Rapid enhancement of chemical weathering recorded by extremely light seawater lithium isotopes at the Permian-Triassic boundary

He Suna,b, Yi Lin Xiaoa,1, Yongjun Gaoc,1, Guijie Zhanga, John F. Caseyd, and Yanan Shena,1

aChinese Academy of Sciences Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China; bSchool of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; and dDepartment of Earth and Atmospheric Sciences, University of Houston, Houston, TX 77204-5007

Edited by Mark H. Thiemens, University of California, San Diego, La Jolla, CA, and approved February 23, 2018 (received for review July 2, 2017)

Lithium (Li) isotope analyses of sedimentary rocks from the Meishan section in South China reveal extremely light seawater Li isotopic signatures at the Permian-Triassic boundary (PTB), which coincide with the most severe mass extinction in the history of animal life. Using a dynamic seawater lithium box model, we show that the light seawater Li isotopic signatures can be best explained by a significant influx of riverine [Li] with light 6Li to the ocean realm. The seawater Li isotope excursion started \textgreater \textasciitilde300 KY before and persisted up to the main extinction event, which is consistent with the eruption time of the Siberian Traps. The eruption of the Siberian Traps exposed an enormous amount of fresh basalt and triggered CO\textsubscript{2} release, rapid global warming, and acid rains, which in turn led to a rapid enhancement of continental weathering. The enhanced continental weathering delivered excessive nutrients to the oceans that could lead to marine eutrophication, anoxia, acidification, and ecological perturbation, ultimately resulting in the end-Permian mass extinction.

end-Permian mass extinction | Li isotopes | Meishan section | continental weathering | Permian-Triassic boundary

The Permian-Triassic boundary (PTB) at \textasciitilde251 My marked the most severe mass extinction in the history of animal life, with over 80% of all marine species, \textasciitilde70% of terrestrial vertebrate genera, and most land plants eliminated (1–4). The PTB is characterized by a series of abrupt ecosystem changes, such as an increase in atmospheric CO\textsubscript{2} concentration, rapid global warming, terrestrial wildfires, acid rains, ocean acidification, and marine anoxia (3–9). The causes of the extinction are under debate, but have been attributed to causes including massive flood basalt volcanism (Siberian traps), meteorite impact, marine anoxia, and massive methane clathrate dissociation (1, 4–12). All these hypotheses predict a greenhouse event; thus, enhanced chemical weathering at this period may be expected. High Ba/Sr ratios of paleosols from Graphite Peak, Antarctica, support an abrupt increase in chemical weathering in the earliest Triassic in the region (13). Systematic changes in sediment fluxes in the aftermath of the end-Permian crisis and strontium isotope changes across the PTB in condonts appear to indicate elevated weathering rates in the Early Triassic (14, 15). A promising and newly developed indicator for ancient global weathering rate is represented by paleoarminite Li isotopes derived from sedimentary carbonates (16–18). Unlike other isotopic systems such as Sr and Os, Li is almost solely hosted in silicate minerals and is advantageous because it remains insensitive to weathering of continental and marine carbonate (affects Sr isotopes) or black shale (affects Os isotopes) (19, 20). Also, Li isotopes are not fractionated through redox reactions and biological processes (21). Riverine Li signals are exclusively dominated by weathering of silicate rocks; hence they can provide unique information on silicate weathering rate and carbon dioxide consumption during weathering (16–18, 22).

Here, we present lithium isotope analyses, as well as major and trace-element compositions, of bulk rock samples from the Meishan section in South China. We aim to constrain the Late Permian–Early Triassic weathering rate and its potential impact on global climate changes when the end-Permian extinction occurred.

