Optimal designs for indirect regression

To cite this article: Stefanie Biedermann et al 2011 Inverse Problems 27 105003

View the article online for updates and enhancements.
Optimal designs for indirect regression

Stefanie Biedermann¹,4, Nicolai Bissantz², Holger Dette² and Edmund Jones³

¹ University of Southampton, School of Mathematics, Highfield, Southampton SO17 1BJ, UK
² Ruhr-Universität Bochum, Fakultät für Mathematik, 44780 Bochum, Germany
³ University of Bristol, Department of Mathematics, Clifton, Bristol BS8 1TW, UK

E-mail: s.biedermann@soton.ac.uk, nicolai.bissantz@rub.de, holger.dette@ruhr-uni-bochum.de
and edmund.jones@bristol.ac.uk

Received 17 March 2011, in final form 10 August 2011
Published 16 September 2011
Online at stacks.iop.org/IP/27/105003

Abstract

In many real life applications, it is impossible to observe the feature of interest directly. For example, non-invasive medical imaging techniques rely on indirect observations to reconstruct an image of the patient’s internal organs. In this paper, we investigate optimal designs for such indirect regression problems. We use the optimal designs as benchmarks to investigate the efficiency of designs commonly used in applications. Several examples are discussed for illustration. Our designs provide guidelines to scientists regarding the experimental conditions at which the indirect observations should be taken in order to obtain an accurate estimate for the object of interest. Moreover, we demonstrate that in many cases the commonly used uniform design is close to optimal.

1. Introduction

Indirect or inverse problems arise in numerous applications such as deconvolution problems (cf Fan 1991, Johnstone et al 2004), positron emission and x-ray tomography (Johnstone and Silverman 1990, Cavalier 2000, 2001), Wicksell’s problem (Groeneboom and Jongbloed 1995), and the heat equation (Mair and Ruymgaart 1996). The main difference to ‘classical’ inference is that in these models the unknown density or regression function of interest \(m \), defined in (1) in the following, cannot be observed directly. Such problems have been investigated intensively in the past few decades, where most of the work focused on the construction of estimators of \(m \) and the determination of their convergence properties with respect to the \(L^2 \)-risk assuming that \(m \) belongs to a certain smoothness class (cf, e.g., Mair and Ruymgaart 1996, Cavalier and Tsybakov 2002) or their pointwise properties (cf Fan 1991, Cavalier 2000, Donoho and Low 1992, Bissantz and Birke 2009). In many application areas,
e.g., magnetic resonance imaging (MRI), positron emission tomography (PET) or fluorescence microscopy, the data are sampled using a uniform design (see, e.g., Shepp and Vardi 1982).

It is well known in direct regression problems that an optimal design can improve the efficiency of statistical inference substantially and there exists an extensive literature on this subject (see Pukelsheim 2006 or Atkinson et al 2007). Most authors focus on the construction of optimal designs for efficient parameter estimation, where various estimation methods have been considered. Optimal designs for parametric regression models minimizing (integrated) mean squared error (MSE) criteria have been discussed in Studden (1977), Spruill (1987), Dette and O’Brien (1999), or Broniatowski and Celant (2007) among others. Designs minimizing the integrated MSE of a nonparametric estimate in direct regression models have been investigated by Mueller (1984) and Cheng et al (1998) among others, while Chan (1992) considered optimal designs for variance estimation. More recent work discussed the construction of sequential optimal designs in this context (see Park 2000, Park and Faraway 1998 or Efromovich 2008).

On the other hand, optimal design problems for indirect regression models have found much less attention in the literature so far. Experimental designs have mainly been considered from an empirical point of view in the context of (geo-)physical problems. Among other approaches, Maurer et al (2000) proposed statistical criteria for the selection of an experimental design for electromagnetic geophysical surveys, while Curtis (1999) modified standard optimality criteria to improve the invertibility of the information matrix. Haber et al (2008) and Horesh et al (2010) discussed numerical methods for the determination of optimal designs with respect to different optimality criteria which take into account both the bias and stochastic variability of the estimate. Applications of optimal designs have been discussed for borehole tomography and impedance tomography. Moreover, Stark (2008) focused on the Backus–Gilbert resolution approach controlling the MSE. Van den Berg et al (2003) applied Bayesian experimental design techniques to an amplitude versus offset experiment. Bardow (2008) introduces an integrated MSE-type criterion for linear ill-posed inverse problems given in the form of integral equations. They consider Tikhonov regularization and find optimal designs for applications from chemistry and aerosol science. While most authors concentrate on a matrix–vector representation of the operator, model and data, there exists no systematic investigation of optimal design problems for indirect regression models. In particular, there has been no investigation of optimal design problems for estimation techniques in ill-posed problems, which use the singular value decompositions of the operator \(K \) and its inverse to construct a series estimator for the unknown regression function.

This paper tries to fill this gap and is devoted to the construction of optimal designs minimizing the integrated MSE of the indirect regression estimator, which is constructed by estimating the coefficients in the singular value decomposition of the corresponding operator. The main focus will be on a comparison of the performance of the uniform design, which is commonly used in practical applications, to the optimal design. Notably, we discuss a range of examples where we demonstrate that the uniform design shows a close to optimal efficiency. In section 2.1 we introduce the necessary notation for estimating \(m \) by a singular value decomposition in the indirect regression model (1) defined below. In particular, we discuss two regularization schemes (Tikhonov and spectral cut-off regularization) and derive explicit expressions for the integrated MSE. Section 2.2 is devoted to the solution of the optimal design problems and the optimal design density is found explicitly. Since the optimal designs depend on the unknown regression function and regularization parameter, they require a certain amount of prior knowledge for implementation. We use the optimal designs as benchmarks against which candidate designs can be assessed. In section 3 we illustrate our approach through several examples with a one-dimensional predictor. The robustness of optimal designs with respect to model misspecifications is investigated, and an assessment of the commonly
used uniform design is provided. Examples with a two-dimensional predictor are considered in section 4. In particular, we discuss optimal designs for the Radon transform, which is widely used in modeling of PET (Johnstone and Silverman 1990, Cavalier 2000, 2001), and demonstrate that in most situations the uniform design or a straightforward modification thereof is close to the optimal designs in terms of performance. Finally some technical details are given in the appendix.

