In-vitro Estimation of Non-enzymatic Antioxidants from *Ficusracemosa* (Linn.) and *Caesalpiniabonducella* (Linn.)

Samidha M. Pawaskar¹, Heena Shah²

¹Department of Biochemistry, K. J. Somaiya College of Science & Commerce, Vidyavihar, Mumbai – 400,077, Maharashtra, India.

ABSTRACT

Introduction: Excessive formation of free radicals and reactive oxygen species can have deteriorating effects on the human body as it leads to oxidative stress. Non-enzymatic scavenging systems play a positive role by neutralizing these free radicals and reactive oxygen species. Thus identifying natural and safe sources like plants and herbs becomes necessary.

Aim/Objective: The present study was carried out to determine the non-enzymatic antioxidants of some medicinally important plants like *Ficusracemosa* Linn. And *Caesalpiniabonducella* (Linn.)

Methods: The non-enzymatic antioxidants were extracted from the plant parts like leaves, bark and seeds using different solvents and the non-enzymatic antioxidants like water soluble vitamins (Vitamin C, Thiamine, Riboflavin & Niacin), fat soluble vitamins (Vitamin A & Vitamin E) were estimated using standard methods.

Results: The study revealed that the leaf extract of *Ficusracemosa* Linn. showed better antioxidant activity as compared to *Ficusracemosa* Linn. bark extract. So also, extract of *Caesalpiniabonducella* Linn. seed kernels showed more potential antioxidant levels than the *Caesalpiniabonducella* seed extract.

Conclusion: Current study thus presents new natural sources of antioxidant that can replace the synthetic ones to be used in foods, pharmaceuticals and cosmetics industries.

Key Words: *Ficusracemosa* (Linn.), *Caesalpiniabonducella* (Linn.), Non-enzymatic antioxidants, Plant parts - leaves, Bark, Seeds and kernels

INTRODUCTION

Oxidative stress plays a major role in the development of several chronic and degenerative ailments like cancer, arthritis, aging, autoimmune disorders, cardiovascular and neurodegenerative diseases. One of the mechanism to counteract oxidative stress is production of antioxidants. These are either naturally produced in situ, or externally supplied through foods and/or supplements.¹ Antioxidants do the “mopping up” of free radicals contributing towards the safety of our body from the harmful effect of oxidative stress.² Antioxidants thus act as cell protectors, they bind to these free radicals, converting them into non-damaging compounds and repairing cellular damage.³ There are two major classes of antioxidants i.e., enzymatic and non-enzymatic. The enzymatic antioxidants are produced endogenously which include superoxide dismutase, catalase and glutathione peroxidase etc. The non-enzymatic antioxidants include alpha-tocopherols, carotenoids, ascorbic acid, flavonoids and tannins etc., which are obtained from natural plant sources and form a part of regular diet.⁴ A wide range of antioxidants, both from natural and synthetic origin, have been suggested for use in the treatment of various human diseases.⁵

Ficusracemosa Linn. (Moraceae) or Cluster Fig Tree, also most popularly known as ‘Audumbar’ or ‘Umbar’ in Maharashtra. The tree is usually held sacred and associated with the Hindu deity, “Shri Guru Datta”. The fruits of the tree grow very close to the tree trunk and are called ‘Gular’ in north India. They are eaten as the vegetable by the villagers. The tree also serves as a food plant for the caterpillars. In Indian traditional system of medicine all parts of the tree viz. leaves, fruits, bark, latex, and sap of the root, are reported to be medicinally important.⁶
Caesalpinia bonducella Linn. Commonly called as ‘Karanja’ or ‘Sagargota’ in Maharashtra. It is a large, irregular, very thorny hedging plant usually flowering in June and it fruits in November. Sagargota seeds are very hard, globular, with smooth and shiny surface and grey in colour. Seeds are composed of thick brittle shell with a yellowish white bitter fatty kernel.\(^7\) Plant is reported to have multiple therapeutic properties like antibiotic, antibacterial, anti-anaphylactic and antidiarrhoeal, anti-asthmatic, antiviral, antiamoebic and antiestrogenic, antipyretic, antimelitmic activity.\(^8\)

Researchers are in relentless pursuit for developing newer strategies to increase the overall quality and shelf life of the food products especially by reducing or impeding the oxidative damage. Inclusion of the edible medicinal plant powders with natural antioxidant properties can be used as one of the strategy to delay the oxidation process in biomolecules and hence has great potential as natural preservatives substituting the synthetic one. Many herbs have proven to have natural antioxidants and are being used in the formulation of ayurvedic and modern drug dosage forms.\(^8\)

The present study was thus undertaken with the aim to extract and quantitatively estimate the non-enzymatic antioxidants in Ficus racemosa Linn. (leaves and bark) Linn. And Caesalpinia bonducella Linn. (seeds and kernels)

MATERIALS AND METHODS

Collection of the plant samples:
Leaves and bark sample of *Ficus racemosa* Linn. were collected from Mumbai region. *Caesalpinia bonducella* Linn. seeds were bought from the commercial market for herbal medicine in Mumbai. The leaves, bark and seeds were washed and cleaned. Kernels were separated from the seeds.

