Atomistic Theory of Thermally Activated Magnetization Processes in Nd$_2$Fe$_{14}$B Permanent Magnet

Seiji MIYASHITA*, Masamichi NISHINO$, Yuta TOGA, Taichi HINOKIHARA, Ismail Enes UYSAL1, Takashi MIYAKE3, Hisazumi AKAI1, Satoshi HIROSAWA2 and Akimasa SAKUMA4

1ISSP, The University of Tokyo, Kashiwa, Japan.
2NIMS, Tsukuba, Japan.
3AIST, Japan.
4Tohoku University, Japan.

Received July 6, 2021; Revised August 21, 2021; Accepted August 24, 2021

ABSTRACT

For the practical use of magnets, particularly at high temperatures, the temperature dependence of magnetic properties is an important ingredient. To study the temperature dependence, methods of treating the thermal fluctuation causing the so-called activation phenomena must be established. To study finite-temperature properties quantitatively, we need atomistic energy information to calculate the canonical distribution. In the present review, we report our recent studies on the thermal properties of the Nd$_2$Fe$_{14}$B magnet and the methods of studying them. We first propose an atomistic Hamiltonian and show various thermodynamic properties, e.g., the temperature dependences of the magnetization showing a spin reorientation transition, the magnetic anisotropy energy, the domain wall profiles, the anisotropy of the exchange stiffness constant, and the spectrum of ferromagnetic resonance. The effects of the dipole-dipole interaction (DDI) in large grains are also presented. In addition to these equilibrium properties, we also study coercivity, which is the most important issue for magnets. The temperature dependence of the coercivity of a single grain was studied using the stochastic Landau-Lifshitz-Gilbert equation and also by the analysis of the free energy landscape, which was obtained by Monte Carlo simulation. It was found that the upper limit of coercivity at room temperature is about 3 T, which is significantly lower than the so-called theoretical coercivity given by a simple coherent rotation model. The coercivity of a polycrystalline magnet, i.e., an ensemble of grains, is expected to be reduced further by the effects of the grain boundary phase, which is also studied. Surface nucleation is a key ingredient in the domain wall depinning process. Finally, we study the effect of DDI among grains and also discuss the distribution of properties of grains from the viewpoint of first order reversal curve.

KEY WORDS

coercivity, thermal fluctuation, finite temperature, stochastic LLG equation, Monte Carlo method, dipole-dipole interaction

* Corresponding author, E-mail: miyashita-seiji@g.ecc.u-tokyo.ac.jp

Science and Technology of Advanced Materials (STAM), Vol. 22, No. 1, pp. 658-682 に掲載済みである。
永久磁石の性能に影響を与える重要な要素である。保磁力は本質的にグレインの構造と粒子径に依存するが、構造内の逆磁化の核形成と磁壁のデビジングメカニズムが保磁力に重要な役割を果たす。高湿度で高い保磁力を得るために、材料の選定や処理の方法が重要である。この観点から、有限温度での保磁力の定量的特性はよく理解されていない。

以前の研究では、温度の影響は、実験的または平均場解析によって得られた、温度線図から求められる。たとえば、交換ステフィネス定数$A(T)$および磁気異方性エネルギー$K(T)$によって与えられていた。しかしながら、有限温度での保磁力は、安定磁化状態の崩壊を伴う現象であり、磁化反転は熱拡散で発生するため、確率過程である。このような効果を定量的に研究するには、エントロピーの効果を考慮する必要があります。そのためには、温度を正確に処理する必要がある。熱平衡状態では、状態iの確率$P_i(t)$は、ポルツマン関数を使用した正準集団によって与えられる。

$$P_i(t) = \frac{1}{Z} e^{-\beta H_i(t)}, Z = \sum_{i=1}^{\infty} e^{-\beta H_i(t)}, \beta = \frac{1}{k_B T}$$

ここでH_iは系のハミルトニアンを表す。

連続体モデルなどでシステムの観察はハミルトニアンを使用する場合、状態の自由度の定義は複雑であり、上記の確率を適用することは困難である。つまり、$A(T)$や$K(T)$などの温度依存関数を持つ交換スピンを用いたマイクロモデルを構築することによって有限温度特性を研究する場合、追加のノイズを加え、熱拡散の効果を二重にカウントされる方が、温度の影響を適当に考慮するために、正準集団を用いた標準的な統計力学的手法を使用する必要がある。ポルツマン因子を、原子論的ハミルトニアンに入れる必要がある。これについては、2節で説明する。原子論的ハミルトニアンを使用することで、詳細な相関予測によるモンテカルロ（MC）法や確率論的ランダウ・リツツァ・ギルバート（STLLG）法によって熱効果を取り入れられる。後者では、散乱を考慮定理によって、特定の温度での熱平衡状態の実現が保証されている。

したがって、原子論的モデルを使用する必要があり、そのハミルトニアンは温度によって変化しない。系の格子が温度（膨張または収縮）によって変化し、ハミルトニアンのパラメータが変化する場合があるので、そのような場合、何らの追加の補完的対処法を導入しなければならない。ただし、本研究では、このような影響を無視できる場合に焦点を当てる。

本論文では、有限温度特性に関する最近の研究をレビューし、上記のように、材料の特性を研究するには、材料の原子論的ハミルトニアンが必要である。そこで、まず原子論的ハミルトニアンを具体的に構築する。新しい磁石の主相であるNdFe₅Bは、複雑な構造をしており、そのユニットセルには、Fig. 1(a)に示すように、68個の原子を持つ9つの異なるサイトが含まれる。各々、原子論的ハミルトニアンの決定は、最も洗練された第一原理計算でも困難であるが、2節で説明のように、既知の熱力学特性を再現するために、微視的パラメータの最新の知識を使用して原子ハミルトニアンを構築した。そのようにして得られたハミルトニアンを使用して、まず磁石の重要な特性としてNdFe₅B磁石の磁化、異方性エネルギーの温度依存性、また拘束MCシミュレーションを用いて自由エネルギーの方向の関数としての自由エネルギーの温度依存性からの磁化反転のしあい値磁場（保磁力）の温度依存性などを研究した。さらに結晶の異方性を反映した交換ステフィネス定数の方向依存性も研究した。

上記の記述の量に加え、原子論的モデルでは、磁石の微視的磁気構造、例えばドメイン（異方性）を生成することができる。たとえば、磁化のドメイン境界（磁壁）プロファイル、およびその他の温度依存性が調べられ、対応する実験結果がよく再現され、モデルの妥当性を確認した。磁化や磁壁の温度特性に関して原子モデルを用いた同様な研究は最近、Gongと著者によって報告された。26-28. そこでは、熱力学的量と実験的な連続体モデルを求める、それによって、上記で述べたステフィネス定数の方向依存性や、粒界相を持つシステムの保磁力をも求めている。

さらに原子論的モデルは、SLLGシミュレーションによって強磁性共鳴（FMR）のスペクトルを生成できる。さらに、室温での双極子-双極子相互作用（DDI）の影響を研究された。29.
磁石は多くのグレインで構成されており、磁力の近くの磁場下で、磁化の反転は、カスケードとして発生する。このプロセスは2つのプロセスに分類される。つまり、磁化反転の核形成とグレイン間の磁化反転の伝播（磁粒のデピサングと呼ばれる）である。磁化反転の全体的なプロセスは非常に複雑であり、そのような大きな系の原子論的シミュレーションでの研究是不可能である。

そのため、我々は最初にナノスケール体系の原子論的モデルにおける磁化反転現象を研究した。これらの磁化反転現象は、アレンジメントのナノメートル程度の磁区の核の出現（活性化体積133）によって支配される。このようにして得られた単一グレインの磁力は、与えられた温度での磁力の理論上の上限を与えるが、バルク磁石内の磁力はグレイン間の相互作用の影響によってさらに低くなる。磁力は磁石の固有の特性ではなく、核形成は欠陥で発生することが広く認められており、磁化の反転は、境界相での磁力のピングが重要である。このデピサングプロセスは、磁石グレインの表面核形成によって与えられる。この解析には、ナノサイズの反転からの情報が重要である。

式(1)を使用して計算できる上記の熱力学的量は対照的である。磁力を計算するための決定した理論式がないことに注意が必要である。磁力は、対向磁の磁場における準安定磁性状態の磁力を与え、熱ゆらぎのないT = 0で、この値の定義は対照的である。しかしながら、有限温度では、核形成によって確率的に緩和が発生し、緩和時間は動くする。このように、磁力は本質的に非平衡の現象であり、理論的に計算することはできない。磁力は現象論的に磁化と緩和時間が1秒程度になる磁場として定義される32-37。我々はこの問題に以下の方法で取り組む。

(1) 熱ゆらぎを組み込んだSLLG法による緩和のダインマスクを研究する23。このアプローチには、微視的分子シミュレーションの一般的な問題である次の問題がある。まず、緩和はLLG方程式の減衰定数αに依存するが、αを正確に知ることは困難である。さらに、原子論的な計算によって得られる最大緩和時間は制限されている。実際、Tの磁場でのスピン応力は10^17 sのオーダーであり、シミュレーションできる時間は最大数ナノ秒である。これらの困難により、緩和時間の定量的見解はこれまで困難であった。しかし、これらの困難を克服し、緩和時間1 sの小さい磁場の定的推定が可能であることが示された28。

