CENTRO-AFFINE NORMAL FLOWS ON CURVES:
HARNACK ESTIMATES AND ANCIENT SOLUTIONS

MOHAMMAD N. IVAKI

ABSTRACT. We prove that the only compact, origin-symmetric, strictly convex ancient solutions of the planar p centro-affine normal flows are contracting origin-centered ellipses.

1. Introduction

The setting of this paper is the two-dimensional Euclidean space, \(\mathbb{R}^2 \). A compact convex subset of \(\mathbb{R}^2 \) with non-empty interior is called a convex body. The set of smooth, strictly convex bodies in \(\mathbb{R}^2 \) is denoted by \(K \). Write \(K_0 \) for the set of smooth, strictly convex bodies whose interiors contain the origin of the plane.

Let \(K \) be a smooth, strictly convex body \(\mathbb{R}^2 \) and let \(X_K : \partial K \rightarrow \mathbb{R}^2 \) be a smooth embedding of \(\partial K \), the boundary of \(K \). Write \(S^1 \) for the unit circle and write \(\nu : \partial K \rightarrow S^1 \) for the Gauss map of \(\partial K \). That is, at each point \(x \in \partial K \), \(\nu(x) \) is the unit outwards normal at \(x \). The support function of \(K \in K_0 \) as a function on the unit circle is defined by \(s(z) := \langle X(\nu^{-1}(z)), z \rangle \), for each \(z \in S^1 \). We denote the curvature of \(\partial K \) by \(\kappa \) which as a function on \(\partial K \) is related to the support function by

\[
1 / \kappa(\nu^{-1}(z)) := \tau(z) = \frac{\partial^2}{\partial \theta^2} s(z) + s(z).
\]

Here and afterwards, we identify \(z = (\cos \theta, \sin \theta) \) with \(\theta \). The function \(\tau \) is called the radius of curvature. The affine support function of \(K \) is defined by \(\sigma : \partial K \rightarrow \mathbb{R} \) and \(\sigma(x) := s(\nu(x))^{1/3} (\nu(x)) \). The affine support function is invariant under the group of special linear transformations, \(SL(2) \), and it plays a basic role in our argument.

Let \(K \in K_0 \). A family of convex bodies \(\{K_t\}_t \subset K_0 \) given by the smooth map \(X : \partial K \times [0, T) \rightarrow \mathbb{R}^2 \) is said to be a solution to the \(p \) centro-affine normal flow, in short \(p \)-flow, with the initial data \(X_K \), if the following evolution equation is satisfied:

\[
\partial_t X(x,t) = - \left(\frac{\kappa(x,t)}{\langle X(x,t), \nu(x,t) \rangle^3} \right)^{\frac{p}{p-1}} \kappa^*(x,t) \nu(x,t), \quad X(\cdot,0) = X_K,
\]

for a fixed \(1 < p < \infty \). In this equation, \(0 < T < \infty \) is the maximal time that the solution exists, and \(\nu(x,t) \) is the unit normal to the curve \(X(\partial K, t) = \partial K_t \) at \(X(x,t) \). This family of flows for \(p > 1 \) was defined by Stancu [13]. The case \(p = 1 \) is the well-known affine normal flow whose asymptotic behavior was investigated by Sapiro and Tanembaum [12], and by Andrews in a more general
setting [2, 4]: Any convex solution to the affine normal flow, after appropriate rescaling converges to an ellipse in the C^∞ norm. For $p > 1$, similar result was obtained with smooth, origin-symmetric, strictly convex initial data by the author and Stancu [7, 8]. Moreover, ancient solutions of the affine normal flow have been also classified: the only compact, convex ancient solutions of the affine normal flow are contracting ellipsoids. This result in \mathbb{R}^n, for $n \geq 3$, was proved by Loftin and Tsui [9] and in dimension two by S. Chen [5], and also by the author with a different method. We recall that a solution of flow is called an ancient solution if it exists on $(-\infty, T)$. Here we classify compact, origin-symmetric, strictly convex ancient solutions of the planar p centro-affine normal flows:

Theorem. The only compact, origin-symmetric, strictly convex ancient solutions of the p-flows are contracting origin-centred ellipses.

Throughout this paper, we consider origin-symmetric solutions.

2. HARNACK ESTIMATE

In this section, we follow [1] to obtain the Harnack estimates for p-flows.

Proposition. Under the flow (1.1) we have $\partial_t \left(s^{1-\frac{2p}{p+2}} \frac{r^p}{\alpha} - \frac{r^p}{\alpha} + \frac{1}{\alpha^2} \right) \geq 0$.

