Measurement of the branching fraction $\text{Br}(B_s^0 \rightarrow D_s^{(*)} D_s^{(*)})$

V.M. Abazov, B. Abbott, M. Abolins, B.S. Acharya, M. Adams, T. Adams, A. Aguilo, S.H. Ahn, M. Alsan, G.D. Alexeev, G. Alkhazov, A. Alton, G.A. Alves, M. Anastasoaie, L.S. Ancu, T. Andeen, S. Anderson, B. Andrieu, M.S. Anzelc, Y. Arnould, M. Arov, A. Askew, B. Åsman, A.C.S. Assis Jesus, A. Atramentov, C. Auermann, C. Avila, C. Ay, F. Badaud, A. Baden, Lagby, B. Baldin, D.V. Bandurin, P. Banerjee, S. Banerjee, E. Barberis, A.-F. Barfuss, P. Bargassa, P. Baringer, J. Barreto, J.F. Bartlett, U. Basso, S. Beale, A. Bean, M. Begalli, M. Begel, C.L. Belanger-Champagne, L. Bellantoni, A. Bellavance, J.A. Benitez, S.B. Beri, G. Bernardi, R. Bernhard, L. Bertzontz, I. Bertram, M. Besançon, R. Beuselinck, V.A. Bezzubov, P.C. Bhat, V. Bhattacharjee, M. Binder, C. Biscarat, G. Blazey, F. Blekman, S. Blessing, D. Bloch, K. Bloom, S. Boehlein, D. Boline, T.A. Bolton, G. Borissov, K. Bos, T. Bose, A. Brandt, R. Brock, G.D. Broojmans, D. Brown, N.J. Buchanan, D. Buchholz, M. Buecher, V. Buescher, V. Buescher, P. Haefner, F. Deliot, D. Claes, H. Evans, S. Kappler, S. Kunori, S. Calvet, J. Cammin, S. Caron, W. Carvalho, B.C.K. Casey, N.M. Casson, H. Castilla-Valdez, S. Chakraborti, D. Chakraborty, K. Chan, K.M. Chan, S. Chandra, F. Chevallier, D.K. Cho, S. Choi, B. Choudhary, L. Christofek, T. Christoudias, S. Chiangari, D. Claes, B. Clément, C. Clément, Y. Coadou, M. Cooke, W.E. Cooper, M. Corcoran, V.F. Couderc, M.-C. Cousinou, S. Crépé-Renaudin, D. Cutts, M. Ćwiok, H. da Motta, A. Das, G. Davies, K. De, P. de Jong, S.J. de Jong, E. De La Cruz-Burelo, C. De Oliveira Martins, J.D. Degenhardt, F. Dejö, M. Demartino, R. Demina, D. Denisov, S.P. Denisov, D. Desai, H.T. Diehl, M. Diesburg, A. Dominguez, H. Dong, L.V. Dudko, L. Duflot, S.R. Dugad, D. Duggan, A. Duperrin, J. Dyer, A. Dyshkan, M. Eads, D. Edmunds, J. Ellison, V.D. Elvira, Y. Enari, S. Eno, L.P. Ermolov, H. Evans, A. Evdokimov, V.N. Evdokimov, A.V. Ferapontov, T. Ferbel, F. Fiedler, F. Filthaut, W. Fisher, H.E. Fisk, F. Ford, M. Fortner, H. Fox, R. Fu, S. Fuess, T. Gadfort, C.F. Galea, E. Gallas, E. Galyaev, C. Garcia, J.A. García-Bellido, V. Gavrilov, P. Gay, W. Geist, D. Gelé, C.E. Gerber, Y. Gershtein, D. Gillberg, G. Gintner, N. Gollub, B. Gómez, A. Goussion, P.D. Grantis, H. Greenlee, Z.D. Greenwood, E.M. Gregores, G. Grenier, Ph. Gris, J.-F. Grivaz, A. Grohsjean, S. Grünendahl, M.W. Grünwald, G. Guo, J. Guo, G. Gutierrez, P. Gutierrez, A. Haas, N.J. Hadley, P. Haefner, H. Hall, J.-F. Grivaz, M. Han, K. Hanagaki, P. Hansson, K. Harker, A. Harel, R. Harrington, J.M. Hastrup, R. Hauser, J. Hays, T. Hebbeker, D. Hedin, J.G. Hegeman, J.M. Heinmiller, M.J. Heimann, P.J. Heim, H. Hinderer, J. Hohlfeld, J.S. Hong, R. Hooper, P. Houben, Y. Hu, Z. Hubacek, V. Hynek, I. Ishivilli, R. Illingworth, A.S. Ito, S. Jabeen, M. Jaffre, S. Jain, K. Jakobs, C. Jarvis, R. Jesik, K. Johns, M. Johnson, A. Jonckheere, P. Jonsson, A. Juste, D. Käfer, S. Kahn, E. Kajfasz, A.M. Kalinin, J.M. Kalk, J.R. Kalk, S. Kappler, D. Karmanov, J. Kasper, D.P. Kasper, I. Katsanos, J.D. Kaufer, R. Kaur, V. Kausik, K. Kbh, S. Kehoe, S. Kerniche, N. Kholatyan, A. Khanov, A. Kharakhilv, Y.M. Kharzheev, D. Khatidze, H. Kim, T.J. Kim, M.H. Kirby, B. Klíma, J.M. Kohli, J.