The Effect of Commiphora molmol (Myrrh) in Treatment of Trichomoniasis vaginalis infection

GM El-Sherbiny¹*, ET el Sherbiny²

¹Department of Parasitology, Faculty of Pharmacy, October 6 University, Cairo, ²Department of Zoology, El Nahda University, Beni Sweif, Egypt

Abstract

Background: Trichomoniasis vaginalis is now an important worldwide health problem. Metronidazole has so far been used in treatment, but the metronidazole-resistant strains and unpleasant adverse effects have been developed. Myrrh is one of the oldest known medicinal plants used by the ancient Egyptians for medical purposes and for mummification. Commiphora molmol (Myrrh) proved safe for male reproductive organ which is the main habitat of T. vaginalis and this study aims to evaluate the efficacy of the herbal against T. vaginalis in females.

Methods: In the present study, 33 metronidazole-resistant T. vaginalis females were treated with a combined course of metronidazole and tinidazole. Those still resistant to the combined treatment were given C. molmol. Also, natural plant extract purified from pomegranate (Punica granatum, Roman) was in-vitro investigated for its efficacy against T. vaginalis on Diamond media.

Results: The anti-T. vaginalis activity of both P. granatum (in-vitro) and C. molmol (in-vivo) extracts gave promising results.

Conclusion: The anti-T. vaginalis activity of P. granatum and C. molmol showed promising results indicating to sources of new anti-Trichomonas agents.

Keywords: Punica granatum; Commiphora molmol; Trichomonas vaginalis; Trichomoniasis; Treatment

Introduction

Although Trichomonas vaginalis was first described by Donne¹ in 1836, research on this organism did not begin until the 20th century. The research has been a progression of phases throughout the last 60 years and has gone from developing axenic culture and defining nutritional requirements to finding an effective treatment.¹ It was considered either a harmless vaginal colonizer or simply a minor nuisance.² Trichomoniasis was accounted to about half of all the curable sexually transmitted diseases worldwide.³ The incidence of this sexually transmitted parasite has reached the epidemic levels in many countries.⁴ Also, T. vaginalis survived in swimming pool, where human may acquire infection.⁵ In USA, annual incidence of T. vaginalis reached 5 millions.⁶ The general annual adult infection was 180-200 millions and being higher than that of gonorrhea, syphilis, and Chlamydia infections all together.⁷ In many Arab countries, trichomoniasis was reported including Jordan,⁸ Iraq,⁹ Egypt,¹⁰ Saudi Arabia,¹¹ Libya,¹² and Tunisia.¹³ The wide diversion in subtypes of T. vaginalis isolates caused different clinical symptoms with diversity of innate immune responses.¹⁴ The infection was always associated with other sexually-transmitted diseases (STDs) and a sensitive marker for high risk sexual behaviour.¹⁵ T. vaginalis in males caused non-gonococcal urethritis,¹⁶ but with serious complications.¹⁷ Also, T. vaginalis adherence was shown to mediate different gene expressions in human epithelial cells.¹⁸ The premature rupture of membranes, low-birth weight, preterm labor,¹⁹ female infertility,²⁰ and postpartum infection, even in asymptomatic women were associated with trichomoniasis.²¹ T. vaginalis is a factor in genesis and cause of cervical
neoplasia,22 and progression of cervical carcinoma,23 also phagocytes sperm cells.24 Unlike other STDs, T. vaginalis rate was more prevalent among women of all ages,25 and half of them were asymptomatic26 since trichomoniasis was a curable infection by a single dose metronidazole,27 successful control of STDS was aided by sensitive, simple and rapid test(s). No doubt, treating patients lowered the overall disease prevalence and morbidity.28 Metronidazole has so far been the most widely used drug for treating T. vaginalis,29 but, metronidazole can lead to drug resistance and potential risks of mutagenesis and carcinogenicity.30 In addition, its side effects such as headache, dry mouth, glossitis, and urticaria caused by lenity treatment or high doses have been described.31