2. Indirect regression

2.1. Model specification and mean squared error

We focus on the indirect regression model with random design, i.e. we suppose that we have N independent pairs of observations $(X_1, Y_1), \ldots, (X_N, Y_N)$ available from the model:

$$Y_k = (Km)(X_k) + \varepsilon_k,$$

where K is a bounded linear operator between L^2-spaces $L^2(\mu_1)$ and $L^2(\mu_2)$, which is compact and injective. Here μ_1 and μ_2 are probability measures on the corresponding Borel σ-fields B_1 and B_2 of the sets X_1 and X_2 with Lebesgue densities w_φ and w_ψ, respectively. The random design points X_k have a μ_2-density, say h, defined on the design space $X_2 \subset \mathbb{R}^d$ which has a non-empty interior. A design density satisfies $\int_{X_2} h(x) d\mu_2(x) = 1$, and assigns probabilities to the elements of B_2. Hence, the probability of the random variable X_k taking a value from a certain subset of X_2, $S_k \in B_2$ say, is given by $\int_{S_k} h(x) d\mu_2(x)$. The ε_k’s are independent identically distributed errors, independent of the X_k’s, such that $E[Y_i|X_i = x] = (Km)(x), \quad \text{Var}(Y_i|X_i = x) = \sigma^2(x), \quad i = 1, \ldots, N.$

Here x denotes the predictor and m and σ^2 are the regression and the variance function, respectively. The object of interest is the regression function $m : X_1 \to \mathbb{R}$, an element of $L^2(\mu_1)$, which is only observable in the form (Km), i.e. after application of the operator K. For the regression function m we obtain the Fourier expansion

$$m = \sum_{j=1}^{\infty} a_j \varphi_j,$$

with coefficients $a_j = \langle m, \varphi_j \rangle_{\mu_1}$, where $\{\varphi_j | j \in \mathbb{N}\} \subset L^2(\mu_1)$ is an orthonormal system which is part of the singular system $\{\lambda_j, \varphi_j, \psi_j\}$ of the operator K, i.e. $\lambda_j \psi_j = K \varphi_j, \quad \langle \varphi_j, \varphi_i \rangle_{\mu_1} = \delta_{ij}, \quad \langle \psi_j, \psi_i \rangle_{\mu_2} = \delta_{ij}, \quad i, j \in \mathbb{N}.$

Here $\langle \cdot, \cdot \rangle_{\mu_1}$ and $\langle \cdot, \cdot \rangle_{\mu_2}$ denote the corresponding inner products on $L^2(\mu_1)$ and $L^2(\mu_2)$, respectively, and $\lambda_1, \lambda_2, \ldots$ are the singular values of K. Similarly, the function $(Km) \in L^2(\mu_2)$ has an expansion of the form

$$Km = \sum_{j=1}^{\infty} b_j \psi_j = \sum_{j=1}^{\infty} a_j K \varphi_j = \sum_{j=1}^{\infty} \lambda_j a_j \psi_j,$$

where the Fourier coefficients b_j are given by the inner product $b_j = \langle Km, \psi_j \rangle_{\mu_2}$. A natural estimator for the coefficient b_j is

$$\hat{b}_j = \frac{1}{N} \sum_{i=1}^{N} \frac{\psi_j(X_i)}{h(X_i)} Y_i.$$
where \(h \) is the density of the random variables \(X \). It is easy to see that this estimator is unbiased for \(b_j \), i.e.

\[
E[\hat{b}_j] = E \left[E \left[\frac{\psi_j(X_1)}{h(X_1)} Y_1 \mid X_1 \right] \right] = \int_{X_1} \psi_j(x) Km(x) d\mu_2(x) = b_j,
\]

and also, unlike the least squares estimator, avoids the inversion of possibly high-dimensional and ill-conditioned matrices. The estimator of the regression function \(m \) is now constructed from the expansion in (2) by an appropriate regularization. For the sake of definiteness we restrict ourselves to the Tikhonov and the spectral cut-off regularization (Engl et al. 1996).

Following Engl et al. (1996), for the Tikhonov regularization we fix a parameter \(\alpha > 0 \) and define

\[
\hat{m}_\alpha = \sum_{j=1}^{\infty} \frac{\lambda_j}{\lambda_j^2 + \alpha^2} \hat{b}_j \psi_j
\]

as an estimator of the regression function \(m \). Throughout this paper we call this the Tikhonov estimator. The second estimator is obtained by truncating expansion (2) at some index \(M \in \mathbb{N} \), yielding

\[
\hat{m}_M = \sum_{j=1}^{M} \frac{\hat{b}_j}{\lambda_j} \psi_j,
\]

and is therefore called the spectral cut-off estimator. In the following theorem we specify the integrated MSE \(IMSE(\hat{m}) = \int_{X_1} MSE(\hat{m}(z)) d\mu_1(z) \) of the two estimators. Throughout this paper, we assume that the parameters of regularization satisfy \(M \to \infty \) or \(\alpha \to 0 \) with increasing sample size \(N \to \infty \).

Theorem 1. If the assumptions specified in this section are satisfied, then the integrated MSE of the Tikhonov estimator (4) is given by

\[
IMSE(\hat{m}_\alpha) = \Phi_T(h, \alpha) = \frac{1}{N} \int_{X_1} g_a(x) \{ \sigma^2(x) + (Km)^2(x) \} \frac{1}{h(x)} \ d\mu_2(x)
+ \alpha^2 \sum_{j=1}^{\infty} \frac{a_j^2}{(\lambda_j^2 + \alpha)^2} - \frac{1}{N} \sum_{j=1}^{\infty} \frac{\lambda_j^4 a_j^2}{(\lambda_j^2 + \alpha)^2},
\]

where the function \(g_a \) is defined by

\[
g_a(x) = \sum_{j=1}^{\infty} \frac{\lambda_j^2}{(\lambda_j^2 + \alpha)^2} \psi_j^2(x).
\]

For the spectral cut-off estimator (5) we obtain

\[
IMSE(\hat{m}_M) = \Phi_C(h, M) = \frac{1}{N} \int_{X_1} g_M(x) \{ \sigma^2(x) + (Km)^2(x) \} \frac{1}{h(x)} d\mu_2(x)
+ \sum_{j=M+1}^{\infty} \frac{b_j^2}{\lambda_j^2} - \frac{1}{N} \sum_{j=1}^{M} \frac{b_j^2}{\lambda_j^2},
\]

where the function \(g_M \) is defined by

\[
g_M(x) = \sum_{j=1}^{M} \frac{\psi_j^2(x)}{\lambda_j^2}.
\]
2.2. Optimal designs

Optimal design of experiments is concerned with increasing the efficiency of statistical inference by determining the design, i.e. the experimental conditions X_1, X_2, \ldots, X_N, at which measurements should be taken, in an optimal way. For applications such as e.g., PET, computed tomography or MRI, it is expected that this approach will result in better images without requiring a larger sample size. Here we have the situation that the X_i’s are random variables, so—instead of determining fixed optimal values for the X_i’s—the aim is to find the optimal probability distribution, from which they should be sampled. This distribution is characterized by its probability density, i.e. the design density h. Theorem 1 shows that for each choice of the regularization method the integrated MSE, which is a measure of accuracy of the respective estimator, depends on h. We therefore use the integrated MSE as an optimality criterion to find the best design density.

