Reverse Mathematics of Matroids

Jeffry L. Hirst1 and Carl Mummert2

1 Appalachian State University, Boone, NC 28608, USA,
hirstjl@appstate.edu,
WWW home page: http://mathsci.appstate.edu/~jlh/
2 Marshall University, Huntington, WV 25755, USA,
mummertc@marshall.edu,
WWW home page: http://m6c.org/w/

Abstract. Matroids generalize the familiar notion of linear dependence from linear algebra. Following a brief discussion of founding work in computability and matroids, we use the techniques of reverse mathematics to determine the logical strength of some basis theorems for matroids and enumerated matroids. Next, using Weihrauch reducibility, we relate the basis results to combinatorial choice principles and statements about vector spaces. Finally, we formalize some of the Weihrauch reductions to extract related reverse mathematics results. In particular, we show that the existence of bases for vector spaces of bounded dimension is equivalent to the induction scheme for Σ^0_2 formulas.

Keywords: Reverse mathematics, matroid, induction, graph, connected component

MSC Subject Class (2000): 03B30; 03F35; 05B35

The study of computable and computably enumerable matroids links the work in this paper to the theme of this volume. The following incomplete survey establishes a framework for this connection and provides a few pointers into the substantial literature on computability and matroids.

In a seminal paper on computable and c.e. vector spaces, Metakides and Nerode \cite{MN} defined a vector space V_∞, the \aleph_0-dimensional vector space over a countable computable field F consisting of ω-sequences of elements of F with finite support, with point-wise operations. The lattice of c.e. subspaces of V_∞ is denoted $\mathcal{L}(V_\infty)$. A vector space V over a computable field F is c.e. presented if it has an effective enumeration of the vectors, partial recursive addition and scalar multiplication operations, and a c.e. congruence relation \equiv such that the quotient V/\equiv is a vector space. Metakides and Nerode proved that a vector space is c.e. presented if and only if it is computably isomorphic to V_∞/W for some $W \in \mathcal{L}(V_\infty)$.
Many proofs of results for \(\mathcal{L}(V_\infty) \) rely on the structure of \(V_\infty \), hampering their adaptation to \(\mathcal{L}(F_\infty) \), the lattice of c.e. algebraically closed subfields of a sufficiently computable algebraically closed field \(F_\infty \) with countably infinite transcendence degree. Matroids restrict interest to dependence properties common to both vector spaces and algebraic extensions, so proofs based on matroids can often be adapted to both vector space and field settings.

In computability theoretic papers, matroids are often described in terms of Steinitz systems. These are also called Steinitz closure systems \([14]\) or Steinitz exchange systems \([15]\). Downey \([8]\) defines a Steinitz system as a set \(U \) and a closure operator \(\text{cl} \) mapping subsets of \(U \) to subsets of \(U \) such that if \(A, B \subset U \),

(1) \(A \subset \text{cl}(A) \),
(2) \(A \subset B \) implies \(\text{cl}(A) \subset \text{cl}(B) \),
(3) \(\text{cl}(\text{cl}(A)) = \text{cl}(A) \),
(4) \(x \in \text{cl}(A) \) implies that, for some finite \(A' \subset A \), \(x \in \text{cl}(A') \), and
(5) \(\text{(exchange)} \ x \in \text{cl}(A \cup \{y\}) - \text{cl}(A) \) implies \(y \in \text{cl}(A \cup \{x\}) \).

As an intuitive example, we can think of \(U \) as a vector space and \(\text{cl}(A) \) as the linear span of the vectors in the set \(A \). The Steinitz system \((U, \text{cl})\) has computable dependence if \(U \) is computable and there is a uniformly effective procedure that, when applied to \(a, b_1, \ldots, b_n \in U \), computes whether \(a \in \text{cl}(\{b_1, \ldots, b_n\}) \).

A central goal in computable matroid research to discover algebraic properties of matroids with significant computability theoretic consequences. For example, the Steinitz system \((U, \text{cl})\) has the closure intersection property if whenever

- \(D \) is closed, that is, \(\text{cl}(D) = D \),
- \(A \) is independent over \(D \), that is, for every \(a \in A \), \(a \notin \text{cl}(D \cup A \setminus \{a\}) \),
- \(B \) is independent over \(D \), and
- \(\text{cl}(A \cup D) \cap \text{cl}(B \cup D) = \text{cl}(D) \),

then \(A \cup B \) is independent over \(D \). The system is semiregular (called Downey’s semiregularity by Nerode and Remmel \([15]\)) if no finite dimensional closed set is the union of two closed proper subsets. In his thesis \([6]\) (abstracted in \([7]\)), Downey established that if \((U, \text{cl})\) is semiregular and has the closure intersection property then the theory of \(\mathcal{L}(U) \) is undecidable.
1 Reverse Mathematics

In his development of the theory of matroids, Whitney [17, Section 6] formulates matroids in terms of a ground set of elements and a specification of every set as being either dependent or independent. We define an enumerated matroid (e-matroid) to consist of a set and an enumeration of its finite dependent sets.

Definition 1. An e-matroid is a pair \((M, e)\) consisting of a set \(M\) and a function \(e: \mathbb{N} \to M^{\subset \mathbb{N}}\) satisfying:

1. The empty set is independent.

 \[(\forall n)[e(n) \neq \emptyset] \]

2. Finite supersets of dependent sets are dependent.

 \[(\forall n)(\forall Y \in M^{\subset \mathbb{N}})[e(n) \subseteq Y \implies \exists m(e(m) = Y)] \]

3. If \(X\) is an independent set that is smaller than an independent set \(Y\), then \(Y\) contains an element that is independent of \(X\).

\[(\forall X, Y \in M^{\subset \mathbb{N}})(\text{if } |X| < |Y| \text{ and } (\forall n)[e(n) \neq X \land e(n) \neq Y] \]
\[\text{then } (\exists y \in Y)(\forall n)[e(n) \neq X \cup \{y\}] \]

Although dependence in this setting is not directly related to linear combinations, it is still possible to formulate concepts of span and bases.

Definition 2. A subset \(B\) of an e-matroid \((M, e)\) spans the e-matroid if adjoining any additional element to \(B\) produces a dependent set, that is,

\[(\forall x \in M)[x \notin B \implies (\exists n)(e(n) = B \cup \{x\})] \]

A subset \(B \subseteq M\) is a basis for the e-matroid if \(B\) is independent (that is, \((\forall n)[e(n) \not\subseteq B]\)) and \(B\) spans \(M\).

We can now state our first basis theorem. The analogous result showing the equivalence of \(\text{ACA}_0\) and the existence of bases for vector spaces is included in Theorem 4.3 of Friedman, Simpson, and Smith [9].

