Ghost cell odontogenic carcinoma of anterior mandible: A rare case report with review of literature

Gopikrishnan Vijayakumar¹, Mala Kamboj¹, Anjali Narwal¹, Anju Devi¹

¹Department of Oral and Maxillofacial Pathology and Oral Microbiology, Post Graduate Institute of Dental Sciences, Pt. BD Sharma University of Health Sciences, Rohtak, Haryana, India

Abstract

A 24-year-old male reported to the outpatient department with a complaint of swelling of the anterior lower jaw region for 9 months with history of traumatic injury and extraction of teeth from the same region, a month before the onset of swelling. Swelling was obvious extra- and intraorally which on examination presented as a soft to firm non-tender and non-fluctuant mass with an approximate size of 4 cm × 3 cm, extending from 34 to 43 region with obliteration of labial vestibule. Panoramic radiograph and cone-beam computed tomography showed a well-defined radiolucency in the mandibular anterior region crossing the midline with erosion of labial bony plates and root of 42 along with a tooth-like radiopaque mass within the lesion. Provisional diagnoses of odontogenic keratocyst, ameloblastomas, central giant cell granuloma and calcifying epithelial odontogenic tumor were listed. The histopathological and immunohistochemical examination of lesion followed by the biopsy confirmed the diagnosis of Ghost cell odontogenic carcinoma.

Keywords: Dentinogenic ghost cell tumor, ghost cell odontogenic carcinoma, ghost cells,
Personal and family history
The personal and family history was not relatable to the present condition.

Physical examination
Extraoral examination revealed a single large asymptomatic firm swelling approximately measuring 4 cm × 4 cm in the mandibular midline. The overlying skin showed scar of the previous trauma. Intraorally, the swelling was soft to firm, nontender and nonfluctuant of approximately size 4 cm × 3 cm, extending from 34 to 43 region with obliteration of labial vestibule [Figure 1b and c]. The mucosal surface was normal in color without signs of any drainage. Anterior mandibular teeth 41, 31, 32 and 33 were missing due to previous trauma while 42 showed grade II mobility.

Imaging examinations
Orthopantomogram (OPG) showed well-defined unilocular radiolucency in the mandibular anterior region crossing the midline and root resorption of 42 along with a tooth-like radiopaque mass within the lesion [Figure 2a]. Cone-beam computed tomography (CBCT) showed a round unilocular lesion with complete destruction of labial bony plate and irregular resorption front towards lingual side [Figure 2b]. Non uniform resorption of bone and a tooth-like calcification was evident in the 3D reconstruction image of CBCT [Figure 2c].

Laboratory examinations
The routine blood examinations showed no alterations.

Cytology findings
The thick yellow fluid discharge at the time of incision biopsy on H&E-stained smear showed population of large oval to round cells with vesicular as well as hyperchromatic nuclei within a background of red blood cells.

Histopathologic findings
Microscopically, unencapsulated sheets of proliferating odontogenic epithelial cells were seen with a dual cellular pattern. Few cells were round to ovoid with eosinophilic cytoplasm and hyperchromatic nuclei and the other composed of basaloid cells with pale cytoplasm and large vesicular hyperchromatic nuclei [Figure 3a-c]. Areas of calcifications were seen close to few tumor islands and within the ghost cell clusters [Figure 3d]. The tumor cells showed extensive nuclear and cellular pleomorphism, cellular atypia and increased mitotic figures (>6/HPF) [Figure 4a-c]. Features of ghost cell keratinization were evident at many focuses as large round pale eosinophilic malignant epithelial cells which lack nuclear features [Figures 3c and 4d]. Multinucleated giant cells were evident at places were the ghost cell interacted with overlying connective tissue stroma [Figure 5a]. The possibility of any odontogenic cyst, COC, ameloblastomas and calcifying epithelial odontogenic tumor (CEOT) were ruled out narrowing down the differential diagnosis to GCOC and DGCT. The presences of dentinoid in
such calcifications were ruled out using Van Gieson’s staining [Figure 5b]. Subsequent immunohistochemical examination using Ki67 (>60%) [Figure 5c] showed a high malignant potential of tumor while higher p53 expression, [Figure 5d] both favored a malignant ghost cell lesion the GCOC over the benign DGCT. Correlating the clinical, radiological, histopathological and IHC expressions the final diagnosis was GCOC.

