Algebra with Conjugation

Aleks Kleyn

Abstract. In the paper, I consider properties and mappings of free algebra with unit. I consider also conjugation of free algebra with unit.

Contents

1. Preface . 1
2. Conventions . 2
3. Algebra with unit . 2
4. Algebra with Conjugation . 4
5. Antilinear Mapping of Algebra with Conjugation 8
6. References . 9
7. Index . 10
8. Special Symbols and Notations . 11

1. Preface

When I started to write the book [2], I realized that classical definition of a linear mapping

\[y = ax \quad y = xa \]

restricts our possibilities to study the derivative of mapping into division ring. Intuitively, it was clear that we can represent the linear mapping into division ring as a sum of terms like

\[axb \]

Following study of the structure of linear mapping into division ring was finished in the book [4]. I expanded the circle of considered algebras and started to study free algebra over commutative ring.

If the set \(A \) is \(D \)-algebra, then we can define few algebraic structures on the set \(A \). According to the definition [4]-2.2.1, \(A \) is \(D \)-module. If we consider only sum and product in \(D \)-algebra \(A \), then we can consider \(D \)-algebra \(A \) as ring (as option, the ring maybe nonassociative). According to this, we can consider \(D \)-algebra \(A \) as \(A^\ast \)-module of dimension 1. This is why it is important to study mappings that preserve one or another algebraic structure on the set \(A \).

In this paper, I considered \(A^\ast \)-linear mapping of \(D^\ast \)-algebra \(A \).
The concept of algebra with conjugation fits naturally into the theory of D-algebra with unit. However I believe that we can define conjugation even in case if algebra does not have unit. However the answer on this question requires further research.

2. Conventions

Convention 2.1. Let A be free finite dimensional algebra. Considering expansion of element of algebra A relative basis \mathcal{F} we use the same root letter to denote this element and its coordinates. However we do not use vector notation in algebra. In expression a^2, it is not clear whether this is component of expansion of element a relative basis, or this is operation $a^2 = aa$. To make text clearer we use separate color for index of element of algebra. For instance,

$$a = a^i\mathcal{F}_i$$

□

Convention 2.2. If free finite dimensional algebra has unit, then we identify the vector of basis \mathcal{F}_0 with unit of algebra. □

Convection 2.3. Although the algebra is a free module over some ring, we do not use the vector notation to write elements of algebra. In the case when I consider the matrix of coordinates of element of algebra, I will use vector notation to write corresponding element. In order to avoid ambiguity when I use conjugation, I denote a^* element conjugated to element a. □

Without a doubt, the reader may have questions, comments, objections. I will appreciate any response.

3. Algebra with unit

Let D be commutative ring. Let A be D-algebra with unit 1. Therefore there exists effective representation

$$f_{1,2} : d \circ a = da \quad d \in D \quad a \in A$$

of the ring D in the algebra A.

Theorem 3.1. Let D be commutative ring. Let A be D-algebra. Let

$$f : A^n \to A$$

be n-linear mapping into D-algebra A. Let

$$g : A^m \to A$$

be m-linear mapping into D-algebra A. Then if for given i in the expression

$$f \circ (x_1, \ldots, x_n)$$

we make the substitution

$$x_i = g \circ (y_1, \ldots, y_m)$$

then the resulting expression

$$h(x_1, \ldots, x_i, \ldots, x_n, y_1, \ldots, y_m) = f \circ (x_1, \ldots, g \circ (y_1, \ldots, y_m), \ldots, x_n)$$

is $(m + n - 1)$-linear mapping.
Proof. Since polylinear mapping is linear mapping with respect to each argument, then the mapping h is linear with respect to x^j, $j \neq i$. Since the mapping f is linear mapping with respect to x^i and for each k the mapping g is linear mapping with respect to y^k, then according to the theorem [4]-2.4.1, the mapping h is linear mapping with respect to y^k. □

Theorem 3.2. Let D be commutative ring. Let A be D-algebra. Then

$$d(ab) = (da)b = a(db) \quad d \in D \quad a, b \in A$$

Proof. Let f be bilinear mapping corresponding to product in D-algebra A. Then

$$df(ab) = f(da, b) = f(a, db) \quad d \in D \quad a, b \in A$$

The equation (3.2) follows from the equation (3.3). □

Theorem 3.3. Let D be commutative ring. The commutator of D-algebra A is bilinear mapping. The associator of D-algebra A is 3-linear mapping.

Proof. According to definitions [4]-2.2.1, [4]-2.2.4, the commutator is bilinear mapping. According to definitions [4]-2.2.1, [4]-2.2.5 and the theorem 3.1, the associator is 3-linear mapping. □

Theorem 3.4. Let D be commutative ring. Let A be D-algebra with unit e. Then we can identify $d \in D$ and $d1 \in A$. In such case, $D \subseteq Z(A)$.\(^3\)

Proof. From the theorem 3.3, it follows that

$$(d, a, b) = d(1, a, b) = d((1a)b - 1(ab)) = d(ab - ab) = 0$$
$$(a, d, b) = d(a, 1, b) = d((a1)b - a(1b)) = d(ab - ab) = 0$$
$$(a, b, d) = d(a, b, 1) = d((ab)1 - a(b1)) = d(ab - ab) = 0$$

Therefore, $D \subseteq N(A)$. If we assume $b = 1$ in the equation (3.2), then we get

$$da = ad \quad d \in D \quad a \in A$$

From the equation (3.4), it follows that the commutator has form

$$[d, a] = 0$$

Theorem 3.5. Structural constants of D-algebra with unit e satisfy condition

$$C_{0k}^l = C_{k0}^l = \delta_{k}^b$$

Proof. The equation (3.5) follows from the equation $1d = d1 = d$. □

\(^1\)I consider the definition of the product in D-algebra according to the definition [4]-2.2.1.

