Toxicology and teratology of the active ingredients of professional therapy MuscleCare products during pregnancy and lactation: a systematic review

Abdulaziz MS Alsaad¹,²,³, Colleen Fox¹ and Gideon Koren¹,²*

Abstract

Background: The rates of muscle aches, sprains, and inflammation are significantly increased during pregnancy. However, women are afraid to use systemic analgesics due to perceptions of fetal risks. Thus, topical products are important alternatives to consider for those women. Of interest, Professional Therapy MuscleCare (PTMC) has shown to be effective in alleviating the myofascial pain as reported in a randomized, placebo-controlled double-blinded comparative clinical study of five topical analgesics. However, to date, there is no complete review or long-term safety studies on the safety of these products during pregnancy and lactation. Thus, the aim of this article was to review toxicological, developmental, and reproductive effects associated with the use of PTMC products.

Methods: We performed a systematic review on safety of PTMC from all toxicological articles investigating the effects of PTMC's ingredients. This search was conducted through medical and toxicological databases including, Web of Science, EMBASE, Medline, and Micromedix. Both reported and theoretical adverse effects were extensively reviewed.

Results: Of the 1500 publications reviewed, 100 papers were retrieved and included in the review. Although some ingredients in PTMC products might cause adverse reproductive effects at high systemic doses, these doses are hundreds to thousands fold greater than those systemically available from topical use at the recommended maximum dose (i.e. 10 g/day).

Conclusions: This study provides evidence that, when used as indicated, PTMC is apparently safe for pregnant women and their unborn babies as well as for breastfed infants.

Keywords: MuscleCare, Pregnancy, Lactation, Teratogenicity, Safety
applied to alleviate the pain caused by inflammation, muscle strain/spasm, and arthritis during pregnancy. To date, the safety of PTMC ingredients during pregnancy and lactation has not been reviewed. Thus, the aim of the current article was to review the available evidence related to fetal safety of PTMC ingredients and to create an evidence-based framework for PTMC use during pregnancy and lactation.

Physiological changes during pregnancy and the need for topical analgesics

Pregnancy is associated with continuous physiological changes that lead to higher rates of lower back and neck pains [2-4,7,8]. These changes include weight gain, hormonal changes, and muscle separation in the area of the sacroiliac joint. While the hormone relaxin usually relaxes ligaments in the pelvic area allowing the birth process to take place [9], this hormone also relaxes ligaments supporting the spine, often leading to severe pain during pregnancy. This situation is exacerbated by separation of muscles secondary to the increased size of the uterine. The emotional stress might also contribute to back spasms in pregnancy [10]. Pain increases as a result of weight gain burdening the muscles from the neck down, often leading to stiffness. Taking into consideration the large number of pregnant women refusing the use of systemic analgesics, there is an urgent need to evaluate the safety of topical analgesics such as PTMC [4,5].

Route of exposure and topical use of PTMC

In this article, we retrieved all existing toxicological information regarding PTMC ingredients in the context of the concentrations of each ingredient within these products. Where available, an attempt has been made to focus on studies employing topical rather than oral exposure, and to highlight studies carried out on humans rather than animals or in vitro cell culture models. However, since PTMC products have not been directly studied in vitro or in vivo, their toxicities need to be extrapolated from studies examining PTMC’s ingredients either alone or in studies using similar ingredients to those found in PTMC products. It is important to bear in mind that compounds in similar creams may be presented at different ratios, which might influence the properties of these products. Thus, when examining each ingredient, it is important to remember that these ingredients were invariably studied at different concentrations in animal studies and, thus, extrapolation of data from other creams to PTMC must be done cautiously. Taking into consideration that the principal source of human exposure to PTMC products is through the skin, these products are strictly intended for external use at recommended maximal dose of 10 g/day. Table 1 summarizes the amounts received by a 70 kg person applying 10 g of PTMC.

Active ingredient	Amount received from ointment	Amount received from roll-on gel
MSM	500 mg/kg	50 mg/kg
Camphor	300 mg/kg	300 mg/kg
Menthol	400 mg/kg	1000 mg/kg
Methyl salicylate	100 mg/kg	– mg/kg
Glucosamine sulfate	300 mg/kg	20 mg/kg
Sodium chondroitin sulfate	10 mg/kg	10 mg/kg
Eucalyptus Oil	50 mg/kg	300 mg/kg
Grape seed oil	100 mg/kg	– mg/kg
Vitamin E	100 mg/kg	– mg/kg
Thymol	20 mg/kg	– mg/kg
Sea cucumber extract	100 mg/kg	– mg/kg
Aloe barbadensis leaf juice	10 mg/kg	– mg/kg
Peppermint oil	– mg/kg	300 mg/kg
Boswellia	– mg/kg	70 mg/kg
Ilex	– mg/kg	70 mg/kg
Magnesium	20 mg/kg	10 mg/kg

Methods

Search method

A professional librarian with expertise in the areas of systematic reviews carried out literature searches using Web of Science, EMBASE, Medline, and Micromedix. The terms used in systematic search were the names of PTMC ingredients and “reproductive effect” with no language restrictions. Studies were selected based reporting toxicological, developmental, and reproductive effects of PTMC ingredients. We excluded all studies that did not mention safety of these ingredients. Of the 1500 publications reviewed, 100 papers were retrieved and included in the review (Figure 1 Study flowchart).

Results and discussion

Toxicological, developmental, and reproductive effects of PTMC

The PTMC ingredients are mainly classified as anti-inflammatory, analgesics, circulation enhancers, or tissue repair ingredients (Tables 2 and 3). These ingredients were reviewed with respect to general, developmental, and reproductive adverse effects reported in human and/ or animal studies (Table 4 summarizes these adverse effects of ingredients of PTMC).

