Quantum Zeno switch for single-photon coherent transport

Lan Zhou,1,2 S. Yang,3 Yu-xi Liu,2,4 C. P. Sun,3,2 and Franco Nori2,4,5

1Department of Physics, Hunan Normal University, Changsha 410081, China
2Advanced Science Institute, The Institute of Physical and Chemical Research (RIKEN), Wako-shi 351-0198, Japan
3Institute of Theoretical Physics, The Chinese Academy of Sciences, Beijing, 100080, China
4CREST, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
5Center for Theoretical Physics, Physics Department, Center for the Study of Complex Systems, The University of Michigan, Ann Arbor, Michigan 48109-1040, USA.

Using a dynamical quantum Zeno effect, we propose a general approach to control the coupling between a two-level system (TLS) and its surroundings by modulating the energy level spacing. This coupling is controlled by changing either the energy level spacing or the coupling constants between the waveguide and a TLS. A discrete coordinate scattering approach was developed to study a quantum switch for the coherent transport of a single photon along a 1D coupled-resonator waveguide (CRW). That quantum switch can be realized by changing either the energy level spacing or the coupling constants between the waveguide and a controller. Physical systems proposed to realize single-photon switches include: (i) Superconducting transmission line resonators coupled to a superconducting charge qubit; (ii) A TLS coupled to a photonic crystal “defect-cavity” waveguide. For the case (i), the controllability can be realized by changing the energy level spacing of the charge qubit. However, it seems difficult to control well the photon transport in (ii), because the couplings and TLS parameters are fixed once the sample is fabricated.

In this paper, for a single-photon propagating in a 1D CRW, a dynamical QZE switch is proposed with a tunable effective coupling to a TLS. This coupling is controlled by an applied frequency-modulated electromagnetic field. The photon can be transmitted either directly through the continuum, or indirectly, via a discrete en-
energy level provided by the TLS. These two channels interfere with each other. Their destructive quantum interference prevents the photon transport while the two quantum interference channels. When the dynamic Zeno effect slows down the transitions in the TLS, the photon transport appears only when the TLS is in its ground state, no destructive quantum interference occurs. Then, effectively, the TLS and the continuum are decoupled.

II. DECOUPLING MECHANISM USING DYNAMICAL QZE.

We generally consider a quantum system S with a characterized frequency ω_c and free Hamiltonian H_c, coupled to a TLS, with its ground $|g\rangle$ and excited $|e\rangle$ states, and energy level spacing ω_a (with $\hbar = 1$). We assume that a periodically modulated field is applied to TLS so that

$$\omega_a \to \Omega_a(t) = \omega_a + \Omega \cos(\nu t),$$

where Ω is the amplitude of the modulation with frequency ν. Hamiltonian

$$H = \Omega_a(t)|e\rangle\langle e| + G|e\rangle\langle g| + G^*|g\rangle\langle e| + H_c$$

(2)
describes the quantum system S and the TLS, as well as the coupling between them. The coupling coefficient G depends on S-variables so that

$$e^{iH_0 t}G e^{-iH_0 t} = G e^{-i\omega_0 t}.$$

(3)

In the interaction picture, the coupling between S and the TLS is modeled by the Hamiltonian

$$H_I = \sum_{n=-\infty}^{\infty} J_n \left(\frac{\Omega}{\nu} \right) e^{i(n\nu - \Delta) t} |e\rangle\langle g| + H.c.$$

(4)

where the detuning $\Delta = \omega_c - \omega_a$. In Eq. (4), we have used the Fourier-Bessel series identity,

$$e^{ix \sin \gamma} = \sum_n J_n(x) e^{in \gamma},$$

with the nth Bessel function $J_n(x)$ of the first kind.

For a fast modulation with large ν, the lowest frequency terms in Eq. (4) dominate the dynamical evolution. These terms are determined by the near-resonant and resonant condition $(n\nu - \Delta) \approx 0$; here $n = [\Delta/\nu]$ is the integer nearest to Δ/ν. To the lowest frequency term of the index $n = [\Delta/\nu]$, Eq. (4) is approximated as

$$H_I \approx \sum_n J_n(\nu \Delta/\omega) e^{i(n\nu - \Delta) t} |e\rangle\langle g| + H.c.$$

(5)

For a very fast modulation of frequency ν (i.e., $\Delta/\nu \sim 0$) and a large Ω, we have

$$H_I \propto J_0(\Omega/\nu).$$

The values of the decoupling points (i.e., $\Omega/\nu \approx 2.40, 5.52, ...$) are just the zeros of $J_0(x)$. Equation (5) clearly shows that the effective interaction vanishes when the ratio Ω/ν (=amplitude/frequency of the driving field) is a zero of the Bessel function $J_0(\Delta/\nu)$, therefore decoupling S from the TLS. At these zeros, the dynamical QZE occurs; namely, the TLS initially prepared in its excited state will remain there and will not decay to the ground state.

