Light curves of symbiotic stars in massive photometric surveys II:
S and D'-type systems

M. Gromadzki1, J. Mikolajewska2, I. Soszynski3

1Departamento de Física y Astronomía, Universidad de Valparaíso, Av. Gran Bretaña
1111, Playa Ancha, Casilla 5030, Chile
\textsuperset{e-mail: mariusz.gromadzki@uv.cl}

2N.Copernicus Astronomical Center, Polish Academy of Sciences, ul. Bartycka 18, 00-716 Warszawa, Poland
\textsuperset{e-mail: mikolaj@camk.edu.pl}

3Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa, Poland
\textsuperset{e-mail: soszynski@astrouw.edu.pl}

Received Month Day, Year

ABSTRACT

We present results of period analysis of ASAS, MACHO and OGLE light curves of 79 symbiotic stars classified as S and D'-type. The light curves of 58 objects show variations with the orbital period. In case of 34 objects, orbital periods are estimated for the first time, what increases the number of symbiotic stars with known orbital periods by about 64%. The light curves of 46 objects show, in addition to the long-term or/and orbital variations, short-term variations with time scales of 50-200 days most likely due to stellar pulsations of the cool giant component. We also report eclipse-like minima and outbursts present in many of the light curves.

Key words: stars: activity – stars: binaries: symbiotic – surveys

1. Introduction

Symbiotic stars are long-period interacting binary systems, in which an evolved red giant transfers material onto its much hotter companion, which in most systems is a white dwarf. Based on their near-IR characteristics, symbiotic stars divide into two main classes (Allen 1982) depending whether the colours are stellar (S-type) or indicate a thick dust shell (D-type). The majority (≈ 80%) of catalogued systems are S-type and have near-IR colours consistent with cool stellar photosphere temperatures of ≈ 3500 – 4000 K. Most of them have orbital periods of ≈ 500 – 1000 days (e.g. Mikolajewska 2012). The near-IR colours of D-type systems indicate the presence of a dust shell which obscures the star and re-emits at longer wavelengths. Near-IR photometric monitoring has shown that these D-type systems have large amplitude variations and that they contain Mira variables with pulsation periods in
the range 300–600 days; they are often called symbiotic Miras (Whitelock, 1987). Since they must accommodate the Mira with its dust shell, these D-type systems should have much longer orbital periods than the S-types, a few tens of years and more. The latest review of symbiotic Miras and a comparison with normal Miras can be found in Whitelock (2003). There is also small subclass of symbiotic binaries contain earlier type of giant (F, G and K). These objects are called yellow symbiotics. Some of them show dust emission, these are signed as D’-type (Allen 1982).

Light curves of symbiotic stars reflect the very complex behaviour of these systems. They show high and low activity stages, flickering, nova-like outbursts originating from the hot component (S & D types), eclipses, ellipsoidal variability connected with orbital motion (S-type), radial pulsations (all D-type and some S-type) and semi-regular variation of the cool component (S-type), long-term dust obscuration (mostly D-type) and other types of variability (Mikołajewska 2001).

In this paper we analyse the light curves of 79 galactic S-type and D'-type symbiotic stars in different bands. The light-curves were provided by massive photometry surveys such as ASAS, MACHO, and OGLE. In some cases AAVSO light curves are analysed. Similar analysis of light curves of D-type symbiotic binaries was done by Gromadzki et al. (2009).

2. Data

Belczyński et al. (2000) listed coordinates for symbiotic stars, but many of these are not sufficiently accurate to identify the symbiotics unambiguously. Therefore, we first identified the 2MASS counterparts using the existing finding charts and the Aladin Java graphics interface running at the CDS in Strasbourg. This works well because symbiotic stars, which have the near-IR colours of late-type giants, are intrinsically bright in JHK. The 2MASS coordinates were then used to identify symbiotic stars in the OGLE, MACHO and ASAS databases.

In the ASAS database (Pojmański 2002), the data were found for 102 symbiotic stars. However, only for 69 systems the quality of light curve was good enough for period analysis. These comprise V-band photometry obtained between November 2000 and August 2009. There are two limitations connected with these data. The first one is related to the brightness of objects in V filter. Stars brighter than 8.5 mag are saturated whereas the limiting magnitude of the photometric system is ≈ 15 mag. However, we analysed ASAS light curves of objects brighter than 14 mag, because σ_V in these cases was better than 0.2 mag. The second constraint is associated with the instrumental angular resolution. The scale of instrument is of about 15.5 arcsec per pixel. Since the image FWHM is of about 1.4–1.6 pixels and the size of the aperture was 2 pixels two stars are well separated if the distance

1 official home page of ASAS project: http://www.astrouw.edu.pl/asas/
between them is above ≈ 0.5 arcmin. This means that in dense galactic regions objects are often blended. Information about blended objects are given in Table 1.

The OGLE-II/III database (Udalski et al. 1997, 2003)\(^2\) includes light curves for 13 S-type galactic symbiotic stars. These comprise I-band photometry obtained between 1997 and 2009. Three stars, Hen 2-289, AS 269 and V3929 Sgr, showed only linear trends of unknown nature. The light curves of remaining 10 were good enough for period analysis.

The MACHO database (Alcock et al. 1992)\(^3\) contains observations for 13 S-type systems obtained between 1993 and 1999. Only 9 of these light curves were good enough for period analysis. For V3929 Sgr there are a few points only, whereas SS73 129, V4018 Sgr and Hen 2-379 are saturated. The photometry was made through non-standard blue (B_M) and red (R_M) filters.

3. Period analysis

All light-curves were analysed using the program PERIOD\(^4\) ver. 5.0, based on the modified Lomb-Scargle method (Press & Rybicki, 1989). If it was necessary, long-term trends were removed by subtracting a polynomial of appropriate order. Sudden jumps of brightness (outbursts or eclipses) were also removed from light curves. The resultant power spectra of our targets were compared with the power spectra of windows. The periods were derived from the inverse of the maximum of the peak in the periodogram (f_{max}^{-1}), whereas their accuracy was estimated by calculating the half-size of a single frequency bin (Δf), centred on the peak (f_c is the centre of the peak) of the periodogram and then converted to period units ($\Delta P = f_{c}^{-2} \cdot \Delta f$).

