Chiral dihydrobenzoxazinones and dihydroquinolinones serve as essential building blocks for pharmaceuticals and agrochemicals. Here, we report short chemoenzymatic synthesis routes for the facile preparation of these complex heterocycles in an optically pure form. These synthetic routes involve a highly stereoselective hydroamination step catalyzed by ethylenediamine-N,N'-disuccinic acid lyase (EDDS lyase). This enzyme is capable of catalyzing the asymmetric addition of various substituted 2-aminophenols to fumarate to give a broad range of substituted N-(2-hydroxyphenyl)-1-aspatic acids with excellent enantiomeric excess (ee up to >99%). This biocatalytic hydroamination step was combined with an acid-catalyzed esterification—cyclization sequence to convert the enzymatically generated noncanonical amino acids into the desired dihydrobenzoxazinones in good overall yield (up to 63%) and high optical purity (ee up to >99%). By means of a similar one-pot, two-step chemoenzymatic approach, enantioenriched dihydroquinolinones (ee up to >99%) were prepared in good overall yield (up to 78%) using water as solvent for both steps. These chemoenzymatic methodologies offer attractive alternative routes to challenging dihydrobenzoxazinones and dihydroquinolinones, starting from simple and commercially available achiral building blocks.

KEYWORDS: asymmetric synthesis, biocatalysis, dihydrobenzoxazinones, dihydroquinolinones, heterocycles
Figure 1. Bioactive molecules containing a chiral dihydrobenzoxazinone (a, pyruvate kinase activator; b, hypocholesterolemic agent) or dihydroquinoxalinone (c, leukemia agent; d, HIV-1 agent) scaffold.

Figure 2. Methods toward the synthesis of chiral dihydroquinoxalinones and chiral dihydrobenzoxazinones. (Ia) SnAr reaction—reduction—cyclization sequence. (Ib) [4 + 2] cycloaddition. (Ic) Brønsted-acid- or Ru/Ir-catalyzed reduction. (Id) CuI coupling—reduction—cyclization sequence. (Ie) Rh or Lewis base/acid or Brønsted-acid catalyzed reduction. (If) 8-step synthesis protocol. (IIa) EDDS-lyase-catalyzed stereoselective synthesis of substituted aspartic acids using fumarate and 2-aminophenols or o-phenylenediamines as substrates. (IIb) HCl assisted ring closure of the intermediate amino acid products into the desired DHQs. (IIc) p-TsOH assisted esterification and ring closure of the intermediate amino acid products into the desired DHBs.
catalyzed asymmetric hydroamination reaction to give the corresponding amino acid products, which can then possibly be cyclized to obtain the desired DHB and DHQ heterocycles (Figure 2).

We started our investigations by testing whether EDDS lyase can accept 2-aminophenol (1a, Table S1) as an unnatural substrate in the hydroamination of fumarate. Interestingly, EDDS lyase accepted 1a as a substrate, giving the resultant N-substituted aspartic acid product 3a (Table 1) with outstanding conversion (92%) and in respectable yield (73%). Pleasingly, the enzyme also accepted a variety of substituted 2-aminophenols (1b−1i, Table S1) in the hydroamination reaction, yielding the desired amino acids 3b−3i (Table 1) with good conversion (66−86%) and in moderate to good isolated yield (49−76%). EDDS-lyase did not process the 2-aminophenols 1j−1o (Table S1).

Table 1. Chemoenzymatic Synthesis of DHBs

R	NH	CO₂H	3a, conv. 92% c yield 73%d	3b, conv. 82% c yield 72%d	3c, conv. 85% c yield 66%d	4a, yield 86% >99% ee, (S) e,f	4b, yield 77% >99% ee, (S) e,f	4c, yield 84% >98% ee, (S) e,f	3d, conv. 79% c yield 53%d	3e, conv. 75% c yield 53%d	3f, conv. 86% c yield 72%d	4d, yield 67% >99% ee (S) e,g	4e, yield 69% h	4f, yield 85% >86% ee (S) e,f	3g, conv. 66% c yield 49%d	3h, conv. 86% c yield 76%d	3i, conv. 67% c yield 52%d	4g, yield 46% >99% ee, (S) e,f	4h, yield 70% 90% ee (S) e,g	4a, yield 72% >99% ee (S) e,f

