Effects of processing parameters on the surface quality of wrought Ni-based superalloy by ultrasonic-assisted electrochemical grinding

Yucai Ma1,2 · Yingyue Yin1,2 · Jianhua Zhang1,2 · Jinxing Huo1,2

Received: 10 August 2021 / Accepted: 15 June 2022 / Published online: 4 August 2022
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022

Abstract
Ni-based GH625 superalloy has been widely employed in the aerospace industry due to its high strength, outstanding corrosion resistance, and high-temperature resistance. A novel hybrid processing method of ultrasonic-assisted electrochemical grinding (UAECG) can achieve a high effective removal rate for difficult-to-process materials and thereby avoid stray corrosion during the process. This study systematically investigated the electrochemical dissolution behaviors of GH625 alloy at low current density and the effects of processing parameters on its surface roughness. A qualitative model was proposed to further reveal its removal mechanism for GH625 alloy during the UAECG process. Polarization curves depicted that an efficient and stable electrochemical dissolution was achieved at an appropriate temperature (20 °C) and concentration (10 wt.%) of NaNO₃ electrolyte. The findings also revealed that selective corrosion preferentially occurred on the grain boundary or near the NbC carbides under different current density corrosion circumstances. Compared with the ECG process, the excellent surface quality (R_a=0.37 μm) and taper of the small holes (taper=0.04±0.005°) are obtained at the optimized condition of a pulse voltage of 5.8 V, feed rate of 0.6 mm/min, cathode speed of 12 kr/min and drive amplitude of 60% by UAECG technology.

Keywords GH625 · Ultrasonic-assisted electrochemical grinding · Polarization curves · Processing parameters · Surface roughness

1 Introduction
Ni-based GH625 superalloy has been widely used in manufacturing high-temperature components (e.g., turbine discs and blades of aero engines) [1] industry due to its high strength, outstanding corrosion resistance, and high-temperature resistance [2]. However, there existed many defects for traditional processing methods such as low processing efficiency, serious tool wear, high frictional heat, and residual stress, which were hardly beneficial for the processing of difficult-to-machine materials. A series of new processing technologies were thus proposed such as laser processing, electric discharge processing, electrochemical processing, and high-speed water jet processing [3–5]. Generally, non-traditional machining exhibits many advantages such as high machining efficiency and accuracy, low tool wear, and low frictional heat [6, 7].

Due to its advantages of high material removal rate, reduced tool wear, lower residual stress [8–11], electrochemical machining (ECM) has thus become an extensive processing technique for fabricating various difficult-to-cut Ni-based superalloys [12]. It employs the principle of anodic dissolution and thereby bypasses the limitations of the alloy’s mechanical properties [13, 14]. Rolf Schuster et al. [15] found that the location accuracy and dimensional accuracy of specimens have remarkably improved using ultrashort pulse power for electrochemical machining and finally achieved the machining accuracy of submicron. Se Hyun Ahn et al. [16] used the high-frequency pulse power with tens of nanosecond pulse width to experiment with electrochemical drilling for micro-pores and studied the effects of peak voltage, period, and pulse width on the machining localization of micro-pores. However, the limitation of application for
the ECM is due to the low machining accuracy, unfit tool shapes, and insufficient processing parameters control. Due to its high machining accuracy, excellent surface quality and good machining stability, electrochemical grinding (ECG) can offset the process defects during the ECM process. Over the past few years, several studies have focused on the influence of process and processing parameters on the surface integrity of processing. Yasuo Kimoto et al. [17] were conducted to process disc-shaped specimens and cylindrical specimens and obtained sub-micron processing accuracy using ECG technology. Stanislaw and Zaborski [18] verified the superiority of electrochemical grinding from the perspective of energy consumption and found that the energy consumption of electrochemical grinding was much lower than that of mechanical grinding. Although the processing efficiency of the specimens was improved using ECG technology, generation of large-dimensional accuracy deviations always exist due to severe stray corrosion during the ECG process. Fortunately, ultrasonic-assisted electrochemical grinding processing technology (UAECG) was based on the cavitation effect of ultrasonic vibration to promote the circulation of electrolyte and the discharge of electrolytic products and remove the passivation film on the surface of the specimen on the processing area, thereby improving processing efficiency and stability [19]. S.S. Li et al. were conducted to compare and analyze the difference in cutting force of specimens between UAECG technology and ultrasonic-assisted pulse electrochemical grinding processing technology. The results showed that the normal stress and tangential stress of ultrasonic-assisted electrochemical grinding are respectively reduced by about 57% and 56% in comparison with that of traditional grinding [20–22].

