The Endocrine Disruptor Mono-(2-Ethylhexyl) Phthalate Affects the Differentiation of Human Liposarcoma Cells (SW 872)

Enrico Campioli1,2, Amani Batarseh1, Jiehan Li1, Vassilios Papadopoulos1

Abstract

Esters of phthalic acid (phthalates) are largely used in industrial plastics, medical devices, and pharmaceutical formulations. They are easily released from plastics into the environment and can be found in measurable levels in human fluids. Phthalates are agonists for peroxisome proliferator-activated receptors (PPARs), through which they regulate translocator protein (TSPO; 18 kDa) transcription in a tissue-specific manner. TSPO is a drug- and cholesterol-binding protein involved in mitochondrial respiration, steroid formation, and cell proliferation. TSPO has been shown to increase during differentiation and decrease during maturation in mouse adipocytes. The purpose of this study was to establish the effect of mono-(2-ethylhexyl) phthalate (MEHP) on the differentiation of human SW 872 preadipocyte cells, and examine the role of TSPO in the process. After 4 days of treatment with 10 μM MEHP, we observed changes in the transcription of acetyl-CoA carboxylase alpha, adenosine triphosphate citrate lyase, glucose transporters 1 and 4, and the S100 calcium binding protein B, all of which are markers of preadipocyte differentiation. These observed gene expression changes coincided with a decrease in cellular proliferation without affecting cellular triglyceride content. Taken together, these data suggest that MEHP exerts a differentiating effect on human preadipocytes. Interestingly, MEHP was able to temporarily increase TSPO mRNA levels through the PPAR-α and β/δ pathways. These results suggest that TSPO can be considered an important player in the differentiation process itself, or alternatively a factor whose presence is essential for adipocyte development.

Introduction

Phthalates are esters of phthalic acid largely used in industrial plastics to increase the flexibility of polymers, household items, and medical devices, and in pharmaceutical formulations such as stabilizers, lubricants, and emulsifying agents [1]. Due to a lack of covalent bonds between plastics and phthalates, phthalates are easily released from plastics into the environment [2,3]. According to the United States Environmental Protection Agency, the United States Agency for Toxic Substances and Disease Registry, and the Medical Devices Bureau of Health (Canada), the largest exposure of the general population to di-(2-ethylhexyl) phthalate (DEHP) occurs via food, followed by indoor air contamination [4,5]. The range of exposure in the general population (excluding medical and occupational sources) is estimated at 3–30 μg/kg body weight/day, and infants and toddlers are the most exposed (18.9 and 25.8 μg/kg body weight/day, respectively) [4–7]. Phthalates are rapidly metabolized and excreted in urine and feces [8], but are found in measurable levels in blood, semen, and breast milk [9–11].

Mono-(2-ethylhexyl) phthalate (MEHP), the most toxic metabolite of DEHP, is a well-known ligand for the peroxisome proliferator-activated receptor (PPAR) family, as are all other phthalates. PPARs are nuclear receptors that act as transcription factors of genes involved in lipid and glucose metabolism [12–14]. At present 3 isoforms have been identified, named PPAR-α, β/δ, and γ. The expression of PPAR-α was traditionally associated with the liver [15], where it is responsible for lipid catabolism [13,14]. However, it was recently demonstrated that PPAR-α can upregulate β-oxidation and decrease glucose utilization in human white adipocytes [16]. PPAR-β/δ is ubiquitous and has been observed to play a role in the regulation of energy homeostasis in skeletal muscle [17], and in keratinocyte proliferation and differentiation during wound healing [18]. PPAR-γ is the major isoform found in adipose tissue, but it is also expressed at high levels in the spleen and digestive tract [15]. Its main functions in the adipose tissue are the storage of lipids [14,19] and the regulation of adipocyte differentiation [14,20,21]. More generalized effects of PPAR-γ have also been observed; its agonists (thiazolidinediones) have been shown to lower blood pressure [22] and exert an antitumor effect in many cell lines and organs [23].

In a previous study, we demonstrated that phthalates decrease the levels of testicular translocator protein (TSPO; 18 kDa) mRNA and of circulating testosterone in mice through the action
of PPAR-α, and increase TSPO levels in the liver [24]. TSPO, previously known as peripheral-type benzodiazepine receptor (PBR) [25], is part of a multimeric protein complex that is located in the outer mitochondrial membrane (OMM). TSPO is quite ubiquitous, but it is expressed in high levels in steroidogenic tissues, where it exerts its main function of cholesterol transport into mitochondria, and supports steroid biosynthesis. Besides cholesterol transport into mitochondria, TSPO is involved in many cellular functions, such as mitochondrial respiration, mitochondrial permeability transition pore opening, apoptosis, and cell proliferation [25,26]. We have shown that protein kinase C ε (PKCε) affects TSPO expression through the mitogen-activated protein kinase (MAPK) pathway [27]. In cell lines expressing low endogenous levels of TSPO, stimulation by phorbol 12-myristate 13-acetate (PMA) has been demonstrated to cause an increase in TSPO levels [28]. The expression of TSPO in 3T3-L1 preadipocyte cell lines, and the upregulation of TSPO mRNA during adipogenesis, has been demonstrated [29]; however, further information about the role of TSPO in adipose tissue is lacking. TSPO was previously detected by a radioligand binding assay in the interscapular brown adipose tissue [30] and in the epididymal adipose tissue where its expression is increased in response to acute stress [31].