Washing, drying and preparing plant powder:
The fresh plant samples were brought to the Biochemistry laboratory of the Somaiya College and were washed thoroughly for two to three times under running tap water and then once with distilled water to remove all the possible impurities like dust, dirt, etc. Then the washed samples were kept in between the filter paper padding to remove the maximum amount of water and moisture and then shade dried till the samples were perfectly dry viz. contained no moisture.

In case of *Caesalpinia bonducella* Linn., kernels were separated from the seeds. Then all the plant samples were transferred to the incubator set at 37\(^\circ\)-40\(^\circ\)C for drying. The samples were kept there for 3-4 days until the samples were completely dried. Then the dried samples were crushed to fine pieces and pulsed in the grinder mixer to fine powder. The fine powder so obtained was sieved and stored in a neatly labelled air-tight container and refrigerated. The samples thus prepared, were used as and when required.

Preparation of the sample for estimation of water soluble vitamins:

Extraction of Thiamine from plant sample\(^9,10\)
2.0gms of finely ground plant sample was weighed accurately into a 100ml conical flask in duplicate. 50ml of 0.1N H\(_2\)SO\(_4\) was slowly added without shaking, stopper the flask and allowed it stand to overnight. Next morning the flask was shaken vigorously and the contents were filtered through Whatman No. 1 filter paper, discarding the first 10-15ml of the filtrate.

Extraction of Riboflavin from plant sample\(^9,10\)
2.0gms of ground plant sample was weighed into a conical flask. 15ml of 0.1N H\(_2\)SO\(_4\) was added to it and mixed. The flask was kept in boiling water bath for 30mins constant shaking after every 5mins. The flask was then allowed to cool down at room temperature. 1ml of 2.5M sodium acetate solution was added and mixed and allowed to stand for at least 1hr. The volume was made to 20ml with distilled water and filtered through Whatman filter paper No.1. The collected filtrate was used for the assay.

Extraction of Niacin from plant sample\(^9,15\)
6.0gms of dried plant sample was weighed in a 500ml conical flask. 40ml of 0.5M H\(_2\)SO\(_4\) was added to it and was autoclaved at 1 bar for 30mins. It was cooled down at R.T. and 50% NaOH was added to adjust pH to 4.5. The volume was made to 50ml with distilled water and filtered through Whatman filter paper No.1. The filtrate was then used for the assay.

Extraction of Vitamin C from plant sample for colorimetrically estimation\(^9,10\)
2.5gms of plant sample was ground either mechanically or using a mortar and pestle in 50.0ml of 4% Oxalic acid. It was then centrifuge or filtered and the filtrate was collected. 10ml aliquot of the filtrate was then transferred to a conical flask to which bromine water was added drop wise with constant stirring. Bromine removes the enolichydrogen atoms in ascorbic acid. When the extract turned orange yellow due to excess of bromine, it was expelled out by blowing in air. The final volume of was made to 25ml with 4% Oxalic acid. Similarly, 10ml of stock ascorbic acid was converted into itsdehydro form by bromination.

Preparation of the sample for estimation of fat soluble vitamins:

Extraction of Retinol from plant sample\(^9,16\)
2gms of the dried plant powder was weighed and was kept in soxhlet extraction in petroleum benzene (40-60) for 2 hrs.
The petroleum benzene was distilled out and the residue was obtained. The residue was reconstituted in 5ml of n-Heptane and used.

Extraction of Tocopherol from plant sample

2gms of the dried plant powder was weighed and kept for soxhlet extraction in petroleum benzene (40-60) for 2 hrs. The petroleum benzene was distilled out and the residue was obtained. The residue was reconstituted in 5ml of ethanol and used.

Estimation of Non-enzymatic Antioxidants

The estimations of the non-enzymatic antioxidants were done as follows -

i) Estimation of Thiamine by Thiochrome method
ii) Estimation of Riboflavin Spectrophotometrically
iii) Estimation of Niacin Spectrophotometrically by Cyanogen bromide method
iv) Estimation of Ascorbic acid (Vitamin C) colorimetrically by DNP method
v) Estimation of Retinol (Vitamin A) colorimetrically by Carr-Price method
vi) Estimation of Tocopherolcolorimetrically(Vitamin E)

RESULTS

The non-enzymatic antioxidants levels were studied from the leaves and bark samples of _Ficus racemosa_ Linn. plant and seed and kernel samples of _Caesalpinia bonducella_ Linn. either by the spectrophotometric method or the colorimetric method methods and all the results are shown in Table 1.

