Threshold singularities in the correlators of one-dimensional models

A A Ovchinnikov

Institute for Nuclear Research, RAS, Moscow
E-mail: ovch@ms2.inr.ac.ru

Received 24 November 2015
Accepted for publication 16 May 2016
Published 29 June 2016

Abstract. We calculate the threshold singularities in one-dimensional models using the universal low-energy formfactors obtained in the framework of the non-linear Luttinger liquid model. We find the reason why a simplified picture of an impurity moving in a Luttinger liquid leads to correct results. We obtain the prefactors of the singularities including their k-dependence at small $k \ll p_F$.

Keywords: correlation functions, formfactors
1. Introduction

Although the results for the large-distance behaviour of correlators in one-dimensional quantum systems have been known for a long time [1, 2], calculation of the dynamical correlation functions—particularly calculation of the exponents and the amplitudes of the threshold singularities in the \((\omega, k)\) plane for different correlators—has been performed only recently [3–5]. In [3] the limit of small momentum is considered, while in [4, 5] the critical exponents at arbitrary momentum are calculated. The results are different from the predictions of the usual Luttinger liquid theory and were obtained in the framework of the so-called non-linear Luttinger liquid theory. In the present paper we show that although in [3] the final results for the critical exponents are correct, their derivation in the framework of the non-linear Luttinger liquid theory is not rigorous and present a rigorous way to calculate the form of the threshold singularities using the sum over the formfactor series. We show why the simplified treatment of [3] leads to the correct results for the critical exponents. While the universal method of [3] gives the correct values of the critical exponents, it fails to predict the prefactors of the singularities. A different method of [4, 5] gives the correct predictions for the prefactors. However in [4, 5] the notion of a mobile impurity coupled to a Luttinger liquid is only a hypothesis which should be confirmed by rigorous derivation. Although the formfactor method was recently used in [6] to obtain the correlators in Lieb–Liniger Bose gas we find it useful to present the derivation starting from the simple particle-hole low-energy formfactors obtained as matrix elements of the exponential operators in the framework of the Luttinger liquid model (the authors of [6] used the formfactors obtained in other papers [7] which have a very complicated form). Here drastic simplification is achieved due to the assumption \(k \ll p_F\), where \(p_F\) is the Fermi momentum, which leads to the simple and transparent derivation of various exponents in the framework of an arbitrary gapless one-dimensional model or the non-linear Luttinger liquid. We believe that the simple derivation of the formfactors for high-energy particles from the universal low-energy expression for formfactors, connected with the exponential operator, is a useful result which allows one to find the corresponding exponents in a transparent way.
way and make the connection with the simplified approach of [3]. Let us stress that the formfactors obtained in [7] for the exactly-solvable model do not rely on the universal low-energy expression for the formfactors and have the complicated form. We also propose a simple way to calculate the sum over the low-energy formfactors. In addition we find the k- dependence of the prefactors of the singularity at $k \ll k_F$ and connect the prefactor with the prefactor of the large-distance asymptotics of the corresponding correlator.

2. Formfactors in non-linear Luttinger liquid

To compare the method of calculating the critical exponents employed in [3] with the method yielding the correct predictions for the prefactors of the threshold singularities in non-linear Luttinger liquid, let us briefly review the method of [3]. Let a_k^+ (a_k), c_k^+ (c_k) be the operators of particles at the right and the left branches of the Luttinger model. The Hamiltonian of the non-linear Luttinger liquid has the following form in terms of the operators of the quasiparticles (for example, see [8–10]):

$$H_{NL} = \sum_k \omega_k (\hat{a}_k^+ \hat{a}_k - \hat{c}_k^+ \hat{c}_k) + \sum_k (k^2/2m)(\hat{a}_k^+ \hat{a}_k + \hat{c}_k^+ \hat{c}_k),$$

where \hat{a} (\hat{c})—are the operators of the quasiparticles at the right (left) branch and ω and m are the parameters of the model. The quasiparticle operators are connected with the particle operators as follows:

$$a_k^+(x) = \hat{a}_k^+(x)F^+(x), \quad F^+(x) = \exp(i2\pi \delta_1 \hat{N}_1(x) + i2\pi \delta_2 \hat{N}_2(x)),$$

