RESEARCH ARTICLE

Association between Single Nucleotide Polymorphisms in XRCC3 and Radiation-Induced Adverse Effects on Normal Tissue: A Meta-Analysis

Yu-Zhe Song¹, Fu-Jun Han², Min Liu¹, Cheng-Cheng Xia¹, Wei-Yan Shi¹, Li-Hua Dong¹*

¹ Department of Radiation Oncology, the First Hospital of Jilin University, Changchun, Jilin, China, ² Cancer Center, the First Hospital of Jilin University, Changchun, Jilin, China

* songyz37@126.com

Abstract

The X-ray repair cross-complementing group 3 (XRCC3) protein plays an important role in the repair of DNA double-strand breaks. The relationship between XRCC3 polymorphisms and the risk of radiation-induced adverse effects on normal tissue remains inconclusive. Thus, we performed a meta-analysis to elucidate the association between XRCC3 polymorphisms and radiation-induced adverse effects on normal tissue. All eligible studies up to December 2014 were identified through a search of the PubMed, Embase and Web of Science databases. Seventeen studies involving 656 cases and 2193 controls were ultimately included in this meta-analysis. The pooled odds ratios (ORs) with corresponding 95% confidence intervals (CIs) were calculated to evaluate the association between XRCC3 polymorphisms and the risk of radiation-induced normal tissue adverse effects. We found that the XRCC3 p.Thr241Met (rs861539) polymorphism was significantly associated with early adverse effects induced by radiotherapy (OR = 1.99, 95%CI: 1.31–3.01, P = 0.001). A positive association lacking statistical significance with late adverse effects was also identified (OR = 1.28, 95%CI: 0.97–1.68, P = 0.08). In addition, the rs861539 polymorphism was significantly correlated with a higher risk of adverse effects induced by head and neck area irradiation (OR = 2.41, 95%CI: 1.49–3.89, p = 0.0003) and breast irradiation (OR = 1.41, 95%CI: 1.02–1.95, p = 0.04), whereas the correlation was not significant for lung irradiation or pelvic irradiation. Furthermore, XRCC3 rs1799794 polymorphism may have a protective effect against late adverse effects induced by radiotherapy (OR = 0.47, 95%CI: 0.26–0.86, P = 0.01). Well-designed large-scale clinical studies are required to further validate our results.
Introduction

Radiotherapy is an important and commonly used modality in cancer treatment, but normal tissues both in the vicinity of the target area and the pathway of the radiation beam are inevitably irradiated, which may result in a spectrum of normal tissue adverse effects [1]. The prescribed dose of radiotherapy in most malignant diseases is restricted by the tolerance of normal tissue to radiation [2]. However, patients exhibit large variability in normal tissue toxicity even to the same treatment schedule [3]. Some patients display hyper-sensitivity to standard radiotherapy, while typically sensitive patients can receive higher doses of radiotherapy improving the likelihood of a cure for malignant tumors [4]. If the individual risk of adverse effects can be predicted prior to radiotherapy, it would be of great benefit to the personalization and optimization of treatment strategies [5–6].

In recent years, accumulating evidence has supported the hypothesis that the risk of radio-toxicity correlates with genetic susceptibility [5,7]. Single nucleotide polymorphisms (SNPs) account for most known genetic variation [6,8]. By altering the amino acid composition of the encoded proteins, SNPs in DNA repair genes may alter protein function and an individual’s capacity for the repair of damaged DNA [9–11].

DNA is widely considered the main target of radiotherapy, which causes cell death by inducing both single-strand breaks (SSBs) and double-strand breaks (DSBs) [12]. DSBs are potent inducers of mutations and cell death and occur frequently following irradiation [13–15]. X-ray repair cross-complementing group 3 (XRCC3), a member of the RAD51-related protein family [16], participates in homologous recombination (HR) repair for DNA DSBs [17] and plays an important role in maintaining chromosome stability and DNA damage repair [18–19]. Several trials have been conducted based on the hypothesis that SNPs in genes involved in DNA repair may interfere with an individual’s DNA repair capacity and thus further influence the occurrence of radiation-induced adverse effects [20–22]. Previous studies on the association between XRCC3 polymorphisms and radiation-induced adverse effects have reported inconclusive results. Thus, we reviewed this controversial evidence and performed a meta-analysis to evaluate the association between XRCC3 polymorphisms and the risk of radiation-induced adverse effects.

Materials and Methods

Search strategy and inclusion criteria

Two investigators (Y.Z. Song and C.C. Xia) independently searched the PubMed, Embase and Web of Science databases using the terms “polymorphism” or “SNP,” “XRCC3” or “X-ray repair cross-complementing group 3,” “radiotherapy” or “radiation,” “injury” or “toxicity” or “adverse effect” or “complication.” Studies satisfying the following criteria were eligible for inclusion: (1) case-control study or cohort study; (2) evaluated the effect of SNPs in XRCC3 on radiation-induced adverse effects on normal tissue; (3) adequate information provided to calculate the odds ratio (OR) and the corresponding 95% confidence interval (95%CI). There were no limitations on the language of publication. To avoid exaggerating the effects of certain studies, the patient cohorts of the included studies were verified to ensure that only one appropriate comparison from each cohort was included for the calculation of the pooled statistic.

Data extraction

Two investigators (Y.Z. Song and W.Y. Shi) independently extracted data from each included study. Disagreements were resolved by discussion among all investigators. The following data were extracted: first author, year of publication, ethnicity, cancer type, normal tissue toxicity,
subtype of SNP in XRCC3, and numbers of cases and controls who possessed the major allele homozygote, heterozygote and minor allele homozygote genotypes.

Statistical methods
The pooled OR and 95% CI were calculated to assess the association strength between XRCC3 polymorphisms and the risk of adverse effects induced by radiotherapy under a dominance model (minor allele homozygote/heterozygote vs. major allele homozygote). The heterogeneity between studies was assessed with the chi-squared based Q-test and $I^2$ statistics [23–24]. When the chi-squared $P$ was < 0.10 or the $I^2$ statistic was ≥ 50%, the heterogeneity was considered statistically significant, and a random-effects model (DerSimonian-Laird method) was used [25]; otherwise, a fixed-effects model (Mantel-Haenszel method) was accepted [26]. If more than 10 studies were included for one SNP, subgroup analysis was conducted by adverse effect and irradiation area. Sensitivity analysis was performed to confirm the stability and reliability of the pooled results by excluding each study individually and recalculating the pooled ORs and 95% CIs. If more than 10 studies were included in this meta-analysis, publication bias was evaluated via Begg’s funnel plot and Egger’s test [27–28]. If publication bias existed, the “trim and fill” method was used to estimate the number of missing studies and to adjust the pooled result [29]. A two-sided $P < 0.05$ was considered significant for all of the analyses except the heterogeneity tests. Statistical analyses were performed using Review Manager (Rev-Man version 5.0, provided by the Cochrane Collaboration, Oxford, England) and STATA (Version 12.0, StataCorp LP, College Station, TX, USA).