In this section, we will determine designs which minimize the integrated MSE of the estimators \hat{m}_α or \hat{m}_M, corresponding to Tikhonov and spectral cut-off regularization, respectively. This criterion depends not only on the design density h, but also on the parameter of regularization, and on the functions m and σ^2. We will assume that m and σ^2 are known and determine the optimal design density, which corresponds to the concept of locally optimal designs (see Chernoff 1953). As a consequence, the designs derived here require some preliminary knowledge about the regression curve in the specific problem under investigation. On the other hand the important application of our results consists in the fact that the derived optimal designs serve as a benchmark for the commonly used designs. In particular, we use the optimal designs to demonstrate that in many cases the popular uniform allocation is extremely efficient with respect to the integrated MSE criterion. Moreover, the optimal designs determined in this section can be used in more advanced sequential design procedures as considered by Park (2000), Park and Faraway (1998) or Efroymovich (2008) in the case of direct nonparametric regression.

While for fixed m and σ^2 the optimal design density can be found explicitly, the parameter of regularization usually has to be determined numerically from experimental data. The following result specifies the optimal design density.

Theorem 2.

1. For fixed $\alpha > 0$ the optimal design density minimizing the function $\Phi_T(h, \alpha)$ defined in (6) is given by

$$h_{\alpha}^*(x) = \frac{\sqrt{g_\alpha(x)} \sqrt{\sigma^2(x) + (Km)^2(x)}}{\int_{X_1} \sqrt{g_\alpha(t)} \sqrt{\sigma^2(t) + (Km)^2(t)} \, d\mu_2(t)},$$

where the function g_α is defined by (7).

2. For fixed $M \in \mathbb{N}$, the optimal design density minimizing the function $\Phi_C(h, M)$ defined in (8) is given by

$$h_M^*(x) = \frac{\sqrt{g_M(x)} \sqrt{\sigma^2(x) + (Km)^2(x)}}{\int_{X_1} \sqrt{g_M(t)} \sqrt{\sigma^2(t) + (Km)^2(t)} \, d\mu_2(t)},$$

where the function g_M is defined by (9).
3. Deconvolution with a one-dimensional predictor

In this section, we focus on deconvolution problems of periodic functions in $L^2[0, 1]$ which are symmetric around 0.5 (in the following denoted by $L^2_s[0, 1]$), i.e. we consider the convolution operator

$$(Km)(x) = \Psi * m(x) = \int_0^1 \Psi(x - t)m(t) \, dt,$$

with $m \in L^2_s[0, 1]$ the (unknown) function of interest, and $\Psi \in L^2_s[0, 1]$ the known symmetric convolution function. The main purpose of this example is to illustrate the derivation of an optimal design in a simple setting, i.e. by using a rather elementary basis of eigenfunctions. Note that in this case the operator K is self-adjoint with eigenvalues $\lambda_j = \int_0^1 \Psi(t)\psi_j(t) \, dt$, $j \geq 1$, and eigenfunctions $\varphi_j(x) = \psi_j(x) = \sqrt{2} \cos(2(j - 1)\pi x)$ for $j \geq 2$ and $\varphi_1(x) = \psi_1(x) = 1$. The measures μ_1 and μ_2 are the Lebesgue measure on the interval $[0, 1]$.

In the subsequent examples, we assume for illustrative purposes that the eigenvalues λ_j of the operator K are given by $\lambda_j = 1/j^{1+\delta}$ and the coefficients a_j in the Fourier expansion of the function m are also given by $a_j = 1/j^{1+\delta}$ for some $\delta > 0$. Here, the larger the δ, the smoother the Ψ and, in consequence, the operator K. The functions g_α and g_M appearing in the optimal densities $h_\alpha^*(x)$ and $h_M^*(x)$ defined by (10) and (11), respectively, simplify to

$$g_\alpha(x) = \frac{1}{(1 + \alpha)^2} + 2 \sum_{j=2}^{\infty} \frac{j^{2(1+\delta)}}{(1 + j^{2(1+\delta)}\alpha)^2} \cos^2(2(j - 1)\pi x)$$

and

$$g_M(x) = 1 + 2 \sum_{j=2}^{M} j^{2(1+\delta)} \cos^2(2(j - 1)\pi x).$$ (12)

We distinguish two cases in the following discussion corresponding to homo- and heteroscedastic data.

3.1. Homoscedasticity

For $\delta = 1$, $\sigma^2 = 1$ and various values of the regularization parameter, the optimal design densities are depicted in figure 1. It is interesting to note that the optimal design densities for the Tikhonov estimator appear to be less oscillating compared to the optimal densities for spectral cut-off estimation. On the other hand, both cases yield designs with a similar form as the uniform design except in neighborhoods of the points 0, 0.5 and 1.

In what follows, we will use the optimal designs as benchmarks and investigate the performance of the commonly used uniform allocation $h_U(x) \equiv 1$. For brevity we restrict ourselves to spectral cut-off regularization; Tikhonov regularization yields similar conclusions.

We seek values for M that balance the contributions of the bias and the variance in the integrated MSE. A simple calculation yields for the integrated squared bias in (8)

$$\sum_{j=M+1}^{\infty} a_j^2 = \sum_{j=M+1}^{\infty} \frac{1}{j^{2(1+\delta)}} = \frac{1}{(2\delta + 1)M^{2\delta+1}} + o(M^{-2\delta-1}).$$

On the other hand, the integral of the function g_M defined in (12) with respect to the Lebesgue measure is of order $M^{2\delta+3}$ and so M has to be chosen proportionally to $N^{1/(2\delta+1)}$. Therefore,
we consider the choice
\[M = \left\lfloor c \left(\frac{N}{\tau^2} \right)^{1/4(1+\delta)} \right\rfloor + 1 \] (13)
for different values of the constant \(c \), where \(\tau^2 = \int_0^1 (\sigma^2(x) + (Km)^2(x)) \, dx \).

We investigate two examples, namely \(a_j = \lambda_j = j^{-2} \) and \(a_j = \lambda_j = j^{-1.25} \). In table 1, we show the efficiencies of the uniform design \(h_U \) with respect to the optimal design minimizing the integrated MSE, i.e.
\[\text{eff}(h_U, M) = \frac{\Phi_C(h_U, M)}{\Phi_C(h^*_M, M)}. \]

We observe that the uniform design is rather efficient for both examples across all scenarios (at least 83.9% for \(\delta = 1 \) and 87.6% for \(\delta = 0.25 \)). For the situation of faster decay of
coefficients a_j, we observe slightly larger advantages of the optimal design. Similarly, for small sample sizes or if the value of the constant c used to determine M is 1 the improvement through using the optimal design can be more substantial. The influence of the size of σ^2 appears to be negligible.

