Effect of Varieties on Bioactive Properties and Mineral Contents of Some Sorghum, Millet and Lupin Seeds

Fahad Al Juhaimi\(^1\), Şenay Şimşek\(^2\), Kashif Ghafoor\(^1\), Elfadil E. Babiker\(^1\), Mehmet Musa Özcan\(^3\), Isam A Mohamed Ahmed\(^1\)*, Magdi A. Osman\(^1\), and Mustafa A. Gassem\(^1\)

1 Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, SAUDI ARABIA
2 Department of Plant Sciences, Cereal Science Technology, North Dakota State University, Fargo, US
3 Department of Food Engineering, Faculty of Agriculture, Selçuk University, 42079 Konya, TURKEY

Abstract: In this study, some physico-chemical properties, amino acids, fatty acids, sugars and mineral contents of sorghum, millet and lupin seeds. Sorghum (red, white and yellow) and millet seeds were purchased from market in Saudi Arabia (Riyadh). Lupin seeds were provided from in Turkey (Konya). Protein contents of seed samples ranged from 8.6% (yellow sorghum) to 37.7% (lutop) (\(p < 0.05\)). The extractable phenolics contents for gallic acid equivalent (GAE) of grains ranged between 1.43 mgGAE/g (white sorghum) to 8.23 mgGAE/g (red sorghum), and hydrolysable phenolics contents for GAE of grains varied between 1.48 mgGAE/g (white sorghum) to 26.10 mgGAE/g (red sorghum (\(p < 0.05\)). Total phenol contents of seeds were found between 2769 mg GAE/g (bablon) to 6087 mgGAE/g (yellow sorghum) (\(p < 0.05\)). Amino acid contents of millet changed between 0.02% (ornithine) and 2.07% (glutamic acid), while amino acid contents of yellow sorghum range from 0.02% (hydroxyproline) to 1.71% (glutamic acid), amino acid values of white sorghum changed between 0.02% (hydroxyproline) and 2.21% (glutamic acid), amino acid values of lutop seed changed between 0.02% (ornithine) and 6.77% (glutamic acid) (\(p < 0.05\)).While the oleic acid contents change between 25.27% (white sorghum) and 53.50% (Bablone), linoleic acid contents ranged from 14.60% (Bablone) to 42.67% (Millet) (\(p < 0.05\)). However, the amount of potassium in the seeds varied between 1831.34 mg/kg (while sorghum) and 11895.8 mg/kg (Lutop). Generally, protein, oleic acid, amino acid and mineral contents of lupin varieties were higher as compared to those of millet phenol, anthocyanin and sorghum seeds.

Key words: seeds, bioactive properties, phenolics, amino acid, fatty acid

1 Introduction

Sorghum is one of the most important cereal grain and ranks fifth after wheat, rice, maize and barley. The kernel of sorghum varies in colour, shape, size and certain anatomical components\(^1\). The colour of sorghum grains varies from white to dark brown depending on the phenolic pigments present. Anthocyanogens have been detected in yellow millo and red kafir sorghum but not in white waxy or yellow endosperm, varieties\(^2\). Nutritionally, sorghum and other cereal proteins are deficient in essential amino acids such as lysine, tryptophan and threonine\(^1\). Food grains are the major ingredients used for producing various food products such as oil, starch and glucose\(^3, 4\). Lupin belongs to Leguminosae family, and is an important legume used for the production of both human and animal foods since the ancient times\(^5\). However, a significant reduction in objectionable compounds such as tannins, alkaloids and oligosaccharides is essential before its consumption\(^6, 7\). The use of lupin oil as food ingredient is due to the presence of oil in varieties Lupinus albus and Lupinus mutabilis at levels around 110 and 190 g/kg respectively in the varieties\(^7\). Lupin flour is being used as a foaming agent in food instead of egg albumin\(^8\). Several studies have reported about the chemical composition and nutritive value of sorghum, millets and lupin seeds originating from different geographical regions around the globe\(^1, 9\). The aim of
this study was to determine some physico-chemical properties, amino acids, fatty acids, sugars and mineral contents of sorghum, millet and lupin seeds.

2 Material and Methods

2.1 Material

Sorghum (red, white and yellow) and millet seeds were purchased from market in Riyadh in Saudi Arabia. Lupin seeds (Bablon, Deşdğin and Bablone cv) used were supplied by herbarium in the Department of Field Crops, Faculty of Agriculture, Selcuk University in Turkey. The seeds were cleaned, sorted and dried in order to remove all dirt. The pericarps were removed manually from the seeds and the seeds were then packed in polypropylene bags and stored in refrigerator.

2.2 Methods

2.2.1 Proximate analysis

The moisture, protein and ash content of the samples were determined according to AACC methods 44-15.02, 08-01.01 and 46-30.01. The moisture content was determined by heating the samples in a gravity oven for 1 hour at 135°C. The ash content was estimated by heating the sample in a muffle furnace at 525°C for approximately 16 hours. The crude protein content of the samples were measured using nitrogen combustion method according to AACC International method. Lecob combuston analyzer was used to determine the protein content of the samples and conversion factor of 6.25 was used. Total starch was measured using AACC approved method 76-13.01, using an assay kit from Megazyme (Megazyme International, Ireland). The samples were incubated with heat stable fungal α-amylase and amyloglucosidase to hydrolyze the starch to glucose. The glucose was treated with glucose fungal α-glucosidase and amyloglucosidase to hydrolyze the starch to glucose. The glucose was treated with glucose oxidase/peroxidase (GOPOD) and the absorbance was read at 492 nm. The starch content was calculated based on the glucose concentration. Total fat content was determined according to AOCS method Ba 3-38. Soxhlet apparatus was used to extract fat from the millet sample for 3 hours and the sample was then packed in polypropylene bags and stored in refrigerator.