Stratigraphy and Sampling

The Meishan section in South China, as the Global Stratotype Section and Point (GSSP) of the PTB, is one of the most extensively examined sections worldwide with respect to the end-Permian biotic crisis (3, 12, 23, 24). Our samples were collected from the well-documented Late-Permian Changhsing (Beds 22–24) and Early Triassic Yinkeng formations (Beds 25–34) from the Meishan section (Fig. 1). The Meishan section comprises varying lithologies. Beds 22–24 consist of bioclastic to micritic limestones. Bed 25 is a 4-cm-thick, white claystone. The base of Bed 25 is uneven and represented by a very thin (\textasciitilde0.3-cm-thick) pyrite lamina. Bed 26 is a 6-cm-thick, dark-gray claystone. At Meishan, the end-Permian extinction preserved by Beds 25–26 is estimated to have marked a loss of \textasciitilde94% of marine species (3). Bed 27 consists of light-gray bioclastic packstone to wackestone with occasionally micrite texture. The index taxon Hindeodus parvus first appearing at the base of Bed 27c marks the GSSP of the PTB (23). Bed 28 is gray-green claystone of \textasciitilde0.5 cm thickness. Bed 29 is dominated by wackestone and overlain by marlstone up...

Significance

Estimates of seawater Li isotopic composition at the Permian–Triassic boundary (PTB) reveal extremely light seawater Li isotopic signatures accompanying the most severe mass extinction in the history of animal life. Theoretical modeling indicates a rapid enhancement of continental weathering during this time, which was likely triggered by the eruption of the Siberian Traps, rapid global warming, and acid rains. Our results provide independent geochemical evidence for an enhanced continental chemical weathering at the PTB, illustrating that continental weathering may provide a key link between terrestrial and marine ecological crises.

Author contributions: Y.X., Y.G., and Y.S. designed research; Y.X., Y.G., and J.F.C. performed research; H.S. and Y.G. contributed new reagents/analytic tools; H.S. and Y.G. analyzed data; Y.S. and G.Z. provided samples and a stratigraphic framework; and H.S., Y.X., Y.G., G.Z., J.F.C., and Y.S. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

This open access article is distributed under Creative Commons Attribution-NoCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

1To whom correspondence may be addressed. Email: ylxiao@ustc.edu.cn, yongjun.gao@uh.edu, or yashen@ustc.edu.cn.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1711862115/-/DCSupplemental.

Published online March 26, 2018.
to Bed 34. Beds 30–34 are dominated by organic-rich mudstone and black shale with several claystone layers.

The most up-to-date geochronological U/Pb dating on zircons from volcanic ash beds has yielded minimum detrital ages of 252.104 ± 0.060 Ma from the stratigraphically older Bed 22, 251.941 ± 0.037 Ma from Bed 25, 251.880 ± 0.031 Ma from Bed 28, 251.583 ± 0.086 Ma from Bed 33, and 251.495 ± 0.064 Ma from Bed 34 (25). These ages are sequentially

Fig. 1. (A and B) Stratigraphy, geochronology, major and trace-element concentrations, black carbon (BeP), O isotopes, Li isotopes, Sr isotopes, and carbonate carbon isotopic composition for the Meishan section. Tawny circle in δ7Li diagram represents analysis of carbonate fractions in limestones through chemical separation method. Claystones layers are marked by red circle. Stratigraphic column of the PTB is revised from ref. 12, ages and carbonate carbon isotopic excursion after ref. 25, black carbon data from ref. 5, O isotope data from ref. 8, and Sr isotope data from ref. 15.
younger in a direction and are consistent with U/Pb age dating of volcanic ash layers from terrestrial and deep marine sections, which establish the onset of the Triassic (26, 27).

Major and Trace Element and Li Isotopic Compositions

Bulk rock samples from the Meishan section were measured for major and trace elements and Li isotopes. Both Li concentration and isotopic compositions show large variations across the PTB (Fig. 1). Beds 22–24 show relatively high δ³⁷Li values from +6.3 to +16.8‰ (mostly from +6 to +12‰), whereas the element concentrations remain at low levels (<10 ppm). δ³⁷Li values start to decrease at Bed 25 and reach the minimum (~0.3 to +1.0‰) with high Li concentrations (29.0–39.2 ppm) within Beds 25–26, where the negative carbon isotope excursion and well-documented biotic crisis peak have been reported (3). After a brief increase in δ³⁷Li values and decrease in Li contents (Bed 26 to Bed 27), the progression from Bed 27 to Bed 34 shows systematic decrease from +9.3‰ to +1.0‰ in δ³⁷Li with variable Li abundance ranging from 15.3 to 49.4 ppm. Claystone layers from Beds 26–34 show uniform light Li isotopic compositions of ~0.3‰ to ~0.1‰ that resemble Bed 25. Major and trace elements also show variations stratigraphically, with the most notable features being negative Eu/Eu* and positive Ce/Ce* anomalies, and abrupt Mn decline at the PTB (Fig. 1A). The carbonate fractions in limestones exhibit similar Li isotopic compositions with the bulk rocks (Fig. 1B).

