Seismic analysis of the second ionization region of helium in the Sun: I. Sensitivity study and methodology

Mário J. P. G. Monteiro1,2 and Michael J. Thompson3*

1 Centro de Astrofísica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal
2 Departamento de Matemática Aplicada, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
3 Department of Applied Mathematics, University of Sheffield, Sheffield S3 7RH, UK

Accepted 2005; Received 2005; in original form 1996

ABSTRACT

The region of the second ionization of helium in the Sun is a narrow layer near the surface. Ionization induces a local change of the adiabatic exponent Γ_1, which produces a characteristic signature in the frequencies of p-modes. By adapting the method developed by Monteiro, Christensen-Dalsgaard & Thompson (1994), we propose a methodology for determining the properties of this region by studying such a signature in the frequencies of oscillation.

Using solar data we illustrate how the signal from the helium ionization zone can be isolated. Using solar models with different physics – theory of convection, equation of state and low temperature opacities – we establish how the characteristics of the signal depend on the different aspects contributing to the structure in the ionization layer. We further discuss how the method can be used to measure the solar helium abundance in the envelope and to constrain the physics affecting this region of the Sun.

The potential usefulness of the method we propose is shown. It may complement other inversion methods developed to study the solar structure and to determine the envelope helium abundance.

Key words: Sun: interior – Sun: helioseismology – Sun: oscillations – Sun: abundances – equation of state – stars: abundances

1 INTRODUCTION

The direct determination of the helium abundance in the solar near-surface layers is difficult and uncertain, although it is very important to the modelling of the internal structure and evolution of the Sun (see Kosovichev et al. 1992 for a comprehensive discussion of the sources of uncertainties). It is usually taken as a fitting parameter of an evolutionary sequence that provides the correct luminosity for the Sun at the present age. The possibility of constraining this parameter to have the observed value for the Sun is important to improve the mass loss estimates and early evolution of the Sun, as well as to test the effects of mixing and settling on stellar evolution.

Several attempts have been made to use solar seismic data to calculate the abundance of helium (Y) in the solar envelope (Dziembowski, Pavlyukh & Sienkiewicz 1991; Vorontsov, Baturin & Pavlyukh 1991; Christensen-Dalsgaard & Pérez Hernández 1992; Pérez Hernández & Christensen-Dalsgaard 1994; Antia & Basu 1994; Basu & Antia 1995; Gough & Vorontsov 1995; Richard et al. 1998). However the dependence of the determination on other aspects, in particular the equation of state, poses serious difficulties to an accurate direct seismic measurement of the envelope abundance of helium (Kosovichev et al. 1992; Pérez Hernández & Christensen-Dalsgaard 1994; Basu & Christensen-Dalsgaard 1997). The sensitivity of the modes to the helium abundance is primarily provided by the change of the local adiabatic sound speed c due to ionization. Such sensitivity is given by the behaviour of the first adiabatic exponent, Γ_1, since $c^2 \equiv \Gamma_1 \rho / \rho$ where p and ρ are the pressure and density respectively, and consequently it is strongly dependent on the assumed equation of state and other physics relevant for the region where the ionization takes place. This is the main reason why the seismic determination of the envelope abundance of helium is highly complex.

Here we propose a method complementary to those used previously, by adapting the procedure developed by Monteiro et al. (1994, in the following MCDT) and Christensen-Dalsgaard, Monteiro & Thompson (1995, in the following CDMT). In using the solar frequencies in a different way, which provides a direct probe to the region of ionization, we aim at providing a method where the different effects at play in the ionization zone can be isolated, constructing a procedure to access the chemical abundance. Localized variations in the structure of the Sun, such as occur at the base of the convective envelope...
(see MCDT and Monteiro [1996], and in the region of the second ionization of helium [Monteiro 1996], create a characteristic signal in the frequencies of oscillation. The properties of such a signal, as measured from the observed frequencies, are related to the location and thermodynamic properties of the Sun at the layer where the sharp or localized variation occurs. The main advantage we see in this method is the possibility to utilise different characteristics of the signal to distinguish different aspects of the physics of the plasma at the region where the signal is generated. In particular we may be able to separate the effects due to convection, the low-temperature opacities and the equation of state from the quantification of the helium abundance that we seek to achieve. Here we mainly concentrate on separating these different contributions in order to establish the dependence of the parameters of the signal in the frequencies on the different aspects of the structure at the ionization region. Using a variational principle we determined how the zone of the second ionization of helium can indeed be considered as a localized perturbation to an otherwise ‘smooth’ structure, generating a characteristic signal in the frequencies of the modes.

We note that simplified versions of the expression for the signal discussed here have been applied successfully to cases where there are only very low degree frequencies. The signal has been fitted either to the frequencies of low degree modes (Monteiro & Thompson 1996; Vauclair & Théado 2004; Bazot & Vauclair 2004; Piau, Ballot & Turek-Chèze 2005). Here we obtain the expression for the general case of having also modes of higher degree, of which the low degree applications are a particular case. We also demonstrate the method for making use of the information in moderate-degree data available only for the Sun. When using modes with degree above 4 or 5 we can avoid using frequencies affected by the base of the convection zone and may hope to achieve a much higher precision in the results as many more frequencies with lower uncertainties can be used.

In this work we present the analysis of the characteristics of the signal under different conditions. Several models with different physics and envelope helium abundances are used to test the method in order to prepare the application to the observed solar data.

2 THE REGION OF THE SECOND IONIZATION OF HELIUM

In order to model the sensitivity of the modes to this region we must try first to understand how ionization changes the structure. Secondly, we need to estimate how the modes are affected by such a region. The details of the derivations are discussed in the Appendix, but the assumptions and the main expressions are reviewed and analysed here.

2.1 Properties of the ionization region

Because the helium second ionization zone (HeII ionization zone) is sufficiently deep (well within the oscillatory region of most of the modes) we propose to adapt the method discussed in MCDT to the study of this layer. The contribution from a sharp variation in the structure of the Sun to the frequencies can be estimated by calculating from a variational principle for the modes the effect of a localized feature. In the work by MCDT the feature was the base of the convection zone and the sharp transition was represented by discontinuities in the derivatives of the sound speed. Because of the size of the ionization region when compared with the local wavelength of the modes, that representation is not adequate to reproduce the effect on the frequencies for the ionization region.