2.2.2 Extractable polyphenols

The extraction was done by continuous shaking using methanol. Acidified water (50:50 v/v, pH 2, 50 mL/g sample, 60 min, room temperature) with HCL and acetone: water 70:30 v/v, 50 mL/g sample, 60 min, room temperature) were used. Samples were centrifuged (15 min, 25°C, 3000 g) and combined supernatants were analyzed for extractable polyphenols. Ferulic acid and gallic acid were used to prepare standard curves. Extractable polyphenols were determined by the Folin-Ciocalteu procedure and quantified as milligram ferulic acid equivalents per gram (mg FAE/g) and milligram gallic acid equivalents per gram (mg GAE/g).

2.2.3 Hydrolysable polyphenols

Acidic hydrolysis can be used to extract tannis, hydroxycinnamic acids and phenolic acids from food materials composed of polyphenols. Tannis, hydroxycinnamic acids and phenolic acids were extracted from the samples using methanol/H2SO4 hydrolysis for 20 h 85°C using the residues of material used for the determination of soluble polyphenols, centrifugation (3000 x g) for 15 min at 25°C was done after extraction. Folin Ciocalteu method using ferulic acid standard curve were combined with the supernatant was used for the hydrolysable polyphenols analysis which were presented as milligram ferulic acid equivalents per gram (mg FAE/g) and milligram gallic acid equivalents per gram (mg GAE/g).

2.2.4 Sugar composition

The free sugar composition was determined by chromatography technique according to Kakehi and Honda. Amino acid analysis

Amino acid profile analysis was carried out using AOAC Official Method 982.30 E(a,b,c) described by International AOAC et al. Acid hydrolysis, performic acid oxidation followed by acid hydrolysis and alkaline hydrolysis was conducted prior to amino acid analysis. Samples were hydrolyzed with 6M HCl after freezing in a dry ice-alcohol bath under vacuum. The samples were heated at 110°C for 24 hours before filtering through Whatman No. 1 filter paper. Then the sample is rinsed with water three times and filtered in between each rinse. Cold performic acid was added to a second portion of sample and held overnight at 0-5°C prior to adding cold HBr and 1-octanol. The sample was mixed in an ice-water bath and evaporated to dryness at 40°C under vacuum. HCl was then added and hydrolysis was done as stated above. A third portion of sample was added to a tube having a Nalgene polypropylene centrifuge tube liner. Potato starch was added to samples with low starch content, and fresh 4.2M NaOH and 1-octanol was added. The sample was mixed under partial vacuum prior to freezing in a dry ice-alcohol bath. The third portion of sample was then hydrolyzed for 22 hours at 110°C and then cooled before transferring to a 5 mL volumetric flask containing 6M HCl. Each hydrolysate was analyzed in an amino acid analyzer.

2.2.6 Fatty acid determination

The fatty acid profile determination was done using AOAC methods 996.06, 965.49 and 969.33 as described by International AOAC et al. They were analysed by gas chromatography technique according to Kakehi and Honda.
Effect of Varieties on Bioactive Properties and Mineral Contents of Some Sorghum, Millet and Lupin Seeds

2.2.7 Total phenolic, flavonoid and anthocyanin contents determination

Quantification of anthocyanins was based on the method of Ticconi et al.17. Propanol, chlorhydric acid, and water in ratio 18:1:81 in solution was homogenized with 0.5 g of the sample. The homogenates that result were heated in water bath for 3 min, allowed to boil and then incubated for 24 h in a dark room at room temperature. The supernatants were centrifuged for 40 min at 6500 rpm and the absorbance was recorded at 535 and 650 nm. The phenolic content of the samples were extracted using methanol and quantified with spectrophotometer absorbance at 765 nm using Folin-Ciocalteu reagent (FCR) as described by Madaaet al.16. Gallic acid standard curve was constructed and used to evaluate the total phenolic, which was expressed using gallic acid equivalent. 10 mg of gallic acid and 100 mL of having 50% methanol µg/mL were mixed, followed by dilution in concentration of 12.5, 25, 50 or 100 µg/mL. An aliquot of 0.076 mL from each of this dilution was kept in a glass tube and diluted further to a final volume of 0.76 mL using distilled water. About 0.12 mL of Folin-Ciocalteu reagent (1 N) was added and the samples were held at room temperature for 6 min incubation after which 0.32 mL of Na\textsubscript{2}CO\textsubscript{3} solution was later added after 5 min. The samples were kept for six minutes and 1 M NaOH was added. Total volume of the mixture was made to 5 mL by addition of distilled water and the tubes were vigorously stirred. The resulting solution was pink-colored and its absorbance determined using spectrophotometer at 510 nm against the blank. Catechol was used to construct the calibration curve and the flavonoids in the sample were expressed as mg Catechol equivalents per gram of dry weight (mg CE/g DW).

2.2.8 Mineral determination

Cabinet drier operating at 70°C was used to dry the seeds to constant weight. Microwave (Cem-MARS Xpress) was used to digest about 0.5 g of the ground seed samples using 5 mL of 65% HNO\textsubscript{3} and 2 mL of 35% H\textsubscript{2}O\textsubscript{2}. The volume of the digested samples was made to 20 mL using deionized water. The minerals in the sample was then quantified using ICP-AES (Varian-Vista, Australia)20.

