Global synthesis of conservation studies reveals the importance of small habitat patches for biodiversity

Brendan A. Wintle1,a, Heini Kujala,b, Amy Whiteheada,b, Alison Cameronc, Sam Velozo,d, Aija Kukkalae, Atte Moilanend,e, Ascelin Gordonf, Pia E. Lentinn, Natasha C. R. Cadennhead, and Sarah A. Bekessy9

1School of Biosciences, University of Melbourne, VIC 3010, Australia; 2National Institute of Water and Atmospheric Research, Christchurch, 8011, New Zealand; 3School of Natural Sciences, Bangor University, Bangor LL57 2UW, United Kingdom; 4Climate Adaptation Group, Point Blue Conservation Science, Petaluma, CA 94954; 5Department of Geosciences and Geography, University of Helsinki, Helsinki, FI-00014, Finland; 6Finnish Museum of Natural History, University of Helsinki, Helsinki, FI-00014, Finland; and 7School of Global, Urban and Social Studies, RMIT University, Melbourne, 3001, Australia

Edited by Susan P. Harrison, University of California, Davis, CA, and approved November 13, 2018 (received for review July 28, 2018)

Island biogeography theory posits that species richness increases with island size and decreases with isolation. This logic underpins much conservation policy and regulation, with preference given to conserving large, highly connected areas, and relative ambivalence shown toward protecting small, isolated habitat patches. We undertook a global synthesis of the relationship between the conservation value of habitat patches and their size and isolation, based on 31 systematic conservation planning studies across four continents. We found that small, isolated patches are inordinately important for biodiversity conservation. Our results provide a powerful argument for redressing the neglect of small, isolated habitat patches, for urgently prioritizing their restoration, and for avoiding simplistic application of island biogeography theory in conservation decisions.

Significance

Expansive development for urbanization, agriculture, and resource extraction has resulted in much of the Earth’s vegetation existing as fragmented, isolated patches. Conservation planning typically deprioritizes small, isolated patches, as they are assumed to be of relatively little ecological value, instead focusing attention on conserving large, highly connected areas. Yet, our global analysis shows that, if we gave up on small patches of vegetation, we would stand to lose many species that are confined to those environments, and biodiversity would decline as a result. We should rethink the way we prioritize conservation to recognize the critical role that small, isolated patches play in conserving the world’s biodiversity. Restoring and reconnecting small isolated vegetation patches should be an immediate conservation priority.

Author contributions: B.A.W., H.K., A.W., and S.A.B. designed research; B.A.W. and H.K. performed research; B.A.W., H.K., A.W., A.C., S.V., A.K., A.M., A.G., P.E.L., and N.C.R.C. analyzed data; and B.A.W., H.K., A.W., A.C., S.V., A.K., A.M., A.G., P.E.L., N.C.R.C., and S.A.B. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

Data deposition: All R code and raw data inputs (i.e., Zonation outputs and environmental layers) used in analyses are available at https://figshare.com/s/29477dd872e6aca2f9962. See Commentary on page 717.

1To whom correspondence should be addressed. Email: brendanw@unimelb.edu.au.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1813051115/-/DCSupplemental.

Published online December 10, 2018.

www.pnas.org/cgi/doi/10.1073/pnas.1813051115

PNAS | January 15, 2019 | vol. 116 | no. 3 | 909–914
offsetting requirements are more stringent for larger patches in Victoria and New South Wales (17, 18). Globally, the “bigger (and more connected) is better” logic continues to dominate conservation policy, and the scientific community appears largely to reinforce this view (2, 19), but not without dissent (15). The current focus of conservation scientists on conserving large intact landscapes may have the unintended consequence of downplaying the importance of small, isolated, remnant patches of habitat in fragmented landscapes in the eyes of policy makers, land planners, and conservation organizations (13).