Results
Eligible studies
A flow diagram summarizing the literature review process and reasons for exclusion is presented in Fig 1. A total of 17 studies involving 2849 patients were eventually included in this meta-analysis. The baseline characteristics of the 17 studies are presented in Table 1. All protocols of the 17 included studies were approved by the relevant ethics committee. The studies were published from 2005 to 2014, and the sample sizes ranged from 34 to 698. The cancer categories included head and neck cancer (five studies), breast cancer (five studies), prostatic carcinoma (two studies), non-small cell lung cancer (two studies), bladder cancer (one study) and gynecologic cancer (one study). In addition, one study included miscellaneous cancers (mainly breast cancer and head and neck cancer). Three subtypes of SNPs in XRCC3 were included in this meta-analysis. Fifteen studies were identified for rs861539, five studies for rs1799794 and two studies for rs1799796. For rs861539, six studies evaluated the early adverse effects induced by radiotherapy, while nine studies focused on late adverse effects.

Meta-analysis results

Early effect. A statistically significant association was identified between rs861539 and early adverse effects induced by radiotherapy (OR = 1.99, 95% CI: 1.31–3.01, $P = 0.001$) (Fig 2). Subgroup analysis was conducted by specific adverse effect, and the results indicated that rs861539 significantly correlated with acute skin toxicity (OR = 1.86, 95% CI: 1.13–3.05, $P = 0.01$) and mucositis (OR = 2.89, 95% CI: 1.24–6.76, $P = 0.01$) (Fig 3). For rs1799794 and rs1799796, the number of identified studies was relatively small, and the statistical associations were not significant (rs1799794: two studies, OR = 1.57, 95% CI: 0.90–2.76, $P = 0.11$; rs1799796: one study, OR = 1.82, 95% CI: 0.74–4.49, $P = 0.19$) (Fig 2).
Late effect. A positive association lacking statistical significance was identified between rs861539 and late adverse effects (OR = 1.28, 95%CI: 0.97–1.68, P = 0.08) (Fig 2). Further extracting fibrosis from late adverse effects in the subgroup analysis by specific adverse effect, we observed a significant association between rs861539 and fibrosis induced by radiotherapy (OR = 1.95, 95%CI: 1.01–3.75, P = 0.05) (Fig 4). For rs1799794, a significant association was
Table 1. Baseline Characteristics of the Eligible Studies.

| Author, Year | Country    | Ethnicity | Disease         | SNP            | Adverse Effect                                      | Assessment Criteria     | Sample Size (N) | Cases/N  | Study Design | EBRT Dose, Gy | Chemotherapy Involved |
|--------------|------------|-----------|-----------------|----------------|-----------------------------------------------------|-------------------------|-----------------|-----------|--------------|----------------|-----------------------|
| Alsbeih 2010 | Saudi Arabia | Asian     | HNC             | rs861539       | Late effect: fibrosis                                | RTOG/EORTC>=G2          | 60              | 50%      | Case-control | 66–70         | Yes                  |
| Azria 2008   | France     | Caucasian | Mixed           | rs861539       | Late effect: fibrosis                                | CTCAE v3.0>=G3          | 34              | 47.06%   | NA           | NA            | Yes                  |
| Buri 2008    | USA        | Mixed     | Prostate cancer | rs861539       | Late effect: rectal bleeding, urinary morbidity, erectile dysfunction | RTOG/EORTC>=G1          | 135             | 9.36%    | Cohort       | 45 Gy and/or brachytherapy | NA         |
| Chang-Claude 2009 | Germany | Caucasian | Breast cancer   | rs861539       | Late effect: telangiectasia                          | RTOG/EORTC>=G2          | 401             | 31.67%   | Cohort       | 55–70         | No                   |
| Cheuk 2014   | China      | Asian     | HNC             | rs861539, rs1799794 | Late effect: fibrosis                                | RTOG>=G1                | 120             | 24.17%   | Cohort       | 66–76         | Yes                  |
| De Ruyc 2005 | Belgium    | Caucasian | Gynecologic cancer | rs861539, rs1799794 | Late effect: side effect in the pelvic area         | CTCAE v3.0>=G2          | 62              | 35.48%   | Cohort       | 45–66 and/or brachytherapy | Yes       |
| Fachal 2012  | Spain      | Caucasian | Prostate cancer | rs1799794      | Early effect: gastrointestinal morbidity, genitourinary morbidity | CTCAE v3.0>=G2          | 698             | 4.87%    | Cohort       | 70–76         | NA                   |
| Falvo 2011   | Italy      | Caucasian | Breast cancer   | rs861539       | Early effect: acute skin toxicity                    | CTCAE v3.0>=G1          | 57              | 33.33%   | Cohort       | 18–21         | Yes                  |
| Flavo 2012   | Italy      | Caucasian | Breast cancer   | rs1799794      | Late effect: fibrosis or fat necrosis               | CTCAE v3.0>=G2          | 57              | 45.61%   | Cohort       | 18–21         | Yes                  |
| Mangoni 2011 | Italy      | Caucasian | Breast cancer   | rs861539       | Early effect: acute skin toxicity                    | CTCAE v2.0>=G2c         | 61              | 11.48%   | Cohort       | 50–62.8       | Yes                  |
| Popand 2006  | Germany    | Caucasian | Breast cancer   | rs861539       | Early effect: acute skin toxicity                    | CTCAE v2.0>=G2          | 444             | 17.12%   | Cohort       | 49.2–58.8     | NA                   |
| Pretasi 2011 | Italy      | Caucasian | HNC             | rs861539       | Early effect: mucositis                              | CTCAE v3.0>=G2          | 101             | 67.33%   | Cohort       | 54–70         | Yes                  |
| Sakano 2010  | Japan      | Asian     | Bladder cancer  | rs861539       | Early effect: gastrointestinal morbidity             | CTCAE v3.0>=G2          | 94              | 9.57%    | Cohort       | 30.0–60.4     | Yes                  |
| Tucker 2013  | USA        | Caucasian | NSCLC           | rs861539       | Late effect: radiation pneumonitis                   | CTCAE v3.0>=G3          | 141             | 19.86%   | Cohort       | 50.4–72       | Yes                  |
| Werbrouck 2009 | Belgium | Caucasian | HNC             | rs861539, rs1799794, rs1799796 | Early effect: mucositis, dysphagia                      | CTCAE v3.0>=G3          | 85              | 32.94%   | Cohort       | 66–69         | Yes                  |
| Yin 2011     | USA        | Caucasian | NSCLC           | rs861539       | Late effect: radiation pneumonitis                   | CTCAE v3.0>=G1          | 196             | 69.90%   | Cohort       | 60–70 (majority) | Yes                  |
| Zou 2014     | China      | Asian     | HNC             | rs861539       | Late effect: xerostomia                              | G1 a                      | 103             | 41.75%   | Cohort       | 70            | Yes                  |

