Chapter 7

Herpetofauna of Montane Areas of Tanzania. 3. Amphibian Diversity in the Northwestern Eastern Arc Mountains, with the Description of a New Species of *Arthroleptis* (Anura: Arthroleptidae)

Simon P. Loader¹, John C. Poynton², Lucinda P. Lawson³, David C. Blackburn⁴, and Michele Menegon⁵,⁶

¹Institute of Biogeography, University of Basel, Basel, Switzerland
²Department of Zoology, The Natural History Museum, London SW7 5BD, United Kingdom
³Department of Zoology, Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, IL 60605, USA
⁴Natural History Museum and Biodiversity Institute, University of Kansas, Lawrence, KS 66045, USA
⁵Tropical Biodiversity Section, Museo Tridentino di Scienze Naturali, Via Calepina 14, I-38100, Trento, Italy
⁶Department of Environmental & Geographical Sciences, Manchester Metropolitan University, Manchester, United Kingdom

Abstract

Amphibians of the Eastern Arc Mountains are poorly known, apart from those of the East Usambara, Uluguru, and Udzungwa Mountains. Here, we detail specimens collected in the northwestern Eastern Arc Mountains (West Usambara, South Pare, and North Pare) over the past 100 years. Although not comprehensive, the list is compiled from specimens held at institutions in Europe and the United States and in personal collections; it includes most of the specimens known from this area. From these specimens, we describe one new species of the frog genus *Arthroleptis* and discuss other specimens that may represent new species. We add substantially to the known diversity in these areas. Using the compiled species list, we assess species diversity and relate the differences to sampling bias and possible biogeographic differences among the mountains. The future preservation of amphibians across this area is of concern given the increasing loss of forest.

Introduction

East African mountains are noted for their high levels of biodiversity (e.g., Burgess et al., 2007). In northern Tanzania, the East Usambara section of the Eastern Arc Mountain chain (EAM) has been a focus of collecting for a century (Howell, 2000) and shows a high degree of endemicity that has made it one of the main conservation priorities in the region. Northwest of the East Usambara, the EAM continues as three mountain ranges showing topographical complexity: the West Usambara, South Pare, and North Pare (Fig. 1). These have a similar geological origin to the East Usambara mountain complex (Griffiths, 1993) and contain evergreen rainforest assemblages (Howell, 1993; Lovett, 1993). These three blocks have received only patchy attention and are poorly understood biologically compared with the East Usambara (Burgess et al., 2007). This is particularly true of the amphibian fauna (Grandison, 1983), which has proved to be conspicuously rich in the EAM (Poynton et al., 2007; Andreone et al., 2008). The primary aim of this paper is to consolidate our knowledge of amphibian diversity in these three mountain regions and thus highlight this relatively poorly studied area.

The first notable herpetological collections from the EAM were made by early German explorers around the turn of the 20th Century (Howell, 2000). The focus, as today, was mainly in areas around the East Usambara (Grandison, 1983), principally in and around Amani, a German medical field station. The earliest herpetological collections made in the West Usambara were in Philipshof (=Magamba, near Lushoto, West Usambara, Tanzania), Mombo (Nieden, 1915) and Ambangulu (reported in Nieden, 1913; Bauer et al., 2006). But not until Barbour and Loveridge’s (1928) pivotal paper on the fauna of the Uluguru and Usambara Mountains were the amphibians northwest of the East Usambara discussed explicitly. Loveridge collected most intensively in the East Usambara but also sampled areas in the West Usambara (Philipshof and Bumbuli). Loveridge recorded only two and eight species, respectively, from these localities (Barbour & Loveridge, 1928). After this period, there was a hiatus in herpetological collecting in this area.

From 1970 onward, short surveys have been made fairly frequently in the West Usambara Mountains (Grandison, 1983). Among specimens recorded in this paper are collections by A. G. C. Grandison, who surveyed Mazumbai in 1973; K. M. Howell collected in the 1980s and 1990s; R. C. Drewes and J. V. Vindum of the California Academy of Sciences surveyed Mazumbai Forest Reserve (FR), Baga II FR, and Lushoto FR in 1988; A. Schiotz surveyed Mazumbai during the 1970s.
through 1990s; J. Rasmussen, M. Anderson, and M. Vestergaard surveyed Mazumbai in 1992; W. T. Stanley and S. M. Goodman from the Field Museum of Natural History (FMNH, Chicago, IL) surveyed Ambangulu at various times between 1991 and 1993; M. Coe collected specimens in the West Usambara; A. Channing and R. O. de Sá surveyed Mazumbai FR in 2000 and 2009; S. P. Loader and J. Mariaux surveyed Mazumbai in October 2001; S. P. Loader, J. Mariaux, and D. J. Gower surveyed Ambangulu in May 2002; and a combined FMNH and MCZ (Museum of Comparative Zoology, Cambridge, MA) expedition conducted by L. Lawson, L. Mahler, and B. Zimkus (2007) surveyed Mazumbai, Shume-Magamba, and Ambangulu. Other surveys may have been conducted but remain unknown to us.

The amphibians and reptiles of the Pare Mountains have received substantially less attention. K. M. Howell and C. A. Msuya made the first surveys in the North Pare in the 1970s and into the 1980s. N. Cordeiro made collections of amphibians in the North Pare in July 1993, and at the same time, W. T. Stanley and S. M. Goodman from FMNH and C. A. Msuya of the University of Dar es Salaam, Tanzania, surveyed the South Pare. A year later, W. T. Stanley made further collections at higher altitudes in the South Pare. An Mkomazi Ecological Research Programme collected two species in the South Pare outside the Mkomazi Reserve, Tanzania. Most recently S. P. Loader, J. Mariaux, and D. J. Gower of BMNH (Natural History Museum, London) and MHNG (Musée d’histoire naturelle de Genève) and M. Menegon of Trento Museum (2007–2008) surveyed the North and South Pare.

From the surveys conducted in the West Usambara and Pares, the geographical distributions of a number of species have been extended (summarized in Howell, 1993; Burgess et al., 2007), and eight amphibian species have been described: *Arthroleptis lombergi* Nieden, 1915; *Hyperolius tanneri* Schiötz, 1982; *Arthroleptis tanneri* Grandison, 1983; *Callulina kiswamisitu* de Sá et al., 2004; *Arthroleptis fichika* Blackburn, 2009; *Callulina lahpani* Loader et al., 2010; *Callulina stanleyi* Loader et al., 2010; and *Callulina shengena* Loader et al., 2010. In total, four species are endemic to the West Usambara, three species to the South Pare including our new *Arthroleptis*, and one species to the North Pare.

Given the number of surveys, it might be assumed that we have a relatively good understanding of the amphibians in this region, particularly the West Usambara. However, the recorded distribution of many taxa across the Eastern Arc is currently confused and certainly incomplete (Poynton et al., 2007); thus, records of even reputedly common species should be re-examined closely. By citing specimens and their locality data, we intend to establish a comprehensive list of amphibians of West Usambara and Pare Mountains. Additionally, we describe one new species and outline specimens putatively identified as being distinct and not assignable to any currently described taxon. All specimen identifications were made either by authors of the paper or communicated to us by colleagues (A. Channing and B. M. Zimkus). This list is therefore necessarily preliminary—detailed taxonomic assessment is still required in some taxa. Overall, we aim to establish a thorough summary of taxonomic information on the amphibians in this area, which we hope will encourage researchers to conduct further field surveys and detailed taxonomic work on specimens from these mountains.

