Solution to new sign problems with Hamiltonian Lattice Fermions

Emilie Huffman

Department of Physics
Duke University

June 27, 2014

Collaborator: Shailesh Chandrasekharan

Supported by DOE grant # DEFG0205ER41368
Review: Staggered Fermions

- Discretized version of the Dirac Hamiltonian that introduces a single fermion field component to each lattice site and interprets doubling as physical flavors.

\[
\begin{align*}
H &= t \sum_{x} \left[i/2 \left(\delta x + \hat{\alpha}_1, y - \delta x - \hat{\alpha}_1, y \right) + i/2 \left(-1 \right) x_1 \left(\delta x + \hat{\alpha}_2, y - \delta x - \hat{\alpha}_2, y \right) \right] \\
&= t \sum_{xy} M_{xy} c^\dagger_x c_y,
\end{align*}
\]
Review: Staggered Fermions

- Discretized version of the Dirac Hamiltonian that introduces a single fermion field component to each lattice site and interprets doubling as physical flavors.
- In two dimensions, given by

\begin{equation}
H = t \sum_x \left[\frac{i}{2} \left(c_x^\dagger c_{x+\hat{\alpha}_1} - c_x^\dagger c_{x-\hat{\alpha}_1} \right) + \frac{i}{2} (-1)^{x_1} \left(c_x^\dagger c_{x+\hat{\alpha}_2} - c_x^\dagger c_{x-\hat{\alpha}_2} \right) \right].
\end{equation}
Review: Staggered Fermions

- Discretized version of the Dirac Hamiltonian that introduces a single fermion field component to each lattice site and interprets doubling as physical flavors.
- In two dimensions, given by

\[
H = t \sum_x \left[\frac{i}{2} \left(c_x^{\dagger} c_{x+\hat{\alpha}_1} - c_x^{\dagger} c_{x-\hat{\alpha}_1} \right) + \frac{i}{2} (-1)^x \left(c_x^{\dagger} c_{x+\hat{\alpha}_2} - c_x^{\dagger} c_{x-\hat{\alpha}_2} \right) \right].
\]

(1)

- Can be written as

\[
H = t \sum_{xy} c_x^{\dagger} M_{xy} c_y,
\]

(2)

where

\[
M_{xy} = \frac{i}{2} \left(\delta_{x+\hat{\alpha}_1,y} - \delta_{x-\hat{\alpha}_1,y} \right) + \frac{i}{2} (-1)^x \left(\delta_{x+\hat{\alpha}_2,y} - \delta_{x-\hat{\alpha}_2,y} \right).
\]

(3)
Discretized version of the Dirac Hamiltonian that introduces a single fermion field component to each lattice site and interprets doubling as physical flavors.

In two dimensions, given by

$$H = t \sum_x \left[\frac{i}{2} \left(c_x^\dagger c_{x+\hat{\alpha}_1} - c_x^\dagger c_{x-\hat{\alpha}_1} \right) + \frac{i}{2} (-1)^{x_1} \left(c_x^\dagger c_{x+\hat{\alpha}_2} - c_x^\dagger c_{x-\hat{\alpha}_2} \right) \right].$$

(1)

Can be written as

$$H = t \sum_{xy} c_x^\dagger M_{xy} c_y,$$

(2)

where

$$M_{xy} = \frac{i}{2} \left(\delta_{x+\hat{\alpha}_1,y} - \delta_{x-\hat{\alpha}_1,y} \right) + \frac{i}{2} (-1)^{x_1} \left(\delta_{x+\hat{\alpha}_2,y} - \delta_{x-\hat{\alpha}_2,y} \right).$$

(3)

Particle-hole symmetry: $c_x \rightarrow \sigma_x c_x^\dagger$, $\sigma_x = (-1)^{x_1 + x_2}$
Motivation to use Hamiltonian Formalism

- No doubling in time dimension. The four zero modes at the corners of the 2d Brillouin zone can be interpreted as $N_f = 1$ (4-component) Dirac fermion.
No doubling in time dimension. The four zero modes at the corners of the 2d Brillouin zone can be interpreted as $N_f = 1$ (4-component) Dirac fermion.

