Emission Enhancement and Energy Transfers in YV$_{0.5}$P$_{0.5}$O$_4$ Nanoparticles Codoped with Eu$^{3+}$ and Bi$^{3+}$ Ions

Marta Wujczyk,* Sara Targonska, Philippe Boutinaud, John M. Reeks, Adam Watras, and Rafal J. Wiglusz*

Cite This: Inorg. Chem. 2022, 61, 12237–12248

Received: April 28, 2022
Published: July 28, 2022

In this study, solid-state solutions of yttrium orthovanadate-phosphate with varying concentrations of codopants (Eu$^{3+}$, Bi$^{3+}$) have been obtained via coprecipitation. An ionic radii mismatch between V$^{5+}$ and P$^{5+}$ substituents is manifested in broad XRD lines. The sharpening of the XRD lines is observed with increasing bismuth ions concentration in the Eu$^{3+}$ codoped YV$_{0.5}$P$_{0.5}$O$_4$ matrix. The difference in the number of the Stark components for the $^5D_0 \rightarrow 7F_i$ transitions indicates changes in the lattice and a number of possible Eu$^{3+}$ sites. A thorough, systematic spectroscopic analysis of YV$_{0.5}$P$_{0.5}$O$_4$: x mol % Eu$^{3+}$, y mol % Bi$^{3+}$ was conducted at room temperature and 5 K. Metal-to-metal energy transfers occurring between Eu$^{3+}$, V$^{5+}$, and Bi$^{3+}$ optically active ions have been investigated. Additionally, efficiency of the Bi$^{3+}$-Eu$^{3+}$ energy transfer (ET) was calculated.

1. INTRODUCTION

The yttrium orthovanadate and yttrium orthophosphate matrices, doped with europium ions, are popular luminescent phosphors. This is due to their potential applications as laser host materials, polarizers, solar cells, light emitting diodes, host materials for optically active ions, etc.5–7

YVO$_4$ and YPO$_4$ crystallize in the zircon tetragonal system, within the space group $I4_{1}/amd$.8,9 Hence, a solid-state solution of yttrium orthovanadate-phosphate can be formed.10 Considering YP$_{0.5}$V$_{0.5}$O$_4$, its unit cell is composed of 50 mol % vanadium tetrahedral and 50 mol % phosphate tetrahedral groups, statistically substituted. Furthermore, in this work, yttrium ions in the lattice are statistically substituted with europium and bismuth ions.

In the present work, the fraction of the YPO$_4$:YVO$_4$:BiVO$_4$:BiPO$_4$ pseudoternary diagram (more precisely the shaded area of the YP$_{0.5}$V$_{0.5}$O$_4$:BiVO$_4$:BiPO$_4$ pseudo ternary subdiagram) is investigated (Figure 1). The bond valence sums (BVS) were obtained from VESTA,11 and bond valence parameters were compiled in ref 12. The compounds in the shaded area have a disordered zircon-like crystal structure due to the inner structural characteristics of YPO$_4$ and YVO$_4$. Optically active europium ions are incorporated in YP$_{0.5}$V$_{0.5}$O$_4$ and (Y,Bi)P$_{0.5}$V$_{0.5}$O$_4$ for two purposes: to collect information on the local crystal structure and to investigate energy transfer processes involving Bi$^{3+}$. This paper constitutes an extension of previous reports2,13–16 with more systematic, thorough spectroscopic analysis. Previous works2,13,14 focus on parame-
Figure 1. YPO4–YVO4–BiVO4–BiPO4 pseudoquaternary diagram. BVS = bond valence sum.

than the phosphates. The extent to which this disorder contributes to the efficiency of Bi$^{3+}$–Eu$^{3+}$ ET will be investigated in this work. To this end, two series of materials were synthesized. The first one was doped with varying amounts of bismuth ions, while the second was doped with varying amounts of europium ions. The chemical compositions involved doping and codoping YV$_x$P$_y$O$_{3+2x+y}$ with xBi$^{3+}$, yEu$^{3+}$ where x = 0, 1, 3, 5, 10, 15 mol % and y = 0.5, 1, 2, 5 mol %. The solid state solutions were obtained by the wet chemistry synthesis-coprecipitation method with additional heat-treatment at 800 °C for 3 h.

2. EXPERIMENTAL METHODS

2.1. Materials Synthesis. Yttrium orthovanadate-phosphate powders, codoped with europium and bismuth ions, were obtained by the coprecipitation method. The concentrations of vanadium and phosphorus were fixed to 50 mol % each. Two series of materials were synthesized. The concentration of europium ions was set to 1 mol %, while bismuth ion concentration changed from 0, 1, 3, 5, 10 mol %. In the second series, the concentration of bismuth ions was set to 10 mol %, with concentrations of europium ion varying from 0.5, 1, 2, up to 5 mol %. Stoichiometric amounts of analytical grade Y$_2$O$_3$ (Alfa Aesar, 99.99%), Bi$_2$O$_3$ (Sigma-Aldrich, 99.9%), Eu$_2$O$_3$ (Alfa Aesar, 99.9%), (NH$_4$)$_2$HPO$_4$ (ACROS Organics, >98%), and NH$_4$VO$_3$ (Sigma-Aldrich, 99.5%) were used in this synthesis process.

The lanthanide and bismuth oxides were converted into nitrate salts through digestion with an excess of 65% HNO$_3$. Thereafter, the formed lanthanide and bismuth nitrates were recrystallized, and the HNO$_3$ excess was removed. Using deionized water as a solvent, separate aqueous solutions of diammonium phosphate and ammonium metavanadate were made. The vanadium and phosphorus ion sources (NH$_4$VO$_3$ and (NH$_4$)$_2$HPO$_4$) were mixed, followed by the nitrates (Y(NO$_3$)$_3$, Bi(NO$_3$)$_3$, Eu(NO$_3$)$_3$). The liquid mixture was stirred for 1.5 h at approximately 70 °C. Aqueous ammonia was used to maintain a pH of 9 during the reaction. The as-prepared precipitates were then washed and centrifuged at least three times, until neutral pH was reached. They were then dried for 24 h at 70 °C. The powders were finally crystallized by heat-treatment at 800 °C for 3 h in air.

