Peristaltic Motion of Johnson-Segalman Fluid in a Curved Channel with Slip Conditions

Sadia Hina\(^1\)*, Meraj Mustafa\(^2\), Tasawar Hayat\(^3,4\)

\(^1\) Department of Mathematical Sciences, Fatima Jinnah Women University, Rawalpindi, Pakistan, \(^2\) School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), Islamabad, Pakistan, \(^3\) Department of Mathematics, Quaid-I-Azam University 45320, Islamabad, Pakistan, \(^4\) Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia

*quaidan85@yahoo.com

Abstract

Slip effects on the peristaltic transport of Johnson-Segalman fluid through a curved channel have been addressed. The influence of wall properties is also analyzed. Long wavelength and low Reynolds number assumptions have been utilized in the mathematical formulation of the problem. The equations so formed have been solved numerically by shooting method through computational software Mathematica 8. In addition the analytic solution for small Weissenberg number (elastic parameter) is computed through a regular perturbation method. An excellent agreement is noticed between the two solutions. The results indicate an increase in the magnitude of velocity with an intensification in the slip effect. Moreover the size and circulation of the trapped boluses increase with an increase in the slip parameter. Unlike the planar channel, the profiles of axial velocity are not symmetric about the central line of the channel.

Introduction

Peristalsis is the form of fluid transport due to the waves travelling along the length of distensible tube/channel. This mechanism frequently occur in ureter for the transport of urine, in swallowing food through esophagus, in lymphatic vessels for the transport of lymph, in the vasomotion of small blood vessels, in roller and finger pumps and in heart-lung machine. Latham \(^{[1]}\) and Jaffrin and Shapiro \(^{[2]}\) have initially discussed the process of peristalsis in tube/channel. The influences of magnetic field and slip boundary condition on the peristaltic transport of viscous fluid have been studied by Ebaid \(^{[3]}\). Mekheimer and Elmaboud \(^{[4]}\) examined the
peristaltic motion of couple stress fluid in an annulus. The behavior of induced magnetic field on peristaltic transport of couple stress fluid in a planar channel has been addressed by Mekheimer [5]. Hydromagnetic peristaltic flow of Jeffrey fluid in an asymmetric channel has been investigated by Kothandapani and Srinivas [6]. Peristaltic flow of Newtonian fluid in an inclined asymmetric channel through porous medium has been reported by Kothandapani and Srinivas [7]. Hayat et al. [8] analyzed the effects of slip and temperature dependent viscosity on magnetohydrodynamic peristaltic flow of viscous fluid. Gad [9] investigated the effect of Hall current on the peristaltic flow of particle-fluid suspension. Influence of heat transfer and slip on peristaltic transport is analyzed by Hayat et al. [10]. Srinivas et al. [11] studied the mixed convective heat and mass transfer in an asymmetric channel with peristalsis. Effects of induced magnetic field on the peristaltic motion of nanofluid have been addressed by Mustafa et al. [12]. In another paper, Mustafa et al. [13] employed Keller-box method in computing numerical solutions for peristaltic transport of fourth grade fluid with Dufour and Soret effects.

The well known Navier-Stokes equations are incapable of describing the flow behavior of many complex fluids including clay coatings and suspensions, drilling muds, liquid detergents, oils and grease etc. To overcome this difficulty the researchers have proposed a variety of non-Newtonian fluid models. These mathematical models give rise to the differential equations which are highly nonlinear and more complicated than the Navier-Stokes equations. Different from the other fluid models, the Johnson-Segalman fluid model allows for non-monotonic variation in the shear stress with the increase/decrease in the rate of deformation for simple shear flow. Certain non-Newtonian fluids contain the interesting phenomenon of “spurt”. The term “Spurt” is used to describe abnormal increase in the volume throughput for a little increase in the driving pressure gradient. A different explanation of the “Spurt” phenomenon based on the non-monotonic relationship between stress and shear rate has also been described by some authors [14]. Hayat et al. [15] analyzed the peristaltic flow of Johnson-Segalman fluid in a planar channel. Elshahed and Haroun [16] studied the peristaltic motion of Johnson-Segalman fluid under the effect of magnetic field. The peristaltic transport of Johnson-Segalman fluid in an asymmetric channel has been discussed by Hayat et al. [17]. Wang et al. [18] studied the peristaltic motion of Johnson-Segalman fluid through a deformable tube. Nadeem and Akbar [19] studied the effects of induced magnetic field and heat and mass transfer on peristaltic flow of Johnson-Segalman fluid in a vertical asymmetric channel.

Peristaltic flow in channel/tube mainly occurs because of the flexibility of the walls. In existing literature, the reasonable attention is given to the peristaltic flows in a channel having compliant walls. Mittra and Prasad [20] analyzed the effects of wall properties on peristalsis. Davies and Carpenter [21] analyzed the stability of plane channel flow with compliant walls. Srivastava and Srivastava [22] studied the wall elasticity on peristaltic flow of particle-fluid mixture. Haroun [23] studied the compliant wall effects on peristalsis in an asymmetric channel.
Radhakrishnamacharya and Srinivasulu [24] studied the effect of flexible walls on peristaltic transport with heat transfer. Muthu et al. [25] discussed the wall properties on the peristaltic flow of micropolar fluid in a circular cylindrical tube. Elnaby and Haroun [26] studied the effect of wall properties on peristaltic transport of a viscous fluid. Hayat et al. [27] and Hayat et al. [28] have seen the influence of compliant walls on the peristaltic flow of Johnson-Segalman and Jeffery fluids respectively. Peristaltic transport of Maxwell fluid in a channel with compliant walls is considered by Ali et al. [29]. Kothandapani and Srinivas [30] discussed the effects of wall properties on MHD peristaltic flow of viscous fluid in a channel with porous medium. This work is extended by Srinivas et al. [31] in the presence of slip effects. Srinivas and Kothandapani [32] have also examined the compliant wall effects on MHD peristaltic flow through a porous space. Hayat and Hina [33] explored the compliant wall effect on peristaltic flow of Maxwell fluid.

