Magnetism on the stretched diamond lattice in lanthanide orthotantalates

Nicola D. Kelly,1,† Lei Yuan,1 Rosalyn L. Pearson,1 Emmanuelle Suard,2 Inés Puente Orench,2,3 and Siân E. Dutton1,*

1 Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK
2 Laboratoire Lavoisier, Université Paris-Saclay, France
3 Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50009, Spain

(Dated: April 8, 2022)

The magnetic Ln3+ ions in the fergusonite and scheelite crystal structures form a distorted or stretched diamond lattice which is predicted to host exotic magnetic ground states. In this study, polycrystalline samples of the fergusonite orthotantalates M-LnTaO4 (Ln = Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er) are synthesized and then characterized using powder diffraction and bulk magnetometry and heat capacity. TbTaO4 orders antiferromagnetically at 2.25 K into a commensurate magnetic cell with k = 0, magnetic space group 147 (P21/c) and Tb moments parallel to the a-axis. No magnetic order was observed in the other materials studied, leaving open the possibility of exotic magnetic states at T < 2 K.

I. INTRODUCTION

Magnetism on diamond-like lattices has been widely studied in both coordination frameworks 1 and ceramic systems, including materials with the scheelite crystal structure such as KRUO4 2 and KOsO4 3 as well as cubic spinels AB2O4 with a magnetic ion on the A-site 4,7. The perfect diamond lattice is bipartite and unfrustrated, expected to order into a collinear antiferromagnetic ground state if only nearest-neighbor interactions (J1) are considered 8. However, magnetic frustration can arise if interactions with the twelve next-nearest-neighbors (J2) are included, or if distortion lowers the symmetry from cubic. This may give rise to exotic magnetic behavior including spiral spin-liquid states 9,10 or topological paramagnetism 11,13.

Rare-earth orthoniobates LnNbO4 and orthotantalates LnTaO4 (Ln = Y, La–Lu) are of wide interest as a result of their luminescent 14,15, proton-conducting 16, oxide-ion-conducting 17 and dielectric properties 18. The tantalates have also been proposed as thermal barrier coatings for gas turbines 19. The niobates and tantalates have also been proposed as thermal barrier coatings for gas turbines 19 and oxide-ion-conducting 17 and dielectric properties 18. Recently, the tantalates have also been proposed as thermal barrier coatings for gas turbines 19. The niobates and tantalates have also been proposed as thermal barrier coatings for gas turbines 19 and oxide-ion-conducting 17 and dielectric properties 18.

The metallic Ln3+ ions in the scheelite and fergusonite crystal structures form a distorted or stretched diamond lattice which is predicted to host exotic magnetic ground states. In this study, polycrystalline samples of the fergusonite orthotantalates M-LnTaO4 (Ln = Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er) are synthesized and then characterized using powder diffraction and bulk magnetometry and heat capacity. TbTaO4 orders antiferromagnetically at 2.25 K into a commensurate magnetic cell with k = 0, magnetic space group 147 (P21/c) and Tb moments parallel to the a-axis. No magnetic order was observed in the other materials studied, leaving open the possibility of exotic magnetic states at T < 2 K.

I. INTRODUCTION

Magnetism on diamond-like lattices has been widely studied in both coordination frameworks 1 and ceramic systems, including materials with the scheelite crystal structure such as KRUO4 2 and KOsO4 3 as well as cubic spinels AB2O4 with a magnetic ion on the A-site 4,7. The perfect diamond lattice is bipartite and unfrustrated, expected to order into a collinear antiferromagnetic ground state if only nearest-neighbor interactions (J1) are considered 8. However, magnetic frustration can arise if interactions with the twelve next-nearest-neighbors (J2) are included, or if distortion lowers the symmetry from cubic. This may give rise to exotic magnetic behavior including spiral spin-liquid states 9,10 or topological paramagnetism 11,13.

Rare-earth orthoniobates LnNbO4 and orthotantalates LnTaO4 (Ln = Y, La–Lu) are of wide interest as a result of their luminescent 14,15, proton-conducting 16, oxide-ion-conducting 17 and dielectric properties 18. The tantalates have also been proposed as thermal barrier coatings for gas turbines 19. The niobates and tantalates have also been proposed as thermal barrier coatings for gas turbines 19 and oxide-ion-conducting 17 and dielectric properties 18. Recently, the tantalates have also been proposed as thermal barrier coatings for gas turbines 19. The niobates and tantalates have also been proposed as thermal barrier coatings for gas turbines 19 and oxide-ion-conducting 17 and dielectric properties 18.

The metallic Ln3+ ions in the scheelite and fergusonite crystal structures form a distorted or stretched diamond lattice which is predicted to host exotic magnetic ground states. In this study, polycrystalline samples of the fergusonite orthotantalates M-LnTaO4 (Ln = Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er) are synthesized and then characterized using powder diffraction and bulk magnetometry and heat capacity. TbTaO4 orders antiferromagnetically at 2.25 K into a commensurate magnetic cell with k = 0, magnetic space group 147 (P21/c) and Tb moments parallel to the a-axis. No magnetic order was observed in the other materials studied, leaving open the possibility of exotic magnetic states at T < 2 K.

† sed33@cam.ac.uk
* me281@cam.ac.uk

I. INTRODUCTION

Magnetism on diamond-like lattices has been widely studied in both coordination frameworks 1 and ceramic systems, including materials with the scheelite crystal structure such as KRUO4 2 and KOsO4 3 as well as cubic spinels AB2O4 with a magnetic ion on the A-site 4,7. The perfect diamond lattice is bipartite and unfrustrated, expected to order into a collinear antiferromagnetic ground state if only nearest-neighbor interactions (J1) are considered 8. However, magnetic frustration can arise if interactions with the twelve next-nearest-neighbors (J2) are included, or if distortion lowers the symmetry from cubic. This may give rise to exotic magnetic behavior including spiral spin-liquid states 9,10 or topological paramagnetism 11,13.

