Entropic Measure on Multidimensional Spaces

Karl-Theodor Sturm

Abstract. We construct the entropic measure \mathbb{P}^β on compact manifolds of any dimension. It is defined as the push forward of the Dirichlet process (another random probability measure, well-known to exist on spaces of any dimension) under the conjugation map

$$\mathcal{C}: \mathcal{P}(M) \rightarrow \mathcal{P}(M).$$

This conjugation map is a continuous involution. It can be regarded as the canonical extension to higher dimensional spaces of a map between probability measures on 1-dimensional spaces characterized by the fact that the distribution functions of μ and $\mathcal{C}(\mu)$ are inverse to each other.

We also present an heuristic interpretation of the entropic measure as

$$d\mathbb{P}^\beta(\mu) = \frac{1}{Z} \exp\left(-\beta \cdot \text{Ent}(\mu|m)\right) \cdot d\mathbb{P}^0(\mu).$$

Mathematics Subject Classification (2000). 60G57; 28C20; 49N90; 49Q20; 58J65.

Keywords. Optimal transport, entropic measure, Wasserstein space, entropy, gradient flow, Brenier map, Dirichlet distribution, random probability measure.

1. Introduction

Gradient flows of entropy-like functionals on the Wasserstein space turned out to be a powerful tool in the study of various dissipative PDEs on Euclidean or Riemannian spaces M, the prominent example being the heat equation. See e.g. the monographs [Vi03, AGS05] for more examples and further references.

In [RS08], von Renesse and the author presented an approach to stochastic perturbation of the gradient flow of the entropy. It is based on the construction of a Dirichlet form

$$\mathcal{E}(u,u) = \int_{\mathcal{P}(M)} \|
abla u\|^2(\mu) \ d\mathbb{P}^\beta(\mu).$$
where $\|\nabla u\|$ denotes the norm of the gradient in the Wasserstein space $\mathcal{P}(M)$ as introduced by Otto [Ot01]. The fundamental new ingredient was the measure \mathbb{P}^β on the Wasserstein space. This so-called *entropic measure* is an interesting and challenging object in its own right. It is formally introduced as

$$
\frac{d\mathbb{P}^\beta}{d\mathbb{P}^0}(\mu) = \frac{1}{Z} \exp \left(-\beta \cdot \text{Ent}(\mu|m) \right) \cdot d\mathbb{P}^0(\mu)
$$

(1.1)

with some (non-existing) ‘uniform distribution’ \mathbb{P}^0 on the Wasserstein space $\mathcal{P}(M)$ and the relative entropy as a potential.

A rigorous construction was presented for 1-dimensional spaces. In the case $M = [0,1]$ it is based on the bijections

$$
\mu \xrightarrow{(x)=\mu([0,x])} f \xrightarrow{g=f^{-1}} g \xrightarrow{g(y)=\nu([0,y])} \nu
$$

between probability measures, distribution functions and inverse distribution functions (where $f^{-1}(y) = \inf\{x \geq 0 : f(x) \geq y\}$ more precisely denotes the ‘right inverse’ of f). If $\mathcal{C}: \mathcal{P}(M) \to \mathcal{P}(M)$ denotes the map $\mu \mapsto \nu$ then the entropic measure \mathbb{P}^β is just the push forward under \mathcal{C} of the Dirichlet-Ferguson process \mathbb{Q}^β. The latter is a random probability measure which is well-defined on every probability space.

For long time it seemed that the previous construction is definitively limited to dimension 1 since it heavily depends on the use of distribution functions (and inverse distribution functions), – objects which do not exist in higher dimensions. The crucial observation to overcome this restriction is to interpret g as the unique *optimal transport map* which pushes forward m (the normalized uniform distribution on M) to μ:

$$
\mu = g_* m.
$$

Due to Brenier [Br87] and McCann [Mc01] such a ‘monotone map’ exists for each probability measure μ on a Riemannian manifold of arbitrary dimension. Moreover, also in higher dimensions such a monotone map g has a unique generalized inverse f, again being a monotone map (with generalized inverse being g). This observation allows to define the *conjugation map*

$$
\mathcal{C}: \mathcal{P}(M) \to \mathcal{P}(M), \ \mu \mapsto \nu
$$

for any compact manifold M. It is a continuous involution. By means of this map we define the entropic measure as follows:

$$
\mathbb{P}^\beta := \mathcal{C}_* \mathbb{Q}^\beta
$$

where \mathbb{Q}^β denotes the Dirichlet-Ferguson process on M with intensity measure $\beta \cdot m$. (Actually, such a random probability measure exists on every probability space.)

In order to justify our definition of the entropic measure by some heuristic argument let us assume that \mathbb{P}^β were given as in (1.1). The identity $\mathbb{Q}^\beta = \mathcal{C}_* \mathbb{P}^\beta$ then
defines a probability measure which satisfies
\[dQ^\beta(\nu) = \frac{1}{Z} \exp \left(-\beta \cdot \text{Ent}(m|\nu) \right) \cdot dQ^0(\nu). \] (1.2)

Given a measurable partition \(M = \bigcup_{i=1}^N M_i \) and approximating arbitrary probability measures \(\nu \) by measures with constant density on each of the sets \(M_i \) of the partition the previous ansatz (1.2) yields – after some manipulations –

\[Q^\beta_{M_1,\ldots,M_N}(dx) = \frac{\Gamma(\beta)}\prod_{i=1}^N \Gamma(\beta m(M_i)) \times \delta_{\left(1 - \sum_{i=1}^{N-1} x_i \right)}(dx_N)dx_{N-1}\ldots dx_1. \]

These are, indeed, the finite dimensional distributions of the Dirichlet-Ferguson process.

2. Spaces of Convex Functions and Monotone Maps

Throughout this paper, \(M \) will be a compact subset of a complete Riemannian manifold \(\hat{M} \) with Riemannian distance \(d \) and \(m \) will denote a probability measure with support \(M \), absolutely continuous with respect to the volume measure. We assume that it satisfies a Poincaré inequality:

\[\exists c > 0, \quad \int_M |\nabla u|^2 \, dm \geq c \int_M u^2 \, dm \]

for all weakly differentiable \(u : M \to \mathbb{R} \) with \(\int_M u \, dm = 0 \).