-P. Konrath, M. Kopat, V.M. Korabliev, J. Kotcher, B. Kothari, A. Koubarovsky, A.V. Kozelov, D. Krop, A. Kryemadhi, T. Kuhl, A. Kumar, S. Kunori, A. Kupco, T. Kurca, J. Kvitá, D. Lam, S. Lammons, G. Landsberg, J. Lazoflores, G. Leflat, F. Lehner, V. Lesne, J. Leveque, P. Lewis, J. Li, L. Li, Q.Z. Li, M. Lietti, J.G.R. Lima, D. Lincoln, J. Linnemann, V.V. Lipaev, R. Lipton, Z. Liu, L. Lobo, A. Lobodenko, M. Lokajicek, A. Louison, P. Love, H.J. Lubatti, M. Lynker, A.L. Lyon, A.K.A. Maciel, R.J. Madaras, P. Mättig, C. Magass, A. Magerkurth, N. Makev, P.K. Mal, H.B. Malbouisson, S. Malik, V.L. Malyshev, H.S. Mao, Y. Maravin, B. Martin, R. McCarthy, A. Mehnitchouk, A. Mendes, L. Mendoza, P.G. Mercadante, M. Merkin, K.W. Merritt, A. Meyer, J. Meyer, M. Michaut, H. Miettinen, T. Millet, J. Mitrevski, J. Molina, R.K. Mommsen, N.K. Mondal, J. Monk, R.W. Moore, T. Moulik, G.S. Muanza, M. Mulders, M. Mulhearn, M. Mundim, E. Nagy, M. Naimuddin, M. Narain, N.A. Naumann, H.A. Neal, J.P. Negret, P. Neustroev, H. Nilsen.
We report a measurement of the branching fraction $\text{Br}(B^0_s \rightarrow D^{(*)}_s D^{(*)}_s)$ using a data sample corresponding to 1.3 fb$^{-1}$ of integrated luminosity collected by the D0 experiment in 2002–2006 during Run II of the Fermilab Tevatron Collider. One $D^{(*)}_s$ meson was partially reconstructed in the decay $D_s \rightarrow \phi \mu \nu$, and the other $D^{(*)}_s$ meson was identified using the decay $D_s \rightarrow \phi \pi$ where no attempt was made to distinguish D_s and D^*_s states. The resulting measurement is
In the standard model (SM), mixing in the B^0_s system is expected to produce a large decay width difference $\Delta \Gamma_s = \Gamma_L - \Gamma_H$ between the light and heavy mass eigenstates with a small CP-violating phase ϕ_s. New phenomena could produce a significant CP-violating phase leading to a reduction in the observed value of $\Delta \Gamma_s$ compared with the SM prediction of $\Delta \Gamma_s/\Gamma_s = 0.127 \pm 0.024$ [2]. $\Delta \Gamma_s^{CP} = \Delta \Gamma_s^{CP-even} - \Delta \Gamma_s^{CP-odd}$ ($\Delta \Gamma_s = \Delta \Gamma_s^{CP} \mid \cos \phi_s \rangle$) can be estimated from the branching fraction $\text{Br}(B^0_s \to D^{(*)}_s D^{(*)}_s)$. This decay is predominantly CP-even and is related to $\Delta \Gamma_s^{CP}$ [1, 3]: $2\text{Br}(B^0_s \to D^{(*)}_s D^{(*)}_s) \approx \left(\Delta \Gamma_s^{CP} / \Gamma_s \right) [1 + O(\Delta \Gamma_s / \Gamma_s)]$. Only one measurement of $\text{Br}(B^0_s \to D^{(*)}_s D^{(*)}_s)$ has previously been published, by the ALEPH [4] experiment.

