Serum GDF-15 Predicts In-Hospital Mortality and Arrhythmic Risks in Patients With Acute Myocardial Infarction

Qiuping Mo, MM1, Liuan Zhuo, BS1, Zhihong Liao, BS1, Rongshan Li, MD1, Yu Chen, MM1, and Jianfang Geng, MM1

Abstract
This study aims to evaluate the association of serum growth differentiation factor 15 (GDF-15) with in-hospital mortality and arrhythmic risks in patients with acute myocardial infarction (AMI). A total of 296 consecutive patients with AMI were enrolled in our hospital from Jan. 2018 to Dec. 2020. Serum GDF-15 levels were measured at baseline. The primary endpoint was in-hospital all-cause mortality, and the secondary endpoint was major adverse cardiac events (MACEs) during hospitalization, defined as a composite of cardiovascular death, heart failure, sustained ventricular arrhythmias (ventricular tachycardia or ventricular fibrillation), and bleeding. During hospitalization, patients with a higher GDF-15 level had significantly higher incidences of in-hospital mortality (7.4% vs 1.4%; P = .02) and MACEs (9.5% vs 20.9%, P < .01) than those with a lower GDF-15 level. Multivariate logistic regression analysis showed that a higher GDF-15 level was significantly associated with increased risks of in-hospital mortality (OR = 1.92, 95% CI: 1.44-2.50; P < .01) and MACEs (OR = 2.19, 95% CI: 1.56-2.77; P < .01). In conclusion, GDF-15 was associated with the risks of in-hospital mortality and MACEs, indicating that it should be a prognostic biomarker for patients with AMI.

Keywords
GDF-15, acute myocardial infarction, major adverse cardiovascular events, mortality

Introduction
Acute myocardial infarction (AMI) is an acute and fatal form of ischemic heart disease, which is the second leading cause of death in China.1 In contrast to the declining trend in AMI in the United States and European countries,2,3 the number of AMI cases in China is increasing rapidly and is expected to reach 23 million in 2030. Moreover, a recent study has shown that AMI tends to occur in younger individuals,4 which will undoubtedly put a huge strain on the health care system. Therefore, identification of biomarkers with strong prognostic powers is a potential approach for early risk stratification as well as a future guide for the appropriate use of resources and therapies following an AMI.5

The growth differentiation factor-15 (GDF-15) is a cytokine belonging to the transforming growth factor beta (TGF-β) family.6 In normal conditions, GDF-15 is expressed at lower levels in different organ and cell line,7 but increased expression levels are associated with disease states, such as inflammation,8 oxidant stress,9 and ischemia/reperfusion.10 Several clinical studies have demonstrated that GDF-15 could serve as a prognostic marker of coronary artery bypass grafting (CABG),11 acute coronary syndromes (ACS),12 and heart failure (HF).13 A study conducted by Liu et al reported that serum GDF-15 levels were independently associated with the risk of MI (P = .01534) after adjusting for age, sex, smoking status, and left ventricular ejection fraction (LVEF).14 However, the prognostic value of GDF-15 in AMI is still unclear.

The present study aims to evaluate the association of serum GDF-15 with in-hospital mortality and arrhythmic events in patients with AMI.

1 Liuzhou People’s Hospital, Liuzhou, Guangxi, China

Corresponding Author:
Lian Zhuo, Department of Cardiology, Liuzhou People’s Hospital, No.8 Wenchang Road, Liuzhou, Guangxi 545006, China.
Email: 1349919081@qq.com

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage).
Materials and Methods

Patients

A total of 296 consecutive adult patients (aged ≥ 18 years) with AMI were enrolled in our hospital from Jan. 2018 to Dec. 2020.

Table 1. Comparison of Baseline Characteristics Between Patients With High and Low GDF-15 levels.