The microstructure feathers affected the anodic dissolution behavior of metals. Yin et al. found that M₂₃C₆ precipitates are main the preferred nucleation site, leading to an uneven surface dissolution morphology [23, 24]. Compared with wrought Hastelloy X (HX) samples, SLM-fabricated HX shows many nuclear sites of the great compact passive film due to the higher low-angle GB (LAGB) density. This compact passive film contributed to improving surface quality to avoid starry corrosion during the ECM process at low current density in non-machining areas [25]. Some reports have shown that AZ31 Mg alloy and Ti-6Al-4 V within a large amount of acicular α₀ martensite resulted in preferentially anodic dissolution under low current densities [26]. Guo et al. [27] studied the electrochemical behaviors of laser solid forming-fabricated Inconel 718 and found that the γ matrix around the Nb-rich γ phase preferentially dissolved.

In this context, it offers theoretical guidance for selecting the appropriate electrolyte type and concentration through conducting potentiodynamic curves tests in the ECM process. Secondly, electrochemical machining is an extremely effective machining method, which accounts for more than 95% of the ultrasonic-assisted electrolytic grinding process. The current efficiency of wrought GH625 at different current densities was tested, further exploring its material removal law at different current densities. Finally, the effect of process parameters on the surface roughness of specimens was analyzed and the optimized parameter combination was obtained according to a single factor test.

## 2 Experimental details

### 2.1 Processing principle

Figure 1 shows the fundamental principle of the UAECG process. In the process of ultrasonic-assisted processing, the high-frequency oscillation signal from the ultrasonic generator is converted into high-frequency mechanical oscillation by the transducer, the amplitude is amplified and collected by the variable-amplitude coupling, and then transmitted to
the tool head. The SK06 chuck and pressure cap are fixed on the ultrasonic vibrator, and the specimen is processed effectively by ultrasonic cavitation. The maximum amplitude of the ultrasonic vibration applied to the cathode electrode along the z-axis is 13 μm, the maximum speed of the electric spindle is 24,000 r/min, and the frequency is 20–35 kHz, which meets the experimental requirements. The cathode grinding head reams the processed small holes under high-frequency vibration and high-speed rotation, diamond abrasive grains are attached to the grinding head, and the anode specimens are fixed on the worktable. In the UAECG process, the tool cathode and specimen anode undergo electrolysis. The specimen anode is dissolved in the electrolyte and form a passivation film. The spindle drives the abrasive particles to rotate at a high speed to scrape the passivation film and vibrate up and down under the action of ultrasound. Due to electrochemical dissolution, the grinding force and wear of the grinding head are greatly reduced [28].

2.2 Experimental set-up

As shown in Fig. 2, the tool cathode is connected to the negative electrode of the pulse power supply in the UAECG process. The processed specimen is taken as the positive electrode of the anode connection power supply, and the hydraulic pump supplies the electrolyte with certain pressure from the tool cathode to the processed specimen, thereby forming a loop to realize the UAECG. The frequency of the ultrasonic system is changed by a programmable frequency converter in the NC control system. In addition, high-precision motion control of three axes of the machine tool by motion control card in NC control system. Machining voltage and interelectrode current are monitored using Hall current sensor monitors in real time.

2.3 Electrochemical measurement

Determination of anodic polarization curves was carried out using a Corr test electrochemical workstation (CS350, Wuhan, China). A platinum net and a calomel electrode were used as the counter-electrode and reference electrode, respectively. NaNO₃, NaClO₃, and NaCl solution was used as the electrolyte, and the surface air oxide film was removed by polarization for 2 min at a constant potential of –1.2 V [24]. All the tests were performed potential dynamically with a scan rate of 1 mV/s, starting from -1.5 V to 1.5 V.

