Langsdorffia: Creatures from the deep?

1 | INTRODUCTION

Langsdorffia Mart. (family Balanophoraceae) is a genus of flowering plants unlike any in appearance. Four species are recognized currently, with disjunct distributions: L. hypogaea Mart., which is widespread across Central and South America; L. malagasica (Fawc.) B. Hansen, which is endemic to Madagascar; L. papuana Geesink in Papua New Guinea; and the recently described L. heterotepala L.J.T. Cardoso, R.J.V. Alves J.M.A. Braga, which is restricted to just a handful of forests in the south and southeast of Brazil (Figure 1) (Cardoso, 2020; Cardoso, Alves, & Braga, 2011). All are highly derived root holoparasites that are devoid of chlorophyll and are dependent entirely on their host plants for their nutrition (Kuijt, 1969). Their scaly, often brightly colored inflorescences erupt from ascending subterranean branches on the dingy forest floor, and superficially resemble deep sea creatures, rather more than they do flowering plants (Figure 2).

The family Balanophoraceae is in the sandalwood order (Santalales), which is the largest order of parasitic plants with 179 genera and 2,460 species. This family comprises 18 genera and over 40 species, and is a family replete with bizarre-looking holoparasites. The exact evolutionary origins of the Balanophoraceae were unclear until the introduction of molecular data. Su, Hu, Anderson, Der, and Nickrent (2015) used nuclear, plastid, and mitochondrial sequence data to resolve its position in the sandalwood order. The authors demonstrated that the family in fact comprises one slow-evolving clade that includes the genera Dactylanthus, Hachettea, and Mystropetalon in the family Mystropetalaceae, and a relatively rapidly evolving clade comprising the remaining Balanophoraceae s.str., that includes the genus Langsdorffia. These data help to explain why morphology-based classifications of this family varied historically. Several new species have been described in the family, some very recently, such as Ombrophytum chilensis in Chile (Kuijt & Delprete, 2019), and O. villamariensis in Colombia (Guzmán-Guzmán, 2019). Meanwhile, Balanophora papuana was rediscovered recently in North Sumatra after 39 years without detection (Damayanto & Riastiwi, 2019). The scarcity, elusive nature, and remote locations of known Balanophoraceae indicate that further species may await discovery. Furthermore, little is understood about the biology of most of the species already known to science. Here we provide a brief review of the ecology and reproductive biology of one of the least examined genera in the family, Langsdorffia, and place emphasis on this highly unusual genus as a candidate for further research and conservation focus.

2 | LIFE HISTORY AND ECOLOGY

The family Balanophoraceae comprises predominantly tropical subterranean root parasites of shrubs, herbs, and trees that are seldom encountered or collected, and generally preserve poorly (Hsiao, Mauseth, & Gomez, 1994). Little is known about the life history and ecology of most species in the family. All species of Langsdorffia are highly modified parasites comprising just a series of tubers and inflorescences, and lack an ordinary stem structure and all trace of functional apical meristems (Hsiao et al., 1994). The Balanophoraceae more broadly feature a particularly complicated host-parasite vascular interface, in which the parasitic tuber appears to engulf the host plant’s roots (Figure 2d) (Santos, Nascimento, Marzinek, Leiner, & Oliveira, 2017), the vascular tissues of which infiltrate the parasite tissue extensively (Hsiao, Mauseth, & Peng, 1995). Interestingly, all Balanophoraceae appear to lack stomata entirely, which is highly unusual in the plant kingdom beyond submerged aquatics (Kuijt & Dong, 1990).

Little research has been carried out to examine the host specificity of Langsdorffia. While holoparasites are generally host specific, L. hypogaea (Figure 2) has been shown to parasitize over 20 host species including shrubs, trees, lianas, and even a cactus, from 16 families; however, an apparent preference for Miconia albicans (Melastomataceae) indicates at least a degree of specificity (Santos et al., 2017). This species occurs in various habitats including neotropical savanna and tropical rainforest, each with a very different assemblage of plants. It is possible that populations of L. hypogaea are locally adapted to hosts with distinct ecologies, and underlying genetic divergence is obscured by their reduced morphological features. This has been shown in other parasitic plants (Thorogood, Rumsey, Harris, & Hiscock, 2008). Reciprocal crosses on different host species, combined with population genetics-based analyses could reveal cryptic host-defined taxa in Langsdorffia which would inform conservation practice. Extensive data on the host range of other species of Langsdorffia have not been published. Various species including Eugenia spp., Meliosma pinnata, Metrosideros eugenioides, and Vaccinium spp. were suggested to be the hosts of L. papuana in Papua New Guinea when it was first described (Geesink, 1972).
but this has not been revisited or confirmed to our knowledge. The host range of *L. malagasica* and the recently described *L. heterotepala* (Cardoso et al., 2011) have not been assessed in detail either. Given the dependency of these parasites on their host plants, an assessment of the host range of all species of *Langsdorffia* will be an essential next step in their conservation.

