A new three-layer-funnel-shaped esophagogastric anastomosis for surgical treatment of esophageal carcinoma

Han-Lei Dan, Yang Bai, Hui Meng, Cong-Lin Song, Jie Zhang, Yong Zhang, Lei-Chi Wan, Ya-Li Zhang, Zhen-Shu Zhang, Dian-Yuan Zhou

ESOPHAGEAL CANCER

INTRODUCTION

Surgical therapy is considered the major method for treatment of operable esophageal cancer[1-7]. Unfortunately, there are many operative complications after classical standard esophagectomy and esophageal reconstruction with stomach in patients with esophageal carcinoma. Anastomotic leak, with a rate of about 12-14% as reported, is the most severe complication and the principal cause of death after operation[1-7]. Anastomatic stenosis and gastroesophageal reflux (GER), with higher rates of about 36.4-40% and 50-60% respectively, result in dysphagia, heartburn, regurgitation and nausea[1-7].

We modified the conventional method of esophagectomy and created a new three-layer-funnel-shaped (TLF) esophagogastric anastomotic suturing technique, which significantly reduced postoperative complications of anastomotic leak, stricture and GER.

MATERIALS AND METHODS

Patients and preoperative examination
From January 1997 to October 1999, the patients with clinical stage I and II (IIa and IIb) esophageal carcinoma, which met the enrollment criteria, were surgically treated by the new method (Group A) and by conventional operation (Group B). All the patients were followed at least for 6 months. Postoperative outcomes and complications were recorded and compared with the conventional method in the same hospitals and with that reported previously by McLarty et al in 1997 (Group C).

RESULTS: 58 cases with stage I and II (IIa and IIb) esophageal carcinoma, including 38 males and 20 females aged from 34 to 78 (mean age: 57), were surgically treated by the TLF anastomosis and 64 by conventional method in the same hospitals and with that reported previously by McLarty in 1997 (Group C).

CONCLUSION: The new three-layer-funnel-shaped esophagogastric anastomosis (TLFEGA) has more advantages to reduce postoperative complications of anastomotic leak, stricture and GER.

Dan HL, Bai Y, Meng H, Song CL, Zhang J, Zhang Y, Wan LC, Zhang YL, Zhang ZS, Zhou DY. A new three-layer-funnel-shaped esophagogastric anastomosis for surgical treatment of esophageal carcinoma. World J Gastroenterol. 2003; 9(1): 22-25.
techniques were improved as follows:

When the gastric tube was constructed, an adequate amount of greater omentum was reserved for protecting the right gastroepiploic vessels and the blood supply of the gastric tube. The gastric tube was kept long enough to avoid tension and pulled along the esophageal bed, anchored to the back of the chest wall beside the mediastinum (The cervical cancer need a cervical incision to perform the anastomotic suture in the neck). First, the esophageal muscular layer was cut 3.0-3.5 cm in length into the inclined cycle, and the esophageal mucosa was kept 1.0-1.5 cm longer. Between the short gastric vessel, the sero-muscular layer was incised 4.0-4.5 cm, and its posterior aspect was hand-sewn to the same aspect of esophageal muscular layer. Then, excised the inner circular muscle layer and mucosa of stomach for 2.5-3.0 cm long and anastomosed to the esophageal mucosa by interrupted suture. The anterior aspect of the esophageal muscular and the gastric sero-muscular layer was sewn finally with fundoplication by inversion suture. The fundoplication suture cycle is 1.0 - 2.0 cm larger than the suture cycle of the esophageal muscular-to-sero-muscular layer of the stomach (Figure 1). The other procedures were performed as usual.

Figure 1 Technique of three-layer-funnel-shaped(TLF) esophagogastriastic anastomosis. A: mucosa-to-mucosa suture cycle; B: the esophagus muscular to gastric sero-muscular suture cycle; C: fundoplication suture cycle.

Postoperative management and follow-up

After the operation, all patients were treated routinely by thoracic drainage, nutrition support, and antibiotics. The swallowing ability and symptoms of anastomotic leak, stricture and GER were observed clinically as reported[3-7]. All patients were evaluated clinically by their general condition, eating habits, swallowing ability and barium swallow test or esophagoscopy 2 to 3 months after the completion of all treatments and followed up at intervals of 2-3 months for at least 6 months.

