1. Introduction

Let \(P \subset \mathbb{Z}^d \otimes \mathbb{Q} \) be a convex lattice polytope of dimension \(d \). Let \(L_P(k) := |kP \cap \mathbb{Z}^d| \) count the number of lattice points in dilations \(kP \), \(k \in \mathbb{Z}_{\geq 0} \). Ehrhart [9] showed that \(L_P \) can be written as a degree \(d \) polynomial

\[
L_P(k) = c_d k^d + \ldots + c_1 k + c_0
\]

which we call the Ehrhart polynomial of \(P \). The leading coefficient \(c_d \) is given by \(\text{Vol}(P)/d! \), \(c_{d-1} \) is equal to \(\text{Vol}(\partial P)/(2(d-1))! \), and \(c_0 = 1 \). Here \(\text{Vol}(\cdot) \) denotes the normalised volume, and \(\partial P \) denotes the boundary of \(P \). For example, if \(P \) is two-dimensional (that is, \(P \) is a lattice polygon) we obtain

\[
L_P(k) = \frac{\text{Vol}(P)}{2} k^2 + \frac{|\partial P \cap \mathbb{Z}^2|}{2} k + 1.
\]

Setting \(k = 1 \) in this expression recovers Pick’s Theorem [16]. The values of the Ehrhart polynomial of \(P \) form a generating function \(\text{Ehr}_P(t) := \sum_{k \geq 0} L_P(k) t^k \) called the Ehrhart series of \(P \).

When the vertices of \(P \) are rational points the situation is more interesting. Recall that a quasi-polynomial with period \(s \in \mathbb{Z}_{>0} \) is a function \(q : \mathbb{Z} \to \mathbb{Q} \) defined by polynomials \(q_0, q_1, \ldots, q_{s-1} \) such that

\[
q(k) = q_i(k) \quad \text{when } k \equiv i \mod s.
\]

The degree of \(q \) is the largest degree of the \(q_i \). The minimum period of \(q \) is called the quasi-period, and necessarily divides any other period \(s \). Ehrhart showed that \(L_P \) is given by a quasi-polynomial of degree \(d \), which we call the Ehrhart quasi-polynomial of \(P \). Let \(\pi_P \) denote the quasi-period of \(P \). The smallest positive integer \(r_P \in \mathbb{Z}_{>0} \) such that \(r_P P \) is a lattice polytope is called the denominator of \(P \). It is certainly the case that \(L_P \) is \(r_P \)-periodic, however it is perhaps surprising that the quasi-period of \(L_P \) does not always equal \(r_P \); this phenomenon is called quasi-period collapse.

Example 1.1 (Quasi-period collapse). Consider the triangle \(P := \text{conv} \{ (5, -1), (-1, -1), (-1, 1/2) \} \) with denominator \(r_P = 2 \). This has \(L_P(k) = 9/2k^2 + 9/2k + 1 \), hence \(\pi_P = 1 \).

Quasi-period collapse is poorly understood, although it occurs in many contexts. For example, de Loera–McAllister [7, 8] consider polytopes arising naturally in the study of Lie algebras (the Gel’fand–Tsetlin polytopes and the polytopes determined by the Clebsch–Gordan coefficients) that exhibit quasi-period collapse. In dimension two McAllister–Woods [15] show that there exist rational polytopes with \(r_P \) arbitrarily large but with \(\pi_P = 1 \) (see also Example 3.8). Haase–McAllister [10] give a constructive view of this phenomena in terms of \(\text{GL}_d(\mathbb{Z}) \)-scissor congruence; here a polytope is partitioned into pieces that are individually modified via \(\text{GL}_d(\mathbb{Z}) \) transformation and lattice translation, then reassembled to give a new polytope which (by construction) has equal Ehrhart quasi-polynomial but different \(r_P \).
Example 1.2 (GL$_2$(Z)-scissor congruence). The lattice triangle $Q := \text{conv}\{(2, -1), (-1, -1), (-1, 2)\}$ with Ehrhart polynomial $L_Q(k) = 9/2k^2 + 9/2k + 1$ can be partitioned into two rational triangles as depicted on the left below. Fix the bottom-most triangle, and transform the top-most triangle via the lattice automorphism $e_1 \mapsto (3, -1), e_2 \mapsto (4, -1)$. This gives the rational triangle P (depicted on the right) from Example 1.1.

