Quantitative Studies on the Role of *Ureaplasma urealyticum* in Non-Gonococcal Urethritis and Chronic Prostatitis

HELMUT BRUNNER M.D., a WOLFGANG WEIDNER, M.D., b AND HANS-GERD SCHIEFER, M.D. c

aProfessor of Medical Microbiology and Immunology, University of Düsseldorf, and Institute for Chemotherapy, Bayer AG, Wuppertal, Federal Republic of Germany; bDepartment of Urology, Justus Liebig University of Giessen, Federal Republic of Germany; cProfessor of Medical Microbiology, Institute for Medical Microbiology, Justus Liebig University of Giessen, Federal Republic of Germany

Received January 4, 1983

Quantitative determinations of *U. urealyticum* and *M. hominis* have been performed in 164 men with non-gonococcal urethritis (NGU) and 597 patients with chronic prostatitis. Evidence is provided that *U. urealyticum* plays an etiologic role in 29.3 percent of patients with non-gonococcal urethritis. Mixed infections of *C. trachomatis* and *U. urealyticum*, in high numbers, do occur in 11 percent of NGU cases. A constellation suggesting ureaplasma-associated disease could be observed in 13.7 to 15.2 percent of 597 patients with chronic prostatitis. *M. hominis* does not appear to be a causative agent of NGU or chronic prostatitis.

INTRODUCTION

Non-gonococcal urethritis (NGU) appears to be the most frequent sexually transmitted disease in industrialized countries [1,2,3]. Approximately 50 percent of NGU cases are caused by *Chlamydia trachomatis* [3]. In addition, it has been well established that *Ureaplasma urealyticum* is another etiologic agent of NGU [3,4]. But, in an individual man with chlamydia-negative urethritis, it has been difficult to demonstrate that *U. urealyticum* is the causative pathogen, because up to 70 percent of healthy persons harbor the organisms in their urethra [3,4,5]. Titer rises of serum antibodies in NGU patients have not been demonstrated so far, either because of the insufficient sensitivity of the methods employed or because of the superficial nature of the infection, which does not induce high levels of systemic antibodies. In a different approach, we have therefore used quantitative procedures to establish the possibility of *U. urealyticum* as the etiologic agent in individual patients with NGU and thus determine the role of the organisms as a primary pathogen in this disease.

The etiology of chronic prostatitis is by far more obscure than that of NGU [6]. Common pathogens of the urogenital tract can only be found with low frequency (< 10 percent) in patients with chronic prostatitis. Because *U. urealyticum* can cause urethritis, the possibility arises that the organisms also induce ascending inflammatory reactions of the prostate. Since the technique of Meares and Stamey has suc-
cessfully been used to localize infections of the male genital tract with common bacteria, we have employed this procedure, together with quantitative culture techniques, for common bacteria, candida species, *U. urealyticum*, and *Mycoplasma hominis* in order to unravel the role of the latter two species in chronic prostatitis [7]. This publication summarizes data on 164 patients with NGU and 597 men with chronic prostatitis [8,9].

STUDY POPULATION AND METHODS

Study Population

One hundred and sixty-four patients (mean age, 34 years), attending the outpatient clinic of the Department of Urology, University of Giessen, from January 1, 1979, until December 31, 1980, were studied. All men complained of spontaneous urethral discharge. The presence of *Neisseria gonorrhoeae* was excluded by gram stain and inoculation of discharge on Thayer-Martin agar.

In addition, 597 men with chronic prostatitis were examined during the period of 1975–1980. Patients with prostatitis typically complained of variable symptoms, like urinary frequency, urgency, nocturia, terminal dysuria, abdominal aching, backache, and testicular, penile, or perineal pain. In a few asymptomatic men prostatic tenderness or edema at rectal examination were the reasons for further diagnostic procedures. Thirty-two (5.4 percent) of these patients (mean age, 41 years) had chronic bacterial prostatitis with common urinary tract pathogens, predominantly *Escherichia coli*. Prostatodynia was the diagnosis in 187 men (31.3 percent) (mean age, 39 years). In 82 patients (mean age, 42 years) ureaplasma-associated prostatitis was suggested by quantitative culture criteria as detailed in results. In 296 men (49.6 percent) the etiology of the disease remained obscure. Men with upper urinary tract infection by known pathogens and patients who had taken antibiotics within four weeks before attendance were excluded from the study. Forty-eight men (mean age, 42.5 years) without inflammatory response of the urogenital tract were studied as controls. In addition, uroflowmetry was used for detection of obstructive disorders as a cause of recurrent infections.

