Matrix superpotentials and superintegrable systems for arbitrary spin

A G Nikitin

Institute of Mathematics, National Academy of Sciences of Ukraine, 3 Tereshchenkivs’ka Street, Kyiv-4 01601, Ukraine

E-mail: nikitin@imath.kiev.ua

Received 31 January 2012, in final form 20 April 2012
Published 17 May 2012
Online at stacks.iop.org/JPhysA/45/225205

Abstract

A countable set of quantum superintegrable systems for arbitrary spin is solved explicitly using tools of supersymmetric quantum mechanics. It is shown that these systems (introduced by Pronko (2007 J. Phys. A: Math. Theor. 40 13331)) are special cases of models with shape invariant effective potentials that have recently been classified in Nikitin and Karadzhov (2011 J. Phys. A: Math. Theor. 44 305204, 2011 J. Phys. A: Math. Theor. 44 445202).

PACS numbers: 11.30.Pb, 03.65.Fd, 11.10.Ef

1. Introduction

Exactly solvable problems of quantum mechanics are very interesting and important. Their solutions can be found in a straightforward way free of uncertainties caused by perturbation methods. The very existence of these solutions is usually connected with symmetries which are very attractive subjects by themselves. Moreover, exact solutions present convenient bases for expansion of solutions of other problems.

Another nice property of some quantum mechanical systems is called superintegrability. The system is called maximally superintegrable if there exists a sufficient number of algebraically independent operators commuting with the Hamiltonian. This number should be equal to 2n − 2 for the system with n degrees of freedom, and n − 1 of these operators should commute amongst each other.

Many of exactly solvable systems are maximally superintegrable, see, e.g., [1], and vice versa. A perfect example of the quantum mechanical system which is both maximally superintegrable and exactly solvable is the non-relativistic hydrogen atom (NRHA). The concept of superintegrability had been extended to the case of quantum systems which include spin [2]. However, the completed relations between the exact solvability and superintegrability are not yet clear, especially for the higher order integrals of motion and for the systems with n > 2.
An alternative point of view on the exactly solvable quantum mechanics (QM) systems was created by Gendenshtein [3] who had shown that in many cases such systems admit supersymmetry with shape invariance and can be easily solved using tools of supersymmetric QM. In particular, it is true for the NRHA.

A consistent maximally superintegrable and exactly solvable problem was discovered by Pron’ko and Stroganov [4]. The related quantum mechanical system includes a magnetic dipole with spin-1/2 (neutron) moving in the field of a straight line current. Like the NRHA, this problem admits the hidden symmetry which is more extended then its geometric symmetry [4]. It is supersymmetric also and can be simply solved using the shape invariance of its effective potential [5, 6].

The physical and mathematical aspects of the Pron’ko–Stroganov [4] (PS) model have been investigated many times. Its experimental realizability was discussed in papers [7] and [8], its symmetries and supersymmetries were studied in [9] and [10], enhanced analysis of supersymmetric aspects of this model can be found in [11], etc. Recently, the solvable relativistic version of the PS model was found [12] which, however, includes a more complicated external field than in the non-relativistic case.

Whenever there exists a good model for a particle of spin-1/2, there is a natural desire to generalize it for higher spins. In the case of the PS model, the time needed to realize this idea was thirty long years. The main hidden dangers in this generalization were connected with the fact that the direct change of the Pauli interaction term present in the PS model by the analogous term for higher spin leads to a system which is not exactly solvable and its finite trajectories are not closed [13].

In [14], exactly solvable generalizations of the PS model to the case of arbitrary spin have been formulated. The price paid for this progress was the essential complication of the Pauli interaction term present in the PS model. However, there are good physical arguments for such a complication in the case of spin $s > 1/2$, in both the non-relativistic [14] and relativistic [15] approaches.

A natural question arises whether the models proposed in [14] can be effectively integrated using the tools of SUSY quantum mechanics, as has been done [6] for the PS model for a neutral particle of spin-1/2. This question is especially provocative for us since in the recent papers [16] and [17], an effective classification of shape invariant matrix potentials was presented. Thus if the matrix potentials found in [14] are shape invariant then they should be nothing but particular cases obtained by this classification.

In this paper, the supersymmetric aspects of the maximally superintegrable systems for arbitrary spin (proposed in [14]) are discussed. It is shown that these systems are shape invariant and can be easily integrated using the tools of SUSY quantum mechanics. Using the results of paper [16] we construct exact solutions of the mentioned systems directly for arbitrary spin. In addition, a more straightforward and refined formulation of these systems is proposed together with the proper physical interpretation.

2. Hidden symmetry of the PS model

The PS model is based on the following version of the Schrödinger–Pauli Hamiltonian:

$$\mathcal{H} = \frac{p_x^2 + p_y^2}{2m} + \frac{\lambda}{r^2} S_{xy} - \frac{S_{yx}}{r^2}$$

