RELATIVISTIC GRAVITATIONAL COLLAPSE IN NON–COMOVING COORDINATES: THE POST-QUASISTATIC APPROXIMATION

L. Herrera1∗ †, W.Barreto2‡, A. Di Prisco1, N. O. Santos3,4,5§

1Escuela de Física, Facultad de Ciencias, Universidad Central de Venezuela, Caracas, Venezuela.
2 Grupo de Relatividad y Astrofísica Teórica, Departamento de Física, Escuela de Ciencias, Núcleo de Sucre, Universidad de Oriente, Cumaná, Venezuela.
3 LRM–CNRS/UMR 8540, Université Pierre et Marie Curie, ERGA, Boîte 142, 4 place Jussieu, 75005 Paris Cedex 05, France.
4 Laboratório Nacional de Computação Científica, 25651-070 Petrópolis–RJ, Brazil.
5 Centro Brasileiro de Pesquisas Físicas, 22290-180 Rio de Janeiro-RJ, Brazil.

Abstract

A general, iterative, method for the description of evolving self-gravitating relativistic spheres is presented. Modeling is achieved by the introduction of an ansatz, whose rationale becomes intelligible and finds full justification within the context of a suitable definition of the post–quasistatic approximation. As examples of application of the method we discuss three models, in the adiabatic case.

04.20.–q; 04.25.–g; 04.40.–b
I. INTRODUCTION

The problem of general relativistic gravitational collapse has attracted the attention of researchers since the seminal paper by Oppenheimer and Snyder [1]. The motivation for such interest is easily understood: the gravitational collapse of massive stars represents one of the few observable phenomena, where general relativity is expected to play a relevant role. Ever since that work, much was written by researchers trying to provide models of evolving gravitating spheres. However this endeavour proved to be difficult and uncertain. Different kinds of advantages and obstacles appear, depending on the approach adopted for the modeling.

Thus, numerical methods (see [2] and references therein) are enabling researchers to investigate systems which are extremely difficult to handle analytically. In the case of General Relativity, numerical models have proved valuable for investigations of strong field scenarios and have been crucial to reveal unexpected phenomena [3]. Even specific difficulties associated with numerical solutions of partial differential equations in presence of shocks are being overpassed [4]. By these days what seems to be the main limitation for numerical relativity is the computational demands for 3D evolution, prohibitive in some cases [5]. Nevertheless, purely numerical solutions usually hinder to catch general, qualitative, aspects of the process.

On the other hand, analytical solutions although more suitable for a general discussion (see [6] and references therein), are found, either for too simplistic equations of state and/or under additional heuristic assumptions whose justification is usually uncertain.

Therefore it seems useful to consider nonstatic models which are relatively simple to analyze but still contain some of the essential features of a realistic situation.

Accordingly, it is our purpose in this work to present an approach for modeling the evolution of self–gravitating spheres, which may be regarded as a “compromise” between the two approaches mentioned above (analytical and numerical).

Indeed, the proposed method, starting from any interior (analytical) static spherically symmetric (“seed”) solution to Einstein equations, leads to a system of ordinary differential equations for quantities evaluated at the boundary surface of the fluid distribution, whose solution (numerical), allows for modeling the dynamics of self–gravitating spheres, whose static limit is the original “seed” solution.

The approach is based on the introduction of a set of conveniently defined “effective” variables, which are effective pressure and energy density, and an heuristic ansatzs on the latter [7], whose rationale and justification become intelligible within the context of the post–quasistatic approximation defined below. In the quasistatic approximation (see next section), the effective variables coincide with the corresponding physical variables (pressure and density) and therefore the method may be regarded as an iterative method with each consecutive step corresponding to a stronger departure from equilibrium. In this work we shall restrain ourselves to the post–quasistatic level (see next section for details).

At this point it is important to stress a crucial difference between this method and the one proposed many years ago with a similar structure, but based on radiative Bondi coordinates (see [8] and references therein): in the latter the introduced effective variables do not coincide with the corresponding physical variables in the quasistatic approximation.
(they do coincide in the static limit), and accordingly the ansatz on those variables remains as an heuristic assumption, only justified by the eventual suitability of the obtained models.

The fluid distribution under consideration will be assumed to be dissipative. Indeed, dissipation due to the emission of massless particles (photons and/or neutrinos) is a characteristic process in the evolution of massive stars. In fact, it seems that the only plausible mechanism to carry away the bulk of the binding energy of the collapsing star, leading to a neutron star or black hole is neutrino emission [9]. Consequently, in this paper, the matter distribution forming the selfgravitating object will be described as a dissipative fluid.

In the diffusion approximation, it is assumed that the energy flux of radiation (as that of thermal conduction) is proportional to the gradient of temperature. This assumption is in general very sensible, since the mean free path of particles responsible for the propagation of energy in stellar interiors is in general very small as compared with the typical length of the object. Thus, for a main sequence star as the sun, the mean free path of photons at the centre, is of the order of 2 cm. Also, the mean free path of trapped neutrinos in compact cores of densities about $10^{12} g.cm.^{-3}$ becomes smaller than the size of the stellar core [10,11].

Furthermore, the observational data collected from supernovae 1987A indicates that the regime of radiation transport prevailing during the emission process, is closer to the diffusion approximation than to the streaming out limit [12].

However in many other circumstances, the mean free path of particles transporting energy may be large enough as to justify the free streaming approximation. Therefore our formalism will include simultaneously both limiting cases of radiative transport (diffusion and streaming out), allowing for describing a wide range situations.

Besides the usual physical variables (energy density, pressure, velocity, heat flow, etc.) we shall also incorporate into discussion other quantities which are expected to play an important role in the evolution of evolving self–gravitating systems, such as the Weyl tensor, the shear of the fluid and the Tolman mass. Therefore these quantities will be calculated and used in the process of modeling. It is also worth mentioning that although the most common method of solving Einstein’s equations is to use commoving coordinates (e.g. [13], [3]), we shall use noncomoving coordinates, which implies that the velocity of any fluid element (defined with respect to a conveniently chosen set of observers) has to be considered as a relevant physical variable ([14]).

The plan of the paper is as follows. In Section 2 we define the conventions and give the field equations and expressions for the kinematical and physical variables we shall use, in noncomoving coordinates. The proposed approach is presented and explained in Section 3. In Section 4 we illustrate the method by means of three examples. Finally a discussion of results is presented in Section 5.

