Ahmed M. Kabel, Sultan N. Alotaibi, Naif M. Alswat, Muteb S. Aldajani, Mayudh S. Alnefaie

Department of clinical pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia
Pharmacology department, Faculty of Medicine, Tanta University, Tanta, Egypt
Final Year Students, College of Pharmacy, Taif University, Taif, Saudi Arabia

Corresponding author: Ahmed M. Kabel, Department of Clinical Pharmacy, College of Pharmacy, Taif University, Al-Haweiah, P.O. Box 888, Zip Code 21974, Saudi Arabia, E-mail: drakabel@gmail.com

Citation: Ahmed M. Kabel et al. (2016), Effect of the Combination Between Metformin and Vitamin D on Experimentally-Induced Diabetic Nephropathy. Int J Pharm Sci & Scient Res. 2:2, 44-50. DOI: 10.25141/2471-6782-2016-2.0103

Copyright: ©2016 Ahmed M. Kabel et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited

Received: April 26, 2016; Accepted: May 06, 2016; Published: May 20, 2016

Abstract

Background: Diabetic nephropathy (DN) is one of the serious complications of diabetes caused by angiopathy of capillaries in the renal glomeruli. Metformin is an anti-diabetic agent that was shown to have renoprotective effects. Vitamin D was proven to have antioxidant and anti-inflammatory properties that may ameliorate DN. Aim: To study the effect of each of vitamin D and metformin alone and in combination on streptozotocin (STZ)-induced DN. Methods: Sixty male Wistar rats were divided into 6 equal groups: Control untreated group, STZ group, STZ + Metformin group, STZ + Vitamin D group, STZ + Peanut oil group and STZ + Vitamin D + Metformin group. Kidney weight/body weight ratio, serum fasting glucose, C-reactive protein (CRP), glycosylated hemoglobin (Hb), blood urea, serum creatinine and creatinine clearance were determined. A part of the kidney was homogenized for determination of tissue catalase (CAT), glutathione peroxidase (GPx) and tumor necrosis factor alpha (TNF-α). The other part was subjected to histopathological and immunohistochemical examination. Results: Vitamin D and metformin alone and in combination induced significant increase in creatinine clearance, tissue CAT and GPx with significant decrease in serum fasting glucose, kidney weight/body weight ratio, glycosylated Hb, blood urea, serum creatinine, tissue TNF-α and serum C-reactive protein and alleviated the histopathological changes compared to STZ group. This effect was significant in vitamin D/metformin combination group compared to the use of either vitamin D or metformin alone. Conclusion: Vitamin D/metformin combination might represent a beneficial therapeutic modality for treatment of DN.

Keywords: Diabetic Nephropathy; Metformin; Vitamin D; Rats
Introduction
Diabetic nephropathy (DN) is an important complication of diabetes mellitus that usually occurs in a large proportion of diabetic patients. Its mechanisms are still not well known but may be attributed to elevation of the levels of glycosylated proteins and the hemodynamic changes that occur within the kidney tissue [1]. Chronic hyperglycemia leads to increased production of reactive oxygen species and attenuates the anti-oxidant mechanisms. Moreover, hyperglycemia leads to formation of advanced glycosylation end products (AGEs) and activation of protein kinase C, resulting in increased production of the inflammatory mediators such as tumor necrosis factor alpha (TNF-α) and interleukin 10 (IL-10) [2]. Metformin is one of the anti-diabetic drugs that reduces intestinal absorption of glucose, increases its anaerobic metabolism, decreases glucagon release and improves the sensitivity of insulin receptors in the peripheral tissues [3]. Metformin has been proven to decrease the hazardous effects of oxidative stress in various tissues of the body. Also, metformin has the ability to modulate the expression of the proinflammatory cytokines at both the biochemical and gene expression levels [4].

Vitamin D is an important regulator of calcium and phosphorus homeostasis [5]. Many studies have shown that the active form of vitamin D can improve the survival rate of patients with chronic kidney disease, and the mechanisms don’t depend only on modulation of blood levels of calcium, phosphorus and parathyroid hormone. Furthermore, Tan et al [6] reported that 1,25-(OH)2 vitamin D3 can reduce glomerulosclerosis and interstitial fibrosis. However, the mechanisms of this protective effect in DN, have not yet been fully understood. The aim of this study was to investigate the effect of each of vitamin D and metformin alone and in combination on streptozotocin (STZ)-induced DN in rats.

