Pressure based MRI-compatible muscle fascicle length and joint angle estimation

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

Citation	Song, Hyungeun et al. "Pressure based MRI-compatible muscle fascicle length and joint angle estimation." Journal of NeuroEngineering and Rehabilitation 17, 1 (August 2020): 118 © 2020 Springer Nature
As Published	http://dx.doi.org/10.1186/s12984-020-00745-8
Publisher	Springer Science and Business Media LLC
Version	Final published version
Citable link	https://hdl.handle.net/1721.1/127203
Terms of Use	Creative Commons Attribution
Detailed Terms	https://creativecommons.org/licenses/by/4.0/
Pressure based MRI-compatible muscle fascicle length and joint angle estimation

Hyungeun Song¹,², Erica Israel¹,³, Shriya Srinivasan¹,² and Hugh Herr¹,³*

Abstract

Background: Functional magnetic resonance imaging (fMRI) provides critical information about the neurophysiology of the central nervous systems (CNS), posing clinical significance for the understanding of neuropathologies and advancement of rehabilitation. Typical fMRI study designs include subjects performing designed motor tasks within specific time frames, in which fMRI data are then analyzed by assuming that observed functional brain activations correspond to the designed tasks. Therefore, developing MRI-compatible sensors that enable real-time monitoring of subjects’ task performances would allow for highly accurate fMRI studies. While several MRI-compatible sensors have been developed, none have demonstrated the ability to measure individual muscle fascicle length during fMRI, which could help uncover the complexities of the peripheral and central nervous systems. Furthermore, previous MRI-compatible sensors have been focused on biologically intact populations, limiting accessibility to populations such as those who have undergone amputation.

Methods: We propose a lightweight, low-cost, skin impedance-insensitive pressure-based muscular motion sensor (pMMS) that provides reliable estimates of muscle fascicle length and joint angle. The muscular motions are captured through measured pressure changes in an air pocket wrapped around the muscle of interest, corresponding to its muscular motion. The muscle fascicle length and joint angle are then estimated from the measured pressure changes based on the proposed muscle-skin-sensor interaction dynamics. Furthermore, we explore an integration method of multiple pMMS systems to expand the sensor capacity of estimating muscle fascicle length and joint angle. Ultrasound imaging paired with joint encoder measurements are utilized to assess pMMS estimation accuracy of muscle fascicle length in the tibialis anterior (TA) and ankle joint angle, respectively, of five biologically intact subjects.

Results: We found that a single pMMS sufficiently provides robust and accurate estimations of TA muscle fascicle length and ankle joint angle during dorsiflexion at various speeds and amplitudes. Further, differential pressure readings from two pMMSs, in which each pMMS were proximally and distally placed, were able to mitigate errors due to perturbations, expanding pMMS capacity for muscle fascicle length and ankle joint angle estimation during the full range of plantar flexion and dorsiflexion.

Conclusions: Our results from this study demonstrate the feasibility of the pMMS system to further be incorporated in fMRI settings for real-time monitoring of subjects’ task performances, allowing sophisticated fMRI study designs.

Keywords: Wearable sensor, Muscle state sensor, MRI-compatible

*Correspondence: hherr@media.mit.edu
¹Center for Extreme Bionics, Massachusetts Institute of Technology (MIT)
²Media Lab, 02139 Cambridge, MA, USA
³Department of Media Arts and Sciences, MIT, 02139 Cambridge, MA, USA
Full list of author information is available at the end of the article

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
Background

Functional magnetic resonance imaging (fMRI) is utilized for investigating brain activity in subjects performing given tasks within specific time frames during a functional scan [1]. fMRI allows for a consecutive time-series of brain activity to be compared with specific tasks and movements, which is critical data for uncovering the connections between motor dysfunction and neural activity. To synchronize fMRI frames with motor task data, and to enable real-time monitoring of subjects’ task performances, various MRI-compatible sensors have been proposed to measure grip force [2], joint position [3–5], and net torque [6–9]. Meanwhile, the exchange of efferent motor signals from the brain and afferent sensory signals from the muscular system, through mechanoneural transduction within muscles, is known to play a critical role in fine motor control [10, 11]. Therefore, the development of a MRI-compatible sensor that provides muscle fascicle length would allow for the assessment of afferent signaling within muscles. Furthermore, for populations such as persons who have undergone amputation, assessment of the subjects’ task performances needs to be based on muscle fascicle movements, independent of joint kinematics and kinetics. Thus, the implementation of a MRI-safe sensor for collecting muscle fascicle data in conjunction with brain activity may be immensely important for advancing our understanding of the complex network between the central and peripheral nervous systems, and evaluating the efficacy of rehabilitation strategies to restore neuromuscular control.

