A Criterion for Univalent Meromorphic Functions

El Moctar Ould Beiba

D´epartement de Math´ematiques et Informatique
Facult´e des Sciences et Techniques
Universit´e de Nouakchott Al Aasriya
B.P 5026, Nouakchott, Mauritanie

Abstract. Let $D = \{z \in \mathbb{C}, |z| < 1\}$ and $A(p)$ be the set of meromorphic functions in D possessing only simple pole at the point p with $p \in (0, 1)$.

The aim of this paper is to give a criterion by mean of conditions on the parameters $\alpha, \beta \in \mathbb{C}$, $\lambda > 0$ and $g \in A(p)$ for functions in the class denoted $P_{\alpha, \beta}(p; \lambda)$ of functions $f \in A(p)$ satisfying a differential inequality of the form

$$\left| \alpha \left(\frac{z}{f(z)} \right)^{\prime\prime} + \beta \left(\frac{z}{g(z)} \right)^{\prime\prime} \right| \leq \lambda \mu, \quad z \in D$$

to be univalent in the disc D, where $\mu = \left(\frac{1-p}{1+p} \right)^2$.

1. Introduction

Let M be the set of meromorphic functions in the region $\Delta = \{\zeta \in \mathbb{C}, |\zeta| > 1\} \cup \{\infty\}$ with the following Laurent development

$$F(\zeta) = \zeta + \sum_{n=0}^{\infty} b_n \zeta^{-n}, \quad \zeta \in \Delta. \quad (1.1)$$

Let Σ be the subset of M consisting of univalent functions. A is the set of analytic functions f in the unit disc D normalized by the conditions $f(0) = f'(0) - 1 = 0$. The subset of A consisting of univalent functions is denoted by S. If $f \in A$, then the function F defined by

$$F(\zeta) = \frac{1}{f(\frac{1}{\zeta})} \quad (1.2)$$

belongs to M and f is univalent in D if and only if F is univalent in Δ. In [1], Aksentév proved that a function F in M is univalent if its derivative F' satisfies the differential inequality:

$$|F'(\zeta) - 1| < 1, \quad \zeta \in \Delta. \quad (1.3)$$

2010 Mathematics Subject Classification. Primary 30C45; Secondary 30D15

Keywords. Meromorphic Functions, Univalent Functions

Received: 01 August 2018; Accepted: 20 September 2018

Communicated by Dragan S. Djordjević

Email address: elbeiba@yahoo.fr (El Moctar Ould Beiba)
If F and f are as in (1.2) then the condition (1.3) is equivalent to
\[
\left| \left(\frac{z}{f(z)} \right) f'(z) - 1 \right| < 1, \quad z \in \mathbb{D}.
\] (1.4)

Hence, by virtue of the Aksent`ve criterion, a criterion for a function $f \in \mathcal{A}$ with $\frac{f'(z)}{z} \neq 0$ for $|z| < 1$ to be univalent is stated as follows:
\[
\left| U_f(z) \right| < 1, \quad z \in \mathbb{D},
\] (1.5)

where $U_f(z) := \left(\frac{z}{f(z)} \right)^2 f'(z) - 1$.

Ozaki and Nunokawa proved in [11], without using the theorem of Aksent`ev, that functions in \mathcal{A} satisfying (1.4) are univalent.

For $\lambda \in (0, 1]$, let $\mathcal{U}(\lambda)$ be the subclass of $\mathcal{U} = \mathcal{U}(1)$ defined by
\[
\mathcal{U}(\lambda) = \{ f \in \mathcal{A}, \left| U_f(z) \right| < \lambda, \ z \in \mathbb{D} \}.
\] (1.6)

The classes $\mathcal{U}(\lambda)$ have been extensively studied by many authors and the results obtained cover a wide range of properties (starlikeness, convexity, coefficients properties, radius properties, etc.). For more details on this subject see [4] - [8] and references therein.

