Iron, Copper, and Nickel Removal with Calcium Hydrogen Phosphate and Calcium Pyrophosphates in Solution

Hiroaki Onoda*, Kohei Sasaki

Department of Informatics and Environmental Sciences, Faculty of Life and Environmental Sciences, Kyoto Prefectural University, Japan

Copyright © 2017 by authors, all rights reserved. Authors agree that this article remains permanently open access under the terms of the Creative Commons Attribution License 4.0 International License

Abstract Calcium phosphate is an important material used in ion exchangers and adsorbents. In this work, calcium hydrogen phosphate dihydrate, CaHPO₄•2H₂O, was prepared from calcium nitrate solution and phosphoric acid. This phosphate transformed to calcium hydrogen phosphate un-hydrate, CaHPO₄, by heating at 200ºC, and calcium pyrophosphate, Ca₂P₂O₇, by heating at 400 and 700ºC. These calcium phosphates were used to remove trivalent iron cation, Fe³⁺ in solution. Samples without heating and those heated at 200ºC indicated a high iron removal ratio. By the addition of these calcium phosphates and stirring for 5 minutes, a high ratio of iron cation was removed from the solution. This removal depended not only on the substitution of calcium to iron, but also on the precipitation of iron hydroxide. Calcium phosphates were also used to remove copper and nickel cations, Cu²⁺ and Ni²⁺. The removal ratios of copper and nickel cations were lower than those of iron cation.

Keywords Calcium Phosphate, Transition Metal, Purification of Water, Precipitation

1. Introduction Phosphates have been used in ceramic materials, catalysts, adsorbents, fluorescent materials, dielectric substances, biomaterials, metal surface treatments, fertilizers, detergents, food additives, fuel cells, pigments, and other applications [1–8]. In these phosphate materials, calcium phosphate is an important compound used for many applications, such as in ion exchangers and adsorbents [9, 10]. These materials are useful to obtain clean water without harmful cations. Because calcium phosphates are high affinity for living organisms, they can be used as a filter to remove harmful ions from water. Furthermore, these materials are easy to synthesize without expensive apparatus. Therefore, the use of these materials is expected all over the world. However, these reports mainly concerned hydroxyapatite, Ca₁₀(PO₄)₆(OH)₂, and other phosphates were less reported.

There are however other kinds of calcium phosphates, for example, Ca₆(PO₄)₆, CaHPO₄•2H₂O, etc. [11-14]. The formation of these phosphates was affected from a Ca/P mixing ratio of raw materials, heating temperature and time, additives, and so on [15,17]. Further, phosphate materials produce condensed phosphate in a dehydration reaction [18, 19]. These condensed phosphates have the possibility of having different properties than orthophosphate. Therefore, the study about these phosphates is required to obtain novel ion exchangers and adsorbents to remove harmful ions.

In our previous work, calcium hydrogen phosphates di-hydrate, CaHPO₄•2H₂O, were prepared with corbicula shells, and then used to remove iron cation in solution [20]. Iron cation was removed with this phosphate in this limited condition. Therefore, in the present work, we study the removal of transition metal cations with calcium hydrogen phosphates di-hydrate, calcium hydrogen phosphates, and calcium pyrophosphate, Ca₂P₂O₇.

2. Materials and Methods Calcium nitrate solution (0.1 mol/L) was mixed with phosphoric acid (0.1 mol/L), and then adjusted to pH 5 and 7 with ammonia solution. The precipitates were filtered and dried. A part of the precipitates were heated at 200, 400, and 700ºC for one hour. All chemicals were purchased from Wako Chemical Industries Ltd. (Osaka Japan), of commercial purity, and used without further purification.

The chemical composition of the powdered precipitates was determined using X-ray diffraction (XRD) and Infrared (IR) spectra. The XRD patterns were recorded on a Rigaku MiniFlex X-Ray diffractometer using monochromated CuKα radiation. IR spectra of samples were recorded on a HORIBA FT-IR 720 (Horiba Ltd.) using the KBr disk method.

The substitution properties of the products were estimated using iron nitrate solutions. 5 and 10 mmol/L of
Iron (+III) nitrate solution was prepared at pH 3 with sodium hydroxide. 0.1 g of the sample was added to this iron nitrate solution (100 mL), and stirred for five minutes. The resulting precipitates were filtered off. The filtered solution was estimated using ultraviolet–visible (UV–Vis) spectroscopy with a UV2100 spectrometer (Shimadzu Corp., 290 nm). The pH values of the filtered solution were also measured.

