Case Report

Fat embolism in the popliteal vein detected on CT: Case report and review of the literature

Tucker Burr, MD, Hamza Chaudhry, MD, Cheryl Zhang, BA, Vasilios Vasilopoulos, RT(R), CIIP, Emad Allam, MD*

Loyola University Medical Center, Department of Radiology, 2160 S 1st Ave, Maywood, IL 60153

A R T I C L E I N F O

Article history:
Received 1 August 2020
Revised 4 September 2020
Accepted 4 September 2020

Keywords:
Fat embolism
CT
Trauma
Fracture
IVC filter

A B S T R A C T

Fat emboli are a common phenomenon, but are rarely detected or reported on extremity CT imaging. We present a case of fat embolus in the popliteal vein in the setting of a femoral fracture. This is the most distal fat embolus described in the literature. There are no guidelines regarding intervention if a fat embolus is detected in a peripheral vein on CT. A review of all the previous cases of peripheral fat emboli is presented for reference.

© 2020 The Authors. Published by Elsevier Inc. on behalf of University of Washington. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Background

The phenomenon of fat embolism is well-established, having been described separately in humans in the 1800s by von Bergmann and Zenker [1,2]. Fat embolism is the presence of macroscopic fat within vasculature. The incidence is high following trauma, reported at 90% on histologic examination by Eriksson et al [3]. Important clinical sequelae including pulmonary and neurologic complications are also well documented. It is rare, however, to encounter venous fat at the site of trauma on imaging. In our literature search we encountered only ten case reports of fat emboli in the venous system detected on computed tomography (CT) imaging to date, including one in the inferior vena cava (IVC) (Table 1) [4–13]. Note that symptoms and signs and even imaging findings of fat emboli are often difficult to distinguish from those of concurrent trauma. Here we share a rare case of macroscopic fat embolism clearly identified adjacent to the site of trauma within the venous circulation on CT after trauma.

Case presentation

A 52-year-old male with no significant medical history presented as a level 2 trauma transfer after a 15 foot fall from...
Case Report	Age	Sex	Fracture location	Fat embolus location	Maximum size	% luminal diameter of fat embolus*	Fat-fluid level	Intervention for fat embolus	FES Symptoms†
Liu P, et al. 1990	15	M	Bilateral femora	IVC just above bifurcation, Left common femoral vein	3 cm	30%	Yes	None reported	Pulmonary
Harris AC, et al. 2000	18	M	Left femur, pelvis	Left common femoral vein, 0.9 cm on ultrasound	50%	Yes		Surgical venotomy with no fat embolism found, prophylactic anticoagulation	None
Roson N, et al. 2008	64	F	Right femur, pelvis	Right common and superficial femoral vein, 1 cm on first CT, 6 cm on second CT	90%	No		IVC filter, surgical thrombectomy	None
Vasconcelos V, et al. 2015	22	M	Left femur	Left femoral vein and IVC, Not measured	20%	Yes		IVC filter, surgical thrombectomies, therapeutic anticoagulation	Pulmonary
Healy N, et al. 2015	20	M	Right femur, left tibia and fibula, pelvis	Right common femoral vein	Not measured	30%	Yes	None reported	Pulmonary
Sousa I, et al. 2017	22	M	Right femur, tibia, and foot, Right tibia and fibula, Left femur	Right common femoral vein, Right superficial femoral vein, Left common femoral vein, with migration to left external iliac vein	Not measured, 6.8 cm, <1 cm	50%	No	None reported	None
Chowdhary V, et al. 2017	51	M	Right tibia and fibula	Right common iliac vein, Not measured	60%	Yes		Steroids	Pulmonary and neurologic
Moliere S, et al. 2018	18	M	Right femur	Right common iliac vein, Not measured	70%	No		Prophylactic anticoagulation	Pulmonary
Lee H, et al. 2018	48	M	Right femur and tibia, pelvis, Bilateral femora	Right common iliac vein	Not measured	60%	Yes	IVC filter	None
Ayoobi-yazdi N, et al. 2020	21	F	Bilateral femora	Right external iliac vein, Right popliteal vein	Not measured, 2 cm	70%	No	None	Pulmonary
Burr T, et al. 2020 (current article)	52	M	Right femur	Right popliteal vein	70%	No		Prophylactic anticoagulation	None

* Based on images provided.
† It may be difficult to differentiate post-traumatic symptoms from fat embolism syndrome (FES) symptoms, particularly pulmonary.
a roof at work, sustaining an open right distal femoral intra-articular fracture and a left proximal humeral fracture. The patient did have a greater than 40 pack-year history of smoking.