2.2.9 Statistical analyses

Analysis of variance (ANOVA) was conducted using JMP version (SAS Inc., Cary, N.C U.S.A). Analyses were carried out three times and the results are mean ± standard deviation (MSTAT C) of independent several seed samples21.

3 Results and Discussion

3.1 Proximate composition of millet, sorghum and lupin seeds

The proximate properties of sorghum, millet and lupin seeds are given in Table 1. Moisture contents of samples changed between 5.84% (Bablone) and 8.42% (Yellow Sorghum). The moisture contents showed slight differences which were less than the moisture contents of maize, wheat, rice, millet and were determined as 14%, 12%, 9%, 10% and 14% respectively under similar conditions22. The ash contents of samples were found between

Seeds	Moisture (%)	Ash (%)	Protein (%)	Oil (%)	Starch (%)
Millet	6.99 ± 0.01*	1.74 ± 0.17*	11.7 ± 1.23*	13.3 ± 1.67*	65.8 ± 2.69*
Yellow sorghum	8.42 ± 0.99**	1.50 ± 0.21*	8.6 ± 1.12*	9.8 ± 1.74*	74.5 ± 2.85*
White sorghum	7.10 ± 0.87*	1.68 ± 0.32*	10.9 ± 1.28*	11.7 ± 1.89*	70.7 ± 1.69*
Red sorghum	7.00 ± 0.89*	1.61 ± 0.22*	12.6 ± 1.72*	9.5 ± 0.79*	71.4 ± 2.93*
Lutop (Lupin)	6.01 ± 0.98**	1.97 ± 0.21*	37.7 ± 1.28*	8.3 ± 0.76*	0.5 ± 0.09*
Bablone (Lupin)	5.84 ± 0.56**	2.23 ± 0.32*	32.9 ± 1.19*	11.7 ± 1.13*	0.4 ± 0.06*
Deşdiğin (Lupin)	5.99 ± 0.73*	1.58 ± 0.28*	35.5 ± 2.08*	10.9 ± 1.21*	0.4 ± 0.08*

*mean ± standard deviation; ** Values within each row followed by different letters are significantly different (p < 0.05)
1.5% (Yellow Sorghum) and 2.2% (Bablone). Protein content changed between 6.6% (Yellow sorghum) and 37.7% (lutop), while oil contents of samples change between 8.3% (Lutop) and 13.3% (Millet). In addition, starch contents of samples ranged from 0.4% (Deşiğin) to 74.5% (Yellow Sorghum). Lupinus albus contained 3% starch\(^7\). The oil contents of sorghum and millet seeds were determined as 3.95 to 5.63%, respectively\(^2\)\(^2\)\(^2\). The oil content of sorghum obtained in this study were greater than the values obtained by Osman et al.\(^2\)\(^2\)\(^2\). Several lupin varieties contained 30.6-37.9% protein and 8.54-14.64% oil; 1.21-3.09 g/100 g sucrose, 2.81-4.53 g/100 g starch\(^2\)\(^2\)\(^2\). The starch content of lupin seeds varied between 12 and 15% and larger amounts of non-starch polysaccharides (30-40%)\(^2\)\(^4\). Some varieties of lupin contained 6.55-7.03% moisture and 29.33-37.07% protein\(^2\)\(^5\). Martínez-Villaluenga et al.\(^2\)\(^3\)\(^2\)\(^2\)\(^2\) and Güemes-Vera et al.\(^2\)\(^2\)\(^2\)\(^2\)\(^2\)\(^2\)\(^2\) reported that lupin serves as a good source of vitamins, minerals, lipids, proteins and dietary fibres. Ullah et al.\(^2\)\(^2\)\(^2\)\(^2\)\(^2\)\(^2\) reported that proximate compositions of some maize varieties ranged between 9.201-10.90% moisture content, 0.7-1.3% ash, 3.21-7.71% fats, 7.71-14.60% proteins, and 0.80-2.32% crude fibre and 69.659-74.54% carbohydrates. Chukwu et al.\(^1\) reported that Brown and white guinea corn contained 5.03% and 3.03% oil, 10.80% and 10.00% (encent yellow sorghum) crude protein and 1.87% and 1.97% ash, respectively. The oil and protein content reported in this study for all samples are higher than those of brown and white guinea corn. However, the ash contents are lower than those of both guinea corns and rice, wheat and maize\(^1\).

3.2 Bioactive compounds in millet, sorghum and lupin seeds

Table 2 shows the extractable and hydrolysable phenolics, total phenolics, total flavonoid and anthocyanin contents of millet, sorghum and lupin seeds. The table showed that the lupin seeds had higher extractable and hydrolysable phenolics than sorghum and millet seeds. While extractable