We may then add in a second flavor, and get an SU(2) flavor symmetry.
Motivation to use Hamiltonian Formalism

- No doubling in time dimension. The four zero modes at the corners of the 2d Brillouin zone can be interpreted as $N_f = 1$ (4-component) Dirac fermion.
- We may then add in a second flavor, and get an SU(2) flavor symmetry.
- For Lagrangian approach, there would be doubling by a factor of 8 due to time dimension. We would naturally get $N_f = 2$ Dirac fermions, and there would be no SU(2) flavor symmetry.
Motivation to use Hamiltonian Formalism

- No doubling in time dimension. The four zero modes at the corners of the 2d Brillouin zone can be interpreted as $N_f = 1$ (4-component) Dirac fermion.
- We may then add in a second flavor, and get an SU(2) flavor symmetry.
- For Lagrangian approach, there would be doubling by a factor of 8 due to time dimension. We would naturally get $N_f = 2$ Dirac fermions, and there would be no SU(2) flavor symmetry.
- There’s an issue with Hamiltonian fermions though: sign problems in some models.
Motivation to use Hamiltonian Formalism

- No doubling in time dimension. The four zero modes at the corners of the 2d Brillouin zone can be interpreted as $N_f = 1$ (4-component) Dirac fermion.
- We may then add in a second flavor, and get an SU(2) flavor symmetry.
- For Lagrangian approach, there would be doubling by a factor of 8 due to time dimension. We would naturally get $N_f = 2$ Dirac fermions, and there would be no SU(2) flavor symmetry.
- There’s an issue with Hamiltonian fermions though: sign problems in some models.
- The solution? Fermion bag approach.
The Naive Method

- We begin with writing $Z = Tr \left(e^{-\beta \epsilon} \right)$ as

$$Z = Tr \left(e^{-\epsilon H} e^{-\epsilon H} e^{-\epsilon H} \ldots e^{-\epsilon H} \right)$$

(4)

where there are N factors such that $N \epsilon = \beta$.

The Naive Method

- We begin with writing $Z = Tr \left(e^{-\beta \epsilon} \right)$ as

$$Z = Tr \left(e^{-\epsilon H} e^{-\epsilon H} e^{-\epsilon H} ... e^{-\epsilon H} \right)$$ \hspace{1cm} (4)

where there are N factors such that $N \epsilon = \beta$.

- We write as a path integral:

$$Z = \int \left[d\bar{\psi} d\psi \right] e^{-\bar{\psi}_1 \psi_1} \left\langle -\bar{\psi}_1 | e^{-\epsilon H} | \psi_2 \right\rangle e^{-\bar{\psi}_2 \psi_2} \left\langle \bar{\psi}_2 | e^{-\epsilon H} | \psi_3 \right\rangle$$

$$e^{-\bar{\psi}_3 \psi_3} \left\langle \bar{\psi}_3 | e^{-\epsilon H} | \psi_4 \right\rangle ... e^{-\bar{\psi}_n \psi_n} \left\langle \bar{\psi}_n | e^{-\epsilon H} | \psi_1 \right\rangle$$ \hspace{1cm} (5)
The Naive Method

- We begin with writing $Z = \text{Tr} \left(e^{-\beta \epsilon} \right)$ as

$$Z = \text{Tr} \left(e^{-\epsilon H} e^{-\epsilon H} e^{-\epsilon H} \ldots e^{-\epsilon H} \right)$$ \hspace{0.5cm} (4)

where there are N factors such that $N\epsilon = \beta$.

- We write as a path integral:

$$Z = \int \left[d\bar{\psi} d\psi \right] e^{-\bar{\psi}_1 \psi_1} \langle -\bar{\psi}_1 | e^{-\epsilon H} | \psi_2 \rangle \ e^{-\bar{\psi}_2 \psi_2} \langle \bar{\psi}_2 | e^{-\epsilon H} | \psi_3 \rangle \ e^{-\bar{\psi}_3 \psi_3} \langle \bar{\psi}_3 | e^{-\epsilon H} | \psi_4 \rangle \ldots \ e^{-\bar{\psi}_n \psi_n} \langle \bar{\psi}_n | e^{-\epsilon H} | \psi_1 \rangle$$ \hspace{0.5cm} (5)

$$= \int \left[d\phi d\bar{\psi} d\psi \right] e^{-\bar{\psi} M(\phi) \psi - S(\phi)}$$ \hspace{0.5cm} (6)
The Naive Method

- We begin with writing $Z = \text{Tr} \left(e^{-\beta \epsilon} \right)$ as

 $$Z = \text{Tr} \left(e^{-\epsilon H} e^{-\epsilon H} e^{-\epsilon H} \cdots e^{-\epsilon H} \right)$$ (4)

 where there are N factors such that $N \epsilon = \beta$.

