WHITNEY REGULARITY OF THE IMAGE OF THE CHEVALLEY MAPPING

GÉRARD P. BARBANÇON

Abstract. A closed set F is Whitney 1-regular if for each compact $K \subset F$, the geodesic distance in K is equivalent to the Euclidean distance. Let P be the Chevalley map defined by an integrity basis of the algebra of polynomials invariant by a reflection group, this note gives the Whitney regularity of the image $P(\mathbb{R}^n)$. The proof uses the works of Givental’, Kostov and Arnold on the symmetric group. It needs a generalization of a property of the Van der Monde determinants to the Jacobian of the Chevalley mappings.

1. Introduction

Definition 1.1. [13] A compact set $K \subset \mathbb{R}^n$, connected by rectifiable arcs, is Whitney 1-regular or has the Whitney property P_1 if the geodesic distance in K is equivalent to the Euclidean distance.

In other words, K is 1-regular if there exists a constant $C_K > 0$, such that any couple of points x and x' in K may be joined by a rectifiable arc in K with length $\ell(x, x') \leq C_K|x - x'|$.

A closed set F is Whitney 1-regular when any compact set in F is Whitney 1-regular.

Let $W \subset O(n)$ be a finite reflection group. The algebra of W-invariant polynomials is generated by n algebraically independent W-invariant homogeneous polynomials [5] and the degrees of these polynomials are uniquely determined [6]. Let p_1, \ldots, p_n be a set of such basic invariants and define the ‘Chevalley’ mapping

$$P : \mathbb{R}^n \ni x \mapsto (p_1(x), \ldots, p_n(x)) \in \mathbb{R}^n.$$

This note gives a proof of the Whitney property P_1 for the image $P(\mathbb{R}^n)$ of the Chevalley mapping associated with a finite reflection group.

For $I_2(p)$, the 1-regularity of $P(\mathbb{R}^2)$ is clear since it is the salient part cut in the plane by a cusp. In particular the property holds for the group $G_2 = I_2(6)$. Since there is nothing to prove for $I_2(p)$, it will not be considered in what follows. The interested reader will find some details in appendix A.

For the symmetric group the property P_1 of the image of the Newton mapping was conjectured in [3] with a proof in dimension less than or equal to 4. The general proof was given by Kostov [9] for the symmetric groups and for A_n groups.

1991 Mathematics Subject Classification. Primary:20F55, 58B10, Secondary:37B,57R.

Key words and phrases. Whitney 1-regularity, Finite reflection groups, Morse Theory, Finite class of differentiability.

I thank Professor Hubert Rubenthaler, University of Strasbourg, France who invited me to present this work in his seminar.

1
First we show that the results given for the symmetric group and announced for reflection groups by Givental in [7], actually hold for these groups.

Then we derive the property P_1 for the image of the Chevalley map by using the methods in [1] or [9], and already in [3].

This property is not altered by diffeomorphism, so it does not depend on the choice of coordinates nor on the choice of the set of basic invariants since a change of basic invariants is an invertible polynomial map on the target.

The image sets of Chevalley maps associated with reflection groups are natural but not trivial examples of sets with this geometric property.

Finally, the property P_1 shares with the convexity an interesting feature. Let O be an open set of \mathbb{R}^n such that its closure $\mathcal{F} = \overline{O}$ has property P_1 and let $f \in C^m(O)$. If the field of Taylor polynomials of f has a continuous extension of degree m on \mathcal{F}, this extension is Whitney m-regular and by the Whitney extension theorem [12] there is one and actually there are infinitely many extensions of f on \mathbb{R}^n.

Theorem 1.2. [13] Let O be an open set of \mathbb{R}^n and assume that its closure $\mathcal{F} = \overline{O}$ has property P_1. If $f \in C^m(O)$ is such that whenever $|k| = m$, the $\partial^{|k|} f / \partial x^k$ have a continuous extension to \mathcal{F}, then f has an extension $\tilde{f} \in C^m(\mathbb{R}^n)$.

Thanks to the 1-regularity of $P(\mathbb{R}^n)$, the proof of the theorem of Chevalley in finite class of differentiability [4], would be easier. Let $f \in C^r(\mathbb{R}^n)^W$ and $\tilde{f} = \tilde{F} \circ \tilde{P}$. The study of the continuity of the derivatives of \tilde{F} on the border of $P(\mathbb{R}^n)$, shows that the field of Taylor polynomials of \tilde{F} has a continuous extension of degree $\lceil r/n \rceil$ on $P(\mathbb{R}^n)$. By theorem 1.2 there is one, and actually there are infinitely many extensions of \tilde{F}, of class $C^{r/n}$ on \mathbb{R}^n. By lack of a stratified Whitney extension theorem, however, these extensions would loose the property that the class of differentiability on each stratum is governed by the isotropy subgroup of the stratum. The extension \tilde{F} on \mathbb{R}^n built in [4] by using an extension \tilde{f} of f on $P^{-1}(\mathbb{R}^n) \subset \mathbb{C}^n$ preserves this important property. Although one may multiply \tilde{F} by any function of class C^r equal to 1 on a neighborhood of $P(\mathbb{R}^n)$, \tilde{F} was, at least in the neighborhood of $P(\mathbb{R}^n)$, the 'nicest extension'.

