Expression and Function of Sex Pheromones and Receptors in the Homothallic Ascomycete *Gibberella zeae*

Jungkwan Lee,^1^ John F. Leslie,^1^ and Robert L. Bowden^2^*

Department of Plant Pathology, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, Kansas 66506-5502,^1^ and USDA-ARS Plant Science and Entomology Research Unit, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, Kansas 66506-5502^2^

Received 27 July 2007/Accepted 14 May 2008

In heterothallic ascomycete fungi, idiomorphic alleles at the *MAT* locus control two sex pheromone-receptor pairs that function in the recognition and chemoattraction of strains with opposite mating types. In the ascomycete *Gibberella zeae*, the *MAT* locus is rearranged such that both alleles are adjacent on the same chromosome. Strains of *G. zeae* are self-fertile but can outcross facultatively. Our objective was to determine if pheromones retain a role in sexual reproduction in this homothallic fungus. Putative pheromone precursor genes (*ppg1* and *ppg2*) and their corresponding pheromone receptor genes (*pre2* and *pre1*) were identified in the genomic sequence of *G. zeae* by sequence similarity and microsynteny with other ascomycetes. *ppg1*, a homolog of the *Sacccharomyces* α-factor pheromone precursor gene, was expressed in germinating conidia and mature ascospores. Expression of *ppg2*, a homolog of the α-factor pheromone precursor gene, was not detected in any cells. *pre2* was expressed in all cells, but *pre1* was expressed weakly and only in mature ascospores. *ppg1* or *pre2* deletion mutations reduced fertility in self-fertilization tests by approximately 50%. Δ*ppg1* reduced male fertility and Δ*pre2* reduced female fertility in outcrossing tests. In contrast, Δ*ppg2* and Δ*pre1* had no discernible effects on sexual function. Δ*ppg1/Δppg2* and Δ*pre1Δpre2* double mutants had the same phenotype as the Δ*ppg1* and Δ*pre2* single mutants. Thus, one of the putative pheromone-receptor pairs (*ppg1/pre2*) enhances, but is not essential for, selling and outcrossing in *G. zeae* whereas no functional role was found for the other pair (*ppg2/pre1*).

Gibberella zeae (Schwein.) Petch (anamorph: *Fusarium graminearum* Schwabe sensu lato) is the most important causal agent of *Fusarium* head blight (also termed scab) of wheat and barley (32) and also causes stalk rot and ear rot of maize and crown rot of carnation (30). In addition to direct yield loss, *G. zeae* can reduce grain quality and harvested grain often is contaminated with mycotoxins such as deoxynivalenol and zearalenone (13). *G. zeae* is globally distributed and comprises multiple phylogenetic lineages (34, 35).

G. zeae is a homothallic fungus, and strains originating from a single haploid nucleus can successfully complete the sexual cycle without a mating partner. This process may be advantageous for maximizing the production of ascospores, which are important as inoculum for initiating disease epidemics of wheat (17). Other species in the genus *Gibberella* are heterothallic, and strains of these species must cross with a strain of the opposite mating type to produce perithecia, complete meiosis, and produce ascospores. *G. zeae* is capable of outcrossing facultatively under laboratory conditions (7), and laboratory crosses have been used to generate genetic maps (18, 22, 27). Although the evidence is indirect, *G. zeae* apparently outcrosses at a significant rate in North American field populations (41, 51). Thus, both selfing and outcrossing are important in the life cycle of this fungus.

^1^ Corresponding author. Mailing address: USDA-ARS Plant Science and Entomology Research Unit, 4024 Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS 66506-5502. Phone: (785) 532-2368. Fax: (785) 532-6167. E-mail: robert.bowden@ars.usda.gov.

^2^ Published ahead of print on 23 May 2008.

Sexual development in filamentous ascomycetes is controlled by the mating type (*MAT*) locus (10, 49). In heterothallic ascomycete fungi, there are two idiomorphic alleles. One allele, *MAT1-1*, encodes three proteins, *MAT1-1-1*, *MAT1-1-2*, and *MAT1-1-3*, while the *MAT1-2* allele encodes only a single protein, *MAT1-2-1* (10, 49). In *G. zeae*, the *MAT* locus is rearranged such that both alleles are adjacent on the same chromosome and opposite mating types do not exist (28, 49). However, both idiomorphs must function for homothallic sexual reproduction to occur. Deletion of either the *MAT1-1* or the *MAT1-2* coding region in *G. zeae* results in strains that are obligately heterothallic (28). Such mutants are useful for forcing outcrossing in genetic experiments.

Heterothallic ascomycetes possess two different diffusible pheromone peptides and corresponding G-protein-coupled receptors that function in the recognition and chemoattraction of strains of opposite mating types (2, 5, 14). The particular pheromone and receptor expressed depends on the allele at the *MAT* locus, although neither the pheromone nor the receptor is encoded at this locus. The structure and sequence of the pheromones and their receptors are broadly conserved in heterothallic ascomycetes such as *Sacccharomyces cerevisiae* (26), *Neurospora crassa* (4, 25), *Podospora anserina* (11), *Cryptocercia parasitica* (48, 52), and *Magnaporthe grisea* (44). The pheromone peptides are encoded by two classes of pheromone precursor genes. One class, typified by the *Sacccharomyces* α-factor precursor gene, contains a secretion signal and multiple tandem copies of a short peptide that are flanked by Kex2 protease-processing sites. The other class, typified by the *Sacccharomyces* α-factor precursor gene, contains a CAAX carbox-
ylation and farnesylation motif and produces a lipopeptide pheromone.

Pheromones and receptors are essential for sexual fertility in the heterothallic ascomycetes that have been studied. Deletion of the pre-I pheromone receptor gene of N. crassa caused female sterility of the mat A mating type because trichogynes were incapable of directional growth and fusion with spermatia (23). Deletion of either pheromone precursor gene caused male sterility of the corresponding mating type because spermatia could no longer attract female trichogynes (24). Similar results were obtained with pheromone deletion mutants of P. anserina (11) and C. parasitica (48).

In the heterothallic ascomycete Sordaria macrospora, both types of pheromones and their cognate receptors have been reported (31, 37) but no effect on fruiting body or ascospore development was produced by a single mutation of any pheromone precursor gene or receptor gene (31). However, the double pheromone mutant exhibited drastically reduced self-fertility and the double receptor mutant was completely sterile (31). In the heterothallic ascomycete Emericella nidulans (Aspergillus nidulans), a single mutation of either receptor resulted in greatly reduced self-fertility and the double receptor mutant was self-sterile (42). However, the double mutants could outcross, suggesting that the pheromone receptors are required specifically for self-fertilization (42).

