Review Article
A Review of Hearing Loss Associated with Zika, Ebola, and Lassa Fever

Samuel C. Ficenec,1 John S. Schieffelin,1 and Susan D. Emmett2,3,4*
1Tulane University School of Medicine, New Orleans, Louisiana; 2Department of Head and Neck Surgery and Communication Sciences, Duke University School of Medicine, Durham, North Carolina; 3Duke Global Health Institute, Durham, North Carolina; 4Center for Health Policy and Inequalities Research, Duke University, Durham, North Carolina

Abstract. The neglected tropical diseases Zika, Ebola, and Lassa fever (LF) have all been noted to cause some degree of hearing loss (HL). Hearing loss is a chronic disability that can lead to a variety of detrimental effects, including speech and language delays in children, decreased economic productivity in adults, and accelerated cognitive decline in older adults. The objective of this review is to summarize what is known regarding HL secondary to these viruses. Literature for this review was gathered using the PubMed database. Articles were excluded if there were no data of the respective viruses, postinfectious complications, or conditions related to survivorship. A total of 50 articles were included in this review. Fourteen articles discussing Zika virus and subsequent complications were included. Across these studies, 56 (21.2%) of 264 Zika-infected individuals were found to have HL. Twenty-one articles discussing Ebola virus and subsequent complications were included, with 190 (5.7%) of 3,350 Ebola survivors found to have HL. Fifteen additional articles discussing LF and subsequent complications were included. Of 926 individuals with LF, 79 (8.5%) were found to have HL. These results demonstrate a relationship between HL and infection. The true prevalence is likely underestimated, however, because of lack of standardization of reporting and measurement. Future studies of viral sequelae would benefit from including audiometric evaluation. This information is critical to understanding pathophysiology, preventing future cases of this disability, and improving quality of life after survival of infection.

INTRODUCTION

Tropical diseases have immense societal impact due in large part to their myriad long-term sequelae. Classically, these disabilities include physical impairments such as blindness, limb and physical deformities, an increased number of negative maternal and neonatal outcomes, and delayed physical or mental development.1,2 Furthermore, the association of these illnesses with poverty and the loss of productivity resulting from these disabilities lead to increased levels of stigma and social isolation, which contributes to the total burden of disease.3-6 The calculation and comparison of the number of disability-adjusted life years (DALYs) lost because of neglected tropical diseases (56.6 million DALYs) to other more common diseases such as HIV/AIDS (84.5 million DALYs) and malaria (46.5 DALYs) illustrates the large impact of these diseases on the populations they affect.1,4,6 Hearing loss (HL) is an often neglected and understudied sequelae of these infections, which contributes to the number of DALYs lost. Hearing loss affects more than 1.3 billion people worldwide and is now the 4th leading cause of years lived with disability.7 The effects of HL are lifelong and span from speech and language delays in childhood to restricted employment opportunities in adults and accelerated cognitive decline in older adults.8-14 The global burden of HL is unequally distributed, with more than 80% of affected individuals living in low- and middle-income countries, the very places where access to hearing care is limited.

Viruses were first established as an etiology of HL in the 1950s and are suspected to contribute to 12.8–25% of sudden-onset HL cases.15-17 Zika, Ebola, and Lassa fever (LF) are all tropical diseases which have received little worldwide attention until recent epidemics, and each of these viruses has been reported to be associated with HL. By comparing the prevalence reported for these and other viruses, Zika, Ebola, and LF may be associated with HL prevalence, that is, up to 300× greater than that of more common and better understood viral etiologies.18-21 The true burden of HL secondary to Zika, Ebola, and LF is unknown, however, and may be underreported because of lack of proper measurement of this chronic disability. Despite the paucity of data, the World Health Organization (WHO) recognizes the potential public health impact of these associations and has requested a review of the existing literature on Zika, Ebola, and LF for the upcoming World Report on Hearing, to be released in 2020. The objective of this review is, therefore, to describe what is known regarding HL secondary to these three tropical diseases, identify gaps in knowledge, and propose areas of research to increase our understanding of pathophysiology and potentially lead to new treatment modalities for viral-mediated HL.