The above arguments to realize the QZE dynamics does not depend on the concrete form of the quantum system S. Thus its based idea can be generally used for the various decoupling schemes.

Notice that the Bessel functions $J_n(x)$ look roughly like oscillating sine or cosine functions, and have an infinite number of zeros. The decays of the Bessel functions are proportional to $1/\sqrt{x}$. Except asymptotically large x, the roots of the Bessel functions are not periodic.

III. SINGLE PHOTON QUANTUM SWITCH IN A 1D WAVEGUIDE.

Based on the above dynamical QZE mechanism, we now propose a quantum device, which behaves as a switch to control the incident photon transport in a CRW made of a periodic array of identical coupled resonators. The main difference between this device and the one in Ref. [21] is that here the TLS energy level spacing is now modulated by a periodic field, allowing us to use the remarkable dynamic QZE in a very unusual manner. The 1D CRW is schematically shown in Fig. 2(a), where a TLS is embedded in one of the resonators and is modulated with the external periodic forcing of amplitude Ω and frequency ν, i.e., $\omega_a \to \Omega_a(t)$. Let a_j^\dagger ($j = -\infty, \cdots, \infty$) be the creation operator of the jth single mode cavity, all with the same frequency ω. The Hamiltonian of the CRW reads

$$H_C = \omega_c \sum_j a_j^\dagger a_j - \xi \sum_j (a_j^\dagger a_{j+1} + H.c.),$$

(6)

with the inter-cavity coupling constant ξ, which describes the photon moving from one cavity to another. For convenience, we take the 0th cavity as the coordinate-axis origin and also assume that the TLS is located in this 0th cavity. Under the rotating wave approximation, the interaction between the 0th cavity field and the TLS is described by a Jaynes-Cummings Hamiltonian

$$H_I = \Omega_a(t) |e\rangle\langle e| + g \left(a_0^\dagger |g\rangle\langle e| + |e\rangle\langle g| a_0 \right),$$

(7)

with coupling strength g and modulated transition frequency Ω_a of the TLS. By employing the Fourier trans-
formation
\[a_j = \frac{1}{\sqrt{N}} \sum_k e^{ikja_k}, \]
(8)
the second term in Eq. (7) and \(H_C \) can be rewritten in \(k \)-space. In the rotating frame with respect to \(H_C + \Omega_a(t) |e \rangle \langle e | \), the interaction Hamiltonian reads
\[H_{II}(t) = \frac{g}{\sqrt{N}} \sum_{k,n} J_n \left(\frac{\Omega}{\nu} \right) \left[a_k^\dagger \sigma_- e^{i(\Delta - \epsilon_k - n\nu)t} + \text{H.c.} \right], \]
(9)
where we have used the Fourier-Bessel series identity. Here, the dispersion relation \(\epsilon_k = 2\xi \cos k \) describes an energy band of width \(4\xi \) (the lattice constant \(l \) is assumed to be unity), \(\sigma_- = |g\rangle \langle e| \). The \(H_{II}(t) \) in Eq. (9) effectively describes a multi-band Rabi oscillation.

In this work we are mainly interested in the investigation of the transmission and localization of single photon in high-frequency regimes, corresponding to \(\Delta, \xi \ll \nu \). For small \(\xi \), compared with the modulation frequency \(\nu \), the gaps are large and there is no energy band overlap [the band structure is illustrated in Fig. 1(b)]. Otherwise there exists a complex quantum dynamics with quantum chaos. In the high-frequency regime, the fast modulation in \(\Omega_a(t) \) implies the resonance condition \(n = 0 \). Therefore, the dynamic of the CRW+TLS is described by the effective Hamiltonian
\[H = H_C + \omega_a |e \rangle \langle e | + g J_0 \left(\frac{\Omega}{\nu} \right) \left(a_0^\dagger |g \rangle \langle e| + |e \rangle \langle g| a_0 \right). \]

In the one excitation subspace, the wavefunction at arbitrary time
\[|\phi(t)\rangle = \sum_j u_j(t) e^{-i\omega_j t} |1_j g\rangle + u_e(t) e^{-i\omega_e t} |0 e\rangle \]
is a superposition of the photon at the \(j \)th cavity with atom in the ground state and no photon in all cavities with atom in the excited state. The equations for the excited state amplitude \(u_e(t) \) and the amplitudes \(u_j(t) \) of single photon states derived from the Schroedinger equation with Hamiltonian \(H \) are given by
\[i\dot{u}_j(t) = \Delta u_j(t) - \xi [u_{j-1}(t) + u_{j+1}(t)] + G u_e(t) \delta_{j0}, \]
(10a)
\[i\dot{u}_e(t) \simeq G u_0(t) \]
(10b)
where the overdot indicates the derivative with respect to time. These amplitude equations (10) show that the interaction between the single photon and the TLS is characterized by the effective coupling constant
\[G = g J_0 \left(\Omega/\nu \right). \]

