Introduction into Calculus over Banach Algebra

Aleks Kleyn
Abstract. Let A, B be Banach D-algebras. The map $f : A \to B$ is called differentiable on the set $U \subset A$, if at every point $x \in U$ the increment of map f can be represented as

$$f(x + dx) - f(x) = \frac{df(x)}{dx} \circ dx + o(dx)$$

where

$$\frac{df(x)}{dx} : A \to B$$

is linear map and $o : A \to B$ is such continuous map that

$$\lim_{a \to 0} \frac{\|o(a)\|_B}{\|a\|_A} = 0$$

Linear map $\frac{df(x)}{dx}$ is called derivative of map f.

I considered differential forms in Banach Algebra. Differential form $\omega \in \mathcal{A}(D; A \to B)$ is defined by map $g : A \to B \otimes B$, $\omega = g \circ dx$. If the map g, is derivative of the map $f : A \to B$, then the map f is called indefinite integral of the map g

$$f(x) = \int g(x) \circ dx = \int \omega$$

Then, for any A-numbers a, b, we define definite integral by the equality

$$\int_a^b \omega = \int_\gamma \omega$$

for any path γ from a to b.
Contents

Chapter 1. Preface ... 5
 1.1. Preface to Version 1 ... 5
 1.2. Integration in D-algebra 6
 1.3. Differential Form ... 7

Chapter 2. Preliminary Definitions 9
 2.1. Universal Algebra .. 9
 2.2. Representation of Universal Algebra 11
 2.3. Permutation .. 12
 2.4. Module over Ring ... 13
 2.5. Algebra over Commutative Ring 17
 2.6. Polynomial over Associative D-Algebra 22
 2.7. Complex Field ... 23

Chapter 3. Differentiable Maps .. 25
 3.1. Topological Ring .. 25
 3.2. Topological D-Algebra 26
 3.3. The Derivative of Map of D-Algebra 34

Chapter 4. Derivative of Second Order of Map of D-Algebra 46
 4.1. Derivative of Second Order of Map of D-Algebra 46
 4.2. Taylor Series .. 47

Chapter 5. Method of Successive Differentiation 52
 5.1. Indefinite Integral .. 52
 5.2. Exponent .. 54
 5.3. Hyperbolic Trigonometry 58
 5.4. Elliptical Trigonometry 61

Chapter 6. Lebesgue Integral .. 65
 6.1. Lebesgue Integral along Linear Path 65
 6.2. Lebesgue Integral along Path 67
 6.3. Solving of Differential Equation 68

Chapter 7. Differential Form .. 72
 7.1. Structure of Polylinear Map 72
 7.2. Product of Skew Symmetric Polylinear Maps 74
 7.3. Differential Form ... 81
 7.4. Exterior Differentiation 84
 7.5. Poincaré’s Theorem ... 90
CHAPTER 1

Preface

1.1. Preface to Version 1

The way of charms and disappointments.

However, I would put it another way. When you understand that the reason for your disappointments is in your expectations, you start to examine surrounding landscape. You found yourself on the path where nobody went before. New impressions are stronger than impressions from travel along well known and trodden road.

Author is unknown. The Adventures of an Explorer.

The possibility of linear approximation of a map is at the heart of calculus and main constructions of calculus have their roots in linear algebra. Since the product in the field is commutative, then linear algebra over a field is relatively simple. When we explore algebra over commutative ring, we still see some familiar statements of linear algebra; however, we meet new statements, which change the landscape of linear algebra.

Here I want to draw attention to the evolution of the concept of the derivative from the time of Newton. When we study functions of single variable, the derivative in selected point is a number

\[dx^2 = 2x \, dx \]

When we study function of multiple variables, we realize that it is not enough to use number. The derivative becomes vector or gradient

\[z = x^2 + y^3 \]
\[dz = 2x \, dx + 3y^2 \, dy \]

When we study maps of vector spaces, this is a first time that we tell about derivative as operator

\[x = u \sin v \quad y = u \cos v \quad z = u \]
\[dx = \sin v \, du + u \cos v \, dv \quad dy = \cos v \, du - u \sin v \, dv \quad dz = 1 \, du + 0 \, dv \]

However since this operator is linear, then we can represent derivative as matrix. Again we express a vector of increment of a map as product of a matrix of derivative
(Jacobian matrix) over vector of increment of argument

\[
\begin{pmatrix}
\frac{dx}{dy} \\
\frac{dy}{dz}
\end{pmatrix}
= \begin{pmatrix}
\sin v & u \cos v \\
\cos v & -u \sin v
\end{pmatrix}
\begin{pmatrix}
\frac{du}{dv}
\end{pmatrix}
\]

To understand the structure of derivative of a map of Banach algebra, consider the map \(y = x^2 \) of quaternion algebra. Since the argument \(x \) has the increment \(dx \), then the increment \(dy \) of the function \(y \) has form

\[(1.1.2) \quad dy = (x + dx)^2 - x^2 = x^2 + x \, dx + dx \, x + (dx)^2 - x^2 = x \, dx + dx \, x + (dx)^2\]

Since \(dx \) is infinitesimal, then we can ignore the value of \((dx)^2\) and, from the equality (1.1.2), it follows that

\[(1.1.3) \quad dy = x \, dx + dx \, x\]

If we assume that we can separate left or right factor in the expression (1.1.3)

\[(1.1.4) \quad x \, dx + dx \, x = a \, dx\]

like in the equality (1.1.1), then we see that the value \(a \) depends on direction of the differential \(dx \). It is reason to assume that the derivative in quaternion algebra is directional derivative or the Gâteaux derivative ([29], page 322). In such case, we consider the differential (1.1.3) as additive map, namely, the map which satisfies the equality \(f(a+b) = f(a) + f(b) \)

Already in the process of working on the paper [9], I realized that I need to consider both left and right factors instead of the expression (1.1.4)

\[(1.1.5) \quad x \, dx + dx \, x = a \, dx \, b\]

However, I continued to consider the expression (1.1.5) as an additive map of the differential \(dx \).

During exploring of the representation theory of universal algebra ([11, 16]), I realized that the expression (1.1.5) is linear map of the differential \(dx \). So, the expression (1.1.3) is the definition of the derivative of the map \(y = x^2 \). This new concept is the basis of this paper.

January, 2016

1.2. Integration in D-algebra

When professor Svetlin asked me if I can solve differential equations over quaternion algebra my first answer was that I am not ready. Diversity of differential equations of first order and identification of the derivative of any order with function of real field make this task extremely difficult.

However later I recalled that, in the paper [9], I considered the operation inverse to differentiation. I considered the indefinite integral

\[
f(x) = \int g(x) \circ dx
\]

as solution of differential equation

\[
\frac{df(x)}{dx} \circ dx = g(x) \circ dx
\]
and I represented this solution as Taylor series. So, when I was writing the paper [17], I decided explicitly use integral notation.

If this had happened in 2012, I would have stopped at this point and would start to study another subject. But in 2013 I had published the paper [15]. And I had seen a serious problem.

I have two definitions of integral: namely Lebesgue integral and indefinite integral. And they have different formats of integrand. In an indefinite integral, we consider the representation of D-module $A \otimes A$ in D-algebra A and integrand is an action of a tensor $a \in A \otimes A$ over differential. In Lebesgue integral, we consider the representation of algebra with measure in D-algebra A. What is the relation between Lebesgue integral and indefinite integral?

At first sight, there is no answer to this question. In the calculus over real field, we use the same map in both cases. And the relation between Lebesgue integral and indefinite integral can be expressed by either of following statements.

- $\int f(x)dx = \int_a^x f(x)dx$
- If $g(x) = \int f(x)dx$, then $\int_a^b f(x)dx = g(b) - g(a)$.

If we consider Lebesgue integral in D-algebra, what does it mean to get an integral from a to b? The simplest solution is to use a path from a to b. In the paper [17], I considered the simplest path $x = a + t(b - a)$

However, the question remained open for arbitrary path. If Lebesgue integral depends on the path, then we need to study a dependence of Lebesgue integral from the path instead of the relation between Lebesgue integral and indefinite integral. But this is absolutely different theory.

There exist maps which have Lebesgue integral dependent on the path. It follows from the remark 5.1.6. However, I had great interest in the study of maps which have indefinite integral.

When I discussed this question with the professor Sudbery, I suddenly found simple proof of the statement that Lebesgue integral of the derivative of the map does not depend on path (the theorem 6.2.1). However I was not satisfied by this statement. I knew that new adventure is waiting for me.

1.3. Differential Form

The question about possibility to solve differential equation

$$\frac{df(x)}{dx} = g(x)$$

remained opened. If solution does not exist, then we can assume that Lebesgue integral of the map g depends on the path. In the differential geometry, the map f is called anholonomic. Anholonomic maps are important in general relativity. And I could not ignore this problem.

However if the Lebesgue integral depends on path, then, of course, the question about integral over a closed circuit arises. At this point, I realized that the map g is differential form.

The study of differential forms demanded from me to expand the scope of my research. In the definition 3.3.1, I considered differentiable map into Banach D-
algebra. However this definition is still true in case of Banach D-module. To write the derivative of the map into Banach D-module, we need a basis of the module and we write the Jacobian matrix of this map. However, we can write the derivative of the map f into Banach D-algebra A analytically using tensor $\frac{df(x)}{dx} \in A \otimes A$. I considered relation between two forms of representation of linear map in the theorem 2.5.21.

Moreover, we have the opportunity to write analytically a map into Banach D-module when we consider D-module of polylinear maps into D-algebra B (the theorem 3.3.14). In this case we can use product in D-algebra B to represent linear map in D-module $\mathcal{L}(D; A^n \rightarrow B)$.

January, 2017
CHAPTER 2

Preliminary Definitions

This chapter contains definitions and theorems which are necessary for an understanding of the text of this book. So the reader may read the statements from this chapter in process of reading the main text of the book.

2.1. Universal Algebra

Theorem 2.1.1. Let N be equivalence on the set A. Consider category \mathcal{A} whose objects are maps 2,1

$$f_1 : A \rightarrow S_1 \quad \ker f_1 \supseteq N$$

$$f_2 : A \rightarrow S_2 \quad \ker f_2 \supseteq N$$

We define morphism $f_1 \rightarrow f_2$ to be map $h : S_1 \rightarrow S_2$ making following diagram commutative

\[
\begin{array}{ccc}
S_1 & \xrightarrow{f_1} & A \\
\downarrow h & & \downarrow j = \text{nat } N \\
S_2 & \xleftarrow{f_2} & A
\end{array}
\]

The map $\text{nat } N : A \rightarrow A/N$ is universally repelling in the category \mathcal{A}. 2,2

Proof. Consider diagram

\[
\begin{array}{ccc}
A/N & \xrightarrow{j = \text{nat } N} & A \\
\downarrow h & & \downarrow j = \text{nat } N \\
S & \xleftarrow{f} & A
\end{array}
\]

(2.1.1) $\ker f \supseteq N$

From the statement (2.1.1) and the equality

$$j(a_1) = j(a_2)$$

2,1 The statement of lemma is similar to the statement on p. [1]-119.

2,2 See definition of universal object of category in definition on p. [1]-57.
it follows that
\[f(a_1) = f(a_2) \]

Therefore, we can uniquely define the map \(h \) using the equality
\[h(j(b)) = f(b) \]

Definition 2.1.2. For any sets \(A, B \), Cartesian power \(B^A \) is the set of maps
\[f : A \rightarrow B \]

Definition 2.1.3. For any \(n \geq 0 \), a map \(\omega : A^n \rightarrow A \)
is called \(n \)-ary operation on set \(A \) or just operation on set \(A \). For any \(a_1, \ldots, a_n \in A \), we use either notation \(\omega(a_1, \ldots, a_n) \), \(a_1 \ldots a_n \omega \) to denote image of map \(\omega \).

Remark 2.1.4. According to definitions 2.1.2, 2.1.3, \(n \)-ary operation \(\omega \in A^{A^n} \).

Definition 2.1.5. An operator domain is the set of operators \(\Omega \) with a map
\[a : \Omega \rightarrow N \]

If \(\omega \in \Omega \), then \(a(\omega) \) is called the arity of operator \(\omega \). If \(a(\omega) = n \), then operator \(\omega \) is called \(n \)-ary. We use notation
\[\Omega(n) = \{ \omega \in \Omega : a(\omega) = n \} \]
for the set of \(n \)-ary operators.

Definition 2.1.6. Let \(A \) be a set. Let \(\Omega \) be an operator domain. The family of maps
\[\Omega(n) \rightarrow A^{A^n} \quad n \in N \]
is called \(\Omega \)-algebra structure on \(A \). The set \(A \) with \(\Omega \)-algebra structure is called \(\Omega \)-algebra \(A_\Omega \) or universal algebra. The set \(A \) is called carrier of \(\Omega \)-algebra.

The operator domain \(\Omega \) describes a set of \(\Omega \)-algebras. An element of the set \(\Omega \) is called operator, because an operation assumes certain set. According to the remark 2.1.4 and the definition 2.1.6, for each operator \(\omega \in \Omega(n) \), we match \(n \)-ary operation \(\omega \) on \(A \).

Definition 2.1.7. Let \(A, B \) be \(\Omega \)-algebras and \(\omega \in \Omega(n) \). The map
\[f : A \rightarrow B \]

2.3 I follow the definition from the example (iv) on the page [19]-5.
2.4 Definition 2.1.3 follows the definition in the example (vi) on the page page [19]-13.
2.5 I follow the definition (1), page [19]-48.
2.6 I follow the definition (2), page [19]-48.
2.7 I follow the definition on page [19]-49.
is compatible with operation ω, if, for all $a_1, \ldots, a_n \in A$,

\begin{equation}
 f(a_1) \cdots f(a_n) \omega = f(a_1 \cdots a_n \omega)
\end{equation}

The map \(f \) is called \textbf{homomorphism} from \(\Omega \)-algebra \(A \) to \(\Omega \)-algebra \(B \), if \(f \) is compatible with each \(\omega \in \Omega \). □

\textbf{Definition 2.1.8.} A homomorphism in which source and target are the same algebra is called \textbf{endomorphism}. We use notation \(\text{End}(\Omega; A) \) for the set of endomorphisms of \(\Omega \)-algebra \(A \). □

2.2. Representation of Universal Algebra

\textbf{Definition 2.2.1.} Let the set \(A_2 \) be \(\Omega_2 \)-algebra. Let the set of transformations \(\text{End}(\Omega_2, A_2) \) be \(\Omega_1 \)-algebra. The homomorphism

\[f : A_1 \rightarrow \text{End}(\Omega_2; A_2) \]

of \(\Omega_1 \)-algebra \(A_1 \) into \(\Omega_1 \)-algebra \(\text{End}(\Omega_2, A_2) \) is called \textbf{representation of} \(\Omega_1 \)-algebra \(A_1 \) or \(A_1 \)-representation in \(\Omega_2 \)-algebra \(A_2 \). □

We also use notation

\[f : A_1 \longrightarrow A_2 \]

to denote the representation of \(\Omega_1 \)-algebra \(A_1 \) in \(\Omega_2 \)-algebra \(A_2 \).

\textbf{Definition 2.2.2.} Let the map

\[f : A_1 \rightarrow \text{End}(\Omega_2; A_2) \]

be an isomorphism of the \(\Omega_1 \)-algebra \(A_1 \) into \(\text{End}(\Omega_2, A_2) \). Then the representation

\[f : A_1 \longrightarrow A_2 \]

of the \(\Omega_1 \)-algebra \(A_1 \) is called \textbf{effective}. \(^{2,8}\) □

\textbf{Definition 2.2.3.} Let

\[f : A_1 \longrightarrow A_2 \]

be representation of \(\Omega_1 \)-algebra \(A_1 \) in \(\Omega_2 \)-algebra \(A_2 \) and

\[g : B_1 \longrightarrow B_2 \]

be representation of \(\Omega_1 \)-algebra \(B_1 \) in \(\Omega_2 \)-algebra \(B_2 \). For \(i = 1, 2 \), let the map

\[r_i : A_i \rightarrow B_i \]

be homomorphism of \(\Omega_i \)-algebra. The matrix of maps \((r_1 \ r_2) \) such, that

\begin{equation}
 r_2 \circ f(a) = g(r_1(a)) \circ r_2
\end{equation}

is called \textbf{morphism of representations from} \(f \) \textbf{into} \(g \). We also say that \textbf{morphism of representations of} \(\Omega_1 \)-algebra \(A_1 \) \textbf{in} \(\Omega_2 \)-algebra \(B_2 \) \textbf{is defined}. □

\textbf{Remark 2.2.4.} We may consider a pair of maps \(r_1, r_2 \) as map

\[F : A_1 \cup A_2 \rightarrow B_1 \cup B_2 \]

such that

\[F(A_1) = B_1, \quad F(A_2) = B_2 \]

Therefore, hereinafter the matrix of maps \((r_1 \ r_2) \) also is called \textbf{map}. □

\(^{2,8}\) See similar definition of effective representation of group in \cite{24}, page 16, \cite{26}, page 111, \cite{20}, page 51 (Cohn calls such representation faithful).
Definition 2.2.5. If representation f and g coincide, then morphism of representations $(r_1 \ r_2)$ is called morphism of representation f. □

Definition 2.2.6. Let

$$f : A_1 \rightarrow A_2$$

be representation of Ω_1-algebra A_1 in Ω_2-algebra A_2 and

$$g : A_1 \rightarrow B_2$$

be representation of Ω_1-algebra A_1 in Ω_2-algebra B_2. Let

$$\left(\text{id} : A_1 \rightarrow A_1 \quad r_2 : A_2 \rightarrow B_2 \right)$$

be morphism of representations. In this case we identify morphism $(\text{id} \ \ r_2)$ of representations of Ω_1-algebra and corresponding homomorphism r_2 of Ω_2-algebra and the homomorphism r_2 is called reduced morphism of representations. We will use diagram

(2.2.2)

\[\begin{array}{ccc}
A_1 & \xrightarrow{f} & A_2 \\
\downarrow{f(a)} & & \downarrow{g(a)} \\
A_2 & \xrightarrow{r_2} & B_2 \\
\end{array} \]

\[\begin{array}{ccc}
A_2 & \xrightarrow{r_2} & B_2 \\
\downarrow{g} & & \downarrow{g} \\
A_1 & \xleftarrow{f} & A_2 \\
\end{array} \]

to represent reduced morphism r_2 of representations of Ω_1-algebra. From diagram it follows

(2.2.3)

$$r_2 \circ f(a) = g(a) \circ r_2$$

We also use diagram

\[\begin{array}{ccc}
A_1 & \xleftarrow{f} & A_2 \\
\downarrow{f} & & \downarrow{g} \\
B_2 & \xrightarrow{r_2} & B_2 \\
\end{array} \]

instead of diagram (2.2.2). □

2.3. Permutation

Definition 2.3.1. An injective map of finite set into itself is called permutation. \(\text{2.9}\)

Usually we write a permutation σ as a matrix

(2.3.1)

$$\sigma = \begin{pmatrix} a_1 & \cdots & a_n \\ \sigma(a_1) & \cdots & \sigma(a_n) \end{pmatrix}$$

\(\text{2.9}\) You can see definition and properties of permutation in [5], pages 27 - 32, [20], pages 58, 59.
The notation \((2.3.1)\) is equivalent to the statement
\[
\sigma : a \in A \rightarrow \sigma(a) \in A \quad A = \{a_1, \ldots, a_n\}
\]
So the order of columns in the notation \((2.3.1)\) is not essential.

Since there is an order on the set \(\{a_1, \ldots, a_n\}\) (for instance, we assume, that \(a_i\) precedes \(a_j\) when \(i < j\)), then we may assume that elements of first row are written according to the intended order and we will identify permutation with second row
\[(2.3.2)\]
\[
\sigma = (\sigma(a_1) \quad \ldots \quad \sigma(a_n))
\]

Definition 2.3.2. The map
\[
|\sigma| : \sigma \in S(n) \rightarrow \{-1, 1\}
\]
defined by the equality
\[
|\sigma| = \begin{cases}
1 & \text{permutation } \sigma \text{ even} \\
-1 & \text{permutation } \sigma \text{ odd}
\end{cases}
\]
is called **parity of permutation**.

2.4. Module over Ring

Definition 2.4.1. Effective representation of commutative ring \(D\) in an Abelian group \(V\)
\[(2.4.1)\]
\[
f : D \rightarrow V \quad f(d) : v \rightarrow dv
\]
is called **module over ring** \(D\) or **\(D\)-module**. \(V\)-number is called **vector**.

Theorem 2.4.2. Following conditions hold for \(D\)-module:
2.4.2.1: associative law
\[(2.4.2)\]
\[(pq)v = p(qv)\]
2.4.2.2: distributive law
\[(2.4.3)\]
\[p(v + w) = pv + pw\]
\[(2.4.4)\]
\[(p + q)v = pv + qw\]
2.4.2.3: unitarity law
\[(2.4.5)\]
\[1v = v\]
for any \(m, n \in \mathbb{Z}, a, b \in D, v, w \in V\).

Proof. The theorem follows from the theorem \([16]-4.1.3\). □

Definition 2.4.3. Let \(\mathcal{B}\) be the basis of \(D\)-module \(V\) and vector \(\mathcal{V} \in V\) has expansion
\[
\mathcal{V} = v^*_e e = v^i e_i
\]
with respect to the basis \(\mathcal{B}\). \(D\)-numbers \(v^i\) are called **coordinates** of vector \(\mathcal{V}\) with respect to the basis \(\mathcal{B}\). □
DEFINITION 2.4.4. Let A_1, A_2 be D-modules. Morphism of representations $f: A_1 \to A_2$
of D-module A_1 into D-module A_2 is called linear map of D-module A_1 into D-module A_2. Let us denote $\mathcal{L}(D; A_1 \to A_2)$ set of linear maps of D-module A_1 into D-module A_2. □

THEOREM 2.4.5. Linear map $f: A_1 \to A_2$
of D-module A_1 into D-module A_2 satisfies to equalities 2 10

$$f \circ (a + b) = f \circ a + f \circ b$$

$$f \circ (pa) = p(f \circ a)$$

$a, b \in A_1$ $p \in D$

PROOF. The theorem follows from the theorem [16]-4.2.2. □

THEOREM 2.4.6. Let map $f: A_1 \to A_2$
be linear map of D-module A_1 into D-module A_2. Then $f \circ 0 = 0$

PROOF. The theorem follows from the theorem [16]-4.2.5. □

DEFINITION 2.4.7. Let D be the commutative ring. Let A_1, ..., A_n, S be D-modules. We call map $f: A_1 \times \ldots \times A_n \to S$

polylinear map of modules A_1, ..., A_n into module S, if

$$f \circ (a_1, \ldots, a_i + b_i, \ldots, a_n) = f \circ (a_1, \ldots, a_i, \ldots, a_n) + f \circ (a_1, \ldots, b_i, \ldots, a_n)$$

$$f \circ (a_1, \ldots, pa_i, \ldots, a_n) = pf \circ (a_1, \ldots, a_i, \ldots, a_n)$$

$1 \leq i \leq n$ $a_i, b_i \in A_i$ $p \in D$

□

THEOREM 2.4.8. Let D be the commutative ring. Let A_1, ..., A_n, S be D-modules. The map $f + g: A_1 \times \ldots \times A_n \to S$

$f, g \in \mathcal{L}(D; A_1 \times \ldots \times A_n \to S)$
defined by the equality

$$(f + g) \circ (a_1, \ldots, a_n) = f \circ (a_1, \ldots, a_n) + g \circ (a_1, \ldots, a_n)$$

is called sum of polylinear maps f and g and is polylinear map. The set $\mathcal{L}(D; A_1 \times \ldots \times A_n \to S)$ is an Abelian group relative sum of maps.

PROOF. The theorem follows from the theorem [16]-4.3.3. □

2 10In some books (for instance, [1], p. 119) the theorem 2.4.5 is considered as a definition.
Corollary 2.4.9. Let A_1, A_2 be D-modules. The map
\begin{equation}
(2.4.10) \quad f + g : A_1 \to A_2 \quad f, g \in \mathcal{L}(D; A_1 \to A_2)
\end{equation}
defined by equation
\begin{equation}
(2.4.11) \quad (f + g) \circ x = f \circ x + g \circ x
\end{equation}
is called sum of maps f and g and is linear map. The set $\mathcal{L}(D; A_1; A_2)$ is an Abelian group relative sum of maps. □

Definition 2.4.10. Let A_1, ..., A_n be free modules over commutative ring D. Consider category A_1 whose objects are polylinear maps $f : A_1 \times ... \times A_n \to S_1$, $g : A_1 \times ... \times A_n \to S_2$ where S_1, S_2 are modules over ring D. We define morphism $f \to g$
to be linear map $h : S_1 \to S_2$ making following diagram commutative

Universal object $A_1 \otimes ... \otimes A_n$ of category A_1 is called tensor product of modules A_1, ..., A_n. □

Theorem 2.4.11. Let D be the commutative ring. Let A_1, ..., A_n be D-modules. Tensor product is distributive over sum
\begin{equation}
(2.4.12) \quad a_1 \otimes ... \otimes (a_i + b_i) \otimes ... \otimes a_n = a_1 \otimes ... \otimes a_i \otimes ... \otimes a_n + a_1 \otimes ... \otimes b_i \otimes ... \otimes a_n
\end{equation}
$a_i, b_i \in A_i$

The representation of the ring D in tensor product is defined by equation
\begin{equation}
(2.4.13) \quad a_1 \otimes ... \otimes (ca_i) \otimes ... \otimes a_n = c(a_1 \otimes ... \otimes a_i \otimes ... \otimes a_n)
\end{equation}
$a_i \in A_i$, $c \in D$

Proof. The theorem follows from the theorem [16]-4.5.3. □

Theorem 2.4.12. Let A_1, ..., A_n be modules over commutative ring D. Tensor product
\begin{equation}
\quad f : A_1 \times ... \times A_n \to A_1 \otimes ... \otimes A_n
\end{equation}
extists and unique. We use notation
\begin{equation}
\quad f \circ (a_1, ..., a_n) = a_1 \otimes ... \otimes a_n
\end{equation}

\footnote{I give definition of tensor product of D-modules following to definition in [1], p. 601 - 603.}
for image of the map f. Let

$$g : A_1 \times \cdots \times A_n \to V$$

be polylinear map into D-module V. There exists a linear map

$$h : A_1 \otimes \cdots \otimes A_n \to V$$

such that the diagram

(2.4.14)

is commutative. The map h is defined by the equation

(2.4.15) $$h \circ (a_1 \otimes \cdots \otimes a_n) = g \circ (a_1, \ldots, a_n)$$

Proof. See the proof of theorems [16]-4.5.2, [16]-4.5.4.

Convention 2.4.13. Algebras S_1, S_2 may be different sets. However they are indistinguishable for us when we consider them as isomorphic representations. In such case, we write the statement $S_1 = S_2$.

Theorem 2.4.14.

(2.4.16) $$(A_1 \otimes A_2) \otimes A_3 = A_1 \otimes (A_2 \otimes A_3) = A_1 \otimes A_2 \otimes A_3$$

Proof. The theorem follows from the theorem [16]-3.4.5.

Definition 2.4.15. Tensor product

$$A^\otimes n = A_1 \otimes \cdots \otimes A_n \quad A_1 = \ldots = A_n = A$$

is called tensor power of module A_1.

Theorem 2.4.16. The map

$$(v_1, \ldots, v_n) \in V_1 \times \cdots \times V_n \to v_1 \otimes \cdots \otimes v_n \in V_1 \otimes \cdots \otimes V_n$$

is polylinear map.

Proof. The theorem follows from the theorem [16]-4.5.5.

Theorem 2.4.17. Let \mathbf{e}_i be the basis of module A_i over ring D. We can represent any tensor $a \in A_1 \otimes \cdots \otimes A_n$ in the following form

(2.4.17) $$a = a_{i_1}^{i_1} \cdots a_{i_n}^{i_n} \mathbf{e}_{i_1}^{i_1} \otimes \cdots \otimes \mathbf{e}_{i_n}^{i_n}$$

Expression $a_{i_1}^{i_1} \cdots a_{i_n}^{i_n}$ is called standard component of tensor.

Proof. The theorem follows from the theorem [16]-4.5.6.
2.5. Algebra over Commutative Ring

Definition 2.5.1. Let D be commutative ring. D-module A is called algebra over ring D or D-algebra, if we defined product\(^{2,12}\) in A

\[
v w = C \circ (v, w)
\]

where C is bilinear map

\[C : A \times A \to A\]

If A is free D-module, then A is called free algebra over ring D.\(^{2,12}\)

Convention 2.5.2. Element of D-algebra A is called A-number. For instance, complex number is also called C-number, and quaternion is called H-number.\(^{2,12}\)

The multiplication in algebra can be neither commutative nor associative. Following definitions are based on definitions given in [27], page 13.

Definition 2.5.3. The commutator

\[\{a, b\} = ab - ba\]

measures commutativity in D-algebra A. D-algebra A is called commutative, if

\[\{a, b\} = 0\]

Definition 2.5.4. The associator

\[(a, b, c) = (ab)c - a(bc)\]

measures associativity in D-algebra A. D-algebra A is called associative, if

\[(a, b, c) = 0\]

Definition 2.5.5. The set\(^{2,13}\)

\[N(A) = \{a \in A : \forall b, c \in A, (a, b, c) = (b, a, c) = (b, c, a) = 0\}\]

is called the nucleus of an D-algebra A.\(^{2,13}\)

Definition 2.5.6. The set\(^{2,14}\)

\[Z(A) = \{a \in A : a \in N(A), \forall b \in A, ab = ba\}\]

is called the center of an D-algebra A_1.\(^{2,14}\)

Convention 2.5.7. Let A be free algebra with finite or countable basis. Considering expansion of element of algebra A relative basis \(\mathbf{e}\) we use the same root letter to denote this element and its coordinates. In expression a^2, it is not clear whether this is component of expansion of element a relative basis, or this is operation $a^2 = aa$. To make text clearer we use separate color for index of element of algebra. For instance,

\[a = a^i e_i\]

\(^{2,12}\) I follow the definition given in [27], page 1, [18], page 4. The statement which is true for any D-module, is true also for D-algebra.

\(^{2,13}\) The definition is based on the similar definition in [27], p. 13

\(^{2,14}\) The definition is based on the similar definition in [27], page 14
CONVENTION 2.5.8. Let \(e \) be the basis of free algebra \(A \) over ring \(D \). If algebra \(A \) has unit, then we assume that \(e_0 \) is the unit of algebra \(A \). □

THEOREM 2.5.9. Let \(D \) be commutative ring and \(A \) be Abelian group. The diagram of representations

\[
\begin{array}{ccc}
D & \xrightarrow{g_{1,2}} & A \\
& \downarrow{g_{1,2}} & \downarrow{g_{2,3}} \\
& A & \end{array}
\]

\(g_{1,2} : v \to dv \\
\end{array}
\]

\(g_{2,3} : w \to C \circ (v, w) \)

\(C \in \mathcal{L}(D; A^2 \to A) \)

generates the structure of \(D \)-algebra \(A \).

PROOF. The theorem follows from the theorem [16]-5.1.11 and the corollary [16]-5.1.12. □

DEFINITION 2.5.10. Let \(A_1 \) and \(A_2 \) be algebras over commutative ring \(D \). The linear map of the \(D \)-module \(A_1 \) into the \(D \)-module \(A_2 \) is called linear map of \(D \)-algebra \(A_1 \) into \(D \)-algebra \(A_2 \).

Let us denote \(\mathcal{L}(D; A_1 \to A_2) \) set of linear maps of \(D \)-algebra \(A_1 \) into \(D \)-algebra \(A_2 \).

THEOREM 2.5.11. Let \(A \) be algebra over commutative ring \(D \). \(D \)-module \(\mathcal{L}(D; A; A) \) equipped by product

\[
\circ : (g, f) \in \mathcal{L}(D; A \to A) \times \mathcal{L}(D; A \to A) \to g \circ f \in \mathcal{L}(D; A \to A)
\]

is algebra over \(D \).

PROOF. The theorem follows from the theorem [16]-6.2.5. □

DEFINITION 2.5.12. Let \(A_1, ..., A_n, S \) be \(D \)-algebras. Polylinear map

\[
f : A_1 \times ... \times A_n \to S
\]

of \(D \)-modules \(A_1, ..., A_n \) into \(D \)-module \(S \) is called polylinear map of \(D \)-algebras \(A_1, ..., A_n \) into \(D \)-algebra \(S \). Let us denote \(\mathcal{L}(D; A_1 \times ... \times A_n \to S) \) set of polylinear maps of \(D \)-algebras \(A_1, ..., A_n \) into \(D \)-algebra \(S \). Let us denote \(\mathcal{L}(D; A^n \to S) \) set of \(n \)-linear maps of \(D \)-algebra \(A_1 (A_1 = ... = A_n = A_1) \) into \(D \)-algebra \(S \).

THEOREM 2.5.13. Let \(A_1, ..., A_n \) be \(D \)-algebras. Tensor product \(A_1 \otimes ... \otimes A_n \) of \(D \)-modules \(A_1, ..., A_n \) is \(D \)-algebra, if we define product by the equality

\[
(a_1, ..., a_n) \ast (b_1, ..., b_n) = (a_1b_1) \otimes ... \otimes (a_nb_n)
\]

PROOF. The theorem follows from the theorem [16]-6.1.3. □

THEOREM 2.5.14. Let \(A \) be \(D \)-algebra. Let product in algebra \(A \otimes A \) be defined according to rule

\[
(p_0 \otimes p_1) \circ (q_0 \otimes q_1) = (p_0q_0) \otimes (q_1p_1)
\]

A representation

\[
(2.5.4) \quad h : A \otimes A \longrightarrow \mathcal{L}(D; A \to A) \quad h(p) : f \to p \circ f
\]
of D-algebra $A \otimes A$ in module $\mathcal{L}(D; A \to A)$ defined by the equality
\[(a \otimes b) \circ f = afb \quad a, b \in A, \quad f \in \mathcal{L}(D; A \to A)\]
allows us to identify tensor $d \in A \otimes A$ and linear map $d \circ \delta \in \mathcal{L}(D; A \to A)$ where $\delta \in \mathcal{L}(D; A \to A)$ is identity map. Linear map $(a \otimes b) \circ \delta$ has form
\[(a \otimes b) \circ c = acb\]

Proof. The theorem follows from the theorem [16]-6.3.4.

Convention 2.5.15. I assume sum over index i in expression like
\[a_{i,0} x a_{i,1}\]

Theorem 2.5.16. Let A_1 be free D-module. Let A_2 be free finite dimensional associative D-algebra. Let \overline{e} be basis of D module A_2. Let \overline{F} be the basis of left $A_2 \otimes A_2$-module $\mathcal{L}(D; A_1 \to A_2)$. \(^{2.15}\)

2.5.16.1: The map $f : A_1 \to A_2$ has the following expansion
\[(2.5.6) \quad f = f^k \circ F_k\]
where
\[(2.5.7) \quad f^k = f^k_{e_{0} \otimes} \circ f^k_{e_{1} \otimes} \quad f^k \in A_2 \otimes A_2\]

2.5.16.2: The map f has the standard representation
\[(2.5.8) \quad f = f^{k,ij} (e_i \otimes e_j) \circ F_k = f^{k,ij} e_i F_k e_j\]

Proof. The theorem follows from the theorem [16]-6.4.1.

Definition 2.5.17. Expression $f^k_{e_{0} \otimes}$, $p = 0, 1$, in equality (2.5.6) is called component of linear map f. Expression $f^{k,ij}$ in the equality (2.5.8) is called standard component of linear map f.

Theorem 2.5.18. Let A_1 be free D-module. Let A_2 be free associative D-algebra. Let \overline{F} be the basis of left $A_2 \otimes A_2$-module $\mathcal{L}(D; A_1 \to A_2)$. For any map $F_k \in \overline{F}$, there exists set of linear maps
\[F^l_k : A_1 \otimes A_1 \to A_2 \otimes A_2\]
of D-module $A_1 \otimes A_1$ into D-module $A_2 \otimes A_2$ such that
\[(2.5.9) \quad F_k \circ a \circ x = (F^l_k \circ a) \circ F_1 \circ x\]
The map F^l_k is called conjugation transformation.

Proof. The theorem follows from the theorem [16]-6.4.2.

\(^{2.15}\) If D-module A_1 or D-module A_2 is not free D-module, then we may consider the set
\[\overline{F} = \{F_k \in \mathcal{L}(D; A_1 \to A_2) : k = 1, ..., n\}\]
of linear independent linear maps. The theorem is true for any linear map $f : A_1 \to A_2$ generated by the set of linear maps \overline{F}.
THEOREM 2.5.19. Let A_1 be free D-module. Let A_2, A_3 be free associative D-algebras. Let \overline{F} be the basis of left $A_2 \otimes A_2$-module $L(D; A_1 \rightarrow A_2)$. Let \overline{G} be the basis of left $A_3 \otimes A_3$-module $L(D; A_2 \rightarrow A_3)$.

2.5.19.1: The set of maps

(2.5.10) $H = \{H_{lk} : H_{lk} = G_l \circ F_k, G_l, F_k \in \overline{G}, F_k \in \overline{F}\}$ is the basis of left $A_3 \otimes A_3$-module $L(D; A_1 \rightarrow A_2 \rightarrow A_3)$.

2.5.19.2: Let

(2.5.11) $f = f^k \circ F_k$

be expansion of linear map $f : A_1 \rightarrow A_2$

with respect to the basis \overline{F}. Let

(2.5.12) $g = g^l \circ G_l$

be expansion of linear map $g : A_2 \rightarrow A_3$

with respect to the basis \overline{G}. Then linear map

(2.5.13) $h = g \circ f$

has expansion

(2.5.14) $h = h^{lk} \circ K_{lk}$

with respect to the basis \overline{K} where

(2.5.15) $h^{lk} = g^l \circ (G_m^k \circ f^m)$

Proof. The theorem follows from the theorem [16]-6.4.3.

THEOREM 2.5.20. Let A be free associative D-algebra. Let left $A \otimes A$-module $L(D; A \rightarrow A)$ is generated by the identity map $F_0 = \delta$. Let

(2.5.16) $f = f_{s0} \otimes f_{s1}$

be expansion of linear map $f : A \rightarrow A$

Let

(2.5.17) $g = g_{t0} \otimes g_{t1}$

be expansion of linear map $g : A \rightarrow A$

Then linear map

(2.5.18) $h = g \circ f$

has expansion

(2.5.19) $h = h_{ts0} \otimes h_{ts1}$

where

(2.5.20) $h_{ts0} = g_{t0}f_{s0}$

$h_{ts1} = f_{s1}g_{t1}$
Theorem 2.5.21. Let \(\mathcal{F}_1 \) be basis of the free finite dimensional \(D \)-module \(A_1 \). Let \(\mathcal{F}_2 \) be basis of the free finite dimensional associative \(D \)-algebra \(A_2 \). Let \(C^\sigma_{ij} \) be structural constants of algebra \(A_2 \). Let \(\mathcal{F} \) be the basis of left \(A_2 \otimes A_2 \)-module \(\mathcal{L}(D; A_1 \to A_2) \) and \(F_{k,i} \) be coordinates of map \(F_k \) with respect to bases \(\mathcal{F}_1 \) and \(\mathcal{F}_2 \). Coordinates \(f^k_i \) of the map \(f \in \mathcal{L}(D; A_1 \to A_2) \) and its standard components \(f^{k,ij} \) are connected by the equation
\[
f^k_i = f^{k,ij} F_{k,i} C^p_{im} C^k_{pj}
\]
Proof. The theorem follows from the theorem [16]-6.4.4. \(\square \)

Theorem 2.5.22. Let \(A_1, ..., A_n, B \) be free modules over commutative ring \(D \). \(D \)-module \(\mathcal{L}(D; A_1 \times ... \times A_n \to B) \) is free \(D \)-module.
Proof. The theorem follows from the theorem [16]-4.4.8. \(\square \)

Theorem 2.5.23. Let \(A \) be associative \(D \)-algebra. Polylinear map
\[
f : A^n \to A, a = f \circ (a_1, ..., a_n)
\]
generated by maps \(I,(s,1), ..., I,(s,n) \in \mathcal{L}(D; A \to A) \) has form
\[
a = f^n_{a,0} \sigma_s(I,(s,1) \circ a_1) f^n_{a,1} ... \sigma_s(I,(s,n) \circ a_n) f^n_{a,n}
\]
where \(\sigma_s \) is a transposition of set of variables \(\{a_1, ..., a_n\} \)
\[
\sigma_s = \begin{pmatrix}
1 & \cdots & a_n \\
\sigma_s(a_1) & \cdots & \sigma_s(a_n)
\end{pmatrix}
\]
Proof. The theorem follows from the theorem [16]-6.6.6. \(\square \)

Theorem 2.5.24. Consider \(D \)-algebra \(A \). A representation
\[
h : A^{\otimes n+1} \times S_n \to \mathcal{L}(D; A^n \to A)
\]
of algebra \(A^{\otimes n+1} \) in module \(\mathcal{L}(D; A^n \to A) \) defined by the equation
\[
(a_0 \otimes ... \otimes a_n, \sigma) \circ (f_1 \otimes ... \otimes f_n) = a_0 \sigma(f_1) a_1 ... a_{n-1} \sigma(f_n) a_n
\]
a_0, ..., a_n \in A \quad \sigma \in S_n \quad f_1, ..., f_n \in \mathcal{L}(D; A_n \to A)
allows us to identify tensor \(d \in A^{\otimes n+1} \) and transposition \(\sigma \in S^n \) with map
\[
(d, \sigma) \circ (f_1, ..., f_n) = f_i = \delta \in \mathcal{L}(D; A \to A)
\]
where \(\delta \in \mathcal{L}(D; A \to A) \) is identity map.
Proof. The theorem follows from the theorem [16]-6.6.9. \(\square \)

Convention 2.5.25. Since the tensor \(a \in A^{\otimes (n+1)} \) has the expansion
\[
a = a_{i_0} \otimes a_{i_1} \otimes ... \otimes a_{i_n} \quad i \in I
\]
then set of permutations \(\sigma = \{ \sigma_i \in S(n): i \in I \} \) and tensor \(a \) generate the map
\[
(a, \sigma) : A^{\times n} \to A
\]

2. Preliminary Definitions

defined by rule
\[(a, \sigma) \circ (b_1, \ldots, b_n) = (a_{i \cdot 0} \otimes a_{i \cdot 1} \otimes \ldots \otimes a_{i \cdot n}, \sigma_i) \circ (b_1, \ldots, b_n) = a_{i \cdot 0} \sigma_i(b_1) a_{i \cdot 1} \ldots \sigma_i(b_n) a_{i \cdot n}\]

2.6. Polynomial over Associative D-Algebra

Let \(D\) be commutative ring and \(A\) be associative \(D\)-algebra with unit. Let \(\mathcal{L}(D; A \to A)\) be basis of algebra \(L(D; A \rightarrow A)\).

Theorem 2.6.1. Let \(p_k(x)\) be monomial of power \(k\) over \(D\)-algebra \(A\). Then

2.6.1.1: Monomial of power 0 has form \(p_0(x) = a_0\), \(a_0 \in A\).

2.6.1.2: If \(k > 0\), then \(p_k(x) = p_{k-1}(x)(F \circ x)\), where \(a_k \in A\) and \(F \in \mathcal{F}\).

Proof. The theorem follows from the theorem [13]-4.1. \(\square\)

In particular, monomial of power 1 has form \(p_1(x) = a_0(F \circ x) a_1\).

Definition 2.6.2. We denote \(A_k[x]\) Abelian group generated by the set of monomials of power \(k\). Element \(p_k(x)\) of Abelian group \(A_k[x]\) is called homogeneous polynomial of power \(k\). \(\square\)

Convention 2.6.3. Let the tensor \(a \in A^\otimes(n+1)\). Let \(F(1), \ldots, F(n) \in \mathcal{F}\). When \(x_1 = \ldots = x_n = x\), we assume
\[a \circ F \circ x^n = a \circ (F(1), \ldots, F(n)) \circ (x_1 \otimes \ldots \otimes x_n)\]

Convention 2.6.4. If we have few tuples of maps \(F \in \mathcal{F}\), then we will use index like \([k]\) to index tuple
\[F[\dot{k}] = (F[\dot{k}](1), \ldots, F[\dot{k}](n))\]

Theorem 2.6.5. We can present homogeneous polynomial \(p(x)\) in the following form
\[p(x) = a[s] \circ F[s] \circ x^k \quad a[s] \in A^\otimes(k+1)\]

Proof. The theorem follows from the theorem [13]-4.6. \(\square\)

Definition 2.6.6. We denote
\[A[x] = \bigoplus_{n=0}^{\infty} A_n[x]\]

direct sum\(^{2.16}\) of \(A\)-modules \(A_n[x]\). An element \(p(x)\) of \(A\)-module \(A[x]\) is called polynomial over \(D\)-algebra \(A\). \(\square\)

The following definition 2.6.7 is based on the definition [13]-5.2.

\(^{2.16}\)See the definition of direct sum of modules in [1], page 128. On the same page, Lang proves the existence of direct sum of modules.
2.7. Complex Field

Definition 2.6.7. Bilinear map

\(\otimes : A^\otimes n \times A^\otimes m \rightarrow A^\otimes (n+m-1) \)

is defined by the equality

\[(2.6.1) \quad (a_1 \otimes \ldots \otimes a_n) \otimes (b_1 \otimes \ldots \otimes b_n) = a_1 \otimes \ldots \otimes a_{n-1} \otimes a_n b_1 \otimes b_2 \otimes \ldots \otimes b_n \]

Definition 2.6.8. Product of homogeneous polynomials

\(p \circ F[1] \circ x^n, r \circ F[2] \circ x^m \)

is defined by the equality \(^{2.17}\)

\[(p \circ F[1] \circ x^n)(r \circ F[2] \circ x^m) = (p \otimes r) \circ (F1, \ldots, F[1](n), F[2](1), \ldots, F[2](m)) \circ x^{n+m} \]

Theorem 2.7.1. Let us consider complex field \(C \) as two-dimensional algebra over real field. Let

\[(2.7.1) \quad e_0 = 1 \quad e_1 = i \]

be the basis of algebra \(C \). Then in this basis product has form

\[(2.7.2) \quad e_1^2 = -e_0 \]

and structural constants have form

\[(2.7.3) \quad C_{00}^0 = 1 \quad C_{01}^0 = 1 \quad C_{10}^1 = 1 \quad C_{11}^1 = -1 \]

Proof. The theorem follows from the theorem \([12]-4.1.1\). \(\Box \)

Definition 2.7.2. Complex field has following maps of conjugation

\[(2.7.4) \quad E \circ (x_0 + x_1 i) = x_0 + x_1 i \]

\[(2.7.5) \quad I \circ (x_0 + x_1 i) = x_0 - x_1 i \]

Theorem 2.7.3. A linear map

\[f : C \rightarrow C \quad y^i = f^j_i x^j \]

of complex field has form

\[(2.7.6) \quad f = a_0 \circ E + a_1 \circ I \]

\[(2.7.7) \quad f \circ x = a_0 x + a_1 \overline{x} \]

where \(C \)-numbers

\[a_i = a_i^0 + a_i^1 i \quad i = 0, 1 \]

are defined by the equality

\[(2.7.8) \quad \begin{pmatrix} a_0^0 & a_1^1 \\ a_1^0 & a_1^1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} f_0^0 & f_1^1 \\ f_1^0 & f_0^1 \end{pmatrix} \]

\(^{2.17}\) The definition 2.6.8 is based on the definition \([13]-5.5\).
Proof. The theorem follows from the theorem [12]-2.5.1. □

Corollary 2.7.4. \(C \otimes C \)-module \(\mathcal{L}(R; C \to C) \) is \(C \)-vector space and has the basis \(\mathcal{F} = (E, I) \). □

Theorem 2.7.5. The set \(CE = \{ aE : a \in C \} \) is \(R \)-algebra isomorphic to complex field.

Proof. The theorem follows from equalities (2.7.7) and from commutativity of product of complex numbers. □

Theorem 2.7.7 (the Cauchy-Riemann equations). Matrix of linear map \(f \in CE \)

\[y^i = x^j f^j_i \]

satisfies relationship

\[
\begin{align*}
 f_0^0 &= f_1^1 \\
 f_0^1 &= -f_1^0
\end{align*}
\]

(2.7.9)

Proof. The theorem follows from the theorem [12]-4.1.1. □

Theorem 2.7.8. Matrix of linear map \(f \in CI \)

\[y^i = x^j f^j_i \]

satisfies relationship

\[
\begin{align*}
 f_0^0 &= -f_1^1 \\
 f_0^1 &= f_1^0
\end{align*}
\]

(2.7.10)

Proof. The statement follows from equations

\[
(b_0 + b_1 i) I (x_0 + x_1 i) = (b_0 + b_1 i) (x_0 - x_1 i) = b_0 x_0 + b_1 x_1 + (-b_0 x_1 + b_1 x_0) i
\]

\[
\begin{pmatrix}
 b_0 & b_1 \\
 b_1 & -b_0
\end{pmatrix}
\begin{pmatrix}
 x_0 \\
 x_1
\end{pmatrix}
= \begin{pmatrix}
 b_0 x_0 + b_1 x_1 \\
 b_1 x_0 - b_0 x_1
\end{pmatrix}
\]

\(\square \)

\(^{2.18} \) See also section [12]-2.5.
CHAPTER 3

Differentiable Maps

3.1. Topological Ring

Definition 3.1.1. Ring D is called topological ring\(^{3.1}\) if D is topological space and the algebraic operations defined in D are continuous in the topological space D. □

According to definition, for arbitrary elements $a, b \in D$ and for arbitrary neighborhoods W_{a-b} of the element $a - b$, W_{ab} of the element ab there exists neighborhoods W_a of the element a and W_b of the element b such that $W_a - W_b \subset W_{a-b}$, $W_a W_b \subset W_{ab}$.

Definition 3.1.2. Norm on ring D is a map\(^{3.2}\)

$$d \in D \rightarrow |d| \in \mathbb{R}$$

which satisfies the following axioms

- $|a| \geq 0$
- $|a| = 0$ if, and only if, $a = 0$
- $|ab| = |a| \ |b|$
- $|a + b| \leq |a| + |b|$

Ring D, endowed with the structure defined by a given norm on D, is called normed ring. □

Invariant distance on additive group of ring D

$$d(a, b) = |a - b|$$

defines topology of metric space, compatible with ring structure of D.

Definition 3.1.3. Let D be normed ring. Element $a \in D$ is called limit of a sequence \(\{a_n\}\)

$$a = \lim_{n \to \infty} a_n$$

if for every $\epsilon \in \mathbb{R}$, $\epsilon > 0$, there exists positive integer n_0 depending on ϵ and such, that

$$|a_n - a| < \epsilon$$

for every $n > n_0$. □

Theorem 3.1.4. Let D be normed ring of characteristic 0 and let $d \in D$. Let $a \in D$ be limit of a sequence \(\{a_n\}\). Then

$$\lim_{n \to \infty} (a_n d) = ad$$

\(^{3.1}\) I made definition according to definition from [23], chapter 4

\(^{3.2}\) I made definition according to the definition from [21], IX, §3.2 and the definition [32]-1.1.12, p. 23.

25
\[
\lim_{n \to \infty} (da_n) = da
\]

Proof. Statement of the theorem is trivial, however I give this proof for completeness sake. Since \(a \in D\) is limit of the sequence \(\{a_n\}\), then according to definition 3.1.3 for given \(\epsilon \in R, \epsilon > 0\), there exists positive integer \(n_0\) such, that

\[
|a_n - a| < \frac{\epsilon}{|d|}
\]

for every \(n > n_0\). According to definition 3.1.2 the statement of theorem follows from inequalities

\[
|a_n d - ad| = |(a_n - a)d| = |a_n - a||d| < \frac{\epsilon}{|d||d|} = \epsilon
\]

\[
|da_n - da| = |d(a_n - a)| = |d||a_n - a| < |d|\frac{\epsilon}{|d|} = \epsilon
\]

for any \(n > n_0\). □

Definition 3.1.5. Let \(D\) be normed ring. The sequence \(\{a_n\}, a_n \in D\) is called **fundamental or Cauchy sequence**, if for every \(\epsilon \in R, \epsilon > 0\) there exists positive integer \(n_0\) depending on \(\epsilon\) and such, that \(|a_p - a_q| < \epsilon\) for every \(p, q > n_0\). □

Definition 3.1.6. Normed ring \(D\) is called **complete** if any fundamental sequence of elements of ring \(D\) converges, i.e. has limit in ring \(D\). □

Later on, speaking about normed ring of characteristic 0, we will assume that homeomorphism of field of rational numbers \(\mathbb{Q}\) into ring \(D\) is defined.

Theorem 3.1.7. Complete ring \(D\) of characteristic 0 contains as subfield an isomorphic image of the field \(R\) of real numbers. It is customary to identify it with \(R\).

Proof. Consider fundamental sequence of rational numbers \(\{p_n\}\). Let \(p'\) be limit of this sequence in ring \(D\). Let \(p\) be limit of this sequence in field \(R\). Since immersion of field \(\mathbb{Q}\) into division ring \(D\) is homeomorphism, then we may identify \(p' \in D\) and \(p \in R\). □

Theorem 3.1.8. Let \(D\) be complete ring of characteristic 0 and let \(d \in D\). Then any real number \(p \in R\) commute with \(d\).

Proof. Let us represent real number \(p \in R\) as fundamental sequence of rational numbers \(\{p_n\}\). Statement of theorem follows from chain of equalities

\[
pd = \lim_{n \to \infty} (p_n d) = \lim_{n \to \infty} (dp_n) = dp
\]

based on statement of theorem 3.1.4. □

3.2. Topological \(D\)-Algebra

Definition 3.2.1. Let \(D\) be normed commutative ring.\(^{3.3}\) **Norm on \(D\)-module** \(A\) is a map

\[
a \in A \to ||a|| \in R
\]

which satisfies the following axioms

3.2.1.1: \(||a|| \geq 0\)

\(^{3.3}\)I made definition according to definition from [21], IX, §3.3. We use notation either \(|a|\) or \(||a||\) for norm.
3.2. Topological \(D \)-Algebra

3.2.1.2: \(\|a\| = 0 \) if, and only if, \(a = 0 \)

3.2.1.3: \(\|a + b\| \leq \|a\| + \|b\| \)

3.2.1.4: \(\|da\| = |d| \|a\|, \ d \in D, \ a \in A \)

D-module \(A \), endowed with the structure defined by a given norm on \(A \), is called normed \(D \)-module.

Definition 3.2.2. Let \(A \) be normed \(D \)-module. Let \(a \in A \). The set
\[
B_o(a, \rho) = \{ b \in A : \| b - a \| < \rho \}
\]
is called open ball with center at \(a \).

Definition 3.2.3. Let \(A \) be normed \(D \)-module. Let \(a \in A \). The set
\[
B_c(a, \rho) = \{ b \in A : \| b - a \| \leq \rho \}
\]
is called closed ball with center at \(a \).

Theorem 3.2.4. \(b \in B_c(a, \rho) \) iff \(b - a \in B_c(0, \rho) \)

Proof. The theorem follows from the definition 3.2.3.

Definition 3.2.5. Let \(A \) be normed \(D \)-module. A-number \(a \) is called limit of a sequence \(\{a_n\} \), \(a_n \in A \),
\[
a = \lim_{n \to \infty} a_n
\]
if for any \(\epsilon \in \mathbb{R}, \ \epsilon > 0 \), there exists positive integer \(n_0 \) depending on \(\epsilon \) and such, that \(\|a_n - a\| < \epsilon \) for every \(n > n_0 \). We also say that sequence \(a_n \) converges to \(a \).

Theorem 3.2.6. Let \(A \) be normed \(D \)-module. A-number \(a \) is limit of a sequence \(\{a_n\} \), \(a_n \in A \),
\[
a = \lim_{n \to \infty} a_n
\]
if for any \(\epsilon \in \mathbb{R}, \ \epsilon > 0 \), there exists positive integer \(n_0 \) depending on \(\epsilon \) and such, that
\[
a_n \in B_o(a, \epsilon)
\]
for every \(n > n_0 \).

Proof. The theorem follows from definitions 3.2.2, 3.2.5.

Definition 3.2.7. Let \(A \) be normed \(D \)-module. The sequence \(\{a_n\} \), \(a_n \in A \), is called fundamental or Cauchy sequence, if for every \(\epsilon \in \mathbb{R}, \ \epsilon > 0 \), there exists positive integer \(n_0 \) depending on \(\epsilon \) and such, that \(\|a_p - a_q\| < \epsilon \) for every \(p, q > n_0 \).

Theorem 3.2.8. Let \(A \) be normed \(D \)-module. The sequence \(\{a_n\} \), \(a_n \in A \), is fundamental sequence, iff for every \(\epsilon \in \mathbb{R}, \ \epsilon > 0 \), there exists positive integer \(n_0 \) depending on \(\epsilon \) and such, that
\[
a_q \in B_o(a_p, \epsilon)
\]
for every \(p, q > n_0 \).

Proof. The theorem follows from definitions 3.2.2, 3.2.7.
Definition 3.2.9. Norms\(^{3,4}\) \(\|x\|_1, \|x\|_2\) defined on \(D\)-module \(A\) are called equivalent if the statement
\[
a = \lim_{n \to \infty} a_n
\]
does not depend on selected norm.
\[\square\]

In theorems 3.2.10, we consider norms \(\|x\|_1, \|x\|_2\) defined on \(D\)-module \(A\). We also consider open and closed balls
\[
B_{1o}(0, \rho) = \{a \in A : \|x\|_1 < \rho\} \quad B_{1c}(0, \rho) = \{a \in A : \|x\|_1 \leq \rho\}
\]
\[
B_{2o}(0, \rho) = \{a \in A : \|x\|_2 < \rho\} \quad B_{2c}(0, \rho) = \{a \in A : \|x\|_2 \leq \rho\}
\]

Theorem 3.2.10. Norms\(^{3,5}\) \(\|x\|_1, \|x\|_2\) defined on \(D\)-module \(A\) are equivalent iff there exist constants \(c_1 > 0, c_2 > 0\) such that for any \(\rho > 0\)
\[\begin{align*}
B_{1c}(0, c_1 \rho) & \subseteq B_{2c}(0, \rho) \\
B_{2c}(0, c_2 \rho) & \subseteq B_{1c}(0, \rho)
\end{align*}\]

Proof. Let there exist constants \(c_1, c_2\). Let
\[
a = \lim_{n \to \infty} a_n
\]
with respect to norm \(\|x\|_1\). According to theorems 3.2.4, 3.2.6 and definitions 3.2.2, 3.2.3, for any \(\epsilon \in R, \epsilon > 0\), there exists positive integer \(n_0\) such, that
\[a - a_n \in B_{1o}(0, \frac{1}{2} c_1 \epsilon) \subseteq B_{1c}(0, \frac{1}{2} c_1 \epsilon)\]
The statement
\[
a - a_n \in B_{2c}(0, \frac{1}{2} \epsilon) \subseteq B_{2o}(0, \epsilon)
\]
follows from statements (3.2.1), (3.2.3) and the definition 3.2.3. According to the theorem 3.2.6,
\[
a = \lim_{n \to \infty} a_n
\]
with respect to norm \(\|x\|_2\).

The similar way we prove that the statement
\[
a = \lim_{n \to \infty} a_n
\]
with respect to norm \(\|x\|_1\) follows from the statement
\[
a = \lim_{n \to \infty} a_n
\]
with respect to norm \(\|x\|_2\).

Let norms \(\|x\|_1, \|x\|_2\) be equivalent. Let there be no constant \(c_2\) such that the statement (3.2.2) is true. Then, for any \(n, n = 1, ..., \) we can find closed balls \(B_{1c}(0, \rho_n), B_{2c}(0, \rho_n/n)\) such that
\[B_{2c}(0, \rho_n/n) \not\subseteq B_{1c}(0, \rho_n)\]
From the statement (3.2.4) and from the definition 3.2.3, it follows that there exist \(x_n\) such that
\[x_n \leq \rho_n/n \quad x_n > \rho_n\]

\(^{3,4}\) See also the definition [2]-12.35.a on page 53.

\(^{3,5}\) See also the lemma [2]-12.35.b on page 54.
Let
\[(3.2.6)\]
y_n = x_n / n
From the equality \((3.2.6)\) and from statements 3.2.1.4, (3.2.5), it follows that
\[(3.2.7)\]
\[\|y_n\|_1 > 1 \quad \|y_n\|_2 \leq 1/n < 2/n\]
From the statement \((3.2.7)\), it follows that the statement
\[\lim_{n \to \infty} y_n = 0\]
is true with respect to norm \(\|x\|_2\) and is false with respect to norm \(\|x\|_1\). This contradicts to the statement that norms are equivalent; therefore, the constant \(c_2\) exists. The similar way we prove that the constant \(c_1\) exists. □

Theorem 3.2.11. Norms \(3.6\) \(\|x\|_1, \|x\|_2\) defined on \(D\)-module \(A\) are equivalent iff there exist constants \(c_1 > 0, c_2 > 0\) such that for any \(x \in A\)
\[(3.2.8)\]
\[c_2 \|x\|_1 \leq \|x\|_2 \leq \frac{\|x\|_1}{c_1}\]

Proof. According to the theorem 3.2.10, there exists the constant \(c_1\) such that for \(\rho = \|x\|_1/c_1\)
\[(3.2.9)\]
\[B_{1c}(0, \|x\|_1) \subseteq B_{2c}(0, \|x\|_1/c_1)\]
The statement
\[(3.2.10)\]
\[\|x\|_2 \leq \|x\|_1/c_1\]
follows from the statement \((3.2.9)\). According to the theorem 3.2.10, there exists the constant \(c_2\) such that for \(\rho = \|x\|_2/c_2\)
\[(3.2.11)\]
\[B_{2c}(0, \|x\|_2) \subseteq B_{1c}(0, \|x\|_2/c_2)\]
The statement
\[(3.2.12)\]
\[\|x\|_1 \leq \|x\|_2/c_2\]
follows from the statement \((3.2.11)\). The statement follows from statements \((3.2.10)\), \((3.2.12)\). □

Definition 3.2.12. Normed \(D\)-module \(A\) is called **Banach \(D\)-module** if any fundamental sequence of elements of module \(A\) converges, i.e. has limit in module \(A\). □

Definition 3.2.13. A map
\[f : A_1 \to A_2\]
of Banach \(D_1\)-module \(A_1\) with norm \(|x|_1\) into Banach \(D_2\)-module \(A_2\) with norm \(|y|_2\) is called **continuous**, if for every as small as we please \(\epsilon > 0\) there exist such \(\delta > 0\), that
\[|x' - x|_1 < \delta\]
implies
\[|f(x') - f(x)|_2 < \epsilon\]

\(^{3.6}\) See also the corollary [2]-12.35.B on page 54. See also the definition [4]-9.9 and the proposition [4]-9.10 on the page 288.
3. Differentiable Maps

Theorem 3.2.14. Let A be Banach D-module with norm $|x|_A$. Let B be Banach D-module with norm $|y|_B$.

3.2.14.1: The set B^A of maps $f : A \to B$ is D-module.

3.2.14.2: The map $f \in B^A \to \|f\| \in \mathbb{R}$ defined by the equality

$$(3.2.13) \quad \|f\| = \sup \frac{\|f(x)\|_B}{\|x\|_A}$$

is the norm in D-module B^A and the value $\|f\|$ is called norm of map f.

Proof. We define sum of maps $f, g \in B^A$ according to the equality $(f + g)(a) = f(a) + g(a)$. According to the definition 2.4.1, the set B^A is Abelian group. We define the representation of the ring D in Abelian group B^A according to the equality

$$(3.2.14) \quad (df)(a) = d(f(a))$$

We can right the equality (3.2.14) without using brackets. Therefore, the statement 3.2.14.1 is true.

Statements 3.2.1.1, 3.2.1.2 are evident for the value $\|f\|$. The statement 3.2.1.3 follows from the inequality

$$\|(f + g)(a)\|_B \leq \|f(a)\|_B + \|g(a)\|_B$$

and from the definition (3.2.13). The statement 3.2.1.4 for the value $\|f\|$ follows from the equality (3.2.14), from the statement 3.2.1.4 for the value $\|a\|_B$ and from the definition (3.2.13). Therefore, the statement 3.2.14.2 is true.

Theorem 3.2.15. Let $f : A_1 \to A_2$ be linear map of Banach D-module A_1 with norm $|x|_1$ into Banach D-module A_2 with norm $|y|_2$. Then

$$(3.2.15) \quad \|f\| = \sup \{|f(x)|_2 : |x|_1 = 1\}$$

Proof. From definitions 2.4.4, 2.5.10, 3.3.1 and theorems 3.1.7, 3.1.8, it follows that

$$(3.2.16) \quad f(rx) = rf(x) \quad r \in \mathbb{R}$$

From the equality (3.2.16) and the definition 3.2.24 it follows that

$$\frac{|f(rx)|_2}{|rx|_1} = \frac{|r| \ |f(x)|_2}{|r| \ |x|_1} = \frac{|f(x)|_2}{|x|_1}$$

Assuming $r = \frac{1}{|x|_1}$, we get

$$(3.2.17) \quad \frac{|f(x)|_2}{|x|_1} = \left| f \left(\frac{x}{|x|_1} \right) \right|_2$$

Equality (3.2.15) follows from equalities (3.2.17) and (3.2.13).
Theorem 3.2.16. Let
\[f : A_1 \to A_2 \]
be linear map of Banach \(D_1 \)-module \(A_1 \) with norm \(|x|_1 \) into Banach \(D_2 \)-module \(A_2 \) with norm \(|y|_2 \). Since \(\|f\| < \infty \), then map \(f \) is continuous.

Proof. Since map \(f \) is linear, then according to the theorem 3.2.14
\[|f(x) - f(y)|_2 = |f(x - y)|_2 \leq \|f\| |x - y|_1 \]
Let us assume arbitrary \(\epsilon > 0 \). Let
\[\delta = \frac{\epsilon}{\|f\|} \]
Then
\[|f(x) - f(y)|_2 \leq \|f\| \delta = \epsilon \]
follows from inequality
\[|x - y|_1 < \delta \]
According to definition 3.2.13 map \(f \) is continuous. \(\square \)

Theorem 3.2.17. Let \(A \) be Banach \(D \)-module with norm \(|x|_A \). Let \(B \) be Banach \(D \)-module with norm \(|y|_B \). \(D \)-module \(L(D; A \to B) \) equipped by norm
\[\|f\| = \sup \frac{\|f(x)\|_B}{\|x\|_A} \]
is Banach \(D \)-module.

Proof. To prove the theorem, we need to prove that limit of a sequence of linear maps is a linear map. The statement follows from equalities
\[\lim_{n \to \infty} f_n(a + b) = \lim_{n \to \infty} f_n(a) + \lim_{n \to \infty} f_n(b) \]
\[\lim_{n \to \infty} f_n(ca) = c \lim_{n \to \infty} f_n(a) \]
\(\square \)

Definition 3.2.18. Let \(A \) be Banach \(D \)-module with norm \(|x|_A \). Let \(B \) be Banach \(D \)-module with norm \(|x|_B \). For map
\[f : A^n \to B \]
the value
\[(3.2.18) \quad \|f\| = \sup \frac{\|f(a_1, \ldots, a_n)\|_B}{\|a_1\|_A \cdots \|a_n\|_A} \]
is called norm of map \(f \). \(\square \)

Theorem 3.2.19. For map
\[f : A^n \to B \]
of Banach \(D \)-module \(A \) with norm \(|x|_A \) to Banach \(D \)-module \(B \) with norm \(|x|_B \)
\[(3.2.19) \quad \|f(a_1, \ldots, a_n)\|_B \leq \|f\| \|a_1\|_A \cdots \|a_n\|_A \]
Proof. The inequality
\[(3.2.20) \quad \frac{\|f(a_1, \ldots, a_n)\|_B}{\|a_1\|_A \cdots \|a_n\|_A} \leq \max \frac{\|f(a_1, \ldots, a_n)\|_B}{\|a_1\|_A \cdots \|a_n\|_A} = \|f\| \]
follows from the equality (3.2.18). The inequality (3.2.19) follows from the inequality (3.2.20). \(\square \)
Theorem 3.2.20. Let $o_n : A^n \to B$ be sequence of maps of Banach D-module A into Banach D-module B such that

\[\lim_{n \to \infty} \|o_n\| = 0 \]

(3.2.21)

Then, for any B-numbers a_1, \ldots, a_p,

\[\lim_{n \to \infty} o_n(a_1, \ldots, a_p) = 0 \]

(3.2.22)

Proof. From the theorem 3.2.19, it follows that

\[0 \leq \|o_n(a_1, \ldots, a_p)\|_B \leq \|o_n\|_A \|a_1\|_A \ldots \|a_p\|_A \]

The statement (3.2.22) follows from statements (3.2.21), (3.2.23). □

According to the definition 2.5.1, D-algebra A is D-module A equipped by bilinear map

\[* : A \times A \to A \]

which is called product. In general, norm $\|*\|$ of product may be different from 1.

Example 3.2.21. Let $^{3,7} \mathcal{H}_2$ be algebra of hyperbolic numbers. \mathcal{H}_2-number has form $z = a + bj$ where a, b are real numbers. Product of \mathcal{H}_2-numbers $z_1 = a_1 + b_1j$, $z_2 = a_2 + b_2j$ has the following form

\[z_1z_2 = a_1a_2 + b_1b_2 + j(a_1b_2 + a_2b_1) \]

(3.2.24)

From the equality (3.2.24), it follows that $j^2 = 1$. Consider the norm 3,8 of \mathcal{H}_2-number $z = a + bj$ defined by the equality

\[\|z\| = \sqrt{|a^2 - b^2|} \]

(3.2.25)

From equalities (3.2.24), (3.2.25), it follows that norm of product has value

\[\|*\| = \frac{\sqrt{(x_1x_2 + y_1y_2)^2 - (x_1y_2 + x_2y_1)^2}}{\sqrt{x_1^2 - y_1^2} \sqrt{x_2^2 - y_2^2}} \]

\[= \frac{\sqrt{(x_1x_2 + y_1y_2 - x_1y_2 - x_2y_1)(x_1x_2 + y_1y_2 + x_1y_2 + x_2y_1)}}{\sqrt{(x_1 - y_1)(x_1 + y_1)(x_2 - y_2)(x_2 + y_2)}} \]

\[= \frac{\sqrt{(x_1 - y_1)(x_1 + y_1)(x_2 - y_2)(x_2 + y_2)}}{\sqrt{(x_1 - y_1)(x_1 + y_1)(x_2 - y_2)(x_2 + y_2)}} \]

Therefore, $\|*\| = 1$ in algebra \mathcal{H}_2. □

Example 3.2.22. The norm $\|x\|$ of \mathcal{H}_2-number considered in example 3.2.21 does not satisfy to the statement 3.2.1.2. 3,9 So we consider different norm. If the norm of \mathcal{H}_2-number $z = a + bj$ is defined by the equality

\[\|z\|_1 = \sqrt{a^2 + b^2} \]

(3.2.26)
then norm of product is maximum of the map

\[f(x_1, y_1, x_2, y_2) = \sqrt{(x_1x_2 + y_1y_2)^2 + (x_1y_2 + x_2y_1)^2} \sqrt{x_1^2 + y_1^2} \sqrt{x_2^2 + y_2^2} \]

The map \(f \) is symmetric with respect to its variables; so it gets its extremum when variables are equal. Let \(x_1 = x_2 = y_1 = y_2 = a, a \neq 0 \). Then

\[f(a, a, a, a) = \sqrt{(a^2 + a^2)^2 + (a^2 + a^2)^2} \sqrt{a^2 + a^2} \sqrt{a^2 + a^2} = \frac{\sqrt{8}}{2} = \sqrt{2} \]

This value is maximum because \(f(1, 0, 1, 0) = \sqrt{(1*1 + 0*0)^2 + (1*0 + 1*0)^2} \sqrt{1^2 + 0^2} \sqrt{1^2 + 0^2} = 1 \)

Therefore, \(\| \ast \|_1 = \sqrt{2} \). \(\square \)

According to the theorem 3.2.11, if we defined norm \(\|x\|_1 \) in algebra \(H_2 \), then any norm \(\|x\|_2 \) defined by the equality

\[\|x\|_2 = r\|x\|_1 \quad r \in R, r > 0 \]

is equivalent to the norm \(\|x\|_1 \).

Theorem 3.2.23. Let \(A \) be \(D \)-algebra. If, in \(D \)-module \(A \), there exist norm \(\|x\|_1 \) such that norm \(\| \ast \|_1 \) of product in \(D \)-algebra \(A \) is different from 1, then there exists equivalent norm

\[\|x\|_2 = \| \ast \|_1 \|x\|_1 \]

in \(D \)-module \(A \) such that

\[\| \ast \|_2 = 1 \]

Proof. The equality

\[\| \ast \|_2 = \sup \frac{\|ab\|_2}{\|a\|_2 \|b\|_2} = \sup \frac{\| \ast \|_1 \|ab\|_1}{\| \ast \|_1 \|a\|_1 \|b\|_1} = \frac{1}{\| \ast \|_1 \|a\|_1 \|b\|_1} \]

(3.2.29)

follows from equalities (3.2.18), (3.2.27). The equality (3.2.28) follows from the equality (3.2.29). \(\square \)

According to the theorem 3.2.23, if we introduce norm

\[\|x\|_2 = \sqrt{2}\|x\|_1 \]

in algebra \(H_2 \), then norm of product \(\| \ast \|_2 = 1 \).

Definition 3.2.24. Let \(D \) be normed commutative ring. Let \(A \) be \(D \)-algebra. The norm \(^{3.10} \|a\| \) on \(D \)-module \(A \) such that \(^{3.11} \)

\[\|ab\| \leq \|a\| \|b\| \]

(3.2.30)

\(^{3.10}\) I made definition according to definition from [21], IX, §3.3. If \(D \)-algebra \(A \) is division algebra, then norm is called **absolute value** and we use notation \(|a| \) for norm of \(A \)-number \(a \). See the definition from [21], IX, §3.2. \(^{3.11}\) The inequality (3.2.30) follows from the theorem 3.2.23. Otherwise we would have to write

\[\|ab\| \leq \| \ast \| \|a\| \|b\| \]
is called norm on D-algebra A. D-algebra A, endowed with the structure defined by a given norm on A, is called normed D-algebra.

Definition 3.2.25. Normed D-algebra A is called **Banach D-algebra** if any fundamental sequence of elements of algebra A converges, i.e. has limit in algebra A.

3.3. The Derivative of Map of D-Algebra

Definition 3.3.1. Let A be Banach D-module with norm $\|a\|_A$. Let B be Banach D-module with norm $\|a\|_B$. The map

$$f : A \to B$$

is called **differentiable** on the set $U \subset A$, if at every point $x \in U$ the increment of map f can be represented as

$$f(x + h) - f(x) = dx f(x) \circ h + o(h)$$

where

$$\frac{df(x)}{dx} : A \to B$$

is linear map of D-module A into D-module B and

$$o : A \to B$$

is such continuous map that

$$\lim_{a \to 0} \frac{\|o(a)\|_B}{\|a\|_A} = 0$$

Linear map $\frac{df(x)}{dx}$ is called **derivative of map** f.

Definition 3.3.2. Since, for given $x \in A$, we consider the increment (3.3.1) of the map

$$f : A \to B$$

as function of differential dx of variable x, then the linear part of this function

$$df = \frac{df(x)}{dx} \circ dx$$

is called **differential of map** f.

Remark 3.3.3. According to definition 3.3.1, the derivative of the map f is the map

$$x \in A \to \frac{df(x)}{dx} \in \mathcal{L}(D; A \to B)$$

Expressions $dx f(x)$ and $\frac{df(x)}{dx}$ are different notations for the same map.

Theorem 3.3.4. Definitions of the derivative (3.3.1) is equivalent to the definition

$$\frac{df(x)}{dx} \circ a = \lim_{t \to 0 \atop t \in \mathbb{R}} (t^{-1}(f(x + ta) - f(x)))$$
3.3. The Derivative of Map of D-Algebra

Proof. From definitions 2.4.4, 2.5.10, 3.3.1 and the theorem 3.1.7 it follows

$$\frac{df(x)}{dx} \circ (ta) = t \frac{df(x)}{dx} \circ a$$

$t \in R \ t \neq 0 \ a \in A \ a \neq 0$

Combining equality (3.3.3) and definition 3.3.1, we get the definition (3.3.2) of the derivative.

Corollary 3.3.5. A map f is called differentiable on the set $U \subset D$, if at every point $x \in U$ the increment of the map f can be represented as

$$f(x + ta) - f(x) = t \frac{df(x)}{dx} \circ a + o(t)$$

where $o : R \to A$ is such continuous map that

$$\lim_{t \to 0} \frac{|o(t)|}{|t|} = 0$$

Theorem 3.3.6. Let A be free Banach D-module. Let B be free Banach D-algebra. Let F be the basis of left $B \otimes B$-module $L(D; A \to B)$. It is possible to represent the derivative of the map

$$f : A \to B$$

as

$$\frac{df(x)}{dx} = \frac{d^k f(x)}{dx} \circ F_k$$

Proof. The theorem follows from the definitions 3.3.1 and from the statement 2.5.16.1

Definition 3.3.7. The expression

$$\frac{d^k f(x)}{dx} = \frac{d^k f^k(x)}{dx} \otimes \frac{d^k f^k(x)}{dx} \in B \otimes B$$

is called coordinates of derivative $\frac{df(x)}{dx}$ with respect to the basis F. Expression

$$\frac{d^k f^k(x)}{dx}, \ p = 0, 1, \ is \ called \ component \ of \ derivative \ of \ map \ f(x).$$

Theorem 3.3.8. Let A be free Banach D-module. Let B be free Banach D-algebra. Let F be the basis of left $B \otimes B$-module $L(D; A \to B)$. It is possible to represent the differential of the map

$$f : A \to B$$

as

$$df = \frac{df(x)}{dx} \circ dx = \left(\frac{d^k f^k(x)}{dx} \otimes \frac{d^k f^k(x)}{dx} \right) \circ F_k \circ dx$$

$$= \frac{d^k f^k(x)}{dx} (F_k \circ dx) \frac{d^k f^k(x)}{dx}$$

Proof. The theorem follows from the theorem 3.3.6 and from the definitions 3.3.7.
Remark 3.3.9. If D-module $\mathcal{L}(D; A \rightarrow A)$ is generated by the map $F_0 \circ x = x$, then the equality (3.3.6) gets form
\[
\frac{df}{dx} \circ dx = \left(\frac{d_{x,0}f(x)}{dx} \otimes \frac{d_{x,1}f(x)}{dx} \right) \circ dx
\]
(3.3.7)
where the expression $\frac{d_{s,p}f(x)}{dx}$, $p = 0, 1$, is called component of derivative of map $f(x)$.

\[\square\]

Theorem 3.3.10. Let A be free Banach D-module. Let B be free Banach D-algebra. Let F be the basis of left $B \otimes B$-module $\mathcal{L}(D; A \rightarrow B)$. Let e be the basis of D-module B. Standard representation of derivative of map $f : A \rightarrow B$

has form
\[
\frac{df(x)}{dx} = \frac{d^{kij}f(x)}{dx}(e_i \otimes e_j) \circ F_k
\]
(3.3.8)
Expression $\frac{d^{kij}f(x)}{dx}$ in equality (3.3.8) is called standard component of derivative of the map f.

\[\text{Proof.}\] Statement of theorem follows from the definitions 3.3.1 and from the statement 2.5.16.2

\[\square\]

Theorem 3.3.11. Let A be free Banach D-module. Let B be free Banach D-algebra. Let \overline{F} be the basis of left $B \otimes B$-module $\mathcal{L}(D; A \rightarrow B)$. Let \overline{e} be the basis of D-module B. Then it is possible to represent the derivative of the map $f : A \rightarrow B$

as
\[
\frac{df(x)}{dx} \circ dx = dx^i \frac{\partial f^j}{\partial x^l} e_j
\]
where $dx \in A$ has expansion
\[
dx = dx^i e_i
\]
relative to basis \overline{e}_A and Jacobian matrix of map f has form
\[
\frac{\partial f^k}{\partial x^l} = \frac{d^{kij}f(x)}{dx} F_{k,lm} C_{im}^p C_{pj}^k
\]
(3.3.9)

\[\text{Proof.}\] Statement of theorem follows from the theorem 2.5.21.

\[\square\]

Remark 3.3.12. If D-module $\mathcal{L}(D; A \rightarrow A)$ is generated by the map $F_0 \circ x = x$, then equalities (3.3.8), (3.3.9) get form
\[
\frac{df(x)}{dx} = \frac{d^{ij}f(x)}{dx} e_i \otimes e_j
\]
(3.3.10)
\[
\frac{\partial f^j}{\partial x^l} = \frac{d^{kpr}f(x)}{dx} C_{ki}^p C_{jr}^{pr}
\]
(3.3.11)
where the expression \(\frac{d^i j f(x)}{d x} \) is called standard component of derivative of the map \(f \).

Theorem 3.3.13. Let \(A \) be Banach \(D \)-module. Let \(B \) be Banach \(D \)-algebra. Let \(f, g \) be differentiable maps
\[
 f : A \to B \quad g : A \to B
\]
The map
\[
 f + g : A \to B
\]
is differentiable and the derivative satisfies to relationship
\[
 \frac{d(f + g)}{d x} = \frac{df}{d x} + \frac{dg}{d x}
\]
Proof. According to the definition (3.3.2),
\[
 \frac{d(f + g)(x)}{d x} \circ a = \lim_{t \to 0, t \in R} (t^{-1}((f + g)(x + ta) - (f + g)(x)))
\]
\[
 = \lim_{t \to 0, t \in R} (t^{-1}(f(x + ta) + g(x + ta) - f(x) - g(x)))
\]
\[
 = \lim_{t \to 0, t \in R} (t^{-1}(f(x + ta) - f(x)))
\]
\[
 + \lim_{t \to 0, t \in R} (t^{-1}(g(x + ta) - g(x)))
\]
\[
 = \frac{df(x)}{d x} \circ a + \frac{dg(x)}{d x} \circ a
\]
The equality (3.3.12) follows from the equality (3.3.13).