DISCUSSION

The calcifying odontogenic cyst (COC), DGCT and GCOC makes up a spectrum of lesions characterized by odontogenic epithelium with ghost cell keratinization and calcifications. The cystic entity among these known as COC also known as Gorlin cyst, first identified by Gorlin in 1962 and was considered a nonneoplastic cyst. In 1981, Praetorius et al. classified COCs into cystic and neoplastic (solid) types. In the new 4th edition of the WHO classification 2017, the consensus group reverted the terminology and mentioned the cyst as calcifying odontogenic cyst and the neoplasm as DGCT. The malignant variant of with features of one or both of these lesions where termed GCOC.

GCOC is an extremely rare malignant odontogenic tumor with only 50 cases reported in literature till date with histopathological evidence [Table 1]. This appears to be more common in Asian population with a male predilection (male:female ratio of 3.4:1). The age of occurrence is variable from 10 to 89 but with a peak incidence in the fourth decade of life (mean age-43.4 years). GCOC occurs more frequently in the maxilla than the mandible with a usual presentation of a painful swelling with local paresthesias. Of the 51 cases reviewed, 31 cases (62%) were in maxilla and 19 (38%) in mandible. The size of swelling is variable from 3 mm to a maximum of 10 cm with local destructive features. Most cases showed recurrence at least once and few were with multiple recurrences as well as distant metastasis. Few cases were severe enough to lead to death of patient all of which denotes the malignant potential of the tumor. The consolidated data of literature till date is tabulated in Table 2.

Origin

GCOC can appear as either “de novo” or as malignant transformation of a preexisting COC, CCOT, DGCT or other odontogenic tumors. A careful patient history and clinical data is mandatory to ensure the origin of GCOC. In literature 28 cases found to be de novo in origin whereas 15 cases had previous history of ghost cell lesion spectrum COC, CCOT or DGCT. Three cases had history
of ameloblastoma where as a non odontogenic cyst and CEOT constituted one each.11,14,22 One case reported recurrent maxillary GCOC with suspected cholesterol granuloma of the maxillary sinus, which was improperly diagnosed as CEOT [Table 2].46 In our case, history from the patient was inconclusive as the patient has not undergone any examination and related investigations for a similar lesion in the same site before the trauma. We assume that the trauma may have aggravated a preexisting lesion but lack of histopathological evidence of such a lesion concludes the origin to be de novo.

Radiology

GCOC in most cases shows a mixed radiolucent and radiopaque pattern with poorly defined borders, with or without root resorption and tooth displacement. The radiographic differential diagnosis thus can include other mixed tumors such as a malignant bone tumor (osteosarcoma) or other odontogenic tumors (ameloblastomas, CEOT). Of the 51 cases reviewed, 45 cases reported radiographic features. Most cases had OPG and CT findings while 4 cases had positron emission tomography (PET) scan findings. Few cases had radiographic details of unspecified imaging modality. Most cases were radiolucent lesions to mixed radiolucent–radiopaque lesions while few were radiopaque. Four cases reported with computed tomography CT) scan image revealed hypermetabolic lesion [Table 2]. However, radiographic features of GCOC are not specific and only a differential diagnosis of possible malignant tumors.

Histology

According to the 2017 World Health Organization guidelines the diagnosis of GCOC is purely dependent on the histological examination of the tumor. This guideline is followed for the diagnosis of GCOC as well as to rule out its histological differential diagnosis DGCT [Table 3].4,8 The histological features mainly include groups of ghost cells, necrosis, prominent mitoses, infiltrative growth pattern and aggressive behavior.9 The accurate diagnosis of GCOC requires extensive sampling of the specimen as the features of malignancy can be focal and the other areas may show benign histology. Two cases reported as GCOC in in literature was avoided from the data as the histopathological features did not show any features of malignancy to be diagnoses as GCOC.2

Special stains

The use of various special stains are reported in demonstrating ghost cells and differentiating dentinoid material in ghost cell lesions In a study by Sun ZJ elt al the ghost cells were stained red and the dentinoid material was stained blue by Heidenhain–Azan stain.24 The individual cell disintegration (ghost cell keratinization), extracellular amorphous eosinophilic material (dentinoid) and calcifications can be distinguished by Van Gieson’s stain.4 The stain differentiates the dentinoid (pink) with ghost cells (yellow), collagen and other calcifications.