Materials and Methods

Chemicals and drugs
Both streptozotocin (STZ) and metformin were obtained from Sigma Chemical Company (St. Louis, MO, USA). STZ was dissolved in 0.1 M citrate buffer (pH 4.5). Metformin was dissolved in normal saline. Vitamin D (0.25 μg/tablet, Shanghai Roche Pharmaceuticals, Shanghai, China) was dissolved in peanut oil. Commercially available kits were purchased from Crescent diagnostics for estimation of blood glucose, blood urea and serum creatinine. Highly sensitive C-reactive protein kits were purchased from BioSystems.

Animals and groups
The present study was carried out on 60 male Wistar rats weighing about 150-200 grams. All the experiments were conducted according to the National Research Council’s guidelines. The handling of the animals was followed according to Helsinki declaration of animal ethics. Rats were divided into six equal groups each of 10 rats as follows:

Group I: Control untreated group.
Group II: Received a single intraperitoneal injection of STZ in a dose of 65 mg/kg [2].
Group III: Received a single intraperitoneal injection of STZ (65 mg/kg) then received metformin orally by gastric tube in a dose of 500 mg/kg/day [2].
Group IV: Received a single intraperitoneal injection of STZ (65 mg/kg) then received 0.03 μg/kg vitamin D in 0.05 mL peanut oil once daily orally by gastric tube [7].
Group V: Vehicle control group, received a single intraperitoneal injection of STZ (65 mg/kg) then received equivalent volume of peanut oil once daily orally by gastric tube.
Group VI: Received a single intraperitoneal injection of STZ (65 mg/kg) then received metformin orally by gastric tube in a dose of 500 mg/kg/day concomitantly with 0.03 μg/kg vitamin D in 0.05 mL peanut oil once daily orally by gastric tube.

Determination of the biochemical parameters
Blood samples were collected from the retro-orbital sinus of rats one week after STZ injection and were used for estimation of serum fasting glucose level. Rats with fasting glucose level above 200 mg/dL were considered diabetic. Drugs were administered one week after STZ injection and continued for 12 weeks.

At the end of the work, rats were kept in special metabolic cages for 24 hours urine collection. After fasting overnight, samples of the blood were taken from the retro-orbital sinus of rats. Glycosylated hemoglobin (Hb) concentration was measured colorimetrically in 50 μL of whole blood after being separated from the unbound hemoglobin using an affinity resin [7]. Blood samples were kept in glass tubes in a water bath for 30 minutes at 37°C until blood clotting occurred. Then, blood samples were centrifuged for 20 minutes for separation of serum to estimate serum fasting glucose level according to Trinder [8] and C-reactive protein (CRP) using CRP kits according to the instructions of the manufacturer. Blood urea was measured according to Patton and Crouch [9]. Serum and urinary creatinine was measured according to Henry [10]. Creatinine clearance was measured by using the following formula [11]:

\[
\text{Creatinine clearance (ml/min)} = \frac{\text{Urinary creatinine (mg/dl) X 24 hrs urine volume (ml)}}{\text{Serum creatinine (mg/dl) X 1440}}
\]

Rats were killed by decerebration and both kidneys were excised and weighed for estimation of kidney weight/body weight ratio. The kidneys were divided into two parts; one part was homogenized for determination of tissue catalase (CAT) according to Higgins et al [12]. tissue glutathione peroxidase (GPx) using kits supplied by Crescent Diagnostics Co. according to the instructions of the manufacturer and tissue tumor necrosis factor-alpha (TNF-α) using rat TNF-α ELISA kits supplied by RayBiotech, Inc. according to the instructions of the manufacturer. The other part of the kidney was examined by a pathologist.