\(^2\)You can see the definition of commutator in the definition [4]-2.2.4. You can see the definition of associator in the definition [4]-2.2.5. You can see also [5], p. 13.

\(^3\)You can see the definition of nucleus $N(A)$ of algebra A in the definition [4]-2.2.7; you can see the definition of center $Z(A)$ of algebra A in the definition [4]-2.2.8; see also [5], p. 13, 14.
Theorem 3.6. A*-linear mapping of D-algebra A with unit has form

\[f(c) = cd \quad d \in A \]

Let \(e \) be (Re A)-basis of the algebra A. Coordinates of the mapping \(f \)

relative to the basis \(e \) satisfy to the equation

\[f^j_k = f^j_0 C^j_{ki} \]

(3.9)

Proof. A*-linear mapping satisfies to equations

\[f(ac) = (ac)^i f^i_j \tau_j = a^k c^l C^i_{kl} f^j_i \tau_j \]

(3.10)

\[a f(c) = a^k (f(c))^i C^j_{ki} \tau_j = a^k c^l f^j_i C^j_{ki} \tau_j \]

(3.11)

From equations (3.10), (3.11), it follows that

\[a^k c^l C^i_{kl} f^j_i \tau_j = a^k c^l f^j_i C^j_{ki} \tau_j \]

(3.12)

The equation

\[C^i_{kl} f^j_i = f^j_i C^i_{ki} \]

(3.13)

follows from the equation (3.12).

From the equation (3.13) it follows that

\[C^i_{k0} f^j_i = f^j_i C^i_{ki} \]

(3.14)

From equations (3.5), (3.14), it follows that

\[\delta^i_k f^j_i = f^j_i C^i_{ki} \]

(3.15)

The equation (3.8) follows from the equation (3.15).

From equations (3.7), (3.8), it follows that

\[f(c) = c^l f^j_i C^j_{li} \tau_i \]

(3.16)

The equation (3.9) follows from the equations (3.6), (3.16).

\[\square \]

4. Algebra with Conjugation

Let \(D \) be commutative ring. Let \(A \) be D-algebra with unit \(e, A \neq D \). According to the theorem 3.4, we can identify the ring \(D \) and subalgebra of D-algebra \(A \). Therefore, D-algebra \(A \) has a nontrivial center \(Z(A) \).

Let there exist subalgebra \(F \) of algebra \(A \) such that \(F \neq A, D \subseteq F \subseteq Z(A) \), and algebra \(A \) is a free module over the ring \(F \). Let \(\tau_i \) be the basis of free module \(A \) over ring \(F \). We assume that \(\tau_0 = 1 \).

Consider mappings

\[\text{Re} : A \rightarrow A \]
\[\text{Im} : A \rightarrow A \]

defined by equation

\[\text{Re} d = d^0 \quad \text{Im} d = d - d^0 \quad d \in D \quad d = d \tau_i \]

\[^4 \text{Let } t = 0. \]
Algebra with Conjugation

The expression Re \(d\) is called **scalar of element** \(d\). The expression Im \(d\) is called **vector of element** \(d\). According to (4.1)

\[
F = \{d \in A : \text{Re} \, d = d\}
\]

We will use notation Re \(A\) to denote **scalar algebra of algebra** \(A\).

Theorem 4.1. The set

(4.2) \(\text{Im} \, A = \{d \in A : \text{Re} \, d = 0\}\)

is (Re \(A\))-module which is called **vector module of algebra** \(A\).

(4.3) \(A = \text{Re} \, A \oplus \text{Im} \, A\)

Proof. Let \(c, d \in \text{Im} \, A\). Then \(c_0 = d_0 = 0\). Therefore,

\[(c + d)_0 = c_0 + d_0 = 0\]

If \(a \in \text{Re} \, A\), then

\[(ad)_0 = ad_0 = 0\]

Therefore, Im \(A\) is (Re \(A\))-module.

Sequence of modules

\[
0 \longrightarrow \text{Re} \, A \xrightarrow{id} A \xrightarrow{\text{Im}} \text{Im} \, A \longrightarrow 0
\]

is exact sequence. According to the definition (4.1) of the mapping Re, following diagram is commutative

\[
\begin{array}{ccc}
\text{Re} \, A & \xrightarrow{id} & A \\
\downarrow{id} & & \downarrow{id} \\
\text{Re} \, A & \xrightarrow{\text{Re}} & \text{A}
\end{array}
\]

According to the statement 2 of the proposition [1]-III.3.2,

(4.4) \(A = \text{id}(\text{Re} \, A) \oplus \ker \, \text{Re}\)

According to the definition (4.2)

(4.5) \(\ker \, \text{Re} = \{d \in A : \text{Re} \, d = 0\} = \text{Im} \, A\)

The equation (4.3) follows from the equations (4.4), (4.5). □

According to the theorem 4.1, there is unique defined representation

(4.6) \(d = \text{Re} \, d + \text{Im} \, d\)

Definition 4.2. The mapping

(4.7) \(d^* = \text{Re} \, d - \text{Im} \, d\)

is called **conjugation in algebra** provided that this mapping satisfies

(4.8) \((cd)^* = d^* \, c^*\)

(Re \(A\))-algebra \(A\) equipped with conjugation is called **algebra with conjugation**. □

Corollary 4.3. \((d^*)^* = d\) □

\(^5\)In the section [3]-7, I consider an example of algebra in which there are two conjugation. We assume that we chose conjugation.
Theorem 4.4.

