Hochschild (co)homology of Hopf crossed products

Jorge A. Guccione and Juan J. Guccione

Abstract. For a general crossed product $E = A \# f H$, of an algebra A by a Hopf algebra H, we obtain complexes simpler than the canonical ones, giving the Hochschild homology and cohomology of E. These complexes are equipped with natural filtrations. The spectral sequences associated to them is a natural generalization of the one obtained in [H-S] by the direct method. We also get that if the 2-cocycle f takes its values in a separable subalgebra of A, then the Hochschild (co)homology of E with coefficients in M is the (co)homology of H with coefficients in a (co)chain complex.

Introduction

Let G be a group, $S = \bigoplus S_g$ a strongly G-graded algebra and V an S-bimodule. In [L] was shown that there is a convergent spectral sequence

$$E_2^{r,s} = H_r(G, H_s(S, V)) \Rightarrow H_{r+s}(S, V),$$

where e denotes the identity of G. In [S] was shown that this result remains valid for H-Galois extensions (in his paper the author deals with both the homology and the cohomology of these algebras). An important particular type of H-Galois extensions are the crossed products with convolution invertible cocycle $E = A \# f H$, of an algebra A by a Hopf algebra H (for the definition see Section one). The purpose of our paper is to construct complexes simpler than the canonical ones, given the Hochschild (co)homology of E with coefficients in an arbitrary E-bimodule. These complexes are equipped with canonical filtrations. We show that the spectral sequences associated to them coincide with the ones obtained using a natural generalization of the direct method introduced in [H-S], and with the ones constructed in [S] (when these are specialize to crossed products). In the case of group extensions these results were proved in [E] and [B].

This paper is organized as follows: in Section 1 a resolution (X_*, d_*) of a crossed product $E = A \# f H$ is given. To accomplish this construction we do not use the fact that the cocycle is convolution invertible. Moreover, we give a recursive construction of morphisms $\phi_* : (X_*, d_*) \rightarrow (E \otimes E^* \otimes E, b'_*)$ and $\psi_* : (E \otimes E^* \otimes E, b'_*) \rightarrow (X_*, d_*)$, where $(E \otimes E^* \otimes E, b'_*)$ is the normalized Hochschild resolution, such that $\psi_* \phi_* = id$ and we show that $\phi_* \psi_*$ is homotopically equivalent to the identity map. Consequently our resolution is a direct sum of the normalized Hochschild resolution. We
also recursively construct an homotopy $\phi_\ast \psi_\ast \xrightarrow{\omega_{s+1}} id_\ast$. Both, the canonical normalized resolution and (X_\ast, d_\ast) are equipped with natural filtrations, which are preserved by the maps ϕ_\ast, ψ_\ast and ω_{s+1}.

In Section 2, for an E-bimodule M, we get complexes $\widehat{X}_\ast(E, M)$ and $\widehat{X}^\ast(E, M)$, giving the Hochschild homology and cohomology of E with coefficients in M respectively. The filtration of (X_\ast, d_\ast) induces filtrations on $\widehat{X}_\ast(E, M)$ and $\widehat{X}^\ast(E, M)$. So, we obtain converging spectral sequences $E^1_{rs} = H_r(A, M \otimes \overline{E}^r) \Rightarrow H_{r+s}(E, M)$ and $E^{rs}_1 = H^r(A, \text{Hom}_H(\overline{E}, M)) \Rightarrow H^{r+s}(E, M)$. Using the results of Section 1, we get that these spectral sequences are isomorphic to the ones associated to suitable filtrations of the Hochschild normalized chain and cochain complexes $(M \otimes \overline{E}, b_\ast)$ and $(\text{Hom}_H(\overline{E}^r, M), b^r)$. This allows us to give very simple proofs of the main results of [H-S] and [G].

In Section 3, we show that, if the cocycle is convolution invertible, then the complexes $\widehat{X}_\ast(E, M)$ and $\widehat{X}^\ast(E, M)$ are isomorphic to simpler complexes $\overline{X}_\ast(E, M)$ and $\overline{X}^\ast(E, M)$ respectively. Then, we compute the term E^2_{rs} and E^2_{rs} of the spectral sequences obtained in Section 2. Moreover, using the above mentioned filtrations, we prove that if the 2-cocycle f takes its values in a separable subalgebra of A, then the Hochschild (co)homology of E with coefficients in M is the (co)homology of H with coefficients in a (co)chain complex. Finally, as an application we obtain some results about the Tor Tor_E^\ast and Ext Ext_E^\ast functors and an upper bound for the global dimension of E (for group crossed products this bound was obtained in [A-R]).

In addition to the direct method developed in [H-S], there are another two classical methods to obtain spectral sequences converging to $H_\ast(E, M)$ and with E^2-term $H_\ast(H, H_\ast(A, M))$. Namely the Cartan-Leray and the Grothendieck spectral sequences of a crossed product. In Section 4, we recall these constructions and prove that these spectral sequences are isomorphic to the one obtained in Section 2. This generalizes the main results of [B].

In a first appendix we give a method to construct (under suitable hypothesis) a projective resolution of the k-algebra E as $E^c = E \otimes E^{\text{op}}$-bimodule, simpler than the canonical one of Hochschild. This method, which can be considered as a variant of the perturbation lemma, is used to prove the main result of Section 1. The boundary maps of the resolution (X_\ast, d_\ast) are recursively defined in Section 1. In a second appendix we give closed formulas for these maps.

1. A Resolution for a Crossed Product

Let A be a k-algebra and H a Hopf algebra. We will use the Sweedler notation $\Delta(h) = h^{(1)} \otimes h^{(2)}$, with the summation understood and superindices instead of subindices. Recall some definitions of [B-C-M] and [D-T]. A weak action of H on A is a bilinear map $(h, a) \mapsto a^h$ from $H \times A$ to A such that, for $h \in H$, $a, b \in A$

1) $(ab)^h = a^{h^{(1)}} b^{h^{(2)}}$,
2) $1^h = \epsilon(h) 1$,
3) $a^1 = a$.

Let A be a k-algebra and H a Hopf algebra with a weak action on A. Given a k-linear map $f : H \otimes H \to A$, let $A \# H$ be the k-algebra (in general non associative and without 1) with underlying vector space $A \otimes H$ and multiplication map $$(a \otimes h)(b \otimes l) = ab^{h^{(1)}} f(h^{(2)}, l^{(1)}) \otimes h^{(3)} l^{(2)},$$
for all \(a, b \in A, h, l \in H\). The element \(a \otimes h\) of \(A \# h\) will usually be written \(a \# h\) to remind us \(H\) is weakly acting on \(A\). The algebra \(A \# h\) is called a \textit{crossed product} if it is associative with \(1 \# 1\) as identity element. It is easy to check that this happens if and only if \(f\) and the weak action satisfy the following conditions:

i) (Normality of \(f\)) for all \(h \in H\), we have \(f(h, 1) = f(1, h) = \epsilon(h)1_A\),

ii) (Cocycle condition) for all \(h, l, m \in H\), we have

\[
\begin{align*}
&f((l(1), m(1))h^{(1)}, f(h(2), l(2)m(2)) = f(h(1), l(1))f(h(2)l(2), m), \\
&\end{align*}
\]

iii) (Twisted module condition) for all \(h, l \in H, a \in A\) we have

\[
(a^{(1)}i(1))h^{(1)}f(h(2), l(2))f(h(1), l(1))a^{(2)}l(2).
\]

In this section we obtain a resolution \((X_\ast, d_\ast)\) of a crossed product \(E = A \# h\) as an \(E\)-bimodule, which is simpler than the canonical one of Hochschild. To begin, we fix some notations:

1) For each \(k\)-algebra \(B\), we put \(\overline{B} = B/k\). Moreover, given \(b \in B\) we also let \(\overline{b}\) denote the class of \(b\) in \(\overline{B}\).

2) We write \(B^l = B \otimes \cdots \otimes B, \overline{B}^l = \overline{B} \otimes \cdots \otimes \overline{B}\) \((l \text{ times})\) and \(B_l(B) = B \otimes \overline{B}^l \otimes B\), for each natural number \(l\).

3) Given \(a_0 \otimes \cdots \otimes a_r \in A^{r+1}\) and \(0 \leq i < j \leq r\), we write \(a_{ij} = a_i \otimes \cdots \otimes a_j \in A^{j-i+1}\).

4) Given \(h_0 \otimes \cdots \otimes h_s \in H^{s+1}\) and \(0 \leq i < j \leq s\), we write \(h_{ij} = h_i \otimes \cdots \otimes h_j\) and \(h_{ij} = h_i \cdots h_j \in H\).

5) Given \(h = h_0 \otimes \cdots \otimes h_s \in H^{s+1}\), we let \(h^{(1)} \otimes h^{(2)}\) denote the comultiplication of \(h\) in \(H^{s+1}\). So, \(h^{(1)} \otimes h^{(2)} = (h_0^{(1)} \otimes \cdots \otimes h_s^{(1)}) \otimes (h_0^{(2)} \otimes \cdots \otimes h_s^{(2)})\).

6) Given \(a \in A, a = a_1 \otimes \cdots \otimes a_r \in A^r\) and \(h = h_0 \otimes \cdots \otimes h_s \in H^{s+1}\), we write

\[
\begin{align*}
&\overline{a} = ((a^{(1)}h_{s-1})h_{s-2})h_{s-3} \cdots h_0, \\
&\overline{a} = \overline{a_1} \otimes \cdots \otimes \overline{a_r}.
\end{align*}
\]

1.1. The resolution \((X_\ast, d_\ast)\)

Let \(Y_s = E \otimes \overline{H^s} \otimes H\) \((s \geq 1)\) and \(X_{rs} = E \otimes \overline{H^r} \otimes \overline{H^s} \otimes E\) \((r, s \geq 0)\). The groups \(X_{rs}\) are \(E\)-bimodules in an obvious way and the groups \(Y_s\) are \(E\)-bimodules via the left canonical action and the right action

\[
(a_0 \otimes h)(a \# h) = a_0 \overline{a} = a_{0d} (h^{(2)}(1), h^{(3)}h^{(2)}1)h_{s+1}^{(3)} \otimes (h_{s}^{(2)} \otimes h_{s+1}^{(3)}),
\]

where \(h = h_0 \otimes \cdots \otimes h_{s+1}\). Let us consider the diagram of \(E\)-bimodules and \(E\)-bimodule maps

\[
\begin{align*}
&\vdots \\
&Y_1 \leftarrow X_{01} \leftarrow X_{11} \leftarrow \cdots \\
&\downarrow \delta_2 \\
&Y_0 \leftarrow X_{00} \leftarrow X_{10} \leftarrow \cdots,
\end{align*}
\]
for, So, we are in the situation considered in Appendix A. We define

\[E \]

Theorem 1.1.1. where \(a = a_1 \otimes \cdots \otimes a_{s+1} \) and \(h = h_0 \otimes \cdots \otimes h_{s+1} \). We have left \(E \)-module maps \(\sigma_0^0 : Y_s \to X_0 \) and \(\sigma_{s+1}^0 : X_s \to X_{s+1} \), given by \(\sigma_0^0(a \otimes h_0 \otimes a \otimes h_{s+1}) = (-1)^{\sigma_0^0}a \otimes h_0 \otimes a \otimes h_{s+1} \) for \(r \geq -1 \). Clearly \((Y_s, \partial_s)\) is a complex and \(\sigma_{s+1}^0 \) is a contracting homotopy of

\[Y_s \xrightarrow{\mu} X_0 \xleftarrow{d_1^0} X_1 \xleftarrow{d_2^0} X_2 \xleftarrow{d_3^0} X_3 \xleftarrow{d_4^0} X_4 \xleftarrow{d_5^0} X_5 \xleftarrow{d_6^0} X_6 \xleftarrow{\ldots} \ldots, \]

where \(\mu = d_0^0 \). We define \(E \)-bimodule maps \(d_r^s : X_r \to X_{r-l} \) for \(r \geq 0 \) and \(1 \leq l \leq s \) recursively, by:

\[
\begin{align*}
\partial_s(\sigma_{s+t}^0) &= -\sigma_{s+t-1}^0 \partial_s(\sigma_{s+t}^0(x)) & \text{if } r = 0 \text{ and } l = 1, \\
\partial_s(\sigma_{s+t}^0) &= -\sum_{j=1}^{s+1} \sigma_{s+t-j}^0 \partial_s(\sigma_{s+t-j}^0(x)) & \text{if } r = 0 \text{ and } 1 < l \leq s, \\
\partial_s(\sigma_{s+t}^0) &= -\sum_{j=1}^{s+1} \sigma_{s+l-j}^0 \partial_s(\sigma_{s+l-j}^0(x)) & \text{if } r > 0,
\end{align*}
\]

for \(x \in k \otimes \overline{H}^s \otimes \overline{A}^r \otimes k \).

Theorem 1.1.1. There is a relative projective resolution

\[(1) \quad E \xleftarrow{\mu} X_0 \xleftarrow{d_1^0} X_1 \xleftarrow{d_2^0} X_2 \xleftarrow{d_3^0} X_3 \xleftarrow{d_4^0} X_4 \xleftarrow{d_5^0} X_5 \xleftarrow{d_6^0} X_6 \xleftarrow{\ldots} \ldots, \]

where \(X_n = \bigoplus_{r+s=n} X_{r+s} \), \(\mu \) is the multiplication map and \(d_n = \sum_{r+s=n} \sum_{l=0}^{s+1} d_r^s \).