In this Letter we present a measurement of $\text{Br}(B^0_s \to D^{(*)}_s D^{(*)}_s)$ using a sample of semileptonic B^0_s decays collected by the D0 experiment at Fermilab in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV. The data correspond to an integrated luminosity of approximately 1.3 fb$^{-1}$. We present an analysis of the decay chain $B^0_s \to D^{(*)}_s D^{(*)}_s$ where one $D^{(*)}_s$ decays to $\phi \pi^+$, the other $D^{(*)}_s$ decays to $D^{-} \to \phi \mu^+\nu$, and where each ϕ meson decays to $\phi \to K^+ K^-$. Charge conjugate states are implied throughout. No attempt was made to reconstruct the photon or π^0 from the decay $D^{(*)}_s \to D_s \gamma / \pi^0$ and thus the state $D^{(*)}_s D^{(*)}_s$ contains contributions from $D_s D_s, D_s \bar{D}_s$, and $D_s \bar{D}_s$. To reduce systematic effects, $\text{Br}(B^0_s \to D^{(*)}_s D^{(*)}_s)$ was normalized to the decay $B^0_s \to D^{(*)}_s \mu \nu$.

The D0 detector is described in detail elsewhere [3]. The detector components relevant to this analysis are the central tracking and muon systems. The D0 central-tracking system consists of a silicon microstrip tracker (SMT) closest to the beampipe surrounded by a central scintillating-fiber tracker (CFT) with an outer radius of 52 cm. Both tracking systems are located within a 2 T superconducting solenoidal magnet and are optimized for tracking and vertexing for pseudorapidities $|\eta| < 3$ (SMT) and $|\eta| < 2.5$ (CFT), where $\eta = -\ln[\tan(\theta/2)]$, and θ is the polar angle with respect to the beam axis. The muon system is located outside of the liquid-argon/uranium calorimetry system and has pseudorapidity coverage $|\eta| < 2$. It consists of a layer of tracking detectors and trigger scintillation counters in front of a 1.8 T iron toroid, followed by two similar layers outside of the toroid. The trigger system identifies events of interest in a high-luminosity environment based on muon identification, charged tracking, and vertexing. No explicit trigger requirement was applied, however most events satisfied inclusive single-muon triggers.

