Antimigraine drug, zolmitriptan, inhibits high-voltage activated calcium currents in a population of acutely dissociated rat trigeminal sensory neurons

Tomoko Morikawa*1,2, Yoshiyasu Matsuzawa1,2, Koshi Makita1 and Yoshifumi Katayama2

Address: 1Department of Anesthesiology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan and 2Department of Autonomic Physiology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan

Email: Tomoko Morikawa* - mrkwmane@tmd.ac.jp; Yoshiyasu Matsuzawa - matsuzawa_sk_hp@pop17.odn.ne.jp; Koshi Makita - makita.mane@tmd.ac.jp; Yoshifumi Katayama - kataauto@tmd.ac.jp

* Corresponding author

Abstract

Background: Triptans, 5-HT1B/1D agonists, act on peripheral and/or central terminals of trigeminal ganglion neurons (TGNs) and inhibit the release of neurotransmitters to second-order neurons, which is considered as one of key mechanisms for pain relief by triptans as antimigraine drugs. Although high-voltage activated (HVA) Ca2+ channels contribute to the release of neurotransmitters from TGNs, electrical actions of triptans on the HVA Ca2+ channels are not yet documented.

Results: In the present study, actions of zolmitriptan, one of triptans, were examined on the HVA Ca2+ channels in acutely dissociated rat TGNs, by using whole-cell patch recording of Ba2+ currents (IBa) passing through Ca2+ channels. Zolmitriptan (0.1–100 μM) reduced the size of IBa in a concentration-dependent manner. This zolmitriptan-induced inhibitory action was blocked by GR127935, a 5-HT1B/1D antagonist, and by overnight pretreatment with pertussis toxin (PTX). P/Q-type Ca2+ channel blockers inhibited the inhibitory action of zolmitriptan on IBa, compared to N- and L-type blockers, and R-type blocker did, compared to L-type blocker, respectively (p < 0.05). All of the present results indicated that zolmitriptan inhibited HVA P/Q- and possibly R-type channels by activating the 5-HT1B/1D receptor linked to Gi/o pathway.

Conclusion: It is concluded that this zolmitriptan inhibition of HVA Ca2+ channels may explain the reduction in the release of neurotransmitters including CGRP, possibly leading to antimigraine effects of zolmitriptan.

Background

It is known that the pain associated with migraine is relieved by triptans, 5HT1B/1D agonists, including sumatriptan, zolmitriptan, naratriptan and so on. Indeed, they are in clinical use for treatment of migraine. It is shown that trigeminal ganglion stimulation leads to the release of CGRP in humans and cats, which is antagonized by sumatriptan administration [1]. Subsequently, several lines of histochemical and electrophysiological studies demonstrate the involvement of 5HT1B/1D agonist in neu-
Inhibition of HVA I_{Ba} by zolmitriptan

(a) Typical illustration of I_{Ba} elicited in response to command pulses from -60 mV to 10 mV for 40 ms. I_{Ba} was inhibited by 2 min application of 10 μM zolmitriptan.

(b) The average time course of I_{Ba} inhibition by zolmitriptan at four different concentrations. Superfusing application of zolmitriptan started at t = 0 and lasted for 120 s during the period indicated by horizontal bar. Mean value of the relative amplitude of I_{Ba} compared to the control I_{Ba} at t = 0 was plotted on ordinate (I_{Ba} ratio) against time on abscissa. The number of neurons examined is indicated for the respective concentrations. S.E.M. value was not indicated.

(c) Concentration-inhibition relationship for zolmitriptan. Bar graph shows the relative amplitude of I_{Ba} at two minutes after application of zolmitriptan compared to the control. (*p < 0.05 **p < 0.01).

