Density–functional study of Cu atoms, monolayers, and coadsorbates on polar ZnO surfaces

B. Meyer and D. Marx

Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany

(Dated: March 22, 2022)

The structure and electronic properties of single Cu atoms, copper monolayers and thin copper films on the polar oxygen and zinc terminated surfaces of ZnO are studied using periodic density–functional calculations. We find that the binding energy of Cu atoms sensitively depends on how charge neutrality of the polar surfaces is achieved. Bonding is very strong if the surfaces are stabilized by an electronic mechanism which leads to partially filled surface bands. As soon as the surface bands are filled (either by partial Cu coverage, by coadsorbates, or by the formation of defects), the binding energy decreases significantly. In this case, values very similar to those found for nonpolar surfaces and for copper on finite ZnO clusters are obtained. Possible implications of these observations concerning the growth mode of copper on polar ZnO surfaces and their importance in catalysis are discussed.

PACS numbers: 68.43.Bc, 68.43.Fg, 68.47.Gh, 82.65.+r

I. INTRODUCTION

The ternary composite system Cu/ZnO/Al₂O₃ is an important commercial catalysts for the methanol synthesis, the water–gas shift reaction and the methanol–steam reforming process. Although pure ZnO is a good high temperature catalyst for hydrogenation and dehydrogenation reactions, only the combination with Cu makes it an effective and selective catalyst for low temperature applications on an industrial scale. In particular the role of copper, including its electronic and atomistic structure on ZnO surfaces, is not clearly understood. There exist many controversial models to explain how copper enhances the activity of such ZnO–based catalysts. Different “active species” are proposed in the literature, like the existence of Cu⁺ impurities at the ZnO surfaces, but the most commonly accepted picture is that Cu forms small metallic clusters which are dispersed on defect–rich and heterogeneous ZnO surfaces.

The initial growth of vapor–deposited copper on different ZnO surfaces at ultra–high vacuum (UHV) conditions has been studied experimentally by various techniques such as x–ray photoelectron spectroscopy (XPS) low–energy ion–scattering spectroscopy (LEIS) surface x–ray diffraction (SXRD) and scanning tunneling microscopy (STM). For the two polar surface terminations of ZnO a growth mode between a Volmer–Weber and Stranski–Krasnov behavior was found. Initially, the deposited Cu atoms form two–dimensional islands (i.e. clusters with a thickness of one atom) until a critical coverage is reached, at which further Cu atoms begin to add on top of the islands to form three–dimensional clusters, whereas the metal–free regions between the clusters fill only very slowly. This behavior was attributed to purely kinetic limitations at low temperatures since a thickening of the islands was observed upon annealing the surfaces. The critical coverages at which three–dimensional growth of the clusters begins, depends slightly on temperature and was estimated to be about 1/2 monolayer for the O–terminated (0001)–O surfaces and 1/3 of a monolayer for the Zn–terminated (0001)–Zn polar face of ZnO. In contrast, for clean, adsorbate–free nonpolar (1010) surfaces exclusively three–dimensional islands were observed at all coverages.

The main focus of theoretical investigations of the bonding of metal films and clusters on oxide surfaces has been on the MgO (001) surface and to a lesser extent on the surfaces of more complex oxides such as TiO₂ Al₂O₃ and MgAl₂O₄. Almost all studies were restricted to nonpolar surface terminations. Polar surfaces, on the other hand, like the two basal planes of ZnO, may show a completely different behavior compared to nonpolar surfaces. The reason is that polar surfaces are characterized by an excess of one atomic species which leads to an interesting interplay between their electronic and atomic structure: In order to be charge–neutral the polar surfaces either have to adopt an electronic structure with partially occupied surface bands (sometimes referred to as “metallization” of polar surfaces), or they have to reconstruct (preferentially by the loss of suitable surface atoms) in order to avoid partial band filling, or charged species have to be adsorbed. Depending on which mechanism is realized in a particular system, very different properties of the interaction with metal films and coadsorbates may occur.

