Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Research Paper

Mortality by cause of death during year 1 of the COVID-19 pandemic in a cohort of older adults from Baltimore Maryland who have injected drugs

Kenneth A. Feder a,*, Jing Sun b, Jacqueline E. Rudolph b, Javier Cepeda b, Jacquie Astemborski b, Pieter A. Baker b, Damani A. Piggott b,c, Gregory D. Kirk b,c, Shruti H. Mehta b, Becky L. Genberg b

a Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, United States
b Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, United States
c Department of Medicine, Johns Hopkins University School of Medicine, United States

A R T I C L E I N F O

Keywords:
Covid-19
People who inject drugs
Pandemic

A B S T R A C T

Background: In 2020, the first year of the COVID-19 pandemic, overdose deaths increased. However, no studies have characterized changes in mortality during the pandemic in a well-characterized cohort of people who use drugs in active follow-up at the time of pandemic onset.

Design: We compared all-cause and cause-specific mortality in the first year of the pandemic (Mar–Dec 2020) to the five years preceding (Jan 2015–Feb 2020), among participants in the AIDS Linked to the IntraVenous Experience (ALIVE) study: a community-recruited cohort of adults from Baltimore who have injected drugs. 3510 participants contributed 17,498 person-years [py] of follow-up time. Cause and dates of death were ascertained through the National Death Index. Comparisons were made for the full cohort and within subgroups with potentially differential levels of vulnerability.

Results: All-cause mortality in 2020 was 39.6 per 1000 py, as compared to 37.2 per 1000 py pre-pandemic (Adjusted Incidence Rate Ratio = 1.09, 95% confidence interval: 0.84–1.41). Increases were mostly attributable to chronic disease deaths; injury/poisoning deaths did not increase. No pre-post differences were statistically significant.

Conclusion: In this exploratory analysis of an older cohort of urban-dwelling adults who have injected drugs, mortality changes during the first year of the pandemic differed from national trends and varied across potentially vulnerable subgroups. More research is needed to understand determinants of increased risk of mortality during the pandemic among subgroups of people who use drugs.

Background

In the first years of the COVID-19 pandemic, all-cause mortality increased globally and in most countries around the world (Ahmad et al., 2021; Islam et al., 2021; Wang et al., 2022). The majority of this increase was likely attributable to deaths caused by COVID-19, although many are not properly diagnosed as such (Wang et al., 2022; Wu et al., 2021). However, there is evidence other causes of death also increased, including chronic disease deaths (Wu et al., 2021).

Of particular importance to the health of people who use drugs are large increases in drug overdose deaths in the first years of the pandemic, principally in United States (National Center for Health Statistics, 2022a) and Canada (Health Canada, 2020). The cause of this increase in overdose deaths in North America is not fully understood. Several hypotheses have been posited to explain the surge in overdose deaths during the COVID-19 pandemic (Cantor et al., 2021; Czeisler, 2020; Friedman et al., 2021; Galarneau et al., 2021; Gleason et al., 2022; Holingue et al., 2020; Russell et al., 2021; Wakeman et al., 2020). Data from multiple states suggest that much of the increase in overdose deaths was attributable to an increase in deaths involving fentanyl (Currie et al., 2021; Macmadu et al., 2021; Maryland Department of Health, 2021), suggesting pandemic-related disruptions to the drug market may have made the drug supply in North America more dangerous. There is also evidence that the increase in overdose deaths was larger than the increase in overdose incidents, suggesting

* Financial Disclosure: None

Corresponding author.
E-mail address: kfeder1@jhu.edu (K.A. Feder).

https://doi.org/10.1016/j.drugpo.2022.103842

0955-3959/© 2022 Elsevier B.V. All rights reserved.
each overdose event was more likely to result in death (Friedman et al., 2021).

However, understanding how the COVID-19 pandemic has impacted mortality among people who use drugs requires more than simply examining trends in overdose deaths. As compared to the general population, people who use illicit drugs are more likely to have immunocompromising conditions such as HIV that could increase risk for severe COVID-19 (Handanagic, 2021; Sun et al., 2021); more likely to be exposed to COVID-19 in correctional settings, which have elevated COVID-19 mortality (Saloner et al., 2020); and more likely to die from chronic diseases (Sun et al., 2021), for which care may have been disrupted during the pandemic (Chudasma et al., 2020; Hacker, 2021).

This report compares estimates of all-cause, injury-and-poisoning-related, and other sources of mortality before and after the start of the COVID-19 pandemic – defined here as March 1, 2020 – in a community-based cohort of adults who have a history of injecting drugs. Trends in all-cause and cause-specific mortality over a 30-year period in this cohort were previously described (Genberg et al., 2021; Sun et al., 2021), and we observed increasing trends in overdose and drug-related deaths up to 2018. By examining a cohort of adults under observation before the start of the pandemic, we can better understand the pandemic’s effect on multiple causes of mortality in people who inject drugs (as opposed to just drug overdose death). Further, by leveraging previously collected health data, we can examine if pandemic-associated changes in mortality differed across health-related sub-populations of people who have injected drugs.

