Complications of Elbow Arthroscopic Surgery

A Systematic Review and Meta-analysis

Abdulaziz F. Ahmed,*† MD, Osama Z. Alzobi,‡ MD, Ashraf T. Hantouly,‡ MD, MSc, Ammar Toubasi,‡ MD, Rana Farsakoury,‡ MD, Khalid Alkhelaifi,§ MD, and Bashir Zikria,†§ MD

Investigation performed at the Division of Shoulder and Sports Medicine, Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, 601 N Caroline St, 5th Floor, Baltimore, MD 21205, USA

Background: Elbow arthroscopic surgery has been popularized and has made significant progress during the past 3 decades. The elbow joint is relatively small and is in close proximity to many neurovascular structures. These factors make elbow arthroscopic surgery technically demanding and liable to complications.

Purpose: To evaluate the rate of complications after elbow arthroscopic surgery.

Study Design: Systematic review; Level of evidence, 4.

Methods: The PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines were followed to perform this systematic review and meta-analysis. PubMed, Web of Science, and Embase were searched up to July 2021. All clinical studies that reported complications after elbow arthroscopic surgery were included; a total of 1208 articles were initially found. Case reports, reviews, abstracts, imaging studies, technique studies, nonclinical studies, and those not reporting postoperative complications were excluded. Complication rates were pooled across studies and reported as percentages. Complications were expressed as weighted proportions with 95% CIs.

Results: A total of 95 studies (14,289 elbows) were included in the meta-analysis. The overall weighted complication rate was 11.0% (95% CI, 8.8%-13.5%), with postoperative stiffness being the most commonly encountered complication (4.5% [95% CI, 2.1%-7.6%]; 158/8818 procedures). The second most encountered complication was the need for subsequent surgery with a weighted proportion of 4.1% (95% CI, 2.9%-5.6%; 177/8853 procedures) followed by nerve injury with a weighted proportion of 3.4% (95% CI, 2.6%-4.3%; 267/13,725 procedures). The ulnar nerve was the most commonly injured nerve (2.6% [95% CI, 1.9%-3.4%]; 123/6290 procedures).

Conclusion: The results of this study showed that elbow arthroscopic surgery is a relatively safe procedure with low complication rates.

Keywords: elbow; arthroscopic surgery; complications

Elbow arthroscopic surgery was first introduced in 1931 and initially considered as a diagnostic tool for various elbow abnormalities. Nowadays, because of the recent advancements in equipment and improved techniques in elbow arthroscopic surgery, its utilization has gained more popularity and accounts for 11% of all arthroscopic procedures, with a 2-fold increase over the past decade. Elbow arthroscopic surgery has gained popularity as the preferred method to manage several intra- and extra-articular elbow conditions. It is widely utilized in loose body extraction, synovectomy, synovial biopsy, osteophyte removal, contracture release, osteochondral defects, and lateral epicondylitis. Additionally, indications have expanded to address complex conditions such as radial head resection, arthroscopically assisted open reduction of intra-articular fractures, total synovectomy, and ligament repair/reconstruction.

Elbow arthroscopic surgery is technically demanding because of the complexity of the elbow joint’s geometry and the proximity of major neurovascular structures. The reported complications for elbow arthroscopic surgery include neurological injuries, postoperative stiffness, infections, wound-healing complications, nerve injuries, subsequent procedures, and instability. Risk factors for complications have also been described, including a history...
of trauma, prior elbow surgery, inflammatory arthritis, hypercoagulable disorders, and intra-articular corticosteroid injections at the time of surgery.6,55,35 Identifying risk factors that result in complications, pathological considerations, technical considerations (learning curve), anatomy principles, proper portal selection, and adequate patient positioning are key to reduce further complications.47,97 However, there are still some concerns regarding the potential complications of elbow arthroscopic surgery, especially regarding nerve injuries and elbow stiffness.

Because the indications and utilization of elbow arthroscopic surgery have increased dramatically, the purpose of this study was to collect all the reported complications of elbow arthroscopic surgery. We hypothesized that elbow arthroscopic surgery would be a relatively safe procedure with low complication rates.

