Comparison of two nutritional assessment methods in gastroenterology patients

Branka F Filipović, Milan Gajić, Nikola Milinić, Branislav Milovanović, Branislav R Filipović, Mirjana Cvetković, Nela Šibalić

Branka F Filipović, Nikola Milinić, Mirjana Cvetković, Department of Gastroenterohepatology, Clinical and Hospital Center “Bezanijska Kosa”, Belgrade 11080, Serbia
Milan Gajić, School of Medicine, Institute for Medical Statistics, Belgrade 11000, Serbia
Branislav Milovanović, Faculty of Cardiology School of Medicine, Belgrade 11000, Serbia and Laboratory for Neurocardiology, Clinical and Hospital Center “Bezanijska Kosa”, Belgrade 11080, Serbia
Branislav R Filipović, Institute of Anatomy “Niko Miljanic”, School of Medicine, Belgrade 11000, Serbia
Nela Šibalić, Biochemical Laboratory, Clinical and Hospital Center “Bezanijska Kosa”, Belgrade 11080, Serbia
Author contributions: Filipović BF was the main investigator and study designer; Milinić N, and Cvetković M performed the patient investigation and nutritional assessment; Gajić M and Filipović BR performed the statistical analysis and table design; Milovanović B performed the bioelectrical impedance analysis; Šibalić N analysed and interpreted the biochemical results.

Supported by (in part) The Grant of Ministry of Science, Technology and Development of the Republic of Serbia, No. 156031
Correspondence to: Branka F Filipović, MD, MSc, Department of Gastroenterohepatology, Clinical and Hospital Center “Bezanijska Kosa”, Autoput s/n, Belgrade 11080, Serbia. branka.filipovic3@gmail.com
Telephone: +381-11-3070750 Fax: +381-11-3010751
Received: November 10, 2009 Revised: December 8, 2009
Accepted: December 15, 2009
Published online: April 28, 2010

Abstract

AIM: To investigate and compare efficacy and differences in the nutritional status evaluation of gastroenterology patients by application of two methods: subjective global assessment (SGA) and nutritional risk index (NRI).

METHODS: The investigation was performed on 299 hospitalized patients, aged 18-84 years (average life span 55.57 ± 12.84), with different gastrointestinal pathology, admitted to the Department of Gastroenterohepatology, Clinical and Hospital Center “Bezanijska Kosa” during a period of 180 d. All the patients, after being informed in detail about the study and signing a written consent, underwent nutritional status analysis, which included two different nutritional indices: SGA and NRI, anthropometric parameters, bioelectrical impedance analysis, and biochemical markers, within 24 h of admission.

RESULTS: In our sample of 299 hospitalized patients, global malnutrition prevalence upon admission varied from 45.7% as assessed by the SGA to 63.9% by NRI. Two applied methods required different parameters for an adequate approach: glucose level (5.68 ± 1.06 mmol/L vs 4.83 ± 1.14 mmol/L, F = 10.63, P = 0.001); body mass index (26.03 ± 4.53 kg/m² vs 18.17 ± 1.52 kg/m², F = 58.36, P < 0.001); total body water (42.62 ± 7.98 kg vs 36.22 ± 9.32 kg, F = 7.95, P = 0.005); basal metabolic rate (1625.14 ± 304.91 kcal vs 1344.62 ± 219.08 kcal, F = 9.06, P = 0.003) were very important for SGA, and lymphocyte count was relevant for NRI: 25.56% ± 8.94% vs 21.77% ± 10.08%, F = 11.55, P = 0.001. The number of malnourished patients rose with the length of hospital stay according to both nutritional indices. The discriminative function analysis (DFA) delineated the following parameters as important for prediction of nutritional status according to SGA assessment: concentration of albumins, level of proteins, SGA score and body weight. The DFA extracted MAMC, glucose level and NRI scores were variables of importance for the prediction of whether admitted patients would be classified as well or malnourished.

CONCLUSION: SGA showed higher sensitivity to predictor factors. Assessment of nutritional status requires a multidimensional approach, which includes different clinical indices and various nutritional parameters.

