Deep Convolutional Neural Networks and Data Augmentation for Acoustic Event Recognition

Naoya Takahashi¹, Michael Gygli² Beat Pfister, Luc Van Gool²

¹Sony Corporation, Japan
²Dept. Information Technology and Electrical Engineering, ETH Zurich, Switzerland

NaoyaA.Takahashi@jp.sony.com, {gygli, vangool}@vision.ee.ethz.ch, pfister@tik.ee.ethz.ch

Abstract

We propose a novel method for Acoustic Event Recognition (AER). In contrast to speech, sounds coming from acoustic events may be produced by a wide variety of sources. Furthermore, distinguishing them often requires analyzing an extended time period due to the lack of a clear sub-word unit. In order to incorporate the long-time frequency structure for AER, we introduce a convolutional neural network (CNN) with a large input field. In contrast to previous works, this enables to train audio event detection end-to-end. Our architecture is inspired by the success of VGGNet [1] and uses small, 3×3 convolutions, but more depth than previous methods in AER. In order to prevent over-fitting and to take full advantage of the modeling capabilities of our network, we further propose a novel data augmentation method to introduce data variation. Experimental results show that our CNN significantly outperforms state of the art methods including Bag of Audio Words (BoA W) and classical CNNs, achieving a 16% absolute improvement.

Index Terms: convolutional neural networks, data augmentation, large input field, acoustic event recognition.

1. Introduction

Scenes typically contain many sound sources. While speech is arguably one of the most important types, non-speech sounds such as music or laughter provide important information as well. In most conversations no mention is made of the environment, like its location or people and objects present. Automatic speech recognition (ASR) could benefit from having such contextual knowledge though [2]. Knowing the type of non-speech sounds improves the performance of source separation and speech enhancement [3]. Furthermore, multi-media tasks such as video classification [4] and video summarization [5] have been shown to improve when including audio information. Acoustic Event Recognition (AER) is attracting more and more attention also due to new applications incl. surveillance [6, 7, 8], multimedia content retrieval [9] and audio segmentation [10, 11].

Traditional methods for AER apply techniques from ASR directly. For instance, Mel Frequency Cepstral Coefficients (MFCC) were modeled with Gaussian Mixture Models (GMM) or Support Vector Machines (SVM) [12, 13, 14, 15]. Yet, applying standard ASR approaches leads to inferior performance due to differences between speech and non-speech signals. Thus, more discriminative features were developed. Most are hand-crafted and derived from low-level descriptors such as MFCC [16, 17], filter banks [18, 19] or time-frequency descriptors [20]. These descriptors are frame-by-frame representations (typically frame length is in the order of ms) and are usually modeled by GMMs to deal with the sounds of entire acoustic events that normally last seconds at least. Another common method to aggregate frame level descriptors is the Bag of Audio Words (BoA W) approach, followed by an SVM [17, 21, 22, 23]. These models however discard the temporal order of the frame level features, causing considerable information loss. Moreover, methods based on hand-crafted features optimize the feature extraction process and the classification process separately, rather than learning end-to-end.

Recently Deep Neural Networks (DNNs) have been very successful at many tasks, including ASR [24, 25], image classification [26, 1], and visual object detection [27]. One advantage of DNNs is their capability to jointly learn feature representations and appropriate classifiers. Supported by large amounts of training data, more recently, deeper architectures further pushed the state-of-the-art for several competitions in computer vision [1]. In comparison, few AER methods rely on DNNs. One reason is the lack of large, publicly available datasets. In [28, 29], DNNs were built on top of MFCCs. Miquel et al. [30] utilize a Convolutional Neural Network (CNN) [31] to extract features from spectrograms. These networks are still relatively shallow (e.g. 3 layers). Furthermore, the networks take only a few frames as input and the complete acoustic events are modeled by Hidden Markov Models (HMM) or simply by calculating the mean of the network outputs, which is too simple to model complicated acoustic event structures.

