Autologous bone marrow cell transplantation in the treatment of HIV patients with compensated cirrhosis

Baochi Liu1†, Mingrong Cheng2†, Xiaodong Chen3†, Lei Li1, Yanhui Si1, Shijia Wang2, Ying Wang3, Yufang Shi3*

1Department of Surgery, Shanghai Public Health Clinical Center; Fudan University, Shanghai 201508, China.

2Department of General Surgery, Jiangqiao Hospital of Jiading District, Jiading Branch of Shanghai First People’s Hospital, Shanghai 201803, China.

3Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.

*Correspondence to: Baochi Liu, Email: liubaochi200227@aliyun.com
Yufang Shi, Email: shiyufang2@gmail.com

†Baochi Liu, Mingrong Cheng, and Xiaodong Chen contributed equally to this study.
Abstract

Liver stem cell therapy is a promising tool to improve decompensated liver cirrhosis (DLC). Especially in patients infected with human immunodeficiency virus (HIV), the condition of the liver may be aggravated by antiretroviral therapy. A total of 21 patients diagnosed with DLC and HIV infection were divided into two groups as follows: those who received (combination therapy group, 14 patients) and those who did not receive (routine therapy group, 7 patients) bone marrow cell transplantation through the portal vein. Two patients died of surgery-related complications in the combination therapy group. The results showed that the survival rate was 85.7% in the combination therapy group after 2 years of follow-up, which was significantly higher than the 14.3% in the conventional therapy group ($P<0.01$). After treatment, the liver function score decreased significantly in the combination therapy group at 1 ($t=4.276, P=0.000$), 3 ($t=9.153, P=0.000$), and 12 ($t=13.536, P=0.000$) months, the levels of albumin were significantly increased, and the total bilirubin level and prothrombin time were significantly reduced or shortened as compared to the routine therapy group ($P<0.05$ or <0.01). The white blood cell count, hemoglobin, platelet count, and CD4+ and CD8+ levels were significantly higher in the combination therapy group at different time points as compared to the routine therapy group ($P<0.05$ or <0.01). In summary, the combination therapy is effective in HIV-infected patients with DLC and useful for the recovery of liver function and cellular immune function but may increase the risk of severe complications after surgery.

Keywords: autologous bone marrow cell transplantation, decompensated liver cirrhosis, human immunodeficiency virus, stem cell
Introduction

 Decompensated liver cirrhosis (DLC) is a stage in the progression of liver cirrhosis. It is associated with functional impairment of liver and portal hypertension. The main causes of liver cirrhosis include hepatitis B virus (HBV) [1, 2], alcohol [3], hepatitis C virus (HCV) [4], and autoimmune liver disease. Stem cell therapy has generated great interest due to an increased incidence of chronic DLC and the shortage of organ donors for liver transplantation [5]. Moreover, DLC has a poor prognosis with elevated short-term mortality, even in steroid-treated patients. Thus, early liver transplantation can be an option for selected patients but is unavailable to the majority of patients [6]. Stem cell-based strategies have been tested as an alternative to organ transplantation. Although anti-fibrotic drugs have been developed, their efficacy on liver disease is limited. The studies on bone marrow cells (BMCs) have facilitated the application of cellular therapeutics. Furthermore, hepatocytes from bone marrow (BM) have been found in mouse and human livers after bone marrow cell transplantation, suggesting that BMCs contribute to liver regeneration [7-10]. Also, the effect of BMCs injected into fibrotic or injured livers has been investigated. However, BMCs must undergo in vitro selection and culture for clinical application. Therefore, a clinical trial using mesenchymal stem cells (MSCs) cannot be started until safety during in vitro manipulation is ensured [11]. Although early studies suggested the transdifferentiation of BMCs or MSCs into hepatocytes, the underlying mechanism remains poorly understood. The condition of the liver may be aggravated by antiretroviral therapy (ART), especially for patients infected with human immunodeficiency virus (HIV), thereby necessitating a feasible treatment. This study enrolled 21 patients who were infected with HIV and developed DLC from April 2010 to June 2016. All patients underwent antiretroviral and liver treatment. Of the 14 patients, 12 underwent splenectomy combined with BMC transplantation through the portal vein. The BMC infusion promoted the reestablishment of the liver and immune system.
Materials and methods

Patient information

A total of 17 male and 4 female patients, aged 26–56 (average: 40.3) years, were recruited in this study. All patients were diagnosed with DLC and HIV and underwent treatment at the Shanghai Public Health Clinical Center, China. Of these, 16 patients developed liver cirrhosis due to HBV infection and 5 due to HCV infection. This study was approved by the Ethics Committee of the Shanghai Public Health Clinical Center, and all subjects provided informed consent before participation in the present study.

Clinical findings

 Decompensated cirrhosis was identified based on the presence of one of the following clinical characteristics: ascites, bleeding varices, encephalopathy, use of spironolactone without alternative indication, or explicit mention of decompensated cirrhosis. The patients were assessed for serum biochemical indexes, including total serum bilirubin (12.9–56.9 µmol/L), white blood cells (WBCs; 2.1–3.35 × 10⁹/L), hemachrome (56.9–125 g/L), thrombocyte (16–10⁶ × 10⁹/L), alanine aminotransferase (26–47 U/L), aspartate aminotransferase (17–65 U/L), CD4+ T lymphocytes (61–303 cells/µL), CD8+ T lymphocytes (174–324 cells/µL), and CD4+/CD8+ (0.27–1.71). Moreover, 17 patients were graded as Child–Pugh–Turcotte class B (a score of 7–9 on a scale of 5–15, with higher values indicating advanced liver disease) and 4 as class C (score ≥10). Among all patients, 16 presented a history of upper gastrointestinal tract hemorrhage.