The mechanism of sexual fertilization and the role of pheromones are not known for G. zeae or any other Gibberella species. Information on the sex pheromones in G. zeae may provide insights into the mechanism of fertilization and could identify opportunities for reducing the ascospore inoculum of this economically important pathogen. Our objectives in this study were to identify and characterize the putative pheromone precursor genes and the corresponding pheromone receptor genes in G. zeae and to determine their roles in sexual reproduction in this heterothallic fungus. Putative pheromone precursor genes and receptor genes were identified by sequence similarity and microsynteny with other ascomycetes, while the expression of the putative pheromone precursor genes and receptor genes was assayed with green fluorescent protein (GFP) reporter constructs. Deletion mutants were constructed, and their sexual function was tested in three assays: self-fertilization tests, obligate outcrossing tests using heterothallic MAT deletion strains, and facultative outcrossing using GFP-marked strains to monitor the outcrossing frequency.

MATERIALS AND METHODS

Fungal strains and methods. G. zeae (anamorph: F. graminearum sensu lato lineage 7) wild-type strain Z3639, isolated in Kansas (6), and mutants derived from it were stored as frozen conidial suspensions in 15% glycerol at –70°C (Table 1). Standard laboratory methods and culture media for Fusarium spp. were used (30). Carboxymethyl cellulose (CMC) liquid culture medium was described previously (11). The sexual stage was induced in 3- to 5-day-old cultures on 6-cm carrot agar plates by applying 500 μl of an aqueous 2.5% Tween 60 solution containing 1 × 107 propagules (spermatia) of the male strain and then knocking down the aerial mycelium with a bent glass rod while rotating the plate several times (7). Mock fertilizations were performed similarly but with sterile Tween 60 solution lacking spermatia. Plates were incubated at 24°C for 12 h, followed by a 12-h photoperiod provided by cool white fluorescent lights.

Identification of pheromone precursor and pheromone receptor genes of G. zeae. The pheromone precursor genes and receptors are named differently in different fungi. For G. zeae, we use ppg1 for the putative homolog of the Sac-

Genotype	No. of strains	Description
Z3639	1	Wild-type Z3639
Δmat1-1	1	Deletion of mat1-1
Δmat1-2	1	Deletion of mat1-2
Δppg1	11	Deletion of ppg1
Δppg2	19	Deletion of ppg2
Δpre1	11	Deletion of pre1
Δpre2	11	Deletion of pre2
GFPΔppg1	13	Z3639 constitutively expressing GFP
GFPΔppg2	1	Δppg1 constitutively expressing GFP
Δppg1Δppg2	4	Δppg1 replaced with GFP reporter cassette for ppg1 expression
Δppg2GFPΔ	9	Δppg2 replaced with GFP reporter cassette for ppg2 expression
Δpre1GFPΔ	4	Δpre1 replaced with GFP reporter cassette for pre1 expression
Δpre2GFPΔ	7	Δpre2 replaced with GFP reporter cassette for pre2 expression
Δppg1ΔΔmat1-1	1	Δppg1 Δmat1-1 double mutant
Δppg1ΔΔmat1-2	1	Δppg1 Δmat1-2 double mutant
Δppg2ΔΔmat1-1	1	Δppg2 Δmat1-1 double mutant
Δppg2ΔΔmat1-2	1	Δppg2 Δmat1-2 double mutant
Δppg1Δppg2	3	Δppg1 Δppg2 double mutant
Δppg1ΔΔpre2	8	Δppg1 Δpre2 double mutant
Δpre1ΔΔpre2	3	Δpre1 Δpre2 double mutant
Δppg1ect	1	ppg1 ectopic insertion mutant with intact ppg1
CNPΔppg1	7	Complementation of ppg1 with native promoter
CSPΔΔppg1	5	Complementation of ppg1 under ICL promoter
CSP2SΔppg1	8	Complementation of ppg1 without signal peptide under ICL promoter