Theorem 3.3.14. Let \(B \) be Banach module over commutative ring \(D \). Let \(U \) be open set of Banach \(D \)-module \(A \). Let
\[
 f : U \to \mathcal{L}(D; A \to B)
\]
be differentiable map. Then
\[
 \frac{df(x) \circ (a_1, \ldots, a_p)}{d x} \circ a_0 = \left(\frac{df(x)}{d x} \circ a_0 \right) \circ (a_1, \ldots, a_p)
\]
Proof. Let \(a_0 \in U \). According to the definition 3.3.1, the increment of map \(f \) can be represented as
\[
 f(x + a_0) - f(x) = \frac{df(x)}{d x} \circ a_0 + o(a_0)
\]
where
\[
 \frac{df(x)}{d x} \in \mathcal{L}(D; A \to \mathcal{L}(D; A^p \to B))
\]
and
\[
 o : A \to \mathcal{L}(D; A^p \to B)
\]
is such continuous map that
\[
 \lim_{a_0 \to 0} \frac{\|o(a_0)\|}{\|a_0\|_A} = 0
\]
Since \(f(x) \in \mathcal{L}(D; A^p \to B) \), then, for any \(a_1, \ldots, a_p \), the equality
\[
(f(x + a_0) \circ (a_1, \ldots, a_p) - f(x) \circ (a_1, \ldots, a_p))
\]
follows from the equality (3.3.15). According to the theorem 3.2.20, the equality
\[
\lim_{a_0 \to 0} \frac{\|o(a_0) \circ (a_1, \ldots, a_p)\|_B}{\|a_0\|_A} = 0
\]
follows from the equality (3.3.16). Considering the expression
\[
f(x) \circ (a_1, \ldots, a_p)
\]
as map
\[
x \in U \to f(x) \circ (a_1, \ldots, a_p) \in B
\]
we get that the increment of this map can be represented as
\[
(f(x + a_0) \circ (a_1, \ldots, a_p) - f(x) \circ (a_1, \ldots, a_p))
\]
where
\[
\frac{df(x) \circ (a_1, \ldots, a_p)}{dx} \circ a_0 + o_1(a_0)
\]
and
\[
o_1 : A \to B
\]
is such continuous map that
\[
\lim_{a_0 \to 0} \frac{\|o_1(a_0)\|_B}{\|a_0\|_A} = 0
\]
The equality
\[
\left(\frac{df(x) \circ (a_1, \ldots, a_p)}{dx} \right) \circ a_0
\]
follows from the equalities (3.3.17), (3.3.19). The equality
\[
\lim_{a_0 \to 0} \frac{\|o(a_0) \circ (a_1, \ldots, a_p)\|_B - \|o_1(a_0)\|_B}{\|a_0\|_A} = 0
\]
follows from the equalities (3.3.18), (3.3.20). The equality (3.3.14) follows from the equalities (3.3.21), (3.3.22).

\[\square\]

Convention 3.3.15. Given bilinear map
\[
h : B_1 \times B_2 \to B
\]
we consider following maps
\[
h_1 : \mathcal{L}(D; A \to B_1) \times B_2 \to \mathcal{L}(D; A \to B)
\]
\[
h_2 : B_1 \times \mathcal{L}(D; A \to B_2) \to \mathcal{L}(D; A \to B)
\]
defined by equality
\[
h_1(f, v) \circ u = h(f \circ u, v)
\]
\[
h_2(u, f) \circ v = h(u, f \circ v)
\]
3.3. The Derivative of Map of D-Algebra

We will use letter h to denote maps h_1, h_2. □

Theorem 3.3.16. Let A be Banach D-module. Let B_1, B_2, B be Banach D-algebras. Let

$$h : B_1 \times B_2 \to B$$

be continuous bilinear map. Let f, g be differentiable maps

$$f : A \to B_1 \quad g : A \to B_2$$

The map

$$h(f, g) : A \to B$$

is differentiable and the derivative satisfies to relationship

$$\frac{dh(f(x), g(x))}{dx} \circ a = h \left(\frac{df(x)}{dx} \circ dx, g(x) \right) + h \left(f(x), \frac{dg(x)}{dx} \circ dx \right)$$

(3.3.23)

and

$$\frac{dh(f(x), g(x))}{dx} = h \left(\frac{df(x)}{dx}, g(x) \right) + h \left(f(x), \frac{dg(x)}{dx} \right)$$

(3.3.24)

Proof. Equality (3.3.23) follows from chain of equalities

$$\frac{dh(f(x), g(x))}{dx} \circ a = \lim_{t \to 0} (t^{-1}(h(f(x + ta), g(x + ta)) - h(f(x), g(x))))$$

$$= \lim_{t \to 0} (t^{-1}(h(f(x + ta), g(x + ta)) - h(f(x), g(x + ta))))$$

$$+ \lim_{t \to 0} (t^{-1}(h(f(x), g(x + ta)) - h(f(x), g(x))))$$

$$= h \left(\lim_{t \to 0} t^{-1}(f(x + ta) - f(x)), g(x) \right)$$

$$+ h(f(x), \lim_{t \to 0} t^{-1}(g(x + ta) - g(x)))$$

based on definition (3.3.2). Equality (3.3.24) follows from the equality (3.3.23) and from the convention 3.3.15. □

Theorem 3.3.17. Let A be Banach D-module. Let B be Banach D-algebra. Let f, g be differentiable maps

$$f : A \to B \quad g : A \to B$$

The derivative satisfies to relationship

$$\frac{df(x)g(x)}{dx} \circ dx = \left(\frac{df(x)}{dx} \circ dx \right) g(x) + f(x) \left(\frac{dg(x)}{dx} \circ dx \right)$$

(3.3.25)

$$\frac{df(x)g(x)}{dx} = \frac{df(x)}{dx} g(x) + f(x) \frac{dg(x)}{dx}$$

Proof. The theorem follows from theorems 3.3.16 and the definition 2.5.1. □

Theorem 3.3.18. Let A be free Banach D-module. Let B be free Banach D-algebra. Let the derivative of the map

$$f : A \to B$$

have expansion

$$\frac{df(x)}{dx} = \frac{d_{x_0}f(x)}{dx} \otimes \frac{d_{x_1}f(x)}{dx}$$

(3.3.26)
Let the derivative of the map
\[g : A \to B \]
have expansion
\[\frac{dg(x)}{dx} = \frac{d_{t_0}g(x)}{dx} \otimes \frac{d_{t_1}g(x)}{dx} \]
(3.3.27)

The derivative of the map \(f(x)g(x) \) has form
\[\frac{df(x)g(x)}{dx} = \frac{d_{s_0}f(x)}{dx} \otimes \left(\frac{d_{s_1}f(x)}{dx}g(x) \right) + \left(\frac{f(x)}{dx} \frac{d_{t_0}g(x)}{dx} \right) \otimes \frac{d_{t_1}g(x)}{dx} \]
(3.3.28)
\[\frac{d_{s_0}f(x)g(x)}{dx} = \frac{d_{s_0}f(x)}{dx} \quad \frac{d_{t_0}f(x)g(x)}{dx} = f(x) \frac{d_{t_0}g(x)}{dx} \]
(3.3.29)

Proof. Let us substitute (3.3.26) and (3.3.27) into equality (3.3.25)
\[\frac{df(x)g(x)}{dx} \circ a = \left(\frac{df(x)}{dx} \circ a \right) g(x) + f(x) \left(\frac{dg(x)}{dx} \circ a \right) \]
(3.3.30)
\[= \frac{d_{s_0}f(x)}{dx}a \frac{d_{s_1}f(x)}{dx}g(x) + f(x) \frac{d_{t_0}g(x)}{dx}a \frac{d_{t_1}g(x)}{dx} \]

Based (3.3.30), we define equalities (3.3.29). □

Theorem 3.3.19. Let \(A \) be Banach \(D \)-module. Let \(B, C \) be Banach \(D \)-algebras. Let
\[h : B \to C \]
be representation of \(D \)-module \(B \) in \(D \)-module \(C \). Let \(f, g \) be differentiable maps
\[f : A \to B \quad g : A \to C \]
The derivative of the map \(h(f(x))(g(x)) \) has form
\[\frac{dh(f(x))(g(x))}{dx} = h \left(\frac{df(x)}{dx} \right) (g(x)) + h(f(x)) \left(\frac{dg(x)}{dx} \right) \]
(3.3.31)

Proof. Since the map
\[h : B \to \text{End}(\{+\}, C) \]
is homomorphism of the Abelian group and representation
\[h(a) : C \to C \]
is endomorphism of the additive group, then the map \(h(b)(c) \) is bilinear map. The theorem follows from the theorem 3.3.16. □

Theorem 3.3.20. Let \(A \) be Banach \(D \)-module. Let \(B, C \) be Banach \(D \)-algebras. Let \(f, g \) be differentiable maps
\[f : A \to B \quad g : A \to C \]
The derivative satisfies to relationship
\[\frac{df(x) \otimes g(x)}{dx} \circ a = \left(\frac{df(x)}{dx} \circ a \right) \otimes g(x) + f(x) \otimes \left(\frac{dg(x)}{dx} \circ a \right) \]
3.3. The Derivative of Map of D-Algebra

\[
\frac{df(x)}{dx} \otimes g(x) = \frac{df(x)}{dx} \otimes g(x) + f(x) \otimes \frac{dg(x)}{dx}
\]

Proof. The theorem follows from the theorems 3.3.16, 2.4.16 and the definition 2.5.1.

Theorem 3.3.21. Let \(A\) be Banach D-module with norm \(\|a\|_A\). Let \(B\) be Banach D-algebra with norm \(\|b\|_B\). If the derivative \(\frac{df(x)}{dx}\) of the map \(f : A \to B\) exists in point \(x\) and has finite norm, then map \(f\) is continuous at point \(x\).

Proof. From the theorem 3.2.14 it follows (3.3.32)

\[
\left\| \frac{df(x)}{dx} \circ a \right\|_B \leq \left\| \frac{df(x)}{dx} \right\|_A \|a\|_A
\]

From (3.3.1), (3.3.32) it follows

(3.3.33)

\[
\| f(x+a) - f(x) \|_B < \left\| \frac{df(x)}{dx} \right\| \|a\|_A
\]

Let us assume arbitrary \(\epsilon > 0\). Let

\[
\delta = \frac{\epsilon}{\left\| \frac{df(x)}{dx} \right\|}
\]

Then from inequality

\[
\|a\|_A < \delta
\]

it follows

\[
\| f(x+a) - f(x) \|_B \leq \left\| \frac{df(x)}{dx} \right\| \delta = \epsilon
\]

According to definition 3.2.13 map \(f\) is continuous at point \(x\). □

Theorem 3.3.22. Let \(A\) be free Banach D-module. Let \(B\) be free Banach D-algebra. Let map \(f : A \to B\) be differentiable at point \(x\). Then

\[
\frac{df(x)}{dx} \circ 0 = 0
\]

Proof. The theorem follows from the definitions 3.3.1 and from the theorem 2.4.6.

Theorem 3.3.23. Let \(A\) be Banach D-module with norm \(\|a\|_A\). Let \(B\) be Banach D-module with norm \(\|b\|_B\). Let \(C\) be Banach D-module with norm \(\|c\|_C\). Let map \(f : A \to B\) be differentiable at point \(x\) and norm of the derivative of map \(f\) be finite

(3.3.34)

\[
\left\| \frac{df(x)}{dx} \right\| = F \leq \infty
\]

Let map \(g : B \to C\)
be differentiable at point

\[(3.3.35)\]
\[y = f(x)\]

and norm of the derivative of map \(g\) be finite

\[(3.3.36)\]
\[\left\| \frac{dg(y)}{dy} \right\| = G \leq \infty\]

The map\(^{3,12}\) \((g \circ f)(x) = g(f(x))\)
is differentiable at point \(x\)

\[(3.3.37)\]
\[
\left\{ \begin{array}{l}
\frac{d(g \circ f)(x)}{dx} = \frac{dg(f(x))}{df(x)} \circ \frac{df(x)}{dx} \\
\frac{d(g \circ f)(x)}{dx} \circ a = \frac{dg(f(x))}{df(x)} \circ \frac{df(x)}{dx} \circ a
\end{array} \right.
\]

Proof. According to definition \(3.3.1\)

\[(3.3.38)\]
\[g(y + b) - g(y) = \frac{dg(y)}{dy} \circ b + o_1(b)\]

where \(o_1 : B \to C\) is such continuous map that

\[
\lim_{b \to 0} \frac{\|o_1(b)\|_C}{\|b\|_B} = 0
\]

According to definition \(3.3.1\)

\[(3.3.39)\]
\[f(x + a) - f(x) = \frac{df(x)}{dx} \circ a + o_2(a)\]

where \(o_2 : A \to B\) is such continuous map that

\[
\lim_{a \to 0} \frac{\|o_2(a)\|_B}{\|a\|_A} = 0
\]

According to \((3.3.39)\) increment \(a\) of value \(x \in A\) leads to increment

\[(3.3.40)\]
\[b = \frac{df(x)}{dx} \circ a + o_2(a)\]
of value \(y\). Using \((3.3.35), (3.3.40)\) in equality \((3.3.38)\), we get

\[(3.3.41)\]
\[g(f(x + a)) - g(f(x)) = g \left(f(x) + \frac{df(x)}{dx} \circ a + o_2(a) \right) - g(f(x))
\]
\[= \frac{dg(f(x))}{df(x)} \circ \left(\frac{df(x)}{dx} \circ a + o_2(a) \right) - o_1 \left(\frac{df(x)}{dx} \circ a + o_2(a) \right)\]

\(^{3,12}\) The notation \(\frac{dg(f(x))}{df(x)}\) means expression

\[
\frac{dg(f(x))}{df(x)} = \frac{dg(y)}{dy} \bigg|_{y = f(x)}
\]

Similar remark is true for components of derivative.
According to definitions 2.4.4, 2.5.10, 3.3.1, from equality (3.3.41) it follows

\[
g(f(x + a)) - g(f(x)) = \frac{dg(f(x))}{df(x)} \circ \frac{df(x)}{dx} \circ a + \frac{dg(f(x))}{df(x)} \circ o_2(a) - o_1 \left(\frac{df(x)}{dx} \circ a + o_2(a) \right)
\]

(3.3.42)

According to definition 3.2.24

\[
\lim_{a \to 0} \left\| \frac{dg(f(x))}{df(x)} \circ o_2(a) - o_1 \left(\frac{df(x)}{dx} \circ a + o_2(a) \right) \right\|_C
\]

(3.3.43)

\[
\leq \lim_{a \to 0} \left\| \frac{dg(f(x))}{df(x)} \right\|_C \left\| a \right\|_A + \lim_{a \to 0} \left\| o_1 \left(\frac{df(x)}{dx} \circ a + o_2(a) \right) \right\|_C \left\| a \right\|_A
\]

From (3.3.36) it follows that

\[
\lim_{a \to 0} \left\| \frac{dg(f(x))}{df(x)} \circ o_2(a) \right\|_C \leq G \lim_{a \to 0} \left\| o_2(a) \right\|_B = 0
\]

From (3.3.34) it follows that

\[
\lim_{a \to 0} \left\| o_1 \left(\frac{df(x)}{dx} \circ a + o_2(a) \right) \right\|_C
\]

\[
= \lim_{a \to 0} \left\| o_1 \left(\frac{df(x)}{dx} \circ a + o_2(a) \right) \right\|_C \left\| \frac{df(x)}{dx} \circ a + o_2(a) \right\|_B \left\| a \right\|_A
\]

\[
\leq \lim_{a \to 0} \left\| o_1 \left(\frac{df(x)}{dx} \circ a + o_2(a) \right) \right\|_C \left\| \frac{df(x)}{dx} \right\|_B \left\| a \right\|_A + \left\| o_2(a) \right\|_B \left\| a \right\|_A
\]

\[
= \lim_{a \to 0} \left\| o_1 \left(\frac{df(x)}{dx} \circ a + o_2(a) \right) \right\|_C \left\| \frac{df(x)}{dx} \circ a + o_2(a) \right\|_B \left\| a \right\|_A
\]

According to the theorem 3.3.22

\[
\lim_{a \to 0} \left(\frac{df(x)}{dx} \circ a + o_2(a) \right) = 0
\]

Therefore,

\[
\lim_{a \to 0} \left\| o_1 \left(\frac{df(x)}{dx} \circ a + o_2(a) \right) \right\|_C = 0
\]

(3.3.45)
From equalities (3.3.43), (3.3.44), (3.3.45) it follows

\[(3.3.46) \lim_{a \to 0} \left\| \frac{dg(f(x))}{df(x)} \circ o_2(a) - o_1 \left(\frac{df(x)}{dx} \circ a + o_2(a) \right) \right\|_C = 0\]

According to definition 3.3.1

\[(3.3.47) (g \circ f)(x + a) - (g \circ f)(x) = \frac{dg(f(x))}{dx} \circ a + o(a)\]

where \(o : A \to C \) is such continuous map that

\[\lim_{a \to 0} \left\| \frac{o(a)}{\|a\|_A} \right\|_C = 0\]

Equality (3.3.37) follows from (3.3.42), (3.3.46), (3.3.47).

From equality (3.3.37) and theorem 3.3.6, it follows that

\[(3.3.48) \frac{ds \cdot 0}{dx} (g \circ f)(x) = \frac{ds \cdot 1}{dx} (g \circ f)(x)\]

\[= \frac{ds \cdot 0}{dx} \left(\frac{df(x)}{dx} \circ a \right) \frac{ds \cdot 1}{dx} g(f(x))\]

\[= \frac{ds \cdot 0}{dx} f(x) \frac{df(x)}{dx} \circ a \frac{ds \cdot 1}{dx} f(x) \frac{df(x)}{dx}\]

(3.3.56) follow from equality (3.3.48). \(\square\)

Theorem 3.3.24. Let \(A \) be free Banach \(D \)-module. Let \(B, C \) be free associative Banach \(D \)-algebras. Let \(\overline{F} \) be the basis of left \(B \otimes B \)-module \(L(D; A \to B) \). Let \(\overline{G} \) be the basis of left \(C \otimes C \)-module \(L(D; B \to C) \). Let

\[(3.3.49) \frac{df}{dx} = \frac{d^k f}{dx} \circ F_k\]

be expansion of derivative of the map \(f : A \to B \) with respect to the basis \(\overline{F} \). Let

\[(3.3.50) \frac{dg}{dx} = \frac{d^l g}{dx} \circ G_l\]

be expansion of derivative of the map \(g : B \to C \) with respect to the basis \(\overline{G} \). Then derivative of map \(h = g \circ f \) has expansion

\[(3.3.51) \frac{dh}{dx} = \frac{d^{lk} h}{dx} \circ H_{lk}\]

with respect to the basis \(\overline{H} = \{ H_{lk} : H_{lk} = G_l \circ F_k, G_l \in \overline{G}, F_k \in \overline{F} \} \)
where

\[
\frac{d^k}{dx} = \frac{d^k g}{dx} \circ \left(C^k_m \circ \frac{d^m f}{dx} \right)
\]

Proof. The theorem follows from theorems 2.5.19, 3.3.6 and from the definition 3.3.1. □

Theorem 3.3.25. Let \(A \) be free associative \(D \)-algebra. Let left \(A \otimes A \)-module \(\mathcal{L}(D; A \to A) \) is generated by the identity map \(F_0 = \delta \). Let

\[
\frac{df}{dx} = \frac{d_{s0} f}{dx} \otimes \frac{d_{s1} f}{dx}
\]

be expansion of derivative of the map \(f : A \to A \)

Let

\[
\frac{dg}{dx} = \frac{d_{t0} g}{dx} \otimes \frac{d_{t1} g}{dx}
\]

be expansion of derivative of the map \(g : A \to A \)

Then derivative of the map \(h = g \circ f \)
has expansion

\[
\frac{dh}{dx} = \frac{d_{s0} h}{dx} \otimes \frac{d_{s1} h}{dx}
\]

where

\[
\frac{d_{s0} h}{dx}(x) = \frac{d_{s0} g(f(x))}{dx} \frac{d_{t0} f(x)}{dx}
\]
\[
\frac{d_{s1} h}{dx}(x) = \frac{d_{t1} f(x)}{dx} \frac{d_{s1} g(f(x))}{dx}
\]

Proof. The theorem follows from the theorem 2.5.20, from the remark 3.3.9 and from the definition 3.3.1. □
CHAPTER 4

Derivative of Second Order of Map of D-Algebra

4.1. Derivative of Second Order of Map of D-Algebra

Let D be the complete commutative ring of characteristic 0. Let A, B be Banach D-modules. Let $f : A \rightarrow B$ be differentiable map. According to the remark 3.3.3, the derivative is map

$$ x \in A \rightarrow \frac{df(x)}{dx} \in \mathcal{L}(D; A \rightarrow B) $$

According to the theorem 3.2.17, set $\mathcal{L}(D; A \rightarrow B)$ is Banach D-module. Therefore, we may consider the question, if map $\frac{df(x)}{dx}$ is differentiable.

According to the definition 3.3.1 and to the theorem 3.3.14,

$$ \frac{df(x + a_2)}{dx} \circ a_1 - \frac{df(x)}{dx} \circ a_1 = \frac{d}{dx} \left(\frac{df(x)}{dx} \circ a_1 \right) \circ a_2 + o_2(a_2) $$

where $o_2 : A \rightarrow \mathcal{L}(D; A \rightarrow B)$ is such continuous map, that

$$ \lim_{a_2 \rightarrow 0} \frac{\|o_2(a_2)\|_B}{\|a_2\|_A} = 0 $$

According to definition 3.3.1, the map $\frac{d}{dx} \left(\frac{df(x)}{dx} \circ a_1 \right) \circ a_2$ is linear map of variable a_2. From the equality (4.1.1) it follows that map $\frac{d}{dx} \left(\frac{df(x)}{dx} \circ a_1 \right) \circ a_2$ is linear map of variable a_1. Therefore, the map $\frac{d}{dx} \left(\frac{df(x)}{dx} \circ a_1 \right) \circ a_2$ is bilinear map.

Definition 4.1.1. Polylinear map

$$ \frac{d^2 f(x)}{dx^2} \circ (a_1; a_2) = \frac{d^2 f(x)}{dx^2} \circ (a_1; a_2) = \frac{d}{dx} \left(\frac{df(x)}{dx} \circ a_1 \right) \circ a_2 $$

is called **derivative of second order** of map f.

Remark 4.1.2. According to definition 4.1.1 the derivative of second order of the map f is map

$$ x \in A \rightarrow \frac{d^2 f(x)}{dx^2} \in \mathcal{L}(D; A \times A \rightarrow A) $$

According to the theorem 2.4.12, we may consider also expression

$$ \frac{d^2 f(x)}{dx^2} \circ (a_1 \otimes a_2) = \frac{d^2 f(x)}{dx^2} \circ (a_1; a_2) $$
4.2. Taylor Series

Then

\[
\frac{d^2 f(x)}{dx^2} \in \mathcal{L}(D; A \otimes A \to A)
\]

(4.1.4)

\[
\frac{d^2 f}{dx^2} : A \to \mathcal{L}(D; A \otimes A \to A)
\]

We use the same notation \(\frac{d^2 f}{dx^2}\) for maps (4.1.3) and (4.1.4) because of the nature of the argument it is clear what kind of map we consider. □

Theorem 4.1.3. Let \(A\) be free Banach \(D\)-module. Let \(B\) be free associative Banach \(D\)-algebra. Let \(\overline{F}\) be the basis of left \(B \otimes B\)-module \(\mathcal{L}(D; A \to B)\). It is possible to represent the derivative of second order of the map \(f\) as

\[
\frac{d^2 f(x)}{dx^2} \circ (a_1; a_2) = \left(\frac{d^2_x 0 f(x)}{dx^2} \otimes \frac{d^2_x 1 f(x)}{dx^2} \otimes \frac{d^2_x 2 f(x)}{dx^2}\right) \circ (F_{1, x}, F_{2, x}) \circ \sigma_s \circ (a_1; a_2)
\]

\[
= \frac{d^2_x 0 f(x)}{dx^2} (F_{1, x} \circ \sigma_s(a_1)) \frac{d^2_x 1 f(x)}{dx^2} (F_{2, x} \circ \sigma_s(a_2)) \frac{d^2_x 2 f(x)}{dx^2}
\]

Expression

\[
\frac{d^p_x 2 f(x)}{dx^2}
\]

is called component of derivative of second order of map \(f(x)\).

Proof. The theorem follow from the definition 4.1.1 and from the theorem 2.5.23. □

Definition 4.1.4. By induction, assuming that we defined the derivative \(\frac{d^{n-1} f(x)}{dx^{n-1}}\) of order \(n - 1\), we define

\[
\frac{d^n f(x)}{dx^n} \circ (a_1; \ldots; a_n) = \frac{d^n_x f(x)}{dx^n} \circ (a_1; \ldots; a_n)
\]

(4.1.5)

\[
= \frac{d}{dx} \left(\frac{d^{n-1} f(x)}{dx^{n-1}} \circ (a_1; \ldots; a_{n-1}) \right) \circ a_n
\]

derivative of order \(n\) of map \(f\).

We also assume \(\frac{d^0 f(x)}{dx^0} = f(x)\). □

4.2. Taylor Series

Let \(D\) be the complete commutative ring of characteristic 0. Let \(A\) be associative \(D\)-algebra. Let \(p_n(x)\) be the monomial of power \(n, n > 0\), in one variable over \(D\)-algebra \(A\). Let \(\overline{F}\) be basis of algebra \(\mathcal{L}(D; A \to A)\).

Theorem 4.2.1. For any \(m > 0\) the following equality is true

\[
\frac{d^m f(x) (F \circ x)}{dx^m} \circ (h_1; \ldots; h_m) = \frac{d^m f(x)}{dx^m} \circ (h_1; \ldots; h_m) (F \circ x)
\]

(4.2.1)

\[
+ \frac{d^{m-1} f(x)}{dx^{m-1}} \circ (\hat{h}_1; \ldots; h_{m-1}; h_m) (F \circ h_1) + \ldots
\]

\[
+ \frac{d^{m-1} f(x)}{dx^{m-1}} \circ (h_1; \ldots; h_{m-1}; \hat{h}_m) (F \circ h_m)
\]

where symbol \(\hat{h}^i\) means absense of variable \(h^i\) in the list.
Proof. For \(m = 1 \), this is corollary of the equality (3.3.25) and the theorem B.1.6
\[
\frac{df(x)(F \circ x)}{dx} \circ h_1 = \left(\frac{df(x)}{dx} \circ h_1 \right) (F \circ x) + f(x)(F \circ h_1)
\]
Assume, (4.2.1) is true for \(m - 1 \). Then
\[
\frac{d^{m-1}f(x)(F \circ x)}{dx^{m-1}} \circ (h_1; \ldots; h_{m-1}) = \frac{d^{m-1}f(x)}{dx^{m-1}} \circ (h_1; \ldots; h_{m-1})(F \circ x) \\
+ \frac{d^{m-2}f(x)}{dx^{m-2}} \circ (h_1; \ldots; h_{m-2}; h_{m-1})(F \circ h_1) + \ldots \\
+ \frac{d^{m-2}f(x)}{dx^{m-2}} \circ (h_1; \ldots; h_{m-2}; h_{m-1})(F \circ h_{m-1})
\]
Since \(\frac{dh_i}{dx} = 0 \), then, using the equality (3.3.25), we get
\[
\frac{d^m f(x)(F \circ x)}{dx^m} \circ (h_1; \ldots; h_{m-1}; h_m) \\
= \frac{d^m f(x)}{dx^m} \circ (h_1; \ldots; h_{m-1}; h_m)(F \circ x) \\
+ \frac{d^{m-1}f(x)}{dx^{m-1}} \circ (h_1; \ldots; h_{m-2}; h_{m-1})(F \circ h_m) \\
+ \frac{d^{m-1}f(x)}{dx^{m-1}} \circ (h_1; \ldots; h_{m-2}; h_{m-1}; h_m)(F \circ h_{m-1}) + \ldots \\
+ \frac{d^{m-1}f(x)}{dx^{m-1}} \circ (h_1; \ldots; h_{m-2}; h_{m-1}; h_m)(F \circ h_{m-1})
\]
The difference between equalities (4.2.1) and (4.2.2) is only in form of presentation. We proved the theorem. \(\square \)

Theorem 4.2.2. For any \(n \geq 0 \), the following equality is true
\[
\frac{d^{n+1}p_n(x)}{dx^{n+1}} = 0
\]
Proof. Since \(p_0(x) = a_0, a_0 \in D \), then for \(n = 0 \) theorem is corollary of definition 3.3.1. Let statement of theorem is true for \(n - 1 \). According to theorem 4.2.1, when \(f(x) = p_{n-1}(x) \), we get
\[
\frac{d^{n+1}p_n(x)}{dx^{n+1}} \circ (h_1; \ldots; h_{n+1}) = \frac{d^{n+1}p_{n-1}(x)(F \circ x)a_n}{dx^{n+1}} \circ (h_1; \ldots; h_{n+1}) \\
= \frac{d^{n+1}p_{n-1}(x)}{dx^{n+1}} \circ (h_1; \ldots; h_{n+1})(F \circ x)a_n \\
+ \frac{d^n p_{n-1}(x)}{dx^n} \circ (h_1; \ldots; h_n; h_{n+1})(F \circ h_1)a_n + \ldots \\
+ \frac{d^n p_{n-1}(x)}{dx^n} \circ (h_1; \ldots; h_n; h_{n+1})(F \circ h_{n+1})a_n
\]
According to suggestion of induction all monomials are equal 0. \(\square \)

Theorem 4.2.3. If \(m < n \), then the following equality is true
\[
\frac{d^m p_n(x)}{dx^m} \bigg|_{x=0} = 0
\]
4.2. Taylor Series

4.2.1

According to suggestion of induction. We proved the statement of theorem. Therefore, statement of theorem is true for any \(n \). This notation does not create ambiguity, because we can determine function according to number of arguments.

Assume that statement is true for \(n-1 \). Then according to theorem 4.2.1

\[
\frac{d^m p_{n-1}(x)}{dx^m} (F \circ x) a_n = \frac{d^m p_{n-1}(x)}{dx^m} (h_1; \ldots; h_m)
\]

\[
= \frac{d^m p_{n-1}(x)}{dx^m} (h_1; \ldots; h_m) (F \circ x) a_n
\]

\[
+ \frac{d^{m-1} p_{n-1}(x)}{dx^{m-1}} (h_1; \ldots; h_{m-1}; h_m) (F \circ h_1) a_n + \ldots
\]

\[
+ \frac{d^{m-1} p_{n-1}(x)}{dx^{m-1}} (h_1; \ldots; h_{m-1}; h_m) (F \circ h_m) a_n
\]

First term equal 0 because \(x = 0 \). Because \(m - 1 < n - 1 \), then rest terms equal 0 according to suggestion of induction. We proved the statement of theorem.

When \(h_1 = \ldots = h_n = h \), we assume

\[
\frac{d^n f(x)}{dx^n} h^n = \frac{d^n f(x)}{dx^n} (h_1; \ldots; h_n)
\]

This notation does not create ambiguity, because we can determine function according to number of arguments.

Theorem 4.2.4. For any \(n > 0 \), the following equality is true

\[
\frac{d^n p_n(x)}{dx^n} h^n = n! p_n(h)
\]

Proof. For \(n = 1 \), the following equality is true

\[
\frac{dp_1(x)}{dx} h = \frac{da_0(F \circ x) a_1}{dx} h = a_0 (F \circ h) a_1 = 1! p_1(h)
\]

Assume the statement is true for \(n - 1 \). Then according to theorem 4.2.1

\[
\frac{d^n p_n(x)}{dx^n} h^n = \left(\frac{d^n p_{n-1}(x)}{dx^n} h^n \right) (F \circ x) a_n
\]

\[
+ \left(\frac{d^{n-1} p_{n-1}(x)}{dx^{n-1}} h^{n-1} \right) (F \circ h) a_n
\]

\[
+ \ldots + \left(\frac{d^{m-1} p_{n-1}(x)}{dx^{m-1}} h^{n-1} \right) (F \circ h_m) a_n
\]

First term equal 0 according to theorem 4.2.2. The rest \(n \) terms equal, and according to suggestion of induction from the equality (4.2.3) it follows

\[
\frac{d^n p_n(x)}{dx^n} h = n \left(\frac{d^{n-1} p_{n-1}(x)}{dx^{n-1}} h \right) a_n = n(n-1)! p_{n-1}(h) h a_n = n! p_n(h)
\]

Therefore, statement of theorem is true for any \(n \).

Let \(p(x) \) be polynomial of power \(n \).

\[
p(x) = p_0 + p_{11}(x) + \ldots + p_{nn}(x)
\]

4.1 I consider Taylor polynomial for polynomials by analogy with construction of Taylor polynomial in [20], p. 246.
We assume sum by index \(k \) which enumerates terms of power \(k \). According to theorem 4.2.2, 4.2.3, 4.2.4

\[
\frac{d^k p(0)}{dx^k} \circ x = k! p_{ki}(x)
\]

Therefore, we can write

\[
p(x) = p_0 + 1 \cdot \frac{dp(0)}{dx} \circ x + 1 \cdot \frac{d^2 p(0)}{dx^2} \circ x^2 + ... + 1 \cdot \frac{d^n p(0)}{dx^n} \circ x^n
\]

This representation of polynomial is called Taylor polynomial. If we consider substitution of variable \(x = y - y_0 \), then considered above construction remain true for polynomial

\[
p(y) = p_0 + p_1 (y - y_0) + ... + p_n (y - y_0)^n
\]

Assume that function \(f(x) \) is differentiable at point \(x_0 \) up to any order.

Theorem 4.2.5. If function \(f(x) \) holds

\[
f(x_0) = \frac{df(x_0)}{dx} \circ h = ... = \frac{d^n f(x_0)}{dx^n} \circ h^n = 0
\]

then for \(t \to 0 \) expression \(f(x + th) \) is infinitesimal of order higher than \(n \) with respect to \(t \)

\[
f(x_0 + th) = o(t^n)
\]

Proof. When \(n = 1 \) this statement follows from the equality (3.3.4).

Let statement be true for \(n - 1 \). Map

\[
f_1(x) = \frac{df(x)}{dx} \circ h
\]

satisfies to condition

\[
f_1(x_0) = \frac{df_1(x)}{dx} \bigg|_{x=x_0} \circ h = ... = \frac{d^{n-1} f_1(x)}{dx^{n-1}} \bigg|_{x=x_0} \circ h^{n-1} = 0
\]

According to suggestion of induction

\[
f_1(x_0 + th) = o(t^{n-1})
\]

Then the equality (3.3.2) gets form

\[
o(t^{n-1}) = \lim_{t \to 0, t \in R} (t^{-1} f(x + th))
\]

Therefore,

\[
f(x + th) = o(t^n)
\]

\[\blacktriangleleft\]

Let us form polynomial

\[
p(x) = f(x_0) + 1 \cdot \frac{df(x_0)}{dx} \circ (x - x_0) + ... + 1 \cdot \frac{d^n f(x_0)}{dx^n} \circ (x - x_0)^n
\]

\[4.2\] explore construction of Taylor series by analogy with construction of Taylor series in [25], p. 248, 249.
According to theorem 4.2.5
\[f(x_0 + t(x - x_0)) - p(x_0 + t(x - x_0)) = o(t^n) \]

Therefore, polynomial \(p(x) \) is good approximation of map \(f(x) \).

If the map \(f(x) \) has the derivative of any order, then passing to the limit \(n \to \infty \), we get expansion into series
\[
f(x) = \sum_{n=0}^{\infty} \frac{(n)!}{n!} \frac{d^n f(x_0)}{dx^n} \circ (x - x_0)^n
\]
which is called Taylor series.
CHAPTER 5

Method of Successive Differentiation

5.1. Indefinite Integral

Definition 5.1.1. Let A be Banach D-module. Let B be Banach D-algebra. The map

$$ g : A \rightarrow B \otimes B $$

is called integrable, if there exists a map

$$ f : A \rightarrow B $$

such that

$$ \frac{df(x)}{dx} = g(x) $$

Then we use notation

$$ f(x) = \int g(x) \circ dx $$

and the map f is called indefinite integral of the map g. □

In this section we consider integration as operation inverse to differentiation. As a matter of fact, we consider procedure of solution of ordinary differential equation

$$ \frac{df(x)}{dx} = g(x) $$

Example 5.1.2. We consider method of successive differentiation to solve differential equation

(5.1.1) \hspace{1cm} y' = 3x^2

(5.1.2) \hspace{1cm} x_0 = 0 \quad y_0 = C

over real field. Differentiating one after another equation (5.1.1), we get the chain of equations

(5.1.3) \hspace{1cm} \begin{cases} y'' = 6x \\ y''' = 6 \\ y^{(n)} = 0 \quad n > 3 \end{cases}

The expansion into Taylor series

$$ y = x^3 + C $$

follows from equations (5.1.1), (5.1.2), (5.1.3). □
THEOREM 5.1.3. Let A be Banach algebra over commutative ring D.

\begin{equation}
\int (1 \otimes x^2 + x \otimes x + x^2 \otimes 1) \circ dx = x^3 + C
\end{equation}

where C is any A-number.

Proof. According to the definition 5.1.1, the map y is integral (5.1.4), when the map y satisfies to differential equation

\begin{equation} \frac{dy}{dx} = 1 \otimes x^2 + x \otimes x + x^2 \otimes 1 \end{equation}

and initial condition

\begin{equation} x_0 = 0 \quad y_0 = C \end{equation}

We use the method of successive differentiation to solve the differential equation (5.1.5). Successively differentiating equation (5.1.5), we get the chain of equations

\begin{align}
\frac{d^2y}{dx^2} &= 1 \otimes 1 \otimes 2 x + 1 \otimes 1 x \otimes 2 1 + 1 \otimes 2 1 \otimes 1 x \\
&\quad + x \otimes 1 \otimes 2 1 + 1 \otimes 2 x \otimes 1 1 + x \otimes 2 1 \otimes 1 1 \\
\frac{d^3y}{dx^3} &= 1 \otimes 1 \otimes 2 1 \otimes 3 1 + 1 \otimes 1 \otimes 3 1 \otimes 2 1 + 1 \otimes 2 1 \otimes 1 1 \otimes 3 1 \\
&\quad + 1 \otimes 3 1 \otimes 1 \otimes 2 1 + 1 \otimes 2 1 \otimes 3 1 \otimes 1 1 + 1 \otimes 3 1 \otimes 2 1 \otimes 1 1 \\
\frac{d^n y}{dx^n} &= 0 \quad n > 3
\end{align}

The expansion into Taylor series

\begin{equation}
y = x^3 + C
\end{equation}

follows from equations (5.1.5), (5.1.6), (5.1.7), (5.1.8), (5.1.9). The equality (5.1.4) follows from (5.1.5), (5.1.6), (5.1.10). \qed

Remark 5.1.4. According to the definition (2.5.5), we can present integral (5.1.4) following way

\begin{equation}
\int dx x^2 + x dx x + x^2 dx = x^3 + C
\end{equation}

Remark 5.1.5. In the proof of the theorem 5.1.3, I use notation like following

\[(a_1 \otimes b_1 \otimes c_1 + a_2 \otimes b_2 \otimes c_2) \circ (x_1, x_2) = a_1 x_1 b_1 x_2 c_1 + a_2 x_2 b_2 x_1 c_2 \]

I will write following equalities to show how derivative works.

\[
\frac{dy}{dx} \circ h = hx^2 + xhx + x^2 h
\]

\[
\frac{d^2y}{dx^2} \circ (h_1; h_2) = h_1 h_2 x + h_1 x h_2 + h_2 h_1 x \\
\quad + x h_1 h_2 + h_2 x h_1 + x h_2 h_1
\]

\[
\frac{d^3y}{dx^3} \circ (h_1; h_2; h_3) = h_1 h_2 h_3 + h_1 h_3 h_2 + h_2 h_1 h_3 \\
\quad + h_3 h_1 h_2 + h_2 h_3 h_1 + h_3 h_2 h_1
\]

\qed
5. Method of Successive Differentiation

Remark 5.1.6. Differential equation

\[\frac{dy}{dx} = 3 \otimes x^2 \]

\[x_0 = 0 \quad y_0 = C \]

also leads to answer \(y = x^3 \). It is evident that map \(y = x^3 \) does not satisfies differential equation (5.1.12). This means that differential equation (5.1.12) does not possess a solution.

I advise you to pay attention that second derivative is not symmetric polynomial (see Taylor expansion).

\[\square \]

5.2. Exponent

In a field we can define exponent as solution of differential equation

\[y' = y \]

It is evident that we cannot write such equation for division ring. However we can write the equation (5.2.1) as follows

\[\frac{dy}{dx} \diamond h = yh \]

This equation is closer to our goal, however there is the question: in which order we should multiply \(y \) and \(h \)? To answer this question we change format of the equation (5.2.2)

\[\frac{dy}{dx} \diamond h = \frac{1}{2} (yh + hy) \]

Hence, our goal is to solve differential equation (5.2.3) with initial condition

\[y(0) = 1 \]

Definition 5.2.1. For \(n \geq 0 \), let \(SE(n) \) be set of permutations

\[\sigma = \begin{pmatrix} y & h_1 & \ldots & h_n \\ \sigma(y) & \sigma(h_1) & \ldots & \sigma(h_n) \end{pmatrix} \]

such that each permutation \(\sigma \) has following properties

5.2.1.1: If there exist \(i, j, i \neq j \), such that \(\sigma(h_i) \) is situated in product

\[\sigma(y)\sigma(h_1)\ldots\sigma(h_n) \]

on the left side of \(\sigma(h_j) \) and \(\sigma(h_j) \) is situated on the left side of \(\sigma(y) \), then

\[i < j. \]

5.2.1.2: If there exist \(i, j, i \neq j \), such that \(\sigma(h_i) \) is situated in product

\[\sigma(y)\sigma(h_1)\ldots\sigma(h_n) \]

on the right side of \(\sigma(h_j) \) and \(\sigma(h_j) \) is situated on the right side of \(\sigma(y) \), then

\[i > j. \]

\[\square \]
Lemma 5.2.2. For \(n \geq 0 \), for any permutation \(\tau \in SE(n+1) \), there exists unique permutation \(\sigma \in SE(n) \) such that either
\[
\tau(y)\tau(h_1)\ldots\tau(h_{n+1}) = \sigma(h_{n+1})y\sigma(h_1)\ldots\sigma(h_n)
\]
or
\[
\tau(y)\tau(h_1)\ldots\tau(h_{n+1}) = \sigma(yh_{n+1})\sigma(h_1)\ldots\sigma(h_n)
\]
Proof. Consider product
\[
\tau(y)\tau(h_1)\ldots\tau(h_{n+1})
\]
Since \(n + 1 \) is largest index then, according to conditions 5.2.1.1, 5.2.1.2, \(\tau(h_{n+1}) \) is written either immediately before or immediately after \(\tau(y) \). Therefore, product (5.2.6) has either form (5.2.4) or (5.2.5). Therefore for any permutation \(\tau \in SE(n+1) \), there exists corresponding permutation \(\sigma \in SE(n) \). □

Lemma 5.2.3. For \(n \geq 0 \), for any permutation \(\sigma \in SE(n) \), there exists unique permutation \(\tau \in SE(n+1) \) such that
\[
\tau(y)\tau(h_1)\ldots\tau(h_{n+1}) = \sigma(h_{n+1})y\sigma(h_1)\ldots\sigma(h_n)
\]
Proof. Consider permutation
\[
\sigma = \left(\begin{array}{ccc}
h_{n+1}y & h_1 & \ldots & h_n \\
\sigma(h_{n+1})y & \sigma(h_1) & \ldots & \sigma(h_n) \\
\end{array} \right) \in SE(n)
\]
To write down permutation
\[
\tau = \left(\begin{array}{ccc}
y & h_1 & \ldots & h_{n+1} \\
\tau(y) & \tau(h_1) & \ldots & \tau(h_{n+1}) \\
\end{array} \right)
\]
which satisfies (5.2.7), we write down the tuple
\[
(y \ h_1 \ldots \ h_n \ h_{n+1})
\]
instead of the top tuple
\[
(h_{n+1}y \ h_1 \ldots \ h_n)
\]
and write down the tuple
\[
(\ldots \ h_{n+1} \ y \ \ldots)
\]
instead of the down tuple
\[
(\ldots \ h_{n+1}y \ \ldots)
\]
In expression \(\tau(y)\tau(h_1)\ldots\tau(h_{n+1}) \), \(h_{n+1} \) is written immediately before \(y \). Since \(n + 1 \) is the largest value of index, then permutation \(\tau \in S(n+1) \). □

Lemma 5.2.4. For \(n \geq 0 \), for any permutation \(\sigma \in SE(n) \), there exists unique permutation \(\tau \in SE(n+1) \) such that
\[
\tau(y)\tau(h_1)\ldots\tau(h_{n+1}) = \sigma(yh_{n+1})\sigma(h_1)\ldots\sigma(h_n)
\]
Proof. Consider permutation
\[
\sigma = \begin{pmatrix} yh_{n+1} & h_1 & \ldots & h_n \\ \sigma(yh_{n+1}) & \sigma(h_1) & \ldots & \sigma(h_n) \end{pmatrix} \in SE(n)
\]
To write down permutation
\[
\tau = \begin{pmatrix} y & h_1 & \ldots & h_{n+1} \\ \tau(y) & \tau(h_1) & \ldots & \tau(h_{n+1}) \end{pmatrix}
\]
which satisfies (5.2.8), we write down the tuple
\[
(y \ h_1 \ \ldots \ h_n \ h_{n+1})
\]
instead of the top tuple
\[
(yh_{n+1} \ h_1 \ \ldots \ h_n)
\]
and write down the tuple
\[
(\ldots \ y \ h_{n+1} \ \ldots)
\]
instead of the down tuple
\[
(\ldots \ yh_{n+1} \ \ldots)
\]
In expression
\[
\tau(y)\tau(h_1)\ldots\tau(h_{n+1})
\]
h_{n+1} is written immediately after y. Since n + 1 is the largest value of index, then permutation \(\tau \in S(n+1)\).

Theorem 5.2.5.
\[
\sum_{\sigma \in SE(n)} \sigma(h_{n+1}y)\sigma(h_1)\ldots\sigma(h_n) + \sum_{\sigma \in SE(n)} \sigma(yh_{n+1})\sigma(h_1)\ldots\sigma(h_n)
\]
\[
= \sum_{\tau \in SE(n+1)} \tau(y)\tau(h_1)\ldots\tau(h_{n+1})
\]
Proof. The theorem follows from lemmas 5.2.2, 5.2.3, 5.2.4.

Theorem 5.2.6. If a map \(y\) is solution of differential equation (5.2.3) then the derivative of order \(n\) of function \(y\) has form
\[
\frac{d^n y}{dx^n} \circ (h_1, \ldots, h_n) = \frac{1}{2^n} \sum_{\sigma \in SE(n)} \sigma(y)\sigma(h_1)\ldots\sigma(h_n)
\]
Proof. We prove this statement by induction. For \(n = 0\), this statement is true because this is the statement \(y = y\). For \(n = 1\), the statement is true because this is differential equation (5.2.3). Let the statement be true for \(n = k - 1\). Hence
\[
\frac{d^{k-1} y}{dx^{k-1}} \circ (h_1, \ldots, h_{k-1}) = \frac{1}{2^{k-1}} \sum_{\sigma \in S(k-1)} \sigma(y)\sigma(h_1)\ldots\sigma(h_{k-1})
\]
According to the definition (4.1.5), the derivative of order \(k \) has form
\[
\frac{d^k y}{dx^k} \circ (h_1, ..., h_k) = \frac{d}{dx} \left(\frac{d^{k-1} y}{dx^{k-1}} \circ (h_1, ..., h_{k-1}) \right) \circ h_k
\]
(5.2.11)
\[= \frac{1}{2^{k-1}} \frac{d}{dx} \left(\sum_{\sigma \in S(k-1)} \sigma(y)\sigma(h_1)\ldots\sigma(h_{k-1}) \right) \circ h_k \]
From equalities (5.2.3), (5.2.11) it follows that
\[
\frac{d^k y}{dx^k} \circ (h_1, ..., h_k) = \frac{1}{2^{k-1}} \frac{1}{2} \left(\sum_{\sigma \in S(k-1)} \sigma(yh_k)\sigma(h_1)\ldots\sigma(h_{k-1}) \right)
+ \sum_{\sigma \in S(k-1)} \sigma(h_ky)\sigma(h_1)\ldots\sigma(h_{k-1}) \right)
\]
(5.2.12)
From equalities (5.2.9), (5.2.12), it follows that the statement of theorem is true for \(n = k \). We proved the theorem.

Theorem 5.2.7. The solution of differential equation (5.2.3) with initial condition \(y(0) = 1 \) is exponent \(y = e^x \) that has following Taylor series expansion
\[
e^x = \sum_{n=0}^{\infty} \frac{1}{n!} x^n
\]
(5.2.13)
Proof. The derivative of order \(n \) has \(2^n \) items. In fact, the derivative of order 1 has 2 items, and each differentiation increase number of items twice. From initial condition \(y(0) = 1 \) and theorem 5.2.6, it follows that the derivative of order \(n \) of required solution has form
\[
\frac{d^ny}{dx^n} \bigg|_{x=0} \circ (h, ..., h) = h^n
\]
(5.2.14)
Taylor series expansion (5.2.13) follows from (5.2.14).

Theorem 5.2.8. The equality
\[
e^{a+b} = e^a e^b
\]
is true iff
\[
ab = ba
\]
(5.2.16)
Proof. To prove the theorem it is enough to consider Taylor series
\[
e^a = \sum_{n=0}^{\infty} \frac{1}{n!} a^n
\]
(5.2.17)
\[
e^b = \sum_{n=0}^{\infty} \frac{1}{n!} b^n
\]
(5.2.18)
\[
e^{a+b} = \sum_{n=0}^{\infty} \frac{1}{n!} (a + b)^n
\]
(5.2.19)
Let us multiply expressions (5.2.17) and (5.2.18). The sum of monomials of order 3 has form

\[\frac{1}{6}a^3 + \frac{1}{2}a^2b + \frac{1}{2}ab^2 + \frac{1}{6}b^3 \]

and in general does not equal expression

\[\frac{1}{6}(a+b)^3 = \frac{1}{6}a^3 + \frac{1}{6}a^2b + \frac{1}{6}aba + \frac{1}{6}ab^2 + \frac{1}{6}b^2a + \frac{1}{6}b^3 \]

The proof of statement that (5.2.15) follows from (5.2.16) is trivial. □

5.3. Hyperbolic Trigonometry

To introduce hyperbolic sine

\[y_1 = \sinh x \]

and hyperbolic cosine

\[y_2 = \cosh x \]

we consider system of differential equations over real field

\[\frac{dy_1}{dx} = y_2 \]
\[\frac{dy_2}{dx} = y_1 \]

and initial conditions

\[x = 0 \quad y_1 = 0 \quad y_2 = 1 \]

The system of differential equations (5.3.1), (5.3.2) is equivalent to differential equations

\[\frac{d^2y_1}{dx^2} = y_1 \]
\[x = 0 \quad y_1 = 0 \quad \frac{dy_1}{dx} = 1 \]
\[\frac{d^2y_2}{dx^2} = y_2 \]
\[x = 0 \quad y_2 = 1 \quad \frac{dy_2}{dx} = 0 \]

In Banach D-algebra A, we write system of differential equations (5.3.1), (5.3.2) in the form similar to differential equation (5.2.3)

\[\frac{dy_1}{dx} = \frac{1}{2}(y_2 \otimes 1 + 1 \otimes y_2) \]
\[\frac{dy_2}{dx} = \frac{1}{2}(y_1 \otimes 1 + 1 \otimes y_1) \]
\[x = 0 \quad y_1 = 0 \quad y_2 = 1 \]
Theorem 5.3.1. If maps y_1, y_2 are solution of system of differential equations (5.3.5) then the derivatives of order n of maps y_1, y_2 have form

$$
\frac{d^n y_1}{dx^n} \circ (h_1, \ldots, h_n) = \frac{1}{2^n} \sum_{\sigma \in SE(n)} \sigma(y_1) \sigma(h_1) \ldots \sigma(h_n)
$$

(5.3.6)

$$
\frac{d^n y_2}{dx^n} \circ (h_1, \ldots, h_n) = \frac{1}{2^n} \sum_{\sigma \in SE(n)} \sigma(y_2) \sigma(h_1) \ldots \sigma(h_n)
$$

(5.3.7)

Proof. We prove this statement by induction. For $n = 0$, this statement is true because this is the statement $y_1 = y_1$, $y_2 = y_2$. For $n = 1$ the statement is true because this is system of differential equations (5.3.5). Let the statement be true for $n = k - 1$. Hence

$$
\frac{d^{k-1} y_1}{dx^{k-1}} \circ (h_1, \ldots, h_{k-1}) = \frac{1}{2^{k-1}} \sum_{\sigma \in S(k-1)} \sigma(y_1) \sigma(h_1) \ldots \sigma(h_{k-1})
$$

where $i = 1, 2$ and

$$(k - 1 = 2m \Rightarrow j = i)
$$

$$(k - 1 = 2m - 1 \Rightarrow j = 2 - i)
$$

According to the definition (4.1.5), the derivative of order k has form

$$
\frac{d^k y_i}{dx^k} \circ (h_1, \ldots, h_k) = \frac{d}{dx} \left(\frac{d^{k-1} y_i}{dx^{k-1}} \circ (h_1, \ldots, h_{k-1}) \right) \circ h_k
$$

(5.3.8)

$$
= \frac{1}{2^{k-1}} \frac{d}{dx} \left(\sum_{\sigma \in S(k-1)} \sigma(y_j) \sigma(h_1) \ldots \sigma(h_{k-1}) \right) \circ h_k
$$

From (5.3.5), (5.3.8), it follows that

$$
\frac{d^k y_i}{dx^k} \circ (h_1, \ldots, h_k) = \frac{1}{2^{k-1}} \frac{1}{2} \left(\sum_{\sigma \in S(k-1)} \sigma(y_i h_k) \sigma(h_1) \ldots \sigma(h_{k-1})
$$

(5.3.9)

$$
+ \sum_{\sigma \in S(k-1)} \sigma(h_k y_i) \sigma(h_1) \ldots \sigma(h_{k-1}) \right)
$$

where

(5.3.10)

$$
l = 2 - j
$$

From (5.3.7), (5.3.10), it follows that

$$(k = 2m + 1 \Rightarrow l = 2 - i)
$$

(5.3.11)

$$
(k = 2m \Rightarrow l = i)
$$

From (5.2.9), (5.3.9), it follows that the statement of theorem is true for $n = k$. We proved the theorem. \hfill \Box
Theorem 5.3.2. The solution of system of differential equations (5.3.5) with initial condition
\[(5.3.12) \quad x = 0 \quad y_1 = 0 \quad y_2 = 1\]
is the tuple of maps
- **hyperbolic sine** \(y_1 = \sinh x\) that has following Taylor series expansion
\[(5.3.13) \quad \sinh x = \sum_{n=0}^{\infty} \frac{1}{(2n+1)!} x^{2n+1}\]
- **hyperbolic cosine** \(y_2 = \cosh x\) that has following Taylor series expansion
\[(5.3.14) \quad \cosh x = \sum_{n=0}^{\infty} \frac{1}{(2n)!} x^{2n}\]

Proof. The derivative of order \(n\) has \(2^n\) items. In fact, the derivative of order 1 has 2 items, and each differentiation increase number of items twice. From initial condition (5.3.12) and from the equality (5.3.6), it follows that the derivative of order \(n\) of required solution has form
\[(5.3.15) \quad n = 2k \quad \frac{d^n y_1}{dx^n} \bigg|_{x=0} \circ (h_1, \ldots, h_n) = 0 \quad \frac{d^n y_2}{dx^n} \bigg|_{x=0} \circ (h_1, \ldots, h_n) = h^n \]
\[n = 2k + 1 \quad \frac{d^n y_1}{dx^n} \bigg|_{x=0} \circ (h_1, \ldots, h_n) = h^n \quad \frac{d^n y_2}{dx^n} \bigg|_{x=0} \circ (h_1, \ldots, h_n) = 0 \]
Taylor series expansions (5.3.13), (5.3.14) follow from (5.3.15). \(\square\)

Theorem 5.3.3. The system of differential equations
\[(5.3.16) \quad \frac{dy_1}{dx} = \frac{1}{2}(y_2 \otimes 1 + 1 \otimes y_2)\]
\[(5.3.17) \quad \frac{dy_2}{dx} = \frac{1}{2}(y_1 \otimes 1 + 1 \otimes y_1)\]
is equivalent to the differential equation
\[(5.3.18) \quad \frac{d^2 y}{dx^2} = \frac{1}{4}(y \otimes 1 \otimes 1 + 2 \otimes 1 \otimes y \otimes 1 + 1 \otimes 1 \otimes y) = 0\]

Proof. From the differential equation (5.3.16), it follows that
\[(5.3.19) \quad \frac{d^2 y_1}{dx^2} = \frac{1}{2} \left(\frac{dy_2}{dx} \otimes 1 + 1 \otimes \frac{dy_2}{dx} \right)\]
From (5.3.17), (5.3.19), it follows that
\[(5.3.20) \quad \frac{d^2 y_1}{dx^2} = \frac{1}{2} \left(\frac{1}{2}(y_1 \otimes 1 + 1 \otimes y_1) \otimes 1 + 1 \otimes \frac{1}{2}(y_1 \otimes 1 + 1 \otimes y_1) \right)\]
The differential equation (5.3.18) follows from (5.3.20). \(\square\)
5.4. Elliptical Trigonometry

To introduce sine
\[y_1 = \sin x \]
and cosine
\[y_2 = \cos x \]
we consider system of differential equations over real field
\[
\begin{align*}
\frac{dy_1}{dx} &= y_2 \\
\frac{dy_2}{dx} &= -y_1
\end{align*}
\]
(5.4.1)
and initial conditions
\[
\begin{align*}
x &= 0 & y_1 &= 0 & y_2 &= 1
\end{align*}
\]
(5.4.2)

The system of differential equations (5.4.1), (5.4.2) is equivalent to differential equations
\[
\begin{align*}
\frac{d^2 y_1}{dx^2} &= -y_1 \\
x &= 0 & y_1 &= 0 & \frac{dy_1}{dx} &= 1
\end{align*}
\]
(5.4.3)
\[
\begin{align*}
\frac{d^2 y_2}{dx^2} &= -y_2 \\
x &= 0 & y_2 &= 1 & \frac{dy_2}{dx} &= 0
\end{align*}
\]
(5.4.4)

In Banach D-algebra A, we write system of differential equations (5.4.1), (5.4.2) in the form similar to differential equation (5.2.3)
\[
\begin{align*}
\frac{dy_1}{dx} &= \frac{1}{2}(y_2 \otimes 1 + 1 \otimes y_2) \\
\frac{dy_2}{dx} &= -\frac{1}{2}(y_1 \otimes 1 + 1 \otimes y_1) \\
x &= 0 & y_1 &= 0 & y_2 &= 1
\end{align*}
\]
(5.4.5)

Theorem 5.4.1. If maps \(y_1, y_2 \) are solution of system of differential equations (5.4.5) then the derivatives of order \(n \) of function \(y \) have form

- \(n = 2k \)
 \[
 \frac{d^n y_1}{dx^n} \circ (h_1, ..., h_n) = \frac{(-1)^k}{2^n} \sum_{\sigma \in SE(n)} \sigma(y_1)\sigma(h_1)\ldots\sigma(h_n)
 \]
 (5.4.6)
 \[
 \frac{d^n y_2}{dx^n} \circ (h_1, ..., h_n) = \frac{(-1)^k}{2^n} \sum_{\sigma \in SE(n)} \sigma(y_2)\sigma(h_1)\ldots\sigma(h_n)
 \]
- \(n = 2k + 1 \)
 \[
 \frac{d^n y_1}{dx^n} \circ (h_1, ..., h_n) = \frac{(-1)^k}{2^n} \sum_{\sigma \in SE(n)} \sigma(y_2)\sigma(h_1)\ldots\sigma(h_n)
 \]
 (5.4.7)
 \[
 \frac{d^n y_2}{dx^n} \circ (h_1, ..., h_n) = -\frac{(-1)^k}{2^n} \sum_{\sigma \in SE(n)} \sigma(y_1)\sigma(h_1)\ldots\sigma(h_n)
 \]
5. Method of Successive Differentiation

Proof. We prove this statement by induction. For $k = 0$, this statement is true:

- Since $n = 2k$, then this is the statement $y_1 = y_1, y_2 = y_2$.
- Since $n = 2k + 1$, then the statement follows from the system of differential equations (5.4.5).

Let the statement be true for $k = l - 1$. Hence, for $n = 2k + 1,$

\[\frac{d^n y_1}{dx^n} \circ (h_1, ..., h_n) = \frac{(-1)^{l-1}}{2^n} \sum_{\sigma \in SE(n)} \sigma(y_2)\sigma(h_1)\ldots\sigma(h_n) \] (5.4.8)

\[\frac{d^n y_2}{dx^n} \circ (h_1, ..., h_n) = -\frac{(-1)^{l-1}}{2^n} \sum_{\sigma \in SE(n)} \sigma(y_1)\sigma(h_1)\ldots\sigma(h_n) \] (5.4.9)

According to the definition (4.1.5), from (5.4.8), (5.4.9), it follows that the derivatives of order $m = n + 1$ have form

\[\frac{d^m y_1}{dx^m} \circ (h_1, ..., h_m) = \frac{d}{dx} \left(\frac{d^n y_1}{dx^n} \circ (h_1, ..., h_n) \right) \circ h_m \] (5.4.10)

\[= \frac{(-1)^{l-1}}{2^n} \frac{d}{dx} \left(\sum_{\sigma \in SE(n)} \sigma(y_2)\sigma(h_1)\ldots\sigma(h_n) \right) \circ h_m \]

\[\frac{d^m y_2}{dx^m} \circ (h_1, ..., h_m) = \frac{d}{dx} \left(\frac{d^n y_2}{dx^n} \circ (h_1, ..., h_n) \right) \circ h_m \] (5.4.11)

\[= -\frac{(-1)^{l-1}}{2^n} \frac{d}{dx} \left(\sum_{\sigma \in SE(n)} \sigma(y_1)\sigma(h_1)\ldots\sigma(h_n) \right) \circ h_m \]

From (5.4.5), (5.4.10), (5.4.11), it follows that

\[\frac{d^m y_1}{dx^m} \circ (h_1, ..., h_m) = -\frac{(-1)^{l-1}}{2^n} \frac{1}{2} \]

\[\star \left(\sum_{\sigma \in SE(n)} \sigma(y_1 h_m)\sigma(h_1)\ldots\sigma(h_n) + \sum_{\sigma \in SE(n)} \sigma(h_m y_1)\sigma(h_1)\ldots\sigma(h_n) \right) \]

\[= \frac{(-1)^l}{2^m} \]

\[\star \left(\sum_{\sigma \in SE(n)} \sigma(y_1 h_m)\sigma(h_1)\ldots\sigma(h_n) + \sum_{\sigma \in SE(n)} \sigma(h_m y_1)\sigma(h_1)\ldots\sigma(h_n) \right) \]

\[\frac{d^m y_2}{dx^m} \circ (h_1, ..., h_m) = -\frac{(-1)^{l-1}}{2^n} \frac{1}{2} \]

\[\star \left(\sum_{\sigma \in SE(n)} \sigma(y_2 h_m)\sigma(h_1)\ldots\sigma(h_n) + \sum_{\sigma \in SE(n)} \sigma(h_m y_2)\sigma(h_1)\ldots\sigma(h_n) \right) \]

\[= \frac{(-1)^l}{2^m} \]

\[\star \left(\sum_{\sigma \in SE(n)} \sigma(y_2 h_m)\sigma(h_1)\ldots\sigma(h_n) + \sum_{\sigma \in SE(n)} \sigma(h_m y_2)\sigma(h_1)\ldots\sigma(h_n) \right) \] (5.4.13)
From (5.2.9), (5.4.12), (5.4.13), it follows that
\[
\frac{d^m y_1}{dx^m} \circ (h_1, \ldots, h_m) = \frac{(-1)^l}{2^n} \sum_{\tau \in S(m)} \tau(y_1)\tau(h_1)\ldots\tau(h_m)
\]
\[
\frac{d^m y_2}{dx^m} \circ (h_1, \ldots, h_m) = \frac{(-1)^l}{2^n} \sum_{\tau \in S(m)} \tau(y_2h_m)\tau(h_1)\ldots\tau(h_m)
\]

Since
\[m = n + 1 = 2k + 1 + 1 = 2(l - 1) + 2 = 2l\]
then equalities (5.4.6) are true for \(k = l, n = 2k\).

According to the definition (4.1.5), from (5.4.6), it follows that the derivatives of order \(m = n + 1\) have form
\[
\frac{d^m y_1}{dx^m} \circ (h_1, \ldots, h_m) = \frac{d}{dx} \left(\frac{d^n y_1}{dx^n} \circ (h_1, \ldots, h_n) \right) \circ h_m
\]
(5.4.14)
\[
= \frac{(-1)^k}{2^n} \frac{d}{dx} \left(\sum_{\sigma \in SE(n)} \sigma(y_1)\sigma(h_1)\ldots\sigma(h_n) \right) \circ h_m
\]
\[
\frac{d^m y_2}{dx^m} \circ (h_1, \ldots, h_m) = \frac{d}{dx} \left(\frac{d^n y_2}{dx^n} \circ (h_1, \ldots, h_n) \right) \circ h_m
\]
(5.4.15)
\[
= \frac{(-1)^k}{2^n} \frac{d}{dx} \left(\sum_{\sigma \in SE(n)} \sigma(y_2)\sigma(h_1)\ldots\sigma(h_n) \right) \circ h_m
\]

From (5.4.5), (5.4.14), (5.4.15), it follows that
\[
\frac{d^m y_1}{dx^m} \circ (h_1, \ldots, h_m) = \frac{(-1)^k}{2^n} \frac{1}{2}
\]
\[
\ast \left(\sum_{\sigma \in SE(n)} \sigma(y_2h_m)\sigma(h_1)\ldots\sigma(h_n) + \sum_{\sigma \in SE(n)} \sigma(h_my_2)\sigma(h_1)\ldots\sigma(h_n) \right)
\]
(5.4.16)
\[
= \frac{(-1)^k}{2^n}
\]
\[
\ast \left(\sum_{\sigma \in SE(n)} \sigma(y_2h_m)\sigma(h_1)\ldots\sigma(h_n) + \sum_{\sigma \in SE(n)} \sigma(h_my_2)\sigma(h_1)\ldots\sigma(h_n) \right)
\]
\[
\frac{d^m y_2}{dx^m} \circ (h_1, \ldots, h_m) = \frac{(-1)^k}{2^n} \frac{1}{2}
\]
\[
\ast \left(\sum_{\sigma \in SE(n)} \sigma(y_1h_m)\sigma(h_1)\ldots\sigma(h_n) + \sum_{\sigma \in SE(n)} \sigma(h_my_1)\sigma(h_1)\ldots\sigma(h_n) \right)
\]
(5.4.17)
\[
= \frac{(-1)^k}{2^n}
\]
\[
\ast \left(\sum_{\sigma \in SE(n)} \sigma(y_1h_m)\sigma(h_1)\ldots\sigma(h_n) + \sum_{\sigma \in SE(n)} \sigma(h_my_1)\sigma(h_1)\ldots\sigma(h_n) \right)
\]

Since
\[m = n + 1 = 2k + 1\]
then equalities (5.4.7) follow from (5.2.9), (5.4.16), (5.4.17). (5.4.6) for \(k = l \), \(n = 2k + 1 \).

We proved the theorem. \(\square\)

Theorem 5.4.2. The solution of system of differential equations (5.4.5) with initial condition

\[
x = 0 \quad y_1 = 0 \quad y_2 = 1
\]

is the tuple of maps

- **sine** \(y_1 = \sin x \) that has following Taylor series expansion

\[
\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}
\]

- **cosine** \(y_2 = \cos x \) that has following Taylor series expansion

\[
\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}
\]

Proof. The derivative of order \(n \) has \(2^n \) items. In fact, the derivative of order 1 has 2 items, and each differentiation increase number of items twice. From initial condition (5.4.18) and from equalities (5.4.6), (5.4.7), it follows that the derivative of order \(n \) of required solution has form

\[
\begin{align*}
\frac{d^n y_1}{dx^n} \bigg|_{x=0} \circ (h_1, \ldots, h_n) &= 0 \\
\frac{d^n y_2}{dx^n} \bigg|_{x=0} \circ (h_1, \ldots, h_n) &= (-1)^k h^n \\
\end{align*}
\]

\[
\begin{align*}
\frac{d^n y_1}{dx^n} \bigg|_{x=0} \circ (h_1, \ldots, h_n) &= (-1)^k h^n \\
\frac{d^n y_2}{dx^n} \bigg|_{x=0} \circ (h_1, \ldots, h_n) &= 0
\end{align*}
\]

Taylor series expansions (5.4.19), (5.4.20) follow from (5.4.21), (5.4.22). \(\square\)

Theorem 5.4.3. The system of differential equations

\[
\begin{align*}
\frac{dy_1}{dx} &= \frac{1}{2} (y_2 \otimes 1 + 1 \otimes y_2) \\
\frac{dy_2}{dx} &= -\frac{1}{2} (y_1 \otimes 1 + 1 \otimes y_1)
\end{align*}
\]

is equivalent to the differential equation

\[
\frac{d^2 y}{dx^2} + \frac{1}{4} (y \otimes 1 \otimes 1 + 2 1 \otimes y \otimes 1 + \otimes 1 \otimes 1 \otimes y) = 0
\]

Proof. From the differential equation (5.4.23), it follows that

\[
\begin{align*}
\frac{d^2 y_1}{dx^2} &= \frac{1}{2} \left(\frac{dy_2}{dx} \otimes 1 + 1 \otimes \frac{dy_2}{dx} \right)
\end{align*}
\]

From (5.4.24), (5.4.26), it follows that

\[
\begin{align*}
\frac{d^2 y_1}{dx^2} &= -\frac{1}{2} \left(\frac{1}{2} (y_1 \otimes 1 + 1 \otimes y_1) \otimes 1 + 1 \otimes \frac{1}{2} (y_1 \otimes 1 + 1 \otimes y_1) \right)
\end{align*}
\]

The differential equation (5.4.25) follows from (5.4.27). \(\square\)
CHAPTER 6

Lebesgue Integral

I decided to consider theorems 6.1.1, 6.2.1 in isolated chapter, because I believe that these theorems are very important. It is important to note that theorems 6.1.1, 6.2.1 provide an alternative method for solving differential equation

$$\frac{df(x)}{dx} = g(x)$$

6.1. Lebesgue Integral along Linear Path

Theorem 6.1.1. Let A be Banach D-module. Let B be Banach D-algebra. Let $g : A \rightarrow B \otimes B$ be integrable map

$$f(x) = \int g(x) \circ dx$$

and $\|g\| = G < \infty$. For any A-numbers a, x, let

$$\gamma : [0, 1] \subset \mathbb{R} \rightarrow A$$

be linear path in D-algebra A

$$y = \gamma(t) = a + t(x - a)$$

Then

$$\int_{\gamma} g(y) \circ dy = \int_{0}^{1} dt \left(g(\gamma(t)) \circ \frac{d\gamma(t)}{dt}\right) = f(x) - f(a)$$

Proof. From the equality (6.1.2), it follows that

$$dy = d\gamma(t) = dt \frac{d\gamma(t)}{dt}$$

$$\frac{d\gamma(t)}{dt} = x - a$$

and the equality

$$\int_{\gamma} g(y) \circ dy = \int_{0}^{1} dt \left(g(\gamma(t)) \circ \frac{d\gamma(t)}{dt}\right)$$

follows from the equality (6.1.4). To calculate integral

$$\int_{\gamma} g(y) \circ dy = \int_{0}^{1} dt (g(a + t(x - a)) \circ (x - a))$$

we consider the partition

$$0 = t_0 < t_1 < \ldots < t_{n-1} < t_n = 1$$
of segment $[0, 1]$ into equal segments. In such case, we can use simple map ⁶.¹

\[(6.1.8) \quad g_n(t) : [0, 1] \to A \otimes A \quad t_{i-1} < t_i \Rightarrow g_n(t) = g(\gamma(t_i))\]

instead of integrand. From (6.1.6), (6.1.8), it follows that

\[(6.1.9) \quad \|g(\gamma(t)) - g_n(t)\| < \|g\|\|\gamma(t) - \gamma(t_i)\| \leq \frac{G\|x-a\|}{n}\]

when $t_i \leq t < t_{i+1}$. From (6.1.9), it follows that

\[(6.1.10) \quad g(\gamma(t)) = \lim_{n \to \infty} g_n(t)\]

and therefore

\[(6.1.11) \quad g(\gamma(t)) \circ (x-a) = \lim_{n \to \infty} g_n(t) \circ (x-a)\]

The equality

\[(6.1.11) \quad g(y) \circ dy = \frac{df(y)}{dy} \circ dy = f(y + dy) - f(y) - o(dy)\]

follows from the equality (6.1.1) and definitions 3.3.1, 5.1.1. Here $o : A \to A$ is the map such that

\[\lim_{a \to 0} \frac{\|o(a)\|}{\|a\|} = 0\]

From (6.1.8), (6.1.11), it follows that

\[(6.1.12) \quad dt(g_n(t_i) \circ (x-a)) = f(\gamma(t_i)) - f(\gamma(t_{i-1})) - o\left(\frac{1}{n}(x-a)\right)\]

where

\[(6.1.13) \quad \lim_{n \to \infty} \frac{\|o\left(\frac{1}{n}(x-a)\right)\|}{\frac{1}{n}(x-a)} = 0\]

From (6.1.12) it follows that the map $g_n(t) \circ (x-a)$ is integrable and

\[(6.1.14) \quad \int_0^1 dt(g_n(t) \circ (x-a)) = f(x) - f(a) - n o\left(\frac{1}{n}(x-a)\right)\]

From (6.1.13), it follows that

\[(6.1.15) \quad \lim_{n \to \infty} n o\left(\frac{1}{n}(x-a)\right) = 0\]

From (6.1.10), (6.1.15) and the definition ⁶.¹-4.2.1, it follows that the map $g(\gamma(t)) \circ (x-a)$ is integrable on the segment $[0, 1]$ and the equality (6.1.3) follows from (6.1.1).

¹⁶ According to the definition C.3.4 and the theorem C.3.5 a map is simple, if range is finite or countable set and inverse image of each value is measurable set.
6.2. Lebesgue Integral along Path

Theorem 6.2.1. Let there exists indefinite integral

\[f(x) = \int g(x) \circ dx \]

For any rectifiable continuous path

\[\gamma : [0, 1] \subset R \to A \]

from a to x in D-module A

\[\int_{\gamma} g(y) \circ dy = \int_{0}^{1} dt \left(g(\gamma(t)) \circ \frac{d\gamma(t)}{dt} \right) = f(x) - f(a) \]

Proof. Let

\[0 = t_0 < t_1 < \ldots < t_{n-1} < t_n = 1 \]

be set of points of the interval \([0, 1]\) such that

\[\lim_{n \to \infty} \max(t_{i+1} - t_i) = 0 \]

We define the path \(\gamma_n \) by the equality

\[\gamma_n(t) = \gamma(t_i) + (t - t_i) \frac{\gamma(t_{i+1}) - \gamma(t_i)}{t_{i+1} - t_i} \quad t_i \leq t \leq t_{i+1} \]

Sequence of maps \(\gamma_n \) converges to map \(h \). We may request uniform convergence.

In theory of integral, it follows that

\[\int_{\gamma_n} dt \left(g(\gamma_n(t)) \circ \frac{d\gamma_n(t)}{dt} \right) \]

According to the partition (6.2.2) we can represent integral

\[\int_{\gamma_n} dt \left(g(\gamma_n(t)) \circ \frac{d\gamma_n(t)}{dt} \right) \]

as sum

\[\int_{\gamma_n} dt \left(g(\gamma_n(t)) \circ \frac{d\gamma_n(t)}{dt} \right) = \sum_{i=1}^{n} \int_{t_{i-1}}^{t_i} dt \left(g(\gamma_n(t)) \circ \frac{d\gamma_n(t)}{dt} \right) \]

For each \(i \), we change variable

\[s = \frac{t - t_{i-1}}{t_i - t_{i-1}} \quad \gamma_{in}(s) = \gamma_n(t) \quad t_{i-1} \leq t \leq t_i \]

Then

\[\int_{t_{i-1}}^{t_i} dt \left(g(\gamma_n(t)) \circ \frac{d\gamma_n(t)}{dt} \right) \]

\[= \int_{t_{i-1}}^{t_i} dt \]

\[* \left(g \left(\gamma_n(t_{i-1}) + (t - t_{i-1}) \frac{\gamma_n(t_i) - \gamma_n(t_{i-1})}{t_i - t_{i-1}} \right) \circ \frac{\gamma_n(t_i) - \gamma_n(t_{i-1})}{t_i - t_{i-1}} \right) \]

\[= \int_{0}^{1} (t_i - t_{i-1}) ds \left(g \left(\gamma_{in}(0) + s(\gamma_{in}(1) - \gamma_{in}(0)) \right) \circ \frac{\gamma_{in}(1) - \gamma_{in}(0)}{t_i - t_{i-1}} \right) \]

\[= \int_{0}^{1} ds (g(\gamma_{in}(0) + s(\gamma_{in}(1) - \gamma_{in}(0))) \circ (\gamma_{in}(1) - \gamma_{in}(0))) \]
According to the theorem 6.1.1,

\[\int_{t_{i-1}}^{t_i} dt \left(g(\gamma(t)) \circ \frac{d\gamma(t)}{dt} \right) = f(\gamma(t_i)) - f(\gamma(t_{i-1})) \]

From (6.2.4), (6.2.7), it follows that

\[\int_{\gamma_n} dt \left(g(\gamma_n(t)) \circ \frac{d\gamma_n(t)}{dt} \right) = \sum_{i=1}^{n} (f(\gamma_n(t_i)) - f(\gamma_n(t_{i-1}))) = f(\gamma_n(1)) - f(\gamma_n(0)) = f(\gamma(1)) - f(\gamma(0)) \]

\[\square \]

6.3. Solving of Differential Equation

We will consider one time more the differential equation

\[\frac{dy}{dx} = 1 \otimes x^2 + x \otimes x + x^2 \otimes 1 \]

and initial condition

\[x_0 = 0 \quad y_0 = C \]

According to the definition 5.1.1, the map \(y \) is integral

\[\int (1 \otimes x^2 + x \otimes x + x^2 \otimes 1) \circ dx \]

So we can apply the theorem 6.1.1 to solve differential equation (6.3.2). We consider the linear path

\[\gamma : [0, 1] \subset R \to A \]

(6.3.3) \[\gamma(t) = tx \]

Then the integral (6.1.3) gets the form

\[\int_{\gamma} (1 \otimes x^2 + x \otimes x + x^2 \otimes 1) \circ dx \]

\[= \int_0^1 dt ((1 \otimes (tx)^2 + (tx) \otimes (tx) + (tx)^2 \otimes 1) \circ x) \]

\[= \left(\int_0^1 dt t^2 \right) ((1 \otimes x^2 + x \otimes x + x^2 \otimes 1) \circ x) \]

\[= \frac{1}{3} (x^3 + x^3 + x^3) = x^3 \]

How easily we solved differential equation. However, is this procedure very easy?

To get answer on this question, we also consider differential equation

\[\frac{dy}{dx} = 3 \otimes x^2 \]

\[x_0 = 0 \quad y_0 = C \]
If we consider the path \(\text{(6.3.3)} \), we will get that
\[
\int (3 \otimes x^2) \circ dx = x^3 + C
\]
However we know that this is not true.
To solve differential equation, we considered linear path. However a path can be arbitrary. Consider the path
\[
\gamma(t) = \begin{cases}
ta & 0 \leq t \leq 1 \\
a + (t - 1)(x - a) & 1 \leq t \leq 2
\end{cases}
\]
We can represent the integral \(\int_\gamma g(x) \circ dx \) as sum
\[
(6.3.6) \quad \int_\gamma g(x) \circ dx = \int_{\gamma_1} g(x) \circ dx + \int_{\gamma_2} g(x) \circ dx
\]
where \(\gamma_1 \) is the path \(\gamma_1 : t \in [0,1] \subset R \rightarrow ta \in A \) and \(\gamma_2 \) is the path
\(\gamma_2 : t \in [1,2] \subset R \rightarrow a + (t - 1)(x - a) \in A \)
We considered above the integral
\[
(6.3.7) \quad \int_{\gamma_1} g(x) \circ dx = a^3
\]
So we need to consider the integral
\[
\int_{\gamma_2} g(x) \circ dx = \int_1^2 dt g(a + (t - 1)(x - a)) \circ \frac{d(a + (t - 1)(x - a))}{dt}
\]
\[
(6.3.8) \quad = \int_1^2 dt g(a + (t - 1)(x - a)) \circ (x - a)
\]
\[
= \int_0^1 dt g(a + t(x - a)) \circ (x - a)
\]
- Let \(g(x) = x^2 \otimes 1 + x \otimes x + 1 \otimes x^2 \). Then the integral (6.3.8) gets the form
\[
\int_{\gamma_2} g(x) \circ dx
\]
\[
= \int_0^1 dt ((a + t(x - a))^2 \otimes 1 + (a + t(x - a)) \otimes (a + t(x - a))
\]
\[
\quad + 1 \otimes (a + t(x - a))^2) \circ (x - a)
\]
\[
(6.3.9) \quad = \int_0^1 dt ((a + t(x - a))^2(x - a) + (a + t(x - a))(x - a)(a + t(x - a))
\]
\[
\quad + (x - a)(a + t(x - a))^2)
The equality
\[\int_{\gamma_2} g(x) \circ dx = x^2 + ax + a^2 x - 3a^3 \]
\[+ \frac{1}{2}(2x^2 a + 2xax + 2ax^2 - 4xa^2 - 4axa - 4a^2 x + 6a^3) \]
\[+ \frac{1}{3}(3x^3 - 3x^2 a - 3xax + 3xa^2 - 3ax x + 3axa + 3a^2 x - 3a^3) \]

(6.3.10)
\[= x^2 + ax + a^2 x - 3a^3 \]
\[+ x^2 a + xax + ax^2 - 2x^2 a - 2axa - 2a^2 x + 3a^3 \]
\[+ x^3 - x^2 a - xax + xa^2 - ax^2 + axa + a^2 x - a^3 \]
\[= x^3 - a^3 \]

follows from equalities (6.3.9), (A.1.6). The equality
\[\int_{\gamma_1} g(x) \circ dx = x^3 \]
follows from equalities (6.3.6), (6.3.7), (6.3.10).

• Let \(g(x) = 3 \otimes x^2 \). Then the integral (6.3.8) gets the form
\[\int_{\gamma_2} g(x) \circ dx = \int_0^1 dt \otimes (a + t(x - a))^2 \circ (x - a) \]
(6.3.11)
\[= 3 \int_0^1 dt (x - a)(a + t(x - a))^2 \]

The equality
\[\int_{\gamma_2} g(x) \circ dx = 3 \left(x^2 - a^3 + \frac{1}{2}(x^2 a + xax - 2xa^2 - a^3 x - axa + 2a^3) \right) \]
\[+ \frac{1}{3}(x^3 - x^2 a - xax - ax^2 + xa^2 + axa + a^2 x - a^3) \]
(6.3.12)
\[= x^3 + \left(\frac{3}{2} - 1 \right) x^2 a + \left(\frac{3}{2} - 1 \right) xax - ax^2 + xa^2 \]
\[+ \left(1 - \frac{3}{2} \right) axa + \left(1 - \frac{3}{2} \right) a^2 x - a^3 \]
\[= x^3 + \frac{1}{2} x^2 a + \frac{1}{2} xax - ax^2 + xa^2 - \frac{1}{2} axa - \frac{1}{2} a^2 x - a^3 \]

follows from equalities (6.3.11), (A.2.3). The equality
\[\int_{\gamma_1} g(x) \circ dx = x^3 + \frac{1}{2} x^2 a + \frac{1}{2} xax - ax^2 + xa^2 - \frac{1}{2} axa - \frac{1}{2} a^2 x \]

follows from equalities (6.3.6), (6.3.7), (6.3.12).

So the integral \(\int_{\gamma}(3 \otimes x^2) \circ dx \) depends on choice of a path \(\gamma \) from 0 to \(x \); and the differential equation (6.3.5) does not have solution. So, before we can apply Lebesgue integral to solving of differential equation, we need to answer one of two following questions. How we can prove that integral does not depend from choice of path or how we can find the path which proves dependence of integral on path.
We suddenly found ourselves in new territory. The name of this territory is differential forms.
CHAPTER 7

Differential Form

7.1. Structure of Polylinear Map

Definition 7.1.1. Let \(A, B \) be algebras over commutative ring \(D \). A polylinear map \(f \in \mathcal{L}(D; A^n \to B) \) is called **symmetric**, if
\[
f \circ (a_1, \ldots, a_n) = f \circ \sigma \circ (a_1, \ldots, a_n)
\]
for any permutation \(\sigma \) of the set \(\{a_1, \ldots, a_n\} \)

Theorem 7.1.2. Let \(f \in \mathcal{L}(D; A^n \to B) \) be a polylinear map. Then the map
\[
<f> \circ (a_1, \ldots, a_n) = \frac{1}{n!} \sum_{\sigma \in S(n)} f \circ \sigma \circ (a_1, \ldots, a_n)
\]
is symmetric polylinear map and is called **symmetrization of polylinear map** \(f \).

Proof. The theorem follows from the equality
\[
<f> \circ \sigma \circ (a_1, \ldots, a_n) = <f> \circ (\sigma(a_1), \ldots, \sigma(a_n))
\]
\[
= \frac{1}{n!} \sum_{\sigma_1 \in S(n)} f \circ \sigma_1 \circ (\sigma(a_1), \ldots, \sigma(a_n))
\]
\[
= \frac{1}{n!} \sum_{\sigma_2 \in S(n)} f \circ (\sigma_2(a_1), \ldots, \sigma(a_n)) \quad \sigma_2 = \sigma_1 \circ \sigma
\]
\[
= \frac{1}{n!} \sum_{\sigma_2 \in S(n)} f \circ \sigma_2 \circ (a_1, \ldots, a_n)
\]
\[
=<f> \circ (a_1, \ldots, a_n)
\]
and the definition 7.1.1.

Definition 7.1.3. Let \(A, B \) be algebras over commutative ring \(D \). A polylinear map \(f \in \mathcal{L}(D; A^n \to B) \) is called **skew symmetric**, if
\[
f \circ (a_1, \ldots, a_n) = |\sigma|(f \circ \sigma \circ (a_1, \ldots, a_n))
\]
for any permutation \(\sigma \) of the set \(\{a_1, \ldots, a_n\} \).

