Histamine Selectively Enhances Human Immunoglobulin E (IgE) and IgG4 Production Induced by Anti-CD58 Monoclonal Antibody

By Hajime Kimata,* Masayuki Fujimoto,† Chihiro Ishiokai,§ and Akira Yoshida‖

From the *Department of Pediatrics, Unitika Central Hospital, Uji City, Kyoto 611; the
†Department of Pediatrics, National South Kyoto Hospital, Kyoto 610-01, the §Department of
Pediatrics, Shimada Municipal Hospital, Shimada, Shizuoka 427; and the ‖Department of Pediatrics,
Japanese Red Society Wakayama Medical Center, Wakayama 640, Japan

Summary

We studied the effects of histamine on human immunoglobulin (IgE) and IgG4 production. Histamine selectively enhanced IgE and IgG4 production in purified surface IgE and IgG4 negative (slgE-slgG4-) B cells from normal donors stimulated with interleukin (IL)-4 plus anti-CD58 or IL-13 plus anti-CD58 monoclonal antibody (mAb) without affecting production of IgG1, IgG2, IgG3, IgM, IgA1, or IgA2. In cultures with IL-4 plus anti-CD58 mAb, histamine-induced enhancement of IgE and IgG4 production was specifically blocked by thioperamide (H3 receptor antagonist), and was inhibited by anti-IL-10 antibody (Ab). In contrast, in cultures with IL-13 plus anti-CD58 mAb, histamine-induced enhancement was blocked by dimaprit (H1 receptor antagonist), and was inhibited by anti-IL-6 mAb. Histamine also enhanced IgE and IgG4 production by in vivo-generated slgE + and slgG4 + B cells, respectively, from atopic patients; enhancement was blocked by dimaprit and thioperamide, and was inhibited by anti-IL-6 mAb and anti-IL-10 Ab. In slgE-slgG4− B cells, IL-4 plus anti-CD58 mAb induced IL-10 production and IL-10 receptor expression, whereas IL-13 plus anti-CD58 mAb induced IL-6 production and IL-6 receptor expression. Histamine increased IL-10 and IL-6 production without affecting IL-10 and IL-6 receptor expression, in cultures with IL-4 plus anti-CD58 mAb and with IL-13 plus anti-CD58 mAb, respectively, which was blocked by thioperamide and dimaprit, respectively. In contrast, slgE + and slgG4 + B cells spontaneously produced both IL-6 and IL-10 and constitutively expressed IL-6 and IL-10 receptors, and histamine increased IL-6 and IL-10 production without affecting IL-6 or IL-10 receptor expression, which was blocked by thioperamide and dimaprit. These results indicate that histamine enhanced IgE and IgG4 production by increasing endogenous IL-6 and IL-10 production via H1 and H3 receptors, respectively.

Many cytokines and factors are involved in human IgE and IgG4 production. IL-4 induces IgE and IgG4 production in purified B cells stimulated with anti-CD40 mAb, or hydrocortisone by isotype switching (1-5). IL-6, IL-10, and TNF-α enhance IL-4-induced IgE and IgG4 production in such cultures, whereas IL-8, and TGF-β inhibited IgE and IgG4 production (3, 6-9). In contrast, IL-5, IL-9, IL-12, IFN-α, and IFN-γ, which either enhance or inhibit IgE and IgG4 production induced by IL-4 in T cell-dependent culture, have no effect on IgE and IgG4 production in purified B cells (9-12). These results indicate that there are various IgE- and IgG4-modulatory factors in IL-4-stimulated cultures. Recently, in addition to IL-4, IL-13 has been shown to induce IgE and IgG4 production in purified B cells stimulated with anti-CD40 mAb (13, 14). We have reported that IL-13 induces IgE and IgG4 production in purified B cells stimulated with hydrocortisone (9, 15). Moreover, anti-CD58 mAb was also found to induce IgE production in IL-4-stimulated cultures (16). However, the effects of various cytokines on IgE and IgG4 production induced by IL-4 plus anti-CD58 mAb or by IL-13 plus anti-CD58 mAb have not been studied in depth.