TABLE 1. G. zeae strains used in this study
Name	Sequence (5′→3′)
PPG1-F1	CGCGTCTGACAAGTAAAAGGAGAAAC
PPG1-F1-NT	GCGTCTGACAAGTAAAAGGCGAAACCAAATGGCAA
PPG1-R2	AAAAAGTGCTCCTTCAATATCATCTTTCTTGAGGCGGCTAGCGTCAAAATGGA
PPG1-F3	CTTGTTTAGAGGTAATCCTTCTTTCTAGAGTAAGTTTGGTTATCGACGCAGAG
PPG1-R4	CTAGCGCACAAGGCATCAACT
PPG1-R4-NT	CTGCCCCACCATCTCAGACGC
PPG1-R2-GFP	CCTCGCCCTTGCTCACCATGTTGGGCGCCGTACTTGTCG
PPG1-R-TRPCP	GCTCCTTCAATATCATCTTCTTGAGGCGGCTAGCGTCAAC
PPG1-F1-ICL	TTCATACCACACCTGCCCACCGCGCCCAACATGAAGTACTCC
PPG1M2-F1-ICL	TTCATACCACACCTGCCCACCATGCCCTGGTGCACCTGGAAA
PPG2-F1	GGCCGCCAAAGACCTAAGC
PPG2-F1-NT	GCGGTGGCAGCATTGTTCTACG
PPG2-R2	TTGACCTCCACTAGTCCAGCCAGCAAGCCCGGCGAGAGACAGATG
PPG2-F3	GAAATAGATGATGATGCAGCCACCGGGTTTCCGCCACCATCCTCGAGC
PPG2-R4	GACGAAGTATGCGAAATGGAGAC
PPG2-R4-NT	AAGGGCTTGGTTATGGCGGTTGG
PPG2-R2-GFP	CGCCCTTGCTCACCATTTTGAAAGTTGGGGTTGAAAGACTTGA
PRE1-F1	GCTGAGACGCGATAGGGTAGGAA
PRE1-F1-NT	TCAACCTCACCACCTCCTCAAC
PRE1-R2	TTGACCTCCACTAGTCCAGCCAGCAAGCCCGGCGAGAGACAGATG
PRE1-F3	GAAATAGATGATGATGCAGCCACCGGGTTTCCGCCACCATCCTCGAGC
PRE1-R4	GACGAAGTATGCGAAATGGAGAC
PRE1-R4-NT	AAGGGCTTGGTTATGGCGGTTGG
PRE1-R2-GFP	CGCCCTTGCTCACCATTTTGAAAGTTGGGGTTGAAAGACTTGA
PRE2-F1	GCGCAGCAGGCAGCAGAA
PRE2-F1-NT	GAATGGGCCTGGCTGCGTGAT
PRE2-R2	TTGACCTCCACTAGTCCAGCCAGCAAGCCCGGCGAGAGACAGATG
PRE2-F3	GAAATAGATGATGATGCAGCCACCGGGTTTCCGCCACCATCCTCGAGC
PRE2-R4	GACGAAGTATGCGAAATGGAGAC
PRE2-R4-NT	AAGGGCTTGGTTATGGCGGTTGG
PRE2-F5	CCTGAGACGGGGAACAATCATCACT
PRE2-R6	AGGGCATTCGACCAACTG
PRE2-R2-GFP	CGCCCTTGCTCACCATTTTGAAAGTTGGGGTTGAAAGACTTGA
PRE2-F1	GCGCAGCAGGCAGCAGAA
PRE2-F1-NT	GAATGGGCCTGGCTGCGTGAT
PRE2-R2	TTGACCTCCACTAGTCCAGCCAGCAAGCCCGGCGAGAGACAGATG
PRE2-F3	GAAATAGATGATGATGCAGCCACCGGGTTTCCGCCACCATCCTCGAGC
PRE2-R4	GACGAAGTATGCGAAATGGAGAC
PRE2-R4-NT	AAGGGCTTGGTTATGGCGGTTGG
PRE2-F5	CCTGAGACGGGGAACAATCATCACT
PRE2-R6	AGGGCATTCGACCAACTG
PRE2-R2-GFP	CGCCCTTGCTCACCATTTTGAAAGTTGGGGTTGAAAGACTTGA
MAT11-F1	CTCCACTTGCGGCATCGTCTAC
MAT11-F1-NT	GCCCTGATGATGCTGTAAGTGTTA
MAT11-R2	TTGACCTCCACTAGTCCAGCCAGCAAGCCCGGCGAGAGACAGATG
MAT11-F3	GAATAGATGATGATGCAGCCACCGGGTTTCCGCCACCATCCTCGAGC
MAT11-R4	CTCSSAACCCTTACATCTCTTACC
MAT11-R4-NT	CCCGCCGCCAGCTACTC
ICL-F1	GGGCACCGCACAGCACACAC
ICL-1-F1-NT	CCCCACATCTATGTCATTGTCG
ICL-R2-PPG1	GGAGTATCTTTATGTCATTGTCG
ICL-R2-PPG1M2	CCAAGGTGCACCAGCGCTGAGGAG
GFP-F1	GGGGCCCCACACGGCTC
GFP-F1-NT	CCAGAGTGCACGCAGACTG
GFP-R2	TTGACCTCCACTAGTCCAGCCAGCAAGCCCGGCGAGAGACAGATG
GFP-F3	GAAATAGATGATGATGCAGCCACCGGGTTTCCGCCACCATCCTCGAGC
GFP-F3-PPG1	AAGCAAGTGCACGCCCAACATGGTGAGCAAGGCGGAGG
GFP-F3-PPG2	CTTCACCAACCCCACTTTCAAGATGGGTAGTGGTGGCAGAGG
GFP-F3-PRE1	CCAAGGTGCACCAGCGCTGAGGAG
GFP-F3-PRE2	CCAAGGTGCACCAGCGCTGAGGAG
GFP-R4	AGATGAAGCACCCACAGCTATA
HYG-F1	GGCTTGGCGTGGGAGTCAGTGGGAG
HYG-R2	AAACGGCGTCGGGACATCTACTCTA
HY-F3	GATGATGGAGAGGGCGAGAG
YG-R4	GAACCCCGTCTGGCTGCTAAG
HYG-F1-GFP	TATCGGCGGCGGGTGTTATGTGGTGGCTGAGTCTATGTGGAGG
GNT-F1	CAAAGAAGTATGGTAAAGAGAG
GNT-R4	CTAAAGAAAGAGGATACCTC
GNT-F1-PPG1	CAAAGATGATGGTAAAGAGAG
GNT-R4-NT	CTCGGCGATCTGGGTAAAGGAG
GNT-R4A-NT	GTATGGTGCATTGGTTAAGAGAGTACATA
rRNA-F	CATCCGGCAGCAAACAC
rRNA-R	CATCCGGCAGCAAACAC
ng(μl), 2 μl of deoxynucleoside triphosphates (each at 2.5 mM), 2.5 μl of 10× PCR buffer including MgCl₂, 1 U of ExTaq polymerase (Takara Bio Inc., Japan), and 15.25 μl of water. The PCR amplification conditions were 2 min at 94°C, followed by 10 cycles of 30 s at 94°C, 20 min at 58°C, and 5 min at 72°C for a final extension. One microoliter of this amplification mixture was reamplified as a template in a PCR with F1-NT/YG-R4 and HY-F3/R4/NT primer sets and a 50-μl reaction volume. The PCR conditions were 2 min at 94°C, followed by 30 cycles of 30 s at 94°C, 1 min at 60°C, and 30 s at 72°C for a final extension. The amplification products were combined and used to directly transform G. zeae protoplasts by a polyethylene glycol-mediated method (29). The percent deletion of the open reading frame was 100, 100, 100, 100, 86, and 100% for mat1-1, mat1-2, ppg1, ppg2, pre1, and pre2, respectively. The presence of single copies of each insertion was confirmed by Southern blotting. The numbers of independent transformants obtained for each deletion mutant classes are listed in Table 1. Δppg1/Δmat1-1, Δppg1/Δmat1-2, Δppg2/Δmat1-1, Δppg2/Δmat1-2, Δppg1/Δpre1, Δppg1/Δpre2, and Δpre1/Δpre2 double mutants were generated by sexual crosses between single mutants. Multiple strains in a double-mutant class were derived from the same single-mutant parents.

GFP-tagged strains for outcrossing. The DNA fragment (3.4 kb) carrying the GFP and HYG cassettes was amplified from pIGPAPA with primers ICL-F1 and HYG-F1 and transformed into Z3639. Transformant GFPZ3639 constitutively expresses GFP and was used as the spermatal parent in crosses. GFP cassettes were combined with Δppg1 and Δpre2 mutants by crossing Δppg1 and Δpre2 mutants with GFPZ3639 to yield GFPΔppg1 and GFPΔpre2. GFP fluorescence was detected with an Axioplan2 microscope (Carl Zeiss, Thornwood, NY) with 480 ± 10 nm for excitation and 510 ± 10 nm for emission.

GFP rescued strains. We amplified a GFP sequence (0.97 kb) that has a terminator, but no promoter, from pIGPAPA. The GFP gene fragment was fused to the HYG cassette (1.4 kb), which was amplified from pIGPAPA with primers HYG-F1-GFP and HYG-R2 (GFP::HYG). The promoter region of the target gene was amplified with primers F1 and R2-GFP, and the 3′ flanking region was amplified with primers F3 and R4. After PCR purification, the promoter and the 3′ flanking region were fused with the GFP::HYG construct in a 2:1 reaction mixture, in which was used to produce split markers. Following transformation with the two split markers, we recovered deletion mutants in which GFP expression was controlled by the native promoter of the target gene. Target gene expression was monitored by screening for GFP expression. The experiment was performed twice with four to nine independent transformants per class.

RNA isolation and reverse transcription (RT)-PCR. Total RNA was isolated from vegetative mycelia (uninduced mycelia or mycelia 3 days after induction) or mycelia (10 mg of total RNA was subjected to Northern hybridization with the PCR product of the target gene as a probe. The experiment was performed twice. Photographs of each plate were taken to synthesize first-strand cDNA with the 3′-full RACE Core Set (Takara Bio Inc., Japan), 1 μl of which was used to produce split markers. The DNA fragment (3.4 kb) carrying the target gene was amplified with the rRNA-F/R primer set (Table 2). Twenty micrograms of total RNA was subjected to Northern hybridization with the PCR product of the target gene as a probe. The experiment was performed twice with one mutant strain per class.

