Automatic Facial Landmark Localization in Clinical Populations – Improving Model Performance with a Small Dataset

Diego L. Guarin1,2,3*, Babak Taati1,4,5, Tessa Hadlock2 and Yana Yunusova1,6,7
Abstract

Background: Automatic facial landmark localization in videos is an important first step in many computer vision applications, including the objective assessment of orofacial function. Convolutional neural networks (CNN) for facial landmarks localization are typically trained on faces of healthy and young adults, so model performance is inferior when applied to faces of older adults or people with diseases that affect facial movements, a phenomenon known as algorithmic bias. Fine-tuning pre-trained CNN models with representative data is a well-known technique used to reduce algorithmic bias and improve performance on clinical populations. However, the question of how much data is needed to properly fine-tune the model remains.

Methods: In this paper, we fine-tuned a popular CNN model for automatic facial landmarks localization using different number of manually annotated photographs from patients with facial palsy and evaluated the effects of the number of photographs used for model fine-tuning in the model performance by computing the normalized root mean squared error between the facial landmarks positions predicted by the model and those provided by manual annotators. Furthermore, we studied the effect of annotator bias by fine-tuning and evaluating the model with data provided by multiple annotators.

Results: Our results showed that fine-tuning the model with as little as 8 photographs from a single patient significantly improved the model performance on other individuals from the same clinical population, and that the best performance was achieved by fine-tuning the model with 320 photographs from 40 patients. Using more photographs for fine-tuning did not improve the model performance further. Regarding the annotator bias, we found that fine-tuning a CNN model with data from one annotator resulted in models biased against other annotators; our results also showed that this effect can be diminished by averaging data from multiple annotators.

Conclusions: It is possible to remove the algorithmic bias of **adept** CNN model for automatic facial landmark localization using data from only 40 participants (total of 320 photographs). These results pave the way to future clinical applications of CNN models for the automatic assessment of orofacial function in different clinical populations, including patients with Parkinson’s disease and stroke.

Keywords: Automatic Facial Analysis; Facial Landmarks Localization; Machine Learning; Computer Vision
Background

Clinical assessment of orofacial function in patients with neurological diseases such as dementia, Parkinson’s disease, stroke, and facial palsy is typically performed in face-to-face interviews with trained clinicians or using laboratory-based tests [1]. However, clinical evaluations are subjective, can be unreliable, and suffer from poor interrater agreement [2]. Moreover, laboratory tests, such as electromyography, magnetic resonance imaging, and facial motion tracking technology, are expensive, time-consuming, and their availability is limited [1].

New methods and algorithms based on recent advancements in machine learning (ML) and computer vision (CV) have been developed to assess orofacial function objectively and extract clinically useful information automatically from videos and photographs of patients [3–10]. These techniques track orofacial movements without using facial markers or specialized equipment. Different from laboratory tests, these techniques are inexpensive, easy-to-use, readily available, and can be used at-home. Our team have used these methods to evaluate the effectiveness of surgical treatments for Bell’s Palsy [4, 5, 8], and to extract biomarkers for detection and assessment of orofacial deficits in Parkinson’s disease [10, 11], amyotrophic lateral sclerosis [6], and stroke [7]. These techniques have the potential to revolutionize the assessment of orofacial deficits as they would allow frequent, cost-effective, objective in-home monitoring of disease progression and treatment effectiveness across various neurological diseases affecting the orofacial musculature.

The technology behind these methods and algorithms known as facial alignment (FA) – a set of ML models and algorithms for automatic localization of facial landmarks in digital images and videos – has been an active research topic for more than twenty-five years [12]. Convolutional Neural Networks (CNN) have recently emerged as the mainstream approach for FA; in particular, the Facial Alignment Network (FAN), a type of CNN, demonstrated superior performance in FA for photographs taken in realistic scenarios under challenging illumination, pose, and expressions [13–18]. We recently demonstrated that FAN provides superior performances when applied to clinical populations as compared to other popular algorithms for FA [19]. However, challenges remain when applying algorithms for facial analysis to a population with diversity in gender, and ethnicity [20], and to patients with diversity in age, physical/cognitive ability, and orofacial deficits [9, 21].
and others have shown that publicly available, i.e., pre-trained, FA algorithms and models perform better in healthy, young males, with light skin tones as compared to patients with neurological diseases [8, 9, 18, 21].