Dimethyl sulfone (Methylsulfonylmethane or MSM)

Several studies showed no adverse reactions when a cream containing dimethyl Sulfone (MSM) was applied topically on a daily basis over four weeks [11]. Treatment
of interstitial cystitis with MSM revealed a low rate of adverse effects [11]. Similarly, adverse drug reactions were minimal in a study that evaluated the efficacy of MSM in reduction of symptoms associated with allergic rhinitis [12]. In this study, 15 males and 35 females between the ages of 21 and 60 received 2.6 g of MSM once daily for 30 days and a subset of subjects further received 5.2 g for additional 14 days. Although the recommended dose for dietary supplementation of MSM is 1 to 6 g/day, there are no peer-reviewed studies on its long-term use in humans. MSM was reported to cause low oral toxicity in rats (LD\textsubscript{50} was greater than 17 g/kg). A dose of 2 g/kg or long-term

Table 2 Active ingredients of PTMC ointment and roll-on gel

Active ingredients	Purpose	Content % (Ointment)	Content % (Roll-on)
MSM (methylsulfonylmethane)	Topical: anti-inflammatory, Oral: relieves osteoarthritis pain	5.0%	0.50%
Menthol	Topical: analgesic and anesthetic	4.0%	10.0%
Camphor	Topical: analgesic	3.0%	3.0%
Glucosamine	Topical: analgesic, Oral: relieves joint pain, protects against cartilage deterioration	3.0%	0.20%
Vitamin E	Anti-oxidant protection of skin	1.0%	Not in roll-on
Sea Cucumber	Tissue repair, antioxidant	1.0%	Not in roll-on
Oil of Wintergreen	Topical: analgesic, anti-inflammatory	1.0%	Not in roll-on
Eucalyptus Leaf Oil	Topical: analgesic, counter-irritant, skin penetration	0.5%	3.0%
Grape Seed Oil	Healing damaged tissue	1.0%	Not in roll-on
Aloe Barbadensis Leaf	Topical: analgesic	0.1%	Not in roll-on
Thymol	Topical: analgesic, anesthetic	0.2%	Not in roll-on
Chondroitin	Skin conditioning	0.1%	0.1%
Peppermint Oil	Topical: analgesic	Not in ointment	3.0%
Boswellia	Topical: anti-inflammatory	Not in ointment	0.7%
Ilex	Skin conditioning	Not in ointment	0.7%
Magnesium chloride	Viscosity controlling	0.2%	0.1%
administration (1.5 g/kg for 90 days) did not cause adverse events in rats [13]. Although some studies reported that MSM can cross the placenta resulting in higher concentrations in the fetal plasma [14], to date, there have been no human data on adverse reproductive effects. Oral administration of MSM to pregnant rats at doses of 50 to 1000 mg/kg/day during organogenesis did not induce fetal anomalies. These studies concluded that No Observed Adverse Effect Level (NOAEL) for maternal and developmental toxicity is 1 g/kg/day [15,16].

Camphor
Poisoning cases after topical use of camphor have been reviewed for adults and children between 1990 and 2003 [17]: 1) A 15-month-old boy who crawled through spilled camphor spirits developed ataxia and generalized convulsions. 2) A 2-month-old girl developed elevated serum transaminase following application of Vicks VapoRub to her chest and neck (4.8% camphor, 3 times a day for 5 days). 3) A 25-month-old boy developed delirium, visual hallucinations, and urinary incontinence after his chest was “soaked” in more than 1 ounce of camphorated oil for 80 hours (6.4 g of camphor, 3 times a day for 5 days). 4) A 9-month-old girl with 20% body surface area burns was treated with a dressing containing 9.6% camphor for 24 hours (estimated exposure to 15 g camphor) and developed severe toxicity including convulsions. 5) A 72-year-old woman developed granulomatous hepatitis following dermal application of five containers of Vicks VapoRub Ointment. After discontinuation of the use, these problems were resolved.

Of importance, several studies have shown that camphor has a low absorption rate (less than 0.1%) from medicated patches containing 46.8 mg camphor in conjunction with 37.4 mg menthol and 74.88 mg methyl salicylate [18]. Orally, the exposure of children (ages of 14 months - 5 years old) to 0.7-1.5 g of camphor was associated with fatal symptoms [19]. Another study has examined the administration of camphor to 80 postpartum women who were injected 195 mg camphor in the first day followed by daily injections of 97 mg over 3 days. In this study, only one patient developed adverse events (nausea and vomiting) [17]. Thus, the U.S. FDA has set a limit of 11% camphor in different products, as ingestion of larger quantities may cause adverse effects such as seizures, confusion, irritability and neuromuscular hyperactivity. The LD$_{50}$ in mice is 1.3 g/kg.

With respect to reproductive effects, studies showed that camphor can cross the human placenta when ingested orally [20]. Topically, the frequency of birth defects was not greater than baseline among 168 pregnancies where camphor was used in the first trimester as well as among 763 women who used camphor anytime during pregnancy [21]. There was no increase in the incidence of congenital abnormalities when camphor was used at high oral doses in pregnant rats and rabbits (100–1000 mg/kg/day and 50–681 mg/kg/day) [22-24]. Although few reports of camphor poisoning are available, to date, there are no reported adverse fetal effects [20,25-27]. It has been reported that women who used a suppository containing camphor during pregnancy had infants with an increased average birth weight and gestational age [28].

Menthol
The FDA has approved methanol as a safe chemical for external use with concentrations up to 16% [29]. Acute dermal toxicity was reported with LD$_{50}$ of 5 g/kg in rabbits. Orally, the LD$_{50}$ values were 2.9 g/kg and 3.1 g/kg in rat and mice, respectively. It has been reported that rats given menthol at 200 mg/kg/day for 28 days had increased liver weights and vacuolization of hepatocytes [30]. With respect to reproductive effects, there has been no study examining menthol safety in humans. There

Inactive ingredients	Purpose	Content % (Ointment)	Content % (Roll-on)
Cetyl alcohol	Viscosity increasing	6.0%	Not in roll-on
Stearyl alcohol	Emollient, thickening agent	4.0%	Not in roll-on
Glycerin	Reduces irritation, prevents dehydration	4.0%	0.6%
Polysorbate-20	Surfactant	1.0%	Not in roll-on
Urea	Hydrating, penetration enhancer	1.0%	Not in roll-on
Water	Hydrating, penetration enhancer	55.1%	8.90%
Sepigel 305	Increases viscosity, stability, and shine	2.0%	Not in roll-on
Optiphen Plus	Preservative (for paraben-free use)	0.8%	Not in roll-on
Acrylates Copolymer	Binder/film former	9.0%	Not in ointment
Propylene Glycol	Skin conditioning, penetration enhancer	3.0%	Not in ointment
Denatured alcohol	Astringent, masking	56.25%	Not in ointment
Triethanolamine	Emulsifying agent	0.9%	Not in ointment

