Biotechnologia Acta V. 14, No 3, 2021
P. 5-21, Bibliography 107, English
Universal Decimal Classification: 577.112:577.322:576.342:615.36
https://doi.org/doi.org/10.15407/biotech14.03.005.

CHORIONIC GONADOTROPINE: STRUCTURAL HETEROGENEITY, METABOLIC PATHWAY, FUNCTIONS, OBTAINING AND POSSIBILITIES OF CLINICAL APPLICATION

A. K. Gulevsky, Yu. S. Akhatova

Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of
Human chorionic gonadotropin (hCG) is one of the key hormones needed for pregnancy sustaining. At the same time, it performs many other biological functions, which is due to the effect on the immune cells’ activity, the ability to bind to at least three types of receptors and activate various signaling cascades. Several structural forms of hCG and their combinations have been identified. This structural heterogeneity is the cause of variations not only in the degree and direction of the hormone functional activity, but in the mechanisms of its action, the degree of binding to other molecules and the conditions of dissociation as well.

Aim. To review the current understanding of the role and mechanisms of the biological activity of hCG and its isoforms, as well as the identification of physicochemical factors that affect the completeness of hCG release from biological raw materials and the stability of the isolated drug during further storage.

Methods. A computerized literature search was performed using three electronic databases from 1980 to 2020. Descriptive and comparative analyzes were performed for discovered studies in molecular biology, biochemistry and clinical practice.

Results. A detailed biochemical and physiological analysis of hCG and its related molecules are provided in this review. The features of measuring its content in tissues, isolation and purification methods, difficulties associated with low-temperature storage, as well as the spectrum of hCG preparations clinical use of and their proposed new therapeutic possibilities are considered.

Conclusions. HCG is characterized by a wide range of versatile functions, and its field of application in laboratory diagnostics and clinical practice is still expanding. At the same time, to elucidate the mechanisms of its multiple therapeutic effects, including antitumor action, as well as the mechanisms of dissociation under conditions of low-temperature storage, which can solve the problem of maintaining the stability of this hormone, it remains relevant.

Key words: chorionic gonadotropin, cord blood, α and β subunits of hCG, hCG storage.
1. Fournier T., Guibourdenche J., Evain-Brion D. Review: hCGs: different sources of production, different glycoforms and functions. Placenta. 2015, 36 (Suppl. 1), 60-65. doi:10.1016/j.placenta.2015.02.002

2. Tsyirlina E. V., Poroshina T. E. Chorionic gonadotropin as a marker of trophoblastic disease. Practical oncology. 2008, 9 (3), 150-160. (In Russian).
3. Dukic-Stefanovic S., Walther J., Wosch S., Zimmermann G., Wiedemann P., Alexander H., Claudepierre T. Chorionic ... expressed in human retina, possible implications in normal and pathological conditions. PLoS One. 2012, 7 (12), e52567. https://doi.org/10.1371/journal.pone.0052567

4. Treshalina H. M., Smirnova G. B., Tsurkan S. A., Tcherkassova J. R., Lesnaya N. A. The role of alpha-fetoprotein receptor in the delivery of targeted preparations in oncology. Russian J. Oncol. 2017, 22 (1), 4-14. https://doi.org/10.18821/1028-9984-2017-22-1-4-14
5. Nikolaeva L. B., Ushakova G. A. The first pregnancy and first birth: a guide for doctors. Moskva: GEOTAR-Media. 2013, 264 p. (In Russian).

6. Novikova O. H., Trishkin A. G., Ushakova G. A., Artymuk N. V., Kiprina E. C. Hormonal function of the placenta at the late period of pregnancy and the birth when infected with the prenatal infection. Mat' i ditja v Kubani. 2012, 3 (50), 22-26. (In Russian).
7. Steier J. A., Myking O. L., Ulstein M. Human chorionic gonadotropin in cord blood and peripheral maternal blood in singleton and twin pregnancies at delivery. Acta Obstet. Gynecol. Scand. 1989, 68 (8), 689-692.

https://doi.org/10.3109/00016348909006140
8. Cole L. A. Immunoassay of human chorionic gonadotropin, its free subunits, and metabolites. Clin. Chem. 1997, 43 (12), 2233-2243.

