QUESTION

Should self-directed digital vs. instructor-led training be used to teach adults and children basic life support skills?

POPULATION:	Adults and children undertaking BLS training.
INTERVENTION:	Self-directed digitally-based BLS training.
COMPARISON:	Instructor-led BLS training
MAIN OUTCOMES:	Patient outcomes: Good neurological outcome at hospital discharge/30-days; Survival at hospital discharge/30-days; Return of spontaneous circulation (ROSC); Rates of bystander CPR; Bystander CPR quality during an OHCA (any available CPR metrics); Rates of automated external defibrillator (AED) use. Educational outcomes at the end of training and within 12 months: CPR quality (chest compression depth and rate; chest compression fraction; full chest recoil, ventilation rate, overall CPR competency) and AED competency; CPR and AED knowledge; Confidence and willingness to perform CPR.
SETTING:	Lay person BLS training
BACKGROUND:	Bystander CPR and automated external defibrillator (AED) use in OHCA more than doubles OHCA survival. BLS training provides knowledge and skills to perform CPR and use an AED. BLS training is associated with increased confidence and willingness to perform BLS skills.
CONFLICT OF INTERESTS:	The following Task Force members declared an intellectual conflict of interest and this was acknowledged and managed by the Task Force Chairs and Conflict of Interest committees: Andrew Lockey, Joyce Yeung, Koen Monsieurs and Robert Greif.

ASSESSMENT

Problem

Is the problem a priority?

JUDGEMENT	RESEARCH EVIDENCE	ADDITIONAL CONSIDERATIONS
○ No	Out-of-hospital cardiac arrest (OHCA) is a significant cause of death. Given the current pandemic, with issues in attending training, the EIT Task Force considered this question a priority.	Access to digital self-directed training is important during pandemics because 1) more OHCA occur in the home and 2) access to instructor-led training may not be possible or is restricted.
○ Probably no		
○ Probably yes	Two related PICOS were performed as part of the 2015 ILCOR review: # 647 (CPR instruction methods: self-instruction versus traditional) and #651 (AED training methods). A significant number of RCTs on this topic have been conducted since that time.	
● Yes		
○ Varies		
○ Don't know		
Desirable Effects

How substantial are the desirable anticipated effects?

JUDGEMENT	RESEARCH EVIDENCE	ADDITIONAL CONSIDERATIONS
o Trivial	o Small	Two excluded studies mailed out digital training kits and examined the impact on OHCA CPR and patient outcomes. No change was noted in bystander CPR or patients outcomes when compared to a period of time before or a region that did not receive BLS training kits.
● Moderate	o Large	Compared to no training arms or before-and-after studies – both digital and instructor-led improved learning outcomes.
o Varies	o Don’t know	Testing of educational outcomes varied in terms of duration of testing and methods of data collection (manikin and checklists). Varied use of manikin practice, feedback devices, and assessment of CPR performance was also noted.
		Manikins have different technical specifications with respect to delivery of CPR.

Subsequent use of skills and patient outcomes

Two RCTs reported results for subsequent use of BLS skills and patient outcomes following training. Only Dracup et al. (2000 3289) reported any OHCA events (n=13) where trainees used skills, however there were too few events (n=13) and outcomes of this study were of too low quality (very low certainty of evidence, downgraded for risk of bias and imprecision) to be confident in the findings.

Educational outcomes (CPR and AED skills immediate and to one year)

Testing of CPR and AED skills was conducted immediately to one-month after training in 36 studies (29 RCTs and 7 non-RCTs) and between two-months and one-year in 24 studies (20 RCTs and 4 non-RCTs: Barr 2013 538; Braslow 1997 207; Edwards 1987 492; Isbye 2006 435). Methods of measurement and the types of educational outcomes varied widely between studies, which precluded any pooling of data or meta-analysis.

Moderate certainty of evidence (downgraded for risk of bias) from 28 studies, comparing instructor-led training and digital training using video or interactive computer programs with manikin practice, showed comparable educational outcomes for most CPR skills and knowledge gained immediately following training and to one-year.

Low certainty of evidence (downgraded for risk of bias and imprecision) from 9 studies, comparing instructor-led training and digital training using video-only, showed comparable educational outcomes for most CPR skills and knowledge gained immediately following training and to one-year and overall CPR competency and knowledge immediately.

