Extracting the electric dipole breakup cross section of one-neutron halo nuclei from inclusive breakup observables

K. Yoshida1, T. Fukui1, K. Minomo1, K. Ogata1

1RCNP, Osaka University
Probing halo structure

Halo nucleus can be probed with Electric Dipole (E1) break up cross section $\sigma(E1)$.

$$\sigma(E1) \propto \int_{S_n}^{\infty} n_{E1}(E) \frac{dB(E1)}{dE} dE$$

$C. A. Bertulani, G. Baur, Phys. Rep. 163, 299(1988).$

$n_{E1}(E)$: exponentially decreasing function of E.

\[
\begin{align*}
\text{PDR} & \quad \text{a few MeV} & \quad \text{$\sim 0.5 \text{ b}$} \\
\text{GDR} & \quad \text{$\sim 10 \text{ MeV}$} & \quad \text{$\sim 0.1 \text{ b}$}
\end{align*}
\]
Probing halo structure

One-neutron removal cross sections from ^{31}Ne on Pb and C, σ_{Pb}^{-1n} and σ_{C}^{-1n} were measured at RIBF, RIKEN. T. Nakamura et al., PRL 103, 262501 (2009).

but, $\sigma(E1)$ is not observable.

$E1$ cross section formula

$$\sigma(E1) = \sigma_{\text{Pb}}^{-1n} - \Gamma \sigma_{\text{C}}^{-1n}$$
Purpose and method

E1 cross section formula

\[\sigma(E1) = \sigma_{Pb}^{1n} - \Gamma \sigma_{C}^{1n} \]

1. Justify the validity of E1 cross section formula
2. Find the value of the scaling factor \(\Gamma \)

We aim to establish a quantitatively reliable method of extracting the E1 breakup cross section from observables.

- CDCC (Continuum-Discretized Coupled-Channel method)
- ERT (Eikonal Reaction Theory)
- Microscopic folding model
Elastic Breakup (EB) & stripping (STR)

\[\sigma^{-1n} = \sigma^{EB} + \sigma^{STR} \]

EB
No target excitation
\[A(P,c+n)A \]

EXP
Calculated by CDCC

STR
Target excitation
\[A(P,c+n)A^* \]

ERT
CDCC

Continuum-Discretized Coupled-Channels method with eikonal approximation (E-CDCC) for exclusive reaction cross sections.

M. Yahiro, K. Ogata, T. Matsumoto, K. Minomo, PTEP 2012, 01A206 (2012).

Non-perturbative, non-adiabatic description of break up reaction.

\[
\psi = \phi_0 \chi_0 + \int_0^\infty \phi_k \chi_k dk
\]

\[
\psi^{CDCC} = \sum_{i}^{i_{max}} \hat{\phi}_i \hat{\chi}_i
\]
Eikonal reaction theory (ERT) as an extension of CDCC for inclusive reaction cross section.

M. Yahiroy, K. Ogata, K. Minomo, PTP 126, 167, (2011).

in adiabatic approximation

\[\hat{\mathcal{S}} = \hat{\mathcal{S}}_c \hat{\mathcal{S}}_n \]

solving Schrödinger equations by CDCC

\[[T + U_c + h - E] \psi = 0 \quad \longrightarrow \quad \hat{\mathcal{S}}_c \]
\[[T + U_n + h - E] \psi = 0 \quad \longrightarrow \quad \hat{\mathcal{S}}_n \]

\[\sigma_{n:STR} = \int d\vec{b} \left\langle \phi_0 \left| \hat{\mathcal{S}}_c |^2 (1 - |\hat{\mathcal{S}}_n|^2) \right| \phi_0 \right\rangle \]
Microscopic reaction theory

Distorting potential

microscopic folding model for calculating the c-T and n-T potentials.

• HF density for the core and target nuclei.
• Melbourne g-matrix for NN interaction.

K. Amos et al., ANP25, 275 (2000).

Reaction systems

✓ Projectiles: 11Be, 15C, 19C, 31Ne, 29Ne, 33Mg, 35Mg, 37Mg, 39Si, 41Si

established 1n-halo candidates

✓ Targets: 12C, 16O, 48Ca, 58Ni, 90Zr, 208Pb

✓ Incident energy: 250MeV/nucleon
Validity of E1 cross section formula

Two important assumptions to establish E1 formula.

\[\sigma(E1) = \sigma_{Pb}^{-1n} - \Gamma \sigma_{C}^{-1n} \]