For compact Riemannian manifolds, there is a canonical choice for \(m \), namely, the normalized Riemannian volume measure. The freedom to choose \(m \) arbitrarily might be of advantage in view of future extensions: For Finsler manifolds and for non-compact Riemannian manifolds there is no such canonical probability measure.

The main ingredient of our construction below will be the Brenier-McCann representation of optimal transport in terms of gradients of convex functions.

Definition 2.1. A function \(\varphi : M \to \mathbb{R} \) is called \(d^2/2 \)-convex if there exists a function \(\psi : M \to \mathbb{R} \) such that

\[\varphi(x) = -\inf_{y \in M} \left[\frac{1}{2} d^2(x,y) + \psi(y) \right] \]

for all \(x \in M \). In this case, \(\varphi \) is called generalized Legendre transform of \(\psi \) or conjugate of \(\psi \) and denoted by \(\varphi = \psi^\circ \).
Let us summarize some of the basic facts on $d^2/2$-convex functions. See [Ro70], [Rü96], [Mc01] and [Vi08] for details.

Lemma 2.2. (i) A function φ is $d^2/2$-convex if and only if $\varphi^{cc} = \varphi$.

(ii) Every $d^2/2$-convex function is bounded, Lipschitz continuous and differentiable almost everywhere with gradient bounded by $D = \sup_{x,y \in M} d(x, y)$.

In the sequel, $\mathcal{K} = \mathcal{K}(M)$ will denote the set of $d^2/2$-convex functions on M and $\tilde{\mathcal{K}} = \tilde{\mathcal{K}}(M)$ will denote the set of equivalence classes in \mathcal{K} with $\varphi_1 \sim \varphi_2$ iff $\varphi_1 - \varphi_2$ is constant. \mathcal{K} will be regarded as a subset of the Sobolev space $H^1(M, m)$ with norm

$$\| u \|_{H^1} = \left[\int_M |\nabla u|^2 \, dm + \int_M u^2 dm \right]^{1/2},$$

and $\tilde{\mathcal{K}} = \mathcal{K}/\text{const}$ will be regarded as a subset of the space $\tilde{H}^1 = H^1/\text{const}$ with norm

$$\| u \|_{\tilde{H}^1} = \left[\int_M |\nabla u|^2 \, dm \right]^{1/2}.$$

Proposition 2.3. For each Borel map $g : M \to M$ the following are equivalent:

(i) $\exists \varphi \in \tilde{\mathcal{K}} : g = \exp(\nabla \varphi)$ a.e. on M;

(ii) g is an optimal transport map from m to $f \ast m$ in the sense that it is a minimizer of $h \mapsto \int_M d^2(x, h(x))m(dx)$ among all Borel maps $h : M \to M$ with $h \ast m = g \ast m$.

In this case, the function $\varphi \in \tilde{\mathcal{K}}$ in (i) is defined uniquely. Moreover, in (ii) the map f is the unique minimizer of the given minimization problem.

A Borel map $g : M \to M$ satisfying the properties of the previous proposition will be called monotone map or optimal Lebesgue transport. The set of m-equivalence classes of such maps will be denoted by $\mathcal{G} = \mathcal{G}(M)$. Note that $\mathcal{G}(M)$ does not depend on the choice of m (as long as m is absolutely continuous with full support)! $\mathcal{G}(M)$ will be regarded as a subset of the space of maps $L^2((M, m)(M, d))$ with metric $d_2(f, g) = \left[\int_M d^2(f(x), g(x))m(dx) \right]^{1/2}$.

According to our definitions, the map $\Upsilon : \varphi \mapsto \exp(\nabla \varphi)$ defines a bijection between $\tilde{\mathcal{K}}$ and \mathcal{G}. Recall that $\mathcal{P} = \mathcal{P}(M)$ denotes the set of probability measures μ on M (equipped with its Borel σ-field).

Proposition 2.4. The map $\chi : g \mapsto g \ast m$ defines a bijection between \mathcal{G} and $\mathcal{P}(M)$. That is, for each $\mu \in \mathcal{P}$ there exists a unique $g \in \mathcal{G}$ - called Brenier map of μ - with $\mu = g \ast m$.

1A function φ is $d^2/2$-convex in our sense if and only if the function $-\varphi$ is c-concave in the sense of [Ro70], [Rü96], [Mc01], [Vi08] with cost function $c(x, y) = d^2(x, y)/2$. In our presentation, the c stands for 'conjugate'. For the relation between $d^2/2$-convexity and usual convexity on Euclidean space we refer to chapter 4.
The map \(\chi \) of course strongly depends on the choice of the measure \(m \). (If there is any ambiguity we denote it by \(\chi_m \).)

Due to the previous observations, there exist canonical bijections \(\Upsilon \) and \(\chi \) between the sets \(\hat{K} \), \(\mathcal{G} \) and \(\mathcal{P} \). Actually, these bijections are even homeomorphisms with respect to the natural topologies on these spaces.

Proposition 2.5. Consider any sequence \(\{\varphi_n\}_{n \in \mathbb{N}} \) in \(\hat{K} \) with corresponding sequences \(\{g_n\}_{n \in \mathbb{N}} = \{\Upsilon(\varphi_n)\}_{n \in \mathbb{N}} \) in \(\mathcal{G} \) and \(\{\mu_n\}_{n \in \mathbb{N}} = \{\chi(g_n)\}_{n \in \mathbb{N}} \) in \(\mathcal{P} \) and let \(\varphi \in \hat{K} \), \(g = \Upsilon(\varphi) \in \mathcal{G} \), \(\mu = \chi(g) \in \mathcal{P} \). Then the following are equivalent:

1. \(\varphi_n \rightarrow \varphi \) in \(H_1 \)
2. \(g_n \rightarrow g \) in \(L^2((M,m),(M,d)) \)
3. \(g_n \rightarrow g \) in \(m \)-probability on \(M \)
4. \(\mu_n \rightarrow \mu \) in \(L^2 \)-Wasserstein distance \(d_W \)
5. \(\mu_n \rightarrow \mu \) weakly.

