Detection of Social Media Exploitation via
SMS and Camera

https://doi.org/10.3991/ijim.v13i04.10521

Mohamad Adib Azhar(✉), Madihah Mohd Saudi, Azuan Ahmad, Azreena Abu Bakar
Universiti Sains Islam Malaysia (USIM), Nilai, Malaysia
jbalika@outlook.com

Abstract—Internet users all over the world are highly exposed to social media exploitation, where they are vulnerable to be targeted by this cyber-attack. Furthermore, excessive use of social media leads to Internet Addiction Disorder (IAD). Fortunately, social media exploitation and IAD can be monitored and controlled closely based on user’s mobile phone surveillance features which are camera, SMS, audio, geolocation (GPS) and call log. Hence to overcome these challenges, this paper presents five (5) Application Programming Interfaces (APIs) and four (4) permissions for SMS and camera that are mostly and widely used with the social media applications. These 9 APIs and permissions matched with 2.7% of the APIs and permissions training dataset that are related with SMS and camera. This experiment was conducted by using hybrid analysis, which inclusive of static analysis and dynamic analysis, with 1926 training dataset from Brunswick. These 9 APIs and permissions, if being misused by the attacker, could lead to privacy concerns of a mobile device. The finding from this paper can be used as a guidance and reference for the formation of new mobile malware detection technique and modeling in future.

Keywords—Social media exploitation, API, permission, SMS, camera, mobile malwares, mobile phone surveillance feature.

1 Introduction

Human emotion or desire to browse social media via mobile phone to get latest information, communicate with friends and play game, is currently becoming a trend. Unfortunately, excessive use of social media could lead to Internet Addiction Disorder (IAD) and depression. Recently, World Health Organisations (WHO) has declared gaming as one of the International Classification of Diseases (ICD-11) in year 2018. Hence, it is not impossible in future that social media addiction will be categorized as mental disorder due to its implications and impacts to serious depression and lifestyle.

In a smartphone, 5 main surveillance features which are: SMS, camera, call log, geolocation (GPS) and audio could be exploited by the attacker. They can monitor user’s movement and steal confidential information via these surveillance features. In earlier day, Short Message System (SMS) is one of the main mechanisms used by many users for communication. Until now, SMS is still being used for communication
and authentication of online banking. Apart from SMS, camera becomes as an important element in smartphone selection due to our current lifestyle. Picture can be easily disseminated to social media just in a second. Different platforms such as iOS and Android have been implemented in different smartphones and Android has been ranked as the mostly used worldwide. As a result, it is most targeted by the attackers and malwares due to its open-source distribution [1]. Malware is defined as a software that could infect devices without the owner’s consent for malicious intention and it can be categorised as virus, worm, Trojan Horse, adware, spyware, botnet or ransomware. So far, mobile botnet posed the most serious impact to the smartphone users. For an example, in August 2017, WireX botnet spreads among users from 100 countries and it has infected advertising software and launched the DDoS attacks. It hides under system processes and has been taken down from Playstore with the help from Akamai, Flashpoint and Oracle Dyn [2]. In an Android smartphone, every application has limited capability to use smartphone resources and it needs to request permission and Application Programming Interface (API) to perform any task. For an example, once a mobile application (app) is being installed, the mobile app will request a permission to use SMS and camera during first execution or during installation. Once user granted this permission, the app has the authority to send related information and request via SMS and camera.

Features such as API and permission are seen as an opportunity for exploitation [3]. Existing works by [4-12] showed the significant of API and permission usage for exploitation and malwares detection. These works used different analysis techniques such as static analysis, dynamic analysis or hybrid analysis. As for work from [12], MalDozer is proposed to detect the malwares in different of IoT devices, with API as the input. Even in 2018, works by [13-17] also applied the API and Permission in their work. The summarization of work in year 2018 can be referred in Table 1. Nonetheless, none of these works focus on social media app exploitation.