Table 3 Inactive ingredients of muscle care ointment and roll-on gel
Table 4 Summary of general and reproductive effects of PTMC products

Ingredient	Species	General toxicology	Reproductive effects	References
Methylsulfonylmethane	Human	• Topically, there are no adverse reactions.		
• There are no studies on long-term use.	• Till date, no data.	[11-16]		
Animal		• Orally, it has low toxicity.		
• Long-term use did not cause adverse events.				
Camphor	Human	• Topically, poisonings were reported in children and adults.		
• Orally, it caused fatal symptoms in children.	• Topically, the frequency of birth defects was less.			
• Orally, cross the human placenta, however, till date, there are no adverse fetal effects.	[17-28]			
Animal		• The oral LD₅₀ = 1.3 g/kg in mice.	• Orally, there are no congenital abnormalities in rats and rabbit.	
Menthol	Human	• Topically, it is safe.	• Till date, no data	[29-31]
Animal		• Topically, acute dermal toxicity was reported with LD₅₀ = 5 g/kg in rabbit.		
• Orally, toxicity was reported at LD₅₀ = 2.9 g/kg and 3.1 g/kg in rat and mice, respectively.	• There is no teratogenic effect in mice, rats, hamsters, or rabbits.			
Wintergreen Oil	Human	• In cosmetics, methyl salicylate is safe, however, might cause local necrosis.		
• There are some reports for tinnitus, diplopia, shortness of breath, and respiratory alkalosis.	• Till date, no data.	[32-42]		
Animal		• Topically, sub-chronic exposure might lead to kidney damage in rats.	• It is associated with increased risk of abnormalities.	
Glucosamine Sulfate	Human	• Topically, it did not cause toxicity or adverse effects.	• There is no increase in risk of malformations.	[43-47]
Animal				
Sodium Chondroitin Sulfate	Human	• Topically, there are no adverse events.		
• It interferes with progression of osteoarthritis.	• Till date, no data	[43,48-52]		
Animal		• The oral LD₅₀ for mice is greater than 10 g/kg.	• There is increased risk of cleft palate and tail abnormalities in mice.	
• Orally, there are no adverse effects in mice and rabbits.				
Eucalyptus Leaf Oil	Human	• Topically, it is safe.		
• A report of fever and seizure-like motor activity - in slurred speech, ataxia, and muscle weakness were reported in children.				
• Orally, there are minor side effects.	• Till date, no data.	[53-56]		
Animal		The oral LD₅₀ = 2.5 g/kg in rats.		
Grape Seed Oil	Human	• Topically, it is safe.	• There are no adverse outcomes in mice.	[57-60]
Animal		• There are no safety issues associated with acute and chronic safety studies rats	• The grape seed extract was non-mutagenic in mice.	
• Several reports showed that LD₅₀ for dermal application is greater than 2 g/kg in rats.				
• High doses were associated with reduction in birth weight.				
Vitamine E	Human	• Topically, it is safe.	• There are no risks of stillbirth, perinatal death, preterm birth, intrauterine growth restriction, or mean birth weight.	
• Malformation was not greater than expected in offspring of rats and mice.	[61-66]			
Animal		Topically, it is safe.		[67-71]
were no teratogenic effects seen in the offspring of mice, rats, hamsters, or rabbits receiving doses ranging from 1 to 106 times the accepted daily intake in humans [31].

Wintergreen oil (Gaultheria procumbens/Methyl salicylate) Although prolonged skin contact with methyl salicylate may cause dermatitis, methyl salicylate is generally safe in topical formulations [32]. Local necrosis occurred in a 62-year-old man after 1 day use of Bengay (18.3% methyl salicylate and 16% menthol) [33]. The Bengay was applied to the forearms and legs along with periodic heating of the area with a heat pad [33]. There was evidence of tinnitus, diplopia, shortness of breath, mixed metabolic acidosis, and respiratory alkalosis [33]. The lowest lethal oral dose of methyl salicylate was reported in women at 355 mg/kg, in men at 101 mg/kg, and in children at 228 mg/kg. Of importance, a teaspoon or less of wintergreen oil has been implicated in several deaths of children under the age of 6 years [34]. It has been reported that dermal exposure to methyl salicylate was associated with LD$_{50}$ of 2 g/kg [32].

Both the rate and extent of absorption through the skin are dependent on the exposed area as determined in equine skin [35]. The oral LD$_{50}$ is 887 mg/kg in rats.

With respect to reproductive effects, administration of methyl salicylate (up to 0.5 mL) in rats during organogenesis increased the rate of abnormalities, particularly **Table 4 Summary of general and reproductive effects of PTMC products (Continued)**

