Geometrical Diagnostic for Generalized Chaplygin Gas Model

Jianbo Lu and Lixin Xu

School of Physics and Optoelectronic Technology,
Dalian University of Technology, Dalian, 116024, P. R. China

A new diagnostic method, O_m is applied to generalized Chaplygin gas (GCG) model as the unification of dark matter and dark energy. On the basis of the recently observed data: the Union supernovae, the observational Hubble data, the SDSS baryon acoustic peak and the five-year WMAP shift parameter, we show the discriminations between GCG and ΛCDM model. Furthermore, it is calculated that the current equation of state of dark energy $w_{de} = -0.964$ according to GCG model.

PACS numbers: 98.80.-k
Keywords: generalized Chaplygin gas; geometrical diagnostic.

1. Introduction

The type Ia supernovae (SNe Ia) investigations, the cosmic microwave background(CMB) results from WMAP observations, and surveys of galaxies all suggest that the expansion of present universe is speeding up rather than slowing down. The accelerated expansion of the present universe is usually attributed to the fact that dark energy (DE) is an exotic component with negative pressure. Many kinds of DE models have already been constructed such as ΛCDM, quintessence, phantom, quintom, generalized Chaplygin gas (GCG), modified Chaplygin gas, holographic dark energy, agegraphic dark energy, and so forth. In addition, model-independent method and modified gravity theories (such as scalar-tensor cosmology, braneworld models) to interpret accelerating universe have also been discussed. So, a general and model-independent manner to distinguish these models introduced by different theories or methods is necessary. Statefinder diagnostic method is presented in Refs. and it has been applied to a large number of DE models. Recently, another geometrical diagnostic O_m is also introduced in Ref. to differentiate ΛCDM with other models. An important property for O_m diagnostic is that it can be used to distinguish DE models with small influence from density parameter Ω_0, though the current observations suggest an uncertainties of at least 25% in the value of current matter density Ω_0. In this paper, we apply O_m diagnostic to GCG model.

The paper is organized as follows. In section 2, the GCG model as the unification of dark matter and dark energy is introduced briefly. Based on the recently observed data: the Union SNe Ia, the observational Hubble data (OHD), the baryon acoustic oscillation (BAO) peak from Sloan Digital Sky Survey (SDSS) and the five-year

*Electronic address: lvjianbo8190163.com
†Electronic address: lxxu@dlut.edu.cn

1 For example, using mathematical fundament one expands equation of state of DE w_{de} or deceleration parameter q with respect to scale factor a or redshift z, such as $w_{de}(z) = \omega_0 = \text{const}$, $w_{de}(z) = \omega_0 + \omega_1 z$, $w_{de}(z) = \omega_0 + \omega_1 \ln(1 + z)$, $w_{de}(z) = \omega_0 + \frac{\omega_1}{1+z}$, $q(z) = q_0 + q_1 z$, $q(z) = q_0 + \frac{q_1}{1+z}$, and so forth. Where ω_0, ω_1, or q_0, q_1 are model parameters. For more information about model-independent method, please see review paper.
WMAP CMB shift parameter $[27]$, Om diagnostic is used to GCG model in section 3. Section 4 is the conclusions.

2. generalized Chaplygin gas model

In the GCG approach, the most interesting property is that the unknown dark sections in universe–dark energy and dark matter, can be unified by using an exotic equation of state. The energy density ρ and pressure p are related by the equation of state (EOS) $[8]$

$$p = -\frac{A}{\rho^\alpha}, \quad (1)$$

where A and α are parameters in the model.