Rare-earth orthoniobates LnNbO4 and orthotantalates LnTaO4 (Ln = Y, La–Lu) are of wide interest as a result of their luminescent 14,15, proton-conducting 16, oxide-ion-conducting 17 and dielectric properties 18. The tantalates have also been proposed as thermal barrier coatings for gas turbines 19. The niobates and tantalates have also been proposed as thermal barrier coatings for gas turbines 19 and oxide-ion-conducting 17 and dielectric properties 18. Recently, the tantalates have also been proposed as thermal barrier coatings for gas turbines 19. The niobates and tantalates have also been proposed as thermal barrier coatings for gas turbines 19 and oxide-ion-conducting 17 and dielectric properties 18.

The metallic Ln3+ ions in the scheelite and fergusonite crystal structures form a distorted or stretched diamond lattice which is predicted to host exotic magnetic ground states. In this study, polycrystalline samples of the fergusonite orthotantalates M-LnTaO4 (Ln = Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er) are synthesized and then characterized using powder diffraction and bulk magnetometry and heat capacity. TbTaO4 orders antiferromagnetically at 2.25 K into a commensurate magnetic cell with k = 0, magnetic space group 147 (P21/c) and Tb moments parallel to the a-axis. No magnetic order was observed in the other materials studied, leaving open the possibility of exotic magnetic states at T < 2 K.

† sed33@cam.ac.uk
* me281@cam.ac.uk
This article reports the bulk magnetic characterization of eight powder samples in the series M-$Ln\text{TaO}_4$, $Ln = \text{Nd, Sm, Eu, Tb, Dy, Ho, Er, Y}$ or Tb, extending the range investigated in a previous study \cite{37, 38}. TbTaO_4 was also studied using high-resolution powder neutron diffraction. It exhibits a transition at $T = 2.25$ K to a commensurate antiferromagnetic structure with $k = 0$. No magnetic transitions occurred above 2 K for the remaining samples with $Ln = \text{Sm, Eu, Gd, Dy}$. These measurements indicate the presence of magnetic frustration in M-$Ln\text{TaO}_4$ and lay the foundations for future investigations, as possible hosts for novel magnetic states as predicted for the stretched diamond magnetic lattice.

II. EXPERIMENTAL

Polycrystalline samples of M-$Ln\text{TaO}_4$ were synthesized according to a ceramic procedure, starting from Ta_2O_5 (Alfa Aesar, 99.993 %) and $Ln_2\text{O}_3$ ($Ln = \text{Nd, Sm, Eu, Gd, Dy, Ho, Er, Y}$) or Tb_4O_7 (Alfa Aesar; all lanthanide oxides ≥ 99.99 %). Lanthanide oxides were dried in air at 800 °C overnight before weighing. For each compound, 1:1 molar amounts of the reagents were ground with an agate pestle and mortar, pressed into a 13 mm pellet and placed in an alumina crucible. Pellets were fired for 3 x 24 h at 1500 °C in air with intermediate regrinding. The exception was ErTaO_4, which first formed the M' phase ($P2_1/c$) at 1500 °C and required an additional 2 x 24 h at an elevated temperature, 1600 °C, to form solely the desired M phase. Heating and cooling rates were 3 °C per minute.

Powder X-ray diffraction (PXRD) was carried out at room temperature on a Bruker D8 diffractometer (Cu Ka, $\lambda = 1.541$ Å) in the range $10 \leq 2\theta(°) \leq 70$ with a step size of 0.02°, 0.6 seconds per step. Rietveld refinements \cite{40} were carried out using TOPAS \cite{41} with a Chebyshev polynomial background and a modified Thompson-Cox-Hastings pseudo-Voigt peak shape \cite{42}. VESTA \cite{43} was used for crystal structure visualization and production of figures.

Powder neutron diffraction (PND) was carried out on a 3 g sample of TbTaO_4 on the D1B and D2B diffractometers (high intensity and high resolution respectively), ILL, Grenoble, using an Orange cryostat (1.5 $\leq T(K) \leq$ 300). Wavelengths were refined to 2.52461(6) Å for D1B and 1.594882(10) Å for D2B. Determination of the magnetic structure was carried out using FULLPROF \cite{44} and TOPAS \cite{41}. The background was modelled with a Chebyshev polynomial and the peak shape modelled with a modified Thompson-Cox-Hastings pseudo-Voigt function with axial divergence asymmetry \cite{42}.

DC magnetization was measured on warming on a Quantum Design PPMS 3 at a field of 500 Oe in the temperature range 2 $\leq T(K) \leq$ 300, after cooling from 300 K in zero applied field (ZFC) or 500 Oe applied field (FC). Isothermal magnetization was measured on a Quantum Design PPMS DynaCool using the ACMS-II option in its DC magnetometer mode in the field range $\mu_0H = 0$–9 T. In a low field, up to 500 Oe, the $M(H)$ curve was linear and the susceptibility could therefore be approximated by $\chi(T) = M/H$.

Zero-field heat capacity of TbTaO_4 was measured on the PPMS in the range 1.8 $\leq T(K) \leq$ 30. The sample was mixed with an equal mass of Ag powder (Alfa Aesar, 99.99 %, ~635 mesh) to improve thermal conductivity, then pressed into a 1 mm thick pellet for measurement. Apiezon N grease was used to provide thermal contact between the sample platform and the pellet. Fitting of the relaxation curves was done using the two-tau model. The contribution of Ag to the total heat capacity was subtracted using scaled values from the literature \cite{45}. The TbTaO_4 lattice contribution was estimated and subtracted using a Debye model with $\theta_D = 370$ K \cite{46}.