- We write as a path integral:

 $$Z = \int \left[d\bar{\psi} d\psi \right] e^{-\bar{\psi}_1 \psi_1 \langle -\bar{\psi}_1 | e^{-\epsilon H} | \psi_2 \rangle e^{-\bar{\psi}_2 \psi_2 \langle \bar{\psi}_2 | e^{-\epsilon H} | \psi_3 \rangle}$$

 $$e^{-\bar{\psi}_3 \psi_3 \langle \bar{\psi}_3 | e^{-\epsilon H} | \psi_4 \rangle \cdots e^{-\bar{\psi}_n \psi_n \langle \bar{\psi}_n | e^{-\epsilon H} | \psi_1 \rangle}$$ (5)

 $$= \int \left[d\phi d\bar{\psi} d\psi \right] e^{-\bar{\psi} M(\phi) \psi - S(\phi)}$$ (6)

 $$= \int \left[d\phi \right] e^{-S[\phi]} \det M(\phi)$$ (7)
Problems with Naive Method

We have a sum of determinants. In some models this method will still work if we can find a “pairing mechanism.” Example: Even numbers of flavors can lead to squares of the determinant. But odd numbers of flavors (such as this model) typically lead to sign problems.
Problems with Naive Method

- We have a sum of determinants. In some models this method will still work if we can find a “pairing mechanism.” Example: Even numbers of flavors can lead to squares of the determinant. But odd numbers of flavors (such as this model) typically lead to sign problems.
- Another problem: particle hole symmetry is lost in the naive method.
Problems with Naive Method

- We have a sum of determinants. In some models this method will still work if we can find a “pairing mechanism.” Example: Even numbers of flavors can lead to squares of the determinant. But odd numbers of flavors (such as this model) typically lead to sign problems.
- Another problem: particle hole symmetry is lost in the naive method.
- The average $\langle n \rangle \neq \frac{1}{2}$ unless $\epsilon \to 0$.

\[\langle n \rangle = \int d\bar{\psi} d\psi e^{-S} \bar{\psi} x \psi x \int d\bar{\psi} d\psi e^{-S} \bar{\psi} x \psi x \]
Problems with Naive Method

- We have a sum of determinants. In some models this method will still work if we can find a “pairing mechanism.” Example: Even numbers of flavors can lead to squares of the determinant. But odd numbers of flavors (such as this model) typically lead to sign problems.
- Another problem: particle hole symmetry is lost in the naive method.
- The average $\langle n \rangle \neq \frac{1}{2}$ unless $\epsilon \to 0$.

$$\langle n_x \rangle = \frac{\int [d\bar{\psi}d\psi] e^{-S}\psi_x\bar{\psi}_x}{\int [d\bar{\psi}d\psi] e^{-S}}$$

$\langle n \rangle$ versus epsilon
Particle-hole symmetry is recovered in a continuous time formulation. (Can this help us?)
Particle-hole symmetry is recovered in a continuous time formulation. (Can this help us?)

We note that $H = H_0 + H_{\text{int}}$. Then we expand and get the following:
Alternative Method

- Particle-hole symmetry is recovered in a continuous time formulation. (Can this help us?)
- We note that $H = H_0 + H_{\text{int}}$. Then we expand and get the following:

$$Z = \sum_k \int [dt] (-1)^k \text{Tr} \left(e^{-(\beta-t)H_0} H_{\text{int}} e^{-(t_1-t_2)H_0} H_{\text{int}} \cdots \right), \quad (8)$$

where there are k insertions of H_{int}.

Beard, Wiese (1996), Sandvik (1998), Prokof’ev, Svistunov (1998), Rubtsov, Savkin Lichtenstein (2005)
Particle-hole symmetry is recovered in a continuous time formulation. (Can this help us?)

We note that $H = H_0 + H_{\text{int}}$. Then we expand and get the following:

$$Z = \sum_k \int [dt] (-1)^k \text{Tr} \left(e^{-(\beta-t)H_0} H_{\text{int}} e^{-(t_1-t_2)H_0} H_{\text{int}} \cdots \right), \quad (8)$$

where there are k insertions of H_{int}.