Theorem 7.1.4. Let \(f \in \mathcal{L}(D; A^n \to B) \) be a polylinear map. Then the map
\[
[f] \circ (a_1, \ldots, a_n) = \frac{1}{n!} \sum_{\sigma \in S(n)} |\sigma|(f \circ \sigma \circ (a_1, \ldots, a_n))
\]
\[(7.1.1) \]
is skew symmetric polylinear map and is called \textbf{alternation of polylinear map} f.

\textbf{Proof.} The theorem follows from the equality

\[[f] \circ \sigma \circ (a_1, ..., a_n) = [f] \circ (\sigma(a_1), ..., \sigma(a_n)) \]

\[= \frac{1}{n!} \sum_{\sigma \in S(n)} |\sigma| |f| \circ (\sigma(a_1), ..., \sigma(a_n)) \]

\[= \frac{1}{n!} \sum_{\sigma \in S(n)} |\sigma| |f| \circ (\sigma_2(a_1), ..., \sigma_2(a_n)) \]

\[= |\sigma| \frac{1}{n!} \sum_{\sigma \in S(n)} |\sigma_2| f \circ (a_1, ..., a_n) \]

\[= |\sigma|[f] \circ (a_1, ..., a_n) \]

and the definition 7.1.3. \hfill \square

\textbf{Theorem 7.1.5.} A polylinear map $f \in \mathcal{L}(D; A^n \to B)$ is skew symmetric iff $f \circ (a_1, ..., a_n) = 0$

as soon as $x_i = x_{i+1}$ for at list one7.1 i, $1 \leq i < n$.

\textbf{Proof.} For given i, consider permutation

\[\sigma_i(a_k) = \begin{cases} a_{i+1} & k = i \\ a_i & k = i + 1 \\ a_k & k \neq i, k \neq i + 1 \end{cases} \]

(7.1.2)

It is evident that

(7.1.3)

\[|\sigma_i| = -1 \]

Let $f \in \mathcal{L}(D; A^n \to B)$ be skew symmetric map. According the definition 7.1.3, From equalities (7.1.2), (7.1.3), it follows that

\[f(\ldots, a_i, a_i, \ldots) = |\sigma_i| f(\ldots, a_i, a_i, \ldots) = -f(\ldots, a_i, a_i, \ldots) = 0 \]

Let $f \in \mathcal{L}(D; A^n \to B)$. Let

\[f(\ldots, a_1, \ldots, a_n) = 0 \]

as soon as $x_i = x_{i+1}$ for at list one i, $1 \leq i < n$. Then

\[0 = f \circ (\ldots, a_i + a_{i+1}, a_i + a_{i+1}, \ldots) \]

\[= f \circ (\ldots, a_i, a_i + a_{i+1}, a_i + a_{i+1}, a_i + a_{i+1}, \ldots) \]

(7.1.4)

\[= f \circ (\ldots, a_i, a_i, a_i + a_{i+1}, a_i + a_{i+1}, a_i + a_{i+1}, \ldots) \]

\[+ f \circ (\ldots, a_i + a_{i+1}, \ldots) + f \circ (\ldots, a_{i+1}, a_{i+1}, \ldots) \]

\[= f \circ (\ldots, a_i, a_{i+1}, \ldots) + f \circ (\ldots, a_{i+1}, a_{i+1}, a_{i+1}, a_{i+1}, \ldots) \]

From equalities (7.1.2), (7.1.3), (7.1.4), it follows that

(7.1.5)

\[f(\ldots, a_i, a_{i+1}, \ldots) = -f(\ldots, a_{i+1}, a_i, \ldots) = |\sigma_i| f(\sigma_i(a_1), ..., \sigma_i(a_n)) \]

7.1 In the book \cite{31}, page 9, Henri Cartan considered the theorem 7.1.5 as definition of skew symmetric map.
Since any permutation is product of permutations σ_i, then, from the equality (7.1.5) and the definition 7.1.3, it follows that the map f is skew symmetric.

Theorem 7.1.6. The set $\mathcal{L}(D; A^n \to B)$ of skew symmetric polylinear maps is D-module.

Proof. According to the theorem 2.5.22, linear composition of skew symmetric polylinear maps is polylinear map. According to the theorem 7.1.5, linear composition of skew symmetric polylinear maps is skew symmetric polylinear map.

Without loss of generality, we assume $\mathcal{L}(D; A^n \to B) = \mathcal{L}(D; A^0 \to B)$.

Theorem 7.1.7. Let A, B be Banach D-algebras. D-module $\mathcal{L}(D; A^n \to B)$ is closed in D-module $\mathcal{L}(D; A^0 \to B)$.

Proof. The theorem follows from theorems 7.1.5, 7.1.6, since the equality $f_k(\ldots, a_i, \ldots) = 0$ holds in passage to the limit, when sequence of maps f_k converges to map f.

7.2. Product of Skew Symmetric Polylinear Maps

Definition 7.2.1. Let A, B_2 be free algebras over commutative ring D. Let $h : B_1 \longrightarrow B_2$

be left-side representation of free associative D-algebra B_1 in D-module B_2. The map $fg : \mathcal{L}(D; A^p \to B) \times \mathcal{L}(D; A^q \to C) \to \mathcal{L}(D; A^{p+q} \to C)$ is defined by the equality

$$\tag{7.2.1} (fg) \circ (a_1, \ldots, a_{p+q}) = (f \circ (a_1, \ldots, a_p)) (g \circ (a_{p+1}, \ldots, a_{p+q}))$$

where, in the right side of the equality (7.2.1), we consider left-side product of B_2-number $g \circ (a_{p+1}, \ldots, a_{p+q})$ over B_1-number $f \circ (a_1, \ldots, a_p)$.

If $B_1 = B_2$, then, in the right side of the equality (7.2.1), we consider product of B_1-numbers $f \circ (a_1, \ldots, a_p)$, $g \circ (a_{p+1}, \ldots, a_{p+q})$. According to the theorem 2.5.9, this definition is compatible with the definition 7.2.1.

Let f, g be skew symmetric polylinear maps. In general, the map fg is not skew symmetric polylinear map.

Definition 7.2.2. The skew symmetric polylinear map $f \wedge g$

$$\tag{7.2.2} (f \wedge g) \circ (a_1, \ldots, a_{p+q}) = \frac{(p+q)!}{p!q!} [fg] \circ (a_1, \ldots, a_{p+q})$$

is called exterior product.

Theorem 7.2.3. Exterior product satisfies the following equation

$$\tag{7.2.3} (f \wedge g) \circ (a_1, \ldots, a_{p+q}) = \frac{1}{p!q!} \sum_{\sigma \in S(p+q)} |\sigma| ((f \wedge g) \circ \sigma \circ (a_1, \ldots, a_{p+q}))$$

7.2 To define product of skew symmetric polylinear maps, I follow definition in section [31]-1.4 of chapter 1, pages 12 - 14.
Proof. The equality (7.2.3) follows from equalities (7.1.1), (7.2.2).

Theorem 7.2.4. Let B be non commutative D-algebra and $f : A \to B$ be linear map. Then, in general, (7.3)

\[f \wedge f \neq 0 \]

Proof. According to the equality (7.2.3),

\[(f \wedge f) \circ (a, b) = f(a)f(b) - f(b)f(a) = [f(a), f(b)] \]

The expression (7.2.5), in general, is different from 0. From the proof of the theorem 7.2.4, it follows that $f \wedge f = 0$ only when the image of the map f is a subset of the center of the algebra B.

Convention 7.2.5. Let

\[I = \{a_1, ..., a_{p+q}\} \]
\[J = \{J_1, ..., J_p\} \subseteq I \]
\[K = \{K_1, ..., K_q\} = I \setminus J \]

The order of index in sets J, K is the same as in the set I. Let $R(J, I)$ be the set of injections $J \to I$. For any map $\lambda \in R(J, I)$, let $D(\lambda)$ be the range of the map λ and

\[D_1(\lambda) = I \setminus D(\lambda) = \{\lambda_1, ..., \lambda_q\} \]

The map $\mu(\lambda) : K \to D_1(\lambda)$ is defined by the equality

\[\mu(\lambda)(K_k) = \lambda_k \]

Let $S_1(\lambda)$ be the set of permutations of the set $D_1(\lambda)$.

Lemma 7.2.6. For any permutation $\sigma \in S$, there exists unique map $\lambda \in R(J, I)$ and unique permutation $\tau \in S_1(\lambda)$ such that

\[\sigma = \begin{pmatrix} J_1 & \ldots & J_p & K_1 & \ldots & K_q \\ (\lambda(J_1) & \ldots & \lambda(J_p) & \tau(\mu(\lambda)(K_1)) & \ldots & \tau(\mu(\lambda)(K_q)) \end{pmatrix} \]

Proof. Let $\sigma \in S$. We define the map $\lambda \in R(J, I)$ using the table

\[\lambda = \begin{pmatrix} J_1 & \ldots & J_p \\ \sigma(J_1) & \ldots & \sigma(J_p) \end{pmatrix} \]

We define the map $\tau : D_1(\lambda) \to D_1(\lambda)$

\[7.3\] See also the equality ([28]-2.25).
by the equality
\[(7.2.10) \quad \tau(\lambda_k) = \sigma(a_{K,k})\]
The equality
\[(7.2.11) \quad \tau(\mu(\lambda)(a_{K,k})) = \sigma(a_{K,k})\]
follows from equalities \((7.2.7), (7.2.10)\). Since maps \(\sigma, \mu(\lambda)\) are bijection, then the map \(\tau\) is bijection. Therefore, the map \(\tau\) is permutation of the set \(D_1(\lambda)\). The equality \((7.2.8)\) follows from equalities \((7.2.9), (7.2.11)\). □

Lemma 7.2.7. For any map \(\lambda \in R(J,I)\) and any permutation \(\tau \in S_1(\lambda)\), there exists unique permutation \(\sigma \in S\) such that
\[(7.2.12) \quad \sigma = \left(\begin{array}{cccc}
J_1 & \ldots & J_p & K_1 & \ldots & K_q \\
\lambda(J_1) & \ldots & \lambda(J_p) & \tau(\mu(\lambda)(K_1)) & \ldots & \tau(\mu(\lambda)(K_q))
\end{array}\right)\]

Proof. According to \((7.2.6)\),
\[D_1(\lambda) \cup D(\lambda) = I\]
Since maps \(\lambda, \mu(\lambda), \tau\) are injections, then the map \(\sigma\) is permutation. □

According to lemmas 7.2.6, 7.2.7, there exist bijection of the set \(S\) into set of tuples \((\lambda, \tau)\) where \(\lambda \in R(J,I)\), \(\tau \in S_1(\lambda)\). We express this bijection by the equality
\[\sigma = (\lambda, \tau)\]

Lemma 7.2.8. We define sign of the map \(\lambda \in R(J,I)\) using the equality
\[|\lambda| = |(\lambda, \delta)|\]
where \(\delta\) is identity permutation of the set \(D_1(\lambda)\). Then
\[(7.2.13) \quad |(\lambda, \tau)| = |\lambda||\tau|\]

Proof. Since \(|\delta| = 1\), then the theorem holds for permutation \((\lambda, \delta)\).
Let permutation \(\tau\) be transposition. Then the permutation \((\lambda, \tau)\) is different from the permutation \((\lambda, \delta)\) by transposition. Therefore, in this case, the equality \((7.2.13)\) holds.
Let permutation \(\tau\) be product of \(n\) transpositions. Then the permutation \((\lambda, \tau)\) is different from the permutation \((\lambda, \delta)\) by product of \(n\) transpositions. Therefore, in general case, the equality \((7.2.13)\) holds. □

Theorem 7.2.9. Let
\[f_1 \in \mathcal{L}A(D; A^p \rightarrow B_1)\]
\[f_2 \in \mathcal{L}A(D; A^q \rightarrow B_2)\]
Let \(R_0\) be the set of injections \(I_{1,p} \rightarrow I_{1,p+q}\) which preserve order of index in the set \(I_{1,p+q}\). Let
\[R_1 = R(I_{1,p}, I_{1,p+q})\]
Exterior product of skew symmetric polylinear maps satisfies to equalities\(^7.4\)

\[(7.2.14)\quad (f_1 \wedge f_2) \circ (a_1, \ldots, a_{p+q}) = \frac{1}{p!} \sum_{\lambda \in R_1} |\lambda|(f_1 \circ (\lambda(a_1), \ldots, \lambda(a_p)))(f_2 \circ (\lambda_1, \ldots, \lambda_q))\]

\[(7.2.15)\quad (f_1 \wedge f_2) \circ (a_1, \ldots, a_{p+q}) = \sum_{\lambda \in R_0} |\lambda|(f_1 \circ (\lambda(a_1), \ldots, \lambda(a_p)))(f_2 \circ (\lambda_1, \ldots, \lambda_q))\]

Proof. Let \(S\) be the set of permutations of the set \(I_{1,p+q}\). According to the definition (7.2.3),

\[
(7.2.16) \quad (f_1 \wedge f_2) \circ (a_1, \ldots, a_{p+q}) = \frac{1}{p!q!} \sum_{\sigma \in S} |\sigma|(f_1 \circ (\sigma(a_1), \ldots, \sigma(a_p)))(f_2 \circ (\sigma(a_{p+1}), \ldots, \sigma(a_{p+q})))
\]

According to lemmas 7.2.6, 7.2.7, 7.2.8,

\[
(7.2.17) \quad (f_1 \wedge f_2) \circ (a_1, \ldots, a_{p+q}) = \frac{1}{p!q!} \sum_{\lambda \in R_1} |\lambda|(f_1 \circ (\lambda(a_1), \ldots, \lambda(a_p)))(f_2 \circ (\lambda_1, \ldots, \tau(\lambda_q)) - \sum_{\tau \in S_1(\lambda)} |\tau|(f_2 \circ (\lambda_1, \ldots, \tau(\lambda_q)))
\]

Since the map \(f_2\) is skew symmetric, then, according to the definition 7.1.3,

\[
(7.2.18) \quad f_2 \circ (\lambda_1, \ldots, \lambda_q) = |\tau|(f_2 \circ (\lambda_1, \ldots, \tau(\lambda_q)))
\]

The equality

\[
(7.2.19) \quad (f_1 \wedge f_2) \circ (a_1, \ldots, a_{p+q}) = \frac{1}{p!q!} \sum_{\lambda \in R_1} |\lambda|(f_1 \circ (\lambda(a_1), \ldots, \lambda(a_p)))(f_2 \circ (\lambda_1, \ldots, \lambda_q))
\]

follows from equalities (7.2.17), (7.2.18). The equality (7.2.14) follows from the equality (7.2.19).

For any \(\lambda \in R_0\), consider the set

\[
R_2(\lambda) = \{ \mu \in R_1 : D(\mu) = D(\lambda) \}
\]

The map \(\mu \in R_2(\lambda)\) differs from the map \(\lambda \in R_0\) by a permutation of the set \(D(\lambda)\) and

\[
(7.2.20) \quad |\lambda|(f_1 \circ (\lambda(a_1), \ldots, \lambda(a_p))) = |\mu|(f_1 \circ (\mu(a_1), \ldots, \mu(a_p)))
\]

At the same time

\[
(7.2.21) \quad R_1 = \bigcup_{\lambda \in R_0} R_2(\lambda)
\]

\(^7.4\) In the book [31], pages 12, 13, the equality (7.2.15) is the definition of exterior product of skew symmetric polylinear maps, since the map

\[
\begin{pmatrix}
a_1 & \ldots & a_p & a_{p+1} & \ldots & a_{p+q} \\
\lambda(a_1) & \ldots & \lambda(a_p) & \lambda_1 & \ldots & \lambda_q
\end{pmatrix}
\]

is the permutation which satisfy to the requirement (1.4.3) on the page [31]-12.
The equality
\[(f_1 \wedge f_2) \circ (a_1, \ldots, a_{p+q}) \]
(7.2.22) \[= \frac{1}{p!q!} \sum_{\lambda \in R_0} |\lambda|(f_1 \circ (\lambda(a_1), \ldots, \lambda(a_p)))(f_2 \circ (\lambda_1, \ldots, \lambda_q)) \]
follows from equalities (7.2.14), (7.2.20), (7.2.21). The equality (7.2.15) follows from the equality (7.2.22). \(\square\)

Theorem 7.2.10. Let
\[f_1 \in \mathcal{LA}(D; A^p \to B_1) \]
\[f_2 \in \mathcal{LA}(D; A^q \to B_2) \]
Let \(R_0 \) be the set of injections
\[I_{p+1,p+q} \to I_{1,p+q} \]
which preserve order of index in the set \(I_{1,p+q} \). Let
\[R_1 = R(I_{p+1,p+q}, I_{1,p+q}) \]
Exterior product of skew symmetric polylinear maps satisfies to equalities
\[(f_1 \wedge f_2) \circ (a_1, \ldots, a_{p+q}) \]
(7.2.23) \[= \frac{1}{q!} \sum_{\lambda \in R_1} |\lambda|(f_1 \circ (\lambda(a_1), \ldots, \lambda(a_{p+q}))) \]
(7.2.24) \[= \sum_{\lambda \in R_0} |\lambda|(f_1 \circ (\lambda(a_1), \ldots, \lambda(a_{p+q}))))(f_2 \circ (\lambda(a_{p+1}), \ldots, \lambda(a_{p+q}))) \]

Proof. The proof of the theorem is similar to the proof of the theorem 7.2.9. \(\square\)

Theorem 7.2.11. Exterior product of skew symmetric polylinear maps is associative. Let
\[f_1 \in \mathcal{LA}(D; A^p \to B_1) \]
\[f_2 \in \mathcal{LA}(D; A^q \to B_1) \]
\[f_3 \in \mathcal{LA}(D; A^r \to B_2) \]
Then
\[(f_1 \wedge f_2) \wedge f_3 = f_1 \wedge (f_2 \wedge f_3) \]
(7.2.25)

Proof. Let the representation of \(D \)-algebra \(B_1 \) in \(D \)-module \(B_2 \) is defined by the map \(h \) and the product in \(D \)-algebra \(B_1 \) is defined by the map \(g \).

Let \(S \) be the set of permutations of the set \(I_{1,p+q+r} \).
According to the definition \([11]-3.1.1\), the following equality
\[(f_1 \circ (a_1, \ldots, a_p))((f_2 \circ (a_{p+1}, \ldots, a_{p+q}))(f_3 \circ (a_{p+q+1}, \ldots, a_{p+q+r}))) \]
(7.2.26) \[= ((f_1 \circ (a_1, \ldots, a_p))(f_2 \circ (a_{p+1}, \ldots, a_{p+q}))(f_3 \circ (a_{p+q+1}, \ldots, a_{p+q+r}))) \]
holds for any \(B_1 \)-numbers \(f_1(a_1, \ldots, a_p), f_2(a_{p+1}, \ldots, a_{p+q}) \) and for any \(B_2 \)-number \(f_3(a_{p+q+1}, \ldots, a_{p+q+r}) \). According to the definition 7.2.1, we can write down the equality (7.2.26) as
\[(f_1 \circ (a_1, \ldots, a_p))((f_2f_3) \circ (a_{p+1}, \ldots, a_{p+q+r})) \]
(7.2.27) \[= ((f_1f_2) \circ (a_1, \ldots, a_{p+q}))(f_3 \circ (a_{p+q+1}, \ldots, a_{p+q+r})) \]
The equality (7.2.27) remains true when we apply permutation $\sigma \in S$. So the equality

$$\sum_{\sigma \in S} |\sigma|(f_1 \circ (\sigma(a_1), ..., \sigma(a_p)))(f_2f_3) \circ (\sigma(a_{p+1}), ..., \sigma(a_{p+q+r}))$$

(7.2.28)

$$= \sum_{\sigma \in S} |\sigma|((f_1f_2) \circ (\sigma(a_1), ..., \sigma(a_{p+q}))(f_3 \circ (\sigma(a_{p+q+1}), ..., \sigma(a_{p+q+r})))$$

follows from the equality (7.2.27).

Let

$$R_1 = R(I_1, p, I_1, p+q+r)$$

According to lemmas 7.2.6, 7.2.7, 7.2.8, we rewrite left side of the equality (7.2.28) as

$$\sum_{\lambda \in R_1} |\lambda|(f_1 \circ (\lambda(a_1), ..., \lambda(a_p)))(f_2f_3) \circ (\lambda(a_{p+1}), ..., \lambda(a_{p+q+r}))$$

(7.2.29)

$$= \sum_{\lambda \in R_1} |\lambda|(q+r)! (f_1 \circ (\lambda(a_1), ..., \lambda(a_p)))(f_2f_3) \circ [\lambda_1, ..., \lambda_{q+r}]$$

According to the definitions (7.1.1), (7.2.2), the equality

$$\sum_{\sigma \in S} |\sigma|(f_1 \circ (\sigma(a_1), ..., \sigma(a_p)))(f_2f_3) \circ (\sigma(a_{p+1}), ..., \sigma(a_{p+q+r}))$$

$$= \sum_{\lambda \in R_1} |\lambda|(q+r)! (f_1 \circ (\lambda(a_1), ..., \lambda(a_p)))(f_2f_3) \circ (\lambda(a_{p+1}), ..., \lambda(a_{p+q+r}))$$

(7.2.30)

follows from the equality (7.2.29). According to lemmas 7.2.6, 7.2.7, 7.2.8, the equality

$$\sum_{\sigma \in S} |\sigma|(f_1 \circ (\sigma(a_1), ..., \sigma(a_p)))(f_2f_3) \circ (\sigma(a_{p+1}), ..., \sigma(a_{p+q+r}))$$

$$= \sum_{\lambda \in R_1} |\lambda|(f_1 \circ (\lambda(a_1), ..., \lambda(a_p)))$$

(7.2.31)

$$\frac{q!r!}{(q+r)!} \sum_{\tau \in S_1(\lambda)} |\tau|(f_2f_3) \circ (\tau(\lambda_1), ..., \tau(\lambda_{q+r}))$$

follows from equalities (7.2.3), (7.2.30). According to the definition 7.2.1, we can write down the equality (7.2.31) as

$$\sum_{\sigma \in S} |\sigma|(f_1 \circ (\sigma(a_1), ..., \sigma(a_p)))(f_2f_3) \circ (\sigma(a_{p+1}), ..., \sigma(a_{p+q+r}))$$

(7.2.32)

$$= \frac{q!r!}{(q+r)!} \sum_{\sigma \in S} |\sigma|(f_1(f_2 \circ f_3)) \circ (\sigma(a_1), ..., \sigma(a_{p+q+r}))$$
According to definitions (7.1.1), (7.2.2), the equality

\[
\sum_{\sigma \in S} |\sigma|(f_1 \circ (\sigma(a_1), \ldots, \sigma(a_p)))((f_2 f_3) \circ (\sigma(a_{p+1}), \ldots, \sigma(a_{p+q+r})))
\]

(7.2.33)

\[
= (p + q + r)! \frac{q! r!}{(q + r)!} (f_1(f_2 \wedge f_3)) \circ [a_1, \ldots, a_{p+q+r}]
\]

\[
= (p + q + r)! \frac{q! r!}{(q + r)!} pl(q + r)! (f_1 \wedge (f_2 \wedge f_3)) \circ (a_1, \ldots, a_{p+q+r})
\]

\[
= plq! r! (f_1 \wedge (f_2 \wedge f_3)) \circ (a_1, \ldots, a_{p+q+r})
\]

follows from the equality (7.2.32).

Let \(R_2 = R(I_{p+q+1+p+q+r}, I_{p+q+1+p+q+r}) \). According to lemmas 7.2.6, 7.2.7, 7.2.8, we rewrite right side of the equality (7.2.28) as

\[
\sum_{\sigma \in S} |\sigma|((f_1 f_2) \circ (\sigma(a_1), \ldots, \sigma(a_{p+q}))(f_3 \circ (\sigma(a_{p+q+1}), \ldots, \sigma(a_{p+q+r})))
\]

(7.2.34)

\[
= \sum_{\lambda \in R_2} |\lambda| \left(\sum_{\tau \in S_{\lambda}(\lambda)} |\tau|((f_1 f_2) \circ (\tau(\lambda_1), \ldots, \tau(\lambda_{p+q})))
\]

* \((f_3 \circ (\lambda(a_{p+q+1}), \ldots, \lambda(a_{p+q+r})))
\]

According to the definitions (7.1.1), (7.2.2), the equality

\[
\sum_{\sigma \in S} |\sigma|((f_1 f_2) \circ (\sigma(a_1), \ldots, \sigma(a_{p+q}))(f_3 \circ (\sigma(a_{p+q+1}), \ldots, \sigma(a_{p+q+r})))
\]

\[
= \sum_{\lambda \in R_2} |\lambda|(p + q)!((f_1 f_2) \circ [\lambda_1, \ldots, \lambda_{p+q}])
\]

(7.2.35)

\[
= \sum_{\lambda \in R_2} |\lambda|(p + q)! \frac{plq!}{(p + q)!} (f_3 \circ (\lambda(a_{p+q+1}), \ldots, \lambda(a_{p+q+r})))
\]

follows from the equality (7.2.34). According to lemmas 7.2.6, 7.2.7, 7.2.8, the equality

\[
\sum_{\sigma \in S} |\sigma|((f_1 f_2) \circ (\sigma(a_1), \ldots, \sigma(a_{p+q}))(f_3 \circ (\sigma(a_{p+q+1}), \ldots, \sigma(a_{p+q+r})))
\]

\[
= \sum_{\lambda \in R_2} |\lambda| \frac{plq!}{(p + q)!} \left(\sum_{\tau \in S_{\lambda}(\lambda)} |\tau|((f_1 \wedge f_2) \circ (\tau(\lambda_1), \ldots, \tau(\lambda_{p+q})))
\]

* \((f_3 \circ (\lambda(a_{p+q+1}), \ldots, \lambda(a_{p+q+r})))
\]

(7.2.36)

\[
= \frac{plq!}{(p + q)!} \sum_{\sigma \in S} |\sigma|((f_1 \wedge f_2) \circ (\sigma(a_1), \ldots, \sigma(a_{p+q})))
\]

* \((f_3 \circ (\sigma(a_{p+q+1}), \ldots, \sigma(a_{p+q+r})))
\]
follows from equalities (7.2.3), (7.2.36). According to the definition 7.2.1, we can write down the equality (7.2.36) as
\[
\sum_{\sigma \in S} |\sigma|((f_1 f_2) \circ (\sigma(a_1), ..., \sigma(a_{p+q})))\circ (\sigma(a_{p+q+1}), ..., \sigma(a_{p+q+r})))
\]
(7.2.37) \\
= \frac{plq}{(p+q)!} \sum_{\sigma \in S} |\sigma|((f_1 \wedge f_2) f_3) \circ (\sigma(a_1), ..., \sigma(a_{p+q+r})))

According to definitions (7.1.1), (7.2.2), the equality
\[
\sum_{\sigma \in S} |\sigma|((f_1 f_2) \circ (\sigma(a_1), ..., \sigma(a_{p+q})))\circ (\sigma(a_{p+q+1}), ..., \sigma(a_{p+q+r})))
\]
(7.2.38) \\
= (p + q + r)! \frac{p!q!}{(p+q)!} ((f_1 \wedge f_2) f_3) \circ [a_1, ..., a_{p+q+r}]

= (p + q + r)! \frac{p!}{(p+q)!} (p + q)! (p+q+r)! ((f_1 \wedge f_2) f_3) \circ (a_1, ..., a_{p+q+r})

= plq q!(f_1 \wedge f_2) f_3 \circ (a_1, ..., a_{p+q+r})

follows from the equality (7.2.37).

The equality (7.2.25) follows from equalities (7.2.27), (7.3.3), (7.3.38).

7.3. Differential Form

DEFINITION 7.3.1. A map is of class C^n, if the map has continuous derivative of order n. A map is of class C^∞, if the map has continuous derivative of any order.

DEFINITION 7.3.2. Let A, B be Banach D-algebras. Let $U \subseteq A$ be an open set. The map
\[
\omega : U \rightarrow \mathcal{L} A(D; A^p \rightarrow B)
\]
is called differential form of degree p defined in U and with values in B or B-valued differential p-form defined in U. A differential form ω is said to be of class C^n if map ω is of class C^n. The set $\Omega_p^{(n)}(U, B)$ of B-valued differential p-forms of class C^n defined in U is D-module.

THEOREM 7.3.3. Let A, B_2 be free Banach algebras over commutative ring D. Let
\[
h : B_1 \rightarrow B_2
\]
be left-side representation of free associative Banach D-algebra B_1 in Banach D-module B_2. Let $\alpha \in \Omega_p^{(n)}(U, B_1)$, $\beta \in \Omega_q^{(n)}(U, B_2)$. Exterior product $\alpha \wedge \beta$ of differential forms α, β defined by the equality
\[
(\alpha \wedge \beta)(x) = \alpha(x) \wedge \beta(x)
\]
is differential form of class C^n.

PROOF. For any $x \in U$, $\alpha(x) \in \mathcal{L} A(D; A^p \rightarrow B)$, $\beta(x) \in \mathcal{L} A(D; A^q \rightarrow B)$. According to definitions 7.2.1, 7.2.2,
\[
\alpha(x) \wedge \beta(x) \in \mathcal{L} A(D; A^{p+q} \rightarrow B_2)
\]

\footnote{7.5 To define product of differential forms, I follow definition in section 3.1-2.2 of chapter 1, page 19.}
The map
\[x \in U \mapsto \alpha(x) \wedge \beta(x) \in \mathcal{L}A(D; A^{p+q} \rightarrow B_2) \]
is a map of class \(C^n \) since this map is composition of the map
\[x \mapsto (\alpha(x), \beta(x)) \]
of class \(C^n \) and continuous bilinear map
\[\mathcal{L}A(D; A^p \rightarrow B_1) \times \mathcal{L}A(D; A^q \rightarrow B_2) \rightarrow \mathcal{L}A(D; A^{p+q} \rightarrow B_2) \]
generated by representation \(h \).

Corollary 7.3.4. Exterior product of differential forms generates a bilinear map
\[\Omega^{(n)}_p(U, B_1) \times \Omega^{(n)}_q(U, B_2) \rightarrow \Omega^{(n)}_{p+q}(U, B_2) \]

Theorem 7.3.5. Let \(A, B_2 \) be free Banach algebras over commutative ring \(D \). Let
\[h : B_1 \longrightarrow B_2 \]
be left-side representation of free associative Banach \(D \)-algebra \(B_1 \) in Banach \(D \)-module \(B_2 \). Let \(\alpha \in \Omega^{(n)}_p(U, B_1), \ \beta \in \Omega^{(n)}_q(U, B_2) \). Then
\[(\alpha \wedge \beta)(x) \circ (a_1, ..., a_{p+q}) = \frac{(p + q)!}{p! q!} \sum_{\sigma \in S(n)} |\sigma| (\alpha(x) \circ (\sigma(a_1), ..., \sigma(a_p))) (\beta(x) \circ (\sigma(a_{p+1}), ..., \sigma(a_{p+q}))) \]

Proof. The theorem follows from equalities (7.1.1), (7.2.1), (7.2.2).

For a given integer \(n \), consider \(D \)-module
\[\Omega^{(n)}(U, B_1) = \bigoplus_{p \geq 0} \Omega^{(n)}_p(U, B_1) \]
which is direct sum of \(D \)-modules \(\Omega^{(n)}_p(U, B_1), \ p = 0, 1, \ldots \). \(D \)-module \(\Omega^{(n)}(U, B_1) \) equipped with exterior product
\[\Omega^{(n)}_p(U, B_1) \times \Omega^{(n)}_q(U, B_1) \rightarrow \Omega^{(n)}_{p+q}(U, B_1) \]
is graded algebra.

Theorem 7.3.6. Let \(\mathcal{E}_A \) be basis of finite dimensional Banach algebra \(A \) over commutative ring \(D \). Let \(\mathcal{E}_B \) be basis of finite dimensional Banach algebra \(B \) over commutative ring \(D \). Let \(\omega_{i_1, \ldots, i_p}(x) \) be coordinates of polylinear map \(\omega(x) \in \mathcal{L}(D; A^n \rightarrow B), \ x \in U \), relative to bases \(\mathcal{E}_A, \mathcal{E}_B \). Then the differential \(p \)-form \(\omega \) has form
\[\omega(x) \circ (a_1, ..., a_p) = \omega_{i_1, \ldots, i_p}(x) a_{i_1}^{i_1} \ldots a_{i_p}^{i_p} \]
where
\[a_1 = a_1^{i_1} e_{A, i_1} \ldots \ a_p = a_p^{i_p} e_{A, i_p} \]
\[\omega_{i_1, \ldots, i_p}(x) = \omega(x) \circ (e_{A, i_1}, ..., e_{A, i_p}) \]
7.3. Differential Form

Proof. Since \(a_1, \ldots, a_p \) are any \(A \)-numbers, then equalities (7.3.2), (7.3.4) follow from the equality (7.3.3) and from the equality

\[\omega(x) \circ (a_1, \ldots, a_n) = \omega(x) \circ (a_1 e_{A_{i_1}}, \ldots, a_n e_{A_{i_n}}) = a_1^{i_1} \ldots a_n^{i_n} (\omega(x) \circ (e_{A_{i_1}}, \ldots, e_{A_{i_n}})) \]

A map

\[f : A \to B \]

is an example of \(B \)-valued differential 0-form.

A derivative of the map

\[f : A \to B \]

is an example of \(B \)-valued differential 1-form.

Theorem 7.3.7. Let \(\mathbf{b} \) be basis of finite dimensional Banach algebra \(A \) over field \(D \). We may consider map

\[f : A \to A \]

as map

\[f(x) = f(x^1, \ldots, x^n) \]

where

\[x = x^i e_i \]

Since the map \(f \) is differentiable, then there exist partial derivatives \(\frac{\partial f}{\partial x^i}, i = 1, \ldots, n, \) and the following equality is true

(7.3.5)

\[\frac{\partial f}{\partial x^i} = \frac{df}{dx} \circ e_i \]

Proof. According to the definition 3.3.2, differential of the map \(f \) has form

(7.3.6)

\[df = \frac{df(x)}{dx} \circ dx \]

Since the map \(f \) is the map of \(D \)-vector space, then differentials have form

(7.3.7)

\[dx = dx^i e_i, \quad dx^i \in D \]

(7.3.8)

\[df = \frac{\partial f}{\partial x^i} dx^i \]

The equality

(7.3.9)

\[\frac{\partial f}{\partial x^i} dx^i = \frac{df}{dx} \circ (dx^i e_i) = dx^i \left(\frac{df}{dx} \circ e_i \right) \]

follows from equalities (7.3.6), (7.3.7), (7.3.8). The equality (7.3.5) follows from the equality (7.3.9).

It is easy to see that partial derivative \(\frac{\partial f}{\partial x^i} \) represented as (7.3.5) is a map of \(D \)-algebra \(A \). If this map is differentiable, then we can consider partial derivative of order 2

(7.3.10)

\[\frac{\partial^2 f}{\partial x^j \partial x^i} = \frac{d}{dx} \left(\frac{df}{dx} \circ e_i \right) \circ e_j = \frac{d^2 f}{dx^2} \circ (e_i; e_j) \]
Theorem 7.3.8. Let A be free Banach D-module. Let the derivative of second order of the map

$$f : A \rightarrow B$$

be continuous. Then the second derivative is symmetric bilinear map

$$(7.3.11) \quad \frac{d^2 f}{dx^2} \circ (a, b) = \frac{d^2 f}{dx^2} \circ (b, a)$$

Proof. Since the map $\frac{d^2 f(x)}{dx^2}$ is continuous, then the equality (7.3.10) imply that the map $\frac{\partial^2 f(x)}{\partial x^i \partial x^j}$ is continuous. According to the theorem in [25] (pages 405, 406),

$$(7.3.12) \quad \frac{\partial^2 f}{\partial x^j} = \frac{\partial^2 f}{\partial x^i}$$

The equality

$$(7.3.13) \quad \frac{d^2 f}{dx^2} \circ (e_i; e_j) = \frac{d^2 f}{dx^2} \circ (e_j; e_i)$$

follows from equalities (7.3.10), (7.3.12). The equality (7.3.11) follows from equalities

$$a = a^i e_i \quad b = b^i e_i$$

and from the equality (7.3.13). \qed

7.4. Exterior Differentiation

Let A, B be Banach D-algebras. Let $U \subseteq A$ be an open set. Let the map

$$\omega : U \rightarrow \mathcal{L}A(D; A^p \rightarrow B)$$

be differential p-form of class C_n, $n > 0$. According to the definition 7.3.1, at every point $x \in U$ the increment of map ω can be represented as

$$(7.4.1) \quad \omega(x + a_0) - \omega(x) = \frac{d\omega(x)}{dx} \circ a_0 + o(dx)$$

where

$$\frac{d\omega(x)}{dx} \in \mathcal{L}A(D; A^{p+1} \rightarrow B)$$

$\frac{d\omega(x)}{dx} \in C_{n-1}$

According to the definition (7.4.1), the map

$$(7.4.2) \quad \left(\frac{d\omega(x)}{dx} \circ a_0 \right) \circ (a_1, ..., a_p)$$

is skew symmetric polylinear map with respect to variables $a_1, ..., a_p$ and is a linear map with respect to variable a_0. However, the map (7.4.2) is not skew symmetric polylinear map with respect to variables $a_0, a_1, ..., a_p$

Definition 7.4.1. Let A, B be Banach D-algebras. Let $U \subseteq A$ be an open set. Let the map

$$\omega : U \rightarrow \mathcal{L}A(D; A^p \rightarrow B)$$

be differential p-form of class C_n, $n > 0$. The map

$$(7.4.3) \quad d\omega \circ (a_0, ..., a_p) = (p + 1) \left[\frac{d\omega}{dx} \right] \circ (a_0, ..., a_p)$$

is called exterior differential. \qed
Theorem 7.4.2. Exterior differential holds the equality

\[d\omega \circ (a_0, \ldots, a_p) = \frac{1}{p!} \sum_{\sigma \in S(p+1)} \frac{d\omega}{dx} \circ (\sigma(a_0), \ldots, \sigma(a_p)) \]

Proof. The equality (7.4.4) follows from equalities (7.1.1), (7.4.3).

Lemma 7.4.3. Let \(S_1 \) be the set of permutations of the set of \(A \)-numbers \(a_0, \ldots, a_p \). Let \(S \) be the set of permutations of the set of \(A \)-numbers \(a_1, \ldots, a_p \). Let permutation \(\tau_i \in S_1, i = 0, \ldots, p \), be defined by tuple

\[\tau_i = (a_i \ a_0 \ldots \ a_i \ldots \ a_p) \]

For any permutation \(\sigma \in S_1 \), there exist permutations \(\tau_i \in S_1, \mu \in S \) such that

\[(\sigma(a_0) \ \sigma(a_1) \ldots \ \sigma(a_p)) = (\tau_i(a_0) \ \tau_i(a_1) \ldots \ \tau_i(a_p)) \]

Proof. The permutation \(\tau_i \) is defined by the equality

\[\tau_i(a_0) = \sigma(a_0) \]

The permutation \(\mu \) is defined by the equality

\[\mu = \left(\begin{array}{c} \tau_i(a_1) \ldots \tau_i(a_p) \\ \tau_i(\sigma(a_1)) \ldots \tau_i(\sigma(a_p)) \end{array} \right) \]

The equality (7.4.6) follows from the equalities (7.4.7), (7.4.8).

Lemma 7.4.4. For any permutation \(\mu \) of the set of \(A \)-numbers

\[a_0 \ldots \ a_i \ldots \ a_p \]

\(i = 0, \ldots, p \), there exists the permutation \(\sigma \) of the set of \(A \)-numbers \(a_0, \ldots, a_p \) such that

\[(\sigma(a_0) \ \sigma(a_1) \ldots \ \sigma(a_p)) = (\tau_i(a_0) \ \tau_i(\mu(a_1)) \ldots \ \tau_i(\mu(a_p))) \]

\[|\sigma| = (-1)^i |\mu| \]

Proof. The permutation \(\sigma \) has form

\[\sigma = \tau_i \left(\begin{array}{c} a_i \ a^0 \ldots \ a_i \ldots \ a_p \\ a_i \ a^0 \ldots \mu(a_i) \ldots \mu(a_i) \end{array} \right) \]

The equality (7.4.9) follows from the equality (7.4.11). The equality

\[|\sigma| = |\tau_i| |\mu| \]

follows from the equality (7.4.11). Since the permutation \(\tau_i \) is the product of \(i \) transpositions, then

\[|\tau_i| = (-1)^i \]

The equality (7.4.10) follows from the equalities (7.4.12), (7.4.13).
Lemma 7.4.5. Let S_1 be the set of permutations of the set of A-numbers $a_0, ..., a_p$. Let S be the set of permutations of the set of A-numbers $a_1, ..., a_p$. For any polylinear map f

\[(7.4.14)\]

$$
\sum_{\sigma_1 \in S_1} |\sigma_1| f(\sigma_1(a_0), ..., \sigma_1(a_p)) = \sum_{i=0}^{p} (-1)^i \sum_{\sigma \in S} |\sigma| f(\tau_i(a_0), \sigma(\tau_i(a_1)), ..., \sigma(\tau_i(a_p)))
$$

Proof. The lemma follows from lemmas 7.4.3, 7.4.4. \hfill \Box

Theorem 7.4.6. We can write exterior differential of differential p-form as

\[(7.4.16)\]

$$
d\omega \circ (a_0, ..., a_p) = \sum_{i=0}^{p} (-1)^i \frac{d\omega}{dx} \circ (\tau_i(a_0), ..., \tau_i(a_p))
$$

Proof. The equality

\[(7.4.17)\]

$$
d\omega \circ (a_0, ..., a_p) = \frac{1}{p+1} \sum_{\sigma \in S(p+1)} |\sigma| \frac{d\omega(x)}{dx} \circ (\sigma(a_0), ..., \sigma(a_p))
$$

follows from equalities (7.1.1), (7.4.3). According to the lemma 7.4.5, the equality

\[(7.4.18)\]

$$
d\omega \circ (a_0, ..., a_p) = \sum_{i=0}^{p} \frac{(-1)^i}{p!} \sum_{\mu \in S(p)} \frac{d\omega(x)}{dx} \circ (\tau_i(a_0), \tau_i(\mu(a_1)), ..., \tau_i(\mu(a_p)))
$$

follows from the equality (7.4.17). The equality (7.4.16) follows from the equality (7.4.18), since the map $\partial_\mu \omega(x)$ is skew symmetric with respect to variables $a_1, ..., a_p$ and we can write summand corresponding to identity permutation μ instead of sum over permutations μ. \hfill \Box

Example 7.4.7. Let $\omega \in \Omega^{(n)}_2(U, B)$. Then

$$
d\omega \circ (a_1, a_2, a_3) = \frac{d\omega}{dx} \circ (a_1, a_2, a_3) - \frac{d\omega}{dx} \circ (a_2, a_1, a_3) + \frac{d\omega}{dx} \circ (a_3, a_1, a_2)
$$

\hfill \Box

Theorem 7.4.8. Let A, B_2 be free Banach algebras over commutative ring D. \hfill \Box

Let

\[h : B_1 \longrightarrow B_2\]

be left-side representation of free associative Banach D-algebra B_1 in Banach D-module B_2. Let $\alpha \in \Omega^{(n)}_p(U, B_1)$, $\beta \in \Omega^{(n)}_q(U, B_2)$. Then

\[(7.4.19)\]

$$
d(\alpha \wedge \beta) = d\alpha \wedge \beta + (-1)^p \alpha \wedge d\beta
$$

\[7.6\] According to the definition (7.4.5), we can write the equality (7.4.16) as

\[(7.4.15)\]

$$
d\omega \circ (a_0, ..., a_p) = \sum_{i=0}^{p} (-1)^i \left(\frac{d\omega}{dx} \circ a_i \right) \circ (a_0, ..., a_i, ..., a_p)
$$

\[7.7\] The theorem is simiral to the theorem [31]-2.4.2, page 22. However I cannot use Cartan’s proof because he uses commutativity of product in real field.
7.4. Exterior Differentiation 87

PROOF. According to the theorem 3.3.16 and to the corollary 7.3.4,

\begin{equation}
\frac{d(\alpha \land \beta)}{dx} \circ a_0 = \left(\frac{d\alpha}{dx} \circ a_0 \right) \land \beta + \alpha \land \left(\frac{d\beta}{dx} \circ a_0 \right)
\end{equation}

The equality

\begin{equation}
\left(\frac{d(\alpha \land \beta)}{dx} \circ a_0 \right) \circ (a_1, ..., a_{p+q})
\end{equation}

follows from equalities (7.4.20). The equality

\begin{equation}
d(\alpha \land \beta) \circ (a_0, ..., a_{p+q}) = \sum_{i=0}^{p+q} (-1)^i \left(\frac{d\alpha}{dx} \circ \tau_i(a_0) \right) \circ (\tau_i(a_1), ..., \tau_i(a_{p+q}))
\end{equation}

follows from equalities (7.4.16), (7.4.21).

Let S_1 be the set of permutations of the set of A-numbers $a_0, ..., a_{p+q}$. Let S be the set of permutations of the set of A-numbers $a_1, ..., a_{p+q}$.

According to definitions (7.1.1), (7.2.2),

\begin{equation}
\sum_{i=0}^{p+q} (-1)^i \left(\frac{d\alpha}{dx} \circ \tau_i(a_0) \right) \circ (\tau_i(a_1), ..., \tau_i(a_{p+q}))
\end{equation}

\begin{equation}
= \sum_{i=0}^{p+q} (-1)^i \left(\frac{d\alpha}{dx} \circ \tau_i(a_0) \right) \circ (\sigma(\tau_i(a_1)), ..., \sigma(\tau_i(a_{p+q})))
\end{equation}

\begin{equation}
* (\beta \circ (\sigma(\tau_i(a_{p+1})), ..., \sigma(\tau_i(a_{p+q}))))
\end{equation}

\begin{equation}
= \sum_{i=0}^{p+q} (-1)^i \left(\frac{d\alpha}{dx} \circ \tau_i(a_0) \right) \circ (\tau_i(a_1), ..., \tau_i(a_{p+q}))
\end{equation}

\begin{equation}
* (\beta \circ (\sigma(\tau_i(a_{p+1})), ..., \sigma(\tau_i(a_{p+q}))))
\end{equation}

According to the lemma 7.4.5, the equality

\begin{equation}
\sum_{i=0}^{p+q} (-1)^i \left(\frac{d\alpha}{dx} \circ \tau_i(a_0) \right) \circ (\tau_i(a_1), ..., \tau_i(a_{p+q}))
\end{equation}

\begin{equation}
= \frac{1}{pq!} \sum_{\sigma \in S_1} |\sigma| \left(\frac{d\alpha}{dx} \circ (\sigma(a_0), ..., \sigma(a_p)) \right) (\beta \circ (\sigma(a_{p+1}), ..., \sigma(a_{p+q})))
\end{equation}
follows from the equality (7.4.23). Let $R_1 = R(I_{p+1, p+q}, I_{0, p+q})$. According to lemmas 7.2.6, 7.2.7, 7.2.8, the equality

$$\sum_{i=0}^{p+q} (-1)^i \left(\left(\frac{d\alpha}{dx} \circ \tau_i(a_0) \right) \land \beta \right) \circ (\tau_i(a_1), ..., \tau_i(a_{p+q}))$$

(7.4.25)

$$= \frac{1}{plq!} \sum_{\lambda \in R_1} |\lambda| \left(\sum_{\tau \in S_{i}^{(\lambda)}} |\tau| \left(\frac{d\alpha}{dx} \circ (\tau(\lambda_0), ..., \tau(\lambda_p)) \right) \right)$$

* $(\beta \circ (\lambda(a_{p+1}), ..., \lambda(a_{p+q})))$

follows from the equality (7.4.24). According to definitions (7.1.1), (7.4.3), the equality

$$\sum_{i=0}^{p+q} (-1)^i \left(\left(\frac{d\alpha}{dx} \circ \tau_i(a_0) \right) \land \beta \right) \circ (\tau_i(a_1), ..., \tau_i(a_{p+q}))$$

(7.4.26)

$$= \frac{1}{plq!} \sum_{\lambda \in R_1} |\lambda| p!d\alpha \circ (\lambda_0, ..., \lambda_p) (\beta \circ (\lambda(a_{p+1}), ..., \lambda(a_{p+q})))$$

$$= \frac{1}{q!} \sum_{\lambda \in R_1} |\lambda| (d\alpha \circ (\lambda_0, ..., \lambda_p)) (\beta \circ (\lambda(a_{p+1}), ..., \lambda(a_{p+q})))$$

follows from equalities (7.4.4), (7.4.25). The equality

$$\sum_{i=0}^{p+q} (-1)^i \left(\left(\frac{d\alpha}{dx} \circ \tau_i(a_0) \right) \land \beta \right) \circ (\tau_i(a_1), ..., \tau_i(a_{p+q}))$$

(7.4.27)

$$= (d\alpha \land \beta) \circ (a_0, ..., a_{p+q})$$

follows from equalities (7.2.23), (7.4.26).

According to definitions (7.1.1), (7.2.2),

$$\sum_{i=0}^{p+q} (-1)^i \left(\alpha \land \left(\frac{d\beta}{dx} \circ \tau_i(a_0) \right) \right) \circ (\tau_i(a_1), ..., \tau_i(a_{p+q}))$$

$$= \sum_{i=0}^{p+q} \frac{(-1)^i}{plq!} \sum_{\sigma \in S} |\sigma| (\alpha \circ (\sigma(\tau_i(a_1)), ..., \sigma(\tau_i(a_p))))$$

(7.4.28)

* $\left(\left(\frac{d\beta}{dx} \circ \tau_i(a_0) \right) \circ (\sigma(\tau_i(a_{p+1})), ..., \sigma(\tau_i(a_{p+q}))) \right)$

$$= \sum_{i=0}^{p+q} \frac{(-1)^i}{plq!} \sum_{\sigma \in S} |\sigma| (\alpha \circ (\sigma(\tau_i(a_1)), ..., \sigma(\tau_i(a_p))))$$

* $\left(\frac{d\beta}{dx} \circ (\tau_i(a_0), \sigma(\tau_i(a_{p+1})), ..., \sigma(\tau_i(a_{p+q}))) \right)$
According to the lemma 7.4.5, the equality
\[
\sum_{i=0}^{p+q} (-1)^i \left(\alpha \wedge \frac{d\beta}{dx} \circ \tau_i(a_0) \right) \circ (\tau_i(a_1), ..., \tau_i(a_{p+q}))
\]
(7.4.29)
follows from the equality (7.4.28). Let \(R_1 = R(I_1, I_{0,p+q}) \). According to lemmas 7.2.6, 7.2.7, 7.2.8, the equality
\[
\sum_{i=0}^{p+q} (-1)^i \left(\alpha \wedge \frac{d\beta}{dx} \circ \tau_i(a_0) \right) \circ (\tau_i(a_1), ..., \tau_i(a_{p+q}))
\]
\[
= \frac{1}{p!q!} \sum_{\lambda \in R_1} |\lambda| (\alpha \circ (\lambda(a_1), ..., \lambda(a_p)))
\]
\[
\sum_{\tau \in S_i(\lambda)} |\tau| \frac{d\beta}{dx} \circ (\tau(\lambda_0), \tau(\lambda_1), ..., \tau(\lambda_q))
\]
(7.4.30)
follows from the equality (7.4.29). According to definitions (7.1.1), (7.4.3), the equality
\[
\sum_{i=0}^{p+q} (-1)^i \left(\alpha \wedge \frac{d\beta}{dx} \circ \tau_i(a_0) \right) \circ (\tau_i(a_1), ..., \tau_i(a_{p+q}))
\]
\[
= \frac{1}{p!q!} \sum_{\lambda \in R_1} |\lambda|q!(\alpha \circ (\lambda(a_1), ..., \lambda(a_p)))(d\beta \circ (\lambda_0, ..., \lambda_q))
\]
(7.4.31)
follows from equalities (7.4.4), (7.4.30). The equality
\[
\sum_{i=0}^{p+q} (-1)^i \left(\alpha \wedge \frac{d\beta}{dx} \circ \tau_i(a_0) \right) \circ (\tau_i(a_1), ..., \tau_i(a_{p+q}))
\]
\[
= (\alpha \wedge d\beta) \circ (a_1, ..., a_p, a_0, a_{p+1}, ..., a_{p+q})
\]
(7.4.32)
follows from equalities (7.2.14), (7.4.31). Since
\[
\begin{vmatrix}
 a_1 & a_2 & \ldots & a_p & a_0 & a_{p+1} & \ldots & a_{p+q} \\
 a_0 & a_1 & \ldots & a_{p-1} & a_p & a_{p+1} & \ldots & a_{p+q}
\end{vmatrix}
= (-1)^p
\]
then the equality
\[
\sum_{i=0}^{p+q} (-1)^i \left(\alpha \wedge \frac{d\beta}{dx} \circ \tau_i(a_0) \right) \circ (\tau_i(a_1), ..., \tau_i(a_{p+q}))
\]
\[
= (-1)^p (\alpha \wedge d\beta) \circ (a_0, ..., a_{p+q})
\]
(7.4.33)
follows from the equality (7.4.32).
The equality
\[d(\alpha \wedge \beta) \circ (a_0, ..., a_{p+q}) \]
\[= (d\alpha \wedge \beta) \circ (a_0, ..., a_{p+q}) + (-1)^p (\alpha \wedge d\beta) \circ (a_0, ..., a_{p+q}) \]
follows from equalities (7.4.22), (7.4.27), (7.4.33). The equality (7.4.19) follows from the equality (7.4.34). □

Theorem 7.4.9. Let \(A \) be free Banach \(D \)-module. If \(\omega \in \Omega_p(n)(U, B) \), \(n \geq 2 \), then
\[d^2 \omega(x) = 0 \]
(7.4.35)

Proof. According to the definition 7.4.1,
\[d^2 \omega \circ (b_2, b_1, a_1, ..., a_p) = (p + 1)(p + 2) \frac{d^2 \omega}{dx^2} \circ [b_2, b_1, a_1, ..., a_p] \]
Let \(S \) be set of permutations of the set \(\{b_1, b_2\} \cup I_{1,p} \). According to the definition (7.1.1), the equality
\[d^2 \omega \circ (b_2, b_1, a_1, ..., a_p) \]
\[= \frac{(p + 2)!}{p!} \sum_{\sigma \in S} \frac{d^2 \omega}{dx^2} \circ (\sigma(b_2), \sigma(b_1), \sigma(a_1),...,\sigma(a_p)) \]
(7.4.37)
follows from the equality (7.4.36). According to the theorem 7.3.8, the map \(\frac{d^2 \omega}{dx^2} \) is symmetric with respect to \(A \)-numbers \(b_1, b_2 \). The equality (7.4.35) follows from definitions 7.1.1, 7.1.3. □

7.5. Poincaré’s Theorem

Definition 7.5.1. Subset \(U \) of \(D \)-algebra \(B \) is called starlike with respect to the \(B \)-number \(a \in U \), if, for any \(B \)-number \(x \in U \) and real number \(0 \leq t \leq 1 \), \((1 - t)a + tx \in U \). □

Definition 7.5.2. Let \(A, B \) be Banach algebras. Let \(U \subseteq A \) be open set. The differential form \(\omega \in \Omega_p^{(n)}(U, B) \) is called integrable, if there exists a differential form \(\alpha \in \Omega_p^{(n+1)}(U, B) \) such that
\[d\alpha(x) = \omega(x) \]
Then we use notation
\[\alpha(x) = \int \omega(x) \]
and the differential form \(\alpha \) is called indefinite integral of the differential form \(\omega \). □

7.8 See also the theorem [31]-2.5.1 on the page 23.
Theorem 7.5.3. Let A, B be Banach algebras. Let $I = [0, 1]$ be subset of real field. Let
\[\varphi : U \times I \to B \]
be continued map. Then the map
\[\psi : U \to B \]
defined by the equality
\[\psi(x) = \int_0^1 dt \varphi(x, t) \]
is continuous.

Proof. Choose $\epsilon > 0$.

7.5.3.1: For each $(x, t) \in U \times I$, there exists $\eta(x, t) \in \mathbb{R}$ such that the statement
\[\|x' - x\|_A < \eta(x, t), |t' - t| < \eta(x, t) \]
implies
\[\|\varphi(x', t') - \varphi(x, t)\|_B \leq \frac{\epsilon}{2} \]

7.5.3.2: In particular, the statement $|t' - t| < \eta(x, t)$ implies
\[\|\varphi(x, t') - \varphi(x, t)\|_B \leq \frac{\epsilon}{2} \]

From statements 7.5.3.1, 7.5.3.2, it follows that the statement $\|x' - x\|_A < \eta(x, t), |t' - t| < \eta(x, t)$ implies
\[\|\varphi(x', t') - \varphi(x, t')\|_B \leq \epsilon \]

Let
\[I(x, t) = \{ t' \in I : |t' - t| < \eta(x, t) \} \]
Since the set I is compact, then, for given x, the finite set of intervals $I(x, t)$ which cover the set I, for instance $\{I(x, t_i)\}$. Let $\eta(x)$ be the smallest number of $\eta(x, t_i)$. Since, for any $t' \in I$, there exists t_i such that $|t' - t_i| < \eta(x, t_i)$, then the statement $\|x' - x\|_A \leq \eta(x)$ implies
\[\|\varphi(x', t') - \varphi(x, t')\|_B \leq \epsilon \]
for any $t' \in I$. Therefore, the map φ is continuous at x uniformly with respect to t.

Since
\[\psi(x') - \psi(x) = \int_0^1 dt (\varphi(x', t) - \varphi(x, t)) \]
then, according to the theorem C.3.8,

\[\|\psi(x') - \psi(x)\|_B = \int_0^1 dt \|\varphi(x', t) - \varphi(x, t)\|_B \]

From inequalities (7.5.1), (7.5.2) and the theorem C.3.9, the statement $\|x' - x\|_A \leq \eta(x)$ implies
\[\|\psi(x') - \psi(x)\|_B = \int_0^1 dt \epsilon = \epsilon \]
Therefore, the map ψ is continuous. \(\square \)

7.9 The statement is similar to the lemma [31]-2.12.2 on the page 33.
Lemma 7.5.4. Let
\[o : A \times I \to B \]
be such continuous map that
\[\lim_{\|h\|_A \to 0} \frac{\|o(h, t)\|_B}{\|h\|_A} = 0 \]
Then
\[o_1(h) = \int_0^1 dt \; o(h, t) \]
is map
\[o_1 : A \to B \]
such that
\[\lim_{\|h\|_A \to 0} \frac{\|o_1(h)\|_B}{\|h\|_A} = 0 \]

Proof. From the equality (7.5.3), it follows that we can represent the map \(o \) as product
\[o(h, t) = o_2(h, t)h \]
where
\[\lim_{h \to 0} o_2(h, t) = 0 \]
Continuity of the map \(o_2 \) follows from the continuity of the map \(o \). Since the set \(I \) is compact, then there exists the map
\[o_3 : A \to R \]
defined by the equality
\[o_3(h) = \max(\|o_2(h, t)\|_B, t \in I) \]

Lemma 7.5.5.
\[\lim_{h \to 0} o_3(h) = 0 \]
Proof. Let
\[\lim_{h \to 0} o_3(h) \neq 0 \]
Then there exists \(\epsilon > 0 \) such that \(o_3(h) \geq \epsilon \) for any \(\delta > 0 \) and for any \(h, \|h\|_A < \delta \). Since the set \(I \) is compact, then there exists \(t = t(h) \) such that \(\|o_2(h, t(h))\|_B \geq \epsilon \) for any \(h, \|h\|_A < \delta \). This statement contradicts to the equality (7.5.6). Therefore, the statement (7.5.8) is false.

According to the theorem C.3.11,
\[\|o_1(h)\|_B = \left| \int_0^1 dt \; o(h, t) \right|_B \leq \int_0^1 dt \|o_2(h, t)\|_B \|h\|_A \]
\[\leq \int_0^1 dt \; o_3(h) \|h\|_A = o_3(h) \|h\|_A \]
The statement (7.5.4) follows from the statement (7.5.9) and from the lemma 7.5.5.
Theorem 7.5.6. Let A, B be Banach algebras. Let $I = [0, 1]$ be subset of real field. Let
\[\varphi : U \times I \to B \]
be continuous map. Let the map
\[\psi : U \to B \]
be defined by the equality
\[(7.5.10) \quad \psi(x) = \int_0^1 dt \varphi(x, t) \]
If derivative $\frac{\partial \varphi(x,t)}{\partial x}$ exists at every point $(x,t) \in U \times I$, then the map ψ is differentiable and
\[(7.5.11) \quad \frac{d\psi(x)}{dx} = \int_0^1 dt \frac{\partial \varphi(x,t)}{\partial x} \]
\[\text{Proof.} \quad \text{Let the derivative } \frac{\partial \varphi(x,t)}{\partial x} \text{ exist and be continuous map} \]
\[\frac{\partial \varphi(x,t)}{\partial x} : U \times I \to \mathcal{L}(D; A \to B) \]
According to the theorem 7.5.3, the map
\[(7.5.12) \quad \lambda(x) = \int_0^1 dt \frac{\partial \varphi(x,t)}{\partial x} \]
is linear and continuous. According to the theorem C.3.12, the equality
\[(7.5.13) \quad \lambda(x) \circ h = \int_0^1 dt \frac{\partial \varphi(x,t)}{\partial x} \circ h \]
follows from the equality (7.5.12).
According to the definition 3.3.1,
\[(7.5.14) \quad \varphi(x+h,t) - \varphi(x,t) = \frac{\partial \varphi(x,t)}{\partial x} \circ h + o(h,t) \]
where
\[(7.5.15) \quad \lim_{\|h\|_A \to 0} \frac{\|o(h,t)\|_B}{\|h\|_A} = 0 \]
According to the theorem C.3.10, the equality
\[(7.5.16) \quad \int_0^1 dt \varphi(x+h,t) - \int_0^1 dt \varphi(x,t) = \int_0^1 dt \frac{\partial \varphi(x,t)}{\partial x} \circ h + \int_0^1 dt o(h,t) \]
follows from the equality (7.5.14). Let
\[(7.5.17) \quad o_1(h) = \int_0^1 dt o(h,t) \]
According to the lemma 7.5.4, the equality
\[(7.5.18) \quad \lim_{\|h\|_A \to 0} \frac{\|o_1(h)\|_B}{\|h\|_A} = 0 \]
follows from equalities (7.5.15), (7.5.17). The equality
\[(7.5.19) \quad \psi(x+h) - \psi(x) = \lambda(x) \circ h + o_1(h) \]
\[\text{7.10 The statement is similar to the lemma [31]-2.12.2 on the page 33.} \]
follows from equalities (7.5.10), (7.5.12), (7.5.16), (7.5.17). The equality (7.5.11) follows from equalities (7.5.12), (7.5.18), (7.5.19) and from the definition 3.3.1. □

Theorem 7.5.7. Let A, B be Banach algebras. Let $I = [0, 1]$ be subset of real field. Let

$$\varphi : U \times I \to B$$

be map of class C^n. Let the map

$$\psi : U \to B$$

be defined by the equality

$$\psi(x) = \int_0^1 dt \varphi(x,t)$$

Then the map ψ is of class C^n and

$$\frac{d^n \psi(x)}{dx^n} = \int_0^1 dt \frac{\partial^n \varphi(x,t)}{\partial x^n}$$

Proof. The proof follows by induction on n, since the theorem follows from the theorem 7.5.6 and the definition (4.1.5) □

Theorem 7.5.8 (Poincaré’s Theorem). Let A, B be Banach algebras. Let $U \subseteq A$ be open set, starlike with respect to the A-number $a \in U$. If the differential form $\omega \in \Omega_1^{(n)}(U, B)$ satisfies to the equation

$$d\omega(x) = 0$$

then the differential form ω is integrable.

Proof. Let $a = 0$. In general, we can achieve this by a translation. Let $\omega \in \Omega_1^{(n)}(U, B)$. Set

$$f(x) = \int_0^1 dt \omega(tx) \circ x$$

The map

$$\varphi(x, t) = \omega(tx) \circ x$$

is the composition of following maps

- the map
 $$\varphi_1 : (x, t) \in U \times I \to (tx, x) \in U \times A$$
 exists because the set U is starlike with respect to A-number 0 and this map is of class C^∞;
- the map
 $$\varphi_2 : (x, a) \in U \times A \to (\omega(x), a) \in L(D; A \to B) \times A$$
 is of class C^n;
- the bilinear map
 $$\varphi_3 : (f, a) \in L(D; A \to B) \times A \to f \circ a \in B$$
 is of class C^∞.

\(^{7.11}\) The statement is similar to the corollary [31]-2.12.3 on the page 35.

\(^{7.12}\) I follow the theorem [31]-2.12.1 on the page 33.
Therefore, the map φ is of class C^n. According to theorems 7.5.3, 7.5.7, the map f is of class C^n.

According to the theorem 7.5.6,
\[(7.5.23)\] \[\frac{df(x)}{dx} = \int_0^1 dt \frac{\partial \varphi(x,t)}{\partial x}\]

According to the theorem 3.3.16, the equality
\[(7.5.24)\] \[\frac{\partial \varphi(x,t)}{\partial x} \circ a = \left(\frac{d\omega(tx)}{dtx} \circ (ta) \right) \circ x + \omega(tx) \circ a\]
\[\quad = t \left(\frac{d\omega(tx)}{dtx} \circ a \right) \circ x + \omega(tx) \circ a\]

follows from the equality (7.5.22). From the statement $d\omega(x) = 0$ it follows that $(d_x \omega(x) \circ a_1) \circ a_2$ is a bilinear symmetric map of a_1 and a_2. Therefore,
\[(7.5.25)\] \[\left(\frac{d\omega(tx)}{dtx} \circ a \right) \circ x = \left(\frac{d\omega(tx)}{dtx} \circ x \right) \circ a\]
The equality
\[(7.5.26)\] \[\frac{\partial \varphi(x,t)}{\partial x} \circ a = t \left(\frac{d\omega(tx)}{dtx} \circ x \right) \circ a + \omega(tx) \circ a\]
follows from equalities (7.5.24), (7.5.25). The equality
\[(7.5.27)\] \[\frac{\partial \varphi(x,t)}{\partial x} = t \left(\frac{d\omega(tx)}{dtx} \circ x \right) + \omega(tx)\]
follows from the equality (7.5.26). At the same time
\[(7.5.28)\] \[\frac{dt\omega(tx)}{dt} = t \left(\frac{d\omega(tx)}{dtx} \circ \frac{dtx}{dt} \right) + \omega(tx)\]
The equality
\[(7.5.29)\] \[\frac{df(x)}{dx} = \int_0^1 dt \frac{d}{dt}(t\omega(tx))\]
follows from equalities (7.5.23), (7.5.27), (7.5.28). Set
\[(7.5.30)\] \[g(t) = t\omega(tx)\]
The equality
\[(7.5.31)\] \[\frac{df(x)}{dx} = g(1) - g(0) = \omega(x)\]
follows from equalities (7.5.29), (7.5.30). Therefore, ω is equal to the differential form df. \(\square\)
Theorem 7.5.9 (Poincaré’s Theorem). Let A, B be Banach algebras. Let $U \subseteq A$ be open set, starlike with respect to the A-number $a \in U$. If the differential form $\omega \in \Omega^{(n)}_{p}(U, B)$ satisfies to the equation

$$d\omega(x) = 0$$

then the differential form ω is integrable.

Proof. For every p, we define the linear map $k : \Omega^{(n)}_{p}(U, B) \to \Omega^{(n)}_{p-1}(U, B)$ as follows.

7.5.9.1: If $f \in \Omega^{(n)}_{0}$, let $k(f) = 0$.
7.5.9.2: For $p \geq 1$ and $\omega \in \Omega^{(n)}_{p}(U, B)$, set

$$(7.5.32) k(\omega) = \alpha$$

where

$$(7.5.33) \alpha(x) \circ (a_{1}, ..., a_{p-1}) = \int_{0}^{1} dt t^{p-1} \omega(tx) \circ (x, a_{1}, ..., a_{p-1})$$

Lemma 7.5.10. The map k is well defined.

Proof. For $p = 0$, the definition 7.5.9.1 is the same as saying that D-module $\Omega^{(n)}_{-1}(U, B)$ is reduced to 0.

For $p > 0$, consider skew symmetric polylinear map

$$\omega(tx) \circ x : (a_{1}, ..., a_{p-1}) \to \omega(tx) \circ (x, a_{1}, ..., a_{p-1})$$

Then we can write the equality (7.5.33) as follows

$$(7.5.34) \alpha(x) \circ (a_{1}, ..., a_{p-1}) = \left(\int_{0}^{1} dt t^{p-1} \omega(tx) \circ x \right) \circ (a_{1}, ..., a_{p-1})$$

From (7.5.34) it follows that $\alpha(x) \in LA(D; A^{p-1} \to B)$.

The map

$$(x, t) \to t^{p-1} \omega(tx, x)$$

is the composition of following maps

- the map $\alpha_{1} : (x, t) \in U \times I \to (tx, t, x) \in U \times I \times A$ exists because the set U is starlike with respect to A-number 0 and this map is of class C^{∞};
- the map $\alpha_{2} : (x, t, a) \in U \times I \times A \to (t^{p-1} \omega(x), a) \in \mathcal{L}(D; A^{p} \to B) \times A$ is of class C^{n};
- the map $\alpha_{3} : (f, a) \in \mathcal{L}(D; A^{p} \to B) \times A \to f \circ a \in \mathcal{L}(D; A^{p-1} \to B)$ is of class C^{∞}.

Therefore, α is differential $(p - 1)$-form of class C^{n}.

7.13 I follow the theorem [31]-2.12.1 on the page 33.
Lemma 7.5.11. If $f \in \Omega^{(n)}_0$, $n \geq 1$, then

\[(7.5.35) \quad k(df) = f - f_0 \]

where f_0 is constant map $f_0 : x \in U \to f(0) \in B$.

Proof. The differential form $k(df)$ is the map

\[x \mapsto \int_0^1 dt \left(\frac{df(tx)}{dx} \circ x \right) = \int_0^1 dt \frac{df(tx)}{dt} = f(x) - f(0) \]

Lemma 7.5.12. If $\omega \in \Omega^{(n)}_p(U, B)$, $n \geq 1$, $p \geq 1$, then

\[(7.5.36) \quad d(k(\omega)) + k(d\omega) = \omega \]

Proof. The equality

\[d\omega(tx) \circ (x, a_1, ..., a_p) = \left(\frac{d\omega(tx)}{dx} \circ x \right) \circ (a_1, ..., a_p) \]

\[+ \sum_{i=1}^p (-1)^i \left(\frac{d\omega(tx)}{dx} \circ a_i \right) \circ (x, a_1, ..., a^i, ..., a^p) \]

follows from the equality (7.4.15). From equalities (7.5.33), (7.5.37), it follows that the differential form

\[(7.5.38) \quad k(d\omega) = \beta \]

is defined by the equality

\[\beta(x) \circ (a_1, ..., a_p) \]

\[= \int_0^1 dt \left(\frac{d\omega(tx)}{dx} \circ x \right) \circ (a_1, ..., a_p) \]

\[+ \sum_{i=1}^p (-1)^i \int_0^1 dt \left(\frac{d\omega(tx)}{dx} \circ a_i \right) \circ (x, a_1, ..., a^i, ..., a^p) \]

According to the theorem 7.5.6, the equality

\[(7.5.40) \quad \left(\frac{d\alpha(x)}{dx} \circ a_1 \right) \circ (a_2, ..., a_p) = \int_0^1 dt \left(\frac{d\omega(tx)}{dx} \circ a_1 \right) \circ (x, a_2, ..., a_p) \]

\[+ \int_0^1 dt \left(\frac{d\omega(tx)}{dx} \circ a_1 \right) \circ (x, a_2, ..., a_p) \]

follows from the equality (7.5.33). The equality

\[\left(\frac{d\alpha(x)}{dx} \circ (a_1, ..., a_p) \right) \]

\[= \sum_{i=1}^p (-1)^{i-1} \int_0^1 dt \left(\frac{d\omega(tx)}{dx} \circ a_i \right) \circ (x, a_1, ..., a_i, ..., a_p) \]

\[+ \sum_{i=1}^p (-1)^{i-1} \int_0^1 dt \left(\frac{d\omega(tx)}{dx} \circ (a_i, a_1, ..., a_i, ..., a_p) \right) \]

\[+ \sum_{i=1}^p (-1)^{i-1} \int_0^1 dt \left(\frac{d\omega(tx)}{dx} \circ (a_i, a_1, ..., a_i, ..., a_p) \right) \]
follows from equalities (7.4.15), (7.5.40). Since ω is skew symmetric map, then the following equality is true
\[\sum_{i=1}^{p} (-1)^{i-1} \int_{0}^{1} dt \, t^{p-1} \omega(tx) \circ (a_i, a_1, \ldots, a_1, \ldots, a_p) \]
(7.5.42)
\[= p \int_{0}^{1} dt \, t^{p-1} \omega(tx) \circ (a_1, \ldots, a_p) \]
The equality
\[d(k(\omega)) \circ (a_1, \ldots, a_p) + k(d\omega) \circ (a_1, \ldots, a_p) \]
(7.5.43)
\[= (d\alpha) \circ (a_1, \ldots, a_p) + \beta \circ (a_1, \ldots, a_p) \]
follows from equalities (7.5.32), (7.5.38), (7.5.39), (7.5.41), (7.5.42). The equality
\[d(k(\omega)) + k(d\omega) = \int_{0}^{1} dt \, t^{p} \frac{d\omega(tx)}{dx} \circ x + p \int_{0}^{1} dt \, t^{p-1} \omega(tx) \]
(7.5.44)
\[= \int_{0}^{1} dt \left(t^{p} \frac{d\omega(tx)}{dx} \circ x + pt^{p-1} \omega(tx) \right) \]
follows from the equality (7.5.43). At the same time
\[\frac{dt^{p} \omega(tx)}{dt} = t^{p} \left(\frac{d\omega(tx)}{dx} \circ \frac{dx}{dt} \right) + pt^{p-1} \omega(tx) \]
(7.5.45)
\[= t^{p} \left(\frac{d\omega(tx)}{dx} \circ x \right) + pt^{p-1} \omega(tx) \]
The equality
\[d(k(\omega)) + k(d\omega) = \int_{0}^{1} dt \, \frac{dt^{p} \omega(tx)}{dt} \]
(7.5.46)
follows from equalities (7.5.44), (7.5.45). The equality (7.5.36) follows from the equality (7.5.46).

If $d\omega(x) = 0$, then the equality
\[\omega = d(k(\omega)) \]
(7.5.47)
follows from the equality (7.5.36). Therefore, the map k furnishes the differential form $k(\omega) = \alpha$ such that $d\alpha(x) = \omega(x)$.
CHAPTER 8

Structure of Differential Form

8.1. Polylinear Map into Associative D-Algebra

Theorem 8.1.1. Let \mathcal{F} be the basis of left $B \otimes B$-module $\mathcal{L}(D; A \to B)$. We identify the polylinear map $f \in \mathcal{L}(D; A^n \to B)$ and the tensor $b \in B^{(n+1)}$ using the equality

$$f \circ (a_1, \ldots, a_n) = (b_s \circ F_s[\sigma_s] \circ \sigma_s) \circ (a_1, \ldots, a_n)$$

$$= b_{0:s}(F_s[1] \circ \sigma_s(a_1))b_{1:s} \cdots (F_s[n] \circ \sigma_s(a_n))b_{n:s}$$

(8.1.1)

Proof. The proof of the theorem is similar to the proof of the theorem 2.5.24. □

Theorem 8.1.2. Let

$$f = b_s \circ F_s[\sigma_s]$$

be polylinear map. Than

$$[f] = \frac{1}{n!} \sum_{\sigma \in S(n)} |\sigma||\sigma_s| b_s \circ F_s[\sigma] \circ \sigma$$

(8.1.3)

Proof. The equality

$$[f] = \frac{1}{n!} \sum_{\sigma_2 \in S(n)} |\sigma_2| b_s \circ F_s[\sigma_s] \circ \sigma_2 \circ \sigma$$

(8.1.4)

follows from equalities (7.1.1), (8.1.2). The equality (8.1.3) follows from the equality (8.1.4) because, for any s, we can use sum over $\sigma \in S$, $\sigma = \sigma_2 \circ \sigma_s$, instead of sum over $\sigma_2 \in S(n)$. Then $|\sigma_2| = |\sigma||\sigma_s|$. □

Tensor representation of skew symmetric polylinear map is cumbersome. So, when it is possible, we will use expression

$$f = [b_s \circ F_s]$$

(8.1.5)

to represent skew symmetric polylinear map.

Theorem 8.1.3. Let

$$f = [b_s \circ (F_s[1], \ldots, F_s[p])] \in \mathcal{L}A(D; A^p \to B)$$

(8.1.6)

$$g = [c_t \circ (F_t[1], \ldots, F_t[q])] \in \mathcal{L}A(D; A^q \to B)$$

(8.1.7)

Then

$$f_1 \wedge f_2 = [(b_s \circ c_t) \circ (F_s[1], \ldots, F_s[p], F_t[1], \ldots, F_t[q])]$$

(8.1.8)
Proof. The equality
\[(f \circ (a_1, ..., a_p))(g \circ (a_{p+1}, ..., a_{p+q})) = (b_s \circ (F_{[s](1)}, ..., F_{[s](p)})) \circ \sigma_s \circ (a_1, ..., a_p) \]
follows from equalities (8.1.6), (8.1.7). For every \(s, t \), the map
\[\sigma_{st} = \begin{pmatrix} a_1 & ... & a_p & a_{p+1} & ... & a_{p+q} \\ \sigma_s(a_1) & ... & \sigma_s(a_p) & \tau_t(a_{p+1}) & ... & \tau_t(a_{p+q}) \end{pmatrix} \]
is a permutation. The equality
\[(f \circ (a_1, ..., a_p))(g \circ (a_{p+1}, ..., a_{p+q})) = b_s \circ (F_{[s](1)}, ..., F_{[s](p)})(a_{p+1}, ..., F_{[s](q)}(a_{p+q})) \]
follows from equalities (8.1.9), (8.1.10). The equality
\[(f_1 \circ (a_1, ..., a_p))(f_2 \circ (a_{p+1}, ..., a_{p+q})) = (b_s \circ (F_{[s](1)}, ..., F_{[s](p)})) \circ \sigma_{st} \circ (a_1, ..., a_{p+q}) \]
follows from equalities (2.6.1), (8.1.11). The equality (8.1.8) follows from equalities (7.2.2), (8.1.5), (8.1.12).

Theorem 8.1.4. Let \(\mathcal{B} \) be the basis of finite dimensional \(D \)-algebra \(B \). Let
\[f = [b_s \circ (F_{[s](1)}, ..., F_{[s](p)})] \in \mathcal{LA}(D; A^p \rightarrow B) \]
Let
\[b_s = b_s^{i_0 ... i_p} e_{i_0} \otimes ... \otimes e_{i_p} \]
be standard representation of the tensor \(b_s \). Then
\[f = b_s^{i_0 ... i_p} [e_{i_0} \otimes ... \otimes e_{i_p}) \circ (F_{[s](1)}, ..., F_{[s](p)})] \]

Proof. The equality (8.1.15) follows from equalities (8.1.13), (8.1.14).

8.2. Differential Form with Values in Associative \(D \)-Algebra

Theorem 8.2.1. Let \(A, B \) be associative finite dimensional Banach \(D \)-algebras. Let \(U \subseteq A \) be open set. The map
\[f : U \rightarrow B^{\otimes p} \]
is continuous iff the map \(f \) has form
\[f = f_{s0} \otimes ... \otimes f_{sp} \]
where maps
\[f_{s,i} : U \rightarrow B \]
are continuous.
8.2. Differential Form with Values in Associative D-Algebra

Proof. Direct proof of the theorem is not simple. For instance, let
\[
 f_0 : U \to B \quad f_1 : U \to B
\]
be continuous maps. Then the tensor $f = f_0 \otimes f_1$ is continuous map
\[
f : U \to B^{\otimes 2}
\]
However, in the representation of the tensor $f(x)$
\[
f(x) = ((f_0(x) + \text{sign}(x^1)) \otimes f_2(x)) + ((f_0(x) - \text{sign}(x^1)) \otimes f_2(x))
\]
each summand is not continuous map.

So, not every representation of continuous map (8.2.1) has continuous summands. However we have a tool which allows us to prove the theorem.

Let \overline{B}_B be the basis of finite dimensional D-algebra B. Then standard representation of the tensor $f(x)$ has the form $^8.1$
\[
 f(x) = f_i^{i_0 \ldots i_p}(x)e_{i_0} \otimes \ldots \otimes e_{i_p}
\]
Lemma 8.2.2. The map f is continuous iff all standard components of the tensor $f(x)$
\[
f^{i_0 \ldots i_p} : U \to D
\]
are continuous maps.

Proof. Since all maps $f^{i_0 \ldots i_p}$ are continuous, then for any $\epsilon > 0$, there exists $\delta > 0$ such that the statement
\[
 \|x - x_1\|_A < \delta
\]
implies
\[
 \|f^{i_0 \ldots i_p}(x) - f^{i_0 \ldots i_p}(x_1)\| < \epsilon
\]
for any map $f^{i_0 \ldots i_p}$ (this statement is valid because the set of maps $f^{i_0 \ldots i_p}$ is finite). The equality
\[
 \|f(x) - f(x_1)\|
 = \|f^{i_0 \ldots i_p}(x)e_{B^{i_0}} \otimes \ldots \otimes e_{B^{i_p}} - f^{i_0 \ldots i_p}(x_1)e_{B^{i_0}} \otimes \ldots \otimes e_{B^{i_p}}\|
 = \|(f^{i_0 \ldots i_p}(x) - f^{i_0 \ldots i_p}(x_1))e_{B^{i_0}} \otimes \ldots \otimes e_{B^{i_p}}\|
 \leq \epsilon \sum_{i_0 \ldots i_p} \|e_{B^{i_0}} \otimes \ldots \otimes e_{B^{i_p}}\|
\]
follows from the equality (8.2.3).

We define the norm of tensor product $e_{B^{i_0}} \otimes \ldots \otimes e_{B^{i_p}}$ according to the definition 3.2.18
\[
 \|e_{B^{i_0}} \otimes \ldots \otimes e_{B^{i_p}}\| = \max \|((e_{B^{i_0}} \otimes \ldots \otimes e_{B^{i_p}}) \circ (b_1, \ldots, b_p))\| / \|b_1\| \ldots \|b_p\|
\]

\[8.1\text{ We assume that the basis } \overline{B}_B \text{ does not depend on } x. \text{ However this statement can be relaxed, if we consider fibered } D \text{-algebra } B \text{ over } D \text{-algebra } A \text{ (I considered the definition of fibered universal algebra in [8]). I considered connection of manifold over Banach algebra in the section [10]-9.1. This construction is not important for the proof of the theorem 8.2.1 and I will consider it in future papers.}\]
Since the set of tensor products \(e_{B \cdot i_0} \otimes ... \otimes e_{B \cdot i_p} \) is finite, then we set

\[
E = \max \| e_{B \cdot i_0} \otimes ... \otimes e_{B \cdot i_p} \|
\]

The inequality

\[
\| f(x) - f(x_1) \| \leq \epsilon k E
\]

where \(k \) is the number of terms in the sum (8.2.4) follows from (8.2.4), (8.2.6).

From the inequality (8.2.7), it follows that the norm \(\| f(x) - f(x_1) \| \) can be made arbitrarily small by an appropriate choice of \(\epsilon \). Therefore the map \(f \) is continuous.