Recently, we retrained classical FA algorithms such as active appearance models [21], and cascade of regression trees [9], and fine-tuned the FAN model using transfer learning [18, 21] to improve their landmark localization accuracy in clinical populations including elderly subjects with dementia and patients with Bell’s palsy. Our results demonstrated that using patient-specific databases significantly improved the models’ performance. We obtained these results after including more than 700 images for model training in the case of patients with dementia [18, 21], and more than 1500 images in the case of unilateral facial palsy [9].

The clinical application of these results is limited as developing such large databases from patients with various - and often rare - diseases for model fine-tuning is difficult, expensive, and oftentimes impossible. Thus, the first objective of this paper was to evaluate to what extent the size of the training set (i.e., number of disease-specific photographs) used to fine-tune CNN models for FA influences the model performance. Based on results on fine-tuning CNN models for image classification [22], we hypothesized that a relatively small number of standard clinical photographs would be sufficient to significantly boost the performance of the FAN model for FA.

Moreover, a recent study showed that ML models trained with manually annotated databases might be influenced by the annotator, and their performance may vary depending on the annotator [23]. The annotator bias has important consequences for the real-world application of ML models and has been an active research topic in the area of Natural Language Processing [24–26]. However, to our knowledge, the problem of annotator bias has not been studied in the context of FA.

Thus, the second objective of this paper was to estimate the effects of annotator bias in the model performance and evaluate approaches to reduce the bias. Based on previous results from natural language processing [25], we hypothesized that by averaging the landmark positions provided by multiple annotators, it was possible to reduce the effects of annotator bias, and that this reduction was less meaningful when the inter-annotators agreement was higher.
Materials and Methods

Databases

Two different datasets were used in this study for fine-tuning and evaluating the FA algorithm; in total, 250 patients and 10 healthy subjects participated in the creation of these datasets. The first dataset consists of 1600 facial photographs from 200 patients with unilateral facial paralysis [9]. The dataset contains facial photographs of 135 females and 65 males aged between 7 and 89 years.

During the creation of this dataset, a clinical photographer captured high-resolution photographs (1080 × 720 pixels) of a standardized series of eight facial expressions used to evaluate facial mimetic function [27]; these expressions correspond to rest, eyebrow elevation, light effort eye closure, full effort eye closure, light effort smile, full effort smile, pucker, and lip depression. Photographs of patients were obtained while they were looking straight at the camera and under the same illumination and background conditions.

The 1600 facial photographs were randomly divided into three non-overlapping groups; all images of the same patient were included in the same group. The groups were: (1) model training (160 patients, corresponding to N=1280 photographs), (2) model validation (20 patients, corresponding to N=160 photographs), and (3) model testing (20 patients, corresponding to N=160 photographs).

The second dataset consists of 480 facial photographs from 60 subjects: 50 patients with unilateral facial paralysis, and 10 healthy controls [28]. Similar to the first dataset, a clinical photographer captured high-resolution photographs (1080 × 720 pixels) of a standardized series of eight facial expressions used to evaluate facial mimetic function. Each patient was globally characterised by the degree of their facial paralysis as: near normal, mild, moderate, severe, and complete by an expert clinician.

In each of the photograph, the locations of 68 facial landmarks, defining the eyebrows, eyes, nose, mouth, and jawline, were manually localized by three independent annotators using Emotrics, an open-source interface for facial landmark annotation [8]. Annotators were trained together but performed the annotation independently at their own pace. Landmark coordinates of three manual annotators were averaged for each photograph to define ground-truth locations.
Pre-trained FAN model

The pre-trained FAN model has been trained with 230,000 facial photographs [16]. The database used to train the FAN model contained a large variety of poses, expressions, illuminations, backgrounds, and scales so that the pre-trained model is a robust and generic tool for FA [19]. The database used for model training and the resulting pre-trained model is freely available online (https://github.com/1adrianb/face-alignment).

