Comparação entre os métodos de ensaio imunoenzimático e imunofluorescência indireta para a pesquisa de anticorpos anticitoplasma de neutrófilos

Comparison between enzyme-linked immunosorbent assay and indirect immunofluorescence for detection of antineutrophil cytoplasmic antibodies

Julia Miranda Menezes¹, Raissa Rossener¹, Ana Paula Marques Aguirra da Silva², Silvia Sanches Rodrigues², Cristóvão Luis Pitangueira Mangueira²

¹ Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, SP, Brasil.
² Hospital Israelita Albert Einstein, São Paulo, SP, Brasil.

DOI: 10.31744/einstein_journal/2020AO5132

RESUMO

Objetivo: Avaliar o desempenho das metodologias de ensaio imunoenzimático e imunofluorescência indireta para a detecção de anticorpos anticitoplasma de neutrófilos em um contexto de laboratório clínico de rotina. Métodos: Foram testadas 227 amostras pelas metodologias de imunofluorescência indireta e ensaio imunoenzimático com especificidades para anticorpos antiproteinase-3 e antimieloperoxidase. As proporções de amostras positivas foram comparadas por hipóteses de McNemar, e a concordância foi descrita pelo coeficiente Kappa de Cohen. Resultados: A concordância dos testes foi 96,5%, e o coeficiente Kappa obtido foi 0,70 (IC95%: 0,50-0,90; p<0,001). Utilizando a imunofluorescência indireta como padrão-ouro, a sensibilidade do ensaio imunoenzimático foi de 0,62 e a especificidade, 0,99, com acurácia diagnóstica em 96% dos casos. Algumas amostras apresentaram resultados negativos por ensaio imunoenzimático e positivos por imunofluorescência. Isso ocorreu em amostras com vários padrões de fluorescência, mas particularmente nos casos com padrões atípicos. Duas amostras com positividade antiproteinase 3 foram consideradas negativas por imunofluorescência. Conclusão: Os métodos de ensaio imunoenzimático tiveram alta especificidade, mas sensibilidade inferior. A realização da imunofluorescência indireta aumenta a sensibilidade diagnóstica, ao mesmo tempo que a pesquisa de antiproteinase 3 por ensaio imunoenzimático também pode agregar poder diagnóstico.

Descritores: Doenças autoimunes; Autoanticorpos; Anticorpos, anticitoplasma de neutrófilos; Ensaio de imunoadsorção enzimática; Técnica indireta de fluorescência para anticorpo

ABSTRACT

Objective: To evaluate the performance of enzyme-linked immunosorbent assay and indirect immunofluorescence methods for the detection of antineutrophil cytoplasmic antibodies in a routine clinical laboratory setting. Methods: A total of 227 samples were tested by indirect immunofluorescence and enzyme-linked immunosorbent assay with antigen specificity for antiproteinase 3 and antimyeloperoxidase. The proportions of positive samples were compared by McNemar hypotheses and agreement was described by Cohen’s Kappa coefficient. Results: The agreement of the tests was 96.5%, and the Kappa coefficient obtained was 0.70 (95%CI: 0.50-0.90; p<0.001). Considering indirect immunofluorescence as the gold standard, the sensitivity of the enzyme-linked immunosorbent assay was 0.62 and the specificity was 0.99,
with diagnostic accuracy in 96% of cases. Some samples were negative in enzyme-linked immunosorbent assay and positive in indirect immunofluorescence. This situation occurred in all immunofluorescence patterns, but particularly in atypical patterns. Two samples with antiproteinase 3 positivity were considered negative in indirect immunofluorescence. Conclusion: The enzyme-linked immunosorbent assay had high specificity but lower sensitivity. The performance of indirect immunofluorescence increases diagnostic sensitivity, while the search for antiproteinase 3 by enzyme-linked immunosorbent assay may also add diagnostic power.