© 2010 Baishideng. All rights reserved.
Key words: Nutritional status; Subjective global assessment; Nutritional risk index; Comparison

Peer reviewers: Dr. Paul Sharp, BSc (Hons), PhD, Nutritional Sciences Division, King’s College London, Franklin Wilkins Building, 150 Stamford Street, London, SE1 9NH, United Kingdom; Dr. Devinder Kumar Dhawan, Professor, Department of Biophysics & Coordinator, Nuclear Medicine, Panjab University, Chandigarh 160014, India

Filipović BF, Gajić M, Milinić N, Milovanović B, Filipović BR, Cvjetković M, Šibalić N. Comparison of two nutritional assessment methods in gastroenterology patients. World J Gastroenterol 2010; 16(16): 1999-2004 Available from: URL: http://www.wjgnet.com/1007-9327/full/v16/i16/1999.htm DOI: http://dx.doi.org/10.3748/wjg.v16.i16.1999

INTRODUCTION

Many methods of assessment of nutritional status have been developed to identify malnourished patients or the risk for malnutrition. Most of them, such as subjective global assessment (SGA), Malnutrition Universal Screening Tool, Mini Nutritional Assessment, Nutritional Risk screening-NRS 2002, dealt with multiple components: medical history, dietary intake, amount of weight loss, biochemical variables, and anthropometric measurements. SGA is a clinical assessment index which appeared to be the most widely used and applied in a variety of patient populations, especially in surgical, oncology patients and subjects with chronic renal disease. The nutritional risk index (NRI), developed by Veterans Affairs Total Potential Nutrition Cooperative Study Group, is an objective screening nutritional tool and has predictive potential to identify patients who become nutritionally depleted during hospitalization or are at increased risk for disease complications. There is divided opinion about “gold standard” techniques for determining a patient’s nutritional status: some authors are of the opinion that SGA is more sensitive to any biochemical markers or anthropometric measurements alone and is the best predictor for hospital-related outcome than other nutritional indices, while others consider that NRI must reflect real risk for malnutrition independent of severity of disease.

In the present study we attempted to investigate differences in baseline nutritional parameters in patients with different digestive diseases and disorders and intended to estimate degrees of concordance between two applied nutritional assessment methods, SGA and NRI. Also, we aimed to evaluate parameters which significantly influence the nutritional state.

MATERIALS AND METHODS

The investigation was performed on 299 hospitalized patients, aged 18-84 years (average life span 55.57 ± 12.84), with different gastrointestinal pathologies, admitted to the Department of Gastroenterohepatology, Clinical and Hospital Center “Bezanijska Kosa” during a period of 180 d. Patients with the following diagnosis: gastritis/oesophagitis, inflammatory bowel disease, peptic ulcer disease, functional bowel disorders, chronic pancreatitis, decompensate chronic liver disease, compensate chronic liver disease, autoimmune hepatitis, were classified as the benign group, while individuals with gastric, colorectal and pancreatic cancer were classified as the malignant group. The patients included in the study met the following criteria: subjects older than 18 years, metabolic and clinical stability, stable state of consciousness, absence of any kind of morphological or abnormalities of extremities. Exclusion criteria for all subjects were edema, major cardio-respiratory resuscitation, severe hyperhydration in patients with liver cirrhosis, estimated by clinical and ultrasound examination.