where the operators $\hat{N}_{1,2}(x)$ are related to the usual Luttinger liquid operators

$$\hat{N}_{1,2}(x) = \frac{i}{L} \sum_{p=0}^\infty \frac{\rho_{1,2}(p)}{p} e^{-ipx}, \quad \rho_1(p) = \sum_k a_k^+ a_k, \quad \rho_2(p) = \sum_k c_k^+ c_k,$$

via the Bogoliubov rotation $\hat{N}_1(x) + \hat{N}_2(x) = (1/\sqrt{\xi})(\hat{N}(x) + \hat{\tilde{N}}(x)).$ Here ξ is the usual Luttinger liquid parameter. The most simple way to obtain the equation (1) is to use bosonization. The parameters $\delta_{1,2}$ in (1) are given by the equations:

$$\delta_1 = 1 - \frac{1}{2} (\sqrt{\xi} + 1/\sqrt{\xi}), \quad \delta_2 = \frac{1}{2} (\sqrt{\xi} - 1/\sqrt{\xi}).$$

Clearly, the intermediate states in the correlator depending on the energy ω and the momentum k which are responsible for the threshold singularities are the eigenstates with a single high-energy quasiparticle with the momentum $p \sim k$ and the low-energy particle-hole excitations near the left and the right Fermi points with the momenta $q_{1,2} \ll k$. Then the main assumption of [3] is the factorization of the corresponding matrix element of the following form:

$$\langle p, \text{low}(q_1, q_2) | a^+ | 0 \rangle = \langle p, \text{low}(q_1, q_2) | \hat{a}_k^+ F^+ | 0 \rangle = \langle p | \hat{a}_k^+ | 0 \rangle \langle \text{low}(q_1, q_2) | F^+ | 0 \rangle.$$

$$\text{doi:10.1088/1742-5468/2016/06/063108}$$
Using this equation one can easily obtain in the spectral density the threshold singularities of the form
\[(\omega - \epsilon(k))^{-\nu} \]
with \(\mu = 1 - \delta_1^2 - \delta_2^2 \) for the particle excitation (particle at the momentum \(k > 0 \)) and \(\mu = 1 - (2 - \delta_1)^2 - \delta_2^2 \) for the hole excitation (hole at the momentum \(k < 0 \)). Although these results for the critical exponents are correct (see below) one can see that the basic assumption for the formfactors (3) is obviously not correct. In fact, in the framework of bosonization \(a^+ \) is the exponential operator (this is also valid for the non-linear Luttinger liquid and for \(p \ll p_F \) the average of the type (3) with an arbitrary number of particle-hole excitations is well known [5, 7, 11]. In fact the result for the exponential operator has the following form [12]:

\[
\left\langle p_n, q_i | e^{i \frac{2\pi}{\mathcal{L}} \sum_{p^2 > 0} \rho(p) \frac{p_i(p)}{p}} | 0 \right\rangle = F_n(p_n, q_i) = \frac{\Pi_{i<j}(p_i - p_j) \Pi_{i>j}(q_i - q_j)}{\Pi_{i}(p_i - q_i)} \prod_i f^+(p_i) \prod_i f^-(q_i),
\]

\[
f^+(p) = \frac{\Gamma(p + a)}{\Gamma(p)\Gamma(a)}, \quad f^-(q) = \frac{\Gamma(1 - q - a)}{\Gamma(1 - q)\Gamma(1 - a)},
\]

where integers \(p_i > 0 \) are the positions of the particles, \(q_i \leq 0 \) are the positions of the holes and the parameter \(a = (1/2)(\sqrt{\xi} + 1/\sqrt{\xi}) \) for the contribution of the right-moving particles in the matrix element (3) (we consider the system of Fermi particles in the vicinity of the momentum \(+p_F \) in sections 2 and 3). Below we show how the expression for the formfactors (4) leads to the correct expressions for the threshold singularities in the non-linear Luttinger liquid and explain why the naive approximation (3) leads to the correct results for the critical exponents.