Histopathological and immunohistochemical examination
Sections from the kidney were fixed in 10% formalin, embedded in paraffin, stained with hematoxyline and eosin (H&E) and examined under light microscope and apoptotic indices were determined. The morphological criteria for apoptotic bodies were applied in this study according to Staunton and Gaffney [13]. A piece
of the renal tissue was homogenised and proteins were extracted and stored at -80 °C. The activity of caspase-3 was determined spectrophotometrically by the method described by Gurtu et al. [14].

Statistical analysis

For statistical analysis, the SPSS (version 16.0) package program was used. Results were expressed as mean ± standard error of mean (S.E.M.). To compare between the different studied groups, one-way analysis of variance (ANOVA) test followed by LSD test were used. The results were considered statistically significant when p-value less than 0.05.

Results

STZ administration induced significant decrease in tissue CAT, GPx and creatinine clearance with significant increase in serum fasting glucose, kidney weight/body weight ratio, blood urea, serum creatinine, glycosylated Hb, tissue TNF-α and serum CRP compared to the control untreated group.

Administration of peanut oil to STZ-treated rats resulted in non-significant effect on creatinine clearance, tissue CAT, tissue GPx, serum fasting glucose, kidney weight/body weight ratio, blood urea, serum creatinine, glycosylated Hb, tissue TNF-α and serum CRP compared to STZ group.

Administration of Vitamin D or metformin alone induced significant increase in tissue CAT, GPx and creatinine clearance with significant decrease in serum fasting glucose, kidney weight/body weight ratio, blood urea, serum creatinine, glycosylated Hb, tissue TNF-α and serum CRP compared to STZ group.

Vitamin D/metformin combination induced significant increase in tissue CAT, GPx and creatinine clearance with significant decrease in serum fasting glucose, kidney weight/body weight ratio, blood urea, serum creatinine, glycosylated Hb, tissue TNF-α and serum CRP compared to the use of vitamin D or metformin alone.

Table 1: Effect of metformin and/or vitamin D on the different parameters in the studied groups (Mean ± S.E.M.)

* Significant compared to the control group
Significant compared to STZ group
^ Non significant compared to STZ group
$ Significant compared to STZ+Metformin group
● Significant compared to STZ+Vitamin D group
Histopathological results

STZ induced severe glomerulosclerosis and inflammatory cellular infiltration, tubular dilatation, casts, interstitial fibrosis and atrophy together with vascular arteriosclerosis (Fig. 1B) and significant increase in the apoptotic index and caspase-3 expression compared to the control group (Fig. 2). Peanut oil induced non-significant effect on the histopathological picture compared to STZ-treated group (Fig. 1C,2). Treatment with either metformin or vitamin D resulted in significant decrease in glomerulosclerosis, cellular infiltration and interstitial fibrosis (Fig. 1D,E) with significant decrease in the apoptotic index and caspase-3 expression compared to STZ group (Fig. 2). Metformin/Vitamin D combination resulted in significant improvement in the histopathological picture compared to the use of each of these drugs alone (Fig. 1F, 2).

![Fig. 1: H&E stained sections from the kidney of A) control untreated group with normal appearance of the glomeruli, tubules and interstitium; B) STZ group showing glomerulosclerosis, interstitial fibrosis, tubular dilatation, casts and atrophy; C) STZ + Peanut oil group showing marked interstitial and glomerular fibrosis, casts and tubular atrophy; D) STZ+ Metformin group with apparently normal glomeruli, mild interstitial fibrosis and minimal tubular necrosis; E) STZ + Vitamin D group with marked decrease in glomerulosclerosis, cellular infiltration and interstitial fibrosis with mild dilatation of the tubules; F) STZ+ metformin + vitamin D group with minimal glomerulosclerosis, minimal cellular infiltration and mild dilatation of the tubules (H&E X 200).](image)

![Fig. 2: Effect of different treatments on A) the apoptotic index and B) tissue caspase 3 expression (Mean±S.E.M.)](image)

* Significant compared to the control group
^ Non significant compared to STZ group
Significant compared to STZ group
$ Significant compared to STZ+Vitamin D group
● Significant compared to STZ+Metformin group

