Response of spring diatoms to CO$_2$ availability in the western North Pacific

Koji Suzuki1, Hisashi Endo1,2, Koji Sugie3,4, and Takeshi Yoshimura1,3

1Hokkaido University, 2Kyoto University
3Central Research Institute of Electric Power Industry
4Japan Agency for Marine Earth-Science and Technology (JAMSTEC)
Ocean acidification

Atmospheric CO$_2$ increases

Release of anthropogenic CO$_2$

Increase in air temperature

Global warming

Decrease in seawater pH: “Ocean acidification”

Increase in dissolved CO$_2$ in seawater

Riebesell (2004)
In the western subarctic Pacific

- Highest biological drawdown of partial pressure of CO$_2$ (pCO$_2$) in surface waters among the world’s oceans (Takahashi et al., 2002).
- The high pCO$_2$ drawdown is attributable to massive spring diatom bloom (Midorikawa et al., 2003; Ayers and Lozier, 2012).

Little is known about response of the spring diatoms to CO$_2$ availability in seawater.
On deck CO₂ bottle incubation experiment

- Sampling date: May 8, 2011
- Site: Stn PH3 (41°N, 144°E)
- Sampling depth: 10 m
- Incubation period: ca. 3 days

Initial conditions at 10 m:
- Temperature: 5.0 °C
- Salinity: 33.1
- Chl a: 0.71 µg L⁻¹
- Nitrate: 14.0 µM
- Phosphate: 0.95 µM
- Silicate: 11.8 µM
- pCO₂: 342.8 µatm

R/V Tansei Maru (JAMSTEC/ Univ. Tokyo)
- Bubbling of CO\(_2\) gases
- Flow rate: 50 mL min\(^{-1}\)
- Temperature: 5 ºC
- PAR: 50% light level

Incubation conditions

Air + CO\(_2\)
- Air filters
- Bubbling of CO\(_2\) gases
- Flow rate: 50 mL min\(^{-1}\)
- Temperature: 5 ºC
- PAR: 50% light level

CO\(_2\) levels:
- 180 µatm CO\(_2\)
- 350 µatm CO\(_2\) (ambient)
- 750 µatm CO\(_2\)
- 1,000 µatm CO\(_2\)

Clean Niskin bottle sampling

Pre-filtration with 197 µm teflon mesh

12 L polycarbonate bottles (4 CO\(_2\) conditions × triplicate = 12 bottles)
Changes over time in chlorophyll (Chl) a concentration determined with high-performance liquid chromatography (HPLC)

The net growth of phytoplankton assemblages was suppressed by an increase in CO₂ level.
Changes in algal community composition

Contributions of each algal taxa to Chl a biomass on **Day 0** as estimated with the program CHEMTAX (Mackey et al., 1996; Latasa, 2007)

![Pie chart showing the contributions of different algal taxa to Chl a biomass on Day 0.](chart)

- **Cryptophytes** (38%)
- **Diatoms** (35%)
- **Haptophytes**
- **Pelagophytes**
- **Chlorophytes**
- **Prasinophytes**

The decreases in Chl a level at higher CO$_2$ levels after incubation were probably due to declines in diatom abundance.

On **Day 3**

net growth rates of each taxonomic pigment marker

- **Alloxanthin** (d$^{-1}$)
- **Fucoxanthin** (d$^{-1}$)

* Tukey’s HSD, $p < 0.05$, $n = 3$
RubisCO
(Ribulose-1,5-bisphosphate carboxylase/oxygenase)

• In algae, CO$_2$ is fixed in the Calvin Benson cycle catalyzed by the enzyme RubisCO.

• The large subunit of RubisCO is encoded by $rbcL$ gene, which can be regulated by environmental factors (John et al., 2007).

• Diatom abundance and photosynthetically active diatoms can be inferred from $rbcL$ DNA or cDNA fragments (Endo et al., 2014; 2016)

$$y = 0.678x + 2.41$$
$$r^2 = 0.602$$

John et al. (2007)
Copy numbers of diatom-specific $rbcL$ gene as determined by quantitative PCR (qPCR)

Diatom-specific PCR primers: John et al. (2007)

A significant correlation was found between fucoxanthin and diatom-specific $rbcL$ gene levels → **Copy number of diatom-specific $rbcL$ gene can become an indicator for diatom biomass.**
Relative contributions (%) of each diatom family to the \textit{rbcL} DNA or cDNA libraries from the initial and each CO$_2$ treatment on day 3 as estimated with next-generation sequencing (Ion Torrent) technology.

"Bacillariaceae" contains some pennate diatoms such as \textit{Pseudo-nitzschia}, \textit{Nitzschia}, and \textit{Cylindrotheca} genera.
Percent differences in *rbcL* contribution (%) between the control (350 μatm pCO$_2$) and other pCO$_2$ treatments in the diatom DNA or cDNA libraries.

rbcL DNA library (abundance)

Family	180 μatm	750 μatm	1000 μatm
Chaetocerotaceae			
Coscinodiscaceae			
Cymatosiraceae			
Rhizosoleniaceae			
Stephanodiscaceae			
Thalassiosiraceae			
Achananthaceae			
Bacillariaceae			
Naviculaceae			
Fragilariaaceae			
Unidentified diatoms			
Other eukaryotes			

rbcL cDNA library (photosynthetic activity)

Family	180 μatm	750 μatm	1000 μatm
Chaetocerotaceae			
Coscinodiscaceae			
Cymatosiraceae			
Rhizosoleniaceae			
Stephanodiscaceae			
Thalassiosiraceae			
Achananthaceae			
Bacillariaceae			
Naviculaceae			
Fragilariaaceae			
Unidentified diatoms			
Other eukaryotes			

The vulnerable diatom families suggested: Bacillariaceae, Naviculaceae, Fragilariaaceae

The predominant diatom family suggested: Chaetocerotaceae
Changes over time in the photosynthetic competence (F_v/F_m) of phytoplankton among CO$_2$ treatments during incubation as determined by FIRe fluorometry.

The results indicate the photosystem II activity of the phytoplankton assemblages was little affected by CO$_2$ availability.

The results indicate the photosystem II activity of the phytoplankton assemblages was little affected by CO$_2$ availability.
Summary

We investigated the impact of different CO$_2$ levels on spring diatoms in Oyashio waters of the western North Pacific.

- Net growth rates of fucoxanthin, a diatom marker, decreased at higher CO$_2$ levels during incubation.
- Diatom-specific rbcL DNA copies can also become an indicator of diatom biomass in the study area.
- Diatom-specific rbcL DNA and cDNA analyses revealed that Chaetocerataceae, Thalassiosiraceae and Fragilariaceae might be vulnerable in the high CO$_2$ world expected in the near future, whereas Bacillariaceae could be a strong group against CO$_2$ changes.
Thank you!