Extension of Busch’s Theorem to Particle Beams

L. Groening, C. Xiao, Linac Department
M. Chung, UNIST, Ulsan, Korea

Phys. Rev. Accel. Beams 21 014201 (2018)
Outline

• Hamiltonian, conjugate variables (short & basic)
• Busch theorem on single particle
• Applications:
 • electron cooling
 • magnetic bottle
• Projected rms-emittances, eigen emittances
• Extension of Busch theorem to beams
• Applications:
 • increase of FEL gain & collider luminosity
 • increase of injection efficiency into ion rings
Hamiltonian, conjugate variables

Hamiltonian is total energy:

\[
H := E_{\text{kin}} + E_{\text{pot}}
\]

\[
H(\hat{p}, \hat{r}) := \frac{\hat{p}^2}{2m} + V(\hat{r})
\]

\(\hat{r} \) := position

\(\hat{p} \) := mechanical momentum = \(m\hat{v} := m\hat{r} \)

equations of motion through derivatives of \(H \):

\[
\dot{\hat{p}} := -\frac{\partial H}{\partial \hat{r}} = -\frac{\partial V}{\partial \hat{r}} = \hat{F}
\]

\[
\dot{\hat{r}} := \frac{\partial H}{\partial \hat{p}} = \frac{\hat{p}}{m}
\]

\(\hat{r} \) and \(\hat{p} \) are conjugate variables
Force from magnetic field

force on particle by constant magnetic field \(\vec{B} := \begin{bmatrix} 0 \\ 0 \\ B_s \end{bmatrix} = \vec{v} \times \vec{A} \)

\(\vec{F} = eq(\vec{v} \times \vec{B}) \)

\(F_x = \dot{p}_x = eqv_yB_s \)

\(F_y = \dot{p}_y = -eqv_xB_s \)

to obtain equations of motion from Hamiltonian mechanics \(\rightarrow \) use "generalized" momentum

\(\tilde{p} := \vec{P} + eq\vec{A} \) in the Hamiltonian:

\[H(\vec{r}, \vec{P}) = \tilde{H}(\vec{r}, \vec{p}) = \frac{(\vec{p} - eq\vec{A})^2}{2m} \]

and apply previous formalism:

\(\dot{\vec{p}} = \frac{\partial \tilde{H}}{\partial \vec{r}} \) together with \(\tilde{A} = \frac{1}{2} \begin{bmatrix} -yB_s \\ xB_s \\ 0 \end{bmatrix} \) and \(\dot{\vec{p}} = \vec{P} + eq\dot{\vec{A}} \)
Generalized angular momentum

• analogue to generalized momentum, the generalized angular momentum is defined
 \[\mathbf{\tilde{L}} := \mathbf{\hat{r}} \times \mathbf{\hat{p}} \]

• if there is just magnetic field, the generalized angular momentum is preserved
 \[\mathbf{\tilde{L}} = \mathbf{\hat{r}} \times (\mathbf{\hat{P}} + eq\mathbf{\hat{A}}) = \text{const} \]

• Busch theorem is special case for:
 • cylindrical symmetric magnetic field \[\mathbf{\hat{B}} = \mathbf{\hat{B}}(s) \]
 • s-component of \[\mathbf{\tilde{L}}: L_s = \text{const} \]
Busch Theorem

cylindrically symmetric magnetic field with $\mathbf{v} \times \mathbf{B} = 0$

$$\mathbf{B} = \frac{1}{2} \begin{bmatrix} -x B_s' \\ -y B_s' \\ 2 B_s \end{bmatrix} = \mathbf{v} \times \mathbf{A} = \frac{1}{2} \mathbf{v} \times \begin{bmatrix} -y B_s \\ x B_s \\ 0 \end{bmatrix}$$

$$L_s = [\mathbf{r} \times (\mathbf{P} + eq\mathbf{A})] \cdot \mathbf{e}_s = \text{const}$$