We give an explanation for quasi-period collapse in two dimensions for a certain class of polygons in terms of recent results in algebraic geometry arising from Mirror Symmetry. In §2 we explain how mutation — a combinatorial operation arising from the theory of cluster algebras — gives an explanation of this phenomenon, and explain how this is related to Q-Gorenstein (qG-) deformations of del Pezzo surfaces as studied by Wahl [17], Kollár–Shepherd-Barron [14], Hacking–Prokhorov [11], and others. Finally, in Corollary 3.6 we completely characterise the discrepancy between the denominator and the quasi-period for this class of polygons.

2. Mutation

In [10] Haase–McAllister propose the open problem of finding a systematic and useful technique that implements GL$_d$(Z)-scissor congruence for rational polytopes. In the case when the dual polyhedron is a lattice polytope it was observed in [2] that one such technique is given by mutation.

2.1. The combinatorics of mutation. Let $N \cong \mathbb{Z}^d$ be a rank d lattice and set $N_Q := N \otimes \mathbb{Q}$. Let $P \subset N_Q$ be a lattice polytope. We require — and will assume from here onwards — that P satisfies the following two conditions:

(a) P is of maximum dimension in N, $\dim(P) = d$;
(b) the origin is contained in the strict interior of P, $0 \in P^\circ$.

Condition (b) is not especially stringent, and can be satisfied by any polytope with $P^\circ \cap N \neq \emptyset$ by lattice translation. It is, however, an essential requirement in what follows.

Let $M := \text{Hom}(N, \mathbb{Z}) \cong \mathbb{Z}^d$ denote the dual lattice. Given a polytope $P \subset N_Q$, the dual polyhedron is defined by

$$P^* := \{ u \in M_Q \mid u(\nu) \geq -1 \text{ for all } \nu \in P \} \subset M_Q.$$

Condition (b) gives that P^* is a (typically rational) polytope. It is on rational polytopes dual to lattice polytopes that we focus. In this section we will explain how mutation corresponds to a piecewise-GL$_d$(Z) transformation of P^*, and hence is an instance of GL$_d$(Z)-scissor congruence for P^*.

Following [2, §3], let $w \in M$ be a primitive lattice vector. Then $w : N \rightarrow \mathbb{Z}$ determines a height function (or grading) which naturally extends to $N_Q \rightarrow \mathbb{Q}$. We call $w(\nu)$ the height of $\nu \in N_Q$. We denote the set of all points of height h by $H_{w,h}$, and write

$$w_h(P) := \text{conv}(H_{w,h} \cap P \cap N) \subset N_Q$$

for the (possibly empty) convex hull of lattice points in P at height h.

Definition 2.1. A factor of $P \subset N_Q$ with respect to $w \in M$ is a lattice polytope $F \subset w^+$ such that for every negative integer $h \in \mathbb{Z}_{\leq 0}$ there exists a (possibly empty) lattice polytope $R_h \subset N_Q$ such that

$$H_{w,h} \cap \text{vert}(P) \subseteq R_h + |h|F \subseteq w_h(P).$$

Here ‘+’ denotes Minkowski sum, and we define $\emptyset + Q = \emptyset$ for every lattice polytope Q.

Definition 2.2. Let $P \subset N_Q$ be a lattice polytope with $w \in M$ and $F \subset N_Q$ as above. The mutation of P with respect to the data (w, F) is the lattice polytope

$$H_{w,F}(P) := \text{conv}\left(\bigcup_{h \in \mathbb{Z}_{\leq 0}} R_h \cup \bigcup_{h \in \mathbb{Z}_{\leq 0}} (w_h(P) + hF) \right) \subset N_Q.$$
It is shown in [2, Proposition 1] that, for fixed data \((w, F)\), any choice of \(\{R_h\}\) satisfying Definition 2.1 gives \(GL_d(\mathbb{Z})\)-equivalent mutations. Since we regard lattice polytopes as being defined only up to \(GL_d(\mathbb{Z})\)-equivalence, this means that mutation is well-defined. One can readily see that translating the factor \(F\) by some lattice point \(v \in w^+ \cap N\) gives isomorphic mutations: \(\mu_{(w,F+v)}(P) \equiv \mu_{(w,F)}(P)\). In particular if \(\text{dim}(F) = 0\) then \(\mu_{(w,F)}(P) \equiv P\). Finally, we note that mutation is always invertible [2, Lemma 2]: if \(Q := \mu_{(w,F)}(P)\) then \(P = \mu_{(-w,F)}(Q)\).

