Review Article

A Matrix Metalloproteinase-1 Polymorphism, \textit{MMP1}–1607 (1G>2G), Is Associated with Increased Cancer Risk: A Meta-Analysis Including 21,327 Patients

Zhonghan Zhou\textregistered, Xiaocheng Ma\textregistered, Fangming Wang\textregistered, Lijiang Sun\textregistered, and Guiming Zhang\textregistered

Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China

Correspondence should be addressed to Lijiang Sun; slijiang999@126.com and Guiming Zhang; zhangguiming9@126.com

Received 27 June 2018; Revised 23 September 2018; Accepted 26 September 2018; Published 2 December 2018

1. Introduction

Single-nucleotide polymorphisms (SNP) are variations in single nucleotides that occur at specific positions in the genome and influence protein structure, gene splicing, transcription factor binding, messenger RNA degradation, or sequences of noncoding RNAs [1]. SNPs reportedly contribute to interindividual variability in susceptibility to common diseases such as cancer.

Matrix metalloproteinases (MMPs) are a group of proteolytic enzymes that can degrade extracellular matrix components, thereby affecting various physiological and pathological processes such as embryonic development, wound healing, arthritis, atherosclerosis, and tumor progression [2]. Increasing evidence shows that MMPs play significant roles in cancer development, including cell growth, differentiation, apoptosis, angiogenesis, invasion, and metastasis [3].

MMP1, a member of the MMP family, can degrade interstitial collagen types I, II, and III, clearing a path for cancer cells to invade matrix barriers and migrate through tissue stroma [4]. The \textit{MMP1} gene is located at 11q22.3, and MMP1 expression can be regulated by the \textit{MMP1} promoter. The gene polymorphism \textit{MMP1}–1607 (1G>2G) or rs1799750 in the \textit{MMP1} promoter has been associated with increased susceptibility for various cancers [5, 6]. However, the results were controversial because of variations in cancer types and patient demographics. Therefore, we conducted this meta-analysis to further explore the association between \textit{MMP1}–1607 (1G>2G) polymorphism and cancer susceptibility.

2. Materials and Methods

2.1. Identification and Eligibility of Studies. We conducted a systematic search of literature published until December...
2017 that investigated the association of MMP1–1607 (1G>2G) polymorphism with cancer risks, through PubMed, Embase, ISI Web of Knowledge, and Google Scholar, using the terms “Matrix metalloproteinase-1 or MMP-1 or rs1799750,” “polymorphism or variation or mutation or SNP,” and “cancer or carcinoma or tumor or neoplasm.” Only case–control studies with sufficient genotype distribution data to calculate odds ratios (ORs) with 95% confidence interval (CIs) in different gene models were included. Letters, case reports, animal studies, and reviews were excluded. When overlapping populations were included in different articles, only the publication with the largest sample size was selected.

2.2. Data Extraction. Two investigators independently reviewed the articles to exclude irrelevant and overlapping studies. The following data were extracted from eligible publications: first author, published year, cancer type, country, ethnicity, control source, genotyping method, and genotype distribution. Any disagreements were resolved by discussion or by consultation with another investigator.

2.3. Statistical Analysis. The meta-analysis was conducted using SATAT (version 13.0). The Hardy–Weinberg equilibrium (HWE) for control groups was checked by the chi-square goodness-of-fit test \(P > 0.05 \). The associations between MMP1–1607 (1G>2G) polymorphism and cancer risks were calculated by OR and 95% CI with the following models to avoid assuming only one suboptimal genetic model: an allele model (2G vs. 1G), a dominant model (2G2G/1G2G vs. 1G1G), and a recessive model (2G2G vs. 1G2G/1G1G). Subgroup analyses were performed by cancer type and ethnicity.

The heterogeneity of studies was assessed by \(Q \) test using \(P \) value and \(I^2 \) value. A fixed-effects model was adopted when \(Q \) test indicated a lack of heterogeneity \((P > 0.05); \) otherwise, a random-effects model was used. We considered 0–40% of \(I^2 \) value to indicate low heterogeneity, 30–60% to indicate moderate heterogeneity, 50–90% to indicate substantial heterogeneity, and 75–100% to indicate considerable heterogeneity. Publication bias was measured with funnel plots and Harbord’s and Peter’s tests.

