On S_3-extensions with infinite class field tower

Jonah Leshin

May 11, 2014

Abstract

We construct a class of S_3-extensions of \mathbb{Q} with infinite 3-class field tower in which only three primes ramify. As an application, we obtain an S_3-extension of \mathbb{Q} with infinite 3-class field tower with smallest known (to the author) root discriminant among all fields with infinite 3-class field tower.

1 Introduction

Let $K := K_0$ be a number field, and for $i \geq 1$, let K_i denote the Hilbert class field of K_{i-1}—that is, K_i is the maximum abelian unramified extension of K_{i-1}. The tower $K_0 \subseteq K_1 \subseteq K_2 \ldots$ is called the Hilbert class field tower of K. If the tower stabilizes, meaning $K^i = K^{i+1}$ for some i, then the class field tower is finite. Otherwise, $\bigcup_i K^i$ is an infinite unramified extension of K, and K is said to have infinite class field tower. For a prime p, we define the p-Hilbert class field of K to be the maximal abelian unramified extension of K of p-power degree over K. We may then analogously define the p-Hilbert class field tower of K. In 1964, Golod and Shafarevich demonstrated the existence of a number field with infinite class field tower [5]. This finding has motivated the construction of number fields with various properties that have infinite class field tower. One of Golod and Shafarevich’s examples of a number field with infinite class field tower was any quadratic extension of the rationals ramified at sufficiently many primes, which was shown to have infinite 2-class field tower. An elementary exercise shows that if K has infinite class field tower, then any finite extension of K does as well. Thus a task of interest becomes finding number fields of small size with infinite class field towers. The size of a number field K might be measured by the number of rational primes ramifying in K, the size of the rational primes ramifying in K, the root discriminant of K, or any combination of these three.

With regard to number of primes ramifying, Schmithals [6] gave an example of a quadratic number field with infinite class field tower in which a single rational prime ramified. As for small primes ramifying, Hoelscher has given examples of number fields with infinite class field tower ramified only at p for $p = 2, 3,$ and 5 [11]. Odlyzko’s bounds [4] imply that any number field with infinite class field tower must have root discriminant at least 22.3, (44.6 if we assume GRH); Martinet showed that the number field $\mathbb{Q}(\zeta_{11} + \zeta_{11}^{-1}, \sqrt{46})$, with root discriminant ≈ 92.4, has infinite class field tower [3].
In this note, we use a Theorem of Schoof to produce an infinite class of S_3 extensions of \mathbb{Q} with infinite class field tower. Our fields are ramified at three primes, one of which is the prime 3. Our main theorem is

Theorem 1. Let $p \neq 3$ be prime and suppose the class number h of $\mathbb{Q}(\omega, \sqrt[3]{p})$ is at least 6, where ω is a primitive third root of unity. For infinitely many primes q, there exists $\delta \in \{p^aq^b\}_{1 \leq a, b \leq 2}$ such that $\mathbb{Q}(\omega, \sqrt[3]{\delta})$ has infinite 3-class field tower.

As a direct consequence of the proof of Theorem 1, we find that $\mathbb{Q}(\omega, \sqrt[3]{79 \cdot 97})$ has infinite 3-class field tower.

2 Proof of Theorem 1

Our construction is analogous to that of Schoof [7], Theorem 3.4. We begin with a lemma.

Lemma 1. Let p be a rational prime different from 3. The prime 3 ramifies totally in $\mathbb{Q}(\sqrt[3]{p})$ if and only if $p \not\equiv \pm 1 \pmod{9}$.

