AVOIDING 2-BINOMIAL SQUARES AND CUBES

MICHAEL RAO, MICHEL RIGO, AND PAVEL SALIMOV†

Abstract. Two finite words u, v are 2-binomially equivalent if, for all words x of length at most 2, the number of occurrences of x as a (scattered) subword of u is equal to the number of occurrences of x in v. This notion is a refinement of the usual abelian equivalence. A 2-binomial square is a word uv where u and v are 2-binomially equivalent.

In this paper, considering pure morphic words, we prove that 2-binomial squares (resp. cubes) are avoidable over a 3-letter (resp. 2-letter) alphabet. The sizes of the alphabets are optimal.

1. Introduction

A square (resp. cube) is a non-empty word of the form xx (resp. xxx). Since the work of Thue, it is well-known that there exists an infinite squarefree word over a ternary alphabet, and an infinite cubefree word over a binary alphabet [11, 12]. A main direction of research in combinatorics on words is about the avoidance of a pattern, and the size of the alphabet is a parameter of the problem.

A possible and widely studied generalization of squarefreeness is to consider an abelian framework. A non-empty word is an abelian square (resp. abelian cube) if it is of the form xy (resp. xyz) where y is a permutation of x (resp. y and z are permutations of x). Erdős raised the question whether abelian squares can be avoided by an infinite word over an alphabet of size 4 [2]. Keränen answered positively to this question, with a pure morphic word [7]. Moreover Dekking has previously obtained an infinite word over a 3-letter alphabet that avoids abelian cubes, and an infinite binary word that avoids abelian 4-powers [1]. (Note that in all these results, the size of the alphabet is optimal.)

In this paper, we are dealing with another generalization of squarefreeness and cubefreeness. We consider the 2-binomial equivalence which is a refinement of the abelian equivalence, i.e., if two words x and y are 2-binomially equivalent, then x is a permutation of y (but in general, the converse does not hold, see Example 1 below). This equivalence relation is defined thanks to the binomial coefficient \(\binom{u}{v} \) of two words u and v which is the number of times v occurs as a subsequence of u (meaning as a “scattered” subword). For more on these binomial coefficients, see for instance [8, Chap. 6]. Based on this classical notion, the m-binomial equivalence of two words has been recently introduced [10].

Definition 1. Let $m \in \mathbb{N} \cup \{+\infty\}$ and u, v be two words over the alphabet A. We let $A^{\leq m}$ denote the set of words of length at most m over A. We say that u and v are m-binomially equivalent if

$\binom{u}{x} = \binom{v}{x}, \forall x \in A^{\leq m}.$

We simply write $u \sim_m v$ if u and v are m-binomially equivalent. The word u is obtained as a permutation of the letters in v if and only if $u \sim_1 v$. In that case, we say that u and v are abelian equivalent and we write instead $u \sim_{ab} v$. Note that if $u \sim_{k+1} v$, then $u \sim_k v$, for all $k \geq 1$.

Example 1. The four words 0101110, 0110101, 1001101 and 1010011 are 2-binomially equivalent. Let u be any of these four words. We have

$\binom{u}{0} = 3, \binom{u}{1} = 4, \binom{u}{00} = 3, \binom{u}{01} = 7, \binom{u}{10} = 5, \binom{u}{11} = 6.$

†The third author is supported by the Russian President’s grant no. MK-4075.2012.1 and Russian Foundation for Basic Research grants no. 12-01-00089 and no. 11-01-00997 and by a University of Liège post-doctoral grant.
For instance, the word 0001111 is abelian equivalent to 0101110 but these two words are not 2-binomially equivalent. Let \(a \) be a letter. It is clear that \(\binom{n}{u_0} a \) and \(\binom{n}{a} \) carry the same information, i.e., \(\binom{n}{u_0} = \binom{n}{a} \) where \(|u|_a \) is the number of occurrences of \(a \) in \(u \).

A 2-binomial square (resp. 2-binomial cube) is a non-empty word of the form \(xy \) where \(x \sim y \) (resp. \(x \sim y \sim z \)). Squares are avoidable over a 3-letter alphabet and abelian squares are avoidable over a 4-letter alphabet. Since 2-binomial equivalence lies between abelian equivalence and equality, the question is to determine whether or not 2-binomial squares are avoidable over a 3-letter alphabet. We answer positively to this question in Section 2. The fixed point of the morphism \(g : 0 \rightarrow 012, 1 \rightarrow 02, 2 \rightarrow 1 \) avoids 2-binomial squares.

In a similar way, cubes are avoidable over a 2-letter alphabet and abelian squares are avoidable over a 3-letter alphabet. The question is to determine whether or not 2-binomial cubes are avoidable over a 2-letter alphabet. We also answer positively to this question in Section 3. The fixed point of the morphism \(h : 0 \rightarrow 001, 1 \rightarrow 011 \) avoids 2-binomial cubes.

Remark 1. The \(m \)-binomial equivalence is not the only way to refine the abelian equivalence. Recently, a notion of \(m \)-abelian equivalence has been introduced \[6\]. To define this equivalence, one counts the number \(|u|_x \) of occurrences in \(u \) of all factors \(x \) of length up to \(m \) (it is meant factors made of consecutive letters). That is \(u \) and \(v \) are \(m \)-abelian equivalent if \(|u|_x = |v|_x \) for all \(x \in A^{\leq m} \). In that context, the results on avoidance are quite different. Over a 3-letter alphabet \(2 \)-abelian squares are unavoidable: the longest ternary word which is \(2 \)-abelian squarefree has length 537 \[4\], and pure morphic words cannot avoid \(k \)-abelian-squares for every \(k \) \[4\]. On the other hand, it has been shown that there exists a 3-abelian squarefree morphic word over a 3-letter alphabet \[5\]. Moreover \(2 \)-abelian-cubes can be avoided over a binary alphabet by a morphic word \[9\].