(2) もう一つの方法は、有限温度での自由エネルギー障壁の観点から緩和現象へのアプローチである。最小エネルギー経路29を用いた自由エネルギー障壁に焦点を当てたいくつかの研究があり、準安定状態から安定状態への磁化の進化的経路に沿ったエネルギーが求められている。そこで用いる自由エネルギー関数には、温度に依存するパラメータが含まれる。そのため、磁化位の関数としての自由エネルギーの具体的な形が重要になる。これまでの研究では、温度に依存するパラメータを持つ磁化エネルギー関数がこの目的で使用されてきたが、これは熱ゆらぎを適切に表現できない可能性がある。そこで、我々は有限温度準安定状態を定量化的に研究する方法を開発し30。それを用いて、原子論的ハイミルトニアンからワンランダウ (Wang-Landau) 法31を用いて与えられた温度での磁化の関数としての自由エネルギーを求めた。PAWの具体的な形を用いて、磁活性化効果がある場合としない場合の磁力推定を行い、文献で紹介されている活性化体積の概念も明らかにした32,33,34。これらのアプローチにより、10 ~ 20 nmの立方体の形状をした単一グレインについて、室温での磁力は約3 Tと推定。推定する温度（-3 T）は磁力理論上の上限を与え、その値は、ゼロ温度の磁力と比較して非常に小さく、磁活性化効果の一種の実験の理論的推定の2kT/M(T)よりもずっと小さい。これで、Kronmüllerの指摘した理論値との不一致は磁気的な不均一性の存在が要因と考えられていたが、磁ゆらぎが、重要な要因の1つであることが明らかになった。

また、磁力のサイズ依存性についても検討した。有限温度では、熱ゆらぎが小さい値磁場を減少させる（超硬磁性の一種）。サイズが20 nm以上だと、このような減少が飽和することを確認でき、上記の見解は、数ピコメートルのグレインサイズまで本質的に有効である。ただし、グレインサイズが大きくならず、DDIによる減少が大きくなり、その依存性については、5ピコメートルである。グレインサイズがさらに大きくなると、DDIはグレイン内に多磁区構造の形成を誘発する43。このような系での核形成のメカニズムはノンサイズのグレインのメカニズムとは異なり、それを調べるための磁強度パターンのパラメータ（異方性エネルギー、DDI）への依存性を体系的に研究し、磁気パターンの状態図を取得した44。安定状態が多磁区構造であるこのような大きな系における均一磁化状態の準安定性を研究するために、磁力障壁プロセスに対する磁力エネルギー障壁を存在する磁区の磁力障壁の安定性と面を比較し、相図の一部の領域で準安定性の存在を明らかにした。また、均一に磁化された状態を破壊する核形成は、コーナーから発生するDDIがない場合には対照的に、DDI効果のために表面の中央で発生することも見つかった。

現実的な多結晶磁石、つまりグレインの集合体の磁力ではグレイン間の相互作用が重要な役割を果たす。ソフト磁性相のサドインチャ（ハード/ソフトノード/ハード）構造での磁粒の亀裂磁場からなる集積相の影響を研究した45,46。また、磁力に対する表面近傍の磁気異方性の影響を報告する47。磁力磁性を研究する場合、ミスAliamentの影響も重要である。Fujisaki等48は、LLG方程式を使用して磁力のアライメント依存性を研究し、磁場方向に対するコンドルスキー型一様1cosθの可能性を調べた。この問題は、Banco等49によって詳細に研究されている。ソフト磁石境界相を含めた影響は、温度依存パラメータを用いたマイクロマグネシシミュレーションによって研究されている50,51。さらに、グレインの集まり効果も重要である。磁力の分布を持つ独立したグレイン（ヒステリシス）の集合体は、いわ
Nd,Fe$_5$B系永久磁石における熱活性磁化過程の原子論的理論

ゆるPreisachモデル33によってモデル化される。各グレインは、それぞれのヒステリシス特性を持つ、その分布を磁石全体のFirst order reversal curve (FORC)34は関連付けられており、その分布はFORC図と呼ばれる。グレイン間の相互作用はFORC図の変化を引き起こし、FORC図は磁石の性質を分類するために用いられる35。そこで、磁覚特性のグレインが含まれているため、考古学において陶器を分類するためにも利用される36。グレイン間の相互作用の効果を研究するために、Preisachモデルの拡張が検討された37,38。

この論文は以下の節から構成される。第2節では、本論文で使用したモデルについて説明する。3節では、熱力学的特性と使用される方法を説明する。4節では、SLLGおよび自由エネルギー法によるナノグレインの磁束を測定するためのアプローチを説明する。5節では、DDIが関係する大きなグレインの保磁力を測定する。6節では、物理界と表面特性の影響を測定する。7節では、グレインの集合の保磁力を測定する。8節では、要約と展望を述べる。付録Aでは、ハミルトニアンのパラメータとして用いる交換結合と磁気モーメントについて簡単に説明する。

2 モデル

Nd磁石のモデルとして以下の原子論的ハミルトニアンを採用する39：

$$
\mathcal{H} = -\sum_{ij} 2J_{ij} s_i \cdot s_j - \sum_i D_i s_i^2 + \sum_{ij} B_{ij} \hat{O}_{ij} - h \sum_i S_i^z
$$

(2)

ここで、s_iはi番目のサイトでの古典的なスピンを示し、スピンの大きさ$|s_i|$はサイトのタイプによって異なる。Nd,Fe$_5$Bのユニットセル（Fig. 1 (a)）には、2種類のNdサイト、6種類のFeサイト、および2種類のBサイトがある。J_{ij}はi番目のサイトとj番目のサイトの交換相互作用、D_iはFe原子の磁気異方性定数。第3項は磁気異方性の結晶場（CEF）である。Nd原子のエネルギーであり、hは外部磁場である。希土類原子（イオン）のCEFは、次式で与えられる。

$$
\mathcal{H}_{\text{CEF}} = \sum_{lm} B_{lm} \hat{O}_{lm}^z, \quad B_{lm} = \Theta_{lm} \xi^{(l)}
$$

(3)

ここで、Θ_{lm}は、古典的なスピンを表したスティーブンス（Stevens）演算子で、たとえば、$\Theta_{ij} = 3J_{ij} - J_{ij}'$である。$\Theta_i$と$\xi^{(l)}$は、それぞれ、スティーブンス係数とCEFの球面調和関数の係数である。rは電子の待望であり、$\left< r \right>$は文献[61]で推定された電子波動関数の平均である。我々の研究では、対角演算子(m = 0)のみを使用して$L = 2, 4, 6$の項を採用している。この結晶場基は基底状態でのスピンの傾きを与える。

FeおよびB原子のサイト、s_iはi番目のサイトでの磁気モーメントを示すが、Nd原子の場合、s_iは原子価5dおよび6s電子のモーメントである。ゼーマンエネルギーの場合、i番目のサイトの磁気モーメントはs_iを与えられる。FeサイトとBサイトの場合は、s_iである。ただし、Ndの場合、s_iだけでなく、4f電子の磁気モーメントJ_iを含めることに、ここで、J_iは軌道モーメントLとスビンモーメントS_iからなり、スビン軌道相互作用（SOI）によって強磁性的に結合する。その大きさは$J_i = g_i \mu_B s_i$である。ここで、$g_i = 8/11$はLand 因子であり、$J = 9/2$である。s_iとJ_iは、Fig. 2に概略的に示されているように、バンドの法則によって強磁性的に結合する37。各Nd原子の合計モーメントは$S_i = s_i + J_i$であり、これは磁場との相互作用のとき生じる、交換相互作用は式(2)のように$J_i s_i s_i$の形で与えられる。FeとNdの間でのJ_iは反磁性的である。ここでは、実験データ39で求められている結晶場係数$\xi^{(l)}$の値を採用した。

Feの異方性については、単イオン異方性D_{ij}のみを考慮し、Miura等41によって計算された値を採用した。Bは磁気ハミルトニアンにはほとんど寄与しない。

Nd,Fe$_5$Bは変態磁性体であるが、ここでは、磁気相互作用をハイスペルクモデルの形で表現しており、相互作用は電子の変態磁性のため広く分布する。それに関連してはKorringa-Kohn-Rostoker (KKR)グリーン関数法42（Akai-KKR）を用いた第一原理計算によって得られたスビン間の交換エネルギーを採用した。スビン間の相互作用は、Fig. 1 (b)に示すように広く分布している。本研究では、r_{m}より遠く離れた相互作用をカットした。ほとんどの計算では、$r_{m} = 3.52 \, \text{Å}$までの相互作用を使用した。Akai-KKR法によって推定された磁気モーメントS_iと交換結合$J_i s_i s_i$のすべてにデータは、付録Aの簡単な説明とともに、補足資料1に記載した。
3 熱力学的性質

