Case Report
A Strangulated Congenital Diaphragmatic Bochdalek Hernia Diagnosed in an Adult

Warsinggih Warsinggih,1,2 Julianus Aboyaman Uwuratuw,1 Arham Arsyad,1 and Muhammad Faruk3
1Division of Digestive, Department of Surgery, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
2Division of Digestive, Department of Surgery, Dr. Wahidin Sudirohusodo Hospital, Makassar, Indonesia
3Department of Surgery, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia

Correspondence should be addressed to Warsinggih Warsinggih; kbd.warsinggih@gmail.com

Received 13 February 2022; Revised 19 May 2022; Accepted 1 July 2022; Published 20 July 2022

1.Introduction

Congenital diaphragmatic hernia (CDH) is defined by an abnormality in the diaphragm that causes the contents of the abdomen to protrude into the thoracic cavity, thereby impairing lung development [1, 2]. CDH is one of the most serious neonatal abnormalities and has a prevalence of one in every 3000 live newborns [3]. This type of hernia is found on the right side of the body in 15–20% of CDH cases and on the left side in 80–85% of cases. Occurrence on both sides of the diaphragm is rare [3, 4]. Approximately 55–67% of patients with CDH survive [5, 6].

CDH includes Bochdalek hernias (BHs) (70%), which are present in the posterior-lateral diaphragm, and Morgagni hernias (25–35%), which occur in the anterior or central diaphragm (2–5%) [6]. Because BH is common in newborns and toddlers and not in adults, diagnosing this type of hernia is difficult, especially because most patients are unaware of it due to the mild delayed symptoms of CDH [3].

We herein report an uncommon case in which an adult male was suffering from a left-sided strangulated CDH of Bochdalek’s type, presenting with intermittent abdominal pain.
2. Case Presentation

An 18-year-old Asian male with a two-day history of sharp and intermittent pain on the left side of his abdomen presented to the emergency department (ED). The pain decreased while lying down and increased while eating. The patient was treated in the ED for three hours. Despite being treated with a strong opioid analgesic (fentanyl), the pain worsened, so he was referred to the surgery department for a consultation. The patient had a history of recurrent pneumonia as a toddler, and he reported experiencing tightness in the chest after eating over the previous 12-month period. This patient had no prior surgeries or trauma, did not drink alcohol, and smoked one pack of cigarettes daily.

The patient complained of an inability to pass flatus or stool for 2 days. He was alert, and his vital signs were as follows: blood pressure of 100/70 mmHg; a temperature of 36.5°C; a respiratory rate of 22 breaths per minute; a heart rate of 108 beats per minute; and a Karnofsky score of 80. On auscultation of the right and left hemithorax, the patient’s breath sounds were normal. The patient’s abdominal examination showed a bowel contour in the epigastric region and left upper quadrant (LUQ) (Figure 1), and, on auscultation, bowel sounds were increased. An empty rectal vault was found after a digital rectal examination.

The left hemidiaphragm was elevated, and there was minimal pleural effusion evident in the posteroanterior view chest X-ray. The three-view abdominal radiograph series showed that the left hemidiaphragm was filled with gas, distended, and elevated. The thoracoabdominal computerized tomography (CT) scan without contrast showed a left-sided diaphragmatic defect with herniation of the bowel into the thoracic cavity (Figure 2). Laboratory findings showed slightly elevated leukocyte levels at 12.9 × 10³/mL (normal values are 4.0–10.0 × 10³/mL), and the results from blood gas analysis were within the normal range. Therefore, we diagnosed the patient with a bowel obstruction caused by a left diaphragmatic hernia.

After this, we performed an exploratory laparotomy via a midline incision, wherein the colon ascendens and colon transversum appeared extremely dilated. An obstruction was observed on the colon ascendens and a small part of the colon transversum. There was an 8 cm defect in the posterolateral left diaphragm, through which the colon transversum, spleen, and half of the stomach had herniated (Figure 3(a)). The colon transversum was completely necrotic (Figure 3(b)), and 200 ml of serohemorrhagic fluid drained from the thorax cavity. A segmentectomy on the colon transversum, an end-to-end anastomosis, and diaphragmatic plasty using a non-absorbable monofilament were performed, after which we inserted an intrapleural catheter. The left lung was fully inflated in the postoperative chest X-ray. The patient made a full recovery and was discharged 6 days later.

3. Discussion

Vincent Alexander Bochdalek was the first to describe BH in 1848 [7, 8]. A BH is a defect that occurs at the posterior aspect of the diaphragm [9]. Adults with BH are extremely rare, accounting for approximately 0.17–6.0% of all diaphragmatic hernias diagnosed. The defect is seen on the left side in 85% of BH cases, on the right side in roughly 10% of cases, and bilaterally in approximately 5% of cases [7, 8].