In practice, the values for a_j, $j = 1, 2, \ldots, \sigma^2$ and M are not known prior to the experiment, and so the optimal design densities are locally optimal. To assess the robustness of locally optimal designs under model misspecifications, we find eight locally optimal designs and compare them across these eight scenarios. The uniform design is also included in this study. We assume $\lambda_j = j^{-2}$, $N = 100$, and specify $a_j = j^{-2}$ or $j^{-1.25}$ ($j = 1, 2, \ldots$), $\sigma^2 = 1$ or 0.25 and $M = 2$ or 5. The efficiencies of the nine designs under consideration are given in table 2.

Note that all off-diagonal elements equal to 1 result from rounding to three decimal places. We see from table 2 that the uniform design is most robust among its competitors with a minimal efficiency of 85% across all scenarios. For the locally optimal designs we

Table 1. Efficiency of the uniform design for different sample sizes, variances and choices of the regularization parameter M. The value of M, determined by (13), is shown in brackets.

$\delta = 1$	$\sigma^2 = 0.25$	$\sigma^2 = 1$	$\sigma^2 = 4$						
N	$c = 0.5$	$c = 1$	$c = 2$	$c = 0.5$	$c = 1$	$c = 2$	$c = 0.5$	$c = 1$	$c = 2$
25	0.889 (1) 0.839 (2) 0.889 (3)	0.890 (1) 0.845 (2) 0.891 (3)	0.891 (1) 0.849 (2) 0.893 (3)	0.891 (1) 0.849 (2) 0.893 (3)					
100	0.911 (1) 0.850 (2) 0.911 (4)	0.905 (1) 0.851 (2) 0.913 (4)	0.898 (1) 0.852 (2) 0.893 (3)	0.898 (1) 0.852 (2) 0.893 (3)					
1000	0.916 (2) 0.895 (3) 0.926 (5)	0.901 (2) 0.895 (3) 0.928 (5)	0.941 (1) 0.877 (2) 0.915 (4)	0.941 (1) 0.877 (2) 0.915 (4)					

Table 2. Efficiencies of the nine designs under investigation for eight different scenarios with $N = 100$. $h^*(j, \sigma^2, M)$ is the locally optimal design for the given selection of (a_j, σ^2, M), and h_U is the uniform design.

Design/scenario	$\sigma^2 = 0.25$	$\sigma^2 = 1$	$\sigma^2 = 4$
$a_j = j^{-2}$	$M = 2$	$M = 5$	$M = 5$
$h^*(j^{-2}, 0.25, 2)$	1	0.681	1
$h^*(j^{-2}, 0.25, 5)$	0.743	1	0.740
$h^*(j^{-2}, 1, 2)$	1	0.683	0.681
$h^*(j^{-1.25}, 0.25, 2)$	0.998	0.673	0.996
$h^*(j^{-1.25}, 0.25, 5)$	0.747	0.999	0.743
$h^*(j^{-1.25}, 1, 2)$	1	0.678	0.999
$h^*(j^{-1.25}, 1, 5)$	0.745	1	0.742
h_U	0.850	0.926	0.851
Table 3. Efficiency of the uniform design in the Poisson model for different sample sizes and various choices of the regularization parameter M. The value of M is shown in brackets.

N	$\delta = 0.25$	$\delta = 1$				
	$c = 0.5$	$c = 1$	$c = 0.5$	$c = 1$	$c = 0.5$	$c = 1$
25	0.927 (1)	0.909 (4)	0.888 (1)	0.842 (2)	0.890 (3)	
100	0.924 (2)	0.924 (5)	0.903 (1)	0.849 (2)	0.912 (4)	
1000	0.987 (2)	0.941 (7)	0.899 (2)	0.894 (3)	0.926 (5)	

observe an alternating pattern of very high and relatively low efficiencies. These imply that misspecifications of the coefficients a_j and the variance σ^2 hardly affect the efficiency of the locally optimal designs whereas the misspecification of M can lead to poor design performance. Following this up, we found that the optimal designs for the same M but different a_j and σ^2 are very similar, which explains their similar performance. We further note that optimal designs for $M = 5$ are slightly more robust than those for $M = 2$. From the bottom panel of figure 1 we see that $h_5^*(x)$ despite its oscillating form resembles a uniform density more closely than $h_2^*(x)$.

3.2. Heteroscedasticity—Poisson distribution

In many applications of inverse problems, e.g., tomography, the data are counts. In such situations, the assumption of constant variance is not realistic and a popular distributional assumption is that of a Poisson distribution where we have $\text{Var}(Y_i|X_i = x) = \text{E}[Y_i|X_i = x] = (K_m)(x)$. Therefore, it is of considerable interest to compare the results of the previous section with the corresponding situation in the heteroscedastic case to assess if the uniform design will also do well in this situation. Again, we restrict ourselves to the case of spectral cut-off regularization and consider the situation discussed in the previous paragraph, that is, $\lambda_j = a_j = 1/j^{1+\delta}$, where $\delta > 0$. The optimal design density is obtained from (11) with $\sigma^2(x) = (K_m)(x) = 1 + \sqrt{2} \sum_{j=2}^{\infty} j^{-2(1+\delta)} \cos(2\pi(j-1)x)$. The resulting densities are directly comparable with those depicted in the bottom panel of figure 1, but not shown here since there are no substantial differences.

In table 3, we present the corresponding efficiencies of the uniform design, where the parameter of regularization M again is chosen by the rule of thumb in (13), with $\tau^2 = \int_0^1 [K_m(x) + (K_m)^2(x)] \, dx$. A comparison with table 3 shows that in the case of heteroscedasticity the uniform design is similarly efficient as for homoscedasticity.

We investigate a further example corresponding to a sudden change of signal over a certain period. The function $m(z)$ is given by

$$ m(z) = 2 I_{[1/4, 3/4]}(z) + 1, $$

which yields for the coefficients in the Fourier expansion $a_1 = 2$:

$$ a_j = \int_0^1 m(z) \phi_j(z) \, dz = \frac{2\sqrt{2}(-1)^{j/2}}{\pi(j-1)}, \quad \text{if } j \geq 2, \quad j \text{ even} $$

and $a_j = 0$ otherwise. We consider three different functions with which $m(z)$ is convoluted, resulting in eigenvalues $\lambda_j = a_j$, $j^{-1.25}$ or j^{-2}, respectively, for $j = 1, 2, \ldots$. Figure 2 shows the optimal densities for the choice $\lambda_j = a_j$ and different values of M. These designs look considerably different from those found for the previous examples, which is due to different form of the function $K_m(x)$.
Figure 2. The optimal density $h^*_M(x)$ minimizing the integrated MSE of the spectral cut-off estimator in the case of heteroscedasticity for the step function (14) with $\lambda_j = a_j$. Left: $M = 2$, right: $M = 5$.

Table 4. Efficiency of the uniform design for the regression function defined in (14) for different sample sizes and various choices of the parameter M given in brackets.