Methods

Participants

Study participants were enrolled in the AIDS Linked to the Intravenous Experience (ALIVE) study. ALIVE is a community-recruited cohort of adults (18 years or older at enrollment) who have injected drugs and live in or near Baltimore, Maryland. Enrollment began in 1988, with additional recruitment occurring in 1994–1995, 1998, 2000, 2005–2008, and 2015–2018. Details of ALIVE’s methods are described elsewhere (Vlahov et al., 1991). Briefly, participants attend twice-annual follow-up visits where they complete a standardized questionnaire (part interviewer-administered, part audio-computer-assisted self-administered) on substance use behaviors, comorbidities, and social and behavioral disease risk, provide blood samples for infectious disease testing, and complete a brief clinical examination. Participants remained enrolled in ALIVE until such time as they ask to withdraw from the study or die. Participants provide informed consent for all study activities, including annual identity matches with the National Death Index in order to capture dates and causes of. Importantly, this means that ascertainment of death is complete for all participants ever enrolled in ALIVE – even those who stop attending study visits for very long periods of time – so long as participants do not proactively inform ALIVE they are withdrawing from the study. The Johns Hopkins University institutional review board approved the study and all participants provided informed written consent.

There were 3522 study participants alive on January 1, 2015. Of these, 3510 (>99%) had complete data on time-fixed covariates from their baseline study visit (see 2.2 “Measures”) and were included in the primary analysis cohort; these 3510 participants contributed 17,498 (>99%) person-years of follow-up time.

A smaller, secondary subsample was also analyzed, where we imposed the additional criteria that participants must have attended at least one study visit since January 1, 2014, and at least one of those visits provided data on each drug use, social, and health-related covariate used in the secondary analysis (see 2.2 “Measures”). This secondary analysis was conducted to analyze additional time-varying covariates that are assessed at study visits. This secondary cohort includes 1630 participants (46%) contributing 7378 person-years (42%).

Measures

Dates and underlying causes of death through December 31, 2020 were identified through linkage to the National Death Index 2015–2020 final release (Centers for Disease Control & Prevention, 2021). Causes of death were categorized based on ICD-10 codes into five groups: 1) COVID-19 (ICD Code U07.1), 2) injury or poisoning deaths, 3) chronic disease deaths, 4) infectious disease deaths other than COVID-19, and 5) all other causes of death that occurred in this cohort. Details of ascertainment and classification have been previously described (Sun et al., 2021). ICD-10 codes present in this sample corresponding to each cause of death category are shown in Appendix Table 4. Ascertainment of death was complete for all enrolled participants, regardless of whether they had a follow-up visit during the study period.

Time-fixed covariates assessed at baseline were included in the analysis of the primary cohort: age on January 1, 2015 (18–49, 50–59, 60 or older), self-reported gender at baseline (male, female); education (less than high school, high school or higher); and whether participants were late entries into the study cohort (recruited before January 1, 2015; recruited after January 1, 2015).

Additionally, time-varying covariates assessed at bi-annual study visits since 2014 were included in the analysis of the secondary subsample: a four-level categorical variable for any drug use in the six months before the visit (any injection drug use, use of any illicit drugs other than marijuana that were not injected, marijuana use only, no illicit drug use); any cigarette use in the past six months; any alcohol use in the past six months; depressive symptoms, defined as a score of 23 or higher on the Center for Epidemiologic Studies Depression Scale (CESD) (Eaton et al., 2004); reported being employed at the time of the study visit; experienced homelessness in the past six months; hepatitis C virus (HCV) antibody positive; HIV antibody positive; obesity, defined as BMI >= 30; and a count (0, 1, 2, 3 or more) of self-reported history of comorbid health conditions (including diabetes, high cholesterol, high blood pressure, stroke, renal disease, and lung disease).

Analytic approach

As noted above, we conducted: 1) An analysis of the primary cohort with the full sample, to maximize sample size and representativeness of the population of people who inject drugs in Baltimore. 2) An analysis of the secondary subsample of participants who attended at least one study visit, to examine more potentially interesting subgroups that may vary in their vulnerability to mortality. Other than the sample size and covariates analyzed, the approach was identical.

Additionally, the approach was the same for all-cause and each specific cause of mortality, except that in each cause-specific analysis, deaths from causes other than the cause of interest in that analysis were not counted, and participants were censored following their competing-cause of death.

All participants, except those who were enrolled after January 1, 2015 (“late entries’), began contributing person time on January 1, 2015. Late entries began contributing person time on the date of their first study visit. Participants’ time-fixed covariate values were drawn from their baseline study visit. Participants’ initial time-varying covariates were drawn from their last study visit in 2014, or (for late entries) their first study visit and updated at each study visit. Because participants did not attend regular study visits during the pandemic, no covariate updates were conducted after March 1, 2020. Participants continued to contribute person time until they died, or until they were administratively censored on December 31, 2020.

Mortality rates per 1000 person years were estimated for the pre-pandemic (January 1, 2015–February 29, 2020) and pandemic (March 1, 2020–December 31, 2020) periods respectively by dividing the number of deaths by the number of person-years at risk during that period and multiplying by 1000. Mortality during the pandemic was then compared
to mortality prior to the pandemic using crude and adjusted (see below) rate ratios.

To account for potential confounding or survival bias induced by changes in the observed characteristics (see 2.2. Measures) of the cohort (Amaoh et al., 2020), we repeated the analysis using propensity score weighting (Amaoh et al., 2020). This was done because, if we simply observe crude mortality differences between pandemic and pre-pandemic periods, these differences might be partly or entirely due to changes in the characteristics of the cohort over time. For example, some participants who were previously not using illicit drugs might resume use right before the onset of the pandemic, putting the cohort incidentally at higher risk for death during the pandemic (i.e. “confounding bias”). Or, for example, older or male participants may be less likely to survive to the start of the pandemic, leaving the pandemic cohort at lower risk for death (i.e. “survival bias”). Specifically, for adjusted rate ratios, we estimated a propensity score indicating the probability of each person period occurring during pandemic conditional on all time-fixed and (in the secondary subsample for which they were available) time-varying covariates. Propensity scores were estimated using logistic regression. Person periods not in the pandemic were then weighted by the predicted odds those intervals occurred during the pandemic (i.e. “average treatment effect on treated” weights), and the relative rate was re-estimated in this weighted sample (Sato & Matsuyama, 2003). Standardized mean differences in study covariates before and after weighting are shown in Appendix Table S, to verify weighting improved covariate balance.