Theorem 3. (\(\text{RCA}_0\)) The following are equivalent:

1. \(\text{ACA}_0\).
2. Every e-matroid has a basis.
Proof. To show that (1) implies (2), fix an e-matroid \((M, e)\). Let \(m_0, m_1, \ldots\) be a non-repeating enumeration of \(M\). Consider the function \(g : \mathbb{N} \to M^{<\mathbb{N}}\) defined by \(g(0) = \emptyset\) and for \(i > 0\),

\[
g(i) = \begin{cases} g(i - 1) & \text{if } (\exists n)[e(n) = g(i - 1) \cup \{m_{i-1}\}], \\ g(i - 1) \cup \{m_{i-1}\} & \text{otherwise.} \end{cases}
\]

by arithmetical comprehension, the union of the range of \(g\) exists; call this union \(B\). Straightforward arguments verify that \(B\) is a basis for \(M\).

To prove the converse, by Lemma III.1.3 of Simpson [16], it suffices to use (2) to prove the existence of the range of an arbitrary injection from \(\mathbb{N}\) to \(\mathbb{N}\). Suppose \(f : \mathbb{N} \to \mathbb{N}\) is an injection. Let \(M = \{(i, \varepsilon) : i \in \mathbb{N} \land \varepsilon < 2\}\) be the ground set for an e-matroid. Let \(M_0, M_1, \ldots\) be an enumeration of \(M^{<\mathbb{N}}\). Fix a bijective pairing function mapping \(\mathbb{N} \times \mathbb{N}\) onto \(\mathbb{N}\). Using the notation \((j, k)\) for both the pair and its integer code, define \(e((j, k)) = \{(f(j), 0), (f(j), 1)\} \cup M_k\). Because \((f(j), 0) \in e((j, k))\), item (1) of the definition of an e-matroid holds. The inclusion of \(M_k\) in \(e((j, k))\) ensures that supersets of dependent sets are dependent, satisfying item (2) of the definition. To verify item (3), suppose \(X\) and \(Y\) are finite independent sets with \(|X| < |Y|\). If there is a \(y \in X \cap Y\), then \(X \cup \{y\} = X\) so \(\forall n(e(n) \neq X \cup \{y\})\). Thus we need only consider the case where \(X \cap Y = \emptyset\). We hypothesized that \(|Y| > |X|\), so there must be a \(y = (z, \varepsilon) \in Y\) such that for all \(z', (z', \varepsilon') \notin X\). Suppose by way of contradiction that \(e(n) = X \cup \{\emptyset\}\) for some \(n\). Then, for some \(j\), we have \((f(j), 0), (f(j), 1)\) \(\subset X \cup \{y\}\). By the choice of \(y\), we know \(f(j) \neq z\), so \((f(j), 0), (f(j), 1)\) \(\subset X\), contradicting \(\forall n[e(n) \neq X]\). Thus item (3) of the definition holds, and we have shown that \((M, e)\) is an e-matroid.

Finally, we claim that if \(B\) is a basis for \(M\), then \(k\) is in the range of \(f\) if and only if \((k, 0) \notin B\) or \((k, 1) \notin B\). First note that if \(k = f(j)\) then, assuming 0 is the code for \(\emptyset\), we have \(e((j, 0)) = \{(k, 0), (k, 1)\}\). \(B\) is a basis, so \(e((j, 0)) \notin B\), and thus \((k, 0) \notin B\) or \((k, 1) \notin B\). Conversely, if for example \((k, 0) \notin B\), then \((\exists n)[e(n) = B \cup \{(k, 0)\}]\). Because \(e(n)\) is dependent and \(B\) is independent, both \((k, 1) \notin e(n)\) and for all \(j \neq k\), at least one of \((j, 0)\) and \((j, 1)\) is not in \(e(n)\). By the definition of \(e\), \(e(n)\) must contain both \((a, 0)\) and \((a, 1)\) for some \(a\) in the range of \(f\), so \(k\) is in the range of \(f\). A similar argument holds if \((k, 1) \notin B\), completing the proof of our claim. Because \(k\) is in the range of \(f\) if and only if \((k, 0) \notin B\) or \((k, 1) \notin B\), recursive comprehension suffices to prove the existence of the range of \(f\), completing the reversal.

Our next result shows that if we add a hypothesis bounding the dimension of the matroid, the principle asserting the existence of a basis
becomes weaker. The result also illustrates the interrelatedness of matroids and graph theory. We use the concept of rank to establish the dimensional bound.

Definition 4. We say the rank of an e-matroid \((M, e)\) is no more than \(n\) if every subset of \(M\) of size \(n\) is dependent, that is, in the range of \(e\).

Theorem 5. \((\text{RCA}_0)\) The following are equivalent:

1. For every \(n\), every e-matroid of rank no more than \(n\) has a basis.
2. For every \(n\), if \(G = (V, E)\) is a countable graph and every collection of \(n\) vertices contains at least one path connected pair, then \(G\) can be decomposed into its connected components.
3. \(\Sigma^0_2\), the induction scheme for \(\Sigma^0_2\) formulas with set parameters.

Proof. Proofs that (2) implies (3) appear as Theorem 4.5 of Hirst [12] and also as Theorem 3.2 of Gura, Hirst, and Mummert [11]. Here, we will prove that (3) implies (1) and (1) implies (2).

To see that (3) implies (1), fix \(n\) and let \((M, e)\) be an e-matroid of rank no more than \(n\). Let \(\psi(j)\) formalize the existence of an independent set of size \(n - j\). If we use \(X_t\) to denote the finite subset of \(\mathbb{N}\) encoded by \(t\), then \(\psi(j)\) can be written as \((\exists t)[|X_t| = n - j \land \forall k(e(k) \neq X_t)]\). Note that \(\psi(j)\) is a \(\Sigma^0_2\) formula, and the empty set witnesses \(\psi(n)\). By the \(\Sigma^0_2\) least element principle (which is easily deduced from the bounded \(\Sigma^0_2\) comprehension, and is therefore a consequence of (3) by Exercise II.3.13 of Simpson [16]), there is a least \(j_0\) such that \(\psi(j_0)\). Let \(X_{t_0}\) witness \(\psi(j_0)\). We claim that \(X_{t_0}\) is a basis. The range of \(e\) is closed under supersets, so no subset of \(X_{t_0}\) appears in the range of \(e\). By the minimality of \(j_0\), if \(x \notin X_{t_0}\), then \(X_{t_0} \cup \{x\}\) is dependent, so for some \(n\), \(e(n) = X_{t_0} \cup \{x\}\). Thus \(X_{t_0}\) spans \(M\).

To show that (1) implies (2), let \(G(V, E)\) be a graph in which every collection of \(n\) vertices contains at least one path connected pair. The independent sets of our e-matroid will consist of subsets of \(V\) with no path connected pairs. If \(G\) contains no edges, the identity function on \(V\) decomposes \(G\) into connected components. Suppose \(G\) has an edge connecting the vertices \(v_0\) and \(v_1\). Let \((V_i)_{i \in \mathbb{N}}\) be an enumeration of the finite subsets of \(V\) such that every subset appears infinitely often. Define \(e(j)\) by \(e(j) = V_j\) if there is some \(t < j\) that encodes a path between two vertices of \(V_j\), and \(e(j) = \{v_0, v_1\}\) otherwise. It is easy to verify that \((V, e)\) satisfies the first two clauses of the definition of an e-matroid. For the third clause, suppose \(X\) and \(Y\) are finite sets of vertices such that no pair in either set is path connected, and that \(|X| < |Y|\). Suppose by way
of contradiction that every vertex in Y is path connected to some vertex in X. RCA_0 can prove the existence of the function mapping each $y \in Y$ to some $x \in X$ to which it is path connected, and because $|X| < |Y|$, f must map two elements of Y to the same x. These two vertices of Y are path connected, yielding the desired contradiction. Thus (V, e) is a matroid.

