Relação da ineficiência ventilatória e a baixa aptidão cardiorrespiratória em idosos: estudo observacional retrospectivo

Relationship of ventilatory inefficiency and low cardiorespiratory fitness in the elderly: a retrospective observational study

Resumo

Objetivos: Verificar se a ineficiência ventilatória está relacionada à baixa aptidão cardiorrespiratória em idosos. Identificar qual(ais) a(s) melhor(es) variável(ies) do teste Cardiopulmonar de Exercício (TCPE) para determinar essa relação. Método: Foi realizada uma análise retrospectiva de 1.357 TCPEs. Sessenta e um indivíduos acima de 60 anos de idade e com índice de eficiência ventilatória (VE/VCO₂) slope >35 foram selecionados e divididos em dois grupos: baixa aptidão cardiorrespiratória (VO₂<80% do previsto) (n=22) e aptidão cardiorrespiratória normal (VO₂>80% do previsto) (n=39). Foram comparados com um grupo controle de idosos saudáveis com aptidão cardiorrespiratória normal e VE/VCO₂ slope <35 (n=16), pareados por gênero, peso, altura e idade. Resultados: O consumo de oxigênio apresentou baixa correlação com o VE/VCO₂ slope (r= -0,35, p<0,01), moderada correlação com o ponto ótimo cardiorrespiratório (POC) (r= -0,59, p<0,001) e forte correlação com a variação da eficiência do consumo de oxigênio (OUES) (r=0,92, p<0,0001). Em relação à curva ROC, o VE/VCO₂ slope apresentou área sob a curva de 0,65, porém sem significância estatística (p>0,05); o POC apresentou área sob a curva de 0,84 (p<0,0001) e o OUES apresentou área sob a curva de 0,81 (p<0,0001). Conclusão: A ineficiência ventilatória está relacionada à baixa aptidão cardiorrespiratória em idosos, apenas quando medida pelas variáveis ponto ótimo cardiorrespiratório (POC) e variação da eficiência do consumo de oxigênio (OUES).

1 Universidade Federal da Paraíba, Laboratório de Exercício e Treinamento Físico Aplicado à Saúde. João Pessoa, PB, Brasil.
2 Marinha do Brasil, Hospital Central da Marinha. Rio de Janeiro, RJ, Brasil.
3 Hospital Lar, Departamento de Fisioterapia. João Pessoa, PB, Brasil.
4 Universidade de Brasília, Programa de Doutorado em Ciências e Tecnologias em Saúde. Brasília, DF, Brasil.

Os autores declaram não haver conflito na concepção desse trabalho.
Não houve financiamento na execução deste trabalho.

Correspondência: Murillo Frazão
murillo.frazao@gmail.com

http://dx.doi.org/10.1590/1981-22562019022.190025
INTRODUÇÃO

Com a senilidade o sistema respiratório sofre alterações anatômicas e fisiológicas que impactam diretamente na relação ventilação/perfusão pulmonar. O parênquima pulmonar perde seu suporte estrutural1. Alterações no tecido conjuntivo aumentam a rigidez da caixa torácica e reduzem o componente elástico dos pulmões, influenciando diretamente na mecânica respiratória2. Há ainda um aumento do espaço morto fisiológico, o que promove um aumento do “desperdício ventilatório”.

A ineficiência ventilatória surge quando as partes do sistema respiratório responsáveis pela troca de gases não funcionam adequadamente3. Alterações no tecido conjuntivo aumentam a rigidez da caixa torácica e reduzem o componente elástico dos pulmões, influenciando diretamente na mecânica respiratória2. Há ainda um aumento do espaço morto fisiológico, o que promove um aumento do “desperdício ventilatório”.

A avaliação integrada das respostas cardiorrespiratórias durante o exercício traz informações importantes sobre a eficiência ventilatória4. O Teste Cardiopulmonar de Exercício (TCPE) possibilita essa análise e fornece diversas variáveis5. Classicamente a variável mais utilizada para análise da eficiência ventilatória é a variação da ventilação pela variação da produção de gás carbônico (VE/VCO2 slope)6, podendo ser considerada o padrão ouro para esse tipo de avaliação, em situações patológicas9. Outras variáveis são utilizadas para essa análise, como a variação da eficiência do consumo de oxigênio - Oxygen Uptake Efficiency Slope (OUES)7,8 e o Ponto Ótimo Cardiorrespiratório (POC)10 (melhor relação entre a ventilação e o consumo de oxigênio), também são de grande relevância.