For zeros of zeros of \(J_0 \left(\Omega/\nu \right) \), i.e.,
\[\Omega \cong 2.40\nu, 5.52\nu, \ldots \]
the high frequency modulation \(\Omega_a(t) \) leads to the decoupling between the TLS and the CRW, and thus photons in the CRW will propagate freely without feeling the influence from the localized TLS. Therefore, this modulated TLS acts as a quantum “Zeno switch”.

IV. FLOQUET-THEORY-BASED NUMERICAL SIMULATION OF THE DYNAMICAL QZE

Let us further study the QZE decoupling mechanism and the Zeno switch by numerically solving the time-dependent Hamiltonian \(H_C + H_I \). Note the total Hamiltonian is periodic in time, with period \(2\pi/\nu \). Using Floquet theory, we define
\[H_F = H_C + H_I - i\partial_t \]
(11)
as in, e.g., Ref. [29]. Each eigenstate \(|f_n(t)\rangle \), with eigenvalue \(\varepsilon_n \), of \(H_F \) can be used to define an eigenstate
\[|F_n\rangle = \exp(-i\varepsilon_n t) |f_n\rangle \]
(12)
of \(H_F \) with zero eigenvalue. Then the superposition of these eigenstates
\[|\Phi(t)\rangle = \sum_n c_n |F_n\rangle \]
(13)
determines the general solution of the time-dependent Schrödinger equation corresponding to \(H_C + H_I \). With an initial state \(|\Phi(0)\rangle \), the coefficients \(c_n \) are given by
\[c_n = \langle f_n(0) | \Phi(0) \rangle. \]

Our task now is to diagonalize \(H_F \) in a discrete Hilbert space with the spatio-temporal basis vectors
\[|j; m_t\rangle = |j\rangle \otimes |m_t\rangle, \]
(14)
where \(m_t \) is the discrete temporal coordinate of the time \(t \), satisfying
\[\langle t | m_t \rangle = \exp(i\nu m_t t) / \sqrt{T}, \]
(15)
with a large \(T \); \(|j\rangle \) is the eigenstate of the discrete space coordinate. On this time-varying basis \(\{|j, m_t\rangle\} \), the matrix elements of \(H_F \) are independent of time.

For the dynamic QZE in this paper, the initial state \(|\Phi(0)\rangle = |0, e; n_t = 0\rangle \) evolves to \(|\Phi(t)\rangle \). To keep the numerical accuracy and save computing time we divide the total time \(t \) into \(N \) small time intervals \(\tau \), \(t = N\tau \). In each interval, the system is evolved from \(m\tau \) to \((m+1)\tau \). The final state of this interval becomes the initial state of the next interval. For a sufficiently small value of \(\tau \), an accurate wave function can be obtained, even when not too many \(\{|m_t\rangle\} \) are used to represent \(H_F \).

Figure 2(a) shows the probability \(P_e(t) \) for the TLS to be in the excited state. When \(\Omega/\nu \) is tuned to the vicinity of the zeros of \(J_0(x) \) (e.g., \(\Omega/\nu = 2.40 \)), the initially
excited TLS does not decay. Otherwise (e.g., $\Omega/\nu = 1.0$ and 3.5), the probability $P_e(t)$ in the excited state decreases with time. Figure 2b shows how $P_e(t_f)$ varies with the ratio Ω/ν at the instant $t_f = 20$ for $J_0(\Omega/\nu)$. It clearly demonstrates that the zeros of $J_0(\Omega/\nu)$ correspond to $P_e(t_f) = 1$, i.e., the TLS does not decay. Thus the numerical results agree well with our analytical results on the dynamical QZE.

V. QUANTUM ZENO DYNAMICS

In this section we give the above mentioned dynamic QZE a more standard approach in current literatures [31], which confirms the suitability for using the idea of QZE.

Within the subspace spanned by $|e0\rangle$ and $|g1\rangle$, if the TLS is prepared initially in the excited state, the evolution of the TLS-CRW system will lead to a superposition of states, corresponding to the TLS initially excited and no photons in the CRW and the TLS in the ground state and one photon in the CRW. The CRW forms a continuum. Therefore, the interaction process between the TLS and the CRW can be described in terms of a discrete level coupled to a continuum, and will lead to a dissolution of the discrete state over an interval of width R, which is the decay rate of the discrete state to the continuum. A universal mechanism of quantum-mechanical decay control is usually based on periodic coherent pulses. This control can yield either the inhibition (Zeno effect) or the acceleration (anti-Zeno effect).

