Interrater reliability estimators tested against true interrater reliabilities

Xinshu Zhao*, Guangchao Charles Feng, Song Harris Ao and Piper Liping Liu

Abstract

Background: Interrater reliability, aka intercoder reliability, is defined as true agreement between raters, aka coders, without chance agreement. It is used across many disciplines including medical and health research to measure the quality of ratings, coding, diagnoses, or other observations and judgements. While numerous indices of interrater reliability are available, experts disagree on which ones are legitimate or more appropriate.

Almost all agree that percent agreement \((a_o)\), the oldest and the simplest index, is also the most flawed because it fails to estimate and remove chance agreement, which is produced by raters’ random rating. The experts, however, disagree on which chance estimators are legitimate or better. The experts also disagree on which of the three factors, rating category, distribution skew, or task difficulty, an index should rely on to estimate chance agreement, or which factors the known indices in fact rely on.

The most popular chance-adjusted indices, according to a functionalist view of mathematical statistics, assume that all raters conduct intentional and maximum random rating while typical raters conduct involuntary and reluctant random rating. The mismatches between the assumed and the actual rater behaviors cause the indices to rely on mistaken factors to estimate chance agreement, leading to the numerous paradoxes, abnormalities, and other misbehaviors of the indices identified by prior studies.

Methods: We conducted a \(4 \times 8 \times 3\) between-subject controlled experiment with 4 subjects per cell. Each subject was a rating session with 100 pairs of rating by two raters, totaling 384 rating sessions as the experimental subjects. The experiment tested seven best-known indices of interrater reliability against the observed reliabilities and chance agreements. Impacts of the three factors, i.e., rating category, distribution skew, and task difficulty, on the indices were tested.

Results: The most criticized index, percent agreement \((a_o)\), showed as the most accurate predictor of reliability, reporting directional \(r^2 = .84\). It was also the third best approximator, overestimating observed reliability by 13 percentage points on average. The three most acclaimed and most popular indices, Scott’s \(\pi\), Cohen’s \(\kappa\) and Krippendorff’s \(\alpha\), underperformed all other indices, reporting directional \(r^2 = .312\) and underestimated reliability by 31.4 ~ 31.8 points. The newest index, Gwet’s \(AC_1\), emerged as the second-best predictor and the most accurate approximator. Bennett et al’s \(S\) ranked behind \(AC_1\), and Perreault and Leigh’s \(I\), ranked the fourth both for prediction and approximation. The reliance on category and skew and failure to rely on difficulty explain why the six chance-adjusted indices often underperformed \(a_o\), which they were created to outperform. The evidence corroborated the notion that the
Background

Intercoder or interrater reliability is used to measure measurement quality in many disciplines, including health and medical research [1–10]. A search of databases including Google Scholar, Scopus, and Web of Science found dozens of terms in academic literature, such as diagnostician for inter-diagnostician reliability and patient for inter-patient reliability, showing the concept’s broad reach --

annotator, arbitrator, assessor, auditor, diagnostician, doctor, editor, evaluator, examiner, grader, interpreter, interviewer, judge, monitor, observer, operator, patient, pharmacist, physician, reader, referee, reporter, researcher, respondent, scorer, screener, student, supervisor, surgeon, teacher, tester, therapist, transcriber, translator, user, voter.

Likely the earliest index is percent agreement, denoted a_0 [9, 11]. Almost all reliability experts agree that a_0 inflates reliability because it fails to remove chance agreement (a_c) [2–5, 12–14]. Scores of indices have been proposed to estimate and remove a_c. Bennett and colleagues’ S and Perreault and Leigh’s I_c estimate a_c as functions of category (C) [7, 15]. Scott’s π, Cohen’s κ and Krippendorff’s α estimate a_c as functions of distribution skew (s_h) [2, 16–19]. Gwet’s AC_1 makes a_c a function of both category and skew. Although many other indices are available and new indices continue to emerge, only these seven are in regular use and continue to be recommended or advocated, according to comprehensive reviews [14, 20–26].

Using derivation or simulation, statisticians discuss and debate three questions: 1) Which indices are valid or more accurate when estimating reliability or chance agreement? 2) What factors affect the indices? 3) What factors should affect the indices? Answers to Questions 2 and 3 explain the answers to Question 1 [14, 27]. Underlying the debates are five viewpoints, the first of which is widely shared by almost all experts, while the others are contested, often heatedly. The five viewpoints lead to five groups of conjectures, which we list below and leave the details to Additional file 1, Section I.2.

1. Percent agreement (a_o) ignores chance agreement (a_c), therefore is inflated.
2. Rating category (C) inflates S, I_c, and AC_1 by deflating the indices’ a_c estimates.
3. Distribution skew (s_h) deflates π, κ & α by inflating the indices’ a_c estimates.
4. Major indices overlook task difficulty, a major factor affecting a_c; consequently, they misestimate reliability.
5. Chance-adjusted indices, S, π, κ, α, I_c, and AC_1 included, assume intentional and maximum chance rating by all raters; it is under this assumption that the chance-adjusted indices share the same chance correcting formula, Eq. 1, where a_o is observed %-agreement, a_c is estimated chance agreement, and r_i is estimated true agreement, i.e., reliability index.

$$r_i = \frac{a_o - a_c}{1 - a_c}$$

The intentional-random assumption, aka maximum-random assumption, is said to be a root cause of many known paradoxes, abnormalities, and other misbehaviors of the indices, because raters are believed to be have honestly and truthfully. Random ratings, if any, should be involuntary rather than intentional, task-dependent rather than invariably maximized [14, 21–24, 26, 28–30].

Chance agreement is a product of rater behavior, and the debates are ultimately about rater behavior [14, 31]: What behaviors are assumed by the indices’ estimations? What behaviors in fact take place? Do the assumptions match the behaviors? The debaters rely on theoretical arguments, mathematical derivation, fictitious examples, naturalistic comparisons, and Monte Carlo simulation. A systematic observation of rater behavior is needed to inform the debates over rater behavior.

This paper reports a controlled experiment that manipulated category, skew, and difficulty, and observed raters’ behavioral responses. The seven indices were tested against the observed behavior. The findings also apply to the two equivalents of a_0, six equivalents of S,
two equivalents of π, and one equivalent of κ, covering
18 indices in total, all of which had been analyzed math-
ematically by Zhao, Liu and Deng [14].

Methods
Reconstructed experiment with golden standard
Reconstructed experiment on real data (REORD)
We conducted a $4 \times 8 \times 3$ between-subject controlled
experiment with 4 subjects per cell. Here the term “sub-
ject” refers to the unit of analysis of a study, such as a
participating patient in an experiment on the effective-
ness of a new drug. A “subject” in this study, however,
was a rating session with 100 pairs of rating by two raters.
As $4 \times 8 \times 3 \times 4 = 384$, this study was based on 384 rating
sessions, i.e., subjects. The three manipulated factors
included four levels of category (C = 2, 4, 6, 8), eight lev-
els of difficulty (df ranges 0 ~ 1, 0 for the least and 1 for
the most difficult), and three levels of skew ($s_k = 0.5$ for
50-50 distribution, 0.75 for 75-25 or 25-75 distribution,
and 0.99 for 99-1 or 1-99 distribution), as summarized in
Table 1.

Over 300 raters, registering 383 web names, from 53
Asian, European, and North American cities judged
online the lengths of bars, which served as the experi-
mental stimulus. A total of 22,290 items were rated, of
which 19,900 were successfully paired, producing 9950
pairs of rating. Borrowing techniques from bootstrap
[32, 33], jackknife [34], and Monte Carlo simulation [35],
we sampled and resampled from the 9950 pairs to recon-
struct the 384 rating sessions [36].

Thus, raters and rating were real, while rating sessions
were reconstructed, making it a reconstructed experi-
ment on real data (REORD). The Additional file 1 at
the end of this manuscript (Section II) provides further
details and rationales.

Observed true reliability (o_{ri}) and true chance agreement (o_{ac}) as golden standards
The raters were instructed to judge the length of bars.
The researchers determined the bar lengths through pro-
gramming, therefore know with certainty which rating
decision was right or wrong. As the lengths of the bars
were set such that random guesses would occur only
between the longest and the second longest bars, the
true chance agreement (o_{ac}) was twice the wrong agree-
ment (Eq. 3, Additional file 1), and true reliability (o_{ri})
was observed agreement a_o minus o_{ac} (Eq. 5 of Additional
file 1). Thus, o_{ri} served as the golden standard, namely
the observed estimand, against which the seven indices
were evaluated, and o_{ac} served as the golden standard for
the seven chance estimators [37]. Additional file 1 (II.3)
explains our use of the term "golden standard" as opposed
to "gold standard."