https://doi.org/10.1093/clinchem/43.12.2233

9. Grenache D. G., Greene D. N., Dighe A. S., Fantz C. R., Hoefner D., McCudden C., Sokoll L., Wiley C. L., Gronowski A. Immunoassay of the free beta subunit and the beta core fragment in quantitative hCG assays. Clin. Chem. 2010, 56 (12), 1839-1844.

https://doi.org/10.1373/clinchem.2010.143479
10. Stenman U. H., Alfthan H. Determination of human chorionic gonadotropin. Best Pract. Res. Clin. Endocrinol. Metab. 2013, 27 (6), 783-793.

https://doi.org/10.1016/j.beem.2013.10.005

11. Cole L., Butler S. Detection of hCG in Trophoblastic disease. The USA hCg reference Service Experience.
12. Xing Y., Williams C., Campbell R., Cock S., Knoppers M., Addona T., Altarocca V., Moyle W. Protein threading: An efficient method for prediction of human chorionic gonadotropin subunit structure. Protein Sci. 2001, 10, 226-235.

13. Stenman U. H., Tiitinen A., Alfthan H., Valmu L. The classification, functions and clinical use of different isoforms of HCG. Hum. Reprod. Update. 2006, 12, 769-784.
14. Lustbader J. W., Lobel L., Wu H., Elliott M. M. Structural and molecular studies of human chorionic gonadotropin and its receptor. Recent. Prog. Horm. Res. 1998, V. 53, P. 395-424.

15. Cole L. A. HCG variants, the growth factors which drive human malignancies. Am. J. Cancer Res.
16. Borisova M. A., Moiseenko D. Y., Smirnova O. V. Human chorionic gonadotropin: unknown about

https://doi.org/10.7868/S0131164616060059
17. Schwarz S., Krude H. Der humane chorion-gonadotropin (hCG)-rezeptor: eine neue klasse innerhalb der familie der rezeptor-gebundenen agonistischen und antagonistischen formen des hCGs. Wien. Klin. Wochenschr. 1992, 104 (13), 369-390.

18. Puett D., Angelova K., da Costa M. R., Warrenfeltz S. W., Fanelli F. The luteinizing hormone receptor: insights into the regulation of gene expression and function. Mol. Cell. Endocrinol. 2010, 329 (1-2), 47-55.

https://doi.org/10.1016/j.mce.2010.04.025
19. Kleinau G., Worth C. L., Kreuchwig A., Biebermann H., Marcinkowski P., Scheerer P., Krause G. Structural-functional features of the thyrotropin receptor: A class a G-protein-coupled receptor at work. Front. Endocrinol. 2017, V. 8, P. 86. https://doi.org/10.3389/fendo.2017.00086

20. Bakhtyukov A. A., Shpakov A. O. The low-molecular-weight allosteric regulators of g-protein-coupled receptors of the polypeptide hormones. Russian J. Physiol. 2019, 105 (3), 269-283. https://doi.org/10.1134/S0869813919030014
21. Van Koppen C. J., Zaman G. J. R., Timmers C. M., Kelder J., Mosselman S., van de Lagemaat R. Weight agonist for the human luteinizing hormone receptor. Naunyn-Schmiedeberg's Arch. Pharmacol. 2008, 378 (5), 503-514.

https://doi.org/10.1007/s00210-008-0318-3
22. Derkach K., Bakhtyukov A. A., Shpakov A. O., Dain D. V., Shpakov A. O. Specificity of heterotrimeric G protein stimulation by gonadotropin and low-molecular agonist of luteinizing hormone receptor. Cell Tissue Biol. 2017, 11 (6), 475-482. [https://doi.org/10.1134/S1990519X17060037]

23. Van de Lagemaat R., Raafs B. C., van Koppen C., Timmers C. M., Mulders S. M., Hanssen R. G. Prevention of the onset of hyperandrogenism in polycystic ovary syndrome using a low molecular weight agonist of the LH receptor compared with hCG and recLH. Endocrinol. 2011, 152 (11), 4350-4357. [https://doi.org/10.1210/en.2011-1077]
24. Gerrits M., Mannaerts B., Kramer H., Addo S., Hanssen R. First evidence of ovulation induced by oral LH agonists in healthy female volunteers of reproductive age. J. Clin. Endocrinol. Metab. 2013, 98 (4), 1558-1566.

