UNIQUENESS OF SOLUTIONS TO L^p-CHRISTOFFEL-MINKOWSKI PROBLEM FOR $p < 1$

LI CHEN

Abstract. Since the lack of Brunn-Minkowski inequality and constant rank theorem, the uniqueness of solutions to L_p-Christoffel-Minkowski problem for $p < 1$ is a very difficult and challenging problem. In this paper, we make some progresses on this problem and prove a uniqueness theorem for $p < 1$.

Keywords: Christoffel-Minkowski problem, uniqueness.
MSC: Primary 58E20, Secondary 35J35.

1. Introduction

The L_p-Christoffel-Minkowski problem which is equivalent to solve the following PDE

\begin{equation}
\sigma_k(u_{ij} + u\delta_{ij}) = \psi(x)u^{p-1} \quad \text{on} \quad S^n,
\end{equation}

arises naturally in the L_p-Brunn-Minkowski theory, see [14] [17]. The L_p-Minkowski problem ($k = n$) has been extensively studied during the last twenty years after the seminal work of Lutwak [14], see [1] [5] [16] [15] for motivation and see also [17] for the most comprehensive list of results. When $p > 1$, the existence and uniqueness of solutions are well understood. However, when $p < 1$ the uniqueness of solutions to the L_p-Minkowski problem is very subtle, and indeed it was shown in [11] that the uniqueness fails when $p < 0$ even restricted to smooth origin-symmetric convex bodies. Recently, Brendle-Choi-Daskaspoulos [2] shows the uniqueness holds true for $1 > p > -1 - n$ and $\psi \equiv 1$, and Chen-Huang-Li-Liu [3] prove the uniqueness for p close to 1 and even positive function ψ.

For $k < n$, if $p \geq 1$, under a sufficient condition on the prescribed function ψ, the existence and uniqueness of solutions to L_p-Christoffel-Minkowski problem are also well understood through Guan-Ma’s work [8] for $p = 1$, Hu-Ma-Shen’s work [12] for $p \geq k + 1$ and Guan-Xia’ work [9] for $1 < p < k + 1$ and even prescribed data, by using the constant rank theorem. See also [10] for the proof of uniqueness and [13] for a simple proof. But for $p < 1$, since the lack of Brunn-Minkowski inequality and constant rank theorem, the uniqueness is a very difficult and challenging problem. As far as I know, the uniqueness for $p < 1$ is unknown until now. In this paper, we make some progresses in this direction for $\psi \equiv 1$.

We consider the uniqueness of solutions to the following L_p-Christoffel-Minkowski problem:

\begin{equation}
\sigma_k(u_{ij} + u\delta_{ij}) = u^{p-1} \quad \text{on} \quad S^n.
\end{equation}

where u_{ij} are the second order covariant derivatives with respect to any orthonormal frame $\{e_1, e_2, ..., e_n\}$ on S^n, δ_{ij} is the standard Kronecker symbol and σ_k is the k-th elementary symmetric function. To ensure the ellipticity of (1.2), we have to restrict the class of functions.

Definition 1.1. A function $u \in C^2(S^n)$ is called k-convex if

$$
\lambda[u_{ij} + u\delta_{ij}] = (\lambda_1[u_{ij} + u\delta_{ij}], ..., \lambda_n[u_{ij} + u\delta_{ij}])
$$

This research was supported in part by Hubei Key Laboratory of Applied Mathematics (Hubei University).
belongs to Γ_k for all $x \in \mathbb{S}^n$, where Γ_k is the Garding’s cone
$$\Gamma_k = \{ \lambda \in \mathbb{R}^n : \sigma_j(\lambda) > 0, \forall \, 1 \leq j \leq k \}.$$

We mainly get the following result.

Theorem 1.2. Assume $u \in C^4(\mathbb{S}^n)$ is a k-convex solution to (1.2) satisfying that $u_{ij} + u_\delta_{ij} \geq 0$ on \mathbb{S}^n, then $u \equiv \text{constant}$ for $1 > p > 1 - k$.