There are pragmatic arguments against the default policy of focusing conservation effort predominantly or solely in large and connected patches of habitat. In human-dominated landscapes where past urban and agricultural development has favored flat, fertile environments, the remaining small and isolated patches of vegetation tend to host species and ecological communities notably different than those occurring on poor soils or steep locations where the majority of existing conservation areas are placed (20). The size of remnant patches of habitat is not the only consideration. The more isolated remnant patches are from large intact patches, the more likely they are to be different in species composition, based on the characteristic spatial autocorrelation observed in most environmental data (21). Finally, small and isolated patches, such as those in more-urbanized environments, tend to be disproportionately susceptible to processes such as weed and feral pest invasion or illegal clearing. Without protection and restoration, opportunities to incorporate these patches with unique species composition into a reserve system may disappear quickly, making immediate protective action necessary. Hence, the case for securing, protecting and restoring small patches may be more urgent, as they tend to be more threatened by clearing or degradation than larger patches.

Herein lies an important conceptual, practical, and sociological challenge for conservation practitioners: Should we focus conservation efforts on protecting large, less vulnerable patches of habitat that may contain species relatively well represented in existing conservation areas? Or should we focus efforts on preserving and restoring the often more degraded, but possibly more ecologically unique, small and isolated patches of habitat that could contain species less well represented in existing conservation areas?

While this question requires both practical (cost, logistics) and sociological (preferences for large wild areas versus protection of rare species habitats) considerations, we approach this problem from an ecological perspective by testing the hypothesis that small and isolated patches of remnant habitats in fragmented landscapes tend to contain unique biodiversity that is not well represented in large, contiguous conservation reserves. This is an important issue to resolve, because it determines how much effort conservation scientists should invest in moving the focus of policy makers toward conserving and restoring small and isolated patches of vegetation that are often quite degraded and threatened by many stressors, and potentially more costly to manage per unit area.

While a number of authors have explored the relationship between patch size, isolation, and species richness in fragmented landscapes, with mixed findings (2, 15, 22–30) (SI Appendix, section S1), we could find no studies that explicitly quantify the relationship between patch size, isolation, shape, and conservation value based on the principles of complementarity and representativeness. We utilize a global synthesis of 31 spatial conservation studies, implemented using the spatial prioritization software Zonation (7), in 27 countries across four continents. We statistically synthesize the results of these studies by quantifying the relationship between conservation value and the size, shape, and isolation of habitat patches in each study landscape. Our synthesis allows us to draw significant empirical generalities about this relationship and provide evidence-based advice on the importance of small habitat patches for conservation.

Results and Discussion

Our central result indicates a working hypothesis for land managers and policy makers: that small, relatively isolated habitat patches of high shape complexity in fragmented landscapes tend to be of higher conservation value according to a complementarity and representativeness criterion than a similar-sized habitat patch within contiguous tracts of intact vegetation of low shape complexity. The key finding of our analysis is that patch size, proportion of intact vegetation in a 5-km radius, and fractal dimension index had a statistically significant effect ($P < 0.01$) on conservation value across the 31 conservation prioritization case studies in our global data set. Our final fitted model indicates that conservation value tends to decrease as patch size increases and the intactness of the surrounding landscape increases. Conservation value also increases with increasing fractal dimension (a measure of patch shape complexity), but tends to decrease with increasing perimeter–area ratio (Fig. 1). A final model including an autocovariate term and cubic transformations of 4 of the 16 candidate patch variables provided the most parsimonious and interpretable explanation of spatial variation in Zonation conservation rank (a measure of conservation value and the dependent variable in our analysis). All variables and interactions in the final model were statistically significant ($P < 0.01$).