Proof. For simplicity we set $\alpha = -\frac{p}{p+2}$. To prove the proposition, using the parabolic maximum principle we prove that the quantity defined by

\[
\mathcal{R} := t P - \frac{\alpha}{\alpha - 1} s^{1+3\alpha} \theta^\alpha
\]

remains negative as long as the flow exists. Here P is defined as follows

\[
P := \partial_t \left(-s^{1+3\alpha} \theta^\alpha \right).
\]

Lemma 2.1. [7]

- $\partial_t s = -s^{1+3\alpha} \theta^\alpha$.
- $\partial_t \theta = -\left[(s^{1+3\alpha} \theta^\alpha)_\theta + s^{1+3\alpha} \theta^\alpha \right]$.

Using the evolution equations of s and θ we find

\[
P = (1+3\alpha)s^{1+6\alpha} \theta^2 + \alpha s^{1+3\alpha} \theta^{-1} \left[(s^{1+3\alpha} \theta^\alpha)_\theta + s^{1+3\alpha} \theta^\alpha \right]
\]

\[
:= (1+3\alpha)s^{1+6\alpha} \theta^2 + \alpha s^{1+3\alpha} \theta^{-1} \mathcal{Q}.
\]

Lemma 2.2. We have the following evolution equation for P as long as the flow exists:

\[
\partial_t P = -\alpha s^{1+3\alpha} \theta^{-1} \left[P_{\theta\theta} + P \right] + \left[(3\alpha + 1)(3\alpha + 2) - \frac{(\alpha - 1)(3\alpha + 1)^2}{\alpha} \right] s^{1+9\alpha} \theta^3
\]

\[
+ \left[-3(3\alpha + 1) + \frac{2(\alpha - 1)(3\alpha + 1)}{\alpha} \right] s^{3\alpha} \theta^\alpha P - \frac{\alpha - 1}{\alpha} \frac{P^2}{s^{1+3\alpha} \theta^\alpha}.
\]
Proof. We repeatedly use the evolution equation of s and r given in Lemma 2.1.

\begin{equation}
\frac{\partial \rho}{\partial t} = -(1 + 3\alpha)(1 + 6\alpha)s^{1+3\alpha}r^{3\alpha} - 2\alpha(1 + 3\alpha)s^{1+6\alpha}r^{2\alpha - 1}\left[(s^{1+3\alpha}r^\alpha)^{\theta\theta} + s^{1+3\alpha}r^\alpha \right] \\
- \alpha(1 + 3\alpha)s^{1+6\alpha}r^{2\alpha - 1}\left[(s^{1+3\alpha}r^\alpha)^{\theta\theta} + s^{1+3\alpha}r^\alpha \right] \\
- \alpha(\alpha - 1)s^{1+3\alpha}r^{2\alpha - 2}\left[(s^{1+3\alpha}r^\alpha)^{\theta\theta} + s^{1+3\alpha}r^\alpha \right]^2 - \alpha s^{1+3\alpha}r^{2\alpha - 1}[\rho_{\theta\theta} + \rho] \\
- \alpha(\alpha - 1)s^{1+3\alpha}r^{2\alpha - 2}Q^2 - \alpha s^{1+3\alpha}r^{2\alpha - 1}[\rho_{\theta\theta} + \rho].
\end{equation}

By the definition of Q, (2.2), we have

\begin{equation}
Q^2 = \frac{\rho^2}{\alpha^2s^{2+6\alpha}r^{2\alpha - 2}} - \frac{2(3\alpha + 1) \rho r^2}{\alpha^2s^{6\alpha}r^{2\alpha + 2}} + \frac{(3\alpha + 1)^2}{\alpha^2s^{1+3\alpha}r^{3\alpha}}.
\end{equation}

Substituting these expressions into the evolution equation of ρ we find that

\begin{equation}
\frac{\partial \rho}{\partial t} = -\alpha s^{1+3\alpha}r^{2\alpha - 1}[\rho_{\theta\theta} + \rho] + \left[(3\alpha + 1)(3\alpha + 2) - \frac{(\alpha - 1)(3\alpha + 1)^2}{\alpha} \right]s^{1+3\alpha}r^{3\alpha} \\
- 3(3\alpha + 1)s^{3\alpha}r^{2\alpha}\rho - \frac{\rho^2}{\alpha s^{1+3\alpha}r^{3\alpha}} + \frac{2(\alpha - 1)(3\alpha + 1)}{\alpha}s^{3\alpha}r^{2\alpha}\rho.
\end{equation}

