A quantitative look on northwestern Tethyan foraminiferal assemblages, Campanian Nierental Formation, Austria

Erik Wolfgring, Michael Wagreich

Sediments spanning the Radotruncana calcarata Taxon Range Zone at the Postalm section, Northern Calcareous Alps (Austria) is examined quantitatively for foraminiferal assemblages, especially the planktonic group. This study focuses on establishing a high resolution record spanning an 800 ka long stratigraphic interval from the active continental margin of the Penninic Ocean. The Postalm section displays reddish limestone-marl alternations representing precession cycles. For this study, 26 samples were taken bed by bed to allow a “per-precession-cycle” resolution (i.e., a minimum sample distance of ~20 ka). Samples from limestones as well as from marls were examined for foraminiferal assemblages. Data suggest a typical, open marine Campanian foraminiferal community. The >63 µm fraction is dominated by opportunist taxa, i.e. members of Muricochedbergella and biserial planktic foraminifera. Archaeoglobigerina and “Globigerinelloides” appear frequently and benthic foraminifera are very sparsely found. The share of globotruncanids, representing more complex morphotypes amongst planktonic foraminifera, is recorded with 5 to 10 %. The state of preservation of foraminifera from the Postalm section is moderate to poor. Differences between samples from marls and samples from limestone are evident, but do not reveal evidence that there was an influence on the postdepositional microfossil communities. However, data from microfossils showing moderate to bad preservation can still offer valuable insight the palaeoenvironment and biostratigraphy. Information gathered on the composition of the planktonic foraminiferal assemblage confirms a low to mid-latitude setting for the Postalm section. As well resolved records of Late Cretaceous foraminifera assemblages are rare, the examination of the Radotruncana calcarata Taxon Range Zone provides some insights in variations and short term changes during the very short period of 800 ka.
A quantitative look on northwestern Tethyan foraminiferal assemblages, late Campanian Nierental Formation, Austria

Erik Wolfgring¹,², Michael Wagreich²

¹ Department of Palaeontology, University of Vienna, Vienna, Austria
² Department of Geodynamics and Sedimentology, University of Vienna, Vienna, Austria

Corresponding Author:
Erik Wolfgring¹
Althanstraße 14, Vienna, 1090 - Austria
Email address: erik.wolfgring@univie.ac.at
1. Introduction

The Late Cretaceous is a period recording major changes in the Earth’s climate system. Trends in climate evolution reflect the transition from a mid-Cretaceous hothouse to a more moderate greenhouse during the later part of the Late Cretaceous (e.g. Barrera and Savin, 1999, Huber et al., 2002, Friedrich et al., 2009, 2012, Hay and Floegel, 2012, Jung et al., 2013, Price et al., 2013, Linnert et al., 2014, Sames et al., 2015). Fundamental palaeoenvironmental processes influenced by climate and palaeoceanographic changes (e.g., the late Campanian – Maastrichtian cooling or sealevel changes of different magnitudes that affect chemical parameters like oxygen availability) can also be recognised as drivers behind modifications in the composition of foraminiferal assemblages, and especially planktonic foraminiferal communities, as discussed in this paper (Premoli Silva and Sliter, 1999, Abramovich et al., 2003, Friedrich et al., 2005, Falzoni et al., 2013).

The mid to late Campanian - from the base of the Contusotruncana plummerae Zone at 79.2 Ma to the Campanian Maastrichtian boundary at 72.1 Ma (for the chronostratigraphic framework see Huber et al., 2008, Anthonissen and Ogg, 2012) - is generally considered a time interval with a highly diversified planktonic foraminifera fauna (Premoli Silva and Sliter, 1999, Ambramovich et al., 2003). Prolonged evolution and development of foraminiferal communities is known from the middle Campanian to Maastrichtian, coinciding with the onset of the general end-Cretaceous cooling trend (Hart, 1999, Premoli Silva and Sliter, 1999, Georgescu, 2005). The radiation of Archaeoglobigerinidae and Rugoglobigerinidae, the diversification of biserial planktonic taxa, the appearance of complex morphotypes in globotruncanids – all of these are developments during the mid to late Campanian to Maastrichtian (Hart, 1999, Premoli Silva and Sliter, 1999, Georgescu, 2005).

Few high resolution studies on general evolutionary trends, visible in the quantitative data from
Campanian foraminifera communities exist. In general, most of quantitative studies on Late Cretaceous foraminiferal assemblages focus on developments around stage boundaries and/or events (e.g., Huber et al., 1999, Arz and Molina, 2001, Odin and Lamaurelle, 2001, Petrizzo, 2002a, Caron et al., 2006, Elamri and Zaghbib-Turki, 2014, Elamri et al., 2014, Reolid et al., 2015). The vast majority deals with the Cretaceous- Paleogene turnover (e.g.: Abramovich et al., 1998, Li and Keller, 1998, Arenillas et al, 2000, Abramovich and Keller, 2002, Karoui-Yaakoub et al., 2002, Premoli Silva et al, 2005, Gallala et al., 2009, Beiranvand and Ghasemi-Nejad, 2013, see also Pardo and Keller, 2008 for a compilation of selected quantitative databases on the Cretaceous-Palaeanogene boundary).

An almost complete Santonian- lower Maastrichtian succession is recorded in pelagic to hemipelagic deposits at the Postalm section, Austria, at the NW margin of the Tethys (Fig. 1). The study of Wagreich et al. (2012) addresses the biostratigraphy, as well as the astronomical calibration of the R. calcarata Zone in the mid Campanian at Postalm. With its rather short duration of only 800 ka (806.3 ka in the study of Wagreich et al., 2012, Robaszynski and Mzoughi, 2010, give a mean duration of 790 ka), and the distinct morphology of the nominative taxon, the Radotruncana calcarata Taxon-range Zone is considered a well-established, easily recognisable and reliable time interval in Late Cretaceous chronostratigraphy of the Tethyan Realm (e.g. Robaszynski et al., 1984, Chungkham and Jafar, 1998, Premoli Silva et al., 1998, Puckett and Mancini, 1998, Huber et al., 2008, Wendler et al., 2011).

Wolfgring et al. (2015) reported biostratigraphic and qualitative foraminiferal data based on presence-absence data from two sections on opposite margins of the Penninic Ocean, including data from the Postalm section. The latter displayed a remarkably static composition of foraminiferal assemblages in the Radotruncana calcarata Zone. The sudden appearance and disappearance of the zonal marker and the disappearance of Globotruncanita elevata were the only biostratigraphic events recorded in the planktonic foraminifera record from this section.

In this work we present a quantitative study on planktonic foraminiferal assemblages in the R. calcarata Zone at Postalm section. With 26 samples in the 803.6 ka long interval, this high-resolution study gives information on the composition of typical Tethyan pelagic assemblages. This work deals with subtle changes in north-western planktonic foraminiferal communities on...
the brink of the Late Cretaceous cooling and major faunal turnover-events (Premoli Silva and Sliter, 1999). With adding the quantitative aspect of a comparatively short episode of the Tethyan Campanian to the presence – absence data assessed in Wolfgring et al. (2015) we aim at a better understanding of small scale changes in the foraminiferal record (e.g., the extinction of *R. calcarata* and *Gta. elevata*).

2.1. Geological setting

Units forming the Northern Calcareous Alps (NCA) were deposited along the northern margin of the Austroalpine domain on the Adriatic microplate (Wagreich, 1993), at the southern margin of the Penninic Ocean (“Alpine Tethys” of Stampfli and Borel, 2002; Handy et al., 2010), which was a north-western part of the Tethys oceanic system (see also Neuhuber et al., 2007).

Within the system of the NCA, the Upper Cretaceous to Paleogene Gosau Group is characterised by the terrestrial to shallow marine Lower Gosau Subgroup and the deep-water deposits of the Upper Gosau Subgroup. The Lower Gosau Subgroup of Turonian to Santonian age filled pull-apart basins alongside an oblique subduction – strike-slip zone (Wagreich and Decker, 2001). After a short phase of tectonically induced uplift of the NCA, rapid subsidence processes resulted in the sedimentation of the pelagic, hemipelagic and turbiditic Upper Gosau Subgroup, comprising strata of Santonian/Campanian to Eocene age (Wagreich, 1993, Krenmayr, 1999, Wagreich et al., 2011, Hofer et al., 2011).

The Postalm section (coordinates WGS 84 013° 23’ 11“ E; 47° 36’ 44“ N) belongs to the Nierental Formation of the Upper Gosau Subgroup (Fig. 1) (Krenmayr, 1996, Wagreich and Krenmayr, 2005, Wagreich et al., 2012). The Nierental Formation was originally deposited at palaeolatitudes of approximately 35 - 30°N, alongside the southern margin of the Penninic Ocean (Fig. 2). The Santonian to Maastrichtian succession at Postalm is characterised by distinct marly limestone – marl cycles and records an upper to middle bathyal depositional environment (Wagreich et al., 2012) (Fig.3). Marly limestones can be classified as foraminiferal packstone. The Postalm section is interpreted as a pelagic to hemipelagic depositional
environment well above the CCD. The section was part of a northward deepening slope within the NCA with bathyal water-depths (Wagreich and Krenmayr, 2005, Wolfgring et al., 2015). The deposits recorded at the Postalm section are interpreted as Cretaceous Oceanic Red Beds (CORB), indicating overall well oxygenated bottom waters (Hu et al., 2005, Wagreich and Krenmayr, 2005). The sediment accumulation rate is estimated to be 20 mm/ka (Wagreich et al., 2012).

For more detailed information on the geological setting at Postalm section, the reader is referred to Wagreich et al. (2012).

Material and methods

3.1 Sampling and samples preparation

The *Radotruncana calcarata* Taxon Range Zone (TRZ) was sampled bed-by-bed, following biostratigraphic investigation of Wagreich et al. (2012) and Neuhuber et al. (2015). No standard sampling distance was applied. Figure 4 gives an overview on the stratigraphic framework and the location of sample-spots used in Wolfgring et al. (2015) and in the present study.

Twenty-six samples from marls and marly limestones were processed to obtain quantitative data. Marl and marly-limestone samples were soaked in the tenside Rewoquad © for 24 hours and then thoroughly rinsed with water. Samples were thereafter soaked in hydrogen peroxide (35%) for 1h and wet sieved. Firm foraminifera packstone required intense treatment; cooking the samples in hydrogen peroxide for ten minutes and the repeated use of tensides was mandatory. Disaggregated samples were washed over 63 µm and 125 µm mesh sieves. The washing residues were dried overnight at 60°.
Quantitative data were assessed using the >63 μm size fractions. "Larger" foraminifera (>125 μm) were assigned genus and species, while the 63 - 125 μm fraction is mostly discussed on genus level, as, in some cases, the state of preservation did not permit the identification of taxonomically relevant features. According to micropalaeontological standard procedures, per sample at least some 300 specimen of both planktic and benthic foraminifera were counted. Data were obtained from marls, as well as marly limestones.