3.1 巨視的性質

3.1.1 磁化

まず、磁化の温度依存性を調べる。Nd 磁石は $T \approx 135$ K で スピン再配列 (SR) 転移を示すことが知られており、それ以下の温度では磁化は c 軸から傾いている。基底状態での傾きを与えるためには、異方性エネルギーが c 軸からゼロでない角度で最小値を持っている必要がある。そこで、Nd の CEF を確認するため、$J_0 = J_{c0} \cos \theta$ を式 (3) に代入すると、Nd 原子の 0 K での異方性エネルギーは、次のように表される。

$$E_i = K_i \sin^2 \theta + K_1 \sin \theta + K_2 \sin^2 \theta$$ (4)

ここで、$K_i = -3 \beta \gamma B_i - 4 \beta_1 B_1 - 16 \beta_2 B_2$ などであり、J_0 は正の定数である。

Yamada 等(20)によって求められた係數 $A_0 = 295.0 K a_0^2$、$A_1 = -12.3 K a_0^4$、および $A_2 = -1.5 K a_0^4$ (a₀はポーラ半径) を用いると最終の基底異方性エネルギー K_i は、$T = 0$ で $K_i < 0$ を満たす。ただし、$A_2 > 0$ であり、スティーブス系数 $\theta_i < 0$ であるため、$B_i < 0$ であるが、他の項 (B_1 および B_2 の項) の寄与により $K_i > 0$ となる。このポテンシャルは、$\theta = 0.2 \pi$ で最小値を示し、Fig. 3 に示すように、基底状態（ゼロ温度）で傾斜した磁化を引き起こす。

![Fig. 3 Anisotropy energy $E_i(\theta)$ for a Nd atom.](image)

Fig. 4 (a) は、磁化の z および x 成分の温度依存性を示す(20)。SR 転移は、実験での値 ($T \approx 315$ K) に近い遷移温度 $T_c \approx 135$ K で明らかに観察される。$T_c = 135$ K は 2 節の終わりで説明した相互作用の範囲の選択 r_{cut} に依存しない。この事実は、T_c 付近の低温では、異方性と短距離の強い相互作用の間の競合が関係していることを示している。強磁性相転移に関しては、基準温度は、r_{cut} に応じて、$T_c \approx 750$ ～ 870 K となる。

これらの値は、$T_c \approx 585$ K の実験値(20)と比べて少し過大評価されている。この違いは、計算で使用された交換定数に起因するため、必要に応じて交換定数の再スケーリングが必要になる。全体の特性は半定量的に現れており、熱ゆらぎの影響を研究する上で深刻な問題ではないので、以下のモデルを採用する。そのため、結果を実験結果と比較する場合、温度は基準温度でスケールしたものを使用する必要がある。

原子論的モデルを用いているので、原子固有の特性を個別に観察できる。たとえば、Fig. 4 (b) に示すように、Fe 原子と Nd 原子の磁化の温度依存性などである。この図に示すように、温度が上昇すると、Nd の磁化は Fe の磁化よりもはるかに速く減少する。この違いは相互作用の違いに起因すると考えられる。つまり、Nd と Fe の間の交換結合は小さく、Fe スピンは互いに強く結合している (Nd 原子間の交換定数は無視できる)。

3.1.2 自由エネルギーの角度依存性

異方性エネルギー $K(T)$ (式 (4)) の温度依存性を求めるのに、制約付きモンテカルロ (C-MC) 法を用いる。この方法では、全磁化 $M = (M_x, M_y, M_z)$ の方向は固定されている。与えられた角度 θ (c 軸と磁化の間の角度) での、磁化トルク τ を次の式で計算した。

$$T = \left(\sum_{i} \epsilon_i \times \frac{\partial F}{\partial M_i} \right)_{MC}$$ (5)

そしてそれを用いて、過剰自由エネルギー $\Delta F(\theta) = F(\theta) - F(0)$ を計算し、Fig. 5 (b) に示す。得られたトルクと自由エネルギーの角度依存性

![Fig. 4 (a) Temperature dependence of magnetizations. Circles and triangles denote M_i and M_{cut}, respectively. (b) Temperature dependence of magnetizations of Fe and Nd atoms. (From reference [23]: modified.)](image)

「粉末および粉末冶金」第 69 卷 Supplement
NdFe₁₄B 系永久磁石における熱活性磁化過程の原子論的理論

Fig. 5 (a) Temperature dependence of torque and excess free energy as functions of angle from the c-axis. (b) Temperature dependence of anisotropy constants \(K_1, K_2, \) and \(K_4 \). Open circles and squares show the corresponding values obtained experimentally for \(K_1 \) and \(K_2 \). (From reference [23]; modified.)

Fig. 6 (a) (top) Domain wall propagating along the a-axis (type I, Bloch-type wall), (bottom) domain wall propagating along the c-axis (type II, Néel-type wall). (b) (top left) \(M_z \) along the a-axis (type I) at 300 K. The unit of the vertical axis is \(\mu_B/\text{atom} \). (top right) \(M_{xy} \) along the a-axis (type I) at 300 K. (bottom left) \(M_z \) along the c-axis (type II) at 300 K. (bottom right) \(M_{xy} \) along the c-axis (type II) at 300 K. The analytical functions \(m_z(x) \) and \(m_y(x) \) are given by black lines. Here symbols denote \(M_z(M_{xy}) \) at different Monte Carlo steps. (From reference [25]; modified.)
3.3 交換スティフェルス定数の異方性

結晶の異方性のため、交換スティフェルスはFig. 7 (a)に示すように方向依存し、3.2節で説明したように磁壁の形状に違いが生じる。そこで、a軸に沿ったスティフェルス定数 $A_1(T)$ と c 軸に沿った $A_2(T)$ の依存性を調べたと。与えた温度でのスティフェルス定数を求めるために、次の2つの量：磁壁エネルギー $E_w(T)$ と異方性エネルギー $E_{\perp}(T, \theta)$ の Ramsauer-Klein-Suhl (RKS) と用いる。前者は、連続体モデルで次のように表される。

$$ E_w(T) = 2\sqrt{A(T)} \int_0^\theta \sqrt{E_{\perp}(T, \theta)} \, d\theta $$

(10)

$E_{\perp}(T)$ は、原子論的スピンモデルの磁壁自由エネルギー $\mathcal{F}_{\perp}(T)$ に等しいと見なす。これは

$$ \mathcal{F}_{\perp}(T) = T \int_0^\theta d\theta'$$

(11)

によって与えられる。ここで、$E_w(T)$ は磁壁形成の内部エネルギーであり、平行周期条件と逆平行周期境界条件を持つシステムの内部エネルギーの差を定義される。異方性エネルギー $E_{\perp}(T, \theta)$ は、3.1.2節で説明したC-MCによって計算した。このようにして得られた a 軸 ($A_1(T)$) および c 軸 ($A_2(T)$) に沿ったスティフェルス定数の温度依存性をFig. 7 (b) に示す。

最近、Gong等は同様のスティフェルス定数の方向依存性を求める、Nd 磁石と磁像相の間の界面交換結合強度に研究を拡張していると。

最近、スティフェルス定数の異方性が単結晶サンプルのスピン波測定によって評価されたと。そこでこの異方性は高温で上記の結果よりも小さい。この違いは、交換スティフェルス定数の定義方法や長距離交換相互作用の存在などが原因である可能性があり、将来明らかにする必要がある。

このことから、我々の方法は一般的である。他の物質にも適用できる。たとえば、磁石 SmCo$_5$ と SmFe$_5$ についても同様の計算が実行されている。前者では $A_1(T) - A_2(T)$、後者では $A_1(T) - A_2(T)$ であり、NdFe$_3$ と異なる異方性特性をもつことがわかっている。

3.4 強磁性共鳴（FMR）

磁化のダイナミクスは、LLG 方程式によってシミュレートされる。熱の影響を考慮するために、白色ガウス過程で与えるノイズ磁場 ξ_t を LLG 方程式に追加した Stochastic LLG（SLLG）方程式を用いる。

$$ \frac{d}{dt} S_i = -\gamma \left(H_i^{\text{eff}} + \xi_t - \frac{\alpha_i}{1+\alpha_i} S_i \right) $$

(12)

ここで、$\alpha_i = i$ 番目のサイトでの減衰係数。γ は磁気回転定数、そして

$$ H_i^{\text{eff}} = \frac{\partial H_i}{\partial S_i} $$

では、交換相互作用と異方性項による有効場である。減衰定数 γ には一般的に受け入れられている値 $\alpha_i = 0.1$ を採用した。

ノイズ磁場 ξ_t は

$$ \left\langle \xi_t(t) \right\rangle = 0, \quad \left\langle \xi_t(t) \xi_s(t') \right\rangle = 2\tilde{D}_i \delta_{ij} \delta(t-t') $$

(13)

の関係を満たす。ノイズの強さ \tilde{D}_i は、振動散逸関係によって温度に関係している。

$$ \tilde{D}_i = \frac{\alpha_i k_b T}{S_i} $$

(14)

