Mutation of GDP-Mannose-4,6-Dehydratase in Colorectal Cancer Metastasis

Kotarosumitomo Nakayama¹, Kenta Moriwaki¹, Taku Imai¹, Shinichiro Shinzaki¹, Yoshihiro Kamada¹, Kohei Murata², Eiji Miyoshi¹*

¹ Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Osaka, Japan, ² Department of Surgery, Suita Municipal Hospital, Osaka, Japan

Abstract
Fucosylation is a crucial oligosaccharide modification in cancer. The known function of fucosylation in cancer is to mediate metastasis through selectin ligand-dependent processes. Previously, we found complete loss of fucosylation in the colon cancer cell line HCT116 due to a mutation in the GDP-fucose synthetic enzyme, GDP-mannose-4,6-dehydratase (GMDS). Loss of fucosylation led to escape of cancer cells from tumor immune surveillance followed by tumor progression and metastasis, suggesting a novel function of fucosylation in tumor progression pathway. In the present study, we investigated the frequency of GMDS mutation in a number of clinical colorectal cancer tissue samples: 81 samples of primary colorectal cancer tissue and 39 samples of metastatic lesion including liver and lymph node. Four types of deletion mutation in GMDS were identified in original cancer tissues as well as metastatic lesions. The frequency of GMDS mutation was slightly higher in metastatic lesions (12.8%, 5/39 samples) than in original cancer tissues (8.6%, 7/81 samples). No mutation of the GMDS gene was observed in normal colon tissues surrounding cancer tissues, suggesting that the mutation is somatic rather than in the germline. Immunohistochemical analysis revealed complete loss of fucosylation in three cases of cancer tissue. All three cases had GMDS mutation. In one of three cases, loss of fucosylation was observed in only metastatic lesion, but not in its original colon cancer tissue. These data demonstrate involvement of GMDS mutation in the progression of colorectal cancer.

Introduction
Fucosylation is one of the most important oligosaccharide modifications in cancer and inflammation [1]. Fucosylation is regulated by various fucosyltransferases, guanosine 5’-diphosphate (GDP-fucose synthetic enzymes, and GDP-fucose transporters. Most GDP-fucose is synthesized by the de novo pathway in which GDP-mannose is transformed into GDP-fucose by GDP-mannose-4,6-dehydratase (GMDS) and GDP-1-keto-6-deoxymannose-3,5-epimerase-4-reductase (FX) [2–4]. Several antibodies that recognize fucosylated glycoproteins or glycolipids in sera of patients with cancer have long been used as tumor markers [5]. The alpha-fetoprotein (AFP)-L3 fraction, which is fucosylated AFP, has also been used clinically as a tumor marker for hepatocellular carcinoma since 1996 in Japan and since 2005 in the United States [6]. In general, fucosylation levels are increased during carcinogenesis of several kinds of cancer [7,8]. Previously, however, we found that complete loss of fucosylation due to deletion mutation of GMDS gene allowed colon cancer cells to escape from natural killer cell-mediated tumor surveillance through modulation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) signaling [9], suggesting that a novel metastatic pathway dependent on loss of fucosylation. GMDS mutation has been observed in colon (HCT116, LS174T, NCI-H716) and gastric (SCH) cancer cell lines as well as in human colon and ovarian cancer tissues [9]. Interestingly, GMDS mutation was not found in any adjacent normal tissues, suggesting that GMDS mutation was somatic. If loss of fucosylation is critical for tumor metastasis during colorectal cancer progression, the frequency of GMDS mutation would likely be increased in metastatic lesions. In this study, we investigated the frequency of GMDS mutation in metastatic colorectal cancer tissues such as liver and lymph node.

Materials and Methods
Ethics Statement
The protocol and informed consent were approved by institutional review boards at Osaka University Graduate School of Medicine. Written informed consent was obtained from all patients, and the study was conducted in accordance with the Helsinki Declaration.