This completes the proof of Lemma 2.2. \hfill \Box

We now proceed to find the evolution equation of R which is defined by (2.1). First notice that

\begin{equation}
-\alpha s^{1+3\alpha}r^{2\alpha - 1}R_{\theta\theta} = -\alpha s^{1+3\alpha}r^{2\alpha - 1}\rho_{\theta\theta} + \frac{\rho^2}{\alpha - 1}s^{1+3\alpha}r^{2\alpha - 1}(s^{1+3\alpha}r^\alpha)^{\theta\theta}.
\end{equation}
Therefore, by Lemma 2.2 and identity (2.2) we get
\[\partial_t \mathcal{R} \]
\[= -t \alpha s^{1+3\alpha} \theta^{-1} \left[\mathcal{P}_{\theta\theta} + \mathcal{P} \right] + t \left(3\alpha + 1 \right) \left(3\alpha + 2 \right) - \alpha - 1 \left(3\alpha + 1 \right)^2 \right] s^{1+9\alpha} \theta^{3\alpha} + \mathcal{P} + \alpha \mathcal{P} \]
\[= \alpha s^{1+3\alpha} \theta^{-1} \left(\mathcal{R}_{\theta\theta} + t \alpha s^{1+3\alpha} \theta^{-1} \mathcal{P}_{\theta\theta} \right) - \alpha s^{1+3\alpha} \theta^{-1} \left(3\alpha + 1 \right) \left(3\alpha + 2 \right) - \alpha - 1 \left(3\alpha + 1 \right)^2 \right] s^{1+9\alpha} \theta^{3\alpha} + \mathcal{P} + \alpha \mathcal{P} \]
\[= -\alpha s^{1+3\alpha} \theta^{-1} \mathcal{R}_{\theta\theta} + t \left(3\alpha + 1 \right) \left(3\alpha + 2 \right) - \alpha - 1 \left(3\alpha + 1 \right)^2 \right] s^{1+9\alpha} \theta^{3\alpha} + \mathcal{P} + \alpha \mathcal{P} \]
\[+ \alpha \mathcal{P} - \alpha \mathcal{P} - \alpha s^{1+3\alpha} \theta^{-1} \mathcal{P} + \alpha \mathcal{P} s^{1+3\alpha} \theta^{-1} \mathcal{P} + \alpha s^{1+3\alpha} \theta^{-1} \left(3\alpha + 1 \right) \left(3\alpha + 2 \right) - \alpha - 1 \left(3\alpha + 1 \right)^2 \right] s^{1+9\alpha} \theta^{3\alpha} + \mathcal{P} + \alpha \mathcal{P} \]
\[= \alpha s^{1+3\alpha} \theta^{-1} \mathcal{R}_{\theta\theta} + t \left(3\alpha + 1 \right) \left(3\alpha + 2 \right) - \alpha - 1 \left(3\alpha + 1 \right)^2 \right] s^{1+9\alpha} \theta^{3\alpha} + \mathcal{P} + \alpha \mathcal{P} \]
\[- t \alpha s^{1+3\alpha} \theta^{-1} \mathcal{P} + \alpha \mathcal{P} s^{1+3\alpha} \theta^{-1} \mathcal{P} + \alpha s^{1+3\alpha} \theta^{-1} \left(3\alpha + 1 \right) \left(3\alpha + 2 \right) - \alpha - 1 \left(3\alpha + 1 \right)^2 \right] s^{1+9\alpha} \theta^{3\alpha} + \mathcal{P} + \alpha \mathcal{P} \]

In the last expression, using the definition of \(\mathcal{R} \), identity (2.1), we replace \(t \mathcal{P} \) by \(\mathcal{R} + \frac{\alpha}{\alpha - 1} s^{1+3\alpha} \theta^\alpha \). Therefore, at the point where the maximum of \(\mathcal{R} \) is achieved we obtain
\[\partial_t \mathcal{R} \]
\[\leq \mathcal{R} \left[-\alpha s^{1+3\alpha} \theta^{-1} - \frac{\alpha - 1}{\alpha} \mathcal{P} + \frac{2\left(\alpha - 1 \right)\left(3\alpha + 1 \right)}{\alpha} s^{3\alpha} \theta^\alpha \right] \]
\[+ \frac{\alpha}{\alpha - 1} \left[2\left(\alpha - 1 \right)\left(3\alpha + 1 \right) - 3\left(3\alpha + 1 \right) \right] s^{2+6\alpha} \theta^{2\alpha} + \frac{\alpha\left(3\alpha + 1 \right)}{\alpha - 1} s^{2+9\alpha} \theta^{3\alpha-1} \]
\[+ t \left[3\alpha + 1 \right)\left(3\alpha + 2 \right) - \alpha - 1 \left(3\alpha + 1 \right)^2 \right] s^{1+9\alpha} \theta^{3\alpha} \]
\[\leq \mathcal{R} \left[-\alpha s^{1+3\alpha} \theta^{-1} - \frac{\alpha - 1}{\alpha} \mathcal{P} + \frac{2\left(\alpha - 1 \right)\left(3\alpha + 1 \right)}{\alpha} s^{3\alpha} \theta^\alpha \right] . \]