Remark 2.3. Informally, mutation corresponds to the following operation on slices \(w_t(P)\) of \(P\): at height \(h\) one Minkowski adds or “subtracts” \(|h|\) copies of \(F\), depending on the sign of \(h\). Definition 2.1 ensures that the concept of Minkowski subtraction makes sense.

Mutation has a natural description in terms of the dual polytope \(P'\) [2, Proposition 4 and pg. 12].

Definition 2.4. The inner-normal fan in \(M_Q\) of a polytope \(F \subset N_Q\) is generated by the cones
\[
\sigma_{v_F} := \{u \in M_Q \mid u(v_F) = \min\{u(v) \mid v \in F\}\}, \quad \text{for each } v_F \in \text{vert}(F).
\]
A mutation \(\mu_{(w,F)}\) induces a piecewise-\(GL_d(\mathbb{Z})\) transformation \(\varphi_{(w,F)}\) on \(M_Q\) given by
\[
\varphi_{(w,F)} : u \mapsto u - u_{\min} w, \quad \text{where } u_{\min} := \min\{u(v_F) \mid v_F \in \text{vert}(F)\}.
\]
The inner-normal fan of \(F\) determines a chamber decomposition of \(M_Q\), and \(\varphi_{(w,F)}\) acts linearly within each chamber. Let \(Q := \mu_{(w,F)}(P)\). Then \(\varphi_{(w,F)}(P') = Q'\). It is clear that the Ehrhart quasi-polynomials \(L_P\) and \(L_Q\) for the dual polytopes are equal, since the map \(\varphi_{(w,F)}\) is piecewise-linear. Hence mutation gives a systematic way to produce examples of \(GL_d(\mathbb{Z})\)-scissor congruence.

Example 2.5 (Mutation). Let \(P = \text{conv}\{(1,0), (0,1), (-1,1)\} \subset N_Q\) and \(w = (2, -1) \in M\). Then \(F = \text{conv}\{(0,0), (-1,-2)\} \subset w^+\) is a factor. We see that \(Q := \mu_{(w,F)}(P) = \text{conv}\{(1,0), (0,1), (-1,-4)\}\).

On the dual side we have that \(M_Q\) is divided into two chambers whose boundary is given by \(Q \cdot w\), and
\[
\varphi_{(w,F_1)} : (u_1, u_2) \mapsto \begin{cases} (u_1, u_2), & \text{if } u_1 + 2u_2 \leq 0; \\ (3u_1 + 4u_2, -u_1 - u_2), & \text{otherwise}. \end{cases}
\]

Thus we recover Example 1.2 from the view-point of mutation.

From here onwards we assume that \(P \subset N_Q\) is Fano. That is, in addition to conditions (a) and (b) above, \(P\) satisfies:

(c) the vertices \(\text{vert}(P)\) of \(P\) are primitive lattice points.

The property of being Fano is preserved under mutation [2, Proposition 2]. A Fano polytope \(P\) corresponds to a toric Fano variety \(X_P\) via the spanning fan (that is, the fan whose cones are spanned by the faces of \(P\)). See [6] for the theory of toric varieties and [13] for a survey of Fano polytopes. When \(P\) is a Fano polygon, \(X_P\) corresponds to a toric del Pezzo surface with at worst log terminal singularities. The singularity content
of P, which we recall in Definition 2.10 below, is a mutation-invariant of P introduced in [3]. In §2.4 we remark briefly on the connection between singularity content and the qG-deformation theory of X_P, and how this gives a geometric explanation for the quasi-period collapse of P^\ast.

2.2. Quotient singularities. In order to state the definition of singularity content we first recall some of the theory of quotient or orbifold surface singularities. A cyclic quotient singularity is a surface singularity isomorphic to a quotient \mathbb{A}^2/G, where G is a finite cyclic group acting diagonally on \mathbb{A}^2. Assuming that G acts faithfully means that it can be expressed as a subgroup of GL$_2(\mathbb{C})$ generated by

$$\begin{pmatrix} \epsilon & 0 \\ 0 & \epsilon^a \end{pmatrix}$$

where ϵ is a root of unity and $a \in \mathbb{Z}$. Suppose that G has order r; all possible representations are obtained (non-uniquely) by letting a range over $0, \ldots, r-1$. If G is generated by the matrix above for a a primitive r-th root of unity, then denote by $\frac{1}{r}(1, a)$ the singularity \mathbb{A}^2/G. As a quotient of affine space by an abelian group, $\frac{1}{r}(1, a)$ is an affine toric variety whose fan we now describe.

