Progress toward a group B streptococcal vaccine

Joon Young Song, Jae Hyang Lim, Sangyong Lim, Zhi Yong, and Ho Seong Seo

Introduction

Group B streptococcus (Streptococcus agalactiae; GBS) is an opportunistic gram-positive pathogen and one of the most common causes of life-threatening bacterial infections worldwide. In the human neonates, GBS infection commonly results in the development of pneumonia, sepsis, and meningitis. Despite considerable advances in the diagnosis and intrapartum antibiotic prophylaxis (IAP) of GBS infections, it remains one of the most common causes of neonatal morbidity and mortality, causing serious infections. Furthermore, recent studies reported an increasing number of GBS infections in pregnant women and elderly. Although IAP is effective, it has several limitations, including increasing antimicrobial resistance and late GBS infection after negative antenatal screening. Maternal immunization is the most promising and effective countermeasure against GBS infection in neonates. However, no vaccine is available to date, but two types of vaccines, protein subunit and capsular polysaccharide conjugate vaccines, were investigated in clinical trials. Here, we provide an overview of the GBS vaccine development status and recent advances in the development of immunoassays to evaluate the GBS vaccine clinical efficacy.

Disease burden and clinical spectrum of GBS infections

GBS has been identified as a major cause of invasive infections during the first three months of life since the 1970s. The incidence of invasive GBS infections varies geographically, ranging from 0.02 per 1,000 live births in Southeast Asia to 1.21 per 1,000 live births in Africa. GBS infection cases in the neonates and infants can be divided into two categories: an early-onset disease (EOD), which occurs within 0–6 days after birth, and a late-onset disease (LOD), which occurs within 7–90 days after birth. GBS is a common colonizer of digestive and female genital tract in approximately one-third of human population. Maternal colonization and subsequent neonatal acquisition of GBS is an established risk factor for GBS sepsis during the early periods of life. Therefore, intrapartum antibiotic prophylaxis (IAP) strategy to reduce the neonatal acquisition of GBS has been applied, and the incidence of EOD declined from 1.8 cases per 1,000 live births in 1990 to 0.23 cases per 1,000 live births in 2015. However, IAP has had no impact on the incidence of LOD and only a limited impact on disease development in pregnant women. The incidence of LOD in the United States has remained stable since 1990 at approximately 0.3 to 0.4 per 1,000 live births. Moreover, approximately 60–80% of LOD occurred in infants whose mothers had negative results in the GBS screening at 35–37 weeks’ gestation. This may be due to the recolonization of GBS shortly before the delivery in these individuals, and their infants may acquire GBS from breast milk or diverse community/nosocomial sources after birth.

In neonates and infants younger than 3 months, GBS causes invasive bacterial diseases including sepsis, meningitis, and pneumonia (Table 1). An unexpected, rapidly progressing sepsis is the dominant manifestation of a GBS infection (80–85%) in EOD, while both primary bacteremia (65%) and meningitis (25–30%) are common in LOD. Localized GBS infections,
Disease spectrum and serotype distribution of group B streptococcal (GBS) infection according to the age of the patient.

Maternal obstetric GBS infections may lead to prematurity and colonization of the non-pregnant women. Approximately 5% of adults with these conditions are considered the common risk factors increasing the invasive potential of GBS infection, including genotype A serotypes, which colonize the gastrointestinal/genital tract, but rarely cause the development of invasive diseases. Other serotypes, such as skin and soft tissue infections, bone and joint infections, and urinary tract infections, occasionally occur in LOD cases as well. GBS is vertically transmitted to neonates during pregnancy, and colonized isolates was shown to be well correlated in pregnant women and colonized adults. GBS carriage rates in pregnant women vary geographically between 6.5% and 43.6%, with prolonged rupture of membrane. GBS colonization rate at the genital and gastrointestinal tract ranges from 5% to 43.6%, with approximately 20–30% of pregnant women carrying GBS in the developed countries. In about 50% of the cases, the infection is transmitted to their babies, leading to invasive diseases in 1% of neonatal carriers.

Although GBS infection has been primarily recognized as a pediatric disease, it has also emerged as an important pathogen colonizing pregnant and non-pregnant adults, particularly older ones or adults with underlying medical conditions. A two-to-four-fold increase in the incidence of invasive GBS diseases in adults has been observed over the past two decades, reaching 25.4 cases per 100,000 adults. Approximately 5% of adults with these disease experienced relapse with an average of 13-week intervals. Moreover, more than 50% of fatal GBS infections occur in elderly people. Common clinical manifestations of adult GBS diseases includes skin and soft tissue infections, primary bacteremia, bone and joint infections, pneumonia, etc. (Table 1). Contrary to the pregnancy-related cases, which occur in the otherwise healthy women, most of the non-pregnant adult patients with GBS infections have underlying medical conditions. Old age (>65 years), diabetes mellitus, liver cirrhosis, stroke, and cancer are considered the common risk factors increasing the invasive-ness of GBS infections among non-pregnant adults. GBS colonization rate at the genital and gastrointestinal tract ranges from 20% to 35% in adults irrespective of age. However, in bedridden elderly people, GBS has been shown to colonize the dental plaque and pharynx as well, increasing the probability of GBS pneumonia development in these patients.

Serotype distribution and antimicrobial resistance

Capsular polysaccharide (CPS) is an important virulence factor of encapsulated bacteria, including GBS, and has been related to the bacterial disease clinical manifestations and invasiveness. Among 10 distinct serotypes, more than 90% of EOD are caused by serotypes Ia, Ib, II, III, and V, while LODs are caused predominantly by serotype III (Table 1). Similar to the neonates and infants, maternal carriage has been associated with the GBS disease development in the pregnant women, with five-fold increase in the risk of disease development, including genitourinary tract infection, chorioamnionitis, and endometritis, compared with that in the non-pregnant women. Pregnancy-associated GBS infections may lead to poor pregnancy outcomes, including spontaneous abortion, stillbirth, and preterm birth. Serotype distribution of clinical and colonized isolates was shown to be well correlated in pregnant women, and they were determined to be similar to those leading to the development of EOD (Table 1). In adults, serotype V (27.5%) was shown to be a predominant serotype, followed by Ia (24.3%) and III (16.5%).

Similar to pneumococci, some GBS capsular serotypes commonly colonize the gastrointestinal/genital tract, but rarely cause the development of invasive diseases. Other serotypes, however, are more likely to cause invasive diseases with each episode of colonization. Previously, the invasive disease-causing potential of each GBS capsular serotype was investigated, based on the invasive odds ratio (OR) (Table 2). Invasive OR is calculated by referring to all other serotypes as follows: \(OR = \frac{(ad)}{(bc)} \), where \(a \) is the number of invasive A serotypes, \(b \) is the number of carriage A serotypes, \(c \) is the number of invasive non-A serotypes, and \(d \) is the number of carriage non-A serotypes. An OR > 1 indicates that the serotype is equally likely to cause invasive disease or be recovered from carriage, an OR > 1 indicates an increased probability for a

Common manifestations	Serotype distribution	Case-fatality rate*	Risk factor†	Maternal obstetric complications	Early-onset disease	Late-onset disease	Pregnant women	Non-pregnant adults (old adults)
Sepsis with unknown source (80-85%)	Serotype V (27.5%)	5–10%	Maternal GBS colonization	Prematurity	Meningitis (25-30%)	Primary bacteremia (65%)	Genitourinary tract infection (50%)	Primary bacteremia (24%)
Pneumonia (10%)	Serotype III (24.0%)	2–6%	Maternal GBS colonization	Prematurity	Bone and joint infection (5%)	Meningitis (5%)	Chorioamnionitis (4%)	Skin and soft tissue infection (20%)
Meningitis (7%)	Serotype Ia (32.7%)	Not available	Maternal GBS colonization	Prematurity	Cellulitis and/or adenitis (4%)	Bone and joint infection (5%)	Endocarditis (3%)	Respiratory tract infection (12%)
Risk factor‡	Serotype III (28.7%)						Endometritis (8%)	Urinary tract infection (10%)
	Serotype V (19.8%)						Puerperal sepsis (2%)	Bone and joint infection (8%)
	Serotype Ib (32.7%)						Gastrointestinal colonization (2%)	Intra-abdominal infection (5%)
	Serotype V (6.6%)							Endocarditis (4%)

Table 1. Disease spectrum and serotype distribution of group B streptococcal (GBS) infection according to the age of the patient.

