The Uptake of Apoptotic Cells Drives *Coxiella burnetii* Replication and Macrophage Polarization: A Model for Q Fever Endocarditis

Marie Benoit, Eric Ghigo, Christian Capo, Didier Raoult, Jean-Louis Mege*

Unité de Recherche sur les Maladies Infectieuses Transmissibles et Emergentes, CNRS UMR 6236, Institut Fédératif de Recherche 48, Université de la Méditerranée, Faculté de Médecine, Marseille, France

Abstract

Patients with valvulopathy have the highest risk to develop infective endocarditis (IE), although the relationship between valvulopathy and IE is not clearly understood. Q fever endocarditis, an IE due to *Coxiella burnetii*, is accompanied by immune impairment. Patients with valvulopathy exhibited increased levels of circulating apoptotic leukocytes, as determined by the measurement of active caspases and nucleosome determination. The binding of apoptotic cells to monocytes and macrophages, the hosts of *C. burnetii*, may be responsible for the immune impairment observed in Q fever endocarditis. Apoptotic lymphocytes (AL) increased *C. burnetii* replication in monocytes and monocyte-derived macrophages in a cell-contact dependent manner, as determined by quantitative PCR and immunofluorescence. AL binding induced a M2 program in monocytes and macrophages stimulated with *C. burnetii* as determined by a cDNA chip containing 440 arrayed sequences and functional tests, but this program was in part different in monocytes and macrophages. While monocytes that had bound AL released high levels of IL-10 and IL-6, low levels of TNF and increased CD14 expression, macrophages that had bound AL released high levels of TGF-β1 and expressed mannose receptor. The neutralization of IL-10 and TGF-β1 prevented the replication of *C. burnetii* due to the binding of AL, suggesting that they were critically involved in bacterial replication. In contrast, the binding of necrotic cells to monocytes and macrophages led to *C. burnetii* killing and typical M1 polarization. Finally, interferon-γ corrected the immune deactivation induced by apoptotic cells: it prevented the replication of *C. burnetii* and re-directed monocytes and macrophages toward a M1 program, which was deleterious for *C. burnetii*. We suggest that leukocyte apoptosis associated with valvulopathy may be critical for the pathogenesis of Q fever endocarditis by deactivating immune cells and creating a favorable environment for bacterial persistence.

Introduction

Infective endocarditis (IE) has long been recognized as a fatal disease. Despite the availability of antimicrobial agents and cardiac surgery, IE still causes high morbidity and mortality. About 75% of patients with IE have pre-existing cardiac diseases [1], including congenital cardiac malformations, acquired valvular dysfunction and prosthetic cardiac valves [2]. Normal endocardium is resistant to colonization by bacteria [3] unless it exhibits pre-existing lesions. Lesions expose underlying extracellular matrix proteins and enable deposition of fibrin-platelet clots [4], bacterial adhesion [5] and recruitment of monocytes, which produce tissue factor and inflammatory cytokines [6]: this usually leads to the growth of vegetation. Cardiac valve lesions are associated with pathological fluid shear stress [7]. In vitro, fluid shear stress modifies the structure and the function of the endothelium [8] and increases apoptosis of neutrophils [9], platelets [10] and monocytes (Mo) [11], suggesting that leukocyte apoptosis may be related to cardiac valvulopathy.

IE associated with negative blood culture constitutes 5% of all IE cases. It is often caused by obligate intracellular pathogens, such as *Coxiella burnetii* [12]. This bacterium that resides in Mo and macrophages [13] is the agent of the so-called Q fever. In patients with acute Q fever and valve disease, chronic endocarditis will develop in 30% to 50% of cases [14]. Q fever endocarditis is characterized by the lack of vegetations [15] and granuloma formation and impaired systemic cell-mediated immune response [13], whereas acute Q fever is usually controlled by the cell-mediated immune system [13], including the interferon (IFN)-γ pathway [16,17]. This suggests that mechanisms distinct from endothelial lesions are involved in the immune impairment associated with the development of Q fever endocarditis. It is tempting to speculate that leukocyte apoptosis induced by cardiac valvulopathy may impair the immune response to *C. burnetii* through the modulation of macrophage polarization induced by the binding of apoptotic cells. Indeed, the phagocytosis of apoptotic cells by phagocytes and neighboring cells results in a powerful anti-inflammatory and immunosuppressive response [18] via the secretion of anti-inflammatory molecules, such as interleukin (IL)-10 and transforming growth factor (TGF)-β1 [19]. Different activation states of macrophages induced by microbial products, cytokines, glucocorticoids or immune complexes have been described [20]. By referring to the Th1/Th2...
Author Summary

Infective endocarditis (IE) is a problem of public health that still causes high mortality despite antibiotic treatments. Most of the patients who develop an IE have pre-existing cardiac lesions, although the relationship between IE and valvulopathy is not clearly understood. We showed here that patients with valvulopathy exhibited increased levels of circulating apoptotic leukocytes. As the binding of apoptotic cells to monocytes and macrophages is known to inhibit their inflammatory activity, we hypothesized that the high levels of circulating apoptotic leukocytes may be responsible for the immune impairment observed in Q fever endocarditis, an IE due to Coxiella burnetii, a bacterium that survives in monocytes and macrophages. The binding of apoptotic lymphocytes to monocytes and macrophages increased the replication of C. burnetii by stimulating their anti-inflammatory response. In contrast, the binding of necrotic lymphocytes to monocytes and macrophages induced C. burnetii killing and stimulated an inflammatory response. Interferon-γ, which is associated with the control of C. burnetii infection, prevented the replication of C. burnetii in monocytes and macrophages that have bound apoptotic lymphocytes by stimulating their inflammatory response. In conclusion, we suggest that leukocyte apoptosis associated with valvulopathy may be critical for the pathogenesis of Q fever endocarditis by deactivating immune cells and creating a favorable environment for pathogen persistence.

