Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Introduction: Drug-induced liver injury (DILI) can be caused by more than 900 drugs, toxins, and herbs, making it a major problem of clinical importance. The use of food supplements and/or herbal products has become increasingly common in the daily lives of the population worldwide. Natural products can be used for a variety of therapeutic purposes, such as treating gastrointestinal disorders and relieving menopausal symptoms.

Aim: To evaluate the hepatotoxic activity of extracts of herbal medicines and dietary supplements used by patients with suspected DILI at a hepatotoxicity ambulatory.

Methods: This is an experimental study and was carried out through chemical screening of plant species and dietary supplements for the determination of phytochemical classes. The samples were obtained of patients had DILI suspect, in ambulatorial care of a University Hospital. The experiments were made at Pharmacognosy laboratory.

Results: 18 samples were received from January 2019 to March 2020. Of these samples, 10 were leaves or stems, and 08 were herbal products or food supplements, with 02 samples being excluded due to contamination. Of the 10 (55%) samples that went to the analysis process, the presence of groups of chemical compounds from secondary plant metabolism was found, where 07 (36%) showed positive results for the presence of triterpenes and steroids. Of these 07 samples, 02 (11%) showed positive results for the presence of alkaloids.

Conclusion: There is a profile of liver damage caused by medicinal plants and the compounds present in them, which are mostly: alkaloids, triterpenes, steroids and anthraquinones. After conducting qualitative tests, triterpenes and steroids were identified in most samples (70%), in addition the presence of alkaloids (28%), suggesting that these can be responsible for the cases of DILI, but more robust studies on these samples are needed to identify chemical structure species.

https://doi.org/10.1016/j.aohep.2021.100378

P-13 COMPARISON OF OFF DIFFERENT PROGNOSTIC SCORES FOR PATIENTS WITH CIRRHOSIS HOSPITALIZED WITH SARS – COV 2 INFECTION

Manuel Mendizabal1,2, Ezequiel Sidruejo3, Federico Piñero1,2, Margarita Anders2,4, Martín Padilla5, Luis G. Toro6, Aldo Torre7, Pedro Montes7, Alvaro Urzúa8, Esteban Gonzalez Ballerger9, María Dolores Silveyr9, Douglas Michelato12, Javier Díaz13, Mirta Peralta1,2,14, Josefina Pages1,2, Sandro Ruiz García11, Isabel Gutierrez Lozano15, Yuridia Macías11, Daniel Cocozzella1,2,18, Norberto Chevez-Tapia19, Martín Tague20, Alejandra Dominguez21, Adriana Varón2,22, Emilia Vera Pozo23, Fátima Higuera-de la Tijera24, Carla Bustios23, Damián Conte25, Nataly Escaydildil26, Andrés J Gómez27, Laura Tenorio28, Mauricio Castillo Barradas29, María Isabel Schinoni30,31, Fernando Bessone31, Fernando Contreras1,2, Leyla Nazali32,33, Abel Sanchez14, Matías García11, Julia Bruttì29, María Cecilia Cabrera30, Godofino Miranda-Zazueta4, German Rojas10, Maximo Cattaneo30, Graciela Castro-Narro19, Fernando Rubinstein30, Marcelo O. Silva1,2

1 Hepatology and Liver Transplant Unit, Hospital Universitario Austral, Pilar, Argentina
2 Latin American Liver Research Educational and Awareness Network (LALREAN)
3 Liver Section, Centro de Educación Médica e Investigaciones Clínicas, Buenos Aires Argentina
4 Hepatology and Liver Transplant Unit, Hospital Alemán, Buenos Aires, Argentina
5 Gastroenterology Unit, Hospital Nacional Guillermo Almenara Irigoyen, Lima, Peru
6 Hepatology and Liver Transplant Unit, Hospitales de San Vicente Fundación de Medellín y Rionegro, Medellin, Colombia
7 Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición, Ciudad de México, Mexico
8 Gastroenterology Unit, Hospital Nacional Daniel A. Carrión, Callao, Perú
9 Gastroenterology Section, Internal Medicine Department, Hospital Clínico de la Universidad de Chile, Santiago, Chile
10 Department of Gastroenterology, Hospital de Clínicas José de San Martín, Universidad de Buenos Aires, Buenos Aires, Argentina
11 Department of Internal Medicine, Sanatorio Anchorena, Buenos Aires, Argentina
12 Hospital Especializado en Enfermedades Infecciosas Instituto Cousto Maia, Salvador de Bahía, Brazil
13 Hospital Nacional Edgardo Rebagliati Martins, Lima, Perú
14 Intensive Care Unit, Hospital de Infecciosas Francisco J Muñiz, Buenos Aires, Argentina
15 Gastroenterology Unit, Hospital de Víctor Lazarte Echegaray, Trujillo, Perú
16 Department of Internal Medicine, Centro Médico ABC, Ciudad de México, México
17 Department of Medicine, IMSS Hospital General Regional No.1 “Dr. Carlos Mc Gregor Sánchez”, Ciudad de México, México
18 Department of Gastroenterology, Hospital Italiano de La Plata, La Plata, Argentina
19 Médica Sur Clinic & Foundation, Ciudad de México, México
20 Gastroenterology Unit, Clínica Anglo-Americana, Lima, Perú
21 Department of Gastroenterology, Hospital Padre Hurtado, Santiago, Chile
22 Liver Unit, Fundación Cardio-Infantil, Bogotá, Colombia
23 Hospital Regional Dr. Teodoro Maldonado Carbo del IESS, Guayaquil, Ecuador
24 Department of Gastroenterology and Hepatology, Hospital General de México “Dr. Eduardo Liceaga”, Ciudad de México, México
25 Gastroenterology Unit, Clínica Delgado, Lima, Perú
26 Unidad de Hígado, Hospital Privado de Córdoba, Córdoba, Argentina
27 Gastroenterology Unit, Hospital Nacional Almanzor Aguinaga Asenjo, Chiclayo, Perú
28 Endoscopy and Transplant Service, Hospital Universitario Fundación Santa Fe de Bogotá, Bogotá, Colombia
Introduction and Objectives: Viral infections have been described to increase the risk of decompensation in patients with cirrhosis. We aimed to determine the impact of SARS-CoV-2 infection on clinical outcome of hospitalized patients with cirrhosis and to compare the performance of different prognostic models for predicting mortality.