II. RELEVANT EQUATIONS AND CONVENTIONS

A. The field equations

We consider spherically symmetric distributions of collapsing fluid, which for sake of completeness we assume to be locally anisotropic, undergoing dissipation in the form of heat flow and/or free streaming radiation, bounded by a spherical surface Σ.
The line element is given in Schwarzschild–like coordinates by
\[ds^2 = e^\nu dt^2 - e^\lambda dr^2 - r^2 (d\theta^2 + \sin^2 \theta d\phi^2) , \] (1)
where \(\nu(t, r) \) and \(\lambda(t, r) \) are functions of their arguments. We number the coordinates:
\[x^0 = t; \ x^1 = r; \ x^2 = \theta; \ x^3 = \phi. \]
The metric (1) has to satisfy Einstein field equations
\[G^\mu_\nu = -8\pi T^\mu_\nu, \] (2)
which in our case read [15]:
\[-8\pi T^0_0 = -\frac{1}{r^2} + e^{-\lambda} \left(\frac{1}{r^2} - \frac{\lambda'}{r} \right), \] (3)
\[-8\pi T^1_1 = -\frac{1}{r^2} + e^{-\lambda} \left(\frac{1}{r^2} + \frac{\nu'}{r} \right), \] (4)
\[-8\pi T^2_2 = -8\pi T^3_3 = -\frac{e^{-\nu}}{4} \left(2\ddot{\lambda} + \dot{\lambda}(\dot{\lambda} - \dot{\nu}) \right) \]
\[+ \frac{e^{-\lambda}}{4} \left(2\nu'' + \nu'^2 - \lambda'\nu' + 2\frac{\nu' - \lambda'}{r} \right), \] (5)
\[-8\pi T^0_1 = -\frac{\dot{\lambda}}{r} , \] (6)
where dots and primes stand for partial differentiation with respect to \(t \) and \(r \), respectively.
In order to give physical significance to the \(T^\mu_\nu \) components we apply the Bondi approach [15].
Thus, following Bondi, let us introduce purely locally Minkowski coordinates \((\tau, x, y, z)\)
\[d\tau = e^{\nu/2} dt; \quad dx = e^{\lambda/2} dr; \quad dy = r d\theta; \quad dz = r \sin \theta d\phi. \]
Then, denoting the Minkowski components of the energy tensor by a bar, we have
\[\bar{T}^0_0 = T^0_0; \quad \bar{T}^1_1 = T^1_1; \quad \bar{T}^2_2 = T^2_2; \quad \bar{T}^3_3 = T^3_3; \quad \bar{T}^0_1 = e^{-(\nu+\lambda)/2}T^0_1. \]
Next, we suppose that when viewed by an observer moving relative to these coordinates with proper velocity \(\omega \) in the radial direction, the physical content of space consists of an anisotropic fluid of energy density \(\rho \), radial pressure \(P_r \), tangential pressure \(P_\perp \), radial heat flux \(\dot{q} \) and unpolarized radiation of energy density \(\dot{\epsilon} \) traveling in the radial direction. Thus, when viewed by this moving observer the covariant tensor in Minkowski coordinates is
\[
\begin{pmatrix}
\rho + \dot{\epsilon} & -\dot{q} - \dot{\epsilon} & 0 & 0 \\
-\dot{q} - \dot{\epsilon} & P_r + \dot{\epsilon} & 0 & 0 \\
0 & 0 & P_\perp & 0 \\
0 & 0 & 0 & P_\perp
\end{pmatrix}.
\]
Then a Lorentz transformation readily shows that

\[T_0^0 = \bar{T}_0^0 = \frac{\rho + P_r \omega^2}{1 - \omega^2} + \frac{2Q\omega e^{\lambda/2}}{(1 - \omega^2)^{1/2}} + \epsilon, \]
(7)

\[T_1^1 = \bar{T}_1^1 = \frac{-P_r + \rho \omega^2}{1 - \omega^2} - \frac{2Q\omega e^{\lambda/2}}{(1 - \omega^2)^{1/2}} - \epsilon, \]
(8)

\[T_2^2 = \bar{T}_3^3 = T_2^2 = -P_{\perp}, \]
(9)

\[T_{01} = e^{(\nu+\lambda)/2}\bar{T}_{01} = -\frac{(\rho + P_r)\omega e^{(\nu+\lambda)/2}}{1 - \omega^2} - \frac{Qe^{\nu/2}e^\lambda}{(1 - \omega^2)^{1/2}(1 + \omega^2)} - e^{(\nu+\lambda)/2}\epsilon, \]
(10)

with

\[Q \equiv \frac{\hat{q}e^{-\lambda/2}}{(1 - \omega^2)^{1/2}} \]
(11)

and

\[\epsilon \equiv \frac{\dot{\epsilon}(1 + \omega)}{(1 - \omega)} \]
(12)

Note that the coordinate velocity in the \((t, r, \theta, \phi)\) system, \(dr/dt\), is related to \(\omega\) by

\[\omega = \frac{dr}{dt} e^{(\lambda-\nu)/2}. \]
(13)

Feeding back (7–10) into (3–6), we get the field equations in the form

\[\rho + P_r \omega^2 + \frac{2Q\omega e^{\lambda/2}}{(1 - \omega^2)^{1/2}} + \epsilon = -\frac{1}{8\pi} \left\{ -1 - e^{-\lambda} \left(\frac{1}{r^2} - \frac{\lambda'}{r} \right) \right\}, \]
(14)

\[\frac{P_r + \rho \omega^2}{1 - \omega^2} + \frac{2Q\omega e^{\lambda/2}}{(1 - \omega^2)^{1/2}} + \epsilon = -\frac{1}{8\pi} \left\{ \frac{1}{r^2} - e^{-\lambda} \left(\frac{1}{r^2} + \frac{\nu'}{r} \right) \right\}, \]
(15)

\[P_{\perp} = -\frac{1}{8\pi} \left\{ \frac{e^{-\nu}}{4} \left(2\lambda + \lambda'(\lambda - \nu) \right) \right. \]
\[\left. -\frac{e^{-\lambda}}{4} \left(2\nu'' + \nu'^2 - \lambda'\nu' + 2\nu' - \lambda' \right) \right\}, \]
(16)

\[\frac{(\rho + P_r)\omega e^{(\nu+\lambda)/2}}{1 - \omega^2} + \frac{Qe^{\nu/2}e^\lambda}{(1 - \omega^2)^{1/2}(1 + \omega^2)} + e^{(\nu+\lambda)/2}\epsilon = -\frac{\dot{\lambda}}{8\pi r}. \]
(17)
Observe that if \(\nu \) and \(\lambda \) are fully specified, then (14–17) becomes a system of algebraic equations for the physical variables \(\rho, P_r, P_\perp, \omega, Q \) and \(\epsilon \). Obviously, in the most general case when all these variables are non-vanishing, the system is underdetermined, and two equations of state should be given. In general, whenever \(Q \neq 0 \) a transport equation has to be assumed. In the case originally considered by Bondi [15] (locally isotropic fluid and free streaming regime, \(Q = 0 \)) the system is closed. For the adiabatic \((\epsilon = Q = 0) \), and locally isotropic fluid \((P_r = P_\perp) \) the system is overdetermined, and a constraint on the physical variables appears.

At the outside of the fluid distribution, the spacetime is that of Vaidya, given by

\[
d s^2 = \left(1 - \frac{2M(u)}{R} \right) du^2 + 2 du dR - R^2 \left(d\theta^2 + \sin^2 \theta d\phi^2 \right),
\]

where \(u \) is a coordinate related to the retarded time, such that \(u = \text{constant} \) is (asymptotically) a null cone open to the future and \(R \) is a null coordinate \((g_{RR} = 0) \). It should be remarked, however, that strictly speaking, the radiation can be considered in radial free streaming only at radial infinity.

The two coordinate systems \((t,r,\theta,\phi) \) and \((u,R,\theta,\phi) \) are related at the boundary surface and outside it by

\[
u = t - r - 2M \ln \left(\frac{r}{2M} - 1 \right),
\]

\[
R = r.
\]

In order to match smoothly the two metrics above on the boundary surface \(R = R_\Sigma(u) \), we first require the continuity of the first fundamental form across that surface. Then

\[
[e^{\nu_\Sigma} - e^{\lambda_\Sigma} \dot{r}_\Sigma^2] \ dt^2 = \left[1 - \frac{2M}{R_\Sigma} + 2 \frac{dR_\Sigma}{du} \right] du^2,
\]

where \(R = R_\Sigma(u) \) is the equation of the boundary surface in \((u,R,\theta,\phi) \) coordinates.

From (21), using (13), (19) and (18) it follows

\[
e^{\nu_\Sigma} = 1 - \frac{2M}{R_\Sigma},
\]

\[
e^{-\lambda_\Sigma} = 1 - \frac{2M}{R_\Sigma}.
\]

Where, from now on, subscript \(\Sigma \) indicates that the quantity is evaluated at the boundary surface \(\Sigma \).