The tool PanPlot 2 (Sieger and Grobe, 2013) was used to visualise foraminifera abundances in Postalm section. Samples and microslides are stored in the Earth Science collections at the Department of Geodynamics and Sedimentology, University of Vienna.

3.2. Palaeodepth estimates

Depositional palaeo-waterdepth was calculated applying the method published in Van der Zwaan et al. (1990). Here, the palaeodepth in meters is estimated as:

\[D(m) = e^{3.56718 \times P} \]

where \(D(m) \) is the estimated palaeodepth in metres, \(e \) is the mathematical constant Euler's number and \(P \) the ratio of planktonic/benthic foraminifera. The calculation of \(P \) excludes benthic foraminiferal taxa from the analysis that are not directly dependent on the flux of organic matter to the seafloor (Van der Zwaan et al., 1990, Kopecká, 2012). This is the case with a mono-specific mass occurrence of Nothia sp. at the Postalm section. As episodic blooms in this taxon could be a possible reason for the high share in some samples this taxon has been excluded from this analysis.

In addition to the method of Van der Zwaan et al. (1990) that relies on the quantitative data assessed in this study, presence-absence data of benthic foraminifera recorded at the Postalm
section (Wolfring et al., 2015) was used to calculate palaeo water depth applying the method of Hohenegger (2005). The basic formula for estimating the depth gradient is given as:

\[g = \frac{\sum_{i=1}^{m} l_i d_i^{-1}}{\sum_{i=1}^{m} d_i^{-1}} \]

(2)

where \(i \) is the mean depth and \(d_i \) the distribution range along the taxon's depth range and \(g \) the estimated palaeodepth.

Depth ranges of benthic foraminifera (see Appendix 1) are inferred from the palaeoslope model of Nyong and Olson (1977) with depth ranges for Campanian-Maastrichtian benthic foraminifera along the Atlantic coast, as well as the bathymetric ranges of benthic foraminifera of Sliter and Baker (1972), Speijer and Van der Zwaan (1996), Kaminski and Gradstein (2005), Valchev (2006) as well as Holbourn (2013).

3.3. Taxonomic remarks/methods and the preservation of microfossils

With few exceptions, the state of preservation in the investigated samples can be considered moderate to poor. Most spiral and trochospiral planktic and benthic forms appear with fully intact tests. No signs of dissolution were recorded. Some planktonic foraminifera show evidence of recrystallisation and carbonate infilling. Elongated forms frequently appear fragmented. However, the state of preservation did not allow the definite taxonomic assignment of some individuals to species level. Thus, morphogroups for certain taxa were established.

Some double keeled, biconvex globotruncanid taxa (*Globotruncanana arca*, *G. lapparenti*, *G. orientalis*) have subsequently been merged to *Globotruncanana arca-lapparenti-orientalis*, as morphological transitions were observed. Some biserial planktonic specimens displayed a very bad state of preservation, rendering the identification of some individuals on species level impossible. These specimens were aggregated into the group *Planoheterohelix* spp. Biserial
planktonic taxa with reniform chambers were pooled under Laeviheterohelix spp. Planktonic foraminiferal taxonomy predominantly follows Nederbragt (1991), Robaszynski and Caron (1995), Premoli Silva and Verga (2004). Georgescu and Huber (2009) and Petrizzo et al. (2011), Genera with their taxonomy under revision appear in quotes. Some significant taxa of the section are pictured in Wolfgring et al. (2015).

To define the trophic characteristics of the investigated area, we determined the distribution of r- and K-strategists. The r-strategists are generally considered to be opportunists and adapted to eutrophic or unstable conditions; K-strategists represent more complex morphotypes that favour stable, rather oligotrophic environments (Premoli Silva and Sliter, 1999, Petrizzo, 2002, Gebhardt et al., 2010).

Benthic foraminiferal taxa were not assigned genus and species. Benthic foraminifera are extremely sparse in standard quantitative data. The number of benthic specimen per sample was recorded but we refrained from any taxonomic assignment. Presence-absence data on the benthic foraminiferal record (from Wolfgring et al., 2015) is available in the Appendix.

4. Results

4.1. Quantitative data

The quantitative investigation of the R. calcarata TRZ displays the composition of a typical mid Campanian low to mid-latitude Tethyan foraminiferal community and records at least 42 different planktonic foraminiferal species in 15 genera (Fig. 5). Benthic foraminifera are very sparse in quantitative data. Table 1 displays the number of specimens as well as the relative abundances of foraminiferal species. The foraminiferal assemblage at Postalm is dominated by members of heterohelicids and the genus Murico hedbergella. These two groups account for up to 80 percent of the total assemblage. Small heterohelicid taxa are dominated by Planoheterohelix globulosa. We can confirm the presence of Pseudotextularia nuttalli, Gublerina rajagopalani, Ph. striata, Spiroplecta navarroensis and Guembelitria sp. However, the groups Planoheterohelix spp. and Laeviheterohelix spp. comprise a relatively high proportion of
the assemblage. Multiserial or flaring heterohelicids were not detected.

The genus *Muricohedbergella* is represented by the species *M. holmdelensis* and *M. monmouthensis* in varying numbers. The share of this group slightly increases towards the top of the *R. calcarata* TRZ.

Globotruncanids are less abundant and represent between 1 and 12 percent. This group is represented by the genera *Globotruncana, Globotruncanella, Globotruncanita, Contusotruncana* and *Radotruncana*. The group *Globotruncana arca-lapparenti-orientalis* comprises several double keeled, biconvex taxa, and was, as expected, most frequently detected within the globotruncanid lineage. Other globotruncanid taxa, such as *G. linneiana*, *G. ventricosa, G. mariae, G. falsostuarti*, as well as *C. patelliformis* and *C. fornicata* are present throughout the section. The zonal marker - *Radotruncana calcarata* - is a comparatively rare element at Postalm that accounts for only a maximum of 1 percent of the assemblage.

The genus “*Globigerinelloides*” is present in numbers up to 15 percent, including “*G*. bolli, “*G*. ultramicrus and “*G*. multispinus. *Archaeoglobigerina* is mainly represented by two taxa, *A. cretacea* and *A. blowi*. Rugoglobigerinids (presumably *R. rugosa?) are less abundant.

The planktic/benthic foraminifera ratio is very high throughout the section. Benthic foraminifera never display a higher share than 6 percent. Quantitative data show a peak in benthic foraminifera abundance in the lower part of the section (samples 7/38K and 7/39). High abundance in 7/39 is inferred by high numbers of tubular agglutinating taxa (presumably *Nothia* spp.).

###Table 1

###Fig 5

4.2. Life strategies of planktonic foraminifera

Upon examination of the >63 µm fraction, the foraminiferal assemblage displays opportunistic r-strategists as the dominant element, as small biserial and trochospiral taxa account for an overwhelming majority of individuals. K-strategists, which are exclusively represented by globotruncanids at Postalm, are mostly recorded with less than ten percent. Taxa showing a life
strategy that cannot be clearly assigned, such as “r/K-intermediate” selected taxa such as “Globigerinelloides”, show a similar frequency pattern as K-selected species. Figure 6 displays the distribution of taxa with respect to their life strategy and the inferred environmental characteristics.

5. Discussion

Examining foraminiferal assemblages from a bathyal environment of an active continental margin preserved in a mountain belt has some drawbacks. This study has to deal with poor preservation of microfossils due to a strong diageneric overprint and minor folding and faulting of the sections. Still, records with restricted taxonomical resolution (especially with smaller foraminifera, i.e., ~63-125 µm) can give some indication of the palaeoecology and biostratigraphy; conspicuous biostratigraphic marker species are still clearly identifiable. If the loss of taxonomic information only permits the identification at the genus level, especially for small (<125 µm) morphotypes, comparison of the relative abundance of foraminiferal taxa is still possible. Likewise, the distribution of r- and K-strategists is a measurement that can typically be determined at genus level (Hart, 1999, Premoli Silva and Sliter, 1999, Petrizzo, 2002, Gebhardt et al., 2010).

5.1 Implications for biostratigraphy and palaeoenvironment

The Radotruncana calcarata Zone was first introduced by Herm (1962) and defines the interval between the first occurrence (FO) and the last occurrence (LO) of the nominate taxon. For a long time the top of the R. calcarata interval was used to define the Campanian – Maastrichtian boundary in plankton biostratigraphic zonations for the Late Cretaceous (e.g., Salaj and Samuel, 1966, Caron, 1985, Sliter, 1989). Today, chronostratigraphic correlations position this interval in the mid Campanian (Robaszynski and Caron, 1995 - as Globotruncana calcarata TRZ, Premoli Silva and Sliter 1999, Berggren and Pearson, 2005, Huber, et al., 2008, Robaszynski and
Mzoughi, 2010; Ogg and Hinov, 2012).

Other studies concerned with the *Radotruncana calcarata* TRZ also recorded *G. angulata* (as *G. cf. angulata* in Hart, 1987), *Pseudoguembelitria costulata* (Li and Keller, 1998), *Rugoglobigerina hexacamerata*, “*Globigerinelloides*” *yaucoensis* (Arz and Molina, 2001), *Globotruncana aegyptiaca* (Arz and Molina, 2001, Chacón et al, 2004), “*Globigerinelloides*” *messinae* and *Pseudoguembelina costualta* (Premoli Silva et al., 2005) and *Globotruncana rosetta* (Robaszynski and Mzoughi, 2010). These taxa were not identified in the *R. calcarata* Zone at the Postalm section.

In our section from the Northern Calcareous Alps we seem to document the extinction of *Globotruncanita elevata* within the *R. calcarata* TRZ (see Wolfgring et al., 2015). Generally, the LO of this taxon is considered to have occurred shortly before or within the *R. calcarata* interval (e.g., Robaszynski and Caron, 1995, Chacón et al., 2004, Cetean et al., 2011, Petrizzo et al, 2011). Wolfgring et al. (2015) record this taxon to be a rare faunal element in the *R. calcarata* interval. *Globotruncanita elevata* does not appear in the quantitative analysis. Therefore, we assume a gradual disappearance of this taxon towards the middle Campanian in the Northern Calcareous Alps (and presumably all of the Tethyan realm). The zonal marker itself seems to displays an abrupt disappearance.

It is difficult to compare the results of different quantitative studies on Late Cretaceous planktonic foraminiferal assemblages with other locations, as different environments are studied (that display differences in the preservation of microfossils), and different methods are applied (starting with the examination of different size fractions and different ways of sample preparation). For instance, Li and Keller (1998) document an analysis of the foraminiferal assemblage in the >63 µm fraction from the South Atlantic DSDP site 525A (Walvis Ridge), together with an examination of the >105 µm fraction of Site 21 (Rio Grande Rise). The works of Petrizzo (2001), on planktonic foraminifera from Kerguelen Plateau, ODP Leg 183 and Petrizzo (2002), from Exmouth Plateau (ODP Sites 762 and 763), examine the >40 µm size fractions. Both the studies of Li and Keller (1998) and Petrizzo (2001, 2002) discuss fully pelagic sections. Arz and Molina (2001) describe the foraminiferal fauna from the Tercis GSSP - this study
examines the >106 µm size fraction from a shelf environment. Elamri and Zaghbib-Turki (2014) deal with the >100 µm fraction from a pelagic section recording the Santonian- Campanian boundary (Kalaat Senan area in Tunisia).