In their article [7], Obradovi´c and Ponnusamy considered the subclass $\mathcal{P}_{\alpha,\beta,\gamma}(\lambda)$ of functions f in \mathcal{A} such that $\frac{f'(z)}{z} \neq 0$ for $z \in \mathbb{D}$ and satisfying the differential inequality
\[
\left| \frac{\alpha}{f(z)} + \frac{\beta}{g(z)} \right| \leq \lambda, \quad z \in \mathbb{D}
\] (1.7)

where $\alpha \neq 0, \beta$ are given complex numbers and g is a given function in \mathcal{A} with $\frac{g(z)}{z} \neq 0$ in \mathbb{D}. One of their main results was the following theorem:

Theorem 1.1. Let $g \in \mathcal{A}$ with $\frac{g'(z)}{z} \neq 0$ in \mathbb{D} and $K = \sup_{z \in \mathbb{D}} \left| (\frac{z}{g(z)})^2 g'(z) - 1 \right|$. Then we have
\[
\mathcal{P}_{\alpha,\beta,\gamma}(2 \lambda |\alpha| - 2K |\beta|) \subset \mathcal{U}(\lambda).
\] (1.8)

In particular, we have
\[
\mathcal{P}_{\alpha,\beta,\gamma}(2 |\alpha| - 2K |\beta|) \subset \mathcal{U}(1).
\] (1.9)

Let $p \in (0, 1)$ and $\mathcal{A}(p)$ be the set of meromorphic functions in \mathbb{D} normalized by $f(0) = f'(0) - 1 = 0$ and possessing only simple pole at the point p. Each function f in $\mathcal{A}(p)$ has a Laurent expansion of the form
\[
f(z) = \frac{m}{z-p} + \frac{m}{p^2 + 1} \sum_{n=2}^{\infty} a_n z^n, \quad z \in \mathbb{D} \setminus \{p\}, \ m \neq 0,
\] (1.10)

where m is the residue of f at p ($m \neq 0$). Our investigations will concern functions in $\mathcal{A}(p)$ satisfying the condition
\[
\left| 1 + \frac{p^2}{m} \right| < 1.
\] (1.11)

In a recent paper [2], Bhowmik and Parveen introduced, for $0 < \lambda \leq 1$, a meromorphic analogue of the class $\mathcal{U}(\lambda)$, namely the class $\mathcal{U}_\mu(\lambda)$ consisting of functions f in $\mathcal{A}(p)$ satisfying
\[
\left| U_f(z) \right| \leq \lambda \mu, \quad z \in \mathbb{D},
\] (1.12)
where

\[U_f(z) = \left(\frac{z}{f(z)} \right)^2 f'(z) - 1, \quad z \in D \quad \text{and} \quad \mu = \frac{(1 - p)^2}{1 + p} \quad (1.13) \]

They obtained some results for the class \(\mathcal{U}_p(\lambda) \), in particular they proved the following theorem:

Theorem 1.2. (Theorem 1, [2]) Let \(f \) be of the form (1.10). If

\[
\left| \left(\frac{z}{f(z)} \right)^2 f'(z) - 1 \right| \leq \left(\frac{1 - p}{1 + p} \right)^2, \quad z \in D
\]

then \(f \) is univalent in \(D \).

Note that Ponnusamy and Wirths have proved by elegant method (Theorem 2, [12]), that functions in \(\mathcal{U}_p(\lambda) \) are univalent on the closure of the disc \(D \).

The main object of the present paper is to give, for the class \(\mathcal{A}(p) \), an analog result to the Theorem 1.1 obtained for the class \(\mathcal{A} \).

2. Main Results

We start by some “round trip” results between the classes \(\mathcal{A}(p) \) and \(\mathcal{A} \).

Proposition 2.1. Let \(f(z) = \frac{m}{z - p} + \frac{m + p}{p^2} z + \sum_{n=2}^{\infty} a_n z^n \) be a function in \(\mathcal{A}(p) \) such that \(\frac{f(z)}{z} \neq 0 \) in \(D \) and \(-c\) be an omitted value by \(f \). Let \(g \) be defined by

\[
g(z) = \frac{c f(z)}{c + f(z)} \quad (2.1)
\]

Then \(g \in \mathcal{A}(p) \) and we have

\[
g(p) = c, \quad g'(p) = -\frac{c^2}{m} = -\frac{g^2(p)}{m}, \quad (2.2)
\]

\[
U_f(p) = -1 - \frac{p^2}{m} \quad (2.3)
\]

and

\[
\lim_{z \to p} U_f(z) = U_f(p) = -1 - \frac{p^2}{m}. \quad (2.4)
\]

Proof. Since \(f \) is holomorphic in \(D \setminus \{ p \} \), \(g \) is also holomorphic in \(D \setminus \{ p \} \). It is easy to check that \(g(0) = g'(0) - 1 = 0 \).