*Premature rupture of membrane, preterm delivery, prolonged rupture of membrane

†Prematurity of membrane, peritoneal, prolonged rupture of membrane

‡Prematurity of membrane, preterm delivery, prolonged rupture of membrane

¶Prematurity of membrane, peritoneal, prolonged rupture of membrane
serotype to cause invasive disease, and an OR < 1 indicates a reduced probability for a serotype to cause invasive disease. These studies demonstrated that serotype III is the predominant invasive serotype with high invasive OR (1.8-4.2). In a study conducted in Hong Kong, the virulence of serotype III was further assessed at subtype level, and serotype III-subtype 4 GBS was shown to be more highly invasive compared with other subtypes (invasive OR, 19.4).

As recommended by the United States Centers for Disease Control and Prevention (CDC) guidelines for the IAP for the prevention of neonatal GBS infections, penicillin or ampicillin is administered to the pregnant women before delivery. For the patients allergic to β-lactam agents, either erythromycin or clindamycin can be used as an alternative agent. However, an increasing rate of resistance to erythromycin and clindamycin has been observed among clinical GBS isolates (Table 3). High resistance rate against macrolide antibiotics was reported in South Korea (51.8%) and China (74.1%). In South Korea, serotype V was predominantly shown to have a high macrolide resistance rate, reflecting clonal spread with the selective advantage of antimicrobial resistance. However, in China, more than 70% of GBS were resistant to macrolide antibiotics, irrespective of serotype. In South Korea, 42.9% of the GBS isolates were shown to carry ermB, while in China, 52.3% of the isolates carried this gene, which provided a high level of resistance to both erythromycin and clindamycin.

Virulence factors for a GBS vaccine

GBS expresses numerous virulence factors that are involved in its colonization, adherence, invasion, and immune evasion, and these may be used as potential vaccine candidates. Biochemical and molecular analyses of these factors can provide a better understanding of the infectious process, further assisting the development of new diagnostic techniques, specific antimicrobial compounds, and effective vaccines.

Capsular Polysaccharide (CPS)

GBS expresses a unique CPS that is the most well-studied virulence factor contributing to the evasion of host immune defense mechanisms by protecting the bacteria from opsonophagocytosis by immune cells. CPS can also increase the invasive-ness of GBS by enhancing biofilm formation, inhibiting the binding of antimicrobial peptides and neutrophil extracellular traps (NET), and affecting bacterial adherence to the epithelium and mucus. Moreover, a correlation between the presence of CPS-specific antibodies in serum and the increased risk of GBS EOD and LOD development was reported, and CPS is considered the best target for the development of GBS vaccine.

Structure and biosynthesis

GBS expresses at least 10 structurally and antigenically different types of CPS (Ia, Ib, II, III, IV, V, VI, VII, VIII, and IX) (Fig. 1). All identified CPSs of GBS are high-molecular weight polymers with the short side-chain capped terminally with a sialic acid (N-acetylneuraminic acid) residue. Pneumococcal type 14 polysaccharide (Pn14) is structurally related to GBS type III polysaccharide (GBS-III), except for the presence of a terminal sialic acid residue in the side chain. However, immunoglobulin G (IgG), induced by the presence of Pn14,
Moreover, sialylated CPS of GBS
In healthy adults, trivalent conjugate vac-
During the PDVAC meeting in 2014, it
75
CpsB,
Although tetravalent GBS
93
CpsA is a membrane anchoring protein and
The locus contains the conserved genes
69
cpsP
O-antigen synthesis (GBS-CPS
Genetic organization of the
Monovalent or multivalent GBS CPS-protein conju-
60
cpsS
Clinical trials investi-
The repeat unit is trans-
Currently, two large com-
around 1920, Avery and Heidelberger performed a series of
poorly cross-reacts with GBS-III polysaccharide, suggesting
Clinical trials investi-
gating a multivalent polysaccharide vaccine demonstrated its
hexavalent, 14-valent, and 23-valent pneumococcal polysaccharide
vaccines (PPVs) were licensed in 1947, 1977, and 1983, respec-
tively, for the vaccination of adults and children. 70 GBS-CPS
vaccine underwent clinical trials in healthy adults including
pregnant women in the 1980s. 71–75 Although tetravalent GBS
polysaccharide vaccine with serotypes Ia, Ib, II, and III was shown to be well-tolerated, the proportion of subjects with
more than four-fold increase in the serotype-specific Ig titers compared with those in the unvaccinated group was only 33%
for serotype Ia, 0% for serotype Ib, 17% for serotype II, and
70% for serotype III. 73 During the PDVAC meeting in 2014, it
was concluded that the native CPS vaccine was ineffective due
to its poor immunogenicity. 76

A

B

Figure 1. Genetic organization of the cps locus in Streptococcus agalactiae. (A) Comparative cps gene organization in nine serotypes: Ia (AB028896.2), Ib (AAJS01000021.1), II (ALQD01000015.1), III (AF163833.1), IV (AF355776.1), V (AF349539.1), VI (AF372958.1), VII (LT671990.1), VIII (ALST01000010.1), and IX (LT671992.1). Gene designations are indicated on each arrow. Similarity between the genes is indicated by the same or similar colors. Gene names are the same as those used in a previous study, 46 except for cpsP, cpsS, and cpsO. (B) Predicted CPS functions based on the results of previous studies and sequence comparisons.

CPS vaccines
Around 1920, Avery and Heidelberger performed a series of
studies establishing the bacterial capsule as a critical virulence
factor of the encapsulated bacteria. 62–69 Clinical trials investi-
gating a multivalent polysaccharide vaccine demonstrated its
high efficacy in humans against pneumococcal disease. Hexa-
valent, 14-valent, and 23-valent pneumococcal polysaccharide
vaccines (PPVs) were licensed in 1947, 1977, and 1983, respec-
tively, for the vaccination of adults and children. 70 GBS-CPS
vaccine underwent clinical trials in healthy adults including
pregnant women in the 1980s. 71–75 Although tetravalent GBS
polysaccharide vaccine with serotypes Ia, Ib, II, and III was shown to be well-tolerated, the proportion of subjects with
more than four-fold increase in the serotype-specific Ig titers compared with those in the unvaccinated group was only 33%
for serotype Ia, 0% for serotype Ib, 17% for serotype II, and
70% for serotype III. 73 During the PDVAC meeting in 2014, it
was concluded that the native CPS vaccine was ineffective due
to its poor immunogenicity. 76

A

B

Figure 1. Genetic organization of the cps locus in Streptococcus agalactiae. (A) Comparative cps gene organization in nine serotypes: Ia (AB028896.2), Ib (AAJS01000021.1), II (ALQD01000015.1), III (AF163833.1), IV (AF355776.1), V (AF349539.1), VI (AF372958.1), VII (LT671990.1), VIII (ALST01000010.1), and IX (LT671992.1). Gene designations are indicated on each arrow. Similarity between the genes is indicated by the same or similar colors. Gene names are the same as those used in a previous study, 46 except for cpsP, cpsS, and cpsO. (B) Predicted CPS functions based on the results of previous studies and sequence comparisons.

CPS vaccines
Around 1920, Avery and Heidelberger performed a series of
studies establishing the bacterial capsule as a critical virulence
factor of the encapsulated bacteria. 62–69 Clinical trials investi-
gating a multivalent polysaccharide vaccine demonstrated its
high efficacy in humans against pneumococcal disease. Hexa-
valent, 14-valent, and 23-valent pneumococcal polysaccharide
vaccines (PPVs) were licensed in 1947, 1977, and 1983, respec-
tively, for the vaccination of adults and children. 70 GBS-CPS
vaccine underwent clinical trials in healthy adults including
pregnant women in the 1980s. 71–75 Although tetravalent GBS
polysaccharide vaccine with serotypes Ia, Ib, II, and III was shown to be well-tolerated, the proportion of subjects with
more than four-fold increase in the serotype-specific Ig titers compared with those in the unvaccinated group was only 33%
for serotype Ia, 0% for serotype Ib, 17% for serotype II, and
70% for serotype III. 73 During the PDVAC meeting in 2014, it
was concluded that the native CPS vaccine was ineffective due
to its poor immunogenicity. 76

A

B

Figure 1. Genetic organization of the cps locus in Streptococcus agalactiae. (A) Comparative cps gene organization in nine serotypes: Ia (AB028896.2), Ib (AAJS01000021.1), II (ALQD01000015.1), III (AF163833.1), IV (AF355776.1), V (AF349539.1), VI (AF372958.1), VII (LT671990.1), VIII (ALST01000010.1), and IX (LT671992.1). Gene designations are indicated on each arrow. Similarity between the genes is indicated by the same or similar colors. Gene names are the same as those used in a previous study, 46 except for cpsP, cpsS, and cpsO. (B) Predicted CPS functions based on the results of previous studies and sequence comparisons.
Figure 2. Biochemical capsular polysaccharide (CPS) structure of *Streptococcus agalactiae*. Association of the encoded sugar transferases and polymerases (cpsH) with each corresponding CPS structure. Links between two sugars are represented as black lines ($\beta 1\rightarrow 4$), red lines ($\beta 1\rightarrow 4$), blue lines ($\beta 1\rightarrow 6$), and green lines ($\alpha 2\rightarrow 3$).