METHODS

This literature search and analysis was conducted from August 2018 through April 2019. All study designs, publication dates, and languages were considered. Literature was gathered from PubMed using key terms and Boolean operators. Key terms used included the following: Zika, Ebola, Lassa, Survivors, Sequelae, HL, Hearing Impairment, Deafness, Complications, Congenital, and Post-Ebola Syndrome. Abstracts and titles of all retrieved studies were reviewed for mention of secondary complications, and the full texts of relevant articles were obtained. Articles were excluded if there were no data or discussion of the respective viruses, postinfectious complications, or conditions related to survivorship but not directly caused by the virus itself. Data regarding demographics and HL were gathered and aggregated according to the respective cause of infection. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed as applicable in creation of this review.

* Address correspondence to Susan D. Emmett, Department of Head and Neck Surgery and Communication Sciences, Duke University School of Medicine, DUMC Box 3805, Durham, NC 27710. E-mail: susan.emmett@duke.edu
RESULTS

Two thousand nine hundred ninety-three total articles were identified by this methodology. Of these, 2,909 articles were excluded based on abstract and title review and 34 articles were excluded based on full article review. A total of 50 articles were included in the analysis (Figure 1).

Hearing loss and Zika. Fourteen articles discussing Zika virus and subsequent complications in 347 individuals were included in this review (Table 1). Across studies, 56 (21.2%) of 264 individuals were found to have some degree of HL. 22–34 Four of the fourteen articles described acquired HL in adults following Zika infection (Table 1). The HL in these cases varied from moderate to severe and was reported as both unilateral and bilateral, with most patients experiencing recovery to normal or previous thresholds. 22–24,30 Ten articles presented complication data of congenital Zika syndrome related to HL (Table 1). 18,22,25–29,33–35 The majority of these studies used standard HL screening methods for infants, including measurement of auditory brainstem response and otoacoustic emission, which assesses cochlear function. 18,25–29,31,33,34 The proportion of infants with reported HL in these studies varied from 6% to 68%. One article presented in-depth testing of two individuals, one of whom had moderate unilateral HL and one with normal hearing thresholds. Importantly, the patient with HL was also found to have poor speech recognition scores in the same ear. These studies suggest the association of Zika virus not only with HL but also with auditory processing disorders such as auditory neuropathy. The wide range of HL prevalence found by this analysis indicates the need for further research on this disability.

Hearing loss and Ebola. Twenty-one articles discussing Ebola virus and subsequent complications in 5,055 individuals were included in this review (Table 2). Of the 3,385 individuals studied, 223 (6.6%) were found to have some degree of HL using audiometric evaluation and survey instruments. 19,36–55 Only one of 21 articles used audiometry to objectively measure HL. This study, by Rowe et al., recruited convalescent Ebola survivors and household contacts following the conclusion of the 1995 Ebola outbreak in Kikwit, DRC. The study defined HL as an inability to hear at least 1 frequency between 0.5 and 4 kHz at 25 dB. The authors reported that 18 (64.3%) of 27 individuals developed HL after surviving Ebola infection, and 11 of these patients had developed HL within the first 6 months following discharge from Ebola treatment centers. At the end of the 21-month follow-up period, seven individuals (26%) were found to have persistent HL. The remainder of the articles that described HL as sequelae of Ebola relied on questionnaires or self-report of symptoms. 36–46,60–54 The proportion of individuals reporting HL in these articles varied widely, from 0% to 22%. In these studies relying on self-report, HL typically arose late in the course of the disease and persisted throughout recovery. Self-reported timing of HL onset was broad, spanning from the initial hospital admission to as many as 350 days post discharge. 36–40,42 Despite continued complaints of HL, the lone study to measure HL by audiometry demonstrated resolution in several individuals. 19 Thus, it is possible that HL related to Ebola may resolve spontaneously. Data regarding Ebola-related HL is scarce, and more studies are required to elucidate the persistence of this disability.