Table 1. Summarisation of related existing works

Author	Feature	Description	Challenges
[12]	API	This paper presents about malware classification.	Performance issue related with dataset.
[13]	API and permission	This paper presents how can defend against poisoning attacks from malwares efficiently.	Improvement needed for feature selection and classifier.
[14]	API and permission	This paper presents malware detection based on accuracy, recall and F-measure.	Performance issue related with the feature selection of the permission list.
[15]	API and permission	This paper presents model based on computational processes.	Improvement for limitation of malware classification based on binary format.
[16]	API	This paper presents malware detection for anti-virus scanners evasion.	Performance issue related with training dataset.

Though each of the existing works has it owns strength, but still lack of discussion on social media exploitation via API and permission. There are five (5) social media
applications (apps) have been selected for the experiment of our paper. These social media apps are chosen due to the significant impact to the Internet user lifestyle and privacy concerns. Therefore, this paper aims to identify API and permission that are possible to be used for exploitation specifically through SMS and camera.

This paper is organized as follows: Section 2 presents the methodology used in this research, while Section 3 describes the experiments findings carried out in this research and Section 4 includes the summary of the research work.

2 Methodology

The following Fig.1 is the illustration of the lab setup for the experiment conducted and Table II displays the software used. Prior matching step of the extracted API and permission, 1926 of dataset from Brunswick have been downloaded for training purpose [18]. 328 of APIs and permissions for mobile botnet have been reverse engineered by using hybrid analysis and being compared with the APIs and permissions extracted from the social media apps. Hybrid analysis is the combination of the static analysis and dynamic analysis. For this experiment the hybrid analysis is being used to ensure the full extraction from the apps are successfully retrieved. Only 1500 dataset from 1926 training dataset are fully functioning for the analysis. As for the testing, 5 social media apps have been selected where their names are being sanitized and displayed as anonymous in this paper to avoid any conflict of interest. These social media apps are among the top 5 in the world with highest usage.

![Fig. 1. Lab setup](image-url)
Table 2. Software Function

Software/Hardware	Function
Genymotion	It is used as the Android emulator.
Show Java Application/	APKtool It is used to decompile APK resource file and extract Permission.
Java Decompiler	It is used to extract API.

Fig. 2. Overall research processes

Fig. 2 represents the summarization of the whole steps during the experiment. These 5 social media apps of APIs and permissions are being reverse engineered and analyzed, and compared with the existing extracted of 328 mobile botnets APIs and permissions. This is important to classify each of the API and permission as normal or as dataset with an opportunity for malicious exploitation (refer Fig. 3). While Fig. 4, shows an example of permission extraction for the social media app.

Fig. 3. Comparison between Permissions and APIs with mobile botnet features
3 Findings

The following are the findings of API and permission classification for SMS and camera for mobile botnet from the training dataset and possible exploitation of API and permission in social media apps.

The nominal data in Table III to Table VIII represents the feature representative in symbol. Table III depicts 190 APIs extraction names from the training dataset and Table IV displays 14 APIs that are related with SMS and camera.

Nominal data	API
AP1 – AP12 : path: android/accounts/AccountManager	addAccount, addAccountExplicitly, blockingGetAuthToken, getAccounts, getAuthToken, getPassword, invalidateAuthToken, peekAuthToken, removeAccount, setAuthToken, setPassword
API13 – API18 : path: android/app/Activity	
Detection of Social Media Exploitation via SMS and Camera

AP13	sendBroadcast
AP14	setContentView
AP15	setPersistent
AP16	startActivity
AP17	startActivityForResult
AP18	startActivityIfNeeded

APIs

- `sendBroadcast`
- `setContentView`
- `setPersistent`
- `startActivity`
- `startActivityForResult`
- `startActivityIfNeeded`
- `getRecentTasks`
- `getRunningTasks`
- `killBackgroundProcesses`
- `restartPackage`

Android APIs

1. **Path:** `android/app/ActivityManager`
 - `getRecentTasks`
 - `getRunningTasks`
 - `killBackgroundProcesses`
 - `restartPackage`