Data from the Postalm section show smaller planktonic foraminifera as the dominant element of the foraminiferal assemblage as the >63 µm was examined: Hedbergellids and small biserial planktonic foraminifera represent the vast majority in this size fraction. The proportion of benthic foraminifera and “larger” planktonic foraminifera, i.e., specialist taxa is very low in this size fraction in a hemipelagic to pelagic environment (Yilmaz, 2007, Wagreich et al., 2012, Wolfgring et al., 2015)

Foraminiferal assemblages in the Cretaceous Period are characterised with respect to the distinct sequence or succession of dominant planktonic foraminiferal taxa and lineages. During the Early Cretaceous, hedbergellids and towards the end of the Cretaceous Period, heterohelicids represented the dominant element in the planktonic foraminiferal communities of the open ocean's waters (Hart, 1999, Premoli Silva and Sliter, 1999). At Postalm, hedbergellids and heterohelicids, in varying numbers, still represent the vast majority of the foraminiferal assemblage.

We find a similar distribution of genera in other quantitative and semi-quantitative studies on Late Cretaceous communities. Arz and Molina (2001) correlate the Rugoglobigerina hexacamerata Zone at Tercis to the R. calcarata TRZ. Reflecting the distribution pattern, visible in the relative abundance of foraminiferal genera, the similarity to Postalm section is conspicuous, although palaeoenvironmental conditions are quite different, contrasting a pelagic bathyal setting to the Tercis shelf setting. There, heterohelicids and hedbergellids, together with globigerinelloidids are dominant elements whereas globotruncanids are represented by 10-20 %. Rugoglobigerinids, which are almost absent at the Postalm section (only three samples yield rugoglobigerinids), are constantly present. Their proportion at Tercis increases towards the Maastrichtian (with almost 10%). We speculate that differences between pelagic and distal shelf planktonic foraminiferal communities in the mid- to Late Cretaceous are minimal. Postalm and Tercis (Arz and Molina, 2001) present both heterohelicids and
hedbergellids as dominant faunal elements. Most individuals assigning to hedbergellids or heterohelicids are represented in smaller size fractions (<125 µm). The comparatively small share of these taxa recorded in Arz and Molina (2001) is presumably due to the use of the 106 µm fraction for micropalaeontological analyses. Therefore, a composition of the planktonic foraminiferal assemblage at Tercis similar to what is known from the Postalm section is very likely. The comparison of data from benthic and planktonic foraminifera from two different locations (a shelf environment at Tercis, and a bathyal slope at Postalm) shows that the composition of the planktonic foraminiferal community alone is not indicative of the palaeoenvironment. Arz and Molina (2001) report a high share of benthic foraminifera for the Tercis section (between 50 and 80 %), while we record a maximum of six percent of benthic foraminifera at the Postalm section.

Li and Keller (1998) also report predominance of hedbergellids (*M. monmouthensis* and *M. holmdelensis*) around the *R. calcarata* interval at DSDP Site 21 (South Atlantic). Heterohelicid taxa are also represented in high numbers (*Ph. globulosa*, *Ph. planata*, *Laeviheterohelix pulchra* and *P. costulata*), and globotruncanids are represented there by 20%. As hedbergellids and heterohelicids predominate smaller size fractions (<125 µm), their comparatively high proportion of globotruncanids in the studies of Li and Keller (1998) and Arz and Molina (2001) might result from the use of the >105 µm fraction. The only rugoglobigerinid taxon present at Site 21, *Rugoglobigerina rugosa*, shows a discontinuous record during the Campanian at Site 21.

The faunal composition recorded in Li and Keller (1998) gives information on the palaeogeographical and environmental setting. The palaeolatitude of DSDP sites 21 and 525A (36°S) and the lower to upper bathyal palaeodepth (Moore et al., 1984, Li and Keller, 1998) resemble the environmental setting we encounter at the Postalm section and so does the composition of the planktonic foraminiferal assemblage. The comparison of the foraminiferal assemblages at Postalm to Arz and Molina (2001) and Li and Keller 1998 suggests that the palaeolatitudinal setting is more likely to influence the composition of the planktonic foraminiferal assemblages in open oceans in the Late Cretaceous than bathymetry.
The quantitative studies of Petrizzo (2001, 2002), both localities from the southern high latitudes, show few similarities in the relative abundance of taxa. Comparatively fewer hedbergellid specimens were recorded at Site 183. The Upper Cretaceous assemblages of Site 183 display a very strong dominance of heterohelicids. The species *Ph. globulosa* alone sometimes accounts for 40 percent of the assemblage (Petrizzo, 2001), a feature that is not so prominently expressed in the foraminifera assemblages of Postalm section. Planktonic foraminifer assemblages from the southern high latitudes, or the Austral margin are in many ways different from tropical, or mid latitude assemblages: A palaeoenvironment affected by cooler water masses is not only reflected in a special biostratigraphic scheme, but also in different dominant lineages (Wonders, 1992, Huber, 1990, Petrizzo, 2001, 2002). A further comparison of the distribution pattern of foraminiferal lineages observed in quantitative studies from the southern high latitudes shows that hedbergellids are not as abundant, and globotruncanids are less diverse.

The semi-quantitative study of Premoli Silva et al. (2005) also indicates similar abundance patterns as the Postalm section. While *Muricohedbergella holmdelensis* and *M. monmouthensis* are distributed equally at the Postalm section, the study from ODP Hole 160-967E only records *M. holmdelensis* as a common element during the *R. calcarata* interval.

5.2 Benthic foraminifera

Benthic foraminifera appear only as rare faunal elements in quantitative data from the Postalm section but play a significant role for the reconstruction of the palaeoenvironment using presence-absence data (see Wolfgring et al., 2015). The Postalm section yields a highly diverse “Deep Water Agglutinating Foraminifera”- assemblage (Kuhnt and Kaminski, 1990), as well as abundant calcareous benthic foraminifera. Agglutinated genera like *Dorothyia* or *Marssonella* occur together with abundant calcareous benthic foraminifera, especially nodosarids and lenticulinids. We interpret these assemblages based on the quantitative data presented here as typical Slope-marl assemblage or an upper to middle bathyal assemblage (following Kuhnt et al., 1989, Koutsoukos and Hart, 1990, Widmark and Speijer, 1997, Kaminski and Gradstein,
Two minor peaks in benthic foraminifera abundance were recorded. These peaks are based on the high frequency of the taxon *Nothia* sp. However, as a result of this taxon’s epifaunal mode of life (Kuhnt et al., 1989, Kuhnt and Kaminski, 1990), mostly fragmented individuals were recovered and counted (which can lead to inaccurate results). Thus, we cannot eliminate the possibility that an accumulation of fragmented individuals of *Nothia* sp. was caused by episodic current activity rather than by a bloom in this taxon. However, if this taxon had indeed episodic blooms at the bottom of the bathyal slope basin reconstructed for the Postalm section, an increased flux of nutrients downslope would have positive influence on epifaunal detritivore species, such as *Nothia* (Geroch and Kaminski, 1992, Kaminski and Gradstein, 2005). These favourable palaeoecological conditions could have been triggered by several factors, e.g., turbiditic events, changes in bottom water currents, etc...

5.3 Depositional water depths

The tectonic evolution of the Penninic oceanic realm as recorded by the Gosau Group sediments suggest certain constraints for the reconstruction of palaeodepths in parts of the Nierental Formation (Wagreich and Krenmayr, 2005, Wagreich et al., 2009).

The base of the Postalm section, as well as some other Gosau-sections record the transition from a neritic setting to a pelagic environment (Wagreich and Krenmayr, 2005, Butt, 1981).

Changes in faunal composition reflect changes in the palaeoenvironment. To sketch a possible palaeodepth model several approaches were considered.

The methods of Van der Zwaan et al. (1990) and Hohenegger (2005) both were applied. Van der Zwaan et al. (1990) focus on quantitative data and the ratio of planktic and benthic foraminifera, while Hohenegger (2005) uses the possible depth ranges and presence-absence data of benthic foraminifera to calculate a possible palaeo waterdepth. The presence-absence data of benthic foraminifera used to calculate palaeo waterdepths using the method of Hohenegger (2005) was discussed in Wolfgring et al. (2015).

The application of a planktic/benthic foraminifera ratio (P/B– ratio) is a popular - though
sometimes unreliable method (see Gibson, 1989) - to estimate palaeo-water depths in modern, oligotrophic environments (Van der Zwaan et al., 1990, 1999, Gebhardt et al, 2009). With respect to the benthic foraminiferal fauna at the Postalm section, we assume slightly dysoxic habitat conditions for benthic foraminifera (see Wolfgring et al., 2015). On that score, a mesotrophic regime should be taken into consideration (according to the TROX model by Jorissen et al., 1995). Therefore, calculating palaeo waterdepths using the P/B- ratio without considering local environmental properties is likely to lead to inaccurate conclusions in this section (as, according to Van Zwaan et al, 1999, P/B ratios are sensitive to oxygen deficiency).

Results from the quantitative assessment show that a maximum of 6 percent of foraminifera recovered assign to benthic foraminiferal taxa. Thus, the application of the formula of Van der Zwaan et al. (1990) would result in palaeo waterdepths around 1200 m. This method has certain constraints – Van der Zwaan et al. (1990) state that it is useful to estimate palaeodepths between 30 and 1250 m. At Postalm section we record up to 100% planktonic foraminifera in standard quantitative data and therefore stretch this method to the limits as the application of a p/b ratio in these samples is no longer possible using standard quantitative data.

The characteristics of the benthic foraminiferal communities resemble those of “Slope-Marl” assemblages (Kuhnt et al., 1989, Kaminski and Gradstein, 2005), or “Upper to Middle Bathyal” communities (Widmark and Speijer, 1997). Widmark and Speijer (1997) document this particular assemblage type from various localities recording palaeo waterdepths from upper slope to abyssal depths. Applying the calculation method proposed in Hohenegger (2005) a mean (theoretical) depositional water depth of 695m can be calculated. An average minimum water depth of 349m at sample POST 7/35 and an average maximum water depth of 914m at sample POST 6/07 were recorded. Although this method in its application to fossil and extinct taxa has severe limitations, and depth ranges for the Penninic Ocean active margin assemblages may differ considerably from estimates from the North Atlantic passive margin slope model, the estimates are within the principally inferred depth range. Figure 7 compares the two methods used for the calculation of palaeo-waterdepths at Postalm. The depth ranges of benthic foraminiferal taxa and the calculated palaeo-waterdepths for each sample can be found in Appendix 1.
In addition to the information provided by the benthic foraminiferal record, valuable data are also provided on the assessment of the composition of the planktic foraminiferal assemblage: According to data from planktonic foraminifera we consider the Penninic Ocean during the Campanian-Maastrichtian a non-restricted environment in terms of faunal exchange. The assemblage recorded at Postalm neither seems to lack essential elements of a planktonic foraminiferal community, nor can we record any hints towards an endemic foraminiferal fauna in the Penninic Ocean.