https://doi.org/10.1210/jc.2012-3404

25. Newton C. L., Anderson R. C. Pharmacoperones for Misfolded Gonadotropin Receptors. Handb. Exp. Pharmacol. 2018, V. 245, P. 111-134.

https://doi.org/10.1007/164_2017_64
26. Ulloa-Aguirre A., Conn P. M. Pharmacoperones as a new therapeutic approach: in vitro identification and in vivo validation of bioactive molecules. Curr. Drug Targets. 2016, 17 (13), 1471-1481.

https://doi.org/10.2174/1389450117666160307143345
27. Cruz R. I., Anderson D. M., Armstrong E. G., Moyle W. R. Nonreceptor binding of human chorionic gonadotropin (hCG): ... monoclonal antibodies that bind to exposed epitopes on the hormone. J. Clin. Endocrinol. Metab. 1987, 64 (3), 433-440. https://doi.org/10.1210/jcem-64-3-433

28. Chambers A. E., Stanley P. F., Randeva H., Banerjee S. Microvesicle-mediated release of soluble LH/hCG receptor (LHCGR) from transfected cells and placenta explants. Reprod. Biol. Endocrinol. 2011, V. 9, P. 64. https://doi.org/10.1186/1477-7827-9-64
29. Chambers A. E., Nayini K. P., Mills W. E., Lockwood G. M., Banerjee S. Circulating LH/hCG receptor may identify pre-treatment IVF patients at risk of OHSS and poor implantation. Reprod. Biol. Endocrinol. 2011, V. 9, P. 161. https://doi.org/10.1186/1477-7827-9-161

30. Chambers A. E., Griffin C., Naif S. A., Mills I., Mills W. E., Syngelaki A., Nicolaides K. H., Banerjee S. Free
and
bound
microparticle-bound
hCG
are
associated
with
increased
risk
for
stillbirth,
Down's
syndrome,
preterm
delivery
and
preeclampsia. Reprod. Biol. Endocrinol. 2012, V. 10, P. 113. https://doi.org/10.1186/1477-7827-10-113
31. Kratzsch J. Other miscellaneous hormone binding proteins: attempt at an epilogue. Best Pract. Res. Clin. Endocrinol. Metab. 2015, 29 (5), 811-814.

https://doi.org/10.1016/j.beem.2015.10.007
32. Valadi H., Ekstrom K., Bossios A., Sjöstrand M., Lee J. J., Lötvall J. O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biol. 2007, V. 9, P. 654-659.

https://doi.org/10.1038/ncb1596

33. Mincheva-Nilsson L., Baranov V. The role of placental exosomes in reproduction. Am. J. Reprod. Immunol. 2010, 63 (6), 520-533.

https://doi.org/10.1111/j.1600-0897.2010.00822.x
34. Pokrovskiy V. M., Korot'ko G. F. Human physiology. 2nd ed. Moskva: Meditsina. 2003, P. 211-212.

35. Angioni S., Spedicato M., Rizzo A. Cosola C., Mutinati M., Minoia G., Sciorisci R. L. In vitro activity of human chorionic gonadotropin (hCG) on myometrium contractility. Gynecol. Endocrinol. 2011, 27 (3), 180-184.
36. Norris W., Nevers T., Sharma S., Kalkunte S. Review: hCG, preeclampsia and regulatory T cells.

https://doi.org/10.1016/j.placenta.2011.01.009
37. Cole L. A., Khanlian S. A., Riley J. M., Butler S. A. Hyperglycosylated hCG in gestational implantation and in choriocarcinoma and testicular germ cell malignancy tumorigenesis. J. Reprod. Med. 2006, 51 (11), 919-929.