Therapeutic intervention

All patients underwent routine therapy, including diuresis, liver protection, yellowing, albumin supplementation, prevention of gastrointestinal bleeding, ART regimen (lamivudin 300 mg/day, tenofovir 300 mg/day, and lopinavir 400 mg/day), and liver treatment (sofosbuvir 300 mg/day, for HCV infection). Furthermore, 12 patients from the cohort consisting of 14 underwent splenectomy and autologous BMC transplantation.
through the portal vein and were classified as the combination therapy group. Seven patients who refused splenectomy and received only routine therapy were classified as the routine therapy group because this treatment was carried out only at Shanghai Public Health Clinical Center (Shanghai, China); thus, its efficacy needs to be evaluated.

Splenectomy and autologous BMC transplantation

General anesthesia was administered to all patients. Nodular cirrhosis and enlarged spleen were observed. The patients exhibited 500–3500 mL of ascites. Venous access ports were inserted through the right omental vein and subcutaneously implanted in the abdomen. The spleen and a piece of liver were resected for pathological examination. One week after the surgery, 20 mL BMC was obtained by a puncture at the anterior superior iliac spine, which was then injected into the vein via venous access ports. Eventually, the venous access ports were filled with 5 mL of sterile heparinized saline to prevent the formation of clots. The same protocol was followed for autologous BMC infusion at 1 month and 3 months after the surgery.

Blood biochemical analysis

Before treatment and 1, 3, 12, and 24 months after the treatment, the serum samples obtained from the patients were analyzed using the DA 3500 Discrete Automatic Chemistry Analyzer (Fuji Medical System Co. Ltd, Tokyo, Japan) to evaluate the serum biochemical indexes, including serum prothrombin time, albumin, and total bilirubin. A Sysmex XS-800i Automatic Blood Cell Analyzer (Sysmex Shanghai Ltd, Shanghai, China) was used to evaluate the routine blood tests such as WBC count, hemoglobin, and platelets.

Flow cytometry analysis

Five mL blood sample was collected in ethylenediaminetetraacetic acid (EDTA)-coated tubes. Red blood cells were lysed by adding 5 mL of ammonium chloride-potassium lysis buffer (0.16 M NH₄Cl, 10 mM KHCO₃, 0.13 mM EDTA; pH 7.2) for 5 min on ice, followed by washing two times with phosphate-buffered saline. Single-cell suspensions (1 × 10⁶ cells/sample) were incubated with appropriate antibodies for 45 min at 4 °C. Then, the
cells were washed and detected using a FACS Canto II flow cytometer (BD Biosciences, CA, USA). Data were analyzed using FlowJo software (Tree Star, OR, USA). The following antibodies were purchased from BioLegend (CA, USA): fluorescein isothiocyanate-labeled anti-CD3, PE-labeled anti-CD4, and APC-labeled anti-CD8.

Statistical analysis All patients were followed up for more than 2 years. Descriptive data are expressed as mean ± standard deviation (mean±SD), whereas enumeration data are expressed as a rate. The differences between the samples were analyzed using the rank-sum analysis. Survival analysis was used to compare the survival rates between the two groups. *P*-value <0.05 was considered statistically significant.
Results

Comparison of pre-treatment baseline data between the two groups

The baseline data of the two groups are shown in Table 1. No statistical differences were detected in the age, weight, body mass index, CD4+, CD8+, prothrombin time, albumin, total bilirubin, WBCs, platelet, hemoglobin, and liver function between two groups (P>0.05).

Efficacy of combination BMC transplantation with splenectomy and follow-up

In the combination therapy group consisting of 14 patients, 2 showed intraperitoneal hemorrhage on the day of surgery. The surgical wounds in these patients oozed profusely when the operation was repeated. The bleeding wounds were treated with suture ligation and argon laser knife. Both patients died of abdominal bleeding and liver failure 2 days after the surgery. All other patients were followed up, the appetite and physical strength of the patients improved, and ascites decreased or disappeared (Figure 1A (a-b)). After 4 weeks, the serum biochemical indexes improved gradually and returned to normal. After 12 weeks, the Child–Pugh grade reached grade A. The HIV, HBV, and HCV viral loads were not detected. In the routine therapy group consisting of 7 patients, 6 with nonsurgical treatment died in 2 years due to gastrointestinal bleeding and liver failure, and 1 died of liver failure in the third year.

As shown in Figure 1B, the survival rate was 85.7% in the combination therapy group after 2 years of follow-up, which was significantly higher than 14.3% in the conventional therapy group (P=0.003).

