Vapor Recovery Unit of Gasoline from the Tanks of Filling Stations with Gas-Dynamic Cooling

V S Vlasenko¹, A A Karakozov¹, A A Perveev¹

¹Oil & Gas and petrochemical industry department, Engineering School of Far Eastern Federal University, Sukhanova st. 8, Vladivostok, Russian Federation

E-mail: vkt_vl@mail.ru

Abstract. This study presents a gasoline vapor recovery unit of a gas station, which is based on a vortex tube and a shell-and-tube heat exchanger. The calculation of system is made and technological scheme is presented. Shown effectiveness of the device and drawn conclusions about its rationality

1. Introduction

The evaporation of gasoline from underground tanks is undesirable both economically and ecologically. Part of this evaporation comes from a “strong breathing” [1-2].

The “strong breathing” of a reservoir is a process of vapor-aerial mixture (VAM) displacement during filling operations. VAM in tank is compressed by incoming gasoline until pressure reaches operating pressure of breathing valve. That is the point of “exhale”. If VAM pressure reaches some limit, for example 2000 Pa, the tank can rupture [2-4].

A number of recuperation system has been studied recently: condensation by cooling [5], adsorption [6-7], absorption [8] and membrane technologies [9]. This study proposes vapor cooling recuperation system to reduce “strong breathing” evaporation losses.

Systems with active gas-dynamic based on Ranque-Hilsch vortex tube effect have acceptable specific effectiveness. Such systems divide inlet flow into two flows: cold flow and hot flow [10].

Vortex tubes in recuperation systems have several advantages: quick access to operation mode, absence of dangerous coolants, compactness, few moving parts. The simplicity of the design determines its reliability, additionally the system allows for several processes simultaneously (heating, cooling and phase separation).

Figure 1 presents the studied system. In order to condense vapor from an underground tank 1, the vortex tube 2 must be combined with a heat exchanger 3, which will be installed on the breathing valve 4 through the flanges 8. Heat is removed by blowing the heat exchanger tube system with cold flow generated in the vortex tube, into which air is supplied at ambient temperature from the compressor 10. Passing through the shell space in the heat exchanger, the cold flow goes back into the atmosphere.

In case of emergency, for example, blockage of the heat exchanger tubes, two pressure sensors 9 and bypasses 6 are installed to bypass the heat exchanger. If the outlet sensor reads below the heat exchanger inlet sensor, the telemetry system recognizes this situation as blockage and opens heat exchanger bypass 6 and the vortex tube bypass 7 while closing outlet hot flow valve 11. Overpressure
is released through the breather valve and heat exchanger heated to eliminate icing. In this mode system works until the pressure sensor readings are equal.

2. Goals and objectives
The main goal of the study is to analyze vortex tube (figure 1) vapor recuperation system efficiency. The objectives were to experimentally determine vortex tube temperature efficiency; calculate heat exchanger and calculate phase transition of vapor system.

![Figure 1. Recuperation system.](image)

1- underground horizontal tank; 2- vortex tube; 3-heat exchanger; 4- breathing valve; 5-telemetry and automation system; 6,7- bypasses; 8-flanges; 9- pressure sensor; 10-compressor; 11-electric valve; CF-cold flow; HF-hot flow.

3. Materials and methods

3.1. Vortex tube
Temperature efficiency of vortex tube was studied on vortex installation of Oil & Gas and petrochemical industry department of FEFU [11]. Figure 2 represents studied countercurrent vortex tube. Parameters of the system were: inlet air to cold air pressure ratio $\pi = 5$ and $\pi = 7$; inlet air mass flow 32 kg/h and 62 kg/h accordingly; ambient air temperature 294.4 K.

3.2. Heat exchanger calculation
Since there is a known mass of hydrocarbons that must be condensed over a period of time [12], the task is to determine the parameters of the heat exchanger.

In this study shell-and-tube heat exchanger is proposed to use in the system. Heat carriers are: cooling air in the shell and VAM in tubes.