The number of occurrences of a letter \(a \) in a word \(u \) will be denoted either by \(\binom{u}{a} \) or \(|u|_a \). Let \(A = \{0, 1, \ldots, k\} \) be an alphabet. The Parikh map is an application \(\Psi : A^* \rightarrow \mathbb{N}^k+1 \) such that \(\Psi(u) = (|u|_0, \ldots, |u|_k)^T \). Note that we will deal with column vectors (when multiplying a square matrix with a column vector on its right). In particular, two words are abelian equivalent if and only if they have the same Parikh vector. The mirror of the word \(u = u_1u_2\cdots u_k \) is denoted by \(\tilde{u} = u_k \cdots u_2u_1 \).

2. Avoiding 2-binomial squares over a 3-letter alphabet

Let \(A = \{0, 1, 2\} \) be a 3-letter alphabet. Let \(g : A^* \rightarrow A^* \) be the morphism defined by

\[
g : \begin{cases}
0 & \mapsto 012 \\
1 & \mapsto 02 \\
2 & \mapsto 1
\end{cases}
\text{ and thus, } g^2 : \begin{cases}
0 & \mapsto 012021 \\
1 & \mapsto 0121 \\
2 & \mapsto 02.
\end{cases}
\]

It is prolongable on 0: \(g(0) \) has 0 as a prefix. Hence the limit \(x = \lim_{n \to +\infty} g^n(0) \) is a well-defined infinite word

\[x = g^\omega(0) = 0120210121020120121\cdots\]

which is a fixed point of \(g \). Since the original work of Thue, this word \(x \) is well-known to avoid (usual) squares. It is sometimes referred to as the ternary Thue–Morse word. We will make use of the fact that \(X = \{012, 021\} \) is a prefix-code and thus an \(\omega \)-code: Any finite word in \(X^* \) (resp. infinite word in \(X^\omega \)) has a unique factorization as a product of elements of \(X \). Let us make an obvious but useful observation.

Observation 1. The factorization of \(x \) in terms of the elements in \(X \) permits to write \(x \) as

\[x = 0\alpha_1 2\alpha_2 0\alpha_3 2\alpha_4 0\alpha_5 2\alpha_6 0\cdots\]

where, for all \(i \geq 1 \), \(\alpha_i \in \{\varepsilon, 1\} \). That is, the image of \(x \) by the morphism \(e : 0 \mapsto 0, 1 \mapsto \varepsilon, 2 \mapsto 2 \) (which erases all the 1’s) is \(e(x) = (02)^\omega \).

The next property is well known. For example, it comes from the fact that the image of the ternary Thue–Morse word by the morphism \(0 \mapsto 011, 1 \mapsto 01, 2 \mapsto 0 \) is the Thue–Morse word. However, for the sake of completeness, we give a direct proof here.
Lemma 1. A word u is a factor occurring in x if and only if \(\tilde{u} \) is a factor occurring in x.

Proof. We define the morphism \(\tilde{g} : A^* \to A^* \) by considering the mirror images of the images of the letters by g,

\[
\tilde{g} : \begin{cases}
0 \mapsto \text{210} \\
1 \mapsto \text{20} \\
2 \mapsto \text{1}
\end{cases}
\]

and thus, \(\tilde{g}^2 : \begin{cases}
0 \mapsto \text{120210} \\
1 \mapsto \text{1210} \\
2 \mapsto \text{20}.
\end{cases} \]

Note that \(\tilde{g} \) is not prolongable on any letter. But the morphism \(\tilde{g}^2 \) is prolongable on the letter 1. We consider the infinite word

\[
\text{y} = (\tilde{g}^2)^\omega(1) = 1210201210120210201202101210 \cdots.
\]

If \(v \in A^* \) is a non-empty word ending with \(a \in A \), i.e., \(v = u a \) for some word \(u \in A^* \), we denote by \(va^{-1} \) the word obtained by removing the suffix \(a \) from \(v \). So \(va^{-1} = u \).

For every words \(r \) and \(s \) we have \(r = g^2(s) \Leftrightarrow \tilde{r} = \tilde{g}^2(\tilde{s}) \). Obviously, \(u \) is a factor occurring in \(x \) if and only if \(\tilde{u} \) is a factor occurring in \(y \).

On the other hand, \(\tilde{g}^2 \) is a cyclic shift of \(g^2 \), since \(g^2(u) = 0\tilde{g}^2(\tilde{u}) \) for every \(a \in \{0, 1, 2\} \). Thus \(u \) is a factor occurring in \(x \) if and only if \(\tilde{u} \) is a factor occurring in \(y \). To summarize, \(u \) is a factor occurring in \(y \) if and only if \(u \) is a factor occurring in \(x \), and \(u \) is a factor occurring in \(y \) if and only if \(\tilde{u} \) is a factor occurring in \(\tilde{x} \). This concludes the proof. \(\square \)

We will be dealing with 2-binomial squares so, in particular, with abelian squares. The next lemma permit to "desubstitute", meaning that we are looking for the inverse image of a factor under the considered morphism.

Lemma 2. Let \(u, v \in A^* \) be two abelian equivalent non-empty words such that \(uv \) is a factor occurring in \(x \). There exists \(u', v' \in A^* \) such that \(u'v' \) is a factor of \(x \), and either:

1. \(u = g(u') \) and \(v = g(v') \);
2. or, \(\tilde{u} = g(v') \) and \(\tilde{v} = g(u') \).