Figure 1

Inhibition of HVA I_{Ba} by zolmitriptan. (a) Typical illustration of I_{Ba} elicited in response to command pulses from -60 mV to 10 mV for 40 ms. I_{Ba} was inhibited by 2 min application of 10 μM zolmitriptan. (b) The average time course of I_{Ba} inhibition by zolmitriptan at four different concentrations. Superfusing application of zolmitriptan started at t = 0 and lasted for 120 s during the period indicated by horizontal bar. Mean value of the relative amplitude of I_{Ba} compared to the control I_{Ba} at t = 0 was plotted on ordinate (I_{Ba} ratio) against time on abscissa. The number of neurons examined is indicated for the respective concentrations. S.E.M. value was not indicated. (c) Concentration-inhibition relationship for zolmitriptan. Bar graph shows the relative amplitude of I_{Ba} at two minutes after application of zolmitriptan compared to the control. (*p < 0.05 **p < 0.01).
Figure 2

GR127935 modulation on zolmitriptan-sensitive I_{Ba}. (a) GR127935, 5HT_{1B/1D} antagonist, depressed the inhibition of I_{Ba} by zolmitriptan (10 μM). Bar graph shows that the zolmitriptan-induced inhibition of I_{Ba} was significantly reduced by pretreatment with 0.3 μM of the antagonist GR127935 (*p < 0.05). I_{Ba} ratio is the value that I_{Ba} (test) was divided by I_{Ba} (control). Inset shows the time course of GR127935 and zolmitriptan application. I_{Ba} (control) and I_{Ba} (test) were recorded as shown in the chart. (b) Typical illustration of I_{Ba} in control (left), in the presence of 0.3 μM GR127935 (center), and 10 μM zolmitriptan added on 0.3 μM GR127935 (right).
rotransmitter release from trigeminal ganglion neurons (TGNs). First, 5HT1B and/or 1D receptors are localized in trigeminal vascular systems [2]. 5HT1B receptors are demonstrated on dural arteries [2] and 5HT1D receptors on trigeminal sensory neurons including peripheral and central projections [2-4]. Second, small and medium-sized TGNs possess 5HT1B/1D receptors, colocalized with CGRP and Substance P [5]. Third, naratriptan inhibits neuronal activity in TGNs [6]. Fourth, synaptic transmission from TGNs to central trigeminovascular neurons is blocked by activation of presynaptic 5HT1B/1D receptors on central terminals of meningeal nociceptors [7].

An activation of high-voltage activated (HVA) Ca2+ channels is known to trigger the release of neurotransmitters and to control numerous neuronal functions such as neuronal excitability. HVA Ca2+ channels are divided into four subtypes; that is N-, P/Q-, L-, and R-type channels. All of four subtypes of HVA Ca2+ channels are demonstrated to be expressed in TGNs [8]. Recent findings indicate that the blockade of HVA Ca2+ channels prevents CGRP release in TGNs [8]. Although it is shown that N- and P/Q-currents are inhibited via G protein-coupled mechanisms by agonists for 5HT1A and 1D receptors in the primary spinal neurons of Xenopus larvae [10,11], effects of 5HT1B/1D agonists on HVA Ca2+ channels in mammalian TGNs have not yet been evaluated.

As mentioned above, involvement of triptans in modulation of CGRP release as well as neuronal activity in the trigeminal ganglion is highly plausible. This prompted us to examine whether or not triptans could act on HVA Ca2+ channels of TGNs, leading to inhibition of the release of CGRP and neurotransmission, possibly involved in generation of migraine. In the present study, electrophysiological experiments were undertaken to analyze actions of zolmitriptan, one of triptans, on HVA Ca2+ channels using cultured neonatal rat TGNs. This paper clarified that zolmitriptan could inhibit HVA Ca2+ channels by activating 5HT1B/1D receptor coupled to G_{i/o} pathway.

Results

Currents carried by Ba2+ passing through HVA Ca2+ channels, I_{Ba}, were recorded from somata of neonatal rat TGNs, small to medium size of 22 to 27 μm in diameter. The peak amplitude of I_{Ba} in control varied within the range from 230 to 1200 pA (mean ± S.E.M.; 508.5 ± 31.0 pA, n = 37).

