Development of an Effective Whole-Spore Vaccine To Protect against Microsporidial Gill Disease in Rainbow Trout (Oncorhynchus mykiss) by Using a Low-Virulence Strain of Loma salmonae

D. J. Speare,* R. J. F. Markham, and N. J. Guselle

Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada C1A 4P3

Received 5 September 2007/Returned for modification 2 October 2007/Accepted 7 October 2007

In determining the effective vaccine spore dose of a low-virulence strain of Loma salmonae to limit microsporidial gill disease in trout, we found that fish receiving 10^5 to 10^6 killed spores had the best protection against experimental infection, with 85% fewer xenomas in their gills than in the controls. Intraperitoneal delivery of the vaccine was effective, and the addition of adjuvant did not improve vaccine performance against this disease-causing microsporidian.

Microsporidial gill disease of salmonids (MGDS) is among the most significant infectious diseases affecting aquaculture-raised chinook salmon in Canada; the disease most often affects salmon in their second summer of marine cultivation when they are nearing market weight, and outbreaks can lead to a cumulative mortality rate exceeding 30% (3). Microsporidia are a diverse group of unicellular, obligate intracellular, highly reduced parasites of many types of animals. Once considered to be the most primitive eukaryotes, microsporidians are now considered to be highly specialized fungi whose life cycles include a proliferative merogonic stage, followed by a sporogonic stage resulting in small environmentally resistant infective spores (2). During MGDS, sporogony occurs within the pillar and endothelial cells of the gill. These cells undergo hypertrophy, forming a xenoma composed primarily of parasite spores. The rupture of the xenoma and the release of spores cause severe and persistent gill inflammation; affected fish display signs of anoxia (3). Clinical disease is correlated with the numbers of xenomas within the gills (14). Therapeutic drugs against microsporidia are rarely successful, and none are licensed for use in aquaculture; however, recent findings have demonstrated that a protective cell-mediated immune response can be evoked (7). A low-virulence strain of Loma salmonae (the SV strain) has been discovered (9), and in preliminary laboratory studies, salmonids receiving a single exposure of killed spores of the low-virulence strain with or without adjuvant did not improve vaccine performance against this disease-causing microsporidian.

Certified-disease-free rainbow trout (280 fish, 20 to 30 g each) were tagged and placed in eight treatment groups, including the control group (which received only a saline injection) and groups receiving various vaccine doses of 10^2 to 10^6 spores per fish with or without Freund’s incomplete adjuvant (FIA). Eight fish were examined at each sampling period for each treatment group.

TABLE 1. XCPGA reduction in vaccinated trout compared to control (saline-injected) trout at various weeks postexposure to the OA strain of L. salmonae

Vaccine group dose	Vaccine-associated XCPGA reduction (%) at wk:*			
	6	7	8	9
10^2 spores	37	77	93	96
10^3 spores	93	93	67	92
10^4 spores	88	92	97	95
10^5 spores + FIA	91	97	92	97
10^6 spores	95	96	83	91
10^6 spores + FIA	69	96	57	95

* Eight fish were examined at each sampling period for each treatment group.

* Corresponding author. Mailing address: Atlantic Veterinary College, 550 University Avenue, Charlottetown, PEI, Canada C1A 4P3. Phone: (902) 566-0807. Fax: (902) 566-0851. E-mail: speare@upei.ca.

© 2007, American Society for Microbiology. All Rights Reserved.

1652
significantly fewer xenomas developed in those fish vaccinated at several spore dose ranges (10^3 to 10^5 spores without adjuvant and 10^5 with adjuvant) (Fig. 1). Higher doses with or without adjuvant were less effective. The vaccine-associated XCPGA exceeded 85% in groups vaccinated with 10^3 to 10^5 spores per fish (Table 1).

To date, although parasitic diseases are common in aquaculture, no parasite vaccines are commercially available. Instead, antiparasitic pharmaceuticals are used, and this raises concerns about drug residues as these fish enter the human food supply (13). Although some recent advances in discovering chemotherapeutic agents against MGDS have been made, none have shown the degree of XCPGA reduction noted herein for vaccination (16). The current study demonstrates the efficacy of a killed-whole-spore vaccine preparation with a known spore dose against MGDS utilizing a recently discovered low-virulence strain of *L. salmonae*. Previous work fore-shadowed the efficacy of this approach. Salmonids which have recovered from experimental MGDS infections, as well as those immunized with live spores of either the virulent or low-virulence strains of *L. salmonae*, develop a cell-mediated immune response which becomes protective against infection by 4 weeks after exposure (8). Immunity appears to block the transfer of the parasite to the gill (11) by ablating the infection during merogony within subendocardial macrophages. In the current trial, although low numbers of xenomas did form on the gills of fish vaccinated with killed spores, the dramatic reduction in xenomas is important and would markedly reduce the likelihood of clinical expression of this disease even when the fish are reared in regions where MGDS is endemic. Given that *L. salmonae* is endemic within the marine coastal environment where salmon are raised in net pens (4), a vaccine administered during the freshwater hatchery phase of cultivation is recommended.

