Missense mutation in selenocysteine synthase causes cardio-respiratory failure and perinatal death in mice which can be compensated by selenium-independent GPX4

Noelia Fradejas-Villar a, Wenchao Zhao a, #, Uschi Reuter a, Michael Doengi b, Irina Ingold c, 1, Simon Bohleber a, Marcus Conrad c, d, Ulrich Schweizer a, *

a Institut für Biochemie und Molekularbiologie, Universitätssäklinikum Bonn, Bonn, Germany
b Institut für Physiologie, Universitätssäklinikum Bonn, Bonn, Germany
c Helmholtz Zentrum München, Institute of Metabolism and Cell Death, 85764, Neuherberg, Germany
d Pirogov Russian National Research Medical University, Laboratory of Experimental Oncology, Moscow, 117997, Russia

present addresses: 3. Medical Clinic, Klinikum rechts der Isar, Technische Universität München, Munich; Germany.
1 present addresses: Dept. Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, SE-17177, Sweden.

ARTICLE INFO

Keywords:
GPX4
Sedaghatian disease
Selenoprotein
NRF2
SEPSECS

ABSTRACT

Selenoproteins are a small family of proteins containing the trace element selenium in form of the rare amino acid selenocysteine (Sec), which is decoded by the UGA codon. In humans, a number of pathogenic variants in genes encoding distinct selenoproteins or selenoprotein biosynthesis factors have been identified. Pathogenic variants in selenocysteine synthase (SEPSECS), which catalyzes the last step in Sec-rRNA[Ser][Sec] biosynthesis, were reported in children suffering from progressive cerebello-cerebral atrophy. To understand the pathomechanism associated with SEPSECS deficiency, we generated a novel mouse model recapitulating the respective human pathogenic p.Y334C variant in the murine Sepsecs gene (SepsecsY334C). Unlike in patients, pups homozygous for the p.Y334C variant died perinatally with signs of cardio-respiratory failure. Perinatal death is reminiscent of the Sedaghatian spondylometaphyseal dysplasia disorder in humans, which is caused by pathogenic variants in the gene encoding the selenoprotein and key ferroptosis regulator glutathione peroxidase 4 (GPX4). Protein expression levels of distinct selenoproteins in SepsecsY334C/Y334C mice were found to be generally reduced in brain and isolated cortical neurons, while transcriptomics analysis uncovered an upregulation of NRF2-regulated genes. Crossbreeding of SepsecsY334C/Y334C mice with mice harboring a targeted mutation of the catalytically active Sec to Cys in GPX4 rescued perinatal death of SepsecsY334C/Y334C mice, showing that the cardio-respiratory defects of SepsecsY334C/Y334C mice were caused by the lack of GPX4. Like in SepsecsY334C/Y334C mice, selenoprotein expression levels remained low and NRF2-regulated genes remained highly expressed in these compound mutant mice, indicating that selenium-independent GPX4, along with a sustained antioxidant response are sufficient to compensate for dysfunctional Sec-rRNA[Ser][Sec] biosynthesis. Our findings imply that children with pathogenic variants in SEPSECS or GPX4 may even benefit from treatments that incompletely compensate for impaired GPX4 activity.

1. Introduction

Selenoproteins are characterized as proteins containing the rare proteinogenic amino acid selenocysteine (Sec), which differs from cysteine in just one atom, selenium (Se) replacing sulfur. Yet, both the biosynthesis of the Sec-loaded rRNA[Ser][Sec] and the co-translational incorporation of Sec into the nascent polypeptide chain are highly complex processes. Sec is co-translationally incorporated in response to a UGA/Sec codon in their mRNA [1]. In eukaryotes, a stem loop-like secondary structure in the 3’ untranslated region of the mRNA, known as selenocysteine incorporation sequence (SECIS) element, facilitates binding of SECIS-binding protein 2 (SECISBP2) to suppress translation termination and to afford Sec-incorporation at the UGA codon [2]. The essentiality of the trace element Se was first reported in vitamin
E– and Se-deficient rats and then uncovered to be a close functional cooperation between vitamin E and the selenoenzyme glutathione peroxidase 4 (GPX4) in reducing lipid peroxides in cellular membranes [3–5]. Se-deficiency has been associated with diseases in humans and livestock [6]. Organ systems that require adequate Se levels and expression of selenoproteins are the musculo-skeletal, nervous, hematopoietic, and endocrine systems [7–11]. Accordingly, the first Sec-containing enzymes discovered were glutathione peroxidase (GPX) s, iodothyronine deiodinases (DIO), thioredoxin reductases (TXNRD), and methionine sulfoxide reductase B1, all carrying Sec in their catalytic centers. Genomic analyses showed that the human and mouse genomes contain 25 and 24 genes encoding selenoproteins, respectively [12]. Through systematically targeting selenoproteins in the mouse, the functions of individual selenoproteins were elucidated and several selenoproteins were found to be essential for mouse development. Initially, it was proposed that the roles of selenoenzymes were mainly concerned with the reduction of peroxides and other oxidized molecules, and in fact several selenoprotein-deficient mouse models showed an induction of nuclear factor erythroid 2–related factor 2 (NRF2)-regulated genes, including Se-independent peroxidases and glutathione-S-transferases [13–15]. The role of Sec in other selenoproteins, however, appears to be more diverse with Sec serving transport, structural or regulatory roles, although peroxidase functions on undefined substrates are still possible [7,16–18].

Through human genetics, an increasing number of individuals are being diagnosed with inborn errors of selenoprotein biosynthesis or with pathogenic variants in genes encoding selenoproteins [19], further highlighting the importance of selenoprotein function for human health. Pathogenic variants in the selenoprotein biosynthesis factor SECISBP2 cause endocaridio, musculo-skeletal and immunological symptoms [20,21]. In contrast, pathogenic variants in selenocysteine synthase (SEPSECS), the enzyme catalyzing the last step in Sec-tRNA\text{Ser\text{\textunderscore}Sec} biosynthesis, mainly affect the nervous system and, depending on the variant, cause fatal neurodegeneration. For instance, the homozygous p.Y334C variant in SEPSECS causes progressive cerebello-cerebral atrophy in children, a neurodegenerative disorder now called pontocerebellar hypoplasia type 2D (PCH2D) [22,23]. SEPSECS is a vitamin B\text{\textsubscript{6}}-dependent enzyme that binds phospho-seryl-tRNA\text{Ser\text{\textunderscore}Sec} and uses selenophosphate to convert it to Sec-tRNA\text{Ser\text{\textunderscore}Sec} for selenoprotein biosynthesis. It remains an open question why pathogenic variants in two genes in the same pathway cause two apparently different syndromes with either predominantly endocrine or neurological symptoms.

