Sequence analysis

A critical assessment of gene catalogs for metagenomic analysis

Seth Commichaux¹,²,³,†, Nidhi Shah ¹,⁴,†, Jay Ghurye¹,⁴, Alexander Stoppel¹, Jessica A. Goodheart⁵, Guillermo G. Luque⁶, Michael P. Cummings¹ and Mihai Pop ¹,⁴,*

¹Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD, 20742, USA, ²Biological Science Graduate Program, University of Maryland, College Park, MD, 20742, USA, ³Division of Molecular Biology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, Maryland, 20708, USA, ⁴Department of Computer Science, University of Maryland, College Park, MD, 20742, USA, ⁵Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92037, USA and ⁶Department of Microbiome Science, Max Planck Institute for Developmental Biology, Tübingen, 72076, Germany

*To whom correspondence should be addressed.
†The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors.
Associate Editor: Inanc Birol

Received on October 30, 2020; revised on February 2, 2021; editorial decision on March 21, 2021; accepted on March 31, 2021

Abstract

Motivation: Microbial gene catalogs are data structures that organize genes found in microbial communities, providing a reference for standardized analysis of the microbes across samples and studies. Although gene catalogs are commonly used, they have not been critically evaluated for their effectiveness as a basis for metagenomic analyses.

Results: As a case study, we investigate one such catalog, the Integrated Gene Catalog (IGC), however, our observations apply broadly to most gene catalogs constructed to date. We focus on both the approach used to construct this catalog and on its effectiveness when used as a reference for microbiome studies. Our results highlight important limitations of the approach used to construct the IGC and call into question the broad usefulness of gene catalogs more generally. We also recommend best practices for the construction and use of gene catalogs in microbiome studies and highlight opportunities for future research.

Availability and implementation: All supporting scripts for our analyses can be found on GitHub: https://github.com/SethCommichaux/IGC.git. The supporting data can be downloaded from: https://obj.umiacs.umd.edu/igc-analysis/IGC_analysis_data.tar.gz.

Contact: mpop@umd.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Increasingly, studies of microbial communities rely on metagenomics—the sequencing of DNA extracted directly from a microbial mixture. Assembling metagenomic reads into longer contiguous sequences (contigs) is still a computationally challenging problem, because of repeated sequences within and among genomes, uneven abundances of organisms, sequencing errors and strain-level variation. Due to these challenges, and to limitations of sequencing technology, reconstructing complete and accurate genomes for all organisms in a single, complex metagenomic sample is still challenging. Given enough samples, metagenome assembled genomes can be reconstructed for many, but often not all, of the species comprising a microbiome. Regardless, metagenomic assemblies typically comprise many small contigs of unknown taxonomic origin.

The fragmented nature of metagenomic assemblies complicates data analysis, both because it is difficult to associate genomic fragments with individual taxa, and because it is difficult to identify related genomic fragments across samples. For these reasons, the earliest metagenomic studies focused on genes (and their inferred functions) found within assembled fragments, ignoring their precise taxonomic origin. Even in fragmented data, genes can be fairly effectively identified (Rho et al., 2010). A gene-centric approach was used in the first large scale metagenomic study of ocean bacteria (Yooseph et al., 2007). To prevent overcounting due to sequencing and assembly errors, or due to small differences in gene sequences
within closely related organisms, Yooseph et al. (2007) clustered the protein sequences based on similarity and focused their analysis on the representative sequence of each cluster. This gene ‘catalog’ revealed the tremendous diversity of bacterial functions in the ocean, with the newly predicted protein sequences doubling the number of known proteins. The MetaHIT project (Qin et al., 2010) constructed a similar catalog in order to characterize the functional composition of the human gut microbiome. Qin et al. (2012) leveraged a gene catalog as the basis for a microbiome association study in type 2 diabetes, and introduced the concept of metagenomic linkage groups—groups of genes that co-vary in abundance across samples. The gene catalog thus represents the basis for grouping together genes that likely originate from a single organism, an idea further extended by Nielsen et al. (2014) to help reconstruct partial genome sequences from metagenomic data.

Following these initial studies, gene catalogs have become ubiquitous in the analysis of metagenomic datasets, and have been created for the gut microbiota of multiple animals [e.g. mouse (Xiao et al., 2015), rat (Pan et al., 2018), pig (Xiao et al., 2016a, b), dog (Coelho et al., 2018), cow (Li et al., 2020), macaque (Li et al., 2018), chicken (Huang et al., 2018), lion, leopard and tiger (Mittal et al., 2020)], ocean bacteria (Sunagawa et al., 2015), soil bacteria (Lou et al., 2019) and the human vagina (Ma et al., 2020) and respiratory tract (Dai et al., 2019). Gene catalogs are commonly used to: (i) reduce redundancy in the data, thereby improving estimates of diversity (Yooseph et al., 2007); (ii) act as a common frame of reference across samples and studies; (iii) serve as a basis for metagenomic-wide association studies (Wang and Jia, 2016); and (iv) guide the binning of metagenomic contigs into organism-specific groups (Nielsen et al., 2014; Plaza-Oñate et al., 2018).

Such analyses may be confounded by the specific properties of the catalog being used. Yet, to our knowledge, the structure and construction of gene catalogs have not been critically evaluated. Because the processes for constructing and using gene catalogs are broadly the same across studies, generalizable observations can be obtained from the analysis of any of the catalogs referenced above. We focus here on the Integrated Gene Catalog (IGC) (Li et al., 2014), which seeks to provide a nearly comprehensive collection of the gene sequences identified in the human gut microbiome. We chose the IGC because it provides all the supporting metadata and intermediate files necessary to conduct a critical analysis of the structure of the resulting clusters.