Atualmente, a aptidão cardiorrespiratória é tida como um sinal vital11 e, em modelos patológicos, a ineficiência ventilatória está relacionada a baixos valores de aptidão cardiorrespiratória (consumo de oxigênio)12. Com o avanço da idade, é esperada uma redução fisiológica do consumo máximo de oxigênio, porém situações patológicas relativamente comuns em idosos (doença pulmonar obstrutiva crônica e insuficiência cardíaca), promovem um incremento na redução do consumo de oxigênio13,14.

Em virtude das alterações fisiológicas do processo de envelhecimento no sistema respiratório, este estudo pretendeu verificar se a ineficiência ventilatória está relacionada à baixa aptidão cardiorrespiratória em idosos. O objetivo secundário foi identificar qual(ais) a(s) melhor(es) variável(ais) do TCPE para determinar essa relação.
MÉTODO

Trata-se de um estudo transversal, a partir da análise retrospectiva de 1357 TCPEs. Todos os TCPEs foram realizados por um único avaliador com expertise no exame. A análise foi realizada com dados obtidos em uma clínica especializada em avaliação cardiopulmonar no período de abril de 2012 a agosto de 2016.

Para tanto, foram selecionados exames que atingiram os seguintes critérios de inclusão: idade acima de 60 anos; VE/VCO2 slope >35 e ausência de limitações locomotoras que prejudicaram a realização do teste. Foi utilizada a variável VE/VCO2 slope para triagem dos idosos por ser uma medida padrão ouro de eficiência ventilatória. Foram excluídos da análise exames de pessoas que apresentaram algum relato de limitação locomotora.

Sessenta e um idosos foram divididos em dois grupos: baixa aptidão cardiorrespiratória (VO2<80% do previsto)15 (n=22) e aptidão cardiorrespiratória normal (VO2>80% do previsto) (n=39) e foram comparados com um grupo controle de idosos saudáveis com aptidão cardiorrespiratória normal e VE/VCO2 slope <35 (n=16), pareados por gênero, peso, altura e idade. Os idosos selecionados foram questionados sobre histórico (autorrelato) de doenças cardiopulmonares (ex.: doença pulmonar obstrutiva crônica, fibrose pulmonar, insuficiência cardíaca, hipertensão pulmonar, etc.) e se submeteram a uma avaliação antropométrica seguida do Teste Cardiopulmonar de Exercício.

Os procedimentos técnicos seguiram as orientações da American Thoracic Society/American College of Chest Physician4 para realização de testes em cicloergômetros. Os exames foram realizados em um cicloergômetro de frenagem eletromagnética (modelo Inbrasport CG-04; INBRAMED, Porto Alegre, Brasil). Cada indivíduo realizou um protocolo de rampa até o limite máximo de tolerância, iniciando sem carga e com taxa de incremento de carga selecionada individualmente (5-20 W/min). Os indivíduos foram fortemente encorajados por meio de estímulos verbais para atingirem seu esforço máximo. Para análise dos gases foi utilizado o analisador (modelo VO2000; MedGraphics, St. Paul, EUA), calibrado antes de cada exame conforme instruções do fabricante. Os dados foram coletados através do software (modelo ErgoMet 13; HW, Belo Horizonte, Brasil).

O relato de doenças cardiopulmonares foi registrado em valores absolutos e percentuais. Através dos dados do TCPE, as seguintes variáveis foram analisadas: carga de trabalho (WR), consumo de oxigênio (VO2), ventilação máxima (VE), pulso de oxigênio (PuO2), frequência cardíaca (FC), equivalentes ventilatórios de oxigênio e gás carbônico (VE/VO2 e VE/VCO2), índice de eficiência ventilatória (VE/VCO2 slope), ponto ótimo cardiorrespiratório (POC) e variação da eficiência do consumo de oxigênio (OUES). Os dados foram coletados a cada 10 segundos do protocolo de rampa. Após a coleta, os dados foram ajustados por um filtro (média de sete pontos) a fim de se evitar ruídos.