Thymol	Human	Animal	[21,72-76]
Topically, it is safe.	It is toxic to mucous membranes and to kidneys, liver, and central nervous system.		
Sea Cucumber Extract Human	Topically, it is safe.	Till date, no data.	[77-81]
Animal	Topically, it is safe.	Till date, no data.	
Aloe Barbadensis Leaf Juice Human	Topically, it is safe, however, not recommended for children under age of 12 years.	Orally, there are adverse effects in rare cases.	[82-88]
Animal	Topically, it is safe.		
Peppermint Oil Human	Topically, it caused skin irritation with frequent use of oil.	It induces menstruation and, thus, it is not recommended at high oral doses during pregnancy.	[83,89-91]
Animal	Orally, enteric-coated capsules were not associated with adverse reactions.	There is insufficient evidence to determine the safety of peppermint oil during lactation.	
Animal	The oral LD$_{50}$ was reported at 2490 mg/kg in mice and at 2426 mg/kg in rats.	Orally, the LD$_{50}$ was 2490 mg/kg in mice and 2426 mg/kg in rats.	
Animal	The peppermint oil was used to induce menstruation and it is not recommended at high oral doses in pregnancy.		
Boswelli, and Magnesium chloride Human	Topically, boswelli is associated with dermatitis.	Orally, there is lack of evidence on safe use of boswelli during pregnancy and lactation.	[92-99]
Animal	Topically, boswelli is safe in mice, rats and monkeys.	Similarly, magnesium chloride studies failed to demonstrate risks of birth defects to the fetus.	
Animal	Orally, boswelli was not associated with mortality in rat and mice.		
Animal	In rat and monkey, there was no change in behavior, clinical, biochemical, or pathological data when boswelli was used orally.		
of the central nervous system. This dose represents 5 times the lethal adult human dose [36]. It has been reported that pregnant hamsters treated orally or topically with 175 mg/100 g methyl salicylate exhibited central nervous system teratogenicity [37]. However, there is no conclusive evidence that salicylate is teratogenic in humans [38]. When methyl salicylate was given at doses of (200, 250, or 300 mg/kg/day), there was a reported alteration in renal pelvis and urine formation in rats [39]. However, the topical application of methyl salicylate in petroleum-based grease did not cause congenital defects when used at doses up to 6000 mg/kg/day [40]. High doses of methyl salicylate (such as 250 and 500 mg/kg/day) were reported to increase the litter size. However, these doses did not result in congenital abnormalities in mice. The lower doses (100 mg/kg/day) had no observable adverse reproductive effects [41]. Importantly, the doses in these studies were significantly higher than the adult lethal human dose on mg/kg basis. The American Academy of Pediatrics recommended the use of salicylates with caution during breastfeeding [100].

Glucosamine sulfate
It has been shown that topical application of a cream containing 0.3% glucosamine sulfate did not cause adverse effects [43]. In large clinical trials, oral glucosamine reduced progression of knee osteoarthritis and prevented joint space narrowing [44,45]. Although glucosamine is widely used in veterinary medicine [46], no teratogenic effects were reported in mice or rabbits. In a prospective controlled study of 34 pregnant women exposed to glucosamine during the first trimester, there was no increase in risk of major malformations [47].

Sodium chondroitin sulfate
Several studies failed to report significant adverse events with topical use of a cream containing 0.78% chondroitin sulfate [43]. The use of chondroitin in combination with glucosamine is effective in treatment of knee pain since chondroitin enhances the pain-relieving action of glucosamine [48-50]. It has been reported that chondroitin and glucosamine sulfate attenuate progression of osteoarthritis [51]. Orally, the LD\textsubscript{50} was greater than 10 g/kg in mice. However, mice injected with 1 mL of 2% chondroitin on day 9, 10, or 11 of gestation exhibited an increased rate of cleft palate and tail abnormalities in the offspring [52]. To date, there has been no human study on the effects of chondroitin sulfate during pregnancy and lactation.

Eucalyptus leaf oil (Eucalyptus globulus/1, 8-cineole)
Eucalyptus leaf oil is widely used in mouthwashes and cough suppressants. However, to date, there have been no reported deaths caused by topical use of eucalyptus oil. There was only a report of fever and seizure-like motor activity in a 2-year-old boy rubbed with eucalyptus oil [53]. A 6-year-old who was exposed to eucalyptus oil exhibited slurred speech, ataxia, and muscle weakness [54]. There were minor adverse effects in two 76-year-old patients ingesting 600 mg of eucalyptus daily for 7 days [55]. Orally, the LD\textsubscript{50} was 2.5 g/kg in rats. There has been no adverse outcome in mice injected on days 6 and 15 of gestation [56]. Also, there has been no evidence of adverse reproductive effects of eucalyptus oil in humans.

Grape seed oil (Vitis vinifera)
Procyanidin B-2, a component of Grape Seed Extract, was found to be safe for topical use based on mutagenic and ocular irritation assays [57]. The proanthocyanidin extract is regarded safe for consumption at 1.4 g/kg/day [58]. There are no safety issues identified in acute and chronic studies of oral and dermal exposure to the proanthocyanidin extract in animal studies [59]. The grape seed extract was also non-mutagenic in mice [60]. Several reports showed that the LD\textsubscript{50} for dermal application is greater than 2 g/kg in rats [59]. With subcutaneous injection, the lethal dose of procyanidin B-2 was greater than 2 g/kg [57]. However, to date, there have been no human data on the reproductive effects of grape seed oil.

Vitamin E (Alpha-Tocopherol acetate)
Vitamin E is safe for topical use in different creams aiming to protect the skin against ultraviolet rays [61]. There have been four randomized double-blinded trials involving 566 women at risk of pre-eclampsia who received high doses of vitamin E in the second and third trimesters of pregnancy. In these trials, there was no difference between women exposed to high doses vitamin E and women exposed to placebo in terms of risk for stillbirth, perinatal death, preterm birth, growth restriction, or birth weight [62-65]. Similarly, among 82 infants born to women who received high doses of vitamin E (400 mg/day), there was no increase in malformations or miscarriages [62-65]. Only one infant was born with omphalocele [66]. The frequency of malformations was not increased in the offspring of rats and mice treated with vitamin E at doses hundreds to thousands times of the human doses [67-71].

Thymol
Thymol is considered safe in topical formulations at a concentration of 0.5% [72]. However, thymol was toxic to mucous membranes as well as to the kidneys, liver, and central nervous system [72]. The oral LD\textsubscript{50} was 980 mg/kg in rats, 640 mg/kg in mice, and 880 mg/kg in guinea pigs. Thymol was not associated with increased
incidence of birth defects based on 52 pregnancies exposed in the first trimester of pregnancy [21]. Although thymol was used previously as part of an abortifacient paste to induce the abortion [73-75], only one fatality was reported with the paste use [76].

Sea cucumber extract (SCE)
It has been reported that topical exposure of gingival tissue to sea cucumber extract (SCE) over three months was safe [77]. Also, the use of SCE as an oral daily supplement for six months was not associated with any adverse effects. Although SCE has been shown to have potent anti-tumor effects in vitro [78-81], to date, there has been no evidence on safety of SCE during pregnancy and lactation.

