Foraging efficiency, social status and body condition in group-living horses and ponies

Sarah L Giles ¹, Patricia A Harris ², Sean A Rands ³, Christine J Nicol ⁴

¹ School of Veterinary Sciences, University of Bristol, Langford, North Somerset, United Kingdom
² Equine Studies Group, WALTHAM Petcare Science Institute, Melton Mowbray, Leicestershire, UK
³ School of Biological Sciences, University of Bristol, Bristol, United Kingdom
⁴ Royal Veterinary College, Hatfield, United Kingdom

Corresponding Author: Christine J Nicol
Email address: cnicol@rvc.ac.uk

Individual animals experience different costs and benefits associated with group living, which may impact on their foraging efficiency in ways not yet well specified. This study investigated associations between social dominance, body condition and interruptions to foraging behaviour in a cross-sectional study of 116 domestic horses and ponies, kept in 20 discrete herds. Social dominance was measured for each individual alongside observations of winter foraging behaviour. During bouts of foraging, the duration, frequency and category (vigilance, movement, social displacements given and received, scratching and startle responses) of interruptions were recorded, with total interruption time taken as a proxy measure of foraging efficiency. Total foraging time was not influenced by body condition or social dominance. Body condition was associated with social dominance, but more strongly associated with foraging efficiency. Specifically, lower body condition was associated with greater vigilance. This demonstrates that factors other than social dominance can result in stable differences in winter body condition.
Foraging efficiency, social status and body condition in group-living horses and ponies.

Sarah.L.Giles¹, Patricia.A.Harris², Sean.A.Rands³ and Christine.J. Nicol⁴*

¹. School of Veterinary Science, University of Bristol, Langford, Bristol UK.
². Equine Studies Group, WALTHAM Petcare Science Institute, Melton Mowbray, Leicestershire UK.
³. School of Biological Sciences, University of Bristol, Bristol UK.
⁴. Royal Veterinary College, Hatfield, UK

* Corresponding Author:
Christine Nicol,
Royal Veterinary College, Hawkshead Lane, Brookmans Park, Hatfield, AL9 7TA
Email address: cnicol@rvc.ac.uk

Abstract

Individual animals experience different costs and benefits associated with group living, which may impact on their foraging efficiency in ways not yet well specified. This study investigated associations between social dominance, body condition and interruptions to foraging behaviour in a cross-sectional study of 116 domestic horses and ponies, kept in 20 discrete herds. Social dominance was measured for each individual alongside observations of winter foraging behaviour. During bouts of foraging, the duration, frequency and category (vigilance, movement, social displacements given and received, scratching and startle responses) of interruptions were recorded, with total interruption time taken as a proxy measure of foraging efficiency. Total foraging time was not influenced by body condition or social dominance. Body condition was associated with social dominance, but more strongly associated with foraging efficiency. Specifically, lower body condition was associated with greater vigilance. This demonstrates that factors other than social dominance can result in stable differences in winter body condition.
Introduction

Social behaviour can influence energetic reserves and subsequent body condition. Previous modelling studies have outlined the potential importance of social effects on foraging behaviour (bouts of biting, chewing and swallowing interrupted by relocation movements) in determining body condition in group living animals (Houston and McNamara, 1999; Rands et al., 2003; 2004; 2006; 2008) and also the role of dominance behaviours in determining resource access and subsequent body condition (Clark and Ekman, 1995; Stillman et al., 1997; Rands et al., 2006).

Thus, the foraging success of individual animals in social groups may be partly influenced by their social status. However, few of these predictions have been investigated empirically in socially-foraging herbivores and the relationship between herd behaviours, dominance and body condition is not fully understood.

In a socially foraging herbivore the benefits of group living outweigh the costs (Krause and Ruxton, 2002). Individual animals living within groups follow behavioural rules which allow them to function as a social unit (Hemelrijk, 2002; Rands, 2011a,b). These rules are likely to depend upon both aspects of their own body condition (such as energetic reserves) and also the actions of other individuals within the group (Houston and McNamara, 1999; Rands et al., 2003; 2008). Rules governing social interaction (e.g. dominance) may be important for a well-functioning group in terms of minimising costly conflict over resources (Krause and Ruxton, 2002).

Rands et al. (2011b) considered a game theoretical framework to explore how the rules used by individuals with different dominance ranks could evolve, assuming these individuals paid attention to the ranks and energetic state of both themselves and the individual that they were interacting with. This model, and a companion simulation exploring the rules of thumb generated (Rands 2011a) demonstrated that both energetic state and social status are important for determining the behaviour of co-foraging individuals. Furthermore, individual-based simulations (Rands et al 2004, 2006) demonstrated that including an additional effect of dominance that led to subordinates having reduced access to food could lead not only to dominant individuals...
having higher energetic reserves than subordinates, but also subordinate individuals increasing
their activity.