There are many different models for calculating heat exchangers, including modifications of standard models [13-19]. The mathematical model of the heat exchanger includes the basic equation of heat transfer, the equation of conservation of mass and heat balance, the criterial equations of fluid properties. Since the heat transfer in the radial direction is small, it is possible to make a number of assumptions [16]:
- One dimensional flow, ignoring flow diffusion;
- Radial direction heat transfer is negligible.

To calculate the thermal characteristics of the heat exchanger, the UniSim Design R451 program was used [20-21]. The geometric parameters of the heat exchanger were set according to the size of
The breathing valve of the gas station tank. For this reason, the diameter of the shell of the heat exchanger was chosen to be 50 mm. The heat exchanger was calculated using the Steady State Rating model. Steady State Rating model allows to calculate the duty of the heat exchanger through its geometric parameters [20-21].

3.3. Hydrocarbon condensation calculation

The Gasoline vapor predominantly consists of light hydrocarbons with carbon chain length of C2-C7, including aromatic hydrocarbons (HC) such as benzene, toluene [22].

Table 1 shows fraction composition of VAM examined in this study. It consists of 34.406% HC and 65.594% air [23]. The fraction of condensed HC was calculated via Unisim Design R451 with subprogram “Peng-Robinson equation of state” which is widely used to describe HC state, especially for alkanes and their mixtures. Figure 3 shows technological scheme in UniSim Design.

Figure 2. Experimental countercurrent vortex tube.

Figure 3. Calculation scheme for determining the efficiency of condensation of HC.
The calculations were made with assumption that 1 m\(^3\) of gasoline displace about 0.88 kg of VAM [12]. In this work loading of 10 m\(^3\) of gasoline is studied, so the gasoline displaces 8.8 kg of VAM. According to table 1, such mixture contains 2.94 kg of HC.

Table 1. Fraction composition of VAM.

Component	Volume fraction, %	Mass fraction, %
Methane	0.0699	0.0315
Ethane	0.3677	0.3110
Ethylene	0.0279	0.0220
Propane	1.5029	1.8625
Propylene	0.0055	0.0065
Butane	4.5792	7.4790
Isobutane	3.5154	5.7415
Pentane	4.3723	8.8650
Hexane	2.7725	6.7145
Heptane	0.3802	1.0705
Octane	0.0051	0.0165
Nonane	0.0010	0.0035
Benzene	0.5228	1.1475
Toluene	0.0286	0.0740
Ethylbenzene	0.0191	0.0570
Xylene	0.0012	0.0035
Air	81.829	66.594

VAM molar mass is \(M = 35.59\) kg/kmole; density \(\rho = 1.49\) kg/m\(^3\); specific heat capacity \(c_p = 1390.32\) J/(kg·K).

4. Results and discussion

4.1. Vortex tube experimental data
Figures 4 and 5 show the characteristics of the studied countercurrent vortex tube. Figure 4 shows temperature difference between the cold flow as a function of cold flow fraction. Figure 5 shows cooling capacity as a function of cold flow fraction.

![Figure 4](attachment:image.png)

Figure 4. Cold flow temperature difference as a function of cold flow ratio at the pressure ratio of \(\pi = 5\) and \(\pi = 7\).
The following parameters were achieved: the maximum temperature difference of the investigated vortex tube for cold flow 29.4 K at the cold flow fraction of $\mu = 0.55$ and pressure ratio of $\pi = 5$; the maximum temperature difference of the cold flow 32.7 K at the cold flow fraction of $\mu = 0.42$ and pressure ratio of $\pi = 7$ (figure 4). The maximum cooling capacity is 603.5 kJ/h at the cold flow fraction of $\mu = 0.65$ and $\pi = 5$; the maximum cooling capacity is 1068 kJ/h at the cold flow fraction of $\mu = 0.66$ and $\pi = 7$ (figure 5). The obtained data were used for further mathematical modeling in UniSim Design R451.