2. THE CHEVALLEY MAPPING, STRATA OF ITS IMAGE AND MINORS OF ITS JACOBIAN

When W is reducible, it is a direct product of its irreducible components, say $W = W^0 \times W^1 \times \ldots \times W^s$ and we may write \mathbb{R}^n as an orthogonal direct sum $\mathbb{R}^{n_0} \oplus \mathbb{R}^{n_1} \oplus \ldots \oplus \mathbb{R}^{n_s}$. The first component W^0 is the identity on the W-invariant subspace \mathbb{R}^{n_0}, and for $i = 1, \ldots, s$, W^i is a finite Coxeter group acting on \mathbb{R}^{n_i}.

For an irreducible W we will assume as we may that the degrees of the polynomials p_1, \ldots, p_n are in increasing order: $2 = k_1 \leq \ldots \leq k_n = h$, where h is the Coxeter number of W. In the reducible case, using coordinates that fit with the orthogonal direct sum, if $w = w_0w_1 \ldots w_s \in W$ with $w_i \in W^i$, $0 \leq i \leq s$, for all $x \in \mathbb{R}^n$ we have $w(x) = w(x^0, x^1, \ldots, x^s) = (x^0, w_1(x^1), \ldots, w_s(x^s))$. The direct product of the identity P^0 on \mathbb{R}^{n_0} and Chevalley mappings P^i associated with W^i acting on \mathbb{R}^{n_i}, $1 \leq i \leq s$, is a Chevalley map associated with the action of W on \mathbb{R}^n. For each $i = 1 \ldots s$ the p^i_j are of degree k^i_j, for $j = 1$ to n_i. The k^i_1 are all equal to 2, and $k^i_{n_i}$ is the Coxeter number of W^i.
If for each i, $P^i(\mathbb{R}^n)$ is 1-regular, so is $P(\mathbb{R}^n)$. As a consequence it is sufficient to prove the regularity when W is irreducible and from now on, we will assume W to be a finite Coxeter group.

Let \mathcal{R} be the set of reflections different from identity in W. The number of these reflections is $|\mathcal{R}| = d = \sum_{i=1}^{n} (k_i - 1)$. For each $\tau \in \mathcal{R}$, we consider a linear form λ_{τ} the kernel of which is the reflecting hyperplane $H_{\tau} = \{ x \in \mathbb{R}^n | \tau(x) = x \}$.

The jacobian determinant of P is $|J_P| = c \prod_{\tau \in \mathcal{R}} \lambda_{\tau}$ for some constant $c \neq 0$. The critical set is the union of the H_{τ} when τ runs through \mathcal{R}.

A Weyl Chamber C is a connected component of the regular set. The other connected components are obtained by the action of W and the regular set is $\bigcup_{w \in W} w(C)$. There is a stratification of \mathbb{R}^n by the regular set, the reflecting hyperplanes H_{τ} and their intersections. The mapping P is neither injective nor surjective but it induces an analytic diffeomorphism of C onto the interior of $P(\mathbb{R}^n)$ and an homeomorphism that carries the stratification from the fundamental domain C onto $P(\mathbb{R}^n)$.

In the fundamental domain C, the walls of the Weyl chamber C are contained in n hyperplanes $(H_{\omega})_{\omega \in \Omega}$, where Ω is a subset of cardinal n in \mathcal{R}.

A stratum S of dimension k in C is the intersection of $(n-k)$ of the H_{ω}. The λ_{τ} that are linear combinations of the λ_{ω} vanishing on S will also vanish there, so that P is 1-regular on S.

The points in S have the same isotropy subgroup W_S, generated by the reflections in the p hyperplanes H_{τ} containing S. In a neighborhood of S, since P is W_S invariant we can write $P = Q \circ V$, where Q is invertible and V is a Chevalley mapping for W_S.