We aimed to assess whether this framework was useful in understanding the foraging behaviour
of the horse. We were particularly interested to determine whether dominant animals had higher
body condition and whether subordinate individuals showed increased activity in line with model
predictions. Horses are generalist herbivores with sophisticated social capacities. Free-ranging
feral and primitive Przewalski’s horses spend a high proportion of each day foraging (52%,
Berger et al., 1999; 68% Lamoot and Hoffman 2004; up to 75% daylight and 53% nocturnal,
Mayes and Duncan, 1986) maintaining a high daily intake of plant material by grazing (or
browsing) interrupted by frequent walking (Houpt, 2005). Accelerometry studies find similar
proportions of time spent foraging by domestic horses kept on pasture (61% daylight, 47%
octurnal, Maisonpierre et al., 2019). Horses form strong affiliative bonds with familiar
companions, but aggressive encounters and subtle threats, are also a common feature of equine
social structure, particularly when resources are limited (Mills and Redgate, 2010). The current
study was conducted under winter conditions where pasture availability was limited and a degree
of competition for supplementary forage was evident. This situation applies commonly for
domestic horses (kept for a variety of reasons including as companion animals or as conservation
grazers (Gilhaus and Hoelzel, 2016) during winter periods within temperate zones).

Understanding the factors that drive large inter-individual differences in body condition when
group-living horses are kept during winter (e.g. Ingölfsdóttir and Sigurjónsdóttir, 2008; Giles et
al., 2015; Yngvesson et al., 2019) is an important goal. It has been estimated that around a third
of outdoor living horses and ponies within the UK are obese (Giles et al., 2014; Robin et al.,
2015) but rates of obesity can reach 70% in some populations (Menzies-Gow et al., 2017). It is
timely to study the social factors influencing body condition in horses to reduce obesity
prevalence and associated metabolic disease.

Previous empirical studies in horses have demonstrated that higher ranking individuals spend
more time eating hay and have a higher body condition during the winter (Ingölfsdóttir and
Sigurjónsdóttir, 2008; Giles et al., 2015) but have not examined the mechanisms behind this
association.
This study advanced our previous work by examining situations where bouts of foraging on supplementary forage were interrupted for reasons including anti-predator vigilance and startle responses (Goodwin, 1999), displacement interruptions directed towards or received from other group members (Appleby, 1980; Rands et al., 2006) or short movements between foraging locations (Duncan, 1980). We examined the duration, frequency and type of interruption to the foraging behaviour of individual horses and ponies (hereafter termed “horses”) living in social herds. The total time attributed to interrupted foraging was considered as a proxy measure of foraging efficiency (the ratio of energy gained over energy expended during foraging).

An important precursor to analysing foraging efficiency was understanding any differences in overall time spent foraging. We measured overall time spent foraging to check that individuals with a lower foraging efficiency didn’t simply compensate by spending more time foraging. A unique feature of the study was the inclusion of measures of social status and body condition, enabling the assessment of associations not previously examined in foraging herbivores.

Predictions suggest that subordinate individuals may suffer more displacement than dominant conspecifics (Goss-Custard et al., 1995; Stillman et al., 1997; 2000; Rands et al., 2006), reflected in increased displacement interactions and subsequent movement within foraging bouts. Dominant animals may also force subordinate conspecifics into more exposed foraging positions (Ekman, 1987; Rands et al., 2004) leading to a reduction in foraging efficiency due to a greater requirement for vigilance. In contrast, models predict that dominant individuals will be more efficient foragers, feeding in positions with lower interference, potentially leading to a greater energetic intake and overall body condition (Ekman, 1987; Schneider, 1984; Rands et al., 2006). A greater body condition may in turn allow a subsequent competitive advantage (Rands, 2011; Rands et al., 2006).

Our aims were to:

i) Confirm an association between dominance rank (adjusted for herd size, see Methods) and body condition.

ii) Assess whether adjusted dominance rank is associated with interruptions to foraging (as a proxy for foraging efficiency).
Assess whether body condition is associated with interruptions to foraging (as a proxy for foraging efficiency).

Use multivariate analysis to investigate the contextual factors (age, breed, sex, height, supplementary feeding) that might influence these associations.

Consider the applied implications of our findings for the management of domestic horses.

We predicted that foraging interruptions would be associated with both body condition and dominance status, and that subordinate individuals would, overall, have a reduced foraging efficiency compared with more dominant conspecifics and a lower body condition, as indicated in a previous study (Giles et al., 2015). This study goes beyond previous research to assess whether differences in foraging efficiency could plausibly be the mechanism linking dominance to body condition.

Materials & Methods

a) Animals and Ethical Statement

The work was approved by the University of Bristol Animal Welfare and Ethical Review Board (University Investigation Number UB/10/049) and all methods were carried out in accordance with relevant guidelines.

The study sample was drawn from a population of outdoor, group-living horses based at Redwings Horse Sanctuary (UK), that had been living together for at least three months and had established social relationships. All of the individual animals were managed similarly, fed forage from identical sources, lived in outdoor environments and were not ridden, meaning that structured exercise could be removed as a potential confounding factor. Herds that included pregnant or lactating mares were not considered for the study. Twenty study herds were selected randomly from all remaining suitable herds within the sampling frame.