Rugoglobigerinids are a rare faunal element at the Postalm section. Apart from the preference for warmer water layers (as suggested by Abramovich et al., 2003, Falzoni et al., 2014, Petrizzo et al, 2015), Olsson (1977), Hart (1980) and Georgescu (2005) speculate on *Rugoglobigerina* as a taxon preferring shallow water as rugoglobigerinids are frequently a common element or even dominant in planktonic foraminifera assemblages in shallow water deposits (e.g., epeiric seas, neritic environments). Thus, this fact also supports the reconstruction of a hemipelagic to pelagic setting in the *R. calcarata* Zone. The Postalm section displays a sparse record of the genus *Rugoglobigerina*. On examination of the isotopic signatures of this taxon, a habitat in the upper, warmer layers of the ocean appears likely (Abramovich et al., 2003, Falzoni et al., 2014, Petrizzo et al, 2015).

Summarising the information on foraminiferal assemblages and on the tectonic evolution of the active margin of the Penninic ocean (see Butt, 1981, Wagreich, 1993), we can reconstruct the depositional environment during the *R. calcarata* Zone as an upper to middle slope setting with palaeo-waterdepths of at least 500 – 800 metres. Within the investigated section itself, no significant We interpret the minor differences in calculations of water depths within a depth range of 300m using the approach by Hohenegger (2005) as artificial, being a result of the low (and thus sometimes erratic) numbers of benthic foraminifera recorded and the inaccuracy of depth habitat estimates for Cretaceous foraminifera. Thus, both applied quantitative methods of palaeodepth estimates are not able to record and resolve 3rd order sea-level changes which may be in the range of up to 75 m within the mid Campanian (Haq, 2014).

5.4 Palaeoecology
Cretaceous ocean systems are characterised by well stratified water masses, offering niches for a variety of life strategies (Leckie, 1989, Huber and Watkins, 1992, Price et al., 1998, Norris et al., 2001, Leckie et al., 2002). Reconstructing the palaeoecology of planktonic foraminifera from pelagic environments mostly relies on the use of recent analogues in morphotypes (as found in Hemleben et al., 1989). Indications of the environmental properties, prevailing in the preferred habitat of planktonic foraminifera, can be found by the examination of stable isotopes (e.g., D'Hondt and Arthur, 1995, Price et al., 1998, Abramovich et al., 2003). The variety of life strategies is neither fully understood yet, nor easy to summarise. Nonetheless, Premoli Silva and Sliter (1999) apply the ecological concept of K- and r- strategists for Cretaceous planktonic foraminifera.

K-strategists represent specialist taxa that thrive in oligotrophic environments. This group is often represented by keeled forms assigned to the *Globotruncana* and *Globotruncanita* lineage. The ecological characteristics of K-strategists and the comparison of the functional morphology of keels to recent analogues suggest an interpretation of globotruncanids as deep-dwelling forms, favouring colder waters and requiring an oligotrophic environment (Hart, 1980, Premoli Silva and Sliter, 1999). Nevertheless, there are a number of examples of keeled forms that lived in the mixed layer at shallower water depths and thus, there is no generally accepted interpretation of the functional morphology of keels in Cretaceous planktonic foraminifera (Huber et al., 1990, 1995, D'Hondt and Arthur, 1995, Abramovich et al., 2003).

Heterohelicids are considered opportunistic taxa (r-strategists), indicating unstable conditions and generally preferring eutrophic environments, and are presumed to be indicators for stressful environments (Leckie, 1987, Nederbragt, 1991, Premoli Silva and Sliter, 1999, Boudagher-Fadel, 2013). It is speculated that this group thrives in the oxygen minimum zone – a model that explains the interpretation of heterohelicid dominance within an assemblage, sees this group as indicating a locally well-developed oxygen minimum zone (Leckie et al., 1998, Pardo and Keller, 2008, Reolid et al., 2015).
By examining the habitat patterns of planktonic species during the latest Cretaceous (mid Campanian to late Maastrichtian), the study of Abramovich et al. (2003) interprets some heterohelicids as inhabitants of the subsurface layers, or water masses close to the thermocline (Planoheterohelix globulosa, Ph. planata, Ph. punctulata).

Hedbergellids are as well interpreted as r-strategists and are generally considered open marine species (Leckie, 1987, Koutsoukos and Hart, 1990, Norris and Wilson, 1998, Premoli Silva and Sliter, 1999, Petrizzo, 2002, Gebhardt et al., 2004, Borenemann and Norris, 2007), and exhibit similar ecological preferences as heterohelicids. Studies on planktonic foraminifera that integrated information from stable isotope data, interpret hedbergellids as surface dwellers, occupying the upper mixed layer (e.g., Price et al., 1998, Fassel and Bralower, 1999, Norris et al., 2002, Ando, 2009, 2010). Norris and Wilson (1989) and Petrizzo (2002) suggested a wider depth distribution for mid-Cretaceous hedbergellids. Ando et al. (2010) present evidence that H. delrioensis migrated from a shallow to a deep mixed habitat during the mid-Cenomanian. Huber et al. (2011) indicate hedbergellids to be highly flexible and to show a dynamic behaviour. Gebhardt et al. (2010) characterise hedbergellids from the Cenomanian to Turonian of the Austrian Alps as intermediate forms between r and K strategists. As with most biserial planktonic foraminifera, the trochosporal hedbergellids have been considered as opportunistic taxa that prefer eutrophic environments and occupy the upper mixed layer (Premoli Silva and Sliter, 1999, Gebhardt, 2004).

The genus Schackoina is often considered as an indicator for poorly oxygenated environments, but its life strategy has not been sufficiently investigated (Magniez-Jannin, 1998, Premoli Silva and Sliter, 1999, Petrizzo, 2002). Therefore, we exclude this taxon from palaeoecological analyses.

With the ongoing evolution of more complex morphotypes as a driving force, the relative abundance of K- and r-strategists follows a distinct pattern throughout the Cretaceous (Hart, 1980, Leckie, 1989, Premoli Silva and Sliter, 1999). According to Premoli Silva and Sliter (1999), Late Cretaceous planktonic foraminiferal communities are, in contrast to foraminiferal
communities from the Early Cretaceous, highly diversified and dominated by K-selected taxa. The distribution of r- and K-selected taxa does not only provide information on the stratigraphical age and palaeoecological regime. The relationship between r- and K-selected taxa can be characteristic for the latitudinal distribution. With a palaeolatitude of approximately 35°N, we consider Postalm, and the north-western Tethys in general, to represent a low to mid-latitude setting.

Quantitative data helped to document at least 15 planktonic foraminiferal genera. Therefore, we consider the assemblage at Postalm as diverse and dominated by r-selected taxa. The number of K-selected specialists diminishes polewards and r-selected taxa prevail (Premoli Silva and Sliter, 1999) but no similarities to a species- or morphogroup- distribution pattern known from higher latitudes, boreal assemblages (i.e. chalk facies), were identified. Postalm section yields single and double keeled K-selected taxa that are typical elements of Campanian tropical to mid-latitude foraminiferal communities. At the Postalm section, K-selected specialists, which are dominant in low latitude faunas, are present, but only few in number. Therefore, the foraminiferal assemblage at Postalm, which includes Tethyan taxa, is typical of the Transitional Realm s mid-latitudes (following Sliter, 1977, Malmgren, 1991, Huber, 1992, Premoli Silva and Sliter, 1999, Nishi et al., 2003). Compared to low-latitude assemblages from Tunisia or Italy, Postalm section displays fewer K-strategists (i.e. globotruncanids) and more opportunistic taxa (hedbergellids, heterohelicids).

5.5. Implications for Palaeoceanography of the mid Campanian Penninic Ocean
Some works describe the Penninic Ocean (or the Alpine Tethys) as a restricted environment during the mid-Cretaceous (e.g., Mort et al., 2007 and Gebhardt et al, 2010 from the Cenomanian/Turonian). The Late Cretaceous foraminiferal assemblage examined in this study shows all fundamental elements of a well-developed low to mid-latitude planktonic foraminiferal community. Although a few taxa recorded in other studies were not identified at Postalm, the planktonic foraminiferal assemblage with its high diversity (Wolfgring et al., 2015) does not give indications for a restricted oceanic environment. From the investigated section
we record members of the *Globotruncana* lineage as alleged deep dwellers, heterohelicids, which are reported to thrive in oxygen minimum zones and in upper surface waters, as well as the Hedbergellidae that mostly preferred surface water habitats. In light of the Cretaceous sea-level maximum at the Cenomanian-Turonian boundary (see Haq, 2014) we interpret the increased ventilation of the Penninic Ocean as a result of tectonic processes that opened seaways from the southern main Tethys Ocean system into the northwestern Tethys and its continuation into the Atlantic, probably due to plate tectonic rearrangements and subsidence events from the Turonian to Campanian (e.g., Wagreich, 1993; Reicherter and Pletsch, 2000).

Considering the low to mid-latitude setting of the Northern Calcareous Alps, the frequency and distribution of taxa and ecological groups approaches results from other studies on Late Cretaceous planktonic foraminiferal assemblages from bathyal or hemipelagic to pelagic sections (e.g., Chacón et al., 2004, Robaszynski and Mzoughi, 2010, Elamri and Zaghibb-Turki, 2014). Furthermore, the cyclostratigraphically dated synchronous appearance and disappearance of the zonal marker fossil *R. calcarata* in the Alpine sections and in Tunisia indicates good connections to the tropical Tethys Ocean (Robaszynski and Mzoughi, 2010, Wagreich et al., 2012).

Foraminiferal data from Postalm give little information on fluctuations in sea-level during the *R. calcarata* interval. There are some minor changes, easily overlooked in standard quantitative data, and/or hard to interpret at the fringes of the assemblages in the 1-3 percentage range. Changes in the relative abundance of keeled globotruncanids towards the top of the section and the continuous presence of *Schackoina* in the stratigraphically younger part of the *R. calcarata* interval could indicate subtle changes in the palaeoceanography of the Penninic Ocean than a robust sea-level or water-depth signal.

A similar situation is recorded from other proxy data from this section: Minor carbon isotope peaks (Wagreich et al., 2012; Wendler, 2013) or geochemical proxy data (Neuhuber et al., 2015), could also imply small scale changes in sea-level but have to be interpreted with caution (Neuhuber et al., 2015).

We conclude that although major changes and cycles (sequences) in the range of several Ma may influence foraminiferal communities, those short-term changes within the 800 ka long *R.
calcarata Zone had minimal impact on planktonic foraminiferal communities in a well connected, bathyal setting of water depths over 500 m.

5.6. Differences in limestones and marls and the preservation of microfossils – how does cyclic sedimentation affect the foraminiferal record?