Implantable sonomicrometry crystals have been reported to accurately record real time muscle fascicle length changes. Researchers have used sonomicrometry crystals to track muscle fascicle length and dynamics through direct measurement of crystal activity using a sonomicrometry amplifier [12]. Recently, it has been discovered that magnets can be used in a similar manner. Magnetic fields are able to pass through biological tissues which allows for muscle fascicle length changes to be recorded, via distance tracking between implantable magnets, without a powered system [13]. These methods have been proven successful for highly accurate muscular tracking without being affected by outside noise or skin impedance. However, both require invasive surgery and are strictly limited to a majority of the biologically intact population. Also, magnet tracking still needs to be tested for long term viability in human applications as well as MRI-compatibility.

Sonography via ultrasound imaging has also been utilized to derive muscle fascicle length and pennation angle measurements. This has been successful in characterizing muscle architecture for applications including gait abnormality detection, quantifying the dynamics of individual muscles, and measuring proprioceptive intent [14, 15]. An advantage of ultrasound imaging is its ability to isolate muscles of interest, down to individual fascicles, resulting in precise, easy-to-visualize measurements. However, this modality is bound to clinical and laboratory settings, and the quality of the imaging is limited to trained technicians. The reliability of ultrasound imaging may also be diminished due to its reliance on individual interpretation of a given image [16].

For the purpose of avoiding the aforementioned, several efforts have focused on cross-sectional expansion of muscle during its movements [17, 18]. These muscle movement-based methodologies place an air pocket, or force sensitive registers (FSRs), on the muscle of interest, and by tracking cross-sectional expansion via air pressure or contact forces, the muscle activity was estimated. Force myography (FMG) has also been explored for detecting volumetric changes of specific muscles inside a compression garment with the intention of estimating muscle activity [19]. These systems have advantages in terms of practicality for being insensitive to skin impedance changes, and do not require invasive attachment to the skin. In the previously mentioned studies, however, the general estimation strategies of variables such as muscle fascicle length and joint angles, that have non-negligible non-linearity between the sensor outputs and target variable, were not explored. In addition, these studies have neglected muscle-skin interactions and sensor dynamics, e.g. air pocket dynamics and non-linearity of FSRs.

Although most of the sensors mentioned above have proved successful in clinical settings, they remain futile in conjunction with fMRI for safety and logistical reasons. In this paper, we propose a MRI-safe, non-invasive, cost efficient, pressure-based muscular motion sensor (pMMS) and associated methodology. The pMMS accounts for muscle-skin-sensor dynamics and addresses the ability to estimate changes in muscle fascicle length and joint angles in free-space. Similar to the methodology of the previously mentioned air pocket system, the pMMS utilizes pressure changes in the air pocket due to the cross-sectional expansion of the muscle as shown in Fig. 1a. The proposed method includes a general estimation strategy of target variables that have non-negligible non-linearity with the sensor outputs, to provide robust, real-time estimates of muscle fascicle length and joint angle. These estimations from the pMMS are evaluated by comparative experiments using ultrasound imaging and a joint encoder. Through our investigation, we demonstrate the device’s capability to reject perturbations from surrounding muscles by utilizing the differential pressure of two pMMSs (differential-pMMS), and demonstrate pMMSs’ muscle fascicle length and joint angle estimation accuracy during the full range of motion of the ankle joint. The pMMS may provide several clinically-significant contributions including the ability to synchronize muscle fascicle length and...
joint angle data with fMRI data in real time while ensuring user comfort and affordability.

Methods
Mechanism and design of the pressure-based muscular movement sensor (pMMS)
The pressure-based muscular motion sensor (pMMS) consists of a small air pocket ($3 \times 0.8 \times 0.8 \text{ cm}$) and a housing cell as shown in Fig. 1b. When a muscle is shortened or lengthened, the cross-sectional area of the muscle varies due to changes in the overlapping area of myosin and actin filaments [20], which are biological structures for muscular force production, and muscle fiber pennation angle [21]. By measuring pressure changes within the pMMS wrapped around a muscle of interest, the pMMS reading correlates to the cross-sectional expansion of the muscle, which allows for estimation of the target variables, muscle fascicle length and joint angle, based on the sensor dynamics as shown in Fig. 2a. The housing cell incorporates a double layer structure to minimize pressure changes due to external perturbations and isolates the muscle of interest from surrounding muscles as shown in Fig. 1.