Proof. We will make an extensive use of Observation 1. Note that \(u \) and \(v \) must contain at least one 0 or one 2. Obviously \(e(uv) \) is an abelian square of \((02)^i \), thus either \(e(u) = e(v) = (02)^i \) or \(e(u) = e(v) = (20)^i \) for an \(i > 0 \).

If \(e(u) = e(v) = (02)^i \), then we have \(u = a \cdot 2 \cdot b \) and \(v = c \cdot 0 \cdot 2 \cdot d \) with \(a, b, c, d \in \{\varepsilon, 1\} \). In this case, we deduce that \(u \) and \(v \) belongs to \(A^* \). Otherwise stated, since \(uv \) is a factor of \(x \), there exists a factor \(u'v' \) in \(x \) such that \(g(u') = u \) and \(g(v') = v \).

Otherwise we have \(e(u) = e(v) = (20)^i \). Thanks to Lemma 1 \(\tilde{v}u \) is a factor occurring in \(x \), and \(e(\tilde{u}) = e(\tilde{v}) = (02)^i \). Thus we are reduced to the previous case, and there is a factor \(u', v' \) in \(x \) such that \(g(u') = \tilde{v} \) and \(g(v') = \tilde{u} \). \(\square \)

Let \(u \) be a word. We set

\[
\lambda_u := \begin{bmatrix} u \\ 01 \\ u \\ 12 \end{bmatrix}.
\]

When we use the desubstitution provided by the previous lemma, the shorter factors \(u' \) and \(v' \) derived from \(u \) and \(v \) keep properties from their ancestors.

Lemma 3. Let \(u, v \in A^* \) be two abelian equivalent non-empty words such that \(uv \) is a factor occurring in \(x \). Let \(u', v' \) be given by Lemma 2. If \(\lambda_u = \mu_v \), then \(u' \) and \(v' \) are abelian equivalent and \(\lambda_{u'} = \mu_{v'} \).

Proof. If we are in the second situation described by Lemma 2 then \(\tilde{v}u \) is also a factor occurring in \(x \). Obviously \(v \) and \(\tilde{u} \) are also abelian equivalent, \(\lambda_\tilde{v} = \lambda_\tilde{u} \) and the case is reduced to the first situation.

Assume now w.l.o.g. that we are in the first situation, that is \(u = g(u') \) and \(v = g(v') \). First observe that we have, for all \(a, b \in A \), \(a \neq b \),

\[
(1) \quad \begin{bmatrix} u' \end{bmatrix}_{ab} = \begin{bmatrix} u' |a| + |u'| |b| \\ 2 \\ 2 \\ 2 \end{bmatrix} - \begin{bmatrix} |u'| |a| \\ 2 \\ 2 \end{bmatrix} - \begin{bmatrix} |u'| |b| \\ 2 \end{bmatrix} - \begin{bmatrix} u' \end{bmatrix}_{ba}.
\]
Since \(u = g(u') \), we derive that
\[
\begin{pmatrix}
u \\
01
\end{pmatrix} = |u'|_0 + \begin{pmatrix}u' \\
00
\end{pmatrix} + \begin{pmatrix}u' \\
02
\end{pmatrix} + \begin{pmatrix}u' \\
12
\end{pmatrix} + \left(|u'|_0 + |u'|_1 \right) \frac{2}{2} - \left(|u'|_0 + |u'|_1 \right) \frac{2}{2}
\]
\[
\begin{pmatrix}
u \\
12
\end{pmatrix} = |u'|_0 + \begin{pmatrix}u' \\
00
\end{pmatrix} + \begin{pmatrix}u' \\
02
\end{pmatrix} + \begin{pmatrix}u' \\
12
\end{pmatrix} + \left(|u'|_0 + |u'|_2 \right) \frac{2}{2} - \left(|u'|_0 + |u'|_2 \right) \frac{2}{2}
\]

Hence
\[
\lambda_u = 2 \left[\begin{pmatrix}u' \\
02
\end{pmatrix} - \begin{pmatrix}u' \\
01
\end{pmatrix} + \begin{pmatrix}u' \\
12
\end{pmatrix} - \left(|u'|_0 + |u'|_2 \right) \frac{2}{2} - \left(|u'|_0 + |u'|_2 \right) \frac{2}{2}
\]

Similar relations holds for \(v \).

Since \(u' \) and \(v' \) occur in \(x \), from Observation 1, we get
\[
(2) \quad ||v'|_0 - |v'|_2| \leq 1 \text{ and } ||v'|_0 - |v'|_2| \leq 1.
\]

Since \(u \sim_{ab} v \), we have \(|u|_1 = |v|_1\). Hence, from the definition of \(g \), \(|u'|_0 + |u'|_2 = |v'|_0 + |v'|_2 \). In the same way, \(|u|_2 = |v|_2\) implies that \(|u'|_0 + |u'|_1 = |v'|_0 + |v'|_1 \) or equivalently, \(|u'|_1 - |v'|_1 = |v'|_0 - |u'|_0 \).

From the above relation and (2), we get
\[
||v'|_0 - |u'|_0 + |u'|_2| - |v'|_2| \leq 2 \text{ and } ||u'|_0 + |u'|_2 - |v'|_0 + |v'|_2| \leq 2.
\]

Hence the difference of the following two Parikh vectors can only take three values
\[
\Psi(u') - \Psi(v') \in \left\{ \begin{pmatrix}0 \\
0
\end{pmatrix}, \begin{pmatrix}1 \\
0
\end{pmatrix}, \begin{pmatrix}-1 \\
1
\end{pmatrix}, \begin{pmatrix}-1 \\
1
\end{pmatrix} \right\}.
\]

To prove that \(u' \) and \(v' \) are abelian equivalent, we will rule out the last two possibilities.