Further, the removal of copper and nickel was also estimated. The calcium phosphate (pH5, without heating) was added to 100 mmol/L of copper and nickel nitrate solutions (50 mL), and then stirred for 5, 30, 60, 360, and 1,440 min. The amount of calcium phosphate was determined to be in Cu/Ca=1/1 and Ni/Ca=1/1 conditions. The precipitates were filtered off. The filtered solution was estimated with a UV2100 spectrometer (Cu; 810nm, Ni; 410nm).

3. Results and Discussion

3.1. Preparation of Calcium Phosphates

Figure 1 shows XRD patterns of samples prepared at pH5 and then heated at several temperatures. Sample without heating indicated XRD pattern of calcium hydrogen phosphate di-hydrate, CaHPO$_4$•2H$_2$O. The peak pattern of calcium hydrogen phosphate un-hydrate, CaHPO$_4$ was observed in a XRD pattern of samples heated at 200ºC. Samples heated at 400 and 700ºC indicated the peaks of Ca$_2$P$_2$O$_7$. From these results, samples are considered to form in the following reactions.

$$\text{Ca(NO}_3\text{)}_2 + \text{H}_3\text{PO}_4 + 2\text{H}_2\text{O} \rightarrow \text{CaHPO}_4\cdot2\text{H}_2\text{O} + 2\text{HNO}_3$$ \hspace{1cm} (1)

$$\text{CaHPO}_4\cdot2\text{H}_2\text{O} \rightarrow \text{CaHPO}_4 + 2\text{H}_2\text{O}$$ \hspace{1cm} (2)

$$2\text{CaHPO}_4 \rightarrow \text{Ca}_2\text{P}_2\text{O}_7 + \text{H}_2\text{O}$$ \hspace{1cm} (3)

Samples prepared at pH 7 showed the same patterns with samples prepared at pH 5 and then heated at each temperature.

Figure 2 shows IR spectra of samples prepared at pH 5 and then heated at several temperatures. The multiple peaks observed in the regions 1200-400 cm$^{-1}$ of IR spectrum of non-heated sample can be due to P-O internal vibration in CaHPO$_4$ [19]. The strong peaks at 1140, 1060, and 980 cm$^{-1}$ are assigned to stretching vibration of the P-O band. The peaks at 580 and 520 cm$^{-1}$ are due to the O-P-O deformations. The sample without heating had an absorption peak at 1650 cm$^{-1}$ due to water. This peak disappeared by heating at 200ºC. The sample heated at 400ºC had similar spectra with that at 700ºC. The absorption peak at 720 cm$^{-1}$ was due to P-O-P bonding in condensed phosphate [19]. These IR results correspond with the above XRD results.

Figure 1. XRD patterns of samples prepared at pH 5 and then heated at several temperatures, (a) R.T., (b) 200ºC, (c) 400ºC, and (d) 700ºC, ○; CaHPO$_4$•2H$_2$O, △; CaHPO$_4$, ◇; Ca$_2$P$_2$O$_7$.

Figure 2. IR spectra of samples prepared at pH5 and then heated at several temperatures, (a) R.T., (b) 200ºC, (c) 400ºC, and (d) 700ºC.
3.2. Removal of Iron with Calcium Phosphate

Table 1 shows the removal ratio of iron cation with
calcium phosphates prepared in various conditions. Samples
without heating indicate a higher removal ratio than 90%.
Because the main composition of these materials was
CaHPO₄·2H₂O, 0.1 g of samples included 5.81 x 10⁻⁴ mol
of calcium cation. On the other hand, 5 and 10 mmol/L of
iron nitrate solutions (100mL) included 5 x 10⁻⁴ and 1 x 10⁻³
mol of iron cation, respectively. In the conditions of
10mmol/L, the amount of removed iron cation was much
higher than that of calcium cation in samples. Therefore, the
removal of iron cation took place not only by the
substitution from calcium to iron but also by precipitation
of iron hydroxide. Table 2 shows the pH value of solutions
after the iron removal process. Because samples were
prepared at pH 5 and 7, the pH value of solution increased
from the original 3 by the addition of prepared calcium
phosphates, then iron hydroxide was formed. Samples
heated at 200ºC also indicated higher removal ratio than
90%. The amount of calcium cation in 0.1g of sample was
about 7.35 x 10⁻⁴ mol. Calculated from that the main
composition was CaHPO₄. In the conditions of 10mmol/L,
iron hydroxide was also formed by samples heated at 200ºC.
By heating at 400 and 700ºC, CaHPO₄ transformed to
Ca₂P₂O₇ in equation (3). Because 0.1 g of Ca₂P₂O₇ includes
7.87 x 10⁻⁴ mol, samples prepared at pH 5 indicated lower
than 78.7% in the condition of 10mmol/L. The difference
between pH 5 and 7 appeared by heating at 400 and 700ºC.
Because phosphate materials were sintered by heating, the
reactivity of materials became lower. Therefore, the pH
shift by the addition of samples prepared at pH 5 became
smaller and iron hydroxide was limited to form. This effect
in a sample prepared at pH 7 also became smaller; however,
the removal ratio of iron cation was high. It is difficult to
understand why this removal ratio is high in the condition
treated with samples prepared at pH 7.