But, at least 5% of clinical trichomoniasis is caused by strains resistant to commonly used drugs.32 Also, Hussien et al.33 reported the presence of different strains of T. vaginalis. The lack of approved alternative therapies for T. vaginalis treatment means that higher and sometimes toxic doses of metronidazole were used.34 Tinidazole (Fasigyn), a second-nitronidazole generation has shown to be an effective therapy in metronidazole-resistant T. vaginalis, with several advantages over metronidazole including greater in vitro potency against both sensitive and resistant strains of T. vaginalis, a more prolonged duration and improved patient tolerability.35 Cross-resistance among mitronidazole doses occurred, and thus metronidazole resistant strain was treated with tinidazole but rapid development of tinidazole-resistant T. vaginalis due to the similarities of metabolic pathway of both.4

According to world health organization (WHO), more than 80% of the world’s population relies on traditional medicine for their primary healthcare needs. Use of herbal medicines represents a long history of human interactions with the environment. Plants used for traditional medicine contain a wide range of substances that can be used to treat chronic as well as infectious diseases.35 The medical value of plants lies in some chemical substances that produce a definite physiological action on the human body. The most important of these bioactive compounds of plants are alkaloids, flavonoids, tannins, and phenolic compounds.36

Natural products are not only the basis for traditional or ethnic medicine, but also screening natural plant products provided highly successful new regimens for human welfare.37 Many new natural product groups have revealed anti-parasitic properties of surprising efficacy and selectivity.38 In the present study, Mirazid was given to metronidazole and tinidazole resistant T. vaginalis infected women. Also, the efficacy of Punica granatum extract against cultured T. vaginalis was evaluated.

Materials and Methods

The institutional review board of hospital approved this study. The study was registered at the Ministry of Scientific Research Academy of Scientific Research and Technology (292473).

We informed women to allow for an attrition rate (i.e. women who discontinue participation in the study entirely, including failure to complete all follow-up). Thus, 33 women were available to be studied.

The patients were recruited from hospitals of Cairo Curative Organization of Egypt. Potentially eligible patients were identified through hospitals registries for a 3-years retrospective inclusion, and through treating physicians, for the 2 years prospective inclusion (Patient who met the case definition of metronidazole resistant vaginal trichomoniasis were selected). A letter was sent for them while had been signed by their physician informing them of the study protocol and, if initially interested, asking them to complete a brief questionnaire to screen for trichomoniasis symptoms. Women who were assigned into control group were given the choice of undergoing the study program.

Metronidazole- resistant trichomoniasis was defined clinically as failure to respond to conventional therapy with oral metronidazole, 500 mg for 7 days (Total dose, 7 g). Patients in whom treatment failed and for whom re-infection from a sexual partner was a possibility were excluded from the study. "Failure to respond" was defined as persistence or recurrence (with 28 days) of symptoms and signs of vaginitis together with the following confirmatory laboratory feature of vaginal trichomoniasis: high vaginal pH, increased numbers of polymorphonuclear leukocytes, and a visualization of motile trichomonads using microscopy. In vitro Trichomonas cultures of individual specimens were performed using Dimoned's medium Modified (Remel), and they were examined at 24 hr and 48 h for the presence of motile trichomonads.

Two vaginal swabs were obtained from the childbearing period trichomoniasis infected women by sterile vaginal swab. The first swab was obtained from the lateral wall of vagina and was used to make
a wet mount preparation on a glass slide with a drop of normal saline and looking for motile trichomonads. The second swab was obtained from the posterior fornix of the vagina and inoculated immediately after collection in Diamond media at 32°C and examined for motile trichomonades at 24, 48, and 96 hr of incubation. The efficacy of metronidazole and tinidazole was evaluated in 33 patients. Both drugs were given orally in a single dose of 2 g for a minimum of 3 days or extended as indicated. A combination of vaginal metronidazole and oral tinidazole was tried. The effectiveness of metronidazole and tinidazole was evaluated in 33 patients. Both drugs were given orally in a single dose of 2 g for a minimum of 3 days or extended as indicated. A combination of vaginal metronidazole and oral tinidazole was tried.