By assumption, \(\lambda_u = \lambda_v \). So this relation also holds modulo 2. Hence
\[
\begin{pmatrix}0 \\
0
\end{pmatrix} = \begin{pmatrix}|u'|_0 + |u'|_1 \\
2
\end{pmatrix} - \begin{pmatrix}|u'|_0 + |u'|_1 \\
2
\end{pmatrix} - \begin{pmatrix}|u'|_0 + |v'|_0 \\
2
\end{pmatrix} - \begin{pmatrix}|u'|_0 + |v'|_0 \\
2
\end{pmatrix} (mod 2).
\]

Assume that we have
\[
\Psi(u') - \Psi(v') = \begin{pmatrix}1 \\
-1
\end{pmatrix}, \text{i.e.,} \quad |u'|_0 + |u'|_1 = |v'|_0 + |v'|_1, \quad |u'|_0 + |u'|_2 = |v'|_0 + |v'|_2, \quad |u'|_1 + |u'|_2 = |v'|_1 + |v'|_2 - 2.
\]

This leads to a contradiction because then
\[
\begin{pmatrix}|u'|_1 + |u'|_2 \\
2
\end{pmatrix} \neq \begin{pmatrix}|v'|_1 + |v'|_2 \\
2
\end{pmatrix} (mod 2).
\]

Indeed, it is easily seen that \(\begin{pmatrix}4n \\
2
\end{pmatrix} \equiv 0 \) (mod 2), \(\begin{pmatrix}4n+1 \\
2
\end{pmatrix} \equiv 0 \) (mod 2), \(\begin{pmatrix}4n+2 \\
2
\end{pmatrix} \equiv 1 \) (mod 2) and \(\begin{pmatrix}4(n+3) \\
2
\end{pmatrix} \equiv 1 \) (mod 2).

The case \(\Psi(u') - \Psi(v') = \begin{pmatrix}-1 \\
1
\end{pmatrix} \) is handled similarly. So we can assume now that \(\Psi(u') = \Psi(v') \), that is \(u' \sim_{ab} v' \). It remains to prove that \(\lambda_{u'} = \lambda_{v'} \). By assumption \(\lambda_u = \lambda_v \), and from the above formula describing \(\lambda_u \) (resp. \(\lambda_v \)) we get
\[
\begin{pmatrix}u' \\
02
\end{pmatrix} - \begin{pmatrix}u' \\
01
\end{pmatrix} + \begin{pmatrix}u' \\
12
\end{pmatrix} = \begin{pmatrix}v' \\
02
\end{pmatrix} - \begin{pmatrix}v' \\
01
\end{pmatrix} + \begin{pmatrix}v' \\
12
\end{pmatrix}.
\]

To conclude that \(\lambda_{u'} = \lambda_{v'} \), we should simply show that \(\begin{pmatrix}u' \\
02
\end{pmatrix} = \begin{pmatrix}v' \\
02
\end{pmatrix} \). But \(u'v' \) is a factor occurring in \(x \) (from Observation 1 when discarding the 1’s with just alternate 0’s and 2’s) and \(u' \sim_{ab} v' \).

This concludes the proof.

\textbf{Theorem 1.} The word \(x = g^2(0) = 0120210121021021020120121 \cdots \) avoids 2-binomial squares.
Lemma 4. Assume to the contrary that \(x \) contains a 2-binomial square \(uv \) where \(u \) and \(v \) are 2-binomially equivalent. In particular, \(u \) and \(v \) are abelian equivalent and moreover \(\lambda_u = \lambda_v \). We can therefore apply iteratively Lemma 2 and the above lemma to words of decreasing lengths and get finally a repetition \(uu \) with \(u \in A \) in \(x \). But \(x \) does not contain any such factor. \(\square \)

Remark 2. The fixed point of \(g \) is 2-binomial-square free, but \(g \) is not 2-binomial-square-free, that is the image of a 2-binomial-square-free word may contain a 2-binomial-square (e.g., \(g(010) = 01202012 \) contains the square \(2020 \)).

3. Avoiding 2-binomial cubes over a 2-letter alphabet

Consider the morphism \(h : 0 \mapsto 001 \) and \(h : 1 \mapsto 011 \). In this section, we show that \(h \) is 2-binomial-cube-free, that is for every 2-binomial-cube free binary word \(w \), \(h(w) \) is 2-binomial-cube-free. As a direct corollary, we get that the fixed point of \(h \),

\[
\mathbf{z} = h^{\infty}(0) = 001001011001001011001011011011 \ldots
\]

avoids 2-binomial cubes.

Let \(u \) be a word over \(\{0, 1\} \). The extended Parikh vector of \(u \) is

\[
\Psi_2(u) = \left(|u|_0, |u|_1, \begin{pmatrix} u \\ 00 \\ u \\ 01 \\ u \\ 10 \\ u \\ 11 \end{pmatrix}^{\top} \right).
\]

Observe that two words \(u \) and \(v \) are 2-binomially equivalent if and only if \(\Psi_2(u) = \Psi_2(v) \).