Hearing loss and LF. Fifteen articles discussing LF and subsequent complications in 1,207 individuals were included in this review (Table 3). 20,56–69 Of 15 articles, 11 presented HL data. 20,56–65 Across studies, 53 (6.0%) of 898 individuals were found to have some degree of HL using audiometric evaluation and survey instruments. 20,56–64 Thirty-eight (71.7%) affected individuals were found to have bilateral HL, and 15 (28.3%) individuals demonstrated unilateral HL. Audiometry was used to characterize HL in five of 11 studies. 20,56–69 The mean pure-tone average (PTA) for all reported data was 66.5 dB, which is consistent with severe HL. This measurement was gathered from 139 (15.5%) of 898 individuals with an average age of 33.7 years. Several studies monitored progression of HL. Eleven of 22 individuals were found to have residual HL at 1 year, and one reported residual loss 4 years after the initial infection. 20,57–59,62,63 At the end of the 1 year period, nine of these individuals were found to have severe HL, including three cases of bilateral HL and six cases of unilateral. 20 Cummins and colleagues included three
separate evaluations to characterize the HL secondary to LF infection. In the third evaluation, a case-control study of 32 individuals with HL in comparison with 32 individuals without, 26 (81.2%) of 32 individuals with HL were found to be seropositive for LF antibodies versus only six (18.7%) of those without HL. Interestingly, only 13 (50%) seropositive individuals with HL were aware that LF might be the cause of HL. These studies indicate that LF may be an underappreciated cause of HL in LF endemic areas. This analysis finds that the prevalence of LF-related HL ranges widely, from 0% to 81.25%. More robust studies are needed to determine the relationship between symptomatic disease, HL and seropositivity.

DISCUSSION

The major lifelong sequelae of neglected tropical diseases are secondary disabilities following infection. HL is an understudied morbidity following these viral tropical disease pathogens. This review examines the association between HL and Zika, Ebola, and LF viruses, summarizing what is known regarding this complication.

TABLE 1

First author	Publication year	Study type	Sample size (n)	Age group	HL Screening Method	HL result (n, %)	Unilateral HL (n)	Bilateral HL (n)	Control group (n, % HL)
Tappe	2014	Case report	1 Adult	Self-report	1 (100)	NR	NR	ND	
M.E.R.G.	2015	Cross-sectional	23* Neonatal	OAE	2 (9)	NR	NR	ND	
Leal	2016	Retrospective	70 Pediatric	ABR to click and tone burst stimuli	5 (6)	NR	NR	ND	
Leal	2016	Case series	2 Neonatal	Transient OAE followed by ABR to click stimuli	1 (50)	NR	NR	ND	
Vinhaes	2017	Case series	3 Adult	Audiometry	3 (100)	1	2	ND	
Martins	2017	Case series	2 Adult	Audiometry	1 (50)	1	0	ND	
Satterfield	2017	Cross-sectional	19 Pediatric	Physician-reported HINE assessment	13 (68)	NR	NR	ND	
Santor	2017	Case series	2 Neonatal	Evoked OAE followed by ABR	1 (50)	NR	NR	ND	
Wheeler	2018	Cross-sectional	47 Pediatric	No response to voice or sound	13 (28)	NR	NR	ND	

ABR = auditory brainstem response; ND = not done; NR = not reported; OAE = otoacoustic emission; HINE = Hammersmith infant neurological examination Adult, 18 years or greater; pediatric, 0–24 months; neonatal, anomalies detected at birth.

* Total sample size of 104, only 23 screened for HL.