Let $N \equiv \mathbb{Z}^2$ and $M = \text{Hom}_\mathbb{Z}(N, \mathbb{Z})$ be the cocharacter and character lattices respectively of an algebraic two-torus ($C^\ast)^2$. A cone $\sigma \subset N_\mathbb{Q}$ whose rays are generated by lattice points in N describes an affine toric variety X_σ. More generally, a collection of cones given by a fan Σ describes a non-affine toric variety X_Σ. The singularity $\frac{1}{r}(1, a)$ is the affine toric variety associated to the cone

$$\sigma = \text{cone}(\epsilon z, r \epsilon^{-1} - a \epsilon z) \subset N_\mathbb{Q}.$$

The lattice height of such a cone – that is, the lattice distance between the origin and the line segment joining the two primitive ray generators of the cone (the edge of the cone) – is called the local index, and can be calculated to be

$$\ell_\sigma = \frac{r}{\gcd(r, a + 1)}.$$

The width of the cone is the number of unit-length lattice line segments along the edge of the cone or, equivalently, one less than the number of lattice points along the edge. The width is equal to $\gcd(r, a + 1)$. We will often conflate a singularity and its corresponding cone in $N_\mathbb{Q}$. An isolated cyclic quotient singularity is a T-singularity if it is smoothable by a qG-deformation.

Lemma 2.6 ([14, Proposition 3.11]). An isolated cyclic quotient singularity is a T-singularity if and only if it takes the form

$$\frac{1}{dn^2}(1, dnc - 1)$$

for some c with $\gcd(n, c) = 1$.

The cone $\sigma \subset N_\mathbb{Q}$ associated to a T-singularity $\frac{1}{dn^2}(1, dnc - 1)$ has local index $\ell = n$ and width dn; it is easily seen that T-singularities are characterised by having the width divisible by the local index. Suppose that $P \subset N_\mathbb{Q}$ is a Fano polygon with edge E spanning σ. Let $w \in M$ be the primitive inner-normal such that $w(E) = -\ell$, and choose $F \subset w^\perp$ of lattice length d. The mutation $\mu_{(w,f)}(P)$ collapses the edge E to a vertex, removing the cone σ. This is equivalent to a local qG-smoothing of the T-singularity.

Example 2.7. Consider the polytope $Q := \text{conv} \{(1, 0), (0, 1), (-1, -4)\}$ appearing in Example 2.5. The corresponding spanning fan has three two-dimensional cones, two of which are smooth and one of which, cone$\{(1, 0), (-1, -4)\}$, corresponds to a $\frac{1}{r}(1, 1)$ T-singularity.

The other relevant class of quotient singularities are the R-singularities introduced in [3].

Definition 2.8. A cyclic quotient singularity of local index ℓ and width k is an R-singularity if $k < \ell$.

Let $\sigma \subset N_\mathbb{Q}$ be a cone of local index ℓ and width k. Write $k = d\ell + r$, where $d, r \in \mathbb{Z}_{\geq 0}, 0 \leq r < \ell$. If $r = 0$ then σ is a T-singularity. Assume that $r \neq 0$ and, as before, suppose that $P \subset N_\mathbb{Q}$ is a Fano polygon with edge E spanning σ. Let $w \in M$ be the corresponding inner-normal, and pick $F \subset w^\perp$ of lattice length d. The mutation $\mu_{(w,f)}(P)$ transforms σ to a cone τ of width r corresponding to a $\frac{1}{r}(1, rc/k - 1)$ singularity. Crucially, τ has width strictly less than the local index, and so cannot be simplified via further mutation. This is equivalent to a partial qG-smoothing of the original singularity σ, resulting in a singularity τ that is rigid under qG-deformation. The R-singularity τ is independent of the choices made [3, Proposition 2.4].
Definition 2.9. Let \(\sigma \subset N_Q \) be a cone corresponding to a \(\frac{1}{2}(1, c - 1) \) singularity. Let \(\ell \) be the local index and let \(k \) be the width of the cone. Write \(k = d\ell + r \), where \(d, r \in \mathbb{Z}_{\geq 0}, 0 \leq r < \ell \). The residue of \(\sigma \) is

\[
\text{res}(\sigma) = \begin{cases}
\frac{1}{2}(1, rc/k - 1), & \text{if } r \neq 0; \\
\emptyset, & \text{otherwise.}
\end{cases}
\]

The singularity content of \(\sigma \) is the pair \((d, \text{res}(\sigma))\). The singularity content is local qG-deformation-theoretic data about \(\sigma \).

