Benign metastasizing pleomorphic adenoma in liver mimicking synchronic metastatic disease from colorectal cancer: a case report with emphasis on imaging findings

Victoria Solveig Young¹, Ellen Viktil¹, Else Marit Løberg² and Tone Enden¹

Introduction

Benign metastasizing pleomorphic adenoma (BMPA) is a rare condition that occurs in patients with a prior history of pleomorphic adenoma (PA) (1,2). PA is the most common neoplasm of the salivary glands and is generally considered a benign tumor. By definition, BMPA is characterized by the presence of one or more foci of histologically benign pleomorphic adenoma outside the salivary glands. Most metastases from PA occur in patients that have been surgically treated one or more times, and a hypothesis is that the tumor spreads by vascular implantation of tumor cells during the surgical procedure, followed by hematogenous dissemination most commonly to bone, but also to the head, neck, and lung (1,2). There is often a long time interval, reportedly up to 51 years (1), between the diagnosis of a primary pleomorphic adenoma and the detection of metastases, and a prior history may be crucial in suggesting the correct diagnosis.

Hepatic metastases are extremely rare and we have found only one case report on imaging of BMPA to the liver (3), and to our knowledge, the imaging characteristics of multiple BMPA of the liver have previously not been described.

Keywords

Pleomorphic adenoma, benign, cystic liver metastasis, ultrasound, computed tomography (CT), magnetic resonance imaging (MRI)

Date received: 6 May 2015; accepted: 8 June 2015
Case report

A 65-year-old woman with no previous history of malignant disease was referred to our university hospital with a newly diagnosed invasive adenocarcinoma of the rectosigmoidum, stage III. A contrast-enhanced computed tomography (CT) scan of the abdomen revealed one sub-capsular lens-shaped hypodense lesion with a maximum diameter of 6.0 cm in segment VII, and five smaller lesions of 0.5–2.0 cm scattered in the parenchyma (Fig. 1). The smaller lesions were oval and/or lobulated in shape, some with irregular outlines. The lens-shaped lesion had pre-contrast attenuation in the range of 30–36 HU, while the 1.0–2.0 cm lesions were 23–44 HU (Fig. 1a), indicating a content of protein-rich fluid of all six lesions. Following injection of intravenous contrast none of the lesions showed enhancement in the arterial (Fig. 1b), the portal venous (Fig. 1c), or the late phase (Fig. 1d). To further evaluate whether the lesions could represent hemorrhagic/inflammatory cysts or mucinous/necrotic metastases from the rectosigmoid tumor, both ultrasound (US) and magnetic resonance imaging (MRI) were performed.

An US of the liver with and without intravenous contrast (SonoVue®) showed hypoechogenic, lobulated, and/or oval lesions with slightly irregular borders and with posterior echo enhancement indicating fluid content (Fig. 2a). Except for the smallest lesions, central septations were displayed. No convincing contrast enhancement was observed (Fig. 2b). The lesions were interpreted as “complicated cysts” or metastases with necrosis or a mucinous content, and to be in line with the CT findings.

To evaluate the presence of additional lesions an MRI exam using the liver specific MRI contrast agent super-paramagnetic iron oxide (SPIO) was performed. SPIO accumulates in the reticuloendothelial system (RES) of the liver, while the cells of most malignant liver lesions do not contain RES. The exam detected another six sub-centimeter lesions; all 11 lesions showed high signal relative to liver parenchyma on T2-weighted (T2W) sequences (Fig. 3a), and low signal on T1-weighted (T1W) sequences, indicating high water content. In addition the MRI confirmed the previous imaging findings of a cystic, lobulated appearance with central septations. Accordingly the suspicion of cystic metastases with necrosis or mucin content were maintained (Fig. 3b).

The patient was discussed at the liver and rectum cancer multidisciplinary teams, which both concluded that the lesions most likely represented mucinous metastases from the stage III tumor. The patient subsequently received chemotherapy and radiation therapy followed by surgery of the rectosigmoid cancer.