TABLE 2

First author	Publication year	Study type	Sample size (n)	Median age (years)	HL screening method	HL results (n, %)	Days to HL onset (median DPI)	Control group (n)
Rowe	1999	Prospective cohort	29 27 Adult	27	Audiology	18 (64.3)	< 180 152 (NR)	152 (NR)
Bwaka	1999	Prospective cohort	103 38 Adult	38	Self-Reported	13 (12.6)	NR 40 (0)	40 (0)
Clark	2015	Prospective cohort	70 40 Pediatric	Questionnaire	13 (27)	NR 223 (10)	223 (10)	223 (10)
Qureshi	2015	Cross-sectional	105 38.9* Neonatal	Questionnaire 0 (0)	8 (17)	NR 60 (43)	60 (43)	60 (43)
Mattia	2016	Cross-sectional	277 29 Neonatal	Self-report	17 (6)	14 ND	ND	ND
Jacobs	2016	Case report	1 39 Neonatal	Self-report	1 (100)	11 ND	ND	ND
Tiffany	2016	Prospective cohort	166 24.7† Neonatal	Self-reported 5 (3)	31–60 ND	ND	ND	ND
Nanyonga	2016	Cross-sectional	81 29 Pediatric	Questionnaire	NR	ND 54	54	54
Faliha	2016	Prospective cohort	70 70 Neonatal	Questionnaire	NR	NR 65 (3)	65 (3)	65 (3)
Etard	2017	Cross-sectional	802 28.4 Neonatal	Self-reported 19 (2.4)	350 ND	ND 350	350	350
Shantha	2017	Cross-sectional	96 36.8 Student	Self-reported	10 (10.4)	NR 10.4	NR	10.4
Hereth-Hebert	2017	Prospective cohort	341 26 Student	NR	NR	NR 33	NR	33
Wilson	2018	Cross-sectional	242 30 Questionnaire	Questionnaire 4 (1.6)	16 ND	ND 4 (1.6)	4 (1.6)	4 (1.6)
Jagadeesh	2018	Retrospective case control	27 NR Student	Questionnaire	5 (18.5)	4 (1.6)	4 (1.6)	4 (1.6)
Kelly	2018	Cross-sectional	29 53.2* Neonatal	Questionnaire 187 (NR)	187 (NR)	NR 187	NR	187 (NR)
Wing	2018	Retrospective cohort	137 25 Neonatal	Self-report	30 (22)	NR 30 (22)	NR	30 (22)
Overholt	2018	Prospective cohort	299 31 Neonatal	NR	NR	NR 2,350	NR 2,350 (2.2)	2,350 (2.2)
Howlett	2018	Case series	35 28 Student	Self-report	3 (8.6%)	NR 3 (8.6%)	NR	3 (8.6%)
de St. Maurice	2018	Cross-sectional	329 33† Student	Questionnaire 19 (6)	19 (6)	ND 19 (6)	ND	19 (6)
Kelly	2019	Prospective cohort	859 12–50† Neonatal	Self-report 66 (8.8%)	66 (8.8%)	NR 66 (8.8%)	ND	66 (8.8%)
PREVAIL	2019	Prospective cohort	966 NR Student	Self-report	66 (8.8%)	NR 66 (8.8%)	ND	66 (8.8%)

DPI = days postinfection; ND = not done; NR = not reported.

* Age reported as mean age of sample.
† Only range of ages reported.
Table 3
Lassa Fever HL Findings by year