Samples	Extractable phenolics (mg FAE/g)	Hydrolysable phenolics (mg GAE/g)	Total flavonoids (mg catechol/g)	Anthocyanin (µmol/g)	Total phenol (mg GAE/g)		
Millet	4.15 ± 0.67\(^*\)	3.27 ± 0.57\(^a\)	3.71 ± 0.51\(^c\)	3.49 ± 0.63\(^d\)	19.0 ± 0.1\(^e\)	0.039 ± 0.002\(^f\)	4682 ± 191\(^g\)
Yellow sorghum	1.69 ± 0.12\(^e\)	1.49 ± 0.11\(^a\)	1.59 ± 0.12\(^b\)	1.54 ± 0.15\(^c\)	5.0 ± 0.2\(^d\)	0.043 ± 0.003\(^e\)	6087 ± 117\(^f\)
White sorghum	1.62 ± 0.23\(^a\)	1.43 ± 0.34\(^b\)	1.52 ± 0.17\(^c\)	1.48 ± 0.21\(^d\)	7.7 ± 0.1\(^e\)	0.048 ± 0.007\(^f\)	4409 ± 129\(^g\)
Red sorghum	2.14 ± 0.43\(^c\)	1.81 ± 0.26\(^d\)	1.98 ± 0.28\(^e\)	1.89 ± 0.19\(^f\)	7.3 ± 0.1\(^g\)	0.054 ± 0.005\(^h\)	4821 ± 130\(^i\)
Lutop (Lupin)	2.56 ± 0.73\(^c\)	2.02 ± 0.17\(^d\)	12.18 ± 1.37\(^d\)	24.37 ± 2.18\(^g\)	13.0 ± 0.9\(^i\)	0.943 ± 0.123\(^h\)	3756 ± 117\(^i\)
Bablone (Lupin)	2.16 ± 0.68\(^d\)	1.68 ± 0.21\(^e\)	11.52 ± 1.42\(^f\)	23.41 ± 2.47\(^g\)	3.7 ± 0.7\(^f\)	0.548 ± 0.098\(^f\)	2769 ± 129\(^g\)
Deşiğin (Lupin)	12.16 ± 1.23\(^g\)	8.23 ± 1.16\(^h\)	12.92 ± 1.28\(^d\)	26.10 ± 1.69\(^i\)	9.3 ± 0.8\(^i\)	1.132 ± 0.056\(^j\)	5897 ± 130\(^g\)

*mean ± standard deviation; **Values within each row followed by different letters are significantly different (p < 0.05)
amino acids methionine and cysteine. They are considered to be a good source of lysine, and are generally poor in the sulfur-containing amino acids (methionine and cysteine)\(^28\). Gross et al.\(^{28}\) that the seed of *Lupinus mutabilis* contained 51.0-52.6% protein and 16.0-16.2% lipids. Also these seeds contained 9.8-10.3 (g amino acid/16 g N) aspartic, 5.1-5.3 serine, 22.8-23.8 glutamic acid, 9.1-9.3 orgarine, 6.8-6.9 leucine, 3.9-3.7 glycine, 3.8-3.7 proline and 5.2-5.3 lysine\(^{28}\). Our results were found partially different compared to literature values. These differences can be probably due to location, growing conditions, maturation and harvest time.

3.4 Fatty acid composition of millet, sorghum and lupin seeds

Fatty acid compositions of millet, sorghum and lupin seed oils are presented in Table 4. Palmitic, stearic, oleic, linoleic and linolenic acids were major fatty acids of seed samples. Palmitic acid contents of samples ranged from 7.24% (Yellow Sorghum) to 20.04% (white sorghum). While oleic acid contents change between 25.27% (white sorghum) and 53.50% (bablone), linoleic acid contents ranged from 14.60% (Bablone) to 42.67% (millet). Linoleic acid contents of samples were found between 1.50% (Red Sorghum) to 7.35% (Deşiğin). Generally, oleic and linolenic acid contents of lupin seed oils were found high compared to sorghum and millet seed oils, palmitic and linoleic acid contents were found low. It was observed statistically significant differences among fatty acid compositions of seed oils \(p < 0.05\). Unprocessed sorghum oil contains palmitic (12.10 to 13.41%), palmitoleic (0.47 to 1.31%), stearic (1.13 to 1.36%), oleic (33.64 to 40.35%), linoleic (42.33 to 49.94%), linolenic (1.53 to 1.72%), arachidic (0.10 to 0.18%) and eicosenoic acid (0.24 to 0.39% of total lipid)\(^{29}\). However, the sorghum grain oils contain palmitic acid (11.73-20.18%) and stearic acid (1.09-2.59%)\(^{30}\). Palmitic acid (11.88-14.18%), stearic acid (1.09-1.64%) and arachidic acid (0.12-0.33%) were present in the grain oil of different sorghum varieties\(^{31}\). According to Asiedu et al.\(^{32}\) the oil content of sorghum was found to be palmitic acid (13.2%), stearic acid (13.0%) and arachidic acid (0.2%). The content of linoleic acid of all sorghum varieties was