From the above discussion it is noticed that not many studies have been carried out on peristaltic mechanism in a curved channel. Sato et al. [34] discussed the peristaltic flow due to the transverse deflections of the walls of the curved channel. Ali et al. [35] studied the peristaltic flow analysis in a curved channel with long wavelength approximation. Ali et al. [36, 37] have extended the analysis of ref. [33] for a third grade fluid and heat transfer characteristics. Hayat et al. [38] discussed the peristaltic transport of Newtonian fluid in a curved channel with compliant walls. Hayat et al. [39] and Hina et al. [40] extended the the analysis of [38] for third grade and Johnson-Segalman fluids respectively. Combined heat and mass transfer effects on the peristaltic flow of Johnson-Segalman fluid have been explored by Hina et al. [41]. Influence of wall properties on the peristaltic flow of pseudoplastic fluid in a curved channel have been described by Hina et al. [42]. Peristaltic motion of third grade fluid with slip effects has been discussed by Hina et al. [43]. Hina et al. [44] also numerically investigated the peristaltic flow of nanofluid in a curved channel.

Peristaltic transport of Johnson-Segalman fluid with slip conditions has never been reported in the literature. The present work extends the flow analysis of ref. [35] from viscous to the Johnson-Segalman fluid with slip effects and wall properties. The fluid motion is considered in a curved channel due to the fact that most of the arteries and glandular ducts are curved. Low Reynolds number and long wavelength approximation have been used for the development of mathematical model. The numerical solutions have been computed via shooting method through computational software Mathematica. The analytic solutions are also obtained by a regular perturbation method. Graphs for the embedded flow quantities are portrayed and discussed to get the physical insight of the problem.

Mathematical Formulation

Consider the flow of an incompressible Johnson-Segalman fluid in a curved channel of radius R and uniform thickness $2d_1$ coiled in a circle with centre O (see Fig. 1). We denote axial and radial directions by x and r respectively. u and v
are the components of velocity in the axial and radial directions respectively. The shape of the propagated waves is given by

\[r = \pm \eta(x,t) = \pm \left[d_1 + a \sin \frac{2\pi}{\lambda} (x - ct) \right], \tag{1} \]

where \(c \) is the wave speed and \(a \) and \(\lambda \) are the wave amplitude and wavelength respectively.

The equations which can govern the flow are:

\[
\frac{\partial u}{\partial t} + \frac{R^*}{r + R^*} \frac{\partial u}{\partial x} + \frac{v}{r + R^*} = 0, \tag{2}
\]

\[
\rho \left[\frac{\partial v}{\partial t} + v \frac{\partial v}{\partial r} + \frac{R^* u}{r + R^*} \frac{\partial v}{\partial x} \right] + \frac{u^2}{r + R^*} = -\frac{\partial p}{\partial r} + \frac{1}{r + R^*} \frac{\partial}{\partial r} \left\{ (r + R^*) \tau_{rr} \right\} + \frac{R^*}{r + R^*} \frac{\partial \tau_{xr}}{\partial x} - \frac{\tau_{xx}}{r + R^*}, \tag{3}
\]

\[
\rho \left[\frac{\partial u}{\partial t} + v \frac{\partial u}{\partial r} + \frac{R^* u}{r + R^*} \frac{\partial u}{\partial x} + \frac{uv}{r + R^*} \right] = \frac{1}{(r + R^*)^2} \frac{\partial}{\partial r} \left\{ (r + R^*)^2 \tau_{xx} \right\} + \frac{R^*}{r + R^*} \frac{\partial \tau_{xx}}{\partial x} - \frac{R^*}{r + R^*} \frac{\partial p}{\partial x}. \tag{4}
\]

The Cauchy stress tensor \(\tau \) in a Johnson-Segalman fluid is [40]:

\[\tau = 2\mu D + S, \]

\[S + m \left[\frac{dS}{dt} + S(W - \xi D) + (W - \xi D)^T S \right] = 2\eta_1 D, \]
where the symmetric (D) and skew symmetric (W) parts of velocity gradient are

\[D = \frac{1}{2} \left[\nabla \mathbf{V} + (\nabla \mathbf{V})^T \right], \quad W = \frac{1}{2} \left[\nabla \mathbf{V} - (\nabla \mathbf{V})^T \right]. \]

The above relations yield

\[
S_{rr} + m \frac{dS_{rx}}{dt} - \frac{2uS_{rx}}{r + R^*} + S_{sr} \left\{ (1 - \xi) \frac{\partial u}{\partial r} - \frac{1 + \xi}{r + R^*} \left[R^* \frac{\partial v}{\partial x} - u \right] \right\} - 2\xi S_{rr} \frac{\partial v}{\partial r} = 2\eta_1 \frac{\partial v}{\partial r},
\]

\[
\eta_1 \left(\frac{\partial u}{\partial t} + \frac{R^*}{r + R^*} \frac{\partial v}{\partial x} - \frac{u}{r + R^*} \right) = S_{rx} + m \frac{dS_{rx}}{dt} + \frac{m}{r + R^*} \left(S_{rx} - \frac{S_{xx}}{r + R^*} \right)
+ \frac{mS_{xx}}{2} \left\{ (1 - \xi) \frac{\partial u}{\partial r} - \frac{1 + \xi}{r + R^*} \left[R^* \frac{\partial v}{\partial x} - u \right] \right\}
+ m \left\{ \frac{1 - \xi}{r + R^*} \left[R^* \frac{\partial v}{\partial x} - u \right] - (1 + \xi) \frac{\partial u}{\partial r} \right\},
\]

\[
S_{xx} + m \frac{dS_{xx}}{dt} + \frac{2uS_{rx}}{r + R^*} - S_{rx} \left\{ (1 + \xi) \frac{\partial u}{\partial r} - \frac{1 - \xi}{r + R^*} \left[R^* \frac{\partial v}{\partial x} - u \right] \right\} + 2\xi S_{xx} \frac{\partial v}{\partial r} = -2\eta_1 \frac{\partial v}{\partial r},
\]

where \(d/dt = \partial/\partial t + v \partial/\partial r + uR^*/(r + R^*) \partial/\partial x \) is the material time derivative, \(p \) the pressure, \(\mu \) and \(\eta_1 \) are the viscosities, \(m \) the relaxation time, \(\rho \) the density, \(R^* \) the curvature parameter, \(\tau \) the elastic tension, \(m_1 \) the mass per unit area, \(d \) the coefficient of viscous damping, \(D \) and \(W \) are the symmetric and skew symmetric parts of velocity gradient, \(\xi \) is the slip parameter and \(S_{xr}, S_{sr} \) and \(S_{xx} \) are the components of an extra stress tensor \(S \).