We write $W_S = W_0^S \times W_1^S \times \cdots \times W_{\ell}^S$ where W_0^S is the identity on S and the W_m^S, $1 \leq m \leq \ell$ are the other irreducible components of W_S. We choose coordinates fitted to the orthogonal direct sum $\mathbb{R}^n = \mathbb{R}^k \oplus \mathbb{R}^{n_1} \oplus \cdots \oplus \mathbb{R}^{n_{\ell}}$, and we have $V = \text{Id}_k \times V_1 \times \cdots \times V_{\ell}$, where V_m is a Chevalley map associated with W_m^S.

The jacobian matrix J_V is block diagonal. Let $I_{k_1}, J_{V_1}, \ldots, J_{V_{\ell}}$ be the diagonal blocks, the determinants $|J_{V_1}|, \ldots, |J_{V_{\ell}}|$, all vanish on S. Moreover, the rank of the V_i on S is 0. The $k \times k$ minor $|I_{k_1}|$ in the upper left corner is 1 but all the bordering $(k+1) \times (k+1)$ minors vanish on S. The rank of V on S, which is the rank of the Chevalley mapping P on S, is k the dimension of S.

When restricted to S, $P_S = Q \circ V$ is an analytic isomorphism on its image and onto each of its projections on the spaces \mathbb{R}^ℓ, $k \leq \ell \leq n - 1$.

3. THE VARIETIES $P_k^{-1}[P_k(x)]$.

For $1 \leq k \leq n-1$ we set $P_k = (p_1, p_2, \ldots, p_k) : \mathbb{R}^n \to \mathbb{R}^k$ and we denote with Π_k the image $P_k(\mathbb{R}^n)$.

Let $m^k \in \Pi_k$, then
\[P_k^{-1}(m^k) = \{ x \in \mathbb{R}^n : p_1(x) = m_1, \ldots, p_k(x) = m_k \} \]
is a compact algebraic variety of co-dimension at most k.

Theorem 3.1. For almost all m^k, the intersection of a fundamental domain C with $P_k^{-1}(m^k)$ is either empty or contractible.

By Sard’s lemma, for almost all m^k, the variety $P_k^{-1}(m^k)$ is a non singular manifold of dimension $n-k$, transversal to all strata in C. If m^k is on the border
of Π_k, the variety is singular. Even if m^k belongs to the interior of Π_k, it may be the image of both regular and singular points. In this case it is a singular image and $P_k^{-1}(m^k)$ is a singular manifold.

Lemma 3.2. For almost all m_k, $P_k^{-1}(m^k)$ is a non singular manifold and on this manifold, p_{k+1} is a Morse function with no critical point on the strata of positive dimension in $P_k^{-1}(m^k) \cap \overline{C}$. Its critical points are the zero dimensional strata of this intersection, that is the non empty intersections of the manifold and the strata of dimension k in \overline{C}.

See Lemma 1' - given in [7] without a complete proof.

Proof. On the non critical manifold $P_k^{-1}(m^k)$, there is a $k \times k$ minor of the matrix $\partial(p_1, \ldots, p_k)/\partial(x_1, \ldots, x_n)$ that does not vanish and we may assume that it is the principal minor $\partial(p_1, \ldots, p_k)/\partial(x_1, \ldots, x_k)$ which is not 0.

Let $L = p_{k+1} - \mu_k(p_k - m_k) - \ldots - \mu_1(p_1 - m_1)$ be the Lagrange function. The critical points of p_{k+1} on $P_k^{-1}(m^k)$ are the points where:

$$\frac{\partial p_{k+1}}{\partial x_{s_1}} - \mu_k \frac{\partial p_k}{\partial x_{s_1}} - \ldots - \mu_1 \frac{\partial p_1}{\partial x_{s_1}} = 0, \quad \text{for } i = 1, \ldots, n.$$

For this system to have solutions in the μ_is, $1 \leq i \leq k$, the $(k+1) \times (k+1)$ bordering minors $\partial(p_1, \ldots, p_k, p_{k+1})/\partial(x_1, \ldots, x_{k}, x_{k+1})$, $s = 1, \ldots, n - k$ must all be zero.

Statement 3.3. If a $k \times k$ minor

$$\partial(p_1, \ldots, p_k)/\partial(x_{i_1}, \ldots, x_{i_k})$$

of the Jacobian of P does not vanish but the $(k+1) \times (k+1)$ minors

$$\partial(p_1, \ldots, p_k, p_{k+1})/\partial(x_{i_1}, \ldots, x_{i_k}, x_{i_j})$$

all vanish, then the rank of P is k.

The statement, of interest by itself, is a consequence of the usual properties of the Van der Monde determinants for A_n and B_n.

It is also possible to show that the statement holds for D_n by using the anti-symmetry of the minor determinants, if one chooses the fundamental domain determined by the classic set of simple roots and, when $n = 2k$, one takes as k^{th} row in the jacobian determinant the row of derivatives of the $\sum_{i=1}^{n} x_i^s$ and as $k+1^{st}$ row, the row of derivatives of $x_1x_2\ldots x_n$.