Results from gene targeting in mice and phenotypes of humans with pathogenic variants in respective genes are similar [9]. However, there are also notable differences: inactivation of the Gpx4, Tnxrd1, Tnxrd2, Selenot, and Selenoi genes in mice is early embryonic lethal [26–33]. Patients carrying homozygous pathogenic variants causing premature termination in Gpx4 are born, but are diagnosed with Sedaghatian spondylophyseal dysplasia and die of cardio-respiratory failure [34]. Patients carrying pathogenic variants in TNXRD2 show isolated congenital glucocorticoid deficiency [35], and patients with pathogenic variants that reduce the activity of TNXRD1 show generalized seizures [36]. Likewise, inactivation of Secisbp2 in mice is embryonic lethal, while neuron-specific inactivation of Secisbp2 leads to neurological deficits [15,37]. However, neurological phenotypes are not a general finding in patients carrying pathogenic variants in SECISBP2 [38]. In order to better understand the consequences of SEPSECS-deficiency, we have generated a Sepsec\text{Y334C/Y334C} mouse model. These mice are born at the expected Mendelian frequency, but exhibit cardio-respiratory failure and die during the first day of life. This observation resembles patients with Sedaghatian disease caused by lack of GPX4 activity. We rescued Sepsec\text{Y334C/Y334C} mice with transgenic expression of Gpx4Cy, in which the Sec codon is replaced by a SEPSECS-independent Cys codon [39]. Such mice still show impaired selenoprotein expression and induction of NRF2-target genes in the heart and in the brain, but demonstrate that the selenoprotein most acutely needed after birth is GPX4. These findings may have consequences for attempts to treat inborn disorders of selenoprotein expression.

2. Material and methods

Nomenclature of selenoproteins follows the conventions as described in Gladyshev et al. [40].

2.1. Construction of targeting vectors by recombineering in bacteria

The methodology used was recently described [41]. Briefly, homologous arms (5′ (exon 5) and 3′ (exon 10)) were amplified by PCR using a BAC vector containing the Sepsecs gene (Source Bioscience) as a template. Primers used for PCR (see Table S1) contained the following restriction sites (XhoI and Clal for exon 5 and Clal and Xmal for exon 10) to facilitate subcloning into pGEMT-Easy vector (Promega). Both homologous arms were subsequently cloned stepwise into pDTA vector as detailed in Fig. S1. The mutation p.Y334C in exon 8 was introduced by site-direct mutagenesis following the manufacturer’s instructions (QuiKChange II Site-Directed Mutagenesis Kit, Agilent Technologies). Two silent mutations (p.I324 and p.T325) were also introduced upstream of the p.Y334C mutation in order to create an AclI restriction site, which facilitates subsequent genotyping. Finally, these arms were cloned stepwise into pFRT Dual Neo vector to create pFRT Dual Neo,Sepsecs_Y334C vector.

Recombineering in DH10B bacteria containing the BAC-Sepsecs vector, the mini \(\lambda \) Tet plasmid, and the pDTA vector introduced the Sepsecs sequence from exon 5 to exon 10 into the pDTA vector (pDTA_Sepsecs_e5-e10) (See Fig. S1). DH10B bacteria containing pDTA_Sepsecs_e5-e10 vector and the mini \(\lambda \) Tet plasmid were transformed with pFRT Dual Neo_Sepsecs_Y334C. Another recombination step introduced the Y334C point mutation and the neo-cassette into pDTA_Sepsecs_e5-e10 vector to finally create the construct named pDTA_Sepsecs,e5-e10_FRT Dual Neo_Sepsecs,Y334C (Fig. S1). This construct was linearized with PacI and electroporated into ES cells to create our mouse model.

2.2. Generation of the mouse models

Generation, breeding, and analyses were done under permits by state authorities GO176/07 (LAGESCO Berlin), AZ 02.04.2014.A436, and 81–02.04.2019.A447 (LANUV Recklinghausen) according to EU Directive 2010/63/EU for animal experiments.

IDG 3.2 murine hybrid ES cells (129S6/SvEvTac x C57Bl/6J) were electroporated with 30 µg of linearized targeting vector, pDTA_Sepsecs_e5-e10_FRT Dual Neo_Sepsecs_Y334C. Fifty neomycin-resistant ES cell clones were analyzed by Southern-blotting. Based on the karyotype, one ES clone was microinjected into C57Bl/6 female blastocysts. Genotyping of offspring from male chimeras and C57Bl/6 females confirmed germline transmission. The selection cassette was removed by breeding heterozygous mice with a FLPe-deleter mouse. Gpx4Cys mice have been described previously [39] and were crossed with SepsecsY334C. The SepsecsY334C allele was also backcrossed for 5 generations on a 129Sv background. All SepsecsY334C/Y334C pups had the same phenotype as on the C57Bl/6 genetic background, and all subsequent analyses were performed with mice from the C57Bl/6 line.

2.3. Southern-blot

The procedure was carried out similarly as described in Ref. [41]. Briefly, 10 µg of genomic DNA from ES cell clones were digested with Swal and EcoRV. After electrophoresis, DNA was depurinated and transferred to a nylon membrane (Hybond-N+, GE Healthcare)
overnight. After cross-linking, the membrane was prehybridized with Church buffer for 1h at 65 °C. The 3′ Probe was cloned from BAC_Sepsecs vector into pGEMT-Easy vector using the primers in Table S1. Fifty μCi of [α-32P]dCTP (PerkinElmer) and Prime-It RmT random primer labeling kit (Agilent Technologies) were used to label the probe. Unincorporated labelled nucleotides were removed using Illustra microspin G-50 columns (Ge Healthcare). After hybridization overnight, the membrane was washed three times at 65 °C. Exposure for two days allowed visualization using a BAS 1800 II phosphoimager (Fujifilm).

2.4. Western-blot

50 μg of protein in RIPA buffer with protease and phosphatase inhibitors (Roche) were electrophoresed through a SDS-polyacrylamide gel and transferred onto a nitrocellulose membrane (GE Healthcare). Transfer was confirmed by Ponceau staining. Membrane blocking was performed following the recommendations of antibody suppliers. Antibodies and dilutions used for this study are listed in Table S2 (Supplementary material). Detection was performed by Fusion Solo imaging system (Vilber Lourmat Deutschland GmbH) using horseradish peroxidase (HRP) conjugated anti-rabbit or anti-mouse antibodies (Jackson ImmunoTech) and the enhanced HRP chemiluminescence substrate SuperSignal ™ West Dura (Thermo Fisher Scientific).

2.5. Alcian blue-Alizarin red staining

After removing the skin and organs, specimens were fixed in 95% ethanol for 4 days. Then they were stained with Alcian blue solution (0.03% Alcian blue; 80% ethanol; 20% acetic acid) for 3 days. After keeping the specimens for 8 h in 95% ethanol, they were rocking in a solution of 95% ethanol and 2% KOH for 16 h. This solution was replaced by Alizarin red solution (0.03% Alizarin red, 1% KOH) for 24 h. Skeletons were cleared in clearing solution (1% KOH; 20% glycerol) for 5 days. After that, the skeletons were transferred to a solution of 1:1 glycerol:95% ethanol for 1 day. Finally, the skeletons were preserved in 100% glycerol until pictures were taken and the lengths of bones were measured using NIS elements BR software (Nikon).