Tissue Samples
Thirty-one samples of metastatic liver cancer, 2 samples of metastatic other cancers (gastric cancer, thyroid cancer) and 81 samples of the original colon cancer tissues derived from patients with colorectal cancer who underwent primary resection at the Department of Surgery at Osaka Medical Center for Cancer and Cardiovascular Diseases from 1995 to 2005 were stored at −80°C.
Screening of GMDS Mutation with Reverse Transcription-polymerase Chain Reaction (RT-PCR) Analysis

Total RNA was extracted from frozen tissues according to a standard protocol using TRIzol (Invitrogen, Carlsbad, CA). The extracted RNA was reverse-transcribed using Super Script™ III reverse transcriptase and the Oligo dT primer (Invitrogen). The PCR primers for GMDS were as follows: F, 5’-GCAAGCTTAAAATGGCA- CACGGACCGAGACGAC-3’ and R, 5’-GCGGATCCTCAGG- CATTGGGGTTTGTG-3’. Glyceraldehydes-3-phosphate dehydrogenase (GAPDH) was used as an internal control, and the following PCR primers were used to amplify GAPDH: F, 5’-AACGGGAAGCTTGTCATCAAT-3’ and R, 5’-GCCAGT- GAGCTCCTCCGTTCA-3’. Sequence analysis was performed with an ABI PRISM 3100 genetic analyzer (Applied Biosystems, Foster City, CA).

Immunohistochemical Studies

Cancer and normal colon tissues were fixed with 10% formalin/phosphate-buffered saline (PBS) and stored as paraffin-embedded samples. The 4μm tissue sections were de-waxed, and endogenous peroxidase activity was blocked by treatment with 0.3% hydrogen peroxide in methanol for 10 min. After washing twice with PBS, the samples were incubated with Tris buffered saline and Tween 20 containing 5% bovine serum albumin overnight at 4°C. The samples were incubated with biotinylated *Aleuria aurantia* lectin (AAL; 2.0 μg/ml) or rabbit anti-GMDS antibody (0.3 μg/ml) for 1 hour at room temperature. Samples were washed three times with PBS and subsequently incubated with the ABC kit (Vector Labs, Burlingame, CA) for AAL staining or with Dako Cytohome Envision® System-HRP Labeled Polymer Anti-Rabbit antibody (Dako, Glostrup, Denmark) for GMDS staining at room temperature for 30 min. After samples were washed three times with PBS, positive staining was visualized using diaminobenzidine (Dako).

Table 1. Clinical parameters of patients in this study.

Clinical parameter	Cases (n = 117)
Sex (men/women)	69/48
Age (MEAN ± SD)	66.2±11.5
Clinical stage	
0	4 (3%)
I	16 (14%)
II	41 (35%)
III	12 (10%)
IIIb	6 (5%)
IV	38 (32%)
Primary tumor site	
Colon	106 (91%)
Rectum	11 (9%)

doi:10.1371/journal.pone.0070298.t001

Results

GMDS Mutation in Colorectal Cancer

To examine the frequency of GMDS mutation in original and metastatic colorectal cancers, total RNA was extracted from 81 samples of human original colorectal cancer tissues, 39 samples of metastatic cancer tissues, and adjacent normal colon tissues and was subjected to RT-PCR analysis. Four shorter PCR products were found in several original and metastatic cancer tissues (Fig. 1). Detailed sequence analysis revealed different types of deletion of GMDS exons: exons 2–4, 5–7, 2–7, and 3–7. Two of these mutations, deletion of exons 5–7 and exons 2–4, were identical to those in the HCT116 and SCL cell lines, respectively. Deletions of exons 2–7 and 3–7 of the GMDS gene represent novel mutations identified in this study. The GMDS mutations in the metastatic lesions were consistent with those from the original colorectal cancer tissues. Interestingly, the homozygote of GMDS mutation without normal type of GMDS transcript was found in one metastatic liver cancer tissue (case 1 in Fig. 1). The frequency of GMDS mutation in metastatic lesions was 12.3% (5/39 samples): 12.9% (4/31 samples) in liver, 16.7% (1/6 samples) in lymph node, and 0% (0/2 samples) in other organs (Table 2). A slightly lower frequency 8.6% (7/81 samples) of GMDS mutation was observed in the original colon cancer tissues compared to their metastatic lesions even though the difference was not statistically significant (p<0.10, by χ² test). No GMDS mutation was observed in 24 samples of adjacent normal colon tissues.