Proof. (i) \(\Leftrightarrow \) (ii) Compactness of \(M \) and smoothness of the exponential map imply that there exists \(\delta > 0 \) such that \(\forall x \in M \), \(\forall v_1, v_2 \in T_x M \) with \(|v_1|,|v_2| \leq D \) and \(|v_1 - v_2| < \delta \):

\[
\frac{1}{2} \leq d(\exp_x v_1, \exp_x v_2)/ |v_1 - v_2|_{T_x M} \leq 2.
\]

Hence, \(\varphi_n \rightarrow \varphi \) in \(H^1 \), that is \(\int_M |\nabla \varphi_n(x) - \nabla \varphi(x)|^2_{g,M} m(dx) \rightarrow 0 \), is equivalent to \(\int_M d^2(g_n(x),g(x))m(dx) \rightarrow 0 \), that is, to \(g_n \rightarrow g \) in \(L^2((M,m),(M,d)) \).

(ii) \(\Leftrightarrow \) (iii) Standard fact from integration theory (taking into account that \(d(g_n,g) \) is uniformly bounded due to compactness of \(M \)).

(iii) \(\Leftrightarrow \) (iv) If \(\mu_n = (g_n)_* m \) and \(\mu_n = g_* m \) then \((g_n,g)_* m \) is a coupling of \(\mu_n \) and \(\mu \). Hence,

\[
d^2_W(\mu_n,\mu) \leq \int_M d^2(g_n(x),g(x))m(dx). \tag{2.1}
\]

(iv) \(\Leftrightarrow \) (v) Trivial.

(ii) \(\Leftrightarrow \) (iv) \[Vi08\], Corollary 5.21.

Remark 2.6. Since \(M \) is compact, assertion (ii) of the previous Proposition is equivalent to

(\[\text{ iii'}\]) \(g_n \rightarrow g \) in \(L^p((M,m),(M,d)) \)

for any \(p \in [1,\infty) \) and similarly, assertion (iv) is equivalent to

(\[\text{ iv'}\]) \(\mu_n \rightarrow \mu \) in \(L^p \)-Wasserstein distance.

Remark 2.7. In \(n = 1 \), the inequality in (2.1) is actually an equality. In other words, the map

\(\chi : (\mathcal{G},d_3) \rightarrow (\mathcal{P},d_W) \)

is an isometry. This is no longer true in higher dimensions.

The well-known fact (Prohorov’s theorem) that the space of probability measures on a compact space is itself compact, together with the previous continuity results immediately implies compactness of \(\hat{K} \) and \(\mathcal{G} \).
Corollary 2.8. (i) \tilde{K} is a compact subset of \tilde{H}^1.
(ii) G is a compact subset of $L^2((M,m),(M,d))$.

3. The Conjugation Map

Let us recall the definition of the conjugation map $C_K : \varphi \mapsto \varphi^c$ acting on functions $\varphi : M \to \mathbb{R}$ as follows

$$\varphi^c(x) = -\inf_{y \in M} \left[\frac{1}{2} d^2(x,y) + \varphi(y) \right].$$

The map C_K maps K bijective onto itself with $C_K^2 = I$. For each $\lambda \in \mathbb{R}$, $C_K(\varphi + \lambda) = C_K(\varphi) - \lambda$. Hence, C_K extends to a bijection $C_K : \tilde{K} \to \tilde{K}$. Composing this map with the bijections $\chi : G \to P$ and $\Upsilon : \tilde{K} \to G$ we obtain involutive bijections $C_G = \Upsilon \circ C_{\tilde{K}} \circ \Upsilon^{-1} : G \to G$

and

$$C_P = \chi \circ C_G \circ \chi^{-1} : P \to P,$$

called conjugation map on G or on P, respectively. Given a monotone map $g \in G$, the monotone map

$$g^c := C_G(g)$$

will be called conjugate map or generalized inverse map; given a probability measure $\mu \in P$ the probability measure

$$\mu^c := C_P(\mu)$$

will be called conjugate measure.

Example 3.1. (i) Let $M = S^n$ be the n-dimensional sphere, and m be the normalized Riemannian volume measure. Put

$$\mu = \lambda \delta_a + (1 - \lambda) m$$

for some point $a \in M$ and $\lambda \in \]0,1[$. Then

$$\mu^c = \frac{1}{1 - \lambda} 1_{M \setminus B_r(a)} \cdot m$$

where $r > 0$ is such that $m(B_r(a)) = \lambda$.

[Proof. The optimal transport map $g = \exp(\nabla \varphi)$ which pushes m to μ is determined by the $d^2/2$-convex function

$$\varphi = \left\{ \begin{array}{ll} \frac{1}{2} \frac{r^2 - d^2(a',x)}{r^2 - r^2} & \text{in } B_r(a) \\
\frac{d^2(a',x) - (\pi - r)^2}{2(\pi - r)} & \text{in } B_{\pi - r}(a') = M \setminus B_r(a) \end{array} \right.$$.

Its conjugate is the function

$$\varphi^c(y) = -\frac{r}{2\pi} d^2(a',y) + \frac{1}{2} r(\pi - r).$$]
(ii) Let $M = S^n$, the n-dimensional sphere, and $\mu = \delta_a$ for some $a \in M$. Then $\mu^\ell = \delta_{a'}$ with $a' \in M$ being the antipodal point of a.

[Proof. Limit of (i) as $\lambda \to 1$. Alternatively: explicit calculations with $\varphi(x) = \frac{1}{2}[\pi^2 - d^2(a, x)]$]

\[\varphi(x) = \frac{1}{2}[\pi^2 - d^2(a, x)] \]

and

\[\varphi(x) = \sup_x \left(-\frac{1}{2}d^2(x, y) + \frac{1}{2}d^2(a, x) - \frac{1}{2}\pi^2 \right) = -\frac{1}{2}d^2(a', y). \]

(iii) Let $M = S^n$, the n-dimensional sphere, and $\mu = \frac{1}{2}\delta_a + \frac{1}{2}\delta_{a'}$ with north and south pole $a, a' \in M$. Then μ^ℓ is the uniform distribution on the equator, the $(n - 1)$-dimensional set Z of points of equal distance to a, a'.

(iv) Let $M = S^1$ be the circle of length 1, $m = \text{uniform distribution and}$

\[\mu = \sum_{i=1}^{k} \alpha_i \delta_{x_i} \]

with points $x_1 < x_2 < \ldots < x_k < x_1$ in cyclic order on S^1 and numbers $\alpha_i \in [0, 1]$, $\sum \alpha_i = 1$. Then

\[\mu^\ell = \sum_{i=1}^{k} \beta_i \delta_{y_i} \]

with $\beta_i = |x_{i+1} - x_i|$ and points $y_1 < y_2 < \ldots < y_k < y_{k+1} = y_1$ on S^1 satisfying

\[|y_{i+1} - y_i| = \alpha_{i+1}. \]

[Proof. Embedding in \mathbb{R}^1 and explicit calculation of distribution and inverse distribution functions.]