The FAN model is composed of five sequential stages; the first stage transforms the input image into a set of 256 feature maps of dimensions 64x64, the remaining four stages are a series of stacked hourglass networks that transform the features into a set of 68 heatmaps of dimensions 64x64; each heatmap provides the estimated position of a facial landmark [13].

Fine-tuning the FAN model with patient’s data

To fine-tune the FAN model, we froze the provided pre-trained model’s parameters of the first four out of five stages and updated the parameters of the last hourglass network using photographs of people with facial palsy, similar to what we did before in our study of people with dementia [21]. Fine-tuning was performed in Python using the PyTorch library on a Nvidia GeForce GTX 1080 graphics processing unit.

We used the first dataset to evaluate whether the number of disease-specific facial photographs used to fine-tune the FAN model affected the accuracy of facial landmark localization in patients. Data from the model training group was divided into ten subgroups, each subgroup containing a randomly selected group of patients; the ten subgroups contained 1, 2, 3, 4, 5, 10, 20, 40, 80 and 160 patients (corresponding to 8, 16, 24, 32, 40, 80, 160, 320, 640 and 1280 photographs respectively). Patients’ photographs in each subgroup were used to fine-tune the FAN model so that ten new models were generated. Training was performed for 50 epochs with early stopping to prevent over-fitting. The model validation group was used to determine the best model during training.

Evaluation of algorithmic bias against clinical population

We used the second dataset to evaluate the algorithmic bias against clinical population and how fine-tuning the model with representative data mitigates the bias. A total of 15 subjects were selected from the database: 5 near normal, 5 with
moderate paralysis, and 5 with severe paralysis. Only photographs from one single expression - full effort smile - were used for evaluation of algorithmic bias. In total, 15 photographs were used; facial landmarks in each photograph were estimated using the pre-trained FAN model, and the models fine-tuned with different number of patients.

Evaluation of annotator bias

We used the first dataset to estimate the effects of the annotator bias in the model performance and evaluate i) whether by averaging the landmark positions provided by multiple annotators it would be possible to reduce the effects of annotator bias, and ii) whether this reduction was less meaningful when inter-annotators agreement was higher. We first estimated the agreement between annotators by computing the Euclidian distance in pixels between landmarks provided by each annotator for all photographs. Then, we created six additional datasets with data provided by each annotator (three datasets), and by averaging the data provided by each pair of annotators (three datasets). Similarly to the initial experiment used for fine-tuning the FAN model with patient’s data, the new datasets were split into model training (160 patients, corresponding to N = 1280 images), model validation (20 patients, corresponding to N=160 images), and model testing (20 patients, corresponding to N=160 images). These datasets were used to create six additional models by fine-tuning the pre-trained FAN model using all the 1280 images in the model training set.

Model evaluation

A total of sixteen new models were created: Ten with the ground truth landmarks by dividing the patients’ dataset into subgroups with different number of patients; three more were created by using the landmark information provided by each annotator; and three more were created by averaging the landmarks provided by each pair of annotators. The performance of these sixteen models as well as the original, pre-trained model is reported in this paper only for images that were not used for fine-tuning or validating the models, that is, the model testing subgroup of the first dataset, and the selected 15 photographs of the second dataset.

Accuracy in landmark localization was computed in terms of the Root-Mean-Squared Error (RMSE) between manually annotated and FAN-predicted landmark
positions normalized by the intercanthal distance (NRMSE) [28]. Statistical differences between models were evaluated using the non-parametric Wilcoxon signed-rank test. Statistical significance was considered at \(p < 0.05 \).

Results

Facial landmark detection with Pre-trained and fine-tuned FAN model

Figure 1 shows a box and whiskers plot representing the NRMSE obtained for the model testing group with the pre-trained FAN - corresponding to 0 on the x-axis. The mean and standard deviation of the NRMSE for the pre-trained model were 11.5 ± 3.3%. The remaining results in Figure 1 show that fine-tuning the network with patients' photographs led to improved accuracy in facial landmark localization in this patient population. Moreover, results also show that using more than 40 patients (N=320 photographs) for fine-tuning did not produce further significant improvements in accuracy.

