Hydrophobic interaction in the liquid phases of globular protein solutions: structure factor parameters

F.N. Braun

Department of Chemistry, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom

Abstract

We develop a simple correspondence between hydrophobic surface topology of globular proteins and an effective protein-protein adhesiveness parameter of the Baxter type. We discuss within this framework analytical interpretation of the structure factor governing static light scattering.
Hydrophobic amino-acid residues exposed at the surface of globular proteins are able to avoid the aqueous environment to an extent by burying themselves in globule-globule contacts. There exists in this sense an effective globule-globule adhesive potential, which, from a thermal perspective, mirrors the strong entropic character of hydrophobicity, driving a general tendency of proteins to cluster with increasing temperature.

In principle, the effect is experimentally accessible via measurement of scattered light intensity at low wavenumber \(qd << 1 \),

\[
I \sim cS_0(c),
\]

where \(S_0 \) denotes the \(q = 0 \) limit of the structure factor, \(c \) is the protein concentration, and \(d \) characterises the protein globule lengthscale.

Our objective here is to supplement the usual DLVO interpretation of \(S_0 \) adopted, for example, in recent scattering studies of lysozyme and \(\beta \)-lactoglobulin with a semi-empirical incorporation of the hydrophobic adhesive mechanism. We do this in the following by first establishing an effective attractive well interaction between proteins, having an explicit temperature dependence derived from thermodynamic data, and then mapping the well interaction onto the adhesiveness parameter of Baxter, this latter being very amenable to liquid state analysis.

The starting point is a formulation of ‘hydrophobic surface tension’ \(\gamma \) according to a typical transfer free energy \(\Delta F \sim 2 \text{ kcal/mol} \) of a single nonpolar amino-acid residue between water and a hydrophobic environment, i.e.,

\[
\gamma = g\Delta F/a^2 \quad (1)
\]

where \(g \) is some geometrical factor less than one, and \(a \sim 1\text{nm} \) is a typical residue dimension.

An empirical temperature dependence \(\gamma(T) \) follows via this expression by extrapolating from room temperature thermodynamic data available for \(\Delta F \),

\[
\Delta F(T) = \Delta H^0 + \Delta C_p (T - T_0) - T[\Delta S^0 + \Delta C_p \ln(T/T_0)],
\]
where ΔH^0, ΔS^0 are respectively the enthalpy and entropy of transfer at temperature $T_0 = 298 K$, and ΔC_p is the heat capacity (assumed constant with respect to T).

Adopting values collated by Dill et al., $\Delta H^0 = 0$, $\Delta S^0 = -6.7 \text{ cal/K/mol}$, $\Delta C_p = 55 \text{ cal/K/mol}$, hydrophobic surface tension in this formulation increases up to a maximum at 60-80°C, subsequently decreasing as a consequence of the high heat capacity.

Using $\gamma(T)$, we can specify an effective hydrophobic contribution to the surface tension at any given globule surface, provided we know the hydrophobic topology of the surface. We will represent hydrophobic surface topology by a factor f_h defining the fraction of amino-acid residues at the surface which are hydrophobic as opposed to polar, i.e., the effective hydrophobic surface tension becomes $\sim f_h \gamma$.

Surface tension at the globule surfaces does not in itself determine an effective well-depth ϵ characterising globule-globule contacts casually formed in solution. We have first to specify the ‘casual’ area of contact δA to which it is thermodynamically conjugate.

To this end, we minimize the form

$$\epsilon = -\gamma f_h \delta A + \frac{E}{2\pi d} (\delta A)^2,$$

(2)

where, following earlier work, we interpret the phenomenological parameter $E \sim 10\text{MPa}$ as an osmotic shear modulus governing globule elasticity, with d the globule diameter.

The result is a temperature-dependent well-depth

$$\epsilon(T) = -\frac{\pi d}{2E} [f_h \gamma(T)]^2$$

(3)

(temperature dependence of E is neglected).

Taking the amino-acid lengthscale a for the well width, the full potential is

$$v(r, T) = \infty \quad 0 < r < d$$

$$\epsilon(T) \quad d < r < d + a$$

$$0 \quad r > d + a,$$

(4)

The square-well fluid is not particularly tractable from an equation of state perspective.
However, exact and compact analytical results follow in the adhesive limit formulated by Baxter,

\[
v(r) = \begin{cases}
\infty & 0 < r < d \\
-k_B T \ln \left(\frac{d + \sigma}{12 \pi \sigma} \right) & d < r < d + \sigma \\
0 & r > d + \sigma,
\end{cases}
\]
(5)

where \(\sigma \to 0\).

