Research Article
Note on Precise Asymptotics in the Law of the Iterated Logarithm under Sublinear Expectations

Mingzhou Xu and Kun Cheng
School of Information Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China
Correspondence should be addressed to Mingzhou Xu; mingzhouxu@whu.edu.cn
Received 21 March 2022; Accepted 18 April 2022; Published 23 May 2022
Academic Editor: Francisco Periago Esparza
Copyright © 2022 Mingzhou Xu and Kun Cheng. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

By using Lebesgue bounded convergence theorem, we prove precise asymptotics in the law of the iterated logarithm for independent and identically distributed random variables under sublinear expectation.

1. Introduction

Inspired by the phenomena of uncertainty in risk measure, super-hedging problems, Peng et al. [1, 2] initiated the sublinear expectations space nontrivially. Motivated by the works of Peng, people try to investigate whether or not the corresponding limit theorems in classic probability space could hold under sublinear expectations space. For the corresponding works under sublinear expectations, the interested readers could refer to Gao and Xu [3], Zhang et al. [4–10], Wu [11], Xu and Cheng [12], Zhong and Wu [13], Xu et al. [14, 15], Yu and Wu [16], Wu and Jiang [17], Ma and Wu [18], Chen [19], Fang et al. [20], Hu et al. [21], Hu and Yang [22], Kuczmaszewska [23], Wang and Wu [24], and references therein. Since Gut and Spătaru [25] investigated precise asymptotics in the law of the iterated logarithm, people obtained lots of corresponding results related to precise asymptotics in the law of the iterated logarithm, for which the interested readers could refer to Zhang [26], Huang et al. [27], Jiang and Yang [28], Wu and Wen [29], Xiao et al. [30], and Xu et al. [31–33]. Recently, by using Lebesgue bounded convergence theorem together with the results of Zhang et al. [8, 9], Zhang [10] obtained Heyde’s theorem under sublinear expectations. The methods of Zhang [10] are different from that of Xiao et al. [30] under sublinear expectations. It is interesting to wonder whether or not precise asymptotics in the law of the iterated logarithm under sublinear expectations hold under the same conditions as in Zhang [10]. In this note, we try to use the methods in Zhang [10] to investigate precise asymptotics in the law of the iterated logarithm for independent and identically distributed random variables under sublinear expectations under conditions different from that of Xu and Cheng [12], which complement that obtained by Xu and Cheng [12]. Our results may have potential applications in engineering or finance fields (cf. Peng et al. [2, 34, 35]).

The rest of this paper is organized as follows. In the next section, we summarize necessary basic notions, concepts, and relevant properties and give necessary lemmas under sublinear expectations. In Section 3, we give our main results, Theorems 1 and 2, and we present the proof of Theorem 1 in Section 4. The proof of Theorem 2 is similar to that of Theorem 1, so it is omitted.

2. Preliminary

We use notations of Peng [2]. Let \((\Omega, \mathcal{F})\) be a given measurable space. Assume that \(\mathcal{H}\) is a subset of all random variables on \((\Omega, \mathcal{F})\) satisfying \(I_A \in \mathcal{H}\), where \(A \in \mathcal{F}\) and if \(X_1, \ldots, X_n \in \mathcal{H}\), then \(\varphi(X_1, \ldots, X_n) \in \mathcal{H}\) for each
\(\varphi \in C_{\text{Lip}}(\mathbb{R}^n) \), where \(C_{\text{Lip}}(\mathbb{R}^n) \) stands for the linear space of (local Lipschitz) function \(\varphi \), satisfying
\[
|\varphi(x) - \varphi(y)| \leq C(1 + |x|^m + |y|^m)(|x - y|), \forall x, y \in \mathbb{R}^n,
\]
for some \(C > 0, m \in \mathbb{N} \) depending on \(\varphi \). We regard \(\mathcal{H} \) as the space of random variables.