*aThe reaction mixture (40 mL) consisted of fumaric acid (2, 100 mM), 2-aminophenol substrate (1a−1i, 25 mM, except 1g = 10 mM), and EDDS lyase (0.05 mol % based on 2-aminophenol) in 50 mM NaH₂PO₄/NaOH (pH 8.5, argon flushed), with DMSO (5%) as cosolvent at room temperature. A 5-fold excess of 2 (instead of an excess of amine) was used, facilitating product purification and avoiding enzyme inhibition as a result of high phenol substrate concentration. *bStoichiometric amount of p-TsOH in toluene/EtOH [1:1, MeOH for 4aa], reflux (24 h) under a nitrogen atmosphere (after 16 h, ethanol was removed, and reaction mixture refluxed in anhydrous toluene for additional 8 h). Conversions were measured by comparing ¹H NMR signals of substrates and matching products. *cIsolated yield following cation-exchange chromatography. *dThe enantiomeric excess (ee) was established by chiral HPLC using chemically prepared racemic standards. *eThe absolute configurations were assigned as S by comparing the elution pattern of chemically prepared racemic standards and corresponding enzymatic products against previously reported chiral HPLC data. *fThe absolute configuration was tentatively assigned as S based on analogy and in line with chiral HPLC data. *gChiral HPLC separation could not be achieved. Cyclization could not be achieved for 3i.

Although the biocatalytic preparation of the N-substituted aspartic acids 3a−3i already shortens the synthesis of such medicinally important synthons by several steps, "we aimed to explore these compounds as precursors for the synthesis of more complex and pharmaceutically relevant chiral DHBs. 1a−f Toward this end, we first tried to optimize the conditions for acid-catalyzed cyclization in water to give the corresponding enantiopure DHB from precursor 3a. However, all the acidic conditions we tested (HCl, H₂SO₄, TFA, etc.) with varying temperatures (0−100 °C) gave either uncyclized starting material or multiple unidentified side products. To aid cyclization and purification, we then esterified amino acid 3a using standard esterification conditions (SOCl₂, cat. HCl in MeOH/EtOH) and obtained the corresponding ester product in quantitative yield. However, subsequent cyclization in the same solvent did not result in the final cyclized DHB. Therefore, we dissolved the ester product in a high-boiling
solvent (toluene) to assist ring closure and obtained the final product 4a in good isolated yield (81%) in the presence of stoichiometric amounts of p-TsOH. We then reasoned that if we use p-TsOH in the first esterification step in a toluene/ethanol mixture [1:1], we could get to the final product in a single esterification-cyclization step. Although the starting material was consumed after 18 h of refluxing conditions, we observed that the isolated compound was always a diester product, which is likely because of transesterification of the unstable cyclic 4a in the presence of excess ethanol. Based on this data, after 16 h of reflux, ethanol was removed in vacuo and then the reaction mixture reheated in dry toluene until we reached full conversion to the desired DHB product 4a, which was obtained in good isolated yield (86%).

Next, the optimized conditions for DHB formation were successfully used for the esterification-cyclization of the isolated amino acid intermediates 3a−3h to produce the desired heterocycles 4a−4h in moderate to good isolated yield (46%−86%). Unfortunately, using the same conditions, we could not achieve the conversion of 3i into 4i. Analysis of the chemoenzymatically produced DHBS 4a−4h by chiral HPLC, using chemically prepared racemic standards (see the Supporting Information), demonstrated that these heterocycles have excellent enantiopurity (up to >99% ee), possessing the S configuration, which is fully consistent with the well-characterized enantioselectivity of EDDS lyase.13b As such, we have established a straightforward two-step chemoenzymatic route for the asymmetric preparation of enantiomer-rich DHBs in good overall yield (23%−63%) and with high enantiopurity (up to >99% ee). Furthermore, the amino acid precursors 3a−3i, which are synthesized in one enzymatic step, can be used as chiral synthons for pharmaceutically active compounds.13c,d