Fig. 1. A four phase CT scan through the liver. (a) Pre-contrast axial image showing two irregular low density (40 HU) lesions of 2 cm in segments II and VII. None of the lesions showed contrast enhancement. (b) Arterial phase. (c) Portovenous phase. (d) Late phase (5 min).
Fig. 2. Ultrasound of the liver with and without contrast. (a) Grayscale ultrasound showing a hypodense lesion in segment IV with an irregular border and a posterior echo-shadow indicating fluid content. (b) Contrast-enhanced ultrasound of the same lesion demonstrated no enhancement or washout in the arterial (not shown) or portal phase.

Fig. 3. MRI of the liver with and without SPIO. (a) Axial T2W sequence with fat suppression showing two hyper intense, lobulated cyst-like lesions in segments II and IV, and one 6 cm sub-capsular lens-shaped lesion in segment VII. (b) Following SPIO four additional sub-centimeter lesions were detected.
A routine post-treatment evaluation 3 months later included a contrast-enhanced abdominal CT and MRI of the rectum. Both exams showed significant regression of the rectal tumor, while the liver lesions had not changed in size, numbers, or appearance. For a diagnostic reassessment a percutaneous ultrasound-guided 18 G biopsy of one of the >1 cm lesions in liver segment II was obtained. The biopsy did not show features of a metastasis of colorectal cancer, but a chondromyxoid stroma and strands of small uniform epithelial cells resembling irregular glandular structures suggesting a pleomorphic adenoma. And indeed, retrieval of a previous specimen from a superficial parotidectomy performed 20 years earlier on this patient, and still stored at our laboratory, revealed the same histopathologic pattern as the biopsy of the focal liver lesion (Fig. 4).

Discussion

Initially, the lesions of our patient were interpreted as cystic metastases, on the basis of the patient’s primary tumor, but since there were no morphologic changes following chemotherapy, it was reasonable to consider other (rare) differential diagnostic possibilities, and a biopsy was performed.

Most benign and metastatic liver lesions in cancer patients can be characterized with routine multimodality imaging with CT, US, and MRI, and a percutaneous biopsy is usually not required for a conclusive assessment and treatment decision (4-6). The finding of cyst-like hepatic lesions in a patient with a history of colorectal adenocarcinoma creates a diagnostic dilemma for both clinicians and radiologists. In our case none of the lesions showed contrast enhancement suggesting that common benign liver lesions like adenoma, Focal nodular hyperplasia (FNH), or hemangioma were unlikely. Correspondingly, hypo- and hypervascular metastases were also excluded. The patient had no symptoms or signs of infection; hence multiple hepatic abscesses were also considered unlikely. There was no previous history of liver disease and so cystic hepatocellular carcinoma and biliary cystic neoplasms as cystadenoma and cystadenocarcinoma were less likely. There was no previous medical history of infection with tapeworm Echinocococcus so hydatid cysts were considered very unlikely (4–6).

Most commonly cystic lesions in the liver represent simple liver cysts, and the incidence ranges up to 18–20% (4,7). Sonographically simple cysts present as anechoic lesions with a posterior acoustic enhancement, smooth borders and no septations. On CT the cysts were interpreted as water-attenuating lesions (<20 HU) with no visible wall and no contrast enhancement on CT. Cysts present with low signal intensity on T1W images and high signal intensity on T2W images and with no enhancement after contrast administration. Rarely, simple cysts appear as “complicated” cysts due to hemorrhage or inflammation, and are accordingly difficult to differentiate from cystic metastases, which remained as a possible differential diagnosis (5,6). Cystic metastases from a colorectal cancer are rare; a retrospective study from Sugawara found cystic colorectal metastases in 1.8% (8). On US they showed a heterogenous hypoechoic or anechoic pattern, and all lesions showed posterior echo enhancement, as in our case. On unenhanced CT, the lesions were seen as low-density masses with a predominantly homogeneous attenuation and the densities were in the range of 0–34 HU. The contours of the lesions were irregular in all but one case. On enhanced CT, the central portion of each tumor remained unenhanced and in two patients there was observed slight enhancement in the peripheral zones. One patient had lesions with septations, as in our case.