Discussion

In the present study, STZ administration resulted in development of DN manifested by significant decrease in creatinine clearance with significant increase in kidney weight/body weight ratio, serum fasting glucose, glycosylated Hb, blood urea and serum creatinine and significant histopathological changes compared to the control group. These results are in the same line with Choi et al. \(^1\) who attributed these changes to that STZ selectively damages insulin-producing beta cells of the pancreas and induces experimental hyperglycemia. This hyperglycemia leads to an increase in kidney weight, elevation of blood urea and serum creatinine due to interstitial atrophy and atrophic changes in the glomeruli and renal...
It was reported that STZ-induced hyperglycemia causes DN by affection of several signal pathways such as nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase. This leads to increased expression of the genes that lead to overproduction of growth factors such as transforming growth factor beta (TGF-β) and advanced glycation end products. These factors lead to renal hypertrophy and deposition of extracellular matrix proteins that leads to glomerulosclerosis with subsequent albuminuria, high blood pressure, progressive decrease in the glomerular filtration rate and affection of various renal functions.

Oxidative stress is thought to play a crucial role in the pathogenesis of STZ-induced DN. Persistent hyperglycemia was thought to increase production of oxygen free radicals with inhibition of the activity of the antioxidant enzymes leading to oxidative stress which is associated with several health problems. This was in agreement with the results of the present study where STZ administration resulted in significant decrease in renal CAT and GPx activity leading to severe cellular damage due to the deleterious effects of H2O2.

Inflammation plays a crucial role in STZ-induced diabetic nephropathy. It is usually activated by the metabolic, biochemical and haemodynamic abnormalities that commonly exist in the diabetic kidney. STZ has the ability to induce the expression of the proinflammatory cytokines by the leucocytes which in turn increase the production of the acute phase proteins such as CRP, serum amyloid A and fibrinogen which increase leukocyte infiltration and adherence in the glomeruli and tubules, along with marked increase in macrophage infiltration. Moreover, there was a positive correlation between the glycemic status (Glycosylated Hb level), level of proteinuria and the levels of the markers of inflammation including CRP. Roopakala et al suggested that estimation of serum CRP levels in diabetic patients can help in early intervention and prevention of the complications of diabetes including diabetic nephropathy. This was in the same line with the results of the present study where STZ resulted in increased serum CRP and tissue TNF-α levels compared to the control untreated group.

Caspase 3 is one of the caspase family that plays a central role in the execution of apoptosis. Recent studies reported that oxidative stress leads to activation of caspase 3 which was proven to play an important role in hyperglycemia induced proximal tubular apoptosis. Caspase 3 was thought to be responsible for the cleavage of poly ADP-Ribose polymerase (PARP) during cell death. Hyperglycemia was proven to induce apoptosis mainly in the proximal tubular cells through regulation of the pathway of Bcl2/caspase/PARP. This was in accordance with the results of the present study where administration of STZ resulted in significant increase in caspase-3 expression compared to the control untreated group leading to induction of apoptosis in the renal tubular cells.

Metformin is a biguanide drug that is recommended as the first-line therapy for type 2 diabetes, especially in overweight patients. Recently, a great attention had been made towards the possible renoprotective effects of metformin. Recent studies have proven that metformin has potent antioxidant and anti-inflammatory properties. Reduction of apoptosis induced by oxidative stress in renal tissues and prevention of vascular dysfunction was found with metformin treatment. AMPK-activated kinase (AMPK) enzyme which regulates the different aspects of the cellular metabolism is associated with the pleiotropic effects of metformin. Recent data revealed that the beneficial effects of metformin are due to its mild inhibition of the mitochondrial respiratory chain. Moreover, metformin was able to decrease the production of reactive oxygen species and restore the normal levels of the enzymatic and non-enzymatic antioxidants in the renal tissues. Kim et al. reported that treatment of diabetic rats with metformin restored podocyte loss via its protective effects against oxidative injury. Furthermore, the improvement in the mitochondrial function and energy production induced by metformin may reduce the production of the inflammatory mediators such as CRP, TNF-α and IL-6. Moreover, metformin can affect the carbonyl stress which prevents AGEs formation and improves the free radical defense system. Also, Violette et al. suggested that metformin may reduce the expression of the growth factors such as TGF-β1 which plays an important role in the pathogenesis of DN. Wang et al. reported that metformin can suppress apoptosis of renal tubular epithelial cells in rats, possibly through inhibition of the expression of caspase-3 in the renal tissues. These studies were in agreement with the results of the present study where administration of metformin resulted in significant improvement in the renal function tests and the glycemic control, significant decrease in serum CRP, tissue TNF-α and kidney weight/body weight ratio with significant increase in tissue CAT and GPx with improvement of the histopathological and immunohistochemical picture compared to STZ-treated group.