Postoperative anastomotic leak was diagnosed clinically by leakage of gastrointestinal contents and radiographically extravasation of water-soluble contrast medium at the site of anastomosis. The anastomotic stricture was defined as any form of narrowing in the anastomosis region by contrast swallow study (<2.0 cm in diameter in obverse and lateral posture) and any symptom of dysphagia when swallowing solid food, semisolids or liquids, requiring endoscopic dilation. GER was present if the patient had intermittent or continuous heartburn, regurgitation and nausea, especially that required antacids for relief of heartburn, or barium regurgitation at horizontal posture or Trendelenburg’s position on radiographic examination.

Statistical analysis

All patients’ general characteristics, pathological pattern of carcinoma, clinical staging, swallowing ability, postoperative complications, and incidences of anastomotic leak, stricture, and GER were recorded and compared to that treated by conventional methods in the same hospitals and that reported previously by McLarty et al[3]. Quantitative data were compared by using Independent-Samples t test and qualitative data by Chi-square, Fisher’s exact test, and Wilcoxon rank test. Statistical significance was assumed at $P\leq0.05$.

RESULTS

58 patients (Group A), including 38 males and 20 females aged from 34 to 78 (mean age: 57), 54 cases with dysphagia, 4 without any symptom by routine examination, were successfully treated by the new method and 64 (Group B) by the conventional operation. There were no severe intraoperative complications, no operative mortality, no abscesses or uncontrolled infections occurred in all patients. Treated by the new method, the quality of swallowing of the patients improved significantly ($P=0.001$) 2 to 3 months after the operation (Table 1). In Group A, only one patient had a minute blind anastomatic fistula into the immediate paraesophageal soft tissues without causing any symptoms which was diagnosed by barium swallowing test 2 months after the operation, but healed up automatically without any treatment 3 weeks afterwards. Postoperative complications occurred in 25 patients (43 %), including incision and/or thoracic cavity bleeding in 2, wound infection in 1, pneumonia in 1, anastomotic stenosis in 8 (14 %), and GER in 13 (22 %). There were 7 of 8 cases with symptom of dysphagia but dilated successfully by endoscopy. 1 case with moderate stricture could only eat semisolid or liquid food 1 year after the operation.

Table 1 Evaluation of swallowing quality after operation (Group A, n=58)

| No symptom of dysphagia | With symptom of dysphagia |
|-------------------------|--------------------------|
|Solid Food | Semisolids | Liquids |
| Preoperation | 4 (6.9%) | 23 (39.7%) | 26 (44.8%) | 5 (8.6%) |
| Postoperation | 50 (86.2%) | 5 (8.6%) | 2 (3.4%) | 1 (1.7%) |

Analysed by wilcoxon rank test (Wilcoxon W =2142, $P=0.001$), swallowing quality of patients after operation increased significantly compared with that before operation.

Except the difference of pathological type of carcinoma in the west from that in China, which was not the major factor that affected the operation modality and the early outcomes, the patients’ general characteristics, tumor site and clinical staging in Group A were analogous to those in Group B and that reported previously by Allison et al (Table 2). Although the total incidence of postoperative complications were not different due to different method of calculation, the incidences of anastomotic leak, stricture, and GER in our new method therapy group were significantly reduced compared with that of conventional therapy groups (Table 3).
DISCUSSION

There are clear evidences that patients with earlier stage esophageal carcinoma have relatively good outcomes when treated with resection only, especially through thoracic incision which is easy to remove the regional lymph nodes and to carry out the whole operation\(^1\,2,8\). Multimodality treatment with neoadjuvant chemotherapy or chemoradiotherapy was recommended for esophageal carcinoma by some studies but the results are debatable recently by other studies due to poor outcomes at present\(^9\)\text{-}12\). Yet there are still many postoperative complications such as leaks, stricture, and GER, which affect the esophageal function and quality of life, as well as long-term survival of the patients\(^3\)\text{-}7\).

