Systemic Inflammatory Biomarkers in DSM-5–Defined Disorders and COVID-19: Evidence From Published Meta-analyses

Angela Duong, Hyunjin Jeong, Dana El Soufi El Sabbagh, and Ana C. Andreazza

ABSTRACT
On March 11, 2020, the World Health Organization declared the outbreak of the novel SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) as a global pandemic. The impact of COVID-19 is drastic, infecting more than 250 million people worldwide, killing more than 5 million people (as of November 11, 2021), and causing a significant halt to business and education. With the magnitude of this global crisis, we are also observing increased frequency and extent of mental disorders. The first clue behind the relationship between COVID-19 and neuropsychiatric manifestations was from a case study involving a woman in her late 50s (1). In this study, the woman with a positive test result for SARS-CoV-2 presented with altered mental status, including confusion, lethargy, and disorientation. Building on this finding, several observational studies reported that more than one third of patients with COVID-19 presented with neuropsychiatric manifestations, including dizziness, headache, impaired consciousness, seizure, hallucinations, psychosis, and delirium (2), raising a crucial question of whether the psychiatric patient population exposed to SARS-CoV-2 may be more vulnerable to having a severe COVID-19 phenotype. Indeed, patients with preexisting mood disorders were found to have more severe COVID-19 symptoms and were more likely to be hospitalized and have a higher mortality rate, indicating that they should be viewed as an at-risk cohort (3). While these findings highlight the vulnerability of the psychiatric population to COVID-19, no studies have yet evaluated the biological basis that could potentially explain these clinical observations.

One potential biological process that supports these clinical observations is the preexisting increased systemic inflammation frequently observed in patients with mental disorders. Inflammatory biomarkers are crucial for evaluating systemic inflammation and are well documented to be associated with the severity or rapid progression of COVID-19. Several biomarkers of systemic inflammation, such as C-reactive protein (CRP) and inflammatory cytokines, including interleukins (ILs), interferons, and tumor necrosis factors, are widely studied in COVID-19 and mental disorders. However, studies evaluating the relationship between inflammation, COVID-19, and mental disorders are limited. Here, we aimed to review and gather evidence from previously published systematic reviews and meta-analyses examining CRP and cytokine levels in patients with COVID-19 or patients with mental disorders.

On March 11, 2020, the World Health Organization declared the outbreak of the novel SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) as a global pandemic. At the center of SARS-CoV-2 is the activation of inflammatory markers; remarkably, interleukin 6 and C-reactive protein seem to be consistently elevated in patients with SARS-CoV-2. Here, we showed that increased systemic C-reactive protein and interleukin 6 are common biomarkers of both severe COVID-19 and DSM-5–defined disorders. However, it is not known whether patients with psychiatric disorders with preexisting increased interleukin 6 and C-reactive protein are more vulnerable to severe complications of COVID-19 because of the additive inflammatory processes.

https://doi.org/10.1016/j.bpsgos.2022.01.006
common inflammatory biomarkers found among all these meta-analyses published to date are CRP, IL-6, IL-8, IL-10, and soluble IL-2 receptor. These studies suggest that tracking these inflammatory markers can allow for prediction of COVID-19 severity. However, none of the meta-analyses stratified the COVID-19 patient population by diagnoses of...
Table 2. Meta-analysis Study Results on the Inflammatory Biomarkers Across DSM-5 Diagnoses