Within each subgroup defined by covariates used in the analysis (e.g., participants’ age 18–49, male participants, participants who injected drugs, etc.) incidence rates and relative rates were estimated using the same methods described above, but for members of that subgroup alone. These subgroup analyses were conducted for all-cause and injury/poisoning mortality.

For all incidence rate ratios, we estimate 95% Wald confidence intervals. Because the number of deaths during the pandemic was likely too small to detect interaction effects using hypothesis testing, potentially scientifically meaningful between-subgroup differences in our estimate of the association of the pandemic with mortality are noted in the text.

Finally, historically, the ALIVE cohort has had much higher mortality than Baltimore City (Sun et al., 2021). To provide context, we conducted a supplemental analysis comparing mortality in this study cohort to Baltimore City. Specifically, for 2019 and 2020 respectively, we computed age-by-sex-stratified mortality rates for this study cohort, standardized to the Baltimore City population age 15–85, and compared these standardized mortality estimates to publicly available mortality estimates for Baltimore for that same age group using a standardized mortality ratio (Maryland Department of Health, 2021).

All analyses were conducted in R Version 3.4.3 (R Core Team, 2017).

The manuscript was not pre-registered, and all results should be considered exploratory.

Results

Description of sample

In the primary analytic sample, in the pre-pandemic period, 44.3% of person-years were contributed by persons over 50 years of age and 67.7% by persons over 60; 71.9% were contributed by male participants; 76.9% by Black participants; and 53.7% by participants who did not complete high school. Participants alive during the pandemic were demographically similar to participants alive before the pandemic. Detailed pre- and intra-pandemic demographics for primary and secondary samples are shown in Table 1. Person-level demographics are shown in Appendix Table 1.

Changes in mortality in the “Primary” cohort containing the full sample

During the pandemic, 96 participants in the primary cohort died, corresponding to an all-cause mortality rate (MR) of 39.6 per 1000 person years [py]; this was 7% higher than the period before the pandemic (37.2 per 1000 py), but this difference was not statistically significant (incidence rate ratio [IRR] of 1.07, 95% confidence interval [CI] 0.86–1.32). This difference did not change appreciably after adjustment (adjusted IRR: 1.09; 95% CI 0.84–1.41) (Table 2). There were no statistically significant changes in injury/poisoning mortality (pre-pandemic 13.2 per 1000 py, pandemic 13.6 per 1000 py; IRR 1.03, 95% CI 0.71 to 1.49; adjusted IRR [aIRR] 0.95, 95% CI 0.62 to 1.47) (Table 3); chronic disease mortality (pre-pandemic 17.0 per 1000 py, pandemic 18.1 per 1000 py; IRR 1.07, 95% CI 0.78 to 1.47; aIRR 1.14, 95% CI 0.77 – 1.67) (not shown in tables); or infectious disease mortality (excluding COVID-19) deaths (pre-pandemic 5.0 per 1000 py, post-pandemic 4.1 per 1000 py; IRR 0.82, 95% CI 0.42 to 1.58; aIRR 0.93, 95% CI 0.43 to 2.03) (not shown in tables). Results were similar in all subgroup specific analyses.

Four of the observed deaths were due to COVID-19 (MR: 1.65 per 1000 person-years).

Changes in mortality in the “Secondary” subsample of participants with at least one study visit

Results were qualitatively similar and non-significant in the secondary cohort of participants who attended at least one study visit. As in the primary cohort, all subgroup analyses were also non-significant (Appendix Tables 2 and 3); however, one notable difference in pre-post mortality was that all-cause mortality increased among persons who were HCV antibody negative (IRR 2.14, 95% CI 1.09 to 4.12; aIRR 2.03, 95% CI 0.74 to 5.61); but decreased among those who were HCV antibody positive (IRR 0.94, 95% CI 0.66 to 1.34; aIRR 0.96, 95% CI 0.59 to 1.55).

Supplemental analysis: comparison to Baltimore city

In supplemental analysis, after standardizing to the age and sex distribution of the Baltimore City population age 15 to 85, the all-cause mortality rate in this study cohort in 2019 was 2907 deaths per 100,000, as compared to a rate of 1099 per 100,000 for Baltimore City in the same year (standardized mortality ratio [SMR] 2.65). In 2020, again standardized to Baltimore’s age and sex distribution, this cohort’s mortality rate was 2795 per 100,000, as compared to 1303 per 100,000 for Baltimore (SMR 2.15).

Discussion

In this cohort of older, mostly Black adults from the Baltimore area with a history of drug use, all-cause mortality increased by 7% during the first 9 months of the COVID-19 pandemic in the US as compared to the five years prior. This increase was not statistically significantly different than 0%. However, it is important to note that the confidence interval for the overall mortality increase (~14% to 32%) also included the estimated increases in mortality for the US general population (15%) and Baltimore (19%) from 2019 to 2020 respectively (National Center for Health Statistics, 2022b). Thus, we think the best interpretation of the mortality increase observed in this cohort is that its magnitude is generally consistent with the increase that we know occurred in the general population over a similar time period.

The observed increase in mortality in this cohort was primarily driven by increases in deaths due to chronic disease; this increase in chronic disease mortality is a continuation of what was observed pre-pandemic (Sun et al., 2021). Additionally, four cohort participants died of COVID-19. Injury and poisoning deaths – of which 71% in this sample were drug or alcohol-related poisoning and another 17% were poison-
Table 1
Demographic, social, drug use, and health-related characteristics of a cohort of older adults (n = 3510) who have injected drugs before and during the COVID-19 pandemic—Maryland, 2015–2020.