The etiology of CDH is mostly unknown, but it is currently assumed to be multifactorial. The majority of instances demonstrate a single diaphragmatic abnormality manifesting as pulmonary hypoplasia and persistent
pulmonary hypertension in newborns. CDH is related to
genitourinary, cardiac, and gastrointestinal abnormalities as well as chromosomal aneuploidy, such as trisomies [2]. A
global collaborative effort found that a variety of possible
genes and environmental factors play a role in the develop-
ment of CDH in children. Despite being located on
distinct chromosomes, the majority of the genes are known
to be linked to the retinoic acid pathway. Interference with
the enzyme retinaldehyde dehydrogenase 2 (RALDH2) at a
vital moment in retinoic acid metabolism is a crucial step in
the most widely used animal model of CDH (the nitrofen
rodent model), particularly experimental models [10].

There are two common clinical presentations of adult
CDH: (1) incidental detection during X-rays for symp-
toms unrelated to the diaphragmatic hernia or (2) symptoms that arise from a visceral rupture within the
chest cavity, followed by organ strangulation and in-
carceration. Symptoms vary depending on which organ is
affected: vomiting, dysphagia, and intermittent abdomi-
al pain are common digestive symptoms, while chest
pain and dyspnea are common respiratory symp-
toms [11]. Patients with a BH experience stomach pains more
frequently, and patients with a Morgagni hernia expe-
tience these symptoms less frequently. Respiratory
symptoms are significantly more frequent in patients with
a Morgagni hernia. The stomach, small intestine, and
spleen are the most commonly displaced organs in a BH,
followed by the omentum, transverse colon, and
descending colon [9]. In this case, the transverse colon,
spleen, and half of the stomach had herniated, and the
patient had intermittent abdominal pain.

A chest X-ray and barium assays were used to make the
diagnosis. Organs, fluid, and air can be seen in the chest above
the diaphragm [6]. The best technique for diagnosis is a CT scan,
which provides the unique ability to assess the presence, lo-
cation, and size of a defect and even allows examining the
contents of distinct forms of diaphragmatic hernias. MRI is also
beneficial but is frequently unavailable in an emergency [12].
Perrone et al. assert in a systematic review that surgery is
the preferred treatment and that the preoperative context
has a significant impact [6]. The surgical treatment for this
disease is determined by the occurrence of visceral com-
plications. Most studies suggest using the thoracic approach
in an elective setting [11]. However, the abdominal approach
is preferred in an emergency setting when a visceral ab-
dominal lesion (including perforation of abdominal viscera,
obstruction, malrotation, and strangulation) is difficult to
identify and there are septic complications [11, 13]. We
decided on the abdominal approach for this case because it
was an emergency.

Due to recent advancements, minimally invasive tech-
niques (thoracoscopy and laparoscopy) have become more
feasible and safer, resulting in shorter hospital stays and
decreased morbidity rates [6, 11, 14]. Brungardt et al. re-
ported postoperative morbidity rates in patients undergo-
ning CDH repair and concluded that outcomes are similar re-
gardless of whether patients undergo an open or minimally
invasive technique [15].

Compared to other congenital anomalies worldwide, the
CDH mortality rate is high; the rates in Costa Rica and South
America are 54.8% and 56.7%, respectively [16]. According
to a recent study by the CDH Study Group, the size of the
diaphragmatic defect is the most important factor impacting
the prognosis of newborns with CDH, and it is also related to
a greater mortality rate [17, 18]. The size of the defect is also
the most likely predictor of the severity of the pulmonary
hypoplasia [18] and the incidence of associated anomalies,
such as neurodevelopmental delay [19], cerebral palsy [20],
cardiovascular malformations, the number of abnormal
organ systems, chromosomal aberrations, and frequent
occurrence of liver in the chest [17].

In conclusion, definitive diagnosis of a diaphragmatic
hernia before surgery is difficult because it is rare and has a
variety of symptoms. X-rays and CT scans are helpful in
detecting CDH. Prenatal diagnosis using ultrasonography is
possible in up to 80% of fetuses, and that method may not be

![Figure 3](image-url)
available in all regions in Indonesia or in all countries, where doctors thus continue to face a diagnostic challenge when dealing with CDHs.

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Consent

Written informed consent for publication was obtained from the patient.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this article.

Acknowledgments

We would like to express our appreciation to Bayu Satria MD for his help in providing us with the linguistic assistance for this case report, the emergency room team (Achsan A. Muin MD, Fitran Amansyah MD, Nur Hasnah MD, Ahmad Masyfuqkasim MD, Ryan C. Pratama MD, and Ivan P. Sihotang MD), and all the operating theater staff at Dr. Wahidin Sudirohusodo Hospital, Makassar, Indonesia.

References

[1] D. P. Boyd and B. F. Wooldridge, “Congenital diaphragmatic hernia in adults,” Surgery Gynecology and Obstetrics, vol. 101, pp. 536–540, 1955.