Following the analysis in Ref. [31], we calculate the probability

$$P_e(t) = \exp[-R(t)Q(t)]$$

(16)
to reflect the decay law (for detailed calculation see the appendix), where

$$Q(t) = \int_0^t d\tau |V(\tau)|^2$$

(17)
is the effective interaction time with

$$V(t) = \exp\left[-i\frac{\Omega}{\nu} \sin(\nu t)\right]$$

(18)
here. In the frequency domain, the effective decay rate

$$R(t) = \int_{-\infty}^{\infty} \Phi(\omega + \Delta) F_i(\omega) d\omega$$

(19)
is the overlap of the normalized spectral modulation intensity

$$F_i(\omega) = \left|\int_0^t d\tau V(\tau) e^{-i\omega\tau}\right|^2/R(t),$$

(20)
and the reservoir coupling spectrum $\Phi(\omega)$, which is the Fourier transformation of the memory function or reservoir response function

$$\Phi(t) = \frac{J_0^2}{N} \sum_k e^{i2\xi t \cos k}.$$

(21)
Obviously, $V(t)$ is periodic with the period ν^{-1}, the Bessel function $J_n(A/\nu)$ of the first kind becomes the Fourier components of $V(t)$. At time t much larger than the period ν^{-1}, the decay rate reads

$$R(t) = t \sum_{n=-\infty}^{+\infty} J_n^2 \left(\frac{\Omega}{\nu}\right) \int_{-\infty}^{\infty} \Phi(\omega) \sin^2\left(\frac{\omega - \Delta - n\nu}{2}\right) t d\omega,$$

(22)
where $\sin x = \sin x/x$. Figure 2 roughly shows the dependence of the decay rate on the ratio of the driving amplitude to the driving frequency. As we mentioned before, we are interested in the high-frequency regime with parameters $\Delta, \xi \ll \nu$. Since the width of the reservoir spectrum is proportional to ξ, the relation of these parameters imply that the modulation frequency is much greater than the inverse correlation time of the continuum. Therefore, $\Phi(\omega)$ does not change significantly over the spectral intervals ν^{-1}. In this case, we can make the approximation

$$R(t) = t J_0^2 \left(\frac{\Omega}{\nu}\right) \sin^2\left(\frac{\omega - \Delta}{2}\right) t \int_{-\infty}^{\infty} \Phi(\omega) d\omega.$$

(23)
The above equation describes that the state decays into all the channels of the reservoir. Since the effective decay rate is averaged over all decay channels Φ, we work...
in the QZE regime. Obviously, the decay rate without modulation is suppressed by a factor \(J_0^2 (A/\nu) \) when a periodical modulation is applied. When \(t \) is much larger than both \(\nu^{-1} \) and an effective correlation time of the reservoir, one obtains

\[
R (t) = J_0^2 \left(\frac{A}{\nu} \right) \hat{\Phi} (\Delta)
\]

i.e. the extension of the golden rule rate to the case of a time-dependent coupling \([31]\). Therefore, the atom remains in its initial state when the ratio between the modulation amplitude and the frequency meets the zeroes of the Bessel function. We also note that when \(A = 0 \), the 0th Bessel function \(J_0 (0) = 1 \), which means the decay rate \(R (t) = \hat{\Phi} (\Delta) \) without any modulation.

VI. SCATTERED AND LOCALIZED PHOTONS WITH DYNAMICAL QZE

We now study the photon localization and the measurement on the QZE via photon scattering. The purpose for this study is twofold: (i) Utilize the QZE-based mechanism to turn on or off the transmission of photons in the CRW, so that an ideal single-photon transistor can be realized; (ii) Witness the dynamical QZE in the TLS by measuring the single photon scattering. We further consider the relation between photon localization and the appearance of dynamic QZE.

Solutions to Eqs. (10) can be found in the form of either localized states around the location of the TLS or as a superposition of extended propagating Bloch waves incident, reflected and transmitted by the TLS embedded in the CRW. It was done by first Fourier transforming the equations of motion of \(u_j (t) \) and \(u_c (t) \) in Eq. (10) to obtain their Fourier transforms \(U_k (j) \) and \(U_c (j) \)

\[
E_k U_k (j) = \Delta U_k (j) - \xi [U_k (j-1) + U_k (j+1)] + G U_c \delta_{j0} \\
E_k U_c (j) = GU_k (j) \delta_{j0}.
\]