2.6. Hematoxylin and eosin staining

Hearts from pups were dissected and kept for 1 h in 4% PFA. Tissue was dehydrated and embedded in paraffin. Sections of 4 μm were cut with a microtome (Leica RM2555). After deparaffination, tissue was stained with hematoxylin and eosin. Pictures were taken and the wall thickness of the left ventricle was measured using NIS elements BR software (Nikon).
2.7. Cortical neuron culture

The procedure to prepare cortical neuron cultures from individual pup cortices was adopted from Beaudoin et al. [42].

2.8. Astrocyte culture

Astrocytes were cultured as described in Ref. [43]. Briefly, brains from newborn pups were dissected. Cortices were minced and mechanically disaggregated in DMEM-F12 supplemented with 10% FCS and 1% penicillin/streptomycin (Lonza). Cells were cultured in poly-L-lysine coated flasks (TPP) for 15 days. Flasks were shaken overnight in order to detach microglial cells. Astrocytes were subcultured in 100 mm plates before they were treated with PLP and sodium selenite (Sigma).

2.9. 75Se-labeling

The procedure was performed as described in Ref. [39]. Neuron cultures grown in 100 mm plates (TPP, Switzerland) were labelled with 10 μCi/plate of radioactive Na2[75Se]O3 (Polatom) overnight. Cell lysates were collected with RIPA buffer. Electrophoresis in SDS-PAGE was performed with 50 μg of protein. To ascertain equal loading, the gel was stained with Coomassie brilliant blue. The gel was dried (gel dryer (Bio-Rad)) and exposed to a Phosphoimager screen. The autoradiography was developed by a BAS-1800 II Phosphoimager (Fujifilm).

2.10. Plethysmography and electrocardiogram

Plethysmography was performed by placing newborn pups into a 5 ml chamber (syringe) connected to a pressure sensor. Adult mice were weighed and anesthetized with ketamine-xylazine at 100 and 10 mg/kg, respectively before plethysmography in a 50 ml chamber. Transduced signals were amplified using a Dual Bio Amp amplifier (AD Instruments) and digitized using Power Lab 4/26 DAQ hardware and Lab Chart 8 software (AD Instruments). Pups were acclimatized to the testing environment, before measurements were recorded for 5 min. No acclimatization was necessary for adult mice. Since pups were unrestrained, pressure changes due to movements were noted and excluded from the measurements.

Fig. 2. Phenotypic features of SepsecsY334C/Y334C mice. A) Representative plethysmograms (left) and electrocardiograms (right) of wild-type (WT), SepsecsY334C/Y334C (Het) and SepsecsY334C/Y334C (Y334C) newborn mice in the morning (sun symbol) and in the evening (moon symbol) of postnatal day 1. SepsecsY334C/Y334C pups showed no differences within the first hours after birth. However, differences of SepsecsY334C/Y334C pups are evident when they became cyanotic towards the end of their first day of life. Infrequent and shallow breathing as well as bradycardia and low QRS voltage in SepsecsY334C/Y334C mice compared to their litter-mates. B) Respiration rate was measured at midday (sun symbol) and in the evening (moon symbol) of postnatal day 1. BPM: respirations per minute. One-way ANOVA. SD: standard deviation. C) Heart rate was calculated at the same time points as in B. BPM: beats per minute. One-way ANOVA. D) Absence of milk spots in SepsecsY334C/Y334C pups (Y334C, arrow). E) Representative pictures of limbs from wild type (WT) and SepsecsY334C/Y334C (Y334C) pups stained with alcian blue and alizarin red. Alcian blue stains cartilage and alizarin red stains bone. Lengths of femur, tibia, and fibula and the lengths of humerus, radius and ulna, were determined. Scale is indicated in each picture as well as the length of each bone in micrometers. F) Bone lengths were not significantly different among genotypes. Means ± standard error of the mean. Numbers of animals are represented in the graph. G) Representative hematoxylin-eosin staining of cardiac ventricles from wild-type and SepsecsY334C/Y334C pups on P1. White bars represent measurements of the left ventricular wall thickness. No difference in left ventricular wall thickness was found between genotypes. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

Fig. 3. Selenoprotein expression in SepsecsY334C/Y334C mice is tissue dependent. A) Liver and kidney lysates from wild-type (WT), heterozygous (Het) and homozygous (Y334C) newborn pups were assessed for the expression of several selenoproteins. Beta-actin was used as loading control. B) Analysis of serum selenoproteins (SELENOP and GPX3). Ponceau red was used as loading control. C) Expression of selenoproteins in hearts from newborn mice. Beta actin was used as loading control. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
respiration rate analysis. Pups that moved constantly were removed from the chamber and a second attempt was performed.

2.11. RNA extraction and sequencing

RNA from different mouse tissues was extracted using Trizol (Invitrogen) following the manufacturer’s instructions. 3′-mRNA sequencing was performed by the Next Generation Sequencing (NGS) Core Facility of the Medical Faculty of the University of Bonn. Libraries were prepared using the QuantSeq 3′-mRNA-Seq Fw. Library Prep Kit (Lexogen, New Hampshire, United States) and the data was preprocessed using the options recommended by the manufacturer. Quality control was performed using fastqc v0.11.8. STAR aligner 2.6.0a (using the options recommended by the manufacturer) was used for alignment against the GRCm38 mouse (Ensembl release 102) genome retrieved from Ensembl. Raw data and raw counts can be obtained from GEO (GSE181852). The R-package DESeq2 was used for statistical analysis, as recommended by the provider (normalization of raw counts, dispersion estimation and negative binomial Wald test with Benjamini-Hochberg multiple test correction). Adjusted p-values < 0.05 were defined as significant.

3. Results

3.1. The pathogenic variant p.Y334C in the murine Sepsecs gene causes perinatal lethality

To recapitulate the human pathogenic variant in the murine Sepsecs gene [22], we introduced the p.Y334C variant into exon 8 of the murine Sepsecs locus at a position that is conserved among mammals/vertebrates (Fig. 1A–B). For gene targeting, an FRT-flanked neo-phosphotransferase II (neo) gene was inserted into intron 8, along with its own promoter and polyadenylation signal. Mice retaining the neo gene are designated Sepsecs neo. Intercrosses of Sepsecs +/neo mice never yielded viable offspring with a Sepsecs neo/neo genotype (17 litters; 36 Sepsecs +/+; 68 Sepsecs +/neo; 0 Sepsecs neo/neo, expected were 35). We therefore isolated embryos from these matings and found that Sepsecs neo/neo embryos remained arrested at Theiler stage (TS) 8 on embryonic day 8, while Sepsecs +/neo and wild-type littermates developed normally to reach TS15 on the same day (Fig. 1C). The early embryonic failure is reminiscent of mice carrying homozygous null mutations in Secisbp2 [15], Txnrd1 [29], Txnrd2 [28], Selenoi [30], Selenot [33], and Gpx4 [26,27,31,44] suggesting that the neo gene in intron 8 disrupts the function of the Sepsecs gene. Upon FLPe-mediated removal of the neo gene and associated sequences (Fig. 1A), Sepsecs Y334C/Y334C mice were intercrossed, and these matings yielded life born Sepsecs Y334C/Y334C mice close to the expected Mendelian ratio (33 Sepsecs Y334C/Y334C mice out of 102188)
127 life-born pups). Sepsecs^{Y334C/Y334C} pups had a 12 ± 8.8% decreased body weight at birth (Fig. 1D) and all p.Y334C homozygous pups invariably died during their first day of life, after becoming cyanotic (Fig. 1E and F).

