Are physical fitness outcomes in patients attending cardiac rehabilitation determined by the mode of delivery?

Harrison, Alexander S; Tang, Lars; Doherty, Patrick

Published in: Open Heart

DOI: 10.1136/openhrt-2018-000822

Publication date: 2018

Document version: Final published version

Document license: CC BY

Citation for published version (APA):
Harrison, A. S., Tang, L., & Doherty, P. (2018). Are physical fitness outcomes in patients attending cardiac rehabilitation determined by the mode of delivery? Open Heart, 5(2), [e000822]. https://doi.org/10.1136/openhrt-2018-000822

Terms of use
This work is brought to you by the University of Southern Denmark through the SDU Research Portal. Unless otherwise specified it has been shared according to the terms for self-archiving. If no other license is stated, these terms apply:

• You may download this work for personal use only.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying this open access version

If you believe that this document breaches copyright please contact us providing details and we will investigate your claim. Please direct all enquiries to puresupport@bib.sdu.dk
Are physical fitness outcomes in patients attending cardiac rehabilitation determined by the mode of delivery?

Alexander S Harrison,1 Lars Tang,2 Patrick Doherty1

ABSTRACT

Background Cardiac rehabilitation (CR) is a well-evidenced and effective secondary intervention proven to reduce mortality and readmission in patients with cardiovascular disease. Improving physical fitness outcomes is a key target for CR programmes, with supervised group-based exercise dominating the mode of the delivery. However, the method of traditional supervised CR fails to attract many patients and may not be the only way of improving physical fitness.

Methods Using real-world routine clinical data from the National Audit of Cardiac Rehabilitation across a 5-year period, this study evaluates the extent of association between physical fitness outcomes, incremental shuttle walk and 6 min walk test, and mode of delivery, delivered as traditional supervised versus facilitated self-delivered.

Results The proportion of patients receiving each mode were 80.6% supervised with 19.4% to self-delivered. The study analysis comprised of 10,142 patients who were included in the two models. The self-delivered group contained a greater proportion of females and older patients. The regression model showed no clinical or statistical significance between mode of delivery and post-CR physical fitness outcomes.

Conclusions This study is unique as it has identified through a routine clinical population that regardless of the mode of delivery of rehabilitation, patients improve their physical fitness outcomes at meaningful levels. This study provides a strong evidence base for patients to be offered greater choice in the mode of CR delivery as improvements in physical fitness are comparable.

INTRODUCTION

Cardiac rehabilitation (CR) is a well-evidenced intervention that remains effective in the modern era of cardiology.1,2 The aims of CR are to address and change lifestyle risk factors and promote physical fitness and mental health.3,4

The evidence for CR is from experimental and observational studies and shows that CR is effective at reducing mortality, both all-cause and cardiac along with readmissions.1,5 However, the majority of this evidence is based on traditional supervised group-based CR as opposed to facilitated primarily self-delivered modes of delivery. In 2017, Cochrane reviewed randomised controlled trial evidence for the differences between home-based and group-based rehabilitation in terms of health-related quality of life, exercise capacity and readmissions.6 They found...
that in all outcomes there was no significant association between the mode of delivery and where the patients were post-CR. Historically, researchers and healthcare funders have separated rehabilitation into home-based and group-based; however, recently the literature has also considered the level of supervision to be an important factor in terms of the delivery of rehabilitation.\(^6\)\(^7\)

Although there is growing evidence in the trial populations that mode of delivery is not significantly associated with a range of outcomes, there is in parallel an acknowledgement that trials may not be representative of routine populations. Notwithstanding the known benefits of Cochrane reviews of CR, there are concerns about the populations being representative of routine care (eg, average age of patients within the trials (56 years, range 48–70 years) and women accounting for less than 15% of the population).\(^1\) In the most recent National Audit of Cardiac Rehabilitation (NACR) annual report, women made up 30% and the average age was 67 which is substantially older than the trials.\(^9\)\(^10\) Moreover, the intervention within the trials may not contain the variety or nuances that are present in real-life/routine care. Due to the differences in population and potential intervention, it is important to address questions around association between mode and outcomes in routine populations as well as in trials.