	Low GDF-15	High GDF-15	P value
Demographic			
Age, years	53.7 ± 12.1	54.1 ± 11.8	.77
Male, n (%)	115 (77.7%)	121 (81.8%)	.47
BMI, kg/m²	22.6 ± 3.5	23.2 ± 3.1	.12
Current smoker, n (%)	34 (23.0%)	38 (25.7%)	.68
Medical history			
Hypertension, n (%)	99 (66.9%)	103 (69.6%)	.71
Dyslipidemia, n (%)	78 (52.7%)	82 (55.4%)	.64
Diabetes mellitus, n (%)	54 (36.5%)	59 (39.9%)	.63
Chronic kidney disease, n (%)	14 (9.5%)	17 (11.5%)	.70
Prior CAD, n (%)	57 (38.5%)	50 (33.8%)	.47
Prior atrial fibrillation, n (%)	13 (8.8%)	10 (6.8%)	.66
Prior heart failure, n (%)	2 (1.4%)	5 (3.4%)	.44
LVEF, %	50.1 ± 10.5	52.3 ± 11.3	.08
STEMI, %	125 (84.5%)	122 (82.4%)	.75
NSTEMI, %	23 (15.5%)	26 (17.6%)	.75
Laboratory data			
Hemoglobin, g/dl	13.6 ± 2.0	13.9 ± 1.8	.18
Estimated GFR, mL/min/1.73 m²	70.6 ± 25.1	70.8 ± 24.9	.95
Triglycerides, mg/dL	126.6 ± 117.3	121.7 ± 114.3	.72
HDL-cholesterol, mg/dL	45.3 ± 10.8	47.1 ± 11.2	.16
LDL-cholesterol, mg/dL	118.3 ± 36.4	121.5 ± 39.0	.47
HbA1c, %	6.2 ± 1.4	6.3 ± 1.3	.52
GDF-15, pg/mL	1278.7 ± 203.2	1767.3 ± 268.4	<.01
Procedure			
Type of revascularization			
CABG	12 (8.1%)	13 (8.8%)	1.00
PCI	136 (91.9%)	135 (91.2%)	
Drug-eluting stent in PCI	133 (89.9%)	131 (88.5%)	.72
Type of access in PCI			
Transradial intervention	120 (88.2%)	121 (89.6%)	.85
Transfemoral intervention	16 (11.8%)	14 (10.4%)	
Day of revascularization from NSTEMI admission	1 (0-2)	1 (0-2)	.74
PCI	3 (1-4)	3 (1-5)	.68
CABG			

BMI, body mass index; CABG, coronary artery bypass grafting; CAD, coronary artery disease; LVEF, left ventricular ejection fraction; PCI, percutaneous coronary intervention; STEMI, ST-elevation myocardial infarction.

Diagnosis of AMI was based on the ESC/ACC Foundation/American Heart Association/World Heart Federation Task Force for the Universal Definition of Myocardial Infarction. AMI was diagnosed by the rise and/or fall of cardiac biomarkers with at least 1 value above the 99th percentile of the upper reference limit observed together with evidence of myocardial ischemia with at least one of the following: symptoms of ischemia, electrocardiography (ECG) changes indicative of new ischemia, development of pathological Q waves in the ECG, or imaging evidence of a new loss of viable myocardium or new regional wall motion abnormalities.

All procedures involving human participants were performed in accordance with the ethical standards of the Institutional Review Board of our hospital and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.

Data Collection

Data about patient demographics, comorbidities, clinical and physical examination findings were recorded at the time of admission. ST-elevation MI (STEMI) was defined by the presence of persistent (>20 min) ST-segment elevation; in contrast, patients without ST-segment elevation at presentation are usually designated as having a non-ST-segment elevation MI (NSTEMI). Patients with STEMI were treated with primary percutaneous coronary intervention (PCI). The transradial and transfemoral interventions were used to perform PCI. Patients with NSTEMI underwent invasive coronary angiography according to risk stratification and treatment strategy. The revascularization strategy (PCI or CABG) was based on the clinical status, comorbidities, disease severity and distribution, and lesion characteristics. These procedure parameters were also recorded.

Venous blood samples were obtained from each patient at admission. The serum was separated from the cells by centrifuging at 1500 g for 10 min and stored at −80 °C until assayed. Serum GDF-15 level was measured by a Human Quantikine ELISA Kit (DGD150 for GDF-15, R&D Systems). Samples, reagents, and buffers were prepared according to the manufacturers’ manuals. The detection threshold of GDF-15 was 2.0 pg/mL. The intra and interassay coefficients of variation for GDF-15 were <5% and <10%, respectively.

Outcomes

The primary endpoint was in-hospital all-cause mortality, and the secondary endpoint was major adverse cardiac events (MACE), defined as a composite of cardiovascular death, HF, sustained ventricular arrhythmias including ventricular tachycardia (VT) and ventricular fibrillation (VF), and bleeding during hospitalization.
Statistical Analysis

Continuous variables are presented as mean ± SD and compared with the use of unpaired Student’s t-test. All categorical variables were summarized as counts and percentages and compared by chi-square test or by Fisher’s exact test as appropriate. Multivariate logistic regression analysis was employed to explore the association of GDF-15 with the risks of in-hospital mortality and MACEs. All tests were 2-sided and a P value of less than .05 was considered significant.