Anastomotic leak is mainly caused by ischemia of the anastomosis and errors in surgical technique\(^7\). Except few recurrence of carcinoma which occurs usually above 6 months after operation, small-bore anastomosis and fibrotic stenosis are the principal causes of anastomotic stricture that results in poor function of swallowing\(^3\,4\). Some studies show that there is a trend toward slightly higher leaking rate for one-layer anastomosis and a higher stricture rate for two-layer anastomosis\(^4\,13\,14\). As for GER, it is basically caused by loss or alteration of normal anatomical structure, location, and function of esophagus, cardia and stomach\(^3\,5\,6\).

The new three-layer-funnel-shaped esophagogastric anastomotic suturing technique, we report here, has more advantages than the classical ones. First, it not only maintains adequate arterial perfusion and venous drainage by reserving enough amount of greater omentum, protecting the right gastroepiploic vessels, and avoiding excessive tension of gastric tube and esophagus, but also maintains accurate mucosa-to-mucosa, muscular-to-muscular apposition and enhances the anastomosis by three-layer sutures, as well as omentum or pleura covering. This significantly avoids the occurrence of anastomotic leak according to our clinical data.

Second, it forms three inclined suture cycles in different diameters at different levels (Figure 1). The fundoplication suture cycle and the esophageal muscular-to-gastric seromuscular suture cycle are ellipse like and big enough to form a large-bore anastomosis that reduces stricture formation. That

| Table 2 | Characteristics and pathological condition of patients in different groups |
|---------|-----------------------------|
| A New method (n=58) | B Conventional (n=64) | C Reported\(^b\) (n=107) | Statistical analysis |
| Sex (male / female) | 46/12 | 43/21 | 81/26 | 2.563 | 0.279 |
| Mean age (range) (years) | 57 (34-78) | 54 (28-76) | 62 (30-81) | 2.731 | 0.604 |
| Tumor site | Upper (include cervical) | 4 (7%) | 3 (4.6%) | 2 (2%) | 14.399 | 0.001\(^b\) |
| | Middle | 21 (36%) | 24 (37.5%) | 43 (40%) | 1.155 | 0.561\(^c\) |
| | Lower (junctional part) | 33 (57%) | 37 (57.8%) | 62 (58%) | 7.272 | 0.122 |
| Pathological type\(^a\) | Squamous | 32 (55%) | 34 (53%) | 28 (26%) | 1.551(t) | 0.084 |
| | Adenocarcinoma | 22 (38%) | 28 (44%) | 72 (67%) | 0.290 | 0.589 |
| | Others | 4 (7%) | 2 (3%) | 7 (7%) | 2.258 | 0.333 |
| Tumor Diameter (Mean±SD) (cm) | 3.1±1.94 | 3.6 ± 1.58 | ND | 6.566 | 0.038 |
| Clinical Staging | Stage I | 18 (31%) | 22 (35%) | 34 (32%) | 7.272 | 0.122 |
| | Stage IIA | 31 (53%) | 29 (45%) | 65 (61%) | 2.258 | 0.333 |
| | Stage IIB | 9 (16%) | 13 (22%) | 8 (8%) | 6.566 | 0.038 |

\(^a\)By McLarty AJ, Deschamps C, Trastek VF, et al. Ann Thorac Surg, 1997;63:1568-1572.  
\(^b\)The pathological type of esophageal carcinoma was different as reported in the west from that in China (P=0.001), but it was not the major factor that affected the methods and early outcomes of operation.  
\(^c\)Compared the pathologic type of cancer treated by the new (Group A) and the conventional (Group B) methods. ND: No data available.

| Table 3 | Postoperative Outcomes and Complications of Patients in the above Groups |
|---------|-----------------------------|
| A New method (n=58) | B Conventional (n=64) | C Reported\(^b\) (n=107) | Statistical analysis |
| No complication | 33 (56.9%) | 26 (40.6%) | 17 (16%) | 29.716 | 0.000 |
| Complications | 25 (43%) | 38 (59.3%) | 43 (40%) | 2.258 | 0.333 |
| Anastomotic leak | 1 (2%) | 4 (6%) | 13 (12%) | 6.566 | 0.038 |
| Anastomotic stricture | 8 (13%) | 24 (37.5%) | 40 (37%) | 10.214 | 0.006 |
| Dysphagia to food | 8 (14%) | 23 (35.9%) | 46 (43%) | 14.746 | 0.001 |
| Postoperative dilation | 13 (22%) | 33 (52%) | 64 (60%) | 21.265 | 0.000 |
| Gastroesophageal reflux | 11 (19%) | 20 (32%) | 31 (29%) | 2.026 | 0.363 |

\(^a\)By McLarty AJ, et al. Ann Thorac Surg, 1997;63:1568-1572.  
\(^b\)By McLarty AJ, Deschamps C, Trastek VF, et al. Ann Thorac Surg, 1997;63:1568-1572.
is why the incidence of anastomotic strictures being low and dilated easily and effectively in our study.