By using the energy conservation equation: $d(\rho a^3) = -pd(a^3)$, the energy density of GCG is expressed as

$$\rho_{\text{GCG}} = \rho_{0\text{GCG}}[A_s + (1 - A_s)(1 + z)^{3(1+\alpha)}]^{\frac{1}{1+\alpha}}, \quad (2)$$

where a is the scale factor, $A_s = \frac{\rho_{de}}{\rho_{0\text{GCG}}}$. For the GCG model, as a scenario of the unification of dark matter and dark energy, the GCG fluid is decomposed into two components: the dark energy component and the dark matter component, i.e., $\rho_{\text{GCG}} = \rho_{\text{de}} + \rho_{\text{dm}}$, $p_{\text{GCG}} = p_{\text{de}}$. Then according to the general recognition about dark matter, $\rho_{\text{dm}} = \rho_{0\text{dm}}(1 + z)^3$, the energy density of the DE in the GCG model is given by

$$\rho_{\text{de}} = \rho_{\text{GCG}} - \rho_{\text{dm}} = \rho_{0\text{GCG}}[A_s + (1 - A_s)(1 + z)^{3(1+\alpha)}]^{\frac{1}{1+\alpha}} - \rho_{0\text{dm}}(1 + z)^3. \quad (3)$$

Furthermore, considering spatially flat FRW (Friedmann-Robertson-Walker) universe with baryon matter ρ_b and GCG fluid ρ_{GCG}, the equation of state of DE can be derived as

$$w_{\text{de}} = \frac{p_{\text{de}}}{\rho_{\text{de}}} = \frac{-(1 - \Omega_{0b})A_s[(1 - A_s)(1 + z)^{3(1+\alpha)}]^{\frac{1}{1+\alpha}}}{(1 - \Omega_{0b})[A_s + (1 - A_s)(1 + z)^{3(1+\alpha)}]^{\frac{1}{1+\alpha}} - \Omega_{0\text{dm}}(1 + z)^3}, \quad (4)$$

where $\Omega_{0\text{dm}}$ and Ω_{0b} are present values of dimensionless dark matter density and baryon matter component. And Hubble parameter H is

$$H^2 = \frac{8\pi G \rho_b}{3} = H_0^2 E^2 = H_0^2 \{(1 - \Omega_{0b})[A_s + (1 - A_s)(1 + z)^{3(1+\alpha)}]^{\frac{1}{1+\alpha}} + \Omega_{0b}(1 + z)^3\}. \quad (5)$$

H_0 denotes the current value of Hubble parameter.

3. Om diagnostic for GCG model

It is well known that model-independent quantity $H(z)$ is very important for understanding the properties of DE, since its value can be directly obtained from cosmic observations (for example, the relation between luminosity distance D_L and Hubble parameter is $H(z) = \left(\frac{d}{dz} \left[\frac{D_L(z)}{1+z}\right]\right)^{-1} - 28$ for SNe investigations). Recently, a new diagnostic of dark energy Om is introduced to differentiate ΛCDM with other dynamical models. The starting point for Om diagnostic is Hubble parameter, and it is defined as $[21]$

$$Om(z) \equiv \frac{E^2(z) - 1}{x^3 - 1}, \quad x = 1 + z. \quad (6)$$
Since $\Omega_m(z)$ only depends upon the scale factor a and its derivative, it is a ”geometrical” diagnostic. For ΛCDM model, $\Omega_m(z) = \Omega_{0m}$ is a constant, then it provides a null test of this model\(^2\). The benefit of Ω_m diagnostic is that the quantity $\Omega_m(z)$ can distinguish DE models with less dependence on matter density Ω_{0m} relative to the EOS of DE $w_{de}(z)$\[^{21}\].

In what follows, we use a combination of the recent standard candle data (Union SNe Ia\[^{24}\]) and the OHD to constrain the evolutions of $\Omega_m(z)$ and $w_{de}(z)$ for GCG model. The Union SNe data includes the SNe samples from the Supernova Legacy Survey\[^{30}\], ESSENCE Surveys\[^{31}\], distant SNe discovered by the Hubble Space Telescope\[^{32}\], nearby SNe\[^{33}\] and several other, small data sets\[^{24}\]. The OHD are given by calculating the differential ages of passively evolving galaxies from the GDDS\[^{34}\] and archival data\[^{35}\]. According to the expression $H(z) = \frac{1}{1+z}\frac{dz}{dt}$, one can see that the value of $H(z)$ can be directly obtained by the determination of the differential age dz/dt. Ref.\[^{25}\] get nine values of $H(z)$ in the range of $0 < z < 1.8$ (see Table 1). And these nine observational Hubble data have been used to constrain DE models\[^{37}\].

z	0.09	0.17	0.27	0.40	0.88	1.30	1.43	1.53	1.75
$H(z)$ (km$^{-1}$ Mpc)$^{-1}$	69	83	70	87	117	168	177	140	202
1σ uncertainty	±12	±8.3	±14	±17.4	±23.4	±13.4	±14.2	±14	±40.4

Table 1. The observational $H(z)$ data\[^{30,37}\].

