Antibacterial Activities of Selected Fruit Peels against Organisms Associated with Urinary Tract Infection

Ayuba Sunday Buru1,2*, Ikya Homior Paschal1, Ifeanyi Tony Ojiezh1, Oluboyo Bernard Oluwapelumi1, Akele Yomi Richard1, Akinose Janet Fumilayo1 and Adewumi Ajoke Funmi1

1Department of Medical Laboratory Science, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
2Department of Molecular Microbiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria

*Corresponding author

A B S T R A C T

The use of natural products as anti-infective agents, have given rise to new chemical diversity and are preferred in modern world. Among all these natural sources, plants and its products is more reliable because of its renewability. Urinary tract infections (UTIs) are among the most common infectious diseases occurring in either the community or healthcare setting. Orange and Plantain peels were used to determine the antibacterial activities. A measure of 50 grams of powder was filled in the thimble and extracted with 150 ml of ethanol successively up to 48 hours. The solvent extracts were concentrated separately under reduced pressure, 2g of each concentrated solvent extracts were dissolved in 20 ml of 20% dimethyl sulphoxide and used for antibacterial assays using agar well diffusion and broth method. The phytochemical analysis of sweet orange peel shows that carbohydrate, reducing sugars, tannins and flavonoids were present, The zone of inhibition effect of the extracts on selected organism was concentration dependent (25<50<75<100). Higher concentration of extract recorded larger/wider effect on each test organism. Musa paradisiacal peel showed no effect on test organism except at 100mg/ml that recorded 4.7±0.47mm against E. coli growth. The MIC and MBC of both orange peel and plantain peels suggest potency against test organisms. Orange peel has advantage over plantain peel; S. aureus, E. coli and P. aeruginosa were susceptible to the extract exempting K. pneumonia, which showed no susceptibility to the duo extracts. The peels of Citrus sinensis and Musa paradisiacal exhibited inhibitory activity against certain bacteria, which can be attributed to the presence of certain secondary metabolites. But when compared with standard antibiotics, the ethanoic extracts of the duo was less efficient as there was a smaller size of zone of inhibition against the luxurious growth of tested organisms.

Keywords
Antibacterial, Urinary tract infections (UTIs), Citrus sinensis and Musa paradisiacal.

Article Info
Accepted: 12 November 2016
Available Online: 10 December 2016

Introduction

According to World Health Organization (WHO), medicinal plants are defined as any herbal preparations made by incorporating plant materials to its extraction, fractionation, purification, concentration, or any biological, physical processes which
may be produced as herbal product for the immediate consumption (Alo et al., 2012).

The use of natural products as anti-microbial agents, have given rise to new chemical diversity and are preferred in modern world. The sources of these products are plants, animals and microorganisms. Among all these natural sources, plants and its products is more reliable because of its renewability. Plants are also rich in certain nutrients hence are used as sources of food and also used as pain relieve due to certain compounds which they have. From earliest times, the lack of detailed knowledge about natural product and the compounds present, their mode of action was a challenge for plants to be used for the treatment of diseases. Around the world, over the centuries different societies have developed their own traditional sense of medicinal plants and their applications.

The use of natural product for human health has been reported for a very long time, the phytochemicals from the plant extracts with known antimicrobial properties can be of great significance in the treatment of illnesses (Seenivasan et al., 2006). Secondary metabolites such as phenol compounds, tannin are well documented as part of essential oil and have shown great antimicrobial activities, these compounds can be synthesized once their active substances have elucidated (Tyagi and Malik, 2010). In controlling biofilms, the use of essential oils is highly recommended, owing to high effective diffusion and mode of contact (Al-Shuneigat et al., 2005). Therefore, the essential oils and other promising plants extracts have aroused interest as sources of natural products. Their exploration as potential alternative remedies for the treatment of various infectious diseases cannot be underscore (Tepe et al., 2004; Dorman and Deans, 2000).

