Minimization of the Difference between the Theoretical Mean of the Rayleigh Probability Density Function and the Mean Obtained from its Plot

Mustafa Mutlu
Teknik Bilimler MYO
Ordu University 52200, Ordu, Turkey
*Corresponding Author: mustafamutlu@odu.edu.tr

Abstract In this study, the difference between the mean of the Rayleigh Probability Density Function and the mean obtained from the graph of Rayleigh Probability Density Function is minimized by changing the coefficient in the equation yielding the mean. By using various numbers of data and K values, Rayleigh Probability Density Function is plotted with the means mentioned above.

Keywords Rayleigh Probability Density Function, Line of Sight, No Line of Sight

1. Introduction

Rayleigh Probability Density Function is used for the cases in which there is NLOS between transmitters and receivers for the communication networks and channel modeling. When there occur phase differences between multipath signals arriving the receiver, fading takes place. Rayleigh distribution function is used for multipath fading in modeling of change of voltage or power that will be received[1-8]. In Rayleigh modeling, in contrast to the Ricean, there is no any specified direction, that is, signals coming from any direction are assumed to have equal probability.

Moreover Rayleigh Modeling is used for noise analysis. If a signal coming to a receiver via reflection becomes so greater than the direct signal that it suppresses that, in this case this type of channel modeling is done by means of Rayleigh Probability Density Function.

The aim of our study is to find an expression which results in numerical values that are very close to the actual values. For this purpose after much iteration we have obtained a new coefficient that gives the desired results.

2. Theory

Rayleigh Probability Density Function changes with respect to a single parameter, either standard deviation or [K[9-15] where K is the power of direct signal divided by the power of coming signal via reflection and expressed as

\[K = \frac{P_{\text{los}}}{P_{\text{multipath}}} \]

(1)

\[K = \frac{1}{2} \sigma^2 \]

(2)

\[P_{\text{los}} = 0 \text{ Watt} = 1 \text{ dBW} \]

(3)

K characterizes the environment. K values are normalized when using in the equation(4).

Rayleigh Probability Density Function is expressed as

\[f_z(z) = 2z K e^{-\frac{z^2}{K}} \]

(4)

When K represents the Power

\[L = K/10 \]

(5)

and if it represents the voltage

\[L = K/20 \]

(6)

is used. For both cases,

\[S = 10^L. \]

(7)

Normalized Rayleigh Probability Density Function can be written as

\[f_z(z) = 2z S e^{-\frac{z^2}{S}} \]

(8)

S is obtained through the equations (5), (6), (7) and used in equation (8) to obtain \(f_z(z) \).

Mean of this function is

\[f_z(z)(\text{mean}) = M[z] = \int_0^\infty z f_z(z) \, dz \]

(9)

And theoretical mean can be written as,

\[TM = M[z] = \left(\frac{1}{\sqrt{2\pi}}\right) \sqrt{\frac{\pi}{K}} = 1.2533 \sigma \]

(10)

And the variance is written as

\[\sigma^2 = M[z^2] - M^2[z] = (0.2146/K) \]

(11)
And the Standard deviation is
\[\sigma = 0.4632/\sqrt{K} \] (12)

Table 1 shows the actual and theoretical means and percent error of theoretical mean.

K voltage (dB)	AM Actual mean	TM theoretical mean	Error(%)
10	41	49.83	5.16
12	36	44.44	4.93
14	33	39.58	3.84
16	29	35.28	3.67
18	26	31.44	3.18
20	23	28.02	2.93

3. Modification of Theoretical Mean Expression

In equation (10) the coefficient \(\frac{1}{2} \) is not suitable. Because there is a big difference between the actual and theoretical curves when theoretical mean is used for the plot of Rayleigh Probability Density Function. Instead we suggest a change in equation (10) to achieve more reasonable results. After many iterations the coefficient \(\frac{1}{2} \) is replaced by \(\frac{1}{2.3589} \) to minimize the difference between the theoretical mean(TM) and the actual mean (AM) which is obtained from the graph of Rayleigh Probability Density Function.