Aloe Barbadensis leaf juice
Aloe is considered safe in topical formulations since hypersensitivity reaction is relatively rare [82]. Although the aloe is used in adults, it is not recommended for children under age of 12 years [83]. The aloe is used orally to relieve constipation and adverse effects were reported only in rare cases [83]. A 56-year-old woman developed hypothyroidism after high doses of aloe taken for 11 months [83]. The thyroid function tests had normalized 16 months after discontinuation of treatment [84]. Another 73-year-old woman developed acute hepatitis after ingesting aloe powder every 2 to 3 days for 5 years [85]. The liver function tests and biopsies were consistent with findings of drug-induced acute hepatitis and completely resolved after discontinuation of aloe use [85]. Similarly, a 24-year-old male developed acute drug-induced hepatitis after 3 weeks of daily use of oral aloe extract where the clinical symptoms resolved 7 days after the aloe was discontinued [86]. Thus, aloe is not recommended orally during pregnancy and/or lactation [87]. Teratogenic effects have been reported when aloe was given at high oral doses to rats [88]. However, there is no contraindication for topical use during pregnancy and/or lactation.

Peppermint oil
Peppermint oil is commonly used and may cause skin irritation due to the presence of menthol [89]. There are no specific therapeutic or toxic dose ranges for oral use. The enteric-coated capsules of the oil have been used to treat irritable bowel syndrome at doses of 0.2 to 0.4 mL three times daily without adverse events [90,91]. Also, the average daily dose of 6 to 8 drops of the oil caused no adverse effects [83]. According to the world health organization (WHO), peppermint oil is considered a safe additive at doses up to 4 mg/kg. The oral LD₅₀ is 2490 mg/kg in mice and 2426 mg/kg in rats. The peppermint oil has also been used to induce menstruation and it is not recommended at high oral doses during pregnancy [90]. Although there is insufficient evidence on safety of the oil during lactation, it has been suggested that amount of the oil in OTC products is likely to be safe for breastfed infants [90].

Boswellia and ilex
Boswellia is frequently used in topical formulations to treat osteoarthritis. However, dermatitis was reported in 4 of 62 patients who used topical preparations containing boswellia [92,93]. The boswellia is recommended for oral use at 400 mg three times daily for arthritis and 300 mg three times daily for asthma [94,95]. The common oral adverse effects are nausea, abdominal fullness, and epigastric pain [96]. Both acute and chronic toxicity studies were conducted in mice, rats, and monkeys. In these studies there was no mortality in rats and mice that received doses up to 2 g/kg. Similarly, there were no changes in behavior, clinical, biochemical, or pathological data with oral daily use of boswellia in rats and monkeys [97]. With respect to reproductive effects, there is insufficient evidence on safety of boswellia during pregnancy and lactation. Similar to boswellia, there is insufficient scientific evidence on safety of ilex during pregnancy and lactation.

Magnesium (Magnesium chloride)
Magnesium is commonly used in topical preparations as well as a dietary supplement in doses ranging from 54 to 483 mg/day [98]. It is often used to treat hypomagnesemia intravenously as 4 g in 250 mL D5W and up to a maximum rate of 3 mL/min [99]. However, magnesium chloride is not recommended for oral ingestion in patients with renal impairment [99]. The FDA has listed magnesium chloride as pregnancy category A, which means “Adequate and well-controlled studies in pregnant women have failed to demonstrate a risk to the fetus in the first trimester of pregnancy (and there is no evidence of a risk in later trimesters)” [99].

Synthesis of findings and conclusions
Pregnant women frequently hesitate to use systemic analgesics for treatment of pregnancy-related pain due to strong perception of teratogenic risks. Among the available topical analgesics, PTMC products are used to alleviate muscle and joint pains. Although some active ingredients in PTMC are relatively toxins when used orally at high doses, these doses are thousands of times larger than those available systemically after topical use at the recommended maximum dose (i.e. 10 g/day). Thus, this review provides evidence that, when used as indicated, PTMC is apparently safe for pregnant women and their unborn babies as well as for lactating women.
Abbreviations
PTMC: Professional therapy MuscleCare; MSM: Methylsulfonylmethane; SCE: Sea cucumber extract; FDA: Unite state food and drug administration; OTC: Over the counter; LD50: Lethal dose required to kill 50% of the animals.

Competing interests
The authors declare that they have no competing interests. This manuscript has not been published and is not under consideration for publication elsewhere.

Authors’ contributions
 Participated in paper design: AMSA and GK. Conducted review: AMSA, CF, and GK. Wrote or contributed to the writing of the manuscript: AMSA and GK. All authors read and approved the final manuscript.

Acknowledgements
AMS A. is clinical pharmacologist/toxicologist at KSU and active member of Motherisk, Division of Clinical Pharmacology and Toxicology, Hospital for Sick Children, University of Toronto. AMS A. is the recipient of the active scholarship from the Ministry of higher education and KSU, College of pharmacy, Riyadh, Saudi Arabia. We are grateful for the Deanship of Scientific Research, King Saudi University (KSU), Riyadh, Saudi Arabia for supporting A. M. S. A. This study was supported by a grant from the Ontario Centers of Excellence, the Government of Ontario.

Author details
1Motherisk Program, Division of Clinical Pharmacology and Toxicology, Department of Pediatrics, Hospital for Sick Children and University of Toronto, 555 University Ave, ON, M5G 1X8, Canada. 2Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College street, Toronto, ON M5S 3M2, Canada. 3Department of Pharmacology & Toxicology, College of Pharmacy, King Saudi University, Riyadh, Saudi Arabia.