Seawater Li Isotope Reconstruction for the PTB

Given that the residence time of Li in seawater (~1.2 My) is much longer than the oceanic mixing time (~1,000 y) (16), Li in present-day seawater is well mixed vertically as well as laterally homogeneous in both elemental concentration and isotopic composition ([Li]ws ~ 0.2 ppm; δ³⁷Liws = +31‰ (28–30)). It has also been well documented that the lithium isotopic fractionation between seawater and marine sediments is relatively constant (ΔSW-biogenic carbonate ~3–5‰; ΔSW-clay ~16–19‰ (28, 31)). Thus, marine sediment can provide an archive for the δLi of contemporary seawater (16, 17, 32).

The sediments from the Meishan section show similar Rare Earth Element patterns to the marine carbonate, indicating that they were marine authigenic sediments (SI Appendix, section 1). To reconstruct the Li isotopic composition of seawater, [Li]-Al₂O₃, δ³⁷Li-Al₂O₃, δ³⁷Li-Li, CaO-Li, and δ³⁷Li-CaO diagrams were used to evaluate the relative proportion of carbonates and clays in different beds (SI Appendix, Figs. S2, S3, and S7–S9). Limestones from Beds 22–24 show strong positively correlated Li and Al₂O₃ contents (SI Appendix, Fig. S2), which may be interpreted as resulting from mixing between clay minerals and carbonate. However, the very low Al/Li ratios of ~0.17 (carbonate mixing with clays would result in Al/Li values of ~0.4) and variable δ³⁷Li, independent of Al content (SI Appendix, Fig. S3), rule out this possibility. Carbonate mixing with chert (Al₂O₃ ~3 wt %, [Li] ~20 ppm) is a more likely explanation (33, 34). This interpretation is supported by the [Li]-[B], [Li]-Fe₂O₃ and Pb-Sr...
Enhanced Weathering Associated with the End-Permian Mass Extinction

Ancient seawater lithium isotope records are important in documenting continental weathering and paleoclimate changes (16). Estimated δLi values for seawater proximal to the PTB at Meishan range from +10 to +21‰ (mostly +10 to +18‰ except for one relatively high value of +21‰ at the base of Bed 22), which is much lighter on average (∼15‰) than the value of ∼31‰ for present-day seawater (36). A box model is used here (SI Appendix, section I) to constrain the possible origin of low-seawater δLi. Fractionation of isotopes during removal of Li from seawater into clays is assumed to be constant (ΔSW-SED ∼ 16‰), because the process of clay mineral formation and alteration of oceanic crust shows little change over time (16, 29). Thus, the main driver of ocean δLi change is the input of Li fluxes from continental silicate weathering and high-temperature (HT) vent fluids. Modeling suggests that changing of HT flux could lead to Li isotopic shifts. However, if riverine Li stays unchanged, HT (even 20× of present-day flux) alone cannot yield the observed isotopic values at the PTB. Hydrothermal flux is related to seafloor spreading rates, empirically proportional to midocean ridge volume. Based on the low sea level at the end-Permian and the existence of supercontinent Pangaea (320–185 My), the ridge volume was probably at a minimum at that time (37). High-resolution Sr isotope records of carbonate show increased δSr/87Sr at the end-Permian, reflecting either high riverine Sr input or restrained hydrothermal flux (38, 39). These constraints, taken together, imply that the hydrothermal flux at the end-Permian should be less than today and that a more plausible mechanism for the low Li isotope signature in seawater is the change of weathering Li input. Unlike hydrothermal fluid, riverine Li covers a large range of isotopic compositions from ∼+2‰ (congruent weathering) to ∼+42‰ (highly incongruent weathering) (17, 36, 40). Moreover, riverine Li flux, as a function of [Li]river and global water flux, could have been significantly changed with climate variations. A decrease in δLi from +20 to +2‰ with a constant Li river flux for 5 My would result in seawater values changes from +29 to +23‰, which is still much higher than the observed seawater δLi at the PTB. Thus, modeling the observed low δLi requires an enhanced riverine Li flux accompanied by very light isotopic compositions. Such a process could occur, as intense congruent weathering (high silicate minerals dissolution rate) results in both low δLi and high [Li] in rivers. Further modeling indicates (SI Appendix, section I) that if the river δLi is ∼+4‰, the Li flux would have to increase ∼15–18× to yield the observed light seawater δLi (+10–+16‰).