- particle entering into region with \mathbf{B} (hence \mathbf{A}) acquires orbital angular momentum
- $\mathbf{r} \times \mathbf{A}$ has angular momentum as well
- sum of both acquired angular momenta is zero
Busch theorem from 1926 states

\[L_s = \left[\vec{r} \times (\vec{P} + e\vec{qA}) \right] \cdot \vec{e}_s = \text{const} \]

using cylindrical coordinates:

\[x = r \cos \theta, \quad y = r \sin \theta \]

\[\vec{P} = m \begin{bmatrix} \dot{x} \\ \dot{y} \\ \beta c \end{bmatrix} \]

\[L_s = mr^2 \dot{\theta} + \frac{1}{2}eqBsr^2 = \text{const} \]

\[L_s = mr^2 \dot{\theta} + \frac{eq}{2\pi} \Psi = \text{const} \]

\[L_s = \text{orbital angular momentum} + \text{flux through area of cyclotron motion} = \text{const} \]

H. Busch, Z. Phys. 81 (5) 924 (1926)
Busch Theorem

\[mr_0^2 \dot{\theta}_0 + \frac{eq}{2} B_{s0} r_0^2 = mr^2 \dot{\theta} + \frac{eq}{2} B_s r^2 = \text{const} \]

preservation of magn. flux:

\[B_{s0} r_0^2 = B_s r^2 = \text{const} \]

\[r = r_0 \sqrt{\frac{B_0}{B_s}} \]
Applications:
Electron beam size shaping

\[r = r_0 \sqrt{\frac{B_{s0}}{B_s}} \]

- cyclotron radius much smaller than beam size → beam size shaped by magnetic field
- applied at low energy electron beams

![Diagram showing electron beam size shaping](image)
mean transv. velocity is measure for transv. beam temperature

\[T_\perp \sim \langle v_\perp^2 \rangle \]

using \(v_\perp = \frac{reqB_s}{m} \) and \(r = r_0 \sqrt{\frac{B_{s0}}{B_s}} \)

results into \(v_\perp = v_{\perp0} \frac{B_s}{B_{s0}} \)

electron beam expansion by magn. field expansion \(B_s < B_{s0} \):

- increases beam radius
- lowers beam temperature
- lowers electron density

technique applied at many e-coolers: 2*IMP, LEIR, TSR, CRYRING, SIS-18
Applications: Magnetic bottle

from Busch theorem:
\[B_0 s r_0^2 = B_s r^2, \quad \dot{\theta} = \frac{e q B_s}{m} = \frac{v_\perp}{r} \]

preservation of total kin. energy:
\[v_{\|0}^2 + v_{\perp0}^2 = v_{\|}^2 + v_{\perp}^2 \]

\[\rightarrow v_{\|}^2(B_s) = v_{\|0}^2 + v_{\perp0}^2 - \left(\frac{e q r_0}{m} \right)^2 B_{s0} B_s \]

→ beam confinement by strong \(B_s \) in magn. bottles:
 • traps
 • ECR sources
Busch theorem can be further generalized to:

\[\oint_{\mathcal{C}} \vec{v} \cdot d\vec{C} + \frac{eq}{m\gamma} \psi = \text{const} \]

\(C_i \) enclose possible single particle trajectories

\[C_i := \text{circles with constant } r_i \rightarrow m\gamma r^2 \dot{\theta} + \frac{eq}{2\pi} \Psi = \text{const} \]
Projected rms emittance

rms emittances defined through beam's second moments:

- \(a_i, b_i \) : two coordinates of particle \(i \)
- \(\langle ab \rangle \): mean of product \(a_i b_i \)
- \(C \) is moment matrix (symmetric)

Projected rms emittance

\[
\varepsilon_x^2 = \langle xx \rangle \langle x'x' \rangle - \langle xx' \rangle^2
\]

\[
C_x = \begin{bmatrix} \langle xx \rangle & \langle xx' \rangle \\
\langle x'x \rangle & \langle x'x' \rangle \end{bmatrix}, \quad \varepsilon_x^2 = \det C_x
\]

\[
C_y = \begin{bmatrix} \langle yy \rangle & \langle yy' \rangle \\
\langle y'y \rangle & \langle y'y' \rangle \end{bmatrix}, \quad \varepsilon_y^2 = \det C_y
\]