Remark 3.2. The conjugation map

\[\mathcal{C}_P : P \to P \]
depends on the choice of the reference measure m on M. Actually, we can choose two different probability measures m_1, m_2 and consider $\mathcal{E}_\mathcal{P} = \chi_{m_2} \circ \mathcal{E}_G \circ \chi_{m_1}^{-1}$.

Proposition 3.3. Let $\mu = g_* m \in \mathcal{P}$ be absolutely continuous with density $\eta = \frac{d\mu}{dm}$. Put $f = g^c$ and $\nu = f_* m = \mu^c$.

(i) If $\eta > 0$ a.s. then the measure ν is absolutely continuous with density $\rho = \frac{d\nu}{dm} > 0$ satisfying

$$
\eta(x) \cdot \rho(f(x)) = \rho(x) \cdot \eta(g(x)) = 1 \quad \text{for a.e. } x \in M.
$$

(ii) If ν is absolutely continuous then $f(g(x)) = g(f(x)) = x$ for a.e. $x \in M$.

(iii) Under the previous assumption the Jacobian $\det Df(x)$ and $\det Dg(x)$ exist for almost every $x \in M$ and satisfy

$$
\det Df(g(x)) \cdot \det Dg(x) = \det Df(x) \cdot \det Dg(f(x)) = 1,
$$

$$
\sigma(x) \cdot \eta(x) = \sigma(f(x)) \cdot \det Df(x), \quad \sigma(x) \cdot \rho(x) = \sigma(g(x)) \cdot \det Dg(x)
$$

for almost every $x \in M$ where $\sigma = \frac{dm}{dvol}$ denotes the density of the reference measure m with respect to the Riemannian volume measure vol.

Proof. (i) For each Borel function $v : M \rightarrow \mathbb{R}_+$

$$
\int_M v \, d\nu = \int_M v \circ f \, d\mu = \int_M v \circ f \cdot \frac{1}{\eta} \, d\mu = \int_M v \circ f \cdot \frac{1}{\eta(g \circ f)} \, d\mu = \int_M v \cdot \frac{1}{\eta \circ g} \, dm.
$$

Hence, ν is absolutely continuous with respect to m with density $\frac{1}{\eta \circ g}$. Interchanging the roles of μ and ν (as well as f and g) yields the second claim.

(ii), (iii) Part of Brenier- McCann representation result of optimal transports. □

Corollary 3.4. Under the assumption $\eta > 0$ of the previous Proposition:

$$
\text{Ent}(\mu^c | m) = \text{Ent}(m | \mu).
$$

Proof. With notations from above

$$
\text{Ent}(\mu^c | m) = \int \rho \log \rho \, dm = \int \frac{1}{\eta \circ g} \log \frac{1}{\eta \circ g} \, dm = \int \frac{1}{\eta} \log \frac{1}{\eta} \, d\mu = \text{Ent}(m | \mu).
$$

□

Lemma 3.5. The conjugation map

$$
\mathcal{E}_\mathcal{K} : \mathcal{K} \rightarrow \mathcal{K}
$$

is continuous.

Proof. To simplify notation denote $\mathcal{E}_\mathcal{K}$ by \mathcal{E}. Choose a countable dense set $\{y_i\}_{i \in \mathbb{N}}$ in M and for $k \in \mathbb{N}$ define $\mathcal{E}_k : \varphi \mapsto \varphi_k$ on \mathcal{K} by $\varphi_k(x) = - \inf_{i=1,...,k} \left[\frac{1}{2} d^2(x, y_i) + \langle \varphi(y_i) \rangle \right]$. Then as $k \rightarrow \infty$

$$
\varphi_k \not\rightarrow \varphi^c \quad \text{pointwise on } M.
$$

Recall that each $\varphi \in \mathcal{K}$ is Lipschitz continuous with Lipschitz constant D.
For each $\varepsilon > 0$ choose $k = k(\varepsilon) \in \mathbb{N}$ such that the set $\{y_i\}_{i=1, \ldots, k(\varepsilon)}$ is an ε-covering of the compact space M. Then

$$|C_k(\varphi)(x) - C(\varphi)(x)| \leq \sup_{y \in M} \inf_{i=1, \ldots, k} \left| \frac{1}{2} d^2(x, y) - \frac{1}{2} d^2(x, y_i) + \varphi(y) - \varphi(y_i) \right|$$

$$\leq \sup_{y \in M} \inf_{i=1, \ldots, k} 2D \cdot d(y, y_i) \leq 2D\varepsilon$$

uniformly in $x \in M$ and $\varphi \in \mathcal{K}$.

Now let us consider a sequence $(\varphi_l)_l \in \mathbb{N}$ in \mathcal{K} with $\varphi_l \to \varphi$ in $H^1(M)$. Then for each $k \in \mathbb{N}$ as $l \to \infty$

$$C_k(\varphi_l) \to C_k(\varphi)$$

pointwise on M and thus also in $L^2(M)$. Together with the previous uniform convergence of $C_k \to C$ it implies

$$C(\varphi_l) \to C(\varphi)$$

in $L^2(M)$ as $l \to \infty$. Moreover, we know that $\{C(\varphi_l)_l \in \mathbb{N}$ is bounded in $H^1(M)$ (since all gradients are bounded by D). Therefore, finally

$$C(\varphi_l) \to C(\varphi)$$

in $H^1(M)$ as $l \to \infty$. This proves the continuity of $C : \mathcal{K} \to \mathcal{K}$ with respect to the H^1-norm. □

Theorem 3.6. The conjugation map

$$C_P : \mathcal{P} \to \mathcal{P}$$

is continuous (with respect to the weak topology).

Proof. Let us first prove continuity of the conjugation map $C_\mathcal{K} : \hat{\mathcal{K}} \to \hat{\mathcal{K}}$ (with respect to the H^1-norm on $\hat{\mathcal{K}}$). Indeed, this follows from the previous continuity result together with the facts that the embedding $H^1 \to \hat{H^1}$, $\varphi \mapsto \hat{\varphi} = \{\varphi + c : c \in \mathbb{R}\}$ is continuous (trivial fact) and that the map $\hat{H^1} \to H^1$, $\hat{\varphi} = \{\varphi + c : c \in \mathbb{R}\} \mapsto \varphi - \int_M \varphi dm$ is continuous (consequence of Poincaré inequality).