Studies of the interaction of copper with ZnO surfaces are very scarce. In an early semiempirical quantum–chemical study the electronic structure and atomic charges were calculated for various ZnO clusters with adsorbed and substituted Cu atom, but no information on binding energies and relaxed atomic structures was obtained. In addition, clusters without embedding were used which can not catch the peculiarities of the polar surfaces described above. This was taken into account in a recent quantum–chemical ab–initio study of the adsorption of single Cu atoms on different cluster models.
to which we will compare our periodic density–functional results.

In the present study we have calculated the adhesion energy and geometry of single Cu atoms and copper monolayers at various coverages on the two polar surface terminations of ZnO. The surfaces are described by periodically repeated slabs so that the different stabilization mechanisms for the polar surfaces, in particular the existence of partially occupied surface bands, can be handled without any restrictions. Additionally, atomic relaxations are fully taken into account. The main focus of this study will be on how the charge neutralization process of the polar surfaces and the filling of the surface bands influences the adsorption properties of copper spanning the range from single atoms to full monolayers. In addition to the very recent quantum–chemical finite cluster study, Ref. [24], these are the first ab–initio results for the adhesion energies and geometries of copper on ZnO surfaces.

II. COMPUTATIONAL METHOD

Self–consistent total–energy calculations based on density–functional theory (DFT) were carried out to determine the adsorption energies and geometries of Cu atoms and monolayers on the polar ZnO surfaces. The exchange–correlation energy and potential were treated within the generalized–gradient approximation (GGA) using the functional of Perdew, Burke and Ernzerhof (PBE) Normconserving pseudopotentials were employed together with a mixed–basis set consisting of plane waves and non–overlapping localized orbitals for the O–2p, the Zn–3d and the Cu–3d electrons. A plane–wave cut–off energy of 20 Ry was sufficient to get well converged results.

The polar surfaces are represented by periodically repeated slabs. No mirror symmetry parallel to the polar surfaces is present which implies that all slabs are inequitably Zn–terminated on one side and O–terminated on the other. For the study of Cu monolayers (1×1) surface unit cells and very thick slabs consisting of 8 Zn–O double–layers were used to reduce the residual internal electric field. All atomic configurations were fully relaxed by minimizing the atomic forces. The calculations for single Cu atoms were performed on (2×2) surface unit cells (corresponding to a Cu surface coverage of 1/4 monolayer), and the slab thickness was reduced to 4 ZnO double–layers. In a (2×2) surface unit cell arrangement the Cu atoms are more than 6.5 Å apart. The interaction energy between the Cu atoms is calculated to be less than 0.02 eV so that this setup is sufficient to describe very well isolated Cu atoms.

Three different high–symmetry adsorption sites are present at the polar ZnO surfaces (see Fig. 1): an ‘on–top’ position which would be the regular lattice site for the next atomic layer, a ‘hcp–hollow site’ above atoms in the second surface layer and a ‘fcc–hollow site’ with no atoms beneath. All three adsorption sites are considered in the present study. Copper atoms are only adsorbed on one of the two slab terminations. The electrostatic potential is calculated as for a genuinely isolated slab, so no artificial interactions between the periodically repeated images of the slabs is present. Monkhorst–Pack k–point meshes with a density of at least (6×6×4) points in the Brillouin–zone of the primitive ZnO unit cell are chosen. For more details on convergence parameters, the construction of appropriate supercells as well as the calculated bulk and clean surface structures of ZnO we refer to Ref. [24], where the same computational settings as in the present study were used.

III. RESULTS AND DISCUSSION

A. Validation of the Method: Finite Cluster Model

Before we start our investigation of copper on the polar ZnO surfaces, we address the question how well our DFT method and in particular the PBE functional are able to describe the interaction of Cu and ZnO surfaces. For Cu on MgO(001) significant differences between various wave–function based quantum–chemical methods and DFT calculations using different GGA functionals were observed. As a general trend it was found that DFT slightly overestimates the adhesion energy of Cu on MgO clusters compared to best coupled–cluster calculations, with noticeable variations between the GGA functionals.

To test the reliability of our DFT results we have calculated the binding energy and equilibrium distance of Cu on a small, isolated Zn$_4$O$_4$ cluster which we can compare with recently published results of an accurate coupled–cluster–type calculation (multi–configuration coupled electron–pair approximation MC–CEPA). A wurtzite–like cluster geometry was chosen in order to mimic the stacking sequence of polar slabs (see Fig. 2). The Cu atom is adsorbed to the top O and bottom Zn atom of the cluster which are three–fold coordinated like at a ZnO surface.