Immunohistochemistry

To examine cellular fucosylation level in these cancer tissues, 33 cases of original colorectal cancer tissues and four cases of their metastatic lymph nodes were stained with anti-GMDS antibody and a fucosylated glycan-binding lectin, AAL. RT-PCR analyses showed heterozygous GMDS mutation in five of the 33 cases. Twenty-eight colorectal cancer tissues without GMDS mutation showed positive staining for both GMDS and AAL. Representative pictures are shown in Fig. 2A (case-N). In contrast, two of five cases of the original cancer with GMDS mutation showed negative staining for both GMDS and AAL (case 4 and 6 in Fig. 2A). Interestingly, one of five cases with GMDS mutation showed negative staining for both GMDS and AAL in the metastatic lymph node in spite of positive staining in its original colon cancer tissue (case L-6 in Fig. 2B and C).

Discussion

In previous our study, the GMDS mutation was identified by gDNA sequencing in two out of 100 cases of human colorectal cancer tissue and by RT-PCR analysis in five out of 10 cases of microdissected human ovarian cancer tissue. In this study, we further demonstrated the GMDS mutation in several human original and metastatic colorectal cancer tissues. The frequency of GMDS mutation was slightly higher in metastatic lesions (12.8%) than in the original cancer tissues (8.6%). Interestingly, in one case (L-6), loss of fucosylation was observed in the metastatic lymph node but not in its original cancer tissue (Fig. 2B and C). These results suggest that GMDS mutation is involved in the progression of colorectal cancer. The number of cases with GMDS mutation was not sufficient to examine the statistical correlation between GMDS mutation and disease activity with any certainty. Further
analysis with more number of samples will be required to
determine the correlation between GMDS mutation and colon
cancer progression. Four out of nine patients with GMDS
mutation (case 1–8 and case L-6) were subjected to surgical
operation within 3 years after diagnosis. Thus, a follow-up study is
also required to investigate recurrence of metastasis.

Although most of the GMDS mutations observed in this study
were heterozygous, homozygous deletion mutation was observed
in one metastatic liver cancer tissue (case 1, Fig. 1). Since cancer
tissues consist of a variety of cells, including not only cancer cells
but also interstitial cells, it is difficult to demonstrate whether
cancer cells harbor a heterozygous or homozygous type of
mutation by RT-PCR analysis using whole cancer tissues. Thus,
the possibility that cancer cells have a homozygous GMDS
deletion mutation in tissues in which the heterozygous deletion
mutation was observed remains. In fact, expression of GMDS and
fucosylated glycans were barely detected by immunohistochemical

Tissue	Samples	Frequency (%)
Adjacent normal colon	0/24	0.0
Primary cancer	7/81	8.6
Metastasis	5/39	12.8
Lymph node	1/6	16.7
Liver	4/31	12.9
Others	0/2	0.0

do:10.1371/journal.pone.0070298.t002

Figure 1. GMDS mutations in the original colorectal cancers and metastatic lesions. GMDS mutations were observed in seven cases of
original colorectal cancer tissues and five cases of metastatic lesions. Arrows indicate bands representing GMDS mutation: deletion of exons 2–4 (A,
876 bp), 5–7 (B, 693 bp), 2–7 (C, 450 bp), and 3–7 (D, 495 bp). Arrowheads indicate wild type GMDS (*) and non-specific (**) bands. L-6 indicates one
of the cases with metastatic lymph nodes. N, adjacent normal tissue; T, tumor; LN, lymph node.
doi:10.1371/journal.pone.0070298.g001

doi:10.1371/journal.pone.0070298.t002
asation, and colonization [18]. Fucosylation could have a different role in each step. Fucosylation in cancer cells needs to be tightly regulated and its dysregulation will cause further cancer progression and metastasis. In conclusion, the present study demonstrated that GMDS mutation should be involved in the progression of colorectal cancer. Next-generation DNA sequence analysis may give us more information about GMDS mutation in colorectal cancer.

Acknowledgments

This study was performed as a research program of the Project for Development of Innovative Research on Cancer Therapeutics (P-Direct),
Ministry of Education, Culture, Sports, Science and Technology of Japan and was partially supported by the New Energy and Industrial Technology Development Organization (NEDO) as a part of the Developing Technology Project for Implementing Sugar Chain Functions in Japan. This work was also supported in part by the Global COE Program of Osaka University funded by the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author Contributions
Conceived and designed the experiments: EM. Performed the experiments: KN TI. Analyzed the data: KN KM YK SS. Contributed reagents/materials/analysis tools: KM. Wrote the paper: KN KM YK.