To get the last inequality, we used the fact that the terms on the second and third line are negative for \(p \geq 1 \). Hence, by the parabolic maximum principle and the fact that at the time zero we have \(\mathcal{R} \leq 0 \), we conclude \(\mathcal{R} = t \mathcal{P} - \frac{\alpha}{\alpha - 1} s^{1+3\alpha} \theta^\alpha \leq 0 \). Negativity of \(\mathcal{R} \) is equivalent to \(\partial_t \ln \left(s^{1+3\alpha} \theta^\alpha \right) \geq \frac{\alpha}{1+\frac{\alpha}{t}} \) for \(t > 0 \). From this we infer that \(\partial_t \left(s^{1+3\alpha} \theta^\alpha t^{\frac{\alpha}{1+\frac{\alpha}{t}}} \right) \geq 0 \) for \(t > 0 \). \(\square \)
Proposition 2.3. Ancient solutions of the flow (1.1) satisfy \(\partial_t \left(s \left(\frac{1}{r s^3} \right) \right) \geq 0 \).

Proof. By the Harnack estimate every solution of the flow (1.1) satisfies

\[
\partial_t \left(s \left(\frac{1}{r s^3} \right) \right) + \frac{p}{2t(p+1)} \left(s \left(\frac{1}{r s^3} \right) \right) \geq 0.
\]

We let the flow starts from a fixed time \(t_0 < 0 \). So the inequality (2.3) becomes

\[
\partial_t \left(s \left(\frac{1}{r s^3} \right) \right) + \frac{p}{2(t-t_0)(p+1)} \left(s \left(\frac{1}{r s^3} \right) \right) \geq 0.
\]

Now letting \(t_0 \) goes to \(-\infty \) proves the claim. \(\square \)

Corollary 2.4. Every ancient solution of the flow (1.1) satisfies \(\partial_t \left(s \left(\frac{1}{r s} \right) \right) \leq 0 \).

Proof. The \(s(\cdot, t) \) is decreasing on the time interval \((-\infty, 0] \). The claim now follows from the previous proposition. \(\square \)

3. Affine differential setting

We will recall several definitions from affine differential geometry. Let \(\gamma : S^1 \to \mathbb{R}^2 \) be an embedded strictly convex curve with the curve parameter \(\theta \). Define \(g(\theta) := [\gamma_{\theta}, \gamma_{\theta\theta}]^{1/3} \), where for two vectors \(u, v \) in \(\mathbb{R}^2 \), \([u, v]\) denotes the determinant of the matrix with rows \(u \) and \(v \). The affine arc-length is defined as

\[
s(\theta) := \int_0^\theta g(\alpha) d\alpha.
\]

Furthermore, the affine normal vector \(n \) is given by \(n := \gamma_{ss} \). In the affine coordinate \(s \), there hold \([\gamma_s, \gamma_{ss}] = 1, \sigma = [\gamma, \gamma_s] \), and \(\sigma_{ss} + \sigma \mu = 1 \), where \(\mu = [\gamma_{ss}, \gamma_{sss}] \) is the affine curvature.

We can express the area of \(K \in \mathcal{K} \), denoted by \(A(K) \), in terms of affine invariant quantities:

\[
A(K) = \frac{1}{2} \int_{\partial K} \sigma ds.
\]

The \(p \)-affine perimeter of \(K \in \mathcal{K}_0 \) (for \(p = 1 \) the assumption \(K \in \mathcal{K}_0 \) is not necessary and we may take \(K \in \mathcal{K} \)), denoted by \(\Omega_p(K) \), is defined as

\[
\Omega_p(K) := \int_{\partial K} \sigma^{1 - \frac{3p}{p+2}} ds,
\]

\[10\]. We call the quantity \(\frac{\Omega_{p+2}^2(K)}{A^{2-p}(K)} \), the \(p \)-affine isoperimetric ratio and mention that it is invariant under \(GL(2) \). Moreover, for \(p > 1 \) the \(p \)-affine isoperimetric inequality states that if \(K \) has its centroid at the origin, then

\[
\frac{\Omega_{p+2}^2(K)}{A^{2-p}(K)} \leq 2^{p+2} \pi^{2p}
\]

and equality cases are obtained only for origin-centered ellipses. In the final section, we will use the 2-affine isoperimetric inequality.