To help interpret the size of the effect we are reporting, our result indicates that a land unit of around 1 ha selected at random from a small patch of habitat (<1,000 ha) with a complex shape that is predominantly surrounded by cleared or degraded area (e.g., <20% area in a 5-km radius under natural vegetation) will tend to have a substantially higher conservation value than a similar unit selected from a large habitat patch within a largely intact landscape. However, patches characterized by high perimeter–area ratio (often linear patches of habitat along road and river edges in cleared landscapes) tend to have lower conservation value, holding all other variables at their mean. In our case study regions, we would expect the conservation value to reduce by a factor of ~3 with a doubling of the proportion of habitat in a 5-km radius or a doubling patch area, holding all other variables at their mean (Fig. 1 and SI Appendix, section S2).

Looking at species distribution maps (31) for rare or highly restricted species and comparing them to conservation priority maps in some of our case study regions allows us to further tease out the reasons for the statistical relationships observed across the multiple spatial prioritizations we examined. For example, the Perth–Peeb region of southern Western Australia is highly representative of the more fertile and wet coastal regions of the Australian continent (Fig. 2). The region is characterized by a few large contiguous tracts of forest at a relatively large distance from urban and coastal areas, and many much smaller fragments of habitat embedded in a matrix of agriculture and urban development closer to the coast. For the bulk of species found in the larger, contiguous forest areas, loss of any particular hectare of that environment would generate a relatively small overall proportional loss in available habitat. Conversely, closer to the coast, the loss of any small patch of vegetation leads to a significant (and in some instances total) loss of suitable habitat for species confined to those patches, and hence those small patches are afforded a very high conservation value in a regional Zonation analysis. For example, the Western ringtail possum (Pseudocheirus occidentalis) is a Critically Endangered (Environment Protection and Biodiversity Conservation Act 1999) arboreal marsupial that has retracted to the few remaining fragments of the coastal plain of southwestern Western Australia (Fig. 24). The fragments of habitat in which it persists tend to be small and isolated; however, a conservation plan for the Perth region must include those patches if it is to ensure representation of the range of this species. Three other species—one migratory bird (red-necked stint, Calidris ruficollis) and two endemic plants (Dillwynia dilwynioides and the endangered glossy hammer orchid Drakaea elastica)—rely on the same small fragments of habitat close to Perth. These
species are “driving” the prioritization (32) of those small habitat fragments midway down the coast in the Perth region (Fig. 2A).

A similar situation can be observed in the Pacific Northwest United States case study (Fig. 2B). The large central area of the region around the Willamette River has a very high conservation value rank (Fig. 2B, Left), despite being an area of high urbanization and agricultural impact. The environmental conditions that made the fertile valley a place to settle, farm, and build cities also make it suitable for a particular set of grassland birds such as the Threatened streaked horned lark (Eremophil a alpestris stri agata) (Endangered Species Act 1973), and the declining western meadowlark (Sturnella neglecta) that have relatively little suitable habitat elsewhere in the region. The fact that much of their habitat is severely altered or destroyed by agriculture and urbanization means that what remains is crucial for preventing these species from going locally extinct and for halting the loss of regional biodiversity. Here, as in the fragmented regions around Perth and the other case studies in our dataset, high conservation value coincidence with lower native vegetation extent distributed in smaller patches with complex shapes characteristic of the fragmented parts of those landscapes.

This result provides quantitative evidence and a powerful argument that small remnant patches of habitat should, by default, be highly valued, more than they currently are in many jurisdictions. Indeed, we may be gravely mistaken in deprioritizing small, isolated patches, as their continued loss will almost certainly lead to local, and in some instances global, extinctions. Small intact patches of vegetation in areas otherwise largely cleared of vegetation tend to support the last individuals of species that have been eliminated from other parts of the landscape due to systematic destruction of similar habitat types (33). This study systematically analyzes and statistically quantifies this effect across diverse landscapes globally, reinforcing the need to avoid the continued loss of small isolated patches of habitat, even when concerns exist about the long-term viability of species in such patches.