Proof. Since $[\mathbb{Q}(\sqrt[3]{p}) : \mathbb{Q}]$ is the sum of the local degrees $[\mathbb{Q}(\sqrt[3]{p})_{q_i} : \mathbb{Q}_3]$, where q_i is a prime of $\mathbb{Q}(\sqrt[3]{p})$ above 3, we see that 3 is totally ramified in $\mathbb{Q}(\sqrt[3]{p})$ if and only if no third root of p is contained in \mathbb{Q}_3. Consider the equation $x^3 - p \equiv 0 \pmod{27}$. This equation has a solution if and only if $p \equiv \pm 1, \pm 8, \pm 10 \pmod{27}$. For such p, $3p^2$ is divisible by exactly one power of 3. Thus, by Hensel’s lemma, we conclude that \mathbb{Q}_3 contains a cube root of p exactly when $p \equiv \pm 1, \pm 8, \pm 10 \pmod{27}$. But these congruences are equivalent to the congruence $p \equiv \pm 1 \pmod{9}$. □

Remark 1. The same proof shows that Lemma 1 holds if p is replaced by any integer that is prime to 3 and not a perfect cube.

Let p be any prime different from 3, and let h be the class number of $\mathbb{Q}(\omega, \sqrt[3]{p})$ with H its Hilbert class field. Let q be a rational prime that splits completely in H, so by class field theory, q is a prime that splits completely into principal prime ideals in $\mathbb{Q}(\omega, \sqrt[3]{p})$. In what follows, we find $\delta = \delta_{p,q} \in \{p^aq^b\}_{1 \leq a, b \leq 2}$ so that E is unramified over $K := F(\sqrt[3]{\delta})$ (see Figure 1).

Suppose that $p \not\equiv \pm 1 \pmod{9}$, so that 3 ramifies completely in $\mathbb{Q}(\sqrt[3]{p})$ by Lemma 1. Then either $pq \not\equiv \pm 1 \pmod{9}$ or $pq^2 \not\equiv \pm 1 \pmod{9}$ (or both). Pick $\delta = pq$ or $\delta = pq^2$ so that $\delta \not\equiv \pm 1 \pmod{9}$. Let $F = \mathbb{Q}(\omega)$ and $E = F(\sqrt[3]{p}, \sqrt[3]{q})$. The ramification degree $e(F(\sqrt[3]{p}), 3)$ of 3 in $F(\sqrt[3]{p})$ is 6.

We claim that $e(E, 3) = 6$. Suppose for contradiction that this is not so, in which case we must have $e(E, 3) = 18$. This means that the field E has a single prime I lying above 3, and that $[E_I : \mathbb{Q}_3] = [E : \mathbb{Q}]$, and likewise for every intermediate field between \mathbb{Q} and E. One checks that at least one element of the set $\{q, pq, pq^2 \ (\text{mod 9})\}$ is congruent to $\pm 1 \ (\text{mod 9})$. Pick $\gamma \in \{q, pq, pq^2\}$ so that $\gamma \equiv \pm 1 \pmod{9}$. Let $E' = \mathbb{Q}(\sqrt[3]{\gamma})$. The extension E'/\mathbb{Q} is
degree 3, but the corresponding extension of local fields is either degree one or two (depending on which prime above three in E' one chooses). This gives the desired contradiction.

We claim that E/K is unramified. Since E is generated over K by either $x^3 - p$ or $x^3 - q$, the relative discriminant of E/K must divide the ideal (3^3) of K. Therefore, the only possible primes of K that can ramify in E are those lying above 3. It is necessary and sufficient to show that $e(K, 3) = 6$. Since $\delta \not\equiv \pm 1 \pmod{9}$, Remark 1 shows that 3 is totally ramified in $\mathbb{Q}(\sqrt[3]{\delta})$, from which it follows that $e(K, 3) = 6$.

Suppose now that $p \equiv \pm 1 \pmod{9}$. If $q \not\equiv \pm 1 \pmod{9}$, take $\delta = pq$. The previous argument, with the roles of p and q now reversed, shows that $e(E, 3) = 6$ and that E/K is unramified. If $q \equiv \pm 1 \pmod{9}$, then there is a prime of $\mathbb{Q}(\sqrt[3]{\delta})$ lying above 3 and unramified over 3, and likewise for $\mathbb{Q}(\sqrt[3]{p})$. It follows that $\mathbb{Q}(\sqrt[3]{p}, \sqrt[3]{q})$ also has a prime lying above 3 and unramified over 3, and from here that $e(E, \mathbb{Q}) = 2$. So in the case $p, q \equiv \pm 1 \pmod{9}$, we may take δ to be any element of $\{p^a q^b\}_{1 \le a, b \le 2}$, and E/K will be unramified.