Urinary tract infections (UTIs) account for most of the common infectious diseases found within the community or healthcare setting (Nicolle et al., 2005).

In empirical antimicrobial treatment in both primary and secondary care setting, UTIs are the commonest clinical indication, and urine samples usually constitute the single largest category of specimens examined in most medical microbiology laboratories (Morgan, 1993). Uncomplicated UTIs typically occur in healthy adult non-pregnant woman, while complicated UTIs (cUTIs) may occur in all gender and age groups and are frequently associated with either structural or functional urinary tract abnormalities.

Examples include foreign bodies such as calculi (stones), indwelling catheters or other drainage devices, obstruction, immunosuppression, renal failure, renal transplantation and pregnancy (Lichtenberger and Hooton, 2008). UTI in the elderly is almost always complicated in men with prostatic hypertrophy and in post-menopausal women who may have an increased post-void residual volume (Nicolle, 2001). The likelihood of treatment failure and serious complications, particularly the development of antimicrobial resistance, is more common in complicated UTI.

Although a broad range of pathogens can cause complicated UTI, E. coli remains the most common; however, even this organism is becoming resistant to the agents that are normally prescribed (Nicolle, 1997). This study is aimed at investigating the antibacterial activities of some natural plant extracts against organisms associated with urinary tract infection.
Materials and Methodology

Collection of Plant Materials

Plantain and sweet orange were obtained from Sabo market in Ado-Ekiti. The plant materials were washed with water thoroughly, air dry and peeled. The peels were shade dried in medical laboratory department for about three weeks and a further three days drying in the oven at a temperature of 37°C and were grounded to fine powder and store away from sunlight.

Test Microorganisms

Pure cultures of pathogenic bacteria that are associated with urinary tract infection (UTI) were obtained from the Department of Medical Microbiology and Parasitology, Ekiti State University Teaching Hospital. The bacteria isolates include *Escherichia coli*, *Pseudomonas aeruginosa*, *Klebsiella pneumoniae* and a gram positive bacteria, *Staphylococcus aureus*. The test organisms were sub cultured into nutrient agar slant and stored at 4°C until when required for use.

Preparation of ethanolic extract

A measure of 50 grams of powder was filled in the thimble and extracted with 150 ml of ethanol successively up to 48 hours. The solvent extracts were concentrated separately under reduced pressure using method described by Harborne (1992). Extract from this method was weighed and stored at 4°C in a refrigerator until required. After complete solvent evaporation, 2 gram of each concentrated solvent extracts were dissolved in 20 ml of 20% dimethyl sulphoxide and used for antibacterial assays.

Test for Phytochemicals

Test for carbohydrate (Molisch’s test), Reducing sugars (Fehling’s test), Tannins (Gelatin test), Flavonoid, Terpenes (Salkowski test) and Saponin were carried out using standard method as described by Aboh *et al.*, (2014).

Preparation of Test Isolates and Standardization

The preserved test organisms were sub-cultured on nutrient agar and incubated overnight to obtain discrete colonies. A colony were picked and inoculated in peptone water and incubated for 18 to 24 hours. The overnight culture broth was then compared and was adjusted to match that of 0.5McFarland standard (10⁵ CFU/mL) by diluting it with distill water.

Testing Assay

Preparation of Nutrient Agar and Well Diffusion Susceptibility Test

In the preparation, appropriate quantity was weighed following the manufacturer’s instruction, dissolved in distilled water, mixed thoroughly and sterilized at 121°C (15 lbs of pressure) for 15 minutes. It was then allowed to cool to a temperature of 50°C, poured into petri dishes, allowed to solidify Well diffusion, several punched holes were made on the agar plate, seeded the test isolate on the medium and holes were filled with varying concentrations of the test extract. It was then incubated at 37°C for 18 hours and inhibition zones measured in millimeters (Cheesbrough, 2000)

Minimum Inhibitory Concentration and Minimum Bactericidal Concentration

Minimum inhibitory concentration was carried out using standard methods as described by Cheesbrough (2000).
Results and Discussion

The phytochemical analysis of sweet orange peel shows that carbohydrate, reducing sugars, tannins and flavonoids were present while terpenes and saponins were completely absent. Plantain peels, yield carbohydrate, reducing sugars and tannins that are present (table 1).