METHODS

This review was conducted with adherence to the guidelines of the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses).61

Eligibility Criteria

The inclusion criteria comprised clinical studies that reported complications of elbow arthroscopic surgery. The exclusion criteria were abstracts, case reports, reviews, nonclinical studies, imaging studies, technique studies, and those not reporting postoperative complications.

Information Sources and Search Strategy

PubMed, Web of Science, and Embase were searched up to July 2021. The search keywords used in each database were (“Elbow”) AND (“Arthroscopy”) NOT (“Shoulder”) NOT (“Wrist”) NOT (“Hip”) NOT (“Knee”) NOT (“Ankle”). Studies were screened by titles and abstracts. A full-text review was performed if a study matched the eligibility criteria. Overall, 2 authors (A.F.A. and O.Z.A.) performed the search independently, and the senior author (B.A.Z.) resolved any disagreement.

Data Collection Process and Data Items

The baseline data items that were collected included author(s), study year, level of evidence, age, patient position (prone, lateral, or supine), number of elbow arthroscopic procedures, and elbow complications. The elbow complications were infections, wound-healing complications, nerve injuries, subsequent procedures, instability, and stiffness. Infections were either superficial or deep infections. Wound complications entailed wound dehiscence or drainage. Nerve complications were injuries to the ulnar nerve, radial nerve, posterior interosseous nerve, median nerve, medial antebrachial cutaneous nerve, and lateral antebrachial cutaneous nerve (LABCN) as well as total nerve injuries and unspecific nerve injuries. Again, 2 authors (A.T.H. and A.T.) performed data extraction independently.

Statistical Analysis

A quantitative synthesis was performed using Stata/IC (StataCorp). The continuous variables of baseline patient demographics were reported as means or ranges, whereas categorical variables were reported as unweighted proportions. Complications were expressed as weighted proportions for total complications and for each individual complication with 95% CIs. An arcsine transformation was implemented to compute weighted proportions, which managed variance instability; it is one of the preferred transformation methods in meta-analyses of prevalence.8

RESULTS

Study Selection

The search strategy resulted in 1208 articles, of which 310 duplicates were removed, thus leaving 898 articles for searching by titles and abstracts. A total of 767 articles were excluded, resulting in 131 articles eligible for full-text reviews. Of the 131 articles, 36 articles were excluded, leaving 95 eligible articles. The exclusions were because of articles being a narrative review (n = 1) or about a surgical technique (n = 35). All 95 eligible studies were included in the quantitative analysis. Overall, 17 studies were level 3 comparative cohort studies, and 78 were level 4 case series. The PRISMA flowchart is displayed in Figure 1.

Study Characteristics

A summary of the included studies is provided in Appendix Table A1. A total of 14,289 elbow arthroscopic procedures were included in this review. In 78 studies, elbow arthroscopic surgery was performed in an adult population, with mean ages ranging from 21.6 to 80 years. Pediatric populations were reported in 14 studies, with mean ages ranging

*Address correspondence to Abdulaziz F. Ahmed, MD, Division of Shoulder and Sports Medicine, Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA (email: afahmed@jhmi.edu).

†Division of Shoulder and Sports Medicine, Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.

‡Department of Orthopedic Surgery, Hamad Medical Corporation, Doha, Qatar.

§Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar.

The authors declared that there are no conflicts of interest in the authorship and publication of this contribution. AOSSM checks author disclosures against the Open Payments Database (OPD). AOSSM has not conducted an independent investigation on the OPD and disclaims any liability or responsibility relating thereto.

This article does not contain any studies with human participants performed by any of the authors.
Complications