(2.1)

which is the Hamiltonian of a neutral spinor anomalously interacting with the magnetic field generated by a straight line current directed along the z coordinate axis. Here, $p_x = -i \frac{\partial}{\partial x}, p_y = -i \frac{\partial}{\partial y}, r^2 = x^2 + y^2, S_{xy} = \frac{i}{2} \sigma_1$ and $S_{yx} = \frac{i}{2} \sigma_2$ are matrices of spin-1/2, σ_1 and σ_2 are Pauli matrices and λ is the integrated coupling constant.
The last term in (2.1) is the Pauli interaction term $\lambda \mathbf{S} \cdot \mathbf{H}$ where the magnetic field \mathbf{H} has the following components which we write ignoring the constant multiplier included into the parameter λ:

$$H_x \sim \frac{y}{r^2}, \quad H_y \sim -\frac{x}{r^2}, \quad H_z = 0.$$

Hamiltonian (2.1) is invariant w.r.t. rotations around the z-axis since it commutes with the z component of the total angular momentum

$$J_z = x_1 p_2 - x_2 p_1 + S_z,$$

where $S_z = \frac{1}{2} \sigma_3$. In addition, it admits two more constants of motion [4], namely

$$A_\chi = \frac{1}{2}(J_z p_x + p_z J_x) + \frac{m}{r} \mu(n)y, \quad A_\eta = \frac{1}{2}(J_z p_y + p_z J_y) - \frac{m}{r_1} \mu(n)x,$$

where $\mu(n) = \lambda(S_x n_x - S_y n_y)$, $n_x = \frac{1}{2}$, $n_y = \frac{1}{2}$, and $n = (n_x, n_y)$. Operators (2.3) and (2.4) commute with \mathbf{H} and satisfy the following commutation relations:

$$[J_z, A_\chi] = i A_\chi, \quad [J_z, A_\eta] = -i A_\eta, \quad [A_\chi, A_\eta] = -J_z \mathbf{H}.$$

In other words, operators (2.4) and (2.5) represent algebra $\mathfrak{o}(1,2)$ on the spaces of eigenvectors of \mathbf{H} and cause the degeneration of the Hamiltonian eigenvalues. And this hidden symmetry with respect to algebra $\mathfrak{o}(1,2)$ makes the PS model maximally superintegrable and exactly solvable.

It is interesting to note that up to unitary equivalence operator, (3.1) is the only plane Hamiltonian for neutral particle of spin-1/2 interacting with an external field, which commutes with J_3 and admits a hidden symmetry w.r.t. algebra $\mathfrak{o}(1,2)$. This statement was in fact proven in [4] where, however, a more general Hamiltonian was proposed, namely

$$\tilde{\mathbf{H}} = \frac{p_x^2 + p_y^2}{2m} + a \frac{S_x y - S_y x}{r^2} + b \frac{S_x x + S_y y}{r^2}.$$

Operator (2.6) does commute with (2.4) and (2.5) and includes two arbitrary parameters a and b. But it is unitary equivalent to (3.1) since

$$\tilde{\mathbf{H}} = U \mathbf{H} U^\dagger \quad \text{with} \quad U = \cos \theta + i S_y \sin \theta,$$

where $S_z = \frac{1}{2} \sigma_3$ and θ is a real parameter such that $a = \lambda \cos \theta$ and $b = \lambda \sin \theta$.

3. SUSY aspects of the PS model

Let us apply transformation (2.7). For our purposes it is convenient to set $\theta = \pi/2$ and obtain the following Hamiltonian which is unitary equivalent to (2.1)

$$\tilde{\mathbf{H}} = \frac{p_x^2 + p_y^2}{2m} + \frac{\lambda}{r^2} S_x x + S_y y.$$

Then we consider the eigenvalue problem for Hamiltonian (3.1):

$$\tilde{\mathbf{H}} \psi = \mathcal{E} \psi,$$

where $\psi = \psi(x, y)$ is a two-component wavefunction. This function is supposed to be square integrable and vanish at $x = y = 0$.

Introducing the polar coordinates

$$x = r \cos \theta, \quad y = r \sin \theta$$

and expanding ψ via eigenfunctions of the angular momentum operator J_z:

$$\psi = C_\chi \psi_\chi, \quad \psi_\chi = \frac{1}{\sqrt{r}} \left(\epsilon \exp(i(k + \frac{1}{2})\theta) \phi_1 \right),$$

(ϕ_1)
where C_k are constants, ϕ_1 and ϕ_2 are functions of r and summation is imposed over the repeated indices $\kappa = \pm \frac{1}{2}, \pm \frac{3}{2}, \pm \frac{5}{2}, \cdots$ equation (3.2) is reduced to the following system of decoupled equations for ψ_k:

$$\mathcal{H}_k \psi_k \equiv \left(-\frac{\partial^2}{\partial r^2} + \kappa (\kappa - \sigma_3) \frac{1}{r^2} + \sigma_1 \frac{\lambda}{r} \right) \psi_k = \tilde{\mathcal{E}} \psi_k,$$

(3.5)

where $\tilde{\mathcal{E}} = 2m\tilde{\epsilon}$ and $\tilde{\lambda} = 2m\lambda$.

Equation (3.1) and its reduced version (3.5) are invariant with respect to the space reflection $x \rightarrow x, y \rightarrow -y$ provided $\psi(x, y)$ and $\psi_k(r)$ co-transform as

$$\psi(x, y) \rightarrow \Lambda \psi(x, -y), \quad \psi_k(r) \rightarrow \Lambda \psi_{-k}(r),$$

(3.6)

where $\Lambda = \sigma_1$.

Transformations (3.6) commute with Hamiltonians \mathcal{H} and \mathcal{H}_k, anticommute with J_3 and are invertible. Thus we can restrict ourselves to equation (3.5) for positive half-integer k. Then solutions for negative k can be obtained using (3.6).

