Reciprocal NUT spacetimes

Davood Momeni,1 Surajit Chattopadhyay,2 and Ratbay Myrzakulov1,\dagger

1 Eurasian International Center for Theoretical Physics and Department of General Theoretical Physics, Eurasian National University, Astana 010008, Kazakhstan.

2 Pailan College of Management and Technology, Bengal Pailan Park, Kolkata-700 104, India.

In this paper, we study the \textbf{Ehlers transformation} (sometimes called gravitational duality rotation) for \textbf{reciprocal} static metrics. First we introduce the concept of reciprocal metric. We prove a theorem which it shows that how we can construct a certain new static solution of Einstein field equations using a seed metric. Later we investigate the family of stationary spacetimes of such reciprocal metrics. The key here is a theorem from Ehlers, which it relates any static vacuum solution to a unique stationary metric. The stationary metric has a magnetic charge. The spacetime represents NUT solutions. Since any stationary spacetime can be decomposed in a $1+3$ time-space decomposition, Einstein field equations for any stationary spacetime can be written in the form of Maxwell’s equations for gravitoelectromagnetic fields. Further we show that this set of equations is invariant under reciprocal transformations. An additional point is that the NUT charge changes the sign. As an instructive example, by starting from the reciprocal Schwarzschild as a spherically symmetric solution, reciprocal Morgan-Morgan disk model as seed metrics we find their corresponding stationary space-times. Starting from any static seed metric, performing the reciprocal transformation and by applying an additional Ehlers’ transformation we obtain a family of NUT spaces with negative NUT factor (reciprocal NUT factors).

PACS numbers:

\section{I. INTRODUCTION}

Exact solutions of Einstein gravitational field equations are represented by Lorentzian manifolds with metric $g_{\mu\nu}(x^\rho), \mu, \nu, \rho,... = 0, 1, 2, 3, ..,$ satisfies the common form of Einstein equation:

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = \frac{8\pi G}{c^4}T_{\mu\nu}$$ (1)
Here $g_{\mu\nu}$ is a measure of theory. The Ricci tensor $R_{\mu\nu} = g^{\rho\sigma} R_{\rho\mu\sigma\nu}$, where $g^{\mu\rho} g_{\rho\nu} = \delta^\mu_\nu$ (see [1] for a complete list of possible solutions). Based on different forms of energy momentum tensor, the following are the types of well-known exact solutions: (i) Vacuum solutions, (ii) Electrovacuum solutions, (iii) Null dust solutions, (iii) Fluid solutions, (iv) Scalar field solutions and (v) Lambda-vacuum solutions [1, 2]. As a natural extension of the vacuum spherically symmetric solution to stationary systems, the NUT solution is given (in t, r, θ, ϕ coordinates) in the following form [3]

$$ds^2 = e^{-2\nu} \left(dt - 2q(1 + \cos \theta)d\phi \right)^2 - \left(1 - \frac{q^2}{r^2} \right) e^{2\nu} dr^2 - r^2 d\hat{r}^2.$$ \hspace{1cm} (2)

where, $e^{-2\nu} = 1 - 2r^2 \left(q^2 + mr \right)$ and l defines the magnetic mass (charge) or NUT factor and m is point mass in Schwarzschild space [3]. Further $d\hat{r}^2$ denotes the metric of unit sphere. NUT spacetime is a vacuum solution but is not asymptotically Euclidean so we can’t construct a field theory on it. NUT-Space was discovered in Ehlers thesis [4] and later rediscovered [3]. Different aspects of this solutions have been studied in the literature [5–9].