The boundary conditions can be written as

\[
u \pm \beta \tau_{xx} = 0, \text{ at } r = \pm \eta,
\]

\[
R^* \left[-\tau \frac{\partial^3}{\partial x^3} + m_1 \frac{\partial^3}{\partial x \partial t^2} + \frac{d}{\partial t} \frac{\partial^2}{\partial x^2} \right] \eta
= \frac{1}{(r + R^*)} \frac{\partial}{\partial r} \left\{ (r + R^*)^2 \tau_{xx} \right\} + R^* \frac{\partial \tau_{xx}}{\partial x} - \rho(r + R^*) \times
\]
\[
\frac{\partial u}{\partial t} + v \frac{\partial u}{\partial r} + \frac{R' u}{r + R^*} \frac{\partial u}{\partial x} + \frac{uv}{r + R^*} \] at \(r = \pm \eta. \tag{9} \]

Defining

\[
u^* = \frac{u}{c}, v^* = \frac{v}{c}, x^* = \frac{x}{\lambda}, r^* = \frac{r}{d_1}, t^* = \frac{ct}{\lambda}, \eta^* = \frac{\eta}{d_1}, \]

\[
p^* = \frac{d_1^2 p}{c^2 \lambda^2 \mu^*} S_{ij}^*, \quad We = \frac{mc}{d_1}, \quad k = \frac{R^*}{d_1}, \]

equations (3)–(9) become

\[
2 \frac{\partial v}{\partial r} = S_{rr} + We \left[\left(\frac{\partial}{\partial t} + v \frac{\partial}{\partial r} + \frac{u k \delta}{r + k \partial x} \right) S_{rr} - \frac{2 u S_{rx}}{r + k} - 2 \xi S_{rr} \frac{\partial v}{\partial r} \right]
+ We S_{rr} \left\{ (1 - \xi) \frac{\partial u}{\partial r} - \frac{1 + \xi}{r + k} \left(k \delta \frac{\partial v}{\partial x} - u \right) \right\}, \tag{10} \]

\[
\left(\frac{\partial u}{\partial r} + k \delta \frac{\partial v}{\partial x} - \frac{u}{r + k} \right) = S_{rx} + We \left[\left(\frac{\partial}{\partial t} + v \frac{\partial}{\partial r} + \frac{u k \delta}{r + k \partial x} \right) S_{rx} + \frac{u (S_{rr} - S_{xx})}{r + k} \right]
+ \frac{We S_{rr}}{2} \left\{ \frac{1 - \xi}{r + k} \left[k \delta \frac{\partial v}{\partial x} - u \right] - (1 + \xi) \frac{\partial u}{\partial r} \right\}
+ \frac{We S_{xx}}{2} \left\{ (1 - \xi) \frac{\partial u}{\partial r} - \frac{1 + \xi}{r + k} \left[k \delta \frac{\partial v}{\partial x} - u \right] \right\}, \tag{11} \]

\[-2 \frac{\partial v}{\partial r} = S_{xx} + We \left[\left(\frac{\partial}{\partial t} + v \frac{\partial}{\partial r} + \frac{u k \delta}{r + k \partial x} \right) S_{xx} + \frac{2 u S_{rx}}{r + k} + 2 \xi S_{xx} \frac{\partial v}{\partial r} \right]
+ We S_{rx} \left\{ \frac{1 - \xi}{r + k} \left(k \delta \frac{\partial v}{\partial x} - u \right) - (1 + \xi) \frac{\partial u}{\partial r} \right\}, \tag{12} \]

\[
\text{Re} \delta \left[\delta \frac{\partial v}{\partial t} + v \frac{\partial v}{\partial r} + k \delta \frac{\partial u}{\partial x} - \frac{u^2}{r + k} \right] = - \frac{\eta_1 + \mu \delta p}{\eta_1} \frac{\partial u}{\partial r} + \frac{4 \delta \mu v}{\eta_1 (r + k)} \frac{\partial v}{\partial r} + \frac{k \delta^3 S_{xx}}{r + k} \frac{\partial v}{\partial x} \]
\[+ \delta \frac{\partial S_\tau}{\partial r} + \frac{\delta (S_\tau - S_{xx})}{r+k} + \frac{\delta \mu \partial^2 v}{\eta_1 \partial r^2} + \]

\[\frac{\delta^2 k \mu \partial}{\eta_1 (k+r) \partial x} \left(\frac{\partial u}{\partial r} + \frac{k \delta \partial v}{r+k \partial x} - \frac{u}{r+k} \right), \] (13)

\[\text{Re} \left[\frac{\partial u}{\partial t} + \nu \frac{\partial u}{\partial r} + \frac{k \delta u \partial u}{r+k \partial x} + \frac{\nu v}{r+k} \right] = - \frac{(\eta_1 + \mu) k \partial p}{\eta_1 (r+k) \partial x} + \frac{\partial S_{xx}}{\partial r} + \frac{2 S_{xx}}{r+k} + \frac{k \delta \partial S_{xx}}{r+k \partial x} \]

\[- \frac{2 k \delta \mu}{(r+k) \eta_1 \partial r \partial x} + \frac{\mu \partial}{\eta_1 \partial r} \left(\frac{\partial u}{\partial r} + \frac{k \delta \partial v}{r+k \partial x} - \frac{u}{r+k} \right) \]

\[+ \frac{2 \mu}{\eta_1 (r+k)} \left(\frac{\partial u}{\partial r} + \frac{k \delta \partial v}{r+k \partial x} - \frac{u}{r+k} \right), \] (14)

with the boundary conditions

\[u \pm \beta t = 0 \quad \text{at} \quad r = \pm \eta = \pm (1 + \epsilon \sin 2\pi(x-t)), \] (15)

\[k \left[E_1 \frac{\partial^3}{\partial x^3} + E_2 \frac{\partial^3}{\partial x \partial t^2} + E_3 \frac{\partial^2}{\partial t \partial x^2} \right] \eta \]

\[= \frac{\eta_1 (r+k)}{(\eta_1 + \mu)} \left[\frac{\partial}{\partial r} \left(\frac{\partial u}{\partial r} + \frac{k \delta \partial v}{r+k \partial x} - \frac{u}{r+k} \right) - \frac{2 k \delta \partial^2 v}{r+k \partial r \partial x} \right] \]

\[- \text{Re} \mu (r+k) \left[\frac{\partial u}{\partial t} + \nu \frac{\partial u}{\partial r} + \frac{k \delta u \partial u}{r+k \partial x} + \frac{\nu v}{r+k} \right] \]

\[+ \frac{\eta_1 (r+k)}{(\eta_1 + \mu)} \left[\frac{\partial S_{xx}}{\partial r} + \frac{2 S_{xx}}{r+k} + \frac{k \delta \partial S_{xx}}{r+k \partial x} \right] \]

\[+ \frac{2 \mu}{(\eta_1 + \mu)} \left(\frac{\partial u}{\partial r} + \frac{k \delta \partial v}{r+k \partial x} - \frac{u}{r+k} \right) \text{at} \quad (r=\pm \eta). \] (16)

Note that the continuity equation (2) is satisfied identically, \(\epsilon (=a/d_1) \) is the amplitude ratio, \(\delta (=d_1/\lambda) \) the wave number, \(k \) the dimensionless curvature.
parameter, \(\text{Re} = \frac{\kappa \rho d_1}{\eta_1} \) the Reynolds number, \(\text{We} = \frac{m c}{\kappa d_1} \) the Weissenberg number, \(E_1 = -\tau d_1^3/\lambda^3 \eta_1 c \) the wall tension parameter, \(E_2 = \frac{m_1 c d_1^3}{\lambda^3 \eta_1} \) the mass per unit area parameter and \(E_3 = \frac{d d_1^3}{\lambda^2 \eta_1} \) is the viscous damping parameter [30].

