A note on adjusting R^2 for using with cross-validation

Indrė Žliobaitė∗1,2 and Nikolaj Tatti2

1Dept. of Geosciences and Geography, University of Helsinki, Finland
2Helsinki Institute for Information Technology HIIT, Aalto University, Finland

May 6, 2016

Abstract

We show how to adjust the coefficient of determination (R^2) when used for measuring predictive accuracy via leave-one-out cross-validation.

1 Background

The coefficient of determination, denoted as R^2, is commonly used in evaluating the performance of predictive models, particularly in life sciences. It indicates what proportion of variance in the target variable is explained by model predictions. R^2 can be seen as a normalized version of the mean squared error. Normalization is such that $R^2 = 0$ is equivalent to the performance of a naive baseline always predicting a constant value, equal to the mean of the target variable. $R^2 < 0$ means that the performance is worse than the naive baseline. $R^2 = 1$ is the ideal prediction.

Given a dataset of n points R^2 is computed as

$$R^2 = 1 - \frac{\sum_n (y_i - \hat{y}_i)^2}{\sum_n (y_i - \bar{y})^2}, \quad (1)$$

where \hat{y}_i is the prediction for y_i, and \bar{y} is the average value of y_i. Traditionally R^2 is computed over all data points used for model fitting.

The naive baseline is a prediction strategy which does not use any model, but simply always predicts a constant value, equal to the mean of the target variable, that is, $\hat{y}_i = \bar{y}$. It follows from Eq. (1) that then for the naive predictor $R^2 = 0$.

Cross-validation is a standard procedure commonly used in machine learning for assessing out-of-sample performance of a predictive model. The idea is to partition data into k chunks at random, leave one chunk out from model calibration, use that chunk for testing model performance, and continue the same procedure with all the chunks. Leave-one-out cross-validation (LOOCV) is used when sample size is particularly small, then the test set consists of one data point at a time.

When cross-validation is used, the naive baseline that always predicts a constant value, the average value of the outputs in the training set, gives $R^2 < 0$ if computed according to Eq. (1). This happens due to an improper normalization: the denominator in Eq. (1) uses \bar{y}, and \bar{y} is computed over the whole dataset, and not just the training data.

2 Cross-validated R^2

To correct this, we define

$$R^2_{cv} = 1 - \frac{\sum_n (y_i - \bar{y}_i)^2}{\sum_n (y_i - \bar{y})^2}, \quad (2)$$

where \bar{y}_i is the average of outputs without y_i,

$$\bar{y}_i = \frac{1}{n-1} \sum_{j=1, j\neq i}^n y_j \quad .$$

That is, \bar{y}_i is the naive predictor based on the training data, solely.

We show that adjusted R^2_{cv} for leave-one-out cross-validation can be expressed as

$$R^2_{cv} = \frac{R^2 - R^2_{naive}}{1 - R^2_{naive}}, \quad (2)$$

∗indre.zliobaite@helsinki.fi
Figure 1: The standard R^2 score for the naive constant predictor.

where R^2 is measured in a standard way as in Eq. (1), and R^2_{naive} is the result of the naive constant predictor, and is equal to

$$R^2_{naive} = 1 - \frac{n^2}{(n-1)^2},$$ \hspace{1cm} (3)

where n is the number of data points.

Figure 1 plots the standard R^2 score for the naive predictor, as per Eq. (3).

The remaining part of the paper describes mathematical proof for this adjustment. We will show that R^2_{naive} does not depend on the variance of the target variable y, only depends on the size of the dataset n.

3 How this works

Let us define R^2_{naive} as the R^2 score for naive predictor based on training data,

$$R^2_{naive} = 1 - \frac{\sum(y_i - \bar{y}_i)^2}{\sum(y_i - \bar{y})^2}.$$ \hspace{1cm} (1)

Proposition 1. Let R^2 be the R^2 score of the predictor. The adjusted R^2 is equal to

$$R^2_{cv} = \frac{R^2 - R^2_{naive}}{1 - R^2_{naive}},$$ \hspace{1cm} (4)

where the leave-one-out cross-validated R^2_{naive} for the constant prediction is

$$R^2_{naive} = 1 - \left(\frac{n}{n-1} \right)^2.$$ \hspace{1cm} (2)

where n is the number of data points.

Proof. Let us write

$$A = \sum(y_i - \bar{y}_i)^2, \quad B = \sum(y_i - \bar{y})^2$$

and

$$C = \sum(y_i - \bar{y})^2.$$ \hspace{1cm} (3)

Note that $R^2 = 1 - A/B$ and $R^2_{cv} = 1 - A/C$.

Our first step is to show that $C = \alpha B$, where $\alpha = n^2/(n-1)^2$. Note that A, B and C do not change if we translate $\{y_i\}$ by a constant; we can assume that $n\bar{y} = \sum_{i=1}^{n} y_i = 0$.

This immediately implies

$$\bar{y}_i = \frac{1}{n - 1} \sum_{j=1, j\neq i}^{n} y_j = \frac{-y_i}{n - 1} + n\bar{y} = \frac{-y_i}{n - 1}.$$ \hspace{1cm} (4)

The ith error term of C is

$$(y_i - \bar{y}_i)^2 = \left(y_i + \frac{y_i}{n - 1} \right)^2 = \left(\frac{y_i n}{n - 1} \right)^2 = \alpha y_i^2.$$ \hspace{1cm} (5)

This leads to

$$C = \alpha \sum_{i=1}^{n} y_i^2 = \alpha B.$$ \hspace{1cm} (6)

Finally,

$$\frac{R^2 - R^2_{naive}}{1 - R^2_{naive}} = \frac{R^2 - 1 + \alpha}{\alpha} = \frac{1 - A/B - 1 + \alpha}{\alpha} = 1 - \frac{A}{\alpha B} = 1 - \frac{A}{C} = R^2_{cv},$$ \hspace{1cm} (7)

which concludes the proof.

References

[1] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. *The Elements of Statistical Learning: Data Mining, Inference, and Prediction*. Springer, 2009.