DEFORMATIONS OF GRADED NILPOTENT LIE ALGEBRAS
AND SYMPLECTIC STRUCTURES

DMITRI V. MILLIONSCHIKOV

Abstract. We study symplectic structures on filiform Lie algebras – nilpotent
Lie algebras of the maximal length of the descending central sequence. There
are two basic examples of symplectic \(\mathbb{Z}_{>0} \)-graded filiform Lie algebras defined
by their bases \(e_1, \ldots, e_{2k} \) and structure relations
1) \(m_{0}^{(2k)} : [e_1, e_i] = e_{i+1}, i = 2, \ldots, 2k-1 \).
2) \(V_{2k} : [e_i, e_j] = (j-i)e_{i+j}, i+j \leq 2k \).

Let \(g \) be a symplectic filiform Lie algebra and \(\dim g = 2k \geq 12 \). Then
\(g \) is isomorphic to some \(\mathbb{Z}_{>0} \)-filtered deformation either of \(m_{0}^{(2k)} \) or of \(V_{2k} \). In the
present article we classify \(\mathbb{Z}_{>0} \)-filtered deformations of \(V_n \), i.e., Lie algebras
with structure relations of the following form:

\[
[e_i, e_j] = (j-i)e_{i+j} + \sum_{l=1}^{n} c_{ij} l e_{i+j+l}, \quad i+j \leq n
\]

Namely we prove that for \(n \geq 16 \) the moduli space \(M_n \) of these algebras can
be identified with the orbit space of the following \(\mathbb{K}^* \)-action on \(\mathbb{K}^5 \):

\[
\alpha \ast X = (\alpha^{n-11} x_1, \alpha^{n-10} x_2, \ldots, \alpha^{n-7} x_5), \alpha \in \mathbb{K}^*, \quad X \in \mathbb{K}^5.
\]

For \(n = 2k \) the subspace \(M_{2k}^{\text{sympl}} \subset M_{2k} \) of symplectic Lie algebras is deter-
mined by equation \(x_1 = 0 \). A table with the structure constants of symplecto-
ismorphism classes in \(M_{2k}^{\text{sympl}} \) is presented.

INTRODUCTION

Nilmanifolds \(M = G/\Gamma \) (compact homogeneous spaces of nilpotent Lie groups \(G \)
over lattices \(\Gamma \)) are important examples of symplectic manifolds that do not admit
Kähler structures. An interesting family of graded symplectic nilpotent Lie alge-
bas \(V_{2k} \) (and corresponding family of nilmanifolds \(M_{2k} \)) was considered in [1], [2],
[3]. The finite dimensional Lie algebras \(V_n \), that are defined by the commutating
relations \([e_i, e_j] = (j-i)e_{i+j}, i+j \leq n \), "came" from the infinite dimensional Vir-
soro algebra and they are examples of so-called filiform Lie algebras – nilpotent Lie
algebras \(g \) with the maximal length \(s = \dim g - 1 \) of the descending central sequence
of \(g \). The study of filiform Lie algebras was started by M. Vergne in [22], [23].

The classification of symplectic filiform Lie algebras of dimensions \(\leq 10 \) was
discussed in [10], [11]. The present paper is the continuation of [19], where a
criterion of the existence of a symplectic structure on a filiform Lie algebra \(g \) was
proposed. In particular in a symplectic filiform \(g = L^1 g \) one can find the ideal
\(L^2 g \) of codimension 1 such that the sequence of ideals \(L^i g, i = 1, \ldots, 2k \), where
\(L^i g = C^{i-1} g, i = 3, \ldots, n \) \(\{C^i g\} \) are the ideals of the descending central sequence
\(C \) of \(g \) determines a decreasing filtration \(L \) of the Lie algebra \(g \). The associated

1991 Mathematics Subject Classification. 17B30, 17B56, 17B70, 53D.
Partially supported by the Russian Foundation for Fundamental Research, grant no. 99-01-
00090 and PAI-RUSSIE, dossier no. 04495UL.
graded Lie algebra \(\mathfrak{g}_{L} \) is symplectic also. The graded filiform algebras of the type
\(\mathfrak{g}_{L} \) were classified in \[18\], \[19\]. There are two one-parameter families of graded
symplectic filiform Lie algebras of dimensions 8, 10. But if \(\mathfrak{g}_{L} \) is a symplectic
filiform Lie algebra with \(\dim \mathfrak{g} = 2k \geq 12 \) then \(\mathfrak{g}_{L} \) is isomorphic either to \(\mathfrak{m}_0(2k) \)
or to \(\mathcal{V}_{2k} \). In other words in dimensions \(2k \geq 12 \) one can obtain symplectic filiform
Lie algebras as special deformations (that we call \(\mathbb{Z}_{>0} \)-filtered deformations) of two
graded Lie algebras: \(\mathfrak{m}_0(2k) \) and \(\mathcal{V}_{2k} \).

We classify \(\mathbb{Z}_{>0} \)-filtered deformations of \(\mathcal{V}_n \), i.e., Lie algebras with the structure
relations of the following form:
\[
[e_i, e_j] = (j-i)e_{i+j} + \sum_{l=1}^{i+j} c_{ij} e_{i+j+l}, \quad i + j \leq n.
\]

We compute in the Section 6 the space \(H^2(\mathcal{V}_n, \mathcal{V}_n) \) for \(n \geq 12 \). To the
\(\mathbb{Z}_{>0} \)-filtered deformations corresponds the subspace \(\oplus_{>0} H^2(i)(\mathcal{V}_n, \mathcal{V}_n) \). The main theorem 7.9 of
the present article asserts that for \(n \geq 16 \) the moduli space \(M_n \) (i.e. the set of
isomorphism classes) of these algebras can be identified with the orb it space of the
following \(K^* \)-action on \(K^6 = \oplus_{>0} H^2(i)(\mathcal{V}_n, \mathcal{V}_n) \):
\[
\alpha \star X = (\alpha^{n-11} x_1, \alpha^{n-10} x_2, \ldots, \alpha^{n-7} x_5), \alpha \in K^*, \quad X \in K^6,
\]
where the coordinates \(x_1, \ldots, x_5 \) of the space \(K^6 = \oplus_{>0} H^2(i)(\mathcal{V}_n, \mathcal{V}_n) \) are defined by
the choice of the basic cocycles \(\psi_{n,12-i}, i = 1, \ldots, 5 \).

For \(n = 2k \) the subspace \(M^\text{sympl}_{2k} \subset M_{2k} \) of symplectic Lie algebras is determined
by equation \(x_1 = 0 \). A table with structure constants of symplecto-isomorphism
classes in \(M^\text{sympl}_{2k} \) is presented in the Section 9.

1. IN Variant SYMPLECTIC STRUCTURES ON LIE GROUPS

Definition 1.1. A Lie group \(G \) is said to have a left-invariant symplectic structure
if it has a left-invariant non-degenerate closed 2-form \(\omega \).

Example 1.2. \(G \) is a two-dimensional abelian Lie group \(\mathbb{R}^2 \) with coordinates \(x, y \)
and \(\omega = dx \wedge dy \).

Example 1.3. \(G \) is a direct product \(\mathcal{H}_3 \times \mathbb{R} \) of the Heisenberg group \(\mathcal{H}_3 \) of all
matrices of the form
\[
\begin{pmatrix}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{pmatrix}, \quad x, y, z \in \mathbb{R},
\]
and abelian \(\mathbb{R} \) (with coordinate \(t \)). The invariant symplectic form \(\omega \) is defined as
\[
\omega = dx \wedge (dz - xdy) + dy \wedge dt.
\]

Theorem 1.4 (B.-Y. Chu, \[14\]). Any semisimple Lie group has no left-invariant
symplectic structure.

Theorem 1.5 (B.-Y. Chu, \[14\]). A connected unimodular Lie group admitting a
left-invariant symplectic structure must to be solvable.

One can obtain examples of left-invariant symplectic structures in the framework
of Kirillov’s orbit method.

Let us consider the coadjoint action \(Ad^* \) of a Lie group \(G \) on the dual \(\mathfrak{g}^* \) of its
Lie algebra \(\mathfrak{g} \):
\[
(Ad^*(g)f)(X) = f(Ad(g^{-1})X), \quad \forall X \in \mathfrak{g},
\]
where \(g \in G, f \in g^* \). The orbit \(O_f \) of this action has a homogeneous symplectic structure \(\omega_{O_f} \) such that

\[
\pi_f^*(\omega_{O_f}) = df,
\]

where \(\pi_f \) denotes the natural mapping \(\pi_f : G \to O_f, \pi_f(g) = A_d^*(g)f \). Let the stabilizer \(G_f = \{ g \in G | A_d^*(g)f = f \} \) of \(f \in g^* \) be a normal subgroup of \(G \) then the orbit \(O_f \) can be identified with the quotient group \(G/G_f \) and the corresponding symplectic structure \(\omega_{O_f} \) is left \(G/G_f \)-invariant. If \(G \) is a nilpotent Lie group then nilpotent ones are \(G_f \) and \(G/G_f \).

Definition 1.6. A skew-symmetric non-degenerate bilinear form \(\omega \) on the Lie algebra \(g \) is called symplectic if it closed, i.e.

\[
\omega([x,y],z) + \omega([y,z],x) + \omega([z,y],x) = 0, \quad \forall x, y, z \in g.
\]

If \(\omega_G \) is a left-invariant symplectic form on \(G \), then \(\omega_G \) defines a symplectic structure \(\omega_g \) on the Lie algebra \(g \) of \(G \), and conversely any symplectic form \(\omega_g \) of \(g \) defines a left-invariant symplectic structure on \(G \).

Lemma 1.7 (A. Médina, P. Revoy [15]). Let \(g \) be a symplectic Lie algebra with non-trivial center \(Z(g) \) and \(I \) be a one-dimensional subspace in \(Z(g) \) and \(I^\omega \) its symplectic complement with respect to \(\omega \). Then one can consider two following exact sequences of Lie algebras and their homomorphisms

\[
\begin{align*}
0 & \to I \to I^\omega \to I^\omega/I \to 0 \\
0 & \to I^\omega \to g \to g/I^\omega \cong I \to 0
\end{align*}
\]

where \(I^\omega/I \) is symplectic Lie algebra (the restriction of \(\omega \) to \(I^\omega \) defines symplectic form \(\tilde{\omega} \) on the quotient-algebra \(I^\omega/I \)).

In other words 2\(k \)-dimensional symplectic Lie algebra \(g \) with non-trivial center can be obtained from 2\(k \)-2-dimensional symplectic \(I^\omega/I \) by means of two consecutive operations:

1) one-dimensional central extension of \(I^\omega/I \) by \(I \);
2) semidirect product of \(I^\omega \) and one-dimensional \(g/I^\omega \cong I \).

The combination of these two operations is called the double extension of symplectic Lie algebra \(I^\omega/I \).

Theorem 1.8 (A. Médina, P. Revoy [15]). Symplectic nilpotent Lie algebras can be obtained by means of the sequence of consecutive double extensions starting with trivial Lie algebra of zero dimension.

The even-dimensional nilpotent Lie algebras are classified for dimensions 2\(k \leq 6 \) ([20]). The classification of symplectic 6-dimensional nilpotent Lie algebras based on this classification was done in [11].

2. **Filiform Lie algebras**

The sequence of ideals of a Lie algebra \(g \)

\[
C^1 g = g \supset C^2 g = [g,g] \supset \ldots \supset C^k g = [g,C^{k-1}g] \supset \ldots
\]

is called the descending central sequence of \(g \).

A Lie algebra \(g \) is called nilpotent if there exists \(s \) such that:

\[
C^{s+1} g = [g,C^s g] = 0, \quad C^s g \neq 0.
\]
The natural number s is called the nil-index of the nilpotent Lie algebra \mathfrak{g}, or \mathfrak{g} is called s-step nilpotent Lie algebra.

Let \mathfrak{g} be a Lie algebra. We call a set F of subspaces

$$
\mathfrak{g} \supset \cdots \supset F^i \supset F^{i+1} \supset \cdots \quad (i \in \mathbb{Z})
$$

a decreasing filtration F of \mathfrak{g} if F is compatible with the Lie structure

$$
[F^k \mathfrak{g}, F^l \mathfrak{g}] \subset F^{k+l} \mathfrak{g}, \forall k, l \in \mathbb{Z}.
$$

Let \mathfrak{g} be a filtered Lie algebra. A graded Lie algebra

$$
\text{gr}_F \mathfrak{g} = \bigoplus_{k=1} (\text{gr}_F \mathfrak{g})_k, \quad (\text{gr}_F \mathfrak{g})_k = F^k \mathfrak{g}/F^{k+1} \mathfrak{g}
$$

is called the associated graded Lie algebra $\text{gr}_F \mathfrak{g}$.

The ideals $C^k \mathfrak{g}$ of the descending central sequence define a decreasing filtration C of the Lie algebra \mathfrak{g}

$$
C^1 \mathfrak{g} = \mathfrak{g} \supset C^2 \mathfrak{g} \supset \cdots \supset C^k \mathfrak{g} \supset \cdots; \quad [C^k \mathfrak{g}, C^l \mathfrak{g}] \subset C^{k+l} \mathfrak{g}.
$$

One can consider the associated graded Lie algebra $\text{gr}_C \mathfrak{g}$.

The finite filtration C of a nilpotent Lie algebra \mathfrak{g} is called the canonical filtration of a nilpotent Lie algebra \mathfrak{g}.

Proposition 2.1. Let \mathfrak{g} be a n-dimensional nilpotent Lie algebra. Then for its nil-index we have the estimate $s \leq n - 1$.

Definition 2.2. A nilpotent n-dimensional Lie algebra \mathfrak{g} is called filiform Lie algebra if it has the nil-index $s = n - 1$.

Example 2.3. The Lie algebra $\mathfrak{m}_0(n)$ is defined by its basis e_1, e_2, \ldots, e_n with commutating relations:

$$
[e_1, e_i] = e_{i+1}, \quad \forall 2 \leq i \leq n-1.
$$

Remark. We will omit in the sequel trivial commutating relations $[e_i, e_j] = 0$ in the definitions of Lie algebras.

