Compilation of $D^0 \rightarrow \bar{D}^0$ Mixing Predictions

Harry Nelson

November 28, 2021

Abstract

We present a compilation of predictions for the amplitudes of $D^0 - \bar{D}^0$ mixing.

We are not aware of any exhaustive compilation of predictions for the amplitudes for $D^0 \rightarrow \bar{D}^0$. We have therefore found it helpful to compile, here, those predictions that we have found in a rudimentary search of the literature.

Our search has depended upon the SLAC Spires data base, available at the URL:

http://www-spires.slac.stanford.edu/find/hep.

We keep an annotated table of all of the references that we have found, hyperlinked where possible into both the SLAC Spires and LANL xxx data bases, at the URL:

http://hep.ucsb.edu/people/hnn/wrongd/predictions/pred.html.

For all predictions, it is useful to know how to convert between the two common standards for quoting the mixing amplitudes: x and y, or ΔM and $\Delta \Gamma$.

Denote the mean life of the D^0 as $\tau_{D^0} = 415 \pm 4 \text{ fs}$, and the full width of the D^0 as $\Gamma_{D^0} = 1/\tau_{D^0}$. In the limit of CP conservation, $\Delta M = 2M_{12}$ and $\Delta \Gamma = \Gamma_{12}$, where M_{12} and $\Gamma_{12}/2$ are the mixing amplitudes through virtual and real intermediate states, respectively.

Then,

$$x = \frac{\Delta M}{\Gamma_{D^0}} = \frac{\Delta M}{\tau_{D^0}}$$

$$= \left[\frac{c \tau_{D^0}}{\hbar c} \right] \times \Delta M$$

$$= \left[\frac{2.998 \times 10^{23} \text{fm/s} \times 415 \times 10^{-15} \text{s}}{0.1973 \text{GeV-fm}} \right] \times \Delta M \text{ (GeV)}$$

$$y = \frac{\Delta \Gamma}{2 \Gamma_{D^0}}$$

$$= \frac{\Delta \Gamma}{2 \Gamma_{D^0}} = [3.15 \times 10^{11}] \times \Delta \Gamma \text{ (GeV)}$$

For Standard Model predictions, we have not made an effort to update author’s limits for new values of the parameters that describe quark mixing (the CKM matrix elements), or the mass of the top, or any other, quark. We let the predictions of the authors stand as originally made.
Occasionally, new authors have revised the predictions of older authors. We simply include both predictions.

All non-Standard Model predictions concern \(x \), the amplitude for mixing through virtual intermediate states (in units of one-half the mean \(D^0 \) decay rate). Most non-Standard Models contain numerous adjustable parameters; generally, we have tried to take values of the adjustable parameters that the authors themselves recommend.

Our compilation of predictions are summarized in Tables 1-2 and Fig. 1.

We assign a ‘Reference Index’ to each prediction that we include, and the first column of the Tables 1-2 is that Reference Index. Roughly, the reference index is assigned chronologically. The predictions are then plotted in Fig. 1, with the horizontal axis being this Reference Index.

Some papers contain multiple predictions. Usually we assign each prediction a new Reference Index. However, a family of predictions is usually assigned a range of predictions, and is plotted in Fig. 1 as a central value and an error bar, where the error bar construes the range, above a single Reference Index.

When mixing is measured with the decay of the \(D^0 \) to a particular hadronic final state \(f_{\text{had}} \), there is the possibility of a \(CP \)-conserving, relative strong phase \(\delta \) between the amplitude for the decay \(D^0 \to f_{\text{had}} \), and that for \(\bar{D}^0 \to f_{\text{had}} \).

In the useful case of \(f_{\text{had}} = K^+\pi^- \), it has been argued that \(\delta \) is small. Although the strong phase \(\delta_I \), between the decay amplitudes for \(\bar{D}^0 \to K^+\pi^- \) to specific isospin configurations of the \(K^+\pi^- \) system, is known to be large, the relative strong phase \(\delta \) between the total \(\bar{D}^0 \to K^+\pi^- \) and \(D^0 \to K^+\pi^- \) amplitudes is probably much smaller.