Since TM being a function of K is the theoretical mean, if and only if K is used instead of K in Rayleigh Probability Density Function its actual mean becomes TM. This is illustrated in Table 4.

In Table 3 peak values corresponding to AM and TM voltage differences (errors) are given.

Table 3. Actual and Theoretical Peak Values and the difference between them

K (dB)	K1 (dB)	Actual peak value of \(f_z(z) \) (%)	theoretical peak value of \(f_z(z) \) (%)	Voltage difference
10	7.13	1.5252	1.4503	0.0749
12	9.29	1.7112	1.6398	0.0714
14	11.13	1.9199	1.8240	0.0959
16	13.13	2.1545	2.0688	0.0857
18	15.13	2.4174	2.3317	0.08423
20	17.13	2.7117	2.6049	0.1068

Equation (14) can be used for finding K1 by replacing it in place of K.
\[f_1(z) = 2 z K1 exp(-z^2 K1) \] (13)
\[MM = M1[z] = \left(\frac{1}{2.3589} \right) \sqrt{\pi K} \] (14)

Where MM is the modified mean. As can be seen from Table1, and Table 2 for K=10 dB AM=41, TM=49.83 MM=42 is obtained. This shows that the equation (14) yields a value which is very close to the actual mean whereas the theoretical one (TM) is far from it.

Since the variance and standard deviation values are derived from the mean, an erroneous mean causes wrong results in variance and standard deviation[16-23]. Therefore to obtain minimum difference between the actual and theoretical mean, we changed the coefficient value several times. As a result we reduced the percent error from 5.16 percent to 0.32 percent. The average of x number of data can be expressed as
\[MM_x = \frac{\text{Data x}}{171} MM_{171} \] (15)

Where MM\(_{171}\) is the average value of 171 data.
Table 4 shows the variations of $f_2(z)$ and $f_1(z)$.

K(dB)	$f_2(z) = 2z \exp(-z^2S)$	$f_1(z) = 2z S \exp(-z^2S_1)$
10	6.32 $z \exp(-z^23.16)$	7.13 4.54 $z \exp(-z^22.27)$
12	7.96 $z \exp(-z^23.98)$	9.29 5.82 $z \exp(-z^22.91)$
14	10.02 $z \exp(-z^25.01)$	11.13 7.20 $z \exp(-z^23.60)$
16	12.61 $z \exp(-z^26.30)$	13.13 9.06 $z \exp(-z^24.53)$
18	15.88 $z \exp(-z^27.94)$	15.13 11.41 $z \exp(-z^25.7)$
20	20 $z \exp(-z^210)$	17.13 14.37 $z \exp(-z^27.18)$

Actual, theoretical, and modified Rayleigh Probability Density Functions are plotted according to different K and data values in Fig. 1 through Fig. 6.
Minimization of the Difference between the Theoretical Mean of the Rayleigh Probability Density Function and the Mean Obtained From its Plot

Table 5. The mean values of \(f_1(z) \), \(f_2(z) \), and their values around the means

K=20 dB, for 171 data AM	Data number	22	23 (mean)	24	25
Probability value	2.70224936	2.71177808	2.71029179	2.69828373	
K=20 dB, for 171 data MM	Data number	23	24 (mean)	25	26
Probability value	2.63034350	2.63552781	2.63075854	2.61649395	
K=20 dB, for 171 data TM	Data number	26	27 (mean)	28	29
Probability value	2.29304064	2.29894371	2.29814705	2.29090434	

Table 6. The mean values of \(f_1(z) \), \(f_2(z) \), and their values around the means

K=10 dB, for 171 data AM	Data number	40	41 (mean)	42	43
Probability value	1.52477789	1.52529002	1.52388460	1.52061275	
K=10 dB, for 171 data MM	Data number	41	42 (mean)	43	44
Probability value	1.49019207	1.49053635	1.48909413	1.48591223	
K=10 dB, for 171 data TM	Data number	47	48 (mean)	49	50
Probability value	1.29257103	1.29305214	1.29236036	1.29052165	

Table 7. The mean values of \(f_1(z) \), \(f_2(z) \), and their values around the means