38. Shpakov A. O. Glycosilation of gonadotropins, as the most important mechanism of regulation of their activity. Russian J. Physiol. 2017, 103 (9), 1004-1021. (In Russian).
39. Ibeto L., Antonopoulos A., Grassi P., Pang P. C., Panico M., Bobdiwala S., Al-Memar M., Davis P., Davis M., Norman I., K. L., et al. The hyperglycosylation of human chorionic gonadotropin revealed by glycomics analysis. PLoS One. 2020, 15 (2), e0228507. https://doi.org/10.1371/journal.pone.0228507

40. Nwabuobi C., Arlier S., Schatz F., Guzeloglu-Kayisli O., Lockwood C. J., Kayisli U. A. hCG: Biological Functions and Clinical Applications. Int. J. Mol. Sci. 2017, 18 (10), 2037. https://doi.org/10.3390/ijms18102037
41. Bansal A. S., Bora S. A., Saso S., Smith J. R., Johnson M. R., Thum M. Y. Mechanism of human chorionic gonadotrophin mediated immunomodulation in pregnancy. Expert. Rev. Clin. Immunol. 2012, 8 (8), 747-753.

https://doi.org/10.1586/eci.12.77
42. Tsampalas M., Gridelet V., Berndt S., Foidart J. M., Geenen V., Perrier d'Hauterive S. Human chorionic gonadotropin: a hormone with immunological and angiogenic properties. J. Reprod. Immunol. 2010, 85 (1), 93-98.

https://doi.org/10.1016/j.jri.2009.11.008

43. Fuchs T., Hammarström L., Smith C. I., Brundin J. In vitro induction of murine suppressor T-cells by human chorionic gonadotropin. Acta Obstet. Gynecol. Scand. 1980, 59 (4), 355-359.

https://doi.org/10.3109/00016348009154093
44. Fuchs T., Hammarström L., Smith C. I., Brundin J. In vitro induction of human suppressor T cells by chorionic gonadotropin. J. Reprod. Immunol. 1981, 3 (2), 75-84.

https://doi.org/10.1016/0165-0378(81)90012-7
45. Yamauchi S., Izumi S., Shiotsuka Y., Watanabe K., Ozawa A. Demonstration of HCG on the surface of maternal lymphocytes and discrimination of T and B cells by esterase cytochemistry. Tokai J. Exp. Clin. Med. 1983, 8 (4), 333-337.

46. Lin J., Lojun S., Lei Z. M., Wu W. X., Peiner S. C., Rao C. V. Lymphocytes from pregnant women express human chorionic gonadotropin/luteinizing hormone receptor gene. Mol. Cell. Endocrinol. 1995, 111 (1), 13-17.

https://doi.org/10.1016/0303-7207(95)03565-O
47. Khil L. Y., Jun H. S., Kwon H., Yoo J. K., Kim S., Notkins A. L., Yoon J. W. Human chorionic gonadotropin is an immune modulator and can prevent autoimmune diabetes in NOD mice. Diabetologia. 2007, 50 (10), 2147-2155. https://doi.org/10.1007/s00125-007-0769-y

48. Ueno A., Cho S., Cheng L., Wang J., Hou S., Nakano H., Santamaria P., Yang Y. Transient upregulation of indoleamine 2,3-dioxygenase in dendritic cells by human chorionic gonadotropin downregulates autoimmune diabetes. Diabetes. 2007, 56 (6), 1686-1693. https://doi.org/10.2337/db06-1727
49. Segerer S. E., Müller N., van den Brandt J., Kapp M., Dietl J., Reichardt H. M., Rieger L., Kämmerer U. Impact of female sex hormones on the maturation and function of human dendritic cells. Am. J. Reprod. Immunol. 2009, 62 (3), 165-173.

https://doi.org/10.1111/j.1600-0897.2009.00726.x
50. Wan H., Versnel M. A., Leijten L. M., van Helden-Meeuwsen C. G., Fekkes D., Leenen P. J., Khan N. A., Benner R., ... gonadotropin induces dendritic cells to express a tolerogenic phenotype. J. Leukoc. Biol. 2008, 83 (4), 894-901.
https://doi.org/10.1189/jlb.0407258

51. Zamorina S. A., Kochurova S. V. Immunopharmacological aspects of the chorionic gonadotropin application. Vestn. Permskogo un-ta. Biologija. 2019, N 4, P. 471-481. (In Russian).
https://doi.org/10.17072/1994-9952-2019-4-471-481
52. Zamorina S. A., Litvinova L. S., Yurova K. A., Dunets N. A., Khaziakhmatova O. G., Timganova V. P., Bochkova M. S., ... memory t-cells. Immunol. 2017, 38 (4), 179-184. (In Russian). http://dx.doi.org/10.18821/0206-4952-2017-38-4-179-184

