A Result on Fractional (a, b, k)-critical Covered Graphs

Si-zhong ZHOU

School of Science, Jiangsu University of Science and Technology, Zhenjiang 212100, China
(E-mail: zsuzcjm@163.com)

Abstract A fractional $[a, b]$-factor of a graph G is a function h from $E(G)$ to $[0, 1]$ satisfying $a \leq d_G^h(v) \leq b$ for every vertex v of G, where $d_G^h(v) = \sum_{e \in E(v)} h(e)$ and $E(v) = \{ e = uv : u \in V(G) \}$. A graph G is called fractional $[a, b]$-covered if G contains a fractional $[a, b]$-factor h with $h(e) = 1$ for any edge e of G. A graph G is called fractional (a, b, k)-critical covered if $G - Q$ is fractional $[a, b]$-covered for any $Q \subseteq V(G)$ with $|Q| = k$. In this article, we demonstrate a neighborhood condition for a graph to be fractional (a, b, k)-critical covered. Furthermore, we claim that the result is sharp.

Keywords graph; neighborhood; fractional $[a, b]$-factor; fractional $[a, b]$-covered graph; fractional (a, b, k)-critical covered graph

2000 MR Subject Classification 05C70; 05C72

1 Introduction

All graphs discussed are assumed to be finite, undirected and simple. For a graph G, the set of vertices in G is denoted by $V(G)$, and the set of edges in G is denoted by $E(G)$. For $v \in V(G)$, the degree of v in G is the number of edges of G incident with v and is denoted by $d_G(v)$, and the neighborhood of v in G is the set of vertices of G adjacent to v and is denoted by $N_G(v)$. Distinctly, $d_G(v) = |N_G(v)|$. For any subset X of $V(G)$, the subgraph of G induced by X is denoted by $G[X]$ and the neighborhood of X in G is denoted by $N_G(X)$. Setting $G - X = G[V(G) \setminus X]$. A subset X of $V(G)$ is called independent if $G[X]$ does not possess edges. The minimum degree of G is defined by $\delta(G) = \min \{ d_G(v) : v \in V(G) \}$. Assume that c is a real number. Recall that $\lfloor \ldots \rfloor$ is the greatest integer satisfying $\lfloor \ldots \rfloor \leq c$.

For positive integers a and b satisfying $a \leq b$, an $[a, b]$-factor of a graph G is a spanning subgraph F of G satisfying $a \leq d_F(v) \leq b$ for all $v \in V(G)$. Assume that $a = b = r$, then we call it an r-factor. A fractional $[a, b]$-factor of a graph G is a function h from $E(G)$ to $[0, 1]$ satisfying $a \leq d_G^h(v) \leq b$ for every vertex v of G, where $d_G^h(v) = \sum_{e \in E(v)} h(e)$ and $E(v) = \{ e = uv : u \in V(G) \}$. If $a = b = r$, then we call it a fractional r-factor. A graph G is called fractional $[a, b]$-covered if G contains a fractional $[a, b]$-factor h with $h(e) = 1$ for any edge e of G. If $a = b = r$, then we call G being a fractional r-covered graph. A graph G is called fractional (a, b, k)-critical covered if $G - Q$ is fractional $[a, b]$-covered for any $Q \subseteq V(G)$ with $|Q| = k$ where k is a nonnegative integer. When $a = b = r$, a fractional (a, b, k)-critical covered graph is a fractional (r, k)-critical covered graph.

The previous works have implied that there is a close relationship between neighborhood and the existence of factors and fractional factors in graphs. Amahashi and Kanou[3], Berge and Las Vergnas[3], independently, derived a neighborhood condition for graphs having $[1, b]$-factors. Kano[7] posed a neighborhood condition for the existence of $[a, b]$-factors in graphs. Zhou, Pu

Manuscript received October 15, 2020. Accepted on May 25, 2021.
This work is supported by Six Big Talent Peak of Jiangsu Province, China (Grant No. JY–022).
and Xu[20] claimed a sharp neighborhood condition for a graph possessing a fractional r-factor. For more results on factors and fractional factors of graphs, see [2, 4–6, 9–19, 21–25].

A neighborhood condition for the existence of fractional r-factors in graphs was demonstrated by Zhou, Pu and Xu[20], which is the following result.