If we assume that at least one of maps \(f^{i_0, \ldots, i_p} \) is not continuous, then, from the arguments in the proof, it follows that the map \(f \) is not continuous. \(\Box \)

The theorem follows from the lemma 8.2.2, since standard representation is particular case of representation of tensor. \(\Box \)

Theorem 8.2.3. Let \(A, B \) be associative finite dimensional Banach \(D \)-algebras. Let \(U \subseteq A \) be open set. The map

\[
f : U \to B^{\otimes p}
\]

is differentiable iff standard components of tensor \(f(x) \) are differentiable. In such case\(^8\)

\[
\frac{df(x)}{dx} \circ a = \left(\frac{df^{i_0, \ldots, i_p}(x)}{dx} \circ a \right) e_{i_0} \otimes ... \otimes e_{i_p}
\]

Proof. The theorem follows from the theorem 3.3.16, 2.4.2. \(\Box \)

Theorem 8.2.4. Let \(A, B \) be associative finite dimensional Banach \(D \)-algebras. Let \(U \subseteq A \) be open set. The map

\[
f : U \to B^{\otimes p}
\]

is differentiable iff the map \(f \) has form

\[
f = f_{s \cdot 0} \otimes ... \otimes f_{s \cdot p}
\]

where maps

\[
f_{s \cdot i} : U \to B
\]

are differentiable. In such case

\[
\frac{df(x)}{dx} \circ a = \left(\frac{df_{0 \cdot s}(x)}{dx} \circ a \right) \otimes f_{1 \cdot s} \otimes ... \otimes f_{p \cdot s} + f_{0 \cdot s} \otimes \left(\frac{df_{1 \cdot s}(x)}{dx} \circ a \right) \otimes ... \otimes f_{p \cdot s} + ... + f_{0 \cdot s} \otimes ... \otimes \left(\frac{df_{p \cdot s}(x)}{dx} \circ a \right)
\]

Proof. The theorem follows from the theorem 3.3.20. \(\Box \)

Theorem 8.2.5. Let \(A, B \) be associative finite dimensional Banach \(D \)-algebras. Let \(U \subseteq A \) be open map. The form \(\omega \in \Omega_p^{(n)}(U, B) \) iff the form \(\omega \) has form

\[
\omega = [\omega_{s \cdot 0} \otimes ... \otimes \omega_{s \cdot p} \circ F_{[n]}]
\]

where \(\omega_{s \cdot i} \in \Omega_p^{(n)}(U, B) \).

\(^8\) I recall that the map \(\frac{df^{i_0, \ldots, i_p}(x)}{dx} \) maps \(A \)-number \(a \) to \(D \)-number \(\frac{df^{i_0, \ldots, i_p}(x)}{dx} \circ a \).
8.3. Differential 1-form

Proof. According to theorems 3.2.19, 3.2.20, the map

\[(\omega_{s,0} \otimes \ldots \otimes \omega_{s,p}) \circ F_s]\]

is continuous, when the map

\[(\omega_{s,0} \otimes \ldots \otimes \omega_{s,p})\]

is continuous. The statement of the theorem for \(n = 0\) follows from theorems 7.4.6, 8.2.1.

Let the theorem be true for \(n = k\). Let \(\omega \in \Omega_{p}^{(k+1)}(U,B)\). Then \(\omega \in \Omega_{p}^{(k)}(U,B)\) and we can write differential form \(\omega\) as

\[\omega = [(\omega_{s,0} \otimes \ldots \otimes \omega_{s,p}) \circ F_s]\]

where \(\omega_{s,i} \in \Omega_{p}^{(k)}(U,B)\). We can write differential form \(d^k \omega \in \Omega_{p}^{(1)}(U,B)\) as

\[\omega = [(\omega_{t,0}^{k} \otimes \ldots \otimes \omega_{t,p}^{k}) \circ F_t]\]

where

\[\omega_{t,i}^{k} \left(x \right) = \frac{d^{j} \omega_{s,i}(x)}{dx^{j}}\]

where an index \(s\) depends from index \(t\) and \(0 \leq j \leq k\). According to the theorem 8.2.4, the maps \(\omega_{t,i}^{k}\) are differentiable and, for any index \(s\), there exists an index \(t\) such that

\[\omega_{t,i}^{k} \left(x \right) = \frac{d^{k} \omega_{s,i}(x)}{dx^{k}}\]

Therefore, \(\omega_{s,i} \in \Omega_{p}^{(k+1)}(U,B)\). We proved the theorem for \(n = k + 1\).

Therefore, we proved the theorem for any value of \(n\). □

8.3. Differential 1-form

Theorem 8.3.1. Let \(A,B\) be free Banach \(D\)-algebras. Let \(U \subseteq A\) be open starlike set. Differential 1-form \(\omega \in \Omega_{1}^{(n)}(U,B)\) is integrable iff

\(d\omega(x) = 0\) \hspace{1cm} (8.3.1)

Proof. If differential 1-form \(\omega\) is integrable, then, according to the definition 7.5.2, there exist the map \(f\) such that

\(\omega(x) = df(x)\)

According to the theorem 7.4.9,

\(d\omega(x) = d^2 f(x) = 0\)

At the same time, if

\(d\omega(x) = 0\)

then, according to the theorem 7.5.8, the differential 1-form \(\omega\) is integrable. □

Definition 8.3.2. Let \(A,B\) be free Banach \(D\)-algebras. Let \(U \subseteq A\) be open set. Let

\(\gamma : [a, b] \rightarrow U\)

be a path of class \(C^1\) in \(U\). We define the integral of the differential 1-form \(\omega\) along the path \(\gamma\) by the equality

\[\int_{\gamma} \omega = \int_{a}^{b} dt \omega(\gamma(t)) \frac{d\gamma(t)}{dt}\]
THEOREM 8.3.3. Let
\[a = t_0 < ... < t_i < ... < t_n = b \]
be subdivision of segment \([a, b] \). Let \(\gamma_i \) denote the path corresponding to segment \([t_{i-1}, t_i], i = 1, \ldots, n \). Then
\[
\int_\gamma \omega = \sum_{i=1}^{n} \int_{\gamma_i} \omega
\]

PROOF. The equality (8.3.2) follows from the equality
\[
\int_\gamma \omega = \int_{t_0}^{t_2} dt \omega(\gamma(t)) \frac{d\gamma(t)}{dt} = \int_{t_0}^{t_1} dt \omega(\gamma(t)) \frac{d\gamma(t)}{dt} + \int_{t_1}^{t_2} dt \omega(\gamma(t)) \frac{d\gamma(t)}{dt} = \int_{\gamma_1} \omega + \int_{\gamma_2} \omega
\]
and induction over number of terms. \(\Box \)

THEOREM 8.3.4. Let \(A, B \) be free Banach D-algebras. Let \(U \subseteq A \) be open set. Let
\[\gamma : [a, b] \to U \]
be a path of class \(C^1 \) in \(U \). Let
\[f : A \to B \]
be differentiable map. Then
\[
\int_\gamma df = f(g(b)) - f(g(a)) \tag{8.3.3}
\]

PROOF. The theorem follows from the theorem 6.2.1. \(\Box \)

THEOREM 8.3.5. Let \(A, B \) be free Banach D-algebras. Let \(U \subseteq A \) be open set. Let
\[f : A \to B \]
be differentiable map. The integral \(\int_\gamma df(x) \) depends only on origin \(\gamma(a) \) and extremity \(\gamma(b) \) of piecewise path \(\gamma \) of class \(C^1 \).

PROOF. The theorems follows from theorems 8.3.3, 8.3.4. \(\Box \)

THEOREM 8.3.6. Let \(A, B \) be free Banach D-algebras. Let \(U \subseteq A \) be open connected set. The following properties of differential form \(\omega \in \Omega_1(U, B) \) are equivalent

8.3.6.1: \(\omega \) is integrable in \(U \)
8.3.6.2: \(\int_\gamma \omega = 0 \) for any loop \(\gamma \), piecewise of class \(C^1 \), contained in \(U \)

\(8.3 \) See also the theorem [31]-3.4.1 on the page 43.
8.3. Differential 1-form

Proof. The statement 8.3.6.2 follows from the statement 8.3.6.1 according to theorems 8.3.3, 8.3.5.

Let the statement 8.3.6.2 be true. Let \(x_0, x \in U \). Since the set \(U \) is connected, then there exist piecewise path of class \(C^1 \)
\[
\gamma_1 : [a, b] \subset R \to U \quad \gamma_1(a) = x_0 \quad \gamma_1(b) = x
\]
and piecewise path of class \(C^1 \)
\[
\gamma_2 : [b, c] \subset R \to U \quad \gamma_2(b) = x \quad \gamma_2(c) = x_0
\]
The piecewise path of class \(C^1 \)
\[
\gamma : [a, c] \subset R \to U
\]
defined by the equality
\[
\gamma(x) = \begin{cases}
\gamma_1(x) & x \in [a, b] \\
\gamma_2(x) & x \in [b, c]
\end{cases}
\]
is a loop. According to the statement 8.3.6.2,

\[(8.3.4)\] \(\int_{\gamma} \omega = 0 \)

According to the theorem 8.3.3,

\[(8.3.5)\] \(\int_{\gamma} \omega = \int_{\gamma_1} \omega + \int_{\gamma_2} \omega \)

From equalities (8.3.4), (8.3.5), it follows that the integral
\[
\int_{\gamma_1} \omega = - \int_{\gamma_2} \omega
\]
does not depends on the path. Let

\[(8.3.6)\] \(f(x) = \int_{\gamma_1} \omega \)

Since the set \(U \) is open, then there exist \(\eta_1 > 0 \) such that linear path
\[(8.3.7)\] \(\gamma : t \in [0, 1] \subset R \to x + th \in A \)
is contained in \(U \) when \(\|h\| < \eta_1 \). According to the theorem 8.3.3, the equality

\[(8.3.8)\] \(f(x + h) = f(x) + \int_{x}^{x+h} \omega \)

follows from the equality (8.3.6). The equality

\[(8.3.9)\] \(f(x + h) - f(x) = \int_{0}^{1} dt \omega(x + th) \circ h \)

follows from equalities (8.3.7), (8.3.8). The equality

\[(8.3.10)\] \(f(x + h) - f(x) - \omega(x) \circ h = \int_{0}^{1} dt(\omega(x + th) \circ h - \omega(x) \circ h) \)

follows from equality (8.3.9).

Since the map
\[\omega : U \to \mathcal{L}(D ; A \to B) \]
is continuous, then for any $\epsilon > 0$ there exist $\eta, 0 < \eta < \eta_1$, such that

\[(8.3.11) \quad \|\omega(x + th) - \omega(x)\| < \epsilon \quad \|h\| < \eta \quad t \in [0, 1]\]

The statement

\[(8.3.12) \quad \|\omega(x + th) \circ h - \omega(x) \circ h\| < \epsilon \|h\| < \eta \quad t \in [0, 1]\]

follows from the statement (8.3.11). The statement

\[(8.3.13) \quad \|f(x + h) - f(x) - \omega(x) \circ h\| \leq \epsilon \|h\|\]

follows from the statement (8.3.12) and from the equality (8.3.10). The statement

\[(8.3.14) \quad \|f(x + h) - f(x) - \omega(x) \circ h\| = o(h)\]

follows from the statement (8.3.13). From the statement (8.3.14) and the definition 3.3.1, it follows that differential form ω is derivative of the map f. Therefore, the statement 8.3.6.1 follows from the statement 8.3.6.2.

Definition 8.3.7. Let A, B be free Banach D-algebras. Let $U \subseteq A$ be open connected set. Let differential form $\omega \in \Omega^n_1(U, B)$ be integrable. For any A-numbers a, b, we define definite integral by the equality

\[\int_a^b \omega = \int_{\gamma} \omega\]

for any path γ from a to b. \qed

8.4. Complex field

We may consider complex field either as C-algebra or as R-algebra.

- C-vector space $L(C; C \to C)$ is generated by the map $I_0 = E$. If derivative of the map f of complex field belongs to the set CE, then the map f is called **holomorphic**. According to theorems 2.7.6, 2.7.7, holomorphic map satisfies to the differential equation (the Cauchy-Riemann equations)

\[
\frac{\partial f^1}{\partial x^0} = -\frac{\partial f^0}{\partial x^1} \\
\frac{\partial f^0}{\partial x^0} = \frac{\partial f^1}{\partial x^1}
\]

(8.4.1)

- According to the theorem 2.7.3, C-vector space $L(R; C \to C)$ has the basis consisting of identity map E and conjugation I. If derivative of the map f of complex field belongs to the set CI, then the map f is called **conjugate holomorphic**. According to theorems 2.7.6, 2.7.8, conjugate holomorphic map satisfies to the differential equation

\[
\frac{\partial f^1}{\partial x^0} = \frac{\partial f^0}{\partial x^1} \\
\frac{\partial f^0}{\partial x^0} = -\frac{\partial f^1}{\partial x^1}
\]

(8.4.2)

In this section we consider how this affects the derivative of a map $f : C \to C$.
EXAMPLE 8.4.1. Consider the derivative of the map

\[(8.4.3) \quad y = (x^*)^n\]

The equality

\[(8.4.4) \quad ((x + h_1)^*)^n - (x^*)^n = (x^* + h_1^*)^n - (x^*)^n\]

follows from the equality \((8.4.3)\). According to the definition 3.3.1, the equality

\[(8.4.5) \quad \frac{d(x^*)^n}{dx} = n(x^*)^{n-1} I\]

follows from the equality \((8.4.4)\). Therefore, Taylor series for the map \((8.4.3)\) has the following form

\[y = \frac{1}{h_1} n!(I \circ x)^n = (I \circ x)^n\]

□

Now we are ready to consider more advanced example.

EXAMPLE 8.4.2. Consider the derivative of the map

\[(8.4.6) \quad y = x(x^*)^2\]

The equality

\[(8.4.7) \quad (x + h_1)((x + h_1)^*)^2 - x(x^*)^2\]

follows from the equality \((8.4.6)\). According to the definition 3.3.1, the equality

\[(8.4.8) \quad \frac{dx(x^*)^2}{dx} = (x^*)^2 E + 2xx^* I\]

follows from the equality \((8.4.7)\). The equality

\[(8.4.9) \quad ((x + h_2)^*)^2 h_1 + 2(x + h_2)(x + h_2)^* h_2^* - (x^*)^2 h_1 - 2xx^* h_1^*\]

\[= (x^* + h_2^*)^2 h_1 + 2(x + h_2)(x^* + h_2^*) h_1^* - (x^*)^2 h_1 - 2xx^* h_1^*\]

\[= ((x^*)^2 + 2x^* h_2^* + o(h_2)) h_1 + 2((x + h_2)x^* + (x + h_2)^* h_2^*) h_1^*\]

\[= (x^*)^2 h_1 + 2x^* h_1 h_2^* + o(h_2) + 2(xx^* + x^* h_2 + x h_2^* + o(h_2)) h_1\]

\[= 2x^* h_1 h_2^* + o(h_2) + 2x^* h_2 + 2x^* h_1^* h_2 + 2x h_1^* h_2^* + o(h_2)\]
follows from the equality (8.4.8). According to the definition 4.1.1, the equality

\[\frac{d^2 x(x^*)^2}{dx^2} = 2x^*(E, I) + 2x^*(I, E) + 2x(I, I) \]

follows from the equality (8.4.9). The equality

\[\frac{d^3 x(x^*)^2}{dx^3} = 2(E, I, I) + 2(I, E, I) + 2(I, I, E) \]

follows from the definition 4.1.4 and from the theorem B.1.5. Therefore, Taylor series for the map (8.4.6) has the following form

\[y = \frac{1}{6} 2((E \circ x)(I \circ x)^2 + (I \circ x)(E \circ x)(I \circ x) + (I \circ x)^2(E \circ x)) = (E \circ x)(I \circ x)^2 \]

Immediately following question arises. If the equality

\[\frac{dx^*}{dx} \circ h = h^* \]

is true, then what does this have to do with the theory of functions of complex variable ([22])? There is simple answer on this question. The theory of functions of complex variable considers \(C \)-vector space \(\mathcal{L}(C; C \rightarrow C) \). In this case, there is no linear map approximating the map \(y = x^* \). We express this statement by the equality

\[\frac{dx^*}{dx} = 0 \]

which means independence of \(x \) and \(x^* \).

Since \(C \)-vector space \(C \) has dimension 1, then there is no skew symmetric polylinear map \(f \in \mathcal{L}(C; C^2 \rightarrow C) \). However \(R \)-vector space \(C \) has dimension 2. So there exists skew symmetric polylinear map \(f \in \mathcal{L}(R; C^2 \rightarrow C) \).

For instance, the map

\[f(a_1, a_2) = a_1^0 a_2^0 - a_1^1 a_2^1 \]

is skew symmetric polylinear map. Since

\[a_1^0 = \frac{1}{2}(a_1 + I \circ a_1) \quad a_1^1 = \frac{1}{2}(a_1 - I \circ a_1) \]

\[a_2^0 = \frac{1}{2}(a_2 + I \circ a_2) \quad a_2^1 = \frac{1}{2}(a_2 - I \circ a_2) \]

where

\[I \circ a = a^* \]

\[^{8.4} \text{At the first moment when I had seen the symmetry in the equality (8.4.10), it was a surprise for me. The initial intent of this example was the expectation of a differential form similar to differential form } \omega(x) = 3dx x^2 \text{ considered in the remark 5.1.6. But then I realized that the equality (8.4.10) follows from the theorem 7.4.9.} \]
is map of conjugation, then the equality

\[
\frac{1}{4}(a_1 + I \circ a_1)(a_2 - I \circ a_2) - \frac{1}{4}(a_1 - I \circ a_1)(a_2 + I \circ a_2) = \frac{1}{4}(a_1(a_2 - I \circ a_2) + (I \circ a_1)(a_2 - I \circ a_2) - a_1(a_2 + I \circ a_2) + (I \circ a_1)(a_2 + I \circ a_2))
\]

(8.4.13)

The equality follows from the equality (8.4.12). We can write polylinear map (8.4.13) as

\[
f \circ (a_1, a_2) = (1 \otimes 1 \otimes 1) \circ (I, E) \circ (a_1, a_2) - (1 \otimes 1 \otimes 1) \circ (I, E) \circ (a_2, a_1)
\]

THEOREM 8.4.3. If we consider the map of complex field

\[
f : C \to C
\]
as function of \(x^0, x^1, x = x^0 + x^1 i\), then

(8.4.14)

\[
\frac{df}{dx} = \frac{1}{2} \left(\frac{\partial f}{\partial x^0} - i \frac{\partial f}{\partial x^1} \right) E + \frac{1}{2} \left(\frac{\partial f}{\partial x^0} + i \frac{\partial f}{\partial x^1} \right) I
\]

PROOF. According to the theorem 2.7.3, derivative of the map \(f\) has form

(8.4.15)

\[
\frac{df}{dx} = a_0(x) \circ E \circ c_1 + a_1(x) \circ I \circ c_1
\]

where

\[
\begin{pmatrix}
a_0 \\ a_1
\end{pmatrix} = \begin{pmatrix}
a_0 & a_0^1 \\ a_1 & a_1^1
\end{pmatrix} \begin{pmatrix} 1 \\ i \end{pmatrix} = \frac{1}{2} \begin{pmatrix}
1 & 1 \\ 1 & -1
\end{pmatrix} \begin{pmatrix}
\frac{\partial f}{\partial x^0} \\ -i \frac{\partial f}{\partial x^1}
\end{pmatrix}
\]

(8.4.16)

The equality (8.4.14) follows from equalities (8.4.15), (8.4.16).

According to the theorem 2.7.3, the differential form \(\omega(x) \in \mathcal{L}(\mathcal{A}(C^2) \to C)\) has the following form

\[
\omega(x) = a(x) \circ E + b(x) \circ I
\]
where \(a, b \) are complex valued maps. For any \(C \)-number \(c_1 \)
\[
\omega(x) \circ c_1 = a(x) \circ E \circ c_1 + b(x) \circ I \circ c_1 = a(x)c_1 + b(x)c_1^*
\]

Theorem 8.4.4. The differential form

(8.4.17) \[
\omega(x) = a(x) \circ E + b(x) \circ I
\]
is integrable iff

(8.4.18) \[
\frac{\partial a}{\partial x^0} + i \frac{\partial a}{\partial x^1} = 0
\]

Proof. Derivative of the differential form (8.4.17) is

(8.4.19) \[
\frac{d\omega(x)}{dx} \circ c_1 = \frac{da(x)}{dx} \circ c_1 + \frac{db(x)}{dx} \circ c_1^*
\]

According to the theorem 8.4.3,

(8.4.20) \[
\frac{da(x)}{dx} = \frac{1}{2} \left(\frac{\partial a}{\partial x^0} - i \frac{\partial a}{\partial x^1} \right) E + \frac{1}{2} \left(\frac{\partial a}{\partial x^0} + i \frac{\partial a}{\partial x^1} \right) I
\]

\[
\frac{db(x)}{dx} = \frac{1}{2} \left(\frac{\partial b}{\partial x^0} - i \frac{\partial b}{\partial x^1} \right) E + \frac{1}{2} \left(\frac{\partial b}{\partial x^0} + i \frac{\partial b}{\partial x^1} \right) I
\]

The equality

(8.4.21) \[
\frac{d\omega(x)}{dx} \circ c_2 = \left(\frac{da(x)}{dx} \circ c_2 \right) c_1 + \left(\frac{db(x)}{dx} \circ c_2 \right) c_1^*
\]

follows from equalities (8.4.19), (8.4.21). The exterior differential of the differential form \(\omega \) has the following form

(8.4.22) \[
\frac{d\omega(x)}{dx} \circ (c_1, c_2) = \frac{1}{2} \left(\frac{\partial a}{\partial x^0} + i \frac{\partial a}{\partial x^1} \right) (c_1 c_2^* - c_1^* c_2)
\]

\[
+ \frac{1}{2} \left(\frac{\partial b}{\partial x^0} - i \frac{\partial b}{\partial x^1} \right) (c_1 c_2^* - c_1^* c_2)
\]

\[
= \frac{1}{2} \left(\frac{\partial a}{\partial x^0} + i \frac{\partial a}{\partial x^1} - \frac{\partial b}{\partial x^0} + i \frac{\partial b}{\partial x^1} \right) (c_1 c_2^* - c_1^* c_2)
\]

According to the theorem 7.5.8, the equality (8.4.18) follows from the equality (8.4.22).

Let

\[
f = \int \omega
\]

We have two different cases.

- If the equality

(8.4.23) \[
\frac{\partial a}{\partial x^0} + i \frac{\partial a}{\partial x^1} = 0
\]

and

(8.4.24) \[
\frac{\partial b}{\partial x^0} + i \frac{\partial b}{\partial x^1} = 0
\]
is true, then we can represent the map \(f \) as sum of the holomorphic map and the conjugate holomorphic map.
• If the equality (8.4.23) is not true, then we cannot represent the map f as sum of the holomorphic map and the conjugate holomorphic map. In the section A.3, we consider such form.
APPENDIX A

Supporting Calculations

In this appendix, I put calculations which I need to design this book. But I did not want that these calculations distracted from the basic logic of the text.

A.1. Calculations to Estimate Integral (6.3.9)

We reduce integrand of the integral (6.3.9)

\[
(a + t(x - a))^2(x - a) + (a + t(x - a))(x - a)(a + t(x - a)) \\
+ (x - a)(a + t(x - a))^2 \\
= (a^2 + ta(x - a) + t(x - a)a + t^2(x - a)^2)(x - a) + (a(x - a) \\
+ t(x - a))^2(a + t(x - a)) \\
+ (x - a)(a^2 + ta(x - a) + t(x - a)a + t^2(x - a)^2) \\
= (a^2 + t(ax - a^2 + xa - a^2) + t^2(x^2 - xa - ax + a^2))(x - a) \\
+ (ax - a^2)(a + t(x - a)) + t(x^2 - xa - ax + a^2)(a + t(x - a)) \\
+ (x - a)(a^2 + t(ax - a^2 + xa - a^2) + t^2(x^2 - xa - ax + a^2))
\]

(A.1.1)

The equality

\[
(a + t(x - a))^2(x - a) + (a + t(x - a))(x - a)(a + t(x - a)) \\
+ (x - a)(a + t(x - a))^2 \\
= a^2(x - a) + t(ax - a^2 + xa - a^2)(x - a) \\
+ t^2(x^2 - xa - ax + a^2)(x - a) + (ax - a^2)a \\
+ t(ax - a^2)(x - a) + t(x^2(a + t(x - a)) - xa(a + t(x - a)) \\
- ax(a + t(x - a)) + a^2(a + t(x - a)) + (x - a)a^2 \\
+ t(x - a)(ax - a^2 + xa - a^2) + t^2(x - a)(x^2 - xa - ax + a^2)
\]

(A.1.2)
follows from the equality (A.1.1). The equality
\[
(a + t(x-a))^2(x-a) + (a + t(x-a))(x-a)(a + t(x-a))
+ (x-a)(a + t(x-a))^2 = a^2 x - a^3 + t(ax(x-a) - a^2(x-a) + xa(x-a) - a^2(x-a))
+ t^2(x^2(a-x) - xa(x-a) - ax(x-a) + a^2(x-a))
\]
(A.1.3)
\[
+ axa - a^3 + t(ax(x-a) - a^2(x-a)) + t(x^2a + tx^2(x-a)
- (x^2a + txa(x-a))
- axa - t(xa(x-a) + a^3 + t) + t^2(ax^2 - xa^2 - a^2x) + (x-a)x^2 + (x-a)(x^2a - xa - (x-a)a^2)
+ t^2((x-a)x^2 - (x-a)xa - (x-a)ax + (x-a)a^2)
\]
follows from the equality (A.1.2). The equality
\[
(a + t(x-a))^2(x-a) + (a + t(x-a))(x-a)(a + t(x-a))
+ (x-a)(a + t(x-a))^2 = a^2 x - a^3 + t(ax^2 - axa - a^2x + a^3 + xa - xa^2 - a^2x + a^3)
+ t^2(x^2 - x^2a - xa + xa^2 - axa + a^2x - a^3).
\]
(A.1.4)
\[
+ axa - a^3 + t(ax^2 - axa - a^2x + a^3 + x^2a + t(x^3 - x^2a) - xa^2
- t(xa - xa^2) - axa - t(ax^2 - axa + a^3 + t(a^2x - a^3))
+ xa^2 - a^3 + t(xax - a^2x - xa^2 + a^3 + x^2a - axa - xa + a^3)
+ t^2(x^3 - ax^2 - xxa + axa - xax + a^2x + xa^2 - a^3)
\]
follows from the equality (A.1.3). The equality follows from the equality
\[
(a + t(x-a))^2(x-a) + (a + t(x-a))(x-a)(a + t(x-a))
+ (x-a)(a + t(x-a))^2 = a^2 x - a^3 + xa - a^3
+ t(ax^2 - axa - a^2x + a^3 + xa - xa^2 - a^2x + a^3)
\]
(A.1.5)
\[
+ t(xax - a^2x - xa^2 + a^3 + x^2a - axa - xa^2 + a^3)
+ t(ax^2 - axa - a^2x + a^3 + x^2a - xa^2 - axa + a^3)
+ t^2(x^3 - x^2a - xax + xa^2 - ax^2 + axa + a^2x - a^3)
+ t^2(x^3 - ax^2 - x^2a + axa - xax + a^2x + xa^2 - a^3)
\]
follows from the equality (A.1.4). The equality
\[
(a + t(x-a))^2(x-a) + (a + t(x-a))(x-a)(a + t(x-a))
+ (x-a)(a + t(x-a))^2 = xa^2 + axa + a^2x - 3a^3
+ t(2x^2a + 2axa + 2ax^2 - 4x^2a - 4axa - 4a^2x + 6a^3)
+ t^2(3x^3 - 3x^2a - 3xax + 3xa^2 - 3ax^2 + 3axa + 3a^2x - 3a^3)
\]
(A.1.6)
follows from the equality (A.1.5).

A.2. Calculations to Estimate Integral (6.3.11)

We reduce integrand of the integral (6.3.11)

\[(x - a)(a + t(x - a))^2\]
\[= (x - a)(a^2 + at(x - a) + t(x - a)a + t^2(x - a)^2)\]
\[= (x - a)a^2 + (x - a)at(x - a) + t(x - a)(x - a)a + t^2(x - a)(x^2 - ax - xa + a^2)\]

(A.2.1)

The equality

\[(x - a)(a + t(x - a))^2\]
\[= (xa^2 - a^3 + t((x - a)(ax - a^2) + (x - a)(xa - a^2))\]
\[+ t^2(x^3 - xax - x^2a + xa^2 - ax^2 + a^2x + axa - a^3)\]
\[= xa^2 - a^3 + t((x - a)ax - (x - a)a^2 + (x - a)xa - (x - a)a^2)\]
\[+ t^2(x^3 - xax - x^2a + xa^2 - ax^2 + a^2x + axa - a^3)\]

(A.2.2)

follows from the equality (A.2.1). The equality

\[(x - a)(a + t(x - a))^2\]
\[= xa^2 - a^3 + t(xax - a^2x - xa^2 + a^3 + x^2a - axa - xa^2 + a^3)\]
\[+ t^2(x^3 - x^2a - xax - ax^2 + xa^2 + axa + a^2x - a^3)\]
\[= xa^2 - a^3 + t(x^2a + xax - 2xa^2 - a^2x - axa + 2a^3)\]
\[+ t^2(x^3 - x^2a - xax - ax^2 + xa^2 + axa + a^2x - a^3)\]

(A.2.3)

follows from the equality (A.2.2).

A.3. Example of Differential Form

According to the theorem 8.4.4, differential form

\[(\omega(x) = a(x) \circ E + b(x) \circ I)\]

in complex field is integrable iff

\[\frac{\partial a}{\partial x^0} + i \frac{\partial a}{\partial x^1} - \frac{\partial b}{\partial x^0} + i \frac{\partial b}{\partial x^1} = 0\]

(A.3.2)

Let

\[a = 3(x^0)^2 + 6x^0x^1i\]

The equality

\[\frac{\partial a}{\partial x^0} = 6x^0 + 6x^1i\]
\[\frac{\partial a}{\partial x^1} = 6x^0i\]

(A.3.3)
follows from the equality (A.3.3). The equality
\[\frac{\partial a}{\partial x^0} + i \frac{\partial a}{\partial x^1} = 6x^0 + 6x^1 i - 6x^0 = 6x^1 i \]
follows from the equality (A.3.4). The equality
\[6x^1 i - \frac{\partial b}{\partial x^0} + i \frac{\partial b}{\partial x^1} = 0 \]
follows from equalities (A.3.2), (A.3.5). Let
\[\frac{\partial b}{\partial x^0} = 0 \]
The equation
\[\frac{\partial b}{\partial x^1} = -3(x^1)^2 \]
follows from the equation (A.3.7). The equation
\[\omega(x) = (3(x^0)^2 + 6x^0 x^1 i) \circ E + (-3(x^1)^2) \circ I \]
\[= \frac{3}{4} (4x^2 - (x - x^* i)^2) \circ E + \frac{3}{4} (x - x^* i)^2 \circ I \]
follows from equalities (A.3.4), (A.3.3), (A.3.9).
Let the map
\[f : C \rightarrow C \]
be integral of the differential form (A.3.10)
\[f = \int \omega \]
Equations
\[\frac{1}{2} \left(\frac{\partial f}{\partial x^0} - i \frac{\partial f}{\partial x^1} \right) = 3(x^0)^2 + 6x^0 x^1 i \]
\[\frac{1}{2} \left(\frac{\partial f}{\partial x^0} + i \frac{\partial f}{\partial x^1} \right) = -3(x^1)^2 \]
follow from equalities (8.4.14), (A.3.10). Equations
\[\frac{\partial f}{\partial x^0} = 3(x^0)^2 - 3(x^1)^2 + 6x^0 x^1 i \]
\[i \frac{\partial f}{\partial x^1} = -3(x^0)^2 - 3(x^1)^2 - 6x^0 x^1 i \]
\[\frac{\partial f}{\partial x^1} = -6x^0 x^1 + 3(x^0)^2 i + 3(x^1)^2 i \]
follow from equations (A.3.11), (A.3.12). The equality
\[f(x) = (x^0)^3 - 3x^0(x^1)^2 + 3(x^0)^2 x^1 i + C_1(x^1) \]
follows from the equation (A.3.13). The equation
\[\frac{\partial f}{\partial x^1} = -6x^0 x^1 + 3(x^0)^2 i + 3(x^1)^2 i = -6x^0 x^1 + 3(x^0)^2 i + \frac{dC_1}{dx^1} \]
follows from equalities (A.3.14), (A.3.15). The equality
\[C_1(x^1) = (x^1)^3i + C \]
follows from the equation (A.3.16). The equality
\[
 f(x) = (x^0)^3 + 3(x^0)^2x^1i - 3x^0(x^1)^2 + (x^1)^3i + C
\]
\[
 = x^3 - \frac{1}{8}(x - x^*)^3 + C
\]
follow from equalities (A.3.15), (A.3.17).
Let D be the complete commutative ring of characteristic 0.

B.1. Table of Derivatives

Theorem B.1.1. For any $b \in A$

$$\frac{db}{dx} = 0$$

Proof. Immediate corollary of definition 3.3.1. □

Theorem B.1.2.

\[
\frac{dx}{dx} \circ dx = dx \quad \frac{dx}{dx} = 1 \otimes 1
\]

Proof. According to the definition (3.3.2)

\[
(\text{B.1.2}) \quad \frac{dx}{dx} \circ dx = \lim_{t \to 0, t \in R} (t^{-1}(x + tdx - x)) = dx
\]

The equality (B.1.1) follows from (B.1.2). □

Theorem B.1.3. For any $b, c \in A$

\[
\begin{aligned}
\frac{dbf(x)c}{dx} &= (b \otimes c) \circ \frac{df(x)}{dx} \\
\frac{dbf(x)c}{dx} \circ dx &= b \left(\frac{df(x)}{dx} \circ dx \right) c \\
\frac{dsbf(x)c}{dx} &= \frac{dxf(x)c}{dx} b \\
\frac{dsbf(x)c}{dx} &= \frac{dxf(x)c}{dx} c
\end{aligned}
\]

Proof. Immediate corollary of equalities (3.3.25), (3.3.29), and the theorem B.1.1. □

Theorem B.1.4. Let

\[
\begin{aligned}
f : A &\to B \\
g : A &\to B
\end{aligned}
\]

be maps of Banach D-module A into associative Banach D-algebra A. Since there exist the derivatives $\frac{df(x)}{dx}, \frac{dg(x)}{dx}$, then there exists the derivative $\frac{d(f(x) + g(x))}{dx}$

\[
(\text{B.1.4}) \quad \frac{d(f(x) + g(x))}{dx} \circ dx = \frac{df(x)}{dx} \circ dx + \frac{dg(x)}{dx} \circ dx
\]

117
118 B. Summary of Statements

(B.1.5) \[
\frac{d(f(x) + g(x))}{dx} = \frac{df(x)}{dx} + \frac{dg(x)}{dx}
\]

Since

(B.1.6) \[
\frac{df(x)}{dx} = \frac{d_{s\cdot 0}f(x)}{dx} \otimes \frac{d_{s\cdot 1}f(x)}{dx}
\]

(B.1.7) \[
\frac{dg(x)}{dx} = \frac{d_{t\cdot 0}g(x)}{dx} \otimes \frac{d_{t\cdot 1}g(x)}{dx}
\]

then

(B.1.8) \[
\frac{d(f(x) + g(x))}{dx} = \frac{d_{s\cdot 0}f(x)}{dx} \otimes \frac{d_{s\cdot 1}f(x)}{dx} + \frac{d_{t\cdot 0}g(x)}{dx} \otimes \frac{d_{t\cdot 1}g(x)}{dx}
\]

Proof. Since there exist the derivatives \(\frac{df(x)}{dx}\), \(\frac{dg(x)}{dx}\), then according to the definition (3.3.2)

(B.1.9) \[
\frac{df(x)}{dx} \circ dx = \lim_{t \to 0, \ t \in R} (t^{-1}(f(x + tdx) - f(x)))
\]

(B.1.10) \[
\frac{dg(x)}{dx} \circ dx = \lim_{t \to 0, \ t \in R} (t^{-1}(g(x + tdx) - g(x)))
\]

According to the definition (3.3.2)

(B.1.11) \[
\frac{d(f(x) + g(x))}{dx} \circ dx
\]

\[
= \lim_{t \to 0, \ t \in R} (t^{-1}(f(x + tdx) + g(x + tdx) - f(x) - g(x)))
\]

\[
= \lim_{t \to 0, \ t \in R} (t^{-1}(f(x + tdx) - f(x)))
\]

\[
+ \lim_{t \to 0, \ t \in R} (t^{-1}(g(x + tdx) - g(x)))
\]

The equality (B.1.4) follows from (B.1.9), (B.1.10), (B.1.11). The equality (B.1.5) follows from (2.4.11), (B.1.4). The equality (B.1.8) follows from (B.1.6), (B.1.7), (B.1.5).

Theorem B.1.5. For any \(b, c \in A\)

(B.1.12) \[
\begin{align*}
\frac{db xc}{dx} &= b \otimes c & \frac{db xc}{dx} \circ dx &= b \circ dx c \\
\frac{d_{t\cdot 0} b xc}{dx} &= b & \frac{d_{t\cdot 1} b xc}{dx} &= c
\end{align*}
\]

Proof. Corollary of theorems B.1.2, B.1.3, when \(f(x) = x\).

Theorem B.1.6. Let \(f\) be linear map \(f \circ x = (a_{s\cdot 0} \otimes a_{s\cdot 1}) \circ x = a_{s\cdot 0} x a_{s\cdot 1}\)

Then

\[
\frac{\partial f \circ x}{\partial x} = f
\]

\[
\frac{\partial f \circ x}{\partial x} \circ dx = f \circ dx
\]

Proof. Corollary of theorems B.1.4, B.1.5, 3.3.13.
B.1. Table of Derivatives

Corollary B.1.7. For any \(b \in A \)

\[
\begin{align*}
\frac{d(xb - bx)}{dx} &= 1 \otimes b - b \otimes 1 \\
\frac{d(xb - bx)}{dx} \circ dx &= dx b - b dx \\
\frac{d_1(xb - bx)}{dx} &= 1 \\
\frac{d_2(xb - bx)}{dx} &= b \\
\frac{d_2(xb - bx)}{dx} &= -b \\
\end{align*}
\]

□

Convention B.1.8. For \(n \geq 0 \), let \(SO(k, n) \) be set of permutations

\[
\sigma = \begin{pmatrix}
y_1 & \ldots & y_k & x_{k+1} & \ldots & x_n \\
\sigma(y_1) & \ldots & \sigma(y_k) & \sigma(x_{k+1}) & \ldots & \sigma(x_n)
\end{pmatrix}
\]

such that each permutation \(\sigma \) preserves the order of variables \(x_i \): since \(i < j \), then \(x_i \) precedes \(x_j \). □

Lemma B.1.9. We can enumerate the set of permutations \(S(1, n) \) by index \(i \), \(1 \leq i \leq n \), such way that

B.1.9.1: \(\sigma_1(y) = y \).

B.1.9.2: Since \(i > 1 \), then \(\sigma_i(x_i) = y \).

Proof. Since the order of variables \(x_2, \ldots, x_n \) in permutation \(\sigma \in S(1, n) \) does not depend on permutation, permutation \(\sigma \in S(1, n) \) are different by position which variable \(y \) has. Accordingly, we can enumerate the set of permutations \(S(1, n) \) by index whose value corresponds to the number of position of variable \(y \). □

The lemma B.1.9 has simple interpretation. Let \(n - 1 \) white balls and 1 black ball be in narrow box. The black ball is the most left ball; white balls are numbered from 2 to \(n \) in the order as we put them into the box. The essence of the permutation \(\sigma_k \) is that we take out the black ball from the box and then we put it into cell with number \(k \). At the same time, white balls with the number not exceeding \(k \) shift to the left.

Lemma B.1.10. For \(n > 0 \), let

\[
S^+(1, n) = \{ \sigma : \sigma = (\tau(y), \tau(x_2), \ldots, \tau(x_n), x_{n+1}), \tau \in S(1, n) \}
\]

Then

\[
S(1, n + 1) = S^+(1, n) \cup \{ (x_2, \ldots, x_{n+1}, y) \}
\]

Proof. Let \(\sigma \in S^+(1, n) \). According to the definition (B.1.13), there exists permutation \(\tau \in S(1, n) \) such that

\[
(\sigma(y), \sigma(x_1), \ldots, \sigma(x_{n+1})) = (\tau(y), \tau(x_2), \ldots, \tau(x_n), x_{n+1})
\]

According to the convention B.1.8, the statement \(i < j < n + 1 \) implies that in the tuple

\[
(\sigma(y), \sigma(x_1), \ldots, \sigma(x_{n+1})) = (\tau(y), \tau(x_2), \ldots, \tau(x_n), x_{n+1})
\]
the variable x_j is located between variables x_i and x_{n+1}. According to the convention B.1.8, $\sigma \in S(1, n + 1)$. Therefore

(B.1.15) $S^+(1, n) \subseteq S(1, n + 1)$

According to the lemma B.1.9, the set $S^+(1, n)$ has n permutations.

Let $\sigma = (x_2, \ldots, x_{n+1}, y)$. According to the convention B.1.8,

(B.1.16) $(x_2, \ldots, x_{n+1}, y) \in S(1, n + 1)$

According to the definition (B.1.13), $\sigma \notin S^+(1, n)$.

Therefore, we have listed $n + 1$ elements of the set $S(1, n + 1)$. According to the lemma B.1.9, the statement (B.1.14) follows from statements (B.1.15), (B.1.16). □

Theorem B.1.11. For any monomial

$p_n(x) = (a_0 \otimes \ldots \otimes a_n) \circ x^n$

derivative has form

(B.1.17) $\frac{dp_n(x)}{dx} \circ dx = \sum_{\sigma \in S(1, n)} (a_0 \otimes \ldots \otimes a_n) \circ (\sigma(dx), \sigma(x_2), \ldots, \sigma(x_n))$

$x_2 = \ldots = x_n = x$

Proof. For $n = 1$, the map

$p_1(x) = (a_0 \otimes a_1) \circ x = a_0 xa_1$

is linear map. According to the theorem B.1.5 and convention B.1.8

(B.1.18) $\frac{dp_1(x)}{dx} \circ dx = a_0 dx a_1 = (a_0 \otimes a_1) \circ dx = \sum_{\sigma \in S(1, 1)} (a_0 \otimes a_1) \circ \sigma(dx)$

Let the statement be true for $n - 1$

(B.1.19) $\frac{dp_{n-1}(x)}{dx} \circ dx = \sum_{\sigma \in S(1, n-1)} (a_0 \otimes \ldots \otimes a_{n-1}) \circ \sigma(dx, x_2, \ldots, x_{n-1})$

$x_2 = \ldots = x_{n-1} = x$

Since

(B.1.20) $p_n(x) = p_{n-1}(x) xa_n$

then according to the theorem 3.3.17 and the definition (B.1.20)

(B.1.21) $\frac{dp_n(x)}{dx} \circ dx = \left(\frac{dp_{n-1}(x)}{dx} \circ dx \right) xa_n + p_{n-1}(x) \left(\frac{dx a_n}{dx} \circ dx \right)$

The equality

(B.1.22) $\frac{dp_n(x)}{dx} \circ dx = \sum_{\sigma \in S(1, n-1)} (a_0 \otimes \ldots \otimes a_{n-1}) \circ (\sigma(dx), \sigma(x_2), \ldots, \sigma(x_{n-1})) xa_n$

$+ (a_0 \otimes \ldots \otimes a_{n-1}) \circ (x_2, \ldots, x_n) dx a_n$

$x_2 = \ldots = x_n = x$
follows from (B.1.1), (B.1.3), (B.1.19), (B.1.21). The equality
\[\frac{dp_n(x)}{dx} \circ dx = \sum_{\sigma \in S(1,n-1)} (a_0 \otimes \ldots \otimes a_n) \circ (\sigma(dx), \sigma(x_2), \ldots, \sigma(x_{n-1}), x_n) \]
(B.1.23)
\[+ (a_0 \otimes \ldots \otimes a_n) \circ (x_2, \ldots, x_n, dx) \]
x_2 = \ldots = x_n = x
follows from (B.1.22) and multiplication rule of monomials (definitions 2.6.7, 2.6.8). According to the lemma B.1.10, the equality (B.1.17) follows from the equality (B.1.23). □

Lemma B.1.12. Let \(1 < k < n \). For any permutation \(\sigma \in SO(k+1,n) \), there exists unique pair of permutations \(\mu \in SO(k,n) \), \(\nu \in SO(1,n-k) \) such that
\[\sigma = (\mu(y_1), \ldots, \mu(y_k), \nu(\mu(y_{k+1})), \nu(\mu(x_{k+2})), \ldots, \nu(\mu(x_n))) \]
Proof. □

Lemma B.1.13. Let \(1 < k < n \). For any pair of permutations \(\mu \in SO(k,n) \), \(\nu \in SO(1,n-k) \) there exists unique permutation \(\sigma \in SO(k+1,n) \), such that
\[\sigma = (\mu(y_1), \ldots, \mu(y_k), \nu(\mu(y_{k+1})), \nu(\mu(x_{k+2})), \ldots, \nu(\mu(x_n))) \]
Proof. □

Theorem B.1.14. For any monomial
\[p_n(x) = (a_0 \otimes \ldots \otimes a_n) \circ x^n \]
derivative of order \(k \) has form
\[\frac{d^k p_n(x)}{dx^k} \circ (dx^1; \ldots; dx^k) \]
(B.1.24)
\[= \sum_{\sigma \in SO(k,n)} (a_0 \otimes \ldots \otimes a_n, \sigma) \circ (dx_1; \ldots; dx_k; x_{k+1}; \ldots; x_n) \]
x_{k+1} = \ldots = x_n = x
Proof. For \(k = 1 \), the statement of the theorem is the statement of the theorem B.1.11. Let the theorem be true for \(k - 1 \). Then
\[\frac{d^{k-1} p_n(x)}{dx^{k-1}} \circ (dx^1; \ldots; dx^{k-1}) \]
(B.1.25)
\[= \sum_{\mu \in SO(k-1,n)} (a_0 \otimes \ldots \otimes a_n, \mu) \circ (dx_1; \ldots; dx_{k-1}; x_k; \ldots; x_n) \]
x_k = \ldots = x_n = x
□
Theorem B.1.15. Let D be the complete commutative ring of characteristic 0. Let A be associative Banach D-algebra. Then\(^{B.1}\)

(B.1.26) \[\frac{dx^2}{dx} = x \otimes 1 + 1 \otimes x \]

(B.1.27) \[dx^2 = x \, dx + dx \, x \]

(B.1.28) \[
\begin{cases}
\frac{d_1x^2}{dx} = x & \frac{d_1x^2}{dx} = 1 \\
\frac{d_2x^2}{dx} = 1 & \frac{d_2x^2}{dx} = x
\end{cases}
\]

Proof. Consider increment of map $f(x) = x^2$.

(B.1.29) \[f(x + h) - f(x) = (x + h)^2 - x^2 = xh + hx + h^2 = xh + hx + o(h) \]

The equality (B.1.27) follows from the equality (B.1.29) and the definition 3.3.1. The equality (B.1.26) follows from equalities (2.5.5), (B.1.27) and the definition 3.3.2. The equality (B.1.28) follows from the equality (B.1.26). \(\Box\)

Remark B.1.16. The theorem B.1.15 also follows from the theorem B.1.11 since \[x^2 = (1 \otimes 1 \otimes 1) \circ x^2 \]

\(\Box\)

Theorem B.1.17. Let D be the complete commutative ring of characteristic 0. Let A be associative Banach D-algebra. Then

(B.1.30) \[\frac{dx^3}{dx} = x^2 \otimes 1 + x \otimes x + 1 \otimes x^2 \]

(B.1.31) \[dx^3 = x^2 \, dx + x \, dx \, x + dx \, x^2 \]

Proof. According to the theorem 3.3.17,

(B.1.32) \[\frac{dx^3}{dx} = \frac{dx^2x}{dx} = \frac{dx^2}{dx} x + x^2 \frac{dx}{dx} = (x \otimes 1 + 1 \otimes x)x + x^2(1 \otimes 1) \]

The equality (B.1.30) follows from the equality (B.1.32). The equality (B.1.31) follows from the equality (B.1.30) and the definition 3.3.2. \(\Box\)

\(^{B.1}\) The statement of the theorem is similar to example VIII, [30], p. 451. If product is commutative, then the equality (B.1.26) gets form \[dx^2 \circ dx = 2x \, dx \]

\[\frac{dx^2}{dx} = 2x \]
Theorem B.1.18. Let D be the complete commutative ring of characteristic 0. Let A be associative division D-algebra. Then $^B.2$

\[
\frac{dx^{-1}}{dx} = -x^{-1} \otimes x^{-1}
\]

(B.1.33)

\[
dx^{-1} = -x^{-1} \, dx \, x^{-1}
\]

(B.1.34)

\[
\frac{d_1 ax^{-1}}{dx} = -x^{-1} \quad \frac{d_1 x^{-1}}{dx} = x^{-1}
\]

Proof. Let us substitute $f(x) = x^{-1}$ in definition (3.3.2)

\[
\frac{dx^{-1}}{dx} \circ h = \lim_{t \to 0, \, t \in \mathbb{R}} (t^{-1} ((x + th)^{-1} - x^{-1}))
\]

\[
= \lim_{t \to 0, \, t \in \mathbb{R}} (t^{-1} ((x + th)^{-1} - x^{-1} (x + th) (x + th)^{-1}))
\]

(B.1.36)

The equality (B.1.33) follows from chain of equalities (B.1.36). The equality (B.1.34) follows from the equality (B.1.33) and the definition 3.3.2. The equality (B.1.35) follows from the equality (B.1.33).

Theorem B.1.19. Let D be the complete commutative ring of characteristic 0. Let A be associative division D-algebra. Then $^B.3$

\[
\frac{(ax^{-1})}{dx} = 1 \otimes ax^{-1} - xax^{-1} \otimes x^{-1}
\]

(B.1.37)

\[
d(ax^{-1}) = dx \, ax^{-1} - xax^{-1} \, dx \, x^{-1}
\]

(B.1.38)

\[
\begin{align*}
\frac{d_1 ax^{-1}}{dx} &= 1 \\
\frac{d_1 x^{-1}}{dx} &= ax^{-1} \\
\frac{d_2 ax^{-1}}{dx} &= -xax^{-1} \\
\frac{d_2 x^{-1}}{dx} &= x^{-1}
\end{align*}
\]

(B.1.39)

Proof. The equality (B.1.37) is corollary of equalities (3.3.25), (B.1.12). The equality (B.1.38) follows from the equality (B.1.37) and the definition 3.3.2. The equality (B.1.39) follows from the equality (B.1.37).

$^B.2$ The statement of the theorem is similar to example IX, [30], p. 451. If product is commutative, then the equality (B.1.33) gets form

\[
dx^{-1} = -x^{-2} dx
\]

\[
\frac{dx^{-1}}{dx} = -x^{-2}
\]

$^B.3$ If product is commutative, then

\[
y = xax^{-1} = a
\]

Accordingly, the derivative is 0.
Theorem B.1.20.
(B.1.40) \[\frac{de^x}{dx} = \frac{1}{2}(e^x \otimes 1 + 1 \otimes e^x) \]
Proof. The theorem follows from the theorem 5.2.7. □

Theorem B.1.21.
(B.1.41) \[\frac{d\sinh x}{dx} = \frac{1}{2}(\cosh x \otimes 1 + 1 \otimes \cosh x) \]
(B.1.42) \[\frac{dcosh x}{dx} = \frac{1}{2}(\sinh x \otimes 1 + 1 \otimes \sinh x) \]
Proof. The theorem follows from the theorem 5.3.2. □

Theorem B.1.22.
(B.1.43) \[\frac{d\sin x}{dx} = \frac{1}{2}(\cos x \otimes 1 + 1 \otimes \cos x) \]
(B.1.44) \[\frac{d\cos x}{dx} = -\frac{1}{2}(\sin x \otimes 1 + 1 \otimes \sin x) \]
Proof. The theorem follows from the theorem 5.4.2. □

B.2. Table of Integrals

Theorem B.2.1. Let the map
\[f : A \rightarrow B \]
be differentiable map. Then
(B.2.1) \[\int \frac{df(x)}{dx} \circ dx = f(x) + C \]
Proof. The theorem follows from the definition 5.1.1. □

Theorem B.2.2.
(B.2.2) \[\int (f_{s,0} \otimes f_{s,1}) \circ dx = (f_{s,0} \otimes f_{s,1}) \circ x + C \]
\[f_{s,0} \in A \quad f_{s,1} \in A \]
Proof. According to the definition 5.1.1, the map \(y \) is integral (B.2.2), when the map \(y \) satisfies to differential equation
(B.2.3) \[\frac{dy}{dx} = f_{s,0} \otimes f_{s,1} \]
and initial condition
(B.2.4) \[x_0 = 0 \quad y_0 = C \]
According to the theorem B.1.1, from the equality (B.2.3), it follows that the derivative of second order has form
(B.2.5) \[\frac{d^2y}{dx^2} = 0 \]
The expansion into Taylor series
(B.2.6) \[y = f_{s,0} x f_{s,1} + C \]
follows from (B.2.3), (B.2.4), (B.2.5). The equality (B.2.2) follows from equalities (B.2.3), (B.2.4), (B.2.6). □
Remark B.2.3. According to the definition (2.5.5), we can present integral (B.2.2) following way
(B.2.7) \[\int f \cdot_0 f \cdot_1 = f \cdot_0 x f \cdot_1 + C \]

Theorem B.2.4.
(B.2.8) \[\int (e^x \otimes 1 + 1 \otimes e^x) \circ dx = 2e^x + C \]

Proof. The theorem follows from the theorem B.1.20 and from the definition 5.1.1.

Remark B.2.5. According to the definition (2.5.5), we can present integral (B.2.8) following way
(B.2.9) \[\int e^x dx + dx e^x = 2e^x + C \]

Theorem B.2.6.
(B.2.10) \[\int (\sinh x \otimes 1 + 1 \otimes \sinh x) \circ dx = 2 \cosh x + C \]
(B.2.11) \[\int (\cosh x \otimes 1 + 1 \otimes \cosh x) \circ dx = 2 \sinh x + C \]

Proof. The theorem follows from the theorem B.1.21 and from the definition 5.1.1.

Remark B.2.7. According to the definition (2.5.5), we can present integrals (B.2.10), (B.2.11) following way
(B.2.12) \[\int \sinh x dx + dx \sinh x = 2 \cosh x + C \]
(B.2.13) \[\int \cosh x dx + dx \cosh x = 2 \sinh x + C \]

Theorem B.2.8.
(B.2.14) \[\int (\sin x \otimes 1 + 1 \otimes \sin x) \circ dx = -2 \cos x + C \]
(B.2.15) \[\int (\cos x \otimes 1 + 1 \otimes \cos x) \circ dx = 2 \sin x + C \]

Proof. The theorem follows from the theorem B.1.22 and from the definition 5.1.1.

Remark B.2.9. According to the definition (2.5.5), we can present integrals (B.2.14), (B.2.15) following way
(B.2.16) \[\int \sin x dx + dx \sin x = -2 \cos x + C \]
(B.2.17) \[\int \cos x \, dx + \cos x \, dx = 2 \sin x + C \]
APPENDIX C

Lebesgue Integral in Abelian Ω-Group

C.1. Ω-Group

Definition C.1.1. Let sum be defined in Ω-algebra A. A map $f: A \to A$
of Ω_1-algebra A is called **additive map** if $f(a + b) = f(a) + f(b)$.

Definition C.1.2. A map $g: A^n \to A$
is called **polyadditive map** if for any $i, i = 1, ..., n$,
$f(a_1, ..., a_i + b_i, ..., a_n) = f(a_1, ..., a_i, ..., a_n) + f(a_1, ..., b_i, ..., a_n)$.

Definition C.1.3. Let sum which is not necessarily commutative be defined in Ω_1-algebra A. We use the symbol $+$ to denote sum. Let
$\Omega = \Omega_1 \setminus \{+\}$
If Ω_1-algebra A is group relative to sum and any operation $\omega \in \Omega$ is polyadditive map, then Ω_1-algebra A is called **Ω-group**. If Ω-group A is associative group relative to sum, then Ω_1-algebra A is called **associative Ω-group**. If Ω-group A is Abelian group relative to sum, then Ω_1-algebra A is called **Abelian Ω-group**.

Theorem C.1.4. Let $\omega \in \Omega(n)$ be polyadditive map. The operation ω is distributive over addition
$a_1...(a_i + b_i)...a_n\omega = a_1...a_i...a_n\omega + a_1...b_i...a_n\omega \quad i = 1, ..., n$

Proof. The theorem follows from definitions C.1.2, C.1.3.

Definition C.1.5. **Norm on Ω-group** A is a map
$d \in A \to \|d\| \in R$
which satisfies the following axioms
C.1.5.1: $\|a\| \geq 0$
C.1.5.2: $\|a\| = 0$ if, and only if, $a = 0$
C.1.5.3: $\|a + b\| \leq \|a\| + \|b\|$
C.1.5.4: $\|-a\| = \|a\|$

C.1 I made definition according to definition from [21], IX, §3.2 and definition [32]-1.1.12, p. 23.
The Ω-group A, endowed with the structure defined by a given norm on A, is called normed Ω-group.

Theorem C.1.6. Let A be normed Ω-group. Then

(C.1.1) $\|a - b\| \geq |\|a\| - \|b\||$

Proof. The theorem follows from the theorem [14]-2.1.9.

Definition C.1.7. Let A be normed Ω-group. A set $U \subset A$ is called open, if, for any A-number $a \in U$, there exists $\epsilon \in \mathbb{R}$, $\epsilon > 0$, such that $B_o(a, \epsilon) \subset U$.

Definition C.1.8. Let A be normed Ω-group. A-number a is called limit of a sequence $\{a_n\}$, $a_n \in A$, $a = \lim_{n \to \infty} a_n$ if for any $\epsilon \in \mathbb{R}$, $\epsilon > 0$, there exists positive integer n_0 depending on ϵ and such, that $\|a_n - a\| < \epsilon$ for every $n > n_0$. We also say that sequence a_n converges to a.

Definition C.1.9. Let A be normed Ω-group. The sequence $\{a_n\}$, $a_n \in A$, is called fundamental or Cauchy sequence, if for every $\epsilon \in \mathbb{R}$, $\epsilon > 0$, there exists positive integer n_0 depending on ϵ and such, that $\|a_p - a_q\| < \epsilon$ for every $p, q > n_0$.

Definition C.1.10. Normed Ω-group A is called complete if any fundamental sequence of elements of Ω-group A converges, i.e. has limit in Ω-group A.

Definition C.1.11. Let a_i be a sequence of A-numbers. If

$$\sum_{i=1}^{\infty} \|a^i\| < \infty$$

then we say that the series

$$\sum_{i=1}^{\infty} a^i$$

converges normally.

Definition C.1.12. Let product

$$c_1 = a_1 * b_1$$

be operation of Ω_1-algebra A. Let $\Omega = \Omega_1 \setminus \{\ast\}$. If Ω_1-algebra A is group relative to product and, for any operation $\omega \in \Omega(n)$, the product is distributive over the operation ω

$$a * (b_1...b_n\omega) = (a * b_1)...(a * b_n)\omega$$

$$(b_1...b_n\omega) * a = (b_1 * a)...(b_n * a)\omega$$

then Ω_1-algebra A is called multiplicative Ω-group.

C.2 In topology, we usually define an open set before we define base of topology. In the case of a metric or normed space, it is more convenient to define an open set, based on the definition of base of topology. In such case, the definition is based on one of the properties of base of topology. An immediate proof allows us to see that defined such an open set satisfies the basic properties.

C.3 See also the definition of normal convergence of the series on page [31]-12.
C.2. Algebra of Sets

Definition C.2.1. A nonempty system of sets S is called **semiring of sets**, if

- C.2.1.1: $\emptyset \in S$
- C.2.1.2: If $A, B \in S$, then $A \cap B \in S$
- C.2.1.3: If $A, A_1 \in S$, $A_1 \subset A$, then the set A can be represented as

\[
A = \bigcup_{i=1}^{n} A_i \quad A_i \in S
\]

where $i \neq j \implies A_i \cap A_j = \emptyset$

The representation (C.2.1) of the set A is called **finite expansion of set A**. □

Definition C.2.2. A nonempty system of sets R is called **ring of sets**, if condition $A, B \in R$ imply $A \Delta B, A \cap B \in R$. A set $E \in R$ is called **unit of ring of sets** if

\[
A \cap E = A
\]

A ring of sets with unit is called **algebra of sets**. □

Remark C.2.3. For any A, B

\[
A \cup B = (A \Delta B) \Delta (A \cap B)
\]

\[
A \setminus B = A \Delta (A \cap B)
\]

Therefore, if $A, B \in R$, then $A \cup B \in R, A \setminus B \in R$. □

Definition C.2.4. The ring of sets R is called **σ-ring of sets**, if condition $A_i \in R, i = 1, ..., n, ...,$ imply

\[
\bigcup_{n} A_n \in R
\]

σ-Ring of sets with unit is called **σ-algebra of sets**. □

Definition C.2.5. Minimal σ-algebra $B(A)$ generated by the set of all open balls of normed Ω-group A is called **Borel algebra**. A set belonging to Borel algebra is called **Borel set** or B-set. □

C.3. Lebesgue Integral

Definition C.3.1. Let \mathcal{C}_X be σ-algebra of sets of set X. Let \mathcal{C}_Y be σ-algebra of sets of set Y. The map

\[
f : X \to Y
\]

is called $(\mathcal{C}_X, \mathcal{C}_Y)$-measurable \(^{C.8}\) if for any set $C \in \mathcal{C}_Y$

\[
f^{-1}(C) \in \mathcal{C}_X
\]

\(^{C.4}\) See also the definition \([3]\)-2, page 32.

\(^{C.5}\) See also the definition \([3]\)-1, page 31.

\(^{C.6}\) See similar definition in \([3]\), page 35, definition 3.

\(^{C.7}\) See remark in \([3]\), p. 36. According to the remark C.2.3, the set of closed balls also generates Borel algebra.

\(^{C.8}\) See similar definition in \([3]\), page 284.
Example C.3.2. Let μ be a σ-additive measure defined on the set X. Let C_μ be σ-algebra of sets measurable with respect to measure μ. Let $\mathcal{B}(A)$ be Borel algebra of normed Ω-group A. The map

$$f : X \to A$$

is called μ-measurable\(^{C.9}\) if for any set $C \in \mathcal{B}(A)$

$$f^{-1}(C) \in C_\mu$$

\[\square\]

Definition C.3.3. Let C_μ be σ-algebra of sets of set F.\(^{C.10}\) The map

$$\mu : C_\mu \to \mathbb{R}$$

into real field \mathbb{R} is called σ-additive measure, if, for any set $X \in C_\mu$, following conditions are true.

C.3.3.1: $\mu(X) \geq 0$

C.3.3.2: Let

$$X = \bigcup_i X_i \quad i \neq j \Rightarrow X_i \cap X_j = \emptyset$$

be finite or countable union of sets $X_n \in C_\mu$. Then

$$\mu(X) = \sum_i \mu(X_i)$$

where series on the right converges absolutely.

\[\square\]

Definition C.3.4. Let μ be a σ-additive measure defined on the set X. The map

$$f : X \to A$$

into normed Ω-group A is called simple map, if this map is μ-measurable and its range is finite or countable set.

Theorem C.3.5. Let range y_1, y_2, \ldots of the map

$$f : X \to A$$

be finite or countable set. The map f is μ-measurable iff all sets

$$F_n = \{x \in X : f(x) = f_n\}$$

are μ-measurable.\(^{C.11}\)

Proof. The theorem follows from the theorem \[15\]-3.2.2. \[\square\]

Let μ be a σ-additive measure defined on the set X. Let effective representation of real field \mathbb{R} in complete Abelian Ω-group A be defined.\(^{C.12}\)

\(^{C.9}\) See similar definition in [3], pp. 284, 285, definition 1. If the measure μ is defined on the set X by context, then we also call the map

$$f : X \to A$$

measurable.

\(^{C.10}\) See similar definitions in [3], definition 1 on page 270 and definition 2 on page 272.

\(^{C.11}\) See similar theorem in [3], page 286, theorem 4.

\(^{C.12}\) In other words, Ω-group A is \mathbb{R}-vector space.
Definition C.3.6. For simple map
\[f : X \to A \]
consider series
\[\sum_n \mu(F_n)f_n \]
where
- The set \(\{f_1, f_2, \ldots\} \) is domain of the map \(f \)
- Since \(n \neq m \), then \(f_n \neq f_m \)
- \(F_n = \{x \in X : f(x) = f_n\} \)

Simple map
\[f : X \to A \]
is called integrable map over the set \(X \) if series (C.3.1) converges normally.\(^{C.13}\) Since the map \(f \) is integrable map, then sum of series (C.3.1) is called Lebesgue integral of map \(f \) over the set \(X \)
\[\int_X d\mu(x)f(x) = \sum_n \mu(F_n)f_n \]
\[\square \]

Definition C.3.7. \(\mu \)-measurable map
\[f : X \to A \]
is called integrable map over the set \(X \) if there exists a sequence of simple integrable over the set \(X \) maps
\[f_n : X \to A \]
converging uniformly to \(f \). Since the map \(f \) is integrable map, then the limit
\[\int_X d\mu(x)f(x) = \lim_{n \to \infty} \int_X d\mu(x)f_n(x) \]
is called Lebesgue integral of map \(f \) over the set \(X \).\(^{\square}\)

Theorem C.3.8. Let
\[f : X \to A \]
be measurable map. Integral
\[\int_X d\mu(x)f(x) \]
exists iff integral
\[\int_X d\mu(x)\|f(x)\| \]
exists. Then
\[\left\|\int_X d\mu(x)f(x)\right\| \leq \int_X d\mu(x)\|f(x)\| \]

Proof. The theorem follows from the theorem [15]-4.2.4.\(^{\square}\)

\(^{C.13}\) See similar definition in [3], p. 294.
\(^{C.14}\) See also the definition in [3], page 296.
Theorem C.3.9. Let
\[f : X \to A \]
be \(\mu \)-measurable map such that
\[\|f(x)\| \leq M \]
Since the measure of the set \(X \) is finite, then
(C.3.5)
\[\int_X d\mu(x) \|f(x)\| \leq M\mu(X) \]
Proof. The theorem follows from the theorem [15]-4.2.9.

Theorem C.3.10. Let
\[f : X \to A \]
\[g : X \to A \]
be \(\mu \)-measurable maps with compact range. Since there exist integrals
\[\int_X d\mu(x)f(x) \]
\[\int_X d\mu(x)g(x) \]
then there exists integral
\[\int_X d\mu(x)(f(x) + g(x)) \]
and
(C.3.6)
\[\int_X d\mu(x)(f(x) + g(x)) = \int_X d\mu(x)f(x) + \int_X d\mu(x)g(x) \]
Proof. The theorem follows from the theorem [15]-4.2.3.

Theorem C.3.11. Let \(\omega \in \Omega \) be \(n \)-ary operation in Abelian \(\Omega \)-group \(A \). Let
\[f_i : X \to A \quad i = 1, \ldots, n \]
be \(\mu \)-measurable map with compact range. Since map \(f_i \), \(i = 1, \ldots, n \), is integrable map, then map
\[h = f_1 \ldots f_n \omega \]
is integrable map and
(C.3.7)
\[\left\| \int_X d\mu(x)h(x) \right\| \leq \int_X d\mu(x)(\|\omega\|\|f_1(x)\|\ldots\|f_n(x)\|) \]
Proof. The theorem follows from the theorem [15]-4.2.5.

Theorem C.3.12. Let \(\mu \) be a \(\sigma \)-additive measure defined on the set \(X \). Let
\[g : A_1 \longrightarrow A_2 \]
be representation of \(\Omega_1 \)-group \(A_1 \) with norm \(\|x\|_1 \) in \(\Omega_2 \)-group \(A_2 \) with norm \(\|x\|_2 \). Let
\[g_i : X \to A_i \quad i = 1, 2 \]
be integrable map with compact range. Then map
\[h = f_X(g_1)(g_2) \]
is integrable map and

(C.3.8) \[\left\| \int_X d\mu(x)h(x) \right\|_2 \leq \int_X d\mu(x)(\|f\|_1 \|g_1(x)\|_1 \|g_2(x)\|_2) \]

Proof. The theorem follows from the theorem [15]-4.2.6. \qed
References

[1] Serge Lang, Algebra, Springer, 2002
[2] G. E. Shilov, Calculus, Single Variable Functions, Part 3, Moscow, Nauka, 1970
[3] A. N. Kolmogorov and S. V. Fomin. Introductory Real Analysis. Translated and edited by Richard A. Silverman. Dover Publication, 1975, ISBN-13: 978-0486612263
[4] Mariano Giaquinta, Giuseppe Modica, Mathematical Analysis: Linear and Metric Structures and Continuity. Springer, 2007, ISBN-13: 978-0-8176-4374-4
[5] A. G. Kurosh, Higher Algebra, George Yankovsky translator, Mir Publishers, 1988, ISBN: 978-5030001319
[6] Garret Sobczyk, New Foundations in Mathematics: The Geometric Concept of Number, Springer, 2013, ISBN: 978-0-8176-8384-9
[7] Nathan BeDell, Doing Algebra over an Associative Algebra, eprint arXiv:1708.01190 (2017)
[8] Aleks Kleyn, Fibered Universal Algebra, eprint arXiv:math.DG/0702561 (2007)
[9] Aleks Kleyn, Introduction into Calculus over Division Ring, eprint arXiv:0812.4763 (2010)
[10] Aleks Kleyn, Introduction into Geometry over Division Ring, eprint arXiv:0906.0135 (2010)
[11] Aleks Kleyn, Representation of Universal Algebra, eprint arXiv:0912.3315 (2009)
[12] Aleks Kleyn, Linear Maps of Free Algebra, eprint arXiv:1003.1544 (2010)
[13] Aleks Kleyn, Polynomial over Associative D-Algebra, eprint arXiv:1302.7204 (2013)
[14] Aleks Kleyn, Normed Ω-Group, eprint arXiv:1305.4547 (2013)
[15] Aleks Kleyn, Integral of Map into Abelian Ω-group, eprint arXiv:1310.5591 (2013)
[16] Aleks Kleyn, Linear Map of D-Algebra, eprint arXiv:1502.04063 (2015)
[17] Aleks Kleyn, Introduction into Calculus over Division Ring. Clifford Analysis, Clifford Algebras and their applications, volume 5, issue 1, pages 1 - 68, 2016
[18] John C. Baez, The Octonions, eprint arXiv:math.RA/0105155 (2002)
[19] Paul M. Cohn, Universal Algebra, Springer, 1981
[20] Paul M. Cohn, Algebra, Volume 1, John Wiley & Sons, 1982
[21] N. Bourbaki, General Topology, Chapters 5 - 10, Springer, 1989
[22] Shabat B. V., Introduction to Complex Analysis, Moscow, Nauka, 1969
[23] L. S. Pontryagin, Selected Works, Volume Two, Topological Groups, Gordon and Breach Science Publishers, 1986
[24] Postnikov M. M., Geometry IV: Differential geometry, Moscow, Nauka, 1983
[25] Fikhtengolts G. M., Differential and Integral Calculus Course, volume 1, Moscow, Nauka, 1969
[26] Alekseyevskii D. V., Vinogradov A. M., Lychagin V. V., Basic Concepts of Differential Geometry
 VINITI Summary 28
 Moscow. VINITI, 1988
[27] Richard D. Schafer, An Introduction to Nonassociative Algebras, Dover Publications, Inc., New York, 1995
[28] A. Sudbery, Quaternionic Analysis, Math. Proc. Camb. Phil. Soc. (1979), 85, 199 - 225
[29] Vadim Komkov, Variational Principles of Continuum Mechanics with Engineering Applications: Critical Points Theory,
 Springer, 1986
[30] Sir William Rowan Hamilton, Elements of Quaternions, Volume I, Longmans, Green, and Co., London, New York, and Bombay, 1899
[31] Henri Cartan, Differential forms. Kershaw Publishing Company Limited, London, 1971
[32] V. I. Arnautov, S. T. Glavatsky, A. V. Mikhaev, Introduction to the theory of topological rings and modules, Volume 1995,
 Marcel Dekker, Inc, 1996
Index

A-number 17
A-representation in Ω-algebra 11
Abelian Ω-group 127
absolute value 33
additive map 127
algebra of sets 129
algebra over ring 17
alternation of polyn-linear map 73
arity 10
associative D-algebra 17
associative law 13
associative Ω-group 127
associator of D-algebra 17
B-set 129
Banach D-algebra 34
Banach D-module 29
Borel algebra 129
Borel set 129
carrier of Ω-algebra 10
Cartesian power 10
Cauchy sequence 26, 27, 128
center of D-algebra A 17
closed ball 27
commutative D-algebra 17
commutator of D-algebra 17
complete normed Ω-group 128
complete ring 26
component of derivative 35, 36
component of derivative of Second Order 47
component of linear map 19
conjugation transformation 19
continuous map 29
coordinates 13, 35
cosine 64
D-algebra 17
D-module 13
definite integral 106
derivative of map 34
derivative of order n 47
derivative of second order 46
differentiable map 34
differential form of degree p 81
differential of map 34
differential p-form 81
distributive law 13, 127
effective representation 11
endomorphism 11
equivalent norms 28
exponent 57
exterior differential 84
exterior product 74, 81
finite expansion of set 129
free algebra over ring 17
fundamental sequence 26, 27, 128
holomorphic map 106
homogeneous polynomial of power k 22
homomorphism 11
hyperbolic cosine 60
hyperbolic sine 60
indefinite integral 52, 90
integrable form 90
integrable map 52, 131, 131
integral of differential 1-form along path 103
Lebesgue integral 131, 131
limit of sequence 25, 27, 128
linear map 14, 18
map is compatible with operation 11
map of conjugation 23
measurable map 130
method of successive differentiation 52
module over ring 13
monomial of power k 22
morphism of representation f 12
morphism of representations from f into g 11
morphism of representations of Ω₁-algebra in Ω₂-algebra 11
multiplicative Ω-group 128
n-ary operation on set 10
norm of map 30, 31
norm on D-algebra 34
norm on D-module 26
norm on Ω-group 127
norm on ring 25
normed D-algebra 34
normed D-module 27
normed Ω-group 128
normed ring 25
nucleus of D-algebra A 17

open ball 27
open set 128
operation on set 10
operator domain 10

parity of permutation 13
permutation 12
polyadditive map 127
polylinear map 14, 18
polynomial 22

reduced morphism of representations 12
representation of Ω_1-algebra A in Ω_2-algebra M 11
ring of sets 129

semiring of sets 129
sequence converges 27, 128
series converges normally 128
simple map 130
sine 64
skew symmetric polylinear map 72
standard component of derivative 36, 37
standard component of linear map 19
standard representation of the derivative 36
starlike set 90
sum of maps 14, 15
symmetric polylinear map 72
symmetrization of polylinear map 72
tensor power 16
tensor product 15
topological ring 25

unit of ring of sets 129
unitarity law 13
universal algebra 10

vector 13

μ-measurable map 130

Ω-group 127
Ω-algebra 10

σ-algebra of sets 129
σ-ring of sets 129
σ-additive measure 130
Special Symbols and Notations

Symbol	Description
$A[x]$	A-algebra of polynomials over D-algebra A
(a, b, c)	associator of D-algebra
$[a, b]$	commutator of D-algebra
$A_k [x]$	A-module of homogeneous polynomials over D-algebra A
$\|a\|$	norm on D-module
$A G$	Ω-algebra
$A^\otimes n$	tensor power of algebra A
$B(A)$	Borel algebra
B^A	Cartesian power
$B_c (a, \rho)$	closed ball
$B_o (a, \rho)$	open ball
C^μ	σ-algebra of sets measurable with respect to measure μ
C^n	continuity class
$\cos x$	cosine
$\cosh x$	hyperbolic cosine
$\frac{d^k}{dx} f(x)$	component of derivative of map $f(x)$
$\frac{d_k f(x)}{dx}$	component of derivative of map $f(x)$
$\frac{d^2 f(x)}{dx^2}$	component of derivative of second order of map $f(x)$
$\frac{d f(x)}{dx}$	derivative of map f
$\frac{d_x f(x)}{dx}$	derivative of map f
$\frac{d^n f(x)}{dx^n}$	derivative of order n
$\frac{d_x n f(x)}{dx}$	derivative of order n
$\frac{d_x^2 f(x)}{dx^2}$	derivative of second order
$\frac{d_x^2 f(x)}{dx^2}$	derivative of second order
$\frac{d_x f(x)}{dx}$	derivative of independent variable
$\frac{d f(x)}{dx}$	derivative of map f
$\frac{d x f(x)}{dx}$	derivative of map f
$\frac{d^k x^n f(x)}{dx^k}$	derivative of second order of map $f(x)$
$\frac{d_x^2 f(x)}{dx^2}$	derivative of second order
$\frac{d_x^2 f(x)}{dx^2}$	derivative of second order
$\frac{d_x f(x)}{dx}$	derivative of independent variable
$\frac{d_x f(x)}{dx}$	derivative of map f
$\frac{d_x f(x)}{dx}$	derivative of map f
$\frac{d_x^2 f(x)}{dx^2}$	derivative of second order
$\frac{d_x^2 f(x)}{dx^2}$	derivative of second order
$\frac{d_x^2 f(x)}{dx^2}$	derivative of second order
$\frac{d_x^2 f(x)}{dx^2}$	derivative of second order
$\frac{d_x^2 f(x)}{dx^2}$	derivative of second order
$\frac{d_x^2 f(x)}{dx^2}$	derivative of second order
$\frac{d_x^2 f(x)}{dx^2}$	derivative of second order
$\frac{d_x^2 f(x)}{dx^2}$	derivative of second order
$\frac{d_x^2 f(x)}{dx^2}$	derivative of second order

Examples

- e^x: exponent
- $\text{End}(\Omega; A)$: set of endomorphisms
- $[f]$ alternation of polynormal map
- $\mathcal{L}(D; A^n \to B)$: module of skew symmetric polynormal maps
- $\mathcal{L}(D; A_1 \to A_2)$: set of linear maps
- $\mathcal{L}(D; A_1 \times \cdots \times A_n \to S)$: set of polynormal maps
- $\nu(A)$: nucleus of D-algebra A
- $A_1 \otimes \cdots \otimes A_n$: tensor product
- $\sin x$: sine
- $\int_a^b f(x) \, dx$: definite integral
- $\int_a^b \omega$: definite integral of differential 1-form along path
\(\Omega(n) \) set of \(n \)-ary operators 10

\(|\sigma|\) parity of permutation 13
Введение в математический анализ над банаховой алгеброй

Александр Клейн
Аннотация. Пусть A, B - банаховые D-алгебры. Отображение $f : A \to B$ дифференцируемо на множестве $U \subset A$, если в каждой точке $x \in U$ изменение отображения f может быть представлено в виде

$$f(x + dx) - f(x) = \frac{df(x)}{dx} \circ dx + o(dx)$$

где

$$\frac{df(x)}{dx} : A \to B$$

линейное отображение и $o : A \to B$ такое непрерывное отображение, что

$$\lim_{a \to 0} \frac{\|o(a)\|_B}{\|a\|_A} = 0$$

Линейное отображение $\frac{df(x)}{dx}$ называется производной отображения f.

Рассмотрим теория дифференциальных форм в банаховой алгебре. Дифференциальная форма $\omega \in \mathcal{L}(\mathcal{D}; A \to B)$ определена отображением $g : A \to B \otimes B$, $\omega = g \circ dx$. Если отображение g является производной отображения $f : A \to B$, то отображение f называется неопределённым интегралом отображения g

$$f(x) = \int g(x) \circ dx = \int \omega$$

В этом случае, для любых A-чисел a, b, мы определим определённый интеграл с помощью равенства

$$\int_a^b \omega = \int_\gamma \omega$$

для любого пути γ из a в b.
Оглавление

Глава 1. Предисловие .. 5
 1.1. Предисловие к изданию 1 5
 1.2. Интегрирование в D-алгебре 6
 1.3. Дифференциальная форма 7

Глава 2. Предварительные определения 9
 2.1. Универсальная алгебра 9
 2.2. Представление универсальной алгебры 11
 2.3. Перестановка ... 13
 2.4. Модуль над кольцом .. 13
 2.5. Алгебра над коммутативным кольцом 17
 2.6. Многочлен над ассоциативной D-алгеброй 22
 2.7. Комплексное поле ... 24

Глава 3. Дифференцируемые отображения 26
 3.1. Топологическое кольцо 26
 3.2. Топологическая D-алгебра 28
 3.3. Производная отображений D-алгебры 36

Глава 4. Производная второго порядка отображения D-алгебры ... 48
 4.1. Производная второго порядка отображения D-алгебры .. 48
 4.2. Ряд Тейлора .. 49

Глава 5. Метод последовательного дифференцирования 54
 5.1. Неопределённый интеграл 54
 5.2. Экспонента ... 56
 5.3. Гиперболическая тригонометрия 60
 5.4. Эллиптическая тригонометрия 63

Глава 6. Интеграл Лебега ... 68
 6.1. Интеграл Лебега вдоль линейного пути 68
 6.2. Интеграл Лебега вдоль пути 70
 6.3. Решение дифференциального уравнения 71

Глава 7. Дифференциальная форма 75
 7.1. Структура полилинейного отображения 75
 7.2. Произведение коносимметричных полилинейных отображений 77
 7.3. Дифференциальная форма 85
 7.4. Внешнее дифференцирование 88
 7.5. Теорема Пуанкаре 95
Глава 8. Структура дифференциальной формы ... 104
 8.1. Полилинейное отображение в ассоциативную D-алгебру 104
 8.2. Дифференциальная форма со значениями в ассоциативной D-
 алгебре ... 105
 8.3. Дифференциальная 1-форма .. 109
 8.4. Комплексное поле ... 112
Приложение А. Вспомогательные расчёты .. 117
 A.1. Расчёты для оценки интеграла (6.3.9) 117
 A.2. Расчёты для оценки интеграла (6.3.11) 119
 A.3. Пример дифференциальной формы 119
Приложение В. Сводка теорем .. 122
 В.1. Таблица производных ... 122
 В.2. Таблица интегралов ... 129
Приложение С. Интеграл Лебега в абелевой Ω-группе 132
 С.1. Ω-группа .. 132
 С.2. Алгебра множеств .. 134
 С.3. Интеграл Лебега ... 134
Список литературы ... 139
Предметный указатель .. 141
Специальные символы и обозначения ... 143
Глава 1

Предисловие

1.1. Предисловие к изданию 1

Дорога очарований и разочарований.

Но я бы сказал наоборот. Когда ты понимаешь, что причина твоих разочарований - в твоих ожиданиях, ты начинаешь присматриваться к окружающему ландшафту. Ты оказался на тропе, по которой до тебя никто не ходил. И новые впечатления куда сильнее, чем если бы ты шёл по дороге многократно проторенной и хорошо изученной.

Автор неизвестен. Записки путешественника.

В основе математического анализа лежит возможность линейного приближения к отображению, и основные построения математического анализа уходят корнями в линейную алгебру. Так как произведение в поле коммутативно, то линейная алгебра над полем относительно проста. При переходе к алгебре над коммутативным кольцом, некоторые утверждения линейной алгебры сохраняются, но появляются и новые утверждения, которые меняют ландшафт линейной алгебры.

Здесь я хочу обратить внимание на эволюцию, которую претерпела концепция производной со времён Ньютона. Когда мы изучаем функции одной переменной, то производная в заданной точке является числом

\[(1.1.1)\]

\[dx^2 = 2x \ dx\]

Когда мы изучаем функцию нескольких переменных, выясняется, что числа недостаточно. Производная становится вектором или градиентом

\[z = x^2 + y^3\]

\[dz = 2x \ dx + 3y^2 \ dy\]

При изучении отображений векторных пространств мы впервые говорим о производной как об операторе:

\[x = u \sin v \quad y = u \cos v \quad z = u\]

\[dx = \sin v \ du + u \cos v \ dv \quad dy = \cos v \ du - u \sin v \ dv \quad dz = 1 \ du + 0 \ dv\]

Но так как этот оператор линеен, то мы можем представить производную как матрицу. И в этом случае мы можем представить вектор приращения отображения как произведение матрицы производной (матрицы Якоби) на вектор.
приращения аргумента

\[
\begin{pmatrix}
 dx \\
 dy \\
 dz
\end{pmatrix} =
\begin{pmatrix}
 \sin v & u \cos v \\
 \cos v & -u \sin v \\
 1 & 0
\end{pmatrix}
\begin{pmatrix}
 du \\
 dv
\end{pmatrix}
\]

Чтобы понять структуру производной отображения банаховой алгебры, рассмотрим отображение \(y = x^2 \) алгебры кватернионов. Если аргумент \(x \) имеет приращение \(dx \), то приращение \(dy \) функции \(y \) имеет вид

\[
(1.1.2) \quad dy = (x + dx)^2 - x^2 = x^2 + x \cdot dx + dx \cdot x + (dx)^2 - x^2 = x \cdot dx + dx \cdot x + (dx)^2
\]

Так как \(dx \) является бесконечно малой, то мы можем пренебречь значением величины \((dx)^2\) и из равенства (1.1.2) следует, что

\[
(1.1.3) \quad dy = x \cdot dx + dx \cdot x
\]

Если мы предположим, что в выражении (1.1.3) можно выделить левый или правый множитель

\[
(1.1.4) \quad x \cdot dx + dx \cdot x = a \cdot dx
\]

подобно равенству (1.1.1), то мы видим, что величина \(a \) зависит от направления дифференциала \(dx \). Это даёт основание предположить, что производная в алгебре кватернионов является производной по направлению или производной Гато ([29], страница 322). При этом мы рассматриваем дифференциал (1.1.3) как аддитивное отображение, т. е. отображение удовлетворяющее равенству

\[
\text{f(a+b)=f(a)+f(b)}
\]

Уже в процессе работы над статьёй [9] я понял, что вместо выражения (1.1.4) я должен рассматривать оба левый и правый множители

\[
(1.1.5) \quad x \cdot dx + dx \cdot x = a \cdot dx \cdot b
\]

Тем не менее, я продолжал рассматривать выражение (1.1.5) как аддитивное отображение дифференциала \(dx \).