The UK NACR showed that in 2016, 80% of rehabilitation was delivered as group-based, with other methods such as home-based, web-based and telephone making up the other 20%.\(^8\) According to the British Association for Cardiovascular Rehabilitation and Prevention (BACPR) core components, the mode of delivery should be menu-based, with interventions centred on patients’ needs and preferences.\(^3\)\(^4\) The lack of choice in the CR offer shows that programmes are underusing modes of delivery proven to be effective at reducing risk factors and promoting lifestyle change.\(^5\) In fact, many programmes in the UK still only offer group-based CR with ~60% of programmes not offering any form of self-delivered (home-based, web-based or telephone-based) rehabilitation to any patients.\(^8\) The UK, Europe and the USA continue to aspire to challenging uptake ambitions in the region of 65% to 70%.\(^9\)\(^10\) Recent findings from clinical data and clinical review identify a lack of choice in the menu of routine practice CR and make recommendations for more options appealing to patients’ preferences and meeting their needs all of which will help overcome traditionally barriers to participation in CR such as older, female and non-native language speaking patients.\(^8\)\(^11\)

British and European guidelines and core components suggest that CR is best delivered by a multidisciplinary team (MDT), through a variety of modes of delivery.\(^1\)\(^2\)\(^12\) A study based in Denmark, using the Copenhagen data, found that patients assigned to supervised group-based or self-delivered home-based found no difference in their perceived exertion levels postintervention nor exercise effects.\(^6\)\(^7\) A recent study conducted using data from the NACR showed that across the two delivery types, supervised versus self-delivery, there was no significant association with psychosocial health outcomes.\(^12\) This provides the context for an emerging hypothesis testing the likelihood that physical fitness outcomes do not differ between the delivery type and that patients can benefit from either approach.

This study aimed to assess whether the mode of delivery, as supervised or self-delivered, is associated with improved physical fitness outcomes as measured through the 6 min walk test (6MWT) and the incremental shuttle walk test (ISWT).

METHODS

This study was reported according to the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) guidelines.\(^13\)

Data

The study used data from a routinely collected audit of CR, the NACR. The NACR collects data from CR programmes across the UK and has a 74% coverage through online data entry.\(^8\) The electronic data come from 224 programmes, which collect data on patient’s demographics, baseline risk factors and characteristics, the type of CR received and outcomes derived from pre-CR and post-CR assessment. Along with patient level characteristics, the audit also collects service level factors such as the number of patients seen (volume), staffing hours and the extent of staff in their MDT.

Patients were included if they had an initiating event between 1 April 2012 and 31 March 2017. The initiating event was the diagnosis or treatment that deemed the patient eligible for CR. All patient groups, except heart failure, were included in the main analysis, such as myocardial infarction (MI), percutaneous coronary intervention (PCI) and coronary artery bypass.\(^14\)\(^15\) Patients with a primary diagnosis of heart failure were not included as this group were only recently added to the NACR dataset and at present there is insufficient sample for inclusion. To be included, patients needed to have (1) a completed CR and (2) a recorded mode of delivery. To account for reporting bias, the population without a recorded mode of delivery were compared for baseline demographics such as age and gender.

Mode of delivery

The NACR records the routine delivery CR in the UK, which includes core rehabilitation consisting of exercise sessions, education sessions and lifestyle advice as guided by the BACPR core components. The exercise sessions are supervised/facilitated by trained competent professionals to maximise patient benefit.\(^3\) The modes of delivery recorded in the NACR, includes both supervised and self-delivered levels.\(^3\) This study, mode of delivery for each patient was coded from NACR, including group-based, home-based and web-based, into supervised (with staff present) and facilitated self-delivered (with contact but staff not required for the exercise...
Patients recorded as receiving delivery classified as ‘other’ were excluded from the study due to the lack of descriptive information; this equated 3% of patients, and these were assessed for differences in demographics to test the extent by which our final sample was representative. Other factors about the service were included as covariates.

Outcome measures
The study, accounting for baseline assessment scores, explored predictors of post-CR outcomes for the ISWT and 6MWT expressed in metres walked. The study used patients’ final score which is collected on average 9 weeks after the initial baseline assessment. The analysis also included the baseline walking score for all patients, to accurately account for their walking ability prior starting rehabilitation.

