Induced nilpotent orbits and birational geometry

Yoshinori Namikawa

To the memory of Professor Masayoshi Nagata

Introduction

Let G be a complex simple algebraic group and let \mathfrak{g} be its Lie algebra. A nilpotent orbit \mathcal{O} in \mathfrak{g} is an orbit of a nilpotent element of \mathfrak{g} by the adjoint action of G on \mathfrak{g}. Then \mathcal{O} admits a natural symplectic 2-form ω and the nilpotent orbit closure $\overline{\mathcal{O}}$ has symplectic singularities in the sense of [Be] and [Na3] (cf. [Pa], [Hi]). In [Ri], Richardson introduced the notion of so-called the Richardson orbit. A nilpotent orbit \mathcal{O} is called Richardson if there is a parabolic subgroup Q of G such that $\mathcal{O} \cap n(q)$ is an open dense subset of $n(q)$, where $n(q)$ is the nil-radical of q. Later, Lusztig and Spaltenstein [L-S] generalized this notion to the induced orbit. A nilpotent orbit \mathcal{O} is an induced orbit if there are a parabolic subgroup Q of G and a nilpotent orbit \mathcal{O}' in the Levi subalgebra $\mathfrak{l}(q)$ of $q := \text{Lie}(Q)$ such that \mathcal{O} meets $n(q) + \mathcal{O}'$ in an open dense subset. If \mathcal{O} is an induced orbit, one has a natural map (cf. (1.2))

$$\nu : G \times Q (n(q) + \overline{\mathcal{O}'}) \to \overline{\mathcal{O}}.$$

The map ν is a generically finite, projective, surjective map. This map is called the generalized Springer map. In this paper, we shall study the induced orbits from the viewpoint of birational geometry. For a Richardson orbit \mathcal{O}, the Springer map ν is a map from the cotangent bundle $T^*(G/Q)$ of the flag variety G/Q to $\overline{\mathcal{O}}$. In [Fu], Fu proved that, if $\overline{\mathcal{O}}$ has a crepant (projective) resolution, it is a Springer map. Note that Q is not unique (even up to the conjugate) for a Richardson orbit \mathcal{O}. This means that $\overline{\mathcal{O}}$ has many different crepant resolutions. In [Na], the author has given a description of all crepant resolutions of $\overline{\mathcal{O}}$ and proved that any two different crepant resolutions are connected by Mukai flops. The purpose of this paper is to generalize
these to all nilpotent orbits O. If O is not Richardson, \bar{O} has no crepant resolution. The substitute of a crepant resolution, is a \mathbb{Q}-factorial terminalization. Let X be a complex algebraic variety with rational Gorenstein singularities. A partial resolution $f : Y \to X$ of X is said to be a \mathbb{Q}-factorial terminalization of X if Y has only \mathbb{Q}-factorial terminal singularities and f is a birational projective morphism such that $K_Y = f^*K_X$. A \mathbb{Q}-factorial terminalization is a crepant resolution exactly when Y is smooth. Recently, Birkar-Cascini-Hacon-McKernan [B-C-H-M] have established the existence of minimal models of complex algebraic varieties of general type. As a corollary of this, we know that X always has a \mathbb{Q}-factorial terminalization. In particular, \bar{O} should have a \mathbb{Q}-factorial terminalization. The author would like to pose the following conjecture.

Conjecture. Let O be a nilpotent orbit of a complex simple Lie algebra \mathfrak{g}. Let \tilde{O} be the normalization of \bar{O}. Then one of the following holds:

1. \tilde{O} has \mathbb{Q}-factorial terminal singularities.
2. There are a parabolic subalgebra \mathfrak{q} of \mathfrak{g} with Levi decomposition $\mathfrak{q} = \mathfrak{l} \oplus \mathfrak{n}$ and a nilpotent orbit O' of \mathfrak{l} such that (a): $O = \text{Ind}_{\mathfrak{l}}^{\mathfrak{g}}(O')$ and (b): the normalization of $G \times ^Q (\mathfrak{n}(\mathfrak{q}) + O')$ is a \mathbb{Q}-factorial terminalization of \tilde{O} via the generalized Springer map.

Moreover, if \tilde{O} does not have \mathbb{Q}-factorial terminal singularities, then every \mathbb{Q}-factorial terminalization of \tilde{O} is of the form (2). Two \mathbb{Q}-factorial terminalizations are connected by Mukai flops (cf. [Na], p.91).

In this paper, we shall prove that Conjecture is true when \mathfrak{g} is classical.

Acknowledgement: The author received from B. Fu, in 2006, a handwritten manuscript on explicit calculations of the \mathbb{Q}-factorial terminalization for certain nilpotent orbit. The author would like to thank him.

Notations and convention. Let X be a normal algebraic variety. Then, X is called \mathbb{Q}-factorial if, for any Weil divisor D on X, its suitable multiple mD ($m > 0$) is a Cartier divisor. Assume that the canonical divisor K_X is Cartier. We say that X has only terminal singularities if, for a resolution $\pi : Y \to X$, $K_Y = \pi^*K_X + \Sigma a_i E_i$ with $a_i > 0$ for all i. Here E_i run through all π-exceptional prime divisors. For details in birational geometry, see the first part of [Ka] (or one can find a quick guide in [Na 4], Preliminaries). On the other hand, for details on the basic properties on nilpotent orbits, see [C-M] and [K-P].
§1. Preliminaries

(1.1) Nilpotent orbits and resolutions: Let G be a complex simple algebraic group and let \mathfrak{g} be its Lie algebra. G has the adjoint action on \mathfrak{g}. The orbit \mathcal{O}_x of a nilpotent element $x \in \mathfrak{g}$ for this action is called a nilpotent orbit. By the Jacobson-Morozov theorem, one can find a semi-simple element $h \in \mathfrak{g}$, and a nilpotent element $y \in \mathfrak{g}$ in such a way that $[h, x] = 2x$, $[h, y] = -2y$ and $[x, y] = h$. For $i \in \mathbb{Z}$, let

$$\mathfrak{g}_i := \{ z \in \mathfrak{g} \mid [h, z] = iz \}.$$

Then one can write

$$\mathfrak{g} = \bigoplus_{i \in \mathbb{Z}} \mathfrak{g}_i.$$

Let \mathfrak{h} be a Cartan subalgebra of \mathfrak{g} with $h \in \mathfrak{h}$. Let Φ be the corresponding root system and let Δ be a base of simple roots such that h is Δ-dominant, i.e. $\alpha(h) \geq 0$ for all $\alpha \in \Delta$. In this situation,

$$\alpha(h) \in \{0, 1, 2\}.$$

The weighted Dynkin diagram of \mathcal{O}_x is the Dynkin diagram of \mathfrak{g} where each vertex α is labeled with $\alpha(h)$. A nilpotent orbit \mathcal{O}_x is completely determined by its weighted Dynkin diagram. A Jacobson-Morozov parabolic subalgebra for x is the parabolic subalgebra p defined by

$$p := \bigoplus_{i \geq 0} \mathfrak{g}_i.$$

Let P be the parabolic subgroup of G determined by p. We put

$$n_2 := \bigoplus_{i \geq 2} \mathfrak{g}_i.$$

Then n_2 is an ideal of p; hence, P has the adjoint action on n_2. Let us consider the vector bundle $G \times^P n_2$ over G/P and the map

$$\mu : G \times^P n_2 \to \mathfrak{g}$$

defined by $\mu([g, z]) := Ad_g(z)$. Then the image of μ coincides with the closure $\bar{\mathcal{O}_x}$ of \mathcal{O}_x and μ gives a resolution of $\bar{\mathcal{O}_x}$ (cf. [K-P], Proposition 7.4). We call μ the Jacobson-Morozov resolution of $\bar{\mathcal{O}_x}$. The orbit \mathcal{O}_x has a natural closed non-degenerate 2-form ω (cf. [C-G], Prop. 1.1.5., [C-M], 1.3). By μ, ω is regarded as a 2-form on a Zariski open subset of $G \times^P n_2$. By [Pa], [Hi], it
extends to a 2-form on $G \times P \mathfrak{n}_2$. In other words, \tilde{O}_x has symplectic singularity. Let \tilde{O}_x be the normalization of O_x. In many cases, one can check the \mathbb{Q}-factoriality of \tilde{O}_x by applying the following lemma to the Jacobson-Morozov resolution:

Lemma (1.1.1). Let $\pi : Y \to X$ be a projective resolution of an affine variety X with rational singularities. Let ρ be the relative Picard number for π. If $\text{Exc}(\pi)$ contains ρ different prime divisors, then X is \mathbb{Q}-factorial.