K=20 dB, for 1701 data AM	Data number	224	225 (mean)	226	227
Probability value	2.71246757	2.71247918	2.71238249	2.71217797	
K=20 dB, for 1701 data MM	Data number	235	236 (mean)	237	238
Probability value	2.57543251	2.57552531	2.57552503	2.57543207	
K=20 dB, for 1701 data TM	Data number	264	265 (mean)	266	267
Probability value	2.29939718	2.29941544	2.29936765	2.29925407	
Table 8. The mean values of $f(z), f_1(z), f_2(z)$ and their values around the means K=10 dB, for 1701 data AM

Data number	Probability value
398	1.52533995
399	1.52534257
400	1.52532591
401	1.52529002

K=10 dB, for 1701 data MM

Data number	Probability value
417	1.45500983
418	1.45501578
419	1.45500499
420	1.45497749

K=10 dB, for 1701 data TM

Data number	Probability value
469	1.29305056
470	1.29305723
471	1.29305214
472	1.29303533

Table 9. The mean values of $f(z), f_1(z), f_2(z)$ and their values around the means K=20 dB, for 17001 data AM

Data number	Probability value
2236	2.71248695
2237	2.71248756
2238	2.71248709
2239	2.71248554

K=20 dB, for 17001 data MM

Data number	Probability value
2361	2.56916919
2362	2.56916947
2363	2.56916883
2364	2.56916727

K=20 dB, for 17001 data TM

Data number	Probability value
2638	2.29941691
2639	2.29941708
2640	2.29941659
2641	2.2994154

Table 10. The mean values of $f(z), f_1(z), f_2(z)$ and their values around the means K=10 dB, for 17001 data AM

Data number	Probability value
3976	1.52534367
3977	1.52534384
3978	1.52534381
3979	1.52534359

K=10 dB, for 17001 data MM

Data number	Probability value
4175	1.45292350
4176	1.45292351
4177	1.45292335
4178	1.45292302

K=10 dB, for 17001 data TM

Data number	Probability value
4691	1.29305056
4692	1.29305723
4693	1.29305214
4694	1.29303533

Table 5-Table 10 show the actual, modified and theoretical results for some data group. It can be seen from Table 1, Table 2, and Table 5 through Table 8, both TM and MM values are greater than AM values.
Minimization of the Difference between the Theoretical Mean of the Rayleigh Probability Density Function and the Mean Obtained From its Plot

Table 11. Percent errors according to various K and data numbers

K voltage (dB)	for 171 data	for 1701 data	for 17001 data
	Error(%)	Error(%)	Error(%)
10	0.58	1.11	1.17
12	0.58	0.76	0.78
14	0.32	0.99	1.035
16	0.58	0.88	0.98
18	0.35	0.76	0.79
20	0.44	0.64	0.73

For a definite K value if the number of data increases percent error slightly increases as well.

4. Conclusion

In this study, to minimize the difference between the theoretical mean of Rayleigh Probability Density Function and the mean of the plot of Rayleigh function, we modified the equation (10) and obtained the equation (14) as the ultimate expression for the mean.

In actual plots and plots corresponding to theoretical means are shown together.

It is observed from the Table 11 that, for the smaller values of K, percent error increases by the number of data much more than for the larger values of K. For this particular study although the number of data increased 100 times, percent error was just only doubled.

