What we can learn from two-dimensional QCD-like theories at finite density

Björn H. Wellegehausen

with Lorenz von Smekal and Andreas Wipf

Institut für Theoretische Physik, JLU Giessen

34th International Symposium on Lattice Field Theory, Southampton, UK, 29.07.2016
QCD sign problem at finite density: Standard Monte-Carlo methods only for $\mu/T \leq 1$ applicable

- complex Langevin, Lefschetz thimbles, density-of-states approach
- hopping parameter expansion, strong coupling expansion
- isospin chemical potential, imaginary chemical potential
- functional methods (DSE, FRG)
- QCD-like theories
QCD-like theories
• Replace $SU(3)$ fundamental fermions by fermions in representation \mathcal{R} of gauge group \mathcal{G}

• Wilson dirac operator: $D(\mu) = D(\mu; \mathcal{R}_\mathcal{G})$ with $\mu \in \mathbb{R}$

Additional (anti-)unitary symmetry

\[T D(\mu) = D^*(\mu) T, \quad T^* T = \pm \mathbb{1}, \quad T^\dagger T = \mathbb{1} \]

\[\det D(\mu) \det D(\mu) = \det D(\mu) \det D^*(\mu) = \det D(\mu) D^\dagger(\mu) \geq 0 \]

⇒ no sign problem at baryon chemical potential

Partition function for baryon and isospin chemical potential

\[Z(\mu_B) = Z(\mu_I) \]

Two flavour theory invariant under: $(u, d) \rightarrow (u, T\gamma_5\bar{d}^\dagger)$.

In this talk: $SU(2)$-QCD and G_2-QCD
SU(2) gauge theory with fundamental fermions, $T = C\gamma_5 \otimes \sigma_2$

- 2 colors, 3 gluons
- only bound states with even quark number (only bosonic baryons)

 $n_q = 2 \sim \text{diquarks}(d) \sim q^T q$

- second order deconfinement transition in gluodynamic

n_q	Particle	$d \leftrightarrow T \gamma_5 \bar{d}^T$	Particle	n_q
0	η	\leftrightarrow	η	0
0	f	\leftrightarrow	f	0
0	π_0	\leftrightarrow	π_0	0
0	π_{\pm}	\leftrightarrow	d_{\pm}	2
0	a_{\pm}	\leftrightarrow	d_{\pm}	2
G\(_2\) gauge theory with fundamental fermions, \(T = C\gamma_5 \otimes 1 \)

- 7 colors, 14 gluons
- bound states with integer quark number (fermionic and bosonic baryons)

\[
\begin{align*}
n_q = 1 & \sim \text{Hybrid}(H) \sim qggg \\
n_q = 1 & \sim \tilde{\Delta}, \tilde{N} \sim (\bar{q}q)q \\
n_q = 2 & \sim \text{diquarks}(d) \sim q^T q \\
n_q = 3 & \sim \Delta, N \sim (q^T q)q
\end{align*}
\]

- gluodynamic very similar to \(SU(3) \) (first order deconfinement transition)

\(n_q \)	Particle	\(d \leftrightarrow T\gamma_5 \bar{d}^T \)	Particle	\(n_q \)
1	\(H \)	\(\leftrightarrow \)	\(H \)	1
1	\(\tilde{N} \)	\(\leftrightarrow \)	\(N \)	3
1	\(\tilde{\Delta}^{++,+,+,-} \)	\(\leftrightarrow \)	\(\tilde{\Delta}^{++,+,+,-} \)	1
1	\(\tilde{\Delta}^0 \)	\(\leftrightarrow \)	\(\Delta^0 \)	3
3	\(\Delta^{++,+,+,-} \)	\(\leftrightarrow \)	\(\Delta^{++,+,+,-} \)	3
1. G_2-QCD in 4 dimensions

2. Free lattice fermions

3. Two-Color QCD in two dimensions

4. G_2-QCD in two dimensions
G_2-QCD in 4 dimensions
$N_f = 1$ G_2-QCD phase diagram with $m_{d_0^+} = 247$ MeV
$N_f = 1$ G_2-QCD phase diagram with $m_{d_0^+} = 247$ MeV

- Are these QCD-like theories similar to QCD with isospin chemical potential or to QCD with baryon chemical potential?
- What is the contribution of fermionic / bosonic baryons to the phase diagram?
- Simulations in 4 dimensions computationally very expensive

\Rightarrow high precision simulations in 2 dimensions
Free lattice fermions
Ensemble with fixed particle number \(k \mod N \)

\[
Z_N(k) = \frac{1}{N} \sum_{n=0}^{N-1} e^{-2\pi ik_n/N} Z \left(\mu - \frac{2\pi i}{N} T_n \right)
\]

\[\Rightarrow Z_{\text{even}} = \frac{1}{2} \left(Z \left(\mu \right) + Z \left(\mu - i\pi T \right) \right)\]