- E1 dominance in Coulomb breakup
 \[\sigma_{Pb}^{EB}(c) \simeq \sigma_{Pb}^{EB}(E1) \]
- Small interference between Coulomb and Nuclear interaction
 \[\sigma_{Pb}^{EB} \simeq \sigma_{Pb}^{EB}(n) + \sigma_{Pb}^{EB}(c) \]

We examine
- these two assumptions
- Validity of E1 formula
- Values of \(\Gamma \) factors
Validity of E1 cross section formula

E1 dominance in Coulomb breakup

\[\sigma_{\text{Pb}}^{\text{EB}}(c) \sim \sigma_{\text{Pb}}^{\text{EB}}(E1) \]

\[e_{E1} = eZ_c \frac{1}{A} \quad e_{E2} = eZ_c \left(\frac{1}{A} \right)^2 \]

\[e_{E1} \gg e_{E2} \]

\(\sigma(E2) \) damps rapidly for its \(R^{-3} \).

\[\sigma(E1) \propto e_{E1}^2 \frac{r}{R^2} \]

\[\sigma(E2) \propto e_{E2}^2 \frac{r^2}{R^3} \]
Validity of $E1$ cross section formula

$E1$ dominance in Coulomb breakup

$$\sigma_{Pb}^{EB}(c) \approx \sigma_{Pb}^{EB}(E1)$$

$$1 - \frac{\sigma_{Pb}^{EB}(c)}{\sigma_{Pb}^{EB}(E1)}$$

Graph showing the validity of $E1$ cross section formula with different isotopes.
Validity of E1 cross section formula

Small interference between Coulomb and Nuclear interaction

\[\sigma_{\text{Pb}}^{\text{EB}} \approx \sigma_{\text{Pb}}^{\text{EB}}(n) + \sigma_{\text{Pb}}^{\text{EB}}(c) \]

1. Nuclear breakup at surface, while Coulomb breakup amplitude has a long tail.
2. Angular momentum \(\ell \rightarrow |\ell_0 \pm 1| \) by E1, but no such selection for the nuclear breakup.
Validity of E1 cross section formula

Two important assumptions to establish E1 formula.

- Small interference between Coulomb and Nuclear interaction
 \[\sigma_{Pb}^{EB} \approx \sigma_{Pb}^{EB}(n) + \sigma_{Pb}^{EB}(c) \]
- E1 dominance in Coulomb breakup
 \[\sigma_{Pb}^{EB}(c) \approx \sigma_{Pb}^{EB}(E1) \]

\[\sigma_{Pb}^{EB}(E1) = \sigma_{Pb}^{-1n} - \sigma_{Pb}^{-1n}(n) \]

\[= \sigma_{Pb}^{-1n} - \Gamma \sigma_{C}^{-1n}(n) \]

\[\approx \sigma_{Pb}^{-1n} - \Gamma \sigma_{C}^{-1n} \]

\[\Gamma = \frac{\sigma_{Pb}^{-1n}(n)}{\sigma_{C}^{-1n}(n)} \]

\[\sigma_{C}^{-1n} \approx \sigma_{C}^{-1n}(n) \]
Validity of E1 cross section formula

Two important assumptions to establish E1 formula.

- Small interference between Coulomb and Nuclear interaction
 \[\sigma_{\text{Pb}}^{\text{EB}} \sim \sigma_{\text{Pb}}^{\text{EB}}(n) + \sigma_{\text{Pb}}^{\text{EB}}(c) \]

- E1 dominance in Coulomb breakup
 \[\sigma_{\text{Pb}}^{\text{EB}}(c) \sim \sigma_{\text{Pb}}^{\text{EB}}(E1) \]

E1 cross section formula

\[\sigma(E1) = \sigma_{\text{Pb}}^{-1n} - \Gamma \sigma_{\text{C}}^{-1n} \]

where \(\Gamma \) is defined by

\[\Gamma = \frac{\sigma_{\text{Pb}}^{-1n}(n)}{\sigma_{\text{C}}^{-1n}(n)} \] about 95% accuracy
Target mass number dependence of $\sigma^{-1n}(n)$

$\sigma^{-1n}(n)$ are proportional to $A^{1/3}$.
this work

\[\Gamma = \frac{\sigma_{\text{Pb}}(n)}{\sigma_{\text{C}}(n)} \]

previous study

T. Nakamura et al., PRL 103, 262501 (2009).

\[\frac{A_{\text{Pb}}^{1/3} + A_{\text{pro}}^{1/3}}{A_{\text{C}}^{1/3} + A_{\text{pro}}^{1/3}} \leq \Gamma \leq \frac{A_{\text{Pb}}^{1/3}}{A_{\text{C}}^{1/3}} \]
scaling factor Γ

\[\Gamma = \frac{\sigma_{\text{Pb}}^{-1}n(n)}{\sigma_{\text{C}}^{-1}n(n)} \]

