Assessing sensitivity and persistence of updated initial conditions through Particle filter and EnKF for streamflow forecasting

G. Piazzi, G. Thirel, C. Perrin, O. Delaigue

HYCAR Research Unit

https://webgr.inrae.fr/
Table of contents

1. Introduction
2. Forecasting system
3. Methodology
4. Results
5. Conclusions & perspectives
6. References
Table of contents

1 Introduction

2 Forecasting system

3 Methodology

4 Results

5 Conclusions & perspectives

6 References
Main goals

Skillful streamflow forecasts provide key support to several water-related applications. Because of the critical impact of initial conditions (ICs) on forecast accuracy, data assimilation (DA) can be performed to improve their estimation.

Assessment of DA-based forecast ICs

- sensitivity to several sources of uncertainty
- efficiency of the update of different model states and parameters

Comparison between EnKF and Particle filter

- forecasting accuracy
- temporal persistence of the updating effect (up to 10 days)
Table of contents

1 Introduction

2 Forecasting system

3 Methodology

4 Results

5 Conclusions & perspectives

6 References
Assessing sensitivity and persistence of updated initial conditions through Particle filter and EnKF for streamflow forecasting

Hydrological model

GR5J is a daily lumped conceptual model relying on 5 free parameters ($X_1, ..., X_5$) (Le Moine, 2008).

GR5J was calibrated at 232 watersheds in France over the analysis period 2006–2011.

$\text{KGE} > 0.85$ for 65% of watersheds
Assessing sensitivity and persistence of updated initial conditions through Particle filter and EnKF for streamflow forecasting

DA schemes

Two sequential ensemble-based DA techniques are tested:
1. Ensemble Kalman filter (EnKF)
2. Sequential importance resampling particle filter (SIR-PF).

Daily discharge measurements at watershed outlets (Y_t) are assimilated. The uncertainty in observations is assessed as a function of the streamflow rate (Weerts and El Serafy, 2006; Thirel et al., 2010).

EnKF

\[
K_t = P_t H^T (HP_t H^T + R)^{-1}
\]

\[
x_{t,i}^a = x_{t,i}^b + K_t [Y_{t,i} - H[x_t^b]]
\]

SIR-PF

Importance weights using
likelihood function
Resampling

\[
Y_t
\]
Table of contents

1. Introduction
2. Forecasting system
3. Methodology
4. Results
5. Conclusions & perspectives
6. References
Sources of uncertainty

Meteorological forcings
- Potential evapotranspiration (E)
- Precipitation (P)

Model state variables
- Production store level (S)
- Routing store level (R)
- Unit hydrograph (UH)

Parameters
- Capacity of production store (X_1)
- Capacity of routing store (X_3)
Assessing sensitivity and persistence of updated initial conditions through Particle filter and EnKF for streamflow forecasting

Methodology

Uncertainty in meteorological forcings

Meteorological forcings

- Potential evapotranspiration (E)
- Precipitation (P)

Probabilistic meteorological forecasts are generated by stochastically perturbing the SAFRAN meteorological reanalysis with multiplicative stochastic noise (Clark et al., 2008).

Model state variables

- Production store level (S)
- Routing store level (R)
- Unit hydrograph (UH)

Parameters

- Capacity of production store (X₁)
- Capacity of routing store (X₃)
Assessing sensitivity and persistence of updated initial conditions through Particle filter and EnKF for streamflow forecasting

Methodology

Uncertainty in model states

Meteorological forcings

- Potential evapotranspiration (E)
- Precipitation (P)

Model state variables

- Production store level (S)
- Routing store level (R)
- Unit hydrograph (UH)

Parameters

- Capacity of production store (X_1)
- Capacity of routing store (X_3)

After the analysis procedure, model states are perturbed through normally distributed null-mean noise (Salamon and Feyen, 2009).
Assessing sensitivity and persistence of updated initial conditions through Particle filter and EnKF for streamflow forecasting

Methodology

Uncertainty in model parameters

Meteorological forcings
- Potential evapotranspiration (E)
- Precipitation (P)

Model state variables
- Production store level (S)
- Routing store level (R)
- Unit hydrograph (UH)

Model parameters are jointly updated with state variables, according to the augmented state vector approach, and perturbed (Moradkhani et al., 2005).