The presence of the relative strong phase \(\delta \) causes mixing studies that use a specific hadronic final state to be, in effect, sensitive to a rotated set of mixing amplitudes:

\[
\begin{align*}
y' &= y \cos \delta - x \sin \delta \\
x' &= x \cos \delta + y \sin \delta
\end{align*}
\]

When \(\delta \) is small, \(y' \approx y \), and \(x' \approx x \).
Figure 1: $D^0 - \bar{D}^0$ mixing predictions; the vertical direction, read off the left scale, is the mixing amplitude x, y, or, if the appropriate strong phase is negligible, x', y'. The right vertical scale is the equivalent mixing rate, which is either $(1/2)x^2$ or $(1/2)y^2$. The horizontal is the Reference Index, which is a number assigned to each prediction, and documented in Tables 1-2. The open triangles (blue) are Standard Model predictions for x, the open squares (green) are Standard Model predictions for y, and the solid circles (magenta) are non-Standard Models for x.
Table 1: Reference Indices from 1 to 40. The notation S stands for ‘Standard Model’ and the notation NS stands for ‘non-Standard Model’. The notation ‘±’ does not indicate a 1σ region, but an entire range of predictions, where unknowable parameters govern the variation.

Reference Index	Citation	Amplitude	S/NS	Value	Comment
1	1	x	NS	6 × 10⁻²	Family Symmetry
2	4	x	S	(0.9 ± 3.7) × 10⁻⁴	Short Distance
3	1	y	S	−(0.06 − 8.0) × 10⁻⁴	Short Distance
4	4	x	NS	(0.11 ± 1.8) × 10⁻³	Higgs Doublet
5	3	x	S	1.2 × 10⁻³	Short Distance
6	3	y	S	(0.082 ± 2.1) × 10⁻⁷	Short Distance
7	4	x	S	(1.44 ± 0.79) × 10⁻⁶	Short Distance
8	3	y	S	2.2 × 10⁻⁷	Short Distance
9	7	x	NS	5 × 10⁻²	Higgs Doublet
10	1	x	NS	(0.6 − 6.0) × 10⁻⁵	L-R Symmetry
11	6	x	NS	(0.6 − 6.0) × 10⁻⁴	Broken L-R Symmetry
12	12	x	NS	(5.05 ± 1.85) × 10⁻²	Kane-Thun Model
13	7	x	NS	(0.06 − 60) × 10⁻⁸	SUSY
14	14	x	NS	(0.06 − 60) × 10⁻⁵	SUSY - large CKM
15	8	x	S	(0.01 − 10) × 10⁻²	Long Distance
16	8	y	S	(0.01 − 10) × 10⁻²	Long Distance
17	3	x	S	6.3 × 10⁻⁴	Long Distance
18	10	x	NS	6.3 × 10⁻⁶	L-R Sym., 10 TeV Higgs
19	10	x	NS	8.5 × 10⁻³	FCNC, at K⁰ bound
20	12	x	NS	(0.15 − 90) × 10⁻³	Superstring-inspired E₆
21	13	x	S	4.4 × 10⁻⁴	Short Distance
22	13	x	NS	4.4 × 10⁻²	Higgs Doublets, m_H = 1 TeV
23	14	x	NS	(0.1 − 10) × 10⁻²	Fourth Generation
24	15	x	NS	(0.06 − 40) × 10⁻⁴	FCNC, seesaw limit
25	10	x	S	3.2 × 10⁻²	Long Distance
26	17	x	S	(1.4 ± 0.8) × 10⁻⁵	HQET
27	18	x	NS	≈ 0.1	(s)/quark mass matrix align.
28	19	x	NS	0.11	Flavor Changing Scalar Int.
29	20	x	S	1.2 × 10⁻⁵	Short Distance
30	20	y	S	1.2 × 10⁻⁵	Short Distance
31	20	x	S	2.5 × 10⁻⁴	Dispersive
32	20	x	S	(1.5 ± 0.5) × 10⁻⁵	HQET
33	21	x	S	3.2 × 10⁻⁶	Short Distance
34	22	x	S	3.0 × 10⁻⁶	Short Distance
35	23	x	S	6.0 × 10⁻⁵	Dispersive
36	22	x	S	(1.5 ± 0.5) × 10⁻⁵	HQET
37	22	x	NS	(0.006 − 120) × 10⁻³	4th Generation
38	22	x	NS	(0.004 − 120) × 10⁻³	Higgs Doublet
39	22	x	NS	(0.06 − 120) × 10⁻³	Flavor-Changing Higgs
40	23	x	NS	6.3 × 10⁻⁴	Isosinglet Quarks
Table 2: Reference Indices from 41 to 65. The notation S stands for ‘Standard Model’ and the notation NS stands for ‘non-Standard Model’. The notation ‘±’ does not indicate a 1σ region, but an entire range of predictions, where unknowable parameters govern the variation.