DSM-5 Classification	Patient Group	Meta-analyses	Results on Inflammatory Biomarkers									
		Study	PMID	CRP	IL-6	TNF-α	IFN-γ	IL-1β	IL-8	IL-2	IL-10	sIL-2R
Depressive Disorders		Colasanto et al., 2020 (11)	33065836	↑	↑	↓	↓	↑	↑	↑	↑	↑
	MDD	Osimo et al., 2020 (12)	32113908	↑	↑	↑	↓	↑	↑	↑	↑	
	Drug-naïve first-episode MDD	Çakici et al., 2020 (13)	32330592	↑	↑	↑	↑	↓	↑	↑	↓	
	MDD	Osimo et al., 2019 (14)	31258105	↑	–	–	–	–	–	–	–	
	MDD (elderly)	Ng et al., 2018 (15)	30104698	–	↑	–	–	↑	–	–	–	
	MDD	Köhler et al., 2017 (16)	28122130	↑	↓	–	–	–	–	–	–	
	MDD (acutely ill)	Goldsmith et al., 2016 (17)	26903267	↑	↑	↓	↓	–	–	→	↑	
	MDD (chronically ill)	Goldsmith et al., 2016 (17)	26903267	–	↑	–	–	→	↓	→	→	
	MDD	Dowlati et al., 2010 (18)	20015486	–	↑	↑	→	–	→	–	→	
	MDD	Howren et al., 2009 (19)	19188531	↑	↑	↑	→	→	→	–	–	
Bipolar and Related Disorders	BD	Solmi et al., 2021 (20)	34332041	↑	↑	↑	–	–	–	–	–	
	BD	Fernandes et al., 2016 (21)	27838212	↑	–	–	–	–	–	–	–	
	BD mania	Goldsmith et al., 2016 (17)	26903267	–	↑	↑	↑	→	–	–	–	
	BD euthymic (chronically ill)	Goldsmith et al., 2016 (17)	26903267	–	↑	→	–	→	↑	↑		
	BD depression (chronically ill)	Goldsmith et al., 2016 (17)	26903267	–	→	–	–	–	–	–		
	BD	Dargel et al., 2016 (22)	25742201	↑	–	–	–	–	–	–	–	
	BD	Munkholm et al., 2013 (23)	23768870	–	→	↑	–	→	→	→		
	BD	Modabbemi et al., 2013 (24)	23419545	–	↑	↑	→	→	→	→		
Schizophrenia Spectrum and Other Psychotic Disorders	Drug-naïve first-episode SCZ	Çakici et al., 2020 (13)	32330592	↑	↑	↑	↑	→	↑	→	–	
	High-risk psychosis	Park and Miller, 2019 (25)	30967316	↑	→	→	→	–	–	–	–	
	First-episode psychosis	Fraguas et al., 2019 (26)	30169868	→	↑	↑	→	–	–	–	–	
	SCZ spectrum disorders	Bora, 2019 (27)	31284882	↑	–	–	–	–	–	–	–	
	SCZ	Wang et al., 2017 (28)	29088880	↑	–	–	–	–	–	–	–	
	SCZ	Fernandes et al., 2016 (29)	26169974	↑	–	–	–	–	–	–	–	
	First-episode psychosis	Goldsmith et al., 2016 (17)	26903267	–	↑	↑	↑	↑	→	↑		
	SCZ (acutely ill)	Goldsmith et al., 2016 (17)	26903267	–	↑	↑	↑	↑	→	↓	↑	
	SCZ (chronically ill)	Goldsmith et al., 2016 (17)	26903267	–	↑	↑	↓	↓	→	→		
	SCZ	Miller et al., 2014 (30)	23428789	↑	–	–	–	–	–	–	–	
	Medication-naïve first-episode psychosis	Upthegrove et al., 2014 (31)	24704219	–	↑	↑	→	↑	–	–	↑	
	SCZ (acutely relapsed)	Miller et al., 2011 (32)	21641581	–	↑	↑	↑	→	↓	→		
	First-episode psychosis	Miller et al., 2011 (32)	21641581	–	↑	↑	↑	↑	→	–	↑	
	SCZ	Potvin et al., 2008 (33)	18005941	↑	–	–	–	→	–	–	↑	
Neurodevelopmental Disorders	ASD	Yin et al., 2020 (34)	32272227	↑	–	–	–	–	–	–	–	
	ASD	Nadeem et al., 2020 (35)	32448119	↑	–	–	–	–	–	–	–	
	ASD	Saghazadeh et al., 2019 (36)	31125917	–	↑	↑	↑	→	→	–	→	
	ASD	Masi et al., 2015 (37)	24934179	–	↑	→	→	↑	→	–	→	
DSM-5 Classification	Patient Group	Study	PMID	CRP	IL-6	TNF-α	IFN-γ	IL-1β	IL-8	IL-2	IL-10	sIL-2R
--------------------------------------	-------------------------------	------------------------	------------------	-----	------	-------	-------	-------	------	------	-------	--------
Anxiety Disorders	GAD	Costello et al., 2019	31326932	↑	↓	↑	↑	↓	↓	↓	↓	↓
Anxiety		Renna et al., 2018	30199144		↑		↑	↓	↓	↓	↓	↓
Obsessive-Compulsive and Related Disorders	OCD	Cosco et al., 2018	30382535									
OCD		Gray and Bloch, 2012	22477442									
Trauma- and Stressor-Related Disorders	PTSD	Yang and Jiang, 2020	32158005	↑	↑	↑	↑	↑	↓	↓	↓	↓
Childhood sexual abuse		D’Elia et al., 2018	30127754	↑	↑		↑	↓	↓	↓	↓	↓
PTSD		Renna et al., 2018	30199144		↑		↑	↓	↓	↓	↓	↓
Childhood trauma		Baumeister et al., 2016	26033244	↑	↑		↑	↓	↓	↓	↓	↓
PTSD		Passos et al., 2015	26544749	→	↑		↑	↓	↓	↓	↓	↓
Feeding and Eating Disorders	Anorexia and bulimia nervosa	Dalton et al., 2018	29906710		↑							
Anorexia nervosa		Solmi et al., 2015	25462897	↓	↑		↑	↓				
Sleep-Wake Disorders	Narcolepsy	Mohammadi et al., 2020	32315956		↑							
OSA	Van der Touw et al., 2019	30908094	↑	←		←	←					
OSA	Li and Zheng, 2017	28187003		↑		←	←					
OSA	Li et al., 2017	28489776	↑	←		←	←					
OSA	Zhong et al., 2016	26564171		↑		←	←					
Sleep disturbance	Irwin et al., 2016	26140821	↑	↑		←	←					
OSA	Nadeem et al., 2013	24127144	↑	↑		↑	←					
Substance-Related and Addictive Disorders	Alcohol use disorders	Adams et al., 2020	32805393		↑							
Substance use disorders	Wei et al., 2020	32533781	↑	↑		←	←					