Here we must, instead, consider how the ionization changes the first adiabatic exponent \(\Gamma_1 \equiv (\partial \ln p/\partial \ln s)_s \), (the derivative at constant specific entropy \(s \)) locally, generating what can be described as a ‘bump’ over a region of acoustic thickness of about 300 s (see Fig. 1). This allows us to estimate how the frequencies of oscillation are ‘changed’ due to the presence of this feature in the structure of the Sun. The effect will be mainly taken into account through the changes induced in the adiabatic gradient \(\Gamma_1 \) by the ionization. Other thermodynamic quantities are also affected, but the changes on the local sound speed is mainly determined by changes in \(\Gamma_1 \). Therefore, we will calculate the dominant contribution to the changes in the frequencies by establishing what is the effect on the modes due to changes of the adiabatic exponent.

Däppen & Gough [1986] and Däppen, Gough & Thompson [1988] have proposed a method based on the same principle, by using the sensitivity of the sound speed to changes on the adiabatic exponent. Using this sensitivity they calibrate a quantity that is associated with ionization in order to try to measure the helium abundance in the solar envelope from seismic data. But most methods have difficulties in removing the dependence of the calibration on the physics of the reference models, making it difficult to obtain a value for the abundance. This is the problem we try to address in this contribution by developing a method able to measure in the frequencies the effect of the ionization and its dependence on the abundance, isolated as much as possible from the other uncertainties.

2.2 A variational principle for the effect on the frequencies

A variational principle for nonradial adiabatic oscillations, assuming zero pressure at the surface located at radius \(R \) as a boundary condition, can be formulated. It is possible to further consider only higher-order acoustic modes, for which we may neglect the

Figure 1. Plot of the adiabatic exponent \(\Gamma_1 \) for several solar models. As a reference we have calculated a model \((Z_0)\) where the second ionization of helium has been suppressed. The other two models are calculated using different equations of state (see Table 1 for further details on the models). The second ionization of helium takes place around an acoustic depth of 600 s, corresponding to the depression on the value of \(\Gamma_1 \).
Figure 2. (a) Plot of the differences $(\delta \Gamma_1/\Gamma_1)$ between two models - one with and the other without the second ionization of helium, versus acoustic depth τ. These correspond to models Z_0 and Z_1 discussed in the text and described in Table 1. The dotted line represents our assumed smooth reference structure. (b) The change of $\delta \tau$ and described in Table 1. The dotted line represents our assumed smooth reference structure, and located at a radial position corresponding to an acoustic depth τ_0, as found from the frequencies.

In order to model the signature of the ionization zone we represent the effect of the second ionization in terms of the changes it induces in the adiabatic exponent Γ_1. Such a change (see Fig 2) is approximately represented by a `bump' of half width β in acoustic depth, and relative height

$$\delta_1 \equiv \left(\frac{\delta \Gamma_1}{\Gamma_1}\right)_{\tau_0},$$

(1)

being located at a radial position corresponding to an acoustic depth τ_0. Here, and in the following, acoustic depth τ at a radius r is defined as,

$$\tau(r) \equiv \int_r^R \frac{dr}{c},$$

(2)

where R is the photospheric radius of the Sun.

Relatively to the frequencies of a reference model, assumed to be `smooth' and corresponding approximately to a model with no HeII ionization region, we find that the bump changes the frequencies in such a way that there is a periodic component of the form (see Appendix A).

$$\delta \omega \sim A(\omega, l) \cos \Lambda_4,$$

(3)

where the amplitude, as a function of mode frequency ω and mode degree l, is given by

$$A(\omega, l) \equiv a_0 \frac{1-2\Delta/3}{(1-\Delta)^2} \sin^2 \left[\frac{\beta \omega (1-\Delta)^{1/2}}{\beta \omega}\right],$$

(4)

and the argument is

$$\Lambda_4 \equiv 2 \left[\omega \int_0^{\tau_{\delta}} (1-\Delta)^{1/2} d\tau + \phi\right].$$

(5)

Here the factor in Δ represents the geometry of the ray-path accounting for deviation from the vertical when the mode degree is non-zero. It is associated with the Lamb frequency, as given below (Eqs 8 and 9). In fact, because the ionization zone is close to the surface and provided we are not using very high-degree data, we can neglect Δ in the expression for the argument $\Lambda;_4$; we can similarly neglect the effect of the mode degree on the surface phase function ϕ. Consequently, for the ionization zone the expression of the argument becomes

$$\Lambda_4 \sim 2(\omega \tau_0 + \phi) \approx 2(\omega \tau_0 + \phi_0).$$

(6)

In the asymptotic expression used for the eigenfunction (see Eq. A3), the phase ϕ depends on the mode frequency and degree (see MCDT for details). Here we have expanded the phase to first order in frequency, by writing that $\phi(\omega) \approx \phi_0 + a_0 \omega$. From this it follows that $\tau_0 \equiv \tau_0 + a_0 \omega$. While the frequency independent term of the phase is now ϕ_0.

The amplitude of the signal, through a_0, corresponds to

$$a_0 = \frac{3 \Delta_4}{2 \tau_0},$$

(7)

where $\tau_0(0)$ is the total acoustic size of the Sun. The small factor Δ, present in the amplitude, is given by

$$\Delta = \Delta_4 \frac{l(l+1) \omega^2}{l(l+1) \omega^2},$$

(8)

where the value of Δ_4 is given by,

$$\Delta_4 = \frac{l(l+1) \omega^2}{l(l+1) \omega^2} \left(\frac{c}{\tau}\right)\tau_{\tau_0},$$

(9)

and l and ω are two reference values. These values are chosen taking into account the expected behaviour of the signal and the set of modes used, as discussed below.