Modeling
The schematic diagram of pMMS dynamics is shown in Fig. 2a. In this work, an internal equilibrium point x_m is assumed, which has a static non-linear relationship $g(.)$ between its variance δx_m and that of the target variable $\delta \eta$. x_m is utilized to reflect the η-dependent steady pressure of the air pocket P_a. Overall, $\delta \eta$ results δx_m based on $g(.)$, which propagates through the muscle-skin and deforms...
the air pocket, causing pressure changes inside of the air pocket δP_a. The pMMS dynamics are derived as follows.

From the ideal gas law, P_a is described as

$$ P_a = \frac{nRT}{A(x_0 - x_a)} \tag{1} $$

where n, R, and T indicates the moles of gas in the air pocket, the gas constant, and the absolute temperature, respectively, and A, x_0, and x_a are the contact area, positions of top and bottom of the air pocket, respectively. By taking the derivative of Eq.1, we obtain

$$ \delta P_a = -\frac{nRT}{A(x_0 - x_a)^2} \delta(x_0 - x_a) \tag{2a} = -K_p \delta(x_0 - x_a) \tag{2b} $$

where K_p indicates $\frac{nRT}{A(x_0 - x_a)^2}$. Because A and n were constant by the design of pMMS and T reached equilibrium with body temperature during trials, K_p was considered as constant for marginal changes of $\delta(x_0 - x_a)$. The viscoelastic properties of the air pocket are known to be well-described by two springs and a damper [22, 23], which can be described using the force balance equation as

$$ \sigma A = A(P_a - P_0) - (k_{a1} + \frac{k_{a2}c_a}{k_{a2} + c_a}) (x_0 - x_a) \tag{3} $$

where σ and P_0 indicate the contact stress between pMMS and skin surface and barometric pressure, respectively. k_{a1}, k_{a2}, and c_a are the elastic and damping components of the pMMS, respectively. From Eq. 2b and the derivative of Eq. 3 with respect to time, the dynamics between σ and P_a can be described as

$$ \delta \sigma = \delta P_a = -\frac{1}{A} (k_{a1} + \frac{k_{a2}c_a}{k_{a2} + c_a}) \delta(x_0 - x_a) \tag{4a} = G_s(s) \delta P_a \tag{4b} $$

where $G_s(s)$ indicates $1 + \frac{1}{A} (k_{a1} + \frac{k_{a2}c_a}{k_{a2} + c_a})$. Additionally, muscle-skin dynamics are known to have three distinguishable mechanical behaviors: the pure elastic, viscoelastic, and constant creep phase [24, 25]. However, the constant creep phase only becomes dominant when deformation of the muscle-skin remains constant for long periods, which is difficult to be performed by voluntary muscle contraction. This high order property is further regressed by air pocket dynamics, thereby we assume that the constant creep phase is negligible. Then, muscle-skin dynamics are described by an elastic component, k_{m1}, serially connected to another elastic component, k_{m2}, and a damper, c_m, to address the pure elastic and viscoelastic phases, or

$$ \delta \sigma = \frac{1}{A} \frac{k_{m1}(k_{m2} + c_m s)}{k_{m1} + k_{m2} + c_m s} \delta(x_a - x_m) \tag{5a} $$

$$ = G_m(s) \frac{1}{K_p} \delta P_a + \delta(x_a - x_m) \tag{5b} $$

where $G_m(s)$ indicates $\frac{k_{m1}(k_{m2} + c_m s)}{k_{m1} + k_{m2} + c_m s}$ and x_m represents the η-dependent internal equilibrium point of the muscle-skin dynamics. Eq. 5b was derived by the combination of Eq. 2b and 5a, putting $x_a - x_m = -(x_0 - x_a) + x_0 - x_m$. Then, from Eq. 4b and 5b, the overall muscle-skin-pMMS dynamics are described as

$$ \delta P_a = \frac{K_p G_m(s)}{G_m(s) - K_p G_s(s)} \delta(x_m - x_0) \tag{6a} $$

$$ = G_{sys}(s) \delta(x_m - x_0). \tag{6b} $$

Because the air pocket is shielded by a double layer housing cell, the external perturbations to δP_a, e.g. the muscular movements of surrounding muscles, and external forces, are negligible, i.e. $\delta x_0 = 0$. To enhance generality of the proposed model, the $\eta-x_m$ relationship is not restricted by the linearity assumption; the static non-linearity $g(.)$ is assumed between δx_m and $\delta \eta$, or

$$ \delta x_m = g(\delta \eta). \tag{7} $$

Then, as shown in Fig. 2a, the $\eta-P_a$ relationship is described as

$$ \delta P_a = G_{sys}(s) g(\delta \eta). \tag{8} $$

Therefore, $\delta \eta$ can be estimated from δP_a as

$$ \delta \eta = g^{-1}(G_{sys}^{-1}(s) \delta P_a). \tag{9} $$

Note that the inverse model of pMMS dynamics for the variable estimation can be described as the linear system G_{sys}^{-1} and the static non-linearity property $g^{-1}(.)$, or the Wiener system.