2 Why e-Matroids?

We can define a matroid as a pair (M, D) where D is the set of all finite dependent subsets of M. In this case, D satisfies the set-based analogs of the three items in the definition of e-matroid. To express this definition within RCA_0, we represent each finite subset of M via its characteristic index. Using the set-based analog of the definition of basis, we can state and prove the following result.

Theorem 6. (RCA_0) Every matroid has a basis.

Proof. Let (M, D) be a matroid and let m_1, m_2, \ldots be a non-repeating enumeration of M. Define a nested sequence of finite independent sets $\langle I_j \rangle_{j \in \mathbb{N}}$ as follows. Let $I_0 = \emptyset$. For $j > 0$, let $I_j = I_{j-1} \cup \{m_j\} \in D$, and let $I_j = I_{j-1} \cup \{m_j\}$ otherwise. Define the basis B by $m_j \in B$ if and only if $m_j \in I_j$. To see that B is independent, suppose X is a finite dependent set. Let m_j be the element of largest index in X. If $X \setminus \{m_j\} \subset I_{j-1}$, then $m_j \notin I_j$, so $m_j \notin B$ and $X \not\subset B$. If $X \setminus \{m_j\} \not\subset I_{j-1}$ then $X \not\subset I_j$, so $X \not\subset B$. Summarizing, B has no finite dependent subsets, so B is independent. To see that B spans, fix $m_j \in M$. Either $m_j \in B$, or both $B \supset I_{j-1} \notin D$ and $I_{j-1} \cup \{m_j\} \in D$. In either case, m_j is in the span of B.

The preceding result can be viewed as a reverse mathematical reframing of the statement: *Every computably presented matroid has a computable basis.* This principle was stated of Crossley and Remmel [5, §5, Lemma 1], who describe it as common knowledge and implicit in the work of Metakides and Nerode [13]. The representations of the matroid by a computable dependence relationship or by a dependence algorithm for a Steinitz system with computable dependence are equivalent. The
The next theorem is a reverse mathematics analog of the fact that not every c.e. presented matroid is computably isomorphic to a computably presented matroid.

Theorem 7. (RCA$_0$) The following are equivalent:

1. ACA$_0$.
2. Every e-matroid is isomorphic to a matroid. That is, if (M,e) is an e-matroid, then there is a matroid (N,D) and a bijection $h: M \to N$ such that for all finite sets $X \subset M$, there is an n such that $e(n) = X$ if and only if $\{h(x) : x \in X\} \in D$.

Proof. To see that (1) implies (2), suppose (M,e) is an e-matroid. The range of e is arithmetically definable using e as a parameter, so ACA$_0$ proves the existence of the range as a set D. Then (M,D) is a matroid and the identity is the desired isomorphism.

To prove the converse, we capitalize on the construction from the proof of the reversal of Theorem 3. As in that proof, fix an injection f and construct the associated e-matroid (M,e). Apply (2) above to find a matroid (N,D) and an isomorphism $h: M \to N$. By the construction of (M,e), for each $k \in \mathbb{N}$, k is in the range of f if and only if $\{(k,0),(k,1)\}$ is in the range of e, which holds if and only if $\{h(k,0),h(k,1)\} \in D$. Thus, the range of f is computable from D and h, completing the proof of the reversal.

In terms of Turing degrees, the previous theorem only shows that each c.e. presented matroid is computable from $0'$. The next corollary shows that, if a c.e. presented matroid is isomorphic to a computable matroid, the isomorphism may necessarily be noncomputable.

Corollary 8. There is a c.e. presented matroid M, which is isomorphic to a computable matroid, such that if φ is any isomorphism between M and a computable matroid then $0'$ is Turing computable from φ.

Proof. Let f be any computable injection with a range that computes $0'$. Use the construction of (M,e) from the proof of the reversal of Theorem 3. This is the desired c.e. presented matroid. The proof of Theorem 7 shows that any isomorphism between (M,e) and a computable matroid computes the range of f and consequently computes $0'$. Since the range of f is both infinite and co-infinite, (M,e) is isomorphic to the computable matroid with ground set \mathbb{N} and D consisting of all finite supersets of sets of the form $\{3k,3k+1\}$ where $k \in \mathbb{N}$.
3 Weihrauch Reducibility

In Theorem 6 we used Reverse Mathematics to study the problem of finding a basis for an e-matroid. In this section, we study the same problem using Weihrauch reducibility. For additional information on Weihrauch reducibility, see Brattka and Gherardi [2] and Dorais, Dzhafarov, Hirst, Mileti, and Shafer [4]. The following simplified definition of Weihrauch problems will be sufficient for our purposes.

Definition 9. A *Weihrauch problem* is a subset of \mathbb{N}^2, $\mathbb{N}^2 \times \mathbb{N}$, $\mathbb{N} \times \mathbb{N}^2$, or $\mathbb{N} \times \mathbb{N}$. For a Weihrauch problem P, the “problem” is: given an “instance” $I \in \text{dom}(P)$, produce a “solution” S with $(I, S) \in P$.

A Weihrauch problem P is *Weihrauch reducible* to a Weihrauch problem Q, written $P \leq_W Q$, if there are computable functions or functionals Φ, Ψ such that, for all $S \in \text{dom}(P)$, $\Phi(S) \in \text{dom}(Q)$, and for all R such that $(\Phi(S), R) \in Q$, we have $(S, \Psi(R, S)) \in P$. If this can be done with a functional Ψ that does not depend on S, we say that P is *strongly Weihrauch reducible* to Q, written $P \leq_{sW} Q$. The relations \leq_W and \leq_{sW} are reflexive and transitive, and thus they induce equivalence relations, which are denoted \equiv_W and \equiv_{sW}, respectively.

The *parallelization* of a Weihrauch problem P is the problem

$$\hat{P} = \{(f, g) : (f(n), g(n)) \in P \text{ for all } n \in \mathbb{N}\}$$

whose instances are sequences of instances of P and whose solutions are sequences of solutions corresponding to those instances.

Definition 10. We define the following Weihrauch principles. The first two are well known in the literature [1].