2.2. ICP, XRD, SEM, and TEM Analyses. The crystal structure of synthesized materials was characterized by the X-ray Diffraction (XRD) technique using an X’Pert PRO X-ray diffractometer (Cu Krλ, 1.54060 Å) (PANalytical). Measured XRD patterns were compared to standards of YVO$_4$ (no. 78074) and YPO$_4$ (no. 79754) found in the Inorganic Crystal Structure Database (ICSD). Microstructural analyses (particle size, morphology) were performed by electron microscopy. ICP was carried out using an FEI Nova NanoSEM 230. High resolution transmission electron microscopy (HR-TEM) was performed using a Philips CM-20 Super Twin microscope. ICP-OES measurements were conducted on Thermo Scientific ICAP 7000 SERIES.

2.3. Spectroscopic Analysis. The Nicolet iS50 FT-IR from Thermo Scientific was used to collect infrared spectra at 300 K of samples processed in KBr pellets. The room-temperature emission spectra utilized excitation at 397, 340, and 300 nm. These spectra were collected using a FLS1000 photoluminescence spectrometer from Edinburgh Instruments. The same apparatus was used to collect the excitation spectra. The 5D$_{0} \rightarrow ^7$F$_{1}$ transition at 619 nm was monitored at room temperature for the excitation spectra measurements. Emission spectra were also recorded in response to the 266 nm excitation of a Nd:YAG laser, a Hamamatsu PMA-12 photonic multichannel analyzer. The emission decay profiles were measured at 300 K using either a Ti:sapphire tunable laser or a Nd:YAG laser, a Hamamatsu R928 photomultiplier, a Jobin-Yvon THR 1000 spectrophotometer, and a digital LeCroy WaveSurfer oscilloscope. Excitation and emission spectra were collected at low temperature (5 K) using a temperature-controlled, continuous-flow liquid helium cryostat: Oxford Model CF 1204. Low temperature emission spectra were measured with a Dongwoo Optron DM151i monochromator and a 150W ozone free lamp. The low temperature emission spectra were also recorded in response to the 266 nm excitation of a Nd:YAG laser, a Hamamatsu R928 photomultiplier, a Jobin-Yvon THR 1000 spectrophotometer, and a digital LeCroy WaveSurfer oscilloscope. Excitation and emission spectra were collected at low temperature (5 K) using a temperature-controlled, continuous-flow liquid helium cryostat: Oxford Model CF 1204. Low temperature emission spectra were measured with a Dongwoo Optron DM151i monochromator and a 150W ozone free lamp. The low temperature emission spectra were also recorded in response to the 266 nm excitation of a Nd:YAG laser, a Hamamatsu R928 photomultiplier.
3. RESULTS AND DISCUSSION

3.1. Structure and Morphology. The chemical composition of all samples, analyzed by ICP-OES, is given in Table 1. It is verified that the nominal compositions are congruous with actual compositions.

XRD results confirmed the crystal phase purity of YV$_{0.5}$P$_{0.5}$O$_4$ doped derivatives (Figure 2). The XRD peaks are broadened and further confirm the structural disorder, as observed earlier.10,12,20 This broadening originates from the size difference between V$^{5+}$ (0.36 Å, C.N. 4) and P$^{5+}$ (0.17 Å, C.N. 4), when statistically distributed in YV$_x$P$_{1-x}$O$_4$ solid solution. The lattice strains are influenced by changes in grain size. This is a result of point defects, vacancies,34 and varying composition35 as well as dislocations near the grain-boundaries36 caused by the incompatibility of phosphorus and vanadium atoms. The observed changes in the fwhm of the XRD peaks may indicate the presence of lattice strains.37

Co-doping with Eu$^{3+}$ does not impact the lattice and, by extension, the width of the XRD peaks. In contrast, it is found that codoping with Bi$^{3+}$ contributes to narrowing of the XRD peaks (Figure 2c). This is clearly evidenced by Figure 2b,d. Additionally, increasing the Eu$^{3+}$ amount in 10 mol % Bi$^{3+}$

Table 1. Elemental Composition of the Europium and Bismuth Codoped YV$_{0.5}$P$_{0.5}$O$_4$ in Molar Percentages

Element	0.5% Eu$^{3+}$	1% Eu$^{3+}$	2% Eu$^{3+}$	5% Eu$^{3+}$	1% Eu$^{3+}$	3% Bi$^{3+}$	5% Bi$^{3+}$	10% Bi$^{3+}$	15% Bi$^{3+}$
Y	89.08	98.73	87.83	84.97	97.95	95.47	92.42	88.91	83.66
V	49.70	49.63	50.05	49.65	50.32	50.55	49.79	49.78	50.06
P	49.79	49.54	49.89	50.27	50.54	48.73	49.84	49.47	49.74
Eu	0.52	1.01	1.95	4.98	1.03	1.03	1.03	1.02	1.05
Bi	10.06	10.01	10.10	0.96	3.03	4.97	9.98	14.94	

Figure 2. Diffractograms (a, c) and fwhm analysis (b, d) obtained for x mol % Bi$^{3+}$, 1 mol % Eu$^{3+}$: YV$_{0.5}$P$_{0.5}$O$_4$ and 10 mol % Bi$^{3+}$, y mol % Eu$^{3+}$: YV$_{0.5}$P$_{0.5}$O$_4$.

Figure 3. Cation coordination spheres of Eu$^{3+}$ in zircon-like YPO$_4$, YP$_{0.5}$V$_{0.5}$O$_4$, and (Y,Bi)P$_{0.5}$V$_{0.5}$O$_4$. Oxygen atoms are not represented.
codoped samples does not affect the XRD peak widths significantly.