Let \(K \in \mathcal{K}_0 \). The polar body of \(K \), denoted by \(K^* \), is a convex body in \(\mathcal{K}_0 \) defined by

\[
K^* = \{ y \in \mathbb{R}^2 \mid \langle x, y \rangle \leq 1, \forall x \in K \}.
\]
The area of K^*, denoted by $A^* = A(K^*)$, can be represented in terms of affine invariant quantities:

\[A^* = \frac{1}{2} \int_{\partial K} \frac{1}{\sigma^2} ds = \frac{1}{2} \int_{S^1} \frac{1}{s^2} d\theta. \]

Let $K \in K_0$. We consider a family of convex bodies $\{K_t\}_t \subset K$, given by the smooth embeddings $X : \partial K \times [0, T) \rightarrow \mathbb{R}^2$, which are evolving according to (1.1). Then up to a time-dependant diffeomorphism, $\{K_t\}_t$ evolves according to

\[\frac{\partial}{\partial t} X := \sigma^1 - \frac{3p}{p+2} n, \quad X(\cdot, 0) = X_K(\cdot). \] (3.2)

Therefore, classification of compact, origin-symmetric ancient solutions to (1.1) is equivalent to the classification of compact, origin-symmetric ancient solutions to (3.2). In what follows our reference flow is the evolution equation (3.2).

Notice that as a family of convex bodies evolve according to the evolution equation (3.2), in the Gauss parametrization their support functions and radii of curvature evolve according to Lemma 2.1. Assume Q and \bar{Q} are two smooth functions $Q : \partial K \times [0, T) \rightarrow \mathbb{R}, \bar{Q} : S^1 \times [0, T) \rightarrow \mathbb{R}$ that are related by $Q(x, t) = \bar{Q}(\nu(x, t), t)$. It can be easily verified that

\[\frac{\partial}{\partial t} \bar{Q} = \frac{\partial}{\partial t} Q - Q_s \left(\sigma^1 - \frac{3p}{p+2} \right). \]

In particular, for ancient solutions of (3.2), in views of Corollary 2.4, $Q = \sigma$ must satisfy $0 \geq \frac{\partial}{\partial t} \sigma - \sigma_s \left(\sigma^1 - \frac{3p}{p+2} \right)$. The proceeding argument proves the next proposition.

Proposition 3.1. Every ancient solution satisfies $\frac{\partial}{\partial t} \sigma \leq - \left(\frac{3p}{p+2} - 1 \right) \sigma_s^2 \sigma - \frac{3p}{p+2} \sigma_s^2$.

The next two lemmas were proved in [7].

Lemma 3.2. [7, Lemma 3.1] The following evolution equations hold:

1. \(\frac{\partial}{\partial t} \sigma = \sigma^{1 - \frac{3p}{p+2}} \left(- \frac{4}{3} + \left(\frac{p}{p+2} + 1 \right) \left(1 - \frac{3p}{p+2} \right) \frac{\sigma^2_s}{\sigma} + \frac{p}{p+2} \sigma_{ss} \right), \)

2. \(\frac{d}{dt} A = -\Omega_p \).

Lemma 3.3. [7, Section 6] The following evolution equation for Ω_l holds for every $l \geq 2$ and $p \geq 1$:

\[\frac{d}{dt} \Omega_l(t) = \frac{2l(l-2)}{l+2} \int_{\gamma_l} \sigma^{1 - \frac{3p}{p+2} - \frac{2l}{l+2}} ds + \frac{18pl}{(l+2)^2(p+2)} \int_{\gamma_l} \sigma^{\frac{2l}{l+2} - \frac{2l}{l+2}} \sigma^2_{ss} ds, \]

where $\gamma_l := \partial K_l$ is the boundary of K_l.

Lemma 3.4. [13] The area product, $A(t)A^*(t)$, and the p-affine isoperimetric ratio are both non-decreasing along (3.2).

Write respectively $\max_{\gamma_l} \sigma$ and $\min_{\gamma_l} \sigma$ for σ_M and σ_m.

Lemma 3.5. There is a constant $0 < c < \infty$ such that $\frac{\sigma_M}{\sigma_m^2} \leq c$ on $(-\infty, 0]$.

