Hydrodynamic simulations of long-scale-length plasmas for two-plasmon–decay planar-target experiments on the NIF

A A Solodov1,4, M J Rosenberg1, J F Myatt1, R Epstein1, S P Regan1, W Seka1, J Shaw1, M Hohenberger1, J W Bates2, J D Moody3, J E Ralph3, D P Turnbull3 and M A Barrios3

1Laboratory for Laser Energetics, University of Rochester, Rochester 250 East River Road, Rochester, NY 14623-1299, USA
2Naval Research Laboratory, Washington, DC, USA
3Lawrence Livermore National Laboratory, Livermore, CA, USA

asol@lle.rochester.edu

Abstract. The two-plasmon–decay (TPD) instability can be detrimental for direct-drive inertial confinement fusion because it generates high-energy electrons that can preheat the target, thereby reducing target performance. Hydrodynamic simulations to design a new experimental platform to investigate TPD and other laser–plasma instabilities relevant to direct-drive–ignition implosions at the National Ignition Facility are presented. The proposed experiments utilize planar plastic targets with an embedded Mo layer to characterize generation of hot electrons through Mo Kα fluorescence and hard x-ray emission. Different laser-irradiation geometries approximate conditions near both the equator and the pole of a polar-direct-drive implosion.

1. Introduction

Coronal plasmas of direct-drive–ignition designs with a baseline plastic ablator are characterized by long-density scale lengths $L_n \sim (500 \text{ to } 600) \ \mu m$. Understanding and controlling the impact of laser–plasma interaction (LPI) instabilities in such plasmas are key requirements of inertial confinement fusion (ICF) research. One of the instabilities driven by multiple laser beams that can exceed the instability threshold is two-plasmon decay (TPD) [1–4]. In TPD, the overlapping intense laser beams excite large-amplitude electron plasma waves in the region near the quarter-critical density (n_{qc}) surface, leading to extra laser absorption and hot-electron production. The extra absorption at n_{qc} may reduce, however, the laser intensity reaching critical density, thereby decreasing the hydroefficiency. The hot-electron generation from TPD may negatively affect target compression because of the possible preheat of the imploding shell, which must remain on a low adiabat for efficient compression. Other LPI instabilities, such as multibeam stimulated Raman scattering (SRS), can also lead to anomalous laser-energy dissipation before the n_{qc} surface and/or hot-electron generation.

To support direct-drive ICF experiments at the National Ignition Facility (NIF) in its indirect-drive beam configuration, the polar-direct-drive (PDD) concept was proposed [5]. The impact of laser parametric instabilities on the PDD implosions has been recently tested in experiments on the NIF [6]. To investigate the scaling of TPD-induced hot electrons to the laser intensity and plasma conditions, a series of planar experiments have also been conducted at the Omega Laser Facility [7]. The plasma parameters at the n_{qc} surface achieved in those experiments (as predicted by the simulations using the

4 Author to whom any correspondence should be addressed.
code *DRACO* [8]) are summarized in Table 1. The coronal plasma parameters in the NIF PDD--ignition design developed at the Laboratory for Laser Energetics [9] are also shown. Table 1 shows that all the parameters in the previous experiments [the overlapped laser intensity (I), density scale length (L_n), and electron temperature (T_e) at the n_{qc} surface] are still ~1.5 to 2× below that in the ignition design. The empirical TPD threshold parameter $\eta = I_{14}L_n\mu m/ (230T_e keV)$, often used to evaluate the effect of TPD [2,10], is ~2× less than in the ignition design. Importantly, cross-beam energy transfer (CBET) reduces the laser beam energy, reaching the n_{qc} surface in current NIF implosion experiments, so that current implosion experiments do not achieve ignition-relevant coronal plasma conditions.

Parameters at n_{qc} surface	OMEGA	Current NIF PDD	Ignition NIF PDD	Planar NIF
I (W/cm2)	$<4 \times 10^{14}$	$<4.5 \times 10^{14}$	8×10^{14}	$6 \times 8.5 \times 10^{14}$
L_n (μm)	$<350 \mu$m	$<350 \mu$m	600μm	$550 \times 600 \mu$m
T_e (keV)	<2.5 keV	<3.5 keV	5 keV	3.2 keV
η	<2.4	<2	4.7	4.5 to 5.5

In this paper, hydrodynamic simulations using the code *DRACO* are presented to show that coronal plasma conditions in the ignition PDD design can be approached in planar-target experiments on the NIF (Table 1). Since planar targets exhibit a very high absorption efficiency, CBET seeded by backscattered light represents a negligible source of losses in laser energy. It is speculated [6] that the TPD instability will be able to share decay waves most effectively along the polar axis and around the equatorial region of a PDD implosion. We present two planar-target simulations that differ by the NIF beam irradiation geometry: (1) irradiation by the NIF inner-cone beams from the south pole (23.5° and 30° incidence angle with respect to the target normal) and (2) irradiation by the outer-cone beams (44.5° and 50°). The higher-angle cones approximate irradiation conditions near the equator of a PDD implosion (where the beams come at similar higher angles), while the lower-angle cones correspond to those near the poles.