↑, increase; ↓, decrease; ←, no change; --, not reported.

ASD, autism spectrum disorder; BD, bipolar disorder; CRP, C-reactive protein; GAD, generalized anxiety disorder; IFN-γ, interferon γ; IL, interleukin; MDD, major depressive disorder; OCD, obsessive-compulsive disorder; OSA, obstructive sleep apnea; PMID, PubMed identifier; PTSD, posttraumatic stress disorder; SCZ, schizophrenia; sIL-2R, soluble IL-2 receptor; TNF-α, tumor necrosis factor α.
mental disorders or reported the prevalence of mental disorders, although some individual studies did attempt this analysis. One research group evaluated CRP levels in COVID-19 survivors with a previous diagnosis of mental disorders and did not find a difference compared with those without a diagnosis of mental disorders (9). However, CRP measurements were collected from the patients at a 1-month follow-up, which may not reflect the active disease state of COVID-19. Preliminary findings from a cross-sectional survey study identified no changes in IL-6, IL-8, IL-10, tumor necrosis factor α, and CRP in patients with COVID-19 stratified by with or without psychiatric symptoms (10). However, higher levels of IL-1β were significantly associated with a higher score of depression, anxiety, and insomnia. Even then, the authors did not comment on whether these patients had a prior diagnosis of mental disorders before contracting SARS-CoV-2. It remains unclear which inflammatory biomarkers are associated with a dual diagnosis of COVID-19 and mental disorders.

To understand whether inflammatory biomarkers associated with the severity of COVID-19 are also reported in patients with mental disorders, we compared the COVID-19 meta-analysis findings with previously published meta-analyses of inflammatory biomarkers for all disorders defined by the DSM-5. The following search terms on PubMed were used to identify the systematic reviews and meta-analyses for DSM-5–defined disorders: (CRP OR C-Reactive Protein OR inflammatory cytokines OR cytokines) and (biopolice disorder OR major depressive disorder OR depression OR schizophrenia OR psychosis OR psychotic disorders OR neurodevelopmental disorders OR anxiety disorders OR obsessive-compulsive disorder OR OCD OR post-traumatic stress disorder OR PTSD OR anorexia OR bulimia OR sleep disorder OR obstructive sleep apnea OR substance use disorder OR addictive disorder OR addiction). We identified a total of 56 meta-analysis studies of systemic inflammatory biomarkers across 10 DSM-5 classifications (10 for depressive disorders, 8 for bipolar and related disorders, 14 for schizophrenia spectrum and other psychotic disorders, 4 for neurodevelopmental disorders, 2 for anxiety disorders, 2 for obsessive-compulsive and related disorders, 5 for trauma- and stressor-related disorders, 2 for feeding and eating disorders, 7 for sleep-wake disorders, and 2 for substance-related and addictive disorders) (Figure 1). We included all meta-analysis studies for reproducibility purposes. While each DSM-5 classification displayed a unique inflammatory profile, IL-6 and CRP were observed to be consistently shared across all DSM-5 disorders except for obsessive-compulsive disorders and feeding and eating disorders for CRP (Table 2) (11–56). Our observation of increased IL-6 and CRP from this parallel comparison of meta-analyses would need to be further investigated in future comparative cross-sectional and longitudinal studies using patient samples to better understand whether IL-6 and CRP are commonly elevated in COVID-19 and mental disorders. Examining whether these inflammatory markers are associated with symptom severity of COVID-19 and mental disorders would also be crucial to understand whether high inflammation may be a potential mechanism for the severe outcomes seen in patients with mental disorders infected by COVID-19.