REFERENCES

[1] A. Papoulis. Probability Random Variables and Stochastic Processes, McGraw-Hill, New York, 1965.
[2] J. Goldhirsh, W.J.Vogel. Handbook of Propagation Effects for Vehicular and Personal Mobile Satellite Systems, December, 1998.
[3] D. Lu, K. Yao. Improved Importance Sampling Technique for Efficient Simulation of Digital Communication Systems, IEEE Journal on Select. Areas in Commun., Vol.6, No.1, 67–75, 1988.
[4] W. C. Y. Lee. Mobile Communications Design Fundamentals, H. W. Sams and Co., Indianapolis, Indiana, 1986.
[5] M. Abramowitz, I. Stegun. Handbook of Mathematical Functions, NBS Applies Mathematics Series, Vol.55, U.S. Govt. Printing Office, Washington, DC, 20402,1964.
[6] R. H. Clarke. A Statistical Theory of Mobile-Radio Reception, Bell System Technical Journal, Vol.47, No.6, 329-339,1968.
[7] W. C. Jakes. Microwave Mobile Communications, Wiley, NewYork, 1974.
[8] A. Maaref, S. Aissa. Joint and Marginal Eigen value Distributions of (Non)Central Complex Wishart Matrices and PDF-Based Approach for Characterizing the Capacity Statistics of MIMO Ricean and Rayleigh Fading Channels. Wireless Communications, IEEE Transactions on Vol.6, No.10,3607-3619,2007.
[9] B. Yang, K. B. Letaief, R. S. Chen, Z. Cao. Channel estimation for OFDM transmission in multipath fading channels based on parametric channel modeling, IEEE Trans. Commun., vol.49, 467–478, 2001.
[10] X. Ma, G. B. Giannakis, S. Ohno. Optimal training for block transmissions over doubly-selective wireless fading channels, IEEE Trans.Signal Processing, vol.51, 1351–1366, 2003.
[11] G.A. Dimitrikopoulos, C.N. Capsalis. Statistical modeling of RMS-delay spread under multipath fading conditions in local areas Vehicular Technology, IEEE Transactions on Vol.49, No.5,1522-1528, 2000.
[12] J. Salo, H.M. El-Sallabi, P. Vainikainen. The distribution of the product of independent Rayleigh random variables. Antennas and Propagation, IEEE Transactions Vol.54,No.2, 639-643, 2006.
[13] B. Rivet, L. Girin,C. Jutten. Log-Rayleigh Distribution: A Simple and Efficient Statistical Representation of Log-Spectral Coefficients Audio, Speech, and Language Processing, IEEE Transactions on Vol.15, No.3, 796-802,2007.
[14] C.Yunxia, C. Tellambura. Joint distribution functions of three or four correlated Rayleigh signals and their application in diversity system analysis. Global Telecommunications Conference. Vol.5, 3368-3372, 2004.
[15] D.A. Abraham, A.P.Lyons. Exponential scattering and K-distributed reverberation. OCEANS,MTS/IEEE Conference and Exhibition Vol.3, 1622-1628,2001.
[16] P.M. Shankar. Outage probabilities in shadowed fading channels using a compound statistical model, Communications, IEE Proceedings Vol.152, No.6, 828-832, 2005.
[17] D. Kaplan, Ma. Oinglin. On the statistical characteristics of log-compressed Rayleigh signals: theoretical formulation and experimental results, Ultrasonics Symposium,Vol.2, 961-964, 1993.
[18] J. Lei, Y. Tan. Geometrically Based Statistical Channel Models for Outdoor and Indoor Propagation Environments Vehicular Technology, IEEE Transactions on Vol.56, No.6, 3587-3593, 2007.

[19] H. Lu, Y. Chen, N. Cao. Accurate Approximation to the PDF of the Product of Independent Rayleigh Random Variables Antennas and Wireless Propagation Letters, IEEE Vol.10, 1019-1022, 2011.

[20] D. Wong, D.C. Cox. Estimating local mean signal power level in a Rayleigh fading environment, Vehicular Technology, IEEE Transactions on Vol.48, No.3, 956-959, 1999.

[21] R. Narasimhan, D.C. Cox. Mean and variance of the local maxima of a Rayleigh fading envelope, Communications Letters, IEEE Vol.4, No.11, 352-353, 2000.

[22] C. Gao, M. Zhao, S. Zhou, Yan Yao. A new calculation on the mean capacity of MIMO systems over Rayleigh fading channels, Personal, Indoor and Mobile Radio Communications, 14th IEEE Proceedings, Vol.3, 2267–2270, 2003.

[23] M. M. Peritsky. Correction to Statistical Estimation of Mean Signal Strength in a Rayleigh-Fading Environment, Communications, IEEE Transactions on Vol.22, No.10, 1733-1734, 1974.