For H_3, H_4, D_5 and F_4, the result has been checked by computations with Mathematica.\footnote{I am indebted to the University of Texas at Austin and Patrick Goetz from the Mathematics Department who provided me with the possibility of using Mathematica.}

Proof of the Statement.

First observe that if all the $(k+1) \times (k+1)$ minors

$$\partial(p_1, \ldots, p_{k+1})/\partial(x_{i_1}, \ldots, x_{i_k}, x_{i_j})$$

are 0 for all x_{i_j} not in $\{x_{i_1}, \ldots, x_{i_k}\}$, then all the $(k+1) \times (k+1)$ minors

$$\partial(p_1, \ldots, p_{k+1})/\partial(x_{i_{j_1}}, \ldots, x_{j_{k+1}})$$

also vanish.

By Lagrange expansion along the $k+2^{nd}$ row, the

$$\partial(p_1, \ldots, p_{k+2})/\partial(x_{i_1}, \ldots, x_{i_j}, x_{i_{i_j}})$$
vanish and so do all the $\partial(p_1,\ldots,p_{k+2})/\partial(x_{j_1},\ldots,x_{j_{k+2}})$.

By a finite induction, we get that the jacobian determinant itself is 0 and the rank is at most $n-1$. So we are on the closure of a stratum of dimension $n-1$, which is a fundamental domain for a group, say $W_{\mathcal{H}_i}$, acting on the hyperplane H_i of equation $\lambda_i(x) = 0$ and generated by the reflections in the intersections of H_i and the other H_{ω}. We denote by S_{n-1}^i this closed stratum in H_i.

We consider a set of simple roots orthogonal to the H_{ω}. Let $y = (y_1,\ldots,y_n)$ be the coordinates in this basis. We set $y = M(x)$ where M is the matrix of change of basis, the rows of which are the $(\lambda_s)_{s=1}^n$. The matrix M is known for any Coxeter group (see for instance [8]).

Let $U = (u_1,\ldots,u_{n-1})$ be a system of basic invariants for $W_{\mathcal{H}_i}$. Since P restricted to H_i is also invariant by this group, on S_{n-1}^i we have: $P|_{S_{n-1}^i} = R \circ U \circ M$, where M is a matrix of changes of coordinates and R is invertible on S_{n-1}^i.

On H_i, $y_i = 0$, and denoting with \hat{x}_i, \hat{y}_i the variables that do not show up, from the induction process we have:

\[
\frac{\partial(p_1,\ldots,p_{n-1})}{\partial(x_1,\ldots,\hat{x}_i,\ldots,x_n)} = \\
\frac{\partial(p_1,\ldots,p_{n-1})}{\partial(u_1,\ldots,u_{n-1})} \cdot \frac{\partial(u_1,\ldots,u_{n-1})}{\partial(y_1,\ldots,\hat{y}_i,\ldots,y_n)} \cdot \\
\frac{\partial(y_1,\ldots,\hat{y}_i,\ldots,y_n)}{\partial(x_1,\ldots,\hat{x}_i,\ldots,x_n)} = 0.
\]

On S_{n-1}^i, $\partial(p_1,\ldots,p_{n-1})/\partial(u_1,\ldots,u_{n-1}) \neq 0$ and on the other hand, for each Coxeter group there is an ordering of the simple roots, that is of the rows of the matrix M, such that for $i = 1,\ldots,n$, $\partial(y_1,\ldots,\hat{y}_i,\ldots,y_n)/\partial(x_1,\ldots,\hat{x}_i,\ldots,x_n) \neq 0$. We then get:

\[
\frac{\partial(u_1,\ldots,u_{n-1})}{\partial(y_1,\ldots,\hat{y}_i,\ldots,y_n)} = 0.
\]

As a consequence, for all $j = 1,\ldots,n$:

\[
\frac{\partial(p_1,\ldots,p_{n-1})}{\partial(x_1,\ldots,\hat{x}_j,\ldots,x_n)} = \\
\frac{\partial(p_1,\ldots,p_{n-1})}{\partial(u_1,\ldots,u_{n-1})} \cdot \frac{\partial(u_1,\ldots,u_{n-1})}{\partial(y_1,\ldots,\hat{y}_i,\ldots,y_n-1)} \cdot \\
\frac{\partial(y_1,\ldots,\hat{y}_i,\ldots,y_n-1)}{\partial(x_1,\ldots,\hat{x}_j,\ldots,x_n)} = 0,
\]

and

\[
\frac{\partial(p_1,\ldots,p_{n-2},p_n)}{\partial(x_1,\ldots,\hat{x}_j,\ldots,x_n)} = \\
\frac{\partial(p_1,\ldots,p_{n-2},p_n)}{\partial(u_1,\ldots,u_{n-1})} \cdot \frac{\partial(u_1,\ldots,u_{n-1})}{\partial(y_1,\ldots,\hat{y}_i,\ldots,y_n-1)} \cdot \\
\frac{\partial(y_1,\ldots,\hat{y}_i,\ldots,y_n-1)}{\partial(x_1,\ldots,\hat{x}_j,\ldots,x_n)} = 0.
\]