Proof. Let \(\tilde{\mu} : Y_0 \to E \) be the map \(\tilde{\mu}(a \otimes (h_0 \otimes h_1)) = -af(h_0^{(1)}, h_1^{(1)})h_0^{(2)}h_1^{(2)} \). The complex of \(E \)-bimodules

\[E \xleftarrow{\tilde{\mu}} Y_0 \xleftarrow{\partial_1} Y_1 \xleftarrow{\partial_2} Y_2 \xleftarrow{\partial_3} Y_3 \xleftarrow{\partial_4} Y_4 \xleftarrow{\partial_5} Y_5 \xleftarrow{\partial_6} Y_6 \xleftarrow{\ldots} \ldots \]

is contractible as a complex of left \(E \)-modules. A chain contracting homotopy \(\sigma_0^0 : E \to Y_0 \) and \(\sigma_0^{s+1} : Y_s \to Y_{s+1} \) is given by \(\sigma_0^{s+1}(x) = (-1)^{x+1}x \otimes 1_H \).

Hence, the theorem follows from Corollary A.2 of Appendix A.

Remark 1.1.2. Let \(\sigma_{s-l}^l : X_s \to X_{s-l} \) and \(\sigma_{r+1,s-l}^l : X_s \to X_{r+1,s-l} \) be the maps recursively defined by

\[
\sigma_{r+1,s-l}^l = -\sum_{i=0}^{s+1} \sigma_{r+i+1,s-l}^i \sigma_{r+i+1,s-l}^i (0 \leq l \leq s \text{ and } r \geq -1).
\]

We will prove, in Corollary A.2, that the family \(\varpi_0^0 : E \to X_0, \varpi_{n+1}^0 : X_n \to X_{n+1}, \) defined by \(\varpi_0^0 = \sigma_0^0 \sigma_0^0 \) and

\[
\varpi_{s+1}^0 = -\sum_{l=0}^{s+1} \sigma_{l,s-l+1}^l \sigma_{s-l+1}^l + \sum_{r+l=n} \sigma_{r+l,s-l}^l (n \geq 0),
\]

is a contracting homotopy of the resolution (1) introduced in Theorem 1.1.1.
Theorem 1.1.3. Let $x = a_0 \otimes h \otimes a \otimes 1_E$, with $a = a_1 \otimes \cdots \otimes a_r \in \mathcal{A}$ and $h = h_0 \otimes \cdots \otimes h_s \in H \otimes H$. We have:

1) d_{rs}^1 is the map given by

$$
 d_{rs}^1(x) = \sum_{i=0}^{s-1} (-1)^{i+r} a_0 f(h_i^{(1)}, h_s^{(-1)} \otimes h_{s-i}^{(2)} h_{i+1}^{(2)} h_{i+2,s} \otimes a \otimes 1_E

+ (-1)^{r+s} a_0 \otimes h_{0,s-1} \otimes a h_s^{(1)} \otimes 1 \# h_s^{(2)},
$$

2) For each $l \geq 2$, there are maps $F_r^l : \mathcal{T} \to A^{l-1}$ and $F_r^l : \mathcal{T} \otimes \mathcal{T} \to A^{l-1}$ (r ≥ 1), whose image is included in the k-submodule of A^{l-1} generated by all the elementary tensors $a_1 \otimes \cdots \otimes a_{r+l-1}$ with $l-1$ coordinates in the image of f, such that for $2 \leq l \leq s$,

$$
 d_{rs}^l(x) = (-1)^{l(r+s)} a_0 \otimes h_{0,s-l} \otimes F_r^l(h_s^{(1)} h_s^{(1)} a \otimes 1 \# h_s^{(2)},
$$

where $F_r^l(h_{s-l+1,s} a) = F_r^l(h_{s-l+1,s} a) = F_r^l(h_{s-l+1,s} a)$ if $r = 0$.

Proof: The computation of d_{rs}^1 can be obtained easily by induction on r, using that $d_{rs}^1 = -\sigma_{0,s-1}^{0} \partial_s \mu_0$ and $d_{rs}^l = -\partial_r \sigma_{r-1}^{0} d_{r-1,s} d_{rs}^l$ for $r \geq 1$. The assertion for d_{rs}^l, with $l \geq 2$, follows easily by induction on l and r, using the recursive definition of d_{rs}^l.

In Appendix B we will give more precise formulas for the maps F_r^l completing the computation of the d_{rs}^l’s.

1.2. Comparison with the canonical resolution

Let $(B_*(E), b'_n)$ be the normalized Hochschild resolution of E. As it is well known, the complex

$$
 E \leftarrow E \otimes E \leftarrow B_1(E) \leftarrow B_2(E) \leftarrow B_3(E) \leftarrow \ldots
$$

is contractible as a complex of left E-modules, with contracting homotopy $\xi_n(x) = (-1)^n x \otimes 1$. Let ξ_* be the contracting homotopy of (1) introduced in Remark 1.1.2. Let $\phi_0 : (X_*, d_*) \to (B_*(E), b'_n)$ and $\psi_0 : (B_*(E), b'_n) \to (X_*, d_*)$ be the morphisms of E-bimodule complexes, recursively defined by $\phi_0 = id$, $\psi_0 = id$, $\phi_{n+1}(x \otimes 1) = \xi_{n+1} \phi_n d_{n+1}(x \otimes 1)$ and $\psi_{n+1}(y \otimes 1) = \bar{\xi}_{n+1} \psi_n b'_{n+1}(y \otimes 1)$.

Proposition 1.2.1. $\psi_0 \phi_0 = id_*$ and $\phi_0 \psi_0$ is homotopically equivalent to the identity map. An homotopy $\phi_0 \psi_0 \xrightarrow{\omega_{n+1}} id_*$ is recursively defined by $\omega_1 = 0$ and $\omega_{n+1}(x) = \xi_{n+1} (\phi_n \psi_n - id - \omega_n b'_n)(x)$, for $x \in E \otimes E \otimes k$.

Proof: We prove both assertions by induction. Let $U_n = \phi_n \psi_n - id_n$ and $T_n = U_n - \omega_n b'_n$. Assuming that $b'_{n+1} \omega_n + \omega_{n-1} b'_{n-1} = U_{n-1}$, we get that on $E \otimes E \otimes k$,

$$
 b'_{n+1} \omega_{n+1} + \omega_n b'_n = b'_{n+1} \xi_{n+1} T_n + \omega_n b'_n

= T_n - \xi_n b'_n T_n + \omega_n b'_n

= U_n - \xi_n b'_n T_n + \xi_n b'_n \omega_n b'_n

= U_n - \xi_n b'_n T_n + \xi_n T_{n-1} b'_n = U_n.
$$
Hence, $b_{n+1}' = \omega_{n+1} + \omega_n b_n' = U_n$ on $B_n(E)$. Next, we prove that $\psi_n \phi_n = id_n$. It is clear that $\psi \phi = id_n$. Assume that $\psi_n \phi_n = id_n$. Since $\phi_{n+1}(E \otimes H \otimes A \otimes k) \subseteq E \otimes E^{n+1} \otimes k$, we have that, on $k \otimes H \otimes A^{n+1-s} \otimes k$,

$$
\psi_{n+1} \phi_{n+1} = \sigma_{n+1} \psi_{n+1} b_{n+1}' \phi_{n+1} \\
= \sigma_{n+1} \psi_{n+1} b_{n+1}' \xi_{n+1} \phi_n d_{n+1} \\
= \sigma_{n+1} \psi_{n+1} \phi_n d_{n+1} - \sigma_{n+1} \psi_n \xi_n b_n \phi_n d_{n+1} \\
= \sigma_{n+1} d_{n+1} - id_{n+2} - d_{n+2} \sigma_{n+2}.
$$

So, to finish the proof it suffices to check that $\sigma_{n+2}(k \otimes H \otimes A^{n+1-s} \otimes k) = 0$, which follows easily from the definition of σ_n.

Let $F^i(X_n) = \bigoplus_{0 \leq i \leq n} E \otimes H^i \otimes A^{n-i} \otimes E$ and let $F^i(B_n(E))$ be the sub-bimodule of $B_n(E)$ generated by the tensors $1 \otimes x_1 \otimes \cdots \otimes x_n \otimes 1$ such that at least $n - i$ of the x_j's belong to A. The normalized Hochschild resolution $(B_*(E), b_*)$ and the resolution (Σ_*, d_*) are filtered by $F^0(B_*(E)) \subseteq F^1(B_*(E)) \subseteq F^2(B_*(E)) \subseteq \ldots$ and $F^0(X_n) \subseteq F^1(X_n) \subseteq F^2(X_n) \subseteq \ldots$, respectively.

Proposition 1.2.2. The maps ϕ_\ast, ψ_\ast and ω_\ast preserve filtrations.

Proof. Let $Q^i_j = E \otimes H^i \otimes A^{n-j} \otimes k$. We claim that

a) $\sigma_{n+1}(F^i(X_n)) \subseteq F^i(X_{n+1})$ for all $0 \leq i < n$,
b) $\sigma_{n+1}(E \otimes H^i \otimes A) \subseteq Q^i_{i-1} + F^{i-1}(X_{n+1})$ for all $0 \leq i \leq n$,
c) $\sigma_{n+1}(E \otimes H^i \otimes E) \subseteq E \otimes H^{n+1} \otimes k + F^n(X_{n+1})$ for all $n \geq 0$,
d) $\psi_n(F^i(B_n(E)) \cap E \otimes H^j \otimes k) \subseteq Q^i_j + F^{i-1}(X_n)$.

In fact a), b) and c) follow immediately from the definition of σ_{n+1}. Suppose d) is valid for n. Let $x = x_0 \otimes \cdots \otimes x_{n+1} \otimes 1 \in F^i(B_{n+1}(E)) \cap E \otimes H^{n+1} \otimes k$. Using a) and b), we get that for $1 \leq j \leq n$,

$$
\sigma_{n+1}(\psi_n(x_0, j-1 \otimes x_j x_{j+1} \otimes x_{j+2}, n+1) \otimes 1)) \subseteq \sigma_{n+1}(Q^i_j + F^{i-1}(X_n)) \subseteq Q^i_{i-1} + F^{i-1}(X_n).
$$

Since $\psi_{n+1}(x) = \sigma_{n+1} \psi_{n+1} b_{n+1}'(x)$, to prove d) for $n + 1$ we only must check that $\sigma_{n+1}(\psi_n(x_0, n+1)) \subseteq Q^i_{i-1} + F^{i-1}(X_n)$. If $x_{n+1} \in A$, then using a) and b), we get

$$
\sigma_{n+1}(\psi_n(x_0, n+1)) = \sigma_{n+1}(\psi_n(x_0 \otimes 1) x_{n+1}) \\
\subseteq \sigma_{n+1}(E \otimes H^i \otimes A + F^{i-1}(X_n)) \\
\subseteq Q^i_{i-1} + F^{i-1}(X_n),
$$

and if $x_{n+1} \notin A$, then $x_0, n+1 \in F^{i-1}(B_n(E))$, which together a) and c), implies that

$$
\sigma_{n+1}(\psi_n(x_0, n+1)) \subseteq \sigma_{n+1}(F^{i-1}(X_n)) \subseteq Q^i_{i-1} + F^{i-1}(X_{n+1}).
$$

From d) follows immediately that ψ_\ast preserves filtrations. Next, assume that ϕ_\ast preserve filtrations, we prove that ϕ_{n+1} does it. Let $x \in F^i(X_{n+1}) \cap Q^i_{i-1}$. Since $\phi_{n+1}(x) = \xi_{n+1} \phi_n d_{n+1}(x)$ and

$$
\xi_{n+1}(\phi_n(d_{n+1}(x))) \subseteq \xi_{n+1}(\phi_n(F^{i-1}(X_n))) \subseteq \xi_{n+1}(F^{i-1}(B_n(E))) \subseteq F^{i-1}(B_{n+1}(E)),
$$

we have that $\phi_{n+1}(x) \in F^i(B_{n+1}(E))$. This completes the proof.
it suffices to see that $\xi_{n+1}(\phi_n(d^0_{rs}(x))) \subseteq F^i(B_{n+1}(E))$ for $x = 1 \otimes h \otimes a \otimes 1$, with $h = h_1 \otimes \cdots \otimes h_i$ and $a = a_1 \otimes \cdots \otimes a_{n+1-i}$. Since $\phi_n(Q^i_n) \subseteq E \otimes E \otimes k$, we have

$$\xi_{n+1} \phi_n d^0_{rs}(x) = (-1)^r \xi_{n+1} \phi_n (1 \otimes h \otimes a)$$

$$= (-1)^r \xi_{n+1} (\phi_n (1 \otimes h \otimes a_1, n-1 \otimes a_{n+1-i}))$$

$$\subseteq \xi_{n+1} (F^i(B_n(E)) \cap E \otimes E \otimes A)$$

$$\subseteq F^i(B_{n+1}(E)).$$

Next, we prove that ω_s preserves filtrations. Assume that ω_n does it. Let $x = x_0 \otimes \cdots \otimes x_n \otimes 1 \in F^i(B_n(E)) \cap E \otimes E \otimes k$. It is evident that $\omega_{n+1}(x) = \xi_{n+1} \phi_n \psi_n(x) - \xi_{n+1} \omega_n b^*_n(x)$. Since $\xi_{n+1}(\phi_n(Q^i_n)) \subseteq \xi_{n+1}(E \otimes E \otimes k) = 0$, from d) we get

$$\xi_{n+1} \phi_n \psi_n(x) \subseteq \xi_{n+1} \phi_n (Q^i_n + F^{i-1}(X_n)) \subseteq \xi_{n+1} (F^{i-1}(B_n(E))) \subseteq F^i(B_n(E)).$$

It remains to check that $\xi_{n+1} \omega_n b^*_n(x) \subseteq F^i(B_n(E))$. Since $\omega_n(E \otimes E \otimes k) \subseteq E \otimes E \otimes k$, we have $\xi_{n+1} \omega_n b^*_n(x) = (-1)^{n-1} \xi_{n+1} \omega_n (x_0, n-1 \otimes 1)x_n$. Hence, if $x_n \in A$, then

$$\xi_{n+1} \omega_n b^*_n(x) = (-1)^{n-1} \xi_{n+1} \omega_n (x_{0, n-1} \otimes 1)x_n$$

$$\subseteq \xi_{n+1} (F^i(B_n(E)) \cap E \otimes E \otimes A)$$

$$\subseteq F^i(B_{n+1}(E)),$$

and if $x_n \notin A$, then $x \in F^{i-1}(B_{n+1}(E))$, and so

$$\xi_{n+1} \omega_n b^*_n(x) = (-1)^{n-1} \xi_{n+1} \omega_n (x_{0, n}) \subseteq \xi_{n+1} (F^{i-1}(B_n(E))) \subseteq F^i(B_{n+1}(E)) \qed$$

2. The Hochschild (co)homology of a crossed product

Let $E = A \# f H$ and M an E-bimodule. In this section we use Theorem 1.1.1 in order to construct complexes $\widehat{X}_s(E, M)$ and $\hat{X}_s(E, M)$, simpler than the canonical ones, giving the Hochschild homology and cohomology of A with coefficients in M respectively. These complexes have natural filtrations that allow us to obtain spectral sequences converging to $H_s(E, M)$ and $H^*(E, M)$ respectively.