The imaging features of pleomorphic adenoma of the salivary gland is well described (9), and the previous
term, “mixed tumor” correlates well to both the histo-
logic heterogeneity and the varying imaging patterns.
Imaging findings may depend on the tumor size and the
content of myxoid substance. It has been described that
smaller adenomas appear more homogeneous and may
enhance more strongly after contrast medium adminis-
tration on both CT and MR (9). In our case both the
CT, US, and MRI features showed no contrast
enhancement reflecting the histopathology of a high
myxoid (hypocellular) content of the lesions.

We have found only one case report of imaging of a
benign pleomorphic adenoma with a metastasis to the
liver (3). That patient presented with persistent abdom-
inal pain and a prior history of a superficial parotidect-
omy 30 years earlier. US showed a large complex
hyperechoic cyst with solid components. CT showed a
large (11 × 16 cm) partly septated cyst. PET-CT showed
a large hypermetabolic hepatic lesion with pathologic
FDG uptake in both the solid and the septated compo-
nents of the cyst. In this case the tumor was removed
and microscopy revealed “epithelial cells in abundant
chondromyxoid stroma with no features of malig-
nancy”. As in our case report, there was no evidence
of local recurrence.

With regard to other abdominal organs, imaging of a
BMPA to the kidney has been described (10). The
BMPA represented as a solitary renal mass with hyper-
attenuation on CT and with peripheral calcifications. No
cystic appearing components were observed. There was
a history of local recurrence requiring multiple resec-
tions, 6 years prior. All in all, none of these two other
reports of abdominal MBPA found morphological simi-
larities on multimodality imaging with our case.

In conclusion, BMPA to the liver is extremely rare
with no established characteristics on multimodality
imaging. The radiologic appearance may mimic cystic
metastases from colorectal cancer as illustrated in this
report. In spite of aiming at a biopsy-less diagnostic
workup, a percutaneous biopsy will be required in
rare cases like this. Finally, a prior history of a pleo-
orphic adenoma may be crucial and suggestive
of BMPA.

Conflict of interest
None declared.

References
1. Reiland MD, Koutlas IG, Gopalakrishnan R, et al.
Metastasizing pleomorphic adenoma presents intraorally:
a case report and review of the literature. J Oral
Maxillofac Surg 2012;70:e531–e540.
2. Rodriguez-Fernandez J, Mateos-Micas M, Martinez-
Tello FJ, et al. Metastatic benign pleomorphic adenoma.
Report of a case and review of the literature. Med Oral
Patol Oral Cir Bucal 2008;13:E193–E196.
3. Singhal A, Shrago SS, Li SF, et al. A hepatic metastasis
from pleomorphic adenoma of salivary gland: an unusual
presentation. Hepatogastroenterology 2010;57:330–333.
4. Gore RM, Newmark GM, Thakrar KH, et al. Hepatic
incidentalomas. Radiol Clin North Am 2011;49:291–322.
5. Del Frate C, Pozzi-Mucelli R, Brancatelli G, et al. Cysts
and cystic-like lesions. In: Lencioni R, Cioni D,
Bartolozzi C (eds) Focal Liver Lesions: Detection,
Characterization, Ablation. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2005. pp.85–100.
6. Mortele KJ, Ros PR. Cystic focal liver lesions in the
adult: differential CT and MR imaging features.
Radiographics 2001;21:895–910.
7. Carrim ZI, Murchison JT. The prevalence of simple renal
and hepatic cysts detected by spiral computed tomog-
raphy. Clin Radiol 2003;58:626–629.
8. Sugawara Y, Yamamoto J, Yamasaki S, et al. Cystic liver
metastases from colorectal cancer. J Surg Oncol 2000;74:
148–152.
9. Thoeny HC. Imaging of salivary gland tumours. Cancer
Imaging 2007;7:52–62.
10. Vivian MA, Sahni VA, Lowe AC, et al. Benign metasta-
sizing pleomorphic adenoma presenting as a solitary
kidney mass: imaging features. Urology 2012;80:e17–e18.