**Keywords:** Autoimmune diseases; Autoantibodies; Antibodies, antineutrophil cytoplasmic; Enzyme-linked immunosorbent assay; Fluorescent antibody technique, indirect

**INTRODUÇÃO**

A detecção e a caracterização sorológica de autoanticorpos é parte fundamental do diagnóstico clínico de várias doenças autoimunes. Entretanto, os laboratórios clínicos de referência convivem permanentemente com o dilema de escolher entre os diferentes métodos disponíveis, que podem ser utilizados como triagem ou confirmação dos achados, isoladamente ou em conjunto. Esses testes comerciais diferem em relação à natureza do substrato, às condições para ação dos anticorpos e ao modo de detecção dos marcadores, o que pode afetar a sensibilidade e a especificidade de cada um. Em virtude disso, há considerável variabilidade em seus desempenhos, com diferenças evidentes, por exemplo, entre métodos de ensaio imunoenzimático (ELISA) e de imunofluorescência indireta (IFI), que podem interferir na elaboração de decisões clínicas. (1)

O grupo de autoanticorpos anticitoplasma de neutrófilos, conhecido como ANCA, é um relevante marcador sorológico de um grupo de enfermidades conhecidas como vasculites sistêmicas, como a granulomatose com poliangite (GPA), a poliangite microscópica (MPA) e a granulomatose eosinofílica com poliangite (EGPA). (2,3) Além de desempenhar papel acessório no diagnóstico diferencial de doenças inflamatórias intestinais. (4) O padrão pANCA é um artefato de técnica causado por anticorpos dirigidos contra a proteína 3 (PR-3), e associado ao diagnóstico de GPA. (7) Por outro lado, o pANCA pode estar associado a vários autoanticorpos de especificidades distintas, dentre os quais os mais clinicamente relevantes são os anticorpos contra a mieloperoxidase (MPO). (8) Associados mais frequentemente ao diagnóstico de MPA. (1) Outros anticorpos associados ao pANCA incluem a catapésia G, a lactoferrina e a elastase, por exemplo. (9) Esses mesmos autoanticorpos, no entanto, também podem dar origem a um padrão citoplasmático em alguns pacientes. (9) O padrão pANCA é um artefato de técnica causado pela fixação com etanol, em que as membranas dos grânulos se rompem, fazendo com que as proteínas carregadas positivamente migrem para o núcleo carregado negativamente. (8) O padrão aANCA, por sua vez, é mixto e combina colorações citoplasmáticas e perinucleares ou nucleares, apresentando múltiplas especificidades antigênicas. (1)

Estudos anteriores demonstraram que a especificidade da IFI para a detecção de ANCA é próxima a 93%, e a sensibilidade está em torno de 67% a 78%, sendo necessários testes adicionais para melhorar este desempenho. (5, 10) O ELISA pode realizar esse papel. (4) Nesse caso, são utilizadas proteínas com especificidades antigênicas individuais – em particular a PR-3 e a MPO. (1)

A determinação específica de anticorpos anti-PR3 e anti-MPO é útil no diagnóstico diferencial das vasculites sistêmicas, particularmente na diferenciação clínica entre GPA, MPA e EGPA, condições com diversas manifestações clínicas, prognóstico e resposta à terapia. (10)

Ainda não se sabe a razão da discrepância entre os resultados obtidos por IFI e ELISA na pesquisa de ANCA. Uma hipótese é que na IFI podem ser detectados anticorpos contra proteínas ainda desconhecidas, os quais não podem ser detectados por ELISA, que utiliza proteínas específicas. (11)

Apesar do método clássico de pesquisa de ANCA ser a IFI seguida por confirmação com ELISA, alguns estudos recentes questionaram a necessidade da realização da IFI, (12) enquanto outros sugeriram a utilização simultânea dos dois métodos, mostrando que a combinação dos dois testes resultaria em sensibilidade e especificidade de 92% e 99%, respectivamente. (4)

Torna-se relevante rever o algoritmo diagnóstico para a detecção de ANCA adotado atualmente. (1, 13, 14) Diante desse cenário, o presente estudo comparou os resultados dos métodos de ELISA e IFI para pesquisa de ANCA em amostras de sangue coletadas por um laboratório clínico reconhecido como referência para a realização destes testes de pacientes em diferentes estágios de investigação diagnóstica e com suspeitas clínicas variadas.
**OBJETIVO**

Avaliar o desempenho das metodologias de ensaio imunoenzimático e imunofluorescência indireta para a detecção de anticorpos anticitoplasma de neutrófilos em um laboratório clínico de referência para exames de autoimunidade, comparando o algoritmo em uso com outras estratégias de hierarquização dos testes de imunofluorescência indireta e ensaio imunoenzimático.