Amino Acid	Millet	Yellow sorghum	White sorghum	Red sorghum	Lutop (Lupin)	Bablone (Lupin)	Deşiğin (Lupin)
Taurine	0.08 ± 0.01*	0.08 ± 0.02	0.08 ± 0.01*	0.08 ± 0.03*	0.05 ± 0.01b	0.05 ± 0.01b	0.05 ± 0.01b
Hydroxyproline	0.06 ± 0.01**	0.02 ± 0.01	0.02 ± 0.01	-	0.15 ± 0.03	0.13 ± 0.01	0.10 ± 0.01
Aspartic Acid	0.90 ± 0.07d	0.59 ± 0.03	0.74 ± 0.05	0.80 ± 0.11	3.53 ± 0.14	3.23 ± 0.21	3.41 ± 0.17
Threonine	0.41 ± 0.03b	0.27 ± 0.02	0.35 ± 0.01	0.38 ± 0.03	1.24 ± 0.09	1.20 ± 0.07	1.21 ± 0.11
Serine	0.47 ± 0.07d	0.36 ± 0.05	0.43 ± 0.03	0.51 ± 0.07	1.59 ± 0.13	1.49 ± 0.21	1.57 ± 0.17
Glutamic Acid	2.07 ± 0.16d	1.71 ± 0.09	2.21 ± 0.11	2.65 ± 0.17	6.77 ± 0.98	6.17 ± 0.63	6.85 ± 0.71
Proline	0.70 ± 0.05c	0.70 ± 0.09	0.86 ± 0.11	1.01 ± 0.08	1.27 ± 0.13	1.20 ± 0.21	1.24 ± 0.17
Glycine	0.41 ± 0.03c	0.30 ± 0.07	0.36 ± 0.01	0.37 ± 0.09	1.39 ± 0.09	1.33 ± 0.11	1.38 ± 0.12
Alanine	0.84 ± 0.11d	0.74 ± 0.13	0.94 ± 0.09	1.13 ± 0.05	1.14 ± 0.07	1.09 ± 0.23	1.10 ± 0.06
Cysteine	0.21 ± 0.03d	0.15 ± 0.01	0.19 ± 0.01	0.19 ± 0.05	0.49 ± 0.03b	0.56 ± 0.07	0.46 ± 0.03
Valine	0.59 ± 0.07d	0.42 ± 0.03	0.52 ± 0.07	0.59 ± 0.03	1.39 ± 0.12	1.35 ± 0.24	1.37 ± 0.17
Methionine	0.26 ± 0.01c	0.15 ± 0.01	0.20 ± 0.03	0.20 ± 0.05	0.23 ± 0.01	0.24 ± 0.03	0.32 ± 0.03
Isoleucine	0.47 ± 0.03c	0.34 ± 0.01	0.43 ± 0.07	0.48 ± 0.03	1.47 ± 0.13	1.39 ± 0.11	1.48 ± 0.17
Leucine	1.07 ± 0.07e	1.06 ± 0.03	1.39 ± 0.03	1.66 ± 0.06	2.51 ± 0.16	2.40 ± 0.21	2.41 ± 0.19
Tyrosine	0.32 ± 0.03c	0.23 ± 0.01	0.35 ± 0.03	0.41 ± 0.07	1.44 ± 0.09	1.31 ± 0.17	1.43 ± 0.13
Phenylalanine	0.56 ± 0.03e	0.44 ± 0.01	0.57 ± 0.05	0.66 ± 0.06	1.32 ± 0.14	1.24 ± 0.11	1.30 ± 0.18
Hydroxylysine	0.04 ± 0.01b	0.03 ± 0.01	0.05 ± 0.01	0.04 ± 0.01	0.03 ± 0.01	0.03 ± 0.01	0.01 ± 0.01
Ornithine	0.02 ± 0.01c	0.01 ± 0.00	0.01 ± 0.00	0.02 ± 0.01	0.02 ± 0.01	0.01 ± 0.00	0.01 ± 0.00
Lysine	0.40 ± 0.03c	0.25 ± 0.01	0.28 ± 0.05	0.28 ± 0.01	1.70 ± 0.21	1.61 ± 0.19	1.60 ± 0.23
Histidine	0.30 ± 0.07c	0.22 ± 0.03	0.26 ± 0.03	0.30 ± 0.05	0.80 ± 0.09	0.78 ± 0.05	0.77 ± 0.11
Arginine	0.52 ± 0.03d	0.31 ± 0.01	0.41 ± 0.05	0.42 ± 0.07	3.67 ± 0.45	2.94 ± 0.38	3.14 ± 0.27
Tryptophan	0.15 ± 0.01c	0.07 ± 0.01	0.08 ± 0.01	0.09 ± 0.01	0.28 ± 0.03	0.27 ± 0.05	0.31 ± 0.04

*mean ± standard deviation; ** Values within each row followed by different letters are significantly different \(p < 0.05\); *** undetermined
between 38.29 and 45.74 where as oleic acid ranged from 29.15 to 37.98%. However, Mehmood et al. reported that polysaturated fatty acid contents of sorghum are greater than monounsaturated fatty acids. Oleic acid contents of bitter and sweet lupin oils were found as 52.22% and 44.93, respectively. In addition, bitter lupin oil contained 9.41% palmitic, 20.51% linoleic, 13.30% linoleic and 2.13% arachidic acids, and sweet lupin oil contained 7.71% palmitic, 1.71% stearic, 26.25% linoleic, 15.81% linoleic and 2.74% arachidic acids. Bhardwaj et al. reported that lupin oil contained 51% linoleic acid, 23% oleic acid, 10% palmitic acid and 7% linolenic acid. Loredo-Dávila et al. reported that lupin seed oil contained 13.12% palmitic, 6.77% stearic, 14.24% oleic 50.59% linoleic and 7.81% linolenic acids. Results showed differences as quantitative values compared to literature values. But, major fatty acids of seed oils were found similar with literature values.

3.5 Sugar composition of millet, sorghum and lupin seeds

Table 5 shows the sugar content of the seed samples.

Table 4: Fatty acid composition of seed oils of millet, some sorghum and lupin varieties (%), (n:3).