В процессе изучения теории представлений универсальной алгебры ([11, 16]) я понял, что выражение (1.1.5) является линейным отображением дифференциала \(dx \). Следовательно, выражение (1.1.3) является определением производной отображения \(y = x^2 \). Эта новая концепция является основой данной статьи.

Январь, 2016

1.2. Интегрирование в \(D \)-алгебре

Когда профессор Светлин спросил меня, умею ли я решать дифференциальные уравнения над алгеброй кватернионов, мой первый ответ был, что я ещё не готов. Разнообразие дифференциальных уравнений первого порядка и отождествление производной любого порядка с отображением поля действительных чисел делают эту задачу невероятно сложной.

Однако позже я вспомнил, что в статье [9] я рассматривал операцию обратную дифференцированию. Я рассматривал неопределённый интеграл

\[
f(x) = \int g(x) \circ dx
\]
1.3. Дифференциальная форма

как решение дифференциального уравнения

\[
\frac{df(x)}{dx} \circ dx = g(x) \circ dx
\]

записанное в форме ряда Тейлора. Поэтому, когда я писал статью [17], я решил явно писать интеграл.

Если бы это произошло в 2012, на этом месте я бы остановился и начал бы изучать другую тему. Но в 2013 я опубликовал статью [15]. И я увидел серьёзную проблему.

Я имею два определения интеграла: интеграл Лебега и неопределённый интеграл. И они имеют разный формат подынтегрального выражения. В неопределённом интеграле, мы рассматриваем представление D-модуля \(A \otimes A \) в D-алгебре \(A \), и подынтегральное выражение равно действию тензора \(a \in A \otimes A \) на дифференциал. В интеграле Лебега, мы рассматриваем представление алгебры, в которой определена мера, в D-алгебре \(A \). Какова связь между интегралом Лебега и неопределённым интегралом.

На первый взгляд, вопрос кажется неразрешимым. В математическом анализе над полем действительных чисел, в обоих случаях мы имеем дело с одним и тем же отображением. И связь между интегралом Лебега и неопределённым интегралом может быть выражена любым из следующих утверждений.

- \(\int f(x)dx = \int_{a}^{x} f(x)dx \)
- Если \(g(x) = \int f(x)dx \), то \(\int_{a}^{b} f(x)dx = g(b) - g(a) \).

Если мы рассматриваем интеграл Лебега в D-алгебре, что значит интегрировать от \(a \) до \(b \). Самое простое решение - это рассмотреть путь из \(a \) в \(b \). В статье [17], я рассмотрел самый простой путь

\[x = a + t(b - a) \]

Однако вопрос оставался открытым для произвольного пути. Если интеграл Лебега зависит от пути, то вместо связи между интегралом Лебега и неопределённым интегралом мы должны изучать зависимость интеграла Лебега от пути. Но это совершенно другая теория.

Существуют отображения, для которых интеграл Лебега зависит от пути интегрирования. Это следует из замечания 5.1.6. Но меня в первую очередь интересовали отображения, для которых неопределённый интеграл существует.

Обсуждая этот вопрос с профессором Садбери, я неожиданно нашёл простое доказательство утверждения, что интеграл Лебега производной отображения не зависит от пути (теорема 6.2.1). Но я не был удовлетворён этим результатом. Я знал, что меня ждёт новое приключение.

1.3. Дифференциальная форма

Вопрос о возможности решить дифференциальное уравнение

\[
\frac{df(x)}{dx} = g(x)
\]

оставался открытым. Если решения не существует, то можно предположить, что интеграл Лебега отображения \(g \) зависит от пути. В дифференциальной
геометрии, отображение f называется неголономным. Неголономные отображения важны в общей теории относительности. И я не мог пройти мимо этой задачи.

Но если интеграл Лебега зависит от пути, то естественно возникает вопрос об интеграле по замкнутому контуру. В эту минуту я осознал, что отображение g является дифференциальной формой.

Изучение дифференциальных форм потребовало от меня расширить рамки моего исследования. В определении 3.3.1, я рассматривал дифференцируемое отображение в банаховую D-алгебру. Однако это определение верно также в случае банахового D-модуля. Чтобы записать производную отображения в банаховый D-модуль, нам нужен базис этого модуля, и мы записываем матрицу Якоби этого отображения. Однако мы можем записать производную отображения f в банаховую D-алгебру A аналитически с помощью тензора $\frac{df(x)}{dx} \in A \otimes A$. Я рассмотрел связь между двумя формами представления линейного отображения в теореме 2.5.21.

Более того, возможность записать аналитически отображение в банаховый D-модуль появляется, если мы рассматриваем D-модуль полилинейных отображений в D-алгебру B (теорема 3.3.14). В этом случае мы можем воспользоваться произведением в D-алгебре B для представления линейного отображения в D-модуль $\mathcal{L}(D; A^n \rightarrow B)$.

Январь, 2017
Глава 2

Предварительные определения

В этой главе собраны определения и теоремы, которые необходимы для понимания текста предлагаемой книги. Поэтому читатель может обращаться к утверждениям из этой главы по мере чтения основного текста книги.

2.1. Универсальная алгебра

Теорема 2.1.1. Пусть N - отношение эквивалентности на множестве A. Рассмотрим категорию A объектами которой являются отображения

$$
f_1 : A \rightarrow S_1 \quad \ker f_1 \supseteq N
$$

$$
f_2 : A \rightarrow S_2 \quad \ker f_2 \supseteq N
$$

Мы определим морфизм $f_1 \rightarrow f_2$ как отображение $h : S_1 \rightarrow S_2$, для которого коммутативна диаграмма

![Diagram](image)

Отображение $\text{nat } N : A \rightarrow A/N$ является универсально отталкивающим в категории A.

Доказательство. Рассмотрим диаграмму

![Diagram](image)

(2.1.1) \quad \ker f \supseteq N

\[1\] Утверждение леммы аналогично утверждению на с. [1]-94.

\[2\] Определение универсального объекта смотри в определении на с. [1]-47.
Из утверждения (2.1.1) и равенства
\[j(a_1) = j(a_2) \]
следует
\[f(a_1) = f(a_2) \]
Следовательно, мы можем однозначно определить отображение \(h \) с помощью равенства
\[h(j(b)) = f(b) \]

ОПРЕДЕЛЕНИЕ 2.1.2. ДЛЯ ЛЮБЫХ МНОЖЕСТВ \(A, B \), ДЕКАРТОВА СТЕПЕНЬ \(B^A \) - ЭТО МНОЖЕСТВО ОТРАБОЖЕНИЙ
\[f : A \rightarrow B \]

ОПРЕДЕЛЕНИЕ 2.1.3. ПУСТЬ ДАНО МНОЖЕСТВО \(A \) И ЦЕЛОЕ ЧИСЛО \(n \geq 0 \). ОТРАБОЖЕНИЕ
\[\omega : A^n \rightarrow A \]
называется \(n \)-АРНОЙ ОПЕРАЦИЕЙ НА МНОЖЕСТВЕ \(A \) ИЛИ ПРОСТО ОПЕРАЦИЕЙ НА МНОЖЕСТВЕ \(A \). ДЛЯ ЛЮБЫХ \(a_1, ..., a_n \in A \), мы ПОЛЬЗУЕМСЯ ЛЮБОЙ ИЗ ФОРМ ЗАПИСИ \(\omega(a_1, ..., a_n) \), \(a_1 \ldots a_n \omega \) ДЛЯ ОБОЗНАЧЕНИЯ ОБРАЗА ОТРАБОЖЕНИЯ \(\omega \).

ЗАМЕЧАНИЕ 2.1.4. Согласно определениям 2.1.2, 2.1.3, \(n \)-АРНАЯ ОПЕРАЦИЯ \(\omega \in A^{A^n} \).

ОПРЕДЕЛЕНИЕ 2.1.5. ОБЛАСТЬ ОПЕРАТОРОВ - ЭТО МНОЖЕСТВО ОПЕРАТОРОВ \(\Omega \) ВМЕСТЕ С ОТРАБОЖЕНИЕМ
\[a : \Omega \rightarrow N \]
ЕСЛИ \(\omega \in \Omega \), то \(a(\omega) \) называется АРНОСТЬЮ ОПЕРАТОРА \(\omega \). ЕСЛИ \(a(\omega) = n \), то ОПЕРАТОР \(\omega \) называется \(n \)-АРНЫМ. МЫ ПОЛЬЗУЕМСЯ ОБОЗНАЧЕНИЕМ
\[\Omega(n) = \{ \omega \in \Omega : a(\omega) = n \} \]
ДЛЯ МНОЖЕСТВА \(n \)-АРНЫХ ОПЕРАТОРОВ.

ОПРЕДЕЛЕНИЕ 2.1.6. ПУСТЬ \(A \) - МНОЖЕСТВО, \(\omega \) - ОБЛАСТЬ ОПЕРАТОРОВ. СЕМЕЙСТВО ОТРАБОЖЕНИЙ
\[\Omega(n) \rightarrow A^{A^n} \quad n \in N \]
называется структурой \(\Omega \)-АЛГЕБРА на \(A \). МНОЖЕСТВО \(A \) СО СТРУКТУРОЙ \(\Omega \)-АЛГЕБРА называется \(\Omega \)-АЛГЕБРОЙ \(A_\Omega \) ИЛИ УНИВЕРСАЛЬНОЙ АЛГЕБРОЙ. МНОЖЕСТВО \(A \) НАЗЫВАЕТСЯ НОСИТЕЛЕМ \(\Omega \)-АЛГЕБРЫ.

Область операторов \(\Omega \) описывает множество \(\Omega \)-Алгебр. Элемент множества \(\Omega \) называется оператором, так как операция предполагает некоторое множество. Согласно замечанию 2.1.4 и определению 2.1.6, каждому оператору \(\omega \in \Omega(n) \) сопоставляется \(n \)-АРНАЯ ОПЕРАЦИЯ \(\omega \) на \(A \).

\[^2\text{Я следую определению} \quad ^3\text{из примера (iv), [19], страницы 17, 18.} \]
\[^4\text{Определение 2.1.3 опирается на определение в примере (vi), страница [19]-26.} \]
\[^5\text{Я следую определению 1, страница [19]-62.} \]
\[^6\text{Я следую определению 2, страница [19]-62.} \]
Определение 2.1.7. Пусть A, B - Ω-алгебры и $\omega \in \Omega(n)$. Отображение $f: A \to B$
согласовано с операцией ω, если, для любых $a_1, \ldots, a_n \in A$,
(2.1.2) $f(a_1) \ldots f(a_n) \omega = f(a_1 \ldots a_n \omega)$
Отображение f называется гомоморфизмом Ω-алгебры A в Ω-алгебру B, если f согласовано с каждым $\omega \in \Omega$.

Определение 2.1.8. Гомоморфизм, источником и целью которого является одна и та же алгебра, называется эндоморфизмом. Мы обозначим $\text{End}(\Omega; A)$ множество эндоморфизмов Ω-алгебры A.

2.2. Представление универсальной алгебры

Определение 2.2.1. Пусть множество A_2 является Ω_2-алгеброй. Пусть на множестве преобразований $\text{End}(\Omega_2, A_2)$ определена структура Ω_1-алгебры. Гомоморфизм
$f: A_1 \to \text{End}(\Omega_2; A_2)$
Ω_1-алгебры A_1 в Ω_2-алгебру $\text{End}(\Omega_2, A_2)$ называется представлением Ω_1-алгебры или A_1-представлением в Ω_2-алгебре A_2.

Мы будем также пользоваться записью $f: A_1 \rightarrow A_2$

для обозначения представления Ω_1-алгебры A_1 в Ω_2-алгебре A_2.

Определение 2.2.2. Мы будем называть представление
$f: A_1 \rightarrow A_2$
Ω_1-алгебры A_1 эффективным, если отображение
$f: A_1 \to \text{End}(\Omega_2; A_2)$
является изоморфизмом Ω_1-алгебры A_1 в $\text{End}(\Omega_2, A_2)$.

Определение 2.2.3. Пусть
$f: A_1 \rightarrow A_2$
представление Ω_1-алгебры A_1 в Ω_2-алгебре A_2 и
$g: B_1 \rightarrow B_2$
pредставление Ω_1-алгебры B_1 в Ω_2-алгебре B_2. Для $i = 1, 2$, пусть отображение
$r_i: A_i \to B_i$
является гомоморфизмом Ω_i-алгебры. Матрица отображений $(r_1 \ r_2)$ такая, что
(2.2.1) $r_2 \circ f(a) = g(r_1(a)) \circ r_2$

2.7 Я следую определению на странице [19]-63.
2.8 Аналогичное определение эффективного представления группы смотри в [24], страница 16, [26], страница 111, [20], страница 51 (Кон называет такое представление точным).
называется морфизмом представлений из \(f \) в \(g \). Мы также будем говорить, что определён морфизм представлений \(\Omega_1 \)-алгебры в \(\Omega_2 \)-алгебре.

Замечание 2.2.4. Мы можем рассматривать пару отображений \(r_1, r_2 \) как отображение

\[
F : A_1 \cup A_2 \to B_1 \cup B_2
\]

такое, что

\[
F(A_1) = B_1, \quad F(A_2) = B_2.
\]

Поскольку в дальнейшем матрицу отображений \((r_1 \ r_2) \) мы будем также называть отображением.

Определение 2.2.5. Если представления \(f \) и \(g \) совпадают, то морфизм представлений \((r_1 \ r_2) \) называется морфизмом представления \(f \).

Определение 2.2.6. Пусть

\[
f : A_1 \twoheadrightarrow A_2
\]

представление \(\Omega_1 \)-алгебры \(A_1 \) в \(\Omega_2 \)-алгебре \(A_2 \) и

\[
g : A_1 \twoheadrightarrow B_2
\]

представление \(\Omega_1 \)-алгебры \(A_1 \) в \(\Omega_2 \)-алгебре \(B_2 \). Пусть

\[
\left(\text{id} : A_1 \to A_1, \quad r_2 : A_2 \to B_2 \right)
\]

морфизм представлений. В этом случае мы можем отождествить морфизм \((\text{id} \ r_2) \) представлений \(\Omega_1 \)-алгебры и соответствующий гомоморфизм \(r_2 \) \(\Omega_2 \)-алгебры и будем называть гомоморфизм \(r_2 \) приведенным морфизмом представлений. Мы будем пользоваться диаграммой

(2.2.2)

для представления приведенного морфизма \(r_2 \) представлений \(\Omega_1 \)-алгебры. Из диаграммы следует

(2.2.3)

\[
r_2 \circ f(a) = g(a) \circ r_2
\]

Мы будем также пользоваться диаграммой

(2.2.4)

вместо диаграммы (2.2.2).
2.3. Перестановка

ОПРЕДЕЛЕНИЕ 2.3.1. Инъективное отображение конечного множества в себя называется перестановкой.\[2,9\]

Обычно перестановку \(\sigma\) мы записываем в виде матрицы

\[
\sigma = \begin{pmatrix}
a_1 & \ldots & a_n \\
\sigma(a_1) & \ldots & \sigma(a_n)
\end{pmatrix}
\]

Запись (2.3.1) перестановки эквивалентна утверждению

\[
\sigma : a \in A \rightarrow \sigma(a) \in A \quad A = \{a_1, \ldots, a_n\}
\]

Поэтому порядок столбцов в записи (2.3.1) несуществен.

Если на множестве \(\{a_1, \ldots, a_n\}\) задан некоторый порядок (например, мы предполагаем, что \(a_i\) предшествует \(a_j\), если \(i < j\)), то мы можем подразумевать, что элементы первой строки записаны согласно предполагаемому порядку и будем отождествлять перестановку со второй строкой

\[
\sigma = \begin{pmatrix}
\sigma(a_1) & \ldots & \sigma(a_n)
\end{pmatrix}
\]

ОПРЕДЕЛЕНИЕ 2.3.2. Отображение

\[
|\sigma| : \sigma \in S(n) \rightarrow \{-1, 1\}
\]

определенное равенством

\[
|\sigma| = \begin{cases}
1 & \text{перестановка } \sigma \text{ чётная} \\
-1 & \text{перестановка } \sigma \text{ нечётная}
\end{cases}
\]

называется чётностью перестановки.\[2,9\]

2.4. Модуль над кольцом

ОПРЕДЕЛЕНИЕ 2.4.1. Эффективное представление коммутативного кольца \(D\) в абелевой группе \(V\)

\[
f : D \longrightarrow V \quad f(d) : v \rightarrow dv
\]

называется модулем над кольцом \(D\) или \(D\)-модулем. \(V\)-число называется вектором.

ТЕОРЕМА 2.4.2. Элементы \(D\)-модуля \(V\) удовлетворяют соотношениям

2.4.2.1: закону ассоциативности

\[
(pq)v = p(qv)
\]

2.4.2.2: закону дистрибутивности

\[
p(v + w) = pv + pw \\
(p + q)v = pv + qw
\]

2.4.2.3: закону унитарности

\[
1v = v
\]

\[2,9\] Смотри определение и свойства перестановки в [5], страницы 28 - 32, [20], страницы 58, 59.
для любых $m, n \in \mathbb{Z}$, $a, b \in D$, $v, w \in V$.

Доказательство. Теорема является следствием теоремы [16]-4.1.3. □

Определение 2.4.3. Пусть \mathcal{P} - базис D-модуля V, и вектор $\mathbf{v} \in V$ имеет разложение

$$\mathbf{v} = v^* e = v^i e_i$$

относительно базиса \mathcal{P}. D-числа v^i называются координатами вектора \mathbf{v} относительно базиса \mathcal{P}. □

Определение 2.4.4. Пусть A_1, A_2 - D-модули. Морфизм представлений $f : A_1 \to A_2$ D-модуля A_1 в D-модуль A_2 называется линейным отображением D-модуля A_1 в D-модуль A_2.

Теорема 2.4.5. Линейное отображение

$$f : A_1 \to A_2$$

D-модуля A_1 в D-модуль A_2 удовлетворяет равенствам

(2.4.6) $f \circ (a + b) = f \circ a + f \circ b$

(2.4.7) $f \circ (pa) = p(f \circ a)$

$a, b \in A_1$, $p \in D$

Доказательство. Теорема является следствием теоремы [16]-4.2.2. □

Теорема 2.4.6. Пусть отображение

$$f : A_1 \to A_2$$

является линейным отображением D-модуля A_1 в D-модуль A_2. Тогда

$$f \circ 0 = 0$$

Доказательство. Теорема является следствием теоремы [16]-4.2.5. □

Определение 2.4.7. Пусть D - коммутативное кольцо. Пусть $A_1, ..., A_n$, S - D-модули. Мы будем называть отображение

$$f : A_1 \times ... \times A_n \to S$$

полилинейным отображением модулей $A_1, ..., A_n$ в модуль S, если

$$f \circ (a_1, ..., a_i + b_i, ..., a_n) = f \circ (a_1, ..., a_i, ..., a_n) + f \circ (a_1, ..., b_i, ..., a_n)$$

$$f \circ (a_1, ..., pa_i, ..., a_n) = pf \circ (a_1, ..., a_i, ..., a_n)$$

$1 \leq i \leq n$, $a_i, b_i \in A_i$, $p \in D$

□

2.10 В некоторых книгах (например, [1], с. 94) теорема 2.4.5 рассматривается как определение.
Теорема 2.4.8. Пусть D - коммутативное кольцо. Пусть $A_1, ..., A_n, S$ - D-модули. Отображение

$$(2.4.8) \quad f + g : A_1 \times ... \times A_n \to S \quad f, g \in \mathcal{L}(D; A_1 \times ... \times A_n \to S)$$

определённое равенством

$$(2.4.9) \quad (f + g) \circ (a_1, ..., a_n) = f \circ (a_1, ..., a_n) + g \circ (a_1, ..., a_n)$$

называется суммой полилинейных отображений f и g и является полилинейным отображением. Множество $\mathcal{L}(D; A_1 \times ... \times A_n \to S)$ является абелевой группой относительно суммы отображений.

Доказательство. Теорема является следствием теоремы [16]-4.3.3. □

Следствие 2.4.9. Пусть A_1, A_2 - D-модули. Отображение

$$(2.4.10) \quad f + g : A_1 \to A_2 \quad f, g \in \mathcal{L}(D; A_1 \to A_2)$$

определённое равенством

$$(2.4.11) \quad (f + g) \circ x = f \circ x + g \circ x$$

называется суммой отображений f и g и является линейным отображением. Множество $\mathcal{L}(D; A_1; A_2)$ является абелевой группой относительно суммы отображений. □

Определение 2.4.10. Пусть $A_1, ..., A_n$ - свободные модули над коммутативным кольцом D. 2.11 Рассмотрим категорию A_1 объектами которой являются полилинейные отображения

$$f : A_1 \times ... \times A_n \to S_1 \quad g : A_1 \times ... \times A_n \to S_2$$

где S_1, S_2 - модули над кольцом D. Мы определим морфизм $f \to g$ как линейное отображение

$$h : S_1 \to S_2$$

tакое, что коммутатива диаграмма

Универсальный объект $A_1 \otimes ... \otimes A_n$ категории A_1 называется тензорным произведением модулей $A_1, ..., A_n$. □

2.11 Я определяю тензорное произведение D-модулей по аналогии с определением в [1], с. 456 - 458.
Теорема 2.4.11. Пусть D - коммутативное кольцо. Пусть $A_1, ..., A_n$ - D-модули. Тензорное произведение дистрибутивно относительно сложения
\[
a_1 \otimes ... \otimes (a_i + b_i) \otimes ... \otimes a_n = a_1 \otimes ... \otimes a_i \otimes ... \otimes a_n + a_1 \otimes ... \otimes b_i \otimes ... \otimes a_n
\]
(2.4.12)
\[
a_i, b_i \in A_i
\]
Представление кольца D в тензорном произведении определено равенством
\[
a_1 \otimes ... \otimes (ca_i) \otimes ... \otimes a_n = c(a_1 \otimes ... \otimes a_i \otimes ... \otimes a_n)
\]
(2.4.13)
\[
a_i \in A_i, c \in D
\]
Доказательство. Теорема является следствием теоремы [16]-4.5.3. □

Теорема 2.4.12. Пусть $A_1, ..., A_n$ - модули над коммутативным кольцом D. Тензорное произведение
\[
f : A_1 \times ... \times A_n \to A_1 \otimes ... \otimes A_n
\]
sуществует и единственно. Мы пользуемся обозначением
\[
f \circ (a_1, ..., a_n) = a_1 \otimes ... \otimes a_n
\]
для образа отображения f. Пусть
\[
g : A_1 \times ... \times A_n \to V
\]
полилинейное отображение в D-модуль V. Существует линейное отображение
\[
h : A_1 \otimes ... \otimes A_n \to V
\]
такое, что диаграмма
(2.4.14)
\[
\begin{array}{ccc}
A_1 \times ... \times A_n & \xrightarrow{f} & A_1 \otimes ... \otimes A_n \\
& \downarrow{h} & \downarrow{h} \\
V & \xleftarrow{g} & V
\end{array}
\]
коммутативна. Отображение h определено равенством
\[
h \circ (a_1 \otimes ... \otimes a_n) = g \circ (a_1, ..., a_n)
\]
(2.4.15)
Доказательство. Смотри доказательство теорем [16]-4.5.2, [16]-4.5.4. □

Соглашение 2.4.13. Алгебры S_1, S_2 могут быть различными множествами. Однако они неразличимы для нас, если мы рассматриваем их как изоморфные представления. В этом случае мы будем писать $S_1 = S_2$. □

Теорема 2.4.14.
(2.4.16) \[(A_1 \otimes A_2) \otimes A_3 = A_1 \otimes (A_2 \otimes A_3) = A_1 \otimes A_2 \otimes A_3\]
Доказательство. Теорема является следствием теоремы [16]-3.4.5. □

Определение 2.4.15. Тензорное произведение
\[
A^{\otimes n} = A_1 \otimes ... \otimes A_n, A_1 = ... = A_n = A
\]
называется тензорной степенью модуля A_1. □
Теорема 2.4.16. Отображение

\[(v_1, ..., v_n) \in V_1 \times ... \times V_n \rightarrow v_1 \otimes ... \otimes v_n \in V_1 \otimes ... \otimes V_n\]

является полилинейным отображением.

Доказательство. Теорема является следствием теоремы [16]-4.5.5.

Теорема 2.4.17. Пусть \(\mathbb{F}_i \) - базис модуля \(A_i \) над кольцом \(D \). Произвольный тензор \(a \in A_1 \otimes ... \otimes A_n \) можно представить в виде

\[(2.4.17) \quad a = a^{i_1...i_n} e_{i_1} \otimes ... \otimes e_{i_n} \]

Мы будем называть выражение \(a^{i_1...i_n} \) стандартной компонентой тензора.

Доказательство. Теорема является следствием теоремы [16]-4.5.6.

2.5. Алгебра над коммутативным кольцом

Определение 2.5.1. Пусть \(D \) - коммутативное кольцо. \(D \)-модуль \(A \) называется алгеброй над кольцом \(D \) или \(D \)-алгеброй, если определена операция произведения \(2.12 \) в \(A \)

\[(2.5.1) \quad vw = C \circ (v, w) \]

где \(C \) - билинейное отображение

\[C : A \times A \rightarrow A \]

Если \(A \) является свободным \(D \)-модулем, то \(A \) называется свободной алгеброй над кольцом \(D \).

Соглашение 2.5.2. Элемент \(D \)-алгебры \(A \) называется \(A \)-числом. Например, комплексное число также называется \(C \)-числом, а кватернион называется \(H \)-числом.

Произведение в алгебре может быть ни коммутативным, ни ассоциативным. Следующие определения основаны на определениях, данных в [27], страница 13.

Определение 2.5.3. Коммутатор

\[[a, b] = ab - ba\]

служит мерой коммутативности в \(D \)-алгебре \(A \). \(D \)-алгебра \(A \) называется коммутативной, если

\[[a, b] = 0\]

Определение 2.5.4. Ассоциатор

\[(2.5.2) \quad (a, b, c) = (ab)c - a(bc)\]

служит мерой ассоциативности в \(D \)-алгебре \(A \). \(D \)-алгебра \(A \) называется ассоциативной, если

\[(a, b, c) = 0\]

\[2.12 \text{ Я следую определению, приведенному в [27], страница 1, [18], страница 4. Утверждение, верное для произвольного } D \text{-модуля, верно также для } D \text{-алгебры.}\]
ОПРЕДЕЛЕНИЕ 2.5.5. **Ядро D-алгебры A** - это множество\(^2\)\(^\text{13}\)

\[N(A) = \{ a \in A : \forall b, c \in A, (a, b, c) = (b, a, c) = (b, c, a) = 0 \} \]

ОПРЕДЕЛЕНИЕ 2.5.6. **Центр D-алгебры A** - это множество\(^2\)\(^\text{14}\)

\[Z(A) = \{ a \in A : a \in N(A), \forall b \in A, ab = ba \} \]

Соглашение 2.5.7. Пусть \(A \) - свободная алгебра с конечным или счётным базисом. При разложении элемента алгебры \(A \) относительно базиса мы пользуемся одной и той же корневой буквой для обозначения этого элемента и его координат. В выражении \(a^2 \) не ясно - это компонента разложения элемента или это операция возведения в степень. Для облегчения чтения текста мы будем индекс элемента алгебры выделять цветом. Например,

\[a = a^i e_i \]

Соглашение 2.5.8. \(e \) - базис свободной алгебры \(A \) над кольцом \(D \). Если алгебра \(A \) имеет единицу, положим \(e_0 \) - единица алгебры \(A \).

Теорема 2.5.9. Пусть \(D \) - коммутативное кольцо и \(A \) - абелевая группа. Диаграмма представлений

\[
\begin{array}{ccc}
D & \xrightarrow{g_{1,2}} & A \\
\downarrow{g_{1,2}} & & \downarrow{g_{2,3}} \\
D & \xrightarrow{g_{1,2}} & A \quad \text{где} \quad g_{1,2}(d) : v \to d v \\
& & \text{и} \quad g_{2,3}(v) : w \to C \circ (v, w) \\
& & \text{где} \quad C \in \mathcal{L}(D; A^2 \to A) \\
\end{array}
\]

порождает структуру \(D \)-алгебры \(A \).

ДОКАЗАТЕЛЬСТВО. Теорема является следствием теоремы [16]-5.1.11 и следствия [16]-5.1.12.

ОПРЕДЕЛЕНИЕ 2.5.10. Пусть \(A_1 \) и \(A_2 \) - алгебры над коммутативным кольцом \(D \). Линейное отображение \(D \)-модуля \(A_1 \) в \(D \)-модуль \(A_2 \) называется линейным отображением \(D \)-алгебры \(A_1 \) в \(D \)-алгебру \(A_2 \).

Обозначим \(\mathcal{L}(D; A_1 \to A_2) \) множество линейных отображений \(D \)-алгебры \(A_1 \) в \(D \)-алгебру \(A_2 \).

Теорема 2.5.11. Пусть \(A \) - алгебра над коммутативным кольцом \(D \). \(D \)-модуль \(\mathcal{L}(D; A; A) \), оснащённый произведением

(2.5.3)

\[\circ : (g, f) \in \mathcal{L}(D; A \to A) \times \mathcal{L}(D; A \to A) \to g \circ f \in \mathcal{L}(D; A \to A) \]

является алгеброй над \(D \).

\(^2\)\(^\text{13}\) Определение дано на базе аналогичного определения в [27], с. 13

\(^2\)\(^\text{14}\) Определение дано на базе аналогичного определения в [27], страница 14
Доказательство. Теорема является следствием теоремы [16]-6.2.5. □

Определение 2.5.12. Пусть A_1, ..., A_n, S - D-алгебры. Мы будем называть полилинейным отображение

\[f : A_1 \times \ldots \times A_n \rightarrow S \]

D-модулей A_1, ..., A_n в D-модуль S полилинейным отображением D-алгебр A_1, ..., A_n в D-модуль S. Обозначим \(\mathcal{L}(D; A_1 \times \ldots \times A_n \rightarrow S) \) множество полилинейных отображений D-алгебр A_1, ..., A_n в D-модуль S. Обозначим \(\mathcal{L}(D; A^n \rightarrow S) \) множество n-линейных отображений D-алгебры A_1 ($A_1 = \ldots = A_n = A_1$) в D-модуль S.

Теорема 2.5.13. Пусть A_1, ..., A_n - D-алгебры. Тензорное произведение $A_1 \otimes \ldots \otimes A_n$ D-модулей A_1, ..., A_n является D-алгеброй, если мы определим произведение согласно правилу

\[(a_1, \ldots, a_n) \ast (b_1, \ldots, b_n) = (a_1b_1) \otimes \ldots \otimes (a_nb_n) \]

Доказательство. Теорема является следствием теоремы [16]-6.1.3. □

Теорема 2.5.14. Пусть A является D-алгеброй. Пусть произведение в алгебре $A \otimes A$ определено согласно правилу

\[(p_0 \otimes p_1) \circ (q_0 \otimes q_1) = (p_0q_0) \otimes (q_1p_1) \]

Представление

\[(2.5.4) \quad h : A \otimes A \rightarrow \mathcal{L}(D; A \rightarrow A) \quad h(p) : f \rightarrow p \circ f \]

D-алгебры $A \otimes A$ в модуле $\mathcal{L}(D; A \rightarrow A)$, определённое равенством

\[(a \otimes b) \circ f = afb \quad a, b \in A \quad f \in \mathcal{L}(D; A \rightarrow A) \]

позволяет отождествить тензор $d \in A \otimes A$ с линейным отображением $d \circ \delta \in \mathcal{L}(D; A \rightarrow A)$, где $\delta \in \mathcal{L}(D; A \rightarrow A)$ - тождественное отображение. Линейное отображение $(a \otimes b) \circ \delta$ имеет вид

\[(2.5.5) \quad (a \otimes b) \circ c = acb \]

Доказательство. Теорема является следствием теоремы [16]-6.3.4. □

Соглашение 2.5.15. В выражениях вида

\[a_1 \circ \ldots \circ a_{i+1} \]

предполагается сумма по индексу i. □

Теорема 2.5.16. Пусть A_1 - свободный D-модуль. Пусть A_2 - свободная конечно мерная ассоциативная D-алгебра. Пусть \mathcal{F} - базис D-модуля A_2. Пусть \mathcal{F} - базис левого $A_2 \otimes A_2$-модуля $\mathcal{L}(D; A_1 \rightarrow A_2)$. 2.15

2.15 Если D-модуль A_1 или D-модуль A_2 не является свободным D-модулем, то мы будем рассматривать множество

\[\mathcal{F} = \{ F_k \in \mathcal{L}(D; A_1 \rightarrow A_2) : k = 1, \ldots, n \} \]

линейно независимыми линейными отображениями. Теорема верна для любого линейного отображения

\[f : A_1 \rightarrow A_2 \]

порождённого множеством линейных отображений \mathcal{F}.

2. Предварительные определения

2.5.16.1: Отображение
\[f : A_1 \to A_2 \]
имеет следующее разложение
\[f = f^k \circ F_k \]
где
\[f^k = f^k_{s_k,0} \otimes f^k_{s_k,1} \quad f^k \in A_2 \otimes A_2 \]
2.5.16.2: Отображение \(f \) имеет стандартное представление
\[f = f^{k \cdot ij}(e_i \otimes e_j) \circ F_k = f^{k \cdot ij}e_iF_ke_j \]

Доказательство. Теорема является следствием теоремы [16]-6.4.1.

Определение 2.5.17. Выражение \(f^k \cdot s_k \cdot p, p = 0, 1 \) в равенстве (2.5.6) называется компонентой линейного отображения \(f \). Выражение \(f^{k \cdot ij} \) в равенстве (2.5.8) называется стандартной компонентой линейного отображения \(f \).

Теорема 2.5.18. Пусть \(A_1 \) - свободный \(D \)-модуль. Пусть \(A_2 \) - свободная ассоциативная \(D \)-алгебра. Пусть \(F^k \) - базис левого \(A_2 \otimes A_2 \)-модуля \(\mathcal{L}(D; A_1 \to A_2) \). Для любого отображения \(F_k \in F^k \), существует множество линейных отображений
\[F^k_1 : A_1 \otimes A_1 \to A_2 \otimes A_2 \]
\(D \)-модуля \(A_1 \otimes A_1 \) в \(D \)-модуль \(A_2 \otimes A_2 \) таких, что
\[F_k \circ a \circ x = (F^k_1 \circ a) \circ F_1 \circ x \]
Отображение \(F^k_1 \) называется преобразованием сопряжения.

Доказательство. Теорема является следствием теоремы [16]-6.4.2.

Теорема 2.5.19. Пусть \(A_1 \) - свободный \(D \)-модуль. Пусть \(A_2, A_3 \) - свободные ассоциативные \(D \)-алгебры. Пусть \(F^k \) - базис левого \(A_2 \otimes A_2 \)-модуля \(\mathcal{L}(D; A_1 \to A_2) \). Пусть \(G^l \) - базис левого \(A_3 \otimes A_3 \)-модуля \(\mathcal{L}(D; A_2 \to A_3) \).

2.5.19.1: Множество отображений
\[\mathcal{H} = \{ H_{lk} : H_{lk} = G_l \circ F_k, G_l \in G^l, F_k \in F^k \} \]
является базисом левого \(A_3 \otimes A_3 \)-модуля \(\mathcal{L}(D; A_1 \to A_2 \to A_3) \).

2.5.19.2: Пусть линейное отображение
\[f : A_1 \to A_2 \]
имеет разложение
\[f = f^k \circ F_k \]
относительно базиса \(\mathcal{H} \). Пусть линейное отображение
\[g : A_2 \to A_3 \]
имеет разложение
\[g = g^l \circ G_l \]
относительно базиса \(\mathcal{G} \). Тогда линейное отображение
\[h = g \circ f \]
имеет разложение

\[(2.5.14)\quad h = h_{lk} \circ K_{lk}\]
относительно базиса K, где

\[(2.5.15)\quad h_{lk} = g^{l} \circ (G^{k}_{m} \circ f^{m})\]

Доказательство. Теорема является следствием теоремы [16]-6.4.3.

Teorema 2.5.20. Пусть A - свободная ассоциативная D-алгебра. Пусть левый $A \otimes A$-модуль $L(D; A \rightarrow A)$ порождён тождественным отображением $F_{0} = \delta$. Пусть линейное отображение

\[f : A \rightarrow A\]

имеет разложение

\[(2.5.16)\quad f = f_{s \cdot 0} \otimes f_{s \cdot 1}\]

Пусть линейное отображение

\[g : A \rightarrow A\]

имеет разложение

\[(2.5.17)\quad g = g_{t \cdot 0} \otimes g_{t \cdot 1}\]

Тогда линейное отображение

\[(2.5.18)\quad h = g \circ f\]

имеет разложение

\[(2.5.19)\quad h = h_{ts \cdot 0} \otimes h_{ts \cdot 1}\]
где

\[(2.5.20)\quad h_{ts \cdot 0} = g_{t \cdot 0} f_{s \cdot 0}\quad h_{ts \cdot 1} = f_{s \cdot 1} g_{t \cdot 1}\]

Доказательство. Теорема является следствием теоремы [16]-6.4.4.

Teorema 2.5.21. Пусть $\overline{F} = (F_{1},...,F_{n})$ - базис свободного конечно мерного D-модуля A_{1}. Пусть \overline{F}_{2} - базис свободной конечно мерной ассоциативной D-алгебры A_{2}. Пусть C^{k}_{m} - структурные константы алгебры A_{2}. Пусть \overline{F} - базис левого $A_{2} \otimes A_{2}$-модуля $L(D; A_{1} \rightarrow A_{2})$ и F^{j}_{k} - координаты отображения F_{k} относительно базисов \overline{F}_{2} и \overline{F}_{2}. Координаты f^{k}_{i} отображения $f \in L(D; A_{1} \rightarrow A_{2})$ и его стандартные компоненты f^{k-ij} связаны равенством

\[(2.5.21)\quad f^{k}_{i} = f^{k-ij_{0}} F^{k}_{i \cdot m_{0}} C^{m_{0}}_{i \cdot m} C^{k}_{m_{0}} f^{k}_{j}\]

Доказательство. Теорема является следствием теоремы [16]-6.4.5.

По определению $\overline{F} = (F_{1},...,F_{n})$. Мы также рассматриваем множество $F = (F_{(1)},...,F_{(k)})$ имея в виду, что возможно равенство $F_{(i)} = F_{(j)}$ при условии $i \neq j$.

Teorema 2.5.22. Пусть $A_{1}, ..., A_{n}, B$ - свободные модули над коммутативным кольцом D. D-модуль $L(D; A_{1} \times \ldots \times A_{n} \rightarrow B)$ является свободным D-модулем.

Доказательство. Теорема является следствием теоремы [16]-4.4.8.
Теорема 2.5.23. Пусть A - ассоциативная D-алгебра. Полиномиальное отображение

$\text{(2.5.22)} \quad f : A^n \to A, a = f \circ (a_1, ..., a_n)$

порождённое отображениями $I_{(s-1)}, ..., I_{(s-n)} \in \mathcal{L}(D; A \to A)$, имеет вид

$\text{(2.5.23)} \quad a = f^n_{s,0} \circ (I_{(s-1)} \circ a_1) \circ f^n_{s,1} \circ ... \circ (I_{(s-n)} \circ a_n)$

где σ_s - перестановка множества переменных: $\{a_1, ..., a_n\}$

$\sigma_s = \begin{pmatrix} a_1 & ... & a_n \\ \sigma_s(a_1) & ... & \sigma_s(a_n) \end{pmatrix}$

Доказательство. Теорема является следствием теоремы [16]-6.6.6. □

Теорема 2.5.24. Рассмотрим D-алгебру A. Представление

$h : A^{\otimes n+1} \times S_n \longrightarrow \mathcal{L}(D; A^n \to A)$

алгебры $A^{\otimes n+1}$ в модуле $\mathcal{L}(D; A^n \to A)$, определённое равенством

$\text{(2.5.24)} \quad (d, \sigma) \circ (f_1, ..., f_n) = d \in \mathcal{L}(D; A \to A)$

где $d \in \mathcal{L}(D; A \to A)$ - тождественное отображение.

Доказательство. Теорема является следствием теоремы [16]-6.6.9. □

Соглашение 2.5.25. Если тензор $a \in A^{\otimes (n+1)}$ имеет разложение

$\text{(2.5.25)} \quad a = a_{i,0} \otimes a_{i,1} \otimes ... \otimes a_{i,n} \quad i \in I$

то множество перестановок $\sigma = \{\sigma_i \in S(n) : i \in I\}$ и тензор a порождают отображение

$(a, \sigma) : A^x \to A$

определенное равенством

$\text{(2.5.26)} \quad (a, \sigma) \circ (b_1, ..., b_n) = (a_{i,0} \otimes a_{i,1} \otimes ... \otimes a_{i,n}, \sigma_i) \circ (b_1, ..., b_n)$

$\text{(2.5.27)} \quad = a_{i,0} \sigma_i(b_1) a_{i,1} \sigma_i(b_2) ... a_{i,n} \sigma_i(b_n)$

2.6. Многочлен над ассоциативной D-алгеброй

Пусть D - коммутативное кольцо и A - ассоциативная D-алгебра с единицей. Пусть $\mathcal{L}(D; A \to A)$ - базис алгебры $\mathcal{L}(D; A \to A)$.

Теорема 2.6.1. Пусть $p_k(x)$ - одночлен степени k над D-алгеброй A.

Тогда

$\text{2.6.1.1: Одночлен степени 0 имеет вид} \quad p_0(x) = a_0, \quad a_0 \in A.$
2.6. Многочлен над ассоциативной D-алгеброй

2.6.1.2: Если $k > 0$, то

$$p_k(x) = p_{k-1}(x)(F \circ x)a_k$$

где $a_k \in A$ и $F \in \overline{F}$.

Доказательство. Теорема является следствием теоремы [13]-4.1. □

В частности, одночлен степени 1 имеет вид $p_1(x) = a_0(F \circ x)a_1$.

Определение 2.6.2. Обозначим $A_k[x]$ abелевую группу, порождённую множеством одночленов степени k. Элемент $p_k(x)$ abелевой группы $A_k[x]$ называется однородным многочленом степени k. □

Соглашение 2.6.3. Пусть тензор $a \in A^\otimes(n+1)$. Пусть $F(1), ..., F(n) \in \overline{F}$. Если $x_1 = ... = x_n = x$, то мы положим

$$a \circ F \circ x^n = a \circ (F(1), ..., F(n)) \circ (x_1 \otimes ... \otimes x_n)$$

Соглашение 2.6.4. Если мы имеем несколько кортежей отображений $F \in \overline{F}$, то мы будем пользоваться индексом вида $[k]$ для индексирования кортежа $F[k] = (F[k](1), ..., F[k](n))$. □

Теорема 2.6.5. Однородный многочлен $p(x)$ может быть записан в виде

$$p(x) = a_{[s]} \circ F_{[s]} \circ x^k \quad a_{[s]} \in A^\otimes(k+1)$$

Доказательство. Теорема является следствием теоремы [13]-4.6. □

Определение 2.6.6. Обозначим

$$A[x] = \bigoplus_{n=0}^{\infty} A_n[x]$$

прямую сумму $\bigoplus_{n=0}^{\infty} A_n[x]$ а$модулей$ $A_n[x]$. Элемент $p(x)$ A-модуля $A[x]$ называется многочленом над D-алгеброй A. □

Следующее определение 2.6.7 опирается на определение [13]-5.2.

Определение 2.6.7. Билинейное отображение

$$\otimes : A^\otimes n \times A^\otimes m \to A^\otimes(n+m-1)$$

определено равенством

$$(a_1 \otimes ... \otimes a_n) \otimes (b_1 \otimes ... \otimes b_n) = a_1 \otimes ... \otimes a_{n-1} \otimes a_n b_1 \otimes b_2 \otimes ... \otimes b_n$$

Определение 2.6.8. Произведение однородных многочленов $p \circ F_{[1]} \circ x^n$, $r \circ F_{[2]} \circ x^m$ определено равенством

$$(p \circ F_{[1]} \circ x^n)(r \circ F_{[2]} \circ x^m) = (p \otimes r) \circ (F_{1}, ..., F_{[1](n)}, F_{[2](1)}, ..., F_{[2](m)}) \circ x^{n+m}$$

2.16 См. определение прямой суммы модулей в [1], страница 98. Согласно теореме 1 на той же странице, прямая сумма модулей существует.

2.17 Определение 2.6.8 опирается на определение [13]-5.5.
2.7. Комплексное поле

Теорема 2.7.1. Рассмотрим поле комплексных чисел \(C\) как двумерную алгебру над полем действительных чисел. Положим

\[
e_0 = 1, \quad e_1 = i
\]

базис алгебры \(C\). Тогда в этом базисе произведение имеет вид

\[
e_1^2 = -e_0
\]

и структурные константы имеют вид

\[
C_{00}^0 = 1, \quad C_{01}^1 = 1, \quad C_{10}^1 = 1, \quad C_{11}^0 = -1
\]

Доказательство. Теорема является следствием теоремы [12]-4.1.1.

Определение 2.7.2. Поле комплексных чисел имеет следующие отображения сопряжения

\[
E \circ (x_0 + x_1 i) = x_0 + x_1 i
\]

\[
I \circ (x_0 + x_1 i) = x_0 - x_1 i
\]

Теорема 2.7.3. Линейное отображение

\[
f : C \to C \quad y^j = f^i x^j
\]

поля комплексных чисел имеет вид

\[
f = a_0 \circ E + a_1 \circ I
\]

где \(C\)-числа

\[
a_i = a_0^i + a_1^i i \quad i = 0, 1
\]

определены равенством

\[
\begin{pmatrix}
a_0^0 & a_0^1 \\
a_1^0 & a_1^1
\end{pmatrix} = \frac{1}{2} \begin{pmatrix}1 & 1 \quad f_0^0 & f_0^1 \\ 1 & -1 \quad f_1^1 & -f_1^0
\end{pmatrix}
\]

Доказательство. Теорема является следствием теоремы [12]-2.5.1.

Следствие 2.7.4. \(C \otimes C\)-модуль \(\mathcal{L}(R; C \to C)\) является \(C\)-векторным пространством и имеет базис \(\mathcal{F} = (E, I)\).

Теорема 2.7.5. Множество

\[
CE = \{aE : a \in C\}
\]

является \(R\)-алгеброй, изоморфной полю комплексных чисел.

Доказательство. Теорема является следствием равенств

\[
(aE) \circ x + (bE) \circ x = ax + bx = (a + b)x = ((a + b)E) \circ x
\]

\[
(aE) \circ (bE) \circ x = (aE) \circ (bx) = a(bx) = (ab)x = ((ab)E) \circ x
\]

опирающихся на теорему 2.7.3.
2.7. Комплексное поле

Теорема 2.7.6. \(\mathcal{L}(C; C \rightarrow C) = CE. \)

Доказательство. Теорема является следствием равенства (2.7.7) и коммутативности произведения комплексных чисел. □

Теорема 2.7.7 (Уравнения Коши-Римана). Матрица линейного отображения \(f \in CE \)

\[
y^i = x^j f^i_j
\]

удовлетворяет соотношению

\[
\begin{align*}
f_0^0 &= f_1^1 \\
f_0^1 &= -f_1^0
\end{align*}
\]

(2.7.9)

Доказательство. Теорема является следствием теоремы [12]-4.1.1. □

Теорема 2.7.8. Матрица линейного отображения \(f \in CI \)

\[
y^i = x^j f^i_j
\]

удовлетворяет соотношению

\[
\begin{align*}
f_0^0 &= -f_1^1 \\
f_0^1 &= f_1^0
\end{align*}
\]

(2.7.10)

Доказательство. Утверждение следует из равенств

\[
(b_0 + b_1 i)I(x_0 + x_1 i) = (b_0 + b_1 i)(x_0 - x_1 i) = b_0 x_0 + b_1 x_1 + (-b_0 x_1 + b_1 x_0)i
\]

\[
\begin{pmatrix}
b_0 & b_1 \\
b_1 & -b_0
\end{pmatrix}
\begin{pmatrix}
x_0 \\
x_1
\end{pmatrix}
= \begin{pmatrix}
b_0 x_0 + b_1 x_1 \\
b_1 x_0 - b_0 x_1
\end{pmatrix}
\]

□

2.18 Смотри также раздел [12]-2.5.
Глава 3

Дифференцируемые отображения

3.1. Топологическое кольцо

ОПРЕДЕЛЕНИЕ 3.1.1. Кольцо D называется топологическим кольцом, если D является топологическим пространством, и алгебраические операции, определённые в D, непрерывны в топологическом пространстве D.

Согласно определению, для произвольных элементов $a, b \in D$ и для произвольных окрестностей W_{a-b} элемента $a-b$, W_{ab} элемента ab существуют такие окрестности W_a элемента a и W_b элемента b, что $W_a - W_b \subset W_{a-b}$, $W_a W_b \subset W_{ab}$.

ОПРЕДЕЛЕНИЕ 3.1.2. Норма на кольце D - это отображение $d \in D \rightarrow |d| \in \mathbb{R}$ такое, что

- $|a| \geq 0$
- $|a| = 0$ равносильно $a = 0$
- $|ab| = |a| \cdot |b|$
- $|a + b| \leq |a| + |b|$

Кольцо D, наделённое структурой, определяемой заданием на D нормы, называется нормированным кольцом.

Инвариантное расстояние на аддитивной группе кольца D

$$d(a, b) = |a - b|$$

определяет топологию метрического пространства, согласующуюся со структурой кольца в D.

ОПРЕДЕЛЕНИЕ 3.1.3. Пусть D - нормированное кольцо. Элемент $a \in D$ называется пределом последовательности $\{a_n\}$

$$a = \lim_{n \to \infty} a_n$$

если для любого $\epsilon \in \mathbb{R}$, $\epsilon > 0$, существует, зависящее от ϵ, натуральное число n_0 такое, что

$$|a_n - a| < \epsilon$$

для любого $n > n_0$.

3.1 Определение дано согласно определению из [23], глава 4.
3.2 Определение дано согласно определению из [21], гл. IX, §3, п. 3, а также согласно определению [32]-1.1.12, с. 23.
Теорема 3.1.4. Пусть D - нормированное кольцо характеристики 0 и пусть $d \in D$. Пусть $a \in D$ - предел последовательности $\{a_n\}$. Тогда
\[
\lim_{n \to \infty} (a_n d) = ad \\
\lim_{n \to \infty} (d a_n) = da
\]

Доказательство. Утверждение теоремы тривиально, однако я привожу доказательство для полноты текста. Поскольку $a \in D$ - предел последовательности $\{a_n\}$, то согласно определению 3.1.3 для заданного $\varepsilon \in R$, $\varepsilon > 0$, существует натуральное число n_0 такое, что
\[
|a_n - a| < \frac{\varepsilon}{|d|}
\]
dля любого $n > n_0$. Согласно определению 3.1.2 утверждение теоремы следует из неравенств
\[
|a_n d - ad| = |(a_n - a)d| = |a_n - a||d| < \frac{\varepsilon}{|d|}|d| = \varepsilon \\
|da_n - da| = |d(a_n - a)| = |d||a_n - a| < |d|\frac{\varepsilon}{|d|} = \varepsilon
\]
dля любого $n > n_0$.

Определение 3.1.5. Пусть D - нормированное кольцо. Последовательность $\{a_n\}$, $a_n \in D$ называется фундаментальной или последовательностью Коши, если для любого $\varepsilon \in R$, $\varepsilon > 0$ существует, зависящее от ε, натуральное число n_0 такое, что $|a_p - a_q| < \varepsilon$ для любых $p, q > n_0$.

Определение 3.1.6. Нормированное кольцо D называется полным если любая фундаментальная последовательность элементов данного кольца сходится, т. е. имеет предел в этом кольце.

В дальнейшем, говоря о нормированном кольце характеристики 0, мы будем предполагать, что определён гомеоморфизм поля рациональных чисел Q в кольцо D.

Теорема 3.1.7. Полное кольцо D характеристики 0 содержит в качестве подполя изоморфный образ поля R действительных чисел. Это поле обычно отождествляют с R.

Доказательство. Рассмотрим фундаментальную последовательность рациональных чисел $\{p_n\}$. Пусть p' - предел этой последовательности в кольце D. Пусть p - предел этой последовательности в поле R. Так как вложение поля Q в тело D гомеоморфно, то мы можем отождествить $p' \in D$ и $p \in R$.

Теорема 3.1.8. Пусть D - полное кольцо характеристики 0 и пусть $d \in D$. Тогда любое действительное число $p \in R$ коммутирует с d.

Доказательство. Мы можем представить действительное число $p \in R$ в виде фундаментальной последовательности рациональных чисел $\{p_n\}$. Утверждение теоремы следует из цепочки равенств
\[
pd = \lim_{n \to \infty} (p_n d) = \lim_{n \to \infty} (dp_n) = dp
\]
основанной на утверждении теоремы 3.1.4.
3.2. Топологическая D-алгебра

ОПРЕДЕЛЕНИЕ 3.2.1. Пусть D - нормированное коммутативное кольцо. Норма в D-модуле A - это отображение $a \in A \rightarrow \|a\| \in R$ такое, что

3.2.1.1: $\|a\| \geq 0$
3.2.1.2: $\|a\| = 0$ равносильно $a = 0$
3.2.1.3: $\|a + b\| \leq \|a\| + \|b\|$
3.2.1.4: $\|da\| = |d| \|a\|$, $d \in D$, $a \in A$

D-модуль A, наделённый структурой, определяемой заданием на A нормы, называется нормированным D-модулем.

ОПРЕДЕЛЕНИЕ 3.2.2. Пусть A - нормированый D-модуль. Пусть $a \in A$. Множество $B_o(a, \rho) = \{b \in A : \|b - a\| < \rho\}$ называется открытым шаром с центром в a.

ОПРЕДЕЛЕНИЕ 3.2.3. Пусть A - нормированый D-модуль. Пусть $a \in A$. Множество $B_c(a, \rho) = \{b \in A : \|b - a\| \leq \rho\}$ называется замкнутым шаром с центром в a.

ТЕОРЕМА 3.2.4. $b \in B_c(a, \rho)$ тогда и только тогда, когда $b - a \in B_o(0, \rho)$.

ДОКАЗАТЕЛЬСТВО. Теорема является следствием определения 3.2.3.

ОПРЕДЕЛЕНИЕ 3.2.5. Пусть A - нормированый D-модуль. A-число a называется пределом последовательности $\{a_n\}$, $a_n \in A$, если для любого $\epsilon \in R$, $\epsilon > 0$, существует, зависящее от ϵ, натуральное число n_0 такое, что $\|a_n - a\| < \epsilon$ для любого $n > n_0$. Мы будем также говорить, что последовательность a_n сходится к a.

ТЕОРЕМА 3.2.6. Пусть A - нормированый D-модуль. A-число a является пределом последовательности $\{a_n\}$, $a_n \in A$, если для любого $\epsilon \in R$, $\epsilon > 0$, существует, зависящее от ϵ, натуральное число n_0 такое, что $a_n \in B_o(a, \epsilon)$ для любого $n > n_0$.

ДОКАЗАТЕЛЬСТВО. Следствие определений 3.2.2, 3.2.5.

ОПРЕДЕЛЕНИЕ 3.2.7. Пусть A - нормированый D-модуль. Последовательность $\{a_n\}$, $a_n \in A$, называется фундаментальной или последовательностью Коши, если для любого $\epsilon \in R$, $\epsilon > 0$, существует, зависящее от ϵ, натуральное число n_0 такое, что $\|a_p - a_q\| < \epsilon$ для любых $p, q > n_0$.

3.3 Определение дано согласно определению из [21], гл. IX, §3, п.3. Для нормы мы пользуемся обозначением $|a|$ или $\|a\|$.
Теорема 3.2.8. Пусть A - нормированный D-модуль. Последовательность
$\{a_n\}$, $a_n \in A$, является фундаментальной последовательностью, тогда и
только тогда, когда для любого $\epsilon \in R$, $\epsilon > 0$, существует, зависящее от ϵ,
натуральное число n_0 такое, что
$$a_q \in B_o(a_p, \epsilon)$$
для любых $p, q > n_0$.

Доказательство. Следствие определений 3.2.2, 3.2.7.

Определение 3.2.9. Нормы $\|x\|_1, \|x\|_2$, определённые на D-модуле A,
называются эквивалентными, если утверждение
$$a = \lim_{n \to \infty} a_n$$
не зависит от выбранной нормы.

В теоремах 3.2.10, мы рассмотрим нормы $\|x\|_1, \|x\|_2$, определённые на D-
модуле A. Мы также будем рассматривать открытые и замкнутые шары
$$B_{1o}(0, \rho) = \{a \in A : \|x\|_1 < \rho\} \quad B_{1c}(0, \rho) = \{a \in A : \|x\|_1 \leq \rho\}$$
$$B_{2o}(0, \rho) = \{a \in A : \|x\|_2 < \rho\} \quad B_{2c}(0, \rho) = \{a \in A : \|x\|_2 \leq \rho\}$$

Теорема 3.2.10. Нормы $\|x\|_1, \|x\|_2$, определённые на D-модуле A, эквивалентны тогда и только тогда, когда существуют постоянные $c_1 > 0$, $c_2 > 0$ такие, что для любого $\rho > 0$
(3.2.1)
$$B_{1c}(0, c_1 \rho) \subseteq B_{2c}(0, \rho)$$
(3.2.2)
$$B_{2c}(0, c_2 \rho) \subseteq B_{1c}(0, \rho)$$

Доказательство. Пусть постоянные c_1, c_2 существуют. Пусть
$$a = \lim_{n \to \infty} a_n$$
по норме $\|x\|_1$. Согласно теоремам 3.2.4, 3.2.6 и определениям 3.2.2, 3.2.3, для любых $\epsilon \in R$, $\epsilon > 0$, существует натуральное число n_0 такое, что
(3.2.3)
$$a - a_n \in B_{1o}(0, \frac{1}{2c_1} \epsilon) \subseteq B_{1c}(0, \frac{1}{2c_1} \epsilon)$$
Утверждение
$$a - a_n \in B_{2c}(0, \frac{1}{2} \epsilon) \subseteq B_{2c}(0, \epsilon)$$
является следствием утверждений (3.2.1), (3.2.3) и определения 3.2.3. Согласно
теореме 3.2.6
$$a = \lim_{n \to \infty} a_n$$
по норме $\|x\|_2$.

Аналогичным образом мы доказываем, что утверждение
$$a = \lim_{n \to \infty} a_n$$
по норме $\|x\|_1$ является следствием утверждения
$$a = \lim_{n \to \infty} a_n$$

3.4 Смотри также определение $[2]$-12.35.а на странице 53.
3.5 Смотри также лемму $[2]$-12.35.б на странице 54.
по норме $\|x\|_2$.

Пусть нормы $\|x\|_1, \|x\|_2$ эквивалентны. Пусть не существует константы c_2 такой, что утверждение (3.2.2) верно. Тогда для любого $n, n = 1, ..., $ мы найдём замкнутые шары $B_{1c}(0, \rho_n), B_{2c}(0, \rho_n/n)$ такие, что

(3.2.4) $B_{2c}(0, \rho_n/n) \nsubseteq B_{1c}(0, \rho_n)$

Из утверждения (3.2.4) и определения 3.2.3, следует, что существует x_n такой, что

(3.2.5) $x_n \leq \rho_n/n$ $x_n > \rho_n$

Пусть

(3.2.6) $y_n = x_n/n$

Из равенства (3.2.6) и утверждений 3.2.1.4, (3.2.5) следует, что

(3.2.7) $\|y_n\|_1 > 1/\|y_n\|_2 \leq 1/n < 2/n$

Из утверждения (3.2.7) следует, что утверждение

$$\lim_{n \to \infty} y_n = 0$$

верно относительно нормы $\|x\|_2$ и не верно относительно нормы $\|x\|_1$. Это противоречит утверждению о эквивалентности норм, следовательно, константа c_2 существует. Аналогичным образом мы доказываем, что константа c_1 существует. □

Теорема 3.2.11. Нормы $\|x\|_1, \|x\|_2$, определённые на D-модуле A, эквивалентны тогда и только тогда, когда существуют постоянные $c_1 > 0, c_2 > 0$ такие, что для любо $x \in A$

(3.2.8) $c_2 \|x\|_1 \leq \|x\|_2 \leq \frac{\|x\|_1}{c_1}$

Доказательство. Согласно теореме 3.2.10, существуют постоянная c_1 такая, что для $\rho = \|x\|_1/c_1$

(3.2.9) $B_{1c}(0, \|x\|_1) \subseteq B_{2c}(0, \|x\|_1/c_1)$

Утверждение

(3.2.10) $\|x\|_2 \leq \|x\|_1/c_1$

является следствием утверждения (3.2.9). Согласно теореме 3.2.10, существуют постоянная c_2 такая, что для $\rho = \|x\|_2/c_2$

(3.2.11) $B_{2c}(0, \|x\|_2) \subseteq B_{1c}(0, \|x\|_2/c_2)$

Утверждение

(3.2.12) $\|x\|_1 \leq \|x\|_2/c_2$

является следствием утверждения (3.2.11). Утверждение является следствием утверждений (3.2.10), (3.2.12). □

3.6 Смотри также следствие [2]-12.35.в на странице 54. Смотри также определение [4]-9.9 и утверждение [4]-9.10 на странице 288.
Определение 3.2.12. Нормированный D-модуль A называется банаховым D-модулем, если любая фундаментальная последовательность элементов модуля A сходится, т. е. имеет предел в модуле A. □

Определение 3.2.13. Отображение $f : A_1 \to A_2$ банахового D_1-модуля A_1 с нормой $|x|_1$ в банаховый D_2-модуль A_2 с нормой $|y|_2$ называется непрерывным, если для любого сколь угодно малого $\varepsilon > 0$ существует такое $\delta > 0$, что $|x' - x|_1 < \delta$ влечёт $|f(x') - f(x)|_2 < \varepsilon$. □

Теорема 3.2.14. Пусть A - банаховый D-модуль с нормой $|x|_A$. Пусть B - банаховый D-модуль с нормой $|y|_B$. 3.2.14.1: Множество B^A отображений $f : A \to B$ является D-модулем.

3.2.14.2: Отображение $f \in B^A \to \|f\| \in R$ определённое равенством

\begin{equation}
\|f\| = \sup_{|x|_A} \|f(x)\|_B
\end{equation}

является нормой в D-модуле B^A и величина $\|f\|$ называется нормой отображения f.

Доказательство. Мы определяем сумму отображений $f, g \in B^A$ согласно равенству $(f + g)(a) = f(a) + g(a)$ Согласно определению 2.4.1, множество B^A является абелевой группой. Мы определим представление кольца D в абелевой группе B^A согласно равенству

\begin{equation}
(df)(a) = d(f(a))
\end{equation}

Мы можем записывать равенство (3.2.14), не пользуясь скобками. Следовательно, утверждение 3.2.14.2 верно.

Утверждения 3.2.1.1, 3.2.1.2 очевидны для величины $\|f\|$. Утверждение 3.2.1.3 является следствием неравенства $\|(f + g)(a)\|_B \leq \|f(a)\|_B + \|g(a)\|_B$ и определения (3.2.13). Утверждение 3.2.1.4 для величины $\|f\|$ является следствием равенства (3.2.14), утверждения 3.2.1.4 для величины $\|a\|_B$ и определения (3.2.13). Следовательно, утверждение 3.2.14.1 верно. □
Теорема 3.2.15. Пусть
\[f : A_1 \to A_2 \]
линейное отображение банахового \(D_1 \)-модуля \(A_1 \) с нормой \(|x|_1 \) в банаховый \(D_2 \)-модуль \(A_2 \) с нормой \(|y|_2 \). Тогда
\[
\|f\| = \sup\{|f(x)|_2 : |x|_1 = 1\}
\]
Доказательство. Из определений 2.4.4, 2.5.10, 3.3.1 и теорем 3.1.7, 3.1.8 следует
\[
(3.2.16)
\]
\[
f(rx) = rf(x) \quad r \in R
\]
Из равенства (3.2.16) и определения 3.2.24 следует
\[
\frac{|f(rx)|_2}{|rx|_1} = \frac{|r| |f(x)|_2}{|r| |x|_1} = \frac{|f(x)|_2}{|x|_1}
\]
Полагая \(r = \frac{1}{|x|_1} \), мы получим
\[
(3.2.17)
\]
\[
\frac{|f(x)|_2}{|x|_1} = \left| f \left(\frac{x}{|x|_1} \right) \right|_2
\]
Равенство (3.2.15) следует из равенств (3.2.17) и (3.2.13). □

Теорема 3.2.16. Пусть
\[f : A_1 \to A_2 \]
линейное отображение банахового \(D_1 \)-модуля \(A_1 \) с нормой \(|x|_1 \) в банаховый \(D_2 \)-модуль \(A_2 \) с нормой \(|y|_2 \). Отображение \(f \) непрерывно, если \(\|f\| < \infty \).

Доказательство. Поскольку отображение \(f \) линейно, то согласно теореме 3.2.14
\[
|f(x) - f(y)|_2 = |f(x - y)|_2 \leq \|f\| |x - y|_1
\]
Возьмём произвольное \(\varepsilon > 0 \). Положим
\[
\delta = \frac{\varepsilon}{\|f\|}
\]
Тогда из неравенства
\[
|x - y|_1 < \delta
\]
следует
\[
|f(x) - f(y)|_2 \leq \|f\| \delta = \varepsilon
\]
Согласно определению 3.2.13 отображение \(f \) непрерывно. □

Теорема 3.2.17. Пусть \(A \) - банаховый \(D \)-модуль с нормой \(|x|_A \). Пусть \(B \) - банаховый \(D \)-модуль с нормой \(|y|_B \). \(D \)-модуль \(\mathcal{L}(D; A \to B) \), оснащённый нормой
\[
\|f\| = \sup \frac{\|f(x)\|_B}{\|x\|_A}
\]
является банаховым \(D \)-модулем.
Доказательство. Для доказательства теоремы мы должны доказать, что предел последовательности линейных отображений является линейным отображением. Утверждение является следствием равенств

\[
\lim_{n \to \infty} f_n(a + b) = \lim_{n \to \infty} f_n(a) + \lim_{n \to \infty} f_n(b) \\
\lim_{n \to \infty} f_n(ca) = c \lim_{n \to \infty} f_n(a)
\]

Определение 3.2.18. Пусть \(A \) - банаховый \(D \)-модуль с нормой \(\| x \|_A \). Пусть \(B \) - банаховый \(D \)-модуль с нормой \(\| x \|_B \). Для отображения

\[f : A^n \to B \]

величина

\[
\| f \| = \sup \frac{\| f(a_1,...,a_n) \|_B}{\| a_1 \|_A...\| a_n \|_A}
\]

называется нормой отображения \(f \).

Теорема 3.2.19. Для отображения

\[f : A^n \to B \]

банахового \(D \)-модуля \(A \) с нормой \(\| x \|_A \) в банаховый \(D \)-модуль \(B \) с нормой \(\| x \|_B \)

\[
\| f(a_1,...,a_n) \|_B \leq \| f \| \cdot \| a_1 \|_A...\| a_n \|_A
\]

Доказательство. Неравенство

\[
\frac{\| f(a_1,...,a_n) \|_B}{\| a_1 \|_A...\| a_n \|_A} \leq \max \frac{\| f(a_1,...,a_n) \|_B}{\| a_1 \|_A...\| a_n \|_A} = \| f \|
\]

является следствием равенства (3.2.18). Неравенство (3.2.19) является следствием неравенства (3.2.20).

Теорема 3.2.20. Пусть

\[o_n : A^n \to B \]

последовательность отображений банаха \(D \)-модуля \(A \) в банаховый \(D \)-модуль \(B \) такая, что

\[
\lim_{n \to \infty} \| o_n \| = 0
\]

Тогда для любых \(B \)-чисел \(a_1, ..., a_p \)

\[
\lim_{n \to \infty} o_n(a_1,...,a_p) = 0
\]

Доказательство. Из теоремы 3.2.19 следует, что

\[
0 \leq \| o_n(a_1,...,a_p) \|_B \leq \| o_n \| \cdot \| a_1 \|_A...\| a_p \|_A
\]

Утверждение (3.2.22) является следствием утверждений (3.2.21), (3.2.23).

Согласно определению 2.5.1, \(D \)-алгебра \(A \) - это \(D \)-модуль \(A \), на котором задано билинейное отображение

\[* : A \times A \to A \]

называемое произведением. Вообще говоря, норма \(\| * \| \) произведения отлична от 1.
ПРИМЕР 3.2.21. Пусть \mathcal{H}_2 - альгебра гиперболических чисел. \mathcal{H}_2-число имеет вид $z = a + bj$, где a, b - действительные числа. Произведение \mathcal{H}_2-чисел $z_1 = a_1 + b_1j$, $z_2 = a_2 + b_2j$ имеет вид

(3.2.24)

$$z_1z_2 = a_1a_2 + b_1b_2 + j(a_1b_2 + a_2b_1)$$

Из равенства (3.2.24) следует, что $j^2 = 1$. Рассмотрим норму $\| \bullet \|$ \mathcal{H}_2-числа

(3.2.25)

$$\|z\| = \sqrt{a^2 - b^2}$$

Из равенства (3.2.24), (3.2.25) следует, что норма произведения имеет значение

$$\| \star \| = \sqrt{(x_1x_2 + y_1y_2)^2 - (x_1y_2 + x_2y_1)^2} \sqrt{x_1^2 - y_1^2 \sqrt{x_2^2 - y_2^2}}$$

$$= \sqrt{(x_1x_2 + y_1y_2 - x_1y_2 - x_2y_1)(x_1x_2 + y_1y_2 + x_1y_2 + x_2y_1)} \sqrt{(x_1 - y_1)(x_1 + y_1)(x_2 - y_2)(x_2 + y_2)}$$

$$= \sqrt{(x_1(x_2 - y_2) - y_1(x_1 - y_2))(x_1(x_2 + y_2) + y_1(x_2 + y_2))} \sqrt{(x_1 - y_1)(x_1 + y_1)(x_2 - y_2)(x_2 + y_2)}$$

Следовательно, $\| \star \| = 1$ в альгебре \mathcal{H}_2. □

ПРИМЕР 3.2.22. Норма $\| \bullet \|$ \mathcal{H}_2-числа, рассмотренная в примере 3.2.21, удовлетворяет утверждению 3.2.1.2. Поэтому мы рассмотрим другую норму. Если норма \mathcal{H}_2-числа $z = a + bj$ определена равенством

(3.2.26)

$$\|z\|_1 = \sqrt{a^2 + b^2}$$

do норма произведения равна максимуму отображения

$$f(x_1, y_1, x_2, y_2) = \frac{\sqrt{(x_1x_2 + y_1y_2)^2 + (x_1y_2 + x_2y_1)^2}}{\sqrt{x_1^2 + y_1^2 \sqrt{x_2^2 + y_2^2}}}$$

Отображение f симметрично по переменным, поэтому достигает своего экстремума, когда значения переменных равны. Пусть $x_1 = x_2 = y_1 = y_2 = a$, $a \neq 0$. Тогда

$$f(a, a, a, a) = \frac{\sqrt{(a^2 + a^2)^2 + (a^2 + a^2)^2}}{\sqrt{a^2 + a^2 \sqrt{a^2 + a^2}}} = \frac{\sqrt{8}}{2} = \sqrt{2}$$

Это значение максимально, так как

$$f(1, 0, 1, 0) = \frac{\sqrt{(1 \ast 1 + 0 \ast 0)^2 + (1 \ast 0 + 1 \ast 0)^2}}{\sqrt{1^2 + 0^2 \sqrt{1^2 + 0^2}}} = 1$$

Следовательно, $\| \star \|_1 = \sqrt{2}$. □

3.7 Я признателен замечанию, сделанному Натаном БиДел, где он обратил мёжь внимание, что существуют алгебры, в которых норма $\| \star \|$ произведения отлична от 1. Пример 3.2.21 опирается на утверждение [7]-3.1 на странице 3 в статье [7] Натана БиДел. Смотри также определение на странице [6]-24.

3.8 Эта норма предложена в [6] на странице 25.

3.9 Garret Sobczyk обратил мёжь внимание, что эта норма соответствует геометрии пространства событий в специальной теории относительности.
3.2. Топологическая D-алгебра

Согласно теореме 3.2.11, если в алгебре H определена норма $\|x\|_1$, то любая норма $\|x\|_2$, определённая равенством
$$
\|x\|_2 = r\|x\|_1 \quad r \in R, \ r > 0
$$
эквивалентна норме $\|x\|_1$.

Теорема 3.2.23. Пусть A - D-алгебра. Если в D-модуле A определена норма $\|x\|_1$ такая, что норма $\|\cdot \cdot\|_1$ произведения в D-алгебре A отлична от 1, то в D-модуле A существует эквивалентная норма

(3.2.27)
$$
\|x\|_2 = \|\cdot \cdot\|_1 \|x\|_1
$$

такая, что

(3.2.28)
$$
\|\cdot \cdot\|_2 = 1
$$

Доказательство. Равенство

(3.2.29)
$$
\|\cdot \cdot\|_2 = \sup \frac{\|ab\|_2}{\|a\|_2 \|b\|_2} = \sup \frac{\|\cdot \cdot\|_1 \|ab\|_1}{\|\cdot \cdot\|_1 \|a\|_1 \|b\|_1} = \frac{1}{\|\cdot \cdot\|_1} \sup \frac{\|ab\|_1}{\|a\|_1 \|b\|_1}
$$

является следствием равенств (3.2.18), (3.2.27). Равенство (3.2.28) является следствием равенства (3.2.29).

Согласно теореме 3.2.23, если в алгебре H определить норму
$$
\|x\|_2 = \sqrt{2}\|x\|_1
$$
то норма произведения $\|\cdot \cdot\|_2 = 1$.

ОПРЕДЕЛЕНИЕ 3.2.24. Пусть D - нормированное коммутативное кольцо. Пусть A - D-алгебра. Норма

(3.2.30)
$$
\|ab\| \leq \|a\| \|b\|
$$

называется нормой в D-алгебре A. D-алгебра A, наделённая структурой, определяемой задачей на A нормы, называется нормированной D-алгеброй.

ОПРЕДЕЛЕНИЕ 3.2.25. Нормированная D-алгебра A называется банаховой D-алгеброй если любая фундаментальная последовательность элементов алгебры A сходится, т. е. имеет предел в алгебре A.

3.10 Определение дано согласно определению из [21], гл. IX, §3, п.3. Если D-алгебра A является алгеброй с делением, то норма называется абсолютной величиной и мы пользуемся записью $|a|$ для нормы A-числа a. Смотрите определение из [21], гл. IX, §3, п.5.2.

3.11 Неравенство (3.2.30) является следствием теоремы 3.2.23. В противном случае мы должны были бы писать
$$
\|ab\| \leq \|\cdot \cdot\| \|a\| \|b\|
$$
3.3. Производная отображений D-алгебры

ОПРЕДЕЛЕНИЕ 3.3.1. Пусть A - банаховый D-модуль с нормой $\|a\|_A$. Пусть B - банаховый D-модуль с нормой $\|a\|_B$. Отображение

$$f : A \to B$$

называется дифференцируемым на множестве $U \subset A$, если в каждой точке $x \in U$ изменение отображения f может быть представлено в виде

$$(3.3.1) \quad f(x + h) - f(x) = d_x f(x) \circ h + o(h)$$

где

$$\frac{df(x)}{dx} : A \to B$$

линейное отображение D-модуля A в D-модуль B и

$$o : A \to B$$

такое непрерывное отображение, что

$$\lim_{a \to 0} \frac{\|o(a)\|_B}{\|a\|_A} = 0$$

Линейное отображение $\frac{df(x)}{dx}$ называется производной отображения f. □

ОПРЕДЕЛЕНИЕ 3.3.2. Если, для данного $x \in A$, приращение (3.3.1) отображения

$$f : A \to B$$

рассматривать как функцию дифференциала dx переменной x, то линейная часть этой функции

$$df = \frac{df(x)}{dx} \circ dx$$

называется дифференциалом отображения f. □

ЗАМЕЧАНИЕ 3.3.3. Согласно определению 3.3.1, производная отображения f является отображением

$$x \in A \to \frac{df(x)}{dx} \in \mathcal{L}(D; A \to B)$$

Выражения $d_x f(x)$ и $\frac{df(x)}{dx}$ являются разными обозначениями одного и того же отображения. □

ТЕОРЕМА 3.3.4. Определения производной (3.3.1) эквивалентно определению

$$(3.3.2) \quad \frac{df(x)}{dx} \circ a = \lim_{t \to 0, t \in R} (t^{-1}(f(x + ta) - f(x)))$$

ДОКАЗАТЕЛЬСТВО. Из определений 2.4.4, 2.5.10, 3.3.1 и теоремы 3.1.7 следует

$$(3.3.3) \quad \frac{df(x)}{dx} \circ (ta) = t \frac{df(x)}{dx} \circ a$$

$t \in R, t \neq 0, a \in A, a \neq 0$
Комбинируя равенство (3.3.3) и определение 3.3.1, мы получим определение (3.3.2) производной.

Следствие 3.3.5. Отображение f дифференцируемо на множестве $U \subset D$, если в каждой точке $x \in U$ приращение отображения f может быть представлен в виде

$$f(x + ta) - f(x) = t \frac{df(x)}{dx} \circ a + o(t)$$

где $o : R \to A$ - такое непрерывное отображение, что

$$\lim_{t \to 0} \frac{|o(t)|}{|t|} = 0$$

Теорема 3.3.6. Пусть A - свободный банаховый D-модуль. Пусть B - свободная банаховая D-алгебра. Пусть \mathcal{F} - базис левого $B \otimes B$-модуля $\mathcal{L}(D; A \to B)$. Мы можем представить производную отображения $f : A \to B$

в виде

$$df(x) = \frac{d^k f(x)}{dx} \circ F_k$$

Доказательство. Теорема является следствием определения 3.3.1 и утверждения 2.5.16.1

Определение 3.3.7. Выражение

$$\frac{d^k f(x)}{dx} = \frac{d^k_{s_0} f(x)}{dx} \otimes \frac{d^k_{s_1} f(x)}{dx} \in B \otimes B$$

называется координатами производной $\frac{df(x)}{dx}$ относительно базиса \mathcal{F}. Выражение $\frac{d^k_{s+p} f(x)}{dx}$, $p = 0, 1$, называется компонентой производной отображения $f(x)$.

Теорема 3.3.8. Пусть A - свободный банаховый D-модуль. Пусть B - свободная банаховая D-алгебра. Пусть \mathcal{F} - базис левого $B \otimes B$-модуля $\mathcal{L}(D; A \to B)$. Мы можем представить дифференциал отображения $f : A \to B$

в виде

$$df = \frac{df(x)}{dx} \circ dx = \left(\frac{d^k_{s_0} f(x)}{dx} \otimes \frac{d^k_{s_1} f(x)}{dx} \right) \circ F_k \circ dx$$

(3.3.6)

Доказательство. Теорема является следствием теоремы 3.3.6 и определения 3.3.7.
Замечание 3.3.9. Если D-модуль \(\mathcal{L}(D; A \rightarrow A) \) порождён отображением \(F_0 \circ x = x \), то равенство (3.3.6) принимает вид

\[
\frac{df}{dx} = \left(\frac{dx_{0}f(x)}{dx} \otimes \frac{dx_{1}f(x)}{dx} \right) \circ dx
\]

(3.3.7)

где выражение \(\frac{dx_{p}f(x)}{dx}, p = 0, 1, \) называется компонентой производной отображения \(f(x) \).

Теорема 3.3.10. Пусть \(A \) - свободный банахов D-модуль. Пусть \(B \) - свободная банаховая D-алгебра. Пусть \(\mathcal{F} = \mathcal{L}(D; A \rightarrow B) \). Пусть \(\mathcal{F} \) - базис D-модуля \(B \). Стандартное представление производной отображения \(f : A \rightarrow B \) имеет вид

\[
\frac{df(x)}{dx} = \frac{d^{k}f(x)}{dx} (e_{i} \otimes e_{j}) \circ F_{k}
\]

(3.3.8)

Выражение \(\frac{d^{k}f(x)}{dx} \) в равенстве (3.3.8) называется стандартной компонентой производной отображения \(f \).

Доказательство. Утверждение теоремы является следствием определения 3.3.1 и утверждения 2.5.16.2

Теорема 3.3.11. Пусть \(A \) - свободный банахов D-модуль. Пусть \(B \) - свободная банаховая D-алгебра. Пусть \(\mathcal{F} = \mathcal{L}(D; A \rightarrow B) \). Пусть \(\mathcal{F}_{A} \) - базис свободного конечно мерного \(D \)-модуля \(A \). Пусть \(\mathcal{F}_{B} \) - базис свободной конечно мерной ассоциативной D-алгебры \(B \). Пусть \(C_{k}^{l} \) - структурные константы алгебры \(B \). Тогда производную отображения \(f : A \rightarrow B \) можно записать в виде

\[
\frac{df(x)}{dx} = dx^{i} \frac{\partial f}{\partial x^{i}} e_{j}
\]

где \(dx \in A \) имеет разложение

\[
dx = dx^{i} e_{i}, \quad dx^{i} \in D
\]

относительно базиса \(\mathcal{F}_{A} \) и матрицы Якоби отображения \(f \) имеет вид

\[
\frac{\partial f^{k}}{\partial x^{l}} = \frac{d^{k}f(x)}{dx} F_{k}^{m} C_{lm}^{p} C_{pj}^{k}
\]

(3.3.9)

Доказательство. Утверждение теоремы является следствием теорем 2.5.21.