- $C_{\mathbb{N}}$: closed choice for subsets of \mathbb{N}.
 $$C_{\mathbb{N}} = \{(f, n) : f \in \mathbb{N}, n \notin \text{range}(f)\}$$

- $\hat{C}_{\mathbb{N}}$: the parallelization of $C_{\mathbb{N}}$.
 $$\hat{C}_{\mathbb{N}} = \{(f, g) : ((f)_n, g(n)) \in C_{\mathbb{N}} \text{ for all } n \in \mathbb{N}\}$$

- GAC: the graph antichain problem. For a countable graph G, an antichain is a set of vertices no two of which are connected by a path in G. Letting $\text{Max}(G)$ be the set of maximal antichains of G, we have
 $$\text{GAC} = \{(G, A) : G \text{ is a countable graph, } A \in \text{Max}(G)\}$$
- EMB: the e-matroid basis problem.

\[\text{EMB} = \{ (M, B) : M \text{ is a countable e-matroid, } B \text{ is a basis for } M \} \]

- VSB: the vector space basis problem.

\[\text{VSB} = \{ (V, B) : V \text{ is a countable vector space and } B \text{ is a basis for } V \} \]

For each \(n > 1 \) in \(\mathbb{N} \), we define the following restricted principles:

- \(\text{GAC}_n \): the restriction to \(\text{GAC} \) to graphs with \(n \) connected components.
- \(\text{EMB}_n \): the restriction of \(\text{EMB} \) to e-matroids with a basis of size \(n \).
- \(\text{VSB}_n \): the restriction of \(\text{VSB} \) to vectors spaces with dimension \(n \).

In previous work [11], we considered another well known Weihrauch problem, LPO.

\[\text{LPO} = \{ (f, n) : f \in \mathbb{N}^\mathbb{N} \text{ and } f(n) = 0 \leftrightarrow (\exists m)[f(m) = 0] \} \]

The following lemma shows that the parallelization of \(\text{LPO} \) is strict Weihrauch equivalent to the parallelization of \(\text{C}_N \). This equivalence is implicit in work of Brattka and Gherardi [2,3], but the reductions obtained by combining their results are very indirect. The next lemma provides a pair of direct reductions.

Lemma 11. \(\hat{\text{C}}_N \) is strongly Weihrauch equivalent to \(\hat{\text{LPO}} \).

Proof. First, suppose we are given an instance \(f \) of \(\text{C}_N \). The function \(f \) enumerates the complement of some nonempty set. We form a sequence \((p_n) \) of instances of \(\text{LPO} \) such that \(p_n \) has 0 in its range if and only if \(n \) is in the range of \(f \). Then, given solutions to the instance \((p_n)_{n \in \mathbb{N}} \) of \(\hat{\text{LPO}} \), we can search effectively for the least \(n \) such that \(p_n \) does not have 0 in its range, which will be the least \(n \) not in the range of \(f \). Thus, by effective dovetailing, \(\hat{\text{C}}_N \) is strict Weihrauch reducible to \(\hat{\text{LPO}} \).

For the converse, we first reduce \(\text{LPO} \) to \(\text{C}_N \), as follows. Given an instance \(p \) of \(\text{LPO} \), we enumerate in stages the complement of a nonempty set \(A = A(p) \). If \(p(0) > 0 \), we enumerate 1 into the complement of \(A \). Then if \(p(1) > 0 \) we enumerate 2 into the complement of \(A \). We continue in this way. If we ever find that \(p(n) = 0 \) for some \(n \), we enumerate 0 into the complement of \(A \), after which we do not enumerate anything else into the complement, so we will have \(A = \{n + 1, n + 2, \ldots \} \). On the other hand, if 0 is not in the range of \(p \), then we continue enumerating elements into the complement of \(A \), so that we will obtain \(A = \{0\} \). Hence, if we view \(A \) as
an instance of C_N, we can determine whether $(\exists m)[p(m) = 0]$ by looking at the value of any solution. Thus LPO is strict Weihrauch reducible to C_N, and so the parallelization of LPO is strict Weihrauch reducible to the parallelization of C_N.

Theorem 12. The following strong Weihrauch equivalences hold:

$$GAC \equiv_{sW} EMB \equiv_{sW} VSB \equiv_{sW} \hat{C}_N.$$

Proof. Gura, Hirst, and Mummert [11] proved that $GAC \equiv_{sW} \hat{C}_N$. Therefore, it is sufficient to establish the following four reductions:

$$GAC \leq_{sW} EMB \leq_{sW} VSB \leq_{sW} EMB.$$

Three of these reductions are straightforward. First, to show that $VSB \leq_{sW} EMB$, modify the construction used to prove (1) implies (2) in Theorem 5. Given a vector space with vectors V, let $(V_j)_{j \in \mathbb{N}}$ be an enumeration of all the finite subsets of V in which each subset appears infinitely often. Define $e : \mathbb{N} \to V^\leq \mathbb{N}$ by setting $e(j) = V_j = \{v_0, \ldots, v_k\}$ if there is a sequence of field elements $\{a_0, \ldots, a_k\}$ with canonical code less than j such that $\sum_{i \leq k} a_i v_i = 0$, and set $e_j = \{0\}$ otherwise. Because e enumerates the finite dependent subsets of V, it is easy to verify that (V,e) is a matroid and any basis for the matroid is a basis for the vector space.

Second, to show that $GAC \leq_{sW} EMB$, let $G = (V,E)$ be a graph. We wish to ensure that G has at least one edge. To this end, suppose $v_1 \in V$ and add a new vertex v_0 to V and a new edge (v_0, v_1) to E, yielding a graph $G' = (V',E')$. Construct a matroid (V',e) as in the proof that (1) implies (2) in Theorem 5 (Note that in that argument, the bound on the number of components is used only to bound the rank of the matroid.) As in that proof, any basis for (V',e) is a maximal set of disconnected vertices of G'. If v_0 is in the basis, it can be replaced by v_1 to form a new basis which is a maximal set of disconnected vertices of G.

Third, to show that $EMB \leq_{sW} \hat{C}_N$, we let M be a countable e-matroid with dependency function e_M. For each finite set $F \subseteq M$, let S_n be the set of all $n > 0$ such that, if $e_M(t) = F$ then there is a $t' < n$ with $e_M(t') = F$. Let f_n be a function with range(f) = $\mathbb{N} \setminus S_n$. Then $(f_n)_{n \in \mathbb{N}}$ is an instance of \hat{C}_N. We can compute a basis for M, uniformly, from any solution to this instance.

It remains to show that $\hat{C}_N \leq_{sW} VSB$. We adapt the construction presented by Simpson [16, Theorem III.4.3] showing that the principle “every countable vector space over \mathbb{Q} has a basis” is equivalent to ACA$_0$ in the sense of Reverse Mathematics. The proof presented by Simpson
shows, more specifically, that given an injective function $f: \mathbb{N} \to \mathbb{N}$ we may uniformly compute a \mathbb{Q}-vector space V_f such that the range of f is uniformly computable from any basis of V_f. This shows, in particular, that $C_N \leq_{sW} VSB$.