The efficacy of metronidazole and tinidazole was evaluated in 33 patients. Both drugs were given orally in a single dose of 2 g for a minimum of 3 days or extended as indicated. A combination of vaginal metronidazole and oral tinidazole was tried. The effectiveness of metronidazole and tinidazole was evaluated in 33 patients. Both drugs were given orally in a single dose of 2 g for a minimum of 3 days or extended as indicated. A combination of vaginal metronidazole and oral tinidazole was tried. The effectiveness of metronidazole and tinidazole was evaluated in 33 patients. Both drugs were given orally in a single dose of 2 g for a minimum of 3 days or extended as indicated. A combination of vaginal metronidazole and oral tinidazole was tried.

The results are expressed as means and values were evaluated by the Chi Square test and p<0.5 was considered significant.

Results

Review of medical records revealed 33 cases of metronidazole- resistant trichomoniasis seen during a 3 years period (2005-2008). The mean age of the female patient was 37.2 years (range= 25-58 years). Duration of vulvovaginal symptoms was from 4 months to 5 years. Seventy five percent of referred women had previously diagnosed resistant trichomoniasis, and 25% of the women were referred because of refractory vaginitis of unknown aetiology. Before referral, all patients had received and did not respond to multiple courses of oral metronidazole.

Fifty percent of patients (9/18) given oral tinidazole were cured and 73% of patients (11/15) given a combination of oral metronidazole and vaginal tinidazole were treated (Table 1). Besides, This figure for patients who did not respond to combination of metronidazole and tinidazole oral or vaginal and were cured by Mirazid was 84.6% (11/13). In vitro susceptibility of isolates of T. vaginalis to P. granatum extract was determined. At pH=4.65, P. granatum showed a therapeutic effect against T. vaginalis, the organism was dead immediately in the tube containing

![Fig. 1: Normal T. vaginalis stained by ZN](image1)

![Fig. 2: ZN stained smear showing lethal effect of P. granatum on T. Vaginalis](image2)
50 mg and 100 mg of the extract, and within 0.5 hour in the tube with 20 mg extract. At pH=6.00, however, *P. granatum* extract had no effect against the organism.

Discussion

There is a need for studies into other chemicals and/or medicinal plants or herbs for alternative regimens against *T. vaginalis* to be inexpensive, effective, safe to use and with short course of treatment. Globally, herbal remedies have been studied under rigorous controls and was technologically approved by authors in many countries.

Factors that predispose women to vulvovaginitis candidiasis and trichomoniasis are pregnancy, diabetes, HIV infection, higher dosage of oral antibiotics or corticosteroid use, immunosuppression, more pathogenic normal flora, and history of recurrent infection. Other factors that may increase the incidence include the use of perfumed feminine hygienic sprays, tropical antimicrobial agents, and tight poorly ventilated clothing and under wear.

Successful determination of biologically active compounds from plant material is largely dependent on the type of solvent used in the extraction procedure, properties of a good solvent in plant extraction that induces ease of evaporation at low heat, promotion of rapid physiologic absorption of the extract, a preservative action and inability to cause the extract to complex or dissociate. The choice will also depend on targeted compounds. The most commonly used solvents for investigation of microbial activity in plants are methanol, ethanol, and water.

In the present study, *P. granatum* extract on *T. vaginalis* in Diamond media showed 100% efficacy in dilution up to 10%. On the other hand, extracts in the concentrations of 5%, 1% & 0.5% killed 40%, 25% & 10% of *T. vaginalis* respectively.