Derivation of NUT spacetime using Ehlers transformation is known. In the present work we study a more complicated version of such transformation. We start by a static seed metric which it solves Einstein field equations in vacuum. We present and prove a theorem from Buchdahl [10], it shows that how we can construct another static vacuum solution of Einstein gravity, which is not coordinate transformation. The new metric is called reciprocal. We explain by reciprocal what we mean physically. As a motivated idea we use the Ehlers transformation along with the $1 + 3$ decomposition of stationary spacetimes (gravitoelectromagnetic) for reciprocal metrics. We obtained reciprocal Schwarzschild as a reciprocal analogue of Schwarzschild solution. Further, we derive reciprocal Morgan-Morgan-NUT as seed metrics of a generalized reciprocal Morgan-Morgan-NUT with negative NUT parameter. It should be mentioned that we shall use units in which $\alpha, \beta,.. = 0...3$ while $\mu, \nu,.. = 1...3$ and $c = G = 1$. Rest of the paper is organized as follows: In section II, starting from a static (time independent) vacuum solution of Einstein field equations, we perform a reciprocal transformation on it. In section III, we have elaborated the basic idea of Ehlers transformation to find a way on how we can generate a certain family of stationary metrics from the given static metrics. Duality in gravitoelectromagnetism and reciprocal transformation has been discussed in section IV. In sections V, VI, VII and VIII we have discussed the reciprocal Schwarzschild spacetime, Reciprocal NUT space from reciprocal Schwarzschild through Ehlers transformation, Reciprocal Morgan-Morgan disk space and Reciprocal Morgan-Morgan-NUT respectively. We have concluded in section X.
II. RECIPROCAL STATIC METRICS

At the beginning of the present section we first state the main proposal of the reciprocal principle. We follow the terminology of [10]. The concept of metric \bar{g} reciprocal to metric g was defined by the following $n \geq 4$-dimensional metric:

$$g = g_{ij}(x^k)dx^idx^j + g_{aa}(dx^a)^2, \quad (\text{seed}) \iff \bar{g} = (g_{aa})^{n-3}g_{ij}dx^idx^j + \frac{(dx^a)^2}{g_{aa}}, \quad (\text{reciprocal}). \quad (3)$$

In vacuum, $R_{\mu\nu} = 0$. The reciprocal algorithm works if g, \bar{g} satisfy the vacuum Einstein equation. Under reciprocal transformation the Einstein field equations remain unchanged. If we denote by $T^\nu_{\mu} = \frac{1}{2}g^\nu_{\mu}R - R^\nu_{\mu}$ the corresponding tensor-density, then reciprocal algorithm follows by these identities:

$$\bar{T}^k_i = T^k_i, \quad (\bar{T}^a_i - \frac{1}{n-3}T^i_a) = -\left(T^a_i - \frac{1}{n-3}T^i_a\right). \quad (4)$$

If we define $Q^\nu_{\mu} = T^\nu_{\mu} - \frac{1}{n-3}g^\nu_{\mu}T^i_a$, then (4) may be written in the form:

$$\bar{Q}^k_i = Q^k_i, \quad Q^a_a = -Q^a_a. \quad (5)$$

So we conclude as the following: Reciprocal transformation of two static metrics is a transformation which it preserves the form of Einstein equation and additionally, under this transformation the components of the quantity Q^ν_{μ} decomposed to Q^i_j (tensor), Q^a_a (scalar) behave like (5). If we take $x^a = t$ (time), we can understand the scalar Q^a_a as energy.

After this introduction to the topic we follow our curious four dimensional case. If we choice $n = 4, a = 0$, we start from a static (time independent) vacuum solution of Einstein field equations in the following representation:

$$g \equiv -g_{ik}dx^idx^k + g_{00}(dx^0)^2. \quad (6)$$

It solves vacuum field equations $G_{\mu\nu}(g) = 0$. We have a theorem about such metrics

Theorem: Starting from (6) as seed metric, we perform a reciprocal transformation on it. The following new metric is also an exact solution of vacuum field equations $G_{\mu\nu}(\bar{g}) = 0$:

$$\bar{g} \equiv -(g_{00})^2g_{ik}dx^idx^k + \frac{(dx^0)^2}{g_{00}}. \quad (7)$$

Proof: Non zero components of Ricci tensor components for a typical metric in the form of

$$\bar{g} \equiv -e^{2\sigma}g_{ik}dx^idx^k + e^{2\gamma}(dx^0)^2. \quad (8)$$
are written as:

\[
\ddot{R}_{ik} = R_{ik} + \nabla_i \nabla_k \sigma - \nabla_i \sigma \nabla_k \sigma + \nabla_i \nabla_k \gamma - \nabla_i \gamma \nabla_k \gamma - \nabla_i \gamma \nabla_k \sigma
\]

\[+ g_{ik} \left[\nabla_j \nabla^j \sigma + \nabla_j \sigma \nabla^j \sigma + \nabla_j \sigma \nabla^j \gamma \right] \]

\[R_{i0} = 0, \quad R_{00} = e^{2\gamma - 2\sigma} \left[\nabla_j \nabla^j \gamma + \nabla_j \gamma \nabla^j \gamma + \nabla_j \sigma \nabla^j \gamma \right]. \]