2. **Path:** `android/app/Activity`
 - `reportFailedPasswordAttempt`
 - `reportSuccessfulPasswordAttempt`
 - `setActivePasswordState`
 - `setTimeZone`
 - `backup/BackupManager.dataChanged`
 - `Instrumentation.sendKeyDownUpSync`
 - `KeyguardManager$KeyguardLock.disableKeyguard`
 - `KeyguardManager$KeyguardLock.reenableKeyguard`
 - `KeyguardManager.exitKeyguardSecurely`
 - `NotificationManager.notify`
 - `Service.sendBroadcast`
 - `Service.startActivity`
 - `StatusBarManager.expand`
 - `WallpaperManager.setBitmap`
 - `WallpaperManager.setResource`
 - `WallpaperManager.suggestDesiredDimensions`

3. **Path:** `android/appwidget/AppWidgetManager`
 - `bindAppWidgetId`

4. **Path:** `android/bluetooth/BluetoothAdapter`
 - `cancelDiscovery`
 - `disable`
 - `enable`
 - `getAddress`
 - `getBondedDevices`
 - `getState`
 - `isDiscovering`
 - `isEnabled`
 - `listenUsingRfcommWithServiceRecord`
 - `startDiscovery`
 - `createRfcommSocketToServiceRecord`
 - `getBondState`
| AP52-AP54 | path: android/bluetooth/ |
|-----------|--------------------------|
| AP52 | BluetoothDevice;->getName |
| AP53 | BluetoothHeadset;->getBatteryUsageHint |
| AP54 | BluetoothSocket;->connect |
| AP55-AP65 | path: android/content/ContentResolver |
| AP55 | addPeriodicSync |
| AP56 | getMasterSyncAutomatically |
| AP57 | getSyncAutomatically |
| AP58 | openFileDescriptor |
| AP59 | openInputStream |
| AP60 | openOutputStream |
| AP61 | query |
| AP62 | removePeriodicSync |
| AP63 | setIsSyncable |
| AP64 | setMasterSyncAutomatically |
| AP65 | setSyncAutomatically |
| AP66-AP74 | path: android/content/Context |
| AP66 | sendBroadcast |
| AP67 | sendOrderedBroadcast |
| AP68 | sendStickyBroadcast |
| AP69 | setWallpaper |
| AP70 | startActivity |
| AP71 | startService |
| AP72 | ContextWrapper;->sendBroadcast |
| AP73 | ContextWrapper;->setWallpaper |
| AP74 | ContextWrapper;->startActivity |
| AP75-AP77 | path: android/content/pm |
| AP75 | PackageManager;->addPreferredActivity |
| AP76 | PackageManager;->clearPackagePreferredActivities |
| AP77 | PackageManager;->setComponentEnabledSetting |
| AP78 | path: android/ |
| AP78 | hardware/Camera;->open |
| AP79-AP88 | path: android/location/LocationManager |
| AP79 | addGpsStatusListener |
| AP80 | addNmea_listener |
| AP81 | getBestProvider |
| AP82 | getLastKnownLocation |
| AP83 | getProvider |
| AP84 | getProviders |
| AP85 | isProviderEnabled |
| AP86 | requestLocationUpdates |
| AP87 | sendExtraCommand |
| AP88 | setTestIdProviderEnabled |
Paper—Detection of Social Media Exploitation via SMS and Camera

```
| API | Description |
|-----|-------------|
| API89 | isBluetoothA2dpOn |
| API90 | isWiredHeadsetOn |
| API91 | setBluetoothScoOn |
| API92 | setMode |
| API93 | setSpeakerphoneOn |
| API94 | startBluetoothSco |
| API95 | stopBluetoothSco |
| API96 | MediaPlayer->start |
| API97 | MediaPlayer->stop |
| API98 | MediaRecorder->setAudioSource |
| API99 | MediaRecorder->setVideoSource |
| API100 | RingtoneManager->setActualDefaultRingtoneUri |
| API101 | getActiveNetworkInfo |
| API102 | getAllNetworkInfo |
| API103 | getMobileDataEnabled |
| API104 | getNetworkInfo |
| API105 | requestRouteToHost |
| API106 | setMobileDataEnabled |
| API107 | startUsingNetworkFeature |
| API108 | stopUsingNetworkFeature |
| API109 | NetworkInfo->isConnectedOrConnecting |
| API110 | WifiLock->acquire |
| API111 | WifiLock->release |
| API112 | addNetwork |
| API113 | disableNetwork |
| API114 | disconnect |
| API115 | enableNetwork |
| API116 | getConfiguredNetworks |
| API117 | getConnectionInfo |
| API118 | getDhcpInfo |
| API119 | getScanResults |
| API120 | getWifiState |
| API121 | isWifiEnabled |
| API122 | reconnect |
| API123 | removeNetwork |
| API124 | saveConfiguration |
| API125 | setNumAllowedChannels |
| API126 | setWifiEnabled |
```
Paper—Detection of Social Media Exploitation via SMS and Camera