The landscapes analyzed in this study have been cleared or heavily modified for as little as 80 y (Australia), and, in many cases (in Europe), for hundreds of years. For most animal species, even 80 y is enough for extinction debts to play out (34). The same can be said for the bulk of the threatened plants included in these studies, although, for long-lived tree species, it may take hundreds of years for extinction debts to be realized. Our results show that large conservation gains could be achieved by protecting, restoring, and increasing the size and connectedness of small remnant patches, where many rare and threatened animals and plants still survive. International agreements such as the Bonn Challenge (35), and associated regional initiatives such as Africa’s Great Green Wall (36) and China’s Grain for Green project (37), are providing impetus to restore habitats. These are catalyzing ambitious national restoration goals, with a current focus on forests and the numerous ecological and carbon sequestration benefits. There remain significant challenges to introducing biodiversity into such initiatives. Nonetheless, with a growing interest in broad-scale restoration for multiple social and environmental benefits, taking more of a restoration perspective to identifying conservation priorities is becoming a very realistic strategy.

Our models explain a small amount of the spatial variation in conservation value across our global data sets. While our main effects were all statistically significant (SI Appendix, section S2) and ecologically sensible in the responses they represent, there are clearly other environmental and social processes not included in our models that drive spatial variation in conservation value. Patchiness in species distributions due to competition, disease, and other ecological processes will drive spatial variation in conservation value that cannot be easily mapped and modeled at a global scale. While it was impossible to sample the full range of environments in this study, we have sampled a wide range of geographies, climates, and land use histories. Areas such as The Netherlands, with only 16% of the landscape comprising natural or seminatural vegetation cover, contrast with relatively intact
landscapes in western Australia and North America, where ~70% of the landscape contains intact forests and grasslands. The primary bias in this study is toward areas with relatively high-quality biodiversity data suited to Zonation-style analyses. Conservation priorities are driven by more than the spatial distribution of biodiversity. Acquisition and management costs, social and political constraints, threats to biodiversity, and data uncertainty all play into conservation decisions. Our analysis indicates that an emphasis on larger, cheaper conservation areas may compromise biodiversity conservation objectives. If larger patches are cheaper to manage than small or isolated ones, then an explicit cost–benefit analysis could compare the efficiency gained by choosing larger patches to the cost of losing unique biodiversity values in small patches. Our aim here is not to argue for thoughtlessly prioritizing protection of small and isolated habitats, but rather to prompt a reassessment of assumptions about their lack of worth. When setting conservation priorities, application of rules that penalize small and isolated patches as a matter of course, without adequate assessment of value, should be avoided.

Our findings raise important questions for conservation practitioners. Our results are driven by our use of a biodiversity measure that emphasizes representativeness and complementarity (6). Does that mean that island biogeography and metapopulation theories are not relevant in conservation? Obviously not. However, the relative emphasis given to these two bodies of theory should reflect the specific objectives of a conservation program. A program seeking to ensure long-term persistence of small and isolated habitats, but rather to prompt a reassessment of assumptions about their lack of worth. When setting conservation priorities, application of rules that penalize small and isolated patches as a matter of course, without adequate assessment of value, should be avoided.

Our unique attempt to draw some generality from spatial prioritizations conducted in diverse landscapes across the planet has provided insights into the relative importance of small and isolated habitat patches, and a statistical predictive framework for analyzing conservation importance. Our work provides a hypothesis that is testable and falsifiable with further evidence: that small and isolated patches of remnant habitat are likely to contain disproportionately more unique or rare biodiversity values that may be irreplaceable, compared with equivalent sized areas in highly intact landscapes. We encourage synthetic analyses such as ours to explore big questions of high practical relevance for the conservation of biodiversity.