Chronic inflammation, a state of persistent low-grade inflammation in the absence of acute infection, is commonly associated with mental disorders. Several studies have shown that high levels of inflammatory molecules in the blood can induce significant permeability to the blood-brain barrier (57). When this occurs, these inflammatory molecules can enter the brain through the blood-brain barrier, potentially disrupting the neural circuits that control mood and behavior, leading to symptoms of mental disorders. The causal link between cytokines and psychiatric symptoms has already been demonstrated in human and animal studies showing that administration of interferon alpha leads to sickness behaviors and depressive-like symptoms (58). Based on these previous findings, it is plausible that synergistic interactions between chronic inflammation and acute inflammation caused by SARS-CoV-2 infection could potentially exacerbate the severity of COVID-19 within the psychiatric patient population. So far, analyses of the cerebrospinal fluid have shown increased levels of IL-6 in patients with COVID-19, major depressive disorder, and schizophrenia, suggesting potential effects on the brain. While studies have shown that peripheral inflammation can induce effects on the brain, it remains unclear whether this is the underlying biological mechanism that contributes to the vulnerability of psychiatric patients to severe COVID-19 or vulnerability of patients with COVID-19 to psychiatric manifestations. Future longitudinal studies and validation studies using animal models of COVID-19 and mental disorders are needed to establish this causal relationship.

COVID-19 is a heterogeneous disease with a variety of effects and manifestations on the immune system’s inflammatory response. By examining evidence from meta-analyses, most of the studies reviewed happened to conclude that IL-6 and CRP are increased in mental disorders and COVID-19 independently. It remains unknown whether mental disorders with preexisting increased IL-6 and CRP may be more vulnerable to severe complications of COVID-19 because of the additive inflammatory processes. In addition, patients with mental disorders often have clinical comorbidities such as obesity, which might also increase the inflammation levels and contribute to more severe COVID-19–related complications. Needless to say, there is a need to evaluate patients with COVID-19 with a clinically confirmed mental disorder, at high risk for a mental disorder, and those experiencing psychosis and mood changes. Inflammatory indicators could help identify critical patients with COVID-19 and facilitate the initiation of a treatment plan. Perhaps this would be through monitoring inflammatory markers such as IL-6 and CRP. Early identification of potential hyperinflammation in the psychiatric patient population with COVID-19 may be crucial in alleviating the mental health conditions associated with the COVID-19 pandemic.

ACKNOWLEDGMENTS AND DISCLOSURES

AD was supported by a Precision Medicine Fellowship, Ontario Graduate Scholarships, and a University of Toronto Fellowship, ACA holds a Canada Research Chair Tier 2 in Molecular Pharmacology of Mood Disorder and a grant from the Canadian Institutes of Health Research (Grant No. 505547).

The authors report no biomedical financial interests or potential conflicts of interest.

ARTICLE INFORMATION

From the Department of Pharmacology and Toxicology (AD, HJ, DESES, ACA) and Department of Psychiatry (ACA), University of Toronto; and the
Biological Psychiatry: Disorders, Inflammation, and COVID-19

Centre for Addiction and Mental Health (H.J., ACA), Toronto, Ontario, Canada.

Address correspondence to Ana C. Andreazza, Ph.D., at ana.andreazza@utoronto.ca.

Received Sep 15, 2021; revised and accepted Jan 3, 2022.