The Zn$_4$O$_4$ cluster itself is a closed–shell system, but...
with the additional Cu atom it becomes open-shell. Therefore, in the first calculation for a single Cu atom on-top of the three–fold O atom of the cluster we used the spin–polarized version of the PBE functional to obtain the total energy of the adsorbate system as well as for the energy of the single Cu reference atom. The binding energy and the equilibrium distance are given in Table II. No significant differences in the adsorption properties are found if the spin–polarization is completely neglected and both, the calculations for the adsorbate system and the separate Zn$_4$O$_4$ cluster and the isolated Cu atom are done with the nonpolarized PBE functional. Also using a Cu dimer instead of a single Cu atom gave a very similar result. Since the inclusion of spin polarization doubles the computational cost, we only used a Cu dimer for the study of the interaction of Cu with the three–fold coordinated Zn atom of the finite cluster.

Compared to MC–CEPA results we find a satisfying agreement for the binding energies and equilibrium distances. Like in the case of Cu on MgO, the DFT calculation (here with the PBE functional) slightly overestimates the bond strength. However, the adsorption energy is ‘equally’ to large by 0.15 to 0.25 eV, so that the relative stability of the O and the Zn adsorption site is quite well described. Overall we find that Cu preferentially binds to oxygen atoms with an adhesion energy of almost 1 eV. The same behavior was also found for MgO, but with a lower binding energy of 0.4 eV (coupled–cluster) and 0.6 eV (DFT-GGA).

B. Cu Atoms on Ideal Polar Surfaces

For a long time it was believed that the polar ZnO surfaces exist in an unreconstructed, truncated–bulk–like state.\[^{22,33}\] If no reconstruction by loss of surface atoms and no adsorption of charged species occurs, the polar surfaces are inevitably stabilized by partially filled surface states with a 3/4 and a 1/4 filled band for the O and the Zn termination, respectively.\[^{21,22,23,33}\]

Assuming such a situation in our DFT calculations we find a very strong binding of Cu atoms on both polar ZnO surfaces (see Table II). The Cu binding energies are much larger than what is found for the finite Zn$_4$O$_4$ cluster (see Table II) and, more importantly, for the non-polar ZnO(10\,1\,0) surface.\[^{34}\] In addition, it is also larger than what is typically known from other oxide surfaces.\[^{15}\] The reason for this behavior is that at low copper coverages, the 4s electrons of the Cu atoms fill the partially occupied surface bands and thereby stabilize the polar surfaces. The same mechanism was found for the adsorption of atomic hydrogen on the polar O–terminated surface (see Ref. 23): at low H coverages the binding energy of an H atom relative to a reference of isolated H$_2$ molecules is more than 2 eV. However, as soon as a H coverage of 1/2 monolayer is reached, the surface bands are filled and the adsorption energy for additional H atoms decreases rapidly. As a consequence, surface structures with more than 1/2 monolayer of H are not stable in thermodynamic equilibrium with a H$_2$ gas phase at any temperature and partial pressure.\[^{35}\] Therefore, we can expect that the strong binding of copper on the polar ZnO surfaces is only possible as long as the surface bands are not fully occupied. If the bands are filled, either by higher copper coverages or by the presence of coadsorbates like hydrogen, the Cu adsorption properties may change drastically. However, for copper there is one significant difference compared to hydrogen: at higher Cu coverages strong Cu–Cu bonds will form so that Cu will also adsorb at coverages exceeding 1/2 monolayer.

C. Cu Atoms on Adsorbate Pre–Covered Polar Surfaces

Several very recent studies have created considerable doubt that the polar ZnO surfaces really exist as ideal, truncated–bulk–like surfaces. With scanning tunneling microscopy (STM) nanoscaled island and pit structures were found at the Zn–terminated face,\[^{25}\] which lead to an overall loss of roughly 1/4 of the surface Zn atoms. Such a stabilization mechanism was confirmed in DFT calculations,\[^{35,36}\] which furthermore predict high concentrations of adsorbed OH–groups in hydrogen–rich envi--

FIG. 2: Adsorption geometries of (a) single Cu atoms and (b) Cu dimers on-top of a finite Zn$_4$O$_4$ cluster.