Having established the two-step chemoenzymatic synthesis of enantiopure DHBS, we envisioned that a similar synthetic strategy could be used to produce biologically active DHQs.10h,11a To provide proof-of-concept for this strategy, we tested diamines 1p and 1q (Table S1) as non-native substrates for EDDS lyase. To our delight, EDDS lyase accepted these substrates in the hydroamination of fumarate to give the desired N-substituted aspartic acid products with high conversions. Next, we investigated if we could perform the intramolecular cyclization in one-pot to give the corresponding DHQ without isolating the intermediate amino acid. Toward this end, after completion of the enzymatic reaction (48 h), the reaction mixture was adjusted to 1 M hydrochloric acid with fuming HCl, giving the desired DHQ product (5p or 5q, Figure 3) at room temperature in 3 h with good isolated overall yield (78% and 72%, respectively). Chiral HPLC examination, using chemically prepared reference compounds (see the Supporting Information), demonstrated that these products are highly enantioenriched (up to >99% ee), having the S configuration. Notably, EDDS lyase is able to accept a range of substituted aromatic diamines (1r−1y, Table S1) in the hydroamination of fumarate yielding the corresponding aspartic acid derivatives, potentially enabling the chemoenzymatic preparation of diverse DHQ synthons. The diamines 1z−1zd (Table S1) were not accepted as alternative substrates by the enzyme.

In conclusion, we developed convenient chemoenzymatic procedures for the rapid asymmetric synthesis of DHBS and DHQs from retrosynthetically designed substrates. These complex heterocycles were obtained with excellent conversion, good isolated yield, and high optical purity (up to >99% ee). It is important to note that, at higher concentrations (>100 mM) of both 2-aminophenols and diamines, we observed precipitation of the enzyme. In future work, we therefore aim to enhance the stability of EDDS lyase by directed evolution, improving its synthetic potential and enabling practical synthesis of DHBS and DHQs at a large scale. In addition, we intend to enlarge the arylamine scope of EDDS lyase by structure-guided protein engineering to access a broader range of enantiopure building blocks, leading to more complex and pharmaceutically important N-containing heterocycles. Cur-
rent work in our group focuses on screening a large panel of EDDS lyase homologues for obtaining new biocatalysts for asymmetric hydroaminations using bulky arylamines that are not accepted by wild-type EDDS lyase. The results of this database mining approach will be reported in due course.

ASSOCIATED CONTENT

Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acscatal.2c03008.

Detailed experimental procedures, NMR spectra demonstrating chemical structures, and chiral HPLC spectra of the chemoenzymatically prepared compounds (PDF)

AUTHOR INFORMATION

Corresponding Author
Gerrit J. Poelarends – Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands; orcid.org/0000-0002-6917-6368; Phone: +31-50-3633354; Email: g.j.poelarends@rug.nl; Fax: +31-50-3633000

Authors
Mohammad Faizan Bhat – Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands

Alejandro Prats Luján – Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands

Mohammad Saifuddin – Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands

Complete contact information is available at: https://pubs.acs.org/10.1021/acscatal.2c03008

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This project has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement 754425 and from The Netherlands Organization of Scientific Research (NWO-VICI grant 724.016.002).