The highest peak in a typical power spectrum corresponds to variations with periods of 300–1000 days presumably related to orbital motion. The other strong peaks are connected with annual aliases, second and third harmonics, long-term variation and a combination thereof.

In the case of 24 objects included in our sample the orbital period was previously known from spectroscopic and/or photometric studies. These orbital periods were usually derived from observations covering longer periods than the photometric data used in our study, so we adopted them as more accurate.

The power spectra of residual light curves, with removed orbital modulation and/or long-term variation, often reveal peaks corresponding to periods of 50–200 days which may reflect pulsations of the red giant. The orbital modulation was removed form light curves by fitting high (7-11) order spline polynomial. Such approach gave better results than subtracting a sinusoid because in many cases the amplitude of the orbital modulation showed cycle to cycle changes. Examples of

\(^2\)official home page of OGLE project: http://ogle.astrouw.edu.pl/
\(^3\)official home page of MACHO project: http://wwwmacho.mcmaster.ca/
\(^4\)the source program is available on http://www.starlink.rl.ac.uk/
4. Results and discussion

Results of our period analysis are summarized in Table 1. The most important result of this study is detection of periodic light changes due to either orbital motion or pulsations or both. The light curves folded with orbital periods are plotted in Figs. 2 and 3. Orbital ephemerides can be found in Table 2. In the case of 24 objects, we used more accurate orbital periods derived by other authors. Residual light curves folded with pulsation periods are plotted in Figs. 4 and 5.
Table 1: Summary of periodicities derived from our analysis.

No.	Name	Survey name	\(P_{\text{orb}}\)	\(P_{\text{pul}}\)	Other periods	Remarks
012	S 32	ASAS 043745-0119.2	628±24	640.5±1		nc
017	V1261 Ori	ASAS 052219-0840.0	323±2	640.5±1		ecl, orb, pul
023	BX Mon	ASAS 072523-0336.0	1401±1, 1259±1	340, 1931±1		orb, pul
024	MWC 560	ASAS 072551-0744.1	323±2	640.5±1		ecl, orb
025	AS 201	ASAS 083143-2745.5	628±24	640.5±1		bl
031	Hen 3-461	ASAS 103909-5124.2	323±2	640.5±1		orb, pul
032	SS73 29	ASAS 110827-6547.3	628±24	640.5±1		orb, pul
033	SY Mus	ASAS 133418-2545.8	628±24	640.5±1		orb, pul
035	RT Cru	ASAS 132523-2545.8	628±24	640.5±1		orb, pul
039	Hen 3-1103	ASAS 154828-4419.0	628±24	640.5±1		orb, pul
042	CD-36 8436	ASAS 175013-0642.5	628±24	640.5±1		orb, pul
043	V840 Cen	ASAS 180429-270912.4	628±24	640.5±1		orb, pul

Continued on next page
No.	Name	Survey name	P_{orb}	P_{pol}	Other periods	Remarks	
119	AS 270	ASAS 180534-2020.6	794±61	671±101	orb, out		
121	SS73 129	ASAS 180706-2936.4	536±27		orb, out		
122	Hen 3-1591	ASAS 180732-2553.7	2350±41		sat		
123	V615 Sgr	ASAS 180740-3606.3	657±39	70±1	orb, pul		
124	Ve 2-57	ASAS 180822-2433.8	450±58		fin		
125	AS 276	ASAS 180910-4113.4	155±2		pul		
127	AS 281	ASAS 181044-2757.9	103±1		bl, nc		
128	V2506 Sgr	ASAS 181270-2832.7	533±30	65±1	orb, pul		
129	SS73 141	ASAS 181211-3310.7	868±80	93±1	orb, pul		
130	V343 Ser	ASAS 181222-1140.1	511±22	820±12	orb, pul		
131	Y CrA	ASAS 181423-4250.5	84±1	118±2	orb, pul		
132	YY Her	ASAS 181434+2059.3	580±42	599.4±18	orb, pul		
133	V2756 Sgr	ASAS 181434-2949.4	480±19	424±17	orb		
134	FG Ser	ASAS 181507-0018.8	649±36	50±1	ecl, orb, pul		
135	HD 319167	ASAS 181525-3032.0	1744±37		orb		
136	Hen 2-374	MACHO 305.35744.0	459±33	54±1	100d		
137	Hen 2-376	MACHO 107.25453.25	511±22		orb, pul		
138	V4074 Sgr	ASAS 181605-3051.2	118±2		100d		
139	V2905 Sgr	ASAS 181720-2810.0	508±9		orb, pul		
140	StHA 149	ASAS 181856+2726.3	64±2		orb, pul		
141	Hen 3-1674	ASAS 182019-2622.6	1004±20	1003±14	orb, pol		
142	AR Pav	MACHO 163.27426.43	631±35	604.5±19	ecl, orb, pul		
143	V3929 Sgr	MACHO 169.27679.3050	106±3	103.8, 519.7±208	orb, out		
144	V3804 Sgr	ASAS 182129-3132.1	426±8		orb, pol		
145	V443 Her	ASAS 182208+2327.3	626±48	59±1	orb, pol		
146	V3811 Sgr	OGLE 182329-0-215309.5	139±15		ecl, pul		
147	V4018 Sgr	ASAS 182527-2836.0	513±22	93±1	orb, pul		
148	V3890 Sgr	MACHO 137.29602.905	106±3	103.8, 519.7±208	orb, out		
149	AS 316	ASAS 184233-2117.8	62±1		orb		
150	MWC 960	ASAS 184756-2005.8	183±3		orb		
151	AS 327	ASAS 185317-2423.0	823±55	83±1	orb, pol		
152	FN Sgr	ASAS 185355-1859.7	563±28	568±32	ecl, orb, out		
153	CM Aql	ASAS 190335-0303.3	513±22	1058±22	bl, fp		
154	V919 Sgr	ASAS 190346-1659.9	125±2		out, pul		
155	V1413 Aql	ASAS 190347+1626.5	477±28	434.1±23	ecl, orb		
156	NSV 11776	ASAS 190955-0247.6	1625±16	198±4	orb, pul		
157	StHA 164	ASAS 192842-0603.9	106±3	103.8, 519.7±208	orb, out		
158	Hen 3-1761	ASAS 194225-6807.7	559±27	63±1	orb, pul		
159	QW Sgr	ASAS 194550-1836.8	390.5±25		bl		
160	PU Vul	ASAS 202114+2314.3	138±2	4900±26	ecl, pul		
161	LT Del	ASAS 203557+2011.5	476±27		bl		
162	StHA 180	ASAS 203920-0517.3	1494±38		orb		
163	CD-43 14304	ASAS 210006-4238.8	144±148	144±26	ecl, orb, out		
164	StHA 190	ASAS 214145+0243.9	106±3		orb		
165	AG Peg	ASAS 215102+1237.5	743±68	55±1	816.5, 818.2±15	orb, pul	
166	CD-28 3719	ASAS 070109-2906.4	198±3		pul		
167	ZZ Cmi	ASAS 072441+0853.9	106±3		pul		
Table 1 – continued