So Einstein tensor \(G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} \) components read as the following:

\[
\ddot{G}_{ik} = G_{ik} - \nabla_i \nabla_k \sigma + \nabla_i \sigma \nabla_k \sigma - \nabla_i \nabla_k \gamma - \nabla_i \gamma \nabla_k \gamma + \nabla_i \gamma \nabla_k \sigma
\]

\[+ g_{ik} \left[\nabla_j \nabla^j \sigma + \nabla_j \gamma \nabla^j \gamma + \nabla_j \sigma \nabla^j \gamma \right] \]

\[G_{i0} = 0, \quad G_{00} = e^{2\gamma - 2\sigma} \left[G + 2 \nabla_j \nabla^j \sigma + \nabla_j \sigma \nabla^j \sigma \right]. \]

Our aim here is to show that how the above equations satisfy by the given reciprocal metric. Firstly the vacuum Einstein field equations for seed metric (6) imply that:

\[G_{ik} - \nabla_i \nabla_k \gamma - \nabla_i \gamma \nabla_k \sigma + g_{ik} \left[\nabla_j \gamma \nabla^j \gamma + \nabla_j \sigma \nabla^j \gamma \right] = 0, \quad e^{2\gamma} G = 0. \] (13)

Note that all unbar quantities constructed from the spatial metric \(g_{ij} \). So, seed is an exact solution if and only if (13) satisfies. If we write the metric function \(e^{2\gamma} = g_{00} \) we obtain the following constraint equation:

\[\nabla_i \nabla^i \log g_{00} + \frac{g^{ik}}{2} \nabla_i \log g_{00} \nabla_k \log g_{00} = 0. \] (14)

Now we are ready to show that how (7) solves Einstein equation if and only if the seed metric (6) satisfies (14). Its easy to write the Einstein field equations for (7) by considering the constraint equation (14) and by plugging (13) in the following forms

\[- \nabla_i \nabla^i \gamma + g^{ik} \nabla_i \gamma \nabla_k \gamma = 0, \] (15)

\[\nabla_i \nabla^i \gamma + g^{ik} \nabla_i \sigma \nabla_k \gamma + \nabla_i \gamma \nabla^i \gamma = 0. \] (16)

Note that so far the above pair of equations can be solved by the pair of metric functions \(\sigma = \log g_{00}, \gamma = -\frac{1}{2} \log g_{00} = -\gamma_{\text{seed}} \) thanks to the constraint equation (14). It completes our proof.

Transformation between two kinds of metrics given by Eqs (6) and (7) is called reciprocal transformation. It was proposed firstly for vacuum solutions [10]. However, later it was extended to non-vacuum cases also. In the present work we shall investigate the vacuum solutions through reciprocal transformation in the simplest form as shown in the above theorem.
III. EHLERS TRANSFORMATION

The basic idea behind Ehlers transformation is to find a way for generating a certain family of stationary metrics from the given static (non-stationary) metrics. Let us assume that we have a static mass distribution density with gravitational dipole moments. If this mass configuration is rotated physically around an axis then it transits to higher order moments, which are quadrupoles in this case. We are interested to understand this kind of transition in the language of electro-magnetic gravitational fields. It means we find a similar formulation of the Einstein field equations in vacuum in terms of a set of the vector fields, in a similar manner as electric or magnetic fields in classical Maxwell’s theory. Indeed, as we shall observe, transition of a dipole moment to quadrupole is well understood in terms of the gravitoelectromagnetic fields. To start, let us introduce a methodology using the $(1 + 3)$-decomposition (threading) of a spacetime, prposed generally for any stationary spacetime via a congruence family of time like curves. For a typical metric we obtain following decomposed form of the spacetime line element \cite{12}:

\[ds^2 = dT^2 - dL^2, \]