Fertility tests. For qualitative self-fertilization tests, cultures were mock fertilized by a putative Kex2 protease site (KR). pp2 could not be unambiguously identified in a BlastP search with pp2 of S. macrospora, mfa-1 of N. crassa, or mfa-1 of M. grisea, because the sequences are short and have relatively low levels of sequence similarity. We compared the synteny of the N. crassa and M. grisea sequences flanking the mfa-1 and mfa-1 genes. Both genes are between cyamate lyase and ebp2 homologs, and both pp2 homologues are transcribed in the same direction and in the same open reading frame (Fig. 2). In the Fusarium verticilloides genome sequence, a putative pp2 homolog was found in the same orientation with cyamate lyase but these two genes were inverted relative to the ebp2 homolog. These results suggest that microsynteny in this region generally is well conserved in these related ascomycete fungi.

For facultative outcrossing tests, conidia from GFP-expressing males were used as spermatia to fertilize non-GFP-expressing females. Ascospores resulting from self-fertilization of perithecia did not express GFP, and ascospores resulting from heterozygous perithecia segregated 1:1 for GFP expression. Ten days after fertilization, crossing plates were inverted and the ascospores ejected were collected on the underside of the lid of a petri dish overnight. Ascospores were suspended in 1 ml of water and counted with a hemocytometer to determine the total number of progeny produced and the proportion of the progeny expressing GFP. Under the conditions of this study, the spermatial parent never produced mature homothallic perithecia or ascospores. Therefore, the outcrossing percentage was estimated as two times the percentage of GFP-expressing ascospores. The experiment was performed three times with three replicate plates per cross. There was one mutant strain per class. Data from the three runs were combined and analyzed as a randomized complete block design. Data were given as means of three replicates.
of *M. grisea* was blasted against the genomic sequence to find the syntenous region of *G. zeae*. Contig 1.310 contains a cyanate lyase (FGSG_07458.3) and a homolog of ebp2 (FGSG_07457.3). A previously undescribed open reading frame was identified in the region between the two genes that contains a candidate ppg2 gene in the same orientation as in *M. grisea* and *N. crassa* (Fig. 3). The putative ppg2 gene encodes a peptide of 21 amino acids with a prenylation signal sequence (CAAX) at its C terminus. This signal sequence also is found in the precursors of several other fungal pheromones (1, 12, 36, 37, 44, 45). Upstream of the putative ppg2 gene, there are a putative TATA box, two CAAT boxes, and two putative MAT transcription factor binding sites.

One pre1 candidate sequence (FGSG_07270.3) was identified in the genomic sequence. It had sequence identity (30 and 23%, respectively) to the preA gene in *E. nidulans* (GenBank DAA01796) and the pre1 gene of *N. crassa* (GenBank CAC86431.1). The putative *G. zeae* pre1 gene has a CAAAG motif at positions −506 and −526 and seven transmembrane domains.

Gene expression. In four independent Δppg1GFPR mutants in which GFP expression was controlled by the native ppg1 promoter, GFP was expressed strongly in induced germinating conidia and mature discharged ascospores (Table 3, Fig. 4). Mycelia and conidia from colonies 10 days old on carrot agar media had a weak GFP signal. Young mycelia, perithecia, ungerminated conidia, and ascospores inside asci had no detectable GFP signal. We never observed GFP expression in the Δppg2GFPR reporter strains (nine mutants). GFP was weakly expressed in mature ascospores of Δpre1GFPR mutants (four mutants) and was more strongly expressed in Δpre2GFPR strains (seven mutants) by all mycelial ages or tissues from carrot agar except young mycelia prior to induction (Table 3). The expression of ppg1, pre1, and pre2 was confirmed by Northern blotting and RT-PCR of RNA from induced mycelial cultures or ascospores, but ppg2 expression was not detected (Fig. 5).

Self-fertilization tests. Δppg1 mutants (11 strains) had normal colony morphology on carrot agar and complete medium. They were self-fertile but produced fewer large perithecia than

FIG. 1. Deduced sequence of the protein encoded by ppg1 (FGSG_05061.3) of *G. zeae*. This polypeptide contains two types of decapeptides. Four repeats of one type (WCTWKGQPCW) are underlined, and five repeats of a second type (WCWWKGQPCW) that differs from the first decapeptide by a single amino acid are in bold underlined type. The putative secretion signal sequence cleavage site is marked by an arrow. KR dipeptides, which are potential Kex2 protease-processing sites, are in bold type.

FIG. 2. Microsynteny near the ppg2 gene among different ascomycete species. The putative ppg2 gene of *G. zeae* (Gz) was between FG07457 (ebp2 homolog) and FG07458 (cyanate lyase homolog) in contig 1.310 of the *Fusarium* genome database developed by the Broad Institute. In the other fungal species (Mg, *M. grisea*; Nc, *N. crassa*), the ppg2 gene was between homologs of ebp2 and cyanate lyase. Note that the names for the ppg2 gene are different in these three fungal species. In the *F. verticilloides* (Fv) genomic sequence, a putative ppg2 homolog was found downstream of cyanate lyase but these two genes were inverted relative to the ebp2 homolog in the other fungi.
did the wild-type strain (Fig. 6). The \(\Delta \text{pre2} \) (13 strains), \(\Delta \text{ppg1} / \Delta \text{ppg2} \) (3 strains), \(\Delta \text{pre1} / \Delta \text{pre2} \) (3 strains), and \(\Delta \text{ppg1} / \Delta \text{pre2} \) (8 strains) mutants all had the same phenotype as the \(\Delta \text{ppg1} \) mutant. However, the \(\Delta \text{ppg2} \) (19 strains) and \(\Delta \text{pre1} \) (11 strains) mutants showed no obvious changes in perithecial production compared to the wild type.

Large and small perithecia of \(\Delta \text{ppg1} \) mutant strains were measured and then crushed to examine their contents microscopically. Immature perithecia contained no asci or ascospores and ranged from 24 to 98 \(\mu \text{m} \) (average, 58 \(\mu \text{m} \)) in diameter. Mature perithecia contained normal-appearing asci and ascospores, regardless of the mutant genotype, and ranged from 146 to 293 \(\mu \text{m} \) (average, 235 \(\mu \text{m} \)) in diameter. Immature perithecia never developed further, even if the cultures were incubated for 3 additional weeks. For counting purposes, 120 \(\mu \text{m} \) was considered the minimum diameter of a mature peritheium. The percentage of mature perithecia was reduced by approximately 50% in the \(\Delta \text{ppg1} \) and \(\Delta \text{ppg2} \) mutants but was not reduced significantly in the \(\Delta \text{pre1} \) mutant or the \(\text{ppg1} \) ectopic-insertion control (Fig. 7).