Methods

Spatial Conservation Prioritization Case Studies. We synthesized and analyzed the results of 31 multispecies spatial conservation prioritization case studies from 28 countries around the globe, including case studies from Australia, North America, Africa, and Europe (SI Appendix, Table S1). The case studies presented in this study were all implemented using the systematic spatial prioritization software Zonation (7). Drawing on case studies that utilized a single decision support package allowed us to take a consistent approach to the definition of the “biodiversity value” across all studies. Landscape units were defined as raster map cells of 1 ha in size. A key criterion for inclusion in our synthesis was that studies must not have used arbitrary weighting of patches based on their size or level of fragmentation, such as the edge-to-area, patch-size, or connectivity penalties commonly applied in conservation prioritization studies (38),

Fig. 2. Zonation priority rank maps (Left) are provided for two case studies: (A) Perth Australia and (B) Pacific Northwest United States showing the lowest (yellow) and highest (purple) conservation priority areas. Enlarged portions of the map (Middle) highlight fragmented parts of the study area that contain habitat patches of high conservation value. The species icons indicate the species that have ranges primarily in those small, isolated patches. Maps adjacent to each species icon give SDM predictions for each of those species. Satellite images (Right) provide a bird’s-eye view of the level of habitat fragmentation in the featured case study subregions.
as this would confound our attempts to understand the representativeness value of small isolated patches. The case studies analyzed conservation value across multiple biomes. All studies ranked, not a comprehensive priorities across land-

scape units, using individual species distributions as the currency of conserva-

tion significance (SI Appendix, Table S1). No studies incorporated land acquisi-

tion or management costs in their Zonation prioritization. Based on these criteria, we identified four other studies that were not included in our analysis because authors could not be contacted or were not able to provide the necessary Zonation output files. Our aim was to achieve a geographically representative sample of Zonation studies, not a comprehensive priorities across the

almost 1,000 studies that have utilized Zonation since 2005. We anticipate that many other studies could be added to our analysis in the future.

Conservation Value. The conservation value of a given landscape unit (raster cell) was defined in terms of its conservation priority rank, as determined by a Zonation analysis, that is based on the proportion of remaining species distributions contained within each cell. The ranking of cells in the landscape is created through a cell removal process whereby the Zonation software first assumes all cells in the landscape to be protected and then progressively removes cells that cause the smallest marginal loss in overall conservation value. This is repeated until no cells are left, with the least valuable grid cells being removed first and the most valuable cells being retained until the very end. The cell removal order provides the relative ranking. The critical compo-

nent of the algorithm is the definition of marginal loss (6) that dictates which grid cell is removed at each step of the process. There are multiple marginal loss functions that can be used in Zonation. The commonly used “core-area” marginal loss function aims to balance the solution across all species or linked to species threat level, endemicity, or some other factor of conservation relevance (39). For completeness, we also include the cost of adding cell c to the reserve network. As cost was not used in the case studies incorporated in our analyses, this receives a value of 1 (equal cost for all grid cells). Using Eq. 1, the software calculates the relative im-

portance of each cell for each feature (species or vegetation type) during the prioritization process. Then, for each cell, it identifies the maximum value across species and finally removes (ranks) the cell that has the smallest maximum value and, hence, the lowest marginal loss.

In most Zonation analyses, including those presented here, the currency of habi-

tat for species in the analysis (11), including identifying suitable and effi-

cient corridors for maintaining connectivity between core areas of suitable

habitat (39). Here we avoided studies that prioritized connectivity, to avoid confounding our statistical analysis. The top priority sites identified in the studies that underpin our analyses represent areas assumed to be necessary to ensure habitat representation for all species and vegetation communities.