Abbreviations: HNC = head and neck cancer, RTOG = the radiation therapy oncology group, EORTC = European Organization for Research and Treatment of Cancer, EBRT = external beam radiation therapy, CTCAE = Common Terminology Criteria for Adverse Events. NA: not available

a Breast cancer, HNC and meningioma;
b Cervical cancer and endometrial cancer;
c method based on CTCAE, in which G2c was defined as at least one moist desquamation or interruption of radiotherapy due to toxicity.
d method developed by University of Michigan;
doi:10.1371/journal.pone.0130388.t001
### The Effect of XRCC3 Polymorphisms on Radiotoxicity

#### Early adverse effect for rs861539

| Study or Subgroup | case variant | case total | control variant | control total | Odds Ratio M-H, Fixed, 95%CI | Odds Ratio M-H, Fixed, 95%CI | weight |
|------------------|--------------|------------|-----------------|---------------|----------------------------|------------------------------|--------|
| Falvo 2011       | 16           | 19         | 23              | 38            | 3.48 [0.86, 14.02]           |                              | 7.1%   |
| Mangoni 2011     | 7            | 7          | 35              | 54            | 8.24 [0.45, 152.09]          |                              | 1.7%   |
| Popanda 2006     | 55           | 76         | 233             | 368           | 1.52 [0.88, 2.62]            |                              | 64.8%  |
| Pretiali 2011     | 16           | 22         | 13              | 23            | 2.05 [0.59, 7.15]            |                              | 10.2%  |
| Sakano 2010       | 1            | 9          | 13              | 85            | 0.69 [0.08, 6.01]            |                              | 6.5%   |
| Werbrouck 2009   | 24           | 28         | 35              | 57            | 3.77 [1.15, 12.34]           |                              | 9.7%   |
| **Total (95% CI)** | **161**      |            | **625**         |               | **1.99 [1.31, 3.01]**        |                              | **100.0%** |

Total events: 119 and 352.

Heterogeneity: $\text{Chi}^2 = 4.51, \text{df} = 5 (P = 0.48); I^2 = 0%$

Test for overall effect: $Z = 3.25 (P = 0.001)$

#### Late adverse effect for rs861539

| Study or Subgroup | case variant | case total | control variant | control total | Odds Ratio M-H, Fixed, 95%CI | Odds Ratio M-H, Fixed, 95%CI | weight |
|------------------|--------------|------------|-----------------|---------------|----------------------------|------------------------------|--------|
| Alsbeih 2010     | 20           | 30         | 17              | 30            | 1.53 [0.54, 4.36]            |                              | 6.4%   |
| Azria 2008       | 9            | 16         | 9               | 18            | 1.29 [0.33, 4.97]            |                              | 4.2%   |
| Burni 2008       | 8            | 13         | 69              | 122           | 1.23 [0.38, 3.97]            |                              | 5.7%   |
| Chang-Claude 2009| 82           | 127        | 170             | 274           | 1.11 [0.72, 1.73]            |                              | 42.8%  |
| Cheuk 2014       | 8            | 29         | 9               | 91            | 3.47 [1.20, 10.08]           |                              | 3.5%   |
| De Ruyck 2005    | 13           | 22         | 25              | 40            | 0.87 [0.30, 2.51]            |                              | 8.1%   |
| Tucker 2013      | 23           | 28         | 76              | 113           | 2.24 [0.79, 6.36]            |                              | 6.0%   |
| Yin 2011         | 94           | 137        | 44              | 59            | 0.75 [0.37, 1.48]            |                              | 21.7%  |
| Zou 2014         | 7            | 43         | 2               | 60            | 5.64 [1.11, 28.65]           |                              | 1.6%   |
| **Total (95% CI)** | **445**      |            | **807**         |               | **1.28 [0.97, 1.68]**        |                              | **100.0%** |

Total events: 264 and 421.

Heterogeneity: $\text{Chi}^2 = 11.05, \text{df} = 8 (P = 0.20); I^2 = 28%$

Test for overall effect: $Z = 1.73 (P = 0.08)$

#### Early adverse effect for rs1799794

| Study or Subgroup | case variant | case total | control variant | control total | Odds Ratio M-H, Fixed, 95%CI | Odds Ratio M-H, Fixed, 95%CI | weight |
|------------------|--------------|------------|-----------------|---------------|----------------------------|------------------------------|--------|
| Fachal 2012      | 24           | 34         | 287             | 664           | 3.15 [1.48, 6.70]           |                              | 41.9%  |
| Werbrouck 2009   | 6            | 28         | 22              | 57            | 0.43 [0.15, 1.24]           |                              | 58.1%  |
| **Total (95% CI)** | **62**       |            | **721**         |               | **1.57 [0.90, 2.76]**       |                              | **100.0%** |

Total events: 30 and 309.

Heterogeneity: $\text{Chi}^2 = 9.07, \text{df} = 1 (P = 0.003); I^2 = 89%$

Test for overall effect: $Z = 1.58 (P = 0.11)$

#### Late adverse effect for rs1799794

| Study or Subgroup | case variant | case total | control variant | control total | Odds Ratio M-H, Fixed, 95%CI | Odds Ratio M-H, Fixed, 95%CI | weight |
|------------------|--------------|------------|-----------------|---------------|----------------------------|------------------------------|--------|
| Cheuk 2014       | 16           | 29         | 67              | 91            | 0.44 [0.19, 1.05]           |                              | 48.1%  |
| De Ruyck 2005    | 7            | 22         | 21              | 40            | 0.42 [0.14, 1.26]           |                              | 33.7%  |
| Falco 2012       | 20           | 26         | 26              | 31            | 0.64 [0.17, 2.41]           |                              | 18.2%  |
| **Total (95% CI)** | **77**       |            | **162**         |               | **0.47 [0.26, 0.86]**       |                              | **100.0%** |

Total events: 43 and 114.

