Nanocatalyst: A Brief Review on Synthesis to Applications

Saurabh B. Somwanshi¹, Sandeep B. Somvanshi², Prashant B. Kharat³

¹Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad – 431004, Maharashtra, India
²Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad – 431004, Maharashtra, India
³Department of Physics, Vinayak Vidnyan Mahavidyalaya, Nandgaon Khandeshwar, Amravati – 444708, Maharashtra, India

Corresponding author e-mail : sbsomvanshi1993@gmail.com, drpbkharat@gmail.com

Abstract. As the world is at present confronting tremendous issues concerning the atmosphere, energy, and the environment, catalysis innovations have all the earmarks of being getting critical to energy, synthesis process, and environmental areas. In the recent years, transformation of the research on catalytic activities and advanced catalyst was seen with the advancement of nanotechnology. Undoubtedly, the utilization of nanomaterials in catalysis and, all the more especially, inorganic nanoparticles has pulled in many research attempts over the globe to create imaginative and greener conventions. These nanoparticles can be used as the catalyst or as mediator and can encourage the reactant procedure in new medium such as, water. Besides, attributable to their little size and expanded surface area, nano-catalysts have obviously risen as offering an interesting candidate at the interface among homogeneous and heterogeneous catalysis, taking into consideration an expanded response rate. Furthermore, nanoparticles give extra reactant functionalities because of their interesting inherent properties (e.g., nanomagnetism, photocatalytic activity). Along these lines, in this pursuit for eco-friendly and more affordable catalyst, nano-catalysis is turning into a significant field in science, which is applied broadly in the academics and industrial areas. This brief review principally centered around portraying the major comprehension of nano-catalysis, how remarkable catalytic property and other explicit properties of nanomaterials rely upon its size and structure at the nano level.

1. Introduction
Catalysis assumes a focal job in chemical reaction and lies at the core of incalculable synthetic conventions, from academics at research centres level to the chemical industries level [1, 2]. By utilizing catalytic reagents, one can lessen the temperature of a reaction, diminish reagent-based waste and upgrade the selectivity of a response that conceivably maintains a strategic distance from the undesirable side responses prompting a green innovation [3]. Structuring and creating perfect catalyst is one of the significant ideas of green science. As per the standards of green science, reactant reagents (as particular as could be expected under the circumstances) are better than stoichiometric reagents [4]. Stoichiometric reagents are utilized in abundance and work just a single time while catalytic reagents utilized in modest quantities and can carry out single reaction for multiple times. To work more like
nature is the base of the considerable number of standards of green science [5]. Nature unmistakably gave clues to us to carry out environmental friendly reactions by utilizing microorganisms and enzymes. Without catalyst, assortment of items for example medications, fine synthetics, polymers, fibers, fuels, paints, oils, and a heap of other worth added items necessary to humans, would not be possible. Catalysis contributes the mechanism by which chemical reactions happen which enables economical formation of pure materials. In this way, by utilizing catalyst fabricating conventions can be made more monetary, green and sustained. Aside from heavy metal ion catalysts which are for the most part not recoverable from framework, soft catalyst materials such as zeolites, phase transformed catalysts are emerged for industrial level applications.

Among three notable catalysis classifications for example homogeneous, heterogeneous and enzymes based catalysis, enzymes based catalysis is the most effective and greenest catalysis found in nature. Both the homogeneous and heterogeneous catalysis has its own benefits and negative marks because of which there is critical need of another synergist framework, which should be dynamic like homogeneous catalysis, and should likewise be effectively recoverable like heterogeneous catalysts. Nano-catalyst have joined points of interest of both the homogeneous and heterogeneous catalytic frameworks [6, 7]. Nano catalytic framework permits the quick, specific chemical conversion with higher yield combined with the simplicity of catalyst separation and recuperation. Recuperation of catalyst from the framework is most significant qualities of any catalyst before being adequate for green synthesis processes at industrial level [8, 9]. On account of nano scale, the contact among reactants and catalyst increments significantly (this is near to homogeneous catalysis). Insolubility in the reactive solvents make the catalyst heterogeneous and thus can be isolated out effectively from the reaction mixture (this is near to heterogeneous catalysis).