\((x,y,x',y')\) are laboratory coordinates which can be measured
Transport of moments

linear transport from point_1 → point_2 through matrices:

\[
\begin{bmatrix}
 x \\
 x'
\end{bmatrix}_2 = M_x \begin{bmatrix}
 x \\
 x'
\end{bmatrix}_1
\]

\[M_x = \begin{bmatrix}
 m_{11} & m_{12} \\
 m_{21} & m_{22}
\end{bmatrix}, \quad \text{det } M_x = 1\]

beam moments transport by matrix equation:

\[C_{x2} = M_x C_{x1} M_x^T\]

analogue in y
4d linear beam dynamics

\[\varepsilon_{4d}^2 = \det \begin{bmatrix} <xx> & <xx'> & <xy> & <xy'> \\ <x'x> & <x'x'> & <x'y> & <x'y'> \\ <yx> & <yx'> & <yy> & <yy'> \\ <y'x> & <y'x'> & <y'y> & <y'y'> \end{bmatrix} \]

transport of moments from 1 → 2 as usual:

\[
\begin{bmatrix} x \\ x' \\ y \\ y' \end{bmatrix}_2 = \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \\ m_{41} & m_{42} & m_{43} & m_{44} \end{bmatrix} \begin{bmatrix} x \\ x' \\ y \\ y' \end{bmatrix}_1, \quad \det M = 1
\]

\[C_2 = MC_1M^T \]

if x & y planes are not coupled

\[\varepsilon_{4d}^2 = \det \begin{bmatrix} <xx> & <xx'> & 0 & 0 \\ <x'x> & <x'x'> & 0 & 0 \\ 0 & 0 & <yy> & <yy'> \\ 0 & 0 & <y'y> & <y'y'> \end{bmatrix} = (\varepsilon_x \cdot \varepsilon_y)^2 \]

transport of moments from 1 → 2 as usual:

\[
M = \begin{bmatrix} m_{11} & m_{12} & 0 & 0 \\ m_{21} & m_{22} & 0 & 0 \\ 0 & 0 & m_{33} & m_{34} \\ 0 & 0 & m_{43} & m_{44} \end{bmatrix}, \quad \det M = \det M_x \cdot \det M_y = 1 \cdot 1 = 1
\]

\[C_2 = MC_1M^T \]
Eigen-emittances

- linear (4d), Hamiltonian beam line elements preserve:

\[\varepsilon_{4d}^2 = \det \begin{bmatrix}
<cxx> & <xx'> & <xy> & <xy'> \\
<xx'> & <xx'x'> & <x'y> & <x'y'> \\
<xy> & <yy'> & <yy> & <yy'> \\
<y'y> & <yy'x'> & <y'y'> & <y'y'> \\
\end{bmatrix} \]

- rms emittance \(\varepsilon_{4d}^2 \)

- the two eigen-emittances

\[
\begin{align*}
\varepsilon_1 &= \frac{1}{2} \sqrt{-\text{tr}[(CJ)^2] + \sqrt{\text{tr}^2[(CJ)^2] - 16\text{det}(C)}} \\
\varepsilon_2 &= \frac{1}{2} \sqrt{-\text{tr}[(CJ)^2] - \sqrt{\text{tr}^2[(CJ)^2] - 16\text{det}(C)}}
\end{align*}
\]

\[
C = \begin{bmatrix}
<cxx> & <xx'> & <xy> & <xy'> \\
<xx'> & <xx'x'> & <x'y> & <x'y'> \\
<xy> & <yy'> & <yy> & <yy'> \\
<y'y> & <yy'x'> & <y'y'> & <y'y'> \\
\end{bmatrix} \quad J := \begin{bmatrix}
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0 \\
\end{bmatrix}
\]

- the formulas are pretty ugly and their application consumes much time & paper

A.J. Dragt, Phys. Rev. A 45 4 (1992)
if, and only if there is no $x\leftrightarrow y$ coupling, i.e. $C = \begin{bmatrix} <xx> & <xx'> & 0 & 0 \\ <x'x> & <x'x'> & 0 & 0 \\ 0 & 0 & <yy> & <yy'> \\ 0 & 0 & <y'y> & <y'y'> \end{bmatrix}$

- rms emittances = eigen-emittances

if there is any coupling

- rms emittances ≠ eigen-emittances
- coupling parameter $t = \frac{\varepsilon_x \varepsilon_y}{\varepsilon_1 \varepsilon_2} - 1 \geq 0$

term „eigen-emittance“ is quite unknown, since generally coupling is just ignored
rms vs eigen-emittances: Example