物理ノイズの自己相関時間は有限であり、自己相関時間がゼロの白色ガウスノイズを、短い相関ノイズの極端なケースである。実際、白色ガウスノイズには非常に高い周波数成分が含まれており、有限温度で量子力学的に抑制される必要がある。原理としては、熱浴の正しいエネルギーベクトルを使用する必要があるが、現在の SLLG は、フォッカーブランク方程式の確率分布のダイナミクスを実現しており分布は特定の温度での熱平衡分布になると考えられる。したがって、そのようなプロセスの最も単純なモデルとして、動的モデルの現在のスキームを採用する。

久保公式を用いて、平衡状態にある磁化 $M_0 = (M_x, M_y, M_z)$ の時間相関関数 $C(x, y, t)$ からゼロ外部磁場での FMR 共鳴周波数の温度依存性を求めた。FMR スペクトル $f(T)$ は,
ここで、H_{anisot} は、最小モデルの異方性項からの寄与である。
歳差運動の周波数は次式で与えられる。

$$ f = \frac{\gamma h_{\text{eff}}}{2\pi}, \quad h_{\text{eff}} = |H_{\text{eff}}^{\text{eff}}| $$ (19)

$D_1 = 0$ の場合、共鳴周波数は $f_0 = \gamma h_{\text{eff}}/(2\pi) = 2D_1 M_0/(2\pi)$ で与えられる。したがって、f_0 は M_0 に比例する。これは通常の FMR の従来の温度依存性である。
一方、$D_2 \neq 0$ の場合、状況は異なる。

$$ \frac{\partial E_0}{\partial \theta} \bigg|_{\theta = \theta_0} = -h_{\text{eff}} \sin \theta_0 $$ (20)

の関係において

$$ h_{\text{eff}} = 0 $$ (21)

となることがわかる。なぜならば、傾いたスピンの状況では

$$ \frac{\partial E_0}{\partial \theta} \bigg|_{\theta = \theta_0} = 0, \quad \sin \theta_0 \neq 0 $$ (22)

が成り立つからである。これから、重要な結論が導かれる。

$$ f = \frac{\gamma h_{\text{eff}}}{2\pi} = 0 \quad \text{for} \quad \theta = \theta_0 \neq 0 $$ (23)

この計算では、平面内の異方性、つまり $m \neq 0$ のステープスの計算子を考慮されていない。ゼロ以外の m の項が存在する場合には、有効場は軸から外れ、共鳴周波数はゼロでなくななる。ただし、ゼロ以外の項が小さいため、SR 転移温度付近の共鳴周波数は大幅に低下する。この結論（Fig. 8）は、Nd 磁石の特徴の 1 つである。

4 ナノクレーンの保磁力

保磁力は準安定磁化が存在するしきい値磁場であり、その様子は Fig. 9 に概略的に示されている。ゼロ温度での保磁力は、自由エネルギー障壁（バリア）が消える磁場になる。しかし、有限温度では、Fig. 9 (b) に示すように、熱ゆらぎによってバリアの飛び越えが起こる。バリアがない場合（Fig. 9 (a)）、磁化は決定論的にスムーズに緩和する。一方、Fig. 9 (b) の場合、緩和は大きな熱ゆらぎによって引き起こされ、ポアソン過程の一様として確率的に発生し、そのため緩和時間が長くなる。

磁石は小さな磁気グレインで構成されており、磁化の反転はグレインの反転のシーケンスである。したがって、基本的なプロセスとして、最初に単一のグレインでそのプロセス

Fig. 8 Temperature dependence of resonance frequency f_0 for the Nd magnet model. (From reference [29]; modified.)

Fig. 9 (a) Deterministic process. (b) Stochastic process by barrier-crossing dynamics.
Fig. 10 (a) Snapshots of the magnetization reversal from the all-down spin state under a reversed field ($h = 4.0$ [T]). Red and blue arrows denote down-spin and up-spin states, respectively. (b) Examples of time evolutions of magnetization relaxation curves at (left) $h = 8$ T and (right) $h = 4.1$ T. $a = 0.1$. (From reference [38]: modified.)

を研究した。ゼロ温度では、反転は Stoner-Wohlfarth プロセスとし起る。しかし、有限温度では、熱ゆらぎの効果が重要な役割を果たす。この効果を定量的に研究するために、2つの相補的な方法を用いた。すなわち、磁化のダイナミクスの直接的な SLGG シミュレーションと、MC シミュレーションによる磁化の関数としての自由エネルギー $F(m)$ の分析である。

4.1 磁化のダイナミクス

SLGG 方程式 (12) を用いて、磁化のダイナミクスを調べた。Fig. 10 (a) に、逆磁場 $h = 4.0$ T で $a = 0.1$ でのダウンスピン状態からの磁化反転のスナップショットを示す。この磁化は確率的領域にある。ここでは、核形成がコーナーから発生していることがわかる。そこから反転領域は、最初に ab 平面で Bloch 磁壁によって拡大し、その後、Neél タイプの磁壁によって c 軸の方向に成長する。この傾向は a の値とは無関係であることもわかった。このプロセスは、a 軸と c 軸に沿った効果的交換相互作用が c 軸に沿ったものよりも大きいという事実に基づくが、(23)

Fig. 10 (b) に、$a = 0.1$ で、$h = 8$ T (Fig. 10 (左)) と $h = 4.1$ T (Fig. 10 (右)) での磁化の時間依存性 $m(t) = \sum |S_i| / N$ を示す。

準安定磁化には、決定論的と確率論的な2つの典型的なタイプがある。前者のタイプは強い磁場で発生し、多核生成 Avrami プロセスによって特徴づけられる。磁化の12 サンプルの例を Fig. 10 (b) (左) に示す。ここでは、磁化の時間の分布が小さくなっている。一方、後のタイプは弱い磁場で発生し、その磁化が単一の核成長が速くなる。この場合、磁化の時間の分布は、Fig. 10 (b)（右）に示すように非常に広くなる。図では、まだいくつかのサンプルが磁化しておらず、平均磁化時間を求めることは全てのサンプル磁化するまで不可能である。2つのケースの端点は、磁状時間が非常に急速に増加し、この領域は準安定性的実際的な終点と見なすことができる。このような点は動的スピノーダルポイントと呼ばれる。

後者（単一の核成長が速く）の場合、磁化時間の分布が大きいため、平均磁化時間の評価が困難になる。この困難を克服するために、磁化時間を評価するための統計的手法として反転確率 p と磁化時間 t の間の統計的関係を導入した。単位時間内に p の確率でイベント（磁化）が発生した場合、そのイベントが期間 $[t_i, t_i + \Delta t]$ で初めて発生する確率は $p e^{-p \Delta t}$ であるので平均磁化時間 $\langle t \rangle$ は次式で与えられる。

$$\langle t \rangle = \int_0^\infty p e^{-p \Delta t} dt = \frac{1}{p} \quad \text{(24)}$$

イベントが期間 $[0, t]$ で発生する確率 $P(t)$ は $P(t) = 1 - e^{-p}$ である。そこで、N 回のシミュレーションを実行すると、反転していないサンプルの数は $N - N_{\text{hit}}(t) = N e^{-p}$ となる。この関係から、p および t は $N(V_s(t)/N)$ の関数に対する傾きから求められる。Fig. 11 に $N(V_s(t)/N)$ の時間依存性を示す。その勾配から t を見積もりることができる。この方法では、ダイナミクスが単一の核成長プロセスによって支配される時間の領域（文献（直接部分）を知ることができる。この領域の評価はサンプルの素朴な平均をとる場合には困難である。

Fig. 12 (a) に、さまざまな a 値での磁化時間の磁場依存性を示す。磁場が $h = 4.2$ T を下回ると磁化時間は急速に増加する。大きな磁化時間の場合、アレジウス型の単一の指数関数的な衰減が観測される。そこで、磁化時間を二重指数フィッティングの形で補正項を含めて外挿する。

$$\tau(h) = A e^{-ah} + B e^{-bh} = A e^{-ah}(1 + Ce^{-ah}) \quad \text{(25)}$$

ここで、$C = B/A$ および $d = h - a$ である。Fig. 12 (b) に、式 (25) でフィットしたものを、さまざまな a の値に対してプロットした。各線は $t = 1$ の交点が磁化力を与える。$a = 0.1, 0.15,$ および 0.2 での磁化力はそれぞれ $h = 3.2, 3.0, および 3.0$ であり、磁化力は次のように評価される。

$$h \approx 3 \, \text{T} \quad \text{(26)}$$

この値は次の節で説明する MC 法で求められた推定値 $h_c = 3.3 \, \text{T}[38]$ に近い。Fig. 12 (b) の破線は MC 法によるデータによるとである。SLGG 法のシミュレーション時間は限られており、1秒よりもはるかに短いものの、磁化は単一の核成長プロセスによって支配されるため、$	au(h)$ (式 (25)) を使用し加磁力の推定は有効に働く。
4.2 モンテカルロ法