Nutritional measurements

All the patients, after being informed in detail about the study and signing a written consent, underwent nutritional status analysis upon admission, using 2 different nutritional indices: SGA and NRI, anthropometric parameters, bioelectrical impedance analysis (BLA), and biochemical markers. All measurements were performed within 24 h of admission. The SGA (1,4-6) is a clinical nutritional index, which involves a standardized questionnaire consisting of dietary intake change, recent body weight changes, gastrointestinal symptoms, functional capacity, and physical signs of malnutrition (loss of subcutaneous fat or muscle mass, oedema, ascites). The standardized questionnaire was performed by a previously trained investigator, gastroenterologist (Filipović BF). Patients were classified into three different groups: well-nourished (SGA-A), moderately malnourished (SGA-B) and severely malnourished (SGA-C). The NRI (8) was computed by equation, which included concentration of albumin and the ratio of actual to usual weight: NRI = (1.519 × serum albumin (g/L) + 0.417 × (present weight/usual weight × 100)). NRI score higher than 100 indicates that the patient is at no risk, a score of 97.5 to 100 indicates low risk, a score of 83.5 to 97.5 indicates medium risk, and a score lower than 83.5 indicates high risk. In order to perform appropriate statistical analysis we merged all malnourished individuals into one group. The usual weight was defined as a stable weight over the last six months before admission. The standard laboratory tests were analyzed: complete blood count, concentration of albumin, total protein, cholesterol, C-reactive protein (CRP) and glucose level. The lymphocyte count was calculated from the total blood cell count, and the differential white blood cell count was obtained by an automated analyzer. Anthropometric variables were determined: body weight and height, triceps skin fold thickness, mid-arm and waist circumferences. Body height was measured to the nearest 0.5 cm with a stadiometer and body weight was measured with mechanical scales. Triceps skin fold thickness was measured with a skin caliper on the posterior upper arm, midway between the acromion and olecranon process. A skin fold
thickness of 5 to 8 mm was determined as borderline fat stores, and of 3 mm or less as severe depletion. Mid-arm circumference was measured with non-stretch measuring tape, midway between the acromion and olecranon of the non-dominant arm, and 15 cm or less was an indicator of severe depletion of muscle mass. Both parameters were used to compute mid-arm muscle circumference (cm) according to the formula, as reported by Frisancho\(^1\בד: \text{mid-arm circumference} = \text{triceps skin fold thickness (mm)} \times \underline{0.3412}^\text{2}, as an estimate of muscle mass or lean tissue stores. Bioelectrical impedance was performed using a single frequency (50 kHz) Bioelectrical Impedance Analyzer, standard platform-based electrode system, model TANITA BC-418MA (TANITA CORPORATION, Tokyo, Japan). This analyzer has a Goal Setter function which calculates the amount of fat mass to be lost in order to achieve a selected target. All measurements were performed in the morning within 24 h of admission. Patients had fasted overnight. Patients were told to stand barefoot on the platform-based electrode system with both feet and to grip two electrodes with both hands. The following parameters were by default revealed by the built-in software: body mass index (BMI), basal metabolic rate (BMR), body fat mass (FM), fat free mass (FFM), total muscle mass (MM), total body water (TBW), impedance of whole body (IWH). Resistance was directly measured in Ohms at 50 kHz, 550 mA using BIA. “Impedance/index”, which is defined as body height squared divided by resistance, was determined. The length of hospital stay was actual number of hospitalization days and was recorded retrospectively from the Hospital Administration. The study was approved by the Ethical Committee, Clinical and Hospital Center Bezanijska Kosa.

Statistical analysis

Statistical analysis was performed with a commercially available statistical software program (SPSS 13.0, Inc, Chicago II, US). As well as the usual methods of descriptive statistics (mean, standard deviation-SD), we tested and obtained differences by Student t test for independent samples. Entire testing was performed at a 95% probability level. Concordance between the two assessment methods was analyzed by Cochrans κ (k) index. The value of κ index varies from 0 to 1: a value < 0.00 indicates less than chance, 0.00-0.20 poor, 0.21-0.40 fair, 0.41-0.60 moderate, 0.61-0.80 substantial and 0.81-1.00 almost perfect concordance. The predictive potential of analyzed parameters was evaluated by the analysis of discriminant function.

RESULTS

Prevalence

In our sample of 299 hospitalized patients in the gastroenterohepatology department the frequency of any degree of malnutrition at admission varied from 45.7% as assessed by the SGA to 63.9% by NRI (Table 1). No significant differences were obtained in gender distribution of malnutrition (χ\(^2\) for SGA = 1.05, DF = 1, P > 0.05; χ\(^2\) for NRI = 2.63, DF = 1, P > 0.05). Age did not significantly differ between well-nourished and malnourished patients (F = 0.53, DF = 1, P > 0.05). A degree of corroboration between the two screening methods for assessment nutritive status, SGA and NRI, was revealed as fair concordance (Table 1).

Nutritional parameters

The mean values and SD of the laboratory, anthropometric characteristics and parameters of bioelectrical impedance analysis according to both applied nutritional methods were shown on Tables 2, 3 and 4. Moreover, the number or malnourished patients rose with the length of hospital stay according to both nutritional indices (Table 5). The discriminative function analysis (DFA) delineated the following parameters as important for prediction of nutritional status according to SGA assessment: concentration of albumins, level of proteins, SGA score and body weight. The DFA extracted MAMC, glucose level and NRI scores as the variables of importance for the prediction to whether admitted patients will be classified as well or malnourished (Table 6). The correctness of the equations was emphasized by the accuracy test computed from the examined group (93. 7% and 100%).

