Why does the ocean sunfish bask?

Takuzo Abe1,* and Keiko Sekiguchi2,*
1School of Fisheries Science; Hokkaido University; Hakodate City, Hokkaido, Japan; 2Graduate school of Arts and Science; International Christian University; Mitaka City, Tokyo; Japan

Basking at the sea surface is a well known, but peculiar behavior of ocean sunfish (Mola mola). One of hypotheses for this behavior is parasite elimination. However, in oceanic regions, very little direct evidence exists for this form of interspecific communication. In pelagic waters of the North Pacific Ocean, we observed a school of 57 ocean sunfish, that were heavily infested around the base of their dorsal fins with the ecto-parasite Pennella sp. We photographed a Laysan albatross (Phoebastria immutabilis) nearby that picked a Pennella sp. from one of ocean sunfish and ate it. We hypothesize that ocean sunfish did “bask” to look for skin cleaning and that this symbiotic cleaning behavior by the albatrosses may be a common feature of the biology of the ocean sunfish. Here we provide more photographs to show heavy parasite infections and scars after parasite removal by “cleaners,” and discuss how important a symbiotic cleaning relationship could be in the open ocean ecosystem.

The ocean sunfish (Mola mola) is a largest, and most widely distributed oceanic bony fish1,2 with its maximum reported size is 2.3 t and 2.7 m in total length (TL).3,4 Its bizarre appearance and strange basking behavior has been receiving much curiosity. Ocean sunfish are also known for their heavy parasite loads, both inside and outside of its body.3,7 Love and Moser8 listed 54 species of parasites in this species. Early studies hypothesized that basking ocean sunfish might be sick and/or dying because of heavy parasite infection.1,7 Recent studies suggested two main hypotheses to explain this basking behavior: “thermal recharging” and “parasite elimination.”2 Recent tagging studies have revealed the ocean sunfish dives several hundred meters deep, possibly for forage.3-13 Thus, it has been hypothesized that ocean sunfish might bask at the sea surface to re-warm the body after deep dives into cold water.2,10 However, there was no significant relationship between the amount of time per day fish spent in cold water and the amount of time fish spent at the surface; therefore this hypothesis does not appear to have enough supportive evidence.13

The “parasite elimination” by fishes or birds near the sea surface may be beneficial to ocean sunfish with many parasites.14-16 In the near-shore region, it has been observed that small fishes act as cleaners of ocean sunfish.14,16 There is some documentation that sea birds picked parasites off ocean sunfish,15,17 although direct evidence has not yet been found. The reason for “basking,” the typical behavior of ocean sunfish, has been under discussion.

In our recent paper,18 we presented evidence for the symbiotic cleaning association between ocean sunfish and albatrosses with clear field photographs in the open ocean. On 2 July 2010, we observed from the T/S Oshoro Maru, (1,792 gross tonnage; belonging to Hokkaido University, Hakodate, Japan) in the western North Pacific (40°46.8’N, 165°01.7’E) that this school of 57 basking ocean sunfish actively followed a resting Laysan albatross Phoebastria immutabilis and presented themselves to the birds. The ocean sunfish in school were heavily infested by ecto-parasite Pennella sp. A total of four Laysan and black-footed albatrosses Phoebastria nigripes initiated cleaning behavior, picking these ecto-parasites.
Pennella sp. off the skin of the ocean sunfish.

Pennella sp. is a large ecto-parasitic Copepoda. It goes through some juvenile stages on different hosts, and then finally only the adult females become embedded on marine mammals and large fishes, such as the ocean sunfish. The Pennella sp. we observed on ocean sunfish bodies were certainly mature with long line-like egg strings (Fig. 1A). Hogans found a specimen of *Pennella filosa* near the base of the sampled ocean sunfish dorsal fin. It seemed that this location is a favorite position at which to embed for Pennella sp. As Figure 1B shows, skin around the infected site was reddish-inflamed, suggesting damages to the host’s body.

Although Pennella sp. becomes deeply anchored into host skin, Çiçek et al. reported that individual *Pennella balaenopterae* were easily taken out from the skin of a dead fin whale by hand. Removal was easy perhaps because of the death of both host and parasite. Also it may be easy enough for the thick, strong tubenose bill of the albatross to remove these parasites. Among the school of ocean sunfish we observed, some fish had several small grayish spots near the base of their dorsal fin (denoted by white arrows in Fig. 2). Those spots are probably healed scars after removal of Pennella sp. by “cleaners.” These appeared similar to holes after removal of *P. balaenopterae* (Fig. 2B in

Figure 1. (A) A view from above for an oceanic sunfish, attached by several mature female Pennella sp. (white arrow A) showing long egg strings (white arrow B) (photographed by K.S.). (B) A side view of an ocean sunfish with heavily damaged skin near the bottom of its dorsal fin probably caused by Pennella sp. (photographed by K.S.).

