The complete chloroplast genome of Korean *Pyrus ussuriensis* Maxim. (*Rosaceae*): providing genetic background of two types of *P. ussuriensis*

Myong-Suk Cho*, Yongsung Kim, Seung-Chul Kim, and Jongsun Park

Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea; InfoBoss Co., Ltd., Seoul, Republic of Korea; InfoBoss Research Center, Seoul, Republic of Korea

ABSTRACT

Pyrus ussuriensis Maxim. is one of the most important pear species cultivated in Asia, grown in northern China, far-east Russia, Korea, and Japan. Here we completed the chloroplast genome of wild *P. ussuriensis* collected in Bonghwa-gun, Korea, which was 159,986 bp in length consisting of four subregions: 87,947 bp of large single copy (LSC) and 19,255 bp of small single copy (SSC) regions are separated by 26,392 bp of inverted repeat (IR) regions. The genome contained a total of 130 genes including 85 protein-coding genes, eight rRNAs, and 37 tRNAs. The overall GC content was 36.5% and those in the LSC, SSC, and IR regions were 34.2%, 30.4%, and 42.6%, respectively. Phylogenetic analysis of 14 *Pyrus* chloroplast genomes provided the diverse genetic background for wild *P. ussuriensis* populations in Korea by confirming that wild *P. ussuriensis* sequenced in this study contained *Pyrus pyrifolia* type plastome. It revealed substantial sequence variations up to 121 single nucleotide polymorphisms and 781 insertions and deletions against another wild accession of *P. ussuriensis* (*P. ussuriensis* type) collected in Mt. Hambaek, Korea.

Pear (*Pyrus; Rosaceae*), an important economic crop as the third most significant temperate fruit species after grapes and apples (Moazedi et al. 2014), has been cultivated in more than 50 countries since as early as 2,000 years ago in China (Bell 1990). The genus *Pyrus* contains 22 widely recognized primary species including at least six naturally occurring and three artificial interspecific hybrids (Bell et al. 1996). The species diversity is concentrated in two regions of Western Europe and Eastern Asia, forming two distinct groups of occidental and oriental pears (Rubtsov 1944).

Despite of high conservatism in *Pyrus* chloroplast genome (Katayama and Uematsu 2003), two large deletions in *accD-psaL* and *rps16-trnQ* defined three types of *Pyrus* cpDNA: Type A (*P. ussuriensis* type) has no deletion, type B (*P. pyrifolia* type) has 228-bp deletion in *accD-psaL* and type C (*P. communis* type) contains 141-bp deletion in *rps16-trnQ*.

Pyrus ussuriensis Maxim. is one of the important species of several Asian pear species cultivated. Wild *P. ussuriensis* cultivars are endemic to the northern part of China, far-east Russia, Korea, and Japan producing small and globose fruit with persistent calyxes (Bell et al. 1996; Wuyun et al. 2013). To investigate its genetic diversity, we characterized *P. ussuriensis* chloroplast genome isolated in Bonghwa-gun, Korea (Voucher, InfoBoss Cyber Herbarium (IN): IB-00593; GPI-187; Seoul, Republic of Korea), different from previous chloroplast genome (MK172841; Gil et al. under review).

Total genomic DNA of *P. ussuriensis* GPI-187 was extracted from fresh leaves using a DNeasy Plant Mini Kit (QIAGEN, Hilden, Germany). Genome sequencing was performed using HiSeq X (Macrogen Inc., Korea) and *de novo* assembly and sequence confirmation were done by Velvet version 1.2.10 (Zerbino and Birney 2008), SOAP GapCloser version 1.12 (Zhao et al. 2011), BWA version 0.7.17 (Li 2013), and SAMtools version 1.9 (Li et al. 2009). Geneious version R11 11.0.5 (Biomatters Ltd., Auckland, New Zealand) was used for chloroplast genome annotation based on *P. ussuriensis* chloroplast genome (MK172841).