Heterogeneity: $\text{Chi}^2 = 0.27, \text{df} = 2 (P = 0.87); I^2 = 0%$

Test for overall effect: $Z = 2.44 (P = 0.01)$

#### Early adverse effect for rs1799796

| Study or Subgroup | case variant | case total | control variant | control total | Odds Ratio M-H, Fixed, 95%CI | Odds Ratio M-H, Fixed, 95%CI | weight |
|------------------|--------------|------------|-----------------|---------------|----------------------------|------------------------------|--------|
| Werbrouck 2009   | 16           | 29         | 23              | 57            | 1.82 [0.74, 4.49]           |                              | 100.0% |

Test for overall effect: $Z = 1.30 (P = 0.19)$

#### Late adverse effect for rs1799796

| Study or Subgroup | case variant | case total | control variant | control total | Odds Ratio M-H, Fixed, 95%CI | Odds Ratio M-H, Fixed, 95%CI | weight |
|------------------|--------------|------------|-----------------|---------------|----------------------------|------------------------------|--------|
| De Ruyck 2005    | 15           | 22         | 14              | 40            | 3.98 [1.31, 12.05]          |                              | 100.0% |

---

**Diagram:**

- **Favours [variant]**
- **Favours [wild]**
- **0.05**
- **0.2**
- **1**
- **5**
- **20**
observed with late adverse effect induced by radiotherapy (OR = 0.47, 95%CI: 0.26–0.86, \(P = 0.01\)) (Fig 2). For rs1799796, only one study was identified, and the statistical association was significant (OR = 3.98, 95%CI: 1.31–12.05, \(P = 0.01\)) (Fig 2).

**Subgroup analysis by radiotherapy area.** Subgroup analysis was conducted by different radiotherapy area irrespective of the type of adverse effect. A significant association was identified between rs861539 and radiation-induced adverse effects of head and neck irradiation (OR = 2.41, 95%CI: 1.49–3.89, \(P = 0.0003\)) and breast irradiation (OR = 1.41, 95%CI: 1.02–1.95, \(P = 0.04\)), while no significant association was observed for lung irradiation (OR = 1.07, 95%CI: 0.62–1.85, \(P = 0.72\)) or pelvic irradiation (OR = 0.80, 95%CI: 0.38–1.68, \(P = 0.56\)) (Fig 5).

| Study or Subgroup | case | control | Odds Ratio | Odds Ratio |
|-------------------|------|---------|------------|------------|
|                   | variant | total | variant | total | M-H, Fixed, 95%CI | M-H, Fixed, 95%CI | weight |
| **Acute skin toxicity** | | | | | | | |
| Falvo 2011        | 16    | 19     | 23       | 38       | 3.48 [0.86, 14.02] | 7.1% |
| Mangoni 2011      | 7     | 7      | 35       | 54       | 8.24 [0.45, 152.09] | 1.7% |
| Popanda 2006      | 55    | 76     | 233      | 368      | 1.52 [0.88, 2.62] | 64.8% |
| **Subtotal (95% CI)** | 102 | 460 | | | 1.86 [1.13, 3.05] | 73.6% |
| Total events      | 78    | 291    | | | | |
| Heterogeneity: Chi\(^2\) = 2.31, df = 2 (\(P = 0.32\)); I\(^2\) = 13% |
| Test for overall effect: Z = 2.46 (\(P = 0.01\)) |

| Mucositis | | | | | | | |
|-----------|------|---------|------------|------------|
| Pretasi 2011 | 16    | 22     | 13       | 23       | 2.05 [0.59, 7.15] | 10.2% |
| Werbrouck 2009 | 24    | 28     | 35       | 57       | 3.77 [1.15, 12.34] | 9.7% |
| **Subtotal (95% CI)** | 50 | 80 | | | 2.89 [1.24, 6.76] | 19.9% |
| Total events | 40   | 48     | | | | |
| Heterogeneity: Chi\(^2\) = 0.48, df = 1 (\(P = 0.49\)); I\(^2\) = 0% |
| Test for overall effect: Z = 2.45 (\(P = 0.01\)) |

| Gastrointestinal | | | | | | | |
|------------------|------|---------|------------|------------|
| Sakano 2010      | 1    | 9       | 13       | 85       | 0.69 [0.08, 6.01] | 6.5% |
| **Subtotal (95% CI)** | 9  | 85 | | | 0.69 [0.08, 6.01] | 6.5% |
| Total events | 1   | 13     | | | | |
| Heterogeneity: Not applicable |
| Test for overall effect: Z = 0.33 (\(P = 0.74\)) |

| Total (95% CI) | 161 | 625 | 1.99 [1.31, 3.01] | 100.0% |
|----------------|------|------|------------------|--------|
| Total events | 119  | 352  | | | |
| Heterogeneity: Chi\(^2\) = 4.51, df = 5 (\(P = 0.48\)); I\(^2\) = 0% |
| Test for overall effect: Z = 3.25 (\(P = 0.001\)) |
| Test for subgroup differences: Chi\(^2\) = 1.73, df = 2 (\(P = 0.42\)); I\(^2\) = 0% |

Fig 3. Forrest plot for the association between rs861539 and radiation-induced early adverse effects by specific adverse effect. A fixed-effects model was used. The square with the corresponding horizontal line represents the OR and 95%CI of each study. The area of the square reflects the weight of the study. The diamond represents the pooled OR and 95%CI.
Heterogeneity and sensitivity analyses

The heterogeneities between studies of all analyses were not significant except the analysis for the early effect of rs1799794 ($I^2 = 89\%$, chi-squared $P = 0.003$). The pooled results were stable in the sensitivity analysis.

Publication bias

The number of included studies for rs861539 was sufficient to evaluate the publication bias. The distribution of included studies in Begg’s funnel plot was visually symmetrical (Fig 6). However, the $p$-value of Egger’s test was 0.048, which indicates that potential publication bias may exist. Using the “trim and fill” method [29], three more potential studies were filled to reevaluate the pooled effect. The result was not altered significantly (pooled Est = 0.273, 95% CI: 0.049–0.496, $P = 0.017$) from the initial results (pooled Est = 0.354, 95%CI: 0.123–0.584, $P = 0.003$). The direction of the effect and the significant association were both constant, which indicates that the pooled result was stable and representative.
Fig 5. Forrest plot for the effect of rs861539 on adverse effects induced by radiotherapy of different body areas. A fixed-effects model was used. The square with the corresponding horizontal line represents the OR and 95%CI of each study. The area of the square reflects the weight of the study. The diamond represents the pooled OR and 95%CI.

doi:10.1371/journal.pone.0130388.g005
Discussion

Radiation-induced adverse effects are commonly classified as early or late effects, depending on the time before manifestation of relevant clinical symptoms. Early effects occur during radiotherapy or within a few weeks after radiotherapy, while late effects emerge months to years after radiotherapy [2]. Early effects are often more serious in rapidly proliferating tissues, whereas late effects tend to occur in tissues with a slow turnover of cells [2,14]. Due to the inconformity effect of XRCC3 on early and late effects previously reported and the possibility of different molecular mechanisms [44], we analyzed the early and late effects separately. The present meta-analysis systematically collected evidence linking XRCC3 polymorphisms to the risk of adverse effects on normal tissue induced by radiotherapy. Three SNPs of XRCC3 were included in our meta-analysis: XRCC3 NM_005432.3:c.722C>T, NP_005423.1:p.Thr241Met (rs861539); XRCC3 NM_005432.3:c.-316A>G (rs1799794); and XRCC3 NM_005432.3:c.562-14A>G (rs1799796). XRCC3 p.Thr241Met is the most commonly reported polymorphism of XRCC3. Our meta-analysis indicated that the XRCC3 p.Thr241Met polymorphism is significantly associated with an elevated risk of radiation-induced early adverse effect.