Until recently, despite safety concerns, conventional killed or modified pathogens were the only vaccines licensed for commercial use with farmed salmon (1). The use of whole spores as the basis for vaccine preparation is a relatively simple approach which is also being pursued for active immunization against *Encephalitozoon* microsporidial infections of mammals (12). In the case of MGDS, spores are easily harvested and purified from the gills of infected fish, and the use of a killed low-virulence strain of this parasite as the basis for the vaccine reduces the risks associated with its use. Although several studies have demonstrated humoral responses of fish and mammals to various microsporidian infections (5, 12), the MGDS vaccine is the first developed against a disease-causing microsporidian.

REFERENCES

1. Carrington, A. C., and C. J. Secombes. 2006. A review of CpGs and their relevance to aquaculture. Vet. Immunol. Immunopathol. 112:87–110.
2. Keeling, P. J., and N. M. Fast. 2002. Microsporidia: biology and evolution of highly reduced intracellular parasites. Annu. Rev. Microbiol. 56:93–116.
3. Kent, M. L., and D. J. Speare. 2005. Review of the sequential development of *Loma salmonae* (Microsporida) based on experimental infections with rainbow trout (*Oncorhynchus mykiss*) and chinook salmon (*O. tshawytscha*). Folia Parasitol. 52:1–6.
4. Kent, M. L., G. S. Traxler, D. Kieser, J. Richard, S. C. Dawe, R. W. Shaw, G. Proasperi-Porta, J. Ketcheson, and T. P. T. Evelyn. 1998. Survey of salmonid pathogens in ocean-caught fishes in British Columbia, Canada. J. Aquat. Anim. Health 10:211–219.
5. Leiro, J., M. Ortega, J. Estevé, M. T. Santamarina, M. L. Sanmartín, and F. M. Ubeira. 1996. The humoral immune response of turbot, *Scophthalmus maximus* L., to spore-surface antigens of microsporidian parasites. Vet. Immunol. Immunopathol. 55:235–242.
6. Ramsay, J. M., D. J. Speare, J. G. Sanchez, and J. Daley. 2001. The transmission potential of *Loma salmonae* (Microspora) in the rainbow trout, *Oncorhynchus mykiss*.
Oncorhynchus mykiss (Walbaum), is dependent upon the method and timing of exposure. J. Fish Dis. 24:453–460.
7. Rodriguez-Tovar, L. E., R. J. F. Markham, D. J. Speare, and J. Sheppard. 2006. Cellular immunity in salmonids infected with the microsporidal parasite Loma salmonae or exposed to non-viable spores. Vet. Immunol. Immunopathol. 114:72–83.
8. Rodriguez-Tovar, L. E., J. A. Becker, R. J. F. Markham, and D. J. Speare. 2006. Induction time for resistance to microsporidial gill disease caused by Loma salmonae following vaccination of rainbow trout (Oncorhynchus mykiss) with a spore-based vaccine. Fish Shellfish Immunol. 21:170–175.
9. Sanchez, J. G., D. J. Speare, R. J. F. Markham, and S. R. M. Jones. 2001. Isolation of a Loma salmonae variant: biological characteristics and host range. J. Fish Biol. 59:427–441.
10. Sanchez, J. G., D. J. Speare, R. J. F. Markham, and S. R. M. Jones. 2001. Experimental vaccination of rainbow trout against Loma salmonae using a live low-virulence variant of L. salmonae. J. Fish Biol. 59:442–448.
11. Sanchez, J. G., D. J. Speare, and R. J. F. Markham. 2001. Altered tissue distribution of Loma salmonae: effects of natural and acquired resistance. J. Fish Dis. 24:33–40.
12. Sobottka, I., F. Igluaer, T. Schuler, C. Schmetz, G. S. Visvesvara, J. Albrecht, D. A. Schwartz, N. J. Pieniazek, K. Bartscht, R. Laufs, and J. Schottelius. 2001. Acute and long-term humoral immunity following active immunization of rabbits with inactivated spores of various Encephalitozoon species. Parasitol. Res. 87:1–6.
13. Sommerset, I., B. Krossoy, E. Biering, and P. Frost. 2005. Vaccines for fish in aquaculture. Expert Rev. Vaccines 4:89–191.
14. Speare, D. J., G. Ritter, and H. Schmidt. 1998. Quinine hydrochloride treatment delays xenoma formation and dissolution in rainbow trout challenged with Loma salmonae. J. Comp. Pathol. 119:459–465.
15. Speare, D. J., H. J. Beaman, and J. Daley. 1999. Effect of water temperature manipulation on a thermal unit predictive model for Loma salmonae. J. Fish Dis. 22:277–283.
16. Speare, D. J., F. Athanassopoulou, F. Daley, and J. G. Sanchez. 1999. A preliminary investigation of alternatives to fumagillin for the treatment of Loma salmonae infection in rainbow trout. J. Comp. Pathol. 121:241–248.