Example 2.4. The Lie algebra $\mathfrak{m}_2(n)$ is defined by its basis e_1, e_2, \ldots, e_n and commutating relations:

$$
[e_1, e_i] = e_{i+1}, \quad 2 \leq i \leq n-1; \quad [e_2, e_j] = e_{j+2}, \quad 3 \leq j \leq n-2.
$$

Example 2.5. Let us define the algebra L_k as the infinite-dimensional Lie algebra of polynomial vector fields on the real line \mathbb{R}^1 with a zero in $x = 0$ of order not less then $k + 1$.

The algebra L_k can be defined by its infinite basis and commutating relations

$$
e_i = x^{i+1} \frac{d}{dx}, \quad i \in \mathbb{N}, \quad i \geq k; \quad [e_i, e_j] = (j - i)e_{i+j}, \quad \forall i, j \in \mathbb{N}.
$$

One can consider the n-dimensional quotient algebra $\mathcal{V}_n = L_1/L_{n+1}$.

The Lie algebras $\mathfrak{m}_0(n)$, $\mathfrak{m}_2(n)$, \mathcal{V}_n considered above are filiform Lie algebras.

Proposition 2.6. Let \mathfrak{g} be a filiform Lie algebra and $\text{gr}_C \mathfrak{g} = \bigoplus_i (\text{gr}_C \mathfrak{g})_i$ is the corresponding associated (with respect to the canonical filtration C) graded Lie algebra. Then

$$
\dim(\text{gr}_C \mathfrak{g})_1 = 2, \quad \dim(\text{gr}_C \mathfrak{g})_2 = \cdots = \dim(\text{gr}_C \mathfrak{g})_{n-1} = 1.
$$
We have the following isomorphisms of graded Lie algebras:
\[\text{gr}_C \mathfrak{m}_2(n) \cong \text{gr}_C \mathfrak{v}_n \cong \text{gr}_C \mathfrak{m}_0(n) \cong \mathfrak{m}_0(n). \]

Theorem 2.7 (M. Vergne [23]). Let \(\mathfrak{g} = \oplus \alpha \mathfrak{g}_\alpha \) be a graded \(n \)-dimensional filiform Lie algebra and
\[(2) \quad \dim \mathfrak{g}_1 = 2, \quad \dim \mathfrak{g}_2 = \cdots = \dim \mathfrak{g}_{n-1} = 1. \]
then
1) if \(n = 2k + 1 \), then \(\mathfrak{g} \) is isomorphic to \(\mathfrak{m}_0(2k+1) \);
2) if \(n = 2k \), then \(\mathfrak{g} \) is isomorphic either to \(\mathfrak{m}_0(2k) \) or to the Lie algebra \(\mathfrak{m}_1(2k) \), defined by its basis \(e_1, \ldots, e_{2k} \) and commutating relations:
\[[e_1, e_i] = e_{i+1}, \quad i = 2, \ldots, 2k-1; \quad [e_j, e_{2k+1-j}] = (-1)^{j+1} e_{2k}, \quad j = 2, \ldots, k. \]

Remark. In the settings of the Theorem 2.7 the gradings of the algebras \(\mathfrak{m}_0(n) \), \(\mathfrak{m}_1(n) \) are defined as \(\mathfrak{g}_1 = \text{Span}(e_1, e_2), \mathfrak{g}_i = \text{Span}(e_{i+1}), i = 2, \ldots, n-1. \)

Corollary 2.8 (M. Vergne [23]). Let \(\mathfrak{g} \) be a filiform Lie algebra. Then one can choose a so-called adapted basis \(e_1, e_2, \ldots, e_n \) in \(\mathfrak{g} \):
\[(3) \quad [e_1, e_i] = e_{i+1}, i=2, \ldots, n-1; \quad [e_i, e_j] = \begin{cases} \sum_{k=0}^{n-i-j} c_{ij}^{i+j+k} e_{i+j+k}, & i+j \leq n; \\ (-1)^{i+j+k} \alpha e_n, & i+j = n+1; \\ 0, & i+j > n+1; \\ 2 \leq i < j \leq n. \end{cases} \]
where \(\alpha = 0 \) if \(n \) is odd number.

3. **Symplectic filiform Lie algebras: filtrations and gradings**

Definition 3.1. A Lie algebra \(\mathfrak{g} \) is called symplectic if it admits at least one symplectic structure.

Lemma 3.2 ([19]). Let \(\mathfrak{g} \) be an \(2k \)-dimensional symplectic filiform Lie algebra, then
\[(4) \quad \text{gr}_C \mathfrak{g} \cong \mathfrak{m}_0(2k). \]

In other words: let \(\mathfrak{g} \) be a symplectic filiform Lie algebra and \(e_1, e_2, \ldots, e_{2k} \) be some adapted basis, then \([e_i, e_j] = 0, \quad i+j = 2k+1 \).

Proposition 3.3. A fixed adapted basis of \(\mathfrak{g} \) \(e_1, e_2, \ldots, e_{2k} \) such that \([e_i, e_j] = 0, \quad i+j = 2k+1 \) defines a non-canonical filtration \(L \) of \(\mathfrak{g} \):
\[\mathfrak{g} = L^1 \mathfrak{g} \supset L^2 \mathfrak{g} \supset \cdots \supset L^{2k} \mathfrak{g} \supset \{0\}, \]
\[L^j \mathfrak{g} = \text{Span}(e_j, \ldots, e_{2k}), \quad j = 1, \ldots, 2k. \]

Remark. For homogeneous components of associated graded \(\text{gr}_L \mathfrak{g} \) we have
\[\dim(\text{gr}_L \mathfrak{g})_1 = \dim(\text{gr}_L \mathfrak{g})_2 = \cdots = \dim(\text{gr}_L \mathfrak{g})_{2k} = 1. \]

Proposition 3.4 ([19]). Let \(\mathfrak{g} \) be a symplectic filiform Lie algebra with a fixed adapted basis. Then the corresponding associated graded Lie algebra \(\text{gr}_L \mathfrak{g} = \oplus_i (\text{gr}_L \mathfrak{g})_i \) is symplectic also.

Remark. It was shown in [19] that the previous condition is necessary but not sufficient condition.
Theorem 3.5 (D. Millionschikov, [19]). Let $\mathfrak{g} = \bigoplus_{\alpha=1}^{2k} \mathfrak{g}_{\alpha}$ be a real graded symplectic Lie algebra such that

$$\dim \mathfrak{g}_{\alpha} = 1, \ 1 \leq \alpha \leq 2k; \quad [\mathfrak{g}_{1}, \mathfrak{g}_{\alpha}] = \mathfrak{g}_{\alpha+1}, \ 2 \leq \alpha \leq 2k - 1.$$

Then \mathfrak{g} is isomorphic to the one and only one Lie algebra from the following list:

dim	algebra	commutating relations	symplectic form
4	$\mathfrak{m}_{0}(4)$	$[e_1, e_2] = e_3, [e_1, e_3] = e_4$	$e^1 \land e^4 - e^2 \land e^3$
6	$\mathfrak{m}_{0}(6)$	$[e_1, e_i] = e_{i+1}, i = 2, \ldots, 5$	$e^1 \land e^6 - e^2 \land e^5 + e^3 \land e^4$
	\mathfrak{V}_6	$[e_i, e_j] = (j - i)e_{i+j}, i+j \leq 6$	$5e^1 \land e^6 + 3e^2 \land e^5 + e^3 \land e^4$
8	$\mathfrak{m}_{0}(8)$	$[e_1, e_i] = e_{i+1}, i = 2, \ldots, 7$	$e^1 \land e^8 - e^2 \land e^7 + e^3 \land e^6 - e^4 \land e^5$
	$\mathfrak{g}_{8, \alpha}$	$\alpha \neq -\frac{5}{2}, -2, -\frac{1}{2}, \frac{1}{2}$	$e^1 \land e^8 + 2a^2 + 3a - 2e^2 \land e^7 + 2(2a^2 + 4a + 5)e^3 \land e^6 + \frac{3}{2(2a^2 + 4a + 5)}e^4 \land e^5$
10	$\mathfrak{m}_{0}(10)$	$[e_1, e_i] = e_{i+1}, i = 2, \ldots, 9$	$e^1 \land e^{10} - e^2 \land e^9 + e^3 \land e^8 - e^4 \land e^7 + e^5 \land e^6$
	$\mathfrak{g}_{10, \alpha}$	$\alpha \neq -\frac{5}{2}, -1, -\frac{1}{2}, -\frac{3}{2}, \alpha_1, \alpha_2; \quad \alpha_1, \alpha_2 \in \mathbb{R}, 2\alpha_1^2 + 2\alpha_2^2 + 3 = 0, 4\alpha_1^2 + 8\alpha_2^2 - 8\alpha_2 - 21 = 0$	$e^1 \land e^{10} + 2a^2 + 3a - 2e^2 \land e^9 + \frac{3}{2(2a^2 + 4a + 5)}e^3 \land e^8 + \frac{3}{2(2a^2 + 4a + 5)}e^4 \land e^7 + \frac{3}{2(2a^2 + 4a + 5)}e^5 \land e^6$
$2k \geq 12$	$\mathfrak{m}_{0}(2k)$	$[e_1, e_i] = e_{i+1}, i = 2, \ldots, 2k-1$	$\frac{1}{2} \sum_{i+j=2k+1}(1)^{i+1}1^1 \land e^j$
	\mathfrak{V}_{2k}	$[e_i, e_j] = (j - i)e_{i+j}, i+j \leq 2k$	$\frac{1}{2} \sum_{i+j=2k+1}(1)^{i+1}1^1 \land e^j$

Remark. In the fourth column of the table we give only one variant of possible symplectic structure.

Corollary 3.6. Let \mathfrak{g} be a symplectic filiform Lie algebra of dimension $2k \geq 12$ then one can choose a basis e_1, \ldots, e_{2k} in \mathfrak{g} such that the corresponding commutating relations will be either

$$[e_1, e_i] = e_{i+1} + \sum_{l=1}^{2k-i-1} c_{i1} e_{i+l+1}, \ i = 2, \ldots, 2k-1;$$

(7)

$$[e_i, e_j] = \sum_{l=1}^{2k-i-j} c_{i1} e_{i+j+l}, \ i + j \leq 2k; \ 2 \leq i < j \leq 2k;$$

or

$$[e_i, e_j] = (j - i)e_{i+j} + \sum_{l=1}^{2k-i-j} c_{i1} e_{i+j+l}, \ i + j \leq 2k; \ 1 \leq i < j \leq 2k;$$

(8)
Remark. The one-parameter family \(\mathfrak{g}_{\alpha, \rho} \) was considered in [11] as well as corresponding symplectic form \(\omega_0(\alpha) \). In [10] symplectic (over \(\mathbb{C} \)) low-dimensional \((\dim \mathfrak{g} \leq 10)\) filiform Lie algebras were classified (but this article contains some mistakes).

4. LIE ALGEBRA COHOMOLOGY

Let \(\mathfrak{g} \) be a Lie algebra over \(\mathbb{K} \) and \(\rho: \mathfrak{g} \to \mathfrak{gl}(V) \) its linear representation (or in other words \(V \) is a \(\mathfrak{g} \)-module). We denote by \(C^q(\mathfrak{g}, V) \) the space of \(q \)-linear skew-symmetric mappings of \(\mathfrak{g} \) into \(V \). Then one can consider an algebraic complex:

\[
V \xrightarrow{d_0} C^1(\mathfrak{g}, V) \xrightarrow{d_1} C^2(\mathfrak{g}, V) \xrightarrow{d_2} \cdots \xrightarrow{d_{q-1}} C^q(\mathfrak{g}, V) \xrightarrow{d_q} \cdots
\]

where the differential \(d_q \) is defined by:

\[
(d_qf)(X_1, \ldots, X_{q+1}) = \sum_{i=1}^{q+1} (-1)^{i+1} \rho(X_i)(f(X_1, \ldots, \hat{X}_i, \ldots, X_{q+1})) + \sum_{1 \leq i < j \leq q+1} (-1)^{i+j-1} f([X_i, X_j], X_1, \ldots, \hat{X}_i, \ldots, \hat{X}_j, \ldots, X_{q+1}).
\]

The cohomology of the complex \((C^*(\mathfrak{g}, V), d)\) is called the cohomology of the Lie algebra \(\mathfrak{g} \) with coefficients in the representation \(\rho: \mathfrak{g} \to V \).

In this article we will consider two main examples:
1) \(V = \mathbb{K} \) and \(\rho: \mathfrak{g} \to \mathbb{K} \) is trivial;
2) \(V = \mathfrak{g} \) and \(\rho = ad: \mathfrak{g} \to \mathfrak{g} \) is the adjoint representation of \(\mathfrak{g} \).

The cohomology of \((C^*(\mathfrak{g}, \mathbb{K}), d)\) (the first example) is called the cohomology with trivial coefficients of the Lie algebra \(\mathfrak{g} \) and is denoted by \(H^*(\mathfrak{g}) \). Also we fix the notation \(H^*(\mathfrak{g}, \mathfrak{g}) \) for the cohomology of \(\mathfrak{g} \) with coefficients in the adjoint representation.

One can remark that \(d_1 : C^1(\mathfrak{g}, \mathbb{K}) \to C^2(\mathfrak{g}, \mathbb{K}) \) of the \((C^*(\mathfrak{g}, \mathbb{K}), d)\) is the dual mapping to the Lie bracket \([,] : \mathbb{K}^2 \mathfrak{g} \to \mathfrak{g} \). Moreover the condition \(d^2 = 0 \) is equivalent to the Jacobi identity for \([,] \).