Demographic	All cohort participants as of Jan 1, 2015	Cohort participants with a study visit since Jan 1, 2014
	Pre-Pandemic	Pandemic
	Percent of Person Years	Percent of Person Years
	Total Person Years	Total Person Years
All	15,073	6,239
Age Group		
18–49	4872	2,349
50–59	6671	2,816
60+	3530	1,073
Gender		
Male	10,841	4,227
Female	4,231	2,012
Race		
Not Black	3,482	1,251
Black	11,590	4,988
Education		
Less than high school	8,094	3,347
High school or more	6,978	2,891
Recruitment Cohort		
All other	12,444	4,447
recruitment waves		
2015–2018	2,628	1,760
Any Illicit Drug Use*		
No illicit drug use	–	–
Marijuana only	–	–
Illicit drugs, no injecting	–	–
Injected drugs	–	–
Any cigarettes	–	–
No	–	–
Yes	–	–
Any alcohol	–	–
No	–	–
Yes	–	–
Elevated depressive symptoms		
No	–	–
Yes	–	–
Employed	–	–
No	–	–
Yes	–	–
Homeless	–	–
No	–	–
Yes	–	–
HCV Ab+	–	–
No	–	–
Yes	–	–
HIV Ab+	–	–
No	–	–
Yes	–	–
Obese	–	–
No	–	–
Yes	–	–
Number of chronic comorbidities		
0	–	–
1	–	–
2	–	–
3+	–	–

1The start of the COVID-19 pandemic was defined as March 1, 2020.
2All time varying covariates assessed in six months preceding the study visit.
* Variables including and below “Any Illicit Drug Use” are measured at biannual study visits, and are therefore only available in the secondary subsample of participants who have attended at least one visit since 2015.
ings without a causal substance identified – did not increase appreciably in this cohort during the early COVID-19 pandemic.

While, as noted above, the magnitude of increase in all-cause mortality observed in this cohort was comparable to increases observed locally and nationally, we did not observe a larger increase in injury and poisoning deaths specifically, despite drug overdose deaths increasing nationally, in Maryland, and in Baltimore City (Maryland Department of Health, 2021; Products - Vital Statistics Rapid Release - Provisional Drug Overdose Data, 2021). However, it is important to note that injury and poisoning mortality in this cohort nearly doubled over the past decade, and overall mortality in this cohort was much higher than the general population of Baltimore before the pandemic, and remained so during the pandemic. It is difficult to predict how much increase in mortality from any cause would have been expected in this cohort by an exogenous shock like the COVID-19 pandemic.

It is also possible that characteristics of this cohort shielded some members from pandemic-associated increases in mortality. In particular, prior research is consistent with the hypothesis that increasing potency of the drug supply due to fentanyl contamination was a major driver of mortality (Cantor et al., 2021; Czeisler, 2020; Friedman et al., 2021; Galarneau et al., 2021; Gleason et al., 2022; Holingue et al., 2020; Russell et al., 2021; Wakeman et al., 2020). It is possible that members of this cohort of older adults who survived to the start of the pandemic – particularly members who may have used drugs more frequently or heavily in the past – may have strategies that helped them avoid drug-related death increases during the pandemic. Notably, within this cohort, injury/poisoning mortality declined among persons with a history of HCV infection, but increased among those without HCV infection, although this difference was not statistically significant. Past research shows HCV infection could be a proxy marker for more frequent drug use over the life course (Hahn et al., 2002; Villano et al., 1997), so this is consistent with the hypothesis that people with heavier drug use over the life course who managed to survive up to the start of the pandemic were more able to navigate the risks of the pandemic, for example because they may be more engaged with health or harm reduction services. Other studies suggest people who survive overdoses adopt risk-reduction strategies that they believe have helped them prevent repeat overdoses (Elliott et al., 2019; Mistler et al., 2021). However, the data here are insufficient to strongly support any particular hypothesis about why this cohort did not experience increases in drug overdose mortality.

Subgroup	Died Pre-Pandemic	Died During Pandemic	Incidence Rate Ratio, Pre- vs During Pandemic			
	Count	per 1000 person-years	Count	per 1000 person-years	Crude	Adjusted
All	560	37.2	96	39.6	1.07 (0.86–1.32)	1.09 (0.84–1.41)
Age Group						
18–49	125	25.7	24	26.6	1.04 (0.67–1.61)	1.01 (0.61–1.69)
50–59	244	36.6	48	46.6	1.28 (0.94–1.74)	1.27 (0.87–1.87)
60+	191	54.1	24	48.5	0.90 (0.59–1.37)	0.92 (0.57–1.50)
Gender						
Male	406	37.4	66	38.0	1.02 (0.78–1.32)	1.02 (0.75–1.39)
Female	154	36.4	30	43.5	1.20 (0.81–1.77)	1.24 (0.76–2.02)
Race						
Not Black	110	31.6	26	41.9	1.33 (0.87–2.03)	1.31 (0.80–2.13)
Black	450	38.8	70	38.8	1.00 (0.78–1.28)	1.00 (0.73–1.35)
Education						
Less than high school	304	37.6	55	42.7	1.14 (0.85–1.52)	1.16 (0.82–1.64)
High school or more	256	36.7	41	36.0	0.98 (0.71–1.36)	0.99 (0.67–1.46)
Recruitment Cohort						
All other recruitment waves	468	37.6	79	43.5	1.16 (0.91–1.47)	1.17 (0.88–1.56)
2015–2018	92	35.0	17	27.8	0.80 (0.47–1.33)	0.81 (0.44–1.49)

1Adjusted analysis adjusted for age, gender, race, education, cohort using propensity score weighting (see Analytic Approach).