Effect of combination BMC transplantation with splenectomy on the liver synthesis and secretion

As shown in Table 2 and Figure 2A, no significant difference was noted in the liver function scores between the two groups before treatment (t=1.577, P=0.133). However, after treatment, the liver function score in the routine therapy group increased at significantly 1 (t=0.522, P=0.611), 3 (t=1.789, P=0.099), and 12 (t=4.919, P=0.000) months and that in the combination therapy group significantly decreased at 1 (t=4.707, P=0.000), 3 (t=7.216, P=0.000), and 12 (t=7.505, P=0.000) months as compared to that before the treatment. In addition, the liver function score in the combination therapy group was significantly lower than that in the routine therapy group at 1 (t=4.276, P=0.000), 3 (t=9.153, P=0.000), and 12 (t=13.536, P=0.000) months.
In the liver synthesis function, the prothrombin time ($t=0.696$, $P=0.495$) and albumin ($t=0.743$, $P=0.467$) level before treatment did not differ significantly between the two groups. After treatment, the prothrombin time decreased significantly, while the albumin level increased significantly at 1 ($t=6.279$, $P=0.000$; $t=1.328$, $P=0.196$), 3 ($t=8.608$, $P=0.000$; $t=2.740$, $P=0.011$), and 12 ($t=11.144$, $P=0.000$; $t=4.523$, $P=0.000$) months, respectively as compared to those before the treatment. Moreover, the prothrombin time also decreased significantly and the albumin level increased significantly at 1 ($t=6.692$, $P=0.000$; $t=2.853$, $P=0.011$), 3 ($t=10.379$, $P=0.000$; $t=5.185$, $P=0.000$), and 12 ($t=15.583$, $P=0.000$; $t=8.884$, $P=0.000$) months, respectively that in the routine therapy group (Tables 3 and 4 and Figures 2B and 2C).

As shown in Table 5 and Figure 2D, the total bilirubin levels in the liver secretion function were not significantly different between the two groups before the treatment ($t=1.612$, $P=0.124$). However, after the treatment, the levels decreased significantly in the combination therapy group at 1 ($t=0.013$, $P=0.990$), 3 ($t=0.147$, $P=0.885$), and 12 ($t=3.263$, $P=0.007$) months as compared to those before the treatment. The levels of total bilirubin in the combination therapy group were significantly lower as compared to those in the routine therapy group at 12 months ($t=3.758$, $P=0.001$).

Effect of combination BMC transplantation with splenectomy on differential blood count

As shown in Tables 6 to 8 and Figures 3A–3C, no significant difference was detected in the WBC counts ($t=0.233$, $P=0.819$), hemoglobin levels ($t=0.321$, $P=0.752$), and platelet counts ($t=0.520$, $P=0.609$) between the two groups before the treatment. After 1, 3, and 12 months of treatment, the WBC counts ($t_{1m}=5.946$, $P_{1m}=0.000$; $t_{3m}=9.093$, $P_{3m}=0.000$; $t_{12m}=8.921$, $P_{12m}=0.000$, respectively), hemoglobin levels ($t_{1m}=1.684$, $P_{1m}=0.104$; $t_{3m}=3.414$, $P_{3m}=0.002$; $t_{12m}=4.235$, $P_{12m}=0.000$, respectively), and platelet counts ($t_{1m}=7.247$, $P_{1m}=0.000$; $t_{3m}=9.155$, $P_{3m}=0.000$; $t_{12m}=7.912$, $P_{12m}=0.000$, respectively) were significantly higher in the combination therapy group than those before the treatment. Also, the WBC counts ($t_{1m}=4.043$, $P_{1m}=0.001$; $t_{3m}=6.712$, $P_{3m}=0.000$; $t_{12m}=7.570$, $P_{12m}=0.000$, respectively), hemoglobin levels ($t_{1m}=1.222$, $P_{1m}=0.237$; $t_{3m}=2.412$, $P_{3m}=0.026$; $t_{12m}=3.687$, $P_{12m}=0.002$, respectively), and platelet counts ($t_{1m}=4.979$, $P_{1m}=0.000$; $t_{3m}=6.255$, $P_{3m}=0.000$; $t_{12m}=5.460$, $P_{12m}=0.000$, respectively) were increased as compared to those in the routine therapy treatment group.

Effect of combination BMC transplantation with splenectomy on the serum levels of CD4+ and CD8+ in vivo

No significant difference was detected in the levels of CD4+ and CD8+ between the two
groups before the treatment. After 1, 2, and 12 months of treatment, the levels of CD4+ (t_{1m}=2.630, P_{1m}=0.014; t_{3m}=4.285, P_{3m}=0.000; t_{12m}=5.061, P_{12m}=0.000, respectively) and CD8+ (t_{1m}=3.356, P_{1m}=0.002; t_{3m}=4.212, P_{3m}=0.000; t_{12m}=4.814, P_{12m}=0.000, respectively) were significantly higher those before the treatment in the combination therapy group. Also, the levels of CD4+ (t_{1m}=2.385, P_{1m}=0.028; t_{3m}=3.335, P_{3m}=0.004; t_{12m}=4.090, P_{12m}=0.001, respectively) and CD8+ (t_{1m}=2.778, P_{1m}=0.012; t_{3m}=3.077, P_{3m}=0.006; t_{12m}=3.590, P_{12m}=0.002, respectively) in the combination therapy group were significantly higher than those in the routine therapy group (Tables 9 and 10, Figure 4A and 4B).
Discussion

HBV and HCV infections may lead to DLC, which is a critical condition with high morbidity and mortality and without adequate treatment. However, for HIV-infected patients, the condition of the liver might aid the immune reconstitution with ART that could be otherwise damaged. Therefore, no curative treatment for HIV-infected patients with DLC leads to the death of patients from liver failure or opportunistic infection [12]. Hitherto, liver transplantation is the most effective treatment for DLC, which also has several limitations, including the shortage of organ donors and high medical expenses. Therefore, stem cell therapy is an alternative option for liver transplantation [12]. Recent evidence showed that stem cell therapy attenuated the clinical conditions of patients with cirrhosis, and improved the liver functions. Stem cells possess the ability of symmetrical self-renewal and pluripotency. Somatic stem cells harbored transgerm layer differentiation potential for migration to the damaged areas; these cells later developed into tissue-committed stem cells [13-15]. Numerous cytokines and growth factors are secreted by BMCs, which promote their migration into injured tissue and facilitate repair.