Proof. Recall that two line bundles L, L' on Y are called π-numerically equivalent if $(L.C) = (L'.C)$ for every proper curve C on Y such that $\pi(C)$ is a point. Let $N^1(\pi)$ be the group of π-numerical classes of line bundles on Y, and put $N^1(\pi)_\mathbb{Q} := N^1(\pi) \otimes \mathbb{Q}$. By definition, the Picard number ρ is the dimension of the \mathbb{Q}-vector space $N^1(\pi)_\mathbb{Q}$. Let E_i, $(1 \leq i \leq \rho)$ be the prime divisors contained in $\text{Exc}(\pi)$. We shall prove that $N^1(\pi)_\mathbb{Q} = \oplus \mathbb{Q}[E_i]$. It suffices to show that $[E_i]$’s are linearly independent. Put $d := \dim Y$. Assume $\Sigma a_i[E_i] = 0$. Put m to be the largest number among $\{\dim \pi(E_i)\}$. We take m very ample divisors H_1, \ldots, H_m on X in such a way that $\cap H_j$ intersects with $\pi(E_i)$, in finite points, for each i with $\dim \pi(E_i) = m$, but $\cap H_j$ does not intersect with $\pi(E_i)$ for each i with $\dim \pi(E_i) < m$. By the Bertini theorem, we may assume that $\cap \pi^*(H_j)$ is non-singular. We cut out $\cap \pi^*(H_j)$ further by $d - m - 2$ very ample divisors L_1, \ldots, L_{d-m-2} on Y. Then the resulting variety is a smooth surface S. The restriction of π to S gives a birational contraction map $\pi|_S : S \to \tilde{S}$. For i with $\dim \pi(E_i) = m$, we put $C_i := \pi^*(H_1) \cap \ldots \cap \pi^*(H_m) \cap L_1 \cap \ldots \cap L_{d-m-2} \cap E_i$. Then C_i is a (possibly reducible) curve contained in $\text{Exc}(\pi|_S)$. Moreover, two different such C_i’s do not have no common irreducible components. By a theorem of Grauert, the intersection matrix of $\pi|_S$-exceptional curves, is negative definite, which implies that $[C_i]$ are linearly independent in $N^1(\pi|_S)_\mathbb{Q}$. Let us consider the restriction map

$$\iota : N^1(\pi)_\mathbb{Q} \to N^1(\pi|_S)_\mathbb{Q}.$$

Note that $\iota([E_i]) = 0$ for i with $\dim \pi(E_i) < m$, and $\iota([E_i]) = [C_i]$ for i with $\dim \pi(E_i) = m$. Since $\Sigma a_i[E_i] = 0$ in $N^1(\pi)_\mathbb{Q}$, we have $\Sigma a_i[C_i] = 0$ in $N^1(\pi|_S)_\mathbb{Q}$. This implies that $a_i = 0$ for all i with $\dim \pi(E_i) = m$. Next, replace m by the second largest number among $\{\dim \pi(E_i)\}$ and repeat the same procedure; then we finally conclude that $a_i = 0$ for all i. Now let us prove that X is \mathbb{Q}-factorial. Let D be a prime Weil divisor of X and let D' be the prime divisor of Y obtained as the proper transform of D. There are rational numbers b_i such that $[D'] + \Sigma b_i[E_i] = 0$ in $N^1(\pi)_\mathbb{Q}$. Since X has only
rational singularities, \(l(D' + \Sigma b_i[E_i]) \) is the pull-back of a Cartier divisor \(M \) on \(X \) for some integer \(l > 0 \). This implies that \(lD \) is linearly equivalent to the Cartier divisor \(M \).

(1.2) Induced orbits

(1.2.1). Let \(G \) and \(g \) be the same as in (1.1). Let \(Q \) be a parabolic subgroup of \(G \) and let \(q \) be its Lie algebra with Levi decomposition \(q = l \oplus n \). Here \(n \) is the nil-radical of \(q \) and \(l \) is a Levi-part of \(q \). Fix a nilpotent orbit \(\mathcal{O}' \) in \(l \). Then there is a unique nilpotent orbit \(\mathcal{O} \) in \(g \) meeting \(n + \mathcal{O}' \) in an open dense subset ([L-S]). Such an orbit \(\mathcal{O} \) is called the nilpotent orbit induced from \(\mathcal{O}' \) and we write

\[
\mathcal{O} = \text{Ind}_l^g(\mathcal{O}').
\]

Note that when \(\mathcal{O}' = 0 \), \(\mathcal{O} \) is the Richardson orbit for \(Q \). Since the adjoint action of \(Q \) on \(q \) stabilizes \(n + \mathcal{O}' \), one can consider the variety \(G \times^Q (n + \mathcal{O}') \). There is a map

\[
\nu : G \times^Q (n + \mathcal{O}') \to \bar{\mathcal{O}}
\]

defined by \(\nu([g, z]) := \text{Ad}_g(z) \). Since \(\text{Codim}_q(\mathcal{O}') = \text{Codim}_q(\mathcal{O}) \) (cf. [C-M], Prop. 7.1.4), \(\nu \) is a generically finite dominating map. Moreover, \(\nu \) is factorized as

\[
G \times^Q (n + \mathcal{O}') \to G/Q \times \bar{\mathcal{O}} \to \bar{\mathcal{O}}
\]

where the first map is a closed embedding and the second map is the 2-nd projection; this implies that \(\nu \) is a projective map. In the remainder, we call \(\nu \) the generalized Springer map for \((Q, \mathcal{O}') \).

(1.2.2). Assume that \(Q \) is contained in another parabolic subgroup \(\bar{Q} \) of \(G \). Let \(\bar{L} \) be the Levi part of \(\bar{Q} \) which contains the Levi part \(L \) of \(Q \). Let \(\bar{q} = \bar{l} \oplus \bar{n} \) be the Levi decomposition. Note that \(\bar{L} \cap Q \) is a parabolic subgroup of \(\bar{L} \) and \(l(\bar{L} \cap Q) = l \). Let \(\mathcal{O} \subset \bar{l} \) be the nilpotent orbit induced from \((\bar{L} \cap Q, \mathcal{O}') \). Then there is a natural map

\[
\pi : G \times^Q (n + \mathcal{O}') \to G \times^\bar{Q} (\bar{n} + \bar{\mathcal{O}}_1)
\]

which factorizes \(\nu \) as \(\bar{\nu} \circ \pi = \nu \). Here \(\bar{\nu} \) is the generalized Springer map for \((\bar{Q}, \mathcal{O}_1) \).

(1.2.3). Assume that there are a parabolic subgroup \(Q_L \) of \(L \) and a nilpotent orbit \(\mathcal{O}_2 \) in the Levi subalgebra \(l(Q_L) \) such that \(\mathcal{O}' \) is the nilpotent orbit induced from \((Q_L, \mathcal{O}_2) \). Then there is a parabolic subgroup \(\bar{Q}' \) of \(G \)
such that $Q' \subset Q$, $I(Q') = I(Q_L)$ and O is the nilpotent orbit induced from (Q', O_2). The generalized Springer map ν' for (Q', O_2) is factorized as

$$G \times Q' (n' + \bar{O}_2) \to G \times Q (n + \bar{O}') \to \bar{O}.$$

Lemma (1.2.4). Let

$$\nu : G \times Q (n + \bar{O}') \to \bar{O}$$

be a generalized Springer map defined in (1.2.1). Then the normalization of $G \times Q (n + \bar{O}')$ is a symplectic variety.

Proof. We shall prove that the pull-back of the Kostant-Kirillov form ω on O gives a non-degenerate 2-form on $G \times Q (n + \bar{O}')$. This is enough for proving (1.2.4). In fact, $G \times Q (n + \bar{O}')$ is locally a product of \bar{O}' and a non-singular variety; hence the normalization of $G \times Q (n + \bar{O}')$ has only rational Gorenstein singularities. The Kostant-Kirillov form extends to a regular 2-form on any resolution of $G \times Q (n + \bar{O}')$ as explained in (1.1).

Therefore, the normalization of $G \times Q (n + \bar{O}')$ is a symplectic variety. The following argument is analogous to [Pa]. Let \mathfrak{h} be a Cartan subalgebra of \mathfrak{g} such that $\mathfrak{h} \subset I$. There is an involution $\phi_\mathfrak{g}$ of \mathfrak{g} which stabilizes \mathfrak{h} and which acts on the root system Φ via -1. Put $n_- := \phi_\mathfrak{g}(n)$. Take a point $[1, y + y'] \in G \times Q (n + \bar{O}')$ so that $y \in n$, $y' \in \bar{O}'$ and $y + y' \in O$. The tangent space of $G \times Q (n + \bar{O}')$ at $[1, y + y']$ is decomposed as

$$T_{[1, y + y']} = n_- \oplus T_{y + y'}(n + \bar{O}').$$

Since $Q \cdot (y + y')$ coincides with the Zariski open dense subset $O \cap (n + \bar{O}') \subset n + \bar{O}'$, an element $v \in T_{[1, y + y']}$ can be written as

$$v = v_1 + [v_2, y + y'], \quad v_1 \in n_-, \quad v_2 \in q.$$

Let $d\nu_* : T_{[1, y + y']} \to T_{\nu([1, y + y'])} O$ be the tangential map for ν. Then

$$d\nu_*(v) = [v_1 + v_2, y + y'].$$

Take one more element $w \in T_{[1, y + y']}$ in such a way that

$$w = w_1 + [w_2, y + y'], \quad w_1 \in n_-, \quad w_2 \in q.$$

Denote by \langle , \rangle the Killing form of \mathfrak{g}. By the definition of the Kostant-Kirillov form, one has