Let \(\mathfrak{g} = \bigoplus \mathfrak{g}_\alpha \) be a \(\mathbb{Z} \)-graded Lie algebra and \(V = \bigoplus \mathfrak{V}_\beta \) is a \(\mathbb{Z} \)-graded \(\mathfrak{g} \)-module, i.e., \(\mathfrak{g}_\alpha \mathfrak{V}_\beta \subset \mathfrak{V}_{\alpha+\beta} \). Then the complex \((C^*(\mathfrak{g}, V), d)\) can be equipped with the \(\mathbb{Z} \)-grading \(C^q(\mathfrak{g}, V) = \bigoplus \mu C^q_{(\mu)}(\mathfrak{g}, V) \), where a \(V \)-valued \(q \)-form \(c \) belongs to \(C^q_{(\mu)}(\mathfrak{g}, V) \) iff for \(X_1 \in \mathfrak{g}_{\alpha_1}, \ldots, X_q \in \mathfrak{g}_{\alpha_q} \) we have

\[
c(X_1, \ldots, X_q) \in \mathfrak{V}_{\alpha_1+\alpha_2+\ldots+\alpha_q+\mu}.
\]

This grading is compatible with the differential \(d \) and hence we have \(\mathbb{Z} \)-grading in cohomology:

\[
H^q(\mathfrak{g}, V) = \bigoplus_{\mu \in \mathbb{Z}} H^q_{(\mu)}(\mathfrak{g}, V).
\]

Remark. The trivial \(\mathfrak{g} \)-module \(\mathbb{K} \) has only one non-trivial homogeneous component \(\mathbb{K} = \mathbb{K}_0 \).

Example 4.1. Let \(\mathfrak{g} \) be a Lie algebra with the basis \(e_1, e_2, \ldots, e_n \) and commutating relations

\[
[e_i, e_j] = c_{ij}e_{i+j}, i + j \leq n.
\]
Let us consider the dual basis e^1, e^2, \ldots, e^n. One can introduce a grading (that we will call the weight) of $\Lambda^*(g^*) = C^*(g, \mathbb{K})$:

$$
\Lambda^*(g^*) = \bigoplus_{\lambda=1}^{n(n+1)/2} \Lambda^*(\alpha),
$$

where a subspace $\Lambda^*_\alpha(g^*)$ is spanned by q-forms $\{e^{i_1} \wedge \ldots \wedge e^{i_q}, i_1 + \ldots + i_q = \lambda\}$. For instance a monomial $e^{i_1} \wedge \ldots \wedge e^{i_q}$ has the degree q and the weight $\lambda = i_1 + \ldots + i_q$.

The complex $(C^*(g, g), d)$ is \mathbb{Z}-graded:

$$
C^*(g, g) = \bigoplus_{\mu \in \mathbb{Z}} C^*_\mu(g, g),
$$

where $C^*_\mu(g, g)$ is spanned by monomials $\{e_1 \otimes e^{i_1} \wedge \ldots \wedge e^{i_q}, i_1 + \ldots + i_q + \mu = l\}$.

Now we consider a filtered Lie algebra g with a finite decreasing filtration F. One can define a decreasing filtration \tilde{F} of $\Lambda^*(g^*)$.

$$
\tilde{F}^\mu \Lambda^p(g^*) = \{\omega \in \Lambda^p(g^*) \mid \omega(F^{\alpha_1}g \wedge \ldots \wedge F^{\alpha_p}g) = 0, \alpha_1 + \ldots + \alpha_p + \mu \geq 0\}.
$$

Example 4.2. Let g be a Lie algebra with the basis e_1, e_2, \ldots, e_n and commutating relations

$$
[e_i, e_j] = \sum_{k=0}^{n-i-j} c_{ij} e_{i+j+k}, i + j \leq n.
$$

As it was remarked above the corresponding filtration L ($L^k = \text{Span}(e_k, \ldots, e_n)$) of g can be defined. The associated graded Lie algebra $\text{gr}_L g$ has the following structure relations

$$
[e_i, e_j] = c_{ij}^0 e_{i+j}, i + j \leq n.
$$

Let us consider the dual basis e^1, e^2, \ldots, e^n. Then $\tilde{L}^\mu \Lambda^p(g^*)$ is spanned by p-monomials of weights less or equal to $-\mu$, i.e. by p-forms $e^1 \wedge \ldots \wedge e^n$ such that $i_1 + \ldots + i_p \leq -\mu$. For instance

$$
\tilde{L}^{-5} \Lambda^2(g^*) = \text{Span}(e^1 \wedge e^2, e^1 \wedge e^3, e^1 \wedge e^4, e^2 \wedge e^3).
$$

Remark. One can consider the spectral sequence E_r that corresponds to the filtration \tilde{F} of the complex $\Lambda^*(g^*)$. We have an isomorphism (see [23] for example)

$$
E^{p,q}_1 = H^{p+q}(\text{gr}_F g).
$$

Theorem 4.3 ([19]). Let g be a filiform Lie algebra such that $\text{gr}_C g \cong m_0(2k)$ and $\text{gr}_L g$ is symplectic.

Then the Lie algebra g is symplectic if and only if some homogeneous symplectic class $[\omega_{2k+1}] \in E_1^{-2k-1, 2k+3} = H_{2(2k+1)}^2(\text{gr}_L g)$ survives to the term E_∞.

5. $\mathbb{Z}_{>0}$-FILTERED DEFORMATIONS AND $H^2(g, g)$

In this section we recall some definitions from the Nijenhuis-Richardson deformation theory (see [21]).

Definition 5.1. Let g be a Lie algebra with a Lie bracket $[,]$ and $\Psi : g \otimes g \to g$ is a skew-symmetric bilinear map. Ψ is called a deformation of $[,]$ iff $[,]' = [,] + \Psi$ is a Lie bracket on the vector space g.
Also we have the following important property:

\[[x, y]', z] + [[y, z]', x]' + [[z, x]', y]' = 0

is equivalent to the so-called deformation equation:

\[(10)\]

\[\Psi([x, y], z) + \Psi([y, z], x) + \Psi([z, x], y) + [\Psi(x, y), z] + [\Psi(y, z), x] + [\Psi(y, z), x] + \Psi(z, x), y] = 0.\]

The first six terms can be rewritten in the form \(d\Psi(x, y, z)\) where \(\psi : C^2(\mathfrak{g}, \mathfrak{g}) \to C^3(\mathfrak{g}, \mathfrak{g})\) is the differential of the complex \((\mathfrak{g}, \mathfrak{g}), d)\).

Finally we have

\[(11)\]

\[d\Psi + \frac{1}{2}[\Psi, \Psi] = 0,\]

where \([,]\) denotes a symmetric bilinear function \([,] : C^2(\mathfrak{g}, \mathfrak{g}) \times C^2(\mathfrak{g}, \mathfrak{g}) \to C^3(\mathfrak{g}, \mathfrak{g})\)

\[(12)\]

\[
\begin{aligned}
[\Psi, \tilde{\Psi}](x, y, z) &= \Psi(\tilde{\Psi}(x, y), z) + \Psi(\tilde{\Psi}(y, z), x) + \Psi(\tilde{\Psi}(z, x), y) \\
&+ \tilde{\Psi}(\Psi(x, y), z) + \tilde{\Psi}(\Psi(y, z), x) + \tilde{\Psi}(\Psi(z, x), y).
\end{aligned}
\]

The last definition can be generalised in terms of Nijenhuis-Richardson bracket in \(C^*(\mathfrak{g}, \mathfrak{g})\):

\[[,] : C^p(\mathfrak{g}, \mathfrak{g}) \times C^q(\mathfrak{g}, \mathfrak{g}) \to C^{p+q-1}(\mathfrak{g}, \mathfrak{g}).\]

Namely, for \(\alpha \in C^p(\mathfrak{g}, \mathfrak{g})\) and \(\beta \in C^q(\mathfrak{g}, \mathfrak{g})\) one can define \([\alpha, \beta] \in C^{p+q-1}(\mathfrak{g}, \mathfrak{g})\):

\[(13)\]

\[\begin{aligned}
[\alpha, \beta](\xi_1, \ldots, \xi_{p+q-1}) &= \sum_{1 \leq i_1 < \ldots < i_p \leq p+q-1} \alpha(\xi_{i_1}, \ldots, \xi_{i_p})\xi_1, \ldots, \xi_{i_1}, \ldots, \xi_{i_p}, \ldots, \xi_{p+q-1}) \\
&+ (-1)^{pq+p+q} \sum_{1 \leq j_1 < \ldots < j_p \leq p+q-1} \beta(\alpha(\xi_{j_1}, \ldots, \xi_{j_p}), \xi_{j_1}, \ldots, \xi_{j_1}, \ldots, \xi_{j_p}, \ldots, \xi_{p+q-1}).
\end{aligned}\]

The Nijenhuis-Richardson bracket defines a Lie superalgebra structure in \(C^*(\mathfrak{g}, \mathfrak{g})\), i.e., if \(\alpha \in C^p(\mathfrak{g}, \mathfrak{g}), \beta \in C^q(\mathfrak{g}, \mathfrak{g})\) and \(\gamma \in C^r(\mathfrak{g}, \mathfrak{g})\) then

\[(14)\]

\[\begin{aligned}
1) \quad [\alpha, \beta] &= -(1)^{(p-1)(q-1)}[\beta, \alpha]; \\
2) \quad (-1)^{(p-1)(q-1)}[[\alpha, \beta], \gamma] + (-1)^{(q-1)(r-1)}[[\beta, \gamma], \alpha] + (-1)^{(r-1)(p-1)}[[\gamma, \alpha], \beta] = 0.
\end{aligned}\]

Also we have the following important property:

\[d[\alpha, \beta] = [d\alpha, \beta] + (-1)^p[\alpha, d\beta].\]

Thus the Nijenhuis-Richardson bracket defines a Lie superalgebra structure in cohomology \(H^*(\mathfrak{g}, \mathfrak{g})\), i.e., the set of bilinear functions

\[\mathfrak{g} \times \mathfrak{g} \to H^{p+q-1}(\mathfrak{g}, \mathfrak{g})\]

with the properties \([14]\).
Proposition 5.2. Let $\mathfrak{g} = \oplus \alpha \mathfrak{g}_\alpha$ be a \mathbb{Z}-graded Lie algebra. Then the \mathbb{Z}-grading of $C^*(\mathfrak{g}, \mathfrak{g})$ and $H^*(\mathfrak{g}, \mathfrak{g})$ is compatible with the Nijenhuis-Richardson bracket:

$$\begin{align*}
[\cdot, \cdot] : C^p(\mathfrak{g}, \mathfrak{g}) \times C^q(\mathfrak{g}, \mathfrak{g}) & \rightarrow C^{p+q}(\mathfrak{g}, \mathfrak{g}) \\
[\cdot, \cdot] : H^p(\mathfrak{g}, \mathfrak{g}) \times H^q(\mathfrak{g}, \mathfrak{g}) & \rightarrow H^{p+q}(\mathfrak{g}, \mathfrak{g})
\end{align*}$$

(15)

Definition 5.3. A deformation Ψ of a $\mathbb{Z}_{>0}$-graded Lie algebra $\mathfrak{g} = \oplus \alpha \mathfrak{g}_\alpha$ is called $\mathbb{Z}_{>0}$-filtered if the following condition holds:

$$\forall X_1 \in \mathfrak{g}_{a_1}, \ldots, \forall X_q \in \mathfrak{g}_{a_q}, \quad \Psi(X_1, \ldots, X_q) \in \bigoplus_{a > a_1 + a_2 + \ldots + a_q} \mathfrak{g}_a.$$

Or in other words:

$$\Psi = \Psi_1 + \Psi_2 + \cdots + \Psi_i + \cdots, \quad \Psi_i \in C^2(\mathfrak{g}, \mathfrak{g}), \quad i = 1, 2, \ldots$$

Decomposing $\Psi = \Psi_1 + \Psi_2 + \ldots$ in the deformation equation (11) and comparing terms with the same grading we came to the following system of equations on homogeneous components Ψ_i:

$$d\Psi_1 = 0, \quad d\Psi_2 + \frac{1}{2}[\Psi_1, \Psi_1] = 0, \quad d\Psi_3 + [\Psi_1, \Psi_2] = 0, \ldots,$$

(17)

$$d\Psi_i + \frac{1}{2} \sum_{m+i} [\Psi_m, \Psi_i] = 0, \ldots$$

This is the well-known system of equations for one-parametric deformation, in our case one can associate to Ψ the following one-parametric deformation Ψ_1:

$$\Psi_t = t\Psi_1 + t^2\Psi_2 + \cdots + t^i\Psi_i + \cdots$$

1) the first equality of (17) shows that Ψ_1 is a cocycle, we denote by $\bar{\Psi}_1$ its cohomology class in $H^2(\mathfrak{g}, \mathfrak{g})$.

2) the second one shows that the Nijenhuis-Richardson product $[\bar{\Psi}_1, \bar{\Psi}_1]$ defines a trivial element in $H^3(\mathfrak{g}, \mathfrak{g})$. If $[\bar{\Psi}_1, \bar{\Psi}_1] = 0$ then Ψ_2 is determined not uniquely but up to some closed element in $Z^2(\mathfrak{g}, \mathfrak{g})$.

3) hence one can find $\bar{\Psi}_3$ iff $[\bar{\Psi}_1, \bar{\Psi}_2]$ is trivial in $H^3(\mathfrak{g}, \mathfrak{g})$ for some choice of Ψ_2.

The subset in $H^3(\mathfrak{g}, \mathfrak{g})$ formed by elements $-\bar{\Psi}_1, \bar{\Psi}_2$, where $\bar{\Psi}_2$ is a solution in $C^2(\mathfrak{g}, \mathfrak{g})$ of the equation $d\Psi_2 + \frac{1}{2}[\bar{\Psi}_1, \bar{\Psi}_1] = 0$ is called a triple Massey product $<\bar{\Psi}_1, \bar{\Psi}_1, \bar{\Psi}_1>$ and it is defined iff $[\bar{\Psi}_1, \bar{\Psi}_1] = 0$.

