Introduction

Priapism is the persistence of erection that is not associated with sexual stimulation [1]. The most common etiology of priapism is intracavernosal injection therapy with vasoactive drugs such as papaverine or prostaglandin E1 (PGE1). The incidence of iatrogenic causes ranges from 0.26% to 10.26% [2-9]. Predictive factors of prolonged erections include young age, good baseline erectile function, and absent coronary artery disease [10]. Intracavernosal agents have a number of utilities in addition to erectile dysfunction treatment. They can facilitate erection for office-based examinations, such as a penile duplex Doppler ultrasonography (PDDU) in the workup of Peyronie’s disease [11]. These patients will almost invariably undergo PDDU for evaluation of erectile function, plaque size, penile curvature, and hemodynamic function [12]. The use of vasoactive agents carries a risk of inducing iatrogenic priapism [13]. Patients receiving these injections in an outpatient setting are at increased risk because of the inability to predict optimal dosing. Furthermore, Deveci et al. [14] reported the prevalence of erectile dysfunction in...
Peyronie’s patients to be approximately 35% (self-reported at presentation), with 18% of those patients having normal results on hemodynamic PDDU studies.

Therefore, given that the majority of Peyronie’s disease patients are expected to have normal or near-normal erectile function, this patient group was chosen to evaluate the risk of iatrogenic priapism following intracavernosal vasoactive agent injection therapy. Phenylephrine has been well described as a method of priapism treatment. The aim of our study was to analyze the utility of “early” prophylactic administration of low-dose phenylephrine in patients with sustained erections after diagnostic injections of vasoactive agents to prevent the deleterious effects of iatrogenic priapism.

MATERIALS AND METHODS

A retrospective review of all patients with Peyronie’s disease in a specialized practice was performed to analyze the effects of low-dose phenylephrine as a prophylaxis against iatrogenic priapism. A total of 78 patients underwent a workup for Peyronie’s disease that included a focused history and physical examination as well as PDDU. All patients were given 10 μg of alprostadil, with an additional 10 μg to achieve adequate response (rigidity 4–5) when the initial injection was insufficient. Clinic assessment and grading of penile rigidity (on a scale of 1–5) as well as degree and direction of penile curvature were recorded by a single urologist (H.S.N). Rigidity was classified as 5/5 if there was complete fullness as determined by the same clinician. A score of 3/5 was given if there was 50% fullness. A score of 1/5 was given if there was no fullness or response to vasoactive injection. Subsequently, the patients underwent PDDU to obtain peak systolic velocity (PSV) and end diastolic velocity (EDV). Following the study, the patients were reevaluated at 15 minutes after the completion of the exam (approximately 45–60 minutes after alprostadil injection) to assess for persistent penile rigidity. The patients with unsubsided penile rigidity evaluated as 4 to 5 out of 5 at 15 minutes after the PDDU study were given 200-μg intracavernosal phenylephrine combined with 5 minutes of firm pressure at the injection site to achieve full detumescence. Patients were asked to report any symptoms, including lightheadedness, headaches, or palpitations. Blood pressure and heart rate were monitored within 10 minutes of phenylephrine injection.

A database was compiled to include patient demographics, duration of symptoms, degree and direction of curvature, associated symptoms, erectile function, medical comorbidities, PDDU results, and complications. One patient required immediate phenylephrine reversal because of unbearable discomfort secondary to alprostadil injection (excluded from study results). The remaining 77 patients were divided into 2 groups on the basis of rigidity following the examination: 1–3 vs. 4–5. A total of 44 patients with 4–5 rigidity were further analyzed to determine the proportion with reported erectile dysfunction and the correlation with PDDU analyses. Chi-square with Yates correction and two-tailed t-tests were used to analyze comorbidities, demographics, erectile function, and PDDU measurements where appropriate. Finally, 95% confidence intervals of studies reporting iatrogenic priapism rates were calculated. Microsoft Excel (Microsoft Co., Redmond, WA, USA) was used for all statistical analyses.