The aim of the present study was to evaluate the effect of MEHP on the differentiation of human preadipocytes from the human liposarcoma-derived SW 872 cell line, and investigate the relationship between the PPAR family and TSPO.

Methods

Cell Culture

Human liposarcoma SW 872 cells were purchased from American Type Culture Collection (ATCC, Manassas, VA, USA), cultured in 75-cm² flasks (Dow Corning Corp., Corning, NY, USA) in a humidified atmosphere with 3.5% CO₂ at 37°C, in Dulbecco’s Modified Eagle Medium: Nutrient Mixture F-12 (Invitrogen Canada Inc., Burlington, ON, Canada) supplemented with 10% fetal bovine serum (Invitrogen Canada Inc.). SW 872 cells differentiate over time in culture without the use of any differentiation media [32]. Indeed, SW 872 are preadipocytes which stop proliferating when they reach 100% confluence. It is at this point when they begin differentiating into adipocytes.

Quantification of mRNA levels by quantitative real time-polymerase chain reaction (qRT-PCR)

SW 872 cells were plated onto 6-well plates (Dow Corning Corp.) at the initial concentration of 7.5×10⁴ cells per well. After 1 day (60% confluence, D0), the cells were treated with 1, 10, and 50 μM of MEHP and 10, 50, and 100 nM of PMA (all purchased from Sigma-Aldrich Canada Ltd., Oakville, ON, Canada) for a period of 4, 8, or 12 days.

Total RNA was extracted from cultured cells using RNeasy Mini Kit (Qiagen Inc., Mississauga, ON, Canada) according to manufacturer’s instructions. The RNA concentration was determined by measuring absorbance at 260 nm using the NanoDrop ND-1000 (Thermo Scientific, Mississauga, ON, Canada). The purity of RNA samples was determined by the A260:A280 (2.0–2.2) values.

Samples were normalized to total RNA content and then reverse transcribed using Transcriptor First Strand cDNA Synthesis Kit (Roche Applied Science, Laval, QC, Canada) according to manufacturer’s instructions. The resulting cDNA samples were diluted with nuclease-free water and subjected to qRT-PCR using the SYBR green dye technique on a Light Cycler system 480 (Roche Applied Science). Briefly, samples were pre-incubated at 95°C for 5 min followed by 45 cycles of denaturation at 95°C for 10 s, annealing at 61°C for 10 s and elongation at 72°C for 10 s.

Following PCR amplification, the identity of the amplification product was verified by electrophoresis on a 2% agarose gel and by melting curve analysis. The results reported for each RNA product have been normalized to ribosomal protein S18 (RPS18) mRNA to correct for differences in the amounts of the template cDNA. Oligonucleotide sequences of sense and antisense primers are shown in Table 1.

Triglyceride quantification assay

Triglyceride concentration was measured with a colorimetric assay. Briefly, cells were seeded in 75-cm² flasks (Dow Corning Corp.) and were maintained for 24 h to allow adherence. The

Table 1. Primers used for qRT-PCR analysis.

mRNA	Forward primer 5'-3'	Reverse primer 5'-3'
ACACA	CGGGAGAAGGGAATTGGGACC	TAAACACTATGGAATCTCCAG
ACY	CGGAGCAGGAGGTGCGGAGG	GGTGCTAGGACATCTCCAG
C/EBP-α	CGTCATTGCTGAGTCTGG	CGTGGGTTGACAAGAACAG
GLUT1	GGGGCTTGCCGACAAAGAGTCTG	AAACACGCTCGTGGTGCTG
GLUT4	GGGCCTGCACGACCCCGAGT	CGATGCAGCAGCTCCAG
PKCε	CTGCCCTTGGCCCAACACTT	CGAGACGTGGTAAAGCTTCG
PPAR-α	TCCCAGCTGAAGATCTCCGG	CGGCAAAGGGCTTATGTGAG
PPAR-β/δ	GGGCATTGAAATCTCCGG	CGGCAAAGGGCTTATGTGAG
PPAR-γ	ATGGAGTTCTAGTTGGTG	CGGAGCTTCCAGATCTCCGG
RPS18	CETGGGCTGCTGCTGCTGCTG	TACATGGTGGTGAGAAGAGCA
S100B	CAGGACCCTTCTGCTGCTGCTG	ATGGAGACGGAGGAATCTCCG
TSPO	CGGGAGAAGGGAATTGGGACC	TAAACACTATGGAATCTCCAG

ACACA, Acetyl-CoA carboxylase alpha; ALCY, ATP citrate lyase; C/EBP-α, CCAAT/enhancer binding protein alpha; GLUT1, Glucose transporter 1; GLUT4, Glucose transporter 4; PKCε, protein kinase C ε; PPAR-α, peroxisome proliferator-activated receptor alpha; PPAR-β/δ, peroxisome proliferator-activated receptor beta/delta; PPAR-γ, peroxisome proliferator-activated receptor gamma; RPS18, ribosomal protein S18; S100B, S100 calcium binding protein B; TSPO, translocator protein 18-kDa.