III. RESULTS

A. Crystal structure

For $Ln = \text{Nd–Ho & Y}$, a small amount, < 5 wt %, of the metastable M'-phase (space group $P2_1/c$; Fig. 1(b)) was formed in the first heating step but disappeared on
further heating. ErTaO$_4$ formed only the M' phase at 1500 °C but formed the desired M phase after heating at 1600 °C. Attempts to produce M-YbTaO$_4$ by the same methods were unsuccessful, in agreement with previous authors who found that making this phase requires quenching from high temperature and/or pressure [19, 17]. Synthesis of YbTaO$_4$ by spark plasma sintering (SPS) was attempted as reported in the literature (various experiments with $T \leq 1600$ °C, $p \leq 500$ bar, fast or slow cooling [48]) but was unsuccessful, producing only the M' phase with unreacted Yb$_2$O$_3$ and Ta$_2$O$_5$. It thus appears that the relative stability of M' over M increases across the lanthanide series with decreasing ionic radius, since LuTaO$_4$ also favors the M' phase [19] and the solid solution $Y_{1-x}Yb_xTaO_4$ favors M' when $x \geq 0.5$ [49].

PXRD and Rietveld refinement indicated that each sample eventually formed a single phase with the monoclinic M-LnTaO$_4$ crystal structure, space group $I2/a$, shown in Fig. 1(a). Unit cell dimensions and the Ln^{3+} and Ta$^{5+}$ atomic positions were refined, but the positions of O$^{2-}$ ions were fixed at values taken from neutron diffraction of NdTaO$_4$ [31] because of the low X-ray scattering power of oxygen compared with the heavier metal ions. Refinement of fractional site occupancies with fixed overall stoichiometry indicated that there was no disorder between the Ln^{3+} and Ta$^{5+}$ cations. This result is as expected because 6-coordinate Ta$^{5+}$ is much smaller than any of the 8-coordinate lanthanide ions [50]. Refined unit cell parameters (Supplemental Material) are in good agreement with literature results [19, 21, 31]. A representative Rietveld fit is shown in Fig. 2; fits for the remaining compounds are in the Supplemental Material. The unit cell volume decreased linearly with decreasing lanthanide ionic radius (Fig. 3).

We obtained high-resolution powder neutron diffraction (PND) data for the paramagnetic phase of TbTaO$_4$ at 30 K using the D2B beamline at the ILL [51]. The measurements confirmed that the nuclear structure of TbTaO$_4$ is consistent with previous reports for LnTaO$_4$ compounds [21, 27, 31]. Fig. 4(a) shows a Rietveld refinement of PND data collected at $T = 30$ K with $\lambda \approx 1.59$ Å. Interatomic distances were also obtained. The Ta$^{5+}$ ions are surrounded by four shorter and two longer Ta–O bonds, forming octahedra distorted by a second-order Jahn-Teller effect [27], while the Tb$^{3+}$ ions are 8-coordinate. The refined bond lengths are listed in Table I.

Table I. Refined interatomic distances for TbTaO$_4$ from PND data collected at 1.59 Å (D2B, ILL).

Atoms	Distance /Å	$T = 1.5$ K	$T = 30$ K
Ta–O(2)	x 2	1.877(4)	1.871(4)
Ta–O(1)	x 2	1.938(4)	1.945(3)
Ta–O(1)	x 2	2.301(4)	2.297(4)
Tb–O(2)	x 2	2.314(3)	2.311(2)
Tb–O(1)	x 2	2.342(4)	2.342(3)
Tb–O(2)	x 2	2.376(4)	2.379(3)
Tb–O(1)	x 2	2.500(4)	2.492(3)

In addition, we were able to resolve and follow the evolution of the nuclear structure with temperature using PND data collected on the D1B beamline. No phase transitions were observed in the temperature range 3–300 K. The lattice parameters were constant between 3 and 50 K and then varied smoothly between 50 and 300 K. Small decreases in a and β on warming were offset by increases in b and c, Fig. S1. There were similar subtle changes to

![Image of PXRD pattern for NdTaO$_4$: red dots – experimental data; black line – calculated intensities; green line – difference pattern; blue tick marks – Bragg reflection positions.](image-url)

![Image of Rietveld fit for TbTaO$_4$ at 30 K with $\lambda \approx 1.59$ Å.](image-url)

![Image of unit cell volume of M-LnTaO$_4$ compounds after PXRD and Rietveld refinement with dashed line of best fit to guide the eye.](image-url)
the atomic fractional coordinates between 50 and 300 K (Figs S2 and S3).

B. Bulk magnetic properties

1. Magnetic susceptibility

The zero-field-cooled (ZFC) magnetic susceptibility at 500 Oe for each $Ln\text{TaO}_4$ compound is plotted in Fig. 5(a). No sharp peaks in the susceptibility were observed for any of the eight compounds except $Tb\text{TaO}_4$, which had a peak at 2.9 K. Field-cooled (FC) susceptibility at 500 Oe was also measured on $Tb\text{TaO}_4$ and found to be identical to the ZFC data, suggesting three-dimensional antiferromagnetic ordering without glassiness.