A normalidade e homogeneidade da amostra foram analisadas através dos testes de Shapiro-Wilk e Levene, respectivamente. Para avaliar as diferenças entre as medidas foi utilizada uma ANOVA one-way com post hoc de Tukey. As diferenças inter e intra grupos foram analisadas através de ANOVA two-way com post hoc de Tukey. A correlação das variáveis foi testada através das correlações de Pearson e Spearman. A sensibilidade e especificidade das variáveis para determinação de baixa aptidão cardiorrespiratória foi observada por análise da curva ROC (Receiver Operating Characteristic). A significância estatística foi aceita com valor de p<0,05.

A pesquisa obedeceu às normas da resolução 466/12 do Conselho Nacional de Saúde (CNS), submetendo-se a comitê de ética em pesquisa com número de parecer 2.319.091.

RESULTADOS

Os idosos avaliados apresentaram uma média de idade de 68±6 anos. 95% (21 de 22) dos idosos do grupo baixa aptidão cardiorrespiratória relataram presença de doença cardiopulmonar e 8% (três de 39) dos idosos do grupo aptidão cardiorrespiratória normal relataram presença de doença cardiopulmonar. As variáveis de pareamento: idade, peso, altura, índice de massa corporal e gênero apresentaram valores semelhantes em relação aos três grupos (p>0,05).
Ineficiência ventilatória em idosos

(Tabela 1). O grupo baixa aptidão cardiorrespiratória apresentou menores valores de consumo de oxigênio, pulso de oxigênio e carga de trabalho (p<0,01). O grupo aptidão cardiorrespiratória normal apresentou ventilação máxima superior aos demais grupos (p<0,01). A frequência cardíaca no pico do esforço não se mostrou diferente nos três grupos (p>0,05) (Tabela 2).

Tabela 1. Características antropométricas dos indivíduos estudados (N=77). João Pessoa, PB, 2016.

	Baixa Aptidão (n=22) Média ± dp	Normal Aptidão (n=39) Média ± dp	Controle (n=16) Média ± dp	Valor de p
Idade (anos)	71 ± 7	68 ± 5	68 ± 6	>0,05
Peso (kg)	74 ± 17	70 ± 13	68 ± 9	>0,05
Altura (cm)	161 ± 7	161 ± 8	162 ± 7	>0,05
IMC	28 ± 6	27 ± 5	26 ± 2	>0,05
Sexo (M/F)	12(51%) / 10(49%)	19(48%) / 20(52%)	7(49%) / 9(51%)	

IMC: índice de massa corporal. p>0,05 comparação intergrupos. ANOVA one-way com post hoc de Tukey.

Tabela 2. Dados básicos de exercício. João Pessoa, PB, 2016.

	Baixa Aptidão (n = 22) Média ± dp	Normal Aptidão (n = 39) Média ± dp	Controle (n = 16) Média ± dp	Valor de p
Consumo de oxigênio (L/min)	0,86 ± 0,3a	1,36 ± 0,4	1,39 ± 0,3	<0,01
Consumo de oxigênio (% pred)	59 ± 10a	101 ± 15	101 ± 11	<0,01
Pulso de oxigênio (mL/sis/min)	6 ± 2a	10 ± 2	10 ± 2	<0,01
Pulso de oxigênio (% pred)	64 ± 9a	110 ± 18	107 ± 16	<0,01
Ventilação máxima (L/min)	39 ± 13	53 ± 17b	44 ± 10	<0,01
Carga de Trabalho (w)	75 ± 37b	115 ± 47	113 ± 37	<0,01
FC pico do esforço (bat/min)	134 ± 17	137 ± 14	140 ± 13	>0,05

FC: frequência cardíaca; *p<0,01 comparado ao grupo normal aptidão e controle; †p<0,01 comparado ao grupo baixa aptidão e controle; ‡p>0,05 comparação intergrupos; ANOVA one-way com post hoc de Tukey.

Conforme demonstrado na Figura 1, os grupos apresentaram comportamentos variados em relação às variáveis de eficiência ventilatória. Os idosos com baixa aptidão cardiorrespiratória não apresentaram valores diferentes de VE/VCO₂ slope quando comparados aos idosos com aptidão cardiorrespiratória normal (p>0,05). Ambos apresentaram valores acima do observado no grupo controle (p<0,0001). Os idosos com baixa aptidão cardiorrespiratória apresentaram valores de POC maiores que os idosos com aptidão cardiorrespiratória normal e o grupo controle (p<0,0001). Houve diferenças entre o POC do grupo com aptidão cardiorrespiratória normal e o grupo controle (p<0,01). Em relação ao OUES, os idosos com baixa aptidão cardiorrespiratória apresentaram valores significativamente menores quando comparados aos idosos com aptidão cardiorrespiratória normal e ao grupo controle (p<0,0001). Não houve diferenças entre os com aptidão cardiorrespiratória normal e o grupo controle (p>0,05).