Several studies demonstrated that a shortened telomere in the liver cells results in the failure of cell replication during the progress of liver cirrhosis. In mammals, the lost liver cells can be replaced by the remaining hepatocytes. However, sustained injury elicits hepatocyte senescence, which in turn, activates liver progenitor cells, known as oval cells. These oval cells have been reported to upregulate BM-hematopoietic stem cells (BM-HSCs). Both hepatocytes and cholangiocytes can be derived from BM-HSCs. Cell fusion is a critical mechanism during this process. Additionally, BM-HSCs may also promote the proliferation of endogenous hepatocytes to repair liver injury [16, 17]. Therefore, stem cell transplantation has been demonstrated to be effective and safe in the treatment of several liver complications, such as post-hepatic cirrhosis, autoimmune liver disease, and alcoholic liver cirrhosis. The function of the liver can be completely restored after stem cell transplantation for patients with alcoholic liver cirrhosis. However, virus-infected patients may need continuous transplantation to replace the damaged stem cells.
Recently, for autologous BMC transplantation, 100–200 mL of autologous bone marrow was needed to isolate MSCs by gradient centrifugation. Then, the isolated MSCs were injected into the liver via a hepatic artery [18] that supplies <33% of the liver blood within a short circulating time. Moreover, the hepatic portal vein is optimal for stem cell transplantation because of its long circulating time and an extended occupation in the liver. Additionally, high levels of hepatotropic cytokines and nutrients also benefit the maintenance of stem cells. Only a few side effects, such as embolism, are observed owing to the small diameter of BMCs. The present study demonstrated that the survival time in the combination therapy group was significantly longer than that in the routine therapy treatment group. Whether stem cells are effective in treating DLC is controversial. A meta-analysis showed that umbilical cord hepatocytes improve the liver function, relieve clinical symptoms, and improve the quality of life in patients with DLC as compared to the traditional supportive care [19]. Another meta-analysis found that tissue-derived stem cell treatment improves the liver function without complications; however, no difference is detected in the liver function and survival as compared to routine therapy [19]. A randomized controlled study in 2018 found that granulocyte colony-stimulating factor with or without hemopoietic stem-cell infusion did not improve liver dysfunction or fibrosis and might be associated with increased frequency of adverse events as compared to routine treatment [21]. The current study found that splenectomy combined with BMC transplantation through the portal vein not only improves the liver function but also improves the 2-year survival rate. Whether or not splenectomy is valuable for the body’s immune reconstruction needs further investigation. Therefore, combination BMC transplantation with splenectomy is an effective technique for the infusion and growth of stem cells in the liver.

BM contains MSCs, HSCs, vascular progenitor cells, many precursor cells, and cytokines. Previous studies demonstrated that pulmonary embolism might occur in patients with multiple fractures due to the infiltration of BM into the venous system [22, 23]. However, this embolism might be caused by the massive release of tissue factors and adipocytes from the sites of fracture. The capillary network between the hepatic portal vein and
hepatic vein can eliminate components such as adipocytes, avoiding the occurrence of embolism during BMC transplantation. The present in vivo study did not detect any fat embolism in the hepatic portal venous system and the lung after the infusion of autologous BMCS at different time points. Moreover, the results demonstrated that patients who underwent autologous BMC transplantation combined with splenectomy exhibited normalized WBCs and platelet counts, elimination of ascites, and restored liver function. All patients were classified as Child–Pugh class A, suggesting that BMC infusion improve liver regeneration.

Three months after splenectomy and autologous BMC infusion, the number of CD4+ T lymphocytes was >300 cells/µL in the patients with no side effects. The liver functions were restored in 12 with no abnormality in the differential blood count. The CD4+ T lymphocytes of these patients were stabilized at >500 cells/µL. Splenectomy is known to avoid spleen-induced damage of various blood cells, leading to rapid repair of WBCs, red blood cells, and platelets. BMCS drive the localization, differentiation, and proliferation of liver-specific cells to renew the liver function [24]. However, CD4+ T lymphocytes are commonly developed in the thymus from precursor T lineage cells migrated from the BM. Then, the mature CD4+ T cells are released into peripheral blood [25]. The application of ART in HIV-infected patients helps to rebuild the immune system with an increased number of CD4+ T cells. In elderly patients, the number of CD4+ T cells increases slowly due to the involution of thymus. This study demonstrated that the number of CD4+ T cells increased rapidly after autologous BMC transplantation in the 12 HIV-infected patients with liver cirrhosis, which was faster in the younger patients as compared to the elderly. The precursor T lineage cells derived from the infused BMC were implicated as a critical tool for treating HIV-infected patients. Therefore, splenectomy and autologous BMC infusion promote cellular immunity in patients with HIV infection and liver cirrhosis.
Conclusions

Splenectomy, combined with autologous BMC infusion through the portal vein, is beneficial to HIV-infected patients with DLC. It promotes the recovery of liver function and cellular immune function but may increase the risk of severe complications after the surgery.