The policy of the sanctuary was to house horses in relatively compatible groups with shared characteristics. Thus, larger horses were housed in separate herds from smaller ponies, all
stallions were housed in one “bachelor” herd, while youngsters were also housed together, with the few horses under 1 year of age (three individuals) accompanied by older “nanny” mares. Herd size was 2-10 (mean 6 ± 0.56 individuals). 116 individuals (84 ponies of height <148cm, and 32 horses of height ≥ 148cm) from within these herds were observed between 2 December, 2013 and 23 January, 2014. Ages ranged from 5 months to 32 years (11.83 ± 0.63 years). Breeds were native ponies (51.72%), native cobs (17.24%), lightweight horses (12.07%), heavy horses (5.17%), sports horse breeds (5.17%) and other (8.62%).

b) Study period and horse management

The winter months were chosen for observation as natural food resources were at their minimum and therefore food based social interactions were likely at their highest due to the close proximity of individuals. All horses lived in an outdoor paddock environment for 24 hours a day and were fed from circular hay feeders provided at a fixed ratio of feeder space (30cm) per animal. Horses were fed twice daily with fresh hay replenished once at the start of morning observation (between 08:00 and 09:00) and once at the start of afternoon observation (between 11.30 and 13:00). Any uneaten hay remained in the hay feeder throughout the day. Twelve study horses received additional supplementary feed from a bucket once a day, and this was recorded as a potential confounder.

c) Time spent foraging

Each study herd was observed for six hours to assess overall time spent foraging, and interruptions occurring during foraging bouts, once during a three hour morning session (08:00-09:00 until 11:00-12:00) and once during a three hour afternoon session (11:30-13:00 until 14:30-16:00) on a different day within the same week, by a single trained observer. Due to the time of year, these times were chosen based on daylight hours.

Time spent foraging was recorded using scan sampling at five minute intervals throughout each three-hour observation period. A random number generator was used to determine the order in which individuals were observed. Once this order was determined, all individuals were observed
in sequence, in five-minute intervals. At each interval, it was recorded which individuals were
foraging and which were not. Foraging was defined as the horse ingesting either hay or grass,
with intermittent periods of the head down ingesting forage and the head up chewing this forage
material. The horse could be foraging from either the hay feeder or eating grass (although the
latter was rare as there was little grass available). The percentage of time spent foraging was then
calculated based on the number of intervals that each individual was foraging within the full six
hours of observation per herd.

Alongside this, continuous five minute focal animal observations were scheduled for each horse
during each three hour recording period. Each individual animal was independently observed for
at least 20 minutes (4 × 5-minutes) in total. These observations were predominantly used to
record foraging interruptions and social interactions (as detailed in sections d and e below),
however they were also used to more accurately estimate the total foraging time for each
individual. If an individual was not foraging for more than one minute during the five-minute
observation period, it was considered to have stopped foraging. The number of minutes it had
stopped foraging for were then subtracted from the total five minutes.

d) Foraging efficiency – duration and frequency of foraging interruptions

During the continuous five-minute focal animal observations, described above, observations
relating to foraging interruptions were also conducted. Interruption to foraging was defined as an
activity that was short in duration (less than one minute) and prevented the individual from
selecting, biting or chewing hay or grass. Both the frequency and overall duration of any
interruption was recorded and interruptions were categorised as one of the following:

Vigilance: Head raised from foraging and ears pricked in the direction of interest, the head is
higher and the ears upright distinguishing vigilance from raising the head to chew.

Movement whilst foraging: a short movement resulting in a change in foraging location, either
following a displacement by another individual or simply changing location at a walk.

Displacements given: interaction directed towards another individual, with the head outstretched
and ears flat back against the head resulting in recipient raising head, or taking a step away in
any direction.
Displacements received: interaction received from another individual defined as above, causing recipient to raise head, move sideways or take a step away in any direction.

Scratching: Using either the mouth or the hoof to scratch the body

Startle response: A quick reaction to an unexpected stimulus, the startle usually involved a quick movement, either jump backwards or sideways followed by looking up with ears pricked

If any interruption lasted for over one minute then the individual was classed as having stopped foraging. Note that individuals were only observed in detail when they were foraging, if an individual was not foraging when it was due to be observed, this was recorded (to calculate total foraging time, as described in section a) and but also counted as ‘missed’ in terms of recording interruptions. Once a missed individual was foraging again it was observed next as a priority (only if it had not yet already been observed for 20 minutes), but just for a single five-minute interval, before resuming the original order. This was to maximise the collection of data on foraging efficiency for each individual.

The frequency of foraging interruption (a proxy for foraging efficiency) was calculated as the number of instances of all interruptions per minute foraging. Separate frequencies were also determined for each interruption category (Table 1). The duration of interrupted foraging referred to the total percentage of time spent interrupted per individual.

e) Dominance rank

Although the concept of dominance lacks universal explanatory power in describing social structure, it is a useful construct when considering the specific context of competition for a limited food resource. Under such conditions, horses generally follow a linear ranking hierarchy, with occasional triangles and some influence of third-party interactions (Houpt et al., 1978; van Dierendonck et al., 1995; Hartmann et al., 2017).

Here we defined dominance “an asymmetry in the outcome of dyadic interactions between individuals, or a priority of access to resources” (Drews, 1993) and assessed it by measuring
outcomes between dyadic pairs when feeding from hay feeders. Agonistic interactions were
recorded continuously throughout the three-hour observation period (these were easily
measurable alongside other observations). An agonistic interaction was defined as one individual
approaching or displaying to another with the neck outstretched and ears back flat against the
head and, crucially, the second individual moving away. Dominance rank was then calculated
using the methods described by Appleby (1980). The number of agonistic interactions both
given and received was recorded for each herd individual, and then the number of other
individuals that a focal individual both dominated and was dominated by was calculated.