Figure 2. Small spots (pointed by white arrows) and a spot with inflamed skin (pointed by black arrow) near the dorsal fin base of the ocean sunfish possibly after removal of Pennella sp. by “cleaners” (photographed by K.S.).
Çiçek et al. Another scar in Figure 2 (denoted by a black arrow) seemed like a bad inflammation, maybe from Pennella parasites. Doi et al. reported that this kind of damaged tissue, caused by Pennellid species, would recover quickly.

One basking ocean sunfish, Mola mola or possibly Mola sp. B, was caught in the western North Pacific Ocean (43°15′N, 155°00′E) during the T/S Oshoro Maru on another cruise on 30 July 2011 (sea surface temperature = 14.5°C). This animal was a juvenile and 0.4 m in TL. On the base of its dorsal fin, thin tube-like, semitransparent forms stuck out from the skin (Fig. 3). Those tubes were identified as neck portions of ecto-parasite Pennella sp., which might be cut out by “cleaners” such as albatrosses. This suggests that deeply entrenched Pennella sp. are sometimes not easy to pull out completely from their host, and the tissue of the parasite body may be destroyed if “cleaners” are too fast to take Pennella sp. On the ocean sunfish we caught, one parasite-intruded area was very badly inflamed (Fig. 3, denoted by a black arrow). The reddish scars in Figure 1B (denoted by a white arrow) and Figure 2 (denoted by a black arrow) showed the similar size and position of a fish body (i.e., the base of a dorsal fin). Those scars might be a healed inflammation after the Figure 3 stage.

It is clear that infection by Pennella sp. can cause tissue damage to the host ocean sunfish, just as other parasites infections. Thus, it is presumed that parasite removal is very beneficial for ocean sunfish. Without the help of cleaners, parasite like Pennella could give serious damage on the skin and tissue of ocean sunfish. Basking ocean sunfish surrounded by six black-footed albatrosses (on July 30, 2005, at 40°45′N, 165°00′E; Fig. 4) and other large marine birds have been observed. In the Hawaiian Archipelago, stomachs of black-footed albatrosses contained Pennella sp. It is possible that parasite elimination is not only a significant event for ocean sunfish, but also a good food source for larger sea birds in open ocean. The symbiotic cleaning associations we have reported may be occurring on a more regular base in wide world ocean surfaces than previously thought.

Acknowledgments

We would like to acknowledge to the Captain, crew and all students on board.
on the T/S Oshoro Maru in the summer 2010 and 2011 cruises, for their endless support and hard work. Emeritus Professor Gregore M. Cailliet from Moss Landing Marine Laboratories kindly commented on the manuscript.