The susceptibility was fitted to the modified Curie-Weiss law:

$$\chi = \chi_0 + \frac{C}{(T - \theta_{CW})} \quad (1)$$

where χ_0 is the temperature-independent contribution to the susceptibility. Linear fitting of $(\chi - \chi_0)^{-1}$ against T, Fig. 5(b), was carried out in the temperature range 50–300 K. The effective magnetic moment, calculated from the experimental data using $\mu_{eff} = \sqrt{SC}$ and compared to the theoretical paramagnetic moment $gJ\sqrt{J(J+1)}$. The results are given in Table II. The magnitudes of the Curie-Weiss temperatures for $Ln = \text{Nd, Ho and Er}$ are consistent with the results of Tsunekawa et al. [38]. The experimental magnetic moments are also in excellent agreement with the theoretical values, with the exceptions of $Ln = \text{Sm, Eu and Tb}$. The susceptibility of SmTaO_4 at high temperatures shows a large contribution from temperature-independent paramagnetism. The calculated effective magnetic moment is 0.66 μ_B, slightly lower than the expected free ion value of 0.85 μ_B, likely owing to the large crystal field splitting in the $J = 5/2$ ground state multiplet of Sm^{3+} [52, 53].

The negative Curie-Weiss temperature indicates antiferromagnetic interactions between adjacent Sm^{3+} ions, as indeed is the case for all the remaining $Ln\text{TaO}_4$ samples. The shape of the EuTaO_4 susceptibility curve resembles that of other Eu^{3+}-containing ceramics and is believed to result from van Vleck paramagnetism, a second-order correction involving higher-lying $^7F_{J} - ^7F_{J'}$ states [52, 54, 55]. The inverse susceptibility plot is linear at 50–120 K and 200–300 K, but applying equation (1) produces unrealistically large values of the magnetic moment and Curie-Weiss temperature. Finally, the discrepancy between experimental and theoretical μ_{eff} for $Tb\text{TaO}_4$ is $< 3\sigma$ but larger than the discrepancy for $Ln = \text{Nd, Gd, Dy, Ho and Er}$, likely because of magnetic correlations developing in the lower temperature range, since $Tb\text{TaO}_4$ is the only compound to order above 2 K.

2. Isothermal magnetization

Fig. 6 shows the isothermal magnetization at 2 K for the $Ln\text{TaO}_4$ compounds. For the samarium and europium compounds, the magnetization plots initially curve upwards then become linear above 3 T without saturating. In all other samples the magnetization, plotted in units of Bohr magnetons per formula unit (μ_B/f.u.), tends towards a saturation value M_{sat} at high field. The expected value of M_{sat} depends on both the identity of the lanthanide ion and the extent of single-ion anisotropy – the tendency for a spin to align along a particular local axis or local plane. For example, compounds containing Gd^{3+} typically display Heisenberg-type behavior with saturation at the maximum value of $gJ = 7\mu_B$/f.u., while systems with Ising (easy-axis) or XY (easy-plane) behavior are expected to saturate around $gJ/2$ or $2gJ/3$ respectively. However, individual systems may vary from these values depending on the local symmetry of the lanthanide ion coordination environment [56, 57]. The experimental values of $M_{2K, gT}$ for each compound and the calculated gJ for each lanthanide ion are given in Table II.

Bulk powder averaging limits the information that can be obtained on crystal field effects from the $M(H)$ data. However, the M_{sat} values do indicate that the compounds with $Ln = \text{Nd, Tb, Dy, Ho and Er}$ all show some degree of local anisotropy. Further experiments such as neutron diffraction would be needed to investigate this further, although neutron absorption would make it difficult to measure the anisotropy in DyTaO_4 without
FIG. 5. (a) ZFC susceptibility χ, (b) $(\chi - \chi_0)^{-1}$ as a function of temperature for the $Ln\text{TaO}_4$ samples with $Ln = \text{Nd, Sm, Eu, Gd, Tb, Dy, Ho and Er}$.

Ln	$g_J \sqrt{J(J+1)}$	χ_0 (emu mol$^{-1}$ Oe$^{-1}$)	C (emu mol$^{-1}$ Oe$^{-1}$ K)	θ_{CW} (K)	μ_{eff} (μ_B)	$g_J \cdot J$	$M_{2K,\text{ST}}$ (μ_B/f.u.)
Nd	3.62	8×10^{-4}	1.65(3)	-40.5(8)	3.63(7)	3.29	1.312(26)
Sm	0.85	2.2×10^{-3}	0.0548(11)	-29.8(6)	0.662(13)	0.71	0.0749(15)
Eu	0	N/A	N/A	N/A	N/A	0	1.037(21)
Gd	7.94	6×10^{-4}	8.14(16)	-2.77(6)	8.07(16)	7	6.88(14)
Tb	9.72	8×10^{-4}	12.96(26)	-9.49(19)	10.18(20)	9	5.48(11)
Dy	10.65	0	14.33(29)	-6.88(14)	10.71(21)	10	6.00(12)
Ho	10.61	1.9×10^{-3}	13.97(28)	-7.84(16)	10.57(21)	10	6.72(13)
Er	9.58	2.6×10^{-3}	11.15(22)	-7.43(15)	9.44(19)	9	5.98(12)

an isotopically enriched sample. A previous study on large single crystals of $Ln\text{TaO}_4$ ($Ln = \text{Nd, Ho, Er}$) also found substantial anisotropy in the magnetic susceptibility measured along the different crystal axes [38]. In that study, the plots of inverse susceptibility along each crystal axis have the same gradient but different x-intercepts, i.e. Curie-Weiss temperatures: for example, NdTaO$_4$, which showed the greatest anisotropy, had $\theta_{\text{CW}} = -7$, -56 and -52 K along the a, b and c axes respectively. This illustrates the importance of single-crystal studies for gaining a better understanding of the magnetostructural anisotropy in compounds such as $Ln\text{TaO}_4$.