Beard, Wiese (1996), Sandvik (1998), Prokof’ev, Svistunov (1998), Rubtsov, Savkin Lichtenstein (2005)

We will see that, for a certain class of models, this expression may be written as determinants of matrices with some useful properties.
The Sign Problem in the Hamiltonian Approach

Here we focus on a specific model involving staggered fermions:

\[H = t \sum_{x,y} c_x^\dagger M_{xy} c_y + \sum_{\langle x,y \rangle} \frac{V}{4} \left(n_x - \frac{1}{2} \right) \left(n_y - \frac{1}{2} \right) \] \tag{9}

Similar model considered by: Gubernatis, Scalapino, Sugar, Toussaint. PRB (1985)

\(V \geq 2t \): Chandrasekharan, Cox, Holland, Wiese. Nucl. Phys. (1999).
The Sign Problem in the Hamiltonian Approach

Here we focus on a specific model involving staggered fermions:

\[H = t \sum_{x,y} c_x^\dagger M_{xy} c_y + \sum_{\langle x,y \rangle} \frac{V}{4} \left(n_x - \frac{1}{2} \right) \left(n_y - \frac{1}{2} \right) \]

(9)

Similar model considered by: Gubernatis, Scalapino, Sugar, Toussaint. PRB (1985)

\[V \geq 2t: \text{Chandrasekharan, Cox, Holland, Wiese. Nucl. Phys. (1999).} \]

At half-filling with particle-hole symmetry. Rewrite interaction using auxiliary bosonic field \(s \) (\(n_x^+ = c_x^\dagger c_x, n_x^- = 1 - n_x^+ \)):

\[H_{\text{int}} = \frac{V}{4} \sum_{b,s_x,s_y,\langle x,y \rangle} \left(s_x n_x^{s_x} \right) \left(s_y n_y^{s_y} \right) \]

(10)

where

\[M_{xy}' = \left(-\frac{1}{2} \right) \left(1 + \hat{\alpha}_{x+y} \right) \delta_{x+y,0} + \left(-\frac{1}{2} \right) \left(1 + \hat{\alpha}_{x-y} \right) \delta_{x-y,0} , \]

\[M_{xy}'' = \frac{1}{4} \left(2 \delta_{x+y,0} + 2 \delta_{x-y,0} \right) \]

(12)
The Sign Problem in the Hamiltonian Approach

Here we focus on a specific model involving staggered fermions:

\[H = t \sum_{x,y} c_x^\dagger M_{xy} c_y + \sum_{\langle x,y \rangle} \frac{V}{4} \left(n_x - \frac{1}{2} \right) \left(n_y - \frac{1}{2} \right) \]

(9)

Similar model considered by: Gubernatis, Scalapino, Sugar, Toussaint. PRB (1985)

\(V \geq 2t \): Chandrasekharan, Cox, Holland, Wiese. Nucl. Phys. (1999).

At half-filling with particle-hole symmetry. Rewrite interaction using auxiliary bosonic field \(s (n_x^+ = c_x^\dagger c_x, n_x^- = 1 - n_x^+) \):

\[H_{int} = \frac{V}{4} \sum_{b,s_x,s_y,\langle x,y \rangle} \left(s_x n_x^{s_x} \right) \left(s_y n_y^{s_y} \right) \]

(10)

Particle-hole symmetry is preserved. Making unitary transformations:

\[H = t \sum_{x,y} d_x^\dagger M'_{xy} d_y + \frac{V}{4} \sum_{b,s_x,s_y,\langle x,y \rangle} \left(s_x n_x^{s_x} \right) \left(s_y n_y^{s_y} \right) \]

(11)
The Sign Problem in the Hamiltonian Approach

Here we focus on a specific model involving staggered fermions:

$$H = t \sum_{x,y} c_x^\dagger M_{xy} c_y + \sum_{\langle x,y \rangle} \frac{V}{4} \left(n_x - \frac{1}{2} \right) \left(n_y - \frac{1}{2} \right)$$

(9)

Similar model considered by: Gubernatis, Scalapino, Sugar, Toussaint. PRB (1985)

$$V \geq 2t$$: Chandrasekharan, Cox, Holland, Wiese. Nucl. Phys. (1999).