Hamiltonian \mathcal{H}_k can be factorized as

$$\mathcal{H}_k = a^+_k a_k + c_k,$$

(3.7)

where

$$a_k = \frac{\partial}{\partial r} + W_k, \quad a^+_k = -\frac{\partial}{\partial r} + W_k, \quad c_k = -\frac{\lambda^2}{(2k + 1)^2}$$

(3.8)

and W is the matrix superpotential

$$W_k = \frac{1}{2r} \sigma_3 - \frac{\lambda}{2k + 1} \sigma_1 - \frac{(\kappa + 1)}{r}.$$

(3.9)

One more important property of \mathcal{H}_k is its shape invariance, i.e. its superpartner \mathcal{H}_k^+ is equal to \mathcal{H}_{k+1} up to a constant term:

$$\mathcal{H}_k^+ = a_k^+ a_k + c_k = -\frac{\partial^2}{\partial r^2} + (\kappa + 1)(\kappa + 1 - \sigma_3) \frac{1}{r^2} + \sigma_1 \frac{\lambda}{r} = \mathcal{H}_{k+1} + C_k,$$

where $C_k = c_k - c_{k+1}$. Thus equation (3.5) can be solved using the standard tools of SSQM. Namely, the ground state vector is defined as a square integrable solution of the first-order equation

$$a_{-k}^+ \psi_{k,0}(r) = \left(\frac{\partial}{\partial r} + W_k \right) \psi_{k,0}(r) = 0$$

(3.10)

and thus it has the following components:

$$\phi_1 = u^{k+1} K_1(u), \quad \phi_2 = u^{k+1} K_0(u),$$

(3.11)

where K_0 and K_1 are the modified Bessel functions, $u = \frac{\lambda}{2k + 1}$.

In view of (3.7), function $\psi_{k,0}(r)$ solves also equation (3.5) with $\tilde{\mathcal{E}} = c_k = -\frac{\lambda^2}{(2k + 1)^2}$. Solutions which correspond to the nth exited state can be represented as

$$\psi_{k,n}(r) = a_k^+ a_{k+1}^+ \cdots a_{k+n-1}^+ \psi_{k+n,0}(x).$$

(3.12)

The corresponding eigenvalue $\tilde{\mathcal{E}}_n$ is given by the following formula:

$$\tilde{\mathcal{E}}_n = \sum_{i=0}^{n-1} C_{k+i} = -\frac{\lambda^2}{(2k + 2n + 1)^2}.$$

(3.13)
4. Integrable models for neutral vector bosons

The PS model considered in the previous section describes the interaction of a neutral particle of spin-1/2 with the field of straight line current. How we can generalize Hamiltonian (3.1) (or the initial Hamiltonian (2.1) which is unitary equivalent to (3.1)) to the case of higher spins? The standard idea is simple to change in (3.1) matrices $S_\alpha = \frac{1}{\sqrt{2}}\sigma_\alpha$ by matrices of higher spin. However, in this way we obtain a model which is neither exactly solvable [13] nor superintegrable.

To obtain a superintegrable analogues of (2.1) for higher spins, it is necessary to make a rather non-trivial generalization of the Pauli interaction term in the Hamiltonian (3.1), including multipole magnetic interactions [14].

In this section, we present an analogue of the PS model for particle of spin-1. This model is both superintegrable and shape invariant. It is based on the following Hamiltonian:

$$H_s = \frac{p_x^2 + p_y^2}{2m} + \frac{1}{r} \mu_x(n), \quad (4.1)$$

where

$$\mu_x(n) = \mu_1(n) = \mu(2(S \times n)^2 - 1) + \lambda (2(S \cdot n)^2 - 1). \quad (4.2)$$

Here, μ and λ are arbitrary real parameters, $S \cdot n = S_x n_x + S_y n_y$ and $S \times n = S_x n_y - S_y n_x$, S_x and S_y are matrices of spin-1:

$$S_x = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad S_y = \frac{i}{\sqrt{2}} \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}, \quad S_z = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}. \quad (4.3)$$

It is the Hamiltonian defined by equations (4.1) and (4.2) that generalized (2.1) for the case of spin-1. Matrix (4.2) depends on $n = (x_r, y_r)$ and satisfies the following conditions:

$$[\mu_x(n), J_z] = 0, \quad (4.4)$$

$$\mu_x(n) S_z + S_z \mu_x(n) = 0. \quad (4.5)$$

Thus Hamiltonian (4.1) commutes with operators (2.3) and (2.4), where $\mu(n) \rightarrow \mu_1(n)$ and S_z is the matrix given in (4.3). So this Hamiltonian admits dynamical symmetry w.r.t. algebra o(1,2).

It is possible to show that, up to unitary equivalence, equations (4.1) and (4.2) represent the most general form of plane Hamiltonian for the neutral particle of spin-1, which admits this symmetry, see section 7. We will see that, in addition, this Hamiltonian is shape invariant. Let us discuss its physical content.

The physical sense of the PS model for spin-1/2 is absolutely clear. The related Hamiltonian $\sim S \cdot H$ and corresponds to the interaction of a neutral particle (having a non-trivial dipole moment) with the field of the constant and straight line current.

The physical content of superintegrable models for higher spins is much more sophisticated. The interaction term of Hamiltonian (4.1) has nothing to do with the Pauli term and needs another interpretation.

Let us consider in more detail the case $\mu = 0$, $\lambda = \omega > 0$. The corresponding Hamiltonian (4.1) takes the following form:

$$H_1 = \frac{p_x^2 + p_y^2}{2m} + \omega \left(\frac{2(S \cdot x)^2}{r^3} - \frac{1}{r} \right). \quad (4.6)$$
and can be represented as
\[H_1 = \frac{p_1^2 + p_2^2}{2m} + \omega Q_{ab} \frac{\partial E_a}{\partial x_b} + \frac{\omega}{3} \text{div} \mathbf{E}, \]
(4.7)
where
\[Q_{ab} = S_a S_b + S_b S_a - \frac{2}{3}s(s + 1)\delta_{ab} \]
is the tensor of quadruple interaction,
\[\mathbf{E} = \left(\frac{x_1}{r}, \frac{x_2}{r}, 0 \right), \]
(4.8)
and the temporary notations \(x = x_1, \ y = x_2 \) are used.