4.2. Heat exchanger design and parameters
The following calculation results were obtained for the heat exchanger in UniSim Design R451: shell diameter 50 mm, length of the shell and tubes 1.5 meters, number of tubes per shell 19 pieces, tube pitch 1 mm, baffle spacing 50 mm, baffle cut 20%. The heat exchange area of this construction was 0.716 m^2. The heat transfer coefficient of the heat exchanger during the operation of the vortex tube at the pressure ratio of $\pi = 7$ and maximum cooling capacity was $UA = 193.5 \text{kJ/(h} \cdot \text{K)}$. The heat transfer coefficient of the heat exchanger during the operation of the vortex tube at the pressure ratio of $\pi = 5$ and maximum cooling capacity was $UA = 169.5 \text{kJ/(h} \cdot \text{K)}$.

4.3. Condensed hydrocarbon fraction
Figure 6 shows results of HC condensate content as a function of ambient air temperature at the different pressure ratios. At the pressure ratio of $\pi = 5$ and temperature difference of 28 K the mass flow of cold air was 22 kg/h. At the pressure ratio of $\pi = 7$ and temperature difference of 29.2 K the mass flow of cold air was 35 kg/h. At the ambient air temperature above 300 K system does not provide HC vapor condensation at all. The condensation efficiency increases with decreasing ambient temperature and reaches its maximum at the temperature of 273 K (42% of hydrocarbons are condensed by mass at $\pi = 7$ and 32.5% at $\pi = 5$). A further decrease in ambient temperature leads to a decrease in condensation efficiency. This is due to the fact that the initial mixture shown in Table 1 varies. Part of high-boiling hydrocarbons does not go into the vapor phase due to low temperatures and vapor with a large number of non-condensable components, such as air, methane, ethane, etc., enters the heat exchanger.
6. Conclusion

The paper studied the process of condensation of gasoline vapors using a countercurrent vortex tube in a complex in a shell-and-tube heat exchanger.

The results of an experimental study of countercurrent vortex tube are presented. Achieved parameters were of the studied vortex tube: maximum temperature difference for the cold flow 29.4 K at the cold flow fraction of $\mu = 0.55$ and pressure ratio of $\pi = 5$; the maximum temperature difference of the cold flow 32.7 K at the cold flow fraction of $\mu = 0.42$ and pressure ratio of $\pi = 7$ (figure 4). The maximum cooling capacity is 603.5 kJ/h at the cold flow fraction of $\mu = 0.65$ and $\pi = 5$; the maximum cooling capacity is 1068 kJ/h at the cold flow fraction of $\mu = 0.66$ and $\pi = 7$ (figure 5).

The heat exchanger was calculated in the UniSim Design R451 software package using the Steady State Rating model. The main geometrical parameters of the heat exchanger are calculated. The heat exchange area of this structure was 0.716 m2. The heat transfer coefficient of the heat exchanger during the operation of the vortex tube at the pressure ratio of $\pi = 7$ and maximum cooling capacity was $UA = 193.5$ kJ/(h·K). The heat transfer coefficient of the heat exchanger during the operation of the vortex tube at the pressure ratio of $\pi = 5$ and maximum cooling capacity was $UA = 169.5$ kJ/(h·K).

It has been discovered that the efficiency of condensation of hydrocarbons by a countercurrent vortex tube is directly related to the ambient temperature and the cooling capacity provided by the vortex tube.

The proposed system produces maximum efficiency at an ambient temperature of 273 K (42% of hydrocarbons are condensed by mass at $\pi = 7$ and 32.5% at $\pi = 5$). At temperatures above 300 K, the system does not provide condensation of vapors at all. For these conditions, devices providing greater cooling capacity and temperature differential are required.

Further studies of the presented system in the laboratory are planned.