In order to compare the amplitude it is convenient to define a reference value A_{0}, as given by

$$A_0 \equiv A(\tilde{\omega}, \tilde{l}) = a_0 \frac{1-2\Delta_4/\beta}{(1-\Delta_4)^2} \sin^2 \left[\frac{\beta \tilde{\omega} (1-\Delta_4)^{1/2}}{\beta \tilde{\omega}}\right].$$

(10)

The parameters of the signal relevant to characterize the local properties of the ionization zone, as given in Eq. A3, are τ_0, β, a_0 and Δ_4.

The values of τ_0 and Δ_4 can be used to measure mainly the location of the ionization zone. They both vary strongly with distance to the surface. But the acoustic depth is a cumulative function of the sound speed behaviour over all layers from the surface to a particular position, whereas Δ_4 is a local quantity, not being affected by the behaviour of the sound speed in the layers above the ionization zone.

The values of β and a_0 (or δ_0) are expected to be directly related to the local helium abundance, since the size of the bump...
will be determined by the amount of helium available to be ionized. These parameters are also expected to be strongly affected by the equation of state, and to a lesser extent by the other physics that affect the location of the ionization zone \(\tau_\text{d} \). But we may hope to be able to use the other parameters to remove this dependence, while retaining the strong relation between the bump and the helium abundance \(Y \).

2.3 Measuring the signal in the frequencies

Our first goal is to find the five parameters describing the signal from the frequencies of oscillation. In order to do so we must isolate a signature of about 1 \(\mu \text{Hz} \) in amplitude, overlaid on actual frequencies. We do so by isolating in the frequencies the periodic signal described by Eq. (4), using a non-linear least-squares iterative fit to find the best set of parameters. The method used is an adaptation of the one proposed by MCDT; for the present problem we must redefine the characteristic wavelength of the signal to be isolated (quantity \(\lambda_0 \) in MCDT) as it is significantly larger than for the signal from the base of the convective envelope. The parameters describing the signal (Eq. 3), and found by our fitting procedure, are the following:

\[
\tau_\text{d}, \ \phi_0, \ a_0, \ \Delta_\lambda, \ \beta.
\]

We choose a set of modes which cross the ionization zone, but which do not cross the base of the convection zone. By removing modes that penetrate deep in the Sun (low degree modes), we avoid the contamination coming from the signal generated at the base of the convection zone (see MCDT). But when selecting only modes of higher degree (between 45 and 100), it becomes necessary to include the contribution from the mode degree to the amplitude of the signal. This is the reason why it is necessary to include in the fitting the parameter \(\Delta_\lambda \). This parameter is not necessary when studying other stars (Monteiro & Thompson 1998; Basu et al. 2004; Piau et al. 2005), resulting in a simplified description of the expected observed behaviour. In the case of the Sun there is a great advantage in using all available high-degree modes that cross the ionization zone.

The modes considered correspond to the ones available in solar data, having degrees and frequencies such that the lower turning point is between 0.75 \(R \) and 0.95 \(R \) of the solar radius. The latter ensures the modes cross the ionization zone while the former avoids contamination from the signal originating at the base of the convective envelope (e.g. CDMT, and references therein). These conditions define typically a set of about 450 modes having frequency \(\omega/2\pi \) in the range \([1500, 3700]\) \(\mu \text{Hz} \), and with mode degree of \(45 \leq l \leq 100 \).

As we are only using modes of high degree in this work, the reference values preferred in the fitting of the signal are:

\[
l = 100 \quad \text{and} \quad \frac{\omega}{2\pi} = 2000 \mu\text{Hz}.
\]

The first value is an upper limit for modes that cross beyond the ionization zone, while the value of \(\omega/2\pi \) corresponds to the region in frequency where the signal is better defined. These values are only relevant to normalize the parameters fitted for different models.

For solar observations only frequencies with a quoted observational error below 0.5 \(\mu \text{Hz} \) are included. We ensure consistency of the data sets by restricting the selection of mode frequencies from the models to the modes present in the solar data after applying the above selection rules.

We stress that the method adopted for removing the smooth component of the frequencies is a key assumption in the process of fitting the signal. Here we use a polynomial fit with a smoothing parameter on the third derivative (see CDMT). In any case, as long as the analyses for different models and for the solar data are consistent, the comparison of the parameters will be independent of the choice on how to describe the smooth component. Such consistency is ensured by using exactly the same set of frequencies and the same numerical parameters for the fitting.

2.4 The signal in the solar data

To illustrate the signal extraction, the method proposed here was applied to the analysis of solar seismic data from MDI on the SOHO spacecraft (Scherrer et al. 1995). The signal was isolated as described above for the models. The fitted signal of the Sun is shown in Fig. 3a, together with the error bars. In order to illustrate how well the expression for the signal (Eq. 3) fits the data points we also show in Fig. 3b the signal in the frequencies normalized by the amplitude as given in Eq. 4. The quality of the fit done with Eq. 3, confirms the adequacy of the first order analysis developed in Appendix A leading to the expression given by Eq. 4.

The values of the parameters found for the data are given in Table 1. From Monte Carlo simulations we have estimated the uncertainty in the determination of the parameters due to observational uncertainties as indicated by the quoted observational errors.
Table 1. Parameters obtained by fitting the observed solar frequency data with the expression of the signal as given in Eq. (1). The quantities τ_d and β are given in seconds, while the amplitudes (ϕ_0 and A_d) are given in μHz. Note that A_d is not a fitting parameter, as it is given from the other parameters using Eq. (2). The standard deviations σ are estimated from 200 simulations of the effect of the observational uncertainties on the determination of the parameters.

	ϕ_0	$\alpha_0/2\pi$	$A_d/2\pi$	β	\triangle_d	
Sun	1.743	1.987	2.655	141.3	0.493	
3σ	1.9	0.027	0.056	0.037	0.96	0.015

The values found, at the 3σ level, are also listed in Table 1. It is clear that due to the large amplitude of this signature (above 1μHz at $\omega/2\pi=2000\mu$Hz) the precision with which the parameters are determined is very high. As long as the method to isolate this characteristic signature is able to remove the “smooth” component, the results can be used with great advantage for testing the zone of the second ionization of helium in the Sun.