First author, Publication year, Study type	Sample size	Mean age (years)	HL screening method	HL results (n, %)	Average severity of HL	Unilateral HL	Bilateral HL	Days to HL onset (median DPI)	Control group
White, 1972, Case series	23	26.6	Self-report	4 (17.4)	NR	NR	NR	NR	ND
Mertens, 1973, Cross-sectional	10	20-66†	Self-report	3 (30%)	NR	NR	NR	NR	ND
Grundy, 1980, Case report	1	25	Self-report	1 (100)	NR	NR	NR	14	ND
Mccormick, 1987, Case-control	430	NR	NR	12 (2.8)	NR	NR	NR	10-15	ND
Frame, 1987, Cross-sectional	33	< 1†	NR	NR	NR	NR	NR	NR	ND
Hirabayashi, 1988, Case report	1	48	NR	NR	NR	NR	NR	NR	ND
Cummins, 1990, Prospective cohort	43	30.2	Audiometry	14 (28.6)	Severe	3	6	NR	45 (4)
Cummins, 1990, Case-control	51	30.3	Audiometry	9 (17.6)	Moderate	1	0	NR	ND
Guntner, 2001, Case report	1	56	NR	NR	NR	NR	NR	NR	ND
Machet, 2006, Case series	2	34.5	Audiometry	1 (50)	NR	NR	NR	NR	ND
Okohere, 2009, Case series	2	31	Audiometry	2 (100)	Severe	0	2	NR	9
Ibekele, 2011, Prospective cohort	37	35.3	Audiometry	5 (13.9)	Severe	0	5	NR	37 (4)
Grahn, 2016, Case report	1	72	Self-report	1 (100)	NR	NR	NR	22	ND
Choi, 2016, Case report	1	46	Self-report	1 (100)	NR	NR	NR	5	ND
Okohere, 2018, Prospective cohort	291	35	NR	0 (0)	NR	NR	NR	ND	ND

DPI = days post-infection; HL = hearing loss; ND = not done; NR = not reported.

* Severity determined based on WHO standards.
† Ordinal data presented were used to calculate median age.
‡ Only range of ages reported.

Additional notes:
- The table includes data on the prevalence of hearing loss associated with Lassa Fever, showing variations in age, severity, and methodology across different studies.
- Observations suggest that Lassa Fever can lead to hearing loss, with noted severity ranging from mild to severe.
- The data highlight the importance of ongoing research to better understand and mitigate the impact of this disease on public health.

Future directions:
- Further studies are necessary to continue to address the impact of Lassa Fever on hearing and to develop effective screening methods.
- Research is needed to understand the mechanisms underlying the development of hearing loss in cases of Lassa Fever.
- Longitudinal studies could provide insights into the progression of hearing loss post-infection.

Conclusion:
Understanding the relationship between Lassa Fever and hearing loss is crucial for public health planning and response. Further research is essential to elucidate the full extent of this association and to develop strategies for prevention and early detection.
common viral etiologies of HL. It is critical that future studies of these tropical infections include objective audiological evaluation using a standard, WHO-supported definition of HL, coupled with longitudinal rescreening to accurately determine the prevalence and fully characterize the natural course of HL secondary to these viruses. Furthermore, future studies of sequelae can provide evidence of causal relationships between these tropical viruses and HL, identify risk factors for diagnosis and prognostication, and elucidate mechanisms leading to HL. Such knowledge is crucial to the development of public health interventions to prevent this understudied disability and improve the quality of life after survival from these devastating and neglected tropical diseases.

Received November 23, 2018. Accepted for publication June 6, 2019. Published online July 22, 2019.

Acknowledgments: This project was supported by NIH Research Training Grant #D43 TW009340 funded by the NIH Fogarty International Center, NINDS, NIH, and NHBLI and serves as background for the World Health Organization World Report on Hearing. Authors’ addresses: Samuel C. Ficenec and John S. Schieffelin, Tulane University School of Medicine, New Orleans, LA. E-mails: sficenec@tulane.edu and jschieffelin@tulane.edu. Susan D. Emmett, Duke University School of Medicine, Durham, North Carolina, and Duke Global Health Institute, Durham, NC. E-mail: susan.emmett@duke.edu.