At half-filling with particle-hole symmetry. Rewrite interaction using auxiliary bosonic field $$s$$ ($$n_x^+ = c_x^\dagger c_x$$, $$n_x^- = 1 - n_x^+$$):

$$H_{int} = \frac{V}{4} \sum_{b,s_x,s_y,\langle x,y \rangle} \left(s_x n_x^{s_x} \right) \left(s_y n_y^{s_y} \right)$$

(10)

Particle-hole symmetry is preserved. Making unitary transformations:

$$H = t \sum_{x,y} d_x^\dagger M'_{xy} d_y + \frac{V}{4} \sum_{b,s_x,s_y,\langle x,y \rangle} \left(s_x n_x^{s_x} \right) \left(s_y n_y^{s_y} \right)$$

(11)

$$M'_{xy} = \frac{(-1)^{x_1+x_2}}{2} \left(\delta_{x+\hat{\alpha}_1,y} - \delta_{x-\hat{\alpha}_1,y} \right) + \frac{(-1)^{x_2}}{2} \left(\delta_{x+\hat{\alpha}_2,y} - \delta_{x-\hat{\alpha}_2,y} \right),$$

(12)
The Sign Problem in the Hamiltonian Approach

- Here we focus on a specific model involving staggered fermions:

\[
H = t \sum_{x,y} c^\dagger_x M_{xy} c_y + \sum_{\langle x,y \rangle} \frac{V}{4} \left(n_x - \frac{1}{2} \right) \left(n_y - \frac{1}{2} \right)
\]

(9)

Similar model considered by: Gubernatis, Scalapino, Sugar, Toussaint. PRB (1985)

\[V \geq 2t: \text{Chandrasekharan, Cox, Holland, Wiese. Nucl. Phys. (1999).}\]

- At half-filling with particle-hole symmetry. Rewrite interaction using auxiliary bosonic field \(s\) \((n^+_x = c^\dagger_x c_x, n^-_x = 1 - n^+_x)\):

\[
H_{\text{int}} = \frac{V}{4} \sum_{b,s_x,s_y,\langle x,y \rangle} \left(s_x n^{s_x}_x \right) \left(s_y n^{s_y}_y \right)
\]

(10)

- Particle-hole symmetry is preserved. Making unitary transformations:

\[
H = t \sum_{x,y} d^\dagger_x M'_{xy} d_y + \frac{V}{4} \sum_{b,s_x,s_y,\langle x,y \rangle} \left(s_x n^{s_x}_x \right) \left(s_y n^{s_y}_y \right)
\]

(11)

\[
M'_{xy} = \frac{(-1)^{x_1+x_2}}{2} \left(\delta_{x+\hat{\alpha}_1, y} - \delta_{x-\hat{\alpha}_1, y} \right) + \frac{(-1)^{x_2}}{2} \left(\delta_{x+\hat{\alpha}_2, y} - \delta_{x-\hat{\alpha}_2, y} \right),
\]

(12)

where \(M'^T = -DM'D, (D_{xy} = \sigma_x \delta_{xy})\)
The Partition Function

\[Z = Z_0 \sum_k \sum_{[b,s]} \int [dt] \left(-\frac{V}{4} \right)^k \text{Tr} \left(e^{-(\beta-t_1)H_0} (s_{x'} n_{x'}^{s_{x'}}) (s_{y'} n_{y'}^{s_{y'}}) \right. \]

\[\left. e^{-(t_1-t_2)H_0} (s_{x''} n_{x''}^{s_{x''}}) (s_{y''} n_{y''}^{s_{y''}}) \cdots e^{-(t_{k-1}-t_k)H_0} (s_{x(k)} n_{x(k)}^{s_{x(k)}}) (s_{y(k)} n_{y(k)}^{s_{y(k)}}) e^{-t_k H_0} \right) \]

(13)
The Partition Function

\[Z = Z_0 \sum_k \sum_{[b,s]} \int [dt] \left(-\frac{V}{4} \right)^k \text{Tr} \left(e^{-(\beta - t_1)H_0} (s_{x'} n_{x'}^{s_{x'}}) (s_{y'} n_{y'}^{s_{y'}}) \right. \\
\left. e^{-(t_1-t_2)H_0} (s_{x''} n_{x''}^{s_{x''}}) (s_{y''} n_{y''}^{s_{y''}}) \ldots e^{-(t_{k-1}-t_k)H_0} (s_{x^{(k)}} n_{x^{(k)}}^{s_{x^{(k)}}}) (s_{y^{(k)}} n_{y^{(k)}}^{s_{y^{(k)}}}) e^{-t_k H_0} \right) \]