4.2.1 磁化の関数としての自由エネルギー

与えられた温度 T と磁場 h での自由エネルギーは次式で与えられる。

$$ F(T,H) = -k_B \ln Z(T,H), \quad Z(T,H) = \text{Tr} e^{-\beta H -\beta H S_i^z} \quad (27) $$

ここで, H_S は磁場のないハミルトニアン, S_i^z はi番目のサイトでのスピン. $\sum_i S_i^z$ は全磁化である. 磁化を M に固定すると

$$ F(T,H;M) = -k_B \ln Z(T,H;M), \quad Z(T,H;M) = \text{Tr} e^{-\beta H -\beta H S_i^z} \quad (28) $$

システムが磁化 M を持っている確率は次式で与えられる。

$$ P(M) = \frac{Z(T,H;M)}{Z(T,H)} \quad (29) $$

したがって, $F(T,H;M)$ は, M の分布関数から

$$ F(T,H;M) - F(T,H;0) = -k_B \ln \frac{P(M)}{P(0)} \quad (30) $$

として求められる. 原則として, 分布はMCシミュレーションを通じて M のヒストグラムから取得できる. しかし, 大規模なシステムの場合, 比率 $P(M)/P(0)$ はe^xの依存性をもつ. ここで, a は$O(1)$の定数である. 通常のMCシミュレーションでは, $P(M)$ が非常に小さい状態は生成されない. したがって, M の全範囲で$P(M)$ を取得することは事実上不可能である. WangとLandauは, この困難克服の方法を提案している[31]. この方法を使用して, $H=0$ の場合に$P(M)$, つまり$F(T,0;M)$を求め, それから$F(T,H;M)$は次関係によって簡単に求められる。

$$ F(T,H;M) = F(T,H;0) - HM \quad (31) $$

Fig. 13 (左) に, $F(T,H;M)$ をいくつかの磁場について示す. 自由エネルギー障壁 F_0, Fig. 13 (右) に示すように定義される. いくつかのサイズの自由エネルギー障壁 $F_0(H)$ の場依存性を Fig. 14 に示す. ここで, $F(T,H;M)$ のサイズ依存性が$L>20$ nmで飽和することが確認できより大きなサイズのケースを研究するのに十分な大きさであることがわかる. ここでは, H_L を, F_0 がゼロになり磁化が不安定になる磁場として定義する. この磁場では, 縮和時間はゼロである. 有限温度では, 厳定状態は熱ゆらぎで縮和する可能性がある. アレニウスモデルを使用して, 1秒あたりの縮和率を縮和時間 τ を次のように表す。

$$ r = N_{\text{contact}} e^{-\alpha}, \quad \tau = \frac{1}{r} = \frac{\alpha}{N_{\text{contact}}} \quad (32) $$

ここで, N_{contact} は, 1秒間の熱浴との接触頻度であり, 通常は10^5として与えられる. したがって, 1秒の縮和時間の場
合成の自由エネルギー障壁は

\[F_n = k_n T \ln(10^{11}) = 25.3 k_B T \] \hspace{1cm} (33)

となる。この値を与える磁場が、1秒の緩和時間の保磁力をと
なる。これを熱的に活性化された保磁力 \(H_t \) と呼ぶことにする。

このようにして得られた異なる温度での \(H_t \) と \(H_b \) は、それ
ぞれ赤と青の丸印でFig 15にプロットした。この図では、
周囲環境条件のシステムで \(H_t \) として求めた保磁力 \(H_b \) を、破
線でプロットされている。計算された温度範囲で、\(H_t \) が磁
気異方性常数 \(H_b = 2k_B M_s \) とは同じ値をとる。ここで、\(\kappa \)
は磁気異方性定数^32,33および \(M_s \) は、特定の温度での飽和磁化
である。この図には、焼結磁石^34と、Nd-Cu合金粒界拡散磁
石^35もプロットしている。ナノサイズのグレイン内ではDDI
大きな影響は与えないが、他のグレインからのDDIの影
響は反磁界として考えられるべきであり、反磁界 \(-N_s M_s \) は、
DDIの効果を外部からの一様な場として扱われる。このこ
では、反磁界的サイズと形状の依存性^33を具体的に考慮してい
ないが、反磁界係数は \(N_s = 0.5 \sim 1.0 \) の範囲であると考えられ
る。この緩磁効果の寄与を考慮に入れた \(H_t \) は、グレイ
ンがかなり分離されている熱間加工磁石の振る舞いとよく一
致している。

保磁力 \(H_b \) の温度依存性は、Kronmüller方程式として知ら
れる以下の形で表される^33,40。

\[H_b = a H_t - H_s - N_s M_s = a'H_t - N_s M_s \] \hspace{1cm} (34)

これは、保磁力が単純に予想される \(H_b = N_s M_s \) からどれだけ
減少するかを表している。最初の形では、\(H_b = H_t - H_s \) は熱
磁場に劣化しないが、パラメータ \(a \) は \(H_b / H_s \) で与えられるが、
2番目の形では、すべての熱効果がパラメータ \(a' = H_s / H_b \) に
含まれている。ここで \(a \) のLLG方程式の減衰係数ではなくい
ことに注意したい。我々のアプローチで \(a \) と \(H_b \) の温度
依存性を具体的に求めることができる。

Fig. 15の挿入図にそれらの温度依存性を示す。Fig. 15の
緑色の線で表した焼結多結晶磁石について、Kronmüllerと
Durstは、室温付近で測定された磁気特性から現象論的に減
衰係数を \(\alpha_{\text{exp}} = 0.89 \sim 0.93 \) と推定している。これは私たちの
得た値に近い。

4.2.2 活性化体積

次に、「活性化体積」という考え方によって導入された熱
活性化（核形成）のメカニズムについて考察する^32,33,40。\(\Delta M \) は、
自由エネルギーが極小値をとるときの磁化の値 \(M = M_c \) と極
大値をとるときの磁化 \(M = M_t \) の間の磁化の差。つまり \(\Delta M = M_t - M_c \) を表す（Fig. 13（右）を参照）。
活性化体積は

\[V = \frac{1}{\mu_0 M} \frac{\partial \mu}{\partial H} \]

によって定義されている。\(F_0 \)を微分

\[F_0(H) = F(M_c, H) - F(M_c, 0) = F(M_c, 0) - \mu_0 H(M_c - M_0) \]

することにより、式(5)が

\[V = \frac{\Delta M}{M_0} \]

関係を与えがいる。ここで、\(M_0 \)は \(H \)の関数であるため、\(F(M_0, 0) \)は \(H \)に依存するが、\(M = M_0 \)で \(dF/dM = 0 \)であるため、これらの項からの寄与はゼロである。

エネルギー障壁が \(H \)に線形依存していると仮定すると、つまり、次のように負荷される公式で \(n = 1 \)とすれば

\[F_0 = \left(1 - \frac{H}{H_0} \right)^n \]

熱活性化効果について広く使用されている現象論的方程式:

\[H' = \frac{25.3k_B T}{\mu_0 M_0 V} \]

が得られる(5)。ここで、\(V \)は \(H = H_0 \)での \(V \)である。Fig. 16で \(H \)と \(H' \)の温度依存性を比較する。両者には定性的に似た傾向が見られる。\(H \)と \(H' \)の違いは、高温側で顕著になる。これは、活性化体積と \(n \)が一定ではないためである。

5 大きなゲインの保磁力

強磁性体では一部の磁化が現れるため、DDI

\[V_{\text{DDI}}(s, r) = D \left(\frac{s - r}{r} \right) ^2 \left(\frac{s - r}{r} \right) (s - r) \]

は重要な効果を持つ。大きな系では一部の磁化が現れるため、DDIは長距離の相互作用であるため、シュミレーションの計算コストはスピン数の2乗 \(N^2 \)とともに増加する。この困難を克服するためにはさまざまな方法が提案されているが、今考えている物質のように大きなユニットセルをもつ場合にはあまり効率的ではない。たとえば、高速フーリエ変換（FFT）を使用する方法では、ユニットセルに68個の原子を含む系では、フーリエ空間に68個のモードが必要である。確率的カット

オフ（SCO）法が代替案として提案されている(33)(34)。SCO法は、スイッチングと呼ばれる手順によって相互作用の選択を行う。選択手順は、詳細に挙げたとおりである。したがって、シミュレーションの定常状態は、元のモデルの平衡状態と同じであることが保証されている。

これにより、DDIが使用する3次元システムの場合、システム内のスピン数を \(N \)とすると、1回のモンテカルロステップを \(O(N^2 \log N) \)の時間で計算できる。

従来のSCO法は、複雑なユニットセルを持つ系では手数が面倒になる。

この図のシュミレーションでは、ウォーカーのアルゴリズム(33)を用いた修正SCO法（MSCO）を開発した。Fig. 17で、計算時間が \(O(N^2) \)から \(O(N \log N) \)に減少し、MSCOが従来のSCO法よりも小さな係数を持つことを示す。

5.1 ナノゲインの保磁力に対するDDIの影響

これまで、DDIができない場合に保磁力を研究してきた。システムのサイズが大きくなると、DDIが保磁力を決定する重要な要素になる。この小節では、自由エネルギーの方法を使用してナノゲインの保磁力に対するDDIの影響を調べる。複数の磁区が現れるより大きなシミュレーションに対するDDIの影響を5.2節で調べる。

系の角から始まる磁生成が異常になる場合には、しつい磁場はサイズに依存しない。しかし、有限温度では、超常磁性によってしつい磁場が減少し、サイズとともにしつい値が増加する。これにより、磁化が20 nmを超えると、超常磁性の影響がなくなりFig. 18 (a)の青丸で示すように、しつい磁場が飽和することを確認した。

DDIがある場合ない場合のしつい値磁場を保磁力としてFig. 18 (a)に示す。DDIが保磁力を低下させることをはっきりとわかる。Fig. 18 (b)で、この結果をシミュレーションの関数として示す。そこで、文献で得られたデータ(37)(38)が黑丸
Fig. 18 (a) Size dependence of coercivity with and without DDI. Blue and red circles denote the thermally activated coercivity with and without DDI, respectively. (b) Size dependence of coercivity (black circles) taken from literatures87-90 adding to the data in (a). Above the dotted line, the system tends to have a magnetic multidomain structure.