2. Nanoparticles synthesis
Nanoparticles (NPs) are particles estimated between 1-100 nm. Synthesis of stable nanoparticles estimated between 1-100 nm is the primary assignment of the nanoscience. Nanoparticles might be integrated by different methods classes in two significant heads like (I) top-down method and (ii) bottom-up method (Fig 1).

Fig. 1 Summary of nanoparticle preparation methods

In literature, various methods were reported for the synthesis of nanoscale materials such as sol-gel [10, 11], sol-gel auto-combustion [12-15], hydrothermal [16-18], microemulsion [19, 20], chemical coprecipitation [21-23], spray pyrolysis [24, 25] etc. As limitation emerges in its definition about its size, the science of nanoparticles essentially relies upon two things for example (I) union of NPs all around controlled size/shape and (ii) sub-atomic way to deal with discover more specific utilisations of NPs particularly in nano catalysis. Preparation of NPs in all around controlled size is principally
made by utilizing diverse stabilizing operators for example ligands, surfactants, polymers, and so forth. Selectivity and reactivity of the NPs has a basic significance as it can impact the course of a reaction which essentially relies upon surface area of NPs. Along these lines, selectivity and reactivity of NPs relies upon essentially two concerns for example (I) control of surface structure and morphology and (ii) control of surface compositions [26, 27]. Recyclability of nanocatalyst carries on like the bottleneck for modern utilization of NPs. Magnetic NPs has risen as a vigorous, exceptionally effective and quick detachment material with numerous points of interest contrasted and product and catalyst isolation by methods in comparison with other physical techniques, for example, fluid extraction, chromatography, refining, filtration or centrifugation [28]. The nanocatalyst immobilized on overly paramagnetic nanomaterials can be effectively isolated from the items because of a solid cooperation between the magnetic nanoparticles and an outer applied magnetic field, and it very well may be effectively again dispersed without the magnetic field because of its nonappearance.

3. Nanocatalysis

Catalysis is one of the pioneer utilizations of nanoparticles. Different components and materials like aluminium, iron, titanium dioxide, and silica all have been utilized as catalyst in nanoscale form in the past decades [29, 30]. In any case, suitable clarification of its gigantic synergist conduct appearing by NPs despite everything has not been completely comprehended. Enormous surface area of nanoparticles has a straightforward beneficial outcome on reaction rate and may likewise be a sensible clarification of its reactant movement. Structure and shape-dependent properties of any materials at its nanoscale size can likewise impact the reactant movement of a material. The calibrating of nano catalyst, as far as synthesis, shape and size has achieved more noteworthy selectivity. In this way the inquest here is the means by which the physical properties of nanoparticles influence their reactant properties, and how manufacture boundaries can thus influence those physical properties [31, 32]. By better comprehension of these, a researcher can design and develop nano catalyst which are exceptionally dynamic, profoundly particular, and exceptionally tough. Every one of these points of interest will empower modern synthetic responses to turn out to be more asset proficient, consume less energies, and produce less waste which help to counter the ecological effect brought about by our dependence on synthesis process. Nanoparticles are perceived as the most significant modern catalyst and have more extensive application extending from chemical manufacturing to energy transformation and storage applications. Fig. 2 exhibits to fundamental distinction in between homogeneous, heterogeneous and nano catalysts.

![Fig. 2 Difference between homogeneous, heterogeneous and nano-catalysts](image-url)
Idea driving the nano catalysis might be comprehended by considering the effect of the characteristic properties of nanomaterials on catalytic reaction as shown in Fig. 3. Characteristic properties of nanomaterials that vitally affect their synergist action might be sorted as (I) amounts that are straightforwardly identified with bond length, for example, the lattice parameter, density, and binding energy; (ii) amounts that rely upon the cohesive energy; (iii) properties that differ with the density of binding energy and (iv) properties from the joint impact of the density of binding energy and atomic cohesive energy.