No.	Name	Survey name	P_{orb}	P_{red}	Other periods	Remarks
s07	NQ Gem	ASAS 073155+2430.2	58±1			pul
s08	Wray 16-51	ASAS 093329-4634.8				
s09	Hen 3-653	ASAS 112533-5956.5	115±1			bl, pul
s11	CD-27 8661	ASAS 122434-2818.9	753±47	85±1	763.3$^{[29]}$	orb, orb
s12	AE Crt	ASAS 144451-6923.5			342$^{[30]}$	
s14	V345 Nor	ASAS 160644-5202.5				bl
s15	V934 Her	ASAS 170634+2358.3	44.08±0.17			orb/pul?
s16	Hen 3-1383	ASAS 172031-3309.9				
s17	V503 Her	ASAS 173641+2318.2	130±2			ecl, pul
s23	AS 280	ASAS 180953-3319.7				bl, nc
s24	AS 288	ASAS 181248-2821.0				bl, nc
s25	Hen 2-379	ASAS 181617-2704.5				bl, nc
s27	V850 Aql	ASAS 192335+0038.0				sat
s28	Hen 2-442	ASAS 193943+2629.5				sat, bl

Legenda: 100d - light curve covers only 100 days, bl - object blended, fp - few points, nc - none conclusive, orb - light curve shows variations with orbital period, pul - light curve shows pulsations, sat - object saturated, fnt - object too faint, out - light curve shows outburst, ecl - eclipse-like minimum in light curve.

References: [1] Jorissen et al. 1998, [2] Dumm et al. 1998, [3] Fekel et al. 2000a, [4] Gromadzki et al. 2007a, [5] Schmutz et al. 1994, [6] Schild et al. 1996, [7] Van Winckel et al. 1994, [8] Smith et al. 1997, [9] Marchiano et al. 2008, [10] Fekel et al. 2007, [11] Fekel et al. 2008, [12] Fekel et al. 2010, [13] Brandi et al. 2009, [14] Lutz et al. 2010, [15] Fekel et al. 2001, [16] Mikolajewska et al. 2002, [17] Hoffleit 1970, [18] Fekel et al. 2000b, [19] Schild et al. 2001, [20] Schaefer 2009, [21] Brandi et al. 2005, [22] Munari et al. 2001a, [23] Munari 1992, [24] Brandi et al. 2006, [25] Munari & Jurdana-Sepić 2002, [26] Nussbaumer & Vogel 1996, [27] Arkhipova, et al. 2011, [28] Schmid et al. 1998, [29] Van Eck et al. 2000, [30] Menneken et al. 2008.
Table 2: Orbital ephemerides (references the same as in Table 1).

No.	Name	Ephemeris	Reference
017	V1261 Ori	Min(V) = 2.4351990 + 640.5 × E	[1]
023	BX Mon	Min(V) = 2449796 + 1259 × E	[3]
024	MWC 560	Max(V) = 2448080 + 1931 × E	[4]
031	Hen 3-461	Min(V) = 2452063 + 635 × E	
033	SY Mus	Min(V) = 2452054 + 624.5 × E	[5]
035	RE Cru	Min(V) = 2452034 + 325 × E	
040	Hen 3-863	Min(V) = 2451721 + 1016 × E	
043	V840 Cen	Min(V) = 2452061 + 792 × E	
045	RW Hya	Min(V) = 2451738 + 370.3 × E	[6]
046	Hen 3-916	Min(V) = 2452410 + 803 × E	
050	V417 Cen	Min(V) = 2452613 + 1652 × E	
051	BD-21373	Min(V) = 2451863 + 281.6 × E	
054	Hen 3-1103	Max(V) = 2452211 + 698 × E	[8]
055	HD 330036	Min(V) = 2451048 + 1678 × E	
057	T CrB	Min(V) = 2447919 + 227.6 × E	[3]
062	QS Nor	Min(V) = 2452024 + 244 × E	
063	Wray 15-1470	Min(V) = 2451845 + 561 × E	
065	Hen 3-1213	Min(V) = 2451806 + 514 × E	
070	HK Sco	Min(V) = 2452023 + 488 × E	
071	CL Sco	Min(V) = 2452018 + 626 × E	[10]
073	V445 Sco	Min(V) = 2452641.5 + 1398 × E	[11]
074	Hen 3-1341	Min(V) = 2451970 + 626 × E	
075	Hen 3-1342	Min(V) = 2452287 + 562 × E	
093	AE Ara	Min(V) = 2453449 + 803.4 × E	[12]
101	RS Oph	Min(V) = 2451848 + 453.6 × E	[13]
106	Hen 2-294	Min(I) = 2451961 + 393 × E	
108	B1 3-6	Min(I) = 2451902 + 301 × E	
114	H 2-34	Min(I) = 2451974 + 459 × E	
117	Ap 1-8	Min(Bm) = 2448973 + 957 × E	
118	SS73 122	Min(Bm/V) = 2446709 + 2409 × E	
119	AS 270	Min(V) = 2451633 + 671 × E	[10]
121	SS73 129	Min(V) = 2452220 + 536 × E	
122	Hen 3-1591	Min(Bm/V) = 2451310 + 2350 × E	
123	V615 Sgr	Min(V) = 2452168 + 657 × E	
127	AS281	Min(Bm) = 2449021 + 533 × E	
128	V2506 Sgr	Min(Bm) = 2448781 + 868 × E	
130	V343 Ser	Min(V) = 2450724.7 + 450.5 × E	[15]
131	Y CrA	Min(V) = 2454295 + 1619 × E	[12]
132	YY Her	Min(V) = 2450686.2 + 589.5 × E	[16]
133	V2756 Sgr	Min(V) = 2451894 + 480 × E	
134	FG Ser	Min(V) = 2451665 + 633.5 × E	[18]
135	HD 319167	Min(V) = 2451756 + 1744 × E	
136	Hen 2-374	Min(Bm) = 2452968 + 820 × E	[12]
139	V2905 Sgr	Max(V) = 2451630 + 508 × E	
141	Hen 3-1674	Min(Bm/V) = 2449178 + 1004 × E	
142	AR Pav	Min(V) = 2448139 + 604.5 × E	[19]
143	V3004 Sgr	Min(V) = 2451439 + 426 × E	
144	V443 Her	Min(V) = 2450197.3 + 599.4 × E	[18]
147	V4018 Sgr	Min(V) = 2452129 + 513 × E	
155	AS 327	Min(V) = 2451954 + 823 × E	
156	FN Sgr	Min(V) = 2450270 + 568.3 × E	[21]
160	V1413 Aql	Min(V) = 2446650 + 434.1 × E	[23]
161	NSV 11776	Min(V) = 2451672 + 1625 × E	
170	Hen 3-1761	Min(V) = 2451650 + 562 × E	[24]
178	SDHA 180	Min(V) = 2451332 + 1494 × E	
185	AG Peg	Min(V) = 2431667.5 + 816.5 × E	[15]
s11	CD 27-8661	Min(V) = 2452169 + 763.3 × E	[29]
s17	V503 Her	Min(V) = 2453145 + 1575 × E	
Figure 2: ASAS light curves folded with orbital periods.
Figure 3: OGLE and MACHO light curves folded with orbital periods.
Figure 4: ASAS light curves folded with pulsation periods. In most cases, orbital variations were subtracted.
Figure 5: OGLE and MACHO light curves folded with pulsation periods. In most cases, orbital variations were subtracted.