Fig. 19 (a) Magnetic structures obtained by the thermal-quench process (A) for various values of anisotropies and DDI for systems of 64 × 64 at \(T = 0.3 T_c \), where \(T_c \) is the critical temperature of the bulk system. Out-of-plane component (top panels) and the in-plane horizontal component (bottom panel) are exhibited using the color code given in Fig. 20. (b) Magnetic structures obtained by the field-quench process (B) from the out-of-plane ferromagnetic state.

でプロットされている。グレインの直線寸法の対数として保磁力が低下する傾向があることがわかる。Fig. 18 (a) で得られたデータも同様にプロットした。この図から超常磁性のためには、保磁力の最大点が有限温度でのグレインサイズの関数として存在することがわかる。

5.2 複数の磁区を持つシステムの保磁力

より大きなグレインの場合、一様な強磁性状態の安定を定めると、マルチドメイン磁気構造が現れる。このような大規模なシステムを、準安定で均一な強磁性状態が存在する可能性がある。簡略化されたモデルを使用してこの問題を調べた。

\[H = - \sum_{ij} J_{ij} s_i \cdot s_j - \sum L \langle s \rangle - \sum_{ijkl} V_{ijkl} \langle s \rangle \] \hspace{2cm} (41)

特徴的な磁気空洞のパラメータ依存性をみるため、様々な異方性定数 \(K \), DDI \(D \), およびシステムの厚さ \(L \) の系を自由境界条件で調えた。いろいろな厚さ \(L \) の系の (KJ, DJ) 磁気プロファイル相図を求めた。そこでは 5 個の典型的な磁気相が見られる：面外強磁性体、面内強磁性体、渦、マルチドメイン、および傾斜マルチドメイン、\(L = 10 \) の例を Fig. 19 に示す。

Fig. 18 (a) 是示した。シミュレーションを高温でのランダムスピン配位から始め、段階的に温度を下げ、熱消磁プロセスに対応する定常状態をとる熱クエンチプロセス。

（B）高磁場で得られた飽和強磁性状態から磁場を切り、シス템の緩和させる磁場クエンチプロセス。これは残留プロセスに相当する。

Fig. 19 は、熱急冷プロセスによって得られる状態はマルチドメインである一部のパラメータ領域で、強磁性状態の準安定のままであることを示している。

この現象は、かなり大きなグレインにおいても保磁力を与える可能性を示している。準安定な強磁性状態は \(D \) が小さい値に達すると、崩壊する。Fig. 20 に、崩壊後の構造を示す。そこでは、磁化の核形成は角ではなく平面内で始まり、核形成がコーナーから発生するナノスケールシステムの場合とは著しく対比的をなす。

6 境界相の影響

Nd_{2}Fe_{14}B 磁石は、ハード磁性相成分 (Nd_{2}Fe_{14}B) からなるグレインで構成され、各グレインは境界相で覆われている24,31,34,39。したがって、境界相が前節で研究したグレインの保磁力にどのように影響するか研究することが重要となる。
Nd₂Fe₁₄B系永久磁石における熱活性磁化過程の原子論的理論

Fig. 20 Nucleation pattern just after the collapse of out-of-plane ferromagnetic state. The spin direction (Sₓ, Sᵧ, Sᵣ) is coded in the manner that (Sₓ, Sᵧ) is given by color, e.g., (0.1) is red, and Sᵣ is coded by brightness of the color, i.e., the radius in the color code denotes Sᵣ from −1 (center) to 1 (edge). (From reference [44]: modified.)

Fig. 21 (a) Models with open boundary conditions in which the soft magnetic phase is placed on (001) surface (model A), and on (100) surface (model B), of the hard magnetic phase. (b) (left) Coercivities without DDI of models A and B as a function of soft phase thickness s₁. (right) Parts of hysteresis loops for the models A and B with four different thicknesses s₁. (From reference [24]: modified.)
Fig. 22 Systems of two bulk hard magnets (regions I(left) and III(right)) and a boundary soft magnet (region II(middle)). (a) system A, in which a domain wall runs along the a-axis (Bloch wall), (b) system B, in which a domain wall runs along the c-axis (Néel wall). The lower crystal structure is a view from the b-(a-) axis for system A (B). (From reference [51]: modified.)

Fig. 23 (a) Threshold fields for nucleation from (+ + +) to (+ − +) (circles) and from (+ − +) to (− − −) (triangles) for Bloch and Néel domain walls at 300 K. (b) Threshold field for depinning from (+ − −) to (− − −) for Bloch (squares) and Néel (crosses) domain walls. Here, the temperature is 300 K, and the b- (a-) axis for system A (B). (From reference [51]: modified.)
Fig. 25 (b) Nd2Fe14B

Nd-Fe14B 系永久磁石における熱活性磁化過程の原子論的理論

Fig. 25 (a) Surface modification of the c-plane with n layers. (b) n dependencies of the threshold fields in cases (1) - (3) of surface modification (see the text) for the (001) surface at $T = 0.46T_C$. (From reference [52]: modified.)
テロンと呼ばれる。大きな正の磁場で飽和状態（すべてのヒステロンが上向きに磁化）から磁場を減らしていくときの磁化プロセスを考える。その過程で、各ヒステロンは各 H_i で反転し、磁化は磁場とともに変化する。磁場 H_i で、磁場の減少を止め、そこから増加した場合、磁場がそのグレイン H_i に達するまで、反転したヒステロンは下向き状態のままになる。したがって、H_i からの逆プロセスでの総磁化 $M(H, H_i)$ は、H_i に依存するヒステリシスを示す。これは、FORC (First order reversal curve) と呼ばれる。

ヒステロンが独立している場合、ヒステロンのアンサンプルは Preisach モデルと呼ばれる。そこで、H_i と H の分布関数 $P(H_i, H)$ は、次の関係によって $M(H, H_i)$ から得られる。

$$P(H_i, H) = \frac{\partial^2 M(H, H_i)}{\partial H \partial H_i}$$

(42)

グレイン間の相互作用がこの分布にどのように影響するかを研究することは興味深い問題である。相互作用の影響は、いわゆる moving Preisach モデルとして平均場理論解析の範囲内で調べられているが、我々はこの依存関係を、拡張 Preisach モデル（相互作用する Preisach モデル）を作ることで研究を進めている。そこで、グレインの配向、サイズ、および形状の分布の考慮が必要になる。これについては別の機会に報告する。

8 まとめと考察

原子論的モデルを用いることによって、基になる現象の微視的特性に関する研究をレビューしてきた。特に、空間の材料の磁気的性質を説明する原子論的ハミルトニアン (式 (2)) を作成し、そこに Nd 原子の原子内電子構造 (Fig. 2) や原子間の交換相互作用を具体的に設定した。次に、様々な熱平衡状態での量子的精度を求める。次に、確率的 LLG 法 (Fig. 10) や Wang-Laudau MC アルゴリズムによる自由エネルギーの形状 (Fig. 13) を用い、ナノ粒子の磁化の温度依存性を定量的に求めた (Fig. 15)。そこでは、磁化が磁場による保磁力の幅の大きい低下を示された。そこで得られた値は、与えられた温度での保磁力の上限とみなされる。偶々のグレインの磁化反転が実現的にも観察されており、これは、磁化観測に対する熱ゆらぎの影響が現実的な問題であることを示す。DDIの効果を、新しく開発された SCO法によって研究した。また、5.2 節ではマルチドメイン構造を示す大きなグレインにおける保磁力のメカニズムも議論した。このように、マイクロスケールからナノスケールまでの保磁力研究を進めてきた。