Low certainty of evidence (downgraded for risk of bias and imprecision) from 11 RCTs testing methods of digital training for AED skills, suggests instructor-led training may be more effective immediately following training but not in the long-term.

Insufficient (low quality, downgraded for risk of bias and inconsistency) evidence (3 studies) was found comparing gaming training to instructor-led training.

Undesirable Effects

How substantial are the undesirable anticipated effects?

JUDGEMENT	RESEARCH EVIDENCE	ADDITIONAL CONSIDERATIONS
		Most currently available digital training allows free multiple viewings, viewing at the learners convenience, the potential for training others (e.g. kits trained >2 people), and free retraining.

Testing of educational outcomes varied in terms of duration of testing and methods of data collection (manikin and checklists). Varied use of manikin practice, feedback devices, and assessment of CPR performance was also noted.

Manikins have different technical specifications with respect to delivery of CPR.

Two excluded studies mailed out digital training kits and examined the impact on OHCA CPR and patient outcomes. No change was noted in bystander CPR or patients outcomes when compared to a period of time before or a region that did not receive BLS training kits.

Compared to no training arms or before-and-after studies – both digital and instructor-led improved learning outcomes.

Testing of educational outcomes varied in terms of duration of testing and methods of data collection (manikin and checklists). Varied use of manikin practice, feedback devices, and assessment of CPR performance was also noted.

Manikins have different technical specifications with respect to delivery of CPR.

Most currently available digital training allows free multiple viewings, viewing at the learners convenience, the potential for training others (e.g. kits trained >2 people), and free retraining.
Some studies showed a statistical difference for chest compression depth favouring instructor-led training. However, it is difficult to know how clinically significant these differences were, because in some studies compression depth was low in both groups and most differences were marginal. Furthermore:

- Studies with pre-testing or with a no training control groups showed improved compression depth outcomes in digital training arms.
- Use of feedback devices for compression depth varied widely.
- Manikins vary with respect to the maximum allowable depth (e.g. some allow compressions beyond depth guidelines, while others do not), force required to generate guideline compliant depth (i.e. resistance), and chest size.
- One study noted that although some video kit manikins contained feedback devices, the video did not always explain its use (Jones 2007 350). How widespread this issue was across other studies is unknown due to lack of reporting.
- One study suggested differences in achieving CPR skills may related to the different manikins used in practice and assessment, with only the instructor-led group training on the same manikins used in assessment (Jones 2007 350).

Video only training may not achieve acceptable education outcomes for all CPR and AED skills.

Certainty of evidence

What is the overall certainty of the evidence of effects?

JUDGEMENT	RESEARCH EVIDENCE
o Very low	Patient outcomes: Very low ⊕
o Low	Educational outcomes immediate to one-month: Moderate ⊕⊕
● Moderate	Educational outcomes to one-year: Low ⊕⊕

Most studies were downgraded due to loss to follow-up (>95%) for both short and long term outcomes. Most non-RCTs did not adjust for differences in characteristics and confounders (e.g. prior CPR training) at baseline between groups.

Values

Is there important uncertainty about or variability in how much people value the main outcomes?

JUDGEMENT	RESEARCH EVIDENCE
o Important uncertainty or variability	Main outcome is survival, and neurologically intact survival. COSCA has confirmed importance of these outcomes.
o Possibly important uncertainty or variability	COSCA: Haywood K, Whitehead L, Nadkarni VM, Achana F, Beesems S, Bottiger BW, et al. COSCA (Core Outcome Set for Cardiac Arrest) in Adults: An Advisory Statement From the International Liaison Committee on Resuscitation. Resuscitation. 2018;127:147-63.

Data suggests CPR and AED training must included skills practice—preferably with corrective feedback.

One study suggested insufficient emphasis in AED use in digital training may explain worse AED educational outcomes (Doucet 2019 317).

Trivial ○
Small ○
Moderate ○
Large ●
Varies ○
Don't know ○
Educational outcomes were decided and prioritised by the EIT Task Force.

Balance of effects
Does the balance between desirable and undesirable effects favor the intervention or the comparison?