This phenotype is reminiscent of the cardio-respiratory failure of children with a homozygous pathogenic variant leading to premature termination in the gene encoding the selenoprotein glutathione peroxidase 4 (GPX4) [34]. We therefore assessed the breathing pattern of newborn mice by plethysmography at noon of the day of birth and in the late evening of the same day (Fig. 2A left panel and 2B). We found that Sepsecs^{Y334C/Y334C} mice initially had normal breathing frequency at noon, but displayed shallow and irregular breathing at less than half of the frequency of wild-type and heterozygous litter mates at the end of the day (Fig. 2A and B). Electrocardiography showed that the heart rate of the homozygous mutant pups was not different from controls when measured several hours after birth, but decreased later on the same day when cyanosis occurred (Fig. 2A right panel and 2C). This observation is compatible with an atrio-ventricular block caused by hypoxia, although we did not attempt to further investigate the exact pathomechanism of bradycardia. Another observation was the absence of “milk spots” in Sepsecs^{Y334C/Y334C} mice (Fig. 2D). Milk spots are the visible filling of the stomach with milk in postnatal pups. While all litter-mates showed the milk spot, none of the 33 Sepsecs^{Y334C/Y334C} mice did. Absence of a milk spot might indicate an inability to suckle, i.e. a dysfunction of motor-neurons or muscular weakness. We ruled out the alternative explanation that mothers abandoned their homozygous pups after birth. The absence of suckling may explain some of the body weight difference (Fig. 1D). An obvious phenotype in children born with Sedaghatian disease is the stunted growth of long bones [34,45]. We therefore stained the skeleton of newborn Sepsecs^{Y334C/Y334C} mice with alizarin red and alcian blue and measured the lengths of the long bones of the limbs (Fig. 2E). In comparison to wild-type and heterozygous Sepsecs^{Y334C/Y334C} mice, homozygous Sepsecs^{Y334C/Y334C} mice did not show any differences in bone length (Fig. 2F). Thus, we did not further investigate a potential phenotype in the cartilage. Previously we described perinatal death with failure to suckle of mice with a heart-specific inactivation of Txnrd2 [28]. Histological analysis of hearts from Sepsecs^{Y334C/Y334C} mice did not support the notion that reduced TXNRD2 activity leads to cardiac hyperthrophy, since left ventricular wall thickness remained unaltered in the mutant pups (Fig. 2G).

3.2. Organ-specific impact of the p.Y334C mutation on selenoprotein expression

We next asked how the p.Y334C variant in the Sepsecs gene may impact on the expression of selenoproteins in Sepsecs^{Y334C/Y334C} mice. Western blot analysis of a panel of selenoproteins at postnatal day 1 revealed surprisingly little effect of the mutation in liver. SELENOW showed the clearest reduction among the selenoproteins analyzed, although this effect was modest. In kidney the effect was clearer, although selenoproteins like GPX4 still only showed a moderate reduction (Fig. 3A). Liver and kidney secrete two plasma selenoproteins, SELENOP and GPX3, respectively, and expression of both was not reduced in the homozygous Sepsecs^{Y334C/Y334C} mice according to immunoblot analysis (Fig. 3B). While seemingly surprising at first glance, these findings are in line with the clinical descriptions of patients with pathogenic variants in the SEPSECS gene, which are not reported to have hepatic or renal phenotypes. By stark contrast, in the heart the effect of the homozygous p.Y334C Sepsecs variant was much more prominent: not only was SELENOW almost undetectable, also SELENOT and TXNRD1 were clearly reduced (Fig. 3C). Moreover, even selenoproteins with the Sec in the penultimate position, like SELENOS, and SELENOT were strongly reduced (Fig. 3C). Furthermore, the Sec in the penultimate position, like SELENOS, and SELENOT were strongly reduced (Fig. 3C). Furthermore, the Sec in the penultimate position, like SELENOS, and SELENOT were strongly reduced (Fig. 3C).

To further investigate the effects of reduced selenoprotein expression in the heart, we performed 3’ mRNA sequencing. Plotting all significantly regulated genes into a heatmap revealed several pathways regulated in Sepsecs^{Y334C/Y334C} hearts on postnatal day 1 (Fig. 4A). As expected, a number of selenoprotein mRNAs were reduced (Selenoh,
Selenow). In agreement with the general impairment of selenoprotein translation, several NRF2-target genes, which are known to be induced under oxidative stress conditions, like Nqo1 and Gsta4, were significantly induced. Additional NRF2-targets, such as the autophagy regulator p62/sequestosome1 (Sqstm1), malic enzyme (Me1), Htatip2 and the NF-kB activator Pirin (Pir), were significantly elevated [46]. Surprisingly, we observed changes in gene expression that imply a surplus of cellular cholesterol. Cholesterol biosynthetic genes, squalene epoxidase (Sqle), lanosterol-14-demethylase (Cyp51), and 4-Methylsterol-Demethylase (Msmo1) were significantly decreased. Moreover, the LDL-receptor (Ldlr), which is involved in cellular uptake of cholesterol, was repressed, whereas Abcg1, a cellular cholesterol exporter, was induced. While still unexplained, the link between cholesterol metabolism and selenoproteins has been noted before [47,48].

An interesting finding was the induction in Sepsecs^{Y334C/Y334C} mice of genes associated with the unfolded protein response (UPR) and integrated stress response (ISR) pathways: Trib3, Asns, Phgdh, Mtdhf2, Chac1, and Pck2. In support of this pathway, Aldhl2, a mitochondrial N10-formyl-tetrahydrofolate dehydrogenase, was induced. Consistent with a transcriptomic response to protein folding stress, Western blot of neonatal hearts showed substantially increased phosphorylation of eIF2α in the Sepsecs^{Y334C/Y334C} mice (Fig. 4B). Activation of the UPR points to the deficiency of selenoproteins that are involved in protein folding and maturation in the ER (SELENOF, SELENOM, SELENOS, and SELENOT) [1], while induction of the ISR is compatible with mitochondrial stress previously observed in heart-specific Txnrn2 deficient mice [28].

