Probing α-cluster distribution via α-transfer reaction

Tokuro Fukui1, Yasutaka Taniguchi2, Tadahiro Suhara3, Yoshiko Kanada-En'yo4, and Kazuyuki Ogata1.

1 Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047, Japan.
2 Department of Medical and General Sciences, Nihon Institute of Medical Science, Moroyama, Saitama 350-0435, Japan.
3 Matsue College of Technology, Matsue, Shimane 690-8518, Japan.
4 Department of Physics, Kyoto University, Kyoto 606-8502, Japan.

E-mail: tokuro@rcnp.osaka-u.ac.jp

Abstract. The α-transfer reaction $^{16}\text{O}(^6\text{Li},d)^{20}\text{Ne}$ is investigated in order to extract the α-clustering probability of ^{20}Ne. The relative wave function for the α-^{16}O system is calculated by a microscopic cluster model. We show the angular distribution of the transfer cross section is a good probe to see the radial dependence of the α-clustering probability in the surface region.

1. Introduction

The clustering phenomena have been predicted by theoretical studies that several states of unstable nuclei or of sd-shell nuclei have a cluster structure [1]. However, there is no direct measurement of the cluster structure except for resonance states decaying into constituent clusters. Therefore, it is desirable to establish how to extract the quantitative information on the clustering from observables.

In theoretical studies it is known that the α-cluster state develops in the surface region of nuclei. We take here ^{20}Ne as a typical nucleus having an α-^{16}O cluster structure. The purpose of the present study is to extract the probability of the α-clustering in the surface region from an α-transfer reaction, $^{16}\text{O}(^6\text{Li},d)^{20}\text{Ne}$. The transfer reaction is analyzed by means of the conventional distorted wave Born approximation (DWBA) with the overlap between ^{20}Ne and α-^{16}O, which is calculated by the microscopic cluster model.

2. Theoretical framework

2.1. Microscopic description of cluster wave function

As for the relative wave function between α and ^{16}O, we adopt a microscopic cluster model. The total wave function of ^{20}Ne with the resonating group method (RGM) [2, 3, 4, 5] for the α-^{16}O configuration is given by

$$|\Psi_{\text{Ne}}\rangle = \frac{1}{\sqrt{20!}} A [\chi_l(r)Y_{l0}(\hat{r})\phi(\alpha)\phi(\text{Ne})],$$

(1)

where r is the relative coordinate between α and ^{16}O, A stands for the antisymmetrization operator, and $\phi(C)$ is the intrinsic wave function of the nucleus C. χ_l can be expanded by the
orthonormal set R_{nl} of the radial wave function of the harmonic oscillator (HO) as

$$\chi_i(r) = \sum_n a_n R_{nl}(r),$$

$$a_n = \int r^2 dr R_{nl}(r) \chi_i(r).$$

Here, n and l correspond to the principal quantum number and the orbital angular momentum of the HO, respectively. The relative wave function is defined by

$$u_l(r) = \sum_n a_n \sqrt{\mu_{nl}} R_{nl}(r)$$

with the eigenvalue μ_{nl} of the RGM norm kernel [6]. For a normalized cluster wave function satisfying $\langle \Psi | \Psi \rangle = 1$, the relative wave function u_l is normalized to unity. Details of the formulation of the microscopic cluster model are given in Ref. [7].

2.2. Distorted wave Born Approximation (DWBA) formalism
In this paper the α-transfer reaction $^{16}\text{O}(^{6}\text{Li},d)^{12}\text{C}$ is described with the post form distorted wave Born Approximation (DWBA) approach. The coordinates for the reaction system are illustrated in Fig. 1. The transition matrix for the α-transfer reaction is given by

$$T_{\text{DWBA}}^{\text{(post)}} = \langle \Psi_{f}(-) | V_{\alpha\text{d}} | \Psi_{i}^{(+)} \rangle,$$

where the α-d interaction $V_{\alpha\text{d}}$ in the final channel is adopted as the transition interaction, which causes the transition from the initial channel i to the final channel f. The total wave functions $\Psi_{i}^{(+)}$ and $\Psi_{f}^{(-)}$ for the initial and final channels, respectively, are written as

$$\Psi_{i}^{(+)}(r_{\alpha\text{d}}, r_{i}) = \psi_{\alpha\text{d}}(r_{\alpha\text{d}}) \chi_{i}^{(+)}(r_{i}),$$