Metronidazole has a worldwide use within the last 2 years of its introduction, but the lack of surveillance data of vaginal trichomoniasis and clinical and microbiological response to treatment, incidence of metronidazole resistance has spared. Lossick and Kent found that the high level resistance to metronidazole occurred in one out of 2000-3000 cases of vaginal trichomoniasis cases. Saurina *et al.* studied the prevalence of in vitro metronidazole resistance among outpatients attended urban clinic, found that 3/118 (2.5%) of *T. vaginalis* isolates from 107 patients exhibited aerobic low level resistance. The development of drug resistance in human against commonly used treatments has necessitated a search for new anti-agent substances from other sources including plants. Myrrh is an oleo-gum resin obtained from the stem of the herbal tree *Commiphora molmol*. It contains a resin (Myrrhin) which is a volatile oil (Myrrh), gum and a bitter principle. Myrrh was used by Sumerians and Greeks to treat worms, stomach pain, flatulence particularly in children, anti-inflammatory, anti-ulcer, anti-mutagenic, anticancer properties. Also, *C. myrrha* and various other species of *Commiphora* are recognized to possess significant antiseptic, anesthetic, and anti-tumor properties. Its safety and effectiveness was proved in the treatment of human schistosomiasis, fascioliasis of human, and animals, moniziasis, strongyloidiasis, heterophyiasis, and both species of hymenolepiasis. Also, myrrh has larvicidal action against larvae of both *Culex pipiens* and *Aedes caspius*, molluscidical action against *Biomphalaria alexandrina, Bulinus truncatus* and *Lymnaea caulliaudi*, *Bithynia connoyi*, the snail vector of the trematode parasite *Opisthorchis sp.*, and *Lymnaea natalensis*. *C. molmol* proved safe for male reproductive organs which is the main habitat of *T. vaginalis*. *Omar et al.* tested the safety of mirazid on adult male albino rats by assessment of serum levels of ALT, AST and bilirubin and histopathology of liver. They found a non-significant increase in these enzymes and bilirubin levels. Auffray in France stated that essential oil of *C. myrrha* ha the best protection against squalene per oxidation, and that sun care cosmetics should make use not only of free radical scavengers but also of singlet oxygen quenchers. The Pomegranate fruit has been used for centuries in ancient cultures for its medicinal purposes. It is

| Table 1: Trichomoniasis cases treated by metronidazole & tinidazole. |
|-------------------|--------|--------|--------|--------|
| Drug used | Total | Cure | Not | %Cure |
| Tindazole | 18 | 9 | 9 | 50 |
| Oral metronidazole + vaginal tinidazole | 15 | 11 | 4 | 73 |
| Total | 33 | 20 | 13 | 60.6 |
widely consumed fresh and in beverage forms as juice and wine. Properties attributed to its high content of polyphenols, including ellagic acid in its free and bound forms, and other flavonoids. In the last two decades, many authors dealt with *P. granatum* (Pomegranate) as a medicinal plant. It is a shrub or small tree which several parts have been used by old Indian physicians. Nowadays, parts of pomegranate are used as an astringent, anti-microbial hemostatic, anti-diabetes, anti-helminthes, anti-prostate cancer, improved anti-oxidant function in elderly subjects, anti-fungal peptide, and anti-Candida mouth-anti-*T. Gingivalis*, as heart-healthy juice, and prevention of the cardiovascular diseases. Dried per carp was decocted with other herbs and used to treat colic, dysentery, leucorrhoea, and as larvicide against myiasis producing larvae of *Lucilia sericata*. Also, the rind of fruit and flower, combined with aromatics, such as cloves, cinnamon, coriander, pepper etc as bowel astringent in the diarrhea. It was used externally in treatment of the vaginal discharge, mouth sores, and throat infections. Methanol extracts of *P. granatum* fruit exhibited a higher degree of antimicrobial activity. The fruit was successfully used to treat dysentery, diarrhea and gastralgia.

Thikunchai et al. reported that *P. granatum* contains 25% tannins which made it an effective astringent. In old medicine, the pomegranate as a pharmacy unto itself was used as an anti-parasitic agent, a blood tonic and to heal apathies and ulcers.

This study shows statistically significant effects on resistant *T. vaginalis* strains. These proposed benefits, however, are in assays that are as yet invalidated, and further research is needed to prove the validity of these tests. In conclusion, the results in the present study support the two safe plant extracts (*Commiphora molmol* and *Punica granatum*) proved to be valuable agents in treating of *T. vaginalis* infection, and will form the basis for further investigation in the potential discovery of new natural bioactive compounds.

Acknowledgments

We thank the Gynaecology Clinic staffs and all the participants who shared their time for working on this study.

Conflict of interest: None declared.