REFERENCES

(1) (a) Mahaney, P. E.; Webb, M. B.; Ye, F.; Sabatucci, J. P.; Steffan, R. J.; Chadwick, C. W.; Harnish, D. C.; Trybulski, E. J. Synthesis and Activity of a New Class of Pathway-Selective Estrogen Receptor Ligands: Hydroxybenzoyl-3, 4-Dihydroquinoxalin-2 (1H)-Ones. *Bioorg. Med. Chem.* 2006, 14 (10), 3455−3466. (b) Su, D.-S.; Markowitz, M. K.; DiPardo, R. M.; Murphy, K. L.; Harrell, C. M.; O’Malley, S. S.; Ransom, R. W.; Chang, R. S. L.; Ha, S.; Hess, F. J.; Discovery of a Potent, Non-Peptide Bradykinin B1 Receptor Antagonist. *J. Am. Chem. Soc.* 2003, 125 (25), 7516−7517. (c) Su, D.-S.; Markowitz, M. K.; DiPardo, R. M.; Murphy, K. L.; Harrell, C. M.; O’Malley, S. S.; Ransom, R. W.; Chang, R. S. L.; Ha, S.; Hess, F. J.; Pettibone, D. J.; Mason, G. S.; Boyce, S.; Freidinger, R. M.; Bock, M. G. Discovery of a Potent, Non-Peptide Bradykinin B1 Receptor Antagonist. *J. Am. Chem. Soc.* 2003, 125 (25), 7516−7517. (d) Abraham, C. J.; Paull, D. H.; Scerba, M. T.; Grebinski, J. W.; Lectka, T. Catalytic, Enantioselective Bipolaron Inverse Electron Demand Hetero-Diels– Alder Reactions of Ketene Enolates and o-Benzoquinone Diimides. *J. Am. Chem. Soc.* 2006, 128 (41), 13370−13371. (e) Chen, J. J.; Qian, W.; Biswas, K.; Viswanadhan, V. N.; Askew, B. C.; Hitchcock, S.; Hungate, R. W.; Ariki, L.; Johnson, E. Discovery of Dihydroxinoaloxinone Acetamides Containing Bicyclic Amines as Potent Bradykinin B1 Receptor Antagonists. *Bioorg. Med. Chem. Lett.* 2008, 18 (16), 4477−4481. (f) Chen, M.-W.; Deng, Z.; Yang, Q.; Huang, J.; Peng, Y. Enantioselective Synthesis of Trifluoromethylated Dihydroxinoaloxinones via Palladium-Catalyzed Hydrogenation. *Org. Chem. Front.* 2019, 6 (6), 746−750. (g) Hayward, C. M.; Scully, D. A. Squalene Synthetase Inhibitor Agents. U.S. Patent 6,207,664 B1, 2001. (h) Zhang, J.; Qiu, R.; Xue, X.; Pan, Y.; Xu, C.; Li, H.; Xu, L. Versatile (Pentamethylcyclopentadienyl) Rhodium-2, 3-Bipyrindine (Cp* Rh-bpy) Catalyst for Transfer Hydrogenation of N-Heterocycles in Water. *Adv. Synth. Catal.* 2015, 357 (16−17), 3529−3537. (i) Cass, L. M.; Moore, K. H. P.; Dallow, N. S.; Jones, A. E.; Sisson, J. R.; Prince, W. T. The Bioavailability of the Novel Nonnucleoside Reverse Transcriptase Inhibitor GW420867X Is Unaffected by Food in Healthy Male Volunteers. *J. Clin. Pharmacol.* 2001, 41 (5), 528−535. (j) Ren, J.; Nichols, C. E.; Chamberlain, P. P.; Weaver, K. L.; Short, S. A.; Chan, J. H.; Kleim, J.-P.; Stammers, D. K. Relationship of Potency and Resilience to Drug Resistant Mutations for GW420867X Revealed by Crystal Structures of Inhibitor Complexes for Wild-Type, Leu100Ile, Lys101GlU, and Tyr188Cys Mutant HIV-1 Reverse Transcriptases. *J. Med. Chem.* 2007, 50 (10), 2301−2309. (k) Macias, F. A.; Martin, D. F.; Oliveros-Bastidas, A.; Molinillo, J. M. G. Redoiviscating the Bioactivity and Ecological Role of 1, 4-Benzoxazinones. *Nat. Prod. Rep.* 2009, 26 (4), 478−489. (l) Ilaš, J.; Anderluh, P. Š.; Dolenc, M. S.; Kikeli, D. Recent Advances in the Synthesis of 2H-1, 4-Benzoxazin-3(4H)-Ones and 3, 4-Dihydro-2H-1, 4-Benzoxazinones. *Tetrathedron* 2005, 61 (31), 7325−7348. (m) Osbourn, A. E.; Lanzotti, V. Plant-Derived Natural Products; Springer, 2009; p 18.