Hence the rank is at most $n-2$ and we are on the closure S_{n-1}^i of the stratum but not on the stratum S_{n-1}^i itself. Just the same on all the walls H_j of C, $j = 1,\ldots,n$. So we are on the closure of a stratum of dimension $n-2$, say S_{n-2}^i.

The process may be iterated until we reach a stratum of dimension k where the $k \times k$ determinant

\[
\frac{\partial(p_1,\ldots,p_k)}{\partial(x_{i_1},\ldots,x_{i_k})}
\]

is not 0 by assumption. On this stratum the rank cannot be more nor less than k, it is k and this achieves the proof of the statement. □

From Statement 3.3, the rank of P is k at the critical points of p_{k+1} on $P^{-1}_k(m^k)$, these points belong to strata S of dimension k in C. They are points of 0-dimensional strata in the intersection $P^{-1}_k(m^k) \cap C$.
If \(P^{-1}_k(m^k) \) is not singular, strata of lower dimension do not intersect it since on such a stratum all \(k \times k \) minors vanish. On strata of dimension \(> k \), one of the \((k+1) \times (k+1) \) minors does not vanish and it must be one of the

\[
\frac{\partial(p_1, \ldots, p_k, p_{k+1})}{\partial(x_1, \ldots, x_k, x_{k+1})}, \ s = 1, \ldots, n-k
\]
since if not, by statement 3.3, the rank would be \(\leq k \). So \(p_{k+1} \) may not have a critical point on those strata.

Let us show that the critical points of \(p_{k+1} \) on \(P_k^{-1}(m^k) \) are non degenerate.

By an orthogonal change of coordinates, we may assume that

\[
\partial v
\]

but now \(\partial v \) in the

\[
= \mu_k \partial p_k - \cdots - \mu_1 \partial p_1 - \mu_k \partial q_k - \cdots - \mu_1 \partial q_1 = 0.
\]

For \(i \geq k \), on each \(\mathbb{R}^{n^m} \), \(V^m \) is a Chevalley map for the irreducible component \(W^m_S \) of \(W_S \), and we have:

\[
\frac{\partial p_{k+1}}{\partial x_i} - \mu_k \frac{\partial p_k}{\partial x_i} - \cdots - \mu_1 \frac{\partial p_1}{\partial x_i} = \sum_{j=1}^{n^m} \left(\frac{\partial q_{k+1}}{\partial v_j} - \mu_k \frac{\partial q_k}{\partial v_j} - \cdots - \mu_1 \frac{\partial q_1}{\partial v_j} \right) \left(\frac{\partial v_i}{\partial x_i} \right) = 0,
\]

but now \(\partial v_j/\partial x_i = 0 \) on \(S \) since \(v_j \) is an homogeneous polynomial of degree \(\geq 2 \) in the \(x_i \) for an \(x \in \mathbb{R}^{n^m} \), and these \(x_i \)s vanish on \(S \).

The vectors \((\partial P/\partial x_1, \ldots, \partial P/\partial x_k) \) span the \(k \)-dimensional plane tangent to \(P(S) \). The \(\partial P/\partial x_s \), \(k+1 \leq s \leq n \) are linear combinations of them, hence the vanishing of the bordering minors.

The linearly independent vectors \(\partial Q/\partial v_i \), \(k+1 \leq i \leq n \), span the orthogonal complement of the tangent plane. Accordingly the minors of order \(\geq k+1 \) in the jacobian of \(Q \) do not vanish, and for \(i \geq k+1 \),

\[
\frac{\partial q_{k+1}}{\partial v_i} - \mu_k \frac{\partial q_k}{\partial v_i} - \cdots - \mu_1 \frac{\partial q_1}{\partial v_i} \neq 0.
\]