2.4 Design of experiment

In the present study, the GH625 material was made into 30 × 10 × 2 mm³ long squares. The surface of the specimen was successively ground using SiC papers with grain sizes of 350 #, cleaned, and blown dry. Small holes were drilled on the specimens by tube electrode in the UAECG experiment. The influence of each processing parameter on the processing accuracy and surface quality was studied, and high processing accuracy and surface quality were achieved by the optimization of processing parameters. The cathode grinding head used in the experiment is a diamond abrasive spherical electrode, which is prepared by electrodeposition. The diameter of the spherical grinding head is φ1000 μm after precision turning, and the base material is 304 stainless steel. Next, a nickel plating layer is used on the surface of the substrate. The plating layer has good hardness, corrosion resistance, and abrasion resistance. The size of the ball head after plating is φ1030 μm–φ1040 μm, and the diamond abrasive particle size is 60–65% exposed to the outside of the substrate. The material and the coating material can be conductive, but the diamond abrasive is not conductive, so

Fig. 2 Schematic image of ultrasonic-vibration assisted electrochemical grinding process
electrochemical processing and mechanical processing can be performed at the same time to meet the requirements of ultrasonic-assisted electrolytic grinding.

2.5 Current efficiency curve measurement

The current efficiency experiment device is shown in Fig. 4. It was made of epoxy resin with good airtightness. The two insulating chassis grooves of different sizes in the middle were respectively embedded in the cathode and anode parts. The anode specimen was a small cube of \(10 \times 10 \times 10 \text{ mm}^3\). The electrolytic surface was smoothed with 600-mesh sandpaper to remove the oxide scale and then cleaned by ultrasonic cleaning. Weighing the sample mass before and after the experiment with a high-precision balance, and calculate the number of reductions in the actual test mass for the calculation of current efficiency.

Before the experiment, the specimen cubes need to be ultrasonically cleaned, blow-dried, and weighed. In each experiment, a stopwatch was used to precisely control the time. After the experiment, the specimens are weighed again. The current efficiency is calculated using the following formula:

\[
\eta = \frac{\Delta M_{\text{exp}}}{\Delta M_{\text{theo}}} = \frac{\Delta M_{\text{exp}}}{kI t}
\]

where \(\Delta M_{\text{exp}}\) was the actual dissolved mass (g), \(\Delta M_{\text{theo}}\) was the theoretical dissolved mass (g), \(I\) was the external power supply current (A), \(t\) was each dissolution time (s), and \(k\) was the theoretical value of the mass electrochemical equivalent (g /As), where \(k\) could be obtained by the following formula.

\[
k = \frac{1}{F \left( \frac{n_1}{A_1} a_1 + \frac{n_2}{A_2} a_2 + \cdots + \frac{n_q}{A_q} a_q \right)}
\]

where \(F\) was the Faraday constant, \(n\) was the lower valence of a certain element dissolved, \(A\) was the relative atomic mass of a certain element, \(a\) was the percentage of a certain element, and \(q\) was the serial number.

2.6 Microstructure characterization

The microstructure components of the specimens were measured using energy dispersive spectroscopy (EDS). The surface roughness, microstructure, and composition of the specimens machined at different current densities and corrosion times were investigated using a surface-finish instrument (Veeco NT9300), a scanning electron microscope, SEM (JEOL Corporation JSM-7800F), and energy dispersive spectroscopy, EDS (Oxford XMax-80).

3 Results and discussions

3.1 Current efficiency curve

The current efficiency curve reflects the comprehensive characteristics of various reactions on the matrix surface in the electrochemical machining process, and also reveals
the strength of the electrolytic erosion ability at different current densities. The values of the current density ranged from 2 to 40 A cm\(^{-2}\), and the dissolution time was precisely controlled at different current densities. The electrolyte used was a solution of 10 wt. % NaNO\(_3\) and its temperature were controlled at 20 ± 1 °C.

A plot of the ce–j curve of GH625 in 10% NaNO\(_3\) solution is displayed in Fig. 5. In NaNO\(_3\) electrolyte, the passivation film is usually formed at a low current density and adheres to the anode surface to protect the anode from stray corrosion, but the passivation film is dissolved under the current density to achieve effective material removal. However, the current efficiency drops sharply with increasing current density, whereas its initial current efficiency rapidly reached more than 100% at low-current–density region. This might be due to the uneven composition and microstructure on the specimens, thereby disrupting the compactness of the passivation film on the specimen surface to result in high current efficiency at low current density [29, 30]. Meanwhile, large numbers of NbC carbides particles flaked off during the ECM process, contributing to high current efficiency at low current density.