Definition 1. A sublinear expectation \(\mathbb{E} \) on \(\mathcal{H} \) is a functional \(\mathbb{E}: \mathcal{H} \rightarrow [\mathbb{R}, \infty] \) satisfying the following properties:
- For all \(X, Y \in \mathcal{H} \), \(\mathbb{E}[X + Y] = \mathbb{E}[X] + \mathbb{E}[Y] \).
- For all \(\lambda \geq 0 \), \(\mathbb{E}[\lambda X] = \lambda \mathbb{E}[X] \).
- For all \(\lambda > 0 \), \(\mathbb{E}[\lambda X] = \lambda \mathbb{E}[X] \).

A set function \(V: \mathcal{H} \rightarrow [0, 1] \) is named a capacity if it obeys
\[
(a) \ V(\emptyset) = 0, \ V(\Omega) = 1.
(b) \ V(X) \leq V(Y), \ X \subseteq Y, A \subseteq B, A, B \in \mathcal{H}.
\]

A capacity \(V \) is called to be subadditive if \(V(A + B) \leq V(A) + V(B), A, B \in \mathcal{H} \).

Let \(X = (X_1, \ldots, X_m), \ X_i \in \mathcal{H} \) and \(Y = (Y_1, \ldots, Y_n), \ Y_i \in \mathcal{H} \) are two random variables on \((\Omega, \mathcal{F}, \mathbb{P}) \). \(\mathbb{E} \) is called to be independent of \(X \), if for each \(\varphi \in C_{\text{Lip}}(\mathbb{R}^m \times \mathbb{R}^n), \mathbb{E}[\varphi(X, Y)] = \mathbb{E}[\varphi(X, Y)]_{x=X} \).

Let \(\mathcal{F} = \{ \mathcal{B} \} \) be a sublinear expectation space \((\Omega, \mathcal{F}, \mathbb{P})\), the space of right continuous functions \(\alpha \in \mathbb{R} \), \(\lambda \mathbb{E}[X_{|n}] \leq \mathbb{E}[\lambda X_{|n}] \), \(\mathbb{E}[x^2] \mathbb{E}[|X_{|n}] \leq x \mathbb{E}[\mathbb{E}[X_{|n}]] \).

Lemma 1 (see Lemma 2.1 in [10]). Suppose that \(\{ Z_{n_k}; k = 1, \ldots, k_n \} \) is an array of independent random variables such that \(\mathbb{E}[Z_{n_k}] \leq 0 \) and \(\mathbb{E}[Z_{n_k}^2] < \infty \), \(k = 1, \ldots, k_n \). Then, for all \(x, y \geq 0 \),
\[
\mathbb{V}(\max_{k \leq k_n} Z_{n_k} \geq x) \leq \mathbb{V}(\max_{k \leq k_n} Z_{n_k} \geq y) + \exp\left(\frac{x}{y} \left(\frac{B_n}{xy} + 1\right) \ln\left(1 + \frac{xy}{B_n}\right)\right),
\]
where \(B_n = \sum_{k=1}^{k_n} \mathbb{E}[Z_{n_k}^2] \).

Lemma 2 (see Lemma 2.4 in [10]). Assume that \(\{ X_{|n}; n \geq 1 \} \) is a sequence of independent, identically distributed random variables in a sublinear expectation space \((\Omega, \mathcal{F}, \mathbb{P})\), write \(S_n = \sum_{k=1}^{n} X_k \). Suppose that (i) \(\lim_{n \rightarrow \infty} \mathbb{E}[X_{|n}] \) is finite; (ii) \(x \mathbb{E}[|X_{|n}] \geq x \mathbb{E}[\mathbb{E}[X_{|n}]] \).