3. Specific heat

The magnetic heat capacity for TbTaO$_4$ was obtained from the total heat capacity by subtraction of the estimated lattice contribution using Debye fitting ($\theta_D = 370$ K). The subtraction is shown in the Supplemental
FIG. 6. Magnetization as a function of applied field for the $Ln\text{TaO}_4$ samples with $Ln = \text{Nd, Sm, Eu, Gd, Tb, Dy, Ho and Er}$.

Material. The magnetic heat capacity shows a sharp λ-type transition at $T = 2.25$ K, where there is a corresponding feature in the plot of $d(\chi T)/dT$. This provides further evidence for three-dimensional antiferromagnetic ordering as deduced from the susceptibility data. The magnetic entropy associated with the transition was obtained by integration of the heat capacity curve over the full temperature range (1.8–30 K) and found to approach 2 J mol$^{-1}$ K$^{-1}$ (Fig. 7, inset). Since the expected maximum entropy is $R \ln 2 = 5.76$ J mol$^{-1}$ K$^{-1}$ for Ising spins with effective spin of $1/2$, the remaining entropy change is assumed to occur below the lowest temperature measured (1.8 K) which has non-zero C_{mag}/T and is close to T_N.

C. Magnetic structure of TbTaO$_4$

We obtained high-resolution PND data for the magnetic phase of TbTaO$_4$ at 1.5 K using the D2B beamline at the ILL. Variable-temperature PND was also carried out on the D1B beamline in order to track the evolution of the magnetic structure with temperature. On cooling below $T = 2.3$ K, magnetic Bragg peaks were observed to appear and increase in intensity as the temperature was lowered. No discernible diffuse scattering was observed above this temperature. The magnetic peaks could be indexed to a commensurate magnetic cell with $k = 0$ in the magnetic space group 14.77 ($P2_1/c$). Refinement of the magnetic structure using TOPAS (Fig. 8(b)) shows Tb moments parallel to the a-axis in A-type antiferromagnetic order: the moments coilign within the ac plane, forming ferromagnetic slabs coupled antiferromagnetically along b, Fig. 8(a). The structure is similar to that of NaCeO$_2$ which has the same A-type order but Ce$^{3+}$ moments aligned along the tetragonal c-axis. Further details of the magnetic structure may be found in the Supplemental Material.

The refined ordered moment is plotted as a function of temperature in Fig. 9, showing good agreement with the transition temperature found by heat capacity and magnetic susceptibility. At 1.5 K the moment of $7.5(4) \mu_B$/Tb$^{3+}$ is slightly below the expected value of $9 \mu_B$.

The nearest-neighbor superexchange in TbTaO$_4$ follows Tb–O–Tb pathways. These pathways may be divided into J_{1a} and J_{1b} according to the different Tb–O bond lengths. Figs 8(b) and 8(c) highlight these two interactions: J_{1a} vectors (shorter) in the ab plane and J_{1b} vectors (longer) in the bc plane. In the mean-field approximation, the average exchange interaction \bar{J}_1 may be calculated as $\bar{J}_1 = |3k_3^b\theta_{\text{CW}}|/[2nJ(J + 1)]$, where J is the spin quantum number and n the number of nearest-neighbor spins. Using an effective spin of $1/2$ for the

![FIG. 7. Magnetic heat capacity (filled symbols) and $d(\chi T)/dT$ vs T (open symbols) for TbTaO$_4$, Inset: magnetic entropy ΔS_{mag} obtained by integration of C_{mag}/T.](image-url)
We report the magnetic behavior of a family of \(Ln^{3+}\) oxides containing a stretched diamond lattice of magnetic ions. Other such materials include the alkali metal-lanthanide oxides \(NaLnO_2\) (\(Ln = Ce, Nd, Sm, Eu, Gd\)) and Li\(LnO_2\) (\(Ln = Er, Yb\)), which crystallize in the tetragonal space group \(I4_1/amd\) [60, 61, 62]. The observation of the stretched diamond lattice in monoclinic \(LnTaO_4\) materials provides a new opportunity to study the interplay of the crystal electric field with competing \(J_1\) and \(J_2\) magnetic interactions. In particular, while Tb-TaO\(_4\) exhibits long-range \(A\)-type antiferromagnetic order similar to that of NaCeO\(_2\) [30], the other materials with \(Ln = Nd–Er\) do not order at \(T \geq 2\) K. The absence of ordering above 2 K, in contrast to e.g. Na\(LnO_2\) (Ce, Gd antiferromagnetic; Nd ferromagnetic [61]) suggests the potential for novel magnetic states at low temperature.

The Curie-Weiss temperatures for \(LnTaO_4\) listed in table [11] are of the order of 2–10 K for \(Ln = Gd–Er\), and much larger (41 K) for NdTaO\(_4\), so we expect to observe magnetic correlations in this temperature range. The data for \(Ln = Nd, Gd, Tb, Dy, Ho\) and Er were plotted according to a dimensionless form of the Curie-Weiss equation,

\[
\frac{C}{(\chi - \chi_0)|\theta|} = \frac{T}{|\theta|} + 1
\]

in order to look for signs of being near to a magnetic ordering transition, since deviation from linearity at low temperatures is an indication of short-range magnetic correlations [63, 64]. The plots are shown in the Supplemental Material (Fig. S5) and indicate that all materials are developing weak correlations only below \(T/|\theta| \approx 1\) as expected. However, even NdTaO\(_4\) with the largest \(|\theta|\) fails to order above 2 K, which illustrates how frustration suppresses magnetic ordering to lower temperatures in \(LnTaO_4\).