Subgroup	Died Pre-Pandemic	Died During Pandemic	Incidence Rate Ratio, Pre- vs During Pandemic			
	Count	per 1000 person-years	Count	per 1000 person-years	Crude	Adjusted
All	199	13.2028	33	13.6052	1.03 (0.71–1.49)	0.95 (0.62–1.47)
Age Group						
18–49	90	18.4743	16	17.7484	0.96 (0.56–1.64)	0.88 (0.48–1.63)
50–59	79	11.8418	15	14.5775	1.23 (0.71–2.14)	1.23 (0.62–2.44)
60+	30	8.49946	2	4.0398	0.48 (0.11–1.99)	0.48 (0.10–2.26)
Gender						
Male	157	14.4814	29	16.7041	1.15 (0.78–1.71)	1.07 (0.67–1.71)
Female	42	9.92662	4	5.80172	0.58 (0.21–1.63)	0.57 (0.18–1.83)
Race						
Not Black	66	18.9532	12	19.3489	1.02 (0.55–1.89)	1.04 (0.52–2.08)
Black	133	11.4751	21	11.632	1.01 (0.64–1.61)	1.00 (0.57–1.76)
Education						
Less than high school	97	11.9835	19	14.7664	1.23 (0.75–2.01)	1.15 (0.64–2.08)
High school or more	102	14.6172	14	12.2932	0.84 (0.48–1.47)	0.78 (0.41–1.48)
Recruitment Cohort						
All other recruitment waves	138	11.0894	22	12.1234	1.09 (0.70–1.71)	1.07 (0.63–1.83)
2015–2018	61	23.2095	11	18.007	0.78 (0.41–1.47)	0.74 (0.35–1.55)

1Adjusted analysis adjusted for age, gender, race, education, cohort.
as observed in the broader U.S., Maryland, and Baltimore populations. Additional research is necessary to understand overdose during the pandemic among aging populations of people who use drugs.

Limitations

First, as discussed, this is a cohort of older, predominantly Black adults from the Baltimore area and is thus not representative of all people who use drugs in the United States. Second, because of limitations on data collection during the pandemic, we could not examine the impact of behavior changes during the pandemic (if any) on mortality trends. This is a focus of ongoing, qualitative research. Third, while we adjusted for several potential confounders, members of this cohort who survived to the start of the pandemic may differ in unmeasured ways from cohort members who died in the years leading up to the pandemic. These unmeasured qualities of “survivors” could contribute to the lack of increased mortality from injury and poisoning during the pandemic. Finally, only mortality from the first nine months of the pandemic were available and included in this analysis. Future investigations will examine the longer-term impacts of the COVID-19 pandemic on mortality, particularly in chronic disease and other causes that may have been influenced by delayed care-seeking during the pandemic.

Conclusion

In the first months of the COVID-19 pandemic, we observed a modest non-statistically significant increase in mortality in this Baltimore-area cohort of older adults who have a history of injecting drugs that was roughly consistent in magnitude with increases in mortality observed in the surrounding community. The non-significant increase we observed was attributable to chronic disease deaths and COVID-19 deaths. Baseline mortality in this cohort was very high relative to the general population before the pandemic, so it is difficult to know how much more mortality could have increased. We have also speculated here that some older people who have used drugs may have developed strategies that also helped them avoid increases in fatal overdose during the COVID-19 pandemic, although this exceeds the scope of what can be known from the data here. Finally, there were also an enormous diversity of complex public health and social measures enacted and lifted at various points during the early months of the pandemic including stay at home orders, closure of public spaces, and mask mandates. Research shows many of these strategies helped prevent COVID-19 infections and deaths (Carroll & Prentice, 2021; Fowler et al., 2021; Jiang et al., 2019; Medline et al., 2020; Yilmazkuday, 2021), but they also disrupted essential services for people who use drugs (Feder et al., 2022). Our study cannot elucidate any unique impacts these policies may have had on people who use drugs as compared to the general population. However, elucidating the impact of these policies – as well as strategies, behaviors, or characteristics that may have helped prevent increases in drug-related mortality in this cohort – may inform strategies for preventing harm to other adults who use drugs, and are important areas for future research.

Because of the descriptive nature of this study, its policy and practice implications of this study are limited. However, we think this study does underscore two points relevant policymakers and practitioners seeking to protect the health of people who use drugs. The first is that it reiterates the disproportionate burden of chronic disease in the life of people who have used drugs, and the importance of investing in strategies that help link people who use drugs to basic health care necessary for disease management such as integration of addiction medicine into primary medical care (Wakeman & Barnett, 2018). Second, the somewhat surprising findings here are a reminder that administrative statistics tracking overdose deaths paint an incomplete picture of the health of people who use drugs, since overdose trends may reflect trends that exist only or mostly among certain sub-populations of people who use drugs. Drug policy needs to also be informed by rigorous collection of data and information from people who use or have used illicit drugs – to understand the range of health challenges and protective factors that exist in this population – as a supplement to focusing on administrative indicators of the health outcomes most directly linked to drug use like overdose.

Ethics approval

The authors declare that they have obtained ethics approval from an appropriately constituted ethics committee/institutional review board where the research entailed animal or human participation.