Sum of ensembles with periodic and antiperiodic temporal boundary conditions

\(N_t \times 16 \) lattice with \(N_t = 4 \ldots 128 \)
Two-Color QCD in two dimensions
Setup

- Two flavour $SU(2)$-QCD in 2d
- $N_t \times 16$ lattice with $N_t = 2\ldots128$ at fixed β and κ
- Physical scale set by pion mass $m_\pi = 200$ MeV at $N_t = 32$

$\Rightarrow a = 0.26(4)$ fm ~ 0.0013 MeV$^{-1}$

$\Rightarrow T = 6\ldots385$ MeV

$\Rightarrow \mu = 0\ldots885$ MeV

\Rightarrow diquark mass $m_{d_0^+} = 200$ MeV

\Rightarrow vector diquark mass $m_{d_1^+} = 177$ MeV

\Rightarrow a meson mass $m_a = 254$ MeV
Quark Number

Chiral condensate

$T = 385$ MeV
Quark Number

\[T = 192 \text{ MeV} \]
Quark Number

Chiral condensate

\[T = 128 \text{ MeV} \]
Two-Color QCD in two dimensions

Quark Number

\[d_1^+ \]

\[T = 96 \text{ MeV} \]

Chiral condensate

\[d_1^+ \]
Quark Number

\[T = 77 \text{ MeV} \]
Two-Color QCD in two dimensions

Quark Number

Chiral condensate

$T = 64$ MeV
$T = 55$ MeV
Two-Color QCD in two dimensions

Quark Number

Chiral condensate

\[T = 48 \text{ MeV} \]
Quark Number

\[d_1 \]

\[T = 32 \text{ MeV} \]
$T = 24 \text{ MeV}$
Quark Number

Chiral condensate

\[T = 16 \text{ MeV} \]
Quark Number

Chiral condensate

\[T = 12 \text{ MeV} \]
Quark Number

Chiral condensate

$T = 6$ MeV
Lattice correlation function for operator with quark number n_q

$$C(\mu, n_q) \sim a \exp^{-\epsilon^-(\mu, n_q)t} + b \exp^{\epsilon^+(\mu, n_q)t}$$

with $\epsilon^+ = m(\mu) + n_q\mu$ and $\epsilon^- = m(\mu) - n_q\mu$.

- ϵ^- obtained from fits to 2, 3 or 4 exponentials
- d_0^+ mass decreases close to the onset
Phase diagram in 2\textit{d} is resembling phase diagram in 4\textit{d} (finite volume)
also similar to QCD at isospin density as expected
G_2-QCD in two dimensions
Setup

- Two flavour G_2-QCD in 2d
- $N_t \times 16$ lattice with $N_t = 2 \ldots 64$ at fixed β and κ
- Physical scale set by pion mass $m_\pi = 200$ MeV at $N_t = 32$

\[\Rightarrow a = 0.16 \text{ fm} \sim 0.0007 \text{ MeV}^{-1} \]
\[\Rightarrow T = 20 \ldots 633 \text{ MeV} \]
\[\Rightarrow \mu = 0 \ldots 757 \text{ MeV} \]
\[\Rightarrow \text{diquark mass } m_{d_0^+} = 262 \text{ MeV} \]
\[\Rightarrow \text{vector diquark mass } m_{d_1^+} = 194 \text{ MeV} \]
\[\Rightarrow \text{a meson mass } m_a = 262 \text{ MeV} \]
\[\Rightarrow \text{nucleon mass } m_{N^+} = 380 \text{ MeV} \]
\[\Rightarrow \text{nucleon mass } m_{N^-} = 506 \text{ MeV} \]
\[\Rightarrow \text{hybrid mass } m_H \sim 440 \text{ MeV} \]
very preliminary results indicate that nucleon / delta mass decreases above diquark onset
very preliminary results indicate that nucleon / delta mass decreases above diquark onset
Phase diagram similar to phase diagram of two-color QCD, but contributions from fermionic and bosonic baryons
What can we learn from two-dimensional QCD-like theories at finite density?
Phase diagrams for $SU(2)$ and G_2 in two dimensions very similar to each other.

In a finite volume they are also comparable to corresponding phase diagrams in 4 dimensions.

Behaviour at finite density qualitatively similar to free lattice fermions.

Mass dependence on chemical potential is a possible explanation for the observed discrepancies in 4 dimensions (possible onset of baryonic matter compared to baryon mass).

but probably it is very hard to obtain conclusive results for G_2-QCD in 4 dimensions because...

- we need very small temperatures to separate contributions from fermionic and bosonic baryons
- we face severe finite temperature effects
- we need large spatial lattices to decrease smallest spatial momenta in order to investigate diquark condensation or the nuclear matter phase.