REFERENCES

1. Poyiadjy N, Shahin G, Noujaim D, Stone M, Patel S, Griffith B (2020): COVID-19-associated acute hemorrhagic necrotizing encephalopathy: Imaging features. Radiology 296:E119–E120.
2. Mao L, Jin H, Wang M, Hu Y, Chen S, He Q, et al. (2020): Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhu, China. JAMA Neurol 77:683–690.
3. Ceban F, Nogo D, Carvalho IP, Lee Y, Nasri F, Xiong J, et al. (2021): Association between mood disorders and risk of COVID-19 infection, hospitalization, and death: A systematic review and meta-analysis. JAMA Psychiatry 78:1079–1091.
4. Coomes EA, Haghighian H (2020): Interleukin-6 in Covid-19: A systematic review and meta-analysis. Rev Med Virol 30:1–9.
5. Akbari H, Tabrizi R, Lankarani KB, Aria H, Vakili S, Asadian F, et al. (2020): The role of cytokine profile and lymphocyte subsets in the severity of coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis. Life Sci 258:118167.
6. Mahat RK, Panda S, Rathore V, Swain S, Yadav L, Sah SP (2021): The dynamics of inflammatory markers in coronavirus disease-2019 (COVID-19) patients: A systematic review and meta-analysis. Clin Epidemiol Glob Health 11:100727.
7. Ji P, Zhu J, Zhong Z, Li H, Pang J, Li B, Zhang J (2020): Association of elevated inflammatory markers and severe COVID-19: A meta-analysis. Medicine (Baltimore) 99:e23315.
8. Henry BM, de Oliveira MHS, Benoit S, Plebani M, Lippi G (2020): Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): A meta-analysis. Clin Chem Lab Med 58:1021–1028.
9. Mazza MG, De Lorenzo R, Conte C, Poletti S, Vai B, Bollottini I, et al. (2020): Anxiety and depression in COVID-19 survivors: Role of inflammatory and clinical predictors. Brain Behav Immun 89:594–600.
10. Hu Y, Chen Y, Zheng Y, You C, Tan J, Hu L, et al. (2020): Factors related to mental health of inpatients with COVID-19 in Wuhu, China. Brain Behav Immun 89:564–573.
11. Colasanto M, Madigan S, Korczak DJ (2020): Depression and inflammation among children and adolescents: A meta-analysis. J Affect Disord 277:940–948.
12. Osimo EF, Pillinger T, Rodríguez IM, Khandaker GM, Pariante CM, Howes OD (2020): Inflammatory markers in depression: A meta-analysis of mean differences and variability in 5,166 patients and 5,083 controls. Brain Behav Immun 89:901–909.
13. Çakıcı N, Sutterland AL, Penninx BWJH, Dalm VA, de Haan L, van Beveren NJM (2020): Altered peripheral blood components in drug-naïve first-episode patients with either schizophrenia or major depressive disorder: A meta-analysis. Brain Behav Immun 88:547–558.
14. Osimo EF, Baxter LJ, Lewis G, Jones PB, Khandaker GM (2019): Prevalence of low-grade inflammation in depression: A systematic review and meta-analysis of CRP levels. Psychiatr Med 49:1958–1970.
15. Ng A, Tam WW, Zhang MW, Ho CS, Husain SF, McIntyre RS, Ho RC (2018): IL-1β, IL-6, TNF-α and CRP in elderly patients with depression or Alzheimer’s disease: Systematic review and meta-analysis. Sci Rep 8:12050.
16. Köhler CA, Freitas TH, Maes M, de Andrade NO, Liu CS, Fernandes BS, et al. (2017): Peripheral cytokine and chemokine alterations in depression: A meta-analysis of 82 studies. Acta Psychiatr Scand 135:373–387.
17. Goldsmith MR, Rapaport MH, Miller BJ (2016): A meta-analysis of blood cytokine network alterations in psychiatric patients: Comparisons between schizophrenia, bipolar disorder and depression. Mol Psychiatry 21:1696–1709.
18. Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK, Lantôt KL (2010): A meta-analysis of cytokines in major depression. Biol Psychiatry 67:446–457.
19. Howren MB, Lamkin DM, Suls J (2009): Associations of depression with C-reactive protein, IL-1, and IL-6: A meta-analysis. Psychosom Med 71:171–186.
20. Solmi M, Suresh Sharma M, Osimi EF, Fornaro M, Bortolato B, Croatto G, et al. (2021): Peripheral levels of C-reactive protein, tumor necrosis factor-α, interleukin-6, and interleukin-1β across the mood spectrum in bipolar disorder: A meta-analysis of mean differences and variability. Brain Behav Immun 97:193–203.