Third, with adequate mucosa-to-mucosa suture, the new method reconstructed a soft mucosa petal which forms the third suture cycle, smaller in diameter and easier to open or shrink automatically, and prevents GER effectively. Although postoperative GER still occurred in 22 % which need further study, it was significantly decreased compared to the conventional method[19]. Twenty-four-hour esophageal pH monitor is a new method to diagnose GER and we plan to carry out a further randomized clinical trial to more scientifically evaluate the anti-GER effects of the mucosa petal created by the new anastomosis[16].

Like all conventional anastomotic suture techniques, we also emphasize that it is important for the anastomotic healing to prevent infection, malnutrition, influence of chemotherapy and radiotherapy and other related factors in perioperative stage. To prevent the anastomotic tissue injury from strangulation, one should never suture too tightly, or place an excessive number of sutures. In addition, each suture “bite” of esophageal muscular layer may be transversely sewn so as to overcome the problem because the longitudinally oriented esophageal muscle holds suture poorly.

Some studies recommend that the stapled esophagogastric anastomosis after resection for esophageal cancer or esophageal cancer is a simple and expedient procedure, carrying an acceptable perioperative morbidity and cancer recurrence rate[20-24]. But except the technical problems caused by the staples, the stricture rate of stapled anastomosis was higher[25-29]. Beiter et al systematically reviewed the related randomized controlled trials and pointed out that both stapled and hand-sewn techniques are acceptable but both need further improvement[30]. GER is recently demonstrated as a main risk factor for esophageal adenocarcinoma and is the main factor that decreases the quality of life of patients after operation[31-33, 35]. The new three-layer-funnel-shaped esophagogastric anastomotic suturing technique is a pilot study, its effect on anti-GER has not been very ideal, and we are making further efforts for improvement, especially that on the prevention of anastomotic leak, stricture and GER.