Obligate outcrossing tests. All single-pheromone mutants (\(\Delta \text{ppg1} \) and \(\Delta \text{ppg2} \)), the double-pheromone mutant (\(\Delta \text{ppg1} / \Delta \text{pre2} \)), and the parental strain were crossed with the parental strain to obtain non-ectopic-insertion progeny. The percentage of non-ectopic-insertion progeny was reduced by approximately 50% in the \(\Delta \text{ppg1} \) and \(\Delta \text{ppg2} \) mutants but was not reduced significantly in the \(\Delta \text{pre1} \) mutant or the \(\text{ppg1} \) ectopic-insertion control (Fig. 7).

TABLE 3. Expression assays of putative pheromone precursors (\(\text{ppg1} \) and \(\text{ppg2} \)) and receptors (\(\text{pre1} \) and \(\text{pre2} \)) in different cell types of different ages on carrot agar

Sample	\(\text{ppg1}^{a} \)	\(\text{ppg2} \)	\(\text{pre1} \)	\(\text{pre2} \)
3 DAI \(^c\) (without induction\(^b\))				
Mycelia	– \(^d\)	–	–	–
Ungerminated conidia		–	–	–
6 DAI (3 days after induction)				
Mycelia	–	–	–	+
Ungerminated conidia	–	–	–	+
Germinating conidia	++ + + +	–	–	+
Young peritheca	–	–	–	+
13 DAI (10 days after induction)				
Mycelia	–	–	–	+
Ungerminated conidia	–	–	–	+
Germinating conidia	++ + + +	–	–	+
Mature peritheca	–	–	–	+
Ascospores in perithecia	–	–	–	+
Ascospores discharged from perithecia	++ +	–	–	+
Old culture without induction (15 DAI)				
Mycelia	+	–	–	+
Ungerminated conidia	+	–	–	+
Germinating conidia	++ + + +	–	–	+
Mature peritheca	–	–	–	+
Ascospores in perithecia	–	–	–	+
Ascospores discharged from perithecia	++ +	–	–	+

\(^a\) \(\text{ppg1} \), \(\text{ppg2} \), \(\text{pre1} \), and \(\text{pre2} \) expression was assayed with GFP reporter constructs \(\Delta \text{ppg1GFPR} \), \(\Delta \text{ppg2GFPR} \), \(\Delta \text{pre1GFPR} \), and \(\Delta \text{pre2GFPR} \), respectively.

\(^b\) DAI, days after inoculation.

\(^c\) Induction by knockdown of mycelia with 500 \(\mu \text{l} \) of 2.5% Tween 60 solution to induce sexual development.

\(^d\) –, GFP fluorescence signal not detected; +, weak fluorescence; ++, moderate fluorescence; ++++, strong fluorescence; +++++, very strong fluorescence; NT, not tested.

Δppg2), and double mutants with mating type deletions
(Δppg1/Δmat1-1, Δppg1/Δmat1-2, Δppg2/Δmat1-1, and Δppg2/Δmat1-2) could serve as either the male or the female parent
in a cross (Table 4). Crosses were infertile only in pairings that
lacked a functional copy of one or the other MAT idiomorph.

Facultative outcrossing tests. Both conidia and ascospores
functioned similarly as spermatia (Table 5). Outcrossing per-
centages generally were low but never zero. However, Δppg1
females had a >20-fold increase in facultative outcrossing,
ranging from 35 to 87%. This effect was abolished by Δppg1 in

FIG. 4. GFP expression assay for ppg1 in the Δppg1GFPR mutant strain on carrot agar. (A and B) Four-day-old mycelia without induction. (C
and D) Conidia 3 days after induction. Only germinating conidia (arrow) expressed GFP. (E and F) Young perithecium 3 days after induction.
GFP expression from the perithecium was not detected, but there were a few associated germinating conidia expressing GFP. (G and H) Squashed
perithecium 10 days after induction. Ascospores in asci did not express GFP. (I and J) Conidia (cn) and freshly discharged ascospore (as) from
a perithecium 10 days after induction. Only the ascospore expressed GFP. (K and L) Mycelia 15 days old without induction. (A, C, E, G, I, and
K) Bright-field microscopy. (B, D, F, H, J, and L) Same specimen, fluorescence microscopy. Scale bars, 50 μm.

FIG. 5. Analysis of transcript levels of pheromone precursor genes
ppg1 and ppg2 and pheromone receptor genes pre1 and pre2 in G. zeae.
Total RNA was extracted from 3-day-old fresh mycelia without induc-
tion (NI), 3-day-old mycelia after induction (IM), or ascospores (AS).
Twenty micrograms was subjected to Northern analysis with the PCR
product of the target gene serving as a probe (left panel), and 1 μg was
used to synthesize first-strand RNA cDNA for RT-PCR (right panel).

FIG. 6. Effect of ppg1 deletion on self-fertility of G. zeae growing
on carrot agar 10 days after induction. (A) The wild-type Z3639 control
and the Δppg1 mutant, with a reduced number of large mature
perithecia. Scale bar, 1 cm. (B) Magnification showing fewer large mature perithecia (black arrowhead) and more small immature peri-
theicia (white arrowhead) in the Δppg1 mutant strain than in Z3639.
Scale bars, 1 mm.
FIG. 7. Box plots of percent mature perithecia formed by self-
fertilization of wild-type G. zeae and pheromone precursor gene ppg1 and ppg2 and pheromone receptor gene pre1 and pre2 deletion mutants of G. zeae. There are three independent transformants for each class. ppg1-ect is an ectopic-insertion mutant shown as a control. Each box plot shows the 75th and 25th percentiles (upper and lower horizontal lines outside of the box), and outliers (black circles). Box plots within a box), the 90th and 10th percentiles (upper and lower horizontal lines outside of the box), and outliers (black circles). Box plots with asterisks indicate significant difference from the wild type by Dunnett’s test.

TABLE 3. Estimated facultative outcrossing percentages of ppg1 and pre2 deletion mutants

Strain name	Female	Male	Estimated outcrossing percentage%
Z3639	0.3	0.3	1.7
Z3639	0.2	0.3	
Δppg1	1.0	3.9	
Δppg1	35.1%	61.7%	
Δppg1	1.2	0.5	
Δppg1	53.1%	87.8%	
Δpre2	0.4	0.3	
Δpre2	2.1	4.7	
Δppg1Δpre2	0.9	1.5	
Δppg1Δpre2	0.3	NT	
Δppg1Δpre2	0.8	NT	
Δppg1Δpre2	0.4	NT	

* Male strains were GFP labeled so GFP segregated 1:1 in heterozygous crosses. The outcrossing frequency was estimated as twice the percentage of GFP-labeled ascospores produced.
* Comidia and ascospores were used to fertilize female cultures at a concentration of 1 × 10^5 spermatia/ml.
* NT, not tested.
* Significantly different from the control (Z3639 female/GFPZ3639 male) by Dunnett’s test.

the male or the additional deletion of pre2 (i.e., Δppg1Δpre2) in the female.