Microbiological Procedures (Table 1)

In men with NGU, 0.01 ml of urethral discharge was taken with a bacteriological loop from the meatus urethrae and transferred to a transport medium [10]. In addition, fluor urethrae was inoculated into cycloheximide-treated McCoy cells for the cultivation of chlamydiae [11]. For isolation of ureaplasmas and mycoplasmas, 0.1 ml of the transport medium and 0.1 ml of first-voided urine were inoculated on A-6D agar, later A-7 agar, and into U-9 broth [12,13]. For cultivation of *M. hominis* a standard mycoplasma agar and broth were also inoculated. These two media were later omitted, when it was found that *M. hominis* could be isolated with the same efficiency on A-6-D, resp. A-7, agar and U-9 broth. After incubation of agar plates for five days under anaerobic conditions (Gas-Pak-System, Becton-Dickinson, Heidelberg, FRG) colonies were counted, using a dissecting microscope at a magnification of 25 ×. The U-9 broth was observed twice daily for a color change of the pH indicator. When the indicator started to change color, subcultivation was performed immediately on agar plates. If a color change was not seen after five days, the tubes were discarded. Ureaplasmas were identified by their characteristic colony morphology and by their resistance to lincomycin. *M. hominis* was identified by epi-immunofluorescence. Details of the procedures have been described previously [8–10].
In patients with prostatitis and in healthy controls, 10 ml of first-voided urine (VB₃), midstream urine (VB₂), expressed prostatic secretions (EPS), and 10 ml of first-voided urine after massage (VB₁) were obtained [7]. This procedure, proposed by Meares and Stamey, has proved to be very useful in localization of the infection. If midstream urine (VB₂) is sterile or contains very low numbers of bacteria and first-voided urine (VB₃) exhibits at least tenfold higher numbers of bacteria than EPS and VB₁, the infection is localized to the urethra (urethritis). In bacterial prostatitis, the number of CFU in EPS and usually also in VB₃ exceeds by at least one logarithm the number of CFU in VB₁. If VB₃ contains significant numbers of bacteria (10⁴ CFU or more) the infection cannot be localized to the urethra or the prostate and is therefore considered as upper urinary tract infection.

Common urinary tract pathogens were quantitated, according to standard techniques. Quantitative culture of ureaplasmas and mycoplasmas in all four kinds of specimens was as described above. C. trachomatis was cultured in EPS. In addition, EPS was investigated by gram stain and culture on Thayer-Martin medium for the presence of Neisseria gonorrhoeae. Microscopy and cultivation for Trichomonas vaginalis was performed on VB₃ (Table I). Patients with positive results for N. gonorrhoeae, C. trachomatis, or T. vaginalis have not been included in the study. Leucocyte counts could not be performed on EPS, because all available material was used for the microbiological procedures.

RESULTS

Non-Gonococcal Urethritis

As can be seen in Table 2, U. urealyticum could be isolated in numbers of more than 10⁴ colony-forming units (CFU) from urethral discharge and more than 10³ CFU per ml from VB₁ in 48 (29.3 percent) of the 164 NGU patients. In six of these 48 patients, mixed infections with M. hominis, also in high numbers, were observed. In 18 patients (11 percent) U. urealyticum in high numbers and C. trachomatis were isolated, whereas C. trachomatis alone was seen in 59 (36 percent) of men with NGU. Ten or more leucocytes per high-power field (400 ×) of the sediment from VB₁ were observed in 71.7 percent of chlamydia-positive, ureaplasma-negative men and 47.6 percent of the 42 patients with high ureaplasma numbers. Furthermore, T.
vaginalis was detected in three (1.8 percent) of the 164 men with NGU. The patients, from whom C. trachomatis and high numbers of U. urealyticum had been isolated, were treated with 500 mg of tetracycline-HCl twice daily for 14 days. All men were cured two to three weeks after therapy.