N	$\lambda_j = a_j$	$\delta = 0.25$	$\delta = 1$						
	$c = 0.5$	$c = 1$	$c = 2$	$c = 0.5$	$c = 1$	$c = 2$	$c = 0.5$	$c = 1$	$c = 2$
25	0.994 (1)	0.852 (2)	0.852 (3)	0.937 (1)	0.861 (2)	0.901 (3)	0.899 (1)	0.841 (2)	0.886 (3)
100	0.998 (1)	0.898 (2)	0.898 (3)	0.969 (1)	0.896 (2)	0.918 (4)	0.935 (1)	0.860 (2)	0.907 (4)
1000	0.979 (2)	0.979 (3)	0.885 (6)	0.975 (2)	0.935 (4)	0.941 (7)	0.943 (2)	0.913 (3)	0.922 (5)

Again, we use the optimal designs as benchmarks to assess the performance of the uniform design. To find values for M through (13) we compute the order of the integrated squared bias as

$$
\sum_{j=M+1}^{\infty} a_j^2 = \left(\frac{8}{\pi^2}\right) \sum_{j=M+1}^{\infty} j \cdot (j - 1)^{-2} = O(1/M).
$$

The order of the integrated variance is $O(M^2 \delta + 3/N)$ for $\delta = 0, 0.25$ and 1, respectively, depending on the choice of eigenvalues.

The efficiencies of the uniform design for various scenarios are given in table 4. As before, the uniform design is doing remarkably well.

4. Two-dimensional indirect regression problems

In this section, we investigate optimal design problems for two-dimensional indirect regression problems. Throughout this section, $\mathbf{x}, \mathbf{z} \in \mathbb{R}^2$ denotes two-dimensional variables. Referring to four particular applications given below, we assume that the bases of the underlying L^2-spaces are subspaces of the complex-valued functions and that the corresponding bases are indexed by two parameters, such that the singular value decompositions of the functions m and Km are given by

$$
m(\mathbf{z}) = \sum_{p=0}^{\infty} \sum_{q=0}^{p} a_{pq} \varphi_{pq}(\mathbf{z}), \quad (Km)(\mathbf{x}) = \sum_{p=0}^{\infty} \sum_{q=0}^{p} b_{pq} \psi_{pq}(\mathbf{x}),
$$
respectively, where the range of the second index \(p \) is finite and depends on the parameter \(q \).

The functions \(\varphi_{pq} \) and \(\psi_{pq} \) are the known orthonormal bases of the \(L^2 \)-spaces, that is

\[
\int \int \varphi_{pq}(z) \overline{\varphi_{rs}(z)} \, \mathrm{d}\mu_1(z) = \int \int \psi_{pq}(x) \overline{\psi_{rs}(x)} \, \mathrm{d}\mu_2(x) = \delta_{pr} \delta_{qs},
\]

where \(\overline{\varphi} \) denotes the complex conjugate of the function \(\varphi \) and \(\delta_{ij} \) is the Kronecker delta. The singular values \(\lambda_{pq} \) satisfy

\[
K \varphi_{pq} = \lambda_{pq} \psi_{pq}
\]

and

\[
\lambda_{pq} \varphi_{pq} = b_{pq}.
\]

For brevity we restrict ourselves to the case of spectral cut-off regularization and consider the estimators

\[
\hat{b}_{pq} = \frac{1}{N} \sum_{i=1}^{N} \frac{\psi_{pq}(X_i)}{h(X_i)} Y_i,
\]

and

\[
\hat{m}(z) = \sum_{q=0}^{M} \sum_{p} \hat{b}_{pq} \lambda_{pq} \varphi_{pq}(z)
\]

for the coefficients \(b_{pq} \) and the regression function \(m \), respectively. From theorem 1, we obtain for the integrated MSE

\[
\text{IMSE}(h, M) = \frac{1}{N} \int \int \frac{g_M(x) \left(\sigma^2(x) + (Km)^2(x) \right)}{h(x)} \, \mathrm{d}\mu_2(x)
\]

\[
+ \sum_{q=M+1}^{\infty} \sum_{p} \frac{|b_{pq}|^2}{\lambda_{pq}^2} - \frac{1}{N} \sum_{q=0}^{M} \sum_{p} \frac{|b_{pq}|^2}{\lambda_{pq}^2},
\]

where the function \(g_M \) is defined by

\[
g_M(x) = \sum_{q=0}^{M} \sum_{p} \frac{|\psi_{pq}(x)|^2}{\lambda_{pq}^2},
\]

and \(|b_{pq}|^2 = b_{pq} \overline{b_{pq}} \) is the squared complex modulus. The optimal density minimizing the integrated MSE is obtained from equation (11) in theorem 2.

4.1. Optimal design for the Radon transform

As a special case of the situation discussed in the previous paragraph we consider the Radon transform, which appears, e.g., in the modeling of PET experiments (e.g., Johnstone and Silverman 1990, Cavalier 2000). PET is concerned with the estimation of the density of positron emission due to a radioactively labeled metabolite which was injected into a patient’s body. In the two-dimensional case, which we consider here, the aim is to recover the density of emission in a slice through the patient’s body. In this case, the Radon transform \(R \) represents the line integrals through the emission density in the body, taken along all possible lines through the slice. Hence, \(R \) is an injective integral operator mapping a function in the space of observations (often called brain space) \(L^2(B, \mu_B) \) of emission densities in the patient’s body to the detector space \(L^2(D, \mu_D) \). In what follows, we assume \(B \) to be the unit circle, parametrized by polar coordinates \((r, \vartheta)\), and in a similar way \(D \) to be parametrized by the angle \(\phi \in [0, 2\pi) \) of the detected line through the patient’s body, and its impact parameter \(s \in [0, 1] \).

In our subsequent analysis, we model the PET data as noisy discrete observations in the indirect regression model (1), where \(m(r, \vartheta) \) is the emission density in the patient’s body, which is to be recovered from the observations, and the operator \(K = R \) is

\[
Rm(s, \phi) = \frac{1}{2\sqrt{1-s}} \int_{\sqrt{1-s}} \int_{-\sqrt{1-s}} m \left(s \cos(\phi) - t \sin(\phi), s \sin(\phi) + t \cos(\phi) \right) \, \mathrm{d}t.
\]