Parameters
- Capacity of production store (X₁)
- Capacity of routing store (X₃)
Table of contents

1. Introduction
2. Forecasting system
3. Methodology
4. Results
5. Conclusions & perspectives
6. References
Experimental setup

All the experiments rely on an ensemble of 100 members.

To compare the performance of the EnKF and PF schemes, they are assessed against the open-loop (OL) probabilistic predictions (i.e., no DA).

Experiments A: uncertainty in model inputs
- A1 \rightarrow all the 3 state variables
- A2 \rightarrow production store level (S)
- A3 \rightarrow routing store level (R)
- A4 \rightarrow unit hydrograph (UH)

Experiments B: uncertainty in model inputs & parameters
- B1 \rightarrow capacity of production store (X_1)
- B2 \rightarrow capacity of routing store (X_3)
- B3 \rightarrow store capacities (X_1 and X_3)

Experiments C: uncertainty in model inputs & states
- C1 \rightarrow all the 3 state variables
- C2 \rightarrow production store level (S)
- C3 \rightarrow routing store level (R)
- C4 \rightarrow unit hydrograph (UH)
Assessing sensitivity and persistence of updated initial conditions through Particle filter and EnKF for streamflow forecasting

Results

Experiments A

Experiments A: uncertainty in model inputs

DA-based update of:
A1 → all the 3 state variables
A2 → production store level (S)
A3 → routing store level (R)
A4 → unit hydrograph (UH)

Experiments B: uncertainty in model inputs & parameters

DA-based update of all the 3 state variables and:
B1 → capacity of production store (X_1)
B2 → capacity of routing store (X_3)
B3 → store capacities (X_1 and X_3)

Experiments C: uncertainty in model inputs & states

DA-based update of:
C1 → all the 3 state variables
C2 → production store level (S)
C3 → routing store level (R)
C4 → unit hydrograph (UH)
Assessing sensitivity and persistence of updated initial conditions through Particle filter and EnKF for streamflow forecasting

Results

Impact of meteorological uncertainty on DA-based forecasts

EnKF (EnKF_A1) outperforms the PF (PF_A) → poor usefulness even for the very short lead time.

Update of R (EnKF_A3) → most benefit, improvement up to 5 days.

Low sensitivity to the UH (EnKF_A4)

Both the DA-based estimates of ICs (EnKF_A1, PF_A) improve the event discrimination capability up to a 6-day lead time.
Assessing sensitivity and persistence of updated initial conditions through Particle filter and EnKF for streamflow forecasting

Results

Experiments B

Experiments A: uncertainty in model inputs
- DA-based update of:
 - A1 → all the 3 state variables
 - A2 → production store level (S)
 - A3 → routing store level (R)
 - A4 → unit hydrograph (UH)

Experiments B: uncertainty in model inputs & parameters
- DA-based update of all the 3 state variables and:
 - B1 → capacity of production store (X_1)
 - B2 → capacity of routing store (X_3)
 - B3 → store capacities (X_1 and X_3)

Experiments C: uncertainty in model inputs & states
- DA-based update of:
 - C1 → all the 3 state variables
 - C2 → production store level (S)
 - C3 → routing store level (R)
 - C4 → unit hydrograph (UH)
Results

Joint DA-based estimation of forecast initial states and parameters

Compared to Exps. A, the DA-based estimation of:

- X_1 (Exp. B1) \rightarrow no significant improvement
- X_3 via EnKF (EnKF_B2) \rightarrow higher predictive accuracy in the very short term
- X_3 via PF (PF_B2) \rightarrow undermined forecast reliability
Assessing sensitivity and persistence of updated initial conditions through Particle filter and EnKF for streamflow forecasting

Results

Experiments C

Experiments A: uncertainty in model inputs
- DA-based update of:
 - A1 → all the 3 state variables
 - A2 → production store level (S)
 - A3 → routing store level (R)
 - A4 → unit hydrograph (UH)

Experiments B: uncertainty in model inputs & parameters
- DA-based update of:
 - B1 → capacity of production store (X_1)
 - B2 → capacity of routing store (X_3)
 - B3 → store capacities (X_1 and X_3)

Experiments C: uncertainty in model inputs & states
- DA-based update of:
 - C1 → all the 3 state variables
 - C2 → production store level (S)
 - C3 → routing store level (R)
 - C4 → unit hydrograph (UH)
Impact of state uncertainty on DA-based forecasts