For the value of \(g(p) \), we have

\[
g(p) = \lim_{z \to p} g(z) = \lim_{z \to p} \frac{c f(z)}{c + f(z)} = \lim_{z \to p} \frac{c (z - p) f(z)}{c(z - p) + (z - p) f(z)} = \frac{c m}{m} = c.
\]

To conclude that \(g \in \mathcal{A}(p) \), we have to prove that \(g'(p) \) exists.

We have, by (2.1, that

\[
\lim_{z \to p} \frac{g(z) - g(p)}{z - p} = \lim_{z \to p} \frac{g(z) - c}{z - p} = \lim_{z \to p} \frac{-c^2}{c(z - p) + (c - p) f(z)} = -\frac{c^2}{m}.
\]
Thus \(g'(p) \) exists and its value gives (2.2). Now, taking (2.2) in the expression of \(U_p \), we get
\[
U_p(p) = -\left(\frac{p^2 c}{m} - 1\right) = -1 - \frac{p^2}{m}.
\]

To prove (2.4), we have by a little calculation
\[
U_f(z) = U_1(z), \quad z \in \mathbb{D} \setminus \{p\}.
\]
(2.5)

Thus we have
\[
\lim_{z \to p} U_f(z) = U_1(p)
\]
which yields, by (2.3), the desired result. \(\square \)

Remark 2.2. We obtain from (2.4) that a necessary condition for \(f \) in \(\mathcal{A}(p) \) to be in \(\mathcal{U}_p(\lambda) \) is that
\[
|1 + \frac{p^2}{m}| \leq \lambda \mu,
\]
where \(m \) is the residue of \(f \) at \(p \).

Proposition 2.3. Let \(p \in (0, 1) \) and \(g \in \mathcal{A} \) such that \(g'(p) \neq 0 \) and \(g(z) - g(p) \) has no zero in \(\mathbb{D} \setminus \{p\} \). We suppose also that \(g \) satisfies the following condition
\[
|g'(p) - g'(p)p^2| < |g'(p)|.
\]
(2.6)

Then, the function \(f \) defined by
\[
f(z) = \frac{-g(p)g(z)}{g(z) - g(p)}
\]
belongs to \(\mathcal{A}(p) \) and satisfies (1.11). If in addition \(g \) is univalent, then \(f \) is also univalent.

Proof. It is obvious that \(f \) is holomorphic in \(\mathbb{D} \setminus \{p\} \) and that \(f(p) = \infty \). We get by a simple calculation
\[
\lim_{z \to p} (z - p)f(z) = -\frac{g'(p)}{g'(p)}.\]
From (2.6) we have \(g(p) \neq 0 \). Hence the limit above shows that \(f \) has a simple pole with residue \(m = -\frac{g'(p)}{g'(p)} \) at the point \(p \). By the condition (2.6) we have
\[
\left|1 - \frac{p^2 g'(p)}{g'(p)}\right| < 1
\]
and hence \(f \) satisfies the condition (1.11).

It is easy to verify that \(f \) is univalent if \(g \) is univalent. \(\square \)

Remark 2.4. The condition (2.6) is satisfied when \(g \in \mathcal{U}(1) \);

Let \(\mathcal{P}_{\alpha, \beta, \delta}(p; \lambda) \) be the set of functions \(f \) in \(\mathcal{A}(p) \) of the form (1.10) such that \(\frac{f(z)}{z} \neq 0 \) in \(\mathbb{D} \) and satisfying the condition
\[
\left|\alpha \left(\frac{z}{f(z)}\right)^\gamma + \beta \left(\frac{z}{h(z)}\right)^\gamma\right| \leq \lambda \mu, \quad z \in \mathbb{D}
\]
(2.7)

and
\[
|1 + \frac{p^2}{m}| \leq \lambda \mu,
\]
(2.8)
where \(\alpha \neq 0, \beta \) are given complex numbers and \(h \) is a given function in \(\mathcal{A}(p) \) with \(\frac{h(z)}{z} \neq 0 \) in \(\mathbb{D} \).