53. Zamorina S. A. Mechanisms of the Immunomodulatory Activity of Chorionic Gonadotropin. Perm': Stil' MG. 2017, 168 p. ISBN 978-5-8131-0138-0. (In Russian).
54. Licht P., Russu V., Wildt L. On the role of human chorionic gonadotropin (hCG) in the embryo-endometrial microenvironment: implications for differentiation and implantation. Semin. Reprod. Med. 2001, 19 (1), 37-47.
https://doi.org/10.1055/s-2001-13909

55. Kratzsch J. Other miscellaneous hormone binding proteins: Attempt at an epilogue. Best Pract. Res. Clin. Endocrinol. Metab. 2015, 29 (5), 811-814.
https://doi.org/10.1016/j.beem.2015.10.007
56. Mintziori G., Anagnostis P., Toulis K. A., Goulis D. G. Thyroid diseases and female reproduction. Minerva Med. 2012, 103 (1), 47-62.

57. Wu Z., Cai Y., Xia C., Liu T., Yang H., Wang F., Wang N., Yu Z., Yin C., Wang Q., Zhu D. Hashimoto's thyroiditis affects endometrial morphology and receptivity markers in euthyroid mice. Reprod. Biol. Endocrinol. 2019, 17 (1), 94. https://doi.org/10.1186/s12958-019-0526-3
58. Jølving L., Jensen M. D., Fedder B., Baas B. S., Nørgård B. M. The chance of a live birth after assisted reproduction in women with thyroid disorders. Clin. Epidemiol. 2019, V. 11, P. 683-694.

59. Bansal A. S., Bajardeen B., Shehata H., Thum M. Y. Recurrent miscarriage and autoimmunity. Expert Rev. Clin. Immunol. 2011, 7 (1), 37-44.
60. Zou S. H., Yang Z. Z., Zhang P., Song D. P., Li B., Wu R. Y., Cong X. Autoimmune disorders affect
the in vitro fertilization outcome in infertile women. Zhonghua Nan Ke Xue. 2008, 14 (4), 343-346.

https://doi.org/10.1586/eci.10.84
61. Wang W., Yi-Lin Yin G. J., Bao S. H., Qiu L. H., Lin Q. D. Increased prevalence of T helper 17 (Th17) and T regulatory (Treg) cells in maternal blood and decidua in unexplained recurrent spontaneous abortion patients. J. Reprod. Immunol. 2010, 84 (2), 164-170.
https://doi.org/10.1016/j.jri.2009.12.003

62. Toulis K. A., Goulis D. G., Venetis C. A., Kolibianakis E. M., Tarlatzis B. C., Papadimas I. Thyroid autoimmunity and miscarriages: the corpus luteum hypothesis. Med. Hypotheses. 2009, 73 (6), 1060-1062.
https://doi.org/10.1016/j.mehy.2009.05.012
63. Moncayo H., Moncayo R., Benz R., Wolf A., Lauritzen C. Ovarian failure and autoimmunity. Detection of autoantibodies against the luteinizing hormone receptor and the hormone-receptor complex of bovine corpus luteum. J. Clin. Invest. 1989, 84 (6), 1857-1865. https://doi.org/10.1172/JCI114372

64. Skałba P., Gajewska K., Bednarska-Czerwińska A. Choriogonadotropin measurements - critical assessment of new diagnostic possibilities. Ginekol. Pol. 2004, 75 (3), 221-227.
65. Fan J., Wang M., Wang C., Cao Y. Advances in human chorionic gonadotropin detection technologies: a review. Bioanalysis. 2017, 9 (19), 1509-1529. https://doi.org/10.4155/bio-2017-0072

66. Cole L. A., Kardana A. Discordant results in human chorionic gonadotropin assays. Clin. Chem. 1992, 38 (2), 263-270.
67. Panić-Janković T., Mitulović G. Human chorionic gonadotrophin pharmaceutical formulations of urinary origin display high levels of contaminant proteins—A label-free quantitation proteomics study. Electrophoresis. 2019, 40 (11), 1622–1629. https://doi.org/10.1002/elps.201900087
68. Prasad P., Chaube S. K., Shrivastav T. G., Kumari G. L., Duraiswami S., Muralidhar K. Isolation of hCG and its homologues from human urine by radioimmunoassay, enzyme-immunoassay, and radio-receptor assay. J. Immunoassay Immunochem. 2005, 26 (4), 325-344. https://doi.org/10.1080/15321810500220951