FIG. 1: Evolutions of $\Omega_m(z)$ and $w_{de}(z)$ by using a combination of Union SNe data and OHD for GCG model. Here three different values $\Omega_{0b}=0.02, 0.042, 0.07$ for $\Omega_m(z)$ evolution diagram, and $\Omega_{0m} = \Omega_{0b} + \Omega_{0dm}=0.22, 0.27, 0.32$ for $w_{de}(z)$ diagram are assumed. The shaded regions show the 1σ confidence level. The dashed lines show the values of $\Omega_m(z)$ and $w_{de}(z)$ for ΛCDM model.

From Eq.\[^{4}\], it can be seen that both Ω_{0b} and Ω_{0dm} are included in the expression of $w_{de}(z)$ for GCG model. Given

\(^2\) For null test of ΛCDM model, one can also see Ref.\[^{22}\].
three different values of Ω_{0m}, the evolutions of $w_{de}(z)$ with 1σ confidence level for GCG model are plotted in Fig. 1 (lower) by using the Union SNe data and the OHD. Furthermore according to Eq. (5), we can see that the Hubble parameter $H(z)$ for GCG model is dependent on the baryon density Ω_{0b} and two model parameters (A, α). It does not explicitly include current matter density Ω_{0m}. And one knows that the observational constraints on parameter Ω_{0b} is more stringent\(^3\), i.e., it has a relatively smaller variable range relative to Ω_{0m}. On the basis of Eq. (6), we plot the evolutions of $Om(z)$ for GCG model in Fig. 1 (upper). From Fig. 1 it can be found that the $Om(z)$ diagram for GCG model as the unification of dark matter and dark energy is almost independent of the variation of Ω_{0b}, but the evolution of $w_{de}(z)$ is sensitive to the variation of matter density.

In Ref. [39], Om diagnostic has been used to distinguish ΛCDM and Ricci DE model. Assuming the matter density Ω_{0m} to be a free parameter, based on the recent cosmic observations Ref. [21] plots the evolution diagram of $Om(z)$ in a model-independent CPL scenario\(^4\). In this paper, treating Ω_{0b} as a free parameter, we apply the Om diagnostic to GCG model. One knows that for the same dark energy model, the different evolutions of cosmological quantity can be obtained from different observational datasets. This is the so-called data-dependent. And in order to diminish systematic uncertainties and get the stringent constraint on cosmological parameters, people often combine many observations to constrain the evolutions of cosmological quantities. Next we use a combination of the recent standard candle data, the standard ruler data (the BAO peak from SDSS and the five-year WMAP CMB shift parameter R) and the OHD to constrain the evolution of $Om(z)$ for GCG model.

Because the universe has a fraction of baryons, the acoustic oscillations in the relativistic plasma would be imprinted onto the late-time power spectrum of the non-relativistic matter [41]. Then the observations of acoustic signatures in the large-scale clustering of galaxies can be used to constrain DE models with detection of a peak. The measured data at $z_{BAO} = 0.35$ from SDSS is [26]

$$A = \sqrt{\Omega_{0m}^{eff} E(z_{BAO})^{-1/3}} \left[\frac{1}{z_{BAO}} \int_0^z \frac{dz'}{E(z')} \right]^{2/3} = 0.469 \pm 0.017, \tag{7}$$

where Ω_{0m}^{eff} is the effective matter density parameter [42].