Our proof is motivated by the idea of Choi-Daskaspoulos [1] and Brendle-Choi-Daskaspoulos [2] in which they show the self-similar solution Σ of α-Gauss curvature flow satisfying the equation
$$K^\alpha = \langle X, \nu \rangle$$
is a sphere when $\alpha > \frac{1}{n+2}$, where Σ is an embedded, strictly convex hypersurface in \mathbb{R}^{n+1} given by $X : \mathbb{S}^n \to \mathbb{R}^{n+1}$, K and ν are the Gauss curvature and out unit normal of Σ respectively. Their result is also equivalent to say that the L_p-Minkowski problem (1.2) $(k = n)$ has the unique solution $u \equiv 1$ for $1 > p > -n - 1$. In [1, 2], the authors introduce two important functions:
$$W(x) = K^\alpha \lambda_1^{-1}(h_{ij}) - \frac{n\alpha - 1}{2n\alpha}|X|^2 = u \cdot \lambda_1(b_{ij}) - \frac{n\alpha - 1}{2n\alpha}(u^2 + |Du|^2)$$
and
(1.3)
$$Z(x) = K^\alpha \text{tr}(b_{ij}) - \frac{n\alpha - 1}{2\alpha}|X|^2 = u \cdot \text{tr}(b_{ij}) - \frac{n\alpha - 1}{2\alpha}(u^2 + |Du|^2),$$
which are the key to their proof, where $\lambda_1(h_{ij})$ and $\lambda_1(b_{ij})$ are the smallest and biggest eigenvalues of the second fundamental form h_{ij} of Σ and its inverse matrix b_{ij} respectively, $u : \mathbb{S}^n \to \Sigma \subset \mathbb{R}^{n+1}$ is the support function of Σ. Later, Gao-Li-Ma [7] and Gao-Ma [6] use these two functions above to study the uniqueness of closed self-similar solutions to σ_k^α-curvature flow following the idea of [1, 2]. In fact, in [7] the authors consider the following general equation
(1.4)
$$S^\alpha(\kappa_1, \ldots, \kappa_n) = \langle X, \nu \rangle,$$
where S is a 1-homogeneous smooth symmetric function of the principle curvatures κ_i. Under some assumptions on S, they show $\Sigma = X(\mathbb{S}^n)$ is a round sphere for $\alpha \geq 1$. Examples of S include $S = \sigma_k(\kappa_1, \ldots, \kappa_n)$, but not include $S = \frac{\sigma_n}{\sigma_{n-k}}(\kappa_1, \ldots, \kappa_n)$, for which the equation (1.4) is equivalent to L_p-Christoffel-Minkowski problem with $p = 1 - \frac{1}{\alpha}$. The main difficulty lies in the non-positivity of the term (2.3)
$$2\beta \left(k\sigma_k f - n \sum_{i=1}^n \sigma_{k-1}(\lambda|i)\lambda_i^2 \right),$$
if $f = \sigma_1$. (In this case, the Z function (1.3) is just the original Z function (1.2).) To overcome this difficulty, the easiest way is to choose f such that $k\sigma_k f - n \sum_{i=1}^n \sigma_{k-1}(\lambda|i)\lambda_i^2 = 0$. So, we need to modify the Z function. We introduce the following two functions:
$$W(x) = u \cdot \lambda_1(b_{ij}) - \beta(u^2 + |Du|^2)$$
and
(1.5)
$$Z(x) = uF(b_{ij}) - n\beta(u^2 + |Du|^2),$$
where $\lambda_n \leq \ldots \leq \lambda_2 \leq \lambda_1$ are the eigenvalues of the matrix $b_{ij} = u_{ij} + u_\delta_{ij}$, $\beta = \frac{p-1+k}{2k}$ and
$$F(b_{ij}) = f(\lambda_1, \lambda_2, \ldots, \lambda_n) = \sum_{i=1}^n \frac{n\sigma_{k-1}(\lambda|i)\lambda_i^2}{k\sigma_k},$$
Moreover, then we have

Let

Suppose that

here \(\sigma \) is also the \((k-1)\)-th elementary symmetric function of \(\lambda = (\lambda_1, \lambda_2, ..., \lambda_n) \) with \(\lambda_i = 0 \).