69. Lunenfeld B., Bilger W., Longobardi S., Alam V., D’Hooghe T., Sunkara S. K. The development of gonadotropins for clinical use in the treatment of infertility. Front. Endocrinol. 2019, V. 10, P. 429. https://doi.org/10.3389/fendo.2019.00429
70. Albert A. Human Pituitary Gonadotropins, Workshop Conference. Thomas: Springfield, IL. 1961, 434 p. ISBN 978-0-398-00023-3

71. Bassett R., De Bellis C., Chiacchiarini L., Mendola D., Micangeli E., Minari K., Grimaldi L., Mancinelli M., ... human urine with a commercial recombinant human chorionic gonadotrophin. Curr. Med. Res. Opin. 2005, 21 (12), 1969-1976. https://doi.org/10.1185/030079905X75005
72. Yarram S., Jenkins J., Cole L. A., Brown N. L., Sandy J. R., Mansell J. P. Epidermal growth factor contamination and concentrations of intact human chorionic gonadotropin in commercial preparations. Fertil. Steril. 2004, 82 (1), 232-233. https://doi.org/10.1016/j.fertnstert.2003.11.051

73. Danilkovich A., Freze K., Romashkova J., Valujskikh A., Makarov E., Targoni O., Makarova N., Kushch A. Influence of chorionic gonadotropin on DNA synthesis and growth of lymphoblastoid cells in vitro. Growth inhibition and receptor’s binding. FEBS Let. 1995, 369 (2-3), 161-164. https://doi.org/10.1016/0014-5793(95)00731-N
74. Shen Q. X., Li C. L., Shen H., Liu H. H., Xiang C. Q., Ding X. C. Expression of cDNA of human chorionic gonadotropin ... cells and effect of expressed product on mouse lymphocytes in vitro. Shi Yan Sheng Wu Xue Bao. 1996, 29 (1), 95-100.

75. Valuĭskikh A. N., Romashkova Iu. A., Danilovich A. V., Freze K. V., Sukhikh G. T., Makarov E. V. Synthetic peptide - ... inhibits mitogen-stimulated proliferation of human lymphocytes in vitro. Biull. Eksp. Biol. Med. 1997, 123 (3), 319-322.

https://doi.org/10.1007/BF02445425
76. Van Dorsselaer A., Carapito C., Delalande F., Schaeffer-Reiss C., Thierse D., Diemer H., McNair D.S., Krewski D. Identifying a protein in urine-derived injectable fertility products by a targeted proteomic approach. PLoS One. 2011, 6 (3), e17815. https://doi.org/10.1371/journal.pone.0017815

77. Lempiäinen A., Hotakainen K., Alfthan H., Stenman U. H. Loss of human chorionic gonadotropin in urine during storage at -20 °C. Clin. Chim. Acta. 2012, 413 (1-2), 232-236. https://doi.org/10.1016/j.cca.2011.09.038

78. Hotakainen K., Lempiäinen A., Alfthan H., Stenman U. H. Loss of human chorionic gonadotropin in urine during storage at -20 °C. Clin. Chim. Acta. 2012, 413 (1-2), 232-236. https://doi.org/10.1016/j.cca.2011.09.038
78. Page K., Gomez J., Smith N. Increasing hCG concentrations during storage at (+)4 degrees C with the Bayer Centaur Total hCG method. Ann. Clin. Biochem. 2004, 41 (6), 479-481. https://doi.org/10.1258/0004563042466910

79. De Medeiros S. F., Amato F., Norman R. J. Stability of immunoreactive beta-core fragment of hCG.
80. Robinson N., Sottas P. E., Saugy M. Evaluation of two immunoassays for the measurement of human chorionic gonadotropin in urine for anti-doping purposes. Clin. Lab. 2010, 56 (5-6), 197-206.