Once an Appleby rank had been given, this was then adjusted to take into account herd size (as
in Giles et al., 2015). Adjusted dominance rank was calculated as $1 - (a - 1)/(h - 1)$, where a
is the Appleby rank and h is the herd size. Where dominance rank or dominance status is referred
to in this manuscript, this refers to this adjusted dominance rank.

Body condition score

Measurements were taken immediately after the second set of observations on the herd had been
completed. All study animals were accustomed to being handled. Body condition score was
measured using the Henneke nine-point scale (Henneke et al., 1983) by a single trained observer
(SLG). Six areas of the horse were scored between 1 and 9 and then averaged and rounded to the
nearest 0.5, to obtain a single score. A score of five on the scale was taken to indicate an ideal
body condition.

Statistical analyses

Results were analysed using Stata 12.1 (Statacorp, Texas). Univariable relationships were
assessed using mixed effects linear regression, the clustered study design was controlled for by
including herd group and herd size as a random effects, on the basis that herd size or other herd
specific factors such as environment could plausibly have some influence on foraging and
interactive behaviours. Univariable relationships of primary interest were:
1) The relationship between dominance rank (adjusted for herd size) and body condition score
2) The relationship between dominance rank (adjusted for herd size) and interruptions to foraging (as a proxy for foraging efficiency)
3) The relationship between body condition and interruptions to foraging (as a proxy for foraging efficiency)

Following an initial univariable exploration of these relationships, relationships between the separate foraging interruption variables were also considered. In addition, breed, age, height, sex and whether or not the individual received supplementary feed were recorded as potential confounding variables. To be considered a potential confounder the variable had to be associated with both the explanatory and outcome variable, and not on the causal pathway between the two (Petrie and Sabin, 2009). Statistical significance was defined using \(p \leq 0.05 \) with a screening \(p \)-value for multivariable models of \(p \leq 0.07 \).

Mixed effects multivariable linear regression was then used to build a best-fit explanatory model for both adjusted dominance rank and body condition. The foraging interruption variables (see Table 1 for list) were added to the model one at a time, based on the strength of univariable association, starting with a minimal model. A likelihood ratio test was used to assess the contribution of each variable to the model fit and variables were retained on the basis of this and the adjusted \(p \) value.

Multivariable analysis using a mixed effects linear regression model was also used to make predictions regarding interruptions to foraging – to explore whether this could be a possible mechanism linking dominance status and body condition. Duration of foraging interruption was associated with both dominance status and body condition, therefore this was added to a model containing adjusted dominance rank and body condition. Its explanatory contribution to the model was then assessed using both the adjusted \(p \) and estimates and a likelihood ratio test.

Results
During 120h of observation, the amount of time that individual animals spent foraging averaged 76.4% SD 0.17. Values per herd are given in Table S1. Figure 1 shows that there was no significant correlation between adjusted dominance rank and total foraging time ($r^2 = 0.004, n = 116, p = 0.51$) and Figure 2 shows that there was no significant correlation between body condition score (range 4 to 8.5) and total foraging time ($r^2 = 0.016; n = 116, p = 0.182$). This is important in the interpretation of subsequent results.

a) Univariable Analysis

The relationship between adjusted dominance rank and body condition score

Adjusted dominance rank was positively associated with body condition score within our study population (Table 1).

Foraging Efficiency

During approximately 92h of the 120h total observation period, horses were foraging (total across all horses). During this time, the observed total numbers of each type of interruption contributing to foraging efficiency were: vigilance 2518; movement whilst foraging 454; displacements given 198; displacements received 222; scratching 65; startle responses 5.

The relationship between dominance rank and foraging efficiency

Although the frequency of foraging interruptions did not show evidence of association with adjusted dominance rank ($Z=-1.55, p=0.12$, Table S2), the total duration of interruptions decreased as adjusted dominance rank increased (Table 1). An increase in adjusted dominance rank was also associated with a decrease in some specific interruption behaviours, namely instances of movement whilst foraging, displacements given, and displacements received (Table 1). Figure 1 shows that the reduced foraging efficiency of subordinate individuals is not compensated for by an increase in total foraging time.

The relationship between body condition score and foraging efficiency

The number of incidences (frequency) of foraging interruptions occurring during foraging bouts was lower for animals with higher body condition scores. Vigilance decreased with an increase
in body condition (Table 1), but none of the other separately defined foraging interruptions showed any association with body condition (Supplementary Information, Table S2). Figure 1 shows that the reduced foraging efficiency of individuals with lower body condition is not compensated for by an increase in total foraging time.

Associations between the individual foraging interruption variables and consideration of potential confounders

Frequency of ‘displacements received’ was strongly associated with ‘moving whilst foraging’ and ‘displacements given’. Frequency of ‘displacements given’ was also associated with ‘moving whilst foraging’ (Table 1).

In this study, none of the potential confounder variables (breed, age, height, sex) were associated with body condition score, adjusted dominance rank or any category of interrupted foraging, and there were no biologically plausible interactions, therefore adjusted estimates were not required. This also included whether or not a horse received additional supplementary feed, which showed no evidence of association with either adjusted dominance rank ($Z = -0.50, p = 0.61$) or body condition ($X^2 = 12.40, p = 0.19$).

b) Multivariable analysis

Model for adjusted dominance rank

Controlling for other model variables, frequency of ‘displacements received’, ‘displacements given’ and body condition score were associated with adjusted dominance rank (Table 2).

Model for body condition score

Controlling for other model variables, vigilance frequency and adjusted dominance rank were strongly associated with body condition score (Table 3).