Corollary 1 (see Corollary 2.1 in [10]). Let \(F(x) = \mathbb{V}(|\xi| > x) \). Under the assumptions in Lemma 2,
\[
\lim_{n \rightarrow \infty} \mathbb{V}(\max_{k \leq n} |S_k| > x \sqrt{n}) = 2G(x/\sqrt{n}), \ x > 0,
\]
and
\[
\lim_{n \rightarrow \infty} \mathbb{V}(\max_{k \leq n} |S_k| > x \sqrt{n}) = 2G(x/\sqrt{n}), \ x > 0,
\]
where \(G(x) = \sum_{i=0}^{\infty} (-1)^i P(|N| \geq (2i + 1)x) \), and \(N \) is a standard random variable.
In the remainder of this paper, let \(\{X_i, X_n, n \geq 1\} \) be a sequence of i.i.d. random variables under sublinear expectation space \((\Omega, \mathcal{F}, \mathbb{E})\) with \(C_2(X^2) < \infty, \mathbb{E}(X) \leq \text{lim}_{\xi \to \infty} \mathbb{E}([-\xi X \vee 0]) = 0, \mathbb{E}(X^2) = \bar{\sigma}^2 < \infty, \mathbb{E}((-X)^2) = \sigma^2, \) and \(r = \pi^2/2^2\). Set \(S_n = \sum_{i=1}^{n} X_i, n \geq 1 \). Let \(\log x = \ln(x) / \ln(e), \log \log x = \ln(\ln(x)) \), and \(\lfloor x \rfloor = \sup \{l, l \leq x, l \in \mathbb{Z}^+\} \); we denote by \(C \) a positive constant which may change from line to line.

3. Main Results

The following are our main results.

Theorem 1. For \(b, d > 0 \), we have

\[
\lim_{\epsilon \to 0} \epsilon^{b/d} \sum_{n=3}^{\infty} \frac{(\log \log n)^{b-1}}{n \log n} \mathbb{P}\left[\max_{k \leq n} |S_k| \geq \epsilon \sqrt{n} (\log \log n)^d \right] = \frac{\bar{\sigma}^{b/d} C_b(|\xi|^{b/d})}{b},
\]

where \(\xi \sim \mathcal{N}(0, [r, 1]) \). Moreover, for \(b, d > 0 \),

\[
\lim_{\epsilon \to 0} \epsilon^{b/d} \sum_{n=3}^{\infty} \frac{(\log \log n)^{b-1}}{n \log n} \mathbb{P}\left[\max_{k \leq n} |S_k| \geq \epsilon \sqrt{n} (\log \log n)^d \right] = \sum_{i=0}^{\infty} \frac{\pi (1/4) (1/2 i + 1)^{b/d}}{\sqrt{\pi} (2i + 1)^{b/d}} = 0.9913425 \ldots.
\]

Remark 1. In (12), when \(b = 3/2, d = 1, \bar{\sigma} = 1 \),

\[
\lim_{\epsilon \to 0} \epsilon^{3/2} \sum_{n=3}^{\infty} \frac{(\log \log n)^{1/2}}{n \log n} \mathbb{P}\left[\max_{k \leq n} |S_k| \geq \epsilon \sqrt{n} (\log n)^d \right] = \sum_{i=0}^{\infty} \frac{\pi (1/4) (1/2 i + 1)^{b/d}}{\sqrt{\pi} (2i + 1)^{b/d}} = 0.9913425 \ldots
\]

In the following two sections, for \(M \geq 3 \) and \(0 < \epsilon < 1 \), set \(b(\epsilon) = \lfloor \exp[\exp(M \epsilon^{-1/d})] \rfloor \).

When \(b = 2, d = 1, \bar{\sigma} = 1 \),

\[
\lim_{\epsilon \to 0} \epsilon^{2} \sum_{n=3}^{\infty} \frac{\log \log n}{n \log n} \mathbb{P}\left[\max_{k \leq n} |S_k| \geq \epsilon \sqrt{n} (\log \log n)^d \right] = \sum_{i=0}^{\infty} (-1)^i 2^{i/2d} \Gamma(2) \left(\frac{\sqrt{2} \pi^{5/2}}{24} \right) = 1.03081 \ldots
\]

Set \(\log_{b+1}(x) \equiv \log \log(x), \log_{b+2}(x) \equiv \log \log \log(x), \ldots, \log_{b+k}(x) \equiv \log \log \log \log \log \ldots \log \log(x), k \geq 2 \). Adapting the proofs of Theorem 1, we also have the following theorem, whose proofs are omitted.