The measurement began with reconstruction of the decay chain $D_s \to \phi \pi, \phi \to K^+ K^-$, with tracks originating from the same $p\bar{p}$ collision point (primary vertex) as a muon. All charged tracks used in the analysis were required to have at least two hits in both the SMT and CFT. Muons were required to have transverse momentum $p_T > 2$ GeV/c, total momentum $p > 3$ GeV/c, and to have measurements in at least two layers of the muon system. Two oppositely charged particles with $p_T > 0.8$ GeV/c were selected from the remaining particles in the event and were assigned the mass of a kaon. An invariant mass of 1.01 < $M(K^+ K^-)$ < 1.03 GeV/c2 was required to be consistent with the mass of a ϕ meson. Each pair of kaons satisfying these criteria was combined with a third particle with $p_T > 1.0$ GeV/c, which was assigned the mass of a pion. The three tracks were required to form a D_s vertex using the algorithm described in Ref. [3]. The cosine of the angle between the D_s momentum and the direction from the primary vertex to the D_s vertex was required to be greater than 0.9. The D_s vertex was required to have a displacement from the primary vertex in the plane perpendicular to the beam with at least 4σ significance. The helicity angle χ is defined as the angle between the momenta of the D_s and a K meson in the $(K^+ K^-)$ center of mass system. The decay of $D_s \to \phi \pi$ follows a $\cos^2 \chi$ distribution, while for background $\cos \chi$ is expected to be flat. Therefore, to enhance the signal, the criterion $|\cos \chi| > 0.35$ was applied. The muon and pion were required to have opposite charge. The events passing these selections, referred to as the preselection sample, were used to produce the samples of $\langle (\mu \phi D_s) \rangle$ and the normalizing sample $\langle \mu D_s \rangle$ defined below.

To construct a $\langle \mu D_s \rangle$ candidate from the preselection sample, the D_s candidate and the muon were required to originate from a common B^0_s vertex. The mass of the $\langle \mu D_s \rangle$ system was required to be less than 5.2 GeV/c2. The number of tracks near the B^0_s meson tends to be small, thus to reduce the background from combinatorics, an isolation criterion was applied. The isolation is defined as the sum of the momenta of the tracks used to reconstruct the signal divided by the total momentum of tracks contained within a cone of radius $\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2} = 0.5$ centered on the direction of the B^0_s candidate. We required the isolation to exceed 0.6. To suppress background, the visible proper decay length, defined as $M(B^0_s) \cdot (\vec{L}_T \cdot \vec{p}_T) / p_T^2$, was required to exceed 150 μm. Here \vec{L}_T is the displacement from the primary vertex to the B^0_s decay vertex in the transverse direction.
mental observables: extracted $\text{Br}(\mu\phi)$

In this paper, we calculated the ratio $\mu\phi$ for the decay $B_s^0 \rightarrow \phi\pi^+\pi^-$ in the mass window $1.92 < M(K^+K^-) < 2.00 \text{ GeV}/c^2$. The selection criteria to reconstruct the B_s^0 mass were required. The selection sample, a second-order polynomial to parameterize the background. The signals of $\phi\pi^+\pi^-$ were clearly seen. Figure 1(b) shows the mass spectrum of the K^+K^- system where a double Gaussian describes the ϕ mass peak, and a second-order polynomial is used to parameterize the background.

To construct a $(\mu\phi_2D_s)$ candidate from the preselection sample, a second ϕ_2 meson from $D_s \rightarrow \phi_2\pi^+$ was required. The selection criteria to reconstruct the second ϕ_2 meson were identical to those of the first ϕ_1 meson, with the exception that a wider mass range $0.99 < M(K^+K^-) < 1.07 \text{ GeV}/c^2$ was used to estimate the background distribution under the ϕ_2 meson. This ϕ_2 meson and muon were required to form a D_s vertex. To suppress background, the mass of the $(\mu\phi_2)$ system was required to be $1.2 < M(\mu\phi_2) < 1.85 \text{ GeV}/c^2$. The $D_s(\phi_1\pi)$ and $D_s(\phi_2\mu)$ mesons were required to form a B_s^0 vertex. The mass of the $(\mu\phi_2D_s)$ system, i.e., the combined $D_s \rightarrow \phi_2\pi^+$ and $D_s \rightarrow \phi_1\pi^+$ candidates, was required to be $4.3 < M(\mu\phi_2D_s) < 5.2 \text{ GeV}/c^2$. An isolation value exceeding 0.6 and visible proper decay length greater than 150 μm were required for the B_s^0 meson.