References

1. Poch F, Levén D, Levín S, Dan M. Modified thiglycylate medium: a simple and reliable means for detection of *Trichomonas vaginalis*. J Clin Microbiol 1996;34:2630-1. [8880540]
2. Pereira-Neves A, Benchimol M. *Trichomonas vaginalis*: in vitro survival in swimming pool water samples. *Exp Parasitol* 2008;118:438-41. [17949719] [doi:10.1016/j.exppara.2007.09.005]
3. Hook EW 3rd. *Trichomonas vaginalis*: no longer a minor STD. *Sex Transm Dis* 1999;26:388-9. [10458631] [doi:10.1097/00007435-19908000-00004]
4. Lewis DA, Halgood L, White R, Barker KF, Murphy SM. Managing vaginal trichomoniasis resistant to high-dose metronidazole therapy. *Int J STD AIDS* 1997;8:780-4. [9433954] [doi:10.1258/0956462971919110]
5. Pereira-Neves A, Benchimol M. *Trichomonas vaginalis*: in vitro survival in swimming pool water samples. *Exp Parasitol* 2008;118:438-41. [17949719] [doi:10.1016/j.exppara.2007.09.005]
6. Weinstock H, Berman S, Cates W Jr. Sexually transmitted diseases among American youth: Incidence and prevalence estimates. *Perspect Sex Reprod Health* 2004;36:5-10. [14982671] [doi:10.1363/3606004]
7. Schwebke JR, Burgess D. *Trichomoniasis*. *Clin Microbiol Rev* 2004;17:794-803. [15489349] [doi:10.1128/CMR.17.4.794-803.2004]
8. Morsey TA, El Dasouki ST. A study on vaginal trichomoniasis in Amman, Jordan. *J Egypt Soc Parasitol* 1978;8:279-282
9. Mahdi NK, Gany ZH, Sharief M. Risk factors for vaginal trichomoni-asis among women in Basra, Iraq. *East Mediterr Health J* 2001;7:918-24. [15332733]
10. Negm AY, el-Haleem DA. Detection of trichomoniasis in vaginal specimens by both conventional and modern molecular tools. *J Egypt Soc Parasitol* 2004;34:589-600. [15287181]
11. Alzanbagi NA, Salem HS, Al Braiken MM. Molecular characterization of *Trichomonas vaginalis* clinical isolates by HSP70 restriction fragment length polymorphism. *J Egypt Soc Parasitol* 2005;35:699-710. [16083077]
12. James JA, Thomason JL, Gelbart SM, Osypowski P, Kaiser P, Hanson L. Is trichomoniasis often associated with bacterial vaginosis in pregnant adolescents? *Am J Obstet Gynecol* 1992;166:859-63. [1372472]
13. Wilson A, Ackers JP. Urine culture for the detection of *Trichomonas vaginalis* in men. *Br J Vener Dis* 1980;56:46-8. [6966175]
14. Benchimol M, de Andrade Rosa I, da Silva Fontes R, Burla Dias AJ. *Trichomonas vaginalis* adhere and discharge in Benghazi city, Libya. *J Egypt Soc Parasitol* 2006;36:1007-16. [17153709]
15. Hussien EM, El-Sayed HZ, El-Moamly AA, Helmy MM, Shaban MM. Molecular characterization of Egyptian *Trichomonas vaginalis* clinical isolates by HSP70 restriction fragment length polymorphism. *J Egypt Soc Parasitol* 2005;35:699-710. [16083077]
16. Kassem HH, Majoud OA. Trichomoni-asis among women with vaginal discharge in Jeddah city, Saudi Arabia. *J Egypt Soc Parasitol* 2007;37:249-52. [16333911]
17. Fendri C. Syndromic approach in Tunisian women: Bacte-riological validation. *Int J STD AIDS* 2008;19:112-4. [18334064] [doi:10.1258/ija.2007.007140]
18. Morsy TA, El Dasouki ST. A study on vaginal trichomoniasis. *Perspect Sex Reprod Health* 2004;36:589-600. [15489349] [doi:10.1128/CMR.17.4.794-803.2004]
phagocytose sperm cells: Adhesion seems to be a prominent stage during interaction. *Parasitol Res* 2008; 102:597-604. [18043945] [doi:10.1007/s00436-007-0793-3]

18. Kuckoorn A, Amondij V, Alderete JF. *Trichomonas vaginalis* adherence mediates differential gene expression in human epithelial cells. *Cell Microbiol* 2005;7:887-97. [15888089] [doi:10.1111/j.1462-5822.2005.00522.x]

