The complete mitochondrial genome of the hydrozoan jellyfish *Turritopsis lata* Lendenfeld, 1885 (Cnidaria; Hydrozoa; Anthoathecata) with molecular phylogenetic analysis

Yoseph Seo\(^a\) b, Jinho Chae\(^b\) b and Jang-Seu Ki\(^a\) b

\(^a\)Department of Biotechnology, Sangmyung University, Seoul, South Korea; \(^b\)Marine Environmental Research and Information Laboratory, Gunpo, South Korea

ABSTRACT

In this study, we sequenced and analyzed the complete mitochondrial genome (mtgenome) of the hydrozoan jellyfish *Turritopsis lata*. The mtgenome was a complete linear form (15,047 bp in length, 30.9% A, 42.1% T, 12.5% C, and 14.5% G), including 13 protein coding genes (PCGs) (cox1, cox2, cox3, atp6, atp8, nad1, nad2, nad3, nad4, nad4L, nad5, nad6, and cytB), 2 tRNAs (tRNA\(^{\text{Met}}\) and tRNA\(^{\text{Trp}}\)), and 2 rRNAs (12S and 16S rRNA). The genome structure of the *T. lata* was completely identical to those of other species within the subclass Hydroidolina. In addition, our molecular phylogenetic analysis using 13 PCGs within hydrozoans showed that *T. lata* was the closest to *Turritopsis dohrnii*.

The hydrozoan jellyfish *Turritopsis* are well-known to revert their life cycle to the juvenile polyp stage from adult medusae by rejuvaniation, and, thus, they are called ‘immortal jellyfish’ (Hasegawa et al. 2016). The jellyfishes are recorded worldwide from tropical to temperate waters (Miglietta et al. 2007), and their distribution patterns are region-specific depending on species (Miglietta et al. 2019). Although they are classified by morphology, their identification is difficult due to similar morphology among relatives (Kubota 2015). Alternatively, molecular analysis has been considered as a powerful tool to determine their taxonomic identities (Li et al. 2018), and mitochondrial genes and genomes are commonly used as molecular markers of taxonomy (Yuan et al. 2020). Geneious 9.1.3 (Geneious, Auckland, New Zealand), and MITOS (Bernt et al. 2013), respectively. A maximum-likelihood (ML) tree (JTT matrix-based model; 1000 bootstrap replications) was generated based on concatenated amino acid sequences of 13 PCGs in MEGA X (Kumar et al. 2018). The complete mtgenome of *T. lata* (GenBank accession no. MW399220) was linear in shape and 15,047 bp in length with 73% AT content. The genome contained 13 PCGs (cox1, cox2, cox3, atp6, atp8, nad1, nad2, nad3, nad4, nad4L, nad5, nad6, and cytB), two rRNAs (12S and 16S rRNA), and two tRNAs (tRNA\(^{\text{Met}}\) and tRNA\(^{\text{Trp}}\)). The arrangement of 17 mitochondrial genes of *T. lata* was completely identical to another order Anthoathecata species, including *T. dohrnii* (KT020766), *Clava multicorins* (JN700935) and *Hydra oligactis* (EU237491) (Seo et al. 2020). Mitochondrial PCGs of *T. lata* have two start codons (ATG/GTG) and three stop codons (TAA/TAG/ incomplete T). Especially, the incomplete T stop codon was found only in cox1.

The phylogenetic relationship within hydrozoans was inferred using amino acid sequences of 13 PCGs (Figure 1). The ML tree showed that the *T. lata* formed a sister relationship with *T. dohrnii*. In the present study, we provide additional complete mtgenome sequence data of *T. lata* to...
understand the abstruse phylogenetic relationship of hydrozoans.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This research was a part of the project titled ‘Improvement of management strategies on marine disturbing ecosystems and harmful organisms (No. 20190518)’ funded by the Ministry of Oceans and Fisheries, Korea.

ORCID

Yoseph Seo http://orcid.org/0000-0003-1587-2402
Jinho Chae http://orcid.org/0000-0002-7229-0700
Jang-Seu Ki http://orcid.org/0000-0002-6007-9262

Data availability statement

The genome sequence data that support the findings of this study are openly available in GenBank of NCBI at https://www.ncbi.nlm.nih.gov under the Accession no. MW399220.

References

Bernt M, Donath A, Jühling F, Externbrink F, Florentz C, Fritzsch G, Pütz J, Middendorf M, Stadler PF. 2013. MITOS: improved de novo metazoan mitochondrial genome annotation. Mol Phylgenet E. 69(2):313–319.

Hasegawa Y, Watanabe T, Takazawa M, Ohara O, Kubota S. 2016. De novo assembly of the transcriptome of *Turritopsis* sp. (Hydrozoa, Oceanidae), a possible new species endemic to Xiamen, China. PeerJ. 6:e4225.

Hashemi-Aghdam SS, Rafie G, Akbari S, Oshaghi MA. 2017. Utility of mtDNA-COI barcode region for phylogenetic relationship and diagnosis of five common pest cockroaches. J Arthropod Borne Dis. 11(2):182.

Jin JJ, Yu WB, Yang JB, Song Y, Depamphilis CW, Yi TS, Li DZ. 2020. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 21(1):1–31.

Kubota S. 2015. Morphology of newly liberated medusae of *Turritopsis* spp. (Hydrozoa, Oceanidae) from Japan and abroad. J Biogeogr. 17:129–131.

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol E. 35(6):1547–1549.

Li JY, Guo DH, Wu PC, He LS. 2018. Ontogeny reversal and phylogenetic analysis of *Turritopsis* sp. 5 (Cnidaria, Hydrozoa, Oceanidae), a possible new species endemic to Xiamen, China. PeerJ. 6:e4225.

Miglietta MP, Maggioni D, Matsumoto Y. 2019. Phylogenetics and species delimitation of two hydrozoa (phylum Cnidaria): *Turritopsis* (McCrady, 1857) and *Pennaria* (Goldfuss, 1820). Mar Biodiv. 49(3):1085–1100.

Miglietta MP, Piraino S, Kubota S, Schuchert P. 2007. Species in the genus *Turritopsis* (Cnidaria, Hydrozoa): a molecular evaluation. J Zool Syst. 45(1):11–19.

Richards E, Reichardt M, Rogers S. 2003. Preparation of genomic DNA from plant tissue. In: FM Ausubel, R Brent, RE Kingston, DD Moore, JG Seidman, JA Smith, K Struhl, editors. Current protocols in molecular biology. New York: John Wiley and Sons; p. 231–237.

Seo Y, Chae J, Ki JS. 2020. The complete mitochondrial genome of the hydrozoan jellyfish *Spirocodon salatrix* (Cnidaria; Hydrozoa; Anthoathecata) with phylogeny analysis. Mitochondrial DNA Part B. 5(3):3116–3117.

WoRMS. 2021. World register of marine species. http://www.marinespecies.org [accessed 2021 Feb 22].

Yuan ML, Zhang QL, Zhang LJ, Guo ZL, Liu YJ, Shen YY, Shao R. 2016. High-level phylogeny of the Coleoptera inferred with mitochondrial genome sequences. Mol Phylogenet E. 104:99–111.