If \(\psi(x,y,t) \) is the stream function then writing

\[
\begin{align*}
\frac{\partial p}{\partial r} &= 0, \\
-\frac{k(\eta_1 + \mu)}{\eta_1 (r + k)} \frac{\partial p}{\partial x} + \frac{\partial S_{rx}}{\partial r} + \frac{2 S_{rx}}{r + k} + \frac{\mu}{\eta_1} \frac{\partial}{\partial r} \left(-\psi_r + \frac{\psi_r}{r + k} \right) \\
+ \frac{2 \mu}{(r + k) \eta_1} \left(-\psi_{rr} + \frac{\psi_r}{r + k} \right) &= 0,
\end{align*}
\]

expressions (10) – (16) after using long wavelength and low Reynolds number give

\[
-\psi_r \pm \beta \left\{ \frac{\mu}{\eta_1} \frac{\partial}{\partial r} \left(-\psi_r + \frac{\psi_r}{r + k} \right) + S_{cr} \right\} = 0,
\]

at \(r = \pm \eta = \pm (1 + \epsilon \sin 2\pi(x - t)) \),

\[
k \left[E_1 \frac{\partial^3}{\partial x^3} + E_2 \frac{\partial^3}{\partial x \partial t^2} + E_3 \frac{\partial^2}{\partial t \partial x} \right] \eta
\]

\[
= \frac{\eta_1 (r + k)}{(\eta_1 + \mu)} \left\{ \frac{\mu}{\eta_1} \frac{\partial}{\partial r} \left(-\psi_r + \frac{\psi_r}{r + k} \right) + \frac{\partial S_{rx}}{\partial r} + \frac{2 S_{rx}}{r + k} \right\}
\]

\[
+ \frac{2 \mu}{(\eta_1 + \mu)} \left(-\psi_{rr} + \frac{\psi_r}{r + k} \right) \quad \text{at} \quad (r = \pm \eta),
\]

with

\[
0 = S_{rr} + \text{We} S_{rx} \left[-\left(1 - \xi \right) \psi_{rr} - \frac{1 + \xi}{r + k} \psi_r + \frac{2 \psi_r}{r + k} \right],
\]
\[
\left(-\psi_r + \frac{\psi_r}{r+k} \right) = -We \frac{\psi_r (S_{rr} - S_{xx})}{r+k} + \frac{WeS_{rr}}{2} \left\{ \frac{1-\xi}{r+k} \psi_r + (1+\zeta)\psi_{rr} \right\} \\
+ S_{rx} - \frac{WeS_{xx}}{2} \left\{ (1-\zeta)\psi_{rr} + \frac{1+\xi}{r+k} \psi_r \right\},
\] (22)

\[
0 = S_{xx} + WeS_{rx} \left[- \frac{2\psi_r}{r+k} + \left\{ \frac{1-\xi}{r+k} \psi_r + (1+\zeta)\psi_{rr} \right\} \right].
\] (23)

From Eqs. (21)–(23) one has \[40\]
\[
S_{rx} = \left(-\psi_{rr} + \frac{\psi_r}{r+k} \right) \left[1 + We^2 (1-\zeta^2) \left(-\psi_{rr} + \frac{\psi_r}{r+k} \right)^2 \right]^{-1},
\] (24)

\[
S_{rx} = \left(-\psi_{rr} + \frac{\psi_r}{r+k} \right) \left[1 - We^2 (1-\zeta^2) \left(-\psi_{rr} + \frac{\psi_r}{r+k} \right)^2 \right].
\] (25)

Due to Eqs. (17)–(18) one obtains
\[
(k+r) \frac{\partial^2 S_{rx}}{\partial r^2} + 3 \frac{\partial S_{rx}}{\partial r} + (k+r)\mu \frac{\partial^2}{\partial r^2} \left(-\psi_{rr} + \frac{\psi_r}{r+k} \right) + \frac{3\mu}{\eta_1} \frac{\partial}{\partial r} \left(-\psi_{rr} + \frac{\psi_r}{r+k} \right)
\] (26)
\[
= 0.
\]

Solution Procedure

Different from the work reported in \[45\], in which the authors have obtained the exact solutions, here the differential system is strongly non-linear and cannot be solved exactly. We therefore first proceed for the perturbation solution and write stream function and stress components as:

\[
\psi = \psi_0 + We^2 \psi_1 + \cdots,
\] (27)

\[
S_{rx} = S_{0rx} + We^2 S_{1rx} + \cdots,
\] (28)

\[
S_{rr} = S_{0rr} + We^2 S_{1rr} + \cdots
\] (29)
\[S_{xx} = S_{0xx} + We^2 S_{1xx} + \cdots, \tag{30} \]

(i) Zeroth order system

Putting Eqs. (27) and (28) into Eqs. (19), (20), (25) and (26) and then equating the coefficients of \(We^0 \) we arrive at

\[
(k + r) \frac{\partial^2}{\partial r^2} \left(-\psi_{0rr} + \frac{\psi_{0r}}{r+k} \right) + 3 \frac{\partial}{\partial r} \left(-\psi_{0rr} + \frac{\psi_{0r}}{r+k} \right) = 0, \tag{31} \]

\[
-\psi_{0r} \pm \beta \left(1 + \frac{\mu}{\eta_1} \right) \left(-\psi_{0rr} + \frac{\psi_{0r}}{r+k} \right) = 0 \text{ at } r = \pm \eta, \tag{32} \]

Figure 2. Comparison of numerical and analytic solutions \(We = 0 \) (Eq. (24)). Lines: Numerical solutions, Points: Analytic solutions.

