Microsurgical resection of previously embolized recurrent cerebellopontine angle AVM

Ehsan Dowlati, MD, Kelsi Chesney, MD, and Vikram V. Nayar, MD

Department of Neurosurgery, MedStar Georgetown University Hospital, Washington, DC

This is the case of a ruptured Spetzler-Martin grade II arteriovenous malformation (AVM) located in the cerebellopontine angle and draining into the transverse sinus. The AVM was initially treated with staged embolization using Onyx (ev3 Neurovascular). However, recurrence was noted and treatment with microsurgical resection was undertaken. The authors present technical nuances of the approach and strategies for microsurgical resection of a previously embolized recurrent AVM with the aid of intraoperative indocyanine green angiography. Follow-up after endovascular treatment is critical, and curative treatment with microsurgical resection can be achieved with low morbidity in such AVMs as demonstrated by this case.

The video can be found here: https://youtu.be/LMpz_YTFC0g
https://thejns.org/doi/abs/10.3171/2020.10.FOCVID2057

KEYWORDS microsurgical resection; arteriovenous malformation; embolization; recurrence; Onyx
Follow-Up Angiogram and Imaging. Follow-up angiogram showed that most of the AVM nidus remained occluded. However, as shown in these oblique views of right vertebral artery injection, recurrence of arteriovenous shunting was present with supply from the right superior cerebellar artery draining into the right transverse sinus. Notably, there was now also some supply through a sinus. The arterialized draining vein is identified. Intraoperative indocyanine green angiography is performed to visualize the AVM and its draining vein.

Using gentle spreading of the microforceps and bimanual technique, feeding arteries of the AVM are identified and dissected. Using bipolar cautery and sharp dissection, a plane is cleared around the AVM nidus and away from the cerebellar parenchyma. We coagulate and divide small arterial feeders to the AVM.

Predominantly, these feeders were from branches of the superior cerebellar artery. Feeding arteries containing Onyx were also coagulated and sharply divided at a point adjacent to the nidus to allow release from surrounding structures. Here, an embolized perimedial aneurysm is seen as we dissect adjacent to the trigeminal nerve.

Starting superficial to deep, feeding arteries both contributing to the nidus and previously embolized are disconnected in systematic fashion, while preserving other vessels and critical structures of the CP angle. After circumferential dissection around the AVM nidus, the draining vein remains arterialized. We inspect around the nidus, noting that embolized arteries may be left behind as they are no longer feeding the AVM. Another indocyanine green intraoperative video angiogram is performed and compared with the one just prior to resection.

The remaining arterial supply to the arterialized vein now originated within the tentorium. A clip is placed and the infratentorial portion of the AVM is removed and sent as specimen to pathology. Next, the tentorium surrounding the vein is coagulated and divided. After this, the vein appears bluish in color and is no longer arterialized. A final fluorescence video angiogram confirms no residual nidus with no arterial blood flow in the vein present. A 7-mm straight Yaşargil clip is then placed across the draining vein at the tentorium.

Hemostasis is achieved and copious irrigation is applied to the resection bed. The dura is closed in a watertight fashion with a synthetic dural patch graft. The bone flap was refixed with titanium plates and screws, and the muscles and scalp were closed in a standard multilayered fashion.

Immediate postoperative angiogram showed complete resolution of the AVM, as shown in this AP and lateral injection of the right transverse sinus is identified. Intraoperative indocyanine green angiography is performed to visualize the AVM and its draining vein.

Postoperative Imaging. Immediate postoperative angiogram showed complete resolution of the AVM, as shown in this AP and lateral injection of the right vertebral artery.

Postoperative CT head showed expected postsurgical changes.

Postoperative Course. Postoperatively, the patient remained neurologically stable and discharged home on POD 5. He recovered well and remained without new symptoms at 3-month and 6-month follow-up. Final pathology confirmed an arteriovenous malformation.

In summary, follow-up is important in endovascularly treated AVMs, particularly those of the brainstem and CP angle. Microsurgical resection of previously embolized recurrent AVMs is safe and effective.
and is the optimal treatment of choice after recurrence of low-grade AVMs in the posterior fossa, providing definitive treatment.

References

1. Platz J, Berkefeld J, Singer OC, et al. Frequency, risk of hemorrhage and treatment considerations for cerebral arteriovenous malformations with associated aneurysms. Acta Neurochir (Wien). 2014;156(11):2025–2034.
2. Eliava S, Dmitriev A, Shekhtman O, et al. Treatment of brain arteriovenous malformations with hemodynamic aneurysms: a series of 131 consecutive cases. World Neurosurg. 2018;110: e917–e927.
3. Reig AS, Rajaram R, Simon S, Mericle RA. Complete angiographic obliteration of intracranial AVMs with endovascular embolization: incomplete embolic nidal opacification is associated with AVM recurrence. J Neurointerv Surg. 2010;2(3): 202–207.
4. Nataraj A, Mohamed MB, Gholkar A, et al. Multimodality treatment of cerebral arteriovenous malformations. World Neurosurg. 2014;82(1-2):149–159.
5. Zaki Ghali G, Zaki Ghali MG, Zaki Ghali E. Endovascular therapy for brainstem arteriovenous malformations. World Neurosurg. 2019;125:481–488.
6. Li C, Li Y, Jiang C, et al. Remission of neurovascular conflicts in the cerebellopontine angle in interventional neuroradiology. J Neurointerv Surg. 2016;8(1):87–93.

Disclosures

The authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this publication.

Author Contributions

Primary surgeon: Nayar. Assistant surgeon: Dowlati. Editing and drafting the video and abstract: Dowlati, Chesney. Critically revising the work: all authors. Reviewed submitted version of the work: all authors. Approved the final version of the work on behalf of all authors: Dowlati. Supervision: Nayar.

Correspondence

Ehsan Dowlati: Medstar Georgetown University Hospital, Washington, DC. edowlati@gmail.com.