doi:10.1371/journal.pone.0028750.t001

PlsONE | www.plosone.org 2 December 2011 | Volume 6 | Issue 12 | e28750
culture medium was supplemented with 10 μM of MEHP (Sigma-Aldrich Canada Ltd.) for 4 or 6 days; then samples containing 1×10^5 cells each were homogenized in 1 mL 5% Triton-X100, and slowly heated to 90°C in a water bath for 5 min. After a second heating, samples were centrifuged and the supernatant was diluted 10-fold with distilled water. The Triglyceride Quantification assay (Abcam, Cambridge, MA, USA) was performed according to the manufacturer’s instructions and the reaction was quantified by spectrophotometer at 595 nm using a VICTOR™ X5 Multilabel Plate Reader (PerkinElmer Inc., Waltham, MA, USA). The triglyceride concentration (μM/10^5 cells) was calculated according to the formula C = Tc/Sv; where C is the concentration, Tc is the triglyceride amount from the standard triglyceride curve, and Sv is the sample volume in the well.

Bromodeoxyuridine (BrdU) proliferation assay

Cell proliferation was evaluated using the BrdU assay (Roche Applied Science), a colorimetric immunoassay based on the incorporation of BrdU during DNA synthesis in proliferating cells. Briefly, cells were seeded in 96-well plates (Dow Corning Corp.) at the initial concentration of 2000 cells/well and were maintained for 24 h to allow adherence. The culture medium was supplemented with 10 μM of MEHP (Sigma-Aldrich Canada Ltd.) for 3 days. Following this, BrdU solution was added to the well for 8 h, then the medium was aspirated and cells were fixed with FixDenat (provided with the assay) for 30 min at room temperature. FixDenat was then removed and the samples were incubated for 90 min with anti-BrdU solution at room temperature. After washing the wells, the amount of immune complex in each well was quantified by spectrophotometric measurement at 490 nm and 690 nm with VICTOR™ X5 Multilabel Plate Reader (PerkinElmer Inc.). Results were obtained by subtracting absorbance at 690 nm from the absorption at 490 nm for each sample. The subtracted absorbances were then normalized to control values and expressed as percent of BrdU incorporation.

Transfection of small interfering RNA (siRNA)

Cells were plated onto 6-well plates (Dow Corning Corp.) at an initial concentration of 7.5×10^4 cells per well, and immediately transfected with siRNA using Lipofectamine™ 2000 (Invitrogen Canada Inc.) according to manufacturer’s instructions. PKCε, PPAR-β/δ, PPAR-γ, and TSPO nonspecific binding was measured in the presence of unlabeled PK11195 (100 μL, 2–10 μg of protein/ml). Briefly, cell pellets were homogenized in phosphate buffered saline (Invitrogen Canada Inc.) with a glass Teflon homogenizer (Wheaton Science Products, Millville, NJ, USA). Protein concentration was determined by the Bradford method using bovine serum albumin as a standard. The final volume (300 μl) was obtained by adding 100 μl of water, and nonspecific binding was measured in the presence of unlabeled PK11195 (100 μl, 6.6 μmol/l; Sigma-Aldrich Canada Ltd.). The mixture was incubated at 0–4°C for 90 min. The reaction was terminated by filtering on glass filters (GF/B; Brandel Inc., Gaithersburg, MD, USA) presoaked in 0.5% polyethyleneimine (Sigma-Aldrich Canada Ltd.,) using the Brandel binding apparatus (Brandel Inc.). The filters were transferred to vials with 3 ml of Ecolite(+™ liquid scintillation cocktail (MP Biomedicals, Solon, OH, USA) and radioactivity was measured in an LS 5801 RackBeta liquid scintillation counter (Beckman Coulter Inc., Brea, CA, USA). Scatchard analysis of the saturation isotherms of all samples was performed using GraphPad (GraphPad Software, La Jolla, CA) to obtain the maximal number of receptors (B_max), expressed as fmol/mg proteins, and dissociation constants (K_d) were used as indicators of the level of significance.

Results

Basal mRNA levels of the differentiation markers PPARs, TSPO, and PKCε during SW 872 cell differentiation

Since there is little information on SW 872 cell differentiation markers in literature, we investigated the gene expression of the
well-known differentiation markers CCAAT/enhancer binding protein alpha (C/EBP-α), glucose transporter 4 (GLUT4), S100 calcium binding protein B (S100B) [32,34], PPAR-α, PPAR-β/δ, PPAR-γ, TSPO, and PKCɛ, at specific times after differentiation.