Remark 1.1. We can propose the following questions:

(i) When \(k = n \) our result does not cover the previous result in [4, 2], then it is natural to ask if one can improve it.

(ii) Can we Theorem 1.2 hold true without the assumption on the positive semi-definite of \(u_{ij} + u \delta_{ij} \)?

(iii) Can we construct some non-uniqueness examples of solutions to (1.2) for \(p < 1 - k \)?

2. The proof of Theorem 1.2

We denote by \(\sigma_{k-1}(\lambda|i) = \frac{\partial \sigma_{k-2}(\lambda)}{\partial \lambda_i} \) and \(\sigma_{k-2}(\lambda ij) = \frac{\partial^2 \sigma_{k-1}}{\partial \lambda_i \partial \lambda_j} \). We use the notations \(u_i = D_i u \), \(u_{ij} = D_j D_i u \), \(D_i b_{ij} = b_{ij};p \), and so on, where \(D \) is the standard Levi-Civita connection on \(\mathbb{S}^n \). Set \(b_{ij} = u_{ij} + u \delta_{ij} \), we denote by \(\lambda_n \leq ... \leq \lambda_2 \leq \lambda_1 \) are the eigenvalues of \(\{b_{ij}\} \), arranged in decreasing order. Each eigenvalue defines a Lipschitz continuous function on \(\mathbb{S}^n \).

We recall the following Lemma which is similar to Lemma 5 in [2].

Lemma 2.1. Suppose that \(\varphi \) is a smooth function on \(\mathbb{S}^n \) such that

\[
\lambda_1 \leq \varphi \quad \text{everywhere and} \quad \lambda_1(p) = \varphi(p).
\]

Let \(m \) denote the multiplicity of the biggest eigenvalue at \(p \), so that

\[
\lambda_n(p) \leq ... \leq \lambda_{m+1}(p) < \lambda_m(p) = ... = \lambda_1(p).
\]

Then, we have

\[
b_{ij};l = \varphi \delta_{ij} \quad \text{at} \quad p \quad \text{for} \quad 1 \leq i,j \leq m.
\]

Moreover,

\[
\varphi_{ii} \geq b_{11;ii} + 2 \sum_{l>m} \frac{(b_{1l;1})^2}{\lambda_1 - \lambda_l}, \quad \text{at} \quad p.
\]

We also need Lemma 4.4 in [7] which statement as follows.

Lemma 2.2. Under the assumptions of Lemma 2.1, we have

\[
\sigma_{ij;pq} b_{ij;1} b_{pq;1} - 2 \sigma_{ij} \sum_{l>m} \frac{(b_{1l;1})^2}{\lambda_1 - \lambda_l} \]

\[
= \sum_{i \neq j} \sigma_{k-2}(\lambda ij)b_{ii;1} b_{jj;1} - 2 \sum_{i>m} \sigma_{k-1}(\lambda |i) \frac{(b_{1l;1})^2}{\lambda_1 - \lambda_i} - 2 \sum_{i>m} \sigma_{k-1}(\lambda |i) \frac{(b_{ii;1})^2}{\lambda_1 - \lambda_i} \]

\[
+ 2 \sum_{i>j>m} \frac{\sigma_{k-1}(\lambda |i)(\lambda_1 - \lambda_i)^2 - \sigma_{k-1}(\lambda |j)(\lambda_1 - \lambda_j)^2}{(\lambda_1 - \lambda_i)(\lambda_1 - \lambda_j)(\lambda_i - \lambda_j)} b_{ij;1}^2.
\]

Now, we begin to prove Theorem 1.2: Set

\[
W(x) = u \cdot \lambda_1(b_{ij}) - \beta (u^2 + |Du|^2),
\]

where \(\beta = \frac{p-1+k}{2k} > 0 \), \(\lambda_1, ..., \lambda_n \) are the eigenvalues of \(\{b_{ij}\} \), \(\lambda_n \leq ... \leq \lambda_1 \). Our proof is divided into two steps.