[2] P. K. Chandrasekharan, M. Rawat, R. Madappa, D. H. Rothstein, and S. Lakshminrusimha, “Congenital diaphragmatic hernia—a review,” Matern. Neonatal. Perinatol. vol. 3, p. 6, 2017.

[3] A. Malekzadegan and A. Sargazi, “Congenital diaphragmatic hernia with delayed presentation,” Case Reports in Surgery, pp. 1–4, 2016.

[4] D. Olenik, D. Codrich, F. Gobbo et al., “Hepatopulmonary fusion in a newborn. an uncommon intraoperative finding during right congenital diaphragmatic hernia surgery: case description and review of literature,” Hernia, vol. 18, no. 3, pp. 417–421, 2014.

[5] R. B. van Loenhout, D. Tibboel, M. Post, and R. Keijzer, “Congenital diaphragmatic hernia: comparison of animal models and relevance to the human situation,” Neonatology, vol. 96, no. 3, pp. 137–149, 2009.

[6] G. Perrone, M. Giuffrida, A. Annicchiarico et al., “Complicated diaphragmatic hernia in emergency surgery: systematic review of the literature,” World Journal of Surgery, vol. 44, no. 12, pp. 4012–4031, 2020.

[7] K. Amer, “Thoracoscopic approach to congenital diaphragmatic hernias in adults: southampton approach and review of the literature,” The Journal of Visualized Surgery, vol. 3, p. 176, 2017.

[8] L. A. Machado Contreras, S. P. Retamoso Díaz, G. Valencia, L. C. Morales, and M. J. Herrera Bedoya, “Sudden onset dyspnea caused by Bochdalek diaphragmatic hernia in an adult: a case report,” Journal of Medical Case Reports, vol. 15, no. 1, p. 424, 2021.

[9] J. M. Swain, A. Klaus, S. R. Achem, and R. A. Hinder, “Congenital diaphragmatic hernia in adults,” Surgical Innovation, vol. 8, no. 4, pp. 246–255, 2001.

[10] D. Tibboel, R. Wijnen, and H. IJsselstijn, “Diaphragm,” Thoracic Surgery in Children and Adolescents, Ber, Walter de Gruyter GmbH, Berlin, Boston, 2016.

[11] M. T. Vega, R. H. Maldonado, G. T. Vega, A. T. Vega, E. A. Liévano, and P. M. Velázquez, “Late-onset congenital diaphragmatic hernia: a case report,” International Journal of Surgery Case Reports, vol. 4, no. 11, pp. 952–954, 2013.

[12] M. Testini, A. Girardi, R. M. Isernia et al., “Emergency surgery due to congenital diaphragmatic hernia: case series and review,” World Journal of Emergency Surgery, vol. 12, no. 1, p. 23, 2017.

[13] Y. Zhou, H. Du, and G. Che, “Giant congenital diaphragmatic hernia in an adult,” Journal of Cardiothoracic Surgery, vol. 9, no. 1, p. 31, 2014.

[14] H. Manson, Y. Goh, P. Goldsmith, P. Scott, and P. Turner, “Congenital diaphragmatic hernia causing cardiac arrest in a 30 year old woman,” Annals of the Royal College of Surgeons of England, vol. 99, no. 2, pp. e75–e77, 2017.

[15] J. G. Brungardt, Q. A. Nix, and K. P. Schropp, “Congenital diaphragmatic hernia: demographics and 30 day outcomes in adults,” The American Surgeon, vol. 87, no. 8, pp. 1341–1346, 2021.

[16] M. D. Politis, E. Bermejo-Sánchez, M. A. Canfield et al., “Prevalence and mortality in children with congenital diaphragmatic hernia: a multicountry study,” Annals of Epidemiology, vol. 56, pp. 61–69.e3, 2021.

[17] L. Valfr` e, K. P. Lally, P. Bagolan, P. A. Lally, and P. Bagolan, “Congenital diaphragmatic hernia: defect size correlates with developmental defect,” Journal of Pediatric Surgery, vol. 48, no. 6, pp. 1177–1182, 2013.

[18] P. A. Lally, R. E. Lasky, D. Tibboel et al., “Defect size determines survival in infants with congenital diaphragmatic hernia,” Pediatrics, vol. 120, no. 3, pp. e651–7, 2007.

[19] H. IJsselstijn, C. Breatnach, A. Hoskote et al., “Defining outcomes following congenital diaphragmatic hernia using standardised clinical assessment and management plan (SCAMP) methodology within the CDH EURO consortium,” Pediatric Research, vol. 84, no. 2, pp. 181–189, 2018.

[20] S. M. Jaillard, V. Pierrot, A. Dubois et al., “Outcome at 2 years of infants with congenital diaphragmatic hernia: a population-based study,” The Annals of Thoracic Surgery, vol. 75, no. 1, pp. 250–256, 2003.