Theorem 1.1[20]. Let $r \geq 1$ be an integer, and let G be a graph of order n with $n \geq 6r - 12 + \frac{6}{r}$. Assume, for every subset X of $V(G)$, that

$$N_G(X) = V(G) \quad \text{if} \quad |X| \geq \left\lfloor \frac{rn}{2r - 1} \right\rfloor;$$

$$|N_G(X)| \geq \frac{2r - 1}{r}|X| \quad \text{if} \quad |X| < \left\lfloor \frac{rn}{2r - 1} \right\rfloor.$$

Then G possesses a fractional r-factor.

In this article, we generalize Theorem 1.1, and claim a neighborhood condition for graphs being fractional (a, b, k)-critical covered graphs.

Theorem 1.2. Let a, b and k be integers with $b \geq a \geq 2$ and $k \geq 0$, and let G be a graph of order n with $n \geq \frac{(a + b - 2)(2a + b - 3) + 2}{b}$. Assume, for every vertex subset X of G, that

$$N_G(X) = V(G) \quad \text{if} \quad |X| \geq \left\lfloor \frac{(b(n - 1) - bk)n - 2(n - 1)}{(a + b - 1)(n - 1)} \right\rfloor;$$

$$|N_G(X)| \geq \frac{(a + b - 1)(n - 1)}{b(n - 1) - bk - 2}|X| \quad \text{if} \quad |X| < \left\lfloor \frac{(b(n - 1) - bk)n - 2(n - 1)}{(a + b - 1)(n - 1)} \right\rfloor.$$

Then G is fractional (a, b, k)-critical covered.

The following result holds for $k = 0$ in Theorem 1.2.

Corollary 1.3. Let a, b be integers with $b \geq a \geq 2$, and let G be a graph of order n with $n \geq \frac{(a + b - 2)(2a + b - 3) + 2}{b}$. Assume, for every vertex subset X of G, that

$$N_G(X) = V(G) \quad \text{if} \quad |X| \geq \left\lfloor \frac{bn - 2}{a + b - 1} \right\rfloor;$$

$$|N_G(X)| \geq \frac{(a + b - 1)(n - 1)}{b(n - 1) - 2}|X| \quad \text{if} \quad |X| < \left\lfloor \frac{bn - 2}{a + b - 1} \right\rfloor.$$

Then G is fractional $[a, b]$-covered.

We can acquire the following result when $a = b = r$ in Theorem 1.2.

Corollary 1.4. Let r and k be integers with $r \geq 2$ and $k \geq 0$, and let G be a graph of order n with $n \geq 6r - 12 + \frac{8}{r} + \frac{r^2}{r - 1}$. Assume, for every vertex subset X of G, that

$$N_G(X) = V(G) \quad \text{if} \quad |X| \geq \left\lfloor \frac{(r(n - 1) - rk)n - 2(n - 1)}{(2r - 1)(n - 1)} \right\rfloor;$$

$$|N_G(X)| \geq \frac{(2r - 1)(n - 1)}{r(n - 1) - rk - 2}|X| \quad \text{if} \quad |X| < \left\lfloor \frac{(r(n - 1) - rk)n - 2(n - 1)}{(2r - 1)(n - 1)} \right\rfloor.$$

Then G is fractional (r, k)-critical covered.

The following result is obtained if $a = b = r$ in Corollary 1.3.
Corollary 1.5. Let \(r \) be an integer with \(r \geq 2 \), and let \(G \) be a graph of order \(n \) with \(n \geq 6r - 12 + \frac{2}{r} \). Assume, for every vertex subset \(X \) of \(G \), that

\[
N_G(X) = V(G) \quad \text{if} \quad |X| \geq \left\lfloor \frac{rn - 2}{2r - 1} \right\rfloor;
\]

\[
|N_G(X)| \geq \frac{(2r - 1)(n - 1)}{r(n - 1) - 2} |X| \quad \text{if} \quad |X| < \left\lfloor \frac{rn - 2}{2r - 1} \right\rfloor.
\]

Then \(G \) is fractional \(r \)-covered.

2 The Proof of Theorem 1.2

The proof of Theorem 1.2 relies on the following theorem, which is a special case of fractional \((g,f)\)-covered graph theorem obtained by Li, Yan and Zhang [8].