2.1. Hochschild homology

Let $\widehat{d}^r_{rs}: M \otimes \overline{H}^r \otimes \overline{A}^s \rightarrow M \otimes \overline{H}^{r-l} \otimes \overline{A}^{s+l-1}$ $(r, s \geq 0, 0 \leq l \leq s$ and $r + l > 0)$ be the morphisms defined by:

$$\widehat{d}^0_{rs}(x) = ma_1^{r_1} \otimes h^{(2)} \otimes a_2 + (-1)^r a_r \otimes h \otimes a_{1, r-1}$$

$$+ \sum_{i=1}^{r-1} (-1)^i m \otimes h \otimes a_{1, i-1} \otimes a_{r, i+1} \otimes a_{r+2, r},$$

$$\widehat{d}^1_{rs}(x) = (-1)^r m (1 \# h_1) \otimes h_2 \otimes a + (-1)^{r+s} (1 \# h_2^{(2)}) \otimes h^{(1)} \otimes a^{h^{(1)}}$$

$$+ \sum_{i=1}^{s-1} (-1)^{r+s} m f(h^{(1)}_i, h^{(2)}_i) \otimes h^{(1)} \otimes h^{(2)} \otimes h^{(2)} \otimes h_{i+1} \otimes h_{i+2, s} \otimes a$$

$$\widehat{d}^2_{rs}(x) = (-1)^{l+s} (1 \# h^{(2)}_{s-l+1, s}) \otimes m \otimes h_{s-l} \otimes F_r(h^{(1)}_{s-l+1, s} \otimes a),$$

where $x = m \otimes h \otimes a$, with $a = a_1 \otimes \cdots \otimes a_r$ and $h = h_1 \otimes \cdots \otimes h_s$.

Theorem 2.1.1. The Hochschild homology of E with coefficients in M is the homology of the chain complex

$$
\hat{X}_s(E, M) = \hat{X}_0 \hat{\leftarrow} \hat{X}_1 \hat{\leftarrow} \hat{X}_2 \hat{\leftarrow} \hat{X}_3 \hat{\leftarrow} \hat{X}_4 \hat{\leftarrow} \hat{X}_5 \hat{\leftarrow} \hat{X}_6 \hat{\leftarrow} \ldots,
$$

where $\hat{X}_n = \bigoplus_{r+s=n} M \otimes \hat{H}^r \otimes \hat{A}^s$ and $\hat{d}_n = \sum_{r+s>0} \sum_i \hat{d}_{rs}$.

Proof. It follows from the fact that $\hat{X}_s(E, M) \simeq M \otimes_{E^*} (X_s, d_s)$. An isomorphism is provided by the maps $\hat{\theta}_s: M \otimes \hat{H}^r \otimes \hat{A}^s \rightarrow M \otimes_{E^*} X_{rs}$, defined by $\hat{\theta}_s(m \otimes h \otimes a) = m \otimes (1_E \otimes h \otimes a \otimes 1_E) \quad \Box$

2.1.2. A spectral sequence. Let $F^i(\hat{X}_n) = \bigoplus_{0 \leq s \leq i} M \otimes \hat{H}^r \otimes \hat{A}^{i-s}$. Clearly $F^0(\hat{X}_n) \subseteq F^1(\hat{X}_n) \subseteq \ldots$ is a filtration of $\hat{X}_s(E, M)$. Using this fact we obtain:

Corollary 2.1.2.1. There is a convergent spectral sequence

$$
E^1_{rs} = H_r(A, M \otimes \hat{H}^s) \Rightarrow H_{r+s}(E, M),
$$

where $M \otimes \hat{H}^s$ is considered as an A-bimodule via $a_1(m \otimes \hat{h}_{1s})a_2 = a_1ma_2 \otimes \hat{h}_{1s}^{(1)} \otimes \hat{h}_{1s}^{(2)}$.

The normalized Hochschild complex $(M \otimes \hat{E}^r, b_s)$ has a filtration $F^0(M \otimes \hat{E}^r) \subseteq F^1(M \otimes \hat{E}^r) \subseteq F^2(M \otimes \hat{E}^r) \subseteq \ldots$, where $F^k(M \otimes \hat{E}^r)$ is the k-submodule of $M \otimes \hat{E}^r$ generated by the tensors $m \otimes x_1 \otimes \ldots \otimes x_n$ such that at least $n-i$ of the x_j’s belong to A. The spectral sequence associate to this filtration is called the homological Hochschild-Serre spectral sequence. Since, for each extension of groups $N \subseteq G$ with N a normal subgroup, it is hold that $k[G]$ is a crossed product of $k[G/N]$ on $k[N]$, the following theorem (joint with Corollary 3.1.3 below) gives, as a particular case, the homological version of the main results of [H-S].

Theorem 2.1.2.2. The homological Hochschild-Serre spectral sequence is isomorphic to the one obtained in Corollary 2.1.2.1.

Proof. It is an easy consequence of Propositions 1.2.1 and 1.2.2.

2.1.3. A decomposition of $\hat{X}_s(E, M)$. Let $[H, H]$ be the k-submodule of H spanned by the set of all elements $ab - ba$ ($a, b \in H$). It is easy to see that $[H, H]$ is a coideal in H. Let \hat{H} be the quotient coalgebra $H/[H, H]$. Given $h \in H$, we let $[h]$ denote the class of h in \hat{H}. Given a subcoalgebra C of \hat{H} and a right \hat{H}-comodule (N, ρ), we put $N^C = \{n \in N: \rho(n) \in N \otimes C\}$. It is well known that if \hat{H} decomposes as a direct sum of subcoalgebras C_i ($i \in I$), then $N = \bigoplus_{i \in I} N^{C_i}$.

Now, let us assume that M is a Hopf bimodule. That is, M is an E-bimodule and a right H-comodule, and the coaction $m \mapsto m^{(0)} \otimes m^{(1)}$ verifies:

$$
((a \# h)(b \# l))^{(0)} \otimes ((a \# h)(b \# l))^{(1)} = (a \# h^{(1)})m^{(0)}(b \# l^{(1)}) \otimes (a \# h^{(2)})m^{(1)}(b \# l^{(2)}).
$$

For each $n \geq 0$, \hat{X}_n is an \hat{H}-comodule via

$$
\rho_n(m \otimes \hat{h}_{1s} \otimes \hat{a}_{1r}) = m^{(0)} \otimes \hat{h}_{1s}^{(1)} \otimes \hat{a}_{1r} \otimes [m^{(1)} \hat{h}_{1s}^{(2)}] \quad (r + s = n).
$$
Moreover, the map \(\rho_*: \mathring{X}_*(E, M) \rightarrow \mathring{X}_*(E, M) \otimes \mathring{H} \) is a map of complexes. This fact implies that if \(C \) is a subcoalgebra of \(\mathring{H} \), then \(\mathring{d}_*(\mathring{X}_C^*) \subseteq \mathring{X}_C^* \). We consider the subcomplex \(\mathring{X}_C^*(E, M) \) of \(\mathring{X}_*(E, M) \), with modules \(\mathring{X}_C^* \), and we let \(\mathring{H}^C(E, M) \) denote its homology. By the above discussion, if \(\mathring{H} \) decomposes as a direct sum of subcoalgebras \(C_i \) \((i \in I)\), then \(\mathring{X}_*(E, M) = \bigoplus_{i \in I} \mathring{X}_C^*(E, M) \). Consequently \(\mathring{H}_*(E, M) = \bigoplus_{i \in I} \mathring{H}^C_i(E, M) \). Finally, the filtration of \(\mathring{X}_*(E, M) \) induces a filtration on \(\mathring{X}_C^*(E, M) \). Hence we have a convergent spectral sequence

\[
E^1_{rs} = \mathring{H}_r(A, (M \otimes \mathring{T})^C) \Rightarrow \mathring{H}^C_{r+s}(E, M),
\]

where \((M \otimes \mathring{T})^C\) is an A-bimodule via \(a_1(m \otimes h_{1s})a_2 = a_1ma_2h_{1s}^{(2)}.\)

2.1.4. Compatibility with the canonical decomposition

Let us assume that \(k \geq \mathbb{Q} \), \(H \) is commutative, \(A \) is commutative, \(M \) is symmetric as an \(A \)-bimodule and the cocycle \(f \) takes its values in \(k \). In [G-S1] was obtained a decomposition of the canonical Hochschild complex \((M \otimes \mathring{A}, b_s)\). It is easy to check that the maps \(d_0 \) and \(d_1 \) are compatible with this decomposition. Since \(d = 0 \) for all \(l \geq 2 \), we obtain a decomposition of \(\mathring{X}_*(E, M) \), and then a decomposition of \(\mathring{H}_*(E, M) \).

2.2. Hochschild cohomology

Let \(\widehat{d}_l^*: \text{Hom}_k(\mathring{T}^{-l} \otimes \mathring{A}^{+l-1}, M) \rightarrow \text{Hom}_k(\mathring{T}^l \otimes \mathring{A}^*, M) \) \((0 \leq l \leq s, r + l > 0)\) be the morphisms defined by:

\[
\widehat{d}_0^*(\varphi)(x) = h_{1}^{(1)} \varphi(h^{(2)} \otimes a_{1}) a_{r} + (-1)^{r} \varphi(h \otimes a_{1}, r - 1) a_{r} + \sum_{i=1}^{r-1} (-1)^{i} \varphi(h \otimes a_{1, i - 1} \otimes a_{i} a_{i+1} \otimes a_{i+2, r}),
\]

\[
\widehat{d}_1^*(\varphi)(x) = (-1)^{r}(1 \# h_{1})(\varphi(h_{2s} \otimes a) + (-1)^{r+s} \varphi(h_{1, s - 1} \otimes a^{h_{1}}_{s})(1 \# h_{s}^{(2)}) + \sum_{i=1}^{s-1} (-1)^{r+i} f(h_{1}^{(1)}, h_{1}^{(1)}) h_{1, i - 1}^{(1)} \varphi(h_{1, i - 1} \otimes h_{1}^{(2)} h_{i+1}^{(2)} \otimes h_{i+2, s} \otimes a),
\]

\[
\widehat{d}_l^*(\varphi)(x) = (-1)^{l(r+s)} \varphi(h_{1, s - l} \otimes F_{r}(h_{s - l + 1, s} \otimes a))(1 \# h_{s}^{(2)}),
\]

where \(x = h \otimes a \), with \(a = a_{1} \otimes \cdots \otimes a_{r} \) and \(h = h_{1} \otimes \cdots \otimes h_{s}.\)

Theorem 2.2.1

The Hochschild cohomology of \(E \) with coefficients in \(M \) is the homology of

\[
\mathring{X}^*(E, M) = \bigoplus_{r+s=n} \text{Hom}_k(\mathring{T}^r \otimes \mathring{A}^s, M) \text{ and } \mathring{d}_n^* = \bigoplus_{r+s=n} \bigoplus_{l=0}^{r+s} \widehat{d}_l^*. \]

Proof

It follows from the fact that \(\mathring{X}^*(E, M) \simeq \text{Hom}_{E^*}((X_*, d_*), M) \). An isomorphism is provided by the maps \(\widehat{\varphi}^*: \text{Hom}_k(\mathring{T}^r \otimes \mathring{A}^s, M) \rightarrow \text{Hom}_{E^*}(X^r_s, M) \), defined by \(\widehat{\varphi}^*(\varphi)(1_E \otimes x \otimes 1_E) = \varphi(x) \). \(\square \)
2.2.2. A spectral sequence. Let \(F^i(\hat{X}^n) = \bigoplus_{s \geq 1} \text{Hom}_k(\mathcal{H}^s \otimes \mathcal{A}^{n-s}, M) \). Clearly \(F_0 \supseteq F_1 \supseteq F_2 \supseteq \ldots \) is a filtration of \(\hat{X}^s(E, M) \). Using this fact we obtain:

Corollary 2.2.2.1. There is a convergent spectral sequence

\[
E_1^{rs} = H^r(A, \text{Hom}_k(\mathcal{H}^s, M)) \Rightarrow H^{r+s}(E, M),
\]

where \(\text{Hom}_k(\mathcal{H}^s, M) \) is considered as an \(A \)-bimodule via \(a_1 \varphi a_2(h) = a_1^{(1)} \varphi(h^{(2)}) a_2 \).

Let \(F_i(\text{Hom}_k(\mathcal{E}^n, M)) \) be the \(k \)-submodule of \((\text{Hom}_k(\mathcal{E}^n, M), b^*) \) consisting of maps \(f \in \text{Hom}_k(\mathcal{E}^n, M) \), for which \(f(x_1 \otimes \cdots \otimes x_n) = 0 \) whenever \(n - i \) of the \(x_j \)'s belong to \(A \). The normalized Hochschild complex \((\text{Hom}_k(\mathcal{E}^n, M), b^*) \) is filtered by \(F_0(\text{Hom}_k(\mathcal{E}^n, M)) \supseteq F_1(\text{Hom}_k(\mathcal{E}^n, M)) \supseteq F_2(\text{Hom}_k(\mathcal{E}^n, M)) \supseteq \ldots \). The spectral sequence associated to this filtration is called the cohomological Hochschild-Serre spectral sequence. The following theorem (joint with Corollary 3.2.3 below) gives, as a particular case, of the main results of [H-S].