The effects of *C. sinensis* on zone of inhibition of selected organisms are shown on table 2. The effect was concentration dependent (25<50<75<100). Higher concentration of extract recorded larger/wider (zone of inhibition (mm) on each test organisms. *Musa paradisiaca* peel showed no effect on test organism except 100mg/ml of extract that recorded 4.7±0.47mm against *E. coli* growth (Table 3). The MIC and MBC of both orange peel and plantain peels are shown on table 4.Orange peel has more inhibitory effect over plantain peels: *S. aureus, E. coli* and *P. aeruginosa* were susceptible to the extract except *K. pneumonia*, which showed no susceptibility to the duo extracts.

Antimicrobial properties of extract are primarily related to its phenol compounds. Whatever phenol substances in the extract is much higher, their antimicrobial properties is more (Kim *et al.*, 1995). The phytochemical analysis of the peel of citrus revealed that secondary metabolites such as tannins, terpenoids, alkaloids and flavonoids that are known to have antimicrobial properties. The structure and functional properties of lipid fraction of the plasma membranes of bacteria and yeasts are affected by monoterpenes thereby causing leakage of intercellular material and expulsion of critical molecules and ions leading to death of microbes. Terpenoids inhibits microbial respiratory oxygen enzymes uptake and oxidative phosphorylation (Cox *et al.*, 2000 and Trombette *et al.*, 2005). Charis *et al.*, (2004) in a research showed that different citrus have different effects on different bacteria. Antimicrobial properties of oils extracted from the citrus peel it is directly affected by its constituents. Essential fatty acids and alkaloids, lactone, polyacetylene are compounds effective on different bacteria. The antimicrobial effect of citrus depends on so many factors which include soil separation, harvesting season, the extraction process and the type of bacteria.
Orange peel extract showed inhibitory activity against all the pathogens tested with exception of *K. pneumoniae* while the plantain peel extract had effect only on *E. coli*. This observation is in tandem with the report of Nannapaneni *et al.*, (2008) who showed that natural compounds of *Citrus sinensis* peel had inhibitory effects on different strains of *Escherichia coli*, *Salmonella* and some food pathogenic bacteria. *Citrus sinensis* peel extracts had significant antimicrobial effects on gram positive and gram negative bacteria. The ethanolic extraction from orange peel had inhibitory effect on Gram positive and gram negative bacteria exempting *K. pneumonia*. This report corroborate with the earlier report of Omodamiro and Umekwe (2013) and Khushwaha *et al.*, (2012), respectively. It was also observed that the degree of susceptibility was concentration dependent, the higher the concentration the larger/wider the size of zone of inhibition likewise the lower concentrations. However, Madhuri *et al.*, (2014) documented that methanol extract showed inhibitory effect on tested pathogens including *K. pneumonia* which is at variance with the result obtained in this study. The extract from *Musa paradisiaca* show no significant inhibitory activity on most of the tested organisms, except *E. coli* which might be as a result of low concentration of hydrocarbons, monoterpenes and oxygenated monoterpenes and other valuable phytochemicals that seems to be tolerable to the tested organisms. The observation from this study is in agreement with Chabuck *et al.*, (2013) who also reported insignificant inhibitory activities of *Musa paradisiaca* on *E. coli*, but contradict the work of Igadharo (2012), Okechukwu (2012), Ehiowemwenguan *et al.*, (2014) and Akhraiyi *et al.*, (2016) who in their various reports indicated that Plantain peel had significant inhibitory activities on test organisms of both gram positive and gram negative bacteria.