Five independent variables and 16 dependent variables
Thus, this REORD experiment features three manipu-
lated independent variables, category I, skew (s_k) and dif-

culty (df) and 16 main dependent variables, which are
the seven indices’ reliability and chance estimations plus
the observed true reliability (o_{ri}) and true chance agree-

ment (o_{ac}). As the two main estimands, o_{ri} and o_{ac} some-
times also serve as independent variables when assessing
their impacts on the indices’ estimations. Tables 1 and 2
and the Additional file 1 provide more details and ration-
elles of variable calculations.

Statistical indicators – directional R^2 squared (d_{r^2}) and mean
of errors (m_e)
Reliability indices serve two functions. One is to evaluate
measurement instruments against each other, for which
an index needs to accurately predict, meaning positively

Table 1 A category (C) by difficulty (df) by skew (s_k) - reconstructed experiment*a

Across: Distribution & Skew (s_k)	50&50	25&75, 75&25	1&99, 99&1
Across: Category (C)	50&50	75&25	1&99
------------------------------------	-------	-------------	-----------
2	4	4	4
4	4	4	4
6	4	4	4
8	4	4	4

difference in pixels (p_x)	1	2	3	4	5	6	7	8
Difficulty ($d_f = (8-p_x)/7$)	1.000	0.857	0.714	0.571	0.426	0.286	0.143	0.000

*a Main cell entries are number of reconstructed rating sessions (subjects) in each experimental condition (cell)
Table 2 Concepts and variables

Down: Author or Origin	Reliability (True Agreement)	Chance Agreement		
generic for any index	r_i	a_o		
Bennett et al. (1954)	a_o	a_{oK}		
Perreault & Leigh (1989)	S	S_{oK}		
Gwet (2002, 2008, 2010, 2012)	λ_i	I_{oK}		
Scott (1955)	π	π_{oK}		
Cohen (1960)	κ	κ_{oK}		
Krippendorff (1970, 1980)	α	α_{oK}		
Empirical Observation	o_{ri} observed interrater reliability	o_{riK} observed interrater reliability		
Primary Indicator	o_{ar} observed right agreement	o_{arK} observed right agreement		
Secondary Indicator (used in calculation)	a_o observed agreement	a_{oK} observed agreement		
Denotation C	s_k Distribution Skew	d_{oK} observed erroneous agreement		
Concept Category	e_m mean of means (mean estimation minus mean target)	d_{oK} observed disagreement		
Denotation em	s_{dm} standard deviation of an observed target of estimation ($o_{me} o_r$)	d_{oK}, or e_s Difficulty or Easiness		
Other Concepts	ϕ^2 directional ϕ^2 (dr$^2 = \phi	r)$	N_{e} No. of rating decisions within a session
No. of rating sessions	N_d No. of rating decisions			

and highly correlating with, true reliability. We use directional r squared ($dr^2 = r \cdot |r|$) to gauge the predictive accuracy of the seven indices and their chance estimators (Table 2 and Eq. 10 of the Additional file 1). We preferred r^2 over r because r^2 has a clearer and more practical interpretation, percent of the DV variance explained by the IV; r^2 is also more conservative as $r^2 \leq |r|$. We preferred dr^2 over r^2 because dr^2 indicates the direction of the relationship while r^2 does not.

The second function of the indices is to evaluate measurement instruments against fixed benchmarks, such as 0.67 and 0.80, that some reliability authorities recommend [19, 30, 44, 45]. For this function, an index needs to approximate true reliability. We use mean of errors, me, which is the indices’ deviations from the observed true reliability averaged across the 384 rating sessions, to gauge the approximating accuracy of the seven indices, denoted $me(ri)$ in Table 2 and Eq. 8 of the Additional file 1. With the same reasoning, we also use m_o to assess and compare the chance estimators of the indices, denoted $m_o(a_o)$ in Table 2 and Eq. 9 of the Additional file 1.

We adopted $dr^2 > .8$ as the primary benchmark and $m_o < .02$ as the secondary benchmark when evaluating the seven indices. Section V of the Additional file 1 details the calculations of and the rationales behind the benchmarks.

Functions of P values and statistical pretests

This study observes the tradition of reporting $p < \alpha$, where $\alpha = .05, .01$, or .001. We however also take a functionalist view of p values, striving to follow the best statistical practice [46–50]:

1) avoiding the terms containing "significance," e.g., "statistical significance" for $p < \alpha$;
2) considering $p < \alpha$ as a prescreen threshold, passing which allows us to assess, interpret, and compare effect size indicators on percentage scales, such as r^2, dr^2 and m_o, with some confidence;
3) using terms such as "statistical pretest" and "statistically acknowledged" where we would traditionally used "significance test" and "statistically significant;"
4) reserving the terms containing "significant" and "significance" for effect sizes of substantive importance.

More of our views and practices regarding the functions of p values may be found in our prior work [51–53].

Results

Reliability estimations tested against observed reliabilities

Findings are summarized in Tables 3, 4, 5 and 6 and Fig. 1 and discussed in three sections. This section reports the performance of the seven indices when predicting and approximating the observed reliability. The next section analyzes the impact of the four factors on the indices’ performance. The following section discusses offset mechanism for a better understanding of the indices’ complex behavior.

Overall, 2.86% of the raters’ decisions fell on the short bars (1.11, 1.93 and 5.53% respectively for four, six, and eight categories). As expected, there were fewer agreements on short bars, averaging 0.45% (0.04, 0.12, and 1.18%). These agreements showed no detectable effects on the main relations under investigation. The correlations between the manipulated variables were practically zero, confirming orthogonality, which indicates minimal confounding or multicollinearity.

Predicting reliability

Percent agreement, a_o, the oldest and the most criticized index of interrater reliability, did well predicting true reliability, showing $dr^2 = .841$ (Line 3, Table 3). Of the seven indices tested, a_o was the only one meeting the primary benchmark $dr^2 > .8$ (Ineq. 11), outperforming the second best, AC_1 ($dr^2 = .721$), and the third best, S ($dr^2 = .691$) by more than 10 points, although the latter two met the tentative benchmark $dr^2 > .67$.

The most respected three, π, κ and α, were disappointing, considering that the whole mission of the indices was to differentiate reliable instruments from unreliable ones accurately and consistently.

Figure 2 visualizes the performances and ranks the indices by their dr^2 scores. It is noticed, again, that κ and α ranked among the lowest while percent agreement (a_o) ranked the highest. Figure 2 also shows a strong and positive correlation between accuracy of predicting chance agreement and accuracy of predicting interrater reliability ($dr^2 = .9768$, $p < .001$), supporting a design feature of this study, which is to analyze the indices’ chance estimates for the purpose of understanding the indices.
Table 3 Effects of estimation targets, category, skew & difficulty on observed or estimated chance agreement and reliability (dr^2)

1	Right: Source or Author	A. Observation	B. %-agreement	C. Bennett et al.	D. Perreault & Leigh	E. Gwet	F. Scott	G. Cohen	H. Krippendorff	
		a_n	a_o	S	l_1	AC_1	π	κ	α	
2	Right: Obsd / Estd Interrater Reliability as Dependent Variables									
3	Observed Reliability (a_o)	1.00^{***}	$.841^{***}$	$.691^{***}$	$.599^{***}$	$.721^{***}$	$.312^{***}$	$.312^{***}$	$.312^{***}$	
4	Category (C)	$.003$	$-.002$	$.175^{***}$	$.185^{***}$	$.123^{***}$	$.001$	$.001$	$.001$	
5	Distribution Skew (b_o)	$.000$	$.000$	$.000$	$-$.000	$.003$	$-$.293***	$-$.292***	$-$.293***	
6	Difficulty (d_o)	$-.774^{***}$	$-.778^{***}$	$-.566^{***}$	$-.434^{***}$	$-.554^{***}$	$-.389^{***}$	$-.389^{***}$	$-.389^{***}$	
7	Right: Obsd / Estd Chance Agreement as Dependent Variables									
8	Observed Chance Agreement (o_{ac})	1.00^{***}	$-$	$.021^{**}$	$.021^{**}$	$-.151^{***}$	$-.152^{***}$	$-.151^{***}$	$-$	
9	Category (C)	$-.019^{**}$	$-$	$-.863^{***}$	$-.863^{***}$	$-.661^{***}$	$-.013^*$	$-.014^*$	$-.013^*$	
10	Distribution Skew (b_o)	$-.001$	$-$	$.000$	$.000$	$-.039^{***}$	$.437^{***}$	$.434^{***}$	$.437^{***}$	
11	Difficulty (d_o)	$.585^{***}$	$-$	$.000$	$.000$	$.009$	$-.123^{***}$	$-.125^{***}$	$-.123^{***}$	
N	12	N_c (number of rating sessions)	384	384	384	384	384	384	384	384
N	13	N_d (number items within each session)	100	100	100	100	100	100	100	100

Main cell entries are directional r squared (dr^2), which are r squared with the directional sign of r, $dr^2 = n\cdot r$

*: $p<.05$; **: $p<.01$; ***: $p<.001$

As ao_{ac}, the chance estimate of a_o is a constant, its correlations (dr^2) with other variables cannot be calculated.
Approximating reliability

A .555 average reliability (α_{ori}) was observed (A3, Table 5). The seven indices’ estimation of reliability, however, ranged from .237 (π) to .726 (Ir), indicating large approximation errors. As the experts would have predicted, percent agreement (a_0) overestimated reliability, reporting $m = .555$ (B6, Table 5) and $m = .555$ (A3, Table 4). The error, however, was below what’s allowed by the secondary benchmark, $m < .2$ (Ineq. 13 of the Additional file 1). So a_0 was the only index meeting both primary and secondary benchmarks.