Eliminating the amplitude \(U_c (j) \) in the above equation, we obtain the discrete-coordinate scattering equation

\[
[V(E_k) + \Delta - E_k] U_k (j) = \xi [U_k (j-1) + U_k (j+1)],
\]

where

\[
V(E_k) = g^2 J_0^2(\Omega/\nu)/E_k
\]

is a resonant potential resulting from the second-order transition process due to the coupling with the TLS. It behaves as an infinite \(\delta \)-potential on the resonance \(E_k = 0 \). In the absence of the TLS, a solution of Eqs. (10) has the form \(U_k (j) = \exp (ikj) \), where \(k \) is the wave number of the Bloch waves. Therefore,

\[
E_k = \Delta - 2\xi \cos k
\]
gives a band of width \(4\xi \) with its minimum lies at \(k = 0 \). Within the band, the scattering wave function is assumed as

\[
U_k (j) = \exp (ikj) + r \exp (-ikj),
\]

for \(j < 0 \), and

\[
U_k (j) = s \exp (ikj),
\]

for \(j > 0 \), with the right- and left-moving waves \(\exp (ikj) \) and \(\exp (-ikj) \). The boundary conditions

\[
U_k (0^+) = \bar{U}_k (0^-)
\]

\[
[V(E_k) + \Delta - E_k] U_k (0) = \xi [U_k (-1) + U_k (1)]
\]

result in the reflection amplitude \(r = s - 1 \) and transmission amplitude

\[
s = \frac{\omega_k - \omega_a}{\omega_k - \omega_a + ig^2 J_0^2(\Omega/\nu)/v_g}.
\]

Here,

\[
v_g = 2\xi \sin k
\]
is the group velocity and

\[
\omega_k = \omega_c - 2\xi \cos k
\]
is the incident energy of the single photon.

Equation (29) indicates that when \(\omega_a \) is inside the band \((\omega_c = \omega_a - 2\xi \cos k) \), a dip down to zero will occur in the transmission line-shape \(|s|^2 \). This zero transmission is a quantum interference (Fano) effect characterized by certain discrete energy states interacting with the continuum. The width of the transmission line-shape is determined by the ratio of the effective coupling strength \(G = gJ_0(\Omega/\nu) \) to group velocity \(v_g \). Obviously, the decoupling of the TLS-photon interaction occurs when \(J_0(\Omega/\nu) \) vanishes. Consequently, the transmission dip disappears, i.e., the single photon goes through the TLS scatterer without absorption or emission. In other words, by adjusting the amplitude and frequency of the modulating field \(\Omega_c (t) \), the TLS spontaneous emission and stimulated transition are suppressed. Measuring the photon transmission or reflection would show the occurrence of the dynamic QZE.

The CRW with the TLS embedded in can also support localized modes. We now discuss how to observe the dynamic QZE from the localization of photons, described by the photonic bound state in the CRW. The bound state is assumed to have the following solutions with even parity for the eigenvalue equation (20):

\[
U_\kappa (j) = C \exp (-\kappa j), j > 0
\]

\[
U_\kappa (j) = C \exp (\kappa j), j < 0,
\]

which is localized around the 0th site where the TLS is embedded. Here, the imaginary wave vector \(\kappa \) labels the energy

\[
E_\kappa = \Delta \pm 2\xi \cosh \kappa
\]
of a localized photon within the energy gap. The continuity of $U_x(j)$ at the boundary $j = 0$, i.e., Eq.

![Contour plot of the square $|U_x(j)|^2$ of the bound-state wave function amplitude versus the ratio Ω/ν and the space coordinate j. The parameters here are the same as in Fig. 2. The horizontal dashed lines are the zeros of $J_0(x)$, corresponding to extended (along j) photon wavefunctions.](image)

determines the existence condition of the bound state

$$g^2 J_0^2 \left(\frac{\Omega}{\nu} \right) = 2 \xi (\xi \sin 2 \kappa + \Delta \sinh \kappa).$$

where the lower sign gives the living condition for the bound state which lies upper the band with energy $E_x = \Delta + 2 \xi \cosh \kappa$. On the resonance $\Delta = 0$, the width of the bound state is determined by

$$\sinh 2 \kappa = \frac{g^2 J_0^2 (\Omega/\nu)}{2 \xi^2},$$

which can be adjusted by the ratio Ω/ν through $J_0(x)$. At the zeros of this Bessel function, $\kappa = 0$ and the photon is delocalized. When off resonance, the energies of the two bound states are asymmetric with respect to the center of the band. In Fig. 3, we plot the single-photon distribution $|U_x(j)|^2$ as a function of the discrete coordinate j, and the ratio Ω/ν. It shows that: (1) The wave packet of the single-photon spreads along the CRW as Ω/ν increases, because

$$J_0 \sim x^{-1/2};$$

(2) The width of the localized photon state oscillates following $J_0(\Omega/\nu)$; (3) Due to this modulation-induced Zeno effect, the wave packet will be extended at the zeros of $J_0(x)$; (4) The full-spreading of the photon wave packet does not occur as a periodic function of Ω/ν because the roots of $J_0(x)$ are not periodic. The above investigation indicates that the dynamic Zeno effect can be characterized by the delocalization of photons.