Received: 19 September 2014 Accepted: 24 February 2015

Published online: 05 March 2015

References
1. Foti T, Davids JR, Bagley A. A biomechanical analysis of gait during pregnancy. J Bone Joint Surg Am. 2000;82(5):625–32.
2. Kalus SM, Kornman LH, Quinilivan JA. Managing back pain in pregnancy using a support garment: a randomised trial. B J. Obstet Gynaecol. 2008;115(1):68–75.
3. Mogen I. Perceived health, sick leave, psychosocial situation, and sexual life in women with low-back pain and pelvic pain during pregnancy. Acta Obstet Gynecol Scand. 2006;85(6):647–56.
4. Skaggs CD, Prather H, Gross G, George JW, Thompson PA, Nelson DM. Back and pelvic pain in an undenized United States pregnant population: a preliminary descriptive survey. J Manipulative Physiol Ther. 2007;30(2):130–4.
5. Greenwood CJ, Stainton MC. Back pain/discomfort in pregnancy: invisible and forgotten. J Perinat Educ. 2001;10(1):1–12.
6. Avrahami D, Hammond A, Higgins C, Vernon H. A randomized, placebo-controlled double-blinded comparative clinical study of five over-the-counter non-pharmacological topical analgesics for myofascial pain: single session findings. Chiropr Man Therap. 2012;20:7.
7. Vermani E, Mittal R, Weeks A. Pelvic girdle pain and low back pain in pregnancy: a review. Pain Pract. 2010;10(1):60–8.
8. Vleeming A, Albert HB, Ostgaard HC, Sturesson B, Stuge B. European guidelines for the diagnosis and treatment of pelvic girdle pain. Eur J Physio Ther. 2007;20:7.
9. Vermaani E, Mittal R, Weeks A. Pelvic girdle pain and low back pain in pregnancy: a review. Pain Pract. 2010;10(1):60–71.
10. Vleeming A, Albert HB, Ostgaard HC, Sturesson B, Stuge B. European guidelines for the diagnosis and treatment of pelvic girdle pain. Eur J Physio Ther. 2007;20:7.
11. Veerman A, Albert HB. Ostgaard HC, Sturesson B, Stuge B. European guidelines for the diagnosis and treatment of pelvic girdle pain. Eur J Physio Ther. 2007;20:7.
12. MacLeay AH, Nicholson R, Green RC, Bath M. Serum relaxin and pelvic pain during pregnancy. J Manipulative Physiol Ther. 1975;17(1):98–103.
13. MacLennan AH, Nicolson R, Green RC, Bath M. Serum relaxin and pelvic pain during pregnancy. J Manipulative Physiol Ther. 1975;17(1):98–103.
14. Garrettson LK, Procknal JA, Levy G. Fetal acquisition and neonatal elimination of a large amount of salicylate. Study of a neonate whose mother regularly took therapeutic doses of aspirin during pregnancy. Clin Pharmacol Ther. 1975;17(1):98–103.
15. Magnuson BA, Appleton J, Ryan B, Matulka RA. Oral developmental toxicity study of methylsulfonylmethane in rats. Food Chem Toxicol. 2007;45(9):977–84.
16. Magnuson BA, Appleton J, Ames GB. Pharmacokinetics and distribution of [35S]methylsulfonylmethane following oral administration to rats. J Agric Food Chem. 2007;55(3):1033–8.
17. Manoguerra AS, Erdman AR, Wax PM, Nelson LS, Caravati EM, Cobaugh DJ, et al. Camphor poisoning: an evidence-based practice guideline for out-of-hospital management. Clin Toxicol (Phila). 2006;44(4):357–70.
18. Martin D, Valdez J, Boren J, Mavroschn M. Dermal absorption of camphor, menthol, and methyl salicylate in humans. J Clin Pharmacol. 2004;44(10):1151–7.
19. Love JN, Sammon M, Smeek J. Are one or two dangerous? Camphor exposure in toddlers. J Emerg Med. 2004;27(1):94–59.
20. Weiss J, Catalano P. Camphorated oil intoxication during pregnancy. Pediatrics. 1973;52(2):713–4.
21. Heinonen OP, Slone D, Shapiro S. Birth defects and drugs in pregnancy. Littleton, Mass: Publishing Sciences Group Inc; 1977.
22. Leuschner J. Reproductive toxicity studies of d-camphor in rats and rabbits. Drug Res. 1997;47(2):124–8.
23. NTP (National Toxicology Program). Developmental toxicity evaluation of d-camphor (CAS No. 464-49-3) administered by gavage to New Zealand White (NZW) rabbits on gestational days 6 through 19. Abstract for TER91019. 1992. Final study report and appendix. http://ntp.niehs.nih.gov/testing/types/dev/abstracts/pages/ter91019/index.html. Accessed on 21 Sept 2014.
24. NTP (National Toxicology Program). Developmental toxicity evaluation of d-camphor (CAS No. 464-49-3) administered by gavage to New Zealand White (NZW) rabbits on gestational days 6 through 19. Abstract for TER91019. 1992. Final study report and appendix. http://ntp.niehs.nih.gov/testing/types/dev/abstracts/pages/ter91019/index.html. Accessed on 21 Sept 2014.
25. Blackmon WP, Cuny HB. Camphor poisoning; report of case occurring during pregnancy. JFMA. 1975;43(10):999–1000.
26. Jacobziner H, Raybin HW. Camphor poisoning. Arch Pediatr Adolesc Med. 1962;92:28–30.
27. Regg J, Hamilton R, Homel S, McCabe J. Camphorated oil intoxication in pregnancy: report of a case. Obstet Gynecol. 1965;25:255–8.
28. Creizel AE, Toth M. Birth weight, gestational age and medications during pregnancy. Int J Gynaecol Obstet. 1998;60(3):245–9.
29. Patel T, Ishiju Y, Yosipovitch G. Menthol: a refreshing look at this ancient compound. J Am Acad Dermatol. 2007;57(5):873–8.
30. Thorup I, Wurtzen G, Carstensen J, Olsen P. Short term toxicity study in rats dosed with pulegone and menthol. Toxicol Lett. 1983;19(3):207–10.
31. Food & Drug Research Labs Inc. Teratologic evaluation of FDA 71–57 (menthol natural Brazilian). 1973. http://www.inchem.org/documents/jeca/jecmono/v042je04.htm. Accessed on 21 Sept 2014.
32. Cosmetic Ingredient Review Expert Panel. Safety assessment of Salicylic Acid, Butylcyclo Salicylate, Calcium Salicylate, C12-15 Alkyl Salicylate, Capryloyl Salicylic Acid, Hexylcyclo Salicylate, Isocetyl Salicylate, Isodecyl Salicylate, Magnesium Salicylate, MEA-Salicylate, Ethylhexyl Salicylate, Potassium Salicylate, Methyl Salicylate, Myristyl Salicylate, Sodium Salicylate, TEA-Salicylate, and Tridecyl Salicylate. Int J Toxicol. 2003;22 Suppl 3:31–108.
33. Heng MC. Local necrosis and interstitial nephritis due to topical methyl salicylate and menthol. Cutis. 1987;39(3):642–4.
34. Davis JE. Are one or two dangerous? Methyl salicylate exposure in toddlers. J Emerg Med. 2007;32(1):163–9.
35. Mills PC, Cross SE. Regional differences in the in vitro penetration of methylsalicylate through equine skin. Vet J. 2007;173(1):57–61.
36. Wankany J, Takacs E. Experimental production of congenital malformations in rats by salicylate poisoning. Am J Pathol. 1959;35:1–15.
37. Overman DO, White JA. Comparative teratogenic effects of methyl salicylate in rats by salicylate poisoning. Am J Pathol. 1957;34:201–6.
38. Briggs GG, Freeman RK. Yaffe SIMD. Drugs in pregnancy and lactation for PDA: a reference guide to fetal and neonatal risk. Baltimore, MD: Lippincott Williams & Wilkins; 2002.
39. Daston GP, Rehnborg BF, Carver B, Rogers EH, Kavlock RJ. Functional teratogens of the rat kidney. I. Colchicine, dinoseb, and methyl salicylate. Fundam Appl Toxicol. 1988;11(3):381–400.
40. Infurna R, Beyer B, Twitty L, Koehler G, Daughtrey W. Evaluation of the dermal absorption and teratogenic potential of methyl salicylate in a petroleum based grease (Abstract). Teratology. 1990;41:566.