3. Results

3.1. Characteristics of Eligible Studies. The study selection procedure is shown in Figure 1. We included 77 articles with 21,327 cancer patients and 23,245 controls in this meta-
Author	Year	Cancer type	Country	Ethnicity	Control	Genotype	N of case	N of control	HWE (P)
Kanamori et al. [7]	1999	Ovarian cancer	Japan	Asian	HB	PCR-RFLP	163	150	0.033
Biondi et al. [8]	2000	Other cancer	Italy	Caucasian	HB	TaqMan	160	164	0.813
Nishioka et al. [9]	2000	Endometrial cancer	Japan	Asian	HB	Sequencing	100	150	0.033
Ye et al. [10]	2001	Cutaneous melanoma	England	Caucasian	HB	TaqMan	139	132	0.849
Zhu et al. [11]	2001	Lung cancer	America	Caucasian	HB	PCR-RFLP	456	451	0.028
Ghiairi et al. [12]	2002	Breast cancer	America	Caucasian	HB	Sequencing	86	110	0.652
Hinoda et al. [13]	2002	Colorectal cancer	Japan	Asian	PB	PCR-RFLP	101	127	0.949
Hirata et al. [14]	2003	Renal cell cancer	Japan	Asian	HB	Sequencing	119	210	0.993
Nishioka et al. [15]	2003	Endometrial cancer	Japan	Asian	HB	Sequencing	109	150	0.033
Wenham et al. [16]	2003	Ovarian cancer	America	Caucasian	PB	TaqMan	311	387	0.536
Hashimoto et al. [17]	2004	Head and neck cancer	Japan	Asian	HB	PCR-RFLP	140	223	0.852
Hirata et al. [18]	2004	Renal cell cancer	Japan	Asian	PB	PCR-RFLP	156	230	0.871
Lin et al. [19]	2004	Oral cancer	Taiwan	Asian	HB	Sequencing	121	147	0.336
Matsumura et al. [20]	2004	Gastric cancer	Japan	Asian	HB	PCR-RFLP	215	166	0.432
Zinnozdohoué et al. [21]	2004	Head and neck cancer	France	Caucasian	HB	PCR-RFLP	125	249	0.978
Fang et al. [22]	2005	Lung cancer	China	Asian	HB	PCR-RFLP	243	350	0.000
Jin et al. [23]	2005	Gastric cancer	China	Asian	HB	PCR-RFLP	417	350	0.000
Ju et al. [24]	2005	Cervical cancer	Korea	Asian	HB	TaqMan	232	332	0.695
Lai et al. [25]	2005	Cervical cancer	Taiwan	Asian	HB	Other	197	197	1.000
McCready et al. [26]	2005	Glioblastoma	America	Caucasian	HB	PCR-RFLP	81	57	0.916
Cao and Li [27]	2006	Oral cancer	China	Asian	HB	PCR-RFLP	96	120	0.657
Elander et al. [28]	2006	Colorectal cancer	Sweden	Caucasian	HB	Other	127	208	0.918
Kader et al. [29]	2006	Bladder cancer	America	Caucasian	HB	TaqMan	556	555	0.565
Li et al. [30]	2006	Ovarian cancer	China	Asian	HB	PCR-RFLP	122	151	0.008
Liëvre et al. [31]	2006	Colorectal cancer	France	Caucasian	HB	Other	591	561	0.900
O-charoenrat et al. [32]	2006	Head and neck cancer	Thailand	Asian	HB	PCR-RFLP	300	300	0.988
Su et al. [33]	2006	Lung cancer	America	Caucasian	PB	TaqMan	2014	1323	0.597
Sugimoto et al. [34]	2006	Endometrial cancer	Japan	Asian	HB	PCR-RFLP	107	213	0.768
Xu et al. [35]	2006	Colorectal cancer	China	Asian	HB	Other	126	126	0.938
Albayrak et al. [36]	2007	Prostate cancer	Turkey	Caucasian	HB	PCR-RFLP	55	43	0.000
Ju et al. [37]	2007	Ovarian cancer	Korea	Asian	HB	TaqMan	133	332	0.695
Lei et al. [38]	2007	Breast cancer	Sweden	Caucasian	PB	TaqMan	954	947	0.151
Lu et al. [39]	2007	Other cancer	China	Asian	HB	PCR-RFLP	221	366	0.000
Nasr et al. [40]	2007	Nasopharyngeal cancer	Tunisia	Caucasian	HB	PCR-RFLP	174	171	0.091
Nishizawa et al. [41]	2007	Oral cancer	Japan	Asian	HB	TaqMan	170	164	0.493
Piccoli et al. [42]	2007	Renal cell carcinoma	Brazil	Caucasian	PB	PCR-RFLP	99	118	1.000
Vairaktaris et al. [43]	2007	Oral cancer	Greece	Caucasian	HB	PCR-RFLP	156	141	0.276
Woo et al. [44]	2007	Colorectal cancer	Korea	Asian	HB	PCR-RFLP	185	304	0.488
Zhai et al. [45]	2007	Hepatocellular cancer	China	Asian	HB	Sequencing	431	479	0.559
Zhou et al. [46]	2007	Nasopharyngeal cancer	China	Caucasian	PB	Sequencing	829	759	0.634
Dos Reis et al. [47]	2008	Prostate cancer	Brazil	Caucasian	PB	TaqMan	100	100	0.293
González-Arriaga et al. [48]	2008	Lung cancer	Spain	Caucasian	HB	PCR-RFLP	501	510	0.934
Kouhkan et al. [49]	2008	Colorectal cancer	Iran	Asian	HB	PCR-RFLP	150	100	0.935
Shimizu et al. [50]	2008	Tongue cancer	Japan	Asian	HB	TaqMan	69	91	0.585
Tasci et al. [51]	2008	Bladder cancer	Turkey	Caucasian	HB	PCR-RFLP	102	94	0.740

Table 1: The main characteristics of studies included in the meta-analysis.
analysis (Table 1) [7–83]. Of these, 43 articles were conducted among Asian populations and 34 among Caucasian populations; 67 studies were hospital-based and 10 were population-based. Of the different genotyping methods used in these studies, 45 used polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP), 18 used TaqMan real-time PCR, 8 used sequencing, and 6 used other methods. Sixteen of the 77 articles showed deviations from HWE in control groups.