Statistical analysis
The analyses were conducted in STATA 13.1. Baseline characteristics were compared across groups using χ^2 for categorical variables or t-test for continuous variables. Regression models were built to investigate whether, accounting for covariates, the supervised and self-delivered methods for mode of delivery were associated with outcomes post-CR.

Hierarchical linear regressions were used to account for different levels of patient and centre level data as part of the investigation of association between mode of delivery, as an independent variable, and physical fitness outcomes as the dependent variable. Statistical level for significance was $p<0.05$. Data model checking was performed to ensure that the models were a good fit through assumptions associated with the regressions.

RESULTS
Study population
The overall study population comprised 165,435 patients from the full dataset with an initiating event within the time period. The flow diagram in figure 1 shows the total population and those included in the regressions models. The diagnosis/treatment split was 78.9% conventional CR population (MI 12.6%, MI+PCI 31.6%, PCI 18.1% and coronary artery bypass grafting (CABG) 16.7%) and the remainder ‘Other’, such as angina.

The mode of delivery distribution, seen in table 1, was similar to that of the wider CR population and that seen in the annual statistics report, with 80.6% receiving supervised and 19.4% in the self-delivered group. The proportion of females was lower in the supervised mode, which was significant ($p<0.001$). The self-delivered group also contained older, more employed, previous partnered and patients with ‘other’ treatments than the conventional PCI and CABG. These differences were all significant. Additionally, the length of CR in the self-delivered group was on average 10 days longer with a total mean duration of 73 days. Each mode of delivery population were deemed similar and representative of routine care when compared for age, gender and other demographics.

The two-population’s physical baseline scores were also compared (table 2). The supervised group had, for both physical fitness measures, higher baseline scores by 30 m for 6MWT and 24 m for ISWT. The difference was also statistically significant ($p<0.001$).
Table 3 shows the extent of change post-CR. At a first level of analysis, not accounting for covariates, the supervised group’s ISWT change was statistically significantly higher in comparison to the self-delivered group, with a mean difference of 12.9 (p<0.001). However, the change seen for the 6MWT was greater in the self-delivered group, this was a 7 m greater change in the self-delivered group (p=0.007). Overall, the differences between the modes were not of clinical significance and patients attending either mode had meaningful clinical difference changes post-CR for this population.

Outcomes

The regression model (table 4) showed that there was no significant difference between the mode of delivery and the post-CR physical fitness outcomes for either measure (p>0.05). The inclusions of predictors such as age, gender, baseline physical fitness score and service quality were justified and were statistically significant. The models had an R² of 69%–85% and met the assumptions of uniform variance and linearity. The final population included in the regression model were compared with the wider study and routine care population and were deemed to be representative in terms of age, gender and other covariates. The full regression models for each outcome are included as online supplementary material which includes all covariates and the model descriptive.

DISCUSSION

This study set out to investigate whether patients attending supervised or self-delivered CR had different outcomes, in terms of physical fitness. The study’s main analysis found that there was no significant difference in patient’s physical fitness outcomes and the mode of delivery they received, either supervised or self-delivered. This is the first study of routine CR patients to investigate physical fitness outcomes and the mode of delivery.

Table 1 Patient characteristics across the two modes of delivery: supervised and self-delivered cardiac rehabilitation

	Supervised	Self-delivered	Total	Pearson \(\chi^2 \) value			
	Count	%	Count	%	Count	%	
No of patients (%)	133,386	80.6	32,049	19.4	165,435		
Gender							
Female	33,172	25.7	9,474	30.7	42,646	26.6	
Body measurement							
>30 BMI	27,906	30.9	5,439	30.8	33,345	30.9	
Employment status							
Employed	67,765	84	12,850	78	80,615	83	
Marital status							
Partner	73,412	78.4	15,743	75.3	89,155	77.8	
Previous partner	12,377	13.2	3,314	15.9	15,691	13.7	
Cardiac treatment							
PCI	65,098	48.8	14,721	45.9	79,819	48.2	
CAGB	19,726	14.8	3,750	11.7	23,476	14.2	
Other treatment	32,048	24.0	9,465	29.5	41,513	25.1	
Mean age (years)	65	12	67	12	65	12	2.2 (<0.001)
Total no of comorbidities	1.70	1.69	1.56	1.72	1.67	1.70	0.14 (<0.001)
Core rehabilitation duration start to end including assessment (days)	69.70	43.21	89.53	59.33	73.25	47.13	19.8 (<0.001)

BMI, body mass index; CAGB, coronary artery bypass grafting; PCI, percutaneous coronary intervention.