A systematic review aimed to explore the association between 14 SNPs in 9 genes and radiotoxicity in normal tissues of the head and neck [45]. Of the seven included studies, three involved XRCC3. Due to obvious heterogeneity, no meta-analysis was undertaken. A positive association between SNPs in DNA repair genes and acute radiotoxicity events has been reported [45]. Since that report, two more articles evaluating the relationship between XRCC3...
polymorphisms and the risk of radiation-induced adverse effects in head and neck cancer (HNC) patients have been published, and they were included in the present meta-analysis. Our meta-analysis focused on XRCC3 and provided more specific evidence. Subgroup analysis according to irradiated area revealed that rs861539 significantly correlates with an elevated risk of adverse effects induced by head and neck irradiation, with similar results observed for breast irradiation.

To date, six genome-wide association studies (GWASs) have been published on normal tissue radiobiology [46–51]. Most of the studies were performed using prostate cancer patient cohorts (one study used both prostate and breast cancer patients). XRCC3 did not reach genome-wide significance in these studies. In the present meta-analysis, the pooled OR of pelvic irradiation was also not significant (OR = 0.97, 95%CI: 0.47–2.01, \( P = 0.81 \)) (Fig 5), although only three studies involved pelvic irradiation.

For rs1799794, a significant association with late adverse effects was revealed (OR = 0.47, 95%CI: 0.26–0.86, \( P = 0.01 \)), which indicates that rs1799794 polymorphism may have a protective effect against late adverse effects. Further studies are needed to confirm this conclusion. The analysis evaluating the effect of rs1799794 on early adverse effects yielded a significant heterogeneity, because the only two identified studies reached opposing conclusions. For rs1799796, only one study for each early and late effect was identified, and thus heterogeneity was not applicable. No definite conclusion can be made for rs1799794 and rs1799796, due to the relatively small number of identified studies.

XRCC3 is an important protein in the process of homologous recombination, one of the two competitive mechanisms for repair of DNA DSBs [52–54]. Homologous recombination is generally considered high-fidelity [19]. By contrast, non-homologous end joining (NHEJ) is often error prone [19]. XRCC3 p.Thr241Met is a non-conservative variant that may affect the structure of this DNA repair protein and lead to a deficiency in the homologous recombination pathway [55]. Consequently, the repair mechanism of DSBs could be shifted toward NHEJ, which promotes chromosome instability and further affects the cell’s ability to repair radiation injury [19]. However, GWASs of erectile dysfunction (ED) have revealed that the most significant SNPs lie in or near genes encoding biological activities involved in ED rather than DNA damage repair genes [47]. It should be noted that this conclusion was based on an endpoint that is a much more complex adverse effect compared with such adverse effects as skin toxicity or mucositis. Based on a similar hypothesis of influencing radiotoxicity, the association of XRCC3 polymorphisms with cancer risk has also been extensively evaluated. Evidence from meta-analysis supports a positive association between the XRCC3 p.Thr241Met polymorphism and the risk of bladder cancer [56–57], breast cancer [58–59], cervical cancer [60–61] and hepatocellular carcinoma [62–63]. However, in glioma [64–65], NSCLC [66–67], colorectal cancer [68–69] and gastric cancer [70–71] patients, the associations were not significant.

Although accumulating studies have evaluated the association between SNPs and radiation-induced adverse effects, no SNPs have been identified that can indicate which patients are at higher risk of normal tissue injury following radiotherapy [72]. Barnett et al. reevaluated 92 SNPs in 46 genes covering nearly all the SNPs previously reported to be associated with radiotherapy toxicity. A score system was developed to estimate the overall radiation toxicity rather than some specific adverse effect as was evaluated in the previous studies. None of the previously reported associations were confirmed using this method. The Q-Q plots indicated that no more significant associations than chance existed between the tested SNPs and overall late effects [73]. Nevertheless, a model that synthesizes multiple SNPs may possess greater power to predict normal tissue response in radiosensitive patients [40,74–76]. Azria et al. reported a higher risk of grade \( \geq 3 \) toxicity in patients with \( \geq 4 \) SNPs compared with those patients with \(< 4 \) SNPs (OR = 9.3, 95%CI: 1.4–62, \( P = 0.003 \)) [7]. Similarly, Sterpone et al. reported that
patients with $\geq 3$ SNPs had a higher risk of grade $\geq 2$ toxicity than patients with $<3$ SNPs (OR = 2.42, 95%CI: 0.26–22.5, $P = 0.39$) [77]. However, these trials were not designed to evaluate the combined effect of multiple SNPs. After deliberately assessing the individual effects of selected SNPs, occasional combinations of involved SNPs were also performed. Further studies are needed to clarify the selection criterion for combined SNPs. The models developed from GWASs are more credible due to the sufficient genetic coverage. For example, one study presented a multivariate model comprising clinical factors and SNPs selected through a GWAS that achieved a sensitivity of 80% and a specificity of 70% in predicting ED following radiation therapy [47].

As a meta-analysis, heterogeneity among included studies should be considered. One of the most important potential sources of heterogeneity is the evaluation of miscellaneous cancer types together. However, the irradiated area, not the cancer type, is directly related to the occurrence of adverse effects induced by radiotherapy. Radiosensitivity varies according to anatomical site, but a common biological mechanism may occur in different irradiated organs. Hence, it is rational to include different cancer types when evaluating the adverse effects induced by radiotherapy on normal tissue [76]. Some of the heterogeneity among studies also derived from the heterogeneous treatment protocols, which was due to the characteristics of the radiotherapy and the inclusion of multiple cancer types in this meta-analysis. The radiotherapy parameters [5], including total dose, dose per fraction, field size, irradiation volume and depth of prescription point, were not identical. The majority of the treatment protocols in the included studies were based on multimodality treatment that is an important potential confounding factor aggravating the adverse effects, particularly when adjuvant or concurrent chemotherapy was involved. In addition, the criteria for assessing the adverse effects were not consistent, and the specific grades chosen to divide patients into case or control arm were also different among the included studies. Finally, 15 cohort studies and two case-control studies were included in our meta-analysis. Thus, differences in study design also contributed to the heterogeneity among studies.