Table 1. Removal ratios of iron cation with calcium phosphates prepared at pH 5 and 7 and then heated at various temperatures %

	pH 5		pH 5		pH 7		pH 7	
	5 mmol/L	10 mmol/L						
R.T.	97.8	99.8	91.7	99.7				
200ºC	97.5	99.8	98.6	99.4				
400ºC	94.1	41.5	98.6	95.8				
700ºC	16.7	22.5	92.3	99.7				

Table 2. pH value of solution after iron removal process with calcium phosphates prepared at pH 5 and 7 and then heated at various temperatures

	pH 5		pH 5		pH 7		pH 7	
	5 mmol/L	10 mmol/L						
R.T.	5.73	6.21	6.00	6.00				
200ºC	5.79	5.66	5.99	6.00				
400ºC	3.62	3.65	5.87	5.85				
700ºC	3.50	3.28	2.87	2.92				

3.3. Removal of Copper and Nickel with Calcium Phosphates

As another transition metal solution, we attempted to
remove a copper solution. All conditions, with samples
prepared at pH 5 and 7, and then heated at several
temperatures, indicated much smaller copper removal ratios
than iron removal ratios. Because iron cation is trivalent,
iron phosphate was easy to form the iron removal ratio
became higher. On the other hand, copper cation is bivalent,
copper phosphate was more difficult to form. Calcium
phosphates showed difficulty removing the copper cation
by stirring for 5 min. Therefore, we studied stirring time as
a means to remove copper cation. In addition, nickel
solution was also studied. Table 3 shows the removal ratio
of copper and nickel with samples prepared at pH 5
(without heating). The removal ratio of copper at five
minutes was 16.2 % and those over 30min indicated
51-56 %. The removal of copper cation needs a large

![Figure 3](image-url)
amount of time. On the other hand, the removal ratio of nickel cation was five percent lower until 360 min. The removal rate was much different between copper and nickel. Because the ionic radius of copper was close to that of nickel, it is difficult to explain this difference from ionic radii.

Table 3. Removal ratio of Cu and Ni with samples prepared at pH 5 /%

Time /min	Cu²⁺	Ni²⁺
5	16.2	0.7
30	51.7	0.8
60	55.9	1.2
120	53.5	3.8
360	54.7	3.5
1440	54.1	20.6

4. Conclusions

Calcium hydrogen phosphate di-hydrate, CaHPO₄•2H₂O, was prepared from calcium nitrate solution and phosphoric acid. This phosphate transformed to calcium hydrogen phosphate un-hydrate, CaHPO₄, by heating at 200°C, and calcium pyrophosphate, Ca₃P₂O₇, by heating at 400 and 700°C. These calcium phosphates were used to remove iron, copper, and nickel cations in solution. Samples without heating and heated at 200°C, CaHPO₄•2H₂O and CaHPO₄, indicated a high iron removal ratio. This removal depended not only on the substitution of calcium with iron but also on the precipitation of iron hydroxide. The removal ratios of copper and nickel cation with calcium phosphates were lower than those of iron cation.

REFERENCES

[1] A. Jain, A. M. Shore, S. C. Jonnalagadda, K. V. Ramanujacharya, A. Mugweru, Conversion of fructose, glucose and sucrose to 5-hydroxymethyl-2-furfural over mesoporous zirconium phosphate catalyst, Applied Catalysis A, Vol. 489, 72-76, 2015.

[2] H. Yaacoubi, O. Zidani, M. Mouflih, M. Gourai, S. Sebti, Removal of Cadmium from water using Natural phosphate as Adsorbent, Procedia Engineering, Vol. 83, 386-393, 2014.

[3] Y. Cai, S. Feng, C. Ming, X. Ren, Y. Qin, L. An, Researching on thermal characters in Yb³⁺/Er³⁺ codoped phosphate glass ceramic for fluorescence temperature, Results in Physics, Vol. 6, 826-828, 2016.

[4] G. V. Rao, H. D. Shashikala, Optical, dielectric and mechanical properties of silver nanoparticle embedded calcium phosphate glass, Journal of Non-Crystalline Solids, Vol. 402, No.15, 204-209, 2014.