Histamine is an autocoid released from mast cells and basophils by IgE- and IgG4-dependent stimulation (17, 18). It has been reported that histamine modulates production of cytokines by various cells, and that it enhances production of IL-6 and IL-8 by B and endothelial cells, respectively, whereas it inhibits TNF-α production by monocytes (19-21). In addition, histamine inhibits human IgG and IgM production in purified B cells stimulated with Sta-
Histamine Enhances Human IgE and IgG4 Production

In Vivo Effect of Antihistamine on IgE and IgG4 Production in Atopic Patients.

Four atopic patients (patients with atopic dermatitis, serum IgE level 2,344–5127 IU/ml, age 15–45–yr old) were treated with oral antihistamine (clemastine, 6 mg/d) and nonsteroidal anti-inflammatory ointment (bufexamac ointment). Alternatively, three atopic patients (patients with atopic dermatitis, serum IgE level 1,168–3685 IU/ml, age 16–32–yr old) were treated with bufexamac ointment alone. Peripheral blood was drawn before and after 2 wk of each treatment, and large B cells were purified as above. They were cultured (2 × 10^5/0.2 ml/well) with medium alone for 14 d, and the amount of IgE and IgG4 in the supernatants were determined by ELISA (9, 15).

Results and Discussion

Initial experiments have shown that histamine, either alone or with IL-4, IL-13, or anti-CD58 mAb, did not induce production of IgE (<0.2 ng/ml, n = 10) or IgG4 (<0.3 ng/ml, n = 10) by slgE slgG4 + B cells. However, as shown in Fig. 1 A, histamine enhanced IgE and IgG4 production induced by IL-4 plus anti-CD58 mAb in a dose-dependent fashion. In contrast, histamine did not affect production of IgM, IgG1, or IgA1, IgG3, or IgA2 (Fig. 1 B). Identical results were observed in cultures stimulated with IL-13 plus anti-CD58 mAb. Histamine selectively enhanced production of IgE and IgG4 in a dose-dependent fashion (Fig. 1 D), without affecting production of IgM, IgG1, IgG2, IgG3, IgA1, or IgA2 (Fig. 1, E and F). In 10 experiments, histamine (10^{-5} M) enhanced production of IgE (264 ± 87% enhancement) and IgG4 (245 ± 92% enhancement) induced by IL-4 plus anti-CD58 mAb, while it enhanced production of IgE (378 ± 95% enhancement) and IgG4 (321 ± 102% enhancement) induced by IL-13 plus anti-CD58 mAb. In contrast, histamine did not enhance (<20% enhancement) production of IgM, IgG1, IgG2, IgG3, IgA1, or IgA2 in these cultures (n = 10).

It has been reported that histamine modulates Ig production or cytokine synthesis through one of the H1, H2, or H3 receptors, or through more than one type of receptor (19–24). To study which receptors were involved in enhancement of IgE and IgG4 production, B cells were stimulated with histamine, and H1, H2, and H3 receptor antagonist
were added. As shown in Fig. 2 A, left, in cultures stimulated with IL-4 plus anti-CD58 mAb, histamine-induced IgE and IgG4 production was not affected by diphenhydramine (DIP, H1 receptor antagonist) or cimetidine (CIM, H2 receptor antagonist), whereas enhancement was completely blocked by thioperamide (THI, H1 receptor antagonist).