Baxter’s parameter \(\tau^{-1}\) can be regarded as a measure of adhesive strength, as is clear from its relation to the second virial coefficient

\[
\Delta B_2 / B_{2HS}^2 = 3d^{-3} \lim_{\sigma \to 0} \int_d^{d+\sigma} [1 - \exp(-\beta v(r))] r^2 dr = -\tau^{-1}/4,
\]
(6)

where the bare hard-sphere result \(B_{2HS}^2 = 2\pi d^3/3\) presents a convenient reference.

The idea of exploiting the analytical tractability of the adhesive limit to represent square-well-like systems is a familiar one in the general colloidal context. We follow here the equivalence prescription of Regnaut and Ravey who fix a correspondence between \(\tau^{-1}\) and well-depth by equating the respective second virial coefficients. To lowest order in \(a/d\) we have for the square-well fluid,

\[
\Delta B_2 / B_{2HS}^2 \simeq -3(a/d) \left[\exp(-\beta\epsilon) - 1 \right].
\]

Hence,

\[
\tau^{-1}(T) = 12(a/d) \left[\exp(-\beta\epsilon(T)) - 1 \right].
\]
(7)

Regnaut and Ravey also give the analytical form of the structure factor for Baxter particles,

\[
S_0 = \frac{(1 - \varphi)^4}{[1 + 2\varphi - \lambda\varphi(1 - \varphi)]^2},
\]
(8)

where \(\varphi = \pi d^3 c/6\) is, in our case, the protein volume fraction, and \(\lambda\) is the lower root of

\[
\frac{\varphi}{12} \lambda^2 - \left(\frac{\varphi}{1 - \varphi} + \tau \right) \lambda + \frac{1 + \varphi/2}{(1 - \varphi)^2} = 0.
\]
(9)
Dispersion force and double layer electrostatics can be treated via the B_2 predictions of DLVO theory (Muschol and Rosenberger\cite{footnote1} give details of the calculation), yielding a final expression

$$\left(S_0 \right)^{-1} = \frac{[1 + 2\varphi - \lambda \varphi(1 - \varphi)]^2}{(1 - \varphi)^4} + 2c\Delta B_{\text{DLVO}}^2 + O(c^2).$$

(10)

The double layer contribution might alternatively be replaced by a Donnan-like treatment of the electrostatics, as presented recently by Warren,\cite{footnote2} focusing on the ideal distributional entropy of small ions in the solution. In the absence of salt, the charge per protein, Q say, must be balanced according to the charge neutrality constraint by a concentration cQ of counterions, generating osmotic pressure

$$v\delta\Pi/k_BT = \varphi Q,$$

(11)

where $v = \pi d^3/6$ is the protein specific volume.

Chemical equilibrium with a salt reservoir at concentration c_s leads to the modification

$$v\delta\Pi/k_BT = \sqrt{(\varphi Q)^2 + (2vc_s)^2}.$$ (12)

Hence, via the fluctuation-dissipation theorem $S_0 = k_BT(\partial\Pi/\partial c)^{-1}$, and combining with Eqn (8), we obtain for charged globules in the presence of salt

$$\left(S_0 \right)^{-1} = \frac{[1 + 2\varphi - \lambda \varphi(1 - \varphi)]^2}{(1 - \varphi)^4} + Q \left[1 + \left(\frac{2c_s}{cQ} \right)^2 \right]^{-1/2} + 2c\Delta B_{\text{Hamaker}}^2 + O(c^2),$$

(13)

where $\Delta B_{\text{Hamaker}}^2$ is the dispersion force contribution. Note that the Donnan contribution to B_2 follows by comparing the low concentration limit of this expression with $(S_0)^{-1} \sim 1 + 2B_2c$, yielding $\Delta B_{\text{Hamaker}}^2 = Q^2/4c_s$.

This completes our main objective. However, some interesting features in respect of the phase diagram deserve comment. Firstly, there exists for the Baxter system a locus in (φ, τ)-space along which the structure factor of Eqn (8) diverges, tantamount to a phase transition spinodal (diverging compressibility). This may or may not underpin a liquid-liquid phase separation in the protein solution as represented by Eqn (13), depending on whether λ of the mapping becomes sufficiently large with respect to the electrostatic term.
Secondly, the ‘connected cluster’ structural view of the Baxter fluid reveals a percolation transition, at which the mean cluster size N diverges. Cluster size is formally related to a pair-connectedness function $P(r)$ analogous to the usual pair distribution function $g(r)$,

$$N = 1 + c \int P(r)dr,$$

(14)

where $c^2P(r_1,r_2)d\mathbf{r}_1d\mathbf{r}_2$ is the probability of finding connected particles in volume elements $d\mathbf{r}_1$ and $d\mathbf{r}_2$ simultaneously. By recasting Baxter’s original $g(r)$ method in connectivity language, Chiew and Glandt12 solve for $P(r)$, yielding

$$N = 1/(1 - \lambda \varphi)^2$$

(15)

The percolation transition, i.e. the locus $\lambda \varphi \to 1$, is not strongly manifest in extensive thermodynamical quantities, there being no free energy singularity. However, the qualitative trend exhibited via the mapping into (φ,T)-space, percolation at lower volume fraction with increasing temperature (since λ increases with hydrophobic surface tension γ), is reminiscent of the gelation curve observed experimentally in sickle cell hemoglobin solutions.13 This resemblance should be qualified by noting that the experimentally referred to ‘gel phase’ of HbS globules comprises an entangled mesh of multi-stranded polymeric assemblages, somewhat removed from the percolation perspective.