Theorem 2.2.2.2. The cohomological Hochschild-Serre spectral sequence is isomorphic to the one obtained in Corollary 2.2.2.1.

Proof: It is an easy consequence of Propositions 1.2.1 and 1.2.2.

2.2.3. Compatibility with the canonical decomposition. Assume that \(k \supseteq \mathbb{Q}, H \) is cocommutative, \(A \) is commutative, \(M \) is symmetric as an \(A \)-bimodule and the cocycle \(f \) takes its values in \(k \). Then, the Hochschild cohomology \(H^*(E, M) \) has a decomposition similar to the one obtained in 2.1.4 for the Hochschild homology.

3. The Hochschild (co)homology of a crossed product with invertible cocycle

Let \(E = A \#_1 H \) and \(M \) an \(E \)-bimodule. Assume that the cocycle \(f \) is invertible. Then, the map \(h \mapsto 1 \# h \) is convolution invertible and its inverse is the map \(h \mapsto (1 \# h)^{-1} = f^{-1}(S(h^{(2)}), h^{(3)}) \# S(h^{(1)}) \). Under this hypothesis, we prove that the complexes \(\hat{X}_s(E, M) \) and \(\hat{X}^s(E, M) \) of Section 2 are isomorphic to simpler complexes. These complexes have natural filtrations, which give the spectral sequences obtained in [S]. Using these facts and a theorem of Gerstenhaber and Schack, we prove that if the 2-cocycle \(f \) takes its values in a separable subalgebra of \(A \), then the Hochschild (co)homology of \(E \) with coefficients in \(M \) is the (co)homology of \(H \) with coefficients in a (co)chain complex. Finally, as an application we obtain some results about the \(\text{Tor}_s^E \) and \(\text{Ext}_E^s \) functors and an upper bound for the global dimension of \(E \).

3.1. Hochschild homology

Let \(d_{rs}^0: M \otimes \mathcal{A}^{n} \otimes \mathcal{H}^s \rightarrow M \otimes \mathcal{A}^{n-1} \otimes \mathcal{H}^{s-l} \) be the morphisms defined by:

\[
d_{rs}^0(x) = ma_1 \otimes a_r \otimes h + (-1)^{r}a_r \otimes m \otimes a_{1-r} \otimes h
\]

\[
+ \sum_{i=1}^{r-l} (-1)^{i}m \otimes a_{1-i} \otimes a_{i+1} \otimes a_{i+2} \otimes h,
\]
Corollary 3.1.3. The chain complex case the result is immediate □

By a standard argument it is sufficient to prove it for H

Proof. For each $x = m \otimes a \otimes h$, with $a = a_1 \otimes \cdots \otimes a_r$ and $h = h_1 \otimes \cdots \otimes h_s$. Let $\mathfrak{X}_s(E, M)$ be the complex

$$\mathfrak{X}_s(E, M) = \mathfrak{X}_0 \leftarrow \mathfrak{X}_1 \leftarrow \mathfrak{X}_2 \leftarrow \cdots,$$

where $\mathfrak{X}_n = \bigoplus_{r+s=n} M \otimes \mathfrak{A}^r \otimes \mathfrak{T}^s$ and $\mathfrak{a}_n = \sum_{r+s=n} \sum_{i=0}^s \mathfrak{d}_n$.

Theorem 3.1.1. The map $\theta : \mathfrak{X}_s(E, M) \to \mathfrak{X}_s(E, M)$, given by

$$\theta_n(m \otimes h \otimes a) = m(1\#h_1^{(1)}) \cdots (1\#h_s^{(1)}) \otimes a \otimes h^{(2)} \quad (r + s = n),$$

is an isomorphism of complexes. Consequently, the Hochschild homology of E with coefficients in M is the homology of $\mathfrak{X}_s(E, M)$.

Proof. A direct computation shows that θ is a morphism of complexes. The inverse map of θ_n is the map $m \otimes a \otimes h \to m(1\#h_1^{(1)}) \cdots (1\#h_s^{(1)})^{-1} \otimes h^{(2)} \otimes a$ □

Note that when f takes its values in k, then $\mathfrak{X}_s(E, M)$ is the total complex of the double complex $(M \otimes \mathfrak{A} \otimes \mathfrak{T}, \mathfrak{a}_n, \mathfrak{b}_n)$.

For each $h \in H$, we have the morphism $\theta^h : (M \otimes \mathfrak{A}, b_s) \to (M \otimes \mathfrak{A}, b_s)$, defined by $\theta^h(m \otimes a) = (1\#h^{(3)})m(1\#h_1^{(1)})^{-1} \otimes a^{(2)}$.

Proposition 3.1.2. For each $h, l \in H$ the endomorphisms of $H_n(A, M)$ induced by θ^h, θ^l, and by $\theta^h(1) \theta^l$ coincide. Consequently $H_n(A, M)$ is a left H-module.

Proof. By a standard argument it is sufficient to prove it for $H_0(A, M)$, and in this case the result is immediate □

Corollary 3.1.3. The chain complex $\mathfrak{X}_s(E, M)$ has a filtration $F^0 \subseteq F^1 \subseteq \cdots$, where $F^i(\mathfrak{X}_n) = \bigoplus_{0 \leq s \leq i} M \otimes \mathfrak{A}^{n-s} \otimes \mathfrak{T}^s$. The spectral sequence of this filtration is isomorphic to the one obtained in Corollary 2.1.2. From Proposition 3.1.2 it follows that if H is a flat k-module, then $E^1_{rs} = H_r(A, M) \otimes \mathfrak{T}^s$ and $E^2_{rs} = H_s(H, H_r(A, M))$.

Given an A-bimodule M we let $[A, M]$ denote the k-submodule of M generated by the commutators $am - ma$ ($a \in A$ and $m \in M$).

Remark 3.1.4. From Corollary 3.1.3 it follows immediately that if A is separable, then $H_n(E, M) = H_n(H, M/[A, M])$, and if A is quasi-free, then there is a long exact sequence

$$\cdots \to H_{n+1}(H, H_0(A, M)) \to H_{n-1}(H, H_1(A, M)) \to H_n(E, M) \to H_n(H, H_0(A, M)) \to H_{n-2}(H, H_1(A, M)) \to H_{n-1}(E, M) \to \cdots.$$
3.1.5. Separable subalgebras. Let S be a separable subalgebra of A. Next we prove that if the 2-cocycle f takes its values in S, then the Hochschild homology of E with coefficients in M is the homology of H with coefficients in a chain complex. When S equals A we recover the first part of Remark 3.1.4. Assume that $f(h,l) \in S$ for all $h,l \in H$. Let $\tilde{A} = A/S$, $\tilde{A}^0 = S$ and $\tilde{A}^r = \tilde{A} \otimes_S \cdots \otimes_S \tilde{A}$ (r-times) for $r > 0$, and let $M \otimes_S \tilde{A}^r \otimes_S = M \otimes_{A^*} (A \otimes_S \tilde{A}^r \otimes_S A) = M \otimes_S \tilde{A}^r \otimes_S$ be the cyclic tensor product over S of M and \tilde{A}^r (see [G-S2] or [Q]). Using the fact that f takes its values in S, it is easy to see that H acts on $(M \otimes_S \tilde{A}^r \otimes_S, b_s)$ via

$$h \cdot (m \otimes_S \tilde{a}) = (1^*(h^{(3)})m(1^*(h^{(1)}))^{-1} \otimes_S \tilde{a}^{(2)},$$

where $m \otimes_S \tilde{a} = m \otimes_S a_1 \otimes_S \cdots \otimes_S a_r \otimes_S$ and $\tilde{a}^{(2)} = a_1^{(2)} \otimes_S \cdots \otimes_S a_r^{(r+1)} \otimes_S$.

Theorem 3.1.5.1. The Hochschild homology $H_*(E, M)$, of E with coefficients in M, is the homology of H with coefficients in $(M \otimes_S \tilde{A}^r \otimes_S, b_s)$.

Proof. Let $((M \otimes_S \tilde{A}^r \otimes_S, \tilde{d}^0_{rs}, \tilde{d}^1_{rs}))$ be the double complex with horizontal differentials

$$\tilde{d}^0_{rs}(x) = ma_1 \otimes_S \tilde{a}_{2r} \otimes_S h + (-1)^r a_r \otimes_S \tilde{a}_{1(r-1)} \otimes_S h$$

$$+ \sum_{i=1}^{r-1}(-1)^i m \otimes_S \tilde{a}_{1,i-1} \otimes_S a_i \otimes_S \tilde{a}_{1,i+1} \otimes_S h,$$

and vertical differentials

$$\tilde{d}^1_{rs}(x) = (-1)^r m \otimes_S \tilde{a} \otimes_S h_{2s} + (-1)^{r+s}(1^*(h^{(3)})m(1^*(h^{(1)}))^{-1} \otimes_S \tilde{a}^{(3)} \otimes_S h_{1,s-1}$$

$$+ \sum_{i=1}^{s-1}(-1)^{r+i} m \otimes_S \tilde{a} \otimes_S h_{1,i-1} \otimes_S h_{1,i+1} \otimes_S h_{1,s+1},$$

where $x = m \otimes_S \tilde{a} \otimes_S h$, with $\tilde{a} = a_1 \otimes_S \cdots \otimes_S a_r \otimes_S$ and $h = h_1 \otimes \cdots \otimes h_s$. Let $\tilde{X}_*(E, M)$ be the total complex of $((M \otimes_S \tilde{A}^r \otimes_S, \tilde{d}^0_{rs}, \tilde{d}^1_{rs}))$. We must prove that $H_*(E, M)$ is the homology of $\tilde{X}_*(E, M)$. Let $\pi_* : \tilde{X}_*(E, M) \to X_*(E, M)$ be the map $m \otimes \tilde{a}_r \otimes h_s \mapsto m \otimes S \tilde{a}_r \otimes h_s$. Consider the filtration $F_* = F_* \subseteq F^{\infty}_* \subseteq F^{2\infty}_* \subseteq \cdots$ of $\tilde{X}_*(E, M)$, where $F^{\infty}_n = \bigoplus_{0 \leq s \leq r} (M \otimes_S \tilde{A}^n \otimes_S) \otimes S$. From Theorem 1.2 of [G-S2], it follows that π_* is a morphism of filtered complexes inducing an quasi-isomorphism between the graded complexes associated to the filtrations of $\tilde{X}_*(E, M)$ and $X_*(E, M)$. Consequently π_* is a quasi-isomorphism. The proof can be finished by applying Theorem 3.1.1. \qed

3.1.6. A decomposition of $X_*(E, M)$. Here we freely use the notations of Subsection 2.1.3. Suppose M is a Hopf bimodule. A direct computation shows that the \tilde{H}-coaction of $X_*(E, M)$, obtained transporting the one of $\tilde{X}_*(E, M)$ through $\theta_* : \tilde{X}_*(E, M) \to X_*(E, M)$, is given by

$$m \otimes a \otimes h \mapsto m^{(0)} \otimes a \otimes h^{(2)} \otimes m^{(1)}S(h^{(1)}) \cdots S(h^{(1)})h_{1}^{(1)} \cdots h_{1}^{(1)}.$$
For each subcoalgebra C of \hat{H}, we consider the subcomplex $\overline{X}^r_*(E, M)$ of $\overline{X}_*(E, M)$ with modules \overline{X}_n^r, and we let $H^C_r(E, M)$ denote its homology. If \hat{H} decomposes as a direct sum of subcoalgebras C_i ($i \in I$), then $\overline{X}_*(E, M) = \bigoplus_{i \in I} \overline{X}^r_*(E, M)$. Consequently $H_r(E, M) = \bigoplus_{i \in I} H^C_r(E, M)$. From (2) it follows that if \hat{H} is cocommutative, then $\overline{X}^r_n = \bigoplus_{r+s=n} M^C \otimes \overline{A} \otimes \overline{H}^r$. Finally, the filtration of $\overline{X}_*(E, M)$ induces a filtration on $\overline{X}^r_*(E, M)$. Hence, when \hat{H} is cocommutative and H is a flat k-module, we have a convergent spectral sequence

$$E^2_{rs} = H_r(H, \text{Tor}^s_*(M, N)) \Rightarrow H^s_{r+s}(E, M),$$

where $H_r(A, M^C)$ is a left H-module via the action introduced in Proposition 3.1.2.