4d distribution behind ECR source

\[\varepsilon_x = 123 \text{ mm mrad} \]
\[\varepsilon_y = 125 \text{ mm mrad} \]
\[\varepsilon_1 = 17 \text{ mm mrad} \]
\[\varepsilon_2 = 231 \text{ mm mrad} \]

\[\varepsilon_{4d} = \varepsilon_1 \cdot \varepsilon_2 = 3927 \text{ (mm mrad)}^2 \]
\[\varepsilon_x \cdot \varepsilon_y = 15375 \text{ (mm mrad)}^2 \]
\[\varepsilon_x \cdot \varepsilon_y = 3.9 \varepsilon_{4d} \]
Coupling linear elements:
Skew quadrupole

normal quadrupole
no x-y coupling skew tilted by 45° (clockwise)
x-y coupling
Coupling linear elements:

Solenoid

\[\kappa := \frac{B}{2(B\rho)} \]

\[\alpha(L) = -2\kappa L \]

Complete solenoid matrix

\[M_{\text{sol}} = M_{fo} \cdot M_{||} \cdot M_{fi} \]
How elements change emittances

applying ugly formulas →

element	$\text{rms}_{x,y}$	$4d \text{ rms}$	$\text{eigen}_{1,2}$
drift	no	no	no
quadrupole	no	no	no
tilted quadrupole	yes	no	no
dipole	no	no	no
tilted dipole	yes	no	no
solenoid	yes	no	no
solenoid fringe	yes	no	yes
solenoid axial field	yes	no	yes
How elements change emittances

element	rms$_{x,y}$	4d rms	eigen$_{1,2}$
drift	no	no	no
quadrupole	no	no	no
tilted quadrupole	yes	no	no
dipole	no	no	no
tilted dipole	yes	no	no
solenoid	yes	no	no
solenoid fringe	yes	no	yes
solenoid axial field	yes	no	yes

- eigen-emittances seem to change by magnetic flux through beam surface (note: in front of and behind solenoid flux is zero !)

- in the following this will be proven ...
Preservation of eigen emittances in conjugate coordinates

• reminder: generalized momentum $\tilde{p} := \tilde{P} + eq\tilde{A}$, i.e.,

 \[p_x := x' + \frac{A_x}{(B\rho)} = x' - \frac{yB_s}{2(B\rho)} \]
 \[p_y := y' + \frac{A_y}{(B\rho)} = y' + \frac{xB_s}{2(B\rho)} \]

• original ansatz of Busch for single particle:
 • angular momentum including the contribution from $\tilde{r} \times eq\tilde{A}$ is preserved
 • „generalized angular momentum“ is preserved

• ansatz for extension to beams:
 • eigen-emittances including contribution from $\tilde{r} := \tilde{A}/(B\rho)$ are preserved
 • „generalized“ eigen-emittances are preserved
Preservation of eigen emittances in conjugate coordinates

- calculation of „generalized“ eigen-emittance through replacing \((x', y')\) by \((p_x, p_y)\)

\[
C = \begin{bmatrix}
<xx> & <xx'> & <xy> & <xy'> \\
<xx'> & <xx'’> & <xy'> & <xy'’> \\
<yx> & <yx'> & <yy> & <yy'> \\
<y'x> & <y'x'> & <y'y> & <y'y'>
\end{bmatrix}
\rightarrow \tilde{C} = \begin{bmatrix}
<x^2> & <xp_x> & <xy> & <xp_y> \\
<xp_x> & <p_x^2> & <yp_x> & <p_x p_y> \\
<xy> & <yp_x> & <y^2> & <yp_y> \\
<x p_y> & <p_x p_y> & <yp_y> & <p_y^2>
\end{bmatrix}
\]

\[
J = \begin{bmatrix}
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{bmatrix}
\]

\[
\tilde{\varepsilon}_{1/2} = \frac{1}{2} \sqrt{-tr[(\tilde{C}J)^2] \pm \sqrt{tr^2[(\tilde{C}J)^2] - 16 \det(\tilde{C})}}
\]