The major limiting factor for the use of metformin in management of DN is the possibility of development of lactic acidosis which is a severe metabolic problem associated with high mortality and patients may need renal replacement therapy. However, the risk of development of metformin-associated lactic acidosis could be decreased by avoiding its use in patients with high risk of sepsis, renal impairment, hypovolemia and old age patients. Also, supplementation with vitamins such as vitamin D and vitamin B complex can significantly reduce the possibility of development of lactic acidosis.

Vitamin D is one of the fat soluble vitamins. The kidney is the main target organ for vitamin D as vitamin D receptors are highly expressed in the renal tissues. Several studies suggested that vitamin D may have renoprotective effects especially in cases of complicated diabetes. These studies were in the same line with the results of the present study where vitamin D resulted in significant improvement in the renal functions and the glycemic control, significant decrease in serum CRP, TNF-α and kidney weight/body weight ratio with significant increase in tissue CAT and GPx with improvement of the histopathological and immunohistochemical picture compared to STZ-treated group.

Nakai et al. reported that vitamin D attenuates the progression of DN by improving glucose metabolism, inhibition of rennin-angiotensin system activity, reduction of renal fibrosis and inhibition of inflammation including CRP, TNF-α and IL-6.
of the pathways of oxidative stress. Also, vitamin D might delay the development of DN through suppressing the production of the inflammatory mediators such as CRP, TNF-α and IL-6 [33]. Moreover, Wang et al [33] found that signaling vitamin D receptors in the podocytes might protect against DN, possibly through affaction of the apoptotic pathways including caspase-3 and bcl-2 expression. Also, Garsen et al [34] suggested that vitamin D attenuates proteinuria frequently encountered in DN by inhibition of the expression of heparanase enzyme in the podocytes.

In the present study, vitamin D/metformin combination induced significant improvement in the renal functions and the glycemic control with significant increase in tissue CAT and GPx with significant decrease in the levels of the inflammatory mediators together with improvement of the histopathological and immunohistochemical picture compared to the use of each of these drugs alone. This may be attributed to their combined potent antihyperglycemic, anti-inflammatory and antioxidant effects together with their ability to affect apoptosis. It was reported that the combination between vitamin D3 and metformin induced marked inhibitory effects on the cell proliferation and apoptosis induction. Also, Li et al [35] suggested that vitamin D3 supplementation potentiates the growth inhibitory effects of metformin by affecting AMP kinase/mTOR signalling pathway. Moreover, vitamin D may decrease the incidence of lactic acidosis which is the most common complication of metformin during treatment of diabetes mellitus [29].

Conclusion

The present study demonstrated the protective effects of each of vitamin D and metformin alone and in combination on STZ-induced DN in rats. This combination might represent a beneficial therapeutic modality for management of patients with DN.

Acknowledgement

Many thanks to Dr. Mohamed El-Rashidy, pathology department, faculty of medicine, Tanta University, Egypt, for his kind help in the histopathological study.