When the current density exceeded 7.5 A cm\(^{-2}\), the current efficiency curve of the specimens fluctuated slightly. This might be since the current density increased to accelerate the dissolution rate of the specimens. In the ECM process, there might be distributed uneven NbC particles on the grain boundary or in the grain for the GH625 matrix, preferably falling intermittently in a non-electrochemical dissolution behavior. Thus this resulted in the instability fluctuation of the efficiency curve in the high-current–density region [31].

3.2 Dissolution morphology analysis after the electrochemical dissolution

It can be seen clearly that the surface was covered with processed products and impurities in Fig. 6, when a current density was 7.5 A/cm\(^2\), according to the EDS analysis results, large particles with a length of 8 μm with regular shapes were NaNO\(_3\) components in the electrolyte. In addition, many deep on the surface of the substrate pits caused bad surface quality due to the uneven corrosion at low current density. The formation of these little pits was primarily due to the preferential corrosion around the carbides (NbC) particles in the substrate and these carbides were washed away under the impact of the high-speed electrolyte, resulting in large numbers of small pits. This is consistent with the results of dramatic fluctuation for the efficiency curve as shown in Fig. 5.

The dissolution morphology of wrought GH625 at a current density of 12.5 A cm\(^{-2}\) is shown in Fig. 7. The degree of electrolytic corrosion further increased, forming a series of small pits with shallow depth, and the residual impurities on the sample surface were significantly reduced. It can be seen from Figs. 7 and 8 that small pits were around the particles, a large number of sub-micron particles were unevenly distributed in the γ matrix, and there were relatively large particles with a size of 1.25 μm. In the detection range of SEM–EDS, the larger particles were identified clearly as NbC carbides [1]. Since these particles were difficult to dissolve, they preferentially dissolve around the particles; These small particles were spherical, with slightly large sizes (3.5 μm) distributed on the matrix.

When a current density was 17.5 A cm\(^{-2}\) during the electrochemical machining, it was found that there existed shallower small pits on the surface. This suggested that the surface quality was further improved with increasing current density. In addition, NbC particles with different shapes exhibiting from spherical to elongate were distributed to the substrate surface.

As seen from Fig. 9, the primary components of the larger particles contained Nb elements, this was consistent with the above analysis. With increasing current density, some NbC particles had been exposed to the surface of the γ substrate, and some were still covered by the substrate to form small bumps. Under the impact of the high-speed flow of electrolyte, the small bumps provided shelter for the flow of the substrate surface material; contributing to the formation of the larger bumps. It can be seen that the removal of the material on the γ surface increased with current density increases, and gradually expose the insoluble particles originally inside the matrix material.
3.3 Electrochemical dissolution behavior analysis

The composition type, concentration, and temperature of the electrolyte are taken into consideration for the significant factors to achieve stable and effective dissolution during the ECM process. As three general kinds of electrolytes, NaNO₃, NaCl, and NaClO₃ electrolytes are widely used to study electrochemical dissolution behavior and thus selected primary solution in this work.

The polarization curves of GH625 in 10wt. % NaNO₃, 10wt. % NaCl and 10wt. % NaClO₃ solutions are displayed in Fig. 10, the temperature of NaNO₃ solution is 20°C, the concentrations of NaNO₃ solution is 10wt.%. In NaNO₃ and NaCl electrolytes, a stable and smooth passivation zone is formed at a relatively low current density (10⁻⁴–10⁻³A/cm²), indicating that the passivation film is dense and unbroken. In the NaClO₃ electrolyte of −0.34 – 0.81 V, the current density is lower than the other two electrolytes, but the current density increases with the increase of the potential, and there is an incomplete passivation zone; the figure shows that the passivation zone of NaCl and NaNO₃ electrolytes are basically the same, but the current density of NaNO₃ is slightly lower than that of NaCl. This difference is attributed to the high affinity of Cl⁻ ions and the low atomic radius. In addition, NO₃⁻ ions show stronger oxidation resistance than Cl⁻ ions and ClO₃⁻ ions, which leads to a denser passivation film in the NaNO₃ solution. In the transpassive area of NaNO₃ solution; as the current density increases, the anode electrochemical dissolution and oxygen evolution occur on the surface. When the anode potential exceeds $E_{\text{pb}}$, the passivation film ruptures and peels off from the substrate. Neutral NaNO₃ solution is widely used in the field of electrochemical machining because of its passivation properties, thereby improving machining accuracy. Through experiments, neutral electrolyte (NaNO₃) used different solutions to electrochemically cut low-carbon steel, and found that the cutting accuracy was better than that of sodium chloride in the NaNO₃ electrolyte [32]. Therefore, NaNO₃ solution can be used for achieving a precise electrochemical dissolution process.