Table 1 Distribution of nutritional status upon admittance according to the gastrointestinal diagnosis observed by SGA and NRI

Nourishment status/diagnosis	SGA assessment\(^1\)	NRI assessment\(^2\)
	Well Malnourished	Well Malnourished
Benign	140 76 90 126	163 136 108 191
Malignant	23 60 18 65	
Total	163 136 108 191	

\(^1\)χ\(^2\) = 46.24, DF = 1, P < 0.001; \(^2\)Cochrans κ index = 0.367; P < 0.001. SGA: Subjective global assessment; NRI: Nutritional risk index.

Table 2 Differences in laboratory values of obtained parameters according to the applied nutritional scores (mean ± SD)

Parameters (serum)	Well	Malnourished	Significance t test	
Glucose (mmol/L)				
	n = 163	5.68 ± 1.06	4.83 ± 1.14	F = 10.63, P = 0.001
Cholesterol (mmol/L)		5.52 ± 0.96	3.54 ± 0.79	F = 10.61, P = 0.001
C reactive protein (mg/L)		12.42 ± 16.48	22.08 ± 18.46	F = 11.44, P = 0.001
NRI assessment				
	n = 108	5.25 ± 1.04	4.27 ± 1.35	F = 8.27, P < 0.05
Lymphocyte count (%)		25.56 ± 8.94	21.77 ± 10.08	F = 11.55, P = 0.001

Degrees of freedom = 297; NS: Not significant.
Filipović BF et al. Two nutritional indices in GI patients

Table 3 Distribution of anthropometric measures and parameters of bioelectrical impedance analysis obtained by SGA (mean ± SD)

Parameters	SGA assessment	Significance t test	
	Well	Malnourished	
n = 163	n = 136		
MAC (cm)	28.28 ± 2.70	23.21 ± 2.06	F = 10.20, P = 0.002
MAMC (cm)	11.56 ± 12.62	8.23 ± 10.47	F = 73.22, P < 0.001
TSF (mm)	9.92 ± 2.47	5.25 ± 1.77	F = 5.92, P = 0.02
Waist circumferences (cm)	90.16 ± 10.92	70.03 ± 8.01	F = 24.56, P < 0.001
Body mass index (kg/m²)	26.03 ± 4.53	18.17 ± 1.52	F = 58.36, P < 0.001
Total body water (kg)	42.62 ± 7.98	36.22 ± 9.32	F = 7.95, P = 0.005
Resistance of whole body (Ω)	545.86 ± 89.97	661.50 ± 98.89	F = 4.77, P = 0.03
Basal metabolic rate (kcal)	1625.14 ± 304.91	1344.62 ± 219.08	F = 9.06, P = 0.003
Impedance-index	55.3184 ± 13.00	46.409 ± 9.33	F = 6.73, P = 0.01

Degrees of freedom = 297. MAC: Mid-arm circumferences; MAMC: Mid-arm muscle circumferences; TSF: Triceps skinfold thickness.

Table 4 Differences in anthropometric measures and parameters of bioelectrical impedance analysis obtained by NRI (mean ± SD)

Parameters	NRI assessment	Significance t test	
	Well	Malnourished	
n = 108	n = 191		
MAC (cm)	27.51 ± 2.73	25.11 ± 3.60	F = 7.88, P = 0.005
MAMC (cm)	10.63 ± 12.42	9.68 ± 11.41	F = 11.55, P = 0.001
TSF (mm)	9.09 ± 2.72	7.06 ± 3.30	F = 11.55, P = 0.007
Waist	88.51 ± 10.71	76.76 ± 13.81	F = 7.14, P = 0.008
circumferences (cm)	554.40 ± 91.07	623.37 ± 112.57	F = 5.98, P = 0.02
Resistance of whole body (Ω)	545.86 ± 89.97	661.50 ± 98.89	F = 4.77, P = 0.03
Impedance-index	54.36 ± 12.20	45.51 ± 12.03	F = 6.82, P = 0.01

Table 5 SGA and NRI assessments of nourished and malnourished patients according to the length of hospitalization

Length of hospital stay	SGA assessment	NRI assessment
	Well	Malnourished
	n = 163	n = 136
< 10 d	90	26
> 10 d	73	110
Total	163	136

\(\chi^2 = 40.69, DF = 1, P < 0.001 \); \(\chi^2 = 15.82, DF = 1, P < 0.001 \).

