THE COMPLEMENT OF $\mathcal{M}(a)$ IN $\mathcal{H}(b)$

M. T. NOWAK, P. SOBOLEWSKI AND A. SOLTYSIAK

Abstract. Let b be a nonextreme function in the unit ball of H^∞ on the unit disk \mathbb{D} and let a be an outer H^∞ function such that $|a|^2 + |b|^2 = 1$ almost everywhere on $\partial \mathbb{D}$. The sufficient and necessary conditions for the orthogonal complement of $\mathcal{M}(a)$ in $\mathcal{H}(b)$ be finite dimensional has been given by D. Sarason in [9]. Here we describe this space explicitly.

1. Introduction

Let H^2 denote the standard Hardy space on the unit disk \mathbb{D} and let $\partial \mathbb{D}$ denote its boundary. For $\varphi \in L^\infty(\partial \mathbb{D})$ the Toeplitz operator on H^2 is given by $T_\varphi f = P_+ (\varphi f)$, where P_+ is the orthogonal projection of $L^2(\partial \mathbb{D})$ onto H^2. For a nonconstant function b in the unit ball of H^∞ the de Branges-Rovnyak space $\mathcal{H}(b)$ is the image of H^2 under the operator $(1 - T_b T_b^*)^{1/2}$ with the corresponding range norm. It is known [9, p.10] that $\mathcal{H}(b)$ is a Hilbert space with reproducing kernel

$$k_b^b(z) = \frac{1 - b(w)\overline{b(z)}}{1 - \overline{w}z} \quad (z, w \in \mathbb{D}).$$

Here we are interested in the case when the function b is not an extreme point of the unit ball of H^∞, that is the case when the function $\log(1 - |b|)$ is integrable on $\partial \mathbb{D}$ ([4, p. 138]). Then there exists an outer function $a \in H^\infty$ for which $|a|^2 + |b|^2 = 1$ a.e. on $\partial \mathbb{D}$. Moreover, if we suppose that $a(0) > 0$, then a is uniquely determined, and we say that (b, a) is a pair. Since the function $\frac{1 + b}{1 - b}$ has a positive real part, there exists a positive measure μ on $\partial \mathbb{D}$ such that

$$\frac{1 + b(z)}{1 - b(z)} = \int_{\partial \mathbb{D}} \frac{1 + e^{-i\theta} z}{1 - e^{-i\theta} z} d\mu(e^{i\theta}) + i \text{Im} \frac{1 + b(0)}{1 - b(0)}, \quad |z| < 1.$$

Moreover the function $\left| \frac{a}{1 - b} \right|^2$ is the Radon-Nikodym derivative of the absolutely continuous component of μ with respect to the normalized Lebesgue measure. So if $f = \frac{a}{1 - b}$, then f is an outer function which belongs to H^2. If the measure μ is absolutely continuous the pair (b, a) is called special. The operator V_b acting on $H^2(\mu)$ (the closure of polynomials

2010 Mathematics Subject Classification. 47B32, 46E22, 30H05.

Key words and phrases. Toeplitz operators, de Branges-Rovnyak spaces, rigid functions, nonextreme functions, kernel functions.
in $L^2(\mu)$) with values in the Branges-Rovnyak space $\mathcal{H}(b)$ is given by

$$
(V_b q)(z) = (1 - b(z)) \int_{\partial \mathbb{D}} \frac{q(e^{i\theta})}{1 - e^{-i\theta} z} \, d\mu(e^{i\theta}).
$$

It is known that V_b is an isometry of $H^2(\mu)$ onto $\mathcal{H}(b)$ ([9], [2]). Furthermore the Toeplitz operators with an unbounded symbols $\varphi \in L^2(\partial \mathbb{D})$ can be defined as unbounded operators on H^2 (with the domains containing H^∞) that are continuous operators of H^2 into $H(\mathbb{D})$, the space of holomorphic functions on \mathbb{D} with the topology of the locally uniform convergence. Moreover, if (b, a) is a pair and $f = \frac{a}{\overline{b}}$, then the operator $T_{1-b}T_f$ is an isometry of H^2 into $\mathcal{H}(b)$. Its range is all of $\mathcal{H}(b)$ if and only if the pair (b, a) is special (see [9], IV-12,13).

If (b, a) is a pair then $\mathcal{M}(a)$ (the range of $T_a H^2 = a H^2$ equipped with the range norm) is contained contractively in $\mathcal{H}(b)$. Moreover, if (b, a) is special, then $\mathcal{M}(a)$ is dense in $\mathcal{H}(b)$ if and only if f^2 is a rigid function. Recall that a function $f \in H^1$ is called rigid if no other functions in H^1, except for positive scalar multiples of f, have the same argument as f a.e. on $\partial \mathbb{D}$.