When restricted to \(S \), the second derivatives of \(L \)

\[
\frac{\partial^2 p_{k+1}}{\partial x_i \partial x_j} - \mu_k \frac{\partial^2 p_k}{\partial x_i \partial x_j} - \cdots - \mu_1 \frac{\partial^2 p_1}{\partial x_i \partial x_j}
\]

gets no contribution for the variables \(x_i, x_j \) when \(1 \leq i, j \leq k \). For each \(\mathbb{R}^{n^m} \), we get:

\[
\sum_{1 \leq r, r \leq n^m} \left(\frac{\partial^2 q_{k+1}}{\partial v_r \partial v_i} - \mu_k \frac{\partial^2 q_k}{\partial v_r \partial v_i} - \cdots - \mu_1 \frac{\partial^2 q_1}{\partial v_r \partial v_i} \right) \left(\frac{\partial v_r}{\partial x_i} \right) + \sum_{1 \leq r, r \leq n^m} \left(\frac{\partial q_{k+1}}{\partial v_r} - \mu_k \frac{\partial q_k}{\partial v_r} - \cdots - \mu_1 \frac{\partial q_1}{\partial v_r} \right) \left(\frac{\partial^2 v_r}{\partial x_i \partial x_j} \right).
\]

As already mentioned the first derivatives \(\partial v_r/\partial x_i \) all vanish on \(S \) and so do the mixed derivatives \(\partial^2 v_r/\partial x_i \partial x_j \) either because \(v_r \) does not depend on \(x_i \) or \(x_j \), or because it is an homogeneous polynomial of degree \(> 2 \) or a sum of squares of \(x_i \)s. For the first two of these reasons, many terms in the pure derivatives also vanish on \(S \). However for each \(v_s^1: \mathbb{R}^{n^m} \to \mathbb{R}^{n^m} \), let \(v_{m}^1 \) be the first \(W^m_S \)-invariant which is the sum of the squares of the \(x_i \) in \(\mathbb{R}^{n^m} \). We have \(\partial^2 v_{m}^1/\partial x_i^2 = 2 \), so that, with the above remark:
\[\frac{\partial^2 p_{k+1}}{\partial x_i^2} - \mu_k \frac{\partial^2 p_k}{\partial x_i^2} - \ldots - \mu_1 \frac{\partial^2 p_1}{\partial x_i^2} = 2(\frac{\partial q_{k+1}}{\partial v_m} - \mu_k \frac{\partial q_k}{\partial v_m} - \ldots - \mu_1 \frac{\partial q_1}{\partial v_m}) \neq 0. \]

For each \(W^m_S \), the quadratic differential is definite with the sign of
\[\frac{\partial q_{k+1}}{\partial v_m} - \mu_k \frac{\partial q_k}{\partial v_m} - \ldots - \mu_1 \frac{\partial q_1}{\partial v_m} \]
which may be different for different irreducible components. Overall the quadratic differential restricted to \(S \), kernel of the first differential, is of the form \(Q = \bigoplus_{i=1}^l Q_i \) where \(Q_i \) is a definite quadratic form on \(\mathbb{R}^n \).

Accordingly \(p_{k+1} = q_{k+1} \circ V \) is a Morse function on \(P_k^{-1}(m^k) \). □

By the equivariant Morse lemma [2], in the neighborhood of a critical point at the intersection of \(S \) and \(P_k^{-1}(m^k) \), the restriction of \(p_{k+1} \) is \(W_S \)-locally equivalent to a \(W_S \)-invariant quadratic form which is the direct sum of definite quadratic forms in each \(\mathbb{R}^n \). The pair \((S, p_{k+1})\) is locally equivalent to \((\mathbb{R}^n_+ + \mathbb{R}_-, Q_+ + Q_-) \).

Lemma 3.4. [7] The reconstruction of the topology of a level set of a function on the sum of quadrants \(\mathbb{R}^n_+ + \mathbb{R}_- \) in the neighborhood of the critical point 0 ⊕ 0 with the quadratic differential \(Q_+ + Q_- \) is trivial if \(a, b > 0 \) and consists of the birth (death) of a simplex otherwise.

Theorem 5.1 may now be proved by induction on \(k \), see [7].

In particular, and this is what we need, for almost all \(m^k \in \Pi_k \), \(P_k^{-1}(m^k) \cap \overline{C} \) is connected.

Corollary 3.5. Every variety \(P_k^{-1}(m^k) \cap \overline{C} \), \(k = 1, \ldots, n \), is connected or empty.

The corollary may be derived from [5,1] exactly as in [9]. Basically if \(m^k \) is not in the regular image and \(P_k^{-1}(m^k) \) is of dimension \(n - s \), on the intersection with a stratum of dimension \(l \) the rank of \(T_k \) is \(s \) if \(l \geq s \) and \(l \) if \(l \leq s \). The intersection is of dimension \(l - s \) in the first case and 0-dimensional in the second case. So, either they intersect transversally or the intersection is reduced to a finite number of points. When the intersection is transversal \(P_k^{-1}(m^k) \) is connected since almost all the \(P_k^{-1}(n^k) \) are, for \(n^k \) close enough to \(m^k \). The second case is taken care of by an induction on \(k \), using the following:

Lemma 3.6. [9] Let \(K \) be a connected compact set in \(\mathbb{R}^n \), and \(f \) be a function continuous on \(K \). If all but a finite number of the level sets of \(f \) in \(K \) are connected, then they are all connected.