At 4, 8, and 12 days after initiation of differentiation in cultured cells, C/EBP-α mRNA levels increased approximately 5-fold (p<0.01), 7.5-fold (p<0.01), and 12-fold (p<0.001), respectively (Fig. 1A) as previously described [32]. GLUT4 mRNA levels increased by approximately 3.5-fold (p<0.05) and 3-fold (p<0.01), 8 and 12 days after initiation of differentiation, respectively (Fig. 1B), while in those same time periods, S100B mRNA levels decreased by 73% (p<0.001) and 72% (p<0.001), respectively (Fig. 1C). At 4, 8, and 12 days after initiation of differentiation, PPAR-α mRNA levels showed an increase of approximately 1.5-fold (p<0.05), 2-fold (p<0.01), and 2.6-fold (p<0.001), respectively (Fig. 1D), while PPAR-β/δ mRNA increased by approximately 1.7-fold (p<0.05), 1.6-fold (p<0.05), and 2.2-fold (p<0.05), respectively (Fig. 1E). At 4 days after initiation of differentiation, PPAR-γ mRNA levels increased by approximately 1.5-fold (p<0.01; Fig. 1F), and subsequently, decreased progressively. This observation is in agreement with Carmel et al. [32], and suggests an inverse pattern compared to murine 3T3-L1 preadipocytes [20] where PPAR-γ mRNA was shown to progressively increase.

Because TSPO mRNA was found to be present and to increase during differentiation in murine preadipocytic 3T3-L1 cells [29], we also investigated TSPO gene expression during the differentiation of SW 872 cells. We observed an approximate 1.6-fold increase in TSPO mRNA levels (p<0.05) after 12 days of differentiation (Fig. 1G), consistent with the increased TSPO expression observed by Wade et al. during the differentiation of 3T3-L1 mouse preadipocytes [29]. No significant changes were observed in PKCɛ transcription during the differentiation of human SW 872 cells into adipocytes (Fig. 1H).

MEHP increases TSPO mRNA levels

Based on our finding of increased TSPO transcription during human adipocyte differentiation, we investigated the effect of MEHP on TSPO gene transcription. While treatment with 1 μM MEHP produced no effect (Fig. 2B, n = 3), treatment with 10 μM MEHP for 4, 8, and 12 days resulted in approximately 4.5-fold (p<0.01; n = 3), 2.1-fold (p<0.05; n = 3), and 1.6-fold (p<0.05; n = 3) increases in TSPO mRNA levels, respectively (Fig. 2A). Treatment with 50 μM MEHP resulted in an approximately 2-
fold increase in TSPO mRNA levels after 12 days of treatment (p<0.01; n = 3; Fig. 2B). Since treatment with 10 μM MEHP for 4 days resulted in the greatest increase in TSPO mRNA expression levels, this dose and time were chosen for subsequent experiments.

MEHP increases the transcription of PKCε, PPAR-α, and β/δ, and reduces PPAR-γ

We have previously reported that PKCε controls TSPO expression through a MAPK pathway (Raf-1/ERK2) in steroidogenic cells [27]. We now examined whether MEHP was able to modify PKCε mRNA levels, as well as PPAR-α, PPAR-β/δ, and PPAR-γ in preadipocytes. Treatment with 10 μM MEHP for 4 days induced approximately 1.4-fold and 2.7-fold increases in PKCε (p<0.01; n = 3; Fig. 2B) and PPAR-α (p<0.01; n = 3; Fig. 2C) mRNA levels, respectively. On the other hand, PPAR-γ mRNA levels decreased 36% (p<0.001; n = 3; Fig. 2C), and PPAR-β/δ transcription was not significantly modified (Fig. 2C) by MEHP, compared to control (n = 3).

PMA increases TSPO mRNA levels

We tested the effect of the PKCε agonist PMA on TSPO mRNA levels in SW 872 cells. Treatment with 10, 50, and 100 nM PMA for 4 days increased TSPO mRNA levels by approximately 1.8-fold, 1.6-fold, and 1.5-fold, respectively, compared to control (p<0.01, p<0.01 and p<0.05; n = 3; Fig. 2D).

MEHP induces the transcription of differentiation markers

To examine the effect of MEHP on SW 872 differentiation, we determined the mRNA levels of the following well-known differentiation markers: acetyl-CoA carboxylase alpha (ACACA) and adenosine triphosphate citrate lyase (ACLY), which are involved in the lipogenesis pathway, GLUT1 and GLUT4, which are involved in glucose transport, and S100B, a free fatty acid carrier that is highly expressed in the early stage of differentiation [34,35,36]. The effect of MEHP on C/EBP-α levels was not assessed, as C/EBP-α is expressed at high levels in terminally differentiated cells [37], while the effect of MEHP on TSPO is predominantly in the early phase of SW 872 cell differentiation. Treatment with 10 μM MEHP for 4 days caused increases in the mRNA levels of these differentiation markers, compared to control, as follows: ACACA, approximately 2.8-fold; ACLY, approximately 2.6-fold; GLUT1, approximately 1.7-fold; GLUT4, 2.4-fold; S100B, approximately 1.8-fold (p<0.05; n = 3; Fig. 3A).

MEHP exposure inhibits BrdU incorporation

Since proliferation and differentiation have an inverse relationship during adipocyte differentiation [38], we assessed the effect of MEHP on SW 872 cell proliferation using the BrdU assay. We
in mediating the effect of MEHP on TSPO transcription in SW 872 cells. PPAR-α, β/δ and γ were silenced using specific siRNAs, and the levels of TSPO mRNA were determined following treatment with 10 μM MEHP for 4 days.