In addition to heterogeneity, other limitations of the present meta-analysis should be noted when interpreting the results. First, publication bias may exist for rs861539; however, after adjustment using the “trim and fill” method [29], the result was stable in the direction of the effect, and still presented a significant association. Thus, we believe that the pooled result of rs861539 was not affected by any potential publication bias. Second, the eleven studies without sufficient data could not be expressed by weight in the pooled result, which may have generated some potential bias. Third, because miscellaneous irradiation areas and multiple adverse effects were evaluated in the present meta-analysis, subgroup analysis was conducted 3 times to reach more specific conclusions. The statistical power was reduced when the data were analyzed repeatedly. Forth, the sample sizes of some of the included studies and the numbers of studies in some of the subgroups were relative small, which also restricted the statistical power. In addition, our results were based on the raw data, which was unadjusted for certain confounding factors such as radiation dose or chemotherapy status.

To the best of our knowledge, the present meta-analysis is the first meta-analysis focusing on the association between XRCC3 polymorphisms and the risk of radiation-induced adverse effects. In conclusion, the meta-analysis suggests that the XRCC3 p.Thr241Met polymorphism is significantly associated with a higher risk of radiation-induced early adverse effects such as acute skin toxicity and mucositis. Although the association between rs861539 and late adverse effects was not significant, rs861539 was significantly correlated with a higher risk of fibrosis. In patients who received head and neck irradiation and breast irradiation, rs861539 was significantly correlated with a higher risk of adverse effects. Our results need to be further confirmed in well-designed large-scale clinical studies assessing the value of XRCC3 polymorphisms in
identifying patients at higher risk of radiation-induced adverse effect. These patients might benefit from individual radiotherapy regimens and early intervention for adverse effects accordingly.

Supporting Information

S1 PRISMA Checklist. PRISMA checklist.

S1 Fig. Forrest plot for the association between rs861539 and radiation-induced adverse effects by ethnicity. A fixed-effects model was used. The square with the corresponding horizontal line represents the OR and 95%CI of each study. The area of the square reflects the weight of the study. The diamond represents the pooled OR and 95%CI.

S1 Table. Subgroup analysis of the association between rs861539 and radiation-induced adverse effects. \( P_{Z-test} \): P value of Z-test for overall effect. \( P_{het} \): P value of chi-squared based Q-test for heterogeneity. NA: not available.

S2 Table. Reason for exclusion of each article.

S3 Table. Meta-analysis on genetic association studies checklist.

Acknowledgments

We thank all individuals who assisted with this study.

Author Contributions

Conceived and designed the experiments: FJH LHD. Performed the experiments: YZS ML CCX WYS. Analyzed the data: YZS CCX WYS. Contributed reagents/materials/analysis tools: YZS LHD ML. Wrote the paper: YZS FJH.

References

1. Bentzen SM, Dorr W, Anscher MS, Denham JW, Hauer-Jensen M, Marks LB, et al. (2003) Normal tissue effects: reporting and analysis. Seminars in radiation oncology 13: 189–202. PMID: 12903009
2. Stone HB, Coleman CN, Anscher MS, McBride WH (2003) Effects of radiation on normal tissue: consequences and mechanisms. The Lancet. Oncology 4: 529–536. PMID: 12965273
3. Andreassen CN, Alsner J, Overgaard J (2002) Does variability in normal tissue reactions after radiotherapy have a genetic basis—where and how to look for it? Radiotherapy and Oncology 64: 131–140. PMID: 12242122
4. Bourguignon MH, Gisone PA, Perez MR, Michelin S, Dubner D, Giorgio MD, et al. (2005) Genetic and epigenetic features in radiation sensitivity Part I: cell signalling in radiation response. European journal of nuclear medicine and molecular imaging 32: 229–246. PMID: 15657757
5. Ho AY, Atencio DP, Peters S, Stock RG, Formenti SC, Cesaretti JA, et al. (2006) Genetic predictors of adverse radiotherapy effects: the Gene-PARE project. International journal of radiation oncology, biology, physics 65: 646–655. PMID: 16751059
6. Andreassen CN (2005) Can risk of radiotherapy-induced normal tissue complications be predicted from genetic profiles? Acta oncologica (Stockholm, Sweden) 44: 801–815. PMID: 16332587
7. Azria D, Ozsahin M, Kramar A, Peters S, Atencio DP, Crompton NE, et al. (2008) Single nucleotide polymorphisms, apoptosis, and the development of severe late adverse effects after radiotherapy.
The Effect of XRCC3 Polymorphisms on Radiotoxicity
29. Duval S, Tweedie R (2000) Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 56: 455–463. PMID: 10877304

30. Alsbeih G, Al-Harbi N, Al-Hadyan K, El-Sebaie M, Al-Rajhi N (2010) Association between normal tissue
29. Duval S, Tweedie R (2000) Trim and fill: A simple funnel-plot-based method of testing and adjusting for
publication bias in meta-analysis. Biometrics 56: 455–463. PMID: 10877304

31. Burri RJ, Stock RG, Cesaretti JA, Atencio DP, Peters S, Peters CA, et al. (2008) Association of single
nucleotide polymorphisms in SOD2, XRCC1 and XRCC3 with susceptibility for the development of
adverse effects resulting from radiotherapy for prostate cancer. Radiation research 170: 49–59. doi:
10.1667/RR1219.1 PMID: 18582155

32. Chang-Claude J, Ambrosone CB, Lilla C, Kropp S, Helmbold I, von Fournier D, et al. (2009) Genetic
polymorphisms in DNA repair and damage response genes and late normal tissue complications of
radiotherapy for breast cancer. British journal of cancer 100: 1680–1686. doi: 10.1038/sj.bjc.6605038
PMID: 19367277

33. Cheuk IW, Yip SP, Kwong DL, Wu VW (2014) Association of and gene haplotypes with the develop-
mement of radiation-induced fibrosis in patients with nasopharyngeal carcinoma. Molecular and clinical
oncology 2: 553–558. PMID: 24940494

34. Fachal L, Gomez-Caamaño A, Peleteiro P, Carballo A, Calvo-Crespo P, Sanchez-Garcia M, et al. (2012)
Association of a XRCC3 polymorphism and rectum mean dose with the risk of acute radio-
duced gastrointestinal toxicity in prostate cancer patients. Radiotherapy and oncology: journal of the
European Society for Therapeutic Radiology and Oncology 105: 321–328.

35. Falvo E, Strigari L, Citro G, Giordano C, Arcangeli S, Soriani A, et al. (2011) Dose and polymorphic
genes xrc1, xrc3, gst play a role in the risk of artdeveloped ephyrmata in breast cancer patients follow-
ing single shot partial breast irradiation after conservative surgery. BMC cancer 11: 291. doi: 10.
1186/1471-2407-11-291 PMID: 21749698

36. Falvo E, Strigari L, Citro G, Giordano C, Boboc G, Fabretti F, et al. (2012) SNPs in DNA repair or oxidative
stress genes and late subcutaneous fibrosis in patients following single shot partial breast irradi-
ation. Journal of experimental & clinical cancer research: CR 31: 7.