RESULTS

Of the 77 patients studied, 44 had persistent rigidity (score 4–5) approximately 45 to 60 minutes after receiving alprostadil injection and received phenylephrine reversal. Table 1 reports the patients’ demographic characteristics and comorbidities, which did not differ significantly between the two groups. Table 2 compares the two groups by baseline erectile function as reported by subjective International

Table 1. Patient demographics and comorbidities

Demographic	Group A (1-3 rigidity)	Group B (4-5 rigidity)	p-value
No. of patients	33	44	
Phenylinephrine reversal	No	Yes	
Age (mo), mean	53.4	48.7	0.12
Duration of symptoms (mo), mean	33.9	24.3	0.37
Erectile dysfunction (reported)	20 (61)	18 (41)	0.03
Hypertension	7 (21)	7 (16)	0.55
Diabetes mellitus	1 (3)	4 (9)	0.29
Smoker	3 (9)	3 (7)	0.71
Hyperlipidemia	10 (30)	17 (39)	0.45
Coronary artery disease	2 (6)	1 (2)	0.40
No comorbidities	16 (48)	22 (50)	0.89

Values are presented as number (%) unless otherwise indicated. *Significant (p<0.05).

Table 2. Comparison of erectile function with IIEF scores and PDDU hemodynamic values

Variable	Group A (1-3 rigidity)	Group B (4-5 rigidity)	p-value
No. of patients	33	44	
Erectile function (IIEF), n (%)			
No ED (22-25)	11 (33)	26 (59)	0.03
Mild (17-21)	11 (33)	12 (27)	0.57
Moderate (8-16)	5 (15)	5 (11)	0.62
Severe (5-7)	6 (18)	1 (2)	0.02
PDDU			
PSV (cm/s), mean	18.86	23.89	0.002
EDV (cm/s), mean	5.46	3.95	0.001

IIEF, International Index of Erectile Function; ED, erectile dysfunction; PDDU, penile duplex Doppler ultrasonography; PSV, peak systolic velocity; EDV, end diastolic velocity. *Significant (p<0.05).
Index of Erectile Function [15] categories and objective hemodynamic measurements (mean PSV and EDV). Group B had significantly more patients with normal reported erectile function and better hemodynamic values.

The 44 patients in group B who received phenylephrine were further divided into subgroups, with 26 patients reporting no erectile dysfunction. Comparison of patients with Peyronie’s disease only (PD only) versus patients with Peyronie’s disease and erectile dysfunction (PD+ED) showed that PD only patients had higher PSV and lower EDV than would be expected (Fig. 1). There was a significant difference in PSV for PD only (25.92±7.30) and PD+ED (20.94±5.71, p=0.02). The difference in EDV between the two groups was not significant.

All 44 patients achieved complete detumescence following injection of phenylephrine. There were no reports of hypotension, palpitation, or other adverse effects during or after the study. Average blood pressure change was <10 mmHg systolic. A number of patients (n=12) in both groups had complained of a “throbbing sensation” in the penis for up to 2 hours after the study, but it was difficult to assess whether this transient sensation was due to phenylephrine or to the initial alprostadil injection. The priapism rate was 0%.

Table 3 summarizes the results of a literature search on previous studies of iatrogenic priapism rates resulting from intracavernosal injection of vasoactive agents. All studies were conducted in patients with existing erectile dysfunction, with the incidence of iatrogenic priapism ranging from 0.26% to 10.26%. There were noticeably higher incidences of iatrogenic priapism with papaverine versus alprostadil injections. The use of alprostadil yielded lower rates of priapism, ranging from 0.26% to 0.94% (Table 3).