Results

Circulating apoptosis markers in patients with valvulopathy

Apoptosis was investigated by measuring circulating nucleosomes and caspase activity in leukocytes from control subjects, patients with valvulopathy and patients with Q fever (Figure 1). In patients with valvulopathy, acute Q fever and valvulopathy or Q fever endocarditis, circulating nucleosomes (Figure 1A) and the percentage of active caspases in leukocytes (Figure 1B–F) significantly (p<0.001) increased as compared to control subjects. Interestingly, circulating nucleosomes (p<0.001) and the percentage of active caspases in leukocytes (p<0.01) was significantly higher in patients with acute Q fever and valvulopathy than in patients with acute Q fever without valvulopathy. These results showed that patients with valvulopathy exhibited increased levels of apoptotic leukocytes.

To determine which type of leukocytes was apoptotic, cells with active caspases were quantified in CD3- and CD14-gated populations (Figure 1G). In patients with valvulopathy, with or without acute Q fever, the percentages of CD3+ and CD14+ cells that expressed active caspases were significantly higher (p<0.01) as compared to control subjects and patients with acute Q fever without valvulopathy. They were similar to those found in patients with Q fever endocarditis (Figure 1G). Taken together, these results show that increased leukocyte apoptosis was associated with valvulopathy.

Binding of apoptotic lymphocytes to monocytes and macrophages

Impaired immune responses associated with Q fever endocarditis may result from the binding of apoptotic cells to professional phagocytes. Consequently, we created an experimental model to test in vivo this hypothesis. Apoptosis of lymphocytes was induced by 10−6 M dexamethasone, which stimulated apoptosis via a caspase-dependent pathway (Figure S1). As a control, necrosis of lymphocytes was induced by a 95°C shock (Figure S1).

As apoptotic cells stimulates cytoskeleton reorganization in phagocytic cells [23], we analyzed the morphological changes induced by AL and necrotic lymphocytes (NL) in Mo (Figure 2A) and MDM (Figure 2B). Resting Mo and MDM were rounded and did not present ruffles or filopodia. The F-actin distribution was roughly homogeneous in quiescent Mo and MDM. AL induced intense morphological changes consisting of membrane ruffles in Mo and MDM. In contrast to AL, NL induced the formation of numerous filopodial extensions in Mo and MDM. F-actin was redistributed around membrane ruffles and filopodial extensions induced by AL and NL, respectively. The percentage of Mo and MDM with membrane ruffles or filopodia was quantitated: AL induced membrane ruffles in about 70% of Mo (Figure 2C) and MDM (Figure 2D) whereas NL induced filopodia in about 75% of Mo (Figure 2C) and MDM (Figure 2D). These results showed that AL and NL induced distinct cytoskeleton reorganization in Mo and MDM.

Finally, we determined the time course of AL and NL binding. The binding of AL and NL to Mo and MDM was maximal after 2 h. Indeed, about 80% of Mo (Figure 2E) and MDM (Figure 2F) had bound at least one AL or NL after 2 h. Thus, a 2-h incubation time of AL and NL with Mo and MDM was used in further experiments.

Effect of apoptotic lymphocyte binding on the intracellular fate of C. burnetii

Mo and MDM were incubated with AL or NL for 2 h and infected with C. burnetii. The binding of AL and NL to Mo (Figure 3A, inset) and MDM (Figure 3B, inset) had no effect on C. burnetii phagocytosis. C. burnetii survived without replication in control Mo (Figure 3A) and moderately replicated in control MDM (Figure 3B), as determined by real-time quantitative PCR
Figure 1. Circulating apoptosis markers in patients with valvulopathy. A, The circulating levels of nucleosomes was determined by immunooassays in control subjects, patients with acute Q fever, valvulopathy, acute Q fever with valvulopathy and Q fever endocarditis. Results are expressed as individual values with medians. B–E, Active caspases were detected through FLICA fluorescence (FL1 channel) and flow cytometry analysis of leukocytes from patients with acute Q fever (B), valvulopathy (C), acute Q fever with valvulopathy (D) and Q fever endocarditis (E) compared to control subjects (gray line). F, The results are expressed as percentage of active caspases for each individual. Bars represent the median of the values. G, Active caspases were quantified in CD3+ and CD14+ leukocytes from control subjects and patients. The results represent the mean±SEM. * p<0.01 and ** p<0.001.
doi:10.1371/journal.ppat.1000066.g001
Mo that had bound AL allowed C. burnetii replication after 9 days of culture (29,000±3,000 vs. 12,600±2,000 bacterial DNA copies in control Mo, p<0.001; Figure 3A). In MDM that had bound AL, C. burnetii replication was detectable after 3 days and was significantly (p<0.05) higher at day 9 (45,000±2,000 vs. 24,280±2,200 bacterial DNA copies in control MDM, Figure 3B). The effect of AL was independent of the apoptosis-inducer agent since the replication of C. burnetii was increased in Mo and MDM that have bound apoptotic cells induced by either corticoids or staurosporine (data not shown). In contrast to AL binding, the binding of NL to Mo (Figure 3A) and MDM (Figure 3B) induced C. burnetii killing. After 9 days of culture, the bacterial load was significantly (p<0.05) decreased by 66% in Mo (Figure 3A) and by 50% in MDM (Figure 3B), as compared with control cells. Bacterial infection was also determined by immunofluorescence. The percentage of Mo (Figure 3C) and MDM (Figure 3D) that contained more than 5 bacteria increased after the binding of AL. It reached about 25% after 9 days of culture, while this percentage did not exceed 15% in control Mo and MDM (p<0.001). In contrast, the number of Mo and MDM containing more than 5