- if \(\tilde{\varepsilon}_{1/2}\) are preserved, also \(\tilde{\varepsilon}_1^2 + \tilde{\varepsilon}_2^2\) must be preserved

- state \(\tilde{\varepsilon}_1^2 + \tilde{\varepsilon}_2^2 = \text{const}\) by substituting

\[
p_x := x' + \frac{A_x}{B_\rho} = x' - \frac{y B_s}{2 (B_\rho)}
\]

\[
p_y := y' + \frac{A_y}{B_\rho} = y' + \frac{x B_s}{2 (B_\rho)}
\]

- to obtain expression for useful „laboratory“ eigen-emittances
Preservation of eigen emittances in conjugate coordinates

• state $\tilde{\varepsilon}_1^2 + \tilde{\varepsilon}_2^2 = \text{const}$ by substituting

\[
p_x := x' + \frac{A_x}{(B\rho)} = x' - \frac{yB_s}{2(B\rho)}
\]
\[
p_y := y' + \frac{A_y}{(B\rho)} = y' + \frac{xB_s}{2(B\rho)}
\]

with $A := \sqrt{\langle x^2 \rangle \langle y^2 \rangle - \langle xy \rangle^2}$

• this delivers:

\[
(\varepsilon_1 - \varepsilon_2)^2 + \left[\frac{AB_s}{(B\rho)} \right]^2 + 2\frac{B_s}{(B\rho)} \left[\langle y^2 \rangle \langle xy' \rangle - \langle x^2 \rangle \langle yx' \rangle + \langle xy \rangle (\langle xx' \rangle - \langle yy' \rangle) \right] = \text{const}
\]

• confirmed: change of laboratory eigen-emittances just through long. magn. field B_s

• quadrupoles and dipoles (even) skewed: $B_s = 0 \rightarrow \varepsilon_{1/2} = \text{const}$
Sum of quantities is invariant

\[
(\varepsilon_1 - \varepsilon_2)^2 + \left[\frac{AB_s}{B\rho} \right]^2 + 2 \frac{B_s}{B\rho} \left[\langle y^2 \rangle \langle xy' \rangle - \langle x^2 \rangle \langle yx' \rangle + \langle xy \rangle (\langle xx' \rangle - \langle yy' \rangle) \right] = \text{const}
\]

- sum of three quantities forms an invariant
- difference of eigen-emittances, flux through beam area,
- what is the third?
 - has dimension m^3
 - scales with beam rms area as for \(y = ax \) it vanishes
 - vanishes for uncorrelated beams
 - invariant under rotation around beam axis
 - investigate term for some examples...
Understanding third term:
Example objects

\[W_A := \langle y^2 \rangle \langle xy' \rangle - \langle x^2 \rangle \langle yy' \rangle + \langle xy \rangle (\langle xx' \rangle - \langle yy' \rangle) \]

rigid object rotating with \(\omega \):

\[W_A = 2\omega A^2 = 2AL \]

object under shear:

\[W_A = -\alpha A^2 \neq 2AL \]

solenoid fringe field performs rigid beam rotation
thin skew quad performs shear
Understanding W_A: Transformations

\[W_A := \langle y^2 \rangle \langle xy' \rangle - \langle x^2 \rangle \langle yx' \rangle + \langle xy \rangle (\langle xx' \rangle - \langle yy' \rangle) \]

check, how W_A is changed under transformation through:

- thin reg. quadrupole: \(x' \to x' - qx \) and \(y' \to y' + qy \)
- thin skew quadrupole: ...
- short solenoid: ...

- \(\to \) non of them changes W_A

scheme of mutual cancellation of constituents of W_A
Understanding W_A: Pick idea from gen. Busch theorem

\[\oint_C \vec{v} \cdot d\vec{C} + \frac{eq}{m\gamma} \psi = \text{const} \]

sort of mean rotation around beam area

try ansatz:

\[W_A = 2A \int_C \vec{r}'(x, y, s) \cdot d\vec{C} \]

mean angle integrated along curve enclosing beam area ... multiplied with beam area

\[\vec{r}'(x, y, s) := [x'(x, y, s), y'(x, y, s), 1] \]

