Evaluation of Different Fungi Toxicants against Yellow Rust Diseases on Bread Wheat (*Triticum aestivum* L.) in the Cold Arid Zone of Kargil, Ladakh (J&K), India

Nassreen F. Kacho¹*, Nazir A. Bhat², Nazir Hussain¹ and Kunzang Lahmo³

¹KrishiVigyan Kendra, Kargil1-194103 Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India

²Department of Plant Pathology, Faculty of Agriculture, Wadura Spore Kashmir, India

³Krishi Vigyan Kendra, Leh, India

*Corresponding author

A B S T R A C T

A field experiment was conducted to determine the efficacy of different triazole fungicides against yellow rust of wheat caused by *Puccina striiformis*. The experiment field was divided in three part one part sprayed with propiconizole. Five fungicide (propiconazole 10EC, tebuconazole 25 EW, difenconazole 25 EC, hexaconazole 5EC andazoxystrobulin+ difenconazole were used in the experiment. All the fungicide treatment significantly reduced the disease intensity by 6.1% to 9.5% as compared to control (35.5%). The minimum disease intensity (6.1%) was recorded in treatment where propoconizole before disease appearance and ozoxystrobulin + difenconazole after disease appearance was sprayed followed by propiconazole and tebuconazole with disease intensity of 7.8%. Whereas 8.2 percent disease intensity was recorded in treatment where propoconizole was again sprayed after disease appearance followed by hexaconazole (9.3%). Whereas, maximum disease intensity was recorded where propoconzole and hexaconazole was sprayed.

Keywords
Fungicide, Hexaconazole, Cereals crop, Yellow rust disease, Propoconizole

Article Info
Accepted: 26 October 2019
Available Online: 10 November 2019

Introduction

Bread wheat (*Triticum aestivum* L.) is one of the most widely grown and most consumed food crops all over the world. It is the second most important cereals crop after rice and it contributing substantially to the national food security by providing more than 50% of calories to the people. Wheat (*Triticum aestivum* L.) is a staple food of billions of people in the world, used to make flour for leavened, flat and steamed bread, cookies,
cakes, pasta, noodles, beer and alcohol (Habib and Khan, 2003). Annually, wheat is produced on 224.53 million hectares of land and 672.2 million metric tons of wheat is produced in the world (FAO, 2013). According to this report the world average wheat production is 2.99 tons /ha.

In Kargil District of Ladakh (J&K), wheat is the second most important crop after barley. However, the production and productivity of wheat is curtailed by various biotic and abiotic factors. Among the biotic factors, yellow rust disease is the most threaten and wheat production bottlenecks. Many part of District, particularly the cooler area, is now becoming hot spot for wheat rusts, where the periodic epidemics cause significant yield losses and reduction. Therefore, the present study was undertaken to check the best fungicide for controlling of yellow rust under cold arid zone of Kargil, Ladakh.

Materials and Methods

Bread wheat cultivar Krokar (Local), highly susceptible to yellow rust (Puccinia striiformis f.sp. tritici(W) disease was planted at yellow rust hot spot location; Stikchey (District Kargil) in plots of 2800m2, during the year 2017 and 2018 and the experiment was laid in randomized block design (RBD) with three replications for each treatment. Seed rate of 240kg/ha was sown in 2nd week of April. Test fungicides, Propiconazole 25 EC(0.1%), Tebuconazole 10 EC (0.1%), Difenconazole (0.05%), Azoxystrobulin + Difenconazole (0.05%), Hexaconazole 10EC (0.05%), Mancozeb+carbendazim (0.25%), Chlorothalonil (0.3%) and Mancozeb (0.3%), were used. The plot was first divided equally (700m2) into four parts and sprayed one part with sterile water and another three with Propiconazole, Chlorothalonil and Mancozeb before the appearance of yellow rust respectively. Second fungicide were applied at 5% severity level of yellow rust (booting crop growth stage) and remaining 300m2 was kept as check. Test and check fungicides were applied manually using Knapsack sprayer delivering 250 liter of water/ha. Rust severity was recorded in percentage using modified Cobb Scale (Peterson et al., 1948).