(2) Su, S. M. Pyruvate Kinase Activators for Use for Increasing Lifetime of the Red Blood Cells and Treating Anemia. U.S. Patent 9,181,231 B2, 2015.

(3) (a) Hayward, C. M.; Scully, D. A. Squalene Synthetase Inhibitor Agents. U.S. Patent 6,207,664 B1, 2001. (b) Tanaka, T.; Mizota, I.; Umezui, K.; Ito, A.; Shimizu, M. Synthesis of Multi-Substituted 1,4-Benzoxazole Using an Umpolung Reaction with 2-Oxo-1,4-Benzoxazine-3-Carboxylates. *Heterocycles* 2017, 95 (2), 830−843.

(4) Rooney, T. P. C.; Filippekopoulos, P.; Fedorov, O.; Picaud, S.; Cortopassi, W. A.; Hay, D. A.; Martin, S.; Tumber, A.; Rogers, C. M.; Philpott, M. A Series of Potent CREBBP Bromodomain Ligands Reveals an Induced-Fit Pocket Stabilized by a Cation−π Interaction. *Angew. Chemie Int. Ed.* 2014, 53 (24), 6126−6130.

(5) Gorohovsky, S.; Bittner, S. Novel N-Quinonyl Amino Acids and Their Transformation to 3-Substituted p-Isoxazolines. *Amino Acids* 2001, 20 (2), 135−144.

(6) (a) Wolfer, J.; Bekele, T.; Abraham, C. J.; Dogo-Isongnie, C.; Lectka, T. Catalytic, Asymmetric Synthesis of 1, 4-Benzoxazinones: A Remarkably Enantioselective Route to A-Amino Acid Derivatives from O-Benzozquinone Imides. *Angew. Chemie Int. Ed.* 2006, 45 (44), 7398−7400. (b) Paull, D. H.; Alden-Danforth, E.; Wolfer, J.; Dogo-Isongnie, C.; Abraham, C. J.; Lectka, T. An Asymmetric, Bipolaron Catalytic Approach to Non-Natural A-Amino Acid Derivatives. *J. Org. Chem.* 2007, 72 (14), 5380−5382.

(7) (a) Rueping, M.; Antonic, A. P.; Thieimann, T. Remarkably Low Catalyst Loading in Bronsted Acid Catalyzed Transfer Hydrogenations: Enantioselective Reduction of Benzoxazinones, Benzo-thiazines, and Benzoxazinones. *Angew. Chem. - Int. Ed.* 2006, 45 (40), 6751−6755. (b) Storer, R. I.; Carrera, D. E.; Ni, Y.; MacMillan, D. W. C. Enantioselective Organocatalytic Reductive Amination. *J. Am. Chem. Soc.* 2006, 128 (1), 84−86. (c) Malkov, A. V.; Vranková, K.; Stončius, S.; Kočovský, P. Asymmetric Reduction of Imines with Trichloroisorale, Catalyzed by Sigamide, an Amino Acid-Derived
Formamide: Scope and Limitations. J. Org. Chem. 2009, 74 (16), 5839–5849. (d) Xue, Z. Y.; Jiang, Y.; Peng, X. Z.; Yuan, W. C.; Zhang, X. M. The First General, Highly Enantioselective Lewis Base Organocatalyzed Hydrolyslation of Benzoxazinones and Quinoxalino- nes. Adv. Synth. Catal. 2010, 352 (13), 2132–2136. (e) Liao, Y. H.; Liu, X. L.; Wu, Z. J.; Cun, L. F.; Zhang, X. M.; Yuan, W. C. Highly Diastereo- and Enantioselective Michael Additions of 3-Substituted Oxindoles to Maleimides Catalyzed by Chiral Bifunctional Thiourea-Tertiary Amine. Org. Lett. 2010, 12 (13), 2896–2899. (f) Chen, Q.-A.; Chen, M.-W.; Yu, C.-B.; Shi, L.; Wang, D.-S.; Yang, Y.; Zhou, Y.-G. Biomimetic Asymmetric Hydrogenation: In Situ Regenerable Hantzsch Esters for Asymmetric Hydrogenation of Benzoxazinones. J. Am. Chem. Soc. 2011, 133 (41), 16432–16435. (g) Chen, Q. A.; Gao, K.; Duan, Y.; Ye, Z. S.; Shi, L.; Yang, Y.; Zhou, Y. G. Dihydroxyphenanthridine: A New and Easily Regenerable NAD(P)H Solid-Phase Synthesis of 3,4-Dihydroquinoxalin-2(1H)-ones via the Catalytic Mechanism of Ethylenediamine-N, N′-Disuccinic Acid Lyase, a Carbon–Nitrogen Bond-Forming Enzyme with a Broad Substrate Scope. Biochemistry 2018, 57 (26), 3752–3763. (h) Hu, J.; Wang, Y.; Li, Y.; Xu, L.; Cao, D.; Song, D.; Sanehan, M. S.; Wang, X.; Meng, T.; Chen, Y.-L. Discovery of a Series of Substituted Pyrazolidinones. J. Am. Chem. Soc. 2019, 142 (4), 2442–2448. (h) Núñez-Rico, J. L.; Vidal-Ferran, A. [Ir(P-O)]-Catalyzed Asymmetric Hydrogenation of DiverSibly Substituted C = N-Containing Heterocycles. Org. Lett. 2013, 15 (8), 2066–2069. (i) Lu, L. Q.; Li, Y.; Junge, K.; Beller, M. Relay Iron/Chiral Bronsted Acid Catalysis: Enantioselective Hydrogenation of Benzoxazinones. J. Am. Chem. Soc. 2015, 137 (7), 2763–2768. (j) Tanimori, S.; Kashiwagi, H.; Nishimura, T.; Kirihata, M. A General and Practical Access to Chiral Quinoxalinones with Low Copper-Catalyst Loading. Adv. Synth. Catal. 2010, 352 (14–15), 2531–2537.