The relationship between body condition score and adjusted dominance rank when taking into account interruptions to foraging

The association between body condition score and adjusted dominance rank was weaker when total duration of foraging interruptions (or time spent interrupted) was included in the model (Table 4, $p = 0.06$, as opposed to $p = 0.03$ in the univariable model). The effect size also reduced
slightly (from a 0.66 increase in adjusted dominance rank per half unit of body condition score to 0.55). The likelihood ratio test results (Table 4) indicate that duration of foraging interruptions has a more significant contribution to the model fit ($p = 0.04$) than adjusted dominance rank ($p = 0.06$).

Discussion

The study explored the inter-relationships between foraging interruptions, dominance and body condition, controlling for herd size and herd identity effects. No effects of age, sex or height were detected in our study. Clearly, large horses have differing energy requirements from smaller ponies, whilst growing youngsters and older horses with reduced digestive efficiency (e.g. Ralston et al., 1989) will also differ from young but mature adults. However, the horses in our study were housed in herds that contained animals of similar characteristics (see Methods and Supplementary Table). For example, heavy horses were housed separately from lighter Thoroughbreds and smaller ponies. Although this policy greatly reduces or eliminates our ability to detect age and sex effects on foraging, it enhances our ability to detect the relative effects of dominance and body condition within herds. Importantly, our analysis showed that the relationships we detected applied across all herd types.

Within this study population, dominance status was positively associated with body condition, although this relationship was weaker when foraging efficiency was included in the multivariate model (Table 4). In addition, the association between body condition and foraging efficiency was stronger than that between body condition and dominance. Thus, whilst dominance explains some variation in body condition, our results highlight the potential role of factors other than social dominance that could influence foraging efficiency. Factors such as a tendency to show vigilance behaviour have been little explored to date but have the potential to greatly influence the ratio of energy gained vs energy expended during bouts of foraging.

There was no evidence that subordinate or low body condition individuals compensated for less efficient foraging by increasing total foraging time. Another recent study found that horses with low body condition tend to adopt more passive behaviour (Jorgensen et al., 2016). Potentially
such results may be due to a strong motivation to feed as a group in this species and thus
synchronise feeding and resting behaviour (Rands et al., 2008). Subordinate or lower body score
individuals were unlikely to remain foraging when conspecifics were not, supporting suggestions
that social factors may result in stable differences in body condition within group living animals
(Rands, 2011; Rands et al., 2010). Indeed the tendency to synchronous feeding and resting (as in
sheep, McDougall and Ruckstuhl, 2018) may be hard-wired as an adaptive behaviour.
The lack of a compensatory change in total foraging time means that any variation observed in
foraging efficiency could plausibly have an effect on body condition.

Given these results and previous theoretical predictions, an association between foraging
efficiency, dominance and overall body condition was expected (McNamara and Houston, 1990;
Stillman et al., 2000; Rands et al., 2006; Rands and Whitney, 2008) but our study is the first to
explore the role of the different components of foraging efficiency, such as movement, social
displacement or vigilance.

Vigilance and body condition

Vigilance frequency was the individual interruption behaviour most strongly associated with
body condition score – it showed a strong negative association. However, vigilance was not
associated with dominance status. These results suggest that certain individuals may be more
likely to conduct vigilance, perhaps on behalf of the group, regardless of their social status.
These results do seem to support the suggestion that vigilance is an inherently costly activity
(Elgar, 1989; Fritz et al., 2002; Fattorini and Ferretti, 2019; Pacheco and Herrera, 1999) as
demonstrated by the negative association with body condition. However, lower body condition
individuals may also be more stressed or nervous individuals, which would also explain the
association with increased vigilance.

The complexity of vigilance as a single trait may somewhat explain the lack of observed
association with dominance status. Vigilance may serve a range of functions in group living
animals (Fattorini and Ferretti, 2019), including anti-predatory behaviour (Elgar, 1989; Hunter
and Skinner, 1998), monitoring of other herd members and scanning the environment for
resources (Underwood, 1982). Ungulate mammals that are unexposed to predation have been observed to greatly reduce their vigilance behaviour (Hunter and Skinner, 1998). Horses, unexposed to predation, may therefore show relatively low levels of vigilance, with reasons other than anti-predatory vigilance having a proportionally larger role.

Alongside the association between dominance status and body condition, the association between body condition and vigilance provides evidence of two separate behavioural traits associated with body condition in group living animals. Behavioural predictors of body condition have so far received little attention in horses (for exceptions, see Ingólfsdóttir and Sigurjónsdóttir, 2008; Giles et al., 2015) and may warrant continued investigation, especially as obese horses (BCS >7) may show differences in activity and eating behaviour when compared to lean horses (BCS 4-5) (Moore et al., 2019).

Dominance status, movement during foraging and displacement interactions

Subordinate horses showed more movement whilst foraging, and were (as expected) more likely to receive displacements. Indeed, statistical analysis revealed that displacement was strongly associated with movement during foraging in our study population, with subordinate animals forced to move foraging location. Theoretical models and empirical studies have proposed that subordinate individuals may be forced to foraging positions carrying a greater risk of predation (Hamilton, 1971; Hemelrijk, 2000). Future studies could examine whether subordinate animals showed increased vigilance specifically when in displaced locations, and during non-foraging periods.