Definition 5.4. A Massey product of the k-th order $<\bar{\Psi}_1, \bar{\Psi}_1, \ldots, \bar{\Psi}_1>$ is a subset in $H^3(k)(\mathfrak{g}, \mathfrak{g})$ formed by classes $-\frac{1}{2} \sum_{m+i=k} [\Psi_m, \Psi_i]$ where $\Psi_j, j = 2, \ldots, k-1$ are solutions of the first $k-1$ equations of the system (17) and Ψ_1 is a representative of $\bar{\Psi}_1$. A Massey product $<\bar{\Psi}_1, \bar{\Psi}_1, \ldots, \bar{\Psi}_1>$ is called trivial if it contains zero.

Remark. A Massey product $<\bar{\Psi}_1, \bar{\Psi}_1, \ldots, \bar{\Psi}_1>$ of the the k-th order is defined iff all Massey products $<\bar{\Psi}_1, \bar{\Psi}_1, \ldots, \bar{\Psi}_1>$ of orders less than k are trivial. One can easily show that it does not depend on the choice of Ψ_1 in $\bar{\Psi}_1$. A Lie product $[\bar{\Psi}_1, \bar{\Psi}_1]$ is called a Massey product of the second order.

Proposition 5.5. Let be $\bar{\Psi}_1$ an element of $H^3(\mathfrak{g}, \mathfrak{g})$. One can construct a deformation Ψ of \mathfrak{g} with a first term equal to $\Psi_1 \in H^3(\mathfrak{g}, \mathfrak{g})$ if and only if all Massey products $<\bar{\Psi}_1, \bar{\Psi}_1, \ldots, \bar{\Psi}_1>$ are trivial.
Let Ψ and $\tilde{\Psi}$ be two deformations of a Lie algebra g. The question is: whether they define non-isomorphic Lie algebras or not? Or does there exist a non-degenerate linear transformation $\varphi : g \to g$ such that

$$\varphi([x, y] + \tilde{\Psi}(x, y)) = [\varphi(x), \varphi(y)] + \Psi(\varphi(x), \varphi(y))$$

Let us consider an arbitrary cocycle in $Z^2_{(1)}(g, g)$ cohomologous to Ψ. Then the Lie algebra with $[,] + \Psi$ is isomorphic to some filtered deformation $[,] + \tilde{\Psi}, \tilde{\Psi} = \Phi_1$.

Proposition 6.1

$E^p_1 = g_q \otimes H^{p+q}(g)$.

We have the following natural isomorphisms:

$$C^{p+q}(g, g) = g \otimes \Lambda^{p+q}(g^\ast)$$

$$E^p_0 = F^qC^{p+q}(g, g) / F^{q+1}C^{p+q}(g, g) = g_q \otimes \Lambda^{p+q}(g^\ast).$$

Now the proof follows from the formula for the $d^{p, q}_0 : E^{p, q}_0 \to E^{p+1, q}_0$:

$$d_0(X \otimes f) = X \otimes df,$$

where $X \in g, f \in \Lambda^{p+q}(g^\ast)$ and df is the standard differential of the cochain complex of g with trivial coefficients.

Theorem 6.2

Let $n \geq 12$ then

1) $\dim H^{0}(V_n, V_n) = \dim H^{0}_{(n)}(V_n, V_n) = 1$;

2) $\dim H^{1}(V_n, V_n) = 4$, namely

$$\dim H^{1}_{(\mu)}(V_n, V_n) = \begin{cases} 1, & \mu = 0, n-4, n-3, n-2; \\ 0, & \text{otherwise}. \end{cases}$$

3a) Let $n \geq 16$, then $\dim H^{2}(V_n, V_n) = 10$, more precisely:

$$\dim H^{2}_{(\mu)}(V_n, V_n) = \begin{cases} 2, & \mu = -2; \\ 1, & \mu = -4, -3, -1, n-11, n-10, n-9, n-8, n-7; \\ 0, & \text{otherwise}. \end{cases}$$
3b) Let $12 \leq n \leq 15$, then $\dim H^2(\mathcal{V}_n, \mathcal{V}_n) = 11$, more precisely:

$$
\dim H^2(\mu, \mathcal{V}_n) = \begin{cases}
2, & \mu = -2; \\
1, & \mu = -4, -3, -1, 1, n-11, n-10, n-9, n-8, n-7; \\
0, & \text{otherwise}.
\end{cases}
$$

Proof. For the proof we will use the spectral sequence considered above. Let us recall some results from [17], namely:

1) the basis of $H^1(\mathcal{V}_n)$ consists of two classes $[e^1]$ and $[e^2]$.

2) the space $H^2(\mathcal{V}_n)$ is 3-dimensional and generated by classes

$$
g_5 = [e^2 \wedge e^3],
 g_7 = [e^2 \wedge e^5 - 3e^3 \wedge e^4],
 [\Omega_{n+1}] = \frac{1}{2} \left(\sum_{i+j=n+1} (j-i)e^i \wedge e^j \right)
$$

of weights 5, 7, $n+1$ respectively.

3) $H^3(\mathcal{V}_n)$ is 5-dimensional and generated by elements g_{12}, g_{15} and

$$
\{ [e^2 \wedge \Omega_{n+1}], [e^2 \wedge \Omega_{n+2} - ne^3 \wedge \Omega_{n+1}] \}
$$

of weights 12, 15, $n+3, n+4, n+5$ respectively. Where

$$
\Omega_{n+2} = \frac{1}{2} \sum_{i+j=n+2, i,j > 1} (j-i)e^i \wedge e^j,
 \Omega_{n+3} = \frac{1}{2} \sum_{i+j=n+3, i,j > 2} (j-i)e^i \wedge e^j
$$

are projections of non-existing de^{n+2} and de^{n+3} to $\Lambda^2(\mathcal{V}_n)$. We have also

$$
\Omega_{n+2} = d(e^{n+2} - ne^{n+1}) = ne^1 \wedge \Omega_{n+1},
 \Omega_{n+3} = d(e^{n+3} - (n+1)e^1 \wedge e^{n+2} - (n-1)e^2 \wedge e^n) = (n+1)e^1 \wedge \Omega_{n+2} + (n-1)e^2 \wedge \Omega_{n+1}.
$$

Remark. The classes g_{12}, g_{15} are generators of $H^3(L_1)$ of weights 12, 15 respectively, they arise in Gontcharova’s theorem (see [9] for details), as well as g_5, g_7 in $H^3(L_1)$ and $[e^1], [e^2]$ in $H^1(L_1)$. We will need the following formula for g_{12}:

$$
g_{12} = [2e^2 \wedge e^7 - 5e^2 \wedge e^4 \wedge e^6 + 20e^3 \wedge e^4 \wedge e^5].
$$

Proposition 6.3. Let $n \geq 16$, then we have only a finite number of non-trivial differentials $d_i^{j-1}, d_i^{j-1}, d_i^{j-2-j}$ of the spectral sequence E_i. They are:

$$
\begin{align*}
 d_1^{j-1} &: e_j \mapsto (1-j)e_{j+1} \otimes [e^1], j \neq 1; \\
 d_2^{1,1} &: e_1 \mapsto e_3 \otimes [e^2], \\
 d_2^{j,2-j} &: e_j \otimes [\Omega_{n+1}] \mapsto \left(j-2 - \frac{(n-1)(j-1)}{(n+1)n}\right)e_{j+2} \otimes [e^2 \wedge \Omega_{n+1}]; \\
 d_3^{1,1-j} &: e_j \otimes [e^2] \mapsto -\frac{1}{6}(j-3)(j^2-3j+8)e_{j+3} \otimes [e^2 \wedge e^3], j \neq 3; \\
 d_4^{j-1} &: e_2 \otimes [e^1] \mapsto -\frac{4}{3}e_6 \otimes [e^2 \wedge e^3]; \\
 d_5^{2,2-j} &: e_j \otimes [e^2 \wedge e^5 - 3e^3 \wedge e^4] \mapsto -\frac{1}{5544}(j-8)(j^2-4j+27)(j^2-13j+48)e_{j+5} \otimes g_{12}, j \neq 8; \\
 d_8^{8-j} &: \text{Span}(e_8 \otimes [e^2 \wedge e^5 - 3e^3 \wedge e^4]) \mapsto \text{Span}(e_{16} \otimes g_{15}).
\end{align*}
$$
If $12 \leq n \leq 15$ then only the differential d_8^{8-6} becomes trivial.

Corollary 6.4. The following classes in $E_1^{p,q}, p+q=0, 1, 2$ survive to E_∞ for $n \geq 16$:

\[e_n; \ e_1 \otimes [e^1], e_n \otimes [e^2], e_{n-1} \otimes [e^2], e_{n-2} \otimes [e^2]; \]
\[e_{n-1} \otimes [\Omega_{n+1}], \ e_n \otimes [\Omega_{n+1}], \]
\[e_j \otimes [e^2 \wedge e^5 - 3e^3 \wedge e^4], \ j = n-4, n-3, n-2, n-1, n. \]

If $12 \leq n \leq 15$ then one have to add $e_8 \otimes [e^2 \wedge e^5 - 3e^3 \wedge e^4]$ to the list above.

Remark. 1) the element e_n spans the center $Z(V_n) = H^0(V_n, V_n)$;
2) the class $e_1 \otimes [e^1]$ corresponds to the inner derivation $\sum_{j=1}^n i e_j \otimes e^1 = ad(e_0)$ in the solvable Lie algebra L_0/L_{n+1} restricted to the nilpotent ideal V_n.

Hence the proof of our theorem follows from Corollary 6.4. It’s time to say that the Proposition 6.3 it is finite-dimensional version of the following theorem

Theorem 6.5 (A. Fialowski, [7, 8]). $\dim H^2(L_1, L_1) = 3$, more precisely:

\[\dim H^2_{(\mu)}(L_1, L_1) = \begin{cases} 1, & \mu = -2, -3, -4; \\ 0, & \text{otherwise.} \end{cases} \]

The differentials $d_1^{i-1}, d_2^{i-1}, d_3^{i-1}, d_4^{i-1}, d_5^{i-2}, d_8^{8-6}$ of Proposition 6.3 came from the corresponding spectral sequence for $H^*(L_1, L_1)$. Their non-triviality follows from the more general result of B. Feigin, D. Fuchs [6]. But it is a very complicate task to follow all details of the proof in [6]. So it appears to be useful to calculate $d_1^{i-1}, d_2^{i-1}, d_3^{i-2}$ explicitly. From the other hand explicit formulae will give us a possibility to write down structure relations of all deformations of V_n.

Remark. In the infinite-dimensional case only classes $e_i \otimes [e^2 \wedge e^3], \ i = 1, 2, 3$ survive to E_∞ and they correspond to generators in $H^2(L_1, L_1)$ of weights $\mu = i - (2+3) = -4, -3, -2$ that were found by A. Fialowski.

The proof of Proposition 6.3 consists of direct calculations.

First of all by definition of $d: C^0(g, g) = g \to C^1(g, g) = \text{Hom}(g, g) = g \otimes g^*$ we have

\[d(e_j) = (j-1)e_{j+1} \otimes e^1 + (j-2)e_{j+2} \otimes e^2 + (j-3)e_{j+3} \otimes e^3 + \ldots \]

Hence

\[d_1^{i-1}(e_j) = e_{j+1} \otimes (j-1)[e^1], \ j \neq 1. \]

Now we go to the differential d_2.

\[d(e_j \otimes \Omega_{n+1}) = e_{j+1} \otimes (j-1)e^1 \wedge \Omega_{n+1} + \ldots \]

where dots stand instead of terms of higher filtration. As we know $e^1 \wedge \Omega_n = \frac{1}{n!} \Omega_{n+2}$ and we now can take new representative $e_j \otimes \Omega_n + \frac{j-1}{n} e_{j+1} \otimes \Omega_n$ such that:

\[d(e_j \otimes \Omega_{n+1} + \frac{j-1}{n} e_{j+1} \otimes \Omega_{n+2}) = e_{j+2} \otimes \left(\frac{j(j-1)}{n} e^1 \wedge \Omega_{n+2} + (j-2)e^2 \wedge \Omega_{n+1} \right) + \ldots \]

But $d\Omega_{n+3} = (n+1)e^1 \wedge \Omega_{n+2} + (n-1)e^2 \wedge \Omega_{n+1}$ and therefore $\frac{j(j-1)}{n} e^1 \wedge \Omega_{n+2} + (j-2)e^2 \wedge \Omega_{n+1}$ is cohomologous to $\left(j-2 - \frac{(n-1)j(j-1)}{(n+1)n} \right) e^2 \wedge \Omega_{n+1}$. Hence we conclude
Now the most complicated case: computation of \(d_2(e_j \otimes [e^2 \wedge e^5 - 3e^3 \wedge e^4]) \). We have to find \(\xi_1, \xi_2, \xi_3, \xi_4 \) such that

\[
d(e_j \otimes e^2 \wedge e^5 - 3e^3 \wedge e^4) + \sum_{p=1}^{4} e_{j+p} \otimes \xi_p = e_{j+5} \otimes \xi + \ldots
\]

for some \(\xi \in C^3(\mathcal{V}_n, \mathcal{V}_n) \). We recall the notation \(g_7 = e^2 \wedge e^5 - 3e^3 \wedge e^4 \). We have the following system of equations on \(\xi_1, \xi_2, \xi_3, \xi_4 \):

\[
d\xi_1 = (j-1)e^1 \wedge g_7; \\
d\xi_2 = je^1 \wedge \xi_1 + (j-2)e^2 \wedge g_7; \\
d\xi_3 = (j+1)e^1 \wedge \xi_2 + (j-2)e^2 \wedge \xi_1 + (j-3)e^3 \wedge g_7; \\
d\xi_4 = (j+2)e^1 \wedge \xi_3 + je^2 \wedge \xi_2 + (j-2)e^2 \wedge \xi_1 + (j-4)e^4 \wedge g_7.
\]

Taking \(\xi_1, \xi_2, \xi_3, \xi_4 \) as homogeneous 2-forms of weights 8, 9, 10, 11 one can remark that the right parts of these equations are exact forms because \(H^3_{\nu p}(\mathcal{V}_n) = 0, p \leq 11 \). \(\xi_1, \xi_2, \xi_3, \xi_4 \) are defined uniquely by the condition \(\xi_p \in \Lambda^2(e^2, \ldots, e^n), p = 1, 2, 3, 4 \).