(9) (a) Yang, Y.; Zhao, L.; Xu, B.; Yang, L.; Zhang, J.; Zhang, H.; Zhou, J. Design, Synthesis and Biological Evaluation of Dihydroquinoxaline Derivatives as BRD4 Inhibitors. Bioorg. Chem. 2016, 68, 236–244. (b) Chanda, K.; Kuo, J.; Chen, C.-H.; Sun, C.-M. Enantioselective Synthesis of Benzimidasolyl Quinoxalinones on Soluble Polymer Support Using Focused Microwave Irradiation. J. Comb. Chem. 2009, 11 (2), 252–260. (c) Tanimori, S.; Nishimura, T.; Kirihata, M. Synthesis of Novel Quinolone Derivatives and Its Cytotoxic Activities. Bioorg. Med. Chem. Lett. 2009, 19 (15), 4119–4121. (d) Neagoie, C.; Krčňák, V. Piperazine Amidine Linker for Cyclovative Cleavage from Solid Support: Traceless Synthesis of Dihydroquinoxalin-2-Ones. ACS Comb. Sci. 2012, 14 (7), 399–402. (e) Hu, J.; Wang, Y.; Li, Y.; Xu, L.; Cao, D.; Song, S.; Damanek, M. S.; Wang, X.; Meng, T.; Chen, Y.-L. Discovery of a Series of Dihydroquinoxalin-2(1H)-Ones as Selective BET Inhibitors from a Dual PLK1-BRD4 Inhibitor. Eur. J. Med. Chem. 2017, 137, 176–195. (f) Wang, Y.; Wach, J.-Y.; Sheehan, P.; Zhong, C.; Zhan, C.; Harris, B.; Almo, S. C.; Bishop, J.; Hartege, P. J.; Ramek, A. Divergent, Oriented Synthesis as a Strategy for Fragment Evolution against GSK3β. ACS Med. Chem. Lett. 2016, 7 (9), 852–856. (g) TenBrink, R. E.; Im, W. B.; Sethy, V. H.; Tang, A. H.; Carter, D. B. Antagonist, Partial Agonist, and Full Agonist Imaidazo [1, 5-a] Quinoline Amides and Carmabates Acting through the GABA A/Benzozapine Receptor. J. Med. Chem. 1994, 37 (6), 758–768. (h) Holland, R. J.; Hardcastle, I. R.; Jarman, M. Synthesis of 6, 8-Substituted-5, 7-Disuccinic Acid Lyase, a Carbon–Nitrogen Bond-Forming Enzyme with a Broad Substrate Scope. Biochemistry 2018, 57 (26), 3752–3763. (i) Eary, C. M.; Zager, J. M.; Tsimhan-Waigmann, H.; Kaiser, R.; Rehn, R. D.; Chilkoti, A. Novel, Highly Enantioselective Reduction of Quinoxalines and Quinoxalinones. Adv. Synth. Catal. 2019, 9 (8), 7292–7299. (j) Clement, J.-B.; Hayes, J. F.; Sheldrake, H. M.; Sheldrake, P. W.; Wells, A. S. Synthesis of SB-214857 Using Copper Catalysed Amaryllidaceae with L-Aspartic Acid. Synlett 2001, 2001 (09), 1423–1427. (b) Poddar, H.; De Villiers, J.; Zhang, J.; Puthan Veetil, V.; Raj, H.; Thunnissen, A.