T. Nakamura et al., PRL 103, 262501 (2009).

\[\frac{A_{\text{Pb}}^{1/3} + A_{\text{pro}}^{1/3}}{A_{\text{C}}^{1/3} + A_{\text{pro}}^{1/3}} \leq \Gamma \leq \frac{A_{\text{Pb}}^{1/3}}{A_{\text{C}}^{1/3}} \]

2.59
scaling factor Γ

this work

$$\Gamma = \frac{\sigma_{Pb}^{-1} n(n)}{\sigma_{C}^{-1} n(n)}$$

previous study

T. Nakamura et al., PRL 103, 262501 (2009).

$$\frac{A_{Pb}^{1/3} + A_{pro}^{1/3}}{A_{C}^{1/3} + A_{pro}^{1/3}} \leq \Gamma \leq \frac{A_{Pb}^{1/3}}{A_{C}^{1/3}}$$

S_n: one-neutron separation energy [MeV]
scaling factor Γ

This work

$$\Gamma = \frac{\sigma_{Pb}^{-1}(n)}{\sigma_{C}^{-1}(n)}$$

Previous study

T. Nakamura et al., PRL 103, 262501 (2009).

$$\frac{A_{Pb}^{1/3} + A_{pro}^{1/3}}{A_{C}^{1/3} + A_{pro}^{1/3}} \leq \Gamma \leq \frac{A_{Pb}^{1/3}}{A_{C}^{1/3}}$$

$$\Gamma = (2.30 \pm 0.41)e^{-S_n} + (2.43 \pm 0.21)$$

S_n: one-neutron separation energy [MeV]
summary

E1 cross section formula

$$\sigma(E1) = \sigma_{Pb}^{-1n} - \Gamma \sigma_{C}^{-1n}$$

where Γ is defined by

$$\Gamma = \frac{\sigma_{Pb}^{-1n}(n)}{\sigma_{C}^{-1n}(n)}$$

Γ has $1n$ separation energy dependence

$$\Gamma = (2.30 \pm 0.41)e^{-S_n} + (2.43 \pm 0.21)$$

^{31}Ne case

deduced $\sigma(E1)=540$ mb will become 13-20% smaller.

K. Yoshida, T. Fukui, K. Minomo, K. Ogata, PTEP 2014, 053D03
We confirmed (for 1n halo systems)

- E1 is dominant in Coulomb breakup
 \[\sigma^{EB}_{Pb}(c) \simeq \sigma^{EB}_{Pb}(E1) \]

- Interference between Coulomb and Nuclear interaction is negligible
 \[\sigma^{EB}_{Pb} \simeq \sigma^{EB}_{Pb}(n) + \sigma^{EB}_{Pb}(c) \]

- Stripping reaction is caused by nuclear interaction
 \[\sigma^{STR}_{Pb} \simeq \sigma^{STR}_{Pb}(n) \]

- In case of \(^{12}\text{C}\) target, Nuclear interaction is dominant
 \[\sigma^{-1n}_{C} \simeq \sigma^{-1n}_{C}(n) \]

E1 cross section formula

\[\sigma(E1) = \sigma^{-1n}_{Pb} - \Gamma \sigma^{-1n}_{C} \quad \text{about 95% accuracy} \]

where \(\Gamma \) is defined by

\[\Gamma = \frac{\sigma^{-1n}_{Pb}(n)}{\sigma^{-1n}_{C}(n)} \]
\[\sigma_{Pb}^{-1n} = \sigma_{Pb}^{STR} + \sigma_{Pb}^{EB} \]
\[
\sigma_{Pb}^{-1n} = \sigma_{Pb}^{STR} + \sigma_{Pb}^{EB}
\]

\[
\sigma_{Pb}^{STR} \simeq \sigma_{Pb}^{STR}(n)
\]

\[
\sigma_{Pb}^{EB} \simeq \sigma_{Pb}^{EB}(n) + \sigma_{Pb}^{EB}(c)
\]

\[
\sigma_{Pb}^{-1n} = \sigma_{Pb}^{STR}(n) + \sigma_{Pb}^{EB}(n) + \sigma_{Pb}^{EB}(c)
\]
\[\sigma_{Pb}^{-1n} = \sigma_{Pb}^{STR} + \sigma_{Pb}^{EB} \]
\[\sigma_{Pb}^{STR} \simeq \sigma_{Pb}^{STR}(n) \]
\[\sigma_{Pb}^{EB} \simeq \sigma_{Pb}^{EB}(n) + \sigma_{Pb}^{EB}(c) \]