The major finding in this meta-analysis of 95 studies with a total of 14,289 elbow arthroscopic procedures was the total complication rate of 11.0%, with the most common complication being elbow stiffness (4.5% [95 CI, 2.1%-7.6%]) and the need for subsequent surgery with a weighted proportion of 4.1% (95 CI, 2.9%-5.6%; 177/8853 procedures), followed by nerve injuries (3.4% [95 CI, 2.6%-4.3%]). An ulnar nerve injury was the most common nerve injury (2.6% [95 CI, 1.9%-3.4%]), followed by an LABCN injury (1.0% [95 CI, 0.6%-1.4%]). To the best of our knowledge, this is the first meta-analysis that focused on pooling complication rates of elbow arthroscopic surgery, and no other analysis had 95 studies. The total complication rate reported in our meta-analysis seems to be similar to prior large case series that focused on complications after elbow arthroscopic surgery.28,36,63 In a recent case series on 560 elbow arthroscopic procedures by Intravia et al28 between 2006 and 2014, the overall complication rate was 9%, with a nerve injury being the most common complication with a rate of 3.5%. However, elbow stiffness was not reported because of the short follow-up period. In another series between 1999 and 2012, Nelson et al63 reported a higher total complication rate of 14% in a case series of 417 procedures, with the most common complications being superficial and deep infections. In an earlier retrospective case series of 473 elbow arthroscopic procedures between 1980 and 1998, Kelly et al36 reported a total complication rate of 11.7%, with a transient nerve injury being the most encountered complication with a rate of 2.5%.

Elbow stiffness after elbow arthroscopic surgery was the most common finding in this meta-analysis, with a weighted rate of 4.5%. Kelly et al36 reported a postoperative stiffness rate of 1.5% with a follow-up period of ≥6 weeks in 87.5% of patients. Moreover, the authors attributed the loss of elbow motion to conditions that predispose to stiffness such as inflammatory arthritis, osteoarthritis, osteochondral defects, and osteochondritis dissecans. Nelson et al63 reported a rate of 2.6% for postoperative elbow stiffness in 417 elbow arthroscopic procedures with a follow-up period of ≤6 weeks. The authors reported stiffness as heterotopic ossification requiring surgical excision and loss of elbow motion requiring manipulation under anesthesia. In a study using the PearlDiver patient record database, Leong et al50 reported a reoperation rate of 0.63% within 90 days for stiffness among 4127 patients with 6268 elbow arthroscopic procedures. While conducting this meta-analysis, the rate of elbow stiffness was significantly variable in the literature. This is mainly

Complications of Elbow Arthroscopic Surgery

from 4 to 16 years. One study involved patients <20 years and >60 years, and 1 study did not report patient age. Of the studies that reported patient position, the most common patient position was lateral in 65.1% (2959/4547 procedures), followed by prone in 20.8% (945/4547 procedures) and supine in 15.6% (719/4623 procedures). The mean follow-up was variable across studies, ranging from 1 month to up to 13 years. The main diagnoses for elbow arthroscopic surgery were osteochondritis dissecans, primary osteoarthritis, posttraumatic stiffness/arthritis, and loose bodies.

The total weighted complication rate was 11.0% (95 CI, 8.8%-13.5%; 1136/14,289 procedures). The overall nerve injury rate was reported with a weighted proportion of 3.4% (95 CI, 2.6%-4.3%; 267/13,725 procedures). An ulnar nerve injury was the most common nerve injury with a weighted proportion of 2.6% (95 CI, 1.9%-3.4%; 123/6290 procedures). The second most injured nerve was the LABCN with a weighted proportion of 1.0% (95 CI, 0.6%-1.4%; 12/5178 procedures). The radial nerve was the third most injured nerve with a weighted proportion of 0.9% (95 CI, 0.6%-1.1%; 34/5666 procedures). Injuries to the posterior interosseous nerve had a weighted proportion of 0.6% (95 CI, 0.4%-0.8%; 8/4662 procedures). Both median nerve and median antebrachial cutaneous nerve injuries had a similar weighted proportion of 0.5% (95 CI, 0.3%-0.7%; 8/5666 procedures). A nonspecific nerve injury was reported with a weighted proportion of 1.0% (95 CI, 0.7%-1.3%; 95/13,490 procedures).

In terms of soft tissue complications, a superficial wound infection was most commonly reported with a weighted proportion of 2.0% (95 CI, 1.5%-2.6%; 109/5805 procedures), whereas a deep wound infection had a weighted proportion of 0.7% (95 CI, 0.5%-0.9%; 21/5729 procedures). Wound-healing complications such as drainage or dehiscence were reported with a weighted proportion of 1.5% (95 CI, 1.0%-2.2%; 47/5718 procedures).