Immunohistochemistry

The immunohistochemical analysis of GCOCs was first described by Scott and Wood proving the epithelial origin by a positive anti-cytokeratin expression.11 Folpe \textit{et al}. studied extensively on immunohistochemical expression of the tumor and reported that it had epithelial characteristics with squamoid differentiation. According to their study GCOC showed high reactivity for high and low molecular weight cytokeratin, carcinoembryonic antigen, mild reactivity for vimentin, low immunoreactivity for proliferating cell nuclear antigen and no immunohistochemical evidence of p53 overexpression.16 Later, in study by Lu \textit{et al}. three cases expressed high molecular weight keratin but were negative for CEA, vimentin, S-100 and synaptophysin and showed variable staining for neuron-specific enolase. However, the proliferation index, as assessed by p53 and Ki67 staining showed higher positive expression.19 The pleomorphic tumor cells were focally positive, and nucleated cells adjacent to the ghost cells were positive for cytokeratins and involucrin. Bcl-2 immunostaining was found negative whereas Bcl-XL was demonstrated in
Years	Author	Age/sex	Presenting complaint	Site	Treatment	Origin	Recurrence and follow-up
1985	Ikemura et al.	48/F	Swelling of upper gingiva and hard palate on left side	Maxilla	Surgery	De novo	1 recurrence and no evidence of disease after follow-up
1986	Ellis et al.	64/M	Painful Swelling in anterior mandible	Mandible	Surgery	OPG-Mixed	1 recurrence death by intracranial extension
1986	Ellis et al.	17/M	Ulcerated mass	NA	Not specified-Mixed	De novo	1 recurrence
1987	Godbole et al.	46/M	Painless swelling of the mid right maxilla and bleeding from site	Maxilla	Surgery	OPG and waters mixed	Free of tumor after 10 years
1989	Scott and Wood	30/M	Swelling, left lacrimation and nasal blockage	Maxilla	Surgery	OPG-Mixed	4 recurrences and lost to follow-up
1992	McCary et al.	13/F	Extraction site that had not healed in 2 years	Maxilla	Surgery	OCC	No recurrence and no evidence of disease after follow-up
1993	Dubiel-Bigaj et al.	42/F	A massive, ulcerative and rapidly growing tumor	Maxilla	Surgery	OPG-Mixed	2 recurrences. Alive with residual tumor for 3 years
1994	Star and Ng	39/M	A swelling on the right side of the face	Maxilla	Surgery	OPG-RL	3 recurrences. No evidence of disease after follow-up
1996	Alcayde et al.	7/F	Painless swelling from infraorbital region to the left mandible	Maxilla	Surgery	OPG-RL	1 recurrence death by intracranial extension
1998	Falge et al.	26/M	A progressively enlarging right cheek mass	Maxilla	Surgery	OPG-Mixed	1 recurrence and no recurrence after 6 years
1999	Carle and Arendt	57/M	Difficulty in breathing and swelling of the upper lip	Maxilla	Radiation Therapy	OPG-Mixed	No recurrence after 7 years
2000	Kim et al.	33/M	Mandibular swelling	Mandible	Surgery	OPG-Mixed	2 recurrences. Alive with and no evidence of disease after follow-up
2002	Kashiya et al.	59/M	A painless swelling on the right side of the mandible	Mandible	Surgery	OPG-RL	4 recurrences and lost to follow-up
2004	Cheng et al.	36/M	A painless swelling in the right maxilla	Maxilla	Construction View	OPG-Mixed	No recurrence after 7 years
2005	Cheng et al.	35/M	A painless swelling in the right maxilla	Maxilla	Surgery	OPG-Mixed	No recurrence after 7 years