We have previously reported that, in purified B cells, IL-4 plus hydrocortisone or IL-13 plus hydrocortisone induced IgE and IgG4 production, and this production was enhanced by IL-6 and IL-10. In contrast, other cytokines, IL-1β, IL-2, IL-3, IL-5, IL-7, IL-9, IL-11, or IL-12 did not enhance IgE or IgG4 production (9). In addition, nerve growth factor or growth hormone, which enhanced IgE and/or IgG4 production (1, 13), were without effect (data not shown). It is thus possible that histamine-induced enhancement was due to production of IL-4, IL-6, IL-10, or IL-13. As shown in Fig. 2 A, left, in cultures stimulated with IL-4 plus anti-CD58 mAb, IgE and IgG4 production was completely abrogated by anti-IL-4 mAb. In addition, histamine-induced enhancement was inhibited by anti-IL-10 Ab, whereas neither anti-IL-6 mAb nor anti-IL-13 Ab did so. In contrast, in cultures stimulated with IL-13 plus anti-CD58 mAb, histamine-induced enhancement of IgE and IgG4 production was blocked by diphenhydramine, but not by cimetidine or thioperamide. Moreover, anti-IL-6 mAb, but not anti-IL-4 mAb or anti-IL-10 Ab, inhibited histamine-induced enhancement, and anti-IL-13 Ab abrogated IgE and IgG4 production (Fig. 2 A, right).

We then studied the specificity of the effects of IL-6 and IL-10. As shown in Fig. 2 B, left, in cultures stimulated with IL-4 plus anti-CD58 mAb, addition of IL-10, but not IL-6, enhanced IgE and IgG4 production. Histamine-induced enhancement was blocked by anti-IL-10 Ab, which was reversed by high concentrations of IL-10, but not by IL-6. In contrast, in cultures stimulated with IL-13 plus anti-CD58 mAb, IL-6 enhanced IgE and IgG4 production. Anti-IL-6 blocked histamine-induced enhancement, which was reversed by IL-6, but not by IL-10. Collectively, these results indicated that in cultures stimulated with IL-4 plus
anti-CD58 mAb, histamine enhanced IgE and IgG4 production through H₃ receptors and by involvement of IL-10, but not of IL-6. This is in accordance with the previous report by others (16) that IL-6 did not affect IgE production induced by IL-4 plus anti-CD58 mAb. In contrast, in cultures stimulated with IL-13 plus anti-CD58 mAb, histamine enhanced IgE and IgG4 production through H₁ receptors and by involvement of IL-6.

It is possible that histamine enhanced IgE and IgG₄ production by affecting isotype switching of slgE⁺ and slgG4⁺ B cells, respectively, or alternatively, by directly affecting slgE⁺ and slgG4⁺ B cells obtained from atopic patients spontaneously produced IgE and IgG₄, respectively (1, 14, 15). As shown in Fig. 3A, Expt. 1, histamine enhanced IgE production by slgE⁺ B cells, which was blocked by diphenhydramine and thioperamide, whereas cimetidine and IFN-γ failed to do so. Other inhibitory cytokines, IL-12, IFN-α, TGF-β, and Abs to stimulatory cytokines, including anti-IgE, antinerve growth factor, and anti-IL-9 Abs were also without effect (data not shown). However, histamine failed to induce IgE production by slgE⁻ B cells (Fig. 3A, Expt. 1). On the other hand, spontaneous IgE production by slgE⁺ B cells was not inhibited by anti-IL-4 mAb or anti-IL-13 Ab, whereas it was inhibited by anti-IL-6 mAb and anti-IL-10 Ab. Moreover, anti-IL-6 mAb and anti-IL-10 Ab each inhibited histamine-induced enhancement of IgE production (Fig. 3A, Expt. 2). Furthermore, simultaneous addition of anti-IL-6 mAb and anti-IL-10 Ab almost completely inhibited spontaneous and histamine-induced IgE production by slgE⁺ B cells. IL-6 or IL-10 each partially reversed inhibition by anti-IL-6 mAb plus anti-IL-10 Ab. However, addition of both IL-6 and IL-10 completely reversed inhibition of IgE production. In contrast, histamine with these factors failed to induce IgE production by slgE⁺ B cells (Fig. 3A, Expt. 3). Moreover, histamine with IL-4, IL-13, or anti-CD58 mAb did not induce IgE production by slgE⁻ B cells (<0.2 ng/ml) as observed by slgE⁻ B cells from nonatopic donors.