1.1 The construction and use of gene catalogs

Catalog construction starts by identifying genes within metagenomic data. The gene sequences are then clustered together based on similarity in order to remove trivial differences between sequences due to fragmentary data (e.g. genes that miss the start or stop codons), sequencing errors or small, strain-level variations. The clustering process for constructing and using gene catalogs are broadly the same across studies, generalizable observations can be obtained from the analysis of any of the catalogs referenced above. We focus here on the IGC because it provides all the supporting metadata and intermediate files necessary to conduct a critical analysis of the structure of the resulting clusters.

1.2 Historical context

Clustering of biological sequences that share a common function or taxonomic origin has been at the core of biological research long before the first metagenomic experiment. Databases such as the Clusters of Orthologous Groups (COG) (Tatusov et al., 2000) and Pfam (Sonnhammer et al., 1997) date back to the late 1990s and were developed to organize the rapidly accumulating protein sequence information. To define the boundary of clusters, these databases used reciprocal best hit links (COG), or hidden Markov models built upon multiple alignments of related proteins (Pfam), approaches that rely on statistical significance measures instead of arbitrary thresholds based on sequence similarity. At the same time, taxonomic analyses based on housekeeping genes relied on careful phylogenetic analyses to define species boundaries (Lan and Reeves, 2001).

In the early 2000s, metagenomic studies yielded much larger datasets than previously seen. The challenge of effectively scaling analyses to cope with increasingly larger datasets led to the development of new approaches that emphasized speed over the accuracy or comprehensiveness of the analysis. CD-HIT (Li and Godzik, 2006), for example, a greedy clustering approach we briefly describe below, was developed to address the challenges encountered when analyzing the data from the Global Ocean Survey. Although CD-HIT and some other clustering tools developed (Edgar, 2010; Ghodsi et al., 2011) relied on fixed thresholds to determine the boundaries of clusters, it was already recognized that such thresholds were not consistent with biologically relevant entities (Nguyen et al., 2016; Shah et al., 2018); for a given threshold, some clusters contained sequences from multiple species, whereas other species were represented in multiple clusters.

The estimation of abundances from sequencing reads is a relatively new development in metagenomic studies but has been used extensively in the study of gene expression in eukaryotes. A number of factors have been identified that confound abundance estimation including multi-mapped reads, uneven depth of coverage, and sequence composition biases. Computational and statistical approaches have been developed to address such challenges (Bray et al., 2016; Li and Dewey, 2011; Patro et al., 2014, 2017).

1.3 Overview of the integrated gene catalog

The Integrated Gene Catalog comprises 9 879 896 annotated gene clusters that were constructed from a combination of 511 prokaryotic reference genomes from species known to occur in the human gut, and 1 267 gut metagenome datasets from Chinese, American and European cohorts. The IGC has been used to discover correlations between gut microbiome composition and resistance to immune checkpoint inhibitors in cancer patients (Routy et al., 2018), to observe that microbiome composition is modulated to a greater degree by environmental factors than by human genetics (Rothschild et al., 2018), to correlate glycemic response after meals with microbiome composition (Zeevi et al., 2015) and to identify signs of human fecal contamination in a river with sewage input (Mezzit et al., 2016).

The IGC was created through a multistep clustering process (Li et al., 2020). First, separate gene catalogs were created from the metagenomic data derived from each cohort: American (AGC), Chinese (CGC) and European (EGC), and for the sequenced prokaryotic reference genomes collection (SPGC). The three cohort-specific gene catalogs were then clustered together into a larger gene catalog called the 3CGC, which was then clustered with the SPGC catalog to create the IGC. Gene clustering was performed with CD-HIT (Li and Godzik, 2006). As employed in the construction of the IGC, this tool operates in an iterative fashion, processing the gene sequences in decreasing order of length. The longest gene sequence is selected to be the representative of the first cluster. The next longest sequence is then assigned to the cluster if it matches the representative sequence with ≥95% sequence identity over ≥90% of the length of the query sequence, or becomes the representative of a new cluster. In the following iterations, query sequences either become representatives of new clusters or are added to an existing cluster if they match the corresponding representative sequence sufficiently well. For most applications, only the set of representative sequences is used, however, the IGC project also provides the full assignment of individual genes to clusters. Each representative gene sequence in
the IGC is assigned, if possible, taxonomic and functional labels, however, only 16.3% of the sequences are assigned a genus-level annotation and only 60.4% have functional annotations.

2 Results

2.1 Inconsistent fidelity of clustering

That a 95% sequence identity cut-off is used throughout the multiple rounds of clustering in the construction of the IGC appears to imply that the final clusters are consistent with this threshold. However, the multiple rounds of clustering used to construct the IGC may yield clusters with a (much) lower identity than the intended threshold. We call this methodological artifact transitive clustering error (Fig. 1), which occurs when different gene catalogs are sequentially clustered. Although each clustering step guarantees the 95% threshold for the sequences being clustered, this threshold does not constrain the similarity between sequences that were clustered in prior iterations. The result of transitive clustering error is an unintended increase in the effective radius of the new cluster with respect to the representative sequence (see Supplementary File S1 for a detailed explanation of transitive clustering error). When the three catalogs were clustered into the 3CGC, individual gene sequences could potentially share as low as 90% identity to the new cluster representative is the representative of a meta-cluster (dashed line) that includes the representative sequences of the square and circle clusters. Within this cluster, the distance between two sequences (marked with A and B in the figure), may be as high as 4r, or 20% sequence divergence in the case of the parameters used in the IGC. The distance between a sequence and its corresponding cluster representative may be as high as 2r, or 10% sequence divergence.