Compared to Exps. A, the DA-based estimation of:

- all the state variables \rightarrow PF (PF_C1) outperforms EnKF (EnKF_C1)
- S (EnKF_C2, PF_C2) \rightarrow less accurate estimation due to low correlation with observed discharges
- R via EnKF (EnKF_C3) \rightarrow larger improvement of ICs, but the accuracy decreases more sharply
- R via PF (PF_C3) \rightarrow most efficient improvement of IC accuracy up to a 5-day lead time
Impact of state uncertainty on DA-based forecasts

Compared to Exps. A, the event discrimination capability is significantly enhanced when accounting for the uncertainty in R (PF_C3, EnKF_C3), especially in the short term.
Assessing sensitivity and persistence of updated initial conditions through Particle filter and EnKF for streamflow forecasting

Table of contents

1 Introduction
2 Forecasting system
3 Methodology
4 Results
5 Conclusions & perspectives
6 References
Main conclusions

- Both the EnKF and the PF schemes reveal an effective usefulness to improve predictive accuracy by the assimilation of observed discharges.
- When dealing with a conceptual hydrological model, the main interest is on the **routing dynamics** to derive the most benefit from the DA-based ICs.

Compared to PF, EnKF-based ICs guarantee a greater improvement in predictive accuracy (PF affected by ensemble shrinkage during no-rain periods).

A comprehensive representation of both meteorological and state uncertainties allows for a more efficient improvement of predictive skill.
- PF-based ICs are greatly enhanced thanks to a larger spread of the ensemble simulations.
- While the PF-based updating effect is longer lasting, the benefit of larger corrective terms for the EnKF rapidly decreases within a short lead time.

High sensitivity to the parameter estimation, as store capacities define the simulated hydrological responsiveness of the basin.
- Parameter values estimated at the forecast time may not be the optimal ones to represent the model response over the forecast horizon.
- The equifinality issue can affect the parameter estimates, especially in PF.
Ongoing and future perspectives

This study has been recently submitted to the Water Resources Research journal:
Piazzi, G., Thirel, G., Perrin, C., Delaigue, O. Sequential data assimilation for streamflow forecasting: assessing the sensitivity to uncertainties and updated variables of a conceptual hydrological model.

An R package providing the DA schemes will be soon available.

The authors thank Météo-France and SCHAPI for providing climate and streamflow data. The first author received financial support from SCHAPI and the RenovRisk-Transfer project. This work contributes to the SPAWET project funded by the CNES-TOSCA program.
Assessing sensitivity and persistence of updated initial conditions through Particle filter and EnKF for streamflow forecasting

References

- Clark, M. P., Rupp, D. E., Woods, R. A., Zheng, X., Ibbitt, R. P., Slater, A. G., et al. (2008). Hydrological data assimilation with the ensemble Kalman filter: Use of streamflow observations to update states in a distributed hydrological model. Advances in Water Resources, 31(10), 1309-1324.

- Le Moine, N. (2008). The catchment seen from underground: a way to improve the performance and realism of rainfall-runoff models? (In French). PhD Thesis, Université Pierre et Marie Curie (Paris), Cemagref (Antony), 324 pp.

- Moradkhani, H., Hsu, K. L., Gupta, H., and Sorooshian, S. (2005). Uncertainty assessment of hydrologic model states and parameters: Sequential data assimilation using the particle filter. Water Resources Research, 41(5), W05012. doi:10.1029/2004WR003604.

- Salamon, P., and Feyen, L. (2009). Assessing parameter, precipitation, and predictive uncertainty in a distributed hydrological model using sequential data assimilation with the particle filter. Journal of Hydrology, 376(3-4), 428-442.

- Thirel, G., Martin, E., Mahfouf, J. F., Massart, S., Ricci, S., and Habets, F. (2010). A past discharges assimilation system for ensemble streamflow forecasts over France—Part 1: Description and validation of the assimilation system. Hydrology and Earth System Sciences, 14, 1623-1637.

- Weerts, A. H., and El Serafy, G. Y. (2006). Particle filtering and ensemble Kalman filtering for state updating with hydrological conceptual rainfall-runoff models. Water Resources Research, 42(9), W09403.