By considering Eu$^{3+}$ as a local luminescent structural probe, we find three possible environments experienced by Y$^{3+}$ ions in...
the compounds. This is depicted in Figure 3. In YPO₄, the Eu³⁺ ions are surrounded by eight O atoms, thus forming a dodecahedron with D_{3d} point symmetry. The first cation coordination consists of two P⁵⁺ at 3.01 Å and respectively four P⁵⁺ and four Y³⁺ at 3.76 Å in a second coordination. The exact charge (the BVS - Bond Valence Sum) carried by these cations is given in Figure 1. Incorporation of 50% V⁵⁺ creates two additional spheres at 3.14 and 3.89 Å (marked as red in Figure 3) with statistical occupancy. Incorporation of Bi³⁺ results in a third sphere (marked as blue in Figure 3) at 4.00 Å. The probability of finding a Bi³⁺ ion in this position is $P(x) = 1 - (1 - x)^4$ wherein x is the molar percentage of Bi³⁺, e.g., $P(0.1) = 35\%$. The bismuth ions (1.17 Å at C.N. 8) substitute yttrium ions (1.02 Å at C.N. 8) in a statistical manner. Since Bi³⁺ is about 15% larger than Y³⁺, its incorporation in the crystal lattice counterbalances (at least partly) the ionic radius mismatch between V⁵⁺ and P⁵⁺. This inverse relationship between V⁵⁺–P⁵⁺ and Bi³⁺–Y³⁺ ionic radii mismatches reduces the lattice strains in YV₀.5P₀.5O₄ and thereby

Figure 7. Fourier transformed infrared spectra of (a) codoped with Bi³⁺ and 1 mol % Eu³⁺ YV₀.5P₀.5O₄ with varying Bi³⁺ concentrations and (b) codoped with 10 mol % Bi³⁺ and Eu³⁺, with varying Eu³⁺ concentrations.

Figure 8. Emission spectra for x mol % Bi³⁺, y mol % Eu³⁺: YV₀.5P₀.5O₄ under 397 nm excitation at room temperature.
sharpens the XRD lines as the Bi$^{3+}$ concentration is raised (Figure 2c).

SEM images of YV$_{0.5}$P$_{0.5}$O$_4$: 1 mol % Eu$^{3+}$, x mol % Bi$^{3+}$ materials are depicted in Figure 4. The powders look micrometric regardless of bismuth ion concentration. As the bismuth content is raised, the particles become smaller, and their surfaces become rougher. EDS maps (Figure 5) obtained for 1 mol % Eu$^{3+}$, 10 mol % Bi$^{3+}$: YV$_{0.5}$P$_{0.5}$O$_4$ confirm random distribution of the constituents.

The TEM images in Figure 6 demonstrate that the aggregates consist in fact of nanosized particles. Analysis of the SEM (Figure 5) and TEM (Figure 6) images reveals a wide distribution of particle sizes among the samples, although we note that the particle size increases as the Bi$^{3+}$ content is raised (i.e., 19, 31, and 62 nm for doping rates of 1, 5, and 15 mol %, respectively). Differences in particle sizes contribute to the narrowing of the XRD peaks in addition to the reordering of the crystal structure. This work sheds a light into a complex structure of Eu$^{3+}$, Bi$^{3+}$: YV$_{0.5}$P$_{0.5}$O$_4$. However, to individuate or quantify the role of each effect, further crystallographic research needs to be conducted. Additionally, d-spacing values were calculated by the means of FFT processing in ImageJ software. d-Spacing was calculated to be $d_{101} = 0.45$ nm for YV$_{0.5}$P$_{0.5}$O$_4$ samples codoped with 1 mol % Eu$^{3+}$ and 1 mol % Bi$^{3+}$ and 1 mol % Eu$^{3+}$ and 5 mol % Bi$^{3+}$, as well as 1 mol % Eu$^{3+}$ and 15 mol % Bi$^{3+}$. Also d_{200} values were calculated. For samples codoped with 1 mol % Eu$^{3+}$ and 1 mol % Bi$^{3+}$, d_{200} was 0.35 nm. However, 5 mol % and 15 mol % Bi$^{3+}$-doped samples had a d_{200} value of 0.33 nm. All d-spacing values coincide with d_{101} and d_{200} values from standard patterns of YVO$_4$ ($d_{101} = 0.47132$ nm, $d_{200} = 0.35591$ nm) and YPO$_4$ ($d_{101} = 0.45379$ nm, $d_{200} = 0.34474$ nm).

3.2. Spectroscopic Properties

The FT-IR spectra of YV$_{0.5}$P$_{0.5}$O$_4$ codoped with Eu$^{3+}$ and Bi$^{3+}$ are shown in Figure 7. There are five strong absorption bands in the range of 1300–400 cm$^{-1}$. The peaks at 524 cm$^{-1}$ and at 639 cm$^{-1}$ represent an antisymmetric bending vibration of ν$_2$(PO$_4$)$^{3-}$. The antisymmetric stretching vibration of ν$_1$(PO$_4$)$^{3-}$ can be found at 1010 cm$^{-1}$ and at 1110 cm$^{-1}$. The peak at 836 cm$^{-1}$ is ascribed to the vibration mode of the (VO)$_2$ group. The weak peak detected at 502 cm$^{-1}$ is related to the Y–O vibration. This mode is not observed for the samples with more than 10 mol % of codopant ions concentration. The Bi–O modes are on the verge of our measurement range.

Room temperature measurements revealed that all compounds exhibit red emission typical of Eu$^{3+}$ upon direct 4f–4f excitation at 397 nm (Figure 8). This emission increases in intensity with increasing Eu$^{3+}$ and Bi$^{3+}$ concentrations. The highest observed emission intensity is in samples containing 10 mol % Bi$^{3+}$, 5 mol % Eu$^{3+}$: YV$_{0.5}$P$_{0.5}$O$_4$.