To complete the proof, it is sufficient for us to verify that $\hat{VSB} \leq_{sW} VSB$, because then we have $\hat{C}_N \leq_{sW} \hat{VSB} \leq_{sW} VSB$. The proof uses an effective direct sum construction. Given a sequence $(V_n)_{n \in \mathbb{N}}$ of countable vector spaces, we may assume without loss of generality that their underlying sets of vectors are pairwise disjoint. We may then form a countable vector space V whose elements are finite formal \mathbb{Q}-linear combinations of the form

$$a_1u_1 + \cdots + a_mu_m$$

where $a_i \in \mathbb{Q}$ and $u_i \in V_i$ for $i \leq m$. The scalar multiplication on V is the obvious one, and the vector addition is so that

$$\left(\sum_{i \leq m} a_iu_i \right) + \left(\sum_{i \leq n} b_iv_i \right) = \sum_{i \leq \max(m, n)} (a_iu_i + b_iv_i)$$

where each addition $a_iu_i + b_iv_i$ is carried out in V_i, and terms that did not appear in the left are treated vacuously as zero vectors. Then V is a countable vector space that is uniformly computable from the sequence $(V_n)_{n \in \mathbb{N}}$. Moreover, if B is a basis of V then $B \cap V_i$ is a basis of V_i for each $i \in \mathbb{N}$. To see this, note that on one hand $B \cap V_i$ must span V_i for each i, and on the other hand any dependency of the set $B \cap V_i$ within V_i would induce a dependency of B within V.

We next consider the restricted versions of two principles from Theorem 12

Theorem 13. For $n \geq 2$, the following equivalences hold:

$$GAC_n \equiv_{sW} EMB_n \equiv_{sW} C_N.$$

Proof. Let $n \geq 2$ be fixed for the remainder of this proof. Gura, Hirst, and Mummert [11, Theorem 6.6] proved that $GAC_n \equiv_{sW} C_N$. Therefore, it is sufficient to establish the reductions $GAC_n \leq_{sW} EMB_n$ and $EMB_n \leq_{sW} C_N$.

The reduction $GAC_n \leq_{sW} EMB_n$ follows from the proof of Theorem 12 because the construction there produces an e-matroid whose dimension is the same as the number of components of the graph.
To show that $\text{EMB}_n \leq_{sW} \text{C}_N$, let M be an e-matroid on the set \mathbb{N} with some basis of size n. Consider a sequence $(F_i)_{i \in \mathbb{N}}$ of finite subsets of M so that F_i consists of the first element of \mathbb{N}^n (under the lexicographical order on increasing sequences read right to left) that is not one of the sets $e(i)$ for any $i < t$. Thus $F(0) = \{0, \ldots, n - 1\}$, and F_{t+1} will differ from $F(t)$ exactly when $e(t) = F_{t}$. Note that, because there is an independent set of size n, there will be a t such that $F_s = F_t$ for all $s > t$. Let S be the set of all $t > 0$ for which $F_s = F_t$ for all $s > t$ and let f be a function whose range is the complement of S. We may apply C_N to f to find a $t \in S$; then F_t is a basis for M.

The next lemma, which is well known, extends the list of principles in Theorem 13 slightly, simplifying the proof of the next theorem.

Lemma 14. Let C_N^u denote the restriction of C_N to functions for which the complement of the range consists of a unique natural number. Then $\text{C}_N^u \equiv_{sW} \text{C}_N$.

Proof. Because C_N^u restricts C_N to a smaller class of inputs, $\text{C}_N^u \leq_{sW} \text{C}_N$. To prove $\text{C}_N \leq_{sW} \text{C}_N^u$, suppose $f : \mathbb{N} \to \mathbb{N}$ is not surjective. In the following construction, we will conflate the pair (i, j) with its integer code via a fixed bijection between \mathbb{N} and $\mathbb{N} \times \mathbb{N}$. Define $g : \mathbb{N} \to \mathbb{N}$ by the following moving marker construction. Let $m_0 = (0, 0)$ be the initial marker. Suppose $m_k = (m_k^0, m_k^1)$ has been defined. If $f(k) \neq m_k^0$, set $m_{k+1} = m_k$ and set $g(k)$ to the least code for a pair not included in $\{g(j) : j < k\}$. If $f(k) = m_k^0$, define a pair (y_0, t_0) so that

$$y_0 = (\mu y \leq k + 1)(\forall j \leq k)[f(j) \neq y],$$

$$t_0 = (\mu t)(\forall j < k)[g(j) \neq (y_0, t)],$$

and then set $m_{k+1} = (y_0, t_0)$ and $g(k) = m_k$.

Intuitively, if y is the smallest natural number not in the range of f, then at some stage in the construction the marker is set to (y, n) for some n, and does not move after that point. The code (y, n) is not in the range of g, but every other code and consequently every other natural number is in the range of g. Thus g satisfies the input requirements for C_N^u, and the process yields (y, n) as an output. The number y (retrievable by a projection function) is a solution to C_N for input f.

The following theorem adds the fixed dimension vector space basis problem to the list of equivalent problems of Theorem 13.

Theorem 15. For $n \geq 2$, $\text{VSB}_n \equiv_{sW} \text{C}_N$.
Proof. By Theorem 13, $\text{EMB}_n \leq_{\text{sw}} C_N$. In the proof of Theorem 12, the argument showing $\text{VSB}_n \leq_{\text{sw}} \text{EMB}_n$ preserves the dimension of input vector space, and so shows $\text{VSB}_n \leq_{\text{sw}} \text{EMB}_n$. By transitivity, $\text{VSB}_n \leq_{\text{sw}} C_N$.

Next we will show that $C_N \leq_{\text{sw}} \text{VSB}_2$. Our proof uses ideas and notation from the proof of Theorem III.4.2 of Simpson [10]. Fix $f : \mathbb{N} \rightarrow \mathbb{N}$ with the range of f including all of \mathbb{N} except for one value. Let V_0 be the set of all formal sums $\sum_{i \in I} q_i x_i$ with I finite and $0 \neq q_i \in \mathbb{Q}$. We can identify formal sums with their sequence codes, yielding a well-ordering on V_0. Without loss of generality, we may assume that x_1 is minimal in this ordering among all vectors with a nonzero coefficient on x_i. As in Simpson’s proof, let $x'_m = x_{2f(m)} + (m + 1)x_{2f(m)+1}$ and $X' = \{x'_m : m \in \mathbb{N}\}$. Let U_0 denote the subspace consisting of the linear span of X'. Note that $\sum_{i \in I} q_i x_i \in U_0$ if and only if

$$(\forall n) \left[(q_{2n} \neq 0 \rightarrow f(q_{2n+1}/q_{2n} - 1) = n) \land (q_{2n} = 0 \rightarrow q_{2n+1} = 0) \right],$$

so U_0 is computable from f. Let V_1 be V_0/U_0, where a vector v is in V_1 if and only if it is the element of $\{v - u : u \in U_0\}$ which is least in the well ordering on V_0. Only finitely many sequence codes are less than the code for v, so V_1 is computable.