The diamond lattice can also be viewed as a truncated version of the \(H(0)\) ‘hyperhoneycomb’ structure of \(\beta\)-Li\(_2\)IrO\(_3\), using nomenclature for the so-called harmonic honeycomb series [65]. This ‘truncation’ is carried out by removing the black links (parallel to \(c\)) from the \(N = 0\) structure, as shown in Fig. [10]. \(N\) stands for the number of complete hexagonal rows along the \(c\)-axis before a change of orientation of the hexagons. Alternatively, \(N + 1\) is the number of black (\(c\)-axis) links between changes of orientation [66]; as such, we propose the notation \(H(-1)\) for the diamond lattice. Magnetic frustration in materials with the \(H(-1)\) connectivity is probable in crystal symmetries lower than cubic, and has previously been investigated in NaCeO\(_2\) [30] and LiYbO\(_2\) [62].

Like the materials in the wider series \(H(N)\), which include YbCl\(_3\) [67] and the \(\alpha, \beta\) and \(\gamma\) polymorphs of Li\(_2\)IrO\(_3\) [65], magnetism on the \(H(-1)\) lattice is governed by the interplay of nearest-neighbor and next-nearest-neighbor interactions. Describing the stretched diamond lattice as \(H(-1)\) provides a useful framework to draw
parallels between different materials within the harmonic honeycomb series.

There are two parameters which are useful for comparing the level of stretching in different stretched diamond or $H(-1)$ lattices. The first is the angle or angles around each lattice vertex. In an ideal cubic diamond lattice, all these angles are equal at 109.5°. When the diamond lattice is distorted, the number of different angles increases: there are two in tetragonal, three in hexagonal, and four in monoclinic symmetry. We compare the average deviation from ideal tetrahedral geometry by defining a parameter d_a, the angle distortion index, as follows:

$$d_a = \frac{\phi_{\text{max}} - \phi_{\text{min}}}{\bar{\phi}}$$ (3)

where ϕ_{max} and ϕ_{min} are the largest and smallest angles respectively, and $\bar{\phi}$ is the mean angle. Secondly, we define a bond distortion index d_b in a similar way:

$$d_b = \frac{r_2 - r_1}{\frac{1}{2}(r_1 + r_2)}$$ (4)

where r_1 and r_2 are the two ‘nearest-neighbor’ interaction distances (red and blue in Fig. 10). These distances are equal in the case of the undistorted (cubic) or the tetragonal or hexagonal stretched diamond lattices, but not in monoclinic materials such as the tantalates. Table III lists the distortion indices for several materials containing this magnetic lattice. Values were calculated using the program VESTA to examine the published crystal structures.

Table III highlights the fact that the magnetic ordering of TbTaO$_4$ occurs at a similar temperature to NaNdO$_2$ and NaGdO$_2$, despite the higher symmetry of NaLnO$_2$, whereas the remaining LnTaO$_4$ do not order above 2 K. The effect of distortion on magnetism on this lattice is clearly important but the precise mechanism is currently unclear. The suppression of ordering temperatures in certain materials likely depends on a combination of the distortion and the identity of the magnetic ion, i.e. anisotropy and crystal field splitting, both of which would influence the superexchange and/or dipolar interactions. Future experiments including inelastic neutron scattering or polarized neutron diffraction, especially on single-crystal samples, would be valuable for determining the extent to which distortion affects the crystal electric field and hence the magnetic properties of these materials.

Finally, we note that LaTaO$_4$, while not forming the fergusonite structure type, nonetheless displays rich structural phase behavior including an incommensurate-commensurate phase transition at 483 K coinciding with a dielectric anomaly. Dias et al. have made comparative dielectric measurements on LaTaO$_4$ ($P2_1/c$), NdTaO$_4$ ($I2/a$), and DyTaO$_4$ and LuTaO$_4$ ($P2_1/a$). Despite the differences in structure, the dielectric constants of the Nd, Dy and Lu tantalates are ≤ 25 % smaller than that of LaTaO$_4$ and still within the range of useful microwave materials. Considering that Nd$^{3+}$ and Dy$^{3+}$ have non-zero magnetic moments, there is a possibility of coupling between magnetic and electric properties which should be investigated in these and the other magnetic tantalates.

V. CONCLUSIONS

Polycrystalline samples of LnTaO$_4$ ($Ln =$ Nd, Sm–Er, Y) in the monoclinic M, or fergusonite, structure type have been synthesized using a ceramic procedure.
The trivalent lanthanide ions in the crystal structure form a three-dimensional net equivalent to an elongated or ‘stretched’ diamond lattice. This lattice can also be considered a truncated form of the hyperhoneycomb lattice $H(0)$, part of the harmonic honeycomb series, and is therefore denoted $H(-1)$. Bulk magnetic characterization of the tantalate samples confirms a previous literature result for $Ln = Nd, Ho, Er$, and reveals that the remaining compounds do not order above 2 K with the exception of TbTaO$_4$, which has $T_N = 2.25$ K. High-resolution PND was used to examine the paramagnetic and magnetic phases of TbTaO$_4$, revealing that it forms a commensurate $\mathbf{k} = 0$ magnetic unit cell. The Tb moments lie parallel to the a-axis in A-type antiferromagnetic order. Future work will include specific heat measurements at $T < 2$ K in order to search for further magnetic transitions and investigate the magnetic ground states of the remaining tantalates.

ACKNOWLEDGMENTS

N.D.K. thanks Sundeep Vema for carrying out the reactions at 1600 °C, Farheen Sayed for the SPS experiments and James Analytis for technical advice on producing Fig. 10. We acknowledge funding from the EPSRC (EP/T028580/1, EP/R513180/1, EP/M000524/1).

Supplementary tables and figures are available at (DOI). Neutron diffraction data are available at reference [51]. The authors gratefully acknowledge the tech-
technical and human support provided at the Institut Laue-Langevin (ILL), Grenoble. Additional data related to this publication are available in the Cambridge University Repository at (DOI).