Complementation of Δppg1. Δppg1 deletions were made with a construct that contained hyg as the selectable marker. To test for complementation, the entire ppg1 gene, including the 5’ and 3’ flanking regions, was fused with a Geneticin resistance cassette (GNT), and Geneticin-resistant transformants were selected following transformation into a Δppg1 mutant. All seven of the Geneticin-resistant transformants had a wild-type phenotype in self-fertilization tests. If the reintroduced ppg1 sequence was controlled by the constitutive ICL promoter from N. crassa (ICL promoter::ppg1::GNT), then partial complementation (70 to 80% mature perithecia produced) occurred in each of the five transformants. Thus, the timing and/or the level of ppg1 expression is important for full function.

Eight transformants carried the ppg1 gene construct lacking the initial signal peptide. Strains carrying this construct did not complement the ppg1 deletion and had the same phenotype as the Δppg1 mutants. Thus, the secretion signal peptide of ppg1 is essential for the ppg1 gene product to function properly.

DISCUSSION

Two putative pheromone precursor genes (ppg1 and ppg2) and two putative pheromone receptor genes (pre1 and pre2) were identified in the genomic sequence of G. zeae. ppg1, a homolog of the Saccharomyces α-factor pheromone precursor gene, was expressed strongly in germinating conidia and discharged ascospores but weakly, if at all, in other cells. The cognate receptor, pre2, was expressed in all cells except uninoculated mycelia. In fertility tests with Δppg1 and Δpre2 mutants, the cognate pair enhanced both self-fertility and facultative outcrossing ability. Δppg1 mutants were successfully complemented by transformation with an intact ppg1 gene, thus confirming that ppg1 retains a functional role in this homothallic ascomycete fungus.

TABLE 4. Male and female fertility of mutant strains in obligate outcrosses

	Female	Male	Δmat1-1	Δmat1-2	Δppg1Δmat1-1	Δppg1Δmat1-2	Δppg2Δmat1-1	Δppg2Δmat1-2
Z3639 (wild type)	+^a	+	+	+	+	+	+	+
Δppg1	+	+	+	+	+	+	+	+
Δpre2	+	+	+	+	+	+	+	+
Δppg1Δmat1-1	+	+	+	+	+	+	+	+
Δppg1Δmat1-2	+	+	+	+	+	+	+	+
Δppg2Δmat1-1	+	+	+	+	+	+	+	+
Δppg2Δmat1-2	+	+	+	+	+	+	+	+
Δppg1Δppg2	+	+	+	+	+	+	+	+

^a +, ascospores produced.
b –, no ascospores produced.
c Female was self-fertilized but with no exogenous male conidia.
Expression of *ppg2*, a homolog of the α-factor pheromone precursor gene, was not detected in any cells. The cognate receptor, *pre1*, was expressed weakly and only in mature ascospores. In fertility tests with deletion mutants, the *ppg2/pre1* pheromone-receptor pair had no detectable function in selfing or outcrossing. The lack of detectable function of the *ppg2/pre1* cognate pair probably was not due to incorrect identification of the genes. There were many candidates for *ppg2*, and we relied on microsynteny to identify the correct sequence (Fig. 2). The selected candidate had the expected regulatory and prenylation sequences (Fig. 3), which strongly supports its identification as *ppg2*. There was only one candidate for *pre1* in the genomic sequence, and it had the typical seven transmembrane domains of a G-protein-coupled receptor. Since *ppg2* and *pre1* homologs are functional in heterothallic ascomycetes (11, 23, 24), we hypothesize that the *ppg2* and *pre1* genes in *G. zeae* are nonfunctional vestiges of the evolutionarily recent change from a heterothallic to a homothallic life style in this fungus (49, 50).

Although the *ppg1/pre2* pheromone-receptor pair is functional in *G. zeae*, neither the pheromones nor the receptors are essential for sexual development. In obligate outcrossing tests, *Δppg1, Δppg2*, and *Δppg1Δppg2* mutants were all fertile as males, thus demonstrating that pheromones are not absolutely required for male fertility in *G. zeae* (Table 4). Similarly, the full self-fertility of *Δpre1* mutants and the partial self-fertility (~50%) of *Δpre2* mutants and *Δpre1Δpre2* double mutants demonstrate that neither of the pheromone receptors is essential for female fertility. This pattern differs from the heterothallic ascomycetes *N. crassa*, *P. anserina*, and *C. parasitica*, in which pheromones and receptors are essential for fertilization (11, 23, 24, 48). *G. zeae* also differs from the homothallic ascomycetes *S. macrospora* and *E. nidulans*, in which at least one functional pheromone receptor is required for self-fertilization (31, 42). Thus, *G. zeae* is the first ascomycete in which the dispensability of both pheromones and pheromone receptors for sexual development has been demonstrated.

The role of the *ppg1/pre2* pheromone-receptor pair in *G. zeae* appears to be restricted to fertilization. Aside from a reduction in the percentage of mature perithecia, *Δppg1* and *Δpre2* mutants showed no consistent differences in colony morphology compared to the wild type. We tested combinations of *Δppg1* and *Δppg2* with *Δmat1-1* or *Δmat1-2* that might reveal postfertilization pheromone effects but found no evidence of interactions (Table 4). Most importantly, *Δppg1, Δpre2, Δppg1Δppg2, Δpre1Δpre2*, and *Δppg1Δpre2* mutants all had decreased percentages of mature perithecia but the mature perithecia were apparently normal in size and fecundity (Fig. 6). These results are similar to those obtained with *P. anserina*, in which the role of pheromones also is restricted to the fertilization step (11).

In contrast, pheromones and/or receptors appear to have additional functions in *S. macrospora* and *E. nidulans*. Single pheromone or pheromone receptor of mutants *S. macrospora* have no detectable defects in self-fertilization, but double mutants in which there was no functional cognate pair, *Δppg1 Δppg2, Δpre1Δppg1, and Δpre2Δppg2*, showed drastically reduced numbers of mature self-fertilized perithecia (31). These results imply that both cognate pairs function interchangeably in fertilization. However, deletion of both the *pre1* and *pre2* receptor genes in *S. macrospora* leads to a complete loss of self-fertility, showing that at least one functional receptor is required for sexual development and suggesting that the receptor can be activated even when both pheromones are absent in *S. macrospora*. In *E. nidulans*, single pheromone receptor mutants produce smaller cleistothecia with a reduced number of ascospores, which suggests a postfertilization role for the receptors (42). Double-receptor mutants completely lost the ability to self-fertilize, as in *S. macrospora*. This diversity of pheromone-receptor functions in homothallic ascomycetes is not surprising since the homothallic life cycle apparently has evolved independently and uniquely multiple times from a conserved ancestral heterothallic state (50).

In *G. zeae*, *ppg1* and *pre2* appear to play conventional roles in the chemoattraction of female cells by male cells. Deletion of *ppg1* in the male strain dramatically decreased the effectiveness of spermatia for fertilizing *Δppg1* females, which are efficient facultative outcrossers (Table 5). Deletion of the *pre2* pheromone receptor gene in *Δppg1* females (i.e., *Δppg1Δpre2*) eliminated the ability of females to distinguish males with an intact *ppg1* gene (Table 5). These results are consistent with the classic Neurospora model in which spermatia secrete pheromones to attract female trichogynes (2, 3, 4, 23, 24, 25).