Consider the matrix \(M_h \) given by

\[
M_h = \begin{pmatrix}
2 & 1 & 0 & 0 & 0 & 0 \\
1 & 2 & 0 & 0 & 0 & 0 \\
1 & 0 & 4 & 2 & 2 & 1 \\
2 & 2 & 2 & 4 & 1 & 2 \\
0 & 0 & 2 & 1 & 4 & 2 \\
0 & 1 & 1 & 2 & 2 & 1
\end{pmatrix}.
\]

One can check that \(M_h \) is invertible. We will make use of the following observations:

Proposition 2. For every \(u \in \{0, 1\}^* \),

\[
\Psi_2(h(u)) = M_h \Psi_2(u).
\]

Proposition 3. Let \(u = 1x \) and \(u' = x1 \) be two words over \(\{0, 1\} \). We have \(|u|_0 = |u'|_0 \), \(|u|_1 = |u'|_1 \),

\[
\begin{pmatrix} u \\ 00 \\ u \\ 11 \end{pmatrix} = \begin{pmatrix} u' \\ 00 \\ u' \\ 11 \end{pmatrix}, \quad \begin{pmatrix} u' \\ 01 \\ u' \\ 10 \end{pmatrix} = \begin{pmatrix} u \\ 01 \\ u \\ 10 \end{pmatrix} + |u|_0, \quad \begin{pmatrix} u' \\ 11 \end{pmatrix} = \begin{pmatrix} u \\ 10 \end{pmatrix} - |u|_0.
\]

In particular, if \(1x \sim_2 1y \), then \(x1 \sim_2 y1 \). Similar relations hold for \(0x \) and \(x0 \). In particular, if \(x0 \sim_2 y0 \), then \(0x \sim_2 0y \).

Let \(x, y \in \{0, 1\} \). We set \(\delta_{x,y} = 1 \), if \(x = y \); and \(\delta_{x,y} = 0 \), otherwise.

Lemma 4. Let \(p' \), \(q' \) and \(r' \) be binary words, and let \(a, b \in \{0, 1\} \). Let \(p = h(p')0 \), \(q = a1 h(q')0 b \) and \(r = 1 h(r') \). Then either \(p \not\sim_2 q \) or \(p \not\sim_2 r \).

Proof. Assume, for the sake of contradiction, that \(p \sim_2 q \sim_2 r \). Then \(|p'| = |q'| + 1 = |r'| = n \). The following relations can mostly be derived from the coefficients of \(M_h \) (we also have to take into account the extra suffix 0 of \(p \), respectively the extra prefix 1 in \(r \)):

\[
\begin{align*}
\begin{pmatrix} p \\ 01 \end{pmatrix} &= 2 \begin{pmatrix} p' \\ 0 \end{pmatrix} + 2 \begin{pmatrix} p' \\ 1 \end{pmatrix} + 2 \begin{pmatrix} p' \\ 00 \end{pmatrix} + 4 \begin{pmatrix} p' \\ 01 \end{pmatrix} + \begin{pmatrix} p' \\ 10 \end{pmatrix} + 2 \begin{pmatrix} p' \\ 11 \end{pmatrix}, \\
\begin{pmatrix} p \\ 10 \end{pmatrix} &= 2 \begin{pmatrix} p' \\ 0 \end{pmatrix} + 2 \begin{pmatrix} p' \\ 1 \end{pmatrix} + 2 \begin{pmatrix} p' \\ 00 \end{pmatrix} + \begin{pmatrix} p' \\ 01 \end{pmatrix} + 4 \begin{pmatrix} p' \\ 10 \end{pmatrix} + 2 \begin{pmatrix} p' \\ 11 \end{pmatrix}, \\
\Rightarrow \begin{pmatrix} p \\ 01 \end{pmatrix} - \begin{pmatrix} p \\ 10 \end{pmatrix} &= 3 \begin{pmatrix} p' \\ 01 \end{pmatrix} - 3 \begin{pmatrix} p' \\ 10 \end{pmatrix};
\end{align*}
\]
We derive that
\[
\binom{r}{01} = 2\binom{r'}{0} + 2\binom{r'}{1} + 2\binom{r'}{00} + 4\binom{r'}{01} + \binom{r'}{10} + 2\binom{r'}{11},
\]
\[
\binom{r}{10} = 2\binom{r'}{0} + \binom{r'}{1} + 2\binom{r'}{00} + 4\binom{r'}{01} + 4\binom{r'}{10} + 2\binom{r'}{11},
\]
\[
\Rightarrow \binom{r}{01} - \binom{r}{10} = \left(\binom{r'}{1} + 3\binom{r'}{01} - 3\binom{r'}{10}\right).
\]

We also get the following relations:
\[
\binom{q}{01} = 2\binom{q'}{0} + 2\binom{q'}{01} + 4\binom{q'}{01} + 2\binom{q'}{11} + \delta_{a,0}\left[1 + \binom{q'}{0} + 2\binom{q'}{1} + \delta_{b,1}\right] + \binom{q'}{0} + \binom{q'}{1},
\]
\[
\binom{q}{10} = 3\binom{q'}{0} + 2\binom{q'}{1} + 2\binom{q'}{00} + 4\binom{q'}{01} + 2\binom{q'}{11} + 1
+ \delta_{a,1}\left[1 + \delta_{b,0} + 2\binom{q'}{0} + \binom{q'}{1} + \delta_{b,0}\left[1 + \binom{q'}{0} + 2\binom{q'}{1}\right]\right]
\]
\[
= \left(6 - 2\delta_{a,0} - \delta_{b,1}\right)\binom{q'}{0} + \left(6 - \delta_{a,0} - 2\delta_{b,1}\right)\binom{q'}{1} + 4 - 2\delta_{a,0} - 2\delta_{b,1} + \delta_{a,0}\delta_{b,1}
+ 2\binom{q'}{00} + 4\binom{q'}{01} + 2\binom{q'}{11}.
\]

Where for the last equality, we have used the fact that \(\delta_{a,1} = 1 - \delta_{a,0}\) and \(\delta_{b,0} = 1 - \delta_{b,1}\). Finally, we obtain
\[
\binom{q}{01} - \binom{q}{10} = \left(-4 + 3\delta_{a,0} + 3\delta_{b,1}\right)\left[\binom{q'}{0} + \binom{q'}{1}\right] + 3\left(\binom{q'}{01} - 3\binom{q'}{10}\right) = 4 + 3\delta_{a,0} + 3\delta_{b,1}.
\]