We observe that \(\mathcal{P}_{1,0,\lambda}(p; \lambda) \) doesn’t depend on the function \(h \) and thus will be simply noted \(\mathcal{P}(p; \lambda) \). The particular case where \(\lambda = 2 \) has been considered by Bhowmik and Parveen in [3].

We need the following Lemma:

Lemma 2.5. Let \(0 < \lambda < \mu^{-1} \). If \(f \) belongs to \(\mathcal{U}_\rho(\lambda) \) then, \(f \) is univalent in \(\mathbb{D} \).

Proof. Let \(-c \) be an omitted value for \(f \) and let \(g(z) = \frac{cf}{z+c} \). As seen above we have

\[
\mathcal{U}_\rho(z) = \mathcal{U}_f(z)
\]

and hence \(g \in \mathcal{U}(\lambda \mu) \). Since \(\lambda \mu < 1 \), \(g \) belongs to \(\mathcal{U}(1) \) and thus it is univalent. This implies that \(f \) is univalent. \(\square \)

Theorem 2.6. Let \(h \in \mathcal{A}(p) \) be such that \(\frac{h(z)}{z} \neq 0 \) for \(z \in \mathbb{D} \) and

\[
K = \sup_{z \in \mathbb{D}} \left| \frac{z}{h(z)} \right|^2 h'(z) - 1 < +\infty.
\]

If \(f \in \mathcal{P}_{\alpha,\beta,\lambda}(p; 2 \lambda |\alpha| - 2 K |\beta|p) \), then \(f \in \mathcal{U}_\rho(\lambda) \). If in addition \(\lambda < \mu^{-1} \), the function \(f \) is univalent in the disc \(\mathbb{D} \). In particular, we have

\[
\mathcal{P}_{\alpha,\beta,\lambda}(p; 2 \mu |\alpha| - 2 K |\beta|p) \subset \mathcal{U}_\rho(1).
\]

Proof. Let \(f \in \mathcal{P}_{\alpha,\beta,\lambda}(p; 2 \lambda |\alpha| - 2 K |\beta|p) \). Let \(g \) and \(k \) be defined by

\[
g(z) = \frac{cf}{c+f} \quad \text{and} \quad k(z) = \frac{dh}{d+h},
\]

where \(-c \) and \(-d \) are omitted values respectively by \(f \) and \(h \). By Proposition 2.1, \(g \) and \(k \) belong to \(\mathcal{A} \). A little calculation shows that \(\frac{h(z)}{z} \neq 0 \) and \(\frac{k(z)}{z} \neq 0 \) in \(\mathbb{D} \) and

\[
\frac{z}{g(z)} = \frac{z}{f(z)} + \frac{z}{c} \quad \text{and} \quad \frac{z}{k(z)} = \frac{z}{h(z)} + \frac{z}{d'},
\]

which gives

\[
\left(\frac{z}{g(z)} \right)' = \left(\frac{z}{f(z)} \right)' \quad \text{and} \quad \left(\frac{z}{k(z)} \right)' = \left(\frac{z}{h(z)} \right)'.
\]

Since \(f \) belongs to \(\mathcal{P}_{\alpha,\beta,\lambda}(p; 2 \lambda |\alpha| - 2 K |\beta|p) \), we have by (2.11)

\[
g \in \mathcal{P}_{\alpha,\beta,\lambda}(2 \lambda \mu |\alpha| - 2 K |\beta|p).
\]

Applying (2.5) to \(h \) and \(k \), we obtain

\[
\sup_{z \in \mathbb{D}} \left| \frac{z}{k(z)} \right|^2 k'(z) - 1 = K.
\]

Moreover (2.12) and (2.13) give, by applying Theorem 1.1 to \(g \) and \(k \),

\[
g \in \mathcal{U}(\lambda \mu)
\]
which gives from (2.5) and (2.8) that \(f \in \mathcal{U}_p(\lambda) \).

If now \(0 < \lambda < \mu^{-1} \), then \(f \) is univalent by Lemma 2.5.