Vegetation Patch Size, Shape, and Isolation Variables. Vegetation mapping of case study regions was used to define habitat patch size, shape, and isolation metrics for each region (SI Appendix, Table S2). Based on vegetation map-

ping, patches of habitat generally comprised areas of natural forest, woodland, shrubland, or grassland embedded in a matrix of human-modified agricultural land thought to be unsuitable for the species in-

cluded in each case study. In some case studies, habitat was considered more broadly as any type of native or natural vegetation that could serve as habitat for species in the analysis (11), including agricultural areas with important natural features such as large scattered trees (35). Areas under intensive agriculture, industrial and urban areas, large water bodies, and transport corridors were considered nonhabitat for the purposes of our analysis. All species considered in case studies were terrestrial. Vegetation mapping and patch level variables were processed at 1-ha (100 m) grid cell resolu-

tion for all case studies and, for some case studies, for vegetation mapping and isola-

tion computation algorithms implemented in the R packages raster (v.2.6-7) (41) and SDMTools (v.1.1-221) (42) (see SI Appendix, Table S2 for definitions of patch variables computed and used in the analysis and SI Appendix, section S2 for R code to generate all patch variables). The original vegetation mapping included raster maps at resolutions ranging from 0.25-ha (50 m) to 6.25-ha (250 m) grid cell resolution, and some vector maps at mapping resolution ranging from 1:10,000 to 1:100,000. All vegetation maps at not 1-ha grid cell resolution were resampled to that resolution in R raster.

Analyzing Conservation Value in Relation to Patch Size, Shape, and Isolation Variables. The original grid cell resolution of Zonation case study analyses varied from 0.25 ha (New South Wales, Australia) to 1.5 km² (Europe) (SI Appendix, Table S2). For consistency, Zonation outputs in all case study re-
gions were resampled to 1-ha resolution and clipped using the R package raster to exactly match the grid cell resolution and extent of the vegetation mapping used to compute patch metrics.

Preliminary graphical exploration of the relationship between conservation value, patch size, and landscape fragmentation was conducted at a case study/ country level to provide some insights into likely global-level patterns. Zonation priority rank values were plotted against the patch variables planned for use in the case study region (species richness and scatter point). variables showed relationships were then explored in more detail using statistical modeling.

For global-level statistical modeling, the dependent variable—conservation value (Zonation rank)—which ranges on a 0 to 1 scale, was transformed using a logit transformation to allow linear modeling assumptions to apply (43). In-

dependent variables (SI Appendix, Table S2) representing aspects of patch size, shape, fragmentation, and isolation were standardized to improve model parameter estimation. A Pearson’s correlation analysis was computed to allow identification of highly cor-

related pairs of independent variables, with the purpose of eliminating highly correlated variables being offered within the one statistical model; again, the purpose was to improve model coefficient estimation stability (SI Appendix, section S2) (44). From each pair of variables showing high corre-

lations (ρ > 0.6), one variable was retained for further modeling on the basis of biological (a single independent variable) relationship or if the variable was a dependent variable (44). The variable from each correlated pair that most sub-

stantially reduced residual deviance in a univariate regression model (on conservation value) was the one that was retained. This resulted in a final set of four candidate patch-level independent variables retained for potential inclusion in the final multiple regression model: patch area, patch fractal dimension, patch perimeter-to-area ratio, and proportion of intact vegetation in a 5-km radius. Patch area is simply the area, measured in hectares, of con-

tiguous natural vegetation that makes up the patch. Patch fractal dimension describes the shape complexity of each patch, with high values indicating high shape complexity. Patch perimeter-to-area ratio is used as an index of how much “internal” area of a patch exists relative to the amount of “edge.” Higher ratios usually indicate long, thin strips of natural vegetation that are largely edge (little internal area) and collection of vegetation that is computed by summing all of the 1-ha cells classed as natural vegetation in a 5-km radius around a focal cell (see SI Appendix, Table S2 for details of all patch variables, including those that made it to the final model selection stage).