3.3. Skewed expression of distinct selenoproteins in brain regions and cultured neurons in Sepsecs^{Y334C/Y334C} mice

The leading phenotype of human SEPSECS-deficiency is neurodegeneration, and neurodegeneration is a hallmark of severe selenoprotein deficiency in the brain [23,27,49-53]. We thus investigated selenoprotein expression by Western blot in the brains (cerebral cortex, cerebellum, and diencephalon/brain stem) of newborn mice using an expanded panel of antibodies. Expression of all tested selenoproteins was reduced in all brain regions in the homozygous Sepsecs^{Y334C/Y334C} mutants (Fig. 5A). 3’mRNA sequencing of cerebral cortex corroborated
referred to the Web version of this article.)

interpretation of the references to color in this figure legend, the reader is

case, that carry pathogenic variants in the GPX4 gene, suggested that
isolated GPX4 deficiency could be the reason for the perinatal death of

Sepsecs^{Y334C/Y334C} mice. In order to directly address this question, we
took advantage of a mouse strain harboring a site-directed replacement
of the catalytically important Sec to Cys in the
gene, suggested that

Sepsecs^{Y334C/Y334C} mice. In order to directly address this question, we
took advantage of a mouse strain harboring a site-directed replacement
of the catalytically important Sec to Cys in the

3 mRNA sequencing of cerebral cortex prepared from newborn mice
revealed a higher number of significantly regulated genes than in heart:
As frequently observed in selenoprotein-deficient models, NRF2-
dependent genes were induced, like Gstm1, Mt1, Mt2, and Chac2
(Fig. 7). Consistent with earlier findings that the numbers of GABAergic
neurons were affected in Tmpr and Gpx4-knockout mice [27,49], several
genes associated with GABAergic signaling were differentially
expressed. GABA-A receptor subunits were increased (Gabra2, Gabrb2,
and Gabrg1) as were the GABA-degrading enzyme Abat and the vesicular
GABA transporter Slc6a1, suggesting together an increase in GABAergic
signaling. In addition, Erbb4, a marker of a subset of GABAergic in-
terneurons was induced. Conversely, Npas1, a redox-sensitive tran-
scription factor expressed specifically in GABAergic neurons, was
reduced in the mutants. Other peptide co-transmitters, biosynthetic
enzymes, and receptors were down-regulated, e.g. Npy, Gpr, Pcsk2,
Rnpep and Mc4r. Synaptic proteins synaptotagmin VII (Syt7), extended
synaptotagmin 1 (Esy1), and syntaxin 16 (Stx16) were likewise
reduced. Among the top genes found to be upregulated were CamK2a,
Trhr, and the transcription factors Isl1 and Lhx8, which are known to
interact in the specification of cholinergic interneurons [56,57]. Indu-
cion of genes associated with apoptosis like harakiri (Hrk) and
apoptosis inducing factor 1 (Apaf1) is consistent with a stress response.

In this line, the anti-apoptotic gene Bag1 was down-regulated. Many
genes associated with cytoskeleton, extracellular matrix and neuronal
pathfinding were affected, which is not surprising given the early
developmental stage of the mice (Fig. 7). A transcriptional response to
protein folding stress like in the heart was, however, not observed in the
brain.

3.4 Perinatal lethality of homozygous Sepsecs^{Y334C/Y334C} mice is rescued
by transgenic expression of Se-independent GPX4^{Cys}

The strikingly similar clinical presentation of cardio-respiratory
failure of Sepsecs^{Y334C/Y334C} mice and patients with Sedaghadian dis-
eease, that carry pathogenic variants in the GPX4 gene, suggested that
isolated GPX4 deficiency could be the reason for the perinatal death of
Sepsecs^{Y334C/Y334C} mice. In order to directly address this question, we
took advantage of a mouse strain harboring a site-directed replacement
of the catalytically important Sec to Cys in the GPX4 allele (p.L46C; in
the following referred to as Gpx4^{L46C}) [39]. Gpx4^{L46C}-Cys mice are pheno-
typically normal [39]. We thus combined the Gpx4^{L46C}-Cys allele with the
Sepsecs^{Y334C} line in order to create a mouse model in which the GPX4

![Fig. 7. Differentially expressed genes in cortex from Sepsecs^{Y334C/Y334C} newborns. Heatmap showing the differentially expressed genes in cortex of
Y334C homozygous mutants compared with wild-types. N = 3 per genotype. Up-regulated and down-regulated genes are indicated in red and blue, respec-
tively. Associated pathways related to selenoproteins, (GABAergic) in-
terneurons, NRF2-regulated genes, and apoptosis are indicated. (For
interpretation of the references to color in this figure legend, the reader is
referred to the Web version of this article.)]
activity would not be entirely dependent on Sec incorporation.

Remarkably, \(\text{Sepsecs}^{Y334C/Y334C} \); \(\text{Gpx4}^{+/-} \) mice were fully rescued from perinatal death, and seven mice already reached more than one year of age (Fig. 8A). Similar studies with identical results were performed with mice bred on the 129Sv genetic background (not shown). The only difference was that on the 129Sv genetic background \(\text{Gpx4}^{Cys/Cys} \) mice were born, which are embryonic lethal on a C57Bl/6 background. Plethysmography showed normal breathing frequency of \(\text{Sepsecs}^{Y334C/Y334C} \); \(\text{Gpx4}^{Cys/Cys} \) mice (Fig. 8B and C), although the heart rate was slightly decreased (Fig. 8B, D). Therefore, we conclude that heart failure of \(\text{Sepsecs}^{Y334C/Y334C} \) mice at postnatal day 1 is not caused by the lack of TXRND2 or any other selenoprotein, but is a result of the respiratory failure caused by \(\text{Gpx4} \) deficiency.

Given the profound stress response observed in neonatal \(\text{Sepsecs}^{Y334C/Y334C} \) hearts (see Fig. 4), we wondered how gene expression might be changed in the hearts of adult \(\text{Sepsecs}^{Y334C/Y334C} \) mice that have been rescued by \(\text{Gpx4}^{Cys} \) allele. To this end, we performed 3’mRNA sequencing analysis of hearts from mice at an age of 75 days. Overexpression of a large set of NRF2-responsive genes was evident in \(\text{Sepsecs}^{Y334C/Y334C} \); \(\text{Gpx4}^{Cys/+} \) mice (Fig. 9A). Among the significantly regulated genes were genes known to be related to heart function and regeneration like apelin. \(\text{Selenoh} \) and \(\text{Selenow} \) mRNA were decreased, while, interestingly, \(\text{Tnmdr1} \) mRNA was induced. Western blot analysis confirmed impaired selenoprotein expression in the homozygous \(\text{Sepsecs} \) mutants, while the signal of \(\text{Gpx4} \) was enhanced because of the improved translation of \(\text{Gpx4}^{Cys} \) over the Sec-containing enzyme (Fig. 9B). A persistent stress response was further demonstrated by an increased phosphorylation of eIF2α, although transcriptomic analysis did not demonstrate significant induction of UPR or ISR genes in this experiment as in the newborn hearts (Fig. 9C). In line with the stress response was the transcriptional induction of two genes associated with autophagy (\(\text{Sgstm1} \) and \(\text{Bnip3} \)). \(\text{Sgstm1} \) is also NRF2-regulated.