Definition 2.10. Let \(P \subset N_Q \) be a Fano polygon with cones \(\sigma_1, \ldots, \sigma_n \). The basket of \(P \) is the multiset

\[
\mathcal{B} := \{\text{res}(\sigma_i) \mid 1 \leq i \leq n\},
\]

where the empty residues are omitted\(^1\). The singularity content of \(P \) is the pair

\[
(d_1 + \cdots + d_n, \mathcal{B}),
\]

where the \(d_i \) are the integers appearing in the singularity content of the \(\sigma_i \). Singularity content is a qG-deformation-invariant of \(X_P \).

2.3. Hilbert series. Any projective toric variety \(X_P \) arising from a polytope \(P \) comes with a natural ample divisor \(D \) given by its toric boundary \(D = X_P \setminus T \), where \(T \) is the big torus inside \(X_P \). When \(P \) is Fano, \(D = -K \), the anti-canonical divisor on \(X_P \). In this case, due to the standard toric dictionary allowing one to move between lattice points in \(M \) and sections of line bundles on \(X_P \), one has that the Hilbert function of \((X_P, -K)\) equals the Ehrhart quasi-polynomial \(\text{Hilb}_{-K} \) of the rational polytope \(P^* \). Hence the generating function \(\text{Hilb}_{-K}(t) \) for the Hilbert function of \((X_P, -K)\) is equal to the Ehrhart series of \(P^* \). From here onwards we suppress \(-K\) from the notation.

The Hilbert series of an orbifold del Pezzo surface \(X \) with basket \(B \) can be written in the form [3, Corollary 3.5]:

\[
\text{Hilb}_X(t) = \frac{1 + (K^2 - 2)t + t^2}{(1 - t)^3} + \sum_{\sigma \in \mathcal{B}} Q_{\sigma} t^{d_{\sigma}},
\]

where \(Q_{\sigma} \) are orbifold correction terms given by certain rational functions with denominators \(1 - t^{d_{\sigma}} \). For example, the orbifold correction term for the R-singularity \(\frac{1}{3}(1, 1) \) is

\[
Q_{\frac{1}{3}(1, 1)} = \frac{-t}{3(1 - t^3)} = \frac{1}{3}(t + t^4 + t^7 + \ldots)
\]

which contributes \(-1/3\) to the coefficient of \(t^d \) when \(d \equiv 1 \pmod{3} \).

The Hilbert function is a quasi-polynomial when \(X \) is an orbifold (because the anti-canonical divisor is \(\mathcal{Q} \)-Cartier rather than Cartier). The anti-canonical divisor does not correspond to a line bundle, but some integer multiple of it does. The smallest integer \(d \) such that \(-dK\) is Cartier is called the Gorenstein index of \(X \) and denoted by \(\ell_X \). In the toric setting, \(-dK\) is Cartier if and only if \(dP^* \) is a lattice polytope. Hence the Gorenstein index \(\ell_X \) of \(X_P \) equals the denominator \(r_N \) of \(P^* \).

2.4. Algebraic geometry and the quasi-period. Mutations were introduced in [2] as part of an ongoing program investigating Mirror Symmetry for Fano manifolds [5]. In two dimensions the picture is very well understood: see [1] for the details. In summary, if two Fano polygons \(P \) and \(Q \subset N_Q \) are related by a sequence of mutations then there exists a qG-deformation between the corresponding toric del Pezzo surfaces \(X_P \) and \(X_Q \). Such a qG-deformation preserves the anti-canonical Hilbert series, hence \(L_{P^*} = L_{Q^*} \) and so the quasi-periods of \(P^* \) and \(Q^* \) agree. However it does not in general preserve the Gorenstein index, and hence the denominators \(r_P \) and \(r_Q \) need not be equal. The cones over the edges of \(P \) correspond to the singularities of \(X_P \), and these admit partial qG-smoothenings to the qG-rigid singularities given by the basket \(B \) of residues.