Materials and Methods

Material was examined from the following institutions or personal collections: Alan Channing Field Series (AC); Natural History Museum, London (BMNH); California Academy of Sciences, San Francisco (CAS); Field Museum of Natural History, Chicago (FMNH); Lucinda Lawson Field Series (LL); Museum of Comparative Zoology, Harvard University (MCZ); Muséum d’Histoire Naturelle, Geneva (MHNG); Museo Tridentino di Scienze Naturali, Trento (MTSN); University of Michigan Museum of Zoology, Ann Arbor (UMMZ); United States National Museum, Washington, D.C. (USNM); Humboldt-Universität, Zoologisches Museum, Berlin (ZMB); Zoological Museum of Copenhagen (ZMUC). The taxonomy largely follows that of Frost (2010), with the exception of several new species that were described recently (Loader et al., 2010). Some *Arthroleptis* specimens could not be identified, either because of poor state of preservation or because they are juveniles. The specimens we were unable to identify include: CAS 169383–93, Baga II FR; CAS 173798, Mazumbai FR; CAS 200511–12, Mazumbai FR. A gazetteer lists all localities given for each specimen (degrees, minutes, seconds); elevation (m) is provided when known. Certain localities visited on multiple occasions are numbered to differentiate between each one (e.g., Ambangulu FR, Mazumbai FR, and Chome FR). Further specific details of these localities are given in the gazetteer section.
Arthroleptis anotis is one of only three genera of widespread African frogs for which comprehensive taxonomic and geographic sampling has been attempted for a molecular phylogenetic analysis (Blackburn, 2008), the others being Xenopus and Phrynobatrachus (Evans et al., 2004; Zimkus et al., 2010). Blackburn (2008, 2009a) revealed that Arthroleptis species from the EAM and elsewhere in East Africa represent at least two radiations. Taking morphological characters also into account, one radiation comprises miniature species (snout–vent length < 25 mm) with small inner metatarsal tubercles not (or barely) longer than the length of the subarticular tubercles; EAM species include A. xenodactyloides, A. fichika, and A. kidogo. Another radiation comprises medium- to large-sized species with inner metatarsal tubercles at least twice as large as the subarticular tubercles (but not longer than the first toe); representatives in the EAM are A. affinis, A. reichei, and A. nguruensis. Another species in this region with an inner metatarsal tubercle longer than the first toe is represented by A. stenodactyly. We describe here a species that exhibits morphology intermediate between that of the two recognized clades, thus making its relationship obscure. This new species is even more exceptional in lacking an externally visible tympanum; instead, the otic region is fully occupied by jaw musculature.

Arthroleptis anotis sp. nov.

Figure 2a–d, dorsal, and lateral views

Holotype—BMNH 2000.732 (field number KMH 19583), a gravid female collected 19 November 1999 by K. M. Howell in the Chome Forest Reserve, South Pare Mountains, Tanzania, ca. 1900 m elevation, 4°18’S, 37°53’E (see Fig. 2a,d).

Paratype—BMNH 2000.731 (field number KMH 19581), a female with developing ova collected 19 November 1999 by K. M. Howell in the Chome Forest Reserve, South Pare Mountains, Tanzania, ca. 1900 m elevation, 4°18’S, 37°53’E.

Diagnosis—A miniature Arthroleptis (snout–vent length < 25 mm) that is distinguished from all other Arthroleptis (sensu Blackburn, 2008) by lacking an externally visible tympanum (see Fig. 2b,c). In other respects, the species presents typical Arthroleptis features (e.g., Frétey, 2008; Zimkus & Blackburn, 2008) by having a dorsal skin ridge (or “raphe”), a dorsal “hourglass pattern,” and large unpigmented eggs; lacking interdigital pedal webbing; and having only one metatarsal tubercle (i.e., inner metatarsal tubercle).

Measurements of Holotype (and Paratype)—Measurements taken by one researcher (J.C.P) using mechanical calipers accurate to 0.1 mm. Snout–urostyle length (SUL) 22.9 mm (20.2 mm), snout–vent length 23.6 mm (21.2 mm), head width 18.8 mm (17.9 mm), internarial distance 2.8 mm (2.4 mm), tibia length 10.5 mm (9.4 mm), foot length 10.2 mm (9.4 mm), length of inner metatarsal tubercle 1.0 mm (1.0 mm), oval in shape. Not ridged, length of other pedal subarticular tubercles less than 0.9 mm, inner toe length 1.6 mm (1.2 mm), length of fourth toe 5.7 mm (5.6 mm), length of third finger 3.0 mm (2.9 mm). Tips of fingers and toes slightly expanded with rounded discs, toe discs with circum-marginal grooves; disc width on toe four 0.6 mm, width of distal tubercle of toe four 0.4 mm, disc width on finger three 0.5 mm, width of distal tubercle of finger three 0.4 mm (toes and fingers desiccated, compromising accuracy of measurement). Diameter of eggs 2.1 mm.

Description of Holotype—No externally visible tympanum; tympanic area occupied by extensive adductor musculature with no tympanic membrane or columella evident. Reflected skin shows no tympanic impression. Tongue heart-shaped, no median papilla, no vomerine teeth, premaxillary and maxillary teeth present. Inner metatarsal tubercle ovoid and not projecting as a flange. Intercocular area to rostral tip light-colored with some darker flecks. Dorsal skin ridge marked by a light line. Markings include a pair of light, diverging post-ascapular patches, a pair of dark patches beside the ilia, and a dark transverse bar on each crus. Dark band extending behind eye to above the region that would normally be occupied by tympanum to level of jaw articulation. In ventral view, gular region immaculate, pectoral region with dark brown spots, most of abdomen darkened by a single large brown patch.

Variation—The paratype agrees morphologically with the holotype. The snout is lighter in color, but with more flecks present than in the holotype (see Fig. 2e,f). As in the holotype, the paratype exhibits the dorsal hourglass pattern typical of many Arthroleptis, but with a larger light area in the scapular region that extends on to the sides. A dark patch extends along either side of the ilia. The gular, pectoral, and abdominal regions are almost immaculate in the paratype.

Coloration in Life—No description of the color in life of the holotype was provided. The paratype was described as being brown with a relatively darker brown hourglass pattern on the dorsum and a red-orange venter.

Natural History—The only two specimens were collected from the leaf litter in montane forest in Chome Forest Reserve through casual visual surveys. There is no information regarding any other aspects of its biology (e.g., calls, behavior).

Conservation Status—Arthroleptis anotis is currently known only from Chome Forest at ca. 1900 m. If its distribution is restricted to the South Pare Mountains (maximum estimated forest cover between 139 to 333 km²; Table 2), then it should be considered of high conservation concern.

Etymology—The specific epithet derives from Greek (an-; without; otos, ear) and relates to the fact that this is the only species of Arthroleptis known to lack an externally visible ear.

Arthroleptis affinis Ahl, 1939

Records—WEST USAMBARA, MCZ A-13167 (Philipshof).

Remarks—Until very recently, all medium- to large-sized Arthroleptis in the MCZ collections from the EAM were identified as Arthroleptis adolfifriederici, a species with a complicated taxonomic history (Blackburn et al., 2009). These misidentifications contributed to erroneous distribution maps for A. adolfifriederici in a recent review of East African amphibians (Channing & Howell, 2006; K. Howell, pers. comm.); these specimens even included one designated as a paratype of A. tanneri by Grandison (1983). Poynton and Loader (2008) did not record specimens of *A. affinis* from the West Usambara or Pare Mountains but pointed out the many taxonomic difficulties with large-bodied *Arthroleptis* in the...
EAM. The single male specimen (MCZ A-13167; 27.8 mm snout–vent length) recorded here from the West Usambara, which was collected alongside a paratype of *A. tanneri* (Barbour & Loveridge, 1928), is, to our knowledge, the only specimen from these mountains that is morphologically similar to *A. affinis*, the type locality of which is in the East Usambara.