In the terminology of \cite{12}, here dL and dT are defined to be the invariant spatial and temporal length elements under general coordinate transformation. It defines the spacetime line element between two causal events. They are obtained from a set of normalized tangent vector $T^a = \frac{\xi^a}{|\xi|}$ to the time like curves in the following form:

\[dL^2 = h_{ab} dx^a dx^b, \]

\[dT = u_a dx^a, \]

Here h_{ab} denotes an induced metric

\[h_{ab} = -g_{ab} + u_a u_b. \]

Here we define a vector potential using $A_a \equiv -\frac{\xi^a}{|\xi|^2}$. We are able to rewrite the metric in the following optional form:

\[ds^2 = h(A_a dx^a)^2 - h_{ab} dx^a dx^b ; \quad h_{ab} = -g_{ab} + h A_a A_b, \quad h = |h_{ab}|. \]

We opt for a well posed and preferred parameterization of the coordinate time x^0 (generally and strictly speaking it doesn’t have the same interpretation as physical time) for the comoving observers;

\[\xi^a = (1, 0, 0, 0) ; \quad A_a = (-1, -\frac{g_{0a}}{g_{00}}), \]

\[\xi^a = (1, 0, 0, 0) ; \quad A_a = (-1, -\frac{g_{0a}}{g_{00}}), \]
So far, we have the following equations \[11, 12\];

\[dL^2 \equiv dt^2 = \gamma_{\alpha\beta} dx^\alpha dx^\beta, \] (7)

\[ds^2 = e^{2U} (dx^0 - A_\alpha dx^\alpha)^2 - dt^2, \] (8)

where

\[e^{2U} = g_{00} , \quad A_\alpha = -g_{0\alpha}/g_{00}, \] (9)

and

\[\gamma_{\alpha\beta} = (-g_{\alpha\beta} + \frac{g_{0\alpha}g_{0\beta}}{g_{00}}). \] (10)

We introduce \(U \) and \(A \) as the gravitoelectric and gravitomagnetic potentials respectively. The corresponding vector fields are \[13\];

\[E_g = -\nabla U, \] (17)

\[B_g = \text{curl}A. \] (18)

where the vector differential operators are computed in the \(\gamma \) space. Einstein gravitational field equation in vacuum has the following forms:

\[\nabla . B_g = 0, \] (19)

\[\nabla \times E_g = 0, \] (20)

\[\nabla . E_g = e^{2U} \frac{B_g^2}{2} + E_g^2, \] (21)

\[\nabla \times (e^U B_g) = 2e^U E_g \times B_g. \] (22)

We have the following theorem:

Ehlers’ Theorem \[14\]: If

\[g_{mn}dx^m dx^n = e^{2U} (dx^0)^2 - e^{-2U} d\tilde{l}^2. \] (23)

with \(d\tilde{l}^2 = e^{2U} dt^2 \) representing the conformal spatial distance, represents the metric of a static vacuum spacetime, then,

\[\tilde{g}_{mn}dx^m dx^n = \frac{1}{\alpha \cosh(2U)} (dx^0 - A_\beta dx^\beta)^2 - \alpha \cosh(2U) d\tilde{l}^2. \] (24)
(with $\alpha = \text{constant} > 0$, $U = U(x^\alpha)$ and $A_\beta = A_\beta(x^\alpha)$) is the metric of a stationary vacuum spacetime if and only if A_α satisfies the following equation:

$$\alpha \sqrt{\tilde{\gamma} \varepsilon_{\alpha \beta \eta} U, \eta} = A_{[\alpha, \beta]}.$$ \hfill (25)

where $\tilde{\gamma} = \det \tilde{\gamma}_{\mu \nu}$, $\tilde{\gamma}_{\mu \nu}$ is the conformal spatial metric. Eq. (25) is called as the Ehlers equation. Integration of Ehlers equation is equivalent to solve Maxwell’s equation by a given scalar potential U. In this work, we shall derive the reciprocal NUT spaces as the stationary spacetime which is the gravitational dual of reciprocal static space as seed.