To reduce the effect of systematic uncertainties, we calculated the ratio $R = \text{Br}(B_s^0 \rightarrow D_s^{(*)}D_s^{(*)})/\text{Br}(B_s^0 \rightarrow \phi\pi^+\pi^-)/\text{Br}(B_s^0 \rightarrow \phi\pi^+\pi^-)$ from R using the known values for $\text{Br}(D_s \rightarrow \phi\pi^+\pi^-)$, $\text{Br}(B_s^0 \rightarrow D_s^{(*)}\mu\nu)$, and $\text{Br}(D_s \rightarrow \phi\pi^+\pi^-)$. R can be expressed in terms of experimental observables:

$$R = \frac{N_{\mu\phi_2D_s} - N_{\text{bkg}}}{N_{\mu D_s} \cdot f(B_s^0 \rightarrow D_s^{(*)}\mu\nu)}$$

where $N_{\mu\phi_2D_s}$ is the number of (μD_s) events, $N_{\mu\phi_2D_s}$ is the number of $(\mu\phi_2D_s)$ events, N_{bkg} is the number of background events in the $(\mu\phi_2D_s)$ sample that are not produced by $B_s^0 \rightarrow D_s^{(*)}D_s^{(*)}$ decays, and $f(B_s^0 \rightarrow D_s^{(*)}\mu\nu)$ is the fraction of events in (μD_s) coming from $B_s^0 \rightarrow D_s^{(*)}\mu\nu X$. The ratio of efficiencies $\epsilon(B_s^0 \rightarrow D_s^{(*)}D_s^{(*)})/\epsilon(B_s^0 \rightarrow D_s^{(*)}\mu\nu)$ to reconstruct the two processes was determined from simulation. All processes involving b hadrons were simulated withEvtGen [8] interfaced toPYTHIA [9], followed by full modeling of the detector response withGEANT [10] and event reconstruction as in data. The number of (μD_s) events was estimated from a binned fit to the $(K^+K^-\pi)$ mass distribution shown in Fig. 1(a) from the 145,000 candidates passing the selection criteria. The resulting fit is superimposed in Fig. 1(a) as a solid line and gives $N_{\mu D_s} = 17670 \pm 230 \text{ (stat)}$ events.

The number of $(\mu\phi_2D_s)$ events was extracted using an unbinned log-likelihood fit to the two-dimensional distribution of the invariant masses M_ϕ of the $(\phi\pi)$ system and M_{ϕ_2} of the two additional kaons from the $(\phi\pi)$ system. All candidates from the $(\mu\phi_2D_s)$ sample with $1.7 < M_D < 2.3 \text{ GeV}/c^2$ and $0.99 < M_{\phi_2} < 1.07 \text{ GeV}/c^2$ were included in the fit. In the fit, the masses and widths for both D_s and ϕ signals were fixed to the values extracted from a fit to a (μD_s) data sample. Extracted from the fit were the numbers: $N_{\mu\phi_2D_s}$ events from correlated (joint) signal production of $(\phi\pi)$ and ϕ_2, events with a reconstructed $(\phi_1\pi)$ in the mass peak of $D_s(\phi_1\pi)$ without joint production of ϕ_2 from $(\phi_2\mu)$ (i.e., uncorrelated), events with a reconstructed ϕ_2 from $(\phi_2\mu)$ without joint production of $(\phi_1\pi)$ in the mass peak of the $D_s(\phi_1\pi)$ (i.e., also uncorrelated), and combinatorial background.