19. Cotch MF, Pastorek JG 2nd, Nugent RP, Hillier SL, Gibbs RS, Martin DH, Eschenbach DA, Edelman R, Carey JC, Regan JA, Krohn MA, Kiebannon MA, Rao AV, Rhoads GG. *Trichomonas vaginalis* associated with low birth weight and preterm delivery. The Vaginal Infections and Prematurity Study Group. *Sex Transm Dis* 1997;24:353-60. [9243743] [doi:10.1097/00007435-199707000-00008]

20. el-Shazly AM, Morsy TA, Davoud HA. Human monisiasis expansa: The first Egyptian parasitic zoono-sis. *J Egypt Soc Parasitol* 2004;34:515-8. [15257174]

21. Schwebke JR. Cost effective screening for trichomoniasis. *Emerg Infect Dis* 2002;8:749; author reply 749-50. [12095452]

22. Zhang ZF, Begg CB. Is *Trichomonas vaginalis* a cause of cervical neoplasia? Results from a, combined analysis of 24 studies. *Int J Epidemiol* 1994;23:682-90. [8002180] [doi:10.1093/ije/23.4.682]

23. Sayed el-Ahl SA, el-Wakil HS, Kamel NM, Mahmoud MS. A preliminary study on the relationship between *Trichomonas vaginalis* and cervical cancer in Egyptian women. *J Egypt Soc Parasitol* 2002;32:167-78. [12049252]

24. Benchimol M, de Andrade Rosa I, da Silva Fontes R, Burla Dias AJ. *Trichomonas vaginalis* adheres and phagocytose sperm cells: Adhesion seems to be a prominent stage during interaction. *Parasitol Res* 2008; 102:597-604. [18043945] [doi:10.1007/s00436-007-0793-3]

25. Bowden FJ, Garnett GP. Why is *Trichomonas vaginalis* ignored? *Sex Transm Infect* 1999;75:372-4. [10754936]

26. Krieger J, Alderete M. *Trichomonas vaginalis* and trichomoniasis, in: K. Holmes, F. Sparling, S. Lemon, et al. (eds), Sexually Transmitted Diseases, 3rd ed. Mc Graw-Hill, New York, 1999.

27. Okun N, Gronau KA, Hannah ME. Antibiotics for bacterial vaginosis or *Trichomonas vaginalis* in pregnancy: A systematic review. *Obstet Gynecol* 2005;105:857-66. [15802417] [doi:10.1097/00006532-200506000-00038] 710832059.81

28. Chuachowrong W, Shaffer N, Srisawin W, Chaisilwattana P, Young NL, Mock PA, Chearskul S, Waranawat N, Chaowanachan T, Karon J, Simonds RJ, Mastro TD. Short-course antenatal zidovudine reduces both cervicovaginal human immunodeficiency virus type 1 RNA levels and risk of perinatal transmis-sion. Bangkok Collaborative Perina-tal HIV Transmission Study Group. *J Infect Dis* 2000;181:99-106. [10608756] [doi:10.1086/315179]

29. Houang ET, Ahmet Z, Lawrence AG. Successful treatment of four pa-tients with recalcitrant trichomoni-asis with a combination of zinc sulfate douche and metronida-zole therapy. *Sex Transm Dis* 1997; 24:116-9. [9111758] [doi:10.1097/00007435-199702000-00010]

30. WHO. Global Prevalence and Inci-dence of Selected Curable Sexually Transmitted Diseases: Over view and Estimates. Geneva, 1999.

31. Kiebannof MA, Carey JC, Hauth JC, Hillier SL, Nugent RP, Thom EA, Ernest JM, Heine RP, Wapner RJ, Trout W, Moawad A, Leveno KJ, Miodovnik M, Sibai BM, Van Dor-sten JP, Dombrowski MP, O'Sullivan MJ, Varner M, Langer O, McNellis D, Roberts JM; National Institute of Child Health and Human Development Network of Maternal-Fetal Medicine Units. Failure of met-ronidazole to prevent preterm deliv-ery among pregnant women with asym-pomatic *Trichomonas vaginalis* infection. *N Engl J Med* 2001; 345:487-93. [11519502] [doi:10.1056/NEJMoa003329]