Theorem 2.1 [8]. Let \(a, b \) be nonnegative integers satisfying \(b \geq a \), and let \(G \) be a graph. Then \(G \) is fractional \([a,b]\)-covered if and only if

\[
\theta_G(S,T) = b|S| + d_{G-S}(T) - a|T| \geq \varepsilon(S)
\]

for any vertex subset \(S \) of \(G \) and \(T = \{x : x \in V(G) \setminus S, d_{G-S}(x) \leq a\} \), where \(\varepsilon(S) \) is defined by

\[
\varepsilon(S) = \begin{cases}
 2, & \text{if } S \text{ is not independent}, \\
 1, & \text{if } S \text{ is independent, and there is an edge joining } S \text{ and } V(G) \setminus (S \cup T) \text{ or there is an edge } e = uv \text{ joining } S \text{ and } T \text{ satisfying } d_{G-S}(v) = a \text{ for } v \in T, \\
 0, & \text{otherwise}.
\end{cases}
\]

Proof of Theorem 1.2. Let \(D \subseteq V(G) \) with \(|D| = k \), and let \(H = G - D \). It suffices to claim that \(H \) is fractional \([a,b]\)-covered. Assume that \(H \) is not fractional \([a,b]\)-covered. Then using Theorem 2.1, we possess

\[
\theta_H(S,T) = b|S| + d_{H-S}(T) - a|T| \leq \varepsilon(S) - 1,
\]

for a vertex subset \(S \) of \(H \), where \(T = \{x : x \in V(H) \setminus S, d_{H-S}(x) \leq a\} \). Evidently, \(T \neq \emptyset \) by (2.1) and \(\varepsilon(S) \leq |S| \). Thus, we define

\[
\beta = \min\{d_{H-S}(x) : x \in T\}.
\]

By virtue of the definition of \(T \), we acquire

\[
0 \leq \beta \leq a.
\]

Claim 1. \(\delta(H) \geq \frac{(a-1)n+b-(a-1)k+2}{a+b-1} \).

Proof. Let \(v \in V(G) \) such that \(d_G(v) = \delta(G) \), and set \(W = V(G) \setminus N_G(v) \). Distinctly, \(v \notin N_G(W) \), and so \(N_G(W) \neq V(G) \). Then using the condition of Theorem 1.2, we deduce

\[
|N_G(W)| \geq \frac{(a + b - 1)(n - 1)}{b(n - 1) - bk - 2} |W|.
\]

Note that \(|W| = n - \delta(G) \) and \(|N_G(W)| \leq n - 1 \). Thus, we derive

\[
n - 1 \geq |N_G(W)| \geq \frac{(a + b - 1)(n - 1)}{b(n - 1) - bk - 2} |W| = \frac{(a + b - 1)(n - 1)}{b(n - 1) - bk - 2} (n - \delta(G)),
\]
which hints that
\[\delta(G) \geq \frac{(a-1)n+b+bk+2}{a+b-1}. \tag{2.2} \]

In light of (2.2), \(H = G - D \) and \(|D| = k \), we possess
\[\delta(H) \geq \delta(G) - k \geq \frac{(a-1)n+b-(a-1)k+2}{a+b-1}. \]

We finish the proof of Claim 1. \(\Box \)

Note that \(\beta = \min\{d_{H-S}(x) : x \in T\} \). Then there exists \(x_1 \in T \) such that \(d_{H-S}(x_1) = \beta \). By virtue of Claim 1 and \(\delta(H) \leq d_H(x_1) \leq d_{H-S}(x_1) + |S| = \beta + |S| \), we acquire
\[|S| \geq \delta(H) - \beta \geq \frac{(a-1)n+b-(a-1)k+2}{a+b-1} - \beta. \tag{2.3} \]

The following proof is divided into four cases by virtue of the value of the \(\beta \).

Case 1. \(\beta = a. \)

It follows from (2.1) and \(\varepsilon(S) \leq |S| \) that
\[\varepsilon(S) - 1 \geq \theta_H(S,T) = b|S| + d_{H-S}(T) - a|T| \geq b|S| + \beta|T| - a|T| = b|S| \geq |S| \geq \varepsilon(S), \]
which is a contradiction.