This in turn implies, due to Proposition 2.5, that the conjugation map $C_\mathcal{G} : \hat{\mathcal{G}} \to \hat{\mathcal{G}}$ is continuous (with respect to the L^2-metric on $\hat{\mathcal{G}}$). Moreover, due to the same Proposition it therefore also implies that the conjugation map

$$C_P : \mathcal{P} \to \mathcal{P}$$

is continuous (with respect to the weak topology). □

Remark 3.7. In dimension $n = 1$, the conjugation map $C_\mathcal{G} : \mathcal{G} \to \mathcal{G}$ is even an isometry from \mathcal{G}, equipped with the L^1-metric, into itself.
4. Example: The Conjugation Map on $M \subset \mathbb{R}^n$

In this chapter, we will study in detail the Euclidean case. We assume that M is a compact convex subset of \mathbb{R}^n. (The convexity assumption is to simplify notations and results.) The probability measure m is assumed to be absolutely continuous with full support on M.

A function $\varphi : M \to \mathbb{R}$ is $d^2/2$-convex if and only if the function $\varphi_1(x) = \varphi(x) + |x|^2/2$ is convex in the usual sense:

$$\varphi_1(\lambda x + (1 - \lambda)y) \leq \lambda \varphi_1(x) + (1 - \lambda)\varphi_1(y)$$

(for all $x, y \in M$ and $\lambda \in [0, 1]$) and if its subdifferential lies in M:

$$\partial \varphi_1(x) \subset M$$

for all $x \in M$.

A function ψ is the conjugate of φ if and only if the function $\psi_1(y) = \psi(y) + |y|^2/2$ is the Legendre-Fenchel transform of φ_1:

$$\psi_1(y) = \sup_{x \in M} [(x, y) - \varphi_1(x)].$$

A Borel map $g : M \to M$ is monotone if and only if

$$\langle g(x) - g(y), x - y \rangle \geq 0$$

for a.e. $x, y \in M$. Equivalently, g is monotone if and only if $g = \nabla \varphi_1$ for some convex $\varphi_1 : M \to \mathbb{R}$.

Lemma 4.1. (i) If $\mu = \lambda \delta_z + (1 - \lambda) \nu$ then there exists an open convex set $U \subset M$ with $m(U) = \lambda$ such that the optimal transport map g with $g_* m = \mu$ satisfies $g \equiv z$ a.e. on U.

(ii) The conjugate measure μ^\ast does not charge U:

$$\mu^\ast(U) = 0.$$

Proof. (i) Linearity of the problem allows to assume that $z = 0$. Let $g = \nabla \varphi_1$ denote the optimal transport map with φ_1 being an appropriate convex function. Let V be the subset of points in M in which φ_1 is weakly differentiable with vanishing gradient. By the push forward property it follows that $m(V) = \lambda$. Firstly, then convexity of φ_1 implies that φ_1 has to be constant on V, say $\varphi_1 \equiv \alpha$ on V. Secondly, the latter implies that $\varphi_1 \equiv \alpha$ on the convex hull W of V. The interior U of this convex set W has volume $m(U) = m(W) \geq m(V) = \lambda$ and φ_1 is constant on U, hence, differentiable with vanishing gradient. Thus finally $U \subset V$ and $m(U) = \lambda$.

(ii) Let $\mu_\epsilon, \epsilon \in [0, 1]$, denote the intermediate points on the geodesic from $\mu_0 = \mu$ to $\mu_1 = m$. Then $\mu_\epsilon = (g_\epsilon)_* m$ with $g_\epsilon = \exp((1 - \epsilon) \nabla \varphi) = \epsilon \cdot Id + (1 - \epsilon) \cdot g$ and each μ_ϵ is absolutely continuous w.r. to m. Hence, $g_\epsilon^\ast = g_\epsilon^{-1}$ a.e. on M. Therefore, the conjugate measure μ_ϵ^\ast satisfies

$$\mu_\epsilon^\ast(U) = m((g_\epsilon^\ast)^{-1}(U)) = m(g_\epsilon(U)) = \epsilon^n \cdot m(U) = \epsilon^n \cdot \lambda.$$
Now obviously \(\mu_{\epsilon} \to \mu \) as \(\epsilon \to 0 \). According to Theorem 3.6 this implies \(\mu_{\epsilon}^c \to \mu^c \) and thus (since \(U \) is open)

\[
\mu^c(U) \leq \liminf_{\epsilon \to 0} \mu_{\epsilon}^c(U) = 0.
\]

\[\square\]

Theorem 4.2. (i) If \(\mu = \sum_{i=1}^{N} \lambda_i \delta_{z_i} \), with \(N \in \mathbb{N} \cup \{\infty\} \) then there exist disjoint convex open sets \(U_i \subset M \) with \(m(U_i) = \lambda_i \) such that the optimal transport map \(g = \nabla \varphi_1 \) with \(g_* m = \mu \) satisfies \(g \equiv z_i \) on each of the \(U_i, i \in \mathbb{N} \).

The measure \(\mu^c \) is supported by the compact \(m \)-zero set \(M \setminus \bigcup_{i=1}^{N} U_i \).

(ii) Each of the sets \(U_i \) is the interior of \(M \cap A_i \) where

\[
A_i = \{ x \in \mathbb{R}^n : \varphi_1(x) = \langle z_i, x \rangle + \alpha_i \}
\]

and

\[
\varphi_1(x) = \sup_{i=1,\ldots,N} \left[\langle z_i, x \rangle + \alpha_i \right]
\]

with numbers \(\alpha_i \) to be chosen in such a way that \(m(A_i) = \lambda_i \).

(iii) If \(N < \infty \) then each of the sets \(A_i \subset \mathbb{R}^n, i = 1,\ldots,N \) is a convex polytope.

The decomposition \(\mathbb{R}^n = \bigcup_{i=1}^{N} A_i \) is a Laguerre tessellation (see e.g. [LZ08] and references therein).

The compact \(m \)-zero set \(M \setminus \bigcup_{i=1}^{N} U_i \) which supports \(\mu^c \) has finite \((n-1)\)-dimensional Hausdorff measure.

Corollary 4.3. (i) If \(\mu \) is discrete then the topological support of \(\mu^c \) is a \(m \)-zero set.