32. El-Moamly AM, Rashad SM, M. *Trichomonas vaginalis* antigens in vaginal and urine specimens by immunochromatography, compared to culture and microscopy. *J Egypt Soc Parasitol* 2003;33:573-84. [18853629] [doi:10.1016/S0308-8146(02)00279-0]

33. Hussien EM, El-Sayed HZ, El-Moamly AH, Helmy MM, Shaban MA, El-Sayed AL, El-Moamly AM, Rashad SM. *M. Trichomonas vaginalis* clinical isolates by HSP70 restriction fragment length polymorphism. *J Egypt Soc Parasitol* 2005;35:699-710. [16083077]

34. Wendel KA, Workowski KA. Tricho-moniasis challenges to appropriate management. *Clin Infect Dis* 2007;44:S123-9. [17134266] [doi:10.1086/511425]

35. Diao D, Hveem B, Mouhamad MA, Betge G, Paulsen BS, Maiga A. An ethnobotanical survey of herbal drugs of Gourma district, Mali. *African J Biotechnology* 2009;8:952-5. [12393796] [doi:10.1007/s00366-002-0768-3]

36. Edeoga HO, Okwu DE, Mbaebie BO. Phytochemical constituents of some Nigerian medicinal plants. *Afr J Biotechnol* 2005;4:885-8.

37. Hussain A, Virmani OP, Popil SP. 1992. Dictionary of Indian Medicinal Plants. Lucknow, India, CIMAP, 2008, p. 384.

38. Kayser O, Kiderlen AF, Croft SL. Natural products as antiparasitic drugs. *Parasitol Res* 2003;90:S55-62. [1293796] [doi:10.1007/s00436-002-0768-3]

39. Garcia LS. Diagnostic Medical Parasitology, 4th edition ASM Press, Washington DC, 2001.

40. Diamond LS. The establishment of various trichomonads of animals and men in axenic culture. *J Parasit-iol* 1957;43:488-90. [13463700] [doi:10.2307/3274682]

41. Negi PS, Jayaprakash GK, Jena BS. Antioxidant and anti mutagenic activi-ties of pomegranate peel extracts. *Foot Chem* 2003;80:393-7. [doi:10.6001/3816-8146(02)00279-0]

42. Li YC, Guo J, Yang J, Wei JX, Cheng S. Evaluation of antioxidant properties of pomegranate peel extract in comparison with pomegranate pulp extract. *Food Chem* 2005. [In Press].

43. Steben M. Sexually transmitted diseases. The American college of Obstetricians, and Gynecologists; Washington, 1996.

44. Hughesi. Science in Africa Maga-zine. Issue 56, 2002.

45. Rojas JJ, Ochoa VJ, Ocampo SA, Muñoz JF. Screening for antimi-crobial activity of ten medicinal plants used in Colombian Folkovic medi-cine: a possible alternative in treat-ment of non nosocomial infection. *BMC Complement Altern Med* 2006;6:2. [18433526] [doi:10.1186/1472-6882-6-2]

46. Lossick JK, Kent HL. Trichomoni-asis: trends in diagnosis and man-agement. *Am J Obstet Gynecol* 1991;165:12-17. [1951678]

47. Saurina G, McCormack WM, Landman D. A study of the prevalence of resistant trichomoni-asis and response to treatment in Brooklyn, NY (abstract 086). In: 13th Meeting of In-ter Soc Trans Dis Res (Denver), 1999; p. 11-14.

48. Erdogru OT. Antibacterial activities of some plants extracts used in folk medicine. *Pharmaceutical Biology* 2002;40:269-73. [doi:10.1076/phi.4.0.269.8474]

49. al-Awadi F, Fatania H, Shemate U. The effect of a plants mixture extract on blood glucose level in strepto-zotocin induced diabetic rats. *Dia-betes Res* 1991;18:163-8. [1842751]

50. Michie CA, Cooper E. Frankincense and myrrh as remedies in children. *J R Soc Med* 1991;84:602-5. [1744842]

51. al-Harbi MM, Qureshi S, Raza M, Ahmed MM, Afzal M, Shah AH.
Gastric antulcer and cytoprotective effect of Commiphora mormol in rats. J Ethnopharmacol 1997; 55: 141-50. [9032627] [doi:10.1016/S0378-7414(96)01488-2]