Unlike for the deconvolution problems considered in section 3, the system of basis functions considered here is not orthogonal with respect to the Lebesgue measure. We briefly discuss
the singular value decomposition of \mathcal{R}, which is required for the subsequent computations. The Lebesgue densities of the measures μ_B and μ_D corresponding to the L^2-spaces $L^2(B, \mu_B)$ and $L^2(D, \mu_D)$ are given by $w_B(r, \theta) = r/\pi$ for $0 \leq r < 1$, $0 \leq \theta < 2\pi$ and $w_D(s, \phi) = (2(1-s^2))^{1/2}/\pi^2$ for $0 \leq s < 1$, $0 \leq \phi < 2\pi$. The orthonormal system of basis functions $\{\varphi_{pq}\}$ of the brain space is defined by the Zernike polynomials $\varphi_{p,q}(r, \theta) = \sqrt{q+1} \cdot Z_q^{p-0}(r) \omega^q$, $q = 0, 1, 2, \ldots$, $p = -q, -q + 2, \ldots$, q, where $Z_q^p(r)$ denotes a polynomial of degree m (see Zernike 1934) and is defined as

$$Z_q^p(r) = \sum_{j=0}^{(m-k)/2} \frac{(-1)^j (m-j)!}{j!((m+k)/2-j)!((m-k)/2-j)!} r^{m-2j}$$

if $m-k$ is even and $Z_q^p(r) = 0$ if $m-k$ is odd. Similarly, the associated basis functions of the detector space are given by $\varphi_{p,q}(s, \phi) = U_q(s) \omega^q$, $q = 0, 1, 2, \ldots$, $p = -q, -q + 2, \ldots$, q, where $U_q(\cos(\kappa)) = \sin((q+1)\kappa)/\sin(\kappa)$ is the qth Chebyshev polynomial of the second kind (see Szegö 1975). Finally, the singular values of the operator \mathcal{R} are given by $\lambda_{pq} = (q+1)^{-1/2}$ for every $(p, q) \in \{q \in \mathbb{N}_0; p = -q, -q + 2, \ldots, q\}$, and $\mathcal{R} \varphi_{pq} = \lambda_{pq} \varphi_{pq}$.

For further details see Johnstone and Silverman (1990), who studied the PET problem in a density estimation framework. In what follows, we will derive the optimal design density for the Radon transform.

Note that the function g_M defined in (15) does not depend on the variable ϕ, that is

$$g_M(s) = g_M(s, \phi) = \sqrt{\int_0^r \int_0^{2\pi} \sigma^2(t, \rho) + (\mathcal{R}m)^2(t, \rho) \sqrt{1 - r^2} \sqrt{g_M(t)}} \frac{\sqrt{\mathcal{R}m^2}(s)}{\sqrt{g_M(s)}} ds.$$

It follows from theorem 2 that the optimal density is given by

$$h_M^*(s, \phi) = \frac{\pi^2}{2} \sqrt{\frac{\sigma^2(s, \phi) + (\mathcal{R}m)^2(s, \phi)}{\sqrt{g_M(s)}}} \sqrt{1 - r^2} \sqrt{\mathcal{R}m(s)} ds.$$

4.2. Specific examples

We consider two objects positioned in the center of the scan field, a solid disc and a polar rose, the latter representing an object with cracks appearing in several places as, e.g., observed in materials science; a disc shifted to the right of the scan field; a double disc having positive mass throughout the scan field. A schematic of a slice of each example object, embedded in the detector ring, is shown in figure 3.

For each slice of a solid disc of radius $r_0 < 1$, positioned in the middle of the scan field, we obtain $m(r, \theta) = 1$ if $0 \leq r \leq r_0$, $0 \leq \theta \leq 2\pi$, and $m(r, \theta) = 0$ otherwise.

Since the observations in tomography applications are usually photon counts, we assume the observations $Y \mid (S, \Phi) = (s, \phi)$ come from a Poisson distribution with parameter

$$\mathcal{R}m(s, \phi) = \sigma^2(s, \phi) = \sqrt{r_0^2 - s^2}/\sqrt{1 - s^2} I_{[0,r_0]}(s).$$

Since $\mathcal{R}m(s, \phi)$ does not depend on ϕ the optimal design density, $h_M^*(s, \phi)$, simplifies to

$$h_M^*(s, \phi) = \frac{\pi}{4} \sqrt{\frac{\mathcal{R}m(s)}{\mathcal{R}m(t)}} \sqrt{\frac{\sqrt{r_0^2 - s^2}}{\sqrt{1 - s^2}} + \frac{r_0^2 - r^2}{1 - r^2}}$$

if $0 \leq s \leq r_0$, $0 \leq \phi \leq 2\pi$.

12
and $h^*_M(s, \phi) = 0$ otherwise. Obviously, this design would be useless for objects that extend beyond distance r_0 from the center.

For a polar rose with eight petals and choosing 0.5 for the maximal extension from the center, each slice is described by

$$m(r, \theta) = \begin{cases} 1 & \text{if } 0 \leq r \leq 0.5|\cos(4\theta)|, \quad 0 \leq \theta \leq 2\pi \end{cases}$$

and $m(r, \theta) = 0$ otherwise. The graphs in figure 4 show the optimal design density $h^*_M(s, \phi)$ for the centered disc with radius $r_0 = 0.5$ and the polar rose for different values of M. For both objects, the densities are zero for $s > 0.5$.

Numerical calculations suggest that the integrated squared bias is approximately of order M^{-1} while the integrated variance is of order M^3/N. To obtain a balance of orders we consider the choice $M = [c(N/\tau^2)^{0.25}] + 1$ for the parameter in the spectral cut-off estimator, where

$$\tau^2 = \int_0^1 \int_0^{2\pi} (RM(s, \phi) + (RM)^2(s, \phi)) d\mu_D(s, \phi).$$

In the left panel of table 5, we show the efficiencies of the uniform design h_U for scanning the centered disc for various values of N and M, while the efficiencies for scanning the polar rose defined in (18) are displayed on the right panel. These are reasonably good when M
Figure 4. Plots of selected optimal densities \(h_M^*(s, \phi) \) for scanning a centered disc and a polar rose for different values of \(M \). Top left: centered disc, \(M = 5 \); top right: centered disc, \(M = 10 \); bottom left: polar rose, \(M = 5 \); bottom right: polar rose, \(M = 10 \).

Table 5. Efficiency of the uniform design \(h_U \) for estimating a disc and a polar rose in the middle of the scan field, respectively, for different sample sizes and various choices of the parameter \(M \) used in the spectral cut-off regularization. The values of \(M \) are given in brackets.

\(N \)	\(c = 0.5 \)	\(c = 1 \)	\(c = 2 \)	\(c = 0.5 \)	\(c = 1 \)	\(c = 2 \)
25	0.751 (2)	0.696 (3)	0.607 (6)	0.830 (2)	0.691 (4)	0.632 (8)
100	0.833 (3)	0.658 (5)	0.611 (9)	0.910 (3)	0.725 (6)	0.646 (11)
1000	0.915 (4)	0.733 (8)	0.620 (15)	0.950 (5)	0.842 (9)	0.679 (18)
10000	0.962 (7)	0.801 (13)	0.623 (26)	0.981 (8)	0.901 (16)	0.661 (32)
Table 6. Efficiency of the uniform design h_U for estimating a non-centered disc and a double disc in the middle of the scan field, respectively, for different sample sizes and various choices of the parameter M used in the spectral cut-off regularization. The values of M are given in brackets.