4.1. Orbital periods

The orbitally related light changes in symbiotic binaries can be caused by: (i) reflection effect, (ii) ellipsoidal variations, (iii) eclipses, and (iv) periodic brightening caused by increasing of accretion rate in eccentric systems during the periastron passage. It is not obvious that long-period (>200 days) variations are caused by orbital motion. However, in favour of such an interpretation is fact that among 58 objects showing such changes, 24 systems have known orbital periods from previous photometric and spectroscopic studies. Most of these systems have also spectroscopic orbits determined from radial velocities of the cool component absorption features.

The main cause of orbital light curve modulation in our sample is reflection effect, observed in 37 light curves analysed for this study. However, in contrast to the classical case, in symbiotic stars the hot component radiation illuminates and partly ionizes the cold giant wind rather than its surface.

The light curves of several systems show more or less pronounced secondary minima, and their shape can be interpreted in terms of ellipsoidal changes in the red giant and variable nebular emission due to reflection effect. These are: V1261 Ori, Hen 3-863, RW Hya, BD-21 3873, T CrB, Hen 3-1341, Ap 1-8, Hen 2-374, YY Her, V1413 Aql and V934 Her. The ellipsoidal variability in RW Hya, BD-21 3873, T CrB and YY Her was reported and studied by different groups (Rutkowski et al. 2007, Smith et al. 1997, Belczyński & Mikołajewska 1998, and Mikołajewska et al. 2002, respectively) whereas in the remaining systems such variability has been detected for the first time. The ellipsoidal effect is dominating the V-band (ASAS) light curves of V1261 Ori, Hen 3-863, BD-21 3873, T CrB, i.e. systems whose hot
component have relatively low (as for a symbiotic star) luminosity, $\lesssim 100L_\odot$ or so, and their optical spectra are dominated by the cool giant. In the case of systems with more luminous hot component, the secondary minimum is partly veiled by the illumination effect (like e.g., RW Hya) and even completely obscured. The ellipsoidal changes also vanish during optical outbursts when strong blue, A/F-type, spectrum completely veils the red giant features in the optical range (Mikołajewska et al. 2003). For example, the near infrared light curves of RW Hya, SY Mus, and AR Pav are evidently ellipsoidal (Rutkowski et al. 2007) whereas the V light curves presented in this study show shallow secondary minimum only in RW Hya. The V light curve of SY Mus is dominated by illumination effect while in AR Pav a strong A/F-type shell is permanently present (Quiroga et al. 2002). Similarly, the OGLE/I light curve of Ap 1-8 shows ellipsoidal modulation, while the MACHO/B_M light curve shows changes caused by reflection effect (Fig. 6).

![Figure 6: OGLE and MACHO light curves of Ap 1-8.](image)

Hen 3-1341 is very active. Its visual light curve covers an outburst associated with jets ejection (Munari et al. 2005) as well as quiescence state. Possible sinusoidal variations with a period of 626 days are visible during quiescence state (Fig. 7).

The ASAS light curve of YY Her covers the decline from its last outburst. The primary minimum is shifted, while the secondary one is barely visible. Formiggin and Leibowitz (2006) showed that $P_{\text{orb}} = 593.2$ days modulates the quiescent light curve of YY Her whereas a periodic oscillation with a shorter period of 551.4 days dominates the outburst light curve. Such a secondary periodicities, always $\approx 10 -$
20% shorter than the orbital period, are often observed in the outburst light curves of many symbiotic stars, and the nature of this behaviour is poorly understood (e.g. Mikołajewska 2003).

A weak secondary minimum may also be present in the ASAS light curve of V1413 Aql, and given its relatively short orbital period, it is very promising candidate to search for ellipsoidal changes at longer wavelengths.