We observe that if not empty, \(P_k^{-1}(m^1) \) intersection of \(\overline{C} \) and a sphere, is connected and we assume that every non empty \(P_k^{-1}(m^k) \cap \overline{C} \) is connected. If we study a \(P_k^{-1}(m^{k+1}) \) not covered by the previous cases, we apply 3.6 to the compact connected \(K = P_k^{-1}(m^k) \cap \overline{C} \) containing it and \(f = p_{k+1} \) to reach the conclusion for the level set \(P_k^{-1}(m^{k+1}) \). □

As a consequence, \(P(P_k^{-1}(m^k)) \) is connected or empty and we have:

Corollary 3.7. The fibres of the projections: \(\Pi_{k+1} \to \Pi_k \) are connected. They are points or intervals.
4. Whitney 1-regularity of $P(\mathbb{R}^n)$

Let us consider the lift-up $(p_1, \ldots, p_k) \mapsto p_{k+1}$ of the projection $P_k(S) \subset \Pi_k$ of a stratum of dimension k. Its derivatives are obtained by solving the system:

$$\frac{\partial p_{k+1}}{\partial x_i} = \sum_{j=1}^{k} \frac{\partial p_{k+1}}{\partial p_j} \frac{\partial p_j}{\partial x_i}, \quad i = 1, \ldots, k$$

by Cramer’s method. Considering the subgroup of W generated by the reflections in the hyperplanes that do not contain S, for $j = 1, \ldots, k$ the $\partial p_{k+1}/\partial p_j$, are quotients of two polynomials anti-invariant by this subgroup. So, they are rational fractions the numerator and the denominator of which are invariant homogeneous polynomials that do not vanish but at the origin. Since the degree of the numerator is greater than the degree of the denominator the rational fractions have continuous extensions on S.

If we restrict ourselves to some compact subset K of $P(\mathbb{R}^n)$, determined for instance by $0 \leq p_1 \leq a$, the x_is and as a consequence the $\partial p_{k+1}/\partial p_j$, $j = 1, \ldots, k$ are bounded on $S \cap K$.

P is a homeomorphism of \bar{S} onto its image $P(\bar{S})$, and so is P_k (on any compact it is continuous and one to one). Hence p_{k+1} which is continuous with respect to the variables (x_1, \ldots, x_k) on \bar{S}, is also continuous in the variables (p_1, \ldots, p_k) on $P_k(\bar{S})$ and moreover by the previous paragraph it is Lipschitz.

The border of Π_{k+1} is contained in the images $P_{k+1}(\bar{S})$ of closed strata of dimension k. These images are graphs of functions p_{k+1} on $P_k(\bar{S})$. By 3.7, the graph of one of the p_{k+1}, say p_{k+1}^{\max}, is above the others and another, say the graph of p_{k+1}^{\min}, is below the others. In Π_k, the images of the closure of strata of dimension k will intersect along the images of strata of lesser dimension. Above such points of intersection the mapping p_{k+1}^{\max} (resp. p_{k+1}^{\min}) may and will change but globally p_{k+1}^{\max} (resp. p_{k+1}^{\min}) will still be continuous and Lipschitz since the functions above the two strata are glued by their common value above the stratum of lesser dimension along which they intersect.

Now, it is easy to get for any two points A and B in a compact $K \subset P(\mathbb{R}^n)$ a continuous arc $AB \subset K$ of length $\ell(AB) \leq k_K |AB|$, following the method in [9] and already in [3].

We may also observe with [1] that the prism between graphs of Lipschitz functions over a Whitney 1-regular domain is Whitney 1-regular. Since Π_1 is Whitney 1-regular, by induction, assuming Π_k to be Whitney 1-regular, the prism Π_{k+1} over it and between the graphs of the Lipschitz functions p_{k+1}^{\min} and p_{k+1}^{\max} will also be Whitney 1-regular. Hence all the Π_k and in particular $\Pi_n = P(\mathbb{R}^n)$ are Whitney 1-regular and we can state:

Theorem 4.1. The image of the Chevalley mapping is Whitney 1-regular.

