Fast Inference from Transformers via Speculative Decoding

Yaniv Leviathan, Matan Kalman, Yossi Matias

ICML 2023

Presenter: Lingzhi Zhao
Motivation

• Decoding K tokens takes K **serial runs**

• Can we somehow decode several tokens in parallel?
Previous Approaches

• Reduce the inference cost for all inputs equally
 • Distillation (Hinton, 2015), sparsification (Jaszczur, 2021), quantization (Hubara, 2016)

• Adaptive computation
 • Han, 2021, Sukhbaatar, 2019
 • Different inference steps require different size of model

They require changing the model architecture, training procedure, and re-training the models without maintaining identical outputs.
Observation 1

• Some tokens are easier than others

• Hebrew: נָהַרְוָא קָרָב הַיוֹ הַיאָשָׁנָה. Hebrew: The president was Barack Obama.

Easy - e.g. can guess based on just the last token.

Hard - e.g. requires looking several tokens back, knowledge of hebrew
Observation 2

- Decoding from large transformers is memory bound

Hardware can do	Transformers need
XXX Floating point operations per byte read	**X** Floating point operations per byte read
Speculative Decoding

• Sample generations from more efficient *approximation* models as speculative prefixes for the slower *target* models

• Consider two models M_q, target model and M_p, more efficient approximation model

\[
p_1(x) = M_p(pf) \quad \rightarrow \quad x_1
\]
\[
p_2(x) = M_p(pf, x_1) \quad \rightarrow \quad x_2
\]
\[
\vdots
\]
\[
p_5(x) = M_p(pf, x_1, x_2, x_3, x_4) \quad \rightarrow \quad x_5
\]

Run approximation model γ steps
Speculative Decoding

- Consider two models M_q, target model and M_p, more efficient approximation model

\[
q_1(x), q_2(x), q_3(x), q_4(x), q_5(x), q_6(x)
\]

\[
= M_q(pf, x_1, x_2, x_3, x_4, x_5)
\]

Run target model once
Speculative Decoding

• Case 1: if $q(x) \geq p(x)$, then accept the generated token from the approximation model

• Case 2: if $q(x) < p(x)$, then accept with probability $\frac{q(x)}{p(x)}$
 • If rejected, sample x from an adjusted distribution $(q(x) - p(x))_+$
Theoretical Analysis: Number of Parallel Tokens

• The expected number of tokens generated by speculative decoding is

\[E(\# \text{ generated tokens}) = \frac{1 - \alpha^{\gamma+1}}{1-\alpha} \]

• \(\alpha\): expected acceptance rate

• Optimally choose the number of tokens \(\gamma\) to attempt to parallelize
Theoretical Analysis: Walltime Improvement

• The expected improvement factor in total walltime:

\[
\frac{1 - \alpha^{\gamma+1}}{(1-\alpha)(\gamma c + 1)}
\]

• \(c\): the ratio between the time for a single run of the approximation model and the time for a single run of the target model
How to choose γ

- The optimal γ should maximize the walltime reduction

*Figure 3. The optimal γ as a function of α for various values of c.***
Evaluation

- Implement SD in T5X codebase; two tasks: translation and text summarization;
- Target model (11B); approximation models (800M, 250M, 77M)
- Batch size 1 on a single TPU-v4

Table 2. Empirical results for speeding up inference from a T5-XXL 11B model.

TASK	M_q	TEMP	γ	α	SPEED
ENDE	T5-SMALL ⭐	0	7	0.75	3.4X
ENDE	T5-BASE	0	7	0.8	2.8X
ENDE	T5-LARGE	0	7	0.82	1.7X
ENDE	T5-SMALL ⭐	1	7	0.62	2.6X
ENDE	T5-BASE	1	5	0.68	2.4X
ENDE	T5-LARGE	1	3	0.71	1.4X
CNNNDM	T5-SMALL ⭐	0	5	0.65	3.1X
CNNNDM	T5-BASE	0	5	0.73	3.0X
CNNNDM	T5-LARGE	0	3	0.74	2.2X
CNNNDM	T5-SMALL ⭐	1	5	0.53	2.3X
CNNNDM	T5-BASE	1	3	0.55	2.2X
CNNNDM	T5-LARGE	1	3	0.56	1.7X

- T5-small (77M) has a good balance between acceptance rate and number of generated tokens, and achieves fast inference time
Evaluation

- Approximation tends to produce α between 0.5 and 0.9
- Even trivial unigram and bigram approximations yield non negligible α values with negligible runtime
What SD is good at

• Decode faster from autoregressive models: 2x-3x in typical scenarios

• Only different decoding algorithm: no architecture changes, no re-training

• Identical output distribution
What SD is limited at

• Adaptively choosing γ during runtime could further improve its performance

• Fine-tune the approximation model to generate more similar distributions with the target model

• Lack comparisons with state-of-the-arts