V934 Her can be another possible ellipsoidal variable (it is one of the rare symbiotic systems hosting a neutron star). Although, it would require a relatively short orbital period (as for a symbiotic star), of \(\approx 44 \) days only. The nature of this variability is not clear and it could be caused by either the red giant pulsations or reflection effect. One should also mention that Masetti et al. (2002) and Galloway et al. (2002) found periodicity of 400 days based on broad-band X-ray data, and optical radial velocities, respectively. However, this period was not confirmed by analysis of longer duration X-ray light curves (Corbet et al. 2008). The ASAS light curves of V934 Her folded with periods of 44.08 and 22.04 days and corresponding power spectrum are plotted in Fig. 8.

Light curves of 15 systems show one or more sharp and deep minima which
may be caused by an eclipse. Among them, well known eclipsing systems (e.g. AR Pav and PU Vul) are present. In other cases the moment of minimum agrees fairly well with the time of spectroscopic conjunction (e.g. CD-43 14304). In the case of three objects (SS73 117, V3811 Sgr and V503 Her) it is not clear whether they are really eclipsing because their light curves show only one or two minima. The situation is much better in the case of Hen 3-863 and Hen 3-1674. The ASAS light curve of Hen 3-863 shows three minima (two primary and one secondary) and their overall shape is typical for an eclipsing binary. In the case of Hen 3-1674, the eclipse is confirmed by the spectrum available in the literature (Allen 1984, Medina Tanco & Steiner 1995, and Munari & Zwitter 2002). The eclipse of Hen 3-1674 is shown in Fig. 9. More examples of eclipses are shown in Fig. 10. The observed eclipses are summarized in Table 3. Eclipses of AS 269 and V4074 Sgr announced in Gromadzki et al. (2007b) have not been confirmed.

![Figure 9: Part of the MACHO light curve of Hen 3-1674 showing eclipse in July 1993 (≈JD 2 449 175). Open dots represent the measurements obtained in \(B_M \) filter, and filled dots in \(R_M \) filter.](image)

Two objects, BX Mon and CD-43 14304, show periodic brightenings related to the periastron passage according to their known spectroscopic orbits (Fekel et al. 2000a, Schmid et al. 1998). Light curves of these objects are shown in Fig. 11. The brightenings always happen a few hundred days after the periastron, and they are probably caused by enhanced accretion rate. In the case of BX Mon spectroscopic observations have confirmed enhancements in the hot component activity following the periastron passage (Anupama et al. 2012). Such a behaviour is also observed...
Figure 10: Examples of light curves showing eclipses.

Table 3: Symbiotic stars showing eclipses.

No.	Name	Observed minima (JD 2400000+)
017	V1261 Ori	54.352
023	BX Mon	52.022, 53.281, 54.540
033	SY Mus	52.679, 54.552
040	Hen 3-863	52.273, 53.261, 54.521
045	RW Hya	52.108, 52.479, 52.849, 53.219, 53.960, 54.330, 54.700
115	SS73 117	52.320
134	FG Ser	52.932, 53.566, 54.199
141	Hen 3-1674	49.178
142	AR Pav	52.975, 53.580, 54.184, 54.789
146	V3811 Sgr	50.980, 53.540
156	FN Sgr	52.543, 53.112, 53.680, 54.248
160	V1413 Aql	52.727, 53.162, 53.596
176	PU Vul	44.550, 49.450, 54.350
182	CD-43 14304	52.770, 53.570, 54.320
s17	V503 Her	53.145, 54.720
in visual light curve of MWC 560 (e.g. Gromadzki et al. 2007a). We think that the same effect can be responsible for periodic ‘outbursts’ present in light curves of V840 Cen, Hen 3-1103, and V2905 Sgr, although the orbital periods for these systems are shorter, of 500-800 days (see Fig. 2). In case of KX TrA, outburst in 2003 was also preceded by periastron passage (according orbital solution derived by Marchiano et al. 2008). However, AAVSO light curve of this object did not show brightenings after previous periastron passages (see Fig. 2 in Marchiano et al. 2008), what means last brightening had different nature that these in BX Mon or CD-43 14304 and it was most likely nova-like outburst typical for classical symbiotic stars.

The ASAS light curves of 8 systems: V417 Cen, HD 330036, Hen 3-1591, Y CrA, SS73 122, HD 319167, NSV 11776, and StHA 180 show a wave-like modulation with periods of \(\gtrsim 1500 \) days (see examples in Fig. 12). The first three of them are yellow D’-type systems. In the case of Y CrA, the similar period \((P=1619 \) days) is present in the radial velocity curve of the cool giant, and the orbital solution (Fekel et al. 2010) indicates that the reflection effect may be responsible for optical light modulation (see Fig. 11). Spectroscopic observations of the remaining objects are needed to confirm whether these changes are caused by orbital motion or are due to some other reasons.

The distribution of orbital periods was recently discussed by Mikołajewska (2012). Above all, although the number of measured periods is continuously increasing (e.g. Miszalski, Mikołajewska & Udalski 2013 discovered 20 new symbiotic systems and found orbital period for 5 S-type systems), the main characteristics of their distribution remain practically the same as in earlier studies (e.g. Mikołajewska 2004, 2007). At the moment, simulations of the distribution of symbiotic stars over orbital periods with the population synthesis method (PSM) fail to reproduce the observed orbital period distribution of S-type symbiotic binaries. In particular, PSM produces the orbital period distribution in the range 200-6000 days with a maximum at \(\approx 1500 \) days, and up to 20 % of objects with periods below 1000 days (Lü et al. 2006) whereas the observed periods peak at \(\approx 600 \) days, and only \(\approx 30 \% \) systems have the orbital periods above 1000 days. This inconsistency cannot be accounted for by selection effects as suggested e.g., by Lü et al. (2006). At present, 87 systems have known orbital periods, which is about 54 % of the S-type symbiotic stars included in Belczyński et al. (2000) and Miszalski, Mikołajewska & Udalski (2013). Additionally, the amplitude of orbital modulation strongly depends on the intrinsically variable luminosity of the hot component, e.g. the amplitude of variation in visual light of RS Oph \((i \approx 50^\circ, \ Brandi et al. 2009) \) varies from \(\approx 0.2 \) to 0.7 mag (Gromadzki et al. 2008). Assuming as an \(i \approx 40^\circ \) minimum orbital inclination, and the random distribution of orbital inclination angles, we estimate that we should be able to measure the orbital periods for \(\approx 65 \% \) of S-type symbiotic systems. Then, we already know about 83 % of measurable orbital periods and their distribution cannot be affected by any selec-
Figure 11: Examples of long-term variability in ASAS light curves of BX Mon, KX TrA, Y CrA and CD-43 14304. Arrows show moments of spectroscopic conjunctions (solid: inferior, and dashed: superior).
Figure 12: Examples of light curves showing modulation with long periods ($\gtrsim 1500$ days).

tion effects. Successful explanation of the origin of the orbital period distribution of S-type symbiotic binaries requires more advanced approach to mass transfer in these systems, and actually in any interacting binaries involving red giants (e.g. Posiadalowski & Mohamed 2007; Mikolajewska 2012).