Line	Code	Description
API127	startScan	
API128-AP130	path: android/os/PowerManager	
API128	$WakeLock;->acquire	
API129	$WakeLock;->release	
API130	reboot	
API131-AP132	path: android/os/Vibrator	
API131	cancel	
API132	vibrate	
API133-AP149	path: android/provider	
API133	Browser;->clearHistory	
API134	Browser;->clearSearches	
API135	Browser;->getAllBookmarks	
API136	Browser;->getAllVisitedUrls	
API137	Contacts$People;->addToMyContactsGroup	
API138	Contacts$People;->createPersonInMyContactsGroup	
API139	Contacts$People;->setPhotoData	
API140	ContactsContract$Contacts;->getLookupUri	
API141	ContactsContract$Contacts;->openContactPhotoInputStream	
API142	Settings$Secure;->putInt	
API143	Settings$Secure;->putLong	
API144	Settings$Secure;->putString	
API145	Settings$System;->putInt	
API146	Settings$System;->putString	
API147	TelephonySmsSent;->addMessage	
API148	Telephony$Sms;->addMessageToUri	
API149	Telephony$Threads;->getOrCreateThreadId	
API150: path: android/speech/SpeechRecognizer	startListening	
API151-AP170	path: android/telephony	
API151	gsm/SmsManager;->sendMultipartTextMessage	
API152	gsm/SmsManager;->sendTextMessage	
API153	PhoneNumberUtils;->isVoiceMailNumber	
API154	SmsManager;->copyMessageToIcc	
API155	SmsManager;->deleteMessageFromIcc	
API156	SmsManager;->getAllMessagesFromIcc	
API157	SmsManager;->sendDataMessage	
API158	SmsManager;->sendMultipartTextMessage	
API159	SmsManager;->sendTextMessage	
API160	SmsManager;->updateMessageOnIcc	
API161	TelephonyManager;->getCellLocation	
API162	TelephonyManager;->getDeviceId	
API163	TelephonyManager;->getDeviceSoftwareVersion	
API164	TelephonyManager;->getLine1Number	
Paper—Detection of Social Media Exploitation via SMS and Camera

API	Description	
AP165	TelephonyManager;->getNeighboringCellInfo	
AP166	TelephonyManager;->getSimSerialNumber	
AP167	TelephonyManager;->getSubscriberId	
AP168	TelephonyManager;->getVoiceMailAlphaTag	
AP169	TelephonyManager;->getVoiceMailNumber	
AP170	TelephonyManager;->listen AP171-AP170 : path: com/android/internal/telephony/CallerInfo AP171	getCallerInfo
AP172	markAsVoiceMail	
AP173-AP180 : path: java	AP173	lang/Runtime;->exec
AP174	net/HttpURLConnection;->connect	
AP175	net/ServerSocket;->bind	
AP176	net/URL;->getContent	
AP177	net/URL;->openConnection	
AP178	net/URL;->openStream	
AP179	net/URLConnection;->connect	
AP180	net/URLConnection;->getInputStream	
AP181 : path: org/apache	AP181	http/impl/client/DefaultHttpClient;->execute
AP182-AP184 : path: Cipher	AP182	AES
AP183	AES/CBC/PKCS5Padding	
AP184	RSA/ECB/PKCS1Padding	
AP185	Crypto-Cipher	
AP186	Get-Package-Info	
AP187	Get-System-Service	
AP188	Http-Post	
AP189	Obfuscation-base64	
AP190	Send-SMS	