2.2 Taxonomic inconsistency of clusters

The process used to construct the IGC does not constrain the fraction of the representative sequence that needs to match the sequences within the cluster. This choice makes it possible for two sequences to both align to the cluster representative perfectly without sharing any sequence with each other. As an example, cluster 303 contains four sequences of different lengths—16 111 nt (representative), 7122 nt, 3012 nt and 2982 nt. All of these genes are complete, spanning from start codon to stop codon and originate from the SPGC (genes found in nearly complete reference genomes). The alignment between the three genes to the cluster representative (Supplementary Fig. S2) demonstrates the lack of overlap between the individual sequences, suggesting that they align to distinct domains of the representative sequence, rather than representing variants of this gene. Supplementary Table S1 lists the domains found in the representative sequence. This artifact may be widespread within the IGC—within the 255 191 IGC clusters with a minimum of 100 members, the mean difference between longest and shortest gene length is 590 nt, representing an average of 14.4% of the length of the cluster representative (Fig. 2B).

The taxonomic homogeneity of the IGC clusters can be most readily assessed within the SPGC because this gene catalog has well-defined taxonomic labels; however, we note that the SPGC only contains 200 species with sparse representation per species (a mean of 2.6 reference genomes). Still, we found that 42 208 (6.4%) of all clusters in the SPGC grouped together sequences from multiple distinct species, with a maximum of 21 species in a single cluster.

To estimate the number of species within the IGC clusters derived from sequences with unknown taxonomic origin (namely, the three country-specific catalogs), we focused on a subset of 200 IGC clusters: the 100 largest clusters and 100 randomly chosen clusters from those with at least 100 sequences each. We aligned each sequence within an IGC cluster to the NCBI nr database (version 5) using Diamond (Buchfink et al., 2015) (version 0.9.29). We used the same alignment thresholds as those used by the IGC, requiring at least 95% sequence identity and 90% query coverage. We retained
all database entries that matched each query sequence within these thresholds. We conservatively inferred the number of species per gene cluster using a minimum set cover approach. Specifically, we identified the smallest number of species such that each sequence had at least one hit to a database sequence from one of these species. As seen in Figure 3A, 73% of clusters (57% of the largest and 89% of the randomly selected clusters) are covered by a single species. If we used just the top database hit for each sequence, the most commonly used approach in practice, only 20.5% of clusters (5% of the largest and 36% of the randomly selected clusters) were composed of a single species (Fig. 3B).

To explore the converse, the possibility that variants of a gene from a single species may be distributed across multiple clusters, we analyzed a collection of 86 830 Escherichia coli genomes obtained from the GenomeTrakr database (Allard et al., 2016). When focusing on just the 818 core genes of the E. coli pan-genome (genes found in all of the genomes), the mean sequence identity between the representative and the most divergent clustered sequence was 87.7% which is lower than the 95% threshold used by the IGC. In fact, only 63 core genes met or exceeded the 95% threshold and would have been clustered properly by the IGC (Fig. 3C).

2.3 Hidden species within the IGC

A direct consequence of multi-species clusters is the possibility that genes from an individual species may be ‘hidden’ by representative sequences belonging to a different species. A species for which no gene is selected as a representative for a cluster in the catalog becomes effectively undetectable in the samples being analyzed.

To explore the extent of this problem, we focused on just the SPGC (genes from complete and near complete genomes) because these genes have well defined taxonomic labels. Within the SPGC, the number of representative genes per species ranged from 139 (Escherichia sp. 1_1_43) to 28 404 (E. coli). We simulated reads from 507 genomes from the same species (or strain, if known) as the SPGC reference genomes, and mapped these reads to the SPGC using Bowtie2 (Langmead and Salzberg, 2012). As expected, the rate of assigning reads to a species was correlated with the number of representative genes for the species (Supplementary Fig. S3). A possible confounding factor might be the fraction of reads that map ambiguously to multiple species; however, the median fraction of multi-mapped reads was only 3% across species. Only 129 of the 201 species in the SPGC had an assignment rate of 90% or higher, i.e. 90% of the reads originating from these genomes would be assigned a correct species-level taxonomic label. At one extreme, Escherichia sp. 1_1_43, had the lowest number of representative genes and the lowest assignment rate at 2%. Despite having a large number of representative genes, E. coli only had an assignment rate of ~83%, because of the large number of closely related species in the SPGC. All four Shigella sp. within the SPGC had low assignment rates: 17%, 11%, 8% and 7% for S. flexneri, S. dysenteriae, S. boydii, S. sonnei, respectively. This is because the reads from Shigella sp. often map to clusters with an E. coli representative sequence.

Due to the importance of Shigella sp. for human health, we further analyzed 20 known virulence/toxin genes of S. sonnei (Lamba et al., 2016; Mattrock and Blocker, 2017; Nyholm et al., 2015) (Supplementary Table S2). Only 11 of the 20 genes were taxonomically labelled as Shigella, seven were labelled as Escherichia and two, set1A and set1B, were not found at all. Notably, Shiga toxins Stx1A and Stx1B are labelled as Escherichia, even though they are part of a mobile prophage genome which has been horizontally transferred among many Enterobacteriaceae (Juhas, 2015), highlighting the difficulty of annotating a mobileome.