3. Formfactors for eigenstates with high-energy particles

In this section we find the general expression for spectral density in the framework of the non-linear Luttinger liquid theory. Let us begin with the particle excitation. Let us find the formfactor of the operator \(a^+(0) \) (3) for the case of the single high-energy particle with the momentum \(p \gg q_{1,2} \) at the right branch. Let us denote by \(p_i \) and \(q_i \) the positions of the particles and the holes at low energy (in the state \(|\text{low}(q_1)\rangle \) in equation (3)). Then the part of the formfactor (3) corresponding to the right branch takes the following form:

\[
\left\langle p, \{p_i, q_i\} | O_1^+ K_1^+ | 0 \right\rangle = \left\langle p, \{p_i, q_i\} | O_1^+ | 1 \right\rangle = \left\langle \{p', p'_i\}, \{q'_i, 0\} | O_1^+ | 0 \right\rangle,
\]

where the operator \(O_1^+ = \exp(-i\pi(\xi^{1/2} + \xi^{-1/2})\hat{N}_1) \), \(K_1^+ \) is the Klein factor, \(|1\rangle \) is the state with a single extra particle at the right Fermi point and \(\{p', p'_i\}, \{q'_i, 0\} \) are the positions of the particles (holes) in the final matrix element of the operator \(O_1^+ \). Clearly we have:

\[
p' = p - 1, \quad p'_i = p_i - 1, \quad q'_i = q_i - 1.
\]

Substituting these momenta into the basic relation for the formfactors (4) and taking into account that \(p \gg p_i, q_i \), we obtain at \(a = (1/2)(\xi^{1/2} + \xi^{-1/2}) \) the simple expression for
the matrix element (5). In fact, let us consider the Cauchy determinant in equation (4) and use the following simple equations:

\[
\frac{1}{p_i - 1} \frac{\Gamma(p_i - 1 + a)}{\Gamma(p_i)} = \frac{\Gamma(p_i + (a - 1))}{\Gamma(p_i)}, \quad (1 - q_i) \frac{\Gamma(1 - (q_i - 1) - a)}{\Gamma(1 - (q_i - 1))} = \frac{\Gamma(1 - q_i - (a - 1))}{\Gamma(1 - q_i)}.
\]

Then apart from the simple factor \(f(p)\) we obtain the function \(F'_{\omega'}(p, q_i)\) (4) with the value of the exponent \(a' = a - 1\) which corresponds exactly to the matrix element of the operator \(F^+ (1)\) over the eigenstate \((p_i, q_i)\) with the exponent \(\delta_1\) given by the equation (2). Clearly the part of the formfactor corresponding to the left branch is given by the matrix element of the operator (1) with the exponent \(\delta_2\). Using this result one can easily obtain the threshold singularity for the particle excitation with the exponent \(\mu = 1 - \delta^2_1 - \delta^2_2\) (see figure 1). Before performing this calculation let us comment on the singularity corresponding to the hole excitation (at \(\omega > 0\)). In this case the eigenstate which is responsible for the singularity is given by the state with a single hole located at the momentum \(-k\) (which corresponds to the contribution to the total momentum \(k\)) and the two particles located at the right Fermi point. The calculation of the

![Figure 1. Spectral density for the system of fermions in the energy-momentum plane. (a) The spectral density is not equal to zero outside the curve. (b) The solid lines correspond to the curves \(\omega = \pm \epsilon (k)\). For the particle branches \(\mu = 1 - \delta^2_1 - \delta^2_2\) and for the hole branches \(\mu = 1 - \delta^2_1 - \delta^2_2\), where the parameters \(\mu, \delta_1, \delta_2\) for \(\omega > 0\) and \(\omega < 0\) are defined in the text.](image)
formfactors is analogous to the previous case and leads to the exponents $\delta_1 = 2 - \delta_1$, $\tilde{\delta}_2 = \delta_2$ in the analog of the F—operator (see (3)). Clearly this leads to the exponent $\mu = 1 - (2 - \delta_1)^2 - \delta_2^2$ for the threshold singularity for the hole excitation. To summarize we write down the explicit expressions for the formfactors for the eigenstate with the high-energy particle (hole):