Results and Discussion

In 2015-16 main cropping season yellow rust disease pressure was very high and excellent disease epidemics was developed to the level of creating significant difference among all experiment plots. Fungicide spray treatments significantly reduced the disease over control. There was statistically significant difference between the test fungicides. In treatment T11 (where Propiconazole @0.1% and Difenconazole @ 0.05% were sprayed) significantly reduced the disease intensity and incidence by 6.14% and 19.03 % respectively followed by treatment T12 and T9 by 7.59 and 8.77 respectively. The treatment T10 and T13, was not significantly difference. However, from visual field observation all the test fungicides showed comparable level of efficacy in controlling disease as compared to unsprayed plot. It is witnessed from the Table that treatment T2, T4, T7, T14 and T21 are at par with each other. Similarly there is no statistical difference among T3, T5, and T24. T18 and T23 are also at par with each other. It is evident from Table 2 that T17, T20, T26 and T27 showed comparable level of efficacy in reduction of rust severity and incidence. Whereas, T8, T15, T22 and T28 showed disease intensity ranged from 29.17% to 33.16 % compared to the plot where only sterile water sprayed and control where disease intensity showed 39.17 and 41.09 respectively.
Table 1 Detail of the fungi toxicants evaluated under field conditions

Treatment No.	Treatment Code	Treatment Details	First Spray (BD)	Second Spray (AD)
T-1	P₀ F₀	Sterile water	Sterile water	Propiconazole @ 0.1%
T-2	P₀ F₁	Propiconazole @ 0.1%	Sterile water	Tebuconazole @ 0.1%
T-3	P₀ F₂	Tebuconazole @ 0.1%	Sterile water	Difenconazole @ 0.05%
T-4	P₀ F₃	Difenconazole @ 0.05%	Azoxytrobulin + Difenconazole @ 0.05%	Hexaconazole @ 0.05%
T-5	P₀ F₄	Azoxytrobulin + Difenconazole @ 0.05%	Hexaconazole @ 0.05%	Mancozeb + carbendazim @ 0.25%
T-6	P₀ F₅	Mancozeb + carbendazim @ 0.25%	Propiconazole @ 0.1%	Sterile water
T-7	P₀ F₆	Propiconazole @ 0.1%	Sterile water	Tebuconazole @ 0.1%
T-8	P₁ F₀	Tebuconazole @ 0.1%	Sterile water	Difenconazole @ 0.05%
T-9	P₁ F₁	Difenconazole @ 0.05%	Azoxytrobulin + Difenconazole @ 0.05%	Hexaconazole @ 0.05%
T-10	P₁ F₂	Hexaconazole @ 0.05%	Mancozeb + carbendazim @ 0.25%	Propiconazole @ 0.1%
T-11	P₁ F₃	Propiconazole @ 0.1%	Sterile water	Tebuconazole @ 0.1%
T-12	P₁ F₄	Tebuconazole @ 0.1%	Sterile water	Difenconazole @ 0.05%
T-13	P₁ F₅	Difenconazole @ 0.05%	Azoxytrobulin + Difenconazole @ 0.05%	Hexaconazole @ 0.05%
T-14	P₁ F₆	Hexaconazole @ 0.05%	Mancozeb + carbendazim @ 0.25%	Propiconazole @ 0.1%
T-15	P₂ F₀	Mancozeb + carbendazim @ 0.25%	Sterile water	Propiconazole @ 0.1%
T-16	P₂ F₁	Propiconazole @ 0.1%	Sterile water	Tebuconazole @ 0.1%
T-17	P₂ F₂	Tebuconazole @ 0.1%	Sterile water	Difenconazole @ 0.05%
T-18	P₂ F₃	Difenconazole @ 0.05%	Azoxytrobulin + Difenconazole @ 0.05%	Hexaconazole @ 0.05%
T-19	P₂ F₄	Hexaconazole @ 0.05%	Mancozeb + carbendazim @ 0.25%	Propiconazole @ 0.1%
T-20	P₂ F₅	Mancozeb + carbendazim @ 0.25%	Sterile water	Propiconazole @ 0.1%
T-21	P₂ F₆	Propiconazole @ 0.1%	Sterile water	Tebuconazole @ 0.1%
T-22	P₃ F₀	Tebuconazole @ 0.1%	Sterile water	Difenconazole @ 0.05%
T-23	P₃ F₁	Difenconazole @ 0.05%	Azoxytrobulin + Difenconazole @ 0.05%	Hexaconazole @ 0.05%
T-24	P₃ F₂	Hexaconazole @ 0.05%	Mancozeb + carbendazim @ 0.25%	Propiconazole @ 0.1%
T-25	P₃ F₃	Propiconazole @ 0.1%	Sterile water	Tebuconazole @ 0.1%
T-26	P₃ F₄	Tebuconazole @ 0.1%	Sterile water	Difenconazole @ 0.05%
T-27	P₃ F₅	Difenconazole @ 0.05%	Azoxytrobulin + Difenconazole @ 0.05%	Hexaconazole @ 0.05%
T-28	P₃ F₆	Hexaconazole @ 0.05%	Mancozeb + carbendazim @ 0.25%	Propiconazole @ 0.1%
T-29	Check	-	-	-