Figure 3. Representative Wzx/Wzy-dependent capsular polysaccharide (CPS) biosynthesis pathway in the group B streptococcal serotype III. (A) Serotype III cps gene organization and putative functions of the gene products. 37 (B) Biochemical steps during the CPS synthesis. Galactose-1-phosphate is initially transferred to an undecaprenyl-phosphate by CpsE and the repeat unit is rapidly assembled by glycosyltransferases. Individual repeat units are translocated across the cytoplasmic membrane by flippase (cpsL) and linked to form lipid-linked CPS by polymerase (cpsH).
pentavalent conjugate vaccine with serotypes Ia, Ib, II, III, and V to evaluate its safety, tolerability, and immunogenicity (NCT03170609).

Surface anchoring adhesins

Although the production, coverage, safety and immunogenicity of CPS conjugate vaccines have been well established, they show several limitations, including their limited usability in the low-income countries due to the high cost, potential immune interference with other type of conjugate vaccines, the possibility of serotype replacement and switching following the vaccination, and an increase in the occurrence of the unencapsulated GBS. Therefore, a structurally conserved protein antigen-based vaccine against GBS has been investigated as alternative vaccines. Conserved bacterial surface proteins play important roles during different stages of infection and likely represent the promising universal vaccine candidates.

To initiate infection and invasion of a specific organs, bacterial pathogens must first be able to attach to an appropriate target tissue by specific multiple tropisms between bacterial surface ligands and host receptors. Surface-anchoring adhesion molecules of GBS may therefore represent good candidates for vaccine development.

Alp protein family

Most well-known gram-positive bacterial surface proteins are cell wall proteins covalently anchored to the peptidoglycan layer through an LPXTG motif by the activity of enzyme sortase A (SrtA). The genome of GBS encodes at least 20–25 LPXTG-linked surface proteins. Proteomic analysis of GBS was conducted to identify the major surface proteins of GBS, and Rib protein, one of Alp family protein, was found to be the most abundant surface protein. Furthermore, over 90% of GBS clinical isolates were found to express or encode at least one of the Alp protein family genes. Seven members of the Alp family, including AlphaC, BetaC, Alp1, Alp2, Alp3 (R28), Alp4, and Rib, have been identified to date. They contain an N-terminal secretion signal sequence (S), N-terminal conserved domain (N), a variable number of tandemly arranged repeats of 70–80 amino acids (R), 8 to 10 repeats, and a C-terminal LPXTG cell-wall anchoring motif (Fig. 4A). Certain domains of Alp proteins may display high sequence similarity, which provides a structural basis for their interactions with the same host receptor and cross-protective immunity. The roles of AlphaC and BetaC proteins have been extensively studied, compared with those of the other members of the Alp family. AlphaC protein was shown to be an important ligand involved in the GBS binding to human cervical epithelial cells through its interaction with glycosaminoglycan (GAG). MLKKIE sequence motif of BetaC protein binds to the Fc region of human IgA, predominantly found on the mucus surface (Fig. 4B). Additionally, it was also shown to bind to human factor H (FH) to protect GBS from opsonophagocytosis. Rib protein shares several biochemical features with AlphaC protein, but no immunological cross-reaction with either AlphaC or BetaC proteins has been found. The potential invasive properties of other Alp proteins have not been studied.

Preclinical vaccine investigations of the AlphaC, Alp3, and Rib proteins have been conducted, but the use of Alp proteins as universal vaccines has been limited due to the heterogeneity of the Alp sequence. Nevertheless, MinervaX Inc. recently reported that the fusion protein of the highly immunogenic N-terminal domains of AlphC and Rib (GBS-NN) led to over 30-fold increase of GBS-NN-specific antibody in their phase I clinical trial with 240 healthy adult women (NCT02459262).

Serine-rich repeat proteins

Doro et al. performed surface analysis to identify GBS proteins with domains protruding from the bacterial surface. Among 43 surface-associated proteins identified using GBS COH1 strain (serotype III), serine-rich repeat 2 (Srr2) protein was shown to be the most abundant surface protein, which can be used to generate a protective immune response against GBS serotype III in mice. Serine-rich repeat (SRR) glycoproteins are a large and diverse family of adhesins found in most gram-positive bacteria. GBS expresses either one of two-allelic SRR proteins, Srr1 and Srr2, with a highly conserved domain organization that includes a secretion signal sequence, two SRR domains that are glycosylated, a specialized fibrinogen binding domain between two SRR domains, and an LPXTG cell wall-anchoring motif (Fig. 4C). Both Srr1 and Srr2 identified in GBS can bind fibrinogen Aα chain through the “dock, lock, and
latch” mechanism, and these interactions contributes to the pathogenesis of GBS meningitis and GBS colonization of the vaginal surface. An antigenic domain with 13 amino acids in Srr1 and Srr2, latch domain, was shown to be crucial for the pathogenesis of GBS diseases, and latch-peptide vaccination was demonstrated to provide serotype-independent protection against GBS infection in mice.

C5a peptidase (SscpB)

C5a peptidase is a highly conserved surface protein that is expressed on the surface of most GBS serotypes and can specifically inactivate a human phagocyte chemotaxin, C5a. C5a peptidase is also involved in GBS invasion, as it interacts with the human fibronectin through its RGD motif. This cell wall-anchoring protease contains N-terminal subtilisin-like protease domain, two RGD motifs targeting integrin, and three C-terminal fibronectin type III (Fn) domains (Fig. 4D). C5a peptidase-deficient GBS pathogens were shown to be more rapidly cleared from mice supplemented with human C5a, suggesting that this peptidase is an important GBS virulence factor. Recombinant C5a peptidase has been investigated as a universal protein vaccine or a carrier protein of GBS-CPS instead of the tetanus toxoid. In a murine model, antibodies raised against recombinant C5a peptidase were opsonic and enhanced phagocytic killing of various GBS serotypes. The immunization with C5a peptidase-conjugated GBS type III CPS led to an increase in the IgG immune response against both CPS and C5a peptidase. To enhance the immunogenicity of the recombinant C5a peptidase further, the researchers encapsulated it within microspheres composed of a lactic and glycolic acid copolymer, which enabled this molecule to induce systemic and mucosal immune responses, offering protection against multiple GBS serotypes.

Pilus

The genome sequences of five GBS serotypes were analyzed to identify pan-genome genes that encode putative surface-associated proteins and possible antigens suitable for the development of a universal GBS vaccine. Among 396 core genes, pilin proteins were shown to induce a protective, serotype-independent immune response against GBS infection. Pili are long filamentous structures protruding from the bacterial surface, which are important for the bacterial virulence and disease pathogenesis. Extensive genomic analyses of a large panel of GBS isolates revealed the presence of three pilus islands, PI-1, PI-2a, and PI-2b, which are further classified as pilus type 1, 2a, and 2b, respectively. Each island encodes a pilus composed of three structural proteins, the major pilus subunit (backbone protein, BP) that forms the pilus shaft and two ancillary proteins that appear to be located at the pilus tip (Apt1) and at the base (Apt2) as anchor protein of the pilus to bacterial cell-wall. Although vaccination using either BP or Apt1 induced protective immune responses against GBS, it was pilus type-specific and better in immunization with BP. Furthermore, at least six immunologically different variants were found in BP-2a, which limited BP for the use of vaccine development. Nuccitelli et al. found that BP-2a variants share similar four Ig-like domain (D1 to D4) and a D3 domain of BP-2a is a major epitope for a protective immune response. They further developed a six D3 fused chimeric protein from six BP-2a variants by using structural vaccine technology and showed strong protective immune responses against all six BP-2a variant carrying GBS strains. If this structural vaccine technology is further expanded to successfully include BP1 and BP-2b in a six D3 chimeric protein vaccine, a pilus is going to be a good vaccine candidate for a universal GBS protein vaccine.