In particular, \(\mu^c \) has no absolutely continuous part.

(ii) If \(\mu \) has full topological support then \(\mu^c \) has no atoms.

Proof. (i) Obvious from the previous theorem.

(ii) If \(\mu^c \) had an atom (of mass \(\lambda > 0 \)) then according to the previous lemma there would be a convex open set \(U \) (of volume \(m(U) = \lambda \)) such that \(\mu(U) = (\mu^c)^c(U) = 0 \).

\[\square\]

5. The Entropic Measure – Heuristics

Our goal is to construct a canonical probability measure \(\mathbb{P}^\beta \) on the Wasserstein space \(\mathcal{P} = \mathcal{P}(M) \) over a compact Riemannian manifold, according to the formal ansatz

\[
\mathbb{P}^\beta(d\mu) = \frac{1}{Z} e^{-\beta \text{Ent}(\mu|m)} \mathbb{P}^0(d\mu).
\]

Here \(\text{Ent}(\cdot \mid m) \) is the relative entropy with respect to the reference measure \(m \), \(\beta \) is a constant \(\beta > 0 \) (‘the inverse temperature’) and \(\mathbb{P}^0 \) should denote a (non-existing) ‘uniform distribution’ on \(\mathcal{P}(M) \). \(Z \) should denote a normalizing constant.

Using the conjugation map \(\mathcal{C} : \mathcal{P}(M) \to \mathcal{P}(M) \) and denoting \(\mathbb{Q}^\beta := (\mathcal{C}_\mathbb{P})_* \mathbb{P}^\beta, \mathbb{Q}^0 := (\mathcal{C}_\mathbb{P})_* \mathbb{P}^0 \) the above problem can be reformulated as follows:
Construct a probability measure \(Q^\beta \) on \(\mathcal{P}(M) \) such that – at least formally –

\[
Q^\beta(d\nu) = \frac{1}{Z} e^{-\beta \text{Ent}(m | \nu)} Q^0(d\nu)
\]

(5.1)

with some ‘uniform distribution’ \(Q^0 \) in \(\mathcal{P}(M) \). Here, we have used the fact that

\[
\text{Ent}(\nu^\delta | m) = \text{Ent}(m | \nu)
\]

(Corollary 3.4), at least if \(\nu \ll m \) with \(\frac{d\nu}{dm} > 0 \) almost everywhere.

Probability measures \(P(d\mu) \) on \(\mathcal{P}(M) \) – so called random probability measures on \(M \) – are uniquely determined by the distributions \(PM_{M_1,\ldots,M_N} \) of the random vectors

\[
(\mu(M_1),\ldots,\mu(M_N))
\]

for all \(N \in \mathbb{N} \) and all measurable partitions

\[
M = \bigcup_{i=1}^N M_i
\]

of \(M \). Conversely, if a consistent family \(PM_{M_1,\ldots,M_N} \) of probability measures on \([0,1]^N \) (for all \(N \in \mathbb{N} \) and all measurable partitions \(M = \bigcup_{i=1}^N M_i \)) is given then there exists a random probability measure \(P \) such that

\[
P_{M_1,\ldots,M_N}(A) = P((\mu(M_1),\ldots,\mu(M_N)) \in A)
\]

for all measurable \(A \subset [0,1]^N \), all \(N \in \mathbb{N} \) and all partitions \(M = \bigcup_{i=1}^N M_i \).

Given a measurable partition \(M = \bigcup_{i=1}^N M_i \) the ansatz (5.1) yields the following characterization of the finite dimensional distribution on \([0,1]^N \)

\[
Q^\beta_{M_1,\ldots,M_N}(dx) = \frac{1}{Z_N} e^{-\beta S_{M_1,\ldots,M_N}(x)} q_{M_1,\ldots,M_N}(dx)
\]

(5.2)

where \(S_{M_1,\ldots,M_N}(x) \) denotes the conditional expectation (with respect to \(Q^0 \)) of \(S(\cdot) = \text{Ent}(m | \cdot) \) under the condition \(\nu(M_1) = x_1,\ldots,\nu(M_N) = x_N \).

Moreover, \(q_{M_1,\ldots,M_N}(dx) = Q^0((\nu(M_1),\ldots,\nu(M_N)) \in dx) \) denotes the distribution of the random vector \((\nu(M_1),\ldots,\nu(M_N))\) in the simplex

\[
\sum_N = \left\{ x \in [0,1]^N : \sum_{i=1}^N x_i = 1 \right\}
\]

According to our choice of \(Q^0 \), the measure \(q_{M_1,\ldots,M_N} \) should be the ‘uniform distribution’ in the simplex \(\sum_N \). In [RS08] we argued that the canonical choice for a ‘uniform distribution’ in \(\sum_N \) is the measure

\[
q_N(dx) = c \cdot \frac{dx_1 \cdots dx_{N-1}}{x_1 \cdot x_2 \cdots x_{N-1} \cdot x_N} \cdot \delta_{1-\frac{1}{\sum_{i=1}^N x_i}}(dx_N).
\]

(5.3)

It remains to get hands on \(S_{M_1,\ldots,M_N}(x) \), the conditional expectation of \(S(\cdot) = \text{Ent}(m | \cdot) \) under the constraint \(\nu(M_1) = x_1,\ldots,\nu(M_N) = x_N \). We simply replace it by \(S_{M_1,\ldots,M_N}(x) \), the minimum of \(\nu \rightarrow \text{Ent}(m | \nu) \) under the constraint \(\nu(M_1) = x_1,\ldots,\nu(M_N) = x_N \).

Obviously, this minimum is attained at a measure with constant density on each of the sets \(M_i \) of the partition, that is

\[
\nu = \sum_{i=1}^N \frac{x_i}{m(M_i)} 1_{M_i} m.
\]
Hence,
\[S_{M_1, \ldots, M_N}(x) = - \sum_{i=1}^{N} \log \frac{x_i}{m(M_i)} \cdot m(M_i). \tag{5.4} \]

Replacing \(S_{M_1, \ldots, M_N} \) by \(S_{M_1, \ldots, M_N} \) in (5.2), the latter yields
\[
Q^\beta_{M_1, \ldots, M_N}(dx) = \frac{c \cdot e^{-\beta S_{M_1, \ldots, M_N}(x)}}{\prod_{i=1}^{N} \Gamma(\beta m(M_i))} \cdot x_1^{\beta m(M_1) - 1} \cdot \cdots \cdot x_N^{\beta m(M_N) - 1} \times \delta_{1 - \sum_{i=1}^{N-1} x_i} \]
\[
\Gamma(\beta) \cdot \prod_{i=1}^{N} \Gamma(\beta m(M_i)) \times (dx_1)dx_{N-1} \ldots dx_1.
\]

This, indeed, defines a projective family! Hence, the random probability measure \(Q^\beta \) exists and is uniquely defined. It is the well-known Dirichlet-Ferguson process. Therefore, in turn, also the random probability measure \(P^\beta = (\mathcal{C}_P) \), \(Q^\beta \) exists uniquely.