**MÉTODOS**

Foram utilizadas 227 amostras de soro colhidas de pacientes atendidos pelo laboratório clínico do Hospital Israelita Albert Einstein (HIAE) entre abril e outubro de 2016, para os quais a pesquisa de ANCA tinha sido solicitada pelos médicos destes pacientes, no contexto de sua investigação clínica. Amostras de sangue foram obtidas por sistema de coleta a vácuo (Sarstedt, Alemanha) padronizado pelo laboratório do hospital e centrifugadas para obtenção do soro, conforme rotina estabelecida para a realização da pesquisa de ANCA pelo laboratório. Todas as amostras de soro foram testadas pelas duas metodologias: IFI (Euroimmun®, Alemanha) e ELISA anti-PR3 e anti-MPO (Inova, Werfen®, EUA). Os resultados foram inseridos em planilha para a realização de estudos comparativos.

Para a realização dos ensaios de ELISA, foram utilizados *kits* diagnósticos com antígenos humanos anti-PR3 e anti-MPO purificados e previamente ligados a poços de placas de poliestireno (Inova, Werfen®, EUA). Controles e soros de pacientes pré-diluídos foram adicionados aos diferentes poços, permitindo que quaisquer anticorpos PR-3 e MPO presentes, separadamente, se ligassem aos antígenos imobilizados. Após etapa de lavagem, adicionou-se conjugado IgG anti-humano marcado com enzima a cada poço. Uma segunda incubação permitiu ao conjugado enzimático ligar-se a quaisquer anticorpos de pacientes aderidos aos poços. Depois da segunda lavagem, para retirar o excesso de conjugado, o restante da atividade das enzimas foi medido, adicionando um substrato cromogênico específico e medindo-se a intensidade da cor que se desenvolve por espectrometria, comparando a intensidade da cor desenvolvida nos poços do paciente com a cor dos poços de controle. Nesse caso, as amostras foram consideradas positivas se reagentes para anti-PR3 ou para anti-MPO. O valor de corte utilizado para ambos os ensaios foi de 20 unidades. Amostras positivas foram subclassificadas em positivas fracas (de 21 a 30 unidades) e positivas moderadas a fortes (acima de 30 unidades).

Para a realização da IFI, utilizaram-se *kits* diagnóstico com neutrófilos humanos fixados com etanol (Euroimmun®, Alemanha). Neste ensaio, o soro dos pacientes foi adicionado à lâmina com substrato pré-fixado. Em uma segunda etapa, anticorpos marcados com fluorescência (conjugados) e direcionados contra os anticorpos do paciente foram adicionados. As láminas foram lidas ao microscópio por dois observadores independentes e classificadas em “não reagentes” (quando não se observou fluorescência) ou “reagentes” (quando se observou fluorescência). As amostras “reagentes” foram classificadas em três padrões possíveis de fluorescência: cANCA, pANCA ou aANCA. O padrão pANCA é detectado pela fluorescência no citoplasma dos neutrófilos segmentados; o pANCA apresenta fluorescência em torno do núcleo dos neutrófilos; já o aANCA revela diferentes padrões ou uma combinação dos padrões anteriores.

Na análise estatística, foram comparadas as proporções de amostras positivas observadas em cada um dos testes, por meio de testes de hipóteses de McNemar (para dados dependentes). A concordância entre os testes foi descrita pela proporção de concordância e pelo coeficiente de concordância Kappa de Cohen, acompanhando de intervalo de confiança de 95% (IC95%) e do valor de *p* para o teste de hipóteses. As análises estatísticas foram conduzidas com o auxílio do pacote computacional R (R Core Team, 2017), versão 3.4.1, e adotou-se nível de significância de 5%.

Este estudo foi aprovado pelo Comitê de Ética em Pesquisa (CEP), com parecer final número 2.939.366 e protocolo CAAE: 70390417.5.0000.0071. Foi aceita a isenção do Termo de Consentimento Livre e Esclarecido (TCLE), parecer número 2.274.307.

**RESULTADOS**

Das 227 amostras testadas, 12 (5,29%) foram positivas por ELISA e 16 (7,05%) por IFI. Essa diferença não foi significativa pelo teste de hipótese de McNemar (*p*=0,289). Apenas 10 (4,4%) amostras foram positivas em ambos os métodos (Tabela 1).