REFERENCES

1. Simchuk EJ, Alderson D. Oesophageal surgery. World J Surg 2001; 7: 763-765
2. Law S, Fok M, Chow S, Chu KM, Wong J. Preoperative chemotheraphy versus surgical therapy alone for squamous cell carcinoma of the esophagus: a prospective randomized trial. J Thorac Cardiovasc Surg 1997; 114: 210-217
3. Whooley BP, Law S, Alexandrou A, Murthy SC, Wong J. Critical appraisal of the significance of intrathoracic anastomotic leakage after esophagectomy for cancer. Am J Surg 2001; 181: 198-203
4. Swisher SG, Hunt KH, Holmes EC, Zinner MJ, McFadden DW. Changes in the surgical management of esophageal cancer from 1970 to 1993. Am J Surg 1995; 169: 609-614
5. Urschel JD. Esophagogastrostomy anastomotic leaks complicating esophagectomy: a review. Am J Surg 1995; 169: 634-640
6. Bruins CJ, Gawenda M, Wofgangen B, Walter M. Cervical anastomotic stenosis after gastric tube reconstruction in esophageal carcinoma. Evaluation of a patient sample 1989-1995. Ann Thorac Surg 1997: 63: 1568-1572
7. Miller JD, Jain MK, de Gara CJ, Morgan D, Urschel JD. Effect of surgical experience on results of esophagectomy for esophageal carcinoma. J Surg Oncol 1997; 65: 20-21
8. Walsh TN, Noonan N, Hollywood D, Kelly A, Keeling N, Hennessey TP. A comparison of multimodal therapy and surgery for esophageal adenocarcinoma. N Engl J Med 1996; 335: 462-467
9. Bosset JF, Gignoux M, Triboulet JP, Tirtel E, Mantion G, Elias D, Lozach P, Ollier JC, Pavly JJ, Mercier M, Sahnoud M. Chemoradiotherapy followed by surgery compared with surgery alone in squamous-cell cancer of the esophagus. N Engl J Med 1997; 337: 161-167
10. Stein HJ, Sendler A, Fink U, Siewert JR. Multidisciplinary approach to esophageal and gastric cancer. Surg Clin North Am 2000; 80: 659-682
11. Zieren HU, Muller JM, Pichlmair H. Prospective randomized study of one- or two-layer anastomosis following esophageal resection and cervical esophagogastrostomy. Br J Surg 1993; 80: 608-611
12. Wang SJ, Wen DG, Zhang J, Man X, Liu H. Intensified standardized therapy for esophageal and stomach cancer in tumor hospitals. World J Gastroenterol 2001; 7: 80-82
13. Wang Q, Liu J, Zhao X. Can esophagogastric anastomosis prevent gastroesophageal reflux. Zhonghua Wze Zhai 1999; 37: 71-73
14. Sun M, Wang WL, Wang W, Wen DL, Zhang H, Han YK. Gastroesophageal manometry and 24-hour dual pH monitoring in neonates with birth asphyxia. World J Gastroenterol 2001; 7: 695-697
15. Bisgaard T, Wojdemann M, Larsen H, Heinhorff H, Gustafson J, Svendsen LB. Double-stapled esophagogastric anastomosis for resection of esophagocarcinosis or gastric cancer: new application for an old technique. J Laparoendosc Adv Surg Tech A 1999; 9: 335-339
16. Singh D, Malley RH, Santucci T, Machery RS, Bartley S, Weyant RJ, Landreau RJ. Experience and technique of stapled mechanical cervical esphagogastrosclerosis. Ann Thorac Surg 2001; 71: 419-424
17. Stone CD, Hettmiller RF. As originally published in 1994: Simplified, standardized technique for cervical gastroesophageal anastomosis.Updated in 2000. Ann Thorac Surg 2000; 70: 999-1000
18. Valverde A, Hay JM, Fingerhut A, Elhadad A. Manual versus mechanical esophagogastric anastomosis after resection for carcinoma: a controlled trial. French Associations for Surgical Research. Surgery 1996; 120: 476-483
19. Berrisford RG, Page RD, Donnelly RJ. Stapler design and stricture at the esophagogastric anastomosis. J Thorac Cardiovasc Surg 1996; 111: 142-146
20. Beiter AL, Urschel JD. Comparison of stapled and hand-sewn esophagogastric anastomoses. Am J Surg 1998; 175: 337-340
21. Shaheen N, Ransohoff DF. Gastroesophageal reflux, Barrett esophagus, and esophageal cancer: clinical applications. JAMA 2002; 287: 1992-1996
22. Lagergren J, Bergstrom R, Lindgren A, Nyren O. Symptomatic gastroesophageal reflux as a risk factor for esophageal adenocarcinoma. N Engl J Med 1999; 340: 825-831
23. Johanson JF. Critical review of the epidemiology of gastroesophageal reflux disease with specific comparisons to asthma and breast cancer. Am J Gastroenterol 2001; 96: S19-21
24. El-Serag HB, Hepworth EJ, Lee P, Sonnenberg A. Gastroesophageal reflux disease is a risk factor for laryngeal and pharyngeal cancer. Am J Gastroenterol 2001; 96: 2033-2038
25. Ferguson MK, Durkin A. Long-term survival after esophagostomy for Barrett’s adenocarcinoma in endoscopically surveyed and nonsurveyed patients. J Gastrointest Surg 2002; 6: 29-35
26. Ye W, Chow WH, Lagergren J, Yin L, Nyren O. Risk of adenocarcinomas of the esophagus and gastric cardia in patients with gastroesophageal reflux diseases and after antireflux surgery. Gastroenterology 2001; 121: 1288-1293
27. Inbaromo R, Bonavina L, Sandro G, Bona D, Peracchia A. Outcome of esophageal adenocarcinoma detected during endoscopic biopsy surveillance for Barrett’s esophagus. Surg Endosc 2002; 16: 263-266
28. Shaheen N, Ransohoff DF. Gastroesophageal reflux, Barrett esophagus, and esophageal cancer: scientific review. JAMA 2002; 287: 1972-1981

Edited by Wu XN