JUDGEMENT	RESEARCH EVIDENCE	ADDITIONAL CONSIDERATIONS
○ Favors the comparison	The systematic review found no difference for most CPR educational outcomes for video kits/video with manikin practice.	Self-directed digital training is already widespread and more convenient for learners
○ Probably favors the comparison		
● Does not favor either the intervention or the comparison		
○ Probably favors the intervention		
○ Favors the intervention		
○ Varies		
○ Don’t know		

Resources required
How large are the resource requirements (costs)?

JUDGEMENT	RESEARCH EVIDENCE	ADDITIONAL CONSIDERATIONS
○ Large costs	Most studies comparing cost of video kits (with manikin) to instructor-led training state digital self-training is cheaper (see cost-effectiveness below). Digital training requires viewing equipment and the cost of training materials. Video-kits with manikins are generally cheap and comparable in costs to instructor-led classes. Most currently available digital training allows free multiple viewings, viewing at the learners convenience, the potential for training others (e.g. kits trained 2.5 people), and free retraining. Instructor-led training resources include personnel, space and equipment. Learner’s time and travel costs to classes.	One study (Chung 2010 165) compared costs to users and determined digital self-directed learning to be more expensive – but this included the costs of purchasing a separate manikin (which is now sold as part of video kits) and assessment.
○ Moderate costs		
○ Negligible costs and savings		
○ Moderate savings		
○ Large savings		
● Varies		
○ Don’t know		

Certainty of evidence of required resources
What is the certainty of the evidence of resource requirements (costs)?

JUDGEMENT	RESEARCH EVIDENCE	ADDITIONAL CONSIDERATIONS
Appendix A4 EIT

JUDGEMENT	RESEARCH EVIDENCE	ADDITIONAL CONSIDERATIONS
Low quality evidence.		

Cost effectiveness

Does the cost-effectiveness of the intervention favor the intervention or the comparison?

JUDGEMENT	RESEARCH EVIDENCE	ADDITIONAL CONSIDERATIONS
Favors the comparison	Hasselager (2019 28) reported a cost-effectiveness analyses of video CPR training with an infant manikin (clicker feedback). They accounted for participant time costs, cleaning, equipment and instructor time. Each 10,000 USD spent: 233 laypersons trained using self-directed digital training will be competent after training. For instructor-led training, 109 can be trained and will be 65 competent.	Digital self-training is becoming cheaper and can allow for re-training and provide opportunity to train others.
Probably favors the comparison	Li (2011 357) reported a cost-effectiveness analyses of video only CPR training compared to interactive instructor-led BLS training and instructor-led lectures. They reported much higher cost/passed student (knowledge only), for instructor-led training 2.1 to 3.7 times higher than video only.	
Does not favor either the intervention or the comparison		
Probably favors the intervention		
Favors the intervention		
Varies		
No included studies		

Equity

What would be the impact on health equity?

JUDGEMENT	RESEARCH EVIDENCE	ADDITIONAL CONSIDERATIONS
Reduced	The convenience and accessibility of digital self-directed training is likely to be more equitable than instructor-led training.	
Probably reduced		
Probably no impact		
Probably increased		
Increased		
Varies		
Don’t know		

Acceptability

Is the intervention acceptable to key stakeholders?

JUDGEMENT	RESEARCH EVIDENCE	ADDITIONAL CONSIDERATIONS
Digital training methods scored higher by participants for acceptability (Assadi 2015 291; Ali 219 30; Barr 2013 538).

Feasibility

Is the intervention feasible to implement?

JUDGEMENT	RESEARCH EVIDENCE	ADDITIONAL CONSIDERATIONS
● Probably yes	Most people have access to equipment to view digital training. Video kits can be mailed.	