We are now ready to invoke the theorem of Schoof [7]. First we set notation. Given any number field H, let O_H denote the ring of integers of H. Let U_H be the units in the idèle group of H—that is, the idèles with valuation zero at all finite places. Given a finite extension L of H, we have the norm map $N_{U_L/U_H} : U_L \rightarrow U_H$, which is just the restriction of the norm map from the idèles of L to the idèles of H. We may view O_H^* as a subgroup of U_H by embedding it along the diagonal. Given a finitely generated abelian group A, let $d_l(A)$ denote the dimension of the \mathbb{F}_l-vector space A/lA.

Theorem 2. [Schoof] [7] Let H be a number field. Let L/H be a cyclic extension of prime degree l, and let ρ denote the number of primes (both finite and infinite) of H that ramify in L. Then L has infinite l-class field tower if

$$\rho \ge 3 + d_l(O_H^*/(O_H^* \cap N_{U_L/U_H}U_L)) + 2 \sqrt{d_l(O_L^*)} + 1.$$
We apply Schoof’s theorem to the extension \(L := H(\sqrt[3]{79}) \) over \(H \), where \(H \), as above, is the Hilbert class field of \(F(\sqrt[3]{79}) \). All \(6h \) primes in \(H \) above \(q \) ramify completely in the field \(H(\sqrt[3]{q}) \). Thus \(\rho \geq 6h \), with strict inequality if and only if the primes above 3 in \(H \) ramify. By Dirichlet’s unit theorem, \(d_3(O_L^*) = 9h \) and \(d_3(O_K^*) = 3h \). Thus if \(h \) satisfies \(6h \geq 3 + 3h + 2\sqrt{9h+1} \), then \(L \) will have infinite 3-class field tower. Since \(L/K \) is an unramified (as both \(L/E \) and \(E/K \) are unramified) solvable extension, it follows that \(K \) has infinite class field tower as well. The minimal such \(h \) is given by \(h = 6 \).

This proves the following version of our main theorem:

Theorem 3. Let \(p \neq 3 \) be prime and suppose the class number \(h \) of \(\mathbb{Q}(\omega, \sqrt[3]{p}) \) is at least 6. Let \(q \) be a prime that splits completely into principal ideals in \(\mathbb{Q}(\omega, \sqrt[3]{p}) \). Then there exists \(\delta \in \{ p^a q^b \}_{1 \leq a, b \leq 2} \) such that \(\mathbb{Q}(\omega, \sqrt[3]{\delta}) \) has infinite class field tower.

Remark 2. By the Chebotarev density theorem, the density of such \(q \) is \(\frac{1}{6h} \).

Remark 3. Since \(\delta \equiv \pm 1 \pmod{9} \) if and only if \(\delta^2 \equiv \pm 1 \pmod{9} \), the proof of Theorem 3 goes through with \(\delta \) replaced by \(\delta^2 \). Thus we always generate at least two \(S_3 \) extensions of \(\mathbb{Q} \) unramified outside \(\{3, p, q\} \) with infinite class field tower.

The field \(\mathbb{Q}(\omega, \sqrt[3]{79}) \) has class number 12, and 97 splits completely into a product of principal ideals in this field \(\mathbb{Q}[\omega] \), so we obtain

Corollary 1. The field \(\mathbb{Q}(\omega, \sqrt[3]{79 \cdot 97}) \) has infinite 3-class field tower.

Remark 4. It is a Theorem of Koch and Venkov [9] that a quadratic imaginary field whose class group has \(p \)-rank three or larger has infinite \(p \)-class field tower. From the tables in [2], we see that the smallest known imaginary quadratic field with 3-rank at least three is \(\mathbb{Q}(\sqrt{-3321607}) \), with root discriminant \(\approx 1822.5 \). The field \(\mathbb{Q}(\omega, \sqrt[3]{79 \cdot 97}) \) has root discriminant \(\approx 1400.4 \).