doi:10.1371/journal.pone.0114168.g002

Figure 3. Comparison of numerical and analytic solutions \(We = 0.1 \). Lines: Numerical solutions, Points: Analytic solutions.

doi:10.1371/journal.pone.0114168.g003
The solution of above equations are
\[\psi_0 = C_1 + C_2 \ln(r + k) + C_3(r + k)^2 + C_4(r + k)^2 \ln(r + k), \]
\[\text{(34)} \]
\[u_0 = -\psi_0 r = -\frac{C_2}{r+k} - 2C_3(r+k) - C_4(r+k)\{1 + 2\ln(r+k)\}, \]

(35)

where

\[C_1 = -C_2 \ln k - C_3 k^2 - C_4 k^2 \ln k, \]
\[C_2 = \frac{(k^2 - \eta^2)^2 C_4}{L_0} \left[4k \beta \left(1 + \frac{\mu}{\eta_1}\right) + 2(k^2 - \eta^2) \ln \left(\frac{k + \eta}{k - \eta}\right) \right], \]

Figure 6. Influence of We on \(u \) when \(t = 0.1, \xi = 2.0, E_1 = 0.01, E_2 = 0.02, E_3 = 0.01, \beta = 0.01, \mu/\eta_1 = 1 \) and \(k = 2; \xi = 0.2, \xi = \sqrt{3}. \)

doi:10.1371/journal.pone.0114168.g006

Figure 7. Influence of We on \(u \) when \(t = 0.1, \xi = 2.0, E_1 = 0.01, E_2 = 0.02, E_3 = 0.01, \beta = 0.01, \mu/\eta_1 = 1 \) and \(k = 2; \xi = 0.2, \xi = \sqrt{3}. \)

doi:10.1371/journal.pone.0114168.g007
Figure 8. Influence of k on u when $t = 0.1$, $\epsilon = 0.2$, $E_1 = 0.01$, $E_2 = 0.02$, $E_3 = 0.01$, $\beta = 0.01$, $\mu/\eta_1 = 1$, $\xi = 0.1$ and $We = 0.1$; $x = 0.2$.

doi:10.1371/journal.pone.0114168.g008

\[
C_3 = \frac{C_4}{2L_0} \left[\frac{(k+\eta)^3}{(k-\eta)^2} \left(k + 2\beta \left(1 + \frac{\mu}{\eta_1} \right) \right) \left(k + 2\beta \left(1 + \frac{\mu}{\eta_1} \right) \right) \right],
\]

\[
C_4 = -2\pi^3 k \left\{ \frac{E_3}{2\pi} \sin 2\pi(x-t) - (E_1 + E_2) \cos 2\pi(x-t) \right\}.
\]

\[
L_0 = \left(k + 2\beta \left(1 + \frac{\mu}{\eta_1} \right) \right) (k-\eta)^3 - \left(k - 2\beta \left(1 + \frac{\mu}{\eta_1} \right) \right) (k+\eta)^3.
\]

Figure 9. Influence of k on u when $t = 0.1$, $\epsilon = 0.2$, $E_1 = 0.01$, $E_2 = 0.02$, $E_3 = 0.01$, $\beta = 0.01$, $\mu/\eta_1 = 1$, $\xi = 0.1$ and $We = 0.1$; $x = 0.2$.

doi:10.1371/journal.pone.0114168.g009
(ii) First order system

The coefficients of $O(We^2)$ lead to the following expressions

$$
\left(k + r \right) \frac{\partial^2}{\partial r^2} + 3 \frac{\partial}{\partial r} \left[\left(-\psi_{1rr} + \frac{\psi_{1r}}{r+k} \right) - \frac{(1-\varepsilon^2)}{\eta_1} \left(-\psi_{0rr} + \frac{\psi_{0r}}{r+k} \right) \right]^3 = 0, \tag{36}
$$

$$
\psi_{1r} \pm \beta \left\{ \frac{\mu}{\eta_1} \left(-\psi_{1rr} + \frac{\psi_{1r}}{r+k} \right) + S_{1r} \right\} = 0 \text{ at } r = \pm \eta, \tag{37}
$$

Figure 10. Influence of β on u when $t = 0.1$, $\epsilon = 0.2$, $E_1 = 0.01$, $E_2 = 0.02$, $E_3 = 0.01$, $k = 2$, $\mu/\eta_1 = 1$, $\zeta = 0.1$ and $We = 0.1$; $\chi = 0.2$.

doi:10.1371/journal.pone.0114168.g010

Figure 11. Influence of β on u when $t = 0.1$, $\epsilon = 0.2$, $E_1 = 0.01$, $E_2 = 0.02$, $E_3 = 0.01$, $k = 2$, $\mu/\eta_1 = 1$, $\zeta = 0.1$ and $We = 0.1$; $\chi = -0.2$.

doi:10.1371/journal.pone.0114168.g011
Putting the zeroth order solution expressions into first order system and then solving the resulting problems we have

\[
\left(k + r \right) \frac{\partial}{\partial r} + 2 \left[\left(-\psi_{1rr} + \frac{\psi_{1r}}{r + k} \right) - \frac{(1 - \zeta^2) \eta_1}{(\eta_1 + \mu)} \left(-\psi_{0rr} + \frac{\psi_{0r}}{r + k} \right) \right]^3 = 0
\]

at \(r = \pm \eta \),

\(S_{1rx} = \left(-\psi_{1rr} + \frac{\psi_{1r}}{r + k} \right) - \left(1 - \zeta^2 \right) \left(-\psi_{0rr} + \frac{\psi_{0r}}{r + k} \right)^3 \). \hspace{1cm} (39)

Figure 12. Influence of complaint wall parameters \((E_1, E_2 \text{ and } E_3) \) on \(u \) when \(\iota = 0.1, \ \epsilon = 0.2, \ \beta = 0.01, \ \mu/\eta_1 = 1 \) and \(W_2 = 0.1; \ k = 2 \).

doi:10.1371/journal.pone.0114168.g012

Figure 13. Influence of complaint wall parameters \((E_1, E_2 \text{ and } E_3) \) on \(u \) when \(\iota = 0.1, \ \epsilon = 0.2, \ \beta = 0.01, \ \mu/\eta_1 = 1 \) and \(W_2 = 0.1; \ k \rightarrow \infty \).

doi:10.1371/journal.pone.0114168.g013
\[
\psi_1 = C_{11} + C_{12} \ln(r + k) + C_{13}(r + k)^2 + C_{14}(r + k)^2 \ln(r + k)
\]

\[
+ \frac{(1 - \xi^2)}{(\eta_1 + \mu)} \left\{ \frac{3C_4}{(r + k)^2} - \frac{C_2}{3(r + k)^4} \right\},
\]