Concentration-dependent action of zolmitriptan on I_{Ba}

Zolmitriptan was applied to TGNs by superfusion for two minutes. As shown in Fig. 1a, I_{Ba} was inhibited in the presence of zolmitriptan at 10 μM. Inhibitory actions of zolmitriptan on I_{Ba} were examined at concentrations between 0.1 and 100 μM (Fig. 1b, the number of cells indicated). Zolmitriptan at lower concentrations slowly started depressing the I_{Ba} at 10 to 20 s from the onset of application. This depressing action slowly increased but could not reach its maximum in 2 min at concentrations lower than 10 μM. On the other hand, at 100 μM, the I_{Ba} was very rapidly inhibited within 10 s and completely abolished within one min of the drug application.

As noticed from Fig. 1b, this inhibitory effect of zolmitriptan on I_{Ba} lasted after the end of the drug application and afterwards became more marked, attaining to its peak. Then, it should be noted that the inhibitory action of zolmitriptan on I_{Ba} could be hardly washed out. Therefore, the inhibitory effect of the drug was compared by using the I_{Ba} ratio (see Method and figure legend) at 2 min after the onset of the application. The I_{Ba} ratios were 0.96 ± 0.06 (0.1 μM, n = 4), 0.81 ± 0.08 (1 μM, n = 6), 0.75 ± 0.07 (5 μM, n = 6), 0.71 ± 0.06 (10 μM, n = 12), 0.40 ± 0.12 (40 μM, n = 8), and 0.00 ± 0.00 (100 μM, n = 3), and compared with the I_{Ba} ratio of control group without zolmitriptan (0.97 ± 0.03, n = 3), as summarised in Fig. 1c, showing the concentration-inhibition relationship for the action of zolmitriptan on I_{Ba}.

Action of zolmitriptan, inhibited by a 5HT1B/1D antagonist

Since triptans are known to act as 5-HT1B/1D agonists, we examined whether or not the zolmitriptan-induced inhibition on I_{Ba} could be blocked by a 5-HT1B/1D receptor antagonist, GR127935. The preparations were pretreated with GR127935 for 2 min; no direct actions of the antagonist on I_{Ba} were observed at 0.3 μM. Following GR127935 application for more than 2 min, zolmitriptan (5 and 10 μM) was added to the superfusate. The I_{Ba} ratios with 10 μM zolmitriptan were 0.71 ± 0.06 (without GR127935, n = 12), 0.72 ± 0.10 (0.1 μM GR127935, n = 6), 1.10 ± 0.04 (0.3 μM GR127935, n = 4), as summarized in Fig. 2. It was shown that the zolmitriptan-induced inhibition of I_{Ba} was significantly reduced by GR127935 at 0.3 μM. On the other hand, the I_{Ba} ratios with 5 μM zolmitriptan were 0.75 ± 0.07 (without GR127935, n = 6), 0.84 ± 0.13 (0.1 μM GR127935, n = 4), showing no significant inhibition. These data suggested that zolmitriptan inhibited I_{Ba} by activating 5-HT1B/1D receptors. It should be added that GR127935 at concentrations higher than 1 μM occasionally inhibited I_{Ba}.

Action of zolmitriptan, mediated by G-protein pathway

It is widely accepted that some of 5-HT receptor subtypes are G-protein coupled. Possible involvement of G-protein...
After pretreatment with each of blockers for 2 min, zolmitriptan (10 μM) was added to the superfusing solutions, and \(I_{Ba} \) ratios were obtained (see inset of Fig. 4). When pretreated with \(\omega \)-CgTx, the \(I_{Ba} \) ratio was 0.55 ± 0.02 (n = 5); with \(\omega \)-Aga, 0.89 ± 0.05 (n = 4); with SNX-482, 0.80 ± 0.03 (n = 7); and with nicardipine, 0.28 ± 0.15 (n = 4) (Fig. 4). The \(I_{Ba} \) ratios after pretreatment with \(\omega \)-Aga or SNX-482 seemed to be larger than the ratio 0.71 ± 0.06 (10 μM zolmitriptan without Ca\(^{2+}\) blockers) in Fig. 1c, suggesting a possibility that Ca\(^{2+}\) channels sensitive to \(\omega \)-Aga or SNX-482 likely contributed to the blockade of zolmitriptan \(I_{Ba} \) inhibition. Indeed, significant difference was detected between \(\omega \)-Aga and \(\omega \)-CgTx or nicardipine, and also between SNX-482 and nicardipine (Fig. 4), indicating that blockade of P/Q-type and R-type Ca\(^{2+}\) channels with \(\omega \)-Aga and SNX-482 reduced the inhibition of \(I_{Ba} \) by zolmitriptan. Therefore, it is likely that P/Q-type and R-type channels could be inhibited by zolmitriptan by acting on 5-HT\(_{1B/1D}\) receptors through G proteins pathways.