Overall our results therefore appear to support predictions that displacement reduces foraging efficiency for the recipient (Bautista et al., 1998; Stillman et al., 2002). Valuable foraging time is wasted not only over the initial dispute, but also in relocating to a new foraging location. In contrast, dominant horses tended to interrupt their own foraging to displace others, but these interruptions tended to be of short duration, allowing the dominant animal to return quickly to foraging. As our study herds were feeding from hay feeders, potentially displacement and
movement occurred more often than would occur during foraging on pasture, due to the artificially close proximity of herd members (Hoffman et al., 2009).

Conclusions

These results are novel and exciting in that they present the first behavioural evidence confirming a broad body of influential theoretical work (e.g. Marshall et al., 2012; Petit and Bon, 2010; Rands et al., 2003; 2006; Rands 2011; Sueur et al., 2013) linking condition and behaviour in a group-living species. Our results suggest (in line with model predictions) that differences in energetic reserves (body condition) can emerge simply via a reduction in energetic intake by subordinates when dominants are present. This hypothesis could be further tested in a future prospective study. One application of our work is that information on individual horse dominance status could be included as a relevant factor when addressing health problems associated with equine obesity (Giles et al., 2014; Robin et al., 2015; Menzies-Gow et al., 2017).

Acknowledgements

We thank the staff at Redwings Horse Sanctuary, especially Roxane Kirton and Anne Whitehorn for their kind help with conducting the dominance tests and for the use of their horses and ponies.

References

Appleby, MC 1980. Social rank and food access in red deer stags. Behaviour 74: 294-309.

Bautista, LM, Alonso, JC, Alonso, JA 1998. Foraging site displacement in common crane flocks. Animal Behaviour 56: 1237-1243.

Berger, A, Scheibe, KM, Eichhorn, K, Scheibe, A, Streich, J 1999. Diurnal and ultradian rhythms of behaviour in a mare group of Przewalski horse (Equus ferus przewalskii), measured through one year under semi-reserve conditions. Applied Animal Behaviour Science 64: 1-17.

Clark, CW, Ekman, J 1995. Dominant and subordinate fattening strategies: a dynamic game. Oikos 72: 205-212
Drews, C 1993. The concept and definition of dominance in animal behaviour. *Behaviour* 125: 283-313

Duncan, P 1980. Time-budgets of Camargue horses II. Time-budgets of adult horses and weaned sub-adults. *Behaviour* 72: 26-48.

Ekman, J 1987. Exposure and time use in willow tit flocks: the cost of subordination. *Animal Behaviour* 35: 445-452

Elgar, MA 1989. Predator vigilance and group size in mammals and birds: a critical review of the empirical evidence. *Biological Reviews* 64: 13-33

Fattorini, N, Ferretti, F 2019. To scan or not to scan? Occurrence of the group-size effect in a seasonally nongregarious forager. *Ethology* 125: 263-275

Fritz, H, Guillemain, M, Durant, D 2002. The cost of vigilance for intake rate in the mallard (*Anas platyrhynchos*): an approach through foraging experiments. *Ethology Ecology and Evolution* 14, 91-97.

Gilhaus, K, Hoelzel, N 2016. Seasonal variations of fodder quality and availability as constraints for stocking rates in year-round grazing schemes. *Agriculture, Ecosystems and Environment* 234 (S1) 5-15.

Giles, SL, Rands, SA, Nicol, CJ, Harris, PA 2014. Obesity prevalence and associated risk factors in outdoor living domestic horses and ponies. *PeerJ* 2: e299 (2014).

Giles, SL, Nicol, CJ, Harris, PA, Rands, SA 2015. Dominance rank is associated with body condition in outdoor-living domestic horses (*Equus caballus*). *Applied Animal Behaviour Science* 166: 71-79

Goodwin, D 1999. The importance of ethology in understanding the behaviour of the horse. *Equine Veterinary Journal* 31(S28): 15-19

Goss-Custard, JD, Caldow, RWG, Clarke, RT, West, AD 1995. Deriving population parameters from individual variations in foraging behaviour. II. Model tests and population parameters. *Journal of Animal Ecology*. 64, 277-289.

Hamilton, WD 1971. Geometry for the selfish herd. *Journal of Theoretical Biology* 31: 295-311

Hartmann E, Christensen JW, McGreevy PD 2017. Dominance and leadership: useful concepts in human-horse interactions? *Journal of Equine Veterinary Science* 52: 1-9
Hemelrijk, CK 2000. Towards the integration of social dominance and spatial structure. *Animal Behaviour* 59: 1035-1048

Hemelrijk, CK 2002. Understanding social behaviour with the help of complexity science. *Ethology* 108: 655-671

Henneke, DR, Potter, GD, Kreider, JL, Yeates, BF 1983. Relationship between condition score, physical measurements and body fat percentage in mares. *Equine Veterinary Journal*, 15: 371-372

Hoffmann, G, Bockisch, F-J, Kreimeier, P 2009. Einfluss des Haltungssystems auf die Bewegungsaktivität und Stressbelastung bei Pferden in Auslaufhaltungssystemen. *Landbauforsch. Völk.* 2: 105-112

Houpt, KA 2005. Maintenance behaviours. In: Domestic Horse: The Origins, Development and Management of its Behaviour, Edited by: Mills, DS, McDonnell, SM, pp 94-109.