Замечание 3.3.12. Если D-модуль \(\mathcal{L}(D; A \rightarrow A) \) порождён отображением \(F_{0} \circ x = x \), то равенства (3.3.8), (3.3.9) принимают вид

\[
\frac{df(x)}{dx} = \frac{d^{i}f(x)}{dx} e_{i} \otimes e_{j}
\]

(3.3.10)
3.3. Производная отображений D-алгебры

(3.3.11) \[\frac{\partial f^j}{\partial x^i} = \frac{d^{kr} f(x)}{dx} C^p_{ki} C^j_{pr} \]

где выражение \(\frac{d^{ij} f(x)}{df} \) называется стандартной компонентой производной отображения \(f \).

\[\] Теорема 3.3.13. Пусть \(A \) - банаховый \(D \)-модуль. Пусть \(B \) - банаховая \(D \)-алгебра. Пусть \(f, g \) - дифференцируемые отображения \(f : A \to B \quad g : A \to B \)

Отображение \(f + g : A \to B \)

dифференцируемо и производная удовлетворяет соотношению

(3.3.12) \[\frac{df + dg}{dx} = \frac{df}{dx} + \frac{dg}{dx} \]

Доказательство. Согласно определению (3.3.2),
\[\frac{d(f + g)(x)}{dx} \circ a = \lim_{t \to 0} \frac{(f + g)(x + ta) - (f + g)(x))}{t} \]
\[= \lim_{t \to 0} \frac{(f(x + ta) + g(x + ta) - f(x) - g(x))}{t} \]
\[= \lim_{t \to 0} \frac{(f(x + ta) - f(x))}{t} + \lim_{t \to 0} \frac{(g(x + ta) - g(x))}{t} \]
\[= \frac{df(x)}{dx} \circ a + \frac{dg(x)}{dx} \circ a \]

Равенство (3.3.12) следует из равенства (3.3.13).

\[\] Теорема 3.3.14. Пусть \(B \) - банаховый модуль над коммутативным кольцом \(D \). Пусть \(U \) - открытое множество банахового \(D \)-модуля \(A \). Пусть \(f : U \to \mathcal{L}(D; A^p \to B) \)

dифференцируемое отображение. То́́да

(3.3.14) \[\frac{df(x) \circ (a_1, ..., a_p)}{dx} \circ a_0 = \left(\frac{df(x)}{dx} \circ a_0 \right) \circ (a_1, ..., a_p) \]

Доказательство. Пусть \(a_0 \in U \). Согласно определению 3.3.1, изменение отображения \(f \) может быть представлено в виде

(3.3.15) \[f(x + a_0) - f(x) = \frac{df(x)}{dx} \circ a_0 + o(a_0) \]

gде
\[\frac{df(x)}{dx} \in \mathcal{L}(D; A \to \mathcal{L}(D; A^p \to B)) \]

и
\[o : A \to \mathcal{L}(D; A^p \to B) \]

tакое непрерывное отображение, что

(3.3.16) \[\lim_{a_0 \to 0} \frac{\|o(a_0)\|}{\|a_0\|_A} = 0 \]
Так как \(f(x) \in \mathcal{L}(D; A^p \to B) \), то для любых \(a_1, \ldots, a_p \) равенство
\[
(f(x + a_0) \circ (a_1, \ldots, a_p) - f(x) \circ (a_1, \ldots, a_p))
\]
является следствием равенства (3.3.15). Согласно теореме 3.2.20, равенство
\[
\lim_{a_0 \to 0} \frac{||o(a_0) \circ (a_1, \ldots, a_p)||_B}{||a_0||_A} = 0
\]
является следствием равенства (3.3.16). Рассматривая выражение
\[
f(x) \circ (a_1, \ldots, a_p)
\]
как отображение
\[
x \in U \to f(x) \circ (a_1, \ldots, a_p) \in B
\]
мы получим, что изменение этого отображения может быть представлено в виде
\[
f(x + a_0) \circ (a_1, \ldots, a_p) - f(x) \circ (a_1, \ldots, a_p)
\]
(3.3.19)
где
\[
\frac{df(x) \circ (a_1, \ldots, a_p)}{dx} \circ a_0 + o_1(a_0)
\]
(3.3.20) \]
является следствием равенств (3.3.17), (3.3.19). Равенство
\[
\lim_{a_0 \to 0} \frac{||o(a_0) \circ (a_1, \ldots, a_p)||_B}{||a_0||_A} = 0
\]
является следствием равенств (3.3.18), (3.3.20). Равенство (3.3.14) является следствием равенств (3.3.21), (3.3.22).

Соглашение 3.3.15. Для заданного билинейного отображения
\[
h : B_1 \times B_2 \to B
\]
мы рассмотрим отображения
\[
h_1 : \mathcal{L}(D; A \to B_1) \times B_2 \to \mathcal{L}(D; A \to B)
\]
\[
h_2 : B_1 \times \mathcal{L}(D; A \to B_2) \to \mathcal{L}(D; A \to B)
\]
определенны равенствами
\[
h_1(f, v) \circ u = h(f \circ u, v)
\]
3.3. Производная отображений D-алгебры

\[h_2(u, f) \circ v = h(u, f \circ v) \]

Мы будем пользоваться буквой \(h \) для обозначения отображений \(h_1, h_2 \).

Теорема 3.3.16. Пусть \(A \) - банаховый D-модуль. Пусть \(B_1, B_2, B \) - банаховые D-алгебры. Пусть

\[h : B_1 \times B_2 \to B \]

непрерывное билинейное отображение. Пусть \(f, g \) - дифференцируемые отображения

\[f : A \to B_1 \quad g : A \to B_2 \]

Отображение

\[h(f, g) : A \to B \]

dифференцируемо и произвольная удовлетворяет соотношению

(3.3.23) \[\frac{dh(f(x), g(x))}{dx} \circ a = h \left(\frac{df(x)}{dx} \circ dx, g(x) \right) + h \left(f(x), \frac{dg(x)}{dx} \circ dx \right) \]

(3.3.24) \[\frac{dh(f(x), g(x))}{dx} = h \left(\frac{df(x)}{dx}, g(x) \right) + h \left(f(x), \frac{dg(x)}{dx} \right) \]

Доказательство. Равенство (3.3.23) следует из цепочки равенств

\[\frac{dh(f(x), g(x))}{dx} \circ a = \lim_{t \to 0} (t^{-1}(h(f(x+ta), g(x+ta)) - h(f(x), g(x)))) \]

\[= \lim_{t \to 0} (t^{-1}(h(f(x+ta), g(x+ta)) - h(f(x), g(x+ta)))) \]

\[+ \lim_{t \to 0} (t^{-1}(h(f(x), g(x+ta)) - h(f(x), g(x)))) \]

\[= h(\lim_{t \to 0} t^{-1}(f(x+ta) - f(x)), g(x)) \]

\[+ h(f(x), \lim_{t \to 0} t^{-1}(g(x+ta) - g(x))) \]

основанной на определении (3.3.2). Равенство (3.3.24) следует из равенства (3.3.23) и соглашения 3.3.15.

Теорема 3.3.17. Пусть \(A \) - банаховый D-модуль. Пусть \(B \) - банаховая D-алгебра. Пусть \(f, g \) - дифференцируемые отображения

\[f : A \to B \quad g : A \to B \]

Производная удовлетворяет соотношению

(3.3.25) \[\frac{df(x)g(x)}{dx} = \frac{df(x)}{dx} g(x) + f(x) \frac{dg(x)}{dx} \]

Доказательство. Теорема является следствием теорем 3.3.16 и определения 2.5.1.

Теорема 3.3.18. Пусть \(A \) - банаховый D-модуль. Пусть \(B \) - банаховая D-алгебра. Допустим произвольная отображения

\[f : A \to B \]
имеет разложение
\[\frac{df(x)}{dx} = \frac{d_{s,0}f(x)}{dx} \otimes \frac{d_{s,1}f(x)}{dx} \]
(3.3.26)

Допустим производная отображения
\[g : A \rightarrow B \]

имеет разложение
\[\frac{dg(x)}{dx} = \frac{d_{t,0}g(x)}{dx} \otimes \frac{d_{t,1}g(x)}{dx} \]
(3.3.27)

Производная отображения \(f(x)g(x) \) имеет вид
\[\frac{df(x)g(x)}{dx} = \frac{d_{s,0}f(x)}{dx} \otimes \left(\frac{d_{s,1}f(x)}{dx} g(x) \right) + \left(f(x) \frac{d_{t,0}g(x)}{dx} \right) \otimes \frac{d_{t,1}g(x)}{dx} \]
(3.3.28)

\[\frac{d_{s,1}f(x)g(x)}{dx} = \frac{d_{s,1}f(x)}{dx} g(x) \]
(3.3.29)

Доказательство. Подставим (3.3.26) и (3.3.27) в равенство (3.3.25)
\[\frac{df(x)g(x)}{dx} \circ a = \left(\frac{df(x)}{dx} \circ a \right) g(x) + f(x) \left(\frac{dg(x)}{dx} \circ a \right) = \frac{d_{s,0}f(x)}{dx} \frac{d_{s,1}f(x)}{dx} g(x) + f(x) \frac{d_{t,0}g(x)}{dx} \frac{d_{t,1}g(x)}{dx} \]
(3.3.30)

Опираясь на (3.3.30), мы определяем равенства (3.3.29). □

Теорема 3.3.19. Пусть \(A \) - банахов \(D \)-модуль. Пусть \(B, C \) - банаховые \(D \)-алгебры. Пусть \(h : B \rightarrow \text{End}(\{+\}, C) \) представление \(D \)-модуля \(B \) в \(D \)-модуле \(C \). Пусть \(f, g \) - дифференцируемые отображения
\[f : A \rightarrow B \quad g : A \rightarrow C \]

Производная отображения \(h(f(x))(g(x)) \) имеет вид
\[\frac{dh(f(x))(g(x))}{dx} = h \left(\frac{df(x)}{dx} \right) (g(x)) + h(f(x)) \left(\frac{dg(x)}{dx} \right) \]
(3.3.31)

Доказательство. Так как отображение
\[h : B \rightarrow \text{End}(\{+\}, C) \]
является гомоморфизмом абелевой группы и представление
\[h(a) : C \rightarrow C \]
является эндоморфизмом аддитивной группы, то отображение \(h(b)(c) \) является билинейным отображением. Теорема является следствием теоремы 3.3.16. □
Теорема 3.3.20. Пусть A - банахов D-модуль. Пусть B, C - банаховые D-алгебры. Пусть f, g - дифференцируемые отображения

$f : A \to B \quad g : A \to C$

Производная удовлетворяет соотношению

$$
\frac{df(x) \otimes g(x)}{dx} \circ a = \left(\frac{df(x)}{dx} \circ a \right) \otimes g(x) + f(x) \otimes \left(\frac{dg(x)}{dx} \circ a \right)
$$

Доказательство. Теорема является следствием теорем 3.3.16, 2.4.16 и определения 2.5.1.

Теорема 3.3.21. Пусть A - банахов D-модуль с нормой $\|a\|_A$. Пусть B - банаховая D-алгебра с нормой $\|b\|_B$. Если производная $\frac{df(x)}{dx}$ отображения $f : A \to B$

существует в точке x и имеет конечную норму, то отображение f непрерывно в точке x.

Доказательство. Из теоремы 3.2.14 следует

$$(3.3.32) \quad \left\| \frac{df(x)}{dx} \circ a \right\|_B \leq \left\| \frac{df(x)}{dx} \right\|_A \|a\|_A$$

Из $(3.3.1)$, $(3.3.32)$ следует

$$(3.3.33) \quad \|f(x + a) - f(x)\|_B < \left\| \frac{df(x)}{dx} \right\|_A \|a\|_A$$

Возьмём произвольное $\epsilon > 0$. Положим

$$
\delta = \frac{\epsilon}{\left\| \frac{df(x)}{dx} \right\|_A}
$$

Тогда из неравенства

$$
\|a\|_A < \delta
$$

следует

$$
\|f(x + a) - f(x)\|_B \leq \left\| \frac{df(x)}{dx} \right\|_A \delta = \epsilon
$$

Согласно определению 3.2.13 отображение f непрерывно в точке x.

Теорема 3.3.22. Пусть A - банахов D-модуль. Пусть B - банахова D-алгебра. Пусть отображение

$f : A \to B$

dифференцируемо в точке x. Тогда

$$
\frac{df(x)}{dx} \circ 0 = 0
$$

Доказательство. Следствие определения 3.3.1 и теоремы 2.4.6.
Теорема 3.3.23. Пусть A - банаховый D-модуль с нормой $\|a\|_A$. Пусть B - банаховый D-модуль с нормой $\|b\|_B$. Пусть C - банаховый D-модуль с нормой $\|c\|_C$. Пусть отображение $f : A \to B$ дифференцируемо в точке x и норма производной отображения f конечна (3.3.34)

$$\left\| \frac{df(x)}{dx} \right\| = F \leq \infty$$

Пусть отображение $g : B \to C$ дифференцируемо в точке (3.3.35)

$$y = f(x)$$

и норма производной отображения g конечна (3.3.36)

$$\left\| \frac{dg(y)}{dy} \right\| = G \leq \infty$$

Отображение $g \circ f : A \to C$ дифференцируемо в точке x (3.3.37)

$$\begin{cases}
\frac{d(g \circ f)(x)}{dx} = \frac{dg(f(x))}{dx} \circ \frac{df(x)}{dx} \\
\frac{d(g \circ f)(x)}{dx} \circ a = \frac{dg(f(x))}{df(x)} \circ \frac{df(x)}{dx} \circ a
\end{cases}$$

Доказательство. Согласно определению 3.3.1

(3.3.38)

$$g(y + b) - g(y) = \frac{dg(y)}{dy} \circ b + o_1(b)$$

где $o_1 : B \to C$ - такое непрерывное отображение, что

$$\lim_{b \to 0} \frac{\|o_1(b)\|_C}{\|b\|_B} = 0$$

Согласно определению 3.3.1

(3.3.39)

$$f(x + a) - f(x) = \frac{df(x)}{dx} \circ a + o_2(a)$$

где $o_2 : A \to B$ - такое непрерывное отображение, что

$$\lim_{a \to 0} \frac{\|o_2(a)\|_B}{\|a\|_A} = 0$$

Согласно (3.3.39) смещение a значения $x \in A$ приводит к смещению

(3.3.40)

$$b = \frac{df(x)}{dx} \circ a + o_2(a)$$

Запись $\frac{dg(f(x))}{df(x)}$ означает выражение

$$\frac{dg(f(x))}{df(x)} = \frac{dg(y)}{dy} \bigg|_{y=f(x)}$$

Аналогичное замечание верно для компонент производной.
из равенства (3.3.44), мы получим

\[g(f(x + a)) - g(f(x)) = \frac{dg(f(x))}{df(x)} \circ o_2(a) - \frac{df(x)}{dx} \circ a_{o_2(a)} \]

(3.3.41)

Согласно определениям 3.3.1, 2.4.4, 2.5.10, 3.3.41, из равенства (3.3.41) следует

\[g(f(x + a)) - g(f(x)) = \frac{dg(f(x))}{df(x)} \circ df(x) \circ a_{o_2(a)} \]

(3.3.42)

Согласно определению 3.2.24

\[\lim_{a \to 0} \left\| \frac{dg(f(x))}{df(x)} \circ o_2(a) - \frac{df(x)}{dx} \circ a_{o_2(a)} \right\|_C \]

(3.3.43)

Из (3.3.36) следует

\[\lim_{a \to 0} \left\| \frac{dg(f(x))}{df(x)} \circ o_2(a) \right\|_C \leq G \lim_{a \to 0} \left\| o_2(a) \right\|_B = 0 \]

Из (3.3.34) следует

\[\lim_{a \to 0} \left\| \frac{dg(f(x))}{df(x)} \circ o_2(a) \right\|_C \leq \lim_{a \to 0} \left\| \frac{df(x)}{dx} \circ a_{o_2(a)} \right\|_B \]

Согласно теореме 3.3.22

\[\lim_{a \to 0} \left(\frac{df(x)}{dx} \circ a_{o_2(a)} \right) = 0 \]
Следовательно,

\[(3.3.45) \lim_{a \to 0} \left\| o_1 \left(\frac{df(x)}{dx} \circ a + o_2(a) \right) \right\|_C = 0\]

Из равенств \((3.3.43), (3.3.44), (3.3.45)\) следует

\[(3.3.46) \lim_{a \to 0} \left\| \frac{dg(f(x))}{df(x)} \circ o_2(a) - o_1 \left(\frac{df(x)}{dx} \circ a + o_2(a) \right) \right\|_C = 0\]

Согласно определению 3.3.1

\[(3.3.47) (g \circ f)(x + a) - (g \circ f)(x) = \frac{dg(f(x))}{df(x)} \circ o_2(a) - o_1 \left(\frac{df(x)}{dx} \circ a + o_2(a) \right)\]

где \(o : A \to C \) такое непрерывное отображение, что

\[\lim_{a \to 0} \frac{\|o(a)\|_C}{\|a\|_A} = 0\]

Равенство \((3.3.37)\) следует из \((3.3.42), (3.3.46), (3.3.47)\).

Из равенства \((3.3.37)\) и теоремы 3.3.6 следует

\[\frac{d_{st} o_1(g \circ f)(x)}{dx} \| a \|_A \| d_{st} \phi(g \circ f)(x) \|_A = 0\]

(3.3.48) следуют из равенства \((3.3.48)\).

\[\text{Теорема 3.3.24. Пусть } A - \text{ свободный бана́ховый } D\text{-модуль. Пусть } B, C - \text{ свободные ассоциативные бана́ховые } D\text{-алгебры. Пусть } F - \text{ базис левого } B \otimes B\text{-модуля } \mathcal{L}(D; A \to B). \text{ Пусть } G - \text{ базис левого } C \otimes C\text{-модуля } \mathcal{L}(D; B \to C). \text{ Пусть производная отображения } f : A \to B \text{ имеет разложение } \]

\[(3.3.49) \frac{df}{dx} = \frac{df^k}{dx} \circ F_k\]

относительно базиса \(F\). Пусть производная отображения \(g : B \to C \) имеет разложение

\[(3.3.50) \frac{dg}{dx} = \frac{dg^l}{dx} \circ G_l\]

относительно базиса \(G\). Тогда производная отображения

\[h = g \circ f\]
имеет разложение

(3.3.51) \[
\frac{dh}{dx} = \frac{d^{k}h}{dx} \circ H_{lk}
\]
относительно базиса

\(\mathcal{H} = \{ H_{lk} : H_{lk} = G_{l} \circ F_{k}, G_{l} \in \mathcal{G}, F_{k} \in \mathcal{F} \} \)

где

(3.3.52) \[
\frac{d^{k}h}{dx} = \frac{dg}{dx} \circ \left(G_{m}^{k} \circ \frac{d^{m}f}{dx} \right)
\]

Доказательство. Теорема является следствием теорем 2.5.19, 3.3.6 и определения 3.3.1.

Теорема 3.3.25. Пусть \(A \) - свободная ассоциативная \(D \)-алгебра. Пусть левый \(A \otimes A \)-модуль \(L(D; A \to A) \), порождён тождественным отображением \(F_{0} = \delta \). Пусть производная отображения

\(f : A \to A \)

имеет разложение

(3.3.53) \[
\frac{df}{dx} = \frac{d_{s}0f}{dx} \otimes \frac{d_{s}1f}{dx}
\]

Пусть производная отображения

\(g : A \to A \)

имеет разложение

(3.3.54) \[
\frac{dg}{dx} = \frac{d_{t}0g}{dx} \otimes \frac{d_{t}1g}{dx}
\]

Тогда производная отображения

\(h = g \circ f \)

имеет разложение

(3.3.55) \[
\frac{dh}{dx} = \frac{d_{st}0h}{dx} \otimes \frac{d_{st}1h}{dx}
\]

где

(3.3.56) \[
\frac{d_{st}0h(x)}{dx} = \frac{d_{s}0g(f(x))}{dx} \frac{d_{s}0f(x)}{dx}
\]

(3.3.57) \[
\frac{d_{st}1h(x)}{dx} = \frac{d_{t}1f(x)}{dx} \frac{d_{s}1g(f(x))}{dx}
\]

Доказательство. Теорема является следствием теоремы 2.5.20, замечания 3.3.9 и определения 3.3.1.
Глава 4

Производная второго порядка отображения D-алгебры

4.1. Производная второго порядка отображения D-алгебры

Пусть D - полное коммутативное кольцо характеристики 0. Пусть A, B - бана́ховы́е D-модули. Пусть $f : A \to B$ дифференцируемое отображение. Согласно замечанию 3.3.3, производная является отображением

$$x \in A \to \frac{df(x)}{dx} \in \mathcal{L}(D; A \to B)$$

Согласно теореме 3.2.17, множество $\mathcal{L}(D; A \to B)$ является бана́ховым D-модулем. Следовательно, мы можем рассмотреть вопрос, является ли отображение $\frac{df(x)}{dx}$ дифференцируемым.

Согласно определению 3.3.1 и теореме 3.3.14,

$$\frac{df(x + a_2)}{dx} \circ a_1 - \frac{df(x)}{dx} \circ a_1 = \frac{d}{dx} \left(\frac{df(x)}{dx} \circ a_1 \right) \circ a_2 + o_2(a_2)$$

где $o_2 : A \to \mathcal{L}(D; A \to B)$ - такое непрерывное отображение, что

$$\lim_{a_2 \to 0} \frac{\|o_2(a_2)\|_B}{\|a_2\|_A} = 0$$

Согласно определению 3.3.1, отображение $\frac{d}{dx} \left(\frac{df(x)}{dx} \circ a_1 \right) \circ a_2$ линейно по переменной a_2. Из равенства (4.1.1) следует, что отображение $\frac{d}{dx} \left(\frac{df(x)}{dx} \circ a_1 \right) \circ a_2$ линейно по переменной a_1. Следовательно, отображение $\frac{d}{dx} \left(\frac{df(x)}{dx} \circ a_1 \right) \circ a_2$ билинейно.

ОПРЕДЕЛЕНИЕ 4.1.1. Полилинейное отображение

$$\frac{d^2 f(x)}{dx^2} \circ (a_1; a_2) = \frac{d^2 f(x)}{dx^2} \circ (a_1; a_2) = \frac{d}{dx} \left(\frac{df(x)}{dx} \circ a_1 \right) \circ a_2$$

называется производной второго порядка отображения f. \hfill \square

ЗАМЕЧАНИЕ 4.1.2. Согласно определению 4.1.1 произвольная второго порядка отображения f является отображением

$$x \in A \to \frac{d^2 f(x)}{dx^2} \in \mathcal{L}(D; A \times A \to A)$$

48
Согласно теореме 2.4.12, мы можем также рассматривать отображение

$$\frac{d^2 f(x)}{dx^2} \circ (a_1 \otimes a_2) = \frac{d^2 f(x)}{dx^2} \circ (a_1; a_2)$$

Тогда

$$\frac{d^2 f(x)}{dx^2} \in \mathcal{L}(D; A \otimes A \to A)$$

(4.1.4)

$$\frac{d^2 f}{dx^2} : A \to \mathcal{L}(D; A \otimes A \to A)$$

Мы будем пользоваться одним и тем же символом $d^2 f_{\cdot \cdot}$ для обозначения отображений (4.1.3) и (4.1.4), так как по характеру аргумента ясно о каком отображении идёт речь. □

Теорема 4.1.3. Пусть A - свободный банаовский D-модуль. Пусть B - свободная ассоциативная банаовская D-алгебра. Пусть F - базис левого $B \otimes B$-модаля $\mathcal{L}(D; A \to B)$. Мы можем представить производную второго порядка отображения f в виде

$$\frac{d^2 f(x)}{dx^2} \circ (a_1; a_2) = \left(\frac{d^2_{\cdot 0} f(x)}{dx^2} \otimes \frac{d^2_{\cdot 1} f(x)}{dx^2} \otimes \frac{d^2_{\cdot 2} f(x)}{dx^2} \right) \circ (F_1, F_2) \circ \sigma_x \circ (a_1; a_2)$$

= $\frac{d^2_{\cdot 0} f(x)}{dx^2} (F_1 \circ \sigma_x (a_1)) \frac{d^2_{\cdot 1} f(x)}{dx^2} (F_2 \circ \sigma_x (a_2)) \frac{d^2_{\cdot 2} f(x)}{dx^2}$

Мы будем называть выражение

$$\frac{d^2_{\cdot p} f(x)}{dx^2} \quad p = 0, 1, 2$$

компонентой производной второго порядка отображения $f(x)$. □

Доказательство. Следствие определения 4.1.1 и теоремы 2.5.23. □

Определение 4.1.4. По индукции, предполагая, что определена производная $\frac{d^{n-1} f(x)}{dx^{n-1}}$ порядка $n - 1$, мы определяем

$$\frac{d^n f(x)}{dx^n} \circ (a_1; \ldots; a_n) = d^n_{\cdot n} f(x) \circ (a_1; \ldots; a_n)$$

(4.1.5)

$$= \frac{d}{dx} \left(\frac{d^{n-1} f(x)}{dx^{n-1}} \circ (a_1; \ldots; a_{n-1}) \right) \circ a_n$$

производную порядка n отображения f.

Мы будем также полагать $\frac{d^0 f(x)}{dx^0} = f(x)$. □

4.2. Ряд Тейлора

Пусть D - полное коммутативное кольцо характеристики 0. Пусть A - ассоциативная D-алгебра. Пусть $p_n(x)$ - одночлен степени n, $n > 0$, одной переменной над D-алгеброй A. Пусть F - базис алгебры $\mathcal{L}(D; A \to A)$.
Теорема 4.2.1. Для произвольного $m > 0$ справедливо равенство

$$
\frac{d^m f(x)(F \circ x)}{dx^m} \circ (h_1; \ldots; h_m) = \frac{d^m f(x)}{dx^m} \circ (h_1; \ldots; h_m)(F \circ x)
$$

(4.2.1)

где символ \hat{h}^i означает отсутствие переменной h^i в списке.

Доказательство. Для $m = 1$ — это следствие равенства (3.3.25) и теоремы B.1.6

$$
\frac{df(x)(F \circ x)}{dx} \circ h_1 = \left(\frac{df(x)}{dx} \circ h_1 \right) (F \circ x) + f(x)(F \circ h_1)
$$

Допустим, (4.2.1) справедливо для $m - 1$. Тогда

$$
\frac{d^{m-1} f(x)(F \circ x)}{dx^{m-1}} \circ (h_1; \ldots; h_m-1) = \frac{d^{m-1} f(x)}{dx^{m-1}} \circ (h_1; \ldots; h_m-1)(F \circ x)
$$

$$
+ \frac{d^{m-2} f(x)}{dx^{m-2}} \circ (h_1; \ldots; h_m-2; h_m-1)(F \circ h_1) +
$$

$$
+ \frac{d^{m-2} f(x)}{dx^{m-2}} \circ (h_1; \ldots; h_m-2; \hat{h}_m)(F \circ h_m)
$$

(4.2.2)

Так как $\frac{dh_1}{dx} = 0$, то, пользуясь равенством (3.3.25), получим

$$
\frac{d^m f(x)(F \circ x)}{dx^m} \circ (h_1; \ldots; h_m-1; h_m)
$$

$$
= \frac{d^m f(x)}{dx^m} \circ (h_1; \ldots; h_m-1; h_m)(F \circ x)
$$

$$
+ \frac{d^{m-1} f(x)}{dx^{m-1}} \circ (h_1; \ldots; h_m-2; h_m)(F \circ h_m)
$$

$$
+ \frac{d^{m-1} f(x)}{dx^{m-1}} \circ (h_1; \ldots; h_m-2; \hat{h}_m)(F \circ h_m)
$$

$$
+ \frac{d^{m-1} f(x)}{dx^{m-1}} \circ (h_1; \ldots; h_m-2; \hat{h}_m; h_m)(F \circ h_m)
$$

(4.2.1) и (4.2.2) отличаются только формой записи. Теорема доказана. □

Теорема 4.2.2. Для произвольного $n \geq 0$ справедливо равенство

$$
\frac{d^{n+1} p_n(x)}{dx^{n+1}} = 0
$$

Доказательство. Так как $p_0(x) = a_0$, $a_0 \in D$, то при $n = 0$ теорема является следствием определения 3.3.1. Пусть утверждение теоремы верно для
4.2. Ряд Тейлора

\[n - 1. \text{ Согласно теореме 4.2.1, при условии } f(x) = p_{n-1}(x) \text{ мы имеем} \]
\[\frac{d^{n+1}p_n(x)}{dx^{n+1}} \circ (h_1; \ldots; h_{n+1}) = \frac{d^{n+1}p_{n-1}(x)(F \circ x)a_n}{dx^{n+1}} \circ (h_1; \ldots; h_{n+1}) \]
\[= \frac{d^{n+1}p_{n-1}(x)}{dx^{n+1}} \circ (h_1; \ldots; h_{n+1})(F \circ x)a_n \]
\[+ \frac{d^n p_{n-1}(x)}{dx^n} \circ (h_1; \ldots; h_n; h_{n+1})(F \circ h_1)a_n + \]
\[+ \frac{d^n p_{n-1}(x)}{dx^n} \circ (h_1; \ldots; h_n; \hat{h}_{n+1})(F \circ h_n)a_n \]

Согласно предположению индукции все одночлены равны 0.

Теорема 4.2.3. Если \(m < n \), **то справедливо равенство**

\[\frac{d^m p_n(x)}{dx^m} \bigg|_{x=0} = 0 \]

Доказательство. Для \(n = 1 \) справедливо равенство

\[d^1 p_1(0) = a_0(F \circ x)a_1|_{x=0} = 0 \]

Допустим, утверждение справедливо для \(n - 1 \). Тогда согласно теореме 4.2.1

\[\frac{d^m p_{n-1}(x)(F \circ x)a_n}{dx^m} \circ (h_1; \ldots; h_m) \]
\[= \frac{d^m p_{n-1}(x)}{dx^m} \circ (h_1; \ldots; h_m)(F \circ x)a_n \]
\[+ \frac{d^{m-1} p_{n-1}(x)}{dx^{m-1}} \circ (h_1; \ldots; h_m; h_m)(F \circ h_1)a_n + \]
\[+ \frac{d^{m-1} p_{n-1}(x)}{dx^{m-1}} \circ (h_1; \ldots; h_m; \hat{h}_m)(F \circ h_m)a_n \]

Первое слагаемое равно 0 так как \(x = 0 \). Так как \(m - 1 < n - 1 \), то остальные слагаемые равны 0 согласно предположению индукции. Утверждение теоремы доказано.

Если \(h_1 = \ldots = h_n = h \), то мы положим

\[\frac{d^n f(x)}{dx^n} \circ h^n = \frac{d^n f(x)}{dx^n} \circ (h_1; \ldots; h_n) \]

Эта запись не будет приводить к неоднозначности, так как по числу аргументов ясно, о какой функции идёт речь.

Теорема 4.2.4. Для произвольного \(n > 0 \) **справедливо равенство**

\[\frac{d^n p_n(x)}{dx^n} \circ h^n = n!p_n(h) \]

Доказательство. Для \(n = 1 \) справедливо равенство

\[\frac{dp_1(x)}{dx} \circ h = \frac{da_0(F \circ x)a_1}{dx} \circ h = a_0(F \circ h)a_1 = 1!p_1(h) \]
Допустим, утверждение справедливо для $n - 1$. Тогда согласно теореме 4.2.1

$$
\frac{d^n p_n(x)}{dx^n} \circ h^n = \left(\frac{d^n p_{n-1}(x)}{dx^n} \circ h^n \right) (F \circ x)a_n
$$

(4.2.3)

$$
+ \left(\frac{d^{n-1} p_{n-1}(x)}{dx^{n-1}} \circ h^{n-1} \right) (F \circ h)a_n
$$

$$
+ ... + \left(\frac{d^1 p_{n-1}(x)}{dx^1} \circ h^1 \right) (F \circ h)a_n
$$

Первое слагаемое равно 0 согласно теореме 4.2.2. Остальные n слагаемых равны, и согласно предположению индукции из равенства (4.2.3) следует

$$
\frac{d^n p_n(x)}{dx^n} \circ h = n \left(\frac{d^{n-1} p_{n-1}(x)}{dx^{n-1}} \circ h \right) ha_n = n(n-1)!p_{n-1}(h)ha_n = n!p_n(h)
$$

Следовательно, утверждение теоремы верно для любого n. \hfill \Box

Пусть $p(x)$ - многочлен степени n. \hfill 4.1

$$
p(x) = p_0 + p_{11i}(x) + ... + p_{nn}(x)
$$

Мы предполагаем сумму по индексу i_k, который нумерует слагаемые степени k. Согласно теоремам 4.2.2, 4.2.3, 4.2.4

$$
\frac{d^k p(0)}{dx^k} \circ x = k!p_{ki}(x)
$$

Следовательно, мы можем записать

$$
p(x) = p_0 + \frac{1}{1!} \frac{dp(0)}{dx} \circ x + \frac{1}{2!} \frac{d^2 p(0)}{dx^2} \circ x^2 + ... + \frac{1}{n!} \frac{d^n p(0)}{dx^n} \circ x^n
$$

Это представление многочлена называется формулой Тейлора для многочлена. Если рассмотреть замену переменных $x = y - y_0$, то рассмотренное построение остаётся верным для многочлена

$$
p(y) = p_0 + p_{11i}(y - y_0) + ... + p_{nn}(y - y_0)
$$

откуда следует

$$
p(y) = p_0 + \frac{1}{1!} \frac{dp(y_0)}{dy} \circ (y - y_0) + \frac{1}{2!} \frac{d^2 p(y_0)}{dy^2} \circ (y - y_0)^2 + ...
$$

$$
+ \frac{1}{n!} \frac{d^n p(y_0)}{dy^n} \circ (y - y_0)^n
$$

Предположим, что функция $f(x)$ в точке x_0 дифференцируема до любого порядка. \hfill 4.2

Теорема 4.2.5. Если для отображения $f(x)$ выполняется условие

$$
f(x_0) = \frac{df(x_0)}{dx} \circ h = ... = \frac{d^n f(x_0)}{dx^n} \circ h^n = 0
$$

то при $t \to 0$ выражение $f(x + th)$ является бесконечно малой порядка выше n по сравнению с t

$$
f(x_0 + th) = o(t^n)
$$

4.1 Я рассматривал формулу Тейлора для многочлена по аналогии с построением формулы Тейлора в [25], с. 246.

4.2 Я рассматриваю построение ряда Тейлора по аналогии с построением ряда Тейлора в [25], с. 248, 249.
ДОКАЗАТЕЛЬСТВО. При \(n = 1 \) это утверждение следует из равенства (3.3.4). Пусть утверждение справедливо для \(n - 1 \). Для отображения
\[
f_1(x) = \frac{d f(x)}{d x} \circ h
\]
выполняется условие
\[
f_1(x_0) = \frac{df_1(x)}{d x} \bigg|_{x=x_0} \circ h = ... = \frac{d^{n-1}f_1(x)}{d x^{n-1}} \bigg|_{x=x_0} \circ h^{n-1} = 0
\]
Согласно предположению индукции
\[
f_1(x_0 + th) = o(t^{n-1})
\]
Тогда равенство (3.3.2) примет вид
\[
o(t^{n-1}) = \lim_{t \to 0, t \in \mathbb{R}} (t^{-1} f(x + th))
\]
Следовательно,
\[
f(x + th) = o(t^n)
\]
Составим многочлен
\[
p(x) = f(x_0) + \frac{1}{1!} \frac{df(x_0)}{d x} \circ (x - x_0) + ... + \frac{1}{n!} \frac{d^n f(x_0)}{d x^n} \circ (x - x_0)^n
\]
Согласно теореме 4.2.5
\[
f(x_0 + t(x - x_0)) - p(x_0 + t(x - x_0)) = o(t^n)
\]
Следовательно, полином \(p(x) \) является хорошей априксимацией отображения \(f(x) \).
Если отображение \(f(x) \) имеет производную любого порядка, то переходя к пределу \(n \to \infty \), мы получим разложение в ряд
\[
f(x) = \sum_{n=0}^{\infty} (n!)^{-1} \frac{d^n f(x_0)}{d x^n} \circ (x - x_0)^n
\]
который называется рядом Тейлора.
Глава 5

Метод последовательного дифференцирования

5.1. Неопределённый интеграл

ОПРЕДЕЛЕНИЕ 5.1.1. Пусть A - банаховый D-модуль. Пусть B - банаховая D-алгебра. Отображение $g : A \to B \otimes B$ называется интегрируемым, если существует отображение $f : A \to B$ такое, что
\[\frac{df(x)}{dx} = g(x) \]
Тогда мы пользуемся записью
\[f(x) = \int g(x) \circ dx \]
и отображение f называется неопределёным интегралом отображения g.

В этом разделе мы рассмотрим интегрирование, как операцию, обратную дифференцированию. По сути дела, мы рассмотрим процедуру решения обыкновенного дифференциального уравнения
\[\frac{df(x)}{dx} = g(x) \]

ПРИМЕР 5.1.2. Рассмотрим метод последовательного дифференцирования для решения дифференциального уравнения
\[y' = 3x^2 \]
(5.1.1)
\[x_0 = 0 \quad y_0 = C \]
(5.1.2)
над полем действительных чисел. Последовательно дифференцируя уравнение (5.1.1), мы получаем цепочку уравнений
\[\begin{cases} y'' = 6x \\ y''' = 6 \\ y^{(n)} = 0 \quad n > 3 \end{cases} \]
(5.1.3)
Разложение в ряд Тейлора
\[y = x^3 + C \]
следует из уравнений (5.1.1), (5.1.2), (5.1.3).
Теорема 5.1.3. Пусть A - банахова алгебра над коммутативным кольцом D.

\[(5.1.4) \int (1 \otimes x^2 + x \otimes x + x^2 \otimes 1) \circ dx = x^3 + C \]

где C - произвольное A-число.

Доказательство. Согласно определению 5.1.1, отображение y является интегралом (5.1.4), если отображение y удовлетворяет дифференциальному уравнению

\[(5.1.5) \frac{dy}{dx} = 1 \otimes x^2 + x \otimes x + x^2 \otimes 1 \]

и начальному условию

\[(5.1.6) \quad x_0 = 0, \quad y_0 = C \]

Мы воспользуемся методом последовательного дифференцирования, чтобы решить дифференциальное уравнение (5.1.5). Последовательно дифференцируя уравнение (5.1.5), мы получаем цепочку уравнений

\[(5.1.7) \frac{d^2y}{dx^2} = 1 \otimes 1 \otimes 2 \otimes 1 \otimes 2 x + 1 \otimes 1 \otimes 1 \otimes 2 \otimes 1 \otimes 2 + 1 \otimes 1 \otimes 2 \otimes 2 \otimes 1 \otimes 1 + x \otimes 1 \otimes 2 \otimes 1 \otimes 1 \otimes 2 + 1 \otimes 1 \otimes 2 \otimes 1 \otimes 1 \otimes 2 \]

\[(5.1.8) \frac{d^3y}{dx^3} = 1 \otimes 1 \otimes 2 \otimes 1 \otimes 3 \otimes 1 + 1 \otimes 1 \otimes 2 \otimes 3 \otimes 1 \otimes 2 + 1 \otimes 1 \otimes 2 \otimes 1 \otimes 3 \otimes 1 \otimes 1 + 1 \otimes 1 \otimes 3 \otimes 1 \otimes 2 \otimes 1 \otimes 1 \otimes 1 + 1 \otimes 1 \otimes 3 \otimes 2 \otimes 1 \otimes 1 \otimes 1 \]

\[(5.1.9) \frac{d^ny}{dx^n} = 0, \quad n > 3 \]

Разложение в ряд Тейлора

\[(5.1.10) \quad y = x^3 + C \]

следует из уравнений (5.1.5), (5.1.6), (5.1.7), (5.1.8), (5.1.9). Равенство (5.1.4) является следствием (5.1.5), (5.1.6), (5.1.10). □

Замечание 5.1.4. Согласно определению (2.5.5), мы можем записать интеграл (5.1.4) следующим образом

\[(5.1.11) \int dx x^2 + x dx x + x^2 dx = x^3 + C \]

Замечание 5.1.5. В доказательстве теоремы 5.1.3 я пользовался записью вида

\[(a_1 \otimes_1 b_1 \otimes_2 c_1 + a_2 \otimes_2 b_2 \otimes_1 c_2) \circ (x_1, x_2) = a_1 x_1 b_1 x_2 c_1 + a_2 x_2 b_2 x_1 c_2 \]
Я записываю следующие равенства для того, чтобы показать как работает производная.

$$\frac{dy}{dx} \circ h = hx^2 + xhx + x^2h$$

$$\frac{d^2y}{dx^2} \circ (h_1; h_2) = h_1h_2x + h_1xh_2 + h_2xh_1$$

$$\quad + xh_1h_2 + h_2xh_1 + xh_2h_1$$

$$\frac{d^3y}{dx^3} \circ (h_1; h_2; h_3) = h_1h_2h_3 + h_1h_3h_2 + h_2h_1h_3$$

$$\quad + h_3h_1h_2 + h_2h_3h_1 + h_3h_2h_1$$

Замечание 5.1.6. Дифференциальное уравнение

(5.1.12)$$\frac{dy}{dx} = 3 \otimes x^2$$

$$x_0 = 0 \quad y_0 = C$$

так же приводит к решению $y = x^3$. Очевидно, что отображение $y = x^3$ не удовлетворяет дифференциальному уравнению (5.1.12). Это говорит о том, что дифференциальное уравнение (5.1.12) не имеет решений.

Я советую обратить внимание на то, что вторая производная не является симметричным многочленом (смотри разложение Тейлора).

5.2. Экспонента

В поле мы можем определить экспоненту как решение дифференциального уравнения

(5.2.1)$$y' = y$$

Очевидно, что мы не можем записать подобное уравнение для тела. Однако мы можем уравнение (5.2.1) записать в виде

(5.2.2)$$\frac{dy}{dx} \circ h = yh$$

Это уравнение уже ближе к нашей цели, однако остается открытым вопрос в каком порядке мы должны перемножать y и h. Что бы ответить на этот вопрос, мы изменим запись уравнения (5.2.2)

(5.2.3)$$\frac{dy}{dx} \circ h = \frac{1}{2} (yh + hy)$$

Следовательно, наша задача - решить дифференциальное уравнение (5.2.3) при начальном условии

$$y(0) = 1$$

Определение 5.2.1. Для $n \geq 0$, пусть $SE(n)$ - множество перестановок

$$\sigma = \begin{pmatrix}
 y & h_1 & \ldots & h_n \\
\sigma(y) & \sigma(h_1) & \ldots & \sigma(h_n)
\end{pmatrix}$$

таких, что каждая перестановка σ обладает следующими свойствами...
5.2. Экспонента

5.2.1.1: Если существуют \(i, j, i \neq j \), такие, что \(\sigma(h_i) \) располагается в произведении
\[
\sigma(y)\sigma(h_1)\ldots\sigma(h_n)
\]
левее \(\sigma(h_j) \) и \(\sigma(h_j) \) располагается левее \(\sigma(y) \), то \(i < j \).

5.2.1.2: Если существуют \(i, j, i \neq j \), такие, что \(\sigma(h_i) \) располагается в произведении
\[
\sigma(y)\sigma(h_1)\ldots\sigma(h_n)
\]
правее \(\sigma(h_j) \) и \(\sigma(h_j) \) располагается правее \(\sigma(y) \), то \(i > j \).

□

Лемма 5.2.2. Для \(n \geq 0 \), для любой перестановки \(\tau \in SE(n+1) \) существует единственная перестановка \(\sigma \in SE(n) \) такая, что
\[\tau(y)\tau(h_1)\ldots\tau(h_{n+1}) = \sigma(h_{n+1})\sigma(h_1)\ldots\sigma(h_n)\]
или
\[\tau(y)\tau(h_1)\ldots\tau(h_{n+1}) = \sigma(h_{n+1})\sigma(h_1)\ldots\sigma(h_n)\]

Доказательство. Рассмотрим произведение
\[\tau(y)\tau(h_1)\ldots\tau(h_{n+1})\]
Так как \(n+1 \) - самый большой индекс, то, согласно условиям 5.2.1.1, 5.2.1.2, \(\tau(h_{n+1}) \) записано непосредственно перед или непосредственно после \(\tau(y) \). Следовательно, произведение (5.2.6) имеет либо вид (5.2.4), либо вид (5.2.5). Следовательно, для любой перестановки \(\tau \in SE(n+1) \) существует соответствующая перестановка \(\sigma \in SE(n) \).

□

Лемма 5.2.3. Для \(n \geq 0 \), для любой перестановки \(\sigma \in SE(n) \), существует единственная перестановка \(\tau \in SE(n+1) \) такая, что
\[\tau(y)\tau(h_1)\ldots\tau(h_{n+1}) = \sigma(h_{n+1})\sigma(h_1)\ldots\sigma(h_n)\]

Доказательство. Рассмотрим перестановку
\[
\sigma = \begin{pmatrix}
h_{n+1}y & h_1 & \ldots & h_n \\
\sigma(h_{n+1}y) & \sigma(h_1) & \ldots & \sigma(h_n)
\end{pmatrix} \in SE(n)
\]
Чтобы записать перестановку
\[
\tau = \begin{pmatrix}
y & h_1 & \ldots & h_{n+1} \\
\tau(y) & \tau(h_1) & \ldots & \tau(h_{n+1})
\end{pmatrix}
\]
которая удовлетворяет (5.2.7), мы вместо верхнего кортежа
\[
(h_{n+1}y & h_1 & \ldots & h_n)
\]
запишем кортеж
\[
(y & h_1 & \ldots & h_{n+1})
\]
и вместо нижнего кортежа
\[
(... & h_{n+1}y & \ldots)
\]
запишем кортеж
\[
(... & h_{n+1}y & \ldots)
\]
В выражении
\[
\tau(y)\tau(h_1)\ldots\tau(h_{n+1})
\]
h_{n+1} записано непосредственно перед \(y\). Так как \(n+1\) - самое большое значение индекса, то перестановка \(\tau \in S(n+1)\).

Лемма 5.2.4. Для \(n \geq 0\), для любой перестановки \(\sigma \in SE(n)\), существует единственная перестановка \(\tau \in SE(n+1)\) такая, что

\[
\tau(y)\tau(h_1)\ldots\tau(h_{n+1}) = \sigma(yh_{n+1})\sigma(h_1)\ldots\sigma(h_n)
\]

Доказательство. Рассмотрим перестановку
\[
\sigma = \begin{pmatrix}
 yh_{n+1} & h_1 & \ldots & h_n \\
 \sigma(yh_{n+1}) & \sigma(h_1) & \ldots & \sigma(h_n)
\end{pmatrix} \in SE(n)
\]
Чтобы записать перестановку
\[
\tau = \begin{pmatrix}
 y & h_1 & \ldots & h_{n+1} \\
 \tau(y) & \tau(h_1) & \ldots & \tau(h_{n+1})
\end{pmatrix}
\]
которая удовлетворяет (5.2.8), мы вместо верхнего кортежа \((yh_{n+1} h_1 \ldots h_n)\)

запишем кортеж
\[(y h_1 \ldots h_n h_{n+1})\]

и вместо нижнего кортежа
\[
(\ldots yh_{n+1} \ldots)
\]

запишем кортеж
\[
(\ldots y h_{n+1} \ldots)
\]

В выражении
\[
\tau(y)\tau(h_1)\ldots\tau(h_{n+1})
\]
h_{n+1} записано непосредственно после \(y\). Так как \(n+1\) - самое большое значение индекса, то перестановка \(\tau \in S(n+1)\).

Теорема 5.2.5.

\[
\sum_{\sigma \in SE(n)} \sigma(h_{n+1}y)\sigma(h_1)\ldots\sigma(h_n) + \sum_{\sigma \in SE(n)} \sigma(yh_{n+1})\sigma(h_1)\ldots\sigma(h_n)
\]

(5.2.9)

\[
= \sum_{\tau \in SE(n+1)} \tau(y)\tau(h_1)\ldots\tau(h_{n+1})
\]

Доказательство. Теорема является следствием лемм 5.2.2, 5.2.3, 5.2.4.

Теорема 5.2.6. Производная порядка \(n\) отображения \(y\), удовлетворяющего дифференциальному уравнению (5.2.3) имеет вид

\[
\frac{d^n y}{dx^n} \circ (h_1, \ldots, h_n) = \frac{1}{2^n} \sum_{\sigma \in SE(n)} \sigma(y)\sigma(h_1)\ldots\sigma(h_n)
\]

(5.2.10)
5.2. Экспонента

ДОКАЗАТЕЛЬСТВО. Мы докажем это утверждение индукцией. Для \(n = 0 \) утверждение верно, так как это утверждение \(y = y \). Для \(n = 1 \) утверждение верно, так как это дифференциальное уравнение (5.2.3). Пусть утверждение верно для \(n = k - 1 \). Следовательно

\[
\frac{d^{k-1}y}{dx^{k-1}} \circ (h_1, \ldots, h_{k-1}) = \frac{1}{2^{k-1}} \sum_{\sigma \in S(k-1)} \sigma(y)\sigma(h_1)\ldots\sigma(h_{k-1})
\]

Согласно определению (4.1.5), производная порядка \(k \) имеет вид

\[
\frac{d^k y}{dx^k} \circ (h_1, \ldots, h_k) = \frac{d}{dx} \left(\frac{d^{k-1}y}{dx^{k-1}} \circ (h_1, \ldots, h_{k-1}) \right) \circ h_k
\]

(5.2.11)

Из равенств (5.2.3), (5.2.11) следует

\[
\frac{d^k y}{dx^k} \circ (h_1, \ldots, h_k) = \frac{1}{2^{k-1}} \frac{d}{dx} \left(\sum_{\sigma \in S(k-1)} \sigma(y)\sigma(h_1)\ldots\sigma(h_{k-1}) \right) \circ h_k
\]

(5.2.12)

Из равенств (5.2.9), (5.2.12) следует, что утверждение теоремы верно для \(n = k \). Теорема доказана.

Теорема 5.2.7. Решением дифференциального уравнения (5.2.3) при начальном условии \(y(0) = 1 \) является **экспонента** \(y = e^x \) которая имеет следующее разложение в ряд Тейлора

(5.2.13)

\[
e^x = \sum_{n=0}^{\infty} \frac{1}{n!} x^n
\]

ДОКАЗАТЕЛЬСТВО. Производная порядка \(n \) содержит \(2^n \) слагаемых. Действительно, производная порядка 1 содержит 2 слагаемых, и каждое дифференцирование увеличивает число слагаемых вдвое. Из начального условия \(y(0) = 1 \) и теоремы 5.2.6 следует, что производная порядка \(n \) искомого решения имеет вид

(5.2.14)

\[
\frac{d^n y}{dx^n} \bigg|_{x=0} \circ (h, \ldots, h) = h^n
\]

Из (5.2.14) следует разложение (5.2.13) в ряд Тейлора.

Теорема 5.2.8. Равенство

(5.2.15)

\[
e^{a+b} = e^a e^b
\]

справедливо тогда и только тогда, когда

(5.2.16)

\[
ab = ba
\]
ДОКАЗАТЕЛЬСТВО. Для доказательства теоремы достаточно рассмотреть ряды Тейлора

\[e^a = \sum_{n=0}^{\infty} \frac{1}{n!} a^n \]

(5.2.17)

\[e^b = \sum_{n=0}^{\infty} \frac{1}{n!} b^n \]

(5.2.18)

\[e^{a+b} = \sum_{n=0}^{\infty} \frac{1}{n!} (a + b)^n \]

(5.2.19)

Перемножим выражения (5.2.17) и (5.2.18). Сумма одночленов порядка 3 имеет вид

\[\frac{1}{6} a^3 + \frac{1}{2} a^2 b + \frac{1}{2} a b^2 + \frac{1}{6} b^3 \]

(5.2.20)

и не совпадает, вообще говоря, с выражением

\[\frac{1}{6} (a + b)^3 = \frac{1}{6} a^3 + \frac{1}{6} a^2 b + \frac{1}{6} aba + \frac{1}{6} b^2 a + \frac{1}{6} b^2 a + \frac{1}{6} b^3 \]

(5.2.21)

Доказательство утверждения, что (5.2.15) следует из (5.2.16) тривиально. □

5.3. Гиперболическая тригонометрия

Чтобы определить гиперболический синус

\[y_1 = \sinh x \]

и гиперболический косинус

\[y_2 = \cosh x \]

мы рассмотрим систему дифференциальных уравнений в поле действительных чисел

\[\frac{dy_1}{dx} = y_2 \]

(5.3.1)

\[\frac{dy_2}{dx} = y_1 \]

и начальные условия

\[x = 0 \quad y_1 = 0 \quad y_2 = 1 \]

(5.3.2)

Система дифференциальных уравнений (5.3.1), (5.3.2) эквивалентна дифференциальным уравнениям

\[\frac{d^2 y_1}{dx^2} = y_1 \]

(5.3.3)

\[x = 0 \quad y_1 = 0 \quad \frac{dy_1}{dx} = 1 \]

\[\frac{d^2 y_2}{dx^2} = y_2 \]

(5.3.4)

\[x = 0 \quad y_2 = 1 \quad \frac{dy_2}{dx} = 0 \]
5.3. Гиперболическая тригонометрия

В банаховой D-алгебре A мы запишем систему дифференциальных уравнений (5.3.1), (5.3.2) в форме аналогичной дифференциальному уравнению (5.2.3)

\[
\begin{align*}
\frac{dy_1}{dx} &= \frac{1}{2}(y_2 \otimes 1 + 1 \otimes y_2) \\
\frac{dy_2}{dx} &= \frac{1}{2}(y_1 \otimes 1 + 1 \otimes y_1)
\end{align*}
\] (5.3.5)

\[x = 0 \quad y_1 = 0 \quad y_2 = 1\]

Теорема 5.3.1. Производная порядка n отображений $y_1, y_2, удовлетворяющих системе дифференциальных уравнений (5.3.5) имеет вид

\[
\begin{align*}
n = 2k \quad \frac{d^n y_1}{dx^n} \circ (h_1, \ldots, h_n) &= \frac{1}{2^n} \sum_{\sigma \in SE(n)} \sigma(y_1)\sigma(h_1)\ldots\sigma(h_n) \\
n = 2k + 1 \quad \frac{d^n y_2}{dx^n} \circ (h_1, \ldots, h_n) &= \frac{1}{2^n} \sum_{\sigma \in SE(n)} \sigma(y_2)\sigma(h_1)\ldots\sigma(h_n)
\end{align*}
\] (5.3.6)

Доказательство. Мы докажем это утверждение индукцией. Для $n = 0$ утверждение верно, так как это утверждение $y_1 = y_1, y_2 = y_2$. Для $n = 1$ утверждение верно, так как это система дифференциальных уравнений (5.3.5). Пусть утверждение верно для $n = k - 1$. Следовательно

\[
\frac{d^{k-1} y_i}{dx^{k-1}} \circ (h_1, \ldots, h_{k-1}) = \frac{1}{2^{k-1}} \sum_{\sigma \in S(k-1)} \sigma(y_j)\sigma(h_1)\ldots\sigma(h_{k-1})
\]

где $i = 1, 2$ и

\[
\begin{align*}
k - 1 = 2m &\Rightarrow j = i \\
k - 1 = 2m - 1 &\Rightarrow j = 2 - i
\end{align*}
\] (5.3.7)

и $j = i$, если $k - 1 = 2m$; в противном случае $j = 2 - i$. Согласно определению (4.1.5), производная порядка k имеет вид

\[
\begin{align*}
\frac{d^k y_i}{dx^k} \circ (h_1, \ldots, h_k) &= \frac{d}{dx} \left(\frac{d^{k-1} y_i}{dx^{k-1}} \circ (h_1, \ldots, h_{k-1}) \right) \circ h_k \\
&= \frac{1}{2^{k-1}} \frac{d}{dx} \left(\sum_{\sigma \in S(k-1)} \sigma(y_j)\sigma(h_1)\ldots\sigma(h_{k-1}) \right) \circ h_k
\end{align*}
\] (5.3.8)

Из (5.3.5), (5.3.8) следует

\[
\begin{align*}
\frac{d^k y_i}{dx^k} \circ (h_1, \ldots, h_k) &= \frac{1}{2^{k-1}} \frac{1}{2} \left(\sum_{\sigma \in S(k-1)} \sigma(y_i h_k)\sigma(h_1)\ldots\sigma(h_{k-1}) \right) \\
&+ \sum_{\sigma \in S(k-1)} \sigma(h_k y_i)\sigma(h_1)\ldots\sigma(h_{k-1})
\end{align*}
\] (5.3.9)
где
(5.3.10) \[l = 2 - j \]
Из (5.3.7), (5.3.10), следует, что
(5.3.11) \[
\begin{cases}
 k = 2m + 1 \Rightarrow l = 2 - i \\
 k = 2m \Rightarrow l = i
\end{cases}
\]
Из (5.2.9), (5.3.9) следует, что утверждение теоремы верно для \(n = k \). Теорема доказана.

Теорема 5.3.2. Решением системы дифференциальных уравнений (5.3.5) при начальном условии
(5.3.12) \[x = 0 \quad y_1 = 0 \quad y_2 = 1 \]
является пара отображений
- гиперболический синус \(y_1 = \sinh x \) который имеет следующее разложение в ряд Тейлора

\[\sinh x = \sum_{n=0}^{\infty} \frac{1}{(2n + 1)!} x^{2n+1} \]
- гиперболический косинус \(y_2 = \cosh x \) который имеет следующее разложение в ряд Тейлора

\[\cosh x = \sum_{n=0}^{\infty} \frac{1}{(2n)!} x^{2n} \]

Доказательство. Производная порядка \(n \) содержит \(2^n \) слагаемых. Действительно, производная порядка 1 содержит 2 слагаемых, и каждое дифференцирование увеличивает число слагаемых вдвое. Из начального условия (5.3.12) и равенства (5.3.6) следует, что производная порядка \(n \) исскомого решения имеет вид
(5.3.15) \[
\begin{align*}
 n &= 2k \quad \frac{d^n y_1}{dx^n} \bigg|_{x=0} \circ (h_1, \ldots, h_n) = 0 \\
 n &= 2k + 1 \quad \frac{d^n y_1}{dx^n} \bigg|_{x=0} \circ (h_1, \ldots, h_n) = h^n
\end{align*}
\]
Из (5.3.15) следует разложения (5.3.13), (5.3.14) в ряд Тейлора.

Теорема 5.3.3. Система дифференциальных уравнений
(5.3.16) \[\frac{dy_1}{dx} = \frac{1}{2}(y_2 \otimes 1 + 1 \otimes y_2) \]
(5.3.17) \[\frac{dy_2}{dx} = \frac{1}{2}(y_1 \otimes 1 + 1 \otimes y_1) \]
эквивалентна дифференциальному уравнению
(5.3.18) \[\frac{d^2 y}{dx^2} \bigg|_{x=0} = \frac{1}{4}(y \otimes 1 \otimes 1 + 2 \otimes 1 \otimes 1 + 1 \otimes 1 \otimes y) = 0 \]
Доказательство. Из дифференциального уравнения (5.3.16) следует, что
\[
\frac{d^2 y_1}{dx^2} = \frac{1}{2} \left(\frac{dy_2}{dx} \otimes 1 + 1 \otimes \frac{dy_2}{dx} \right)
\]
Из (5.3.17), (5.3.19) следует, что
\[
\frac{d^2 y_1}{dx^2} = \frac{1}{2} \left(\frac{1}{2} (y_1 \otimes 1 + 1 \otimes y_1) \otimes 1 + 1 \otimes \frac{1}{2} (y_1 \otimes 1 + 1 \otimes y_1) \right)
\]
Дифференциальное уравнение (5.3.18) следует из (5.3.20). □

5.4. Эллиптическая тригонометрия

Чтобы определить синус
\[y_1 = \sin x \]
и косинус
\[y_2 = \cos x \]
мы рассмотрим систему дифференциальных уравнений в поле действительных чисел
\[
\begin{align*}
\frac{dy_1}{dx} &= y_2 \\
\frac{dy_2}{dx} &= -y_1
\end{align*}
\]
(5.4.1)
и начальные условия
\[
\begin{align*}
x &= 0 & y_1 &= 0 & y_2 &= 1
\end{align*}
\]
(5.4.2)
Система дифференциальных уравнений (5.4.1), (5.4.2) эквивалентна дифференциальным уравнениям
\[
\begin{align*}
\frac{d^2 y_1}{dx^2} &= -y_1 \\
x &= 0 & y_1 &= 0 & \frac{dy_1}{dx} &= 1
\end{align*}
\]
(5.4.3)
\[
\begin{align*}
\frac{d^2 y_2}{dx^2} &= -y_2 \\
x &= 0 & y_2 &= 1 & \frac{dy_2}{dx} &= 0
\end{align*}
\]
(5.4.4)

В банаховой D-алгебре A мы запишем систему дифференциальных уравнений (5.4.1), (5.4.2) в форме аналогичной дифференциальному уравнению (5.2.3)
\[
\begin{align*}
\frac{dy_1}{dx} &= \frac{1}{2} (y_2 \otimes 1 + 1 \otimes y_2) \\
\frac{dy_2}{dx} &= -\frac{1}{2} (y_1 \otimes 1 + 1 \otimes y_1) \\
x &= 0 & y_1 &= 0 & y_2 &= 1
\end{align*}
\]
(5.4.5)

Теорема 5.4.1. Производная порядка n функции y_1, y_2, удовлетворяющих системе дифференциальных уравнений (5.4.5) имеет вид
5. Метод последовательного дифференцирования

• \(n = 2k \)
\[
\frac{d^n y_1}{dx^n} \circ (h_1, \ldots, h_n) = (-1)^k \frac{2^n}{\sigma \in SE(n)} \sigma(y_1)\sigma(h_1)\ldots\sigma(h_n)
\]
(5.4.6)

• \(n = 2k + 1 \)
\[
\frac{d^n y_2}{dx^n} \circ (h_1, \ldots, h_n) = (-1)^k \frac{2^n}{\sigma \in SE(n)} \sigma(y_2)\sigma(h_1)\ldots\sigma(h_n)
\]
(5.4.7)

Доказательство. Мы докажем это утверждение индукцией. Для \(k = 0 \) утверждение верно:

• Если \(n = 2k \), то это утверждение \(y_1 = y_1, y_2 = y_2 \).
• Если \(n = 2k + 1 \), то утверждение следует из системы дифференциальных уравнений (5.4.5).

Пусть утверждение верно для \(k = l - 1 \). Следовательно, для \(n = 2k + 1 \),

\[
\frac{d^n y_1}{dx^n} \circ (h_1, \ldots, h_n) = (-1)^{l-1} \frac{2^n}{\sigma \in SE(n)} \sigma(y_2)\sigma(h_1)\ldots\sigma(h_n)
\]
(5.4.8)

\[
\frac{d^n y_2}{dx^n} \circ (h_1, \ldots, h_n) = -(-1)^{l-1} \frac{2^n}{\sigma \in SE(n)} \sigma(y_1)\sigma(h_1)\ldots\sigma(h_n)
\]
(5.4.9)

Согласно определению (4.1.5), из (5.4.8), (5.4.9) следует, что производные порядка \(m = n + 1 \) имеют вид

\[
\frac{d^m y_1}{dx^m} \circ (h_1, \ldots, h_m) = \frac{d}{dx} \left(\frac{d^n y_1}{dx^n} \circ (h_1, \ldots, h_n) \right) \circ h_m
\]
(5.4.10)

\[
= (-1)^{l-1} \frac{d}{dx} \left(\frac{2^n}{\sigma \in SE(n)} \sigma(y_2)\sigma(h_1)\ldots\sigma(h_n) \right) \circ h_m
\]

\[
\frac{d^m y_2}{dx^m} \circ (h_1, \ldots, h_m) = \frac{d}{dx} \left(\frac{d^n y_2}{dx^n} \circ (h_1, \ldots, h_n) \right) \circ h_m
\]
(5.4.11)

\[
= -(-1)^{l-1} \frac{d}{dx} \left(\frac{2^n}{\sigma \in SE(n)} \sigma(y_1)\sigma(h_1)\ldots\sigma(h_n) \right) \circ h_m
\]
Из (5.4.5), (5.4.10), (5.4.11) следует, что

\[\frac{d^ny_1}{dx^n} \circ (h_1, ..., h_m) = \frac{(-1)^{l-1} 1}{2^n} \]

\[\sum_{\sigma \in SE(n)} \sigma(y_1 h_m) \sigma(h_1) \cdots \sigma(h_n) + \sum_{\sigma \in SE(n)} \sigma(h_m y_1) \sigma(h_1) \cdots \sigma(h_n) \]

\[\frac{d^ny_1}{dx^n} \circ (h_1, ..., h_m) = \frac{(-1)^l}{2^m} \]

\[\sum_{\sigma \in SE(n)} \sigma(y_2 h_m) \sigma(h_1) \cdots \sigma(h_n) + \sum_{\sigma \in SE(n)} \sigma(h_m y_2) \sigma(h_1) \cdots \sigma(h_n) \]

\[\frac{d^ny_2}{dx^n} \circ (h_1, ..., h_m) = \frac{(-1)^l}{2^m} \]

Из (5.2.9), (5.4.12), (5.4.13) следует, что

\[\frac{d^m y_1}{dx^m} \circ (h_1, ..., h_m) = \frac{(-1)^l}{2^m} \sum_{\tau \in S(m)} \tau(y_1) \tau(h_1) \cdots \tau(h_m) \]

\[\frac{d^m y_2}{dx^m} \circ (h_1, ..., h_m) = \frac{(-1)^l}{2^m} \sum_{\tau \in S(m)} \tau(y_2 h_m) \tau(h_1) \cdots \tau(h_m) \]

Так как

\[m = n + 1 = 2k + 1 + 1 = 2(l - 1) + 2 = 2l \]

tо равенства (5.4.6) верны для \(k = l, n = 2k \).

Согласно определению (4.1.5), из (5.4.6) следует, что производные порядка \(m = n + 1 \) имеют вид

\[\frac{d^m y_1}{dx^m} \circ (h_1, ..., h_m) = \frac{d}{dx} \left(\frac{d^m y_1}{dx^m} \circ (h_1, ..., h_n) \right) \circ h_m \]

\[\frac{(-1)^k}{2^n} \frac{d}{dx} \left(\sum_{\sigma \in SE(n)} \sigma(y_1) \sigma(h_1) \cdots \sigma(h_n) \right) \circ h_m \]

\[\frac{d^m y_2}{dx^m} \circ (h_1, ..., h_m) = \frac{d}{dx} \left(\frac{d^m y_2}{dx^m} \circ (h_1, ..., h_n) \right) \circ h_m \]

\[\frac{(-1)^k}{2^n} \frac{d}{dx} \left(\sum_{\sigma \in SE(n)} \sigma(y_2) \sigma(h_1) \cdots \sigma(h_n) \right) \circ h_m \]
Из (5.4.5), (5.4.14), (5.4.15) следует, что

\[
\frac{d^m y_1}{dx^m} \circ (h_1, \ldots, h_m) = \frac{(-1)^k}{2^n} \left(\sum_{\sigma \in SE(n)} \sigma(y_2 h_m)\sigma(h_1)\ldots\sigma(h_n) + \sum_{\sigma \in SE(n)} \sigma(h_m y_2)\sigma(h_1)\ldots\sigma(h_n) \right)
\]

(5.4.16)

\[
\frac{d^m y_2}{dx^m} \circ (h_1, \ldots, h_m) = \frac{(-1)^k}{2^n} \left(\sum_{\sigma \in SE(n)} \sigma(y_1 h_m)\sigma(h_1)\ldots\sigma(h_n) + \sum_{\sigma \in SE(n)} \sigma(h_m y_1)\sigma(h_1)\ldots\sigma(h_n) \right)
\]

(5.4.17)

Так как

\[
m = n + 1 = 2k + 1
\]

то равенства (5.4.7) являются следствием (5.2.9), (5.4.16), (5.4.17). (5.4.6) для \(k = l, n = 2k + 1\). Теорема доказана.

Теорема 5.4.2. Решением системы дифференциальных уравнений (5.4.5) при начальном условии

(5.4.18)

\[
x = 0 \quad y_1 = 0 \quad y_2 = 1
\]

является пара отображений

• **синус** \(y_1 = \sin x\) который имеет следующее разложение в ряд Тейлора

(5.4.19)

\[
\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}
\]

• **косинус** \(y_2 = \cos x\) который имеет следующее разложение в ряд Тейлора

(5.4.20)

\[
\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}
\]

ДОКАЗАТЕЛЬСТВО. Производная порядка \(n\) содержит \(2^n\) слагаемых. Действительно, производная порядка 1 содержит 2 слагаемых, и каждое дифференцирование увеличивает число слагаемых вдвое. Из начального условия (5.4.18) и равенств (5.4.6), (5.4.7) следует, что производная порядка \(n\) искомого решения имеет вид
5.4. Эллиптическая тригонометрия

- \(n = 2k \)

\[
\begin{align*}
 (5.4.21) & \quad \frac{d^n y_1}{dx^n} \bigg|_{x=0} \circ (h_1, \ldots, h_n) = 0 \quad \frac{d^n y_2}{dx^n} \bigg|_{x=0} \circ (h_1, \ldots, h_n) = (-1)^k h^n \\
 (5.4.22) & \quad \frac{d^n y_1}{dx^n} \bigg|_{x=0} \circ (h_1, \ldots, h_n) = (-1)^k h^n \quad \frac{d^n y_2}{dx^n} \bigg|_{x=0} \circ (h_1, \ldots, h_n) = 0
\end{align*}
\]

Из (5.4.21), (5.4.22) следуют разложения (5.4.19), (5.4.20) в ряд Тейлора.

Теорема 5.4.3. Система дифференциальных уравнений

\[
\begin{align*}
 (5.4.23) & \quad \frac{dy_1}{dx} = -\frac{1}{2}(y_2 \otimes 1 + 1 \otimes y_2) \\
 (5.4.24) & \quad \frac{dy_2}{dx} = -\frac{1}{2}(y_1 \otimes 1 + 1 \otimes y_1)
\end{align*}
\]

эквивалентна дифференциальному уравнению

\[
\begin{align*}
 (5.4.25) & \quad \frac{d^2 y}{dx^2} + \frac{1}{4}(y \otimes 1 \otimes 1 + 2 \otimes y \otimes 1 + 1 \otimes 1 \otimes 1 \otimes y) = 0
\end{align*}
\]

Доказательство. Из дифференциального уравнения (5.4.23) следует, что

\[
(5.4.26) \quad \frac{d^2 y_1}{dx^2} = \frac{1}{2} \left(\frac{dy_2}{dx} \otimes 1 + 1 \otimes \frac{dy_2}{dx} \right)
\]

Из (5.4.24), (5.4.26) следует, что

\[
(5.4.27) \quad \frac{d^2 y_1}{dx^2} = -\frac{1}{2} \left(\frac{1}{2}(y_1 \otimes 1 + 1 \otimes y_1) \otimes 1 + 1 \otimes \frac{1}{2}(y_1 \otimes 1 + 1 \otimes y_1) \right)
\]

Дифференциальное уравнение (5.4.25) следует из (5.4.27).
Глава 6

Интеграл Лебега

Я решил выделить теоремы 6.1.1, 6.2.1 в отдельную главу, поскольку я считаю эти теоремы очень важными. Важно отметить, что теоремы 6.1.1, 6.2.1 предлагают альтернативный метод решения дифференциального уравнения

\[
\frac{df(x)}{dx} = g(x)
\]

6.1. Интеграл Лебега вдоль линейного пути

Теорема 6.1.1. Пусть A - банаходкий D-модуль. Пусть B - банаходвая D-алгебра. Пусть

\[g : A \rightarrow B \otimes B \]

интегрируемое отображение

(6.1.1) \[f(x) = \int g(x) \circ dx \]

и \(\|g\| = G < \infty \). Для любых A-чисел \(a, x \), пусть

\[\gamma : [0, 1] \subset R \rightarrow A \]

линейный путь в D-алгебре A

(6.1.2) \[y = \gamma(t) = a + t(x - a) \]

Тогда

(6.1.3) \[\int_{\gamma} g(y) \circ dy = \int_{0}^{1} dt \left(g(\gamma(t)) \circ \frac{d\gamma(t)}{dt} \right) = f(x) - f(a) \]

Доказательство. Из равенства (6.1.2) следует, что

(6.1.4) \[dy = d\gamma(t) = dt \frac{d\gamma(t)}{dt} \]

(6.1.5) \[\frac{d\gamma(t)}{dt} = x - a \]

и равенство

(6.1.6) \[\int_{\gamma} g(y) \circ dy = \int_{0}^{1} dt \left(g(\gamma(t)) \circ \frac{d\gamma(t)}{dt} \right) \]

является следствием равенства (6.1.4). Чтобы посчитать интеграл

(6.1.7) \[\int_{\gamma} g(y) \circ dy = \int_{0}^{1} dt (g(a + t(x - a)) \circ (x - a)) \]

рассмотрим разбиение

\[0 = t_0 < t_1 < ... < t_{n-1} < t_n = 1 \]
отрезка $[0,1]$ на равные интервалы. В этом случае мы можем использовать простое отображение $g_n(t) : [0,1] \rightarrow A \otimes A$ $t_{i-1} < t_i \Rightarrow g_n(t) = g(\gamma(t_i))$ вместо подынтегрального выражения. Из (6.1.6), (6.1.8) следует, что

(6.1.9) $$\|g(\gamma(t)) - g_n(t)\| < \|g\|\|\gamma(t) - \gamma(t_i)\| \leq \frac{G \|x - a\|}{n}$$

если $t_i \leq t < t_{i+1}$. Из (6.1.9) следует, что

$$g(\gamma(t)) = \lim_{n \rightarrow \infty} g_n(t)$$

и следовательно

(6.1.10) $$g(\gamma(t)) \circ (x - a) = \lim_{n \rightarrow \infty} g_n(t) \circ (x - a)$$

Равенство

(6.1.11) $$g(y) \circ dy = \frac{df(y)}{dy} \circ dy = f(y + dy) - f(y) - o(dy)$$

является следствием равенства (6.1.1) и определений 3.3.1, 5.1.1. Здесь $o : A \rightarrow A$ - отображение такое, что

$$\lim_{a \rightarrow 0} \frac{\|o(a)\|}{\|a\|} = 0$$

Из (6.1.8), (6.1.11) следует, что

(6.1.12) $$dt(g_n(t_i) \circ (x - a)) = f(\gamma(t_i)) - f(\gamma(t_{i-1})) - o\left(\frac{1}{n}(x - a)\right)$$

где

(6.1.13) $$\lim_{n \rightarrow \infty} \frac{\|o\left(\frac{1}{n}(x - a)\right)\|}{\|\frac{1}{n}(x - a)\|} = 0$$

Из (6.1.12), следует, что отображение $g_n(t) \circ (x - a)$ интегрируемо и

(6.1.14) $$\int_0^1 dt(g_n(t) \circ (x - a)) = f(x) - f(a) - n o\left(\frac{1}{n}(x - a)\right)$$

Из (6.1.13) следует, что

(6.1.15) $$\lim_{n \rightarrow \infty} n o\left(\frac{1}{n}(x - a)\right) = 0$$

Из (6.1.10), (6.1.15) и определения [15]-4.2.1 следует, что отображение $g(\gamma(t)) \circ (x - a)$ интегрируемо на отрезке $[0,1]$ и равенство (6.1.3) является следствием (6.1.1).

6.1 Согласно определению C.3.4 и теореме C.3.5 отображение является простым, если область значений - конечное или счётое множество и образ каждого значения - измеримое множество.
6.2. Интеграл Лебега вдоль пути

Теорема 6.2.1. Пусть существует неопределённый интеграл

\[f(x) = \int g(x) \, dx \]

для любого непрерывного спрямляемого пути

\[\gamma : [0, 1] \subset R \to A \]

из а в x в D-модуле A

(6.2.1) \[\int_{\gamma} g(y) \, dy = \int_{0}^{1} dt \left(g(\gamma(t)) \circ \frac{d\gamma(t)}{dt} \right) = f(x) - f(a) \]

Доказательство. Пусть

(6.2.2) \[0 = t_0 < t_1 < \ldots < t_{n-1} < t_n = 1 \]

множество точек отрезка [0, 1] таких, что

\[\lim_{n \to \infty} \max(t_{i+1} - t_i) = 0 \]

Мы определям путь \(\gamma_n \) согласно равенству

\[\gamma_n(t) = \gamma(t_i) + (t - t_i) \frac{\gamma(t_{i+1}) - \gamma(t_i)}{t_{i+1} - t_i} \]

\(t_i \leq t \leq t_{i+1} \)

Последовательность отображений \(\gamma_n \), сходящихся к отображению \(\gamma \). Мы можем потребовать равномерную сходимость. Из теории интегрирования следует, что

(6.2.3) \[\int_{\gamma_n} dt \left(g(\gamma(t)) \circ \frac{d\gamma_n(t)}{dt} \right) = \lim_{n \to \infty} \int_{\gamma_n} dt \left(g(\gamma_n(t)) \circ \frac{d\gamma_n(t)}{dt} \right) \]

Согласно разбиению (6.2.2) интеграл

(6.2.4) \[\int_{\gamma_n} dt \left(g(\gamma_n(t)) \circ \frac{d\gamma_n(t)}{dt} \right) = \sum_{i=1}^{n} \int_{t_{i-1}}^{t_i} dt \left(g(\gamma_n(t)) \circ \frac{d\gamma_n(t)}{dt} \right) \]

Для каждого \(i \), мы заменим переменную

(6.2.5) \[s = \frac{t - t_{i-1}}{t_i - t_{i-1}} \quad \gamma_{in}(s) = \gamma_n(t) \quad t_{i-1} \leq t \leq t_i \]

Тогда

(6.2.6) \[
\begin{align*}
\int_{t_{i-1}}^{t_i} dt \left(g(\gamma_n(t)) \circ \frac{d\gamma_n(t)}{dt} \right) \\
= \int_{t_{i-1}}^{t_i} dt \\
= \int_{0}^{1} (t_i - t_{i-1}) ds \left(g(\gamma_{in}(0) + s(\gamma_{in}(1) - \gamma_{in}(0))) \circ \frac{\gamma_{in}(1) - \gamma_{in}(0)}{t_i - t_{i-1}} \right) \\
= \int_{0}^{1} ds (g(\gamma_{in}(0) + s(\gamma_{in}(1) - \gamma_{in}(0))) \circ (\gamma_{in}(1) - \gamma_{in}(0)))
\end{align*}
\]

Для каждого i, мы заменим переменную

(6.2.5) \[s = \frac{t - t_{i-1}}{t_i - t_{i-1}} \quad \gamma_{in}(s) = \gamma_n(t) \quad t_{i-1} \leq t \leq t_i \]
Согласно теореме 6.1.1,
(6.2.7) \[\int_{t_{i-1}}^{t_i} dt \left(g(\gamma_n(t)) \circ \frac{d\gamma_n(t)}{dt} \right) = f(\gamma_n(1)) - f(\gamma_n(0)) = f(\gamma_n(t_i)) - f(\gamma_n(t_{i-1})) \]

Из (6.2.4), (6.2.7) следует, что
(6.2.8) \[\int_{\gamma_n} dt \left(g(\gamma_n(t)) \circ \frac{d\gamma_n(t)}{dt} \right) = \sum_{i=1}^{n} (f(\gamma_n(t_i)) - f(\gamma_n(t_{i-1}))) = f(\gamma_n(1)) - f(\gamma_n(0)) = f(\gamma(1)) - f(\gamma(0)) \]

□

6.3. Решение дифференциального уравнения

Мы ещё раз рассмотрим дифференциальное уравнение
\[\frac{dy}{dx} = 1 \otimes x^2 + x \otimes x + x^2 \otimes 1 \]
и начальное условие
(6.3.2) \[x_0 = 0 \quad y_0 = C \]
Согласно определению 5.1.1, отображение \(y \) является интегралом
\[\int (1 \otimes x^2 + x \otimes x + x^2 \otimes 1) \circ dx \]
Поэтому мы можем применить теорему 6.1.1 для решения дифференциального уравнения (6.3.2). Рассмотрим путь
\[\gamma : [0, 1] \subset R \rightarrow A \]
в D-алгебре A
(6.3.3) \[\gamma(t) = tx \]
Тогда интеграл (6.1.3) принимает вид
\[\int_{\gamma} (1 \otimes x^2 + x \otimes x + x^2 \otimes 1) \circ dx \]
\[= \int_{0}^{1} dt ((1 \otimes (tx)^2 + (tx) \otimes (tx) + (tx)^2 \otimes 1) \circ x) \]
\[= \left(\int_{0}^{1} dt t^2 \right) ((1 \otimes x^2 + x \otimes x + x^2 \otimes 1) \circ x) \]
\[= \frac{1}{3} (x^3 + x^3 + x^3) = x^3 \]

Как легко мы решили дифференциальное уравнение. Однако, так ли это?
Чтобы получить ответ на этот вопрос, рассмотрим также дифференциальное уравнение
(6.3.5) \[\frac{dy}{dx} = 3 \otimes x^2 \]
(6.3.2) \[x_0 = 0 \quad y_0 = C \]
Рассмотрев путь (6.3.3), мы получим, что

\[\int (3 \otimes x^2) \circ dx = x^3 + C \]

Однако мы знаем, что это неверно.

Для решения дифференциального уравнения мы рассмотрели линейный путь. Однако путь может быть произвольным. Рассмотрим путь

\[\gamma(t) = \begin{cases}
 ta & 0 \leq t \leq 1 \\
 a + (t - 1)(x - a) & 1 \leq t \leq 2
\end{cases} \]

Интеграл \(\int_\gamma g(x) \circ dx \) может быть представлен в виде суммы

(6.3.6) \[\int_\gamma g(x) \circ dx = \int_{\gamma_1} g(x) \circ dx + \int_{\gamma_2} g(x) \circ dx \]

где \(\gamma_1 \) - путь

\[\gamma_1 : t \in [0, 1] \subset R \rightarrow ta \in A \]

и \(\gamma_2 \) - путь

\[\gamma_2 : t \in [1, 2] \subset R \rightarrow a + (t - 1)(x - a) \in A \]

Мы только что рассмотрели интеграл

(6.3.7) \[\int_{\gamma_1} g(x) \circ dx = a^3 \]

Поэтому нам надо рассмотреть интеграл

\[\int_{\gamma_2} g(x) \circ dx = \int_1^2 dt g(a + (t - 1)(x - a)) \circ \frac{d(a + (t - 1)(x - a))}{dt} \]

(6.3.8) \[= \int_1^2 dt g(a + (t - 1)(x - a)) \circ (x - a) \]

\[= \int_0^1 dt g(a + t(x - a)) \circ (x - a) \]

• Пусть \(g(x) = x^2 \otimes 1 + x \otimes x + 1 \otimes x^2 \). Тогда интеграл (6.3.8) принимает вид

(6.3.9) \[\int_{\gamma_2} g(x) \circ dx \]

\[= \int_0^1 dt ((a + t(x - a))^2 \otimes 1 + (a + t(x - a))^2 \otimes (a + t(x - a))) \]

\[+ (x - a)(a + t(x - a))^2 \]

\[= \int_0^1 dt ((a + t(x - a))^2(x - a) + (a + t(x - a))(x - a)(a + t(x - a))) \]

\[+ (x - a)(a + t(x - a))^2 \]
Решение дифференциального уравнения

$$\int_{\gamma_2} g(x) \circ dx = x + ax + a^2 x - 3a^3$$

(6.3.10)

$$\int_{\gamma_1} g(x) \circ dx = x + ax + a^2 x - 3a^3$$

является следствием равенств (6.3.9), (A.1.6). Равенство

$$\int_{\gamma_1} g(x) \circ dx = x + ax + a^2 x - 3a^3$$

является следствием равенства (6.3.6), (6.3.7), (6.3.10).

• Пусть $g(x) = 3 \otimes x^2$. Тогда интеграл (6.3.8) принимает вид

$$\int_{\gamma_2} g(x) \circ dx = \int_0^1 dt \, 3 \otimes (a + t(x - a))^2 \circ (x - a)$$

(6.3.11)

Равенство

$$\int_{\gamma_2} g(x) \circ dx = 3 \left(x + ax - a + \frac{1}{2} (x^2 + ax - 2x - axa + 2a) \right)$$

(6.3.12)

является следствием равенств является следствием равенств (6.3.11), (A.2.3). Равенство

$$\int_{\gamma_1} g(x) \circ dx = x + ax - ax - ax^2 + xa + a^2 - a^3$$

является следствием равенств (6.3.6), (6.3.7), (6.3.12).

Таким образом, интеграл $\int_{\gamma_1} (3 \otimes x^2) \circ dx$ зависит от выбора пути γ из 0 в x, и дифференциальное уравнение (6.3.5) не имеет решений. Таким образом, прежде чем применять интеграл Лебега для решения дифференциального
уравнения, мы должны ответить на один из следующих вопросов. Как доказать, что интеграл не зависит от выбора пути, либо как найти путь, который докажет зависимость интеграла от пути.

Мы неожиданно оказались на новой территории. Имя этой территории - дифференциальные формы.
Дифференциальная форма

7.1. Структура полилинейного отображения

ОПРЕДЕЛЕНИЕ 7.1.1. Пусть \(A, B \) - алгебры над коммутативным кольцом \(D \). Полилинейное отображение \(f \in \mathcal{L}(D; A^n \to B) \) называется симметричным, если
\[
f \circ (a_1, ..., a_n) = f \circ \sigma \circ (a_1, ..., a_n)
\]
для любой перестановки \(\sigma \) множества \(\{a_1, ..., a_n\} \).

ТЕОРЕМА 7.1.2. Пусть \(f \in \mathcal{L}(D; A^n \to B) \) - полилинейное отображение. Тогда отображение \(<f> \circ (a_1, ..., a_n) = \frac{1}{n!} \sum_{\sigma \in S(n)} f \circ \sigma \circ (a_1, ..., a_n)\)
является симметричным полилинейным отображением и называется симметрированием полилинейного отображения \(f \).

ДОКАЗАТЕЛЬСТВО. Теорема является следствием равенства
\[
<f> \circ \sigma \circ (a_1, ..., a_n) = <f> \circ (\sigma(a_1), ..., \sigma(a_n))
\]

и определения 7.1.1.

ОПРЕДЕЛЕНИЕ 7.1.3. Пусть \(A, B \) - алгебры над коммутативным кольцом \(D \). Полилинейное отображение \(f \in \mathcal{L}(D; A^n \to B) \) называется косо симметричным, если
\[
f \circ (a_1, ..., a_n) = |\sigma| \circ (f \circ \sigma \circ (a_1, ..., a_n))
\]
для любой перестановки \(\sigma \) множества \(\{a_1, ..., a_n\} \).