In accordance with (4.7), \(H_1 \) can be interpreted as a Hamiltonian of spin-1 particle which has neither minimal nor dipole interaction with the external field. However, this particle is supposed to have a quadruple and Darwin interaction, and the latest is represented by the last term in (4.7).

A more delicate question is related to the physical realizability of the vector field (4.8) included into the interaction terms. If we suppose that it is the classical Maxwell electric field, the corresponding charge density should be proportional to \(\text{div} \mathbf{E} = \frac{1}{r} \). Such charge density has hardly been realized experimentally. However, vector (4.8) perfectly solves field equations of generalized Maxwell electrodynamics modified by the presence of the Chern–Simons term, and also equations of axion electrodynamics with trivial current and charge densities [18].

Let us present one more expression of the interaction term via physical fields. Setting \(\lambda = 0, \ \mu = \omega > 0 \), we can rewrite Hamiltonian (4.1) in the following form:
\[\hat{H}_1 = \frac{p_1^2 + p_2^2}{2m} + \omega \frac{2(S \cdot \mathbf{H})^2 - \mathbf{H}^2}{|\mathbf{H}|}, \]
(4.9)
where \(\mathbf{H} \) is the vector of the magnetic field whose components are defined in equation (2.2).

Note that Hamiltonians (4.6) and (4.9) are unitary equivalent. Namely,
\[\hat{H}_s = U \hat{H}_s U^\dagger, \quad U = \exp \left(i \frac{\pi}{2} S_z \right), \]
(4.10)
where \(s = 1 \).

The last term in (4.9) represents a nonlinear interaction with the well-defined external magnetic field (2.2). This field solves the Maxwell equations with a constant straight line current.

Let us recall that a nonlinear generalization of the Pauli interaction is also required in the relativistic description of spin-1 particle interacting with the constant magnetic field [15].

5. Superintegrable models for spin-3/2

Let us discuss an exactly solvable model for particle of spin-3/2. The corresponding Hamiltonian has the generic form (4.1) with
\[\mu_s(\mathbf{n}) = (v + \mu S_z^2)(7S \times \mathbf{n} - 4(S \times \mathbf{n})^3). \]
(5.1)
Here, \(\mu \) and \(v \) are arbitrary parameters, and \(S_x, S_y \) and \(S_z \) are the \(4 \times 4 \) matrices of spin-3/2 which can be chosen in the following form:
\[S_x = \frac{1}{2} \begin{pmatrix} 0 & \sqrt{3} & 0 & 0 \\ \sqrt{3} & 0 & 2 & 0 \\ 0 & 2 & 0 & \sqrt{3} \\ 0 & 0 & \sqrt{3} & 0 \end{pmatrix}, \quad S_y = \frac{1}{2} \begin{pmatrix} 0 & -\sqrt{3} & 0 & 0 \\ \sqrt{3} & 0 & -2 & 0 \\ 0 & 2 & 0 & -\sqrt{3} \\ 0 & 0 & \sqrt{3} & 0 \end{pmatrix}, \]

\[S_z \]
Matrix (5.1) satisfies conditions (4.4) and (4.5) which are necessary and sufficient for the existence of the constants of motion (2.3) and (2.4) [14]. Thus the system whose Hamiltonian is given by equations (4.1) and (5.1) is actually maximally superintegrable.

The interaction term of the considered Hamiltonian can be represented in terms of external fields. In the case \(\mu = 0, \nu = \frac{1}{7} \neq 0 \) we have

\[
\mathcal{H} = \frac{p_x^2 + p_y^2}{2m} + \omega \left(\mathbf{S} \cdot \mathbf{H} - \frac{4}{7} \frac{(\mathbf{S} \cdot \mathbf{H})^3}{\mathbf{H}^2} \right),
\]

where \(\omega = \frac{m}{7}, \mathbf{H} \) is the vector of the magnetic field whose components are defined in equation (2.2) and \(\mathbf{S} \) is the spin-3/2 vector with components (5.2).

In addition to the standard Pauli term \(\omega \mathbf{S} \cdot \mathbf{H} \), Hamiltonian (5.3) includes the additional interaction \(\sim \frac{(\mathbf{S} \cdot \mathbf{H})^3}{\mathbf{H}^2} \) which is nonlinear in the magnetic field.

Alternatively, for \(\mu = -\frac{4}{3} \nu \), we obtain the following representation:

\[
\mathcal{H} = \frac{p_x^2 + p_y^2}{2m} - \nu Q_{abc} \frac{\partial^2 H_\mu}{\partial x_a \partial x_c},
\]

where

\[
Q_{abc} = \sum_{P(a,b,c)} \left(S_a S_b S_c - \frac{7}{4} S_a \delta_{bc} \right)
\]

is the octuple interaction tensor (the summation is imposed over all possible permutations of indices \(a, b \) and \(c \)), and \(\mathbf{H} = (x_2 \ln r, -x_1 \ln r, 0) \).

The vector field \(\mathbf{H} \) perfectly solves equations of the axion electrodynamics [18]. On the other hand, being treated as the classical magnetic field it requires a current whose density grows algorithmically with growing of \(r \).