Next, the unit vector \(n_\mu \), normal to the boundary surface, has components

\[
n_\mu^{(+)} = \left(-\beta \frac{dR_\Sigma}{du}, \beta, 0, 0 \right),
\]
where + indicates that the components are evaluated from the outside of Σ, and β is given by

$$
\beta = \left(1 - \frac{2M(u)}{R_\Sigma} + 2 \frac{dR_\Sigma}{du} \right)^{-1/2}.
$$

(25)

The unit vector normal to Σ, evaluated from the inside, is given by

$$
n^{(-)}_\mu = (- \dot{r}_\Sigma \gamma, \gamma, 0, 0),
$$

(26)

with

$$
\gamma = \left(e^{-\lambda_{\Sigma}} - \dot{r}_\Sigma^2 e^{-\nu_{\Sigma}} \right)^{-1/2}.
$$

(27)

Let us now define a time–like vector v^μ such that

$$
v^{\mu(+)} = \beta \delta^\mu_u + \beta \frac{dR_\Sigma}{du} \delta^\mu_R
$$

and

$$
v^{\mu(-)} = \frac{e^{-\nu_{\Sigma}/2}}{(1 - \omega^2)^{1/2}} \delta^\mu_t + \frac{\omega e^{-\lambda_{\Sigma}/2}}{(1 - \omega^2)^{1/2}} \delta^\mu_r.
$$

(29)

Then, junction conditions across Σ, require (besides (21))

$$
(T_{\mu
u} n^\mu n^\nu)_{\Sigma}^{(+)} = (T_{\mu
u} n^\mu n^\nu)_{\Sigma}^{(-)},
$$

(30)

$$
(T_{\mu
u} n^\mu v^\nu)_{\Sigma}^{(+)} = (T_{\mu
u} n^\mu v^\nu)_{\Sigma}^{(-)},
$$

(31)

where the expressions for the energy momentum tensor at both sides of the boundary surface are

$$
T^{(-)}_{\mu\nu} = (\rho + P_{\perp}) u_\mu u_\nu - P_{\perp} g_{\mu\nu} + (P_{\perp} - P_{\perp}) s_\mu s_\nu + q_\mu u_\nu + q_\nu u_\mu + \epsilon_\mu \epsilon_\nu
$$

and

$$
T^{(+)}_{\mu\nu} = - \frac{1}{4\pi R^2} \frac{dM}{du} \delta^0_\mu \delta^0_\nu,
$$

(32)

(33)

with

$$
u^\mu = \left(\frac{e^{-\nu/2}}{(1 - \omega^2)^{1/2}}, \frac{\omega e^{-\lambda/2}}{(1 - \omega^2)^{1/2}}, 0, 0 \right),
$$

(34)

$$
s^\mu = \left(\frac{\omega e^{-\nu/2}}{(1 - \omega^2)^{1/2}}, \frac{e^{-\lambda/2}}{(1 - \omega^2)^{1/2}}, 0, 0 \right),
$$

(35)
\[l^\mu = (e^{-\nu/2}, e^{-\lambda/2}, 0, 0), \]

where \(u^\mu \) denotes the four velocity of the fluid, \(s^\mu \) is a radially directed space–like vector orthogonal to \(u^\mu \), \(l^\mu \) is a null outgoing vector, and

\[q^\mu = Q \left(\omega e^{(\lambda-\nu)/2}, 1, 0, 0 \right). \]

Then it follows from (30) and (31)

\[[P_r + \dot{\varepsilon}]_\Sigma = - \left[\frac{1}{4\pi R^2} \frac{dM}{du} \beta^2 \right]_\Sigma, \]

(38)

\[[Q e^{\lambda/2}(1-\omega^2)^{1/2} + \ddot{\epsilon}]_\Sigma = - \left[\frac{1}{4\pi R^2} \frac{dM}{du} \beta^2 \right]_\Sigma. \]

(39)

Eqs. (21), (38) and (39) are the necessary and sufficient conditions for a smooth matching of the two metrics (1) and (18) on \(\Sigma \). Combining (38) and (39) we get

\[[P_r]_\Sigma = \left[Q e^{\lambda/2} (1-\omega^2)^{1/2} \right]_\Sigma, \]

(40)

expressing the discontinuity of the radial pressure in the presence of heat flow, which is a well known result [16].

Next, it will be useful to calculate the radial component of the conservation law

\[T^\mu_{\nu;\mu} = 0. \]

(41)

After tedious but simple calculations we get

\[(-8\pi T^1_1)' = \frac{16\pi}{r} (T^1_1 - T^2_2) + 4\pi \nu' (T^1_1 - T^0_0) + \frac{e^{-\nu}}{r} \left(\ddot{\lambda} + \frac{\dot{\lambda}^2}{2} - \frac{\dot{\lambda}'}{2} \right), \]

(42)

which in the static case becomes

\[P'_r = -\frac{\nu'}{2} (\rho + P_r) + \frac{2 (P_\perp - P_r)}{r}, \]

(43)

representing the generalization of the Tolman–Oppenheimer–Volkov equation for anisotropic fluids [17].

B. The kinematical variables

The components of the shear tensor are defined by

\[\sigma_{\mu\nu} = u_{\mu;\nu} + u_{\nu;\mu} - u_{\mu} a_{\nu} - u_{\nu} a_{\mu} - \frac{2}{3} \Theta P_{\mu\nu}, \]

(44)

where
\[
P_{\mu\nu} = g_{\mu\nu} - u_\mu u_\nu; \quad \Theta = u^\mu_{\;\mu}; \quad a_\mu = u^\nu u_{\mu;\nu},
\]
denote the projector onto the three space orthogonal to \(u^\mu\), the expansion and the four acceleration, respectively.

A simple calculation gives
\[
\Theta = \frac{e^{-\nu/2}}{2 (1 - \omega^2)^{1/2}} \left(\dot{\lambda} + \frac{2 \omega \dot{\omega}}{1 - \omega^2} \right) + \frac{e^{-\lambda/2}}{2 (1 - \omega^2)^{1/2}} \left(\omega \nu' + 2 \omega' + \frac{2 \omega^2 \omega'}{1 - \omega^2} + \frac{4 \omega}{r} \right),
\]
\[
\sigma_{11} = -\frac{2}{3 (1 - \omega^2)^{3/2}} \left[e^\lambda e^{-\nu/2} \left(\dot{\lambda} + \frac{2 \omega \dot{\omega}}{1 - \omega^2} \right) + e^{\lambda/2} \left(\omega \nu' + \frac{2 \omega'}{1 - \omega^2} - \frac{2 \omega}{r} \right) \right],
\]
\[
\sigma_{22} = -\frac{e^{-\lambda} r^2 (1 - \omega^2)}{2} \sigma_{11},
\]
\[
\sigma_{33} = -\frac{e^{-\lambda} r^2 (1 - \omega^2)}{2} \sin^2 \theta \sigma_{11},
\]
\[
\sigma_{00} = \omega^2 e^{-\lambda} e^\nu \sigma_{11},
\]
\[
\sigma_{01} = -\omega e^{(\nu - \lambda)/2} \sigma_{11},
\]
\[
a_0 = \frac{1}{1 - \omega^2} \left[\left(\frac{\omega \dot{\omega}}{1 - \omega^2} + \frac{\omega^2 \dot{\lambda}}{2} \right) + e^{\nu/2} e^{-\lambda/2} \left(\frac{\omega \nu'}{2} + \frac{\omega^2 \omega'}{1 - \omega^2} \right) \right],
\]
\[
a_1 = -\frac{1}{1 - \omega^2} \left[\left(\frac{\omega \nu'}{1 - \omega^2} + \frac{\nu'}{2} \right) + e^{-\nu/2} e^{\lambda/2} \left(\frac{\omega \dot{\lambda}}{2} + \frac{\dot{\omega}}{1 - \omega^2} \right) \right],
\]
and for the shear scalar \(\sigma\)
\[
\sigma = \sqrt{3} \left(\frac{\Theta}{3} - \frac{e^{-\lambda/2}}{r} \frac{\omega}{\sqrt{1 - \omega^2}} \right).
\]

C. The Tolman mass

The Tolman mass for a spherically symmetric distribution of matter is given by (eq.(24) in [18])
\[
m_T = 4\pi \int_{r_1}^{r_\Sigma} r^2 e^{(\nu + \lambda)/2} \left(T_0^0 - T_1^1 - 2T_2^2 \right) dr
+ \frac{1}{2} \left[\int_{r_1}^{r_\Sigma} r^2 e^{(\nu + \lambda)/2} \frac{\partial}{\partial t} \left(\frac{\partial L}{\partial (g^{\alpha\beta} \sqrt{-g}) / \partial t} \right) g^{\alpha\beta} \right] dr,
\]
\[
(55)
\]
where \mathcal{L} denotes the usual gravitational lagrangian density (eq.(10) in [18]). Although Tolman’s formula was introduced as a measure of the total energy of the system, with no commitment to its localization, we shall define the mass within a sphere of radius r, completely inside Σ, as

$$m_T = 4\pi \int_0^r r^2 e^{(\nu+\lambda)/2} (T_0^0 - T_1^1 - 2T_2^2) \, dr + \frac{1}{2} \int_0^r r^2 e^{(\nu+\lambda)/2} \frac{\partial}{\partial t} \left(\frac{\partial \mathcal{L}}{\partial (g_\alpha^\beta \sqrt{-g}) / \partial t} \right) g_\alpha^\beta \, dr.$$ \hspace{0.5cm} (56)

This extension of the global concept of energy to a local level [19] is suggested by the conspicuous role played by m_T as the “effective gravitational mass”, which will be exhibited below. Even though Tolman’s definition is not without its problems [19,20], we shall see that m_T, as defined by (56), is a good measure of the active gravitational mass, at least for the systems under consideration.