41. Lamb J. Reproductive toxicology. Methyl salicylate. Environ Health Perspect. 1997;105 Suppl 1:323–4.

42. Morra P, Barte WR, Walker SE, Lee SN, Bowles SK, Reeves RA. Serum concentrations of salicylic acid following topically applied salicylate derivatives. Ann Pharmacother. 1996;30(9):935–40.

43. Cohen M, Wolfe R, Mai T, Lewis A. A randomized, double blind, placebo controlled trial of a topical cream containing glucosamine sulfate, chondroitin sulfate, and camphor for osteoarthritis of the knee. J Rheumatol. 2003;30(3):523–8.

44. Pavelka K, Gatterova J, Olejareva M, Machacke S, Giacovelli G, Rovati LC. Glucosamine sulfate use and delay of progression of knee osteoarthritis: a 3-year, randomized, placebo-controlled, double-blind study. Arch Intern Med. 2002;162(18):2113–23.

45. Reginster JY, Deroisy R, Rovati LC, Alho E, Reginster JY, et al. BMC Complementary and Alternative Medicine. 2005;2):165

46. Deal CL, Moskowitz RW. Nutraceuticals as therapeutic agents in osteoarthritis. J Am Acad Dermatol. 1998;39(4):265–9.

47. Dreisinger N, Zane D, Etwaru K. A poisoning of topical importance. Pediatr Emerg Care. 2006;22(12):827–30.

48. Infurna R, Beyer B, Twitty L, Koehler G, Daughtrey W. Evaluation of the dermal absorption and teratogenic potential of methyl salicylate in a petroleum based grease (Abstract). Teratology. 1990;41:566.

49. Lamb J. Reproductive toxicology. Methyl salicylate. Environ Health Perspect. 1997;105 Suppl 1:323–4.

50. Morra P, Barte WR, Walker SE, Lee SN, Bowles SK, Reeves RA. Serum concentrations of salicylic acid following topically applied salicylate derivatives. Ann Pharmacother. 1996;30(9):935–40.

51. Bruyere O, Reginster JY. Glucosamine and chondroitin sulfate as therapeutic agents in osteoarthritis. J Am Acad Dermatol. 1998;39(4):265–9.

52. Reginster JY, Deroisy R, Rovati LC, Alho E, Reginster JY, et al. BMC Complementary and Alternative Medicine. 2005;2):165

53. Baumgartner C, Ruzicka T. Topical eucalyptus oil poisoning. Australas J Dermatol. 1998;39(4):265–9.

54. Pages N, Fournier G, Lee-Luyer F, Marques MC. Eucalyptus globus in mice. Plan Med Phyto. 1990;24:21

55. Dreisinger N, Zane D, Etwaru K. A poisoning of topical importance. Pediatr Emerg Care. 2006;22(12):827–30.

56. Pages N, Fournier G, Lee-Luyer F, Marques MC. Eucalyptus globus in mice. Plan Med Phyto. 1990;24:21

57. Siman CM, Eriksson UJ. Vitamin E decreases the occurrence of malformations in the offspring of diabetic rats. Diabetes. 1997;46(6):1054–61.

58. Al Deeib S, Al Moutaeny K, Arshaduddin M, Tarig M. Vitamin E decreases valproic acid induced neural tube defects in mice. Neurosci Lett. 2000;293(3):179–82.

59. Ray S, Bagchi D, Lim PM, Bagchi M, Gross SM, Kothari SC, et al. Acute and chronic effects of cineole and oxidative stress in embryonic and placental tissues of C57BL/J mice by vitamin E succinate and ellagic acid. Toxicology. 1997;124(1):27–37.

60. Al Deeib S, Al Moutaeny K, Arshaduddin M, Tarig M. Vitamin E decreases valproic acid induced neural tube defects in mice. Neurosci Lett. 2000;293(3):179–82.

61. Kappus H, Diplock AT. Tolerance and safety of vitamin E: a toxicological position report. Free Radic Biol Med. 1992;13(1):55–74.

62. Wentzel P, Eriksson UJ. Ethanol-induced fetal dysmorphogenesis in the mouse is diminished by high antioxidant capacity of the mother. Toxicol Sci. 2006;92(2):416–22.