Houpt KA, Law K, Martinisi V 1978. Dominance hierarchies in domestic horses. *Applied Animal Ethology* 4: 273-283

Houston, AI, McNamara, JM 1999. *Models of Adaptive Behaviour: an Approach Based on State.* Cambridge: Cambridge University Press.

Hunter, LTB, Skinner, J D 1998. Vigilance behaviour in African ungulates: the role of predation pressure. *Behaviour* 135: 195-211

Ingólfsdóttir, H B, Sigurjónsdóttir, H 2008. The benefits of high rank in the wintertime - a study of the Icelandic horse. *Applied Animal Behaviour Science* 114: 485-491

Jorgensen, GHM, Aaensen, L, Mejdell, CM, Boe, KE 2016. Preference for shelter and additional heat in horses exposed to Nordic winter conditions. *Equine Veterinary Journal* 48: 720-726.

Krause, J, Ruxton, G D 2002. *Living in groups.* Oxford: Oxford University Press.

Lamoot, I, Hoffmann, M 2004. Do season and habitat influence the behaviour of Haflinger mares in a coastal dune area? *Belgian Journal of Zoology* 134: 97-103.

Maisonpierre, IN, Sutton, MA, Harris, P, Menzies-Gow, N, Weller, R, Pfau, T 2019. Accelerometer activity tracking in horses and the effect of pasture management on time budget. *Equine Veterinary Journal* 51: 840-845
McDougall, PL, Ruckstuhl, KE 2018. Doing what your neighbour does: neighbour proximity, familiarity and postural alignment increase behavioural mimicry. *Animal Behaviour* 135: 177-185.

McNamara, JM, Houston, AI 1990. The value of fat reserves and the tradeoff between starvation and predation. *Acta Biotheoretica* 38: 37-61

Marshall, HH, Carter AJ, Rowcliffe JM & Cowlishaw G. 2012. Linking social foraging behaviour with individual time budgets and emergent group-level phenomena. *Animal Behaviour* 84: 1295–1305.

Mayes, E, Duncan, P 1986. Temporal patterns of feeding in free-ranging horses. *Behavioral Processes* 96: 105-129.

Menzies-Gow, NJ, Harris, PA, Elliott, J 2017. Prospective cohort study evaluating risk factors for the development of pasture-associated laminitis in the United Kingdom. *Equine Veterinary Journal* 49: 300-306

Mills, D, Redgate, S 2017. Behaviour of horses. In “The Ethology of Domestic Animals” 3rd Edition. Edited by Per Jensen, CAB International.

Moore, JL, Siciliano, PD, Pratt-Phillips, SE 2019. Voluntary energy intake and expenditure in obese and lean horses consuming *ad libitum* forage. *Journal of Equine Veterinary Science*. 74, 13-20.

Pacheco, MA, Herrera, EA 1999 Social structure of feral horses in the Llanos of Venezuela. *Journal of Mammalogy* 78: 15-22.

Petit, O, Bon R. 2010. Decision-making processes: the case of collective movements. *Behavioural Processes* 84: 635–647.

Petrie, A, Sabin, C 2009 *Medical Statistics at a Glance (third edition)*. Chichester: Wiley.

Ralston, SL, Squires,EL, Nockels, CF 1989 Digestion in the aged horse. *Journal of Equine Veterinary Science* 8: 203-205.

Rands, SA 2011a. Approximating optimal behavioural strategies down to rules-of-thumb: energy reserve changes in pairs of social foragers. *PLoS One* 6: e22104

Rands, SA 2011b. The effects of dominance on leadership and energetic gain: a dynamic game between pairs of social foragers. *PLoS Computational Biology* 7: e1002252

Rands, SA, Cowlishaw, G, Pettifor, RA, Rowcliffe, JM, Johnstone, RA 2003. The spontaneous emergence of leaders and followers in a foraging pair. *Nature* 423: 432-434
Rands, SA, Pettifor, RA, Rowcliffe, JM, Cowlishaw, G 2004. State-dependent foraging rules for social animals in selfish herds. *Proceedings of the Royal Society, Section B* 271: 2613-2620

Rands, SA, Pettifor, RA, Rowcliffe, JM, Cowlishaw, G 2006. Social foraging and dominance relationships: the effects of socially mediated interference. *Behavioural Ecology and Sociobiology* 60: 572-581

Rands, SA, Cowlishaw, G, Pettifor, RA, Rowcliffe, JM, Johnstone, RA 2008. The emergence of leaders and followers in foraging pairs when the qualities of individuals differ. *BMC Evolutionary Biology* 8: 51

Rands, SA, Whitney, HM 2008. Floral temperature and optimal foraging: is heat a feasible floral reward for pollinators? *PLoS One* 3: e2007

Robin, CA, Ireland, JL, Wylie, CE, Collins, SN, Verheyen, KLP, Newton, JR 2015. Prevalence of and risk factors for equine obesity in Great Britain based on owner-reported body condition scores. *Equine Veterinary Journal.* 47: 196-201

Schneider, K J 1984. Dominance, predation, and optimal foraging in white-throated sparrow flocks. *Ecology* 65: 1820-1827

Stillman, RA, Goss-Custard, JD, Caldow, RWG 1997. Modelling interference from basic foraging behaviour. *Journal of Animal Ecology* 66: 692-703

Stillman, RA, Caldow, RW, Goss-Custard, JD, Alexander, MJ 2000. Individual variation in intake rate: the relative importance of foraging efficiency and dominance. *Journal of Animal Ecology* 69: 484-493

Stillman, RA, Bautista, LM, Alonso, JC, Alonso, JA 2002. Modelling state-dependent interference in common cranes. *Journal of Animal Ecology.* 71: 874-882

Sueur C, MacIntosh AJJ, Jacobs AT, Watanabe K, Petit O. 2013. Predicting leadership using nutrient requirements and dominance rank of group members. *Behavioral Ecology and Sociobiology* 67: 457–470.