Step 1: we will prove

\[
\lambda_1(x_0) = \lambda_2(x_0) = ... = \lambda_n(x_0) \quad \text{and} \quad |Du|(x_0) = 0
\]
for any $x_0 \in \{ x \in S^n : W(x) = \max_{S^n} W \}$.

Assume $W(x)$ attains its maximum at x_0. As above, we denote by m the multiplicity of the biggest eigenvalue at x_0. Let us define a smooth function φ such that

$$W(x_0) = u \cdot \varphi - \beta(u^2 + |Du|^2).$$

Since W attains its maximum at x_0, we have $\varphi(x) \geq \lambda_1$ everywhere and $\lambda_1 = \varphi$ at x_0. Choose a coordinate at x_0 such that

$$b_{ij}(x_0) = \text{diag}\{\lambda_1(x_0), ..., \lambda_n(x_0)\}$$

with

$$\lambda_n(x_0) \leq ... \leq \lambda_{m+1}(x_0) < \lambda_m(x_0) = ... = \lambda_1(x_0).$$

Since $u \cdot \varphi - \beta(u^2 + |Du|^2) = \text{constant}$, then

$$[\varphi - \beta(u^2 + |Du|^2)]_i = 0$$

and

$$[\varphi - \beta(u^2 + |Du|^2)]_{ii} = 0.$$

Taking (2.1)’s value at x_0 results in

$$0 = u_i \lambda_1 + ub_{11;i} - 2\beta u_i \lambda_i.$$

Thus,

$$b_{11;i} = \frac{u_i}{u}(2\beta \lambda_i - \lambda_1),$$

which implies together with Lemma 2.1 $u_i(x_0) = 0$ for $2 \leq i \leq m$. Taking (2.2)’s value at x_0 results in

$$0 = u_{ii} \lambda_1 + 2u_i b_{11;i} + u \varphi_{ii} - 2\beta[u_i^2 + uu_{ii} + u_{ii}^2 + u_{i}u_{ii}].$$

Thus,

$$0 = u_{ii} \lambda_1 + 2u_i b_{11;i} + u \varphi_{ii} - 2\beta[u_i^2 + uu_{ii} + u_{ii}^2 + u_{i}u_{ii}]$$

$$\geq (\lambda_i - u) \lambda_1 + 2u_i \frac{u_i}{u}(2\beta \lambda_i - \lambda_1) + u \left(b_{11;i} + 2 \sum_{l>m} \frac{(b_{1l;i})^2}{\lambda_1 - \lambda_l} \right) - 2\beta[\lambda_i \lambda_1 - u \lambda_i + ub_{ii;i}]$$

$$\geq \lambda_i \lambda_1 - u \lambda_i + \frac{2u_i^2}{u}(2\beta \lambda_i - \lambda_1) + u \left(b_{ii;11} + 2 \sum_{l>m} \frac{(b_{1l;i})^2}{\lambda_1 - \lambda_l} \delta_{ii} \right) - 2\beta[\lambda_i^2 - u \lambda_i + ub_{ii;i}],$$

here we use the following Ricci identity

$$b_{ii;11} = b_{11;ii} - b_{11} + b_{ii}$$

to get the last inequality. Differentiating the equation (1.2) shows

$$\sigma_k^{ii} b_{ii;1} = (p - 1) u^{p-2} u_1.$$

Differentiating it again

$$\sigma_k^{ii} b_{ii;11} = (p - 1) u^{p-3} [uu_{11} + (p - 2) u_{11}^2] - \sigma_k^{ij,pq} b_{ij;1} b_{pq;1}$$

$$= (p - 1) u^{p-3} [u \lambda_1 - u^2 + (p - 2) u_{11}^2] - \sigma_k^{ij,pq} b_{ij;1} b_{pq;1}.$$
Due to the concavity of $\sigma_k^p(\lambda)$,

$$- \sum_{i \neq j} \sigma_{k-2}(\lambda|i) b_{ii;1} b_{jj;1} \geq - \frac{(k-1)(p-1)^2}{k} u^{p-3} u_1^2,$$

which results in together with Lemma 2.2 by noticing that the forth and fifth terms in the right hand of the equation in Lemma 2.2 are negative

$$-\sigma^{ij,pq}_{k} b_{ij;1} b_{pq;1} + 2\sigma^i_k \sum_{l>m} \frac{(b_{1;i})^2}{\lambda_l - \lambda_i} \geq - \frac{(k-1)(p-1)^2}{k} u^{p-3} u_1^2 + 2 \sum_{l>m} \sigma_{k-1}(\lambda|i) \frac{(b_{1;i})^2}{\lambda_l - \lambda_i}.$$