Theorem 2. For \(b, d > 0 \), for any integer \(k \geq 3 \), we have

\[
\lim_{\epsilon \to 0} \epsilon^{b/d} \sum_{n=3}^{\infty} \frac{(\log \log_{b+k}(n))^{b-1}}{n \log_{b+k}(n) \log_{b+k-1}(n) \cdots \log_{b+1}(n)} \mathbb{P}\left[\max_{k \leq n} |S_k| \geq \epsilon \sqrt{n} (\log \log_{b+k}(n)^d \right] = \frac{\bar{\sigma}^{b/d} C_{b+k}(|\xi|^{b/d})}{b},
\]

For \(b, d > 0 \),

\[
\lim_{\epsilon \to 0} \epsilon^{b/d} \sum_{n=3}^{\infty} \frac{(\log \log_{b+k}(x))^{b-1}}{n \log_{b+k}(n) \log_{b+k-1}(n) \cdots \log_{b+1}(n)} \mathbb{P}\left[\max_{k \leq n} |S_k| \geq \epsilon \sqrt{n} (\log \log_{b+k}(n)^d \right] = \frac{\bar{\sigma}^{b/d} C_{b+k}(|\xi|^{b/d})}{b}.
\]

4. Proof of Theorem 1

Here, we borrow ideas from the proofs in Zhang [10]. Without loss of restrictions, we suppose \(\bar{\sigma} = 1 \). We first establish (11). Notice for \(n \) large enough,

\[
\int_{n}^{n+1} (\log \log x)^{b-1} \frac{(\log/\log x)^d}{x \log x} \mathbb{P}\left[\frac{|S_k|}{\sqrt{n}} > \epsilon (\log \log x)^d \right] \, dx \leq \int_{n}^{n+1} \frac{(\log \log x)^{b-1}}{(x - 1) \log (x - 1)} \mathbb{P}\left[\frac{|S_k|}{\sqrt{n}} > \epsilon (\log \log (x - 1))^d \right] \, dx,
\]
and set \(F(x) = \mathbb{V}(\{x \mid x \geq a\}) \), for \(a \in [0, 1] \),

\[
\lim_{e^{-\delta} \to 0} \int_3^\infty \frac{(\log \log (x-a))^{b-1}}{(x-a) \log (x-a)} - F(\log \log (x-a)) \, dx = \lim_{e^{-\delta} \to 0} \frac{1}{d} \int_0^{(b(d))^{-1}} F(y) \, dy = \frac{C_F}{b}.
\]

(19)

Therefore, it is enough to establish that

\[
\lim_{e^{-\delta} \to 0} \epsilon \int_3^\infty \frac{(\log \log (x-a))^{b-1}}{(x-a) \log (x-a)} \times \left| \mathbb{V}\left(\frac{S_x}{\sqrt{n}} \right) > \epsilon \right| \leq F(\log \log (x-a)) \, dx = 0.
\]

(20)

Obviously, we see that for any \(\delta > 0 \),

\[
\lim_{e^{-\delta} \to 0} \epsilon \int_3^\infty \frac{(\log \log (x-a))^{b-1}}{(x-a) \log (x-a)} \times \left| \mathbb{V}\left(\frac{S_x}{\sqrt{n}} \right) > \epsilon \right| \leq \frac{b}{\delta} \int_0^{(b(d))^{-1}} F(z) \, dz.
\]

(21)

For \(M > 1 \geq \delta > \epsilon > 0 \), and \(0 < a \leq 1 \),

\[
\epsilon \int_0^{(b(d))^{-1}} \frac{(\log \log (x-a))^{b-1}}{(x-a) \log (x-a)} \times \max_{\epsilon \in \{\exp[\delta^{\epsilon - \delta}]\}} \left| \mathbb{V}\left(\frac{S_n^\epsilon}{\sqrt{n}} > y \right) - F(y) \right| \, dx
\]

\[
\leq \epsilon \int_0^{(b(d))^{-1}} \frac{(\log \log (x-a))^{b-1}}{(x-a) \log (x-a)} \times \max_{\epsilon \in \{\exp[\delta^{\epsilon - \delta}]\}} \left| \mathbb{V}\left(\frac{S_n^\epsilon}{\sqrt{n}} > z \right) - F(z) \right| \, dz.
\]