2.4 Using the IGC as a reference for metagenomic analyses—simulated data

The primary strategy for using the IGC as a reference when analyzing metagenomic datasets involves mapping sequencing reads to the representative sequences of the clusters. Although a seemingly straightforward bioinformatics task, the selection of mapping tools, parameters of the mapping process and characteristics of the reads themselves (e.g. read length) may have a significant impact on the results. To evaluate the effects of such features on the use of the IGC for metagenomic analysis, we simulated three metagenomic samples composed of the species in the SPGC. Two samples simulated Illumina reads (100 nt, 250 nt), and the other simulated 454/IonTorrent reads (225 nt). We compared mapping statistics for tools that are widely used in metagenomic analyses, BWA-MEM (Li and Durbin, 2009) and Bowtie2 (Langmead and Salzberg, 2012) with default parameters, and BLASTN (Altschul et al., 1990) with thresholds of 95% identity, 90% read coverage and default values for all other parameters (Table 1).

Table 1. The percent of simulated Illumina and 454 Roche reads, from 507 prokaryotic reference genomes, that map to the IGC with BWA-MEM, Bowtie2 and BLASTN

Read Datasets	BLASTN	Bowtie2	BWA-MEM
Illumina 100 nt	74.31	86.44	96.22
Illumina 250 nt	43.98	76.49	98.97
454 Roche ~225 nt	64.48	77.82	98.18

Note: For BLASTN, only those alignments with ≥95% identity and ≥90% read coverage are considered. BWA-MEM and Bowtie 2 were run with default parameters requiring full length matches. Note: 225 nt is the mean length of the 454 Roche reads.
The fraction of reads mapped by different tools, and across different read lengths, varied substantially (Supplementary Table S3). BLASTN consistently mapped fewer reads than the other tools. The gene abundance profiles estimated from these mappings differed significantly across different mapping tools (Mann Whitney U test, P-value < 0.001) at every read length, suggesting the choice of mapping tool may confound abundance estimates and, therefore, the associations derived from the data (Supplementary Table S4). Furthermore, nearly half of the reads multi-mapped, i.e. mapped equally well to multiple IGC clusters. Multi-mapped reads can confound taxonomic classification and estimates of abundance, as previously highlighted in RNA-seq studies (Li et al., 2010). Our results suggest the need for abundance estimation algorithms that can account for mapping ambiguity (Bray et al., 2016; Patro et al., 2014, 2017), which are rarely used in metagenomic studies.

Together, multi-mapped reads and the poor visibility of some species within the catalog, led to ~20% of the reads mapping to gene clusters classified as a different genus than that from which the reads originated (Supplementary Table S5). This raises concerns about the accuracy of taxonomic profiles derived from real metagenomic data given that these reads were generated from the genomes used in the construction of the IGC.

2.5 Using the IGC as a reference for metagenomic analyses—real data

In addition to the read mapping artifacts discussed previously, genes that are not represented in the IGC but are present in a sample can confound the analysis of metagenomic data. Prior studies have demonstrated the IGC is not a comprehensive representation of the diversity of the human gut microbiome, lacking many genes found in the gut of infants (Bäckhed et al., 2015), patients suffering from various diseases such as gout (Guo et al., 2016) or diabetes (Forslund et al., 2015), adults from India (only 61% of their gene catalog mapped to the IGC) (Dhakan et al., 2019), and even adult twins from the UK (in which a putative 1.5 million genes were not present in the IGC) (Xie et al., 2016).

To investigate how read mapping artifacts and genes not represented in the catalog impact analyses based on the IGC, we used a human gut sample from a 61-year-old Cameroonian male with a hunter gatherer diet (SRA accession ERR2619707) (Lokmer et al., 2019). We assembled the data with MEGAHIT (Li et al., 2015) and predicted genes using Prokka (Seemann, 2014). Only 66.6% of the predicted genes from this sample clustered to an IGC gene representative, genes to which we refer as the clustered predicted genes. The other genes predicted from the sample could not be confidently assigned to IGC clusters (and thus are likely not represented in the IGC), and we refer to these genes as the unclustered predicted genes.

We separately mapped the reads from the Cameroon dataset with Bowtie2 to the two sets of genes predicted from the sample and the IGC clusters, respectively (Fig. 4). The percent of reads mapping to the predicted genes and the IGC was similar (39.0% to the predicted genes and 55.3% to the IGC), but the percent of multi-mapped reads was much higher for the IGC (24.1%) compared to the predicted genes (3.8%). The reads also mapped to an order of magnitude more IGC clusters (1 369 981) than predicted genes (177 745). Together this suggests a high false positive rate, i.e. that reads from unclustered predicted genes are mapping to IGC clusters representing potentially unrelated genomic sequences and/or functions.