Specifically, fine-tuning the FAN model with 1 subject (N=8 photographs) produced a model with mean and standard deviation of the NRMSE of 10.1 ± 3.4%, a significant reduction from the error produced by the pre-trained network (\(p << 0.05 \)). Including more patients for fine-tuning improved the model accuracy, but including 2, 3, 4 or 5 patients for fine-tuning did not significantly improved the model performance, when compared with results yielded by the FAN model fine-tuned with 1 patient. Using 10 patients (N=80 photographs) resulted in a model with mean and standard deviation of the NRMSE of 8.4 ± 2.6% – a significant reduction from the error produced by the FAN model fine-tuned with 1-5 patients (\(p << 0.05 \)). Increasing the number of patients to 40 (N=320 photographs) resulted in a model with mean and standard deviation of the NRMSE at 6.7 ± 2.0% – a significant reduction from the error produced by the FAN model fine-tuned with 10 patients (\(p << 0.05 \)). Finally, increasing the number of patients used for fine-tuning to 80 or 160 (N= 640 or 1280 photographs respectively) did not result in significant improvement in accuracy when compared with results yielded by the FAN model fine-tuned with 40 patients (\(p > 0.05 \) in both cases).

Algorithmic bias

Figure 2 shows the mean and standard deviation of the NRMSE obtained for the photographs of near normal patients (blue line), patients with moderate paralysis...
(green line), and patients with complete paralysis (red line) with the pre-trained\(^1\) model, corresponding to 0 in the x-axis. Results demonstrate a significant different\(^2\) in the model performance as a function of disease severity. NRMSE changed from\(^3\) 8.3 ± 1.8% for near normal patients, to 9.8 ± 1.2% for patients with moderate\(^4\) paralysis, and to 12.3 ± 2.1% for patients with severe paralysis. Statistical analysis\(^5\) showed a significant difference between near normal and severe paralysis group\(^6\) \((p < 0.05)\), and non-significant different among other groups.\(^7\)

As observed in Figure 2, fine-tuning improved the model performance for all patients groups. In particular, after fine-tuning the model with 40 patients (\(N=320\)) photographs, the NRMSE decreased to 6.1±1.3%, 6.1±0.8%, and 7.1±1.6% for the near normal, moderate paralysis, and complete paralysis groups respectively. Statistical analysis showed no-significant difference between groups \((p=0.99\) between near normal and moderate paralysis, \(p=0.28\) between near normal and complete paralysis, and \(p=0.36\) between moderate paralysis and complete paralysis). Finally, no further improvement in the NRMSE was observed after fine-tuning the model with more than 40 patients.

Annotator bias

Table 1 presents the Euclidean distance (mean ± standard deviation) in pixels\(^8\) between landmarks provided by each annotator. The results show that annotators\(^9\) 1 and 2 had a higher landmark localization agreement than annotators 1 and 3, and annotators 2 and 3.

Table 2 presents the results of the annotator bias analysis. The table shows the NRMSE (mean ± standard deviation) between the position of the landmarks yielded by the six models trained with the databases created by combining different number of annotators compared to the manually annotated landmarks provided by each annotator.

The first three rows of Table 2 present the results of fine-tuning the model with data from one single annotator. These results indicated that a model trained with data from one annotator provided significantly lower NRMSE for testing data from the same annotator as compared to testing data provided by other annotators. Specifically, the model fine-tuned with data from Annotator 1, yielded a NRMSE of 7.9 ± 2.0% when compared against manual annotations provided by the same
The NRMSE significantly increased to 8.2 ± 2.2% (p << 0.05) when compared against manual annotations provided by Annotator 2, and to 8.7 ± 2.4% (p << 0.05) when compared against manual annotations provided by Annotator 3. Similar results were obtained for models fine-tuned with data from other annotators.