Then,

$$0 = \sigma_k^{ij}[u \cdot \varphi - \beta(u^2 + |Du|^2)]_{ij} \geq k u^{p-1} \lambda_1 - k u^p + \sum_{i=1}^n \sigma_{k-1}(\lambda|i) \frac{2 u^2_i}{u} (2 \beta \lambda_i - \lambda_1)$$

$$+ u \left((p-1) u^{p-3} [u \lambda_1 - u^2 + (p-2) u_1^2] - \frac{(k-1)(p-1)^2}{k} u^{p-3} u_1^2 \right)$$

$$+ \frac{2}{u^2} \sum_{i>m} \sigma_{k-1}(\lambda|i) u^2_i (2 \beta \lambda_i - \lambda_1)^2$$

$$- 2 \beta \left(\sum_{i=1}^n \sigma(\lambda|i) \lambda_i (\lambda_i - \lambda_1) + k u^{p-1} \lambda_1 - k u^p + (p-1) u^{p-2} \sum_{i=1}^n u_i^2 \right)$$

$$\geq u^{p-1} (k \lambda_1 + (p-1) \lambda_1 - 2 \beta k \lambda_1)$$

$$+ u^p (-k - (p-1) + 2 k \beta) + 2 \beta \sigma_{k-1}(\lambda|i) \lambda_i (\lambda_i - \lambda_1)$$

$$+ \frac{u^2}{u} \left(2 (2 \beta - 1) \sigma_{k-1}(\lambda|1) \lambda_1 + (p-1)(p-2) u^{p-1} \right)$$

$$- \frac{(k-1)(p-1)^2}{k} u^{p-1} - 2 \beta (p-1) u^{p-1}$$

$$+ \frac{2}{u} \sum_{i>m} \sigma_{k-1}(\lambda|i) u^2_i (2 \beta \lambda_i - \lambda_1) \frac{(2 \beta - 1) \lambda_i}{\lambda_1 - \lambda_i}$$

$$+ 2 \beta (1 - p) u^{p-2} \sum_{i>m} u_i^2$$

$$\geq u_1^2 u^{p-3} \frac{2(k-1)(p-1)}{k} + \frac{2}{u} \sum_{i>m} \sigma_{k-1}(\lambda|i) u^2_i (2 \beta \lambda_i - \lambda_1) \frac{(2 \beta - 1) \lambda_i}{\lambda_1 - \lambda_i}$$

$$+ 2 \beta (1 - p) u^{p-2} \sum_{i>m} u_i^2 \geq 0,$$

where we use the following inequality to get the last inequality

$$\sigma_k(\lambda) \geq \lambda_1 \sigma_{k-1}(\lambda|1)$$

in view of the assumption on the positive semi-definite of $u_{ij} + u \delta_{ij}$. Thus, $\lambda_1(x_0) = \lambda_2(x_0) = \ldots = \lambda_n(x_0)$ and $|Du|(x_0) = 0$.

L_p-CHRISTOFFEL-MINKOWSKI PROBLEM 5
Step 2: we want to show that \(\{ x \in S^n : W(x) = \max_{S^n} W \} \) is an open set. We define

\[
Z(x) = uF(b_{ij}) - n_β(u_2^2 + |Du|^2),
\]

where

\[
F(b_{ij}) = f(λ_1, λ_2, ..., λ_n) = \sum_{i=1}^{n} \frac{n_σ_{k-1}(λ_i)λ_i^2}{k_σ_k} = \frac{n}{k}[σ_1 - (k + 1)\frac{σ_{k+1}}{σ_k}],
\]

which is a 1-homogeneous convex function satisfying \(f(1, 1, ..., 1) = n_β \) since \(u \) is \(k_β \)-convex. We will prove for any \(x_0 \in \{ x \in S^n : W(x) = \max_{S^n} W \} \), there exists a small neighborhood \(U(x_0) \) of \(x_0 \) such that

\[
s_{k_β}Z_{ij} + \frac{2}{u}g_{k_β}u_iZ_j \geq 0
\]

and

\[
Z(x_0) = \max_{S^n} Z(x).
\]