Polarization curves of GH625 at different concentrations (10 wt. %, 20 wt. %, and 30 wt. %) in NaNO₃ solution as shown in Fig. 11, in a constant temperature NaNO₃ solution of 20 °C. The dimensional passivation current density of 15
wt. % NaNO₃ is higher than the other two concentrations of electrolyte, and the dimensional passivation potential range is −0.58 V − 0.86 V. The conductivity and ion exchange rate at the reaction interface accelerate, increasing current density. The passivation effects of 10 wt. % NaNO₃ and 20 wt. % NaNO₃ are basically at the same level, but the passivation current density of 10 wt. % NaNO₃ is lower than that of 20 wt. % NaNO₃, and its passivation potential range is −0.98 − 0.59 V, which shows that at lower concentrations, the formation of high impedance and dense passivation films hinders the increase in current density. Therefore, 10 wt. % NaNO₃ can obtain effective and stable material removal.

According to the above analysis results, it is finally determined that an effective and stable material removal was obtained in 10 wt. % NaNO₃ electrolyte at 20 °C.

### 3.4 Effect of processing parameters on surface quality and taper

#### 3.4.1 Effect of pulse voltage on surface quality and taper

The influence of various processing factors on the surface roughness in the ultrasonic-assisted electrochemical grinding and reaming processing in the following line chart of Fig. 13. The experiment is carried out under different pulse voltages of 5 V − 7.2 V, with a cathode speed of 12 kr/min, the feed rate of 0.6 mm/min, the drive amplitude of 60%, the pulse period of 8 μs, the electrolyte concentration of 10%, and other parameters as shown in Table 1. The selection of electrical parameters has a remarkable influence on the surface quality and processing efficiency of the small holes. Thus, it is significant to select the power’s parameters. Plots of four groups of different surface roughness and taper of GH625 in 10wt. % NaNO₃ solution under different pulse
voltages are displayed in Fig. 13. The surface quality was better when the pulse voltage was 5.8 V, it was that lower pulse voltage formed the better surface quality. But the ultrasonic electrochemical grinding and erosion rate gradually slowed with increasing speed, which led to the formation of spark discharge on the surface of the specimens. And the formation of short circuits was due to the contact between the anode and the cathode, thereby affecting the surface quality of the small holes. At a constant feed rate, when the pulse voltage is too large, the ultrasonic-assisted electrochemical grinding efficiency is improved, and the material removal rate is accelerated, resulting in continuous electrolysis of the machined surface.

Stray corrosion occurred on the surface as a result of the bad surface quality. Therefore, when the pulse voltage was 5.8 V, the processing voltage was matched with other processing parameters to form a better surface quality. It could be found that the taper of the small hole increased with the increasing pulse voltage. Therefore, the most excellent roughness and taper were 0.456 μm and 0.04446° respectively with the suitable pulse voltage (5.8 V).

3.4.2 Effect of feed rate on surface quality and taper

In this section, the effects of different feed-rates (0.55 mm/min–0.70 mm/min) on surface roughness and taper were investigated under the experimental conditions of a voltage of 5.8 V, a cathode speed of 12 kr/min, the drive amplitude of 60% and an electrolyte pressure of 0.5 MPa. As shown in Fig. 14 the surface roughness of the small hole gradually increased with increasing feed speed. When a feed rate was 0.75 mm/min, it was difficult for the cathode tool to quickly electrolyze the specimens, resulting in the occurrence of the short circuits. This was because that the machining product could not be ruled out timely. Therefore, the experimental results showed that better surface quality could be obtained under the processing parameters of 0.6 mm/min. Meanwhile, the taper of the small hole was 0.04381° at a feed rate of 0.6 mm/min, and the taper was small, thus selecting the feed rate of 0.6 mm/min.