(13)
The G-Matrix Elements

This trace can be evaluated exactly in terms of the determinant of a \(2k \times 2k\) matrix, \(G([b, s, t])\).
The G-Matrix Elements

- This trace can be evaluated exactly in terms of the determinant of a $2k \times 2k$ matrix, $G([b, s, t])$.
- Thus we have:

$$Z = Z_0 \sum_k \sum_{[b,s]} \int [dt] \left(-\frac{V}{4}\right)^k \det G([b, s, t]) \quad (14)$$
The G-Matrix Elements

- This trace can be evaluated exactly in terms of the determinant of a $2k \times 2k$ matrix, $G([b, s, t])$.
- Thus we have:

$$Z = Z_0 \sum_k \sum_{[b,s]} \int [dt] \left(-\frac{V}{4} \right)^k \det G([b, s, t])$$ (14)

$$G = \begin{pmatrix}
d_{11}[s] & a_{12} & \cdots & a_{13} & a_{14} \\
-a_{12} & d_{22}[s] & \cdots & a_{23} & a_{24} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
a_{13} & a_{23} & \cdots & d_{33}[s] & a_{34} \\
a_{14} & a_{24} & \cdots & -a_{34} & d_{44}[s]
\end{pmatrix}$$ (15)
The G-Matrix Elements

- This trace can be evaluated exactly in terms of the determinant of a $2k \times 2k$ matrix, $G([b, s, t])$.
- Thus we have:

$$Z = Z_0 \sum_k \sum_{[b,s]} \int [dt] \left(-\frac{\mathcal{V}}{4} \right)^k \det G([b, s, t]) \quad (14)$$

$$G = \begin{pmatrix}
 d_{11}[s] & a_{12} & \vdots & a_{13} & a_{14} \\
 -a_{12} & d_{22}[s] & \vdots & a_{23} & a_{24} \\
 \vdots & \vdots & \ddots & \vdots & \vdots \\
 a_{13} & a_{23} & \vdots & d_{33}[s] & a_{34} \\
 a_{14} & a_{24} & \vdots & -a_{34} & d_{44}[s]
\end{pmatrix} \quad (15)$$

- The following identities hold: $a_{yx} = -\sigma_x a_{xy} \sigma_y$ and $d_{xx}[s] = -\frac{s_x}{2}$.
The Sign Problem

- However, no guarantee that these determinants will be positive. Under particle-hole symmetry, \([s] \rightarrow [-s]\), so not symmetric for fixed \(s\).
The Sign Problem

- However, no guarantee that these determinants will be positive. Under particle-hole symmetry, $[s] \rightarrow [−s]$, so not symmetric for fixed s.

- In fact, in generating 10,000 such determinants randomly, we find a severe sign problem:
The Sign Problem

- However, no guarantee that these determinants will be positive. Under particle-hole symmetry, \([s] \rightarrow [-s]\), so not symmetric for fixed \(s\).
- In fact, in generating 10,000 such determinants randomly, we find a severe sign problem:

Figure: 10,000 determinants: 5004 were positive and 4996 were negative.
In our model each diagonal element can be treated as a fermion bag dependent on $[s]$. Since dependence on auxiliary bosonic field $[s]$ is freely fluctuating, we can integrate it out.
The Fermion Bag Technique

- In our model each diagonal element can be treated as a fermion bag dependent on \([s]\). Since dependence on auxiliary bosonic field \([s]\) is freely fluctuating, we can integrate it out.

- Thus, consider the \([s]\) sum:

\[
\sum_{[s]} \text{Det} (G[b, s, t])
\] (16)
The Fermion Bag Technique

- In our model each diagonal element can be treated as a fermion bag dependent on \([s]\). Since dependence on auxiliary bosonic field \([s]\) is freely fluctuating, we can integrate it out.