Denoting by \(f_i = \frac{∂f}{∂λ_i} \) and \(f_{ij} = \frac{∂^2f}{∂λ_i∂λ_j} \). For any \(x \in U(x_0) \), we choose a coordinate at \(x \) such that

\[
b_{ij}(x) = \text{diag}\{λ_1(x), ..., λ_n(x)\}.
\]

Then, we have at \(x \)

\[
Z_i = ud_i + u \sum_{i=1}^{n} F_{pq}b_{pq;i} - 2n_βu_iλ_i
\]

and

\[
Z_{ii} = ud_{ii}f + 2ud_i \sum_{i=1}^{n} f_ib_{ii;i} + uF_{pq, st}b_{pq;st;i} + u \sum_{i=1}^{n} f_ib_{ii;ii} - 2n_β[u_i^2 + uu_{ii} + u_i^2 + uu_{ii}]
\]

\[
= λ_i f - u \sum_{i=1}^{n} f_iλ_i + u \sum_{i=1}^{n} f_i(2n_βλ_i - f) + uF_{pq, st}b_{pq;st;i} + u \sum_{i=1}^{n} f_ib_{ii;ii} - 2n_β[λ_i^2 - uλ_i + uu_{ii}]
\]

\[
≥ λ_i f - u \sum_{i=1}^{n} f_i(2n_βλ_i - f) + uF_{pq, st}b_{pq;st;i} + u \sum_{i=1}^{n} f_ib_{ii;ii} - 2n_β[λ_i^2 - uλ_i + uu_{ii}]
\]

\[
+ u \sum_{i=1}^{n} fib_{ii;ii} - 2n_β[λ_i^2 - uλ_i + uu_{ii}]
\]

\[
+ u \sum_{i=1}^{n} fib_{ii;ii} - 2n_β[λ_i^2 - uλ_i + uu_{ii}]
\]
in view of the Ricci identity
\[b_{ii;lt} = b_{lt;ii} - b_{lt} + b_{ii} \]
and we use the convexity of \(f \) to get the last inequality. Differentiating the equation \((1.2)\) shows
\[\sigma_k^{ij} b_{ii;lt} = (p - 1) u^{p-2} u_t. \]

Differentiating it again
\[\sigma_k^{ij} b_{ii;lt} = (p - 1) u^{p-3} \left[uu_{tt} + (p - 2) u^2_t \right] - \sigma_k^{ij,pq} b_{ij;lt} b_{pq;lt} \]
\[= (p - 1) u^{p-3} \left[u\lambda - u^2 + (p - 2) u^2_t \right] - \sigma_k^{ij,pq} b_{ij;lt} b_{pq;lt}. \]

Due to the concavity of \(\sigma_k^i \),
\[\sigma_k^{ij,pq} b_{ij;lt} b_{pq;lt} \leq \frac{k - 1}{k} \left(\sigma_k^{ij} b_{ij;lt} \right)^2. \]