3.2. Quantitative Analysis. The main results of this meta-analysis are listed in Table 2. The association between the MMP1–1607 (1G>2G) polymorphism and cancer risks was seen in the allele model (2G vs. 1G, OR: 1.174, 95% CI: 1.107–1.244; Figure 2), the dominant model (2G2G/1G2G vs. 1G1G, OR: 1.192, 95% CI: 1.109–1.303; Figure 3), and the recessive model (2G2G vs. 1G2G/1G1G, OR: 1.231, 95% CI: 1.141–1.329; Figure 4).

3.3. Risk by Cancer Type. When we considered different cancer types, elevated risk was found in lung cancer in the allele model (2G vs. 1G, OR: 1.127, 95% CI: 1.002–1.268) and the dominant model (2G2G/1G2G vs. 1G1G, OR: 1.127, 95% CI: 1.005–1.264).

Significant association was also found in colorectal cancer in the allele model (2G vs. 1G, OR: 1.281, 95% CI: 1.033–1.588), and the recessive model (2G2G vs. 1G2G/1G1G, OR: 1.368, 95% CI: 1.094–1.712).
Five articles addressed the MMP1-1607 polymorphism in nervous system cancers, including astrocytoma, glioblastoma, hypothalamic adenoma, and malignant gliomas. Significantly elevated risks were observed in all the three different models (2G vs. 1G, OR: 1.799, 95% CI: 1.493–2.168; 2G2G vs. 1G1G, OR: 2.070, 95% CI: 1.474–2.906; and 2G2G vs. 1G2G/1G1G, OR: 1.935, 95% CI: 1.498–2.501).

In renal cancer, the association was found in the allele model (2G vs. 1G, OR: 1.351, 95% CI: 1.149–1.590) and the recessive model (2G2G vs. 1G2G/1G1G OR: 1.674, 95% CI: 1.351–2.073). In bladder cancer, only in the recessive model (2G2G vs. 1G2G/1G1G, OR: 1.431, 95% CI: 1.013–1.821) was significant association detected (2G2G vs. 1G2G/1G1G, OR: 1.126, 95% CI: 1.015–1.249; and 2G2G vs. 1G2G/1G1G, OR: 1.249, 95% CI: 1.013–1.573). In the random-effects model, or homozygous model, but showed a decreasing trend in the recessive model (Table 2).

3.4. Risk by Ethnicity. In the Asian population, the association between the variation and cancer risks was detected in the allele model (2G vs. 1G, OR: 1.228, 95% CI: 1.130–1.334), the dominant model (2G2G/1G2G vs. 1G1G, OR: 1.256, 95% CI: 1.084–1.456), and the recessive model (2G2G vs. 1G2G/1G1G, OR: 1.297, 95% CI: 1.176–1.431).

In the Caucasian population, evaluated risk was also found in the allele model (2G vs. 1G, OR: 1.109, 95% CI: 1.023–1.202), the dominant model (2G2G/1G2G vs. 1G1G, OR: 1.126, 95% CI: 1.015–1.249), and the recessive model (2G2G vs. 1G2G/1G1G, OR: 1.431, 95% CI: 1.013–1.289). Although significant differences were observed in both Asian and Caucasian populations, the Asian population showed higher risk than the Caucasian for the allele, dominant model, or homozygous model, but showed a decreasing trend in the recessive model (Table 2).

3.5. Heterogeneity and Sensitivity Analysis. Heterogeneity was observed in overall analyses in all comparison models with $P<0.05$ and I^2 range from 50.2% to 74.0% (indicating moderate or substantial heterogeneity). We therefore used the random-effects model. Sensitivity analysis to assess influence of individual studies showed no individual study to greatly affect the pooled OR.

3.6. Publication Bias. The forest plot seemed to be symmetrical (Figure 5). Harbord’s and Peter’s tests revealed no statistical significance in publication bias (Harbord’s: $P = 0.093$; Peter’s: $P = 0.153$).

4. Discussion

The MMP1-1607 (1G>2G) polymorphism has been associated with increased transcription of MMP1 due to an insert...
of a guanine base that creates a core-binding site for the EST family of transcription factors, which leads to increased susceptibility for tumor occurrence and progress. The significant association between the variation of MMP1–1607 (1G>2G) with some cancer types has been reported by different meta-analyses [3, 4, 84–86].

In the current meta-analysis of 77 articles with 21,327 cancer patients and 23,245 controls, the MMP1–1607 (1G>2G) polymorphism was a strong risk factor in various cancers. Although both Asian and Caucasian individuals with 2G alleles or 2G2G genotypes may be more susceptible to cancer development, several studies revealed significant
associations in Asians, but not Caucasians [5, 6]. These discrepancies might be due to limited sample sizes. Moreover, the Asian population seemed to show increased risk compared with Caucasian populations when the allele or dominant models were adopted, whereas a decreasing trend was observed in a recessive model, which implies different susceptibilities.