Regarding complications affecting elbow motion, elbow stiffness had a weighted proportion of 4.5% (95 CI, 2.1%-7.6%; 158/8818 procedures), whereas elbow instability had a weighted proportion of 2.6% (95 CI, 1.4%-4.3%; 6/442 procedures). The need for a subsequent surgical procedure after elbow arthroscopic surgery was reported with a weighted proportion of 4.1% (95 CI, 2.9%-5.6%; 177/8853 procedures).

Discussion
attributed to the short-term follow-up, varying definitions of stiffness, and mixed patient populations such as different diagnoses and procedures.

Given the superficial position and proximity of neurovascular structures about the elbow joint, elbow arthroscopic surgery remains notorious for nerve injuries. This meta-analysis demonstrated that a nerve injury was the third most common complication in elbow arthroscopic surgery, with a weighted proportion of 3.4%. Moreover, an ulnar nerve injury was the most frequently reported of all nerve injuries, with a weighted proportion of 2.6%. Nerve injury rates after elbow arthroscopic surgery have been quite variable in the literature, with a rate ranging between 0% and 14%. In a retrospective review of 560 elbow arthroscopic procedures, Intravia et al. found that the nerve injury rate was 3.5%, which was significantly higher in female patients and patients with prior elbow surgery. In a case series on 200 elbow arthroscopic procedures by Elfeddali et al., a history of trauma and prior elbow surgery were predictors of an increased risk of nerve complications. In another study by Kelly et al. on 473 elbows, the rate of nerve injuries was 2.5%, with all being transient. Furthermore, the risk of nerve injuries was significantly associated with the diagnosis of rheumatoid arthritis and contracture. In contrast, other studies have found no association of diagnosis or prior surgery with nerve injuries. In a case series of 227 patients with a nerve injury rate of 6.6%, Jinnah et al. did not find a significant association between nerve injuries and having prior elbow trauma or surgery. Nelson et al. reported a relatively lower nerve injury rate of 1.7% in 417 elbow arthroscopic procedures, with all nerve injuries being transient. Moreover, the authors did not report significant differences between increasing surgery complexity and the rate of nerve injuries.

An infection is a serious complication after elbow arthroscopic surgery. In a study on 2704 patients with Medicare, Camp et al. reported a postoperative infection rate of 1.55%. In addition, several variables were identified as independent risk factors for infections such as age >65 years, body mass index >40, smoking, alcohol intake, diabetes mellitus, inflammatory arthritis, hypercoagulable disorders, and intra-articular corticosteroid injections at the time of surgery. Nelson et al. reported following 417 elbow arthroscopic procedures, with infection rates of 6.7% and 2.2% for superficial and deep infections, respectively. The higher infection rates were attributed to the frequent use of intra-articular corticosteroids at the time of surgery (p < .0001). In contrast, Intravia et al. did report a significant association between intra-articular corticosteroid use and infection rates; however, infection rates were significantly higher by 4-fold in patients with elevated blood sugar at the time of surgery.

Limitations

This study had several limitations that should be acknowledged. Most studies included in this meta-analysis were level 4 case series, with a minority being level 3 cohort studies; thus, the level of evidence in this meta-analysis was low. Although 2 authors independently performed the search, some studies could have been missed, leading to potential selection bias. Because of the complexity of elbow conditions, we found that studies’ demographics would be categorized by diagnoses (single diagnosis or a combination), case complexity codes, or procedure type. This led to significant limitations that prevented us from performing a metaregression and identifying risk factors that would predict specific complications such as diagnosis, case complexity, and procedure type. In addition, the definition of a complication was not uniform across studies, including specifying the severity and duration of certain complications. This could have led to the underestimation or overestimation of certain complication rates.

CONCLUSION

This study highlights that elbow arthroscopic surgery is a relatively safe procedure with low complication rates. This meta-analysis provides an overview of complication rates after elbow arthroscopic surgery, thus aiding surgeons in counseling patients. It should be emphasized to patients that the most common complications of elbow arthroscopic surgery are stiffness, the need for subsequent surgery and nerve injuries, especially ulnar nerve neuropathy. It is important to understand the anatomy of the elbow in 3 dimensions, learn the appropriate techniques, and comprehend the pathology before attempting elbow arthroscopic surgery. In addition, surgeons should be knowledgeable of the necessary measures to decrease nerve injuries such as joint distension and portal position. Experienced arthroscopic skills are necessary to prevent minor and major complications as the numbers of elbow arthroscopic procedures increase.