3 SOLAR MODELS WITH DIFFERENT PHYSICS

In order to establish how sensitive the different characteristics of the signal are to the properties of the ionization zone, and therefore to the aspects of the Sun which affect the ionization zone, we consider different static models of the Sun calculated with the same mass, photospheric radius and luminosity. The profile of the helium abundance in the models is obtained by calibrating with a constant factor a prescribed abundance profile from an evolution model with the age of the Sun (without settling).

We note that imposing the same radius and luminosity for all models is the key difference between the analysis presented here and the work by Basu et al. (2004). If the models are not required to have the same luminosity and radius as the Sun, the properties of the ionization zone are not affected in the same way. Consequently the behaviour of the amplitude of the signal in this case is different from what we find when both these conditions are imposed on the models.

The aspects of the physics being tested here are the equation of state (EoS), the theory of convection and the opacity. All these aspects affect the ionization zone by changing its location, size and thermodynamic properties.

All models were calculated as in Monteiro (1996); see also Monteiro et al. (1996). These are not intended to represent accurately the Sun, but simply to illustrate the usefulness of the method we propose to study a particular region of the solar envelope.

As the simplest possible EoS we have used a Saha equation of state with full ionization at high pressure - this corresponds to SEoS in Table 2. As a more complete EoS we have used the CEFF equation of state as described in Christensen-Dalsgaard & Däppen (1993). For the opacities we have considered a simple power law fit (SOp), or the Rosseland mean opacity tables at low temperatures from Kurucz (1991). To include convection we have taken the standard mixing length theory (Bohm-Vitense 1958, parametrized as in Monteiro et al. 1996), or the more recent CGM model (Canuto et al. 1996).

As our reference model, in order to illustrate the changes due to the ionization of helium, we have calculated a very simple solar model (Z_\odot) with suppressed HeII ionization, by setting the ionization potential to zero. The helium abundance found for each model corresponds to the value that fits the boundary conditions (by scaling a prescribed dependence of the chemical profile, as taken from an evolved solar model).

The behaviour of the adiabatic exponent for some of the models (see Table 2, relative to our reference model (Z_\odot), is illustrated in Fig. 4. There is a clear difference on the location of the ionization zone (τ_d) when a different EoS is used. The effects of changes in the formulation of convection or in the opacities are much smaller.

In order to have models with the same envelope physics, but different helium abundances, we have calculated solar models with the energy generation rate changed by a prescribed factor f_e in the

Model	EoS	Opacity	Convection	Y	f_e
Z_0	SEoS	SOp	MLT	0.246	1.0
Z_1	SEoS	SOp	MLT	0.246	1.0
Z_2	SEoS	SOp	CGM	0.246	1.0
Z_{3d}	CEFF	SOp	MLT	0.241	0.8
Z_3	CEFF	SOp	MLT	0.249	0.8
Z_{3h}	CEFF	SOp	MLT	0.256	1.2
Z_4	CEFF	SOp	CGM	0.249	0.8
Z_{5d}	CEFF	Kur	MLT	0.241	0.8
Z_5	CEFF	Kur	MLT	0.249	0.8
Z_{5h}	CEFF	Kur	MLT	0.256	1.2
Z_{5v}	CEFF	Kur	MLT	0.262	1.4
Z_6	CEFF	Kur	CGM	0.249	0.8

Figure 4. Plot of the differences for Γ_1 between all models considered and the one without the second ionization of helium. See Table 2 for the details of each model. Only the region around the second ionization of helium is shown corresponding to the negative bump around an acoustic depth of 650s.

Table 2. Solar models and their helium (Y) abundances. Also indicated are the equation of state (EoS): SEoS - Simple Saha equation of state with pressure ionization, and CEFF (cf. Christensen-Dalsgaard & Däppen 1993). The Opacity: SOp - simple power law fit of the opacities, and Kur - low temperature opacities from Kurucz (1991); and the formulation for modelling convection: MLT - standard mixing length theory; Bohm-Vitense (1958) parametrized as in Monteiro et al. (1996), and CGM - Canuto et al. (1996). See the text for a description of the parameter f_e used in the calculation of the emissivity.
The changes on the upper structure of the envelope are expected to have a direct effect on the turning point of the modes. Consequently we need to look at the parameters that may be affected by the upper reflecting boundary. This is mainly expected to be ϕ_0.

Finally the area of the bump in Γ_1 in the ionization zone should reflect the local abundance of helium, if the location is well defined. Therefore we will look at α_0 and β in order to identify how the helium abundance Y defines the characteristics of the signal in the frequencies.

4 THE EFFECT OF THE PHYSICS ON THE CHARACTERISTICS OF THE SIGNAL

The set of solar models considered here, and listed in Table 2, cover three major aspects of the physics which determine the surface structure of the models: the equation of state, the low temperature opacities and the formulation for convection (defining the superadiabatic layer). In order to use the diagnostic potential of this characteristic signature in the frequencies we need to understand how each parameter describing the signal is affected by a specific aspect of the physics defining the structure of the envelope.

One would expect that the shape of the bump is strongly determined by the EoS. But any change in the structure that affects the location of the ionization zone will necessarily introduce an effect on the characteristics of the Γ_1 profile. Consequently we need first to identify the parameters that depend more strongly on the location. These are most likely τ_d and Δ_4.

The changes on the upper structure of the envelope are expected to have a direct effect on the turning point of the modes. Consequently we need to look at the parameters that may be affected by the upper reflecting boundary. This is mainly expected to be ϕ_0.

4.1 The location of the ionization zone

The most easily identifiable characteristic of the signal is its period. This quantity depends strongly on τ_1, but as discussed when writing Eq. (1) the period also contains a contribution from the upper turning point of the modes (where there is a phase shift of the eigenfunction). This means that the period, or precisely $\bar{\tau}_d$, that we measure is not necessarily a good estimate of location τ_d of the ionization zone.

Figure 5 shows the value of $\bar{\tau}_d$, as found from fitting the signal in the frequencies, versus the value of τ_d, as determined from the location of the local minimum of Γ_1 in the model. There is

Table 3. Parameters obtained by fitting the frequency data for the models with the expression of the signal as given in Eq. (3). The quantities τ_d and β are given in seconds, while the amplitudes $(\alpha_0$ and $A_d)$ are given in μHz. Note that A_d is not a fitting parameter, as it is given from the other parameters using Eq. (10).