The results of the fit are displayed in Fig. 1. Figure 2(a) displays the invariant mass distribution of $(\phi\pi)$ candidates from the invariant mass signal window of $D_s(\phi_2\mu)$, and Fig. 2(b) displays the ϕ_2 meson from $D_s(\phi_2\mu)$ in the invariant mass signal decay window of $D_s(\phi_1\pi)$ candidates. The fit gives $N_{\mu\phi_2D_s} = 13.4^{+6.6}_{-6.0}$ events from the 340 candidates included in the fit.

As a consistency check, a similar sample was produced, but requiring the same charge for the muon and pion. From the fit, the number of $(\mu^+\phi_2D_s^+)\pi^-$ signal events is found to be zero with an upper limit of 2.6 events (68% CL).

To extract the number of $B_s^0 \rightarrow D_s^{(*)}\mu\nu$ and $B_s^0 \rightarrow D_s^{(*)}D_s^{(*)}$ events, the composition of the selected samples must be determined. The decays $B_s^0 \rightarrow D_s^{(*)}\mu\nu X$ and $B_s^0 \rightarrow D_s^{(*)}\pi(\rightarrow \mu\nu)X$ were considered as signal. The branching fractions for $B \rightarrow D_s^{(*)}X$ and $B_s^0 \rightarrow D_s^{(*)}D_s^{(*)}$ are taken from the Ref. [2]. There is no experimental information for the $\text{Br}(B_s^0 \rightarrow D_s DX)$.
therefore we used the value 15.4% provided by Ref. 8 with an uncertainty of 100%.

In addition, the μD_s sample includes the processes $c\bar{c} \to D_s\mu X$, $b\bar{b} \to D_s\mu X$, and events with a misidentified muon, etc., which we refer to as the “peaking background.” The estimated contribution of these processes in the (μD_s) signal is $(2 \pm 1)\%$. In total, we estimate that the fraction of events in the (μD_s) signal coming from $B_s^0 \to D_s^{(*)} \mu X$ is $f(B_s^0 \to D_s^{(*)}\mu\nu) = 0.82 \pm 0.05$.

We considered the number of events $N_{\mu\phi_2 D_s}$ from the $$(\mu\phi_2 D_s)$$ sample to contain contributions from 1) the main signal $B_s^0 \to D_s^{(*)} D_s^{(*)}$, and the following background processes 2) $B \to D_s^{(*)} D_s^{(*)} K X$, 3) $B_s^0 \to D_s^{(*)} D_s^{(*)} X$, 4) $B_s^0 \to D_s^{(*)} \phi \mu$, 5) peaking background, and 6) $B_s^0 \to D_s^{(*)} \mu \nu$ combined with a ϕ meson from fragmentation. There is no experimental information for most of the processes, therefore their contributions were estimated by counting events in different regions of the $(\mu\phi_2 D_s)$ phase space and comparing the obtained numbers with the expected mass distribution for each background process.

The mass of the $(\mu\phi_2 D_s)$ system for the second and third processes is much less than that for the main decay $B_s^0 \to D_s^{(*)} D_s^{(*)}$ because of the additional particles, and the requirement $M(\mu\phi_2 D_s) > 4.3$ GeV/c2 strongly suppresses them. The contribution of $B_s^0 \to D_s^{(*)} D_s^{(*)} X$ is much less than $B \to D_s^{(*)} D_s^{(*)} K X$ because of higher production rates of B^+ and B^0 compared to B_s^0. Compared to the $B \to D_s^{(*)} D_s^{(*)} K X$ process, the final state in the decay $B_s^0 \to D_s^{(*)} D_s^{(*)} X$ includes at least two pions due to isospin considerations. At least two gluons are required to produce this state (similar to $\psi(2S) \to J/\psi\pi\pi$): it is therefore additionally suppressed and its contribution was neglected. Simulation shows that for the $B \to D_s^{(*)} D_s^{(*)} K X$ decay, the fraction of events with $M(\mu\phi_2 D_s) > 4.3$ GeV/c2 is 0.05. Requiring $M(\mu\phi_2 D_s) < 4.3$ GeV/c2 and keeping all other selections, we observe 2.8$^{+1.2}_{-2.8}$ events in data. Assuming that all these events are due to $B \to D_s^{(*)} D_s^{(*)} K X$, we estimate their contribution to the signal $(\mu\phi_2 D_s)$ as $0.14^{+0.56}_{-0.14}$ events.