(4.9) \[d + d^* \in \text{Re } A \]

(4.10) \[d - d^* \in \text{Im } A \]

Proof. The theorem follows from equations (4.6), (4.7). \(\square \)

Theorem 4.5. The \((\text{Re } A)\)-algebra \(A\) is algebra with conjugation if structural constants of \((\text{Re } A)\)-algebra \(A\) satisfy condition

(4.11) \[C_{kl}^0 = C_{lk}^0 \quad C_{kl}^p = -C_{lk}^p \]

\[1 < k < n \quad 1 < l < n \quad 1 < p < n \]

Proof. From equations (4.6), (4.7) it follows that

(4.12) \[(cd)^* = (\text{Re } c \text{ Re } d + \text{ Re } c \text{ Im } d + \text{ Im } c \text{ Re } d + \text{ Im } c \text{ Im } d)^* \]

\[= \text{Re } c \text{ Re } d - \text{ Re } c \text{ Im } d - \text{ Im } c \text{ Re } d + (\text{ Im } c \text{ Im } d)^* \]

(4.13) \[d^* c^* = (\text{Re } d - \text{ Im } d)(\text{Re } c - \text{ Im } c) \]

\[= \text{Re } d \text{ Re } c - \text{ Re } d \text{ Im } c - \text{ Im } d \text{ Re } c + \text{ Im } d \text{ Im } c \]

From equations (4.8), (4.12), (4.13), it follows that

(4.14) \[(\text{Im } c \text{ Im } d)^* = \text{Im } d \text{ Im } c \]

Let \(\overline{e}\) be the basis of the \((\text{Re } D)\)-algebra \(D\). From the equation (4.14), it follows that

(4.15) \[(C_{kt}^p c^k d^i + C_{kt}^p c^k d^i p)^* = C_{kt}^p c^k d^i - C_{kt}^p c^k d^i p \]

\[= C_{kt}^p d^i c^i + C_{kt}^p d^i c^i p \]

\[1 < k < n \quad 1 < l < n \quad 1 < p < n \]

The equation (4.11) follows from the equation (4.15). \(\square \)

Corollary 4.6. \(e_k e_k \in \text{Re } A\) \(\square \)

Theorem 4.7. \((k > 0, \ l > 0)\)

(4.16) \[e_k e_l = (\overline{e}_l e_k)^* \]

Proof. From the equation (4.11), it follows that \((p = 1, \ldots, n)\)

(4.17) \[\overline{e}_k e_l = C_{ab}^p c^a e_l e_0 + C_{ab}^p c^a e_l e_p \]

\[= C_{ab}^p c^a e_l e_0 - C_{ba}^p c^a e_l e_p \]

\[= (C_{ba}^p c^b e_l e_0 + C_{ba}^p e^b e_l e_p)^* \]

\[= (\overline{e}_l e_k)^* \]

The equation (4.16) follows from the equation (4.17). \(\square \)
Theorem 4.8. \((k > 0, l > 0)\)
\[(4.18)\]
\(\overline{c}_k \overline{c}_l + \overline{c}_l \overline{c}_k \in \text{Re} A\)
\[(4.19)\]
\(\overline{c}_k \overline{c}_l - \overline{c}_l \overline{c}_k \in \text{Im} A\)

Proof. The theorem follows from the equation (4.16) and the theorem 4.4. \(\square\)

Theorem 4.9. \(dd^* \in \text{Re} A\)

Proof. From the equations (4.7), (4.11), it follows that \((p = 1, ..., n)\)
\[(4.20)\]
\[dd^* = (d^0 \overline{c}_0 + d^p \overline{c}_p)(d^0 \overline{c}_0 + d^q \overline{c}_q)^*\]
\[= (d^0 \overline{c}_0 + d^p \overline{c}_p)(d^0 \overline{c}_0 - d^p \overline{c}_q)\]
\[= d^0 \overline{c}_0 d^0 \overline{c}_0 - d^0 \overline{c}_0 d^p \overline{c}_q + d^p \overline{c}_p d^0 \overline{c}_0 - d^p \overline{c}_p d^p \overline{c}_q\]
\[= (d^0)^2 \overline{c}_0 - d^0 d^p \overline{c}_p + d^0 d^p \overline{c}_p - d^p d^p \overline{c}_p \overline{c}_q\]
First 3 items in the expression (4.20) have form
\[(4.21)\]
\[(d^0)^2 \overline{c}_0 - d^0 d^p \overline{c}_p + d^0 d^p \overline{c}_p = (d^0)^2 \overline{c}_0 \in \text{Re} A\]
The last item in the expression (4.20) has form
\[(4.22)\]
\[-d^p d^p \overline{c}_p \overline{c}_q = -(d^0)^2 \overline{c}_p \overline{c}_p - \sum_{q>p} d^p d^q (\overline{c}_p \overline{c}_q + \overline{c}_q \overline{c}_p)\]
According to the corollary 4.6 and statement (4.18)
\[(4.23)\]
\[-d^p d^p \overline{c}_p \overline{c}_q \in \text{Re} A\]
The theorem follows from the equation (4.20) and statements (4.21), (4.23). \(\square\)