3.4.3 Effect of cathode speed on surface quality and taper

Plots of roughness and taper of GH625 in 10 wt. %NaNO₃ solution under different cathode speeds (11 kr/min–12.5 kr/min) are displayed in Fig. 15, the experimental parameters pulse voltage is 5.8 V, the feed rate is 0.6 mm/min, the drive amplitude is 60%, and the processing parameters are shown in Table 1. The surface roughness first decreased and then increased with increasing cathode speed; and the surface roughness and taper in the holes were the lowest at a speed of 12 kr/min, which was a surface roughness of 0.476 μm and a taper of 0.04369°. This was because that the tool was not enough to quickly grind the processed material, resulting in a short circuit between the specimens and tools. The material was quickly eroded at a high speed for prolonged...
electrolysis time, when the feed rate remained unchanged, resulting in reduced surface quality. On the other hand, the increase of cathode speed will also improve the flow field in the machining gap. Thus, the selection of a cathode speed of 12 kr/min was feasible.

Fig. 10  Polarization curves of GH625 in different concentrations of NaNO₃ solution

![Graph of polarization curves](image1.png)

Fig. 11  Polarization curves of GH625 at different concentrations in NaNO₃ solution

![Graph of polarization curves](image2.png)
3.4.4 Effect of amplitude on surface quality and taper

According to measure the corresponding ultrasonic amplitude under different driving amplitudes, as shown in Table 2 and Fig. 3.

The main factors influencing ultrasonic vibration-assisted processing are the ultrasonic frequency and ultrasonic amplitude. The ultrasonic amplitude has a significant effect on the mass transfer of the electrolyte by the agitation of the electrolyte through the high-frequency vibration of the cathode.
grinding head. In this paper, the effect of the variation of ultrasonic amplitude on the surface roughness Ra of the small hole and the taper of the small hole is investigated. Figure 16 shows the effect of the different drive amplitudes (60–90%) on the surface quality, the pulse voltage is 5.8 V, the feed rate is 0.6 mm/min and the cathode speed is 12 kr/min. The roughness Ra of the small hole increased successively with increasing ultrasonic amplitude, and the roughness of the small hole was 0.464 μm at a drive amplitude of 60%, when the ultrasonic amplitude exceeded 60%, it would result in poor surface roughness and tends to ease when it surpassed 80%. Thus the drive amplitude should be lower than 60% during processing. The taper of the small hole was 0.04127° at a drive amplitude of 80%. However, the corresponding roughness was large and surface quality was poor. Therefore, it was better to choose the small hole processed by the drive amplitude of 60%.

In summary, in terms of the single-factor experiment method an excellent surface quality and minimum taper were successfully obtained at the pulse voltage of 5.8 V, the feed speed of 0.6 mm/min, the rotation speed of 12 kr/min, and the drive amplitude of 60%.

### 3.5 Comparative analysis of surface roughness between ECG and UAECG

In general, premium surface quality can be obtained under the appropriate matching of electrochemical machining parameters and machining parameters. Based on Sect. 3.4, analysis and optimize processing parameters (the pulse voltage of 5.8 V, the feed speed of 0.6 mm/min, the rotation speed of 12 kr/min, and the drive amplitude of 60%), a comparative experiment of electrochemical grinding (ECG) ultrasonic vibration electrochemical grinding (UAECG) is carried out under the optimal processing parameters.