Three other indices also met the $m < .2$ benchmark, of which two, AC_1 ($m = .093$) and S ($m = .096$). also outperformed a_0 (Line 3 Table 4).

The trio, π, κ and α, again underperformed all others, reporting $m = .323$ (D6, Table 5). The errors equaled one third of the 0~1 scale, and more than doubled the errors of a_0 ($m = .130$). l_1 overestimated reliability across the board like a_0 did (D6, Table 5), while κ, π and α underestimated across the board -- 23.7%~24.1% estimated versus 55.5% observed (Line 3, Table 5).

AC_1 and S underestimated some sessions while overestimated other sessions (Line 6, Table 5). Of AC_1 and S, the under and over estimations offset each other to make the sizes (absolute values) of m_e much smaller than that of m_c. Of the other five indices, e_m and m_e are about equal in size (Line 6, Table 5 vs Line 3, Table 4).

In part because of the offsets, AC_1 and S produced near-zero or very small e_m errors (.001 and .044, respectively), much smaller than any of the other five indices did. By contrast, κ, π and α again produced the largest errors, reporting e_m ranging from −.318~−.314, much worse than the next worst, l_1 ($e_m = .171$, Line 6, Table 5).

Pi-kappa-alpha synchrony

As shown above, π, κ and α behaved like one index, despite the spirited debates on which of them is the best [10, 12, 54–57]. This pattern of π-κ-α synchrony persisted throughout the data.

Impacts of four factors

The five viewpoints reviewed earlier discussed four factors behind reliability and/or reliability estimations. Now that we have observed rater behavior, we examine the true impacts of the four factors.

Conjecture group 1: chance agreement inflates a_0

As said, a 13% chance agreement (a_{0ac}) and a 55.5% reliability (α_{ori}) were observed, while percent agreement (a_0) assumed 0% chance agreement and reported a 68.5% reliability, which means a 13-point overestimation (Tables 4
Table 5: Means and error of means (em): index estimations against observations

1	Right: Author or Source	A. Observed Agreement	B. %-agreement	C. Bennett et al.	D. Perreault & Leigh	E. Gwet	F. Scott	G. Cohen	H. Krippendorff	
		A.	B.	C.	D.	E.	F.	G.	H.	
2	Observed or Estimated Reliability (denotation)	0.95	0.97	0.94	0.95	0.97	0.94	0.95	0.97	0.94
3	Observed / Estimated Reliability	0.95	0.97	0.94	0.95	0.97	0.94	0.95	0.97	0.94
4	Standard Deviation	0.24	0.12	0.20	0.17	0.19	0.25	0.24	0.27	0.24
5	Range (minimum—maximum)	0.21—0.90	0.42—0.92	0.10—0.856	0.0—0.926	0.0—0.926	0.19—0.867	0.24—0.892	0.24—0.892	0.24—0.892
6	$e_{ori} = \text{mean}(ori) - \text{mean}(ori)$ (−1 ≤ e_{ori} ≤ 1)	0.00	0.130**	0.001	0.171***	0.044***	0.318***	0.315***	0.314***	0.314***
7	95% confidence interval	0.00—0.00	0.115—0.144	0.013—0.015	0.155—0.186	0.031—0.058	0.314—0.295	0.338—0.292	0.338—0.291	0.338—0.291
8	Chance Agreement (denotation)	0.130	0.001	0.260	0.260	0.173	0.575	0.573	0.572	0.572
9	Observed or Estimated Chance Agreement	0.130	0.001	0.260	0.260	0.173	0.575	0.573	0.572	0.572
10	Standard Deviation	0.24	0.12	0.20	0.17	0.19	0.25	0.24	0.27	0.24
11	Range (minimum—maximum)	0.00—0.72	0.0—0.0	0.125—0.50	0.125—0.50	0.022—0.50	0.448—0.905	0.447—0.905	0.445—0.905	0.445—0.905
12	$e_{ac} = \text{mean}(ac) - \text{mean}(ac)$ (−1 ≤ e_{ac} ≤ 1)	0.00	0.130**	0.001	0.171***	0.044***	0.445***	0.453***	0.443***	0.443***
13	95% confidence interval	0.00—0.00	0.144—0.115	0.111—0.115	0.111—0.115	0.026—0.061	0.423—0.466	0.422—0.465	0.421—0.464	0.421—0.464
14	N (number of rating sessions)	38	384	384	384	384	384	384	384	384
15	Nd (number items within each session)	100	100	100	100	100	100	100	100	100

* *p < 0.05, **p < 0.01, ***p < 0.001
| Table 6 | Effects of category, skew, and difficulty on observed chance agreement, reliability, and index estimations (average scores) | | | | | | | | | | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | A. | B. | C. | D. | E. | F. | G. | H. | I. | J. | K. | L. | M. | N. | O. | P. | Q. |
| **Reliability Observations or Estimation** | | | | | | | | | | | | | | | | | | |
| **Chance Agreement Observations or Estimation** | Bennett | Perreault & Leigh | Gwet | Scott | Cohen | Krippendorff | Bennett | Perreault & Leigh | Gwet | Scott | Cohen | Krippendorff | Bennett | Perreault & Leigh | Gwet | Scott | Cohen | Krippendorff |
| **Author/ Source** | | | | | | | | | | | | | | | | | | |
| **Estimation** | | | | | | | | | | | | | | | | | | |
| **Category (C)** | | | | | | | | | | | | | | | | | | |
| Ground 0 | 0.555 | 0.537 | 0.550 | 0.550 | 0.550 | 0.550 | 0.550 | 0.550 | 0.550 | 0.550 | 0.550 | 0.550 | 0.550 | 0.550 | 0.550 | 0.550 | 0.550 |
| Category 1 | 0.685 | 0.701 | 0.698 | 0.698 | 0.698 | 0.698 | 0.698 | 0.698 | 0.698 | 0.698 | 0.698 | 0.698 | 0.698 | 0.698 | 0.698 | 0.698 | 0.698 |
| Category 2 | 0.700 | 0.708 | 0.708 | 0.708 | 0.708 | 0.708 | 0.708 | 0.708 | 0.708 | 0.708 | 0.708 | 0.708 | 0.708 | 0.708 | 0.708 | 0.708 | 0.708 |
| Category 3 | 0.700 | 0.707 | 0.707 | 0.707 | 0.707 | 0.707 | 0.707 | 0.707 | 0.707 | 0.707 | 0.707 | 0.707 | 0.707 | 0.707 | 0.707 | 0.707 | 0.707 |
| Category 4 | 0.700 | 0.706 | 0.706 | 0.706 | 0.706 | 0.706 | 0.706 | 0.706 | 0.706 | 0.706 | 0.706 | 0.706 | 0.706 | 0.706 | 0.706 | 0.706 | 0.706 |
| Category 5 | 0.700 | 0.704 | 0.704 | 0.704 | 0.704 | 0.704 | 0.704 | 0.704 | 0.704 | 0.704 | 0.704 | 0.704 | 0.704 | 0.704 | 0.704 | 0.704 | 0.704 |
| **Skew (sk)** | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 |
| **Difficulty (df)** | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| Mean | 0.500 | 0.500 | 0.500 | 0.500 | 0.500 | 0.500 | 0.500 | 0.500 | 0.500 | 0.500 | 0.500 | 0.500 | 0.500 | 0.500 | 0.500 | 0.500 | 0.500 |

Note: The table shows the effects of category, skew, and difficulty on observed chance agreement, reliability, and index estimations (average scores). Each entry represents the estimated reliability or agreement for the respective author, source, or estimation method under the specified category, skew, and difficulty conditions.
Fig. 1 A sample screen seen by some raters (for category = 6, difficulty = 1)

Fig. 2 Accuracies of Interrater Reliability Indices. Notes: 1. Solid red bars are d^2 between estimated chance agreement & observed chance agreement. 2. Dotted blue bars are d^2 between estimated interrater reliability & observed interrater reliability. 3. Primary benchmark: $d^2 > 0.8$. 4. Data source: Lines 3 & 8, Table 3
and 5). Conjecture 1 and the century-old beliefs were supported.