Table 2 Baseline patients’ physical outcome scores across the two modes of delivery: supervised and self-delivered

	Supervised Mean (SD)	Count	Self-delivered Mean (SD)	Count	Total Mean (SD)	Count	Mean difference (p values)
	Mean (SD)	Count	Mean (SD)	Count	Mean (SD)	Count	Mean difference (p values)
Six minute walk test metres at assessment 1	332.8 (132.8)	12,708	302.9 (134)	1,440	329.7 (133)	14,148	29.9 (<0.001)
Shuttle walk test metres at assessment 1	356.9 (176)	19,137	332.8 (201)	2644	354.0 (179)	21,781	24.1 (<0.001)
This has been shown in trial populations to have similar relationship. Cochrane in a 2017 review found no association between home-based/group-based rehabilitation for patients post-CR exercise capacity.5 Additionally, this conclusion builds on other research, investigating delivery mode and psychosocial health outcomes.12 The combination of routine CR evidence and trial evidence results in a strong case for patients to have a menu-based approach offering supervised and facilitated self-delivered rehabilitation options.

The overall study population consisting of 1,654,35 patients and the regression population (n = 10,142), were representative of modern UK CR. The patient population in the analysis was checked against the population with no mode of delivery reported; the valid population were deemed as not significantly different in age, gender and baseline physical fitness measures. The age, gender and comorbidity demographics were similar to the national level data.8

This population had a high level of female participation. The total proportion of female was 26.6\%, which is comparable with the overall NACR population (30\%) and much higher than those recruited into the trials in the Cochrane 2017 review, where some studies had no female participants.5 Additionally, our study looked at mode defined as supervised and facilitated self-delivered. The self-delivered modes included not only home-based as per Cochrane but also structured and facilitated web and e manual based approach which is increasingly being provided as an option in routine practice.

The population taking up the self-delivered mode is older, includes more females and a greater proportion of other cardiology treatments. Across the world, there are well-evidenced barriers to CR entry in females and older patients.23–26 The current uptake for CR in the UK is 51\%, which, although one of the top levels across the globe, falls short of targets such 65\% set by NHS England. To meet these uptake targets and make CR more available to all eligible patients, greater utilisation of other modes, such as self-delivered should be considered. Having a menu-based approach, with the offer of CR being inclusive of more than just group-based, is essential for maximising patient participation.11 This study indicates that two traditionally under-represented patient groups (females and older patients) attend self-delivered mode of delivery in greater proportions; wider adoption of this approach will reduce such inequalities and potentially increase uptake generally.

The change in physical fitness from baseline is for all modes, larger than the meaningful clinical difference.17,18 This highlights that attending CR, through either mode, leads to a meaningful improvement in physical fitness for patients.

One possible reason for the lack of adoption for self-delivered rehabilitation is perhaps due to worry of safety surrounding non-supervised CR. This has been studied, and in 2014 a trial investigated the use of high-intensity interval training in CR patients.27 Although this was in a younger trial population, the results found that home-based non-supervised group do comparably well. Additionally, the training in both settings was deemed safe.27

Limitations

One limitation that the study experienced was that although exercise testing is essential for setting objectives and assessing risk, the number of patients with pre-CR and post-CR physical fitness measurements was low. In 2016, NACR reported that less than one-third of patients had recorded physical fitness measurements either ISWT or 6MWT. This does limit the study results in that there may have been some reporting bias. However, the included population was verified against the wider