Imaging findings

A non-contrast CT scan of the right femur including the knee joint was performed for further characterization of the fracture with slice thickness of 1.25 mm utilizing bone and soft tissue kernels. The CT was obtained in traction, with a pin through the proximal tibia. The three-dimensional reconstruction images show the extent and severe comminution of the distal femoral fracture (Fig. 1). Soft tissue windows delineate vascular structures including the popliteal vein which contained focal intraluminal hypoattenuation matching that of subcutaneous fat (approximately -77 Hounsfield units), compatible with popliteal vein fat embolism, presumably arising from the distal femur marrow (Figs. 2 and 3). The fat embolism measured 0.5 by 0.5 cm in axial dimensions and approximately 2 cm in craniocaudal dimension, occupying up to
70% of the diameter of the vein, with a tapered appearance superiory. Additional smaller foci of fat were seen in the vein proximally. No linear fat-fluid level was seen within the vein. Unrelated to the fat embolism, the popliteal vein was severely compressed by a femoral fracture fragment proximal to the fat embolism (Figs. 3 and 4), raising concern for migration of the popliteal vein fat embolism following reduction of the femoral fracture and decompression of the adjacent popliteal vein. Note that the fat embolism was distal to the fracture site, at the level of the tibia rather than the femur. Lack of intravenous contrast limited evaluation for vascular injury. Lipohemorrhagitis and gas were present in the knee joint. No imaging of the right distal tibia/fibula or right ankle/foot was obtained. Chest CT with contrast at the time of admission obtained as part of trauma survey (3 hours prior to the femur CT) showed no pulmonary embolism or pulmonary opacities.

Treatment and follow-up

Upon discovery of the fat embolism, vascular surgery was consulted with recommendations to obtain duplex ultrasound and administer anticoagulation post-surgery. IVC filter placement was not considered necessary given lack of strong evidence to support such an intervention in the setting of fat embolus. ORIF of the femoral fracture was performed without complication approximately 24 hours after admission. Anticoagulation with enoxaparin at prophylactic dose (30 mg subcutaneous injection every 12 hours) was started on postoperative day 4 following femoral ORIF (postoperative day 1 following humeral ORIF). Sequential compression devices were applied throughout hospitalization.

A duplex ultrasound of the right lower extremity on postoperative day 3 following femoral ORIF demonstrated a patent popliteal vein without embolus (Fig. 5). No shortness of breath or altered mental status was noted during his hospital stay. The patient did not require mechanical ventilation or supplemental oxygen postoperatively. No follow-up chest imaging was obtained. The patient was discharged home on postoperative day 13 following femoral ORIF on a prophylactic dose of enoxaparin (40 mg subcutaneous injection daily for 7 days). On follow-up orthopedic visit three months later, the femoral fracture was healing, and no systemic symptoms were noted.

Discussion

Fat embolism is a widely recognized and encountered complication after trauma and orthopedic surgery, most commonly involving a large long bone such as the femur. Although rare and often clinically silent, the patient may develop significant clinical sequelae of Fat Embolism Syndrome (FES). This typically presents after 24-72 hours with a classic triad of respiratory distress, neurologic symptoms, and petechial rash. Two theories attempt to describe the pathogenesis. A mechanical theory postulates that traumatically displaced bone marrow enters torn venules that remain tethered to the bone [14]. A biochemical theory postulates that intravenous fat degrades into toxic intermediaries with inflammatory effects, possibly explaining the classic 24-72 hour delay in symptoms [15,16]. Once within systemic circulation, fat cells may trigger prothrombotic aggregation within the lungs, or within cerebral circulation through paradoxical embolism or microembolism. Different grading systems have been proposed for FES, with worsening respiratory status being the most common criterion [17–19]. Nearly all described findings may be confounded in the setting of trauma. Nevertheless, FES is a serious diagnosis including respiratory symptoms and neurologic sequelae with potential for significant morbidity and mortality.