Figure 2. Binding of AL and NL to Mo and MDM. A and B, Mo (A) and MDM (B) were incubated with AL and NL for 30 min. Mo and MDM were fixed, gold-coated and analyzed by SEM or labeled with BODIPY phallacidin and observed in fluorescence microscopy. Representative micrographs are shown. C and D, the percentage of Mo (C) and MDM (D) that exhibited membrane ruffles or spikes was determined by fluorescence microscopy. E and F, Fluorescent AL and NL were incubated with Mo and MDM (ratio of 5:1) for different times. Mo and MDM were labeled with BODIPY phallacidin, and the binding of AL and NL was quantified by fluorescence microscopy. The results are expressed as the percentage of Mo (E) and MDM (F) that have bound at least one AL or NL. More than 100 cells were examined by experimental condition. The results represent the mean±SEM of 5 experiments.

doi:10.1371/journal.ppat.1000066.g002
bacteria was significantly (p<0.001) lower after NL binding (Figure 3C and D). Taken together, these results showed that AL binding stimulated *C. burnetii* replication in Mo and MDM, while the NL binding led to *C. burnetii* killing. Finally, the effect of AL and NL on *C. burnetii* replication was cell-contact dependent since the culture of Mo (Figure 3E) and MDM (Figure 3F) with AL and NL in separate chambers had no effect on *C. burnetii* replication.

In macrophages, *C. burnetii* survives in a late phagosome that fails to fuse with lysosomes [17]. The effect of AL binding on the intracellular traffic of *C. burnetii* in MDM was studied by determining the colocalization of *C. burnetii* with Lamp-1 (Lysosomal associated membrane protein-1), a marker of the late endosomes-early lysosomes, and the lysosomal protease cathepsin D. In control MDM, *C. burnetii* resided in a late phagosome unable to fuse with lysosomes (Figure 4A). Indeed, 78±6% of *C. burnetii* phagosomes were Lamp-1+ and cathepsin D− while only 22±8% of phagosomes expressed both Lamp-1 and cathepsin D (Figure 4D). The binding of AL (Figure 4B) and NL (Figure 4C) to MDM increased the maturation of the *C. burnetii* phagosome toward a mature phagolysosome: about 60% of *C. burnetii* phagosomes were Lamp-1+ and cathepsin D+ after binding of AL or NL (Figure 4D). Thus, AL and NL binding to MDM stimulated the maturation of *C. burnetii* phagosomes in the early phase of infection.

Effect of AL binding on the polarization of *C. burnetii*-infected Mo and MDM

We hypothesized that AL binding may orient Mo and MDM toward a M2 program that favors *C. burnetii* replication. Transcriptional patterns of AL-Mo and AL-MDM were compared...
by clustering algorithm analysis (Figure 5A). Mo and MDM stimulated with *C. burnetii* exhibited distinct transcriptional programs that combine M1 and M2 features. The expression of CCL18, CCL24 and Fcε-R2, associated with the M2 profile, and CD1B, CD1C and CD1D were up-regulated in both cell types. In Mo, *C. burnetii* up-regulated the expression of CCL20, which is associated with M2 polarization; CCR7 and TNF, which are associated with M1 polarization; and CD1A and Fcε-R. It only down-regulated the expression of IL-20. In *C. burnetii*-infected MDM, the expression of CCL16 and IL-1ra, which are associated with M2 polarization, and that of CXCL8, CXCL11 and IL-6, which are associated with M1 polarization, were up-regulated. The expression of the two M1 cytokines IFN-γ and TNF were down-regulated. AL binding directed *C. burnetii*-infected Mo and MDM toward a M2 program. In Mo, AL binding up-regulated the expression of CCL16, CD14, IL-10, IL-1ra, which are associated with M2 polarization, IL-6, IL-15 and the three members of the IL-10 family, IL-19, IL-20 and IL-24. AL binding also down-regulated numerous genes involved in M1 polarization, such as CCR7, IL-12p40, IL-1β, TNF and iNOS. In MDM, AL binding up-regulated the expression of IL-10, IL-1ra and TGF-β1, which are associated with M2 polarization; and CXCL10 and IL-6, which are associated with M1 polarization. The expression of the M1 markers CXCL8, CCR7, IL-12p40, IL-1β and TNF were down-regulated. In contrast to AL binding, NL binding stimulated a typical M1 profile in *C. burnetii*-infected Mo and MDM. Indeed, NL binding up-regulated the expression of the M1 molecules CCL5, CXCL8, CXCL11, CCR7, CD80, IFN-γ, TNF, IL-12p40, IL-1β and iNOS in both Mo and MDM (Figure 5A).

Functional tests confirmed the transcriptional studies. After AL binding, Mo exhibited a M2 program characterized by high levels of IL-10 and IL-6, decreased TNF release (Figure 5B) and increased expression of CD14 (*p*<0.05, Figure 5D). As found for transcriptional responses, the response of MDM was characterized by M2 features that were partly different from those of Mo. Indeed, AL-MDM released high levels of TGF-β1 (Figure 5C) and the percentage of MDM that expressed MR was significantly increased (*p*<0.001) (Figure 5E). The effect of AL binding was specific since NL binding induced a M1 program in both Mo and MDM stimulated with *C. burnetii*. Indeed, the release of TNF by Mo and MDM was increased whereas those of IL-6, TGF-β1 and IL-10 were inhibited (Figure 5B and C). In addition, the expression of CD14 in Mo (*p*<0.001, Figure 5D) and that of MR in MDM (*p*<0.001, Figure 5E) were significantly decreased.

Figure 4. Effect of AL binding on the maturation of *C. burnetii*-phagosomes. MDM (A), AL-MDM (B) or NL-MDM (C) were stimulated with *C. burnetii* for 4 h, washed and then cultured for 24 h. Cells were labeled with anti-*C. burnetii* (Alexa 546), anti-Lamp-1 (Alexa 488) and anti-cathepsin D (Alexa 647) Abs and analyzed under a confocal microscope. A–C, Representative micrographs are shown with expanded images (white rectangle). D, Percentage of *C. burnetii* phagosomes that colocalized with Lamp-1 and cathepsin D. The results represent the mean±SEM of 4 independent experiments. * p<0.01.

doi:10.1371/journal.ppat.1000066.g004
Finally, we showed that IL-10 was critically involved in the replication of *C. burnetii* since adding blocking anti-IL-10 antibodies (Abs) to AL-Mo (Figure 5F) and AL-MDM (Figure 5G) prevented bacterial replication. Anti-TGF-β1 blocking Abs prevented the replication of *C. burnetii* only in AL-MDM and had no effect in AL-Mo (Figure 5F and G). Taken together, these results showed that AL binding stimulated a clear-cut M2 profile in Mo and MDM, in which IL-10 appears critical in both Mo and MDM and TGF-β1 in MDM.