6. Superintegrable systems for arbitrary spin

In [14], the generalization of Hamiltonian (2.1) for arbitrary spin \(s \) was proposed, which admits dynamical symmetry w.r.t. algebra \(\alpha(1,2) \). This Hamiltonian has the generic form (4.1) where \(\mu_s(n) \) is a \((2s + 1) \times (2s + 1)\) dimensional matrix depending on \(n = (\frac{1}{3}, \frac{1}{3}) \) and satisfying conditions (4.4) and (4.5) with \(S_z \) being the \(z \) component of spin \(s \) vector, i.e. the matrix

\[
S_z = \text{diag}(s, s - 1, s - 2, \ldots, -s).
\]

It can be verified by direct calculations that if conditions (4.4) and (4.5) are satisfied, then Hamiltonian (4.1) commutes with operators (2.3) and (2.4) (where \(S_z \) is matrix (6.1) and \(\mu(n) \to \mu_s(n) \)), and these operators do satisfy relations (2.5).

We shall refine and extend the results of [14]. First, we present a straightforward formulation of Hamiltonians (4.1) for arbitrary spin. Secondly, we prove that the number of arbitrary parameters present in the models found in [14] can be effectively reduced by applying a unitary transformation. Thirdly, the shape invariance of Hamiltonians (4.1) will be proven and the corresponding eigenvalue problems will be solved algebraically.

Let us find Hamiltonians (4.1) for arbitrary spin. Condition (4.4) is satisfied iff \(\mu_s(n) \) is a function of \(S \cdot n = S_x n_x + S_y n_y, S \times n = S_y n_x - S_x n_y \) and \(S_z \). At the first step we restrict ourselves to matrices \(\mu_s(n) \) which are polynomials in \(S \cdot n \).
It is convenient to represent matrix $\mu_s(n)$ in the following form:

$$\mu_s(n) = \sum_{v=0}^{s} c_v \Lambda_v,$$

(6.2)

where c_v are unknown coefficients and Λ_v are projectors onto the eigenspaces of matrix $S \cdot n$ corresponding to the eigenvalue v ($v, v' = s, s - 1, \ldots, -s$):

$$\Lambda_v = \prod_{v' \neq v} \frac{S \cdot n - v'}{v - v'}.$$

(6.3)

Matrix (6.2) by construction satisfies condition (4.4). Substituting (6.2) into (4.5) and using the identities

$$S_x \mu_s(n) + \mu_s(n) S_x = 2 S_y \mu_s(n) + [\mu_s(n), S_z]$$

and [19]

$$[\Lambda_v, S_z] = \frac{1}{2} S_z (2 \Lambda_v - \Lambda_{v+1} - \Lambda_{v-1}) + \frac{i}{2} (n_s S_y - n_v S_z) (\Lambda_{v+1} - \Lambda_{v-1}),$$

(6.4)

we easily find the following condition for coefficients c_v (note that projectors Λ_v are orthogonal and linearly independent):

$$c_v = -c_{v-1}, \quad v = s, s - 1, \ldots, 1 - s.$$

(6.5)

In accordance with (6.2) and (6.5), the general expression for $\mu_s(n)$ can be given by the following equation:

$$\mu_s(n) = \lambda \sum_{v} (-1)^{[v]} \Lambda_v,$$

(6.6)

where $[v]$ is the entire part of v, $v = s, s - 1, \ldots, -s$.

Equations (4.1) and (6.6) present Hamiltonians for arbitrary spin s admitting dynamical symmetry w.r.t. algebra $o(1,2)$. Potentials (6.6) are defined up to arbitrary parameter λ which can be associated with the coupling constant.

However, in accordance with the results of [14], the general solution of the determining equations (4.4) and (4.5) depends on $2s + 1$ arbitrary real parameters. This statement is in accordance with the fact that there exist exactly $2s + 1$ linearly independent matrices anticommuting with S_z.

But our analysis admits a straightforward and simple extension to the generic case. Indeed, equations (4.4) and (4.5) are invariant w.r.t. multiplying $\mu_s(n)$ by arbitrary power of matrix S_z. Thus, starting with (6.6) we can immediately construct $(2s + 1)$-parametrical solutions of the equation

$$\tilde{\mu}_s(n) = \sum_{v \geq 0} (b_v \tilde{B}_v + id_v \tilde{C}_v) \mu_s(n),$$

(6.7)

where $\mu_s(n)$ are matrices (6.6), b_v and d_v are arbitrary (real) parameters, \tilde{B}_v and \tilde{C}_v are projectors, polynomial in S_z:

$$\tilde{B}_v = \prod_{v' \neq v} \frac{S_z^2 - v'^2}{v^2 - v'^2}, \quad \tilde{C}_v = \frac{S_z}{v} \prod_{v' \neq v} \frac{S_z^2 - v'^2}{v^2 - v'^2}, \quad v, v' = s, s - 1, s - 2, \ldots, v, v' \geq 0.$$

Note that C_v includes only odd powers of S_z and so they anticommute with $\mu_s(n)$. Thus matrix $\tilde{\mu}_s(n)$ is Hermitian.