37. Mangoni M, Bisani S, Carozzi F, Sani C, Bill G, Livì L, et al. (2011) Association between genetic poly-
morphisms in the XRCC1, XRCC3, XPD, GSTM1, GSTT1, MSH2, MLH1, MSH3, and MGMT genes
and radiosensitivity in breast cancer patients. International journal of radiation oncology, biology, phys-
ics 81: 52–58. doi: 10.1016/j.ijrobp.2010.04.023 PMID: 20708344

38. Popanda O, Tan XL, Ambrosone CB, Kropp S, Helmbold I, von Fournier D, et al. (2006) Genetic poly-
morphisms in the DNA double-strand break repair genes XRCC3, XRCC2, and NBS1 are not associ-
ated with acute side effects of radiotherapy in breast cancer patients. Cancer epidemiology, biomarkers
& prevention: a publication of the American Association for Cancer Research, cosponsored by the
American Society of Preventive Oncology 15: 1048–1050.

39. Pratesi N, Mangoni M, Mancini I, Paiar F, Simi L, Livì L, et al. (2011) Association between single nucleo-
tide polymorphisms in the XRCC1 and RAD51 genes and clinical radiosensitivity in head and neck can-
cer. Radiotherapy and oncology: journal of the European Society for Therapeutic Radiology and
Oncology 99: 356–361.

40. Sakano S, Hinoda Y, Sasaki M, Wada T, Matsumoto H, Eguchi S, et al. (2010) Nucleotide excision
repair gene polymorphisms may predict acute toxicity in patients treated with chemoradiotherapy for
bladder cancer. Pharmacogenomics 11: 1377–1387. doi: 10.2217/pgs.10.106 PMID: 21047201

41. Tucker SL, Li M, Xu T, Gomez D, Yuan X, Yu J, et al. (2013) Incorporating single-nucleotide polymor-
phisms into the Lyman model to improve prediction of radiation pneumonitis. International journal of
radiation oncology, biology, physics 85: 251–257. doi: 10.1016/j.ijrobp.2012.02.021 PMID: 22541966

42. Werbrouck J, De Ruyck K, Duprez F, Velderman L, Claes K, Van Eijkeren M, et al. (2009) Acute normal
tissue reactions in head-and-neck cancer patients treated with IMRT: influence of dose and association
with genetic polymorphisms in DNA DSB repair genes. International journal of radiation oncology, biol-
ogy, physics 73: 1187–1195. doi: 10.1016/j.ijrobp.2008.08.073 PMID: 19251090

43. Yin M, Liao Z, Huang YJ, Liu Z, Yuan X, Gomez D, et al. (2011) Polymorphisms of homologous recom-
bination genes and clinical outcomes of non-small cell lung cancer patients treated with definitive radio-
therapy. PloS one 6: e20055. doi: 10.1371/journal.pone.0020055 PMID: 21647442

44. Raabe A, Derka K, Reuther S, Szymczak S, Bergmann K, Hoeller U, et al. (2012) Association of single
nucleotide polymorphisms in the genes ATM, GSTP1, SOD2, TGFβ1, XPD and XRCC1 with risk of
severe erythema after breast conserving radiotherapy. Radiat Oncol 7: 85. doi: 10.1186/1748-717X-7-
558. PMID:10877304

45. Ghazali N, Shaw RJ, Rogers SN, Risk JM (2012) Genomic determinants of normal tissue toxicity after
radiotherapy for head and neck malignancy: A systematic review. Oral Oncology 48: 1090–1100. doi:
10.1016/j.oraloncology.2012.08.002 PMID: 22939215
46. Kerns SL, Ostrer H, Stock R, Li W, Moore J, Pearlman A, et al. (2010) Genome-Wide Association Study to Identify Single Nucleotide Polymorphisms (SNPs) Associated With the Development of Erectile Dysfunction in African-American Men After Radiotherapy for Prostate Cancer. International Journal of Radiation Oncology*Biology*Physics 78: 1292–1300. doi: 10.1016/j.ijrobp.2010.07.036 PMID: 20932654

47. Kerns SL, Stock R, Stone N, Buckstein M, Shao Y, Campbell C, et al. (2013) A 2-Stage Genome-Wide Association Study to Identify Single Nucleotide Polymorphisms Associated With Development of Erectile Dysfunction Following Radiation Therapy for Prostate Cancer. International Journal of Radiation Oncology*Biology*Physics 85: e21–e28.

48. Kerns SL, Stock RG, Stone NN, Blacksburg SR, Rath L, Vega A, et al. (2013) Genome-wide association study identifies a region on chromosome 11q14.3 associated with late rectal bleeding following radiation therapy for prostate cancer. Radiotherapy and Oncology 107: 372–376. doi: 10.1016/j.radonc.2013.05.001 PMID: 23719583

49. Kerns SL, Stone NN, Stock RG, Rath L, Ostrer H, Rosenberg BS (2013) A 2-stage genome-wide association study to identify single nucleotide polymorphisms associated with development of urinary symptoms after radiotherapy for prostate cancer. J Urol 190: 102–108. doi: 10.1016/j.juro.2013.01.096 PMID: 23376709

50. Barnett GC, Thompson D, Fachal L, Kerns S, Talbot C, Elliott RM, et al. (2014) A genome wide association study (GWAS) providing evidence of an association between common genetic variants and late radiotherapy toxicity. Radiotherapy and Oncology 111: 178–185. doi: 10.1016/j.radonc.2014.02.012 PMID: 24785509

51. Fachal L, Gómez-Caamaño A, Barnett GC, Peleteiro P, Carballo AM, Calvo-Crespo P, et al. (2014) A three-stage genome-wide association study identifies a susceptibility locus for late radiotherapy toxicity at 2q24.1. Nature Genetics 46: 891–894. doi: 10.1038/ng.3020 PMID: 24974847

52. Roth DB, Wilson JH (1985) Relative rates of homologous and nonhomologous recombination in transfected DNA. Proc Natl Acad Sci U S A 82: 3355–3359. PMID: 2987922

53. Allen C, Kurimasa A, Brennanman MA, Chen DJ, Nickoloff JA (2002) DNA-dependent protein kinase suppresses double-strand break-induced and spontaneous homologous recombination. Proc Natl Acad Sci U S A 99: 3758–3763. PMID: 11904432

54. Haber JE (2000) Partners and pathways. Elsevier Ltd. pp. 259–264.

55. Shen MR, Jones IM, Mohrenweiser H (1998) Nonconservative amino acid substitution variants exist at polymorphic frequency in DNA repair genes in healthy humans. Cancer Res 58: 604–608. PMID: 9485007

56. Peng Q, Mo C, Tang W, Chen Z, Li R, Zhai L, et al. (2014) DNA repair gene XRCC3 polymorphisms and bladder cancer risk: a meta-analysis. Tumour biology: the journal of the International Society for Oncodevelopmental Biology and Medicine 35: 1933–1944. doi: 10.1007/s13277-013-1259-0 PMID: 24104500

57. Ma Q, Zhao Y, Wang S, Zhang X, Zhang J, Du M, et al. (2014) Genetic polymorphisms of XRCC3 Thr241Met (C18067T, rs861539) and bladder cancer risk: a meta-analysis of 18 research studies. Tumour biology: the journal of the International Society for Oncodevelopmental Biology and Medicine 35: 1473–1480.