$$\Psi_{f}^{(-)}(r_{\alpha\text{O}}, r_{f}) = \psi_{\alpha\text{O}}(r_{\alpha\text{O}}) \chi_{f}^{(-)}(r_{f}),$$

where $\psi_{\alpha\text{d}} (\psi_{\alpha\text{O}})$ is the relative wave function of the α-d (α-^{16}O) system and the distorted wave between ^{6}Li and ^{16}O (d and ^{20}Ne) is represented by $\chi_{i}^{(+)}$ ($\chi_{f}^{(-)}$). The superscript (+) and (−) represents the outgoing and incoming boundary conditions, respectively, on the scattering wave function. We adopt the cluster wave function defined by Eq. (4) for the radial part of $\psi_{\alpha\text{O}}$.

![Figure 1. Illustration of the three-body system.](image-url)
We adopt the Volkov No. 2 effective interaction with the Majorana parameter \(m = 0.62 \) [8] to calculate the \(\alpha^{16}\text{O} \) relative wave function \(u_\alpha \). The width parameter \(\nu = 0.16 \text{ fm}^{-2} \) is used for both \(\alpha \) and \(^{16}\text{O} \). \(\psi_{ad} \) is calculated with a two-range Gaussian interaction \(V_{ad} \) [9].

We consider the \(^{16}\text{O}(^6\text{Li},d)^{20}\text{Ne} \) reaction at four incident energies: 20, 38, 42, and 75 MeV. At 20 and 38 MeV, we adopt phenomenological distorting potentials of a Woods-Saxon form given in Ref. [10]. At 42 (75) MeV, potential parameters are taken from Ref. [11] (Ref. [12]) and Ref. [13] (set 2 of Ref. [14]) for the initial and final channels, respectively.

To investigate the role of the \(\alpha \)-cluster distribution in the transfer reaction \(^{16}\text{O}(^6\text{Li},d)^{20}\text{Ne} \), the cross sections are calculated with the \(^{20}\text{Ne} \) wave functions of the cluster model (CM), Eq. (4), and of the potential model (PM). In PM the \(\alpha^{16}\text{O} \) relative wave function is simply calculated with the Woods-Saxon potential \(V_{\alpha\text{O}} \) between \(\alpha \) and \(^{16}\text{O} \): \(V_{\alpha\text{O}} = -V_0/[1 + \exp((r_{\alpha\text{O}} - r_0)/a)] \). The parameters of \(V_{\alpha\text{O}} \) are listed in Table 1. Figures 2(a) and 2(b) show the \(\alpha^{16}\text{O} \) relative wave functions of the 0\(^+\) (ground state) and the 1\(^-\) state (5.79 MeV), respectively. For the 1\(^-\) state we use a bound state approximation to calculate the relative wave function, taking the binding energy to be 0.2 MeV. By changing the parameter \(a \), the PM wave function (PM2) can reproduce the behavior of the CM wave function in the surface region \(r_{\alpha\text{O}} \gtrsim 5 \text{ fm} \).

The transfer cross sections of \(^{16}\text{O}(^6\text{Li},d)^{20}\text{Ne}(0\(^+\)+1\(^-\)) \) as a function of the neutron emitting angle \(\theta \) in the center-of-mass frame are compared with the experimental data [10, 12, 15] in Fig. 3. One sees the result with CM (solid line) agrees well with that with PM2 (dotted line) up to the third maximum at all energies. On the other hand, the result with PM1 (dashed line) deviates from the other two significantly. As shown in Fig. 2, CM and PM1 gives the same distribution.

| Table 1. Potential parameters for \(V_{\alpha\text{O}} \) in fm. The depth \(V_0 \) of \(V_{\alpha\text{O}} \) is determined so as to reproduce the binding energy 4.73 MeV and 0.20 MeV for 0\(^+\) and 1\(^-\) states, respectively. |
|-----------------|-------|----------|-----------------|
| | \(r_0 \) | \(a \) | \(r_0 \) | \(a \) |
| PM1 | \(1.25 \times 16^{1/3} \) | 0.65 | \(1.25 \times 16^{1/3} \) | 0.65 |
| PM2 | \(1.25 \times 16^{1/3} \) | 0.76 | \(1.25 \times 16^{1/3} \) | 0.83 |

\[\text{Figure 2.} \ (a) \text{ The } \alpha^{16}\text{O} \text{ relative wave functions for the } 0^+ \text{ state calculated with CM (solid line) and two parameter sets of PM: PM1 (dashed line) and PM2 (dotted line). (b) Same as in (a) but for the } 1^- \text{ state.} \]
in the surface region but are different from each other in the inner region. Whereas the two sets of PM show a difference only in the surface region. Thus, the results of Fig. 3 suggest that the transfer cross section is not sensitive to the inner part of the structure of \(^{20}\text{Ne}\) but it probes the \(^{16}\text{O}\) radial wave function in the surface region.