1. Chance agreement exists.
2. By completely overlooking chance agreement, ao inflates the estimated reliability.
 The data from this experiment, however, adds a third point:
3. The chance agreement may not be as large as previously thought.

In this experiment, the chance agreement of ao stayed below the .2 threshold, which was a main factor that allowed the predictive accuracy (r^2) of ao to stay above the .8 threshold. As ao outperformed all six indices on the primary benchmark (r^2) and outperformed four out of the six on the secondary benchmark (m_0), an argument could be made that overestimating and misestimating chance agreement can be as counterproductive as overlooking chance agreement.

Conjecture group 2: category inflates S, I, & AC1
As critics of S, I, and AC1 would have predicted, category (C) had large and negative effects on chance estimations S_{ac}, I_r, and AC_{ac}, with dr^2 ranging $-863\sim -661$, ($p<.001$, Line 9, Table 3). Table 6 (K4 ~ K7) shows more details, e.g., Sac was 50% when distribution was 50&50, but rose to 67.6% when distribution changed to 1&99.

The positive effects on chance estimates led to negative effects on reliability estimates. Skew effects on the three indices were all negative, with dr^2 ranging $-293.4 \sim -292$ ($p<.001$, Line 5, Table 3). When distribution changed from completely even to extremely skewed, the trio's chance agreement estimates increased from about .5 to about .68, and in parallel their reliability estimates decreased from about .37 to about .04, a drop of over 89% (Lines 8 ~ 10, Table 6). While mathematical analyses of prior studies had predicted a drop [14, 26, 58], the empirical evidence of this study showed the drastic magnitude of the drop.

In contrast to the large effects on the index estimators, skew showed minimal effect on the observed estimands, o_{ri} and o_{ac} ($p≥.05$ for both dr^2, A5 & A10, Table 3), supporting the argument that chance estimates and reliability indices should not rely on skew. Each difference between the skew effect on $κ$, $π$, or $α$ estimation and the category effect on the observed estimand passes the $p<.001$ pretest.

In another contrast, skew showed practically zero effects on S, I_r, or their chance estimates, and a small negative effect on AC_{ac} ($dr^2=-.039$, $p<.001$, Lines 5 & 10, Table 3). So I r avoided the skew effect as its authors intended, while AC1 reversed the effect as its author intended, although the reversed effect was small. A long-suspected pattern was confirmed empirically -- $κ$, $π$, & $α$ were dependent on skew while S, I_r, & AC1 were dependent on category.

Conjecture group 4: indices overlook task difficulty
Difficulty showed a substantial and positive effect on o_{ac} ($dr^2=585$, $p<.001$, A11, Table 3), and a large and negative effect on o_{ri} ($dr^2=-.774$, $p<.001$, A6). A change from extremely easy to extremely difficult decreased o_{ri} by over 68 percentage points and increased o_{ac} by nearly 36 points (Columns A and I, Table 6). These effects appear large compared with 13-point average o_{ac} and 55.5-point average o_{ac}, suggesting that chance estimates and reliability indices should rely on difficulty.

In contrast, difficulty had minimal effects on S_{ac}, I_{ac}, and AC_{ac} ($dr^2=0.000 ~ 0.009$, $p≥.05$, Table 3) and negative effects on $κ_{ac}$, $π_{ac}$ & $α_{ac}$ ($dr^2=-.123$ or $-.125$, $p<.001$, Table 3; c.f. Columns I & N ~ P, Lines 11 ~ 18, Table 6), implying that the indices either failed to rely on difficulty or relied on its opposite, easiness, to estimate chance agreement. Each difference between the difficulty effect on chance estimation and the difficulty effect on observed chance agreement was statistically acknowledged at $p<.001$.
Difficulty showed weaker effects on the six chance-adjusted indices (\(dr^2 = -.566 \sim -.389\), Line 6, Table 3) than on the estimation target \(o_{ac}\) (\(dr^2 = -.774\)). Each difference between the difficulty effect on reliability estimation and the difficulty effect on observed reliability was statistically acknowledged at \(p < .001\).

By contrast, \(a_{oc}\) showed a strong and negative correlation (\(dr^2 = -.778\), B6, Table 3) with difficulty. The correlation was as strong as the correlation between \(o_{ac}\) and difficulty (\(dr^2 = -.774\), A6), suggesting the negative correlations between the chance-adjusted indices and difficulty (\(dr^2 = -.566 \sim -.389\)) are likely due to \(a_{oc}\) embedded in the indices.

Based on derivation and simulation, Gwet concluded that the indices prior to \(AC_1\) had not handled difficulty properly, and \(AC_1\) handled it better, at least than \(\kappa\) [38, 59, 60]. The above findings support both claims. The near zero correlation between \(AC_{ac}\) and difficulty (\(dr^2 = .009\), \(p \geq .05\), E11, Table 3), however, suggests that \(AC_1\) still does not handle difficulty properly.

Conjecture group: indices assume intentional and maximum random rating

The most direct evidence for the behavioral assumptions behind the statistical indices should come by mathematical analysis. A 2013 study provides detailed scenarios of rater behavior assumed by each of the 22 indices analyzed [14]. Readers were invited to derive mathematical formulas from the behavioral scenarios. If a reader-derived formula matches the formula for the corresponding index, then the reader should conclude that the corresponding index indeed assumes the behavioral pattern depicted in the scenario. If, for example, a formula derived from the Kappa Scenario matches the formula for Cohen’s \(\kappa\) [2], it would confirm that \(\kappa\) indeed assumes the rater behavior depicted in the Kappa Scenario. Such class exercises, for example, have shown our students that the main chance-adjusted indices all assume that raters regularly conduct intentional and maximum random rating.

This study provided corroborating empirical evidence. The indices’ chance estimates were poorly correlated with their estimands, the observed chance agreements (Table 3, Line 8). The observed chance agreement (\(o_{ac}\)) explained less than 8% of the variance in each of the category-based indices’ chance estimates, \(S_{ac}\) (2.1%), \(I_{ac}\) (2.1%), and \(AC_{ac}\) (7.5%). Although the correlations were stronger for the skew-based indices’ chance estimates, \(\pi_{ac}\) (−15.1%), \(\kappa_{ac}\) (−15.2%), and \(\alpha_{ac}\) (−15.1%), the \(dr^2\) coefficients were all negative, suggesting that the three indices tended to give higher estimates when the true chance agreements were lower, and give lower estimates when the true chance agreements were higher. Clearly, the index-estimated random rating and the observed raters’ random rating were completely different entities. This finding supports the argument that the chance-adjusted indices assume intentional and maximum random rating while typical raters conduct involuntary and task-dependent random rating. The mismatches between the assumptions and the observations explain the negligible or negative correlations between the estimates and the estimands.

More corroborating evidence for the maximum-random assumption came from the large overestimation of chance agreement by the six chance-adjusted indices, as shown in Line 12 of Table 5 and the right half of Table 6, which are summarized in Line 19.

The more detailed and situational evidence of the behavioral assumptions come from the influences of the four factors and the indices’ offset and aggravation behaviors, which are discussed below.

Summarizing impacts of four factors

Each index of interrater reliability implied one or more misassumptions about chance agreement. \(a_{oc}\) Overlooked chance agreement. \(S\), \(I\), and \(AC_1\) inappropriately relied on category. \(\pi\), \(\kappa\) And \(\alpha\) inappropriately relied on skew. While difficulty had a strong and positive effect on chance agreement, all chance adjusted indices failed to rely on difficulty. \(\pi\), \(\kappa\) and \(\alpha\) even relied on its opposite, easiness. The misassumptions, including missed, mistaken, and contra assumptions, impeded estimation. \(\pi\), \(\kappa\) And \(\alpha\) fared worse in part because they entailed more and more devastating misassumptions, some of which had been mistaken as evidence of sophistications.

Recall that the main mission of the chance adjusted indices is to remove chance agreement in order to improve on percent agreement. When they mishandled the factors affecting chance agreement, they misestimated chance agreement, thereby misestimated reliability. Misassumptions about the four factors are keys to understanding the indices’ underperformance.

For more detailed understandings, we discuss below the offsetting mechanism, which interacts with the assumptions and misassumptions of the indices to define the indices’ behavior.

Offsets in reliability estimation

Puzzles may arise if one peruses Tables 3, 4, 5 and 6, five of which discussed below.