The answer is:

\[
\xi_1 = \frac{j-1}{2}(e^2 \wedge e^6 - 2e^3 \wedge e^5); \\
\xi_2 = P_1(j)e^2 \wedge e^7 + P_2(j)e^3 \wedge e^6 + P_3(j)e^4 \wedge e^5; \\
\xi_3 = Q_1(j)e^2 \wedge e^8 + Q_2(j)e^3 \wedge e^7 + Q_3(j)e^4 \wedge e^6; \\
\xi_4 = Z_1(j)e^2 \wedge e^9 + Z_2(j)e^3 \wedge e^8 + Z_3(j)e^4 \wedge e^7 + Z_4(j)e^5 \wedge e^6,
\]

where polynomials \(P_1(j), Q_1(j), Z_1(j) \) are defined by

\[
\begin{align*}
P_1(j) &= \frac{(5(j)+3(j)-6)}{21}; & P_2(j) &= \frac{(4(j)+15(j)-30)}{21}; & P_3(j) &= -\frac{(13(j)-30(j)+60)}{21}; \\
Q_1(j) &= \frac{(3(j+1)+4(j+1)^2-4(j+1))}{28}; & Q_2(j) &= \frac{(j+1)^2-8(j+1)^2+8(j+1)}{14}; \\
Q_3(j) &= \frac{(-13(j+1)+20(j+1)^2-20(j+1))}{28}; \\
Z_1(j) &= \frac{1}{22}(j+2) + \frac{23}{231}(j+2)(j+2) - \frac{7}{198}(j+2)(j+2) - \frac{59}{693}(j+2)(j+2) + \frac{37}{231}; \\
Z_2(j) &= \frac{17}{154}(j+2) - \frac{62}{231}(j+2)(j+2) - \frac{53}{1386}(j+2)(j+2) - \frac{59}{99}(j+2)(j+2) + \frac{37}{33}; \\
Z_3(j) &= \frac{29}{154}(j+2) - \frac{4}{77}(j+2)(j+2) + \frac{317}{462}(j+2)(j+2) - \frac{59}{33}(j+2)(j+2) + \frac{37}{11}; \\
Z_4(j) &= \frac{47}{154}(j+2) + \frac{185}{231}(j+2)(j+2) - \frac{2245}{1386}(j+2)(j+2) + \frac{295}{99}(j+2)(j+2) - \frac{185}{33}.
\end{align*}
\]

Now one can calculate \(\xi \) from equation (24):

\[
\xi = (j+3)e^1 \wedge \xi_4 + (j+1)e^2 \wedge \xi_3 + (j-1)e^3 \wedge \xi_2 + (j-3)e^4 \wedge \xi_1 + (j-5)e^5 \wedge g_7.
\]
The space $H^3_{(12)}(V_n)$ is one-dimensional and we have for the cohomology class $[\xi]$:

$$[\xi] = -\frac{1}{5544} (j-8)(j^2-4j+27)(j^2-13j+48) \left[2e^2 \wedge e^3 \wedge e^7 - 5e^2 \wedge e^4 \wedge e^6 + 20e^3 \wedge e^4 \wedge e^5 \right].$$

In the same way one can remark that

$$d(e_j \otimes e^2 + e_{j+1} \otimes (j-1)e^3 + e_{j+2} \otimes \frac{j(j-1)}{2} e^4) = e_{j+3} \otimes \left(\frac{(j+1)(j-1)}{2}e^1 \wedge e^4 + ((j-1)^2 - (j-3)) e^2 \wedge e^3 \right) + \ldots$$

As $3e^1 \wedge e^4$ is cohomologous to $e^2 \wedge e^3$ it follows that

$$d_3(e_j \otimes [e^2]) = e_{j+3} \otimes \left((j-1)^2 - (j-3) - \frac{(j+1)(j-1)}{6} \right) [e^2 \wedge e^3]$$

Now we choose the following basic cocycles $\psi_{k,i}$ in $\oplus_{\mu \geq 0} H^2_{(\mu)}(V_n, V_n)$, $n \geq 16$:

$H^2_{(n-7)}(V_n, V_n)$	$\psi_{n,7} = e_n \otimes (e^2 \wedge e^5 - 3e^3 \wedge e^4)$
$H^2_{(n-8)}(V_n, V_n)$	$\psi_{n,8} = e_{n-1} \otimes (e^2 \wedge e^5 - 3e^3 \wedge e^4) + e_n \otimes \frac{n-3}{2}(e^2 \wedge e^6 - 2e^3 \wedge e^5);$
$H^2_{(n-9)}(V_n, V_n)$	$\psi_{n,9} = e_{n-2} \otimes (e^2 \wedge e^5 - 3e^3 \wedge e^4) + e_{n-1} \otimes \frac{n-4}{2}(e^2 \wedge e^6 - 2e^3 \wedge e^5) +$ $+ e_n \otimes (P_1(n-2)e^2 \wedge e^7 + P_2(n-2)e^3 \wedge e^6 + P_3(n-2)e^4 \wedge e^5) ;$
$H^2_{(n-10)}(V_n, V_n)$	$\psi_{n,10} = e_{n-3} \otimes (e^2 \wedge e^5 - 3e^3 \wedge e^4) + e_{n-2} \otimes \frac{n-5}{2}(e^2 \wedge e^6 - 2e^3 \wedge e^5) +$ $+ e_{n-1} \otimes (P_1(n-3)e^2 \wedge e^7 + P_2(n-3)e^3 \wedge e^6 + P_3(n-3)e^4 \wedge e^5) +$ $+ e_n \otimes (Q_1(n-3)e^2 \wedge e^8 + Q_2(n-3)e^3 \wedge e^7 + Q_3(n-3)e^4 \wedge e^6);$
$H^2_{(n-11)}(V_n, V_n)$	$\psi_{n,11} = e_{n-4} \otimes (e^2 \wedge e^5 - 3e^3 \wedge e^4) + e_{n-3} \otimes \frac{n-7}{2}(e^2 \wedge e^6 - 2e^3 \wedge e^5) +$ $+ e_{n-2} \otimes (P_1(n-4)e^2 \wedge e^7 + P_2(n-4)e^3 \wedge e^6 + P_3(n-4)e^4 \wedge e^5) +$ $+ e_{n-1} \otimes (Q_1(n-4)e^2 \wedge e^8 + Q_2(n-4)e^3 \wedge e^7 + Q_3(n-4)e^4 \wedge e^6) +$ $+ e_n \otimes (Z_1(n-4)e^2 \wedge e^9 + Z_2(n-4)e^3 \wedge e^8 + Z_3(n-4)e^4 \wedge e^7 + Z_4(n-4)e^5 \wedge e^6);$

7. Moduli space of $\mathbb{Z}_{>0}$-filtered deformations.

In this section we classify up to an isomorphism the Lie algebras over \mathbb{K} defined by the basis e_1, \ldots, e_n, $n \geq 16$ and commuting relations of the following form:

$$[e_i, e_j] = (j-i)e_{i+j} + \sum_{l=1}^{n-i-j} c_{ij}^l e_{i+j+l}.$$

A Lie algebra \mathfrak{g} with the commutating relations (29) is a $\mathbb{Z}_{>0}$-filtered deformation of the $\mathbb{Z}_{>0}$-graded Lie algebra V_n, i.e. $\mathfrak{g} = (V_n, [\cdot, \cdot] + \Psi)$, where

$$\Psi = \Psi_1 + \Psi_2 + \cdots + \Psi_{n-3}, \quad \Psi_l \in C^2_{(l)}(V_n, V_n), \quad \Psi_l(e_i, e_j) = \begin{cases} c_{ij}^l e_{i+j+l}, & i+j \leq n-l, \\ 0, & \text{otherwise;} \end{cases} \quad l = 1, 2, \ldots, n-3.$$
satisfying to the system \([14] \) of deformation equations:

\[
d\Psi_1 = 0, \quad d\Psi_2 + \frac{1}{2} [\Psi_1, \Psi_1] = 0, \quad \ldots, \quad d\Psi_{n-6} + \frac{1}{2} \sum_{i+j=n-6} [\Psi_i, \Psi_j] = 0.
\]

Lemma 7.1. Let \(\Psi, \bar{\Psi} \) be two \(\mathbb{Z}_{\geq 0} \)-filtered deformations of \(\mathcal{V}_n, n \geq 5 \) and

\[
\varphi : g = (\mathcal{V}_n, [,] + \Psi) \to \mathfrak{g} = (\mathcal{V}_n, [,] + \bar{\Psi})
\]
is a Lie algebra isomorphism.

Then

1) \(\varphi = \varphi_0 + \varphi_1 + \varphi_2 + \cdots + \varphi_{n-1}, \quad \varphi_j \in C^1_{(j)}(\mathcal{V}_n, \mathcal{V}_n), \ j = 0, 1, 2, \ldots, n-1, \)

2) \(\varphi_0(e_i) = \alpha^i e_i, \quad \alpha \in \mathbb{K}^*, \quad i = 1, 2, \ldots, n. \)

Proof. We will study the dual situation. The mapping

\[
\varphi^* : g^* = (\mathcal{V}_n^*, d\varphi = d + \Psi^*) \to \mathfrak{g}^* = (\mathcal{V}_n^*, d\bar{\varphi} = d + \bar{\Psi}^*)
\]
is an isomorphism of \(d \)-algebras.

For the dual basis \(e^1, e^2, \ldots, e^n \) of \((\mathcal{V}_n^*, d\varphi) \) we have the following structure relations:

\[
d\varphi e^k = \frac{1}{2} \sum_{i+j=k} (j-i)e^i \wedge e^j + \frac{1}{2} \sum_{m+p<k} c_{mp}^k e^m \wedge e^p, \quad k = 3, \ldots, n.
\]

Let us write down some of them.

\[
d\varphi e^1 = d\varphi e^2 = 0, \quad d\varphi e^3 = e^1 \wedge e^2, \quad d\varphi e^4 = 2e^1 \wedge e^3 + c_{12}^1 e^1 \wedge e^2,
\]

\[
d\varphi e^5 = 3e^1 \wedge e^4 + e^2 \wedge e^3 + c_{13}^1 e^1 \wedge e^3 + c_{12}^2 e^1 \wedge e^2, \ldots
\]

The dual mapping \(\varphi^* : \mathfrak{g}^* \to g^* \) is the isomorphism of \(d \)-algebras, i.e.

\[
d\varphi^* = \varphi^* d\varphi.
\]

1) \(d\varphi \varphi^* e^1 = d\varphi \varphi^* e^2 = 0, \) thus

\[
\varphi^* e^1 = \alpha_1 e^1 + \alpha_2 e^2; \quad \varphi^* e^2 = \alpha_1 e^1 + \alpha_2 e^2.
\]

2) \(d\varphi \varphi^* e^3 = \varphi^* e^1 \wedge \varphi^* e^2 = (\alpha_1 \alpha_2 - \alpha_2 \alpha_1) e^1 \wedge e^2, \) and we have

\[
\varphi^* e^3 = (\alpha_1 \alpha_2 - \alpha_2 \alpha_1) e^1 \wedge e^2 + \alpha_1 e^1 \wedge e^3 + \alpha_2 e^2 \wedge e^3.
\]

3) The form \(\varphi^* d\varphi^* e^4 \) is cohomologous to \(2\alpha_2 (\alpha_1 \alpha_2 - \alpha_2 \alpha_1) e^2 \wedge e^3 \) and it is exact iff \(\alpha_2 = 0, \) thus

\[
\varphi^* e^4 = \alpha_1^2 \alpha_2 e^4 + (\alpha_1 \alpha_3 + c_{12}^1 \alpha_1 \alpha_2 - c_{12}^1 \alpha_1 \alpha_2) e^3 + \alpha_4 e^1 + \alpha_2 e^2.
\]

4) \(\varphi^* d\varphi^* e^5 \sim 3\alpha_2 \alpha_1 \alpha_3 e^1 \wedge e^4 + \alpha_2 \alpha_1 e^2 \wedge e^3 \) and the last one is exact iff \(\alpha_1^2 = 0, \) and for the moment we have

\[
\varphi^* e^1 = \alpha_1 e^1; \quad \varphi^* e^2 = \alpha_1^2 e^2 + \alpha_1 e^1,
\]

\[
\varphi^* e^3 = \alpha_1^3 e^3 + \alpha_1 e^1 + \alpha_2 e^2,
\]

\[
\varphi^* e^4 = \alpha_1^4 e^4 + \ldots; \quad \varphi^* e^5 = \alpha_1^5 e^5 + \ldots
\]

Going on and using an obvious inductive assumption we have for the operator \(\varphi^* : \)

\[
\varphi^* e^i = \alpha^i e^i + \sum_{l<i} \alpha_{il} e^l, \quad i = 1, \ldots, n,
\]

for some \(\alpha \neq 0, \alpha_{ii} \in \mathbb{K}. \) \(\square \)
From the other hand it is evident that changing the canonical basis of an arbitrary Lie algebra \(g \) of the type \([21]\) by an operator \(\varphi \) with property \([14]\) we will get again the commutating relations of the same type.