In this work, we introduce novel network architectures with up to 9 layers and a large input field. The large input field allows the networks to directly model entire audio events and be trained end-to-end, as depicted in Fig. 1. Our network architecture is inspired by VGG Net [1] which obtained second place in the ImageNet 2014 competition and was successfully applied for ASRs [32]. The main idea of VGG Net is to replace large (typically 9×9) convolutional kernels by a stack of 3×3 kernels without pooling between these layers. Advantages of this architecture are (1) additional non-linearity hence more expressive power, and (2) a reduced number of parameters (i.e. one 9×9 convolution layer with C channel has $9^2C^2 = 81C^2$ weights while three-layer 3×3 convolution stack has $3(3^2C^2) = 27C^2$ weights). Our first goal is to adapt the VGG Net architecture to AER. In order to train our network we further propose a novel data augmentation method, especially effective for AER. For our experiments, we created a new dataset harvested from the Freesound repository [33] and conducted acoustic event classification. Experimental results show that our deeper CNN significantly outperforms several baseline techniques, including state-of-the-art methods based on BoA W and classical DNNs. We further show that the proposed data augmentation method improves the performance by more than 12%.
Figure 1: Our deeper CNN models several seconds of acoustic event sound directly and outputs the posterior probability of classes.
order to alleviate the negative effects of outliers, we also employed multiple instance learning (MIL) [36, 37]. In MIL, data is organized as bags \(\{X_i\} \) and within each bag there are a number of instances \(\{x_{ij}\} \). Labels \(\{Y_i\} \) are provided only at the bag level, while labels of instances \(\{y_{ij}\} \) are unknown. A positive bag means that at least one instance in the bag is positive, while a negative bag means that all instances in the bag are negative. We adapted our CNN architecture for MIL as shown in Fig. 2. \(N \) instances \(\{x_1, \ldots, x_N\} \) in a bag are fed to a replicated CNN which shares parameters. The last softmax layer is replaced with the aggregation layer.

\[p_i = \frac{\exp(h_i)}{\sum_j \exp(h_j)} \quad (3) \]

\[h_i = \max(h_{ij}) \quad (4) \]

and Noisy OR aggregation [38],

\[p_i = 1 - \prod_j (1 - p_{ij}) \quad (5) \]

\[p_{ij} = \frac{\exp(h_{ij})}{\sum_j \exp(h_{ij})} \quad (6) \]

Since it is unknown which sample is an outlier, we can not be sure that a bag has at least one positive instance. However, the probability that all instances in a bag are negative exponentially decreases with \(N \), thus the assumption becomes very realistic.

3. Experiments

3.1. Dataset

The proposed methods are evaluated on a novel acoustic event classification database \(^1\) harvested from Freesound [33], which is a repository of audio samples uploaded by users. The database consists of 28 events as described in Table 2. Note that since the sounds in the repository are tagged in free-form style and the words used vary a lot, the harvested sounds contain irrelevant sounds. For instance, a sound tagged ‘cat’ sometime does not contain a real cat meow, but instead a musical sound produced by a synthesizer. Furthermore sounds were recorded with various devices under various conditions (e.g. some sounds are very noisy and in others the acoustic event occurs during a short time interval among longer silences). This makes our database more challenging than previous datasets such as [39].

\(^1\)The dataset is available at https://data.vision.ee.ethz.ch/cvl/ae_dataset

![Figure 2: Architecture of our deeper CNN model adapted to MIL. The softmax layer is replaced with the aggregation layer.](image)

In order to reduce the noisiness of the data, we first normalized the harvested sounds and eliminated silent parts. If a sound was longer than 12 sec, we split the sound in pieces so that split sounds were less than 12 sec. All audio samples were converted to 16 kHz sampling rate, 16 bits/sample, mono channel. Similar to [34], the data was randomly split into training set (75%) and test set (25%). Only the test set was manually checked and irrelevant sounds not containing the target acoustic event, were omitted. The data augmentation was applied only to the training set.

3.2. Implementation details

Through all experiments, 49 band log-filter banks, log-energy and their delta and delta-delta were used as a low-level descriptor using 25 ms frames with 10 ms shift, except for the BoA W baseline described in Sec. 3.3.1. Input patch length was set to 400 frames (i.e. 4 sec). The effects of this length were further investigated in Sec. 3.3.2. During training, we randomly crop 4 sec for each sample. The networks were trained using mini-batch gradient descent based on back propagation with momentum. We applied dropout [40] to each fully-connected layer with keeping probability 0.5. The batch size was set to 128, the momentum to 0.9. For data augmentation we used VTLP and the proposed EMDA. The number of augmented samples is balanced for each class. During testing, 4 sec patches with 50% shift were extracted and used as input to the Neural Networks. The class with the highest probability was considered the detected class. The models were implemented using the Lasagne library [41].