The above discussions suggest that the end-Permian riverine Li exhibits very light isotopic compositions with fluvial flux increasing about 10–18× relative to present day, and thus indicates an enhanced weathering rate. High-precision age dating indicate coincidence of the PTB with the largest igneousprovince (LIP) formation on the Earth, the Siberian Traps (41, 42). The LIP exposed an enormous flood basalt province (∼7 × 10⁶ km²) and...
contributed volcanic ash to the Earth’s surface. Both would release light Li during chemical weathering (43). Because the dissolution rates of minerals decrease in the order of olivine > Ca-plagioclase > pyroxene > Na-plagioclase > K-feldspar > muscovite > quartz (22), basalts, mainly composed of pyroxene + plagioclase + olivine + glass, would be weathered very rapidly and highly congruent (i.e., few secondary minerals precipitated due to their freshness and aluminum-deficient nature). Volcanic ash, with high reactive surface area during weathering, would result in even higher weathering rate than the basalts (22).

Thus, rapid dissolution of the fresh Siberian flood basalts and volcanic ash may have played an important role in the rapid enhancement of chemical weathering rates at the PTB. The massive volcanism has also outgassed large amounts of CO$_2$ and SO$_2$ aerosols into the atmosphere (44). This process, together with possible methane clathrate dissociation, may have led to a global warming and acid rain (6, 13, 45). Experimental studies have demonstrated that mineral dissolution under acidic conditions is an order of magnitude faster than dissolution under neutral pH (22). Therefore, it is likely that the extremely enhanced chemical weathering at PTB may have resulted from hot acid rain weathering of fresh erupted basalts.

The coincidence between the extinction event and dramatic climate changes has been shown at the Meishan section. Beds 25–26, with a loss of >90% of marine species within less than 0.5 My, marked the main phase of the PTB mass extinction (3). The main phase of the marine PTB mass extinction occurred synchronously with the sedimentary-ecosystem transition from a humid tropical biota to oolites and calcimicrobialites deposited at arid climate conditions (24). Black carbon, as a proxy of forest wildfire at the PTB, starts to increase in Beds 23–24 and reached a climax in Beds 25–26, reflecting climate transition to arid condition and forest decimation (Fig. 1B) (5). Such a climate change should have repressed the weathering rate, and thus might have resulted in decreased riverine Li flux and possibly higher δ7Li. This is consistent with the elevated seawater δ7Li in Beds 25–34 (∼4‰ higher than Beds 22–24, Fig. 2). Our modeling results indicate that a first enhanced weathering pulse (with 18x Li flux and δ7Li ∼ +4‰) for ∼300 Ky and subsequent decrease in weathering rate (with 1x Li flux and δ7Li ∼ +3‰) from Bed 24 to Bed 34 for ∼400 Ky fit the best for the measured data (Fig. 2). The modeling cannot provide details to global riverine Li variations, but the data suggest that the estimated seawater δ7Li values require an initial increase and then a restrained riverine Li input, further validating the possibility of a globally enhanced chemical weathering and climate change from humid to arid conditions at the PTB.