Thiamine content of the _Ficus racemosa_ Linn. leaf extract was found to be 1.52±0.057 gm%w/w which was twice the amount of thiamine content in the _Ficus racemosa_ bark (0.89±0.063 gm% w/w). Riboflavin was found to be equal (~0.02 gm%w/w) in both the leaf and bark samples of _Ficus racemosa_. Linn. Niacin content was found to be the least of all the other non-enzymatic antioxidants of _Ficus racemosa_. Linn. samples tested. Niacin was found to be equal in both the samples of _Ficus racemosa_ Linn. –0.7 X 10⁻³ gm%w/w. The results obtained showed more amount of vitamin C in _Ficus racemosa_. Linn. leaf extract (0.361±0.024 gm% w/w) sample as compared to _Ficus racemosa_. Linn. bark(0.278±0.028 gm% w/w). Retinol content was found to be more in _Ficus racemosa_ leaf sample (0.040±0.054gm%w/w) than the bark sample (0.029±0.048 gm%w/w).

Tocopherol content was observed to be 0.282±0.047gm % w/w in _Ficus racemosa_ Linn. leaf sample and 0.153±0.039 gm %w/w in the bark sample.

Amount of thiamine in the _Caesalpinia bonducella_ Linn. seed Kernels was found to be 1.03±0.051gm%w/w and in _Caesalpinia bonducella_ Linn. seed was 0.85±0.023 gm%w/w. Riboflavin content was high in _Caesalpinia bonducella_ Linn. seed sample 0.153±0.062 gm%w/w; whereas it was only 0.049±0.0028 gm%w/w in the seed kernel sample. Niacin content was found to be the least of all the other non-enzymatic antioxidant of _Caesalpinia bonducella_ Linn. samples tested. Niacin level was more in seed kernels of _Caesalpinia bonducella_ Linn. 2.290±0.069X 10⁻¹gm%w/w and it was 0.899±0.033 X10⁻³ gm%w/w in seed sample. Vitamin C content estimated colorimetrically was found to be 0.488±0.065 gm% w/w in _Caesalpinia bonducella_ Linn. seed sample and 0.806±0.037 gm%w/w in seed kernels. Retinol content was found to be almost same in both the samples (i.e. 0.026±0.032 gm% w/w and 0.029±0.061 gm%w/w respectively). Tocopherol content was found to be more in _Caesalpinia bonducella_ Linn.seed kernels 0.071±0.026gm%w/w than the seed sample 0.047±0.025 gm%w/w.

DISCUSSION

In a report by Kumar et al. 2010, it is reported that the methanol extract of leaves of _Caesalpinia bonducella_ Linn. showed the presence of vitamin C which is a determined factor in controlling and potentiating many aspects of host resistance to cancer. Also, vitamin C can protect cell membranes and lipoprotein particles from oxidative damage by regenerating the antioxidant form of vitamin E. Thus it can be said that vitamin C and E act synergistically in scavenging a wide variety of reactive oxygen species. Similar kind of antioxidant effect may be expected from the seed and seed kernel extracts of _Caesalpinia bonducella_ Linn.

Overall when searched not much data was available on such kind of non-enzymatic antioxidant studies from leaf and bark extract of _Ficus racemosa_ Linn. And seed kernel and seed extract of _Caesalpinia bonducella_ Linn. Hence our study may be considered as the first to report the same and may serve the purpose of reference material for the other researchers in future.

CONCLUSION

Thus, it was observed that _Ficus racemosa_ Linn. (leaf) and _Caesalpinia bonducella_ Linn. (seedkernels) showed good antioxidant activity as compared to _Ficus racemosa_ Linn. (bark) and _Caesalpinia bonducella_ Linn.(seeds) samples. In future, more work on antioxidant content and its mechanism can be aimed to determine the efficacy of these non-enzymatic antioxidants. Current study thus presents new natural sources of antioxidant that can replace the synthetic ones to be used in foods, pharmaceuticals and cosmetics industries.
ACKNOWLEDGEMENT

Authors acknowledge the immense help received from the scholars whose articles are cited and included in references of this manuscript. The authors are also grateful to authors / editors / publishers of all those articles, journals and books from where the literature for this article has been reviewed and discussed.

Source of funding: University of Mumbai

Conflicts of interest: The authors declare no competing interests.

Authors’ Contribution: All the authors of this paper equally contributed towards the experimental work as well as the writing of this paper.