As shown in Fig. 3B, Expts. 1–3, identical results were observed for IgG₄ production by slgG4⁺ and slgG4⁻ B cells. Spontaneous IgG₄ production by slgG4⁺ B cells was enhanced by histamine, IL-6, and IL-10, whereas it was inhibited by anti-IL-6 mAb or anti-IL-10 Ab, but not by anti-IL-4 mAb or anti-IL-13 Ab. Histamine-induced enhancement was blocked by diphenhydramine and thioperamide, but not by dimaprit, and was inhibited by anti-IL-6 mAb and anti-IL-10 Ab. Addition of both IL-6 and IL-10 reversed inhibition by anti-IL-6 mAb plus anti-IL-10 Ab, whereas histamine with these factors failed to induce IgG₄ production by slgG4⁻ B cells (Fig. 3A, Expt. 3). Histamine with IL-4, IL-13, or with anti-CD58 mAb also failed to induce IgG₄ production by slgG4⁻ B cells (<0.3 ng/ml). Taken together, these results indicated that histamine enhanced IgE and IgG₄ production by directly affecting slgE⁺ and slgG4⁺ B cells, respectively, via both H₁ and H₃ receptors and by involvement of IL-6 and IL-10.

It is possible that histamine-induced enhancement of IgE and IgG₄ production was due to the increase in IL-6 and/
or IL-10 production, or alternatively, due to the enhanced expression of IL-6 and/or IL-10 receptors, in slgE⁺ and slgG4⁺ B cells, respectively. To study this possibility directly, we stimulated slgE⁺slgG4⁻ B cells from nonatopic donors with IL-4 plus anti-CD58 mAb, or with IL-13 plus anti-CD58 mAb. Alternatively, slgE⁺ and slgG4⁺ B cells from atopic patients were cultured with medium. These cells were incubated with histamine in the presence or absence of histamine receptor antagonists or agonists, and production of IL-6 and IL-10 was determined in slgE⁺ B cells. Medium alone did not induce production of IL-6 or IL-10 (<0.01 ng/ml), or expression of IL-6 or IL-10 receptors. However, as shown in Fig. 4 A, IL-4 plus anti-CD58 mAb induced IL-10 production and IL-10 receptor expression, whereas it failed to induce IL-6 production or IL-6 receptor expression. Histamine enhanced IL-10 production without affecting IL-10 receptor expression, whereas histamine failed to induce IL-6 production or IL-6 receptor expression. Histamine-induced enhancement of IL-10 production was blocked by thioperamide, but not by diphenhydramine. Moreover, whereas 2-methylhistamine (MET, H₁ receptor agonist) or dimaprit (DIM, H₂ receptor agonist) failed to enhance IL-10 production, (R)-α-methylhistamine (RAM, H₃ receptor agonist) did enhance production. On the other hand, IL-13 plus anti-CD58 mAb induced IL-6 production and IL-6 receptor expression, while having no effect on IL-10 production or IL-10 receptor expression. Histamine enhanced IL-6 production without affecting IL-6 receptor expression, and enhancement was blocked by diphenhydramine, but not by thioperamide. In addition, (R)-α-methylhistamine enhanced IL-6 production, whereas 2-methylhistamine or dimaprit failed to do so (Fig. 4 B). In contrast, as shown in Fig. 4 C and D, slgE⁺ and slgG4⁺ B cells from atopic patients spontaneously produced both IL-6 and IL-10, and expressed IL-6 and IL-10 receptor. Histamine enhanced production of IL-6 and IL-10 without affecting receptor expression, which was specifically blocked by diphenhydramine and thioperamide, respectively. Moreover, 2-methylhistamine and (R)-α-methylhistamine, respectively, enhanced production of IL-6 and IL-10 without affecting IL-6 and IL-10 receptor expression. Taken together, enhancement of IgE and IgG4 production by histamine was due to the increase in production of IL-6 and/or IL-10, but not due to the increased expression of IL-6 and IL-10 receptors.