[1] A. H. Abdeldaim, T. Li, L. Farrar, A. A. Tsirlin, W. Yao, A. S. Gibbs, P. Manuel, P. Lightfoot, G. J. Nilsen, and L. Clark, Realising square and diamond lattice $S = 1/2$ Heisenberg antiferromagnet models in the α and β phases of the coordination framework, KTi(C$_2$O$_4$)$_2\cdot$H$_2$O, Phys. Rev. Mater. 4, 104414 (2020).

[2] C. A. Marjerrison, C. Mauws, A. Z. Sharma, C. R. Wiebe, S. Derakhshan, C. Boyer, B. D. Gaulin, and J. E. Greedan, Structure and Magnetic Properties of KRuO$_4$; Inorg. Chem. 55, 12897 (2016).

[3] S. Injac, A. K. L. Yuen, B. J. Kennedy, M. Avdeev, and F. Orlandi, Structural and magnetic studies of KOsO$_4$, a 5d1 quantum magnet oxide, Phys. Chem. Chem. Phys. 21, 7261 (2019).

[4] N. Tristan, J. Hemberger, A. Krimmel, H. A. Krug Von Nidda, V. Tsurkan, and A. Loidl, Geometric frustration in the cubic spinels MA_2O_4 (M=Co, Fe, and Mn), Phys. Rev. B 72, 174404 (2005).

[5] G. Chen, L. Balents, and A. P. Schnyder, Spin-Orbital Singlet and Quantum Critical Point on the Diamond Lattice: FeSc$_2S_4$; Phys. Rev. Lett. 102, 096406 (2009).

[6] O. Zaharko, N. B. Christensen, A. Cervellino, V. Tsurkan, A. Maljuk, U. Stuhr, C. Niedermayer, L. Ge, J. Flynn, J. A. M. Paddison, M. B. Stone, A. Podlesnyak, and M. A. McGuire, Kinetically inhibited yttrium tantalate powders, J. Alloys Compd. 599, 728 (2017).

[7] L. Ge, J. Flynn, J. A. M. Paddison, M. B. Stone, S. Calder, M. A. Subramanian, A. P. Ramirez, and M. Mourigal, Spin order and dynamics in the diamond-lattice Heisenberg antiferromagnets CuRh$_2$O$_4$ and CoRh$_2$O$_4$; Phys. Rev. B 96, 064413 (2017).

[8] G. J. MacDougall, D. Gout, J. L. Zaresky, G. Ehlers, A. Podlesnyak, and M. A. McGuire, Kinetically inhibited order in a diamond-lattice antiferromagnet, Proc. Natl. Acad. Sci. U. S. A. 108, 15693 (2011).

[9] D. Bergman, J. Alicea, E. Gull, S. Trebst, and L. Balents, Order-by-disorder and spiral spin-liquid in frustrated diamond-lattice antiferromagnets, Nat. Phys. 3, 487 (2007).

[10] S. Gao, O. Zaharko, V. Tsurkan, Y. Su, J. S. White, G. S. Tucker, B. Roessli, F. Bourdarot, R. Sibille, D. Chernyshov, T. Fennell, A. Loidl, and C. Rüegg, Spin liquid in a single crystal of the frustrated diamond-lattice antiferromagnet CoAl$_2$O$_4$; Phys. Rev. B 84, 094403 (2011).

[11] C. Wang, A. Nahum, and T. Senthil, Topological paramagnetism in frustrated spin-1 Mott insulators, Phys. Rev. B 91, 195135 (2015).

[12] G. Chen, Quantum paramagnet and frustrated quantum criticality in a spin-one diamond lattice antiferromagnet, Phys. Rev. B 96, 020412(R) (2017).

[13] J. R. Chamorro, L. Ge, J. Flynn, M. A. Subramanian, M. Mourigal, and T. M. McQueen, Frustrated spin one on a diamond lattice in NiRh$_2$O$_4$; Phys. Rev. Mater. 2, 034404 (2018).

[14] A. Hristea, E. J. Popovici, L. Muresan, M. Stefan, R. Grecu, A. Johansson, and M. Boman, Morpho-
structural and luminescent investigations of niobium activated yttrium tantalate powders, J. Alloys Compd. 471, 524 (2009).

[15] O. Voloshyna, S. V. Neicheva, N. G. Starzhinskii, I. M. Zenya, S. S. Gridin, V. N. Baumer, and O. T. Sidletskyi, Luminescent and scintillation properties of orthotantalates with common formulae RETaO$_4$ (RE = Y, Sc, La, Lu and Gd); Mater. Sci. Eng. B 178, 1491 (2013).

[16] R. Haugsrud and T. Norby, Proton conduction in rare-earth ortho-niobates and ortho-tantalates, Nat. Mater. 5, 193 (2006).

[17] C. Li, R. D. Bayliss, and S. J. Skinner, Crystal structure and potential interstitial oxide ion conductivity of LnNbO$_4$ and LnNb$_{0.93}$W$_{0.07}$O$_4$ (Ln = La, Pr, Nd), Solid State Ionics 262, 530 (2014).

[18] D. W. Kim, D. K. Kwon, S. H. Yoon, and K. S. Hong, Microwave dielectric properties of rare-earth ortho-niobates with ferroelasticity, J. Am. Ceram. Soc. 89, 3861 (2006).

[19] J. Wang, X. Y. Chong, R. Zhou, and J. Feng, Microstructure and thermal properties of RETaO$_4$ (RE = Nd, Eu, Gd, Dy, Er, Yb, Lu) as promising thermal barrier coating materials, Scr. Mater. 126, 24 (2017).