References

1. Fraser-Bruner A. The ocean sunfishes (Family Molaidae). Bull Brit Mus Nat Hist 1951; 1:89-121.
2. Pope EG, Hays GC, Thys TM, Doyle TK, Sims DW, Queiroz N, et al. The biology and ecology of the ocean sunfish *Mola mola*: a review of current knowledge and future research perspectives. Rev Fish Biol Fish 2010; 20:471-87; http://dx.doi.org/10.1007/s11160-009-9155-9
3. Roach J. World heaviest bony fish discovered? Nat Geo 2003; http://news.nationalgeographic.com/news/pf/79498343.html.
4. Nakatsubo T, Kawachi M, Odense PH. The integument of the ocean sunfish *Mola mola*, in the northwest Atlantic. J Exp Mar Biol Ecol 2011; 396:138-46; http://dx.doi.org/10.1016/j.jembe.2010.10.014
5. Threlfall W. Some parasites recovered from ocean sunfish, *Mola mola*, in Newfoundland. Can Field Nat 1967; 18:168-71.
6. Logan VH, Odense PH. The integument of the ocean sunfish (Mola mola L.) (Pleuronecti) with observations on the lesions from two ectoparasites, *Capsula martineieri* (Trematoda) and *Philhorabegericus serratus* (Copepoda). Can J Zool 1974; 52:1039-45; PMID:568383, http://dx.doi.org/10.1139/z74-138
7. Schwartz FJ, Lindquist DG. Observations on *Mola mola* off southern California, Mar Ecol Prog Ser 2004; 266:245-53; http://dx.doi.org/10.3354/meps266245
8. Love M, Moser M. A check list of Parasites of California, Oregon and Washington Marine and Estuarine Fishes. NOAA Tech Rep 1983; NMFS SSRF-77A.
9. Dewar H, Thys T, Teo SLH, Farwell C, O’Sullivan J, Tobayama T, et al. Satellite tracking the world’s largest jelly predator, the ocean sunfish, *Mola mola*, in the western Pacific. J Exp Mar Biol Ecol 2010; 393:32-42; http://dx.doi.org/10.1016/j.jembe.2010.06.023
10. Cartamil DP, Lowe CG. Diel movement patterns of ocean sunfish *Mola mola* off southern California, Mar Ecol Prog Ser 2004; 266:245-53; http://dx.doi.org/10.3354/meps266245
11. Hays GC, Queiroz N, Doyle TK, Houghton DR, Hays GC. Satellite tracking of the world’s largest bony fish, the ocean sunfish (*Mola mola L.*) in the North East Atlantic. J Exp Mar Biol Ecol 2009; 370:127-33; http://dx.doi.org/10.1016/j.jembe.2008.12.011
12. Hays GC, Farquhar MR, Luschi P, Teo SLH, Thys TM. Vertical niche overlap by two ocean giants with similar diets: Ocean sunfish and leatherback turtles. J Exp Mar Biol Ecol 2009; 370:134-43; http://dx.doi.org/10.1016/j.jembe.2008.12.009
13. Porter I, Howell W. Vertebral movement and behavior of the ocean sunfish, *Mola mola*, in the northwest Atlantic. J Exp Mar Biol Ecol 2011; 396:138-46; http://dx.doi.org/10.1016/j.jembe.2010.10.014
14. Hixon MA. The halfmoon, *Molitlama californiensis*, as a cleaner fish. Calif Fish Game 1979; 65:117-8.
15. Thys T. Swimming heads. Nat Hist 1994; 103:36-9.
16. Konow N, Fitzpatrick R, Barnett A. Adult emperor anglefish (*Pomacanths imperator*) clean giant sunfishes (*Mola mola*) at Nusa Lembongan, Indonesia. Coral Reefs 2006; 25:208; http://dx.doi.org/10.1007/s00338-006-0086-9
17. Miller L. Observations on the black-footed albatross. Condor 1940; 42:229-38; http://dx.doi.org/10.2307/364482
18. Abe T, Sekiguchi K, Onishi H, Mutamura K, Kamito T. Observations on a school of ocean sunfish and evidence for a symbiotic cleaning association with albatrosses. Mar Biol 2012; 159:1173-8; http://dx.doi.org/10.1007/s00227-011-1873-6
19. Yamaguti S. Parasitic copepoda and branchiura of fishes. New York: Interscience Publishers 1963.
20. Hogans WE. Description of Pennella filosa L. (Copepoda: Pennellidae) on the ocean sunfish (*Mola mola L.*) in the Bay of Fundy. Bull Mar Sci 1987; 40:59-62.
21. Ciçek E, Öktemer A, Capar OB. First report of *Pennella balanopterae* Korzen and Danielissen, 1877 (Copepoda: Pennellidae) from Turkey. Turkiye Parasitol Derg 2007; 31:239-41; PMID:17918809
22. Doi T, Noda A, Narukii H. Histological observation of red-spotted grouper *Epinephelus akaara* paralyzed by *Lernaeicuicus ramosus* (Copepoda, Pennellidae) and a case of spontaneous recovery. Aquacul Sci 2008; 56:601-2.
23. Yoshita Y, Yamano Y, Sagara K, Nishibori M, Kuniyoshi H, Umino T, et al. Phylogenetic relationship of two *Mola* sunfishes (Tetraodontiformes: Molidae) occurring around the coast of Japan, with notes on their geographical distribution and morphological characteristics. Ichthyol Res 2009; 56:232-44; http://dx.doi.org/10.1007/s10228-008-0089-3
24. Yamano Y, Mabuchi K, Sawai E, Sakai Y, Hashimoto H, Nishida M. Multiplex PCR-based genotyping of mitochondrial DNA from two species of ocean sunfish from the genus *Mola* (Tetraodontiformes: Molidae) found in Japanese waters. Jpn J Ichthyol 2010; 57:27-34.
25. Bent GW, Hogans WE. Pennella filosa (L., 1758) (Copepoda: Pennellidae) from the escolar *Lepidocybium flavobrunneum* (Smith, 1849) in the north-west Atlantic. Syst Parasitol 1993; 26:127-31.
26. Abasuanu P, Arroyo NL, Preciado I. A contribution to the knowledge on the morphometry and the anatomical characters of *Pennella balanopterae* (Copepoda, Pennellidae) from the escolar *Lepidocybium flavobrunneum* (Smith, 1849) in the north-west Atlantic. Syst Parasitol 1993; 26:127-31.
27. Harrison CS, Hida TS, Seki MP. Hawaiian seabird feeding ecology. Wildl Monogr 1988; 85:3-71.