Puzzle 1

Each chance-adjusted index relied on a wrong factor, skew or category, to estimate chance agreement; none of them relied on the right factor, difficulty. How come some approximated chance agreement far better than the others (Line 12 of Table 5 and Line 7 of Table 4)?
Puzzle 2

Chance estimators barely measured the observed chance agreement o_{ac}; somer even measured anti o_{ac} (C8 ~ H8 of Table 3). Given the miserable performances of the chance estimations, how come the reliability estimations were all positively and sometimes substantially correlated with the observed reliability (C3 ~ H3)?

Puzzle 3

Assuming a negative relation between chance agreement and reliability, one might expect that an over estimation of chance agreement leads to an under estimation of reliability. How come S overestimated chance agreement by 100% ($o_{ac} = .130$ compared to $S_{ac} = .260$, Line 9, Table 5) while also approximated reliability almost perfectly ($S = .556$, compared to $o_{ri} = .555$, Line 3, Table 5)?

Puzzle 4

Continued from Puzzle 3, how come AC_1 overestimated chance agreement ($e_m = .044$, Line 12, Table 5) while also overestimated reliability ($e_m = .044$, Line 6, Table 5)?

More generally, how come across-the-board overestimations of chance agreement did not translate into across-the-board underestimations of reliability (Line 12 vs Line 6, Table 5)?

Puzzle 5

Continued from Puzzles 3 & 4, how come Ir_1 overestimated chance agreement ($e_m = .044$, Line 12, Table 5) while also overestimated reliability more than AC_1 did ($Ir_1 = .171$ vs $AC_1 = .044$, Line 6, Table 5)?

The puzzles can be explained in part by offsets, including partial offset, over offset, and counter offset, i.e., aggravation, imbedded in the reliability formulas, some of which discussed below.

Category offset, skew aggravation, and skew offset

To understand Puzzle 1, first recall that, under intentional-and-maximum-random assumption, chance-adjusted indices tend to overestimate chance agreement [9, 14, 29, 44, 45, 61–63]. In this experiment, the overestimations ranged from 4.4 percentage points by AC_1 to 44.5 points by Scott’s π, all statistically acknowledged ($p < .001$, Line 12, Table 5).

To explain Puzzle 1, we note that the category-based indices assumed that larger number of categories decreased chance agreement (C9 ~ E9, Table 3), which offset the general overestimation. The skew-based indices assumed that higher skew increased chance agreement (F10 ~ H10), which aggravated the general overestimation. AC_1 assumed both, that is, category and skew both decreased chance agreement (E10), thereby it offset the overestimation even more than the other two category-based indices.

To illustrate the point, we follow the textbook tradition of starting from ground zero, which features two raters, two categories, and 50%50% distribution. Here, and only here, all major indices gave about the same estimates, $a_c \approx 0.5$ (K2 ~ P2, Table 6). Under intentional-and-maximum-random assumption, two raters draw from marbles, half with one color and half another color; they rate randomly if the colors match, and honestly if mismatch [9, 14, 29, 44, 45]. Task difficulty is not a factor in this view of rater behavior.

In actual rating, however, $a_c = 0.5$ could occur only if the task is extremely difficult. In our experiment, even the most difficult ($d_i = 1$ for 1-pixel difference) condition did not reach that theoretical maximum, reporting an $o_{ac} = .38$ (I18, Table 6). The less difficult sessions reported significantly smaller o_{ac}, averaging 0.13 across all levels of difficulty. This means a 37-point initial overestimation at the ground zero by each chance-adjusted index ($e_m = .5-.13 = .37$).

When category increased from ground zero, S_{ac}, Ir_{ac} and AC_{ac} decreased quickly under the category assumption (Columns K ~ M, Row 4 ~ 7, Table 6). While the assumption was unjustified given the small change in o_{ac} (14 ~ 17), the decrease partially offset the 37-point overestimation, making S_{ac}, Ir_{ac} and AC_{ac} less inaccurate. By contrast, κ_{ac}, π_{ac} & α_{ac} rejected the category assumption to remain unchanged (Columns N ~ P), hence did not benefit from the partial offset. Thus, S_{ac}, Ir_{ac} & AC_{ac} became less inaccurate than κ_{ac}, π_{ac} & α_{ac}.

Now return to ground zero, then increase skew. Under the skew assumption, κ_{ac}, π_{ac} & α_{ac} increased with skew (Columns N ~ P, Row 8 ~ 10, Table 6). While the assumption was unjustified given the small change in o_{ac} (18 ~ 110), the increase further aggravated the 37-point overestimation, making κ_{ac}, π_{ac} & α_{ac} even more inaccurate. By contrast, S_{ac} and Ir_{ac} rejected the skew assumption to remain unchanged (K ~ L, 8 ~ 10), hence did not suffer from the aggravation. Thus, κ_{ac}, π_{ac} & α_{ac} became even more inaccurate than S_{ac} & Ir_{ac}.

Rather than accepting or rejecting the skew assumption, AC_{ac} reversed it, by assuming that skew reduced a_c (M8 ~ M10). While the assumption also mismatched the observed skew effects (18 ~ 110), the decrease further reduced the once 37-point overestimation. Here two unjustified assumptions, category and reversed skew, joined hands to partially offset another unjustified assumption, intentional and maximum random. Thus, AC_{ac} became even less inaccurate than S_{ac} & Ir_{ac}, hence the least inaccurate of the six. As the effect of intentional-and-maximum-random assumption was stronger than the other two effects combined, a net effect was that even AC_{ac} still overestimated chance agreement.
There were other under-offsets, over-offsets, and counter-offsets, i.e., aggravations, some of which discussed below. Behind multifarious offsets were multifarious assumptions about rater behaviors, which fought or allied with each other or stayed neutral to produce the multifarious outcomes. Two wrongs sometimes made one right, sometimes half right, and often three, four, or more wrongs.

Chance-removal offset

To understand Puzzle 2, recall that, assuming intentional and maximum random rating, index designers wanted to remove the maximum amount of chance agreement from all considerations, which requires to remove \(a_c\) not only from percent agreement (\(a_o\)), but also from the realm of consideration \([9, 14, 23, 24, 29, 44, 45]\). Accordingly, \(a_c\) is subtracted twice in Eq. 1, first from \(a_o\) in the numerator, and second from 1 in the denominator, which represents 100% of the realm of consideration. Two offsets occurred as a result. First, \(a_c\) offsets \(a_o\) in the numerator. Second, \(a_c\) in the denominator offsets its own impact in the numerator. As the self-offsets weaken \(a_c\)'s effects, \(a_o\) dominates Eq. 1, the indices' estimation of reliability. This explains Puzzle 2: the weak or negative \(a_c\)-\(o_ac\) correlations exerted weaker effects than the strong and positive \(a_c\)-\(o_ac\) correlation.

The weaker effects still hinder. The chance estimators not only failed to fulfill their prescribed mission of improving on percent agreement, but the estimators worked against the mission. Consequently, all six indices underperformed percent agreement when predicting observed true chance agreement. Ironically, it was the supposedly “most primitive” and “flawed” percent agreement (\(a_o\)) that worked inside the indices to keep them from performing and looking even worse \([2]\ p38, [12]\ p80).

The offsets also help to explain Puzzle 3. While S overestimated chance agreement by 13.1 points (Line 12, Table 5) on average, the chance-removal offset helped to bring down the scalar error of reliability estimation to 9.6

\[\text{vortex error to near zero (em which offset each other during averaging to reduce the vector error to near zero (em = .001, Line 6, Table 5. See also the discussion of aggregation bias earlier).}

By setting estimated reliability \(r_i\) in Eq. 1 equal to observed reliability \(o_{ri}\) in Eq. 5 of Additional file 1), \(r_i = o_{ri}\) we derive a threshold \(t_h\) for \(a_c\), which is Eq. 2:

\[t_h = \frac{o_{ac}}{1 - o_{ri} \leq o_{ac} \leq t_h \leq \infty\] (2)

For any rating session, an index accurately estimated reliability when \(a_c = t_h\), underestimated when \(a_c > t_h\), and overestimated when \(a_c < t_h\). Therefore, when \(o_{ac} < a_c < t_h\), the index overestimated both the chance agreement and the reliability, explaining Puzzle 4. Across the 384 sessions, average \(t_h\) would be .292 if we plug \(o_{ac}\) (.13) and \(o_{ri}\) (.555) into Eq. 2. As Table 5 shows, of the six chance-adjusted indices, the three (\(\kappa, \pi, \alpha\)) reporting \(a_c > .292\) (Line 9) also underestimated reliability (Line 6), and the three (\(S, I_p, AC_1\)) reporting \(a_c < .292\) also overestimated reliability. At the same time, all six overestimated chance agreement (Line 12). Due to the chance-removal offset, it is possible and possibly common for some category-based indices to overestimate both chance agreement and reliability.