Proof. By Corollary 3.1 and part (1) of Lemma 3.2 we have
\[- \left(\frac{3p}{p+2} - 1 \right) \frac{\sigma^2}{\sigma^3} \geq \frac{\partial_t \sigma}{\sigma^3}.\]

Integrating the inequality (3.4) against \(ds\) we obtain
\[
\frac{4}{3} \int_{\gamma_t} \frac{1}{\sigma^2} \, ds \geq \frac{p}{p+2} \left(2 - \frac{3p}{p+2} \right) \int_{\gamma_t} \frac{\sigma^2}{\sigma^3} \, ds
= \frac{p}{p+2} \left(3 - \frac{3p}{p+2} \right) \int_{\gamma_t} \frac{(\ln \sigma)^2}{\sigma} \, ds
\geq \frac{p}{p+2} \left(3 - \frac{3p}{p+2} \right) \left(\int_{\gamma_t} \frac{|\ln \sigma|}{\sigma} \, ds \right)^2.
\]

Set \(d_p = \frac{p}{p+2} \left(3 - \frac{3p}{p+2} \right) \). Applying the Hölder inequality to the left-hand side and the right-hand side of inequality (3.5) yields
\[
\left(\int_{\gamma_t} |(\ln \sigma)| \, ds \right)^2 \leq d_p A^*(t) A(t),
\]
for a new positive constant \(d_p\). Here we used the identities \(\int_{\gamma_t} \frac{1}{\pi} \, ds = 2A^*(t)\) and \(\int_{\gamma_t} \sigma \, ds = 2A(t)\). Now by Lemma 3.4 we have \(A(t)A^*(t) \leq A(0)A^*(0)\). This implies that
\[
\left(\frac{\ln \sigma}{\sigma_m} \right)^2 \leq d''_p,
\]
for a new positive constant \(d''_p\). Therefore, on \((-\infty, 0]\) we find that
\[
\frac{\sigma M}{\sigma m} \leq c
\]
for some positive constant \(c\). \(\square\)

Let \(\{K_t\}_t\) be a solution of (3.2). Then the family of convex bodies, \(\tilde{K}_t\), defined by
\[
\tilde{K}_t := \sqrt{\frac{\pi}{A(K_t)}} K_t
\]
is called a normalized solution to the \(p\)-flow, equivalently a solution that the area is fixed and is equal to \(\pi\).

Furnish every quantity associated with the normalized solution with a over-tile. For example, the support function, curvature, and the affine support function of \(\tilde{K}\) are denoted by \(\tilde{s}, \tilde{\kappa}, \text{and} \tilde{\sigma}\), respectively.

Lemma 3.6. There is a constant \(0 < c < \infty\) such that on the time interval \((-\infty, 0]\) we have
\[
\frac{\tilde{\sigma} M}{\tilde{\sigma} m} \leq c.
\]

Proof. The estimate (3.6) is scaling invariant, so the same estimate holds for the normalized solution. \(\square\)
Lemma 3.7. $\Omega_2(t)$ is non-decreasing along the p-flow. Moreover, we have

$$
\frac{d}{dt}\Omega_2(t) \geq \frac{9p}{4(p+2)} \int_{\gamma_t} \sigma^{-\frac{3p}{p+2}} \sigma_2^2 ds.
$$

Proof. Use the evolution equation (3.3) for $l = 2$. □

Corollary 3.8. There exists a constant $0 < b_p < \infty$ such that

$$
\frac{1}{\Omega_2^2(t)} < b_p
$$
on $(-\infty, 0]$.

Proof. Notice that $\Omega_2(t) = \left(\int_{\partial \gamma_t} \sigma^{-\frac{3}{2}} ds \right)$ is a $GL(2)$ invariant quantity. Therefore, we need only to prove the claim after applying appropriate $SL(2)$ transformations to the normalized solution of the flow. By the estimate (3.7) and the facts that $\Omega_2(K_t)$ is non-decreasing and $A(K_t) = \pi$ we have

$$
\frac{c^2}{2} \int_{M} \sigma_2^2 dv(t) \Omega_2(0) \geq \frac{1}{2} \int_{M} \sigma^2 dv(t) \Omega_2(0) \geq \frac{1}{2} \int_{M} \sigma^2 dv(t) \Omega_2(t) \geq \tilde{A}(t) = \pi.
$$