We can represent the conjugation using the matrix \(I\)
\[(4.24)\]
\[d^* = I \circ d\]
\[I^0_k = \delta^0_k, \quad I^1_k = \delta^1_k, \quad k = 0, ..., n\]
\[I^m_k = -\delta^m_k, \quad I^k_m = -\delta^k_m, \quad m = 1, ..., n\]

Example 4.10. The product in the set of complex numbers \(C\) is commutative. However, complex field has subfield \(R\). The vector space \(\text{Im} C\) has dimension 1 and the basis \(\overline{e}_1 = i\). Accordingly
\[c^* = c^0 - c^1 i\]
\(\square\)

Example 4.11. The division ring of quaternions \(H\) has subfield \(R\). The vector space \(\text{Im} H\) has dimension 3 and the basis
\[\overline{e}_1 = i, \quad \overline{e}_2 = j, \quad \overline{e}_3 = k\]
Accordingly
\[d^* = d^0 - d^1 i - d^2 j - d^3 k\]
\(\square\)
5. Antilinear Mapping of Algebra with Conjugation

Definition 5.1. Let A be the algebra with conjugation. $(\text{Re} A)$-linear mapping

$$f : A \to A$$

is called A^\ast-antilinear, if the mapping f satisfies to the equation

(5.1) $$f(da) = f(a)d^\ast$$

□

Theorem 5.2. A^\ast-antilinear mapping of the algebra with conjugation A has form

$$f(c) = dc^\ast = dI \circ c \quad d \in A$$

Let $\overline{\mathcal{F}}$ be $(\text{Re} A)$-basis of the algebra A. Coordinates of the mapping f

(5.2) $$f(c) = c^j f^i_j \overline{\mathcal{F}}_i$$

relative to the basis $\overline{\mathcal{F}}$ satisfy to the equation

(5.3) $$f^j_i = f^0_i I^j_k C^j_k$$

(5.4) $$d = f^0_i \overline{\mathcal{F}}_i$$

Proof. According to the definition 5.1, A^\ast-antilinear mapping satisfies to equations

(5.5) $$f(ac) = (ac)^i f^i_j \overline{\mathcal{F}}_j = a^p c^q C^i_{pq} f^i_j \overline{\mathcal{F}}_j$$

(5.6) $$f(c)a^* = (f(c))^k (a^*)^j C^j_k \overline{\mathcal{F}}_j = c^j f^k_l I^l_q a^q C^j_k \overline{\mathcal{F}}_j$$

From equations (5.5), (5.6), it follows that

(5.7) $$a^p C^i_{pq} f^j_i \overline{\mathcal{F}}_j = c^q f^k_l I^l_q a^q C^j_k \overline{\mathcal{F}}_j$$

The equation (5.8)

$$C^i_{pq} f^j_i = f^k_l I^l_q C^j_k$$

follows from the equation (5.7).

From the equation (5.8) it follows that

(5.9) $$C^i_{pq} f^j_i = f^k_l I^l_q C^j_k$$

From equations (3.5), (4.24), (5.9), it follows that

(5.10) $$\delta^i_p f^j_i = f^k_l I^l_q C^j_k$$

The equation (5.3) follows from the equation (5.10).

From equations (5.2), (5.3), it follows that

(5.11) $$f(c) = c^j f^k_l I^l_q C^j_k \overline{\mathcal{F}}_j = f^k_l c^j C^j_k \overline{\mathcal{F}}_j = f^k_l (c^*)^j C^j_k \overline{\mathcal{F}}_j$$

The equation (5.4) follows from the equations (3.6), (5.11).
6. References

[1] Serge Lang, Algebra, Springer, 2002
[2] Aleks Kleyn, Introduction into Calculus over Division Ring,
eprint arXiv:0812.4763 (2010)
[3] Aleks Kleyn, Quaternion Rhapsody,
eprint arXiv:0909.0855 (2010)
[4] Aleks Kleyn, Linear Mappings of Free Algebra: First Steps in Noncommutative Linear Algebra,
Lambert Academic Publishing, 2010
[5] Richard D. Schafer, An Introduction to Nonassociative Algebras, Dover Publications, Inc., New York, 1995
7. Index

algebra with conjugation 5
A^*-antilinear mapping of algebra with conjugation 8

conjugation in algebra 5

scalar algebra of algebra 5
scalar of element of algebra 5

vector module of algebra 5
vector of element of algebra 5
8. Special Symbols and Notations

d^* conjugation in algebra 5

$\text{Im} A$ vector module of algebra A 5
$\text{Im} d$ vector of element d of algebra 4
$\text{Re} A$ scalar algebra of algebra A 5
$\text{Re} d$ scalar of element d of algebra 4
Алгебра с сопряжением

Александр Клейн

Аннотация. В статье рассмотрены свойства и отображения свободной алгебры с единицей. Рассмотрено также отображение сопряжения свободной алгебры с единицей.

СОДЕРЖАНИЕ

1. Предисловие .. 1
2. Соглашения .. 2
3. Алгебра с единицей .. 2
4. Алгебра с сопряжением .. 5
5. Антимонейное отображение алгебры с сопряжением 8
6. Список литературы ... 9
7. Предметный указатель ... 10
8. Специальные символы и обозначения 11

1. ПРЕДИСЛОВИЕ

Когда я начал писать книгу [2], я понял, что классическое определение линейного отображения

\[y = ax \quad y = xa \]

ограничивает наши возможности изучать производную отображения в тело. Интуитивно было ясно, что линейное отображение в тело можно представить в виде суммы слагаемых вида

\[axb \]

Последующее исследование структуры линейного отображения в тело было завершено в книге [4], При этом я расширил круг рассматриваемых алгебр, перейдя к рассмотрению свободных алгебр над коммутативным кольцом.