$$\omega(\nu_*(v), \nu_*(w)) := \langle y + y', [v_1 + v_2, w_1 + w_2] \rangle.$$
Note that \(\langle y + y', [v_1, w_1] \rangle = \langle y, [v_1, w_1] \rangle \), and \(\langle y + y', [v_2, w_2] \rangle = \langle y', [v_2, w_2] \rangle \). Therefore,

\[
\omega(d\nu(v), d\nu(w)) = \\
\langle y, [v_1, w_1] \rangle + \langle y + y', [v_1, w_2] \rangle + \langle y + y', [v_2, w_1] \rangle + \langle y', [v_2, w_2] \rangle = \\
\langle y, [v_1, w_1] \rangle + \langle v_1, [w_2, y + y']_n \rangle - \langle [v_2, y + y']_n, w_1 \rangle + \omega([v_2, y'], [w_2, y']),
\]

where \([w_2, y + y']_n \) (resp. \([v_2, y + y']_n \)) is the nil-radical part of \([w_2, y + y'] \) (resp. \([v_2, y + y'] \)) in the decomposition \(T_{y + y'}(n + O') = n + T_y O' \). Let \(O_r \subset g \) be the Richardson orbit for \(Q \), and let \(\pi : T^*(G/Q) \to \bar{O}_r \) be the Springer map. The first part \(\langle y, [v_1, w_1] \rangle + \langle v_1, [w_2, y + y']_n \rangle - \langle [v_2, y + y']_n, w_1 \rangle \) corresponds to the 2-form on \(T^*(G/Q) \) obtained by the pull-back of the Kostant-Kirillov 2-form on \(O_r \) by \(\pi \) (cf. [Pa]), which is non-degenerate on \(T^*(G/Q) \). Let us consider the second part \(\omega([v_2, y'], [w_2, y']) \). Denote by \([v_2, y + y']_l \) (resp. \([w_2, y + y']_l \)) the \(T_y O' \)-part of \([v_2, y + y'] \) (resp. \([w_2, y + y'] \)) in the decomposition \(T_{y + y'}(n + O') = n + T_y O' \). Then \([v_2, y'] = [v_2, y + y']_l \); and \([w_2, y'] = [w_2, y + y']_l \); hence, the second part is the Kostant-Kirillov form on \(O' \). The arguments above show that \(\nu^* \omega \) is non-degenerate at \([1, y + y'] \) for an arbitrary \(y \in n \) and for an arbitrary \(y' \in O' \). By the \(G \)-equivariance of \(\nu \), we have the lemma.

(1.3) Nilpotent orbits in classical Lie algebras: When \(g \) is a classical Lie algebra, \(g \) is naturally a Lie subalgebra of \(\text{End}(V) \) for a complex vector space \(V \). Then we can attach a partition \(d \) of \(n := \dim V \) to each orbit as the Jordan type of an element contained in the orbit. Here a partition \(d := [d_1, d_2, ..., d_k] \) of \(n \) is a set of positive integers with \(\Sigma d_i = n \) and \(d_1 \geq d_2 \geq ... \geq d_k \). Another way of writing \(d \) is \([d_1^{s_1}, ..., d_k^{s_k}] \) with \(d_1 > d_2 > ... > d_k > 0 \). Here \(d_i^{s_i} \) is an \(s_i \) times \(d_i \): \(d_i, d_i, ..., d_i \). The partition \(d \) corresponds to a Young diagram. For example, \([5, 4^2, 1] \) corresponds to

```
  +---+---+---+---+---+
  |   |   |   |   |   |
  +---+---+---+---+---+
  |   |   |   |   |   |
  +---+---+---+---+---+
  |   |   |   |   |   |
  +---+---+---+---+---+
  |   |   |   |   |   |
  +---+---+---+---+---+
  |   |   |   |   |   |
  +---+---+---+---+---+
  |   |   |   |   |   |
  +---+---+---+---+---+
  |   |   |   |   |   |
  +---+---+---+---+---+
  |   |   |   |   |   |
  +---+---+---+---+---+
```

When an integer \(e \) appears in the partition \(d \), we say that \(e \) is a member of \(d \). We call \(d \) very even when \(d \) consists with only even members, each having even multiplicity.
Let us denote by ϵ the number 1 or -1. Then a partition d is ϵ-admissible if all even (resp. odd) members of d have even multiplicities when $\epsilon = 1$ (resp. $\epsilon = -1$). The following result can be found, for example, in [C-M, §5].

Proposition (1.3.1) Let $\mathcal{N}o(g)$ be the set of nilpotent orbits of g.

1. (A_{n-1}): When $g = sl(n)$, there is a bijection between $\mathcal{N}o(g)$ and the set of partitions d of n.

2. (B_n): When $g = so(2n + 1)$, there is a bijection between $\mathcal{N}o(g)$ and the set of ϵ-admissible partitions d of $2n + 1$ with $\epsilon = 1$.

3. (C_n): When $g = sp(2n)$, there is a bijection between $\mathcal{N}o(g)$ and the set of ϵ-admissible partitions d of $2n$ with $\epsilon = -1$.

4. (D_n): When $g = so(2n)$, there is a surjection f from $\mathcal{N}o(g)$ to the set of ϵ-admissible partitions d of $2n$ with $\epsilon = 1$. For a partition d which is not very even, $f^{-1}(d)$ consists of exactly one orbit, but, for very even d, $f^{-1}(d)$ consists of exactly two different orbits.

Take an ϵ-admissible partition d of a positive integer m. If $\epsilon = 1$, we put $g = so(m)$ and if $\epsilon = -1$, we put $g = sp(m)$. We denote by \mathcal{O}_d a nilpotent orbit in g with Jordan type d. Note that, except when $\epsilon = 1$ and d is very even, \mathcal{O}_d is uniquely determined. When $\epsilon = 1$ and d is very even, there are two possibilities for \mathcal{O}_d. If necessary, we distinguish the two orbits by the labelling: \mathcal{O}_d' and \mathcal{O}_d''. Let us fix a classical Lie algebra g and study the relationship among nilpotent orbits in g. When g is of type B or D (resp. C), we only consider the ϵ-admissible partitions with $\epsilon = 1$ (resp. $\epsilon = -1$). We introduce a partial order in the set of the partitions of (the same number): for two partitions d and f, $d \geq f$ if $\Sigma_{i \leq k}d_i \geq \Sigma_{i \leq k}f_i$ for all $k \geq 1$. On the other hand, for two nilpotent orbits \mathcal{O} and \mathcal{O}' in g, we write $\mathcal{O} \geq \mathcal{O}'$ if $\mathcal{O}' \subset \mathcal{O}$. Then, $\mathcal{O}_d \geq \mathcal{O}_f$ if and only if $d \geq f$. When d and f are ϵ-admissible partitions with $f \geq g$, we call this pair an ϵ-degeneration or simply a degeneration.

Now let us consider the case g is of type B, C or D.

Assume that an ϵ-degeneration $d \geq f$ is minimal in the sense that there is no ϵ-admissible partition d' (except d and f) such that $d \geq d' \geq f$. Kraft and Procesi [K-P] have studied the normal slice $N_{d,f}$ of $\mathcal{O}_f \subset \mathcal{O}_d$ in such cases. If, for two integers r and s, the first r rows and the first s columns of d and f coincide and the partition $(d_1, ..., d_r)$ is ϵ-admissible, then one can erase these rows and columns from d and f respectively to get new partitions d' and f' with $d' \geq f'$. If we put $\epsilon' := (-1)^*\epsilon$, then d' and f' are both
\(\epsilon' \)-admissible. The pair \((d', f')\) is also minimal. Repeating such process, one can reach a degeneration \(d_{irr} \geq f_{irr} \) which is irreducible in the sense that there are no rows and columns to be erased. By [K-P], Theorem 2, \(N_{d,f} \) is analytically isomorphic to \(N_{d_{irr}, f_{irr}} \) around the origin. According to [K-P], a minimal and irreducible degeneration \(d \geq f \) is one of the following:

- **a:** \(g = sp(2), \ d = (2), \) and \(f = (1^2) \).
- **b:** \(g = sp(2n) \) \((n > 1)\), \(d = (2n) \), and \(f = (2n - 2, 2) \).
- **c:** \(g = so(2n + 1) \) \((n > 0)\), \(d = (2n + 1) \), and \(f = (2n - 1, 1^2) \).
- **d:** \(g = sp(4n + 2) \) \((n > 0)\), \(d = (2n + 1, 2n + 1) \), and \(f = (2n, 2n, 2) \).
- **e:** \(g = so(4n) \) \((n > 0)\), \(d = (2n, 2n) \), and \(f = (2n - 1, 2n - 1, 1^2) \).
- **f:** \(g = so(2n + 1) \) \((n > 1)\), \(d = (2^2, 1^{2n-3}) \), and \(f = (1^{2n+1}) \).
- **g:** \(g = sp(2n) \) \((n > 1)\), \(d = (2, 1^{2n-2}) \), and \(f = (1^{2n}) \).
- **h:** \(g = so(2n) \) \((n > 2)\), \(d = (2^2, 1^{2n-4}) \), and \(f = (1^{2n}) \).