Performance of materials or a bunch of atoms shift from that of a confined particle predominantly because of the inclusion of interatomic interface. Alteration of the relative number of the under-composed surface atoms gives an extra opportunity that permits one to tune the properties of a nano-catalyst concerning that of its bulk counterpart. Consequently, contribution from the under-composed atoms and the contribution of interatomic interface can be the beginning stage of consideration to overcome any issues between a isolated atoms and a bulk material in chemical and physical exhibitions. The effect of atomic coordination decrease is huge and it brings together the exhibition of a surface, a nano-catalyst, and an amorphous state reliably as far as bond unwinding and its outcomes on bond vitality. The irregular conduct of a surface and a nano-catalyst has been reliably comprehended and efficiently detailed as elements of atomic coordination decrease and its subordinates (size reliance) on the atomic catching potential, crystal binding intensities, and electron–phonon coupling. By absolutely controlling the size, shape, spatial dissemination, surface compositions and electronic structure, and thermal and synthetic dependability of the individual nano segments, it very well may be broadly utilized in catalysis with fresher properties and activity. Nanoscale catalysts have been the subject of significant academic and commercial exploration consideration as of late because of the various potential advantages that can accumulate through their utilization. The applications of nanocatalyst are summarized into Fig. 4.
4. Conclusions
Nano catalysis assumes a focal job in both the academia and industry research and developments. Modern effect of nano catalysis is plainly reflected by the expanding number of nano catalysis related research articles, products, technologies and patents. Size and shape controlled planning of metal nanoparticles are promising for greener heterogeneous synergist responses. Based on better comprehension of size and shape impacts of the nanoparticles and their communications with supportive materials or balancing out operator, today it is extremely encouraging that researchers can comprehend to address environmental, industrial and societal issues. Along these lines, this brief review may give a concise information about nano catalysis and furthermore rouse innovative work in this field.

Acknowledgement
The author Sandeep B. Somvanshi acknowledges Department of Science and Technology (DST), Government of India for DST-INSPIRE Fellowship (IF170288).

References
[1] B. Qiu, M. Xing, J. Zhang, Recent advances in three-dimensional graphene based materials for catalysis applications, Chemical Society Reviews, 47 (2018) 2165-2216.
[2] C.M. Starks, M. Halper, Phase-transfer catalysis: fundamentals, applications, and industrial perspectives, Springer Science & Business Media, 2012.
[3] P. Anastas, N. Eghbali, Green chemistry: principles and practice, Chemical Society Reviews, 39 (2010) 301-312.
[4] P.T. Anastas, P. Tundo, Green chemistry: Challenging perspectives, Oxford University Press Oxford:, 2000.
[5] P.T. Anastas, M.M. Kirchhoff, Origins, current status, and future challenges of green chemistry, Accounts of chemical research, 35 (2002) 686-694.
[6] R.M. Borade, S.B. Somvanshi, S.B. Kale, R.P. Pawar, K. Jadhav, Spinel zinc ferrite nanoparticles: an active nanocatalyst for microwave irradiated solvent free synthesis of chalcones, Materials Research Express, 7 (2020) 016116.

[7] S.A. Jadhav, S.B. Somvanshi, M.V. Khedkar, S.R. Patade, K. Jadhav, Magnetostuctural and photocatalytic behavior of mixed Ni-Zn nano-spinel ferrites: visible light-enabled active photodegradation of rhodamine B, Journal of Materials Science: Materials in Electronics, 1-14.

[8] Z. Li, M. Li, Z. Bian, Y. Kathiraser, S. Kawi, Design of highly stable and selective core/yolk–shell nanocatalysts—A review, Applied Catalysis B: Environmental, 188 (2016) 324-341.

[9] A. Fihri, M. Bouhrara, B. Nekoueisahraki, J.-M. Basset, V. Polshettiwar, Nanocatalysts for Suzuki cross-coupling reactions, Chemical Society Reviews, 40 (2011) 5181-5203.