Arthroleptis fichika Blackburn, 2009

Records—**WEST USAMBARA.** MCZ A-138384 (Mazumbai FR I); AC 2209, AC 2211 (Mazumbai FR II); BMNH 1974.225-28 (Mazumbai FR II); CAS 168829 (paratype; Baga II FR); **SOUTH PARE.** FMNH 251864 (Chome FR V); **NORTH PARE.** BMNH 2005.950 (Kindoro FR).

Remarks: This species was recently described by Blackburn (2009a), who noted that a single specimen (FMNH 251864) from the South Pare was highly genetically divergent (16.7%) from West Usambara populations of *A. fichika* with which it formed a clade in phylogenetic analysis. This single specimen was tentatively included in *A. fichika*, though it likely represents another cryptic species of miniature *Arthroleptis*. We add new specimen records of *A. fichika* from the type locality from Grandison’s Mazumbai collection (BMNH 1974.225-228) and Channing’s collection (AC 2209, 2211). Because several of these new records are males and the description of *A. fichika* was based only on females, we provide data on male traits. Of Grandison’s four specimens, one is a male, BMNH 1974.227, snout–urostyle length 12.5 mm. The third finger is 2.0 mm long (16.4% SUL). The SUL of the females ranges from 15.1 to 14.3 mm; the length of the third finger ranges from 2.1 to 1.9 mm (average 13.5% SUL). The third finger of the male has several spines on the medial and dorsal surfaces; the second finger has fewer spines. One specimen (AC 2211; 13.9 mm snout–vent length) has small spines typical of *Arthroleptis* on the medial surface of the third finger (three on the right and approximately two on the left), but there is no evidence of spines in the inguinal region as...
in many other Arthroleptis (Blackburn, 2009b). There is no obvious dimorphism in third finger length when comparing AC 2211 (12.9% of snout-vent length) to the female type specimens (11.1% and 13.3%). Furthermore, one specimen collected in the North Pare Mountains is tentatively included under this species. With just a single specimen and lack of DNA sequence data, the taxonomic evaluation of this population is preliminary, especially given the genetic differences between populations from the type locality and those from populations on other mountains (Blackburn, 2009a).

Arthroleptis lonnbergi Nieden, 1915

Records—*WEST USAMBARA*, ZMB 24535 (holotype; Mombo).

Remarks: Recently, Pickersgill (2007) used data call to justify the resurrection of *A. lonnbergi* based on specimens from the East Usambara (Kambai and Longuza Forest Reserves) that are reportedly morphologically similar to *A. stenodactylus*. Unfortunately, these specimens are not (to our knowledge) deposited in a collection that is available for study. Thus, it is unclear whether specimens considered *A. stenodactylus* here correspond to *A. lonnbergi* (sensu Pickersgill, 2007). In addition, this resurrection was done without reference to the type and only specimen of *A. lonnbergi* (ZMB 24535) but rather because it was “the earliest applicable name [Pickersgill] could find.” It should be noted that *A. lonnbergi* was erected by Nieden (1915) for a single specimen that he noted was morphologically similar to *A. stenodactylus* in all features except that it lacked a median tongue papilla. This is incorrect as examination of the holotype (probably an immature female; 29.6 mm snout-vent length) reveals a prominent median papilla at approximately a fourth of the distance to the posterior margin of the tongue. The specimen also has a prominent inner metatarsal tubercle, although it is not longer than the first toe as in most specimens of *A. stenodactylus*. We include this specimen in our account because the type locality is given by Nieden (1915) as “Mombo in Usambara,” which is a town (ca. 440-460 m elevation) located at the base of the West Usambara. However, it is not impossible that the holotype of *A. lonnbergi* was collected in the mountains. Rather than redesignating *A. lonnbergi* as a junior synonym of *A. stenodactylus*, we take the position that further study employing detailed and statistical morphological analyses are needed to address possible cryptic diversity within *A. stenodactylus* and its past or present junior synonyms.

Arthroleptis stenodactylus Pfeffer, 1893

Records—*WEST USAMBARA*, FMNH 248019 (Ambangulu FR III); MCZ A-13139 (Bumbuli), A-138370-79, A-138381 (Mazumbai FR I); *SOUTH PARE*, FMNH 251441-42 (Gonja FR), 251881, 255891 (Chome FR V).

Remarks: *Arthroleptis stenodactylus* is a widespread East African species occurring in forests, savanna woodlands, and even near urban areas, such as the campus of the University of Dar es Salaam (K. M. Howell, pers. comm.). This species has several junior synonyms, but until recently, there has been little investigation of patterns of diversity among populations referred to *A. stenodactylus* based on morphological evidence. Blackburn (2008) found that although *A. stenodactylus* was monophyletic, it contained one of the highest levels of intraspecific genetic divergence of the *Arthroleptis* species surveyed in that study.

Arthroleptis tanneri Grandison, 1983

Records—*WEST USAMBARA*, BMNH 1974.59 (holotype; Mazumbai FR II), 1974.50-63, 1974.2002, 1982.51-36, R 774-95 (paratypes; Mazumbai FR II), 1982.53-47 (paratypes; Shume-Magamba FR I), 1982.1241 (paratype; Balangal FR), 2003.1356-42 (Mazumbai FR I); CAS 168820-21, 168827-17, 251830-24 (Gonja FR II); MCZ A-13166 (paratype; Philipshof); ZMUC R7731-68, R361395, R77837, R771060 (Mazumbai FR II).

Remarks: In contrast to what Channing and Howell (2006) reported, we know of no record of this species outside the West Usambara (Poynton & Loader, 2008). There is a radiation of medium- to large-sized *Arthroleptis* across the EAM (Blackburn, 2008; Poynton et al., 2008), and distinguishing species can be difficult (Poynton & Loader, 2008). Poynton and Loader (2008) show that the *A. tanneri* type was distinguishable from other species on the basis of head/tibia ratio, and Blackburn (2008) demonstrated that *A. tanneri* was genetically divergent from *A. affinis*, *A. nikeae*, and *A. reicheli*, possibly not even forming a clade with these other EAM species.

Arthroleptis xenodactyloides Hewitt, 1933

Records—*WEST USAMBARA*, CAS 168829 (Baga FR II), 200513-515 (Mazumbai FR II); FMNH 250446-51 (Ambangulu FR VII); *SOUTH PARE*, BMNH 2005.987-89 (Nakoromo River), 2005.990-93 (Pare Forest), 2005.773 (Chome FR I); FMNH 251406-09, 251418 (lot of seven specimens), 251419-20 (lot of 12 specimens), 251421 (lot of 14 specimens), 251422-35 (Chome FR IV), 251443-44 (Gonja FR), 251863-68 (Chome FR V); MTSN 7545-46 (Chome FR II).