Если множество \(A \) является \(D \)-алгеброй, то на множестве \(A \) определено несколько алгебраических структур. Согласно определению [4]-2.2.1, \(A \) является \(D \)-модулем. Если мы ограничимся рассмотрением операций сложения и

Aleks_Kleyn@MailAPS.org.
http://sites.google.com/site/AleksKleyn/.
http://arxiv.org/a/kleyn_a_1.
http://AleksKleyn.blogspot.com/.
умножения в D-алгебре A, то мы можем рассматривать D-алгебру A как кольцо (возможно, неассоциативное). Соответственно этому мы можем рассматривать D-алгебру A как A^\star-модуль размерности 1. Поэтому важно изучать отображения, сохраняющих ту или иную алгебраическую структуру на множестве A.

Эта статья рассматривает A^\star-линейные отображения D^\star-алгебры A.

Концепция алгебры с сопряжением естественно вписывается в теорию D-алгебры с единицей. Однако я полагаю, что отображение сопряжения можно определить также в случае, если алгебра не имеет единицу. Однако ответ на этот вопрос требует дополнительного исследования.

2. Соглашения

Соглашение 2.1. Пусть A - свободная конечно мерная алгебра. При разложении элемента алгебры A относительно базиса \overline{e} мы пользуемся одной и той же корневой буквой для обозначения этого элемента и его координат. Однако в алгебре не принято использовать векторные обозначения. В выражении a^2 не ясно - это компонента разложения элемента a относительно базиса \overline{e} или это операция возведения в степень. Для облегчения чтения текста мы будем индекс элемента алгебры выделять цветом. Например,

$$a = a_1 e_1$$

Соглашение 2.2. Если свобода конечномерная алгебра имеет единицу, то мы будем отожествлять вектор базиса e_0 с единицей алгебры.

Соглашение 2.3. Хотя алгебра является свободным модулем над некоторым кольцом, мы не пользуемся векторными обозначениями при записи элементов алгебры. В тех случаях, когда я рассматриваю матрицу координат элемента алгебры, я буду пользоваться векторными обозначениями для записи соответствующего элемента. Чтобы не возникала неоднозначность при записи сопряжения, я буду обозначать $a^* = a^\star$ элемент, сопряжённый элементу a.

Без сомнения, у читателя могут быть вопросы, замечания, возражения. Я буду признателен любому отзыву.

3. АЛГЕБРА С ЕДИНИЦЕЙ

Пусть D - коммутативное кольцо. Пусть A - D-алгебра с единицей 1. Следовательно, определено эффективное представление

$$f_{1,2} : d \circ a = da \quad d \in D \quad a \in A$$

кольца D в алгебре A.

Теорема 3.1. Пусть D - коммутативное кольцо. Пусть A - D-алгебра. Пусть

$$f : A^n \to A$$

π-линейное отображение в D-алгебру A. Пусть

$$g : A^m \to A$$
м-линейное отображение в D-алгебру A. Тогда если для заданного i в выражении
$f \circ (x_1, \ldots, x_n)$
выполнить замену
$x_i = g \circ (y_1, \ldots, y_m)$
то полученное выражение
$h(x_1, \ldots, x_i, \ldots, x_n, y_1, \ldots, y_m) = f \circ (x_1, \ldots, g \circ (y_1, \ldots, y_m), \ldots, x_n)$
является $(m + n - 1)$-линейным отображением.

Доказательство. Поскольку полилинейное отображение линейно по каждому аргументу, то отображение h линейно по x_j, $j \neq i$. Так как отображение f линейно по x_i и для любого k отображение g линейно по y^k, то согласно теореме [4]-2.4.1 отображение h линейно по y^k.

Теорема 3.2. Пусть D - коммутативное кольцо. Пусть A - D-алгебра. Тогда
(3.2) $d(ab) = (da)b = a(db) \quad d \in D \quad a, b \in A$

Доказательство. Пусть f - билинейное отображение, соответствующее операции произведения в D-алгебре A. Тогда
(3.3) $df(ab) = f(da, b) = f(a, db) \quad d \in D \quad a, b \in A$

Равенство (3.2) следует из равенства (3.3).

Теорема 3.3. Пусть D - коммутативное кольцо. Коммутатор D-алгебры A - билинейное отображение. Ассоциатор D-алгебры A - 3-линейное отображение.

Доказательство. Согласно определениям [4]-2.2.1, [4]-2.2.4, коммутатор является билинейным отображением. Согласно определениям [4]-2.2.1, [4]-2.2.5 и теореме 3.1, ассоциатор является 3-линейным отображением.

Теорема 3.4. Пусть D - коммутативное кольцо. Пусть A - D-алгебра с единицей e. Тогда мы можем отождествить $d \in D$ и $d1 \in A$. При этом $D \subseteq N(A)$.