Let the Toeplitz operator T_z, that is, the unilateral shift on H^2, be denoted by S. It is known that the de Branges-Rovnyak spaces $\mathcal{H}(b)$ are S^*-invariant. In the case b is nonextreme the space $\mathcal{H}(b)$ is also invariant under the unilateral shift S. Furthermore, in this case, polynomials are dense in $\mathcal{H}(b)$ and $b \in \mathcal{H}(b)$.

Let $\mathcal{H}_0(b)$ denote the orthogonal complement of $\mathcal{M}(a)$ in $\mathcal{H}(b)$. Let Y be the restriction of the shift operator S to $\mathcal{H}(b)$. It is worth to mention here that since the closure of $\mathcal{M}(a)$ in $\mathcal{H}(b)$ is Y-invariant, the space $\mathcal{H}_0(b)$ is Y^*-invariant. Let Y_0 be the compression of Y to the subspace $\mathcal{H}_0(b)$. Characterizations when $\mathcal{H}_0(b)$ has finite dimension are given in Chapter X of [9]. Now we cite some results included therein. It turns out that in this case the space $\mathcal{H}_0(b)$ depends on the spectrum of the restriction of the operator Y^* to $\mathcal{H}_0(b)$ which actually equals Y_0^*.

The spectrum of Y_0 is contained in the unit circle. We know from [9] that the codimension of $\mathcal{M}(a)$ in $\mathcal{H}(b)$ is N if and only if the operator Y_0^* has eigenvalues z_1, z_2, \ldots, z_s on the unit circle with their algebraic multiplicities n_1, \ldots, n_s and $N = n_1 + n_2 + \cdots + n_s$. Then

$$
\mathcal{H}_0(b) = \bigoplus_{j=1}^s \ker(Y_0^* - z_j)^{n_j}.
$$

For $\lambda \in \partial \mathbb{D}$ let μ_λ be the measure on $\partial \mathbb{D}$ whose Poisson integral is the real part of $\frac{1+\overline{\lambda}b}{1-\overline{\lambda}b}$. If $F_\lambda = \frac{a}{1-\overline{\lambda}b}$, then the Radon-Nikodym derivative of the absolutely continuous component of μ_λ is $|F_\lambda|^2$.

In [9] the following condition for $\mathcal{M}(a)$ to have a finite defect is given.

Theorem. Let N be a positive integer, and let λ be a point on $\partial \mathbb{D}$ such that the measure μ_λ is absolutely continuous. Then the following conditions are equivalent.

(i) The codimension of $\mathcal{M}(a)$ in $\mathcal{H}(b)$ is N.

(ii) \(F_\lambda = pf \), where \(p \) is a polynomial of degree \(N \) having all of its roots on the unit circle, and \(f \) is a function in \(H^2 \) whose square is rigid.

Our aim is to find explicit description of finite dimensional spaces \(\mathcal{H}_0(b) \).

For \(w \in \mathbb{D} \) and a positive integer \(n \) the function \(\frac{\partial^n k^b_w}{\partial \overline{w}^n} \) is the kernel function in \(\mathcal{H}(b) \) for the functional of evaluation of the \(n \)-th derivative at \(w \), that is, for \(f \in \mathcal{H}(b) \), we have

\[
f^{(n)}(w) = \left\langle f, \frac{\partial^n k^b_w}{\partial \overline{w}^n} \right\rangle.
\]

For \(n = 0, 1, 2, \ldots \) set

\[
v^n_{b,w}(z) = \frac{\partial^n k^b_w}{\partial \overline{w}^n}(z), \quad z, w \in \mathbb{D}.
\]

Our main result is the following.

Theorem 1. Assume that a point \(z_0 \in \partial \mathbb{D} \) and for \(\lambda \in \partial \mathbb{D} \setminus \{b(z_0)\} \) the measure \(\mu_\lambda \) is absolutely continuous. If the function \(F_\lambda(1 - \overline{z}_0 z)^{-k-1} \) is in \(H^2 \), then the space \(\text{ker}(Y^* - \overline{z}_0)^k \) is spanned by \(v^0_{b,z_0}, v^1_{b,z_0}, \ldots, v^k_{b,z_0} \) which are the limits of \(v^n_{b,w}, v^1_{b,w}, \ldots, v^k_{b,w} \) as \(w \) tends nontangentially to \(z_0 \).

We mention that this theorem for \(k = 1 \) has been proved in [7].