BF- Before Disease, AD- After Disease
Table 2: Evaluation of different fungicide efficacy against yellow rust disease of wheat

Treatment	Disease Intensity (%)	Disease Incidence (%)
T1	39.17	72.87
T2	20.60	37.60
T3	17.12	35.13
T4	21.47	35.22
T5	17.46	32.51
T6	19.60	36.20
T7	20.40	69.13
T8	32.36	57.73
T9	8.77	21.27
T10	9.20	17.19
T11	6.14	19.03
T12	7.59	15.36
T13	9.83	20.40
T14	22.48	39.40
T15	31.93	71.79
T16	15.33	35.11
T17	13.59	33.18
T18	15.07	33.07
T19	11.03	31.03
T20	13.64	32.23
T21	21.77	53.75
T22	33.16	73.06
T23	15.09	35.33
T24	17.49	35.11
T25	14.20	33.32
T26	10.62	33.01
T27	13.10	34.45
T28	29.17	52.87
T29 (Check)	41.09	75.29
CD(p=0.05)	2.64	2.54

Different studies from different parts of the world reported yield increase in wheat due to fungicide application and growing yellow rust resistant variety. Hussain et al., (2018) noted the yield of wheat in Kargil district increased by 7.73 q/ha in yellow rust resistant variety HD267. In 2009 Wegulo et al., reported that up to 42% of yield loss by yellow rust was prevented by applying foliar fungicide to wheat. Kelly (2001) and Alemu and Mideksa (2016) also reported that propiconazole significantly increased winter wheat yield by 77%. Ransom and McMullen (2008) showed that tebuconazole and propaconazole improved yield by 5.5 to 44.0%.
References

Alemu, W. and Mideksa, T. 2016. Verification and Evaluation of Fungicides Efficacy against Wheat Rust Diseases on Bread Wheat (*Triticum aestivum* L.) in the Highlands of Bale, Southeastern Ethiopia. *International Journal of Research Studies in Agricultural Sciences* 12(9): 35-40

FAO (2013). FAO Agricultural Production Statistics, http://faostat3.fao.org/as accessed on 17 April 2015

Kelley, K. W. 2001. Planting date and foliar fungicide effects on yield components and grain traits of winter wheat. *Agronomy Journal* 93(2): 380-389

Khan A.S., Habib, I. 2003. Genetic Model of some economics traits in bread wheat (*Triticum aestivum* L.) *Asian Journal of Plant Science* 2 (17-24): 1153-1155

Nazir H., M. Mehdì, N. Fatima, M. Hussain, E.Dar, Zarger K. and Asmat, S. 2018. Impact frontline demonstration on varietal evaluation of wheat (*Triticum aestivum* L.) under cold arid condition of Kargil (J&K). Indian Journal of Hill Farming. Special issue, 54-57

Peterson, R. F., Campbell, A. B. and Hannah, A. E. 1948. A diagrammatic scale for estimating rust intensity of leaves and stem of cereals. *Canadian J. Res. Sect.* 26: 496-500.

Ransom, J. K. and McMullen, M. P. 2008. Yield and disease control on hard winter wheat cultivars with foliar fungicides. *Agronomy Journal* 100 (4): 1130-1137

Wegulo, S. N., Breathnach, J. A. and Baenziger, P. S. 2009. Effect of growth stage on the relationship between tan spot and spot blotch severity and yield in winter wheat. *Crop Protection* 28(8): 696-702,

How to cite this article:

Nassreen F. Kacho, Nazir A. Bhat, Nazir Hussain, and Kunzang Lahmo. 2019. Evaluation of Different Fungi Toxicants against Yellow Rust Diseases on Bread Wheat (*Triticum aestivum* L.) in the Cold Arid Zone of Kargil, Ladakh (J&K), India. *Int.J.Curr.Microbiol.App.Sci.* 8(11): 2390-2394. doi: https://doi.org/10.20546/ijemas.2019.811.277