3.3. Experimental Results and Discussions

3.3.1. State-of-the-art comparison

In our first set of experiments we compared our proposed deeper CNN architectures to three different state-of-the-art baselines, namely, BoA W [17], HMM+DNN/CNN as in [29], and classical DNN/CNN with large input field.

BoA W We used MFCC with delta and delta-delta as a low-level descriptor. K-means clustering was applied to generate an audio word code book with 1000 centers. We evaluated both SVM with a \(\chi^2 \) kernel and a 4 layer DNN as a classifier. The layer sizes of the DNN classifier were (1024, 256, 128, 28).

DNN/CNN+HMM We evaluate the DNN-HMM system. The neural network architectures are described in the left 2 columns in Table 1. Both DNN and CNN models are trained

Class	Total minutes	# clip	Class	Total minutes	# clip
Acoustic guitar	23.4	190	Hammer	42.5	240
Airplane	37.9	198	Helicopter	22.1	111
Applause	41.6	278	Knock	10.4	108
Bird	46.3	265	Laughter	24.7	201
Car	38.5	231	Mouse click	14.6	96
Cat	21.3	164	Ocean surf	42	218
Child	19.5	115	Rustle	22.8	184
Church bell	11.8	71	Scream	5.3	59
Crowd	64.6	328	Speech	18.3	279
Dog barking	9.2	113	Squeak	19.8	173
Engine	47.8	263	Tone	14.1	155
Fireworks	43	271	Violin	16.1	162
Footstep	70.3	378	Water tap	30.2	208
Glass breaking	4.3	86	Whistle	6	78

In order to reduce the noisiness of the data, we first normalized the harvested sounds and eliminated silent parts. If a sound was longer than 12 sec, we split the sound in pieces so that split sounds were less than 12 sec. All audio samples were converted to 16 kHz sampling rate, 16 bits/sample, mono channel. Similar to [34], the data was randomly split into training set (75%) and test set (25%). Only the test set was manually checked and irrelevant sounds not containing the target acoustic event, were omitted. The data augmentation was applied only to the training set.

3.2. Implementation details

Through all experiments, 49 band log-filter banks, log-energy and their delta and delta-delta were used as a low-level descriptor using 25 ms frames with 10 ms shift, except for the BoA W baseline described in Sec. 3.3.1. Input patch length was set to 400 frames (i.e. 4 sec). The effects of this length were further investigated in Sec. 3.3.2. During training, we randomly crop 4 sec for each sample. The networks were trained using mini-batch gradient descent based on back propagation with momentum. We applied dropout [40] to each fully-connected layer with keeping probability 0.5. The batch size was set to 128, the momentum to 0.9. For data augmentation we used VTLP and the proposed EMDA. The number of augmented samples is balanced for each class. During testing, 4 sec patches with 50% shift were extracted and used as input to the Neural Networks. The class with the highest probability was considered the detected class. The models were implemented using the Lasagne library [41].

3.3. Experimental Results and Discussions

3.3.1. State-of-the-art comparison

In our first set of experiments we compared our proposed deeper CNN architectures to three different state-of-the-art baselines, namely, BoA W [17], HMM+DNN/CNN as in [29], and classical DNN/CNN with large input field.

BoA W We used MFCC with delta and delta-delta as a low-level descriptor. K-means clustering was applied to generate an audio word code book with 1000 centers. We evaluated both SVM with a \(\chi^2 \) kernel and a 4 layer DNN as a classifier. The layer sizes of the DNN classifier were (1024, 256, 128, 28).

DNN/CNN+HMM We evaluate the DNN-HMM system. The neural network architectures are described in the left 2 columns in Table 1. Both DNN and CNN models are trained
to estimate HMM state posteriors. The HMM topology consists of one state per acoustic event, and an ergodic architecture in which all states have a self-transition and equal transitions to all other states, as in [30]. The input patch length for CNN, DNN is 30 frames with 50% shift.