[20] A. I. Komkov, The Structure of Natural Fergusonite, and of a Polymeric Modification, Kristallografiya 4, 836 (1959).

[21] C. Keller, Über ternäre Oxide des Niobs und Tantals vom Typ ABO$_4$, Zeitschrift für Anorg. und Allg. Chemie 318, 89 (1962).

[22] H. P. Rooksby and E. A. D. White, The structures of 1:1 compounds of rare earth oxides with niobia and tantalite, Acta Crystallogr. 16, 888 (1963).

[23] G. M. Wolten, The structure of the M'-phase of YTaO$_4$, a third Fergusonite polymorph, Acta Crystallogr. 23, 939 (1967).

[24] L. H. Brixner and H. Y. Chen, On the Structural and Luminescent Properties of the M' LaTaO$_4$ Rare Earth Tantalates, J. Electrochem. Soc. 130, 2435 (1983).

[25] S. A. Mather and P. K. Davies, Nonequilibrium Phase Formation in Oxides Prepared at Low Temperature: Fergusonite-Related Phases, J. Am. Ceram. Soc. 78, 2737 (1995).

[26] M. A. Ryumin, E. G. Sazonov, V. N. Gusakov, P. G. Gagarin, A. V. Khoroshilov, A. V. Gusakov, K. S. Gavriich, L. K. Baldaev, I. V. Mazilin, and L. N. Golushina, Thermodynamic properties of GdTaO$_4$; Inorg. Mater. 53, 728 (2017).

[27] M. Saura-Múzquiz, B. G. Mullens, H. E. Maynard-Casey, and B. J. Kennedy, Neutron diffraction study of the monoclinic-tetragonal phase transition in NdNbO$_4$ and NdTaO$_4$; Dalt. Trans. 50, 11485 (2021).

[28] V. S. Stubičan, High-Temperature Transitions in Rare-Earth Niobates and Tantalates, J. Am. Ceram. Soc. 45, 55 (1964).

[29] I. Hartenbach, F. Lissner, T. Nikelski, S. F. Meier, H. Müller-Bunz, and T. Schleid, Über oxotantalate der lanthanide des formeltyps MTh$_4$ (M = La - Nd, Sm - Lu), Zeitschrift für Anorg. und Allg. Chemie 631, 2377.
[64] E. C. Koskelo, C. Liu, P. Mukherjee, N. D. Kelly, and S. E. Dutton, Free-spin dominated magnetocaloric effect in dense Gd$^{3+}$ double perovskites, Chem. Mater. accepted (2022).

[65] K. A. Modic, T. E. Smidt, I. Kimchi, N. P. Breznay, A. Biffin, S. Choi, R. D. Johnson, R. Coldea, P. Watkins-Curry, G. T. McCandless, J. Y. Chan, F. Gandara, Z. Islam, A. Vishwanath, A. Shekhter, R. D. McDonald, and J. G. Analytis, Realization of a three-dimensional spin-anisotropic harmonic honeycomb iridate, Nat. Commun. 5, 4203 (2014).

[66] I. Kimchi, J. G. Analytis, and A. Vishwanath, Three-dimensional quantum spin liquids in models of harmonic-honeycomb iridates and phase diagram in an infinite-D approximation, Phys. Rev. B 90, 205126 (2014).

[67] G. Sala, M. B. Stone, B. K. Rai, A. F. May, D. S. Parker, G. B. Halász, Y. Q. Cheng, G. Ehlers, V. O. Garlea, Q. Zhang, M. D. Lumsden, and A. D. Christianson, Crystal field splitting, local anisotropy, and low-energy excitations in the quantum magnet YbCl$_3$, Phys. Rev. B 100, 180406(R) (2019).

[68] H. Cho, R. Nirmala, J. Jeong, P. J. Baker, H. Takeda, N. Mera, S. J. Blundell, M. Takigawa, D. T. Adroja, and J.-G. Park, Dynamic spin fluctuations in the frustrated A-site spinel CuAl$_2$O$_4$, Phys. Rev. B 102, 014439 (2020).

[69] V. Fritsch, J. Hemberger, N. Büttgen, E. W. Scheidt, H. A. Krug Von Nidda, A. Loidl, and V. Tsurkan, Spin and Orbital Frustration in MnSc$_2$S$_4$ and FeSc$_2$S$_4$, Phys. Rev. Lett. 92, 116401 (2004).

[70] V. K. Trunov and L. N. Kinzhibalov, Change of LnNbO$_4$ structures in lanthanoid series, Dokl. Akad. Nauk SSSR 263, 348 (1982).

[71] P. Mukherjee, E. Suard, and S. E. Dutton, Magnetic properties of monoclinic lanthanide metaborates, Ln(BO$_2$)$_3$, Ln = Pr, Nd, Gd, Tb, J. Phys. Condens. Matter 29, 405807 (2017).

[72] G. W. Howieson, S. Wu, A. S. Gibbs, W. Zhou, J. F. Scott, and F. D. Morrison, Incommensurate–Commensurate Transition in the Geometric Ferroelectric LaTaO$_4$, Adv. Funct. Mater. 30, 2004667 (2020).

[73] G. W. Howieson, K. K. Mishra, A. S. Gibbs, R. S. Katiyar, J. F. Scott, F. D. Morrison, and M. Carpenter, Structural phase transitions in the geometric ferroelectric LaTaO$_4$, Phys. Rev. B 103, 014119 (2021).

[74] A. Dias, K. P. F. Siqueira, and R. L. Moreira, Micro far-infrared dielectric response of lanthanide orthotantalates for applications in microwave circuitry, J. Alloys Compd. 693, 1243 (2017).