Доказательство. Из теоремы 3.3 следует

\[
(d, a, b) = d(1, a, b) = d((1a)b - 1(ab)) = d(ab - ab) = 0 \\
(a, d, b) = d(a, 1, b) = d((a1)b - a(1b)) = d(ab - ab) = 0 \\
(a, b, d) = d(a, b, 1) = d((ab)1 - a(b1)) = d(ab - ab) = 0
\]

Следовательно, $D \subseteq N(A)$. Если в равенстве (3.2) мы положим $b = 1$, то мы получим

(3.4) $da = ad \quad d \in D \quad a \in A$

\[1\] Я рассматриваю определение произведения в D-алгебре согласно определению [4]-2.2.1.

\[2\] Определение коммутатора дано в определении [4]-2.2.4. Определение ассоциатора дано в определении [4]-2.2.5. Смотри также [5], с. 13.

\[3\] Определение ядра $N(A)$ алгебры A дано в определении [4]-2.2.7; определение центра $Z(A)$ алгебры A дано в определении [4]-2.2.8; смотри также [5], с. 13, 14.
Из равенства (3.4) следует, что коммутатор имеет вид

$$[d, a] = 0$$

□

Теорема 3.5. Структурные константы D-алгебры с единицей e удовлетворяют условию

$$(3.5) \quad C^{d}_{0k} = C^{d}_{k0} = \delta^{k}_{l}$$

Доказательство. Равенство (3.5) является следствием равенства $1d = d1 = d$. □

Теорема 3.6. A^\star-линейное отображение D-алгебры A с единицей имеет вид

$$(3.6) \quad f(c) = cd \quad d \in A$$

Пусть \overline{e} - (Re A)-базис алгебры A. Координаты отображения f

$$(3.7) \quad f(c) = c^{l} f^{i}_{l} \overline{\tau}_{i}$$

относительно базиса \overline{e} удовлетворяют равенству

$$(3.8) \quad f^{l}_{k} = f^{l}_{0} C^{l}_{ki}$$

$$(3.9) \quad d = f^{l}_{0} \overline{\tau}_{l}$$

Доказательство. A^\star-линейное отображение удовлетворяет равенствам

$$(3.10) \quad f(ac) = (ac)^{i} f^{i}_{l} \overline{\tau}_{j} = a^{k} c^{l} C^{i}_{kl} f^{j}_{l} \overline{\tau}_{j}$$

$$(3.11) \quad af(c) = a^{k} (f(c)^{i} C^{j}_{kl} \overline{\tau}_{j} = a^{k} c^{l} f^{j}_{l} C^{j}_{kl} \overline{\tau}_{j}$$

Из равенств (3.10), (3.11), следует

$$(3.12) \quad a^{k} c^{l} C^{i}_{kl} f^{j}_{l} \overline{\tau}_{j} = a^{k} c^{l} f^{j}_{l} C^{j}_{kl} \overline{\tau}_{j}$$

Равенство

$$(3.13) \quad C^{i}_{kl} f^{j}_{l} = f^{i}_{k} C^{j}_{kl}$$

существует из равенства (3.12). Из равенства (3.13) следует4

$$(3.14) \quad C^{i}_{k0} f^{j}_{l} = f^{i}_{0} C^{j}_{kl}$$

Из равенств (3.5), (3.14), следует

$$(3.15) \quad \delta^{i}_{l} f^{j}_{i} = f^{i}_{0} C^{j}_{kl}$$

Равенство (3.8) следует из равенства (3.15). Из равенств (3.7), (3.8) следует

$$(3.16) \quad f(c) = c^{l} f^{l}_{0} C^{j}_{ji} \overline{\tau}_{i}$$

Равенство (3.9) следует из равенств (3.6), (3.16). □
4. АЛГЕБРА С СОПРЯЖЕНИЕМ

Пусть D - коммутативное кольцо. Пусть A - D-алгебра с единицей e, $A \neq D$.
Согласно теореме 3.4, мы можем отождествить кольцо D с подалгеброй D-алгебры A.
Следовательно, D-алгебра A имеет нетривиальный центр $Z(A)$.
Пусть существует подалгебра F алгебры A такая, что $F \neq A$, $D \subseteq F \subseteq Z(A)$,
и алгебра A является свободным модулем над кольцом F. Пусть \overline{e} - базис свободного модуля A над кольцом F.
Мы будем полагать $\overline{e} = 1$.
Рассмотрим отображения

$\text{Re} : A \to A$
$\text{Im} : A \to A$

определенные равенством

(4.1) $\text{Re} d = d^0 \quad \text{Im} d = d - d^0 \quad d \in D \quad d = d^i \overline{e}_i$

Выражение $\text{Re} d$ называется скаляром элемента d. Выражение $\text{Im} d$ называется вектором элемента d.
Согласно (4.1) $F = \{d \in A : \text{Re} d = d\}$
Мы будем пользоваться записью $\text{Re} A$ для обозначения алгебры скаляров алгебры A.

Теорема 4.1. Множество

(4.2) $\text{Im} A = \{d \in A : \text{Re} d = 0\}$
является $(\text{Re} A)$-модулем, который мы называем модуль векторов алгебры A.

(4.3) $A = \text{Re} A \oplus \text{Im} A$

Доказательство. Пусть $c, d \in \text{Im} A$. Тогда $c_0 = d_0 = 0$. Следовательно,

$(c + d)_0 = c_0 + d_0 = 0$

Если $a \in \text{Re} A$, то

$(ad)_0 = ad_0 = 0$

Следовательно, $\text{Im} A$ является $(\text{Re} A)$-модулем.