2. Proposed experimental configuration

The planar-target design is shown schematically in figure 1. The target is an ~5-mm-diam, ~500-µm-thick plastic CH disk. A 30-µm-thick, ~4-mm-diam Mo disk is buried 40 µm behind the target’s front surface. The target is oriented in the equatorial plane of the NIF chamber and irradiated by a subset of NIF beams from the south pole. Hot electrons generated by the LPI instability in the coronal plasma flow into the target. Time-resolved K_a line emission and the hard x-ray bremsstrahlung from Mo are used as the main hot-electron diagnostics. The Mo thickness is equal to the range of electrons of a typical energy ~120 keV. Hot electrons that are not stopped in Mo are slowed down in the back CH, so that electron recirculation is minimal in this experiment. The front CH layer is chosen to be thick enough to avoid a burnthrough to the Mo layer, while sufficiently thin to reduce collisional energy losses of hot electrons on the way toward the Mo. For the proposed target thickness, the laser-induced shock does not reach the back of the target and the target is not accelerated when the laser pulse is on. The simulations use laser pulses with a 2-ns linear power rise from zero to the maximum value and flattop after that, with a total duration of 5.5 to 7.5 ns.

The measurements can be performed using the NIF x-ray spectrometer [11] to measure the time-resolved Mo K_a emission and the filter-fluorescer x-ray diagnostic [12] to measure the time-resolved hard x-ray emission. NIF optical spectrometers can measure the half-frequency ($\omega_b/2$) harmonic of the incident light, which is a characteristic signature of TPD, and SRS spectra.
3. **DRACO simulations**

The simulations were performed using the Eulerian version of DRACO [8] in cylindrically symmetric geometry. DRACO includes a full 3-D laser ray trace, a flux-limited heat-conduction model (with a flux limiter \(f = 0.1 \)), multigroup diffusive radiation transport, and SESAME equation of state. For the low-Z plastic CH ablator, the Astrophysics Opacity Table was applied; the average-ion model, which is a collisional-radiative-equilibrium model, was used for the high-Z Mo.

The simulations used the actual measured focal spot shapes of the indirect-drive NIF beams. The beams are used at best focus and pointed at the averaged-over-time longitudinal position of the \(n_{eq} \) surface: 320 \(\mu \)m in front of the target surface. The simulations are designed to have similar plasma parameters at the \(n_{eq} \) surface, with the flattop total powers of 17 TW and 15 TW, durations of 5.5 ns and 7.5 ns in the inner- (32 beams at 23.5° and 30°) and outer-cone beam (64 beams at 44.5° and 50°) simulations, respectively. The duration of the flattop used in the inner-cone beam simulation is chosen to be the longest allowable while still avoiding laser damage on the NIF.

Figure 2 presents the electron density and electron temperature in the coronal plasma at \(t = 4.5 \) ns in the inner-cone beam simulation. The outer-cone beam simulation predicts similar results (with a slightly higher peak temperature of 3.15 keV) and is not shown.

Figure 3 shows the time evolution of the plasma parameters at the \(n_{eq} \) surface and TPD threshold parameter at \(r = 0 \) in both simulations. The density scale length and electron temperature are almost stationary at \(t > 2.5 \) ns with \(L_n = 500 \) to 600 \(\mu \)m and \(T_e \sim (3 \) to 3.3) keV. Laser intensity slowly decreases with time, with \(I = (5 \) to 6.5) \(\times 10^{14} \) W/cm\(^2\) in the inner-cone beam and \(I = (6 \) to 8) \(\times 10^{14} \) W/cm\(^2\) in the outer-cone beam simulations. Notably, the empirical TPD threshold is greatly exceeded in these simulations: \(\eta \sim 4 \) to 5.

![Figure 2](image1.png) **Figure 2**. The electron density and electron temperature in the coronal plasma at \(t = 4.5 \) ns in the inner-cone beam simulation.

![Figure 3](image2.png) **Figure 3**. Time evolution of the plasma parameters at the \(n_{eq} \) surface and TPD threshold parameter at \(r = 0 \) in the (a) inner- and (b) outer-cone beam simulations.