A previously undocumented paradox emerges from this analysis (Eqs. 1 and 2). An index estimates reliability accurately \((r_i = o_{ri})\) only when it overestimates chance agreement \((a_c > o_{ac})\), an index that estimates chance agreement accurately \((a_c = o_{ac})\) inevitably underestimates reliability \((r_i = o_{ri})\), except in the extreme and impractical situation when \(r_i = o_{ri} = 0\). The paradox, applicable for all known chance-adjusted indices, is rooted in the chance-removal offset imposed by Eq. 1, which traces back to the intentional and maximum random assumption \([14, 23, 24, 26]\).

Square-root over offset

To understand Puzzle 5, recall that Perreault and Leigh's \(I_r\) adopts the chance estimator of S, \(Ir_{ac} = S_{ac}\), and takes the square root of S as the reliability estimation \([7]\). \(S < I_r = S^{\frac{1}{2}}\) for \(1 \geq S > 0\) and \(I_r = 0\) for \(-1 \geq S < 0\). When chance agreement is overestimated, the square root operation constitutes an additional offset \([14]\). Due to the category-based over-offset of S, \(I_r\) overestimates chance agreement more than \(AC_1\); at the meantime, due to the square root over offset of \(I_r\), \(I_r\) overestimates reliability more than \(AC_1\). The two offsets explain Puzzle 5.

A rating session in this experiment simulates a study. In practice, errors do not offset across studies, e.g., one study's overestimation of Disease A does not offset another study's underestimation of Disease B. We should not overemphasize the near-zero aggregated error by S shown in \(e_m\) or overlook the sizable individual errors by S shown in \(m_e\).

Discussion

Main findings

Of the seven indices, percent agreement \((a_o)\) stood out as the most accurate predictor of reliability \((dr^2 = .841, Table 3) and the third most accurate approximator \((m_e = .130, Table 4). AC_1\), the newest and the least known, was the second-best predictor \((dr^2 = .721)\) and the best approximator \((m_e = .093)\). S ranked behind \(AC_1\) for both functions \((dr^2 = .691, m_e = .096)\).
The most respected, the most often required, and the most often applied indices, π, κ and α, ranked the last for both functions (dr² = .312, mₑ = .323 ~ .327).

The indices’ underperformances appeared attributable to mismatches between the assumed and observed rater behaviors, and multifarious offsets and aggravations between the misassumptions. Percent agreement assumed zero random rating, leading to the 13-point overestimation of reliability. The other six indices assumed intentional and maximum random rating, leading to a 37-point initial overestimation of chance agreement at “ground zero” for interrater reliability (Line 3, Table 6).

Away from ground zero, S, Iᵣ and AC₁ assumed larger number of categories produced less chance agreement, which offset the initial overestimation, while π, κ and α assumed skewer distributions produced more chance agreement, which aggravated the overestimation. The opportune offsets and the austere aggravations explain the smaller approximation errors by the category-based indices than by the skew-based indices. Contrary to the assumptions, neither rating category nor distribution skew showed meaningful effects on the observed true chance agreement.

Difficulty exhibited a substantial and positive effects on chance agreement (dr² = .585, p < .001, Table 3), while S, Iᵣ and AC₁ did not rely on difficulty to estimate chance agreement (dr² = .000 ~ .009, p ≥ .05). Failing to rely on difficulty further explains the three indices’ underperformances in prediction. Moreover, π, κ & α relied on the opposite difficulty, easiness, to estimate chance agreement (dr² = −.125 ~ −.123, p < .001), which further explains π, κ & α’s worse performances than S, Iᵣ and AC₁.

What did the indices indicate?
An index indicates a certain concept. What did the seven indices indicate? Did they indicate what they purport to indicate?

Percent agreement aₑ was the only index meeting the primary benchmark (dr² > .8), thereby also meeting the competitive benchmark. By overlooking chance agreements, aₑ overestimated reliability by 13 percentage points (mₑ = mₑ = .130, Tables 4 and 5). The error was within the range allowed by the secondary benchmark (mₑ < .2). The overestimation appeared across the board, as shown in Columns A and B (Lines 4 through 18) of Table 6, which implies that researchers and reviewers may manage aₑ’s deficiency by discounting a certain amount, such as 15 points, treating aₑ = 0.15 as a crude estimation of reliability. Overall, in this experiment percent agreement behaved as a good predictor and a 13-point over-approximator of interrater reliability.

The other six indices set out to outperform aₑ by removing estimated chance agreement aₑ. Unfortunately, their aₑ estimations failed to accurately estimate true chance agreement oₑ. Sₑ, Irₑ and ACₑ were slightly influenced by oₑ (dr² = .021 ~ .075, p < .01 or p < .001, Table 3). They were instead strongly and negatively influenced by category (dr² = −.863 ~ −.661, p < .001), suggesting they indicated fewness of category more than they indicated chance agreement. The other three chance estimators, πₑ, κₑ & αₑ predicted far less accurately. They indicated mostly skew (dr² = .434 ~ .37), the opposite of observed chance agreement oₑ, and easiness (Lines 8-10, Columns F-H, Table 3).

When Eq. 1 was used to remove aₑ, aₐ offset some impact of aₑ, which also self-offset some. The offsets reduced the category and skew effects and kept the index-œₐ correlations positive (Line 3-5, Table 3). But still, aₑ, the unique core of each index, all impeded the reliability estimation. Sₑ, Irₑ and ACₑ impeded less than πₑ, κₑ & αₑ did, allowing S, Iᵣ and AC₁ to predict reliability better than π, κ, & α did (Line 3, Table 3). But the reduced impediments were still impediments. Consequently, none of the chance-adjusted indices had a good chance of outperforming aₑ when predicting reliability. Two indices, AC₁ (mₑ = .903) and S (mₑ = .906), did outperform aₑ (mₑ = .13) for approximation, which was due more to opportune offsets between misassumptions, and less to removing chance agreements (Line 3, Table 4).

Consequently, no chance-adjusted index passed the primary benchmark dr² > .8. Two, AC₁ (.721) and S (.691), passed the threshold dr² > .67 for tentative acceptance (Table 3). Being the best approximator, AC₁ (mₑ = .903) was the one meeting the competitive benchmark. AC₁ and S were also two of the four indices meeting the secondary benchmark, mₑ < .2 (Line 3, Table 3).

Category exerted some effects on AC₁ (dr² = .123) and S (dr² = .175). Fortunately for the two indices, the category effects were much smaller than the estimand effects of aₑ (dr² = .721 & .691). The two indices underestimated reliability when C = 2, and overestimated when C ≥ 4 (Columns A, C and E, Lines 4 ~ 7, Table 6). Overall, AC₁ and S were acceptable predictors of interrater reliability, and under- or over-approximators when category was respectively under or over 3.

Iᵣ (dr² = .599, mₑ = .18) failed the tentative benchmark for prediction but satisfied the secondary benchmark for proximity. It overestimated reliability across the board. Overall, Iᵣ was a poor predictor and an 18-point over-approximator of interrater reliability. Iᵣ’s overestimation was worse when the number of categories was increased.

The performances of π, κ and α belong to another class. The trio’s estimation-estimand correlations (dr² = .312) were far below the primary benchmark...
of $\text{dr}^2 > .8$ or the tentative benchmark of $\text{dr}^2 > .67$; and their approximation errors ($m_e = .323 \sim .327$) were far above the secondary benchmark $m_e < .2$. Furthermore, evenness (1-skew) exerted nearly as large effects on the trio ($\text{dr}^2 = .292 \sim .293$, Line 5) as their estimand α_0 did ($\text{dr}^2 = .312$), suggesting that the trio indicated distribution evenness nearly as much as they indicated inter-rater reliability. More even distributions raised π, κ and α nearly as effectively as higher reliability did, even though skew or evenness showed no effect on observed reliability or chance agreement.

Overall, π, κ & α were crude predictors of reliability and evenness, and 31-point under-approximators of reliability. They were crude because they showed large errors when predicting reliability ($\text{dr}^2 = .312$) or evenness ($\text{dr}^2 = .292 \sim .293$).

While $\text{dr}^2 (.292 \sim .293)$ were too low to make π, κ & α precise indicators of evenness or skew, they were too high to make the trio pure indicators of reliability. The correlation can be even more disconcerting if one considers its impact on the creation and diffusion of knowledge. Reviewers and researchers use the trio to screen measurements and manuscripts, while the trio systematically favor more even distributions, making the world appear flatter. It would be a collective version of the conservative bias, or evenness bias, except this one permeates scientific knowledge [64, 65]. By contrast, a_o showed none of this disparaging deficiency ($\text{dr}^2 = .000$).

Conclusion

Like most controlled experiments, this study had limited external validity. The raters made visual judgments, which did not represent all tasks. The categories stopped at eight. The short-bar categories were largely empty by design. Each session had only two raters. The list could go on. To avoid unwarranted generalization, we used past tense to describe the indices’ behaviors and their impact.