Acknowledgment

We would like to thank the Chinese Academy of Sciences Experimental Platform for providing technological support.

Funding

This work was supported by Shenkang Hospital Development Center (SHDC12016129).

Availability of data and material

All data generated and/or analyzed in this study are included in this manuscript.

Authors’ contributions

Baochi Liu conceived and designed the experiments. Yufang Shi and Xiaodong Chen performed these experiments and analyzed the data. Mingrong Cheng, Lei Li, Shijia Wang, Ying Wang, and Yanhui Si participated in the experiments. All authors read and approved the final manuscript.

Conflict of interest

The authors have no competing interests to declare.

References:

1. Woo HY, Choi JY, Yoon SK, Suh DJ, Paik SW, Han KH, Um SH, Kim BI, Lee HJ, Cho M, et al: Rescue therapy with adefovir in decompensated liver cirrhosis patients with lamivudine-resistant hepatitis B virus. Clin Mol Hepatol 2014, 20:168-176.

2. Peng CY, Chien RN, Liaw YF: Hepatitis B virus-related decompensated liver cirrhosis: benefits of antiviral therapy. J Hepatol 2012, 57:442-450.
3. Caputo F, Bernardi M, Zoli G: Efficacy and safety of gamma-hydroxybutyrate in treating alcohol withdrawal syndrome in an alcohol-dependent inpatient with decompensated liver cirrhosis: a case report. *J Clin Psychopharmacol* 2011, 31:140-141.

4. Yesmembetov K, Ashinkhanova A, Kaliaskarova K: First Case in Kazakhstan of Successful Therapy With 2 Consecutive Direct-Acting Antiviral Regimens in a Patient with Hepatitis C Virus-Induced Decompensated Liver Cirrhosis on a Liver Transplant Wait List. *Exp Clin Transplant* 2016, 14:112-113.

5. Pan XN, Zheng LQ, Lai XH: Bone marrow-derived mesenchymal stem cell therapy for decompensated liver cirrhosis: a meta-analysis. *World J Gastroenterol* 2014, 20:14051-14057.

6. Kaido T, Uemoto S: Current status and issues of liver transplantation for decompensated liver cirrhosis. *Nihon Shokakibyo Gakkai Zasshi* 2017, 114:35-42.

7. Zhang Z, Lin H, Shi M, Xu R, Fu J, Lv J, Chen L, Lv S, Li Y, Yu S, et al: Human umbilical cord mesenchymal stem cells improve liver function and ascites in decompensated liver cirrhosis patients. *J Gastroenterol Hepatol* 2012, 27 Suppl 2:112-120.

8. Liu B, Chen X, Wang Y, Shi Y: Curative effect of hepatic portal venous administration of autologous bone marrow in AIDS patients with decompensated liver cirrhosis. *Cell Death Dis* 2013, 4:e739.

9. Elmahdy NA, Sokar SS, Salem ML, Sarhan NI, Abou-Elela SH: Anti-fibrotic potential of human umbilical cord mononuclear cells and mouse bone marrow cells in CCI4-induced liver fibrosis in mice. *Biomed Pharmacother* 2017, 89:1378-1386.

10. Wang M, Zhang X, Xiong XI, Yang Z, Li P, Wang J, Sun YU, Yang Z, Hofmann RM: Bone Marrow Mesenchymal Stem Cells Reverse Liver Damage in a Carbon Tetrachloride-induced Mouse Model of Chronic Liver Injury. *In Vivo* 2016, 30:187-193.

11. Zhang Z, Lin H, Shi M, Xu R, Fu J, Lv J, Chen L, Lv S, Li Y, Yu S, et al: Human umbilical cord mesenchymal stem cells improve liver function and ascites in decompensated liver cirrhosis patients. *J Gastroenterol Hepatol* 2012, 27 Suppl 2:112-120.

12. Tuma P, Medrano J, Resino S, Vispo E, Madejon A, Sanchez-Piedra C, Rivas P, Labarga P, Martin-Carbonero L, Barreiro P, Soriano V: Incidence of liver cirrhosis in HIV-infected patients with chronic hepatitis B or C in the era of highly active antiretroviral therapy. *Antivir Ther* 2010, 15:881-886.

13. Dave M, Mehta K, Luther J, Baruah A, Dietz AB, Faubion WJ: Mesenchymal Stem Cell Therapy for Inflammatory Bowel Disease: A Systematic Review and Meta-analysis. *Inflamm Bowel Dis* 2015, 21:2696-2707.

14. Levine P, McDaniell K, Francis H, Kennedy L, Alpini G, Meng F: Molecular mechanisms of stem cell therapy in alcoholic liver disease. *Dig Liver Dis* 2014, 46:391-397.

15. Perez LS, Otero HJ: Advances in stem cell therapy. *Adv Exp Med Biol* 2012, 741:290-313.

16. Ismail A, Fouad O, Abdelnasser A, Chowdhury A, Selim A: Stem cell therapy improves the outcome of liver resection in cirrhotics. *J Gastrointest Cancer* 2010, 41:17-23.