N	Shifting disc			Double disc		
	$c = 0.5$	$c = 1$	$c = 2$	$c = 0.5$	$c = 1$	$c = 2$
25	0.679 (2)	0.568 (3)	0.541 (6)	0.856 (2)	0.860 (3)	0.863 (5)
100	0.693 (3)	0.581 (5)	0.543 (9)	0.873 (2)	0.866 (4)	0.866 (7)
1000	0.864 (4)	0.644 (8)	0.554 (15)	0.920 (3)	0.873 (6)	0.866 (12)
10000	0.923 (7)	0.702 (13)	0.559 (26)	0.937 (5)	0.879 (10)	0.867 (20)

is small, i.e. when the bias dominates the IMSE, but rather poor for larger values of the regularization parameter.

For calculating the optimal density we used the assumption that we know the exact shape of the object to be scanned. In some applications, e.g., when looking for interior cracks in an object in materials science, information on the outer shape and position of the object may well be available. Using that the objects do not extend more than 0.5 units from the center of the detector circle, it seems reasonable to consider the uniform design with constant density $h_{U,0.5}(s, \phi) \equiv \pi / (\sqrt{0.75} + 2 \arcsin(0.5)) \approx 1.642$ on $[0, 0.5] \times [0, 2\pi]$. The efficiencies of this design show a considerable improvement compared with the uniform design on the larger space: across the same scenarios as in table 5, the minimal efficiency of $h_{U,0.5}$ is 96.3% and 91.2%, respectively, for estimating the centered disc and the polar rose.

Next, we consider the scanning of a solid disc with radius r_0, but this time the object is not located in the center of the scan field. For the choice $r_0 = 0.5$ for the radius and $(0.5, 0)$ for the center of the object, we obtain for its density

$$m(r, \theta) = \begin{cases}
1 & \text{if } 0 \leq r \leq \cos(\theta), \quad 0 \leq \theta \leq 2\pi \\
0 & \text{otherwise}
\end{cases}$$

and $m(r, \theta) = 0$ otherwise.

As an example of an object which has positive density everywhere in the scan field we consider two nested discs of different density. A slice of this double disc is described by

$$m(r, \theta) = \begin{cases}
1 & \text{if } 0 \leq r \leq r_0, \quad 0 \leq \theta \leq 2\pi \\
0.5 & \text{if } r_0 < r \leq 1, \quad 0 \leq \theta \leq 2\pi
\end{cases},$$

i.e. the density of the object is higher towards the center.

The optimal densities for scanning the shifted disc and double disc are depicted in figure 5 for different values of the regularization parameter M. Unlike the previous examples, for the shifted disc the area with zero density depends on both s and ϕ. For the double disc, the optimal densities increase with s as $s \rightarrow 1$.

In the left panel of table 6 we show the efficiencies of the uniform design h_U for estimating the shifted disc for various values of N and M while the efficiencies for estimating the double disc are displayed in the right panel. For the shifted disc, the uniform design only does well in situations where the regularization parameter M is small, i.e. where the integrated squared bias dominates the IMSE. Unlike in the situation of example 1, where this problem could be fixed by reducing the domain of the uniform design accordingly, there is no obvious way around this issue in this case. The double disc can be estimated reasonably well using the uniform design.
Figure 5. Plots of selected optimal densities $h^*_M(s, \phi)$ for scanning a shifted disc and a double disc, respectively, for different values of M. Top left: shifted disc, $M = 5$; top right: shifted disc, $M = 10$; bottom left: double disc, $M = 5$; bottom right: double disc, $M = 10$.

5. Conclusions

This is the first paper to provide a systematic approach to optimal design for indirect regression problems. We have focused on the derivation of designs leading to an efficient estimation of the unknown regression function m. Using the singular value decomposition of the operator K, an expression for the integrated MSE of a natural series estimator was derived. Designs minimizing this expression were found explicitly. These designs serve as benchmarks for commonly used designs in indirect regression. Moreover they can be used in more advanced sequential design procedures as considered by Park (2000), Park and Faraway (1998) or Efromovich (2008) in the case of direct nonparametric regression. In this paper, we worked in the first named direction and investigated the efficiency of the uniform design in several situations of practical interest. It was demonstrated that the uniform design is performing efficiently under most scenarios. In particular, the uniform design is rather robust with respect to the choice of the regularization parameter.
Hence, our results are twofold. First, we introduce a method for the determination of the optimal design, which can be applied to a wide range of areas. However, we argue that our even more important result is the second, which shows that in many cases the uniform design is very close to optimality. A more general result showing a certain kind of near-optimality of the uniform design for a large class of inverse problems (including the case of discretized operators, which obey different spectral properties from their undiscretized counterparts) would clearly be desirable. Inference in this direction is of practical interest, but beyond the scope of this paper and left for future research. Nevertheless, we expect that the near optimality result holds rather generally. As a consequence, in many practical applications we do not suggest the widespread use of the optimal design, but we argue to have provided the basis for safely being able to recommend the uniform design.

A similar comment applies to an extension of our results which includes a method (and its analysis) of determining an optimal design which includes the regularization parameter and method in the optimization process. This turns out to be very technically demanding. A possible strategy is (in particular for iterative regularization methods) to determine the optimal design and IMSE for each potentially feasible value of the regularization parameter and, in a second step, to choose the regularization parameter and in consequence the optimal design from the considered values. In a practical application, other regularization methods could be analysed similarly. Again, this is beyond the scope of this paper and left for future research.

Acknowledgments

The authors would like to thank two unknown referees, whose comments helped to improve an earlier version of this paper considerably, and Martina Stein, who typed parts of this manuscript with considerable technical expertise. This work has been supported in part by the Collaborative Research Center ‘Statistical modeling of nonlinear dynamic processes’ (SFB 823 projects C2 and C4) of the German Research Foundation (DFG) and the BMBF (project ‘INVERS’ 03BIPAH4).

Appendix

Proofs

A.1. Proof of theorem 1

We restrict ourselves to the spectral cut-off estimator. The arguments for the Tikhonov estimator (4) are similar and therefore omitted for brevity. First note that the bias of the spectral cut-off estimator \hat{m}_M is given by

$$E[\hat{m}_M(z) - m(z)] = \sum_{j=1}^{M} \frac{E[\hat{b}_j - b_j]}{\lambda_j} \psi_j(z) - \sum_{j=M+1}^{\infty} b_j \lambda_j \psi_j(z) = - \sum_{j=M+1}^{\infty} b_j \lambda_j \psi_j(z). \quad (A.1)$$