VII. CONCLUSION

Based on the dynamical QZE induced by a high-frequency modulation, we show how to decouple a TLS from its surroundings. We apply this QZE-based decoupling mechanism to realize a quantum switch for a photon. The dynamic QZE switch studied here allows to control the single-photon transport in a CRW by using a TLS which is periodically modulated in time. Our analytical results agree well with our numerical results using Floquet theory. This proposal should be realizable experimentally, because the quantum Zeno switch only depends on the ratio between the amplitude Ω and the frequency ν of the external modulation. This QZE photon switch might be useful to quantum information science, for the coherent control of single photons.

We note that if one puts atoms in a MOT, with the atomic frequency modulated by the AC Stark effect, and observes the light scattering, complete reflection won’t occur at the correct ratio of modulation strength to frequency, which just like the one discussed here. However, due to the linear dispersion of the reservoir which atoms in a MOT interacts with, photon localization can not be observed.

As we know that, in reality, all quantum systems interact with the environment, which results in the inelastic scattering of a single photon. The inelastic scattering of photons would reduce the transmission of photons as well as the quantum switching efficiency. The decoherence or dissipation either influences the free propagation of the single photon, or broadens the width of the line shape at the resonance, according to its contributions to the scattering process. It is known that photon propagates freely in these resonators, all the dissipation factors of the resonators have effect on the free propagation of the single photon. However, the decay of the two-level system influences the scattering process, since the energy of photon is not conservative before and after its interacting with the two-level system, therefore, the width of the lineshape is broadened.

This work is supported by New Century Excellent Talents in University (NCET-08-0682), NSFC No. 10935010, No. 10474104, and No. 10704023, NFRPC No. 2006CB921205, and 2007CB925204, and Scientific Research Fund of Hunan Provincial Education Department No. 09B063. FN acknowledges partial support from the NSA, LPS, ARO, NSF grant No. EIA-0130383, JSPS-RFBR 06-02-91200, and the JSPS-CTC program. We thank S. Ashhab for useful discussions.

Appendix A: Quantum Zeno Dynamics of Two Level System in An Artificial Bath

In this appendix we follows the references to discuss the quantum zeno dynamics of the two level system in the coupled-resonator waveguide (CRW), which behave as an artificial bath.

To this end, we make a Fourier transformation

$$\hat{a}_j = \frac{1}{\sqrt{N}} \sum_k e^{ikj} \hat{a}_k$$

(A1)
for Hamiltonian $H_C + H_1$ in Eqs. (6) and (7). In the subspace supported by the complete basis \{ \ket{e_0}, \ket{gk} \}, the Hamiltonian can be rewritten as

$$H = \sum_k \omega_k \ket{k}\bra{k} + \frac{J}{\sqrt{N}} \ket{kg}\bra{0e} + \text{H.c.} + \Omega_\alpha(t) \ket{e}\bra{e}$$

(A2)

where $\omega_k = \omega_c - 2\xi \cos k$. Therefore, the state at arbitrary time

$$\ket{\phi(t)} = \sum_j u_j(t) \ket{1_j g} + u_e(t) \ket{0 e}$$

(A3)

lies within the subspace spanned by $\ket{0e}$ and \ket{kg}. Then we obtain the equations for amplitudes u_j and u_e by substituting the state $\ket{\phi(t)}$ into the Schrödinger equation

$$i\partial_t U_k = \frac{J}{\sqrt{N}} U_k e^{-i(\omega_a - \omega_b) t} e^{-i \Delta \sin(\sqrt{\xi} t)}$$

$$i\partial_t U_e = \frac{J}{\sqrt{N}} \sum_k U_k e^{i(\omega_a - \omega_b) t} e^{i \Delta \sin(\sqrt{\xi} t)}$$

(A4)

where the relation between the capital letter and the lower letter is given by

$$u_k = U_k e^{-i(\omega - 2\xi \cos k)t}, \quad u_e = U_e e^{-i[\omega_a t + \frac{\Delta}{2} \sin(\sqrt{\xi} t)]}$$

(A5)

The above differential equations about U_k and U_e give an exact integro-differential equation for $U_e(t)$

$$\dot{U}_e = -\epsilon^*(t) \int_0^t d\tau U_e(\tau) \epsilon(\tau) \Phi(t - \tau) e^{i\Delta(t-\tau)}$$