$$\langle p, \{p_i, q_i\} | O^+_1 | 1 \rangle = f(p) F_{a-1}(p_i, q_i) \langle 0 | O_1 | 0 \rangle,$$

$$\langle p_0, \{p_i, q_i\}, 2 | O^+_1 | 1 \rangle = \tilde{f}(p_0) F_{a+1}(p_i - 2, q_i - 2) \langle 0 | O_1 | 0 \rangle,$$

where the smooth functions $f(p)$, $\tilde{f}(p)$ are defined below. Here the parameter δ_1 is related to the parameter a as $\delta_1 = 1 - a$. Note that since in the latter case we have two additional particles at the right Fermi point the sum over the quantum numbers p_i, q_i goes for $p_i > 2$, $q_i \leq 2$ such that as a result we obtain the standard sum over the low-energy states. One can see that the function $F_{a-1}(p_i, q_i)$ corresponds exactly to the $\delta\delta$ such that as a result we obtain the standard sum over the $\bar{\delta}\bar{\delta}$.

Bosonization allows us to express the formfactors in the analog of the $\delta\delta$ and $\bar{\delta}\bar{\delta}$ one can neglect its dependence on the momentum of the high-energy particle we get the formfactor. In other words since the formfactor is given by the matrix element of the exponential operator one finds that the extraction of the quasiparticle $\delta\delta$ is equivalent to the substitution $a \to a - 1$ in the formfactor. It is an interesting fact that if we consider the dependence on the momentum of the high-energy particle we get the formfactor corresponding to the different operator. Note that since $f(p)$ is the smooth function one can neglect its dependence on $q_{1,2}$ and perform the summation over the low-energy particle-hole states independently taking $f^2(k)$ as the common factor. Let us show how the results for the formfactors with a high-energy particle (hole) lead to the expressions for the threshold singularities in the non-linear Luttinger liquid. Here we consider the Fourier transform of the correlator $\langle a(x, t) a^+(0) \rangle$. Bosonization allows us to express the operator $a(x)$ through the standard exponential operators $O(x)$ so that we should calculate the correlator $\int dx dt e^{i k x - i k \omega / 2} \langle O(x, t) O^+(0) \rangle$. For example, for the particle case, inserting the complete set of states with a single high-energy particle with the momentum p we obtain the following expression for this correlator:

$$\sum_{p, \text{low}(q_i, q_2)} \delta_{k, p + q_i - q_2} 2 \pi L \delta(\omega - \epsilon_1(p) - v(q_1 + q_2)) |\langle p, \text{low}(q_1, q_2) | O^+ K^+_1 | 0 \rangle|^2,$$

where the formfactor was calculated above. First, consider the case of the particle excitation. Substituting the formfactors found above into the sum over the formfactors and performing the sum over the position of the high-energy particle $p = k - q_1 + q_2$, we obtain the expression:

$$2 \pi L \sum_{q_1, q_2 \geq 0} \delta(\delta \omega + C_1 q_1 - C_2 q_2) f^2(k) F(q_1, \delta_1^2) F(q_2, \delta_2^2) \langle 0 | O | 0 \rangle^2,$$

where we denote $C_1 = v_d - v = k/m$, $C_2 = v_d + v = 2v + k/m$ and $\delta \omega = \omega - \epsilon_1(k)$, $\epsilon_1(k) = v k + k^2/2m$. The functions $f(k)$, $F(q_1, \delta_1^2)$, $F(q_2, \delta_2^2)$ which enter the equation (6) are given by the following equations. First, the function $f(k)$ is given by

$$f(k) = \frac{1}{k} \frac{\Gamma(k + a)}{\Gamma(k) \Gamma(a)} \simeq \frac{1}{\Gamma(a)} \bar{k}^{a-1}, \quad \bar{k} = \frac{Lk}{2\pi}. $$

doi:10.1088/1742-5468/2016/06/063108
Threshold singularities in the correlators of one-dimensional models