Remarks: *Arthroleptis xenodactyloides* is the most widespread species of miniature *Arthroleptis* in East Africa and has one of the largest elevational ranges of any East African frog (Poynton et al., 2007). A recent phylogeographic study has highlighted that populations of *A. xenodactyloides* from the northernmost EAM, including the Usambara Mountains, form a clade that is sister to populations of most southern mountain species (e.g., Uluguru, Malundwe, Udzungwa) and Pemba Island (Blackburn & Measey, 2009). There is little genetic divergence between populations of *A. xenodactyloides* from the West and East Usambaras, but populations from South Pare are yet to be included in phylogeographic analyses.

Arthroleptis sp. ?nov.

Records—*WEST USAMBARA*, CAS 200516-17 (Mazumbai FR II).

Remarks: These two specimens were collected in pitfall buckets in Mazumbai FR at an elevation of ca. 1400-1600 m. Both specimens are small; CAS 200516 and 200517 have snout-vent lengths of 13.9 and 15.5 mm, respectively. These frogs exhibit the typically smooth skin of *Arthroleptis*, but, unlike at least other *Arthroleptis* in the EAM, the skin of the body, head, and limbs is covered with many small, well-spaced spiny tubercles. Another notable feature is the supratympanic band, which overlies a small and near indistinct tympanum, is solid, and forms an elongate vertically directed C with no spots trailing anterior or posterior from it. The inner metatarsal tubercle is small and ovoid, bordering on globose, and there are no supernumerary tubercles on the plantar surface. These specimens are clearly distinct morphologically from other *Arthroleptis* in the EAM and East Africa in general. However, both specimens are juveniles, or at least immature adults, and
we refrain from describing this taxon as a new species until more material becomes available.

Leptopelis flavomaculatus (Günther, 1864)

Records—WEST USAMBARA, FMNH 275635-36 (Ambangulu FR V).

Leptopelis parkeri Barbour and Loveridge, 1928

Records—WEST USAMBARA, BMNH 2005.1365-66 (Mazumbai FR II); CAS 168784-813 (Mazumbai FR II), 168814 (Baga II FR); FMNH 250483, 248025-26 (Ambangulu FR III); MHNG 2620.097-98, 2687.065-066 (Mazumbai FR II); ZMUC R7737-84 (Mazumbai FR II); SOUTH PARE, MHNG 2640.074-75 (Chome FR I); MTNS 7550-55 (Chome FR VI).

Remarks: The West Usambara material matches the description of *L. parkeri* (Barbour & Loveridge, 1928). All West Usambara FMNH specimens are females. The dorsum in FMNH 248025-26 is very darkly colored, whereas in FMNH 250483 it is pale yellow and almost white. South Pare material is noticeably different in terms of the coloration and patterning (see Fig. 3). The South Pare material might represent a previously unrecognized species of *Leptopelis*.

Leptopelis verruculatus (Boulenger 1897)

Records—WEST USAMBARA, BMNH 2005.1365-66 (Mazumbai FR IV), 1982.583-86 (Ambangulu FR VIII), 2005.1367-68 (Mazumbai FR II); CAS 161373 (Ambangulu FR II), 168813 (Mazumbai FR II); FMNH 275623 (Mazumbai FR III); MHNG 2620.091-93, 2687.071-72 (Mazumbai FR II); USNM 226810 (Ambangulu FR VIII); ZMUC R77385-90 (Mazumbai FR II).

Family Brevicipitidae

Breviceps fichus Channing and Minter, 2004

Records—WEST USAMBARA. *Call recorded, no specimen taken (1500 m, near the [Tanner’s] house, close to Mazumbai FR. 2 December 2005—Alan Channing, pers. comm.).

Remarks: Although no specimens have yet been collected, this record is a very significant extension because it would extend the known distribution of *Breviceps fichus* more than 400 km to the northeast (Channing & Minter, 2004; Channing & Howell, 2006). A record of *B. mossambicus* by Mertens (1937) was referred to *B. fichus* by Channing and Minter (2004) but then dropped from the distributional map of Channing and Howell (2006), suggesting that *B. fichus* is indeed restricted to the EAM.
Recent work on the brevicipitid genus *Callulina* demonstrates that new faunal surveys and detailed taxonomic study can quickly change long-standing patterns of species diversity and biogeography. The first species of *Callulina* was described by Nieden (1911) based on material from Amani in the East Usambara and has since been identified from many localities throughout the EAM (Channing & Howell, 2006). More than 80 years later, a second *Callulina* species, *C. kiswanssitu*, was described by de Sá et al. (2004). This description was based on material from the West Usambara and was quickly followed by descriptions of four more *Callulina* species, all from the northernmost EAM, by Loader et al. (2009, 2010). These recent taxonomic works quintupled the species diversity in the genus and provided the first hints that the northernmost EAM is a center of speciation in *Callulina*. Taken together, recent work on *Arthroleptis* and *Callulina* suggests that similar high levels of diversity may be found in other genera when given appropriate and detailed taxonomic study.

Callulina kiswanssitu de Sá, Loader, and Channing, 2004

Records—**WEST USAMBARA**, BMNH 1974.21–23 (Mazumbai FR II), 1982.588–89 (Mazumbai FR II), 1982.590–92 (Shumé-Magamba FR I), 1986.595–99 (Mazumbai FR II), 2002.45–46 (Mazumbai FR II), 2002.47 (Ambangulu FR I); CAS 160078, 168806-09 (Mazumbai FR II), 168815–19 (Ambangulu FR II); MCZ A-13632-33, A-13635 (Philipshof), A-138534 (Mazumbai FR II); ZMUC R77325-55 (Mazumbai FR II).

Callulina laphami Loader, Gower, Ngalason, and Menegon, 2010

Records—**NORTH PARE**, BMNH 2002.37–41, 2005.951; CAS 225134–35 (Kindoro FR); MTSN 7123, 8609, 8611–14, 8621–22, 8632, 8640–41, 8648, (Minja FR).

Callulina shengena Loader, Gower, Ngalason, and Menegon, 2010

Records—**SOUTH PARE**, BMNH 2008.465-466 (Chome FR VI); FMNH 251849–52, 255881-82 (Chome FR V); MTSN 9285, 9288–90 (Chome FR VI).

Callulina stanleyi Loader, Gower, Ngalason, and Menegon, 2010

Records—**SOUTH PARE**, BMNH 2000.207 (Chome FR I), 2008.467–68 (Chome FR II); FMNH 251381–84 (Chome FR IV); MTSN 7541–42, 7544, 7559 (Chome FR II).

Family Bufonidae

Amietophrynus brauni (Nieden, 1911)

Records—**WEST USAMBARA**, FMNH 248051 (Ambangulu FR II), 248052 (Ambangulu FR V); MCZ A-12445 (Bumbuli), A-138458, A-138507, A-138516–19 (Ambangulu FR VII).

Amietophrynus gutturalis (Power, 1927)

Records—**WEST USAMBARA**, MCZ A-12452–54 (Bumbuli), A-138524 (Ambangulu FR VI); **SOUTH PARE**, BMNH 2000.734 (Chome FR I), 2005.988 (Pare Forest); FMNH 251385–86 (Chome FR IV), 251446 (Gonja FR).

Nectophrynoides vestergaardi Menegon, Salvidio, and Loader, 2004

Records—**WEST USAMBARA**, BMNH 1982.499–501, 1982.509–12, 1982.514–17 (Shumé-Magamba FR I), 2005.1340 (West Usambara); CAS 161371 (Shumé-Magamba FR I), 169381–82 (Baga II FR), 200518 (Mazumbai FR II); FMNH 251445, 248020–22, 250604–09 (Ambangulu FR IV); ZMUC R131228-48 (Mazumbai FR II).