Em relação aos equivalentes ventilatórios de oxigênio, os idosos com baixa aptidão cardiorrespiratória apresentaram valores superiores aos vistos nos idosos com aptidão cardiorrespiratória normal e no grupo controle em todas as cargas de trabalho (p<0,0001). Os idosos com aptidão normal apresentaram valores acima do grupo.
controle a 25%, 50%, 75% e 100% da carga de trabalho (Figura 2). Em relação aos equivalentes ventilatórios de gás carbônico, os idosos com baixa aptidão cardiorrespiratória apresentaram valores superiores aos vistos nos idosos com aptidão cardiorrespiratória normal e no grupo controle a 0%, 25% e 50% da carga de trabalho ($p<0.0001$). A 75% e 100% da carga de trabalho não houve diferenças em comparação ao grupo com aptidão cardiorrespiratória normal ($p>0.05$). Os idosos com aptidão cardiorrespiratória normal apresentaram valores acima do grupo controle a 25%, 50%, 75% e 100% da carga de trabalho (Figura 2).

O consumo de oxigênio apresentou baixa correlação com o VE/VCO$_2$ slope, moderada correlação com o POC e forte correlação com o OUES (Figura 3). Em relação à curva ROC para prever baixa aptidão cardiorrespiratória, o VE/VCO$_2$ slope apresentou uma área sob a curva sem significância estatística ($p>0.05$). O POC apresentou uma área sob a curva de 0.84 ($p<0.0001$), com o valor de 31 como melhor ponto de sensibilidade e especificidade. O OUES apresentou uma área sob a curva de 0.81 ($p<0.0001$) com o valor de 1224 como melhor ponto de sensibilidade e especificidade (Figura 4).

Figura 1. Comportamento das variáveis de eficiência ventilatória.

Figura 2. Equivalentes ventilatórios de oxigênio e dióxido de carbono.
Ineficiência ventilatória em idosos

DISCUSSÃO

O presente estudo demonstrou que a elevação do VE/VCO₂ slope não está necessariamente associada à baixa aptidão cardiorrespiratória em idosos. A elevação do POC e a redução do OUES estão associadas à baixa aptidão cardiorrespiratória em idosos. Essas variáveis de eficiência ventilatória, POC e OUES, demonstraram maior sensibilidade e especificidade para predizer baixa aptidão cardiorrespiratória em idosos.

A ineficiência ventilatória está, geralmente, associada a desfechos clínicos desfavoráveis (aumento de morbi-mortalidade). Tradicionalmente, a variável VE/VCO₂ slope é a mais utilizada para essa análise. Em modelos patológicos, VE/VCO₂ slope elevado está relacionado à hipertensão pulmonar, baixa aptidão cardiorrespiratória e aumento de mortalidade.

Apesar disto, a presença de VE/VCO₂ slope elevado com aptidão cardiorrespiratória normal já foi relatada. Guazzi et al. analisaram cem pacientes com insuficiência cardíaca e não observaram correlação entre VE/VCO₂ slope elevado e o VO₂. Trinta e cinco por cento dos pacientes analisados apresentaram valores normais de aptidão cardiorrespiratória, o que corrobora os achados desta pesquisa. Nos idosos avaliados neste estudo, o VE/VCO₂ slope também não foi capaz de predizer baixa aptidão cardiorrespiratória.

O comportamento típico dos equivalentes ventilatórios descreve um gráfico com formato de parábola. Quanto menor for essa parábola, pior será a eficiência ventilatória. Nesta pesquisa, os idosos que apresentaram menor parábola foram os com baixa aptidão cardiorrespiratória.