Fatty acids	Millet	Yellow sorghum	White sorghum	Red sorghum	Lutop (Lupin)	Bablone (Lupin)	Deşdiğin (Lupin)
Myristic	0.21 ± 0.03**	0.38 ± 0.07b	0.44 ± 0.9a	0.38 ± 0.05a	0.16 ± 0.03e	0.13 ± 0.01f	0.13 ± 0.01e
Palmitic	15.57 ± 0.67**	15.43 ± 0.33c	20.04 ± 0.78a	17.95 ± 0.91a	8.17 ± 0.11d	7.24 ± 0.13c	8.43 ± 0.21d
Palmitoleic	0.68 ± 0.09b	0.79 ± 0.07a	0.34 ± 0.03d	0.67 ± 0.13b	0.29 ± 0.03f	0.34 ± 0.01d	0.36 ± 0.07c
Stearic	1.98 ± 0.21d	1.71 ± 0.32a	3.92 ± 0.28b	2.12 ± 0.39f	1.39 ± 0.13f	1.84 ± 0.17e	2.45 ± 0.43b
Oleic	33.83 ± 1.24d	37.06 ± 1.09d	25.27 ± 1.32b	35.58 ± 1.48d	43.94 ± 1.26c	53.50 ± 1.35b	50.39 ± 1.63b
Vaccenic	– ***	–	–	–	1.86 ± 0.23b	2.54 ± 0.19b	2.55 ± 0.27b
Linoleic	42.67 ± 0.97b	40.14 ± 0.85b	42.53 ± 0.69b	39.92 ± 0.73a	23.89 ± 1.13f	14.60 ± 0.98e	17.03 ± 0.88c
Linolenic	1.69 ± 0.09f	1.83 ± 0.13c	2.94 ± 0.11d	1.50 ± 0.18c	7.14 ± 0.98c	7.29 ± 0.67c	7.35 ± 0.56c
Arachidic	– **	–	–	–	1.00 ± 0.01f	0.9 ± 0.01b	1.01 ± 0.03c
Gonodic	–	0.35 ± 0.12d	0.34 ± 0.09d	3.83 ± 0.21f	3.78 ± 0.34c	2.42 ± 0.42c	
Behenic	–	–	0.42 ± 0.09d	–	3.0 ± 0.56c	2.85 ± 0.22c	2.81 ± 0.34c
Erucic	–	–	–	–	1.42 ± 0.32c	1.38 ± 0.27c	0.69 ± 0.11c
Lignoceric	0.34 ± 0.09c	0.35 ± 0.03c	0.40 ± 0.07d	0.41 ± 0.01d	0.79 ± 0.09e	0.62 ± 0.07c	0.73 ± 0.11b

mean ± standard deviation; **Values within each row followed by different letters are significantly different (p < 0.05); *undetermined

Table 5: Sugar composition of seeds of millet, some sorghum and lupin varieties (%), (n:3).

Samples	Millet	Yellow sorghum	White sorghum	Red sorghum	Lutop (Lupin)	Bablone (Lupin)	Deşdiğin (lupin)
Fructose	1.26 ± 0.13**	0.72 ± 0.09c	1.12 ± 0.15c	0.73 ± 0.03c	–	–	–
Glucose	2.90 ± 0.47***	2.22 ± 0.58c	2.23 ± 0.21c	2.50 ± 0.69b	0.36 ± 0.03c	0.20 ± 0.01c	0.18 ± 0.03b
Sucrose	– ***	–	–	–	1.57 ± 0.09b	1.87 ± 0.09b	2.66 ± 0.11b
Raffinose	0.03 ± 0.01c	0.04 ± 0.01c	0.01 ± 0.01c	0.01 ± 0.01c	0.61 ± 0.03c	0.65 ± 0.07c	0.56 ± 0.09c
Stachyose	0.01 ± 0.01c	–	0.02 ± 0.01c	0.02 ± 0.01c	2.07 ± 0.21c	2.15 ± 0.17c	2.22 ± 0.13c
Verbascone	–	–	–	–	0.12 ± 0.01c	0.05 ± 0.01b	–

*mean ± standard deviation; **Values within each row followed by different letters are significantly different (p < 0.05); ***undetermined
3.6 Mineral contents of millet, sorghum and lupin seeds

Mineral contents of sorghum, millet and lupin seeds are shown in Table 6. Generally there is a wide variation in mineral contents of sorghum, millet and lupin seeds. While P contents of sorghum ranged between 534.89 mg/kg (Yellow Sorghum) to 3984.60 mg/kg (Bablone), K contents ranged from 1831.34 mg/kg (White Sorghum) to 11895.8 mg/kg (Lutop). Ca contents were found between 112.74 mg/kg (Yellow Sorghum) and 3418.64 mg/kg (Yellow Sorghum). However, Mg contents ranged from 392.17 mg/kg (Red Sorghum) and 1605.38 mg/kg (Bablone). Fe contents ranged from 19.06 mg/kg (Yellow Sorghum) to 64.06 mg/kg (Deşgı̇n). Zn contents ranged from 4.33 mg/kg (Red Sorghum) and 36.64 mg/kg (Lutop). Mn was found between 4.18 mg/kg (Red Sorghum) to 2341.40 mg/kg (Lutop). Na contents of samples were found between 18.02 mg/kg (White Sorghum) to 2163.18 mg/kg (Red Sorghum). It was observed statistically significant differences among mineral contents of seed’s (p < 0.05). In general, lupin seeds contained more minerals than millet and sorghum seeds.

