4.24]
[20] Shivaji S, Chaturvedi P, Begum Z, Pindi PK, Manorama R, et al. Janibacter haylei sp. nov., Bacillus isronensis sp. nov. and Bacillus aryabhatai sp. nov., isolated from cryotubes used for collecting air from the upper atmosphere. Int J Syst Evol Microbiol 2009;59:2977-86. [PMID: 19643890 DOI: 10.1099/ijsem.0.002527-0]
[21] Park Y-G, Mun B-G, Kang S-M, Hussain A, Shahzad R, et al. Bacillus aryabhatai SRB02 tolerates oxidative and nitrosative stress and promotes the growth of soybean by modulating the production of phytohormones. PLoS One 2017;12:e0173203. [PMID: 28282395 DOI: 10.1371/journal.pone.0173203]
[22] Paz A, Costa-Trigo I, Tugores F, Miguez F, de la Montaña J, et al. Biotransformation of phenolic compounds by Bacillus aryabhattai. Bioprocess Biosyst Eng 2019;42:1671-9. [PMID: 31278591 DOI: 10.1007/s00449-019-02163-0]
[23] Cao L, Pan L, Gong L, Yang Y, He H, et al. Interaction of a novel Bacillus velezensis (BvL03) against Aeromonas hydrophila in vitro and in vivo in grass carp. Appl Microbiol Biotechnol 2019;103:8987-99. [PMID: 31637491 DOI: 10.1007/s00244-019-08987-0]
[24] Zhu Z, Peng Q, Man Y, Li Z, Zhou X, et al. Analysis of the antifungal properties of Bacillus velezensis B-4 through a bioassay and complete-genome sequencing. Front Genet 2020;11:703. [PMID: 32765583 DOI: 10.3389/fgene.2020.00703]
[25] Ramachandran R, Chalasani AG, Lal R, Roy U. A broad-spectrum antimicrobial activity of Bacillus subtilis RLID 12.1. Sci World J 2014;2014:968487. [PMID: 25180214 DOI: 10.1155/2014/968487]
[36] Cusnie TPT, Cusnie B, Echeverría J, Fowsantear W, Thammatwat S, et al. Bioprospecting for antibacterial drugs: a multidisciplinary perspective on natural product source material, bioassay selection and avoidable pitfalls. Pharm Res 2020;37:125. [PMID: 32529587 DOI: 10.1007/s11158-020-02849-1]

[37] Dixit S, Shukla A, Singh V, Upadhyay SK. Bioprospecting of natural compounds for industrial and medical applications. In: Bioprospecting of plant biodiversity for industrial molecules. Wiley Online Books; 2021. pp. 35-71. [DOI: 10.1002/9781119117918.ch3]

[38] Begani J, Lakhani J, Harwani D. Sand dune streptomycetes JB6 Native to the Great Indian Thar Desert inhibits multidrug-resistant pathogens. Int J Pharm Sci Drug Res 2019;11(6 SE-Research Article). Available from: https://www.ijpsdr.com/index.php/ijpsdr/article/view/768.

[39] Sengupta S, Pramanik A, Ghosh A, Bhattacharjyaa M. Antimicrobial activities of actinomycetes isolated from unexplored regions of Sundarbans mangrove ecosystem. BMC Microbiol 2015;15:170. [PMID: 26293487 DOI: 10.1186/s12866-015-0495-4]

[40] Sharma D, Singh SS, Baidara P, Sharma S, Khatri N, et al. Surface-like broad spectrum antimicrobial lipopeptide co-produced with sublancin from Bacillus subtilis strain A52: dual reservoir of bioactive. Front Microbiol 2020;11:1167. [PMID: 32595619 DOI: 10.3389/fmicb.2020.01167]

[41] Meena KR, Sharma A, Kanwar SS. Antitumoral and antimicrobial activity of surfactin extracted from Bacillus subtilis KLP2015. Int J Pept Res Ther 2020;26(1):423-33. [DOI: 10.1007/s13697-019-01089-w]

[42] Molases AB, Rodríguez-López L, Rincón-Fontán M, López-Prieto A, Vecino X, et al. Synthetic and bio-derived surfactants versus microbial biosurfactants in the cosmetic industry: an overview. Int J Mol Sci 2021;22:2371. [DOI: 10.3390/ijms22052371]

[43] Chinkóczyr K, Németh Á. Techno-economic assessment of Bacillus fermentation to produce surfactin and lichenysin. Biochem Eng J 2020;163:107719. [DOI: 10.1016/j.bej.2020.107719] Available from: https://www.sciencedirect.com/science/article/pii/S1369703X20302734.

[44] Carolin C F, Kumar PS, Ngueagni PT. A review on new aspects of lipopeptide biosurfactant: Types, production, properties and its application in the bioremediation process. J Hazard Mater 2021;407:124827. [PMID: 33352424 DOI: 10.1016/j.jhazmat.2020.124827] Available from: https://www.sciencedirect.com/science/article/pii/S0304389420328181