Finally, the last three rows of Table 2 present the results of fine-tuning the model with data obtained by averaging the landmark positions provided by each pair of annotators. Results indicated that averaging the landmark positions from two annotators could help to remove the bias against other annotator not seen in the training set; however, these results seem to depend on the agreement between annotators. For instance, we observed that the model created by averaging the annotations provided by Annotators 1 and 3, yielded a NRMSE of 8.0 ± 2.0% and 7.9 ± 2.2% when compared against manual annotations yielded by Annotator 1 and 3 respectively; and the NRMSE did not increase significantly when compared against manual annotations provided by Annotator 2. Similar results were obtained for the model created by averaging the annotations provided by Annotators 2 and 3. In contrast, the model created by averaging the annotations provided by Annotators 1 and 2, who have the highest agreement, yielded a NRMSE of 7.6 ± 1.9% and 7.5 ± 2.0% when compared against manual annotations yielded by Annotator 1 and 2 respectively, and the NRMSE significantly increased to 8.5 ± 2.3% (p << 0.05) when compared against manual annotations provided by Annotator 3.

Discussion

Automatic assessment of orofacial function has the potential to revolutionize the diagnosis and monitoring of neurological diseases including Parkinson’s disease, stroke, ALS, and facial palsy. Translation from laboratory methods to clinically useful tools requires accurate algorithms for automatic localization of facial landmarks in photographs and videos of patients. However, advancements in FA technology have mostly focused on applications tailored for young healthy population, such as identity recognition [12]. Thus, publicly available FA algorithms perform poorly when applied to populations with orofacial abnormalities [9] or elderly subjects with neurological conditions [21]. Previously, addressing this challenge implied acquiring thousands of images with manually annotated landmarks and training FA algorithms using these images [9, 21]. However, recent advances in neural network...
models have provided new alternatives whereby CNN models pre-trained with a large corpus of data are fine-tuned with a relatively small dataset to improve their performance for a specific task or population [22, 29]. In this study, we explored the utility of this technique to improve the accuracy of FA algorithms in patient population, and demonstrated that only a small corpus of representative data – 40 patients with a total of 320 photographs – is needed to remove the algorithmic bias of a well-known CNN model for facial alignment. Next, we discuss the different contributions of this study and its clinical implications.

Fine-tuning FA models

The pre-trained FAN, trained with 230,000 images of healthy subjects [16], performed poorly when applied to images of patients with facial palsy, as measured by a large NRMSE and large error variability. The poor performance might be explained by missing information in the training dataset related to 1) patients’ facial abnormalities, 2) patients’ pose and expression, 3) photographs illumination, and 4) differences in manual annotations between databases used to train and evaluate the model. The results indicated that by fine-tuning the FAN with a handful of patient-specific photographs the network learned additional information that boosted its performance. Even fine-tuning with only 8 photographs, produced a significant improvement in performance (NRMSE reduced from 11.5% to 10.1%). Including more patients’ photographs in the training dataset further improved the model performance. However, the improvement was not linearly related to the number of images used for fine-tuning, and there was a limit to what the network could learn from these images. Our results showed that using 40 patients (N=320 photographs) decreased the NRMSE to 6.7±2.0%, but adding more patients for fine-tuning resulted in non-significant improvements in model accuracy. These results can be explained by the fact that background, illumination, and pose are carefully controlled in these clinical photographs; the main sources of variability are identity, expressions, and orofacial abnormalities. Our results showed that the network was able to explain these sources of variability with a relatively small corpus of data.

Algorithmic bias

In this study, we demonstrated that the well-known FAN model for FA is biased against patients with facial palsy. The model performed significantly worse when
applied to patients with complete paralysis than when applied to near normal pa-
01. This result is in line with our recent results on elderly subjects with dementia
02. [17], [20], and stroke survivors [18]. Furthermore, our results showed that fine-tuning
03. CNN models with representative data significantly improved the model performance
04. when applied to subject with severe facial deformities, and eliminated the algorithm
05. bias against this population. We observed that after fine-tuning the model with 40
06. patients, there was only a small, non-significant, difference in the error obtained
07. when applied to patients with complete paralysis and to near normal patients. We
08. expect that these results will be transferable to other clinical populations.