4. **Discussion and conclusions**

Overall, a similar evolution of the plasma parameters at the \(n_{eq} \) surface is predicted by DRACO simulations for the inner- and outer-cone beams. Planar-target experiments on the NIF, therefore, can study the effect of a beam’s incidence angle on TPD instability and hot-electron generation. Simulations of TPD using the three-dimensional laser–plasma interaction code LPSE [13] have been
performed using the NIF irradiation geometry and plasma parameters at the \(n_{\text{qc}} \) surface predicted by DRACO. LPSE models the TPD instability in a small volume of plasma (200 \(\mu \text{m} \times 30 \mu \text{m} \times 30 \mu \text{m} \)) close to the \(n_{\text{qc}} \) surface. LPSE simulations confirm the onset of TPD instability when the TPD threshold (\(\eta \)) exceeds unity in DRACO simulations, for both irradiation geometries. The mechanisms of saturation of the TPD instability (such as pump depletion) are currently under implementation in LPSE. LPSE will be used to study hot-electron production and laser absorption at the nonlinear stage of TPD.

Table 1 shows that the plasma parameters at the \(n_{\text{qc}} \) surface in the present simulations are closer to the PDD-ignition design than in the OMEGA and current NIF PDD implosion experiments, with the exception of the electron temperature. Particularly, the plasma density scale length is as long as in the ignition design. A relatively low temperature is explained by higher transversal thermoconduction losses in planar experiments compared to the spherical implosions. The laser power can be further increased, provided the optics damage threshold is not exceeded. This can allow one to study TPD at higher overlapped laser intensity (equal or exceeding that in the ignition design) and electron temperature at the \(n_{\text{qc}} \) surface. The power can be increased by up to a factor of 2 in the outer-beam configuration. The power can also be increased at the expense of decreased pulse duration in the inner-beam configuration.

In conclusion, hydrodynamic simulations suggest that planar-target experiments on the NIF can be a powerful tool in the study of TPD and other LPI processes in the plasma conditions relevant to the ignition direct-drive designs. While current NIF PDD experiments suffer from CBET, which reduces the laser absorption, planar NIF experiments can provide a first look at the effect of TPD in NIF PDD implosions when CBET has been mitigated. Subsequently, the NIF planar platform can be used to study TPD mitigation strategies by using different ablator materials.

Acknowledgment
This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944, the University of Rochester, and the New York State Energy Research and Development Authority. The support of DOE does not constitute an endorsement by DOE of the views expressed in this article.

References
[1] Rosenbluth M N 1972 Phys. Rev. Lett. 29 565
[2] Simon A, Short R W, Williams E A and Dewandre T 1983 Phys. Fluids 26 3107
[3] Michel D T, Maximov A V, Short R W, Hu S X, Myatt J F, Seka W, Solodov A A, Yaakobi B and Froula D H 2012 Phys. Rev. Lett. 109 155001
[4] Zhang J, Myatt J F, Short R W, Maximov A V, Vu H X, DuBois D F and Russell D A 2014 Phys. Rev. Lett. 113 105001
[5] Skupsky S, Marozas J A, Craxton R S, Betti R, Collins T J B, Delettrez J A, Goncharov V N, McKenty P W, Radha P B, Boehly T R et al. 2004 Phys. Plasmas 11 2763
[6] Hohenberger M, Radha P B, Myatt J F, LePape S, Marozas J A, Marshall F J, Michel D T, Regan S P, Seka W, Shvydky A et al. 2015 Phys. Plasmas 22 056308
[7] Yaakobi B, Chang P-Y, Solodov A A, Stoeckl C, Edgell D H, Craxton R S, Hu S X, Myatt J F, Marshall F J, Seka W et al. 2012 Phys. Plasmas 19 012704
[8] Radha P B, Collins T J B, Delettrez J A, Elbaz Y, Epstein R, Glebov V Y, Goncharov V N, Keck R L, Knauer J P, Marozas J A et al. 2005 Phys. Plasmas 12 056307
[9] Collins T J B, Marozas J A, Anderson K S, Betti R, Craxton R S, Delettrez J A, Goncharov V N, Harding D R, Marshall F J, McCreary R L et al. 2012 Phys. Plasmas 19 056308
[10] Seka W, Edgell D H, Myatt J F, Maximov A V, Short R W, Goncharov V N and Baldis H A 2009 Phys. Plasmas 16 052701
[11] Regan S P, Fournier K B, Bedzyk M J, Agliata A, Ayers S L, Barrios M A, Bell P M, Bradley D K, Chen H, Emig J A et al. 17–21 August 2014 presented at Optics and Photonics, San Diego, CA abstract 9211-15
[12] Hohenberger M, Albert F, Palmer N E, Lee J J, Döppner T, Divol L, Dewald E L, Bachmann B, MacPhee A G, LaCaille G et al. 2014 Rev. Sci. Instrum. 85 11D501
[13] Myatt J F, Solodov A A, Shaw J G, Maximov A V, Short R W, Zhang J, Hohenberger M, Regan S P, Rosenberg M J and Seka W 20–25 September 2015 presented at the Ninth International Conference on Inertial Fusion Sciences and Applications IFSA 2015 Seattle WA paper Fr.O.5.3