Vaccine evaluation assays

Several vaccine candidates are under clinical and preclinical investigations, but the low baseline incidence of the primary endpoint of GBS invasive disease requires phase III clinical efficacy trials to be very large. Based on a good correlation between immune response and clinical protection, some experts suggested that GBS vaccine can be approved based on the immunogenicity assay. Similarly, Neisseria meningitides group C conjugate vaccine was successfully introduced in the UK on the basis of the immunogenicity assay results. Therefore, the standardization of the clinical immunogenicity assays is urgently required for the development of GBS vaccines. The basic approach to the determination of vaccine immunogenicity is the measuring of antigen-specific antibody levels in the patient sera before and after vaccination, to determine whether an appropriate response has been induced.

For the PCV vaccine, two standard immunological methods, enzyme-linked immunosorbent assay (ELISA) and opsonophagocytic killing assay (OPKA) for measuring the quantity and quality of CPS-specific antibodies, are well established and accepted as the standard vaccine efficacy assays. Although an immunogenicity assay for the analysis of GBS vaccine has been developed using certain modifications of the existing PCV vaccine assay, the modified protocol has not been standardized and validated in different laboratories to date, and consequently, the standardization of the GBS vaccine immunogenicity assays is necessary.

Antibody quantification

Standard ELISA can be used for the quantification of antibodies generated due to the immunization by protein-based vaccine. However, the capacity of this test to determine the levels of the antibodies against serotype-specific CPS antigens largely depends on the ability of the CPS immobilization on an ELISA plate, which can be accompanied by considerable technical difficulties, such as an inconsistent binding of immobilized CPS to the solid phase or a nonspecific serotype-independent binding with lower avidity. Despite the high degree of similarity between the repeat unit structure of CPS in different serotypes, their immunogenicity may quite differ. Therefore, methods used for the quantification of capsular serotype-specific antibody in serum must be not only sensitive, but also serotype-specific. Baker and Kasper reported that the use of horse serum albumin-conjugated CPS obtained from different GBS serotypes as coating antigens results in at least 13- to 215-fold higher binding of antibodies to the ELISA plates than when CPS alone is used and an improved sensitivity of the ELISA compared with that of the unconjugated CPS. However, another study demonstrated that the chemical conjugation of CPSs and proteins as ELISA antigens
can alter the antigenic structure of CPS, resulting in the reduction of antigenic specificity.167 These results demonstrate that the design of specific ELISA protocol for the determination of serotype-specific GBS antibodies should be further optimized.

Assessment of functional antibodies

The quantity of antibodies generated against CPS or protein antigens highly correlates with the level of protection against GBS infections, but the functional quality of the antibodies induced by vaccines represents a critical determinant for the protection against GBS infections as well. Since the application of ELISA cannot differentiate between poorly functional antibodies with low avidity and the high-avidity antibodies, ELISAs may not be sufficient to determine the functional quality of antibodies.168–171 OPKA has been useful for the direct measurement of the protective capacity of antibodies, which function by opsonizing GBS for phagocytosis.165 The classical OPKA is a tedious procedure for the examination of several serotype-specific OPKA in a large number of samples.172,173 For the clinical testing of pneumococcal vaccine efficacy, OPKA for pneumococcus has been modified to use a granulocytic cell line (HL60) that allows more convenient use of it with specificity and reproducibility.174 Additionally, this assay has been further simplified from a single OPKA to a multiplexed OPKA to reduce the assay time and the amount of serum required for the test.175–177 Evaluation of the functional efficacy of vaccine after immunization of pregnant women with GBS vaccine is performed in the newborns, in which extremely small amounts of serum can be obtained. With the technical advantages of the multiplexed OPKA, three-fold multiplexed OPKA for GBS (GBS-MOPA) has been developed, standardized, and validated to be used in newborns.178 This standardized GBS-MOPA protocol enabled a practical, large-scale assessment of GBS vaccine immunogenicity against serotypes Ia, III, and V. An additional set of GBS-MOPA, covering all possible vaccine serotypes, is required to be developed.

Concluding remarks and perspectives

Despite the remarkable advances in the prevention and treatment of GBS infections over the recent decades, invasive GBS infections are still important public health problems, particularly in the neonates and infants. Although several vaccine candidates are under clinical development, a key issue of the phase III trials is the low baseline incidence of the primary clinical endpoints of GBS infections in both neonates and elderly. Additionally, the optimization of the number, concentrations, and timing of maternal vaccination conferring protection against GBS infections in both pregnant women and neonates is complicated. Therefore, it is critical to develop a standardized immunogenicity assay and establish GBS serotype-specific protective cut-off values to succeed in the development of effective vaccines. Several efforts were made to modify the standard immunogenicity assay for pneumococcal PCV for the application in the GBS vaccine development, however, several concerns were highlighted here. First, no reference serum for the standardization of GBS ELISA is available, furthermore, the immobilization of CPS on ELISA plate has to be optimized, and finally, the low affinity of natural and non-specific binding antibodies. Moreover, standard immunogenicity assays should be further optimized and validated in multiple laboratories across different counties, together with the worldwide epidemiological studies of the GBS serotype and genotype distribution. After the introduction of pneumococcal PCV, new serotypes and serotype replacement were identified in the countries where PCV has been used nationwide. Due to this, the vaccine effectiveness and changes in the disease incidence should be constantly assessed and monitored before and after the licensing and implementation of GBS vaccine.

Disclosure of potential conflicts of interest

No potential conflicts of interest were disclosed.

Funding

This work was supported by the Nuclear R&D program of Ministry of Science and ICT the Ministry of Food and Drug Administration (18172MFDSD253) National Research Foundation of Korea (2015R1D1A1A01059338) National Research Foundation of Korea (NRF-2017M2A2A6A02020925) This work was supported by the Nuclear R&D program of Ministry of Science and ICT (S.L); National Research Foundation of Korea under Grants NRF-2017M2A2A6A02020925 to HSS and 2015R1D1A1A01059338 to JHL; and the Ministry of Food and Drug Administration under Grant 18172MFDSD253 to JYS.

ORCID

Joon Young Song 1 \url{http://orcid.org/0000-0002-0148-7194}
Jae Hyang Lim 2 \url{http://orcid.org/0000-0003-0972-9271}
Sangyong Lim 3 \url{http://orcid.org/0000-0002-0359-5180}
Zhi Yong 4 \url{http://orcid.org/0000-0002-6970-3076}
Ho Seong Seo 5 \url{http://orcid.org/0000-0002-7103-1344}

References

1. Kobayashi M, Vekemans J, Baker CJ, Ratner AJ, Le Doare K, Schrag SJ. Group B streptococcus vaccine development: present status and future considerations, with emphasis on perspectives for low and middle income countries. F1000Res. 2016;5:2355. doi:10.12688/f1000research.9363.1.
2. Kobayashi M, Schrag SJ, Alderson MR, Madhi SA, Baker CJ, Sobanjo-Ter Meulen A, Kaslow DC, Smith PG, Moorthy VS, Vekemans J. WHO consultation on group B Streptococcus vaccine development: Report from a meeting held on 27–28 August 2016. Vaccine. 2016;16;31236−1. doi:10.1016/j.vaccine.2016.12.029.
3. Kwatra G, Cunnington MC, Merrill E, Adrian PV, Ip M, Klugman KP, Tam WH, Madhi SA. Prevalence of maternal colonisation with group B streptococcus: a systematic review and meta-analysis. Lancet Infect Dis. 2016;16:1076−84. doi:10.1016/S1473-3099(16)30055-X.
4. Farley MM. Group B streptococcal disease in nonpregnant adults. Clin Infect Dis. 2001;33:556−61. doi:10.1086/322696.
5. Zangwill KM, Schuchat A, Wenger JD. Group B streptococcal disease in the United States, 1990: report from a multistate active surveillance system. MMWR CDC Surveill Summ. 1992;41:25−32.
6. Centers for Disease C, Prevention. Early-onset and late-onset neonatal group B streptococcal disease–United States, 1996–2004. MMWR Morb Mortal Wky Rep. 2005;54:1205−8.
7. Centers for Disease C, Prevention. Perinatal group B streptococcal disease after universal screening recommendations–United States, 2003–2005. MMWR Morb Mortal Wky Rep. 2007;56:701−5.
8. Phares CR, Lynfield R, Farley MM, Mohle-Boetani J, Harrison LH, Petit S, Craig AS, Schaffner W, Zansky SM, Gershman K, et al. Epidemiology of invasive group B streptococcal disease in the United...
9. Jordan HT, Farley MM, Craig A, Mohle-Boetani J, Harrison LH, Petit S, Lynfield R, Thomas A, Zansky S, Gershman K, et al. Revisiting the need for vaccine prevention of late-onset neonatal group B streptococcal disease: a multistate, population-based analysis. Pediatr Infect Dis J. 2012;31:1057–64. doi:10.1097/INF.0b0133a318b083b3.