References

1. Choi YE, Ahn SK, Lee WT, Lee JE, Park SH, Yoon BB, et al. Soybeans Ameliorate Diabetic Nephropathy in Rats. eCAM 2010; 7(4): 433–440.
2. Alhaider AA, Korashy HM, Sayed-Ahmed MM, Mobark M, Kfouri H, Mansour MA. Metformin attenuates streptozotocin-induced diabetic nephropathy in rats through modulation of oxidative stress genes expression. Chemico-Biological interactions 2011; 192: 233-242.
3. González-Ortiza M, Guerrero-Romero J, Violante-Ortiz R, Wacher-Rodarte N, Martínez-Abundis E, et al. Efficacy of glimepiride/metformin combination versus glibenclamide/metformin in patients with uncontrolled type 2 diabetes mellitus. J Diabetes Complications 2009; 23:376–379.
4. Hyun B, Shin S, Lee A, Lee S, Song Y, Ha N-J, et al. Metformin Down-regulates TNF-α Secretion via Suppression of Scavenger Receptors in Macrophages. Immune Network 2013; 13(4):123-132.
5. Tian Y, Lv G, Yang Y, Zhang Y, Yu R, Zhu J, et al. Effects of vitamin D on renal fibrosis in diabetic nephropathy model rats. International Journal of Clinical and Experimental Pathology 2014; 7(6): 3028–3037.
6. Tan X, Li Y, Liu Y. Paricalcitol attenuates renal interstitial fibrosis in obstructive nephropathy. J Am Soc Nephrol. 2006; 17: 3382–3393.
7. Lingelbach LB, Mitchell AE, Rucker RB, McDonald RB. Accumulation of advanced glycation end products in aging male Fischer 344 rats during long-term feeding of various dietary carbohydrates. J. Nutr. 2000; 130(5):1247-1255.
8. Trinder P. Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Ann Clin Biochem. 1969; 6: 24-25.
9. Patton CJ, Crouch SR. Spectrophotometric and kinetic investigation of the Berthelot reaction for the determination of ammonia. Anal Chem. 1977; 49: 464-469.
10. Henry RJ. Determination of serum creatinine. In: Clinical chemistry principles and techniques. 2nd ed. Hagerstown, MD, USA: Harper and Row; 1974. p. 525.
11. Cockroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephrology 1976; 16(1):31–41.
12. Higgins CP, Baehner RL, McCallister J, Boxer LA. Polymorphonuclear leukocyte species differences in the disposal of hydrogen peroxide (H2O2). In: Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.) 1978; 158: 478–481.
13. Staunton MJ, Gaffney EF. Tumor type is a determinant of susceptibility to apoptosis. Ann J Clin Pathol. 1995; 103: 300-307.
14. Gurtu V, Kain SR, Zhang G. Fluorometric and colorimetric detection of caspase activity associated with apoptosis. Analytical Biochemistry 1997; 251: 98–102.
15. Eleazu CO, Eleazu KC, Chukwuma S, Essien UN. Review of the mechanism of cell death resulting from streptozotocin challenge in experimental animals, its practical use and potential risk to humans. Journal of Diabetes and Metabolic Disorders 2013; 12: 60.
16. Gomes KB, RodriguesKF, Fernandes AP. The role of transforming growth factor-beta in diabetic nephropathy. Int J Med Gen. 2014; 2014: Article ID 180270.
17. Elbe H, Vardi N, Esrefoglu M, Ates B, Yologlu S, Taskapan C. Amelioration of streptozotocin-induced diabetic nephropathy by melatonin, quercetin, and resveratrol in rats. Hum Exp Toxicol. 2015; 34(1):100-113.
18. Baluch UT, Kiani IG, Niazi R, Bilal N, Tahir F. C-Reactive Protein As A Low Grade Inflammatory Marker in type 2 diabetic nephropathy. Ann Pak Inst Med Sci. 2011; 7(4): 217-221.
19. Choudhary N, Ashlawat RS. Interleukin-6 and C-reactive protein in pathogenesis of diabetic nephropathy: new evidence linking inflammation, glycemic control, and microalbuminuria. Iran J Kidney Dis. 2008; 2(2):72-79.
Ahmed M. Kabel et al. (2016), Effect of the Combination Between Metformin and Vitamin D on Experimentally-Induced Diabetic Nephropathy Sci & Scient Res. 2:2, 44-50. DOI: 10.25141/2471-6782-2016-2.0103

https://pdfs.semanticscholar.org/d2bb/a7813d625c718faef8becfa24956617df7a8.pdf

20. Roopakala MS, Pawan HR, Krishnamurthy U, Wilma Delphine Silvia CR, Eshwarappa M, Prasanna Kumar KM. Evaluation of high sensitivity C-reactive protein and glycosylated hemoglobin levels in diabetic nephropathy. Saudi J Kidney Dis Transpl. 2012; 23(2): 286-289. http://www.sjkdt.org/article.asp?issn=1319-2442;year=2012;volume=23;issue=2;spage=286;epage=289;aulast=Roopakala

21. Habib SL. Diabetes and renal tubular cell apoptosis. World J Diabetes 2013; 4(2): 27–30.

22. Kabel AM, Omar MS, Borg HM. Targeting Apoptosis, Advanced Glycation End Products and Transforming Growth Factor-β1 by Biguanides and Resveratrol to Ameliorate Experimentally-induced Diabetic Nephropathy. J Drug 2016; 1(1): 1-9.