2. Preliminaries

In this section we collect auxiliary results on the space \(\mathcal{H}(b) \) generated by a nonextreme \(b \) that we will use in our proofs. Let \(X \) denote the restriction of the operator \(S^* \) to \(\mathcal{H}(b) \). Then the adjoint operator \(X^* \) is given by

\[
X^*h = Sh - \left\langle h, S^*b \right\rangle b, \quad \text{(see [2], p. 61), \ [2] Theorem 18.22}).
\]

Moreover, the following formula for the reproducing kernel \(k^b_w \) was given in [8] (see also Theorem 18.21 in [2])

\[
k^b_w = (1 - \overline{w} X^*)^{-1} k^b_0.
\]

Using this formula we derive the following.

Proposition 1. If \(\frac{\partial^n k^b_w}{\partial \overline{w}^m} \) are bounded in the norm as \(w \) tends nontangentially to \(z_0 \in \partial \mathbb{D} \), then also the norms of \(\frac{\partial^n k^b_w}{\partial \overline{w}^m} \), \(m = 0, 1, \ldots, n - 1 \), stay bounded as \(w \) tends nontangentially to \(z_0 \).

Proof. Formula (4) implies that for \(n = 1, 2, \ldots \)

\[
\frac{\partial^n k^b_w}{\partial \overline{w}^m} = n!(1 - \overline{w} X^*)^{-n-1} X^* k^b_0.
\]

Since

\[
(1 - \overline{w} X^*)^{-n} X^* k^b_0 = (1 - \overline{w} X^*)^{-n-1} X^* k^b_0,
\]
the boundedness of \((1 - \bar{w}X^*)^{-n-1}X^n k_0^b\) implies the boundedness of \((1 - \bar{w}X^*)^{-n}X^n k_0^b\).

To show that
\[
\frac{\partial^{n-1} k_0^b}{\partial \bar{w}^{n-1}} = (n-1)! (1 - \bar{w}X^*)^{-n}X^n k_0^b
\]
is bounded we observe that
\[
X^* \frac{\partial^{n-1} k_0^b}{\partial \bar{w}^{n-1}} = (n-1)! (1 - \bar{w}X^*)^{-n}X^n k_0^b.
\]
It follows from (3) that
\[
\|X^* f\|^2 = \|f\|^2 - |\langle f, S^* b \rangle|^2 \quad \text{(see Corollary 18.23 in [2])}
\]
We know that if \(b\) is nonextreme, then \(b \in \mathcal{H}(b)\). Thus
\[
\left\| \frac{1}{(n-1)!} \frac{\partial^{n-1} k_0^b}{\partial \bar{w}^{n-1}} \right\|^2 = \|(1 - \bar{w}X^*)^{-n}X^n k_0^b\|^2 + |\langle (1 - \bar{w}X^*)^{-n}X^n k_0^b, S^* b \rangle|^2
\]
\[
= \|(1 - \bar{w}X^*)^{-n}X^n k_0^b\|^2 + |\langle (1 - \bar{w}X^*)^{-n}X^n k_0^b, X^n b \rangle|^2
\]
\[
= \|(1 - \bar{w}X^*)^{-n}X^n k_0^b\|^2 + |\langle (1 - \bar{w}X^*)^{-n}X^n k_0^b, b \rangle|^2.
\]

The next proposition was actually stated in [9, pp. 58–59] without proof.

Proposition 2. Let \(z_0 \in \partial \mathbb{D}\) and \(b\) be a nonextreme function from the unit ball of \(H^\infty\). If every function in \(\mathcal{H}(b)\) and all of its derivatives up to order \(n\) have nontangential limits at \(z_0\), then also \(b^{(n+1)}\) has a nontangential limit at \(z_0\).

Proof. The case \(n = 0\) is contained in [9, VI-4] Assume that every function in \(\mathcal{H}(b)\) and all of its derivatives up to order \(n\) have nontangential limits at \(z_0\). It follows from [9, VI-4] that then the function \(h(z) = \frac{b(z) - b(z_0)}{z - z_0}\) is in \(\mathcal{H}(b)\). Thus there exists the limit
\[
\lim_{z \to z_0} \left(\frac{b(z) - b(z_0)}{z - z_0} \right)^{(n)} = \lambda.
\]
For \(C \geq 1\), let the Stolz domain \(S_C(z_0)\) be defined by
\[
S_C(z_0) = \{ z \in \mathbb{D} : |z - z_0| \leq C(1 - |z|) \},
\]
and for an \(\varepsilon > 0\), put
\[
\alpha_n(\varepsilon) = \sup \left\{ \left(\left(\frac{b(z) - b(z_0)}{z - z_0} \right)^{(n)} \right) - \lambda : z \in S_C(z_0), |z - z_0| < \varepsilon \right\},
\]
then clearly \(\alpha_n(\varepsilon)\) tends to zero with \(\varepsilon\).