Effect of IFN-γ on *C. burnetii* replication and macrophage polarization

As IFN-γ stimulates *C. burnetii* killing in Mo and MDM [24], we wondered if it may correct the permissive effect of AL binding on *C. burnetii* replication. IFN-γ inhibited *C. burnetii* replication in AL-Mo (Figure 6A) and AL-MDM (Figure 6B). After 9 days of culture, the bacterial DNA copy number decreased from 31,100±1,330 in AL-Mo to 8,300±450 in IFN-γ-treated AL-Mo (p<0.001). In AL-MDM, the bacterial DNA copy number decreased from 47,340±2000 to 18,400±3,800 in IFN-γ-treated cells (p<0.05). The number of bacterial DNA copies was similar to that found in Mo and MDM treated with IFN-γ. The percentage of cells that contained more than 5 bacteria was also significantly (p<0.05) lower in IFN-γ-treated AL-Mo and AL-MDM (Figure S2), demonstrating that IFN-γ completely reverted the effect of AL binding on *C. burnetii* replication. In addition, IFN-γ increased the maturation of *C. burnetii* phagosomes toward phagolysosomes independently of AL binding: more than 90% of *C. burnetii* phagosomes were Lamp-1 and cathepsin D positive after IFN-γ treatment (Figure 6C–E). Finally, IFN-γ reverted the response of AL-Mo and AL-MDM toward a M1 profile. First, it caused up-regulation of CXCL8, TNF and iNOS genes and down-regulation of IL-6 and IL-10 genes in AL-Mo. It also down-regulated the expression of TGF-β1 in AL-MDM (Figure 6F). Second, the IFN-γ treatment of AL-Mo and AL-MDM induced the release of high levels of TNF and inhibited the release of IL-6, IL-10 and TGF-β1 (Figure 6G). These results showed that IFN-γ prevented the effect of AL binding on *C. burnetii* replication and polarized AL-Mo and AL-MDM toward a M1 profile.

Discussion

Patients with cardiac valve lesions have the highest risk to develop IE [2], although the role of valvulopathy in the establishment of IE is not clearly elucidated. We showed here, for the first time, that patients with valvulopathy exhibited increased levels of circulating apoptotic leukocytes, suggesting a link between valvulopathy and leukocyte apoptosis. We have previously demonstrated that Q fever endocarditis is associated with immune impairment [25,26]. The immune impairment may be due to lymphopenia induced by lymphocyte cell death but lymphopenia was not reported in Q fever endocarditis [14]. We hypothesized that the binding of apoptotic leukocytes to Mo and macrophages may be responsible for the immune impairment observed in Q fever endocarditis. To test this hypothesis, we have established an *in vitro* model to study the effect of apoptotic cells on *C. burnetii* replication.

Binding of AL to Mo and macrophages induced the formation of large membrane ruffles with local F-actin redistribution. This result is in accordance with previous reports that showed that adhesion of apoptotic cells to specific membrane receptors leads to the formation of large membrane ruffles and cytoskeleton reorganization [27,28]. We showed for the first time that NL binding induced cytoskeletal reorganization characterized by the formation of filopodia with F-actin concentration at their basis. The differences in cytoskeletal changes induced by AL and NL in Mo and MDM were not due to differences in binding levels: about 80% of Mo and MDM ingested AL and NL after 2 hours. They may result from the engagement by AL and NL of specific receptors that further modulate cytoskeleton reorganization in different ways [18,29].

The binding of AL increased *C. burnetii* replication in Mo and MDM as do IL-10, the only cytokine able to stimulate *C. burnetii* replication [30]. Our results emphasized recent studies on the impact of the binding of apoptotic cells to phagocytes on survival of intracellular pathogens. The binding of apoptotic cells to murine macrophages increases the replication of the avirulent form of *C. burnetii* [31] and the growth of *Trypanosoma cruzi* [32] and *Leishmania major* [33]. In addition, the replication of *C. burnetii* induced by AL is dependent on AL contact with Mo and MDM. It has been previously demonstrated that the contact between monocytes and apoptotic cells is required for inducing the immunosuppressive response of monocytes [34]. Finally, the receptors engaged by AL binding are likely critical for *C. burnetii* replication. Indeed, when AL were opsonized (Protocol S1) with specific Abs to engage the Fc-receptor (FcR) pathway, the replication of *C. burnetii* was prevented (Figure S3). These results are supported by the fact that apoptotic cells opsonized with antibodies, particularly IgG, are recognized by macrophage FcR and stimulate a pro-inflammatory response [35]. This also suggests that the entry pathway orients the intracellular fate of *C. burnetii*. Interestingly, the binding of AL or NL to macrophages increased the maturation of *C. burnetii* phagosomes. It has been recently shown that the uptake of apoptotic cells by macrophages or fibroblasts results in a rapid maturation of phagosomes by stimulating Rho GTPases [36]. It is tempting to speculate that the maturation of *C. burnetii* phagosomes observed after NL binding results also in the activation of Rho GTPases in Mo and MDM. However, the increased maturation of *C. burnetii* phagosomes, which occurs early during the *C. burnetii* infection, did not seem to govern the intracellular fate of bacteria in the later stages of infection.