10. Melin P. Neonatal group B streptococcal disease: from pathogenesis to preventive strategies. Clin Microbiol Infect. 2011;17:294–303. doi:10.1111/j.1469-0691.2011.03576.x.

11. Van Dyke MK, Phares CR, Lynfield R, Thomas AR, Arnold KE, Craig AS, Mohle-Boetani J, Gershman K, Schaffner W, Petit S, et al. Evaluation of universal antenatal screening for group B streptococcus. N Engl J Med. 2009;360:2626–36. doi:10.1056/NEJMoa0808620.

12. Nuccitelli A, Rinaudo CD, Maione D, group B streptococcus vaccine: state of the art. Ther Adv Vaccines. 2015;3:76–90. doi:10.1177/2051014715579869.

13. Edward MS, Nizet V, Baker CJ. Group B streptococcal infection. In: Remington JS, Kilen JO, Baker CJ, Wilson CB, eds. Infectious diseases of the fetus and newborn infant. Philadelphia: WB Saunders Co; 2010:1091–114.

14. Berardi A, Rossi C, Lugli L, Creti R, Bacchi Reggiani ML, Lanari M, Memo L, Pedna MF, Venturelli C, Perrone E, et al. Group B streptococcus late-onset disease: 2003–2010. Pediatrics. 2013;131:e361–8. doi:10.1542/peds.2012-1231.

15. Pena BM, Harper MB, Fleisher GR. Occult bacteremia with group B streptococci in an outpatient setting. Pediatrics. 1998;102:67–72. doi:10.1542/peds.102.1.67.

16. Kim EJ, Oh KY, Kim MY, Seo YS, Shin JH, Song YR, Yang JH, Foxman B, Ki M. Risk factors for group B streptococcal colonization among pregnant women in Korea. Epidemiol Health. 2011;33:e2011010. doi:10.4178/epih/e2011010.

17. Seale AC, Bianchi-Jassir F, Kohli L, Creti R, Lynch M, Tann CJ, Hall JD, Madrid L, Blencowe H, Cousens S, Baker CJ, et al. Estimates of the many. J Clin Microbiol.

18. Le Doare K, Heath PT. An overview of global GBS epidemiology. Vaccine. 2013;31:D7–D12. doi:10.1016/j.vaccine.2013.01.009.

19. Edwards MS, Baker CJ. Group B streptococcal infections in elderly adults. Clin Infect Dis. 2005;41:839–47. doi:10.1086/423804.

20. Sendi P, Johannson L, Norby-Teglund A. Invasive group B streptococcal disease in non-pregnant adults – A review with emphasis on skin and soft-tissue infections. Infection. 2008;36:100–11. doi:10.1007/s00108-007-2751-0.

21. Song JY, Nahm MG, Moseley MA. Clinical implications of pneumococcal serotypes: invasive disease potential, clinical presentations, and antibiotic resistance. J Korean Med Sci. 2013;28:14–5. doi:10.3346/jkms.2013.28.1.4.

22. Berg S, Trollfors B, Lagergard T, Zackrisson G, Claesson BA. Serotype and clinical manifestations of group B streptococcal infections in western Sweden. Clin Microbiol Infect. 2000;6:9–13. doi:10.1046/j.1469-0691.2000.00070.x.

23. Martins ER, Pessanha MA, Ramirez M, Melo-Cristino J, Portuguese Group for the Study of Streptococcal I. Analysis of group B streptococcal isolates from infants and pregnant women in Portugal revealing two lineages with enhanced invasiveness. J Clin Microbiol. 2007;45:3224–9. doi:10.1128/JCM.01182-07.

24. Bisharat N, Jones N, Marcham D, Block C, Harding RM, Yagupsky P, Peto T, Crook DW. Population structure of group B streptococci from a low-incidence region for invasive neonatal disease. Microbiology. 2005;151:1875–81. doi:10.1099/micro.0.27826-0.

25. Madživhandila M, Adrian PV, Curtland CL, Kuwanda L, Schrag SJ, Madhi SA. Serotype distribution and antibiotic resistance. J Korean Med Sci.

26. Dutra VG, Alves VM, Olendzki AN, Dias CA, de Bastos AF, Santos GO, de Amaral EL, Sousa MA, Santos R, Ribeiro PC, et al. Streptococcus agalactiae isolates in Brazil: serotype distribution, virulence determinants and antimicrobial susceptibility. BMC Infect Dis. 2014;14:323. doi:10.1186/1471-2334-14-323.

27. Herbert MA, Beveridge CJ, Saunders NJ. Bacterial virulence factors in neonatal sepsis: group B streptococcus. Curr Opin Infect Dis. 2004;17:225–9. doi:10.1097/00001432-200406000-00009.

28. Vornhagen J, Adams Waldorf K, Rajagopal L. Perinatal group B streptococcal infections: Virulence factors, immunity, and prevention strategies. Trends Microbiol. 2017;25:919–31. doi:10.1016/j.tim.2017.05.013.

29. Geno KA, Gilbert GL, Song JY, Skovsted IC, Klugman KP, Jones C, Konradsen HB, Nahm MG. Pneumococcal capsules and their types: Past, present, and future. Clin Microbiol Rev. 2015;28:871–99. doi:10.1128/CMR.00024-15.

30. Croney CM, Nahm MG, Juhn JS, Briles DE, Crain MJ. Invasive and noninvasive Streptococcus pneumoniae capsule and surface protein diversity following infection of a conjugate vaccine. Clin Vaccine Immunol. 2013;20:1711–8. doi:10.1128/CVI.00381-13.

31. O’Dwyer N, Martinelli M, Pezzicoli A, De Cesare V, Pinto V, Margarita I, Telford JL, Maione D. Acidic pH strongly enhances in vitro biofilm formation by a subset of hypervirulent ST-17 Streptococcus agalactiae strains. Appl Environ Microbiol. 2014;80:2176–85. doi:10.1128/AEM.03627-13.

32. Rosini R, Margarita I. Biofilm formation by Streptococcus agalactiae: influence of environmental conditions and implicated virulence factors. Front Cell Inflam Microbiol. 2015;5:6. doi:10.3389/ fcmd.2015.00006.

33. Xia FD, Mulet A, Caliot E, Gao C, Trieu-Cuot P, Dramsi S. Capsular polysaccharide of group B streptococcus mediates biofilm formation in the presence of human plasma. Microbes Infect. 2015;17:1–6. doi:10.1016/j.micinf.2014.10.007.

34. Baker CJ, Carey VJ, Rench MA, Edwards MS, Hillier SL, Kasper DL, Platt R. Maternal antibody at delivery protects neonates from early onset group B streptococcal disease. J Infect Dis. 2014;209:781–8. doi:10.1093/infdis/jit549.
43. Baker CJ, Kasper DL. Correlation of maternal antibody deficiency with susceptibility to neonatal group B streptococcal infection. N Engl J Med. 1976;294:753–6. doi:10.1056/NEJM197604012941404.

44. Baker CJ, Kasper DL, Tager I, Paredes A, Alpert S, McCormack WM, Goroff D. Quantitative determination of antibody to capsular polysaccharide in infection with type III strains of group B Streptococcus. J Clin Invest. 1978;59:810–9. doi:10.1124/jci107803.

45. Gieslewicz MJ, Chaffin D, Blusman G, Kasper D, Madan A, Rodrigues F, Fahey J, Wessels MR, Rubens CE. Structural and functional diversity of group B streptococcus capsular polysaccharides. Infect Immun. 2005;73:3096–103. doi:10.1128/IAI.73.5.3096–3103.2005.

46. Berti F, Campisi E, Tonioni C, Morelli L, Crotti S, Rosini R, Romano MR, Pinto V, Brogioni B, Torricelli G, et al. Structure of the type IIX group B Streptococcus capsular polysaccharide and its evolutionary relationship with types V and VII. J Biol Chem. 2014;289:23437–48. doi:10.1074/jbc.M114.567974.