DISCUSSION

Iatrogenic priapism is a serious complication of diagnostic and therapeutic intracavernosal injection of vasoactive agents. The detrimental effects of priapism have been described extensively in the literature as biochemical alterations that produce histologic changes that result in cavernosal damage [16]. Juenemann et al. [17] demonstrated that hypoxia and intracorporeal acidosis occur 4 hours after erection onset as seen in corporal blood gas analysis. This anoxia and acidosis combined with glucose deprivation results in significantly diminished cavernosal smooth muscle tone and irreversible contractile dysfunction [12,18]. Low-flow priapism can result in irreversible cellular damage and corporal fibrosis, which results in significant morbidity of permanent erectile dysfunction [16,19].

Patients with Peyronie’s disease are intuitively thought to be at higher risk for iatrogenic priapism because a substantial number of these patients have normal erectile function. As shown in Table 3, previous studies that at-

![Figure 1. Comparison of penile duplex Doppler ultrasonography values in patients receiving low-dose phenylephrine. PD, Peyronie disease; PD+ED, Peyronie disease and erectile dysfunction. *Significant (p < 0.05).](image)

Source	No. of patients	Erectile dysfunction (%)	Vasoactive agent	Priapism rate (%)	95% Confidence interval
European alprostadil study group [2] (1998)	848	100	Alprostadil (PGE1)	0.94	(0.48-1.85)
Linet et al. [6] (1996)	683	100	Alprostadil (PGE1)	0.73	(0.31-1.70)
Perimenis et al. [8] (2001)	423	100	Alprostadil (PGE1)	0.71	(0.15-2.07)
Porst [9] (1996)	4,577	100	Alprostadil (PGE1)	0.26	(0.15-0.45)
Kilic et al. [5] (2010)	672	100	Papaverine	2.68	(1.59-4.23)
Perimenis et al. [8] (2001)	262	100	Papaverine	1.91	(0.62-4.45)
Metawea et al. [7] (2005)	250	100	Papaverine and phentolamine	10.00	(6.47-14.76)
Coombs et al. [3] (2012)	1,412	100	Various	0.50	(0.24-1.03)
Domes et al. [4] (2012)	117	100	Various	10.26	(5.97-12.08)
Our study, with phenylephrine px	44	41	Alprostadil (PGE1)	0.00	(0.00-8.03)

PGE1, prostaglandin E1; px, prophylaxis.
temped to identify iatrogenic priapism rates were con-
ducted in patients with existing erectile dysfunction. In
fact, we were unable to identify any studies that specifically
reported on the use of intracavernosal injections in pa-
tients with a similar erectile function profile as our
patients. Thus, the findings of this pilot study underscore
the safety and efficacy of preemptive and “early” use of in-
tracavernosal phenylephrine injection to achieve detu-
mescence, particularly in patients with normal baseline
erectile function.

Intracavernosal phenylephrine for reversal of prolonged
erections has been well established as an important ther-
apeutic intervention that is safe and effective [20-25].
Azocar et al. [26] noted that 93.1% of cases achieved detu-
mescence and no adverse complications were identified.
Munarriz et al. [22] demonstrated that high-dose intra-
cavernosal phenylephrine (mean dose, 2059±807 μg) can
be used for management without adverse effects or sig-
ificant changes in vital signs. We found that a minimal
dose of 200 μg of phenylephrine resulted in complete detu-
mescence without any adverse effects.

Our experience with Peyronie’s disease patients showed
59% to have normal erectile function. All patients who had
persistent penile rigidity (score of 4-5) approximately 45
to 60 minutes after alprostadil injection received pho-
ylactic phenylephrine. All patients achieved complete detu-
mescence, without any cases of iatrogenic priapism.
Although the published studies reviewed in Table 3 also re-
ported low rates of iatrogenic priapism, the patient pop-
ulation studied was different from the typical Peyronie’s
disease patient, as discussed above.