mean: average (x',y') at given (x,y)
Calculating W_A

$$W_A = 2A \int_C r'(x, y, s) \cdot d\vec{C}$$

as W_A is invariant under rotation
→ calculated for ellipse being turned upright
→ $<xy> = 0$!
Calculating W_A

$$W_A = 2A \int_{C} \vec{r}'(x, y, s) \cdot d\vec{c}$$

$$x = \sqrt{\langle x^2 \rangle} \cos \theta,$$

$$y = \sqrt{\langle y^2 \rangle} \sin \theta,$$

$$d\vec{c} = \begin{bmatrix} -x \\ y \end{bmatrix} d\theta$$

Taylor expansion of \vec{r}' to first order:

$$\vec{x}'(x, y) := \vec{x}'(0, 0) + \frac{\partial \vec{x}'}{\partial x} \cdot x + \frac{\partial \vec{x}'}{\partial y} \cdot y.$$

$$\vec{y}'(x, y) := \vec{y}'(0, 0) + \frac{\partial \vec{y}'}{\partial x} \cdot x + \frac{\partial \vec{y}'}{\partial y} \cdot y.$$

Finally confirms:

$$W_A := \langle y^2 \rangle \langle xy' \rangle - \langle x^2 \rangle \langle yx' \rangle + \langle xy \rangle (\langle xx' \rangle - \langle yy' \rangle)$$
Busch theorem for particle beams

using expression for W_A finally delivers:

$$(\varepsilon_1 - \varepsilon_2)^2 + \left[\frac{AB_s}{(B\rho)} \right]^2 + \frac{4AB_s}{(B\rho)} \oint r'd\vec{C} = const$$

acceleration can be included by initially multiplying with $m\gamma\beta c$ at both sides

$$p_x := x' + \frac{A_x}{(B\rho)} = x' - \frac{yB_s}{2(B\rho)}$$
$$p_y := y' + \frac{A_y}{(B\rho)} = y' + \frac{xB_s}{2(B\rho)}$$

... resulting in Busch's theorem extended to accelerated particle beams:

$$(\varepsilon_{n1} - \varepsilon_{n2})^2 + \left[\frac{ep\psi}{mc\pi} \right]^2 + \frac{4ep\psi\beta\gamma}{mc\pi} \oint r' \cdot d\vec{C} = const$$
original Busch theorem for single particle:

\[
\frac{eq}{m\gamma} \psi + \oint_C \vec{v} \cdot d\vec{C} = \text{const}
\]

theorem extended to accelerated particle beams:

\[
(\varepsilon_{n1} - \varepsilon_{n2})^2 + \left[\frac{eq\psi}{mc\pi} \right]^2 + \frac{4eq\psi \beta \gamma}{mc\pi} \oint_C \vec{r}' \cdot d\vec{C} = \text{const}
\]

- both expressions include flux and "vorticity" \(\vec{v} \cdot d\vec{C} \approx (\vec{V} \times \vec{v}) \, d\vec{A} \) (Stoke’s law)
- the extended theorem additionally includes eigen-emittances
- theorem allows very fast modelling of setups for emittance gymnastics
Varification through simulations

- beam tracking through three solenoids
- extended fringe fields from \vec{B}-maps
- invariance confirmed
flat electron beams, i.e., $\varepsilon_x \ll \varepsilon_y$ useful for:

- increase of luminosity in e^-/e^+ colliders
- production of X-ray pulses with femto seconds in duration

Test accelerator at FERMILAB demonstrated $\varepsilon_y/\varepsilon_x = 100$:

- create beam at photo cathode being immersed into $B_s = B_0$
- reduce B_s to zero, accelerate, and decouple x/y-planes

P. Piot et al., Phys. Rev. ST Accel. Beams 9 031001 (2006)
prior to formulation of extended Busch theorem, the deviation of final beam emittances took several pages ...

\[\epsilon_{nfx/y} = \pm L \beta \gamma + \sqrt{(L \beta \gamma)^2 + \epsilon_{4d}^2} \]

with \(\epsilon_{4d} = \epsilon_{ni1} \cdot \epsilon_{ni2} \)

and \(L := (eB_0A_0)/(2m\gamma\beta c) \)

Kwang-Je Kim, Phys. Rev. ST Accel. Beams 6 104002 (2006)
Application to electron beams: Flat beam creation at FERMILAB