Em teoria, o momento em que ocorre o POC (menor valor de VE/VO₂) corresponde a melhor
relação ventilação/perfusão, ou seja, representa a máxima integração entre os sistemas respiratório e cardiovascular\(^ {10}\). O POC é detectado de maneira prática e ocorre a, relativamente, baixas intensidades de esforço (30-50\% VO\(_2\) pico). Valores elevados de POC indicam inefficiência ventilatória, uma vez que há um aumento da ventilação para o consumo de um litro de oxigênio. Nos idosos avaliados no presente estudo, foi observada uma correlação entre a inefficiência ventilatória, dada por elevação do POC, e baixa aptidão cardiorrespiratória. Além disso, o POC apresentou boa sensibilidade e especificidade para predizer baixa aptidão cardiorrespiratória. Em uma pesquisa retrospectiva com 3331 TCPEs, englobando indivíduos saudáveis e doentes crônicos, Ramos e Araújo\(^ {23}\) também demonstraram que sujeitos com valores elevados de POC apresentaram menor aptidão cardiorrespiratória, além de maior mortalidade.

Assim como o POC, o OUES não requer esforço máximo para ser determinado. Ele reflete a relação entre a absorção de oxigênio e a ventilação total durante o exercício incremental, sendo bem descrito por uma única função exponencial. A regressão logarítmica é linear em quase todos os indivíduos, por isto não requer um esforço máximo para sua estimativa\(^ {7}\). O OUES tem excelente confiabilidade teste-reteste, podendo servir como medida complementar ou alternativa de aptidão cardiorrespiratória\(^ {24}\). Isto é particularmente importante para indivíduos que têm dificuldade em realizar esforço máximo, como os idosos. Recentemente, Dougherty et al.\(^ {25}\) determinaram a boa acurácia do OUES para predizer aptidão cardiorrespiratória nessa população específica, o que está em consonância com os dados apresentados nesta pesquisa.

O presente estudo teve algumas limitações. Um fator limitante foi a ausência de dados relativos à pressão de artéria pulmonar dos idosos, que é uma variável diretamente relacionada aos marcadores de eficiência ventilatória. Outros fatores limitantes foram inerentes à própria análise retrospectiva, a exemplo do quantitativo da amostra (limitado aos exames já realizados, não podendo ser aumentado).

CONCLUSÃO

A inefficiência ventilatória está relacionada à baixa aptidão cardiorrespiratória em idosos, apenas quando medida pelas variáveis ponto ótimo cardiorrespiratório (POC) e variação da eficiência do consumo de oxigênio (OUES). Essas variáveis mostraram-se mais acuradas para predizer essa baixa aptidão cardiorrespiratória. Por serem medidas submáximas, são excelentes marcadores de aptidão cardiorrespiratória para idosos, um público que, muitas vezes, apresenta limitações para a realização do teste de esforço máximo.

REFERÊNCIAS

1. Sicard D, Haak AJ, Choi KM, Craig AR, Frederburgh LE, Tschumperlin DJ. Aging and anatomical variations in lung tissue stiffness. Am J Physiol Lung Cell Mol Physiol. 2018;314(6):946-55.
2. Pascotini FS, Fedosse E, Ramos MC, Ribeiro VV, Trevisan ME. Força muscular respiratória, função pulmonar e expansibilidade toracoabdominal em idosos e sua relação com o estado nutricional. Fisioter Pesqui. 2016;23(4):416-22.
3. Petersson J, Glenny RW. Gas exchange and ventilation - perfusion relationships in the lung. Eur Respir J. 2014;44:1023-41.
4. Ramos PS, Araújo CGS. Análise da estabilidade de uma variável submáxima em teste cardiopulmonar de exercício: ponto ótimo cardiorrespiratório. Eur Respir J. 2013;18(5):585-93.
5. Neder JA, Berton DC, Müller PT, Elbeihairy AF, Rocha A, Palange P, et al. Canadian Respiratory Research Network. Ventilatory inefficiency and exertional dyspnea in early chronic obstructive pulmonary disease. Ann Am Thorac Soc. 2017;14(Suppl 1):22-9.
6. Weatherald J, Farina S, Bruno N, Laveneziana P. Cardiopulmonary Exercise Testing in Pulmonary Hypertension. Ann Am Thorac Soc. 2017;14 (Suppl 1):84-92.
7. Hollenberg M, Tager IB. Oxygen uptake efficiency Slope: an index of exercise performance and cardiopulmonary reserve requiring only submaximal exercise. J Am Coll Cardiol. 2000;36(1):195-201.