Finally, in systems with eccentric orbits, brightening due to enhanced accretion rate near periastron can be observed regardless of the inclination. Such behaviour is observed in MWC 560 where orbital plane nearly coincides with the plane of the sky, as well as in BX Mon, which is an eclipsing binary. Symbiotic stars with longer orbital periods, $\gtrsim 1000$ days, tend to have eccentric orbits. Observing this kind of variability seems to be very promising and efficient way of deriving their orbital periods.

4.2. Pulsation periods

Light curves of 46 objects show, in addition to the long-term or/and orbital variations, short-term variations with time scales of 50-200 days most likely due to stellar pulsations of the cool giant component of the binary, what suggests that the red giants in these systems can be Semi-regular Variables (SRV), or OGLE Small Amplitude Red Giants (OSARG).

The semi-regular red giants are divided into two subtypes: SRa and SRb. Their basic properties and evolutionary status is described in detail in Kerschbaum & Hron (1992,1994,1996). In particular, they found that the SRa appear as intermediate objects between Miras and SRb in all aspects, including periods, amplitudes and mass loss rates. They also concluded that the SRa do not form a distinct class of variables, but are a mixture of ‘intrinsic’ Miras and SRb. The SRb split into
a 'blue' group with $P < 150$ days and no indication of circumstellar shells and a 'red' group with temperatures and mass loss rates comparable to Miras, but periods about half as long. They suggested that the 'red' and 'Mira' SRb are thermally pulsing AGB stars (Kerschbaum & Hron 1992). Wood et al. (1999) showed that SRV may obey the same P–L relation (sequence C) as Miras. They are located at the C and C’ sequences in the P–L diagram and pulsate in the fundamental mode and in the first overtone, respectively. The mass loss rate of these variables is around $10^{-7} M_\odot$ yr$^{-1}$ (Olofsson et al. 2002).

OSARG were first distinguished by Wray et al. (2004) in the Galactic bulge. They found ≈ 18000 red objects, which show pulsation periods with $10 < P_{\text{puls}} < 100$ and the amplitude in the filter I from 0.005 to 0.13. These objects obey different P–L relation than Miras and SRV. They are on A and B sequences, which are split into a_1, a_2, a_3, a_4, and b_1, b_2, b_3 by Soszyński et al. (2007). They pulsate in the radial modes, indexes represent the order of pulsation mode. Letter "a" means AGB objects, "b" means RGB objects. The P–L relations of a_k ($k=1,2,3,4$) sequences extend above the tip of the red giant branch (TRGB), what means that objects located on these sequences are AGB stars. Whereas, the P–L relations of b_k ($k=1,2,3$) sequences break off below TRGB, what means that objects located on these sequences are RGB stars (Soszyński et al. 2007). Pulsation periods of b_k ($k=1,2,3$) objects are shorter than 70 days. Currently OSARG are the most common type of variable stars. Their number in the LMC, SMC and Galactic bulge is close 300,000 (Soszyński et al. 2009, 2011, 2013). Unfortunately, mass loss rates in these objects are poorly known.

It is difficult to determine what type of variables are cool giants in galactic symbiotic systems. Distance to most of them is not precisely estimated and we cannot construct for them proper period-luminosity plot. Sequences a_1 and b_1 blend with C’. Classification based on the amplitude of variation seems rather useless, mainly because we have observations in the V filter and a contribution from the hot component in this band make amplitude smaller. Additionally, some pulsation periods are rather tentative due to quality of light curves and high activity of symbiotic systems. On the other hand, typical amplitude of pulsations of OSARG is smaller than scattering of points in ASAS light curves. Despite these difficulties, there is an argument, which indicates that a significant fraction of red giants in S-type symbiotic systems are AGB stars. Most of studied objects (30) show pulsation periods longer than 70 days, what means that these objects have occupied sequences a_1, a_2, a_3, C or C’ and they are AGB stars. They cannot develop dusty shell, like cool components in D-type systems, due to influence of nearby hot component. Objects showing pulsation periods in the range 50-70 days may belong to the b_1 or b_2 sequences, although they could be fainter members of a_1, a_2, a_3, C or C’ sequences. Fig. 13 shows the distribution of pulsation periods of cool components in studied symbiotic systems. More detailed investigations are needed to fully understand nature of cool companions in symbiotic systems.
Figure 13: Distribution of pulsation periods of cool components in symbiotic binaries.

It is worth mentioning that presence of pulsations has been also observed in five systems in Magellanic Clouds: SMC 1, LMC S147, LMC 1, LMC S63 and LMC N67 (Mikołajewska 2004, Kahabka 2004, Angeloni et al. 2013, Kato, Mikolajewska & Hachisu 2013). In all of these systems, red giants are AGB stars because they are brighter than TRGB and only LMC 1 is classified as D-type, others are classified as S-types.

4.3. Outbursts

In light curves of 15 systems an outburst is present. Typical duration of such phenomenon is a few years, and the amplitude is from 1 to 3.5 mag in V filter. Such outbursts are common in classical symbiotic stars. Examples of light curves showing outbursts are plotted in Fig. 14. Objects showing outbursts are listed in Table 4.
Figure 14: Examples of light curves showing outbursts.
Table 4: Observed outbursts.