[10] S.B. Somvanshi, S.R. Patade, D.D. Andhare, S.A. Jadhav, M.V. Khedkar, P.B. Kharat, P.P. Khirade, K. Jadhav, Hyperthermic evaluation of oleic acid coated nano-spinel magnesium ferrite: enhancement via hydrophobic-to-hydrophilic surface transformation, Journal of Alloys and Compounds, (2020) 155422.

[11] S.B. Somvanshi, S.A. Jadhav, M.V. Khedkar, P.B. Kharat, S. More, K. Jadhav, Structural, thermal, spectral, optical and surface analysis of rare earth metal ion (Gd3+) doped mixed Zn-Mg nano-spinel ferrites, Ceramics International, (2020).

[12] S. B. Somvanshi, P. B. Kharat, T. S. Saraf, S. B. Somwanshi, S. B. Shejul, K. M. Jadhav, Multifunctional nano-magnetic particles assisted viral RNA-extraction protocol for potential detection of COVID-19, Materials Research Innovations, (2020) 1-6.

[13] A. Bhosale, S.B. Somvanshi, V. Murumkar, K. Jadhav, Influential incorporation of RE metal ion (Dy3+) in yttrium iron garnet (YIG) nanoparticles: Magnetic, electrical and dielectric behaviour, Ceramics International, (2020).

[14] S.B. Somvanshi, P.B. Kharat, M.V. Khedkar, C. Tojo, Synthesis of nanoparticles in microemulsions, in: Nanoscale materials, Springer, 2004, pp. 135-155.

[15] S.B. Somvanshi, S.A. Jadhav, M.V. Khedkar, K. Jadhav, Hyperthermic evaluation of oleic acid coated nano-spinel magnesium ferrite: enhancement via hydrophobic-to-hydrophilic surface transformation, Journal of Alloys and Compounds, (2020).
[24] A.R. Chavan, S.B. Somvanshi, P.P. Khirade, K. Jadhav, Influence of trivalent Cr ion substitution on the physicochemical, optical, electrical, and dielectric properties of sprayed NiFe$_2$O$_4$ spinel-magnetic thin films, RSC Advances, 10 (2020) 25143-25154.

[25] H. Kardile, S.B. Somvanshi, A.R. Chavan, A. Pandit, K. Jadhav, Effect of Cd$^{2+}$ doping on structural, morphological, optical, magnetic and wettability properties of nickel ferrite thin films, Optik, (2020) 164462.

[26] G. Kulkarni, P.J. Thomas, C. Rao, Mesoscopic assembly and other properties of metal and semiconductor nanocrystals, The Chemistry of Nanomaterials: Synthesis, Properties and Applications, (2004) 51-93.

[27] W. Niu, G. Xu, Crystallographic control of noble metal nanocrystals, Nano Today, 6 (2011) 265-285.

[28] S. Sadjadi, M.H. Majid, M. Malmir, Pd (0) nanoparticle immobilized on cyclodextrin-nanosponge-decorated Fe$_2$O$_3$@SiO$_2$ core-shell hollow sphere: an efficient catalyst for CC coupling reactions, Journal of the Taiwan Institute of Chemical Engineers, 86 (2018) 240-251.

[29] S.L. Candelaria, Y. Shao, W. Zhou, X. Li, J. Xiao, J.-G. Zhang, Y. Wang, J. Liu, J. Li, G. Cao, Nanostructured carbon for energy storage and conversion, Nano energy, 1 (2012) 195-220.

[30] K. Yan, A. Chen, Efficient hydrogenation of biomass-derived furfural and levulinic acid on the facilely synthesized noble-metal-free Cu–Cr catalyst, Energy, 58 (2013) 357-363.

[31] B.R. Cuenya, Synthesis and catalytic properties of metal nanoparticles: Size, shape, support, composition, and oxidation state effects, Thin Solid Films, 518 (2010) 3127-3150.

[32] C.Q. Sun, Size dependence of nanostructures: Impact of bond order deficiency, Progress in solid state chemistry, 35 (2007) 1-159.