Table 4. 14 APIs extracted from training dataset that are related with sms and camera

Nominal Data	API String (starts with : android)	Function
AP101	net/ConnectivityManager;->getActiveNetworkInfo	It returns details about the currently active default data network
AP102	net/ConnectivityManager;->getAllNetworkInfo	It returns connection status information about all network types supported by the device
AP104	net/ConnectivityManager;->getNetworkInfo	It returns connection status information about a particular network type.
AP147	provider/TelephonySmsSent;->addMessage	It contains all sent text-based SMS messages in the SMS app.
AP151	telephony/gsm/SmsManager;->sendMultipartTextMessage	It sends a multi-part text based SMS.
As for Table V, it displays 5 extracted APIs from the social media apps that matched and could be associated with SMS and camera exploitation from the training dataset. While Table VI displays, 138 permissions extracted from the training dataset. Table VII presents 15 permissions that are related with SMS and camera. Table VIII presents 4 permissions extracted from the social apps that matched and could be associated with SMS and camera exploitation from the training dataset.

Table 5. API associated with sms and camera from social media app

Social Media Apps	API
SM1	AP78, AP177
SM2	AP78, AP82
SM3	AP78, AP107
SM4	AP78
SM5	AP78, AP86

Table 6. Permission extracted from training dataset

Nominal data	Permission
Q1 – Q7: path: Access	
Q1	Checkin_properties
Q2	Coarse_Location
Q3	Fine_Location
Q4	Location_EXTRA_Commands
Q5	Network_State
Q6	Notification_Policy
Q7	Wifi_State
Q8	path: Account
Q8	Manager
Q9	path: Add
Q9	Voicemail
Q10	path: Battery
Q10	Stats
Q11	–Q34: path: Bind
Q11	Accessibility_Service
Q12	Appwidget
Q13	Carrier_Messaging_Service
Q14	Carrier_Services
Q15	Chooser_Target_Service
Q16	Condition_Provider_Service
Q17	Device_Admin
Q18	Dream_Service
Q19	Incall_Service
Q20	Input_Method
Q21	Midi_Device_Service
Q22	Nfc_Service
Q23	Notification_Listener_Service
Q24	Print_Service
Q25	Quick_Settings_Tile
Q26	Remoteviews
Q27	Screening_Service
Q28	Telecom_Connection_Service
Q29	Text_Service
Q30	Tv_Input
Q31	Voice_Interaction
Q32	Vpn_Service
Q33	Vr_Listener_Service
Q34	Wallpaper
Q35	–Q37: path: Bluetooth
Q35	Same as path
Q36	Admin
Q37	Privileged
Q38	path: Body_Sensors
Q38	Same as path
Q39	–Q42: path: Broadcast
Q39	Package_Removed
Q40	Sms
Q41	Sticky
Q42	Wap_Push
----	---------
Q43 – Q44: path: Call	
Q43	Phone
Q44	Privileged
Q45: path: Camera	
Q45	Same as path
Q46 – Q48: path: Capture	
Q46	Audio_Output
Q47	Secure_Video_Output
Q48	Video_Output
Q49 – Q53: path: Change	
Q49	Component_Enabled_State
Q50	Configuration
Q51	Network_State
Q52	Wifi_Multicast_State
Q53	Wifi_State
Q54: path: Clear_App	
Q54	Cache
Q55: path: Control_Location	
Q55	Updates
Q55–Q57: path: Delete	
Q56	Cache_Files
Q57	Packages
Q58: path: Diagnostic	
Q59: path: Disable_Keypad	
Q60: path: Dump	
Q61: path: Expand_Status_Bar	
Q62: path: Factory_Test	
Q63–Q66: path: Factory_Test	
Q63	Accounts
Q64	Accounts_Privileged
Q65	Package_Size
Q66	Tasks
Q67: path: Global_Search	
Q68 – Q70: path: Install	
Q68	Location_Provider
Q69	Packages
Q70	Shortcut
Q71: path: Internet	
Q72: path: Kill_Background_Processes	
Q73: path: Location_Hardware	
Q74: path: Manage_Documents	
Q75: path: Master_Clear	
Q76: path: Media_Content_Control	