In these studies, we have demonstrated that histamine selectively enhanced IgE and IgG4 production. However, the mechanisms of the histamine-induced enhancement differed depending on the culture systems used. In cultures of slgE⁺slgG4⁻ B cells stimulated with IL-4 plus anti-CD58 mAb, histamine-induced enhancement was due to the increased production of IL-10 through H₃ receptors. This is not surprising. It has been reported that, in addition to functional presynaptic autoreceptors in the brain cortex, H₃ receptors were involved in IL-8 secretion by endothelial cells, contractions of the ileum, and corticosterone secretion by the adrenal cortex (20, 25, 26). To the best of our knowledge, this is the first report that H₃ receptors were involved in IL-10 production, resulting in enhancement of IgE and IgG4 production. In accordance with this, as shown in Fig. 5, although H₃ receptors were not expressed on freshly separated slgE⁺slgG4⁻ B cells (<3 ΔMFI), they were induced by IL-4 plus anti-CD58 mAb, but not by IL-13 plus anti-CD58 mAb (<3 ΔMFI). In contrast, H₃ receptors were constitutively expressed on in vivo-generated slgE⁺ and slgG4⁺ B cells.

On the other hand, in cultures stimulated with IL-13 plus anti-CD58 mAb, histamine enhanced IgE and IgG4 production through increased production of IL-6 via H₁

B cells	Cytokine production (ng/ml)	Cytokine binding (ΔMFI)											
A													
slgE⁺ slgG4⁻ B	Medium	0	0.5	1	IL-6	0	0.3	0.6	0	IL-10	30	60	90
+ IL-4/Anti-CD58													
	HIS												
	HIS + DIP												
	HIS + THI												
	MET												
	DIM												
	RAM												
B													
slgE⁺ slgG4⁻ B	Medium	0	0.5	1	IL-6	0	0.3	0.6	0	IL-10	30	60	90
+ IL-13/Anti-CD58													
	HIS												
	HIS + DIP												
	HIS + THI												
	MET												
	DIM												
	RAM												
C													
slgE⁺ B + Medium	Medium	0	0.5	1	IL-6	0	0.3	0.6	0	IL-10	30	60	90
	HIS												
	HIS + DIP												
	HIS + THI												
	MET												
	DIM												
	RAM												
D													
slgG4⁺ B + Medium	Medium	0	0.5	1	IL-6	0	0.3	0.6	0	IL-10	30	60	90
	HIS												
	HIS + DIP												
	HIS + THI												
	MET												
	DIM												
	RAM												

Figure 4. Effects of histamine or histamine receptor agonists on the production and the binding of IL-6 and IL-10. Purified slgE⁺slgG4⁻ B cells from nonatopic donors were cultured with IL-4 plus anti-CD58 mAb (A), or with IL-13 plus anti-CD58 mAb (B), whereas slgE⁺ (C) and slgG4⁺ (D) B cells from atopic patients were cultured with medium or indicated factors. Histamine was used at 10⁻⁸ M, other factors at 10⁻⁹ M. After 2 d of culture, the production and the binding of IL-6 and IL-10 were determined. Values are means ± 1 SD of triplicate cultures.
Histamine receptor expression on various cells. Purified slgE-slgG4 B cells from nonatopic donors were cultured with medium (A), IL-4 plus anti-CD58 mAb (A), or with IL-13 plus anti-CD58 mAb (B), whereas slgE+ (C) and slgG4+ (D) B cells from atopic patients were cultured with medium. After 2 d of culture, the binding of (R)-α-methylhistamine (H₁ receptor) and diphenhydramine (H₂ receptor) was determined. Values are the means ± 1 SD of four experiments.