System identification

In this work, the system identification of pMMS is conducted by the revision of the Wiener system identification methodology addressed in [26]. Note that, because both G_s and G_m are first order dynamics with a single zero (Eq. 6a), $G_{sys}^{-1}(s)$ is described as a second order system with two zeros, or

$$ G_{sys}^{-1}(s) = \frac{a_2 s^2 + a_1 s + a_0}{s^2 + b_1 s + b_0} \tag{10} $$

where a_i and b_j indicate coefficients. Then, the linear dynamics $G_{sys}^{-1}(s)$ and static non-linearity $g^{-1}(.)$ of Eq. 9 are identified by the following process:

1. Estimate the best fit for the linear dynamics $\hat{G}_{sys}^{-1}(s)$ from δP_a and $\delta \eta$.
2. Estimate output of the linear dynamics \hat{y} from the convolution of $\hat{G}_{sys}^{-1}(s)$ with δP_a.
3. Fit a high-order polynomial $g^{-1}(.)$ between \hat{y} and $\delta \eta$.

4. Re-estimate \(\hat{\gamma} \) from \(\eta \) via the inverse of the polynomial
5. Re-estimate \(G_{\text{sys}}^{-1}(s) \) from \(\delta P_a \) and \(\hat{\gamma} \).
6. Re-estimate \(\hat{\gamma} \) from the convolution of \(G_{\text{sys}}^{-1}(s) \) with \(\delta P_a \).
7. Go to the step (3) (another iteration) or go to the step (8) (final estimation)
8. Create lookup table \(g_l^{-1}(\cdot) \) to model high order nonlinearity between \(g_l^{-1}(\hat{\gamma}) \) and \(\delta \eta \).

Note that the identified static non-linearity \(\hat{g}^{-1} \) is determined as \(g_l^{-1}(g_p^{-1}(\cdot)) \). In addition, because \(\delta P_a \) has strong correlations with the muscle fascicle length \(l_m \) and joint angle \(\theta \), we assume a second order polynomial for \(g_p(\cdot) \) during iterative system identification procedure.

Model verification of pMMS
The pMMS estimation of muscle fascicle length and joint angle is evaluated by comparing fascicle length and joint angle measurements via the ultrasound sensor and joint encoder as shown in Fig. 2b. The proposed model is then verified by measuring muscle motion of the tibialis anterior (TA). Five subjects (S1–S5) participated in this study as shown in Table 1. All experiments were carried out with informed consent at the Massachusetts Institute of Technology (MIT), under the approval of the Committee on the Use of Humans as Experimental Subjects (COUHES). The pMMS was affixed to the skin overlying the muscle using a compression sleeve or elastic wrap depending on the calf circumference and comfort of each subject. The pMMS placement was optimized to maximize the pressure sensor outputs during dorsiflexion. For system identification and evaluation of the pMMS estimations of the joint angle \(\theta \) and muscle fascicle length \(l_m \), the joint encoder and ultrasound sensor were utilized as shown in Fig. 2b. For all trials, the subjects were asked to wear the encoder and ultrasound sensor as shown in Fig. 2b. For all trials, the subjects were asked to wear the encoder and ultrasound sensor were utilized as shown in Fig. 2b.

In the previous experimental scheme, the pMMS model was evaluated under a limited ROM (half-amplitude and half-frequency sweep trials) to minimize external perturbations and focus on the sensor model verification. However, in practice, the muscular movements of surrounding muscles, e.g. peroneus longus (PL), tibialis posterior (TP), and antagonist muscles, e.g. gastrocnemius (GAS), may not be negligible and cause large estimation errors particularly at the extreme ends of ROM. A typical pMMS readings during full dorsiflexion and plantar flexion is demonstrated in Fig. 3a. During extreme plantar flexion, the pressure values do not uniformly correlate with the muscular movements due to external perturbations, which are marked as asterisks (*). For these values, because the pMMS cannot recognize whether the current pressure readings correspond to a small dorsiflexion or extreme plantar flexion, the external perturbations could cause significant errors in the both system identification and variable estimation as shown in Fig. 3c-f.