DNN/CNN+Large input field In order to evaluate the effect of using the proposed CNN architectures, we also evaluated the baseline DNN/CNN architectures with the same large input field, namely, 400 frame patches. The classification accuracies of these systems trained with and without data augmentation are shown in Table 3. Even without data augmentation, the proposed CNN architectures outperform all previous methods. Furthermore, the performance is significantly improved by applying data augmentation, achieving 12.5% improvement for the B architecture. The best result was obtained by the B architecture with data augmentation. It is important to note that the B architecture outperforms classical DNN/CNN even though it has less parameters as shown in Table 1. This result supports the efficiency of deeper CNNs with small kernels for modelling large input fields.

3.3.2. Effectiveness of large input field

Our second set of experiments focuses on input field size. We tested our CNN with different patch size 50, 100, 200, 300, 400 frames (i.e. from 0.5 to 4 sec). The B architecture was used for this experiment. As a baseline we evaluated the CNN+HNN system described in Sec. 3.3.1 but using our architecture B, rather than a classical CNN. The performance improvement over the baseline is shown in Fig. 3. The result shows that larger input fields improve the performance. Especially the performance with patch length less than 1 sec sharply drops. This proves that modeling long signals directly with deeper CNN is superior to handling long sequences with HMMs.

![Figure 3: Performance of our network for different input patch lengths. The plot shows the increase over using a CNN+HMM with a small input field of 30 frames.](image)

Table 3: Accuracy of the deeper CNN and baseline methods, trained with and without data augmentation (%).

Method	Data augmentation	
BoA+DNN	74.7	79.6
BoA+SVM	76.1	80.6
DNN+HMM	54.6	75.6
CNN+HMM	67.4	86.1
DNN+Large input	62.0	77.8
CNN+Large input	77.6	90.9
A	77.9	91.7
B	80.3	92.8

![Figure 4: Effects of different data augmentation methods with varying amounts of augmented data.](image)

Table 4: Accuracy of MIL and normal training (%).

Architecture	Single instance	Noisy OR	MIL Max	MIL Max (2sec)
A	91.7	90.4	92.6	92.9
B	92.8	91.3	92.4	92.8

3.3.3. Effectiveness of data augmentation

We verified the effectiveness of our EMDA data augmentation method in more detail. We evaluated 3 types of data augmentation: EMDA only, VTLP only, and a mixture of EMDA and VTLP (50%, 50%) with different numbers of augmented sample 10k, 20k, 30k, 40k. Fig. 4 shows that using both EMDA and VTLP always outperforms EMDA or VTLP only. This shows that EMDA and VTLP perturbs original data and create new samples in a different way, providing more effective variation of data and helping to train the network to learn a more robust and general model from limited amount of data.

3.3.4. Effects of Multiple Instance Learning

Finally, the A and B architectures with a large input field were adapted to MIL to handle the noise in the database. The number of parameters were identical since both max and Noisy OR aggregation methods are parameter free. The number of instances in a bag was set to 2. We randomly picked 2 instances from the same class during each epoch of the training. Table 4 shows that MIL didn’t improve performance. However, MIL with a medium size input field (i.e. 2 sec) performs as good as or even slightly better than single instance learning with a large input field. This is perhaps due to the fact that the MIL took the same size input length (2 sec x 2 instances = 4 sec), while it had less parameter. Thus it managed to learn a more robust model.

4. Conclusions

We proposed new CNN architectures and showed that they allow to learn a model for AER end-to-end, by directly modeling a several seconds long signal. We further proposed a method for data augmentation that prevents over-fitting and leads to superior performance even when training data is fairly limited. Experimental results shows that proposed methods significantly outperforms state of the arts. We further validated the effectiveness of deeper architectures, large input fields and data augmentation one by one. Future work will be directed towards applying the proposed AER to different applications such as video segmentation and summarization.
5. References

[1] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” in Proc. ICLR, 2015, pp. 1–14.

[2] S. Araki, T. Hori, T. Yoshioka, M. Fujimoto, S. Watanabe, T. Oba, A. Ogawa, K. Otsuka, D. Mikami, M. Delcroix, K. Kinoshita, T. Nakatani, A. Nakamura, and J. Yamato, “Low-latency real-time meeting recognition and understanding using distant microphones and omni-directional camera,” IEEE Trans. on Audio, Speech, and Language Processing, vol. 20, no. 2, pp. 151–152, 2011.