Dos 16 casos positivos pela IFI, 8 foram classificados como padrão cANCA (Figura 1), dos quais 6 foram positivos para anti-PR3 e 2 foram negativos nos testes de ELISA; 5 casos foram classificados como padrão pANCA (Figura 2), dos quais 3 foram positivos para anti-MPO; 1 positivo para anti-PR3 e 1 foi negativo em ambos os testes de ELISA; três foram classificados como padrão aANCA (Figura 3), também negativos para os testes de ELISA.
Adicionalmente, dois casos negativos na IFI foram positivos para ELISA anti-PR3, um com valor entre 21 e 30 unidades e um com valor acima de 30 unidades (Tabela 2).

Os dois métodos foram concordantes em 10 amostras positivas e em 209 negativas, resultando em concordância de 96,5% e coeficiente Kappa de 0,70 (IC95%: 0,50-0,90; p<0,001). Esse valor indica concordância substancial, mas não perfeita.

A tabela 3 apresenta as medidas diagnósticas do teste ELISA para ANCA, tendo a IFI como padrão-ouro, em que se nota que sua sensibilidade foi de 0,62 e especificidade de 0,99, mostrando-se um teste mais específico do que sensível, com acurácia diagnóstica em 96% dos casos.
DISCUSSÃO

Resultados negativos ao ELISA foram encontrados em amostras positivas à IFI com todos os padrões de fluorescência (cANCA, pANCA e aANCA), mas mais frequentemente nos padrões aANCA. Este achado difere do encontrado por Damoiseaux et al., que sugeriram não haver vantagem no uso da IFI, como triagem ou em associação ao ELISA, para a pesquisa de ANCA em pacientes com suspeição diagnóstica de vasculites.\(^{(12)}\)

Harris et al., demonstraram que, em casos de vasculite necrotizante sistêmica confirmado por biópsia, o método de ELISA teve sensibilidade semelhante (85% versus 88%; \(p=0.056\)), porém maior especificidade (97% versus 90%; \(p=0.0006\)) e valor preditivo positivo (73% versus 50%; \(p=0.0013\)) do que a IFI para a detecção de ANCA. Os autores também mostraram que a combinação de imunofluorescência e ELISA levou a um valor preditivo positivo menor em comparação à realização apenas do ELISA.\(^{(15)}\) Nossos resultados, porém, sugerem que a realização da IFI em todos os casos encaminhados para a pesquisa de ANCA aumentaria a sensibilidade dos testes, pois classificaria como positivos pacientes que, sem o uso da IFI, seriam considerados negativos.

Por outro lado, a ocorrência de duas amostras negativas à IFI, com positividade para anti-PR3, um autoanticorpo de alta relevância clínica para o diagnóstico de GPA, sugere que a pesquisa de anti-PR3 por ELISA previamente ou simultaneamente à realização da IFI pode agregar poder diagnóstico ao teste, conforme apresentado em estudos anteriores.\(^{(4,6)}\)

Esses dados revelam a necessidade da revisão do algoritmo diagnóstico utilizado atualmente, corroborando achados de estudos prévios.\(^{(13,14)}\)

Nosso estudo, entretanto, possui limitações, como a falta de avaliação da correlação entre os resultados dos testes laboratoriais e o diagnóstico clínico dos indivíduos testados. Pretendemos avaliar esta correlação em estudos futuros. Além disso, a IFI foi analisada como padrão-ouro, não sendo possível estimar a sensibilidade e a especificidade desse método isoladamente.

Em nossa casuística, o uso combinado de ELISA e IFI simultaneamente seria a estratégia diagnóstica mais adequada, conferindo maior sensibilidade ao teste de ANCA e incluindo como positivos todos os pacientes com autoanticorpos de especificidades antigênicas relevantes para o diagnóstico diferencial de vasculites sistêmicas, particularmente aqueles com positividade para anti-PR3.
CONCLUSÃO

Os resultados demonstraram que os métodos de ELISA antimiêloperoxidase e antiproteinase 3 utilizados em conjunto tiveram alta especificidade, mas sensibilidade inferior.

É possível concluir que a realização da imunofluorescência indireta aumentou a sensibilidade do teste de ANCA em relação ao uso isolado do ELISA, ao mesmo tempo em que a pesquisa de antiproteinase 3 por ELISA também agregou poder de sensibilidade para amostras com esta especificidade antigênica. Com base nestes resultados, é possível sugerir que o uso combinado de imunofluorescência indireta e ELISA simultaneamente seria a estratégia diagnóstica mais adequada para a população estudada.