AL binding by *C. burnetii*-infected Mo and MDM reprogrammed them toward a M2 profile, but the properties of the M2 programs were different in Mo and MDM. In AL-Mo, the expression of genes encoding four members of the IL-10 family, namely IL-10, IL-19, IL-20 and IL-24, were up-regulated. The four genes are expressed within a highly conserved cluster [37]. IL-10 is highly secreted by macrophages following ingestion of apoptotic cells [38]. IL-10 is also critically implicated in the persistence of...
microorganisms and the chronic evolution of Q fever [39]. IL-19 and IL-20 down-regulate IFN-γ expression and up-regulate that of IL-4 and IL-13 in T cells, supporting a Th2 polarization [40]. In Mo, AL binding up-regulated also the expression of IL-1ra, which is increased in patients with Q fever [41]. In MDM, AL binding up-regulated the expression of TGF-β1, which is known to interfere with the activities of IFN-γ, iNOS and superoxide anion [42–44], alter the expression of co-stimulatory molecules [45],

Figure 6. Effect of IFN-γ on AL-Mo and AL-MDM responses. Mo and MDM that had or not ingested AL were infected with *C. burnetii* for 4 h in the presence of 1000 U/ml of IFN-γ. A and B, After washing, Mo and AL-Mo (A) or MDM and AL-MDM (B) were cultured for 9 days in the presence of IFN-γ. *C. burnetii* replication was determined by qPCR. The results represent the mean ± SEM of 3 experiments. C–E. After washing, MDM and AL-MDM were cultured for 24 h in the presence of IFN-γ. Cells were labeled with anti- *C. burnetii* (Alexa 546), anti-Lamp-1 (Alexa 488) and anti-cathepsin D (Alexa 647) Abs and analyzed under a confocal microscope. Representative micrographs of IFN-γ-treated MDM (C) and AL-MDM (D) are shown with expanded images (white rectangle). In E, the results are expressed as the percentages of *C. burnetii* phagosomes that colocalised with Lamp-1 and/or cathepsin D. F. The transcriptional response of AL-Mo and AL-MDM stimulated with *C. burnetii* for 4 h in the presence or the absence of IFN-γ was analyzed by qRT-PCR. The results are expressed as the Log2 fold change and analyzed by hierarchical clustering. G. AL-Mo and AL-MDM were stimulated with heat-killed *C. burnetii* for 24 h in the presence or the absence of IFN-γ. The cytokine release was determined by immunoassays and expressed in pg/ml. The results represent the mean ± SEM of 3 experiments. *p < 0.05, **p < 0.01 and ***p < 0.001.

doi:10.1371/journal.ppat.1000066.g006
inhibit Th1/Th2 differentiation [46] and favor the expansion of regulatory T cells [47]. Interestingly, patients with acute Q fever and valvulopathy or Q fever endocarditis exhibit higher numbers of regulatory T cells as compared to patients with acute Q fever and healthy persons (our unpublished data). We also found that IL-6 was up-regulated in both AL-Mo and AL-MDM. IL-6 is largely considered as an enhancer of the inflammatory response. However, IL-6 can also act as a modulator of inflammatory responses since it shifts the T cell response toward a Th2 response by inducing B cell maturation [48]. Recently, it has been reported that IL-6 and TGF-β1 act together in inducing IL-10 production in T cells [49]. We can suppose that, in Q fever, IL-6 may contribute to the defective control of C. burnetii infection by macrophages. Finally, the replication of C. burnetii stimulated by AL binding was strongly associated with the production of M2 cytokines since IL-10 and TGF-β1 neutralization abolished bacterial replication. These results suggest a direct role of IL-10 and TGF-β1 in the signaling pathway leading to C. burnetii replication.

In contrast to AL binding, NL binding induced C. burnetii killing and a M1 transcriptional program in Mo and MDM. These results confirmed previous studies on the bactericidal response of Mo and MDM against C. burnetii induced by inflammatory cytokines, such as IFN-γ [24]. In addition, the expression of genes associated with a M2 program was down-regulated; particularly, the gene encoding IL-10 was inhibited in NL-Mo while the gene encoding TGF-β1 was inhibited in NL-MDM. Our results are consistent with other reports. The binding of necrotic cells induces the release of inflammatory cytokines by MDM [50]. It also induces the expression of major histocompatibility complex class II molecules by antigen-presenting cells and increases their ability to activate T cells [51].

Finally, IFN-γ inhibited the effect of AL binding on the C. burnetii replication in Mo and MDM. It induced C. burnetii killing and complete necrosis of C. burnetii phagosomes. In contrast to LPS that is unable to inhibit the anti-inflammatory response of peripheral blood mononuclear cells (PBMCs) and Mo after binding of apoptotic cells [19,34], IFN-γ reverted the M2 program induced by AL. It is likely that C. burnetii infection amplifies the inflammatory signal induced by IFN-γ to engage Mo and MDM toward a M1 profile. We can also suppose that the engagement of a broad number of receptors by C. burnetii, such as TLR4 [52], TLR2 [53] and the αβ integrin [54], in the presence of IFN-γ counter-balances the anti-inflammatory signals delivered by AL to phagocytic cells.

In conclusion, we showed that valvulopathy increased the rate of circulating apoptotic leukocytes and we provided a model in which apoptotic cells play a key role in the establishment of Q fever endocarditis (Figure 7). The binding of apoptotic cells increased C. burnetii replication by subverting phagocyte responses; Mo and MDM, polarized toward M2 profiles, stimulate type 2 responses that are non-protective against most pathogens. If the systemic apoptosis of leukocytes occurs in an inflammatory context, such as that found in the presence of IFN-γ, the effect of AL binding is inhibited; Mo and MDM, polarized toward a M1 program, are able to kill C. burnetii as do patients with acute Q fever without valvulopathy. Our results give new comprehensive insights into the pathological processes resulting from valvulopathy that are associated with the high risk to develop rare and atypical IE.