\[
\sigma_{Pb}^{-1n} = \sigma_{Pb}^{STR}(n) + \sigma_{Pb}^{EB}(n) + \sigma_{Pb}^{EB}(c)
\]

\[
\sigma_{Pb}^{-1n} = \sigma_{Pb}^{-1n}(n) + \sigma_{Pb}^{EB}(c)
\]
\[\sigma_{Pb}^{EB}(c) = \sigma_{Pb}^{1n} - \sigma_{Pb}^{1n}(n) \]

\[\sigma_{Pb}^{1n} = \sigma_{Pb}^{STR} + \sigma_{Pb}^{EB} \]

\[\sigma_{Pb}^{STR} \sim \sigma_{Pb}^{STR}(n) \]

\[\sigma_{Pb}^{EB} \sim \sigma_{Pb}^{EB}(n) + \sigma_{Pb}^{EB}(c) \]

\[\sigma_{Pb}^{1n} = \sigma_{Pb}^{1n}(n) + \sigma_{Pb}^{EB}(n) + \sigma_{Pb}^{EB}(c) \]

\[\sigma_{Pb}^{1n} = \sigma_{Pb}^{1n}(n) + \sigma_{Pb}^{EB}(c) \]
\[\sigma_{Pb}^{EB}(c) = \sigma_{Pb}^{-1n} - \sigma_{Pb}^{-1n}(n) \]

\[\sigma_{Pb}^{EB}(c) \simeq \sigma_{Pb}^{EB}(E1) \]

\[\sigma_{Pb}^{EB}(E1) = \sigma_{Pb}^{-1n} - \sigma_{Pb}^{-1n}(n) \]
\[\sigma_{Pb}^{EB}(c) = \sigma_{Pb}^{-1n} - \sigma_{Pb}^{-1n}(n) \]
\[\sigma_{Pb}^{EB}(E1) = \sigma_{Pb}^{-1n} - \sigma_{Pb}^{-1n}(n) \]
\[\Gamma = \sigma_{Pb}^{-1n}(n)/\sigma_C^{-1n}(n) \]
\[\sigma_{Pb}^{EB}(c) = \sigma_{Pb}^{-1n} - \Gamma \sigma_C^{-1n}(n) \]
\[\sigma_{Pb}^{EB}(c) = \sigma_{Pb}^{-1n} - \sigma_{Pb}^{-1n}(n) \]

\[\sigma_{Pb}^{EB}(c) \simeq \sigma_{Pb}^{EB}(E1) \]

\[\sigma_{Pb}^{EB}(E1) = \sigma_{Pb}^{-1n} - \sigma_{Pb}^{-1n}(n) \]

\[\Gamma = \sigma_{Pb}^{-1n}(n)/\sigma_{C}^{-1n}(n) \]

\[\sigma_{Pb}^{EB}(c) = \sigma_{Pb}^{-1n} - \Gamma \sigma_{C}^{-1n}(n) \]

\[\sigma_{C}^{-1n}(n) \simeq \sigma_{C}^{-1n} \]

\[\sigma_{Pb}^{EB}(E1) = \sigma_{Pb}^{-1n} - \Gamma \sigma_{C}^{-1n} \]
\[
\sigma_{\text{Pb}}^{\text{EB}}(c) = \sigma_{\text{Pb}}^{-1n} - \sigma_{\text{Pb}}^{-1n}(n)
\]
\[
\sigma_{\text{Pb}}^{\text{EB}}(c) \simeq \sigma_{\text{Pb}}^{\text{EB}}(E1)
\]
\[
\sigma_{\text{Pb}}^{\text{EB}}(E1) = \sigma_{\text{Pb}}^{-1n} - \sigma_{\text{Pb}}^{-1n}(n)
\]
\[
\Gamma = \sigma_{\text{Pb}}^{-1n}(n)/\sigma_{C}^{-1n}(n)
\]
\[
\sigma_{\text{Pb}}^{\text{EB}}(c) = \sigma_{\text{Pb}}^{-1n} - \Gamma \sigma_{\text{C}}^{-1n}(n)
\]
\[
\sigma_{\text{C}}^{-1n}(n) \simeq \sigma_{\text{C}}^{-1n}
\]
\[
\sigma_{\text{Pb}}^{\text{EB}}(E1) = \sigma_{\text{Pb}}^{-1n} - \Gamma \sigma_{\text{C}}^{-1n}
\]

we want experiment
We confirmed (for 1n halo systems)