The second assertion of the theorem follows by taking \(\lambda = 1 \) in the first one. \(\square \)

Let \(p \in (0, 1) \) and let \(h(z) = \frac{z}{(z-p)(z-\lambda)} \). A little calculation yields

\[
\sup \left| \left(\frac{z}{h(z)} \right)^2 h'(z) - 1 \right| = 1 \quad \text{and} \quad \left(\frac{z}{h(z)} \right)'' = 2, \quad z \in \mathbb{D}
\]

Corollary 2.7. Let \(0 < p < 1 \) and \(f \in \mathcal{A}(p) \) with \(\frac{f(z)}{z} \neq 0 \) for \(z \in \mathbb{D} \). Let \(\alpha \neq 0 \) and \(\beta \) be two complex numbers. If \(f \) satisfies

\[
\left| \alpha \left(\frac{z}{f(z)} \right)'' + \beta \right| \leq 2 \left(\lambda \mu |\alpha| - \frac{|\beta|}{2} \right), \quad z \in \mathbb{D}
\]

then \(f \in \mathcal{U}_p(\lambda) \). If in addition \(0 < \lambda < \mu^{-1} \), then \(f \) is univalent in \(\mathbb{D} \).

Proof. Let \(h(z) = \frac{z}{(z-p)(z-\lambda)} \). We have, as shown above, that

\[
\sup \left| \left(\frac{z}{h(z)} \right)^2 h'(z) - 1 \right| = 1 \quad \text{and} \quad \left(\frac{z}{h(z)} \right)'' = 2.
\]

Now, if \(f \) satisfies (2.14) then \(f \in \mathcal{P}(a,\lambda,\beta,p;2(\lambda|\alpha| - \frac{|\beta|}{2})) \) and hence, by taking \(K = 1 \) in the first statement of Theorem 2.6, we get the desired conclusion. \(\square \)

If we take \(|\alpha| = 1 \) and \(\beta = 0 \) in Corollary 2.7, we obtain the following

Corollary 2.8. Let \(0 < p < 1 \) and \(f \in \mathcal{A}(p) \) with \(\frac{f(z)}{z} \neq 0 \) for \(z \in \mathbb{D} \). If \(f \) satisfies

\[
\left| \left(\frac{z}{f(z)} \right)'' \right| \leq 2 \lambda \mu, \quad z \in \mathbb{D},
\]

then \(f \in \mathcal{U}_p(\lambda) \), in other words, we have \(\mathcal{P}(p;2\lambda) \subset \mathcal{U}_p(\lambda) \). If in addition \(0 < \lambda < \mu^{-1} \), then functions in \(\mathcal{P}(p;2\lambda) \) are univalent.

Corollary 2.9. If \(0 < \lambda \leq 2 \), then \(\mathcal{P}(p;\lambda) \subset \mathcal{U}_p(1) \) and hence functions in \(\mathcal{P}(p;\lambda) \) are univalent.

Proof. Since \(\mu^{-1} > 1, 0 < \frac{1}{\lambda} < \mu^{-1} \). Hence, the desired conclusion follows by applying Corollary 2.8 to \(\frac{1}{\lambda} \). \(\square \)

Remark 2.10. If we take \(\lambda = 2 \) in Corollary 2.9, we obtain Theorem 2 in [3].

We need the two following lemmas:

Lemma 2.11. Let \(g \in \mathcal{P}_{a,\beta,\lambda}(\lambda) \). Then there exists a Schwarz function \(w \) in \(\mathbb{D} \) such that

\[
\frac{z}{g(z)} - 1 = -\frac{\beta}{\alpha} \left(\frac{z}{k(z)} + \frac{k''(0)}{2}z - 1 \right) - \frac{g''(0)}{2}z + \frac{\lambda z}{\alpha} \int_0^1 \frac{w(tz)}{t} (1-t) dt.
\]

Proof. The proof can be extracted of the proof of Theorem 1.3 ([7], p.186). \(\square \)

Lemma 2.12. Let \(h \in \mathcal{A}(p) \), \(-c \) be an omitted value for \(h \) and \(k = \frac{ch}{c+k} \). Then,

\[
1 - \frac{z}{k(z)} - \frac{k''(0)}{2}z = 1 - \frac{z}{h(z)} - \frac{h''(0)}{2}z, \quad z \in \mathbb{D}.
\]

(2.16)
Proof. We have
\[
\frac{z}{k(z)} = \frac{z}{h(z)} + \frac{z}{c}
\] (2.17)
and
\[
k''(0) = h''(0) - \frac{2}{c}
\] (2.18)
Taking (2.17) and (2.18) in the left side of (2.17), we get the desired conclusion. □

The following theorem is an analogue result of Corollary 1.8 in [7].