The effects of diagenesis on the cyclic pelagic rock record is a widely discussed subject (e.g., Westphal and Munnecke, 2003). Postalm shows limestone - marly limestone alternations that were interpreted to reflect precession cycles (Wagreich et al., 2012). For this study, both stronger indurated marly limestones as well as marls from within the same precession cycle were disintegrated with hydrogen peroxide and tensides, and subsequently examined quantitatively for foraminifera. In contrast to marly samples, firm foraminifera packstone required repeated cooking in hydrogen peroxide, as well as the application of tensides to dissolve. Marly samples were dissolved following the standard preparation procedures.

Figure 8 displays differences in the composition of foraminiferal assemblages between samples from firm marly limestone and samples from softer marls. No trends pointing towards a significant diagenetic influence on the foraminiferal community are recorded in those parts of a sedimentary cycle.

A slight shift towards compact biserial microfossils could be significant in one sample (07/38). In general heterohelicids are more frequently recorded in higher numbers in samples from firmer carbonates than in samples from marls – in the three limestone-marl couplets examined here, the numbers of biserial planktonic taxa exceed the average abundance of heterohelicids present in all other samples of this section, as well as the average number of heterohelicids calculated for these three couplets.

However, most abundance data recorded from limestones give results within the standard deviations calculated for each taxonomic group (i.e.: globootruncanids, globigerinelloidids, heterohelicids, hedbergellids and benthic foraminifera) in marls. Furthermore, no difference in species diversity was observed which also argues against a significant diagenetic impact on foraminiferal assemblages. Furthermore, no evident signs of dissolution in either taxonomic group in foraminifera can be found throughout the section that displays a palaeoenvironment...
that is well above the CCD.

Nevertheless, the fact that rhythmic limestone-marl alternations are likely to represent an orbital influence on climate should not be overlooked (e.g., Bernet et al., 1998, Sageman et al., 1998, Westphal et al., 2004). Thus, significant changes in the abundance and frequency of groups of microfossils do not necessarily need to be explained by diagenesis but may reflect changing environmental conditions during orbital cycles as does the changing lithology. Precession cycles result from changes in insolation, which have a considerable ecological impact. In this study we compare few examples from the “margins” of orbital cycles and believe that subtle changes in foraminiferal assemblages could also be influenced by changes in the ecological conditions. For instance could the fact that all samples from firm carbonates record higher heterohelicid abundance have resulted from changes in the extent of the oxygen minimum zone at the end (or the beginning) of a precession cycle due to changes in detrital input and plankton productivity (similar patterns were observed in planktonic foraminifera assemblages in sapropel-cycles from the Mediterranean: e.g., Sierro et al, 1997).

Moreover, results from comparison of abundance data from marls and marly limestones suggest that dissolution effects on microfossils were either the same or absent in both lithologies.

6. Conclusions

The evaluation of planktonic foraminiferal communities (>63 µm) from the mid Campanian *R. calcarata* Taxon Range Zone, recorded in rhythmic limestone – marl alternations, at Postalm section (Northern Calcareous Alps, Austria) gives detailed information on the behaviour of planktonic communities within a well-defined time frame.

Although microfossils exhibit a moderate to poor state of preservation, the main characteristics of foraminiferal communities could be tracked. In particular, for constraining the age and biozonation of the sequence, the prominent zonal marker fossil, *R. calcarata* is considered a reliable marker in Late Cretaceous biostratigraphy, despite its rare occurrence.

Morphotypes and ecological groups in planktonic foraminifera were recorded, permitting speculations on the depositional environment and palaeoecology. The Postalm section displays
a foraminiferal assemblage that is characteristic of hemipelagic to pelagic sequences, with

dominance of r-selected opportunistic taxa, predominantly represented by heterohelicids and
hedbergellids. K-selected specialist taxa represent approximately 10% of the assemblage. The
same applies to “r/K intermediate” taxa (such as globigerinelloidids). The planktonic
foraminiferal community from Postalm displays a typical mid-latitude distribution of taxonomic
groups.

Minor fluctuations in the distributional pattern of foraminiferal genera have been recorded.
However, no distinct trends or significant events and no significant difference between the
general assemblage structure in marls and marly limestones could be recognized. Therefore,
diagenesis had a minor influence, and lithological cycles are interpreted as having been
triggered mainly by insolation-induced climate cycles.

All major foraminiferal taxonomic groups and a broad spectrum of ecological strategies were
recognised from the Late Cretaceous foraminiferal assemblages at Postalm. Therefore, we
assume an unrestricted environment for the Campanian Penninic Ocean, with open
connections to the Tethyan seaway.

References:

Abramovich, S. and Keller, G., 2002. High stress late Maastrichtian paleoenvironment in
Tunisia: Inference from planktic foraminifera. Paleogeography, Paleoecology, Paleoclimatology, Paleogeography, Paleoecology, 178, 145-164.

Abramovich, S., Almogi-Labin, A., Benjamini, C., 1998. Decline of the Maastrichtian pelagic ecosystem based on planktic foraminifera assemblage change: Implication for the
terminal Cretaceous faunal crisis. Geology, 26, 63–66, doi:10.1130/0091-7613.

Abramovich, S., Keller, G., Stüben, D., Berner, Z., 2003. Characterization of late Campanian and Maastrichtian planktonic foraminiferal depth habitats and vital activities based on stable isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology, 202, 1-2, 1-29.

Ando, A., Huber, B.T., MacLeod, K.G., Ohta, T., Khim, B.H., 2009. Blake Nose stable isotopic evidence against the mid-Cenomanian glaciation hypothesis. Geology, 37, 451-454, doi: 10.1130/G25580A.

Ando, A., Huber, B.T., MacLeod, K.G., 2010. Depth-habitat reorganization of planktonic foraminifera across the Albion/Cenomanian boundary. Paleobiology, 36, 3, 357-373.

Anthonissen, E.D., Ogg, J.G., 2012. Appendix 3 – Cenozoic and Cretaceous Biochronology of Planktonic Foraminifera and Calcareous Nannofossils. In: Gradstein, F.M., Ogg, J.G., Schmitz, M.D., Ogg, G.M. (eds.). The Geologic Time Scale, Elsevier, Boston, 1083-1127.

Arenillas, I., Arz, J.A., Molina, E., Dupuis, C., 2000. An independent test of planktic foraminiferal turnover across the Cretaceous/Paleogene (K/P) boundary at El Kef, Tunisia: catastrophic mass extinction and possible survivorship. Micropaleontology, 46 (1): 31-49.

Arz, J.A. & Molina, E., 2001. Planktic foraminiferal quantitative analysis across the Campanian/Maastrichtian boundary at Tercis-les-Bains (France) (Cap.C5b). In: Odin G.S, (Eds.), The Campanian-Maastrichtian stage boundary — Characterisation at Tercis les Bains (France) and correlation with Europe and other Continents, Developments in Palaeontology and Stratigraphy 19, 338-348.

Barrera, E., Savin, S.M., 1999. Evolution of the late Campanian – Maastrichtian marine climates and oceans. In: Barrera, E., Johnson, C.C. Eds. Evolution of the Cretaceous Ocean-Climate System. Geological Society of America. Special Paper 332, 245-282.

Beiranvand, B., Ghasemi-Nejad, E., 2013. High resolution planktonic foraminiferal biostratigraphy of the Gurpi Formation, K/PG boundary of the Izeh zone, SW Iran. Revista Brasileira de Paleontologia, 16, 1, 5-26.

Berggren, W. A., Pearson, P. N., 2005. A revised tropical to subtropical Paleogene planktonic foraminiferal zonation. Journal of Foraminiferal Research, 35, 279-298.

Bernet, K.H., Eberli, G.P., Anselmetti, F.S., 1998. The role of orbital precession in creating marl/limestone alternations, Neogene, Santaren Channel, Bahamas (abstract): International Association of Sedimentologists, 15th International Sedimentological Congress, Alicante, Spain, p. 191.

Bornemann, A., Norris, R.D., 2007. Size-related stable isotope changes in Late
Cretaceous planktic foraminifera: implications for paleoecology and photosymbiosis. Marine Micropaleontology 65,32-42.

BouDagher-Fadel, M.K., 2013. Biostratigraphic and Geological Significance of Planktonic Foraminifera. Office of the Vice Provost (Research), UCL: London, UK, DOI: http://dx.doi.org/10.14324/99.1.

Butt, A., 1981. Depositional environments of the Upper Cretaceous rocks in the northern part of the Eastern Alps. Cushman Foundation of Foraminiferal Research Special Publication, 20, 1-81.

Caron M., 1985. Cretaceous planktic foraminifera. In Plankton Stratigraphy. Eds.: Bolli, H. M., Saunders, J. B., Perch-Nielsen, K.), 17-18.

Caron, M., Dall’Agnolo, S., Accarie, H., Barrera, E., Kauffman, E.G., Amedro, F., Robaszynski, F., 2006. High-resolution stratigraphy of the Cenomanian- Turonian boundary interval at Pueblo (USA) and Wadi Bahloul (Tunisia): stable isotope and bio-events correlation. Geobios 39, 171-200.

Cetean, C.G., Balc, R., Kaminski, M.A., Filipescu, S., 2011. Integrated biostratigraphy and palaeoenvironments of an upper Santonian - upper Campanian succession from the southern part of the Eastern Carpathians, Romania. Cretaceous Research, 32, 575-590.

Chacón, B., Martín-Chivelet, J., Gräfe, K. U., 2004. Latest Santonian to latest Maastrichtian planktic foraminifera and biostratigraphy of the hemipelagic successions of the Prebetic Zone (Murcia and Alicante provinces, south-east Spain). Cretaceous Research, 25, 4, 585-601.

Chungkham, P., Jafar, S.A., 1998. Late Cretaceous (Santonian-Maastrichtian) integrated coccolith-globotruncanid biostratigraphy of pelagic limestones from the accretionary prism of Manipur, Northeastern India. Micropalaeontology, 44, 69-83.

D’Hondt, S., Arthur, M.A., 1995. Interspecies variation in stable isotopic signals of Maastrichtian planktonic foraminifera. Paleoceanography, 10, 1, 123-165.

Elamri, Z., Farouk S., Zaghib-Turki, D., 2014. Santonian planktonic foraminiferal biostratigraphy of the northern Tunisia. Geologia Croatica, 67/2, 111-126.

Elamri, Z., Zaghib-Turki, D., 2014. Santonian-Campanian biostratigraphy of the Kalaat Senan area (West-Central Tunisia). Turkish Journal of Earth Sciences, 23, 184-203.

Falzoni, F., Petrizzo, M.R., Huber, B.T., MacLeod, K.G., 2014. Insights into the meridional ornamentation of the planktonic foraminiferal genus Rugoglobigerina (Late Cretaceous) and implications for taxonomy. Cretaceous Research, 47, 87-147.
Falzoni, F., Petrizzo, M.R., MacLeod, K.G., Huber, B.T., 2013. Santonian - Campanian planktonic foraminifera from Tanzania, Shatsky Rise and Exmouth Plateau: species depth ecology and paleoceanographic inferences. Marine Micropaleontology 103, 15-29.