So we get $\left(\frac{\tilde{A}}{t} \right)^{3/2} \geq a > 0$ on $(-\infty, 0]$, for an a independent of t. Moreover, as the affine support function is invariant under $SL(2)$ we may further assume, after applying a length minimizing special linear transformation at each time, that $\tilde{t}(t) < a' < \infty$, for an a' independent of t. Therefore

$$
\frac{\tilde{A}^3(t)}{\tilde{A}(t)} = \left(\int_{t} \frac{\sigma^2 d\tilde{t}}{t} \right)^{3/2} \geq a'' > 0,
$$

for an a'' independent of t. Now the claim follows from the Hölder inequality:

$$
\left(\int_{t} \sigma^{-\frac{3}{2}} d\tilde{t} \right) \Omega_2^2(t)A(t)^{\frac{3}{2}} \geq \int_{t} \sigma^{-\frac{3}{2}} d\tilde{t} \int_{t} \sigma^{\frac{3}{2}} d\tilde{t} \geq \Omega_2^2(t),
$$

so

$$
\tilde{\Omega}_2(t) = \Omega_2(t) \geq \left(\frac{\Omega_2^3(t)}{A(t)} \right)^{\frac{3}{2}} = \left(\frac{\tilde{A}^3(t)}{\tilde{A}(t)} \right)^{\frac{3}{2}}.
$$

□

Corollary 3.9. As K_t evolve by (3.2), then the following limit holds:

$$
\lim_{t \to -\infty} \left(\frac{A(t)}{\Omega_p(t)\Omega_2^2(t)} \right) \int_{\gamma_t} \left(\sigma^{\frac{3}{2}} \right)^2 ds = 0.
$$

Proof. Suppose on the contrary that there exists an $\varepsilon > 0$ small enough, such that

$$
\left(\frac{A(t)}{\Omega_p(t)\Omega_2^2(t)} \right) \int_{\gamma_t} \left(\sigma^{\frac{3}{2}} \right)^2 ds \geq \varepsilon \frac{\left(\frac{1}{4} - \frac{3p}{2(p+2)} \right)}{\frac{9p}{4(p+2)}}
$$
on $(-\infty, -N]$ for N large enough. Then $\frac{d}{dt} \frac{1}{\Omega_2^2(t)} \leq \varepsilon \frac{d}{dt} \ln(A(t))$. So by integrating this last inequality against dt and by Corollary 3.8 we get

$$
0 < \frac{1}{\Omega_2^2(t)} \leq \frac{1}{\Omega_2^2(0)} + \varepsilon \ln(A(0)) - \varepsilon \ln(A(t)) < b_p + \varepsilon \ln(A(0)) - \varepsilon \ln(A(t)).
$$
Letting $ t \to -\infty $ we reach to a contradiction: $ \lim_{ t \to -\infty } A(t) = +\infty $, that is, the right-hand side becomes negative for large values of $ t $. \qed

Corollary 3.10. For a sequence of times $ \{ t_k \} $ as $ t_k $ converge to $ -\infty $ we have $ \lim_{ t_k \to -\infty } \tilde{\sigma}(t_k) = 1 $.

Proof. Notice that the quantity $ \left(\frac{A(t)}{\Omega_p(t)\Omega_2(t)} \right) \int_{\gamma_k} \left(\frac{1}{2} - \frac{3p}{p + 2} s \right)^2 d\tilde{s} $ is scaling invariant and $ \frac{\tilde{A}(t)}{\Omega_p(t)\Omega_2(t)} $ is bounded from below (By Lemmas 3.4 and 3.7, $ \Omega_p(t) \leq \tilde{\Omega}_p(0) $ and $ \tilde{\Omega}_2(t) \leq \tilde{\Omega}_2(0) $). Thus Corollary 3.9 implies that there exists a sequence of times $ \{ t_k \}_{k \in \mathbb{N}} $, such that $ \lim_{ k \to \infty } t_k = -\infty $ and

$$ \lim_{ t_k \to -\infty } \int_{\gamma_k} \left(\frac{1}{2} - \frac{3p}{p + 2} s \right)^2 d\tilde{s} = 0. $$

On the other hand, by the Hölder inequality

$$ \frac{\left(\frac{1}{2} - \frac{3p}{p + 2} s \right)^2 (t_k) - \frac{1}{2} - \frac{3p}{p + 2} s \left(t_k \right)}{\Omega_1(t_k)} \leq \int_{\gamma_k} \left(\frac{1}{2} - \frac{3p}{p + 2} s \right)^2 d\tilde{s}. $$

Moreover, $ \tilde{\Omega}_1(t) $ is bounded from above: Indeed $ \left(\frac{\tilde{\Omega}_1(t)}{A(t)} \right)^{\frac{3}{p}} \leq \tilde{\Omega}_2(t) \leq \tilde{\Omega}_2(0) $. Therefore, we find that

$$ \lim_{ t_k \to -\infty } \left(\frac{1}{2} - \frac{3p}{p + 2} s \left(t_k \right) - \frac{1}{2} - \frac{3p}{p + 2} s \left(t_k \right) \right)^2 = 0. $$