By our choice of ordering and the construction of U_0, for every $i \in \mathbb{N}$, $x_{2i} \in V_1$. Let U_1 be the linear span of $\{x_{2i} : i \in \mathbb{N}\}$ in V_1. Then U_1 is a vector subspace of V_1 computable from f, and we may construct the quotient space $V = V_1/U_1$, using minimal representatives as before. For any $j \in \mathbb{N}$,

$$x_0 = x_{2f(j)+1} - \left(-\frac{1}{j+1} x_{2f(j)} - x_0 \right) = \frac{1}{j+1} (x_{2f(j)} + (j + 1)x_{2f(j)+1}).$$

The vector $-\frac{1}{j+1} x_{2f(j)} - x_0$ is in U_1 and $\frac{1}{j+1} (x_{2f(j)} + (j + 1)x_{2f(j)+1})$ is in U_0, so x_0 and $x_{2f(j)+1}$ correspond to the same vector in V. The range of f excludes only one element, so the dimension of V is 2. Let $\{v_1, v_2\}$ be a basis for V. Let P be the finite collection of odd indices in the formal sums for v_1 and v_2, and let $R = \{m : 2m + 1 \in P\}$. Exactly one m in R does not appear in the range of f. Thus, for exactly one m in R, $\{x_0, x_{2m+1}\}$ is linearly independent. Sequentially enumerate linear combinations of the form $q_0 x_0 + q_1 x_{2m+1}$, ejecting values from R corresponding to linear combinations that equal 0 in V. The last value left in R is the sole natural number that is not in the range of f. Thus $C_N \leq_{\text{sw}} \text{VSB}_2$. By Lemma 14, $C_N \leq_{\text{sw}} \text{VSB}_2$.

To prove $C_N \leq_{\text{sw}} \text{VSB}_n$ for $n > 2$, add $n-1$ dummy vectors to the the basis of V_0 in the preceding argument.
The reduction of EMB_n to C_n in the proof of Theorem 13 relies heavily on knowing the precise dimensions (in the appropriate sense) of the objects being studied. This suggests a variation in which we only place an upper bound on their dimensions. We begin with definitions of bounded versions of some Weihrauch principles.

Definition 16. We define the following Weihrauch principles.

- $\text{EMB}_{<\omega}$: the bounded e-matroid basis problem.

 $\text{EMB}_{<\omega} = \{(n, M, B) : n \in \mathbb{N}, M$ is an e-matroid, $\text{rank}(M) \leq n$, and B is a basis for $M\}$

- $\text{GAC}_{<\omega}$: The bounded graph antichain problem. Letting $\text{Max}(G)$ be the set of maximal antichains of G, we have

 $\text{GAC}_{<\omega} = \{(n, G, A) : n \in \mathbb{N}, G$ is a graph, each set of n vertices has a path connected pair, and $A \in \text{Max}(G)\}$

- C_{\max}^C: Picking a maximal element (relative to the containment partial ordering) in the complement of an enumeration of finite nonempty sets whose range includes all sets larger than some bound.

 $\text{C}_{\max}^C = \{(n, f, X) : n \in \mathbb{N}, f : \mathbb{N} \to [\mathbb{N}]^{<\mathbb{N}}_\neq, X \in [\mathbb{N}]^{<\mathbb{N}}, $

 range(f) includes all sets of cardinality $\geq n$, $X \notin$ range(f), and

 $\forall Y \in [\mathbb{N}]^{<\mathbb{N}} \exists X \ni Y \supseteq X \rightarrow Y \in \text{range}(f)\} \}$

- $\text{C}_{\max}^#$: Picking an element of maximal cardinality in the complement of an enumeration of finite nonempty sets whose range includes all sets larger than some bound.

 $\text{C}_{\max}^# = \{(n, f, X) : n \in \mathbb{N}, f : \mathbb{N} \to [\mathbb{N}]^{<\mathbb{N}}_\neq, X \in [\mathbb{N}]^{<\mathbb{N}}, $

 range(f) includes all sets of cardinality $\geq n$, $X \notin$ range(f), and

 $\forall Y \in [\mathbb{N}]^{<\mathbb{N}} | Y | > | X | \rightarrow Y \in \text{range}(f)\} \}$

Theorem 17. The following strong Weihrauch equivalences hold:

$\text{EMB}_{<\omega} \equiv_{sW} \text{GAC}_{<\omega} \equiv_{sW} \text{C}_{\max}^C \equiv_{sW} \text{C}_{\max}^#$
Proof. We will prove each of the following reductions, proceeding from right to left.

\[
\text{C}^\leq_{\text{max}} \leq_{\text{sw}} \text{C}^{\#}_{\text{max}} \leq_{\text{sw}} \text{GAC}_{<\omega} \leq_{\text{sw}} \text{EMB}_{<\omega} \leq_{\text{sw}} \text{C}^\leq_{\text{max}}
\]

To prove \(\text{EMB}_{<\omega} \leq_{\text{sw}} \text{C}^\leq_{\text{max}} \), suppose \((M, e)\) is an e-matroid such that every subset of \(M\) of size at least \(n\) is in the range of \(e\). Let \(\{X_j : j \in \mathbb{N}\}\) be an enumeration of \([\mathbb{N}]^{<\mathbb{N}}\) and let \((i, j)\) denote the output of a bijective pairing function. Note that every \(m \in \mathbb{N}\) has a unique representation of the form \(2(i, j) + \varepsilon\) where \(i, j \in \mathbb{N}\) and \(\varepsilon \in \{0, 1\}\). Define \(f: \mathbb{N} \to [\mathbb{N}]^{<\mathbb{N}}\) by

\[
f(2(i, j) + \varepsilon) = \begin{cases} X_j & \text{if } \varepsilon = 0 \land i \notin M \land i \in X_j, \\ e((i, j)) & \text{otherwise.} \end{cases}
\]

The range of \(f\) consists of the range of \(e\) plus all finite sets containing any elements of the complement of \(M\). Apply \(\text{C}^\leq_{\text{max}}\) to \(f\) to obtain a finite set \(B \subseteq \mathbb{N}\) in the complement of the range of \(f\) that is maximal with respect to the containment partial ordering. The range of \(f\) includes all finite sets containing elements of the complement of \(M\), so \(B \subseteq M\). Furthermore, the range of \(f\) includes the range of \(e\), so \(B\) is independent in \((M, E)\). By maximality of \(B\), \(B\) spans \((M, e)\), so \(B\) is a basis for \((M, e)\).

To prove \(\text{GAC}_{<\omega} \leq_{\text{sw}} \text{EMB}_{<\omega}\), emulate the reduction of \(\text{GAC}\) to \(\text{EMB}\) from the proof of Theorem 12. Because \(G\) has at most \(n\) connected components, every set of \(n+1\) elements in the related matroid is dependent and so appears in the range of the enumeration.

To prove \(\text{C}^{\#}_{\text{max}} \leq_{\text{sw}} \text{GAC}_{<\omega}\), suppose \(f: \mathbb{N} \to [\mathbb{N}]^{<\mathbb{N}}\) and the range of \(f\) includes all finite subsets of cardinality at least \(n\). For each \(b \leq n\), let \(g_b: \mathbb{N} \to [\mathbb{N}]^{<\mathbb{N}}\) be an enumeration of all subsets of \(\mathbb{N}\) of cardinality exactly \(b\). We will construct a graph \(G\) consisting of \(n-1\) subgraphs each with one or two connected components. The vertices of \(G\) are \(\{u^b_j, v^b_j : 1 \leq b < n \land j \in \mathbb{N}\}\). For each \(b \leq n\) and each \(j \in \mathbb{N}\), add the edge \((u^b_j, u^b_{j+1})\) to the edge set \(E\) of \(G\). For each \(b \leq n\), define \(k^b_0 = 0\). Suppose \(k^b_j\) is defined. If \((\exists t \leq j)[f(t) = g_b(k^b_j)]\), add \((v^b_j, u^b_j)\) to \(E\) and set \(k^b_{j+1} = k^b_j + 1\). Otherwise, if \((\forall t \leq j)[f(t) \neq g_b(k^b_j)]\), add \((v^b_j, v^b_{j+1})\) to \(E\) and set \(k^b_{j+1} = k^b_j\). Note that the graph \(G\) is uniformly computable from \(f\).