Table 1 Phytochemical Analysis of Ethanol Extract of Sweet orange And Plantain Peels

Phytochemical	Orange	Plantain
Carbohydrate	+	+
Reducing sugars	+	+
Tannins	+	+
Flavonoids	+	__
Terpenes	__	__
Saponin	__	__

Key: (-)= Negative (+)= Positive

Table 2 Antibacterial Activity of Ethanol Extract of *Citrus sinensis* Using Agar Well Diffusion Method

Organism	Concentration (mg/ml)	Control Antibiotics		
	25	50	75	100
	Augumentin	Gentamycin	Cotrimodaxole	
S.aureus	7.7±1.60	13.7±4.64	18±4.24	22±4.97
E.coli	NS	NS	6.7±2.91	10.7±2.70
K.pneumoniae	NS	NS	NS	24±4.37
P.aeruginosa	NS	2.3±2.05	7±1.41	10.7±1.63

Key: NS= Not Sensitive, Mean ±SD, Values (Mean ±SD) of 3 Samples Test
Table 3: Antibacterial Activity of Musa Paradisiacal Peel Extract Using Agar Well Diffusion Method

Organism	Concentration (mg/ml)	Control Antibiotics	Mean ±SD	
	25 50 75 100			
Control	Augmentin	Gentamycin	Cotrimodaxole	
S. aureus	NS NS NS NS	25±4.97	28±4.87	25±4.97
E. coli	NS NS NS 4.7±0.47	NS	22±4.97	33±5.67
K. pneumonia	NS NS NS NS	24±4.88	19±4.67	NS
P. aeruginosa	NS NS NS NS	22±4.97	NS	10±4.37

Key: NS = Not Sensitive, Mean ±SD, Values (Mean ±SD) Of 3 Samples Test

Table 4: Showing Minimum Inhibitory Concentration and Minimum Bactericidal Concentration of Orange and Plantain Peel Extract

Organism	Orange (mg/ml)	Plantain (mg/ml)		
	MIC	MBC	MIC	MBC
S. aureus	7±2.97	25±4.87	NS	NS
E. coli	14±4.25	50±5.67	25±4.87	50±5.67
P. aeruginosa	50±5.67	14.5±4.35	NS	NS

Key: NS = Not Sensitive, MIC = Minimum Inhibitory Concentration, MBC = Minimum Bactericidal Concentration

The variation in these reports could be as a result of harvesting, storage and processing methods used. The genotypes of the test organisms could also be a serious factor to be considered. In general, the result obtained from C. sinensis peels correlates with the reports of earlier scientists, though differences with test isolate of K. pneumonia which might probably be due the quantity of the constituent that seems non-toxic to this organism. Meanwhile, these extracts exhibit potent antibacterial activity on the tested organisms but, when compared with standard antibiotics, the ethanoic extracts of the duo was less efficient as there was a smaller size of zone of inhibition against the luxurious growth of tested organisms.

In conclusion, the peels of most fruits are considered to be a waste by processing industries. The peels of Citrus sinensis and Musa paradisiacal exhibited inhibitory activity against certain bacteria, which can be attributed to the presence of certain secondary metabolites. It is however suggestive that these fruits peels can be of medicinal value. Although when the efficacies of these peels are compared, sweet orange peels exhibited a better inhibitory activity against bacterial associated with Urinary tract infection.

Conflict of interest

No conflict of interest expressed
Acknowledgement

I sincerely wish to express my deepest gratitude and appreciation to Mr. Amos (Biochemistry Department) College of sciences for helping with the extraction process, Miss Ogunbola Ogunfolakun Omobolake and entire staff members and students of the department of Medical Laboratory Science, Afe Babalola University, Ado-Ekiti, without which this work would not have made this study possible.