Reference Index	Citation	Amplitude	S/NS	Value	Comment
41	24	x	S	5.8×10^{-5}	Short Distance
42	24	x	S	$(1-10) \times 10^{-3}$	Long Distance
43	24	x	S	2.7×10^{-4}	Dispersive
44	24	x	S	$(1.5 \pm 0.5) \times 10^{-5}$	HQET
45	24	x	NS	$(0.06-120) \times 10^{-3}$	4th Generation
46	24	x	NS	$(0.04-120) \times 10^{-3}$	Higgs Doublet
47	24	x	NS	5×10^{-2}	Tree Level FCNC
48	24	x	NS	0.1	SUSY
49	25	x	S	3×10^{-5}	Short Distance
50	25	x	S	$(6.0 \pm 1.4) \times 10^{-3}$	Broken SU(3), Octet
51	25	x	S	6×10^{-2}	Upper Limit
52	26	y	S	1.5×10^{-3}	Phenomenological B. R.’s
53	27	x	NS	$(0.6-6) \times 10^{-5}$	Higgs Doublet
54	27	x	NS	$(0.6-6) \times 10^{-1}$	Higgs Doublet
55	27	x	NS	$(0.6-6) \times 10^{-6}$	Higgs Doublet
56	28	x	NS	5×10^{-4}	SUSY
57	29	x	S	2.5×10^{-6}	Dipenguin
58	30	x	NS	6×10^{-4}	Neutral Scalar Subquarks
59	31	x	NS	$(0.06-600) \times 10^{-4}$	Singlet Quarks
60	32	x	S	1.4×10^{-5}	$U(4)_L \times U(4)_R$ Chiral
61	33	x	S	1.5×10^{-4}	Long Dist. - Resonances
62	33	y	S	1.1×10^{-4}	Long Dist. - Resonances
63	34	x	NS	3×10^{-3}	FCNC Dualized SM
64	35	x	NS	2.1×10^{-2}	SUSY Broken by Flavor
65	36	x	NS	3.0×10^{-2}	Flavor Changing from Higgs
References