Model	τ_d	ϕ_0	$\alpha_0/2\pi$	$A_d/2\pi$	β	Δ_4
Z_1	718.0	2.588	1.634	2.834	142.5	0.604
Z_2	724.8	2.525	1.671	2.862	141.9	0.599
Z_{3l}	729.9	1.950	2.500	3.251	146.0	0.484
Z_3	730.4	1.951	2.380	3.140	144.7	0.490
Z_{3h}	730.4	1.951	2.314	3.066	144.3	0.491
Z_4	739.9	1.859	2.353	3.151	143.3	0.495
Z_{5l}	737.7	1.874	2.429	3.241	143.7	0.494
Z_5	737.8	1.876	2.342	3.145	143.1	0.496
Z_{5h}	737.5	1.880	2.278	3.072	142.7	0.498
Z_{5v}	736.8	1.890	2.205	3.002	141.7	0.502
Z_6	746.4	1.790	2.280	3.141	141.3	0.507
a difference of up to about 140 s between τ_0 and τ_ϕ, and one is not simply a function of the other. The difference between the two comes from α_0, which measures the leading-order frequency dependence of the phase transition which the eigenfunctions undergo at the upper turning point. This will be strongly affected by the physics that change the structure of the surface, namely convection, EoS, the low temperature opacities, and the structure of the atmosphere. Consequently, we have to use some caution when taking the parameter τ_0 from the fit to estimate the location of the ionization region.

As an alternative we can consider one of the other parameters which also depends on the position of the ionization zone. This is Δ_ϕ, given in Table 3 for all models and shown in Fig. 6 as a function of the actual acoustic location of the ionization region. The value of Δ_ϕ, defined in Eq. (3), is not sensitive to the layers near the photosphere, as its value is determined exclusively by the sound speed at the ionization zone. However, the determination of this term is associated with a small correction in the amplitude, which makes it more sensitive to the observational errors when fitting the frequencies.

Both panels in Fig. 6 show the solar values of τ_ϕ and Δ_ϕ with

Figure 6. (a) Plot of the fitted acoustic depth $\bar{\tau}_\phi$ and (b) the correction term Δ_ϕ, versus the acoustic depth τ_ϕ as determined from the models and corresponding to the local minimum in Γ_1 (see Fig. 1). Filled symbols are for models using the CEFF equation of state, while crosses are for models calculated using a simple Saha equation of state. The filled circles are for models having the same simple opacity (power law) but different theories of convection, while the filled diamonds are models with the opacity at low temperatures from Kurucz. The values found for the solar data are also shown in both panels with 3σ error bars (dashed horizontal lines) due to the observational uncertainties.

Figure 7. Plot of the phase ϕ_0 of the signal versus the envelope helium abundance Y for all models. The symbols are the same as in Fig. 6. The dotted lines illustrate the correlation between models with the same physics but different values of the surface helium abundance Y. The value found for the solar data is also shown with 3σ error bars (dashed horizontal lines) due to the observational uncertainties.

3σ uncertainties. The values of Δ_ϕ indicate that all models calculated with the CEFF equation of state give, even if marginally, a location for the ionization zone consistent with the Sun.

Finally, the structure at the top of the envelope is also expected to be reflected in the value of ϕ_0. The value of this parameter for all models is represented in Fig. 4 as a function of the envelope helium abundance. The larger difference is found when changing the EoS (about 0.06). But changes in the opacities also change ϕ_0 by as much as 0.01, while the theory of convection changes this by about 0.01. It is interesting to confirm that the fitted value of ϕ_0 is independent of the helium abundance, as one would expect from the analysis leading to the expression of the signal. Consequently ϕ_0 may allow the separation between the helium abundance and the physics relevant to the outer layers of the Sun because it is insensitive to Y whilst being indicative of some near-surface change that may be required in the physics.

The solar value for ϕ_0 is also shown in Fig. 4. Adjustments in the near surface layers seem to be necessary in order to produce models that have a value of ϕ_0 consistent with the Sun. Changes in the superadiabatic layer or in the surface opacities may be some of the options for reconciling the models with the solar data.

4.2 The equation of state

From the analysis of the results listed in Table 3 and as discussed in the previous section, the EoS is the most important factor in defining the characteristics of the signal. In Fig. 5 we show the width parameter β as a function of Δ_ϕ (a proxy for the location). Models that have the same EoS (CEFF) lie on a common locus in this diagram, as indicated by the dotted line. The position along this line of models all built with the CEFF varies according to changes in the convection or the surface opacities. Models Z_1 and Z_2, built with a different EoS, lie in a different region of the diagram. Thus we claim that, with the location of the ionization zone fixed, the width of the bump in Γ_1 is mainly a function of the EoS, as expected.

Consequently, after using ϕ_0 to test the surface physics, it is possible to combine the constraints provided by Δ_ϕ and β to obtain a direct test on the EoS and the location of the ionization zone.
from a few candidates) to match the observed behaviour—this corresponds to verifying that the behaviour of the adiabatic exponent in the region where helium undergoes its second ionization. We have found, as discussed above, that:

- Δ_d provides a process to place the ionization zone in the model at the same acoustic depth as for the Sun—this corresponds to adapting mainly the surface layers of the model (atmosphere and/or convection) in order to place the ionization zones at the same acoustic location as measured in the Sun by the solar value of Δ_d;
- β can then be used to adjust the EoS (or more likely to select it from a few candidates) to match the observed behaviour—this corresponds to verifying that the behaviour of β as a function of the location (Δ_d) in the models includes the observed solar values for these two parameters;
- and finally, the parameters τ_{0} and ϕ_0 can be combined to adjust the surface physics in the model, in order to recover the observed solar values—this corresponds to adjusting convection (superadiabatic region, mainly), opacities (low temperature range), photosphere, etc., in a complementary way to the first point, until the solar values can be recovered with the models as both parameters are strongly dependent on these aspects of the physics, but quite insensitive to the actual helium abundance.