Next let \(\gamma_z\) denote the circle with center \(z\) and radius \(\frac{1}{2}(1 - |z|)\). Then for \(z \in S_C(z_0)\), \(\gamma_z\) lies in \(S_C(z_0)\). The Leibniz formula
\[
\left(\frac{b(z) - b(z_0)}{z - z_0} \right)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} (b(z) - b(z_0))^{(n-k)} \frac{(-1)^k k!}{(z - z_0)^{k+1}}
\]
implies that for $\zeta \in \gamma_z$,

$$b^{(n)}(\zeta) = \sum_{k=1}^{n} \binom{n}{k} \frac{(-1)^{k-1}k!(b(\zeta) - b(z_0))^{(n-k)}}{(\zeta - z_0)^k} + \lambda(\zeta - z_0) + \beta(\zeta)(\zeta - z_0),$$

where $|\beta(\zeta)| \leq \alpha_n(|\zeta - z_0|) \leq \alpha_n \left(\frac{3}{2} |z - z_0| \right)$. Using the equality $k\binom{n}{k} = n\binom{n-1}{k}$, we obtain

$$b^{(n)}(\zeta) = \sum_{k=1}^{n} k\binom{n}{k} (b(\zeta) - b(z_0))^{(n-k)} \left(\frac{1}{\zeta - z_0} \right)^{(k-1)} + \lambda(\zeta - z_0) + \beta(\zeta)(\zeta - z_0)$$

$$= \sum_{k=1}^{n} n\binom{n-1}{k-1} (b(\zeta) - b(z_0))^{(n-k)} \left(\frac{1}{\zeta - z_0} \right)^{(k-1)} + \lambda(\zeta - z_0) + \beta(\zeta)(\zeta - z_0)$$

$$= n \left(\frac{b(\zeta) - b(z_0)}{\zeta - z_0} \right)^{(n-1)} + \lambda(\zeta - z_0) + \beta(\zeta)(\zeta - z_0).$$

Finally, since

$$b^{(n+1)}(z) = \frac{1}{2\pi i} \int_{\gamma_z} \frac{b^{(n)}(\zeta)}{(\zeta - z)^2} d\zeta,$$

we get

$$\lim_{z \to z_0} b^{(n+1)}(z) = (n + 1)\lambda.$$

For $\lambda \in \partial \mathbb{D}$ set $W_\lambda = T_{1-z_0} T_{\lambda}$, and recall that if μ_λ is absolutely continuous then W_λ is an isometry of H^2 onto $\mathcal{H}(b)$. In [9] the structure of finite dimensional spaces $\mathcal{H}_0(b)$ has been studied by means of an operator A_λ on H^2. Under the assumption that μ_λ is absolutely continuous, A_λ intertwines W_λ with the operator Y^* i.e.,

$$W_\lambda A_\lambda = Y^* W_\lambda.$$

The operator A_λ is given by

$$A_\lambda = S^* - F_\lambda(0)^{-1}(S^*F_\lambda \otimes 1).$$

Moreover, it has been showed in [9] [9 X-14] that under above assumptions, if for $z_0 \in \partial \mathbb{D}$ the function $\frac{F_\lambda}{(1-z_0 z)^k} \in H^2$, then the kernel of $(A_\lambda - z_0)^k$ is spanned by $(1 - z_0 z)^{-1} F_\lambda, (1 - z_0 z)^{-2} F_\lambda, \ldots, (1 - z_0 z)^{-k} F_\lambda$. It turns out the the inverse statement is also true and we have

Proposition 3. Assume that $z_0 \in \partial \mathbb{D}$ and $\lambda \in \partial \mathbb{D}$ is such that μ_λ is absolutely continuous. Then

$$\dim \ker (A_\lambda - z_0)^k = k \iff F_\lambda (1 - z_0 z)^{-k} \in H^2.$$
Proof. In view of [9, X-14] it is enough to show
\[\dim \ker(A_\lambda - \bar{z}_0)^k = k \implies F_\lambda(1 - \bar{z}_0 z)^{-k} \in H^2. \]