Corollary 7.2. The matrix Lie group \(G_n \) of lower-triangular matrices \(\varphi \) of the following type

\[
\varphi = \begin{pmatrix}
\alpha & 0 & \cdots & 0 \\
0 & \alpha^2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & \alpha_{n-1} & \cdots & \alpha^n
\end{pmatrix}, \quad \alpha_{ij} \in \mathbb{K}, \alpha \neq 0,
\]

acts on the set \(V_n \) of \(\mathbb{Z}_{>0} \)-filtered deformations of \(\mathcal{V}_n \) as the group of changes of canonical basis:

\[
(\varphi \ast \Psi)(x,y) = \varphi^{-1}([\varphi x, \varphi y] + \Psi(\varphi x, \varphi y)) - [x,y], \forall x, y \in V_n, \varphi \in G_n.
\]

Two \(\mathbb{Z}_{>0} \)-filtered deformations \((\mathcal{V}_n, [\cdot, \cdot] + \Psi)\) and \((\mathcal{V}_n, [\cdot, \cdot] + \tilde{\Psi})\) are isomorphic as Lie algebras if and only if they are in the same orbit \(O_\Psi \) of the \(G_n \)-action.

Hence we have proved the following

Theorem 7.3. Let \(n \geq 5 \), then there is a one-to-one correspondence between the orbit space \(O(G_n, V_n) \) of the action \(G_n \) on the set \(V_n \) of \(\mathbb{Z}_{>0} \)-filtered deformations of \(\mathcal{V}_n \) and the moduli space \(\mathcal{M}_n \) (the set of isomorphism classes of the \(\mathbb{Z}_{>0} \)-filtered deformations of \(\mathcal{V}_n \)).

Proposition 7.4. The matrix Lie group \(G_n \) is the semi-direct product \(\mathbb{K}^* \ltimes UT_n \) where \(UT_n \) denotes the group of unitriangular matrices:

\[
G_n = \mathbb{K}^* \ltimes UT_n = \mathbb{K}^* \ltimes \begin{bmatrix}
1 & 0 & \cdots & 0 \\
* & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
* & * & \cdots & 1
\end{bmatrix}, \quad \mathbb{K}^* \cong \begin{bmatrix}
\alpha & 0 & \cdots & 0 \\
0 & \alpha^2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \alpha^n
\end{bmatrix}.
\]

Remark (see also section [5]). If \(\Psi = \Psi_1 + \Psi_2 + \cdots + \Psi_{n-3} \) is a solution of the system \([17]\) of deformation equations then \(\Psi = t\Psi_1 + t^2\Psi_2 + \cdots + t^{n-3}\Psi_{n-3}, \forall t \in \mathbb{K} \) also satisfies to the system \([17]\). It follows that the space \(V_n \) can be retracted over itself to \(\mathcal{V}_n \). From another hand one can define \(\mathbb{K}^* \)-action on \(V_n \):

\[
\rho_n(\alpha)(\Psi_1, \Psi_2, \ldots, \Psi_{n-3}) = (\alpha \Psi_1, \alpha^2 \Psi_2, \ldots, \alpha^{n-3} \Psi_{n-3}), \alpha \in \mathbb{K}^*.
\]

Evidently this action coincides with the action on \(V_n \) of the subgroup \(\mathbb{K}^* \) of diagonal matrices in \(G_n \).

Proposition 7.5. There are the following bijections:

\[
O_\rho_n(\mathbb{K}^*, O(UT_n, V_n)) \to O(G_n/UT_n, O(UT_n, V_n)) \to O(G_n, V_n).
\]

Proposition 7.6. Let \(\Psi \) be a \(\mathbb{Z}_{>0} \)-filtered deformation of \(\mathcal{V}_n, n \geq 12 \). Then there exists an element \(\tilde{\Psi} \) in the \(UT_n \)-orbit \(O_\Psi \) of \(\Psi \) such that

\[
\tilde{\Psi}_1 = \cdots = \tilde{\Psi}_{n-12} = 0.
\]

For an arbitrary \(\mathbb{Z}_{>0} \)-filtered deformation \(\Psi \) the first equation is \(d\Psi_1 = 0 \). We recall now

\[
H^2_{(i)}(\mathcal{V}_n, \mathcal{V}_n) = 0, \quad i \leq n-12.
\]
and hence $\Psi_1 = d\varphi_1$ for some φ_1 of $C^1(\mathcal{V}_n, \mathcal{V}_n)$. Acting by $g = id + \varphi_1 \in UT_n$ we get $\tilde{\Psi} = g \ast \Psi$ such that $\tilde{\Psi}_1 = 0$. Now the second equation of the system for this new element $\tilde{\Psi}$. will be $d\tilde{\Psi}_2 = [\tilde{\Psi}_1, \tilde{\Psi}_1] = 0$. We act on $\tilde{\Psi}$ by $g = id + \varphi_2$, where $\tilde{\Psi}_2 = d\varphi_2$ and continue the procedure step by step.

Now we suppose to be constructed an element Ψ such that $\tilde{\Psi}_1 = \cdots = \tilde{\Psi}_{n-12} = 0$ satisfying

$$d\tilde{\Psi}_{n-11} = 0.$$

We recall that in the section we found the basic cocycles $\psi_{n,i}$, such that

$$\text{Span}([\psi_{n,i}, \psi_{n,j}]) = H^2(n-1)(\mathcal{V}_n, \mathcal{V}_n), \ i = 7, \ldots, 11.$$

Hence $\tilde{\Psi}_{n-11} = x_1\psi_{n,11} + d\varphi_{n-11}, x_1 \in \mathbb{K}$, and $\varphi_{n-11} \in C^1(n-11)(\mathcal{V}_n, \mathcal{V}_n)$. Then acting on $\tilde{\Psi}$ by $id + \varphi_{n-11}$ we get again a new element in the orbit O_{Ψ} (we keep the same notation Ψ for it) with the property $\tilde{\Psi}_{n-11} = x_1\psi_{n,11}$.

Proposition 7.7. Let $n \geq 14$ then all Nijenhuis-Richardson products of basic cocycles $\psi_{n,i}$ are trivial elements in $C^3(\mathcal{V}_n, \mathcal{V}_n)$:

$$[\psi_{n,i}, \psi_{n,j}](x, y, z) = 0 \ \forall x, y, z \in \mathcal{V}_n.$$

The proof follows from the two properties of $\psi_{n,i}$:

1) $\text{Im}\psi_{n,i} = \text{Span}(e_n, \ldots, e_{n-4})$

2) $\psi_{n,i}(x, y) = 0$ if $x \wedge y \not\in \Lambda^2(e_2, \ldots, e_9)$.

Hence $\psi_{n,i}(x, y, z) = 0, \ \forall x, y, z$ if $n-4 > 9$.

Proposition 7.8. Let $n \geq 14$. There is a one-to-one correspondence between the orbit space $O(UT_n, \mathcal{V}_n)$ and the 5-dimensional vector space $\oplus_{i>0} H^2(n)(\mathcal{V}_n, \mathcal{V}_n)$.

This proposition follows from the previous one. Namely in an arbitrary UT_n-orbit O_{Ψ} one can choose the unique representative $\tilde{\Psi}$ such that

$$\tilde{\Psi} = x_1\psi_{n,11} + x_2\psi_{n,10} + x_3\psi_{n,9} + x_4\psi_{n,8} + x_5\psi_{n,7},$$

where $x_i \in \mathbb{K}, i = 1, \ldots, 5$. We will call $\tilde{\Psi}$ the canonical element of the orbit O_{Ψ} and the set $\{x_1, \ldots, x_5\}$ is called the homogeneous coordinates of the orbit $O_{\Psi} \in O(UT_n, \mathcal{V}_n)$.

Theorem 7.9. Let $n \geq 16$. There is a one-to-one correspondence between the moduli space $\mathcal{M}_n = O(G_n, \mathcal{V}_n)$ of $\mathbb{Z}_{>0}$-filtered deformations of \mathcal{V}_n and the orbit space $O_{\tilde{\rho}_n}(K^*, K^5)$ where the action $\tilde{\rho}_n$ of K^* on K^5 is defined in coordinates x^i:

$$\tilde{\rho}_n(\alpha)(x_1, x_2, \ldots, x_5) = (\alpha^{n-11}x_1, \alpha^{n-10}x_2, \ldots, \alpha^{n-7}x_5), \ \alpha \in K^*.$$

We have to verify only the formula for K^*-action on $O(UT_n, \mathcal{V}_n)$. But

$$\tilde{\rho}_n(\alpha)(x_1, x_2, \ldots, x_5) = \rho_n(\alpha)(x_1\psi_{n,11} + x_2\psi_{n,10} + \cdots + x_5\psi_{n,17}) =$$

$$= \alpha^{n-11}x_1\psi_{n,11} + \alpha^{n-10}x_2\psi_{n,10} + \cdots + \alpha^{n-7}x_5\psi_{n,7}.$$

8. **Affine variety of $\mathbb{Z}_{>0}$-filtered deformations**

One can regard the set \mathcal{V}_n of $\mathbb{Z}_{>0}$-filtered deformation of \mathcal{V}_n as a affine variety in the affine space $\oplus_{i>0} C^2(\mathcal{V}_n, \mathcal{V}_n)$. Namely one can define a mapping (polynomial in the coordinates $\{e_{ij}^k\}$):

$$\mathcal{F} : \oplus_{i>0} C^2(\mathcal{V}_n, \mathcal{V}_n) \rightarrow \oplus_{i>0} C^3(\mathcal{V}_n, \mathcal{V}_n),$$
where
\[F(\Psi_1, \Psi_2, \ldots, \Psi_{n-3}) = (d\Psi_1, d\Psi_2 + \frac{1}{2}[\Psi_1, \Psi_1], \ldots, d\Psi_{n-6} + \frac{1}{2} \sum_{i+j=n-6} [\Psi_i, \Psi_j]). \]

Then
\[V_n = \{ \Psi \in \oplus_{i>0} C^2_{(i)}(V_n, V_n) \mid F(\Psi) = 0 \}. \]

Theorem 8.1.

1. The variety \(V_n \) has no singular points and
\[\dim V_n = \begin{cases} \frac{n(n-3)}{2} + 3, & n \geq 16; \\ \frac{n(n-3)}{2} + 4, & 12 \leq n \leq 15. \end{cases} \]

2. The group \(UT_n \) acts on \(V_n \) with constant rank and we have for the dimension of an arbitrary orbit \(O_\Psi \)
\[\dim O_\Psi = \frac{n(n-3)}{2} - 2. \]

One can identify the Lie algebra of \(UT_n \) with \(\oplus_{i>0} C^1_{(i)}(V_n, V_n) \). Let \(\Psi \) be some fixed element of \(V_n \), then decomposing \(\varphi = \exp \alpha = 1 + \alpha + \alpha^2 + \ldots \) in the formula and taking linear terms with respect to \(\alpha \) one can get the following formula for the differential \(D \) of the \(UT_n \)-action \((x, y) \in V_n)\):
\[D\Psi(\alpha)(x, y) = [\alpha(x), y] + [x, \alpha(y)] - \alpha([x, y]) + \Psi(\alpha(x), y) + \Psi(x, \alpha(y)) - \alpha(\Psi(x, y)). \]

Hence
\[D\Psi(\alpha) = -d(\alpha) + [\Psi, \alpha] \]

where \(d \Psi : \oplus_{i>0} C^1_{(i)}(V_n, V_n) \to \oplus_{i>0} C^2_{(i)}(V_n, V_n) \) is a deformed differential of the cochain complex of \(V_n \). But in the same time \(d \Psi \) defines the differential of the cochain complex of the Lie algebra \(g = (V_n, [\cdot, \cdot]) + \Psi \).

Analogously one can show that the differential \(D F \Psi \) coincides with the differential \(d \Psi : \oplus_{i>0} C^1_{(i)}(V_n, V_n) \to \oplus_{i>0} C^2_{(i)}(V_n, V_n) \) of the cochain complex with coefficients in the adjoint representation of \(g = (V_n, [\cdot, \cdot]) + \Psi \).

Remark. Let us denote by \(d_l : C^*_{(i)}(V_n, V_n) \to C^{*+1}_{(i)}(V_n, V_n) \) the restriction of the differential \(d \) of the cochain complex \((C^*(V_n, V_n), d) \) to homogeneous components. Then the matrix of \(d \Psi \) for an arbitrary \(\Psi \) is a block-triangular for some natural number \(l \):
\[d \Psi = \begin{pmatrix} d_1 & * & \ldots & * \\ 0 & d_2 & \ldots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & d_{n-l} \end{pmatrix} \]

And we have the following estimates
\[\text{rank } d \Psi \geq \text{rank } d, \quad \dim \ker d \Psi \leq \dim \ker d. \]

In order to compute these ranks one may assume that \(\Psi = \tilde{\Psi} \), where \(\tilde{\Psi} \in \mathbb{R}^5 \) is the canonical representative of the orbit \(O_\Psi \).

Proposition 8.2.

\[\dim \ker \left(d \Psi : \oplus_{i>0} C^1_{(i)}(V_n, V_n) \to \oplus_{i>0} C^2_{(i)}(V_n, V_n) \right) = \dim \ker \left(d : \oplus_{i>0} C^1_{(i)}(V_n, V_n) \to \oplus_{i>0} C^2_{(i)}(V_n, V_n) \right) = n + 2. \]
One can easily verify that operators

\[
\begin{align*}
 ad_\psi(e_1), \quad ad_\psi(e_2), \quad \ldots, \quad ad_\psi(e_{n-1}), \quad e_n \otimes e^2, \quad e_{n-1} \otimes e^2 + (n-2)e_n \otimes e^3, \\
 e_{n-2} \otimes e^2 + (n-3)e_n \otimes e^3 + \frac{(n-2)(n-3)}{2}e_n \otimes e^3
\end{align*}
\]

(39)

give the basis of \(\ker d_\psi : \oplus_{>0} C^1_{(i)}(\mathcal{V}_n, \mathcal{V}_n) \rightarrow \oplus_{>0} C^2_{(i)}(\mathcal{V}_n, \mathcal{V}_n) \).