17. Hull M, Shafran S, Wong A, Tseng A, Giguerre P, Barrett L, Haider S, Conway B, Klein M, Cooper C: CIHR Canadian HIV Trials Network Coinfection and Concurrent Diseases Core Research Group: 2016 Updated Canadian HIV/Hepatitis C Adult Guidelines for Management and Treatment. *Can J Infect Dis Microbiol* 2016, 2016:4385643.

18. Kim JK, Kim SJ, Kim Y, Chung YE, Park YN, Kim HO, Kim JS, Park MS, Sakaida I, Kim DY, et al: Long-Term Follow-Up of Patients After Autologous Bone Marrow Cell Infusion for
Decompensated Liver Cirrhosis. *Cell Transplant* 2017, 26:1059-1066.

19. Sang W, Lv B, Li K, Lu Y: Therapeutic efficacy and safety of umbilical cord mesenchymal stem cell transplantation for liver cirrhosis in Chinese population: A meta-analysis. *Clin Res Hepatol Gastroenterol* 2018, 42:193-204.

20. Qi X, Guo X, Su C: Clinical outcomes of the transplantation of stem cells from various human tissue sources in the management of liver cirrhosis: a systematic review and meta-analysis. *Curr Stem Cell Res Ther* 2015, 10:166-180.

21. Newsome PN, Fox R, King AL, Barton D, Than NN, Moore J, Corbett C, Townsend S, Thomas J, Guo K, et al: Granulocyte colony-stimulating factor and autologous CD133-positive stem-cell therapy in liver cirrhosis (REALISTIC): an open-label, randomised, controlled phase 2 trial. *Lancet Gastroenterol Hepatol* 2018, 3:25-36.

22. D'Avola D, Fernandez-Ruiz V, Carmona-Torre F, Mendez M, Perez-Calvo J, Prosper F, Andreu E, Herrero JI, Inarrairaegui M, Fuertes C, et al: Phase 1-2 pilot clinical trial in patients with decompensated liver cirrhosis treated with bone marrow-derived endothelial progenitor cells. *Transl Res* 2016.

23. Huang M, Feng Z, Ji D, Cao Y, Shi X, Chen P, Wang P, Tang M, Liu K: Use of a transjugular intrahepatic portosystemic shunt combined with autologous bone marrow cell infusion in patients with decompensated liver cirrhosis: an exploratory study. *Cytotherapy* 2014, 16:1575-1583.

24. Spahr L, Chalandon Y, Terraz S, Kindler V, Rubbia-Brandt L, Frossard JL, Breguet R, Lanthier N, Farina A, Passweg J, et al: Autologous bone marrow mononuclear cell transplantation in patients with decompensated alcoholic liver disease: a randomized controlled trial. *Plos One* 2013, 8:e53719.

25. Guo CH, Han LX, Wan MR, Deng GJ, Gan JH: Immunomodulatory effect of bone marrow mesenchymal stem cells on T lymphocytes in patients with decompensated liver cirrhosis. *Genet Mol Res* 2015, 14:7039-7046.
Table 1 Comparison of baseline parameters before the treatment in both groups (mean ±SD)

Groups	Age (years)	Weight (kg)	Body mass index (kg/m²)	CD4+ (cells/µL)	CD8+ (cells/µL)	Prothrombin time (s)	Albumin (g/L)	Total bilirubin (g/L)	White blood cells (10^9/L)	Platelets (10^9/L)	Hemoglobin (g/L)	Liver function (score)
Combination therapy	40.33 ±10.44	62.35 ±13.62	25.67 ±9.64	239.9 ±2±137	314.8 ±3±168	18.55 ±1.41	33.28 ±3±78	25.92 ±17±87	2.53 ±1.17	72.58 ±65.12	87.92 ±24.46	8.00 ±1.13
Routine therapy	45.43 ±7.65	64.87 ±17.68	27.93 ±11.67	184.7 ±1±104	265.5 ±7±131	18.14 ±0.86	32.09 ±2±72	17.33 ±6.25	2.67 ±1.50	89.43 ±79.52	91.57 ±25.00	7.29 ±0.49
t	1.122	0.362	0.473	0.918	0.663	0.687	0.731	1.514	0.224	0.502	0.310	1.577
P	0.278	0.721	0.642	0.372	0.516	0.501	0.475	0.151	0.825	0.622	0.762	0.132
Table 2. Liver function score before and after the treatment in different groups at various time points

Patient number	Combination therapy	Routine therapy				
	Age (years)	Before treatment	After treatment (months)	Age (years)	Before treatment	After treatment (months)
1	56	8	1 3 12 24	54	8	1 3 12 24
2	36	8	1 3 12 24	38	8	1 3 12 24
3	32	9	1 3 12 24	49	7	1 3 12 24
4	27	7	1 3 12 24	36	7	1 3 12 24
5	41	10	1 3 12 24	54	7	1 3 12 24
6	48	8	1 3 12 24	48	7	1 3 12 24
7	35	8	1 3 12 24	39	7	1 3 12 24
8	39	7	1 3 12 24			
9	26	7	1 3 12 24			
10	54	10	1 3 12 24			
11	54	7	1 3 12 24			
12	36	7	1 3 12 24			
Table 3. Prothrombin time (s) before and after the treatment in different groups at various time points