81. Kardana A., Cole L. A. The stability of hCG and free beta-subunit in serum samples. Prenat. Diagn. 1997, 17 (2), 141-214.

https://doi.org/10.1002/(SICI)1097-0223(199702)17:2<141::AID-PD47>3.0.CO;2-I
82. Shpakov A. O. Gonadotropins - from theory to clinical practice. SPb: PolitehPress. 2018, 347 P. ISBN 978-5-7422-6330-2

83. Filicori M., Fazleabas A. T., Huhtaniemi I., Licht P., Rao Ch V., Tesarik J., Zygmunt M. Novel concepts of human ... Reproductive system interactions and potential in the management of infertility. Fertil. Steril. 2005, V. 84, P. 275-284. https://doi.org/10.1016/j.fertnstert.2005.02.033
84. Nwabuobi C., Arlier S., Schatz F., Guzeloglu-Kayisli O., Lockwood C. J., Kayisli U. A. hCG: biological functions and clinical applications. Int. J. Mol. Sci. 2017, 18 (10), 2037. https://doi.org/10.3390/ijms18102037

85. Tesarik J., Hazout A., Mendoza C. Luteinizing hormone affects uterine receptivity independently of ovarian function. Reprod. Biomed. 2003, V. 7, P. 59-64. https://doi.org/10.1016/S1472-6483(10)61729-4
86. Casarini L., Lispi M., Longobardi S., Milosa F., La Marca A., Tagliasacchi D., Pignatti E., Simoni M. LH and hCG receptor results in quantitatively and qualitatively different intracellular signalling. PLoS ONE. 2012, V. 7, P. e46682. https://doi.org/10.1371/journal.pone.0046682

87. Riccetti L., Yvinec R., Klett D., Gallay N., Combarnous Y., Reiter E., Simoni M., Casarini L., Ayoub M. A. Human luteinizing hormone and chorionic gonadotropin display biased agonism at the LH and LH/CG receptors. Sci. Rep. 2017, V. 7, P. 940. https://doi.org/10.1038/s41598-017-01078-8
88. Casarini L., Brigante G., Simoni M., Santi D. Clinical applications of gonadotropins in the female: assisted reproduction and beyond. Prog. Mol. Biol. Transl. Sci. 2016, V. 143, P. 85-119. https://doi.org/10.1016/bs.pmbts.2016.08.002

89. Santi D., Casarini L., Alviggi C., Simoni M. Efficacy of follicle-stimulating hormone (FSH) alone, FSH+ luteinizing hormone (LH), and human chorionic gonadotropin (hCG) in terms of outcomes in assisted reproduction technology outcomes in the “Personalized” medicine era: a meta-analysis. Front. Endocrinol. 2017, V. 8, P. 114. https://doi.org/10.3389/fendo.2017.00114
90. Wenker E. P., Dupree J. M., Langille G. M., Kovac J., Ramasamy R., Lamb D., Mills J. N., Lipshultz L. I. The use of HCG-based combination therapy for recovery of spermatogenesis after testosterone use. J. Sex. Med. 2015, 12 (6), 1334-1337.

https://doi.org/10.1111/jsm.12890
91. Kravtsova N. S., Rozhivanov R. V., Kurbatov D. G. Stimulation of a spermatogenesis at men gonadotrophins and an antiestrogen at a pathospermia and infertility. Probl. Endocrinol. 2016, 62 (2), 37-41. (In Russian).

https://doi.org/10.14341/probl201662237-41

92. Efremov E. A., Hizriev H. Z., Kastrikin Yu. V., Butov A. O., Tolstov I. S. Use of chorionic gonadotropin as a hormonal stimulating therapy in patients with pathospermia. Exp. Clin. Urol. 2017, N 4, P. 62-68. (In Russian.)
93. Nieschlag E., Bouloux P. G., Stegmann B. J., Shankar R. R., Guan Y., Tzontcheva A., McCrory S. J., Behre H. M. An ... alfa combined with hCG in adult men with hypogonadotropic hypogonadism. Reprod. Biol. Endocrinol. 2017, 15 (1), 17. https://doi.org/10.1186/s12958-017-0232-y