REFERENCES

1. Adams JE, Wolff LH 3rd, Merten SM, Steinmann SP. Osteoarthritis of the elbow: results of arthroscopic osteophyte resection and capsulectomy. J Shoulder Elbow Surg. 2008;17(1):126-131.
2. Andelman SM, Meier KM, Walsh AL, Kim JH, Hausman MR. Pediatric elbow arthroscopy: indications and safety. J Shoulder Elbow Surg. 2017;26(10):1862-1866.
3. Andelman SM, Walsh AL, Sochol KM, Rubenstein WM, Hausman MR. Arthroscopic elbow contracture release in the pediatric patient. J Pediatr Orthop. 2013;38(8):e507-e513.
4. Arrigoni P, Cuuchi D, D’Ambrosi R, et al. Intraarticular findings in symptomatic minor instability of the lateral elbow (SMILE). Knee Surg Sports Traumatol Arthrosc. 2017;25(7):2255-2263.
5. Babaqi AA, Kottb MM, Said HG, AbdelHamid MM, ElKady HA, ElAssal MA. Short-term evaluation of arthroscopic management of tennis elbow, including resection of radiocapitellar capsular complex. J Orthop. 2014;11(2):82-86.
6. Bachman DR, Fitzsimmons JS, O’Driscoll SW. Safety of arthroscopic versus open or combined heterotopic ossification removal around the elbow. Arthroscopy. 2020;36(2):422-430.
7. Ball CM, Meunier M, Galatz LM, Caffee R, Yamaguchi K. Arthroscopic treatment of post-traumatic elbow contracture. J Shoulder Elbow Surg. 2002;11(6):624-629.
8. Barendregt JJ, Doi SA, Lee YY, Norman RE, Vos T. Meta-analysis of prevalence. J Epidemiol Community Health. 2013;67(11):974-978.
9. Baumgarten TE, Andrews JR, Satterwhite YE. The arthroscopic classification and treatment of osteochondritis dissecans of the capitellum. Am J Sports Med. 1998;26(4):520-523.
10. Blonna D, Bellato E, Marini E, Scelsi M, Castoldi F. Arthroscopic treatment of stiff elbow. ISRN Surg. 2011;2011:378135.
11. Blonna D, Huffmann GR, O’Driscoll SW. Delayed-onset ulnar neuritis after release of elbow contractures: clinical presentation, pathological findings, and treatment. *Am J Sports Med.* 2014;42(9):2113-2121.

12. Blonna D, Lee GC, O’Driscoll SW. Arthroscopic restoration of terminal elbow extension in high-level athletes. *Am J Sports Med.* 2010;38(12):2509-2515.

13. Camp CL, Cancienne JM, Degen RM, Dines JS, Altchek DW, Werner BC. Factors that increase the risk of infection after elbow arthroscopy: analysis of patient demographics, medical comorbidities, and steroid injections in 2,704 Medicare patients. *Arthroscopy.* 2017;33(6):1175-1179.

14. Carlier Y, Lenoir H, Rouleau DM, et al. Arthroscopic debridement for osteoarthritis of the elbow: results and analysis of predictive factors. *Orthop Traumatol Surg Res.* 2019;105(8)(suppl):S221-S227.

15. Cefo I, Eyengdaal D. Arthroscopic arthrolysis for posttraumatic elbow stiffness. *J Shoulder Elbow Surg.* 2011;20(3):434-439.

16. Chen AC, Weng CJ, Chiu CH, Chang SS, Chen CY, Chan YS. A modified approach for elbow arthroscopy using an adjustable arm holder. *J Orthop Surg Res.* 2017;12(1):20.

17. Clasper JC, Carr AJ. Arthroscopy of the elbow for loose bodies. *Ann R Coll Surg Engl.* 2001;83(1):34-36.

18. Cohen AP, Redden JF, Stanley D. Treatment of osteoarthritis of the elbow: a comparison of open and arthroscopic debridement. *Arthroscopy.* 2000;16(7):701-706.