Consequently, we are left with one last parameter, connected with the shape of the bump through δ_β, which is the amplitude of the signal a_0, or A_β. If the model has been adjusted to the observed data using the remaining parameters, then the amplitude will depend mainly on the helium abundance in the model, which can now be compared with the solar abundance. Such a relation provides a measurement of the helium abundance, which complements the boundary condition used in the evolution to fit the model to the present day Sun.

Figure 9 illustrates how such a dependence of A_β, as defined in Eq. (10), could be constructed after the other aspects of the physics are adjusted. It is worth noting that, as expected from Fig. 5, the amplitude decreases with increasing Y, since the changes in Γ_1 due to changes on the hydrogen abundance dominate the variations of the bump. This regime for the inverse dependence of the amplitude of the signal on the abundance of helium is relevant for stars of low effective temperature. That follows from the overlapping of the three ionization zones (H_i, He_i, He_{ii}). For stars where these are fully separated in temperature it is expected that the amplitude will increase with the abundance of helium.

As shown above (see Figs. 7 and 8) the models used here are not fully consistent with the physics of the Sun and seem to be only marginally consistent regarding the equation of state that has been used. Consequently the amplitude A_β, as found for the solar data, cannot yet be used as an indicator of the helium abundance in the solar envelope. A more adequate calibration of the surface layers in the models must be developed before an estimation for Y is inferred from this parameter.

The simplified models we are using here to illustrate the applicability of the method have been calculated with scaling a chemical profile determined without including diffusion and settling of helium. This is one of the aspects that needs to be considered in the models in order to move the parameters found for these closer to the solar values. With such a tuning, based on other seismic constraints and on the parameters of the signal discussed here, we have an independent procedure to adjust our models to the Sun in this region near the surface, where the uncertainties in the physics dominate the structure of the models.

5 CONCLUSION

In this work we have developed a complementary method to constrain the properties of the helium second ionization region near the surface of the Sun using high degree mode frequencies. The method
proposed here can independently test properties of this region, and provides a possible direct measurement of the helium abundance in the envelope.

We have shown that some of the parameters characterizing the signature in the frequencies due to this region in the Sun are very sensitive to the EoS used in the calculation of the models, so can be used to test and constrain the equation of state. Others of the parameters can also provide an important test on the physics affecting the surface regions of the models, namely convection and the low temperature opacities. By combining the diagnostic potential of the five parameters determined from the data with very high precision the helium abundance can be effectively constrained.

Here we were mainly concerned to establish the method and demonstrate how it can be used to study the Hertzsprung ionization zone in the Sun, and the physics that affect the structure of the Sun in that region. In spite of having used simplified models to represent the Sun we have illustrate the sensitivity of each parameter to the physics, establishing the approach that can be followed when adequate up-to-date evolved solar models are used. Besides the physical ingredients addressed here, aspects like diffusion and settling and improved opacities have to be implemented in order to provide a physically consistent value of the helium abundance. A calibration of the actual solar helium abundance using models with the best up-to-date physics will be the subject of the second paper in this series.

ACKNOWLEDGEMENTS

We are grateful to S. Basu, J. Christensen-Dalsgaard, M.P. di Mauro and A. Miglio for valuable discussions. This work was supported through projects POCTI/FNU/43658/2001 and POCTI/CTE-AST/57610/2004 from POCTI, with funds from the European programme FEDER.

REFERENCES

Antia H. M., Basu S., 1994, ApJ, 426, 801
Basu S., Antia H. M., 1995, MNRAS, 276, 1402
Basu S., Mazumdar A., Antia H. M., Demarque P., 2004, MNRAS, 350, 277
Basu S., Christensen-Dalsgaard J., 1997, A&A, 322, L5
Bazot M., Vauclair S., 2004, A&A, 427, 965
Böhml-Vitense E., 1958, Zs. Ap. 46, 108
Canuto V. M., Goldman I., Mazzitelli I., 1996, ApJ, 473, 550
Christensen-Dalsgaard J., Däppen W., 1992, A&AR, 4, 267
Christensen-Dalsgaard J., Pérez-Hernández F., 1992, MNRAS, 257, 62
Christensen-Dalsgaard J., Monteiro M. J. P. F. G., Thompson M. J., 1995, MNRAS, 276, 283 [CDMT]
Däppen W., Dünne J., 1962, in Seismology of the Sun and Distant Stars, (Ed) D. O. Gough, NATO ASI, D. Reidel, 275
Dziembowski W. A., Thompson M. J., 1988, in Proceedings of the Symposium: Seismology of the Sun and Sun–like Stars, ESA SP–286, 505
Dziembowski W. A., Pamyatnykh A. A., Sienkiewicz R., 1991, MNRAS, 249, 602
Gough D. O., Vorontsov S. V., 1995, MNRAS, 273, 573
Kosovichev A. G., Christensen-Dalsgaard J., Däppen W., Dziembowski W. A., Gough D. O., Thompson M. J., 1992, MNRAS, 259, 536
Kurucz R. L., 1991, in Stellar Atmospheres: Beyond Classical Models, NATO ASI Series, (Eds) L. Crivellari, I. Hubeny, D.G. Hummer, Kluwer, p. 441
Miglio A., Christensen-Dalsgaard J., Di Mauro M. P., Monteiro M. J. P. F. G., Thompson M. J., 2003, in Asteroseismology Across the HR Diagram (Eds) M. J. Thompson, M. S. Cunha & M. J. P. F. G. Monteiro, Kluwer, P537
Monteiro M. J. P. F. G., 1996, PhD Thesis, Queen Mary and Westfield College, University of London, UK
Monteiro M. J. P. F. G., Thompson M. J., 1998, New Eyes to See Inside the Sun and Stars, IAU Symp. 185, (Eds) F.-L. Deubner, J. Christensen-Dalsgaard, D. W. Kurtz, Kluwer, p. 819
Monteiro M. J. P. F. G., Christensen-Dalsgaard J., Thompson M. J., 1994, A&A, 283, 247 [MCDT]
Monteiro M. J. P. F. G., Christensen-Dalsgaard J., Thompson M. J., 1996, A&A, 307, 624
Pérez Hernández F., Christensen-Dalsgaard J., 1994, MNRAS, 269, 475
Piau L., Ballot J., Turck-Chièze S., 2005, A&A, 430, 571
Richard O., Dziembowski W. A., Sienkiewicz, Goode P. R., 1998, A&A, 338, 756
Scherrer et al., 1995, Sol. Phys., 162, 129
Vauchert S., Théado S., 2004, A&A, 425, 179
Verner G. A., Chaplin W. J., Elsworth Y., 2004, MNRAS, 351, 311
Vorontsov S. V., Baturin V. A., Pamyatnykh A. A., 1991, Nature, 349, 49
Vorontsov S. V., Baturin V. A., Pamyatnykh A. A., 1992, MNRAS, 257, 32