47. Carboni F, Adamo R, Fabbriini M, De Ricco V, Bottaro G, Pinto V, Passalacqua I, Oldrini D, et al. Structure of a protective epitope of group B Streptococcus type III capsular polysaccharide. Proc Natl Acad Sci U S A. 2017;114:5017–22. doi:10.1073/pnas.1620431114.

48. Yamamoto S, Miyake K, Koike Y, Watanabe M, Machida Y, Ohta M, Iijima S. Molecular characterization of type-specific capsular polysaccharide biosynthesis genes of Streptococcus agalactiae type IA. J Bacteriol. 1999;181:176–84.

49. Kolkmann MA, Wakarchuk W, Nuijten PJ, van der Zijl JA. Capsular polysaccharide synthesis in Streptococcus pneumoniae serotype 14: molecular analysis of the complete cps locus and identification of genes encoding glycosyltransferases required for the biosynthesis of the tetrasaccharide subunit. Mol Microbiol. 1997;26:197–208. doi:10.1046/j.1365-2958.1997.5791940.x.

50. Chaffin DO, Beres SB, Yim HH, Rubens CE. The serotype of type I and III group B streptococci is determined by the polymerase gene within the polycistronic capsular operon. J Bacteriol. 2000;182:4466–77. doi:10.1128/JB.182.16.4466-4477.2000.

51. Guttormsen HK, Baker CJ, Nahm MH, Paoletti LC, Zughai SM, Edwards MS, Kasper DL. Type III group B streptococcal polysaccharide induces antibodies that cross-react with Streptococcus pneumoniae type V infection. Infect Immun. 2002;70:1724–38. doi:10.1128/IAI.70.4.1724-1738.2002.

52. Carlin AF, Chang YC, Areschoug T, Lindahl G, Hurtado-Ziola N, King CC, Varki A, Nizet V. Group B streptococcal suppression of phagocyte functions by protein-mediated engagement of human Siglec-5. J Exp Med. 2009;206:1691–9. doi:10.1084/jem.20090691.

53. Chang YC, Olson J, Beasley FC, Tung C, Zhang J, Crocker PR, Varki A, Nizet V, group B streptococcus enganges an inhibitory Siglec through sialic acid mimicry to blunt innate immune and inflammatory responses in vivo. PLoS Pathog. 2014;10:e1003846. doi:10.1371/journal.ppat.1003846.

54. Schnaitman CA, Berti F, Henry X, El Ghachi M, Auger G, Blanot D, Parquet C. Mening-Lecreulx D, Bouhss A. Active site mapping of MraY, a tetrasaccharide subunit. Mol Microbiol. 2004;52:8919–29. doi:10.1111/j.1365-2958.2004.04888.x.

55. Barreteau H, Magnet S, El Ghachi M, Touze T, Arthur M, Mengin-Lecreulx D, Blanot D. Quantitative high-performance liquid chromatography analysis of the pool levels of undecaprenyl phosphate and its derivatives in bacterial membranes. J Chromatogr B Analyt Technol Biomed Life Sci. 2009;877:213–20. doi:10.1016/j.jchromb.2008.12.010.

56. Larsen JW, Jr, Harper JS, 3rd, London WT, Baker CJ, Curfman BL, Kasper DL, Sever JL. Antibody to type III group B Streptococcus in mice. J Exp Med. 1993;178:453–63. doi:10.1084/jem.178.5.453.

57. Modjarrad K, Giersing B, Kaslow DC, Smith PG, Moorthy VS, Miernyk KM, Butler JC, Bulkow LR, Hennessy TW, Eng J, et al. Efficacy of PPV in the elderly: a comparison of meta-analyses. Eur J Epidemiol. 2004;19:353–63. doi:10.1023/B:JEJP.0000024701.94769.98.

58. MacPherson CPC, Heidelberger M, Alexander HE, Leidy G. The specific polysaccharides of types A,B,C,D, and F Hemophilus influenzae. J Immunol. 1946;52:207–19.

59. Heidelberger M, Bernheimer AW. Cross-reactions of polysaccharides of fungi, molds, and yeasts in anti-pneumococcal and other antisera. Proc Natl Acad Sci USA. 1984;81:5247–9. doi:10.1073/pnas.81.16.5247.

60. Melegaro A, Edmunds WJ. The 23-valent pneumococcal polysaccharide vaccine. Part I. Efficacy of PPV in the elderly: a comparison of meta-analyses. EJ Epidemiol. 2004;19:353–63. doi:10.1023/B:JEJP.0000024701.94769.98.

61. Baker CJ, Edwards MS, Kasper DL. Immunogenicity of polysaccharides from type III, group B Streptococcus. J Clin Invest. 1978;61:1107–10. doi:10.1172/JCI109011.

62. Kasper DL, Goroff DK, Baker CJ. Immunoochemical characterization of native polysaccharides from group B streptococcus: the relationship of the type III and group B determinants. J Immunol. 1978;121:1096–105.

63. Basham LE, Pavliak V, Li X, Hawsari A, Kotloff KL, Edelman R, Fatton A. A simple, quantitative, reproducible avidin-biotin ELISA for the evaluation of group B streptococcus type-specific antibodies in humans. Vaccine. 1996;14:439–45. doi:10.1016/0264-410X(95)00146-8.

64. Larsen JW, Jr, Harper JS, 3rd, London WT, Baker CJ, Curfman BL, Kasper DL, Sever JL. Antibody to type III group B Streptococcus in the rhesus monkey. Am J Obstet Gynecol. 1983;146:958–62. doi:10.1016/0002-9378(83)90973-0.

65. De Cueninck BJ, Eisenstein TK, McIntosh TS, Shockman GD, Swenson RM. Quantitation of in vitro opsonic activity of human antibody induced by a vaccine consisting of the type III-specific polysaccharide of group B streptococcus. Infect Immun. 1983;40:1155–60.

66. Modjarrad K, Gierts B, Kaslow DC, Smith PG, Moorthy VS, Group WRCVE. WHO consultation on respiratory syncytial virus vaccine development report from a World Health Organization Meeting held on 23–24 March 2015. Vaccine. 2016;34:190–7. doi:10.1016/j.vaccine.2015.05.093.

67. Miernyk KM, Butler JC, Bulkow LR, Singleton RJ, Hennessy TW, Dentinger CM, Peters HV, Knutsen B, Hickel J, Parkinson AJ.
Immunogenicity and reactogenicity of pneumococcal polysaccharide and conjugate vaccines in alaska native adults 55–77 years of age. Clin Infect Dis. 2009;49:241–8. doi:10.1086/599824.

78. Goldblatt D, Southern J, Andrews N, Ashton L, Burbidge P, Woodgate S, Pebby R, Miller E. The immunogenicity of 7-valent pneumococcal conjugate vaccine versus 23-valent polysaccharide vaccine in adults aged 50–64 years. Clin Infect Dis. 2009;49:1318–25. doi:10.1086/606046.

79. Baker CJ, Rench MA, Fernandez M, Paoletti LC, Kasper DL, Edwards MS. Safety and immunogenicity of a bivalent group B streptococcal conjugate vaccine for serotypes II and III. J Infect Dis. 2003;188:66–73. doi:10.1086/375536.

80. Paoletti LC, Wessels MR, Michon F, DiFabio J, Jennings HJ, Kasper DL. Group B streptococcus type II polysaccharide-tetanus toxoid conjugate vaccine. Infect Immun. 1992;60:4009–14.

81. Baker CJ, Paoletti LC, Rench MA, Guttmersheim HK, Carey VJ, Hickman ME, Kasper DL. Use of capsular polysaccharide-tetanus toxoid conjugate vaccine for type II group B Streptococcus in healthy women. J Infect Dis. 2000;182:1129–38. doi:10.1086/315839.

82. Wessels MR, Paoletti LC, Guttmersheim HK, Michon F, D’Ambra AJ, Kasper DL. Structural properties of group B streptococcal type III polysaccharide conjugate vaccines that influence immunogenicity and efficacy. Infect Immun. 1998;66:2186–92.

83. Paoletti LC, Kasper DL. Conjugate vaccines against group B Streptococcus types IV and VII. J Infect Dis. 2002;186:123–6. doi:10.1086/341073.

84. Paoletti LC, Kennedy RC, Chanh TC, Kasper DL. Immunogenicity of group B Streptococcus type III polysaccharide-tetanus toxoid vaccine in baboons. Infect Immun. 1996;64:677–9.