The association was found in lung, colorectal, nervous system, renal, bladder, and nasopharyngeal cancers, but not gastric, oral, ovarian, breast, prostate, head-and-neck, endometrial, hepatocellular, or esophageal cancers, which indicates that the variation plays different roles in various cancers, in accordance with previous meta-analyses [4, 85, 87, 88]. However, these papers only focused on single types.
of cancer or one specific ethnicity. Our meta-analysis included all the cancers, analyzed the overall pooled OR, and performed subgroup analyses. Our findings imply a complex relationship between cancer susceptibility and gene variation, influenced by cancer sites and ethnicities.

Recently, the functional studies of SNPs have moved fast. For instance, a study reported that a missense variant rs149418249 in the TTP1 gene confers colorectal cancer risk by interrupting TTP1–TIN2 interaction and influencing telomere length [89]. An expression quantitative trait locus-based analysis revealed that a mutation rs27437, residing in the upstream of SLC22A5, can affect colorectal cancer risk by regulating SLC22A5 expression [90]. Another article reported that a TCF7L2 missense variant rs138649767...

Figure 4: Forest plot of MMP1–1607 (1G>2G) polymorphism and cancer risks in the recessive model (2G2G vs. 1G2G/1G1G).
associates with colorectal cancer risk by interacting with a GWAS-identified regulatory variant rs698326 in the MYC enhancer [91]. However, the biological mechanisms of functional SNPs still remain challenging. Therefore, further studies are required to promulgate the real functions by which the MMP1–1607 (1G>2G) polymorphism may influence cancer susceptibility and progression.

Our study had some limitations. First, moderate or substantial heterogeneity was detected between studies, which was not significantly decreased by subgroup analysis. When all variations were included in the meta-regression analysis, no obvious factors were detected. More subgroup analyses should be performed, based on factors such as tobacco or alcohol consumption. This conclusion should be interpreted with caution. Second, this analysis was performed with candidate gene strategy in which the MMP1–1607 (1G>2G) polymorphism was selected for study based on a priori knowledge of the gene’s biological functional impact on the trait or disease in question [92]. Genome-wide association studies (GWAS) which scan the entire genome for genetic variation include immense amounts of SNPs. Published papers usually reported those SNPs with highly statistical significance (usually $P < 10^{-6}$). We have retrieved literature through PubMed in order to search the evidence of association between the MMP1–1607 (1G>2G) polymorphism and cancer risks in GWAS results [92, 93]. However, we did not acquire any positive findings. We speculate that ethnic discrepancy, population stratification, and different standards of statistical significance might lead to negative findings in GWAS. Third, due to the innate shortage of case–control designed studies, the quantity of studies was limited. Third, gene–gene and gene–environment interactions should be considered in analyses of the effects of genes. Fourth, more original papers with large sample sizes were required due to lack of eligible studies in specific cancers in this analysis.

5. Conclusions

In conclusion, an association between the MMP1–1607 (1G>2G) polymorphism and cancer risks was detected in both Asians and Caucasians. After stratification by cancer types, associations were found for lung cancer, colorectal cancer, nervous system cancer, renal cancer, bladder cancer, and nasopharyngeal cancer. More original studies with larger sample size are required for future analysis.

Conflicts of Interest

The authors declare no competing financial interests.

Acknowledgments

This study was partly funded by the National Natural Science Foundation of China (Grant No. NSFC 81502195 and NSFC 81672512) and Medicine and Health Science Technology Development Project of Shandong Province (No. 2016WS0258). We thank Liwen Bianji, Edanz Group China (http://www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

References

[1] G. L. Bond and A. J. Levine, “A single nucleotide polymorphism in the p53 pathway interacts with gender, environmental stresses and tumor genetics to influence cancer in humans,” Oncogene, vol. 26, no. 9, pp. 1317–1323, 2007.
[2] J. Decock, S. Thirkettle, L. Wagstaff, and D. R. Edwards, “Matrix metalloproteinases: protective roles in cancer,” Journal of Cellular and Molecular Medicine, vol. 15, no. 6, pp. 1254–1265, 2011.
[3] L. Tao, Z. Li, L. Lin et al., “MMP1, 2, 3, 7, and 9 gene polymorphisms and urinary cancer risk: a meta-analysis,” Genetic Testing and Molecular Biomarkers, vol. 19, no. 10, pp. 548–555, 2015.
[4] L. Wang and B. Kong, “Analysis of the association of matrix metalloproteinase-1 gene promoter (rs1799750) polymorphism and risk of ovarian cancer,” International Journal of Gynecological Cancer, vol. 25, no. 6, pp. 961–967, 2015.
[5] G. Han, Z. Wei, Z. Lu et al., “Association between matrix metalloproteinase 1–1607 1G>2G polymorphism and cancer risk: a meta-analysis including 19706 subjects,” International Journal of Clinical and Experimental Medicine, vol. 7, no. 9, pp. 2992–2999, 2014.
[6] L. Lu, Y. Sun, Y. Li, and P. Wan, “The polymorphism MMP1–1607 (1G>2G) is associated with a significantly increased risk of cancers from a meta-analysis,” Tumour Biology, vol. 36, no. 3, pp. 1685–1693, 2015.
[7] Y. Kanamori, M. Matsushima, T. Minaguchi et al., “Correlation between expression of the matrix metalloproteinase-1 gene in ovarian cancers and an insertion/deletion polymorphism in its promoter region,” Cancer Research, vol. 59, no. 17, pp. 4225–4227, 1999.
[8] M. L. Biondi, O. Turri, S. Levi et al., “MMP1 and MMP3 polymorphisms in promoter regions and cancer,” Clinical Chemistry, vol. 46, no. 12, pp. 2023–2024, 2000.
[9] Y. Nishioka, K. Kobayashi, S. Sagae et al., “A single nucleotide polymorphism in the matrix metalloproteinase-1 promoter in endometrial carcinomas," Japanese Journal of Cancer Research, vol. 91, no. 6, pp. 612–615, 2000.
[10] S. Ye, S. Dhillon, S. J. Turner et al., “Invasiveness of cutaneous malignant melanoma is influenced by matrix metalloproteinase 1 gene polymorphism,” Cancer Research, vol. 61, no. 4, pp. 1296–1298, 2001.
[11] Y. Zhu, M. R. Spitz, L. Lei, G. B. Mills, and X. Wu, “A single nucleotide polymorphism in the matrix metalloproteinase-1 promoter enhances lung cancer susceptibility,” Cancer Research, vol. 61, no. 21, pp. 7825–7829, 2001.