To investigate the effect of these external perturbations, all five subjects (S1–S5) were asked to perform two types of full range dorsiflexion and plantar flexion: full-amplitude sweep and full-frequency sweep trials. During the full-amplitude sweep trials, the subjects

Subject	Gender	Height	Weight
S1	Male	173cm	76kg
S2	Female	165cm	40kg
S3	Female	167cm	48kg
S4	Male	196cm	100kg
S5	Male	188cm	98kg
repeatedly performed dorsiflexion and plantar flexion, gradually increasing the displacement from neutral position with each cycle. For the full-frequency sweep trials, the subjects were asked to repeat the same task as the half-frequency sweep trial but with their full ROM (full dorsiflexion to full plantar flexion). No specific joint trajectory was given for any trials to allow their dorsiflexion and plantar flexion to be varied. At least two trials for each type of task were obtained for system identification and validation. The system identification and data processing were conducted in a similar manner to the previously described method.

External perturbation compensation by differential-pMMS

To compensate external perturbations from surrounding muscles, we use an additional pMMS as a reference value, and utilize the differential pressure of two pMMSs (differential-pMMS) to amplify the pressure changes by the muscular movement of interest and cancel out external perturbations as shown in Fig. 3b. This provides uniform positive or negative correlation with the target variables as shown in Fig. 3c-f. Thus, for the muscles that are affected by non-negligible external perturbations, the differential pressure δP_{diff} can be used as

$$\delta P_{\text{diff}} = \delta P_{\text{sen}} - \delta P_{\text{ref}} \quad (11)$$

$$\delta \eta = g^{-1} \left(G^{-1}_{\text{sys}}(s) \delta P_{\text{diff}} \right) \quad (12)$$

to estimate $\delta \eta$ where δP_{sen} and δP_{ref} indicate the pressure values of the pMMS on the muscle belly and reference point, respectively.

Results

Identified system dynamics

The identified linear system dynamics, $G^{-1}_{\text{sys}}(s)$, are given in Table 2. See [Supplemental information](#) for subject-specific dynamics. Large variances were found in the
parameters of identified system dynamics between subjects. These variances are due to the sensitivity of the pMMS to sensor placements and tension of the sleeve to hold the sensor, which vary \(K_p, k_{m1}, k_{m2}, c_m \) as well as static nonlinearity between the target variable, \(\delta \eta \), and the measured pressure, \(\delta p_a \).

Table 2 Identified linear system dynamics, \(G_{ij}^{\text{sys}}(s) \), from half-amplitude and half-frequency (H.H.) and full-amplitude and full-frequency (F.F.) trials for joint angle (J.A) and fascicle length (F.L) estimations

Type	\(a_0 \)	\(a_1 \)	\(b_0 \)	\(b_1 \)	\(b_2 \)
H.H.J.A. (single)	165.5 ± 29.8	1823 ± 1587	1836 ± 1807	9.7 ± 8.5	85 ± 8.3
F.F.J.A. (single)	140.2 ± 55.6	5115 ± 5049	6822.2 ± 5780	11.6 ± 10.2	86 ± 5.6
F.F.J.A. (differential)	143.9 ± 53.5	7189 ± 2359	145.5 ± 87.7	26.1 ± 8.7	13 ± 0.8
H.H.F.L. (single)	-47.7 ± 19.6	-2024 ± 1786	-183.5 ± 161.4	2.5 ± 2.0	1.8 ± 1.5
F.F.L. (single)	-12.0 ± 4.8	-736.1 ± 537.3	-791.7 ± 756.1	14.0 ± 7.9	21.7 ± 12.9
F.F.L. (differential)	-12.1 ± 5.5	-1083 ± 536	-8833 ± 5796	273 ± 5.1	141.6 ± 105.3

Data are reported as mean ± 1 S.E.M.