最終的な目標は、巨大磁気スクリーンの保磁力の研究である。磁石の場合は、「巨大磁的」には大きなサイズを意味するのではない。実際に、システムの単純な拡張は、上記のようにマルチドメイン状態を引き起こす。巨大な磁石は、グレインの集合体として形成され、その集合体の保磁力を研究するには、グレイン間の相互作用の強さを考慮に入れる必要がある。そのために、6.1 節で、ソフト磁性体からなる格子状の影響を調べ、6.2 節で、サンドイッチ (ハード/ソフト/ハード) 構造での核形成とデビニングのしきい値磁場の温度依存性も調べた。さらに、6.3 節では、表面のいくつかの異なる磁化状態を変えることにより、表面磁化の効果を研究し、そのような変化が磁化にどのような影響を与えるかを明らかにした。DDI 間の相互作用に関連するこれら的情報を用いて、7 節で、磁石の特性を与える FORC ダイアグラムに対する相互作用の影響を研究するために、Preisach モデルを拡張して議論した。

8.1 いくつかのスケールでの保磁力の見通し

いわゆるマルチスケールの視点から研究をまとめてみる。今回のレビューで示したように、保磁力の研究にはさまざまな尺度が重要である。磁石の主な物理的起源は、異方性エネルギーと交換エネルギーであり、これは、電子スケール (〜1 A) で第一原理計算によって研究され、2 節で現在のモデルについて紹介した。次のステップは、単一のグレインのスケール (〜20 nm) である。保磁力の単一の小さなグレインの保磁力は、このレビューで紹介した研究で初めて定量化の要求かされる。そこでわかったように、単純な小さなシステムでも、熱ゆらぎによる減少はかなり大きい。より大きなグレインでは、DDI が一気に磁化された状態を不安定にし、多磁化（迷路磁化）構造を生成する。実際に、磁化は 100 nm を超えるサイズのグレインで観察されており、これは焼結磁石のグレインのサイズ（通常はマイクロメートル程度）より小さい。しかし、焼結磁石は依然として保磁力を示す。このような場合の保磁力に関する研究も紹介した。この問題は、将来、より注目深く研究する必要がある。後に、巨視的なスケールでの保磁力、つまりグレインの集合体である磁石を考慮する必要がある。この観点では、DDI や隣接するサイトとの相互作用が保磁力に重要な役割を果たす。DDI の効果は反磁場効果として研究されてきたが、DDI の特有な形態のために、効果はそれほど単純ではない。つまり、スピニの相対位置に応じて、DDI は負および正の磁場を生成する。隣接するサイトとの相互作用の効果は、壁のエネルギーに関連して議論されており、多くの文献がある(54,106-107)。この現象は 6 節で概説した。このスケールでは、すべての影響を微視的に研究することは困難である。そこで、原子の第一原理アプローチを含む境界状の影響に関する研究の組み合わせ(108-109) と、相互作用する Preisach モデルなどのアンサンブル効果に関する研究を進め、磁石の保磁力を理解する必要がある。

最後に、数値計算にについて述べる。今回の研究では熱効果を適切に研究するために、原子論的モデルに対して SLLG 法、自由エネルギー地形法、および修正 SCO 法を用いた。現在の計算能力では、50 nm のサイズまでの原子論的モデルを使用できる。これは、単一のグレインまたはいくつかのグレインを含むことができる範囲である。さらなる研究のために、微視化モデルを導入する必要がある。本研究の原子論的モデルと呼ばれるマイクロマグネティックシミュレーション（LLG 方程式）で使用される連続磁化モデルとの関係は重要な問題である。3.3 節で紹介したように、特定の温度での交換スティーフネス定数と異方性エネルギーを取得することにより、連続磁化モデルを作ることができる。しかし、
Appendix A 本研究で用いた

NdFe₅₀B の交換定数と磁気モーメント

今回の研究では Akai-KKR（MACHIKANEYAMA）によって取得された交換パラメータを用いた。この方法では、室温での実験格子定数を用いるリヒテンシュタイン法で交換定数を求める。具体的な交換定数のリストは元論文に付録資料に与えた。そのリストの「Atom positions」の最初の列はユニットセル内の原子に付けた番号であり、次の3つの列は原子の位置を示す。最後の2列は各原子の炭素とスピノーモーメント（μ_B）を示している。「Exchange data」では、スピンの大きさとその間の交換定数を次のように与えている。最初の列（bond）は、結合に付けた番号で、2列目と3列目は、結合によって接続される原子番号（atom1, atom2）である。次2の列（cell）は、atom2が存在するユニットセルの位置を示す。たとえば、(0.0000 0.0000 -1.000) は、spin2がatom1が存在するメソッドセルの下のユニットセルにあることを意味する。最後の2列には原子間の距離と交換相互作用がmeV単位で示されている。

文献
1) M. Sagawa, S. Hiroawa: J. Mater. Res., 3 (1988) 45-54.
2) J. F. Herbst, J. J. Croat, F. E. Pinkerton, et al.: Phys. Rev. B, 29 (1984) 4176-4187(R).
3) S. Hiroawa, Y. Matsuura, H. Yamamoto, et al.: J. Appl. Phys., 24 (1985) L803-L805.
4) A. V. Andreve, A. V. Deryagin, N. V. Kudrevatokh, et al.: Sov. Phys. JETP, 63 (1986) 608-612.
5) H. Kronmüller: Phys. Status Solidi B, 144 (1987) 385-396. H. Kronmüller, K. D. Durst, M. Sagawa: J. Magn. Magn. Mater., 74 (1988) 291-302.
6) J. F. Herbst, Rev. Mod. Phys., 63 (1991) 819.
7) S. Hiroawa, Y. Matsuura, H. Yamamoto, et al.: J. Appl. Phys., 59 (1986) 873-879.
8) O. Yamada, H. Tokuhara, F. Ono, et al.: J. Magn. Magn. Mater., 54 (1986) 585-586. O. Yamada, Y. Ohtsu, F. Ono, et al.: J. Magn. Magn. Mater., 70 (1987) 322-324.
9) N. V. Mushnikov, P. B. Terent’ev, E. V. Rosenfel’d: The Physics of Metals and Metallography, 103 (2007) 39-50.
10) X. C. Kou, R. Grössinger, G. Hilscher, et al.: Phys. Rev. B, 54 (1996) 6421-6429.
24) Y. Toga, M. Nishino, S. Miyashita, et al.: Phys. Rev. B, 154 (1996) 71-82.
23) Z. D. Zhang, X. C. Kou, F. R. de Boer, et al.: J. Alloys Compd., 274 (1998) 274-277.
22) C. Chacon, O. Isnard, S. Miraglia: J. Magn. Magn. Mater., 283 (1999) 320-326.
21) S. Miyashita, M. Nishino, Y. Toga, et al.: Scripta Materialia, 154 (2018) 259-265.
20) M. Nishino, S. Miyashita: Phys. Rev. B, 35 (2015) 064001(1-11).
19) T. Akiya, J. Liu, a, H. Sepehri-Amin, et al.: Scripta Materialia, 34 (2015) 072402(1-5).
18) H. Kronmüller M. H, F ähnle: Micromagnetism and the Microstructure of Ferromagnetic Solids. Cambridge University Press (2003).
17) H. Sepehri-Amin, T. Okhubo, S. Nagashima, et al.: Acta Materialia, 61 (2013) 6622-6634.
16) T. Akiya, J. Liu, a, H. Sepehri-Amin, et al.: Scripta Materialia, 81 (2014) 48-51.
15) S. Miyashita, M. Nishino, Y. Toga: Adv. Nat. Sci.: Nanosci. Nanotechnol., 8 (2017) 031002(1-12).
14) J. L. García-Palacios, F. J. Lázaro: Phys. Rev. B, 33 (2015) 124411(1-9).
13) Q. Gong, M. Yi, B.-X. Xu: Phys. Rev Materials: 3 (2019) 084406(1-13).
12) Q. Gong, M. Yi, R. F. L. Evans, et al.: Phys. Rev. B, 95 (2017) 094429(1-7).
11) Q. Gong, M. Yi, R. F. L. Evans, et al.: Mater. Res. Lett., 8 (2020) 89-96.
10) M. Nishino, S. Miyashita: Phys. Rev. B, 100 (2019) 020403(R)(1-5).
9) T. Hinokihara, M. Nishino, Y. Toga, et al.: Phys. Rev. B, 97 (2018) 104427(1-8).
8) D. Givord, M. Rossignol, V. M. T. S. Barthem: J. Magn. Magn. Mater., 258-259 (2003) 1-5.
7) P. Gaunt: J. Appl. Phys., 59 (1986) 4129-4132.
6) D. Givord, Q. Lu, M. F. Rossignol, et al.: J. Magn. Magn. Mater., 83 (1990) 183-188.
5) D. Givord, A. Lienard, P. Tenaud, et al.: J. Magn. Magn. Mater., 67 (1987) L281-L285.
4) S. Bance, J. Fischbacher, A. Kovacs A, et al.: JOM., 67 (2015) 1350-1356.
3) J. Fischbacher, A. Kovacs, H. Oezelt, et al.: Appl. Phys. Lett., 111 (2017) 072402(1-5).
2) J. Fischbacher, A. Kovacs, M. Gusenbauer, et al.: J. Phys. D: Appl. Phys., 51 (2018) 193002(1-17).
1) M. Nishino, I. E. Uysal, T. Hinokihara, et al.: Phys. Rev. B, 102 (2020) 020413(R)(1-5).