Table 6 Discriminant function analysis for particular groups of analyzed variables

Status	Centroids	Section points	Selecting equation	Percentage of accuracy
SGA				100%
Well	-2.466	0.420	-2.58 + 0.04 × [albumins] - 0.038 × [proteins] + 2.83 × SGA score - 0.03 × body weight	100%
Malnourished	2.884			
NRI				93.7%
Well	1.72	0.365	-11.75 + 0.17 × MAMC -0.20 × [glucose] + 1.04 × NRI score	93.7%
Malnourished	-0.99			

DISCUSSION

In this paper, the authors intended to estimate the adequacy of nutritional assessments comparing two of the most often used methods: SGA and NRI. The prevalence of malnutrition in hospitalized patients was reported to vary between 20% and 60%. Higher prevalence has been revealed in the elderly and in patients with malignant diseases[27,28]. In our investigation the overall prevalence of malnutrition was significantly higher by NRI assessment methods (63.9%) than SGA nutritional score (45.7%). Observed differences in prevalence of malnutrition between indices could be the result of different scoring systems. The problem appears with the classification of the mildly malnourished, who, according to SGA, are adequately classified, while NRI assigns them to the group of moderately malnourished[29,30]. Schneider and Hebuterne[31] claimed that nutritional clinical indices are more sensitive and more accurate compared with a single nutritive parameter. The nutritional parameters used to determine malnutrition varied in different studies. Most authors revealed that levels of serum albumin and cholesterol decreased in malnourished individuals and this result indicated that hypoalbuminemia and low levels of cholesterol could to be a predictor of risk for malnutrition, rather than a parameter for identifying and quantifying nutritional status[32-35]. However, some authors suggested that serum albumin and body mass index are overestimated factors in the malnutrition assessment[36]. Our results sustained this opinion, at least considering albumins. In our clinical study cholesterol in lower concentrations correlated with poor nutritional status, according to both applied nutritional indices. Scalfi et al[37] have claimed that impedance-index was decreased in malnourished patients and several studies have demonstrated that BIA is strictly associated with fat free mass and total body water in healthy subjects and...
in patients. Nevertheless, it is still debated whether and for what purpose BIA can be used in the evaluation of body composition changes[26-38]. Furthermore, our investigation showed that the impedance-index is significantly lower in malnourished patients when compared with other examined.

Apparently, two applied methods requiring different parameters are needed for an accurate approach: glucose level, body mass index, total body water, basal metabolic rate are very important for SGA, and lymphocyte count is relevant for NRI. Results of several studies have suggested moderate to perfect concordance between the SGA and the NRI or between SGA and the mini nutritional assessment[19,20]. Some authors reported poor overlapping levels between the same assessment methods[21]. SGA has some limitations in evaluating nutritional status. First, the SGA is a clinical index which consists of subjective parameters to determine malnutrition. Second, the SGA failed to recognize the group of patients with mild degrees of malnutrition and some cases of malnutrition, particularly early and acute malnutrition. In prospective studies, SGA was demonstrated to be a good predictor of complications related with poor nutritional state[13,22,23]. On the other hand, the combination of serum albumin and weight loss, as presented in the NRI, would reflect nutritional risk and indicate severity of illness and adverse outcome[24,25]. According to our results, malnourished patients had a longer hospital stay than well-nourished patients, applying results from both nutritive techniques. Discriminant function analysis has outlined some nutritive variables such as concentrations of serum albumins, level of total protein, SGA score and body weight according to the SGA nutritional assessment method, while different nutritional parameters (MAMC, glucose level and NRI score) by the NRI assessment method have been extracted as predictors of whether individuals will be classified as well or malnourished.

In conclusion, SGA showed higher sensitivity to predictor factors, although the sensitivity of NRI methods was also very high. Assessment of the nutritional status requires a multidimensional approach, which includes different clinical indices and various nutritional parameters.