3.1.7. An application to Tor^E_*. Let k be a field, B an arbitrary k-algebra, M a right B-module and N a left B-module. It is well known that $\text{Tor}^E_0(M, N) \simeq H_0(B, N \otimes M)$ (here $N \otimes M$ is an B-bimodule via $a(n \otimes m)b = an \otimes mb$). This fact and Corollary 3.1.3 show that if k is a field, M is a right E-module and N is a left E-module, then there is a convergent spectral sequence

$$E^2_{rs} = H_r(H, \text{Tor}^s_*(M, N)) \Rightarrow \text{Tor}^{E}_{r+s}(M, N).$$

3.2. Hochschild cohomology

Let $\overline{d}^s_i : \text{Hom}_k(\overline{A}^{r-l} \otimes \overline{H}^{s-l}, M) \to \text{Hom}_k(\overline{A} \otimes \overline{H}^r, M)$ $(0 \leq l \leq s, r + l > 0)$ be the morphisms defined by:

$$\overline{d}^s_0(\varphi)(x) = a_1 \varphi(a_2 \otimes h) + (-1)^r \varphi(a_1, r-1 \otimes h)a_r$$
$$+ \sum_{i=1}^{r-1} (-1)^i \varphi(a_1, i-1 \otimes a_1 a_{i+1} \otimes a_{i+2} \otimes h),$$

$$\overline{d}^s_1(\varphi)(x) = (-1)^r \epsilon(h_1) \varphi(a \otimes h_{2s}) + (-1)^{r+s} (1 \# h_1^{(1)}) \varphi(a h_{2}^{(2)} \otimes h_{1,s-1})(1 \# h_1^{(3)})$$
$$+ \sum_{i=1}^{s+1} (-1)^{r+i} \varphi(a \otimes h_{1, i-1} \otimes h_i h_{i+1} \otimes h_{i+2}),$$

$$\overline{d}^s_i(\varphi)(x) = ((-1)^{i(r+s)} \# h_1^{(1)} h_{s-l+1})^{-1} \varphi(F_{r}^{(i)}(h_{s-l+1} \otimes a) \otimes h_{1,s-l})(1 \# h_1^{(3)}),$$

where $x = a \otimes h$, with $a = a_1 \otimes \cdots \otimes a_r$ and $h = h_1 \otimes \cdots \otimes h_s$. Let $\overline{X}^r_*(E, M)$ be the complex

$$\overline{X}^r_*(E, M) = \bigoplus_{r+s=n} \text{Hom}_k(\overline{A} \otimes \overline{H}^r, M)$$

where $\overline{X}^n = \bigoplus_{r+s=n} \text{Hom}_k(\overline{A} \otimes \overline{H}^r, M)$ and $\overline{d}^n = \sum_{r+s=n} \sum_{l=0}^{s} \overline{d}^s_{r+l}.$

Theorem 3.2.1. The map $\theta^r : \overline{X}^r_*(E, M) \to \hat{X}^r_*(E, M)$, given by

$$\theta^r(\varphi)(h \otimes a) = (1 \# h_1^{(1)}) \cdots (1 \# h_s^{(1)}) \varphi(a \otimes h_2^{(2)}) \quad (r + s = n),$$

is a spectral sequence.
is an isomorphism of complexes. Consequently, the Hochschild cohomology of E with coefficients in M is the homology of $\overline{X}^\ast(E, M)$.

Proof. It is similar to the proof of Theorem 3.1.1 \(\square\)

Note that when f takes its values in k, then $\overline{X}^\ast(E, M)$ is the total complex of the double complex $(\text{Hom}_k(\overline{A}, M), \tau_0^\ast, \tau_1^\ast)$.

For each $h \in H$ we have the map $\theta_h^\ast: (\text{Hom}_k(\overline{A}, M), b^\ast) \rightarrow (\text{Hom}_k(\overline{A}, M), b^\ast)$, defined by $\theta_h^\ast(\varphi)(a) = (1 \# h^{(1)})^{-1} \varphi(a^{h^{(2)}})(1 \# h^{(3)})$.

Proposition 3.2.2. For each $h, l \in H$ the endomorphisms of $H^\ast(A, M)$ induced by θ_h^\ast and by θ_l^\ast coincide. Consequently $H^\ast(A, M)$ is a right H-module.

Proof. By a standard argument it is sufficient to prove it for $H^0(A, M)$, and in this case the result is immediate \(\square\)

Corollary 3.2.3. The cochain complex $\overline{X}^\ast(E, M)$ has a filtration $F_0 \supseteq F_1 \supseteq \ldots$, where $F_i(\overline{X}^\ast) = \bigoplus_{0 \leq r < n-i} \text{Hom}_k(\overline{A}^r \otimes \overline{A}^{n-i}, M)$. The spectral sequence of this filtration is isomorphic to the one obtained in Corollary 2.2.2. From Proposition 3.2.2 it follows that $E_1^\ast = \text{Hom}_k(\overline{F}, H^\ast(A, M))$ and $E_2^\ast = H^\ast(H, H^\ast(A, M))$.

Given an A-bimodule M, we let M^A denote the k-submodule of M consisting of the elements m verifying $am = ma$ for all $a \in A$.

Remark 3.2.4. From Corollary 3.2.3, it follows immediately that if A is separable, then $H^\ast(E, M) = H^\ast(H, M^A)$ and if A is quasi-free, then there is a long exact sequence

$$\ldots \rightarrow H^{n-2}(H, H^1(A, M)) \rightarrow H^n(H, H^0(A, M)) \rightarrow H^n(E, M) \rightarrow H^{n-1}(H, H^1(A, M)) \rightarrow H^{n+1}(H, H^0(A, M)) \rightarrow H^{n+1}(E, M) \rightarrow \ldots$$

3.2.5. Separable subalgebras

Let S be a separable subalgebra of A and let \overline{A}^r ($r \geq 0$) be as in 3.1.5. Suppose $f(h, l) \in S$ for all $h, l \in H$. Using the fact that f takes its values in S it is easy to see that H acts on $(\text{Hom}_A(A \otimes_s \overline{A}^r \otimes_s A, M), b^\ast) = (\text{Hom}_S(\overline{A}^r, M), b^\ast)$ via $(\varphi \cdot h)(\overline{a}) = (1 \# h^{(1)})^{-1} \varphi(\overline{a}^{h^{(2)}})(1 \# h^{(3)})$.

Theorem 3.2.5.1. The Hochschild cohomology $H^\ast(E, M)$, of E with coefficients in M, is the cohomology of H with coefficients in $(\text{Hom}_S(\overline{A}^r, M), b^\ast)$.

Proof. It is similar to the proof of Theorem 3.1.5.1 \(\square\)

3.2.6. An application to Ext_E^\ast

Let k be a field, B an arbitrary k-algebra and M, N two left B-modules. It is well known that $\text{Ext}_B^\ast(M, N) \cong H^\ast(B, \text{Hom}_k(M, N))$ (here $\text{Hom}_k(M, N)$ is an B-bimodule via $(a \varphi b)(m) = a \varphi(bm)$). This fact and Corollary 3.2.3 show that if k is a field and M and N are left E-modules, then there is a convergent spectral sequence

$$E_2^\ast = H^\ast(H, \text{Ext}_A^\ast(M, N)) \Rightarrow \text{Ext}_E^{\ast+\ast}(M, N).$$

As a corollary we obtain that $\text{gl.dim}(E) \leq \text{gl.dim}(A) + \text{gl.dim}(H)$, where gl.dim denotes the left global dimension. Note that this result implies Maschke’s Theorem for crossed product, as it was established in [B-M].
4. The Cartan-Leray and Grothendieck spectral sequences

Assume that E is a crossed product with invertible cocycle. In this case another two spectral sequences converging to $H_\ast(E, M)$ and with E^2-term $H_\ast(H, H_\ast(A, M))$ can be considered. They are the Cartan-Leray and the Grothendieck spectral sequences. The last one was introduced for the more general setting of Galois extension in [S]. In this Section we recall these constructions and we prove that both coincide with the Hochschild-Serre spectral sequence. Similar results are valid in the cohomological setting.

Let $(\overline{H} \otimes H, d_\ast)$ be the canonical resolution of k as a right H-module and $(Z_\ast, \partial_\ast) = (E \otimes \overline{E} \otimes E, b_\ast) \otimes (\overline{H} \otimes H, d_\ast)$. Consider $E \otimes \overline{E} \otimes E \otimes \overline{H} \otimes H$ as an E-bimodule via

$$(a\#l)(x \otimes h)(b\#q) = (((a\#l)x_0 \otimes x_{1r} \otimes x_{r+1}(b\#q^{(1)})) \otimes (h_1 \otimes h_{s+1}q^{(2)})),$$

where $x = x_0 \otimes \cdots \otimes x_{r+1}$ and $h = h_1 \otimes \cdots \otimes h_{s+1}$. It is clear that

$$(3) \quad E \xleftarrow{\varepsilon} Z_0 \xrightarrow{\partial_1} Z_1 \xrightarrow{\partial_2} Z_2 \xrightarrow{\partial_3} Z_3 \xrightarrow{\partial_4} Z_4 \xrightarrow{\partial_5} Z_5 \xrightarrow{\partial_6} Z_6 \xrightarrow{\partial_7} Z_7 \xrightarrow{\partial_8} \ldots,$$

where $\mu((a_0\#h_0 \otimes a_1\#h_1) \otimes l) = \epsilon(l)a_0a_1f(h_0^{(1)}h_1^{(1)})\#h_0^{(2)}h_1^{(2)}$, is a complex of E-bimodules. Moreover (3) is contractible as a complex of left E-modules, with contracting homotopy $\zeta_n (n \geq 0)$ given by $\zeta_0(1_E) = 1_E \otimes 1_E \otimes 1_H$ and

$$\zeta_{n+1}(y) = \begin{cases} -x \otimes 1_E \otimes h + (-1)^{n+1}x_0x_1 \otimes 1_E \otimes h \otimes 1_H & \text{if } r = 0 \\ (-1)^r x \otimes 1_E \otimes h & \text{if } r > 0 \end{cases},$$

where $y = x \otimes h$, with $x = x_0 \otimes \cdots \otimes x_{r+1}$ and $h = h_1 \otimes \cdots \otimes h_{n-r+1}$. Since the map

$$\tau: E \otimes \overline{E} \otimes \overline{H} \otimes H \otimes E \to E \otimes \overline{E} \otimes E \otimes \overline{H} \otimes H,$$

given by $\tau(x_0 \otimes h \otimes x_{r+1}) = (x_0 \otimes 1_E \otimes h)x_{r+1}$, is an isomorphism of E-bimodules (the inverse of τ is the map $x_0 \otimes a\#h \otimes h \mapsto x_0 \otimes h_1 \otimes h_{s+1}S^{-1}(h^{(2)}) \otimes a\#h^{(1)}$), (Z_\ast, ∂_\ast) is a relative projective resolution of E.

Let M be an E-bimodule. The groups $M \otimes_{E \otimes A^{op}} (E \otimes \overline{E} \otimes E)$ are left H-modules via $h(m \otimes x) = (1\#h^{(2)})m \otimes x_0 \otimes x_{r+1}(1\#h^{(1)})^{-1}$, where $x = x_0 \otimes \cdots \otimes x_{r+1}$. There is an isomorphism

$$M \otimes_{E^{\ast}} (Z_\ast, \partial_\ast) \cong (\overline{H} \otimes H, d_\ast) \otimes_H (M \otimes_{A^{op}} (E \otimes \overline{E} \otimes E, b'_\ast)).$$

Let $F^i = \bigoplus_{j=0}^{\infty}(\overline{H}^j \otimes H) \otimes H (M \otimes_{A^{op}} E \otimes \overline{E} \otimes E)$. It is immediate that $F^0 \subset F^1 \subset F^2 \subset F^3 \subset \ldots$, is a filtration of the last complex. The spectral sequence associated to this filtration converges to $H_\ast(E, M)$ and has E^2-term $H_\ast(H, H_\ast(A, M))$. This spectral sequence is called the homological Cartan-Leray spectral sequence. Similarly the groups $\text{Hom}_{E \otimes A^{op}} (E \otimes \overline{E} \otimes E, M)$ are right H modules via $f.h(x_0, r+1) = f(x_0 \otimes x_{r+1}(1\#h^{(1)})^{-1})(1\#h^{(2)})$ and there is an isomorphism

$$\text{Hom}_{E^{\ast}}((Z_\ast, \partial_\ast), M) \cong \text{Hom}_H((\overline{H} \otimes H, d_\ast), \text{Hom}_{E \otimes A^{op}}((E \otimes \overline{E} \otimes E, b'_\ast), M)).$$
This complex has a filtration $F_0 \supseteq F_1 \supseteq F_2 \supseteq F_3 \supseteq F_4 \supseteq \ldots$, defined by $F_i^n = \bigoplus_{j \geq i} \text{Hom}_H(\overline{H}^j \otimes H, \text{Hom}_{E \otimes A^\text{op}}(E \otimes \overline{E}^{n-j} \otimes E, M))$. The spectral sequence associated to this filtration converges to $H^*(E, M)$ and has E^2-term $H^*(H, H^*(A, M))$. This spectral sequence is called the cohomological Cartan-Leray spectral sequence.

Let $\Phi_*: (E \otimes \overline{E} \otimes E, b'_* \rightarrow (Z_*, \partial_*)$ and $\Psi_*: (Z_*, \partial_*) \rightarrow (E \otimes \overline{E} \otimes E, b'_*)$ be the morphisms of E-bimodule complexes, recursively defined by

$\Phi_0(x \otimes 1_E) = x \otimes 1_E \otimes 1_H$, \quad $\Psi_0(x \otimes 1_E \otimes h) = \epsilon(h)x \otimes 1_E$,

$\Phi_{n+1}(x \otimes 1_E) = \xi_{n+1} \Phi_n b_{n+1}(x \otimes 1_E)$ for $x \in E \otimes \overline{E}^{n+1}$,

$\Psi_{n+1}(x \otimes 1_E \otimes h) = \xi_{n+1} \psi_n \partial_{n+1}(x \otimes 1_E \otimes h)$ for $x \in E \otimes \overline{E}^n, h \in \overline{H}^{n+1-r} \otimes H$.

Proposition 4.1. It is hold that $\Psi_* \Phi_* = \text{id}_*$ and that $\Phi_* \Psi_*$ is homotopically equivalent to the identity map. The homotopy $\Phi_* \Psi_* \xrightarrow{\Omega_{n+1}^{-1}} \text{id}_*$ is recursively defined by $\Omega_1(x \otimes 1_E \otimes h) = x \otimes 1_E \otimes h \otimes 1_H$ and

$$
\Omega_{n+1}(x \otimes 1_E \otimes h) = \xi_{n+1} \big(\Phi_n \psi_n - \text{id} - \Omega_n \partial_n \big)(x \otimes 1_E \otimes h),
$$

for $x = x_0 \otimes \cdots \otimes x_r$ and $h = h_1 \otimes \cdots \otimes h_{n+1-r}$.