Since \(p \sim q \sim r\), we have \(\binom{q}{0} - \binom{q}{1} = \binom{q}{0} - \binom{q}{1}\). In particular, these equalities modulo 3 give
\[
(3) \quad \binom{p'}{0} \equiv \binom{r'}{1} \equiv 2\left[\binom{q'}{0} + \binom{q'}{1} + 1\right] \equiv 2n \pmod{3}.
\]

Now, we take into account the fact that \(p\) and \(r\) are abelian equivalent to get a contradiction. Since \(p = h(p')0\) and \(r = 1h(r')\), we get
\[
\binom{|p|_0}{|p|_1} = \binom{2}{1} \binom{|p'|_0}{|p'|_1} + \binom{1}{0} \binom{|r|_0}{|r|_1} = \binom{2}{1} \binom{|r'|_0}{|r'|_1} + \binom{1}{0}.
\]

Hence, we obtain
\[
\binom{|p|_0 - |r|_0}{|p|_1 - |r|_1} = \binom{0}{0} = \binom{2}{1} \binom{|p'|_0 - |r'|_0}{|p'|_1 - |r'|_1} + \binom{1}{0}.
\]

We derive that \(|p'|_0 - |r'|_0| = -1\) and \(|p'|_1 - |r'|_1| = 1\). Recalling that \(|p'|_0 + |p'|_1 = n. If we subtract the last two equalities, we get \(|p'|_0 + |r'|_1 = n - 1. From (3), we know that \(|p'|_0 \equiv |r'|_1 \pmod{3}\). Hence \(2|p'|_0 \equiv n - 1 \pmod{3}\) and thus
\[
|p'|_0 \equiv 2n - 2 \pmod{3}.
\]

This contradicts the fact again given by (3) that \(|p'|_0 \equiv 2n \pmod{3}\).

Similarly, one get the following lemma.

Lemma 5. Let \(p', q'\) and \(r'\) be binary words, and let \(a, b \in \{0, 1\}\). Let \(p = h(p')0 a, q = 1 h(q')0\) and \(r = b h(r')\). Then either \(p \not\sim q\) or \(p \not\sim r\).
Similarly, the form of H. Hence, we get p.

Assume, for the sake of contradiction, that $p \sim q \sim r$. Then $|p'| = |q'| = |r'| = n$. Taking into account the special form of p and q, we get

$$
\begin{align*}
\left(\begin{array}{c}
p_1 \\
p_0
\end{array} \right) &= 2 \left(\begin{array}{c}
p_1' \\
p_0'
\end{array} \right) + 2 \left(\begin{array}{c}
p_1'' \\
p_0''
\end{array} \right) + 4 \left(\begin{array}{c}
p_0' \\
p_1
\end{array} \right) + 2 \left(\begin{array}{c}
p_1' \\
p_0
\end{array} \right) + \delta_{a,1} \left(1 + 2 \left(\begin{array}{c}
p_0' \\
p_1
\end{array} \right) + \left(\begin{array}{c}
p_1' \\
p_0
\end{array} \right) \right), \\
\left(\begin{array}{c}
p_0 \\
p_1
\end{array} \right) &= \left(\begin{array}{c}
p_1' \\
p_0'
\end{array} \right) + 2 \left(\begin{array}{c}
p_1'' \\
p_0''
\end{array} \right) + 2 \left(\begin{array}{c}
p_0' \\
p_1
\end{array} \right) + 4 \left(\begin{array}{c}
p_0'' \\
p_1'
\end{array} \right) + \delta_{a,0} \left(\left(\begin{array}{c}
p_1' \\
p_0
\end{array} \right) + 2 \left(\begin{array}{c}
p_1' \\
p_0
\end{array} \right) \right), \\
\left(\begin{array}{c}
q_1 \\
q_0
\end{array} \right) &= 2 \left(\begin{array}{c}
q_1' \\
q_0'
\end{array} \right) + 2 \left(\begin{array}{c}
q_1'' \\
q_0''
\end{array} \right) + 2 \left(\begin{array}{c}
q_0' \\
q_1
\end{array} \right) + 4 \left(\begin{array}{c}
q_0'' \\
q_1'
\end{array} \right) + \left(\begin{array}{c}
q_1' \\
q_0
\end{array} \right) + 2 \left(\begin{array}{c}
q_1' \\
q_0
\end{array} \right), \\
\left(\begin{array}{c}
q_0 \\
q_1
\end{array} \right) &= 3 \left(\begin{array}{c}
q_1' \\
q_0'
\end{array} \right) + 3 \left(\begin{array}{c}
q_1'' \\
q_0''
\end{array} \right) + 2 \left(\begin{array}{c}
q_0' \\
q_1
\end{array} \right) + 4 \left(\begin{array}{c}
q_0'' \\
q_1'
\end{array} \right) + 2 \left(\begin{array}{c}
q_1' \\
q_0
\end{array} \right) + 1.
\end{align*}
$$
Hence, we get