Let us now evaluate expression (56). The first integral in that expression

$$I \equiv 4\pi \int_0^r r^2 e^{(\nu+\lambda)/2} (T_0^0 - T_1^1 - 2T_2^2) \, dr,$$ \hspace{0.5cm} (57)

may be transformed to give (see [21] for details)

$$I = e^{(\nu+\lambda)/2} \left[m(r,t) - \frac{4\pi}{3} r^3 T_1^1 \right] - \int_0^r e^{(\lambda-\nu)/2} r^2 \left(\ddot{\lambda} + \frac{\dot{\lambda}^2}{2} - \frac{\dot{\lambda} \dot{\nu}}{2} \right) \, dr,$$ \hspace{0.5cm} (58)

where the mass function m, as usually is defined by

$$e^{-\lambda(r,t)} = 1 - 2m(r,t)/r.$$ \hspace{0.5cm} (59)

Next, from (eq.(13) in [18])

$$\frac{\partial}{\partial t} \left(\frac{\partial \mathcal{L}}{\partial (g_\alpha^\beta \sqrt{-g}) / \partial t} \right) = -\Gamma^0_{\alpha\beta} + \frac{1}{2} \delta^0_{\alpha} \Gamma^\sigma_{\beta\sigma} + \frac{1}{2} \delta^0_{\beta} \Gamma^\sigma_{\alpha\sigma},$$ \hspace{0.5cm} (60)

and so the second integral (II) in (56) may be expressed as

$$II = \frac{1}{2} \int_0^r r^2 e^{(\lambda-\nu)/2} \left(\ddot{\lambda} + \frac{\dot{\lambda}^2}{2} - \frac{\dot{\lambda} \dot{\nu}}{2} \right) \, dr.$$ \hspace{0.5cm} (61)

Thus

$$m_T \equiv I + II = e^{(\nu+\lambda)/2} \left[m(r,t) - 4\pi r^3 T_1^1 \right].$$ \hspace{0.5cm} (62)

This is, formally, the same expression for m_T in terms of m and T_1^1 that appears in the static (or quasi-static) case (eq.(25) in [22]).
Replacing T^1_1 by (4) and m by (59), one also finds

$$m_T = e^{(\nu - \lambda)/2} \nu' \frac{r^2}{2}. \quad (63)$$

This last equation brings out the physical meaning of m_T as the active gravitational mass. Indeed, it can be easily shown [23] that the gravitational acceleration a of a test particle, instantaneously at rest in a static gravitational field, as measured with standard rods and coordinate clock is given by

$$a = -\frac{e^{(\nu - \lambda)/2} \nu'}{2} = -\frac{m_T}{r^2}. \quad (64)$$

A similar conclusion can be obtained by inspection of Eq. (43) (valid only in the static or quasi-static case) [24]. In fact, the first term on the right side of this equation (the “gravitational force” term) is a product of the “passive” gravitational mass density ($\rho + P_r$) and a term proportional to m_T/r^2.

D. The Weyl tensor

Since the publication of Penrose’s work [25], there has been an increasing interest in studying the possible role of Weyl tensor (or some function of it) in the evolution of self-gravitating systems [26]. This interest is reinforced by the fact that for spherically symmetric distribution of fluid, the Weyl tensor may be defined exclusively in terms of the density contrast and the local anisotropy of the pressure (see below), which in turn are known to affect the fate of gravitational collapse [27].

Now, using Maple V, it is found that all non–vanishing components of the Weyl tensor are proportional to

$$W \equiv \frac{r}{2} C_{232}^3 = W_{(s)} + \frac{r^3 e^{-\nu}}{12} \left(\ddot{\lambda} + \frac{\dot{\lambda}^2}{2} - \frac{\dot{\lambda} \dot{\nu}}{2} \right). \quad (65)$$

where

$$W_{(s)} = \frac{r^3 e^{-\lambda}}{6} \left(\frac{e^\lambda}{r^2} - \frac{1}{r^2} + \frac{\nu' \lambda'}{4} - \frac{\nu'^2}{4} - \frac{\nu''}{2} - \frac{\nu'}{2r} + \frac{\nu'}{2r} \right), \quad (66)$$

corresponds to the contribution in the static case.

Also, from the field equations and the definition of the Weyl tensor it can be easily shown that (see [24] for details)

$$W = -\frac{4\pi}{3} \int_0^r r^3 \left(T_0^0 \right)' \, dr + \frac{4\pi}{3} r^3 \left(T_2^2 - T_1^1 \right). \quad (67)$$

III. THE METHOD

We have now available all the ingredients required to present our method, however before doing so some general considerations will be necessary.
A. Equilibrium and departures from equilibrium

The simplest situation, when dealing with self–gravitating spheres, is that of equilibrium (static case). In our notation that means that $\omega = \epsilon = Q = 0$, all time derivatives vanishes, and we obtain the generalized Tolman–Oppenheimer–Volkof equation (43).

Next, we have the quasistatic regime. By this we mean that the sphere changes slowly, on a time scale that is very long compared to the typical time in which the sphere reacts to a slight perturbation of hydrostatic equilibrium, this typical time scale is called hydrostatic time scale [28] (sometimes this time scale is also referred to as dynamical time scale, e.g. see the third reference in [28]). Thus, in this regime the system is always very close to hydrostatic equilibrium and its evolution may be regarded as a sequence of static models linked by (17). This assumption is very sensible because the hydrostatic time scale is very small for many phases of the life of the star. It is of the order of 27 minutes for the Sun, 4.5 seconds for a white dwarf and 10^{-4} seconds for a neutron star of one solar mass and 10 Km radius. It is well known that any of the stellar configurations mentioned above, generally, change on a time scale that is very long compared to their respective hydrostatic time scales. Let us now translate this assumption in conditions to ω and metric functions.

First of all, slow contraction means that the radial velocity ω as measured by the Minkowski observer is always much smaller than the velocity of light ($\omega \ll 1$). Therefore we have to neglect terms of the order $O(\omega^2)$.

Then (12) yields

$$\ddot{\lambda} + \frac{\dot{\lambda}^2}{2} - \frac{\dot{\nu} \dot{\lambda}}{2} = 8\pi r e^\nu \left[(P_r + \epsilon)' + (\rho + P_r + 2\epsilon) \frac{\nu'}{2} - 2 \frac{P_\perp - P_r - \epsilon}{r} \right].$$ \hspace{1cm} (68)

(observe the contribution of ϵ to, both, P_r and ρ and the fact that ϵ, ω and Q are of the same order of smallness, in this approximation).