Fassell, M.L., Bralower, T.J., 1999. Warm, equable mid-Cretaceous: stable isotope evidence. Geological Society of America, Special Paper 332, 121-142.

Friedrich, O., Herrle, J., Hemleben, C., 2005. Climatic changes in the late Campanian – early Maastrichtian: Micropaleontological and stable isotopic evidence from an epicontinental sea. Journal of Foraminiferal Research, 35, 3, 228-247.

Friedrich, O., Herrle, J. O., Wilson, P.A., Cooper, M.J., Erbacher, J., Hemleben, C., 2009. Early Maastrichtian carbon cycle perturbation and cooling event: Implications from the South Atlantic Ocean. Paleoceanography, 24, 2.

Friedrich, O., Norris, R. D. & Erbacher, J., 2012. Evolution of middle to Late Cretaceous oceans – A 55 m.y. record of Earth’s temperature and carbon cycle. Geology 40, 107–110.

Gallala, N., Zaghib-Turki, D., Arenillas, I., Arz, J.A., Molina, E., 2009. Catastrophic mass extinction and assemblage evolution in planktic foraminifera across the Cretaceous/Paleogene (K/Pg) boundary at Bidart (SW France). Marine Micropaleontology, 72, 196-209.

Gebhardt, H., 2004. Planktonic foraminifera of the Nkalagu Formation type locality (southern Nigeria, Cenomanian-Coniacian): biostratigraphy and palaeoenvironmental interpretation. Cretaceous Research, 25, 191-209.

Gebhardt, H., Zorn, I., Roetzel, R., 2009. The initial phase of the early Samartian (Middle Miocene) transgression. Foraminferal and ostracod assemblages from an invised valley fill in the Molasse Basin of Lower Austria. Austrian J. Earth Sciences 102, 100-119.

Gebhardt, H., Friedrich, O., Schenk, B., Fox, L., Hart, M., Wagreich, M., 2010. Paleoceanographic changes at the northern Tethyan margin during the Cenomanian-Turonian Oceanic Anoxic Event (OAE-2). Marine Micropaleontology, 77, 25-45.

Geroch, S., Kaminski, M. A., 1992. The morphology, paleoecology and systematics of Nothia excelsa (Grzybowski), a deep-water agglutinated foraminifer. Annales Societatis Geologorum Poloniae, vol. 62, 255-265.

Georgescu, M.D., 2005. On the systematics of rugoglobigerinids (planktonic Foraminifera, Late Cretaceous). Studia Geologica Polonica, 124, 87-97.

Georgescu, M.D., Huber, B.T., 2009. Early evolution of the Cretaceous serial planktic
foraminifera (Late Albian to Cenomanian). Journal of Foraminiferal Research, 39, 335-360

Gibson, T.G., 1989. Planktonic:benthonic foraminiferal ratios: Modern patterns and Tertiary applicability; Marine Micropaleontology, 15, 29-52

Handy, M.R., Schmid, S., Bousquet, R., Kissling, E., Bernoulli, D., 2010. Reconciling plate-tectonic reconstructions of Alpine Tethys with the geological record of spreading and subduction in the Alps. Earth-Science Reviews 102, 121-158.

Haq, B.U., 2014. Cretaceous eustasy revisited. Global and Planetary Change, 113, 44-58

Hart, M.B., 1987. (Table 2) Distribution of benthic foraminifera in the Cretaceous succession of DSDP Hole 95-612. doi:10.1594/PANGAEA.788465, In Supplement to: Hart, M.B., 1987. Cretaceous foraminifers from Deep Sea Drilling Project Site 612, Northwest Atlantic Ocean. In: Poag, CW; Watts, AB; et al. (Eds.), Initial Reports of the Deep Sea Drilling Project, Washington (U.S. Govt. Printing Office), 95, 245-252, doi:10.2973/dsdp.proc.95.105.1987.

Hart, M.B., 1980. A water depth model for the evolution of the planktonic foraminifera. Nature, 286, 252-254.

Hart, M.B., 1999. The evolution and biodiversity of Cretaceous planktonic foraminifera. Geobios 32, 247-255.

Hay, W. W., Floegel, S., 2012. New thoughts about the Cretaceous climate and oceans. Earth-Science Reviews, 115, 262-272.

Hemleben, C., Spindler, M., Anderson, O.R., 1989. Modern Planktonic Foraminifera. Springer-Verlag, New York, 1989.

Herm D., 1962. Stratigraphische und mikropaläontologische Untersuchungen der Oberkreide im Lattengebirge und Nierental (Gosaubecken von Reichenhall und Salzburg). Bayer. Akad. Wiss. Math.-naturwiss. Kl. Abh., N. F. 104, 119 München.

Hofer, G., Draganits, E., Wagreich, M., Hofmann, C-C., Reischenbacher, D., Grundtner, M-L., Bottig, M., 2011. Stratigraphy and Geochemical characterisation of Upper Cretaceous non-marine cycles (Grünbach Formation, Gosau Group, Austria). Austrian Journal of Earth Sciences, 104/2, 90-107.

Hohenegger, J., 2005. Estimation of environmental paleogradient values based on presence/absence data: a case study using benthic foraminifera for paleodepth estimation. Palaeogeography, Palaeoclimatology, Palaeoecology, 217, 115-130.
Holbourn, A., Henderson, A.S., MacLeod, N., 2013. Atlas of benthic foraminifera. Wiley-Blackwell, Chichester, 656pp.

Hu X., Jansa L., Wang c., Sartid M., Bake K., Wagreich M., Michalik J., Soták J., 2005. Upper Cretaceous oceanic red beds (CORBs) in the Tethys: occurrences, lithofacies, age, and environments. Cretaceous Research, 26, 1, 3-20.

Huber, B.T., 1990. Maestrichtian planktonic foraminifer biostratigraphy of the Maud Rise (Weddell Sea, Antarctica), ODP Leg 113 Holes 689B and 690C. In: Barker, P.F., Kennett, J.P., et al., Proc. ODP, Sci. Results, 113, College Station, TX (Ocean Drilling Program), 489-513.

Huber, B.T., 1992. Paleobiogeography of Campanian – Maastrichtian foraminifers in the southern high latitudes. Palaeogeography, Palaeoclimatology, Palaeoecology, 92, 325-360.

Huber, B.T., Hodell, D.A., Hamilton, C.A., 1995. Mid to Late Cretaceous climate of the southern high latitudes: stable isotopic evidence for minimal equator-to-pole thermal gradients. Bulletin of the Geological Society of America, 107,1164-1191.

Huber, B.T., Leckie, R. M., Norris, R.D., Bralower, T. J., Bobabe, E., 1999. Foraminiferal assemblage and stable isotope change across the Cenomanian-Turonian boundary in the subtropical North Atlantic. Journal of Foraminiferal Research, 29, 4, 329-417.

Huber, B.T., MacLeod, K., Tur, N.A., 2008. Chronostratigraphic framework for upper Campanian – Maastrichtian sediments on the Blake Nose (subtropical North Atlantic). Journal of Foraminiferal Research, 38, 2, 162-182.

Huber, B.T., MacLeod, K.G., Gröcke, D., and Kucera, M., 2011. Paleotemperature and paleosalinity inferences and chemosratigraphy across the Aptian/Albian boundary in the subtropical North Atlantic. Paleoceanography, 26, doi:10.1029/2011PA002178.

Huber, B.T., Norris, R.D., MacLeod, K.G., 2002. Deep-sea paleotemperature record of extreme warmth during the Cretaceous. Geology 30, 123-126.

Huber, B.T., Watkins, D.K., 1992. Biogeography of Campanian-Maastrichtian calcareous plankton in the region of the Southern Ocean: Paleogeographic and paleoclimatic implications. In: Kennett, J.P., Warnke, D.A. (eds): The Antarctic paleoenvironment: A perspective on global change. American Geophysical Union Antarctic Research Series, 56, 31-60.

Jorissen, F.J., de Stigter, H.C., Widmark, J.G.V., 1995. A conceptual model explaining benthic foraminiferal microhabitats. Marine Micropaleontology 22, 3–15.

Jung, C., Voigt, S., Friedrich, O., Koch M. C., Frank, M., 2013. Campanian-Maastrichtian
ocean circulation in the tropical Pacific. Paleoceanography, 28, 3, 562-573.

Kaminski, M. A., Gradstein, F. M., 2005. Atlas of Paleogene Cosmopolitan Deep-water Agglutinating Foraminifera. Grzybośki Foundation Special Publication 10, 574pp.

Karoui-Yaakoub, N., Zaghib-Turki, D. and Keller, G., 2002. The Cretaceous-Tertiary (K-T) mass extinction in planktic foraminifera at Elles I and El Melah, Tunisia. Paleogeography, Paleoclimatology, Paleoecology, 178, 233-256.

Kopecká, J., 2012. Foraminifera as environmental proxies of the Middle Miocene (Early Badenian) sediments of the Central Depression (Central Paratethys, Moravian part of the Carpathian Foredeep). Bulletin of Geosciences, 87, 3

Koutsoukos, E. A. M., Hart, M. B., 1990. Cretaceous foraminiferal morphogroup distribution patterns, palaeocommunities and trophic structures: a case study from the Sergipe Basin, Brazil. Transactions of the Royal Society of Edinburgh: Earth Sciences, 81, 221-246.

Krenmayr, H. G., 1996. Hemipelagic and turbiditic mudstone facies associations of the Upper Cretaceous Gosau Group of the Northern Calcareous Alps (Austria). Sedimentary Geology, 101, 149-172.

Krenmayr, H. G., 1999. Die Nierental-Formation der Oberen Gosau-Gruppe (Oberkreide-Paläozän, Nördliche Kalkalpen) in Berchtesgaden: Definition, Fazies und Umwelt. Jb. Geol. B.-A., 141/4, 409-447, Wien.

Kuhnt, W., Kaminski, M.A., 1990. Paleoecology of Late Cretaceous to Paleocene deep – water agglutinated foraminifera from the North Atlantic and Western Tethys. In: Helmleben, C., Kaminski, M.A., Kuhnt, W., Scott, D. B. (eds.). Paleoecology, Biostratigraphy and Taxonomy of Agglutinated Foraminifera, 433-503.

Kuhnt, W., Kaminski, M.A., Moullade, M., 1989. Late Cretaceous deep-water agglutinated foraminiferal assemblages from the North Atlantic and its marginal seas. Geologische Rundschau, 78/3, 1121-1140.

Leckie, R.M., 1987. Paleoecology of mid-Cretaceous foraminifera: a comparison of open ocean and epicontinental sea assemblages. Micropaleontology 33, 164 – 176.

Leckie, R.M., 1989. An oceanographic model for the early evolutionary history of planktonic foraminifera. Palaeogeography, Palaeoclimatology, Palaeoecology, 73 (½), 107-138.