(22)

As in the proofs of Zhang [10], \(C_F(X^2_1) < \infty \) implies the assumptions of Lemma 2. By Lemma 2 and Corollary 1,

\[
\max_{\epsilon \in \{\exp[\delta^{\epsilon - \delta}]\}} \left| \mathbb{V}\left(\frac{S_n^\epsilon}{\sqrt{n}} > z \right) - F(z) \right| \to 0 \text{ as } \epsilon \to 0.
\]

(23)

If \(z \) is the continuous point of \(F \). Note that \(F(x) \) is a monotone function, whose discontinuous points are countable, \(z \) is one-to-one mapping from \([0, \infty)\) to \([0, \infty)\), and so the above convergence holds except on a set with null Lebesgue measure. From the Lebesgue bounded convergence theorem it follows that

\[
\lim_{e^{-\delta} \to 0} \int_0^{(b(d))^{-1}} \frac{1}{b} \max_{\epsilon \in \{\exp[\delta^{\epsilon - \delta}]\}} \left| \mathbb{V}\left(\frac{S_n^\epsilon}{\sqrt{n}} > z \right) - F(z) \right| \, dz = 0.
\]

(24)

Hence, for \(M \geq 1 \),
\[\lim_{x \to 0} \int_{b(e)}^{b(c)} \frac{(\log \log (x-a))^{b-1}}{(x-a) \log (x-a)} \]
\[\times \mathbb{P} \left(\frac{|S_{\max}|}{\sqrt{|X|}} > \varepsilon (\log \log (x-a))^d \right) \]
\[\leq \int_{b(e)}^{b(c)} \frac{1}{x} \mathcal{V}(\varepsilon |x|/b, x) \, dx = 0. \]

On the other hand, for \(M \geq 2 \), by the study (24) and (25) in [11],

\[\int_{b(e)}^{b(c)} \frac{(\log \log (x-a))^{b-1}}{(x-a) \log (x-a)} \epsilon (\log \log (x-a))^d \, dx \leq \epsilon (\log \log (x-a))^d \int_{b(e)}^{b(c)} \frac{1}{x} \mathcal{V}(\varepsilon |x|/b, x) \, dx \]

\[= \epsilon (\log \log (x-a))^d \int_{b(e)}^{b(c)} \frac{1}{x} \mathcal{V}(\varepsilon |x|/b, x) \, dx \rightarrow 0 \text{as} M \rightarrow \infty. \]

It remains to establish that

\[\lim_{M \to \infty} \lim_{\varepsilon \to 0} \int_{b(e)}^{b(c)} \frac{(\log \log (x-a))^{b-1}}{(x-a) \log (x-a)} \mathcal{V}(\max_{k \leq x} |S_k|) \]

\[\geq \frac{\sqrt{b/d}}{2} \varepsilon \sqrt{x - a} (\log \log (x-a))^d \, dx = 0. \]

Let \(b_x = \varepsilon \sqrt{d/b} \sqrt{x - a} (\log \log (x-a))^d / 32 \), \(Y_{ix} = -b_x \sqrt{x}/b_x \). Then,

\[\mathbb{P} \left(\max_{k \leq x} \sum_{i=1}^{k} (Y_{ix} - \mathbb{E}(Y_{ix})) > \frac{\sqrt{b/d}}{4 \varepsilon \sqrt{x - a} (\log \log (x-a))^d} \right) \leq \exp \left(\frac{\sqrt{b/d}}{4 \varepsilon \sqrt{x - a} (\log \log (x-a))^d} \right) \]

\[\leq \exp \left(\frac{256}{\varepsilon^4 \left(\frac{\log \log (x-a)^2 d}{4x} \right)^4} \right). \]