Underwood, R 1982. Vigilance behaviour in grazing African antelopes. *Behaviour* 79: 81-107

van Dierendonck MC, de Vries H, Schilder MBH 1995. An analysis of dominance, its behavioural parameters and possible determinants in a herd of Icelandic horses in captivity. *Netherlands Journal of Zoology* 45: 362-385
Yngvesson, J., Torres, JCR, Lindholm, J, Pattiniemi, A, Andersson, P, Sassner, H. 2019. Health and body conditions of riding school horses housed in groups of kept in conventional tie-stall/box housing. Animals 9: article 73.
Table 1 (on next page)

Statistically significant univariable associations ($p \leq 0.05$) using mixed effects linear regression, controlling for herd group and herd size as a random effects.
Table 1. Statistically significant univariable associations ($p \leq 0.05$) using mixed effects linear regression, controlling for herd group and herd size as a random effects. Non-significant associations are given in the supplementary material, Table S2.

Interruption behaviour variables	β	S.E.	95% CI	Z	p	
Adjusted dominance rank and Body Condition Score						
Total instances of interruptions	-0.77	0.29	-1.33 – -0.21	-2.71	0.007	
Instances of vigilance	-0.93	0.30	-1.52 – -0.34	-3.09	0.002	
Total duration of interruptions	0.08	0.04	-0.15 – -0.01	2.50	0.012	
Adjusted dominance rank and foraging efficiency						
Instances of moving whilst foraging	-0.85	0.30	-1.45 – -0.25	-2.77	0.006	
Instances of displacements received	-0.07	0.02	-0.11 – -0.03	-3.62	<0.001	
Instances of displacements given	1.36	0.33	0.71 – 2.01	4.12	<0.001	
Duration	Total duration of interruptions	-0.02	0.01	-0.04 - -0.001	-2.06	0.039
----------	---------------------------------	--------	------	----------------	-------	-------
Associations between interruption behaviour variables						
Frequency of displacements received						
Instances of moving whilst foraging		0.20	0.06	0.08 – 0.32	3.38	0.001
Instances of displacements given		-0.16	0.07	-0.29 - -0.02	-2.30	0.021
Frequency of displacements given						
Instances of moving whilst foraging		-0.16	0.08	-0.32 - -0.004	-1.90	0.057
The final multivariable explanatory model for adjusted dominance rank, using mixed effects linear regression, controlling for herd group and herd size as random effects.
Table 2. The final multivariable explanatory model for adjusted dominance rank, using mixed effects linear regression, controlling for herd group and herd size as random effects.

Explanatory variable	β	SE	95% CI	Z	p
Frequency of being displaced	-2.71	0.35	-3.43 – -2.00	-7.43	<0.001
Frequency of displacement towards others	0.86	0.28	0.31 – 1.40	3.11	0.002
Body condition score	0.04	0.02	0.005 – 0.08	2.20	0.027
Constant	0.26	0.13	0.01 – 0.52	2.06	0.039
Table 3 (on next page)

The final multivariable explanatory model for body condition score, using mixed effects linear regression, controlling for herd group and herd size as random effects.
Table 3. The final multivariable explanatory model for body condition score, using mixed effects linear regression, controlling for herd group and herd size as random effects.

Explanatory variable	β	SE	95% CI	Z	p
Vigilance frequency	-0.89	0.30	-1.48 – -0.31	-3.01	0.003
Adjusted dominance rank	0.63	0.29	0.06 – 1.18	2.19	0.029
Constant	6.14	0.23	5.68 – 6.59	26.55	<0.001
Table 4 (on next page)

Multivariable linear regression model showing the effect of foraging efficiency (total duration of foraging interruptions) upon the relationship between dominance status and body condition.
Table 4. Multivariable linear regression model showing the effect of foraging efficiency (total duration of foraging interruptions) upon the relationship between dominance status and body condition.

Explanatory variable	β	SE	95% CI	Z	p	χ^2_{1}	p
Adjusted dominance rank	0.55	0.29	-0.03 – 1.13	1.86	0.06	3.39	0.06
Total duration of foraging interruptions	-0.07	0.04	-0.15 – -0.005	-2.12	0.03	4.29	0.04
Constant	6.10	0.28	5.55 – 6.64	22.12	<0.001	-	-
Figure 1

Total foraging time as a function of adjusted dominance rank

Foraging time was observed for the 116 study horses and expressed as a proportion of each individual's total time budget. Horses were kept in 20 discrete herds, and dominance rank was adjusted for herd group size. The plot shows a lack of association between dominance rank and total foraging time.
Figure 2

Total foraging time as a function of body condition score

Foraging time was observed for the 116 study horses and expressed as a proportion of each individual's total time budget. Body condition score was assessed using the Henneke 9-point scale. The plot shows a lack of association between body condition score and total foraging time.