REFERENCES

1 Bauer JM, Vogl T, Wicklein S, Trögnier J, Mühlberg W, Sieber CC. Comparison of the Mini Nutritional Assessment, Subjective Global Assessment, and Nutritional Risk Screening (NRS 2002) for nutritional screening and assessment in geriatric hospital patients. Z Gerontol Geriatr 2006; 39: 322-327
2 Kyle UG, Kosovsky MP, Karsegard VL, Pichard C. Comparison of tools for nutritional assessment and screening at hospital admission: a population study. Clin Nutr 2006; 25: 409-417
3 Kawabe N, Hashimoto S, Harata M, Nitta Y, Murao M, Nakano T, Shimazaki H, Kobayashi K, Komura N, Ito H, Niwa A, Narita W, Hanashita J, Ikeda A, Yoshikawa K. Assessment of nutritional status of patients with hepatitis C virus-related liver cirrhosis. Hepatol Res 2008; 38: 484-490
4 Detsky AS, McLaughlin JR, Baker JP, Johnston N, Whittaker S, Mendelson RA, Jeejeebhoy KN. What is subjective global assessment of nutritional status? J Parenter Enteral Nutr 1987; 11: 8-13
5 Campbell KL, Ash S, Bauer JD, Davies PS. Evaluation of nutrition assessment tools compared with body cell mass for the assessment of malnutrition in chronic kidney disease. J Ren Nutr 2007; 17: 189-195
6 Aydin N, Karaöz S. Nutritional evaluation of patients before gastrointestinal surgery and nurses’ approach to this issue. J Clin Nurs 2008; 17: 608-617
7 Naber TH, Schernner T, de Bree A, Nusteling K, Egging L, Kruimel JW, Bakkeren J, van Heeneveld H, Katan MB. Prevalence of malnutrition in nonsurgical hospitalized patients and its association with disease complications. Am J Clin Nutr 1997; 66: 1232-1239
8 Planas M, Audivert S, Pérez-Portabella C, Burgos R, Puiggrós C, Casanelles JM, Rosselló J. Nutritional status among adult patients admitted to an university-affiliated hospital in Spain at the time of genoma. Clin Nutr 2004; 23: 1016-1024
9 Pirlich M, Schütz T, Norman K, Gaspell S, Lübbe HJ, Bischoff SC, Bolder U, Friedel T, Gildenzoph H, Halhn K, Jauch KW, Schindler K, Stein J, Volkert D, Wiemann A, Werner H, Wolf G, Zürcher G, Bauer P, Lochs H. The German hospital malnutrition study. Clin Nutr 2006; 25: 563-572
10 Wakahara T, Shikami T, Murase K, Fukushima H, Matsuura K, Fukao A, Kinoshita S, Kaifuku N, Arakawa N, Tamura T, Iwasa J, Murakami N, Deguchi T, Moriwaki H. Nutritional screening with Subjective Global Assessment predicts hospital stay in patients with digestive disease. Nutrition 2007;
Filipović BF et al. Two nutritional indices in GI patients

23: 634-639

11 Makhija S, Baker J. The Subjective Global Assessment: a review of its use in clinical practice. *Nutr Clin Pract* 2008; 23: 405-409

12 Corish CA. Pre-operative nutritional assessment. *Proc Nutr Soc* 1999; 58: 821-829

13 Sungurtelen H, Sungurtelen U, Hanci V, Erdem E. Comparison of two nutrition assessment techniques in hospitalized patients. *Nutrition* 2004; 20: 428-432

14 Baker JP, Detsky AS, Wesson DE, Wolman SL, Stewart S, Whitewell J, Langer B, Jeejeebhoy KN. Nutritional assessment: a comparison of clinical judgement and objective measurements. *N Engl J Med* 1982; 306: 969-972

15 Buzby GP, Knox LS, Crosby LO, Eisenberg JM, Haakenson CM, McNeal GE, Page CP, Peterson OL, Reinhardt GF, Wiliford WO. Study protocol: a randomized clinical trial of total parenteral nutrition in malnourished surgical patients. *Am J Clin Nutr* 1988; 47: 366-381

16 Frisancho AR. New norms of upper limb fat and muscle areas for assessment of nutritional status. *Am J Clin Nutr* 1981; 34: 2540-2545

17 Volkert D, Kruse W, Oster P, Schlierf G. Malnutrition in geriatric patients: diagnostic and prognostic significance of nutritional parameters. *Ann Nutr Metab* 1992; 36: 97-112