[12] G. Ghilardi, M. L. Biondi, M. Caputo et al., “A single nucleotide polymorphism in the matrix metalloproteinase-3 promoter enhances breast cancer susceptibility,” Clinical Cancer Research, vol. 8, no. 12, pp. 3820–3823, 2002.

[13] Y. Hinoda, N. Okayama, N. Takano et al., “Association of functional polymorphisms of matrix metalloproteinase (MMP)-1 and MMP-3 genes with colorectal cancer,” International Journal of Cancer, vol. 102, no. 5, pp. 526–529, 2002.

[14] H. Hirata, K. Naito, S. Yoshihiro, H. Matsuyma, Y. Suehiro, and Y. Hinoda, “A single nucleotide polymorphism in the matrix metalloproteinase-1 promoter is associated with conventional renal cell carcinoma,” International Journal of Cancer, vol. 106, no. 3, pp. 372–374, 2003.

[15] Y. Nishioka, S. Sagae, A. Nishikawa, S. I. Ishioka, and R. Kudo, “A relationship between matrix metalloproteinase-1 (MMP-1) promoter polymorphism and cervical cancer progression,” Cancer Letters, vol. 200, no. 1, pp. 49–55, 2003.

[16] R. M. Wenham, B. Calingaert, S. Ali et al., “Matrix metalloproteinase-1 gene promoter polymorphism and risk of ovarian cancer,” Journal of the Society for Gynecologic Investigation, vol. 10, no. 6, pp. 381–387, 2003.

[17] T. Hashimoto, K. Uchida, N. Okayama et al., “Association of matrix metalloproteinase (MMP)-1 promoter polymorphism with head and neck squamous cell carcinoma,” Cancer Letters, vol. 211, no. 1, pp. 19–24, 2004.

[18] H. Hirata, N. Okayama, K. Naito et al., “Association of a haplotype of matrix metalloproteinase (MMP)-1 and MMP-3 polymorphisms with renal cell carcinoma,” Carcinogenesis, vol. 25, no. 12, pp. 2379–2384, 2004.

[19] S. C. Lin, M. Y. Chung, J. W. Huang, T. M. Shieh, C. J. Liu, and K. W. Chang, “Correlation between functional genotypes in the matrix metalloproteinases-1 promoter and risk of oral squamous cell carcinomas,” Journal of Oral Pathology & Medicine, vol. 33, no. 6, pp. 323–326, 2004.

[20] S. Matsumura, N. Oue, Y. Kitadai et al., “A single nucleotide polymorphism in the MMP-1 promoter is correlated with histological differentiation of gastric cancer,” Journal of Cancer Research and Clinical Oncology, vol. 130, no. 5, pp. 259–265, 2004.

[21] F. Zinzindohoué, H. Blons, S. Hans et al., “Single nucleotide polymorphisms in MMP1 and MMP3 gene promoters as risk factor in head and neck squamous cell carcinoma,” Anticancer Research, vol. 24, no. 3b, pp. 2021–2026, 2004.

[22] S. Fang, X. Jin, R. Wang et al., “Polymorphisms in the MMP1 and MMP3 promoter and non-small cell lung carcinoma in North China,” Carcinogenesis, vol. 26, no. 2, pp. 481–486, 2005.

[23] X. Jin, G. Kuang, L. Z. Wei et al., “No association of the matrix metalloproteinase-1 promoter polymorphism with susceptibility to esophageal squamous cell carcinoma and gastric cardiac adenocarcinoma in northern China,” World Journal of Gastroenterology, vol. 11, no. 16, pp. 2385–2389, 2005.

[24] W. Ju, S. Kang, J. W. Kim et al., “Promoter polymorphism in the matrix metalloproteinase-1 and risk of cervical cancer in Korean women,” Cancer Letters, vol. 217, no. 2, pp. 191–196, 2005.

[25] H. C. Lai, C. M. Chu, Y. W. Lin et al., “Matrix metalloproteinase-1 gene polymorphism as a prognostic predictor of invasive cervical cancer,” Gynecologic Oncology, vol. 96, no. 2, pp. 314–319, 2005.