To determine the IGC clusters to which the reads from the clustered predicted genes and the unclustered predicted genes were aligned, we focused our analysis on the read pairs that mapped concordantly to both the predicted genes and to the IGC clusters (24.1% of all reads). A read pair is considered concordantly mapped when the forward and reverse reads of the pair map to a gene with the correct insert size and orientation. Such concordant mappings are less likely to represent mapping artifacts. Given that each clustered predicted gene has a corresponding IGC cluster, we would expect the reads mappings to also be shared between the gene and the cluster to which it is related. Among the 10 032 192 reads that concordantly mapped to clustered predicted genes, 11.9% mapped to a different IGC gene than expected (false positives denoted by dashed line Box 5). Of the 9 058 978 reads that mapped concordantly to the unclustered predicted genes (Box 3), 23.6% mapped to IGC genes (false positives denoted by dashed line Box 6).
Gene catalog	Year published	Transitive clustering error	Clusters sequences of highly different lengths	Taxonomic inconsistency	Hidden species	Clustering criteria
Human gut (cirrhosis) (Qin et al., 2014)	2014	Yes	Yes	Yes	Yes	– Pairwise comparison of all genes with BLAT: >95% identity and >90% of the shorter gene length.
Mouse gut (Xiao et al., 2015)	2015	No	Unclear	Yes	Yes	– Merged genes from three catalogs using the same clustering technique.
Human gut (infants) (Backhed et al., 2015)	2015	No	Yes	Yes	Yes	– Pairwise comparison of all genes with BLAT: >95% identity and overlap >90%
Human gut (diabetes) (Forslund et al., 2015)	2015	No	Yes	Yes	Yes	– Predicted protein-coding genes with a minimum length of 100 bp were clustered at 95% sequence identity using CD-HIT with parameters set to: -c 0.95, -G 0, -aS 0.9, -g 1, -r 1.
Pig gut (Xiao et al., 2016a)	2016	No	Unclear	Yes	Yes	– Pairwise comparison of all genes with BLAT: >95% identity and overlap >90%
Human gut (gout) (Guo et al., 2016)	2016	No	Yes	Yes	Yes	– Genes were clustered with CD-HIT using a sequence identity cut-off of 0.95 and a minimum coverage cut-off of 0.9 for the shorter sequences.
Human gut (diabetes) (Xie et al., 2016)	2016	Yes	Yes	Yes	Yes	– Genes were clustered using CD-HIT of the MOCAT pipeline (95% identity, 90% overlap)
Chicken gut (Huang et al., 2018)	2018	Unclear	Yes	Yes	Yes	– Merged the gene set with the IGC catalog using CD-HIT.
Rat gut (Pan et al., 2018)	2018	No	Yes	Yes	Yes	– Gene ORFs were clustered using CD-HIT with a criterion of 95% identity >90% of the shorter ORF length with default parameter except -G 0 -n 8 -aS 0.9 -c 0.95 -d 0 -g 1
Dog gut (Coelho et al., 2018)	2018	No	Unclear	Yes	Yes	– Genes were clustered at 95% identity using CD-HIT
Macaque gut (Li et al., 2018)	2018	No	Unclear	Yes	Yes	– Pairwise comparison of all genes using CD-HIT with identity of >95% and overlap of >90%
Human gut (children) (Vatanen et al., 2019)	2018	Yes	Yes	Yes	Yes	– Clustered gene based on sequence similarity at 95% identity and 90% coverage of the shorter sequence using CD-HIT
South China soil (Lou et al., 2019)	2019	No	Unclear	Yes	Yes	– Merged with the IGC using the same CD-HIT clustering technique to form a comprehensive catalog
Pig gut (Wang et al., 2019)	2019	Yes	Unclear	Yes	Yes	– Nucleic acids longer than 100 bp were translated into amino acid sequences. Pairwise comparison of all genes using CD-HIT with parameters >95% identity and >90% overlap
Human lung (Dai et al., 2019)	2019	No	Yes	Yes	Yes	– Predicted genes were clustered at the nucleotide level using CD-HIT with >95% identity and >90% overlap
Human gut (Indian cohort) (Dhakan et al., 2019)	2019	Yes	Unclear	Yes	Yes	– Combined the catalog with an earlier Pig gut catalog to create a comprehensive catalog
Rat gut (Zheng et al., 2019)	2019	No	Yes	Yes	Yes	– Predicted ORFs were clustered using CD-HIT with criteria of >95% identity and >90% alignment of shorter ORF, (-c 0.95, -G 0, -aS 0.9, -g 1, -d 0)
Table 2. (continued)

Gene catalog	Year published	Transitive clustering error	Clusters contain sequences of highly different lengths	Taxonomic inconsistency	Hidden species
Panthera gut (Mittal et al., 2020)	2020	No	Yes	Yes	Yes
Cow gut (Li et al., 2020)	2020	No	Yes	Yes	Yes
Mouse gut (Isher et al., 2020)	2020	No	Yes	Yes	Yes
Human gut (Isher et al., 2020)	2020	No	Yes	Yes	Yes
Human dental caries (Liu et al., 2020)	2020	No	No	Yes	Yes
Human vagina (Ma et al., 2020)	2020	No	Yes	Yes	Yes
Rhizosphere soil (Zhou et al., 2020)	2020	No	Yes	Yes	Yes
Sheep rumen (Ghanbari et al., 2020)	2020	No	Yes	Yes	Yes

Note: The columns of the table list: (i) the gene catalog; (ii) the year it was published; (iii) if the clusters are affected by transitive clustering error; (iv) if the clusters contain sequences of highly different lengths; (v) if species have genes hidden by the genes of other species; (vi) if the clusters contain sequences from different species; (vii) if the clustering criteria employed to create the catalog.

2.6 Analysis of other gene catalogs

A survey of 24 gene catalog studies from the last few years highlights that many were created using a similar clustering algorithm as the IGC and thus likely share many of the same issues as those identified above (Table 2). While none of these catalogs provided all the necessary metadata and intermediate files to perform the same analyses as done for the IGC, we were able to predict which issues likely affect the catalogs based upon the description of the methods used to construct these catalogs. We note that 5 of the 24 catalogs were affected by transitive clustering error. Additionally, at least 15 catalogs allowed genes of highly divergent lengths to be clustered together. Furthermore, taxonomic inconsistency and hidden species also likely affect 23 of the catalogs.