Case 2. \(a-1 \geq \beta \geq 2. \)

By virtue of (2.1), (2.3), \(|S| + |T| + k \leq n \) and \(\varepsilon(S) \leq 2 \), we acquire
\[1 \geq \varepsilon(S) - 1 \geq \theta_H(S,T) = b|S| + d_{H-S}(T) - a|T| \geq b|S| + \beta|T| - a|T| = b|S| - (a-\beta)|T| \geq b|S| - (a-\beta)(n-k-|S|) = (a+b-\beta)|S| - (a-\beta)(n-k) \geq (a+b-\beta)\left(\frac{(a-1)n+b-(a-1)k+2}{a+b-1} - \beta\right) - (a-\beta)(n-k). \]

Let \(\varphi(\beta) = (a+b-\beta)(\frac{(a-1)n+b-(a-1)k+2}{a+b-1} - \beta) - (a-\beta)(n-k) \). Then we get \(\varphi(\beta) \leq 1. \)

It follows from \(a-1 \geq \beta \geq 2 \) and \(n \geq \frac{(a+b-2)(2a+b-3)+2}{b} + \frac{bk}{b-1} \geq \frac{(a+b-2)(2a+b-3)+2}{b} + k \) that
\[\frac{d\varphi}{d\beta} = -\left(\frac{(a-1)n+b-(a-1)k+2}{a+b-1} - \beta\right) - (a+b-\beta) + (n-k) \]
\[= 2\beta + \frac{b(n-k)-b-2}{a+b-1} - a-b \]
\[\geq 4 + \frac{(a+b-2)(2a+b-3)+2-b-2}{a+b-1} - a-b \]
\[= a-1 + \frac{1}{a+b-1} > 0. \]
Hence, we easily see that $\varphi(\beta)$ attains its minimum value at $\beta = 2$, that is,

$$\varphi(\beta) \geq \varphi(2). \quad (2.5)$$

According to (2.4), (2.5) and $n \geq \frac{(a+b-2)(2a+b-3)+2}{b} + \frac{bk}{b-1} \geq \frac{(a+b-2)(2a+b-3)+2}{b} + k$, we deduce

$$1 \geq \varphi(\beta) \geq \varphi(2) = (a + b - 2)\left(\frac{(a-1)n+b-(a-1)k+2}{a+b-1} - 2\right) - (a-2)(n-k)$$

$$= \frac{b(n-k)-(a+b-2)(2a+b-4)}{a+b-1} \geq \frac{(a+b-2)(2a+b-3)+2-(a+b-2)(2a+b-4)}{a+b-1} = \frac{a+b}{a+b-1} > 1,$$

a contradiction.

Case 3. $\beta = 1$.

Subcase 3.1. $|T| > \left\lfloor \frac{(b(n-1)-bk)n-2(n-1)}{(a+b-1)(n-1)} \right\rfloor$.

In terms of the integrity of $|T|$, we have

$$|T| \geq \left\lfloor \frac{(b(n-1)-bk)n-2(n-1)}{(a+b-1)(n-1)} \right\rfloor + 1. \quad (2.6)$$

Note that $d_{H-S}(x_1) = \beta = 1$ and $x_1 \in T$. Then we easily see that

$$x_1 \notin NG(T \setminus NG(x_1)). \quad (2.7)$$

It follows from (2.6), $T \cap (S \cup D) = \emptyset$ and $H = G - D$ that

$$\begin{align*}
|T \setminus NG(x_1)| &= |T \setminus NG-D(x_1)| = |T \setminus NH(x_1)| = |T \setminus NH-S(x_1)| \\
&\geq |T| - |NH-S(x_1)| = |T| - d_{H-S}(x_1) = |T| - 1 \\
&\geq \left\lfloor \frac{(b(n-1)-bk)n-2(n-1)}{(a+b-1)(n-1)} \right\rfloor.
\end{align*}$$

Combining this with the assumption of Theorem 1.2, we gain

$$NG(T \setminus NG(x_1)) = V(G),$$

which contradicts (2.7).

Subcase 3.2. $|T| \leq \left\lfloor \frac{(b(n-1)-bk)n-2(n-1)}{(a+b-1)(n-1)} \right\rfloor$.

Claim 2. $|T| \leq \frac{b(n-1)-bk-2}{a+b-1}$.