For the variance of the estimators we have from definition (3) that

$$Var(\hat{b}_j) = \frac{1}{N} \{Var(E[Z_{ij}Y_1|X_1]) + E[Var(Z_{ij}Y_1|X_1)]\}$$

$$= \frac{1}{N} \int_{\chi_2} \left[\frac{\sigma^2(x) + (Km)^2(x)}{h(x)} \right] \psi_j^2(x) \, d\mu_2(x) - \frac{b_j^2}{N},$$

where the random variables Z_{ij} are given by $Z_{ij} = \psi_j(X_i)/h(X_i)$. The variance of the spectral cut-off estimator is

$$Var(\hat{m}_M(z)) = \sum_{j,k=1}^{M} \text{Cov}(\hat{b}_j, \hat{b}_k) \psi_j(z) \psi_k(z)/\lambda_j \lambda_k.$$
functions \(\{\varphi_1, \varphi_2, \ldots\}\) define an orthonormal basis of \(L^2(\mu_1)\), which implies for the integrated variance that

\[
\int_{X_1} \text{Var}(\hat{m}_M(x)) \, d\mu_1(x) = \sum_{j=1}^{M} \frac{\text{Var}(\hat{b}_j)}{\lambda_j^2}
\]

\[
= \frac{1}{N} \int_{X_2} g_M(x) \left[\sigma^2(x) + (Km)^2(x) \right] \frac{1}{h(x)} \, d\mu_2(x) - \frac{1}{N} \sum_{l=1}^{M} \frac{b_l^2}{\lambda_l^2},
\]

where the function \(g_M\) is defined in (9). By a similar argument applied to (A.1), we obtain for the integrated MSE of the estimator expression (8), which proves the second assertion of theorem 1.

\[\square\]

A.2. Proof of theorem 2

Both cases are shown similarly and we restrict ourselves to case (2) of spectral cut-off regularization. First note that for fixed \(M \in \mathbb{N}\) the optimization of the integrated MSE (8) reduces to minimization of the expression

\[
f(h) = \int_{X_2} g_M(x) \left[\sigma^2(x) + (Km)^2(x) \right] \frac{1}{h(x)} \, d\mu_2(x)
\]

with respect to the design density \(h\). Now Cauchy’s inequality yields

\[
f(h) \geq \left(\int_{X_2} \sqrt{g_M(x)} \sqrt{\sigma^2(x) + (Km)^2(x)} \, d\mu_2(x) \right)^2,
\]

where there is equality if and only if \(h^*_M(x) = \frac{\sqrt{g_M(x)} \sqrt{\sigma^2(x) + (Km)^2(x)}}{\int_{X_2} \sqrt{g_M(t)} \sqrt{\sigma^2(t) + (Km)^2(t)} \, d\mu_2(t)}\).

\[\square\]

References

Atkinson A C, Donev A and Tobias R 2007 Optimum Experimental Designs, with SAS (Oxford: Oxford University Press)

Bardow A 2008 Optimal experimental design of ill-posed problems: the meter approach Comput. Chem. Eng. 32 115–24

Bissantz N and Birke M 2009 Asymptotic normality and confidence intervals for inverse regression models with convolution-type operators J. Multivariate Anal. 100 2364–75

Broniatowski M and Celant G 2007 Optimality and bias of some interpolation and extrapolation designs J. Stat. Plan. Inference 137 858–68

Cavalier L 2000 Efficient estimation of a density in a problem of tomography Ann. Stat. 28 630–7

Cavalier L 2001 On the problem of local adaptive estimation in tomography Bernoulli 7 63–78.

Cavalier L and Tsybakov A 2002 Sharp adaptation for inverse problems with random noise Probab. Theory Relat. Fields 123 323–54

Chan L-Y 1992 Optimal design for estimation of variance in nonparametric regression using first order differences Biometrika 78 926–9

Cheng M-Y, Hall P and Titterington D 1998 Optimal design for curve estimation by local linear smoothing Bernoulli 4 3–14

Chernoff H 1953 Locally optimal designs for estimating parameters Ann. Math. Stat. 24 586–602

Curtis A 1999 Optimal experiment design: cross-borehole tomographic examples Geophys. J. Int. 136 637–50

Dette H and O’Brien T 1999 Optimality criteria for regression models based on predicted variance Biometrika 86 93–106
Donoho D L and Low M G 1992 Renormalization exponents and optimal pointwise rates of convergence Ann. Stat. 20 944–70
Efroimovich S 2008 Optimal sequential design in a controlled non-parametric regression Scand. J. Stat. 35 266–85
Engl H W, Hanke M and Neubauer A 1996 Regularization of Inverse Problems (Dordrecht: Kluwer Academic)
Fan J 1991 On the optimal rates of convergence for nonparametric deconvolution problems Ann. Stat. 19 1257–72
Groeneboom P and Jongbloed G 1995 Isotonic estimation and rates of convergence in Wicksell’s problem Ann. Stat. 23 1518–42
Haber E, Horesh L and Tenorio L 2008 Numerical methods for experimental design of large-scale linear ill-posed inverse problems Inverse Problems 24 055012
Horesh L, Haber E and Tenorio L 2010 Optimal experimental design for the large-scale nonlinear ill-posed problem of impedance imaging Large-Scale Inverse Problems and Quantification of Uncertainty ed L Biegler et al (Chichester: Wiley)
Johnstone I M, Kerkvcharian G, Picard D and Raimondo M 2004 Wavelet deconvolution in a periodic setting J. R. Stat. Soc. B 66 547–73
Johnstone I M and Silverman B W 1990 Speed of estimation in positron emission tomography and related inverse problems Ann. Stat. 18 251–80
Mair B A and Ruymgaart F H 1996 Statistical inverse estimation in Hilbert scales SIAM J. Appl. Math. 56 1424–44
Maurer H, Boerner D and Curtis A 2000 Design strategies for electromagnetic geophysical surveys Inverse Problems 16 1097–117
Mueller H 1984 Optimal designs for nonparametric kernel regression Stat. Probab. Lett. 4 285–90
Park D 2000 Sequential design for local bandwidth response curve estimator J. Nonparametric Stat. 12 593–48
Park D and Faraway J 1998 Sequential design for response curve estimation J. Nonparametric Stat. 10 155–64
Pukelsheim F 2006 Optimal Design of Experiments (Philadelphia, PA: SIAM)
Shepp L and Vardi Y 1982 Maximum likelihood reconstruction for emission tomography IEEE Trans. Med. Imag. 1 113–22
Spruill M C 1987 Optimal designs for interpolation J. Stat. Plan. Inference 16 219–29
Stark P B 2008 Generalizing resolution Inverse Problems 24 034014
Studden W J 1977 Optimal designs for integrated variance in polynomial regression Statistical Decision Theory and Related Topics. II (Proc. Sympos., Purdue Univ., Lafayette, IN, 1976) (New York: Academic) pp 411–20
Szegö G 1975 Orthogonal Polynomials (Providence, RI: American Mathematical Society)
Van den Berg J, Curtis A and Trampert J 2003 Optimal nonlinear Bayesian experimental design: an application to amplitude versus offset experiments Geophys. J. Int. 155 411–21
Zernike F 1934 Diffraction theory of the cut procedure and its improved form, the phase contrast method Physica 1 689–704 (in German)