Hence

\[
\dim O_\psi = \dim \text{Im} \left(d_\psi : \oplus_{>0} C^1_{(i)}(\mathcal{V}_n, \mathcal{V}_n) \rightarrow \oplus_{>0} C^2_{(i)}(\mathcal{V}_n, \mathcal{V}_n) \right) = \frac{n(n-1)}{2} - n - 2.
\]

From the other hand the cocycles \(\{ \psi_{n,i} \mid i = 7, \ldots, 11 \} \) span the tangent space to \(\mathbb{K}^5 \) in an arbitrary \(\tilde{\Psi} \), moreover \(\{ \psi_{n,i} \} \) are linearly independent modulo \(\text{Im} d_\psi \) because \(\{ |\psi_{n,i}| \mid i = 7, \ldots, 11 \} \) is the basis in \(\oplus_{>0} H^2_{(i)}(g, g) \).

The variety \(V_n \) can be regarded as a subvariety of the affine variety \(\mathcal{N}_n \) of \(n \)-dimensional nilpotent Lie algebras. There exists a \(\text{GL}_n \)-action on \(\mathcal{N}_n \) by basis changes. Let us consider the set \(V'_n = \{ y \in \mathcal{N}_n \mid \exists \psi \in V_n, \exists g \in \text{GL}_n, y = g \star \psi \} \).

Remark. In fact the Zariski closure of \(V'_n \) in \(\mathcal{N}_n \) coincides with one of irreducible components of \(\mathcal{N}_n \) that were discussed by Yu.Khakimdjanov in [13].

The \(\text{GL}_n \)-action on \(V'_n = \{ y \in \mathcal{N}_n \mid \exists x \in V_n, \exists g \in \text{GL}_n, y = g \star x \} \) has singularities. Namely by the lemma 7.1 the stabilizer \((GL_n)_\psi \) of a point \(\psi \in \mathbb{K}^5 \subset V_n \) coincides with the stabilizer \((G_n)_\psi \) and we have

\[
\dim(GL_n)_\psi = \begin{cases}
 n+2, & \text{if } \tilde{\Psi} \neq 0; \\
 n+3, & \text{if } \tilde{\Psi} = 0.
\end{cases}
\]

Remark. If \(\tilde{\Psi} = 0 \) then one have to add the operator \(\sum_{i=1}^n i e_i \otimes e^i \) to (39) in order to get a basis of the Lie algebra of the stabilizer \((GL_n)_\psi \).

Moreover, even for non-zero points \(\tilde{\Psi} \) there are some particularities. Let \(\tilde{\Psi} \) be a generic point in \(\mathbb{K}^5 \), i.e. \(x_i \neq 0, \forall i \), then

\[
(GL_n)_\psi = (G_n)_\psi = (UT_n)_\psi.
\]

But if \(\mathbb{K} = \mathbb{C} \) then for instance for \(\tilde{\psi} = (1, 0, 0, 0, 0) \) we have

\[
(GL_n)_\psi = (G_n)_\psi = \mathbb{Z}_{n-11} \ltimes (UT_n)_\psi,
\]

where \(\mathbb{Z}_{n-11} \) stands for the group of the roots of the unit:

\[
\mathbb{Z}_{n-11} = \{ \alpha \in \mathbb{C} \mid \alpha^{n-11} = 1 \}.
\]

It is interesting here to remark some parallels between our discussions and the theory of non-singular deformations, that was introduced in [8].

Definition 8.3 (8). Let \(g \) be a Lie algebra with the comutator \([,]\). Consider a formal one-parameter deformation

\[
[x, y]_t = [x, y] + \sum_{k \geq 1} \alpha_k(x, y)t^k
\]

of \(g \). A deformation is called non-singular if there exists a formal one-parameter family of linear transformations

\[
\phi_t(x) = x + \sum_{l \geq 1} \beta_l(x)t^l
\]
of \(\mathfrak{g} \) and a formal (not necessarily invertible) parameter change \(u = u(t) \) which transform the deformation \([x, y]_1 \) into a deformation
\[
[x, y]_u = [x, y] + \sum_{k \geq 1} \alpha_k(x, y)u^k, \quad \varphi_t^{-1}[\varphi_t(x), \varphi_t(y)]_t = [x, y]_u(t)
\]
with the cocycle \(\alpha' \in C^2(\mathfrak{g}, \mathfrak{g}) \) being not cohomologous to 0. Otherwise the deformation is called singular.

We have already remarked that one can associate to an arbitrary \(\mathbb{Z}_{>0} \)-deformation \(\Psi = \Psi_1 + \Psi_2 + \Psi_3 + \ldots \) of \(\mathcal{V}_n \) the following one-parametric deformation:
\[
[x, y]^{\Psi} = [x, y] + t\Psi_1(x, y) + t^2\Psi_2(x, y) + \cdots + t^k\Psi_k(x, y) + \ldots.
\]
One can also remark that in our case a formal deformation \([x, y]^{\Psi}_t \) is in fact a polynomial on \(t \).

Proposition 8.4. Let fix the isomorphism \(O(UT_n, \mathcal{V}_n) = \mathbb{K}^5 \), \(n \geq 16 \), then a formal deformation \([x, y]^{\Psi}_t \) corresponding to some \(\mathbb{Z}_{>0} \)-deformation \(\Psi \) of \(\mathcal{V}_n \) is non-singular if and only if its orbit \(O_\Psi \) belongs to the union \(\bigcup_{i=1}^5 O_{x_i} \) of coordinate lines \(O_{x_i} \) in \(\mathbb{K}^5 \).

Acting by corresponding \(\varphi_t = id + t\varphi_1 + t^2\varphi_2 + \ldots \) we reduce our problem to a parameter change in
\[
\Psi_t = t^{n-11}x_1\psi_{n,11} + t^{n-10}x_2\psi_{n,10} + \cdots + t^{n-7}x_5\psi_{n,7}.
\]
If \(x_1 \neq 0 \) then a parameter change \(u(t) = t^{n-11} \) is possible iff \(x_2 = x_3 = x_4 = x_5 = 0 \) the other cases are treated in the same way.

Remark. If \(n \geq 14 \) one can associate to an arbitrary deformation of the form \(\Psi = \sum_{i=1}^5 x_i\psi_{n,12-i} \) a linear one-parameter deformation \([\cdot, \cdot]^{\tau}_t \) of \(\mathcal{V}_n \):
\[
[x, y]^{\tau}_t = [x, y] + t\Psi(x, y).
\]
It follows from \([\Psi, \Psi] = 0\) in \(C^5(\mathcal{V}_n, \mathcal{V}_n) \). Evidently a linear one-parameter deformation \([\cdot, \cdot]^{\tau}_t \) is non-singular iff \(\Psi \neq 0 \).

9. Symplectic structures and one-dimensional central extensions

First of all we are going to calculate \(H^2(\mathfrak{g}) \) of an arbitrary \(\mathbb{Z}_{>0} \)-deformation \(\mathfrak{g} = (\mathcal{V}_n, [\cdot, \cdot] + \Psi) \). As we remarked in the section 4 the canonical basis \(e_1, e_2, \ldots, e_n \) of \(\mathfrak{g} = (\mathcal{V}_n, [\cdot, \cdot] + \Psi) \) defines the filtration \(L \) of \(\mathfrak{g} \):
\[
\mathfrak{g} = L^1\mathfrak{g} \supset L^2\mathfrak{g} = \text{Span}(e_2, \ldots, e_n) \supset \cdots \supset L^n\mathfrak{g} = \text{Span}(e_n) \supset \{0\},
\]
and \(L \) defines the filtration \(\tilde{L} \) of the cochain complex \((C^*(\mathfrak{g}), d) \). For the simplicity one can assume that \(\Psi = x_1\psi_{n,11} + \cdots + x_5\psi_{n,7} \). Let us consider the corresponding to \(\tilde{L} \) spectral sequence \(E^{p,q}_{i} \) that converges to \(H^*(\mathfrak{g}) \). We recall also that
\[
E^{p,q}_{1} = H^p_{(-p)}(\text{gr}_L\mathfrak{g}) = H^p_{(-p)}(\mathcal{V}_n).
\]
We recall that the space \(H^2(\mathcal{V}_n) \) is 3-dimensional and it is spanned by classes
\[
g_5 = [e^2 \wedge e^3], \quad g_7 = [e^2 \wedge e^5 - 3e^3 \wedge e^4], \quad [\Omega_{n+1}] = \frac{1}{2} \sum_{i+j=n+1} (j-i)e^i \wedge e^j.
\]
of weights 5, 7, \(n+1\) respectively. It is evident that the classes \([g_5]\) and \([g_7]\) survive to the term \(E_\infty\) because \(d_5 e^i = d e^i, i = 1, \ldots, 7, \forall \Psi\). And the question is: does \([\Omega_{n+1}] \in E^{2k-1, 2k+3}_1\) survive to \(E_\infty\)?

Proposition 9.1. Let \(g = (\mathcal{V}_n, [\cdot, \cdot] + \Psi)\) be a Lie algebra defined by the following deformation of \(\mathcal{V}_n\):

\[
\hat{\Psi} = \tilde{\Psi}_{n-11} + \cdots + \tilde{\Psi}_{n-7} = x_1 \psi_{n,11} + \cdots + x_5 \psi_{n,7}.
\]

Then in the spectral sequence \(E^{p,q}_r\) the following properties hold on:

1) \(d_r \equiv 0, r = 1, \ldots, n-12\);
2) \(E^{p,q}_r = E^{p,q}_{11}, r = 2, \ldots, n-11\);
3) \(d_{n-11}(\Omega_{n+1}) = 0\) if and only if \(x_1 = 0\);
4) If \(x_1 = 0\) then \(d_r(\Omega_{n+1}) = 0\) \(\forall r \geq 1\), i.e. the class \([\Omega_{n+1}]\) survive to the term \(E_\infty\).

The differential \(d_\Psi\) of the cochain complex \((C^*(g^*), d)\) has the form:

\[
d = d_0 + \Psi_{n-11}^* + \cdots + \Psi_{n-7}^* = d_0 + x_1 \psi_{n,11}^* + \cdots + x_5 \psi_{n,7}^*,
\]

where by \(\Psi_i^*\) and \(\psi_{n,j}^*\) we denote the dual applications to \(\Psi_i\) and \(\psi_{n,j}\) respectively and \(d_0\) stands for the differential of \((C^*(\mathcal{V}_n), d_0)\). The items 1) and 2) of the proposition are evident and

\[
d_{n-11}(\Omega_{n+1}) = [\Psi_{n-11}^*(\Omega_{n+1})] = x_1 [\psi_{n,11}^*(\Omega_{n+1})],
\]

On another hand one can compute \(\psi_{n,11}^*(\Omega_{n+1})\) explicitly:

\[
(-1) e^1 \wedge e^n + (n-3) e^2 \wedge e^{n-1} + \cdots + (n-9) e^5 \wedge e^{n-4} = (n-1) e^1 \wedge (Z_1(n-4) e^2 \wedge e^9 + Z_2(n-4) e^3 \wedge e^8 + Z_3(n-4) e^4 \wedge e^7 + Z_4(n-4) e^5 \wedge e^6) + (n-3) e^2 \wedge (Q_1(n-4) e^2 \wedge e^8 + Q_2(n-4) e^3 \wedge e^7 + Q_3(n-4) e^4 \wedge e^6) + (n-5) e^3 \wedge (P_1(n-4) e^2 \wedge e^7 + P_2(n-4) e^3 \wedge e^6 + P_3(n-4) e^4 \wedge e^5) + (n-7) e^4 \wedge \frac{n-5}{2} (e^2 \wedge e^6 - 2 e^3 \wedge e^5) + (n-9) e^5 \wedge (e^2 \wedge e^5 - 3 e^3 \wedge e^4)
\]

As it was shown in the Section \(\S\) this element is cohomologous to

\[-\frac{1}{5544} (n-12)(n^2-12n+59)(n^2-21n+116)[2e^2 \wedge e^3 \wedge e^7 - 5e^2 \wedge e^4 \wedge e^6 + 20e^3 \wedge e^4 \wedge e^5]
\]

and it defines a non-trivial element in \(H^3_{(12)}(\mathcal{V}_n)\) for \(n > 12\).

We can finish the proof by remark that

\[
E_{r}^{-n-1+r,n-r+4} = E_{1}^{-n-1+r,n-r+4} = H_{(n+1-r)}^3(\mathcal{V}_n) = 0, \quad r > n-11,
\]

because \(H_{(i)}^3(\mathcal{V}_n) = 0\) for all \(i < 12\). Hence all other differentials of the spectral sequence

\[
d_r : E_{r}^{-n-1,n+3} \rightarrow E_{r}^{-n-1+r,n-r+4}, \quad r > n-11
\]

are trivial.

Corollary 9.2. Let \(g = (\mathcal{V}_{2k}, [\cdot, \cdot] + \Psi)\) be a \(\mathbb{Z}_{>0}\)-deformation of \(\mathcal{V}_{2k}\) and \((x_1, x_2, \ldots, x_5)\) be the set of homogeneous coordinates of the \(UT_n\)-orbit \(O_\Psi\). \(g\) admits a symplectic structure if and only if \(x_1 = 0\).
Corollary 9.3. If the orbit O_Ψ of a $\mathbb{Z}_{>0}$-deformation $g = (V_n, [,] + \Psi$ has a non-zero first coordinate $x_1 \neq 0$ then:

$$\dim H^1(g) = \dim H^2(g) = 2.$$

Hence for a generic deformations g of V_n the Dixmier inequalities (see [5])

$$\dim H^i(g) \geq 2$$

for $i = 1, 2$.

Recall that a one-dimensional central extension of a Lie algebra g is an exact sequence

$$(41) \quad 0 \to K \to \tilde{g} \to g \to 0$$

of Lie algebras and their homomorphisms, in which the image of the homomorphism $K \to \tilde{g}$ is contained in the center of the Lie algebra g. To the cocycle $c \in \Lambda^2(g^*)$ corresponds the extension

$$0 \to K \to K \oplus g \to g \to 0$$

where the Lie bracket in $K \oplus g$ is defined by the formula

$$[(\lambda, g), (\mu, h)] = (c(g, h), [g, h]).$$

It can be checked directly that the Jacobi identity for this Lie bracket is equivalent to c being cocycle and that to cohomologous cocycles correspond equivalent (in a obvious sense) extensions.