(A6)

where the detuning $\Delta = \omega_a - \omega_c$. Here

$$\Phi(t) = \frac{J^2}{N} \sum_k e^{i2\xi \cos k}$$

(A7)

is the memory function or call reservoir response function, and the modulation function reads

$$\epsilon(t) = e^{-i \frac{\Delta}{2} \sin(\sqrt{\xi} t)}.$$ (A8)

In the weak coupling limit, the approximation $U_e(\tau) \approx U_e(t)$ can be made on the right-hand side of the equation (A6). Then we have

$$U_e(t) = \exp \left[-\int_0^t dt_1 \epsilon^*(t_1) \int_0^t dt_2 \epsilon(t_2) \Phi(t_1 - t_2) e^{i\Delta(t_1 - t_2)} \Theta(t_1 - t_2) \right]$$

(A9)

The Fourier transformation of $\Phi(t) e^{i\Delta t} \Theta(t)$ is obtained

$$\tilde{\Phi}(\omega + \Delta)/2 = \frac{J^2}{2N} \sum_k \delta(\omega + \Delta + 2\xi \cos k),$$

which is expressed in terms of the coupling spectrum density $\Phi(\omega)$. The coupling spectrum is defined as the Fourier transformation of the reservoir response function

$$\Phi(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \Phi(t) e^{i\omega t} dt.$$ (A10)

Further introducing the the effective interaction time

$$Q(t) = \int_0^t d\tau |\epsilon(\tau)|^2$$

(A11)

and defining the normalized spectral modulation intensity

$$F_k(\omega) = Q^{-1}(t) \int_0^t dt_1 \epsilon^*(t_1) e^{-i\omega t_1} \int_0^t dt_2 \epsilon(t_2) e^{i\omega t_2}$$

$$= Q^{-1}(t) \left| \int_0^t dt' \epsilon(t') e^{i\omega t'} \right|^2,$$

the norm of amplitude reads

$$|U_e(t)| = \exp \left[-\frac{Q(t)}{2} \int_{-\infty}^{\infty} \Phi(\omega + \Delta) F_k(\omega) d\omega \right]$$

The effective decay rate

$$R(t) = \int_{-\infty}^{\infty} \tilde{\Phi}(\omega + \Delta) F_k(\omega) d\omega$$

(A12)

is written as the overlap of the reservoir coupling spectrum and normalized spectral modulation intensity.

If the states \ket{k} belongs to a spectrally dense band, the CRW forms a "reservoir" spectral distribution, $\tilde{\Phi}(\omega) = J^2 \rho(\omega)$, with spectral density given by

$$\rho(\omega) = \int_{-\infty}^{\infty} \delta(\omega + 2\xi \cos k) dk$$

$$= \frac{1}{4} \int_{-\infty}^{\infty} e^{-i\omega x} J_0(2\xi x) dx$$

$$= \begin{cases} 0 & 2\xi < |v - \omega| \\ \infty & 2\xi = |v - \omega| \\ \frac{1}{\sqrt{4\xi^2 - \omega^2}} & 2\xi > |v - \omega| \end{cases}$$

$R(t)$ in Eq. (A12) was obtained by Kofman and Kurizki for very general cases to discuss the dynamics of Zeno and anti-Zeno effects in a heat bath. We only demonstrate their universal approach with our setup for coherent control of single photon transfer. The detailed calculation for the decay rate begins with the effective interaction
time \(Q(t) = t \) and the modulation spectrum

\[
F_t(\omega) = \sum_{n=-\infty}^{+\infty} J_n^2 \left(\frac{\Omega}{v} \right) \sin^2\omega_n + \sum_{n \neq n_2} tJ_{n_1} \left(\frac{\Omega}{v} \right) J_{n_2} \left(\frac{\Omega}{v} \right) \sin^2\omega_{n_1} \sin^2\omega_{n_2}
\]

where \(\omega_n = (\omega - nv)/2 \) and \(\sin x = \sin x/x \). It yields the effective decay rate

\[
R(t) = \sum_k \frac{tJ_k^2}{N} \sum_{n=-\infty}^{+\infty} J_n \left(\frac{\Omega}{v} \right) \sin \left(\frac{\Delta + 2\xi \cos k + n\xi}{2} t \right) \left(\Delta + 2\xi \cos k + n\xi \right) t/2 \right)^2.
\]