All statistical analyses were performed with the SPSS statistical software program package (SPSS version 20.0 for Windows, Armonk, NY: IBM Corp.).

Results

A total of 296 patients were divided into high (n = 148) or low (n = 148) GDF-15 groups according to median level of GDF-15 (1523.4 pg/ml). The GDF-15 levels in the high GDF-15 group were significantly higher than those in the low GDF-15 group (1767.3 ± 568.4 vs 1278.7 ± 503.2 pg/ml; P < .01). As indicated in Table 1, the demographic variables, medical history, laboratory data, and procedure parameters were comparable between 2 groups (all P > .05).

During a median hospital stay of 5.0 (3.0-8.0) days, the number of deaths was significantly more in the high GDF-15 group than in the low GDF-15 group (7.4% vs 1.4%, P = .02; Figure 1A). Multivariate logistic regression analysis (Table 2) showed that GDF-15 (OR = 1.92, 95% CI: 1.44-2.50; P < .01), age (OR = 1.06, 95% CI: 1.02-1.14; P < .01), LVEF (OR = 0.91, 95% CI: 0.79-0.98; P = .03), and transradial intervention (OR = 0.53, 95% CI: 0.42-0.68; P < .01) were significantly associated with in-hospital mortality risk.

During hospitalization, the difference in the percentage of patients suffering MACEs was statistically significant between 2 groups (9.5% vs 20.9%, P < .01; Figure 1B). Specifically, most composites of MACEs including cardiovascular death (7.4% vs 1.4%; P = .02), HF (7.4% vs 6.9%; P = .02), and VT/VF (1.4% vs 6.8%; P = .04) occurred more in the high GDF-15 group compared with the low GDF-15 group. Multivariable logistic regression analysis (Table 2) showed that GDF-15 (OR = 2.19, 95% CI: 1.56-2.77; P < .01), age (OR = 1.07, 95% CI: 1.04-1.11; P < .01), LVEF (OR = 0.88, 95% CI: 0.81-0.96; P = .02), transradial intervention (OR = 0.56, 95% CI: 0.44-0.71; P < .01), and previous CAD (OR = 1.74, 95% CI: 1.44-2.07; P < .01) were all significantly associated with the risk of MACEs after controlling for potential confounding factors.

Discussion

Our study findings showed that elevated GDF-15 concentrations were significantly associated with increased risks of in-hospital mortality and MACEs in patients with AMI. In line with our study, the independent association of GDF-15 level with in-hospital all-cause mortality has been conclusively reported among subjects from the general population as well as in various patient cohorts.6,18,19 Moreover, several studies have demonstrated that GDF-15 predicted all-cause mortality.
mortality independently of and more accurately than other biomarkers like NT-proBNP, hs-CRP, or hs-cTn.20,21

A number of studies have reported the association of elevated GDF-15 concentration at admission with MACEs in cardiovascular diseases such as HF, cardiac hypertrophy, and coronary heart disease. In a cohort of 14,577 patients with stable angina and history of revascularization, multivessel disease or infarction,22 GDF-15 levels above 1,827 pg/ml were associated with increased risk of cardiovascular death, cardiac sudden death and hospitalization for heart, regardless of other markers such as troponin, reactive C protein, and BNP. Among 16,876 patients with ACS in the PLATO (PLAtelet inhibition and patient Outcomes) trial,23 GDF-15 levels above 1,550 pg/ml were significantly associated with a higher risk of composite of cardiovascular death, spontaneous myocardial infarction, and stroke. Interestingly the predefined cut-off values used in these studies were pretty closed to the one in our population (1,523.4 pg/ml).

The underlying mechanisms explaining the independent associations between GDF-15 and cardiovascular disease and events are unknown. While weakly expressed under physiological conditions, GDF-15 is highly secreted as a stress response to inflammation, oxidative stress, hypoxia, telomere erosion, and oncogene activation, indicating that GDF-15 should be a downstream marker of established cell stress.24 In addition, GDF-15 is associated with several cardiovascular risk factors and other biomarkers, such as LV mass and IL-6 and matrix metalloproteinase (MMP)-9 levels.25 There is also a potential mechanism as GDF-15 has been shown to have an inhibitory effect on platelet aggregation and was associated with thrombus severity.18 Therefore, measurement of the GDF-15 level might provide unique information on underlying disease processes leading to a raised risk of severe events.