The fact that histamine enhanced IgE and IgG4 production stimulated with IL-4 or IL-13 is important in relation to the treatment of allergic diseases. It has been reported that IL-4 increased histamine release from basophils (30). In addition, we have found that IL-13 (500 ng/ml) also increases histamine release from human basophils (21 ± 6%, n = 4). Conversely, IgE and IgG4 were also involved in histamine release and IL-4 production (18, 31). Therefore, it is tempting to speculate that, in atopic patients, IL-4, IL-13 and histamine may produce a vicious circle. Treatment with antihistamines may decrease IgE and IgG4 production, resulting in improvement of allergy. Therefore, we studied the effect of oral antihistamine on IgE and IgG4 production in atopic patients. As shown in Fig. 6, spontaneous IgE production by B cells from atopic patients treated with oral antihistamine (clemastine) and nonsteroidal anti-inflammatory ointment (bufexamac) for 14 d, was decreased after treatment. Similarly, spontaneous IgG4 production by B cells from atopic patients decreased after treatment with clemastine (Fig. 6 A). In contrast, IgE and IgG4 production by B cells from atopic patients treated

receptors. This is in accordance with the report that (a) IL-13 increased IL-6 production by human keratinocytes, and (b) histamine enhanced IgM production through increased production of IL-6 via H₁ receptors in B cells (24, 27). Moreover, as shown in Fig. 5, H₁ receptors were not expressed on slgE-slgG4 B cells (<3 ΔMFI), however, they were induced by IL-13 plus anti-CD58 mAb, but not by IL-4 plus anti-CD58 mAb (<3 ΔMFI). In contrast, H₁ receptors were expressed constitutively on in vivo-generated slgE+ and slgG4+ B cells.

Taken together, these results suggested that in vivo IgE and IgG4 production was regulated by both IL-6 and IL-10, whereas in vitro IgE and IgG4 production induced by IL-13 or IL-4 plus anti-CD58 mAb was regulated by IL-6 or IL-10 independently. Although we and others have reported that IL-6 and IL-10 enhance in vitro IgE and IgG4 production in various culture systems (3, 5, 6, 9), the direct evidence of the effect of IL-6 and IL-10 on in vivo IgE and IgG4 production in humans has not been previously reported. However, IL-6 is released locally in antigen-challenged sites in atopic patients (28). IL-10 is overexpressed in the skin of patients with atopic dermatitis (29). It is possible that in atopic patients, production of IL-6 and IL-10 is increased at the local site, which may enhance IgE and IgG4 production there, thus resulting in aggravating IgE- and IgG4-mediated allergic reactions (18). This possibility is currently under investigation.
with bufexamac ointment alone, as controls, was not decreased after treatment. These results indicate that histamine may affect IgE and IgG4 production in vivo. Studies on the detailed mechanisms as well as molecular analysis for the effect of histamine are currently in progress. Finally, histamine seems to be an excellent reagent for the study of IgE and IgG4 production.

We thank Sumitomo Pharmaceuticals for their continuing encouragement of our research. We also thank the Laboratory Department of Unitika Central Hospital for its cooperation of the assay system.

This work was supported by a grant from the Ministry of Health and Welfare and a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture, Japan.

Address correspondence to Dr. H. Kimata, Department of Pediatrics, Unitika Central Hospital, 24-1, Umonji, Uji, Uji City, Kyoto Prefecture, 611, Japan.

Received for publication 4 March 1996 and in revised form 22 April 1996.