In the first 4 cases \((a, b, c, d, e)\), \(\mathcal{O}_f \) have codimension 2 in \(\mathcal{O}_d \). In the last 3 cases \((f, g, h)\), \(\mathcal{O}_f \) have codimension \(\geq 4 \) in \(\mathcal{O}_d \).

Proposition (1.3.2) Let \(\mathcal{O} \) be a nilpotent orbit in a classical Lie algebra \(g \) of type \(B, C \) or \(D \) with Jordan type \(d := [(d_1)^{s_1}, \ldots, (d_k)^{s_k}] \) \((d_1 > d_2 > \ldots > d_k)\). Let \(\Sigma \) be the singular locus of \(\mathcal{O} \). Then \(\text{Codim}_\mathcal{O}(\Sigma) \geq 4 \) if and only if the partition \(d \) has full members, that is, any integer \(j \) with \(1 \leq j \leq d_1 \) is a member of \(d \). Otherwise, \(\text{Codim}_\mathcal{O}(\Sigma) = 2 \).

Proof. Assume that \(\text{Codim}_\mathcal{O}(\Sigma) \geq 4 \). We shall prove that \(d \) has full members. Suppose, to the contrary, that there is some \(i \) with \(d_i \geq d_{i+1} + 2 \). Then one can find a minimal degeneration \(d \geq f \) where \(f \) is one of the following:

\[
[\ldots, d_i^{s_i-1}, (d_{i+1} + 1)^2, d_{i+1}^{s_{i+1}-1}, \ldots], \quad d_i = d_{i+1} + 2
\]

\[
[\ldots, d_i^{s_i-1}, d_i - 2, d_{i+1} + 2, d_{i+1}^{s_{i+1}-1}, \ldots]
\]

\[
[\ldots, d_i^{s_i-1}, d_i - 2, (d_{i+1} + 1)^2, d_{i+1}^{s_{i+1}-2}, \ldots]
\]

\[
[\ldots, d_i^{s_i-2}, (d_i - 1)^2, d_{i+1} + 2, d_{i+1}^{s_{i+1}-1}, \ldots]
\]

\[
[\ldots, d_i^{s_i-2}, (d_i - 1)^2, (d_{i+1} + 1)^2, d_{i+1}^{s_{i+1}-2}, \ldots]
\]

By the row-column erasing one gets an irreducible, minimal degeneration \(d_{irr} \geq f_{irr} \) of type \(a, b, c, d \) or \(e \). This is a contradiction; hence \(d \) has full members. Conversely, assume that \(d \) has full members, i.e. \(d_j = k - j + 1 \).
for all $1 \leq j \leq k$. Then, for every minimal degeneration $d \geq f$, f is one of the following:

$$[..., (k - i + 1)^{s_i-2}, (k - i)^{s_i-1+4}, (k - i - 1)^{s_i-2-2}, ...]$$

$$[..., (k - i + 1)^{s_i-1}, (k - i)^{s_i-1+2}, (k - i - 1)^{s_i-2-1}, ...].$$

By the row-column erasing one gets an irreducible, minimal degeneration $d_{irr} \geq f_{irr}$ of type f, g or h. Therefore, $\text{Codim}_\Delta(\Sigma) \geq 4$.

(1.4) Jacobson-Morozov resolutions in the case of classical Lie algebras (cf. [CM], 5.3): Let V be a complex vector space of dimension m with a non-degenerate symmetric (or skew-symmetric) form $<, >$. In the symmetric case, we take a basis $\{e_i\}_{1 \leq i \leq m}$ of V in such a way that $< e_j, e_k > = 1$ if $j + k = m + 1$ and otherwise $< e_j, e_k > = 0$. In the skew-symmetric case, we take a basis $\{e_i\}_{1 \leq i \leq m}$ of V in such a way that $< e_j, e_k > = 1$ if $j < k$ and $j + k = m + 1$, and $< e_j, e_k > = 0$ if $j + k \neq m + 1$. When $(V, <, >)$ is a symmetric vector space, $\mathfrak{g} := \text{so}(V)$ is the Lie algebra of type $B_{(m-1)/2}$ (resp. $D_{m/2}$) if m is odd (resp. even). When $(V, <, >)$ is a skew-symmetric vector space, $\mathfrak{g} := \text{sp}(V)$ is the Lie algebra of type $C_{m/2}$. In the remainder of this paragraph, \mathfrak{g} is one of these Lie algebras contained in $\text{End}(V)$. Let $\mathfrak{h} \subset \mathfrak{g}$ be the Cartan subalgebra consisting of all diagonal matrices, and let Δ be the standard base of simple roots. Let $x \in \mathfrak{g}$ be a nilpotent element. As in (1.1), one can choose $h, y \in \mathfrak{g}$ in such a way that $\{x, y, h\}$ is a $\text{sl}(2)$-triple.

If necessary, by replacing x by its conjugate element, one may assume that $h \in \mathfrak{h}$ and h is Δ-dominant. Assume that x has Jordan type $d = [d_1, ..., d_k]$. The diagonal matrix h is described as follows. Let us consider the sequence of integers of length m:

$$d_1 - 1, d_1 - 3, ..., -d_1 + 3, -d_1 + 1, d_2 - 1, d_2 - 3, ..., -d_2 + 3, -d_2 + 1, ..., d_k - 1, d_k - 3, ..., -d_k + 3, -d_k + 1.$$

Rearrange this sequence in the non-increasing order and get a new sequence $p_1^{t_1}, ..., p_l^{t_l}$ with $p_1 > p_2 > ... > p_l$ and $\Sigma t_i = m$. Then

$$h = \text{diag}(p_1^{t_1}, ..., p_l^{t_l}).$$

Here $p_i^{t_i}$ means the t_i times of p_i's: $p_i, p_i, ..., p_i$. It is then easy to describe explicitly the Jacobson-Morozov parabolic subalgebra \mathfrak{p} of x and its ideal \mathfrak{n}_2 (cf. (1.1)). The Jacobson-Morozov parabolic subgroup P is the stabilizer group of certain isotropic flag $\{F_i\}_{1 \leq i \leq r}$ of V. Here, an isotropic flag of V
(of length r) is a increasing filtration $0 \subset F_1 \subset F_2 \subset \ldots \subset F_r \subset V$ such that $F_{r+1-i} = F_i^\perp$ for all i. The flag type of P is (t_1, \ldots, t_l). The nilradical $n := \oplus_{i>0} \mathfrak{g}_i$ of \mathfrak{p} consists of the elements z of \mathfrak{g} such that $z(F_i) \subset F_{i-1}$ for all i. On the other hand, it depends on the weighted Dynkin diagram for x how n_2 takes its place in n.

Example (1.4.1). Assume that d has full members (cf. (1.3.2)). Then, it can be checked that

$$n_2 = \{ z \in \mathfrak{g}; z(F_i) \subset F_{i-2} \text{ for all } i \}.$$

Let us consider the Jacobson-Morozov resolution

$$\mu : G \times^P n_2 \to \mathcal{O}_d.$$

Take $z \in \mathcal{O}_d$. One can look at the fiber $\mu^{-1}(z)$ by using the characterization of n_2 above. Assume that $G = Sp(V)$. We prepare two kinds of skew-symmetric vector space $V_d(d: \text{even})$, and $W_{2d}(d: \text{odd})$ as follows. The V_d is a d dimensional vector space with a basis $e_{d-1}, e_{d-3}, \ldots, e_{-d+3}, e_{-d+1}$. The skew-symmetric form $\langle \cdot, \cdot \rangle$ is defined in such a way that $\langle e_i, e_j \rangle = 1$ (resp. $\langle e_i, e_j \rangle = -1$) when $i+j = 0$ and $i > j$ (resp. $i+j = 0$ and $i < j$), and $\langle e_i, e_j \rangle = 0$ when $i+j \neq 0$. Let z_d be the endomorphism of V_d defined by the $d \times d$ matrix J_d with $J_d(i, i+1) = 1$ ($1 \leq i \leq d/2)$, $J_d(i, i+1) = -1$ ($d/2+1 \leq i \leq d-1$) and otherwise $J_d(i,j) = 0$. The W_{2d} is a $2d$ dimensional vector space with a basis $f_{d-1}, f_{d-3}, \ldots, f_{-d+3}, f'_{d-1}, f'_d, f'_d, \ldots, f'_{-d+3}, f'_{-d+1}$. The skew-symmetric form $\langle \cdot, \cdot \rangle$ is defined in such a way that $\langle f_i, f'_j \rangle = 1$ ($\langle f_i, f_j \rangle = -1$) when $i+j = 0$, and otherwise $\langle f_i, f'_j \rangle = 0$, $\langle f'_i, f'_j \rangle = 0$. Let z_{2d} be the endomorphism defined by the matrix J'_{2d} with $J'_{2d}(i, i+1) = 1$ ($1 \leq i \leq d-1$), $J'_{2d}(d, d+1) = 0$, $J'_{2d}(i, i+1) = -1$ ($d+1 \leq i \leq 2d-1$) and otherwise $J'_{2d}(i,j) = 0$. Write d as $[k^{s_k}, (k-1)^{s_{k-1}}, \ldots, 2^{s_2}, 1^{s_1}]$ with $s_i > 0$. Note that when i is odd, s_i is even. In the notation above, $d_1 = \ldots = d_{s_{k-1}} = k_1$, $d_{s_{k-1}} = \ldots = d_{s_{k-1} + s_{k-2}} = k - 1$ and so on. Then, $t_1 = s_k, t_2 = s_{k-1}, t_3 = s_k + s_{k-1}, t_4 = s_{k-1} + s_{k-3}, \ldots$ We may assume that