SUMMARY OF JUDGEMENTS

PROBLEM	JUDGEMENT	DESIRABLE EFFECTS	UNDESIRABLE EFFECTS	CERTAINTY OF EVIDENCE	VALUES	BALANCE OF EFFECTS
No	Yes	Trivial	Large	Very low	Important uncertainty or variability	Favors the comparison
Probably no	Probably yes	Small	Moderate	Low	Possibly important uncertainty or variability	Probably favors the comparison
Probably yes	Yes	Moderate	Small	Moderate	Probably no important uncertainty or variability	Does not favor either the intervention or the comparison
Yes	Varies	Large	Trivial	High	No important uncertainty or variability	Probably favors the intervention
Varies	Don't know				No included studies	Favors the intervention
Don't know						Varies

PROBLEM	JUDGEMENT	DESIRABLE EFFECTS	UNDESIRABLE EFFECTS	CERTAINTY OF EVIDENCE	VALUES	BALANCE OF EFFECTS
No	Yes	Trivial	Large	Very low	Important uncertainty or variability	Favors the comparison
Probably no	Probably yes	Small	Moderate	Low	Possibly important uncertainty or variability	Probably favors the comparison
Probably yes	Yes	Moderate	Small	Moderate	Probably no important uncertainty or variability	Does not favor either the intervention or the comparison
Yes	Varies	Large	Trivial	High	No important uncertainty or variability	Probably favors the intervention
Varies	Don't know				No included studies	Favors the intervention
Don't know						Varies

PROBLEM	JUDGEMENT	DESIRABLE EFFECTS	UNDESIRABLE EFFECTS	CERTAINTY OF EVIDENCE	VALUES	BALANCE OF EFFECTS
No	Yes	Trivial	Large	Very low	Important uncertainty or variability	Favors the comparison
Probably no	Probably yes	Small	Moderate	Low	Possibly important uncertainty or variability	Probably favors the comparison
Probably yes	Yes	Moderate	Small	Moderate	Probably no important uncertainty or variability	Does not favor either the intervention or the comparison
Yes	Varies	Large	Trivial	High	No important uncertainty or variability	Probably favors the intervention
Varies	Don't know				No included studies	Favors the intervention
Don't know						Varies

PROBLEM	JUDGEMENT	DESIRABLE EFFECTS	UNDESIRABLE EFFECTS	CERTAINTY OF EVIDENCE	VALUES	BALANCE OF EFFECTS
No	Yes	Trivial	Large	Very low	Important uncertainty or variability	Favors the comparison
Probably no	Probably yes	Small	Moderate	Low	Possibly important uncertainty or variability	Probably favors the comparison
Probably yes	Yes	Moderate	Small	Moderate	Probably no important uncertainty or variability	Does not favor either the intervention or the comparison
Yes	Varies	Large	Trivial	High	No important uncertainty or variability	Probably favors the intervention
Varies	Don't know				No included studies	Favors the intervention
Don't know						Varies

RESOURCES REQUIRED	Large costs	Moderate costs	Negligible costs and savings	Moderate savings	Large savings	Varies	Don't know	
CERTAINTY OF EVIDENCE OF REQUIRED RESOURCES	Very low	Low	Moderate	High			No included studies	
COST EFFECTIVENESS	Favors the comparison	Probably favors the comparison	Does not favor either the intervention or the comparison	Probably favors the intervention	Favors the intervention	Varies	No included studies	
EQUITY	Reduced	Probably reduced	Probably no impact	Probably increased	Increased	Varies	Don't know	
ACCEPTABILITY	No	Probably no	Probably yes	Yes			Varies	Don't know
FEASIBILITY	No	Probably no	Probably yes	Yes			Varies	Don't know
TYPE OF RECOMMENDATION								

Strong recommendation against the intervention								
○								
Conditional recommendation against the intervention								
○								
Conditional recommendation for either the intervention or the comparison								
●								
Conditional recommendation for the intervention								
○								
Strong recommendation for the intervention								
○								

Recommendation

- We recommend instructor-led training (with manikin practice with feedback device) or the use of self-directed training with video kits (instructional video and manikin practice with feedback device) for the acquisition of CPR theory and skills in lay-adults and high school aged (>10 years) children (strong recommendation, moderate quality of evidence).
- We recommend instructor-led training (with AED scenario and practice) or the use of self-directed video kits (instructional video with AED scenario) for the acquisition of AED theory and skills in lay-adults and high school aged (>10 years) children (strong recommendation, low quality of evidence).
- We suggest BLS video education (without manikin practice) be used when instructor-led training or self-directed training with video kits (instructional video plus manikin with feedback device) are not accessible, or when quantity over quality of BLS training is needed in adults and children (weak recommendation, weak quality of evidence).
- There was insufficient evidence to make a recommendation on gaming as a CPR or AED training method.
- There was insufficient evidence to suggest a treatment effect on bystander CPR rates or patient outcomes.