Fat embolism is likely a common phenomenon, but it is unclear why fat emboli in-transit have been rarely reported. Nearly all reported cases of peripheral fat emboli detected on CT have been published after 2014, suggesting that this phenomenon may have been infrequently imaged or under-recognized previously. Our case is the only reported case of a fat embolus seen distal to the fracture site. This is also the only case of fat embolism detected below the level of the knee, making it the most distal fat embolus reported in the literature. In our case, the fat embolus may have persisted in the lower extremity due to occlusion/near occlusion of the vein superiorly causing stagnation of blood flow and fortuitous detection of the fat embolus. Diagnosis of FES may be difficult due to delayed presentation and confounding symptomatology. Communicating the rare diagnosis of embolic fat in-transit within venous drainage to the clinician may increase suspicion and expedite diagnosis and treatment for FES. Major veins should be inspected on CT examination in the setting of trauma to exclude regional fat embolism.
There are no guidelines for prophylaxis of FES if an asymptomatic fat embolism in-transit is detected on CT. Retrievable IVC filter placement may be considered, although there is minimal evidence to support this intervention given the rare occurrence of this finding. There is a single case report showing an IVC filter clearly capturing a fat embolus on CT [20]. In regard to fat emboli, Lee et al [12] described placement of a retrievable IVC filter in a patient with right common iliac vein fat embolus seen on CT. The patient developed no signs or symptoms of fat emboli, and the IVC filter was removed 17 days after placement. Harris et al [5] reported surgical venotomy following detection of a fat embolus in the left common femoral vein, although no thrombus or fat was found on surgical exploration of the vein, with presumed fragmentation/migration of the fat in between the time of CT and surgical venotomy. Roson et al [6] reported a fat embolus in the right femoral vein increasing in size on serial imaging, prompting IVC filter placement and surgical thrombectomy. Vasconcelos et al [7] reported a large fat embolus in the left femoral vein and IVC, necessitating IVC filter placement and surgical thrombectomy.

Treatment of FES is supportive. The role of systemic anticoagulation and corticosteroids is controversial, as these have not proven to improve morbidity or mortality. In particular, heparin stimulates lipase activity and therefore increases the clearance of lipids from circulation, but the associated increase in free fatty acids could exacerbate the underlying proinflammatory physiology [21]. Since fat emboli often occur in the setting of trauma requiring surgery, anticoagulation may not be feasible until after surgery. Corticosteroids are also relatively contraindicated following surgery due to the risk of infection. Our patient was successfully given anticoagulation at a prophylactic dose without development of symptoms to suggest FES.

Of the ten previously reported cases of fat embolism detected on CT, five exhibited pulmonary and/or neurologic symptoms, although some pulmonary symptoms or requirement for mechanical ventilation may have been related to trauma rather than fat emboli [4,7,8,11,13]. Three patients were treated with IVC filters, two of whom also underwent surgical thrombectomy [6,7,12]. It is unclear if the size, shape, or location of the fat embolism seen on CT has any correlation with subsequent development of symptoms. The only documented case of fat embolism detected on imaging with subsequent development of both neurologic and pulmonary sequelae had a subcentimeter fat embolism in the extremity at the time of initial CT, showing that small fat emboli can be clinically significant [11]. Previous reports have not consistently mentioned the size of the embolus. Patient age and comorbidities may potentially play a role in whether the embolism becomes symptomatic or clinically significant. Fat embolus should be visible on ultrasound as a hyperechoic intraluminal lesion or small hyperechoic foci, and may be mobile [5,6,22]. Grayscale images should be analyzed carefully, as many of the sonographic criteria used to diagnose a DVT may be not be met by a fat embolus, including lack of compressibility, spontaneity, phasicity, and augmentation [23]. Negative duplex ultrasound 3 days after surgery in our case may be due to migration or fragmentation of the fat embolism previously seen on CT, and a negative test is therefore of limited value. Since fat is clearly discerned on non-contrast CT, further evaluation with a contrast-enhanced CT is unlikely to aid in diagnosis of fat embolus, although it may help detect concomitant vascular injury if this is a clinical concern.

Conclusion

Vigilance for fat emboli on extremity CT examinations obtained for fracture is advised, and these may even be present distal to the fracture site. The clinical significance of such fat emboli in-transit without associated symptoms is unknown, although our case suggests that such fat emboli could be incidental without clinical consequence. The rarity of this finding precludes evidence-based recommendations. IVC filter placement and possibly surgical thrombectomy may be considered, especially if the fat embolus is large or progressively increasing in size. The role of anticoagulation in fat embolism and fat embolism syndrome is controversial.

References

[1] Von Bergmann E. Ein fall todlicher fettenbolic. Berl Klin Wochenscher 1873;10:385.
[2] Zenker FA. Anatomie der Lungen. Dresden (DE): J Brunnsdorff 1862;31 Beiträge zur normalen und pathologischen. https://wellcomecollection.org/works/pk37gf/items?canvas=1&langCode=ger&sierral=b20391250.

[3] Eriksson EA, Pellegreni DC, Vanderkolk WE, Minshall CT, Fakhry SM, Cohle SD. Incidence of pulmonary fat embolism at autopsy: an undiagnosed epidemic. J Trauma 2011;71(2):312–15. doi:10.1097/TA.0b013e3182208280.

[4] Liu F, Armstrong P, Skippen P. Post-traumatic fat embolism in the inferior vena cava. Can Assoc Radiol J 1990;41(5):303–4.