Q77-Q78: path: Modify	
Q77 Audio_Settings	
Q78 Phone_State	
Q79-Q80: path: Mount	
Q79 Format_Filesystems	
Q80 Unmount_Filesystems	
Q81: path: Nfc	
Q82: path: Package_UsageStats	
Q83: path: Persistent_Activity	
Q84: path: Process_Outgoing_Calls	
Q85-Q96: path: Read	
Q85 Calendar	
Q86 Call_Log	
Q87 Contacts	
Q88 External_Storage	
Q89 Frame_Buffer	
Q90 Input_State	
Q91 Logs	
Q92 Phone_State	
Q93 Sms	
Q94 Sync_Settings	
Q95 Sync_Stats	
Q96 Voicemail	
Q97: path: Reboot	
Q98-Q101: path: Receive	
Q98 Boot_Completed	
Q99 Mms	
Q100 Sms	
Q101 Wap_Push	
Q102: path: Record_Audio	
Q103: path: Reorder_Tasks	
Q104-Q105: path: Request	
Q104 Ignore_Battery_Optimizations	
Q105 Install_Packages	
Q106: path: Restart_Packages	
Q107: path: Send_Respond_Via_Message	
Q108: path: Send_Sms	
Q109-Q118: path: Set	
Q109 Alarm	
Q110 Always_Finish	
Q111 Animation_Scale	
Q112 Debug_App	

https://www.i-jim.org
Q113: Preferred_Applications
Q114: Process_Limit
Q115: Time
Q116: Time_Zone
Q117: Wallpaper
Q118: Wallpaper_Hints
Q119: path: Signal_Persistent_Processes
Q120: path: Status_Bar
Q121: path: System_Alert_Window
Q122: path: Transmit_Ir
Q123: path: Uninstall_Shortcut
Q124: path: Update_Device_Stats
Q125: path: Use_Fingerprint
Q126: path: Use_Sip
Q127: path: Vibrate
Q128: path: Wake_Lock
Q129- Q138: path: Write
Q129: Apn_Settings
Q130: Calendar
Q131: Call_Log
Q132: Contacts
Q133: External_Storage
Q134: Gservices
Q135: Secure_Settings
Q136: Settings
Q137: Sync_Settings
Q138: Voicemail

Table 7. 15 Permissions extracted from training dataset that are related with sms and camera

Nominal Data	Function
Q5	Network information.
Q14	Binds with services in carrier apps
Q40	Broadcast SMS notification.
Q87	Reads user's contact information
Q88	Reads external storage.
Q92	Reads to phone state (phone number, network information, any ongoing call status and registered phone account
Q93	Reads SMS.
Q99	Monitors incoming MMS.
Q100	Receives SMS.
Q101	Receives WAP.
Q108	Sends SMS.
Q132: Writes user's contact information.
Q133: Writes external storage.
Q45: Accesses to the camera.
Q88: Reads from external storage.
Q133: Writes to external storage.
Q48: Captures video recording.

Social Media Apps	Permission
SM1	Q40, Q45, Q48
SM2	Q40, Q45, Q48
SM3	Q40, Q45, Q48, Q108
SM4	Q40, Q45, Q48
SM5	Q40, Q45, Q48

Table 8. Permission associated with sms and camera from social media apps

The significant of having 328 APIs and permissions (combination of Table III and VI) from the mobile botnets training dataset is, it could be used as guidance for the mobile apps developer on how the attackers could exploit the smartphone via API and permission. Furthermore, from the analysis, 29 APIs and permissions (from Table IV and Table VII) are related with SMS and camera. This represents 8.8% from the training dataset and could be used for SMS and camera exploitation. From 5 selected of social media apps, only total of 9 permissions and APIs that matched with the extracted APIs and permissions from Table IV and Table VII. This represents 2.7% from the training dataset. These APIs and permissions of SMS and camera might pose privacy and financial risks for smartphone users.