IV. PROPERTIES OF GRAVITOELECTROMAGNETISM EQUATIONS UNDER RECIPROCAL TRANSFORMATION

Throughout this section we used $\hat{}$ to refer to the reciprocal quantities. By simple replacement of $\hat{U} = -U$ the reciprocal form of (23) is obtained as:

$$g_{mn} dx^m dx^n = e^{-2U}(dx^0)^2 - e^{2U} d\tilde{l}^2.$$ \hfill (26)

One can write (24) analogous to (26) in the form:

$$\tilde{g}_{mn} dx^m dx^n = \frac{1}{\alpha \cosh(2U)}(dx^0 - \hat{A}_\beta dx^\beta)^2 - \alpha \cosh(2U) d\tilde{l}^2.$$ \hfill (27)

The reciprocal vector field \hat{A} satisfies the reciprocal Ehlers equation:

$$- \alpha \sqrt{\hat{\gamma} \varepsilon_{\alpha \beta \eta} U, \eta} = \hat{A}_{[\alpha, \beta]}.$$ \hfill (28)

Note that $d\hat{\gamma}^2 = g_{00}g_{ij} dx^i dx^j = d\tilde{l}^2$, consequently $\sqrt{\hat{\gamma}} = \sqrt{\tilde{\gamma}}$. Comparison of (25,28) leads to:

$$\hat{A} = -A.$$ \hfill (29)

So, gravitational dual of the reciprocal metric changes the gravito fields to the following forms:

$$\hat{E}_g = -E_g \hfill (30)$$

$$\hat{B}_g = -B_g.$$ \hfill (31)

The reciprocal forms of the field equations are written in the following:

$$\nabla \cdot \hat{B}_g = 0,$$ \hfill (32)

$$\nabla \times \hat{E}_g = 0,$$ \hfill (33)

$$\nabla \cdot \hat{E}_g = e^{2U} \frac{\hat{B}_g^2}{2} + \hat{E}_g^2,$$ \hfill (34)

$$\nabla \times (e^U \hat{B}_g) = 2e^U \hat{E}_g \times \hat{B}_g.$$ \hfill (35)
Note that $e^{2U}|_{1+3} = \frac{1}{\alpha \cosh(2U)}|_{Ehlers}$. Under reciprocal transformations the system of the field equations remain invariant if and only if $\hat{\alpha} = -\alpha$. It means under Ehlers transformation the seed and the reciprocal seed have different metric signatures. If we apply Ehlers on seed, the family of NUT solutions has the same signature as seed. Also if we apply the Ehlers transformation on reciprocal seed metric, due to this fact that in reciprocal transformation the energy of the system changes the sign, so the resulted NUT family has the NUT factor with negative sign. But still now, the reciprocal NUT and reciprocal seed has the same signature. Briefly change of the sign of the NUT factor doesn’t indicate any signature change from static seed to the stationary NUT solution. The only fact is that reciprocal NUT and the original NUT has different signatures. If NUT has $\text{sign}(g) = 2$ then the reciprocal NUT has signature of $\text{sgn}(g) = -2$. Its due to the change of the sign of NUT parameter under reciprocal transformations. It implies that NUT family of the reciprocal metrics posses a negative sign NUT parameter. To preserve the same forms of the equations for (\hat{E}, \hat{B}) under reciprocal transformation, we must have:

$$e^{2\hat{U}}|_{1+3} = -e^{2U}|_{1+3}, \hat{U} = -U \Rightarrow \frac{1}{\hat{\alpha} \cosh(2\hat{U})}|_{Ehlers} = -\frac{1}{\alpha \cosh(2U)}|_{Ehlers} \Rightarrow \hat{\alpha} = -\alpha. \quad (36)$$

Theorem: The full system of the Maxwell equations for gravitoelectromagnetism fields is invariant under a reciprocal transformation of the fields and NUT parameter as the follows:

$$\hat{U} = -U \quad (37)$$

$$\hat{E}_g = -E_g \quad (38)$$

$$\hat{B}_g = -B_g, \quad (39)$$

$$\hat{\alpha} = -\alpha. \quad (40)$$

So metric and reciprocal metric are physically correspond to two different spacetimes.