Leckie, R.M., Bralower, T.J., Cashman, R., 2002. Ocean anoxic events and planReolidkton evolution: Biotic response to tectonic forcing during the mid-Cretaceous. Paleoceanography, 17, 3, doi:.1029/2001PA000623.
Leckie, R.M., Yuretich, R.F., West, O.L.O., Finkelstein, D., Schmidt, M., 1998. Paleoceanography of the southwestern Western Interior Sea during the time of the Cenomanian-Turonian boundary (Late Cretaceous). SEPM Concepts in Sedimentology and Paleontology 6, 101e126.

Li, L., Keller, G., 1998. Maastrichtian climate, productivity and faunal turnovers in planktic foraminifera in South Atlantic DSDP sites 525A and 21. Marine Micropaleontology, 33, 55–86, doi:10.1016/S0377-8398(97)00027-3.

Linnert, C., Robinson, S. A., Lees, J.A., Brown, R., Pérez-Rodríguez, I., Petrizzo, M.R., Falzoni, F., Littler, K., Arz, A., Russel, E.E., 2014. Evidence for global cooling in the Late Cretaceous. Nature Communications, 5, 4194.

Magniez-Jannin, F. 1998. L’élongation des loges chez les foraminifères planctoniques du Crétacé inférieur: une adaptation à la sous-oxygénation des eaux?. Comptes Rendus de l’Académie des Sciences de Paris, Sciences de la Terre et des Planètes, 326, 207–213.

Malmgren, B.A., 1991. Biogeographic patterns in terminal Cretaceous planktonic foraminifera from Tethyan and warm Transitional waters. Marine Micropaleontology, 18, 73-99.

Moore, T.C., Jr., Rabinowitz, P.D., et al., 1984. Site 525. In: Moore, T.C., Jr., Rabinowitz, P.D., et al. (eds.), Initial Reports of Deep Sea Drilling Project, 74: 873-894.

Mort, H.P., Adatte, T., Föllmi, K.B., Keller, G., Steinmann, P., Matera, V., Berner, Z., Stüben, D., 2007. Phosphorus and the roles of productivity and nutrient recycling during Oceanic Anoxic Event 2. Geology 35, 483–486.

Nederbragt, A.J., 1991. Late Cretaceous biosotratigraphy and development of Heterohelicidae (planktonic foraminifera). Micropaleontology, 37, 329-372.

Neuhuber, S., Wagreich, M., Wendler, I., Spötl, C., 2007. Turonian Oceanic Red Beds in the Eastern Alps: Concepts for palaeoceanographic changes in the Mediterranean Tethys. Palaeogeography, Palaeoclimatology, Palaeoecology, 251, 222-238

Neuhuber, S., Gier, S., Hohenegger, J., Wolfgring, E., Spötl, C., Strauss, P., Wagreich, M., 2015. Palaeoenvironmental changes in the northwestern Tethys during the Late Campanian Radotruncana Calcarata Zone: implications from stable isotopes and geochemistry. Chemical Geology, 420, 280-296.

Nishi, H., Takashima, R., Hatsugai, T., Saito, T., Moriya, K., Ennyu, A., Sakai, T., 2003. Planktonic foraminiferal zonation in the Cretaceous Yezo Group, Central Hokkaido, Japan. Journal of Asian Earth Sciences, 21, 867-886.
Norris, R.D., Bice, K.L., Magno, E.A., Wilson, P.A., 2002. Jiggling the tropical thermostat in the Cretaceous hothouse. Geology 30 (4), 299-302.

Norris, R.D., Kroon, D., Huber, B.T., Erbacher, J., 2001. Cretaceous – Palaeogene ocean and climate change in the subtropical North Atlantic in: Kroon, D., Norris, R.D., Klaus, A. (eds): North Atlantic and Cretaceous Paleoceanography. 183., Geological Society of London, London.

Norris, R.D., Wilson, P.A., 1998. Low-latitude sea-surface temperatures for the mid-Cretaceous and the evolution of planktic foraminifera. Geology 26, 823 – 826.

Nyong, E.E., Olssen, R.K., 1984. A paleoslope model of Campanian to lower Maestrichtian foraminifera in the North American basin and adjacent continental margin. Marine Micropaleontology, 8, 6, 437–477.

Odin, G.S., Lamaurelle, M.A., 2001. The global Campanian - Maastrichtian stage boundary. Episodes 24, 229-238.

Ogg, J.G., Hinnov, L.A., 2012. Cretaceous. In: Gradstein, F.M., Ogg, J.G., Schmitz, M., Ogg, G. (eds.). The geologic time scale 2012. Elsevier B.V., Amsterdam, 793-85.

Olsson, R.K., 1977. Mesozoic foraminifera- Western Atlantic: In: Savin, F.M. (ed.): Stratigraphic Micropaleontology of Atlantic Basin and Borderlands. Elsevier, Amsterdam, 604 pp.

Pardo, A., Keller, G., 2008. Biotic effects of environmental catastrophes at the end of the Cretaceous: Guembelitria and Heterohelix blooms. Cretaceous Res. 29 (5/6), 1058–1073.

Petrizzo, M. R., Falzoni, F., Huber, B.T., MacLeod, K, G., 2015. Progress in Late Cretaceous planktonic foraminiferal stable isotope paleoecology and implications for paleoceanographic reconstructions. Geophysical Research Abstracts, 17, EGU General Assembly, 2015.

Petrizzo M.R., Falzoni F., Premoli Silva I., 2011. Identification of the base of the lower to middle Campanian Globotruncana ventricosa Zone: Comments on reliability and global correlations. Cretaceous Research, vol. 32, 387-405.

Petrizzo, M. R., 2002. Palaeoceanographic and palaeoclimatic inferences from Late Cretaceous planktonic foraminiferal assemblages from the Exmouth Plateau (ODP Sites 762 and 763, eastern Indian Ocean). Marine Micropaleontology, 45, 2, 117-150.

Petrizzo, M.R., 2002. Late Cretaceous planktonic foraminifera from Kerguelen Plateau (ODP Leg 183): new data to improve the Southern Ocean biozonation. Cretaceous Research, 22, 6, 829-855, http://doi.pangaea.de/10.1006/cres.2001.0290

Premoli Silva I., Sliter W.V., 1999. Cretaceous paleoceanography: evidence from
planktonic foraminiferal evolution. In: Barrera E., Johnson C.C. (eds), Evolution of the
Cretaceous ocean-climate system. Geological Society of America. Special Paper 332, 301-328.

Premoli Silva, I., Emeis, K.C., Robertson, A.H. F., Shipboard Scientific Party, 2005. Range
table from planktonic foraminifers in ODP Hole 160-967E, doi:10.1594/PANGAEA.315424.

Premoli Silva, I., Spezzaferi, S., D’Angelantonio, A., 1998. Cretaceous foraminiferal
biostratigraphy of Hole 966E, Eastern Mediterranean. In: Robertson, A, HH, F., Emeis, K.C.,
Richter, C., Camerlenghi, A. (eds), Proceedings of Ocean Drilling program, Scientific Result, 160,
377-394.

Premoli Silva, I., Verga, D., 2004. Practical Manual of Cretaceous Planktonic
Foraminifera. In: Verga, D. and Rettori, R. (eds.) International school on Planktonic
Foraminifera, Universities of Perugia and Milano, Tipografie Pontefeltcino, Perugia, Italy, 283pp

Price, G. D., Twichett, R.J., Wheely, J.R., Buono, G., 2013. Isotopic evidence for long term
warmth in the Mesozoic. Scientific Reports 3, 1438, doi:10.1038/srep01438.

Price, G.D., Sellwood, B. W., Corfield, R.M., Clarke, L., Cartlidge, J.E., 1998. Isotopic
evidence for palaeotemperatures and depth stratification of middle Cretaceous planktonic
foraminifera from the Pacific Ocean. Geol. Mag. 135, 183-191.

Puckett, M. T., Mancini, E.A, 1998. Planktonic foraminiferal Globotruncanita calcarata
total range zone: its global significance and importance to chronostratigraphic correlation in
the Gulf Coastal Plain, USA. Journal of Foraminiferal Research, v. 28, no. 2, 124-134.

Reicherter, K.R, Pletsch, T.K., 2000. Evidence for a synchronous circum-Iberian
subsidence event and its relation to the African-Iberian plate convergence in the Late
Cretaceous. Terra Nova 12, 141-147.

Reolid, M., Sánchez-Quiñónez, Alegret, L., Molina, E., 2015. Palaeoenvironmental
turnover across the Cenomanian – Turonian transition in Oued Bahloul, Tunisia: foraminifera
and geochemical proxies., Palaeogeography, Palaeoclimatology, Palaeoecology, 417, 491-510.

Robaszynski, F., Mzoughi, M., 2010. The Aboid Formation at Ellès (Tunisia):
stratigraphies, Campanian-Maastrichtian boundary, correlation. Carnets de Géologie /
Notebooks on Geology, Article 2010/04 (CG2010_A04).

Robaszynski, F., Caron, M., 1995. Foraminiferes planktoniques du Creétacé:
commentaire de la zonation Europe-Méditerranée. Bulletin de la Société Géologique de France.
166, 681-692.

Robaszynski, F., Caron,, M., Gonzalez Donoso, J.M. , Wonders, A.H. ,1984. The European
working group on Planktonic Foraminifera, Atlas of Late Cretaceous globotruncanids, Revue de
Sageman, B.B., Rich, J., Arthur, M.A., Dean, W.E., Savrda, Bralower, T.J., 1998. Multiple Milankovitch Cycles in the Bridge Creek limestone (Cenomanian-Turonian), Western Interior basin. In: Dean, W.E., Arthur, M.A. (eds.), Stratigraphy and Paleoenvironment of the Cretaceous Western Interior Seaway. USA, SEPM, Concepts in Sedimentology and Paleontology, 6, 153-171.

Salaj, J., Samuel, O., 1966. Foraminifera der Westkarpaten-Kreide. Geologicky Ustav Dionyza Stura, 291pp

Sames, B., Wagreich, M., Wendler, J.E., Haq, B.U., Conrad, C.P., Melinte-Dobrinescu, M., Hu, X., Wendler, I., Wolfgring, E., Yilmaz, I.Ö., Zorina, S.O., 2015. Review: Short-term sea-level changes in a greenhouse world – A view from the Cretaceous, Palaeogeography, Palaeoclimatology, Palaeoecology, 441, 3, 393-411.

Schettino, A., Turco, E., 2011. Tectonic history of the western Tethys since the Late Triassic. Geological Society of America Bulletin 123, 89-105.

Sieger, R., Grobe, H., 2013. PanPlot2 – a software to visualize profiles and time series. Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, Bremerhaven.

Sierro, F.J., Flores, J.A., Zamarreño, I., Vázquez, A., Utrilla, R., Francés, G., Hilgen, F., Krijgsman, W., 1997. Astronomical cyclicity and sapropels in the pre-evaporitic Messinian of the Sorbas basin (Western Mediterranean). Geogaceta, 21, 199-202.