References

1. Kimata, H., and H. Mikawa. 1993. Nedocromil sodium selectively inhibits IgE and IgG4 production in human B cells stimulated with IL-4. J. Immunol. 151:6723–6734.
2. Jabara, H.H., A. Yoshida, C. Ishioka, and D.H. Vercelli. 1990. CD40 and IgE: synergism between anti-CD40 monoclonal antibody and interleukin 4 in the induction of IgE synthesis by highly purified human B cells. J. Exp. Med. 172:1861–1864.
3. Zhang, K., E.A., Clark, and A. Saxon. 1991. CD40 stimulation provides a potent growth and differentiation factor for activated human B lymphocytes. Proc. Natl. Acad. Sci. USA. 89:1890–1893.
4. Gascan, H., J.-F., Gauchat, G. Aversa, P. van Vlasselaere, and J. de Vries. 1991. Anti-CD 40 monoclonal antibodies or CD4+ T cell clones and IL-4 induce IgG4 and IgE switching in purified human B cells via different signaling pathways. J. Immunol. 147:8–13.
5. Jabara, H.H., D.J. Ahern, D. Vercelli, and R.F. Geha. 1991. Hydrocortisone and IL-4 induce IgE isotype switching in human B cells. J. Immunol. 147:1557–1560.
6. Rouset, F., E. Garcia, C. Curel, C. Peronne, N. Vezzio, D.-H., Hsu, R. Kastelein, K.W. Moore, and J. Banchereau. 1992. Interleukin 10 is a potent growth and differentiation factor for activated human B lymphocytes. Proc. Natl. Acad. Sci. USA. 89:1890–1893.
7. Gauchat, J.-F., G. Aversa, H., Gascan, and J. de Vries. 1992. Modulation of IL-4 induced germline e RNA synthesis in human B cells by tumor necrosis factor-α, anti-CD40 monoclonal antibodies or transforming growth factor-β correlates with levels of IgE production. Int. Immunol. 4:397–406.
8. Kimata, H., A. Yoshida, C. Ishioka, I. Lindley, and H. Mikawa. 1992. Interleukin 8 (IL-8) selectively inhibits immunoglobulin E production induced by IL-4 in human B cells. J. Exp. Med. 176:1227–1231.
9. Kimata, H. 1995. Differential effects of gangliosides on human IgE and IgG4 production. Eur. J. Immunol. 25:302–305.
10. Kimura, M., M. Gately, U. Gubler, R. Chizzonite, C. Fargus, and G. Delespesse. 1992. Recombinant interleukin-12 suppresses the synthesis of immunoglobulin E by interleukin-4 stimulated human lymphocytes. J. Clin. Invest. 90:262–266.
11. Kimata, H., A. Yoshida, C. Ishioka, and H. Mikawa. 1992. Differential effect of vasoactive intestinal peptide, somatostatin, and substance P on human IgE and IgG subclass production. Cell. Immunol. 144:289–294.
12. Dugas, B., J.C. Renaud, J. Pène, J.Y. Bonnefoy, P. Braquet, J.V. Snick, and J.M. Mencia-Heurta. 1993. Interleukin-9 potentiates the interleukin-4 induced immunoglobulin (IgG, IgM and IgE) production by normal human B cells. Eur. J. Immunol. 23:1687–1692.
13. Aversa, G., J. Pannonen, B.G. Cocks, R. de Waal Malefyt, F. Vega, Jr., S.M. Zurawski, G. Zurawski, and J.E. de Vries. 1993. An interleukin 4 (IL-4) mutant protein inhibits both IL-4 or IL-13-induced human immunoglobulin G4 (IgG4) and IgE synthesis and B cell proliferation: support for a common component shared by IL-4 and IL-13 receptors. J. Exp. Med. 178:2213–2218.
14. Kimata, H., and M. Fujimoto. 1994. Growth hormone and insulin-like growth factor I induce immunoglobulin (IgG4 and IgE) production by human B cells. J. Exp. Med. 180:727–732.
15. Kimata, H., I. Lindley, and K. Furusyo. 1995. Effect of hydrocortisone on spontaneous IgE and IgG4 production in atopic patients. J. Immunol. 154:3557–3566.
16. Diaz-Sanchez, D., S. Chegini, K. Chang, and A. Saxon. 1994. CD58(LFA-3) stimulation provides a signal for human isotype switching and IgE production distinct from CD40. J. Immunol. 153:10–19.
17. Schleimer, R.P., C.P. Ders, B. Friedman, S. Gillis, M. Plaut, L.M. Lichtenstein, and D.W. MacGlashan, Jr. 1989. Regulation of human basophil mediator release by cytokines. I. Interaction with antiinflammatory steroids. J. Immunol. 143:1310–1317.
18. Beausoir, F., C. Hieblot, and J. Benveniste. 1989. Effect of sodium cromoglycate and nedocromil sodium on anti-IgE–induced and anti-IgG4–induced basophil degranulation. Drugs. 37(Suppl. 1):4–8.
19. Falus, A., and K. Meréy. 1992. Histamine: an early messenger in inflammatory and immune reactions. Immunol. Today. 13:154–156.
20. Jeannin, P., Y. Delneste, P. Gosset, S. Molet, P. Lassalle, O. Hamid, A. Tsicopoulos, and A.B. Tonnel. 1994. Histamine induces interleukin-8 secretion by endothelial cells. Blood. 84:2229–2233.
21. Vannier, E., L.C. Müller, and C.A. Dinarello. 1991. Hista-
Histamine suppresses gene expression and synthesis of tumor necrosis factor α via histamine H₂ receptors. *J. Exp. Med.* 174: 281–284.