Model verification of pMMS

The model verification results are shown in Fig. 4 and given in Table 3. For the joint angle estimation results, normalized root mean square (NRMS) errors were calculated by normalizing the root mean square (RMS) error in the ROM, which is referred to as \(e_1 \). Meanwhile, because \(\Delta \epsilon_m \) is already the normalized variable, the RMS errors of \(\Delta \epsilon_m \) were used for the evaluation, which is referred to as \(e_M \). Additionally, the correlation coefficient (R-values) for the joint angle \(R_J \) and muscle fascicle length estimations \(R_M \) are calculated. The \(e_1 \) and \(e_M \) are shown as 4.8 ± 0.5% and 5.7 ± 1.8% over the five subjects, respectively. Similarly, the \(R_J \) and \(R_M \) indicate strong linearity. The \(R_J \) and \(R_M \) are 0.990 ± 0.002 and 0.980 ± 0.010, respectively. Therefore, while the proposed model may simplify complex muscle-skin-pMMS dynamics, the current pMMS model was able to provide muscle fascicle length and joint angle estimation within 5–6% NRMS errors, suggesting validity of the proposed model for the motor tasks at different amplitudes and speeds tested here.

External perturbations from surrounding muscles

The pMMS performance under the external perturbations is shown in Fig. 5 and exhibited in Table 3. Comparing the results of half-amplitude and half-frequency sweep trials, the \(e_1 \) and \(e_M \) of the full-amplitude and full-frequency sweep trials drastically increased to 13.9 ± 1.7% and 11.9 ± 2.0%, respectively. Additionally, the \(R_J \) and \(R_M \) decreased to 0.884 ± 0.036 and 0.923 ± 0.016, respectively. As described in the “Methods” section, these deteriorations of pMMS performance are due to external perturbations from surrounding muscles as well as insensitivity of pMMS outputs to muscular movements around neutral position as shown in Fig. 3.

External perturbation compensation by differential-pMMS

The differential-pMMS system was verified by the full-amplitude and frequency sweep trials which demonstrates that the differential-pMMS effectively compensates for the external perturbations (Figs. 3 and 5, Table 3) and improves \(e_1 \) and \(e_M \) to 7.0 ± 2.5% and 6.4 ± 1.2%, respectively. Also, the differential-pMMS estimation results show strong linearity to the target variables which \(R_J \) and \(R_M \) are 0.971 ± 0.018 and 0.979 ± 0.010, respectively. To further address the affect of differential-pMMS, one-way ANOVA with Tukey-Kramer multiple comparison tests were applied to \(e_1 \), \(e_M \), \(R_J \), and \(R_M \) of different pMMS configurations which are shown in Fig. 6. No significant differences were found between single-pMMS half-amplitude and half-frequency (S.H.H.) and differential-pMMS full-amplitude and full-frequency (D.F.F.) trials at all matrices including \(e_1 \), \(e_M \), \(R_J \), and \(R_M \). However, significant differences were found between single-pMMS full-amplitude and full-frequency (S.F.F.) and the other two configurations at all matrices. These results indicate that the differential-pMMS configuration is effective in compensating for external perturbations and successfully provides reliable joint angle and muscle fascicle length estimation during the full ROM at the ankle.

Discussion

Throughout this work, we have investigated the characteristics and capability of the pMMS to provide muscle fascicle length and joint angle estimation. Using silicon tubing (Fig. 2b), the current pMMS design allows for implementation of the electronics outside of an fMRI scanner room, while keeping the air pocket attached to the patient, demonstrating its viability as a MRI-compatible sensor platform. Moreover, because the pMMS can be easily applied to the muscle of interest without being invasively attached to skin, the pMMS provides superior advantages in terms of practicality. Although high-order muscle-skin interaction dynamics were simplified by neglecting ‘creep’ dynamics, a single pMMS successfully provided comparable estimates to actual measurements of joint angle and muscle fascicle length during the full range of motion.
active dorsiflexion of all five participants within different speeds and amplitudes as shown in Fig. 4. To overcome large estimation errors resulting from perturbation of surrounding muscles during plantar flexion, shown in Fig. 5, we explored the integration of multiple pMMS to provide estimates of muscle fascicle length and joint angle. By having one pMMS at both the proximal and distal ends of the TA, we found that the estimated joint angle and muscle fascicle length from differential-pMMS readings were comparable to that of the measurements from the joint encoder and ultrasound imaging, expanding pMMS capacity over a full ROM. Therefore, the pMMS may lead to further understanding of CNS and muscle sensory feedback interactions, as well as enhanced rehabilitative strategies for populations with sensory-motor dysfunction.

Although the current pMMS poses sufficiency of its use in fMRI settings for real-time monitoring of a subject’s task performance, more general application usage, such as human motor intent estimation for assistive device control and clinical measurements in rehabilitation

Table 3 NRMS errors (e_J, e_M) and R-values (R_J, R_M) of single-pMMS half-amplitude and half-frequency sweep trials (S.H.H), single-pMMS full-amplitude and full-frequency sweep trials (S.F.F.), and differential-pMMS full-amplitude and full-frequency sweep trials (D.F.F.)