$$V = \bigoplus_{d: \text{even}} (V_d)^{\oplus s_d} \oplus \bigoplus_{d: \text{odd}} (W_{2d})^{\oplus s_d/2}$$

and $z|_{V_d} = z_d, z|_{W_{2d}} = z_{2d}$. An element of $\mu^{-1}(z)$ is the isotropic flag $\{F_i\}$ of V with flag type (t_1, \ldots, t_l) which satisfies $z(F_i) \subset F_{i-2}$ for all i. One can find such a flag as follows. Put $F_1 := z^{k-1}(V) (= \text{Im}(z^{k-1}))$ and define $F_{2k-2} :=$
We next put $F_2 := z^{k-2}(F_{2k-2})$ and $F_{2k-3} := F_2^\perp$. The subsequent step is similar; we put inductively $F_i := z^{k-i}(F_{2k-i})$ and $F_{2k-i-1} := F_i^\perp$.

When $G = SO(V)$, d can be written as $[k^{s_k}, (k-1)^{s_{k-1}}, \ldots, 2^{s_2}, 1^{s_1}]$ where s_i is even when i is even. We prepare two kinds of symmetric vector spaces V_d (d: odd) and W_{2d} (d: even). Then

$$V = \left(\bigoplus_{d: \text{odd}} (V_d)^{\oplus s_d} \right) \oplus \left(\bigoplus_{d: \text{even}} (W_{2d})^{\oplus s_d/2} \right).$$

The description of the flag corresponding to $\mu^{-1}(z)$ is quite similar.

Lemma (1.4.2) Assume that d has full members. For each minimal ϵ-degeneration $d \geq f$, the fiber $\mu^{-1}(O_f)$ has codimension 1 in $G \times^P n_2$.

Proof. (1): By the proof of (1.3.2), if d has full members, then, for every minimal degeneration $d \geq f$, its reduction $d_{\text{irr}} \geq f_{\text{irr}}$ is of type f, g or h. If it is of type f, the normal slice $N_{d,f}$ of $O_f \subset \tilde{O}_d$ is isomorphic to the germ of $\tilde{O}_{[2,12n-3]}(\subset so(2n + 1))$ ($n > 1$) at 0. Similarly, if it is of type g (resp. h), $N_{d,f}$ is isomorphic to the germ of $\tilde{O}_{[2,12n-3]}(\subset sp(2n))$ ($n > 1$) (resp. $\tilde{O}_{[2,12n-4]}(\subset so(2n))$ ($n > 2$)) at 0. Note that they are all isolated singularities. Except when $d_{\text{irr}} \geq f_{\text{irr}}$ is of type h with $n = 3$, these germs have Q-factorial terminal singularities. Indeed, they are isolated symplectic singularities of dim ≥ 4; hence they have only terminal singularities. The Q-factoriality of them is checked by using the Jacobson-Morozov resolutions of them. The exceptional locus of each Jacobson-Morozov resolution consists of a flag variety with $b_2 = 1$; this implies the Q-factoriality. If $\text{Codim } \mu^{-1}(O_f) \geq 2$, then $N_{d,f}$ is not Q-factorial. Therefore, the lemma follows in these cases.

(2): The only exception is when $d_{\text{irr}} \geq f_{\text{irr}}$ is of type h with $n = 3$. In this case, the germ of $\tilde{O}_{[2,12]}(\subset so(6))$ at 0 has only terminal singularity because it is an isolated symplectic singularity with dim 6. But its Jacobson-Morozov resolution has $\text{Gr}_{\text{iso}}(2,6)$ as its exceptional divisor and $\text{b}_2(\text{Gr}_{\text{iso}}(2,6)) = 2$. By this observation, we know that $\tilde{O}_{[2,12]}$ is not Q-factorial. Let $d = [k^{s_k}, (k-1)^{s_{k-1}}, \ldots, 2^{s_2}, 1^{s_1}]$ be an ϵ-admissible partition of m. Our exceptional case only occurs when $s_j = 2$ for some j with $(-1)^{j+1} = \epsilon$. Then

$$f = \ldots, (j + 1)^{s_{j+1}-2}, j^6, (j - 1)^{s_{j-1}-2}, \ldots].$$

Let

$$\mu : G \times^P n_2 \to \tilde{O}_d$$

be the Jacobson-Morozov resolution. Take $z \in O_f$. We shall prove that the isotropic Grassmann variety $G_{\text{iso}}(2,6)$ is contained in $\mu^{-1}(z)$ by a similar
argument to (1.4.1). We only discuss here the case when $G = Sp(V)$, but the case of $G = SO(V)$ is quite similar. As in (1.4.1), we take two skew-symmetric spaces V_d (d: even) and W_{2d} (d: odd). We may assume that V is isomorphic to

$$
\bigoplus_{d: \text{even}, d \not= j-1, j, j+1} (V_d)^{\oplus s_d} \oplus W_{2j-2}^{\oplus s_{j-1}/2-1} \oplus V_j^{\oplus 6} \oplus W_{2j+2}^{\oplus s_{j+1}/2-1} \oplus \bigoplus_{d: \text{odd}, d \not= j-1, j, j+1} (W_{2d})^{\oplus s_d}/2
$$

and $z|_{V_d} = z_d$, $z|_{W_{2d}} = z_{2d}$. We must find isotropic flags $\{F_i\}$ of V with flag type (t_1, \ldots, t_l) which satisfies $z(F_i) \subset F_{i-2}$ for all i. Here (t_1, \ldots, t_l) is the same one as in (1.4.1). As in (1.4.1), we define F_i with $i \leq k - j - 1$ by $F_i := z^{k-i}(F_{2k-i})$ and $F_{2k-i-1} := F_i^\perp$. But, the situation is different from (1.4.1) when $i = k - j$. We cannot put $F_{k-j} := z^j(F_{k+j})$. In fact, dim $z^j(F_{k+j})$ is exactly 2 less than the dimension F_{k-j} should have because the exponent $s_{j+1} - 2$ of $j + 1$ in f is exactly 2 less than that of $j + 1$ in d. Let us consider the direct summand $V_j^{\oplus 6}$ of V. The kernel of the endomorphism $z_j : V_j \to V_j$ has dimension 1 and is spanned by e_{j-1}. Take 6 copies $e_{j-1}^{(1)}, \ldots, e_{j-1}^{(6)}$ of e_{j-1}. Then, $\text{Ker}(z_j^{\oplus 6})$ is a 6 dimensional vector space spanned by $e_{j-1}^{(1)}, \ldots, e_{j-1}^{(6)}$. We want to choose two dimensional subspace $L \subset \text{Ker}(z_j^{\oplus 6})$ and want to define F_{k-j} as $z^j(F_{k+j}) + L$. Since F_{k-j} should be contained in $z^{j-1}(F_{k-j})^{\perp}$, we must choose L in such a way that

$$
z^j(F_{k+j}) + L \subset z^{j-1}(z^j(F_{k+j}) + L)^\perp.
$$

Let $v = \Sigma a_i e_{j-1}^{(i)}$ and $w = \Sigma b_i e_{j-1}^{(i)}$ be a basis of L. Then the condition above is equivalent to

$$
\Sigma a_i^2 = \Sigma b_i^2 = \Sigma a_i b_i = 0.
$$

This means that $[L] \in Gr_{iso}(2, 6)$. For such an L, we put $F_{k-j} := z^j(F_{k+j}) + L$. Once F_{k-j} is fixed, we define, for $i \geq k - j + 1$, $F_i := z^{k-i}(F_{2k-i})$ and $F_{2k-i-1} := F_i^\perp$. One can check that $\{F_i\}$ is a desired flag. Therefore, $Gr_{iso}(2, 6) \subset \mu^{-1}(z)$. Since dim $Gr_{iso}(2, 6) = 5$ and dim $N_{d,f} = 6$, this implies that $\mu^{-1}(O_f)$ has codimension 1 in $G \times \mathbb{P} n_2$.

Corollary (1.4.3) Assume that d is an ϵ-admissible partition and it has full members. Let \bar{O}_d be the normalization of O_d. Then, \bar{O}_d has only Q-factorial terminal singularities except when $g = so(4n + 2)$, $n \geq 1$ and $d = [2^{2n}, 1^2]$.