(40)

Figure 14. Influence of \(We^2 \) on \(\psi \) when \(E_1 = 0.05, E_2 = 0.04, E_3 = 0.01, \epsilon = 0.2, k = 2; \ t = 0, \beta = 0.01, \mu = \eta_1 = 1, \xi = 0.1; \ We^2 = 0. \)

doi:10.1371/journal.pone.0114168.g014

Figure 15. Influence of \(We^2 \) on \(\psi \) when \(E_1 = 0.05, E_2 = 0.04, E_3 = 0.01, \epsilon = 0.2, k = 2; \ t = 0, \beta = 0.01, \mu = \eta_1 = 1, \xi = 0.1; \ We^2 = 0.05. \)

doi:10.1371/journal.pone.0114168.g015
\[u_1 = -\psi_1 = -\frac{C_{12}}{r+k} - 2C_{13}(r+k) - C_{14}(r+k)\{1 + 2\ln(r+k)\} \\
\hspace{1cm} + \frac{(1-\zeta^2)\eta_1C_2^2}{(\eta_1+\mu)} \left\{ \frac{6C_4}{(r+k)^3} - \frac{4C_2}{3(r+k)^5} \right\}, \] (41)

Figure 16. Influence of \(We^2 \) **on** \(\psi \) **when** \(E_1 = 0.05, E_2 = 0.04, E_3 = 0.01, \gamma = 0.2, k = 2; t = 0, \beta = 0.01, \mu = \eta_1 = 1, \zeta = 0.1; We^2 = 0.01.**

doi:10.1371/journal.pone.0114168.g016

Figure 17. Influence of \(We^2 \) **on** \(\psi \) **when** \(E_1 = 0.05, E_2 = 0.04, E_3 = 0.01, \gamma = 0.2, k = 2; t = 0, \beta = 0.01, \mu = \eta_1 = 1, \zeta = 0.1; We^2 = 0.02.**

doi:10.1371/journal.pone.0114168.g017
\[C_{11} = -C_{12} \ln k - C_{13} k^2 - C_{14} k^2 \ln k - \frac{\eta_1 C_3^2}{(\eta_1 + \mu)} \left(\frac{3C_4}{k^2} - \frac{C_2}{3k^4} \right), \]

\[C_{14} = \frac{4\eta_1 (1 - \zeta^2) C_4^3}{(\eta_1 + \mu)}, \]

Figure 18. Influence of \(k \) on \(\psi \) when \(E_1 = 0.05, E_2 = 0.04, E_3 = 0.01, \epsilon = 0.2, \) \(\text{We}^2 = 0.1, \beta = 0.01, t = 0 \) \(\mu = \eta_1 = 1, \) \(\zeta = 0.1; k = 2. \)

doi:10.1371/journal.pone.0114168.g018

Figure 19. Influence of \(k \) on \(\psi \) when \(E_1 = 0.05, E_2 = 0.04, E_3 = 0.01, \epsilon = 0.2, \) \(\text{We}^2 = 0.1, \beta = 0.01, t = 0 \) \(\mu = \eta_1 = 1, \) \(\zeta = 0.1; k = 5. \)

doi:10.1371/journal.pone.0114168.g019
Figure 20. Influence of k on ψ when $E_1 = 0.05$, $E_2 = 0.04$, $E_3 = 0.01$, $\epsilon = 0.2$, $Wc^2 = 0.1$, $\beta = 0.01$, $t = 0$, $\mu = \eta_1 = 1$, $\xi = 0.1$; $k = 10$

$A = - \left[C_{14}(k + \eta)(1 + 2 \ln(k + \eta)) + 2\beta C_{14} \left(1 + \frac{\mu}{\eta_1} \right) - 8\beta \left(1 - \xi^2 \right) \left(C_4 - \frac{3C_2}{(k + \eta)^2} \right) + \frac{\eta_1 C_2^2}{(\eta_1 + \mu)} \left(\frac{4C_2}{3(k + \eta)^5} - \frac{6C_4}{(k + \eta)^3} \right) \right]$,

doi:10.1371/journal.pone.0114168.g020

Figure 21. Influence of k on ψ when $E_1 = 0.05$, $E_2 = 0.04$, $E_3 = 0.01$, $\epsilon = 0.2$, $Wc^2 = 0.1$, $\beta = 0.01$, $t = 0$, $\mu = \eta_1 = 1$, $\xi = 0.1$; $k \to \infty$.

doi:10.1371/journal.pone.0114168.g021
Figure 22. Influence of β on ψ when $E_1 = 0.05$, $E_2 = 0.04$, $E_3 = 0.01$, $\epsilon = 0.2$, $We^2 = 0.01$, $\mu = \eta_1 = 1$, $\xi = 0.1$, $t = 0$, $k = 2$; $\beta = 0$.

doi:10.1371/journal.pone.0114168.g022

\[
B = - C_{14}(k-\eta)(1 + 2 \ln(k-\eta)) - 2\beta C_{14}\left(1 + \frac{\mu}{\eta_1}\right) + 8\beta(1 - \xi^2) \left(C_4^3 - \frac{3C_2C_4^2}{(k-\eta)^2}\right) \\
+ \eta_1 C_2^2 \left(1 - \xi^2\right) \left(\frac{4C_2}{\eta_1 + \mu} - \frac{6C_4}{3(k-\eta)^5} - \frac{6C_4}{(k-\eta)^3}\right),
\]

Figure 23. Influence of β on ψ when $E_1 = 0.05$, $E_2 = 0.04$, $E_3 = 0.01$, $\epsilon = 0.2$, $We^2 = 0.01$, $\mu = \eta_1 = 1$, $\xi = 0.1$, $t = 0$, $k = 2$; $\beta = 0.03$.

doi:10.1371/journal.pone.0114168.g023
where C_1 and C_{11} are obtained by the condition $\psi(0) = 0$.