$$
\begin{align*}
\left(\begin{array}{c}
p_1 \\
p_0
\end{array} \right) - \left(\begin{array}{c}
p_1 \\
p_0
\end{array} \right) &= -2 \left(\begin{array}{c}
p_1' \\
p_0'
\end{array} \right) + 3 \left(\begin{array}{c}
p_0' \\
p_1
\end{array} \right) - 3 \left(\begin{array}{c}
p_1' \\
p_0
\end{array} \right) + \delta_{a,1} \left(1 + 3 \left(\begin{array}{c}
p_0' \\
p_1
\end{array} \right) + 3 \left(\begin{array}{c}
p_1' \\
p_0
\end{array} \right) \right), \\
\left(\begin{array}{c}
q_1 \\
q_0
\end{array} \right) - \left(\begin{array}{c}
q_1 \\
q_0
\end{array} \right) &= - \left(\begin{array}{c}
q_1' \\
q_0'
\end{array} \right) - \left(\begin{array}{c}
q_1'' \\
q_0''
\end{array} \right) + 3 \left(\begin{array}{c}
q_0' \\
q_1
\end{array} \right) - 3 \left(\begin{array}{c}
q_1' \\
q_0
\end{array} \right) - 1.
\end{align*}
$$
Since, $p \sim q$, the last two relations evaluated modulo 3 give

$$
|p'|_1 + \delta_{a,1} \equiv 2n + 2 \pmod{3}. \tag{4}$$

Similarly, the form of r gives the following relations

$$
\begin{align*}
\left(\begin{array}{c}
r_1 \\
r_0
\end{array} \right) &= 2 \left(\begin{array}{c}
r_1' \\
r_0'
\end{array} \right) + 2 \left(\begin{array}{c}
r_1'' \\
r_0''
\end{array} \right) + 4 \left(\begin{array}{c}
r_0' \\
r_1
\end{array} \right) + \left(\begin{array}{c}
r_1' \\
r_0
\end{array} \right) + 2 \left(\begin{array}{c}
r_1' \\
r_0
\end{array} \right) + \delta_{b,0} \left(1 + \left(\begin{array}{c}
r_0' \\
r_1
\end{array} \right) + 2 \left(\begin{array}{c}
r_1' \\
r_0
\end{array} \right) \right), \\
\left(\begin{array}{c}
r_0 \\
r_1
\end{array} \right) &= 2 \left(\begin{array}{c}
r_1' \\
r_0'
\end{array} \right) + \left(\begin{array}{c}
r_1'' \\
r_0''
\end{array} \right) + 2 \left(\begin{array}{c}
r_0' \\
r_1
\end{array} \right) + 4 \left(\begin{array}{c}
r_0'' \\
r_1'
\end{array} \right) + \left(\begin{array}{c}
r_1' \\
r_0
\end{array} \right) + \left(\begin{array}{c}
r_1' \\
r_0
\end{array} \right), \\
\left(\begin{array}{c}
r_0 \\
r_1
\end{array} \right) - \left(\begin{array}{c}
r_0 \\
r_1
\end{array} \right) &= -2 \left(\begin{array}{c}
r_0' \\
r_1'
\end{array} \right) + 3 \left(\begin{array}{c}
r_1' \\
r_0
\end{array} \right) - 3 \left(\begin{array}{c}
r_0' \\
r_1
\end{array} \right) + \delta_{b,0} \left(1 + 3 \left(\begin{array}{c}
r_0' \\
r_1
\end{array} \right) + 3 \left(\begin{array}{c}
r_1' \\
r_0
\end{array} \right) \right)
\end{align*}
$$
Since, $p \sim r$, the last two relations evaluated modulo 3 give

$$
|p'|_1 + \delta_{a,1} \equiv |r'|_0 + \delta_{b,0} \pmod{3}. \tag{5}$$

Now, we take into account the fact that p, q and r are abelian equivalent to get a contradiction. The following two vectors are equal:

$$
\begin{align*}
\left(\begin{array}{c}
p_l \\
p_r
\end{array} \right) &= \left(\begin{array}{c}
p_l \\
p_r
\end{array} \right), \\
\left(\begin{array}{c}
r_l \\
r_r
\end{array} \right) &= \left(\begin{array}{c}
r_l \\
r_r
\end{array} \right).
\end{align*}
$$
We derive easily that

$$
|p'|_1 - |r'|_1 = 1 + \delta_{a,0} - \delta_{b,0}.
$$
On the one hand, using the latter relation and [8]

$$
|r'|_1 + 1 + \delta_{a,0} - \delta_{b,0} + \delta_{a,1} = |p'|_1 + \delta_{a,1} \equiv |r'|_0 + \delta_{b,0} \pmod{3}
$$
Replacing $|r'|_0$ by $n - |r'|_1$, we get $2|r'|_1 + 2 \equiv n + 2\delta_{b,0} \pmod{3}$, or equivalently

$$
|r'|_1 + 1 \equiv 2n + \delta_{b,0} \pmod{3}.
$$
On the other hand, using [11],

$$
|r'|_1 + 1 + \delta_{a,0} - \delta_{b,0} + \delta_{a,1} = |p'|_1 + \delta_{a,1} \equiv 2n + 2 \pmod{3}
$$
and thus,

$$
|r'|_1 \equiv 2n + \delta_{b,0} \pmod{3}.
$$
We get a contradiction, $2n + \delta_{b,0}$ should congruent to both $|r'|_1$ and $|r'|_1 + 1$ modulo 3. \hfill \square

We are ready to prove the main theorem of this section.

Theorem 4. Let $h : 0 \mapsto 001, 1 \mapsto 011$. For every 2-binomial-cube-free word $w \in \{0,1\}^*$, $h(w)$ is 2-binomial-cube-free.
Proof. Let \(w \) be a 2-binomial-cube-free binary word. Assume that \(h(w) = z_0 \ldots z_{|w|-1} \) contains a 2-binomial cube \(pqr \) occurring in position \(i \), i.e., \(p \sim q \sim r \) and \(w = w' p q r w'' \), where \(|w'| = i \). We consider three cases depending on the size of \(p \) modulo 3.

As a first case, assume that \(|p| = 3n \). We consider three sub-cases depending on the position \(i \) modulo 3.

