Influences of Perceived Organizational Support on the Safety Management Performance of Airline

Fuqiang Qi1*, Ruijun Li2 and Ziruo Jia2

1 General Aviation College, Civil Aviation University of China, Tianjin, 300300, China
2 Department of Safety Engineering, Civil Aviation University of China, Tianjin, 300300, China

*Corresponding author’s e-mail: fqqi@cauc.edu.cn

Abstract. For the sake of exploring influences of perceived organizational support (POS) on safety management performance (SMP), and improving the level of SMP, the connotation indicators of POS and SMP in Airlines were set up, and the hypothesis model of POS and SMP was proposed. The 280 workers in 12 Airlines in China were enquired by means of questionnaires and the structural equation model (SEM) was used to verify the hypothesis. Results show that there is a significant positive correlation of the organizational identification of employee’s value with safety policy & target, safety risk management, safety supervision & measurement, safety culture, safety education & training, and downtrend of safety accidents. The organizational care of employee’s benefit is positively related to safety education & training, and the organizational support of employee’s work is also positively related to safety policy & objectives, and change of unsafe incidents. In safety management, the Airlines can improve their POS, especially organizational identification of staff value, to achieve high SMP.

1. Introduction

In civil aviation, the safety management has been as part of organizational management, and POS has become one of the important research topics in the field of safety management. Researches show that POS can affect the job attitude and job performance\cite{1-4}. Zhang\cite{5} indicates that different components of POS affect the miners’ unsafe behavior remarkably and enterprises can reduce the unsafe behavior of miners by improving the miners’ POS to improve coal mine safety management level. Liu\cite{6} illustrates that POS directly influence the employee’s job involvement and then influence the safety performance. Safety management work, as one of the works in an organization, is also influenced by POS. With the function of organization transiting information to employee, POS makes employee execute positive action which will influence safety management work to achieve high level of SMP. Therefore, it will be of great significance to clear-out the influence of POS on SMP aimed at improving both SMP and safety.

At present, when research on the influence of POS on SMP, the topics such as safety climate, safety culture are usually considered, but there is lack of the direct research on influence of POS. Griffin\cite{7} and Carol\cite{8} consider there is positive correlation between safety climate and safety involvement, and the safety climate and SMP influence each other. Fitzgerald\cite{9} and Glendon\cite{10} show there are the same characteristics of safety culture in different organization with high SMP, and safety culture directly influences the employee’s behavior and then influences the SMP. Ge...
zhihong[11] indicates there is correlation between POS and SMP in air control organizations, but the specific relationship is still needed to be made clearly. Though there are relative mature measurement scales for POS and SMP, the influence paths of POS to SMP, especially in civil aviation, are still needed to be found out.

With the purpose of exploring influences of POS on SMP and improving the level of SMP, the 280 workers in 12 Airlines are enquired by means of questionnaires and the structural equation model (SEM) was used to verify the hypothesis model. The specific influences of different components of POS on components of SMP are analyzed, which will provide new viewpoint for Airlines to improve their safety management.

2. Theory analysis and hypothesis model

2.1 Components of POS and SMP

Since the POS firstly put forward by Eisenberger, many researchers work on measurement of POS, influence factors of POS and influences of POS on work output. The POS compositied by three-dimensional mental structure is widely accepted, which includes the organizational identification of employee’s value, organizational care of employee’s benefit, and organizational support of employee’s work[12]. By the connotation analysis of POS, the sub-indexes under the three-dimensional indexes are determined as following, shown in Table 1.

First level indexes	Second level indexes
P1: organizational support of employee’s work	P1.1: superior support (SS)
(OSEW)	P1.2: workmate support (WS)
	P1.3: job resources support (JRS)
P2: organizational care of employee’s benefit	P2.1: salary and welfare support (SWS)
(OCEB)	P2.2: family care support (FCS)
	P2.3: personal health support (PHS)
P3: organizational identification of employee’s	P3.1: further learning support (FLS)
value (OIEV)	P3.2: job promotion support (JPS)
	P3.3: self-actualization support (SAS)

Both the safety management process and safety results reflect the stand or fall of SMP in an organization. Comparing with the SMS[13], the safety management process includes safety policy & objectives, safety risk management, safety supervision & measurement, and safety education & training. The results of safety management reflect in two aspects, namely safety culture and downturn of safety accidents. Table 2 shows the components of SMP.

First level indexes	Second level indexes
S1: safety policy & objectives (SPO)	S1.1: formulation of safety policy & objectives (FSPO)
	S1.2: communication of safety policy & objectives (CSPO)
	S1.3: suitability of safety policy & objectives (SSPO)
S2: safety risk management (SRM)	S2.1: planning of safety risk management (PSRM)
	S2.2: implementation of safety risk management (ISRM)
	S2.3: effectiveness of safety risk management (ESRM)
S3: safety supervision & measurement (SSM)	S3.1: planning of safety supervision & measurement (PSSM)
	S3.2: implementation of safety supervision & measurement (ISSM)
	S3.3: effectiveness of safety supervision & measurement (ESSM)
2.2 Hypothesis Model

The influence of POS on SMP is actually reflected in the influence of components of POS on the components of SMP. There are three components in POS and six components in SMP. Therefore, we can make 18 hypotheses as following. The Figure 1 shows the original hypothesis model.