4 Conclusion

Based on the experiment conducted, it showed that social media apps could be used as the attacker’s target for SMS and camera exploitation. Since Android-based application is in open-source form, malware may camouflage itself as a legitimate mobile application. The significant finding of this paper is the identification of normal API and permission for SMS and camera and possible of API and permission SMS and API exploitation. This extracted classification can be used as input or database for the development of mobile application for detection of social media exploitation.

5 Acknowledgment

The authors would like to express their gratitude to Universiti Sains Islam Malaysia (USIM) for the support and facilities provided. This research paper is funded under grant: [PPP/USG-0216/FST/30/15116]
6 References

[1] Verma, S. Arora and P. Verma, “Android OS, its security and features”, International Journal of Recent Research Aspects, Vol. 4, Issue 3, Sept 2017, pp. 241-251.

[2] L. Thomson, “Tech firms take down WireX Android botnet”, 2017, The Register, URL: https://www.theregister.co.uk/2017/08/28/tech_firms_take_down_wirex_android_botnet/.

[3] P. R. K. Varma, K. P. Raj and K. V. S. Raju, "Android mobile security by detecting and classification of malware based on permissions using machine learning algorithms," 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), Palladam, 2017, pp. 294-299. https://doi.org/10.1109/i-smac.2017.8058358

[4] Talha, K. A., Alper, D. I., and Aydin, C., “APK Auditor: Permission-based Android malware detection system”, Digital Investigation, 13, 2015, pp.1–14. https://doi.org/10.1016/j.diiin.2015.01.001.

[5] Saracino, A., Sgandurra, D., Dini, G., and Martinelli, F., “MADAM: Effective and Efficient Behavior-based Android Malware Detection and Prevention”, IEEE Transactions on Dependable and Secure Computing, 5971(c), 2016, pp. 1–1. https://doi.org/10.1109/ TDSC.2016.2536605

[6] Yerima, S. Y., Sezer, S., and Muttik, I., “High accuracy android malware detection using ensemble learning”. IET Information Security, 9(6), 2015, pp. 313–320. https://doi.org/10.1049/iet-ifs.2014.0099

[7] EMB. Karbab, M. Debbabi, A. Derhab and D. Mouheb, “MalDozer: Automatic framework for android malware detection using deep learning”, Digital Investigation, Vol. 24, 2018, pp. S48-S59. https://doi.org/10.1016/j.diiin.2018.01.007

[8] Wang, Z., Cai, J., Cheng, S., and Li, W., “DroidDeepLearner: Identifying Android malware using deep learning. 37th IEEE Sarnoff Symposium, Sarnoff 2016, 2017, pp. 160–165. https://doi.org/10.1109/SARNOF.2016.7846747

[9] Kamesh, SPN. and Priya, S., “Security enhancement of authenticated RFID generation”. International Journal of Applied Engineering Research, 9(22), 2014, pp. 5968–5974. https://doi.org/10.1002/sec

[10] Li, J., Sun, L., Yan, Q., Li, Z., Sriska-an, W., and Ye, H. “Android Malware Detection”, IEEE Transactions on Industrial Informatics, 2018, 3203(c). https://doi.org/10.1109/TII.2017.2789219

[11] Li, D., Wang, Z., Li, L., Wang, Z., Wang, Y., & Xue, Y. (2017). FgDetector: Fine-grained Android Malware Detection, 311–318. https://doi.org/10.1109/DSC.2017.13

[12] Madihah Mohd Saudi and Muhammad ‘Affi b. Husainiamer, “Mobile Malware Classification via System Calls and Permission for GPS Exploitation” International Journal of Advanced Computer Science and Applications(IJACSA), 8(6), 2017. http://dx.doi.org/10.14569/IJACSA.2017.080636