The excitation spectra for x mol % Bi$^{3+}$, y mol % Eu$^{3+}$: YV$_{0.5}$P$_{0.5}$O$_4$ materials for the D$_{0} \rightarrow F_2$ transition at 619 nm are shown in Figure 9. Three broad transitions are observed at 266, 300, and 340 nm (shoulder). They correspond to the O$^2- \rightarrow$ Eu$^{3+}$, O$^2- \rightarrow$ V$^{3+}$, and Bi$^{3+} \rightarrow$ V$^{3+}$ charge transfers, respectively. The intrinsic 4f–4f excitation lines of Eu$^{3+}$ (namely $F_0 \rightarrow F_0$, the $F_0 \rightarrow D_2$, and $F_0 \rightarrow D_4$ transitions) are comparatively much less intense.

Figure 10 depicts the emission spectra after excitation in the charge transfer bands. These intensities are normalized to the D$_{0} \rightarrow F_1$ transition of Eu$^{3+}$. In addition to characteristic emission lines of Eu$^{3+}$, broad emission signals are observed. Upon 340 nm excitation, the broad signal represents the emission of the Bi–V metal-to-metal CT, whereas upon 300 nm excitation, the broad signal is more surely due to perturbed vanadate groups. Upon 266 nm excitation, these bandlike emissions possibly overlap. The presence of these emission bands indicates an incomplete sensitization of Eu$^{3+}$ luminescence. Two possible sensitization paths are identified. They involve the (VO$_4$)$^{3-}$ units or the Bi–V self-trapped excitons as energy donors and the Eu$^{3+}$ ions as energy acceptors. Decay profiles were collected to quantify the efficiency of these energy transfers.

Decay profiles are presented in Figure 11 for 397 nm excitation (inner $F_0 \rightarrow F_0$ Eu$^{3+}$ transition) or 355 nm excitation (Bi–V MMCT). Corresponding average values of the luminescence lifetimes τ_{av} were calculated as $\tau_{av} = \int I(t) dt / \int I(t) dt$. In this case, $I(t)$ represents the emission intensity at time t. These values are provided in Table 2. A plot is proposed in Figure 12 for discussion.

The parameter η in Table 2 is related to the efficiency of the ET from Bi$^{3+}$-to-Eu$^{3+}$ in the codoped compounds. It is obtained from the equation

$$\eta = 1 - \frac{\tau_{doped}}{\tau_{undoped}}$$

where τ_{doped} is the lifetime constant in the presence of the Eu$^{3+}$ acceptor, and $\tau_{undoped}$ is the time constant without Eu$^{3+}$ (i.e., only Bi$^{3+}$).

Figure 12(a) pertains to the inner $F_0 \rightarrow F_0$ excitation of Eu$^{3+}$. The left-hand side of the vertical dashed line corresponds to 1 mol % Eu$^{3+}$ doped samples with increasing Bi$^{3+}$ concentrations (compound A to compound H, excluding compound B, in Table 2). Here, an increase in emission lifetime with increasing bismuth concentration is observed up to 3 mol % Bi$^{3+}$ (compound D). These samples (A,C,D,E) also exhibit lower emission intensity relative to samples with higher Bi$^{3+}$ concentrations. This suggests a lower radiative probability from the D$_{0}$ state in these cases. Raising the Bi$^{3+}$ amount further contributes to enhance the Eu$^{3+}$ emission intensity, and it correlates with a shortening of the lifetime. This effect has already been observed in YPO$_4$:Sm$^{3+}$, Bi$^{3+}$ and is ascribed to an increased refractive index of the host lattice. In this case, the radiative probability is increased, contributing to a lower emission lifetime. A synergetic effect with the reordering of the crystal structure is not excluded. This requires further
investigation. The right-hand side of the figure shows the effect of Eu\(^{3+}\) content for a fixed amount of Bi\(^{3+}\). In this case, the emission lifetime does not vary significantly because the medium’s refractive index is unchanged. Here, the increase in emission intensity is ascribed to the larger Eu\(^{3+}\) content that remains beyond the quenching concentration\(^{44,45}\).

Part (b) of Figure 12 relates to an excitation in the Bi–V MMCT band, the intensity of which exceeds by far that of the \(^7F_0 \rightarrow ^5L_6\) transition (Figure 9). In this situation, the Eu\(^{3+}\)

Figure 10. Emission spectra for \(x\) mol % Bi\(^{3+}, y\) mol % Eu\(^{3+}\): YV\(_{0.5}\)P\(_{0.5}\)O\(_4\) under 266, 300, and 340 nm excitation normalized to the \(^5D_0 \rightarrow ^7F_1\) transition of Eu\(^{3+}\).
emission is produced after an energy transfer whose efficacy is given in Table 2. Efficacy is 20% in the Bi³⁺-rich compounds F and G but tends to fall off in compounds containing more than 1 mol % Eu³⁺; η is for instance comparable in compound D (3 mol % Bi³⁺, 1 mol % Eu³⁺) and in compound I (10 mol % Bi³⁺, 2 mol % Eu³⁺). Nevertheless, the emission intensity of compound J amounts to 6.5 times that of compound D, which demonstrates a synergy between Bi³⁺ and Eu³⁺ contents in Y(V,P₄)O₄. Furthermore, with respect to both 355 and 397 nm excitations, compound J exhibits the highest emission intensity related to direct Eu³⁺ excitation.

At sufficiently low temperatures, vibronic interactions can be frozen out. Thus, the luminescence spectra can give more detailed information regarding the electronic transitions of Eu³⁺ and can now be used as a structural probe. In 2008, Pan et al. conducted investigations regarding the spectroscopic properties of Eu³⁺ in Y(V,P₄)O₄ solid solution by laser-selective excitation. This work identified three symmetry sites in the yttrium orthovanadate-phosphate mixed compounds due to disorder generated by the distribution of (PO₄)₃ and (VO₄)₃ tetrahedra. The Judd–Ofelt intensity parameters further confirmed that significant changes in ligand polarizability contribute to differences in local environments experienced by Eu³⁺.