Applying theorem:

\[(\epsilon_{1} - \epsilon_{2})^2 + \frac{e q \psi}{mc^2} \frac{e q \beta \gamma}{mc^2} \int r' \cdot d\bar{C} = \text{const}\]

At cathode beam is symmetric:

- eigen = rms emittances: \(\epsilon_{1/2} = \epsilon_{x/y}\)
- eigen (rms) emittances are equal: \(\epsilon_{1/x} = \epsilon_{2/y}\)
- immersed into B-flux
- no x/y coupling \(\rightarrow W_{A} = 0\)

Final beam:

- eigen = rms emittances: \(\epsilon_{1/2} = \epsilon_{x/y}\)
- eigen (rms) emittances differ: \(\epsilon_{1/x} \neq \epsilon_{2/y}\)
- no B-flux
- x/y coupling removed \(\rightarrow W_{A} = 0\)
replacing $\varepsilon_{nf_y} = \varepsilon_{4d}/\varepsilon_{nf_x}$

and $eB_0A_0 = 2m\gamma\beta c \cdot L$

results into $\varepsilon_{nf_x} = L\beta\gamma \pm \sqrt{(L\beta\gamma)^2 + \varepsilon_{4d}^2}$

using upper sign gives $\varepsilon_{nf_{x/y}} = \pm L\beta\gamma + \sqrt{(L\beta\gamma)^2 + \varepsilon_{4d}^2}$
Application to ion beams: EmTEx at GSI (Emitt. Transf. Exp.)

- beams from linacs: $\varepsilon_x \approx \varepsilon_y$
- hor. multi-turn injection into rings profits from $\varepsilon_x < \varepsilon_y$
- EmTEx @ transfer channel:
 - place charge state stripper inside short solenoid
 - x/y-decoupling afterwards
prior to formulation of extended Busch theorem, the deviation of final beam emittances took several pages ...

\[
(\varepsilon_{x,7+} - \varepsilon_{y,7+})^2 = (\varepsilon_{x,3+} - \varepsilon_{y,3+})^2 + (A_f B_0)^2 \left[\frac{1}{(B \rho)_{7+}} - \frac{1}{(B \rho)_{3+}} \right]^2
\]

C. Xiao et. al, Phys. Rev. ST Accel. Beams 16 044201 (2013)
L. Groening, arXiv 1403.6962 (2014)
change of q is a non-Hamiltonian action → „splitting“ into two Hamiltonian actions

extended theorem before stripping (q=3+)

\[
(\varepsilon_{1f} - \varepsilon_{2f})^2 + \left[\frac{A_f B_0}{(B \rho)_{3+}} \right]^2 + \frac{2B_0}{(B \rho)_{3+}} \mathcal{W}_{A_f} = \text{const}
\]

distributed theorem after stripping (q=7+)

\[
(\varepsilon_{1f} - \varepsilon_{2f})^2 + \left[\frac{A_f B_0}{(B \rho)_{7+}} \right]^2 + \frac{2B_0}{(B \rho)_{7+}} \mathcal{W}_{A_f} = \frac{\text{const}}{}
\]
Application to ion beams: EmTEx up to stripping foil

beam line entrance:

- eigen = rms emittances: $\varepsilon_{1/2} = \varepsilon_{x/y}$
- measured: $\varepsilon_{x,3+}$ and $\varepsilon_{y,3+}$
- no B-flux
- no x/y coupling $\rightarrow W_A = 0$

inside solenoid & just before foil:

- eigen ≠ rms emittances: $\varepsilon_{1/2} \neq \varepsilon_{x/y}$
- eigen emittances differ: $\varepsilon_1 \neq \varepsilon_2$
- B-flux
- x/y coupling $\rightarrow W_{A_f} = -(B_0A_f^2)/(B\rho)_{3+}$

$A_f :=$ beam area at foil, from measurements, \approx const along short solenoid

$$(\varepsilon_{x,3+} - \varepsilon_{y,3+})^2 + 0 + 0 = (\varepsilon_{1f} - \varepsilon_{2f})^2 + \left[\frac{A_fB_0}{(B\rho)_{3+}}\right]^2 + \frac{2B_3}{(B\rho)_{3+}}W_{A_f}$$