ТЕОРЕМА 7.1.4. Пусть \(f \in \mathcal{L}(D; A^n \to B) \) - полилинейное отображение. Тогда отображение \([f] \circ (a_1, ..., a_n) = \frac{1}{n!} \sum_{\sigma \in S(n)} |\sigma|(f \circ \sigma \circ (a_1, ..., a_n))\)
является косо симметричным полилинейным отображением и называется алтернацией полилинейного отображения f.

ДОКАЗАТЕЛЬСТВО. Теорема является следствием равенства

$$ [f] \circ \sigma \circ (a_1, \ldots, a_n) = [f] \circ (\sigma(a_1), \ldots, \sigma(a_n)) $$

$$ = \frac{1}{n!} \sum_{\sigma_1 \in S(n)} |\sigma_1| f \circ \sigma_1 \circ (\sigma(a_1), \ldots, \sigma(a_n)) $$

$$ = \frac{1}{n!} \sum_{\sigma_2 \in S(n)} |\sigma_2| f \circ (\sigma_2(a_1), \ldots, \sigma_2(a_n)) \quad \sigma_2 = \sigma \circ \sigma $$

$$ = \frac{1}{n!} \sum_{\sigma_2 \in S(n)} |\sigma_2| f \circ \sigma_2 \circ (a_1, \ldots, a_n) \quad |\sigma_2| = |\sigma_1| |\sigma| $$

$$ = |\sigma|[f] \circ (a_1, \ldots, a_n) $$

и определения 7.1.3. \hfill \Box

Теорема 7.1.5. Полилинейное отображение $f \in \mathcal{L}(D; A^n \to B)$ косо симметрично тогда и только тогда, когда $f \circ (a_1, \ldots, a_n) = 0$

при условии $x_i = x_{i+1}$ хотя бы для одного i, $1 \leq i < n$.

ДОКАЗАТЕЛЬСТВО. Для заданного i рассмотрим перестановку

$$\sigma_i(a_k) = \begin{cases} a_{i+1} & k = i \\ a_i & k = i + 1 \\ a_k & k \neq i, k \neq i + 1 \end{cases}$$

Очевидно, что

$$|\sigma_i| = -1$$

Пусть $f \in \mathcal{L}(D; A^n \to B)$ - косо симметричное отображение. Согласно определению 7.1.3, из равенств (7.1.2), (7.1.3) следует, что

$$f(..., a_i, a_i, ...) = |\sigma_i| f(..., a_i, a_i, ...) = -f(..., a_i, a_i, ...) = 0$$

Пусть $f \in \mathcal{L}(D; A^n \to B)$. Пусть

$$f \circ (a_1, \ldots, a_n) = 0$$

при условии $x_i = x_{i+1}$ хотя бы для одного i, $1 \leq i < n$. Тогда

$$0 = f \circ (..., a_i + a_{i+1}, a_i + a_{i+1}, ...)$$

$$= f \circ (..., a_i, a_i + a_{i+1}, ...) + f \circ (..., a_i + a_{i+1}, a_i + a_{i+1}, ...)$$

(7.1.4)

$$= f \circ (..., a_i, a_i, ...) + f \circ (..., a_i, a_{i+1}, ...)$$

$$+ f \circ (..., a_{i+1}, a_i, ...) + f \circ (..., a_{i+1}, a_{i+1}, ...)$$

$$= f \circ (..., a_i, a_{i+1}, ...) + f \circ (..., a_{i+1}, a_i, ...)$$

Из равенств (7.1.2), (7.1.3), (7.1.4) следует, что

$$f(..., a_i, a_{i+1}, ...) = -f(..., a_{i+1}, a_i, ...) = |\sigma_i| f(\sigma_i(a_1), ..., \sigma_i(a_n))$$

\[7.1\] В книге [31], страница 192, Анри Картан рассматривает теорему 7.1.5 как определение косо симметричного отображения.
Поскольку любую перестановку можно представить как произведение перестановок σ_i, то из равенства (7.1.5) и определения 7.1.3 следует, что отображение f косо симметрично.

Теорема 7.1.6. Множество $\mathcal{L}(D; A^n \to B)$ косо симметричных полилинейных отображений является D-модулем.

Доказательство. Согласно теореме 2.5.22, линейная комбинация косо симметричных полилинейных отображений является полилинейным отображением. Согласно теореме 7.1.5, линейная комбинация косо симметричных полилинейных отображений является косо симметричным полилинейным отображением.

Не нарушая общности, мы положим $\mathcal{L}(D; A^n \to B) = \mathcal{L}(D; A^n \to B)$.

Теорема 7.1.7. Пусть A, B - банаховы D-алгебры. D-модуль $\mathcal{L}(D; A^n \to B)$ замкнут в D-модуле $\mathcal{L}(D; A^n \to B)$.

Доказательство. Теорема является следствием теорем 7.1.5, 7.1.6, так как равенство $f_k(..., a_1, a_i, ...)$ сохраняется в предельном переходе, когда последовательность отображений f_k сходится к отображению f.

7.2. Произведение косо симметричных полилинейных отображений

Определение 7.2.1. Пусть A, B_2 - свободные алгебры над коммутативным кольцом D.

Пусть $h : B_1 \longrightarrow B_2$ — левостороннее представление свободной ассоциативной D-алгебры B_1 в D-модуле B_2. Определение

$$fg : \mathcal{L}(D; A^p \to B) \times \mathcal{L}(D; A^q \to C) \to \mathcal{L}(D; A^{p+q} \to C)$$

определен равенством

$$(fg) \circ (a_1, ..., a_{p+q}) = (f \circ (a_1, ..., a_p))(g \circ (a_{p+1}, ..., a_{p+q}))$$

где в правой части равенства $\langle 7.2.1 \rangle$ мы предполагаем левостороннее произведение B_2-чисел $g \circ (a_{p+1}, ..., a_{p+q})$ на B_1-число $f \circ (a_1, ..., a_p)$.

Если $B_1 = B_2$, то в правой части равенства $\langle 7.2.1 \rangle$ мы предполагаем произведение B_1-чисел $f \circ (a_1, ..., a_p)$, $g \circ (a_{p+1}, ..., a_{p+q})$. Согласно теореме 2.5.9, это определение совместимо с определением $\langle 7.2.1 \rangle$.

Пусть f, g - косо симметричные полилинейные отображения. Вообще говоря, отображение fg не является косо симметричным полилинейным отображением.

7.2 Я дал определение произведения косо симметричных полилинейных отображений согласно определению в разделе 31-1.4 главы 3, страницы 195 - 198.
ОПРЕДЕЛЕНИЕ 7.2.2. Косо симметричное полилинейное отображение $f \wedge g$

\[(7.2.2)\quad (f \wedge g) \circ (a_1, \ldots, a_{p+q}) = \frac{(p+q)!}{p!q!} [fg] \circ (a_1, \ldots, a_{p+q})\]

называется внешним произведением.

Теорема 7.2.3. Внешнее произведение удовлетворяет следующему равенству

\[(7.2.3)\quad (f \wedge g) \circ (a_1, \ldots, a_{p+q}) = \frac{1}{p!q!} \sum_{\sigma \in S_{p+q}} \sigma \cdot (f \wedge g) \circ \sigma \circ (a_1, \ldots, a_{p+q})\]

Доказательство. Равенство (7.2.3) является следствием равенств (7.1.1), (7.2.2).

Теорема 7.2.4. Пусть B - некоммутативная D-алгебра и $f : A \to B$ линейное отображение. Тогда, вообще говоря, $f \wedge f \neq 0$

\[(7.2.4)\quad f \wedge f \neq 0\]

Доказательство. Согласно равенству (7.2.3),

\[(7.2.5)\quad (f \wedge f) \circ (a, b) = f(a)f(b) - f(b)f(a) = [f(a), f(b)]\]

Выражение (7.2.5), вообще говоря, отлично от 0. Из доказательства теоремы 7.2.4 следует, что $f \wedge f = 0$

только при условии, что образ отображения f является подмножеством центра алгебры B.

Соглашение 7.2.5. Пусть

\[
I = \{a_1, \ldots, a_{p+q}\}, \quad J = \{J_1, \ldots, J_p\} \subseteq I, \quad K = \{K_1, \ldots, K_q\} = I \setminus J
\]

Порядок индекса в множествах J, K тот же, что в множестве I. Пусть $R(J, I)$ является множеством индексий $J \to I$. Для произвольного отображения $\lambda \in R(J, I)$, пусть $D(\lambda)$ - множество значений отображения λ и

\[(7.2.6)\quad D_1(\lambda) = I \setminus D(\lambda) = \{\lambda_1, \ldots, \lambda_q\}\]

Отображение $\mu(\lambda) : K \to D_1(\lambda)$ определено равенством

\[(7.2.7)\quad \mu(\lambda)(K_k) = \lambda_k\]

Пусть $S_1(\lambda)$ - множество перестановок множества $D_1(\lambda)$.

Пусть множество $I_{m,n}$ определено равенством

\[
I_{m,n} = \{a_i : m \leq i \leq n\}
\]

7.3 См. также равенство (28)-(2.25).
Лемма 7.2.6. Для любой перестановки \(\sigma \in S \), существует единственное отображение \(\lambda \in R(J,I) \) и единственная перестановка \(\tau \in S_1(\lambda) \) такие, что

\[(7.2.8) \quad \sigma = \begin{pmatrix} J_1 & \ldots & J_p & K_1 & \ldots & K_q \\ \lambda(J_1) & \ldots & \lambda(J_p) & \tau(\mu(\lambda)(K_1)) & \ldots & \tau(\mu(\lambda)(K_q)) \end{pmatrix} \]

Доказательство. Пусть \(\sigma \in S \). Мы определим отображение \(\lambda \in R(J,I) \) с помощью таблицы

\[(7.2.9) \quad \lambda = \begin{pmatrix} J_1 & \ldots & J_p \\ \sigma(J_1) & \ldots & \sigma(J_p) \end{pmatrix} \]

Мы определим отображение \(\tau : D_1(\lambda) \to D_1(\lambda) \) равенством

\[(7.2.10) \quad \tau(\lambda_k) = \sigma(a_{K,k}) \]

Равенство

\[(7.2.11) \quad \tau(\mu(\lambda)(a_{K,k})) = \sigma(a_{K,k}) \]

является следствием равенств (7.2.7), (7.2.10). Поскольку отображения \(\sigma, \mu(\lambda) \) являются биекциями, то отображение \(\tau \) является биекцией. Следовательно, отображение \(\tau \) является перестановкой множества \(D_1(\lambda) \). Равенство (7.2.8) является следствием равенств (7.2.9), (7.2.11).

Лемма 7.2.7. Для любого отображения \(\lambda \in R(J,I) \) и любой перестановки \(\tau \in S_1(\lambda) \), существует единственная перестановка \(\sigma \in S \) такая, что

\[(7.2.12) \quad \sigma = \begin{pmatrix} J_1 & \ldots & J_p & K_1 & \ldots & K_q \\ \lambda(J_1) & \ldots & \lambda(J_p) & \tau(\mu(\lambda)(K_1)) & \ldots & \tau(\mu(\lambda)(K_q)) \end{pmatrix} \]

Доказательство. Согласно (7.2.6),

\[D_1(\lambda) \cup D(\lambda) = I \]

Так как отображения \(\lambda, \mu(\lambda), \tau \) инъективны, то отображение \(\sigma \) является перестановкой.

Согласно леммам 7.2.6, 7.2.7, существует биекция множества \(S \) в множество кортежей \((\lambda, \tau) \) где \(\lambda \in R(J,I), \ \tau \in S_1(\lambda) \). Мы выражаем эту биекцию равенством

\[\sigma = (\lambda, \tau) \]

Лемма 7.2.8. Мы определим знак отображения \(\lambda \in R(J,I) \) равенством

\[|\lambda| = |(\lambda, \delta)| \]

gде \(\delta \) - тождественная перестановка множества \(D_1(\lambda) \). Тогда

\[(7.2.13) \quad |(\lambda, \tau)| = |\lambda||\tau| \]
Доказательство. Так как $|\delta| = 1$, то теорема верна для перестановки (λ, δ).
Пусть перестановка τ является транспозицией. Тогда перестановка (λ, τ) отличается от перестановки (λ, δ) на транспозицию. Следовательно, в этом случае, равенство (7.2.13) верно.
Пусть перестановка τ имеет разложение в произведение n транспозиций. Тогда перестановка (λ, τ) отличается от перестановки (λ, δ) на произведение n транспозиций. Следовательно, в общем случае, равенство (7.2.13) верно. □

Теорема 7.2.9. Пусть
$$f_1 \in \mathcal{L}A(D; A^p \to B_1)$$
$$f_2 \in \mathcal{L}A(D; A^q \to B_2)$$
Пусть R_0 является множеством инъекций
$$I_{1,p} \to I_{1,p+q}$$
которые сохраняют порядок индекса в множестве $I_{1,p+q}$. Пусть
$$R_1 = R(I_{1,p}, I_{1,p+q})$$
Внешнее произведение косо симметричных полилинейных отображений удовлетворяет равенству 7.4
$$\begin{equation}
(f_1 \wedge f_2) \circ (a_1, \ldots, a_{p+q}) = \frac{1}{p!} \sum_{\lambda \in R_1} |\lambda|(f_1 \circ (\lambda(a_1), \ldots, \lambda(a_p))) (f_2 \circ (\lambda_1, \ldots, \lambda_q))
\end{equation}
$$
(7.2.15) $$(f_1 \wedge f_2) \circ (a_1, \ldots, a_{p+q}) = \sum_{\lambda \in R_0} |\lambda|(f_1 \circ (\lambda(a_1), \ldots, \lambda(a_p))) (f_2 \circ (\lambda_1, \ldots, \lambda_q))$$

Доказательство. Пусть S - множество перестановок множества $I_{1,p+q}$. Согласно определению (7.2.3),
$$\begin{equation}
(f_1 \wedge f_2) \circ (a_1, \ldots, a_{p+q})
= \frac{1}{p! q!} \sum_{\sigma \in S} |\sigma|(f_1 \circ (\sigma(a_1), \ldots, \sigma(a_p))) (f_2 \circ (\sigma(a_{p+1}), \ldots, \sigma(a_{p+q})))
\end{equation}
$$
(7.2.16) $$(f_1 \wedge f_2) \circ (a_1, \ldots, a_{p+q}) = \sum_{\tau \in S_1(\lambda)} |\tau|(f_2 \circ (\tau(\lambda_1), \ldots, \tau(\lambda_q)))$$

Поскольку отображение f_2 - косо симметрично, то, согласно определению 7.1.3,
$$\begin{equation}
f_2 \circ (\lambda_1, \ldots, \lambda_q) = |\tau|(f_2 \circ (\tau(\lambda_1), \ldots, \tau(\lambda_q)))
\end{equation}
$$
(7.2.18) $$(f_2 \circ (\lambda_1, \ldots, \lambda_q))$$

7.4 В книге [31], страницы 195 - 197, равенство (7.2.15) является определением внешнего произведения косо симметричных полилинейных отображений, поскольку отображение
$$\begin{pmatrix}
a_1 & \ldots & a_p & a_{p+1} & \ldots & a_{p+q} \\
\lambda(a_1) & \ldots & \lambda(a_p) & \lambda_1 & \ldots & \lambda_q
\end{pmatrix}$$
является перестановкой, удовлетворяющей требованию (1.4.3) на странице [31]-196.
Равенство

\[(f_1 \wedge f_2) \circ (a_1, \ldots, a_{p+q}) \]

является следствием равенств (7.2.17), (7.2.18). Равенство (7.2.14) является
следствием равенства (7.2.19).

Для произвольного \(\lambda \in R_0 \), рассмотрим множество

\[R_2(\lambda) = \{ \mu \in R_1 : D(\mu) = D(\lambda) \}\]

Отображение \(\mu \in R_2(\lambda) \) отличается от отображения \(\lambda \in R_0 \) на перестановку множества \(D(\lambda) \) и

\[(7.2.20) \quad |\lambda(f_1 \circ (\lambda(a_1), \ldots, \lambda(a_p)))| = |\mu|(f_1 \circ (\mu(a_1), \ldots, \mu(a_p)))\]

При этом

\[(7.2.21) \quad R_1 = \bigcup_{\lambda \in R_0} R_2(\lambda)\]

Равенство

\[(f_1 \wedge f_2) \circ (a_1, \ldots, a_{p+q}) \]

является следствием равенств (7.2.14), (7.2.20), (7.2.21). Равенство (7.2.15) явля-

Теорема 7.2.10. Пусть

\[f_1 \in \mathcal{L}A(D; A^p \rightarrow B_1)\]
\[f_2 \in \mathcal{L}A(D; A^q \rightarrow B_2)\]

Пусть \(R_0 \) является множеством индексов

\[I_{p+1,p+q} \rightarrow I_{1,p+q}\]

которые сохраняют порядок индекса в множестве \(I_{1,p+q} \). Пусть

\[R_1 = R(I_{p+1,p+q}, I_{1,p+q})\]

Внешнее произведение косо симметричных полилинейных отображений удо-

Доказательство. Доказательство теоремы аналогично доказательству тео-

Доказательство. Доказательство теоремы аналогичн...
Теорема 7.2.11. Внешнее произведение косо симметричных полилинейных отображений ассоциативно. Пусть

\begin{align*}
f_1 & \in \mathcal{LA}(D; A^p \to B_1) \\
f_2 & \in \mathcal{LA}(D; A^q \to B_1) \\
f_3 & \in \mathcal{LA}(D; A^r \to B_2)
\end{align*}

Тогда

\begin{equation}
(f_1 \wedge f_2) \wedge f_3 = f_1 \wedge (f_2 \wedge f_3)
\end{equation}

Доказательство. Пусть представление \(D\)-алгебры \(B_1\) в \(D\)-модуле \(B_2\) определено отображением \(h\) и произведение в \(D\)-алгебре \(B_1\) определено отображением \(g\).

Пусть \(S\) - множество перестановок множества \(I_1.p+q+r\).

Согласно определению [11]-3.1.1, следующее равенство

\begin{equation}
(f_1 \circ (a_1, ..., a_p))(f_2 \circ (a_{p+1}, ..., a_{p+q}))(f_3 \circ (a_{p+q+1}, ..., a_{p+q+r}))
= ((f_1 \circ (a_1, ..., a_p))(f_2 \circ (a_{p+1}, ..., a_{p+q}))(f_3 \circ (a_{p+q+1}, ..., a_{p+q+r}))
\end{equation}

верно для любых \(B_1\)-чисел \(f_1(a_1, ..., a_p), f_1(a_{p+1}, ..., a_{p+q})\) и для любого \(B_2\)-числа \(f_3(a_{p+q+1}, ..., a_{p+q+r})\). Согласно определению 7.2.1, мы можем записать равенство (7.2.26) в виде

\begin{equation}
(f_1 \circ (a_1, ..., a_p))(f_2 f_3) \circ (a_{p+1}, ..., a_{p+q+r})
= ((f_1 f_2) \circ (a_1, ..., a_{p+q}))(f_3 \circ (a_{p+q+1}, ..., a_{p+q+r}))
\end{equation}

Равенство (7.2.27) остаётся верным, если мы применим перестановку \(\sigma \in S\). Поэтому равенство

\begin{equation}
\sum_{\sigma \in S} |\sigma|((f_1 \circ (\sigma(a_1), ..., \sigma(a_p)))(f_2 f_3) \circ (\sigma(a_{p+1}), ..., \sigma(a_{p+q+r})))
= \sum_{\sigma \in S} |\sigma|((f_1 f_2) \circ (\sigma(a_1), ..., \sigma(a_{p+q}))(f_3 \circ (\sigma(a_{p+q+1}), ..., \sigma(a_{p+q+r})))
\end{equation}

является следствием равенства (7.2.27).

Пусть

\[R_1 = R(I_1, p, I_1, p+q+r) \]

Согласно леммам 7.2.6, 7.2.7, 7.2.8, мы перепишем левую часть равенства (7.2.28) следующим образом

\begin{equation}
\sum_{\sigma \in S} |\sigma|((f_1 \circ (\sigma(a_1), ..., \sigma(a_p)))(f_2 f_3) \circ (\sigma(a_{p+1}), ..., \sigma(a_{p+q+r})))
= \sum_{\lambda \in B_1} |\lambda|(f_1 \circ (\lambda(a_1), ..., \lambda(a_p))) \sum_{\tau \in S_2(\lambda)} |\tau|((f_2 f_3) \circ (\tau(\lambda_1), ..., \tau(\lambda_{q+r})))
\end{equation}
Согласно определениям (7.1.1), (7.2.2), равенство
\[\sum_{\sigma \in \mathcal{S}} |\sigma| (f_1 \circ (\sigma(a_1), ..., \sigma(a_p))) (f_2 f_3) \circ (\sigma(a_{p+1}), ..., \sigma(a_{p+q+r})) \]
равенство
\[= \sum_{\lambda \in \mathcal{R}_1} |\lambda| (q + r)! (f_1 \circ (\lambda(a_1), ..., \lambda(a_p))) (f_2 f_3) \circ (\lambda_1, ..., \lambda_{q+r}) \]
(7.2.30)
равенство
\[= \sum_{\lambda \in \mathcal{R}_1} |\lambda| (q + r)! \frac{q! r!}{(q + r)!} \]
* \((f_1 \circ (\lambda(a_1), ..., \lambda(a_p))) ((f_2 \wedge f_3) \circ (\lambda_1, ..., \lambda_{q+r})) \)
является следствием равенства (7.2.29). Согласно леммам 7.2.6, 7.2.7, 7.2.8, равенство
\[\sum_{\sigma \in \mathcal{S}} |\sigma| (f_1 \circ (\sigma(a_1), ..., \sigma(a_p))) (f_2 f_3) \circ (\sigma(a_{p+1}), ..., \sigma(a_{p+q+r})) \]
равенство
\[= \sum_{\lambda \in \mathcal{R}_1} |\lambda| (f_1 \circ (\lambda(a_1), ..., \lambda(a_p))) \]
(7.2.31)
равенство
\[= \frac{q! r!}{(q + r)!} \sum_{\tau \in \mathcal{S}_1(\lambda)} |\tau| ((f_2 f_3) \circ \tau(\lambda_1),...,\tau(\lambda_{q+r})) \]
равенство
\[= \frac{q! r!}{(q + r)!} \sum_{\sigma \in \mathcal{S}} |\sigma| (f_1 \circ (\sigma(a_1), ..., \sigma(a_p))) (f_2 f_3) \circ (\sigma(a_{p+1}), ..., \sigma(a_{p+q+r})) \]
является следствием равенств (7.2.3), (7.2.30). Согласно определению 7.2.1, мы можем записать равенство (7.2.31) в виде
\[\sum_{\sigma \in \mathcal{S}} |\sigma| (f_1 \circ (\sigma(a_1), ..., \sigma(a_p))) (f_2 f_3) \circ (\sigma(a_{p+1}), ..., \sigma(a_{p+q+r})) \]
(7.2.32)
равенство
\[= \frac{q! r!}{(q + r)!} \sum_{\sigma \in \mathcal{S}} |\sigma| (f_1 (f_2 f_3)) \circ (\sigma(a_1), ..., \sigma(a_{p+q+r})) \]
Согласно определениям (7.1.1), (7.2.2), равенство
\[\sum_{\sigma \in \mathcal{S}} |\sigma| (f_1 \circ (\sigma(a_1), ..., \sigma(a_p))) (f_2 f_3) \circ (\sigma(a_{p+1}), ..., \sigma(a_{p+q+r})) \]
(7.2.33)
равенство
\[= (p + q + r)! \frac{q!^r l!}{(q + r)!} (f_1 (f_2 f_3)) \circ [a_1, ..., a_{p+q+r}] \]
равенство
\[= (p + q + r)! \frac{q! r!}{(q + r)!} (f_1 (f_2 f_3)) \circ (a_1, ..., a_{p+q+r}) \]
равенство
\[= p! q! r! (f_1 (f_2 f_3)) \circ (a_1, ..., a_{p+q+r}) \]
является следствием равенства (7.2.32).
7. Дифференциальная форма

Пусть \(R_2 = R(I_{p+q+1}, I_{p+q+r}) \). Согласно леммам 7.2.6, 7.2.7, 7.2.8, мы перепишем правую часть равенства (7.2.28) следующим образом

\[
\sum_{\sigma \in S} |\sigma|((f_1 f_2) \circ (\sigma(a_1), \ldots, \sigma(a_{p+q}))(f_3 \circ (\sigma(a_{p+q+1}), \ldots, a_{p+q+r}))
\]

(7.2.34) \[\sum_{\lambda \in R_2} |\lambda| \left(\sum_{\tau \in S_1(\lambda)} |\tau|((f_1 f_2) \circ (\tau(\lambda_1), \ldots, \tau(\lambda_{p+q}))) \right)^* (f_3 \circ (\lambda(a_{p+q+1}), \ldots, \lambda(a_{p+q+r}))) \]

Согласно определениям (7.1.1), (7.2.2), равенство

\[
\sum_{\sigma \in S} |\sigma|((f_1 f_2) \circ (\sigma(a_1), \ldots, \sigma(a_{p+q}))(f_3 \circ (\sigma(a_{p+q+1}), \ldots, \sigma(a_{p+q+r})))
\]

(7.2.35) \[\sum_{\lambda \in R_2} |\lambda|(p+q)!((f_1 f_2) \circ [\lambda_1, \ldots, \lambda_{p+q}]))
\]

является следствием равенства (7.2.34). Согласно леммам 7.2.6, 7.2.7, 7.2.8, равенство

\[
\sum_{\sigma \in S} |\sigma|((f_1 f_2) \circ (\sigma(a_1), \ldots, \sigma(a_{p+q}))(f_3 \circ (\sigma(a_{p+q+1}), \ldots, \sigma(a_{p+q+r})))
\]

(7.2.36) \[\sum_{\lambda \in R_2} |\lambda|\frac{p!q!}{(p+q)!} \left(\sum_{\tau \in S_1(\lambda)} |\tau|((f_1 \land f_2) \circ (\tau(\lambda_1), \ldots, \tau(\lambda_{p+q}))) \right)^* (f_3 \circ (\lambda(a_{p+q+1}), \ldots, \lambda(a_{p+q+r}))) \]

является следствием равенств (7.2.3), (7.2.35). Согласно определению 7.2.1, мы можем записать равенство (7.2.36) в виде

\[
\sum_{\sigma \in S} |\sigma|((f_1 f_2) \circ (\sigma(a_1), \ldots, \sigma(a_{p+q}))(f_3 \circ (\sigma(a_{p+q+1}), \ldots, a_{p+q+r}))
\]

(7.2.37) \[\sum_{\sigma \in S} |\sigma|((f_1 \land f_2) f_3) \circ (\sigma(a_1), \ldots, \sigma(a_{p+q+r})) \]

\[
\frac{p!q!}{(p+q)!} \sum_{\sigma \in S} |\sigma|((f_1 \land f_2) f_3) \circ (\sigma(a_1), \ldots, \sigma(a_{p+q+r}))
\]
Согласно определениям (7.1.1), (7.2.2), равенство

\[\sum_{\sigma \in S} |\sigma|((f_1 f_2) \circ (\sigma(a_1), ..., \sigma(a_{p+q}))) (f_3 \circ (\sigma(a_{p+q+1}), ..., \sigma(a_{p+q+r})))) \]

(7.2.38)

является следствием равенства (7.2.37).

Равенство (7.2.25) является следствием равенств (7.2.27), (7.2.33), (7.2.38). □

7.3. Дифференциальная форма

ОПРЕДЕЛЕНИЕ 7.3.1. Отображение принадлежит к классу \(C^n \), если отображение имеет непрерывную производную порядка \(n \). Отображение принадлежит к классу \(C^{\infty} \), если отображение имеет непрерывную производную любого порядка. □

ОПРЕДЕЛЕНИЕ 7.3.2. Пусть \(A, B \) - банаховы \(D \)-алгебры. Пусть \(U \subseteq A \) является открытым множеством. Отображение

\[\omega : U \rightarrow LA(D; A^p \rightarrow B) \]

называется дифференциальной формой степени \(p \), определённой на \(U \), со значениями в \(B \) или \(B \)-значной дифференциальной \(p \)-формой, определённой на \(U \). Говорят, что дифференциальная \(p \)-форма \(\omega \) принадлежит к классу \(C^n \), если отображение \(\omega \) принадлежит к классу \(C^n \). Множество \(\Omega^n(U; B) \) \(B \)-значных дифференциальных \(p \)-форм класса \(C^n \), определённых на \(U \) является \(D \)-модулем. □

ТЕОРЕМА 7.3.3. Пусть \(A, B_1, B_2 \) - свободные банаховы алгебры над коммутативным кольцом \(D \). \(^{7.5}\) Пусть

\[h : B_1 \rightarrow B_2 \]

левостороннее представление свободной ассоциативной банаховой \(D \)-алгебры \(B_1 \) в банаховом \(D \)-модуле \(B_2 \). Пусть \(\alpha \in \Omega^n(U; B_1) \), \(\beta \in \Omega^n(U; B_2) \).

Внешнее произведение \(\alpha \wedge \beta \) дифференциальных форм \(\alpha, \beta \), определённое равенством

(7.3.1)

является дифференциальной формой класса \(C^n \).

ДОКАЗАТЕЛЬСТВО. Для любого \(x \in U \), \(\alpha(x) \in \mathcal{L}\mathcal{A}(D; A^p \rightarrow B) \), \(\beta(x) \in \mathcal{L}\mathcal{A}(D; A^q \rightarrow B) \). Согласно определениям 7.2.1, 7.2.2,

\[\alpha(x) \wedge \beta(x) \in \mathcal{L}\mathcal{A}(D; A^{p+q} \rightarrow B_2) \]

Отображение

\[x \in U \rightarrow \alpha(x) \wedge \beta(x) \in \mathcal{L}\mathcal{A}(D; A^{p+q} \rightarrow B_2) \]

\(^{7.5}\) Я дал определение произведения дифференциальных форм согласно определению в разделе [31]-2.2 главы 3, страница 204 - 205.
является отображением класса C^n, так как оно является композицией отображения

$$x \rightarrow (\alpha(x), \beta(x))$$

класса C^n и непрерывного билинейного отображения

$$\mathcal{L}A(D; A^p \rightarrow B_1) \times \mathcal{L}A(D; A^q \rightarrow B_2) \rightarrow \mathcal{L}A(D; A^{p+q} \rightarrow B_2)$$

порождённого представлением h. □

Следствие 7.3.4. Внешнее произведение дифференциальных форм порождает билинейное отображение

$$\Omega^{(n)}_p(U, B_1) \times \Omega^{(n)}_q(U, B_2) \rightarrow \Omega^{(n)}_{p+q}(U, B_2)$$

□

Теорема 7.3.5. Пусть A, B_2 - свободные банаховые алгебры над коммутативным кольцом D. Пусть

$$h : B_1 \longrightarrow B_2$$

левостороннее представление свободной ассоциативной банаховой D-алгебры B_1 в банаховом D-модуле B_2. Пусть $\alpha \in \Omega^{(n)}_p(U, B_1)$, $\beta \in \Omega^{(n)}_q(U, B_2)$. Тогда

$$(\alpha \wedge \beta)(x) \circ (a_1, ..., a_{p+q})$$

$$= \frac{(p + q)!}{p!q!} \sum_{\sigma \in S(n)} \sigma((\alpha(x) \circ (a_1), ..., a_p))((\beta(x) \circ (a_{p+1}, ..., a_{p+q})))$$

Доказательство. Теорема является следствием равенств (7.1.1), (7.2.1), (7.2.2).

Для данного целого числа n рассмотрим D-модуль

$$\Omega^{(n)}(U, B_1) = \bigoplus_{p \geq 0} \Omega^{(n)}_p(U, B_1)$$

который является прямой суммой D-модулей $\Omega^{(n)}_p(U, B_1)$, $p = 0, 1, ...$. D-модуль $\Omega^{(n)}(U, B_1)$, оснащённый внешним произведением

$$\Omega^{(n)}_p(U, B_1) \times \Omega^{(n)}_q(U, B_1) \rightarrow \Omega^{(n)}_{p+q}(U, B_1)$$

является градуированной алгеброй.

Теорема 7.3.6. Пусть \mathfrak{F}_A - базис конечномерной банаховой алгебры A над коммутативным кольцом D. Пусть \mathfrak{F}_B - базис конечномерной банаховой алгебры B над коммутативным кольцом D. Пусть $\omega_{i_1, ..., i_p}(x)$ - координаты полилинейного отображения $\omega(x) \in \mathcal{L}(D; A^n \rightarrow B)$, $x \in U$, относительно базисов \mathfrak{F}_A, \mathfrak{F}_B. Тогда дифференциальная p-форма ω имеет вид

$$(7.3.2) \quad \omega(x) \circ (a_1, ..., a_p) = \omega_{i_1, ..., i_p}(x)a_1^{i_1}...a_p^{i_p}$$

где

$$(7.3.3) \quad a_1 = a_1^{j_1}e_{A^{i_1}} \quad ... \quad a_p = a_p^{j_p}e_{A^{i_p}}$$

$$(7.3.4) \quad \omega_{i_1, ..., i_p}(x) = \omega(x) \circ (e_{A^{i_1}}, ..., e_{A^{i_p}})$$
7.3. Дифференциальная форма

Доказательство. Так как \(a_1, \ldots, a_p \) - произвольные \(A \)-числа, то равенства (7.3.2), (7.3.4) являются следствием равенства (7.3.3) и равенства
\[
\omega(x) \circ (a_1, \ldots, a_n) = \omega(x) \circ (a_1 e_{A_1}, \ldots, a_n e_{A_n}) = a_1^{i_1} \ldots a_n^{i_n} (\omega(x) \circ (e_{A_1}, \ldots, e_{A_n})).
\]

Отображение
\[
f : A \to B
\]
это пример \(B \)-значной дифференциальной 0-формы.

Производная отображения
\[
f : A \to B
\]
это пример \(B \)-значной дифференциальной 1-формы.

Теорема 7.3.7. Пусть \(\overline{B} \) - базис конечномерной банаховой алгебры \(A \) над полем \(D \). Мы можем рассматривать отображение
\[
f : A \to A
\]
как отображение
\[
f(x) = f(x^1, \ldots, x^n)
\]
где
\[
x = x^i e_i
\]
Если отображение \(f \) дифференцируемо, то существуют частные производные \(\frac{\partial f}{\partial x^i}, i = 1, \ldots, n \), и верно следующее равенство
\[
(7.3.5) \quad \frac{\partial f}{\partial x^i} = \frac{df}{dx} \circ e_i
\]
Доказательство. Согласно определению 3.3.2, дифференциал отображения \(f \) имеет вид
\[
(7.3.6) \quad df = \frac{df(x)}{dx} \circ dx
\]
Поскольку отображение \(f \) является отображением \(D \)-векторного пространства, то мы можем записать дифференциалы в виде
\[
(7.3.7) \quad dx = dx^i e_i \quad dx^i \in D
\]
\[
(7.3.8) \quad df = \frac{\partial f}{\partial x^i} dx^i
\]
Равенство
\[
(7.3.9) \quad \frac{\partial f}{\partial x^i} dx^i = \frac{df}{dx} \circ (dx^i e_i) = dx^i \left(\frac{df}{dx} \circ e_i \right)
\]
является следствием равенств (7.3.6), (7.3.7), (7.3.8). Равенство (7.3.5) является следствием равенства (7.3.9). □

Нетрудно видеть, что частная производная \(\frac{\partial f}{\partial x^i} \), представленная в виде (7.3.5), является отображением \(D \)-алгебры \(A \). Если это отображение дифференцируемо, то мы можем рассмотреть частные производные второго порядка
\[
(7.3.10) \quad \frac{\partial^2 f}{\partial x^j \partial x^i} = \frac{d}{dx} \left(\frac{df}{dx} \circ e_i \right) \circ e_j = \frac{d^2 f}{dx^2} \circ (e_i; e_j)
\]
7. Дифференциальная форма

Теорема 7.3.8. Пусть A - свободный бана́ховый D-модуль. Пусть производная второго порядка отображения

$$f : A \to B$$

непрерывна. Тогда вторая производная является симметричным билинейным отображением

$$\frac{d^2 f}{dx^2} \circ (a, b) = \frac{d^2 f}{dx^2} \circ (b, a)$$

Доказательство. Поскольку отображение $\frac{d^2 f(x)}{dx^2}$ непрерывно, то непрерывность отображения $\frac{\partial^2 f(x)}{\partial x^i \partial x^j}$ следует из равенства (7.3.10). Согласно теореме [25] (страницы 405, 406),

$$\frac{\partial^2 f}{\partial x^i \partial x^j} = \frac{\partial^2 f}{\partial x^j \partial x^i}$$

Равенство

$$\frac{d^2 f}{dx^2} \circ (e_i; e_j) = \frac{d^2 f}{dx^2} \circ (e_j; e_i)$$

является следствием равенств (7.3.10), (7.3.12). Равенство (7.3.11) является следствием равенств

$$a = a^i e_i \quad b = b^i e_i$$

и равенства (7.3.13).

□

7.4. Внешнее дифференцирование

Пусть A, B - бана́ховы D-алгебры. Пусть $U \subseteq A$ является открытым множеством. Пусть отображение

$$\omega : U \to \mathcal{L}A(D; A^p \to B)$$

является дифференциальной p-формой, класса C_n, $n > 0$. Согласно определению 7.3.1, в каждой точке $x \in U$ изменение отображения ω может быть представлено в виде

$$\omega(x + a_0) - \omega(x) = \frac{d\omega(x)}{dx} \circ a_0 + o(dx)$$

где

$$\frac{d\omega(x)}{dx} \in \mathcal{L}A(D; A^{p+1} \to B) \quad \frac{d\omega(x)}{dx} \in C_{n-1}$$

Согласно определению (7.4.1), отображение

$$\left(\frac{d\omega(x)}{dx} \circ a_0 \right) \circ (a_1, ..., a_p)$$

является косо симметричным полилинейным отображением по переменным $a_1, ..., a_p$ и является линейным отображением по переменной a_0. Однако отображение (7.4.2) не является косо симметричным полилинейным отображением по переменным $a_0, a_1, ..., a_p$.
ОПРЕДЕЛЕНИЕ 7.4.1. Пусть A, B - банаховы D-алгебры. Пусть $U \subseteq A$ является открытым множеством. Пусть отображение
$$\omega : U \to \mathcal{L}(D; A^p \to B)$$
является дифференциальной p-формой, класса C_n, $n > 0$. Отображение

$$d\omega \circ (a_0, ..., a_p) = (p + 1) \left[\frac{d\omega}{dx} \right] \circ (a_0, ..., a_p)$$

называется внешним дифференциалом.

Теорема 7.4.2. Внешний дифференциал удовлетворяет равенству

$$d\omega \circ (a_0, ..., a_p) = \frac{1}{p!} \sum_{\sigma \in S(p+1)} \frac{d\omega}{dx} \circ (\sigma(a_0), ..., \sigma(a_p))$$

Доказательство. Равенство (7.4.4) является следствием равенств (7.1.1), (7.4.3).

Лемма 7.4.3. Пусть S_1 - множество перестановок множества A-чисел a_0, ..., a_p. Пусть S - множество перестановок множества A-чисел a_0, ..., a_p. Пусть перестановка $\tau_i \in S_1$, $i = 0, ..., p$, определена кортежем

$$\tau_i = (a_i, a_0, ..., a_p)$$

Для любой перестановки $\sigma \in S_1$, существуют перестановки $\tau_i \in S_1$, $\mu \in S$

такие, что

$$\sigma(\tau_0(a_0)) \sigma(\tau_1(a_1)) ... \sigma(\tau_p(a_p)) = (\tau_0(\sigma(a_0)), \tau_1(\sigma(a_1)), ..., \tau_p(\sigma(a_p)))$$

Доказательство. Перестановка τ_i определена равенством

$$\tau_i(a_0) = \sigma(a_0)$$

Перестановка μ определена равенством

$$\mu = \begin{pmatrix}
\tau_0(\sigma(a_0)) & \cdots & \tau_p(\sigma(a_p)) \\
\tau_0(\sigma(a_0)) & \cdots & \tau_p(\sigma(a_p))
\end{pmatrix}$$

Равенство (7.4.6) является следствием равенств (7.4.7), (7.4.8).

Лемма 7.4.4. Для любой перестановки μ множества A-чисел

$$a_0, ..., a_i, ..., a_p$$

$i = 0, ..., p$, существует перестановка σ множества A-чисел $a_0, ..., a_p$

такая, что

$$\sigma(\tau_0(a_0)) \sigma(\tau_1(a_1)) ... \sigma(\tau_p(a_p)) = (\tau_0(\mu(a_0)), \tau_1(\mu(a_1)), ..., \tau_p(\mu(a_p)))$$

$$|\sigma| = (-1)^i |\mu|$$

Доказательство. Перестановка σ имеет вид

$$\sigma = \tau_i \begin{pmatrix}
a_i & a^0_i & a^i_0 & ... & a_p \\
a_i & a_i & a^i_0 & ... & \mu(a_i)
\end{pmatrix}$$
Равенство (7.4.9) является следствием равенства (7.4.11). Равенство

(7.4.12) \[|\sigma| = |\tau_i| |\mu| \]
является следствием равенства (7.4.11). Так как перестановку \(\tau_i \) можно представить как произведение \(i \) транспозиций, то

(7.4.13) \[|\tau_i| = (-1)^i \]

Равенство (7.4.10) является следствием равенств (7.4.12), (7.4.13). \(\square \)

Лемма 7.4.5. Пусть \(S_1 \) - множество перестановок множества \(A \)-чисел \(a_0, ..., a_p \). Пусть \(S \) - множество перестановок множества \(A \)-чисел \(a_1, ..., a_p \). Для любого полилинейного отображения \(f \)

(7.4.14) \[\sum_{\sigma_1 \in S_1} |\sigma_1| f(\sigma_1(a_0), ..., \sigma_1(a_p)) = \sum_{i=0}^{p} (-1)^i \sum_{\sigma \in S} |\sigma| f(\tau_i(a_0), \sigma(\tau_i(a_1)), ..., \sigma(\tau_i(a_p))) \]

Доказательство. Лемма является следствием лемм 7.4.3, 7.4.4. \(\square \)

Теорема 7.4.6. Внешний дифференциал дифференциальной \(p \)-формы имеет вид

(7.4.16) \[d\omega \circ (a_0, ..., a_p) = \sum_{i=0}^{p} (-1)^i \frac{d\omega}{dx} \circ (\tau_i(a_0), ..., \tau_i(a_p)) \]

Доказательство. Равенство

(7.4.17) \[d\omega \circ (a_0, ..., a_p) = \frac{p+1}{(p+1)!} \sum_{\sigma \in S(p+1)} |\sigma| \frac{d\omega}{dx} \circ (\sigma(a_0), ..., \sigma(a_p)) \]

является следствием равенств (7.1.1), (7.4.3). Согласно лемме 7.4.5, равенство

(7.4.18) \[d\omega \circ (a_0, ..., a_p) = \sum_{i=0}^{p} (-1)^i \frac{1}{p!} \sum_{\mu \in S(p)} \frac{d\omega}{dx} \circ (\tau_i(a_0), \mu(a_1), ..., \mu(a_p)) \]

является следствием равенства (7.4.17). Равенство (7.4.16) является следствием равенства (7.4.18), так как отображение \(\partial_x \omega(x) \) косо симметрично по переменным \(a_1, ..., a_p \) и мы вместо суммы по перестановкам \(\mu \) можем записать слагаемое, соответствующее тождественной перестановке \(\mu \). \(\square \)

Пример 7.4.7. Пусть \(\omega \in \Omega^{(n)}_2(U, B) \). Тогда

(7.4.19) \[d\omega \circ (a_1, a_2, a_3) = \frac{d\omega}{dx} \circ (a_1, a_2, a_3) - \frac{d\omega}{dx} \circ (a_2, a_1, a_3) + \frac{d\omega}{dx} \circ (a_3, a_1, a_2) \]

(7.4.15) \[d\omega \circ (a_0, ..., a_p) = \sum_{i=0}^{p} (-1)^i \left(\frac{d\omega}{dx} \circ a_i \right) \circ (a_0, ..., \widehat{a_i}, ..., a_p) \]

\(\square \)

7.6 Согласно определению (7.4.5), равенство (7.4.16) можно записать в виде

(7.4.15) \[d\omega \circ (a_0, ..., a_p) = \sum_{i=0}^{p} (-1)^i \left(\frac{d\omega}{dx} \circ a_i \right) \circ (a_0, ..., \widehat{a_i}, ..., a_p) \]
7.4. Внешнее дифференцирование

Теорема 7.4.8. Пусть A, B_2 - свободные банаховые алгебры над коммутативным кольцом D. Пусть

$$h : B_1 	o B_2$$

левостороннее представление свободной ассоциативной банаховой D-алгебры B_1 в банаховом D-модуле B_2. Пусть $\alpha \in \Omega_p^{(n)}(U, B_1)$, $\beta \in \Omega_q^{(n)}(U, B_2)$. Тогда (7.4.19)

$$d(\alpha \wedge \beta) = d\alpha \wedge \beta + (-1)^p \alpha \wedge d\beta$$

Доказательство. Согласно теореме 3.3.16 и следствию 7.3.4,

(7.4.20) $$\frac{d(\alpha \wedge \beta)}{dx} \circ a_0 = \left(\frac{d\alpha}{dx} \circ a_0 \right) \wedge \beta + \alpha \wedge \left(\frac{d\beta}{dx} \circ a_0 \right)$$

Равенство

$$\left(\frac{d(\alpha \wedge \beta)}{dx} \circ a_0 \right) \circ (a_1, \ldots, a_{p+q})$$

(7.4.21) $$= \left(\left(\frac{d\alpha}{dx} \circ a_0 \right) \wedge \beta \right) \circ (a_1, \ldots, a_{p+q})$$

$$+ \left(\alpha \wedge \left(\frac{d\beta}{dx} \circ a_0 \right) \right) \circ (a_1, \ldots, a_{p+q})$$

является следствием равенства (7.4.20). Равенство

$$d(\alpha \wedge \beta) \circ (a_0, \ldots, a_{p+q})$$

(7.4.22) $$= \sum_{i=0}^{p+q} (-1)^i \left(\frac{d(\alpha \wedge \beta)}{dx} \circ \tau_i(a_0) \right) \circ (\tau_i(a_1), \ldots, \tau_i(a_{p+q}))$$

является следствием равенств (7.4.16), (7.4.21).

Пусть S_1 - множество перестановок множества A-чисел a_0, \ldots, a_{p+q}. Пусть S - множество перестановок множества A-чисел a_1, \ldots, a_{p+q}.

7.7 Теорема аналогична теореме [31]-2.4.2, страница 209. Однако доказательство Картана меня не устраивает, так как он пользуется коммутативностью произведения в поле действительных чисел.
Согласно определениям (7.1.1), (7.2.2),

\[
\sum_{i=0}^{p+q} (-1)^i \left(\left(\frac{d\alpha}{dx} \circ \tau_i(a_0) \right) \land \beta \right) \circ (\tau_i(a_1), ..., \tau_i(a_{p+q}))
\]

(7.4.23)

\[
= \sum_{i=0}^{p+q} \frac{(-1)^i}{p!q!} \sum_{\sigma \in S} |\sigma| \left(\left(\frac{d\alpha}{dx} \circ \tau_i(a_0) \right) \circ (\sigma(\tau_i(a_1)), ..., \sigma(\tau_i(a_p))) \right)
\]

\[
\ast (\beta \circ (\sigma(\tau_i(a_{p+1})), ..., \sigma(\tau_i(a_{p+q}))))
\]

является следствием равенства (7.4.23). Пусть \(R_1 = R(I_{p+1.p+q}, I_{0.p+q}) \). Согласно леммам 7.2.6, 7.2.7, 7.2.8, равенство

\[
\sum_{i=0}^{p+q} (-1)^i \left(\left(\frac{d\alpha}{dx} \circ \tau_i(a_0) \right) \land \beta \right) \circ (\tau_i(a_1), ..., \tau_i(a_{p+q}))
\]

(7.4.24)

\[
= \frac{1}{p!q!} \sum_{\sigma \in S_1} |\sigma| \left(\sum_{\tau \in S_1(\sigma)} |\tau| \frac{d\alpha}{dx} \circ (\tau(\lambda_0), ..., \tau(\lambda_p)) \right)
\]

\[
\ast (\beta \circ (\lambda(a_{p+1}), ..., \lambda(a_{p+q})))
\]

является следствием равенства (7.4.24). Согласно определениям (7.1.1), (7.4.3), равенство

\[
\sum_{i=0}^{p+q} (-1)^i \left(\left(\frac{d\alpha}{dx} \circ \tau_i(a_0) \right) \land \beta \right) \circ (\tau_i(a_1), ..., \tau_i(a_{p+q}))
\]

(7.4.26)

\[
= \frac{1}{p!q!} \sum_{\lambda \in R_1} |\lambda| p!d\alpha \circ (\lambda_0, ..., \lambda_p) (\beta \circ (\lambda(a_{p+1}), ..., \lambda(a_{p+q})))
\]

\[
= \frac{1}{q!} \sum_{\lambda \in R_1} |\lambda|(d\alpha \circ (\lambda_0, ..., \lambda_p)) (\beta \circ (\lambda(a_{p+1}), ..., \lambda(a_{p+q})))
\]

является следствием равенств (7.4.4), (7.4.5). Равенство

\[
\sum_{i=0}^{p+q} (-1)^i \left(\left(\frac{d\alpha}{dx} \circ \tau_i(a_0) \right) \land \beta \right) \circ (\tau_i(a_1), ..., \tau_i(a_{p+q}))
\]

(7.4.27)

\[
= (d\alpha \land \beta) \circ (a_0, ..., a_{p+q})
\]

является следствием равенства (7.2.23), (7.4.26).
Согласно определениям (7.1.1), (7.2.2),
\[
\sum_{i=0}^{p+q} (-1)^i \left(\alpha \wedge \left(\frac{d\beta}{dx} \circ \tau_i(a_0) \right) \right) \circ (\tau_i(a_1), ..., \tau_i(a_{p+q}))
\]
\[
= \sum_{i=0}^{p+q} (-1)^i \frac{1}{p!q!} \sum_{\sigma \in S} |\sigma| \left(\alpha \circ (\sigma(\tau_i(a_1)), ..., \sigma(\tau_i(a_p))) \right)
\]
\[
\left(\frac{d\beta}{dx} \circ \tau_i(a_0) \right) \circ (\sigma(\tau_i(a_{p+1})), ..., \sigma(\tau_i(a_{p+q})))
\]
(7.4.28)
\[
= \sum_{i=0}^{p+q} (-1)^i \frac{1}{p!q!} \sum_{\sigma \in S} |\sigma| \left(\alpha \circ (\sigma(\tau_1(a_1)), ..., \sigma(\tau_1(a_p))) \right)
\]
\[
\left(\frac{d\beta}{dx} \circ \tau_1(a_0), \sigma(\tau_1(a_{p+1})), ..., \sigma(\tau_1(a_{p+q})) \right)\]

Согласно лемме 7.4.5, равенство
\[
\sum_{i=0}^{p+q} (-1)^i \left(\alpha \wedge \left(\frac{d\beta}{dx} \circ \tau_i(a_0) \right) \right) \circ (\tau_i(a_1), ..., \tau_i(a_{p+q}))
\]
(7.4.29)
\[
= \frac{1}{p!q!} \sum_{\sigma_1 \in S_{\tau_1}} |\sigma_1| \left(\alpha \circ (\sigma_1(a_1), ..., \sigma_1(a_p)) \right)
\]
\[
\left(\frac{d\beta}{dx} \circ (\sigma_1(a_0), \sigma_1(a_{p+1}), ..., \sigma_1(a_{p+q})) \right)
\]
является следствием равенства (7.4.28). Пусть \(R_1 = R(I_{1, p}, I_{0, p+q}) \). Согласно леммам 7.2.6, 7.2.7, 7.2.8, равенство
\[
\sum_{i=0}^{p+q} (-1)^i \left(\alpha \wedge \left(\frac{d\beta}{dx} \circ \tau_i(a_0) \right) \right) \circ (\tau_i(a_1), ..., \tau_i(a_{p+q}))
\]
(7.4.30)
\[
= \frac{1}{p!q!} \sum_{\lambda \in R_1} |\lambda| \left(\alpha \circ (\lambda(a_1), ..., \lambda(a_p)) \right)
\]
\[
\left(\sum_{\tau \in S_{\tau_1(\lambda)}} |\tau| \frac{d\beta}{dx} \circ (\tau(\lambda_0), \tau(\lambda_1), ..., \tau(\lambda_q)) \right)
\]
является следствием равенства (7.4.29). Согласно определениям (7.1.1), (7.4.3), равенство
\[
\sum_{i=0}^{p+q} (-1)^i \left(\alpha \wedge \left(\frac{d\beta}{dx} \circ \tau_i(a_0) \right) \right) \circ (\tau_i(a_1), ..., \tau_i(a_{p+q}))
\]
(7.4.31)
\[
= \frac{1}{p!q!} \sum_{\lambda \in R_1} |\lambda| q! \left(\alpha \circ (\lambda(a_1), ..., \lambda(a_p)) (d\beta \circ (\lambda_0, ..., \lambda_q)) \right)
\]
\[
= \frac{1}{p!} \sum_{\lambda \in R_1} |\lambda| (\alpha \circ (\lambda(a_1), ..., \lambda(a_p)) (d\beta \circ (\lambda_0, ..., \lambda_q)))
\]
является следствием равенств (7.4.4), (7.4.30). Равенство
\[
\sum_{i=0}^{p+q} (-1)^i \left(\alpha \wedge \left(\frac{d\beta}{dx} \circ \tau_i(a_0) \right) \right) \circ (\tau_i(a_1), ..., \tau_i(a_{p+q}))
\]
(7.4.32)
является следствием равенств (7.2.14), (7.4.31). Поскольку
\[
\left| \begin{array}{cccccc}
 a_1 & a_2 & \cdots & a_p & a_0 & a_{p+1} \\
 a_0 & a_1 & \cdots & a_{p-1} & a_p & a_{p+1} \\
 \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
 \end{array} \right| = (-1)^p
\]
то равенство
\[
\sum_{i=0}^{p+q} (-1)^i \left(\alpha \wedge \left(\frac{d\beta}{dx} \circ \tau_i(a_0) \right) \right) \circ (\tau_i(a_1), ..., \tau_i(a_{p+q}))
\]
(7.4.33)
является следствием равенства (7.4.32).

Равенство
\[
d(\alpha \wedge \beta) \circ (a_0, ..., a_{p+q})
\]
(7.4.34)
является следствием равенств (7.4.22), (7.4.27), (7.4.33). Равенство (7.4.19) является следствием равенства (7.4.34). □

Теорема 7.4.9. Пусть A - свободный банаовский D-модуль. Если $\omega \in \Omega^{(n)}(U, B)$, $n \geq 2$, тогда
\[
d^2 \omega(x) = 0
\]
(7.4.35)

Доказательство. Согласно определению 7.4.1,
\[
d^2 \omega \circ (b_2, b_1, a_1, ..., a_p) = (p + 1)(p + 2) \frac{d^2 \omega}{dx^2} \circ [b_2, b_1, a_1, ..., a_p]
\]
(7.4.36)
Пусть S является множеством перестановок множества $\{b_1, b_2\} \cup I_{1,p}$. Согласно определению (7.1.1), равенство
\[
d^2 \omega \circ (b_2, b_1, a_1, ..., a_p)
\]
(7.4.37)
является следствием равенства (7.4.36). Согласно теореме 7.3.8, отображение $\frac{d^2 \omega}{dx^2}$ симметрично по A-числам b_1, b_2. Равенство (7.4.35) является следствием определений 7.1.1, 7.1.3. □

7.8 Смотри также теорему [31]-2.5.1 на странице 210.
7.5. Теорема Пуанкаре

Определение 7.5.1. Подмножество \(U \) \(D \)-алгебры \(B \) называется звёздным относительно \(B \)-числа \(a \in U \), если \((1-t)a + tx \in U \) для любого \(B \)-числа \(x \in U \) и действительного числа \(0 \leq t \leq 1 \).

Определение 7.5.2. Пусть \(A, B \) - банаходы алгебры. Пусть \(U \subseteq A \) - открытое множество. Дифференциальная форма \(\omega \in \Omega^n_p(U, B) \) называется интегрируемой, если существует дифференциальная форма \(\alpha \in \Omega^{n-1}_p(U, B) \) такая, что
\[
\text{d} \alpha(x) = \omega(x)
\]
Тогда мы пользуемся записью \(\alpha(x) = \int \omega(x) \)
и дифференциальная форма \(\alpha \) называется неопределённым интегралом дифференциальной формы \(\omega \).

Теорема 7.5.3. Пусть \(A, B \) - банаходы алгебры. Пусть \(I = [0, 1] \) - подмножество поля действительных чисел. Пусть \(\varphi : U \times I \to B \) непрерывное отображение. Тогда отображение \(\psi : U \to B \) определённое равенством
\[
\psi(x) = \int_0^1 dt \varphi(x, t)
\]
непрерывно.

Доказательство. Пусть задано \(\epsilon > 0 \).

7.5.3.1: Для каждой точки \((x, t) \in U \times I \) существует \(\eta(x, t) \in R \) такое, что из утверждения \(\|x' - x\|_A < \eta(x, t), |t' - t| < \eta(x, t) \) следует
\[
\|\varphi(x', t') - \varphi(x, t)\|_B \leq \frac{\epsilon}{2}
\]

7.5.3.2: В частности, из утверждения \(|t' - t| < \eta(x, t) \) следует
\[
\|\varphi(x, t') - \varphi(x, t)\|_B \leq \frac{\epsilon}{2}
\]

Из утверждений 7.5.3.1, 7.5.3.2 следует, что из утверждения \(\|x' - x\|_A < \eta(x, t), |t' - t| < \eta(x, t) \) следует
\[
\|\varphi(x', t') - \varphi(x, t')\|_B \leq \epsilon
\]
Пусть
\[
I(x, t) = \{t' \in I : |t' - t| < \eta(x, t)\}
\]
Поскольку множество \(I \) компактно, то для данного \(x \) конечное множество интервалов \(I(x, t) \), которые покрывают множество \(I \), например \(\{I(x, t_i)\} \). Пусть

7.9 Утверждение аналогично лемме [31]-2.12.2 на странице 223.
Дифференциальная форма

7. Дифференциальная форма

\(\eta(x) \) - наименьшее из чисел \(\eta(x, t_i) \). Так как для любого \(t' \in I \) существует \(t_i \) такое, что \(|t' - t_i| < \eta(x, t_i) \), то из утверждения \(\|x' - x\|_A \leq \eta(x) \) следует

\[
(7.5.1) \quad \|\varphi(x', t') - \varphi(x, t')\|_B \leq \epsilon
\]

для любого \(t' \in I \). Следовательно, отображение \(\varphi \) непрерывно в \(x \) равномерно по \(t \).

Так как

\[
\psi(x') - \psi(x) = \int_0^1 dt (\varphi(x', t) - \varphi(x, t))
\]

то, согласно теореме C.3.8,

\[
(7.5.2) \quad \|\psi(x') - \psi(x)\|_B = \int_0^1 dt \|\varphi(x', t) - \varphi(x, t)\|_B
\]

Из неравенств (7.5.1), (7.5.2) и теоремы C.3.9, из утверждения \(\|x' - x\|_A \leq \eta(x) \) следует

\[
\|\psi(x') - \psi(x)\|_B = \int_0^1 dt \epsilon = \epsilon
\]

Следовательно, отображение \(\psi \) непрерывно.

Лемма 7.5.4. Пусть

\[
o : A \times I \to B
\]

такое непрерывное отображение, что

\[
(7.5.3) \quad \lim_{\|h\|_A \to 0} \frac{\|o(h, t)\|_B}{\|h\|_A} = 0
\]

Тогда

\[
o_1(h) = \int_0^1 dt o(h, t)
\]

отображение

\[o_1 : A \to B\]

такое, что

\[
(7.5.4) \quad \lim_{\|h\|_A \to 0} \frac{\|o_1(h)\|_B}{\|h\|_A} = 0
\]

Доказательство. Из равенства (7.5.3) следует, что мы можем записать отображение \(o \) как произведение

\[
o(h, t) = o_2(h, t)h
\]

где

\[
(7.5.5) \quad \lim_{h \to 0} o_2(h, t) = 0
\]

Из непрерывности отображения \(o \) следует непрерывность отображения \(o_2 \). Так как множество \(I \) компактно, то существует отображение

\[
o_3 : A \to \mathbb{R}
\]

определённое равенством

\[
o_3(h) = \max(\|o_2(h, t)\|_B, t \in I)
\]

Лемма 7.5.5.

\[
(7.5.7) \quad \lim_{h \to 0} o_3(h) = 0
\]
ДОКАЗАТЕЛЬСТВО. Пусть

(7.5.8) \[\lim_{h \to 0} o_3(h) \neq 0 \]

Тогда существует \(\epsilon > 0 \) такое, что \(o_3(h) \geq \epsilon \) для любого \(\delta > 0 \) и для любого \(h, \|h\|_A < \delta \). Так как множество \(I \) компактно, то существует \(t = t(h) \) такое, что \(\|o_2(h, t(h))\|_B \geq \epsilon \) для любого \(h, \|h\|_A < \delta \). Это утверждение противоречит равенству (7.5.6). Следовательно, утверждение (7.5.8) неверно.

Согласно теореме C.3.11,

(7.5.9) \[
\|o_1(h)\|_B = \left| \int_0^1 dt \, o(h, t) \right|_B \leq \int_0^1 dt \|o_2(h, t)\|_B \|h\|_A \\
\leq \int_0^1 dt \, o_3(h) \|h\|_A = o_3(h) \|h\|_A
\]

Утверждение (7.5.4) является следствием утверждения (7.5.9) и леммы 7.5.5.

Теорема 7.5.6. Пусть \(A, B \) - банаховы алгебры. Пусть \(I = [0, 1] \) - подмножество поля действительных чисел. Пусть \(\varphi : U \times I \to B \) непрерывное отображение. Пусть отображение

\(\psi : U \to B \)

определено равенством

(7.5.10) \[\psi(x) = \int_0^1 dt \varphi(x, t) \]

Если производная \(\partial_x \varphi(x, t) \) существует во всех точках \((x, t) \in U \times I \), то отображение \(\psi \) дифференцируемо и

(7.5.11) \[\frac{d\psi(x)}{dx} = \int_0^1 dt \frac{\partial \varphi(x, t)}{\partial x} \]

ДОКАЗАТЕЛЬСТВО. Пусть производная \(\partial_x \varphi(x, t) \) существует и является непрерывным отображением

\[\frac{\partial \varphi(x, t)}{\partial x} : U \times I \to \mathcal{L}(D; A \to B) \]

Согласно теореме 7.5.3, отображение

(7.5.12) \[\lambda(x) = \int_0^1 dt \frac{\partial \varphi(x, t)}{\partial x} \]

линейно и непрерывно. Согласно теореме C.3.12, равенство

(7.5.13) \[\lambda(x) \circ h = \int_0^1 dt \frac{\partial \varphi(x, t)}{\partial x} \circ h \]

является следствием равенства (7.5.12).

Согласно определению 3.3.1,

(7.5.14) \[\varphi(x + h, t) - \varphi(x, t) = \frac{\partial \varphi(x, t)}{\partial x} \circ h + o(h, t) \]

Утверждение аналогично лемме [31]-2.12.2 на странице 223.
где

(7.5.15) \[\lim_{\|h\|_A \to 0} \frac{\|o(h, t)\|_B}{\|h\|_A} = 0 \]

Согласно теореме C.3.10, равенство

(7.5.16) \[\int_0^1 dt \varphi(x + h, t) - \int_0^1 dt \varphi(x, t) = \int_0^1 dt \frac{\partial \varphi(x, t)}{\partial x} \circ h + \int_0^1 dt o(h, t) \]

является следствием равенства (7.5.14). Положим

(7.5.17) \[o_1(h) = \int_0^1 dt o(h, t) \]

Согласно лемме 7.5.4, равенство

(7.5.18) \[\lim_{\|h\|_A \to 0} \frac{\|o_1(h)\|_B}{\|h\|_A} = 0 \]

является следствием равенств (7.5.15), (7.5.17). Равенство

(7.5.19) \[\psi(x + h) - \psi(x) = \lambda(x) \circ h + o_1(h) \]

является следствием равенств (7.5.10), (7.5.12), (7.5.16), (7.5.17). Равенство

(7.5.11) \[\psi(x + h) - \psi(x) = \lambda(x) \circ h + o_1(h) \]

является следствием равенств (7.5.12), (7.5.18), (7.5.19) и определения 3.3.1. □

Теорема 7.5.7. Пусть \(A, B \) - банаховы алгебры. Пусть \(I = [0, 1] \) - подмножество поля действительных чисел. Пусть

\[\varphi : U \times I \to B \]

отображение класса \(C^n \). Пусть отображение

\[\psi : U \to B \]

определено равенством

\[\psi(x) = \int_0^1 dt \varphi(x, t) \]

то отображение \(\psi \) является отображением класса \(C^n \) и

(7.5.20) \[d^n \psi(x) = \int_0^1 dt \frac{d^n \varphi(x, t)}{dx^n} \]

Доказательство. Теорема доказывается по индукции по \(n \), так как является следствием теоремы 7.5.6 и определения (4.1.5). □

Теорема 7.5.8 (Теорема Пуанкаре). Пусть \(A, B \) - банаховы алгебры. Пусть \(U \subseteq A \) - открытое множество, звёздное относительно \(A \)-числа \(a \in U \). Если дифференциальная форма \(\omega \in \Omega_1^n(U, B) \) удовлетворяет уравнению

\[d\omega(x) = 0 \]

то дифференциальная форма \(\omega \) интегрируема.

7.11 Утверждение аналогично следствию [31]-2.12.3 на странице 225.
7.12 Я следую теореме [31]-2.12.1 на странице 222.
7.5. Теорема Пуанкаре

ДОКАЗАТЕЛЬСТВО. Мы будем полагать, что $a = 0$. В общем случае, за счёт сдвига мы можем прийти к этому случаю.

Пусть $\omega \in \Omega_1^{(n)}(U, B)$. Положим

$$f(x) = \int_0^1 dt \omega(tx) \circ x$$

Отображение

$$\varphi(x, t) = \omega(tx) \circ x$$

является композицией следующих отображений

- отображение $\varphi_1 : (x, t) \in U \times I \to (tx, x) \in U \times A$
 определено корректно, так как множество U звёздно относительно A-числа 0, и является отображением класса C^∞;
- отображение $\varphi_2 : (x, a) \in U \times A \to (\omega(x), a) \in \mathcal{L}(D; A \to B) \times A$
 является отображением класса C^n;
- билинейное отображение $\varphi_3 : (f, a) \in \mathcal{L}(D; A \to B) \times A \to f \circ a \in B$
 является отображением класса C^∞.

Следовательно, отображение φ является отображением класса C^n. Согласно теоремам 7.5.3, 7.5.7, отображение f является отображением класса C^n.

Согласно теореме 7.5.6,

$$\frac{df(x)}{dx} = \int_0^1 dt \frac{\partial \varphi(x, t)}{\partial x}$$

Согласно теореме 3.3.16, равенство

$$\frac{\partial \varphi(x, t)}{\partial x} \circ a = \left(\frac{d\omega(tx)}{dtx} \circ \frac{dtx}{dx} \circ a \right) \circ x + \omega(tx) \circ \left(\frac{dx}{dtx} \circ a \right)$$

$$= \left(\frac{d\omega(tx)}{dtx} \circ (ta) \right) \circ x + \omega(tx) \circ a$$

$$= t \left(\frac{d\omega(tx)}{dtx} \circ a \right) \circ x + \omega(tx) \circ a$$

является следствием равенства (7.5.22). Утверждение $d\omega(x) = 0$ означает, что $(d_x\omega(x) \circ a_1) \circ a_2$ является билинейным симметричным отображением от a_1 и a_2. Следовательно,

$$\left(\frac{d\omega(tx)}{dtx} \circ a \right) \circ x = \left(\frac{d\omega(tx)}{dtx} \circ x \right) \circ a$$

Равенство

$$\frac{\partial \varphi(x, t)}{\partial x} \circ a = t \left(\frac{d\omega(tx)}{dtx} \circ x \right) \circ a + \omega(tx) \circ a$$

является следствием равенств (7.5.24), (7.5.25). Равенство

$$\frac{\partial \varphi(x, t)}{\partial x} = t \left(\frac{d\omega(tx)}{dtx} \circ x \right) + \omega(tx)$$
является следствием равенства (7.5.26). В то же время

\[
\frac{dt\omega(tx)}{dt} = t \left(\frac{d\omega(tx)}{dtx} \circ dt \right) + \omega(tx)
\]

(7.5.28)

Равенство

\[
\frac{df(x)}{dx} = \int_0^1 dt \frac{d}{dt} (t\omega(tx))
\]

является следствием равенств (7.5.23), (7.5.27), (7.5.26). Положим

\[
g(t) = t\omega(tx)
\]

(7.5.30)

Равенство

\[
\frac{df(x)}{dx} = g(1) - g(0) = \omega(x)
\]

является следствием равенств (7.5.29), (7.5.30). Следовательно, \(\omega\) совпадает с дифференциальной формой \(df\).

Лемма 7.5.10.
Отображение \(k\) определено корректно.

Доказательство. Для данного \(p\) линейное отображение

\[
k : \Omega^{(n)}_p(U, B) \to \Omega^{(n)}_{p-1}(U, B)
\]

следующим образом.

7.5.9.1: Если \(f \in \Omega^{(n)}_0\), положим \(k(f) = 0\).

7.5.9.2: Для \(p \geq 1\), \(\omega \in \Omega^{(n)}_p(U, B)\), положим

\[
k(\omega) = \alpha
\]

где

\[
\alpha(x) \circ (a_1, ..., a_{p-1}) = \int_0^1 dt t^{p-1} \omega(tx) \circ (x, a_1, ..., a_{p-1})
\]

(7.5.33)

Лемма 7.5.10. Отображение \(k\) определено корректно.

Доказательство. Для \(p = 0\) определение 7.5.9.1 равносильно соглашению, что \(D\)-модуль \(\Omega^{(n)}_0(U, B)\) сводится к 0.

Для \(p > 0\), рассмотрим косо симметричное полилинейное отображение

\[
\omega(tx) \circ x : (a_1, ..., a_{p-1}) \to \omega(tx) \circ (x, a_1, ..., a_{p-1})
\]

Тогда мы можем записать равенство (7.5.33) в следующем виде

\[
\alpha(x) \circ (a_1, ..., a_{p-1}) = \left(\int_0^1 dt t^{p-1} \omega(tx) \circ x \right) \circ (a_1, ..., a_{p-1})
\]

(7.5.34)

Из (7.5.34) следует, что \(\alpha(x) \in \mathcal{L}A(D; A^{p-1} \to B)\).

7.13 Я следую теореме [31]-2.12.1 на странице 222.
Отображение

\[(x, t) \rightarrow t^{p-1} \omega(tx, x)\]

является композицией следующих отображений

- отображение
 \[\alpha_1 : (x, t) \in U \times I \rightarrow (tx, t, x) \in U \times I \times A\]
 определено корректно, так как множество \(U\) звёздно относительно \(A\)-числа 0, и является отображением класса \(C^\infty\);

- отображение
 \[\alpha_2 : (x, t, a) \in U \times I \times A \rightarrow (t^{p-1} \omega(x), a) \in \mathcal{L}(D; A^p) \times A\]
 является отображением класса \(C^n\);

- отображение
 \[\alpha_3 : (f, a) \in \mathcal{L}(D; A^p) \times A \rightarrow f \circ a \in \mathcal{L}(D; A^{p-1})\]
 является отображением класса \(C^\infty\).

Следовательно, \(\alpha\) является дифференциальной \((p - 1)\)-формой класса \(C^n\).

Лемма 7.5.11. Если \(f \in \Omega^{(n)}_0, n \geq 1, m\)

(7.5.35)

\[k(df) = f - f_0\]

где \(f_0 - \) постоянное отображение

\[f_0 : x \in U \rightarrow f(0) \in B\]

Доказательство. Дифференциальная форма \(k(df)\) является отображением

\[x \rightarrow \int_0^1 dt \left(\frac{df(tx)}{dx} \circ x \right) = \int_0^1 dt \frac{df(tx)}{dt} = f(x) - f(0)\]

Лемма 7.5.12. Если \(\omega \in \Omega^{(n)}_p(U, B) n \geq 1, p \geq 1, m\)

(7.5.36)

\[d(k(\omega)) + k(d\omega) = \omega\]

Доказательство. Равенство

\[d\omega(tx) \circ (x, a_1, ..., a_p) = \left(\frac{d\omega(tx)}{dx} \circ x \right) \circ (a_1, ..., a_p)\]

(7.5.37)

\[+ \sum_{i=1}^p (-1)^i \left(\frac{d\omega(tx)}{dx} \circ a^i \right) \circ (x, a_1, ..., a^i, ..., a^p)\]

является следствием равенства (7.4.15). Из равенств (7.5.33), (7.5.37) следует, что дифференциальная форма

(7.5.38)

\[k(d\omega) = \beta\]

определен равенством

\[\beta(x) \circ (a_1, ..., a_p)\]

(7.5.39)

\[= \int_0^1 dt t^p \left(\frac{d\omega(tx)}{dx} \circ x \right) \circ (a_1, ..., a_p)\]

\[+ \sum_{i=1}^p (-1)^i \int_0^1 dt t^p \left(\frac{d\omega(tx)}{dx} \circ a^i \right) \circ (x, a_1, ..., a^i, ..., a^p)\]
Согласно теореме 7.5.6, равенство
\[
\left(\frac{d\alpha(x)}{dx} \circ a_1 \right) \circ (a_2, \ldots, a_p) = \int_0^1 dt t^p \left(\frac{d\omega(tx)}{dx} \circ a_1 \right) \circ (x, a_2, \ldots, a_p) + \int_0^1 dt t^{p-1} \omega(tx) \circ (a_1, \ldots, a_p)
\] (7.5.40)
является следствием равенства (7.5.33). Равенство
\[
d\alpha(x) \circ (a_1, \ldots, a_p) = \sum_{i=1}^p (-1)^{i-1} \int_0^1 dt t^p \left(\frac{d\omega(tx)}{dx} \circ a_i \right) \circ (x, a_1, \ldots, \widehat{a_i}, \ldots, a_p)
\]
+ \sum_{i=1}^p (-1)^{i-1} \int_0^1 dt t^{p-1} \omega(tx) \circ (a_i, a_1, \ldots, \widehat{a_i}, \ldots, a_p)
(7.5.41)
является следствием равенств (7.4.15), (7.5.40). Поскольку \(\omega \) - косо симметричное отображение, то верно равенство
\[
\sum_{i=1}^p (-1)^{i-1} \int_0^1 dt t^p \omega(tx) \circ (a_i, a_1, \ldots, \widehat{a_i}, \ldots, a_p) = p \int_0^1 dt t^{p-1} \omega(tx) \circ (a_1, \ldots, a_p)
\] (7.5.42)
Равенство
\[
d(k(\omega)) \circ (a_1, \ldots, a_p) + k(d\omega) \circ (a_1, \ldots, a_p)
\]
(7.5.43) \[= (dx) \circ (a_1, \ldots, a_p) + \beta \circ (a_1, \ldots, a_p)
\]
является следствием равенств (7.5.32), (7.5.38), (7.5.39), (7.5.41), (7.5.42). Равенство
\[
d(k(\omega)) + k(d\omega) = \int_0^1 dt t^p \frac{d\omega(tx)}{dx} \circ x + p \int_0^1 dt t^{p-1} \omega(tx)
\]
(7.5.44)
является следствием равенства (7.5.43) в то же время
\[
\frac{dt^p \omega(tx)}{dt} = t^p \left(\frac{d\omega(tx)}{dx} \circ \frac{dx}{dt} \right) + pt^{p-1} \omega(tx)
\] (7.5.45)
Равенство
\[
d(k(\omega)) + k(d\omega) = \int_0^1 dt \frac{dt^p \omega(tx)}{dt}
\]
(7.5.46)
является следствием равенств (7.5.44), (7.5.45). Равенство (7.5.36) является следствием равенства (7.5.46).
Если $d\omega(x) = 0$, то равенство

\begin{equation}
\omega = d(k(\omega))
\end{equation}

является следствием равенства (7.5.36). Следовательно, отображение k порождает дифференциальную форму $k(\omega) = \alpha$ такую, что $d\alpha(x) = \omega(x)$. \qed
Глава 8

Структура дифференциальной формы

8.1. Полилинейное отображение в ассоциативную D-алгебру

Теорема 8.1.1. Пусть F - базис левого $B \otimes B$-модуля $L(D; A \to B)$. Мы можем отождествить полилинейное отображение $f \in L(D; A^p \to B)$ и тензор $b \in B^{\otimes (n+1)}$ посредством равенства

$$ f \circ (a_1, \ldots, a_n) = (b_0 \circ F_s[1] \circ \sigma_s(a_1))b_1 \cdots (F_s[n] \circ \sigma_s(a_n)) b_{n-1} \cdot \sigma_s \equiv (8.1.1) $$

Доказательство. Доказательство теоремы аналогично доказательству теоремы 2.5.24. □

Теорема 8.1.2. Пусть $f = b_s \circ F_s \circ \sigma_s$ полилинейное отображение. Тогда

$$ [f] = \frac{1}{n!} \sum_{\sigma \in S(n)} |\sigma| |\sigma_s| b_s \circ F_s \circ \sigma $$

Доказательство. Равенство

$$ [f] = \frac{1}{n!} \sum_{\sigma_2 \in S(n)} |\sigma_2| b_s \circ F_s \circ \sigma_2 \circ \sigma_s $$

является следствием равенства (7.1.1), (8.1.2). Равенство (8.1.3) является следствием равенства (8.1.4) так как для любого s мы можем заменить сумму по $\sigma_2 \in S(n)$ на сумму по $\sigma \in S$. Или $\sigma = \sigma_2 \circ \sigma_s$. При этом $|\sigma_2| = |\sigma||\sigma_s|$. □

Тензорное представление косо симметричного полилинейного отображения громоздко. Поэтому, когда возможно, мы будем пользоваться выражением

$$ f = [b_s \circ F_s] $$

do представляния косо симметричного полилинейного отображения.

Теорема 8.1.3. Пусть

$$ f = [b_s \circ (F_s[1], \ldots, F_s[p])] \in \mathcal{LA}(D; A^p \to B) $$

$$ g = [c_t \circ (F_t[1], \ldots, F_t[q])] \in \mathcal{LA}(D; A^q \to B) $$

Тогда

$$ f_1 \wedge f_2 = [(b_s \otimes c_t) \circ (F_s[1], \ldots, F_s[p], F_t[1], \ldots, F_t[q])] $$

104
ДОКАЗАТЕЛЬСТВО. Равенство

\[(f \circ (a_1, ..., a_p))(g \circ (a_{p+1}, ..., a_{p+q})) = (b_s \circ (F_{s[1]}(a_1), ..., F_{s[p]}(a_p)) \circ \sigma_s \circ (a_1, ..., a_p))\]

является следствием равенств (8.1.6), (8.1.7). Для любых \(s, t\), отображение

\[(8.1.10)\]

\[\sigma_{st} = \begin{pmatrix} a_1 & \ldots & a_p & a_{p+1} & \ldots & a_{p+q} \\ \sigma_s(a_1) & \ldots & \sigma_s(a_p) & \tau_t(a_{p+1}) & \ldots & \tau_t(a_{p+q}) \end{pmatrix}\]

является перестановкой. Равенство

\[(8.1.11)\]

\[= b_s \circ (F_{s[1]}(a_1), ..., F_{s[p]}(a_p)) \circ (\sigma_s(a_p))b_{s,p}\]

является следствием равенств (8.1.9), (8.1.10). Равенство (8.1.11) является следствием равенств (2.6.1), (8.1.11). Равенство (8.1.8) является следствием равенств (7.2.2), (8.1.5), (8.1.12).

Теорема 8.1.4. Пусть \(F\) - базис конечно мерной \(D\)-алгебры \(B\). Пусть

\[(8.1.13)\]

\[f = [b_s \circ (F_{s[1]}, ..., F_{s[p]})] \in \mathcal{L}A(D; A^p \to B)\]

Пусть

\[(8.1.14)\]

\[b_s = b_s^{i_0, ..., i_p} e_{i_0} \otimes \ldots \otimes e_{i_p}\]

стандартное представление тензора \(b_s\). Тогда

\[(8.1.15)\]

\[f = [b_s^{i_0, ..., i_p} [e_{i_0} \otimes \ldots \otimes e_{i_p}] \circ (F_{s[1]}, ..., F_{s[p]})]\]

ДОКАЗАТЕЛЬСТВО. Равенство (8.1.15) является следствием равенств (8.1.13), (8.1.14).

8.2. Дифференциальная форма со значениями в ассоциативной \(D\)-алгебре

Теорема 8.2.1. Пусть \(A, B\) - ассоциативные конечно мерные банаховы \(D\)-алгебры. Пусть \(U \subseteq A\) - открытое множество. Отображение

\[(8.2.1)\]

непрерывно тогда и только тогда, когда мы можем представить отображение \(f\) в виде

\[f = f_{s,0} \oplus \ldots \oplus f_{s,p}\]

где отображения

\[f_{s,i} : U \to B\]

непрерывны.
Доказательство. Непосредственное доказательство теоремы сложно. Например, пусть

\[f_0 : U \to B \]
\[f_1 : U \to B \]

непрерывные отображения. Тогда тензор \(f = f_0 \otimes f_1 \) является непрерывным отображением

\[f : U \to B \otimes^2 \]

Однако в представлении тензора \(f(x) \)

\[f(x) = ((f_0(x) + \text{sign}(x^1)) \otimes f_2(x)) + ((f_0(x) - \text{sign}(x^1)) \otimes f_2(x)) \]

cаждое из слагаемых не является непрерывным отображением.

Следовательно, не каждое представление непрерывного отображения (8.2.1) имеет непрерывные слагаемые. Однако в нашем распоряжении есть инструмент, который поможет нам доказать теорему.

Пусть \(e_B \) - базис конечно мерной \(D \)-алгебры \(B \). Тогда стандартное представление тензора \(f(x) \) имеет вид

(8.2.2) \[f(x) = f_{i_0 \ldots i_p}(x)e_{i_0} \otimes \ldots \otimes e_{i_p} \]

Лемма 8.2.2. Отображение \(f \) непрерывно тогда и только тогда, когда все стандартные компоненты тензора \(f(x) \)

\[f_{i_0 \ldots i_p} : U \to D \]

являются непрерывными отображениями.

Доказательство. Так как все отображения \(f_{i_0 \ldots i_p} \) непрерывны, то для произвольного \(\epsilon > 0 \) существует \(\delta > 0 \) такое, что из утверждения

\[\|x - x_1\|_A < \delta \]

следует

(8.2.3) \[\|f_{i_0 \ldots i_p}(x) - f_{i_0 \ldots i_p}(x_1)\| < \epsilon \]

для любого отображения \(f_{i_0 \ldots i_p} \) (это утверждение возможно, так как множество отображений \(f_{i_0 \ldots i_p} \) конечно). Равенство

(8.2.4) \[\|f(x) - f(x_1)\| = \|(f_{i_0 \ldots i_p}(x_1)e_{i_0} \otimes \ldots \otimes e_{i_p} - f_{i_0 \ldots i_p}(x_1)e_{i_0} \otimes \ldots \otimes e_{i_p})\| = \|(f_{i_0 \ldots i_p}(x) - f_{i_0 \ldots i_p}(x_1))e_{i_0} \otimes \ldots \otimes e_{i_p}\| = \|f_{i_0 \ldots i_p}(x) - f_{i_0 \ldots i_p}(x_1)\|\|e_{i_0} \otimes \ldots \otimes e_{i_p}\| \leq \epsilon \sum_{i_0 \ldots i_p} \|e_{i_0} \otimes \ldots \otimes e_{i_p}\| \]

является следствием равенства (8.2.3).

\[^{8.1} \text{Мы полагаем, что базис } e_B \text{ не зависит от } x. \text{ Однако это утверждение может быть ослаблено, если мы будем рассматривать расслоенную } D \text{-алгебру } B \text{ над } D \text{-алгеброй } A \text{ (определение расслоенной универсальной алгебры рассмотрено в } [8]). \text{ Я рассмотрел возможность построения объекта связности многообразия над банаховой алгеброй в разделе } [10]-[1.1]. \text{ Эта конструкция несущественна для доказательства теоремы 8.2.1 и будет рассмотрена в последующих статьях.} \]
Мы определим норму тензорного произведения $e_{B\cdot i_0} \otimes \ldots \otimes e_{B\cdot i_p}$ согласно определению 3.2.18

\[(8.2.5) \quad \|e_{B\cdot i_0} \otimes \ldots \otimes e_{B\cdot i_p}\| = \max \| (e_{B\cdot i_0} \otimes \ldots \otimes e_{B\cdot i_p}) \circ (b_1, \ldots, b_p) \|\|b_1|| \ldots ||b_p||\]

Так как множество тензорных произведений $e_{B\cdot i_0} \otimes \ldots \otimes e_{B\cdot i_p}$ конечно, то мы положим

\[(8.2.6) \quad E = \max \|e_{B\cdot i_0} \otimes \ldots \otimes e_{B\cdot i_p}\|\]

Неравенство

\[(8.2.7) \quad \|f(x) - f(x_1)\| \leq \epsilon k E\]

где k число слагаемых в сумме (8.2.4), является следствием (8.2.4), (8.2.6).