3 | REPRODUCTIVE BIOLOGY

Little is known about the pollination biology, breeding systems, or seed dispersal of the Balanophoraceae (Kuijt & Delprete, 2019; Freitas et al., 2017), and in *Langsdorffia* in particular. All species in the family produce minute, unisexual flowers, borne in spike-like
inflorescences on the dark forest floor; however, pollination mechanisms appear to be diverse (Goto, Yamakoshi, & Matsuzawa, 2012). Species in the genus *Balanophora* secrete nectar and are visited by ants, cockroaches, and moths in Japan (Kawakita & Kato, 2002) and *Lophophytum mirabile* is visited by beetles in the Ecuadorian Amazon (Borchsenius & Olesen, 1990). Here, *B. kuroi-wai* appears to have evolved as a mutualistic pollination syndrome with pyralid moths, which use the plant as a brood site for their larvae to develop, like the better-known systems of fig–fig wasp and yucca–yucca moth (Kawakita & Kato, 2002). Brood-site pollination involving Morellia flies has also been observed in the related genus *Thonningia* in the rainforests of West Africa (Goto et al., 2012).

Investigations into the reproductive biology of *Langsdorffia* are hampered by the rarity of the plants and a high rate of herbivory when they do appear (Freitas et al., 2017). Indeed, virtually nothing is known about the reproductive biology of *Langsdorffia* with the exception of *L. hypogaea*. The inflorescence of *L. hypogaea* comprises a fleshy, spadix-like structure that is covered with scales with hairy margins (Figure 2a–c); the male flowers are stalked, and the female flowers are sessile, and both have nectar-producing conical structures (Freitas et al., 2017; Hsiao et al., 1994; Santos et al., 2017). The flowers are brightly colored and sweetly scented during anthesis (Freitas et al., 2017), and 259 species of floral visitor have been observed from a diversity of orders including Hymenoptera, Hemiptera, Dermaptera, Blattodea, Araneae, and Coleoptera (Freitas et al., 2017). Ants (*Brachymyrmex*) are reported to visit this species most frequently; however, beetles (*Stelidota*) are suggested to be the principle pollinator in this species, and have been observed ovipositing in the flowers (Freitas et al., 2017). The white-naped jay (*Cyanocorax cyanopogon*) has also been observed visiting...
the inflorescences of L. hypogaea in the Brazilian Cerrado region (Santos et al., 2017), but it is not known to what extent they effect pollination. Foraging primates (Propithecus diadema) are apparently attracted to the strong sweet smell of the inflorescences of L. malagasi in Madagascar (Irwin et al., 2007); pollination seems doubtful here. Together, the few data available suggest that Langsdorffia attract a diverse guild of floral visitors, including insects, birds, and mammals, and more broadly, that mutualistic pollination syndrome, involving moths, flies, and beetles, may be a common feature across the family Balanophoraceae.

4 | FUTURE WORK

Future work should focus on the effective propagation of Langsdorffia. The translocation and conservation of holoparasitic flowering plants are impeded significantly by the complete dependency on their host plants (Holzapfel, Dodgson, & Rohan, 2018). As a consequence of their difficulty of cultivation, parasitic plants seem to be underrepresented significantly in conservation collections. Langsdorffia is no exception and at present, none of the four known species exist in cultivation to our knowledge. This is concerning because all species occur in habitats under threat, and at least one species, L. heteropetala, may be classified as Critically Endangered in the future, because it has such a limited distribution (Cardoso, 2020; Cardoso et al., 2011). Even species that are widespread, such as L. hypogaea, which occurs across the Amazon, Caatinga, Cerrado, and Atlantic Forest eco-region, are considered at risk due to habitat loss (Felestrino et al., 2017). Placing emphasis on parasitic plants such as Langsdorffia in botanic gardens’ conservation collections and seed-banking strategies will help safeguard the future of these extraordinary plants.

5 | CONCLUDING REMARKS

Langsdorffia is an extraordinary genus of plants unlike any other. Little is known about the biology of these plants beyond examination of the pollination system and ecology of the most widespread species, L. hypogaea. A spate of recent species discovery in the family Balanophoraceae, coupled with the difficulty in encountering these unpredictable and elusive plants, suggest further Langsdorffia taxa may await discovery. Future work should focus on refining our understanding of their host specificity with a view to propagating them, and introducing them into botanic gardens’ conservation collections.

KEYWORDS

Balanophoraceae, heterotrophic plant, holoparasite, Langsdorffia, parasitic plant

ORCID

Chris Thorogood1 https://orcid.org/0000-0002-2822-0182
J.C. Santos2 https://orcid.org/0000-0001-6031-9193