We initially verified the knockdown of PPAR gene expression by the various siRNAs, and observed, on average, a 40–80% reduction in PPAR mRNA levels, as shown in Fig. 4A. TSPO mRNA levels were reduced by 75% in samples transfected with PPAR-α siRNA and treated with MEHP, compared to cells transfected with scrambled siRNA and treated with MEHP (p<0.05; Fig. 4B). We observed a similar reduction in TSPO mRNA levels in cells transfected with PPAR-β/δ siRNA and treated with MEHP (p<0.05; Fig. 4B), while no change was observed in TSPO mRNA levels in cells transfected with PPAR-γ or PKCε siRNAs and treated with MEHP (Fig. 4B). These observations suggest that the effect of MEHP on TSPO gene transcription is mediated by PPAR-α and β/δ.

MEHP acts on PKCε gene transcription through PPAR-

We demonstrated earlier that PKCε mRNA levels increased upon treatment with MEHP (Fig. 2B). We examined whether the PPARs were mediating this effect. Among the PPARs tested, silencing of PPAR-α alone resulted in a reduction of PKCε mRNA by 50% (p<0.05) after treatment with MEHP, compared to control cells transfected with scrambled siRNA and treated with MEHP (Fig. 4C).

MEHP reduces TSPO protein expression

Changes in TSPO protein levels were examined by immunoblot analyses and the [3H]PK 11195 ligand binding assay. Immunoblot analysis of SW 872 cell lysates at D0 showed the presence of the TSPO dimer at 36 kDa [41,42]. A significant increase in TSPO protein levels (p<0.05) was observed in untreated cells after 4 days of differentiation (Fig. 5A), and this differentiation-induced increase in TSPO protein levels was inhibited by treatment with MEHP (Fig. 5A). Radioligand binding studies followed by Scatchard analysis of the saturation isotherms confirmed these results, showing a significant reduction in the maximal number of binding sites (Bmax) in MEHP treated cells (93.9 ± 6 fmol/mg protein), compared to control cells (114.2 ± 1.0 fmol/mg protein; p<0.05; Fig. 5B); however, no significant changes in the affinity (Kd) of TSPO for the ligand were observed.

TSPO knockdown increases the levels differentiation markers

Based on our observation of TSPO downregulation upon MEHP treatment during differentiation, we examined the effect of TSPO knockdown on mRNA levels of PPAR-γ and other differentiation markers. Silencing of TSPO expression using TSPO siRNA was highly effective (~87%; Fig. 6A). After 4 days in culture, silencing of TSPO resulted in 34% reduction in PPAR-γ mRNA levels (p<0.001), while the mRNA levels of S100B, ACACA, and ACLY showed increases of approximately 2.3-fold (p<0.01), approximately 1.9-fold (p<0.05), and approximately 1.9-fold (p<0.05), respectively, compared to control (Fig. 6B).

Discussion

The impact of plasticizers on human health is one of the main issues in the modern era, due to their extensive use in the industrial production. Although initially regarded as exhibiting low toxicity [43,44], phthalates were later shown to be carcinogenic [45,46] and teratogenic [47], to affect fertility and litter size [47–49], and to exert adverse effects on the reproductive system [1]. Indeed, we
previously reported that exposure to DEHP exerts suppressive effects on testosterone production in the rat [50], and that MEHP acts as a mitochondrial toxicant and lipid metabolism disruptor in Leydig cells [51]. The purpose of the present work was to evaluate the effect of MEHP on the differentiation of human SW 872 preadipocytes, and to determine the involvement of TSPO and the PPAR signaling pathway in this process.

It was previously demonstrated that MEHP directly activates PPAR-γ and promotes adipogenesis in murine 3T3-L1 cells [52]. After 4 days of treatment with 10 μM MEHP, we observed an increase in the mRNA levels of the early differentiation markers ACACA and ACLY, key enzymes for de novo lipogenesis, as well as in the mRNA levels of GLUT1, GLUT4, and S100B. This effect on gene expression coincided with a reduction in cellular proliferation; however, the cellular triglyceride content was not modified. The absence of any change in the triglyceride content is likely due to the well-documented poor lipid content of this cell line [39], especially in the early phase of differentiation [40]. Nevertheless, these data taken together indicate that MEHP exerts a differentiating effect in human preadipocytes in agreement with the results obtained with 3T3-L1 mouse preadipocytes [52].

Treatment with 10 μM MEHP for 4 days significantly increased the transcription of TSPO mRNA, with the maximal increase observed at 4 days, and a progressive decline thereafter. This suggests that the effect of MEHP is transient, with a maximal effect at or around day 4. We have previously demonstrated that PKCε affects TSPO expression through the MAPK pathway (Raf-1/ERK2) in steroidogenic cells [27]. In the current study, we found that TSPO mRNA increased in SW 872 cells after 4 days of treatment with PMA, a PKCε agonist. However, gene silencing of PKCε followed by treatment with MEHP did not produce a significant decrease in TSPO mRNA expression, indicating that the transcriptional effect of MEHP is PKCε–independent in SW 872 cells. Moreover, data obtained by using a PKCε translocation inhibitor peptide at different concentrations, also confirmed that PKCε has no role in mediating the MEHP-induced TSPO mRNA increased expression in SW 872 cells (data not shown). On the contrary, further gene silencing studies demonstrated that the transcriptional effect of MEHP on TSPO is mediated by PPAR-α and PPAR-β/δ. The relationship between the PKC family and the PPARs is not yet clear, although peroxisome proliferators have been shown to stimulate the activity of protein kinase C in vitro [53]. In this study, we have demonstrated that the PPAR agonist MEHP directly affects the transcription of PKCε mRNA, and that knocking down PPAR-α can block this effect. It is known that PPAR ligands regulate the transcription of their own receptors; for
example, PPAR-α agonists have been shown to upregulate PPAR-α mRNA [54,55], while PPAR-γ agonists downregulate PPAR-γ mRNA [56,57]. We observed an increase in PPAR-α mRNA and a decrease in PPAR-γ mRNA following MEHP treatment. In light of the decrease in PPAR-γ mRNA levels observed in SW 872 cells during differentiation [32], our observed reduction in PPAR-γ mRNA is further proof of MEHP-induced differentiation.