Since by assumption, in this regime the system is always (not only at a given time t) in equilibrium (or very close to), (13) and (68) imply then, for an arbitrary slowly evolving configuration

$$\ddot{\lambda} \approx \dot{\nu} \dot{\lambda} \approx \dot{\lambda}^2 \approx 0,$$ \hspace{1cm} (69)

and of course, time derivatives of any order of the left hand side of the hydrostatic equilibrium equation must also vanish, for otherwise the system will deviate from equilibrium. This condition implies, in particular, that we must demand in this regime

$$\ddot{\nu} \approx 0.$$

Finally, from the time derivative of (13), and using (10), it follows that

$$\dot{\omega} \approx O(\dot{\lambda}, \dot{\lambda} \omega, \dot{\nu} \omega).$$ \hspace{1cm} (70)

which implies that we have also to neglect terms linear in the acceleration. On purely physical considerations, it is obvious that the vanishing of $\dot{\omega}$ is required to keep the system always in equilibrium.
Thus, in the quasistatic regime we have to assume
\[O(\omega^2) = \dot{\lambda}^2 = \dot{\nu}^2 = \ddot{\lambda} = \ddot{\nu} = 0, \] (71)

implying that the system remains in (or very close to) equilibrium. However, during their evolution, self–gravitating objects may pass through phases of intense dynamical activity, with time scales of the order of magnitude of (or even smaller than) the hydrostatic time scale, and for which the quasi–static approximation is clearly not reliable (e.g., the collapse of very massive stars [29] and the quick collapse phase preceding neutron star formation, see for example [30] and references therein). In these cases it is mandatory to take into account terms which describe departure from equilibrium.

B. The effective variables and the post–quasistatic approximation

Let us now define the following effective variables:
\[\tilde{\rho} = T_0 = \rho + P_r \omega^2 \left(1 - \frac{\omega^2}{1 - \omega^2} \right) + \frac{2Q\omega \nu^{\lambda/2}}{(1 - \omega^2)^{1/2}} + \epsilon, \] (72)
\[\tilde{P} = -T_1 = P_r + \rho \omega^2 \left(1 - \frac{\omega^2}{1 - \omega^2} \right) + \frac{2Q\omega \nu^{\lambda/2}}{(1 - \omega^2)^{1/2}} + \epsilon. \] (73)

In the quasistatic regime the effective variables satisfy the same equation (43) as the corresponding physical variables (taking into account the contribution of \(\epsilon \) to the “total” energy density and radial pressure, whenever the free streaming approximation is being used). Therefore in the quasistatic situation (and obviously in the static too), effective and physical variables share the same radial dependence. Next, feeding back (72) and (73) into (14) and (15), these two equations may be formally integrated, to obtain:
\[m = 4\pi \int_0^r r^2 \tilde{\rho} dr, \] (74)
\[\nu = \nu_\Sigma + \int_\Sigma^r \frac{2(4\pi r^3 \tilde{P} + m)}{r(r - 2m)} dr. \] (75)

From where it is obvious that for a given radial dependence of the effective variables, the radial dependence of metric functions become completely determined.

With this last comment in mind, we shall define the post–quasistatic regime as that corresponding to a system out of equilibrium (or quasiequilibrium) but whose effective variables share the same radial dependence as the corresponding physical variables in the state of equilibrium (or quasiequilibrium). Alternatively it may be said that the system in the post–quasistatic regime is characterized by metric functions whose radial dependence is the same as the metric functions corresponding to the static (quasistatic) regime. The rationale behind this definition is not difficult to grasp: we look for a regime which although out of equilibrium, represents the closest possible situation to a quasistatic evolution (see more on this point in the last Section).
C. The algorithm

Let us now outline the approach that we propose:

1. Take an interior solution to Einstein equations, representing a fluid distribution of matter in equilibrium, with a given

\[\rho_{st} = \rho(r) \quad P_{r,st} = P_{r}(r) \]

2. Assume that the \(r \) dependence of \(\tilde{P} \) and \(\tilde{\rho} \) is the same as that of \(P_{r,st} \) and \(\rho_{st} \), respectively.

3. Using equations (75) and (74), with the \(r \) dependence of \(\tilde{P} \) and \(\tilde{\rho} \), one gets \(m \) and \(\nu \) up to some functions of \(t \), which will be specified below.

4. For these functions of \(t \) one has three ordinary differential equations (hereafter referred to as surface equations), namely:
 - (a) Equation (13) evaluated on \(r = r_{\Sigma} \).
 - (b) Equation (42) evaluated on \(r = r_{\Sigma} \).
 - (c) The equation relating the total mass loss rate with the energy flux through the boundary surface.

5. Depending on the kind of matter under consideration, the system of surface equations described above may be closed with the additional information provided by the transport equation and/or the equation of state for the anisotropic pressure and/or additional information about some of the physical variables evaluated on the boundary surface (e.g. the luminosity).

6. Once the system of surface equations is closed, it may be integrated for any particular initial data.

7. Feeding back the result of integration in the expressions for \(m \) and \(\nu \), these two functions are completely determined.

8. With the input from the point 7 above, and using field equations, together with the equations of state and/or transport equation, all physical variables may be found for any piece of matter distribution.

D. The Surface equations

As it should be clear from the above the crucial point in the algorithm is the system of surface equations. So, let us specify them now.

Introducing the dimensionless variables

\[A = r_{\Sigma}/m_{\Sigma}(0), \]
\[F = 1 - 2M/A, \]
\[M = \frac{m}{m(0)}, \]
\[\Omega = \omega(0), \]
\[\alpha = \frac{\tau}{m(0)} , \]
where \(m(0) \) denotes the total initial mass, we obtain the first surface equation by evaluating (13) at \(r = r(0) \), one gets
\[\frac{dA}{d\alpha} = F\Omega. \tag{76} \]

Next, using junction conditions, one obtains from (59), (14) and (17) evaluating at \(r = r(0) \), that
\[\frac{dM}{d\alpha} = -F(1 + \Omega)\hat{E}, \tag{77} \]
with
\[\hat{E} = 4\pi r^2(\hat{\epsilon} + \hat{q}), \tag{78} \]
where the first and second term on the right of (77), represent the gravitational redshift and the Doppler shift corrections, respectively.

Then, defining the luminosity perceived by an observer at infinity as
\[L = -\frac{dM}{d\alpha}, \]
we obtain the second surface equation in the form
\[\frac{dF}{d\alpha} = \frac{F}{A}(1 - F)\Omega + 2L/A. \tag{79} \]

The third surface equation may be obtained by evaluating at the boundary surface, the conservation law \(T^\mu_{\mu} = 0 \), which reads
\[\tilde{P}' + \frac{(\tilde{\rho} + \tilde{P})(4\pi r^3\tilde{P} + m)}{r(r - 2m)} = \frac{e^{-\nu}}{4\pi r(r - 2m)} \left(\tilde{m} + \frac{3\tilde{m}^2}{r - 2m} - \frac{\dot{\tilde{m}}}{2} \right) + \frac{2}{r}(P_\perp - \tilde{P}). \tag{80} \]

Now, in the following section we consider two relatively simple models with a separable effective density, i.e., \(\tilde{\rho} = f(t)h(r) \); thus equation (80) evaluated at the boundary surface leads to
\[\frac{d\Omega}{d\alpha} = \Omega^2 \left[\frac{8F}{A} + 2Fk(r(0)) + 4\pi \rho(3 - \Omega^2) \right] - \frac{F}{\rho} \left(R - \frac{2}{A} \left(P_\perp - \rho\Omega^2 - \frac{E(1 + \Omega)}{4\pi r^2} \right) \right), \tag{81} \]
where
\[R' = \left[\tilde{P}' + \frac{\tilde{P} + \bar{\rho}}{1 - 2m/r\Sigma} (4\pi \tilde{P} + \frac{m}{r^2}) \right], \quad (82) \]

\[\bar{E} = \hat{E}(1 + \Omega), \quad (83) \]

and

\[k(r\Sigma) = \frac{d}{dr\Sigma} \ln \left(\frac{1}{r\Sigma} \int_{0}^{r\Sigma} dr' r'^2 h(r')/h(r\Sigma) \right). \quad (84) \]

Before analyzing specific models, some interesting conclusions can be obtained at this level of generality. One of these conclusions concerns the condition of bouncing at the surface which, of course, is related to the occurrence of a minimum radius \(A \). According to (76) this requires \(\Omega = 0 \), and we have

\[\frac{d^2 A}{d\alpha^2} = F \frac{d\Omega}{d\alpha}, \quad (85) \]

or using (81)

\[\frac{d\Omega}{d\alpha}(\Omega = 0) = - \frac{F}{\rho\Sigma} \left[R - \frac{2}{A} \left(P_{\perp\Sigma} - \frac{\hat{E}}{4\pi r\Sigma^2} \right) \right]. \quad (86) \]