Suppose that the singularity content of \(P \) is \((d, B)\). Then, by the absence of global obstructions to qG-deformations on Fano varieties, \(X_P \) is qG-deformation-equivalent to a (not necessarily toric) del Pezzo surface \(X \) with singularities \(B \) and whose non-singular locus has topological Euler number \(d \). Since \(\text{Hilb}_{X_P}(t) = \text{Hilb}_X(t) \), we have an explanation for quasi-period collapse of the dual polytope \(P^* \). Specifically, the Gorenstein index of \(X \) is equal to the quasi-period of \(P^* \).

\(^1\)In [3] the basket is cyclically ordered. Although important from the viewpoint of classification, it is not required here.
3. Studying quasi-period collapse

The Hilbert series of orbifold del Pezzo surfaces were studied in [18] with the aim of describing the structure of the set of possible baskets B of R-singularities on orbifold del Pezzo surfaces with a fixed Hilbert series. This is achieved by partitioning B into two pieces: a reduced basket and an invisible basket. The latter, along with the T-singularities, is not detectable by the Hilbert series, and from our viewpoint it is this invisibility that causes quasi-period collapse.

Definition 3.1. A collection $\sigma_1, \ldots, \sigma_n$ of R-singularities is a cancelling tuple if
\[Q_{\sigma_1} + \cdots + Q_{\sigma_n} = 0. \]
A collection of R-singularities is called invisible if it is a union of cancelling tuples.

Example 3.2. Let σ be an R-singularity of local index ℓ and width k. Then there exists an R-singularity σ' of local index ℓ and width $\ell - k$ such that $Q_\sigma + Q_{\sigma'} = 0$. Combinatorially, this is understood by the observation that the union of the two cones gives a T-singularity.

![Diagram of cancelling tuple](image)

Definition 3.3. Let X be an orbifold del Pezzo surface. A maximal invisible subcollection of the basket B of X is called an invisible basket for X. Notice that such a maximal subcollection is not unique, since singularities can appear in many different cancelling tuples. Given a choice of invisible basket $IB \subset B$, the complement $RB = B \setminus IB$ is called the reduced basket for X corresponding to the choice of IB.

Let $P \subset N_Q$ be a Fano polygon with singularity content (d, B). Let IB be an invisible basket of B with corresponding reduced basket RB. Hence $B = RB \cup IB$. Denote the collection of T-singularities on X_P by T (so $|T| = d$).

Theorem 3.4. Let $P \subset N_Q$ be a Fano polygon. The quasi-period of P^* is given by:
\[\pi_{p^*} = \lcm\{\ell_\sigma \mid \sigma \in RB\}. \]
Furthermore, P^* exhibits quasi-period collapse if and only if there exists some $\tau \in IB \cup T$ of local index not dividing $\lcm\{\ell_\sigma \mid \sigma \in RB\}$. Moreover, the quasi-period collapse is measured by IB:
\[r_{p^*} = \lcm(\{\pi_{p^*}\} \cup \{\ell_\sigma \mid \sigma \in IB \cup T\}). \]

Proof. We have
\[\Ehr_{p^*}(t) = \Hilb_{X_P}(t) = \text{initial term} + \sum_{\sigma \in B} Q_\sigma = \text{initial term} + \sum_{\sigma \in RB} Q_\sigma. \]
As discussed, each orbifold correction term Q_σ contributes to the coefficients of this series as a quasi-polynomial with quasi-period ℓ_σ. When $\sigma \in RB$ these terms are not cancelled and so make non-zero contributions to the coefficients of the Ehrhart series, hence its quasi-period is given by:
\[\pi_{p^*} = \lcm\{\ell_\sigma \mid \sigma \in RB\}. \]
The Gorenstein index of P is equal to $\ell_{X_P} = \lcm\{\ell_\sigma \mid \sigma \in B \cup T\}$. Hence
\[r_{p^*} = \ell_{X_P} = \lcm(\{\ell_\sigma \mid \sigma \in RB \cup IB \cup T\}) = \lcm(\{\pi_{p^*}\} \cup \{\ell_\sigma \mid \sigma \in IB \cup T\}). \]
This is distinct from π_{p^*} if and only if $\lcm\{\ell_\sigma \mid \sigma \in IB \cup T\}$ does not divide π_{p^*}. □

Remark 3.5. It follows from [18, §4] that the choice of IB is irrelevant in the statement of Theorem 3.4.