The structure of the anisotropies of the cosmic microwave background radiation depends on two eras in cosmology, i.e., the last scattering era and today. They can also be applied to limit DE models by using the shift parameter [43]

$$R = \sqrt{\Omega_{0m}^{eff}} \int_0^{z_{rec}} \frac{H_0 dz'}{H(z')} = 1.715 \pm 0.021, \tag{8}$$

where $z_{rec} = 1089$ is the redshift of recombination, and the value of R is given by five-year WMAP data [27] [21].

We plot the evolution of $Om(z)$ for GCG model by using the single standard candle data in Fig. 2 (a). From this figure, it is easy to see that the difference between GCG and ΛCDM model is obvious. Since the Om diagnostic is relatively insensitive to the density parameter, the difference between this figure and Fig. 1 (upper) is caused by using the different datasets to constrain the quantity $Om(z)$, i.e. figure 1 is determined from a combination of Union SNe Ia and OHD data, but figure 2 (a) is plotted by means of Union SNe Ia data alone. Furthermore based on above four observational datasets, the combined constraint on $Om(z)$ is presented in Fig. 2 (b). According to Fig. 2 (b),

\(^3\) Such as $\Omega_{0b} h^2 = 0.0214 \pm 0.0020$ from the observation of the deuterium to hydrogen ratio towards QSO absorption systems [38], and $\Omega_{0b} h^2 = 0.02273 \pm 0.00062$ from the five-year WMAP results for the observation of CMB [27], here $h = H_0/100$.

\(^4\) It is an expansion for EOS of DE relative to scale factor a, $w_{de}(a) = w_0 + w_1 (1 - a)$, or $w_{de}(z) = w_0 + \frac{w_1}{1+z}$ [13] [23].
we can see that the best fit evolution of \(\Omega_m(z) \) for GCG model is near to ΛCDM case, and \(\Omega_m(0) \equiv \Omega_m(z = 0) = 0.299^{+0.037}_{-0.037} \) (1σ) for GCG model. In addition, by using above four datasets to ΛCDM model, it is obtained that the best fit value of \(\Omega_m \) with confidence level is \(\Omega_m = 0.273^{+0.016}_{-0.015} \) (1σ). We know \(\Omega_m(z) = \Omega_m \) for ΛCDM, then its best fit evolution is included in the 1σ confidence level of \(\Omega_m(z) \) in GCG scenario. And it can be seen that at 1σ confidence level, these two models can not be clearly distinguished by current observed data according to the \(\Omega_m(z) \) diagram.

At last, according to the expression \(\frac{\Omega_m(z) - \Omega_m}{1 - \Omega_m} \approx 1 + w_{de}(z \ll 1) \) \cite{21}, it can be calculated that the current EOS of DE \(w_{de} \approx -0.964 \) by taking \(\Omega_m = 0.273 \) and the best fit value \(\Omega_m(0) = 0.299 \).

4. Conclusion

On the basis of the recently observed data: the Union SNe Ia data, the nine observational Hubble data, the SDSS baryon acoustic peak and the five-year WMAP result, we apply a geometrical diagnostic \(\Omega_m \) to distinguish GCG model and ΛCDM model. From Fig. 2, it is shown that the larger error for the evolution of \(w_{de} \) may be produced by the erroneous estimation of matter density \(\Omega_m \). And the \(\Omega_m(z) \) is a better quantity than \(w_{de}(z) \) to truly distinguish DE models and to show the properties of DE. According to the \(\Omega_m \) diagram, it is easy to see that for the constraint from the single standard candle data, the difference between GCG model and ΛCDM model is obvious, while for the combined constraint, the best fit evolutions of \(\Omega_m(z) \) for them are similar and the difference between these two models is not clear at 1σ confidence level. In addition, we also calculate the value of current EOS of DE, \(w_{de} = -0.964 \), by using the value of \(\Omega_m(0) \) for GCG model. Here the \(\Omega_m(z) \) diagram is not sensitive to the variation of density parameter.
Acknowledgments The research work is supported by NSF (10703001) of PR China.