Figure 13 illustrates the excitation spectra collected at 5 K corresponding to the 619 nm emission which represents the Eu³⁺ 5D₀ → 7F₂ transition. Low temperature excitation spectra depict noticeable differences when compared to the room temperature spectra. These major differences are as follows:

1. differences in relative intensity of the intrinsic 7F₀ → 5L₁ transitions of Eu³⁺ to the CT excitation bands in compounds containing low amounts of Bi³⁺ (<5 mol %). This indicates a less efficient sensitization at 5 K. Furthermore, it demonstrates that in these conditions, the

Table 2. Calculated Average Decay (tₑ) and Rise (tᵣₑ) Times for x mol % Bi³⁺, y mol % Eu³⁺: Y(V,P₄)O₄ Pumped with 397 and 355 nm Wavelengths

Label	Y(V,P₄)O₄	tₑ [ms]	tᵣₑ [ms]	tᵣₚ [μs]	η (%)
A	1 mol % Eu³⁺	1.5	1.1		
B	1 mol % Bi³⁺				
C	1 mol % Bi³⁺, 1 mol % Eu³⁺	1.6	1.2	6.9	1.1
D	3 mol % Bi³⁺, 1 mol % Eu³⁺	1.9	1.2	5.8	16.5
E	5 mol % Bi³⁺, 1 mol % Eu³⁺	1.6	1.2	5.8	17.2
F	10 mol % Bi³⁺, 1 mol % Eu³⁺	1.3	1.1	5.5	20.7
G	15 mol % Bi³⁺, 1 mol % Eu³⁺	1.1	0.9	5.6	19.5
H	10 mol % Bi³⁺, 0.5 mol % Eu³⁺	1.1	1.1	5.7	17.9
I	10 mol % Bi³⁺, 2 mol % Eu³⁺	1.0	1.0	5.9	16.2
J	10 mol % Bi³⁺, 5 mol % Eu³⁺	1.1	1.0	6.1	12.9

"Each sample composition was assigned a label to facilitate the discussion below."
Bi-to-Eu energy transfer is efficiently phonon assisted. However, even at 5 K the Bi-to-Eu energy transfer regains efficacy when the Bi3+ concentration is 10 mol %. This coincides with the increased presence of a broad excitation band which peaks at \(\approx 360 \) nm and extends up to \(\approx 400 \) nm, currently attributed to Bi–V MMCT.

(2) the presence of structures on the Bi–V MMCT excitation with maxima identified at \(\approx 350, 330, \) and 307 nm. The relative intensity of these excitation maxima strongly depends on the Bi3+ content in the compound. There is a notable red shift in the excitation spectra as Bi3+ concentration increases. This shift of the Bi–V excitation edge with increasing the Bi content has been noted in previous studies, e.g., in ref32.

(3) the absence of excitation features pertaining to O2− \(\rightarrow \) Eu3+ and O2− \(\rightarrow \) V5+ charge transfers. This suggests these transitions are not involved in the sensitization process of Eu3+ at 5 K. Therefore, only the Bi–V MMCT operates as a sensitizing channel for Eu3+ at 5 K.

The emission spectra for 1, 3, 5, 10, 15 mol % Bi3+, 1 mol % Eu3+, YV\textsubscript{0.5}P\textsubscript{0.5}O\textsubscript{4} were collected at 5 K. These samples were excited in the CT bands and at 395 nm (Figure 14). The wavelengths of the Stark components observed in Y\textsubscript{0.89}Eu\textsubscript{0.01}Bi\textsubscript{0.01}V\textsubscript{0.98}O\textsubscript{4} and Y\textsubscript{0.89}Eu\textsubscript{0.01}Bi\textsubscript{0.10}V\textsubscript{0.5}P\textsubscript{0.5}O\textsubscript{4} are compiled in Table 3 and compared to reference data on Eu3+ in YPO\textsubscript{4} and YVO\textsubscript{4}.

Data related to the \(^{3}D_{0} \rightarrow ^{7}F_{4} \) transition of Eu3+ are incomplete, when compared to the reference zircon compounds YPO\textsubscript{4}:Eu3+ and YVO\textsubscript{4}:Eu3+. The \(^{3}D_{0} \rightarrow ^{7}F_{2} \) transitions are also poorly resolved despite the low temperature. Thereby the results are discussed based on the \(^{3}D_{0} \rightarrow ^{7}F_{2} \) transitions. Two different signatures are noted for the Eu3+ transitions in Y\textsubscript{0.89}Eu\textsubscript{0.01}Bi\textsubscript{0.10}V\textsubscript{0.5}P\textsubscript{0.5}O\textsubscript{4} depending on the excitation wavelength. This indicates the presence of more than one Eu3+ type site in this crystal structure, which agrees with the conclusions of Pan et al.66 In Y\textsubscript{0.89}Eu\textsubscript{0.01}Bi\textsubscript{0.10}V\textsubscript{0.5}P\textsubscript{0.5}O\textsubscript{4}, however, only four Stark components (instead of five) corresponding to the \(^{3}D_{0} \rightarrow ^{7}F_{2} \) transition were observed. The spectrum in the \(^{3}D_{0} \rightarrow ^{7}F_{4} \) region looks also simpler. This simplification of the spectral signatures is consistent with the progressive crystal structure reordering of YP\textsubscript{0.5}V\textsubscript{0.5}O\textsubscript{4} concomitant with an increase in Bi3+ concentration. This is previously observed in XRD results (Figure 2). Compared to YPO\textsubscript{4}:Eu3+ and YVO\textsubscript{4}:Eu3+, the \(^{3}D_{0} \rightarrow ^{7}F_{2} \) spectrum of Y\textsubscript{0.89}Eu\textsubscript{0.01}Bi\textsubscript{0.10}V\textsubscript{0.5}P\textsubscript{0.5}O\textsubscript{4} is more split (265 cm−1)

Table 3. Stark Components (in nm) of Eu3+ in YVO\textsubscript{4}47 YPO\textsubscript{4}47 and Y\textsubscript{1−x}Bi\textsubscript{x}V\textsubscript{0.5}P\textsubscript{0.5}O\textsubscript{4} (x = 0.01, and 0.10)56