When no modulation is applied, i.e. \(A = 0 \) and \(t \to \infty \)

\[R(t) = 2\pi \tilde{\Phi}(\Delta) \]

which is the extension of the golden rule rate to the case of a time-dependent coupling. In this paper, we are interested in a regime with parameters \(\Delta, \xi \ll \nu \), which means that the modulation frequency is much greater than the inverse correlation time of the continuum. The effective decay rate reads

\[
R(t) = \sum_k \frac{tJ_k^2}{N} \left| J_0 \left(\frac{\Omega}{v} \right) \frac{\sin \left(\frac{\Delta + 2\xi \cos k}{2} t \right)}{\left(\Delta + 2\xi \cos k \right) t/2} \right|^2
\]

\[= tJ_0^2 \left(\frac{\Omega}{v} \right) \int_{-\infty}^{\infty} \tilde{\Phi}(\omega) \left| \frac{\sin \frac{(\omega - \Delta)t}{2}}{\omega - \Delta} \right|^2 d\omega. \]

The above equation shows that the decay rate is determined by: 1) the parameters of the driving field, i.e. ratio of modulation strength \(\Omega \) to frequency \(v \). 2) the overlap the reservoir coupling spectrum and the modulation spectrum. Therefore the width and the center of the spectrum are important factors. Obviously, the width of \(\tilde{\Phi}(\omega) \) is less than \(4\xi \), the center of \(\tilde{\Phi}(\omega) \) lies in \(\omega_0^{\nu} = 0 \). The width of \(F_t(\omega) \) is \(t^{-1}, \Delta \) is its center. This following results can be obtained: 1). If ratio of modulation strength \(\Omega \) to frequency \(v \) satisfy \(J_0(\Omega/v) = 0 \), then the effective decay rate \(R(t) = 0 \). 2). For sufficiently long times, i.e. \(t \) is much larger than both \(v^{-1} \) and an effective correlation time \((4\xi)^{-1} \), the decay rate

\[
R(t) = J_0^2 \left(\frac{\Omega}{v} \right) \tilde{\Phi}(\Delta), \quad (A13)
\]

3). When time \(t \sim v^{-1} \), with \(v \gg \Delta, 2\xi \), the normalized spectral modulation intensity is a small varying function over the interval \(4\xi \), therefore one can make the approximation

\[
R(t) = tJ_0^2 \left(\frac{\Omega}{v} \right) \sin^2 \frac{(\omega - \Delta)t}{2} \int_{-\infty}^{\infty} \tilde{\Phi}(\omega) d\omega.
\]

Since the effective decay rate is averaged over all decay channels, the quantum Zeno effect generally occurs.

[1] B. Misra, E.C.G. Sudarshan, J. Math. Phys. 18, 756 (1977).
[2] K. Koshino, A. Shimizu, Phys. Rep. 412, 191 (2005).
[3] D. Home and M.A.B. Whitaker, Ann. Phys. 258, 237 (1997).
[4] J. D. Franson, B. C. Jacobs, and T. B. Pittman Phys. Rev. A 70, 062302 (2004).
[5] X.B. Wang, J.Q. You, F. Nori Phys. Rev. A 77, 062339 (2008).
[6] Y. P. Huang and M. G. Moore, Phys. Rev. A 77, 062332 (2008).
[7] A.G. Kofman and G. Kurizki, Nature 405, 546 (2000).
[8] L. Zhou, F.M. Hu, J. Lu, and C.P. Sun Phys. Rev. A 74, 032102 (2006).
[9] A. Peres, Am. J. Phys. 48, 931 (1980).
[10] T. Petrofsky, S. Tasaki, and I. Prigogine, Physica A 170, 306 (1991); Phys. Lett. A 151, 109 (1990).
[11] E.G. Ballentine, Phys. Rev. A 43, 5165 (1991).
[12] E. Block and P.R. Berman, Phys. Rev. A 44, 1466 (1991); C. Search and P. R. Berman, Phys. Rev. Lett. 85, 2272 (2000); Phys. Rev. A 62, 053405 (2000).
[13] C.P. Sun, X.X. Yi, and X.J. Liu, Fortschr. Phys. 43, 585 (1995).
[14] L. Viola and S. Lloyd, Phys. Rev. A 58, 2733 (1998).
hala, and H.J. Kimble, Science 319, 1062 (2008).
[26] F.Y. Hong and S.J. Xiong, Phys. Rev. A 78,013812 (2008).
[27] A. Faraon I. Fushman, D. Englund, N. Stoltz, P. Petroff and J. Vučković Nat. Phys. 4, 859 (2008).
[28] S. Ashhab, J.R. Johansson, A.M. Zagoskin, and F. Nori Phys. Rev. A 75, 063414 (2007).
[29] U. Peskin and N. Moiseyev, J. Chem. Phys. 99, 4590 (1993).
[30] J.Q. You and F. Nori, Physics Today 58, No. 11, 42 (2005).
[31] A. G. Kofman and G. Kurizki, Phys. Rev. Lett. 87, 270405 (2001); Nature (London) 405, 546 (2000).