Annotator bias

To our knowledge, our results are the first to quantitatively demonstrate that FA
09. CNN models trained with data provided by a single annotator are biased against
10. other annotators; these results agreed with observations made in other areas of
11. machine learning [23].

These results supported our hypotheses that was possible to mitigate the effects
12. of annotator bias by averaging the landmark positions provided by multiple annota-
13. tors; and that this effect was influenced by the level of agreement among annotators.

We observed that averaging annotators 1 and 3, and 2 and 3 produced models that
14. were not biased against another annotator. However, averaging annotators 1 and 2,
15. who had the highest agreement, did not have the same effect. Current training ap-
16. proaches for FA algorithms involve combining multiple datasets manually annotated
17. by different groups without any standards, aside from the number of landmarks, and
18. their general locations. Our results indicated that this training approach might be
19. beneficial, as the CNN model will have to adapt to the multiple annotation styles,
20. potentially leading to more flexible models.

Clinical implications

Our results have important implications for future clinical applications of FA. We
21. showed that only a small manually annotated dataset significantly improved the
22. landmark localization accuracy in a clinical population, and that there was a limit
23. to what the model can learn from similar photographs. Based on these results, we
24. suggest that models should be fine-tuned incrementally as data become available,
25. because using even a very small corpus of representative data could significantly
improve the model performance with that population. This approach would help detect when the CNN model stops improving from the addition of more data, which would help to guide the data collection procedure. Finally, we demonstrated that CNN models learn annotators' styles and might be biased against other annotators. Thus, it is advisable to include multiple annotators in the training and validation data to help mitigate annotator bias.

Conclusions

We demonstrated that fine-tuning CNN models with representative data can help eliminate the model bias against clinical populations. We produced an ML algorithm for automatic facial landmark localization in patients with facial palsy that is highly accurate, as compared to pre-trained models, using a only 320 manually annotated photographs for fine-tuning. Our results, open-access tools, and algorithms pave the way to future clinical application of FA, as they facilitate and provide useful guidelines for the application of these techniques in clinical populations.

Ethics Approval and Consent to Participate

Not applicable

Consent for publication

Not applicable

Availability of supporting data

All the models discussed here and Python-based Jupyter notebooks exemplifying the use of the models to obtain landmark position from images are available online (github.com/dguari1/Improving_facial_alignment). The first annotated database cannot be shared online due to patient privacy concerns. Request from research institutes to share the data are reviewed on a case-by-case basis by the MEE Institutional Review Board. The second annotated database is available online for research purposes. For more information on how to obtain the images please refer to [28].

Competing interests

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Funding

DLG is supported by the Michael J. Fox Foundation for Parkinson’s Research.

Author’s contributions

DLG designed the study, participated in data collection, wrote the code, performed the experiments, analyzed the data, and wrote the manuscripts. BT provided technical guidance on the application of ML models for FA, and helped to write the manuscript. TH directed the data collection, and provided clinical scores. YY provided support with data analysis, and helped to write the manuscript.

Acknowledgements

Not applicable
1 Author details

1 KITE — Toronto Rehabilitation Institute, 550 University Av., Toronto, Canada. 2 Department of Otolaryngology/Head and Neck Surgery, Massachusetts Eye and Ear Infirmary and Harvard Medical School, 243 Charles St, Boston, USA. 3 Vector Institute for Artificial Intelligence, 661 University Ave Suite 710, Toronto, Canada. 4 Department of Computer Science, University of Toronto, 214 College St, Toronto, Canada. 5 Institute of Biomaterials and Biomedical Engineering, University of Toronto, Rosebrugh Bldg, 164 College St Room 407, Toronto, Canada. 6 Department of Speech Language Pathology, University of Toronto, 500 University Av., Toronto, Canada. 7 Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Ave., Toronto, Canada.