The eruption of the Siberian Traps is widely proposed to have triggered the end-Permain extinction (1). The Eu/Eu* profile of conodont bioapatite shows mantle-sourced values of 1.0–1.5 in Bed 22e, indicating a possible fingerprint of the Siberian Traps eruption (35). Reported high-precision dating of the Siberian traps confirms about two-thirds of the total lava/pyroclastic volume was erupted over ∼300 Ky, before and concurrent with the end-Permain mass extinction (46). The eruption of the Siberian Traps exposed enormous fresh basalt as well as volcanic ash onto the continents, and released significant amounts of CO$_2$ and SO$_2$ aerosols into the atmosphere, triggered acid rains and greenhouse warming, and ultimately resulted in enhanced global weathering rate with light riverine and seawater δ7Li as we observed from the Meishan section. Unlike Li isotopes, the high-resolution seawater Sr record indicates high weathering rates which coincide with the PTB interval and the Early Triassic (15). However, by coupling seawater Sr isotope changes and the timing of the Siberian Traps, it is likely that the end-Permain Sr cycle may have been significantly perturbed by the fast weathering of unradiogenic flood basalts. Therefore, Sr isotopes may not be a straightforward tracer of continental weathering for this case given the radiogenic nature of the Siberian Traps.

Chemical weathering of silicate consumes atmospheric CO$_2$ and brings HCO$_3^-$, dissolvable cations (such as Mg$^{2+}$, Ca$^{2+}$, Na$^+$), and suspended matter to the marine system. Hence, a rapid enhancement of chemical weathering would have led to increased riverine nutrient fluxes and elevated turbidity (Fig. 3). It has been proposed that increased sediment fluxes in the Early Triassic may have caused severe biological consequences, such as reducing light levels and photosynthesis, slowing skeletal calcification, depleting dissolved oxygen, and smothering benthic organisms (14). The observed Mn decline, negative Eu/Eu*, and positive Ce/Ce* anomalies at Beds 25–26 support marine anoxia at the time (47). Recent studies revealed that the Cenomanian–Turonian boundary (the Ocean Anoxic Event 2), which was marked by high atmospheric CO$_2$, high sea-surface temperature, global marine anoxia, and mass extinction, was also accompanied by enhanced global weathering rates (17). The remarkable light seawater Li isotopic reported in this study provides independent geochemical evidence of an enhanced chemical weathering at the PTB. The enhanced continental weathering delivered excessive nutrients to the oceans, leading to marine eutrophication, anoxia, acidification, and ecological perturbation, and may ultimately have led to the end-Permain mass extinction (Fig. 3). Our Li isotopic study of the ocean sedimentary record demonstrates that enhanced continental weathering may provide a key link between terrestrial and marine ecological crises, and future Li isotopic investigation on other PTB sections can test the present hypothesis.

Methods
For bulk-rock Li isotope analysis, ~100 mg of bulk-rock powders were completely digested in a 3:1 mixture of double-distilled HF and HNO$_3$ at 180 °C. The samples were then dried, refluxed three to four times in 8 M HCl, and redisolved in 0.2 M HCl for column purification. For carbonate fraction in limestones, a chemical leaching method using dilute acid was applied (17). Approximately 200 mg of bulk carbonate was leached in 0.1 M HCl for 1 h. After centrifugation, the supernatants were then dried and redisolved in 0.2 M HCl for column purification. Separation of Li for isotopic composition analysis was achieved by an organic solvent-free two-step liquid chromatography procedure in a clean laboratory at the University of Houston (48). Large columns (15 mL first step columns and 5 mL for second step columns) were used to ensure that the column was not saturated for sodium and other cations, which is important for low Li samples. All separations were monitored with quadrupole inductively-coupled plasma mass spectrometer (ICP-MS) analysis to guarantee both high Li yield and low Na/Li ratio (<0.5). Solutions for multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) analysis were made in accordance to 10 M HCl and dried over P$_2$O$_5$ to ensure the best precision and accuracy. The total procedure blanks determined for the combined sample digestion and column procedure were about 0.03 ng Li. Compared with the ~50–4,500 ng Li used for our analysis, the blank correction is not significant at the uncertainty levels achieved. We report results as δ7Li = (([Li]/[Li]standard) – 1) × 1,000, relative to the L-SVEC Li-isotope standard (49). The lithium isotopic compositions were analyzed on a high-resolution Nu Plasma II MC-ICP-MS at University of Houston and a Neptune plus MC-ICP-MS at University of Science and Technology of China (50). Aqueous samples were introduced through a Cetac Aridus II desolvating nebulizer. Each sample analysis was bracketed before and after by 10 or 50 ppb international Li isotopic standard (L-SVEC). The in-run precision on δ7Li measurements is ±0.2‰ for one block of 50 ratios. The external precision, based on 2e of repeat runs (n > 10) of pure Li standard solutions and United States Geological Survey standards, is ±0.5‰. Analysis of international rock reference materials yields δ7Li values of +4.29 ± 0.23‰, +3.14 ± 0.41‰, and +4.91 ± 0.34‰ for BHVO-2, JP-1, and DTS-2, respectively.