References

Aboh, M.I., Olayinka, B.O., Adeshina G.O., Oladosu, P. 2014. Antifungal Activities of Phyto Compounds from Mitracarpusvillosus (Sw., DC from Abuja, Nigeria, J. Microbiol. Res., 4(2): 86-91.

Akharaiyi, F.C., Asoso, o.s. and Animba, L.S. 2016. Antibacterial activities of plantain (Musa paradisiaca, peel and fruit. Der Pharmacia Lettre, 5(5): 5-11.

Alo, M. N., Anyim, C., Igwe, J. C., Elom, M. and Uchenna, D.S. 2012. Antibacterial activity of water, ethanol and methanol extracts of Ocimum gratissimum, Vernonia amygdalina and Aframomum melegueta, Adv. Appl. Sci. Res., (2):844-848

Al-Shuneigat, J., Cox, S.D. and Markham, J.L. 2005. Effects of a topical essential oil-containing formulation on biofilm-forming coagulase-negative staphylococci. Lett. Appl. Microbiol., 41, 52–55.

Bruneton, J. 1995. Pharmacognosy, phytochemistry, medicinal plants: Lavoisier publishing.

Chabuck, Z.G., Al-Charrakh, A. H., Nada, K. K. H. and Shatha, K. K (2013. Antimicrobial Effect of Aqueous Banana Peel Extract, Iraq. Research Gate: Pharmaceutical Sci., 1: 73-75.

Charis, K. 2000. Feed Mix (special issue on Nutraceuticals), 19-21.

Cheesbrough, M. 2000. Microbiological test: District Laboratory Practice in Tropical Countries. In: Cremer, A. and Evan, G. eds. Cambridge University Press, UK. Pp: 1-226.

Cox, S.D., Mann C.M., Markham, J.L., Bell, H.C., Gustafson, J.E., Warmonorton, J.R. and Wylie, S.G. 2000. The mode of antibacterial action of essential oil of MelaleucaAlternifolia (tea tree oil). J. Appl. Microbiol., 88: 170-175.

Dorman, H.J.D. and Deans, S. G. 2000. Antimicrobial Agents from Plants: Antibacterial Activity of Plant Volatile Oils. J. Appl. Microbiol., 88: 308–316.

Ehiowemwengu, G., Emoghene, A. O. and Inetianbor, J.E. 2014. Antibacterial and phytochemical analysis of Banana fruit peel. IOSR J. Pharmacy. 4(8): 18-25

Ekweny, U.N. and Edheha, O.V. 2010. The antibacterial activity of crude leaf extract of Citrus sinensis (sweet orange). Int. J. Pharmaceutical and Biol. Sci., 1(4): 742-750.

Fagbemi, J.P., Ugoji, E., Adenipekun, T. and Adelowotan, O. 2009. Evaluation of the antibacterial properties of unripe banana (Musa sapientum L.), lemon grass (Cymbopogon citratus S. and turmeric (Curcuma longa L.) on pathogens. African J. Biotechnol., 8(7): 1176-1182

Harborne, J.B. 1992. Phytochemical methods. Chapman and Hall publications, London, pp: 7-8.

Ighodaro, O.M. 2012. Evaluation study on Nigerian species of Musa paradisiaca Peels: Phytochemical screening, Proximate analysis, Mineral Composition and Antimicrobial Activities. Researcher, 4(8):17-20.

Karuppiah, P., Mustaffa, M. 2013. Antibacterial and antioxidant activities of<i>Musa</i> sp. Leaf extracts against multidrug resistant clinical pathogens causing nosocomial infection. Asian Pacific J. Trop. Biomed., 3(9): 737-742.

Khushwaha, A., Singh, R. P., Gupta, V. and Singh, M. 2012. Antimicrobial properties of peels of Citrus fruits. Int. J. Universal Pharmacy and Life Sci., 2(2): 24-38.
Kim, J.M., Marshall, J.A., Cornell, J.A. and Preston, J.F. 1995. General and introductory food science and technology. J. Food Sci., 60(6): 1364 - 1368.