Johns Hopkins Bloomberg School of Public Health

Declarations of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Funding

Grant support for ALIVE was provided by the National Institute on Drug Abuse (U01-DA-036297 [GDK, SHM] and R01-DA-053136 [BG]). This publication resulted (in part) from research supported by the Johns Hopkins University Center for AIDS Research, an NIH funded program (1P30AI094189), which is supported by the following NIH Co-Funding and Participating Institutes and Centers: NIAID, NCI, NICHD, NHLBI, NIDA, NIA, NIGMS, NIDDK, NIMHD. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Appendix

See Tables A1, A2, A3, A4, A5
Table A1
Characteristics of a cohort of older adults who have injected drugs before and during the COVID-19 pandemic—Maryland, 2015–2020.

Demographic	Pre-Pandemic	Percent of Participants	Pandemic\a	Percent of Participants
	Total Participants		Total Participants	
All Participants	3510	100%	2950	100%
Age Group				
18–49	1216	35%	1091	37%
50–59	1498	43%	1254	43%
60+	796	23%	605	21%
Gender				
Male	2517	72%	2111	72%
Female	993	28%	839	28%
Race				
Not Black	865	25%	755	26%
Black	2645	75%	2195	74%
Education				
Less than high school	1870	53%	1566	53%
High school or more	1640	47%	1384	47%
Recruitment Cohort				
All other recruitment waves	2681	76%	2213	75%
2015–2018	829	24%	737	25%
With Time-Varying Covariates\b	1630	100%	1387	100%
Any illicit drug Use				
No illicit drug use	599	37%	554	40%
Marijuana only	50	3%	71	5%
Illicit drugs, no injecting	227	14%	282	20%
Injected drugs	754	46%	480	35%
Any cigarettes				
No	276	17%	289	21%
Yes	1354	83%	1098	79%
Any alcohol				
No	743	46%	724	52%
Yes	887	54%	663	48%
Elevated depressive symptoms				
No	1125	69%	979	71%
Yes	505	31%	408	29%
Employed				
No	1412	87%	1176	85%
Yes	218	13%	211	15%
Homeless				
No	1316	81%	1156	83%
Yes	314	19%	231	17%
HCV Ab+				
No	357	22%	322	23%
Yes	1273	78%	1065	77%
HIV Ab+				
No	1175	72%	1014	73%
Yes	455	28%	373	27%
Obese				
No	1165	71%	970	70%
Yes	465	29%	417	30%
Number of chronic comorbidities				
0	618	38%	486	35%
1	501	31%	420	30%
2	304	19%	262	19%
3+	207	13%	219	16%

\a The sample size during the pandemic is smaller than pre-pandemic because some participants died before the start of the pandemic.

\b Pre-pandemic time-varying covariates come from the participant’s first pre-pandemic visit. Pandemic time-varying covariates come from participants first pandemic visit.
Table A2
Comparison of all-cause mortality rates during the COVID-19 pandemic vs
before in a cohort of adults (n = 1630) who have injected drugs –
participants with at least one study visit.

Died Pre-Pandemic	Died During Pandemic	Incidence Rate Ratio, Pre- vs During Pandemic			
Count	per 1000 person-years	Count	per 1000 person-years	Crude	Adjusted
All	243	48	42.1	1.08 (0.79–1.47)	1.09 (0.71–1.68)
Age Group					
18–49	64	16	30.8	1.13 (0.65–1.95)	1.08 (0.53–2.22)
50–59	127	25	54.6	1.21 (0.79–1.86)	1.15 (0.61–2.16)
60+	52	7	43.3	0.89 (0.41–1.97)	0.94 (0.31–2.88)
Gender					
Male	167	31	39.9	1.01 (0.69–1.48)	1.05 (0.62–1.78)
Female	76	17	46.7	1.24 (0.73–2.09)	1.31 (0.65–2.65)
Race					
Not Black	46	14	48.2	1.31 (0.72–2.38)	1.30 (0.59–2.84)
Black	197	34	40.0	1.01 (0.70–1.46)	1.06 (0.63–1.8)
Education					
Less than high school	140	27	45.7	1.09 (0.72–1.65)	1.21 (0.66–2.19)
High school or more	103	21	38.2	1.07 (0.67–1.72)	1.03 (0.54–1.96)
Recruitment Cohort					
All other recruitment waves	173	35	52.6	1.36 (0.95–1.96)	1.42 (0.80–2.51)
2015–2018	70	13	27.4	0.69 (0.38–1.24)	0.72 (0.35–1.49)
Any illicit drug use					
No illicit drug use	97	19	41.6	1.18 (0.72–1.92)	1.20 (0.58–2.49)
Marijuana-only	10	2	34.2	0.90 (0.20–4.09)	1.19 (0.12–11.82)
Illicit drugs, no injecting	42	14	61.1	1.61 (0.88–2.94)	1.60 (0.63–4.06)
Injected drugs	94	13	32.8	0.74 (0.42–1.33)	0.81 (0.39–1.69)
Any cigarettes					
No	39	9	37.8	1.33 (0.64–2.74)	1.22 (0.42–3.57)
Yes	204	39	43.2	1.03 (0.73–1.45)	1.09 (0.68–1.76)
Any alcohol					
No	117	19	31.9	0.87 (0.54–1.41)	0.86 (0.45–1.64)
Yes	126	29	53.3	1.29 (0.86–1.93)	1.38 (0.76–2.51)
Elevated depressive symptoms					
No	182	32	39.7	0.97 (0.67–1.41)	1.01 (0.60–1.70)
Yes	61	16	47.9	1.41 (0.81–2.44)	1.36 (0.62–2.98)
Employed					
No	224	44	45.6	1.07 (0.77–1.48)	1.11 (0.70–1.75)
Yes	19	4	22.9	1.18 (0.40–3.46)	1.14 (0.25–5.15)
Homeless					
No	218	38	40.0	0.98 (0.70–1.43)	1.00 (0.62–2.63)
Yes	25	10	52.9	1.84 (0.89–3.84)	1.66 (0.62–4.44)
HCV Ab+					
No	28	12	45.4	2.14 (1.09–4.21)	2.03 (0.74–5.61)
Yes	215	36	41.1	0.94 (0.66–1.34)	0.96 (0.59–1.55)
HIV Ab+					
No	158	35	42.0	1.19 (0.82–1.71)	1.18 (0.70–1.97)
Yes	85	13	42.3	0.88 (0.49–1.58)	0.93 (0.41–2.13)
Obese					
No	179	35	43.9	1.08 (0.75–1.55)	1.15 (0.69–1.92)
Yes	64	13	38.0	1.09 (0.60–1.98)	1.00 (0.44–2.27)
Number of chronic comorbidities					
0	74	11	27.4	0.80 (0.42–1.50)	0.81 (0.36–1.84)
1	64	21	61.2	1.86 (1.13–3.04)	1.83 (0.85–3.97)
2	49	8	37.1	0.89 (0.42–1.88)	1.11 (0.37–3.32)
3+	56	8	44.6	0.77 (0.37–1.61)	0.76 (0.28–2.06)