51 Al-Awadi FM, Gummak KA. Studies on the activity of individual plants of an antidiabetic plant mixture. Acta Diabetol Lat 1987; 24:37-41. [361 8079] [doi:10.1007/BF02732051]

52 Nomicos EY. Myrrh: medical marvel or myth of the Magi? Holist Nurs Pract 2007; 21:308-23. [17978635]

53 Massoud AM, Labib IM. Larvicidal activity of Commiphora mormol against Culex pipiens and Aedes caspius larvae. J Egypt Soc Parasitol 2000; 30:161-105. [1780623]

54 El Baz MA, Morsy TA, El Bandary M. Larvicidal effects of praziquantel distocide & the natural myrrh extract Mirazid on adult male albino rats. J Egypt Soc Parasitol 2007; 35:313-29. [15881015]

55 Massoud AM, El-Shazly AM, Nagaty IM, Morsy TA. Commiphora mormol extracts as plant molluscicide against Lymnaea natalensis. J Egypt Soc Parasitol 2007; 37:437-48. [17985579]

56 Massoud AM, El-Ashmawy IM, Naser MA, Salama OM. Mirazid: a new schistosomicidal agent derived from Myrrh: Studies on its influence on male reproductive organs and bile flow. Alex J Pharmacol Sci 2002; 16:82-7.

57 Omar A, Elmesallamy Gel-S, Eassa S. Comparative study of the hepatotoxic, genotoxic and carcinogenic effects of praziquantel distocide & the natural myrrh extract Mirazid on adult male albino rats. J Egypt Soc Parasitol 2005; 35:313-29. [15881015]

58 Auffray B. Protection against singlet oxygen, the main actor of sebum squalene peroxidation during sun exposure, using Commophora myrrha essential oil. Int J Cosmet Sci 2007; 29:23-9. [18489308] [doi:10.1111/j.1467-2494.2007.00360.x]

59 Longtin R. The pomegranate: nature's power fruit? J Natl Cancer Inst 1995; 93:346-8. [12618495] [doi:10.1093/jnci/95.5.3436]

60 Gil MI, Tomás-Barberán FA, Hess-Pierce B, Holcroft DM, Kader AA. Antioxidant activity of pomegranate (Punica granatum) juice: A heart healthy fruit juice. J Nutr 2007; 137:49-56. [1794506] [doi:10.1111/j.1553-8130.2006.00133.x]

61 Rosenblat M, Avram M. Paraoxonases role in the prevention of cardiovascular diseases. Biofactors 2009; 35:98-104. [10.1002/biof.16]

62 Duke JA, Ayensu ES. Medicinal Plants of China Reference Publication, Inc., ISBN-978256, 1985; p. 2-4.

63 Mazyd SA, El-Serougi AO, Morsy TA. The efficacy of the volatile oils of three plants for controlling Lucilia sericata. J Egypt Soc Parasitol 1999; 29:91-100. [12561887]

64 Blatter E, Chiray J, Mhaskar KS. Indian medicinal plants. 2 ed. Ut- tranchal, India: Oriental Enterprises, 2001; p. 1506-1551.

65 Brown D. Encyclopedia of Herbs and their Uses. Dorling Kindersley London, ISBN 7510-032-91-5.

66 Prashanthi D, Asha MK, Amit A. Antibacterial activity of P. granatum. Fitoterapia 2001;72:171-3. [1122 3228] [doi:10.1016/S0367-326X(00)00270-7]

67 Warriner PK, Nambiar VPK, Ramankutty C. Indian medicinal plants a compendium of 500 species. Hyderabad, India: Orient Longman Private Ltd., Hyderabad, 2002; p.396-402.

68 Voravuthikunchai SP, Sirirak T, Limsuwan S, Supawita T, Lida T, Honda T. Inhibitory effect of active compounds from P. granatum per carp on verocytotoxin production by Enteroto hemmorhagic E. coli. O157: H7. J Hlth Sci 2005; 51:590-6.

69 Jurenka JS. Therapeutic applications of pomegranate (Punica granatum L). A review. Altern Med Rev 2008; 13:128-44. [18590349]