Acknowledgments. Fengtai Tong and Haiyang Liu are thanked for assistance with the Li isotope analysis. We appreciate constructive comments from two anonymous reviewers and the editor. We thank Hanjie Wen for providing samples used in this study. This work was financially supported by the Chinese Academy of Sciences (B) of the Chinese Academy of Sciences (XDB18000000), the National Natural Science Foundation of China (41673031, 41721002, 41603005, 41473033, 41330102), and the 111 Project.
1. Erwin DH (2006) Extinction: How Life on Earth Nearly Ended 250 Million Years Ago (Princeton Univ Press, Princeton), p 296.

2. Stanley SM (2016) Estimates of the magnitudes of major marine mass extinctions in earth history. Proc Natl Acad Sci USA 113:E6325–E6334.

3. Jin YG, et al. (2000) Pattern of marine mass extinction near the Permian-Triassic boundary in South China. Science 289:432–436.

4. Knoll AH, Bambach RK, Payne JL, Pruss S, Fischer WW (2007) Paleobiology and end-Permian mass extinction. Earth Planet Sci Lett 256:295–313.

5. Shen W, Sun Y, Lin Y, Liu D, Chai P (2011) Evidence for wildfire in the Meishan section and implications for Permian-Triassic events. Geochim Cosmochim Acta 75: 1992–2006.

6. Joachimski MM, et al. (2012) Climate warming in the latest Permian and the Permian-Triassic mass extinction. Geology 40:195–198.

7. Payne JI, et al. (2010) Calcium isotope constraints on the end-Permian mass extinction. Proc Natl Acad Sci USA 107:8543–8548.

8. Sun Y, et al. (2012) Lethally hot temperatures during the Early Triassic greenhouse. Science 338:366–370.

9. Zhang G, et al. (2017) Redox chemistry changes in the Panthalassic Ocean linked to the end-Permian mass extinction and delayed Early Triassic biotic recovery. Proc Natl Acad Sci USA 114:1806–1810.

10. Kump LR, Pavlov A, Arthur MA (2005) Massive release of hydrogen sulfide to the surface ocean and atmosphere during intervals of oceanic anoxia. Geology 33: 397–400.

11. Renne PR, Black MT, Zichao Z, Richards MA, Basu AR (1995) Synchrony and causal relations between permian-triassic boundary crises and siberian flood volcanism. Science 269:1413–1416.

12. Shen Y, et al. (2011) Multiple S-isotopic evidence for episodic shoaling of anoxic water during Late Permian mass extinction. Nat Commun 2:210.

13. Sheldon ND (2006) Abrupt chemical weathering increase across the Permian-Triassic boundary. Palaeogeogr Palaeoclimatol Palaeoecol 231:315–321.

14. Algeo TJ, Twichtriet RJ (2010) Anomalous Early Triassic sediment fluxes due to elevated weathering rates and their biological consequences. Geology 38:1023–1026.

15. Song H, et al. (2015) Integrated Sr isotope variations and global environmental changes through the Late Permian to early Late Triassic. Earth Planet Sci Lett 424: 1–13.

16. Misra S, Froelich PN (2012) Lithium isotope history of Cenozoic seawater: Changes in silicate weathering and reverse weathering. Science 335:818–823.