Type	e_J	e_M	R_J	R_M
S.H.H.	4.8 ± 0.5%	5.7 ± 1.8%	0.990 ± 0.002	0.980 ± 0.014
S.F.F.	13.9 ± 1.7%	11.9 ± 2.0%	0.884 ± 0.036	0.923 ± 0.016
D.F.F.	7.0 ± 2.5%	6.4 ± 1.2%	0.971 ± 0.018	0.979 ± 0.010

Data are reported as mean ± 1 S.D.
settings, needs further investigation. Because muscle mechanical properties are also affected by the level of muscle activation, the current pMMS systems may be limited in providing estimates during isometric contraction or passive stretching movements which is commonly performed in rehabilitation and physical therapy settings. To overcome these potential limitations, the incorporation of EMG data in conjunction with pressure data may be used to enhance the usability of the pMMS outside of fMRI applications. In this scenario, EMG data can be utilized to decouple muscle fascicle length and muscle activity from pressure measures, applying advanced sensor fusion methodologies, e.g. Kalman filter [27], fuzzy logic [28].

Conclusion

In this work, the pMMS design and associated methodology are proposed. Through several diverse trials, investigating the pMMS’s capability to estimate muscle fascicle dynamics under various movement frequencies and joint angle amplitudes, we report high prediction accuracy of joint position and muscle fascicle length. The pMMS poses as a reliable, MRI-safe, wearable sensor for measuring muscle fascicle length and dynamics in populations including persons with amputation or motor dysfunction because of its ability to perform independently from joint angle measurements. The application of the pMMS system in conjunction with fMRI data of brain activity...
may lead to novel discoveries for the augmentation of rehabilitation and mobility. Future work will include the investigation of pMMS usage in non-MRI settings and the incorporation of EMG for more accurate muscle dynamic measures. Additionally, the pMMS will be tested during rehabilitation appropriate tasks such as passive stretching and weight-bearing activity.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.1186/s12984-020-00745-8.

Additional file 1: Supplementary information 1
Identified subject-specific pMMS dynamics. The parameters of identified linear system dynamics and static non-linearity are reported. Supplemental information 2
Joint angle and muscle fascicle length estimation results of all five participants. The estimation results of joint angle and muscle fascicle length estimation results of all five participants are included. NRMS error and R-value of joint angle and muscle fascicle length estimation results are reported.

Acknowledgements
We thank Peter Calvaresi for assistance with ultrasound imaging.

Authors’ contributions
HS developed pMMS, computational model, performed experiment design, data collection, analysis, and writing of the manuscript. EI contributed to experiment design, data collection, analysis, and writing of the manuscript. SS assisted with data collection, analysis, and manuscript editing. HH contributed to the funding, experiment design, provision of resources and writing.

Funding
This work was funded by the MIT Media Lab Consortium.

Availability of data and materials
All data are available in the main text or the supplementary information. Any code used for the processing of data in this manuscript can be obtained from the authors upon reasonable request.

Ethics approval and consent to participate
All experiments were carried out with informed consent at the Massachusetts Institute of Technology (MIT), under the approval of the Committee on the Use of Humans as Experimental Subjects (COUHES).

Consent for publication
Consent for publication were obtained from all participants of the current study.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Center for Extreme Bionics, Massachusetts Institute of Technology (MIT) Media Lab, 02139 Cambridge, MA, USA. 2 Harvard-MIT Division of Health
References