The function $\tilde{f}(k)$ is given by the same expression with the replacement $a \rightarrow -a$. Second, the functions $F(q, a^2)$ which are the sums over the low-energy particle-hole states of the corresponding operators, are given by the following equation:

$$F(m, a^2) = \sum_{\substack{n \in \mathbb{N} \setminus 0}} \sum_{p, q, p - q = m} |E_0(p, q)|^2 = \frac{\Gamma(a^2 + m)}{\Gamma(m + 1)\Gamma(a^2)},$$

where $p = \sum_{i=1}^{n} p_i$, $q = \sum_{i=1}^{n} q_i$ and the function $F_0(p, q)$ is defined in equation (4). For the hole excitation after performing the sum over the position of the hole we obtain an expression similar to the equation (6):

$$2\pi L \sum_{q_1, q_2 > 0} \delta(\delta \omega - C_1q_1 - C_2q_2)\tilde{f}^2(k)F(q_1, \delta_1^2)F(q_2, \delta_2^2)|\langle 0 | O | 0 \rangle|^2,$$

where $\delta_1 = 2 - \delta_1$, $\delta_2 = \delta_2$ and $\delta \omega = \omega - \epsilon_2(k)$, $\epsilon_2(k) = vk - k^2/2m$. Below we write down the expressions for the spectral density for an arbitrary gapless model of Fermi particles and calculate the expressions (6) and (7).

4. Threshold singularities for an arbitrary model of Fermi particles

In this section we calculate the threshold singularities in the spectral density for an arbitrary model of Fermi particles. Here we re-derive in a simple way the results obtained earlier in [5] and later confirmed in [6]. We also show that the prefactors of the singularities are related to the prefactors of the leading large-distance asymptotics of the correlators of the corresponding operators. The spectral density of the model is defined as $\omega / \pi \delta \omega \delta \omega = \omega \pi G_k, 1 \text{sign } \text{Im }$, where $\omega G_k, 1$ is the standard Green function of the model. In terms of the Fermi field $\psi(x, t) (\psi^+(x, t))$ it has the following form:

$$A(\omega, k) = \frac{\text{sign}(\omega)}{2\pi} \int dx dt (e^{i\omega t - ikx}(\psi(x, t)\psi^+(0)) + e^{-i\omega t + ikx}(\psi^+(x, t)\psi(0))).$$

The case $\omega > 0$ corresponds to the first term in equation (8) and the case $\omega < 0$ corresponds to the second term in equation (8). Since in the framework of the effective low-energy theory which is given by the non-linear Luttinger liquid we have the equality $\psi^+(x) = CO^+(x)K^+_1$, where C is some constant (the operator a^+ is related to the exponential operator O^+ in the standard way) the expressions for $A(\omega, k)$ can be easily obtained from the equations (6) and (7). One should take into account the normalization in equation (8) and substitute the lowest formfactor $\langle 1 | \psi^+(0) | 0 \rangle$, where we denote by 1 the eigenstate with one extra particle at the right Fermi point, for the average $\langle O \rangle$. In this way we find in the thermodynamic limit the following expressions for the spectral density. For the particle excitation

$$A(\omega, k) = L^2 f^2(k) \frac{1}{(2\pi)^2} \frac{1}{\Gamma(\delta_1^2)\Gamma(\delta_2^2)} \int_0^\infty dq_1 dq_2 \delta(\delta \omega + C_1q_1 - C_2q_2) \frac{1}{q_1^{\delta_1^2}} \frac{1}{q_2^{\delta_2^2}} |\langle 1 | \psi^+ | 0 \rangle|^2,$$

where $\tilde{q}_{1,2} = Lq_{1,2}/2\pi$ and for the hole excitation

doi:10.1088/1742-5468/2016/06/063108
Threshold singularities in the correlators of one-dimensional models

\[A(\omega, k) = L^2 \tilde{f}^2(k) \frac{1}{(2\pi)^2} \frac{1}{\Gamma(\delta_1^2 \Gamma(\delta_2^2))} \int_0^\infty dq_1 dq_2 \delta(\delta \omega - C_1 q_1 - C_2 q_2) \frac{1}{q_1^{1-\delta_1^2}} \frac{1}{q_2^{1-\delta_2^2}} |\langle 1|\psi^+|0\rangle|^2. \]

(10)