[1] C. Caso, et. al. European Physical Journal C 3 1 (1998).
[2] T. E. Browder and S. Pakvasa, Phys. Lett. B 383, 475 (1996); hep-ph/9508362.
[3] G. Volkov, V. A. Monich, and B. V. Struminski, Yad. Fiz. 34, 435 (1981).
[4] H.-Y. Cheng, Phys. Rev. D 26, 143 (1982).
[5] E. A. Paschos, B. Stech, and U. Türke, Phys. Lett. B 128, 240 (1983).
[6] A. Datta and D. Kumbhakar, Z. Phys. C 27, 515 (1985).
[7] A. Datta, Phys. Lett. B 154, 287 (1985).
[8] L. Wolfenstein Phys. Lett. B 164, 170 (1985).
[9] J. F. Donoghue, E. Golowich, B. R. Holstein, and J. Trampetić, Phys. Rev. D 33, 179 (1986).
[10] G. Ecker and W. Grimus, Z. Phys. C 30, 293 (1986).
[11] I. I. Bigi, G. Köpp, and P. M. Zerwas, Phys. Lett. B 166, 238 (1986).
[12] B. Mukhopadhyaya, A. Raychaudhuri, and A. Ray-Mukhopadhyaya, Phys. Lett. B 190, 93 (1987).
[13] T. P. Cheng and M. Sher, Phys. Rev. D 35, 3484 (1987).
[14] K. S. Babu, X. G. He, X. Li, and S. Pakvasa, Phys. Lett. B 205, 540 (1988).
[15] A. S. Joshipura, Phys. Rev. D 39, 878 (1989).
[16] P. Colangelo, G. Nardulli, and N. Paver, Phys. Lett. B 224, 71 (1990).
[17] T. Ohl, G. Ricciardi, and E. Simmons, Nucl. Phys. B 403, 71 (1993); hep-ph/9301212.
[18] Y. Nir and N. Seiberg, Phys. Lett. B 309, 337 (1993); hep-ph/9304407.
[19] L. Hall and S. Weinberg, Phys. Rev. D 48, 979 (1993); hep-ph/9303241.
[20] G. Burdman, in The Future of High-Sensitivity Charm Experiments, edited by Daniel M. Kaplan and Simon Kwan, (Fermilab, Batavia, Ill., 1994) pp. 75-84; hep-ph/9407378.
[21] S. Pakvasa, Chin. J. Phys. 32, 1163 (1994); hep-ph/9408270.
[22] J. L. Hewett, in The Albuquerque Meeting, edited by Sally Seidel, (World Scientific, River Edge, N.J., 1995) pp. 951-955; hep-ph/9409379.
[23] G. C. Branco, P. A. Parada, Phys. Rev. D 52, 4217 (1995); hep-ph/9501347.
[24] G. Burdman, in Workshop on the Tau/Charm Factory, edited by Jose Repond, (AIP Press, Woodbury, N.Y., 1995) pp. 409-424; hep-ph/9508349.
[25] T. A. Kaeding, Phys. Lett. B 357, 151 (1995); hep-ph/9505393.
[26] F. Buccella, M. Lusignoli, and A. Pugliese, Phys. Lett. B 379, 249 (1996); hep-ph/9601343.
[27] D. Atwood, L. Reina, and A. Soni, Phys. Rev. D 55, 3156 (1997); hep-ph/9609279.
[28] A. G. Cohen, D. B. Kaplan, F. Lepeintre, and A. E. Nelson, Phys. Rev. Lett. 78, 2300 (1997); hep-ph/9610252.
[29] A. A. Petrov, Phys. Rev. D 56, 1685 (1997); hep-ph/9703335.
[30] T. Matsushima, hep-ph/9704316.
[31] I. Kakebe and K. Yamamoto, Phys. Lett. B 416, 184 (1998); hep-ph/9705203.
[32] G. Amoros, F. J. Botella, S. Noguera, and J. Portoles, Phys. Lett. B 422, 265 (1998); hep-ph/9707293.
[33] E. Golowich and A. A. Petrov Phys. Lett. B 427, 172 (1998); hep-ph/9802291.
[34] J. Bordes, H.-M. Chan, J Faridani, J Pfaudler, and S.-T. Tsou, Phys. Rev. D 60, 013005 (1999); hep-ph/9807277.
[35] D. E. Kaplan and G. D. Kribs, hep-ph/9906341.
[36] K. S. Babu and S. Nandi, hep-ph/9907213.