Materials and Methods

Patients

Informed and written consent was obtained from each subject and the study was approved by the Ethics Committee of the Université de la Méditerrannée. Nine patients with valvulopathy (5 men and 4 women, mean age of 69.3 years), 10 with acute Q fever (3 men and 7 women, mean age of 46.3 years), 11 with acute Q fever and valvulopathy (6 men and 5 women, mean age of 51.3 years) and 11 with Q fever endocarditis (7 men and 4 women, mean age of 47.6 years) were included. Ten healthy persons (6 men and 4 women, mean age of 35.0 years) were included as controls. The diagnosis of acute and chronic Q fever was based on epidemiological and clinical features, as previously described [55].

Circulating apoptosis markers

Plasma levels of nucleosomes were measured using the ELISA cell death detection plus kit from Roche Diagnostics. This assay is based on a quantitative sandwich enzyme immunoassay that recognizes DNA and histones [56]. The specific enrichment factor in nucleosomes, expressed in arbitrary units, was calculated as previously described [57].

Caspase activity of leukocytes was measured with the Apoptosis Detection PolyCaspase Assay Kit (Immunochemistry Technologics), as previously described [57]. Briefly, 100 µl of EDTA-collected blood were incubated with 5 µl of FLICA solution for 1 h and then with 20 µl of CD3-PE or CD14-APC for 15 min. After washing, leukocytes were fixed and analyzed by flow cytometry (EPICS XL, Coulter Beckman). The percentage of CD3+ or CD14+ leukocytes with active caspasas was determined using the Expo32 ADC and the WinMDI 2.8 software.

Bacteria

C. burnetii organisms (Nine Mile strain) were cultured as previously described [54]. Dilacerated spleens of BALB/c mice infected with 10⁶ C. burnetii organisms for 7 days were added to L929 cells. Infected cells were sonicated and centrifuged at 300 xg for 10 min. Supernatants were collected and centrifuged at 10,000 xg for 10 min. Bacteria were then washed and stored at −80°C. The concentration of organisms was determined by Gimenez staining and the bacterial viability was assessed using the LIVE/DEAD BacLight bacterial viability kit (Molecular Probes).

Cell isolation and culture

PBMCs were isolated from leukopacks (Établissement Français du Sang, Marseille, France) by Ficoll gradient (MSL, Eurobio) and suspended in RPMI 1640 containing 20 mM HEPES, 10% fetal calf serum (FCS), 2 mM L-glutamine, 100 U/ml penicillin and 100 µg/ml streptomycin (Invitrogen). PBMCs were incubated in flat-bottom 24-well plates (Nunc) for 60 min at 37°C. After washing, adherent cells were designated as Mo (90% of cells expressed CD14) and MDM were obtained by a 7-day culture, as recently described [56]. Non-adherent cells were designated as lymphocytes (90% of them expressed CD3). Lymphocyte apoptosis, induced by incubation with dexamethasone (Merck) for 24 h [59], and necrosis, induced by heat shock, were determined by flow cytometry using the annexin V/Propidium Iodide (PI) kit (Roche) (Figure S1). Mo and MDM were incubated with AL or NL (ratio of 1:5) for different periods, washed to remove unbound AL or NL, and infected with C. burnetii. In some experiments, Mo and MDM were separated from AL or NL using culture inserts (0.4-µm pore size; Transwell, Costar) in 24-well plates before C. burnetii infection.

C. burnetii infection of Mo and MDM

Mo and MDM were incubated with C. burnetii (bacterium-to-cell ratio of 200:1) for 4 h. After washing to remove free bacteria (time designated as day 0), infected cells were cultured for 12 days. In
some experiments, recombinant human IFN-\(\gamma\) (1000 U/ml, Peprotech Inc.), monoclonal anti-IL-10 (10 ng/ml, R&D Systems) or anti-TGF-\(\beta\)1 (10 ng/ml, R&D Systems) Abs were added every 3 days. Infection was quantified by immunofluorescence [52] and qPCR. DNA was extracted with the QIAamp Blood Mini Kit (Qiagen) and stored in a volume of 100 \(\mu\)l at –20°C. qPCR was performed using 5 \(\mu\)l of DNA extract and the LightCycler FastStart DNA SYBR green system (Roche), as previously described [60]. Primers (Table S1) amplified a 75-bp fragment of the C. burnetii com1 gene (GenBank accession no. AF318146).

C. burnetii intracellular trafficking

MDM were infected with C. burnetii for 4 h (bacterium-to-cell ratio of 200:1), washed and cultured for 24 h. Cells were fixed in 3% paraformaldehyde, permeabilized with 0.1% Triton X-100 and immunofluorescence labeling was performed according to standard procedures [61]. Briefly, MDM were incubated with human anti-C. burnetii (1:4,000 dilution), mouse anti-Lamp-1 (1:1,000 dilution, DIHSB, Developmental Studies Hybridoma Bank) and rabbit anti-cathepsin D (1:1,000 dilution, a gift from S. Kornfeld, Washington University School of Medicine, St. Louis, Missouri) Abs for 30 min. Bacteria were revealed by Alexa 546-conjugated F(ab')2 anti-human IgG Abs, Lamp-1 by Alexa 488-conjugated anti-mouse IgG Abs and cathepsin D by Alexa 647-conjugated anti-rabbit IgG Abs. All secondary Abs were used at a 1:500 dilution. The colocalization of bacteria and intracellular markers was examined by laser scanning microscopy using a confocal microscope (Leica TCS SP2) with a 63×/1.32-0.6 oil CS lens and an electronic Zoom 3×. Optical sections of fluorescent images were collected at 0.25-\(\mu\)m intervals using the Leica Confocal software and processed using the Adobe Photoshop V5.5 software. At least 65 MDM were examined for each experimental condition and the results are expressed as the percentage of bacteria that colocalized with fluorescent markers.