From the Sect. 3.4 analysis, four sets of comparative experiments were done, and the surface quality of one of the small holes was selected as shown in Figs. 17 and 18. The surface roughness Ra 0.37 μm of holes can be obtained by electrochemical grinding with ultrasonic vibration (UAECG), and the grain boundary is visible. It was worth noticing that the difference between the import and export processing diameter is small. This is because the cavitation and liquid mass transfer effect of ultrasonic vibration can make the hole-enlarging process smoother and greater stable; meanwhile, the electrolysis products and bubbles are discharged in time. The minimum surface roughness Ra of electrochemical grinding without ultrasonic vibration (ECG) is 0.5 μm, the difference between inlet and outlet is significant, and there is stray corrosion on the surface. This is mainly due to the increased electrochemical effect

| Drive amplitude | Ultrasonic amplitude Vpp (μm) |
|-----------------|-------------------------------|
| 60%             | 8.94                          |
| 70%             | 10.32                         |
| 80%             | 11.52                         |
| 90%             | 12.73                         |

### Table 1 Processing parameters

| Process parameters       | Value or condition |
|--------------------------|--------------------|
| Spindle speed Vn (kr/min)| 11 11.5 12 12.5    |
| Feed rate Vf (mm/min)    | 0.55 0.60 0.65 0.70|
| Pulse voltage U/V        | 5 5.8 6.6 7.2      |
| Drive amplitude %        | 60 70 80 90        |
| Pulse period T/μs        | 8                  |
| Duty cycle %             | 50                 |
| Electrolyte pressure P/MPa| 0.5              |
| Number of grinding heads/#| 800               |
| Electrolyte concentration wt. %| 10%            |
on the entrance surface, which causes a short circuit of electrolysis products that are not discharged in time, and is formed by repeated processing many times. In addition, the secondary electrochemical effect leads to serious stray corrosion around the surface of the specimen. This affected the surface quality and average taper of the specimen. There is no doubt that ultrasonic vibration plays an auxiliary role in processing.

Fig. 16 Effect of amplitude on surface quality and taper

![Graph showing the effect of amplitude on surface roughness and taper](image)

Fig. 17 The experiment of UACEG with ultrasonic vibration

![Image of the experiment with UACEG and ultrasonic vibration](image)
According to the experimental results discussed in Sect. 3, a qualitative model is developed to explain the material removal mechanism of the UAECG process. In the ultrasonic-assisted electrochemical grinding and reaming process, the metal atoms undergo an oxidation reaction and lose electrons and become metal ions. On the surface of the tool cathode, the hydrogen ions in the electrolyte get electrons and undergo a reduction reaction to precipitate hydrogen gas. The electrochemical reactions on the anode surface of the specimen mainly include

\[
\begin{align*}
Ni & \rightarrow Ni^{2+} + 2e^- & & \quad Ni^{2+} + 2OH^- \rightarrow Ni(OH)_2 \downarrow & (3) \\
Cr & \rightarrow Cr^{3+} + 3e^- & & \quad Cr^{3+} + 3OH^- \rightarrow Cr(OH)_3 \downarrow & (4)
\end{align*}
\]

In the UAECG process, the material removal mechanism depends on the matching of ultrasonic vibration, electrochemical machining, and mechanical grinding. As shown in Fig. 19b, under the electrochemical action, a dense passivation film formed on the surface of the specimen. However,
as the electrochemical action continues to increase, the passivation film becomes thick and the electrolysis is inhibited. Furthermore, high-speed rotation of the cathode causes bubbles to appear under negative pressure, the bubble collapse is generated instantly occurs the impact force cooperates with the mechanical grinding action to scrape the passivation film; and then expose the new surface to continue electrolysis. The liquid phase fluid discharges the processed products in time to update the electrolyte. The three functions complement each other in the processing process, which improves the processing efficiency and accuracy.

Figure 19c shows the surface after removing the passivation film. During the processing, the surface of the matrix exposes insoluble particles, thereby reducing the surface quality. Mechanical grinding is used to scrape the insoluble particles and further grinding to form a smooth and flat processing surface.

4 Conclusion

In this paper, a comprehensive machining technology (UAECG) with ultrasonic vibration as the auxiliary, electrochemical machining, and mechanical grinding was proposed, and the material removal mechanism was studied in detail. The following conclusions can be drawn:

1. SEM analysis results showed that the $\gamma$ matrix was preferentially dissolved around the insoluble particles, EDS results demonstrated that insoluble particles were primarily NbC carbides distributed in the grain or on the grain boundaries.

