Elliptic flow phenomenon at ATLAS

Martin Spousta
(on behalf of the ATLAS collaboration)

Charles University
Outline

• Geometry of collisions and centrality
• Basic picture and v_2
• More realistic picture – v_n
 – characteristics of v_n
 – cumulant method and two particle correlations
 – direct flow
• Event plane correlations
• Measuring the flow event-by-event
 – event by event v_n
 – extracting the medium response
• The flow and the ridge in p+Pb
• The flow and jets
Centrality of the collision

- Centrality can be quantified using the energy deposited in forward calorimeters (FCal) in percentiles of the total cross-section.
- Correlation between E_T at different η is due to the total amount of matter involved in the collision.

[Graph showing the relationship between centrality and energy deposited in forward calorimeters.]
Centrality of the collision

The most peripheral collision

The most central collision

- Centrality can be quantified using the energy deposited in forward calorimeters (FCal) in percentiles of the total cross-section.

- Correlation between E_T at different η is due to the total amount of matter involved in the collision.
• Pressure gradients lead to the azimuthal anisotropy

\[\frac{dN}{d\phi} = N_0 \left(1 + 2v_2 \cos 2(\phi - \Phi^{RP}) \right) \quad v_2 = \left\langle \cos 2(\phi - \Phi^{RP}) \right\rangle \]

• Initial shape of the interaction region reflected by the elliptic flow, \(v_2 \).
Baseline v_2 result

ATLAS Preliminary

- Elliptic flow is maximal in mid-peripheral collisions
- Elliptic flow is reduced:
 - in the most central collisions (no initial spacial anisotropy)
 - in the most peripheral collisions (no collectivity)

Very good description by hydrodynamical model – basic evidence for a presence of strongly coupled matter that behaves like an almost perfect, non-viscous fluid (since 2001).

PLB 707 (2012) 330 & ATLAS-CONF-2012-117

Huovinen et al. PLB 503 (2001) 58

03/18/14
More realistic picture

- Pressure gradients lead to the azimuthal anisotropy

\[
\frac{dN}{d\phi} = N_0 \left(1 + 2v_1 \cos(\phi - \Phi_1) + 2v_2 \cos 2(\phi - \Phi_2) + 2v_3 \cos 3(\phi - \Phi_3) + \ldots \right)
\]

- Initial shape of the interaction region (elliptic flow, \(v_2\))
- Initial spatial fluctuations of interacting nucleons (higher orders, \(v_n\))

... Fourier harmonics
Summary of v_n results

v_n coefficients rise and fall with centrality – reflects the geometry of collision.

v_n coefficients rise and fall with p_T – reflects the hydrodynamic response.

v_n coefficients are ~flat with rapidity – reflect global events shape (in contrast to RHIC observation, see e.g. PHOBOS, PRC 72 (2005), 051901)
Summary of v_n results

Gale et al., PRL 110 (2013), 012302
ATLAS data, PRC 86 (2012), 014907

v_n results allow to put constrains on η/s ratio

v_n results allow to put constrains on initial geometry modeling
Cumulant method for flow determination

- v_2 can be extracted using different methods, e.g. event plane versus cumulant method
- Cumulant method can reduce a non-flow contribution by calculating multi-particle cumulants:

$$\langle \exp[2i(\phi_1 - \phi_2)] \rangle \rightarrow v_2\{2\}$$
$$\langle \exp[2i(\phi_1 + \phi_2 - \phi_3 - \phi_4)] \rangle \rightarrow v_2\{4\}$$

- EP method usually between two cumulants
Two particle correlations for flow determination

\[C(\Delta \phi, \Delta \eta) = \frac{N_{\text{same evnt}}(\Delta \phi, \Delta \eta)}{N_{\text{mixed evnts}}(\Delta \phi, \Delta \eta)} \]

Two particle correlation function

\[\frac{dN_{\text{pairs}}}{d\Delta \phi} \propto 1 + 2 \sum_n (v_{n,n} \cos n\Delta \phi) \]