Therefore, by the proof of Lemma 1 in Zhong and Wu [13],
\[
\varepsilon^{bd} \int_{b(\varepsilon)}^\infty \left(\max_{k \leq x} \frac{\sqrt{b/d}}{2} |\operatorname{log}(x) - \log(x-a)|^d \right) \frac{(\log \log (x-a))^{b-1}}{(x-a) \log (x-a)} \, dx
\]

\[
\leq C \varepsilon^{bd} \int_{b(\varepsilon)}^\infty \left(\max_{k \leq x} \frac{\sqrt{b/d}}{2} |\operatorname{log}(x) - \log(x-a)|^d \right) \frac{(\log \log (x-a))^{b-1}}{(x-a) \log (x-a)} \, dx
\]

\[
+ C \varepsilon^{bd} \int_{b(\varepsilon)}^\infty \left(\max_{k \leq x} \frac{\sqrt{b/d}}{2} |\operatorname{log}(x) - \log(x-a)|^d \right) \frac{256}{(\varepsilon^2 \log (x-a))^{2n}} \, dx
\]

\[
\leq C \int_{\varepsilon M^{-1}}^\infty \mathcal{V} \left(|X| > y \right) dy + C \varepsilon^{-bd} \frac{1}{(M \varepsilon^{-1/d})^b}
\]

\[\leq C \int_{\varepsilon M^{-1}}^\infty \mathcal{V} \left(|X| > y \right) dy + C/M^b \rightarrow 0.
\]

As \(M \rightarrow \infty \), for \((-S_k)\), we have same convergence. Thus, (11) is established.

Next, we prove (12). With (9) in place of (8), we obtain

\[
\lim_{\varepsilon, b \rightarrow 0} \varepsilon^{bd} \int_3^\infty \frac{\left(\log \log (x-a) \right)^{b-1}}{\log \log (x-a)} \times \left| \mathcal{V} \left(\max_{k \leq x} \frac{|S_k|}{\sqrt{x}} > \varepsilon \left(\log \log (x-a) \right)^d \right) \right| \, dx = 0.
\]

Also, for \(0 \leq a \leq 1 \),

\[
\lim_{\varepsilon, b \rightarrow 0} \varepsilon^{bd} \int_3^\infty \frac{\left(\log \log (x-a) \right)^{b-1}}{\log \log (x-a)} - 2G \left(\varepsilon \left(\log \log (x-a) \right)^d \right) \, dx = \lim_{\varepsilon, b \rightarrow 0} \varepsilon^{bd} \int_3^\infty 2G(y) \frac{1}{b} d\left(\frac{y}{b} \right) = \int_0^\infty \frac{2}{d} G(y) y^{(b-1)} dy.
\]

We see that for any integer \(m \geq 0 \),

\[
\int_0^\infty \frac{2}{d} G(y) y^{(b-1)} dy \leq \int_0^\infty \frac{2m}{d} \sum_{i=0}^m (-1)^i P(|N| \geq (2i + 1)y) y^{(b-1)} dy = \sum_{i=0}^m (-1)^i \int_0^\infty \frac{2}{d} P(|N| \geq (2i + 1)y) y^{(b-1)} dy
\]

\[
= \sum_{i=0}^m (-1)^i \frac{1}{b} \frac{2^{1+b/2} d}{\sqrt{\pi} (2i + 1)^{b/2}}
\]

\[
\int_0^\infty \frac{2}{d} G(y) y^{(b-1)} dy \geq \int_0^\infty \frac{2m+1}{d} \sum_{i=0}^{m+1} (-1)^i P(|N| \geq (2i + 1)y) y^{(b-1)} dy = \sum_{i=0}^{m+1} (-1)^i \int_0^\infty \frac{2}{d} P(|N| \geq (2i + 1)y) y^{(b-1)} dy
\]

\[
= \sum_{i=0}^{m+1} (-1)^i \frac{1}{b} \frac{2^{1+b/2} d}{\sqrt{\pi} (2i + 1)^{b/2}}
\]

Hence, letting \(m \rightarrow \infty \) in the above two inequalities results in

\[
\int_0^\infty \frac{2}{d} G(y) y^{(b-1)} dy = \sum_{i=0}^\infty (-1)^i \frac{1}{b} \frac{2^{1+b/2} d}{\sqrt{\pi} (2i + 1)^{b/2}}
\]

Therefore, (12) is proved.
Data Availability
No data were used to support this study.