[5] Harris AC, Torreggiani WC, Lyburn ID, Zwirewich CV, Ho SG, Munk PL. CT and sonography of traumatic fat embolism in the common femoral vein. AJR Am J Roentgenol 2000;175(6):1741–2. doi:10.2214/ajr.175.6.1751741.

[6] Roson N, Berrocal L, Garriga V, et al. Fat embolism of the common and superficial femoral vein: US and CT diagnose, imaging follow-up and histopathologic correlation after surgical venotomy. Eurorad Case 2008 Mar 20:6480. doi:10.1594/EURORAD/CASE.6480.

[7] Vasconcelos V, Andriotti C, Reicher M, Amorim J, Miranda F. Imaging and histological findings of fat embolism in the vena cava. Trauma 2015;17(4):295–8. doi:10.1177/1460486615589430.

[8] Healy N, Billington K, Sheehy N. Post traumatic fat embolism in common femoral vein on CT. Ir Med J 2015;108(10):310–11.

[9] Sousa I, Janeiro J, Campos P, Távora I. Trauma patient with fat embolism detected on computed tomography. Acta Med Port 2017;30(3):203–4. doi:10.20334/amp.7355.

[10] Chowdhary V, Mehta V, Bajaj T, Scheiner J. Rare imaging of a known entity: fat embolism seen on CT in lower extremity vein after trauma. Radiol Case Rep 2017;12(3):488–90. doi:10.1016/j.radcr.2017.04.004.

[11] Mollière S, Kremers S, Bierry G. Case 254: posttraumatic migrating fat embolus causing fat emboli syndrome. Radiology 2018;287(3):1073–80. doi:10.1148/radiol.2018162033.

[12] Lee H, Moon J, Kwon J, Lee JC-J. Rare imaging of fat embolism seen on computed tomography in the common iliac vein after polytrauma. J Trauma Inj 2018;31(2):103–6. doi:10.20408/jti.2018.31.2.103.

[13] Ayoobi-Yazdi N, Salahshour F, Arab-Ahmadi M, Hemati S, Amiri M. A 21-year-old pregnant trauma patient with asymptomatic fat embolism: a case report. Adv J Emerg Med 2019;4(2):e32. doi:10.22114/ajem.v0i0.254.

[14] Takahashi S, Kitagawa H, Ishii T. Intraoperative pulmonary embolism during spinal instrumentation surgery. A prospective study using transoesophageal echocardiography. J Bone Joint Surg Br 2003;85(1):90–4. doi:10.1016/j.bjsu.2013.07.019.

[15] Glas WW, Grekin TD, Musselman MM. Fat embolism. Am J Surg 1957;85:363–9. doi:10.1016/0003-9907(57)90223-0.

[16] Nixson JR, Brock-Utne JG. Free fatty acid and arterial oxygen changes following major injury: a correlation between hypoxemia and increased free fatty acid levels. J Trauma 1978;18(1):23–6. doi:10.1097/00005373-197801000-00004.

[17] Gurd AR, Wilson RI. The fat embolism syndrome. J Bone Joint Surg Br 1974;56B(3):408–16. doi:10.1002/j.1365-2176.1974.tb09988.x.

[18] Schonfeld SA, Ploysongsang Y, DiLisio R, et al. Fat embolism prophylaxis with corticosteroids. A prospective study in high-risk patients. Ann Intern Med 1983;99(4):438–43. doi:10.7326/0003-4819-99-4-438.

[19] Lindeque BG, Schoeman HS, Dommisse GF, Boeyens MC, Vlok AL. Fat embolism and the fat embolism syndrome. A double-blind therapeutic study. J Bone Joint Surg Br 1987;69(1):128–31. doi:10.1302/0301-620X.69B1.3818718.

[20] Scott J, Collin N, Baker R, Ravanan R. Fat embolism: a rare cause of perioperative renal transplant dysfunction. BMJ Case Rep 2017. doi:10.1136/bcr-2017-221828.

[21] Kosova E, Bergmark B, Pizazz G. Fat embolism syndrome. Circulation 2015;131(3):317–20. doi:10.1161/CIRCULATIONAHA.114.010835.

[22] Wang N, Panda N, Hyun J, Barounis D, Weiser T. Cerebral fat embolism in a trauma patient with captured imaging of echogenic emboli in the inferior vena cava. J Med Ultrasond 2016;24(4):162–5. doi:10.1016/j.jmu.2016.08.006.

[23] Naddaf A, Andre J, By SJ, Hood D, Hodgson KJ, Desai SS. Duplex ultrasound evidence of fat embolism syndrome. J Vasc Surg Cases 2016;2(4):155–7. doi:10.1016/j.jvscit.2016.08.001.