Observe that a positive energy flux (\(\hat{E} \)) tends to decrease the radius of the sphere, i.e., it favors the compactification of the object, which is easily understandable. The same happens when \(R > 0 \) or \(P_{\perp\Sigma} < 0 \). The opposite effect occurs when these quantities have the opposite signs. Now, for a positive energy flux the sphere can only bounce at its surface when

\[\frac{d\Omega}{d\alpha}(\Omega = 0) \geq 0. \]

According to (86) this is equivalent to

\[-R(\Omega = 0) + \frac{2P_{\perp\Sigma}}{A} \geq 0. \quad (87) \]

A physical meaning can be associated to this equation as follows. For non–radiating, static configuration, \(R \) as defined by (82) consists of two parts. The first term which together with \(-[2(P_{\perp} - P_r)/r\Sigma] \) represents the hydrodynamical force (see (43)) and the second which is of course the gravitational force. The resulting force in the sense of increasing \(r \) is precisely \(-R + [2(P_{\perp} - P_r)/r\Sigma] \), if this is positive a net outward acceleration occurs and vice–versa. Equation (87) is the natural generalization of this result for general non–static configurations.

As mentioned before, besides the surface equations, in some cases (depending on the type of matter under consideration) further information has to be provided in the form of equation of state for the tangential stresses and/or transport equation. In the next Section we shall illustrate our method with three examples, one of which refers to an anisotropic fluid, and for which we shall further assume the equation of state (see \[31\], \[32\])

\[P_{\perp} - P_r = \frac{C(\tilde{P} + \bar{\rho})(4\pi \tilde{P} + m)}{(r - 2m)}, \quad (88) \]

where \(C \) is a constant.
IV. EXAMPLES

The only purpose of the present Section is to illustrate the proposed method. For simplification we shall consider only the adiabatic case ($\epsilon = Q = 0$). For all these models we shall calculate the physical and geometrical variables for any piece of matter, as function of the timelike coordinate. In spite of the simplicity of the models, some interesting conclusions about the physical meaning of different variables may be reached.

One of the models has as the “seed” solution the well known Schwarzschild interior solution, whose properties have been extensively discussed in the literature. The second example is based on an anisotropic fluid without radial pressure. Models of this kind have also been discussed extensively since the original Einstein paper (see [33]). Finally, the third example represents the dynamic version of the Tolman VI static solution (34), whose equation of state, as is well known, approaches that for highly compressed Fermi gas.

A. Schwarzschild–type model

This model is inspired in the well known interior Schwarzschild solution. Accordingly we take

$$\tilde{\rho} = f(t),$$

(89)

where f is an arbitrary function of t. And the expression for \tilde{P} is

$$\frac{\tilde{P} + \frac{1}{3}\tilde{\rho}}{\tilde{P} + \tilde{\rho}} = \left(1 - \frac{8\pi}{3}\tilde{\rho}r^2\right)^{1/2} k(t),$$

(90)

where k is a function of t to be determined from junction conditions (40), which in terms of effective variables, becomes

$$\tilde{P}_\Sigma = \tilde{\rho}_\Sigma \Omega^2.$$

(91)

Thus, using (90) and (91) we have for the effective variables

$$\tilde{\rho} = \frac{3(1 - F)}{8\pi r^2},$$

(92)

$$\tilde{P} = \frac{\tilde{\rho}}{3} \left\{ \frac{\chi F^{1/2} - 3\psi \xi}{\psi \xi - \chi F^{1/2}} \right\},$$

(93)

with

$$\xi = [1 - (1 - F)(r/r_\Sigma)^2]^{1/2}$$

and

$$\chi = 3(\Omega^2 + 1)(1 - F),$$

$$\psi = (3\Omega^2 + 1)(1 - F).$$
And for the metric functions \(m \) and \(\nu \) we get, using (74) and (75)

\[
m = m_\Sigma (r/r_\Sigma)^3, \tag{94}
\]

\[
\nu = \left\{ \frac{\chi F^{1/2} - \psi \xi}{2(1 - F)} \right\}^2. \tag{95}
\]

The third surface equation for this model becomes

\[
\frac{d\Omega}{d\alpha} = \frac{\Omega^2}{2A} (7 - 3\Omega^2 + 3F(\Omega^2 - 1)). \tag{96}
\]

This equation together with (76) and (79) form the set of surface equations for this model. We have integrated it numerically and from this integration, all physical variables are found for any piece of the fluid distribution, following the algorithm described above.

Figures (1)–(5) exhibit the behaviour of \(\rho \), \(P \), \(\omega \), \(\sigma \) and \(W \) for an initially contracting configuration, as function of \(\alpha \) and different pieces of matter.

Figure (6) shows the profile of \(\omega \) as function of \(r/r_\Sigma \) for \(\alpha = 10 \).

B. Lemaitre–Florides–type model

This model has as the “seed” solution a configuration with homogeneous energy density and vanishing radial pressure. Configurations of this kind were suggested by the first time by Lemaitre ([35]).

The corresponding effective variables now are:

\[
\tilde{\rho} = f(t) \tag{97}
\]

and

\[
\tilde{P} = 0. \tag{98}
\]

Observe that in this case, because of (97) and (98), it follows from (72) and (73) that the radial pressure is discontinuos at the boundary surface, with

\[
P_{r_\Sigma} = -3(1 - F)\Omega^2 / 8\pi r_\Sigma^2, \tag{99}
\]

for otherwise either \(\rho_\Sigma \) or \(\Omega \) should vanish at \(\Sigma \). Therefore the only way to “dynamize” this model is by relaxing boundary conditions, allowing for the presence of a kind of surface tension.

Once the effective variables are defined, we only need the value of the tangential pressure at the boundary to close the system of surface equations. This is obtained by evaluating (88) at \(\Sigma \).

Next, following the algorithm, all physical variables may be found for any piece of material as functions of the timelike coordinate. Although we are not going to exhibit them here, because the graphics are not particularly illuminating, we wanted to present an example which, besides the fact that implies an anisotropic fluid, requires the introduction of a surface tension, for allowing the application of the algorithm.
C. Tolman VI–type model

Our last example is based on the Tolman VI solution. Accordingly the effective variables for this model will be

\[\tilde{\rho} = \frac{3g(t)}{r^2}, \]

(100)

and

\[\tilde{P} = \frac{g(9 - bK(r/r_\Sigma))}{(9 - b(r/r_\Sigma))r^2}, \]

(101)

where \(g \) and \(b \) are functions of \(\alpha \), to be obtained from (91). Then,

\[\tilde{\rho} = \frac{3(1 - F)}{24\pi r^2}. \]

(102)

Using (74) and (75) we get

\[m = m_{\Sigma}r/r_\Sigma, \]

(103)

\[\nu = lnF + \frac{8\pi g}{F} \left\{ 4ln(r/r_\Sigma) + 8ln \left(\frac{b(r/r_\Sigma) - K}{b - 9} \right) \right\}. \]

(104)

Finally, solving the surface equations for this model, \(m \) and \(\nu \) are completely determined and all physical variables can thereby be calculated. Besides the intrinsic physical interest of the equation of state of this “seed” model mentioned before, it is interesting because of the fact that the static limit of the model (unlike the previous ones) is “unstable”, in the sense that it requires a specific value of the gravitational potential at the boundary, namely \(m_{\Sigma}(0)/r_\Sigma = 3/14 \). For values above (below) this, the sphere starts to collapse (expand).

Figures (7) and (8) display the evolution of velocity (\(\omega \)) for different regions of the sphere, and for initial values of \(F \) corresponding to values of \(m_{\Sigma}(0)/r_\Sigma \), above and below the equilibrium value, respectively. Figures (9) and (10), represent the evolution of the Weyl tensor (\(W \)), for some internal region and the boundary surface respectively, and initials values of \(F \) corresponding to values of \(m_{\Sigma}(0)/r_\Sigma \), above and below equilibrium. Finally, figures (11) and (12) exhibit the behaviour of the shear (\(\sigma \)) for different regions and initial values of \(F \) corresponding to values of \(m_{\Sigma}(0)/r_\Sigma \), above and below equilibrium.