Using an immunoblot assay, we observed a decrease in TSPO protein expression following MEHP treatment. To confirm this observation, we also carried out a saturation binding assay for TSPO using the radiolabeled ligand PK 11195. Scatchard analysis of the saturation isotherms confirmed a significant decrease in the number of PK 11195 ligand binding sites in MEHP-treated cells, compared to the number in control cells. Although the changes observed in TSPO levels range from 20–35% one should consider that TSPO is a mitochondrial protein thought by many as a housekeeping gene. In mitochondria, TSPO comprises 2% of the OMM protein and is part of the mitochondrial transition pore [25,26]. As noted earlier TSPO has been implicated in mitochondrial respiration, lipid import, protein import, biogenesis and apoptosis [25,26]. Moreover, mitochondrial function has been closely linked to adipocyte differentiation and homeostasis [58]. Thus, even small changes in TSPO expression could have a major impact on adipogenesis.

To follow up on these observations, we analyzed the effect of siRNA silencing of the TSPO gene on the mRNA levels of the differentiation markers. Interestingly, the silencing of TSPO results in an increase the levels of differentiation markers of the enzymes.

Figure 5. MEHP treatment results in decreased TSPO protein level. (A) Densitometric analysis of TSPO immunoblot. Cells were seeded for 24 h before treatment with 10 μM MEHP and collected at day 0 and after 4 days. D0, D4C, and D4M10 represent untreated cells at day 0, untreated cells at day 4, and MEHP-treated cells at day 4, respectively. (B) Saturation binding assay. Cells were seeded for 24 h before treatment with MEHP and collected after 4 days. D4C, and D4M10 represent untreated cells and MEHP-treated cells at day 4, respectively. Results are expressed in terms of mean and S.E.M., calculated from two independent experiments. Student’s t-test was used to calculate statistical significance compared to control (*p<0.05), or to day 0 (**p<0.05).

Figure 6. TSPO gene knockdown decreases PPAR-γ transcription and increases transcription of S100B, ACACA, and ACLY. (A) TSPO mRNA levels following treatment with gene-specific siRNA, compared to similar treatment with scrambled siRNA. (B) Effect of gene-specific siRNA treatment on PPAR-γ, S100B, ACACA, and ACLY mRNA levels compared to treatment with scrambled siRNA. Cells were transfected with siRNA as described in section 2.5, and collected after 4 days. qRT-PCR results are expressed in terms of mean and S.E.M., calculated from three independent experiments. Student’s t-test was used to calculate statistical significance compared to scrambled siRNA treatment; * p<0.05, **p<0.01, ***p<0.001.
and proteins directly involved in the formation of the lipid mass for storage. It has been previously shown that TSPO mRNA expression increases during the differentiation of mouse preadipocytes, and decreases when the process is completed [29]. In this study, we observe that MEHP treatment results in an increase in TSPO mRNA levels; however, this increase is not maintained during differentiation, and a progressive reduction of the protein levels is seen, as in mature adipose tissue.

In conclusion, our observations taken together indicate that MEHP acts as a differentiating agent in human adipocytes, specifically in the early phase of the differentiation process, where SW 872 cells seem to be more sensitive to the endocrine disruptor (Fig. 7). Our data also suggest that TSPO could be considered an important player in the differentiation process, whose presence is essential for adipocyte development. To our knowledge, this is a newly identified function of TSPO in cell differentiation and in the maintenance of the balance between lipid trafficking and metabolism. Further studies are needed to fully characterize the relationship between PPAR-γ and TSPO, in the light of the observation that PPAR-γ mRNA transcription is affected by knocking down TSPO.

Author Contributions
Conceived and designed the experiments: EC AB VP. Performed the experiments: EC. Analyzed the data: EC AB JL VP. Contributed reagents/materials/analysis tools: VP. Wrote the paper: EC VP.