Because ~290 million raster cells were available for regression modeling, we were forced to use a sparse sample of the available data to produce statistical models that converged with acceptable levels of spatial autocorrelation in model residuals (45). Using 10,000 random samples per case study region or country substantially reduced spatial autocorrelation in model residuals and provided sufficient data for stable inference. With 10,000 samples obtained from each case study region, the total sample for modeling was n = 275,000. Random sampling of the available data was repeated 10 times using an unweighted sampling scheme (10,000 from each region) to test for stable inference. Stable inference is defined here as low (<10%) coefficient of variation in estimates of coefficients (from models of the same structure) between independent samples obtained from each case study. Random samples from each case study region were obtained using the function sampleRandom in the R package raster (v.2.6-7) (41). In all fitted models, residual autocorrelation was reduced to negligible levels by introducing an autocovariate term (45). The autocovariate was pro-

duced from the Zonation prioritization raster maps from each of the 31 studies using the R package spdep (v.0.5-6) (46) with a neighborhood radius of 20,000 cells and all other settings default (SI Appendix, section S2).

Global multivariable models were fitted as generalized linear models (GLMs) with a Gaussian link function (47). Nonlinear relationships observed in pre-
liminary graphical explorations of relationships between conservation value
and patch metrics using smoothing terms (44) were accommodated in the global GLMs using quadratic or cubic polynomial terms. The final model (all terms included with cubic transformations and interactions between some independent variables) to smaller subsets on the basis of Akaike’s Information Criteria (AIC) (49). AIC supports model selection based on a trade-off between deviance reduction (explanatory power) and parsimony (50). The AIC-best model arising from that process included a cubic transformation on all terms except interactions (essentially the full model) (SI Appendix, section S2). All variables included in the AIC-best model were significant at P < 0.01 (SI Appendix, section S2). The tendency toward large models in this study is driven by the large sample of data used to fit each model. This is of little consequence, however, as smaller models (with fewer variables) give the same shape fits as larger models with respect to our main variables of interest (the patch-level indices). Plots of independent variables on conservation value were produced using the effects package (SI) (440-1) in R (52).

Data and Software Availability. All statistical analyses were undertaken in R 3.3.3. All R code and raw data inputs (i.e., Zonation outputs and environmental layers) used in analyses are available (52) and via a weblink in SI Appendix, section S2.

ACKNOWLEDGMENTS. Thanks go to Remi from Puerto Escandella for providing ideas and support and to Michael Scroggie, who wrote the patch delineation R code. H.K. and A.W. were supported by the Australian Government’s National Environmental Science Program (NESP) Threatened Species Recovery Hub. B.A.W. and S.A.B. were supported by Australian Research Council (ARC) Future Fellowships FT100100889 and FT130101225, respectively. S.A.B. was supported by the Australian Government’s NESP Clean Air and Urban Landscapes Hub. A.M. received support from the Finnish Ministry of Environment. A.G. was supported by ARC Discovery Project DP150102472.