[26] J. McCready, W. C. Broadus, V. Sykes, and H. L. Fillmore, “Association of a single nucleotide polymorphism in the matrix metalloproteinase-1 promoter with glioblastoma,” International Journal of Cancer, vol. 117, no. 5, pp. 781–785, 2005.

[27] Z. G. Cao and C. Z. Li, “A single nucleotide polymorphism in the matrix metalloproteinase-1 promoter enhances oral squamous cell carcinoma susceptibility in a Chinese population,” Oral Oncology, vol. 42, no. 1, pp. 32–38, 2006.

[28] N. Elander, P. Soderkvist, and K. Fransen, “Matrix metalloproteinase (MMP)-1 promoter polymorphism and cervical cancer progression,” Anticancer Research, vol. 26, no. 1b, pp. 791–795, 2006.

[29] A. K. Kader, L. Shao, C. P. Dinney et al., “Matrix metalloproteinase polymorphisms and bladder cancer risk,” Cancer Research, vol. 66, no. 24, pp. 11644–11648, 2006.

[30] Y. Li, X. Jin, S. Kang et al., “Polymorphisms in the promoter regions of the matrix metalloproteinases-1, -3, -7, and -9 and the risk of epithelial ovarian cancer in China,” Gynecologic Oncology, vol. 101, no. 1, pp. 92–96, 2006.

[31] A. Lièvre, members of the ANGH group, J. Milet et al., “Genetic polymorphisms of MMP1, MMP3 and MMP7 gene promoter and risk of colorectal adenoma,” BMC Cancer, vol. 6, no. 1, 2006.

[32] P. O-charoenrat, P. Leksrisakul, and S. Sangruchi, “A functional polymorphism in the matrix metalloproteinase-1 gene promoter is associated with susceptibility and aggressiveness of head and neck cancer,” International Journal of Cancer, vol. 118, no. 10, pp. 2548–2553, 2006.

[33] L. Su, W. Zhou, K. Asomaning et al., “Genotypes and haplotypes of matrix metalloproteinase 1, 3 and 12 genes and the risk of lung cancer,” Carcinogenesis, vol. 27, no. 5, pp. 1024–1029, 2006.

[34] M. Sugimoto, S. Yoshida, S. Kennedy, M. Deguchi, N. Ohara, and T. Maruo, “Matrix metalloproteinase-1 and -9 promoter polymorphisms and endometrial carcinoma risk in a Japanese population,” Journal of the Society for Gynecologic Investigation, vol. 13, no. 7, pp. 523–529, 2006.

[35] E. Xu, M. Lai, B. Lü, X. Xing, and Q. Huang, “No association between the polymorphisms in matrix metalloproteinase-1 and matrix metalloproteinase-3 promoter regions and colorectal cancer in Chinese,” Diseases of the Colon and Rectum, vol. 49, no. 9, pp. 1439–1444, 2006.

[36] S. Albayrak, Ö. Cangüven, C. Göktas, H. Aydemir, and V. Köksal, “Role of MMP-1 1G/2G promoter gene polymorphism on the development of prostate cancer in the Turkish population,” Urologia Internationalis, vol. 79, no. 4, pp. 315–317, 2007.

[37] W. Ju, J. W. Kim, N. H. Park et al., “Matrix metalloproteinase-1 promoter polymorphism and epithelial ovarian cancer: does ethnicity matter?,” The Journal of Obstetrics and Gynaecology Research, vol. 33, no. 2, pp. 155–160, 2007.

[38] H. Lei, K. Hemminki, A. Altieri et al., “Promoter polymorphisms in matrix metalloproteinases and their inhibitors: few associations with breast cancer susceptibility and progression,” Breast Cancer Research and Treatment, vol. 103, no. 1, pp. 61–69, 2007.
Disease Markers

[39] Z. Lu, Y. Cao, Y. Wang et al., "Polymorphisms in the matrix metalloproteinase-1, 3, and 9 promoters and susceptibility to adult astrocytoma in northern China," *Journal of Neuro-Oncology*, vol. 85, no. 1, pp. 65–73, 2007.

[40] H. B. Nasr, S. Mestini, K. Chahed et al., "Matrix metalloproteinase-1 (-1607) 1G/2G and -9 (-1562) C/T promoter polymorphisms: susceptibility and prognostic implications in nasopharyngeal carcinomas," *Clinica Chimica Acta*, vol. 384, no. 1–2, pp. 57–63, 2007.

[41] R. Nishizawa, M. Nagata, A. A. Noman et al., "The 2G allele of promoter region of matrix metalloproteinase-1 as an essential pre-condition for the early onset of oral squamous cell carcinoma," *BM/Cancer*, vol. 7, no. 1, 2007.

[42] M. F. Piccoli, M. Figueira, C. Andreoni, J. T. Marumo, N. Schor, and M. H. Bellini, "Lack of association between matrix metalloproteinase-1 (MMP-1) promoter polymorphism and risk of renal cell carcinoma," *International Braz J Urol*, vol. 33, no. 5, pp. 622–629, 2007.

[43] E. Vairaktaris, C. Yapijakis, S. Derka et al., "Association of matrix metalloproteinase-1 (-1607 1G/2G) polymorphism with increased risk for oral squamous cell carcinoma," *Anti cancer Research*, vol. 27, no. 1A, pp. 459–464, 2007.