[3] A. Ozerov, A. Liutkus, and R. Badeau, “Informed source separation: Source coding meets audio sources,” in IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), vol. 2, 2011, pp. 8–11.

[4] Y.-G. Jiang, G. Ye, S.-F. Chang, D. Ellis, and A. C. Loui, “Consumer video understanding: A benchmark database and an evaluation of human and machine performance,” in Proc. ICMR, 2011.

[5] Y. Li and B. Merialdo, “Video summarization based on balanced AV-MMR,” in Proc. International Conference on Multimedia Modeling, 2012, pp. 1–6.

[6] R. Radhakrishnan, A. Divakaran, and P. Smaragdis, “Audio analysis for surveillance applications,” in IEEE Workshop Applications of Signal Processing to Audio and Acoustics (WASPAA), 2005, pp. 158–161.

[7] W. Choi, J. Rho, D. K. Han, and H. Ko, “Selective background adaptation based abnormal acoustic event recognition for audio surveillance,” in IEEE Conference on Advanced Video and Signal-Based Surveillance, AVSS, 2012, pp. 118–123.

[8] G. Valenzise, L. Gerosa, M. Tagliasacchi, F. Antonacci, and A. Sarti, “Scream and gunshot detection and localization for audio-surveillance systems,” in IEEE Conference on Advanced Video and Signal Based Surveillance, AVSS, 2007, pp. 21–26.

[9] M. Xu, C. Xu, L. Duan, J. S. Jin, and S. Luo, “Audio keywords generation for video analysis,” ACM Trans. on Multimedia Computing, Communications, and Applications, vol. 4, no. 2, pp. 1–23, 2008.

[10] X. Zhuang, X. Zhou, M. a. Hasegawa-Johnson, and T. S. Huang, “Real-world acoustic event detection,” Pattern Recognition Letters, vol. 31, no. 12, pp. 1543–1551, 2010.

[11] T. Zhang and C.-C. J. Kuo, “Audio content analysis for online audiovisual data segmentation and classification,” IEEE Trans. on Speech and Audio Processing, vol. 9, no. 4, pp. 441–457, 2001.

[12] A. J. Eronen, V. T. Poloniot, I. T. Tuomi, A. P. Klapuri, S. Fagerlund, T. Sorsa, G. Lorho, and J. Huopaniemi, “Audio-based content recognition,” IEEE Trans. on Audio, Speech and Language Processing, vol. 14, no. 1, pp. 321–329, 2006.

[13] Z. Huang, Y. C. Cheng, K. Li, V. Hautamäki, and C. H. Lee, “A blind segmentation approach to acoustic event detection based on L-vector,” in Proc. INTERSPEECH, 2013, pp. 2282–2286.

[14] K. Lee and D. P. W. Ellis, “Audio-based semantic concept classification for consumer video,” IEEE Trans. on Audio, Speech and Language Processing, vol. 18, no. 6, pp. 1406–1416, 2010.

[15] A. Temko, E. Monte, and C. Nadeu, “Comparison of sequence discriminant support vector machines for acoustic event classification,” in Proc. ICASSP, vol. 5, 2006, pp. 721–724.

[16] H. Phan, L. Hertel, M. Mauz, R. Mazur, and A. Mertins, “Representing nonspeech audio signals through speech classification models,” in Proc. INTERSPEECH, 2015, pp. 3441–3445.

[17] S. Pancoast and M. Abkacar, “Bag-of-Audio-Words Approach for Multimedia Event Classification,” in Proc. INTERSPEECH, Portland, OR, USA, 2012.

[18] W. Choi, S. Park, D. K. Han, and H. Ko, “Acoustic event recognition using dominant spectral basis vectors,” in Proc. INTERSPEECH, 2015, pp. 2002–2006.

[19] J. Beltrán, E. Chávez, and J. Favela, “Scalable identification of mixed environmental sounds, recorded from heterogeneous sources,” Pattern Recognition Letters, vol. 68, pp. 153–160, 2015.