[1] A.G. Riess et al, 1998 Astron. J. 116 1009 [arXiv:astro-ph/9805201]
S. Perlmutter et al, 1999 Astrophys. J. 517 565

[2] D.N. Spergel et al, 2003 Astrophys. J. Suppl. 148 175 [arXiv:astro-ph/0302209]

[3] A.C. Pope et al, 2004 Astrophys. J. 607 655 [arXiv:astro-ph/0401249]

[4] S. Weinberg, 1989 Mod. Phys. Rev. 61 527

[5] B. Ratra and P.J.E. Peebels, 1988 Phys. Rev. D. 37 3406

[6] R.R. Caldwell, M. Kamionkowski and N. N. Weinberg, 2003 Phys. Rev. Lett. 91 071301 [arXiv:astro-ph/0302506]
M.R. Setare, 2007 Eur. Phys. J. C 50 991

[7] B. Feng, X.L. Wang and X.M. Zhang, 2005 Phys. Lett. B 607 35 [arXiv:hep-th/0404224]

[8] A.Y. Kamenshchik, U. Moschella and V. Pasquier, 2001 Phys. Lett. B 511 265 [arXiv:gr-qc/0103004]
M.C. Bento, O. Bertolami and A.A. Sen, Phys. Rev. D 66 (2002) 043507 [arXiv:gr-qc/0202064]
P.X. Wu and H.W. Yu 2007 Phys. Lett. B 644 16

[9] H.B. Benaoum, [arXiv:hep-th/0205140]
S. Li, Y.G. Ma and Y. Chen, [arXiv:astro-ph/0809.0617]
J.B. Lu et al, 2008 Phys. Lett. B 662, 87

[10] M. Li, 2004 Phys. Lett. B 603 1 [arXiv:hep-th/0403127]
Q. Wu, Y.G. Gong, A.Z. Wang and J.S. Alcaniz, 2008 Phys. Lett. B 659 34
M.R Setare, 2007 Phys.Lett.B 657 228 [arXiv:hep-th/0707.4049]

[11] R.G. Cai, 2007 Phys. Lett. B 657 228 [arXiv:hep-th/0707.4049]

[12] A.G. Riess et al, 2004 Astrophys. J. 607 665 [arXiv:astro-ph/0402512]

[13] A.R. Cooray and D. Huterer, 1999 Astrophys. J. 513 L95 [arXiv:astro-ph/9901097]
J.V. Cunha, L. Marassi and R.C. Santos, 2007 Int. J. Mod. Phys. D 16 403

[14] B.F. Gerke and G. Efstathiou, 2002 Mon. Not. R. Astron. Soc. 335 33 [arXiv:astro-ph/0201336]

[15] E.V. Linder, 2003 Phys. Rev. Lett. 90 091301 [astro-ph/0208512]
M. Chevallier and D. Polarski, 2001 Int. J. Mod. Phys. D 10 213 [arXiv:gr-qc/0009008]

[16] L.X. Xu and J.B. Lu, 2009 Phys. Lett. A 24 369

[17] V. Sahni and A. A. Starobinsky, 2006 Int. J. Mod. Phys. D 15 2105 [arXiv:astro-ph/0610026]

[18] B. Boisseau, G. Esposito-Farese, D. Polarski and A. A. Starobinsky, 2000 Phys. Rev. Lett. 85 2236 [arXiv:gr-qc/0001066]
M. Trodden, 2007 Int. J. Mod. Phys. D 16 2065

[19] G. Dvali, G. Gabadadze and M. Porrati, 2000 Phys. Lett. B 485 208 [arXiv:hep-th/0005016]
V. Sahni and Yu. Shtanov, 2003 J. Cosmol. Astropart. Phys. 0311 014 [arXiv:astro-ph/0202346]
V. Sahni, Yu. Shtanov and A. Viznyuk, 2005 J. Cosmol. Astropart. Phys. 0512 005 [arXiv:astro-ph/0505004]
I. Brevik, 2008 Eur. Phys. J. C 56 579

[20] V. Sahni and T.D. Saini, A. A. Starobinsky and U. Alam, 2003 JETP Lett. 77 201-206

[21] V. Sahni, A. Shafieloo and A. A. Starobinsky, 2008 Phys. Rev. D 78 103502 [arXiv:astro-ph/0807.3548]