17. von Stramand PAE, Jenkyns HC, Woodfine RG (2013) Lithium isotope evidence for enhanced weathering during Oceanic Anoxic Event 2. Nat Geosci 6:668–672.

18. von Stramand PAE, Henderson GM (2015) The Li isotope response to mountain uplift. Geology 43:67–70.

19. Edmond JM (1992) Himalayan tectonics, weathering processes, and the strontium isotope composition of late Permian and triassic seawater. Geochim Cosmochim Acta 67:47–62.

20. Martin EE, Macdougall JD (1995) Sr and Nd isotopes at the Permian/Triassic boundary: Implications for the lithospheric delamination of South China. Earth Planet Sci Lett 1367–1372.

21. Svensen H, et al. (2009) Siberian gas venting and the end-Permian environmental crisis. Earth Planet Sci Lett 277:490–500.

22. Reichow MK, et al. (2009) The timing and extent of the eruption of the Siberian Traps large igneous province: Implications for the end-Permian environmental crisis. Earth Planet Sci Lett 277:9–20.

23. Boggs SD, Bowring SA (2015) High-precision geochronology confirms voluminous magmatism before, during, and after Earth’s most severe extinction. Sci Adv 1:e1500470.

24. Madison AS, Tebo BM, Mucci A, Sundby B, Luther GW, Jr (2013) Abundant pore-water Mn(III) is a major component of the sedimentary redox system. Science 341: 875–878.

25. Gao Y, Casey JF (2012) Lithium isotope composition of ultramafic geological reference materials JPl and DTS-2. Geostand Geoanal Res 36:75–81.

26. Flesch GD, Anderson AR, Jr, Svec HJ (1973) A secondary isotopic standard for Li in modern seawater by MC-ICP-MS. Geostand Geoanal Res 8:161–172.

27. Shen SZ, et al. (2011) Calibrating the end-Permian mass extinction. Science 334: 1367–1372.

28. Chan LH, Edmond JM, Thompson G, Gillis K (1992) Lithium isotopic composition of submarine basalts: Implications for the lithium cycle in the oceans. Earth Planet Sci Lett 108:151–160.

29. Vigier N, et al. (2008) Quantifying Li isotope fractionation during smectite formation and implications for the Li cycle. Geochim Cosmochim Acta 72:780–792.

30. Jeffcoate AB, Elliott T, Thomas A, Bouman C (2004) Precise/nanomole size determinations of lithium isotopic compositions of geological reference materials and modern seawater by MC-ICP-MS. Geostand Geoanal Res 28:161–172.

31. Marriott CS, Henderson GM, Belshaw NS, Tudhope AW (2004) Temperature dependence of δLi, δ44Ca and LiCa during growth of calcium carbonate. Earth Planet Sci Lett 222:615–624.

32. Bouman C, Elliott T, Vroon PZ (2004) Lithium inputs to subduction zones. Chem Geol 212:5–15.

33. Plank T, Langmuir CH (1998) The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem Geol 145:325–394.

34. Bouman C, Elliott T, Vroon PZ (2004) Lithium inputs to subduction zones. Chem Geol 212:59–79.

35. Chen ZQ, et al. (2014) Complete biotic and sedimentary records of the Permian-Triassic transition from Meishan section, South China: Ecologically assessing mass extinction and its aftermath. Earth Sci Rev 149:67–107.

36. Tomascak PB (2004) Developments in the understanding and application of lithium isotope ratios in the earth and planetary sciences. Rev Mineral Geochem 55:153–195.

37. Erwin DH, Bowring SA, Jin YG (2002) End-Permian mass extinctions: A review. Geol Soc Am Soc 363–384.

38. Tomascak PB (2004) Developments in the understanding and application of lithium isotope ratios in the earth and planetary sciences. Rev Mineral Geochem 55:153–195.

39. Martin EE, Macdougall JD (1995) Sr and Nd isotopes at the Permian/Triassic boundary: Implications for the crust and mantle. Chem Geol 145:325–394.

40. Bouman C, Elliott T, Vroon PZ (2004) Lithium inputs to subduction zones. Chem Geol 212:59–79.