\(^{3}D_{0}\) →	YPO\textsubscript{4}	YVO\textsubscript{4}				
^{7}F\textsubscript{0}	581.0	581.9				
^{7}F\textsubscript{1}	592.7	593.5				
^{7}F\textsubscript{2}	596.1	595.0	594.7a	594.5a		
^{7}F\textsubscript{3}	617.4	615.5	610.5	609.9		
^{7}F\textsubscript{4}	617.6	617.3	613.7	615.4		
			619.3	619.4	615.3	618.8
			620.2	622.4	619.0	619.9
			619.9			
			691.6	690.5	696.7	696.4
			694.4	696.7	698.6	704.0
			696.2	698.5	703.4	
			697.3	699.1		
			699.3	701.2		
			703.5	704.5		
			704.7	708.2		

aCentroid position. bData were taken at 5 K.
against 178−180 cm\(^{-1}\)), and its energy barycenter is upshifted. This is due to the presence of the Bi\(^{3+}\) ion in the second cationic neighborhood of Eu\(^{3+}\), as we have depicted in Figure 3. Owing to the BVS values given in Figure 1, it is concluded that the formal charge carried by bismuth is below that of yttrium, with the consequence that the formal charge carried by phosphorus and vanadium atoms in the Bi-doped compounds is enhanced with respect to the Bi-free compounds. This, in turn, affects the formal charge carried by the oxygen atoms in the first coordination of Eu\(^{3+}\) by reinforcing the crystal field and softening the nephelauxetic effect.

4. CONCLUSION

The pure crystal phase of x mol % Bi\(^{3+}\), y mol % Eu\(^{3+}\): Y\(_{0.5}\)P\(_{0.5}\)O\(_4\) was formed using a coprecipitation synthesis method. It is observed that codoping with Bi\(^{3+}\) is followed by narrowing of the XRD peaks, but codoping with Eu\(^{3+}\) does not significantly affect the widths of the peaks. The insufficient energy transfer to Eu\(^{3+}\), resulting from the Bi–V MMCT and the \(^{3}T_{1,2} \rightarrow ^{1}A_1\) (VO\(_4\))\(^{3−}\) broad transition bands, is observed. Yet, Eu\(^{3+}\) ion emission is enhanced by increasing Bi\(^{3+}\) ion concentration. Further reaffirmed is the presence of more than one Eu\(^{3+}\) site due to (PO\(_4\))\(^{3−}\) and (VO\(_4\))\(^{3−}\) substitution. Additionally, an ordering of the crystal structure of YP\(_{0.5}\)V\(_{0.5}\)O\(_4\) with increasing the Bi\(^{3+}\) content can be observed. It is supposed that at low temperature the sensitizing pathway of Eu\(^{3+}\) is less efficient in comparison to the room temperature, and mainly the Bi–V MMCT contribution is noticeable. Based on luminescent decay times, the Bi–Eu ET efficiency was found to be the highest for bismuth-rich compounds.
Corresponding Authors
Rafal J. Wiglus – Institute of Low Temperature and Structure Research, 50-422 Wroclaw, Poland; orcid.org/0000-0001-8458-1532; Email: r.wiglus@intibs.pl
Marta Wujczyk – Institute of Low Temperature and Structure Research, 50-422 Wroclaw, Poland; Phone: +48 (071) 3954159/274; Email: m.wujczyk@intibs.pl; Fax: +48 (071) 3441029

Authors
Sara Targonska – Institute of Low Temperature and Structure Research, 50-422 Wroclaw, Poland
Philippe Boutinaud – Université Clermont Auvergne, Clermont Auvergne INP, CNRS, ICFC, F-63000 Clermont-Ferrand, France
John M. Reeks – Institute of Low Temperature and Structure Research, 50-422 Wroclaw, Poland; orcid.org/0000-0003-4736-0356

Adam Watras – Institute of Low Temperature and Structure Research, 50-422 Wroclaw, Poland; orcid.org/0000-0003-4736-0356

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.inorgchem.2c01465

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Regarding financial support, the authors acknowledge the National Science Centre Poland (NCN) within the project: ‘Preparation and modulation of spectroscopic properties of YXZO₄, where X and Z = P⁶⁺, V⁴⁺, As⁵⁺, doped with “s²-like” ions and co-doped with rare-earth ions’ (UMO-2019/33/B/ST5/02247). We express gratitude toward M. Sc. E. Bukowska for XRPD measurements and results, M. Sc. A. Hojenska for ICP measurements, PhD. D. Smykanski for measurements involving SEM-EDS, M. Sc. P. Wozniak for results and images from TEM measurements, and PhD. R. Lisiecki and PhD. B. Macalik for spectroscopic measurements at low temperature.