Conflicts of Interest
The authors declare that they have no conflicts of interest.

Acknowledgments
This research was supported by the Doctoral Scientific Research Starting Foundation of Jingdezhen Ceramic University (No. 102/01003002031), Natural Science Foundation Program of Jiangxi Province (No. 20202BABL211005), and National Natural Science Foundation of China (No. 61662037).

References
[1] S. Peng, "G-expectation, G-brownian motion and related stochastic calculus of i type," Stochastic Analysis and Applications, vol. 2, no. 4, pp. 541–567, 2007.
[2] S. G. Peng, "Nonlinear Expectations and Stochastic Calculus under Uncertainty," 2010, https://arxiv.org/abs/1002.4546.
[3] F. Q. Gao and M. Z. Xu, "Large deviations and moderate deviations for independent random variables under sublinear expectations (in Chinese)," Science China Mathematics, vol. 41, no. 4, pp. 337–352, 2011.
[4] L.-X. Zhang, "Donsker’s invariance principle under the sub-linear expectation with an application to chung’s law of the iterated logarithm," Communications in Mathematics and Statistics, vol. 3, no. 2, pp. 187–214, 2015.
[5] L. Zhang, "Exponential inequalities under the sub-linear expectation with applications to laws of the iterated logarithm," Science China Mathematics, vol. 59, no. 12, pp. 2503–2526, 2016a.
[6] L. Zhang, "Rosenthal’s inequalities for independent and negatively dependent random variables under sub-linear expectations with applications," Science China Mathematics, vol. 59, no. 4, pp. 751–768, 2016b.
[7] L. X. Zhang, "Strong Limit Theorems for Extended Independent and Extended Negatively Random Variables under Non-linear Expectations," 2016c, http://arxiv.org/abs/1608.0071v1.
[8] L. X. Zhang, "The convergence of the sums of independent random variables under the sub-linear expectations, " Acta Mathematica Sinica, English Series, vol. 36, no. 3, pp. 224–244, 2020a.
[9] L.-X. Zhang, "Lindeberg’s central limit theorems for martingale like sequences under sub-linear expectations," Science China Mathematics, vol. 64, no. 6, pp. 1263–1290, 2020b, https://doi.org/10.1007/s11425-018-9556-7.
[10] L.-X. Zhang, "Heyde’s theorem under the sub-linear expectations," Statistics & Probability Letters, vol. 170, p. 108987, 2021.
[11] Q. Wu, "Precise asymptotics for complete integral convergence under sublinear expectations," Mathematical Problems in Engineering, vol. 2020, pp. 1–13, 2020.
[12] M. Xu and K. Cheng, "Precise asymptotics in the law of the iterated logarithm under sublinear expectations," Mathematical Problems in Engineering, vol. 2021, pp. 1–9, 2021.
[13] H. Zhong and Q. Wu, "Complete convergence and complete moment convergence for weighted sums of extended negatively dependent random variables under sub-linear expectation," Journal of Inequalities and Applications, vol. 2017, no. 1, pp. 261–314, 2017.
[14] J. P. Xu and L. X. Zhang, "Three series theorem for independent random variables under sub-linear expectations with applications," Acta Mathematica Sinica, English Series, vol. 35, no. 2, pp. 172–184, 2019.
[15] J.-p. Xu and L.-x. Zhang, "The law of logarithm for arrays of random variables under sub-linear expectations," Acta Mathematicae Applicatae Sinica, English Series, vol. 36, no. 3, pp. 670–688, 2020.
[16] D. L. Yu and Q. Y. Wu, “Marcinkiewicz type complete convergence for weighted sums under sub-linear expectations,” Journal of University of Science and Technology of China, vol. 48, no. 2, pp. 89–96, 2018.