Proof. It is easy to see that Φ_* and Ψ_* are morphisms of complexes. Arguing as in Proposition 1.2.1 we get that Ω_{n+1} is an homotopy from $\Phi_* \Psi_*$ to the identity map. It remains to prove that $\Phi_* \Psi_* = \text{id}_*$. It is clear that $\Psi_0 \Phi_0 = \text{id}_0$. Assume that $\Psi_n \Phi_n = \text{id}_n$. Since $\Phi_{n+1}(E \otimes \overline{E}^n \otimes k) \subseteq \sum_{j=0}^{n+1} E \otimes \overline{E}^j \otimes k \otimes \overline{H}^{n+1-j} \otimes H$, we have that on $E \otimes \overline{E}^n \otimes k$

$$
\Psi_{n+1} \Phi_{n+1} = \xi_{n+1} \Psi_n \partial_{n+1} \Phi_{n+1} = \xi_{n+1} \Psi_n \partial_{n+1} \xi_{n+1} \Phi_n b'_{n+1}
= \xi_{n+1} \Psi_n \Phi_n b'_{n+1} - \xi_{n+1} \Psi_n \zeta_n \partial_n \Phi_n b'_{n+1} = \xi_{n+1} \Phi_n b'_{n+1} = \text{id}_{n+1} \square
$$

Next, we consider the normalized Hochschild resolution $(E \otimes \overline{E}^n \otimes E, b'_*)$ filtered as in Proposition 1.2.2 and the resolution (Z_*, ∂_*) filtered by $F^0_* \subseteq F^1_* \subseteq F^2_* \subseteq \ldots$, where $F_* = \bigoplus_{j=0}^i (E \otimes \overline{E}^{n-j} \otimes E) \otimes (\overline{H}^j \otimes H)$.

Proposition 4.2. We have that

$$
\Phi_n(a_0 \# b_0 \otimes \cdots \otimes a_{n+1} \# b_{n+1}) = \sum_{j=0}^n (-1)^j (a_0 \# b_0)(a_1 \# h_{1j}^{(1)})(a_2 \# h_{2j}^{(1)}) \otimes (a_{j+1} \# h_{j+1}^{(1)}) \cdots \otimes (a_{n+1} \# h_{n+1}^{(1)}) \otimes h_1^{(2)} \otimes \cdots \otimes h_j^{(2)} \otimes h_{j+1}^{(2)} \cdots h_{n+1}^{(2)}.
$$

Consequently the map Φ_* preserve filtrations.

Proof. It follows by induction on n, using the recursive definition of $\Phi_* \square$
Proposition 4.3. The map Φ_* induces an homotopy equivalence of E-bimodule complexes between the graded complexes associated to the filtrations of $(B_*(E), b'_*)$ and $(B_*(E), b'_*) \otimes (\overline{H} \otimes H, d_*)$.

Proof. Note that
\[
\frac{F^s(X_*, d_*)}{F^{s-1}(X_*, d_*)} = (X_{s*}, d_{s*}^0) = (E \otimes \overline{H}^s \otimes M, d_{s*}^0),
\]
\[
\frac{F^s(Z_*, d_*)}{F^{s-1}(Z_*, d_*)} = (B_*(E), b'_*) \otimes \overline{H}^s \otimes H,
\]
where d_{s*}^0 is the boundary map introduced in Subsection 1.1. By Proposition 1.2.2 it suffices to check that H, M and Φ it suffices to check that Φ.

Consider the diagram
\[
\begin{array}{ccccccc}
Y_0 & \xleftarrow{\mu_*} & E \otimes \overline{H}^s \otimes E & \xleftarrow{d_{1*}^0} & E \otimes \overline{H}^s \otimes A \otimes E & \xleftarrow{d_{2*}^0} & \ldots \\
\downarrow \tilde{\mu}_* & & \downarrow \tilde{\phi}_s^0 & & \downarrow \tilde{\phi}_s^t & & \ldots,
\end{array}
\]
where $\tilde{\mu}_*((x_0 \otimes x_1) \otimes h) = x_0 x_1 \otimes h$ and $\tilde{\phi}_s^0(x \otimes h) = x(1#h_1^{(1)}) \cdots (1#h_{s+1}^{(1)}) \otimes h^{(2)}$.

We assert that $\tilde{\phi}_s^0(x) = 1_E \otimes (1#h_1^{(1)}) \cdots (1#h_s^{(1)}) \otimes h^{(2)} \otimes 1_H$, where $x = 1_E \otimes h \otimes 1_E$, with $h = h_1 \cdots \otimes h_s$. To prove this it suffices to check that
\[
\Phi_* \phi_*(x) \in 1_E \otimes (1#h_1^{(1)}) \cdots (1#h_s^{(1)}) \otimes h^{(2)} \otimes 1_H + F_{s-1},
\]
which follows by induction on s, using that $\Phi_* \phi_*(x) = \zeta_* \Phi_{s-1} \phi_{s-1} d_s(x)$. Now, it is immediate that $\tilde{\mu}_* \tilde{\phi}_0^0 = \tilde{\phi}_s^0 \mu_*$. Since $\tilde{\phi}_s^0$ is an isomorphism and the rows of (4) are relative projective resolutions of Y_0 and $\tilde{\phi}_s^0$, respectively, it follows that $\tilde{\phi}_s^0$ is an homotopy equivalence.

Corollary 4.4. The (co)homological Cartan-Leray spectral sequence is isomorphic to the (co)homological Hochschild-Serre spectral sequence.

4.5 The Grothendieck spectral sequence.

If M is an E-bimodule, then the group $H_0(A, M) = M/[A, M]$ is a left H-module via $h \cdot m = (1#h^{(2)})m(1#h^{(1)})^{-1}$, where the m denotes the class of m in $M/[A, M]$. Let us consider the functors $M \rightarrow H_0(E, M)$ from the category of E-bimodules to the category of k-modules, $M \rightarrow H_0(A, M)$ from the category of E-bimodules to the category of left H-modules and $M \rightarrow H_0(H, M)$ from the category of left H-modules to the category of k-modules. It is easy to see that $H_0(E, M) = H_0(H, H_0(A, M))$ and that if M is a relatively projective $E^c \otimes E^{op}$-module, then $H_0(A, M)$ is a relatively projective H/k-module. In fact, if $M = E \otimes N$, then the map $h \otimes n \rightarrow 1#h^{(2)} \otimes n(1#h^{(1)})^{-1}$ is an isomorphism of left H-modules from $H \otimes N$ to $H_0(A, M)$. Thus we have a Grothendieck spectral sequence
\[
E^2_{rs} = H_s(H, H_r(A, M)) \rightarrow H_{r+s}(E, M)).
\]
We assert that the Grothendieck spectral sequence and the Cartan-Leray spectral sequence coincide. To prove this we use a concrete construction of the Grothendieck spectral sequence. Let \((P_\ast, \partial_\ast) = (M \otimes E \otimes E, b'_\ast)\) be the normalized canonical resolution of \(M\) as a right \(E\)-module. Let us write \((P_\ast, \partial_\ast) = (P_\ast, \partial_\ast) \otimes A\).

Consider the double complex

\[
\begin{array}{c}
\vdots \\
\downarrow \\
C_{\ast\ast} := H \otimes_H P_1 \leftarrow H \otimes_H \mathcal{P}_1 \leftarrow H^2 \otimes_H \mathcal{P}_1 \leftarrow \ldots \\
\downarrow \\
H \otimes_H \mathcal{P}_0 \leftarrow \mathcal{P} \otimes H \otimes_H \mathcal{P}_0 \leftarrow \mathcal{P}^2 \otimes H \otimes_H \mathcal{P}_0 \leftarrow \ldots,
\end{array}
\]

whose \(r\)-th column is \((-1)^r\) times \(\mathcal{P}^r \otimes H \otimes_H (\mathcal{P}_\ast, \partial_\ast)\) and whose \(s\)-th row is the canonical complex \((\mathcal{P}^s \otimes H \otimes_H \mathcal{P}_s, d_s)\) giving the homology \(H_s(H, \mathcal{P}_s)\) of \(k\) as a trivial right \(H\)-module with coefficients in \(\mathcal{P}_s\). By definition, the Grothendieck spectral sequence is the spectral sequence associate to the filtrations by columns of \(C_{\ast\ast}\). Since \(C_{\ast\ast} \simeq (\mathcal{P} \otimes H, d_s) \otimes_H (M \otimes E \otimes A \otimes (E \otimes E \otimes E, b'_\ast))\) as filtered complexes, the homological Cartan-Leray and the Grothendieck spectral sequence coincide. The same is valid in the cohomological setting.

Appendix A

Let \(R \to S\) be an unitary ring map and let \(N\) be a left \(S\)-module. In this section, under suitable conditions, we construct a projective relative resolution of \(N\). We need this result (with \(R = E, S = E^e\) and \(N = E\)) to complete the proof of Theorem 1.1.1. The general case considered here simplifies the notation and enables us to consider other cases, for instance algebras of groups having particular resolutions.

Let us consider a diagram of left \(S\)-modules and \(S\)-module maps

\[
\begin{array}{ccc}
\vdots \\
\downarrow \partial_2 \\
Y_1 & \xleftarrow{\mu_1} & X_{01} & \xleftarrow{d_{11}^0} & X_{11} & \xleftarrow{d_{11}^1} & \ldots \\
\downarrow \partial_1 \\
Y_0 & \xleftarrow{\mu_0} & X_{00} & \xleftarrow{d_{10}^0} & X_{10} & \xleftarrow{d_{10}^1} & \ldots,
\end{array}
\]

such that:

a) The column and the rows are chain complexes.
b) For each \(r, s \geq 0\) we have a left \(R\)-module \(\overline{X}_{rs}\) and \(S\)-module maps

\[
s_{rs}: X_{rs} \to S \otimes \overline{X}_{rs} \quad \text{and} \quad \pi_{rs}: S \otimes \overline{X}_{rs} \to X_{rs}
\]

verifying \(\pi_{rs} s_{rs} = id\).
(c) Each row is contractible as a complex of R-modules, with a chain contracting homotopy $\sigma^0_r : Y_s \to X_0$ and $\sigma^0_{r+1,s} : X_{rs} \to X_{r+1,s} (r \geq 0)$.

We are going to modify this diagram by adding S-module maps

$$d^l_{rs} : X_{rs} \to X_{r+l-1,s-l} \quad (r, s \geq 0 \text{ and } 1 \leq l \leq s).$$

Let $X_n = \bigoplus_{r+s=n} X_{rs}$ and $d_n = \sum_{r+s=n} \sum_{l=0}^{s} d^l_{rs}$ ($n \geq 1$). Consider the maps $\mu'_n : X_n \to Y_n (n \geq 0)$, given by:

$$\mu'_n(x) = \begin{cases}
\mu_n(x) & \text{for } x \in X_{0n} \\
0 & \text{for } x \in X_{r,n-r} \text{ with } r > 0.
\end{cases}$$

We define the arrows d^l_s in such a way that (X_*, d_*) becomes a chain complex of S-modules and $\mu'_* : (X_*, d_*) \to (Y_*, \partial_*)$ becomes a chain homotopy equivalence of complexes of R-modules. In fact, we are going to build R-module morphisms

$$\sigma^l_{l,s-l} : Y_s \to X_{l,s-l} \quad \text{and} \quad \sigma^l_{r+l,1,s-l} : X_{rs} \to X_{r+l,1,s-l} \quad (r, s \geq 0 \text{ and } 1 \leq l \leq s),$$

satisfying the following:

Theorem A.1. Let $C_*(\mu'_*)$ be the mapping cone of μ'_*, that is, $C_*(\mu'_*) = (C_*, \delta_*)$, where $C_n = Y_n \oplus X_{n-1}$ and $\delta_n(y_n, x_{n-1}) = (-\partial(y_n) - \mu'_{n-1}(x_{n-1}), -d_{n-1}(x_{n-1}))$.

The family of R-module maps $\sigma_{n+1} : C_*(\mu'_*) \to C_{n+1}(\mu'_*) (n \geq 0)$, defined by:

$$\sigma_{n+1} = - \sum_{r+s=n-1} \sum_{l=0}^{s} \sigma^l_{r+l+1,s-l},$$

is a chain contracting homotopy of $C_*(\mu'_*)$.