Table 3	Change in patients physical outcomes’ post-cardiac rehabilitation across the two modes of delivery, supervised and self-delivered											
Supervised	% change from baseline	Count	Mean (SD)	Self-delivered	% change from baseline	Count	Mean (SD)	Total	% change from baseline	Count	Mean (SD)	Mean difference (p values)
Six minute walk test metres change	64.3 (65.8)	19.3	7215	57.4 (57.9)	19	732	63.7 (65.2)	19.3	7947	-6.9 (0.007)		
Shuttle walk test metres change	102.7 (117.4)	28.8	11133	115.6 (139.1)	34.7	1486	104.2 (120.2)	29.4	12619	12.9 (<0.001)		

Table 4

Coefficient	Significance	95% CI	Snijders/Bosker R²	Observations	
Six minute walk test metres at assessment 2	-1.38	0.806	-12.333 to 0.778	0.846	3653
Shuttle walk test metres at assessment 2	0.31	0.957	-11.111 to 0.690	0.690	6175
eligible population in terms of demographics and characteristics, so the authors are confident in the regression model.

Another limitation with this study is that the study could not include intensity/dose of rehabilitation. The length of rehabilitation was included as a covariate as duration; however, the NACR currently has insufficient information regarding the number of sessions to calculate the dose. Although session data have just commenced as part of NACR data collection and will be available for further studies in 2019.

This study excluded patients with heart failure due to their difference in expected walking ability to the wider CR population such as revascularised patients. This strengthens our study as it reduces heterogeneity of our study population and additionally justifies future work into this subpopulation.

FUTURE WORK
This study’s results show that either mode is beneficial for physical fitness. A finding in the 2017 Cochrane review was that the adherence rate was greater in home-based CR. This study did not compare adherence rates between supervised and self-delivered CR. Future work will investigate whether the evidence shown in trials, in terms of adherence, is also true in routine CR.

CONCLUSION
This study finds, for the first time in a routine clinical population, that physical fitness post-CR improves to a clinically meaningful level independent of the mode of delivery. The population taking part in self-delivered CR is higher in proportion of female and older patients. With CR continuing to fail to appeal to many eligible patients, adopting a more menu-based approach which uses modes such as self-delivered is likely to reduce such inequalities in access to CR. The regression model which accounted for patient demographics and service level factors showed no difference, clinical or statistical between mode and post-CR outcomes. This is the first study to investigate the association between mode and physical fitness in routine patient populations. The results show that the population receiving self-delivered benefit as much as supervised group supporting the equivalence of these modes of delivery.

Acknowledgements The authors acknowledge the support of the NACR team.

Contributors All included authors made valuable and significant contributions to the article. The NACR team acknowledged in the paper added in the access of the data but were not part of the design, writing or processing of the manuscript. This author takes responsibility for all aspects of the reliability and freedom from bias of the data presented and their discussed interpretation.

Funding This research was carried out by the British Heart Foundation (BHF) Cardiovascular Health Research Group which is supported by a grant from the BHF (R16B0901).

Competing interests None declared.

Patient consent Not required.

Provenance and peer review Not commissioned; externally peer reviewed.

Data sharing statement The data used in the research is linked anonymised data, given access to the University of York and the NACR from NHS Digital under section 251. The data in this form cannot be uploaded to a shareable platform due to its not true anonymised form.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made. See: https://creativecommons.org/licenses/by/4.0/.