We can bring down the requirement \(h \geq 6 \). The trade off is that we will have to assume

\[\text{ The primes of } H \text{ that ramify in } L \text{ split completely in } H(\sqrt[3]{O_H^*}). \quad (1) \]

If \(p \equiv \pm 1 \pmod{9} \) and \(q \neq \pm 1 \pmod{9} \), then ramification considerations show that the primes above 3 in \(H \) ramify in \(L \); otherwise, the only primes in \(H \) ramifying in \(L \) are those above \(q \).

Suppose (1) holds. We claim that \(O_H^* \cap N_{U_L/U_H} U_L = O_H^* \). Let \(x \) be an arbitrary element of \(O_H^* \). We construct \(y = (y_v) \in U_L \) such that \(N y = x \). Consider first the primes of \(H \) that are unramified in \(L \). Let \(v \) be such a prime and suppose \(w_1, \ldots, w_a \) (\(a = 1 \) or 3) are the primes above \(v \) in \(L \). Because \(v \) is unramified, the local norm map \(N : O_{L_w_v}^* \to O_{H_v}^* \) is surjective, so we can pick \(y_v \in L_{w_1} \) such that \(N y_v = x \). Put 1 in the \(w_2 \) and \(w_3 \) components of \(y \) if \(a = 3 \).

Now let \(v \) be a prime of \(H \) that ramifies in \(L \). The assumption that \(v \) splits completely in \(H(\sqrt[3]{O_H^*}) \) means that \(\sqrt[3]{O_H^*} \in H_v \). Letting \(w_1, w_2, w_3 \) be the primes above \(v \), we can put
\sqrt{x} in the w_1 component and 1 in the w_2 and w_3 components of y. Putting the ramified and unramified components of y together gives the desired element.

Under assumption (1), the inequality needed for L to have an infinite class field tower now becomes

$$6h \geq 3 + 2\sqrt{9h} + 1,$$

which is satisfied by $h \geq 2$. This gives

Theorem 4. Let p be a prime with $p \not\equiv \pm 1 \pmod{9}$. Either $\mathbb{Q}(\omega, \sqrt[3]{p})$ has class number one, or there exist infinitely many primes $\{q_p\}$ such that $\mathbb{Q}(\omega, \sqrt[3]{\delta_{p,q_p}})$ has infinite class field tower.

Proof. For such p, the set $\{q_p\}$ consists of all rational primes splitting completely in $H(\sqrt[3]{\mathbb{O}_H})$.

References

[1] Jing Long Hoelscher. Infinite class field towers. *Math. Ann.*, 344(4):923–928, 2009.

[2] Michael J. Jacobson Jr., Shantha Ramachandran, and Hugh C. Williams. Supplementary tables for “Numerical results on class groups of imaginary quadratic fields”, 2006. http://page.math.tu-berlin.de/~kant/ants/Proceedings/ramachandran-74/ramachandran-74-tables.pdf.

[3] Jacques Martinet. Petits discriminants. *Ann. Inst. Fourier (Grenoble)*, 29(1):xv, 159–170, 1979.

[4] A. M. Odlyzko. Bounds for discriminants and related estimates for class numbers, regulators and zeros of zeta functions: a survey of recent results. *Sém. Théor. Nombres Bordeaux* (2), 2(1):119–141, 1990.

[5] Peter Roquette. On class field towers. In *Algebraic Number Theory (Proc. Instructional Conf., Brighton, 1965)*, pages 231–249. Thompson, Washington, D.C., 1967.

[6] Bodo Schmithals. Konstruktion imaginärquadratischer Körper mit unendlichem Klassenkörperturn. *Arch. Math. (Basel)*, 34(4):307–312, 1980.

[7] René Schoof. Infinite class field towers of quadratic fields. *J. Reine Angew. Math.*, 372:209–220, 1986.

[8] W.A. Stein et al. *Sage Mathematics Software*. The Sage Development Team. http://www.sagemath.org.

[9] B. B. Venkov and H. Koh. The p-tower of class fields for an imaginary quadratic field. *Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI)*, 46:5–13, 140, 1974. Modules and representations.