TABLE I: Equilibrium distances d_0 and binding energies E_{ad} of Cu atoms and Cu$_2$ dimers on the Zn$_4$O$_4$ cluster for different adsorption sites as indicated; ‘sp’ refers to spin-polarized/open-shell and ‘np’ to nonpolarized DFT calculations. The MC–CEPA values are taken from Ref. 24.
D. Cu Monolayers on Polar Surfaces

We turn now to the study of Cu monolayers on the polar ZnO surfaces. ZnO and bulk Cu have very different lattice constants. The equilibrium distance of the surface atoms at the polar surfaces is computed to be 3.28 Å (experimentally: 3.25 Å), and for the Cu bulk lattice constant we found 3.65 Å which corresponds to a nearest–neighbor separation between the Cu atoms of 2.58 Å (experimentally: 3.615 Å and 2.56 Å, respectively). Epitaxial growth with a (111) orientation of copper would therefore lead to a lattice mismatch of 21%. Thus, we can not expect that epitaxial growth occurs. Experimentally it was found that Cu on the polar surfaces is basically unstrained, even at very low coverages. Exclusively (111) Cu planes were observed with a fixed orientation given by the ZnO substrate.

The realistic treatment of such unstrained copper layers on the ZnO surfaces would be computationally very demanding since we would have to use prohibitively large surface unit cells for our slab. However, in order to get a first idea on how the Cu adsorption strength and the preferred adsorption sites change if a high concentration of copper is present on the polar surfaces we have nevertheless studied ideal epitaxial Cu (111) monolayers on the ZnO surfaces. For such hypothetical films we have calculated the equilibrium distance and the work of separation which is defined as the energy difference between the adsorbed monolayer and separate ZnO slabs and metal films. The results are given in Table IV. For the O–terminated surface we find that Cu preferentially binds on-top of the oxygen atoms. The equilibrium distance and the binding energy of 1.23 eV per Cu atom are very similar to the results obtained for single atoms on the ZnO substrate can not be neglected. The relaxation energies, for the O–terminated surface it was shown by He atom scattering in a study of the CO adsorption energetics, and also by DFT calculations that they are H covered for a wide range of temperatures and H partial pressures. Both mechanisms, loss of Zn atoms and adsorption of hydrogen, lead to a filling of the surface bands. The filling need not to be perfect, however, in order to study the consequences of such a stabilization of the polar surfaces on the Cu (co)adsorption properties and also in order to support our prediction from the last subsection, we have considered two idealized surface terminations. For the O– and the Zn–terminated polar ZnO surfaces with partially filled surface bands. Slabs with a (2×2) surface unit cell and a thickness of 4 Zn–O double-layers were used for the calculation.

TABLE II: Equilibrium distances d_0 and binding energies E_{ad} of single Cu atoms for different adsorption sites on the ideal O– and the Zn–terminated polar ZnO surfaces with partially filled surface bands. Slabs with a (2×2) surface unit cell and a thickness of 4 Zn–O double-layers were used for the calculation.

Adorption Site	d_0 [Å]	E_{ad} [eV]	d_0 [Å]	E_{ad} [eV]
on–top	1.84	2.57	2.45	1.81
hcp–hollow	1.93	1.85	2.08	1.87
fcc–hollow	1.25	2.87	1.97	2.06

TABLE III: Equilibrium distances d_0 and binding energies E_{ad} of single Cu atoms on polar ZnO surfaces with adsorbate structures to fill the surface bands (which results in “insulating surfaces” for Cu coadsorption). Same slabs as in Table II were used.

Adorption Site	d_0 [Å]	E_{ad} [eV]
on–top	1.96	1.12
fcc–hollow	2.50	0.40
E. Cu Films on Polar Surfaces

Finally, we briefly study the effect higher copper coverages than full monolayer on the bonding at the Cu/ZnO interface. This will give some insight into the nature of the chemical bond at the interface. The higher coverages were simulated by adding a second and a third monolayer of Cu on-top of the polar surface. For the two and three layer films different stacking sequences are possible. As shown in Table IV and Table V the energy differences between different stacking sequences turn out to be very small so that the specific stacking does not play a role in the following arguments.