No.	Name	Years	Remarks
035	RT Cru	1992-2001	$V_{\text{max}} \approx 11$ mag
068	KX TrA	2003-2006	$V_{\text{max}} \approx 10.5$
070	HK Sco	2002-2005	$V \approx 13.7 - 12$ mag
071	CL Sco	1996-2003, 2009-?	$V \approx 13.5 - 11$ mag
074	Hen 3-1341	1998-2003	$V \approx 13 - 11$ mag
093	AE Ara	2005-?	$V_{\text{max}} \approx 11$ mag
101	RS Oph	2006	$V_{\text{max}} \approx 5$ mag
109	B1 L	1998-2000	$\Delta I \approx 1$ mag
119	AS 270	2001	$V \approx 14.5 - 11.5$ mag
132	YY Her	2003	$\Delta V \approx 1.5$ mag
142	AR Pav	1984-2003	
144	V3804 Sgr	2006	$\Delta V \approx 1$ mag
156	FN Sgr	2007-?	$\Delta V \approx 3$ mag
159	V919 Sgr	2005	$V \approx 13.5 - 10.6$ mag

5. Summary

In this paper we analysed 79 light curves of S and D’-type symbiotic systems available in ASAS, MACHO and OGLE databases. The light curves of 58 objects show variations with the orbital period. In most cases (37), these variations are caused by the reflection effect. The remaining objects display ellipsoid modulation and systems with eccentric orbits show brightening related to enhance accretion rate following the periastron passage. Eight systems show modulations with period of 1500-2500 days, most probably orbitally related but it may result from instability in accretion, as is the case of RS Oph (Gromadzki et al. 2008). It is difficult to establish nature of these variations without additional observations. The orbital periods of 34 S-type symbiotic systems were estimated for the first time, what increases the number of symbiotic stars with known orbital periods by about 64%. Derived orbital ephemeris cloud be very helpful for planning radial velocities campaigns.

Light curves of 46 objects show, in addition to the long-term or/and orbital variations, short-term variations with time scales of 50-200 days most likely due to stellar pulsations of the cool giant component of the binary which suggests that the red giants in these systems can be SRV or OSARG. Most of these objects (30) show pulsation periods longer than 70 days, what suggests that they are most likely AGB stars.

Light curves of 15 systems show one or more sharp and deep minima which may be caused by eclipses. Outbursts of hot companions are observed in 15 systems.

Acknowledgements. This work was partly supported by the Polish Research
Grants No. N203 395534, and DEC-2011/01/B/ST9/06145. MG has been also financed by the GEMINI-CONICYT Fund, allocated to the project 32110014. This study made use of the American Association of Variable Star Observer (AAVSO) International Database contributed by observers worldwide and the public domain databases of The All Sky Automated Survey (ASAS) and The Optical Gravitational Lensing Experiment (OGLE), The MACHO Project (MACHO) which we acknowledged. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France.