19. Cummins CA. Lateral epicondyliits: in vivo assessment of arthroscopic debridement and correlation with patient outcomes. *Am J Sports Med.* 2006;34(9):1486-1491.

20. Dilokhuttakam T, Phorkhar T. Neuromuscular complications in forty-nine articles: elbow arthroscopy and review literature. *J Med Assoc Thai.* 2015;98(supp1):S102-S106.

21. Dzugan SS, Savoe FH 3rd, Field LD, O’Brien MJ, You Z. Acute radial ulno-humeral ligament injury in patients with chronic lateral epicondylitis: an observational report. *J Shoulder Elbow Surg.* 2012;21(12):1651-1655.

22. Elfeddali R, Eygendaal D. Arthroscopic elbow surgery: is it safe? *J Shoulder Elbow Surg.* 2013;22(5):647-652.

23. Etem K, Ergen E, Yolgoji S. Functional outcomes of arthroscopic treatment of lateral epicondyliits. *Acta Orthop Traumatol Turc.* 2015;49(5):471-477.

24. Grewal R, MacDermid JC, Shah P, King GJW. Functional outcome of arthroscopic extensor carpi radialis brevis tendon release in chronic lateral epicondylitis. *J Hand Surg.* 2009;34(5):849-857.

25. Hausman MR, Klug RA, Qureshi S, Goldstein R, Parsons BO. Arthroscopically assisted coronoid fracture fixation: a preliminary report. *Clin Orthop Relat Res.* 2008;466(12):3147-3152.

26. Hausman MR, Qureshi S, Goldstein R, et al. Arthroscopically-assisted treatment of pediatric lateral humeral condyle fractures. *J Pediatr Orthop.* 2007;27(7):739-742.

27. Horiiuchi K, Momohara S, Tomatsu T, Inoue K, Toyama Y. Arthroscopic synovectomy of the elbow in rheumatoid arthritis. *J Bone Joint Surg Am.* 2002;84(3):342-347.

28. Intravia J, Acevedo DC, Chung WJ, Mirzayan R. Complications of elbow arthroscopy in a community-based practice. *Arthroscopy.* 2020;36(5):1283-1290.

29. Jerosch J, Schröder M, Schneider T. Good and relative indications for elbow arthroscopy upon returning to sports for throwers with osteoarthritis. *J Orthop Surg Res.* 2018;13(1):280.

30. Jinnah AH, Luo TD, Wiesler ER, et al. Peripheral nerve injury after elbow arthroscopy: an analysis of risk factors. *Arthroscopy.* 2018;34(5):1447-1452.

31. Jones GS, Savoe FH 3rd. Arthroscopic capsular release of flexion contractures (arthrofibrosis) of the elbow. *Arthroscopy.* 1993;9(3):277-283.

32. Kang HJ, Park MJ, Ahn JH, Lee SH. Arthroscopic synovectomy for the rheumatoid elbow. *Arthroscopy.* 2010;26(9):1195-1202.

33. Karelson M, Launonen AP, Jokihara J, Havulinna J, Mattila VM. Pain, function, and patient satisfaction after arthroscopic treatment of elbow in a retrospective series with minimum of 5-year follow-up. *J Orthop Surg (Hong Kong).* 2019;27(1):2309499019832808.

34. Kelly EW, Bryce R, Coghlan J, Bell S. Arthroscopic debridement without radial head excision of the osteoarthritic elbow. *Arthroscopy.* 2007;23(2):151-156.

35. Kelly EW, Morrey BF, O’Driscoll SW. Complications of elbow arthroscopy. *J Bone Joint Surg Am.* 2001;83(1):25-34.

36. Kim DH, Gambardella RA, Elattrache NS, Yocum LA, Jobe FW. Arthroscopic treatment of posterolateral elbow impingement from lateral synovial plica in throwing athletes and golfers. *Am J Sports Med.* 2006;34(3):438-444.

37. Kim DS, Chung HJ, Yi CH, Kim SH. Comparison of the clinical outcomes of open surgery versus arthroscopic surgery for chronic refractory lateral epicondyliits of the elbow. *Orthopedics.* 2018;41(4):237-247.