59) E. Della Torre: IEEE Trans. Audio Electroacoust., 14 (1966) 86-92. C. I. Dobrota, A. Stancu: J. Phys. Condens. Matter., 25 (2013) 035302 (1-6).
60) S. Miyashita, in preparation.
61) A. J. Freeman, R. E. Watson: Phys. Rev., 127 (1962) 2058-2075.
62) T. Miyake, H. Akai: J. Phys. Soc. Jpn., 87 (2018) 041009 (1-10).
63) M. Yamada, H. Kato, H. Yamamoto, et al.: Phys. Rev. B., (1988) 620-633.
64) Y. Miura, H. Tsuchiura, T. Yoshioka: J. Appl. Phys., 115 (2014) 17A765 (1-3).
65) A. I. Liechtenstein, M. I. Katsnelson, V. P. Antropov, et al.: J. Magn. Magn. Mater., 67 (1987) 65-74.
66) P. Asselin, R. F. L. Evans, J. Barker, et al.: Phys. Rev. B., 82 (2010) 054415.
67) R. Sasaki, D. Miura, A. Sakuma: Appl. Phys. Exp., 8 (2015) 043004 (1-4). D. Miura, R. Sasaki, A. Sakuma: Appl. Phys. Exp., 8 (2015) 115003 (1-4).
68) K. D. Durst, H. Kronmüller: J. Magn. Magn. Mater., 59 (1986) 86-94.
69) A. Meo, R. Chepulskyy, D. Apalkov, et al.: J. Appl. Phys., 128 (2020) 073905 (1-8).
70) N. Ishino, I. E. Uysal, T. Hinokihara, S. Miyashita: AIP Advances, 11 (2021) 025102 (1-7).
71) Y. Zhu, M. R. McCartney: J. Appl. Phys., 84 (1998) 3267-3272. S. J. Lloyd, J. C. Loudon, P. A. Midgley: Journal of Microscopy., 207 (2002) 118-128. M. Beleggia, M. A. Schofield, Y. Zhu, et al.: J. Magn. Magn. Mater., 310 (2007) 2696-2698.
72) S. Chikazumi: Physics of Ferromagnetism, International Series of Monographs on Physics, Oxford University Press, Oxford, New York, (1997).
73) D. Hinzke, U. Nowak, R. W. Chantrell, et al.: Appl. Phys. Lett., 90 (2007) 082507 (1-3).
74) J. P. Bick, K. Suzuki, E. P. Gilbert, et al.: Appl. Phys. Lett., 103 (2013) 122402 (1-4).
75) K. Ono, N. Inami, K. Saito, et al.: J. Appl. Phys., 115 (2014) 17A714 (1-3).
76) H. Nasr, C. Rado, G. Lapertot, et al.: Phys. Rev. B., 102 (2020) 014443.
77) Y. Toga, S. Doi.: unpublished. (2019)
78) T. Fukazawa, H. Akai, Y. Hirashima, et al.: J. Mag. Mag. Mat., 469 (2019) 296-301.
79) R. Kubo, K. Tomita: J. Phys. Soc. Jpn., 9 (1954) 888-919. R. Kubo: J. Phys. Soc. Jpn., 12 (1957) 570-586. S. Miyashita, T. Yoshiho, A. Ogashahara: J. Phys. Soc. Jpn., 68 (1999) 655-661. H. Ikeuchi, H. De Raedt, S. Bertaina, et al.: Phys. Rev. B., 95 (2017) 024402 (1-10).
80) E. C. Stoner, E. P. Wohlfarth: Phil. Trans. R. Soc. A., 240 (1948) 599-642.
81) P. A. Rikvold, H. Tomita, S. Miyashita, et al.: Rev. E., 49 (1994) 5080-5090.
82) S. Hirosawa, K. Tokuhara, Y. Matsuura, et al.: J. Magn. Magn. Mater., 61 (1986) 363-369.
83) M. Grönefeld, H. Kronmüller: J. Magn. Magn. Mater., 80 (1989) 223-228.
84) A. W. Appel: SIAM J. Sci. Stat. Comput., 6 (1985) 85-103. J. Barnes, P. Hut: Nature (London), 324 (1986) 446-449. J. Carrier, L. Greengard, V. Rokhlin: SIAM J. Sci. Stat. Comput., 9 (1988) 669686. J. Makino: J. Comput. Phys., 87 (1990) 148-160. T. Darden, D. York, L. Pedersen: J. Chem. Phys., 98 (1993) 10089-10092. U. Essmann, L. Perera, M. L. Berkowitz, et al.: Chem. Phys., 103 (1995) 8577-8593. E. Luijten, H. W. Blöte: Int. J. Mod. Phys. C., 06 (1995) 359-370. D. Hinzke, U. Nowak: J. Magn. Magn. Mater., 221 (2000) 365-372.
85) C. H. Mak: J. Chem. Phys., 122 (2005) 214110 (1-6). M. Sasaki, F. Matsuura: J. Phys. Soc. Jpn., 77 (2008) 024004 (1-5). M. Sasaki: Phys. Rev. E., 82 (2010) 031118 (1-10).
86) K. Fukui, S. Todo: J. Comput. Phys., 228 (2009) 2629-2642.
87) S. Bance, B. Seebacher, T. Schrefl, et al.: Appl. Phys., 116 (2014) 233903 (1-7).
88) R. Ramesh, G. Thomas, B. M. Ma: J. Appl. Phys., 64 (1988) 6416-6423.
89) K. Uestuen, M. Katter, W. Rodewald: IEEE Trans. Magn., 42 (2000) 2897-2899.
90) T. Fukada, M. Matsuura, R. Goto, et al.: Mater. Trans., 53 (2012) 19671971 (2012).
91) S. C. Westmoreland, C. Skelland, T. Shoji, et al.: J. Appl. Phys., 127 (2020) 133901 (1-7).
92) R. Friedberg, D. I. Paul: Phys. Rev. Lett., 34 (1975) 1234-1237.
93) A. L. Wysocki, V. P. Antropov: J. Magn. Magn. Mater., 428 (2017) 274-286.
94) T. Pramanik, A. Roy, R. Dey, et al.: J. Magn. Magn. Mater., 437 (2017) 72-77.
95) Y. Feng, J. Liu, T. Klein, et al.: J. Appl. Phys., 122 (2017) 123901 (1-8).
96) T. Nakamura, A. Yasui, Y. Kotani, et al.: Appl. Phys. Lett., 105 (2024) 202040 (1-4).
97) H. Naser, C. Rado, G. Lapertot, et al.: Phys. Rev. B., 102 (2020) 014443.
98) Y. Toga, S. Doi.: unpublished. (2019)
99) T. Kubo, K. Tomita: J. Phys. Soc. Jpn., 9 (1954) 888-919. R. Kubo: J. Phys. Soc. Jpn., 12 (1957) 570-586. S. Miyashita, T. Yoshiho, A. Ogashahara: J. Phys. Soc. Jpn., 68 (1999) 655-661. H. Ikeuchi, H. De Raedt, S. Bertaina, et al.: Phys. Rev. B., 95 (2017) 024402 (1-10).
100) E. C. Stoner, E. P. Wohlfarth: Phil. Trans. R. Soc. A., 240 (1948) 599-642.
102) S. Hirosawa, K. Tokuhara, M. Sagawa: Jpn. J. Appl. Phys., 26 (1987) L1359-1361.
103) T. Fukasawa, S. Hirosawa: J. Appl. Phys., 104 (2008) 013911 (1-6).
104) M. Nishino, S. Miyashita in preparation.
105) T. Yomogita, N. Kikuchi, S. Okamoto, et al.: AIP Advance, 9 (2019) 125052(1-4). T. Yomogita, S. Okamoto, N. Kikuchi, et al.: Acta Mater. (2020) to be published.
106) J. Lui, H. Seperi-Amin, T. Ohkubo, et al.: Acta Mater., 61 (2013) 5387-5399.
107) J. Li, X. Tang, H. Seperi-Amin, et al.: Acta Mater., 199 (2020) 288-296.
108) N. Tsuji, H. Okazaki, W. Ueno, et al.: Acta Mater., 154 (2018) 25-32.
109) Y. Gohda: Science and Technology of Advanced Materials, 22:1 (2021) 113-123, DOI: 10.1080/14686996.2020.1859339.
110) T. Hinokihara, Y. Okuyama, M. Sasaki, et al.: arXiv:1811.00237.
111) AkaiKKR (Machikaneyama). http://kkr.issp.u-tokyo.ac.jp.
112) S. Miyashita, M. Nishino, Y. Toga, et al. Science and Technology of Advanced Materials to be published, (2021) DOI: 10.1080/14686996.2021.1942197.