As a corollary to Theorem 3.4 we immediately obtain:

3We adopt the convention that $\lcm(\emptyset) = 1$.

Corollary 3.6. Let $P \subset N_Q$ be a Fano polygon. The discrepancy between the quasi-period and denominator of P^* is
\[
\frac{r_P}{\pi_P} = \frac{\text{lcm}\{\ell_\alpha \mid \alpha \notin IB \cup T\}}{\gcd\{\text{lcm}\{\ell_\alpha \mid \alpha \notin RB\}, \text{lcm}\{\ell_\alpha \mid \alpha \notin IB \cup T\}\}}.
\]

Example 3.7 (Detecting quasi-period collapse). Consider the polytope $Q := \text{conv}\{(1, 0), (0, 1), (-1, -4)\}$ appearing in Example 2.5. This has singularity content $(3, \emptyset)$, and $T = \{2 \times \text{smooth}, \frac{1}{2}(1, 1)\}$. Applying Corollary 3.6 we have that $r_Q = 2\pi_Q$.

We now give an example of an infinite family of Fano triangles, obtained via mutation, where the denominator r_P can become arbitrarily large but where $\pi_P = 1$. Let $P \subset N_Q$ be a Fano triangle. Recall that the corresponding toric variety X_P is a fake weighted projective plane [12]: a quotient of a weighted projective plane by a finite group N/N' acting free in codimension one, where N' is the sublattice generated by the vertices of P.

Example 3.8 (Mutations of \mathbb{P}^2). In [4, 11] the graph of mutations of \mathbb{P}^2 is constructed. The vertices of this graph are given by $P(a^2, b^2, c^2)$, where $(a, b, c) \in \mathbb{Z}_+^3$ is a Markov triple satisfying
\[
a^2 + b^2 + c^2 = 3abc.
\]

Let $X_P = P(a^2, b^2, c^2)$ be such a weighted projective plane, with $P \subset N_Q$ the corresponding Fano triangle. Since X_P is qG-deformation-equivalent to \mathbb{P}^2, so X_P is smoothable and its anti-canonical Hilbert function has quasi-period one. Hence $\pi_P = 1$. However, the denominator r_P of P^* can be arbitrarily large. To see this, note first that a, b, c must be pairwise coprime: if $p \mid a$ and $p \mid b$ then $p^2 \mid 3abc = a^2 + b^2 + c^2$, and hence $p \mid c$; but then p appears as a square on the left-hand side and as a cube on the right-hand side of (3.1). Let b be an inverse of $b \pmod{a^2}$. Note that $c^2 b^{-1} + 1 \equiv (3abc - b^2)b^{-1} + 1 \equiv 3abc \pmod{a^2}$, and so the singularity $\frac{a^2}{\text{lcm}\{b^2, c^2\}}$ on X_P has local index
\[
\frac{a^2}{\gcd\{a^2, c^2 b^{-1} + 1\}} = \begin{cases} a, & \text{if } a \equiv 0 \pmod{3}; \\ a/3, & \text{if } a \equiv 0 \pmod{3}. \end{cases}
\]

Considering equation (3.1) (mod 3) shows that no Markov numbers are divisible by three. Hence the three local indices on X_P are a, b, and c, and so $r_P = abc$. The two triangles P and Q in Example 2.5 are the simplest examples, arising from the Markov triples $(1, 1, 1)$ and $(1, 1, 2)$ respectively, and corresponding to \mathbb{P}^2 and $P(1, 1, 4)$.

Remark 3.9. There exist Fano triangles of quasi-period one not arising from the construction in Example 3.8. For example, consider
\[
P = \text{conv}\{(3, 2), (-1, -2), (-1, -2)\} \subset N_Q.
\]

The corresponding fake weighted projective plane $X_P = P(1, 1, 2)/(\mathbb{Z}/4)$ has $2 \times \frac{1}{2}(1, 1, 3)$ and $\frac{1}{2}(1, 3)$ T-singularities. We see that P^* has $r_P = 2$ and $\pi_P = 1$. In fact X_P is qG-smoothable to the nonsingular del Pezzo surface of degree two, and hence $L_P(k) = k^2 + k + 1$.