Our findings, however, have been speculated or predicted by the theoretical analyses, mathematical derivations and Monte Carlo simulations [14, 29, 59–63, 66–70]. These studies used no actual measures, specific tasks, human raters, or other specifics that may limit external validity. What some other studies lack in internal validity, this study provides. The validity of our collective knowledge is significantly strengthened by adding empirical studies based on observing rater behavior.

The indices were advertised to be “standard” and “global” for “general purpose” [12, 14, 42, 71]. Now that some reigning indices did not perform as advertised against one set of observed behavior, it is sufficient evidence that the indices are not general or global or standard. The burden is not on doubters to prove that the purported general indices always fail, but on defenders to produce good evidence that the indices generally perform.

Despite the lack of empirical evidence in support of the reigning indices, the spiral of inertia in their defense likely will continue for a while [26, 58]. In that event, the interpretation of π, κ and α may warrant more caution, and the application of a_o and AC_1 may deserve more credence.

Future research

Replication studies

More controlled experiments are called for to falsify or qualify the findings of and the theories behind this experiment, and to test the other reliability indices against their estimands [71–73].

New indices

New indices may be needed. Index designers may be more cautious about the assumptions that raters conduct intentional and maximum chance rating, or their chance rating is determined by skew or category. More thoughts may be given to the possibility that raters conduct instead involuntary and task-dependent random rating, and more weights given to task difficulty. The index designers are encouraged to assess and adjust their ideas and indices against behavioral data, including the data from this experiment, which will be made public upon publication of this manuscript.

REORD and behavior-based statistical methods

Mathematical statistics use a system of axioms and theorems to build tools for analyzing behavioral data. The REORD (reconstructed experiment on real data) methodology reverses the logic, using observed behavior to inform statistical methods. The application might not be limited to interrater reliability. REORD, for example, may open a new front for the studies of sensitivity and specificity measures, two practical tools often used in medical and health research. REORD may also help to investigate the empirical relationship between reliability and validity, two of the most fundamental concepts of scientific enquiry.

Rater expectations of prevalence or skew

The researchers in this REORD experiment told the raters nothing about the prevalence or the skew of the long and short bars. As prevalence and skew were
programmed to vary randomly between trials and between rating sessions, the researchers themselves did not know about the prevalence or skew until data analysis, and the raters could not have guessed accurately. This design feature was chosen because it resembled one type of research condition, under which raters don’t know what to expect, therefore they don’t expect.

For some tasks, however, raters do expect about prevalence and skew, due to their prior experience with the same tasks or their prior exposure to second-hand information. A follow-up study may investigate the impact of such expectations on raters’ rating or the indices of reliability, sensitivity, and specificity.

Human vs machine raters

Expectations about distribution, prevalence, and skew can be programmed into artificial intelligence (AI) to aid automated diagnoses, judgements, scorings, evaluations, ratings, and other decisions by machines. Unlike human decisions and human expectations that are often vague and varying, machine decisions and machine expectations can be programmed to be super clear and super consistent [74, 75]. Topics of human-machine reliability and inter-machine reliability versus inter-human reliability could be fruitful and fascinating for research using REORD, and so could topics of sensitivity, specificity, and validity with human and/or machine raters.

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1186/s12874-022-01707-5.

Acknowledgements

The authors gratefully acknowledge the contributions of Hui Huang and Chi Yang to the execution of the reconstructed experiment.

Authors’ contributions

XZ designed the study, supervised the construction of the experimental site, organized the data collection, conducted the data analysis, and drafted the manuscript. GCF provided feedback for the research design, assisted with data analysis, and provided comments. SHA and LPL provided input into the manuscript writing. All authors read and approved the final manuscript.

Funding

This research is supported in part by grants of University of Macau, including CRG2021-00002-ICI, ICI-RTD-0010-2021, CPQ2021-00028-FSS and SRQ2018-00143-FSS, ZXS PI, Macau Higher Education Fund, HSS-UMAC-2020-02, ZXS PI; Jiangxi 2K Initiative through Jiangxi Normal University School of Journalism and Communication, 2018-08-10, Zhao PI; National Social Science Fund of China, 18BBX062, GCF PI.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate

The survey study received ethical approval under the ethics procedures of University of Macau Panel on Research Ethics (reference SSHRE22-APP016-FSS). Written consent for the survey was also taken. All methods were carried out in accordance with relevant guidelines and regulations. Informed consent was obtained from all subjects/participants and/or their legal guardian(s).

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Received 24 May 2022 Accepted: 4 August 2022

Published online: 29 August 2022

References

1. Arstein R. Inter-annotator agreement. In: Ide N, editor. Handbook of linguistic annotation: Springer Netherlands, 2017. p. 297–313. Available from: https://link.springer.com/chapter/10.1007/978-94-024-0881-2_11. Cited 2022 Jan 15.

2. Cohen J. A coefficient of agreement for nominal scales. Educ Psychol Meas. 1960;20(1):37–46 Available from: http://psycnet.apa.org/index.cfm?fa=search.displayRecord&uid=1960-06759-001. Cited 2022 Jan 15.

3. Feng GC. Estimating intercoder reliability: a structural equation modeling approach. Qual Quant. 2014;48(4):2355–69 Available from: http://link.springer.com/article/10.1007/s11135-014-9336-6. Cited 2022 Jan 15.

4. Feng GC. Intercoer reliability indices: disuse, misuse, and abuse. Qual Quant. 2014;48(3):1803–15 Available from: http://link.springer.com/article/10.1007/s11135-013-9956-8. Cited 2022 Jan 15.

5. Feng GC. Mistakes and how to avoid mistakes in using intercoder reliability indices. Methodology. 2015;11(1):13–22 Available from: http://content.hogrefe.com/doi/full/10.1027/1616-2421/a000086. Cited 2022 Jan 15.

6. Grayson K, Rust R. Interrater reliability. J Consum Psychol. 2001;10(1/2):71–3 Available from: http://www.ncbi.nlm.nih.gov/pubmed/221411736%5Chttp://linkinghub.elsevier.com/retrieve/pii/S1057740801702471. Cited 2022 Jan 15.

7. Penneault WD, Leigh LE. Reliability of nominal data based on qualitative judgments. J Mark Res. 1989;26(2):135–48.

8. Popping R. On agreement indices for nominal data. In: Saris WE, Gallhofer IN, editors. Sociometric research: Volume I, data collection and scaling. 1st ed. New York: St. Martin’s / Springer, 1988. p. 90–105. Available from: http://link.springer.com/chapter/10.1007/978-1-349-19051-5_6. Cited 2022 Jan 15.

9. Riffe D, Lacy S, Fico FG. Analyzing media messages: using quantitative content analysis in research. 2nd ed. Mahwah and London: Lawrence Erlbaum Associates, Publishers, 2005. Available from: https://books.google.com.hk/books?hl=en&lr=&id=enCRAGqAAQBAJ&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false. Cited 2022 Jan 15.

10. Zwick R. Another look at interrater agreement. Psychol Bull. 1988;103(3):374–8 Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1988524/.

11. Benini R. Principi di Demografia: Manuali Barbera Di Scienze Giuridiche Sociali e Politiche (no. 29) [Principles of demographics (Barbera manuals of jurisprudence and social policy)]. Firenze: G. Barbera, 1901.

12. Hayes AF, Krippendorff KH. Answering the call for a standard reliability measure for coding data. Commun Methods Meas. 2007;1(1):77–89 Available from: http://www.tandfonline.com/doi/abs/10.1080/19312450709336664. Cited 2022 Jan 15.

13. Hughes MA, Garrett DE. Intercoder reliability estimation approaches in marketing: a generalizability theory framework for quantitative data. J Mark Res. 1990;27(2):185–95 Available from: http://search.ebscohost.com/login.aspx?direct=true&db=buh&AN=9602266627&site=ehost-live. Cited 2022 Jan 15.
Zhao X. Selective spiral ——a mega, meta, predictive and presumptive

Grove WM, Andreasen NC, McDonald-Scott P, Keller MB, Shapiro RW.

Scott WA. Reliability of content analysis: the case of nominal coding. Pub-

Conger AJ. Kappa and rater accuracy: paradigms and parameters. Educ

We agreed to measure agreement -

When to use Cohen’s κ, if ever? In: Paper presented at the 61st

On the usefulness of interrater reliability

ten Hove D, Jorgensen TD, van der Ark LA. On the usefulness of interrater reliabil-

Riffe D, Lacy S, Fico FG. Analyzing media messages: using quantitative

Bennett EM, Alpert R, Goldstein AC. Communications through limited

Communications through limited theory of communication. Chin J J Commun. 2018;40(2):140–53 Available from: https://www.taylorfrancis.com/books/9780429464166

Reliability studies of psychiatric diagnosis: theory and practice. Arch Gen

Scott KL. Handbook of inter-rater reliability: the definitive guide to measuring the extent of agreement among raters. 2nd ed. Gaithersburg: STATAXIS Publishing Company; 2010. p. 197.