Combining the degrees of the length \(L \) in these equations we find that the dependence on \(L \) is contained in the factor \(L^\alpha |\langle 1|\psi^+|0\rangle|^2 \), where the exponent

\[\alpha = -1 + 2a + \delta_1^2 + \delta_2^2 \]

is proportional to the scaling dimension of the operator \(\psi \). That means that the factor \(L^\alpha |\langle 1|\psi^+|0\rangle|^2 \) is independent of \(L \) (for example, see [5, 11]) which gives an important consistency check of the whole method. A similar relation with the replacement \(a \rightarrow -a \) holds for the hole excitation. The integrals in the equations (9) and (10) can be easily calculated which lead to the following expressions for the threshold singularities at \(\omega > 0 \). For the particle excitation we have:

\[A(\omega, k) = \frac{(2\pi)^{1-\alpha}}{\pi} \frac{1}{k^{2-2a}} \Gamma(\delta_1^2 \Gamma(\delta_2^2)) \frac{1}{(v_d - v)^{\delta_1^2}(v_d + v)^{\delta_2^2}} \left(\frac{\theta(\delta \omega) \sin(\pi \delta_1^2) + \theta(-\delta \omega) \sin(\pi \delta_2^2)}{|\delta \omega|^{1-\delta_1^2-\delta_2^2}} \right) \]

(11)

where \(a = (\xi^{1/2} + \xi^{-1/2})/2 \). Here the spectral density is not equal to zero at both sides of the point \(\epsilon_\pm(k) = v k + k^2/2m \). For the hole excitation we have:

\[A(\omega, k) = (2\pi)^{1-\alpha} \frac{1}{k^{2+2a}} \Gamma(\delta_1^2 \Gamma(\delta_2^2)) \frac{1}{(v_{\text{d}} - v)^{\delta_1^2}(v_{\text{d}} + v)^{\delta_2^2}} \left(\frac{\theta(\delta \omega) \sin(\pi \delta_2^2) + \theta(-\delta \omega) \sin(\pi \delta_1^2)}{|\delta \omega|^{1-\delta_1^2-\delta_2^2}} \right). \]

(12)

Here the spectral density is not equal to zero only above the point \(\epsilon_\pm(k) = v k - k^2/2m \). In both cases we have singled out the combination \(L^\alpha |\langle 1|\psi^+|0\rangle|^2 \) which is independent of \(L \) in the thermodynamic limit. In fact one has the following relation for the prefactor \(C_0 \) of the leading asymptotic behaviour of the Green function:

\[2(L/2)^\alpha |\langle 1|\psi^+|0\rangle|^2 = C_0. \]

Here the exact definition of the constant \(C_0 \) is given by the equation: \(\langle \psi^+(x)\psi(0) \rangle \simeq \sin(p_F x) C_0 / (\pi x)^\alpha \). Thus both functions (11) and (12) have the correct thermodynamic limit. One can express the prefactors of the singularities in the equations (11) and (12) through the formfactor \(\langle k|\psi^+|0\rangle \), where the eigenstate \(\langle k \rangle \) is the state with a single extra quasiparticle with the momentum \(k \). In fact using the universal particle-hole formfactors one can easily obtain:

\[|\langle k|\psi^+|0\rangle|^2 = \frac{1}{k^{2-2a}} \left(\frac{2\pi}{L} \right)^{2-2a} \frac{1}{\Gamma^2(a)} |\langle 1|\psi^+|0\rangle|^2. \]

This equation can be substituted into the equations (11) and (12) which absorbs the explicit dependence of the prefactors on the momentum \(k \ll p_F \) which is now contained in the formfactor \(\langle k|\psi^+|0\rangle \). Let us note that if the prefactors are expressed through the
formfactor \(\langle k | \psi^+ | 0 \rangle \), then the results (11), (12) are valid for an arbitrary \(k \sim p_F \). The results (11), (12) agree with the results obtained in [5]. The results presented above refer to the case \(\omega > 0 \) \((k > 0) \). For the case \(\omega < 0 \) one should consider the matrix element \(\langle n | a | 0 \rangle \), where \(\langle n \rangle \) is the excited state. For the initial model of the Fermi particles the momentum of this state is \(-p_F - k \) \((k > 0) \). For the particle excitation the eigenstate \(\langle n \rangle \) is now given by the state with a particle with the momentum \(-k \) at the left branch and two holes at the left and the right Fermi points. For the hole excitation one should consider the state with a hole with the momentum \(-k \) at the left branch, a particle at the left Fermi point and a hole at the right Fermi point. The formfactors corresponding to the left branch are given by an expression similar to equation (4). Repeating the calculations presented in section 3 one easily finds that the exponents of the threshold singularities are given by the following values of the parameters:

\[
a = \frac{1}{2} \left(\frac{1}{\sqrt{\xi}} - \sqrt{\xi} \right), \quad \delta_1 = \delta_1 = \frac{1}{2} \left(\sqrt{\xi} + \frac{1}{\sqrt{\xi}} \right), \quad \delta_2 = 2 - \delta_2 = 1 - a.
\]

In this case one can easily obtain expressions similar to (11) and (12).

Let us calculate the threshold singularities for the density structure factor (density–density correlator). The first term in the bosonization expansion of the density operator is \(\rho(x) = (a^+ a + c^+ c)(x) \). At low momentum \(k \ll p_F \) the next terms of the type \((a^+ c) \), \((c^+ a) \) corresponding to the high momenta \(\pm 2p_F \) can be omitted. After the Bogoliubov rotation we obtain the density in terms of the quasiparticle operators: \(\rho(x) = (1/\sqrt{\xi})(\hat{a}^+ \hat{a} + \hat{c}^+ \hat{c})(x) \). From this expression one can see that the density structure factor is given by the step function \(\rho(\omega) = \theta(\omega - \epsilon_2(k))\theta(\epsilon_1(k) - \omega) \), where \(\epsilon_{1,2}(k) = vk \pm k^2/2m \). This function does not have the power-law singularities which means that in the limit of small \(k \ll p_F \) the exponents \(\mu \) are equal to zero. This result is in agreement with the results of [5, 6]. The behaviour of the density structure factor at \(k \sim p_F \) is beyond the scope of the present letter.

As an example, let us calculate the threshold singularities at the momentum \(2p_F + k \), where \(k \ll p_F \). To calculate this correlator one needs the matrix elements of the form \(\langle n | (a^+ c) | 0 \rangle \), where \(\langle n \rangle \) is the excited state. Here one should consider the eigenstate with a particle with the momentum \(k \) at the right branch and a hole at the left Fermi point for the particle excitation and the eigenstate with a hole with the momentum \(k \), two particles at the right Fermi point and a hole at the left Fermi point for the hole excitation. One can see that the results for the particle and the hole excitations can be easily obtained from the equations (11) and (12) by substitution of the correct parameters \(a, \delta_{1,2} \). The calculation of the formfactors in both cases is analogous to the case of the spectral density presented above. Using bosonization one can easily see that now the values of the parameters are:

\[
\delta_1 = 1 - 1/\sqrt{\xi}, \quad \delta_2 = 1/\sqrt{\xi}, \quad a = 1/\sqrt{\xi}, \quad \alpha = 2/\xi.
\]

We find that the condition of the cancellation of powers of \(L, \alpha = -1 + 2a + \delta_1^2 + \delta_2^2 = 2/\xi \) is fulfilled. Thus up to a simple factor \(2 \pi \) the results for the density structure factor coincide with the expressions (11) and (12) with the parameters \(a, \alpha, \delta_1 = 2 - \delta_1, \delta_2 = \delta_2 \) presented above with the obvious substitution of the formfactor \(\langle 1| \psi^+ | 0 \rangle \) by the
formfactor $\langle 1, -1 | \rho(0) | 0 \rangle$, where $\rho(x)$ is the density operator and the state $\langle 1, -1 \rangle$ is the eigenstate with a single extra particle at the right Fermi point and a single hole at the left Fermi point.