1 Adjusted analysis adjusted for age, gender, race, education, cohort, drug use, cigarette use, alcohol use, depressive symptoms, employment, homelessness, HCV status, HIV status, obesity, number of comorbidities using propensity score weighting (see Analytic Approach).
Table A3
Comparison of injury and poisoning mortality rates during the COVID-19 pandemic vs before in a cohort of adults (n = 1630) who have injected drugs – participants with at least one study visit.

	Died Pre-Pandemic	Died During Pandemic	Incidence Rate Ratio, Pre- vs During Pandemic
	Count/ person-yrs	Count/ person-yrs	Crude/ Adjusted
All	109	18	0.90 (0.55-1.49)/ 0.79 (0.41-1.52)
Age Group			
18-49	46	10	0.98 (0.50-1.95)/ 0.90 (0.38-2.15)
50-59	50	8	0.98 (0.47-2.07)/ 0.88 (0.31-2.48)
60+	13	0	0 (0-NaN)/ 0 (0-NaN)
Gender			
Male	82	16	1.06 (0.62-1.82)/ 0.94 (0.46-1.94)
Female	27	2	0.41 (0.10-1.72)/ 0.39 (0.07-2.14)
Race			
Not Black	35	6	0.74 (0.31-1.76)/ 0.71 (0.25-2.00)
Black	74	12	0.95 (0.52 - 1.75)/ 0.95 (0.40-2.24)
Education			
Less than high school	52	11	1.20 (0.63-2.30)/ 1.14 (0.45-2.88)
High school or more	57	7	0.65 (0.29-1.42)/ 0.55 (0.21 - 1.44)
Recruitment Cohort			
All other recruitment	66	11	1.12 (0.59-2.12)/ 1.16 (0.45-3.00)
Cohort 2015-2018	43	7	0.67 (0.27-1.34)/ 0.58 (0.23-1.50)
Any illicit drug use			
No illicit drug use	33	5	0.91 (0.36-2.33)/ 0.76 (0.22-2.64)
Marijuana- only	4	0	0 (0-NaN)/ 0 (0-NaN)
Illicit drugs, no injecting	18	5	1.34 (0.50-3.61)/ 1.15 (0.29-4.64)
Injected drugs	54	8	0.80 (0.38-1.68)/ 0.77 (0.31-1.96)
Any cigarettes			
No	13	2	0.88 (0.20-3.92)/ 0.74 (0.10-5.29)
Yes	96	16	0.90 (0.53-1.53)/ 0.81 (0.41-1.61)
Any alcohol			
No	44	10	1.22 (0.61-2.42)/ 0.94 (0.38-2.34)
Yes	65	8	0.69 (0.33-1.43)/ 0.66 (0.26-1.67)
Elevated depressive symptoms			
No	77	14	1.00 (0.57-1.77)/ 0.88 (0.41-1.89)
Yes	32	4	0.67 (0.24-1.9)/ 0.59 (0.16-2.09)
Employed			
No	98	16	0.89 (0.52-1.51)/ 0.80 (0.40-1.61)
Yes	11	2	1.02 (0.23-4.59)/ 0.77 (0.11-5.31)
Homeless			
No	91	14	0.87 (0.49-1.52)/ 0.78 (0.37-1.65)
Yes	18	4	0.35 (0.10-3.03)/ 0.39 (0.24-3.33)
HCV Ab+			
No	19	7	1.84 (0.77-4.37)/ 1.48 (0.45-4.93)
Yes	90	11	0.69 (0.37-1.28)/ 0.62 (0.28-1.36)
HIV Ab+			
No	80	13	0.87 (0.49-1.57)/ 0.74 (0.35-1.56)
Yes	29	5	0.99 (0.38-2.57)/ 1.01 (0.26-3.90)
Obese			
No	81	15	1.02 (0.59-1.77)/ 0.93 (0.45-1.95)
Yes	28	3	0.58 (0.17-1.89)/ 0.45 (0.11-1.88)
Number of chronic comorbidities			
0	44	7	0.85 (0.38-1.90)/ 0.78 (0.28-2.15)
1	29	5	0.98 (0.38-2.52)/ 0.85 (0.24-2.98)
2	17	3	0.96 (0.28-3.28)/ 1.17 (0.19-7.20)
3+	19	3	0.85 (0.25-2.87)/ 0.67 (0.14-3.20)

1Adjusted analysis adjusted for age, gender, race, education, cohort, drug use, cigarette use, alcohol use, depressive symptoms, employment, homelessness, HCV status, HIV status, obesity, number of comorbidities.