* \(v_{n,n} \) accessible via discreet Fourier transform

\[v_{n,n} = \langle \cos(n\Delta \phi) \rangle = \frac{\sum_m \cos(n\Delta \phi_m)C'(\Delta \phi_m)}{C'(\Delta \phi_m)} \]

* Ridge like structures (often attributed to response of the medium to jet) can be generated by flow harmonics (\(v_{1,1} - v_{6,6} \))
Two particle correlations for flow determination

- $v_{n,n}$ should factorize in p_T regions dominated by effects from initial spatial asymmetries

\[
v_{n,n}(p_T^a, p_T^b) = v_n(p_T^a) v_n(p_T^b) \quad \rightarrow \quad v_n(p_T) = \sqrt{v_{n,n}|_{p_T^a=p_T^b}}
\]

... can be tested
Two particle correlations give direct flow - v_1

- Direct flow can be accessed from two particle correlation measurement.
- Direct flow involves momentum conservation.
- Direct flow of the same magnitude as triangular flow.
Event plane correlations

Event planes predicted to be correlated. Correlations of two event planes can be completely described by

$$\frac{dN_{\text{evts}}}{d(k(\Phi_n - \Phi_m))} \propto 1 + 2 \sum_{j=1}^{\infty} V_{n,m}^j \cos jk(\Phi_n - \Phi_m)$$

$$V_{n,m}^j = \langle \cos jk(\Phi_n - \Phi_m) \rangle$$

- Can be generalized to multi-plane correlators, e.g. three-plane correlator.

Measured correlators:

\[
\begin{align*}
\langle \cos 4(\Phi_2 - \Phi_4) \rangle & \quad \langle \cos 6(\Phi_2 - \Phi_6) \rangle \\
\langle \cos 8(\Phi_2 - \Phi_4) \rangle & \quad \langle \cos 6(\Phi_3 - \Phi_6) \rangle \\
\langle \cos 12(\Phi_2 - \Phi_4) \rangle & \quad \langle \cos 12(\Phi_3 - \Phi_4) \rangle \\
\langle \cos 6(\Phi_2 - \Phi_3) \rangle & \quad \langle \cos 10(\Phi_2 - \Phi_5) \rangle \\
\end{align*}
\]

\[
\begin{align*}
\langle \cos(2\Phi_2 + 3\Phi_3 - 5\Phi_5) \rangle & \quad \langle \cos(-8\Phi_2 + 3\Phi_3 + 5\Phi_5) \rangle \\
\langle \cos(2\Phi_2 + 4\Phi_4 - 6\Phi_6) \rangle & \quad \langle \cos(-10\Phi_2 + 4\Phi_4 + 6\Phi_6) \rangle \\
\langle \cos(2\Phi_2 - 6\Phi_3 + 4\Phi_4) \rangle & \quad \langle \cos(-10\Phi_2 + 6\Phi_3 + 4\Phi_4) \rangle \\
\end{align*}
\]
Event plane correlations

• Correlation of event planes due to fluctuations of initial geometry and non-linear mixing of different harmonic in the final state
• Data can be reproduced by AMPT model (= Glauber with initial geometry fluctuation + parton and hadron transport model to model the final state)
• Example: strong correlation between Φ_2 and Φ_4, significant correlation of Φ_2 and Φ_3

arXiv:1403.0489
Flow can be accessed event by event

Significant event by event fluctuations => can access the flow on the event by event basis
Flow can be accessed event by event.

Significant event by event fluctuations => can access the flow on the event by event basis.
Flow can be accessed event by event

Many “little bangs” with local fluctuations

- Fourier series for particle anisotropies can be calculated for each event

\[\frac{dN}{d\phi} \propto 1 + \sum_n (v_{n,x} \cos n\phi + v_{n,y} \sin n\phi) \]

\[v_n = \sqrt{v_{n,x}^2 + v_{n,y}^2} \]

- \(v_n \) contains more information than previously shown \(<v_n>\)

- Information can be extracted in terms of probability distributions:

\[\frac{dN}{d\phi} \propto 1 + \sum_n v_n \cos n(\phi - \Phi_n) \]

\[p(v_n) \rightarrow p(\Phi_n, \Phi_m) \]

U, Heinz, J.Phys.Conf.Ser. 455 (2013) 012044
Event-by-event v_n distributions

Probability distributions for v_2, v_3, v_4 in different centrality ranges.
Event-by-event v_n distributions

Probability distributions for v_2, v_3, v_4 have the same shape irrespective of p_T.