1 Formula (6.4) is a particular case of equation (A.2) in [19] corresponding to $\frac{p_v}{x} = n_v, \frac{p_v}{y} = n_v, \frac{p_v}{z} = 0, S_{21} = S_x, S_{31} = S_y$. This formula is also a consequence of equation (7.18) from [20].
Using the orthogonality relations
\[\hat{B}_\mu \hat{B}_\nu = \hat{C}_\mu \hat{C}_\nu = \delta_{\mu \nu} \hat{B}_\nu, \quad \hat{C}_\mu \hat{B}_\nu = \delta_{\mu \nu} \hat{C}_\nu \]
it is easy to prove that all terms in sums (6.7) are linearly independent. Thus matrix \(\hat{\mu}_s(n) \) includes exactly 2s + 1 essential parameters and so it should be equivalent to the analogous matrix found in [14, equation (29)]. However, the number of these parameters can be reduced using the unitary transformation
\[\hat{\mu}_s(n) \to U \hat{\mu}_s(n) U^\dagger = \sum_{\nu \geq 0} \lambda_\nu \hat{B}_\nu \hat{\mu}_s(n) = \hat{\mu}_s(n), \quad (6.8) \]
where \(\lambda_\nu = \sqrt{b^2 + d_\nu^2} \) and \(U = \sum_{\nu \geq 0} (\cos \theta_\nu \hat{B}_\nu + i \sin \theta_\nu \hat{C}_\nu) \). Taking into account that \(\mu_s(n) \) commutes with \(B_\nu \) and anticommutes with \(C_\nu \), it is easy to make sure that relation (6.8) is true provided parameters \(\theta_\nu \) satisfy the conditions \(b_\nu = \lambda_\nu \cos \theta_\nu \) and \(d_\nu = \lambda_\nu \sin \theta_\nu \).

It follows from (6.8) that, up to unitary equivalence, matrix \(\hat{\mu}_s(n) \) includes only \(s + \frac{1}{2} \) or \(s + 1 \) arbitrary parameters for half-integer or integer spin, respectively. A particular case of this statement has been proven in section 2; see equations (2.6) and (2.7).

Thus the Hamiltonian for the superintegrable model of arbitrary spin can be represented in the following form:
\[H_s = \frac{p_x^2 + p_y^2}{2m} + \frac{1}{r} \hat{\mu}_s(n), \quad (6.9) \]
where \(\hat{\mu}_s(n) \) is the matrix defined by equations (6.8) and (6.6). Hamiltonian (6.9) is invariant w.r.t. algebra \(o(2,1) \) whose basis elements are given by equations (2.3) and (2.4) with \(\mu(n) \to \hat{\mu}_s(n) \).

Note that in particular case \(s = 1 \), Hamiltonian (6.9) is reduced to the operator defined by equations (4.1) and (4.2), where \(\mu = \frac{1}{2s+1}(\lambda_0 - \lambda_1) \) and \(\lambda = \frac{1}{2s+1}(\lambda_0 + \lambda_1) \). For \(s = \frac{3}{2} \), matrix (6.8) can be transformed to the form (5.1) with \(\mu = \frac{1}{8}(\lambda_2 - \lambda_1), \nu = \frac{3}{8}\lambda_1 - \frac{1}{2}\lambda_2 \) by applying transformation (4.10).

7. Dual shape invariance and exact solutions

Let us consider the eigenvalue problem (3.2) for Hamiltonians (4.1) and (6.6). Like in section 2, we again introduce polar coordinates (3.3) and expand solutions via eigenvectors of operator \(J_\zeta (2.3) \) where \(S_\zeta \) is the matrix of spin \(s \) defined by equation (6.1). These eigenvectors can be represented as
\[\psi_\zeta = \frac{1}{\sqrt{r}} \exp(i(\kappa - S_\zeta)\theta) \Phi_\zeta (r), \quad (7.1) \]
where
\[\Phi_\zeta (r) = \text{column} (\phi_\zeta, \phi_{\zeta-1}, \ldots, \phi_{\zeta-s}). \quad (7.2) \]
Substituting (6.9), (7.1) and (7.2) into (3.2), we obtain the following equation for radial functions \(\Phi_\zeta \):
\[\hat{\mathcal{H}}_s \Phi_\zeta = \left(-\frac{\partial^2}{\partial r^2} + V_\zeta \right) \Phi_\zeta = \hat{\varepsilon} \Phi_\zeta, \quad (7.3) \]
where \(\hat{\varepsilon} = \frac{\kappa}{2} \) and
\[V_\zeta = \left((k - S_\zeta)^2 - \frac{1}{4} \right) \frac{1}{r^2} + \hat{\mu}_s \frac{1}{r}, \quad \hat{\mu}_s = 2m\hat{\mu}_s(n)|_{n=0}. \quad (7.4) \]
Both the initial equation (3.1) and equation (7.3) are invariant w.r.t. the space reflection transformation (3.6), where $\Lambda = \tilde{\mu}_s(n)/2m\lambda$. Thus it is reasonable to search for solutions of (7.3) for non-negative κ since solutions for negative κ can be obtained using transformation (3.6).

Hamiltonian \hat{H}_κ and matrix S_z commute between themselves and so they have a mutual system of eigenfunctions. Matrix S_z is diagonal and its eigenfunctions ψ_{ν} corresponding to eigenvalues $\nu^2 = s^2, (s - 1)^2, (s - 2)^2, \ldots$ have two or one non-zero components for $\nu^2 > 0$ and $\nu^2 = 0$, respectively. In the standard representation of the spin matrix with diagonal S_z and symmetric S_x, matrix $\tilde{\mu}_s$ is symmetric and antidiagonal, and has the unit non-zero entries.