Justification

In making these recommendations, the EIT Task Force acknowledges that:

- the current evidence suggests some AEDs skills were superior with instructor-led training; however, the Task Force considered the significant improvement in AED skills with both methods when compared to baseline or groups with no training more important since modern AEDs include voice prompts for use.
- adequate training outcomes for some BLS skills may not be achieved with video-only training; however, the Task Force considered the improvement in BLS skills with video-only training when compared to baseline or groups with no training more important.
- high-school aged children may not be able to achieve guideline recommendations for chest compression depth; however, the Task Force considered the acquisition of BLS skills at this age more important.

The EIT Task Force also considered the following:

- Testing of educational outcomes varied in terms of duration of testing and methods of data collection (manikin and checklists). Varied use of manikin practice, feedback devices, and assessment of CPR performance was also noted.
- Manikins have different technical specifications with respect to delivery of CPR.
- The difference in compression depth were discussed at length. Of particular importance:
 - Although compression depth favored instructor-led training, it is difficult to know how clinically significant these differences were, because in some studies compression depth was low in both groups and most differences were marginal.
 - Studies with pre-testing or with a no training control groups showed improved compression depth outcomes in digital training arms.
 - Use of feedback devices for compression depth varied widely.
 - Manikins vary with respect to the maximum allowable depth (e.g. some allow compressions beyond depth guidelines, while others do not), force required to generate guideline compliant depth (i.e. resistance), and chest size.
 - One study noted that although some video kit manikins contained feedback devices, the video did not always explained its use (Jones 2007 350). How widespread this issue was across other studies is unknown due to lack of reporting.
One study suggested differences in achieving CPR skills may relate to the different manikins used in practice and assessment, with only the instructor-led group training on the same manikins used in assessment (Jones 2007 350).

- That any form of BLS training improves knowledge, confidence and willingness to perform CPR compared to control groups with no training.
- One study suggested insufficient emphasis in AED use in digital training may explain worse AED educational outcomes (Doucet 2019 317).
- Video-only digital training is probably not comparable to instructor-led training, due to the differences in BLS practice and feedback between groups.
- The relevance of older RCTs was discussed, including: advancements in RCT methods; modern training focuses on chest compressions; advancements in technology for CPR assessments.
- Cost-effectiveness analysis performed typically favors digital training (Hasselager 2019 28; Li 2011 357). Instructor-led classes require human resources, organization, location and equipment. Digital training is generally cheaper and more convenient than instructor-led training.
- Data suggest CPR and AED training must include skills practice – preferably with corrective feedback.
- That provision of bystander CPR and AED use are strong predictors of OHCA patient outcomes.
- Acquisition of different BLS skills may vary across different mediums and age groups.
- The known barriers that exist to attend instructor-led BLS classes (e.g. time, costs, and accessibility) and the need to make BLS training available to everyone.
- The need and ease for updating digital and instructor-led materials to ensure training complies with BLS recommendations.
- Digital training allow skills to be refreshed at any time, and at no additional cost, and provide the opportunity to teach others (~2.5 additional people trained per kit Isbye 2007 1380, Barr 2013 538). Refreshment of CPR skills using digital methods may explain why some skills improved when measured in the longer term (Yeung 2017 138).
- Digital training enables more people to be educated in periods of need (e.g. pandemics).

Subgroup considerations

- Not all high school aged children were able achieve guideline recommended compression depth with digital training.

Implementation considerations

- Both methods will require updating educational materials if guideline recommendations change.

Monitoring and evaluation

- New digital training methods will require evaluations to ensure educational outcomes can be achieved.
- Manikins have different technical specifications with respect to delivery of CPR.

Research possibilities

- New digital training methods will require evaluations to ensure educational outcomes can be achieved.
- Continued research in methods to improve the achievement of guideline recommended CPR metrics (compression rate and depth) and AED outcomes are needed.
- Reporting and standardization of manikin technical specifications represents an opportunity for future research.
- Studies comparing gaming training to instructor-led training are needed.
- Future studies should use objective methods (e.g. sensor manikins) in CPR skill assessments and include important CPR metrics (Meaney 2013 417).