Transcriptional profile of Mo and MDM

Mo and MDM were stimulated with C. burnetii for 4 h. Total RNA was purified using the RNeasy Mini Kit (Qiagen), according

Figure 7. Leukocyte apoptosis and Q fever evolution. Valvulopathy is associated with increased apoptosis of circulating leukocytes. In the model of Q fever endocarditis, the uptake of apoptotic cells by Mo and MDM increases bacterial replication through the polarization of Mo and MDM toward M2 profiles that are non-protective against most pathogens. In patients without valvulopathy or in immunocompetent patients that produce IFN-\(\gamma\), Mo and MDM are polarized toward a M1 program and are able to kill C. burnetii.

doi:10.1371/journal.ppat.1000066.g007
to the manufacturer’s protocol. DNase treatment was performed with the RNase-free DNase set (Qiagen). The transcriptional pattern of cells was studied using a cDNA chip containing 440 arrayed sequences (Oligo GEArray Human Hematology/Immunology, SuperArray). Ten μg of RNA were transcribed into biotin-labeled cDNA by the MMLV reverse transcriptase (RT). Membranes were then hybridized with biotin-labeled cDNA and incubated with streptavidin-conjugated alkaline phosphatase. Chemiluminescence was visualized by autoradiography. Datasets were analyzed with the GEArray Expression Analysis Suite software (SuperArray) and the TIGR’s Multiexperiment Viewer. Data were submitted to the ArrayExpress database (MIAME Accession number E-MEXP-1299). For qRT-PCR studies, reverse transcription of RNA was performed with the MMLV-RT kit (Invitrogen), according to the manufacturer’s protocol. The primers (Supplemental data, Table I) were designed using the primer3 tool (http://frodo.wi.mit.edu/cgi-bin/primer3/primer3 www.cgi). RT was omitted in negative controls. The fold change in target gene cDNA relative to the β-actin endogenous control was determined as follows: fold change = 2−ΔΔCt, where ΔΔCt = (CtTarget − CtActin/reference condition) − (CtTarget − CtActin/test condition). Ct values were defined as the number of cycles for which the fluorescence signals were detected [62].

Immuoassays
Mo and MDM were incubated with heat-killed (100°C for 30 min) C. burnetii organisms (bacterium-to-cell ratio of 10:1) for 24 h. Supernatants were stored at -80°C. C. burnetii organisms were labelled with annexin V-FITC and PI and analysed by flow cytometry. C. burnetii were heated at 36°C or 95°C for 15 min, labelled with annexin V-FITC and PI and analysed by flow cytometry. The results represent the mean±SEM of 5 independent experiments. Found at: doi:10.1371/journal.ppat.1000066.s002 (3.09 MB TIF)

Flow cytometry
Mo and MDM (5×10⁵ cells per well) were infected with C. burnetii for 4 h. Mo and MDM were incubated with AL uptake. Mo and AL-Mo (A) and MDM and AL-MDM (B) were incubated with C. burnetii for 4 h and then cultured for 9 days in the presence of IFN-gamma. C. burnetii replication was determined by immunofluorescence. The results represent the mean±SEM of 3 independent experiments. * p<0.05

Figure S2 Effect of IFN-gamma on the replication of C. burnetii induced by AL uptake. Mo and AL-Mo (A) and MDM and AL-MDM (B) were infected with C. burnetii for 4 h and then cultured for 9 days in the presence of IFN-gamma. C. burnetii replication was determined by immunofluorescence. The results represent the mean±SEM of 3 independent experiments. * p<0.05

Found at: doi:10.1371/journal.ppat.1000066.s003 (1.44 MB TIF)

Figure S3 Effect of AL opsonization on C. burnetii replication. AL were opsonized with mouse polyclonal Abs for 30 min before incubation with Mo (A) and MDM and AL-MDM (B) for 2 h. Cells were then washed and infected with C. burnetii for 4 h. Mo and MDM were cultured for 9 days. Every 3 days, cells were lysed, and bacterial infection was determined by qPCR. The results represent the mean±SEM of 3 independent experiments. * p<0.05 and ** p<0.01.

Found at: doi:10.1371/journal.ppat.1000066.s004 (2.42 MB TIF)

Table S1 Sequences of primers used in qPCR experiments

Primer	Accession number
AL-1	E-MEXP-1289
AL-2	E-MEXP-1289

Found at: doi:10.1371/journal.ppat.1000066.s001 (0.04 MB DOC)

Author Contributions
Conceived and designed the experiments: MB JM. Performed the experiments: MB EG. Analyzed the data: MB EG JM. Contributed reagents/materials/analysis tools: MB EG CC DR JM. Wrote the paper: MB CC DR JM.