REFERENCES

Borchsenius, F., & Olesen, J. M. (1990). The Amazonian root holoparasite Lophophytum mirabile (Balanophoraceae) and its pollinators and herbivores. Journal of Tropical Ecology, 6, 501–505. https://doi.org/10.1017/S026646740004922
Cardoso, L. J. T. (2020). Balanophoraceae in Flora do Brasil 2020. in prep. Jardim Botânico do Rio de Janeiro. Retrieved from http://reflora.jbrj.gov.br/reflora/floradobrasil/FB121962
Cardoso, L. J. T., Alves, R. J. V., & Braga, J. M. A. (2011). A new species and a key for Langsdorffia (Balanophoraceae). Systematic Botany, 36, 424–427. https://doi.org/10.1600/036364411X569606
Damayanto, I. P. G. P., & Riastiwi, I. (2019). Balanophora papuana Schltr. (Balanophoraceae), a neglected holoparasite species: rediscovery for Indonesia. Proceedings of the 3rd SATREPS Conference, Bogor.
Felestrino, E. B., Santiago, I. F., Freitas, L. D., Rosa, L. H., Ribeiro, S. P., & Moreira, L. M. (2017). Plant growth promoting bacteria associated with Langsdorffia hypogaea-rhizosphere-host biological interface: A neglected model of bacterial prospection. Frontiers in Microbiology, 8(172), 1–15. https://doi.org/10.3389/fmicb.2017.00172
Freitas, L. S., Moreira, L. M., de Avila, R. S., Felestrino, E. B., Demarco, D., de Sousa, H. C., & Ribeiro, S. P. (2017). Reproductive phenology and floral visitors of a Langsdorffia hypogaea (Balanophoraceae) population in Brazil. Flora, 233, 51–57. https://doi.org/10.1016/j.flora.2017.02.023
Geesink, R. (1972). A new species of Langsdorffia from New Guinea (Balanophoraceae). Acta Botanica Neerlandica, 21, 102–106. https://doi.org/10.1111/j.1438-8679.1972.tb00753.x
Goto, R., Yamakoshi, G., & Matsuzawa, T. (2012). A novel brood-site pollination mutualism?: The root holoparasite Thonningia sanguinea (Balanophoraceae) and an inflorescence-feeding fly in the tropical rainforests of West Africa. Plant Species Biology, 27, 164–169. https://doi.org/10.1111/j.1442-1984.2011.00338.x
Guzmán-Guzmán, S. (2019). A new species of Ombrophytum (Balanophoraceae), a genus not previously recorded for Colombia. Phytotaxa, 424, 061–066. https://doi.org/10.11646/phytotaxa.424.1.6
Holzapfel, S. A., Dodgson, E., & Rohan, M. (2018). Successful translocation of the threatened New Zealand root-holoparasite Dactylanthus taylorii (Mystropetalaceae). Plant Ecology, 217, 127–138. https://doi.org/10.1007/s11258-015-0556-7
Hsiao, S. C., Mauseth, J. D., & Peng, C.-I. (1995). Growth and anatomy of the vegetative body of the parasitic angiosperm Langsdorffia hypogaea (Balanophoraceae). Bulletin of the Torrey Botanical Club, 121(1), 24–39. https://doi.org/10.2307/2996881
Hsiao, S. C., Mauseth, J. D., & Peng, C.-I. (1995). Composite Bundles, the host/parasite interface in the holoparasitic angiosperms Langsdorffia and Balanophora (Balanophoraceae). American Journal of Botany, 82, 81–91. https://doi.org/10.1002/j.1537-2197.1995.tb15652.x
Irwin, M. T., Raharison, F. J., Rakotoarimanana, H., Razanadrakoto, E., Ranaivoson, E., Rakotofanala, J., & Randrianarimanana, C. (2007). Diademed sifakas (Propithecus diadema) use olfaction to forage for the inflorescences of subterranean parasitic plants (Balanophoraceae: Langsdorffia sp., and Cytinaceae: Cytinus sp.). *American Journal of Primatology, 69*, 471–476. https://doi.org/10.1002/ajp.20353

Kawakita, A., & Kato, M. (2002). Floral biology and unique pollination system of root holoparasites, *Balanopora kuroiwai* and *B. tobiracola* (Balanophoraceae). *American Journal of Botany, 89*, 1164–1170. https://doi.org/10.3732/ajb.89.7.1164

Kuijt, J. (1969). *The biology of parasitic flowering plants*. Berkeley, CA: University of California Press.

Kuijt, J., & Delprete, P. G. (2019). A new species of *Ombrophytum* (Balanophoraceae) from Chile, with notes on subterranean organs and vegetative reproduction in the family. *Phytotaxa, 420*, 264–272. https://doi.org/10.11646/phytotaxa.420.4.2

Kuijt, J., & Dong, W.-X. (1990). Surface features of the leaves of Balanophoraceae - A family without stomata? *Plant Systematics and Evolution, 170*, 29–35. https://doi.org/10.1007/BF00937847

Su, H.-J., Hu, J.-M., Anderson, F. E., Der, J. P., & Nickrent, D. L. (2015). Phylogenetic relationships of Santalales with insights into the origins of holoparasitic Balanophoraceae. *Taxon, 64*, 491–506. https://doi.org/10.12705/643.2

Thorogood, C. J., Rumsey, F. J., Harris, S. A., & Hiscock, S. J. (2008). Host-driven divergence in the parasitic plant *Orobanche minor* Sm. (Orobanchaceae). *Molecular Ecology, 17*, 4289–4303. https://doi.org/10.1111/j.1365-294X.2008.03915.x

How to cite this article: Thorogood C, Santos JC. *Langsdorffia: Creatures from the deep? Plants, People, Planet.* 2020;2:181-185. https://doi.org/10.1002/ppp3.10102