REFERENCES

1. Lien Ai Pham-Huy, Hua He and Chuong Pham-Huy,. Free Radicals, Antioxidants in Disease and Health, Int J Biomed Sci. 2008 June. 4(2); 89–96.

2. Hou JP. Healthy Longevity Techniques: East-West Anti-Aging Strategies. Author House. 2010. Page. 183.

3. Sinha N, Sharma S and Haroon R. Antioxidant Profiling of Leaf Extracts of Murraya koenigii (L.) Spreng (Curry Leaf) in PC-12 Cells Exposed to Neurotoxic Shock. Indian J Agr.Biochem. 2010. 23(2); 91-96.

4. José LQ, Jesús RH, Maurizio B, José M and Ramírez-Tortosa MC. Antioxidant nutrients and Adriamycin toxicity. Toxicology. 2002. 180(1); 79–95.

5. Vijayakumari B, Sumithra S, Sasikala V and Radha SR. Evaluation of enzymatic and non-enzymatic antioxidant potential of Rotula aquatica Lour., BioMedRx, 2013. 1(5);442-444.

6. Kirtikar KR and Basu BD. Indian Medicinal Plants, edited by Blatter E, Caius JF & Mhaskar KS (Latit mohon Basu, Allahabad). 1935. volume 1, 2nd ed, 499.

7. Nadkarni AK. Indian materia medica. Popular Prakashan Bombay. 1954. vol.1: p.229.

8. Nikhil Kumar S, Shikhar V, Anupam KS and Hussain A. An investigation to antioxidant activity of Caesalpinia bonducella seeds. Ann. Pharm. & Pharm. Sci. 2010. 2 (10); 88-91.

9. Pawaskar SM and Sasangan KC. Biochemical and nutritional Analysis of the leaf extract of Aegle marmelos (L.) Correa. Int. JCurr Res Rev., 2017. June, Vol 9, Issue 11.

10. Sadasivam S and Manickam A. Biochemical methods, 2nd Edition, A New Age Publication. 1996.

11. Gowenlock AH, McMurray JR and McLauchlan DM. Varley’s Practical Clinical Biochemistry, Heinemann Medical Books, London. 6th edition, 1988. 603,605, 902.

12. Kimble MS. The photocolorimetric determination of vitamin A andcarotene in human plasma. Jour. Lab. and Clin. Med., 1939. 241055.

13. Kaser M. and Stekol JA. Critical study of the Carr-Price reaction for the determination of carotene and Vitamin A in biological materials. J. Lab. Clin. Med., 1943. 28; 904-909.

14. Baker H& Frank O. Assay of vitamin E in plasma. Clin Vitamins, Wiley, New York. 1968. Pg.172.

15. Sawney SK and Singh R (editors). Introduction to Practical Biochemistry. 1st Reprint. Narosa Publishing House, New Delhi. Pg. 2001. 24, 27, 40, 56, 91, 104-107.

16. Thongchai W and Liawruangrath B. Development of HPLC analysis for the determination of retinol and alpha tocopherol in corn oil nano-emulsion lotion. Int. Food Res J.2016. 23(4); 1367-1371.

17. Sambath Kumar R, Asok Kumar K and N Venkateswara M. Hepatoprotective and antioxidant effects of Caesalpinia bonducella on carbon tetrachloride-induced liver injury in rats. Int Res J Plant Sci. (ISSN: 2141-5447). 2010. Vol. 1(3); 062-068.

Table 1: The non-enzymatic antioxidants levels of Ficus racemosa Linn. plant (leaves and bark) and Caesalpinia bonducella Linn. (seeds and kernels)

Sample	Ficus racemosa Linn.	Caesalpinia Bondocellula Linn. Seed	Caesalpinia Bondocellula Linn. Seed
	Leaves	Bark	
Thiamine	1.52 + 0.057	0.89 + 0.063	0.85 + 0.023
Riboflavin	0.028 + 0.034	0.022 + 0.044	0.153 + 0.062
Niacin	0.723 + 0.042 X 10^-3	0.788 + 0.021 X 10^-3	0.899 + 0.033 X 10^-3
Vit. C	0.361 + 0.024	0.278 + 0.028	0.488 + 0.065
Retinol	0.040 + 0.054	0.029 + 0.048	0.026 + 0.032
Vit. E	0.282 + 0.047	0.153 + 0.039	0.047 + 0.025

Table 1: The non-enzymatic antioxidants levels of Ficus racemosa Linn. plant (leaves and bark) and Caesalpinia bonducella Linn. (seeds and kernels)

Note:
• All reading are expressed in gm% (W/W)
• All values are expressed as mean ± SD for three determinations