Discussion

The present experiments demonstrated modulating actions by zolmitriptan on \(I_{Ba} \) of the rat isolated TGNs. Zolmitriptan inhibited HVA Ca\(^{2+}\) currents carried by Ba\(^{2+}\) in a concentration-dependent manner within the concentration range between 0.1 μM and 100 μM by acting on 5HT\(_{1B/1D}\) receptor through G\(_{i/o}\) protein-coupled pathway.

5HT receptors are divided into 7 families, 5HT\(_{1a-7}\) receptors, on the basis of their amino acid sequences and other properties. 5HT\(_{1}\) receptors are further subdivided according to their physiological functions, binding affinity and other features [12]. The present study showed that GR127935, a potent 5HT\(_{1B/1D}\) receptor antagonist abolished the effect of zolmitriptan, meaning that zolmitriptan acted on 5HT\(_{1B/1D}\) receptor.

5HT\(_{1B}\) and/or 1\(_D\) subtypes are known as G-protein mediated receptors. In the present study, pretreatment with PTX inhibited the \(I_{Ba} \) inhibition by zolmitriptan, indicating the involvement of G\(_{i/o}\) protein coupled pathway. This observation might be compatible with the previous reports that an increase in intracellular Ca\(^{2+}\) level by 5HT\(_{1}\) receptor is associated with activation of G\(_{i/o}\)/protein coupled pathway [13,14] and that the modulation of neuronal voltage-gated Ca\(^{2+}\) channel is mediated by receptors coupled to PTX-sensitive G proteins [15,16]. In this context, possible involvement of stimulatory of G-proteins (G\(_{s}\)) in the zolmitriptan action should be further investigated by using cholera toxin. A recent report shows that sumatriptan could activate the other second messenger MAPK pathway leading to changes in intracellular Ca\(^{2+}\) changes [17]. This possibility for the action of zolmitriptan remains to be considered in future.
It is reported that triptans, antimigraine drugs, might inhibit the release of vasoactive neuropeptide from trigeminovascular nerve endings and also inhibit transmission of nociceptive impulses to second-order neurons of the trigeminocervical complex, resulting in the antimigraine effect of triptan [18]. It is known that the trigeminal ganglion possesses small to medium size 5HT1B/1D receptor positive peptidergic neurons [4,5] and furthermore that antimigraine drugs could block synaptic transmission between meningeal nociceptors and central trigeminal

Figure 4

Pharmacological characteristics of zolmitriptan-sensitive \(I_{B3} \). Bar graph shows that inhibition of \(I_{B3} \) was significantly reduced with \(\omega \)-Aga, compared to those with \(\omega \)-CgTx and nicardipine, Aand with SNX-482, compared to that with nicardipine \((^*p < 0.05)\). \(I_{B3} \) (control) after pretreatment with Ca2+ blockers and \(I_{B3} \) (test) 2 min after adding zolmitriptan were recorded as indicated in the inset. \(I_{B3} \) ratio was obtained by \(I_{B3} \) (test)/\(I_{B3} \) (control).
neurons presynaptically [7]. All of these suggest that HVA Ca2+ channels, highly responsible to neurotransmitter release from presynaptic terminal, might be involved in the antimigraine effects of triptans. Indeed the present study showed that HVA I\textsubscript{Ba} of TGNs was affected by zolmitriptan, a 5HT\textsubscript{1B/1D} agonist, strongly advocating the idea that triptans inhibited neurotransmitter release from peripheral or central presynaptic terminal through HVA Ca2+ channels.