3 Discussion

Gene catalogs help organize the vast volumes of data generated in metagenomic experiments. If carefully constructed, they provide a valuable resource for the analysis of metagenomic samples. Through our analysis of the IGC—one of the largest gene catalogs available to scientists today—we have highlighted how the design and construction of a gene catalog can affect downstream analyses in unintended ways. These issues affected a large percent of the gene catalogs we found in the literature because many were constructed using similar methods as the IGC.

Perhaps the most prevalent and important source of error for gene catalogs is caused by clustering gene sequences with a fixed threshold, creating clusters composed of sequences with variable levels of taxonomic relatedness. Our observation recapitulates the finding that no specific sequence similarity threshold can be used to consistently capture a particular taxonomic level or functional category. This finding has been well documented previously in the context of 16S rRNA sequencing (Nguyen et al., 2016; Shah et al., 2018). Clustering in this manner effectively hides the taxonomic origin of all but the gene sequences selected as cluster representatives. As a result, each species in a catalog might have a different proportion of genes that are not represented (that are hidden by the genes of other species), genes that are represented once and genes that are represented in multiple copies. This can introduce bias in downstream analyses that aim to explore the presence or abundance of taxa across samples, a bias already noted in the community (McLaren et al., 2019). For example, if a catalog contains multiple variants of a gene from a species, metagenomic reads from that gene and species might map to multiple variants in the catalog either uniquely or by multimapping. Through our analysis of the hidden species of the SPGC and the E.coli core genes, we have shown that this effect is non-uniform across taxonomic groups and can result in the biased recruitment of reads across taxa.

Another common source of error for gene catalog construction is the clustering of genes of widely different lengths. This can result in clusters where there is little or no overlap between cluster members. While it is not currently possible to confirm the functional consistency of all clusters in a gene catalog, if cluster members share little sequence similarity with the representative (which is treated as the functional homolog of all cluster members) it is likely that they do not share the same function. Furthermore, assessing the relationship between sequence and functional similarity is non-trivial (Ellens et al., 2017) even in the absence of the confounding information introduced by the co-clustering of sequences with widely divergent lengths.

The iterative clustering of catalogs can further exacerbate all of the previously mentioned issues by amplifying the differences between sequences assigned to a cluster. Among the gene catalogs we have explored (Table 2), the use of a multi-step clustering process is typically used for two purposes: to mitigate computational costs, and/or to update an old catalog by merging it with a newer one. However, none of the studies we analyzed took into account the amount of error introduced by iterative clustering. It is certainly desirable to develop computationally efficient catalog construction methods as datasets increase in size, as well as to efficiently incorporate new data into existing catalogs. Our analysis, however,
suggests that it is important to ensure that the fidelity of the clusters is not impacted by computational convenience, and highlights the need for additional research in this field.

Coupled with the issues arising from the structure of the clusters themselves, we have shown that the use of the IGC to analyze a real metagenomic sample induces many analytical artifacts, including a high false positive rate—IGC clusters that are not actually found in a sample, but which ‘recruit’ many reads nonetheless. Conversely, as the number of species and the number of their gene variants represented in the catalog increases, so will the number of reads that map ambiguously (Nasko et al., 2018). As a result, using gene catalogs that are constructed similarly to the IGC for metagenomic studies will likely introduce analytical artifacts that outweigh the benefit of the common frame of reference these catalogs provide.

While raising these concerns, we agree with the authors of the IGC that properly constructed gene catalogs can be an effective reference for metagenomic studies. However, to maximize their usefulness, gene catalogs should either be created directly from the samples being analyzed or from closely related samples. Our findings indicate that the goal of tracking individual clusters across studies is not met by the IGC and other similarly constructed catalogs. We believe that universal taxonomic identifiers and gene ontologies represent a better approach for relating findings across gene catalogs and metagenomic studies. For gene catalogs to be used as global resources for metagenomic data analysis, new methods for updating catalogs and accounting for biases introduced by read mapping tools needs to be researched. For now, we believe the best use case for gene catalogs is within the narrow context of the samples used to create them.

Our results highlight pitfalls that need to be avoided when constructing such catalogs and reveal several best practices:

- The iterative integration of clusters should be avoided as it amplifies the errors inherent to the clustering process. A multi-step clustering process may be necessary to mitigate computational costs, however we recommend limiting the number of rounds and accounting for the growth in cluster diameter that is due to the multi-round process.

- Arbitrary similarity thresholds should be avoided, and instead researchers should use approaches that are able to dynamically tune clustering parameters (Callahan et al., 2016; Hao et al., 2011; Navlakha et al., 2010; Shah et al., 2018; White et al., 2010).

- The clustering procedure should ensure all sequences within a cluster are of similar length.

- The construction of gene catalogs should not exclusively rely on data from metagenomic experiments, but rather should be augmented with genomic sequences from organisms that are commonly found at low abundance in the samples of interest (including eukaryotes and viruses), as such organisms are unlikely to be assembled sufficiently well within the metagenomic data.