APPENDIX A: A VARIATIONAL PRINCIPLE FOR THE HEITZONIZATION ZONE

We consider here a variational principle, following the procedure by Monteiro (1996), for describing how the modes are affected by the presence of the region of the second ionization of the helium. We start by using a variational principle, for small changes of the eigenfrequencies (ω) due to small changes of the structure. It can be written (see Christensen-Dalsgaard et al. 1995 and references therein) in the form

$$\delta \omega^2 = \frac{\delta I}{I_1} \quad \text{with} \quad I_1 \sim \frac{1}{2} \tau \left(E_0^2 \right) . \quad (A1)$$

Here, τ_1 is the acoustic size of the Sun, and

$$\delta I \sim \int_0^{\tau_1} \left[\left(\delta B_1 \right) + \frac{d\delta B_0}{d\tau} \right] E_0^2 + \delta \tau B_2 \frac{dE_0^2}{d\tau} + \delta \tau B_3 \frac{d^2E_0^2}{d\tau^2} \right] d\tau , \quad (A2)$$

where E_0 is the normalized radial component of the eigenfunction (with constant amplitude E_0). The acoustic depth τ is defined in Eq. (2).

From asymptotic analysis (see MCDT) we also have that well inside the turning points and for moderate degree modes,

$$\frac{d^2 E_r}{d\tau^2} \sim -\omega^2 \left(1-\frac{\triangle}{E_r} \right) , \quad (A3)$$

or

$$E_r \sim E_0 \cos \left(\frac{\omega \int_0^\tau \left(1-\frac{\triangle}{E_r} \right)^{1/2} d\tau + \phi \right) . \quad (A4)$$

The changes in the structure relative to the reference (‘smooth’) model are described with the functions δB_I, as given by
\[\frac{\delta B_0}{g/c} = -\frac{\delta \rho}{\rho}, \]
\[\frac{\delta B_1}{\omega^2} = \left\{ \begin{array}{l} -\frac{1}{1-\Delta} + 2 \Delta \rho - 2 \frac{\Delta - \Delta/2}{(1-\Delta)^2} (\Delta - \Delta_c) \\
\quad - \frac{1}{(1-\Delta)^2} (\Delta - \Delta_c) \end{array} \right\} (\delta \Gamma_1/P) + \\
+ \left\{ \begin{array}{l} \frac{1}{1-\Delta} - \Delta \rho + 2 \Delta \rho \frac{\Delta - \Delta/2}{(1-\Delta)^2} (\Delta - \Delta_c) \\
\quad + \frac{\Delta}{(1-\Delta)^2} (\Delta - \Delta_c) \end{array} \right\} \frac{\delta \rho}{\rho}, \]
\[\delta B_2 = \left\{ \begin{array}{l} -2 \frac{1-\Delta}{(1-\Delta)^2} \frac{\Delta - \Delta/2}{(1-\Delta)^2} (\Delta - \Delta_c) \\
\quad - \frac{2 (1-\Delta)}{(1-\Delta)^2} \frac{\Delta - \Delta_c}{2 \Delta g} \end{array} \right\} (\delta \Gamma_1/P) + \\
+ \left\{ \begin{array}{l} 2 \frac{1-\Delta}{(1-\Delta)^2} \frac{\Delta - \Delta_c}{2 \Delta g} \end{array} \right\} \frac{\delta \rho}{\rho}, \]
and
\[\delta B_3 = \frac{1}{2} \frac{1}{1-\Delta} \frac{\delta \Gamma_1}{\Gamma_1 P} + \frac{1}{2} \frac{\Delta}{(1-\Delta)^2} \frac{\delta \rho}{\rho}. \]
where \(r, \rho, \zeta \) and \(g \) are distance from the centre, density, adiabatic sound speed and gravitational acceleration, respectively. We have also introduced the following quantities
\[\Delta = \frac{l(1+1)c^2}{r^2 \omega^2}, \]
where \(l \) is the mode degree, and
\[\Delta \rho = \frac{g}{\omega^2 c} \frac{d}{d \tau} \log \left(\frac{g}{\rho c} \right), \]
\[\Delta \zeta = \frac{g}{\omega^2 c} \frac{d}{d \tau} \log \left(\frac{g}{r^2} \right), \]
\[\Delta g = \left(\frac{g}{\omega c} \right)^2. \]
These are all first order quantities, compared to unity, because well inside the resonance cavity of the modes the local wavelength is significantly smaller than the scale of variations of the equilibrium quantities.

In order to use the expression for \(\delta I \) from Eq. (A8) it is necessary to replace the term in (\(\delta \rho B_0/\delta \tau \)) by integrating by parts to obtain for \(\delta I \);
\[\delta I = \int_{\tau_n}^{\tau_0} \left(\delta B_1 E_1^2 + (\delta B_2 + \delta B_0) \frac{dE_1^2}{d\tau} + \delta B_3 \frac{dE_2^2}{d\tau} \right) d\tau. \]
The integration is done only for the region of the ionization zone, starting at \(\tau_n \) and ending at \(\tau_0 \). Because we are restricting our analysis to localized variations, it is also assumed that the model differences are zero everywhere else. This does not affect our result since we will only take those changes in the frequencies that are not affected by model differences spreading over regions of size of the order of (or larger than) the local wavelength of the modes.