It is important to determine which subtypes of HVA Ca2+ channels might essentially contribute to the release of different neurotransmitters from various classes of neurons. Some paper mentioned simply about HVA Ca2+ subtype on trigeminal neurons, but there is no consensus about which subtypes mainly contribute yet. Ebersberger et al shows that discharge patterns of trigeminal second order neurons with dural input are different in the presence of each HVA Ca2+ subtype blockade [19]. On the other hand, Hong et al showed that N- and P/Q-channels are important for the release of CGRP from perivascular TGNs [20] and the release of CGRP is shown to be prevented when N-, P/Q- or L- channels are blocked on trigeminal vascular neuron [9]. The present study demonstrated that the inhibition of zolmitriptan-sensitive I\textsubscript{Ba} in small-medium TGNs depended mainly on activation of P/Q- and R-type channels.

P/Q-type Ca2+ channels are reported to locate in all brain structure [18] and also in the trigeminal ganglia [8]. Furthermore, α-eudesmol, a P/Q-type channel blocker, inhibits the release of a neuropeptide from perivascular trigeminal sensory nerves [21]. These observations may support our present findings that P/Q-type channels might be possible sites on which zolmitriptan could act in cultured neonatal rat TGNs. Although N-type is also known to locate in DRG neurons [22-24], a few studies show the N-type channel dominance in TGNs. The present study with α-CgTx also could not statistically demonstrate an appreciable involvement of N-type channels in the inhibition of zolmitriptan-sensitive I\textsubscript{Ba} of cultured rat TGNs.

R-type Ca2+ channels are shown to locate presynaptically in the central nervous system, but the transmitter release mediated by R-type channels is less efficient than that by P/Q- and N-type channels [25]. In the process of development, R-type channels are replaced by P/Q-type ones in the central synaptic transmission [26]. There are similar results for Ca2+ channel subtypes obtained from neonatal and adult TGNs; in neonatal 4% are provided with P/Q-type while 15% with R-type one [8]; in adult 40% with P/Q-type while 5% to R-type [27]. In this context, the present study, for the first time, demonstrated possible involvement of R- as well as P/Q-type channels in the actions of zolmitriptan on the cultured neonatal rat TGNs.

Although zolmitriptan (0.1~100 μM) inhibited I\textsubscript{Ba} of cultured TGNs, it is difficult to determine the effective concentration of zolmitriptan acting in vivo on the trigeminal ganglion. Sumatriptan is reported to induce discharges in dural primary afferent neurons at concentrations between 0.24 and 24 μM [28] and also cause vasoconstriction in rat isolated vena portae smooth muscle at concentrations between 0.001 and 10 μM [29]; these indicate that actions of two triptans could be exerted at similar concentrations.

Conclusion

Zolmitriptan inhibited I\textsubscript{Ba} in a concentration-dependent manner by acting on 5HT\textsubscript{1B/1D} receptor. P/Q- and possibly R-type calcium channels contributed to the inhibition of I\textsubscript{Ba} by zolmitriptan. G\textsubscript{i/o} protein pathway were involved. Although this action of zolmitriptan on HVA Ca2+ channels might explain the antimigraine effect, more detailed research of second messenger pathway would reveal the further mechanism leading to antinociceptive effect of triptans and pain pathway of migraine.