Proof. Let k be the maximal member of d. Then there are $k - 1$ minimal degenerations $d \geq f$. By Lemma (1.4.2), $\text{Exc}(\mu)$ contains at least $k - 1$
irreducible divisors. When \(\epsilon = 1 \) (i.e. \(g = so(V) \)) and there is a minimal degeneration \(d \geq f \) with \(f \) very even, there are two nilpotent orbits with Jordan type \(f \). Thus, in this case, \(\text{Exc}(\mu) \) contains at least \(k \) irreducible divisors. On the other hand, for the Jacobson-Morozov parabolic subgroup \(P \), \(b_2(G/P) = k - 1 \) when \(g = sp(V) \), or \(g = so(V) \) with \(\dim V \) odd. When \(g = so(V) \) and \(\dim V \) is even, we must be careful; if the flag type of \(P \) is of the form \((p_1, ..., p_{k-1}; 2; p_{k-1}, ..., p_1) \), \(b_2(G/P) = k \). This happens when \(\dim V = 4n + 2 \) and \(d = [2^2n, 1^2] \) or when \(\dim V = 8m + 4n + 4 \) and \(d = [4^{2m}, 3, 2^{2n}, 1] \). In the latter case, \(d \) has a minimal degeneration \(d \geq f \) with \(f = [4^{2m}, 2^{2n} + 2] \), which is very even. Note that \(b_2(G/P) \) coincides with the relative Picard number \(\rho \) of the Jacobson-Morozov resolution. By these observations, we know that \(\mu \) has at least \(\rho \) exceptional divisors except when \(g = so(4n + 2), n \geq 1 \) and \(d = [2^{2n}, 1^2] \). Therefore, \(\mathcal{O}_d \) are \(\mathbb{Q} \)-factorial in these cases. By (1.3.2) they have terminal singularities. When \(g = so(4n + 2), n \geq 1 \) and \(d = [2^{2n}, 1^2] \), \(\mathcal{O}_d \) is a Richardson orbit and the Springer map gives a small resolution of \(\bar{O}_d \). Therefore, \(\bar{O}_d \) has non-\(\mathbb{Q} \)-factorial terminal singularities.

(1.5) Induced orbits in classical Lie algebras: Let \(d = [d_1^{s_1}, ..., d_k^{s_k}] \) be an \(\epsilon \)-admissible partition of \(m \). According as \(\epsilon = 1 \) or \(\epsilon = -1 \), we put \(G = SO(m) \) or \(G = Sp(m) \) respectively. Assume that \(d \) does not have full members. In other words, for some \(p \), \(d_p \geq d_{p+1} + 2 \) or \(d_k \geq 2 \). We put \(r = \sum_{1 \leq j \leq p} s_j \). Then \(\mathcal{O}_d \) is an induced orbit (cf. [C-M], 7.3). More explicitly, there are a parabolic subgroup \(Q \) of \(G \) with (isotropic) flag type \((r, m - 2r, r) \) with Levi decomposition \(q = l \oplus n \), and a nilpotent orbit \(\mathcal{O}' \) of \(l \) such that \(\mathcal{O}_d = \text{Ind}^l_q(\mathcal{O}') \). Here, \(l \) has a direct sum decomposition \(l = gl(r) \oplus g' \), where \(g' \) is a simple Lie algebra of type \(B_{(m-2r-1)/2} \) (resp. \(D_{(m-2r)/2} \), resp. \(C_{(m-2r)/2} \)) when \(\epsilon = 1 \) and \(m \) is odd (resp. \(\epsilon = 1 \) and \(m \) is even, resp. \(\epsilon = -1 \)). Moreover, \(\mathcal{O}' \) is a nilpotent orbit of \(g' \) with Jordan type \([(d_1 - 2)^{s_1}, ..., (d_p - 2)^{s_p}, d_{p+1}^{s_{p+1}}, ..., d_k^{s_k}] \).

Let us consider the generalized Springer map

\[
\nu : G \times^Q (n(q) + \mathcal{O}') \to \bar{O}_d
\]

(cf. (1.2)).

Lemma (1.5.1). The map \(\nu \) is birational. In other words, \(\deg(\nu) = 1 \).

Proof. We only discuss the case \(G = Sp(m) \). It is enough to prove that \(\nu^{-1}(z) \) is a point for \(z \in \mathcal{O}_d \). We prepare two kinds of skew-symmetric vector space \(V_d \) (\(d \): even), and \(W_{2d} \) (\(d \): odd) as follows. The \(V_d \) is a \(d \)}
dimensional vector space with a basis $e_1, e_2, ..., e_d$. The skew-symmetric form $\langle \ , \ \rangle$ is defined in such a way that $\langle e_i, e_j \rangle = 1$ (resp. $\langle e_i, e_j \rangle = -1$) when $i + j = d + 1$ and $i > j$ (resp. $i + j = d + 1$ and $i < j$), and $\langle e_i, e_j \rangle = 0$ when $i + j \neq d + 1$. Let z_d be the endomorphism of V_d defined by the $d \times d$ matrix J_d with $J_d(i, i + 1) = 1$ $(1 \leq i \leq d/2), J_d(i, i + 1) = -1$ $(d/2 + 1 \leq i \leq d - 1)$ and otherwise $J_d(i, j) = 0$. The W_{2d} is a $2d$ dimensional vector space with a basis $f_1, ..., f_d, f_1', ..., f_d'$. The skew-symmetric form $\langle \ , \ \rangle$ is defined in such a way that $\langle f_i, f_j' \rangle = 1$ ($\langle f_i', f_j \rangle = -1$) when $i + j = d + 1$, and otherwise $\langle f_i, f_j' \rangle = 0, \langle f_i', f_j \rangle = 0$. Let z_{2d} be the endomorphism defined by the matrix J_{2d}' with $J_{2d}'(i, i + 1) = 1$ $(1 \leq i \leq d - 1), J_{2d}'(d, d + 1) = 0, J_{2d}'(i, i + 1) = -1$ $(d + 1 \leq i \leq 2d - 1)$ and otherwise $J_{2d}'(i, j) = 0$. Note that, in the partition d, s_i is even if d_i is odd. When d_i is even, we put $U_i := V_{d_i}^{\oplus s_i}$ and define $z_i \in \text{End}(U_i)$ by $z_i = z_{d_i}^{\oplus s_i}$. When d_i is odd, we put $U_i := W_{2d_i}^{\oplus s_i/2}$ and define $z_i \in \text{End}(U_i)$ by $z_i = z_{2d_i}^{\oplus s_i/2}$. Let us consider the skew-symmetric vector space V defined by

$$V := \oplus_{1 \leq i \leq k} U_i.$$

Then we may assume that z is an endomorphism of V defined by $z = \oplus z_i$. Each U_i has a filtration $0 \subset U_{i, 1} \subset U_{i, 2} \subset ... \subset U_{i, d_i} = U_i$ defined by $U_{i, j} := \text{Im}(z_i^{d_i-j})$. By definition, $U_{i, d_i-1} = (U_i, 1)^\perp$. The problem is to find an r dimensional isotropic subspace F of V in such a way that $z(F) = 0$ and $z|_{(F^\perp/F)}$ has Jordan type $[(d_1-2)^{s_1}, ..., (d_p-2)^{s_p}, d_{p+1}^{s_{p+1}}, ..., d_k^{s_k}]$. We shall prove that $F = \oplus_{1 \leq i \leq p} U_{i, 1}$. First note that $F \subset \oplus_{1 \leq i \leq k} U_{i, 1}$ since $z(F) = 0$. Next, one can check that $F^\perp \subset \oplus_{1 \leq i \leq k} U_{i, 1}$. In fact, if not, then one can find some $v \in F^\perp/F$ with $z^{d_i-2}(v) \neq 0$, which contradicts that $z|_{F^\perp/F}$ has Jordan type $[(d_1-2)^{s_1}, ..., (d_p-2)^{s_p}, d_{p+1}^{s_{p+1}}, ..., d_k^{s_k}]$. By taking the dual with respect to the skew-symmetric form, one has $U_{1, 1} \subset F$. We put $F_2 := F \cap \oplus_{2 \leq i \leq k} U_{i, 1}$. Let $(F_2)^\perp$ be the orthogonal complement of F_2 in $\oplus_{2 \leq i \leq k} U_i$ (not in V). Then

$$F^\perp/F = (\bigoplus_{2 \leq j \leq d_i-1} U_{1, j}) \oplus (F_2)^\perp/F_2.$$

Then $z|_{(F_2)^\perp/F_2}$ has Jordan type $[(d_2-2)^{s_1}, ..., (d_p-2)^{s_p}, d_{p+1}^{s_{p+1}}, ..., d_k^{s_k}]$. We apply the same argument to F_2 to conclude that $U_{2, 1} \subset F_2$. In particular, $U_{2, 1} \subset F$. In this way, we can prove inductively that $U_{i, 1} \subset F$ for $i \leq p$. Since $\dim(\oplus_{1 \leq i \leq p} U_{i, 1}) = r$, we have $F = \oplus_{1 \leq i \leq p} U_{i, 1}$.