[13] Burnap, P., French, R., Turner, F., & Jones, K. (2018). Malware classification using self organising feature maps and machine activity data. Computers and Security, 73, 399–410. https://doi.org/10.1016/j.cose.2017.11.016

[14] Chen, S., Xue, M., Fan, L., Hao, S., Xu, L., Zhu, H., & Li, B. (2018). Automated poisoning attacks and defenses in malware detection systems: An adversarial machine learning approach. Computers and Security, 73, 326–344. https://doi.org/10.1016/j.cose.2017.11.007

[15] Li, J., Sun, L., Yan, Q., Li, Z., Sriska-an, W., & Ye, H. (2018). Android Malware Detection. IEEE Transactions on Industrial Informatics, 3203(c). https://doi.org/10.1109/TII.2017.2789219

[16] Yerima, S. Y., & Sezer, S. (2018). DroidFusion: A Novel Multilevel Classifier Fusion Approach for Android Malware Detection. IEEE Transactions on Cybernetics, 1–14. https://doi.org/10.1109/TCYB.2017.2777960
[17] Wang, S., Yan, Q., Chen, Z., Yang, B., Zhao, C., & Conti, M. (2018). Detecting Android Malware Leveraging Text Semantics of Network Flows. IEEE Transactions on Information Forensics and Security, 13(5), 1096–1109. https://doi.org/10.1109/TIFS.2017.2771228

[18] E. Biglar Beigi, H. Hadian Jazi, N. Stakhanova and A. A. Ghorbani, "Towards effective feature selection in machine learning-based botnet detection approaches," 2014 IEEE Conference on Communications and Network Security, San Francisco, CA, 2014, pp.247-255. https://doi.org/10.1109/cns.2014.6997492

7 Authors

Mohd Adib Azhar is a student at Faculty of Science and Technology (FST), Universiti Sains Islam Malaysia (USIM). His interest are in malwares and computer security.

Madihah Mohd Saudi is an Associate Professor at Information Security and Assurance (ISA) Programme, Faculty of Science and Technology (FST), Universiti Sains Islam Malaysia (USIM), Malaysia. Currently she is the Chief Information Officer (CIO) at USIM and leading a group called as Cybersecurity and Systems Research Unit at Islamic Science Institute (ISI), USIM. She is also senior member for IEEE Computer Society and International Association of Computer Science and IT (IACSIT) and technical committee member on IEEE Security and Privacy and Pattern Analysis and Machine Intelligence. She has over 18 years of research experience in the fields of cyber security and data mining. She has published numerous of books, policies and academic papers in international journals related with computer security and data mining. She has also won a few international innovation awards related with cyber security. Her research interests are in cyber security, data mining and bio-inspired computing. She holds 2 professional CERT related with Cyber Security from United States and received her PhD from University of Bradford, United Kingdom in Computer Security, MSc (Software Engineering) from University of Malaya (UM), and BSc(Hons) in Computer Science from National University of Malaysia (UKM) (madihah@usim.edu.my).

Dr. Azuan Ahmad is an academician at the Faculty of Science and Technology (FST), Universiti Sains Islam Malaysia (USIM). He obtained his Ph.D and M.Sc. in Computer Science from University Teknologi Malaysia. He received his B.Sc Honours in Computer Science (Information Security Assurance) from Universiti Sains Islam Malaysia. He is the certified professional in various area including cybersecurity, computer network and various operating systems. Until today, he is actively doing research in the area of cloud security, Internet of Things (IoT), Big Data and malware research (azuan@usim.edu.my).

Azreena Abu Bakar is an a lecturer at Faculty of Science and Technology (FST), Universiti Sains Islam Malaysia (USIM). Her interest are in computer security, knowledge management and information systems (azreena@usim.edu.my).

Article submitted 2019-01-15. Resubmitted 2019-02-28. Final acceptance 2019-03-15. Final version published as submitted by the authors.