Overall we find that the same adsorption sites as for the monolayer coverage are the most stable ones for the thicker Cu films: the on-top position for the O–terminated surface and the hollow-sites for the Zn–terminated face. For the O–terminated surface the work of separation increases with the thickness of the copper film, whereas for the Zn–termination a small decrease in the binding energy is observed. This behavior as well as the preferred adsorption sites can be explained as follow: For the O–terminated surface the first copper layer adopts the role of the missing next Zn layer. Therefore the on-top position, which is the next regular lattice site of the wurtzite structure, is preferred. Charge is donated to the surface O ions to fill the partially occupied surface bands, which can more easily occur for thicker copper films, and a partially ionic/covalent bond like in bulk ZnO is formed.

On the other hand, for the Zn–terminated surface, the topmost Zn layer behaves more like the first layer of the adsorbed metal film. Therefore the hollow positions, which correspond to an extension of the metal film, are the low-energy adsorption sites. The 4s electrons of the partially filled Zn surface band contribute to the metal-like state of the metal film so that the Zn–Cu bond is more metallic in character. However, the “integration” of the topmost Zn layer becomes weaker for thicker copper films.

IV. SUMMARY AND CONCLUSIONS

Using DFT calculations and periodically repeated slabs to represent the two polar ZnO surfaces, i.e. the (0001)–O and (0001)–Zn faces, we find a pronounced difference in the adsorption energy of Cu atoms depending on the coverage. Crucial to the proposed understanding of this phenomenon is the fact that the ideal, unreconstructed O– and Zn–terminated surfaces feature partially filled surface states with a 3/4 and a 1/4 filled band, respectively (often referred to as “metallization” of the polar surfaces). Up to 1/2 monolayer coverage the adsorption of copper on such polar surfaces is found to be very strong since the 4s electrons of the Cu atoms can fill these partially occupied bands and thereby stabilize the polar surface itself. However, as soon as these bands are filled due to copper (or due to coadsorbates!) already present on the surface, the binding of additional Cu to the surface becomes weaker and less favorable in comparison to the cohesion energy of Cu in small Cu clusters.
and thin Cu films.

Considering the experimentally known coverage-dependent change of the growth mode of copper on the polar ZnO surfaces (i.e., formation of two-dimensional islands until critical coverages of about 50% and 30% for the O– and the Zn–terminated surface, respectively, is reached at which three-dimensional growth of Cu clusters sets in) it may very well be that this sudden change is not caused by kinetic limitations at low temperatures alone. Instead, it might also be driven thermodynamically by the significant change in the adsorption energetics of copper on such polar surfaces due to successive band filling, which in turn is directly coupled to increasing the surface coverage. The lower critical coverage found experimentally for the Zn–terminated surface may then be explained quite naturally by the lower adsorption energy of copper found for this particular surface. Additionally, the presence of coadsorbates during or prior to copper deposition may strongly influence both the critical coverage and the morphology of the grown Cu particles.

Thus, it becomes evident that the polar ZnO surfaces allow for a wealth of quite different adsorption scenarios depending on parameters such as coverage, defects, coadsorbates etc. Since these parameters typically change in complex ways during catalytic cycles one is tempted to speculate that the polar character might be at the very heart of the catalytic activity of ZnO.

V. ACKNOWLEDGMENTS

We are grateful to Karin Fink for making the results of the cluster calculations available to us prior to publication, and we wish to thank her and Volker Staemmler for fruitful discussions. The work was supported by SFB 558 and FCI.