We will show that if \(\dim \ker(A_\lambda - \bar{z}_0)^k = k \), then \(\ker(A_\lambda - \bar{z}_0)^k \) is spanned by \(\frac{z F_\lambda}{(1 - z_0 \bar{z})^2}, \ldots, \frac{z^{k-1} F_\lambda}{(1 - z_0 \bar{z})^k} \). We proceed by induction. The case \(k = 1 \) is proved in [9, X-13]. Suppose that
\[\ker(A_\lambda - \bar{z}_0)^k = \left\{ \frac{c_0 F_\lambda}{1 - z_0 \bar{z}} + \frac{c_1 z F_\lambda}{(1 - z_0 \bar{z})^2} + \cdots + \frac{c_{k-1} z^{k-1} F_\lambda}{(1 - z_0 \bar{z})^k} : c_0, c_1, \ldots, c_{k-1} \in \mathbb{C} \right\} \]
and \((A_\lambda - \bar{z}_0) g \in \ker(A_\lambda - \bar{z}_0)^k \). Then
\[(A_\lambda - \bar{z}_0) g = \frac{c_0 F_\lambda}{1 - z_0 \bar{z}} + \frac{c_1 z F_\lambda}{(1 - z_0 \bar{z})^2} + \cdots + \frac{c_{k-1} z^{k-1} F_\lambda}{(1 - z_0 \bar{z})^k} \]
for some \(c_0, c_1, \ldots, c_{k-1} \). Hence, by (6),
\[\frac{g(z) - g(0)}{z} - \frac{g(0)}{F_\lambda(0)} \frac{F_\lambda(z) - F_\lambda(0)}{z} - \bar{z}_0 g = \frac{c_0 F_\lambda}{1 - z_0 \bar{z}} + \frac{c_1 z F_\lambda}{(1 - z_0 \bar{z})^2} + \cdots + \frac{c_{k-1} z^{k-1} F_\lambda}{(1 - z_0 \bar{z})^k} \]
or, equivalently,
\[(1 - z_0 \bar{z}) g = \frac{g(0)}{F_\lambda(0)} F_\lambda + \frac{c_0 z F_\lambda}{1 - z_0 \bar{z}} + \cdots + \frac{c_{k-1} z^{k-1} F_\lambda}{(1 - z_0 \bar{z})^k}. \]

The next lemma will allow us to depict \(\ker(Y^* - \bar{z}_0)^k \) explicitly.

Lemma 1. If \(\mu_\lambda \) is absolutely continuous, then for any positive integer \(k \) and any \(z_0 \in \partial \mathbb{D} \),
\begin{equation}
\ker(Y^* - \bar{z}_0)^k = W_\lambda \ker(A_\lambda - \bar{z}_0)^k.
\end{equation}

Proof. Since \(W_\lambda \) is an isometry of \(H^2 \) onto \(\mathcal{H}(b) \), we have \(W_\lambda^* W_\lambda = \text{id} \) on \(H^2 \). Indeed, for any \(f \in H^2 \),
\[\langle f, f \rangle_{H^2} = \langle W_\lambda f, W_\lambda f \rangle_{\mathcal{H}(b)} = \langle W_\lambda^* W_\lambda f, f \rangle_{H^2}. \]

Next, if \(g \in \mathcal{H}(b) \) is the image of \(f \in H^2 \) under \(W_\lambda \), then \(W_\lambda^* W_\lambda f = f \) implies \(W_\lambda W_\lambda^* g = g \), i.e. \(W_\lambda W_\lambda^* = \text{id} \) on \(\mathcal{H}(b) \).

Note that (5) implies
\[W_\lambda (A_\lambda - \bar{z}_0) = (Y^* - \bar{z}_0) W_\lambda. \]
Since \(W_\lambda W_\lambda^* = \text{id} \) on \(\mathcal{H}(b) \) we get
\[(Y^* - \bar{z}_0) = W_\lambda (A_\lambda - \bar{z}_0) W_\lambda^* \]
and, by iteration,
\begin{equation}
(Y^* - \bar{z}_0)^k = W_\lambda (A_\lambda - \bar{z}_0)^k W_\lambda^*.
\end{equation}

Assume that \(g \in \mathcal{H}(b) \) and \(g = W_\lambda f \) \((f \in H^2) \) and observe that by (5), \(g = W_\lambda f \in \ker(Y^* - \bar{z}_0)^k \) if and only if
\[0 = (Y^* - \bar{z}_0)^k g = W_\lambda (A_\lambda - \bar{z}_0)^k W_\lambda^* W_\lambda f = W_\lambda (A_\lambda - \bar{z}_0)^k f. \]
which means that $f \in \ker(A_\lambda - \bar{z}_0)^k$. □

3. Proof of Theorem 1

In the proof we will use the following result stated in Chapter VII in [9].

Sarason’s Theorem. Assume that a point $z_0 \in \partial \mathbb{D}$ and for $\lambda \in \partial \mathbb{D} \setminus \{b(z_0)\}$ the measure μ_λ is absolutely continuous. Then the following conditions are equivalent.

(i) Each function in $H(b)$ and all of its derivatives up to order k have nontangential limits at z_0.
(ii) The function $F_\lambda(1 - \bar{z}_0z)^{-k-1} \in H^2$.
(iii) The functions $\frac{\partial^m k^b_w}{\partial \bar{w}^m}$ are bounded in the norm as w tends nontangentially to z_0.