Thus, in our study, absent a proactive intervention with
vasoactive agents (i.e., reversal with an alpha adrenergic
agent), it would be expected that a number of patients will
have prolonged, painful erections that require further pharma-
ologic injections, penile aspiration, or surgical in-
tervention after induction of an erection with papaverine
or PGE1. This further treatment entails additional un-
necessary and stressful time spent with a health care pro-
vider, as well as expenditure of more health care dollars in
the form of added visits to emergency rooms and urgent
care centers. Furthermore, the persistence of erection can
be alarming and exceedingly uncomfortable for patients
who have already endured the discomfort of intrac-
avernosal injection therapy for PDDU. Preempting the
emergency management of priapism by identifying those
patients at higher risk for developing iatrogenic priapism
can minimize stressors on both patients and the health care
system. Although waiting in the office and receiving vaso-
active injection requires spending extra time at the office
at the outset, this brief intervention will lead to better out-
comes overall by reducing the chances of more extensive
and time-consuming interventions if the same patient
were to present to the Emergency Department or the physi-
cian’s office after a 3- to 4-hour priapism episode.

Our study was limited by sample size, given that
Peyronie’s disease is fairly uncommon. In addition, the
dose of 200 μg of phenylephrine resulted in complete detu-
mescence without any adverse effects,

CONCLUSIONS

Prophylactic phenylephrine reversal of strong erections
persisting beyond 60 minutes following vasoactive in-
duction is warranted to prevent the deleterious physio-
logical effects of prolonged erections, especially in patients
who are at higher risk. Future studies should incorporate
well-defined endpoints with larger sample sizes to explore
the incidence of iatrogenic priapism secondary to diag-
nostic procedures.
CONFLICTS OF INTEREST
The authors have nothing to disclose.