V. RECIPROCAL SCHWARZSCHILD SPACETIME

Reciprocal metric of Schwarzschild spacetime is obtained using the reciprocal formalism. One has:

$$\bar{g} = (1 - \frac{2M}{r})^{-1}(dx^0)^2 - (1 - \frac{2M}{r})dr^2 - r^2(1 - \frac{2M}{r})^2d\Omega^2. \quad (41)$$

This is verified to be a non flat exact solution to the vacuum Einstein field equations using the Maple tensor package 1.

1 Schwarzschild is unique solution which could be cast in the isotropic coordinates. Addition of a constant in potential in Einstein gravity is non-trivial, Schwarzschild solution is $g_{00} = -1/g_{11} = 1 + 2\Phi$ where $\Phi = -M/r$. If one adds
VI. RECIPROCAL NUT SPACE FROM RECIPROCAL SCHWARZSCHILD THROUGH EHLERS TRANSFORMATION

We begin with the reciprocal schwarzschild metric in the form

\[U = -\frac{1}{2} \log(1 - \frac{2M}{r}) \]

and

\[d\tilde{l}^2 = dr^2 + r^2(1 - \frac{2M}{r})d\Omega^2 \]

It is observed that starting by this seed the Ehlers equation (25) reduces to,

\[2\alpha r^2 \sin \theta e^{-2U} \tilde{\gamma}^{rr} U_{,r} = A_{\phi,\theta}, \quad (18) \]

in which we suppose that \(A_{\theta,\phi} = 0 \) to keep the terminated stationary spacetime single valued and axially symmetric.

By imposing axial symmetry, gravitomagnetic field is obtained to be,

\[A_{\phi}(\theta) = -2M \alpha \cos \theta + c_0 \]

(it is compared with the case of non reciprocal NUT space with a plus sign [16]).

So the resulted stationary metric is given by;

\[ds^2 = -\frac{1}{\alpha} \frac{r^2 - 2Mr}{r^2 - Mr + 2M^2} \left(dt - (-2\alpha M \cos \theta + c_0) d\phi \right)^2 + \alpha \frac{r^2 - Mr + 2M^2}{r^2 - 2Mr} dr^2 \]

\[+ \alpha (r^2 - Mr + 2M^2)(d\theta^2 + \sin^2 \theta d\phi^2). \quad (42) \]

It coincides with the NUT space in its original form if we apply a suitable coordinate transformation [16]. It infact coincides with the previously result [19]. The case of pure NUT is obtained when we set \(M = 0 \) but we kept \(\hat{q} = \alpha M \neq 0, c_0 = 2\alpha M \), it reads as the following form:

\[ds^2 = -\frac{1}{\alpha} \left(dt - 2\hat{q}(1 + \cos \theta) d\phi \right)^2 + \alpha dr^2 + \alpha r^2(d\theta^2 + \sin^2 \theta d\phi^2). \quad (43) \]

If we rescale radial coordinate as \(\sqrt{\alpha}r = \tilde{r} \) and meanwhile \(\tilde{t} = \frac{t}{\sqrt{\alpha}}, \tilde{q} = \frac{\hat{q}}{\sqrt{\alpha}} \) we obtain:

\[ds^2 = -\left(d\tilde{t} - 2\tilde{q}(1 + \cos \theta) d\phi \right)^2 + d\tilde{r}^2 + \tilde{r}^2(d\theta^2 + \sin^2 \theta d\phi^2). \quad (44) \]

A constant to \(\Phi \) to write \(\Phi = -M/r + k \), then it would no longer be a vacuum solution.
Reciprocal transformation here refers to the change of the sign of potential function $U = \log \sqrt{g_{00}}$. It means the reciprocal configurations has the same amount of energy but with negative sign of magnetic charge. After applying the dual transformation, the same stationary metric is obtained but with a negative charge sign. Both stationary metrics mimic the same form but their seeds are reciprocal. Dual gravitational rotation included a NUT charge which has the opposite sign for both seed metrics, reciprocal and non reciprocal. Physically, Ehlers’ transformation induced a reciprocal (with opposite sign) of gravitomagnetic monopole charge. Reciprocity in the energy content of the seed metric is related to the charge of the resulted stationary solutions.