Thus the eigenvalue problem (7.3) can be decoupled to the following equations:

$$\hat{H}_\kappa \psi_{\kappa,\nu} \equiv \left(-\frac{\partial^2}{\partial r^2} + V_\kappa \right) \psi_{\kappa,\nu} = \tilde{E} \psi_{\kappa,\nu}, \quad (7.5)$$

where $\psi_{\kappa,\nu} = \left(\phi_{\nu}, \phi_{\nu} - \nu \right)$ are two-component functions, and

$$V_{\kappa,\nu} = \frac{(\kappa - \nu \sigma_3)^2 - \frac{1}{4}}{r^2} + \frac{\tilde{\lambda}}{r} \sigma_1, \quad \nu \neq 0. \quad (7.6)$$

For $\nu = 0$, the corresponding reduced potential is one dimensional:

$$V_{\kappa,0} = \frac{(\kappa)^2 - \frac{1}{4}}{r^2} + \frac{\tilde{\lambda}}{r}. \quad (7.7)$$

Potentials (7.6) were discussed in [16] where parameter ν was denoted as $\mu + \frac{1}{2}$. These potentials are shape invariant and can be expressed via superpotentials as follows:

$$V_{\kappa,\nu} = W_{\kappa,\nu}^2 - W_{\kappa,\nu}', + c_\kappa, \quad (7.8)$$

where

$$W_{\kappa,\nu} = \frac{\nu}{r} \sigma_3 - \frac{\tilde{\lambda}}{2\kappa + 1} \sigma_1 - \frac{2\kappa + 1}{2r} \sigma_2 + \frac{\tilde{\lambda} \sigma_3}{2r} + \frac{\tilde{\lambda} \sigma_1}{2r} - \frac{\tilde{\lambda} \sigma_2}{2r}. \quad (7.9)$$

and c_κ is the parameter given in equation (3.8).

The shape invariance of $V_{\kappa,\nu}$ can be easily proven since, in addition to the representation (7.8), the following equation holds true:

$$V_{\kappa,\nu} = W_{\kappa,\nu}^2 + W_{\kappa,\nu}' = V_{\kappa+1,\nu} + C_\kappa, \quad (7.10)$$

where $C_\kappa = c_{\kappa+1} - c_\kappa$.

The one-dimensional potential (7.7) is shape invariant too. It can be represented in the standard form (7.8) with

$$W_{\kappa,0} = -\frac{\tilde{\lambda}}{2\kappa + 1} - \frac{2\kappa + 1}{2r}. \quad (7.11)$$

It is important to note that potential (7.6) is invariant w.r.t. the change $\nu \to \kappa$, $\kappa \to \nu$, while superpotential (7.9) is not invariant w.r.t. this change, since

$$W_{\nu,\kappa} = \frac{\kappa}{r} \sigma_3 - \frac{\tilde{\lambda}}{2\nu + 1} \sigma_1 - \frac{2\nu + 1}{2r} \sigma_2. \quad (7.12)$$

\[\text{See, e.g., [14, equation (4.2)] or [20, equation (4.65)].}\]
Thus, in addition to (7.8), there exist the alternative representations of potential (7.6) via superpotential, i.e. equation (7.8) where $W_{\kappa,\nu}$ is changed by superpotential (7.12):

$$V_{\kappa,\nu} = W_{\kappa,\nu}^2 - W_{\kappa,\nu}' + c_\nu, \quad c_\nu = -\frac{\tilde{\lambda}^2}{(2\nu + 1)^2}. \quad (7.13)$$

In other words, potential (7.6) appears to be shape invariant w.r.t. the shifts of two parameters, i.e. κ and ν. This is a particular case of the dual shape invariance phenomena discovered in [16].

Using representations (7.8) and (7.13), we easily find the ground state vectors of Hamiltonian (7.5). Solving equations (3.10) with superpotentials (7.9) and (7.12), we obtain the following components of the ground state vectors $\psi_\nu^0 = \text{column}(\phi_\nu^0, \phi_{\nu,\nu}^0)$, $\nu = s, s - 1, s - 2, \ldots, \nu > 0$:

$$\phi_\nu^0 = d_\nu \lambda^{s+1} K_{\nu+\frac{1}{2}} \left(\frac{\tilde{\lambda} r}{2\nu + 1} \right), \quad \phi_{\nu,\nu}^0 = d_\nu (-1)^{s-\frac{1}{2}} \lambda^{s+1} K_{\nu-\frac{1}{2}} \left(\frac{\tilde{\lambda} r}{2\nu + 1} \right), \quad \kappa \geq \nu \quad (7.14)$$

for superpotential (7.9), and

$$\phi_\nu^0 = d_\nu \lambda^{s+1} K_{\nu+\frac{1}{2}} \left(\frac{\tilde{\lambda} r}{2\nu + 1} \right), \quad \phi_{\nu,\nu}^0 = d_\nu (-1)^{s+1} \lambda^{s+1} K_{\nu-\frac{1}{2}} \left(\frac{\tilde{\lambda} r}{2\nu + 1} \right), \quad 0 \leq \kappa < \nu \quad (7.15)$$

for superpotential (7.12), were d_ν are integration constants. Solution for $\nu = 0$, i.e. the component ϕ_0^0, is given by the following equation:

$$\phi_0^0 = \lambda^{s+\frac{1}{2}} \exp(-\tilde{\lambda} r), \quad \kappa = 0, 1, 2, \ldots \quad (7.16)$$

Functions (7.14) and (7.15) are square integrable for $\tilde{\lambda} > 0$ and arbitrary integer or half-integer $\kappa \geq 0$. The same is true for (7.16). However, functions (7.14) for $\kappa \leq \nu$ and functions (7.15) for $\kappa > \nu$ do not vanish at $r = 0$. So such values of parameters ν and κ should be excluded, as is indicated on the rhs of the discussed equations.

Vectors for exited states and the corresponding energy levels again are given by relations (3.12), (3.8) and (3.13), where W_{κ} should be replaced by superpotential (7.9) or (7.12). In accordance with the analysis presented in [16] all such vectors are square integrable and vanish at $r = 0$.