REFERENCES

Alcock, et al. 1992, in "Robotic Telescopes in the 1990s", ASP Conf. Ser. No. 34, ed. A.V. Fillippenko, p.193.
Allen, D.A. 1982, in "The nature of symbiotic stars", IAU Coll. Vol. 95, Astrophysics and Space Science Library, eds. M. Friedjung & R. Viotti, p.27.
Allen, D.A 1984, Proceedings of the Astronomical Society of Australia, 5, 369.
Angeloni, R., Ferreira Lopes, C., Masetti, N., et al. 2013, accepted in MNRAS, arXiv:1309.7345.
Anupama, G.C., Kamath, U.S., Gurugubelli, U.K., and Mikolajewska, J. 2012, Baltic Astronomy, 21, 172.
Arkhipova, V., Esipov, V., Ikonnikova, N., et al. 2011, Astronomy Letters, 37, 343.
Belczyński, K., Mikolajewska, J. 1998, MNRAS, 296, 77.
Belczyński, K., Mikolajewska, J., Munari, U., Ivison, R. J. and Friedjung, M. 2000, A&A S. 146, 407.
Brandi, E., Mikolajewska, J., Quiroga, C., et al. 2005, A&A, 440, 239.
Brandi, E., García, L.G., Quiroga, C., and Ferrer, O.E. 2006, Boletín de la Asociacion Argentina de Astronomia La Plata Argentina, 49, 132.
Brandi, E., Quiroga, C., Mikolajewska, J., Ferrer, O.E., and García, L.G. 2009, A&A , 497, 815.
Corbet, R., Sokoloski, J., Mukai, K., et al. 2008, ApJ, 675, 1424.
Dumm, T., Mürset, U., Nussbaumer, H., et al. 1998, A&A, 336, 637.
Fekel, F.C., Joyce, R.R., Hinkle, K.H., and Skrutskie, M.F. 2000a, AJ, 119, 1375.
Fekel, F.C., Hinkle, K.H., Joyce, R.R., and Skrutskie, M.F. 2000b, AJ, 120, 3255.
Fekel, F.C., Hinkle, K.H., Joyce, R.R. and Skrutskie, M.F. 2001, AJ, 121, 2219.
Fekel, F.C., Hinkle, K.H., and Joyce, R.R. 2003, in "Symbiotic Stars Probing Stellar Evolution", ASP Conference Proceedings, eds. R.L.M. Corradi, J. Mikolajewska and T.J. Mahoney, p.113.
Fekel, F.C., Hinkle, K.H., Joyce, R.R., Wood, P.R., and Lebzelter, T. 2007, AJ, 133, 17.
Fekel, F.C., Hinkle, K.H., Joyce, R.R., Wood, P.R., and Howarth, I.D. 2008, AJ, 136, 146.
Fekel, F.C., Hinkle, K.H., Joyce, R.R., and Wood, P.R. 2010, AJ, 139, 1315.
Formigini, L. and Leibowitz, E. 2006, MNRAS, 372, 1325.
Galloway, D., Sokoloski, J., and Kenyon, S. 2002, ApJ, 580, 1065.
Gromadzki, M., Mikolajewska, J., Whitelock, P.A., and Marang, F. 2007a, A&A , 463, 703.
Gromadzki, M., Mikolajewska, J., Borawska, M., and Lednicka, A. 2007b, in "Evolution and chemistry of symbiotic star binary post-AGB and related objects", eds. J. Mikolajewska & R. Szczerba, Baltic Astronomy, 16, 37.
Gromadzki, M., Mikolajewska, J., and Lachowicz, P. 2008, in “RS Ophiuchi (2006) and the recurrent nova phenomenon”, ASP Conference Series, Vol. 401, eds. A. Evans et al., p.219.
Hoffleit, D. 1970, IBVS, 469, 1.
Jorissen, A., Van Eck, S., Mayor, M., and Udry, S. 1998, A&A , 332, 877.
Kahabka, P. 2004, A&A , 416, 57.
Kato, M., Hachisu, I. Mikolajewska, J. 2013, ApJ, 763, 5.
Kerschbaum, F. and Hron, J. 1992, A&A , 263, 97.
Kerschbaum, F. and Hron, J. 1994, A&A S, 106, 397.
Kerschbaum, F. and Hron, J. 1996, A&A, 308, 489.
Lü, G., Yungelson, L., and Han, Z. 2006, MNRAS, 372, 1389.
Lutz, J., Fraser, O., McKeever, J., and Tugaga, D. 2010, PASP, 122, 524.
Marchiano, P., Brandi, E., Quiroga, C., et al. 2008, Boletín de la Asociación Argentina de Astronomía, 51, 117.
Masetti, N., Dal Fiume, D., Cusumano, G., et al. 2002, A&A, 382, 104.
Medina Tanco, G., and Steiner, J. 1995, AJ, 109, 1770.
Mennickent, R., Greiner, J., Arenas, J., et al. 2008, MNRAS, 383, 845.
Mikołajewska, J. 2001, in "Small-Telescope Astronomy on Global Scale", eds. B. Paczyński, W.P. Chen & C. Lemme, ASP Conf. Ser. 246, p. 167.
Mikołajewska, J. 2003, in "Symbiotic Stars Probing Stellar Evolution", ASP Conference Proceedings, eds. R.L.M. Corradi, J. Mikołajewska and T.J. Mahoney, p.9.
Mikołajewska, J. 2007, in "Evolution and chemistry of symbiotic star, binary post-AGB and related objects", eds. J. Mikołajewska & R. Szczepańska, Baltic Astronomy, 16, 1.
Mikołajewska, J. 2004, in "Compact Binaries in the Galaxy and Beyond", IAU Coll. No. 194, ed. G. Tovmassian & E. Sion, Revista Mexicana de Astronomía y Astrofísica, Vol. 20, p.33.
Mikołajewska, J. 2012, Baltic Astronomy, 21, 5.
Mikołajewska, J., Brandi, S., Hack, W., et al. 1999, MNRAS, 305, 190.
Mikołajewska, J., Kolotilov, E.A., Shugarov, S.Y., and Yudin, B.F. 2002, A&A, 387, 139.
Mikołajewska, J., Kolotilov, E.A., Shugarov, S.Y., Tatarnikova, A.A., and Yudin, B.F. 2003, in "Symbiotic Stars Probing Stellar Evolution", ASP Conference Proceedings, eds. R.L.M. Corradi, J. Mikołajewska and T.J. Mahoney, p.151.
Miszalski, B., Mikołajewska, J., & Udalski, A. 2013, MNRAS, 432, 3186.
Munari, U. 1992, A&A, 257, 163.
Munari, U., Jurdana-Sepić, R., and Moro, D. 2001a, A&A, 370, 503.
Munari, U., and Jurdana-Sepić, R. 2002, A&A, 386, 237.
Munari, U., and Zwitter, T. 2002, A&A, 383, 188.
Munari, U., Siviero, A., & Henden, A. 2005, MNRAS, 360, 1257.
Nussbaumer, H. and Vogel, M. 1996, A&A, 307, 470.
Olofsson, H., González Delgado, D., Kerschbaum, F., and Schöier, F. 2002, A&A, 391, 1053.
Podsiadlowski, P., and Mohamed, S. 2007, in "Evolution and chemistry of symbiotic star, binary post-AGB and related objects", eds. J. Mikołajewska & R. Szczepańska, Baltic Astronomy, 16, 26.
Pojmański, G. 2002, Acta Astron., 52, 397.
Press, W.H. and Rybicki, G.B. 1989, ApJ, 338, 277.
Quiroga, C., Mikołajewska, J., Brandi, E., Ferrer, O. and García, L. 2002, A&A, 387, 139.
Rutkowski, A., Mikołajewska, J., and Whitelock, P.A 2007, in "Evolution and chemistry of symbiotic star, binary post-AGB and related objects", eds. J. Mikołajewska & R. Szczepańska, Baltic Astronomy, 16, 49.
Schaefer, B.E. 2009, ApJ, 697, 721.
Schilizzi, R.T., and Mluiri, W. 1996, A&A, 306, 477.
Schilizzi, R.T., and Mluiri, W. 2001, A&A, 366, 972.
Schmid, H.M., Dumont, T., Mürset, U., et al. 2001, A&A, 368, 819.
Smith, V.V., Cunha, K., Jorissen, A., and Boffin, H.M. 1997, A&A, 324, 97.
Soszyński, I., Dziembowski, W., Udalski, A., et al. 2007, Acta Astron., 57, 201.
Soszyński, I., Udalski, A., Szymański, M., et al. 2009, Acta Astron., 59, 239.
Soszyński, I., Udalski, A., Szymański, M., et al. 2011, Acta Astron., 61, 217.
Soszyński, I., Udalski, A., Szymański, M., et al. 2013, Acta Astron., 63, 21.
Udalski, A. 2003, Acta Astron., 53, 291.
Udalski, A., Kubiak, M., and Szymański, M. 1997, Acta Astron., 47, 319.
Van Eck, S., Jorissen, A., Udry, S., et al. 2000, A&A S, 145, 51.
Van Winckel, H., Schwarz, H.E., Duerbeck, H.W., and Fuhrmann, B. 1994, A&A, 285, 241.
Whitelock, P.A. 1987, PASP, 99, 617.
Whitelock, P.A. 2003, in "Symbiotic Stars Probing Stellar Evolution", ASP Conference Proceedings, eds. R.L.M. Corradi, J. Mikolajewska and T.J. Mahoney, p.41.
Wood, P.R., Alcock, C., Allsman, R.A., et al. 1999, in IAU Symposium, Vol. 191, Asymptotic Giant Branch Stars, eds. T. Le Bertre, A. Lebre, and C. Waelkens, p.151.
Wray, J., Eyer, L., and Paczyński, B. 2004, MNRAS, 349, 1059.