The proof of this theorem for the case when $k = 0$ is given in [9, VI-4]. Since the proof of the general case is only sketched in the cited reference, we include it here for the reader’s convenience.

Proof of Sarason’s Theorem. (i) \implies (iii). Since for $f \in H(b)$

$$f^{(k)}(w) = \left< f, \frac{\partial^k k^b_w}{\partial \bar{w}^k} \right>, \quad w \in \mathbb{D}$$

and the nontangential limit of $f^{(k)}(w)$ at z_0 exists, $\sup \{|f^{(k)}(w)|: w \in SC(z_0)\}$ is finite. Let $\varphi_w(f) = f^{(k)}(w)$ be a bounded linear functional on $H(b)$. The Banach-Steinhaus theorem implies that there exists a constant $M > 0$ such that

$$\|\varphi_w\| = \left\| \frac{\partial^k k^b_w}{\partial \bar{w}^k} \right\| \leq M$$

for every $w \in SC(z_0)$.

(iii) \implies (i). We proceed by induction. Assume the implication holds true for $k = 0, 1, \ldots, m - 1$ and suppose that the functions $\frac{\partial^m k^b_w}{\partial \bar{w}^m}$ are bounded in the norm as w tends nontangentially to z_0. Then there exists a sequence $\{w_n\} \subset \mathbb{D}$ that converges nontangentially to z_0 for which $\left\{ \frac{\partial^m k^b_w}{\partial \bar{w}^m} \right\}$ converges weakly to $h \in H(b)$.

Thus we have

$$h(z) = \langle h, k^b_z \rangle = \lim_{n \to \infty} \left< \frac{\partial^m k^b_{w_n}}{\partial \bar{w}^m}, k^b_z \right> = \lim_{n \to \infty} \frac{\partial^m k^b_{w_n}}{\partial \bar{w}^m}(z).$$

Since

$$\frac{\partial^m k^b_w}{\partial \bar{w}^m}(z) = \sum_{j=0}^{m} \binom{m}{j} \frac{\partial^{m-j}(1 - b(w)b(z))}{\partial \bar{w}^{m-j}} \frac{j!z^j}{(1 - w\bar{z})^{j+1}},$$

(9)
we have

\[(10) \quad h(z) = \lim_{n \to \infty} \frac{\partial^{m} k_{w}^{b}}{\partial w_{n}^{m}}(z) = \lim_{n \to \infty} \frac{(1 - b(w_{n})b(z))m!z^{m}}{(1 - w_{n}z)^{m+1}} + \sum_{j=0}^{m-1} \left(m \right) \lim_{n \to \infty} \frac{-b^{(m-j)}(w_{n})b(z)j!z^{j}}{(1 - w_{n}z)^{j+1}}.\]

Furthermore Proposition 1 implies that the norms \(\|\frac{\partial^{k} k_{w}^{b}}{\partial w^{k}}\|, k = 0, 1, \ldots, m - 1\), stay also bounded as \(w\) tends nontangentially to \(z_{0}\). Hence by induction hypothesis each function in \(\mathcal{H}(b)\) and all of its derivatives up to order \(m - 1\) have nontangential limits at \(z_{0}\). Additionally, by Proposition 2, the derivative of order \(m\) of \(b\) has its nontangential limit at \(z_{0}\). It then follows from (10) that \(\frac{\partial^{m} k_{w}^{b}}{\partial z^{m}}\) converges to \(h\) pointwise as \(w\) tends to \(z_{0}\) nontangentially. Put \(h = \frac{\partial^{m} k_{w}^{b}}{\partial z_{0}^{m}}\) and note that for \(z \in \mathbb{D}\),

\[\lim_{w \to z_{0}} (k_{z}^{b})^{(m)}(w) = \frac{\partial^{m} k_{w}^{b}}{\partial z_{0}^{m}}(z).\]

Indeed,

\[\lim_{w \to z_{0}} (k_{z}^{b})^{(m)}(w) = \lim_{w \to z_{0}} \left(k_{z}^{b}, \frac{\partial^{m} k_{w}^{b}}{\partial w^{m}} \right) = \lim_{w \to z_{0}} \frac{\partial^{m} k_{w}^{b}}{\partial w^{m}}(z) = \frac{\partial^{m} k_{w}^{b}}{\partial z_{0}^{m}}(z) = (k_{z}^{b})^{(m)}(z).\]

This means that for every \(z \in \mathbb{D}\), the derivative \((k_{z}^{b})^{(m)}\) has a nontangential limit at \(z_{0}\). Since the functions \(k_{z}^{b}\) span the space \(\mathcal{H}(b)\) and the norms of \(\frac{\partial^{m} k_{w}^{b}}{\partial w^{m}}\) are bounded as \(w\) tends nontangentially to \(z_{0}\), the desired conclusion follows.