Chronic Prostatitis

In 82 (13.7 percent) of the 597 patients with chronic prostatitis the typical prostatitis histogram, described by Meares and Stamey [7], was observed for U. urealyticum (Table 3). Eighty of these patients had high numbers of ureaplasmas in EPS and 51 also in VB₁ but low numbers or no ureaplasmas in VB₂ and VB₃. In the remaining two patients, who had high ureaplasma numbers in VB₁ and VB₂, CFU in

TABLE 3

Specimens from Which Indicated No. of Organisms Were Isolated	No. of Men	%
U. urealyticum		
VB₁: > 10⁴ CFU/ml	2	0.3
VB₂: > 10⁴ CFU/ml	1	0.2
EPS: > 10³ CFU/ml	82	13.7
VB₁: > 10³ CFU/ml	51	8.5
M. hominis		
VB₁: > 10⁴ CFU/ml	0	0
VB₂: > 10⁴ CFU/ml	0	0
EPS: > 10³ CFU/ml	10⁻¹	1.7
VB₁: > 10³ CFU/ml	3⁻¹	0.5

* Mixed infections with U. urealyticum (seven patients), E. coli (two patients) or S. faecalis (one man)
UREAPLASMAS IN NGU AND CHRONIC PROSTATITIS

VB₁ and VB₂ were more than tenfold lower than in EPS, which was still in accordance with a prostatitis histogram. In an additional nine patients, high numbers of ureaplasmas were observed in VB₁, VB₂ (eight patients), and EPS (data not shown). In these men a significant difference in the number of organisms between VB₁ resp. VB₂ and EPS was not seen, indicating most probably prostatourethritis. If these nine are added to the previous group of 82 men, a total of 91 (15.2 percent) of the patients may be considered to suffer from ureaplasma-associated chronic prostatitis.

The 82 men with ureaplasma-associated prostatitis were treated with 500 mg of tetracycline-HCl twice daily for 14 days. Seventy-one of these patients were cured 21 to 28 days after start of treatment, and ureaplasmas were no longer detected. Seven of the remaining eleven men had bladder neck obstruction. In four men no obvious explanation for the therapy failure could be found.

M. hominis was cultured from ten men in the typical prostatitis configuration, but always in mixed infections with high numbers of either *U. urealyticum* (seven men), *Escherichia coli* (two), or *Streptococcus faecalis* (one), who also showed a prostatitis pattern (Table 3). In an additional 12 patients, from whom *M. hominis* could be isolated in high numbers, a prostatitis histogram was not seen (data not shown). Eleven of these men had more than 10^4 CFU in VB₁, midstream-urine, and EPS.

U. urealyticum was isolated from VB₁ (eight men), VB₂ (none), EPS (three men), and VB₃ (three men) of the 48 healthy persons but always in numbers below 10^3 CFU per ml. *M. hominis* was cultured from VB₁ (six men), VB₂ (none), EPS (one man), and VB₃ (one man) of healthy volunteers. Although in one man more than 10^4 CFU of *M. hominis* per ml of EPS and 10^3.7 CFU per ml of VB₃ were isolated, he did not exhibit any symptoms or signs of lower genital tract disease.

In 32 (5.4 percent) of the 597 men, common urinary tract pathogens caused the disease, whereas 187 (31.3 percent) patients suffered from prostatodynia. In the remaining patients variable results were obtained which did not permit an etiological diagnosis.

DISCUSSION

Our studies on non-gonococcal urethritis have confirmed previous findings, which indicated that approximately 45 to 50 percent of the NGU cases are caused by *C. trachomatis* [1,2,3]. In addition, evidence was provided that in approximately 30 percent of the NGU patients *U. urealyticum* was the etiologic agent. As expected, in 11 percent of patients a mixed infection of *C. trachomatis* and high numbers of *U. urealyticum* was observed. In these men the etiology remained obscure.

In previous studies on 312 patients with prostatourethritis, it was demonstrated that disease symptoms in men, who had high numbers of *U. urealyticum* in EPS and VB₃, disappeared after tetracycline treatment, and the mycoplasmas could not be reisolated, whereas in patients with high numbers of *M. hominis* disease symptoms persisted, although mycoplasmas were no longer detected after therapy [14]. The data indicated that *U. urealyticum*, but not *M. hominis*, was connected with disease. In further studies, tetracycline therapy was therefore considered to be justified only in patients with high numbers of *U. urealyticum*.