VII. RECIPROCAL MORGAN-MORGAN DISK SPACE

The thin metric of a static disk with gravitational Quadrapoles was introduced originally in [17]. A modern formulation of this metric was presented later by Morgan-Morgan (MM) spacetime [18]. The appropriate coordinate system is oblate ellipsoidal coordinates (ξ, η) in which the definition of these coordinates is understood through the The Weyl (ρ, z) axial coordinates are:

$$
\rho^2 = a^2(1 + \xi^2)(1 - \eta^2), \quad z = a\xi \eta, \quad |\eta| \leq 1, \quad 0 \leq \xi \leq \infty,
$$

(37)

The location of the disk is at $\xi = 0, \quad |\eta| \leq 1$.

Reciprocal MM spacetime is written in the following form:

$$
\bar{g} = e^{-2u}(dx^0)^2 - e^{2u}\left[e^{2k}(d\rho^2 + dz^2) + \rho^2 d\varphi^2\right].
$$

(45)

in terms of the oblate ellipsoidal coordinates (ξ, η);

$$
u = -\frac{M}{a}\left(\arccot\xi + \frac{1}{4}(3\xi^2 + 1)\arccot\xi - 3\xi)(3\eta^2 - 1)\right),
$$

(34)

and

$$
k = \frac{9}{4}M^2\rho^2a^{-4}\left[\left(\frac{\rho}{a}\right)^2B^2(\xi) - (1 + \eta^2)A^2(\xi) - 2\xi(1 - \eta^2)A(\xi)B(\xi)\right],
$$

(35)

Here auxiliary functions are defined by

$$
A(\xi) = \xi\arccot\xi - 1, \quad B(\xi) = \frac{1}{2}\left[\frac{\xi}{1 + \xi^2} - \arccot\xi\right],
$$

(36)

MM metric is one of the most explicit forms of the disk metrics. It has an interpretation as a dust diak rotating clock side and counter clock side in such a way that the metric has zero net angular momentum.
VIII. RECIPROCAL MORGAN-MORGAN-NUT

Starting with the reciprocal Morgan-Morgan static disk space given by equation (45) we rewrite it as follows

\[U = u = \frac{M}{a} \left(\text{arccot} \xi + \frac{1}{2}(3\xi^2 + 1)\text{arccot} \xi - 3\xi P_2(\eta) \right). \]

(40)

Now selecting an axially symmetric gravitomagnetic potential \(A = A_\phi(\xi, \eta) \hat{\phi} \), via Ehlers transformation (25) we obtain;

\[A_{\phi,\eta} = 2\alpha a (1 + \xi^2) U_{,\xi}, \]

(41)

\[A_{\phi,\xi} = -2\alpha a (1 - \eta^2) U_{,\eta}, \]

(42)

where \(\alpha \) is the duality rotation parameter and \(a \) denotes the radius of the thin disk. By substituting the above potential into the equations we find:

\[A_\phi(\xi, \eta) = 3l\xi\eta(1 - \eta^2)(1 + \xi^2) \arctan \xi \]

\[+ \frac{3}{2} \eta l \left[(\pi \xi^3 - 2\xi^2 - 4/3 + \pi \xi)\eta^2 - (\pi \xi^2 - 2\xi + \pi)\xi \right] + \beta. \]

(46)

The NUT factor for reciprocal metric changed the sign from plus to minus in the form \(l = -M\alpha \) (with the negative sign in comparison to the usual NUT space). To recover the reciprocal Morgan-Morgan space as \(l \to 0 \), we adapted \(\alpha = 2\beta \), Consequently the metric of the reciprocal stationary spacetime of a thin disk with mass \(M \) and magnetic mass (NUT factor) \(q \) is obtained by;

\[ds^2 = -\left(\frac{a^2}{4m^2} e^{-2U} + e^{2U} \right)^{-1} [dt - A_\phi(\xi, \eta) d\phi]^2 \]

\[+ a^2 \left(\frac{l^2}{4m^2} e^{-2U} + e^{2U} \right) \left(e^{2k(\xi^2 + \eta^2)} \left(\frac{d\xi^2}{1 + \xi^2} + \frac{d\eta^2}{1 - \eta^2} \right) + (1 + \xi^2)(1 - \eta^2) d\phi^2 \right). \]

(47)

In a similar manner as the previous case and using the Maple tensor package, it is easy to verify that this metric solves vacuum Einstein field equations.