Corollary A.2. Let N be a left S-module. If there is a S-module map $\tilde{\mu} : Y_0 \to N$, such that

(*) \quad N \xleftarrow{\tilde{\mu}} Y_0 \xleftarrow{\delta_1} Y_1 \xleftarrow{\delta_2} Y_2 \xleftarrow{\delta_3} Y_3 \xleftarrow{\delta_4} Y_4 \xleftarrow{\delta_5} Y_5 \xleftarrow{\delta_6} \ldots

is contractible as a complex of left R-modules, then

(**) \quad N \xleftarrow{\mu} X_0 \xleftarrow{\delta_1} X_1 \xleftarrow{\delta_2} X_2 \xleftarrow{\delta_3} X_3 \xleftarrow{\delta_4} X_4 \xleftarrow{\delta_5} X_5 \xleftarrow{\delta_6} X_6 \xleftarrow{\delta_7} \ldots,

where $\mu = \tilde{\mu} \mu_0$, is a relative projective resolution. Moreover, if $\sigma^{-1}_0 : N \to Y_0$, $\sigma^{-1}_{n+1} : Y_n \to Y_{n+1} (n \geq 0)$ is a chain contracting homotopy of (*), then we obtain a chain contracting homotopy $\sigma_0 : N \to X_0$, $\sigma_{n+1} : X_n \to X_{n+1} (n \geq 0)$ of (**), defining $\sigma_0 = \sigma_0^0 \sigma^{-1}_0$ and

$$\sigma_{n+1} = - \sum_{l=0}^{n} \sigma^l_{l,n-l} \sigma^{-1}_{n+1} \mu_n + \sum_{r+s=n} \sum_{l=0}^{s} \sigma^l_{r+l+1,s-l}.$$

Proof. Write

$$\sigma_n = \sum_{r+s=n-1} \sum_{l=0}^{s} \sigma^l_{r+l+1,s-l} \quad (n \geq 1) \quad \text{and} \quad \sigma_n = \sum_{l=0}^{n} \sigma^l_{l,n-l} \quad (n \geq 0).$$
From Theorem A.1, we have

\[(^n) \quad \tilde{\sigma}_n \partial_{n+1} = \sum_{l=0}^n \sigma_{l,n-l}^l \partial_{n+1} = -\sum_{i=0}^{n} \sum_{l=0}^{i+1} d_{l,n+1-i}^i \sigma_{i,n+1-i}^i = -d_{n+1} \tilde{\sigma}_{n+1}.\]

It is clear that \(\mu \tilde{\sigma}_0 = id\). Moreover

\[
\tilde{\sigma}_0 \mu = \sigma_{00}^0 \sigma_{0}^{-1} \tilde{\mu}_0 = \sigma_{00}^0 \mu_0 - \sigma_{00}^0 \partial_1 \sigma_{1}^{-1} \mu_0
\]

\[
= id - d_{10}^0 \sigma_{01}^0 \sigma_{1}^{-1} \mu_0 + d_{10}^0 \sigma_{10}^1 \sigma_{1}^{-1} \mu_0,
\]

where the last equality follows from \((^0)\). Now, let \(n \geq 1\). Take \(x \in X_{r,n-r}\). If \(r \geq 1\), then the equality \((0,x) = \delta_{n+2} \sigma_{n+2}(0,x) + \sigma_{n+1} \delta_{n+1}(0,x)\) implies that \(x = d_{n+1} \tilde{\sigma}_{n+1}(x) + \sigma_{n} d_{n}(x)\). Hence, we can suppose \(r = 0\). Then, from \((0,x) = \delta_{n+2} \sigma_{n+2}(0,x) + \sigma_{n+1} \delta_{n+1}(0,x)\), we get

\[
x = d_{n+1} \tilde{\sigma}_{n+1}(x) + \tilde{\sigma}_r d_{n}(x) + \tilde{\sigma}_s \mu_{n}(x)
\]

\[
= d_{n+1} \tilde{\sigma}_{n+1}(x) + \tilde{\sigma}_r d_{n}(x) + \tilde{\sigma}_s \sigma_{n}^{-1} \mu_{n} - d_{n} \tilde{\sigma}_{n}(x) + \tilde{\sigma}_r \sigma_{n}^{-1} \mu_{n} + \sigma_{n} d_{n}(x)
\]

\[
= d_{n+1} \tilde{\sigma}_{n+1}(x) + \tilde{\sigma}_r d_{n}(x) - \tilde{\sigma}_s \sigma_{n}^{-1} \mu_{n} - d_{n} \tilde{\sigma}_{n}(x) - d_{n} \tilde{\sigma}_{n+1}(x) + \tilde{\sigma}_r \sigma_{n}^{-1} \mu_{n} + \sigma_{n} d_{n}(x),
\]

where the last equality follows from \((^n)\) \(\square\)

Next we define the morphisms \(d_{rs}^l\) and we prove that \((X_*, d_*)\) is a chain complex.

Definition A.3. We define the \(S\)-module maps \(d_{rs}^l : X_{rs} \to X_{r+l-s-l} (r \geq 0\) and \(1 \leq l \leq s)\), recursively by \(d_{rs}^l = d_{rs}^l s_{rs}\), where \(d_{rs}^l : S \otimes X_{rs} \to X_{r+l-s-l} (r \geq 0\) and \(1 \leq l \leq s)\) is the \(S\)-module map defined by

\[
\tilde{d}_{rs}^l(x) = \begin{cases} -\sigma_{0,s-1}^0 \partial_s \mu_{s} \pi_{0s}(x) & \text{if } r = 0 \text{ and } l = 1, \\ -\sum_{j=1}^{l-1} \sigma_{r-l-s,l-s}^j d_{j-1,s-j}^j \pi_{0s}(x) & \text{if } r = 0 \text{ and } 1 < l \leq s, \\ -\sum_{j=0}^{l-1} \sigma_{r+l-s-l,s-l}^j d_{r+j-1,s-j}^j \pi_{rs}(x) & \text{if } r > 0, \\ \end{cases}
\]

for each \(x = 1 \otimes \mathbf{x} \in S \otimes X_{rs}\).

Proposition A.4. We have \(\mu_{s-1} d_{rs}^0 = -\partial_s \mu_s\) and

\[
d_{r+l-s-l}^l d_{rs}^l = \begin{cases} -\sum_{j=1}^{l-1} d_{j-1,s-j}^j d_{0s}^j & \text{if } r = 0 \text{ and } 1 < l \leq s \\ -\sum_{j=1}^{l-1} d_{r+j-1,s-j}^j d_{rs}^j & \text{if } r > 0 \text{ and } 1 \leq l \leq s. \\ \end{cases}
\]

Consequently \((X_*, d_*)\) is a chain complex.

Proof. We prove the proposition by induction on \(l\) and \(r\). To simplify the expressions we put \(d_{0s}^0 := \mu_s, d_{1,s}^0 := \partial_s\) and \(d_{l-1,s}^0 := 0\) for all \(l > 1\). Moreover to abbreviate we do not write the subindices. Let \(x = 1 \otimes \mathbf{x}\) with \(\mathbf{x} \in X_{0s}\). Since \(\tilde{d}_{0s}^l(x) = -\sigma_{00}^l d_{s}^l \pi(x)\), we have \(\tilde{d}_{0s}^l(x) = -d_{00}^l \sigma_{01}^l d_{s}^l \pi(x) = -d_{00}^l d_{s}^l \pi(x)\), which implies \(d_{00}^l d_{s}^l = -d_{s}^l d_{00}^l\). Let \(l + r > 1\) and suppose the result is valid for
\(d^l_{rs}\) with \(j < l\) or \(j = l\) and \(p < r\). Let \(x = 1 \otimes \mathfrak{A}\) with \(\mathfrak{A} \in \mathfrak{X}_{rs}\). Since
\[
\partial \left(d^l_{rs} \right)(x) = - \sum_{j=0}^{l-1} \sigma^0 d^{l-j} \partial^j \pi(x),
\]
then
\[
d^l_{rs} \pi(x) = - \sum_{j=0}^{l-1} \sigma^0 d^{l-j} \partial^j \pi(x) - \sum_{j=0}^{l-1} d^j \pi(x).
\]

Applying first the inductive hypothesis to \(d^0 d^{l-j}\) with \((0 \leq j < l)\) and then to \(d^0 d^j\) with \((0 < j < l)\), we obtain:
\[
d^0 d^j (x) = - \sum_{j=0}^{l-1} d^j \pi(x) - \sum_{j=0}^{l-1} \sum_{i=0}^{j} \sigma^0 d^{j-i} d^i \pi(x)
\]
\[
= - \sum_{j=0}^{l-1} d^{l-j} \partial^j \pi(x) + \sum_{j=0}^{l-1} \sigma^0 d^{l-j} \partial^j \pi(x)
\]
\[
+ \sum_{j=1}^{l-1} \sum_{h=0}^{j-1} \sigma^0 d^{l-j} d^j \pi(x) = - \sum_{j=0}^{l-1} d^{l-j} \partial^j \pi(x).
\]

The desired equality follows immediately from this fact \(\square\).

It is immediate that \(\mu'_s : (X_s, d_s) \to (Y_s, -\partial_s)\) is a morphism of \(S\)-module chain complexes. Next, we construct the chain contracting homotopy of \(C_s(\mu'_s)\).

Definition A.5. We define \(\sigma^l_{s-l} : Y_s \to X_{l,s-l}\) and \(\sigma^l_{r+l+1,s-l} : X_{rs} \to X_{r+l+1,s-l}\)
\((0 < l \leq s, r \geq 0)\), recursively by:
\[
\sigma^l_{r+l+1,s-l} = - \sum_{i=0}^{l} \sigma^0_{r+l+1,s-l} d^i_{r+i+1,s-l} \sigma^i_{r+i+1,s-l} \quad (0 < l \leq s \text{ and } r \geq -1).
\]

Proof of Theorem A.1. To simplify the expressions we put \(d^l_{0,s} := 0\), \(d^0_{0,s} := \mu_s\),
\(d^l_{-1,s} := \partial_s\) and \(d^l_{-1,s} := 0\) for all \(l > 1\). Because of the definitions of \(d_s\) and \(\sigma_s\), it suffices to check that \(\sigma^0_{rs} d^l_{rs} + d^l_{r+1,s} \sigma^l_{r+1,s} = id\) and
\[
\sum_{i=0}^{l} \sigma^l_{r+i+1,s-l} d^i_{r+i+1,s-l} + \sum_{i=0}^{l} d^i_{r+i+1,s-l} \sigma^l_{r+i+1,s-l} = 0 \quad \text{for } l > 0,
\]
where we put \(d^0_{0,s} = 0\). The first formula simply says that \(\sigma^0_{rs}\) is a chain contracting homotopy of \(d^l_{rs}\). Let us see the second one. To abbreviate we do not write the subindices. From the definition of \(\sigma^l\) we have:
\[
d^0 \sigma^l = - \sum_{i=0}^{l-1} d^i \sigma^0 d^{l-i} \sigma^i = \sum_{i=0}^{l-1} \sigma^0 d^l d^{i-i} \sigma^i - \sum_{i=0}^{l-1} d^i \sigma^i.
\]
Consequently
\[
\sum_{i=0}^{l} \sigma^l_{i-i} d^i + \sum_{i=0}^{l} d^i \sigma^i = \sum_{i=0}^{l-1} \sigma^l_{i-i} d^i + \sum_{i=0}^{l-1} \sigma^0 d^l d^{i-i} \sigma^i.
\]
Then, it suffices to prove that the term appearing on the right side of the equality is zero. We prove this by induction on \(l \). For \(l = 1 \) we have:

\[
\sigma^0 d^1 d^1 \sigma^0 = -\sigma^0 d^1 d^0 \sigma^0 = \sigma^0 d^1 \sigma^0 d^0 - \sigma^0 d^1 = -\sigma^1 d^0 - \sigma^0 d^1.
\]

Suppose \(l > 1 \). From Proposition A.5,

\[
\sum_{i=0}^{l-1} \sigma^0 d^0 d^{l-i} \sigma^i = - \sum_{i=0}^{l-1} \sum_{j=0}^{l-i-1} \sigma^0 d^{l-i-j} d^i \sigma^i = - \sum_{h=0}^{l-1} \sum_{i=0}^{h} \sigma^0 d^{l-h-i} d^i \sigma^i.
\]

So, applying the inductive hypothesis to \(\sum_{i=0}^{h} d^{h-i} \sigma^i (h \geq 0) \), we obtain

\[
\sum_{i=0}^{l-1} \sigma^0 d^0 d^{l-i} \sigma^i = \sum_{i=0}^{l-1} \sum_{j=0}^{h} \sigma^0 d^{h-i-j} d^i \sigma^i - \sigma^0 d^l
\]

\[
= \sum_{i=0}^{l-1} \sum_{j=0}^{l-i-1} \sigma^0 d^{l-i-j} \sigma^j d^i - \sigma^0 d^l
\]

\[
= - \sum_{i=0}^{l} \sigma^i d^i \quad \Box
\]

Appendix B

In this appendix we compute explicitly the maps \(d^l \) introduced in Section 1, completing the results of Theorem 1.1.3.

Definition B.1. Given \(h = h_1 \otimes \cdots \otimes h_l \in \mathcal{F}^l \), we define \(F_0^{(l)}(h) \), recursively by:

\[
F_0^{(2)}(h) = -f(h_1, h_2),
\]

\[
F_0^{(l+1)}(h) = \sum_{j=1}^{l} (-1)^j f(h_j^{(1)}, h_j^{(1)}) \overline{h_{j-1}^{(l-1)}} \otimes F_0^{(l)}(h_j^{(2)}),
\]

where \(h_j^{(2)} = h_j^{(2)} \otimes h_{j+1}^{(2)} \otimes h_{j+2}^{(2)} \cdots h_{j+l}^{(2)} \). For instance, we have

\[
F_0^{(3)}(h) = f(h_1^{(1)}, h_2^{(1)}) \otimes f(h_1^{(2)}, h_3) - f(h_2^{(1)}, h_3^{(1)}) h_1^{(1)} \otimes f(h_2^{(2)}, h_3^{(2)})
\]

and

\[
F_0^{(4)}(h) = -f(h_1^{(1)}, h_2^{(1)}) \otimes f(h_1^{(2)}, h_3^{(1)}) \otimes f(h_1^{(3)}, h_4) + f(h_1^{(1)}, h_2^{(1)}) \otimes f(h_1^{(3)}, h_4) h_1^{(2)} \otimes f(h_1^{(2)}, h_3^{(2)}) + f(h_2^{(1)}, h_3^{(1)}) h_1^{(1)} \otimes f(h_2^{(2)}, h_3^{(2)}) \otimes f(h_1^{(3)}, h_4) - f(h_2^{(1)}, h_3^{(1)}) h_1^{(1)} \otimes f(h_2^{(3)}, h_4^{(1)}) h_1^{(2)} \otimes f(h_1^{(3)}, h_4^{(2)}) - f(h_2^{(1)}, h_3^{(1)}) h_1^{(1)} \otimes f(h_2^{(3)}, h_4^{(1)}) h_1^{(2)} \otimes f(h_1^{(3)}, h_4^{(2)}) + f(h_3^{(1)}, h_4^{(1)}) h_1^{(1)} \otimes f(h_3^{(2)}, h_4^{(2)}) h_1^{(2)} \otimes f(h_1^{(3)}, h_4^{(3)}).
\]

For the following definition we adopt the convention that \(a_{10} = a_{r+1,r} = 1_k \in k \).
Definition B.2. Given $h = h_1 \otimes \cdots \otimes h_l \in \overline{H}$ and $a = a_1 \otimes \cdots \otimes a_r \in \overline{A}$, we define $F_r^{(l)}(h \otimes a)$, recursively by:

\[
F_r^{(l)}(h \otimes a) = \sum_{i=0}^{r} (-1)^{i+1} a_{i+1,r}^{(h_1, \ldots, h_l)} \otimes f(h_{i+1}^{(2)}, h_{i+2}^{(2)}) \otimes a_{i+1,r}^{(h_1, \ldots, h_l)}
\]

\[
F_r^{(l+1)}(h \otimes a) = \sum_{j=1}^{r} (-1)^{j+1} a_{i+1,j}^{(h_1, \ldots, h_l)} \otimes f(h_{j+1}^{(2)}, h_{j+2}^{(2)}) \otimes a_{i+1,j}^{(h_1, \ldots, h_l)} \otimes F_{r-i}^{(l)}(h^{(3)} \otimes a_{i+1,r}),
\]

where $h^{(3)} = h_{1-j}^{(3)} \otimes h_{j+1}^{(3)} \otimes h_{j+2}^{(2)}$ and $F_0^{(l)}(h^{(3)} \otimes a_{r+1,r}) = F_0^{(l)}(h^{(3)})$. For instance, we have

\[
F_r^{(3)}(h \otimes a) = \sum_{0 \leq i \leq j \leq r} (-1)^{i+j} a_{i+1,j}^{(h_1, \ldots, h_l)} \otimes f(h_1^{(2)}, h_2^{(2)}) \otimes a_{i+1,j}^{(h_1, \ldots, h_l)} \otimes h_1^{(3)} \otimes a_{i+1,j}^{(h_1, \ldots, h_l)} \otimes F_{r-i}^{(3)}(h^{(3)} \otimes a_{i+1,r}).
\]

We set $F_0^{(1)}(h_s) = 1_k \in k$, $F_r^{(l)}(h_s \otimes a) = a^{h_s}$, and $F_0^{(l)}(h_{s-l-1,s} \otimes 1_k) = F_0^{(l)}(h_{s-l-1,s})$. Moreover, to abbreviate we write $F_r^{(l)}(h) = F_0^{(l)}(h)$ and $F_r^{(l)}(a) = F_r^{(l)}(h \otimes a)$.