Apply \(\text{GAC}_{<\omega}\) to find a maximal (finite) antichain \(D\) in \(G\). Let \(b_0\) be the largest number less than \(n\) such that \(D\) contains two vertices with superscript \(b_0\). (If no such \(b_0\) exists, \(\emptyset\) is the largest set in the complement of the range of \(f\).) At least one of these vertices must be \(v^{b_0}_j\) for some \(j\).
Let j_0 be the largest value such that $v_{j_0} \in D$. Then $g_{j_0}(k_{j_0})$ is a set of maximal cardinality in the complement of the range of f.

To conclude the proof, we need only show that $C_{\text{max}} \leq_{sW} C_{\#}$. Any f and n satisfying the hypotheses of C_{max} also satisfy those of $C_{\#}$. Any subset in the complement of the range of f that is maximal in cardinality is also maximal with respect to the containment partial ordering, so the identity functionals witness the desired reduction.

We close our discussion of Weihrauch reducibility with the following theorem that adds $\text{VSB}_{<\omega}$ to the equivalences of Theorem 17. Here $\text{VSB}_{<\omega}$ is the problem which, given an input of $n \in \mathbb{N}$ and a vector space in which every set of n vectors is linearly dependent, returns a basis for the vector space.

Theorem 18. $\text{VSB}_{<\omega} \equiv_{sW} C_{\text{max}}$.

Proof. By Theorem 17 $\text{EMB}_{<\omega} \leq_{sW} C_{\text{max}}$. The proof of $\text{VSB} \leq_{sW} \text{EMB}_{<\omega}$ in Theorem 12 preserves dimension, so that argument also witnesses that $\text{VSB}_{<\omega} \leq_{sW} \text{EMB}_{<\omega}$. By transitivity, $\text{VSB}_{<\omega} \leq_{sW} C_{\text{max}}$.

Next we will adapt arguments from the proofs of Lemma 14 and Theorem 15 to show that $C_{\#} \leq_{sW} \text{VSB}_{<\omega}$. Fix n and $f : \mathbb{N} \to [\mathbb{N}]^{<\mathbb{N}}$ such that the range of f includes all sets of cardinality $\geq n$. For each $j < n$, let h_j be a bijective enumeration of $\{X : X \subset \mathbb{N} \land j \leq |X| < n \} \times \mathbb{N}$. Emulating the moving marker construction of Lemma 14 for each $j < n$ define g_j such that either the range of f includes all sets of cardinality k for $j \leq k < n$ and g_j is surjective or the unique value not in the range of g_j is some m such that $h_j(m) = (X_0, m_0)$ where $j \leq |X_0| < n$ and X_0 is in the complement of the range of f. (For use in the proof of Theorem 19, note that the convergence of the moving marker construction can be formally proved using the collection principle $B\Sigma^0_1$, which is provable in RCA_0.)

Now we carry out an n-fold analog of the vector space construction in the proof of Theorem 15. The goal of the construction is to form a space V as a direct sum of subspaces W_i, $i < n$, such that if j_0 is the largest size of a set omitted from the range of f, then the dimension of W_i is 1 for $i > j_0$ and the dimension is 2 for $i \leq j_0$. This will ensure that the dimension of V is finite, and moreover will allow us to compute the value of j_0 if we know the exact dimension of V.

Let V_0 be the set of formal sums $\sum_{(i,k) \in I_k \times \{0,n\}} q(i,k) x_{(i,k)}$ where for each $k < n$, each I_k is finite and $0 \neq q(i,k) \in \mathbb{Q}$. Identifying $h_j(m) = (X_0, m_0)$ with the integer code for the pair, for each $k < n$ and each m,
let $x'_{(m,k)} = x_{(2h_k(m),k)} + (m + 1)x_{(2h_k(m)+1,k)}$ and $X' = \{x'_{(m,k)} : m \in \mathbb{N} \land k < n\}$. Let U'_0 be the linear span of X' and set $V_1 = V_0/U'_0$. Let U_1 be the linear span in V_1 of $\{x'(2m,k) : m \in \mathbb{N} \land k < n\}$ and let $V = V_1/U'_1$.

Then V has a two dimensional subspace corresponding to each $j < n$ such that the range of f omits a set of maximum cardinality k with $j \leq k < n$, and a one dimensional subspace corresponding to each $j < n$ such that f maps \mathbb{N} onto the sets of cardinality k with $j \leq k < n$. Thus the dimension of V is between n and $2n$, and any set of $2n + 1$ vectors is linearly dependent.

(For use in the proof of Theorem 19 note that the claim that any collection of $2n + 1$ vectors of V is linearly dependent can be proved in RCA$_0$ as follows. Fix a set of $2n+1$ nonzero vectors, $S = \{u_0, \ldots, u_{2n}\}$. Let B_0 be the finite set of those vectors of the form $x_{(i,k)}$ that appear in the sums representing each u_i. Because S is finite, Σ^0_1 induction suffices to find the smallest subset of B_0 that spans S. Call this set B_1. By minimality, B_1 is linearly independent. For each $k < n$, the function g_k omits at most one value, so B_1 contains at most two vectors of the form $x_{(i,k)}$. Thus $|B_1| \leq 2n$. Let $B_1 = \{v_0, \ldots, v_j\}$ where $j < 2n$. The vectors of B_1 span S, so $u_0 = \sum_{i< j} c_i v_i$, with some $c_i \neq 0$. Solving for v_{i_0}, we see that v_{i_0} is in the span of $B_2 = \{u_0\} \cup B_1 \setminus \{v_{i_0}\}$. Thus B_2 is a linearly independent set spanning S. Iterating this process by primitive recursion, we eventually find a $u_m \in S$ which is a linear combination of $\{u_i : i < m\}$. Thus S is linearly dependent.)

Apply VSB$_{<\omega}$ to find a basis B for V. Then $k = |B| - n - 1$ is the cardinality of the largest set omitted from the range of f. Let P be the finite collection of odd numbers m such that (m,k) appears as an index in a formal sum for an element of B. Let $R = \{2m + 1 \in P\}$. Exactly one m in R does not appear in the range of g_k. Thus for exactly one m in R, $\{x_{(0,k)}, x_{(2m+1,k)}\}$ is linearly independent. Sequentially examine linear combinations of the form $q_0 x_{(0,k)} + q_1 x_{(2m+1,k)}$, ejecting values from R corresponding to vectors equal to 0 in V, until only one is left. Viewed as a code for a pair, the first component of that value is a code for a set of maximum cardinality in the complement of the range of f. Thus $C_{\text{max}}^\# \leq_{sW} \text{VSB}_{<\omega}$. By Theorem 17 $C_{\text{max}}^\# \leq_{sW} \text{VSB}_{<\omega}$.