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

REFERENCES

1. Hotez PJ, Ferris MT, 2006. The antipoverty vaccines. Vaccine 24: 5787–5799.
2. Hotez PJ, Molyneux DH, Fenwick A, Kumaresan J, Sachs SE, Sachs JD, Savolli L, 2007. Control of neglected tropical diseases. N Engl J Med 357: 1018–1027.
3. Hotez PJ, Ottesen E, Fenwick A, Molyneux D, 2006. The neglected tropical diseases: the ancient afflictions of stigma and poverty and the prospects for their control and elimination. Pollard AJ, Finn A, eds. Hot Topics in Infection and Immunity in Children III, Vol. 582. New York, NY: Springer, 23–33.
4. Hotez PJ, 2008. Stigma: the stealth weapon of the NTD. PLoS Negl Trop Dis 2: e230.
5. Weiss MG, 2008. Stigma and the social burden of neglected tropical diseases. PLoS Negl Trop Dis 2: e237.
6. World Health Organization, 2008. Guinea: Life after Ebola Has New Meaning for 2 Survivors Now Helping Others. WHO. Available at: http://www.who.int/features/2014/2014-life-after-ebola/en/. Accessed March 6, 2019.
7. GBD 2016 DALYs, HALE Collaborator, 2017. Global, regional, and national disability-adjusted life-years (DALYs) for 333 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 390: 1260–1344.
8. Mackenzie I, Smith A, 2009. Deafness—the neglected and hidden disability. Ann Trop Med Parasitol. 103: 565–571.
9. Disease and Injury Incidence and Prevalence Collaborators, 2016. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388: 1545–1602.
10. Mohr PE, Feldman JJ, Dunbar JL, McConkey-Robbins A, Niparko JK, Rittenhouse RK, Skinner MW, 2000. The societal costs of severe to profound hearing loss in the United States. Int J Technol Assess Health Care 16: 1120–1135.
11. Davis JM, Elfenbein J, Schum R, Bentler RA, 1986. Effects of mild and moderate hearing impairments on language, educational, and psychosocial behavior of children. J Speech Hear Disorders 51: 53.
12. Bess FH, Dodd-Murphy J, Parker RA, 1998. Children with minimal sensorineural hearing loss: prevalence, educational performance, and functional status. Ear Hear 19: 339.
13. Lin FR, 2011. Hearing loss and cognitive decline in older adults in the United States. J Gerontol A Biol Sci Med Sci 66: 1131–1136.
14. Lin FR et al., 2013. Hearing loss and cognitive decline in older adults. JAMA Intern Med 173: 299–299.
15. Van Dishoeck HA, Bierman TA, 1957. Sudden perceptual deafness and viral infection. Ann Otol Rhinol Laryngol 66: 963–980.
16. Byl FM Jr., 1984. Sudden hearing loss: eight years’ experience, and suggested prognostic table. Laryngoscope 94: 647–661.
17. Jaffe BF, 1978. Viral causes of sudden inner ear deafness. Otolaryng Clin North Am 11: 63–69.
18. Leal MC, 2016. Hearing loss in infants with microcephaly and evidence of congenital Zika virus infection—Brazil, November 2015–May 2016. MMWR Morb Mortal Wkly Rep 65: 917–919.
19. Rowe AK et al., 1999. Clinical, virologic, and immunologic follow-up of convalescent Ebola hemorrhagic fever patients and their household contacts. Kikwit, Democratic Republic of the Congo. Commission de Lutte contre les Epidémies à Kikwit. J Infect Dis 179 (Suppl 1): S28–S35.
20. Cummins D, McCormick JB, Bennett D, Samba JA, Farrar B, Machin SJ, Fisher-Hoch SP, 1990. Acute sensorineural deafness in Lassa fever. JAMA 264: 2093–2096.
21. Cohen BE, Durstenfeld A, Roehm PC, 2014. Viral causes of hearing loss: a review for hearing health professionals. Trends Hear 18: 1–18.