- The alignment of sequences to the catalog, as well as estimation of gene abundances from the alignments, should be conducted in a way that adequately addresses non-specific mapping. Several approaches have been developed for RNA-seq analysis that effectively handle multi-mappings in an alignment-free manner (Bray et al., 2016; Patro et al., 2014, 2017), though it remains to be seen whether these are sufficiently effective in metagenomic settings or whether the underlying algorithms need to be adapted.

During the preparation of our manuscript, a new catalog was published (Almeida et al., 2021), which partly addresses some of the issues we have highlighted above. The underlying data being clustered were derived from cultured genome sequences and metagenome-assembled sequences, potentially ensuring a higher quality protein catalog (the Unified Human Gastrointestinal Protein catalog). Gene-level clustering was performed at the protein level in one round of clustering, thereby avoiding transitive clustering error.

Notably, the authors of this new study re-clustered the genes from the IGC and appear to be unaware of the blow-up in divergence caused by the iterative process used by the IGC: ‘We clustered the IGC only at 90% and 50% protein identity, as it was originally de-replicated at 95% nucleotide identity’ (Almeida et al., 2021). The Unified Human Gastrointestinal Protein catalog was provided as multiple catalogs constructed with different similarity thresholds, acknowledging that no threshold is appropriate for all analyses. Some of the pitfalls identified above, however, still apply to the new catalog. When clustering protein sequences, Almeida et al. only control the fraction of the clustered sequence that needs to match the cluster representative (80% in this case), raising the possibility of artifacts such as that highlighted in Supplementary Figure S2. Furthermore, the new catalog includes the Unified Human Gastrointestinal Genome catalog which is constructed in a two-step process to address the computational cost of clustering. The paper does not indicate that the authors are aware of the additional sequence divergence introduced by this process.

A full-fledged analysis of the new catalog, similar to what we have described above, is beyond the scope of this manuscript. However, as discussed here, it is apparent that issues such as those we have described are not widely appreciated in our community. We hope that our manuscript provides readers with an appreciation for the complexity of sequence clustering, particularly as it relates to metagenomic sequence analysis, and leads to a more thoughtful consideration of the pitfalls we have identified when using gene catalogs as a reference for data analysis.

Acknowledgements

The authors thank the authors of the IGC for providing, so comprehensively, all of the data that was used to create the IGC—without it this analysis would not have been possible. This project was conceived and initiated at the 2017 Bioinformatics Exchange for Student and Teachers (BEST) summer school in Heiligkreuztal, Germany. Caner Bağci helped initiate the project. For the core gene analysis of E. coli, James Pettengill and Arthur Fightling from the Center for Food Safety and Nutrition (CFSAN) at the Food and Drug Administration helped us better understand their methods and to navigate the data used.

Author Contributions

M.P. conceived this project. All authors helped initiate the project. S.C., N.S. and M.P. were involved in the design and execution of all experiments, J.G., A.S and J.A.G. contributed to data analysis. S.C., N.S. and M.P. wrote the manuscript with contributions from all authors. All authors read, revised and approved the manuscript.

Funding

This work was supported by the Graduate School of the University of Maryland, College Park and the Institutional Strategy of the University of Tübingen (Deutsche Forschungsgemeinschaft, ZUK 63). G.G.L. attended the summer school with support from Ruth E. Ley.

References

Allard,M.W. et al. (2016) Practical value of food pathogen traceability through building a whole-genome sequencing network and database. J. Clin. Microbiol., 54, 1975–1983.

Almeida,A. et al. (2021) A unified catalog of 204,938 reference genomes from the human gut microbiome. Nat. Biotechnol., 39, 105–114.

Bartels,S.P. et al. (1990) Basic local alignment search tool. J. Mol. Biol., 215, 402–410.

Bryan,L.N. et al. (2016) Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol., 34, 525–527.

Buchfink,B. et al. (2015) Fast and sensitive protein alignment using DIAMOND. Nat. Methods, 12, 59–60.

Backhed,F. et al. (2015) Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe, 17, 690–703.

Callahan,B.J. et al. (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods, 13, 581–583.
Coelho,L.P. et al. (2018) Simplicity of the dog and human gut microbiomes in gene content and response to diet. Microbiome, 6, 72.

Dai,W. et al. (2019) An integrated respiratory microbial gene catalogue to better understand the microbial aetiology of Mycoplasma pneumoniae pneumonia. Gigas Science, 8, giz093.

Dhakan,D.B. et al. (2019) The unique composition of Indian gut microbiome, gene catalogue, and associated fecal metabolome deciphered using multi-omics approaches. Gigas Science, 8, giz094.

Edgar,R.C. (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26, 2460–2461.

Ellens,K.W. et al. (2017) Confronting the catalytic dark matter encoded by sequenced genomes. Nucleic Acids Res, 45, 11493–11514.

Forslund,K. et al.; MetaHIT Consortium. (2015) Desornting type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature, 528, 262–266.

Ghanbari Maman,L. et al. (2020) Co-abundance analysis reveals hidden players associated with high methane yield phenotype in sheep rumen microbiome. Sci. Rep., 10, 4995.

Ghodsi,M. et al. (2011) DNACLUST: accurate and efficient clustering of phylogenetic marker genes. BMC Bioinformatics, 12, 271.

Guo,Z. et al. (2016) Intestinal microbiota distinguish gout patients from healthy humans. Sci. Rep., 6, 341–352.

Hao,X. et al. (2011) Clustering 16S rRNA for OTU prediction: a method of unsupervised Bayesian clustering. Bioinformatics, 27, 611–618.

Huang,P. et al. (2018) The chicken gut metagenome and the modulatory effects of plant-derived benzylsulfoxinoline alkaloids. Microbiome, 6, 211.