Now let \tilde{g} be a filiform Lie algebra, it has one-dimensional center $Z(\tilde{g})$ and we have the following one-dimensional central extension:

$$0 \to K = Z(\tilde{g}) \to \tilde{g} \to \tilde{g}/Z(\tilde{g}) \to 0$$

where the quotient Lie algebra $\tilde{g}/Z(\tilde{g})$ is also filiform Lie algebra. Moreover, let e_1, \ldots, e_{n+1} be some adapted basis of \tilde{g} ($Z(\tilde{g}) = \text{Span}(e_{n+1})$) and $e_1, \ldots, e_{n+1} \in g^*$ its dual basis. Then the forms e_1, \ldots, e_n can be regarded as the dual basis to the basis $e_1 + Z(\tilde{g}), \ldots, e_n + Z(\tilde{g})$ of $\tilde{g}/Z(\tilde{g})$ and the cocycle $\Omega_{n+1} = de_{n+1}$ determines this one-dimensional central extension.

Proposition 9.4. Let g be a filiform Lie algebra and let its center $Z(g)$ be spanned by some $\xi \in Z(g)$. Then \tilde{g} taken from a one-dimensional central extension

$$0 \to K = Z(\tilde{g}) \to \tilde{g} \to g \to 0$$

with cocycle $c \in \Lambda^2(g)$ is a filiform Lie algebra if and only if the restricted function $f(\cdot) = c(\cdot, \xi)$ is non-trivial in g^*.

Corollary 9.5. Let g be a symplectic filiform Lie algebra and ω its symplectic form, then the one-dimensional central extension \tilde{g} with the cocycle $c = \omega$ will be also a filiform Lie algebra.

Theorem 9.6. Let $\tilde{g} = (V_{2k+1}, [,] + \tilde{\Psi}$ be $\mathbb{Z}_{>0}$-filtered deformation of V_{2k+1}, where

$$\tilde{\Psi} = x_1 \psi_{2k+1,11} + \cdots + x_5 \psi_{2k+1,17}.$$

Then \tilde{g} can be represented as a one-dimensional central extension of $\mathbb{Z}_{>0}$-filtered deformation $g_X = (V_{2k}, [,] + \Phi$ of V_{2k}, where

$$\Phi = x_1 \psi_{2k,10} + x_2 \psi_{2k,5} + x_3 \psi_{2k,8} + x_4 \psi_{2k,7}, \ X = (x_1, x-2, x_3, x_4).$$
The cocycle Ω_{X,x_5} that determines this one-dimensional central extension is equal to

\[
\Omega_{X,x_5} = \frac{1}{2} \sum_{i+j=2k+1} (j-i)e^i \wedge e^j + x_1 \Omega_{2k,11} + x_2 \Omega_{2k,10} + x_3 \Omega_{2k,9} + x_4 \Omega_{2k,8} + x_5 \Omega_{2k,7},
\]

\[
\Omega_{2k,11} = Z_1(2k-3)e^2 \wedge e^9 + Z_2(2k-3)e^3 \wedge e^8 + Z_3(2k-3)e^4 \wedge e^7 + Z_4(2k-3)e^5 \wedge e^6,
\]

\[
\Omega_{2k,10} = Q_1(2k-2)e^2 \wedge e^8 + Q_2(2k-2)e^3 \wedge e^7 + Q_3(2k-2)e^4 \wedge e^6,
\]

\[
\Omega_{2k,9} = P_1(2k-1)e^2 \wedge e^7 + P_2(2k-1)e^3 \wedge e^6 + P_3(2k-1)e^4 \wedge e^5,
\]

\[
\Omega_{2k,8} = \frac{2k-1}{2}(e^2 \wedge e^6 - 2e^3 \wedge e^5), \quad \Omega_{2k,7} = e^2 \wedge e^6 - 3e^3 \wedge e^4.
\]

Definition 9.7. Let $\mathfrak{g}, \mathfrak{g}$ be two symplectic Lie algebras, $\omega_\mathfrak{g}, \omega_\mathfrak{g}$ be corresponding symplectic structures. A Lie algebras isomorphism $f : \mathfrak{g} \to \mathfrak{g}$ is called a symplecto-isomorphism $f : (\mathfrak{g}, \omega_\mathfrak{g}) \to (\mathfrak{g}, \omega_\mathfrak{g})$ if and only if $\omega_\mathfrak{g} = f^*(\omega_\mathfrak{g})$.

Theorem 9.8. 1) Let \mathfrak{g} be a symplectic filtered deformation of \mathcal{V}_{2k}, $\omega_\mathfrak{g}$ its symplectic structure. Then there exists a vector $X = (x_1, x_2, x_3, x_4) \in \mathbb{K}^4$, $x_5 \in \mathbb{K}$ such that the pair $(\mathfrak{g}, \omega_\mathfrak{g})$ is symplecto-isomorphic to $(\mathfrak{g}_X, \Omega_{X,x_5})$, where \mathfrak{g}_X is one of the Lie algebras from the table below.

$i + j$	\mathfrak{g}_X: commutating relations $[e_i, e_j]$, $i < j$
$3 \leq i + j \leq 6$	$[e_1, e_6] = 5e_7,$
	$[e_2, e_3] = 3e_7 + x_1 e_{2k-3} + x_2 e_{2k-2} + x_3 e_{2k-1} + x_4 e_n,$
	$[e_3, e_4] = e_7 - 3x_1 e_{2k-3} - 3x_2 e_{2k-2} - 3x_3 e_{2k-1} - 3x_4 e_n,$
7	$[e_1, e_7] = 6e_8,$
	$[e_2, e_6] = 4e_8 + x_1 \frac{(2k-3)}{2} e_{2k-2} + x_2 \frac{(2k-3)}{2} e_{2k-1} + x_3 \frac{(2k-2)}{2} e_{2k},$
	$[e_3, e_5] = 2e_8 + x_1 (2k-4)e_{2k-2} + x_2 (2k-3)e_{2k-1} + x_3 (2k-2)e_{2k};$
8	$[e_1, e_8] = 7e_9,$
	$[e_2, e_7] = 5e_9 + x_1 \frac{(2^{2k-2} - 2^{(2k-3)})}{2^{(2k-1)}} e_{2k-1} + x_2 \frac{(2^{2k-2} - 2^{(2k-3)})}{2^{(2k-1)}} e_{2k},$
	$[e_3, e_6] = 3e_9 - x_1 \frac{(4^{2k-2} - 15^{(2k-3)})}{2^{(2k-1)}} e_{2k-1} - x_2 \frac{(4^{2k-2} - 15^{(2k-3)})}{2^{(2k-1)}} e_{2k},$
	$[e_4, e_5] = 8e_9 - x_1 \frac{(13^{2k-3}) - 30^{(2k-3)}}{2^{(2k-1)}} e_{2k-1} - x_2 \frac{(13^{(2k-2)} - 30^{(2k-2)})}{2^{(2k-1)}} e_{2k};$
10	$[e_1, e_9] = 8e_{10},$
	$[e_2, e_8] = 6e_{10} + x_1 \frac{(3^{(2k-2)} + 3^{(2k-3)})}{2^{(2k-1)}} e_{2k},$
	$[e_3, e_7] = 4e_{10} + x_1 \frac{(2^{2k-2} - 8^{(2k-3)})}{2^{(2k-1)}} e_{2k},$
	$[e_4, e_6] = 2e_{10} + x_1 \frac{(13^{(2k-2)} + 20^{(2k-3)})}{2^{k-1}} e_{2k},$
$11 \leq i + j \leq 2k$	$[e_1, e_j] = (j-i)e_{i+j}$

and its corresponding symplectic form Ω_{X,x_5} is equal to

\[
\Omega_{X,x_5} = \frac{1}{2} \sum_{i+j=2k+1} (j-i)e^i \wedge e^j + x_1 \Omega_{2k,11} + x_2 \Omega_{2k,10} + x_3 \Omega_{2k,9} + x_4 \Omega_{2k,8} + x_5 \Omega_{2k,7}.
\]
2) A pair \((\mathfrak{g}_X, \Omega_{X,x})\) is symplecto-isomorphic to \((\mathfrak{g}_Y, \Omega_{Y,y})\) if and only if there exist an \(\alpha \in K^*\) such that
\[
y_1 = \alpha^{n-11}x_1, \quad y_2 = \alpha^{n-10}x_2, \quad y_3 = \alpha^{n-9}x_3, \quad y_4 = \alpha^{n-8}x_4, \quad y_5 = \alpha^{n-7}x_5.
\]

Remark. The previous theorem shows that all \(Z_{>0}\)-deformations \(\tilde{\mathfrak{g}}\) of \(\mathcal{V}_{2k+1}\) are contact Lie algebras and gives their complete classification. An arbitrary symplectic \(Z_{>0}\)-deformations \(\mathfrak{g}\) of \(\mathcal{V}_{2k}\) can be obtained as quotient Lie algebra \(\tilde{\mathfrak{g}}/Z(\tilde{\mathfrak{g}})\). This method of classification of symplecto-isomorphism classes of low-dimensional filiform Lie algebras was considered in [10].

Taking rational coordinates \((x_1, x_2, \ldots, x_5)\) in the table above one will get a nilpotent Lie algebra \(\mathfrak{g}_X\) with rational structure constants and hence due to the Malcev theorem ([14]) the corresponding simply connected nilpotent Lie group \(G\) has a cocompact lattice \(\Gamma\). Thus one will get a family of examples of symplectic nilmanifolds \(M = G/\Gamma\).

References

[1] I. K. Babenko and I. A. Taimanov, On the existence of nonformal simply connected symplectic manifolds, Russian Math. Surveys, 53:4 (1998), 1082–1083.
[2] I. K. Babenko and I. A. Taimanov, On nonformal simply connected symplectic manifolds, Siberian Math. J., 41:2 (2000), 204–217.
[3] V. M. Bukhshtaber, Groups of polynomial transformations of a line, nonformal symplectic manifolds, and the landweber-Novikov algebra, Russian Math. Surveys, 54:4 (1999), 837–838.
[4] B. Chu, Symplectic homogeneous spaces, Trans. Amer. Math. Soc., 197 (1974), 145–159.
[5] J. Dixmier Cohomologie des algèbres de Lie nilpotentes, Acta sci. math. Szeged 16 (1955), 246–250.
[6] B. Feigin, D. Fuchs, Homology of the Lie algebras of vector fields on the line, Funct. Anal. Appl., 14:3 (1980), 45–60.
[7] A. Fialowski, Deformations of the Lie algebra of vector fields on the line, Russian Math. Surveys, 38:1 (1983), 185–186.
[8] A. Fialowski, D. Fuchs, Singular deformations of Lie algebras. Eexample: deformations of the Lie algebra \(L_1\), in: Topics in singularity theory (V.I. Arnold 60th anniversary collection), Amer. Math. Soc. Transl. Ser.2, 180 (1997), Amer. Math. Soc., Providence, RI, 77–92.
[9] D. Fuchs, Cohomology of infinite-dimensional Lie algebras Consultants Bureau, N.Y., London, 1986.
[10] J.R. Gómez, A. Jiménez-Merchán, Y. Khakimdjanov, Symplectic structures on the filiform Lie algebras, J.Pure Appl.Algebra, 156 (2001), 15–31.
[11] M. Goze, A. Bouyakoub, Sur les algèbres de Lie munies d’une forme symplectique, Rend. Sem. Fac. Sci. Univ. Cagliari, 57:1 (1987), 85–97.
[12] M. Goze, Y. Khakimdjanov, Nilpotent Lie algebras, Kluwer Academic, Dordrecht, 1996.
[13] Yu. Khakimdjanov, Varieties of Lie algebras laws, in Handbook of algebra, vol.2, 509–541, North-Holland, Amsterdam, 2000.
[14] A. Malcev, On a class of homogeneous spaces, Izvetsia Akad. Nauk SSSR Ser. Mat. 3 (1949), 9-32 (Russian); English translation: Amer. Math. Soc. Transl. (1) 9 (1962), 276–307.
[15] A. Médina, P. Revoy, Groupes de Lie a structure de symplectique invariante, in "Symplectic geometry, groupoids and integrable systems. Séminaire Sud Rhodanien." M.S.R.I., Springer-Verlag, New York / Berlin (1991), 247–266.
[16] D.V. Millionschikov, Cohomology of nilmanifolds and Gontcharova’s theorem, Russian Math. Surveys, 56:4 (2001), 758–759 (in russian).
[17] D.V. Millionschikov, Cohomology of nilmanifolds and Gontcharova’s theorem, in "Global Differential geometry: The Mathematical Legacy of Alfred Gray", M. Fernandez and J.Wolf ed., AMS CONM 288 (2001), 381–385.
[18] D.V. Millionschikov, \(N\)-graded filiform Lie algebras, Uspekhi Mat. Nauk, 57:2 (2002), 422–424.
[19] D.V. Millionschikov, \(N\)-graded filiform Lie algebras and symplectic structures, \[\text{math.RA/0205042}\]
[20] V. Morosov, *Classification of nilpotent Lie algebras of order 6*, Izv. Vyssh. Uchebn. Zaved. Mat., 4 (1958), 161–171.

[21] A. Nijenhuis, R.W. Richardson, Jr., *Deformations of Lie algebra structures*, J. of Math. and Mech., 17:1 (1967), 89-105.

[22] M. Vergne, *Réductibilité de la variété des algèbres de Lie nilpotentes*, C.R. Acad. Sc. Paris, 263 (1966), 4–6.

[23] M. Vergne, *Cohomologie des algèbres de Lie nilpotentes*, Bull. Soc. Math. France 98 (1970), 81–116.

Department of Mathematics and Mechanics, Moscow State University, 119899 Moscow, RUSSIA

Current address: Université Louis Pasteur, UFR de Mathématique et d’Informatique, 7 rue René Descartes - 67084 Strasbourg Cedex (France)

E-mail address: million@mech.math.msu.su