Последовательность модулей

$0 \to \text{Re} A \xrightarrow{\text{id}} A \xrightarrow{\text{Im}} \text{Im} A \to 0$

является точной последовательностью. Согласно определению (4.1) отображения Re, следующая диаграмма коммутативна

$\begin{array}{ccc}
\text{Re} A & \xrightarrow{\text{id}} & A \\
\downarrow \text{id} & & \downarrow \\
\text{Re} A & & \\
\end{array}$

Согласно утверждению (2) предложения [1]-III.3.3,

(4.4) $A = \text{id}(\text{Re} A) \oplus \text{ker} \text{Re}$

В разделе [3]-7, я рассмотриваю пример алгебры, в которой определены две операции сопряжения. Мы будем полагать, что операция сопряжения выбрана.
Согласно определению (4.2)
(4.5) \(\ker \text{Re} = \{ d \in A : \text{Re} d = 0 \} = \text{Im} A \)
Равенство (4.3) следует из равенств (4.4), (4.5).

Согласно теореме 4.1, однозначно определенно представление
(4.6) \(d = \text{Re} d + \text{Im} d \)

Определение 4.2. Отображение
(4.7) \(d^* = \text{Re} d - \text{Im} d \)
называется сопряжением в алгебре при условии, если это отображение удовлетворяет равенству
(4.8) \((cd)^* = d^* c^* \)
(Re A)-алгебра A, в которой определено сопряжение, называется алгеброй с сопряжением.

Следствие 4.3. \((d^*)^* = d \)

Теорема 4.4.
(4.9) \(d + d^* \in \text{Re} A \)
(4.10) \(d - d^* \in \text{Im} A \)

Доказательство. Утверждение теоремы следует из равенств (4.6), (4.7).

Теорема 4.5. (Re A)-алгебра A является алгеброй с сопряжением, если структурные константы (Re A)-алгебры A удовлетворяют условию
(4.11) \(C_{kl}^0 = C_{lk}^0 \quad C_{kl}^p = -C_{lk}^p \)
\[1 < k < n \quad 1 < l < n \quad 1 < p < n \]

Доказательство. Из равенств (4.6), (4.7) следует
(4.12) \((cd)^* = (\text{Re} c \text{Re} d + \text{Re} c \text{Im} d + \text{Im} c \text{Re} d + \text{Im} c \text{Im} d)^* \)
\[= \text{Re} c \text{Re} d - \text{Re} c \text{Im} d - \text{Im} c \text{Re} d + (\text{Im} c \text{Im} d)^* \]
(4.13) \(d^* c^* = (\text{Re} d - \text{Im} d)(\text{Re} c - \text{Im} c) \)
\[= \text{Re} d \text{Re} c - \text{Re} d \text{Im} c - \text{Im} d \text{Re} c + \text{Im} d \text{Im} c \]
Из равенств (4.8), (4.12), (4.13), следует
(4.14) \((\text{Im} c \text{Im} d)^* = \text{Im} d \text{Im} c \)
Пусть \(\overline{\varepsilon} \) - базис (Re D)-алгебры D. Из равенства (4.14) следует
(4.15) \((C_{kl}^0 c^k d^l + C_{kl}^p c^k d^l \varepsilon_p)^* = C_{kl}^0 c^k d^l - C_{kl}^p c^k d^l \varepsilon_p \)
\[= C_{kl}^0 d^k c^l + C_{kl}^p d^k c^l \varepsilon_p \]
\[1 < k < n \quad 1 < l < n \quad 1 < p < n \]
Равенство (4.11) следует из равенства (4.15).
Следствие 4.6. \(\tau_k \overline{\tau}_k \in \text{Re} A \)

Теорема 4.7. \((k > 0, \ l > 0)\)

(4.16) \[\tau_k \overline{\tau}_l = (\overline{\tau}_l \tau_k)^* \]

Доказательство. Из равенства (4.11) следует \((p = 1, \ldots, n)\)

\[\tau_k \overline{\tau}_l = C^0_{ab} e^a_k e^b_l \tau_0 + C^p_{ab} e^a_k e^b_l \tau_p \]
\[= C^0_{ab} e^a_k e^b_l \tau_0 - C^p_{ba} e^b_l e^a_k \tau_p \]
(4.17) \[= (C^0_{ba} e^b_l e^a_k \tau_0 + C^p_{ba} e^b_l e^a_k \tau_p)^* \]
\[= (\overline{\tau}_l \tau_k)^* \]

Равенство (4.16) следует из равенства (4.17). □

Теорема 4.8. \((k > 0, \ l > 0)\)

(4.18) \[\tau_k \overline{\tau}_l + \overline{\tau}_l \tau_k \in \text{Re} A \]
(4.19) \[\tau_k \overline{\tau}_l - \overline{\tau}_l \tau_k \in \text{Im} A \]

Доказательство. Утверждение теоремы следует из равенства (4.16) и теоремы 4.4. □

Теорема 4.9. \(dd^* \in \text{Re} A\)

Доказательство. Из равенств (4.7), (4.11) следует \((p = 1, \ldots, n)\)

\[dd^* = (d^0 \tau_0 + d^p \tau_p)(d^0 \tau_0 + d^p \tau_q)^* \]
\[= (d^0 \tau_0 + d^p \tau_p)(d^0 \tau_0 - d^p \tau_q) \]
(4.20) \[= d^0 \tau_0 d^0 \tau_0 - d^0 \tau_0 d^p \tau_q + d^p \tau_p d^0 \tau_0 - d^p \tau_p d^p \tau_q \]
\[= (d^0)^2 \tau_0 - d^0 d^p \tau_p + d^p d^0 \tau_p - d^p d^p \tau_p \tau_q \]