(ii) \(\Rightarrow\) (iii). Assume that the implication holds for \(k = 0, 1, \ldots, m - 1\) and \(F_{\lambda}(1 - \bar{z}_{0}z)^{-m-1} \in H^{2}\). Observe first that if \(F_{\lambda}(1 - \bar{z}_{0}z)^{-m-1} \in H^{2}\), then also \(F_{\lambda}(1 - \bar{z}_{0}z)^{-k-1} \in H^{2}\) for \(k = 0, 1, \ldots, m\).

Let \(V_{\lambda b}\) be defined by (2) with \(b\) replaced by \(\bar{\lambda} b\). Since the pair \((a, \bar{\lambda} b)\) is special, we have

\[V_{\lambda b}(1 - \lambda \bar{b}(w))k_{w} = W_{\lambda}(F_{\lambda}(1 - \lambda \bar{b}(w))k_{w}) = k_{w}, \quad w \in \mathbb{D},\]

(see [3] p.18, [2] Vol.2, p.141)). Since

\[(11) \quad W_{\lambda} \left(\frac{\partial^{m} ((1 - \lambda \bar{b}(w))k_{w})}{\partial \bar{w}^{m}} \right) = \frac{\partial^{m} k_{w}^{b}}{\partial \bar{w}^{m}}.\]

and

\[(12) \quad \frac{\partial^{m} ((1 - \lambda \bar{b}(w))k_{w})}{\partial \bar{w}^{m}} = \sum_{j=0}^{m} \left(m \right) \frac{\partial^{m-j} (1 - \lambda \bar{b}(w))}{\partial \bar{w}^{m-j}} \frac{j!z^{j}}{(1 - w_{j}z)^{j+1}}\]

we see that the preimage of \(\frac{\partial^{m} k_{w}^{b}}{\partial \bar{w}^{m}}\) is a linear combination of the functions \(\frac{F_{\lambda}}{(1 - \bar{w}z)^{j+1}}, j = 0, 1, 2, \ldots, m\), whose coefficients depend on \(\bar{b}(w), \bar{b}'(w), \ldots, \bar{b}^{(m)}(w)\). By the induction hypothesis \(\frac{\partial^{m-j} k_{w}^{b}}{\partial \bar{w}^{m-j}}\) are bounded as \(w\) tends nontangentially to \(z_{0}\). By what we have
already proved, this implies the existence of the limits of \(\frac{\partial^{n}b(w,m)}{\partial w^{m}} \) as \(w \to z_{0} \) nontangentially. Now (11), (12) and the fact that \(W_{\lambda} \) is an isometry imply that the norms of \(\frac{\partial^{n}b(w,m)}{\partial w^{m}} \) stay bounded as \(w \) converges nontangentially to \(z_{0} \).

\((iii) \implies (ii)\). Assume that the implication holds true for \(k = 0, 1, \ldots, m - 1 \) and \(\frac{\partial^{n}b(w,m)}{\partial w^{m}} \) are bounded in the norm as \(w \) tends nontangentially to \(z_{0} \). Since (iii) is equivalent to (i), the nontangential limits of \(\frac{\partial^{n}b(w,m)}{\partial w^{m}} \) as \(w \to z_{0} \) exist. By the induction hypothesis the functions \(\frac{F_{k}}{(1-z_{0}z)^{k+1}}, k = 0, 1, \ldots, m - 1 \) are in \(H^{2} \). Finally, passage to the limit in (11) and (12) as \(w \to z_{0} \) nontangentially and the induction hypothesis show that \(\frac{(1-\lambda b(w,m))F_{k}}{(1-z_{0}z)^{k+1}} \) is in \(H^{2} \). Since \(\lambda \neq b(z_{0}) \) our claim follows.

\(\square\)

Proof of Theorem 1. We know from [9, X-14] that for \(k = 0, 1, 2 \ldots \ker(A_{\lambda} - z_{0})^{k+1} \) has dimension \(k + 1 \), and is spanned by the functions \(F_{k}(1-z_{0}z)^{-1}, F_{k}(1-z_{0}z)^{-2}, \ldots, F_{k}(1-z_{0}z)^{-k-1} \). By Lemma 1 the kernel of \((Y^{*} - z_{0})^{k} \) is spanned by the images of these functions under \(W_{\lambda} \). So, it is enough to show that for \(k = 0, 1, \ldots, W_{\lambda} \left(\frac{F_{k}}{(1-z_{0}z)^{k+1}} \right) \) is a linear combination of \(v_{b,z_{0}}^{0}, v_{b,z_{0}}^{1}, \ldots, v_{b,z_{0}}^{k} \) defined in Introduction. We proceed by induction. The case when \(k = 0 \) has been proved in [7]. Assume that the statement is true for \(k = 0, 1, \ldots, m - 1 \) and \(F_{k}(1-z_{0}z)^{-m-1} \) is in \(H^{2} \). Let \(\{w_{n}\} \subset \mathbb{D} \) be a sequence converging nontangentially to \(z_{0} \). Then

