SUPPORTING INFORMATION

Upconversion luminescence in sub-10 nm β-NaGdF₄: Yb³⁺, Er³⁺ nanoparticles: An improved synthesis in anhydrous ionic liquids

Gabriella Tessitore, a,b Anja-Verena Mudring, c and Karl W. Krämer *a

a University of Bern, Department of Chemistry and Biochemistry, Freiestrasse 3, 3012 Bern, Switzerland.
b Concordia University, Department of Chemistry and Biochemistry, 7141 Sherbrooke W., H4B1R6, Montreal, QC, Canada.
c Stockholm University, Department of Materials and Environmental Chemistry, Svante Arrhenius väg 16 C, 106 91 Stockholm, Sweden.

*E-mail address: anja-verena.mudring@mmk.su.se; karl.kraemer@dcb.unibe.ch.
Fig. S1: Thermogravimetric analysis of the rare earth acetate hydrate precursor $\text{RE(OAc)}_3\cdot\text{aq.}$ with $\text{RE} = \text{Gd}_{0.8}, \text{Er}_{0.02}, \text{Yb}_{0.18}$. The sample was heated by 5 K/min in a N_2 flow of 20 ml/min.

Fig. S2: Powder X-ray diffraction (XRD) patterns of the rare earth acetate hydrate $\text{RE(OAc)}_3\cdot\text{aq.}$ (top) and the anhydrous rare earth acetate RE(OAc)_3 (bottom) with $\text{RE} = \text{Gd}_{0.8}, \text{Er}_{0.02}, \text{Yb}_{0.18}$. The space groups are specified in the figure and structures discussed in Ref. S1.
Fig. S3: Powder XRD patterns of nanocrystalline β-NaGdF$_4$: 18% Yb$^{3+}$, 2% Er$^{3+}$ samples synthesized in 0.5:1.5 vol. ethylene glycol (EG) / ionic liquid (IL) solutions with IL = diallyldimethylammonium (DADMA) trifluoroacetate (TFA), DADMA BF$_4$, DADMA bis(trifluoromethanesulfonyl)amide (NTf$_2$), and DADMA trifluoromethanesulfonate (OTf). Samples were synthesised from 60 mg RE(AcO)$_3$, 20 mg NaCl, and 80 mg NH$_4$F at 120°C for 30 min.

Fig. S4: UC luminescence of β-NaGdF$_4$: 18% Yb$^{3+}$, 2% Er$^{3+}$ nanoparticles from 0.5:1.5 vol. EG/IL solutions with IL = DADMA BF$_4$ (black trace), DADMA OTf (blue trace), and DADMA NTf$_2$ (red trace). Nanoparticles from the EG/DADMA TFA synthesis are not shown due to their very weak emission intensity. The UC luminescence was excited at 970 nm with 580 mW (unfocused) laser power.
Fig. S5: Upconversion luminescence of β-NaGdF₄: 18% Yb³⁺, 2% Er³⁺ nanoparticles from a 0.5:1.5 vol. EG/IL synthesis with IL = DADMA NTf₂ and the rare earth acetate hydrate (blue trace) or the anhydrous rare earth acetate (red trace). Samples were synthesised from 30 mg RE(AcO)₃, 10 mg NaCl, and 120 mg NH₄F at 200°C for 30 min. The UC luminescence was excited at 970 nm with 580 mW (unfocused) laser power.

Fig. S6: Powder XRD patterns of β-NaGdF₄: 18% Yb³⁺, 2% Er³⁺ nanoparticles from EG/DADMA OTf syntheses. Sample names refer to Tab. 1. NaF peaks are marked by asterisks for the top trace.
Fig. S7: Powder XRD patterns of β-NaGdF$_4$: 18% Yb$^{3+}$, 2% Er$^{3+}$ nanoparticles from IL syntheses. Sample names refer to Tab. 1.

Fig. S8: Powder XRD pattern of β-NaGdF$_4$: 18% Yb$^{3+}$, 2% Er$^{3+}$ / β-NaGdF$_4$ core-shell nanoparticles from sample CS_IL4.
Fig. S9: Evaluation of the power density from the fiber geometry. The divergence angle $\alpha = 20^\circ$ and the fiber radius $r_1 = 200 \ \mu m$ determine the illuminated area A_2. The resulting power densities are reported in Tab. S1.

Table S1: Evaluated power density for the measured laser power used in this work.

Power [mW]	Power density [W/cm2]
70	2.6
330	12.2
580	21.5

Reference

S1 C. Heinrichs, PhD thesis, Universität zu Köln, Synthese und Charakterisierung wasserfreier Selterdmetall-Nitrate, -Acetate und -Oxyacetate, 2013.