Finally, let us consider the system of Bose particles. It is well known that in this case in the framework of bosonization in the leading order the Bose field equals $\phi(x) \sim \exp(i\sqrt{\xi}(\hat{N}_1(x) - \hat{N}_2(x)))$. At $\omega > 0$ the correlator is determined by the matrix elements of the type $\langle n | \phi^+ | 0 \rangle$. One can see that in this case all the calculations are exactly the same as in the case of the Fermi particles. Thus we obtain the same final expressions (11) and (12) with the different values of the parameters $\delta_1, \delta_2, a, \alpha$ given by the equations:

$$
\delta_1 = 1 - \sqrt{\xi}/2, \quad \delta_2 = \sqrt{\xi}/2, \quad a = \sqrt{\xi}/2, \quad \alpha = \xi/2.
$$

Clearly for the hole excitation the values of the parameters are $\tilde{\delta}_1 = 2 - \delta_1, \tilde{\delta}_2 = \delta_2$ as in the case of the Fermi system. Let us note that now the formfactor $\langle 1 | \psi^+ | 0 \rangle$ should be substituted by the formfactor $\langle 1 | \phi^+ | 0 \rangle$, where $\langle 1 \rangle$ is the ground state of the model in the sector with one additional particle. At $\omega < 0$ the spectral density is determined by the matrix elements $\langle n | \phi | 0 \rangle$. The eigenstates are exactly the same as for the case of the Fermi particles. One can easily see that the exponent μ corresponding to the particle (hole) excitation coincides with the exponent for the hole (particle) excitation for the case $\omega > 0$. Our results for the system of Bose particles are in agreement with the results of [6, 10].

5. Conclusion

In the present letter we performed a simple derivation of the formfactors for the high-energy particle from the universal low-energy expression for the formfactors, connected with the exponential operators in the framework of the non-linear Luttinger liquid. We performed summation over the eigenstates responsible for the threshold singularities and presented the correct expressions for the threshold singularities in the non-linear Luttinger liquid. We believe that the simple derivation of the formfactors for the non-linear Luttinger liquid as matrix elements of the exponential operators is an interesting result which makes a connection between the rigorous approach and the approach of [3]. We explained why a simplified approach based on the notion of an impurity moving in a Luttinger liquid leads to the correct results for the exponents of the threshold singularities. Using the formfactor approach we performed a calculation of the threshold singularities for the spectral density and the density structure factor for both the Bose and the Fermi systems. Note that once the formfactors for the particle and the hole for the operator a^+ are known the calculations for all the other cases become a simple exercise. Note that although the results for an arbitrary Bose system could be extracted with some additional assumptions from the results of [6], the results for the Fermi system can be derived rigorously only in the framework of our approach. Our results are applicable for an arbitrary gapless one-dimensional model. We also found the k-dependence of the prefactors of the singularities and expressed them through the prefactors of the leading asymptotic behaviour of the correlation functions.
References

[1] Luther A and Peschel I 1974 Phys. Rev. B 9 2911
[2] Haldane F D M 1981 Phys. Rev. Lett. 47 1840
 Haldane F D M 1981 J. Phys. C: Solid State Phys. 14 2585
[3] Imambekov A and Glazman L I 2009 Science 323 228
[4] Imambekov A and Glazman L I 2009 Phys. Rev. Lett. 102 126405
[5] Shashi A, Glazman L I, Caux J-S and Imambekov A 2011 Phys. Rev. B 84 045408
 Shashi A, Panfil M, Caux J-S and Imambekov A 2012 Phys. Rev. B 85 155136
[6] Kitanine N, Kozlowski K K, Maillet J M, Slavnov N A and Terras V 2012 J. Stat. Mech. P09001
[7] Kozlowski K K and Terras V 2011 J. Stat. Mech. P09013
 Kitanine N, Kozlowski K K, Maillet J M, Slavnov N A and Terras V 2011 J. Stat. Mech. P05028
[8] Mattis D C and Lieb E H 1965 J. Math. Phys. 6 304
[9] Rozhkov A V 2005 Eur. Phys. J. B 47 193
 Rozhkov A V 2006 Phys. Rev. B 74 245123
[10] Imambekov A, Schmidt T L and Glazman L I 2012 Rev. Mod. Phys. 84 1253
[11] Ovchinnikov A A 2011 Phys. Lett. A 375 2694
[12] Bettelheim E, Abanov A G and Wiegmann P 2007 J. Phys. A: Math. Theor. 40 F193

doi:10.1088/1742-5468/2016/06/063108