1. Huettel SA. Event-related fMRI in cognition. Neuroimage. 2012;62(2):1152–6.
2. Ehrsson H, Fagergren A, Jonsson T, Westling G, Johansson R, Forssberg H. Cortical activity in precision-versus power-grip tasks: an fMRI study. J Neurophysiol. 2000;83(1):528–36.
3. Mehta J, Verber M, Wieser J, Schmit B, Schindler-Ilvens S. A novel technique for examining human brain activity associated with pedaling using fMRI. J Neurosci Methods. 2009;179(2):230–9.
4. Elhawary H, Zivanovic A, Rea M, Davies B, Besant C, McRobbie D, Desouza N, Young I, Lampert M. A modular approach to MRI-compatible robotics. IEEE Eng Med Biol Mag. 2008;27(3):35–41.
5. Tsekos N, Christoforou E, Ozcan A. A general-purpose MRI-compatible robotic system: Implementation and image guidance for performing minimally invasive interventions. IEEE Eng Med Biol Mag. 2008;27(3):51–8.
6. Hilger J, Hodics T, Xu B, Dobkin B, Cohen L. MRI compatible force and position-sensing system for real-time monitoring of wrist moments during fMRI testing. J Neurosci Methods. 2006;155(2):300–7.
7. Tada M, Kanade T. Design of an MRI-compatible three-axis force sensor. In: Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS). Edmonton: IEEE; 2005. p. 3305–10.
8. Chapuis D, Gassert R, Sache L, Burdet E, Bleuler H. Design of a simple MRI-compatible force/torque sensor. In: Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS). Sendai: IEEE; 2004. p. 2593–9.
9. Viguier B, Sulzer J, Gassert R. Design and evaluation of a cable-driven MRI-compatible haptic interface to investigate precision grip control. IEEE Trans Haptics. 2016;9(1):20–32.
10. Rossignol S, Dubuc R, Gossard J. Dynamic sensorimotor interactions in locomotion. Physiol Rev. 2006;86:89–154.
11. Kroger S. Proprioception in 2.0: novel functions for muscle spindles. NeuroMuscul Disord. 2018;31(5):593–8.
12. Biwener AA, Roberts TJ. Muscle and tendon contributions to force, work, and elastic energy savings: a comparative perspective. Exerc Sport Sci Rev. 2000;28(3):99–107.
13. Taylor CR, Abramson HG, Herr H. Low-latency tracking of multiple permanent magnets. IEEE Sensors J. 2019;19(23):11458–68.
14. Sikdar S, Wei Q, Cortes N. Dynamic ultrasound imaging applications to quantify musculoskeletal function. Exerc Sport Sci Rev. 2014;42(3):126–35.
15. Delong AF, Mangum LC, Hertel J. Gluteus medius activity during gait is altered in individuals with chronic ankle instability: An ultrasound imaging study. J Gait Post. 2019;71:1–13.
16. Franchi MV, Raiteri BJ, Longo S, Sinha S, Naci MV, Cispo R. Muscle architecture assessment: strengths, shortcomings and new frontiers of in vivo imaging techniques. J Ultrasound Med. 2018;44(12):2492–504.
17. Bae G, Song J, Kim B. Imitation of human motion based on variable stiffness actuator and muscle stiffness sensor. In: Proc. IEEE/ASME Int. Conf. Intell. Mechatron. (AIM). Wollongong: IEEE; 2013. p. 1016–1020.
18. Bo Z, Sundholm M, Cheng L, Cruz H, Lukowicz P. Measuring muscle activities during gym exercises with textile pressure mapping sensors. Pervasive Mob Comput. 2017;38:331–45.
19. Belbasis A, Fuss FK. Muscle performance investigated with a novel smart compression garment based on pressure sensor force myography and its validation against EMG. Front Physiol. 2018;9:1–13.
20. Huxley HE. The mechanism of muscular contraction. Science. 1969;164(3868):1356–65.
21. Naci M, Binzioni T, Hiltbrand E, Fasel J, Terrier F, Cerretelli P. In vivo human gastrocnemius architecture with changing joint angle at rest and during graded isometric contraction. J Physiol. 1996;496(1):287–97.
22. Kong K, Tomizuka M. A gait monitoring system based on air pressure sensors embedded in a shoe. IEEE/ASME Trans Mechatron. 2009;14(3):358–70.
23. Dowling NE. Mechanical behavior of materials: engineering methods for deformation, fracture, and fatigue. 2nd. Englewood Cliffs: Pearson-Prentice Hall; 1999.
24. Boyer G, Laquieze L, Le Bot A, Laquieze S, Zahouani H. Dynamic indentation on human skin in vivo: ageing effects. Skin Res Technol. 2009;15(1):55–67.
25. Khayat F, Imberdis C, Vescovo P, Varchon D, Lagarde J. Model of the viscoelastic behaviour of skin in vivo and study of anisotropy. Skin Res Technol. 2004;10(2):96–103.
26. Hunter I, Korenbreg M. The identification of nonlinear biological systems: Wiener and Hammerstein cascade models. Biol Cybern. 1986;55(2-3):135–44.
27. Sun S, Deng Z. Multi-sensor optimal information fusion kalman filter. Automatica. 2004;40(6):1017–23.
28. Stover J, Hall D, Gibson R. A fuzzy-logic architecture for autonomous multisensor data fusion. IEEE Trans Ind Electron. 1996;43(3):1017–23.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.