[17] Q. Wu and Y. Jiang, "Strong law of large numbers and Chover’s law of the iterated logarithm under sub-linear expectations," Journal of Mathematical Analysis and Applications, vol. 460, no. 1, pp. 252–270, 2018.
[18] X. C. Ma and Q. Y. Wu, "Limiting behavior of weighted sums of extended negatively dependent random variables under sublinear expectations," Advances in Mathematics, vol. 48, no. 2 pp. 89–96, 2018.
[19] Z. Chen, "Strong laws of large numbers for sub-linear expectations," Science China Mathematics, vol. 59, no. 5, pp. 945–954, 2016.
[20] X. Fang, S. G. Peng, Q. M. Shao, and Y. S. Song, "Limit Theorems with Rate of Convergence under Sublinear Expectations," 2018, https://arxiv.org/abs/1711.10649v2.
[21] F. Hu, Z. Chen, and D. Zhang, "How big are the increments of G-Brownian motion?" Science China Mathematics, vol. 57, no. 8, pp. 1687–1700, 2014.
[22] Z.-C. Hu and Y.-Z. Yang, "Some inequalities and limit theorems under sublinear expectations," Acta Mathematicae Applicatae Sinica, English Series, vol. 33, no. 2, pp. 451–462, 2017.
[23] A. Kuczmaszewska, "Complete convergence for widely acceptable random variables under the sublinear expectations," Journal of Mathematical Analysis and Applications, vol. 484, no. 1, pp. 123662, 2020.
[24] W. J. Wang and Q. Y. Wu, "Almost sure convergence of weighted sums for extended negatively dependent random variables under sub-linear expectations," Mathematica, vol. 32, no. 2, pp. 382–391, 2019.
[25] A. Gut and A. Spătaru, "Precise asymptotics in the law of the iterated logarithm," Annals of Probability, vol. 28, no. 4, pp. 1870–1883, 2000.
[26] L. X. Zhang, "Precise Rates in the Law of the Iterated Logarithm," 2006, https://arxiv.org/abs/0610519v1.
[27] W. Huang, L. Zhang, and Y. Jiang, "Precise rate in the law of iterated logarithm for -mixing sequence," Applied Mathematics-A Journal of Chinese Universities Series B, vol. 18, no. 4, pp. 482–488, 2003.
[28] C. Jiang and X. Yang, "Precise asymptotics in self-normalized sums of iterated logarithm for multidimensionally indexed random variables," Applied Mathematics-A Journal of Chinese Universities, vol. 22, no. 1, pp. 87–94, 2007.
[29] H. Wu and J. Wen, "Precise rates in the law of the iterated logarithm for R/S statistics," Applied Mathematics-A Journal of Chinese Universities, vol. 21, no. 4, pp. 461–466, 2006.
[30] X.-Y. Xiao, L.-X. Zhang, and H.-W. Yin, "Precise rates in the generalized law of the iterated logarithm," Statistics & Probability Letters, vol. 83, no. 2, pp. 616–623, 2013.
[31] M. Xu, Y. Ding, and Y. Zhou, "Precise rates in the generalized law of the iterated logarithm in," Journal of Mathematical Research with Applications, vol. 38, no. 1, pp. 103–110, 2018.

[32] M. Xu and K. Cheng, "Precise Rates in the Generalized Law of the Iterated Logarithm in the Hilbert Space," Journal of Applied Probability and Statistics, Article ID 6691857, 2020a.

[33] M. Xu and K. Cheng, "Precise rates in the generalized law of the iterated logarithm in the multidimensional space," Chinese Journal of Applied Probability and Statistics, vol. 37, no. 5, pp. 507–514, 2021.

[34] S. G. Peng, "Theory, methods and meaning of nonlinear expectation theory (in Chinese)," Science China Mathematics, vol. 47, no. 10, pp. 1223–1254, 2017.

[35] S. G. Peng, A Hypothesis-Testing Perspective on the -normal Distribution Theory, https://arxiv.org/abs/1909.03530v1, 2019.