Patient number	Combination therapy	Routine therapy										
	Age (years)	Before treatment	After treatment (months)	Age (years)	Before treatment	After treatment (months)						
1	56	17	15.2	14	14.2	13.6	54	17	18.1	17.4	20.2	Death
2	36	19.1	14.8	13.6	14	14.1	38	18.4	18.9	19.2	18.4	Death
3	32	17.9	16	14.4	13.8	14.2	49	18.1	18.4	18.1	19.6	Death
4	27	18.3	14.1	14.6	14.2	14.1	36	17.8	17.9	19.6	19.8	Death
5	41	22.1	17.9	16.2	14.4	14.6	54	19.6	19.8	20.1	17.8	18.6
6	48	19.1	16	15.2	14.9	14.7	48	17.4	18.9	19.4	21.2	Death
7	35	19.1	14.6	14.3	14.1	14.1	39	18.7	18.4	19.6	18.6	Death
8	39	17.1	15.8	14.9	14.2	14.3						
9	26	17.6	14.6	14	14	13.8						
10	54	19.6	17.2	16.4	14.1	14.1						
11	54	17.4	15.3	15.1	14.8	14.8						
12	36	18.3	14.6	14.1	14.2	14.2						
Table 4. Albumin levels (g/L) before and after the treatment in different groups at various time points

Patient number	Combination therapy	Routine therapy				
	Age (years)	Before treatment	After treatment (months)	Age (years)	Before treatment	After treatment (months)
1	56	30.8	34.1 34.6 38.6 40.1	54	30.2	30.8 30.6 28.8
2	36	33.5	35.6 36.8 38.8 38.9	38	32	31.6 30.2 31.6
3	32	27.4	38.2 37.9 38.1 38.8	49	34.6	32.8 32.1 29.8
4	27	36.3	36.8 38.6 39.6 41.1	36	31.8	32.6 31.2 31.7
5	41	31.3	28.6 34.2 38.2 38.1	54	29.6	30.9 29.1 31.2 30.6
6	48	36.2	34.8 34.6 34.8 34.1	48	36.8	34.6 34.9 32.8
7	35	37	39.4 36.3 39.1 41.2	39	29.6	31.2 29.8 29.6
8	39	34.1	38.4 39.2 39.4 40.2			
9	26	36.4	33.9 37.3 40	26	36.4	33.9 37.3 40
10	54	28.5	30.9 31.6 34.2 34.2	54	38.8	39.1 39.8 41.2 41.2
11	54	38.8	39.1 39.8 41.2 41.2			
12	36	29.1	31.5 37.9 39.8 39.8			
Table 5. Total bilirubin levels (g/L) before and after the treatment in different groups at various time points

Patient number	Combination therapy	Routine therapy									
	Age	Before treatment	After treatment (months)	Age	Before treatment	After treatment (months)					
	(years)	1	3	12	24	1	3	12	24		
1	56	12.9	13.6	16.4	16.1	15.2	54	12.9	13.1	12.9	26.8
2	36	48.2	38.6	31.6	28.4	26.4	38	20.8	22.1	23.3	31.6
3	32	56.9	38.9	32.4	26.8	31.2	49	19.2	18.4	19.8	29.4
4	27	16.7	18.9	18.1	17.9	16.6	36	13.5	13.8	14.2	21.8
5	41	57.5	65.5	42.6	31.5	37.5	54	14.7	13.8	14.6	22.1
6	48	10.5	10.0	9.6	7.8	6.1	48	11.1	11.9	12.6	23.8
7	35	21.8	19.2	8.5	17.0	11.2	39	29.1	27.9	27.2	29.4
8	39	19.2	16.4	14.2	14.4	10.6	39	29.1	27.9	27.2	29.4
9	26	13.5	5.8	6.1	6.1	6.8	39	29.1	27.9	27.2	29.4
10	54	14.7	11.4	11.2	10.6	10.8	39	29.1	27.9	27.2	29.4
11	54	11.1	10.8	4.9	5.8	5.9	39	29.1	27.9	27.2	29.4
12	36	28	7.6	8.2	6.8	6.8	39	29.1	27.9	27.2	29.4
Table 6. White blood cell count ($\times 10^9$/L) before and after the treatment in different groups at various time points

Number	Combination therapy	Routine therapy	Age (years)	Before treatment	After treatment (months)	Age (years)	Before treatment	After treatment (months)
				Before treatment	After treatment (months)		Before treatment	After treatment (months)
1	56	2.1	1	6.6	5.4	5.1	6.2	Death
2	36	1.9	3	7.6	6.6	6.4	5.4	Death
3	32	2.1	12	3.9	5.4	5.8	5.6	Death
4	27	2.0	24	8.9	7.1	6.9	7.7	Death
5	41	2.5	1	11.4	8.6	7.6	6.9	Death
6	48	2.6	3	6.8	6.5	6.3	6.8	Death
7	35	3.4	5	5.1	7.4	7.9	6.8	Death
8	39	5.6	9	5.4	6.4	7.2	6.8	
9	26	1.1	10	8.5	6.6	6.3	5.8	
10	54	2.8	11	4.0	4.9	5.0	4.9	
11	54	3.0	12	5.2	5.5	5.1	5.3	
12	36	1.3		5.1	5.7	5.2	5.2	
Table 7. Platelet count ($\times 10^9$/L) before and after the treatment in different groups at various time points