IX. CONCLUSION

Generating methods to find new exact solutions of Einstein equations are few. As a motivated work, we reintroduced and proved a theorem. This theorem stated that for any given static solution
of Einstein field equations there exists a unique reciprocal metric which it also satisfied field equations. The physical meaning of reciprocal transformation has been understood via energy tensor. Under reciprocal transformation the spatial components of the seed and the reciprocal metric are invariant. But the time component or energy density changed the sign. It can be interpreted as the negative mass parameter of reciprocal metric in comparison to the original one. Another important transformation is Ehlers’ transformation. It also called as gravitational dual transformation. It proposed as a tool to find a corresponding stationary metric from a given static solution. The main idea inspired from the concept of rewriting the Einstein equations in stationary spacetimes in terms of a pair of electro-magnetic fields which have gravitational origin. Following this formalism the field equations can be cast in the form of Maxwell’s equations. In the present paper we have come up to an work where, by using the Ehlers’ (dual gravitational) transformation ,by starting from the reciprocal Schwarzschild , reciprocal Morgan-Morgan-NUT as seed metrics we find their corresponding stationary space-times. The stationary space-times obtained in this work is found to endure from a NUT-type family of solutions. Under reciprocal transformations , NUT parameter changes the sign due to the fact that reciprocal seed and the original one has reciprocal mass parameters. It has been shown that the system of field equations for gravitoelectromagnetic fields is invariant under reciprocal transformations. An additional observation is that the NUT charge changes the sign. Starting from any static seed metric, performing the reciprocal transformation and by applying an additional Ehlers transformation we have obtained a family of NUT spaces with negative NUT factor (reciprocal NUT factors).

X. ACKNOWLEDGEMENTS

The authors are grateful to Naresh Dadhich, Mohammad Nouri-Zonoz, for pointing out the feature displayed by eqs. (4.7) and (4.10).

[1] J. Bicak, Lect. Notes. Phys. 540, 1 (2000).
[2] H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers, & E. Herlt, Exact Solutions of Einstein’s Field Equations (2nd edn.), Cambridge University Press (2003).
[3] E. Newman, L. Tamburino, and T. Unti, J. Math. Phys. 4 915 (1963).
[4] J. Ehlers , Dissertation Univ. Hambourg, Hambourg(1957).
[5] S. Rahvar and M. Nouri-Zonoz, MNRAS 338 926 (2003).
[6] D. Vaman, M. Visinescu, Phys.Rev. D 57 3790 (1998).
[7] D. Ida et al., Class. Quantum Grav. 24 3141 (2007).
[8] M. Nouri-Zonoz, N. Dadhich and D. Lynden-Bell, Class. Quantum Grav. 16 1021 (1999).
[9] B. Mukhopadhyay and N. Dadhich, Class. Quant. Grav. 21 3621 (2004).
[10] H. A. Buchdahl, Quart. J. Math. 5, 116(1954).
[11] R. De Felice and J. Clarke, Relativity on curved manifolds, Cambridge University Press, 1990.
[12] L. D. Landau and E. M. Lifshitz, Classical theory of fields, 4th edn., Pergamon press, Oxford, 1975.
[13] D. Lynden-Bell and M. Nouri-Zonoz, Rev. Mod. Phys. 70, 427 (1998) gr-qc/9612049.
[14] J. Ehlers, (1962) Colloques Internationaux CNRS (Les theorie relativistes de la gravitation) 91, 275.
[15] E. T. Newman, L. Tamburino and T. Unti, J. Math. Phys., 4, 915, (1963).
[16] D. Momeni, M. Nouri-Zonoz and R. Ramezani-Arani, Phys. Rev. D 72, 064023 (2005) gr-qc/0508036.
[17] G. Erez and N. Rosen, The Gravitational Field of a Particle Possessing a Multipole Moment, Bulletin of the Research Council of Israel, Vol. 8F, 1959, pp. 47-50.
[18] T. Morgan, and L. Morgan, Phys. Rev.183, 5(1969).
[19] Geroch, R., J.Math.Phys., 12, 918, 1972.