REFERENCES

(1) Huang, X. Y.; Wang, J. X.; Yu, D. C.; Ye, S.; Zhang, Q. Y.; Sun, X. W. Spectral conversion for solar cell efficiency enhancement using YVO₄:Bi³⁺, Ln³⁺(La Dy, Er, Ho, Eu, Sm, and Yb) phosphors. J. Appl. Phys. 2011, 109, 113526.
(2) Pu, Y.; Tang, K.; Zhu, D.-C.; Han, T.; Zhao, C.; Peng, L.-L. Synthesis and Luminescence Properties of (Y, Gd)(P, V)O₄:Eu³⁺, Bi³⁺Red Nano-phosphors with Enhanced Photoluminescence by Bi³⁺, Gd³⁺ Doping. Nano-Micro Lett. 2013, 5, 117–123.
(3) Chen, L.; Chen, K. J.; Lin, C. C.; Chu, C. I.; Hu, S. F.; Lee, M. H.; Liu, R. S. Combinatorial approach to the development of a single mass YVO₂:Bi³⁺,Eu³⁺ Phosphor with red and green dual colors for high color rendering white-light-emitting diodes. J. Comb. Chem. 2010, 12, 587–594.
(4) Wang, D.; Tie, S.; Wao, X. White light emittance from YVO₄/ YₓOₓ:Eu³⁺,Bi³⁺ composite phosphors for UV-light-emitting diodes. Ceram. Int. 2015, 41, 7766–7772.
(5) Rambabu, U.; Do Han, S. Broad band down conversion from ultra violet light to near infrared emission in YVO₄:Bi³⁺, Yb³⁺ as spectral conversion phosphor for c-Si solar cells. Ceram. Int. 2013, 39, 1603–1612.
(6) Khan, S. A.; Jalil, A.; Ullah Khan, Q.; Irfan, R. M.; Mehmood, I.; Khan, K.; Kiani, M.; Dong, B.; Khan, N. Z.; Yu, J. L.; Zhu, L.; Agathopolous, S. New physical insight into crystal structure, luminescence and optical properties of YPO₄:Eu³⁺/Yb³⁺/ Tb³⁺ single-phase white-light-emitting phosphors. J. Alloys Compd. 2020, 817, 152687.
(7) Zheng, Y.; Li, F.; Wang, Y.; Zhang, K.; Peng, K. High-stability single-frequency green laser with a wedge Nd:YVO₄ as a polarizing beam splitter. Opt. Commun. 2010, 283, 309–312.
(8) Milligan, W. O.; Mullica, D. F. Structural Investigations of YPO₄, ScPO₄, and LuPO₄. Inorgana Chem. Acta. 1982, 60, 39–43.
(9) Chakoumakos, B. C.; Abraham, M. M.; Boatner, L. A. Crystal Structure Refinements of Zircon-Type MVO₄ (M = Sc, Y, Ce, Pr, Nd, Tb, Ho, Er, Tm, Yb, Lu). J. Solid State Chem. 1994, 109, 197–202.
(10) Wujczyk, M.; Watras, A.; Szyszka, K.; Wiglus, R. J. Influence of vanadium concentration on up-conversion luminescence in Eu³⁺−Yb³⁺ and Tm³⁺−Yb³⁺ ions pair co-doped YV₁₋ₓÔₓ:O solid state solution. J. Alloys Compd. 2021, 884, 161022.
(11) Momma, K.; Izumi, F. An integrated three-dimensional visualization system VESTA using wxWidgets. J. Appl. Crystallogr. 2008, 41, 653–658.
(12) Brese, N. E.; O’Keeffe, M. Bond-valence parameters for solids. Acta Crystallogr. Sect. B 1991, 47, 192–197.
(13) Nguyen, H. D.; il Mho, S.; Yeo, I. H. Preparation and characterization of nanosized (Y,Bi)VO₄:Eu³⁺ and Y(V,P)O₄:Eu³⁺, red phosphors. J. Lumin. 2009, 129, 1754–1758.
(14) Sun, J.; Xian, J.; Xia, Z.; Du, H. Synthesis, structure and luminescence properties of Y(V,P)O₄:Eu³⁺,Bi³⁺ phosphors. J. Lumin. 2010, 130, 1818–1824.
(15) Cavalli, E.; Angiuli, F.; Mezzafra, D.; Trevisani, M.; Bettinelli, M.; Boutinaud, P.; Brik, M.G. Tunable luminescence of Bi³⁺-doped YP₂V₄O₁₀(0 ≤ X ≤ 1). J. Phys.: Condens. Matter 2014, 26, 385503.
(16) Boutinaud, P. Optical processes in (Y, Bi)VO₄ doped with Eu³⁺ or Pr³⁺. J. Phys.: Condens. Matter 2014, 26, 405501.
(17) Blassé, G.; Bril, A. Investigations on Bi³⁺-Activated Phosphors. J. Chem. Phys. 1968, 48, 217–222.
(18) Boulon, G. Processus de photoluminescence dans les oxydes et les orthovanadates de terres rares polycristallins activés par l’ion Bi³⁺. J. Phys. (Paris) 1971, 32, 333–347.
(19) Moncorgé, R.; Boulon. G. Investigations of the absorption and emission properties along with energy transfer in pure and Bi³⁺ doped YVO₄. J. Lumin. 1979, 18–19, 376–380.
(20) Kang, F.; Peng, M.; Zhang, Q.; Qiu, J. Abnormal anti-quenching and controllable multi-transitions of Bi³⁺ luminescence by temperature in a yellow-emitting LuVO₄:Bi³⁺ phosphor for UV-converted white LEDs. Chem. - A Eur. J. 2014, 20, 11522–11530.
(21) Kang, F.; Sun, G.; Boutinaud, P.; Gao, F.; Wang, Z.; Lu, J.; Li, Y. Y.; Xiao. S. Tuning the Bi³⁺-photoemission color over the entire visible region by manipulating secondary cations modulation in the ScₓP₁₋ₓOₓ:Bi³⁺ (0 ≤ x ≤ 1) solid solution. J. Mater. Chem. C 2019, 7, 9865–9877.
(22) Krasnikov, A.; Tsiunma, V.; Vasylechko, L.; Zazubovich, S.; Zhydachevsky, Y. Photoluminescence origin in Bi³⁺ - doped YVO₄, LuVO₄, and GdVO₄ orthovanadates. J. Lumin. 2019, 212, 52–60.
(23) Krasnikov, A.; Mihokova, E.; Nikl, M.; Zazubovich, S.; Zhydachevsky, Y. Luminescence spectroscopy and origin of luminescence centers in bi-doped materials. Crystals. 2020, 10, 208.