Patients: We performed a prospective cohort study including 2211 hospitalized patients with confirmed SARS-CoV-2 infection from April 15, 2020 through October 1, 2020 in 38 Hospitals from 11 Latin American countries. We registered clinical and laboratory parameters of patients with and without cirrhosis. All patients were followed until discharge or death. We evaluated the prognostic performance of different scoring systems to predict mortality in patients with cirrhosis using ROC curves.

Results: Overall, 4.6% (CI 3.7–5.6) subjects had cirrhosis (n=96). Baseline Child-Turcotte-Pugh (CTP) class was assessed: CTP-A (23%), CTP-B (45%) and CTP-C (32%); median MELD-Na score was 19 (IQR 14–25). Mortality was 47% when cirrhosis was compared to 16% in those without cirrhosis (P<0.001). Cirrhosis was independently associated to death [OR 3.1 (CI 1.9–4.8); P<0.001], adjusted by age, gender, and body mass index >30. The areas under the ROC curves for performance evaluation in predicting 28-days mortality for Chronic Liver Failure Consortium (CLIF-C), North American Consortium for the Study of End-Stage Liver Disease (NACSELD), CTP score and MELD-Na were 0.85, 0.75, 0.69, 0.67, respectively (P<0.001).

Conclusions: SARS-CoV-2 infection is associated with elevated mortality in patients with cirrhosis. CLIF-C had better performance in predicting mortality than NACSELD, CTP and MELD-Na in patients with cirrhosis and SARS-CoV-2 infection.Clinicaltrials.gov: NCT04358380.

Background: Over the next 20 years, the number of patients on the waiting list for liver transplantation (LTx) is expected to increase by 23%, while pre-LTx costs should raise by 83%.

Objective: To evaluate direct medical costs of the pre-LTx period from the perspective of a tertiary care center.

Methods: The study included 104 adult patients wait-listed for deceased donor LTx between October 2012 and May 2016 whose treatment was fully provided at the study transplant center. Clinical and economic data were obtained from electronic medical records and from a hospital management software. Outcomes of interest and costs of patients on the waiting list were compared through the Kruskal-Wallis test. A generalized linear model with logit link function was used for multivariate analysis. P-values <0.05 were considered statistically significant.

Results: The costs of patients who underwent LTx ($8,879.83; 95% CI 6,735.24–11,707.27; P < 0.001) or who died while waiting ($6,464.73; 95% CI 3,845.75–10,867.28; P = 0.04) were higher than those of patients who were excluded from the list for any reason except death ($4,647.78; 95% CI 2,469.35–8,748.04; P = 0.254) or those who remained on the waiting list at the end of follow-up.

Conclusion: Although protocols of inclusion on the waiting list vary among transplant centers, similar approaches exist, and common problems should be addressed. The results of this study may help centers with similar socioeconomic realities adjust their transplant policies.

https://doi.org/10.1016/j.aohep.2021.100380

P-15 WAITING LIST FOR LIVER TRANSPLANTATION: CLINICAL AND ECONOMIC BURDEN, RETROSPECTIVE STUDY

Santiago Rodríguez1, Fabio Da Motta2, Giacomo Balbinoto Neto3, Ajacio Brandão1,4

1 Graduate Program in Medicine, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
2 Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, RS, Brazil
3 Graduate Program in Economics, Universidade Federal de Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
4 Liver Transplantation Group, Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, RS, Brazil

Background: Burden of disease is an indicator that relates to health status. United States (US) and European epidemiological data have shown that the burden of chronic liver disease has increased significantly in recent decades. There are no studies evaluating the impact of complications of chronic liver disease on the waiting list for deceased donor liver transplantation (LTx).

Objective: To determine the clinical and economic burden of complications of liver disease in wait-listed patients from the perspective of a transplant center.

Methods: The study retrospectively analyzed medical records of 104 patients wait-listed for deceased donor LTx from October 2012 to May 2016 and whose treatment was fully provided at the study transplant center. Clinical data were obtained from electronic medical records, while economic data were collected from a hospital management software. To allocate all direct medical costs, two methods were used: full absorption costing and micro-costing.