- Thus, consider the \([s]\) sum:

\[
\sum_{[s]} \text{Det} (G[b, s, t])
\]

(16)

- We may write this determinant in Grassman integral form:

\[
\sum_{[s]} \int [d\bar{\psi} d\psi] \ e^{-\bar{\psi}((D_0[s]) + A([b, t]))\psi}
\]

(17)
The Fermion Bag Technique

- In our model each diagonal element can be treated as a fermion bag dependent on \([s]\). Since dependence on auxiliary bosonic field \([s]\) is freely fluctuating, we can integrate it out.

- Thus, consider the \([s]\) sum:

\[
\sum_{[s]} \text{Det} \left(G [b, s, t] \right)
\]

(16)

- We may write this determinant in Grassman integral form:

\[
\sum_{[s]} \int \left[d\bar{\psi} d\psi \right] e^{-\bar{\psi}\left((D_0[s]) + A([b,t])\right)\psi}
\]

(17)

- We first sum up the diagonal portion.
The Diagonal Sum

- We note that for the diagonal part:

\[
\sum_{[s]} e^{-\bar{\psi}D_0([s])\psi} = \prod_q \sum_{s_q=1,-1} \left(1 + \frac{s_q}{2} \bar{\psi}_q \psi_q\right)
\]

(18)
The Diagonal Sum

- We note that for the diagonal part:

\[
\sum_{[s]} e^{-\bar{\psi}D_0([s])\psi} = \prod_q \sum_{s_q = 1, -1} \left(1 + \frac{s_q}{2} \bar{\psi}_q \psi_q \right)
\]

(18)

- Which is simply:

\[
\prod_q 2 = 4^k
\]

(19)
We note that for the diagonal part:

\[
\sum_{[s]} e^{-\bar{\psi} D_0([s]) \psi} = \prod_q \sum_{s_q=1,-1} \left(1 + \frac{s_q}{2} \bar{\psi}_q \psi_q \right)
\]

(18)

Which is simply:

\[
\prod_q 2 = 4^k
\]

(19)

Thus our partition function is now given by:

\[
Z = \sum_{[b]} \int [dt] (-V)^k \text{Det} (A([b, t]))
\]

(20)
Pictorial Proof

Alternatively, we can see how this works using the pictorial representation of determinants. For example, a 2×2 determinant can be represented as:
Pictorial Proof

Alternatively, we can see how this works using the pictorial representation of determinants. For example, a 2×2 determinant can be represented as:

\[
\begin{array}{cc}
1 & 2 \\
\end{array}
+
\begin{array}{cc}
1 & 2 \\
\end{array}
\]
Pictorial Proof

Alternatively, we can see how this works using the pictorial representation of determinants. For example, a 2×2 determinant can be represented as:

\[
\begin{array}{cc}
1 & 2 \\
2 & 1 \\
\end{array}
\]

In our sum of the $D_0 + A$ determinants, for every term of the form

\[
\begin{array}{c}
\ldots \\
\begin{array}{c}
1 \\
2 \\
\end{array} \\
\begin{array}{c}
i \\
\end{array} \\
\begin{array}{c}
s_t = 1 \\
\end{array} \\
\ldots \\
\end{array}
\]
Pictorial Proof

- Alternatively, we can see how this works using the pictorial representation of determinants. For example, a 2×2 determinant can be represented as:

\[
\begin{bmatrix}
1 & 2 \\
2 & 1 \\
\end{bmatrix}
\]

- In our sum of the $D_0 + A$ determinants, for every term of the form

\[
\begin{bmatrix}
\cdots & i \\
\cdots & s_i = 1 \\
\end{bmatrix}
\]

We have one with the form...
Pictorial Proof

- Alternatively, we can see how this works using the pictorial representation of determinants. For example, a 2×2 determinant can be represented as:

\[
\begin{pmatrix}
1 & 2 \\
2 & 1
\end{pmatrix}
\]

\[
= 1 \quad + \quad 1
\]

- In our sum of the $D_0 + A$ determinants, for every term of the form

\[
\begin{pmatrix}
\cdots & i \\
\cdot & \cdot \\
\cdot & \cdot
\end{pmatrix}
\]

\[
s_i = 1
\]

We have one with the form

\[
\begin{pmatrix}
\cdots & i \\
\cdot & \cdot \\
\cdot & \cdot
\end{pmatrix}
\]

\[
s_i = -1
\]
But are the determinants positive?