Ureaplasma-associated prostatitis was evident in 13.7 to 15.2 percent of men with chronic prostatitis. Therapy failure in 11 of these patients could be explained by bladder neck obstruction, reinfection via the sexual partner, or by appearance of tetracycline-resistant ureaplasmas [15]. In addition, infection with another tetracycline-sensitive microorganism should be considered [16]. The data do not ultimately prove the etiologic importance of *U. urealyticum* in these men, but isola-
tion and treatment results point in this direction. Further studies, using serum or local antibody determinations and/or serotyping of isolates could provide additional evidence for the causative role of the organisms in chronic prostatitis.

For the etiological diagnosis of NGU we regard it as mandatory to include culture procedures for *C. trachomatis* and quantitative (CFU) determinations of *U. urealyticum*. In chronic prostatitis, the localization technique of Meares and Stamey can now be recommended for the diagnosis of ureaplasma infection similar to its previous use for prostatitis caused by common bacteria.

REFERENCES

1. Taylor-Robinson D, Thomas BJ: The role of *Chlamydia trachomatis* in genital-tract and associated diseases. J Clin Pathol 33:203–233, 1980
2. Taylor-Robinson D, McCormack WM: The genital mycoplasmas. New Eng J Med 302: 1003–1010, 1063–1067, 1980
3. Bowie WR, Wang SP, Alexander ER, et al: Etiology of nongonococcal urethritis. Evidence for *Chlamydia trachomatis* and *Ureaplasma urealyticum*. J Clin Invest 59:735–742, 1977
4. Shepard MC: Quantitative relationship of *Ureaplasma urealyticum* to the clinical course of nongonococcal urethritis in the human male. INSRM 33:375–379, 1974
5. Munday PE, Thomas BJ, Johnson AP, et al: Clinical and microbiological study of nongonococcal urethritis with particular reference to non-chlamydial disease. Br J Vener Dis 57:327–333, 1981
6. Meares EM Jr: Prostatitis syndromes: New perspectives about old woes. J Urol 123:141–147, 1980
7. Meares EM, Stamey TA: Bacteriologic localization patterns in bacterial prostatitis and urethritis. Invest Urol 5:492–518, 1968
8. Weidner W, Schiefer HG, Krauss H, et al: Studies on the aetiology of non-gonococcal urethritis. Dtsch med Wschr 107:1227–1231, 1982
9. Brunner H, Weidner W, Schiefer HG: Studies on the role of *Ureaplasma urealyticum* and *Mycoplasma hominis* in prostatitis. J Infect Dis 147:807–813, 1983
10. Weidner W, Brunner H, Krause W: Quantitative culture of *Ureaplasma urealyticum* in patients with chronic prostatitis or prostatosis. J Urol 124:622–625, 1980
11. Ripa KT, Márth PA: Cultivation of *Chlamydia trachomatis* in cycloheximide-treated McCoy cells. J Clin Microbiol 6:328–331, 1977
12. Shepard MC, Lunceford CD: Urease color test medium U9 for the detection and identification of "T" mycoplasmas in clinical material. Appl Microbiol 20:539–543, 1970
13. Shepard MC, Lunceford CD: Differential agar medium (A7) for identification of *Ureaplasma urealyticum* (human T mycoplasmas) in primary cultures of clinical material. J Clin Microbiol 3:613–625, 1976
14. Weidner W, Brunner H, Krause W: The importance of *Ureaplasma urealyticum* in non-specific prostatoo-urethritis. Dtsch med Wschr 103:465–470, 1978
15. Evans RT, Taylor-Robinson D: The incidence of tetracycline-resistant strains of *Ureaplasma urealyticum*. J Antimicrob Chemother 4:57–63, 1978
16. Taylor-Robinson D, Tully JG, Furr PM, et al: Urogenital mycoplasma infections of man: a review with observations on a recently discovered mycoplasma. Israel J Med Sci 17:524–530, 1981