Table 1: List of case reports on ghost cell odontogenic carcinoma with its significant features. Contd....
Presenting complaint	Site	Treatment	Size (cm)	Age (male/female)	Years	Recurrence and follow-up	Origin	Imaging (modality-finding)		
Pain in the right maxillary mass	Mandible	Surgery	4×2×2	44/M	2004	1 recurrence	COC	OPG-RL		
Tenderness and swelling of the face	Mandible	Surgery	2×1	36/M	2004	No evidence of disease after 18 months	COC	CT-lytic lesion		
A painful swelling in the right maxilla	Maxilla	Surgery	3×3	40/M	2007	Recurrence after 1 year	De novo	OPG-Mixed		
A painful swelling in the maxilla	Maxilla	Surgery	10×10	61/M	2004	No evidence of disease after 6 months	NA	CBCT		
A slowly growing, painful and tender swelling on the right side of the face	Maxilla	Surgery	2×1	68/M	2007	1 recurrence	COC	OPG-RL		
A slowly growing mass in the right maxilla	Mandible	Surgery	10×10	23/F	2009	Recurrence after 1 year	De novo	CBCT		
A painful swelling on the right mandible	Mandible	Surgery	10×10	2009	2009	1 recurrence	De novo	CBCT		
A maxillary swelling with local paraesthesia in the left side of the face	Mandible	Surgery	2×1	51/M	2010	No evidence of disease after 18 months	COC	OPG-RL		
A gingival swelling in area of previously treated cyst	Mandible	Surgery	3×2	36/M	2009	2 recurrence	De novo	OPG-RL		
A painful swelling in the left maxilla	Maxilla	Surgery	4×2	44/M	2010	2 recurrence within 22 months	COC	OPG-RL		
A gingival swelling	Mandible	Surgery	4×3	23/F	2010	1 recurrence	De novo	OPG-RL		
A slowly growing painless mass in the right maxilla	Maxilla	Surgery	3.5×2.5×2	38/M	2009	No evidence of disease after 1 year	COC	OPG-RL		
A slowly growing, painful and tender swelling on the right side of the face	Maxilla	Surgery	4×2×2	54/M	2011	No evidence of disease after 1 year	COC	OPG-RL		
A slowly growing mass in the right mandible	Mandible	Surgery	3×3	47/F	2010	1 recurrence	COC	OPG-RL		
A painless swelling in the region	Mandible	Surgery	3×2×2	40/M	2011	No evidence of disease after 1 year	COC	OPG-RL		
A slowly growing mass in the lower right jaw	Mandible	Surgery	5×4	30/M	2011	1 recurrence and no recurrence after 4 years	COC	OPG-RL		
Recurrence of previous swelling of the left mandible	Mandible	Surgery	1×1	70/F	2011	No evidence of disease after 1 year	De novo	OPG-RL		
A gingival swelling	Mandible	Surgery	4×3	23/F	2010	1 recurrence	De novo	OPG-RL		
A slowly growing, painless mass in the right maxilla	Maxilla	Surgery	3×2×2	51/M	2010	No evidence of disease after 1 year	COC	OPG-RL		
A slowly growing, painful mass in the right maxilla	Mandible	Surgery	2×1	36/M	2011	1 recurrence	De novo	OPG-RL		
A recurrence at 7th month	Mandible	Radiotherapy	De novo	89/M	2010	No evidence of disease after 1 year	De novo	OPG-RL		
A maxillary mass in area of the previously treated cyst	Maxilla	Surgery	2×1	47/F	2009	3 recurrence	De novo	OPG-RL		
A gingival swelling	Mandible	Surgery	2×1	23/F	2011	1 recurrence	De novo	OPG-RL		
A painless swelling in the region	Mandible	Surgery	3×2×2	36/M	2011	No evidence of disease after 1 year	COC	OPG-RL		
A gingival swelling	Mandible	Surgery	2×1	23/F	2011	1 recurrence	De novo	OPG-RL		
A gingival swelling	Mandible	Surgery	2×1	23/F	2011	1 recurrence	De novo	OPG-RL		
A painless swelling in the region	Mandible	Surgery	3×2×2	36/M	2011	No evidence of disease after 1 year	COC	OPG-RL		
n	Years	Author	Age/sex (male/female)	Presenting complaint	Size (cm)	Site	Imaging (modality-finding)	Treatment	Origin	Recurrence and follow-up
----	-------	-------------------------------	-----------------------	---	-----------	----------	----------------------------	----------------	------------	--
42	2015	Renu Sukumaran et al.	54/M	Pain in the left malar prominence and epistaxis	4.6×4.5×3.8	Maxilla	NA	Surgery, radiotherapy	De novo	Metastasis to lung in 2 years
43	2015	Safia K. Ahmed et al.	10/M	Fluctuant mass in the right maxilla	5.3cms long	Maxilla	CT-soft tissue lesion PET-FDG	Surgery, radiotherapy	De novo	No evidence of disease after 1.2-year follow-up
44	2017	Gomes et al.	45/F	Abnormality on the maxillary right gingiva	3×2.5×1.7	Maxilla	3D CT-soft tissue lesion OPG-RL PET	Surgery	De novo	No evidence of disease after 2-year follow-up
45	2017	Namana M et al.	37/M	Pain in the lower right back tooth region	NA	Mandible	CT-soft tissue lesion MRI-mixed	Surgery	De novo	Recurrence after 1 year with lung metastasis 3 recurrence 10th, 22nd, 28th months, patient died 3 years and 10 months after initial diagnosis. Under follow-up
46	2017	Miwako S et al.	65/M	Painful swelling of the left maxilla	4 cms long	Maxilla	CT-soft tissue lesion MRI-mixed	Surgery, chemotherapy Radiotherapy	From CCOT	
47	2017	Sang Yoon Park et al.	53/M	Slow growing painless swelling and bleeding from right mandible	6.4×6.1×5.9	Mandible	OPG-RL CT-RL PET	Surgery	De novo	
48	2018	Remya et al. (India)	39/M	Painful swelling on the right side of the face of 3 months' duration	9×6 × 5	Mandible	OPG-RL CT-RL PET	Surgery	De novo	no recurrence after 6 months
49	2018	Ohata et al.	44/M	Swelling in the left maxilla	3×2.5	Maxilla	CT-mixed lesion PET-FDG	Surgery	From unknown cyst	Free from recurrence and metastasis for 3 years after surgical resection No evidence of recurrence or metastasis after the 20-month
50	2018	Qin et al.	41/M	Bloody purulent rhinorrhea with a peculiar smell in the right nasal cavity	3.5×2.5×2.9	Maxilla	MRI-soft tissue mass	Surgery, Chemotherapy Radiotherapy Incision Biopsy	From cholesterol granuloma of the maxillary sinus De novo	Under chemotherapy and follow-Up
51	2019	Present case (India)	23/M	Swelling on anterior jaw region	4×3	Mandible	OPG-RL CT-Lytic lesion	Surgery		Under chemotherapy and follow-up