Acknowledgments. Our thanks to Tom Coates, Alessio Corti, Mohammad Akhtar, Thomas Prince, and Miles Reid for many helpful discussions. AK is supported by EPSRC Fellowship EP/N022513/1. BW was supported by a grant from the London Mathematical Society.

References.

[1] Mohammad Akhtar, Tom Coates, Alessio Corti, Liana Heuberger, Alexander M. Kasprzyk, Alessandro Oneto, Andrea Petracci, Thomas Prince, and Ketil Tveiten. Mirror symmetry and the classification of orbifold del Pezzo surfaces. Proc. Amer. Math. Soc., 144(2):513–527, 2016.
[2] Mohammad Akhtar, Tom Coates, Sergey Galkin, and Alexander M. Kasprzyk. Minkowski polynomials and mutations. SIGMA Symmetry Integrability Geom. Methods Appl., 8:Paper 094, 17, 2012.
[3] Mohammad Akhtar and Alexander M. Kasprzyk. Singularity content. arXiv:1401.5458 [math.AG], 2014.
[4] Mohammad Akhtar and Alexander M. Kasprzyk. Mutations of fake weighted projective planes. Proc. Edinb. Math. Soc. (2), 59(2):271–285, 2016.
[5] Tom Coates, Alessio Corti, Sergey Galkin, Vasily Golyshev, and Alexander M. Kasprzyk. Mirror symmetry and Fano manifolds. In European Congress of Mathematics, pages 285–300. Eur. Math. Soc., Zürich, 2013.
[6] David A. Cox, John B. Little, and Henry K. Schenck. Toric varieties, volume 124 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2011.
[7] Jesús A. De Loera and Tyrrell B. McAllister. Vertices of Gelfand-Tsetlin polytopes. *Discrete Comput. Geom.*, 32(4):459–470, 2004.
[8] Jesús A. De Loera and Tyrrell B. McAllister. On the computation of Clebsch-Gordan coefficients and the dilation effect. *Experiment. Math.*, 15(1):7–19, 2006.
[9] E. Ehrhart. Sur un problème de géométrie diophantienne linéaire. II. Systèmes diophantiens linéaires. *J. Reine Angew. Math.*, 227:25–49, 1967.
[10] Christian Haase and Tyrrell B. McAllister. Quasi-period collapse and \(GL_n(\mathbb{Z})\)-scissors congruence in rational polytopes. In *Integer points in polyhedra—geometry, number theory, representation theory, algebra, optimization, statistics*, volume 452 of *Contemp. Math.*, pages 115–122. Amer. Math. Soc., Providence, RI, 2008.
[11] Paul Hacking and Yuri Prokhorov. Smoothable del Pezzo surfaces with quotient singularities. *Compos. Math.*, 146(1):169–192, 2010.
[12] Alexander M. Kasprzyk. Bounds on fake weighted projective space. *Kodai Math. J.*, 32(2):197–208, 2009.
[13] Alexander M. Kasprzyk and Benjamin Nill. Fano polytopes. In *Strings, gauge fields, and the geometry behind*, pages 349–364. World Sci. Publ., Hackensack, NJ, 2013.
[14] J. Kollár and N. I. Shepherd-Barron. Threefolds and deformations of surface singularities. *Invent. Math.*, 91(2):299–338, 1988.
[15] Tyrrell B. McAllister and Kevin M. Woods. The minimum period of the Ehrhart quasi-polynomial of a rational polytope. *J. Combin. Theory Ser. A*, 109(2):345–352, 2005.
[16] G. Pick. Geometrisches zur zahlentheorie. *Sonderabdr. Naturw.-medizin. Verein f. Böhmen "Lotos"*, (8, 9):S. 8°, 1899.
[17] Jonathan M. Wahl. Elliptic deformations of minimally elliptic singularities. *Math. Ann.*, 253(3):241–262, 1980.
[18] Ben Wormleighton. Reconstruction of singularities on orbifold del Pezzo surfaces from their Hilbert series. *arXiv:1808.09596 [math.AG]*, 2018.

School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK

E-mail address: a.m.kasprzyk@nottingham.ac.uk

Department of Mathematics, University of California at Berkeley, Berkeley, CA, 94720, USA

E-mail address: b.wormleighton@berkeley.edu