21. Fernandes BS, Steiner J, Molendijk ML, Dodd S, Nardin P, Gonçalves CA, et al. (2016): C-reactive protein concentrations across the mood spectrum in bipolar disorder: A systematic review and meta-analysis. Lancet Psychiatry 3:1147–1156.
22. Dargél AA, Godin O, Kapczinski F, Kuper DJ, Leboyer D (2015): C-reactive protein alterations in bipolar disorder: A meta-analysis. J Clin Psychiatry 76:142–150.
23. Munkholm K, Brauner JV, Kessing LV, Vinberg M (2013): Cytokines in bipolar disorder vs. healthy control subjects: A systematic review and meta-analysis. J Psychiatr Res 47:1119–1133.
24. Modabbernia A, Taslimi S, Brieztke E, Ashrafi M (2013): Cytokine alterations in bipolar disorder: A meta-analysis of 30 studies. Biol Psychiatry 74:15–25.
25. Park S, Miller BJ (2020): Meta-analysis of cytokine and C-reactive protein levels in high-risk psychosis. Schizophr Res 226:5–12.
26. Fragas D, Díaz-Caneja CM, Ayora M, Hernández-Alvarez F, Rodríguez-Quiroga A, Recio S, et al. (2019): Oxidative stress and inflammation in first-episode psychosis: A systematic review and meta-analysis. Schizophr Bull 45:742–751.
27. Bora E (2019): Peripheral inflammatory and neurotrophic biomarkers of inflammatory and neuropsychiatric impairment in autism spectrum: A meta-analysis [published correction appears in Psychol Med 2021; 51:1589]. Psychol Med 49:1971–1979.
28. Wang Z, Li P, Chi D, Wu T, Mei Z, Cui G (2017): Association between C-reactive protein and risk of schizophrenia: An updated meta-analysis. Oncotarget 8:75445–75454.
29. Fernandes BS, Steiner J, Bernstein HG, Dodd S, Pasco JA, Dean OM, et al. (2016): C-reactive protein is increased in schizophrenia but is not altered by antipsychotics: Meta-analysis and implications. Mol Psychiatry 21:554–564.
30. Miller BJ, Culpepper N, Rapaport MH (2014): C-reactive protein levels in schizophrenia: A review and meta-analysis. Clin Schizophr Relat Psychoses 7:223–230.
31. Uphetgrove R, Manzanares-Teson N, Barnes NM (2014): Cytokine function in medication-naïve first-episode psychosis: A systematic review and meta-analysis. Schizophr Res 155:101–108.
32. Miller BJ, Buckley P, Seabolt W, Mellor A, Kirkpatrick B (2011): Meta-analysis of cytokine and C-reactive protein alterations in bipolar disorder: A meta-analysis of mean differences and variability across the mood spectrum in bipolar disorder: A systematic review and meta-analysis. Lancet Psychiatry 3:1147–1156.
33. Howren MB, Lamkin DM, Suls J (2009): Associations of depression with C-reactive protein, IL-1, and IL-6: A meta-analysis. Psychosom Med 71:171–186.
34. Solmi M, Suresh Sharma M, Osimi EF, Fornaro M, Bortolato B, Croatto G, et al. (2021): Peripheral levels of C-reactive protein, tumor necrosis factor-α, interleukin-6, and interleukin-1β across the mood spectrum in bipolar disorder: A meta-analysis of mean differences and variability. Brain Behav Immun 97:193–203.
35. Nadeem R, Hussain T, Sajid H (2020): C reactive protein elevation among children or among mothers of children with autism during pregnancy, a review and meta-analysis. BMC Psychiatry 20:251.
36. Potvin S, Stip E, Sepehry AA, Gendron A, Bah R, Kouassi E (2008): Inflammatory cytokines alterations in schizophrenia: A systematic quantitative review. Biol Psychiatry 63:801–806.
37. Yin F, Wang H, Liu Z, Gao J (2020): Association between peripheral blood levels of C-reactive protein and autism spectrum disorder in children: A systematic review and meta-analysis. Brain Behav Immun 88:432–441.
38. Masi A, Quintana DS, Glozier N, Lloyd AR, Hickie IB, Guastella AJ (2015): Cytokine aberrations in autism spectrum disorder: A systematic review and meta-analysis. Mol Psychiatry 20:440–446.