Family Hyperoliidae

Afrixalus fomasini (Biaconi, 1849)

Records—**WEST USAMBARA**, CAS 169250–52 (Mazumbai FR II).

Afrixalus ahuagruensis (Barbour and Loveridge, 1928)

Records—**WEST USAMBARA**, BMNH 1974.240–41 (Mazumbai FR, not found in the collection but identified by A. G. C. Grandison), 1982.567 (Mazumbai FR II), 2005.1334–35 (Mazumbai FR II); CAS 169266–74, 169937 (Mazumbai FR II); FMNH 276749, 276750, 278936 (Mazumbai FR I); MCZ A-13321 (Bumbuli); MHNG 2620.080–82 (Mazumbai FR II); ZMUC R77268–87 (Mazumbai FR II).

Hyperolius argus Peters, 1854

Records—**WEST USAMBARA**, BMNH 1982.565 (Ambangulu FR VIII).

Hyperolius mitchelli Loveridge, 1953

Records—**WEST USAMBARA**, FMNH 274532–36, 275025–29 (Ambangulu FR VI); **NORTH PARE**, MTSN 8643 (Kindoro FR).

Hyperolius cf. parkeri Loveridge, 1933

Records—**WEST USAMBARA**, FMNH 274550 (Ambangulu FR VI).

Remarks: This juvenile specimen was light green in life but is in a poor condition of preservation. DNA from the specimen was sequenced and demonstrates that it is conspecific with confirmed specimens of *Hyperolius parkeri* from Man’gula in the Udzungwa Mountains. Genetic data from this specimen was 1% divergent from that of positively identified specimens for the mitochondrial NADH dehydrogenase 2 (ND2) gene and two nuclear genes (pro-opiomelanocortin [POMC] and cellular myelocytomatosis c-myc; L. Lawson, unpubl. data). Molecular sequences are deposited in GenBank under the FMNH ID 274550.

Hyperolius puncticulatus (Pfeffer, 1893)

Records—**WEST USAMBARA**, BMNH 1974.260–68, 1974.323–37 (Mazumbai FR II), 2005.1364 (Mazumbai FR II); CAS 169105–28 (Mazumbai FR II); FMNH 274526–30, LL18800–02, 18808–09, and 18811–13 are at UDSM to be catalogued (Mazumbai FR I), 2005.1340 (West Usambara); FMNH 274506–07, 274405, 274508–13, LL18824–18827 are at UDSM to be catalogued (Shumé-Magamba FR II), FMNH 276750, 278936 (Mazumbai FR I); MCZ A-13321 (Bumbuli); MHNG 2620.080–82 (Mazumbai FR II); ZMUC R77268–87 (Mazumbai FR II).
Hypermus pusillus (Cope, 1862)

Records—West Usambara, FMNH 248041 (Ambangulu FR IV).

Hypermus tanneri Schiötz, 1982

Records—West Usambara, CAS 169263–65 (Mazumbai FR II); FMNH 274287–88 (Mazumbai FR I), 274289 (Shume-Magamba FR II); ZMUC R077356–72 (Mazumbai FR II).

Hypermus glandicolour Peters, 1878

Records—South Pare, BMNH 2000.735 (Chome FR I); North Pare, MTSN 8635–36 (Kilomeni Mission).

Kassina maculata (Duménil, 1853)

Records—West Usambara, BMNH 1974.401 (Mazumbai FR II).

Family Microhyliidae

Hoplophryne sp.

Records—West Usambara, FMNH 250472–75 (Ambangulu FR IV).

Remarks: Three juvenile specimens (FMNH 250473–75; 11.8–14.0 mm snout–vent length) are tentatively identifiable to the genus Hoplophryne but show differences from other members of the genus (H. rogersi and H. uluguruensis; Barbour & Loveridge, 1928). FMNH 250472 is entered in the catalogue but has been returned to the donor institution (University of Dar es Salaam). Each of these specimens has long and gracile limbs. Furthermore, there are distinct and symmetrically arranged spines present on the dorsal surface; these spines are mainly concentrated posteriorly in FMNH 250475. Further assessment of these specimens will be required, but given the differences with described Hoplophryne species, these specimens likely represent a morphologically distinct and undescribed species.

Family Phrynobatrachidae

Phrynobatrachus krefftii Boulenger, 1909

Records—West Usambara, BMNH 2005.1370–72 (Mazumbai FR II), 1974.64–95 (Mazumbai FR II); CAS 168727–83, 169380 (Mazumbai FR II); FMNH 272048 (Shume-Magamba II); MCZ A-12384–87 (Bumbuli); SOUTH PARE, FMNH 251439M0 (Gonja FR), 251370–72 (Chome FR III), 251375–80 (Chome FR IV); NORTH PARE, MTSN 7548 (Chome FR II); SOUTH PARE, BMNH 2000.736 (Chome FR II); NORTH PARE, ZMUC R077356–72 (Mazumbai FR II).

Remarks: FMNH 272048 is a juvenile specimen lacking the distinctive yellow throat of adult P. krefftii; thus, there is some uncertainty regarding its identity.

Phrynobatrachus natalensis (Smith, 1849)

Records—North Pare, MHNG 2624.073 (Kindoroko FR).

Phrynobatrachus sp.

Records—West Usambara, BMNH 1974.158–69 (Mazumbai FR II).

Remarks: The material was identified by Grandison as P. minutus, a species probably restricted to Ethiopia (B. M. Zimkus, pers. comm.). It resembles P. ukingensis in the presence of a light subtympanic band in most specimens, but the gular region is only lightly darkened. The presence of a clearly visible tympanum and slight but discernible expansion of digital tips into discs excludes this material from P. schlefferi.

Family Pipidae

Xenopus cf. victorianus Ahl, 1924

Records—West Usambara, BMNH 1982.495 (Shume-Magamba FR I); MCZ A-12384–87 (Bumbuli).

Remarks: There is doubt regarding the taxonomic status of Xenopus populations from the EAM. Specimens from the MCZ (A-12384–87; B. M. Zimkus, pers. comm.) reportedly have the following features: (1) claws present only on the first three toes and (2) a subocular tentacle less than half the diameter of the eye. Because of the relative length of the subocular tentacle, these specimens differ morphologically from X. muelleri (Kobel et al., 1996). While superficially resembling X. victorianus, the fifth toe of the West Usambara specimens is approximately the same length as the crus, whereas in X. victorianus, the fifth toe is somewhat longer than the crus (Kobel et al., 1996). Detailed taxonomic study will be required on Xenopus across the EAM to understand the status of each species. Because other montane regions in sub-Saharan Africa contain a number of endemic Xenopus species (e.g., Kobel et al., 1980; Loumont & Kobel, 1991; Evans et al., 2008), it would be unsurprising if this is similarly true for the EAM.

Family Ptychadenidae

Ptychadena anchietae (Bocage, 1868)

Records—West Usambara, MCZ A-138527 (Ambangulu FR VI); South Pare, FMNH 251439–40 (Gonja FR), 251370–72 (Chome FR IV); MTSN 7547 (Chome FR II); North Pare, MHNG 2624.066–067, 2624.070–73 (Kindoroko FR).