- E1 is dominant in Coulomb breakup
 \[
 \sigma^{EB}_{Pb}(c) \simeq \sigma^{EB}_{Pb}(E1)
 \]

- Interference between Coulomb and Nuclear interaction is negligible
 \[
 \sigma^{EB}_{Pb} \simeq \sigma^{EB}_{Pb}(n) + \sigma^{EB}_{Pb}(c)
 \]

- Stripping reaction is caused by nuclear interaction
 \[
 \sigma^{STR}_{Pb} \simeq \sigma^{STR}_{Pb}(n)
 \]

- In case of 12C target, Nuclear interaction is dominant
 \[
 \sigma^{1n}_{C} \simeq \sigma^{1n}_{C}(n)
 \]

E1 cross section formula

\[
\sigma(E1) = \sigma^{1n}_{Pb} - \Gamma \sigma^{1n}_{C} \quad \text{about 95% accuracy}
\]

where Γ is defined by

\[
\Gamma = \frac{\sigma^{1n}_{Pb}(n)}{\sigma^{1n}_{C}(n)}
\]
$\sigma_C^{EB} \approx \sigma_C^{EB}(n)$?

$\sigma_C(c), \sigma_C(n)$

$\sigma_C(n)/\sigma_C$
\[\sigma_{C}^{EB} \neq \sigma_{C}^{EB}(n) \]

\[\sigma_{C}(c), \sigma_{C}(n) \]

\[\sigma_{C}(n)/\sigma_{C} \]
Target mass number dependence of $\sigma^{EB}(n)$
$^{12}\text{C}+^{12}\text{C}$ elastic cross section at 135 MeV/nucleon

M. Yahiro, K. Ogata, T. Matsumoto, K. Minomo, PTEP 2012, 01A206 (review)
\[\sigma_{A=1}^{-1 n} = \sigma_{A=1}^{EB} \]

\[(\sigma_{A=1}^{STR} = 0) \]

Core-n

\((l_{\infty}, k_{\infty})\)

CDCC model space

(this work)
\[\sigma_{A=1}^{-1n} = \sigma_{A=1}^{EB} \]

\[(\sigma_{A=1}^{STR} = 0) \]

Core-n

\((l_{\infty}, k_{\infty})\)

\((l_{\text{max}}, k_{\text{max}})\)

CDCC model space

(this work)
\[
\sigma_{A=1}^{-1n} = \sigma_{A=1}^{EB} \\
(\sigma_{A=1}^{STR} = 0)
\]
\[
\sigma_{A=1}^{-1n} = \sigma_{A=1}^{EB} \\
\left(\sigma_{A=1}^{STR} = 0\right)
\]

Core-n

\((l_\infty, k_\infty)\)

\((l_{max}, k_{max})\)

“Tightly” bound

CDCC model space

(this work)

STR

(out of model space)
\[\sigma_{A=1}^{-1n} = \sigma_{A=1}^{EB} \]

\[(\sigma_{A=1}^{STR} = 0)\]

Core-n

\[(l_{\infty}, k_{\infty})\]

\[(l_{\text{max}}, k_{\text{max}})\]

“Tightly” bound

CDCC model space

(this work)

STR

(out of model space)
A-R relation

Effective distance \(R \equiv (J + 1/2) / K \)

A-D relation

\[2\pi RD = \sigma \]
A-R relation

\[R \propto A^{1/3} \]

\[1^{11}\text{Be} \]

\[A^{1/3} = 1.79A^{1/3} + 1.12 \]

\[1^{15}\text{C} \]

\[A^{1/3} = 1.41A^{1/3} + 3.40 \]

\[1^{19}\text{C} \]

\[A^{1/3} = 1.69A^{1/3} + 2.82 \]

\[1^{31}\text{Ne} \]

\[A^{1/3} = 1.61A^{1/3} + 3.97 \]
関係

$2\pi RD = \sigma$

図は、$A^{1/3} \cdot D$ の関係を示しています。データは次の2つの式で表されます：

- $A^{1/3} \cdot D$ relation
- $0.0078A^{1/3} - 0.0076$
A-D relation

^1Be

^15C

^19C

^{31}Ne
multipole expansion

\[V_{1A} \propto \frac{1}{R_1} = \sum_{\lambda} \frac{r^\lambda}{R^{\lambda+1}} P_{\lambda}(\cos \theta) \]

\(\lambda\): multipolarity