Proof. Let $|T| > \frac{b(n-1)-bk-2}{a+b-1}$. According to (2.3) and $\beta = 1$, we gain

$$|S| + |T| + k > \frac{(a-1)n+b-(a-1)k+2}{a+b-1} - 1 + \frac{b(n-1)-bk-2}{a+b-1} + k = n - 1.$$

Combining this with $|S| + |T| + k \leq n$ and the integrity of $|S| + |T| + k$, we have

$$|S| + |T| + k = n. \quad (2.8)$$
From (2.8), \(\varepsilon(S) \leq 2\) and \(|T| \leq \left\lceil \frac{(b(n-1) - bk) n - 2(n-1)}{(a+b-1)(n-1)} \right\rceil \leq \frac{(b(n-1) - bk) n - 2(n-1)}{(a+b-1)(n-1)}\), we refer

\[
\theta_H(S, T) = b|S| + d_{H-S}(T) - a|T| \geq b|S| + |T| - a|T|
\]

\[
= b(n - k - |T|) - (a - 1)|T| = b(n - k) - (a + b - 1)|T|
\]

\[
\geq b(n - k) - (a + b - 1) \cdot \frac{(b(n-1) - bk)n - 2(n-1)}{(a+b-1)(n-1)}
\]

\[
= \frac{nbk}{n-1} - bk + 2 \geq 2 \geq \varepsilon(S),
\]

which contradicts (2.1). This finishes the proof of Claim 2.

Let \(\lambda = |\{x : x \in T, d_{H-S}(x) = 1\}|\). Evidently, \(\lambda \geq 1\) and \(|T| \geq \lambda\). Using (2.3), Claim 2, \(b \geq a \geq 2\), \(\beta = 1\) and \(\varepsilon(S) \leq 2\), we acquire that

\[
\theta_H(S, T) = b|S| + d_{H-S}(T) - a|T| \geq b|S| + 2|T| - \lambda - a|T|
\]

\[
= b|S| - (a - 2)|T| - \lambda
\]

\[
\geq b\left(\frac{(a - 1)n + b - (a - 1)k}{a + b - 1} - 1\right) - (a - 2) \cdot \frac{b(n-1) - bk - 2}{a + b - 1} - \lambda
\]

\[
= 2 + \frac{b(n-1) - bk - 2}{a + b - 1} \geq 2 + |T| - \lambda \geq 2 \geq \varepsilon(S),
\]

which conflicts with (2.1).

Case 4. \(\beta = 0\).

Let \(d = |\{x : x \in T, d_{H-S}(x) = 0\}|\). Distinctly, \(d \geq 1\). Set \(Z = V(H) \setminus S\). Thus, \(N_G(Z) \neq V(G)\) since \(\beta = 0\). By the assumption of Theorem 1.2, we get

\[
n - d \geq |N_G(Z)| \geq \frac{(a + b - 1)(n - 1)}{b(n-1) - bk - 2}|Z| = \frac{(a + b - 1)(n - 1)}{b(n-1) - bk - 2}(n - k - |S|),
\]

which implies

\[
|S| \geq n - k - \frac{(n - d)(b(n-1) - bk - 2)}{(a+b-1)(n-1)}. \tag{2.9}
\]

By virtue of \(n \geq \frac{(a+b-2)(2a+b-3)+2}{b} + \frac{bk}{b-1}\), we easily verify that

\[
\frac{b(n-1) - bk - 2}{n - 1} > 1. \tag{2.10}
\]

Using (2.9), (2.10), \(|S| + |T| + k \leq n\), \(b \geq a \geq 2\) and \(\varepsilon(S) \leq 2\), we deduce

\[
\theta_H(S, T) = b|S| + d_{H-S}(T) - a|T| \geq b|S| + |T| - d - a|T|
\]

\[
= (a + b - 1)|S| - (a - 1)(n - k) - d
\]

\[
\geq (a + b - 1)\left(n - k - \frac{(n - d)(b(n-1) - bk - 2)}{(a+b-1)(n-1)}\right) - (a - 1)(n - k) - d
\]

\[
= b(n - k) - \frac{(n - d)(b(n-1) - bk - 2)}{n - 1} - d
\]

\[
\geq b(n - k) - \frac{(n - 1)(b(n-1) - bk - 2)}{n - 1} - 1
\]

\[
= b + 1 > 2 \geq \varepsilon(S),
\]

which conflicts with (2.1). Theorem 1.2 is justified. \(\Box\)
3 Remark

Now, we show that the condition on neighborhood in Theorem 1.2 is sharp, that is, we cannot replace it by \(N_G(X) = V(G) \) or

\[
|N_G(X)| \geq \frac{(a + b - 1)(n - 1)}{b(n - 1) - bk - 2}|X|
\]

for all \(X \subseteq V(G) \).