22. Fujimoto, M., and H. Kimata. 1994. Histamine inhibits immunoglobulin production via histamine H₂ receptors without affecting cell growth in human B cells. *Clin. Immunol. Immunopathol.* 73:96–102.

23. Lima, M., and R.E. Rocklin. 1981. Histamine modulates in vitro IgG production by pokeweed mitogen-stimulated human mononuclear cells. *Cell. Immunol.* 64:324–336.

24. Falus, A. 1993. Interleukin-6 biosynthesis is increased by histamine in human B-cell and glioblastoma cell lines. *Immunology.* 78:193–196.

25. Menkveld, G.J., and T. Hendrik. 1990. Inhibition of electrically evoked contractions of guinea-pig ileum preparations mediated by the histamine H₃ receptor. *Eur. J. Pharmacol.* 186:343–347.

26. LaBellea, F.S., G. Queen, G. Glavin, G. Durant, D. Stien, and L.J. Brandes. 1992. H₃ receptor antagonist, thioperamide, inhibits adrenal steroidogenesis and histamine binding to adrenocortical microsomes and binds to cytochrome P450. *Br. J. Pharmacol.* 107:161–164.

27. Derocq, J.-M., M. Segui, C. Point-Chazel, A. Minty, D. Caput, P. Ferrara, and P. Casellas. 1994. Interleukin-13 stimulates interleukin-6 production by human keratinocytes. Similarity with interleukin-4. *FEBS (Fed. Eur. Biochem. Soc.) Lett.* 343:32–36.

28. Lee, C.E., M.E. Neuland, H.G. Teafold, B.F. Villacis, P.S. Dixon, S. Valtier, C.-H., Yeh., D.C. Fournier, and E.V. Charlesworth. 1992. Interleukin-6 is released in the cutaneous response to allergen challenge in atopic individuals. *J. Allergy Clin. Immunol.* 89:1010–1020.

29. Ohmen, J.D., J.M. Hanifin, B.J. Nickoloff, T.H. Rea, R. Wzykowski, J. Kim, D. Jullien, T. McHugh, A. Nasif, S.C. Chan, and R.L. Modlin. 1995. Overexpression of IL-10 in atopic dermatitis. Contrasting cytokine pattern with delayed-type hypersensitivity reactions. *J. Immunol.* 154:1956–1963.

30. White, M.V., Y. Igarashi, B.E. Emery, M.T. Lotze, and M.A. Kaliner. 1992. Effects of in vivo administration of interleukin-2 (IL-2) and IL-4, alone and in combination, on ex vivo human basophil histamine release. *Blood.* 79:1491–1495.

31. Brunner, T., C.H. Heusser, and C.A. Dahinden. 1993. Human peripheral blood basophils primed by interleukin 3 (IL-3) produce IL-4 in response to immunoglobulin E receptor stimulation. *J. Exp. Med.* 177:605–612.