2. The quantitative comparison results showed that electrochemical dissolution in NaNO$_3$ solution was more stable than that in NaCl and NaClO$_3$ solution during the electrochemical dissolution process at low current densities. It was beneficial for obtaining a stable and efficient dissolution at the appropriate temperature (20 $^\circ$C) and concentration (10%) in NaNO$_3$ solution.

3. Arising from observation of material removal phenomenon, it is found that the material removal mechanism of UAECG has remarkable differences in that of ECG process. A qualitative machining model was established to further reveal the machining mechanism of UAECG in the view of the micro perspective.

4. Compared with the ECG process, excellent surface quality ($Ra=0.37 \mu m$) and taper of the small holes (taper $=0.04 \pm 0.005^\circ$) were obtained at the optimized condition of a pulse voltage of 5.8 V, feed rate of 0.6 mm/min, cathode speed of 12 kr/min and ultrasonic drive amplitude of 60% by the UACEG.
17. Bilgi DS, Kumar R, Jain VK (2008) Predicting radial overcut in deep holes drilled by shaped tube electrochemical machining. Int J Adv Manuf Technol 39(1–2):47–54
18. Lupak M, Zaborski S (2009) Simulation of energy consumption in electrochemical grinding of hard-to-machine materials. J Appl Electrochem 30(1):101–106
19. Sagarwal S (2015) On the mechanism and mechanics of material removal in ultrasonics machining. Int J Mach Tool Mnuf 96:1–14
20. Li S, Wu Y, Nomura M (2018) Fundamental Machining Characteristics of Ultrasonic-Assisted Electrochemical Grinding of Ti6Al4V. J Manuf Sci Eng-Trans ASME 140(7) : 071009
21. Li S, Wu Y, Nomura M (2016) Fundamental investigation of ultrasonic assisted pulsed electrochemical grinding of Ti6Al4V. Mater Sci Forum 4389:279–284
22. Wu Y, Li S, Nomura M (2017) Ultrasonic assisted electrolytic grinding of titanium alloy Ti6Al4V. Int J Nano Manuf 13(2):152–160
23. Yin Y, Zhang J, Ma Y, Huo J, Zhao K, Meng X, Han Q, Yin J (2020) Electrochemical Dissolution Behavior of Nickel-Based Hastelloy X Superalloy at Low Current Densities. IEEE Access 8:62714–62724
24. Yin Y, Zhang J, Yang S, Liu T, Han Q, Zhang Z, Yang H (2021) Effect of microstructure on the electrochemical dissolution behaviour of Hastelloy X superalloy processed by selective laser melting and heat treatments. Mater Des 206:109828
25. Yin Y, Zhang J, Huo J, Zhao K, Zhu X, Han Q, Ma Y, Fu Z, Yin J (2020) Effect of microstructure on the passive behavior of selective laser melting-fabricated Hastelloy X in NaNO3 solution. Mater Charact 165:110375
26. Guo P, Lin X, Xu J, Li J, Liu J, Huang W (2017) Electrochemical removal of different phases from laser solid formed inconel 718. J Electrochem Soc 164(7):151–157
27. Guo P, Lin X (2017) Huang W (2017) Columnar structure and electrochemical anisotropy of a nickel-based superalloy fabricated via laser solid forming. J Appl Electrochem 47:1083
28. Kozak J, Oczos’KE (2001) Selected problems of abrasive ECDG process. J Mater Process Tech 109:360–6
29. Haisch T, Mittemeijer E, Schultze JW (2001) Electrochemical machining of the steel 100Cr6 in aqueous NaCl and NaNO3 solutions: Microstructure of surface films formed by carbides. Electrochim Acta 47(9):1083–1090
30. Wang D, Zhu Z, He B, Ge Y, Zhu D (2017) Effect of the breakdown time of a passive film on the electrochemical machining of rotating cylindrical electrode in NaNO3 solution. J Mater Process Technol 239:251–257
31. Weber O, Weinmann M, Natter H, Bähre D (2015) Electrochemical dissolution of cast iron in NaNO3 electrolyte. J Appl Electrochem 4(6):591–609
32. Rosenkranz C, Lohrengel MM, Schultze JW (2005) Microscopic investigations of electrochemical machining of Fe in NaNO3. Electrochim Acta 48(20–22):3203–3211

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.