[22] U. Alam, V. Sahni, T. D. Saini and A. A. Starobinsky [arXiv:astro-ph/0303009]
W. Zhao, 2008 Int. J. Mod. Phys. D 17 1245
X. Zhang, F.Q. Wu and J.F. Zhang, 2006 J. Cosmol. Astropart. Phys. 0601 003 [arXiv:astro-ph/0411221]

[23] E. Komatsu et al, [arXiv:astro-ph/0803.0547]
[24] D. Rubin et al, [arXiv:astro-ph/0807.1108]
[25] J. Simon et al, 2005 Phys. Rev. D 71, 123001
[26] D.J. Eisenstein et al, 2005 Astrophys. J. 633, 560 [arXiv:astro-ph/0501171]
[27] J. Dunkley et al, [astro-ph/0803.0586]
[28] T. Nakamura and T. Chiba, 1999 Mon. Not. R. Astron. Soc. 306 696 [arXiv:astro-ph/9810447]
A.A. Starobinsky, 1998 JETP Lett. 68 757 [arXiv:astro-ph/9810431]
[29] C. Zunckel and C. Clarkson, 2008 Phys. Rev. Lett. 101 181301 [arXiv:astro-ph/0807.4304]
T. Chiba and T. Nakamura, 2007 Prog. Theor. Phys. 118 815 [arXiv:astro-ph/0708.3877]
[30] P. Astier et al, 2006 Astron. Astrophys. 447 31 [arXiv:astro-ph/0510447]
[31] W.M. Wood-Vasey et al, [arXiv:astro-ph/0701041]
[32] A.G. Riess et al, [arXiv:astro-ph/0611572]
[33] M. Hamuy, M.M. Phillips, N.B. Suntzeff, R.A. Schommer and J. Maza, 1996 Astron. J. 112 2408 [arXiv:astro-ph/9609064]
S. Jha, A.G. Riess and R.P. Kirshner, 2007 Astrophys. J. 659 122 [arXiv:astro-ph/0612666]
[34] R.G. Abraham et al, 2003 Astron. J. 593 622
[35] T. Treu et al, 1999 Mon. Not. R. Astron. Soc. 308 1037
T. Treu et al, 2001 Mon. Not. R. Astron. Soc. 326 221
[36] L. Samushia and B. Ratra, 2006 Astrophys. J. 650 L5 [astro-ph/0607301]
R. Jimenez, L. Verde, T. Treu and D. Stern, 2003 Astrophys. J. 593 622 [astro-ph/0302560]
[37] Z.L. Yi and T.J. Zhang, 2007 Mod. Phys. Lett. A 22 41-53 [arXiv:astro-ph/0605596]
H. Wei, S.N. Zhang, 2007 Phys. Lett. B 644 7 [astro-ph/0609597]
J.B Lu, L.X Xu, M.L Liu and Y.X Gui, 2008 Eur. Phys. J. C 58 311 [arXiv:astro-ph/0812.3209]
Hui Lin et al, [arXiv:astro-ph/0804.3135]
[38] D. Kirkman et al, 2003 Astrophys. J. Suppl. 149 1 [arXiv:astro-ph/0302006]
[39] C.J. Feng, [arXiv:astro-ph/0809.2502]
[40] E. M. Barboza Jr. and J. S. Alcaniz, 2008 Phys. Lett. B 666 415-419 [arXiv:astro-ph/0805.1713]
[41] D.J. Eisenstein and W. Hu, 1998 Astrophys. J. 496 605 [arXiv:astro-ph/9709112]
[42] M. Makler, S.Q. Oliveira and I. Waga, 2003 Phys. Rev. D 68 123521
J.A.S. Lima, J.V. Cunha and J.S. Alcaniz, [arXiv:astro-ph/0611007]
Z.H. Zhu, 2004 Astron. Astrophys. 423 421
[43] J.R. Bond, G. Efstathiou and M. Tegmark, 1997 Mon. Not. R. Astron. Soc. 291, L33 [arXiv:astro-ph/9702100]