6. References

[1] Sergio M, Graciela A, Monica R and Katia M 2012 The impact of BTEX emissions from gas stations into the atmosphere Atmos. Pollut. Res. 3 163–69
[2] Ronald Z, Florian K and Ulrich K 2018 Long-term emission measurements at a floating roof tank for gasoline storage J. Loss. Prevent. Proc. 55 152–61
[3] George A and Carol S 1997 Vapor pressure equations for characterizing automotive fuel behavior under hot fuel handling conditions J. Fuels Lubr. 106 572–81
[4] Wang Z, Huang W, Ji H and Zhang Q 2017 Numerical simulation of vapor diffusion and emission in loading gasoline into dome roof tank Shiyou Xuebao, Shiyou Jiagong/Acta Petrolei Sinica (Petroleum processing section) 33 371–378
[5] Shi L and Huang W 2014 Sensitivity analysis and optimization for gasoline vapor condensation recovery Process Saf. Environ. Prot. 92 807–14
[6] Liu Y, Ritter J A and Kaul B K 2000 Simulation of gasoline vapor recovery by pressure swing adsorption Sep. Purif. Technol. 20 111–27
[7] Zhang X, Gao B, Creamer A E, Cao C and Li Y 2017 Adsorption of VOCs onto engineered carbon materials: A review J. Hazard. Subst. 338 102–23
[8] Roizard D, Lapicque F, Favre E and Roizard C 2009 Potentials of pervaporation to assist VOC's recovery by liquid absorption. Chem. Eng. Sci. 64 pp 1927–35
[9] Yi S and Wan Y 2017 Volatile organic compounds (VOCs) recovery from aqueous solutions via pervaporation with vinyltriethoxysilanegrafted-silicalite-1/polydimethylsiloxane mixed matrix membrane Chem. Eng. J. 313 1639–46
[10] Subudhi S & Sen M 2015 Review of Ranque–Hilsch vortex tube experiments using air Renew. Sust. Energ. Rev. 52 172–78
[11] Vlasenko V S, Slesarenko V V, Gulkov A N, Zhidkov D A 2017 Experimental Investigation of Vortex Tubes with Laval Nozzle Proc 27th Int Offshore and Polar Engineering Conf (USA) (San Francisco: International Society of Offshore and Polar Engineers) vol 1 721–28
[12] EPA 1978 Control Techniques for Volatile Organic Emission: from Stationary Sources (USA: Environmental Protection Agency) 290
[13] Allen B and Gosselin L 2008 Optimal geometry and flow arrangement for minimizing the cost of shell- and- tube condensers Int. J. Energy. Res. 32 958–69
[14] Ali A and Reza M 2019 Shell and tube heat exchanger optimization using new baffle and tube configuration Appl. Therm. Eng. 157 Article 113736
[15] Feng H, Chen L, Wu Z and Xie Z 2019 Constructal design of a shell-and-tube heat exchanger for organic fluid evaporation process Int. J. Heat Mass Transf. 131 750–756
[16] Xuan S, Aute V and Radermacher R 2006 Generic Dynamic Model for Heat Exchangers Int. Refrigeration and Air Conditioning Conf. R094
[17] Shah R K and Sekulic D P 2003 Fundamentals of Heat Exchanger Design (New Jersey: Wiley)
[18] John Hellborg 2017 Modelling of shell and tube heat exchangers (Lund: Lund University)
[19] Vera-García F, García-Cascales J R, Gonzálvez-Maciá J, Cabello R, Llopis R, Sanchez D, and Torrella E 2010 A simplified model for shell-and-tubes heat exchangers: Practical application Appl. Therm. Eng. 30 1231–41
[20] Honeywell 2009 UniSim® Design Tutorials and Applications (Canada: Honeywell)
[21] Aspen Technology inc. 2005 HYSYS® 2004.2 Operations Guide (USA: Aspen Technology inc.)
[22] Pezolt D J, Collick S J, Johnson H A and Robbins L A 1997 Environ. Prog. 1 16–19
[23] Zhu L, Chen J, Liu Y, Geng R and Yu J 2012 Experimental analysis of the evaporation process for gasoline J. Loss. Prev. Process. Ind. 25 916–22