In the brain, selenoprotein expression followed the expected hierarchy, i.e. TXNDR1 and SELENOS were less affected by the \(\text{Sepsecs} \) mutation than \(\text{GPX1} \), \(\text{SELENOT} \), \(\text{SELENOM} \), and \(\text{SELENOW} \) (Fig. 10A). Interestingly, \(\text{Selenop} \) was induced (Fig. 10B), possibly a response to reduced translation of selenoproteins [51]. As in the heart, transcriptomic analysis revealed an induction of NRF2-regulated genes (Fig. 10B). Genes involved in the UPR pathway or autophagy were not induced in the brain. In contrast, many genes associated with an immune response or inflammation were induced as previously seen in neuron-specific \(\text{Secisbp2} \)-mutant mice [41]: \(\text{C1q} \), \(\text{C3} \), \(\text{C4} \), \(\text{Cxcl10} \), \(\text{Ctas} \), \(\text{Inox} \), \(\text{Cebp} \), but also \(\text{Gfap} \), a marker of astrocytosis.

Among the downregulated genes were \(\text{Pde1b} \) and \(\text{Sipa1l1} \), which are known to interact with CAMK2A (which is regulated on the mRNA level in newborn cortex, see Fig. 7) [58]. The same study reported an interaction of CAMK2A with \(\text{GABAR1} \), which is regulated in newborn cortex as well.

Three genes including ethanolamine-phospho-lyase (\(\text{Etnpl} \)), sphingosine-1-phosphate-lyase (\(\text{Sgpl1} \)), and the lipid transfer protein \(\text{Stard10} \), were transcriptionally regulated in \(\text{Sepsecs}^{Y334C/Y334C} \); \(\text{Gpx4}^{Cys/+} \) cortex consistent with an adaption of phosphatidyl-ethanolamine metabolism to the lack of \(\text{SELENOI} \), which is an ethanolamine phosphotransferase.

4. Discussion

We wanted to address the question why, in humans, pathogenic variants in \(\text{SEPSECS} \) lead to more severe disease than pathogenic variants in \(\text{SECISBP2} \). To this end our laboratory created mouse models carrying pathogenic variants in both \(\text{Sepsecs} \) (this study) and \(\text{Secisbp2} \) [41]. Unfortunately, all these human pathogenic variants lead to more severe phenotypes in mice than in the respective human patients (see also [32]). We report here that the homozygous \(\text{p.Y334C} \) variant in \(\text{Sepsecs} \) leads to perinatal death in mice, while children with the same variant have reached several years of age [22]. The \(\text{Sepsecs} \) variant is clearly less functional in vivo, as mice show an overall reduction of selenoprotein expression in several organs, including heart and brain.

Fig. 8. Non-selenocysteine Gpx4^{Cys} expression fully rescues Sepsecs^{Y334C/Y334C} mice from perinatal death. A) Sepsecs^{Y334C/Y334C}; Gpx4^{+/-} mice (red line) survived at least one year, while Sepsecs^{Y334C/Y334C}; Gpx4^{-/-} mice die prematurely (black line). Sepsecs^{Y334C/Y334C}; Gpx4^{Cys/Cys} mice die around weaning as previously described [39]. Sepsecs^{Y334C/Y334C}; Gpx4^{Cys/Cys} mice were not born. B) Representative plethysmographs (upper panel) from Sepsecs^{Y334C/Y334C}; Gpx4^{+/+} and Sepsecs^{Y334C/Y334C}; Gpx4^{Cys/Cys} (control) mice shows similar respiration rate, but different tidal volume that may be associated with their 30% reduced body weight. Representative electrocardiograms (lower panel) from the same mice as in the upper panel. Scale is indicated. C) Respiration rate (RPM = respiration per minute) represented as mean ± standard deviation (SD) of Sepsecs^{Y334C/Y334C}; Gpx4^{+/+} and control litter-mates. Sepsecs^{Y334C/Y334C}; Gpx4^{Cys/Cys} were preferred as controls. However, any littermate non-homozygous for Sepsecs gene was used as control when the preferred ones were not available. D) Heart rate (BPM = beats per minute) of Sepsecs^{Y334C/Y334C}; Gpx4^{+/+} and control littersmates represented as Mean ± SD. Student’s t-test p = 0.028. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
The mice initially show normal heartbeat frequency and breathing pattern, but do not feed and then develop an irregular and shallow breathing pattern ultimately leading to cyanosis and cardio-respiratory failure at the end of their first day after birth. Such a phenotype was also described for mice with a heart-specific inactivation of \textit{Txnrd2} [28]. Heterozygous variants in \textit{TXNRD2} are over-represented in patients with dilated cardiomyopathy [59], and mice with a constitutive inactivation of \textit{Txnrd2} show an embryonic heart defect [28]. Histological analysis of left ventricular wall thickness did not indicate a loss-of-function of \textit{TXNRD2} in \textit{Sepsecs} \textit{Y334C/Y334C} newborn mice (Fig. 2F). We then speculated that GPX4 may be the critical selenoprotein in \textit{Sepsecs} \textit{Y334C/Y334C} mice and genetically complemented the mice with a Se-independent \textit{Gpx4} \textit{Cys} transgene. \textit{Gpx4} \textit{Cys}-transgenic \textit{Sepsecs} \textit{Y334C/Y334C} mice were apparently fully rescued from perinatal death and grew to adulthood with normal breathing frequency and a slightly reduced heart rate. The rescue of perinatal lethality of \textit{Sepsecs} \textit{Y334C/Y334C} mice with the \textit{Gpx4} \textit{Cys} allele was possible on two different genetic backgrounds. These findings suggest that the only critical selenoprotein is GPX4. GPX4 is known to be essential in mice and it collaborates with vitamin E in limiting lipid peroxidation and ferroptosis [4,5,60,61]. Ferroptosis may contribute to motoneuron death and thus impair feeding and breathing in the perinatal \textit{Sepsecs} \textit{Y334C/Y334C} mice [62].

The fact that the \textit{Sepsecs} mutation reduces GPX4 expression below the threshold needed to survive, while even null mutations (in the brain and liver) in \textit{Secisbp2} allow survival [15,37], suggest that a limited availability of Sec-tRNA\textsubscript{[Ser]}\textsubscript{Sec} is more detrimental to expression of GPX4 than the lack of SECISBP2. Based on our earlier experiments in \textit{Secisbp2}-deficient mice, we argue that GPX4 maintains a significant level of expression in the absence of SECISBP2 [41,63]. This partial independence from SECISBP2 may significantly contribute to the top position of GPX4 in the hierarchy of selenoproteins, which is further supported by the high affinity of the GPX4 SECIS to SECISBP2 [64–70].