Sliter, W.V., 1977. Cretaceous foraminifers from the southwestern Atlantic Ocean, Leg 36, Deep Sea Drilling Project. In: Barker, P.F., Dalziel, I.W.D., et al., Initial Reports of the Deep Sea Drilling Project, 36: Washington, D.C., U.S. Government Printing Office, 519-573

Sliter, W.V., 1989. Biostratigraphic zonation for Cretaceous planktonic foraminifers examined in thin section. J. Foraminiferal Res., 19, 1-19.

Sliter, W.V., Baker, R.A., 1972. Cretaceous bathymetric distribution of benthic foraminifers. J. Foraminiferal Res., 2, 4,167-183.

Speijer, R.P., Van der Zwaan, G.J., 1996. Extinction and survivorship of southern Tethyan benthic foraminifera across the Cretaceous /Palaeogene boundary. Geological Society Special Publication 102, 343-371.

Stampfli, G.M., Borel, G.D., 2002. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth and Planetary Science Letters 196, 17–33.

Van der Zwaan, G. J., Jorissen, F. J., de Stigter, H. C., 1990. The depth dependency of
planktonic/benthic foraminiferal ratios: Constraints and applications. Marine Geology, 95, 1-16.

Van der Zwaan, G. J., Duijnstee, I. A. P., den Dulk, M., Ernst, S. R., Jannik, N. T., Kouwenhoven, T.J., 1999. Benthic foraminifers: proxies or problems? A review of paleocological concepts. Earth-Science Reviews, 46, 213-236.

Valchev, B., 2006. Benthic foraminiferal morphogroups from the Paleocene of the coastal part of East Stara Planina Mts. Geologica Balcanica, 35, 3-4, 41-48

Wagreich, M., 1993. Subcrustal tectonic erosion in orogenic belts – A model for the Late Cretaceous subsidence of the Northern Calcareous Alps (Austria). Geology, 21, 941-944.

Wagreich, M., Decker, K., 2001. Sedimentary tectonics and subsidence modelling of the type Upper Cretaceous Gosau basin (Northern Calcareous Alps, Austria). Int. J. Earth Sci., 90, 714-726.

Wagreich, M., Krenmayr, H.G., 2005. Upper Cretaceous oceanic red beds (CORB) in the Northern Calcareous Alps (Nierental Formation, Austria): slope topography and clastic input as primary controlling factors. Cretaceous Research, 1, 57-64, http://dx.doi.org/10.1016/j.cretres.2004.11.012.

Wagreich, M., Neuhuber, S., Egger, H., Wendler, I., Scott, R., Malata, E., Sanders, D., 2009. Cretaceous Oceanic Red Beds (CORBS) in the Austrian Eastern Alps: passive-margin vs. active-margin depositional settings. SEPM Special Publication No. 91, 73-88.

Wagreich, M., Egger, H., Gebhardt, H., Mohammed, O., Spötl, C., Koukal, V., Hobiger, G., 2011. A new expanded record of the Paleocene-Eocene transition in the Gosau Group of Gams (Eastern Alps, Austria). Annalen des Naturhistorischen Museums in Wien, A 113, 35-65, Vienna.

Wagreich, M., Hohenegger, J., Neuhuber, S., 2012. Nannofossil biostratigraphy, strontium and carbon isotope stratigraphy, cyclostratigraphy and an astronomically calibrated duration of the Late Campanian Radotruncana calcarata Zone. Cretaceous Research, 38, 80-96

Wendler, I., 2013. A critical evaluation of carbon isotope stratigraphy and biostratigraphic implications for Late Cretaceous global correlation. Earth-Science Reviews, 126, 116-146.

Wendler, I., Willems, H., Gräfe, K.-U., Ding, L., Luo, H., 2011. Upper Cretaceous interhemispheric correlation between the Southern Tethys and the Boreal: chemo- and biostratigraphy and paleoclimatic reconstructions from a new section in the Tethys Himalaya, S-Tibet. Newsletters on Stratigraphy, 44 (2), 137-171.

Westphal, H., Böhm, F., Bornholdt, S., 2004. Orbital frequencies in the sedimentary record: Distorted by diagenesis?. Facies, 50, 3-11.
Westphal, H., Munnecke, A., 2003. Limestone – marl alternations a warm-water phenomenon? Geology 31, 263–266.

Widmark, J.G.V., Speijer, R. P., 1997. Benthic Foraminiferal Faunas and Trophic Regimes at the Terminal Cretaceous Tethyan Seafloor. Palaios, 12, 354-371.

Wolfgring, E., Hohenegger, J., Wagreich, M., 2015. Assessing pelagic palaeoenvironments using foraminiferal assemblages – a case study from the late Campanian Radotruncana calcarata Zone (Upper Cretaceous, Austrian Alps). Palaeogeography, Palaeoclimatology, Palaeoecology, Article in press, doi:10.1016/j.palaeo.2015.08.008.

Wonders, A.A.H., 1992. Cretaceous planktonic foraminiferal biostratigraphy, Leg 122, Exmouth Plateau, Australia. Proceedings of the Ocean Drilling Program, Scientific Results 122, 587-599.

Yilmaz, I.Ö., 2008. Cretaceous Pelagic Red Beds and Black Shales (Aptian-Santonian), NW Turkey: Global Oceanic Anoxic and Oxic Events. Turkish Journal of Earth Sciences, 17, 263-296.
Figure 1 (on next page)

Geological sketch-map of the Austrian Alps

The Postalm section is situated some kilometres south of the city of Salzburg. The inset explains the geographical context.
Figure 2 (on next page)

Palaeogeographic reconstruction of the Penninic realm (after Schettino and Turco, 2011)

The Postalm section (grey star) is located in the Northern Calcareous Alps (N.C.A.) on the southern active margin of the Penninic Ocean (1).
Figure 3 (on next page)

Detail of cyclic marl-marly limestone alternations at Postalm depicting the older part of the *R. calcarata* interval

Black dots show sample locations
Figure 4 (on next page)

Overview of the geological setting at Postalm section and the *R. calcarata* interval in detail

Sample points from this the present study are flagged with stars. Samples used for the assessment of presence-absence data in Wolfgring et al. (2015) are flagged with black dots.
Manuscript to be reviewed
Figure 5 (on next page)

Relative abundance of foraminiferal species in the *R. calcarata* interval at Postalm section (>63 μm)

Species marked with an asterisk are necessarily displayed at a different scale. Species are in order of their stratigraphical appearance.
Figure 6 (on next page)

Frequency of foraminifera in respect to their ecological characteristics

The vast majority of individuals in the > 63µm fraction assign to opportunistic r-selected taxa (grey), r/K intermediates (light blue) and K-selected taxa (dark blue) are represented by 10 percent each.
An average palaeo-waterdepth was calculated applying the methods of Hohenegger (2005) and Van der Zwaan et al. (1990).

The benthic foraminiferal presence-absence dataset assessed in Wolfgring et al. (2015) was applied to calculate palaeo-waterdepths after the method of Hohenegger (2005). Quantitative data assessed in this study was used to calculate the waterdepth using Van der Zwaan et al. (1990).
Samples used in present study

- Wolfgring et al. (2015)

Hohenegger (2005) including possible range of waterdepths

Van der Zwaan et al. (1990)
Foraminiferal assemblages in limestone /marl couplets

Frequencies of globotruncanids, heterohelicids, hedbergellids, archaeoglobigerinids, globigerinelloidids and benthic foraminifera from limestone- marl couplets. Biserial planktonic taxa are more abundant in the firmer limestone samples.
Manuscript to be reviewed

- benthos
- globigerinelloidids
- archaeoglobigerinids
- hedbergellids
- heterohelicids
- globotruncanids
Table 1 displays the proportional frequencies of foraminiferal taxa per sample at the Postalm section.
| Species | Date | Location | Layer |
|---|
| *Giardia* sp. | 08.06 | | |
| *G. echinata* | 08.07 | | |
| *G. trachaea* | 08.09 | | |
| *G. vacuolata*| 08.10 | | |
| | 15 | 10 | 7 | 17 | 48 | 17 | 48 | 15 | 18 | 22 | 10 | 14 | 14 | 36 | 6 | 2 | 2 | 2 | 1 | 37 | 27 | 26 | 6 | 32 | 21 |
|-------------------|----|----|---|----|----|----|----|----|----|----|----|----|----|----|----|---|---|---|---|---|----|----|----|---|----|----|
| "G." prairiehillensis | - | - | - | - | - | - | | 1 | 0.0| | | | | | | | | | | | | | | | |
| "G". ultramicrus | - | - | - | - | - | - | | 1 | | | | | | | | | | | | | | | | | | |
| "Globigerinelloides" sp. | - | - | - | - | - | - | | 1 | | | | | | | | | | | | | | | | | | |
| "Pseudotextularia nuttalli" | - | 1 | - | - | - | - | | 1 | | | | | | | | | | | | | | | | | | |
| Rugoglobigerina sp. | - | - | - | - | - | - | | 1 | | | | | | | | | | | | | | | | | | |
| Schackoina sp. | - | 2 | - | - | - | - | | 1 | | | | | | | | | | | | | | | | | | |
| Benthic foraminifera | - | - | | 5 | - | - | | 1 | | | | | | | | | | | | | | | | | | |
| Total | 765| 308| 194| 315| 518| 232| 368| 337| 403| 403| 376| 319| 246| 474| 335| 285| 611| 271| 264| 439| 268| 357| 361| 699| 309|
Table 2 (on next page)

Life strategies of planktonic foraminifera at Postalm section (after Premoli Silva and Sliter, 1999, Petrizzo, 2002).
Table 2

K-selected:
- *Contusotruncana* aff. *morozovae*
- *C. patelliformis*
- *C. plummerae*
- *Contusotruncana fornicata*
- *Contusotruncana* sp.
- *Globotruncana arca-lapparenti-orientalis*
- *G. aff. conica*
- *G. atlantica*
- *G. bulloides*
- *G. falsostuartii*
- *G. linneiana*
- *G. mariei*
- *G. stuartiformis*
- *G. tricarinata*
- *G. ventricosa*
- *Globotruncana* sp.
- *Globotruncanita* sp.
- *Gta. elevata*
- *Gta. Subspinosa*
- *Radotruncana calcarata*

r/K – intermediates:
- *Archaeoglobigerina* spp.
- *A. cretacea*
- *Archaeoglobigerina blowi*
- *Globotruncanella havanensis*
- *Ga. pschadae/sp.*
- "*Globigerinelloides*” bolli
- "*G.” prairiehillensis"
- "*G.” ultramicrus"
- "*Globigerinelloides*” sp.
- *Pseudotextularia nutalli*

r- selected:
- *Guembelitria* sp.
- *Gublerina rajagopalani*
- *Spiroplectula navarroensis*
- *Planoheterohelix globulosa*
- *Ph. punctulata*
- *Ph. striata*
- *Heterohelix* spp.
- *Muricohedbergella holmdelensis*
- *M monmouthensis*
Laeviheterohelix spp.
Rugoglobigerina sp.

Table 2: Life strategies of planktonic foraminifera at Postalm section (after Premoli Silva and Sliter, 1999, Petrizzo, 2002).