Figure 24. Influence of β on ψ when $E_1 = 0.05$, $E_2 = 0.04$, $E_3 = 0.01$, $\epsilon = 0.2$, $\text{We}^2 = 0.01$, $\mu = \eta_1 = 1$, $\zeta = 0.1$, $t = 0$, $k = 2$; $\beta = 0.06$.

doi:10.1371/journal.pone.0114168.g024

Figure 25. Influence of β on ψ when $E_1 = 0.05$, $E_2 = 0.04$, $E_3 = 0.01$, $\epsilon = 0.2$, $\text{We}^2 = 0.01$, $\mu = \eta_1 = 1$, $\zeta = 0.1$, $t = 0$, $k = 2$; $\beta = 0.09$.

doi:10.1371/journal.pone.0114168.g025
Results and Discussion

In addition to the perturbation solutions, the governing Eq. (26) subject to the boundary conditions (19) and (20) have been solved for the stream function ψ through the built-in routine for solving nonlinear boundary value problems via Mathematica 8.0. A comparative study between numerical and analytic solutions shows an excellent agreement. Moreover, the obtained results are in a very good agreement with the existing studies in the limiting case ($We = \beta = 0$).

Here we focus on the behaviors of embedding parameters on the axial velocity u and stream function ψ. The numerical computations have been compared with the exact solutions for Newtonian fluid case (which can be obtained by setting $\beta = 0$ in the zeroth-order solution given in Eq. (35)) and with the perturbation solutions for small Weissenberg number We (see Figs. 2 and 3). It is noticed that the two sets of data are virtually similar demonstrating the validation of present results. Figs. 4–7 show the profiles of axial velocity for different values of Weissenberg number at two different cross-sections. It is clear that magnitude of axial velocity increases with an increase in the Weissenberg number We when $0 \leq \xi < 1$. Further the maxima in the profiles in the Johnson-Segalman fluid is greater when compared with the Newtonian fluid (see Figs. 4 and 5). Figs. 6 and 7 plot the axial velocity profiles for different values of We when $\xi > 1$. Here it is noticed that axial velocity is a decreasing function of We. Moreover, the deviation in the profiles is more significant in this case when compared with those obtained for $\xi < 1$. The effects of curvature parameter k on the axial velocity are sketched in Figs. 8 and 9. Here the axial velocity profiles are shown at two different cross-sections. It is noticeable that symmetry of the profiles about the central line is destroyed in the curved channel. However, the profiles become symmetric about the central line for sufficiently large values of curvature parameter ($k \rightarrow \infty$). Moreover, the axial velocity decreases near the lower wall and increases in the remaining part of the channel when there is an increase in k. Further the maxima in the profiles in the curved channel lies below the maxima in the profiles for planar channel. Figs. 10 and 11 show the influence of slip parameter β on the axial velocity u. It is noticed that axial velocity is an increasing function of β. From the physical point of view an intensification in the slip effect leads to a larger magnitude of fluid velocity. Figs. 8–11 also indicate that profiles obtained at $x = 0.2$ are largely affected than those obtained at $x = -0.2$. The compliant wall effects (E_1, E_2 and E_3) on the velocity are captured in the Figs. 12 and 13. It is seen that velocity is a decreasing function of E_3. Further, the axial velocity increases when there is an increase in E_1 and E_2. It is observed that the maxima in the profiles is tilted towards the central line of the channel for large curvature parameter k (see Fig. 13).

The influence of all the parameters on the stream function ψ is observed in Figs. 14–25. Figs. 14–17 show that size and circulation of the trapped boluses increase with an increase in We for $\xi < 1$. However, for larger values of $\xi (> 1)$ the size and circulation of the boluses decrease with an increase in We. Moreover, the boluses in the upper and lower parts of the channel are not symmetric. Stream
lines for various values of slip parameter have been plotted in the Figs. 18–21. We notice that gradual increase in β corresponds to an increase the size and circulation of the boluses. This is in fact due to the increase in the axial velocity with an intensification in the slip effect (noticed earlier in Figs. 10 and 11).

Figs. 22–25 indicate that bolus size is different in the two halves of the channel for small values of curvature parameter $k \approx 3$, i.e., for curved channel; whereas the bolus attains its symmetric shape in the straight channel ($k \rightarrow \infty$). Interestingly the size and circulation of trapped bolus increases with an increase in k for $r > 0$. However for $r \leq 0$ the circulation of the bolus is found to decrease upon increasing the curvature parameter.

Conclusions

Influence of wall properties on the peristaltic transport of Johnson-Segalman fluid through a curved channel is investigated. Both analytic and numerical solutions of the developed differential system have been computed which are found in a very good agreement. It is found that velocity is an increasing function of We for $\zeta < 1$. However it decreases with an increase in We for $\zeta > 1$. This reduction accompanies with the smaller size and circulation of boluses. It is noticed that magnitude of velocity in slip flow is greater than the no-slip flow. A significant increase in the velocity with an increase in the elastic parameters E_1 and E_2 is noticed.

Author Contributions

Conceived and designed the experiments: SH MM TH. Analyzed the data: SH MM TH. Contributed reagents/materials/analysis tools: SH MM TH. Wrote the paper: SH MM TH.

References

1. Latham TW (1966) Fluid motion in a peristaltic pump. MIT Cambridge MA.
2. Jaffrin MY, Shapiro AH (1971) Peristaltic pumping. Ann Rev Fluid Mech 3: 13–16.
3. Ebaid A (2008) Effects of magnetic field and wall slip conditions on the peristaltic transport of a Newtonian fluid in an asymmetric channel. Phys Lett A 372: 4493–4499.
4. Mekheimer KS, Elmaboud YA (2008) Peristaltic flow of a couple stress fluid in an annulus: Application of an endoscope. Physica A 387: 2403–2415.
5. Mekheimer KS (2008) Effect of the induced magnetic field on peristaltic flow of a couple stress fluid. Phys Lett A 372: 4271–4278.
6. Kothandapani M, Srinivas S (2008) Peristaltic transport of a Jeffrey fluid under the effect of magnetic field in an asymmetric channel. Int J Non-Linear Mech 43: 915–924
7. Kothandapani M, Srinivas S (2008) Non-linear peristaltic transport of a Newtonian fluid in an inclined asymmetric channel through a porous medium. Phys Lett A 372: 1265–1276.
8. Hayat T, Hussain Q, Ali N, Asghar S (2008) Slip effects on the peristaltic transport of MHD fluid with variable viscosity. Phys Lett A 372: 1477–1489.
9. Gad NS (2011) Effect of hall currents on interaction of pulsatile and peristaltic transport induced flows of a particle-fluid suspension. Appl Math Comput 217: 4313–4320.

10. Hayat T, Hina S, Ali N (2010) Simultaneous effects of slip and heat transfer on the peristaltic flow. Comm Nonlinear Sci Numer Simul 15: 1526–1537.

11. Srinivas S, Gayathri R, Kothandapani M (2011) Mixed convective heat and mass transfer in an asymmetric channel with peristalsis. Comm Nonlinear Sci Numer Simul 16: 1845–1862.