$L. Groening / Extension of Busch’s Theorem to Particle Beams 2/2/2018 42$
Application to ion beams: EmTEx up to stripping foil

\[(\varepsilon_x,3^+ - \varepsilon_y,3^+)^2 + 0 + 0 = (\varepsilon_{1f} - \varepsilon_{2f})^2 + \left(\frac{A_f B_0}{(B \rho)_{3+}}\right)^2 + \frac{2B_0}{(B \rho)_{3+}} W_{Af}\]

plugging in \(W_{Af} = -(B_0 A_f^2)/(B \rho)_{3+}\):

\[(\varepsilon_x,3^+ - \varepsilon_y,3^+)^2 + 0 + 0 = (\varepsilon_{1f} - \varepsilon_{2f})^2 - \left(\frac{A_f B_0}{(B \rho)_{3+}}\right)^2\]

using experiment’s parameters:

\[(\varepsilon_{1f} - \varepsilon_{2f})^2 = 2.755 \text{ (mm mrad)}^2\]
Application to ion beams: EmTEx behind the stripping foil

- foil changes just q, i.e., $(B\rho)$
- $\varepsilon_{1,2,x,y}$, B-flux, and W_{Af} do not change

inside solenoid & just after foil:

- eigen ≠ rms emittances: $\varepsilon_{1/2} \neq \varepsilon_{x/y}$
- eigen emittances differ: $\varepsilon_1 \neq \varepsilon_2$
- B-flux
- x/y coupling → $W_{Af} = -(B_0 A_f^2)/(B\rho)_{3+}$

beam line exit:

- eigen = rms emittances: $\varepsilon_{1/2} = \varepsilon_{x/y}$
- to be calculated/measured: $\varepsilon_{x,7+}$ and $\varepsilon_{y,7+}$
- no B-flux
- no x/y coupling → $W_A = 0$
Application to ion beams: EmTEx behind the stripping foil

\[
(p_{1f} - p_{2f})^2 + \left(\frac{A_f B_0}{(B_p)_{7+}}\right)^2 + \frac{2B_0}{(B_p)_{7+}}W_{A_f} = (\varepsilon_{x,7+} - \varepsilon_{y,7+})^2 + 0 + 0
\]

plugging in \(W_{A_f} = -(B_0 A_f)^2/(B_p)_{3+} \) and \((p_{1f} - p_{2f})^2 = 2.755 \text{ (mm mrad)}^2 \)

finally delivers \(|\varepsilon_{x,7+} - \varepsilon_{y,7+}| = 2.21 \text{ mm mrad}\)

the measured values are :

- \(\varepsilon_{x,7+} = 2.76(14) \text{ mm mrad} \)
- \(\varepsilon_{y,7+} = 0.72(4) \text{ mm mrad} \)
- \(|\varepsilon_{x,7+} - \varepsilon_{y,7+}| = 2.04(14) \text{ mm mrad} \) → very good agreement to extended Busch theorem

L. Groening et. al, Phys. Rev. Lett. 113 044201 (2014)
EmTEx increases injection efficiency into SIS18

\[
\left(\varepsilon_{x,7^+} - \varepsilon_{y,7^+} \right)^2 = \left(\varepsilon_{x,3^+} - \varepsilon_{y,3^+} \right)^2 + \left(A_f B_0 \right)^2 \left[\frac{1}{(B \rho)_{7^+}} - \frac{1}{(B \rho)_{3^+}} \right]^2
\]

emittance shaping
Summary

• Busch’s original theorem for single particle was extended to particle beams

• Original and extended theorem look very similar

\[
\frac{e\gamma}{m} \psi + \oint_C \vec{v} \cdot d\vec{C} = \text{const}
\]

\[
(\varepsilon_{n1} - \varepsilon_{n2})^2 + \left[\frac{e\gamma \psi}{mc} \right]^2 + \frac{4e\gamma \beta \gamma}{mc} \oint_C \vec{r}' \cdot d\vec{C} = \text{const}
\]

• Extended theorem for very fast modelling of emittance gymnastic exp. as
 • flat electron beams at FERMILAB
 • flat ion beams at GSI

• Its power is through provision of an invariant

• Using invariants is much more convenient than solving equs. of motion