As expected from a general selenoprotein deficiency, transcriptomic analyses provided ample evidence for induction of NRF2-regulated genes [13,14], despite some experimental variation among samples. Both brain and heart showed massive induction of NRF2-target genes on postnatal day 1. In adult mice rescued with the \textit{Gpx4} \textit{Cys} transgene, this gene expression pattern was still evident, but more moderate. In blood and liver, inactivation of both, selenoproteins and NRF2, is incompatible with life [13]. Also in the thyroid, where antioxidative defense is
thought to be of utmost importance, inactivation of \textit{Trsp} was tolerated possibly because of rescue through NRF2-dependent genes \cite{71–73}. Our results support the notion that among the NRF2-regulated genes is none that can effectively compensate for the loss of GPX4. This explains why GPX4 is essential as a lipid hydroperoxide peroxidase. The ferroptosis modulator FSP1, which can contribute to reduction of lipid hydroperoxides through coenzyme Q \cite{74}, was not among the transcriptionally induced genes in any of the samples analyzed by RNA sequencing.

We observed clearly organ-specific responses to SEPSECS-deficiency. For example, pathogenic variants in \textit{SELENOI}/ethanolamine-phospho-transferase 1 have been shown to lead to a neurological disorder in humans \cite{75, 76}. The induction of ethanolamine-phospho-lyase (\textit{Etnppl}) and sphingosine-1-phosphate-lyase (\textit{Sgpl1}) in \textit{Sepsecs}Y334C/Y334C; \textit{Gpx4}Cys/mice point to an excess of phospho-ethanolamine that results from the impaired expression of \textit{SELENOI} that normally consumes phospho-ethanolamine for phosphatidyl-ethanolamine biosynthesis (PE). This regulation is only evident in the adult brain transcriptome, but not in the heart, explaining that the role of \textit{SELENOI} in PE biosynthesis is more important in brain than in heart – compatible with the neurological disorders described \cite{75, 76}. Conversely, the dysregulation of cholesterol metabolism is evident in the heart, but not in the brain. Such organ-specific responses, in our eyes, should always be considered when interpreting inborn errors of metabolism.

Several selenoproteins are involved in the maturation of proteins. Accordingly, we find an induction of the UPR and phosphorylation of eIF2a in postnatal and adult heart. Interestingly, UPR is not observed in the brain. Differential penetrance of the \textit{Sepsecs}Y334C variant in different organs adds to this complexity. As evident from the Western blot analyses, kidney and liver were only moderately and not at all affected, respectively, in their capacity to synthesize selenoproteins. We speculate that the expression level of SEPSECS relative to the metabolic requirement of its product may explain this observation. Organ specificity may also be the reason why bone growth is not impaired in the newborn SEPSECS-deficient mice, but in mice with the \textit{Trsp} gene disrupted in cartilage \cite{8}. Interrogating all organ systems regarding their response to the reduction of a given important selenoprotein is clearly beyond the scope of this manuscript.

So why is deficiency of SEPSECS so much more severe than deficiency of \textit{SECISBP2}? We speculate, based on the data presented here, that deficiency of SEPSECS impairs all selenoproteins, including the essential ones. Among the essential ones, GPX4 has gained a top position in the hierarchy by becoming partially independent of SECISBP2, but it remains sensitive to limitation of Sec-tRNA\([\text{Ser}]_{\text{Sec}}\).

5. Conclusions

Mice with the homozygous p.Y334C variant in \textit{Sepsecs} resemble patients with Sedaghatian disease more closely than patients carrying the same variant who display pontocerebellar hypoplasia 2D. The evident rescue of perinatal death by expression of a selenium-independent GPX4\([\text{Cys}]\) shows that the most critical selenoprotein in the postnatal
period is GPX4. Other selenoprotein-dependent pathways have apparently the ability to compensate for the lack of other selenoproteins. Hence, patients with a general deficiency in selenoprotein biosynthesis might benefit from any pharmacological intervention that inhibits ferroptotic cell death.

Declaration of competing interest

M.C. is co-founder and shareholder of ROSCUE Therapeutics GmbH. All other authors declare no conflict of interest.

Acknowledgements

The authors acknowledge the help of Dr. Geert Michel, Transgenic Services Charité, Berlin and Dr. André Heimbach, Next Generation Sequencing Core Facility of the Medical Faculty, University of Bonn.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.redox.2021.102188.

Funding

This work was supported by Universitätsklinikum Bonn and Deutsche Forschungsgemeinschaft (DFG) SCHW914/2-2; SCHW914/5-1 (U.S.). Work in the Conrad lab is supported by funding from DFG CO 291/7-1, CO 291/9-1 and CO 291/10-1, the German Federal Ministry of Education and Research (BMBF), the VIP (plus program) NEUROPROTEKT (03PV04260), the Ministry of Science and Higher Education of the Russian Federation (075-15-2019-1933), and the European Research Council (ERC) within the European Union’s Horizon 2020 research and innovation program (grant agreement No. GA 884754).

CoI

M.C. is co-founder and shareholder of ROSCUE Therapeutics GmbH.

References

[1] V.M. Labunskyy, D.L. Hatfield, V.N. Gladyshev, Molecular pathways and physiological roles, Physiol. Rev. 94 (2014) 719–777.
[2] J. Loscalzo, Keshan disease, selenium deficiency, and the selenoproteome, N. Engl. J. Med. 370 (2014) 1756–1760.
[3] M. Wortmann, M. Schneider, J. Pircher, J. Hellfritsch, M. Aichler, N. Vegi, P. Kolle, M.C. is co-founder and shareholder of ROSCUE Therapeutics GmbH.
[4] B.A. Carlson, R. Tobe, E. Yefremova, P.A. Tsuji, V.J. Hoffmann, U. Schweizer, V. N. Gladyshev, D.L. Hatfield, M. Conrad, Glutathione peroxide 4 and vitamin e cooperatively prevent hepatocellular degeneration, Redox biology 9 (2016) 22–31.
[5] J. Loscalzo, Keshan disease, selenium deficiency, and the selenoproteome, N. Engl. J. Med. 370 (2014) 1756–1760.
[6] J. Loscalzo, Keshan disease, selenium deficiency, and the selenoproteome, N. Engl. J. Med. 370 (2014) 1756–1760.
[7] J. Loscalzo, Keshan disease, selenium deficiency, and the selenoproteome, N. Engl. J. Med. 370 (2014) 1756–1760.
[8] J. Loscalzo, Keshan disease, selenium deficiency, and the selenoproteome, N. Engl. J. Med. 370 (2014) 1756–1760.
[9] J. Loscalzo, Keshan disease, selenium deficiency, and the selenoproteome, N. Engl. J. Med. 370 (2014) 1756–1760.
[10] J. Loscalzo, Keshan disease, selenium deficiency, and the selenoproteome, N. Engl. J. Med. 370 (2014) 1756–1760.
[11] J. Loscalzo, Keshan disease, selenium deficiency, and the selenoproteome, N. Engl. J. Med. 370 (2014) 1756–1760.
[12] J. Loscalzo, Keshan disease, selenium deficiency, and the selenoproteome, N. Engl. J. Med. 370 (2014) 1756–1760.
[13] J. Loscalzo, Keshan disease, selenium deficiency, and the selenoproteome, N. Engl. J. Med. 370 (2014) 1756–1760.
[14] J. Loscalzo, Keshan disease, selenium deficiency, and the selenoproteome, N. Engl. J. Med. 370 (2014) 1756–1760.
[15] J. Loscalzo, Keshan disease, selenium deficiency, and the selenoproteome, N. Engl. J. Med. 370 (2014) 1756–1760.
[16] J. Loscalzo, Keshan disease, selenium deficiency, and the selenoproteome, N. Engl. J. Med. 370 (2014) 1756–1760.
[17] J. Loscalzo, Keshan disease, selenium deficiency, and the selenoproteome, N. Engl. J. Med. 370 (2014) 1756–1760.
[18] J. Loscalzo, Keshan disease, selenium deficiency, and the selenoproteome, N. Engl. J. Med. 370 (2014) 1756–1760.
[19] J. Loscalzo, Keshan disease, selenium deficiency, and the selenoproteome, N. Engl. J. Med. 370 (2014) 1756–1760.
[20] J. Loscalzo, Keshan disease, selenium deficiency, and the selenoproteome, N. Engl. J. Med. 370 (2014) 1756–1760.
[21] J. Loscalzo, Keshan disease, selenium deficiency, and the selenoproteome, N. Engl. J. Med. 370 (2014) 1756–1760.
[22] J. Loscalzo, Keshan disease, selenium deficiency, and the selenoproteome, N. Engl. J. Med. 370 (2014) 1756–1760.
[23] J. Loscalzo, Keshan disease, selenium deficiency, and the selenoproteome, N. Engl. J. Med. 370 (2014) 1756–1760.
[24] J. Loscalzo, Keshan disease, selenium deficiency, and the selenoproteome, N. Engl. J. Med. 370 (2014) 1756–1760.
[25] J. Loscalzo, Keshan disease, selenium deficiency, and the selenoproteome, N. Engl. J. Med. 370 (2014) 1756–1760.
[26] J. Loscalzo, Keshan disease, selenium deficiency, and the selenoproteome, N. Engl. J. Med. 370 (2014) 1756–1760.
[27] J. Loscalzo, Keshan disease, selenium deficiency, and the selenoproteome, N. Engl. J. Med. 370 (2014) 1756–1760.
[28] J. Loscalzo, Keshan disease, selenium deficiency, and the selenoproteome, N. Engl. J. Med. 370 (2014) 1756–1760.
[29] J. Loscalzo, Keshan disease, selenium deficiency, and the selenoproteome, N. Engl. J. Med. 370 (2014) 1756–1760.
Redox Biology 48 (2021) 102188