(24) Chen, D.; Yu, Y.; Huang, P.; Lin, H.; Shan, Z.; Zeng, L.; Yang, A.; Wang, Y. Color-tunable luminescence for Bi³⁺/Ln³⁺: YVO₄ (Ln = Eu, Sm, Dy, Ho) nanophosphors excitable by near-ultraviolet light. Phys. Chem. Chem. Phys. 2010, 12, 7775–7778.
(25) Huang, X. Y.; Wang, J. X.; Yu, D. C.; Ye, S.; Zhang, Q. Y.; Sun, X. W. Spectral conversion for solar cell efficiency enhancement using YVO₄:Bi³⁺, Ln³⁺(La Dy, Er, Ho, Eu, Sm, and Yb) phosphors. J. Appl. Phys. 2011, 109, 113526.
(28) Xue, J.; Wang, X.; Jeong, J. H.; Yan, X. Spectral and energy transfer in Bi$^{3+}$-Re$^{4+}$ $(n = 2, 3, 4)$ co-doped phosphors: Extended optical applications. *Phys. Chem. Chem. Phys.* 2018, 20, 11516–11541.
(29) Shao, J.; Yan, J.; Li, X.; Li, S.; Hu, T. Novel fluorescent label based on YVO$_4$: Bi$^{3+}$, Eu$^{3+}$ for latent fingerprint detection. *Dye. Pigment.* 2019, 160, 555–562.
(30) Hara, H.; Takeshita, S.; Isobe, T.; Sawayama, T.; Niikura, S. A unique photofunction of YVO$_4$:Bi$^{3+}$,Eu$^{3+}$ nanophosphor: Photoluminescent indication for photochemical decomposition of polyurethane. *Mater. Sci. Eng. B Solid-State Mater. Adv. Technol.* 2013, 178, 311–315.
(31) Iso, Y.; Takeshita, S.; Isobe, T. Effects of YVO$_4$: Bi$^{3+}$, Eu$^{3+}$ Nanophosphors Spectral Down-Shift on Properties of Monocrystalline Silicon Photovoltaic Module. *J. Electrochem. Soc.* 2012, 159, J72–J76.
(32) Takeshita, S.; Isobe, T.; Sawayama, T.; Niikura, S. Effects of the homogeneous Bi$^{3+}$ doping process on photoluminescence properties of YVO$_4$:Bi$^{3+}$,Eu$^{3+}$ nanophosphor. *J. Lumin.* 2009, 129, 1067–1072.
(33) Takeshita, S.; Isobe, T.; Sawayama, T.; Niikura, S. Low-temperature wet chemical precipitation of YVO$_4$:Bi$^{3+}$,Eu$^{3+}$ nanophosphors via citrate precursors. *Prog. Cryst. Growth Charact. Mater.* 2011, 57, 127–136.
(34) Qin, W.; Szpunar, J. A. Origin of lattice strain in nanocrystalline materials. *Philos. Mag. Lett.* 2005, 85, 649–656.
(35) Eckert, J.; Holzer, J.; Krill, C.; Johnson, W. Reversible grain size changes in ball-milled nanocrystalline Fe–Cu alloys. *J. Mater. Res.* 1992, 7, 1980–1983.
(36) Nazarov, A. A.; Romanov, A. E.; Valiev, R. Z. On the nature of high internal stresses in ultrafine grained materials. *Nanostructured Mater.* 1994, 4, 93–101.
(37) Biju, V.; Sugathan, N.; Vrinda, V.; Salini, S. L. Estimation of lattice strain in nanocrystalline silver from X-ray diffraction line broadening. *J. Mater. Sci.* 2008, 43, 1175–1179.
(38) Prasad, A. I.; Parchur, A. K.; Juluri, R. R.; Jadhav, N.; Pandey, B. N.; Ningthoujam, R. S.; Vatsa, R. K. Bi-functional properties of Fe$_3$O$_4$@YPO$_4$:2%Sm$^{3+}$ hybrid nanoparticles: Hyperthermia application. *Dal. Trans.* 2013, 42, 4885–4896.
(39) Wu, J.; Jia, H.; Li, M.; Jia, H.; Liu, Z. Influence of pH on nanoporphosphor YPO$_4$:2%Sm$^{3+}$ and luminescent properties. *Appl. Phys. A Mater. Sci. Process.* 2020, 126, 1–8.
(40) Wu, J.; Li, M.; Jia, H.; Liu, Z.; Jia, H.; Wang, Z. Morphology formation mechanism and fluorescence properties of nano-phosphor YPO$_4$:Sm$^{3+}$ excited by near-ultraviolet light. *J. Alloys Compd.* 2020, 821, 153535.
(41) Chahine, A.; Et-Tabirou, M.; Pascal, J. L. FTIR and Raman spectra of the Na$_2$O-CuO-Bi$_2$O$_5$-P$_2$O$_5$ glasses. *Mater. Lett.* 2004, 58, 2776–2780.
(42) Boda, R.; Shareefuddin, M.; Chary, M. N.; Sayanna, R. FTIR and Optical Properties of Europium Doped Lithium Zinc Bismuth Borate Glasses. *Mater. Today Proc.* 2016, 3, 1914–1922.
(43) Angiuli, F.; Cavalli, E.; Boutinaud, P.; Mahiou, R. Emission properties of Sm$^{3+}$/Bi$^{3+}$-doped YPO$_4$ phosphors. *J. Lumin.* 2013, 135, 239–242.
(44) Yahiaoui, Z.; Hassairi, M. A.; Dammak, M. Synthesis and Optical Spectroscopy of YPO$_4$:Eu$^{3+}$ Orange–Red Phosphors. *J. Electron. Mater.* 2017, 46, 4765–4773.
(45) Chang, Y. S.; Huang, F. M.; Tsai, Y. Y.; Teoh, L. G. Synthesis and photoluminescent properties of YVO$_4$:Eu$^{3+}$ nano-crystal phosphor prepared by Pechini process. *J. Lumin.* 2009, 129, 1181–1185.
(46) Pan, G.; Song, H.; Dai, Q.; Qin, R.; Bai, X.; Dong, B.; Fan, L.; Wang, F. Microstructure and optical properties of Eu$^{3+}$ activated Y$_2$P$_2$O$_7$ phosphors. *J. Appl. Phys.* 2008, 104, 084910.
(47) Linares, C.; Louat, A.; Blanchard, M. Rare-Earth - Oxygen Bonding in the LnMO$_4$ Xenotime Structure: Spectroscopic Investigation and Comparative Study of Ligand Field Models. In *New Concepts*; Struct. Bond.; 1977; pp 179–207.