It is useful also to stress that clustering is understood here in the Hill sense14 implicit to the structure of isotropically interacting simple liquids - transient ‘ordinary liquid clusters’ of this type are to be contrasted with transient ‘open clusters’ characteristic of systems in which intermolecular bonding is orientationally constrained (hydrogen bonding in liquid water is the classic example). Open cluster formation, and the attendant prospect of further critical points,15 are of course entirely feasible in the case of globular proteins having patch-like hydrophobic surface topology (as opposed to the uniform topology assumed here via our parameter f_h), presenting a possible avenue for future investigation.

In summary, our main result is Eqn (13) for the static structure factor, in conjunction with the mapping via Eqn (7) of a hydrophobic square-well interaction specified by Eqn (3).
As a basis for interpreting experimental light scattering from globular protein solutions, this result is quantitatively to the extent that it takes into account (i) dispersion force interactions, (ii) Donnan electrostatics, and (iii) the effective globule-globule adhesive interaction which originates from hydrophobicity on the amino-acid lengthscale.

Of the unspecified parameters g, f_h, E introduced into the structure factor by the hydrophobic contribution, a simple geometrical argument should suffice in order to fix g, while f_h could be obtained in a first approximation from the sequence information for a given globule, or directly from tertiary structural data. Insofar as we have less insight into the phenomenological elastic modulus E, a scattering experiment might focus on estimating this quantity.

Finally, a liquid-liquid spinodal and a percolation line are implicit to the general approach. Although such features are expected to fall more or less within the solid-fluid miscibility gap, they are of practical concern to crystallographers and disease pathologists, in their capacity as metastable phenomena capable of breaking up the dispersed sol phase of globules, or obstructing crystallization.
REFERENCES

1 A. Ben-Naim, *Hydrophobic Interactions* (Plenum, New York, 1983)

2 K. Lum, D. Chandler and J.D. Weeks, J. Phys. Chem. B 103 4570 (1999).

3 M. Muschol and F. Rosenberger, J. Chem. Phys. 103 10424 (1995).

4 R. Piazza and S. Iacopini, Eur. Phys. J. E 7 45 (2002).

5 This is quantitatively consistent with room temperature experimental estimates for the free energy of burying hydrophobic amino-acid residues in the interface between protein subunits, $\sim (-)5$-30 cal/mol/\AA^2, see B. Vallone, A.E. Miele, P. Vecchini, E. Chaincone and M. Brunori, Proc. Natl. Acad. Sci. USA 95 6103 (1998).

6 K.A. Dill, D.O.V. Alonso and K. Hutchinson, Biochem. 28 5439 (1989).

7 F.N. Braun, J. Chem. Phys. 116 6826 (2002)

8 R.J. Baxter, J. Chem. Phys. 49 2770 (1968).

9 ‘exact’ is understood here in the sense of solving the Percus-Yevick closure approximation - see for a discussion J.P. Hansen and I.R. McDonald, *Theory of Simple Liquids* (Academic Press, London, 1986).

10 C. Regnaut and J.C. Ravey, J. Chem. Phys. 91 1211 (1989).

11 P.B. Warren, J. Phys. Cond.Mat. 14 7617 (2002).

12 Y.C. Chiew and E.D. Glandt, J. Phys. A 16 2599 (1983).

13 W.A. Eaton and J. Hofrichter, Adv. Protein Chem. 40 63 (1990)

14 T.L. Hill, *Statistical Mechanics* (McGraw-Hill, New York, 1956)

15 A general discussion of hidden critical points and other possible consequences of open- vs ordinary cluster frustration is given by H. Tanaka Phys. Rev. E 62 6968 (2000). A specific model interpretation for water, which demonstrates explicitly the loss of anomalous
features with the removal of the orientational constraint on intermolecular bonding, is
given by T. Truskett, P. G. Debenedetti, S. Sastry and S. Torquato, J. Chem. Phys. 111
2647 (1999).

16 The ‘temperature-reversed’ character of the phase diagram we anticipate here is in line
with a generic class of behaviour proposed by Muschol and Rosenberger, for which hu-
man sickle cell (deoxy)hemoglobin presents an experimental template, M. Muschol and F.
Rosenberger, J. Chem. Phys. 107 1953 (1997).