-M. W. H.; Poelarends, G. J. Structural Basis for the Catalytic Mechanism of Ethylenediamine-N, N′-Disuccinic Acid Lyase, a Carbon–Nitrogen Bond-Forming Enzyme with a Broad Substrate Scope. Biochemistry 2018, 57 (26), 3752–3763. (c) Margrey, K. A.; Leavs, A.; Nicewicz, D. A. Direct Aryl C–H Amination with Primary Amines Using Organic Photooxidase Catalysis. Angew. Chem. Int. Ed. 2017, 129 (49), 15850–15854. (d) Aslam, N. A.; Babu, S. A.; Sudha, A. J.; Yasuda, M.; Baba, A. Chelation-Controlled Diastereoselective Construction of N-Aryl-, N-Acetyl-Tosylhydrzone β-Substituted Aspartate Derivatives via Barbier-Type Reaction. Tetrahedron 2013, 69 (32), 6598–6611. (e) Li, J.-L.; Han, B.; Jiang, K.; Du, W.; Chen, Y.-C. Organocatalytic Enantioselective Hetero-Diels–Alder Reaction of Aldehydes and o-Benzoquinone Diimide: Synthesis of Optically Active Hydroquinolinones. Bioorg. Med. Chem. Lett. 2009, 19 (14), 3952–3954. (f) Klein, J.-P.; Bender, R.; Kirsch, R.; Meichsner, C.; Paessens, A.; Rössner, M.; Rübsamen-Waigmann, H.; Kaiser, R.; Wickers, M.; Schneweis, K. E. Preclinical Evaluation of HBY 097, a New Nonnucleoside Reverse Transcriptase Inhibitor of Human Immunodeficiency Virus Type 1 Replication. Antimicrob. Agents Chemother. 1995, 39 (10), 2523–2527. (c) Catarsi, D.; Colotta, V.; Varano, F.; Lenzi, O.; Filacchioni, G.; Trincavelli, L.; Martini, C.; Montopoli, C.; Moro, S. 1, 2, 4-Triazolo [1, 5-a] Quinoline as a Versatile Tool for the Design of Selective Human A3 Adenosine Receptor Antagonists: Synthesis, Biological Evaluation, and Molecular Modeling Studies of 2-(Hetero) Aryl-2 and Carboxy-Substituted Derivatives. J. Med. Chem. 2005, 48 (25), 7932–7945. (d) Eary, C. T.; Jones, Z. S.; Gronberg, R. D.; Burgess, L. E.; Mareska, D. A.; Drew, M. D.; Blake, J. F.; Laird, E. R.; Balachari, D.; O’Sullivan, M.;
Tetrazole and Ester Substituted Tetrahydroquinoxalines as Potent Cholesteryl Ester Transfer Protein Inhibitors. *Bioorg. Med. Chem. Lett.* 2007, 17 (9), 2608−2613.