18 Charles R, Mulligan S, O’Neill D. The identification and assessment of undernutrition in patients admitted to the age related health care unit of an acute Dublin general hospital. *Ir J Med Sci* 1999; 168: 180-185

19 Locs H, Dervenis C. Malnutrition—the ignored risk factor. *Dig Dis* 2003; 21: 196-197

20 Meijers JM, Schols JM, van Bokhorst-de van der Schueren MA, Dassen T, Janssen MA, Halfens RJ. Malnutrition prevalence in The Netherlands: results of the annual dutch national prevalence measurement of care problems. *Br J Nutr* 2009; 101: 417-423

21 Pablo AM, Izaga MA, Alday LA. Assessment of nutritional status on hospital admission: nutritional scores. *Eur J Clin Nutr* 2003; 57: 824-831

22 Schneider SM, Heuberterme X. Use of nutritional scores to predict clinical outcomes in chronic diseases. *Nutr Rev* 2000; 58: 31-38

23 Ramos Martinez A, Asensio Vegas A, Núñez Palomo A, Millán Santos I. [Prevalence and risk factors associated to malnutrition in elderly inpatients] *An Med Interna* 2004; 21: 263-268

24 Gibbs J, Cull W, Henderson W, Daley J, Hur K, Khuri SF. Preoperative serum albumin level as a predictor of operative mortality and morbidity: results from the National VA Surgical Risk Study. *Arch Surg* 1999; 134: 36-42

25 Franch-Arcas G. The meaning of hypoalbuminaemia in clinical practice. *Clin Nutr* 2001; 20: 265-269

26 Covinsky KE, Covinsky MH, Palmer RM, Sehgal AR. Serum albumin concentration and clinical assessments of nutritional status in hospitalized older people: different sides of different coins? *J Am Geriatr Soc* 2002; 50: 631-637

27 Kyle UG, Pirlisch M, Schuettz T, Luebke HJ, Locs H, Pichard C. Prevalence of malnutrition in 1760 patients at hospital admission: a controlled population study of body composition. *Clin Nutr* 2003; 22: 473-481

28 Scalfl L, Marra M, Caldarra A, Silvesteri E, Contaldo F. Changes in bioimpedance analysis after stable refeeding of undernourished anorexic patients. *Int J Obes Relat Metab Disord* 1999; 23: 133-137

29 Forbes GB, Simon W, Amatruda JM. Is bioimpedance a good predictor of body-composition change? *Am J Clin Nutr* 1992; 56: 4-6

30 Finn PJ, Plank LD, Clark MA, Connolly AB, Hill GL. Progressive cellular dehydration and proteolysis in critically ill patients. *Lancet* 1996; 347: 654-656

31 Robert S, Zarowitz BJ, Hyyz R, Eichenhorn M, Peterson EL, Popovich J Jr. Bioelectrical impedance assessment of nutritional status in critically ill patients. *Am J Clin Nutr* 1993; 57: 840-844

32 Turhan N, Saracgil N, Oztop P, Bayramoglu M. Serum albumin and comorbidity relative to rehabilitation outcome in geriatric stroke, and possible links with stroke etiology. *Int J Relat Res* 2006; 29: 81-85

33 Simons JP, Schols AM, Westerterp KR, ten Veld GP, Wouters EF. Use of the bioelectrical impedance analysis to predict total body water in patients with cancer cachexia. *Am J Clin Nutr* 1995; 61: 741-745

34 Persson MD, Brismar KA, Katzarski KS, Nordenstöm J, Cedermholm TE. Nutritional status using mini nutritional assessment and subjective global assessment predict mortality in geriatric patients. *J Am Geriatr Soc* 2002; 50: 1996-2002

35 Enia G, Sicuso C, Alati G, Zoccali C. Subjective global assessment of nutrition in dialysis patients. *Nephrol Dial Transplant* 1993; 8: 1094-1098

36 Pikul J, Sharpe MD, Lowndes R, Ghent CN. Degree of preoperative malnutrition is predictive of postoperative morbidity and mortality in liver transplant recipients. *Transplantation* 1994; 57: 469-472

S- Editor Wang YR L- Editor O’Neill M E- Editor Ma WH