References
1. Halden RU (2010) Plastics and health risks. Annu Rev Public Health 31: 179–94.
2. Fromme H, Lahze T, Piloty M, Gebhart H, Odløy A, et al. (2004) Occurrence of phthalates and muk fragrances in indoor air and dust from apartments and kindergartens in Berlin (Germany). Indoor Air 14: 188–95.
3. Rodel RA, Pervorch IF (2009) Endocrine disrupting chemicals in indoor and outdoor air. Atmos Environ 43: 179–181.
4. Agency for Toxic Substances and Disease Registry (ATSDR) (1993) Toxicological Profile for Di(2-ethylhexyl)phthalate. Public Health Service, U.S. Department of Health and Human Services, Atlanta, GA. Available: http://www.atsdr.cdc.gov/substances/toxsubstances.asp?toxid = 65. Accessed 2011 Jul 14.
5. Huber WW, Grasl-Kraupp B, Schulte-Hermann R (1996) Hepatocarcinogenic potential of di(2-ethylhexyl)phthalate in rodents and its implications on human risk. Crit Rev Toxicol 26: 365–481.
6. National Toxicology Program U.S. Department of Health and Human Services, Center For The Evaluation Of Risks To Human Reproduction (2006) NTP- CERHR Monograph on the Potential Human Reproductive and Developmental Effects of Di(2-ethylhexyl) Phthalate (DEHP). NIH Publication no. 06-4476. Available: http://ntp.niehs.nih.gov/ntp/ohat/phthalates/dehp/DEHP-Monograph.pdf. Accessed 2011 Jul 14.
7. Frederiksen H, Sakkebakke NK, Andersson AM (2007) Metabolism of phthalates in humans. Mol Nutr Food Res 51: 899–911.
8. Rock G, Labow RS, Tocchi M (1986) Distribution of di(2-ethylhexyl) phthalate and products in blood and blood components. Environ Health Perspect 65: 369–76.
9. Dury SM, Silva MJ, Barr J, Brock JW, Ryan L, et al. (2003) Phthalate exposure and human semen parameters. Epidemiology 14: 269–77.
10. Calafat AM, Skakman AR, Silva MJ, Herbert AR, Needham LL (2004) Automated solid phase extraction and quantitative analysis of human milk for 13 phthalate metabolites. J Chromatogr B Analyt Technol Biomed Life Sci 805: 49–56.
11. Dreyer C, Keller H, Mahfoudi A, Laude V, Krey G, et al. (1993) Positive regulation of the peroxisomal beta-oxidation pathway by fatty acids through activation of peroxisome proliferator-activated receptors (PPAR). Biol Cell 77: 67–76.
12. Keller H, Dreyer C, Medin J, Mahfoudi A, Ozato K, et al. (1993) Fatty acids and retinoins control lipid metabolism through activation of peroxisome proliferator-activated receptor-retinoic X receptor heterodimmes. Proc Natl Acad Sci USA 90: 2160–4.
14. Kersten S, Desvergne B, Wahli W (2000) Roles of PPARs in health and disease. Nature 405: 421–4.
15. Brainsont, Foufelle F, Scotto C, Dauc¸a M, Wahli W (1996) Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-alpha, -beta, and -gamma in the adult rat. Endocrinology 137: 534–66.
16. Ribet C, Montastier E, Vallee C, Bezaire V, Mazzucotelli A, et al. (2010) Peroxisome proliferator-activated receptor-alpha control of lipid and glucose metabolism in human white adipocytes. Endocrinology 151: 123–33.
17. Dresel U, Allen TL, Pippal JB, Rohde PR, Lau P, et al. (2003) The peroxisome proliferator-activated receptor beta/delta agonist, GW501516, regulates the expression of genes involved in lipid catalolism and energy uncoupling in skeletal muscle cells. Mol Endocrinol 17: 2477–93.
18. Michalk I, Desvergne B, Tan NS, Basu-Madak S, Escher P, et al. (2001) Impaired skin wound healing in peroxisome proliferator-activated receptor (PPARalpha and PPARbeta) mutant mice. J Cell Biol 154: 799–814.
19. Martin G, Schoonjans K, Lefebvre AM, Staels B, Anversa J (1997) Coordinate regulation of the expression of the fatty acid transport protein and acyl-CoA synthetase genes by PPARalpha and PPARgamma activators. J Biol Chem 272: 20210–7.
20. Chavala A, Schwarz EJ, Dimanoukang DD, Lazar MA (1994) Peroxisome proliferator-activated receptor (PPAR) gamma: adipose-predominant expression and induction early in adipocyte differentiation. Endocrinology 135: 780–800.
21. Brun RP, Tontonoz P, Forman BM, Ellis R, Chen J, et al. (1996) Differential activation of adipogenic by multiple PPAR isofoms. Genes Dev 10: 974–94.
22. Sarafidis PA, Lazzardis AN (2006) Actions of peroxisome proliferator-activated receptors-gamma agonists explaining a possible blood pressure-lowering effect. Am J Hypertens 19: 466–63.
23. Ondrey F (2009) Peroxisome proliferator-activated receptor gamma pathway targeting in carcinogenesis: implications for chemoprevention. Clin Cancer Res 15: 2–8.
24. Gaido M, Yao ZX, Boujrad N, Corton JC, Culty M, et al. (2002) Effect of peroxisome proliferators on Leydig cell peripheral-type benzodiazepine receptor gene expression, hormone-stimulated cholesterol transport, and steroidogenesis: role of the peroxisome proliferator-activated receptor z. Endocrinology 143: 2571–83.