[44] M. Woo, K. Park, J. Nam, and J. C. Kim, "Clinical implications of matrix metalloproteinase-1, -3, -7, -9, -12, and plasminogen activator inhibitor-1 gene polymorphisms in colorectal cancer," *Journal of Gastroenterology and Hepatology*, vol. 22, no. 7, pp. 1064–1070, 2007.

[45] Y. Zhai, W. Qiu, X. J. Dong et al., "Functional polymorphisms in the promoters of MMP-1, MMP-2, MMP-3, MMP-9, MMP-12 and MMP-13 are not associated with hepatocellular carcinoma risk," *Gut*, vol. 56, no. 3, pp. 445–447, 2007.

[46] G. Zhou, Y. Zhai, Y. Cui et al., "Functional polymorphisms and haplotypes in the promoter of the MMP2 gene are associated with risk of nasopharyngeal cancer," *Human Mutation*, vol. 28, no. 11, pp. 1091–1097, 2007.

[47] S. T. Dos Reis, F. E. Villanueva, P. M. de Andreade et al., "Polymorphisms of the matrix metalloproteinases associated with prostate cancer," *Molecular Medicine Reports*, vol. 1, no. 4, pp. 517–520, 2008.

[48] P. González-Arriaga, M. F. López-Cima, A. Fernández-Somoano et al., "Polymorphism +17 C/G in matrix metalloprotease MMP8 decreases lung cancer risk," *BM/Cancer*, vol. 8, no. 1, 2008.

[49] F. Kouhkhan, M. Motovali-Bashi, and Z. Hojati, "The influence of interstitial collagen-1 genotype polymorphism on colorectal cancer risk in Iranian population," *Cancer Investigation*, vol. 26, no. 8, pp. 836–842, 2009.

[50] Y. Shimizu, S. Kondo, A. Shirai, M. Furukawa, and T. Yoshizaki, "A single nucleotide polymorphism in the matrix metalloproteinase-1 and interleukin-8 gene promoter predicts poor prognosis in tongue cancer," *Auris Nasus Larynx*, vol. 35, no. 3, pp. 381–389, 2008.

[51] A. I. Tasci, V. Tugcu, E. Ozbek, B. Ozbay, A. Simsek, and V. Koksal, "A single-nucleotide polymorphism in the matrix metalloproteinase-1 promoter enhances bladder cancer susceptibility," *BJU International*, vol. 35, no. 3, pp. 381–389, 2007.

[52] P. A. Bradbury, R. Zhai, J. Hopkins et al., "Matrix metalloproteinase 1, 3 and 12 polymorphisms and esophageal adenocarcinoma risk and prognosis," *Carcinogenesis*, vol. 30, no. 5, pp. 793–798, 2009.

[53] J. M. de Lima, L. G. de Souza, I. D. C. G. da Silva, and N. M. Forones, '"E-cadherin and metalloproteinase-1 and -7 polymorphisms in colorectal cancer," *The International Journal of Biological Markers*, vol. 24, no. 2, pp. 99–106, 2018.

[54] S. T. dos Reis, J. Pontes Jr, F. E. Villanova et al., "Genetic polymorphisms of matrix metalloproteinases: susceptibility and prognostic implications for prostate cancer," *The Journal of Urology*, vol. 181, no. 5, pp. 2320–2325, 2009.

[55] C. Ricketts, M. P. Zeegers, J. Lubinski, and E. R. Maher, "Analysis of germline variants in CDH1, IGFBP3, MMP1, MMP3, STK15 and VEGF in familial and sporadic renal cell carcinoma," *PLoS One*, vol. 4, no. 6, article e6037, 2009.

[56] P. Srivastava, R. Kapoor, and R. D. Mittal, "Influence of matrix metalloproteinase gene polymorphisms in healthy North Indians compared to variations in other ethnic groups worldwide," *Asian Pacific Journal of Cancer Prevention*, vol. 10, no. 6, pp. 1127–1130, 2009.

[57] N. Tsuchiya, S. Narita, T. Kumazawa et al., "Clinical significance of a single nucleotide polymorphism and allelic imbalance of matrix metalloproteinase-1 promoter region in prostate cancer," *Oncology Reports*, vol. 22, no. 3, pp. 493–499, 2009.

[58] E. Vairaktaris, Z. Serefoglou, D. Avgoustidis et al., "Gene polymorphisms related to angiogenesis, inflammation and thrombosis that influence risk for oral cancer," *Orology*, vol. 45, no. 3, pp. 247–253, 2009.

[59] M. Altaş, O. F. Bayrak, E. Ayan et al., "The effect of polymorphisms in the promoter region of the MMP-1 gene on the occurrence and invasiveness of hypophyseal adenoma," *Acta Neurochirurgica*, vol. 152, no. 9, pp. 1611–1617, 2010.

[60] A. K. Chaudhary, M. Singh, A. C. Bharti, K. Asotra, S. Sundaram, and R. Mehrotra, "Genetic polymorphisms of matrix metalloproteinases and their inhibitors in potentially malignant and malignant lesions of the head and neck," *Journal of Biomedical Science*, vol. 17, no. 1, p. 10, 2010.