23. Sung JY, Choi HC. Metformin-induced AMP-activated protein kinase activation regulates phenylephrine-mediated contraction of rat aorta. Biochem Biophys Res Commun. 2012; 421(3): 599–604.

24. Detaille D, Guigas B, Chauvin C, Batandier C, Fontaine E, Wiersperger N. Metformin prevents high-glucose-induced endothelial cell death through a mitochondrial permeability transition-dependent process. Diabetes 2005; 54(7): 2179–2187.

25. Kim J, Shon E, Kim CS, Kim JS. Renal podocyte injury in a rat model of type 2 diabetes is prevented by metformin. Exp Diabetes Res. 2012; 2012: 210821.

26. Viollet B, Guigas B, Garcia N, Leclerc J, Foretz M, Andreelli F. Cellular and molecular mechanisms of metformin: an overview. Clinical Science 2012; 122: 253–270.

27. Wang Z-S, Liu X-H, Wang M, Jiang G-J, Qiu T, Chen Z-Y, et al. Metformin attenuated the inflammation after renal ischemia/reperfusion and suppressed apoptosis of renal tubular epithelial cell in rats. Acta Cirúrgica Brasileira 2015; 30 (9): 617-623.

28. Rocha A, Almeida M, Santos J, Carvalho A. Metformin in patients with chronic kidney disease: strengths and weaknesses. J Nephrol. 2013; 26(1):55–60.

29. Neale R, Reynolds TM, Saweirs W. Statin precipitated lactic acidosis? Journal of Clinical Pathology 2004; 57(9): 989–990.

30. Derakhshanian H, Shab-Bidar S, Speakman JR, Nadimi H, Djafarian K. Vitamin D and diabetic nephropathy: A systematic review and meta-analysis. Nutrition 2015; 31(10):1189-1194. http://www.nutritionjrnl.com/article/S0899-9007(15)00174-4/fulltext

31. Nakai K, Fuji H, Kono K, Goto S, Kitazawa R, Kitazawa S, et al. Vitamin D activates the Nrf2-Keap1 antioxidant pathway and ameliorates nephropathy in diabetic rats. Am J Hypertens. 2014; 27(4):586-595. https://academic.oup.com/ajh/article/27/4/586/2743232

32. Chen N, Wan Z, Han S-F, Li B-Y, Zhang Z-L, Qin L-Q. Effect of Vitamin D Supplementation on the Level of Circulating High-Sensitivity C-Reactive Protein: A Meta-Analysis of Randomized Controlled Trials. Nutrients 2014; 6: 2206-2216.

33. Wang Y, Deb DK, Zhang Z, Sun T, Liu W, Yoon D, et al. Vitamin D Receptor Signaling in Podocytes Protects against Diabetic Nephropathy. JASN 2012; 23(12): 1977–1986.

34. Garsen M, Sonneveld R, Rops AL, Huntink S, van Kuppevelt TH, Rabelink TJ, et al. Vitamin D attenuates proteinuria by inhibition of heparanase expression in the podocyte. J Pathol. 2015; 237(4):472-81. http://onlinelibrary.wiley.com/doi/10.1002/path.4593/abstract

35. Li HX, Gao JM, Liang JQ, Xu JM, Fu M, Wu YJ. Vitamin D3 potentiates the growth inhibitory effects of metformin in DU145 human prostate cancer cells mediated by AMPK/mTOR signalling pathway. Clin Exp Pharmacol Physiol. 2015; 42(6):711-717. http://onlinelibrary.wiley.com/doi/10.1111/1440-1681.12409/abstract