Family Ptychaecephalidae

Amietia angolensis (Bocage, 1866)

Records—West Usambara, BMNH 1974.132–44, 1982.558 (Mazumbai FR II); CAS 168828 (Handei Village Pond), 168719–26, 168804, 168830 (Mazumbai FR II); FMNH 248039 (Ambangulu FR IV); MCZ A-12661–65 (Bumbuli); SOUTH PARE, BMNH 2000.736 (Chome FR I); FMNH 251373–74 (Chome FR III), 251375–80 (Chome FR IV); MHNG 2619.094 (Chome FR I); MTSN 7548 (Chome FR II); NORTH PARE, MHNG 2624.068–69 (Kindoroko FR).

Remarks: Several authors have suggested that there are probably cryptic species within those populations currently referred to as Amietia angolensis based on morphological grounds (Drewes & Vindum, 1994; Pickersgill, 2007). Amietia angolensis has a somewhat anomalously large elevational range (e.g., Poynton, 2003), which raises the possibility that lowland and highland populations are not conspecific. Although previous works have not dealt explicitly with material from the northern EAM, we leave open the possibility that cryptic species of Amietia might exist in the EAM.
Records—West Usambara, BMNH 1929.6.1.6 (Philipshof); MCZ A-12715, A-12732-35 (Philipshof).

Remarks: There has been recent disagreement regarding the taxonomy of Strongylus in the EAM and adjacent volcanic mountains of Mt. Kilimanjaro and Meru (Channing & Davenport, 2002; Poynton, 2004; Clarke & Poynton, 2005). The taxonomic and phylogenetic relationships of Strongylus in the northern EAM to those of the volcanic mountains are an important area for future research.

Order Gymnophiona
Family Caeciliidae
Boulengerula cf. boulengeri Tornier, 1896

Records—West Usambara, BMNH 2005.1343-48 (Lushoto), 2005.1349-56 (Ambangula FR I), 2005.1357-63 (Mazumbai FR II); CAS 168822 (Mazumbi FR II); ZMUC R361289, R361291-93 (uncertain locality—see below), 361393 (Mazumbai FR II).

Remarks: The existence of an undescribed new species from West Usambara has been suggested based on morphological and molecular data (Vestergaard, 1994; Channing & Howell, 2006; Loader et al., 2011). At least some West Usambara specimens referred to here as B. cf. boulengeri have more annuli and vertebrae than those from East Usambara. In addition, genetic distances between West and East Usambara samples provide some support for the suggestion of a new species (Loader et al., 2011). However, further detailed taxonomic study is required. There are uncertainties regarding the locality data for a series of specimens in Copenhagen collections (ZMUC-R 361291-93). This collection of Boulengerula material was made by M. Anderson, J. Rasmussen, and M. Vestergaard in East Usambara (Amani Nature Reserve) and West Usambara (Mazumbai FR) in consecutive days in September 1992. Field notes accompanying the amphibian material were lost and this has raised doubts about the exact provenance of these specimens.

Family Scolecomorphidae
Scolecomorphus cf. vittatus (Boulenger, 1895)

Records—West Usambara, CAS 168810-11 (Mazumbai FR II), 168812 (Bagi II FR); FMNH, 248043-46, 250532, 250589, 251437 (Ambangula FR IV); MCZ A-12719 (Philipshof); ZMUC R0265, R361273, R361286, R361288, R0197 (Mazumbai FR II); South Pare, BMNH 2005.902-914 (Chome FR I); MTSN 7549 (Chome FR II); North Pare, BMNH 1986.609 (Kifula Village, Ugweni), 2005.954-85 (Kindoroko FR); CAS 159945-64 (Kifula Village, Ugweni); MTSN 8619-20, 8631, 8633-34, 8637-39 (Kindoroko FR), 8642, 8644-45, 8647, 8649 (Minja FR); UMMZ 172066-7 (Kifula Village, Ugweni); USNM 226753 (Kifula Village, Ugweni).

Remarks: The diversity of scolecomorphidae caecilians across the Usambara and Pare Mountains is currently being assessed (Loader, unpubl. data). It is likely that new species will be described from this material. Differences between populations in this region were implied in Nussbaum’s (1985, pg. 30) review of material from North Pare: “Adults from the North Pare Mountains, to the northwest of the Usambara, have more extensive dark dorsal bands, which extend ventrolaterally past the midlateral line. The ventrolateral, light coloration is a duller cream.”

Discussion

Table 1 summarizes the species for which records are known from the West Usambara, South Pare, and North Pare Mountains. The records presented here substantially increase the knowledge of species distributions in this East African biodiversity hotspot. In total, West Usambara has 33 species known (four endemic), South Pare 12 species (three endemic), and the North Pare eight species (one endemic). Our assessment was unable to confirm the presence of Arthroleptis adolfifriederici and Petroedetes [Arthroleptidae] martiensseni, both recorded by Channing and Howell (2006). Until specimens can verify the presence of these species, it should be concluded that these are absent from the West Usambara. It should be noted that any comparisons with other Eastern Arc fragments should consider the complexity of species turnover between highland and lowland areas (Poynton et al., 2007). Some of the records given in our list include species that are usually treated as being part of the fauna of surrounding lowlands and are noted in Table 1 (footnote 3; e.g., Anietio-phyrus gutturalis). Therefore the highland fauna of the West Usambara and Pares is less species rich than indicated and would be reduced if some of the lowland species that penetrate highland forest habitats are excluded. Intensive sampling across the altitudinal distribution of species in these areas would be required before this could be adequately treated.

Patterns of species diversity across these mountains show a gradual southeast-to-northwest decline in numbers from the West Usambara to North Pare. This is also mirrored in the number of endemic species to these areas (see Table 1). This trend is more marked if species diversity in the East Usambara is also considered (Poynton et al., 2007). If the data from IUCN et al. (2009) are used to refine the species distribution maps of Channing and Howell (2006), then the following are sub-montane or montane species found in the East Usambara but apparently absent in the West Usambara or Pares: Arthroleptis xenodactyclus, Petroedetes [Arthroleptidae] martiensseni, Breviceps nossambicus, Hyperolius spingsularis, Hoplophryne rogersi, Leptopelis barbouri, L. uluguruensis, Nectophrynoides tornieri, Parhoplophryne usambarica, Probreviceps macrodactyclus, and Ptychodera oxyrythys. Notably, this list includes three genera (Petroedetes, Parhoplophryne, and Probreviceps) for which there are currently no records from the West Usambara or Pares. One likely reason for the differences in species richness and taxonomic diversity is the unequal sampling across these habitats, with most surveys focused historically in the East and West Usambara. If this is the major source of difference, then it suggests that more diversity remains to be discovered in the West Usambara and Pares. However, apart from the unequal surveying, other factors are likely to be significant in explaining the differences in amphibian diversity across the northwestern EAM. Forest area decreases sharply from West Usambara to North Pare (323, 139, and 26 km², respectively; Table 2), and this area effect likely contributes to differences in species richness (as supported by Burgess et al., 2007). The climate is also increasingly drier along thiscline (Burgess et al., 2007), and therefore the suitability of habitats for amphibians is expected to be proportionately reduced. Other taxonomic groups (e.g., trees, birds, and mammals) also reveal similar relative differences between these areas, suggesting a common biogeographic pattern (Burgess et al., 2007). Although we suspect many other species await discovery, we predict that
Table 1. Species list for amphibians of the West Usambara and Pare Mountains.