Method

Animal preparation

All procedures were carried out in accordance with the guidelines for Animal Experimentation in Tokyo Medical and Dental University (No.0060010). Wistar rats (0–7 days after birth, Saitama Experimental Animals Supply Inc., Japan) were anesthetized by pentobarbital (i.p.). After the decapitation of the rats, trigeminal ganglia were dissected and treated with papain (20.3 units/ml) in low-Ca2+ and low-Mg2+ Krebs’ solution for 30 min at 37°C, washed with modified Krebs’ solution and triturated using fire-polished Pasteur pipettes. Neurons were plated onto poly-L-lysine pretreated 35 mm dishes. The plating medium contained Dulbecco’s modified Eagle’s medium with 10% calf serum. The TGNs were kept in culture in modified Krebs’ solution saturated with 5% CO\textsubscript{2} at 37°C for 2 hours to one day before experiment. The TGNs were kept in culture in modified Krebs’ solution saturated with 5% CO\textsubscript{2} at 37°C for 2 hours to one day before experiment. The ionic composition of the modified Krebs’ solution was (mM): NaCl, 117; KCl, 4.7; CaCl\textsubscript{2}, 2.5; MgCl\textsubscript{2}, 1; glucose, 11; 3-(N-morpholino) propanesulfonic acid (MOPS), 25; and pH 7.2 adjusted with NaOH. The low-Ca2+ and low-Mg2+ Krebs’ solution was made by adding EDTA (2.5 mM) to the modified Krebs’ solution.

Electrophysiological recording

Membrane currents were recorded from somata of cultured TGNs in the whole-cell voltage clamp configuration of patch clamp technique with an Axopatch 1D amplifier (Axon Instrument). Currents were filtered low-pass at 2 Hz by the built-in Bessel filter, and recorded on a chart recorder (San-ei) for later analysis. Patch pipettes were

Page 7 of 9

(page number not for citation purposes)
pulled from borosilicate glass capillaries (Harvard) using a puller (Narishige co.), and had input resistance of 5–10 MΩ after polishing. The ionic composition of the patch pipette solution was (mM): CsCl, 100; MOPS, 40; MgCl₂, 1; EGTA, 10; CaCl₂, 1; ATP, 2 and pH 7.2 adjusted with KOH. A series resistance of the recording system was not electrically compensated.

Currents carried by Ba²⁺ passing through HVA Ca²⁺ channels, I_{Ba₁}, were evoked by depolarizing voltage step command pulse to +10 mV for 40 ms from a holding potential of -60 mV every 10 s. For isolating Ba²⁺ currents an external solution was used, containing (mM): CsCl, 2.5; BaCl₂, 2.5; MgCl₂, 1; Glu, 11; HEPES, 10 and pH 7.3 adjusted with TEA-OH. The amplitude of I_{Ba₁} was determined as the difference between the baseline and the peak inward current during each command pulse.

External solutions were applied continuously via a polyethylene tube mounted on a micromanipulator and the tip of the tube was positioned within 10 mm of the recorded neurons. External solution was kept at 37°C. The capacity of chamber was 150 µl and the flow rate of solution was 2 ml/min.

Materials
Zolmitriptan was a gift from Astrazeneca. Zolmitriptan was dissolved in dimethylsulfoxide (DMSO) and stored at -20°C. More dilute solutions were made daily dissolved in TEA-Cl 140; CsCl, 100; MOPS, 40; MgCl₂, 1; Glu, 11; HEPES, 10 and pH 7.3 adjusted with TEA-OH. The capacity of chamber was 150 µl and the flow rate of solution was 2 ml/min.

Data analysis
All data are expressed as means ± S.E.M. I_{Ba₁} ratio of Fig. 1b was expressed as the relative amplitude in response to each step command pulse compared to control values, and I_{Ba₁} ratios shown in Fig 1c, 2, 3, 4 were expressed as the relative amplitude after 120 s zolmitriptan application compared to control values in the absence of zolmitriptan. Statistical significance was assessed with Student’s t-test for simple comparisons and Bonferroni-type multiple t-test for multiple comparison. Differences of P < 0.05 were considered to be significant.

List of Abbreviation
TGN, trigeminal ganglion neuron; HVA, high-voltage activated; I_{Ba₁}, Ba²⁺ currents; CGRP, calcitonin gene-related peptide; PTX, pertussis toxin; α-Aga, α-agatoxin IVA; α-CgTx, α-conotoxin GVIa; DRG, dorsal root ganglion; i.p., intraperitoneally; MOPS, 3-(N-morpholino)propanesulfonic acid; EDTA, ethylenediaminetetraacetic acid; EGTA, ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid; HEPES, 2-[4-(2-Hydroxyethyl)-1-piperad- inyl]ethansulfonic acid; DMSO, dimethylsulfoxide.