\[
W_{\lambda} \left(\frac{\partial^{m}(1-\lambda b(w_{n}))}{\partial w^{m}} F_{m} \right) = W_{\lambda} \left(\frac{(1-\lambda \overline{b(w_{n})})m!z^{m}F_{m}}{(1-w_{n}z)^{m+1}} \right) - \sum_{j=1}^{m} \binom{m}{j} W_{\lambda} \left(\frac{\lambda b^{(j)}(w_{n})(m-j)!z^{m-j}F_{m}}{(1-w_{n}z)^{m-j+1}} \right) = v_{b,w_{n}}^{m}.
\]

Our assumption implies that \(\lim_{n \to \infty} b^{(j)}(w_{n}) = b^{(j)}(z_{0}), j = 0, \ldots, m \) and the dominated convergence theorem implies that the norm of the each function the operator \(W_{\lambda} \) is acting on converges, as \(n \to \infty \), to a norm of a function in \(H^{2} \) (which is of the form \(\frac{c_{k}F_{k}}{(1-z_{0}z)^{k+1}}, k = 0, 1, \ldots, m \) and \(c_{m} \neq 0 \)). So the passage to the limit yields

\[
W_{\lambda} \left(\frac{(1-\lambda b(z_{0}))m!z^{m}F_{m}}{(1-z_{0}z)^{m+1}} \right) - \sum_{j=1}^{m} \binom{m}{j} W_{\lambda} \left(\frac{\lambda b^{(j)}(z_{0})(m-j)!z^{m-j}F_{m}}{(1-z_{0}z)^{m-j+1}} \right) = v_{b,z_{0}}^{m}.
\]

Since by the induction hypothesis the second term on the left-hand side of the last equality is a linear combination of \(v_{b,z_{0}}^{0}, v_{b,z_{0}}^{1}, \ldots, v_{b,z_{0}}^{m-1} \) our proof is finished.

\(\square\)

Remarks. The complement of \(M(a) \) in \(H(b) \) for the case when pairs \((b,a) \) are rational has been studied for example in [11, 3, 10], and [5]. Also in [6] this space has been described for concrete nonextreme functions \(b \) that are not rational. Analogous result to that stated in Theorem 1 has been obtained in [3] for rational pairs (or their positive powers) where the corresponding point \(z_{0} \in \partial \mathbb{D} \) is a zero of order \(m - 1 \) of the rational
function a. One can easily check that in such a case there exists a $\lambda \in \partial \mathbb{D}$ for which $F_{\lambda}(1 - \bar{z}_0 z)^m \in H^2$ and the hypotheses of Theorem 1 are satisfied.

References

[1] C. Costara, T. Ransford, Which de Branges-Rovnyak spaces are Dirichlet spaces (and vice versa)?, J. Funct. Anal. 265 (2013), no. 12, 3204–3218.

[2] E. Fricain and J. Mashreghi, The Theory of $\mathcal{H}(b)$ Spaces, Vol. 1 and 2, Cambridge University Press 2016.

[3] E. Fricain, A. Hartmann, W. T. Ross, Concrete examples of $\mathcal{H}(b)$ spaces, Comput. Methods Funct. Theory 16 (2016), no. 2, 287–306.

[4] K. Hoffman, Banach Spaces of Analytic Functions, Prentice-Hall, Inc., Englewood Cliffs, N.J. 1962.

[5] B. Lanucha, M. Nowak, De Branges-Rovnyak spaces and generalized Dirichlet spaces, Publ. Math. Debrecen 91(2017), 171–184.

[6] B. Lanucha and M. T. Nowak, Examples of de Branges–Rovnyak spaces generated by nonextreme functions, Ann. Acad. Sci. Fenn. Math. 44 (2019), no. 1, 449—457.

[7] M.T. Nowak, P. Sobolewski, A. Soltysiak and M. Wołoszkiewicz-Cyll, On kernels of Toeplitz operators, arXiv:2002.12672.

[8] D. Sarason, Angular derivatives via Hilbert space, Complex Variables 10 (1988), 1–10.

[9] D. Sarason, Sub-Hardy Hilbert Spaces in the Unit Disk, in: University of Arkansas Lecture Notes in Mathematical Sciences, Vol. 10, J. Wiley & Sons, Inc., New York 1994.

[10] D. Sarason, Unbounded Toeplitz operators, Integral Equations and Operator Theory 61 (2008), 281–298.