INFORMAÇÃO DOS AUTORES

Menezes JM: http://orcid.org/0000-0001-5719-0843  
Rossener R: http://orcid.org/0000-0002-5327-4377  
Silva AP: http://orcid.org/0000-0002-0281-4302  
Rodrigues SS: http://orcid.org/0000-0001-6619-7836  
Mangueira CL: http://orcid.org/0000-0002-4227-3723

REFERÊNCIAS

1. Csernok E, Moosig F. Current and emerging techniques for ANCA detection in vasculitis. Nat Rev Rheumatol. 2014;10(8):494-501. Review.

2. McKinney EF, Willcox LC, Broecker V, Smith KG. The immunopathology of ANCA-associated vasculitis. Semin Immunopathol. 2014;36(4):461-78. Review.

3. Lamprecht P, Kerstein A, Klapa S, Schinke S, Karsten CM, Yu X, et al. Pathogenetic and Clinical Aspects of Anti-Neutrophil Cytoplasmic Autoantibody-Associated Vasculitides. Front Immunol. 2018;9:680. Review.

4. Suwanchote S, Rachayon M, Rodsaward P, Wongpiyabovorn J, Deekjakondech T, Wright HL, et al. Anti-neutrophil cytoplasmic antibodies and their clinical significance. Clin Rheumatol. 2018;37(4):875-84. Review.

5. Savage J, Davies D, Falk RJ, Jennette JC, Wiik A. Antineutrophil cytoplasmic antibodies and associated diseases: a review of the clinical and laboratory features. Kidney Int. 2000;57(3):846-62. Review.

6. Bossuyt X, Cohen Tervaert JW, Anrimara Y, Blockmans D, Flores-Suárez LF, Guillemin L, et al. Position paper: Revised 2017 international consensus on testing of ANCAs in granulomatosis with polyangiitis and microscopic polyangiitis. Nat Rev Rheumatol. 2017;13(11):683-92. Review.

7. Niles JL, McCluskey RT, Ahmad MF, Arnaout MA. Wegener’s granulomatosis autoantigen is a novel neutrophil serine protease. Blood. 1989;74(6):1898-93.

8. Falk RJ, Jennette JC. Anti-neutrophil cytoplasmic autoantibodies with specificity for myeloperoxidase in patients with systemic vasculitis and idiopathic necrotizing and crescentic glomerulonephritis. N Engl J Med. 1988;318(25):1651-7.

9. Segelmark M, Baslund B, Wieslander J. Some patients with anti-miêloperoxidase autoantibodies have a c-ANCA pattern. Clin Exp Immunol. 1994;96(3):486-92.

10. Cohen Tervaert JW, Damoiseaux J. Antineutrophil cytoplasmic autoantibodies: how are they detected and what is their use for diagnosis, classification and follow-up? Clin Rev Allergy Immunol. 2012;43(3):211-9. Review.

11. Baslund B, Segelmark M, Wiik A, Szpirt W, Petersen J, Wieslander J. Screening for anti-neutrophil cytoplasmic antibodies (ANCA): is indirect immunofluorescence the method of choice? Clin Exp Immunol. 1995;99(3):486-92.

12. Damoiseaux J, Csernok E, Rasmussen N, Moosig F, van Paassen P, Baslund B, et al. Detection of antineutrophil cytoplasmic antibodies (ANCAs): a multicentre European Vasculitis Study Group (EUVAS) evaluation of the value of indirect immunofluorescence (IFT) versus antigen-specific immunosassays. Ani Rheum Dis. 2017;76(4):647-53.

13. Bueno C, Bonfá ED, Radu AS, Cossermelli W. [Comparison between immunofluorescence techniques and ELISA, using whole neutrophil extract and primary granules, for the detection of antineutrophil cytoplasm antibodies (ANCAs).] Rev Hosp Clin Fac Med Sao Paulo. 1995;50(2):101-6. Portuguese.

14. Godbole MS, Valenzuela R, Deodhar SD, Calabrese L, Tubbs RR. Comparative study of ELISA and indirect immunofluorescence for the detection of anti-neutrophil cytoplasmic antibodies: evaluation of the SCIMEDX/EURO Diagnostica ELISA assay in a clinical setting. Am J Clin Pathol. 1995;104(6):667-72.

15. Harris A, Chang G, Vadas M, Gilles D. ELISA is the superior method for detecting antineutrophil cytoplasmic antibodies in the diagnosis of systemic necrotising vasculitis. J Clin Pathol. 1999;52(9):670-6.