Semiclassical corrections to a regularized
Schwarzschild metric *

Hristu Culetu †
Ovidius University, Department of Physics
Bld. Mamaia 124, 900527 Constanta, Romania

May 16, 2024

Abstract
A regular form of the Schwarzschild geometry is proposed. It is more suitable for application in microphysics because the source mass comes out both as a Schwarzschild radius and the Compton wavelength of the mass \(m \). The Komar energy equals \(mc^2 \) in the classical situation \((\hbar = 0) \).

We propose a regular version of the Schwarzschild metric, to be valid in microphysics. The time-time metric coefficient is modified as [1] (see also [2])

\[-g_{tt} = 1/g_{rr} \equiv f(r) = 1 - \frac{2m}{r} e^{-\frac{1}{kr}}, \tag{0.1}\]

where \(m \) is the object mass, \(k \) is a positive dimensionless constant and has units of length in front of the exponential and \(1/\text{length} \) at the exponent. We select \(k = 2/e \), so that \(f(r) \) becomes minimal at \(r = k/m = 2/me \). For a horizon to exist, we found that the condition \(m \geq m_P \) should be obeyed [3].

An expansion of \(f(r) \) for \(r >> r_0 = 2/em \) gives us

\[f(r) \approx 1 - \frac{2m}{r} + \frac{4l_P^2}{er^2}, \tag{0.2}\]

where \(l_P \) is the Planck length. From (0.2) one obtains that \(f(r) \) acquires its Schwarzschild value when \(\hbar = 0 \). The solution (0.1) is not a vacuum solution of Einstein’s equations. The source stress tensor has \(p_r = -\rho \) and fluctuating transversal pressures, where \(\rho \) is the energy density and \(p_r \) is the radial pressure.

The Komar energy associated to the geometry (0.1), with \(k = 2/em \), appears as

\[W = \left(mc^2 - \frac{2hc}{2m} \right) e^{-\frac{2m}{cmr}}. \tag{0.3}\]

which tends to zero when \(r \to 0 \) and \(W \to mc^2 \) at infinity. The classical situation \((\hbar = 0) \) leads to the standard result \(W = mc^2 \).

*Presented at The 3rd Conference of the Polish Society on Relativity, 25-29 September 2016, Kraków, Poland
†e-mail: hcuetu@yahoo.com
References

[1] H. Culetu, Int. J. Theor. Phys. 54, 2855 (2015), arXiv: gr-qc/1408.3334.

[2] L. Xiang et al., Int. J. Mod. Phys. D 22, 1342016 (2013), arXiv: gr-qc/1305.3851.

[3] A. Bonanno and M. Reuter, Phys. Rev. D 62, 043008 (2000), arXiv: hep-th/0002196.