Chukwu et al.\(^1\) reported that Brown and white Guinea corn grains contained 0.14 and 0.27% Ca, 0.19 and 0.21% K and 0.16 and 0.12% P, respectively. Previous studies showed that the proximate composition of some maize grains varied between 9.201-10.908 moisture content, (0.7-1.3%) ash, (3.21-7.71%) fat and (7.71-14.60%) protein\(^2\). In maize grains, the amount of sodium is 540.30-620.41 ppm, K (2915-3471 ppm), Ca (410-590 ppm), Fe (38.02-56.14 ppm), Zn (37.05-52.4 ppm), Mg (985.2-1125.3 ppm) and Cu (11.02-14.25 ppm)\(^3\). Mo contents of samples were found at the low levels (1.92-4.17 mg/kg). There were statistically differences in the mineral contents among the sorghum varieties, millet and millet grain (p < 0.05). Results showed differences when compared to results of Ullah et al.\(^4\).

Table 6: Mineral contents of seeds of millet, some sorghum and lupin varieties (mg/kg, n = 3).

	P	K	Ca	Mg	Fe	Zn	Cu	Mo	Sn
Yellow Sorghum	534.89	96.90	1186.49	1384.69	3633.31	26.67	11.29	8.99	0.69
Red Sorghum	1021.27	196.20	1672.07	2017.13	4104.65	43.32	11.75	9.39	0.04
White Sorghum	224.70	183.24	740.26	840.37	380.26	1.60	0.23	0.08	0.02
Millet	190.91	196.79	235.81	256.28	101.09	1.99	0.24	0.17	0.01
Lutop (Lupin)	2986.50	1890.5	2753.30	3575.30	2016.44	22.64	2.01	1.03	1.03
Bablone (Lupin)	3984.60	2380.6	3575.30	4000.90	876.49	2.64	2.01	1.03	1.03

Conclusion

Sorghum, millet and millet seeds are important crop and contains important health promoting constituents. Generally, protein, oleic acid, amino acid and mineral contents of lupin varieties were higher as compared to those of millet phenol, anthocyanin and sorghum seeds. The protein contents of lupin seeds were reported higher than those of millet and sorghum seed samples. Glutamic acid was established as the most abundant amino acid in all samples. Generally, amino acid contents of lupin seeds were found higher than those of amino acid contents of millet and sorghum seeds. Palmitic, stearic, oleic, linoleic and linolenic acids were major fatty acids of seed samples. Generally, stachyose is main sugar of lupin seeds, fructose and glucose were major sugar of millet and sorghum samples.

J. Oleo Sci.
Generally there is a wide variation in mineral contents of sorghum, millet and lupin seeds. While linoleic acid contents of millet and sorghum seed oils are found higher than those of lupin oils, oleic acid contents of lupin seed oils were determined higher compared to results of millet and sorghum seed oils.

Acknowledgements

The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for its funding the Research group no (RG-1439-080). Technical support of RSSU at King Saud University is also well appreciated.

References

1) Chukwu, O.; Orhehva, B.A.; Abubakar, I. Determination of some physicochemical properties of Guinea Corn (Sorghum vulgare). J. Innov. Res. Eng. Sci. 2 (2), 62-66 (2011).

2) Ihekoronye, A.I.; Ngoddy, P.O. Integrated Food Science and Technology for the Tropics. Macmillan, pp. 249-252 (1985).

3) Afzal, M.; Nazir, Z.; Bashir, M.H.; Khan, B.S. Analysis of host plant resistance in some genotypes of maize against Chilo partellus (Swinhoe) (Pyralidae: Lepidoptera). Pakistan J. Bot. 41, 421-428 (2009).

4) Niaz, I.; Dawar, S. Detection of seed borne mycoflora in maize (Zea mays L.). Pakistan J. Bot. 41, 443-451 (2009).

5) Mohammed, A.A.; Rayas-Duarte, P. Composition of Lupinus albus. Cereal Chem. 72, 643-647 (1995).

6) Ballester, D.; Yanez Garcia, E.; Erazo, S.; Lopez, F.; Haardt, E.O.; Cornejo, S.; Lopez A.; Pokniak, J.; Chichester, C.O. Chemical composition nutritive value and toxicological evaluation of two species of sweet lupine (Lupinus albus and Lupinus luteus). J. Agric. Food Chem. 48, 402-405 (1980).

7) Jimenez-Martinez, C.; Hernandez-Sanchez, H.; Alvarez-Manilla, G.; Robledo-Quintos, N.; Martinez-Herrera, J.; Davila-Ortiz, G. Effect of aqueous and alkaloid and tanin contents of Lupinus campestris seeds. J. Sci. Food Agric. 81, 421-428 (2001).

8) Polland, N.J.; Stoddard, F.L.; Popineau, Y.; Wrigley, C.W.; Macritchie, F. Lupin flours as additives: Dough mixing, breadmaking, emulsifying and foaming. Cereal Chem. 79, 662-669 (2002).

9) Khalil, J.K.; Sawaya, W.N. Mineral and vitamin contents of Saudi Arabian pearl millet flour and bread. Cereal Chem. 61, 301-304 (1984).

10) AACC International, Method 46-30.01. Crude Protein - Combustion Method. in Approved Methods of Analysis 11th AACC International, St. Paul, MN, USA (1999).

11) AACC International, Method 76-13.01, Total Starch Assay Procedure (Megazyme Amyloglucosidase/alpha-Amylase Method). in Approved Methods of Analysis 11th AACC International. St. Paul, MN, USA (1999).

12) AOCS. Official methods and recommended practices of the AOCS. American Oil Chemists’ Society Campaign, IL (1998).

13) Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymol. 299, 152-178 (1999).

14) Hartzfeld, P.W.; Forkner, R.; Hunter, M.D.; Hagerman, A.E. Determination of hydrolyzable tannins (gallotannins and ellagitannins) after reaction with potassium iodate. J. Agric. Food Chem. 50, 1785-1790 (2002).