Из неравенства (8.2.7) следует, что норма $\|f(x) - f(x_1)\|$ может быть сделана сколь угодно малой при соответствующем выборе ϵ. Следовательно отображение f непрерывно.

Если мы предположим, что по крайней мере одно из отображений $f^{i_0 \ldots i_p}$ не является непрерывным, то из рассуждений в доказательстве следует, что отображение f не является непрерывным.

Теорема является следствием теоремы 8.2.2 так как стандартное представление тензора является частным случаем представления тензора.

Теорема 8.2.3. Пусть A, B - ассоциативные конечно мерные банаховы D-алгебры. Пусть $U \subseteq A$ - открытое множество. Отображение

\[(8.2.8) \quad f : U \to B^{\otimes p}\]

дифференцируемо тогда и только тогда, когда стандартные компоненты тензора $f(x)$ дифференцируемы. В этом случае

\[(8.2.9) \quad \frac{df(x)}{dx} \circ a = \left(\frac{df^{i_0 \ldots i_p}(x)}{dx} \circ a\right) e_{i_0} \otimes \ldots \otimes e_{i_p}\]

Доказательство. Теорема является следствием теорем 3.3.16, 2.4.2.

Теорема 8.2.4. Пусть A, B - ассоциативные конечно мерные банаховы D-алгебры. Пусть $U \subseteq A$ - открытое множество. Отображение

\[(8.2.10) \quad f : U \to B^{\otimes p}\]

dифференцируемо тогда и только тогда, когда мы можем представить отображение f в виде

\[f = f_{s, 0} \otimes \ldots \otimes f_{s, p}\]

где отображения

\[f_{s, i} : U \to B\]

8.2 Напомню, что отображение $\frac{df^{i_0 \ldots i_p}(x)}{dx} \circ a$ отображает A-число a в D-число $\frac{df^{i_0 \ldots i_p}(x)}{dx} \circ a$.

дифференцируемы. В этом случае

\[
\frac{df(x)}{dx} \circ a = \left(\frac{df_{0,s}(x)}{dx} \circ a \right) \circ f_{1,s} \otimes \ldots \otimes f_{p,s} \\
+ f_{0,s} \otimes \left(\frac{df_{1,s}(x)}{dx} \circ a \right) \otimes \ldots \otimes f_{p,s} + \ldots \\
+ f_{0,s} \otimes \ldots \otimes \left(\frac{df_{p,s}(x)}{dx} \circ a \right)
\]

(8.2.11)

Доказательство. Теорема является следствием теоремы 3.3.20. □

Теорема 8.2.5. Пусть \(A, B \) - ассоциативные конечно мерные банаховы \(D \)-алгебры. Пусть \(U \subseteq A \) - открытое множество. Форма \(\omega \in \Omega_p^{(n)}(U, B) \) тогда и только тогда, когда мы можем представить форму \(\omega \) в виде

\[
\omega = [(\omega_{s,0} \otimes \ldots \otimes \omega_{s,p}) \circ F_{[n]}]
\]

где \(\omega_{s,i} \in \Omega_0^{(n)}(U, B) \).

Доказательство. Согласно теоремам 3.2.19, 3.2.20, отображение

\[
(\omega_{s,0} \otimes \ldots \otimes \omega_{s,p}) \circ F_{[n]}
\]

непрерывно, если отображение

\[
(\omega_{s,0} \otimes \ldots \otimes \omega_{s,p})
\]

непрерывно. Утверждение теоремы для \(n = 0 \) является следствием теорем 7.4.6, 8.2.1.

Пусть теорема верна для \(n = k \). Пусть \(\omega \in \Omega_p^{(k+1)}(U, B) \). Следовательно \(\omega \in \Omega_p^{(k)}(U, B) \), и мы можем представить дифференциальную форму \(\omega \) в виде

\[
\omega = [(\omega_{s,0} \otimes \ldots \otimes \omega_{s,p}) \circ F_{[n]}]
\]

где \(\omega_{s,i} \in \Omega_0^{(k)}(U, B) \). Мы можем представить дифференциальную форму \(d^k \omega \in \Omega_p^{(1)}(U, B) \) в виде

\[
\omega = [(\omega_{t,0}^k \otimes \ldots \otimes \omega_{t,p}^k) \circ F_{[t]}]
\]

где

\[
\omega_{t,i}^k(x) = \frac{d^j \omega_{s,i}(x)}{dx^j}
\]

где индекс \(s \) зависит от индекса \(t \) и \(0 \leq j \leq k \). Согласно теореме 8.2.4, отображения \(\omega_{t,i}^k \) дифференцируемы и для любого индекса \(s \) существует индекс \(t \) такой, что

\[
\omega_{t,i}^k(x) = \frac{d^k \omega_{s,i}(x)}{dx^k}
\]

Следовательно, \(\omega_{s,i} \in \Omega_0^{(k+1)}(U, B) \). Мы доказали теорему для \(n = k + 1 \).

Следовательно, мы доказали теорему для любого значения \(n \). □
8.3. Дифференциальная 1-форма

Теорема 8.3.1. Пусть A, B - свободные бана́ховы́е D-алгебры. Пусть $U \subseteq A$ - открытое звёздное множество. Дифференциальная 1-форма $\omega \in \Omega_1(U, B)$ интегрируема тогда и только тогда, когда

$$d\omega(x) = 0$$

Доказательство. Если дифференциальная 1-форма ω интегрируема, то, согласно определению 7.5.2, существует отображения f такое, что

$$\omega(x) = df(x)$$

Согласно теореме 7.4.9,

$$d\omega(x) = d^2 f(x) = 0$$

В тоже время, если

$$d\omega(x) = 0$$

tо, согласно теореме 7.5.8, дифференциальная 1-форма ω интегрируема. □

Определение 8.3.2. Пусть A, B - свободные бана́ховы́е D-алгебры. Пусть $U \subseteq A$ - открытое множество. Пусть

$$\gamma : [a, b] \to U$$

путь класса C^1 в U. Интеграл дифференциальной 1-формы ω вдоль пути γ определён равенством

$$\int_\gamma \omega = \int_a^b dt \omega(\gamma(t)) \frac{d\gamma(t)}{dt}$$

□

Теорема 8.3.3. Пусть

$$a = t_0 < \ldots < t_i < \ldots < t_n = b$$

разбиение отрезка $[a, b]$. Пусть γ_i обозначает путь, соответствующий отрезку $[t_{i-1}, t_i], i = 1, \ldots, n$. Тогда

$$\int_\gamma \omega = \sum_{i=1}^n \int_{\gamma_i} \omega$$

Доказательство. Равенство (8.3.2) является следствием равенства

$$\int_\gamma \omega = \int_{t_0}^{t_2} dt \omega(\gamma(t)) \frac{d\gamma(t)}{dt}$$

$$= \int_{t_0}^{t_2} dt \omega(\gamma(t)) \frac{d\gamma(t)}{dt} + \int_{t_1}^{t_2} dt \omega(\gamma(t)) \frac{d\gamma(t)}{dt}$$

$$= \int_{\gamma_1} \omega + \int_{\gamma_2} \omega$$

и индукции по числу слагаемых. □

Теорема 8.3.4. Пусть A, B - свободные бана́ховы́е D-алгебры. Пусть $U \subseteq A$ - открытое множество. Пусть

$$\gamma : [a, b] \to U$$
пусть класса C^1 в U. Пусть $f : A \to B$ дифференцируемое отображение. Тогда

\[(8.3.3) \quad \int_\gamma df = f(g(b)) - f(g(a))\]

Доказательство. Теорема является следствием теоремы 6.2.1. □

Теорема 8.3.5. Пусть A, B - свободные банаовы D-алгебры. Пусть $U \subseteq A$ - открытое множество. Пусть $f : A \to B$ дифференцируемое отображение. Интеграл \(\int_\gamma df(x)\) зависит только от начала $\gamma(a)$ и конца $\gamma(b)$ кусочно гладкого пути γ.

Доказательство. Теорема является следствием теорем 8.3.3, 8.3.4. □

Теорема 8.3.6. Пусть A, B - свободные банаовы D-алгебры. Пусть $U \subseteq A$ - открытое связное множество. Следующие свойства дифференциальной формы $\omega \in \Omega^n_1(U, B)$ эквивалентны

8.3.6.1: ω интегрируемо в U

8.3.6.2: $\int_\gamma \omega = 0$ для любого кусочно гладкого цикла γ в U класса C^1

Доказательство. Утверждение 8.3.6.2 является следствием утверждения 8.3.6.1 согласно теоремам 8.3.3, 8.3.5.

Пусть утверждение 8.3.6.2 верно. Пусть $x_0, x \in U$. Так как множество U связно, то существуют кусочно гладкий путь $\gamma_1 : [a, b] \subset R \to U \quad \gamma_1(a) = x_0 \quad \gamma_1(b) = x$

и кусочно гладкий путь $\gamma_2 : [b, c] \subset R \to U \quad \gamma_2(b) = x \quad \gamma_2(c) = x_0$

Кусочно гладкий путь $\gamma : [a, c] \subset R \to U$

определённый равенством

$\gamma(x) = \begin{cases}
\gamma_1(x) & x \in [a, b] \\
\gamma_2(x) & x \in [b, c]
\end{cases}$

является циклом. Согласно утверждению 8.3.6.2

\[(8.3.4) \quad \int_\gamma \omega = 0\]

Согласно теореме 8.3.3,

\[(8.3.5) \quad \int_\gamma \omega = \int_{\gamma_1} \omega + \int_{\gamma_2} \omega\]

\[8.3\] Смотри также теорему [31]-3.4.1 на странице 43.
Из равенств (8.3.4), (8.3.5) следует, что интеграл
\[\int_{\gamma_1} \omega = - \int_{\gamma_2} \omega \]
не зависит от пути. Положим
(8.3.6)
\[f(x) = \int_{\gamma_1} \omega \]
Так как множество \(U \) открыто, то существует \(\eta_1 > 0 \) такое, что линейный путь
(8.3.7)
\[\gamma : t \in [0, 1] \subset \mathbb{R} \to x + th \in A \]
содержится в \(U \), если \(\| h \| < \eta_1 \). Согласно теореме 8.3.3, равенство
(8.3.8)
\[f(x + h) = f(x) + \int_x^{x+h} \omega \]
является следствием равенства (8.3.6). Равенство
(8.3.9)
\[f(x + h) - f(x) = \int_0^1 dt \omega(x + th) \circ h \]
является следствием равенств (8.3.7), (8.3.8). Равенство
(8.3.10)
\[f(x + h) - f(x) - \omega(x) \circ h = \int_0^1 dt (\omega(x + th) \circ h - \omega(x) \circ h) \]
является следствием равенства (8.3.9).
Поскольку отображение
\[\omega : U \to \mathcal{L}(D; A \to B) \]
непрерывно, то для любого \(\epsilon > 0 \) существует \(\eta, 0 < \eta < \eta_1 \), такое что
(8.3.11)
\[\| \omega(x + th) - \omega(x) \| < \epsilon \quad \| h \| < \eta \quad t \in [0, 1] \]
Утверждение
(8.3.12)
\[\| \omega(x + th) \circ h - \omega(x) \circ h \| < \epsilon \| h \| < \eta \quad t \in [0, 1] \]
является следствием утверждения (8.3.11). Утверждение
(8.3.13)
\[\| f(x + h) - f(x) - \omega(x) \circ h \| \leq \epsilon \| h \| \]
является следствием утверждения (8.3.12) и равенства (8.3.10). Утверждение
(8.3.14)
\[\| f(x + h) - f(x) - \omega(x) \circ h \| = o(h) \]
является следствием утверждения (8.3.13). Из утверждения (8.3.14) и определения 3.3.1 следует, что дифференциальная форма \(\omega \) является производной отображения \(f \). Следовательно, утверждение 8.3.6.1 является следствием утверждения 8.3.6.2.

ОПРЕДЕЛЕНИЕ 8.3.7. Пусть \(A, B \) - свободные бана́ховы́е \(D \)-алгебры. Пусть \(U \subseteq A \) - открытое связное множество. Пусть дифференциальная форма \(\omega \in \Omega_1^{(n)}(U, B) \) интегрируема. Для любых \(A \)-чисел \(a, b \), мы определим \textit{определённый интеграл} с помощью равенства
\[\int_a^b \omega = \int_{\gamma} \omega \]
для любого пути γ из a в b. □

8.4. Комплексное поле

Мы можем рассматривать поле комплексных чисел либо как C-алгебру, либо как R-алгебру.

- C-векторное пространство $L(C; C \to C)$ порождено отображением $I_0 = E$. Если производная отображения f поля комплексных чисел принадлежит множеству CE, то отображение f называется голоморфным. Согласно теоремам 2.7.6, 2.7.7, голоморфное отображение удовлетворяет дифференциальному уравнению (уравнения Коши-Римана)

$$\frac{\partial f^1}{\partial x^0} = -\frac{\partial f^0}{\partial x^1},$$

(8.4.1)

$$\frac{\partial f^0}{\partial x^0} = \frac{\partial f^1}{\partial x^1}.$$

Согласно теореме 2.7.3, C-векторное пространство $L(R; C \to C)$ имеет базис, состоящий из тождественного отображения E и сопряжения I. Если производная отображения f поля комплексных чисел принадлежит множеству CI, то отображение f называется сопряжённо голоморфным. Согласно теоремам 2.7.6, 2.7.8, сопряжённо голоморфное отображение удовлетворяет дифференциальному уравнению

$$\frac{\partial f^1}{\partial x^0} = \frac{\partial f^0}{\partial x^1},$$

(8.4.2)

$$\frac{\partial f^0}{\partial x^0} = -\frac{\partial f^1}{\partial x^1}.$$

В этом разделе мы рассмотрим как это сказывается на производной отображения

$$f : C \to C$$

Пример 8.4.1. Рассмотрим производную отображения

$$y = (x^*)^n$$

(8.4.3)

Равенство

$$((x + h_1^*)^n - (x^*)^n = (x^* + h_1^* - h_1^*)^n = (x^*)^n - n(x^*)^{n-1}h_1^* + o(h_1) - (x^*)^n = n(x^*)^{n-1}h_1^* + o(h_1)$$

является следствием равенства (8.4.3). Согласно определению 3.3.1, равенство

$$\frac{d(x^*)^n}{dx} = n(x^*)^{n-1}$$

является следствием равенства (8.4.4). Следовательно, ряд Тейлора для отображения (8.4.3) имеет следующий вид

$$y = \frac{1}{n!}n!(I \circ x)^n = (I \circ x)^n$$

□
Теперь мы готовы рассмотреть более сложный пример.

Пример 8.4.2. Рассмотрим производную отображения

(8.4.6) \[y = x(x^*)^2 \]

Равенство

\[
(x + h_1)((x + h_1)^*)^2 - x(x^*)^2 \\
= (x + h_1)(x^* + h_1^*)^2 - x(x^*)^2 \\
= (x + h_1)((x^*)^2 + 2x^*h_1^* + o(h_1)) - x(x^*)^2 \\
= (x + h_1)(x^*)^2 + 2(x + h_1)x^*h_1^* + o(h_1) - x(x^*)^2 \\
= x(x^*)^2 + h_1(x^*)^2 + 2xx^*h_1^* + o(h_1) - x(x^*)^2 \\
= (x^*)^2h_1 + 2xx^*h_1^* + o(h_1)
\]

является следствием равенства (8.4.6). Согласно определению 3.3.1, равенство

(8.4.7) \[\frac{dx(x^*)^2}{dx} = (x^*)^2E + 2xx^*I \]

является следствием равенства (8.4.7). Равенство

\[
((x + h_2)^*)(x + h_2)^2h_1 + 2(x + h_2)(x + h_2)^*h_1^* - (x^*)^2h_1 - 2xx^*h_1^* \\
= (x^* + h_2^*)^2h_1 + 2(x + h_2)(x^* + h_2^*)h_1^* - (x^*)^2h_1 - 2xx^*h_1^* \\
= ((x^*)^2 + 2x^*h_2^* + o(h_2))h_1 + 2((x + h_2)x^* + (x + h_2)^*h_1^* - (x^*)^2h_1 - 2xx^*h_1^* \\
= (x^*)^2h_1 + 2x^*h_1^*h_2 + o(h_2) + 2(xx^* + x^*h_2 + xh_1^* + o(h_2))h_1^* \\
= (x^*)^2h_1 - 2xx^*h_1^* \\
= 2x^*h_1h_2 + o(h_2) + 2xx^*h_1^* + 2x^*h_1^*h_2 \\
+ 2xh_1^*h_2^* - 2xx^*h_1^* \\
= 2x^*h_1h_2^* + 2x^*h_1^*h_2 + 2xh_1^*h_2^* + o(h_2)
\]

является следствием равенства (8.4.8). Согласно определению 4.1.1, равенство

(8.4.9) \[\frac{d^2x(x^*)^2}{dx^2} = 2x^*(E, I) + 2x^*(I, E) + 2x(I, I) \]

является следствием равенства (8.4.9). Равенство

(8.4.10) \[\frac{d^3x(x^*)^2}{dx^3} = 2(E, I, I) + 2(I, E, I) + 2(I, I, E) \]

\[\text{Когда я увидел симметрию в равенстве (8.4.10), это для меня было неожиданно.} \]

Первоначальным замыслом этого примера было ожидание дифференциальной формы подобной дифференциальной форме \(\omega(x) = 3 \, dx \, x^2 \), рассмотренной в замечании 5.1.6. Но потом я понял, что равенство (8.4.10) является следствием теоремы 7.4.9.
является следствием определения 4.1.4 и теоремы В.1.5. Следовательно, ряд Тейлора для отображения (8.4.6) имеет следующий вид

\[y = \frac{1}{6}2((E \circ x)(I \circ x))^2 + (I \circ x)(E \circ x)(I \circ x) + (I \circ x)^2(E \circ x) \]

\[= (E \circ x)(I \circ x)^2 \]

Немедленно возникает следующий вопрос. Если верно равенство \(\frac{dx^*}{dx} \circ h = h^* \), то какое отношение это имеет к теории функций комплексного переменного ([22])? Ответ на этот вопрос прост. Теория функций комплексного переменного рассматривает \(C \)-векторное пространство \(L(C; C \to C) \). В этом случае не существует линейного отображения, аппроксимирующего отображение \(y = x^* \). Это утверждение выражено равенством

\[\frac{dx^*}{dx} = 0 \]

которое означает независимость \(x \) и \(x^* \).

Поскольку \(C \)-векторное пространство \(C \) одномерно, то не существует ко- со симметричного полилинейного отображения \(f \in LA(C; C^2 \to C) \). Однако \(R \)-векторное пространство \(C \) имеет размерность 2. Поэтому существует косо симметричное полилинейное отображение \(f \in LA(R; C^2 \to C) \).

Например, отображение

(8.4.12) \(f(a_1, a_2) = a_1^0 a_2^0 - a_1^1 a_2^1 \)

является косо симметричным полилинейным отображением. Поскольку

\[a_1^0 = \frac{1}{2}(a_1 + I \circ a_1) \quad a_1^1 = \frac{1}{2}(a_1 - I \circ a_1) \]

\[a_2^0 = \frac{1}{2}(a_2 + I \circ a_2) \quad a_2^1 = \frac{1}{2}(a_2 - I \circ a_2) \]

где

\(I \circ a = a^* \)

отображение сопряжения, то равенство

(8.4.13) \[f(a_1, a_2) = \frac{1}{4}(a_1 + I \circ a_1)(a_2 - I \circ a_2) - \frac{1}{4}(a_1 - I \circ a_1)(a_2 + I \circ a_2) \]

является следствием равенства (8.4.12). Мы можем записать полилинейное отображение в примере (8.4.13) в виде

\[f \circ (a_1, a_2) = (1 \otimes 1 \otimes 1) \circ (I, E) \circ (a_1, a_2) - (1 \otimes 1 \otimes 1) \circ (I, E) \circ (a_2, a_1) \]
8.4. Комплексное поле

Теорема 8.4.3. Если отображение поля комплексных чисел

\[f : C \to C \]

рассматривать как функцию переменных \(x^0, x^1, x = x^0 + x^1i \), то

\[
\frac{df(x)}{dx} = \frac{1}{2} \left(\frac{\partial f}{\partial x^0} - i \frac{\partial f}{\partial x^1} \right) E + \frac{1}{2} \left(\frac{\partial f}{\partial x^0} + i \frac{\partial f}{\partial x^1} \right) I
\]

Доказательство. Согласно теореме 2.7.3, производная отображения \(f \) имеет вид

\[
\frac{df(x)}{dx} \circ c_1 = a_0(x) \circ E \circ c_1 + a_1(x) \circ I \circ c_1
\]

где

\[
\begin{pmatrix}
 a_0 \\
 a_1
\end{pmatrix} = \begin{pmatrix}
 a_0^0 & a_1^0 \\
 a_0^1 & a_1^1
\end{pmatrix} \begin{pmatrix} 1 \\ i \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix}
 \frac{\partial f^0}{\partial x^0} & \frac{\partial f^1}{\partial x^0} \\
 \frac{\partial f^0}{\partial x^1} & \frac{\partial f^1}{\partial x^1}
\end{pmatrix} \begin{pmatrix} 1 \\ i \end{pmatrix}
\]

(8.4.16)

Равенство (8.4.14) является следствием равенств (8.4.15), (8.4.16). □

Согласно теореме 2.7.3, дифференциальная 1-форма \(\omega(x) \in \mathcal{L}A(R; C^2 \to C) \) имеет вид

\[\omega(x) = a(x) \circ E + b(x) \circ I \]

где \(a, b \) - комплексно значные отображения. Для любого \(C \)-числа \(c_1 \)

\[\omega(x) \circ c_1 = a(x) \circ E \circ c_1 + b(x) \circ I \circ c_1 = a(x)c_1 + b(x)c_1^* \]

Теорема 8.4.4. Дифференциальная форма

(8.4.17) \[\omega(x) = a(x) \circ E + b(x) \circ I \]

интегрируема тогда и только тогда, когда

(8.4.18) \[\frac{\partial a}{\partial x^0} + i \frac{\partial a}{\partial x^1} = \frac{\partial b}{\partial x^0} + i \frac{\partial b}{\partial x^1} = 0 \]

Доказательство. Производная дифференциальной формы (8.4.17) имеет вид

(8.4.19) \[\frac{d\omega(x) \circ c_1}{dx} = \frac{da(x)}{dx} c_1 + \frac{db(x)}{dx} c_1^* \]
Согласно теореме 8.4.3,

\[
\frac{da(x)}{dx} = \frac{1}{2} \left(\frac{\partial a}{\partial x^0} - i \frac{\partial a}{\partial x^1} \right) E + \frac{1}{2} \left(\frac{\partial a}{\partial x^0} + i \frac{\partial a}{\partial x^1} \right) I \\
\frac{db(x)}{dx} = \frac{1}{2} \left(\frac{\partial b}{\partial x^0} - i \frac{\partial b}{\partial x^1} \right) E + \frac{1}{2} \left(\frac{\partial b}{\partial x^0} + i \frac{\partial b}{\partial x^1} \right) I
\]

(8.4.20)

Равенство

\[
\frac{d\omega(x) \circ c_1}{dx} \circ c_2 = \left(\frac{da(x)}{dx} \circ c_2 \right) c_1 + \left(\frac{db(x)}{dx} \circ c_2 \right) c_1^*
\]

(8.4.21)

является следствием равенств (8.4.19), (8.4.21). Внешний дифференциал дифференциальной формы \(\omega \) имеет вид

\[
d\omega(x) \circ (c_1, c_2) = \frac{1}{2} \left(\frac{\partial a}{\partial x^0} + i \frac{\partial a}{\partial x^1} \right) (c_1^* c_2 - c_1 c_2^*) + \frac{1}{2} \left(\frac{\partial b}{\partial x^0} - i \frac{\partial b}{\partial x^1} \right) (c_1^* c_2 - c_1 c_2^*)
\]

(8.4.22)

Согласно теореме 7.5.8, равенство (8.4.18) является следствием равенства (8.4.22).

Пусть

\[
f = \int \omega
\]

Мы имеем два различных случая.

- Если равенство

\[
\frac{\partial a}{\partial x^0} + i \frac{\partial a}{\partial x^1} = 0 \quad - \frac{\partial b}{\partial x^0} + i \frac{\partial b}{\partial x^1} = 0
\]

верно, то мы можем представить отображение \(f \) как сумму голоморфного отображения и сопряжённо голоморфного отображения.

- Если равенство (8.4.23) не верно, то мы не можем представить отображение \(f \) как сумму голоморфного отображения и сопряжённо голоморфного отображения. В разделе A.3, мы рассматриваем такую форму.
Я поместил в этом приложении расчёты, которые необходимы для формирования некоторых утверждений. Но я не хотел, чтобы эти расчёты заслоняли основную логику текста.

A.1. Расчёты для оценки интеграла (6.3.9)

Упростим подынтегральное выражение интеграла (6.3.9)

\[
(a + t(x - a))^2(x - a) + (a + t(x - a))(x - a)(a + t(x - a))
\]

+ (x - a)(a + t(x - a))^2

\[
= (a^2 + ta(x - a) + t(x - a)a + t^2(x - a)^2)(x - a) + (a(x - a)
\]

+ t(x - a)^2(a + t(x - a))

\[
+ (x - a)(a^2 + ta(x - a) + t(x - a)a + t^2(x - a)^2)
\]

= (a^2 + t(ax - a^2 + xa - a^2) + t^2(x^2 - xa - ax + a^2))(x - a)

+ (ax - a^2)(a + t(x - a)) + t(x^2 - xa - ax + a^2)(a + t(x - a))

+ (x - a)(a^2 + t(ax - a^2 + xa - a^2) + t^2(x^2 - xa - ax + a^2))

Равенство

\[
(a + t(x - a))^2(x - a) + (a + t(x - a))(x - a)(a + t(x - a))
\]

+ (x - a)(a + t(x - a))^2

\[
= a^2(x - a) + t(ax - a^2 + xa - a^2)(x - a)
\]

+ t^2(x^2 - xa - ax + a^2)(x - a) + (ax - a^2)a

+ t(ax - a^2)(x - a) + t(x^2(a + t(x - a)) - xa(a + t(x - a))

- ax(a + t(x - a)) + a^2(a + t(x - a)) + (x - a)a^2

+ t(x - a)(ax - a^2 + xa - a^2) + t^2(x - a)(x^2 - xa - ax + a^2)

\]

(A.1.1)

(A.1.2)
является следствием равенства (A.1.1). Равенство

\[(a + t(x - a))^2(x - a) + (a + t(x - a))(x - a)(a + t(x - a))
+ (x - a)(a + t(x - a))^2
= a^2x - a^3 + t(ax(x - a) - a^2(x - a) + xa(x - a) - a^2(x - a))
+ t^2(ax - xa(x - a) - ax(x - a) + a^2(x - a)) \]

(A.1.3)

является следствием равенства (A.1.2). Равенство

\[(a + t(x - a))^2(x - a) + (a + t(x - a))(x - a)(a + t(x - a))
+ (x - a)(a + t(x - a))^2
= a^2x - a^3 + t(ax^2 - axa - a^2x + a^3 + xax - xa^2 - a^2x + a^3)
+ t^2(x^3 - x^2a - xax + xa^2 - axa^2 + axa + a^2x - a^3)
+ t(ax - xa) - t(ax^2 - axa) + a^3 + t(a^2x - a^3))
+ xa^2 - a^3 + t(xax - a^2x - xa^2 + a^3 + x^2a - axa - xa^2 + a^3)
+ t^2(x^3 - ax^2 - xxa + axa - xax + a^2x + xa^2 - a^3) \]

является следствием равенства (A.1.3). Равенство

\[(a + t(x - a))^2(x - a) + (a + t(x - a))(x - a)(a + t(x - a))
+ (x - a)(a + t(x - a))^2
= a^2x - a^3 + xax - a^3 + axa - a^3
+ t(ax^2 - axa - a^2x + a^3 + xax - xa^2 - a^2x + a^3)
+ t(ax^2 - axa - a^2x + a^3 + x^2a - xa^2 - axa + a^3)
+ t^2(x^3 - x^2a - xax + xa^2 - ax^2 + axa + a^2x - a^3)
+ t^2(x^3 - ax^2 - x^2a + axa - xax + a^2x + xa^2 - a^3) \]

является следствием равенства (A.1.4). Равенство

\[(a + t(x - a))^2(x - a) + (a + t(x - a))(x - a)(a + t(x - a))
+ (x - a)(a + t(x - a))^2
= xa^2 + axa + a^2x - 3a^3
+ t(2ax^2 + 2xa^2 - 4xa^2 - 4axa - 4a^2x + 6a^3)
+ t^2(3x^3 - 3x^2a - 3xa^2 + 3xa^2 - 3ax^2 + 3axa + 3a^2x - 3a^3) \]
является следствием равенства (A.1.5).

A.2. Расчёты для оценки интеграла (6.3.11)

Упростим подынтегральное выражение интеграла (6.3.11)

\[
(x - a)(a + t(x - a))^2 \\
= (x - a)(a^2 + at(x - a) + t(x - a)a + t^2(x - a)^2) \\
= (x - a)a^2 + (x - a)at(x - a) \\
+ (x - a)t(x - a)a + (x - a)t^2(x - a)^2 \\
= (x - a)a^2 + t((x - a)a(x - a) + (x - a)(x - a)a) \\
+ t^2(x - a)(x^2 - ax - xa + a^2)
\]

равенство

\[
(x - a)(a + t(x - a))^2 \\
= (xa^2 - a^3 + t((x - a)(ax - a^2) + (x - a)(xa - a^2)) \\
+ t^2(x^3 - xaax - x^2a + xa^2 - ax^2 + axa - a^3) \\
= xa^2 - a^3 + t((x - a)ax - (x - a)a^2 + (x - a)xa - (x - a)a^2) \\
+ t^2(x^3 - xaax - x^2a + xa^2 - ax^2 + axa - a^3)
\]

является следствием равенства (A.2.1). Равенство

\[
(x - a)(a + t(x - a))^2 \\
= xa^2 - a^3 + t((x - a)(ax - a^2x - xa^2 + a^3 + x^2a - axa - xa^2 + a^3)) \\
+ t^2(x^3 - xaax - ax^2 + xa^2 + axa + a^2x - a^3) \\
= xa^2 - a^3 + t(x^2a + xaax - 2xa^2 - a^2x - axa + 2a^3) \\
+ t^2(x^3 - xaax - ax^2 + xa^2 + axa + a^2x - a^3)
\]

является следствием равенства (A.2.2).

A.3. Пример дифференциальной формы

Согласно теореме 8.4.4, дифференциальная форма

\[
\omega(x) = a(x) \circ E + b(x) \circ I
\]

интегрируема тогда и только тогда, когда

\[
\frac{\partial a}{\partial x^0} + i \frac{\partial a}{\partial x^1} - \frac{\partial b}{\partial x^0} + i \frac{\partial b}{\partial x^1} = 0
\]

Положим

\[
a = 3(x^0)^2 + 6x^0 x^1 i
\]

равенство

\[
\frac{\partial a}{\partial x^0} = 6x^0 + 6x^1 i \\
\frac{\partial a}{\partial x^1} = 6x^0 i
\]
является следствием равенства (A.3.3). Равенство
(A.3.5) \[
\frac{\partial a}{\partial x^0} + i \frac{\partial a}{\partial x^1} = 6x^0 + 6x^1 i - 6x^0 = 6x^1 i
\]
является следствием равенства (A.3.4). Равенство
(A.3.6) \[
6x^1 i - \frac{\partial b}{\partial x^0} + i \frac{\partial b}{\partial x^1} = 0
\]
является следствием равенств (A.3.2), (A.3.5). Положим
(A.3.7) \[
\frac{\partial b}{\partial x^0} = 0
\]
Уравнение
(A.3.8) \[
\frac{\partial b}{\partial x^1} = -6x^1
\]
является следствием равенств (A.3.6), (A.3.7). Равенство
(A.3.9) \[
b = -3(x^1)^2
\]
является следствием уравнения (A.3.8). Равенство
(A.3.10) \[
\omega(x) = (3(x^0)^2 + 6x^0 x^1 i) \circ E + (-3(x^1)^2) \circ I
\]
является следствием равенств (A.3.1), (A.3.3), (A.3.9).

Пусть отображение
\[
f : C \to C
\]
является интегралом дифференциальной формы (A.3.10)
\[
f = \int \omega
\]
Уравнения
(A.3.11) \[
\frac{1}{2} \left(\frac{\partial f}{\partial x^0} - i \frac{\partial f}{\partial x^1} \right) = 3(x^0)^2 + 6x^0 x^1 i
\]
(A.3.12) \[
\frac{1}{2} \left(\frac{\partial f}{\partial x^0} + i \frac{\partial f}{\partial x^1} \right) = -3(x^1)^2
\]
являются следствием равенств (8.4.14), (A.3.10). Уравнения
(A.3.13) \[
\frac{\partial f}{\partial x^0} = 3(x^0)^2 - 3(x^1)^2 + 6x^0 x^1 i
\]
\[
i \frac{\partial f}{\partial x^1} = -3(x^0)^2 - 3(x^1)^2 - 6x^0 x^1 i
\]
(A.3.14) \[
\frac{\partial f}{\partial x^1} = -6x^0 x^1 + 3(x^0)^2 i + 3(x^1)^2 i
\]
являются следствием уравнений (A.3.11), (A.3.12). Равенство
(A.3.15) \[
f(x) = (x^0)^3 - 3x^0 (x^1)^2 + 3(x^0)^2 x^1 i + C_1 (x^1)
\]
является следствием уравнения (A.3.13). Уравнение
(A.3.16) \[
\frac{\partial f}{\partial x^1} = -6x^0 x^1 + 3(x^0)^2 i + 3(x^1)^2 i = -6x^0 x^1 + 3(x^0)^2 i + \frac{dC_1}{dx^1}
\]
является следствием равенств (A.3.14), (A.3.15). Равенство
(A.3.17) \[C_1(x^1) = (x^1)^3i + C \]
является следствием уравнения (A.3.16). Равенство
\[f(x) = (x^0)^3 + 3(x^0)^2x^1i - 3x^0(x^1)^2 + (x^1)^3i + C \]
\[= x^3 - \frac{1}{8}(x - x^*)^3 + C \]
являются следствием равенств (A.3.15), (A.3.17).
Приложение B

Сводка теорем

Пусть D - полное коммутативное кольцо характеристики 0.

B.1. Таблица производных

Теорема B.1.1. Для любого $b \in A$

$$\frac{db}{dx} = 0$$

Доказательство. Непосредственное следствие определения 3.3.1. □

Теорема B.1.2.

$\frac{dx}{dx} \circ dx = dx \quad \frac{dx}{dx} = 1 \otimes 1$

Доказательство. Согласно определению (3.3.2)

$\frac{dx}{dx} \circ dx = \lim_{t \to 0, t \in R} (t^{-1}(x + tdx - x)) = dx$

Равенство (B.1.1) является следствием (B.1.2). □

Теорема B.1.3. Для любых $b, c \in A$

$$\frac{dbf(x)c}{dx} = (b \otimes c) \circ \frac{df(x)}{dx}$$
$$\frac{dbf(x)c}{dx} \circ dx = b \left(\frac{df(x)}{dx} \circ dx \right) c$$
$$\frac{dx \circ bf(x)c}{dx} = b \frac{dx \circ f(x)}{dx}$$
$$\frac{dx \circ bf(x)c}{dx} = d_{x,1} \frac{f(x)}{dx} c$$

Доказательство. Непосредственное следствие равенств (3.3.25), (3.3.29), и теоремы B.1.1. □

Теорема B.1.4. Пусть

$$f : A \to B$$
$$g : A \to B$$

отображения банахова D-модуля A в ассоциативную банахову D-алгебру B.

Если производные $\frac{df(x)}{dx}$, $\frac{dg(x)}{dx}$ существуют, то существует производная
\[d(f(x) + g(x)) \]

(B.1.4) \[\frac{d(f(x) + g(x))}{dx} \circ dx = \frac{df}{dx} \circ dx + \frac{dg}{dx} \circ dx \]

(B.1.5) \[\frac{d(f(x) + g(x))}{dx} = \frac{df}{dx} + \frac{dg}{dx} \]

Если

(B.1.6) \[df(x) \circ dx = \lim_{t \rightarrow 0, t \in R} (t^{-1}(f(x + tdx) - f(x))) \]

(B.1.7) \[dg(x) \circ dx = \lim_{t \rightarrow 0, t \in R} (t^{-1}(g(x + tdx) - g(x))) \]

Согласно определению (3.3.2)

(B.1.8) \[\frac{d(f(x) + g(x))}{dx} = \frac{df}{dx} \circ dx \otimes \frac{dg}{dx} \circ dx = \frac{df}{dx} \otimes \frac{dg}{dx} \]

Доказательство. Если производные \[\frac{df}{dx}, \frac{dg}{dx} \] существуют, то согласно определению (3.3.2)

(B.1.9) \[\frac{df}{dx} \circ dx = \lim_{t \rightarrow 0, t \in R} (t^{-1}(f(x + tdx) - f(x))) \]

(B.1.10) \[\frac{dg}{dx} \circ dx = \lim_{t \rightarrow 0, t \in R} (t^{-1}(g(x + tdx) - g(x))) \]

Согласно определению (3.3.2)

(B.1.11) \[\frac{d(f(x) + g(x))}{dx} \circ dx = \lim_{t \rightarrow 0, t \in R} (t^{-1}(f(x + tdx) + g(x + tdx) - f(x) - g(x))) \]

Равенство (B.1.4) является следствием (B.1.9), (B.1.10), (B.1.11). Равенство (B.1.5) является следствием (2.4.11), (B.1.4). Равенство (B.1.8) является следствием (B.1.6), (B.1.7), (B.1.5).

ДОКАЗАТЕЛЬСТВО. Следствие теорем B.1.2, B.1.3, когда \(f(x) = x \). □

Теорема B.1.5. Для любых \(b, c \in A \)

(B.1.12) \[\begin{cases} \frac{dbxc}{dx} = b \otimes c & \frac{dbxc}{dx} \circ dx = b \, dx \, c \\ \frac{d_{1,0}bxc}{dx} = b & \frac{d_{1,1}bxc}{dx} = c \end{cases} \]

ДОКАЗАТЕЛЬСТВО. Следствие теорем B.1.2, B.1.3, когда \(f(x) = x \). □

Теорема B.1.6. Пусть \(f \) - линейное отображение

\[f \circ x = (a_{s,0} \otimes a_{s,1}) \circ x = a_{s,0} \, x \, a_{s,1} \]
Тогда

\[
\frac{\partial f \circ x}{\partial x} = f
\]

\[
\frac{\partial f \circ x}{\partial x} \circ dx = f \circ dx
\]

доказательство. Следствие теорем \(B.1.4, B.1.5, 3.3.13 \). □

Следствие \(B.1.7 \).
Для любого \(b \in A \)

\[
\begin{align*}
\frac{d(xb - bx)}{dx} &= 1 \otimes b - b \otimes 1 \\
\frac{d(xb - bx)}{dx} \circ dx &= dx b - b dx \\
\frac{d_{1,0}(xb - bx)}{dx} &= 1 \\
\frac{d_{1,1}(xb - bx)}{dx} &= b \\
\frac{d_{2,0}(xb - bx)}{dx} &= -b \\
\frac{d_{2,1}(xb - bx)}{dx} &= 1
\end{align*}
\]

□

Соглашение \(B.1.8 \).
Для \(n \geq 0 \), пусть \(SO(k, n) \) - множество перестановок

\[
\sigma = \begin{pmatrix}
y_1 & \ldots & y_k & x_{k+1} & \ldots & x_n \\
\sigma(y_1) & \ldots & \sigma(y_k) & \sigma(x_{k+1}) & \ldots & \sigma(x_n)
\end{pmatrix}
\]

таких, что каждая перестановка \(\sigma \) сохраняет порядок переменных \(x_i \): если \(i < j \), то в карте

\[(\sigma(y_1), \ldots, \sigma(y_k), \sigma(x_{k+1}), \ldots, \sigma(x_n))
\]

\(x_i \) предшествует \(x_j \). □

Лемма \(B.1.9 \). Множество перестановок \(S(1, n) \) мы можем пронумеровать индексом \(i \), \(1 \leq i \leq n \), таким образом, что

\begin{itemize}
 \item B.1.9.1: \(\sigma_1(y) = y \).
 \item B.1.9.2: Если \(i > 1 \), то \(\sigma_i(x_1) = y \).
\end{itemize}

Доказательство. Так как порядок переменных \(x_2, \ldots, x_n \) в перестановке \(\sigma \in S(1, n) \) не зависит от перестановки, перестановки \(\sigma \in S(1, n) \) отличаются местом, которое занимает переменная \(y \). Соответственно, мы можем пронумеровать множество перестановок \(S(1, n) \) индексом, значение которого соответствует номеру позиции переменной \(y \). □

Лемма \(B.1.9 \) имеет простую интерпретацию. Предположим, что \(n - 1 \) белых шаров и один чёрный лежат в пенале. Чёрный шар - самый левый, и белые шары пронумерованы от 2 до \(n \) в том порядке, как они лежат в пенале. Суть перестановки \(\sigma_k \) состоит в том, что мы вынимаем чёрный шар из пенала и затем мы ложим его в ячейку с номером \(k \). При этом, белые шары с номером, не превышающим \(k \), сдвигаются влево.

Лемма \(B.1.10 \). Для \(n > 0 \), пусть

(B.1.13) \(S^+(1, n) = \{ \sigma : \sigma = (\tau(y), \tau(x_2), \ldots, \tau(x_n), x_{n+1}), \tau \in S(1, n) \} \)

Тогда

(B.1.14) \(S(1, n + 1) = S^+(1, n) \cup \{(x_2, \ldots, x_{n+1}, y)\} \)
ДОКАЗАТЕЛЬСТВО. Пусть $\sigma \in S^+(1,n)$. Согласно определению (B.1.13), существует перестановка $\tau \in S(1,n)$ такая, что

$$(\sigma(y), \sigma(x_1), ..., \sigma(x_{n+1})) = (\tau(y), \tau(x_2), ..., \tau(x_n), x_{n+1})$$

Согласно соглашению B.1.8, из утверждения $i < j < n + 1$ следует, что в кортеже

$$(\sigma(y), \sigma(x_1), ..., \sigma(x_{n+1})) = (\tau(y), \tau(x_2), ..., \tau(x_n), x_{n+1})$$

переменная x_j расположена между переменными x_i и x_{n+1}. Согласно соглашению B.1.8, $\sigma \in S(1,n+1)$. Следовательно

(B.1.15)

$S^+(1,n) \subseteq S(1,n+1)$

Согласно лемме B.1.9, множество $S^+(1,n)$ имеет n перестановок.

Пусть $\sigma = (x_2, ..., x_{n+1}, y)$. Согласно соглашению B.1.8,

(B.1.16)

$(x_2, ..., x_{n+1}, y) \in S(1,n+1)$

Согласно определению (B.1.13), $\sigma \notin S^+(1,n)$.

Следовательно, мы перечислили $n + 1$ элемент множества $S(1,n+1)$. Согласно лемме B.1.9, утверждение (B.1.14) является следствием утверждений (B.1.15), (B.1.16).

Теорема B.1.11. Для произвольного одночлена

$p_n(x) = (a_0 \otimes ... \otimes a_n) \circ x^n$

производная имеет вид

$$\frac{dp_n(x)}{dx} \circ dx = \sum_{\sigma \in S(1,n)} (a_0 \otimes ... \otimes a_n) \circ (\sigma(dx), \sigma(x_2), ..., \sigma(x_n))$$

(B.1.17)

$x_2 = ... = x_n = x$

ДОКАЗАТЕЛЬСТВО. Для $n = 1$, отображение

$p_1(x) = (a_0 \otimes a_1) \circ x = a_0 x a_1$

является линейным отображением. Согласно теореме B.1.5 и соглашению B.1.8

(B.1.18)

$$\frac{dp_1(x)}{dx} \circ dx = a_0 dx a_1 = (a_0 \otimes a_1) \circ dx = \sum_{\sigma \in S(1,1)} (a_0 \otimes a_1) \circ \sigma(dx)$$

Пусть утверждение справедливо для $n - 1$

(B.1.19)

$$\frac{dp_{n-1}(x)}{dx} \circ dx = \sum_{\sigma \in S(1,n-1)} (a_0 \otimes ... \otimes a_{n-1}) \circ \sigma(dx, x_2, ..., x_{n-1})$$

$x_2 = ... = x_{n-1} = x$

Если

(B.1.20)

$p_n(x) = p_{n-1}(x) x a_n$

то согласно теореме 3.3.17 и определению (B.1.20)

(B.1.21)

$$\frac{dp_n(x)}{dx} \circ dx = \left(\frac{dp_{n-1}(x)}{dx} \circ dx \right) x a_n + p_{n-1}(x) \left(\frac{dx a_n}{dx} \circ dx \right)$$
Равенство

\[\frac{d p_n(x)}{dx} \circ dx \]

(B.1.22)

= \sum_{\sigma \in S(1,n-1)} (a_0 \otimes ... \otimes a_{n-1}) \circ (\sigma(dx), \sigma(x_2), ..., \sigma(x_{n-1}))x a_n

+ ((a_0 \otimes ... \otimes a_{n-1}) \circ (x_2, ..., x_n))dx a_n

\[x_2 = ... = x_n = x \]

следует из (B.1.21), (B.1.19), (B.1.21). Равенство

\[\frac{d p_n(x)}{dx} \circ dx = \sum_{\sigma \in S(1,n-1)} (a_0 \otimes ... \otimes a_n) \circ (\sigma(dx), \sigma(x_2), ..., \sigma(x_{n-1}), x_n)) \]

(B.1.23)

+ (a_0 \otimes ... \otimes a_n) \circ (x_2, ..., x_n, dx)

\[x_2 = ... = x_n = x \]

следует из (B.1.22) и правила перемножения одночленов (определения 2.6.7, 2.6.8). Согласно лемме B.1.10, равенство (B.1.17) является следствием равенства (B.1.23).

Лемма B.1.12. Пусть 1 < k < n. Для любой перестановки \(\sigma \in SO(k+1,n) \) существует единственная пара перестановок \(\mu \in SO(k,n), \nu \in SO(1,n-k) \) такая, что

\[\sigma = (\mu(y_1), ..., \mu(y_k), \nu(\mu(y_{k+1})), \nu(\mu(x_{k+2})), ..., \nu(\mu(x_n))) \]

Доказательство.

Лемма B.1.13. Пусть 1 < k < n. Для любой пары перестановок \(\mu \in SO(k,n), \nu \in SO(1,n-k) \) существует единственная перестановка \(\sigma \in SO(k+1,n) \) такая, что

\[\sigma = (\mu(y_1), ..., \mu(y_k), \nu(\mu(y_{k+1})), \nu(\mu(x_{k+2})), ..., \nu(\mu(x_n))) \]

Доказательство.

Теорема B.1.14. Для произвольного одночлена

\[p_n(x) = (a_0 \otimes ... \otimes a_n) \circ x^n \]

производная порядка k имеет вид

\[\frac{d^k p_n(x)}{dx^k} \circ (dx^1; ..., dx^k) \]

(B.1.24)

= \sum_{\sigma \in SO(k,n)} (a_0 \otimes ... \otimes a_n, \sigma) \circ (dx_1; ..., dx_k; x_{k+1}; ..., x_n)

\[x_{k+1} = ... = x_n = x \]

Доказательство. Для k = 1 утверждение теоремы является утверждением теоремы B.1.11. Пусть теорема верна для k – 1. Тогда

\[\frac{d^{k-1} p_n(x)}{dx^{k-1}} \circ (dx^1; ..., dx^{k-1}) \]

(B.1.25)

= \sum_{\mu \in SO(k-1,n)} (a_0 \otimes ... \otimes a_n, \mu) \circ (dx_1; ..., dx_{k-1}; x_k; ..., x_n)

\[x_k = ... = x_n = x \]
Теорема В.1.15. Пусть \(D \) - полное коммутативное кольцо характеристики 0. Пусть \(A \) - ассоциативная банаховая \(D \)-алгебра. Тогда

\[
\frac{dx^2}{dx} = x \otimes 1 + 1 \otimes x
\]

(В.1.26)

\[
dx^2 = x \, dx + dx \, x
\]

(В.1.27)

\[
\begin{cases}
\frac{d_1 \, x^2}{dx} = x & \frac{d_1 \, x^2}{dx} = 1 \\
\frac{d_2 \, x^2}{dx} = 1 & \frac{d_2 \, x^2}{dx} = x
\end{cases}
\]

(В.1.28)

Доказательство. Рассмотрим приращение функции \(f(x) = x^2 \).

\[
f(x + h) - f(x) = (x + h)^2 - x^2 = xh + hx + h^2 = xh + hx + o(h)
\]

Равенство (В.1.27) является следствием равенства (В.1.29) и определения 3.3.1. Равенство (В.1.26) является следствием равенств (2.5.5), (В.1.27) и определения 3.3.2. Равенство (В.1.28) является следствием равенства (В.1.26).

Замечание В.1.16. Теорема В.1.15 также является следствием теоремы В.1.11 так как

\[
x^2 = (1 \otimes 1 \otimes 1) \circ x^2
\]

(В.1.29)

Теорема В.1.17. Пусть \(D \) - полное коммутативное кольцо характеристики 0. Пусть \(A \) - ассоциативная банаховая \(D \)-алгебра. Тогда

\[
\frac{dx^3}{dx} = x^2 \otimes 1 + x \otimes x + 1 \otimes x^2
\]

(В.1.30)

\[
dx^3 = x^2 \, dx + x \, dx \, x + dx \, x^2
\]

(В.1.31)

Доказательство. Согласно теореме 3.3.17,

\[
\frac{dx^3}{dx} = \frac{dx^2}{dx} \circ x = \frac{dx^2}{dx} \, x + x^2 \frac{dx}{dx} = (x \otimes 1 + 1 \otimes x) \circ x + x^2 (1 \otimes 1)
\]

(В.1.32)

Равенство (В.1.30) является следствием равенства (В.1.32). Равенство (В.1.31) является следствием равенства (В.1.30) и определения 3.3.2.

\[\text{В.1 Утверждение теоремы аналогично примеру VIII, [30], с. 451. Если произведение коммутативно, то равенство (B.1.26) принимает вид}
\]

\[
\frac{dx^2}{dx} \circ dx = 2x \, dx
\]

\[
\frac{dx^2}{dx} = 2x
\]
Теорема B.1.18. Пусть D - полное коммутативное кольцо характеристики 0. Пусть A - ассоциативная D-алгебра с делением. Тогда

$$\frac{dx^{-1}}{dx} = -x^{-1} \otimes x^{-1}$$ \hspace{1cm} (B.1.33)$$

$$dx^{-1} = -x^{-1} \, dx \, x^{-1}$$ \hspace{1cm} (B.1.34)$$

$$\frac{d_{x,a}x^{-1}}{dx} = -x^{-1} \quad \frac{d_{y,a}x^{-1}}{dx} = x^{-1}$$ \hspace{1cm} (B.1.35)$$

Доказательство. Подставим $f(x) = x^{-1}$ в определение (3.3.2)

$$\frac{dx^{-1}}{dx} \circ h = \lim_{t \to 0, \, t \in R} \left(t^{-1}((x + th)^{-1} - x^{-1}) \right)$$

$$= \lim_{t \to 0, \, t \in R} \left(t^{-1}((x + th)^{-1} - x^{-1}(x + th)(x + th)^{-1}) \right)$$

$$= \lim_{t \to 0, \, t \in R} \left(t^{-1}(1 - x^{-1}(x + th))(x + th)^{-1} \right)$$

$$= \lim_{t \to 0, \, t \in R} \left(t^{-1}(1 - 1 - x^{-1}th)(x + th)^{-1} \right)$$

$$= \lim_{t \to 0, \, t \in R} \left(-x^{-1}h(x + th)^{-1} \right)$$

Равенство (B.1.33) следует из цепочки равенств (B.1.36). Равенство (B.1.34) является следствием равенства (B.1.33) и определения 3.3.2. Равенство (B.1.35) является следствием равенства (B.1.33). □

Теорема B.1.19. Пусть D - полное коммутативное кольцо характеристики 0. Пусть A - ассоциативная D-алгебра с делением. Тогда

$$\frac{(xax^{-1})}{dx} = 1 \otimes ax^{-1} - xax^{-1} \otimes x^{-1}$$ \hspace{1cm} (B.1.37)$$

$$d(xax^{-1}) = dx \, ax^{-1} - xax^{-1} \, dx \, x^{-1}$$ \hspace{1cm} (B.1.38)$$

$$\begin{cases}
\frac{d_{1,0}x^{-1}}{dx} = 1 & \frac{d_{1,1}x^{-1}}{dx} = ax^{-1} \\
\frac{d_{2,0}x^{-1}}{dx} = -xax^{-1} & \frac{d_{2,1}x^{-1}}{dx} = x^{-1}
\end{cases}$$ \hspace{1cm} (B.1.39)$$

Доказательство. Равенство (B.1.37) является следствием равенств (3.3.25), (B.1.12). Равенство (B.1.38) является следствием равенства (B.1.37) и определения 3.3.2. Равенство (B.1.39) является следствием равенства (B.1.37). □

B.2 Утверждение теоремы аналогично примеру IX, [30], с. 451. Если произведение коммутативно, то равенство (B.1.33) принимает вид

$$dx^{-1} = -x^{-2} \, dx$$

$$\frac{dx^{-1}}{dx} = -x^{-2}$$

B.3 Если произведение коммутативно, то

$$y = xax^{-1} = a$$

Соответственно производная обращается в 0.
Теорема B.1.20.
(B.1.40) \[\frac{de^x}{dx} = \frac{1}{2}(e^x \otimes 1 + 1 \otimes e^x) \]

Доказательство. Теорема является следствием теоремы 5.2.7. □

Теорема B.1.21.
(B.1.41) \[\frac{d \sinh x}{dx} = \frac{1}{2}(\cosh x \otimes 1 + 1 \otimes \cosh x) \]
(B.1.42) \[\frac{d \cosh x}{dx} = \frac{1}{2}(\sinh x \otimes 1 + 1 \otimes \sinh x) \]

Доказательство. Теорема является следствием теоремы 5.3.2. □

Теорема B.1.22.
(B.1.43) \[\frac{d \sin x}{dx} = \frac{1}{2}(\cos x \otimes 1 + 1 \otimes \cos x) \]
(B.1.44) \[\frac{d \cos x}{dx} = -\frac{1}{2}(\sin x \otimes 1 + 1 \otimes \sin x) \]

Доказательство. Теорема является следствием теоремы 5.4.2. □

Таблица интегралов

Teorema B.2.1. Пусть отображение
\[f : A \to B \]
dифференцируемо. Тогда
(B.2.1) \[\int \frac{df(x)}{dx} \circ dx = f(x) + C \]

Доказательство. Теорема является следствием определения 5.1.1. □

Teorema B.2.2.
(B.2.2) \[\int (f_{s,0} \otimes f_{s,1}) \circ dx = (f_{s,0} \otimes f_{s,1}) \circ x + C \]
\[f_{s,0} \in A \quad f_{s,1} \in A \]

Доказательство. Согласно определению 5.1.1, отображение \(y \) является интегралом (B.2.2), если отображение \(y \) удовлетворяет дифференциальному уравнению
(B.2.3) \[\frac{dy}{dx} = f_{s,0} \otimes f_{s,1} \]
 и начальному условию
(B.2.4) \[x_0 = 0 \quad y_0 = C \]
Согласно теореме B.1.1, из равенства (B.2.3) следует, что вторая производная имеет вид
(B.2.5) \[\frac{d^2 y}{dx^2} = 0 \]
Разложение в ряд Тейлора
(B.2.6) \[y = f_{s,0} \cdot x \cdot f_{s,1} + C \]
следует из (B.2.3), (B.2.4), (B.2.5). Равенство (B.2.2) является следствием равенств (B.2.3), (B.2.4), (B.2.6).

ЗАМЕЧАНИЕ B.2.3. Согласно определению (2.5.5) мы можем записать интеграл (B.2.2) следующим образом

\[
\int f_{s,0} \, dx \, f_{s,1} = f_{s,0} \, x \, f_{s,1} + C
\]

Теорема B.2.4.

\[
\int (e^x \otimes 1 + 1 \otimes e^x) \circ dx = 2e^x + C
\]

Доказательство. Теорема является следствием теоремы B.1.20 и определения 5.1.1.

ЗАМЕЧАНИЕ B.2.5. Согласно определению (2.5.5) мы можем записать интеграл (B.2.8) следующим образом

\[
\int e^x \, dx = 2e^x + C
\]

Теорема B.2.6.

\[
\int (\sinh x \otimes 1 + 1 \otimes \sinh x) \circ dx = 2 \cosh x + C
\]
\[
\int (\cosh x \otimes 1 + 1 \otimes \cosh x) \circ dx = 2 \sinh x + C
\]

Доказательство. Теорема является следствием теоремы B.1.21 и определения 5.1.1.

ЗАМЕЧАНИЕ B.2.7. Согласно определению (2.5.5) мы можем записать интегралы (B.2.10), (B.2.11) следующим образом

\[
\int \sinh x \, dx = 2 \cosh x + C
\]
\[
\int \cosh x \, dx = 2 \sinh x + C
\]

Теорема B.2.8.

\[
\int (\sin x \otimes 1 + 1 \otimes \sin x) \circ dx = -2 \cos x + C
\]
\[
\int (\cos x \otimes 1 + 1 \otimes \cos x) \circ dx = 2 \sin x + C
\]

Доказательство. Теорема является следствием теоремы B.1.22 и определения 5.1.1.
Замечание В.2.9. Согласно определению (2.5.5) мы можем записать интегралы (В.2.14), (В.2.15) следующим образом

(B.2.16) \[\int \sin x \, dx + dx \sin x = -2 \cos x + C \]

(B.2.17) \[\int \cos x \, dx + dx \cos x = 2 \sin x + C \]
Приложение C

Интеграл Лебега в абелевой Ω-группе

C.1. Ω-группа

ОПРЕДЕЛЕНИЕ C.1.1. Пусть в Ω-алгебре A определена операция сложения. Отображение

\[f : A \to A \]

Ω₁-алгебры A называется аддитивным отображением, если

\[f(a + b) = f(a) + f(b) \]

□

ОПРЕДЕЛЕНИЕ C.1.2. Отображение

\[g : A^n \to A \]

называется полиаддитивным отображением, если для любого \(i, i = 1, \ldots, n \),

\[f(a_1, \ldots, a_i + b_i, \ldots, a_n) = f(a_1, \ldots, a_i, \ldots, a_n) + f(a_1, \ldots, b_i, \ldots, a_n) \]

□

ОПРЕДЕЛЕНИЕ C.1.3. Пусть в Ω₁-алгебре A определена операция сложения, которая не обязательно коммутативна. Мы пользуемся символом + для обозначения операции суммы. Положим

\[\Omega = \Omega_1 \setminus \{+\} \]

Если Ω₁-алгебра A является группой относительно операции сложения и любая операция \(\omega \in \Omega \) является полиаддитивным отображением, то Ω₁-алгебра A называется Ω-группой. Если Ω-группа A является ассоциативной группой относительно операции сложения, то Ω₁-алгебра A называется ассоциативной Ω-группой. Если Ω₁-алгебра A является абелевой группой относительно операции сложения, то Ω₁-алгебра A называется абелевой Ω-группой. □

Теорема C.1.4. Пусть \(\omega \in \Omega(n) \) - полиаддитивное отображение. Операция \(\omega \) дистрибутивна относительно сложения

\[a_1 \ldots (a_i + b_i) \ldots a_n \omega = a_1 \ldots a_i \ldots a_n \omega + a_1 \ldots b_i \ldots a_n \omega \quad i = 1, \ldots, n \]

ДОКАЗАТЕЛЬСТВО. Теорема является следствием определений C.1.2, C.1.3. □

ОПРЕДЕЛЕНИЕ C.1.5. Норма на Ω-группе A \(^{C.1}\) - это отображение

\[d \in A \to \|d\| \in R \]

такое, что

\(^{C.1}\) Определение дано согласно определению из [21], гл. IX, §3, п.º 2, а также согласно определению [32]-1.1.12, с. 23.
C.1. Ω-группа

C.1.5.1: \(\|a\| \geq 0 \)
C.1.5.2: \(\|a\| = 0 \) равносильно \(a = 0 \)
C.1.5.3: \(\|a + b\| \leq \|a\| + \|b\| \)
C.1.5.4: \(\|a\| = \|b\| \)

Ω-группа \(A \), наделённая структурой, определяемой заданием на \(A \) нормы, называется нормированной Ω-группой.

Теорема C.1.6. Пусть \(A \) - нормированная Ω-группа. Тогда

(C.1.1)
\[
\|a - b\| \geq \|\|a\| - \|b\|\|
\]

Доказательство. Теорема является следствием теоремы [14]-2.1.9.

Определение C.1.7. Пусть \(A \) - нормированная Ω-группа. Множество \(U \subset A \) называется открытым,

если для любого \(\epsilon \in R \), существуют \(\epsilon > 0 \), такое, что \(B_\epsilon(a, \epsilon) \subset U \).

Определение C.1.8. Пусть \(A \) - нормированная Ω-группа. \(A \)-число \(a \) называется пределом последовательности \(\{a_n\} \), \(a_n \in A \),
\[
a = \lim_{n \to \infty} a_n
\]

если для любого \(\epsilon \in R \), \(\epsilon > 0 \), существует, зависящее от \(\epsilon \), натуральное число \(n_0 \) такое, что \(\|a_n - a\| < \epsilon \) для любого \(n > n_0 \). Мы будем также говорить, что последовательность \(a_n \) сходится к \(a \).

Определение C.1.9. Пусть \(A \) - нормированная Ω-группа. Последовательность \(\{a_n\} \), \(a_n \in A \), называется фундаментальной или последовательностью Коши, если для любого \(\epsilon \in R \), \(\epsilon > 0 \), существует, зависящее от \(\epsilon \), натуральное число \(n_0 \) такое, что \(\|a_p - a_q\| < \epsilon \) для любых \(p, q > n_0 \).

Определение C.1.10. Нормированная Ω-группа \(A \) называется полной если любая фундаментальная последовательность элементов Ω-группы \(A \) сходится, т. е. имеет предел в этой Ω-группе.

Определение C.1.11. Пусть \(a_i \) - последовательность \(A \)-чисел. Если
\[
\sum_{i=1}^{\infty} \|a_i\| < \infty
\]
то мы будем говорить, что ряд
\[
\sum_{i=1}^{\infty} a_i
\]
сходится нормально. C.3}

В топологии обычно сперва определяют открытое множество, а затем базу топологии. В случае метрического или нормированного пространства, удобнее дать определение открытоого множества, опираясь на определение базы топологии. В этом случае определение основано на одном из свойств базы топологии. Непосредственная проверка позволяет убедиться, что определённое таким образом открытое множество удовлетворяет основным свойствами.

См. также определение нормальной сходимости ряда на странице [31]-12.
C.2. Алгебра множеств

ОПРЕДЕЛЕНИЕ C.2.1. Непустая система множеств S называется полукольцом множеств, если

C.2.1.1: $\emptyset \in S$
C.2.1.2: Если $A, B \in S$, то $A \cap B \in S$
C.2.1.3: Если $A, A_1 \in S$, $A_1 \subseteq A$, то множество A может быть представлено в виде

\[(C.2.1)\]

\[A = \bigcup_{i=1}^{n} A_i \quad A_i \in S\]

где $i \neq j => A_i \cap A_j = \emptyset$

Представление \((C.2.1)\) множества A называется конечным разложением множества A.

ОПРЕДЕЛЕНИЕ C.2.2. Непустая система множеств R называется кольцом множеств, если условие $A, B \in R$ влечёт $A \triangle B, A \cap B \in R$. Множество $E \in R$ называется единицей кольца множеств, если $A \cap E = A$

Кольцо множеств с единицей называется алгеброй множеств.

ЗАМЕЧАНИЕ C.2.3. Для любых A, B

\[A \cup B = (A \triangle B) \Delta (A \cap B)\]
\[A \setminus B = A \Delta (A \cap B)\]

Следовательно, если $A, B \in R$, то $A \cup B \in R, A \setminus B \in R$.

ОПРЕДЕЛЕНИЕ C.2.4. Кольцо множеств R называется σ-кольцом множеств, если условие $A_i \in R, i = 1, ..., n, ..., \text{ влечёт}$

\[\bigcup_{n} A_n \in R\]

σ-Кольцо множеств с единицей называется σ-алгеброй множеств.

ОПРЕДЕЛЕНИЕ C.2.5. Минимальная σ-алгебра $B(A)$ над совокупностью всех открытых шаров нормированной Ω-группы A, называется алгеброй Бореля. Множество, принадлежащее алгебре Бореля, называется борелевским множеством или B-множеством.

C.3. Интеграл Лебега

ОПРЕДЕЛЕНИЕ C.3.1. Пусть C_X - σ-алгебра множеств множества X. Пусть C_Y - σ-алгебра множеств множества Y. Отображение

\[f : X \rightarrow Y\]

C.4 Смотри так же определение [3]-2, страница 43.
C.5 Смотри так же определение [3]-1, страница 41.
C.6 Смотри аналогичное определение в [3], страница 45, определение 3.
C.7 Смотри определение в [3], с. 46. Согласно замечанию C.2.3, алгебра Бореля может быть также порождена множеством замкнутых шаров.
называется \((C_X, C_Y)\)-измеримым, если для всякого множества \(C \in C_Y\)
\[f^{-1}(C) \in C_X \]

ПРИМЕР С.3.2. Пусть на множестве \(X\) определена \(\sigma\)-аддитивная мера \(\mu\). Пусть \(C_\mu\) - \(\sigma\)-алгебра измеримых относительно меры \(\mu\) множеств. Пусть \(B(A)\) - алгебра Бореля нормированной \(\Omega\)-группы \(A\). Отображение
\[f : X \to A \]
называется \(\mu\)-измеримым, если для всякого множества \(C \in B(A)\)
\[f^{-1}(C) \in C_\mu \]

ОПРЕДЕЛЕНИЕ С.3.3. Пусть \(C_\mu\) - \(\sigma\)-алгебра множеств множества \(F\). Отображение
\[\mu : C_\mu \to R \]
в поле действительных чисел \(R\) называется \(\sigma\)-аддитивной мерой, если для любого множества \(X \in C_\mu\) выполнены следующие условия.

С.3.3.1: \(\mu(X) \geq 0\)

С.3.3.2: Пусть
\[X = \bigcup_i X_i \quad i \neq j \implies X_i \cap X_j = \emptyset \]
конечное или счётное объединение множеств \(X_n \in C_\mu\). Тогда
\[\mu(X) = \sum_i \mu(X_i) \]
где ряд в правой части сходится абсолютно.

ОПРЕДЕЛЕНИЕ С.3.4. Пусть на множестве \(X\) определена \(\sigma\)-аддитивная мера \(\mu\). Отображение
\[f : X \to A \]
в нормированную \(\Omega\)-группу \(A\) называется простым отображением, если это отображение \(\mu\)-измеримо и принимает не более, чем счётное множество значений.

ТЕОРЕМА С.3.5. Пусть отображение
\[f : X \to A \]
принимает не более, чем счётное множество значений \(y_1, y_2, \ldots\). Отображение \(f\) \(\mu\)-измеримо тогда и только тогда, когда все множества
\[F_n = \{ x \in X : f(x) = f_n \} \]
измеримы.

С.8 Смотри аналогичное определение в [3], с. 282.
С.9 Смотри аналогичное определение в [3], с. 282, определение 1. Если мера \(\mu\) на множестве \(X\) определена в контекте, мы также будем называть отображение
\[f : X \to A \]
измеримым.
С.10 Смотри аналогичные определения в [3], определение 1 на странице 265 и определение 3 на странице 268.

Доказательство. Теорема является следствием теоремы [15]-3.2.2. □

Пусть на множестве X определена σ-аддитивная мера μ. Пусть определено эффективное представление поля действительных чисел R в полной абелевой Ω-группе A. Смотри аналогичную теорему в [3], страница 292, теорема 1.

Определение C.3.6. Для простого отображения $f : X \to A$

рассмотрим ряд

(C.3.1) $\sum_n \mu(F_n) f_n$

где

- Множество $\{f_1, f_2, \ldots\}$ является областью определения отображения f
- Если $n \neq m$, то $f_n \neq f_m$
- $F_n = \{x \in X : f(x) = f_n\}$

Простое отображение $f : X \to A$

называется интегрируемым по множеству X, если ряд (C.3.1) сходится нормально. Смотри аналогичное определение в [3], определение 2, с. 293.

Интеграл Лебега отображения f по множеству X

(C.3.2) $\int_X d\mu(x)f(x) = \sum_n \mu(F_n)f_n$

Определение C.3.7. μ-измеримое отображение

$f : X \to A$

называется интегрируемым по множеству X, если существует последовательность простых отображений $f_n : X \to A$

сходящаяся равномерно к f. Если отображение f интегрируемо, то предел

(C.3.3) $\int_X d\mu(x)f(x) = \lim_{n \to \infty} \int_X d\mu(x)f_n(x)$

называется интегралом Лебега отображения f по множеству X. □

Теорема C.3.8. Пусть $f : X \to A$ измеримое отображение. Интеграл

$\int_X d\mu(x)f(x)$

Другими словами, Ω-группа A является R-векторным пространством.

Смотри также определение [3]-3, страницы 294, 295.
существует тогда и только тогда, когда интеграл
\[\int_X d\mu(x) ||f(x)|| \]
существует. тогда
(C.3.4) \[\left\| \int_X d\mu(x)f(x) \right\| \leq \int_X d\mu(x) ||f(x)|| \]
Доказательство. Теорема является следствием теоремы [15]-4.2.4. □

Теорема C.3.9. Пусть \(\mu \)-измеримое отображение \(f : X \to A \)
удовлетворяет условию
\[||f(x)|| \leq M \]
Если мера множества \(X \) конечна, то
(C.3.5) \[\int_X d\mu(x) ||f(x)|| \leq M\mu(X) \]
Доказательство. Теорема является следствием теоремы [15]-4.2.9. □

Теорема C.3.10. Пусть
\[f : X \to A \]
\[g : X \to A \]
\(\mu \)-измеримые отображения с компактным множеством значений. Если существуют интегралы
\[\int_X d\mu(x)f(x) \]
\[\int_X d\mu(x)g(x) \]
то существует интеграл
\[\int_X d\mu(x)(f(x) + g(x)) \]
и
(C.3.6) \[\int_X d\mu(x)(f(x) + g(x)) = \int_X d\mu(x)f(x) + \int_X d\mu(x)g(x) \]
Доказательство. Теорема является следствием теоремы [15]-4.2.3. □

Теорема C.3.11. Пусть \(\omega \in \Omega \) - \(n \)-арная операция в абелевой \(\Omega \)-группе \(A \). Пусть
\[f_i : X \to A \quad i = 1, ..., n \]
\(\mu \)-измеримое отображение с компактным множеством значений. Если отображение \(f_i, i = 1, ..., n \), интегрируемо, то отображение
\[h = f_1...f_n\omega \]
интегрируемо и
(C.3.7) \[\left\| \int_X d\mu(x)h(x) \right\| \leq \int_X d\mu(x)(||\omega|| ||f_1(x)|| |...| ||f_n(x)||) \]
Доказательство. Теорема является следствием теоремы [15]-4.2.5. □
Теорема C.3.12. Пусть на множестве \(X \) определена \(\sigma \)-аддитивная мера \(\mu \). Пусть

\[g : A_1 \rightarrow A_2 \]

представление \(\Omega_1 \)-группы \(A_1 \) с нормой \(\|x\|_1 \) в \(\Omega_2 \)-группе \(A_2 \) с нормой \(\|x\|_2 \).

Пусть

\[g_i : X \rightarrow A_i \quad i = 1, 2 \]

интегрируемое отображение с компактным множеством значений. Тогда отображение

\[h = f_X(g_1)(g_2) \]

интегрируемо и

(C.3.8) \[\left\| \int_X d\mu(x) h(x) \right\|_2 \leq \int_X d\mu(x) (\|f\|_1 \|g_1(x)\|_1 \|g_2(x)\|_2) \]

Доказательство. Теорема является следствием теоремы [15]-4.2.6. \(\square \)
Список литературы

[1] Серж Ленг, Алгебра, М. Мир, 1968
[2] Г. Е. Шилов. Математический анализ, Функции одного переменного, часть 3, М., Наука, 1970
[3] А. Н. Колмогоров, С. В. Фомин. Элементы теории функций и функционального анализа, М., Наука, 1976
[4] Mariano Giaquinta, Giuseppe Modica, Mathematical Analysis: Linear and Metric Structures and Continuity, Springer, 2007, ISBN-13: 978-0-8176-4374-4
[5] А. Г. Курпиц, Курс высшей алгебры, М., Наука, 1968
[6] Garret Sobczyk, New Foundations in Mathematics: The Geometric Concept of Number, Springer, 2013, ISBN: 978-0-8176-8384-9
[7] Nathan BeDell, Doing Algebra over an Associative Algebra, eprint arXiv:1708.01190 (2017)
[8] Александр Клейн, Расслоенная универсальная алгебра, eprint arXiv:math.DG/0702561 (2007)
[9] Александр Клейн, Введение в математический анализ над телом, eprint arXiv:0812.4763 (2010)
[10] Александр Клейн, Введение в геометрию над телом, eprint arXiv:0906.0135 (2010)
[11] Александр Клейн, Представление универсальной алгебры, eprint arXiv:0912.3315 (2010)
[12] Александр Клейн, Линейные отображения свободной алгебры, eprint arXiv:1003.1544 (2010)
[13] Александр Клейн, Многочлен над ассоциативной D-алгеброй, eprint arXiv:1302.7204 (2013)
[14] Александр Клейн, Нормированная Ω-группа, eprint arXiv:1305.4547 (2013)
[15] Александр Клейн, Интеграл отображения в абелевую Ω-группу, eprint arXiv:1310.5591 (2013)
[16] Александр Клейн, Линейное отображение D-алгебры, eprint arXiv:1502.04063 (2015)
[17] Aleks Kleyn, Introduction into Calculus over Division Ring, Clifford Analysis, Clifford Algebras and their applications, volume 5, issue 1, pages 1 - 68, 2016
[18] John C. Baez, The Octonions, eprint arXiv:math.RA/0105155 (2002)
[19] П. Кон, Универсальная алгебра, М., Мир, 1968
[20] Paul M. Cohn, Algebra, Volume 1, John Wiley & Sons, 1982
[21] Н. Бурбаки, Общая топология. Использование вещественных чисел в общей топологии, перевод с французского С. Н. Крачковского под редакцией Д. А. Райкова, М. Наука, 1975
[22] Шабат Б. В., Введение в комплексный анализ, М. Наука, 1969
[23] Понтрягин Л. С., Непрерывные группы, М. Едиториал УРСС, 2004
[24] Постников М. М., Лекции по геометрии, семестр IV, Дифференциальная геометрия, М. Наука, 1983
[25] Фихтенгольц Г. М., Курс дифференциального и интегрального исчисления, том 1, М. Наука, 1969
[26] Алексеевский Д. В., Виноградов А. М., Лычагин В. В., Основные понятия дифференциальной геометрии Итоги ВИНИТИ 28 М. ВИНИТИ, 1988
[27] Richard D. Schafer, An Introduction to Nonassociative Algebras, Dover Publications, Inc., New York, 1995
[28] A. Sudbery, Quaternionic Analysis, Math. Proc. Camb. Phil. Soc. (1979), 85, 199 - 225
[29] Vadim Komkov, Variational Principles of Continuum Mechanics with Engineering Applications: Critical Points Theory, Springer, 1986
[30] Sir William Rowan Hamilton, Elements of Quaternions, Volume I, Longmans, Green, and Co., London, New York, and Bombay, 1899
[31] Андрей Картан. Дифференциальное исчисление. Дифференциальные формы. М. Мир, 1971
[32] V. I. Arnautov, S. T. Glavatsky, A. V. Mikhalev, Introduction to the theory of topological rings and modules, Volume 1995, Marcel Dekker, Inc, 1996
Предметный указатель

A-число 17
A-представление в Ω-алгебре 11
B-множество 134
D-алгебра 17
D-модуль 13
n-арная операция на множестве 10
абелевая Ω-группа 132
абсолютная величина 35
аддитивное отображение 132
алгебра Бореля 134
алгебра множеств 134
алгебра над кольцом 17
алтернация полилинейного отображения 76
арность 10
ассоциативная D-алгебра 17
ассоциативная Ω-группа 132
ассоциатор D-алгебры 17
банахова D-алгебра 35
банаховый D-модуль 31
борелевское множество 134
вектор 13
внешнее произведение 78, 85
внешний дифференциал 89
гиперболический косинус 62
гиперболический синус 62
голоморфное отображение 112
гомоморфизм 11
декартова степень 10
dифференциал отображения 36
dифференциальная p-форма 85
dифференциальная форма степени p 85
dифференцируемое отображение 36
единица кольца множеств 134
закон ассоциативности 13
закон дистрибутивности 13, 132
закон унитарности 13
замкнутый шар 28
звёздное множество 95
измеримое отображение 135
интеграл дифференциальной 1-формы
вдоль пути 109
интеграл Лебега 136, 136
интегрируемая форма 95
интегрируемое отображение 54, 136, 136
кольцо множеств 134
коммутативная D-алгебра 17
коммутатор D-алгебры 17
компонент линейного отображения 20
компонент производной 37, 38
компонент производной второго порядка 49
конечное разложение множества 134
координаты 14, 37
косинус 66
косо симметричное полилинейное отображение 75
линейное отображение 14, 18
метод последовательного дифференцирования 54
многочлен 23
модуль над кольцом 13
мороизм представлений Ω_1-алгебры в Ω_2-алгебре 12
мороизм представлений из f в g 12
мороизм представления f 12
открытое множество 133
неопределёный интеграл 54, 95
непрерывное отображение 31
норма в D-алгебре 35
норма в D-модуле 28
норма на Ω-группе 132
норма на кольце 26
норма отображения 31, 33
нормированная D-алгебра 35
нормированная Ω-группа 133
нормированное кольцо 26
нормированный D-модуль 28
носитель Ω-алгебры 10
область операторов 10
однородный многочлен степени n 23
одночлен степени \(k \) 22
операция на множестве 10
определённый интеграл 111
открытый шар 28
отображение согласовано с операцией 11
отображение сопряжения 24
перестановка 13
полиаддитивное отображение 132
полилинейное отображение 14, 19
полная нормированная \(\Omega \)-группа 133
полное кольцо 27
полукольцо множеств 134
последовательность Коши 27, 28, 133
последовательность сходится 28, 133
предел последовательности 26, 28, 133
представление \(\Omega_1 \)-алгебры \(A \) в \(\Omega_2 \)-алгебре \(M \) 11
преобразование сопряжения 20
приведенный морфизм представлений 12
производная второго порядка 48
производная отображения 36
производная порядка \(n \) 49
простое отображение 135
ряд сходится нормально 133
свободная алгебра над кольцом 17
симметрирование полилинейного отображения 75
симметричное полилинейное отображение 75
синус 66
стандартная компонента линейного отображения 20
стандартная компонента производной 38, 39
стандартная компонента тензора 17
стандартное представление производной 38
сумма отображений 15, 15
тензорная степень 16
tenзорное произведение 15
топологическое кольцо 26
универсальная алгебра 10
фундаментальная последовательность 27, 28, 133
центр \(D \)-алгебры \(A \) 18
чётность перестановки 13
эквивалентные нормы 29
экспонента 59
эндоморфизм 11
эффективное представление 11
ядро \(D \)-алгебры \(A \) 18
Специальные символы и обозначения

Символы	Обозначение
$A[x]$	A-алгебра многочленов над D-алгеброй A 23
(a, b, c)	ассоциатор D-алгебры 17
$[a, b]$	коммутатор D-алгебры 17
$A_k[x]$	A-модуль однородных многочленов над D-алгеброй A 23
$\|a\|$	норма в D-модуле 28
A_Ω	Ω-алгебра 10
$A^\otimes n$	тензорная степень алгебры A 16
$B(A)$	алгебра Бореля 134
B^4	декартова степень 10
$B_\cap (a, \rho)$	замкнутый шар 28
$B_\cap (a, \rho)$	открытый шар 28
C_μ	σ-алгебра измеримых относительно меры μ множеств 135
C^n	класс непрерывности 85
$\cos x$	косинус 66
$\cosh x$	гиперболический косинус 62
$d_{k,p}^k f(x)$	компонента производной отображения $f(x)$ 37
$d_{k,p}^k f(x)$	компонента производной отображения $f(x)$ 38
$d_{k,p}^k f(x)$	компонента производной второго порядка отображения $f(x)$ 49
$df(x)$	производная отображения f 36
$df(x)$	производная отображения f 36
$d_n^k f(x)$	производная порядка n 49
$d_n^k f(x)$	производная второго порядка 49
$d_n^k f(x)$	производная второго порядка 48
dx	дифференциал независимой переменной 36
df	дифференциал отображения f 36
$d\omega$	внешний дифференциал 89
$d^k f(x)$	стандартная компонента производной 38
$d^k f(x)$	стандартная компонента производной 38
$\exp x$	экспонента 59
$E\text{nd}(\Omega; A)$	множество эндоморфизмов 11
$[f]$	альтернация полилинейного отображения 75
$f_{k,p}$	компонента линейного отображения f тела 20
F_k	преобразование сопряжения 20
$f \wedge g$	внешнее произведение 78
$\alpha \wedge \beta$	внешнее произведение 85
$\|f\|$	норма отображения 31, 33
$a^{i_1 \ldots i_n}$	стандартная компонента тензора 17
$f + g$	сумма отображений 15, 15
$\langle f \rangle$	симметрирование полилинейного отображения 75
$\int g(x) \, dx$	неопределенный интеграл 54
$\int \omega(x) \, dx$	неопределённый интеграл 95
$\lim_{n \to \infty} a_n$	предел последовательности 26, 28, 133
$\mathcal{L}(A; A^n \to B)$	модуль косо симметричных полилинейных отображений 77
$\mathcal{L}(D; A^n \to B^n)$	множество n-линейных отображений 14, 18
$\mathcal{L}(D; A^n \to S)$	множество полилинейных отображений 19
$\mathcal{L}(D; A^n \to S^n)$	множество n-линейных отображений 19
$N(A)$	ядро D-алгебры A 18
$A_1 \otimes \ldots \otimes A_n$	тензорное произведение 15
$\sinh x$	гиперболический синус 62
\[\int_X \mu(x) f(x) \quad \text{интеграл Лебега} \quad 136, \quad 136 \]
\[SE(n) \quad \text{множество перестановок} \quad 56 \]
\[SO(k, n) \quad \text{множество перестановок} \quad 124 \]
\[\sin x \quad \text{синус} \quad 66 \]
\[Z(A) \quad \text{центр D-алгебры} \quad 18 \]
\[\int_a^b \omega \quad \text{определённый интеграл} \quad 111 \]
\[\oint_{\gamma} \omega \quad \text{интеграл дифференциальной 1-}
\quad \text{формы вдоль пути} \quad 109 \]
\[\Omega \quad \text{область операторов} \quad 10 \]
\[\Omega_p^\pi(U, B) \quad \text{множество}
\quad \text{дифференциальных p-форм} \quad 85 \]
\[\Omega(n) \quad \text{множество n-арных операторов} \quad 10 \]
\[|\sigma| \quad \text{чётность перестановки} \quad 13 \]