M: Male, F: Female, OPG: Orthopathamogram, CT: Computed tomography, MRI: Magnetic resonance imaging, RL: Radiolucent, RO: Radiopaque
malignant epithelial cells but ghost cells were faintly positive for Bcl-XL. Bax positivity was expressed in ghost cells and in nucleated cells adjacent to ghost cells, but it was not found in pleomorphic tumor cells. Nucleated cells immediately adjacent to ghost cells and pleomorphic epithelial cells had a positive reaction in Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling assay used to detect cells undergoing apoptosis.\[29\] In a study by Roh et al. the osteoclast-related cytokines, Tartrate resistant acid phosphatase and vitronectin receptor were detected in the ghost cells, but they were not expressed in the tumor cells.\[25\] Recent studies reported higher number of malignant epithelial cells expressing cytokeratin, Ki-67 and p53.\[24,29,34,38,43,45,48\] In cases reported by Zhu et al. the positive expression rate of Ki-67 was 61.8% which indicates that cell proliferation activity is significantly higher. Only a few ghost cells were positive for MMP-9 while all were negative for Ki-67.\[51\] In one study, tumor cells were positive for cytokeratin and p63 and were negative for TTF1 and CK7.\[39\] Expression of Syndecan-1 was also observed in one study in which it was frequently expressed in the cells resembling the stellate reticulum and ameloblastomatous proliferation but the stromal cells were negative for Syndecan-1.\[48\]

Genetic background

Gene alterations in GCOC were first studied and reported by Rappaport et al. Mutation of the β-catenin gene was noted at codons 33. They also reported of three genomic alterations: CTNNB1 S33C, CREBBP K1741* and MLL2 S1997fs*44.\[34\] An extensive integrative genomic and transcriptomic analysis of GCOC studied by Bose et al. reported numerous genomic alterations. There was homozygous deletion of RB1 locus, homozygous frame shift mutation in APC gene and also a novel fusion involving the TCF4 and PTPRG genes. They also observed several alterations in the Sonic Hedge Hog gene (SHH) pathway including copy number gains in SHH and GLI1 genes accompanied by increased expression of these genes.\[49\] However, the exact genetic background of the tumor is yet to be established by further studies.