6. The Entropic Measure – Rigorous Definition

Definition 6.1. Given any compact Riemannian space \((M, d, m)\) and any parameter \(\beta > 0 \) the entropic measure
\[
P^\beta := (\mathcal{C}_P), Q^\beta
\]
is the push forward of the Dirichlet-Ferguson process \(Q^\beta \) (with reference measure \(\beta m \)) under the conjugation map \(\mathcal{C}_P : \mathcal{P}(M) \to \mathcal{P}(M) \).

\(P^\beta \) as well as \(Q^\beta \) are probability measures on the compact space \(\mathcal{P} = \mathcal{P}(M) \) of probability measures on \(M \). Recall the definition of the Dirichlet-Ferguson process \(Q^\beta \) [Fe73]: For each measurable partition \(M = \bigcup_{i=1}^{N} M_i \), the random vector \((\nu(M_1), \ldots, \nu(M_N))\) is distributed according to a Dirichlet distribution with parameters \((\beta m(M_1), \ldots, \beta m(M_N))\). That is, for any bounded Borel function \(u : \mathbb{R}^N \to \mathbb{R} \)
\[
\int_{\mathcal{P}(M)} u(\nu(M_1), \ldots, \nu(M_N)) Q^\beta(d\nu) =
\]
\[
\frac{\prod_{i=1}^{N} \Gamma(\beta m(M_i)) \cdot \int_{[0,1]^N} u(x_1, \ldots, x_N) \cdot x_1^{\beta m(M_1) - 1} \cdot \cdots \cdot x_N^{\beta m(M_N) - 1} \times \delta_{1 - \sum_{i=1}^{N-1} x_i} \cdot (dx_1)dx_{N-1} \ldots dx_1.}
\]

The latter uniquely characterizes the ‘random probability measure’ \(Q^\beta \). The existence (as a projective limit) is guaranteed by Kolmogorov’s theorem.
An alternative, more direct construction is as follows: Let \((x_i)_{i \in \mathbb{N}}\) be an iid sequence of points in \(M\), distributed according to \(m\), and let \((t_i)_{i \in \mathbb{N}}\) be an iid sequence of numbers in \([0, 1]\), independent of the previous sequence and distributed according to the Beta distribution with parameters 1 and \(\beta\), i.e. \(\text{Prob}(t_i \in ds) = \beta(1-s)^{\beta-1} \cdot 1_{[0,1]}(s)ds\). Put
\[
\lambda_k = t_k \cdot \prod_{i=1}^{k-1} (1-t_i) \quad \text{and} \quad \nu = \sum_{k=1}^{\infty} \lambda_k \cdot \delta_{x_k}.
\]

Then \(\nu \in \mathcal{P}(M)\) is distributed according to \(Q^\beta \) \([Se94]\).

The distribution of \(\nu\) does not change if one replaces the above ‘stick-breaking process’ \((\lambda_k)_{k \in \mathbb{N}}\) by the ‘Dirichlet-Poisson process’ \((\lambda(k))_{k \in \mathbb{N}}\) obtained from it by ordering the entries of the previous one according to their size: \(\lambda(1) \geq \lambda(2) \geq \ldots \geq 0\). Alternatively, the Dirichlet-Poisson process can be regarded as the sequence of jumps of a Gamma process with parameter \(\beta\), ordered according to size.

Note that \(m(M_0) = 0\) for a given \(M_0 \subset M\) implies that \(\nu(M_0) = 0\) for \(Q^\beta\)-a.e. \(\nu \in \mathcal{P}(M)\). On the other hand, obviously, \(Q^\beta\)-a.e. \(\nu \in \mathcal{P}(M)\) is discrete. In contrast to that, as a corollary to Theorem 4.3 and in analogy to the 1-dimensional case we obtain:

Corollary 6.2. If \(M \subset \mathbb{R}^n\) then \(\mathbb{P}^\beta\)-a.e. \(\mu \in \mathcal{P}(M)\) has no absolutely continuous part and no atoms. The topological support of \(\mu^c\) is a \(m\)-zero set.

For \(\mathbb{P}^\beta\)-a.e. \(\mu \in \mathcal{P}(M)\) there exist a countable number of open convex sets \(U_k \subset M\) (‘holes in the support of \(\mu^c\)’) with sizes \(\lambda_k = m(U_k), k \in \mathbb{N}\). The measure \(\mu\) is supported on the complement of all these holes \(M \setminus \bigcup_k U_k\), a compact \(m\)-zero set. The sequence \((\lambda_k)_{k \in \mathbb{N}}\) of sizes of the holes is distributed according to the stick breaking process with parameter \(\beta\). In particular,
\[
\mathbb{E}\lambda_k = \frac{1}{\beta} \left(\frac{\beta}{1 + \beta} \right)^k \quad (\forall k \in \mathbb{N}).
\]

In average, each hole has size \(\leq \frac{1}{1+\beta}\). For large \(\beta\), the size of the \(k\)-th hole decays like \(\frac{1}{\beta} \exp(-k/\beta)\) as \(k \to \infty\). For small \(\beta\), \(\lambda(1)\) the size of the largest hole is of order \(\sim \frac{1}{1+0.73\beta}\) \([Gr88]\).

Remark 6.3. In principle, the reference measures in the conjugation map (see Remark 3.2) and in the Dirichlet-Ferguson process could be chosen different from each other.