Первые 3 слагаемых в выражении (4.20) имеют вид

(4.21) \[(d^0)^2 \tau_0 - d^0 d^p \tau_p + d^p d^0 \tau_p = (d^0)^2 \tau_0 \in \text{Re} A \]

Последнее слагаемое в выражении (4.20) имеет вид

(4.22) \[-d^p d^p \tau_p \tau_q = -(d^p)^2 \tau_p \tau_q - \sum_{q>p} d^p d^q (\tau_p \tau_q + \tau_q \tau_p) \]

Согласно следствию 4.6 и утверждению (4.18)

(4.23) \[-d^p d^p \tau_p \tau_q \in \text{Re} A \]
Утверждение теоремы следует из равенства (4.20) и утверждений (4.21), (4.23). □

Отображение сопряжения можно представить с помощью матрицы \(I \)

(4.24) \[d^* = I \circ d \quad I^0_k = \delta^0_k \quad I^k_0 = \delta^k_0 \quad k = 0, \ldots, n \]
\[I^m_k = -\delta^m_k \quad I^k_m = -\delta^k_m \quad m = 1, \ldots, n \]
Пример 4.10. Произведение в множестве комплексных чисел C коммутативно. Однако поле комплексных чисел содержит подполе R. Векторное пространство $\text{Im} C$ имеет размерность 1 и базис $\overline{e}_1 = i$. Соответственно
$$c^* = c^0 - c^1 i$$

Пример 4.11. Тело кватернионов H содержит подполе R. Векторное пространство $\text{Im} H$ имеет размерность 3 и базис
$$\overline{e}_1 = i \quad \overline{e}_2 = j \quad \overline{e}_3 = k$$
Соответственно
$$d^* = d^0 - d^1 i - d^2 j - d^3 k$$

5. Антилинейное отображение алгебры с сопряжением

Определение 5.1. Пусть A - алгебра с сопряжением. $(\text{Re} A)$-линейное отображение
$$f : A \to A$$
nазывается $A\ast$-антилинейным если отображение f удовлетворяет равенству
$$f(da) = f(a)d^*$$

Теорема 5.2. $A\ast$-антилинейное отображение алгебры с сопряжением A имеет вид
$$f(c) = dc^* = dI \circ c \quad d \in A$$
Пусть \overline{e} - (Re A)-базис алгебры A. Координаты отображения f
$$f(c) = c f_I e_i$$
относительно базиса \overline{e} удовлетворяют равенству
$$f_p^i = f_q^k I_p C_{ki}$$
$$d = f_0 I \overline{e}_i$$

Доказательство. Согласно определению 5.1, $A\ast$-антилинейное отображение удовлетворяет равенствам
$$f(ac) = (ac)^i f_j^i \overline{e}_j = a^p c^q C_{pq} f_i^i \overline{e}_j$$
$$f(c)a^* = (f(c))^k (a^*)^j C_{kj} \overline{e}_j = c f_i^k I_q a^q C_{ki} \overline{e}_j$$
Из равенств (5.5), (5.6), следует
$$a^p c^q C_{pq} f_i^i \overline{e}_j = c f_i^k I_q a^q C_{ki} \overline{e}_j$$
Равенство
$$C_{pq} f_i^j = I_q I_p C_{ki}$$
следует из равенства (5.7).
Из равенства (5.8) следует\(^6\)
(5.9)\[C_p^i f_i^j = f_{0}^k I_p C_k^j \]
Из равенств (3.5), (4.24), (5.9), следует
(5.10)\[\delta_p^i f_i^j = f_{0}^k I_p C_k^j \]
Равенство (5.3) следует из равенства (5.10).
Из равенств (5.2), (5.3) следует
(5.11)\[f(c) = c^j f_{0}^k I_j I_k C_k^j c_j = f_{0}^k c^j I_j I_k C_k^j c_j = f_{0}^k (c^*)^j I_j I_k C_k^j c_j \]
Равенство (5.4) следует из равенств (3.6), (5.11). \(\square\)

6. Список литературы

[1] Серж Ленг, Алгебра, М. Мир, 1968
[2] Александр Клейн, Введение в математический анализ над телом, eprint arXiv:0812.4763 (2010)
[3] Александр Клейн, Этюд о кватернионах, eprint arXiv:0909.0855 (2010)
[4] Aleks Kleyn, Linear Mappings of Free Algebra: First Steps in Noncommutative Linear Algebra, Lambert Academic Publishing, 2010
[5] Richard D. Schafer, An Introduction to Nonassociative Algebras, Dover Publications, Inc., New York, 1995

\(^6\)Пусть \(q = 0 \).
7. ПРЕДМЕТНЫЙ УКАЗАТЕЛЬ

A*-антилинейное отображение алгебры с сопряжением 8
алгебра с сопряжением 6
алгебра скаляров алгебры 5
вектор элемента алгебры 5
модуль векторов алгебры 5
скаляр элемента алгебры 5
сопряжение в алгебре 6
8. Специальные символы и обозначения

\[d^* \] — сопряжение в алгебре 6

\[\text{Im} \ A \] — модуль векторов алгебры \(A \) 5
\[\text{Im} \ d \] — вектор элемента \(d \) алгебры 5

\[\text{Re} \ A \] — алгебра скаляров алгебры \(A \) 5
\[\text{Re} \ d \] — скаляр элемента \(d \) алгебры 5