Competing interests
The author(s) declare that they have no competing interests.

Authors’ contributions
T. Morikawa conceived of the study, participated in design of the study, carried out cell-culture and electrophysiological experiments, performed the statistical analysis, and prepared the manuscript as a main investigator. Y Matsu zawa participated in experiments and discussion. K Makita participated in design of the study and did the entire summary and discussion from the viewpoint of the pain clinic. Y Katayama conceived of the study, performed in design of the study, helped to prepare the manuscript and gave financial support of the present study and approval of this version to be published. All authors read and approved the final manuscript.

Acknowledgements
This study was supported in part by Grant-in-Aid for Scientific Research (No. 13307056 to Y.K.)

References
1. Goadsby PJ, Edvinsson L: The trigeminovascular system and migraine: studies characterizing cerebrovascular and neu ropoetide changes seen in humans and cats. Ann Neurol 1993, 33:48-56.
2. Longmore J, Shaw D, Smith D, Hopkins R, McAllister G, Pickard JD, Sirinathsinghi JD, Butler AJ, Hill RG: Differential distribution of 5HT₁D- and 5HT₁B-immunoreactivity within the human trigemino-cerebrovascular system: implications for the discovery of new antimigraine drugs. Cephalalgia 1997, 17:833-842.
3. Bonaventure P, Voorn P, Luyten WH, Jurzak M, Schotte A, Leysen JE: Detailed mapping of serotonin 5-HT₁D and 5-HT₁D receptor messenger RNA and ligand binding sites in guinea-pig brain and trigeminal ganglion: clues for function. Neuroscience 1998, 82:469-484.
4. Potrebic S, Ahn AH, Skinner K, Fields HL, Basbaum AI: Peptidergic nociceptors of both trigeminal and dorsal root ganglia express serotonin 1D receptors: implications for the selective antimigraine action of triptans. J Neurosci 2003, 23:10988-10997.
5. Ma QP, Hill R, Sirinathsinghi D: Co-localization of CGRP with 5-HT₁B/₁D receptors and substance P in trigeminal ganglion neurons in rats. Eur J Neurosci 2001, 13:2099-2104.
6. Goadsby PJ, Knight Y: Inhibition of trigeminal neurones after intravenous administration of naratriptan through an action at 5-hydroxytryptamine (5-HT₁D) receptors. Br J Pharmacol 1997, 122:918-922.
7. Levy D, Jakubowski M, Burstein R: Disruption of communication between peripheral and central trigeminovascular neurons mediates the antimigraine action of 5-HT₁B/₁D receptor agonists. Proc Natl Acad Sci USA 2004, 101:4274-4279.
8. Ikeda M, Matsunaga S: Classification of voltage-dependent Ca²⁺ channels in trigeminal ganglion neurons from neonatal rats. Life sciences 2003, 73:1175-1187.
9. Akerman S, Williamson DJ, Goadsby PJ: Voltage-dependent calcium channels are involved in neurogenic dural vasodilatation via a presynaptic transmitter release mechanism. Br J Pharmacol 2003, 140:558-566.
10. Sun QQ, Dale N: Differential inhibition of N and P/Q Ca²⁺ currents by 5-HT₁A and 5-HT₁D receptors in spinal neurones of Xenopus laevis. J Physiol 1998, 510:103-120.
11. Sun QQ, Dale N: G-proteins are involved in 5-HT receptor-mediated modulation of N- and P/Q- but not T-type Ca²⁺ channels. J Neurosci 1999, 19:890-899.
12. Tepper SJ, Rapoport AM, Sheftell FD: Mechanisms of action of the 5-HT₁B/₁D receptor agonists. Arch Neurol 2002, 59:1084-1088.
13. Zgombick JM, Borden LA, Cochran TL, Kucharewicz SA, Weinshank RL, Branchek TA: Dual coupling of cloned human 5-hydroxytryptamine1D alpha and 5-hydroxytryptamine1D beta receptors stably expressed in murine fibroblasts: inhibition of adenylate cyclase and elevation of intracellular calcium concentrations via pertussis toxin-sensitive G protein(s). *Mol Pharmacol* 1993, 44:575-582.