References

1. Yunusova, Y., Plowman, E.K., Green, J.R., Barnett, C., Bede, P.: Clinical measures of bulbar dysfunction in als. Frontiers in neurology 10 (2019)

2. Richards, M., Marder, K., Cote, L., Mayeux, R.: Interrater reliability of the unified parkinson’s disease rating scale motor examination. Movement Disorders 9(1), 89–91 (1994)

3. Thevenot, J., López, M.B., Hadid, A.: A survey on computer vision for assistive medical diagnosis from faces. IEEE journal of biomedical and health informatics 22(5), 1497–1511 (2017)

4. Greene, J.J., Tavares, J., Guarin, D.L., Jowett, N., Hadlock, T.: Surgical refinement following free gracilis transfer for smile reanimation. Annals of plastic surgery 81(3), 329–334 (2018)

5. Greene, J.J., Tavares, J., Guarin, D.L., Hadlock, T.: Clinician and automated assessments of facial function following eyelid weight placement. JAMA Facial Plastic Surgery 21(5), 387–392 (2019)

6. Bandini, A., Green, J.R., Taati, B., Orlandi, S., Zinman, L., Yunusova, Y.: Automatic detection of amyotrophic lateral sclerosis (als) from video-based analysis of facial movements: speech and non-speech tasks. In: 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 150–157 (2018). IEEE

7. Bandini, A., Green, J.R., Richburg, B., Yunusova, Y.: Automatic detection of orofacial impairment in stroke. In: Interspeech, pp. 1711–1715 (2018)

8. Guarin, D.L., Dusseldorp, J., Hadlock, T.A., Jowett, N.: A machine learning approach for automated facial measurements in facial palsy. JAMA facial plastic surgery 20(4), 335–337 (2018)

9. Guarin, D.L., Yunusova, Y., Taati, B., Dusseldorp, J.R., Mohan, S., Tavares, J., van Veen, M.M., Fortier, E., Hadlock, T.A., Jowett, N.: Toward an automatic system for computer-aided assessment in facial palsy. Facial Plastic Surgery & Aesthetic Medicine 22(1), 42–49 (2020)

10. Bandini, A., Orlandi, S., Giovannelli, F., Felici, A., Cincotta, M., Clemente, D., Vanni, P., Zaccara, G., Manfredi, C.: Markerless analysis of articulatory movements in patients with parkinson’s disease. Journal of Voice 30(6), 766–1 (2016)

11. Li, M.H., Mestre, T.A., Fox, S.H., Taati, B.: Vision-based assessment of parkinsonism and levodopa-induced dyskinesia with pose estimation. Journal of neuroengineering and rehabilitation 15(1), 97 (2018)

12. Jin, X., Tan, X.: Face alignment in-the-wild: A survey. Computer Vision and Image Understanding 162, 1–22 (2017)

13. Yang, J., Liu, Q., Zhang, K.: Stacked hourglass network for robust facial landmark localisation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 79–87 (2017)

14. Kowalski, M., Naruniec, J., Trzcinski, T.: Deep alignment network: A convolutional neural network for robust face alignment. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 88–97 (2017)

15. Fan, H., Zhou, E.: Approaching human level facial landmark localization by deep learning. Image and Vision Computing 47, 27–35 (2016)

16. Bulat, A., Tzimiropoulos, G.: How far are we from solving the 2d & 3d face alignment problem?(and a dataset of 230,000 3d facial landmarks). In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1021–1030 (2017)

17. Bulat, A., Tzimiropoulos, G.: Two-stage convolutional part heatmap regression for the 1st 3d face alignment in the wild (3dfaw) challenge. In: European Conference on Computer Vision, pp. 616–624 (2016). Springer

18. Asgarian, A., Zhao, S., Ashraf, A.B., Erin Browne, M., Prkachin, K.M., Mihailidis, A., Hadjistavropoulos, T., Taati, B.: Limitations and biases in facial landmark detection d an empirical study on older adults with
19. Bandini, A., Rezaei, S., Guarin, D.L., Kulikarni, M., Derrick Lim, M., Boulos, M.I., Zinman, L., Yunusova, Y., Taati, B.: A new dataset for facial motion analysis in individuals with neurological disorders. Journal of Biomedical and Health Informatics (submitted)