The fourth process produces a high mass for both the $(\mu\phi_2)$ and $(\mu\phi_2 D_s)$ systems and requiring $M(\mu\phi_2) < 1.85$ GeV/c2 strongly suppresses it. Simulation shows that for this process, the fraction of events with $M(\mu\phi_2) < 1.85$ GeV/c2 is 0.14. Requiring $M(\mu\phi_2) > 1.85$ GeV/c2 and keeping all other selections, we observe 13$^{+11}_{-7}$ events. Assuming that all these events are due to the fourth background process, we estimate its contribution to the $(\mu\phi_2 D_s)$ signal as 1.88 ± 1.51 events.

The contribution of the peaking background is strongly suppressed by the event selection with an upper limit of 0.4 events. We therefore included it as an additional uncertainty in the number of background events.

The fitting procedure accounts for the possible background contribution of the decay $B_s^0 \to D_s^{(*)}\mu\nu$ together with the uncorrelated production of a ϕ meson from fragmentation. In addition, an attempt was made to reconstruct $(\mu\phi_2 D_s)$ events in the $B_s^0 \to D_s^{(*)}\mu\nu$ simulation containing approximately 9200 reconstructed (μD_s) events, and no such events were found. Therefore the contribution of this process was neglected. In total, we estimate the number of background events as $N_{\text{bkg}} = 2.0 \pm 1.6$.

In determination of efficiencies, the final states in the (μD_s) and $(\mu\phi_2 D_s)$ samples differ only by the two kaons from the additional ϕ_2 meson. With the exception of the isolation criterion, all other applied selections are the same, so many detector-related systematic uncertainties cancel. The muon p_T spectrum in $B_s^0 \to D_s^{(*)}\mu\nu$ decay differs between data and simulation due to trigger effects and the uncertainties in B meson production in simulation. To correct for this difference, weighting functions were applied to all Monte Carlo events. They were obtained from the ratio of simulated and data events for p_T distributions of the B_s^0 meson and muon. With this correction, the ratio of efficiencies is $\varepsilon(B_s^0 \to D_s^{(*)}D_s^{(*)})/\varepsilon(B_s^0 \to D_s^{(*)}\mu\nu) = 0.655\pm0.001$ (stat). The systematic uncertainty in this value is discussed below. The difference in efficiency is mainly due to the softer momentum spectrum of the muon from the $D_s \to \phi \mu$ decay in the $(\mu\phi_2 D_s)$ sample, compared to the muon from the $B_s^0 \to D_s^{(*)}\mu\nu$ decay in the (μD_s) sample.
Using all these inputs and taking the value $\text{Br}(\phi \rightarrow K^+ K^-) = 0.492 \pm 0.006$, we obtain $R = 0.015 \pm 0.007$ (stat). The statistical uncertainty shown includes only the uncertainty in $N_{\mu \nu D_s}$. All other uncertainties are included in the systematics.

The experimental extraction of both $\text{Br}(B_s^0 \rightarrow D_s^{(*)}\mu \nu)$ and $B_s^{0} \rightarrow 3\pi \mu$ depend on $B_s \rightarrow \phi \pi$. Factorizing the dependence on $B_s \rightarrow \phi \pi$, we obtain $\text{Br}(B_s^0 \rightarrow \mu \nu D_s^{(*)}) \text{Br}(D_s \rightarrow \phi \pi) = (2.84 \pm 0.49) \times 10^{-3}$, $\text{Br}(D_s \rightarrow \phi \mu) = (0.55 \pm 0.04) \cdot \text{Br}(D_s \rightarrow \phi \pi)$. Using these numbers, we finally obtain $\text{Br}(B_s^0 \rightarrow D_s^{(*)} D_s^{(*)}) = 0.039_{-0.019}^{+0.019}$ (stat).