Let \(a, b, k, t \) be nonnegative integers such that \(b \geq a \geq 2 \), \(t \) is sufficiently large, and \(\frac{t+1}{2} \) and \(\frac{(a-1)t+2}{b} \) are two integers. We construct a graph \(G = K_{\frac{t+1}{2} + k} \) or \(\frac{(a-1)t+2}{b} \). Set \(n = |V(G)| = \frac{(a-1)t+2}{b} + k + t + 1 \), \(A = V(K_{\frac{t+1}{2} + k}) \), \(B = V(\frac{t+1}{2} K_2) \) and \(D \subseteq A \) with \(|D| = k \). Next, we show that either \(N_G(X) = V(G) \) or

\[
|N_G(X)| \geq \frac{(a + b - 1)(n - 1)}{b(n - 1) - bk - 2}|X|
\]

holds for all \(X \subseteq V(G) \).

We easily see that \(N_G(X) = V(G) \) if \(|X \cap A| \geq 2 \), or \(|X \cap A| = 1 \) and \(|X \cap B| \geq 1 \). Of course, if \(|X| = 1 \) and \(X \subseteq A \), then we easily claim

\[
|N_G(X)| = |V(G)| - 1 = n - 1 = \frac{(a + b - 1)(n - 1)}{b(n - 1) - bk - 2}|X|.
\]

Hence, we may assume that \(X \subseteq B \). In this case, we possess

\[
|N_G(X)| = |A| + |X| = \frac{(a-1)t+2}{b} + k + |X|.
\]

Therefore,

\[
|N_G(X)| \geq \frac{(a + b - 1)(n - 1)}{b(n - 1) - bk - 2}|X|
\]

holds if and only if

\[
\frac{(a-1)t+2}{b} + k + |X| \geq \frac{(a + b - 1)(n - 1)}{b(n - 1) - bk - 2}|X|.
\]

This inequality is equivalent to \(|X| \leq t \). Thus if \(X \subseteq B \), then we derive

\[
|N_G(X)| \geq \frac{(a + b - 1)(n - 1)}{b(n - 1) - bk - 2}|X|.
\]

If \(X = B \), then we easily see that \(N_G(X) = V(G) \). Consequently, \(N_G(X) = V(G) \) or

\[
|N_G(X)| \geq \frac{(a + b - 1)(n - 1)}{b(n - 1) - bk - 2}|X|
\]

holds for all \(X \subseteq V(G) \).

Finally, we demonstrate that \(G \) is not fractional \((a, b, k)\)-critical covered. Let \(H = G - D \).

For above \(A \setminus D \) and \(B \), we admit \(|A \setminus D| = \frac{(a-1)t+2}{b} \), \(|B| = t + 1 \), \(d_{H-(A \setminus D)}(B) = t + 1 \) and \(\varepsilon(A \setminus D) = 2 \). Thus, we acquire

\[
\theta_H(A \setminus D, B) = |A \setminus D| + d_{H-(A \setminus D)}(B) - a|B| = (a-1)t + 2 + t + 1 - a(t + 1) = 3 - a \leq 1 < 2 = \varepsilon(A \setminus D).
\]

By Theorem 2.1, \(H \) is not fractional \([a, b]\)-covered, and so, \(G \) is not fractional \((a, b, k)\)-critical covered.