Note that the radial wave functions used here are normalized to unity. Nevertheless, PM1 gives a significant difference from other two models on the cross sections. This indicates the difficulty of a precise determination of the spectroscopic factor (SF) from transfer reactions. It is also important that the surface region in this study means about 5–8 fm in the \(^{16}\text{O}\) relative distance, i.e., still within a range of the nuclear interaction between the two clusters. Thus, the transfer process considered here is not governed by the asymptotic normalization coefficient (ANC). The \(\alpha\)-clustering probability in the surface region will be a third alternative to the SF and the ANC for nuclear structural information to be extracted from reaction observables.

Unfortunately, however, agreement of the calculations with CM and PM with the experimental data is not satisfactorily well. This may be due to ambiguity of the distorting potentials. We will fix this possible problem by adopting an \(\alpha + d + ^{16}\text{O}\) three-body model in describing the transfer reaction. In this case we need the \(^{16}\text{O}\) and \(d + ^{16}\text{O}\) distorting potentials, for which some global parameterizations can be used.
Figure 4. Same as in Fig. 3 but for the transfer cross section to the 1_{1}^{-} state of 20Ne.

Figure 4 shows the transfer cross section populating the 1_{1}^{-} state of 20Ne. One may draw a similar conclusion on this result to that for the transfer to the 0_{1}^{-} state. It implies a possibility to probe a cluster structure also in a resonance state of a nucleus. This will be one of the advantages to use transfer reactions for the study of clustering phenomena.

4. Summary
We have analyzed the transfer reaction 16O(6Li,d)20Ne to investigate the radial dependence of the α-cluster probability. The α-16O relative wave function calculated microscopically are adopted in the DWBA analysis. We have found that the angular distribution of the transfer cross section is a good probe to see the radial dependence of the α-clustering probability. The procedure proposed in the present study can be useful and applicable to probe the cluster structure via observables in general systems such as unstable nuclei and sd-shell nuclei. As future work, to take into account the breakup channels of 6Li with an $\alpha + d$+16O three-body model by means of the continuum-discretized coupled-channels method (CDCC) [16, 17, 18] will be important. This will also minimize ambiguity of distorting potentials required in reaction calculations.

References
[1] Horiuchi H, Ikeda K and Katō K 2012 Prog. Theor. Phys. Suppl. 192 1
[2] Wheeler J A 1937 Phys. Rev. 52 1083
[3] Wheeler J A 1937 Phys. Rev. 52 1107
[4] Wildermuth K and Kanellopoulos T 1958 Nucl. Phys. 7 150
[5] Wildermuth K and Kanellopoulos T 1958/1959 Nucl. Phys. 9 449
[6] Ikeda K and Tamagaki R 1977 Prog. Theor. Phys. Suppl. 62 1
[7] Kanada-En’yo Y, Suhara T and Taniguchi Y 2014 Prog. Theor. Exp. Phys. 2014 073D02
[8] Volkov A B 1965 Nucl. Phys. 74 33
[9] Sakuragi Y, Yahiro M and Kaminura M 1986 Prog. Theor. Phys. Suppl. 89 136
[10] Anantaraman N et al. 1979 Nuclear Physics A 313 445
[11] Chua L, Becchetti F, Jènecck J and Milder F 1976 Nucl. Phys. A273 243
[12] Tanabe T et al. 1981 Phys. Rev. C 24 2556
[13] Newman E, Becker L, Preedom B and Hiebert J 1967 Nucl. Phys. A100 225
[14] Hinterberger F, Mairle G, Schmidt-Rohr U, Wagner G and Turek P 1968 Nucl. Phys. A111 265
[15] Becchetti F, Jènecck J and Thorn C 1978 Nucl. Phys. A305 313
[16] Kaminura M et al. 1986 Prog. Theor. Phys. Suppl. 89 1
[17] Austern N, Iseri Y, Kaminura M, Kawai M, Rawitscher G and Yahiro M 1987 Phys. Rep. 154 125
[18] Yahiro M, Ogata K, Matsumoto T and Minomo K 2012 Prog. Theor. Exp. Phys. 2012 01A206