Theorem 2.13. Let \(f \in P_{\alpha,\beta}(\lambda, \mu) \) and \(M = \sup_{z \in \mathbb{D}} |1 - \frac{z}{h(z)} - \frac{h''(0)}{2}z| \). Then
\[
\left| \frac{z}{f(z)} - 1 \right| \leq \left| \frac{\beta}{\alpha} M + \frac{|f''(0)|}{2} |z| + \frac{\lambda \mu}{2|\alpha|} |z|^2. \right|
\] (2.19)

Proof. Let \(-c\) and \(-d\) be omitted values by \(f \) and \(h \), respectively. Furthermore let \(g(z) = \frac{cf}{c+f} \) and \(k(z) = \frac{dh}{d+h} \), respectively. We have
\[
\frac{z}{f(z)} - 1 = \frac{z}{g(z)} - 1 - \frac{z}{c}
\] (2.20)
and
\[
g''(0) = \frac{f''(0)}{2} - \frac{1}{c}.
\] (2.21)
Since \(f \in P_{\alpha,\beta}(\lambda, \mu) \), we have \(g \in P_{\alpha,\beta}(\lambda, \mu) \). Applying Lemma 2.11, we obtain
\[
\frac{z}{g(z)} - 1 = -\frac{\beta}{\alpha} \left(\frac{z}{k(z)} + \frac{k''(0)}{2}z - 1 \right) - \frac{g''(0)}{2}z - \frac{z}{c} - \frac{\lambda \mu z}{\alpha} \int_0^1 \frac{w(tz)}{t} (1-t)dt,
\] (2.22)
where \(w \) is a Schwarz function in \(\mathbb{D} \). Taking (2.22) in (2.20), we obtain
\[
\frac{z}{f(z)} - 1 = -\frac{\beta}{\alpha} \left(\frac{z}{k(z)} + \frac{k''(0)}{2}z - 1 \right) - \frac{g''(0)}{2}z - \frac{z}{c} - \frac{\lambda \mu z}{\alpha} \int_0^1 \frac{w(tz)}{t} (1-t)dt.
\] (2.23)
Now, taking (2.21) in (2.23), we get
\[
\frac{z}{f(z)} - 1 = -\frac{\beta}{\alpha} \left(\frac{z}{k(z)} + \frac{k''(0)}{2}z - 1 \right) - \frac{f''(0)}{2}z - \frac{z}{c} - \frac{\lambda \mu z}{\alpha} \int_0^1 \frac{w(tz)}{t} (1-t)dt.
\] (2.24)
The last equality gives us, using the fact that \(|w(z)| \leq |z| \) in \(\mathbb{D} \),
\[
\left| \frac{z}{f(z)} - 1 \right| \leq \left| \frac{\beta}{\alpha} \sup_{z \in \mathbb{D}} \left| \frac{z}{k(z)} + \frac{k''(0)}{2}z - 1 \right| + \frac{|f''(0)|}{2} |z| + \frac{\lambda \mu}{2|\alpha|} |z|^2. \right|
\] (2.25)
We have, by Lemma 2.12,
\[
\sup_{z \in \mathbb{D}} \left| \frac{z}{k(z)} + \frac{k''(0)}{2}z - 1 \right| = \sup_{z \in \mathbb{D}} \left| \frac{z}{h(z)} + \frac{h''(0)}{2}z - 1 \right| = M
\] (2.26)
Taking (2.26) in (2.25), we get the desired result. □