JHEP 11 (2013) 183
Comparison to theory: Glauber model + CGC

- The eccentricity, ε, distribution rescaled such that $\langle \varepsilon^2 \rangle = \langle v^2 \rangle$. Mapping $p(\varepsilon^2) \leftrightarrow p(v^2)$ to be provided by models.
- (Glauber model – description of geometry of collision; CGC ~ description of initial state of nuclei by saturated gluons)
Ridge in p+Pb

- Discovery of double ridge structure in high multiplicity p+Pb events
- Influence of away-side jet estimated from low multiplicity events
Ridge in p+Pb

- Significant v_2 and v_3, comparable to Pb+Pb collisions.
- Significant $v_2\{4\} \sim 0.06$ suggests large collective motion.
- v_2 values comparable to hydrodynamics.
v$_2$ and high-pt

- v_2 > 0 with jets up-to ~200 GeV
- Comparable to v_2 of high-pt hadrons measured by CMS
- Clear sensitivity to path length
- Can provide direct restrictions to parton energy loss models

More details in talk by Zvi Citron, Fri 9:10
v_2 estimated also in for Z^0 boson ... consistent with zero
Conclusions

- Differential v_2 and higher order flow harmonics up to $n=6$ measured using various methods in different pt, eta and centrality ranges.

 \Rightarrow detailed constrained on geometry models and viscosity/entropy

- Estimates of direct flow from two particle correlations

- Two particle correlations can describe the ridge structure

- Event-by-event fluctuations of the medium and its evolution via measurement probabilities $p(v_n)$ (and $p(\Phi_n)$)

 \Rightarrow strong non-linear effects in the hydrodynamic response to initial geometry fluctuations

- Double ridge and flow like phenomena seen in $p+Pb$ collisions

- v_2 using jets allows for detailed studies of path-length dependence of parton energy loss
Backup slides
Extracting hydrodynamical response from v2

Model – eccentricity

\[\tilde{\epsilon}_n = \left(\frac{\langle r^n \cos(n\phi) \rangle}{\langle r^n \rangle}, \frac{\langle r^n \sin(n\phi) \rangle}{\langle r^n \rangle} \right) \]

\[\tilde{\epsilon}_n = \tilde{\epsilon}_{n,RP} + \Delta_{n,fluc} \]

\[p(\tilde{\epsilon}_n) \propto \exp\left(-\frac{(\tilde{\epsilon}_n - \tilde{\epsilon}_{n,RP})^2}{2\delta_{\epsilon_n}^2} \right) \]

\[\tilde{\epsilon}_{n,RP} \rightarrow \text{Mean Geometry} \]

\[\delta_{\epsilon_n} \rightarrow \text{Fluctuations} \]

Data – flow

\[\tilde{v}_n = (v_n \cos(n\Phi_n), v_n \sin(n\Phi_n)) \]

\[\tilde{v}_n = \tilde{v}_{n,RP} + \tilde{p}_{n,fluc} \]

\[p(\tilde{v}_n) \propto \exp\left(-\frac{(\tilde{v}_n - \tilde{v}_{n,RP})^2}{2\delta_{v_n}^2} \right) \]

\[\tilde{v}_{n,RP} \rightarrow \text{Mean Geometry} \]

\[\delta_{v_n} \rightarrow \text{Fluctuations} \]
Comparison to theory:
IP – Glasma model

- Modeling of the hydrodynamical response is successful.
- (IP-glasma ~ improved CGC with impact parameter dependent saturation model.)