Given a diffeomorphism \(h : M \to M\) the challenge for the sequel will be to deduce a change of variable formula for the entropic measure \(\mathbb{P}^\beta(d\mu)\) under the induced transformation
\[
\mu \mapsto h_* \mu
\]
of \(\mathcal{P}(M)\).
Conjecture 6.4. For each φ^2-diffeomorphism $h : M \to M$ there exists a function $Y_h^\beta : P \to \mathbb{R}$ such that
\[
\int U(h_*\mu)\mathbb{P}^\beta(d\mu) = \int U(\mu)Y_h^\beta(\mu)\mathbb{P}^\beta(d\mu),
\] (6.1)
for all bounded Borel functions $U : P \to \mathbb{R}$. (It suffices to consider U of the form $U(\mu) = u(\mu(M_1), \ldots, \mu(M_N))$ for measurable partitions $M = \bigcup M_i$ and bounded measurable $u : \mathbb{R}^N \to \mathbb{R}$.) The density Y_h^β is of the form
\[
Y_h^\beta(\mu) = \exp \left(\beta \int_M \log \det Dh(x)\mu(dx) \right) \cdot Y_h^0(\mu)
\] (6.2)
with $Y_h^0(\mu)$ being independent of β.

As an intermediate step, in order to derive a more direct representation for the entropic measure \mathbb{P}^β on $\mathcal{P}(M)$, we may consider the measure $Q_\beta^\beta := (\chi^{-1})_*\mathbb{P}^\beta = (\mathcal{C}_G \circ \chi^{-1})_*\mathbb{Q}^\beta$
on \mathcal{G}.

It is the unique probability measure on the space \mathcal{G} of monotone maps with the property that
\[
\int_{\mathcal{G}} u(m((g')^{-1}(M_1)), \ldots, m((g')^{-1}(M_N))) Q_\beta^\beta(dg) =
\frac{\Gamma(\beta)}{\prod_{i=1}^N \Gamma(\beta m(M_i))} \cdot \int_{[0,1]^N} u(x_1, \ldots, x_N) \cdot x_1^{\beta m(M_1)} \cdot \ldots \cdot x_N^{\beta m(M_N)} dx_1 \times
\delta_{(1 - \sum_{i=1}^N x_i)}(dx_N) dx_{N-1} \ldots dx_1
\]
for each measurable partition $M = \bigcup_{i=1}^N M_i$ and each bounded Borel function $u : \mathbb{R}^N \to \mathbb{R}$. Actually, one may assume without restriction that the partition consists of continuity sets of m (i.e. $m(\partial M_i) = 0$ for all $i = 1, \ldots, N$) and that u is continuous. Note that $(g')^{-1} = g$ almost everywhere whenever $g, m \ll m$.

Moreover, note that in dimension 1, say $M = [0, 1]$, the map $\mathcal{C}_G \circ \chi^{-1} : P \to \mathcal{G}$ assigns to each probability measure ν its cumulative distribution function g.

In dimension 1, the change of variable formula (6.1) allows to prove closability of the Dirichlet form $\mathcal{E}(u,u) = \int_P \|\nabla u\|^2(\mu) \, d\mathbb{P}^\beta(\mu)$ and to construct the Wasserstein diffusion $(\mu_t)_{t \geq 0}$, the reversible Markov process with continuous trajectories (and invariant distribution \mathbb{P}^β) associated to it [RS08].

The change of variable formula in dimension 1 can also be regarded as a ‘Girsanov type theorem’ for the (normalized) Gamma process [RYZ07]. Until now, no higher dimensional analogue is known.
The Wasserstein diffusion on 1-dimensional spaces satisfies a logarithmic Sobolev inequality [DS07]; it can be obtained as scaling limit of empirical distributions of interacting particle systems [AR07].

References

[AGS05] L. Ambrosio, N. Gigli and G. Savaré (2005): Gradient flows in metric spaces and in the space of probability measures. *Lectures in Mathematics ETH Zürich*. Birkhäuser Verlag, Basel.

[AR07] S. Andres and M. K. von Renesse (2007): Particle Approximation of the Wasserstein Diffusion. *Submitted*.

[Br87] Y. Brenier (1987): Décomposition polaire et réarrangement monotone des champs de vecteurs. *C. R. Acad. Sci. Paris Sér. I Math.* 305 no. 19, 805–808.

[CMS01] D. Cordero-Erausquin, R.J. McCann and M. Schmuckenschläger (2001): A Riemannian interpolation inequality à la Borell, Brascamp and Lieb. *Invent. Math.* 146 no. 2, 219–257.

[DS07] M. Döring and W. Stannat (2007): The logarithmic Sobolev inequality for the Wasserstein Diffusion. *Preprint*.

[Fe73] T. S. Ferguson (1973): A Bayesian analysis of some nonparametric problems. *Ann. Statist.* 1, 209–230.

[Gr88] R. C. Griffiths (1988): On the Distribution of Points in a Poisson Dirichlet Process. *Journal of Applied Probability* 25 no. 2, 336-345.

[LZ08] C. Lautensack and S. Zuyev (2008): Random Laguerre tessellations. *Adv. in Appl. Probab.* 40 no. 3, 630-650.

[Mc01] R.J. McCann (2001): Polar factorization of maps on Riemannian manifolds. *Geom. Funct. Anal.* 11 no. 3, 589–608.

[Oh08] S. Ohta (2008): Finsler interpolation inequalities. *Preprint*.

[Ot01] F. Otto (2001): The geometry of dissipative evolution equations: the porous medium equation. *Comm. Partial Differential Equations* 26 no. 1-2, 101–174.

[Ro70] R.T. Rockafellar (1970): Convex analysis. *Princeton Mathematical Series* 28.

[RS08] M. K. von Renesse and K. T. Sturm (2008): Entropic measure and Wasserstein Diffusion. *To appear in Ann. Probab*.

[RYZ07] M. K. von Renesse, M. Yor and L. Zambotti (2007): Quasi-invariance properties of a class of subordinators. *To appear in Stoch Proc Appl*.

[Rü96] L. Rüschendorf (1996): On c-optimal random variables. *Statist. Probab. Lett.* 27 no. 3, 267–270.

[Se94] Sethuraman, Jayaram (1994): A constructive definition of Dirichlet priors. *Statist. Sinica* 4 no. 2, 639–650.

[Vi03] C. Villani (2003): Topics in Mass Transportation. *Graduate Studies in Mathematics, American Mathematical Society*.

[Vi08] C. Villani (2008): Optimal Transport - Old and new. *Grundlehren. Springer, Berlin*.
Karl-Theodor Sturm
Institut fuer Angewandte Mathematik
Poppelsdorfer Allee 82
D 53115 Bonn
Germany
e-mail: sturm@uni-bonn.de