H1-H6: The organizational support of employee’s work significantly correlates to components index (from S1 to S6) in SMP respectively.
H7-H12: The organizational care of employee’s benefit significantly correlates to components index (from S1 to S6) in SMP respectively.
H13-H18: The organizational identification of employee’s value significantly correlates to components index (from S1 to S6) in SMP respectively.

2.3 Analysis Method

A set of questionnaire is designed to enquire the safety manager in Airlines to discuss the correlation of POS and SMP. There are three parts in the questionnaire. First part is general information of the employee, second part is the scale of the components of POS and the third part is the scale of the components of SMP. All the measurement scales adopt Five Likert Scale. The 280 effective questionnaires are withdrawn from 12 Airlines in China. The SPSS is used to analyze data to verify the rationality of original model.

3. Data analysis

3.1 Reliability and Validity of the Scale
The coefficient of Cronbach’s α is used as reliability coefficient to test the internal consistency of the questionnaires. The reliability coefficient of the whole scale is 0.959, and the reliability coefficient of each sub-scale is above 0.7 shown in Table 3, which shows the achieved data is reliable and it meets the requirements of questionnaire design.

Latent variables	Numbers of observed variables	Results of Cronbach α
P1: OSEW	3	0.832
P2: OCEB	3	0.747
P3: OIEV	3	0.778
S1: SPO	3	0.826
S2: SRM	3	0.851
S3: SSM	3	0.871
S4: SET	3	0.853
S5: CUI	1	-
S6: SC	4	0.860

Table 4 shows the results of KMO and Bartlett tests. The Bartlett's sphericity test results show that the Kaiser-Meyer-Olkin Measure (KMO) under adequate sampling is 0.917, which means the data is very suitable for factor analysis. There are strong correlations between the observed variables.

KMO under adequate sampling	.917
Bartlett's sphericity test	
chi-square	1908.163
df	325
Sig.	.000

3.2 Fitting Analysis of the Model

3.2.1 Path coefficients. The path coefficient is the key factor to determine whether the original hypothesis model passes the test of significance. Using the AMOS software, the hypothesis correlations is verified and achieve the path coefficients of different variables. Table 5 shows the path coefficients. It can be seen that most significance factors are smaller than 0.01 (P < 0.01), for example, the path coefficient of S4: SET and P2: OCEB is 0.364, the Critical Ratio (CR) is 5.134, and the significance factors is smaller than 0.01, which means the path coefficients are significantly different with zero under 95% confidence. So there are significant correlations between the corresponding observed variations. Some path coefficients, for example, path coefficient of S6: SC and P1: OSEW, are not significantly different with zero. So these paths should be deleted from original hypothesis model.

Variables	Variables	Estimate	S.E.	C.R.	P	Label
S4: SET	<--- P2: OCEB	.364	.071	5.134	*** par_18	
S1: SPO	<--- P3: OIEV	1.556	.413	3.764	*** par_19	
S4: SET	<--- P3: OIEV	1.520	.410	3.705	*** par_20	
S6: SC	<--- P2: OCEB	.147	.048	3.079	.002 par_21	
S6: SC	<--- P3: OIEV	1.240	.349	3.555	*** par_22	
S6: SC	<--- P1: OSEW	.215	.086	2.512	.012 par_23	
S1: SPO	<--- P1: OSEW	.381	.098	3.905	*** par_24	
S2: SRM	<--- P1: OSEW	.250	.104	2.409	.016 par_28	
3.2.2 Assessment of fitting model. In SEM, the residual matrix is used to assess the fitting effects. The real variance covariance matrix S and theoretical variance covariance matrix Σ can be calculated. If the real variance covariance matrix S does not differ the theoretical variance covariance matrix Σ much, namely the elements of residual matrix is close to zero, the fitting effects is good. Table 6 shows the fitting indexes.

From table 6, it can be clearly seen that the absolute fitting indexes GFI (1.000) and RMR (0.000) and the relative fitting indexes NFI (1.000) and CFI (1.000) are very good, which shows the fitting effects of the model is very good.

Table 6. The fitting indexes

Absolute fitting indexes	Criterion	Results
CMIN	The smaller, the better	0.000
GFI	Greater than 0.9	1.000
RMR	Smaller than 0.05, the smaller, the better	0.000
SRMR	-	
RMSEA	-	
relative fitting indexes		
NFI	Greater than 0.9, the closer to 1, the better	1.000
TLI	-	
CFI	1.000	
Information indexes		
AIC	The smaller, the better	702.000
CAIC	-	

3.3 Adjustment of the Hypothesis Model and Results analysis

3.3.1 Adjusted model. The influence paths of latent variables of POS to the latent variables of SMP are various and the path coefficient of each path is not always desirable. So the poor fitting path coefficients should be moved out. The paths with negative path coefficient or path coefficient greater than 1 are deleted from hypothesis model. The influence paths with significance path coefficients are adjusted and then the main influence relationships between variables are achieved. After adjusting the original hypothesis model, the new path coefficients are achieved, shown in Figure 2.