12. Mustafa M, Hina S, Hayat T, Ahmad B (2014) Influence of induced magnetic field on the peristaltic flow of nanofluid. Meccan 49: 521–534.

13. Mustafa M, Abbabandy S, Hina S, Hayat T (2014) Numerical investigation on mixed convective peristaltic flow of fourth grade fluid with dufour and soret effects. J Taiwan Inst Chem Eng 45: 308–316.

14. Rao IJ, Rajagopal KR (1999) Some simple flows of a Johnson-Segalman fluid. Acta Mechan 132: 209–219.

15. Hayat T, Wang Y, Siddique AM, Hutter K (2003) Peristaltic motion of Johnson–Segalman fluid in a planar channel. Math Prob Eng 2003: 1–23.

16. Elshahed M, Haroun MH (2005) Peristaltic transport of Johnson-Segalman fluid under effect of a magnetic field. Math Prob Eng 2005: 663–677.

17. Hayat T, Afzar A, Ali N (2005) Peristaltic transport of a Johnson–Segalman fluid in an asymmetric channel. Math Comput Mod 47: 380–400

18. Wang Y, Hayat T, Hutter K (2007) Peristaltic transport of a Johnson–Segalman fluid through a deformable tube. Theor Comput Fluid Dyn 21: 369–380.

19. Nadeem S, Akbar NS (2011) Influence of heat and mass transfer on the peristaltic flow of a Johnson–Segalman fluid in a vertical asymmetric channel with induced MHD. J Taiwan Inst Chem Eng 42: 58–66.

20. Mitra TK, Prasad SN (1973) On the influence of wall properties and Poiseuille flow in peristalsis. J Biomech 6: 881–893.

21. Davies C, Carpenter PW (1997) Instabilities in a plane channel flow between compliant walls. J Fluid Mech 352: 205–243.

22. Srivastava VP, Srivastava LM (1997) Influence of wall elasticity and poiseuille flow on peristaltic induced flow of a particle-fluid mixture. Int J Eng Sci 35: 1359–1386.

23. Haroun MH (2006) Effect of wall compliance on peristaltic transport of a Newtonian fluid in an asymmetric channel. Math Prob Eng, 2006: DOI: 10.1155/MPE/2006/61475.

24. Radhakrishnamacharya G, Srinivasulu Ch (2007) Influence of wall properties on peristaltic transport with heat transfer. Compt Rend Mecan 335: 369–373.

25. Muthu P, Kumar BVR, Chandra P (2008) Peristaltic motion of micropolar fluid in circular cylindrical tubes: Effect of wall properties. Appl Math Model 32: 2019–2033.

26. Elnaby MAA, Haroun MH (2008) A new model for study the effect of wall properties on peristaltic transport of a viscous fluid. Commun Nonlinear Sci Numer Simul 13: 752–762.

27. Hayat T, Javed M, Asghar S (2008) MHD peristaltic motion of Johnson–Segalman fluid in a channel with compliant walls. Phys Lett A 372: 5026–5036.

28. Hayat T, Javed M, Ali N (2008) MHD peristaltic transport of Jeffrey fluid in a channel with compliant walls and porous space. Transp Porous Med 74: 259–274.

29. Ali N, Hayat T, Asghar S (2009) Peristaltic flow of a Maxwell fluid in a channel with compliant walls. Chaos Solitons Fractals 39: 407–416.

30. Kothandapani M, Srinivas S (2008) On the influence of wall properties in the MHD peristaltic transport with heat transfer and porous medium. Phys Lett A 372: 4586–4591.

31. Srinivas S, Gayathri R, Kothandapani M (2009) The influence of slip conditions, wall properties and heat transfer on MHD peristaltic transport. Comput Phys Commun 180: 2115–2122.

32. Srinivas S, Kothandapani M (2009) The influence of heat and mass transfer on MHD peristaltic flow through a porous space with compliant walls. Appl Math Comput 213: 197–208.
33. Hayat T, Hina S (2010) The influence of wall properties on the MHD peristaltic flow of a Maxwell fluid with heat and mass transfer. Nonlinear Anal: Real World Appl 11: 3155–3169.

34. Sato H, Kawai T, Fujita T, Okabe M (2000) Two dimensional peristaltic flow in curved channels. Trans The Japan Soc Mech Eng B 66: 679–685.

35. Ali N, Sajid M, Hayat T (2010) Long wavelength flow analysis in a curved channel. Z Naturforsch A 65: 191–196.

36. Ali N, Sajid M, Javed T, Abbas Z (2010) Heat transfer analysis of peristaltic flow in a curved channel. Int J Heat Mass Transf 53: 3319–3325.

37. Ali N, Sajid M, Abbas Z, Javed T (2010) Non-Newtonian fluid flow induced by peristaltic waves in a curved channel. Europ J Mech- B/Fluids 29: 387–394.

38. Hayat T, Javed M, Hendi AA (2011) Peristaltic transport of viscous fluid in a curved channel with compliant walls. Int J Heat Mass Transf 54: 1615–1621.

39. Hayat T, Hina S, Hendi AA, Asghar S (2011) Effect of wall properties on the peristaltic flow of a third grade fluid in a curved channel with heat and mass transfer. Int J Heat Mass Transf 54: 5126–5136.

40. Hina S, Hayat T, Asghar S (2012) Peristaltic transport of Johnson-Segalman fluid in a curved channel with wall properties. Nonlinear Anal: Model Control 17: 297–311.

41. Hina S, Hayat T, Alsaedi A (2012) Heat and mass transfer effects on the peristaltic flow of Johnson–Segalman fluid in a curved channel with compliant walls. Int J Heat Mass Transf 55: 3511–3521.

42. Hina S, Mustafa M, Hayat T, Alsaedi A (2013) Peristaltic flow of pseudoplastic fluid in a curved channel with wall properties. J Appl Mech Trans ASME 80: 024501(doi:10.1115/1.4007433).

43. Hina S, Mustafa M, Hayat T, Alsaedi A (2014) Peristaltic motion of third grade fluid in curved channel. Appl Math Mech-Engl Ed 35: 73–84.

44. Hina S, Mustafa M, Abbasbandy S, Hayat T, Alsaedi A (2014) Peristaltic motion of nanofluid in a curved channel. J Heat Transf -Trans ASME 136: 052001(doi:10.1115/1.4026168).

45. Ebaid A, Khaled SM (2014) An exact solution for the boundary value problem with application in fluid mechanics and comparison with the regular perturbation solution. Abst Appl Anal, Article ID 172590.