63. Yamakoshi J, Saito M, Kataoka S, Kikuchi M. Safety evaluation of a novel IH636 grape seed proanthocyanidin extract. Res Commun Mol Pathol Pharmacol. 2001;109(3 83):165

64. Pages N, Fournier G, Lee-Luyer F, Marques MC. Eucalyptus globus in mice. Plan Med Phyto. 1990;24:21

65. Alsaad M, Fathia M, Al-Ammar R, Al-Hajri R, Al-Sulaiman A. Antioxidants in the treatment of severe pre-eclampsia: an explanatory randomised controlled trial. BJOG. 1997;104(6):896–9.

66. Boskovic R, Gargauln L, Oren D, Dylus J, Koren G. Pregnancy outcome following high doses of Vitamin E supplementation. Reprod Toxicol. 2005;20(1):85–8.

67. Pages N, Fournier G, Lee-Luyer F, Marques MC. Eucalyptus globus in mice. Plan Med Phyto. 1990;24:21

68. Pages N, Fournier G, Lee-Luyer F, Marques MC. Eucalyptus globus in mice. Plan Med Phyto. 1990;24:21

69. Tyajib-Abi TB, Zainuddin SL, Swaminathan D, Yaacob H. Efficacy of ‘Gamarden’ toothpaste on the healing of gingival tissues: a preliminary report. J Oral Sci. 2003;45(3):153–9.

70. Sood SV. Termination of pregnancy by the intrauterine insertion of Utus paste. BMJ. 1971;1(5757):315–7.

71. Kappus H, Diplock AT. Tolerance and safety of vitamin E: a toxicological position report. Free Radic Biol Med. 1992;13(1):55–74.

72. Alsaad M, Fathia M, Al-Ammar R, Al-Hajri R, Al-Sulaiman A. Antioxidants in the treatment of severe pre-eclampsia: an explanatory randomised controlled trial. BJOG. 1997;104(6):896–9.

73. Pages N, Fournier G, Lee-Luyer F, Marques MC. Eucalyptus globus in mice. Plan Med Phyto. 1990;24:21

74. Saw S. Termination of pregnancy by the intrauterine insertion of Utus paste. BMJ. 1971;1(5757):315–7.

75. Walker AH. Termination of pregnancy using utus paste. J R Soc Med. 1969;62(8):832.

76. Pages N, Fournier G, Lee-Luyer F, Marques MC. Eucalyptus globus in mice. Plan Med Phyto. 1990;24:21

77. Pages N, Fournier G, Lee-Luyer F, Marques MC. Eucalyptus globus in mice. Plan Med Phyto. 1990;24:21

78. Pages N, Fournier G, Lee-Luyer F, Marques MC. Eucalyptus globus in mice. Plan Med Phyto. 1990;24:21

79. Pages N, Fournier G, Lee-Luyer F, Marques MC. Eucalyptus globus in mice. Plan Med Phyto. 1990;24:21

80. Pages N, Fournier G, Lee-Luyer F, Marques MC. Eucalyptus globus in mice. Plan Med Phyto. 1990;24:21

81. Pages N, Fournier G, Lee-Luyer F, Marques MC. Eucalyptus globus in mice. Plan Med Phyto. 1990;24:21

82. Morrow DM, Rapaport MJ, Strick RA. Hypersensitivity to aloe. Arch Dermatol. 1979;85(1):163

83. Morrow DM, Rapaport MJ, Strick RA. Hypersensitivity to aloe. Arch Dermatol. 1979;85(1):163

84. Morrow DM, Rapaport MJ, Strick RA. Hypersensitivity to aloe. Arch Dermatol. 1979;85(1):163

85. Morrow DM, Rapaport MJ, Strick RA. Hypersensitivity to aloe. Arch Dermatol. 1979;85(1):163

86. Morrow DM, Rapaport MJ, Strick RA. Hypersensitivity to aloe. Arch Dermatol. 1979;85(1):163

87. Morrow DM, Rapaport MJ, Strick RA. Hypersensitivity to aloe. Arch Dermatol. 1979;85(1):163

88. Morrow DM, Rapaport MJ, Strick RA. Hypersensitivity to aloe. Arch Dermatol. 1979;85(1):163

89. Morrow DM, Rapaport MJ, Strick RA. Hypersensitivity to aloe. Arch Dermatol. 1979;85(1):163

90. Morrow DM, Rapaport MJ, Strick RA. Hypersensitivity to aloe. Arch Dermatol. 1979;85(1):163

91. Morrow DM, Rapaport MJ, Strick RA. Hypersensitivity to aloe. Arch Dermatol. 1979;85(1):163

92. Morrow DM, Rapaport MJ, Strick RA. Hypersensitivity to aloe. Arch Dermatol. 1979;85(1):163
93. Kulkarni R, Patki P, Jog V, Patwardhan B. Efficacy of an Ayurvedic formulation in rheumatoid arthritis: a double-blind, placebo-controlled, cross-over study. Indian J Pharmacol. 1992;24(2):98.

94. Werbach MR, Murray MT. Botanical influences on illness: a sourcebook of clinical research. Tarzana, CA: Third Line Press Inc; 1994.

95. Gupta I, Gupta V, Parihar A, Gupta S, Ludtke R, Safayhi H, et al. Effects of Boswellia serrata gum resin in patients with bronchial asthma: results of a double-blind, placebo-controlled, 6-week clinical study. Eur J Med Res. 1998;3(1):511–4.

96. Gupta I, Parihar A, Malhotra P, Singh GB, Ludtke R, Safayhi H, et al. Effects of Boswellia serrata gum resin in patients with ulcerative colitis. Eur J Med Res. 1997;2(1):37–43.

97. Singh GB, Ban S, Singh S. Toxicity and safety evaluation of boswellic acids. Phytomedicine. 1996;3(1):87–90.

98. Olin B, editor. Facts and Comparisons(R). St. Louis, MO: Wolters Kluwer Health Inc; 1996.

99. Claris Lifesciences Limited. Product-Information: Magnesium chloride hexahydrate IV solution. 2003. http://www.dailymed.nlm.nih.gov/dailymed/archives/fdaDrugInfo.cfm?archiveid=50173. Accessed 21 Sep 2014.

100. Briggs GG, Freeman RK, Yaffe SJMD. Drugs in pregnancy and lactation. Baltimore, MD: Lippincott Williams & Wilkins; 1998.