The systematic uncertainties in the measured value of $\text{Br}(B_s^0 \rightarrow D_s^{(*)} D_s^{(*)})$ were estimated as follows. All external branching fractions were varied within one standard deviation. A 100% uncertainty in the number of background events N_{bkg} in the $\mu \nu D_s$ sample was assumed. The ratio of efficiencies can be affected by the uncertainties of reconstruction of two additional charged particles from the ϕ meson decay. The efficiency to reconstruct a charged pion from the decay $D^{(*)-} \rightarrow D^{(*)0} \pi^{+}$ was measured in Ref. [11], and the obtained value was in a good agreement with the MC estimate. This comparison is valid within the uncertainty of branching fractions of different B meson semileptonic decays, which is about 7%. Therefore we conservatively assigned a 14% systematic uncertainty (7% for each charged particles, 100% correlated) to the ratio of efficiencies, and propagated it to the final result. For the ratio of efficiencies, a 15% uncertainty was assigned for the reweighting procedure, which reflects the difference in efficiency between weighted and unweighted estimates. The dependence of the number of $(\mu \nu D_s)$ events on the fitting procedure was estimated by adding a possible signal contribution from D^{+} events which decreased the correlated signal by 3%, which we assigned as a systematic uncertainty.

Using these numbers, we obtain $\text{Br}(B_s^0 \rightarrow D_s^{(*)} D_s^{(*)}) = [0.039_{-0.017}^{+0.017}(\text{stat}) \pm 0.014(\text{syst})] \cdot [0.044/\text{Br}(D_s \rightarrow \phi \pi)]^2$. Using $\text{Br}(D_s \rightarrow \phi \pi) = 0.044 \pm 0.006$, we find

$$\text{Br}(B_s^0 \rightarrow D_s^{(*)} D_s^{(*)}) = 0.039_{-0.019}^{+0.019}(\text{stat})_{-0.015}^{+0.016}(\text{syst}).$$

(2)

The result is consistent with, and more precise than the ALEPH measurement $\text{Br}(B_s^0 \rightarrow D_s^{(*)} D_s^{(*)}) = 0.077 \pm 0.034_{-0.028}^{+0.028}$, where the value has been recalculated using the current value of $\text{Br}(D_s \rightarrow \phi \pi)$.

We calculate $\Delta \Gamma_s^{CP}$ assuming that the decay $B_s^0 \rightarrow D_s^{(*)} D_s^{(*)}$ is mainly CP-even and gives the primary contribution to the width difference between the CP-even and CP-odd B_s^0 states:

$$\frac{\Delta \Gamma_s^{CP}}{\Gamma_s} = 0.079_{-0.033}^{+0.038}(\text{stat})_{-0.030}^{+0.031}(\text{syst}).$$

(3)

Assuming CP-violation in B_s^0 mixing is small, this estimate is in good agreement with the SM prediction $\Delta \Gamma_s/\Gamma_s = 0.127 \pm 0.024$ and with the direct measurement of this parameter by the D0 experiment in $B_s^0 \rightarrow J/\psi \phi$ decays [12]. The agreement with the CDF measurement of $\Delta \Gamma_s/\Gamma_s$, which was also performed in $B_s^0 \rightarrow J/\psi \phi$ [13], is not as good, although still within two standard deviations.

We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CAPES, CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); PPARC (United Kingdom); MSMT (Czech Republic); CRC Program, CFI, NSERC and WestGrid Project (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); Research Corporation; Alexander von Humboldt Foundation; and the Marie Curie Program.