The high expression level of *ppg1* in induced germinating conidia and discharged ascospores, but not other cells, accords well with the chemoattraction model. The high expression in freshly discharged ascospores was unexpected and prompted us to test their ability to serve as spermatia. Interestingly, the ability of ascospores to function as spermatia was equal to or better than that of conidia (Table 5). Mature discharged ascospores expressed *ppg1* constitutively, unlike conidia, which expressed *ppg1* only when induced and germinating (Table 3). The role of ascospores as spermatia may be an underrecognized function.

We were not able to identify the female receptive structures or visually confirm chemoattraction of the female by the male. We intended to use the *pre2* reporter constructs to identify potential receptive female structures, but this approach was not possible since *pre2* is expressed in all cells except uninucleate mycelia. We used methods similar to those described by Bistis (2, 3) for *N. crassa* but were unable to visually identify trichogynes associated with immature perithecia. If these structures occur at all, they are difficult to distinguish due to the relatively dense mycelial growth on carrot agar. Without a second pheromone-receptor pair for communication from the female structures to the male spermatium, it also is unknown how cell cycle synchronization is achieved prior to conjugation (2, 3, 4, 14). Further work is needed to identify the receptive female structures and how the spermatia transfer their nuclei to the female in this fungus.

The high facultative outcrossing rate in *Δppg1* mutant females probably is due to a decrease in the competitiveness of conidia from the female strain as spermatia. On a facultative outcrossing plate, conidia produced in situ by the female parent usually outnumber the spermatia added from the fertilizing male parent. The deletion of *ppg1* in the female parent may decrease the ability of conidia produced by the female strain to be recognized as spermatia. An alternative hypothesis is that absence of interfering pheromone peptides produced from female mycelia or perithecia increases the recognition of sper-
matia from the male strain. However, this hypothesis seems unlikely because these female structures do not appear to express \textit{ppg1} (Table 3; Fig. 4). It also does not explain why male spermatia would be favored over conidia from the female strain. The enhancing effect of the deletion of \textit{ppg1} in females could be useful for studies of pheromone function.

\textit{G. zae} must have a pheromone-independent alternate mechanism to activate the pheromone signal transduction pathway. Pheromone receptors are an integral upstream part of the receptor–G-protein-coupled mitogen-activated protein kinase cascade that mediates pheromone responses in ascomycetes (16). Sexual reproduction in \textit{G. zae} has an absolute requirement for pheromone pathway components such as both \textit{MAT} idiomorphs (28) and for the \textit{MGVI} MAP kinase gene (21), but not for sex pheromones or receptors. In \textit{S. macrospora} and \textit{E. nidulans}, pheromone receptors are required but can apparently trigger the signal transduction cascade in the absence of pheromone peptides (31, 42). In \textit{G. zae}, the receptors are not required, so nonspecific triggering must occur downstream of the receptors. This phenomenon could be similar to \textit{STE5} gain-of-function mutations in \textit{S. cerevisiae} in which pheromone pathway signaling is constitutively activated in the absence of pheromone or Gβγ (39, 43).

The pheromone-independent alternate activation mechanism clearly functions for external fertilization by spermatia, but it also might function as part of an internal self-fertilization mechanism. Trail and Common (47) reported thick, lipid-rich dikaryotic hyphae associated with peritheium production on carrot agar plates. The dikaryotic hyphae were produced in homothallic cultures, so the paired nuclei were presumed to be genetically identical. In detailed microscopic studies of homothallic production of perithecia in wheat stems, Guenther and Trail (19) again associated the production of perithecial initials with dikaryotic hyphae. Dikaryotic hyphae were produced from uninucleate hyphae within xylem vessels, pith cavities, and chlorenchyma tissues. Although the details are still unclear, these observations suggest that sexual developmental can occur without fertilization by external spermatia.

Induction of the sexual stage in \textit{G. zae} occurs in response to specific compounds or conditions in carrot agar cultures. Carrot agar is an excellent medium for induction of the sexual stage of \textit{G. zae}, and abundant perithecia usually are formed within 10 days (7). In contrast, few or no perithecia are produced on potato dextrose agar, complete medium, minimal medium, or CMC medium (data not shown). Germinating conidia and ascospores from induced cultures, i.e., cultures growing on carrot agar that have been fertilized with a spore suspension or mock fertilized with a 2.5% aqueous Tween 60 solution, expressed \textit{ppg1} at a high level. Germinating conidia from cultures grown on water agar, complete medium (solid or liquid), minimal medium (solid or liquid), minimal medium containing 10% of the normal nitrogen amount, and CMC liquid medium did not express \textit{ppg1} (data not shown). In \textit{N. crassa}, the expression of these pheromone pathway genes is influenced by nitrogen starvation (4, 25). However, in \textit{G. zae}, low-nitrogen media such as water agar, CMC medium, and reduced-nitrogen minimal medium apparently are insufficient for induction. The GFP reporter strains for \textit{ppg1} and \textit{pre2} could be useful for identifying the inducing factors for the sexual stage of this fungus.

In conclusion, this study demonstrates that one of the pheromone-receptor pairs (\textit{ppg1/pre2}) found in heterothallic ascomycetes enhances, but is not essential for, selfing and outcrossing in homothallic \textit{G. zae}, whereas the other pheromone-receptor pair (\textit{ppg2/pre1}) no longer has any detectable function in sexual reproduction. Thus, a pheromone- and pheromone-receptor-independent sexual triggering mechanism exists in this fungus, which makes it unique among ascomycetes. This alternate activation mechanism appears to be an evolutionarily recent adaptation since most other \textit{Gibberell} species are heterothallic (30). Therefore, different portions of the ancestral pheromone signaling pathway in \textit{G. zae} may be under purifying selection pressure (\textit{ppg1 and pre2}), under directional selection pressure (components of the signal transduction mechanism), or under no selection pressure at all (\textit{ppg2 and pre1}). Characterization of recent molecular evolution in these genes may provide insights into the fundamental mechanisms underlying cell recognition and differentiation in fungi.

\section*{ACKNOWLEDGMENTS}

We thank Mizuho Nita for assistance with statistical analyses. This is contribution 07-272-J from the Kansas Agricultural Experiment Station.

This material is based on work supported by the U.S. Department of Agriculture. This is a cooperative project with the U.S. Wheat & Barley Scab Initiative.

Mention of a trademark or a proprietary product does not constitute a guarantee or warranty of the product by the United States Department of Agriculture. This is a cooperative project with the U.S. Department of Agriculture and does not imply its approval to the exclusion of other products that may also be suitable.

\section*{REFERENCES}

1. Anderegg, R. J., R. Betz, S. A. Carr, J. W. Crabb, and W. Dunzt. 1998. Structure of the \textit{Saccharomyces cerevisiae} mating hormone a-factor: identification of S-farnesyl cysteine as a structural component. J. Biol. Chem. 263:18236–18240.