20. Buolamwini, J., Gebru, T.: Gender shades: Intersectional accuracy disparities in commercial gender classification. In: Conference on Fairness, Accountability and Transparency, pp. 77–91 (2018)

21. Taati, B., Zhao, S., Ashraf, A.B., Asgarian, A., Browne, M.E., Prkachin, K.M., Mihailidis, A., Hadjistavropoulos, T.: Algorithmic bias in clinical populations—evaluating and improving facial analysis technology in older adults with dementia. IEEE Access 7, 25527–25534 (2019)

22. Zhou, Z., Shin, J., Zhang, L., Gurudu, S., Gotway, M., Liang, J.: Fine-tuning convolutional neural networks for biomedical image analysis: Actively and incrementally. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

23. Beigman, E., Klebanov, B.B.: Learning with annotation noise. In: Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP, pp. 280–287 (2009). Association for Computational Linguistics

24. Paun, S., Carpenter, B., Chamberlain, J., Hovy, D., Kruschwitz, U., Poesio, M.: Comparing bayesian models of annotation. Transactions of the Association for Computational Linguistics 6, 571–585 (2018)

25. Tsuchiya, M.: Performance impact caused by hidden bias of training data for recognizing textual entailment. In: Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)

26. Gururangan, S., Swayamdipta, S., Levy, O., Schwartz, R., Bowman, S., Smith, N.A.: Annotation artifacts in natural language inference data. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 107–112 (2018)

27. Santosa, K.B., Fattah, A., Gavián, J., Hadlock, T.A., Snyder-Warwick, A.K.: Photographic standards for patients with facial palsy and recommendations by members of the sir charles bell society. JAMA facial plastic surgery 19(4), 275–281 (2017)

28. Greene, J.J., Guarin, D.L., Tavares, J., Fortier, E., Robinson, M., Dusseldorp, J., Quatela, O., Jowett, N., Hadlock, T.: The spectrum of facial palsy: The mee facial palsy photo and video standard set. The Laryngoscope 130(1), 32–37 (2020)

29. Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning. Journal of Big data 3(1), 9 (2016)

Table 1: Mean ± standard deviation of the agreement between annotators as measured by the Euclidean distance between landmarks (in pixels) for each photograph. Smaller numbers indicate better agreement.

Annotator 1	Annotator 3	Annotator 3	
Annotator 1	0	–	–
Annotator 2	58.6 ± 22.5	0	–
Annotator 3	72.9 ± 27.3	69.0 ± 23.6	0
Figure 1 Normalized Root Mean Square Error (NRMSE) of facial landmark localization for the FAN model as a function of the number of patients used for fine-tuning the model when applied to photographs of patients with facial palsy.

Figure 2 Normalized Root Mean Square Error (NRMSE) of facial landmark localization for the FAN model as a function of the number of patients used for fine-tuning the model when photographs of near normal patients (blue), patients with moderate facial paralysis (green), and patients with complete facial paralysis (red).
Table 2: Mean ± standard deviation of the NRMSE yielded by models fine-tuned with data provided by a single annotator (rows 1 to 3) and with data obtained by averaging each pair of annotators (rows 4 to 6) when compared to manual annotations provided by each annotator. Bolded results indicate that errors are significantly different \((p < 0.05)\) than others presented in the same row.

Model	Annotator 1	Annotator 2	Annotator 3
Annotator 1	**7.9 ± 2.0**	8.2 ± 2.2	8.7 ± 2.4
Annotator 2	8.2 ± 2.1	**7.3 ± 1.9**	8.6 ± 2.4
Annotator 3	9.0 ± 2.5	8.7 ± 2.6	**8.3 ± 2.6**
Annotator 1&2	7.6 ± 1.9	7.5 ± 2.0	**8.5 ± 2.3**
Annotator 1&3	8.0 ± 2.0	8.0 ± 2.3	7.9 ± 2.2
Annotator 2&3	8.2 ± 2.2	8.1 ± 2.2	8.3 ± 2.5