[5] J. S. Lee, W. L. Murphy, Functionalizing Calcium Phosphate Biomaterials with Antibacterial Silver Particles, Advanced Materials, Vol. 25, No. 8, 1173-1179, 2013.

[6] A. Kalendova, D. Besely, M. Kohi, J. Stejskai, Effect of surface treatment of pigment particles with poly pyrrole and polyaniline phosphate on their corrosion inhibiting properties in organic coatings, Progress in Organic Coatings, Vol. 77, No. 9, 1465-1483, 2014.

[7] F. Zhang, Q. Wang, J. Hong, W. Chen, C. Qi, L. Ye, Life cycle assessment of diammonium- and monoammonium-phosphate fertilizer production in China, Journal of Cleaner Production, Vol. 141, 1087-1094, 2017.

[8] H. Onoda, A. Matsukura, Influence of pH-Control in phosphoric acid treatment of titanium oxide and their powder properties, Materials Research Bulletin, Vol. 66, 151-155, 2015.

[9] D. P. Minh, N. D. Tran, A. Nzihou, P. Sharrock, Calcium phosphate based materials starting from calcium carbonate and orthophosphoric acid for the removal of lead(II) from an aqueous solution, Chemical Engineering Journal, Vol. 243, No. 1, 280-288, 2014.

[10] P. Pascaud, F. Errassif, F. Brouillet, S. Sarda, A. Barroug, A. Legrouri, C. Rey, Adsorption on apatite calcium phosphates for drug delivery: interaction with bisphosphonate molecules, Journal of Materials Science: Materials in Medicine, Vol. 25, 2373-2381, 2014.

[11] P. N. Kumar, S. K. Mishra, S. Kannan, Structural Perceptions and Mechanical Evaluation of β - Ca₃(PO₄)₂/c - CeO₂ Composites with Preferential Occupancy of Ce⁵⁺ and Ce⁴⁺, Inorganic Chemistry, Vol. 56, 3600-3611, 2017.

[12] A. C. Tas, Transformation of Brushite (CaHPO₄•2H₂O) to Whitlockite (Ca₃Mg(HPO₄)(PO₄)₆) or other CaPs in Physiologically Relevant Solutions, Journal of American Ceramic Society, Vol. 99, No. 4 1200-1206, 2016.

[13] A. E. Hamidi, R. M. Masamba, M. Khachani, M. Halim, S. Arsalane, Kinetics modeling in liquid phase sorption of copper ions on brushite di- calcium phosphate di-hydrate CaHPO₄•2H₂O (DCPD), Vol. 56, No. 3, 779-791 (2015).

[14] R. L. Frost, Y. Xi, G. Millar, K. Tan, S. J. Palmer, Vibrational Spectroscopy of Natural Cave Mineral Monetite CaHPO₄ and the Synthetic Analog, Spectroscopy Letters, Vol. 46, No. 1, 54-59 (2013).

[15] Z. Zyman, M. Eppe, A. Goncharenko, D. Dokhmistov, O. Prymak, K. Loza, Thermally induced crystallization and phase evolution in powders derived from amorphous calcium phosphate precipitates with a Ca/P ratio of 1:1, Journal of Crystal Growth, Vol. 450, No. 15, 190-196, 2016.

[16] Z. Zyman, M. Eppe, A. Goncharenko, D. Dokhmistov, O. Prymak, K. Loza, Peculiarities in thermal evolution of precipitated amorphous calcium phosphates with an initial Ca/P ratio of 1:1, Journal of Materials Science: Materials in Medicine, Vol. 28, No. 3, 52, 2017.

[17] N. Nishikawa, T. Hasegawa, A. Miyake, Y. Tashiro, Y. Hashimoto, D. H. A. Blank, G. Rijnders, Relationship between the Ca/P ratio of hydroxyapatite thin films and the spatial energy distribution of the ablation laser in pulsed laser deposition, Materials Letters, Vol. 165, No. 15, 95-98, 2006.

[18] V. C. Ghantani, M. K. Dongare, S. B. Umbarkar, Nonstoichiometric calcium pyrophosphate: a highly efficient and selective catalyst for dehydration of lactic acid to acrylic
[19] R. Mulongo-Masamba, T. E. Kassri, M. Khachani, S. Arsalane, M. Halim, A. E. Hamidi, Synthesis and thermal dehydroxylation kinetic of anhydrous calcium phosphate monetite CaHPO$_4$, Journal of Thermal Analysis and Calorimetry, Vol. 124, 171–180, 2016.

[20] H. Onoda, S. Yamazaki, Homogenous hydrothermal synthesis of calcium phosphate with calcium carbonate and corbicula shells, Journal of Asian Ceramic Societies, Vol. 4, No. 4, 403-406, 2016.