Remark (1.5.2). A nilpotent orbit is called *rigid* if it is not induced from any other nilpotent orbit in a proper Levi subalgebra of \mathfrak{g}. In a simple Lie
algebra \(g\) of type B, C or D, \(O_d\) is rigid if and only if \(d\) has full members and any odd (resp. even) member \(d_i\) does not have multiplicity \(s_i = 2\) when \(\epsilon = 1\) (resp. \(\epsilon = -1\)) (cf. [CM]). By Corollary (1.4.3), for a rigid orbit \(O_d\), \(O_d\) has only \(Q\)-factorial terminal singularities. But, even if \(O_d\) has only \(Q\)-factorial terminal singularities, \(O_d\) is not necessarily rigid. Assume that an odd (resp. even) member \(d_p\) has multiplicity 2 when \(\epsilon = 1\) (resp. \(\epsilon = -1\)). In this case, we have an induction of another type. Namely, put \(r = \sum_{1 \leq j \leq p-1} s_j + 1\). Then, there are a parabolic subgroup \(Q\) of \(G\) with (isotropic) flag type \((r, m-2r, r)\) with Levi decomposition \(q = l \oplus n\), and a nilpotent orbit \(O'\) in \(l\) such that \(O_d = \text{Ind}^g_l(O')\). The orbit \(O'\) is contained in \(g'\), and its Jordan type is \([(d_1 - 2)^{s_1}, \ldots, (d_{p-1} - 2)^{s_{p-1}}, (d_p - 1)^2, d_{p+1}^{s_{p+1}}, \ldots, d_k^{s_k}]\). As explained above, if \(d\) has full members, but \(O_d\) is not rigid, then \(O_d\) has an induction of this type. But, for such an induction, the generalized Springer map \(\nu\) is not birational.

§2. Main Results

(2.1) Let \(X\) be a complex algebraic variety with rational Gorenstein singularities. A partial resolution \(f : Y \rightarrow X\) of \(X\) is said to be a \(Q\)-factorial terminalization of \(X\) if \(Y\) has only \(Q\)-factorial terminal singularities and \(f\) is a birational projective morphism such that \(K_Y = f^*K_X\). In particular, when \(Y\) is smooth, \(f\) is called a crepant resolution. In general, \(X\) has no crepant resolution; however, by [B-C-H-M], \(X\) always has a \(Q\)-factorial terminalization. But, in our case, the \(Q\)-factorial terminalization can be constructed very explicitly without using the general theory in [B-C-H-M].

Proposition (2.1.1). Let \(O\) be a nilpotent orbit of a classical simple Lie algebra \(g\). Let \(\bar{O}\) be the normalization of \(O\). Then one of the following holds:

(1) \(\bar{O}\) has \(Q\)-factorial terminal singularities.

(2) There are a parabolic subalgebra \(q\) of \(g\) with Levi decomposition \(q = l \oplus n\) and a nilpotent orbit \(O'\) of \(l\) such that (a): \(O = \text{Ind}^g_l(O')\) and (b): the normalization of \(G \times \mathbb{Q} \ (n(q) + O')\) is a \(Q\)-factorial terminalization of \(\bar{O}\) via the generalized Springer map.

Proof. When \(g\) is of type A, every \(\bar{O}\) has a Springer resolution; hence (2) always holds. Let us consider the case \(g\) is of B, C or D. Assume that (1) does not hold. Then, by (1.4.3), the Jordan type \(d\) of \(O\) does not have full members except when \(g = \text{so}(4n + 2), n \geq 1\) and \(d = [2^{2n}, 1^2]\). In the exceptional case, \(O\) is a Richardson orbit and the Springer map gives a crepant resolution of \(\bar{O}\); hence (2) holds. Now assume that \(d\) does not have
full members. Then, by (1.5), \mathcal{O} is an induced nilpotent orbit and there is a generalized Springer map

$$\nu : G \times Q (n(q) + \bar{O}') \to \bar{O}.$$

This map is birational by (1.5.1). Let us consider the orbit \mathcal{O}' instead of \mathcal{O}. If (1) holds for \mathcal{O}', then ν induces a Q-factorial terminalization of \bar{O}. If (1) does not hold for \mathcal{O}', then \mathcal{O}' is an induced orbit. By (1.2.3), one can replace Q with a smaller parabolic subgroup Q' in such a way that \mathcal{O} is induced from (Q', \mathcal{O}_2) for some nilpotent orbit $\mathcal{O}_2 \subset l(Q')$. The generalized Springer map ν' for (Q', \mathcal{O}_2) is factorized as

$$G \times Q' (n' + \bar{O}_2) \to G \times Q (n + \bar{O}') \to \bar{O}.$$

The second map is birational as explained above. The first map is locally obtained by a base change of the generalized Springer map

$$L(Q) \times L(Q) \cap Q' (n(L(Q) \cap Q') + \bar{O}_2) \to \bar{O}'.$$

This map is birational by (1.5.1). Therefore, the first map is also birational, and ν' is birational. This induction step terminates and (2) finally holds.

(2.2) We shall next show that every Q-factorial terminalization of \bar{O} is of the form in Proposition (2.1.1) except when \bar{O} itself has Q-factorial terminal singularities. In order to do that, we need the following Proposition.

Proposition (2.2.1). Let \mathcal{O} be a nilpotent orbit of a classical simple Lie algebra \mathfrak{g}. Assume that a Q-factorial terminalization of \bar{O} is given by the normalization of $G \times Q (n(q) + \bar{O}')$ for some (Q, \mathcal{O}') as in (2.1.1). Assume that Q is a maximal parabolic subgroup of G (i.e. $b_2(G/Q) = 1$), and this Q-factorial terminalization is small. Then Q is a parabolic subgroup corresponding to one of the following marked Dynkin diagrams and $\mathcal{O}' = 0$:

- A_{n-1} ($k < n/2$)
 $$\begin{array}{ccccccc}
 \circ & \cdots & k & \cdots & \circ \\
 \circ & \cdots & n-k & \cdots & \circ \\
 \end{array}$$
- D_n ($n : \text{odd} \geq 5$)
 $$\begin{array}{ccccccc}
 \times \circ & \cdots & \circ \\
 \end{array}$$
Proof. Assume that \(g \) is of type \(A \). Then every nilpotent orbit closure has a crepant resolution via the Springer map. Once \(\tilde{O} \) has a crepant resolution, every \(\mathbb{Q} \)-factorial terminalization is a crepant resolution (cf. [Na 2]). Then the claim follows from [Na], Proposition 5.1. Assume that \(g \) is of type \(B, C \) or \(D \). Since the \(\mathbb{Q} \)-factorial terminalization is small, \(\tilde{O} \) has terminal singularities. By (1.3.2) and (1.4.3), \(O \) is the nilpotent orbit in \(\text{so}(4n + 2) \), \(n \geq 1 \) with Jordan type \([2^n, 1^2] \). In this case, \(O \) is a Richardson orbit and \(\tilde{O} \) has exactly two crepant resolutions via the Springer maps \(G \times \mathbb{Q} n(\mathfrak{q}) \to \tilde{O} \) corresponding to two marked Dynkin diagrams of type \(D \) listed above (cf. [Na], p.92). Therefore, \(\tilde{O} \) has no other \(\mathbb{Q} \)-factorial terminalizations.

The following is the main theorem:

Theorem (2.2.2). Let \(O \) be a nilpotent orbit of a classical simple Lie algebra \(g \). Then \(\tilde{O} \) always has a \(\mathbb{Q} \)-factorial terminalization. If \(\tilde{O} \) itself does not have \(\mathbb{Q} \)-factorial terminal singularities, then every \(\mathbb{Q} \)-factorial terminalization is given by the normalization of \(G \times \mathbb{Q} (n(\mathfrak{q}) + \bar{O}') \) in (2.1.1). Moreover, any two such \(\mathbb{Q} \)-factorial terminalizations are connected by a sequence of Mukai flops of type \(A \) or \(D \) defined in [Na], pp. 91, 92.