Recurrence, metastasis and survival

A recurrence rate of 63.4% has been reported in literature.\[47\] The prognosis shows a 5-year survival rate of 73%.\[6,19\] GCOC being a rare and unpredictable odontogenic malignancy, long-term surveillance of patients is mandatory as metastasis to distant sites has been reported. In literature review of 51 cases, 13 cases showed no recurrence after surgical excision but 18 cases had local recurrence once after initial treatment and 9 cases had multiple recurrence. Five cases showed distant metastasis, and in seven cases, tumor leads to death of patients [Tables 1 and 2].

Declaration of patient consent

The authors certify that they have obtained all appropriate patient consent forms. In the form the patient(s) has/have given his/her/their consent for his/her/their images and other clinical information to be reported in the journal.
The patients understand that their names and initial s will not be published and due efforts will be made to conceal their identity, but anonymity cannot be guaranteed.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

REFERENCES
1. Ikemura K, Horie A, Tashiro H, Nandate M. Simultaneous occurrence of a calcifying odontogenic cyst and its malignant transformation. Cancer 1985;56:2861-4.
2. Jia MQ, Jia J, Wang L, Zou HX. Ghost cell odontogenic carcinoma of the jaws: Report of two cases and a literature review. World J Clin Cases 2019;7:357-65.
3. Goldenberg D, Scibetta J, Tufano RP. Odontogenic ghost cell carcinoma. Head Neck 2004;26:378-81.
4. Remya K, Sudha S, Nair RG, Jothi H. An unusual presentation of ghost cell odontogenic carcinoma: A case report with review of literature. Indian J Dent Res 2018;29:238-43.
5. Gorlin RJ, Pindborg JJ, Odont, Clausen FP, Vickers RA. The calcifying odontogenic cyst – A cysta possible analogue of the cutaneous calcifying epithelioma of Malherbe. An analysis of fifteen cases. Oral Surg Oral Med Oral Pathol 1962;15:1235-43.
6. Praetorius F, Hjorting-Hansen E, Gorlin RJ, Vickers RA. Calcifying odontogenic cyst. Range, variations and neoplastic potential. Acta Odontol Scandinavia 1981;39:227-40.
7. Speight PM, Takata T. New tumour entities in the 4th edition of the World Health Organization Classification of Head and Neck tumours: Odontogenic and maxillofacial bone tumours. Virchows Arch 2018;472:331-9.
8. El-Naggar AK, Chan JK, Grandis JR, Takata T, Slootweg PJ, editors. World Health Organization Classification of Head and Neck tumours: Neoplastic conditions of the oral and maxillofacial region. IARC Press; 2017. p. 193-203.
9. Naggar AK, Chan JK, Grandis JR, Takata T, Slootweg PJ, editors. Odontogenic and maxillofacial bone tumours. Virchows Arch 2006;452:331-9.
10. Ellis GL, Shmookler BM. Aggressive (malignant?) epithelial odontogenic ghost cell tumor. Oral Surg Oral Med Oral Pathol 1986;61:471-8.
11. Grodjesk JE, Dolinsky HB, Schneider LC, Dolinsky EH, Doyle JL. Odontogenic ghost cell carcinoma. J Oral Maxillofac Surg 1987;65:576-81.
12. Scott J, Wood GD. Aggressive calcifying odontogenic cyst – A possible variant of ameloblastoma. Br J Oral Maxillofac Surg 1989;27:53-9.
13. McCoy BP, Carroll MK, Hall JM. Carcinoma arising in a dentinogenic ghost cell tumor. Oral Surg Oral Med Oral Pathol 1992;74:371-8.