85. Kasper DL, Paoletti LC, Wessels MR, Guttmersheim HK, Carey VJ, Jennings HJ, Baker CJ. Immune response to type III group B streptococcal polysaccharide-tetanus toxoid conjugate vaccine. J Clin Invest. 1996;98:2308–14. doi:10.1172/JCI119042.

86. Vekemans J, Moorthy V, Friede M, Alderson MR, Sobanje-Ter Meulen A, Baker CJ, Heath PT, Madhi SA, Mehring-Le Doare K, Saha SK, et al. Maternal immunization against Group B streptococcus: World Health Organization research and development technological roadmap and preferred product characteristics. Vaccine. 2018;37:3135–2. doi:10.1016/j.vaccine.2017.09.087.

87. Baker CJ, Paoletti LC, Wessels MR, Guttmersheim HK, Rench MA, Hickman ME, Kasper DL. Safety and immunogenicity of capsular polysaccharide-tetanus toxoid conjugate vaccines for group B streptococcal types Ia and Ib. J Infect Dis. 1999;179:142–50. doi:10.1086/314574.

88. Paoletti LC, Rench MA, Kasper DL, Dolrine D, Ambrosino D, Baker CJ. Effects of alum adjuvant or a booster dose on immunogenicity during clinical trials of group B streptococcal type III conjugate vaccines. Infect Immun. 2001;69:6696–701. doi:10.1128/IAI.69.11.6696-6701.2001.

89. Brighten AK, Kasper DL, Baker CJ, Jennings HJ, Guttmersheim HK. Induction of cross-reactive antibodies by immunization of healthy adults with types Ia and Ib group B streptococcal polysaccharide-tetanus toxoid conjugate vaccines. J Infect Dis. 2002;185:1277–84. doi:10.1086/340324.

90. Baker CJ, Edwards MS. Group B streptococcal conjugate vaccines. Arch Dis Child. 2003;88:375–8. doi:10.1136/adc.88.5.375.

91. Baker CJ, Paoletti LC, Rench MA, Guttmersheim HK, Edwards MS, Kasper DL. Immune response of healthy women to 2 different group B streptococcal type V polysaccharide-protein conjugate vaccines. J Infect Dis. 2004;189:1103–12. doi:10.1086/382193.

92. Pannaraj PS, Edwards MS, Ewing KT, Lewis AL, Rench MA, Baker CJ. Group B streptococcal conjugate vaccines elicit functional antibodies independent of strain O-acetylation. Vaccine. 2009;27:4452–6. doi:10.1016/j.vaccine.2009.05.039.

93. Heyderman RS, Madhi SA, French N, Cutland C, Ngwira B, Kayombo D, Mbozi R, Koen A, Jose L, Olugbosi M, et al. Group B streptococcus vaccination in pregnant women with or without HIV in Africa: a non-randomised phase 2, open-label, multicentre trial. Lancet Infect Dis. 2016;16:546–55. doi:10.1016/S1473-3099(15)00484-3.

94. Kasper DL, Wessels MR, Guttmersheim HK, Paoletti LC, Edwards MS, Baker CJ. Measurement of human antibodies to type III group B Streptococcus. Infect Immun. 1999;67:4303–5.

95. Maione D, Margravine ID, Rinozu CD, Masignani V, Mora M, Scarselli M, Tettelin H, Bretoni C, Iacobini ET, Rosini R, et al. Identification of a universal Group B streptococcus vaccine by multiple genome screens. Science. 2003;309:148–50. doi:10.1126/science.109869.

96. Kasper DL, Paoletti LC, Ferrieri P, Madoff LC, Serotypes VI and VIII predominant among group B streptococci isolated from pregnant Japanese women. J Infect Dis. 1999;179:1030–3. doi:10.1086/314666.

97. Peterson E, Berg S, Trollsoros B, Larsson P, Ek E, Backhaus E, Claesson BE, Jonsson L, Radberg G, Ripa T, et al. Serotypes and clinical manifestations of invasive group B streptococcal infections in western Sweden 1998–2001. Clin Microbiol Infect. 2002;10:791–6. doi:10.1111/j.1469-0691.2004.00931.x.

98. Yao K, Poulsen K, Maione D, Rinozu CD, Baldassarri L, Telford JL, Sorensen UB, Members of the DEVANI Study Group. Kilian M. Capsular gene typing of Streptococcus agalactiae compared to serotyping by latex agglutination. J Clin Microbiol. 2013;51:503–7. doi:10.1128/JCM.02417-12.

99. Ramaswamy SV, Ferrieri P, Flores AE, Paoletti LC. Molecular characterization of nontypeable group B streptococcus. J Clin Microbiol. 2006;44:2398–403. doi:10.1128/JCM.02236-05.

100. Grande G. Bacterial surface proteins and vaccines. F1000 Biol Rep. 2010;2:36.

101. Rodriguez-Ortega MJ, Norais N, Bensi G, Liberati S, Liberatori S, Capo S, Mora M, Scarselli M, Doro F, Ferrari G, Garaguso I, et al. Characterization of Group A Streptococcus protein adhesins as vaccine antigens for Group A Streptococcus. F1000 Biol Rep. 2011;3:61. doi:10.1270/FEMSPD.fy061.
112. Liu H, Zhang S, Shen Z, Ren G, Liu L, Ma Y, Zhang Y, Wang W. Development of a vaccine against Streptococcus agalactiae in fish based on truncated cell wall surface anchor proteins. Vet Rec. 2016;179:359. doi:10.1136/vr.103692.

113. Gabrielsen C, Maeland JA, Lyng RV, Radtke A, Afset JE. Molecular characteristics of Streptococcus agalactiae strains deficient in alpha-like protein antigens. J Med Microbiol. 2017;66:26–33. doi:10.1099/jmm.0.004412.

114. Maeland JA, Afset JE, Lyng RV, Radtke A. Survey of immunological features of the alpha-like proteins of Streptococcus agalactiae. Clin Vaccine Immunol. 2015;22:153–9. doi:10.1128/CVI.00067-14.

115. Baron MJ, Bolduc GR, Goldberg MB, Auperin TC, Madoff LC. Alpha C protein of group B Streptococcus binds host cell surface glycosaminoglycan and enters cells by an actin-dependent mechanism. J Biol Chem. 2004;279:24714–23. doi:10.1074/jbc.M402164200.

116. Jerlstrom PG, Talay SR, Valentín-Weigand P, Timmis KN, Chhatwal GS. Identification of an immunoglobulin A binding motif located in the beta-antigen of the c protein complex of group B streptococci. Infect Immun. 1996;64:2877–93.

117. Jerlstrom PG, Chhatwal GS, Timmis KN. The IgA-binding beta antigen of the protein complex of Group B streptococci: sequence determination of its gene and detection of two binding regions. Mol Microbiol. 1991;5:5493–9. doi:10.1111/j.1365-3169.1991.tb00757.x.

118. Jarva H, Hellqvist J, Jokiranta TS, Lehtinen MJ, Zipfel PF, Meri S. The group B streptococcal beta and pneumococcal Hic proteins are structurally related immune evasion molecules that bind the complement inhibitor factor H in an analogous fashion. J Immunol. 2004;172:3111–8. doi:10.4049/jimmunol.172.5.3111.

119. Stalhammar-Carlemalm M, Stenberg L, Lindahl G. Protein rib: a novel group B streptococcal cell surface protein that confers protective immunity and is expressed by most strains causing invasive infections. J Exp Med. 1993;177:1593–603. doi:10.1084/jem.177.7.1593.

120. Gravekamp C, Kasper DL, Paolletti LC, Madoff LC. Alpha C protein as a carrier for type III capsular polysaccharide and as a protective protein in group B streptococcal vaccines. Infect Immun. 1999;67:249–16.

121. Michel JL, Madoff LC, Kling DE, Kasper DL, Ausubel FM. Cloned alpha and beta C-protein antigens of group B streptococci elicit protective immunity. Infect Immun. 1991;59:2023–8.

122. Gravekamp C, Horensky DS, Michel JL, Madoff LC. Variation in repeat number within the alpha C protein of group B streptococci alters antigenicity and protective epitopes. Infect Immun. 1996;64:3576–83.

123. Erdogan S, Fagan PK, Talay SR, Rohde M, Ferrieri P, Flores AE, Guzmán CA, Walker MJ, Chhatwal GS. Identiﬁcation of novel group B streptococcal cell surface proteins. J Mol Biol. 2009;398:2023–36. doi:10.1016/j.jmb.2009.09.052.