Previous randomized clinical trial and observational studies demonstrated fewer periprocedural complications, shorter length of stay, and better patient satisfaction associated with transradial intervention relative to transfemoral intervention.26–28 A review provided an overview of the clinical evidences comparing the transradial versus transfemoral approach to reduce hemorrhagic event.29 It is shown that radial access significantly reduced the incidence of hemorrhagic events and mortality compared to transfemoral access, which are consistent with the outcomes in the present study.

There are several limitations of this study. First, the single-center, nonrandomized nature of the study with a relatively small sample size may have led to subject selection bias, larger-scale studies should be conducted to better evaluate the relationship between the serum GDF-15 and cardiac events. Second, the post-AMI serial changes in the GDF-15 concentration in the serum were not evaluated, resulting in an inability to identify the best time for peak value measurement of GDF-15 following AMI.

In conclusion, GDF-15 was associated with the risks of in-hospital mortality and MACEs, indicating that it should be a prognostic biomarker for patients with AMI.

Declaration of Conflicting Interests
The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The authors disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the Research Foundation of Liuzhou People’s Hospital (lryjc201912) and Project of science and technology research plan of Health Commission of Guangxi Zhuang Autonomous Region (Z20180303).

ORCID iD
Luan Zhuo \(\text{https://orcid.org/0000-0002-3853-6105}\)

References
1. Lin X, Green JC, Xian H, Cai M, Skrzypek J, Tao H. Holiday and weekend effects on mortality for acute myocardial infarction in Shanxi, China: a cross-sectional study. Int J Public Health. 2020;65(6):847-857.
2. Barchielli A, Profili F, Balzi D, Francesconi P, Zuppiroli A, Cipriani F. [Trends in occurrence, treatment, and outcomes of acute myocardial infarction in Tuscany Region (Central Italy), 1997–2010]. Epidemiol Prev. 2015;39(3):167-175.
3. Koopman C, Bots ML, van Oeffelen AA, et al. Population trends and inequalities in incidence and short-term outcome of acute myocardial infarction between 1998 and 2007. Int J Cardiol. 2013;168(2):993-998.
4. Mercado-Lubo R, Yarzebski J, Lessard D, Gore J, Goldberg RJ. Changing trends in the landscape of patients hospitalized with acute myocardial infarction (2001 to 2011) (from the Worcester heart attack study). Am J Cardiol. 2020;125(5):673-677.
5. Lippi G, Franchini M, Cervellin G. Diagnosis and management of ischemic heart disease. Semin Thromb Hemost. 2013;39(2):202-213.
6. Wollert KC, Kempf T, Wallentin L. Growth differentiation factor 15 as a biomarker in cardiovascular disease. Clin Chem. 2017;63(1):140-151.
7. Shi Y, Massague J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell. 2003;113(6):685-700.
8. Bootcov MR, Bauskin AR, Valenzuela SM, et al. MIC-1, a novel macrophage inhibitory cytokine, is a divergent member of the

Table 2. Multivariate Logistic Regression for Prediction of In-hospital Mortality and Major Adverse Cardiac Events (MACEs).

	In-hospital mortality		In-hospital MACES	
	OR 95% CI	P value	OR 95% CI	P value
GDF-15	1.92 1.44-2.50 <.01		2.19 1.56-2.77 <.01	
Age	1.06 1.02-1.14 <.01		1.07 1.04-1.11 <.01	
LVEF	0.91 0.79-0.98 .03		0.88 0.81-0.96 .02	
Transradial	0.53 0.42-0.68 <.01		0.56 0.44-0.71 <.01	
Previous CAD	1.74 1.44-2.07 <.01		1.74 1.44-2.07 <.01	

LVEF, left ventricular ejection fraction; CAD, coronary artery disease.
TGF-beta superfamily. *Proc Natl Acad Sci U S A.* 1997; 94(21):11514-11519.

9. Dandrea T, Hellmold H, Jonsson C, et al. The transcriptosomal response of human A549 lung cells to a hydrogen peroxide-generating system: relationship to DNA damage, cell cycle arrest, and caspase activation. *Free Radic Biol Med.* 2004;36(7):881-896.