Acknowledgments. The author is very grateful to the anonymous referees for their valuable comments and suggestions, which have greatly improved the final version of this article.
References

[1] Amahashi, A., Kano, M. Factors with given components. *Ann. Discrete Mathematics*, 42: 1–6 (1982)
[2] Axenovich, M., Rollin, J. Brooks type results for conflict-free colorings and \((a, b)\)-factors in graphs. *Discrete Mathematics*, 338: 2295–2301 (2015)
[3] Berge, C., Las Vergnas, M. On the existence of subgraphs with degree constraints. *Proc. K. Ned. Acad. Wet. Amsterdam (A)*, 81: 165–176 (1978)
[4] Chiba, S., Yamasita, T. A note on degree sum conditions for 2-factors with a prescribed number of cycles in bipartite graphs. *Discrete Mathematics*, 340: 2871–2877 (2017)
[5] Gao, W., Guirao, J., Chen, Y. A toughness condition for fractional \((k, m)\)-deleted graphs revisited. *Acta Mathematica Sinica-English Series*, 35: 1227–1237 (2019)
[6] Gao, W., Guirao, J., Wu, H. Two tight independent set conditions for fractional \((g, f, m)\)-deleted graphs systems. *Qualitative Theory of Dynamical Systems*, 17: 231–243 (2018)
[7] Kano, M. A sufficient condition for a graph to have \([a, b]\)-factors. *Graphs and Combinatorics*, 6: 245–251 (1990)
[8] Li, Z., Yan, G., Zhang, X. On fractional \((g, f)\)-covered graphs. *OR Transactions (China)*, 6: 65–68 (2002)
[9] Wang, S., Zhang, W. On \(k\)-orthogonal factorizations in networks. *RAIRO-Operations Research*, 55: 969–977 (2021)
[10] Wang, S., Zhang, W. Research on fractional critical covered graphs. *Problems of Information Transmission*, 56: 270–277 (2020)
[11] Yuan, Y., Hao, R. A degree condition for fractional \([a, b]\)-covered graphs. *Information Processing Letters*, 143: 20–23 (2019)
[12] Yuan, Y., Hao, R. A neighborhood union condition for fractional \(ID-[a, b]\)-factor-critical graphs. *Acta Mathematicae Applicatae Sinica-English Series*, 34: 775–781 (2018)
[13] Zhou, S. A neighborhood union condition for fractional \((a, b, k)\)-critical covered graphs. *Discrete Applied Mathematics*, DOI: 10.1016/j.dam.2021.05.022
[14] Zhou, S. Binding numbers and restricted fractional \((g, f)\)-factors in graphs. *Discrete Applied Mathematics*, DOI: 10.1016/j.dam.2020.10.017
[15] Zhou, S. Remarks on path factors in graphs. *RAIRO-Operations Research*, 54: 1827–1834 (2020)
[16] Zhou, S. Some results on path-factor critical avoidable graphs. *Discussiones Mathematicae Graph Theory*, DOI: 10.7151/dmgt.2364
[17] Zhou, S., Bian, Q., Pan, Q. Path factors in subgraphs. *Discrete Applied Mathematics*, DOI: 10.1016/j.dam.2021.04.012
[18] Zhou, S., Bian, Q., Sun, Z. Two sufficient conditions for component factors in graphs. *Discussiones Mathematicae Graph Theory*, DOI: 10.7151/dmgt.2401
[19] Zhou, S., Liu, H., Xu, Y. A note on fractional \(ID-[a, b]\)-factor-critical covered graphs. *Discrete Applied Mathematics*, DOI: 10.1016/j.dam.2021.03.004
[20] Zhou, S., Pu, B., Xu, Y. Neighborhood and the existence of fractional \(k\)-factors of graphs. *Bulletin of the Australian Mathematical Society*, 81: 473–480 (2010)
[21] Zhou, S., Sun, Z., Liu, H. Isolated toughness and path-factor uniform graphs. *RAIRO-Operations Research*, 55: 1279–1290 (2021)
[22] Zhou, S., Sun, Z., Pan, Q. A sufficient condition for the existence of restricted fractional \((g, f)\)-factors in graphs. *Problems of Information Transmission*, 56: 332–344 (2020)
[23] Zhou, S., Xu, Y., Sun, Z. Degree conditions for fractional \((a, b, k)\)-critical covered graphs. *Information Processing Letters*, 152: 105838 (2019)
[24] Zhou, S., Xu, J., Xu, L. Component factors and binding number conditions in graphs. *AIMS Mathematics*, 6: 12460–12470 (2021)
[25] Zhou, S., Zhang, T., Xu, Z. Subgraphs with orthogonal factorizations in graphs. *Discrete Applied Mathematics*, 286: 29–34 (2020)