4 Reducibility and Reverse Mathematics

We conclude by extracting a final reverse mathematics result from the proofs of Theorem 17 and Theorem 18 extending the list of equivalences in Theorem 5.

Theorem 19 (RCA$_0$). (RCA$_0$) The following are equivalent:
(1) \(\Sigma^0_2 \), the induction scheme for \(\Sigma^0_2 \) formulas with set parameters.

(2) Let \(V \) be a countable vector space such that for some \(n \), every subset of \(n \) vectors is linearly dependent. Then \(V \) has a basis.

(3) A formalized version of \(C^\#_{\text{max}} \). Suppose \(f : \mathbb{N} \to [\mathbb{N}]^{<\mathbb{N}}_{\neq \emptyset} \) and there is an \(n \) such that for all \(X \in [\mathbb{N}]^{<\mathbb{N}} \), \(|X| \geq n \to \exists t (f(t) = X)\). Then there is an \(X \in [\mathbb{N}]^{<\mathbb{N}} \) such that \((\forall t)[f(t) \neq X \text{ and for all } Y \in [\mathbb{N}]^{<\mathbb{N}} , (|X| < |Y| \to \exists t (f(t) = Y))].\)

(4) A formalized version of \(C^\subset_{\text{max}} \). Suppose \(f : \mathbb{N} \to [\mathbb{N}]^{<\mathbb{N}}_{\neq \emptyset} \) and there is an \(n \) such that for all \(X \in [\mathbb{N}]^{<\mathbb{N}} \), \(|X| \geq n \to \exists t (f(t) = X)\). Then there is an \(X \in [\mathbb{N}]^{<\mathbb{N}} \) such that \((\forall t)[f(t) \neq X \text{ and for all } Y \in [\mathbb{N}]^{<\mathbb{N}} , (X \subseteq Y \to \exists t (f(t) = Y))].\)

Proof. First, we use (1) to prove (2). If \(V \) is a vector space and every set of \(n \) vectors is linearly dependent, the construction from the proof of Theorem 12 can be formalized to yield an e-matroid of rank no more than \(n \). By Theorem 5, \(I_{\Sigma^0_2} \) implies that this matroid has a basis which is also a basis of \(V \).

To show that (2) implies (3), formalize the argument form the proof of Theorem 18 showing that \(C^\#_{\text{max}} \leq_{SW} VSB_{<\omega} \), using the parenthetical comments. As noted, the convergence of the moving marker construction is provable in \(\text{RCA}_0 \), as is the claim that every set of \(2n + 1 \) vectors is linearly dependent.

The proof that (3) implies (4) follows immediately from the fact that any set that is maximal in the sense of (3) is automatically maximal in the sense of (4).

The proof that \(EMB_{<\omega} \leq_{SW} C^\subset_{\text{max}} \) from Theorem 17 can be formalized in \(\text{RCA}_0 \) to show that (4) implies item (1) of Theorem 5. By Theorem 5, this implies \(I_{\Sigma^0_2} \), completing the proof.

Bibliography

[1] Vasco Brattka, Matthew de Brecht, and Arno Pauly, Closed choice and a uniform low basis theorem, Annals of Pure and Applied Logic 163 (2012), no. 8, 968–1008, DOI 10.1016/j.apal.2011.12.020.

[2] Vasco Brattka and Guido Gherardi, Weihrauch degrees, omniscience principles and weak computability, J. Symbolic Logic 76 (2011), no. 1, 143–176, DOI 10.2178/jsl/1294170993. MR2791341 (2012c:03186)

[3] , Effective choice and boundedness principles in computable analysis, Bulletin of Symbolic Logic 1 (2011), no. 1, 73–117, DOI 10.2178/bsl/1294186663.
[4] François G. Dorais, Damir D. Dzhafarov, Jeffry L. Hirst, Joseph R. Mileti, and Paul Shafer, *On uniform relationships between combinatorial problems*, Trans. AMS 368 (2014), 1321–1359, DOI 10.1090/tran/6465.

[5] J. N. Crossley and J. B. Remmel, *Undecidability and recursive equivalence. II*, Computation and proof theory (Aachen, 1983), Lecture Notes in Math., vol. 1104, Springer, Berlin, 1984, pp. 79–100, DOI 10.1007/BFb0099480, (to appear in print). MR775710

[6] R Downey, *Abstract dependence and recursion theory and the lattice of recursively enumerable filters*, Ph.D. Thesis, Monash University, Victoria, Australia, 1982.

[7] R. Downey, *Abstract dependence, recursion theory, and the lattice of recursively enumerable filters*, Bull. Austral. Math. Soc. 27 (1983), 461–464.

[8] , *Nowhere simplicity in matroids*, J. Austral. Math. Soc. Ser. A 35 (1983), no. 1, 28–45. MR697655

[9] Harvey M. Friedman, Stephen G. Simpson, and Rick L. Smith, *Countable algebra and set existence axioms*, Ann. Pure Appl. Logic 25 (1983), no. 2, 141–181, DOI 10.1016/0168-0072(83)90012-X. MR725732

[10] , *Addendum to: “Countable algebra and set existence axioms”*, Ann. Pure Appl. Logic 28 (1985), no. 3, 319–320, DOI 10.1016/0168-0072(85)90020-X. MR790391

[11] Kirill Gura, Jeffry L. Hirst, and Carl Mummert, *On the existence of a connected component of a graph*, Computability 4 (2015), no. 2, 103–117. MR3393974

[12] Jeffry L. Hirst, *Connected components of graphs and reverse mathematics*, Arch. Math. Logic 31 (1992), no. 3, 183–192, DOI 10.1007/BF01269946. MR1147740

[13] G. Metakides and A. Nerode, *Recursively enumerable vector spaces*, Ann. Math. Logic 11 (1977), no. 2, 147–171. MR0446936

[14] , *Recursion theory on fields and abstract dependence*, J. Algebra 65 (1980), no. 1, 36–59, DOI 10.1016/0021-8693(80)90237-9. MR578794

[15] A. Nerode and J. Remmel, *Recursion theory on matroids*, Patras Logic Symposion (Patras, 1980), Stud. Logic Found. Math., vol. 109, North-Holland, Amsterdam, 1982, pp. 41–65, DOI 10.1016/S0049-237X(08)71356-9, (to appear in print). MR694252

[16] Stephen G. Simpson, *Subsystems of second order arithmetic*, 2nd ed., Perspectives in Logic, Cambridge University Press, Cambridge; As-
sociation for Symbolic Logic, Poughkeepsie, NY, 2009. MR2517689 (2010e:03073)

[17] Hassler Whitney, *On the Abstract Properties of Linear Dependence*, Amer. J. Math. **57** (1935), no. 3, 509–533, DOI 10.2307/2371182. MR1507091