Lichtenberger, P., Hooton, T.M. 2008. Complicated urinary tract infections. Curr. Infect. Dis. Rep., 10: 499-504.

Madhuri, S., Ashwini, U., Srilakshmi, N.S. and Prashith-Kekuda, T.R. 2014. Antimicrobial activity of Citrus sinensis and Citrus aurantium peel extracts. J. Pharmaceutical and Scientific Innovation, 3(4): 366-368.

Morgan, M.G. and McKenzie, H. 1993. Controversies in the laboratory diagnosis of community acquired urinary tract infection. European J. Clin. Microbiol. Infect. Dis., 12, 491-504.

Nannapaneni, R., Arunachalam, M., Crandall, G. P., Michael G. Johnson, O'Bryan, C. A., Chalova, V. I., Callaway, T. R., Carroll, J. A., John, D. A., David, J. N. and Steven, C.R. 2008. Antimicrobial Activity of Commercial Citrus-Based Natural Extracts against Escherichia coli 0157:1-17 Isolates and Mutant Strains. Foodborne pathogens and dis., 5(5), 695-699.

Nicolle, L.E. 1997. Asymptomatic bacteriuria in the elderly. Infect. Dis. Clin. North Am., 11: 647–62.

Nicolle, L.E. 2001. A practical approach to the management of complicated urinary tract infection. Drugs Aging, 18: 243–54.

Nicolle, L.E., Bradley, S., Colgan, R., Rice, J.C., Schaeffer., A., Hooton, T.M., et al. 2005. Infectious Diseases Society of America guidelines for the diagnosis and treatment of asymptomatic bacteriuria in adults. Clin. Infect. Dis., 40, 643-654.

Okechukwu, R.I., Onyedineke, N.E., Mgbemen, I.C., Opara, F.N. and Ukaoma, A.A. 2012. Inhibition of Pathogenic Microorganisms by Ethnobotanical Extracts of Fruit Peels of Musa paradisiacal. J. Appl. Pharmaceutical Sci., 2(4): 01-03.

Omodamiro, O.D. and Umekwe, J.C. 2013. Evaluation of anti-inflammatory, antibacterial and antioxidant properties of ethanolic extracts of Citrus sinensis peel and leaves. J. Chem. Pharmaceutical Res., 5(5): 56-60.

Seenivasan, P., Manickkam, J. and Savarimuthu, I. 2006. In vitro antibacterial activity of some plant essential oils. BMC Complement. Altern. Med., 6: 1-8.

Tepe, B., Daferera, D., Sokmen,M., Polissiou, M. And Sokmen, A. 2004. In vitro antimicrobial and antioxidant activities of the essential oils and various extracts of Thymus eugii. J. Agric. Food Chem., 52: 1132-1137.

Trombetta, D., Castelli, F., Sarpietero, M.G., Venuti, V., Cristani, M., Daniele, C., Sajja, A., Mazzanti, G., and Bisignano, G. 2005. Mechanisms of antibacterial action of three monoterpenes. Antimicrobial Agents and Chemother., 49: 2472-2478.

Tyagi, A.K., Malik, A. 2010. Liquid and vapour-phase antifungal activities of selected essential oils against Candida albicans: microscopic observations and chemical characterization of Cymbopogon citratus. BMC Complement Altern. Med., 10: 65.

How to cite this article:
Ayuba Sunday Buru, Ikya Homior Paschal, Ifeanyi Tony Ojiezech, Oluboyo Bernard Oluwapelumi, Akele Yomi Richard, Akinseye Janet Fumilayo and Adewumi Ajoke Funmi. 2016. Antibacterial Activities of Selected Fruit Peels against Organisms Associated with Urinary Tract Infection. Int.J.Curr.Microbiol.App.Sci. 5(12): 265-272. doi: http://dx.doi.org/10.20546/ijcemas.2016.512.028