- $A([t])$ satisfies the relation $A^T = -\tilde{D}A\tilde{D}$, \((\tilde{D}_{xy} = \sigma_x \delta_{xy}) \) so:

\[
\left(A\tilde{D} \right)^T = -A\tilde{D} \quad (21)
\]
But are the determinants positive?

- \(A([t]) \) satisfies the relation \(A^T = -\tilde{D}A\tilde{D} \), \(\tilde{D}_{xy} = \sigma_x \delta_{xy} \) so:

\[
(A\tilde{D})^T = -A\tilde{D}
\]
(21)

- But \(\text{Det} \left(\tilde{D} \right) \) is \((-1)^k \), since there are \(k \) even sites and \(k \) odd sites. Thus:

\[
(-1)^k \text{Det} \left(A([b, t]) \right) = \text{Det} \left(A\tilde{D} \right) \geq 0
\]
(22)
But are the determinants positive?

- $A([t])$ satisfies the relation $A^T = -\tilde{D}A\tilde{D}$, $(\tilde{D}_{xy} = \sigma_x \delta_{xy})$ so:

$$\left(A\tilde{D} \right)^T = -A\tilde{D} \quad (21)$$

- But $\det(\tilde{D})$ is $(-1)^k$, since there are k even sites and k odd sites. Thus:

$$(-1)^k \det(A([b, t])) = \det\left(A\tilde{D} \right) \geq 0 \quad (22)$$

- And we have:

$$Z = \sum_{[b]} \int [dt] (V)^k \det\left(A([b, t]) \tilde{D} \right) \quad (23)$$
But are the determinants positive?

- $A([t])$ satisfies the relation $A^T = -\tilde{D}A\tilde{D}$, \((\tilde{D}_{xy} = \sigma_x \delta_{xy})\) so:

 \[
 (A\tilde{D})^T = -A\tilde{D}
 \]

 \[(21)\]

- But $\text{Det} (\tilde{D})$ is $(-1)^k$, since there are k even sites and k odd sites. Thus:

 \[
 (-1)^k \text{Det} (A([b, t])) = \text{Det} (A\tilde{D}) \geq 0
 \]

 \[(22)\]

- And we have:

 \[
 Z = \sum_{[b]} \int [dt] (V)^k \text{Det} (A([b, t]) \tilde{D})
 \]

 \[(23)\]

- We have solved the sign problem. (For repulsive model!)
Some Example Determinants

- 100 such determinants, randomly selected. All were confirmed to be positive.
Some Example Determinants

- 100 such determinants, randomly selected. All were confirmed to be positive.
- Note that the probability of positive weight configurations is exponentially smaller, because the -\log{det} value is larger.
Conclusions and Future Work

- Even with particle-hole symmetry, some models still have sign problems. However, we have solved a class of them.
Conclusions and Future Work

- Even with particle-hole symmetry, some models still have sign problems. However, we have solved a class of them.
- Thus we have new solutions to sign problems applicable to Hamiltonian lattice fermions. Can solve four-fermion models with staggered fermions.
Conclusions and Future Work

- Even with particle-hole symmetry, some models still have sign problems. However, we have solved a class of them.
- Thus we have new solutions to sign problems applicable to Hamiltonian lattice fermions. Can solve four-fermion models with staggered fermions.
- We’ve shown this works for staggered fermions, but other models can be solved with it, such as models with an odd number of flavors: SU(3) Gross-Neveu models.
Conclusions and Future Work

- Even with particle-hole symmetry, some models still have sign problems. However, we have solved a class of them.
- Thus we have new solutions to sign problems applicable to Hamiltonian lattice fermions. Can solve four-fermion models with staggered fermions.
- We’ve shown this works for staggered fermions, but other models can be solved with it, such as models with an odd number of flavors: SU(3) Gross-Neveu models.
- Or we can add a staggered mass term that puts particles on the even sublattice and holes on the odd sublattice.
Conclusions and Future Work

- Even with particle-hole symmetry, some models still have sign problems. However, we have solved a class of them.
- Thus we have new solutions to sign problems applicable to Hamiltonian lattice fermions. Can solve four-fermion models with staggered fermions.
- We’ve shown this works for staggered fermions, but other models can be solved with it, such as models with an odd number of flavors: SU(3) Gross-Neveu models.
- Or we can add a staggered mass term that puts particles on the even sublattice and holes on the odd sublattice.
- Possible to study new quantum critical behavior.