14. Dubiel-Bigaj M, Olszewski E, Stachura J. The malignant form of calcifying odontogenic cyst. A case report. Patol Pol 1993;44:39-41.
15. Sier CH, Ng KH. Aggressive (malignant?) epithelial odontogenic ghost cell tumour with features of the maxilla. J Laryngol Otol 1994;108:269-71.
16. Alcalde RE, Sasaki A, Misiak M, Matsumura T. Odontogenic ghost cell carcinoma: Report of a case and review of the literature. J Oral Maxillofac Surg 1996;54:108-11.
17. Folpe AL, Tsue T, Rogerson L, Weymuller E, Oda D, True LD. Odontogenic ghost cell carcinoma: A case report with immunohistochemical and ultrastructural characterization. J Oral Pathol Med 1998;27:185-9.
18. Castle JT, Arendt DM. Aggressive (malignant) epithelial odontogenic ghost cell tumor. Ann Diagn Pathol 1999;3:243-8.
19. Kaminjo R, Miyaoaka K, Tachikawa T, Nagamo M. Odontogenic ghost cell carcinoma: Report of a case. J Oral Maxillofac Surg 1999;57:1266-70.
39. Sukumaran R, Somarathan T, Kattoor J. Odontogenic ghost cell carcinoma with pulmonary metastasis. J Oral Maxillofac Pathol 2015;19:371-4.
40. Ahmed SK, Watanabe M, deMello DE, Daniels TB. Pediatric metastatic odontogenic ghost cell carcinoma: A multimodal treatment approach. Rare Tumors 2015;7:73-5.
41. Gomes JP, Costa AL, Chone CT, Altemani AM, Altemani JM, Lima CS. Three-dimensional volumetric analysis of ghost cell odontogenic carcinoma using 3-D reconstruction software: A case report. Oral Surg Oral Med Oral Pathol Oral Radiol 2017;123:e170-5.
42. Namana M, Majumdar S, Uppala D, Avv A, Rao AK. Ghost cell odontogenic carcinoma arising denovo with distant metastasis: A case report and review of literature. J Clin Diagn Res 2017;11:ZD01-3.
43. Miwako S, Hiroto I, Takahumi N, Junichi H, Tadahide N, Yoshinori J, et al. Ghost cell odontogenic carcinoma transformed from dentinogenic ghost cell tumor of the maxilla after recurrences. J Oral Maxillofac Surg Med Pathol 2017;29:438-42.
44. Park SY, Park J, Kwon DH, Kim SM, Myoung H, Lee JH. Ghost cell odontogenic carcinoma on right mandible and its respective surgical reconstruction: A case report. J Korean Assoc Oral Maxillofac Surg 2017;43:415-22.
45. Ohata Y, Kayamori K, Yukinori A, Sumikura K, Ohsako T, Harada H, et al. A lesion categorized between ghost cell odontogenic carcinoma and dentinogenic ghost cell tumor with CTNNB1 mutation. Pathol Int 2018;68:307-12.
46. Qin Y, Lu Y, Zheng L, Liu H. Ghost cell odontogenic carcinoma with suspected cholesterol granuloma of the maxillary sinus in a patient treated with combined modality therapy: A case report and the review of literature. Medicine (Baltimore). 2018 Feb;97(7):e9816. doi: 10.1097/MD.0000000000009816.
47. de Arruda JAA, Monteiro JLG, Abreu LG, de Oliveira Silva LV, Schuch LF, de Noronha MS, et al. Calcifying odontogenic cyst, dentinogenic ghost cell tumor, and ghost cell odontogenic carcinoma: A systematic review. J Oral Pathol Med 2018;47:721-30.
48. da Silva WG, dos Santos TC, Cabral MG, Azevedo RS, Pires FR. Clinicopathologic analysis and syndecan-1 and Ki-67 expression in calcifying cystic odontogenic tumors, dentinogenic ghost cell tumor, and ghost cell odontogenic carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol 2014;117:626-33.
49. Bose P, Pleasance ED, Jones M, Shen Y, Ch’ng C, Reisle C, et al. Integrative genomic analysis of ghost cell odontogenic carcinoma. Oral Oncol 2015;51:e71-5.