Lemma B.3. Let $a = a_1 \otimes \cdots \otimes a_r$ and $h_{s-l,s} = h_{s-l} \otimes \cdots \otimes h_l$. We have:

\[
F^{(l+1)}(h_{s-l,s}) = \sum_{i=1}^{l} (-1)^i F^{(l-i+1)}(h_{s-l-i,1}^{(h_{s-l,i}^{(3)} \otimes f(h_{s-l-i}^{(2)}, h_{s-l-i+1}^{(2)}) \otimes f(h_{s-l-i}^{(2)}, h_{s-l-i+1}^{(2)}) \otimes f(h_{s-l-i}^{(2)}, h_{s-l-i+1}^{(2)}) \otimes F_{r-i}^{(l)}(h^{(3)} \otimes a_{i+1,r}).
\]

where $F^{(l+1)}(h_{s-l,s}) = F^{(l+1)}(h_{s-l,s})$ if $r = 1$.

Proof. We prove the second formula. The proof of the first one is similar. It is clear that the lemma is valid for $l = 1$. Let $l > 1$ and suppose the result is valid for $l - 1$. To abbreviate we put

\[
\xi = u(l - 1) + j + s
\]

\[
h_{s-l,s}^{(4)} = h_{s-l,j+1}^{(4)} h_{j+2}^{(3)},
\]

\[
h_{s-l,s}^{(3)} = h_{s-l,j-1}^{(3)} h_{j+1}^{(3)} h_{j+2}^{(2)},
\]

\[
f_j^{(2)} = f(h_j^{(2)}, h_{j+1}^{(2)}) h_{s-l-j-1},
\]

\[
f_{s-l,s-i}^{(3)} = f(h_{s-l,i}^{(3)} h_{j+2}^{(3)}),
\]

\[
f_{s-l,s-i}^{(4)} = f(h_{s-l,i}^{(4)} h_{s-l,i+1}^{(4)} h_{j+2}^{(3)}),
\]

\[
f_{s-l,s-i}^{(4)} = f(h_{s-l,i}^{(4)} h_{s-l,i+1}^{(4)}).
\]
We have:

\[
F^{(l+1)}(\textbf{h}_{s-i, s}) = \sum_{j=s-l}^{s-1} \sum_{u=0}^{r-1} (-1)^{j-1} \textbf{a}_{1u}^{(1)} \otimes \textbf{f}_j^{(2)} \otimes F^{(l)}(\textbf{h}_{s-i, s})^q \textbf{a}_{1u}^{(1)} \otimes \textbf{h}_{s-i, s}^{(4)}
\]

\[
+ \sum_{j=s-l}^{s-1} \sum_{u=0}^{r-1} \sum_{i=1}^{r-1} (-1)^{j-1-r-u+i} \textbf{a}_{1u}^{(1)} \otimes \textbf{f}_j^{(2)} \otimes F^{(l-1)}(\textbf{h}_{s-i, s})^{q-1} \textbf{a}_{1u}^{(1)} \otimes \textbf{h}_{s-i, s}^{(4)}
\]

\[
+ \sum_{j=s-l+1}^{s} \sum_{u=0}^{r-1} \sum_{i=1}^{r-1} (-1)^{j-1+r-u+i} \textbf{a}_{1u}^{(1)} \otimes \textbf{f}_j^{(2)} \otimes F^{(l-1)}(\textbf{h}_{s-i, s})^{q-1} \textbf{a}_{1u}^{(1)} \otimes \textbf{h}_{s-i, s}^{(4)}
\]

Permuting the order of the summands, we obtain

\[
F^{(l+1)}(\textbf{h}_{s-i, s}) = \sum_{j=s-l}^{s-1} \sum_{u=0}^{r-1} (-1)^{j-1} \textbf{a}_{1u}^{(1)} \otimes \textbf{f}_j^{(2)} \otimes F^{(l)}(\textbf{h}_{s-i, s})^{q-1} \textbf{a}_{1u}^{(1)} \otimes \textbf{h}_{s-i, s}^{(4)}
\]

\[
+ \sum_{i=1}^{r-1} \sum_{u=0}^{r-1} (-1)^{j-1-r-u+i} \textbf{a}_{1u}^{(1)} \otimes \textbf{f}_j^{(2)} \otimes F^{(l-1)}(\textbf{h}_{s-i, s})^{q-1} \textbf{a}_{1u}^{(1)} \otimes \textbf{h}_{s-i, s}^{(4)}
\]

\[
+ \sum_{i=1}^{r-1} \sum_{u=0}^{r-1} (-1)^{j-1+r-u+i} \textbf{a}_{1u}^{(1)} \otimes \textbf{f}_j^{(2)} \otimes F^{(l-1)}(\textbf{h}_{s-i, s})^{q-1} \textbf{a}_{1u}^{(1)} \otimes \textbf{h}_{s-i, s}^{(4)}
\]

which ends the proof \(\square\)

Computation of \(d_{rs}^{l+1}\). Let us compute \(d_{rs}^{l+1}\) for \(l \geq 1\). First we suppose the formula is valid for \(d_{rs}^{l}\) with \(j \leq l\) and we see that it is valid for \(d_{rs}^{l+1}\). To abbreviate we write \(\zeta = is + (l-i+1)(s-1) + 1\). Using the inductive hypothesis and the fact that \(\sigma^0 d^l(u_0 \otimes h_{0s} \otimes 1\#1) = 0\), we obtain:

\[
d^{l+1}(1 \otimes h \otimes 1_E) = -\sum_{i=1}^{l} \sigma^0 d^{l+1-i} (1 \otimes h \otimes 1_E)
\]

\[
+ \sum_{i=1}^{l} (-1)^{i+1} \sigma^0 d^{l+1-i} (1 \otimes h_{0s-i} \otimes F(i)(h_{s-i+1, s}) \otimes 1\#h_{s-i+1, s})
\]

\[
= \sum_{i=1}^{l} \sigma^0 (-1)^{i+1} \zeta \otimes h_{0s-i-1} \otimes F(l+1-i)(h_{s-i+1, s})^q \otimes f(h_{s-i, s-i}, h_{s-i+1, s}, h_{s-i, s-i}) \#h_{s-i, s}
\]

\[
= (-1)^{l+1} s \textbf{h}_{0s-l-1} \otimes F(l+1)(\textbf{h}_{s-l, s}) \otimes 1\#\textbf{h}_{s-l, s},
\]

where the last equality follows from the definition of \(\sigma^0\) and Lemma B.3. Now, we suppose the result is valid for \(d_{rs}^{l+1}\) with \(r' < r\) and we show that it is valid for \(d_{rs}^{l+1}\).
To abbreviate we write $\zeta_i = i(r + s) + (l - i + 1)(r + s - 1) + 1$.

$$d^{l+1}(1 \otimes h \otimes a \otimes 1_E) = - \sum_{i=0}^{l} \sigma^0 d^{l+1-i} d^i (1 \otimes h \otimes a \otimes 1_E)$$

$$= (-1)^{r+1} \sigma_0 d^{l+1} (1 \otimes h \otimes a \otimes 1) - (-1)^{r+s} \sigma_0 d^l (1 \otimes h_{0,s-1} \otimes a^{h^{(1)}} \otimes 1 \# h^{(2)}_s)$$

$$- \sum_{i=2}^{l} \sigma_0 d^{l+1-i} \left((-1)^{(r+s)} \otimes h_{0,s-i} \otimes F^{(i)} \left(h^{(1)}_{s-i+1,s} \right) \otimes 1 \# h^{(2)}_{s-i+1,s} \right)$$

$$= (-1)^{r+1} \sigma_0 d^{l+1} (1 \otimes h \otimes a \otimes 1)$$

$$- \sum_{i=1}^{l} \sigma_0 d^{l+1-i} \left((-1)^{(r+s)} \otimes h_{0,s-i} \otimes F^{(i)} \left(h^{(1)}_{s-i+1,s} \right) \otimes 1 \# h^{(2)}_{s-i+1,s} \right)$$

$$= \sigma_0 \left((-1)^{(l+1)(r+s-1)+r+1} \otimes h_{0,s-l-1} \otimes F^{(l+1)} \left(h^{(1)}_{s-l-1,s} \right) \otimes h^{(2)}_{s-l-1,s} \right)$$

$$+ \sum_{i=1}^{l} (-1)^{\zeta_i} \otimes h_{0,s-l-1} \otimes F^{(l+1-i)} \left(F^{(i)} \left(h^{(1)}_{s-i+1,s} \right) \otimes h^{(2)}_{s-i+1,s} \right) \# h^{(3)}_{s-l,s}$$

$$= (-1)^{(l+1)(r+s)} \otimes h_{0,s-l-1} \otimes F^{(l+1)} \left(h^{(1)}_{s-l-1,s} \right) \otimes 1 \# h^{(2)}_{s-l,s},$$

where the last equality follows from the definition of σ^0 and Lemma B.3.

Remark B.4. When H is a group algebra $k[G]$ and the 2-cocycle f takes its values in the center of A, then

$$d^l_{rs}(a_0 \otimes g_0 \otimes a_{1r} \otimes 1_E) = (-1)^{(r+s)} a_0 \otimes g_{0,s-i} \otimes F^{(l)}(g_{s-l+1,s}) \ast a_{1r} \otimes 1 \# g_{s-l+1,s},$$

where \ast denotes the shuffle product:

$$a_{1r} \ast b_{1t} = \sum_{0 \leq i_1 \leq \cdots \leq i_r \leq t} (-1)^{i_1 + \cdots + i_r} b_1 \otimes \cdots \otimes a_1 \otimes b_{i_1+1} \otimes \cdots \otimes b_{i_r} \otimes a_r \otimes b_{i_{r+1}} \otimes \cdots .$$

References

[A-R] E. Aljadeff and M. Rosset, *Global dimensions of crossed products*, Journal of Pure and Applied Algebra 40 (1986), 103–113.

[B] F. R. Beyl, *The spectral sequence of a group extension*, Bull. Sc. Math. 105(2) (1981), 417–434.

[B-C-M] R. J. Blattner, M. Cohen and S. Montgomery, *Crossed products and inner actions of Hopf algebras*, Trans. Amer. Math. Soc. 298 (1986), 671–711.

[B-M] R. J. Blattner and S. Montgomery, *Crossed products and Galois extensions of Hopf algebras*, Pacific J. Math. 137 (1989), 37–54.

[D-T] Y. Doi and M. Takeuchi, *Cleft comodule algebras by a bialgebra*, Comm. in Alg. 14 (1986), 801–817.

[E] L. Evens, *The spectral sequence of a finite group stops*, Trans. Amer. Math. Soc. 212 (1975), 269–277.

[G-S1] M. Gerstenhaber and S. D. Schack, *A Hodge-type decomposition for commutative algebra cohomology*, Journal of Pure and Applied Algebra 48 (1987), 229–247.

[G-S2] M. Gerstenhaber and S. D. Schack, *Relative Hochschild cohomology, rigid algebras and the Bockstein*, Journal of Pure and Applied Algebra 43 (1986), 53–74.

[G] A. Guichardet, *Suites spectrales à la Hochschild-Serre pour les produits croisés d’algèbres et de groupes*, preprint.
[H-S] G. Hochschild and J. P. Serre, *Cohomology of group extensions*, Trans. Amer. Math. Soc. 74 (1953), 110–134.

[L] M. Lorenz, *On the homology of graded algebras*, Communications in Algebra 20(2) (1992), 489–507.

[Q] D. Quillen, *Cyclic cohomology and algebra extensions*, K-theory 3 (1989), 205–246.

[S] D. Stefan, *Hochschild cohomology of Hopf Galois extensions*, Journal of Pure and Applied Algebra 103 (1995), 221–233.

Jorge Alberto Guccione, Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Pabellón 1 - Ciudad Universitaria, (1428) Buenos Aires, Argentina.

E-mail address: vander@dm.uba.ar

Juan José Guccione, Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Pabellón 1 - Ciudad Universitaria, (1428) Buenos Aires, Argentina.

E-mail address: jjucci@dm.uba.ar