Since $ \tilde{\sigma}_M \leq 1 $ and $ \tilde{\sigma}_m \geq 1 $ (see [3, Lemma 10]) the claim follows. \quad \Box

4. Proof of the Main Theorem

Proof. For each time $ t \in (-\infty, T) $, let $ T_1 \in SL(2) $ be a special linear transformation that the maximal ellipse contained in $ T_1 K_t $ is a disk. So by John’s ellipsoid lemma we have

$$ \frac{1}{\sqrt{2}} \leq s_{T_1 K_t} \leq \sqrt{2}. $$

Then by the Blaschke selection theorem, there is a subsequence of times, denoted again by $ \{ t_k \} $, such that $ \{ T_{ t_k } K_{ t_k } \} $ converges in the Hausdorff distance to an origin-symmetric convex body $ \tilde{K}_{-\infty} $, as $ t_k \to -\infty $. By Corollary 3.10, and by the weak convergence of the Monge-Ampère measures, the support function of $ \tilde{K}_{-\infty} $ is the generalized solution of the following Monge-Ampère equation on $ S^1 $:

$$ s^3(s_{\theta_0} + s) = 1. $$

Therefore, by Lemma 8.1 of Petty [6], $ \tilde{K}_{-\infty} $ is an origin-centered ellipse. This in turn implies that $ \lim_{ t \to -\infty } \tilde{\Omega}_2(t_k) = 2\pi $. On the other hand, by the 2-affine isoperimetric inequality, (3.1), and by Lemma 3.7, for $ t \in (\infty, 0] $ we have

$$ 2\pi \geq \tilde{\Omega}_2(t) \geq \lim_{ t_k \to -\infty } \tilde{\Omega}_2(t_k) = 2\pi. $$

Thus $ \frac{d}{dt} \tilde{\Omega}_2(t) \equiv 0 $ on $ (-\infty, 0) $. Hence, in view of Lemma 3.7, $ K_t $ is an origin-centred ellipse for every time $ t \in (-\infty, T) $. \quad \Box
References

1. B. Andrews, *Harnack inequalities for evolving hypersurfaces*, Math. Zeitschrift **217**, 179–197, 1994.
2. B. Andrews, *Contraction of convex hypersurfaces by their affine normal*, J. Differential Geom. **43**, 207–230, 1996.
3. B. Andrews, *Affine curve-lengthening flow*, J. Reine Angew. Math. **506**, 43–83, 1999.
4. B. Andrews, *Motion of hypersurfaces by Gauss curvature*, Pacific J. Math. **195**, No.1, 1–34, 2000.
5. S. Chen, *Classifying convex compact ancient solutions to the affine curve shortening flow*, J. Geom. Anal. doi:10.1007/s12220-013-9456-z (2013)
6. C.M. Petty, *Affine isoperimetric problems*, Annals of the New York Academy of Sciences, 440, Discrete Geometry and Convexity 113–127, 1985. doi:10.1111/j.1749-6632.1985.tb14545.x
7. M.N. Ivaki, *Centro-affine curvature flows on centrally symmetric convex curves*, (to appear) Trans. Amer. Math. Soc., arXiv:1205.6456v2.
8. M.N. Ivaki and A. Stancu, *Volume preserving centro-affine normal flows*, Comm. Anal. Geom. **21**, 671–685, 2013.
9. J. Loftin and M.P. Tsui, *Ancient solutions of the affine normal flow*, J. Differential Geom. **78**, 113–162, 2008.
10. E. Lutwak, *The Brunn-Minkowski-Fiery theory II: Affine and geominimal surface areas*, Adv. in Math. **118**, 244–294, 1996.
11. L.A. Santaló, *An affine invariant for convex bodies of n-dimensional space*, Portugalia Math. **8**, 155–161, 1949.
12. G. Sapiro and A. Tannenbaum, *On affine plane curve evolution*, J. Funct. Anal. **119**, 79–120, 1994.
13. A. Stancu, *Centro-affine invariants for smooth convex bodies*, Int. Math. Res. Not. doi: 10.1093/imrn/rnr110, 2011.

Institut für Diskrete Mathematik und Geometrie, Technische Universität Wien, Wiedner Hauptstr. 8–10, 1040 Wien, Austria
E-mail address: mohammad.ivaki@tuwien.ac.at