Then,
\[\sigma_k^{ij} Z_{ij} \]
\[\geq ku^{p-1}f - ku^{p} \sum_{i=1}^{n} f_i + \frac{2}{u} \sigma_k^{ij} u_i Z_j + \sum_{i=1}^{n} \sigma_{k-1}(\lambda |i) \frac{2u^2}{u} (2n\beta\lambda_i - f) \]
\[+ u \left((p - 1) u^{p-3} \left[uf - u^2 \sum_{i=1}^{n} f_i + (p - 2) \sum_{i=1}^{n} u^2 f_i \right] - \frac{k - 1}{k} (p - 1)^2 u^{p-3} \sum_{i=1}^{n} u^2 f_i \right) \]
\[- 2n\beta \left(\sum_{i=1}^{n} \sigma_{k-1}(\lambda |i) \lambda_i^2 - ku^p + (p - 1) u^{p-2} \sum_{i=1}^{n} u^2 \right) \]
\[\geq u^{p-1} (kf + (p - 1)f - 2\beta kf) + u^{p} \left(- k \sum_{i=1}^{n} f_i - (p - 1) \sum_{i=1}^{n} f_i + 2nk\beta \right) + \frac{2}{u} \sigma_k^{ij} u_i Z_j \]
\[+ \sum_{i=1}^{n} u^2 f^{p-2} \left(2\sigma_{k-1}(\lambda |i)(2n\beta\lambda_i - f)u^{1-p} + (p - 1)(p - 2)f_i \right) \]
\[- \frac{k - 1}{k} (p - 1)^2 f_i + 2n\beta(1 - p) \]
\[+ 2\beta \left(k\sigma_k f - n \sum_{i=1}^{n} \sigma_{k-1}(\lambda |i) \lambda_i^2 \right) \]
\[\geq u^{p} \left(- k \sum_{i=1}^{n} f_i - (p - 1) \sum_{i=1}^{n} f_i + 2nk\beta \right) + \frac{2}{u} \sigma_k^{ij} u_i Z_j \]
\[+ \sum_{i=1}^{n} u^2 f^{p-2} \left(2\sigma_{k-1}(\lambda |i)(2n\beta\lambda_i - f)u^{1-p} + (p - 1)(p - 2)f_i \right) \]
\[- \frac{k - 1}{k} (p - 1)^2 f_i + 2n\beta(1 - p) \right). \]

At \(x_0 \), we have \(\lambda_1 = \lambda_2 = \ldots = \lambda_n \). Thus, at \(x_0 \)
\[\sum_{i=1}^{n} n\lambda_i = f \quad \text{and} \quad f_i(x_0) = 1 \quad \forall 1 \leq i \leq n. \]
Thus,

\[2\sigma_{k-1}(\lambda_i)(2n\beta \lambda_i - f) = 2k(2\beta - 1)u^{p-1}.\]

So,

\[2\sigma_{k-1}(\lambda_i)(2n\beta \lambda_i - f)u^{1-p} + (p-1)(p-2)f_i - \frac{k-1}{k}(p-1)^2 f_i + 2n\beta(1-p)
\]

for \(1 > p > 1 - k\). Thus, there exists a small neighborhood \(U(x_0)\) such that

\[u^2 u^{p-2} \left(2\sigma_{k-1}(\lambda_i)(2n\beta \lambda_i - f)u^{1-p} + (p-1)(p-2)f_i - \frac{k-1}{k}(p-1)^2 f_i + 2n\beta(1-p)\right) \geq 0.
\]

(2.4)

Moreover, we obtain by Newton-MacLaurin’s inequality

\[\sum_{i=1}^{n} \frac{\partial (2\sigma_{k+1})}{\partial \lambda_i} \geq \frac{n-k}{k+1},\]

which implies

\[\sum_{i=1}^{n} f_i \leq \frac{n}{k} \left[n - (k+1) \frac{n-k}{k+1}\right] = n.
\]

Thus,

(2.5)

\[u^p(-k \sum f_i - (p-1) \sum f_i + 2nk\beta) = u^p(k+p-1)(n-\sum f_i) \geq 0.
\]

Thus, combining (2.4) and (2.5), we can find \(U(x_0)\) such that

\[\sigma_{k}^{ij} Z_{ij} + 2u \sigma_{k}^{ij} u_i Z_j \geq 0.
\]

Since \(f_i(\lambda_0) = 1\), we can choose \(U(\lambda_0)\) such that \(f\) is increase with each \(\lambda_i\) in \(U(\lambda_0)\), where \(\lambda_0 = (\lambda_1(x_0), ..., \lambda_n(x_0))\). Then, we can choose \(U(x_0)\) such that \(\{\lambda(x) : x \in U(x_0)\} \subset U(\lambda_0)\).