REFERENCES
1. Anderson L, Thompson DR, Oldridge N, et al. Exercise-based cardiac rehabilitation for coronary heart disease. Cochrane Database Systematic Review 2016;1:CD001800.
2. Rauch B, Davos CH, Doherty P, et al. The prognostic effect of cardiac rehabilitation in the era of acute revascularisation and statin therapy: a systematic review and meta-analysis of randomized and non-randomized studies - The Cardiac Rehabilitation Outcome Study (CROS). Eur J Prev Cardiol 2016;23:1914–39.
3. British Association of Cardiovascular Prevention and Rehabilitation. The BACPR Standards and core components for cardiovascular disease prevention and rehabilitation, 3rd Edn, 2017.
4. Piepoli MF, Corra U, Adamopoulos S, et al. Secondary prevention in the clinical management of patients with cardiovascular diseases. Core components, standards and outcome measures for referral and delivery. Kardioliga 2014;54.
5. Anderson L, Sharp GA, Norton RJ, et al. Home-based versus centre-based cardiac rehabilitation. Cochrane Database Syst Rev 2017;6:CD007130.
6. Tang LH, Zwilser AD, Berg SK. Is the cardiovascular response equivalent between a supervised centre-based setting and a self-care home-based setting when rating of perceived exertion is used to guide aerobic exercise intensity during a cardiac rehabilitation program? American Journal of Physical Medicine & Rehabilitation. 2016;1–7.
7. Tang LH, Kikkenborg Berg S, Christensen J, et al. Patients’ preference for exercise setting and its influence on the health benefits gained from exercise-based cardiac rehabilitation. Int J Cardiol 2017;232:33–9.
8. British Heart Foundation. The National Audit of Cardiac Rehabilitation (NACR) Annual Statistics Report UK. 2017.
9. England N. NHS England, Factsheet: Increase uptake of cardiac rehabilitation for people with coronary artery disease and following acute heart failure. 2014.
10. Ades PA, Keteyian SJI, Wright JS, et al. Increasing cardiac rehabilitation participation from 20% to 70%: a road map from the million hearts cardiac rehabilitation collaborative. Mayo Clin Proc 2017;92:234–42.
11. Dalal HM, Doherty P, Taylor RS. Cardiac rehabilitation. BMJ 2015;351:h5000.
12. Harrison AS, Doherty P. Does the mode of delivery in cardiac rehabilitation determine the extent of psychosocial health outcomes? Int J Cardiol 2018;255:136–9.
13. ISPM. STROBE Statement, Strengthening the reporting of observational studies in epidemiology, 2009.
14. NICE. NICE Clinical Guideline 172 – secondary prevention in primary and secondary care for patients following myocardial infarction, 2013.
15. NICE. NICE Clinical Guidelines 94 – secondary prevention in primary and secondary care for patients following myocardial infarction, 2010.
16. Laboratories ATSCoPSICPF. ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med 2002;166:111–7.
17. Houchen-Woolf L, Boyce S, Singh S. The minimum clinically important improvement in the incremental shuttle walk test following cardiac rehabilitation. Eur J Prev Cardiol 2015;22:972–8.
18. Singh SJ, Jones PW, Evans R, et al. Minimum clinically important improvement for the incremental shuttle walking test. Thorax 2008;63:775–7.
19. Field AP. Discovering statistics using IBM SPSS statistics. 9th Edn. Los Angeles: Sage, 2013.
20. Harrison AS, Sumner J, McMillan D, et al. Relationship between employment and mental health outcomes following Cardiac Rehabilitation: an observational analysis from the National Audit of Cardiac Rehabilitation. Int J Cardiol 2016;220:851–4.
21. Doherty P, Harrison AS, Knapton M, et al. Observational study of the relationship between volume and outcomes using data from the National Audit of Cardiac Rehabilitation. Open Heart 2015;2:e000304.

22. Fell J, Dale V, Doherty P. Does the timing of cardiac rehabilitation impact fitness outcomes? An observational analysis. Open Heart 2016;3:e000369.

23. Dunlay SM, Witt BJ, Allison TG, et al. Barriers to participation in cardiac rehabilitation. Am Heart J 2009;158:852–9.

24. Grace SL, Gravely-Witte S, Kayaniyil S, et al. A multisite examination of sex differences in cardiac rehabilitation barriers by participation status. J Womens Health 2009;18:209–16.

25. Daly J, Sindone AP, Thompson DR, et al. Barriers to participation in and adherence to cardiac rehabilitation programs: a critical literature review. Prog Cardiovasc Nurs 2002;17:8–17.

26. Evenson KR, Fleury J. Barriers to outpatient cardiac rehabilitation participation and adherence. J Cardiopulm Rehabil 2000;20:241–6.

27. Aamot I-L, Forbord SH, Gustad K, et al. Home-based versus hospital-based high-intensity interval training in cardiac rehabilitation: a randomized study. Eur J Prev Cardiol 2014;21:1070–8.