We shall comment on these graphics in the next Section.

V. CONCLUSIONS

A method has been presented, which allows for the description of radiating selfgravitating relativistic spheres. In its most general form, the approach incorporates the two limiting cases of radiation transport (free streaming and diffusion) as well as the possibility of dealing with anisotropic fluids.
The cornerstone of the algorithm is an ansatz, based on a specific definition of the post–quasistatic approximation, namely: considering different degrees of departure from equilibrium, the post–quasistatic regime (i.e. the next step after the quasistatic situation) is defined as that, characterized by metric functions whose radial dependence is the same as that of the quasistatic regime. This in turn implies, that the effective variables defined above, share the same radial dependence as the corresponding physical variables of the quasistatic regime. The rationale behind this definition seems intelligible when it is remembered that in the latter case (the quasistatic) the effective variables share the same radial dependence as that of the physical variables in the static regime. Thus, starting with a static configuration, the first “level” of equilibrium, beyond the quasistatic situation, is represented by the post–quasistatic regime.

Once the static (“seed”) solution has been selected, then the definition of the effective variables together with surface equations, allows for determination of metric functions, which in turn lead to the full description of physical variables as functions of the timelike coordinate, for any region of the sphere. In this process, depending on the kind of matter and/or the prevailing transport approximation, additional equations of state and/or transport equations and/or some of the surface variables (e.g. the luminosity) have to be specified.

All physical variables having been found (particularly the energy density and the radial pressure) then we may, in principle, go to the next step assuming that the effective variables now share the same radial dependence as that of the physical variables just obtained. In this sense the algorithm may be regarded as an iterative approach. For obvious reasons we have restrained ourselves to the first step of the process. It remains to be seen if available physical evidence justifies to go through the complexities associated with the “post–post–quasistatic” approximation.

In order to illustrate the method, and without the pretension of modeling specific astrophysical scenarios, we have presented three examples, in the simplest (adiabatic) case.

In the first model, the profiles of the shear and the Weyl tensor, clearly illustrate the “dynamics” of the model, tending to zero in the static limit. The fact that these two quantities vanish in the quasistatic regime (for this specific model), brings out further their relevance in the treatment of situations off equilibrium. On the other hand however, the velocity profiles show almost no difference between the two regimes. Deviations from homology contraction due to relativistic gravitational effect are also indicated.

The purpose of the second example was to illustrate the implementation of the algorithm, for anisotropic fluids. The very particular form of the “seed” equation of state of this model, imposes discontinuity (surface tension) of radial pressure at the boundary. Of course such discontinuity vanishes at the static (or quasistatic) regime.

Finally, a model based on the Tolman VI solution was presented. This static solution, as was already mentioned, requires a specific value of \(m_{\Sigma}(0)/r_{\Sigma}\), accordingly any deviation from this value leads to deviations from the static regime (observe that the quasistatic regime is incompatible with this solution). The velocity profiles indicate that all regions either expand or contract, and therefore, cracking (different signs of the velocity for different regions of the sphere) will not occur. This is consistent with the established fact that cracking only occurs for anisotropic fluids or isotropic fluids with outgoing radiation in the free streaming approximation.

Also, the profiles of the Weyl tensor and the shear, clearly diverging from the initial
values as time proceeds and the evolution becomes more and more “dynamic”, stress once again their roles in describing departures off equilibrium.

ACKNOWLEDGMENTS

WB was benefited from research support from the Consejo de Investigación, Universidad de Oriente, under Grant CI-5-1002-1054/01 and from FONACIT under grant S1–98003270 to the Universidad de Oriente. NOS acknowledges financial support of CNPq. LH acknowledges financial assistance under grant BFM2000-1322 (M.C.T. Spain) and from Cátedra-FONACIT, under grant 2001001789.
REFERENCES

[1] J. Oppenheimer and H. Snyder, *Phys. Rev.* **56**, 455 (1939).
[2] L. Lenher, Preprint gr-qc/0106072 (2001).
[3] M. W. Choptuik, *Phys. Rev. Lett.*, **70**, 9 (1993).
[4] J. A. Font, *Living Rev. Rel.*, **47**, 2 (2000).
[5] J. Winicour, *Living Rev. Rel.*, 1, 5 (1998).
[6] W. Bonnor, A. Oliveira and N.O.Santos, *Phys. Rep.* **181**, 269 (1989); M. Govender, S. Maharaj and R. Maartens, *Class. Quantum Grav.* **15**, 323 (1998); D. Schafer and H. Goenner, *Gen. Rel. Grav.*, **32**, 2119 (2000); M. Govender, R. Maartens and S. Maharaj, *Phys. Lett. A*, 283, 71 (2001); S. Wagh et al., *Class. Quantum Grav.* **18**, 2147 (2001).
[7] W. Barreto, H. Martínez, y B. Rodríguez, to appear in *Ap. Space Sc.* (2002)
[8] L. Herrera, J. Jimenez and G. Ruggeri, *Phys. Rev. D* **22**, 2305 (1980); L. Herrera and L. Nunez, *Fun. Cosm. Phys.* **14**, 235 (1990).
[9] D. Kazanas and D. Schramm, *Sources of Gravitational Radiation*, L. Smarr ed., (Cambridge University Press, Cambridge, 1979).
[10] W. D. Arnett, *Astrophys. J.*, **218**, 815 (1977).
[11] D. Kazanas, *Astrophys. J.*, **222**, 2109 (1978).
[12] J. Lattimer, *Nucl. Phys.*, **A478**, 199 (1988).
[13] M. May and R. White, *Phys. Rev.* **141**, 1232 (1966); J. Wilson, *Astrophys. J.* **163**, 209 (1971); A. Burrows ans J. Lattimer, *Astrophys. J.* **307**, 178 (1986); R. Adams, B. Cary and J. Cohen, *Astrophys. Space Sci.* **155**, 271 (1989).
[14] W. Bonnor and H. Knutsen, *Inter. Jour. Theor. Phys* **32**, 1061 (1993).
[15] H. Bondi, *Proc. R. Soc. London*, **A281**, 39 (1964)
[16] N.O. Santos, *Mon. Not. R. Astron. Soc.*, **216**, 403 (1985).
[17] R. Bowers and E. Liang, *Astrophys. J.*, **188**, 657 (1974).
[18] R. Tolman, *Phys. Rev.*, **35**, 875 1930.
[19] F.I. Cooperstock, R.S. Sarracino and S.S. Bayin S. S., *J. Phys. A* **14**, 181 (1981).
[20] J. Devitt and P.S. Florides, *Gen. Rel. Grav.* **21**, 585 (1989).
[21] L. Herrera, A. Di Prisco, J.L. Hernandez–Pastora and N.O. Santos, *Phys. Lett. A*, **237**, 113 (1998).
[22] L. Herrera and N.O. Santos, *Gen. Rel. Grav.* **27**, 1071 (1995).
[23] Ö. Gron, *Phys. Rev. D*, **31**, 2129 (1985).
[24] A. Lightman, W. Press, R. Price and S. Teukolsky, *Problem Book in Relativity and Gravitation* (Princeton University Press, Princeton (1975).
[25] R. Penrose, *General Relativity, An Einstein Centenary Survey*, Ed. S. W. Hawking and W. Israel (Cambridge: Cambridge University Press) p. 581–638 (1979).
[26] J. Wainwright, *Gen. Rel. Grav.* **16**, 657 (1984); S. W. Goode and J. Wainwright, *Class. Quantum Grav.* **2**, 99 (1985); W. B. Bonnor, *Phys. Lett. 112A*, 26 (1985); W.B. Bonnor, *Phys. Lett. 122A*, 305 (1987); S. W. Goode, A. Coley and J. Wainwright, *Class. Quantum Grav.* **9**, 445 (1992); N. Pelavas and K. Lake, preprint gr-qc/9811085; L. Herrera et al, *J. Math. Phys.* **42**, 2199, (2001).
[27] F. Mena and R. Tavakol, *Class. Quantum Grav.* **16**, 435 (1999); D. M. Eardley and L. Smarr, *Phys. Rev. D* **19**, 2239 (1979); D. Christodoulou, *Commun. Math. Phys.* **93**, 171 (1984); R. P. A. C. Newman *Class. Quantum Grav.* **3**, 527 (1986); B. Waugh and
K. Lake, *Phys. Rev. D* **38**, 1315 (1988); I. Dwivedi and P. Joshi, *Class. Quantum Grav.* **9**, L69 (1992); P. Joshi and I. Dwivedi, *Phys. Rev. D* **47**, 5357 (1993); T. P. Singh and P. Joshi, *Class. Quantum Grav.* **13**, 559, (1996); L. Herrera and N. O. Santos, *Phys. Rep.* **286**, 53 (1997); H. Bondi, *Mon. Not. R. Astr. Soc.* **262**, 1088 (1993); W. Barreto, *Astr. Space Sci.* **201**, 191 (1993); A. Coley and B. Tupper, *Class. Quantum Grav.* **11**, 2553 (1994); J. Martinez, D. Pavon and L. Nunez (1994) *Mon. Not. R. Astr. Soc.* **271**, 463 (1994); T. Singh, P. Singh and A. Helmi, *Il Nuov. Cimento* **110B**, 387 (1995); A. Das, N. Tariq and J. Biech, *J. Math. Phys.* **36**, 340 (1995); R. Maartens, S. Maharaj and B. Tupper, *Class. Quantum Grav.* **12**, 2577 (1995); A. Das, N. Tariq, D. Aruliah and T. Biech, *J. Math. Phys.* **38**, 4202 (1997); E. Corchero, *Class. Quantum Grav.* **15**, 3645 (1998); E. Corchero, *Astr. Space Sci.* **259**, 31 (1998); H. Bondi, *Mon. Not. R. Astr. Soc.* **302**, 337 (1999); H. Hernandez, L. Nunez and U. Percoco, *Class. Quantum Grav.* **16**, 897 (1999); T. Harko and M. Mark, *J. Math. Phys.* **41**, 4752 (2000); A. Das and S. Kloster, *Phys. Rev. D* **62**, 104002 (2000); P. Joshi, N. Dadhich and R. Maartens, gr-qc/0109051.