So, we have

\[Z(x_0) = nW(x_0) \geq nW(x) \geq Z(x),\]

which implies

\[Z(x_0) = \max_{U(x_0)} Z(x).
\]

Thus, we have by the strong maximum principle

\[W(x_0) = W(x).
\]

for any \(x\) in \(U(x_0)\). Thus, \(W(x) \equiv \max_{\mathbb{S}^n} W\) for any \(x \in \mathbb{S}^n\). So, \(Du = 0\) which implies \(u = \text{constant}\). Thus, we complete our proof.

Acknowledgement: Parts of this work was done, while the author was visiting the mathematical institute of Albert-Ludwigs-Universität Freiburg in Germany. He would like to express his deep gratitude to Prof. Guofang Wang for invitation, continuous support and encouragement, and some important suggestions on this paper. He also thanks the mathematical institute of Albert-Ludwigs-Universität Freiburg for its hospitality. Moreover, he also thanks Dr. Chuan-qiang Chen for some suggestions on this paper.
References

[1] G. Bianchi, K. J. Böröczky, A. Colesanti, Smoothness in the L_p-Minkowski problem for $p < 1$, arXiv:1706.06310 (2017).
[2] S. Brendle, K. Choi, P. Daskalopoulos, Asymptotic behavior of flows by powers of the Gaussian curvature, Acta Mathematica 219, 1-16 (2017)
[3] S. B. Chen, Y. Huang, Q. R. Li, J. K. Liu, L_p-Brunn-Minkowski inequality for $p < 1$, arXiv:1811.10181.
[4] K. Choi, P. Daskalopoulos, Uniqueness of closed self-similar solutions to the Gauss curvature flow, arXiv:1609.05487 (2016)
[5] K. S. Chou, X. J. Wang, The L_p-Minkowski problem and the Minkowski problem in centroaffine geometry, Adv. in Math. 205, 33-83 (2006)
[6] S. Z. Gao, H. Ma, Self-similar solutions of curvature flows in warped products, Differential Geom. Appl. 62, 234-252 (2019)
[7] S. Z. Gao, H. Z. Li, H. Ma, Uniqueness of closed self-similar solutions to σ^p_k-curvature flow, NoDEA Nonlinear Differential Equations Appl. 25 (2018), no. 5, Art. 45, 26 pp.
[8] P. F. Guan, X. N. Ma, Christoffel-Minkowski problem I: convexity of solutions of a hessian equation, Invent. Math. 151, 553-577 (2003)
[9] P. F. Guan, C. Xia, L_p Christoffel-Minkowski problem: the case $1 < p < k + 1$, Cal. Var. Partial Differential Equations 57-69 (2018)
[10] P. F. Guan, X. N. Ma, N. Trudinger, X. H. Zhu, A Form of Alexandrov-Fenchel Inequality, Pure and Applied Mathematics Quarterly Volume 6, Number 4 (Special Issue: In honor of Joseph J. Kohn, Part 2 of 2) 999-1012, 2010
[11] H. Jian, J. Lu, X.J. Wang, Nonuniqueness of solutions to the L_p-Minkowski problem. Adv. Math. 281 (2015), 845-856.
[12] C. Q. Hu, X. N. Ma, C. L. Shen, On the Christoffel-Minkowski problem of Firey’s p-sum, Cal. Var. Partial Differential Equations 21, 137-155 (2004)
[13] S. Y. Li, Christoffel-Minkowski problem of Firey’s p-sum, Master thesis, Chinese Academy of Sciences (2015)
[14] E. Lutwak, The Brunn-Minkowski-Firey theory I: Mixed volumes and the Minkowski problem, J. Differential Geom. 38, 131-150 (1993)
[15] E. Lutwak, The Brunn-Minkowski-Firey theory II: Affine and geominimal surface areas, Adv. in Math. 118, 244-294 (1996)
[16] E. Lutwak, V. Oliker, On the regularity of solutions to a generalization of the Minkowski problem, J. Differential Geom. 41, 227-246 (1995)
[17] R. Schneider, Convex bodies: the Brunn-Minkowski theory, Second edition, No. 151. Cambridge University Press, 2013.

Faculty of Mathematics and Statistics, Hubei University, Wuhan 430062, P.R. China. E-mail address: chernli@163.com