Proof. The first statement is nothing but (2.1.1). The proof of the second statement is quite similar to that of [Na], Theorem 6.1. Assume that \(\tilde{O} \) does not have \(\mathbb{Q} \)-factorial terminal singularities. Then, by (2.1.1), one can find a generalized Springer (birational) map

\[
\nu : G \times \mathbb{Q} (n(\mathfrak{q}) + \bar{O}') \to \tilde{O}.
\]

Let \(X_Q \) be the normalization of \(G \times \mathbb{Q} (n(\mathfrak{q}) + \bar{O}') \). Then \(\nu \) induces a \(\mathbb{Q} \)-factorial terminalization \(f : X_Q \to \tilde{O} \). The relative nef cone \(\overline{\text{Amp}}(f) \) is a rational, simplicial, polyhedral cone of dimension \(b_2(G/Q) \) (cf. (1.2.2) and [Na], Lemma 6.3). Each codimension one face \(F \) of \(\overline{\text{Amp}}(f) \) corresponds to a birational contraction map \(\phi_F : X_Q \to Y_Q \). The construction of \(\phi_F \) is as follows. The parabolic subgroup \(Q \) corresponds to a marked Dynkin diagram \(D \). In this diagram, there are exactly \(b_2(G/Q) \) marked vertexes. Choose a marked vertex \(v \) from \(D \). The choice of \(v \) determines a codimension one face \(F \) of \(\overline{\text{Amp}}(f) \). Let \(D_v \) be the maximal, connected, single marked Dynkin subdiagram of \(D \) which contains \(v \). Let \(\bar{D} \) be the marked Dynkin diagram obtained from \(D \) by erasing the marking of \(v \). Let \(\bar{Q} \) be the parabolic
subgroup of G corresponding to \bar{D}. Then, as in (1.2.2), we have a map

$$\pi : G \times^Q (n + \bar{O}') \to G \times^{\bar{Q}} (\bar{n} + \bar{O}_1).$$

Let Y_Q be the normalization of $G \times^{\bar{Q}} (\bar{n} + \bar{O}_1)$. Then π induces a birational map $X_Q \to Y_Q$. This is the map ϕ_F. Note that π is locally obtained by a base change of the generalized Springer map

$$L(\bar{Q}) \times^{L(Q) \cap Q} (n(L(\bar{Q}) \cap Q) + \bar{O}') \to \bar{O}_1.$$

Let $Z(l(q))$ (resp. $Z(l(\bar{q}))$) be the center of $l(q)$ (resp. $l(\bar{q})$). By the definition of \bar{Q}, the simple factors of $l(\bar{q})/Z(l(\bar{q}))$ are common to those of $l(q)/Z(l(q))$ except one factor, say m. Put $O'' := O' \cap m$. By (2.2.1), π (or ϕ_F) is a small birational map if and only if $O'' = 0$ and D_v is one of the single Dynkin diagrams listed in (2.2.1). In this case, one can make a new marked Dynkin diagram D' from D by replacing D_v by its dual D^*_v (cf. [Na], Definition 1).

Let Q' be the parabolic subgroup of G corresponding to D'. We may assume that Q and Q' are both contained in \bar{Q}. The Levi part of Q' is conjugate to that of Q; hence there is a nilpotent orbit in $l(q')$ corresponding to O'. We denote this orbit by the same O'. Then O is induced from (Q', O'). As above, let $X_{Q'}$ be the normalization of $G \times^Q (n(q') + \bar{O}')$. Then we have a birational map $\phi_F : X_{Q'} \to Y_Q$. The diagram

$$X_Q \to Y_Q \leftarrow X_{Q'}$$

is a flop. Assume that $g : X \to \bar{O}$ is a Q-factorial terminalization. Then, the natural birational map $X \leftarrow \to X_Q$ is an isomorphism in codimension one. Let L be a g-ample line bundle on X and let $L_0 \in \text{Pic}(X_Q)$ be its proper transform of L by this birational map. If L_0 is f-nef, then $X = X_Q$ and $f = g$. Assume that L_0 is not f-nef. Then one can find a codimension one face F of $\overline{\text{Amp}}(f)$ which is negative with respect to L_0. Since L_0 is f-movable, the birational map $\phi_F : X_Q \to Y_Q$ is small. Then, as seen above, there is a new (small) birational map $\phi'_F : X_{Q'} \to Y_Q$. Let $f' : X_{Q'} \to \bar{O}$ be the composition of ϕ'_F with the map $Y_Q \to \bar{O}$. Then f' is a Q-factorial terminalization of \bar{O}. Replace f by this f' and repeat the same procedure; but this procedure ends in finite times (cf. [Na], Proof of Theorem 6.1 on pp. 104, 105). More explicitly, there is a finite sequence of Q-factorial terminalizations of \bar{O}:

$$X_0(= X_Q) \leftarrow \to X_1(= X_{Q'}) \leftarrow \to \ldots \leftarrow \to X_k(= X_{Q_k})$$
such that $L_k \in \text{Pic}(X_k)$ is f_k-nef. This means that $X = X_{Q_k}$.

Example (2.3). We put $G = SP(12)$. Let \mathcal{O} be the nilpotent orbit in $sp(12)$ with Jordan type $[6, 3^2]$. Let $Q_1 \subset G$ be a parabolic subgroup with flag type $(3, 6, 3)$. The Levi part l_1 of q_1 has a direct sum decomposition

$$l_1 = \mathfrak{g}l(3) \oplus C_3,$$

where C_3 is isomorphic to $sp(6)$ up to center. Let \mathcal{O}' be the nilpotent orbit in $sp(6)$ with Jordan type $[4, 1^2]$. Then $\mathcal{O} = \text{Ind}_{l_1}^{sp(12)}(\mathcal{O}')$. Next consider the parabolic subgroup $Q_2 \subset SP(6)$ with flag type $(1, 4, 1)$. The Levi part l_2 of q_2 has a direct sum decomposition

$$l_2 = \mathfrak{g}l(1) \oplus C_2,$$

where C_2 is isomorphic to $sp(4)$ up to center. Let \mathcal{O}'' be the nilpotent orbit in $sp(4)$ with Jordan type $[2, 1^2]$. Then $\mathcal{O}' = \text{Ind}_{l_2}^{sp(6)}(\mathcal{O}'')$. One can take a parabolic subgroup $Q \subset SP(12)$ with flag type $(3, 1, 4, 1, 3)$ in such a way that the Levi part l of q contains the nilpotent orbit \mathcal{O}''. Then \mathcal{O} is the nilpotent orbit induced from \mathcal{O}''. We shall illustrate the induction step above by

$$([2, 1^2], sp(4)) \rightarrow ([4, 1^2], sp(6)) \rightarrow ([6, 3^2], sp(12)).$$

Since \tilde{O}'' has only Q-factorial terminal singularities, the Q-factorial terminalization of \tilde{O} is given by the generalized Springer map

$$\nu : G \times^Q (n(q) + \tilde{O}'') \rightarrow \tilde{O}.$$

The induction step is not unique; we have another induction step

$$([2, 1^2], sp(4)) \rightarrow ([4, 3^2], sp(10)) \rightarrow ([6, 3^2], sp(12)).$$

By these inductions, we get another generalized Springer map

$$\nu' : G \times^{Q'} (n(q') + \tilde{O}'') \rightarrow \tilde{O},$$

where Q' is a parabolic subgroup of G with flag type $(1, 3, 4, 3, 1)$. This gives another Q-factorial terminalization of \tilde{O}. The two Q-factorial terminalizations of \tilde{O} are connected by a Mukai flop of type A_3.
References

[BCHM] Birkar, C., Cascini, P., Hacon, C., McKernan, J.: Existence of minimal models for varieties of general type, math.AG/0610203

[Be] Beauville, A.: Symplectic singularities, Invent. Math. 139 (2000), 541-549

[C-G] Chriss, M., Ginzburg, V.: Representation theory and complex geometry, Progress in Math., Birkhauser, 1997

[C-M] Collingwood, D., McGovern, W.: Nilpotent orbits in semi-simple Lie algebras, van Nostrand Reinhold, Math. Series, 1993

[Fu] Fu, B.: Symplectic resolutions for nilpotent orbits, Invent. Math. 151. (2003), 167-186

[Hi] Hinich, V.: On the singularities of nilpotent orbits, Israel J. Math. 73 (1991), 297-308

[Ka] Kawamata, Y.: Crepant blowing-up of 3-dimensional canonical singularities and its application to degenerations of algebraic surfaces, Ann. Math. 127 (1988), 93-163

[K-P] Kraft, H., Procesi, C.: On the geometry of conjugacy classes in classical groups, Comment. Math. Helv. 57. (1982), 539-602

[L-S] Lusztig, G., Spaltenstein, N.: Induced unipotent classes, J. London Math. Soc. 19. (1979), 41-52

[Na] Namikawa, Y.: Birational geometry of symplectic resolutions of nilpotent orbits, Advances Studies in Pure Mathematics 45, (2006), Moduli Spaces and Arithmetic Geometry (Kyoto, 2004), pp. 75-116

[Na 2] Namikawa, Y.: Flops and Poisson deformations of symplectic varieties, Publ. RIMS 44. No 2. (2008), 259-314

[Na 3] Namikawa, Y.: Extensions of 2-forms and symplectic varieties, J. Reine Angew. Math. 539 (2001), 123-147

[Na 4] Namikawa, Y.: Birational geometry and deformations of nilpotent orbits, Duke Math. J. 143 (2008), 375-405
REFERENCES

[Pa] Panyushev, D. I. : Rationality of singularities and the Gorenstein property of nilpotent orbits, Funct. Anal. Appl. 25 (1991), 225-226

[Ri] Richardson, R. : Conjugacy classes in parabolic subgroups of semisimple algebraic groups, Bull. London Math. Soc. 6 (1974), 21-24

Yoshinori Namikawa
Department of Mathematics, Graduate School of Science, Kyoto University, JAPAN
namikawa@math.kyoto-u.ac.jp