We recall, from asymptotical analysis, that
\[E_1^2 \sim \frac{E_0^2}{2} \cos(\Lambda), \]
\[\frac{dE_1^2}{d\tau} \sim -\frac{E_0^2}{2} 2 \omega (1-\Delta)^{1/2} \sin(\Lambda), \]
\[\frac{dE_2^2}{d\tau} \sim -\frac{E_0^2}{2} 4 \omega^2 (1-\Delta) \cos(\Lambda). \]
The argument of the trigonometric functions is
\[\Lambda(\tau) = 2 \int_{\tau_n}^{\tau} (1-\Delta)^{1/2} d\tau + \phi. \]
After replacing these expressions in the equation for \(\delta I \), we find
\[\frac{2 \omega^2 E_1^2}{(1-\Delta)^{1/2}} \delta I \sim \int_{\tau_n}^{\tau_0} \left[\frac{\delta B_1}{\omega^2} - 4 (1-\Delta) \delta B_3 \right] \cos \Lambda \]
\[\sim -2 (1-\Delta)^{1/2} \frac{\delta B_2 + \delta B_0}{\omega} \sin \Lambda \]
\[\int_{\tau_n}^{\tau_0} d\tau. \]
This expression gives the variational principle for perturbations in the frequencies due to small changes in the structure, as described by \(\delta B_1 \).

The next step is to establish what is the effect on the structure of the ionization zone for helium, relative to a model where such a localized effect is not present. In particular, we need to estimate how \(\Gamma_1 \), \(P \) and \(\rho \) are changed from being slowly varying functions of depth to the actual values they have when the second ionization of helium occurs. The difference will produce the \(\delta (\Gamma_1/P) \) and \(\delta \rho \) responsible for changing the frequencies, as given in Eqs (A5-A8).

That will allow us to calculate an expression for the characteristic signal we want to isolate in the frequencies.

In order to find an expression for the signal we shall first consider that the changes are dominated by \(\Gamma_1 \). In doing so, we adopt here a different approach from Monteiro (1996), who consider that the dominant contribution could be isolated in the derivative of the sound speed. We do so because the effect of the ionization is better represented as a ‘bump’ in \(\Gamma_1 \) (see Figs 1 and 2), extending over a localized region of the Sun. Therefore we retain the terms for \(\delta \Gamma_1 \), and neglect, as a first approximation, the contributions from \(\delta \rho \) and \(\delta P \). In doing so we assume that the changes in the sound speed are mainly due to the changes in the adiabatic exponent.

Now, relating \(\delta I \) to the change in the eigenvalue \(\delta \omega \) (and using Eq. (A1) it follows that
\[[\delta \omega]_{\Gamma_1} = \frac{\delta I}{\omega \tau_n E_1^2} \int_{\tau_n}^{\tau_0} \left(f_c \cos \Lambda + f_s \sin \Lambda \right) \frac{\delta \Gamma_1}{\Gamma_1} d\tau, \]
where \(f_c \) and \(f_s \) are functions obtained from adding the coefficients of \(\delta \Gamma_1 \) in the expressions of \(\delta B_0, \delta B_1, \delta B_2 \) and \(\delta B_3 \) (see Eq. (A5) and Eqs (A5-A8)).

At this point we introduce an approximate description of the effect of the second ionization of helium on the adiabatic exponent. As represented in Fig. 1b, we adopt a prescription where the ‘bump’ is approximately described by its half width \(\beta \) and height \(\delta_\beta \approx (\delta \Gamma_1/\Gamma_1)_{\tau_d} \), with the maximum located at \(\tau_d \). This corresponds to considering the following approximating simple expression for \(\delta \Gamma_1 \):

\[\delta \Gamma_1 = \frac{1}{\Gamma_1} \left\{ \begin{array}{ll} \frac{\tau - \tau_d}{\beta} & ; \tau - (1-\alpha) \beta \leq \tau \leq \tau_d \\
1 - \frac{\tau - \tau_d}{\beta} & ; \tau_d \leq \tau \leq \tau_d + (1+\alpha) \beta \\
0 & ; \text{elsewhere}. \end{array} \right. \]
\[\delta \Gamma_1 \equiv \delta_\beta \]
The region of the ionization zone starts at \(\tau_n = \tau_d - (1-\alpha) \beta \) and finishes for \(\tau_0 = \tau_d + (1+\alpha) \beta \), giving that \(0 = \tau_0 - \tau_n = 2 \beta \) is the width.
The parameter α represents the asymmetry of the bump, and for a first order analysis it does not affect the result.

We further consider that the functions f_s and f_c are slowly varying functions of the structure when compared with the size of the ionization zone ($\sim 2\beta$), and so their derivatives can be ignored in the integration. Using this approximation we may integrate Eq. (A17) finding that

$$[\delta \omega]_{\Gamma_1} \sim \omega \beta \frac{\delta \Lambda}{2\tau} \left\{ \sin \left[\frac{\omega \beta (1+\Delta)^{1/2}}{\omega \beta (1-\Delta)^{1/2}} \right] \right\}^2$$

$$\times \left(f_c \cos \Lambda_d + f_s \sin \Lambda_d \right).$$

(A19)

All quantities are now evaluated at $\tau = \tau_d$.

Taking the dominant contributions (in terms of powers of ω and derivatives of the reference structure – see CDMT for details) of the functions f_c and f_s (Eq. A16), we can finally write the signal as being

$$[\delta \omega]_{\Gamma_1} \sim \frac{3\delta \Lambda}{2\tau} \frac{1-2\Delta/3}{1-\Delta} \frac{\omega \beta (1+\Delta)^{1/2}}{\omega \beta (1-\Delta)} \sin \Lambda_d \cos \Lambda_d.$$ \hspace{1cm} (A20)

This is the expression that describes the ‘additional’ contribution to the frequencies of oscillation ω_{nl} if the region of the second ionization of helium is present. By assuming that we have

$$\omega_{nl} \equiv [\omega_{nl}]_{\text{smooth}} + [\delta \omega_{nl}]_{\Gamma_1},$$ \hspace{1cm} (A21)

it is now possible to try removing the smooth component $[\omega_{nl}]_{\text{smooth}}$, by adjusting the frequencies to the expression we have found for the ‘periodic’ component $[\delta \omega_{nl}]_{\Gamma_1}$. In doing so the parameters describing the structure of the Sun at the location τ_d are determined.