8. Baba R, Nagashima M, Goto M, Nagano Y, Yokota M, Tauchi N, et al. Oxygen uptake efficiency Slope: a new index of cardiopulmonary, functional reserve derived from the relation between oxygen uptake and minute ventilation during incremental exercise. J Am Cad Cardiol. 1996;28(6):1567-72.

9. Guazzi M, Adams V, Conraads V, Halle M, Mezzani A, Vanhees L, et al. Clinical recommendations for cardiopulmonary exercise testing data assessment in specific patient populations. Circulation. 2012;126:2261-74.

10. Ramos PS, Ricardo DR, Araujo CG. Cardiorespiratory optimal point: a submaximal variable of the cardiopulmonary exercise testing. Arq Bras Cardiol. 2012;99(5):988-96.

11. Ross R, Blair SN, Arena R, Church TS, Després JP, Franklin BA, et al. Importance of assessing cardiopulmonary fitness in clinical practice: a case for fitness as a clinical vital sign. Circulation. 2016;134(24):653-99.

12. Teopompi E, Tzani P, Aiello M, Ramponi S, Visca D, Gioia MR, et al. Ventilatory response to carbon dioxide output in subjects with congestive heart failure and in patients with COPD with comparable exercise capacity. Respir Care. 2014;59(7):1157-9.

13. Frazão M, Silva PE, Frazão W, da Silva VZM, Correia Jr MAV, Gomes Neto M. Dynamic hyperinflation impairs cardiac performance during exercise in COPD. J Cardiopulm Rehabil Prev. 2019;39(3):187-92.

14. Clark AL, Davies LC, Francis DP, Coats AJS. Ventilatory capacity and exercise tolerance in patients with chronic stable heart failure. Eur J Heart Fail. 2000;2:47-51.

15. Neder JA, Nery LE, Castelo A, Andreoni S, Lerario MC, Sachs A, et al. Prediction of metabolic and cardiopulmonary responses to maximum cycle ergometry: a randomised study. Eur Respir J. 1999;14(6):1304-13.

16. Mezzani A. Cardiopulmonary Exercise Testing: basics of methodology and measurements. Ann Am Thorac Soc. 2017;14:3-11.

17. Guazzi M, de Vita S, Cardano P, Barlera S, Guazzi MD. Normalization for peak oxygen uptake increases the prognostic power of the ventilatory response to exercise in patients with chronic heart failure. Am Heart J. 2003;146(3):542-8.

18. Klaassen SHC, Liu LCY, Hummel YM, Damman K, Van der Meer P, Voors AA, et al. Clinical and hemodynamic correlates and prognostic value of VE/VCO2 slope in patients with heart failure with preserved ejection fraction and pulmonary hypertension. J Card Fail. 2017;23(11):777-82.

19. Canada JM, Trankle CR, Buckley LF, Carbone S, Abouzaki NA, Kadariya D, et al. Severely impaired cardiopulmonary fitness in patients with recently decompensated systolic heart failure. Am J Cardiol. 2017;120(10):1854-7.

20. Shen Y, Zhang X, Ma W, Song H, Gong Z, Wang Q, et al. VE/VCO2 slope and its prognostic value in patients with chronic heart failure. Exp Ther Med. 2015;9(4):1407-12.

21. Shafiek H, Valera JL, Togores B, Torrecilla JA, Sauleda J, Cosio BG. Risk of postoperative complications in chronic obstructive lung diseases patients considered fit for lung cancer surgery: beyond oxygen consumption. Eur J Cardiothorac Surg. 2016;50(4):772-9.

22. Nussair S. Interpreting the incremental cardiopulmonary exercise test. Am J Cardiol. 2017;119(3):497-500.

23. Ramos PS, Araújo CG. Cardiorespiratory optimal point during exercise testing as a predictor of all-cause mortality. Rev Port Cardiol. 2017;36(4):261-9.

24. Laethem CV, de Sutter J, Peersman W, Calders P. Intratest reliability and test–retest reproducibility of the oxygen uptake efficiency slope in healthy participants. Eur J Cardiovasc Prev Rehabil. 2009;16:493-8.

25. Dougherty RJ, Lindheimer JB, Stegner AJ, Van Riper S, Okonkwo OC, Cook DB. An Objective method to accurately measure cardiopulmonary fitness in older adults who cannot satisfy widely used oxygen consumption criteria. J Alzheimers Dis. 2018;61(2):601-11.