Species name	West Usambara	South Pare	North Pare
Arthrolepididae			
Arthroleptis affinis	X	X	X
Arthroleptis anotis	X	X	X
Arthroleptis fichu	X	X	X
Arthroleptis lomberti	X	X	X
Arthroleptis steudentycyulus	X	X	X
Arthroleptis ramberti	X	X	X
Arthroleptis xenodactyloides	X	X	X
Arthroleptis sp. nov.	X	X	X
Leptopelis flavomaculatus	X	X	X
Leptopelis parkeri	X	X	X
Leptopelis vermiculatus	X	X	X
Brevicipitidae			
Breviceps ficus	X	X	X
Callulina kisuwansi	X	X	X
Callulina laphamii	X	X	X
Callulina shengena	X	X	X
Callulina stailey	X	X	X
Bufonidae			
Amietophrynus brauni	X	X	X
Amietophrynus gutturalis	X	X	X
Nectophrynoides vestergaardi	X	X	X
Hyperoliidae			
Afrixalus formosus	X	X	X
Afrixalus ulugurus	X	X	X
Hyperolius argus	X	X	X
Hyperolius glandicola	X	X	X
Hyperolius mitchelli	X	X	X
Hyperolius parkeri	X	X	X
Hyperolius puncticulatus	X	X	X
Hyperolius pasillus	X	X	X
Hyperolius tanneri	X	X	X
Kassina maculata	X	X	X
Microhylidae			
Hoplophryne sp.	X	X	X
Phrynobatrachidae			
Phrynobatrachus kreffeti	X	X	X
Phrynobatrachus nataelensis	X	X	X
Phrynobatrachus sp.	X	X	X
Pipidae			
Xenopus victorianus	X	X	X
Ptychadenidae			
Ptychadena anchietae	X	X	X
Ptychophiidae			
Amietia angolensis	X	X	X
Strongylops fuelleborni	X	X	X
Gymnophiona			
Caeciidae			
Boulengerula boulengeri	X	X	X
Scolecomorphidae			
Scolecomorphus cf. vittatus	X	X	X

Total (total endemic species): 33 (4) 12 (3) 8 (1)

1 Endemic to this single fragment.
2 Questionable status.
3 Associated with lowland fauna.
4 Not verified by a specimen.

Differences between these areas might remain roughly the same when future studies survey these Eastern Arc forest fragments. A general comparison of the amphibian communities reveals that the West Usambara and South Pare Mountains show similar species composition. A total of eight species are shared between West Usambara and South Pare, more than the five species shared between the Pares or the four among West Usambara and North Pare. Future taxonomic assessment of particular species (e.g., Arthroleptis fichu, Scolecomorphus cf. vittatus) is likely to further reduce the proportion of taxa shared between these mountains. The close biotic relationship between populations in the West Usambara and South Pare Mountains (and other northern Eastern Arc mountains such as the Taita or Shimba Hills) appears to be a
Table 2. Estimates of forest area, and elevational coverage for the East and West Usambara and South and North Pare Mountains.

	East Usambara	West Usambara	South Pare	North Pare
Forest area (km²) according to Newmark (2002)¹	413	547	333	151
Forest area (km²) according to various other published sources (see notes)¹	450	220	211	25
Forest area (km²) according to standardized analysis of satellite imagery¹	263	319	138	27
Estimate of forest area (km²)²	263	323	139	26
Estimates of % change in forest cover across the Northern Eastern Arc Mountain blocks (Paleo. – 2000)²	-68.3	-86.3	-87.2	-92
Forest elevational coverage¹	130-1506	1200-2200	820-2463	1300-2113

¹ Taken from Burgess et al., 2007.
² Taken from Hall et al., 2009.

pattern repeated in molecular studies that have been conducted across these areas (Bowie et al., 2004, 2006; Fjeldså et al., 2006; Kahindo et al., 2007; Blackburn, 2009a; Blackburn & Measey, 2009; Loader et al., 2009, 2010). Future molecular studies designed explicitly to test this pattern are required to determine the extent of this shared biogeography.

The diversity of amphibians in the Usambara and Pares highlights the conservation importance of these areas. Numerous endemic species from single forest fragments are known from these areas, including species of conservation concern (Loader et al., 2010). Remarkably, two Callulina species, stratified by elevation, are known in the South Pare in the Chome Forest Reserve (Loader et al., 2010). In addition to the new Arthroleptis species described here, these forest-restricted amphibian species, and the forest habitats they occupy, deserve conservation attention.

Land use changes in the Usambara Mountains have occurred over a prolonged period (Newmark, 2002). Early Iron Age sites demonstrate that lower portions of the montane zone (>1200 m) were occupied in West Usambara at least by the third century C.E. (Schmidt, 1988); use of forest products at these sites is clearly evident via the wood charcoal used in iron-smelting furnaces. In this and later time periods, mountain farmers in the Usambaras settled in and farmed montane and sub-montane zones where they cultivated a wide variety of crops, such as bananas (Musa spp.) that arrived because of trade with coastal sites integrated into oceanic trade routes (reviewed in Conte, 2004). Although the extent of forest present 2000 years ago was undoubtedly reduced in size before the nineteenth century, some of the most dramatic short-term changes in forest cover came in the late nineteenth and early twentieth centuries with the advent of German and, subsequently, British occupation (Conte, 2004). In the first half of the twentieth century, large amounts of forest were removed in the Usambara Mountains in order to plant economic crops on supposedly fertile soils (Conte, 2004). According to Hall et al. (2009), during the past 2000 years, the West Usambara have suffered a reduction in forest cover by 86%, the South Pare by 87%, and the North Pare by 92%. However, it should be noted that these recent comparisons by Hall et al. (2009) lump all deforestation from 2000 years ago to 1955 in the same time category, which makes it difficult to evaluate the degree of change that preceded the implementation of colonial forest management practices. Today there remains a strong concern for the conservation of the forest habitats in West Usambara (Goodman et al., 1995) and Pares (Hall et al., 2009), which have had dramatic historical reductions in size and for which our knowledge of the fauna is still woefully incomplete.

Gazetteer

North Pare Mountains

Kifula, Ugweno [3°37'30"S, 37°40'00"E].
Kindoroko FR I [3°43'43.5"S, 37°39'16.1"E].
Minja FR I [3°44'55.96"S, 37°38'47.09"E].
Kilomeni Mission [3°45'59.87"S, 37°38'59.73"E].

South Pare Mountains

Chome FR I [4°18'S, 37°53'E, 1800 m].
Chome FR II [4°19'41.382"S, 37°59'44.262"E].
Chome FR III, edge Chome FR, 5.5 km S Bombo (by air), near Kunza Village [4°19'S, 38°00'E, 1100 m].
Chome FR IV, 7 km S Bombo (by air) [4°20'S, 38°00'E, 1100 m].
Chome FR V, 3 km E, 0.7 km N Mhero [4°17'S, 37°55'40"E, 2000 m].
Chome FR VI, Shengena [4°17'42.907"S, 37°56'18.612"E].
Gonja FR, Higililu River [4°16'S, 38°02'E, 550 m].
Nakombo River [4°09'S, 37°56'E].
Pare Forest [4°09'S, 37°50'E].