[28] M. Schwarzschild, *Structure and Evolution of the Stars*, (Dover, New York) (1958); R. Kippenhahn and A. Weigert, *Stellar Structure and Evolution*, (Springer Verlag, Berlin) (1990); C. Hansen and S. Kawaler, *Stellar Interiors: Physical principles, Structure and Evolution*, (Springer Verlag, Berlin) (1994).

[29] I. Iben, *Astrophys. J.* **138**, 1090, (1963).

[30] E. Myra and A. Burrows, *Astrophys. J.* **364**, 222 (1990).

[31] W. Barreto, *Astroph. and Sp. Sc.* **201**, 191, (1993).

[32] M. Cosenza, L. Herrera, M. Esculpi y L. Witten, *Phys. Rev. D* **22**, 2527 (1982).

[33] A. Einstein, *Ann. Math.* **40**, (1939); P. Florides *Proc. R. Soc. London* **A337**, 529 (1974); B. K. Datta, *Gen. Rel. Grav.* **1**, 19 (1970); H. Bondi *Gen. Rel. Grav.* **2**, 321 (1971); A. Evans *Gen. Rel. Grav.* **8**, 155 (1977).

[34] R. Tolman, *Phys. Rev.* **55**, 364 (1939).

[35] G. Lemaitre, *Ann. Soc. Sci. Bruxelles* **A53**, 51 (1933).

[36] L. Herrera, *Phys. Lett. A* **165**, 206 (1992).
FIG. 1. Energy density, $\rho m(0)^2$, as a function of (dimensionless) time (α) for the Schwarzschild–type model. The initial conditions are: $A(0) = 5$, $F(0) = 0.6$ and $\Omega(0) = -0.1$. Curves represent different regions: $r/r_\Sigma = 0.25$ (continuous line); 0.50 (dashed line); 0.75 (short–dashed line) and 1.00 (dotted line).
FIG. 2. Radial pressure, $P_r m(0)^2$, as a function of time for the Schwarzschild–type model. The initial conditions are: $A(0) = 5$, $F(0) = 0.6$ and $\Omega(0) = -0.1$. Curves represent different regions: $r/r_\Sigma = 0.25$ (continuous line); 0.50 (dashed line); 0.75 (short–dashed line) and 1.00 (dotted line).
FIG. 3. Radial velocity, ω, as a function of time for the Schwarzschild–type model. The initial conditions are: $A(0) = 5$, $F(0) = 0.6$ and $\Omega(0) = -0.1$. Curves represent different regions: $r/r_\Sigma = 0.25$ (continuous line); 0.50 (dashed line); 0.75 (short–dashed line) and 1.00 (dotted line).
FIG. 4. Shear, $\sigma m(0)$, as a function of time for the Schwarzschild–type model. The initial conditions are: $A(0) = 5$, $F(0) = 0.6$ and $\Omega(0) = -0.1$. Curves represent different regions: $r/r_\Sigma = 0.25$ (continuous line); 0.50 (dashed line); 0.75 (short–dashed line) and 1.00 (dotted line).
FIG. 5. Weyl tensor, $W/m(0)$, as a function of time for the Schwarzschild–type model. The
initial conditions are: $A(0) = 5$, $F(0) = 0.6$ and $\Omega(0) = -0.1$. Curves represent different regions:
$r/r_\Sigma = 0.25$ (continuous line); 0.50 (dashed line); 0.75 (short–dashed line) and 1.00 (dotted line).
FIG. 6. Radial velocity, ω, as a function of r/r_Σ for $\alpha = 10$. The initial velocity at the surface is -0.001. Curves represent different values of $F(0)$: 0.6 (continuous line); 0.96 (dashed line) and 0.996 (short-dashed line).
FIG. 7. Radial velocity, ω, as a function of time for the Tolman VI–type model. The initial conditions are: $F(0) = 0.581428528$ and $\Omega(0) = -0.0001$. Curves represent different regions: $r/r_\Sigma = 0.2$ (continuous line); 0.4 (dashed line); 0.6 (short–dashed line); 0.8 (dotted line) and 1.0 (dot–dashed line).
FIG. 8. Radial velocity, ω, as a function of time for the Tolman–type model. The initial conditions are: $F(0) = 0.561428547$ and $\Omega(0) = -0.0001$. Curves represent different regions: $r/r_\Sigma = 0.2$ (continuous line); 0.4 (dashed line); 0.6 (short–dashed line); 0.8 (dotted line) and 1.0 (dot–dashed line).
FIG. 9. Weyl tensor, $W/m(0)$, at $r/r_\Sigma = 0.4$ as a function of time for the Tolman VI-type model. The initial conditions are: $F(0) = 0.581428528$ (dashed line); $F(0) = 0.561428547$ (continuous line) and $\Omega(0) = -0.0001$.
FIG. 10. Weyl tensor, $W/m(0)$, at $r/r_{\Sigma} = 1.0$ as a function of time for the Tolman VI-type model. The initial conditions are: $F(0) = 0.581428528$ (dashed line); $F(0) = 0.561428547$ (continuous line) and $\Omega(0) = -0.0001$.
FIG. 11. Shear, $\sigma m(0)$, as a function of time for the Tolman VI–type model. The initial conditions are: $F(0) = 0.581428528$ and $\Omega(0) = -0.0001$. Curves represent different regions: $r/r_\Sigma = 0.2$ (continuous line); 0.4 (dashed line); 0.6 (short–dashed line); 0.8 (dotted line) and 1.0 (dot–dashed line).
FIG. 12. Shear, $\sigma m(0)$, as a function of time for the Tolman–type model. The initial conditions are: $F(0) = 0.561428547$ and $\Omega(0) = -0.0001$. Curves represent different regions: $r/r_{\Sigma} = 0.2$ (continuous line); 0.4 (dashed line); 0.6 (short–dashed line); 0.8 (dotted line) and 1.0 (dot–dashed line).