39. Costello H, Gould RL, Abrol E, Howard R (2019): Systematic review and meta-analysis of the association between peripheral
inflammatory cytokines and generalised anxiety disorder. BMJ Open 9:e027925.
39. Renna ME, O’Toole MS, Spaeth PE, Lekander M, Mennin DS (2018): The association between anxiety, traumatic stress, and obsessive-compulsive disorders and chronic inflammation: A systematic review and meta-analysis. Depress Anxiety 35:1081–1094.
40. Cosco TD, Pillinger T, Emam H, Solmi M, Budhdeo S, Prina AM, et al. (2019): Immune aberrations in obsessive-compulsive disorder: A systematic review and meta-analysis. Mol Neurobiol 56:4751–4759.
41. Gray SM, Bloch MH (2012): Systematic review of proinflammatory cytokines in obsessive-compulsive disorder. Curr Psychiatry Rep 14:220–228.
42. Yang JJ, Jiang W (2020): Immune biomarkers alterations in post-traumatic stress disorder: A systematic review and meta-analysis. J Affect Disord 268:39–46.
43. D’Elia ATD, Matsuzaka CT, Neto JBB, Mello MF, Juruena MF, Mello AF (2018): Childhood sexual abuse and indicators of immune activity: A systematic review. Front Psychiatry 9:354.
44. Baumeister D, Akhtar R, Ciufolini S, Pariante CM, Mondelli V (2016): Childhood trauma and adulthood inflammation: A meta-analysis of peripheral C-reactive protein, interleukin-6 and tumour necrosis factor-a. Mol Psychiatry 21:642–649.
45. Passos IC, Vasconcelos-Moreno MP, Costa LG, Kunz M, Brietzke E, Quevedo J, et al. (2015): Inflammatory markers in post-traumatic stress disorder: A systematic review, meta-analysis, and meta-regression. Lancer Psychiatry 2:1002–1012.
46. Dalton B, Bartholdy S, Robinson L, Solmi M, Ibrahim MAA, Breen G, et al. (2018): A meta-analysis of cytokine concentrations in eating disorders. J Psychiatr Res 103:252–264.
47. Solmi M, Veronese N, Favaro A, Santonastaso P, Manzato E, Sergi G, Correll CU (2015): Inflammatory cytokines and anorexia nervosa: A meta-analysis of cross-sectional and longitudinal studies. Psycho-neuroendocrinology 51:237–252.
48. Mohammadi S, Mayelli M, Saghazadeh A, Rezaei N (2020): Cytokines in narcolepsy: A systematic review and meta-analysis. Cytokine 131:155103.
49. Van der Touw T, Andronicsos NM, Smart N (2019): Is C-reactive protein elevated in obstructive sleep apnea? A systematic review and meta-analysis. Biomarkers 24:429–435.
50. Li G, Zheng X (2017): Tumor necrosis factor alpha is a promising circulating biomarker for the development of obstructive sleep apnea syndrome: A meta-analysis. Onco-target 8:27616–27626.
51. Li K, Wei P, Qin Y, Wei Y (2017): Is C-reactive protein a marker of obstructive sleep apnea?: A meta-analysis. Medicine (Baltimore) 96: e8850.
52. Zhong A, Xiong X, Shi M, Xu H (2016): Roles of interleukin (IL)-6 gene polymorphisms, serum IL-6 levels, and treatment in obstructive sleep apnea: A meta-analysis. Sleep Breath 20:719–731.
53. Irwin MR, Olmstead R, Carroll JE (2016): Sleep disturbance, sleep duration, and inflammation: A systematic review and meta-analysis of cohort studies and experimental sleep deprivation. Biol Psychiatry 80:40–52.
54. Li K, Wei P, Qin Y, Wei Y (2017): Is C-reactive protein a marker of obstructive sleep apnea?: A meta-analysis. J Clin Sleep Med 9:1003–1012.
55. Adams C, Conigrave KH, Lewohl J, Haber P, Morley KC (2020): Alcohol use disorder and circulating cytokines: A systematic review and meta-analysis. Brain Behav Immun 89:501–512.
56. Wei ZX, Chen L, Zhang JJ, Cheng Y (2020): Aberrations in peripheral inflammatory cytokine levels in substance use disorders: A meta-analysis of 74 studies. Addiction 115:2257–2267.
57. Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW (2008): From inflammation to sickness and depression: When the immune system subjugates the brain. Nat Rev Neurosci 9:46–56.
58. Capuron L, Miller AH (2004): Cytokines and psychopathology: Lessons from interferon-alpha. Biol Psychiatry 56:819–824.