1. MacArthur RH, Wilson EO (1967) The Theory of Island Biogeography (Princeton Univ Press, Princeton, NJ).
2. viron RI, et al. (2018) Is habitat fragmentation good for biodiversity? Biol Conserv 226:9–11.
3. Ovaskainen O (2002) Long-term persistence of species and the SLOSS problem. J Theor Biol 218:419–433.
4. Murcia C (1995) Edge effects in fragmented forests: Implications for conservation. Trends Ecol Evol 10:58–62.
5. Foreman RT (1996) Land Mosaic: The Ecology of Landscapes and Regions (Cambridge Univ Press, Cambridge, UK).
6. Margules CR, Pressey RL (2000) Systematic conservation planning. Nature 405:243–253.
7. Molianen A, et al. (2005) Prioritizing multiple-use landscapes for conservation: Methods for large multi-species planning problems. Proc Biol Sci 272:1885–1891.
8. Ball IR, Possingham HP, Watts MEJ (2009) Marxan and relatives: Software for spatial conservation prioritisation. Spatial Conservation Prioritisation: Quantitative Methods and Computational Tools, eds Molianen A, Wilson KA, Possingham HP (Oxford Press, Oxford), pp 185–195.
9. Watts ME, et al. (2009) Marxan with Zones: Software for optimal conservation based land- and sea-use zoning. Environ Model Softw 24:1513–1521.
10. Whitehead AL, Kujala H, Wintle BA (2017) Dealing with cumulative biodiversity impacts: A framework for determining reserve size in ecosystems structured by large disturbances. Environ Model Softw 101:19–24.
11. structured and mismatched between national and EU-wide priorities: Examining the Natura 2000 network in vertebrate species conservation. Biol Conserv 198:193–201.
12. Kremen C, et al. (2008) Aligning conservation priorities across taxa in Madagascar with high-resolution planning tools. Science 320:222–226.
13. Tulloch AIT, Barnes MD, Ringma J, Fuller RA, Watson JEM (2016) Understanding the importance of small patches of habitat for conservation. Biol Conserv 211:355–366.
14. Ripple WJ, Lattin PD, Hershey KT, Wagner FF, Meslow EC (1997) Landscape composition and pattern around northern spotted owl nest sites in Southwest Oregon. J Appl Ecol 81:117–124.
15. Williams NSG, Morgan JW, McCarthy MA, McDonnell MJ (2006) Local extinction of grassland plants: The landscape matrix is more important than patch attributes. Ecology 87:3000–3006.
16. Margules CR, Pressey RL (2000) Systematic conservation planning. Nature 405:243–253.
17. Molianen A, et al. (2005) Prioritizing multiple-use landscapes for conservation: Methods for large multi-species planning problems. Proc Biol Sci 272:1885–1891.
18. Ball IR, Possingham HP, Watts MEJ (2009) Marxan and relatives: Software for spatial conservation prioritisation. Spatial Conservation Prioritisation: Quantitative Methods and Computational Tools, eds Molianen A, Wilson KA, Possingham HP (Oxford Press, Oxford), pp 185–195.
19. Watts ME, et al. (2009) Marxan with Zones: Software for optimal conservation based land- and sea-use zoning. Environ Model Softw 24:1513–1521.
20. Whitehead AL, Kujala H, Wintle BA (2017) Dealing with cumulative biodiversity impacts in strategic environmental assessment: A new frontier for conservation planning. Conserv Lett 10:195–204.
21. Kukula AS, et al. (2016) Matches and mismatches between national and EU-wide priorities: Examining the Natura 2000 network in vertebrate species conservation. Biol Conserv 198:193–201.
22. Kremen C, et al. (2008) Aligning conservation priorities across taxa in Madagascar with high-resolution planning tools. Science 320:222–226.
23. Tulloch AIT, Barnes MD, Ringma J, Fuller RA, Watson JEM (2016) Understanding the importance of small patches of habitat for conservation. Biol Conserv 211:355–366.
24. Ripple WJ, Lattin PD, Hershey KT, Wagner FF, Meslow EC (1997) Landscape composition and pattern around northern spotted owl nest sites in Southwest Oregon. J Appl Ecol 81:117–124.
25. Williams NSG, Morgan JW, McCarthy MA, McDonnell MJ (2006) Local extinction of grassland plants: The landscape matrix is more important than patch attributes. Ecology 87:3000–3006.
Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:
Wintle, BA; Kujala, H; Whitehead, A; Cameron, A; Veloz, S; Kukkala, A; Moilanen, A; Gordon, A; Lentini, PE; Cadenhead, NCR; Bekessy, SA

Title:
Global synthesis of conservation studies reveals the importance of small habitat patches for biodiversity

Date:
2019-01-15

Citation:
Wintle, B. A., Kujala, H., Whitehead, A., Cameron, A., Veloz, S., Kukkala, A., Moilanen, A., Gordon, A., Lentini, P. E., Cadenhead, N. C. R. & Bekessy, S. A. (2019). Global synthesis of conservation studies reveals the importance of small habitat patches for biodiversity. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 116 (3), pp.909-914. https://doi.org/10.1073/pnas.1813051115.

Persistent Link:
http://hdl.handle.net/11343/249989

File Description:
published version

License:
CC BY-NC-ND