Appendix A. 1-regularity of $P(\mathbb{R}^2)$ for $I_2(k)$

The dihedral group $I_2(k)$ is generated by reflections in the two lines $x_2 = 0$ and $x_1 \sin \theta - x_2 \cos \theta = 0$ inclined at an angle $\theta = \pi/k$. A fundamental domain is the intersection of the half planes $x_2 \geq 0$ and $x_1 \sin \theta - x_2 \cos \theta \geq 0$.

The basic invariant polynomials are

\[p_1 = \sum_{j=1}^{k} (x_1 \cos 2j\theta + x_2 \sin 2j\theta)^2, \quad p_2 = \sum_{j=1}^{k} (x_1 \cos 2j\theta + x_2 \sin 2j\theta)^k. \]

The image \(P(\mathbb{R}^2) \) is homeomorphic to the fundamental domain.

Its border (the singular image) has two branches, images of the reflection lines. A parametric representation is given by:

\[x_1 \geq 0, \quad p_1 = x_1^2 \sum_{j=1}^{k} \cos^2 2j\theta, \quad p_2 = x_1^k \sum_{j=1}^{k} \cos^{2j} \theta \]

They are contained in \(p_2^2 = A(\theta)p_1^k \) where \(A(\theta) \) assumes two different values, one on each branch. The condition \(p_1 \geq 0 \) determines which connected component of the complement of the border is \(P(\mathbb{R}^2) \).

Let \(A \) and \(B \) be two points in \(P(\mathbb{R}^2) \). If the segment \([AB]\) is in \(P(\mathbb{R}^2) \) there is nothing to prove. If not, let \([A_1B_1]\) be the intersection of \([AB]\) and the complement of \(P(\mathbb{R}^2) \) (convexity shows that this intersection is a segment).

We replace the segment \([A_1B_1]\) by the arc \(\overrightarrow{A_1B_1} \) of the border. This is achieved by lifting up the projection of \([A_1B_1]\) on the \(p_1 \)-axis by \(p_1 \mapsto (p_1, \sqrt[2k]{A(\theta)p_1^{k/2}}) \) with the sign and the value of \(A(\theta) \) determined by the extremities \(A_1 \) and \(B_1 \).

This lifting is Lipschitz since the derivative of \(p_2 \) is bounded by some \(C_K \) on the compact \(K \) (or rather its projection on the \(p_1 \)-axis). Thus the length of \(\overrightarrow{A_1B_1} \) is estimated by \(C_K d(A_1, B_1) \).

Finally the arc \([A_1B_1] \cup [A_1B_1] \cup [B_1B]\) is contained in \(P(\mathbb{R}^2) \) and has a length which is less than or equal to \(C_K d(A, B) \).

For any compact \(K \subset P(\mathbb{R}^2) \) there exists a constant \(C_K \) such that any two points in \(K \) may be joined by an arc drawn in \(K \) of length \(l \leq C_K d(A, B) \).

References

[1] V.I. Arnold, Hyperbolic polynomials and Vandermonde mappings, Funct. Anal. Appl. 20 (2) (1986) 125-128.
[2] V.I. Arnold, Wave fronts evolution and equivariant Morse lemma, Comm. Pure Appl. Math. 29 (1976), 557-582.
[3] G. Barbançon, À propos du théorème de Newton pour les fonctions de classe \(C^m \), Ann. Fac. Sci. P.Penh (1969) 7-32.
[4] G. Barbançon, Chevalley Theorem in class \(C^r \), Proc. Roy. Edinburgh 139A (2009) 743-758.
[5] C. Chevalley, Invariants of finite groups generated by reflections. Amer. J. Math. 77 (1955), 778-782.
[6] H.S.M. Coxeter, The product of the generators of a finite group generated by reflections. Duke Math. J. 18 (1951) 765-782
[7] A.B. Givental’, Moments of random variables and the equivariant Morse lemma, Russian Math. Surveys, 42 (2) (1987) 275-276.
[8] J. Humphreys, Reflection Groups and Coxeter Groups, Cambridge University Press, (1992).
[9] V.P. Kostov, On the geometric properties of Vandermonde’s mapping and on the problem of moments, Proc. Roy. Soc. Edinburgh, 112A (1989), 203-211.
[10] M.L.Mehta, Basic set of invariant polynomials for finite reflexion groups. Commun. Alg. 16 (1988), 1083-1098.
[11] J.C. Tougeron, Idéaux de fonctions différentiables. Ergeb. Math. Grenzgeb. 71 Springer (1972).
[12] H. Whitney, Analytic extensions of differentiable functions defined in closed sets. *Trans. Amer. Math. Soc.* 36 (1934), 63-89.

[13] H. Whitney, Functions differentiable on the boundaries of regions. *Ann. of Math.* 35 (1934), 482-485.

University of Texas at Austin

E-mail address: gbarbanson@yahoo.com