REFERENCES

1. Pryor J, Akkus E, Alter G, Jordan G, Lebret T, Levine L, et al. Priapism. J Sex Med 2004;1:116-20.
2. The European Alprostadil Study Group. The long-term safety of alprostadil (prostaglandin-E1) in patients with erectile dysfunction. Br J Urol 1998;82:538-43.
3. Coombs PG, Heck M, Guhring P, Narus J, Mulhall JP. A review of outcomes of an intracavernosal injection therapy programme. BJU Int 2012;110:1767-91.
4. Domes T, Chung E, DeYoung L, MacLean N, Al-Shaiji T, Brock G. Clinical outcomes of intracavernosal injection in post-prostatectomy patients: a single-center experience. Urology 2012;79:150-5.
5. Kilic M, Serefoglu EC, Ozdemir AT, Balbay MD. The actual incidence of papaverine-induced priapism in patients with erectile dysfunction following penile colour Doppler ultrasonography. Andrologia 2010;42:1-4.
6. Linet OL, Ogrinc FG. Efficacy and safety of intracavernosal alprostadil in men with erectile dysfunction. The Alprostadil Study Group. N Engl J Med 1996;334:873-7.
7. Metawea B, El-Nashar AR, Gad-Allah A, Abdul-Wahab M, Shamloul R. Intracavernous papaverine/phenolamine-induced priapism can be accurately predicted with color Doppler ultrasonography. Urology 2005;66:858-60.
8. Perimenis P, Athanasopoulos A, Geramoutsos I, Barbalias G. The incidence of pharmacologically induced priapism in the diagnostic and therapeutic management of 685 men with erectile dysfunction. Urol Int 2001;66:27-9.
9. Porst H. The rationale for prostaglandin E1 in erectile failure: a survey of worldwide experience. J Urol 1996;155:802-15.
10. Lomas GM, Jarow JP. Risk factors for papaverine-induced priapism. J Urol 1992;147:1280-1.
11. Lue TF, Hricak H, Marich KW, Tanagho EA. Vascularogenic impotence evaluated by high-resolution ultrasonography and pulsed Doppler spectrum analysis. Radiology 1985;155:777-81.
12. LeRoy TD, Broderick GA. Doppler blood flow analysis of erectile function: who, when, and how. Urol Clin North Am 2011;38:147-54.
13. Kerfoot WW, Carson CC. Pharmacologically induced erections among geriatric men. J Urol 1991;146:1022-4.
14. Devegi S, Palese M, Parker M, Guhring P, Mulhall JP. Erectile function profiles in men with Peyronie's disease. J Urol 2006;175:1807-11.
15. Rosen RC, Cappelleri JC, Smith MD, Lipsky J, Pena BM. Development and evaluation of an abridged, 5-item version of the International Index of Erectile Function (IIEF-5) as a diagnostic tool for erectile dysfunction. Int J Impot Res 1999;11:319-26.
16. Broderick GA, Radioglu A, Bivalacqua TJ, Ghanem H, Nehra A, Shamloul R. Priapism: pathogenesis, epidemiology, and management. J Sex Med 2010;7(1 Pt 2):476-500.
17. Juenemann KP, Lue TF, Abozeid M, Hellstrom WJ, Tanagho EA. Blood gas analysis in drug-induced penile erection. Urol Int 1986;41:207-11.
18. Munee A, Cellek S, Dogan A, kell PD, Ralph DJ, Minhas S. Investigation of cavernous smooth muscle dysfunction in low flow priapism using an in vitro model. Int J Impot Res 2005;17:10-8.
19. Eland IA, van der Lei J, Stricker BH, Sturkenboom MJ. Incidence of priapism in the general population. Urology 2001;57:970-2.
20. Dittrich A, Albrecht K, Bar-Moshe O, Vandendris M. Treatment of pharmacological priapism with phenylephrine. J Urol 1991;146:323-4.
21. Montague DK, Jarow J, Broderick GA, Dmochowski RR, Heaton JP, Lue TF, et al. American Urological Association guideline on the management of priapism. J Urol 2003;170(4 Pt 1):1318-24.
22. Munarriz R, Wen CC, McAuley I, Goldstein I, Traish A, Kim N. Management of ischemic priapism with high-dose intracavernosal phenylephrine: from bench to bedside. J Sex Med 2006;3:918-22.
23. Ralf DJ, Pescatori ES, Brindley GS, Pryor JP. Intracavernosal phenylephrine for recurrent priapism: self-administration by drug delivery implant. J Urol 2001;165:1632.
24. Sadeghi-Nejad H, Dogra V, Sefel AD, Mohamed MA. Priapism. Radiol Clin North Am 2004;42:427-43.
25. Staerman F, Nouri M, Coeurdacier P, Cipolla B, Guille F, Lobel B. Treatment of the intraoperative penile erection with intracavernous phenylephrine. J Urol 1995;153:1478-81.
26. Azocar Hidalgo G, Van Cauwelaert R, Castillo Cadiz O, Aguirre Aguirre C, Wohler Campos C. Treatment of priapism with phenylephrine. Arch Esp Urol 1994;47:785-7.
27. Greenfield JM, Levine LA. Peyronie's disease: etiology, epidemiology and medical treatment. Urol Clin North Am 2005;32:469-78.
28. Gelbard M, Goldstein I, Hellstrom WJ, McMahon CG, Smith T, Tursi J, et al. Clinical efficacy, safety and tolerability of collagenase clostridium histolyticum for the treatment of peyronie disease in 2 large double-blind, randomized, placebo controlled phase 3 studies. J Urol 2013;190:199-207.
29. Gelbard M, Hellstrom WJ, McMahon CG, Levine LA, Smith T, Tursi J, et al. Baseline characteristics from an ongoing phase 3 study of collagenase clostridium histolyticum in patients with Peyronie's disease. J Sex Med 2013;10:2822-31.
30. Hellstrom WJ, Feldman R, Rosen RC, Smith T, Kaufman G, Tursi J. Bother and distress associated with Peyronie's disease: validation of the Peyronie's disease questionnaire. J Urol 2013;190:627-34.