124. Lin SM, Zhi Y, Ahn KB, Lim S, Seo HS. Status of group B streptococci. Infect Immun. 2011;83:1991–8. doi:10.1128/IAI.72.11.6528-6537.2004.

125. Doro F, Liberatori S, Rodriguez-Ortega MJ, Rinaudo CD, Rosini R, Aurizio R, Stella M, et al. Surfome analysis as a fast track to vaccine discovery: identiﬁcation of a novel group B streptococcal cell surface protein that confers protective immunity. J Biol Chem. 1999;274:20901–7. doi:10.1074/jbc.274.33.20901.

126. Wang NY, Patras KA, Seo HS, Cavaco CK, Rosler B, Neely MN, Sullam PM, Doran KS. Group B streptococcal serine-repeat protein repeat protein repeats promote interaction with fibrinogen and vaginal colonization. J Infect Dis. 2014;210:982–91. doi:10.1093/infdis/jiu151.

127. Bensing BA, Lopez JA, Sullam PM. Binding of glycoprotein Srr1 of Streptococcus agalactiae to fibrinogen promotes attachment to brain endothelium and the development of meningitis. PLoS Pathog. 2012;8:e1002947. doi:10.1371/journal.ppat.1002947.

128. Bensing BA, Khedri Z, Deng L, Yu H, Prakobphol A, Fisher SJ, Chen EE. Genetic polymorphisms of group B streptococcus scpB alter functional activity of a cell-associated peptidase that inactivates C5a. Infect Immun. 2000;68:5018–25. doi:10.1128/IAI.68.9.5018-5025.2000.

129. Beckmann C, Waggoner JD, Harris TO, Tamura GS, Rubens CE, Hart CA, et al. Identification of novel adhesins from Group B streptococci by use of phage display reveals that C5a peptidase mediates fibronectin binding. Infect Immun. 2002;70:2869–76. doi:10.1128/IAI.70.6.2869-2876.2002.

130. Cheng Q, Debol S, Lam H, Eby R, Edwards L, Matsuoka Y, Olmsted SB, Cleary P. Immunization with C5a peptidase or peptidase-type III polysaccharide conjugate vaccines enhances clearance of group B streptococci from lungs of infected mice. Infect Immun. 2002;70:6409–15. doi:10.1128/IAI.70.6.6409-6415.2002.

131. Bensing BA, Widjaja K, Ghazizadeh S, Rubens CE, Parker CJ, Albertine KH, Hill HR. A role for C5 and C5a-ase in the acute neutrophil response to group B streptococcal infections. J Infect Dis. 2001;184:399–407. doi:10.1093/infdis/184.2.399.

132. Santillan DA, Rai KK, Santillan MK, Krishnamachari Y, Salem AK, Parker CJ, Albertine KH, Hill HR. A role for C5 and C5a-ase in the acute neutrophil response to group B streptococcal infections. J Infect Dis. 2001;184:399–407. doi:10.1093/infdis/184.2.399.

133. Santillan DA, Andracki ME, Hunter SK. Efﬁcacy of polymeric encapsulated C5a peptidase-based group B streptococcus vaccines in a murine model. Am J Obstet Gynecol. 2011;205:249 e1–8. doi:10.1016/j.ajog.2011.06.024.

134. Santillan DA, Andracki ME, Hunter SK. Protective immunization in mice against group B streptococci using encapsulated C5a peptidase.
146. Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, Ward NL, Angiuoli SV, Crabtree J, Jones AL, Durkin AS, et al. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial "pan-genome". Proc Natl Acad Sci U S A. 2005;102:10555–5. doi:10.1073/pnas.0502643102.

147. Lauer P, Rinaudo CD, Soriani M, Margarit I, Maione D, Rosini R, Taddei AR, Mora M, Rappuoli R, Grandi G, et al. Genome analysis reveals pili in group B streptococcus. Science. 2005;309:105. doi:10.1126/science.1111563.

148. Rosini R, Rinaudo CD, Soriani M, Lauer P, Mora M, Maione D, Taddei A, Santi I, Ghezzo C, Brettoni C, et al. Identification of novel genomic islands coding for antigenic pilus-like structures in Streptococcus agalactiae. Mol Microbiol. 2006;61:126–41. doi:10.1111/j.1365-2958.2006.05225.x.

149. Margarit I, Rinaudo CD, Galeotti CL, Maione D, Ghezzo C, Buttazzoni E, Rosini R, Runci Y, Mora M, Buccato S, et al. Preventing bacterial infections with pilus-based vaccines: the group B streptococcus paradigm. J Infect Dis. 2009;199:108–15. doi:10.1086/595564.

150. Maclennan ER, Aitkenhead A, Melotto G, Ramirez J, Nuccitelli A, Cozzi R, Gourlay LJ, Donnarumma D, Necchi F, Norais N, Telford JL, Rappuoli R, Bolognesi M, Maione D, et al. Structure-function analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial "pan-genome". Proc Natl Acad Sci U S A. 2005;102:10555–5. doi:10.1073/pnas.0502643102.

151. Vengadesan K, Ma X, Dwivedi P, Ton-That H, Narayana SV. A model for group B Streptococcus pilus type 1: the structure of a 35-kDa C-terminal fragment of the major pilin GB580. J Mol Biol. 2011;407:731–43. doi:10.1016/j.jmb.2011.02.024.

152. Khare B, Krishnan V, Rashankar KR, H IH, Xin M, Ton-That H, Narayana SV. Structural differences between the Streptococcus agalactiae housekeeping and pilus-specific sortases: SrtA and SrtC1. PLoS One. 2011;6:e22995. doi:10.1371/journal.pone.0022995.

153. Krishnan V, Dwivedi P, Kim BJ, Samal A, Macon K, Ma X, Mishra A, Doran KS, Ton-That H, Narayana SV. Structure of Streptococcus agalactiae tip pilin GB5104: a model for GB5 pilus assembly and host interactions. Acta Crystallogr D Biol Crystallogr. 2013;69:1073–89. doi:10.1107/S0907494413004642.

154. Banerjee A, Kim BJ, Carmona EM, Cutting AS, Gurney MA, Carlos C, Feuer R, Prasadaro NV, Doran KS. Bacterial Pili exploit integrin machinery to promote immune activation and efficient blood-brain barrier penetration. Nat Commun. 2011;2:462. doi:10.1038/ncoms1474.

155. Sheen TR, Jimenez A, Wang NY, Banerjee A, van Sorge NM, Doran KS. Serine-rich repeat proteins and pilus promote Streptococcus agalactiae colonization of the vaginal tract. J Bacteriol. 2011;193:6834–42. doi:10.1128/JB.00094-11.

156. Konto-Ghiorghi Y, Mairey E, Mallet A, Dumenil G, Caliot E, Trieu-Cuot P, Drancourt M. Dual role for pilus in adherence to epithelial cells and biofilm formation in Streptococcus agalactiae. PLoS Pathog. 2009;5:e1000422. doi:10.1371/journal.ppat.1000422.

157. Nuccitelli A, Cozzi R, Courlay LJ, Donnarumma D, Necchi F, Norais N, Telford JL, Rappuoli R, Bolognesi M, Maione D, et al. Structure-based approach to rationally design a chimeric protein for an effective vaccine against group B streptococcus infections. Proc Natl Acad Sci U S A. 2011;108:2078–83. doi:10.1073/pnas.1016559108.

158. Lin FY, Phillips JB, 3rd, Azimi PH, Weisman LE, Clark P, Rhoads GG, Regan J, Concepcion NF, Frasch CE, Troendle J, et al. Level of maternal antibody required to protect neonates against early-onset disease caused by group B Streptococcus type Ia: a multicenter, seroepidemiology study. J Infect Dis. 2001;184:1022–8. doi:10.1086/323350.

159. Lin FY, Weisman LE, Azimi PH, Phillips JB, 3rd, Clark P, Regan J, Rhoads GG, Frasch CE, Gray BM, Troendle J, et al. Level of maternal IgG anti-group B streptococcus type III antibody correlated with protection of neonates against early-onset disease caused by this pathogen. J Infect Dis. 2004;190:928–34. doi:10.1086/422756.

160. Balmer P, Borrow R, Miller E. Impact of meningococcal C conjugate vaccine in the UK. J Med Microbiol 2002; 51:717–22. doi:10.1099/0022-1317-51-9-717.