[20] S. Chu, S. Narayanan, and C.-C. J. Kuo, “Environmental sound recognition with time frequency audio features,” IEEE Trans. on Audio, Speech and Language Processing, vol. 17, no. 6, pp. 1142–1158, 2009.

[21] X. Lu, P. Shen, Y. Tsao, C. Hori, and H. Kawai, “Sparse representation with temporal max-smoothing for acoustic event detection,” in Proc. INTERSPEECH, 2015, pp. 1176–1180.

[22] H. Lim, M. J. Kim, and H. Kim, “Robust sound event classification using LBP-HOG based bag-of-audio-words feature representation,” in Proc. INTERSPEECH, 2015, pp. 3325–3329.

[23] F. Metze, S. Rawat, and Y. Wang, “Improved audio features for large-scale multimedia event detection,” in Proc. ICME, 2014, pp. 1–6.

[24] G. Hinton, L. Deng, D. Y. Yu, G. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. Sainath, and B. Kingsbury, “Deep neural networks for acoustic modeling in speech recognition,” Signal Processing Magazine, 2012.

[25] S. Pancoast and M. Abkacar, “Bag-of-Audio-Words Approach for Multimedia Event Classification,” in Proc. INTERSPEECH, 2015, pp. 3325–3329.

[26] Y. Li and B. Merialdo, “Video summarization based on balanced AV-MMR,” in Proc. International Conference on Multimdia Modeling, 2012, pp. 1–6.

[27] O. Abdel-Hamid, A. Mohamed, H. Jiang, and G. Penn, “Applying convolutional neural networks concepts to hybrid NN-HMM model for Speech Recognition,” in ICASSP, 2012, pp. 4277–4280.

[28] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolutional neural networks,” in Proc. NIPS, 2012, pp. 1097–1105.

[29] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for accurate object detection and semantic segmentation,” in Proc. CVPR, 2014, pp. 580–587.

[30] Z. Kons, O. Toledo-Ronen, and M. Carmel, “Audio Event Classification Using Deep Neural Networks,” in Proc. INTERSPEECH, 2013, pp. 1482–1486.

[31] O. Gencoglu, T. Virtanen, and H. Huttunen, “Recognition of acoustic events using deep neural networks,” Proc. EUSIPCO, no. 1-5 Sept. 2014, pp. 506–510, 2014.

[32] M. Espi, M. Fujimoto, K. Kinoshita, and T. Nakatani, “Exploiting spectro-temporal locality in deep learning based acoustic event detection,” EURASIP Journal on Audio, Speech, and Music Processing, vol. 2015, no. 26, pp. 1–12, 2015.

[33] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient based learning applied to document recognition,” in Proc. of the IEEE, vol. 86, no. 11, 1998, pp. 2278–2324.

[34] S. Deng, J. Han, C. Zhang, T. Zheng, and G. Zheng, “Robust minimum statistics project coefficients feature for acoustic environment recognition,” in Proc. ICASSP, 2014, pp. 8232–8236.

[35] N. Jaitly and G. E. Hinton, “Vocal tract length perturbation (VTLP) improves speech recognition,” ICML, vol. 28, 2013.

[36] J. Wu, Yinan Yu, Chang Huang, and Kai Yu, “Deep multiple instance learning for image classification and auto-annotation,” in Proc. CVPR, 2015, pp. 3460–3469.

[37] P. Viola, J. C. Platt, and C. Zhang, “Multiple instance boosting for object detection,” in Proc. NIPS, vol. 74, no. 10, 2005, pp. 1769–1775.

[38] H. David, “A tractable inference algorithm for diagnosing multiple diseases,” in Proc. UAI, 1985, pp. 163–171.

[39] S. Nakamura, K. Hiyane, and F. Asano, “Acoustical sound database in real environments for sound scene understanding and hands-free speech recognition,” in International Conference on Language Resources & Evaluation, 2000, pp. 2–5.

[40] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov, “Improving neural networks by preventing co-adaptation of feature detectors,” arXiv:1207.0580, 2012.

[41] E. Battenberg, S. Dieleman, D. Nouri, E. Olson, C. Raffel, J. Schlüter, S. K. Sønderby, D. Ma, and T. M. Sønderby, “Lasagne: First release.” http://dx.doi.org/10.5281/zenodo.27878, Aug. 2015.