22. Martins OR, de AL Rodrigues P, dos Santos ACM, Ribeiro EZ, Nery AF, Lima JB, Moreno CO, Silveira ARQ, 2017. Achados otolégicos em pacientes pós-infeção pelo Zika virus: estudo de caso. Audiol Commun Res 22, doi: 10.1599/2317-6431-2017-1850.
23. Tappe D, Nachtigall S, Kapaun A, Schnitzler P, Günther S, Schmidt-Chanasit J, 2015. Acute Zika virus infection after travel to Malaysian Borneo. September 2014. Emerg Infect Dis 21: 911–913.
24. Vinhaes ES et al., 2017. Transient hearing loss in adults associated with Zika virus infection. Clin Infect Dis 64: 675–677.
25. Leal MC, Muniz LF, Caldas Neto SD, van der Linden V, Ramos RC, 2016. Sensorineural hearing loss in a case of congenital Zika virus. Braz J Otorhinolaryngol 16: 30126–30127.
26. Wheeler AC, Ventura CV, Ridenour T, Toth D, Nogrella LB, Silva de Souza Dantas LC, Rocha C, Bailey DB Jr, Ventura LO, 2018. Skills attained by infants with congenital Zika syndrome: pilot data from Brazil. PLOS One 13: e0201495.
27. Satterfield-Nash A et al., 2017. Health and development at age 19–24 Months of 19 children who were born with microcephaly and laboratory evidence of congenital Zika virus infection during the 2015 Zika virus outbreak—Brazil, 2017. MMWR Morb Mortal Wkly Rep 66: 1347–1351.
28. Santos VS, Oliveira SJG, Gurgel RQ, Lima DRR, Dos Santos CA, Martins-Filho PRS, 2017. Case report: microcephaly in twins due to the Zika virus. Am J Trop Med Hyg 97: 151–154.
29. Microcephaly Epidemic Research Group, 2016. Microcephaly in infants, Pernambuco State, Brazil, 2015. Emerg Infect Dis 22: 1090–1093.
30. de Laval F et al., 2018. Evolution of symptoms and laboratory evidence of congenital Zika virus infection. J Clin Virol 109: 57–62.
31. Ventura CV, Consortium Investigators et al., 2018. First locally acquired congenital Zika syndrome case in the United States: neonatal clinical manifestations. Ophthalmic Surg Lasers Imaging Retina 49: e93–e104.
32. França TLB, Medeiros WR, Souza NL, Longo E, Pereira SA, França TBO, Sousa KG, 2018. Growth and development of a case of congenital Zika syndrome in Brazil, November 2015–January 2016. BMJ Case Rep 2018: pii: e0201495.
33. Vianna RAO et al., 2019. Children born to mothers with rash during the 2015 Zika virus outbreak in Valle del Cauca, Colombia. Pediatr Infect Dis J 38: 1–6.
83. Younan P, Iampietro M, Bukreyev A, 2018. Disabling of lymphocyte immune response by Ebola virus. PLoS Pathog 14: e1006932.
84. Yeh S, Shantha JG, Hayek B, Crozier I, Smith JR, 2018. Clinical manifestations and pathogenesis of uveitis in Ebola virus disease survivors. Ocul Immunol Inflamm 26: 1128–1134.
85. Cashman KA, Wilkinson ER, Facemire PR, Bell TM, Shaia CI, Schmaljohn CS, 2018. Autoimmune associated systemic vasculitis as the cause of sudden onset bilateral sensorineural hearing loss following Lassa virus exposure in a cynomolgus macaque deafness model. mBio 9.
86. Cashman KA et al., 2017. A DNA vaccine delivered by dermal electroporation fully protects cynomolgus macaques against Lassa fever. Hum Vaccin Immunother 13: 2902–2911.
87. Yun SI, Lee YM, 2017. Zika virus: an emerging flavivirus. J Microbiol 55: 204–219.
88. Yun NE et al., 2015. Animal model of sensorineural hearing loss associated with Lassa virus infection. J Virol 90: 2920–2927.
89. Rybak LP, 1990. Deafness associated with Lassa fever. JAMA 264: 2119.