1 C.N. Satterfield, Heterogeneous Catalysis in Industrial Practice, McGraw–Hill (1991).
2 J.B. Hansen, Handbook of Heterogeneous Catalysis, G. Ertl, H. Knözinger, J. Weitkamp (Eds.), Wiley–VCH, Weinheim, (1997).
3 J.A. Rodriguez and C.T. Campbell, J. Phys. Chem. 91, 6648 (1987).
4 C.T. Campbell, Surf. Sci. Rep. 27, 1 (1997).
5 K.H. Ernst, A. Ludviksson, R. Zhang, J. Yoshihara, and C.T. Campbell, Phys. Rev. B 47, 13782 (1993).
6 J. Yoshihara, J.M. Campbell, and C.T. Campbell, Surf. Sci. 406, 235 (1998).
7 J. Yoshihara, S.C. Parker, and C.T. Campbell, Surf. Sci. 439, 153 (1999).
8 N. Jedrecy, S. Gallini, M. Sauvage-Simkin, and R. Pinchaux, Phys. Rev. B 64, 085424 (2001).
9 O. Dulub, L.A. Boatner, and U. Diebold, Surf. Sci. 504, 271 (2002).
10 K.M. Neyman, S. Vent, G. Pacchioni, and N. Rösch, Il Nuovo Cimento D 19, 1743 (1997).
11 V. Musolino, A. Selloni, and R. Car, J. Chem. Phys. 108, 5044 (1998).
12 V. Musolino, A. Dal Corso, and A. Selloni, Phys. Rev. Lett. 83, 2761 (1999).
13 V. Musolino, A. Selloni, and R. Car, Phys. Rev. Lett. 83, 3242 (1999).
14 A.V. Matveev, K.M. Neyman, G. Pacchioni, and N. Rösch, Chem. Phys. Lett. 299, 603 (1999).
15 N. Lopez, F. Illas, N. Rösch, and G. Pacchioni, J. Chem. Phys. 110, 4873 (1999).
16 E. Wahlström, N. Lopez, R. Schaub, P. Thostrup, A. Ronnau, C. Africh, E. Laegsgaard, J.K. Nørskov, and F. Besenbacher, Phys. Rev. Lett. 90, 026101 (2003).
17 M.W. Finnis, Phil. Mag. Lett. 73, 377 (1996).
18 I.G. Batirev, A. Alavi, and M.W. Finnis, Phys. Rev. Lett. 82, 1510 (1999).
19 S. Köstlmeier, C. Elsässer, B. Meyer, and M.W. Finnis, phys. stat. sol. (a), 166, 417 (1998).
20 M.W. Finnis, phys. stat. sol. (a) 166, 397 (1998).
21 R.W. Nosker, P. Mark, and J.D. Levine, Surf. Sci. 19, 291 (1970).
22 C. Noguera, J. Phys.: Condens. Matter 12, R367 (2000).
23 B. Meyer, First-principles study of the polar O–terminated ZnO surface in thermodynamic equilibrium with oxygen and hydrogen, submitted to Phys. Rev. B; Preprint: http://xxx.lanl.gov/abs/cond-mat/0302578
24 K. Fink, A. Schwaeb, and I. Hegemann, submitted.
25 P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964); W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1965).
26 J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996); Phys. Rev. Lett. 78, 1396 (1997).
27 D. Vanderbilt, Phys. Rev. B 32, 8412 (1985).
28 B. Meyer, C. Elsässer, and M. Fähnle, FORTRAN 90 program for mixed-basis pseudopotential calculations for crystals, Max–Planck Institut für Metallforschung, Stuttgart.
29 B. Meyer and D. Marx, Phys. Rev. B 67, 035403 (2003).
30 L. Bengtsson, Phys. Rev. B 59, 12301 (1999).
31 B. Meyer and D. Vanderbilt, Phys. Rev. B 63, 205426 (2001).
32 H.J. Monkhorst and J.D. Pack, Phys. Rev. B 53, 5188 (1976).
33 A. Wander, F. Schedin, P. Steadman, A. Norris, R. McGrath, T.S. Turner, G. Thornton, and N.M. Harrison, Phys. Rev. Lett. 86, 3811 (2001).
34 B. Meyer and D. Marx, to be published.
35 O. Dulub, U. Diebold, and G. Kresse, Phys. Rev. Lett. 90, 016102 (2003).
36 G. Kresse, to be published.
37 M. Kunat, St. Gil Girol, Th. Becker, U. Burghaus, and Ch. Wöll, Phys. Rev. B 66, 081402 (2002).
38 V. Staemmler, K. Fink, B. Meyer, D. Marx, M. Kunat, S. Gil Girol, U. Burghaus, and Ch. Wöll, Phys. Rev. Lett., in print.
39 B. Meyer and D. Marx, J. Phys.: Condens. Matter 15, L89 (2003).
40 S. Shi, C. Shi, K. Fink, and V. Staemmler, Chem. Phys. 287, 183 (2003).