Table A4
ICD-10 Codes present in study sample by analytic cause of death category.

Cause of Death Category	ICD-10 Codes Present in Study Sample	
Chronic	B182; C099; C140; C159; C189; C220; C229; C259; C329; C349; C445; C479; C509; C566; C64; C659; C719; C776; C793; C820; C859; C900; D868; E112; E141; E142; E144; E145; E147; E149; E854; F018; F030; F078; F101; F119; F120; F219; F250; F251; F340; F420; F439; F469; F489; F500; F516; F532; F564; F672; F678; F739; F779; F839; F939; F440; F441; F444; F445; F478; K255; K703; K709; K729; K746; K769; N185; N19	
Infectious	A047; A048; A19; A499; B201; B203; B207; B208; B218; B219; B220; B222; B227; B232; B238; B24; C539; E13; J110; J123; J151; J154; J189; J841; K659; M866; M869	
Injury or Poisoning	F101; F109; F11; F19; F190; F191; F192; F193; F194; F196; F197; F198; F199; F201; W10; W101; W102; W193; X304; X544; X599; X70; X74; X95; X97; X99; Y09; Y091; Y11; Y12; Y14	
Other Causes of Death	E46; E785; E872; E877; E989; G931; G934; G613; G619; G629; G710; G690; K567; K631; K635; K819; K859; K922; N0; O961; R99	Occurring in This Cohort: COVID-19
	U071	
National Center for Health Statistics. (2022b). National vital statistics system, mortality 1999-2020 on CDC wonder online database, released in 2021. data are from the multiple cause of death files, 1999-2020, as compiled from data provided by the 57 vital statistics jurisdictions through the vital statistics cooperative program. http://wonder.cdc.gov/vscd-icd10.html

Products—Vital Statistics Rapid Release— Provisional Drug Overdose Data. (2021, October 6). https://www.cdc.gov/nchs/ncds/rvss/vsr/drug-overdose-data.htm

R Core Team. (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/

Russell, C., Ali, F., Nafeh, F., Rehm, J., LeBlanc, S., & Elton-Marshall, T. (2021). Identifying the impacts of the COVID-19 pandemic on service access for people who use drugs (PWUD): A national qualitative study. Journal of Substance Abuse Treatment, 129, Article 108374. 10.1016/j.jstat.2021.108374.

Saloner, B., Parish, K., Ward, J. A., DiLaura, G., & Dolovich, S. (2020). COVID-19 cases and deaths in federal and state prisons. Jama, 324(6), 602-603. 10.1001/jama.2020.12528.

Sato, T., & Matsuyama, Y. (2003). Marginal structural models as a tool for standardization. Epidemiology (Cambridge, Mass.), 14(6), 680-686.

Sun, J., Mehta, S. H., Astemborski, J., Figgott, D. A., Genberg, B. L., Woodson-Adu, T., et al., (2021a). Mortality among persons who inject drugs: A prospective cohort followed over three decades in Baltimore, Maryland, USA. Addiction. 10.1111/add.15659.

Sun, J., Patel, R. C., Zheng, Q., Madhira, V., Olex, A. L., & Islam, J. Y. National COVID Cohort Collaborative (N3C) Consortium. (2021b). COVID-19 disease severity among people with HIV infection or solid organ transplant in the United States: A nationally-representative, multicenter, observational cohort study. MedRxiv: The Preprint Server for Health Sciences 2021.07.26.21261028. 10.1101/2021.07.26.21261028.

Villano, S. A., Vlahov, D., Nelson, K. E., Lyles, C. M., Cohn, S., & Thomas, D. L. (1997). Incidence and risk factors for hepatitis C among injection drug users in Baltimore, Maryland. Journal of Clinical Microbiology, 35(12), 3274-3277. 10.1128/jcm.35.12.3274-3277.1997.

Vlahov, D., Anthony, J. C., Munoz, A., Margolick, J., Nelson, K. E., & Cen- tano, D. D. (1991). The ALIVE study, a longitudinal study of HIV-1 infection in intravenous drug users: Description of methods and characteristics of participants. NIDA Research Monograph, 109, 75–100.

Wakeham, S. P., & Barnett, M. L. (2018). Primary care and the opioid-overdose crisis—buprenorphine myths and realities. New England Journal of Medicine, 379(1), 1-4. 10.1056/NEJMp1802741.

Wakeham, S. E., Green, T. C., & Rich, J. (2020). An overdose surge will compound the COVID-19 pandemic if urgent action is not taken. Nature Medicine, 26(6), 819–820. 10.1038/s41591-020-0898-0.

Wang, H., Paulson, K. R., Peese, S. A., Watson, S., Comfort, H., Zheng, P., et al., (2022). Estimating excess mortality due to the COVID-19 pandemic: A systematic analysis of COVID-19-related mortality, 2020–21. The Lancet, 399(10334), 1513–1536. 10.1016/S0140-6736(21)02796-3.

Wu, J., Mathaa, M., Maman, M. A., Rashid, M., K Tongapante, E., & Deanfield, J. E. (2021). Place and underlying cause of death during the COVID-19 pandemic: Retrospective cohort study of 3.5 million deaths in England and Wales, 2014 to 2020. Mayo Clinic Proceedings, 96(4), 952–963. 10.1016/j.mayocp.2021.02.007.

Yilmazkuday, H. (2021). Stay-at-home works to fight against COVID-19: International evidence from Google mobility data. Journal of Human Behavior in the Social Environment, 31(1–4), 210–220. 10.1080/10891359.2020.1845903.