References
1. Miyoshi E, Moriwaki K, Nakagawa T (2008) Biological function of fucosylation in cancer biology. Journal of biochemistry 143: 725–729.
2. Ohyama C, Smith PL, Angata K, Fukuda MN, Lowe JB, et al. (1998) Molecular cloning and expression of GDP-D-mannose-4,6-dehydratase, a key enzyme for fucose metabolism defective in Lec13 cells. The Journal of biological chemistry 273: 14582–14587.
3. Sullivan FX, Kumar R, Kriz R, Stahl M, Xu GY, et al. (1998) Molecular cloning of human GDP-mannose 4,6-dehydratase and reconstitution of GDP-fucose biosynthesis in vitro. The Journal of biological chemistry 273: 8193–8202.
4. Tonetti M, Surla L, Biss A, Benatti U, De Flora A (1996) Synthesis of GDP-L-fucose by the human FX protein. The Journal of biological chemistry 271: 27274–27279.
5. Saymender J (1986) Clinical usefulness of three monoclonal antibody-defined tumor markers: CA 19-9, CA 50, and CA 125. Tumour biology: the journal of the International Society for Oncodevelopmental Biology and Medicine 7: 333–342.
6. Aoyagi Y, Isemura M, Suzuki Y, Sekine C, Soga K, et al. (1985) Fucosylated alpha-fetoprotein as marker of early hepatocellular carcinoma. Lancet 2: 1353–1354.
7. Sakuma K, Fujimoto I, Hitoshi S, Tanaka F, Ikerda T, et al. (2006) An N-glycan structure correlates with pulmonary metastatic ability of cancer cells. Biochemical and biophysical research communications 340: 829–835.
8. Takahashi T, Ikerda Y, Tateishi A, Yamasaki Y, Ishikawa M, et al. (2000) A sequence motif involved in the donor substrate binding by alpha1,6-fucosyltransferase: the role of the conserved arginine residues. Glycobiology 10: 503–510.
9. Moriwaki K, Noda K, Fukuwaka Y, Ohshima K, Uchiyama A, et al. (2009) Deficiency of GMDS leads to escape from NK cell-mediated tumor surveillance through modulation of TRAIL signaling. Gastroenterology 137: 189–198, 198 e181–182.
10. Kannagi R, Yin J, Miyazaki K, Iizawa M (2008) Current relevance of incomplete synthesis and neo-synthesis for cancer-associated alteration of carbohydrate determinants-Hakomori’s concepts revisited. Biochim Biophys Acta 1780: 525–531.
11. Kawamura YI, Toyota M, Koshima R, Hagiwara T, Suzuki H, et al. (2006) DNA hypermethylation contributes to incomplete synthesis of carbohydrate determinants in gastrointestinal cancer. Gastroenterology 133: 142–151 e143.
12. Moriwaki K, Narisada M, Imai T, Shinzaki S, Miyoshi E (2010) The effect of epigenetic regulation of fucosylation on TRAIL-induced apoptosis. Glycoconj J 27: 649–659.
13. Reguigne-Arnould I, Couillin P, Mollicone R, Faure S, Betcher A, et al. (1995) Relative positions of two clusters of human alpha-L-fucosyltransferases in 19q (FUT1-FUT2) and 19p (FUT6-FUT3-FUT5) within the microsatellite genetic map of chromosome 19. Cytogenet Cell Genet 71: 130–142.
14. Kelly RJ, Ernst AK, Larsen RD, Bryant JT, Robinson JS, et al. (1994) Molecular basis for H blood group deficiency in Bombay (Oh) and para-Bombay individuals. Proc Natl Acad Sci U S A 91: 5843–5847.
15. Yakubenia S, Wied MK (2006) Leukocyte adhesion deficiency II. Advances and open questions. FEBS J 273: 4390–4398.
16. Luhn K, Wied MK, Eckhardt M, Gerhardt-Schahn R, Vestweber D (2004) The gene defective in leukocyte adhesion deficiency II encodes a putative GDP-fucose transporter. Nat Genet 28: 69–72.
17. Lubke T, Marquardt T, Ezioni A, Hartmann E, von Figura K, et al. (2001) Complementation cloning identifies CDG-He, a new type of congenital disorders of glycosylation, as a GDP-fucose transporter deficiency. Nat Genet 28: 73–76.
18. Gupta GP, Massague J (2006) Cancer metastatic building a framework. Cell 127: 679–695.