Using Maximum Likelihood Estimation (MLE) method, the SEM fitting indexes are calculated, shown in Table 7. The CMIN and AIC in adjusted model are smaller than those in original model, which shows that the adjusted model is more fitting to observe data than original model.

Table 7. SEM fitting results

Fitting indexes	CMIN	RMR	GFI	NFI	CFI	AIC
original model	646.635	0.000	1.000	1.000	1.000	766.635
adjusted model	627.436	0.000	1.000	1.000	1.000	759.750
3.3.2 Results of Model Verification. Results show that the path coefficients of paths P1: OSEW to S1: SPO, P1: OSEW to S5: CUI, P2: OCEB to S4: SET, P3: OIEV to S1: SPO, P3 OIEV to S2: SRM, P3 OIEV to S3: SSM, P3 OIEV to S4: SET, P3 OIEV to S6: SC are significantly different with zero under 95% confidence. So these hypotheses are correct and other hypotheses are wrong. Therefore, the organizational identification of employee’s value is positively correlated to safety policy & target, safety risk management, safety supervision & measurement, safety culture, safety education & training, and downtrend of safety accidents. The organizational care of employee’s benefit is positively related to safety education & training, and the organizational support of employee’s work is also positively related to safety policy & objectives, and change of unsafe incidents.

4. Conclusions
The influence of POS on SMP is cleared out by using the SEM. The three components of perceived organizational support, especially the organizational identification of employee’s value, influence safety management performance most. In safety management in civil aviation, we can take some actions to improve the safety management performance.

Firstly, when promoting the organizational identification of employee’s value, we should pay attention to job promotion support, because its influence is bigger comparing with further learning support and self-actualization support. So organizations should provide job promotion ways to strengthen the perceived organizational support.

Second, the personal health support is an important aspect in organizational care of employee’s benefit. Sufficient medical insurance, health examination and other action can reflect the
organizational care of employee’s benefit, which will influence the performance of safety education & training.

Last, the key point of promoting the organizational support of employee’s work is good workmate climate. Workmates are not only the mutual trust partner in work, but also the object of safety observation and safety education. Friendly interpersonal relationship is beneficial to implement of safety management work.

Acknowledgments
This work was financially supported by the scientific research foundation project of by Civil Aviation University of China (No. 2013QD15S), the Young Teacher Foundation of Civil Aviation University of China (No. 10700601), and the Fundamental Research Funds for the Central Universities (No. 3122017053).

References
[1] Kraimer M L, Wayne S J, and Jaworski R A. Sources of support and expatriate performance: the mediating role of expatriate adjustment [J]. Personnel Psychology, 2001, 54(1):71-100.
[2] Chong H., White R E, and Prybutok V. Relationship among organizational support, JIT implementation and performance [J]. Industrial Management & Date Systems, 2001, 101 (6): 273-280.
[3] Wang Qin. The study of relationship among perceived organizational support, self-efficacy and job performance [D]. Zhejiang: Zhejiang University of Finance and Economics, Master dissertation, 2012.
[4] Ning zhongna. The mechanism of perceived organizational support on job performance: the mediating model and moderating effects [D]. Zhejiang: Zhejiang Sci-Tech University, Master dissertation, 2012.
[5] Zhang yexin, Li jizu and Feng guorui, et al. Research on relationship between miners’ perceived organizational support and unsafe behavior based on SEM [J]. Safety in Coal Mines, 2017, 48(8): 238-241.
[6] Liu hua, Li yahui. Research on the influence of Perceived organizational support on organization trust, job engagement and job satisfaction [J]. Economic Forum, 2011, 491(6): 193-196.
[7] Griffin, M. A., A. Neal. Perceptions of safety at work: a framework for linking safety climate to safety performance, knowledge and motivation [J]. Journal of Occupational Health Psychology, 2000, 5(3): 347-358.
[8] Carol K. H. Hon, Albert P. C., Michael C.H. Yam. Relationships between safety climate and safety performance of building repair, maintenance, minor alteration, and addition (RMAA) works [J]. Safety Science, 2014, 65, 10-19.
[9] M.K. Fitzgerald. Safety performance improvement through culture change [J]. Process Safety Environmental Protection, 2005, 83(4):324-330.
[10] Glendon A. I., Litherland D. K.. Safety climate factors, group differences and safety behavior in road construction [J]. Safety Science, 2001, 39(3):157-188.
[11] Ge Zhihong. Study on Relevance between POS and ATC Safety Management Performance [D]. Wuhan: Wuhan University of Technology, Doctor thesis, 2012.
[12] Ling Wenquan, Yang Huijun, Fang Liluo. Perceived organizational support of the employees [J]. Acta Psychologica Sinica, 2006, 38(2): 281-287.
[13] International Civil Aviation Organization. Safety Management Manual (SMM), 2013.