14. Adham N, Borden LA, Schecter LE, Gustafson EL, Cochran TL, Vayse PJ, Weinshank RL, Branchek TA: Cell-specific coupling of the cloned human 5-HT1E receptor to multiple signal transduction pathways. *Naunyn Schmiedebergs Arch Pharmacol* 1993, 348:566-575.

15. Holz GG, Rane SG, Dunlap K: FTP-binding proteins mediate transmitter inhibition of voltage-dependent calcium channels. *Nature* 1986, 319:670-672.

16. Dolphin AC: G protein Modulation of Voltage-gated Calcium Channels. *Pharmacological Reviews* 2003, 55:607-627.

17. Durham PL, Russo AF: Stimulation of the calcitonin gene-related peptide enhancer by mitogen-activated protein kinases and repression by an antimigraine drug in trigeminal ganglia neurons. *J Neurosci* 2003, 23:807-815.

18. Pietrobon D, Streissg 1: Neurobiology of migraine. *Nature Reviews* 2003, 3:386-398.

19. Ebersberger A, Portz S, Meissner W, Schäible HG, Richter F: Effects of N-, P/Q- and L-type calcium channel blockers on nociceptive neurones of the trigeminal nucleus with input from the dura. *Cephalalgia* 2004, 24:250-261.

20. Hong KW, Kim CD, Rhim BY, Lee WS: Effect of omega-conotoxin GVIA and omega-agatoxin IVA on the capsaicin-sensitive calcitonin gene-related peptide release and autoregulatory vasodilation in rat pial arteries. *J Cereb Blood Flow Metab* 1999, 19:53-60.

21. Asakura K, Kanemasa T, Minagawa K, Kagawa K, Yagami T, Nakajima M, Ninomiya M: alpha-eudesmol, a P/Q-type Ca (2+) channel blocker, inhibits neurogenic vasodilation and extravasation following electrical stimulation of trigeminal ganglion. *Brain Res* 2000, 873:94-101.

22. Soeda H, Tatsuzi H, Katayama Y: Neurotransmitter release from growth cones of rat dorsal root ganglion neurons in culture. *Neuroscience* 1997, 77:1187-1199.

23. Sutton KG, Martin DJ, Pinnock RD, Lee K, Scott RH: Gabapentin inhibits high-threshold calcium channel currents in cultured rat dorsal root ganglion neurones. *Br J Pharmacol* 2002, 135:257-265.

24. McDowell TS: Fentanyl decreases Ca2+ currents in a population of capsaicin-responsive sensory neurons. *Anesthesiology* 2003, 98:223-231.

25. Kamp MA, Krieger A, Henry M, Hescheler J, Weiergraber M, Schneider T: Presynaptic 'Ca2.3-containing' E-type Ca channels share dual roles during neurotransmitter release. *Eur J Neurosci* 2005, 21:1617-1625.

26. Iwasaki S, Momiyama A, Uchitel OD, Takahashi T: Developmental changes in calcium channel types mediating central synaptic transmission. *J Neurosci* 2000, 20:59-65.

27. Borgland SL, Connor M, Christie MJ: Nociceptin inhibits calcium channel currents in a subpopulation of small nociceptive trigeminal ganglion neurons in mouse. *J Physiol* 2001, 536:35-47.

28. Strassman AM, Levy D: The anti-migraine agent sumatriptan induces a calcium-dependent discharge in meningeal sensory neurons. *Neuroreport* 2004, 15:1409-1412.

29. Date Y, Offoumou MA: Involvement of nitric oxide in fading of 5-hydroxytryptamine-induced vasoconstriction in rat isolated vena portae smooth muscle. *J Pharm Pharmacol* 2004, 56:1-7.