[61] W. L. Fang, W. B. Liang, H. He et al., "Association of matrix metalloproteinases 1, 7, and 9 gene polymorphisms with genetic susceptibility to colorectal carcinoma in a Han Chinese population," *DNA and Cell Biology*, vol. 29, no. 11, pp. 657–661, 2010.

[62] K. Okamoto, C. Ishida, Y. Ikebuchi et al., "The genotypes of IL-1 beta and MMP-3 are associated with the prognosis of HCV-related hepatocellular carcinoma," *Internal Medicine*, vol. 49, no. 10, pp. 887–895, 2010.

[63] K. Hart, N. E. Landvik, H. Lind, V. Skaug, A. Haugen, and S. Zenioldyin, "A combination of functional polymorphisms in the CASP8, MMP1, IL10 and SEPS1 genes affects risk of non-small cell lung cancer," *Lung Cancer*, vol. 71, no. 2, pp. 123–129, 2011.

[64] L. Liu, J. Wu, C. Wu et al., "A functional polymorphism (−1607 1G→2G) in the matrix metalloproteinase-1 promoter is associated with development and progression of lung cancer," *Cancer*, vol. 117, no. 22, pp. 5172–5181, 2011.

[65] N. Malik, R. Kumar, K. N. Prasad, P. Kawal, A. Srivastava, and A. K. Mahapatra, "Association of matrix metalloproteinase-1 gene polymorphism with glioblastoma multiforme in a northern Indian population," *Journal of Neuro-Oncology*, vol. 102, no. 3, pp. 347–352, 2011.

[66] L. E. Wang, Y. J. Huang, M. Yin et al., "Promoter polymorphisms in matrix metalloproteinase 1 and risk of cutaneous melanoma," *European Journal of Cancer*, vol. 47, no. 1, pp. 107–115, 2011.
[67] W. Y. Cheung, R. Zhai, P. Bradbury et al., "Single nucleotide polymorphisms in the matrix metalloproteinase gene family and the frequency and duration of gastroesophageal reflux disease influence the risk of esophageal adenocarcinoma," *International Journal of Cancer*, vol. 131, no. 11, pp. 2478–2486, 2012.

[68] L. Enewold, L. E. Mechanic, E. D. Bowman, E. A. Platz, and A. J. Alberg, "Association of matrix metalloproteinase-1 polymorphisms with risk of COPD and lung cancer and survival in lung cancer," *Anticancer Research*, vol. 32, no. 9, pp. 3917–3922, 2012.

[69] H. Fakhoury, S. Noureddine, H. N. Chmaisse, H. Tamim, and E. Wieczorek, E. Reszka, Z. Jablonowski et al., "Metabolism of interstitial collagenase gene promoter polymorphism in the etiology of gastric cancer: a functional polymorphism regulating SLC22A5 expression,filepath="1035", vol. 71, no. 2, pp. 999–1004, 2015.

[70] H. Li, X. Liang, X. Qin, S. Cai, and S. Yu, "Association of matrix metalloproteinase-1 gene family gene polymorphisms with lung cancer risk: logistic regression and generalized odds of published data," *Scientific Reports*, vol. 5, no. 1, 2015.

[71] X. Li, L. Qu, Y. Zhong, Y. Zhao, H. Chen, and L. Daru, "Association between promoters polymorphisms of matrix metalloproteinases and risk of digestive cancers: a meta-analysis," *Journal of Cancer Research and Clinical Oncology*, vol. 139, no. 9, pp. 1433–1447, 2013.

[72] S. R. Ji, J. J. Sun, X. P. Li, Y. Zhang, and W. F. Liu, "The association of matrix metalloproteinase-1 genetic polymorphism (~1607 1G>2G) with colorectal cancer: a meta-analysis," *Tumour Biology*, vol. 34, no. 6, pp. 3801–3806, 2013.

[73] J. Y. Li, J. Chang, J. B. Tian et al., "A rare variant P507L in TPPI intercepts TPPI-TIN2 interaction, influences telomere length, and confers colorectal cancer risk in Chinese population," *Cancer Epidemiology, Biomarkers & Prevention*, vol. 27, no. 9, pp. 1029–1035, 2018.

[74] D. Y. Zou, J. Lou, J. T. Ke et al., "Integrative expression quantitative trait locus-based analysis of colorectal cancer identified a functional polymorphism regulating SLC22A5 expression," *European Journal of Cancer*, vol. 93, no. 1, pp. 1–9, 2018.

[75] J. Chang, J. B. Tian, Y. Yang et al., "A rare missense variant in TCF7L2 associates with colorectal cancer risk by interacting with a GWAS-identified regulatory variant in the MYC enhancer," *Cancer Research*, vol. 78, no. 17, pp. 5164–5172, 2018.

[76] E. Y. Bae, S. Y. Lee, B. K. Kang et al., "Replication of results of genome-wide association studies on lung cancer susceptibility loci in a Korean population," *Respirology*, vol. 17, no. 4, pp. 699–706, 2012.

[77] M. P. Purdue, Y. Ye, Z. Wang et al., "A genome-wide association study of renal cell carcinoma among African Americans," *Cancer Epidemiology, Biomarkers & Prevention*, vol. 23, no. 1, pp. 209–214, 2014.