Number	Combination therapy				Routine therapy			
Age (years)	Before treatment	After treatment (months)			Age (years)	Before treatment	After treatment (months)	
1	56	36	306 286 255 268		54	35	36 38 32	Death
2	36	27	296 326 284 246		38	16	17 18 16	Death
3	32	101	412 346 246 289		49	133	128 131 98	Death
4	27	56	419 427 310 176		36	36	38 34 36	Death
5	41	28	177 286 288 263		54	235	232 241 221	218
6	48	32	177 196 208 212		48	128	131 142 182	Death
7	35	16	153 187 95 142		39	43	41 42 38	Death
8	39	133	312 342 286 268					
9	26	36	258 308 286 268					
10	54	235	248 269 248 242					
11	54	128	296 289 292 266					
12	36	43	290 370 298 274					
Table 8. Hemoglobin levels (g/L) before and after the treatment in different groups at various time points

Number	Combination therapy	Routine therapy				
	Age (years)	Before treatment	After treatment (months)	Age (years)	Before treatment	After treatment (months)
1	56	107	109 114 126 132	54	107	108 104 98 Death
2	36	89	103 129 132 112	38	125	119 128 118 Death
3	32	63	89 121 131 134	49	60	62 69 86 Death
4	27	55	94 118 121 152	36	115	114 118 106 Death
5	41	87	109 112 118 143	54	84	78 89 92 89
6	48	120	129 119 121 105	48	86	91 84 88 Death
7	35	125	130 119 157 152	39	64	59 69 72 Death
8	39	60	88 96 112 121	48	116	121
9	26	115	103 114 116 121	54	84	68 92 96 102
10	54	84	68 92 96 102	54	86	91 94 98 106
11	54	86	91 94 98 106	36	64	104 128 124 128
12	36	64	104 128 124 128	54	116	121
Table 9. Levels of CD4+ (cells/µL) before and after the treatment in different groups at various time points

Patient number	Combination therapy	Routine therapy				
	Age (years)	Before treatment	After treatment (months)	Age (years)	Before treatment	After treatment (months)
1	56	61	81 269 341 512	54	58	56 61 68 Death
2	36	80	120 366 519 541	38	86	94 80 90 Death
3	32	130	244 411 612 636	49	210	240 238 238 Death
4	27	265	289 999 1112 1300	36	118	128 146 146 Death
5	41	141	235 326 476 467	54	349	368 398 366 326
6	48	167	481 496 466 492	48	206	198 228 228 Death
7	35	303	864 1087 772 802	39	266	265 289 289 Death
8	39	491	768 1127 982 964	54	387	357 574 546 552
9	26	157	524 642 395 432	357	574	546 552
10	54	387	357 574 546 552	384	709	698 686 664
11	54	384	709 698 686 664	313	895	1487 1268 1216
12	36	313	895 1487 1268 1216	36	86	1127 982 964
Table 10. Levels of CD8+ (cells/µL) before and after the treatment in different groups at different time points

Patient number	Combination therapy	Routine therapy				
	Age (years)	Before treatment	After treatment (months)	Age (years)	Before treatment	After treatment (months)
1	56	228	318	368	512	825
2	36	529	621	686	648	796
3	32	256	362	418	478	639
4	27	324	649	1886	1892	2501
5	41	312	462	542	968	999
6	48	178	962	986	946	874
7	35	174	269	1486	1828	1648
8	39	680	826	2327	1876	1768
9	26	183	1179	1783	1215	1189
10	54	476	362	727	646	668
11	54	319	570	612	616	646
12	36	119	696	993	876	886
Figure legends

Figure 1. Computed tomography and survival analysis after 2 years of follow-up. (A) Computed tomography before and after treatment.

(a) The liver was obviously atrophic with abundant ascites in the abdominal cavity and enlarged spleen.

(b) The liver size increased significantly and the ascites almost disappeared after 2 years of follow-up.

(B) Comparison of survival analysis after 2 years of follow-up.

Compared to the routine therapy group, *P<0.05 and **P<0.01.

Figure 2. Effect of BMC transplantation on liver synthesis and secretion.

(A) The liver function score before and after the treatment in different groups at different time points.

(B) The prothrombin time before and after the treatment in different groups at different time points.

(C) The albumin levels before and after the treatment in different groups at different time points.

(D) The total bilirubin levels before and after the treatment in different groups at different time points.

Compared to the routine therapy group, *P<0.05 and **P<0.01.

Figure 3. Effect of BMC transplantation on differential blood count.

(A) The WBC counts before and after the treatment in different groups at different time points.

(B) The platelet counts before and after the treatment in different groups at different time points.

(C) The hemoglobin levels before and after the treatment in different groups at different time points.
Compared to the routine therapy group, \(^* P < 0.05 \) and \(^{**} P < 0.01 \).

Figure 4. Effect of BMC transplantation on the serum levels of CD4+ and CD8+ in vivo.

(A) The levels of CD4+ before and after the treatment in different groups at different time points.

(B) The levels of CD8+ before and after the treatment in different groups at different time points.

Compared to the routine therapy group, \(^* P < 0.05 \) and \(^{**} P < 0.01 \).
Figure 1.
Figure 2.
Figure 3.
Figure 4.