References
1. Durack DT (1995) Prevention of infective endocarditis. N Engl J Med 332: 30–44.
2. Wilson W, Taubert KA, Gewitz M, Lockhart PB, Baddour LM, et al. (2007) Prevention of infective endocarditis: guidelines from the American Heart Association: a guideline from the American Heart Association Rheumatic Fever, Endocarditis and Kawasaki Disease Committee, Council on Cardiovascular Disease in the Young, and the Council on Clinical Cardiology, Council on Cardiovascular Surgery and Anesthesia, and the Quality of Care and Outcomes Research Interdisciplinary Working Group. J Am Dent Assoc 138: 739–745, 747–760.
3. Durack DT, Reeson PB (1972) Experimental bacterial endocarditis. I. Colonization of a sterile vegetation. Br J Exp Pathol 53: 44–49.
4. Hamill RJ (1987) Role of fibronectin in infective endocarditis. Rev Infect Dis 9 Suppl 4: S860–371.
5. Sinha B, Francois P, Que YA, Hussain M, Heilmann C, et al. (2000) Heterologously expressed Staphylococcus aureus fibronectin-binding proteins are sufficient for invasion of host cells. Infect Immun 68: 6871–6878.
6. Veltrop MH, Thompson J, Beckhuizen H (2001) Monocytes augment bacterial species- and strain-dependent induction of tissue factor activity in bacterium-infected human vascular endothelial cells. Infect Immun 69: 2977–2987.
7. Kroll MH, Helliwell JD, McIntire LV, Schafer AI, Moake JL (1996) Platelets and shear stress. Blood 88: 1525–1541.
8. Gojova A, Barakat AI (2005) Vascular endothelial wound closure under shear stress: role of membrane fluidity and flow-sensitive ion channels. J Appl Physiol 98: 2355–2362.
9. Shive MS, Salloum ML, Anderson JM (2000) Shear stress-induced apoptosis of adherent neutrophils: a mechanism for persistence of cardiovascular device infections. Proc Natl Acad Sci U S A 97: 6710–6715.
10. Leytin V, Allen DJ, Mykhaylov S, Mis L, Lyubimov EV, et al. (2004) Pathologic high shear stress induces apoptosis events in human platelets. Biochem Biophys Res Commun 320: 303–310.
11. Shive MS, Brodbeck WG, Colton E, Anderson JM (2002) Shear stress and material surface effects on adherent human monocyte apoptosis. J Biomed Mater Res 60: 148–158.
12. Houptkam P, Raoult D (2003) Blood culture-negative endocarditis in a reference center: etiologic diagnosis of 348 cases. Medicine (Baltimore) 82: 162–173.
13. Raoult D, Marrie TJ, Mege JL (2005) Natural history and pathophysiology of Q fever. Lancet Infect Dis 5: 219–226.
14. Maurin M, Raoult D (1999) Q fever. Clin Microbiol Rev 12: 518–555.
15. Lepidi H, Houpikian P, Liang Z, Raoult D (2005) Cardiac valves in patients with Q fever endocarditis: microbiological, molecular, and histologic studies. J Infect Dis 187: 1097–1106.
16. Lizzo AA, Marimon BP (1993) Variation in IFN-γ responses to Coxiella burnetii antigens with lymphocytes from vaccinated or naturally infected subjects. Clin Exp Immunol 94: 507–515.
17. Ghigo E, Capo C, Tsai C, Raoult D, Gorvel JP, et al. (2002) Coxiella burnetii survival in THP-1 monocytes involves the impairment of phagosome maturation: IFN-γ mediates its restoration and bacterial killing. J Immunol 169: 4488–4495.
18. Savill J, Dransfield I, Gregory C, Haslett C (2002) A blast from the past: clearance of apoptotic cells regulates immune responses. Nat Rev Immunol 2: 965–975.
19. Voll RE, Herrmann M, Roth EA, Stach C, Kalden JR, et al. (1997) Immunosuppressive effects of apoptotic cells. Nature 390: 350–351.
20. Mosser DM (2003) The many faces of macrophage activation. J Leukoc Biol 73: 209–212.
21. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, et al. (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25: 677–686.
22. Bronte V, Zanovello P (2005) Regulation of immune responses by L-arginine pathways. Annu Rev Immunol 23: 2345–2352.
23. Hoffmann PR, deCathelineau AM, Ogden CA, Leverrier Y, Bratton DL, et al. (2005) Regulation of immune responses by L-arginine pathways converge at CED-10 to mediate actin rearrangement and corpse engulfment. J Biol Chem 276: 13797–13802.
24. Dellacasagrande J, Ghigo E, Raoult D, Mege JL (2002) IFN-γ-induced apoptosis and microbicidal activity in monocytes harboring the intracellular bacterium Coxiella burnetii require membrane T Ng and homotypic cell adherence. J Immunol 169: 6309–6315.
25. Houstettre A, Imbert G, Ghigo E, Gouriet F, Capo C, et al. (2003) Dysregulation of cytokines in acute Q fever: role of interleukin-10 and tumor necrosis factor in chronic evolution of Q fever. J Infect Dis 187: 956–962.
26. Ghigo E, Houstettre A, Capo C, Gorvel JP, Raoult D, et al. (2004) Link between impaired maturation of phagosomes and defective Coxiella burnetii killing in patients with chronic Q fever. J Infect Dis 190: 1767–1772.
27. Tossello-Trampont AC, Brugnera E, Ravichandran KS (2001) Evidence for a conserved role for CRKII and Rac in engulfment of apoptotic cells. J Biol Chem 276: 13902–13907.
28. Kinch JM, Cabello J, Kingle D, Wong K, Feichtinger R, et al. (2005) Two pathways converge at CED-10 to mediate actin rearrangement and corpse removal in C. elegans. Nature 434: 93–99.
29. Bottcher A, Gräf US, Furrer RG, Hermann M, Girkontaite I, et al. (2006) Impaired macrophage activation and inflammatory response to apoptotic, cells. J Biol Chem 281: 10237–10243.
30. Zamboni DS, Rabinovitch M (2004) Phagocytosis of apoptotic cells increases the uptake of apoptotic cells and stimulates macrophage apoptosis. J Immunol 172: 2075–2080.
31. Freire-de-Lima CG, Nascimento DO, Soares MB, Roza PT, Castro-Faria-Neto HC, et al. (2000) Uptake of apoptotic cells drives the growth of a pathogenic trypanosome in macrophages. Nature 403: 199–203.
32. Van Zandbergen G, Klinger M, Mueller A, Dannenberg S, Gebert A, et al. (2000) Uptake of apoptotic cells drives the growth of a pathogenic trypanosome in macrophages. J Immunol 165: 2343–2352.
33. Zamboni DS, Rabinovitch M (2004) Phagocytosis of apoptotic cells increases the susceptibility of macrophages to infection with Coxiella burnetii phase II through modulation of intracellular oxidative stress. J Immunol 172: 2075–2080.
34. Erwig LP, McPhillips KA, Wynes MW, Iveric A, Ridley AJ, et al. (2006) Differential regulation of phagosome maturation in macrophages and dendritic cells mediated by Rho GTPases and ezrin–radixin–moesin (ERM) proteins. Proc Natl Acad Sci U S A 103: 12892–12897.