Juhas,M. (2015) Horizontal gene transfer in human pathogens. Clin. Microbiol. Rev., 28, 2856.

Lesker,T.R. et al. (2020) MetaHIT Consortium. (2015) 1658–1659.

Li,X.; MetaHIT Consortium. (2014) Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes. Nat. Biotechnol., 32, 822–828.

MacDonald,Ø. et al. (2015) Characterization of Shigella sonnei isolate carrying Shiga toxin 2-producing gene. Emerg. Infect. Dis., 21, 891–892.

McLaren,M.R. et al. (2010) A comprehensive non-redundant gene catalog reveals extensive within-community intraspecies diversity in the human vagina. Nat. Commun., 11, 940.

Mezit,A. et al. (2016) Anthropicogenic effects on bacterial diversity and function along a river-to-estuary gradient in Northwest Greece revealed by metagenomics. Environ. Microbiol., 18, 4640–4652.

Mittal,P. et al. (2020) The gene catalog and comparative analysis of gut microbiome of big cats provide new insights on Panthera species. Front. Microbiol., 11, 3012.

Nasko,D.J. et al. (2018) ReSeq database growth influences the accuracy of k-mer-based lowest common ancestor species identification. Genome Biol., 19, 165.

Navalakha,S. et al. (2010) Finding biologically accurate clusterings in hierarchical tree decompositions using the variation of information. J. Comput. Biol., 17, 503–516.

Nguyen,N.P. et al. (2016) A perspective on 16S rRNA operational taxonomic unit clustering using sequence similarity. NPJ Biofilms Microbiomes, 2, 1604.

Nielsen,H.B. et al.; MetaHIT Consortium. (2014) Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes. Nat. Biotechnol., 32, 822–828.

Nyholm,Ø. et al. (2015) Characterization of Shigella sonnei isolate carrying Shiga toxin 2-producing gene. Gigas Science, 7, giz055.

Patro,R. et al. (2017) Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods, 14, 417–419.

Patro,R. et al. (2014) Sailfish enables alignment-free isoform quantification from RNA-seq reads using lightweight algorithms. Nat. Biotechnol., 32, 462–464.

Plaizier,F. et al. (2018) MSpminer: abundance-based reconstitution of microbial pan-genomes from shotgun metagenomic data. Bioinformatics, 39, b8580–b8580.

Qin,J. et al.; MetaHIT Consortium. (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 464, 59–65.

Qin,J. et al. (2012) A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature, 490, 55–60.

Qin,J. et al. (2014) Alterations of the human gut microbiome in liver cirrhosis. Nature, 513, 59–64.

Rho,M. et al. (2010) FragGeneScan: predicting genes in short and error-prone reads. Nucleic Acids Res., 38, e191.

Rothschild,D. et al. (2018) Environment dominates over host genetics in shaping human gut microbiota. Nature, 555, 210–215.

Routy,B. et al. (2018) Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science, 359, 91–97.

Seemann,T. (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics, 30, 2068–2069.

Shah,N. et al. (2018) Outil de detection in BLAST hits. Algorithma Mol. Biol., 13, 7.

Sonnhammer,E.L.L. et al. (1997) Pfam: a comprehensive database of protein domain families based on seed alignments. Proteins Struct. Func. Bioinf., 28, 405–420.

Sunagawa,S. et al.; Tara Oceans Coordinators. (2015) Structure and function of the global ocean microbiome. Science, 348, 1241359.

Tatusov,R.L. et al. (2000) The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res., 28, 33–36.

Vatanen,T. et al. (2019) Genomic variation and strain-specific functional adaptation in the human gut microbiome during early life. Nat. Microbiol., 4, 470–479.

Wang,G. et al. (2019) Characterization of the pig gut microbiome and antibiotic resistance in industrialized feedlots in China. mSystems, 4, e00206–e00219.

Wang,J. and Jia,H. (2016) Metagenome-wide association studies: fine-mining the microbiome. Nat. Rev. Microbiol., 14, 508–522.

White,J.R. et al. (2010) Alignment and clustering of phylogenetic markers-implications for microbial diversity studies. BMC Bioinformatics, 11, 152.

Xiao,L. et al. (2016a) A reference gene catalogue of the pig gut microbiome. Nat. Microbiol., 1, 16161.

Xiao,L. et al. (2016b) P1016 The pig’s other genome: a reference gene catalogue of the gut microbiome as a new resource for deep studies of the interplay between the host and its microbiome. J. Animal Sci., 94, 22–22.

Xiao,L. et al. (2015) A catalogue of the mouse gut metagenome. Nat. Biotechnol., 33, 1103–1108.

Xie,H. et al. (2016) Shotgun metagenomics of 250 adult twins reveals genetic and environmental impacts on the gut microbiome. Cell Syst., 3, 572–584.e373.
Yooseph, S. et al. (2007) The Sorcerer II Global Ocean Sampling expedition: expanding the universe of protein families. *PLoS Biol.*, 5, e16.
Zeevi, D. et al. (2015) Personalized nutrition by prediction of glycemic responses. *Cell*, 163, 1079–1094.
Zheng, A. et al. (2019) Changes in gut microbiome structure and function of rats with isoproterenol-induced heart failure. *Int. Heart J.*, 60, 1176–1183.
Zhou, Y. et al. (2020) The preceding root system drives the composition and function of the rhizosphere microbiome. *Genome Biol.*, 21, 1–19.