The chloroplast genome of *P. ussuriensis* GPI-187 (Genbank accession is MK507863) was 159,986 bp long (GC ratio is 36.5%) long and had four subregions: 87,947 bp of large single copy (LSC: 34.3%) and 19,255 bp of small single copy (SSC: 30.4%) regions were separated by 26,392 bp of inverted repeat (IR: 42.6%). It contained 130 genes (85 protein-coding genes, eight rRNAs, and 37 tRNAs) and 20 genes (nine protein-coding gene, four rRNAs, and seven tRNAs) were duplicated in IR regions.

The neighbour-joining phylogenetic tree, which showed the same topology as maximum likelihood tree, was constructed by MEGA X (Kumar et al. 2018) after aligning fifteen whole chloroplast genomes using MAFFT version 7.388 (Katoh and Standley 2013). *Pyrus ussuriensis* GPI-187 was nested within Type B clade sharing a 228-bp deletion with...
two accessions of *P. ussuriensis* cultivars, displaying 121 single nucleotide polymorphisms, and 781 insertions and deletions identified against *P. ussuriensis* (MK172841) nested in Type A clade (Figure 1). It indicates that wild *P. ussuriensis* populations in Korea possess high genetic diversity harbouring both type A and B, probably resulted from introgression or chloroplast capture through procedure of species dispersal and/or interspecific crosses in cultivation.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by InfoBoss Research Grant (IBG-0021) and the grant ‘The Genetic Diversity Study of Indigenous Vascular Plant Species; 2nd year’ [NIBR201603203] funded by the National Institute of Biological Resources, Republic of Korea.

ORCID

Yongsung Kim http://orcid.org/0000-0002-5349-9226

Jongsun Park http://orcid.org/0000-0003-0786-4701

References

Bell RL. 1990. Pears (*Pyrus*). In: Moore JN, Ballington JR Jr. editors. Genetic resources of temperate fruit and nut crops. Wageningen, The Netherlands: International Society for Horticultural Science Wageningen; p. 655–697.

Bell RL, Quamme HA, Layne REC, Skirvin RM. 1996. Pears. In: Janick J, Moore JN, editors. Fruit breeding, Vol. I: tree and tropical fruits. Hoboken (NJ): John Wiley & Sons; p. 441–514.

Gil H-Y, Kim Y, Kim S-H, Kwon Y, Jeon J0H, Kim S-C, Park J. under review. The complete chloroplast genome of *Pyrus ussuriensis* Maxim. (Rosaceae). doi:10.1080/23802359.2019.1581585

Katayama H, Uematsu C. 2003. Comparative analysis of chloroplast DNA in *Pyrus* species: physical map and gene localization. Theor Appl Genet. 106:303–310.

Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 30:772–780.

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 35:1547–1549.

Li H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv Preprint arXiv. 13033997.

Li H, Handsaker B, Wysocker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. 2009. The sequence alignment/map format and SAMtools. Bioinformatics. 25:2078–2079.

Moazedi R, Nahandi FZ, Mahdavi KM, Ebrahimi M. 2014. Assessment of genetic relationships of some cultivars of Asian pears (*Pyrus pyrifolia* Nakai) with some native pears of Northern Iran using SSR markers. Intl J Farm Alli Sci. 3:923–929.

Rubtsov G. 1944. Geographical distribution of the genus *Pyrus* and trends and factors in its evolution. Am Nat. 78:358–366.

Wuyun T, Ma T, Uematsu C, Katayama H. 2013. A phylogenetic network of wild Ussurian pears (*Pyrus ussuriensis* Maxim.) in China revealed by hypervariable regions of chloroplast DNA. Tree Genet Genom. 9:167–177.

Zerbino DR, Birney E. 2008. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genom Res. 18:821–829.

Zhao QY, Wang Y, Kong YM, Luo D, Li X, Hao P. 2011. Optimizing de novo transcriptome assembly from short-read RNA-Seq data: a comparative study. BMC Bioinformatics. 12:52.