25. Papadopoulos V, Barald M, Guillaire TR, Knudsen TB, Lacapere JJ, et al. (2006) Translocator protein (18kDa): new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function. Trends Pharmacol Sci 27: 402–9.
26. Batarseh A, Papadopoulos V (2010) Regulation of translocator protein 18 kDa (TSPO) expression in health and disease states. Mol Endocrinol 32: 1–12.
27. Batarseh A, Li J, Papadopoulos V (2010) Protein kinase C epsilon regulation of translocator protein (18 kDa) TSPO gene expression is mediated through a MAPK pathway targeting STAT3 and c-Jun transcription factors. Biochemistry 49: 4766–78.
28. Batarseh A, Giatzakis C, Papadopoulos V (2008) Phorbol-12-myristate-13-acetate acting through protein kinase C epsilon induces translocator protein (18-kDa) TSPO gene expression. Biochemistry 47: 12896–99.
29. Wade FM, Wakade C, Mahesh VB, Brann DW (2005) Differential expression of genes involved in lipid catabolism and energy uncoupling in peroxisome proliferator-activated receptor alpha signaling. Toxicol In Vitro 19: 154–9.
30. Tomita I, Nakamura Y, Aoki N, Inui N (1982) Mutagenic/carcinogenic potential of DEHP and Dose. Environ Hlth Perspect 45: 119–125.
31. Dillingham EO, Autian J (1973) Teratogenicity, and Cellular toxicity of phthalate esters. Environ Hlth Perspect 3: 81–94.
32. Autian J (1982) Antifertility effects and dominant lethal assays for mutagenic effects of 2-ethylhexyl phthalate (DEHP) and other plasticizers. Environ Hlth Perspect 3: 73–79.
33. Orellana A, Hidalgo PC, Morales MN, Mezzano D, Bronfman M (1990) Cell proliferation and differentiation early in adipocyte differentiation. Endocrinology 135: 798–800.
34. Ailhaud G, Grimaldi P, Ne´grel R (1992) Cellular and molecular aspects of the peripheral-type benzodiazepine receptor and gremlin during adipogenesis. Obes Res 49: 393–402.
35. Ramji DP, Foka P (2002) CCAAT/enhancer-binding proteins: structure, potential and regulation. Biochem Perspect 45: 616–71.
36. Tomita I, Nakamura Y, Aoki N, Inui N (1982) Mutagenic/carcinogenic potential of DEHP and related compounds by the National Toxicology Program and the National Cancer Institute. Environ Hlth Perspect 45: 129–133.
37. Dillingham EO, Autian J (1973) Teratogenicity, and Cellular toxicity of phthalate esters. Environ Hlth Perspect 3: 81–94.
38. Autian J (1982) Antifertility effects and dominant lethal assays for mutagenic effects of 2-ethylhexyl phthalate (DEHP) and other plasticizers. Environ Hlth Perspect 3: 73–79.
39. Singh AR, Lawrence WH, Autian J (1974) Mutagenic and antifertility sensitivities of mice to di-(2-ethylhexyl) phthalate (DEHP) and dimethylhexyl phthalate (DMEP). Toxicol Appl Pharmacol 29: 35–36.
40. Autian J (1982) Mutagenic/carcinogenic potential of DEHP and related compounds by the National Toxicology Program and the National Cancer Institute. Environ Hlth Perspect 45: 129–133.
41. Papadopoulos V, Boujrad N, Lennom MV, Ferrara P, Vidic B, et al. (2000) In vivo and in vitro peripheral-type benzodiazepine receptor polymerization: functional significance in drug ligand and cholesterol binding. Biochemistry 42: 3506-19.
42. Rubin RJ, Jaeger RJ (1973) Some pharmacologic and toxicologic effects of di-2-ethylhexyl phthalate (DEHP) and other plasticizers. Environ Hlth Perspect 3: 65–67.
43. Rubin RJ, Jaeger RJ (1973) Some pharmacologic and toxicologic effects of di-2-ethylhexyl phthalate (DEHP) and other plasticizers. Environ Hlth Perspect 3: 53–59.
44. Gesler RM (1973) Toxicology of Di-2-ethylhexyl phthalate and other phthalic acid ester plasticizers. Environ Hlth Perspect 3: 73–79.
45. Kloor ME, Monconell EE, Huff JE, Haseman JK, Douglas JF, et al. Carcinogenicity testing of phthalate esters and related compounds by the National Toxicology Program and the National Cancer Institute. Environ Hlth Perspect 45: 129–133.
46. Kloor ME, Monconell EE, Huff JE, Haseman JK, Douglas JF, et al. Carcinogenicity testing of phthalate esters and related compounds by the National Toxicology Program and the National Cancer Institute. Environ Hlth Perspect 45: 129–133.
47. Kloor ME, Monconell EE, Huff JE, Haseman JK, Douglas JF, et al. Carcinogenicity testing of phthalate esters and related compounds by the National Toxicology Program and the National Cancer Institute. Environ Hlth Perspect 45: 129–133.
48. Kloor ME, Monconell EE, Huff JE, Haseman JK, Douglas JF, et al. Carcinogenicity testing of phthalate esters and related compounds by the National Toxicology Program and the National Cancer Institute. Environ Hlth Perspect 45: 129–133.