10. Kempf T, Eden M, Strelau J, et al. The transforming growth factor-beta superfamily member growth-differentiation factor-15 protects the heart from ischemia/reperfusion injury. *Circ Res.* 2006;98(3):351-360.

11. Preeshagul I, Gharbaran R, Jeong KH, et al. Potential biomarkers for predicting outcomes in CABG cardiothoracic surgeries. *J Cardiothorac Surg.* 2013;8:176.

12. Wollert KC, Kempf T, Lagerqvist B, et al. Growth differentiation factor 15 for risk stratification and selection of an invasive treatment strategy in non ST-elevation acute coronary syndrome. *Circulation.* 2007;116(14):1540-1548.

13. Kempf T, von Haehling S, Peter T, et al. Prognostic utility of growth differentiation factor-15 in patients with chronic heart failure. *J Am Coll Cardiol.* 2007;50(11):1054-1060.

14. Liu S, Chen X, Wang H, et al. Association of GDF-15 and syntax score in patient with acute myocardial infarction. *Cardiovasc Ther.* 2019;2019:9820210.

15. Thygesen K, Alpert JS, Jaffe AS, et al. Third universal definition of myocardial infarction. *J Am Coll Cardiol.* 2012;60(16):1581-1598.

16. Arslan F, Bongartz L, Ten Berg JM, et al. 2017 ESC guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: comments from the Dutch ACS working group. *Neth Heart J.* 2018;26(9):417-421.

17. Roffi M, Patrono C, Collet JP, et al. 2015 ESC guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: task force for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation of the European society of cardiology (ESC). *Eur Heart J.* 2016;37(3):267-315.

18. Liang W, Wei F, Yang C, et al. GDF-15 is associated with thrombus burden in patients with deep venous thrombosis. *Thromb Res.* 2020;187:148-153.

19. Wang J, Wei L, Yang X, Zhong J. Roles of growth differentiation factor 15 in atherosclerosis and coronary artery disease. *J Am Heart Assoc.* 2019;8(17):e012826.

20. Daniels LB, Clopton P, Laughlin GA, Maisel AS, Barrett-Connor E. Growth-differentiation factor-15 is a robust, independent predictor of 11-year mortality risk in community-dwelling older adults: the Rancho Bernardo study. *Circulation.* 2011;123(19):2101-2110.

21. Wang TJ, Wollert KC, Larson MG, et al. Prognostic utility of novel biomarkers of cardiovascular stress: the Framingham heart study. *Circulation.* 2012;126(13):1596-1604.

22. Hagstrom E, Held C, Stewart RA, et al. Growth differentiation factor 15 predicts all-cause morbidity and mortality in stable coronary heart disease. *Clin Chem.* 2017;63(1):325-333.

23. Hagstrom E, James SK, Bertilsson M, et al. Growth differentiation factor-15 level predicts major bleeding and cardiovascular events in patients with acute coronary syndromes: results from the PLATO study. *Eur Heart J.* 2016;37(16):1325-1333.

24. Corre J, Hebraud B, Bourin P. Concise review: growth differentiation factor 15 in pathology: a clinical role? *Stem Cells Transl Med.* 2013;2(12):946-952.

25. Sharma A, Stevens SR, Lucas J, et al. Utility of growth differentiation factor-15, a marker of oxidative stress and inflammation, in chronic heart failure: insights From the HF-ACTION study. *JACC Heart Fail.* 2016;5(4).

26. Jin C, Li W, Qiao SB, et al. Costs and benefits associated with transradial versus transfemoral percutaneous coronary intervention in China. *J Am Heart Assoc.* 2016;5(4).

27. Brueck M, Bandorski D, Kramer W, Wieczorek M, Holtgen R, Tillmanns H. A randomized comparison of transradial versus transfemoral approach for coronary angiography and angioplasty. *JACC Cardiovasc Interv.* 2009;2(11):1047-1054.

28. Tyre AJ, Michaels S. Confronting socially generated uncertainty in adaptive management. *J Environ Manage.* 2011;92(5):1365-1370.

29. Cesaro A, Moscarella E, Gragnano F, et al. Transradial access versus transfemoral access: a comparison of outcomes and efficacy in reducing hemorrhagic events. *Expert Rev Cardiovasc Ther.* 2019;17(6):435-447.