Thus we find the eigenvectors of Hamiltonians (4.1) and (6.6) which are given by equations (7.1), (7.2) and (7.14)–(7.16). The corresponding solutions for negative κ can be easily found using transformation (3.6) where $\Lambda = \tilde{\mu}_n(\kappa)$.

In complete analogy with the above, we can solve the eigenvalue problem for the more general Hamiltonian (6.9) including $[s + 1]$ arbitrary parameters $\tilde{\lambda}_i$. Actually, to this effect it is sufficient to change $\tilde{\lambda} \to \tilde{\lambda}_i$ in all formulae (7.6), (7.9)–(7.15) and (3.13).

8. Discussion

The shape-invariant matrix potentials classified in [16] and [17] can appear in many realistic integrable models of quantum mechanics. In this paper we apply the results of these papers to the interesting class of exactly solvable systems found in [14]. These systems are maximally superintegrable and generalize the PS model to the case of arbitrary spin.

We find it interesting to study these long-awaited generalized models in more detail—in particular, to search for their solutions, examine their consistency and verify whether the supersymmetry and shape invariance of the spin-$1/2$ model are kept in the case of arbitrary spin. In addition, it is important to understand the physical content of the models proposed in [14]. Only the tasks enumerated above are the subject of this paper.
First, we refine the results of [14] taking into account equivalence relations w.r.t. unitary transformations realized by constant matrices. It is shown that up to such equivalence, the superintegrable models for arbitrary spin s include $s + 1$ or $s + \frac{1}{2}$ arbitrary parameters for integer or half-integer spins correspondingly, while in [14] these models include $2s + 1$ parameter.

The cases $s = 1$ and $s = \frac{3}{2}$ are considered in more detail. We present the corresponding Hamiltonians in the form which is convenient for physical interpretation. This interpretation is proposed using two alternative ways. First, it is possible to treat (4.1) as a Hamiltonian of spin-1 particle with zero charge and zero dipole momentum, which has a non-trivial quadruple interaction with the external field. Another possibility is to represent the Hamiltonian in form (4.9) including the interaction term nonlinear in the external magnetic field. Analogous alternatives exist for the models for spin-3/2 particle considered in section 5 and also for arbitrary spin, i.e. it is possible to interpret the related potentials as results of either multipole or nonlinear interaction of a neutral particle with an external field.

It is shown that the considered models are shape invariant. Moreover, their effective potentials appear to be particular cases of the matrix shape-invariant potentials classified in [16]. Using this fact, it is possible to construct exact solutions of these models in a simple and straightforward way. This program has been realized in section 7 immediately for arbitrary spin.

A specific property of potentials (7.6) is their dual shape invariance, i.e. the existence of two non-equivalent corresponding superpotentials. Exactly this property enables us to find good solutions for all combinations of eigenvalues of the spin and orbital momentum operators.

Note that supersymmetric and superconformal aspects of planar systems with arbitrary spin were discussed in [21] and [22]. We consider another class of such systems which are chargeless, have non-trivial multipole moments and can be integrated in a closed form using their supersymmetry and shape invariance.

In this paper, the shape invariant matrix potentials classified in [16] and [17] are used to solve explicitly the countable set of superintegrable models. In fact the number of exactly solvable models with matrix superpotentials, some of which have clear physical significance, is much more extended. Among them there are also the relativistic models discussed in [12] and many others. We plan to present such models in following publications.

References

[1] Tremblay F, Turbiner A V and Winternitz P 2009 J. Phys. A: Math. Theor. 42 242001
[2] Winternitz P and Yurdusen I 2006 J. Math. Phys. 47 103509
[3] Gendenshtein L 1983 JETP Lett. 38 356
[4] Pron'ko G P and Stroganov Y G 1977 Sov. Phys.—JETP 45 1075
[5] Voronin A I 1991 Phys. Rev. A 43 29
[6] Hau L V, Golovchenko G A and Burns M M 1995 Phys. Rev. Lett. 74 3138
[7] Blümel R and Dietrich K 1989 Phys. Lett. A 139 236
[8] Blümel R and Dietrich K 1991 Phys. Rev. A 43 22
[9] Martinez D, Granados V D and Mota R D 2006 Phys. Lett. A 350 31
[10] de Lima Rodrigues R, Bezerra V B and Vaidyac A N 2001 Phys. Lett. A 287 45
[11] Ioffe M V, Kuru S, Negro J and Nieto L M 2006 J. Phys. A: Math. Gen. 39 6987
[12] Ferraro E, Messina N and Nikitin A G 2010 Phys. Rev. A 81 042108
[13] Berg-Sorensen K, Burns M M, Golovchenko J A and Hau L V 1996 Phys. Rev. A 53 1653
[14] Pronko G P 2007 J. Phys. A: Math. Theor. 40 13331
[15] Beckers J, Debergh N and Nikitin A G 1995 Fortsch. Phys. 43 81
[16] Nikitin A G and Karadzhov Y 2011 J. Phys. A: Math. Theor. 44 305204
[17] Nikitin A G and Karadzhov Y 2011 J. Phys. A: Math. Theor. 44 445202
[18] Nikitin A G and Kuriksha O 2012 Symmetries and solutions of field equations of axion electrodynamics arXiv:1201.4935
[19] Fushchich W I, Grishchenko A L and Nikitin A G 1971 Theor. Math. Phys. 8 766
[20] Fushchich W I and Nikitin A G 1994 Symmetries of Equations of Quantum Mechanics (New York: Allerton Press Inc.)
[21] Klishevich S M and Plyushchay M S 2001 Nucl. Phys. B 616 403
[22] Anabalon A and Plyushchay M S 2003 Phys. Lett. B 572 202