94. Amirzargar M., Yavangi M., Basiri A., Moghaddam S., Babholhavaeji H., Amirzargar N., Amirzargar H. Randomized clinical trial on semen parameters after varicocelectomy: a randomized clinical trial. Iran. J. Reprod. Med. 2012, 10 (5), 441-452.
95. Van den Berg H. R., Khan N. A., van der Zee M., Bonthuis F., IJzermans J. N., Dik W. A., de Bruin R. W., Benner R. ... attenuate inflammation and liver damage after (trauma) hemorrhagic shock and resuscitation. Shock. 2009, 31 (3), 285-291.
https://doi.org/10.1097/SHK.0b013e31817fd62a

96. Van den Berg J. W., Dik W. A., van der Zee M., Bonthuis F., van Holten-Neelen C., Dingjan G. M., Benner R., Ijzermans ... LQGV reduces mortality and inflammation in a murine polymicrobial sepsis model. Crit. Care Med. 2011, 39 (1), 126-134.
https://doi.org/10.1097/CCM.0b013e3181fa3a93
97. Khan N. A., Vierboom M. P., Van Holten-Neelen C., Bredveld E., Zuiderwijk-Sick E., Khan A., Kondova I., Braskamp G.,... and rhesus monkeys by human chorionic gonadotrophin-related oligopeptides. Clin. Exp. Immunol. 2010, 160 (3), 466-478.
https://doi.org/10.1111/j.1365-2249.2010.04112.x

98. Khan N. A., Benner R. Human chorionic gonadotropin: a model molecule for oligopeptide-based drug discovery. Endocr. Metab. Immune Disord. Drug Targets. 2011, 11 (1), 32-53.
https://doi.org/10.2174/187153011794982031
99. Van Groenendael R., Kox M., Leijte G., Koeneman B., Gerrets J., van Eijk L., Pickkers P. A randomized double-blind, ... of EA-230 during experimental human endotoxaemia. Br. J. Clin. Pharmacol. 2019, 85 (7), 1559-1571. https://doi.org/10.1111/bcp.13941

100. Gueler F., Shushakova N., Mengel M., Hueper K., Chen R., Liu X., Park J. K., Haller H., Wensvoort G., Shen R., Liu X., Park J. K., Haller H., Wensvoort G., Mengel M., Hueper K., Shushakova N., Gueler F. Kidney injury and ischemic allograft damage after allogenic kidney transplantation in mice. PLoS One. 2015, 10 (1), e0115709. https://doi.org/10.1371/journal.pone.0115709
101. Zamorina S. A., Shirshev S. V. Oligopeptides of chorionic gonadotropin β-subunit in induction of T-cell differentiation into Treg and Th17. Bull. Exp. Biol. Med. 2015, 160 (1), 72-75. https://doi.org/10.1007/s10517-015-3101-8

102. Filatova E. N. The effect of chorionic gonadotropin on cell proliferation and apoptosis in rats with...
103. Liao X. H., Wang Y., Wang N., Yan T. B., Xing W. J., Zheng L., Zhao D. W., Li Y. Q., Liu L. Y., Sun X. G., Hu P., ... decreases human breast cancer cell proliferation and promotes differentiation. IUBMB Life. 2014, 66 (5), 352-360. https://doi.org/10.1002/iub.1269

104. Rao C. V. Protective effects of human chorionic gonadotropin against breast cancer: how can we use this information to prevent/treat the disease? Reprod. Sci. 2017, 24 (8), 1102-1110. https://doi.org/10.1177/1933719116676396
105. Iezzi M., Quaglino E., Cappello P., Toto V., Sabatini F., Curcio C., Garotta G., Musiani P., Cavallo F. HCG hastens ... of HCG/LH and ERBB-2 receptor-positive cells in mice. Int. J. Immunopathol. Pharmacol. 2011, 24 (3), 621-630.

https://doi.org/10.1177/039463201102400308
106. Takashi Y., Kinoshita Y., Emoto Y., Yoshizawa K., Tsubura A. Human chorionic gonadotropin suppresses human breast cancer cells via the mitochondrial apoptotic pathway and indirectly via ovarian steroid secretion. Anticancer Res. 2014, 34 (3), 1347-1354.

107. Schüler-Toprak S., Treeck O., Ortmann O. Human chorionic gonadotropin and breast cancer. Int. J. Mol. Sci. 2017, 18 (7), 1587.

https://doi.org/10.3390/ijms18071587