15) Kakahi, K.; Honda, S. Silyl ethers of carbohydrates. in Analysis of Carbohydrates by GLC and MS. CRC Press Inc., Boca Raton, FL, USA. pp. 43-85 (1989).

16) International A. O. A. C.; Horwitz, W.; Latimer, G.W. Official methods of analysis of AOAC international. AOAC International (2006).

17) Piccioni, C.A.; Delatorre, C.A.; Abel, S. Attenuation of phosphate starvation responses by phosphite in Arabidopsis. Plant Physiol. 127, 963-972 (2001).

18) Madaan, R.; Bansal, G.; Kumar, S.; Sharma, A. Estimation of total phenols and flavonoids in extracts of Ac-taeaspicata roots and antioxidant activity studies. Indian J. Pharm. Sci. 73, 666-669 (2011).

19) Dewanto, V.; Wu, X.; Adom, K.K.; Liu, R.H. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agric. Food Chem. 50, 3010-3014 (2002).

20) Skujins, S. Handbook for ICP-AES (Varian-Vista). A short guide to vista series ICP-AES operation. Varian Int. (1998).

21) Puskucu, H.; Ikiz, F. Introduction to statistic. p. 333. Bilgehan Presss, Bornova, Izmir, Turkey (1989). (in Turkish).

22) Osman, R.O.; Abd El Geil, F.M.; El-Noamany, H.M.; Dawood, M.G. Oil content and fatty acid composition of some varieties of barley and sorghum grains. Gras-sas y Aceites 51, 157-162 (2000).

23) Martinez-Villaluenga, C.; Frias, J.; Vidal-Valverde, C. Functional lupin seeds (Lupinus albus L. and Lupinus luteus L.) after extraction of α-galactosides. Food Chem. 98, 291-299 (2006).

24) Erbas, M.; Certel, M.; Uslu, M.K. Some chemical properties of white lupin seeds (Lupinus albus L.). J. Food Chem. 89, 341-345 (2005).

25) Guemes-Vera, N.; Martinez-Herrera, J.; Hernandez-Chavez, F. Comparison of chemical composition and
protein digestibility carotenoids tanins and alkaloids content of wild lupinus varieties flour. *Pakistan J. Nutr.* **11**, 676-682 (2012).

26) Ullah, I.; Ali, M.; Farooq, A. Chemical and nutritional properties of some maize (*Zea mays* L.) varieties grown in NWFP, Pakistan. *Pakistan J. Nutr.* **9**, 113-1117 (2010).

27) Gross, R.; Hatzold, T.; Elmadafa, I.; Ruiz, O. Genetically and environmentally dependent variability of protein and fat content in the seeds of *Lupinus mutabilis* of Peruvian origin. *Zeit. Pflanzenzuecht* **90**, 324-330 (1983).

28) Gross, R.; Von Baer, E.; Koch, F.; Marquard, R.; Trugo, L.; Wink, M. Chemical composition of a New variety of the Andean Lupin (*Lupinus mutabilis* cv. Inti) with low-alkaloid content. *J. Food Comp. Analysis* **1**, 353-361 (1988).

29) Afify, A.M.R.; El-Beltagi, H.S.; Abd El-Salam, S.M.; Omran, A.A. Oil and fatty acid contents of white sorghum varieties under soaking, cooking, germination and fermentation processing for improving cereal quality. *Not. Bot. Horti Agrobot. Cluj-Napoca* **40**, 86-92 (2012).

30) Mehmood, S.; Orhan, I.; Ahsan, Z.; Aslan, S.; Gulfrak, M. Fatty acid composition of seed oil of different Sorghum bicolor varieties. *Food Chem.* **109**, 855-859 (2008).

31) Pontieri, P.; Di Fiore, R.; Troisi, J.; Bean, S.R.; Roemer, E.; Okot, J.; Alifano, P.; Pignone, D.; Giudice, L.D.; Massardo, D.R. Chemical composition and fatty acid content of white food sorghums grown in different environments. *Maydica* **56**, 1-7 (2011).

32) Asiedu, M.; Nilsen, R.; Lie, O.; Lied, E. Effect of processing (sprouting and/or fermentation) on sorghum and maize. I: proximate composition, minerals and fatty acids. *Food Chem.* **46**, 351-353 (1993).

33) Alamri, M.S. Characterization of lupin seed oils extracted from bitter and sweet types. *Pakistan J. Food Sci.* **22**, 161-167 (2012).

34) Bhardwaj, H.L.; Hamama, A.A.; Merrick, L.C. Genotypic and environmental effects on lupin seed composition. *Plant Food Hum. Nutr.* **53**, 1-13 (1998).

35) Loredo-Dávila, S.; Espinosa-Hernandez, V.; Goytia-Jimenez, M.A.; Diaz-Ballote, L.; Soto-Hernandez, R.M.; Marrone, P.G. Fatty acid methyl ester profile from lupinus in the identification of sweet and bitter species from this pender with oil of *Lupinus uncinatus* Schlecht seeds. *J. Nutr. Food Sci.* **2**, 158-161 (2012).

36) Muzquiz, M.; Guillamón, E.; Burbano, C.; Pascual, H.; Caballés, B.; Cuadrado, C.; Pedrosa, M.M. Chemical composition of a new Lupinus species found in Spain, *Lupinus mariae-josephi* H. Pascual (Fabaceae). *Spanish J. Agric. Res.* **9**, 1233-1244 (2011).