Gwt K. Inter-rater reliability: dependency on trait prevalence and mar-
ginal homogeneity. Gaithersburg: Available from: http://hbanaszak. mjr.uw.edu.pl/TempText/smir2a.pdf. Cited 2022 Jan 15.

Gwt K. Computing inter-rater reliability and its variance in the presence of high agreement. Br J Math Stat Psychol. 2008;61(1):29–48 Available from: http://onlinelibrary.wiley.com/doi/10.1111/j.1467-9884.2007.00260.full. Cited 2022 Jan 15.

Gwt K. Handbook of inter-rater reliability: the definitive guide to measuring the extent of agreement among multiple raters. 3rd ed. Gaithers-

Gwet KL. Handbook of inter-rater reliability: the definitive guide to measuring agreement -

Gwet KL. Computing inter-rater reliability and its variance in the presence of high agreement. Br J Math Stat Psychol. 2005;33(700):1121 Available from: bmj.com. Cited 2022 Jan 15.

Gwt K. Handbook of inter-rater reliability: the definitive guide to measuring the extent of agreement among raters. 2nd ed. Gaithers-

Gwet K. Inter-rater reliability: dependency on trait prevalence and mar-
ginal homogeneity. Gaithersburg, Advanced Analytics, LLC; 2012. p. 197. Available from: https://books.google.com/books?hl=en&lr=&id=fix9BQAABJ&oj=false&pg=PP1&dq=Gwat+k+&ots=UdDrDPajla&sig=emKjwb1WhcNG474bCD0mp3n5BMK. Cited 2022 Jan 15.

Krippendorff KH. Estimating the reliability, systematic error and random error of interval data. Educ Psychol Meas. 1970;30(1):61–70 Available from: http://epm.sagepub.com/content/30/1/61.short. Cited 2022 Jan 15.

Krippendorff KH. Estimating the reliability, systematic error and random error of interval data. Educ Psychol Meas. 1970;30:61–70 Available from: http://epm.sagepub.com/cgi/doi/10.1177/0007110277070000105. Cited 2022 Jan 15.

Krippendorff KH. Estimating the reliability, systematic error and random error of interval data. Educ Psychol Meas. 1970;30(1):61–70 Available from: http://epm.sagepub.com/content/30/1/61.short. Cited 2022 Jan 15.

Krippendorff KH: Bivariate agreement coefficients for reliability of data. Sociol Methodol. 1970;2:139–50 Available from: http://www.jstor.org/stable/270787. Cited 2022 Jan 15.

Lazar N. Time to say goodbye to “statistically significant” and embrace uncertainty, say statisticians: Retraction Watch. 2019. Available from: https://retractionwatch.com/2019/03/21/time-to-say-goodbye-to-statistically-significant-and-embrace-uncertainty-say-statisticians/. Cited 2022 Jan 15.

Liu PL, Zhao X, Wan B. COVID-19 information exposure and vaccine hesitancy: the influence of trust in government and vaccine confidence. Psychol Heal Med. 2021,00(00):1–10. https://doi.org/10.1080/13548506.2021.19410. Cited 2022 Jan 15.

Zhao X. Four functions of statistical significance tests. In: Presentation at the School of Statistics and Center for Data Sciences Beijing Normal University, 25th December, 2016. Available from: https://repository.um.edu.mo/handle/10692/953184. Cited 2022 Jan 15.

Zhao X, Ji E, Sun S, Zhen Y, Zhang Z, Xiao Q, et al. Best title lengths of online postings for highest read and relay. J Commun Rev. 2022;7(3)5–20 Available from: https://repository.um.edu.mo/handle/10692/95320. Cited 2022 Jul 21.
54. Hsu LM, Field R. Interrater agreement measures: comments on Kappan, Cohen's Kappa, Scott's τ, and Aickin's α. Underst Stat. 2003;2(3):205–19.
55. Krippendorff KH. Reliability in content analysis: some common misconceptions and recommendations. Hum Commun Res. 2004;30(3):411–33.
56. Krippendorff KH. A dissenting view on so-called paradoxes of reliability coefficients. Ann Int Commun Assoc. 2013;36(1):481–99 Available from: http://www.tandfonline.com/doi/pdf/10.1080/23808985.2013.11679143. Cited 2022 Jan 15.
57. Lombard M, Snyder-Duch J, Bracken CC. Content analysis in mass communication: assessment and reporting of intercoder reliability. Hum Commun Res. 2002;28(4):587–604 Available from: http://onlineibrary.wiley.com/doi/10.1111/j.1468-2958.2002.tb00826.x/abstract. Cited 2022 Jan 15.
58. Feng GC, Zhao X. Do not force agreement – a response to Krippendorff. Methodol Eur J Res Methods Behav Soc Sci. 2016;12(4):145–8 Available from: https://repository.um.edu.mo/handle/10692/26008. Cited 2022 Jan 15.
59. Gwet KL. Computing inter-rater reliability and its variance in the presence of high agreement. Br J Math Stat Psychol. 2008;61(1):29–48 Available from: http://doi.wiley.com/10.1348/000711006X126660. Cited 2022 Jan 15.
60. Gwet KL. Variance estimation of nominal-scale inter-rater reliability with random selection of raters. Psychometrika. 2008;73(3):407–30 Available from: http://link.springer.com/article/10.1007/s11336-007-9054-8. Cited 2016 Feb 7.
61. Feng GC. Indexing versus modeling intercoder reliability. Hong Kong: Hong Kong Baptist University; 2013.
62. Feng GC. Factors affecting intercoder reliability: a Monte Carlo experiment. Qual Quant. 2013;47(5):2959–82 Available from: http://link.springer.com/article/10.1007/s11135-012-9745-9. Cited 2022 Jan 15.
63. Feng GC. Underlying determinants driving agreement among coders. Qual Quant. 2013;47(5):2983–97.
64. Attneave F. Psychological probability as a function of experienced frequency. J Exp Psychol. 1953;46(2):81–6.
65. Fischhoff B, Slovic P, Lichtenstein S. Knowing with certainty: the appropriateness of extreme confidence. J Exp Psychol Hum Percept Perform. 1977;3(4):552–64 Available from: http://content.apa.org/journals/hsp/3/4/552. Cited 2022 Jan 15.
66. Lante CA, Nebenzahl E. Behavior and interpretation of the kappa statistic: resolution of the two paradoxes. J Clin Epidemiol. 1996;49(4):431–4.
67. Spitznagel EL, Helzer JE. A proposed solution to the base rate problem in the kappa statistic. Arch Gen Psychiatry. 1985;42(7):725–8 Available from: http://www.ncbi.nlm.nih.gov/pubmed/4015315. Cited 2022 Jan 15.
68. Brennan RL, Prediger DJ. Coefficient kappa: some uses, misuses, and alternatives. Educ Psychol Meas. 1981;41(3):687–99 Available from: http://journals.sagepub.com/doi/10.1177/001316448104100307. Cited 2022 Jan 15.
69. Feinstein AR, Cicchetti DV. High agreement but low kappa: II. Resolving the paradoxes. J Clin Epidemiol. 1990;43(6):551–8.
70. Feinstein AR, Cicchetti DV. High agreement but low kappa: I. The problems of two paradoxes. J Clin Epidemiol. 1990;43(6):543–9.
71. Cousineau D, Laurencelle L. An unbiased estimate of global interrater agreement. Educ Psychol Meas. 2016;0013164416654740 Available from: http://journals.sagepub.com/doi/abs/10.1177/0013164416654740. Cited 2022 Jan 15.
72. Cousineau D, Laurencelle L. A ratio test of interrater agreement with high specificity. Educ Psychol Meas. 2015;75(6):979–1001 Available from: http://epm.sagepub.com/content/75/6/979.abstract?location1=all&operator1=all&location2=all& operator2=all&term1a=all&term2a=all&term3a=all&term4a=all&term5a=all&term6a=all&term7a=all&term8a=all&term9a=all&simul ation=term& operator2=and& operator1=and& term2=and&ct. Cited 2022 Jan 15.
73. Kirchenko AP, Stephenkova S. Intercoder agreement in one-to-many classification: fuzzy kappa. PLoS One. 2016;11(3):e0149787 Available from: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0149787. Cited 2022 Jan 15.
74. Meehl PE. Clinical versus statistical prediction: a theoretical analysis and a review of the evidence. Minneapolis: University of Minnesota Press; 1954.
75. Dawes RM, Faust D, Meehl PE. Clinical versus actuarial judgment. Science (80-.). 1989;243(4899):1668–74.

Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.