58. He XF, Wei W, Su J, Yang ZX, Liu Y, Zhang Y, et al. (2012) Association between the XRCC3 polymorphisms and breast cancer risk: meta-analysis based on case-control studies. Molecular biology reports 39: 5125–5134. doi: 10.1007/s11033-011-1308-y PMID: 22161248

59. Mao CF, Qian WY, Wu JZ, Sun DW, Tang JH (2014) Association between the XRCC3 Thr241Met Polymorphism and Breast Cancer Risk: an Updated Meta-analysis of 36 Case-control Studies. Asian Pacific journal of cancer prevention: APJCP 15: 6613–6618. PMID: 25169497

60. Qin LY, Chen X, Li P, Yang Z, Mo WN (2013) Association between the XRCC3 Thr241Met polymorphism and cervical cancer risk: a meta-analysis. Asian Pacific journal of cancer prevention: APJCP 14: 6703–6707. PMID: 24377592

61. Du L, Xiong T, He Q, Wang Y, Shen J, Peng Y, et al. (2014) The Thr241Met polymorphism in the XRCC3 gene is associated with increased risk of cancer in Chinese mainland populations. Tumour biology: the journal of the International Society for Oncodevelopmental Biology and Medicine 35: 1371–1376.

62. Duan C, Zhang W, Lu J, Wu H, Liu M, Zhu W (2013) DNA repair gene XRCC3 Thr241Met polymorphism and hepatocellular carcinoma risk. Tumour biology: the journal of the International Society for Oncodevelopmental Biology and Medicine 34: 2827–2834. doi: 10.1007/s13277-013-0841-9 PMID: 23824570

63. Wu D, Jiang H, Yu H, Xu D, Liang J, Jin J (2013) Significant association between XRCC3 C241T polymorphism and increased risk of hepatocellular carcinoma: a meta-analysis. Tumour biology: the journal
64. Adel FM, Schwartzbaum J, Frumento P, Feychting M (2014) Association between DNA repair gene polymorphisms and risk of glioma: a systematic review and meta-analysis. Neuro-oncology 16: 807–814. doi: 10.1093/neuicon/nou003 PMID: 24500421

65. Liang HJ, Yan YL, Liu ZM, Peng QL, Wang J, et al. (2013) Association of XRCC3 Thr241Met polymorphisms and gliomas risk: evidence from a meta-analysis. Asian Pacific journal of cancer prevention: AJPJP 14: 4243–4247. PMID: 23991984

66. Shen XY, Lu FZ, Wu Y, Zhao LT, Lin ZF (2013) XRCC3 Thr241Met polymorphism and clinical outcomes of NSCLC patients receiving platinum-based chemotherapy: a systematic review and meta-analysis. PloS one 8: e69553. doi: 10.1371/journal.pone.0069553 PMID: 23940523

67. Qiu M, Xu L, Yang X, Ding X, Hu J, Jiang F, et al. (2013) XRCC3 Thr241Met is associated with response to platinum-based chemotherapy but not survival in advanced non-small cell lung cancer. PloS one 8: e77005. doi: 10.1371/journal.pone.0077005 PMID: 24116196

68. Wang Z, Zhang W (2013) Association between XRCC3 Thr241Met polymorphism and colorectal cancer risk. Tumour biology: the journal of the International Society for Oncodevelopmental Biology and Medicine 34: 1421–1429. doi: 10.1007/s13277-013-0973-y PMID: 23873110

69. Liu L, Miao L, Ji G, Qiang F, Liu Z, Fan Z (2013) Association between XRCC1 and XRCC3 polymorphisms and colorectal cancer risk: a meta-analysis of 23 case-control studies. Molecular biology reports 40: 3943–3952. doi: 10.1007/s11033-012-2471-5 PMID: 23271134

70. Fang F, Wang J, Yao L, Yu XJ, Yu L, Yu L (2011) Relationship between XRCC3 T241M polymorphism and gastric cancer risk: a meta-analysis. Medical oncology (Northwood, London, England) 28: 999–1003. doi: 10.1007/s12032-010-9591-3 PMID: 20549576

71. Wang Z, Chen X, Liu B, Li S, Liu M, Xue H (2014) Quantitative assessment of the associations between DNA repair gene XRCC3 Thr241Met polymorphism and gastric cancer. Tumour biology: the journal of the International Society for Oncodevelopmental Biology and Medicine 35: 1589–1598.

72. Rosenstein BS, West CM, Bentzen SM, Alsner J, Andreassen CN, Azria D, et al. (2014) Radiogenomics: Radiobiology Enters the Era of Big Data and Team Science. International Journal of Radiation Oncology*Biology*Physics 89: 709–713. doi: 10.1016/j.ijrobp.2014.03.009 PMID: 24969789

73. Barnett GC, Coles CE, Elliott RM, Baynes C, Luccarini C, Conroy D, et al. (2012) Independent validation of genes and polymorphisms reported to be associated with radiation toxicity: a prospective analysis study. Lancet Oncol 13: 65–77. doi: 10.1016/S1470-2247(11)70302-3 PMID: 22169268

74. Andreassen CN, Alsner J, Overgaard M, Overgaard J (2003) Prediction of normal tissue radiosensitivity from polymorphisms in candidate genes. Radiother Oncol 69: 127–135. PMID: 14643949

75. Andreassen CN, Alsner J, Overgaard J (2002) Does variability in normal tissue reactions after radiotherapy have a genetic basis—where and how to look for it? Radiother Oncol 64: 131–140. PMID: 12242122

76. Andreassen CN, Barnett GC, Langendijk JA, Alsner J, De Ruyscher D, Krause M, et al. (2012) Conducting radiogenomic research—Do not forget careful consideration of the clinical data. Radiotherapy and Oncology 105: 337–340. doi: 10.1016/j.radonc.2012.11.004 PMID: 23245646

77. Sterpone S, Mastellone V, Padua L, Novelli F, Patrone C, Cornetta T, et al. (2010) Single-nucleotide polymorphisms in BER and HRR genes, XRCC1 haplotypes and breast cancer risk in Caucasian women. Journal of cancer research and clinical oncology 136: 631–636. doi: 10.1007/s00432-010-0791-1 PMID: 20140625