2. Bistis, G. N. 1981. Chemotropic interactions between trichogynes and conidia of opposite mating type in \textit{Neurospora crassa}. Mycologia 73:959–975.

3. Bistis, G. N. 1983. Evidence for diffusible, mating-type-specific trichogyn attractions in \textit{Neurospora crassa}. Exp. Mycrol. 7:292–305.

4. Bohrowicz, P., R. Pawlak, A. Córca, D. Bell-Pedersen, and D. J. Ebbole. 2002. The \textit{Neurospora crassa} pheromone precursor genes are regulated by the mating type locus and the circadian clock. Mol. Microbiol. 48:795–804.

5. Bölkö, M., and R. Kahmann. 1993. Sexual pheromones and mating recognition in fungi. Plant Cell 5:1461–1469.

6. Bowden, R. L., and J. F. Leslie. 1999. Sexual recombination in \textit{Gibberella zeae}. Phytopathology 89:182–188.

7. Capellini, R. A., and J. L. Peterson. 1965. Macroconidium formation in submerged cultures by a nonsporulating strain of \textit{Gibberella zeae}. Mycologia 57:962–966.

8. Catlett, N. L., B.-N. Lee, O. C. Yoder, and B. G. Turgeon. 2003. Split-marker recombination for efficient targeted deletion of fungal genes. Fungal Genet. Newsl. 50:11.

9. Coppen, E., R. Debuchy, S. Arnaise, and M. Picard. 1997. Mating types and sexual development in filamentous ascomycetes. Microbiol. Mol. Biol. Rev. 61:411–428.

10. Coppen, E., C. D. Renty, and R. Debuchy. 2005. The function of the coding sequences for the putative pheromone precursors in \textit{Pododesmus anserinus} is restricted to fertilization. Eukaryot. Cell 4:407–420.

11. Davey, J. 1992. Mating pheromones of the fission yeast \textit{Schizosaccharomyces pombe}: purification and structural characterization of M-factor and isolation and analysis of two genes encoding the pheromone. EMBO J. 11:951–960.

12. Desjardins, A. E. 2006. \textit{Fusarium} mycotoxins: chemistry, genetics, and biology. APS Press, St. Paul, MN.

13. Dohlmán, H., and J. Thorner. 2001. Regulation of \textit{G} protein-initiated signal transduction in yeast: paradigms and principles. Annu. Rev. Biochem. 70:793–754.

14. Dyer, P. S., M. Paoletti, and D. B. Archer. 2003. Genomics reveals sexual secrets of \textit{Aspergillus}. Microbiology 149:2301–2303.
Fusarium oxysporum pathogenicity in Tsuge. A re-emerging disease of devastating impact. Plant Dis. 81:1340–1348.

M. C. O'Donnell, H. C. Kistler, B. K. Tacke, and H. H. Casper. 2000. Gene genealogies reveal global phylogeographic structure and reproductive isolation among lineages of Fusarium graminearum, the fungus causing wheat scab. Proc. Natl. Acad. Sci. USA 97:7905–7910.

O'Donnell, K., T. J. Ward, D. M. Geiser, H. C. Kistler, and T. Aoki. 2004. Genealogical concordance between the mating type locus and seven other nuclear genes supports formal recognition of nine phylogenetically distinct species within the Fusarium graminearum clade. Fungal Genet. Biol. 41:600–623.

Olesnicky, N. S., A. J. Brown, S. J. Dowell, and L. A. Casselton. 1999. A constitutively active G-protein-coupled receptor causes self-compatibility in the mushroom Coprinus. EMBO J. 18:2756–2763.

Pöggeler, S. 2000. Two pheromone precursor genes are transcriptionally expressed in the homothallic ascomycete Sordaria macrospora. Curr. Genet. 37:403–411.

Pöggeler, S., and U. Kuck. 2001. Identification of transcriptionally expressed pheromone receptor genes in filamentous ascomycetes. Gene 289:9–17.

Pryciak, P. M., and F. A. Huntress. 1998. Membrane recruitment of the kinase cascade scaffold protein Ste5 by the Gp3 complex underlies activation of the yeast pheromone response pathway. Genes Dev. 12:2684–2697.

Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

Schmale, D. G., J. F. Leslie, K. A. Zeller, A. A. Saleh, E. J. Shields, and G. C. Bergstrom. 2006. Genetic structure of atmospheric populations of Gibberella zeae. Phytopathology 96:1021–1026.

Seo, J.-A., K.-H. Han, and J.-H. Yu. 2004. The gpr4 and gpr7 genes encode putative G protein-coupled receptors required for self-fertilization in Aspergillus nidulans. Mol. Microbiol. 53:1611–1623.

Sette, C., C. J. Inouye, S. L. Strochesen, P. J. Iaquinta, and J. Thonier. 2000. Mutational analysis suggests that activation of the yeast pheromone response mitogen-activated protein kinase pathway involves conformational changes in the Ste5 scaffold protein. Mol. Biol. Cell 11:4033–4049.

Shen, W.-C., P. Bobrowicz, and D. J. Ebbole. 1999. Isolation of pheromone precursor genes of Magnaporthe grisea. Fungal Genet. Biol. 27:253–263.

Spellig, T., M. Bolker, F. Lottspeich, R. W. Frank, and R. Kahmann. 1994. Pheromones trigger filamentous growth in Ustilago maydis. EMBO J. 13:1620–1627.

Staben, C., B. Jensen, M. Singer, J. Pollock, M. Schechtman, J. Kinsey, and E. Selker. 1989. Use of a bacterial hygromycin B resistance gene as a dominant selectable marker in Neurospora crassa transformation. Fungal Genet. Newsl. 36:79–81.

Traill, F., and R. Common. 2000. Perithecial development by Gibberella zeae: a light microscopy study. Mycologia 92:130–138.

Turina, M., A. Prodi, and N. K. Van Alfen. 2003. Role of the MFI-1 pheromone precursor gene of the filamentous ascomycyte Cryptococcus paratsits. Fungal Genet. Biol. 40:242–251.

Yun, S.-H., T. Arie, I. Kaneko, O. C. Yoder, and B. G. Turgeon. 2000. Molecular organization of mating type loci in heterothallic, homothallic, and sexual Gibberella/Fusarium species. Fungal Genet. Biol. 31:7–20.

Yun, S.-H., M. L. Berbee, O. C. Yoder, and B. G. Turgeon. 1999. Evolution of the fungal self-fertile reproductive life style from self-sterile ancestors. Proc. Natl. Acad. Sci. USA 96:5592–5597.

Zeller, K. A., R. L. Bowden, and J. F. Leslie. 2004. Population differentiation and recombination in wheat scab populations of Gibberella zeae in the United States. Mol. Ecol. 13:563–571.

Zhang, L., R. A. Baasiri, and N. K. Van Alfen. 1998. Viral expression of fungal pheromone precursor gene expression. Mol. Biol. Cell 8:353–359.