West Usambara Mountains

West Usambara [4°43'S, 38°15'E, 1860 m].
Ambangulu FR I, BM [5°3'S, 38°24'E, 1250 m].
Ambangulu FR II, Tea Estate [5°4'S, 38°25'E, 1300 m].
Ambangulu FR III, Tea Estate, 14.5 km NW Korogwe [5°3'S, 38°23'E, 1250 m].
Ambangulu FR IV, Tea Estate, 12.5 km NW Korogwe [5°4'S, 38°25'E].
Ambangulu FR V, Tea Estate [5°5'S, 38°26'E, 1200 m].
Ambangulu FR VI, Tea Estate, 1102 m [5°3.266'S, 38°22.672'E].
Ambangulu FR VII, Tea Estate, 1252 m [5°3'57"S, 38°24'0"E].
Acknowledgments

We thank the Tanzania Commission for Science and Technology (COSTECH research permit RCA 2001-272), TAWIRI, and the Wildlife Division for issuing necessary permits, in particular Nebo Mwina, Fredrick Ambwene Ligate, Julius Keyyu, and H. M. Nguli. We thank Roy and Zoe Hinde for assisting in the fieldwork. We are also grateful to Alan Channing, Nige Doggart, David Gower, Kim Howell, Charles Msuya, Wilrik Ngalason, and Breda Zimkus for providing assistance in the field, advice, and support. We are grateful to Barry Clarke (BMNH) for assistance in many ways and to Phil Crabb of the BMNH for taking photographs of the *Arthrolepis anotis* anotis. We thank Mark Wilkinson (BMNH), Bob Drewes and Jens Vindum (CAS), Alan Resetar, Abigail Wolf, Kathleen Kelly, Harold Voris (FMNH), Jim Hanken and José Rosado (MCZ), Jean Mariaux and Andreas Schmitz (MNHN), and Jens Rasmussen and Mogens Anderson (ZMUC) for access to specimens and information held in their respective collections. Martin Vestergaard is thanked for providing the photo of *Nectophrynoides vestergaardi*. The 2001–2002 fieldwork carried out by S.P.L. and D.J. Gower was funded in part by a Systematics Association Research Fund grant, the Natural History Museum, London, and a NERC studentship. L.L.'s fieldwork was funded by an Africa Council Fellowship from the Field Museum of Natural History and a Hinds fund award from the University of Chicago. S.P.L., M.M., and W.N.'s visits to FMNH were funded by a museum visiting scholarship grant (2007), and a "Council on Africa" grant (2008). S.P.L. was awarded a COBICE award from the European Commission to visit the ZMUC in 2001, an Ernst Mayr Grant to visit MCZ in 2005, and a Charles Stern Award to visit CAS in 2006. D.C.B. was supported by the Biodiversity Institute of the University of Kansas.

Literature Cited

Andreone, F., A. Channing, R. Drewes, J. Gerlach, F. Glaw, K. Howell, M. Largen, S. P. Loader, S. Lotters, L. Minter, M. Pickersgill, C. Raxworthy, M.-O. Rödel, A. Schiotz, D. Vallen, and M. Vences. 2008. Amphibians of the Afrotropical Region, pp. 53–65. In Stuart, S. N., M. Hoffmann, J. S. Chanson, N. A. Cox, R. J. Berridge, P. Ramani, and B. E. Young, eds., Threatened Amphibians of the World. Lynx Edicions, Barcelona.

Barbour, T., and A. Loveridge. 1928. A comparative study of the herpetological faunae of the Uluguru and Usambara mountains, Tanganjika Territory with descriptions of new species. Memoirs of the Museum of Comparative Zoology, 50: 27–265.

Bauer, A. M., W. Böhme, and R. Gönther. 2006. An annotated catalogue of the types of chameleons (Reptilia: Squamata: Chamaeleonidae) in the collection of the Museum für Naturkunde der Humboldt-Universität zu Berlin (ZMB). Zoosystematics and Evolution, 82: 268–281.

Blackburn, D. C. 2008. Biogeography and evolution of body size and life history of African frogs: Phylogeny of squawkers (*Arthrolepis*) and long-fingered frogs (*Cardioglossa*) estimated from mitochondrial data. Molecular Phylogenetics and Evolution, 49: 806–826.

——. 2009a. Description and Phylogenetic Relationships of Two New Species of *Miniature Arthrolepis* (Anura: Arthroleptidae) from the Eastern Arc Mountains of Tanzania. Breviora, 517: 1–17.

——. 2009b. Diversity and evolution of male secondary sexual character in African squawkers and long-fingered frogs. Biological Journal of the Linnean Society, 96: 553–573.

Blackburn, D. C., L. N. Gonwouo, R. Ernest, and M.-O. Rödel. 2009. A new squeaker frog (*Arthroleptidae: Arthrolepis*) from the Cameroon Volcanic Line with redescriptions of *Arthrolepis adolfifriederici* Nieden, 1911 “1910” and *A. variabilis* Matschie, 1893. Breviora, 515: 1–22.

Blackburn, D. C., and G. J. Measey. 2009. Dispersal to or from an African biodiversity hotspot? Molecular Ecology, 18: 1904–1915.

Bowie, R. C. K., J. Fieldsa, S. J. Hackett, J. M. Bates, and T. M. Crowe. 2006. Coalescent models reveal the relative roles of ancestral polymorphism, vicariance, and dispersal in shaping phylogeographical structure of an African montane forest robin. Molecular Phylogenetics and Evolution, 38: 171–188.

Bowie, R. C. K., J. Fieldsa, S. J. Hackett, and T. M. Crowe. 2004. Systematics and biogeography of the Double-Coloured Sunbirds of the Eastern Arc Mountains, Tanzania. Auk, 121: 660–681.

Burgess, N. D., N. Cordeiro, N. Doggart, J. Fieldsa, K. M. Howell, F. Kilahama, S. P. Loader, J. C. Loveitt, M. Menegon, D. Moyer, E. Nashanda, A. Perkin, W. T. Stanley, and S. Stuart. 2007. The biological importance of the Eastern Arc Mountains of Tanzania and Kenya. Biological Conservation, 134: 209–231.

Channing, A., and T. B. Davenport. 2002. A new stream frog from Tanzania (Anura: Ranidae: *Strongylopus*). African Journal of Herpetology, 51: 135–142.

Channing, A., and K. M. Howell. 2006. Amphibians of East Africa. Cornell University Press, Ithaca.

Channing, A., and L. Minter. 2004. A new rain frog from Tanzania (Microhylidae: *Breviceps*). African Journal of Herpetology, 53: 147–154.

Clark, B. T., and J. C. Poynton. 2005. A new species of stream frog, genus *Strongylopus* (Anura: Ranidae) from Mount Kilimanjaro, Tanzania, with comments on a 'northern volcanic mountain group' within the genus. African Journal of Herpetology, 54: 53–60.

Conte, C. A. 2004. Highland Sanctuary—Environmental History in Tanzania’s Usambara Mountains. Ohio University Press, Athens.

De Sa, R., S. P. Loader, and A. Channing. 2004. A new species of *Callulina* (Anura: Microhylidae) from the West Usambara Mountains, Tanzania. Journal of Herpetology, 38: 219–222.

Drewes, R. C., and J. V. Vindum. 1994. Amphibians of the Impenetrable Forest, Southwest Uganda. Journal of African Zoology, 108: 55–70.

Evans, B. J., T. F. Carter, M. L. Toras, D. B. Kelley, R. Hannr, and R. C. Tinsley. 2008. A new species of clawed frog (genus *Xenopus*) from Itombwe Massif, Democratic Republic of Congo: Implications for DNA barcodes and biodiversity conservation. Zootaxa, 1780: 55–68.

Evans, B. J., D. B. Kelley, R. C. Tinsley, D. J. Melnick, and D. C. Cannatella. 2004. A mitochondrial DNA phylogeny of African clawed frogs: Phylogeography and implications for polyploid evolution. Molecular Phylogenetics and Evolution, 33: 197–213.