As a consequence of Theorem 2.13, we have the following corollary:
Corollary 2.14. If z is a given point in \mathbb{D} then, we have

\begin{align*}
(1) \quad & \left| \frac{z}{f(z)} - 1 \right| \leq \left(\frac{1}{p} + \frac{\lambda \mu p^2}{2} \right) |z| + \frac{\lambda \mu}{2} |z|^2, \quad \forall f \in \mathcal{P}(p; \lambda); \\
(2) \quad & \left| \frac{z}{f(z)} - 1 \right| \leq \frac{1}{p} + \frac{\lambda \mu p^2}{2} + \frac{\lambda \mu}{2}, \quad \forall f \in \mathcal{P}(p; \lambda).
\end{align*}

Proof. Let $f \in \mathcal{P}(p; \lambda)$. Taking $\alpha = 1$, $\beta = 0$ and $h(z) = \frac{pz}{p^2 + (1 + p^2)z + p^*}$, the formula (2.24) gives

\begin{equation}
\frac{z}{f(z)} - 1 = -\frac{f''(0)}{2}z + \lambda \mu z \int_0^1 \frac{w(tz)}{t}(1-t)dt.
\end{equation}

Putting $z = p$ in the last equality, we obtain

\begin{equation}
\frac{f''(0)}{2} = \frac{1}{p}(1 + \lambda \mu p \int_0^1 \frac{w(tp)}{t}(1-t)dt).
\end{equation}

Since w is a Schwarz function, the modulus of the integral in (2.28) is majored by $\frac{p^*}{2}$ and hence we have

\begin{equation}
\left| \frac{f''(0)}{2} \right| \leq \frac{1}{p} + \frac{\lambda \mu p^2}{2}.
\end{equation}

Now, taking (2.29) in (2.19), where α, β and h as above, we obtain the estimation

\begin{equation}
\left| \frac{z}{f(z)} - 1 \right| \leq \left(\frac{1}{p} + \frac{\lambda \mu p^2}{2} \right) |z| + \frac{\lambda \mu}{2} |z|^2.
\end{equation}

This achieves the proof of (1). The estimation (2) is an immediate consequence of (1). \hfill \Box

3. Acknowledgement

The author thanks Karl-Joachim Wirths for his remarks and suggestions and careful reading of the first version of the manuscript.

References

[1] L.A. Aksentiev, Sufficient conditions for univalence of regular functions. Izv. Vys. Ucebn. Zaved. Matematika. 1958, 1958, 3 - 7.
[2] B. Bhowmik and F. Parveen, On a subclass of meromorphic univalent functions, Complex Var. Elliptic Equ., 62 (2017), 494-510.
[3] B. Bhowmik and F. Parveen, Sufficient conditions for univalence and study of a class of meromorphic univalent functions, Bull. Korean. Math. Soc. 55 (2018), No. 3, 999 - 1006.
[4] R. Fournier and S. Ponnusamy, A Class of Locally Univalent Functions defined by a differential Inequality, Complex Var. and Elliptic Equations, 52 (1) (2007), 1-8.
[5] M. Obradović and S. Ponnusamy, V. Singh and P. Vasundhara, Univalency, starlikeness and convexity applied to certain classes of rational functions. Analysis (Munich) 22 (2002), 225 - 242.
[6] M. Obradović and S. Ponnusamy, Univalence of quotient of analytic functions, Applied Mathematics and Computation 247 (2014) 689 - 694.
[7] M. Obradović and S. Ponnusamy, New criteria and distortion Theorems for univalent functions. Complex Var. Theory Appl. 44(3), 173191 (2001), 173 - 191.
[8] M. Obradović and S. Ponnusamy, Product of univalent functions, Math. Comput. Model. 57, 793799 (2013)
[9] M. Obradović and S. Ponnusamy, Univalence and starlikeness of certain transforms defined by convolution. J. Math. Anal. Appl. 336, 758767 (2007), 758 - 767.
[10] M. Obradović and S. Ponnusamy, Radius of univalence of certain combination of univalent and analytic functions. Bull. Malays. Math. Sci. Soc. 35(2), (2012), 325 - 334.
[11] S. Ozaki, and M. Nunokawa, The Schwarzian Derivative and Univalent Functions, Proc. Amer. Math. Soc. 33(2), Number 2, 1972, 392 - 394.
[12] S. Ponnusamy and K.-J. Wirths, Elementary considerations for classes of meromorphic univalent functions, Lobachevskii J. of Math. 39(5)(2018), 712-713.