1.a) Assume that \(i \equiv 2 \pmod{3} \). Then \(p, q, r \) have 1 as a prefix and the letter following \(r \) in \(h(w) \) is the symbol \(z_{i+9n} = 1 \). Hence, the word \(1^{-1}pqr1 \) occurs in \(h(w) \) in position \(i + 1 \) and it is again a 2-binomial cube. Indeed, thanks to Proposition \(3 \) we have \(1^{-1}p1 \sim 2^{-1}q1 \sim 2^{-1}r1 \). This case is thus reduced to the case where \(i \equiv 0 \pmod{3} \).

1.b) Assume that \(i \equiv 1 \pmod{3} \). Then \(p, q, r \) have 0 as a suffix and the letter preceding \(p \) in \(h(w) \) is the symbol \(z_{i-1} = 0 \). Hence, the word \(0pqr0^{-1} \) occurs in \(h(w) \) in position \(i - 1 \) and it is also a 2-binomial cube. Thanks to Proposition \(3 \) we have \(0p0^{-1} \sim 2q0^{-1} \sim 2r0^{-1} \). Again this case is reduced to the case where \(i \equiv 0 \pmod{3} \).

1.c) Assume that \(i \equiv 0 \pmod{3} \). In this case, we can desubstitute: there exist three words \(p', q', r' \) of length \(n \) such that \(h(p') = p, h(q') = q, h(r') = r \) and \(p'q'r' \) is a factor occurring in \(w \). We have \(\Psi_2(p') = \Psi_2(q') = \Psi_2(r') \). By Proposition \(2 \) and since \(M_q \) is invertible, we have \(\Psi_2(p') = \Psi_2(q') = \Psi_2(r') \), meaning that \(w \) contains a 2-binomial cube \(p'q'r' \).

As a second case, assume that \(|p| = 3n + 1 \). In this case, one of \(p, q \) and \(r \) occur in position 0 modulo 3, one in position 1 modulo 3, and one in position 2 modulo 3. Suppose w.l.o.g. that \(p \) occur in position 0 modulo 3, and \(q \) in position 1 modulo 3. Then there are three factors \(p', q' \) and \(r' \) in \(w \), and \(a, b \in \{0, 1\} \) such that \(p = h(p')0, q = a1h(q')0b \) and \(r = 1h(r') \). By Lemma \(4 \) this is impossible.

For the final case, assume that \(|p| = 3n + 2 \). In this case again, one of \(p, q \) and \(r \) occur in position 0 modulo 3, one in position 1 modulo 3, and one in position 2 modulo 3. Suppose w.l.o.g. that \(p \) occur in position 0 modulo 3, and \(q \) in position 1 modulo 3. Then there are three factors \(p', q' \) and \(r' \) in \(w \), and \(a, b \in \{0, 1\} \) such that \(p = h(p')0a, q = 1h(q')0b \) and \(r = 1b1h(r') \). By Lemma \(5 \) this is impossible. \(\square \)

Corollary 5. The infinite word \(z = 001001011 \cdots \) fixed point of \(h : 0 \mapsto 001, 1 \mapsto 011 \) avoids 2-binomial cubes.

References

[1] F. M. Dekking, Strongly nonrepetitive sequences and progression-free sets, J. Combin. Theory Ser. A 27 (1979), 181-185.
[2] P. Erdős, Some unsolved problems, Magyar Tud. Akad. Mat. Kutató Int. Közl. 6 (1961), 221-254.
[3] M. Huova, Existence of an infinite ternary 64-abelian square-free word, preprint.
[4] M. Huova, J. Karhumäki, Observations and problems on \(k \)-abelian avoidability, In Combinatorial and Algorithmic Aspects of Sequence Processing (Dagstuhl Seminar 11081), (2011) 2215-2219.
[5] M. Huova, J. Karhumäki, On unavoidability of \(k \)-abelian squares in pure morphic words, J. Integer Seq. 16 (2013), no. 2, Article 13.2.9.
[6] J. Karhumäki, A. Saarela, L. Q. Zamboni, On a generalization of Abelian equivalence and complexity of infinite words, J. Combin. Theory Ser. A 120 (2013), 2189-2206.
[7] V. Keränen, Abelian squares are avoidable on 4 letters, Lecture Notes in Comput. Sci. 623 (1992), 41-52.
[8] M. Lothaire, Combinatorics on Words, Cambridge Mathematical Library, Cambridge University Press, (1997).
[9] M. Rao, On some generalizations of abelian power avoidability, preprint (2013).
[10] M. Rigo, P. Salimov, Another generalization of abelian equivalence: binomial complexity of infinite words, WORDS 2013, Lect. Notes in Comput. Sci. 8079, 217-228, Springer Verlag (2013).
[11] A. Thue, Über unendliche Zeichenreihen, Norske vxd. Selsk. Skr. Mat. Nat. Kl. 7 (1906), 1-22.
[12] A. Thue, Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen, Norske vxd. Selsk. Skr. Mat. Nat. Kl. 1 (1912), 1-67.
AVOIDING 2-BINOMIAL SQUARES AND CUBES

(M. Rao) CNRS, LIP, ENS Lyon, 46 alle d'Italie, 69364 Lyon Cedex 07 - France, michael.rao@ens-lyon.fr

(M. Rigo) Dept of Math., University of Liège, Grande traverse 12 (B37), B-4000 Liège, Belgium, M.Rigo@ulg.ac.be

(P. Salimov) Dept of Math., University of Liège, Grande traverse 12 (B37), B-4000 Liège, Belgium and Sobolev Institute of Math., 4 Acad. Koptyug avenue, 630090 Novosibirsk, Russia