N. Fradejas-Villar et al.

S.H. Brutsch, C.C. Wang, L. Li, H. Stender, N. Neziroglu, C. Richter, H. Kuhn, I. Ingold, C. Berndt, S. Schmitt, S. Doll, G. Poschmann, K. Buday, A. Roveri, A. Sengupta, B.A. Carlson, V.J. Hoffmann, V.N. Gladyshev, D.L. Hatfield, M.R. Chorley, M.R. Campbell, X. Wang, M. Karaca, D. Sambandan, F. Bangura, S. Dhingra, M.P. Bansal, Attenuation of ldl receptor gene expression by selenium

M.R. Sedaghatian, Congenital lethal metaphyseal chondrodysplasia: a newly recognized complex autosomal recessive disorder, Am. J. Med. Genet. 6 (1980) 1420–1425.

E.K. Wirth, B.S. Bharathi, D. Hatfield, M. Conrad, M. Brielmeier, U. Schweizer, K. Renko, M. Werner, I. Renner-Muller, T.G. Cooper, C.H. Yeung, B. Hollenbach, C.N. Byrns, M.W. Pitts, C.A. Gilman, A.C. Hashimoto, M.J. Berry, Mice lacking selenoprotein p and selenocysteine lyase exhibit severe neurological dysfunction, J. Biol. Chem. 284 (2009) 137–142.

J. Arikkath, Culturing pyramidal neurons from the early postnatal mouse hippocampus and cortex, Nat. Protoc. 7 (2012) 1741–1754.

N. Fradejas, C. Serrano-Pérez Méndez, P. Tranque, S. Calvo, Selenoprotein s expression in reactive astrocytes following brain injury, Glia 59 (2011) 959–972.

S.H. Brutsch, C.C. Wang, L. Li, H. Stender, N. Neziroglu, C. Richter, H. Kuhn, A. Borchert, Expression of inactive glutathione peroxidase 4 leads to embryonic lethality, and inactivation of the slox15 gene does not rescue such knock-in mice, Antioxidants Redox Signal. 22 (2015) 281–293.

M.R. Sederghian, Congenital lethal metaphyseal chondrodysplasia: a newly recognized complex autosomal recessive disorder, Am. J. Med. Genet. 6 (1980) 1420–1425.

J.L. Bubeník, D.M. Dritic, Altered rna binding activity underlies abnormal thyroid hormone metabolism, J. Trace Elem. Med. Biol. 24 (2010) 130–137.

J. Chiu-Ugalde, E.K. Wirth, M.O. Klein, R. Sapin, N. Fradejas-Villar, K. Renko, S. Roth, Z. Jiang, E.K. Wirth, U. Schweizer, Development of a serum-free supplement for primary neuron culture reveals the interplay of selenium and vitamin e in neuronal survival, J. Trace Elem. Med. Biol. 24 (2010) 130–137.

J. Zheng, M. Conrad, The metabolic underpinnings of ferroptosis, Cell Metabol. 32 (2020) 920–937.

W.S. Hambright, R.S. Fonseca, L. Chen, R. Na, Q. Ran, Ablation of ferroptosis regulator glutathione peroxidase 4 in forebrain neurons promotes neurodegeneration and neuregion, Redox biology 12 (2017) 8–17.

J.E. Squires, I.P. Trougakos, M. Yamamoto, T.W. Kensler, et al., Omp1, a putative ferroptosis suppressor, Nature 575 (2019) 693–697.

J.L. Rubenstein, M. Palkovits, J.L. Rubenstein, H. Westphal, The lim-homeobox gene lhx8 is required for the development of many cholinergic neurons in the mouse forebrain, Proc. Natl. Acad. Sci. U. S. A. 100 (2003) 9005–9010.

A.J. Basum 2nd, B.C. Shoney, K.L. Rose, R.J. Colburn, Quantitative proteomics analysis of camkii phosphorylation and the camkii interactome in the mouse forebrain, ACS Chem. Neurosci. 6 (2015) 615–631.

D. Sibbing, A. Pfeuffer, T. Pericic, A.M. Mennes, K. Fritz-Wolf, S. Unwin, M. F. Simmer, C. Gieger, C.J. Gloeckner, H.E. Wichmann, et al., Mutations in the mitochondrial thioxiredoxin reductase gene tmxrd2 cause dilated cardiomyopathy, Eur. Heart J. 32 (2011) 1121–1133.

S. Roth, S. Zhang, J. Chiu, E.K. Wirth, U. Schweizer, Development of a serum-free supplement for primary neuron culture reveals the interplay of selenium and vitamin e in neuronal survival, J. Trace Elem. Med. Biol. 24 (2010) 130–137.