38. Kim SJ, Kim HK, Lee JW. Arthroscopy for limitation of motion of the elbow. *Arthroscopy.* 1995;11(6):680-683.

39. Kim SJ, Kim JW, Lee SH, Choi JW. Retrospective comparative analysis of elbow arthroscopy used to treat primary osteoarthritis with and without release of the posterior band of the medial collateral ligament. *Arthroscopy.* 2017;33(8):1506-1511.

40. Kniessel B, Huth J, Bauer G, Mauch F. Systematic diagnosis and therapy of lateral elbow pain with emphasis on elbow instability. *Arch Trauma Surg.* 2014;134(12):1641-1647.

41. Kohn JL, Zwahlen BA, Altchek DW, Zimmerman TA. Arthroscopic treatment successfully treats posterior elbow impingement in an athletic population. *Knee Surg Sports Traumatol Arthrosc.* 2018;26(2):306-311.

42. Kovacevic R, Steinmann SP. Arthroscopic ulnar nerve decompression in the setting of elbow osteoarthritis. *J Hand Surg Am.* 2012;37(4):663-668.

43. Krishnan SG, Harkins DC, Pennington SD, Harrison DK, Burkehead WZ. Arthroscopic ulnohumeral arthroplasty for degenerative arthritis of the elbow in patients under fifty years of age. *J Shoulder Elbow Surg.* 2007;16(4):443-448.

44. Kwon BC, Kim JY, Park KT. The Nirschl procedure versus arthroscopic extensor carpi radialis brevis debridement for lateral epicondyliits. *J Shoulder Elbow Surg.* 2019;28(10):1998-2006.

45. Kwak JM, Kohlinne E, Sun Y, Lim S, Koh KH, Jeon IH. Clinical outcome of osteocapsular arthroplasty for primary osteoarthritis of the elbow: comparison of arthroscopic and open procedure. *Arthroscopy.* 2019;35(4):1083-1089.

46. Kwak JM, Kim H, Sun Y, Kohlinne E, Koh KH, Jeon IH. Arthroscopic osteocapsular arthroplasty for advanced-stage primary osteoarthritis of the elbow using a computed tomography-based classification. *J Shoulder Elbow Surg.* 2020;29(5):989-995.

47. Kwak JM, Sun Y, Kohlinne E, Koh KH, Jeon IH. Surgical outcomes for post-traumatic stiffness after elbow fracture: comparison between open and arthroscopic procedures for intra- and extra-articular elbow fractures. *J Shoulder Elbow Surg.* 2019;28(10):1998-2006.

48. Kwon BC, Kim JY, Park KT. The Nirschl procedure versus arthroscopic extensor carpi radialis brevis debridement for lateral epicondyliits. *J Shoulder Elbow Surg.* 2017;26(1):118-124.

49. Lee BP, Morrey BF. Arthroscopic synovectomy of the elbow for rheumatoid arthritis: a prospective study. *J Bone Joint Surg Br.* 1997;79(5):770-772.

50. Leong NL, Cohen JR, Lord E, Wang JC, McAllister DR, Petriglano FA. Demographic trends and complication rates in arthroscopic elbow surgery. *Arthroscopy.* 2015;31(10):1928-1932.

51. Lim TK, Koh KH, Lee HI, Shim JW, Park MJ. Arthroscopic débridement for primary osteoarthritis of the elbow: analysis of pre-operative factors affecting outcome. *J Shoulder Elbow Surg.* 2014;23(9):1381-1387.

52. Lubiatowski P, Ślezak M, Walescka J, Bębrównowicz M, Romanowski Ł. Prospective outcome assessment of arthroscopic arthrolysis for traumatic and degenerative elbow contracture. *J Shoulder Elbow Surg.* 2018;27(9):e269-e278.

53. MacLean SB, Oni T, Crawford LA, Deshmukh SC. Medium-term results of arthroscopic débridement and capsulectomy for the treatment of elbow osteoarthritis. *J Shoulder Elbow Surg.* 2013;22(5):653-657.
73. Rai S, Zhang Q, Tamang N, Jin S, Wang H, Meng C. Arthroscopic treatment in eighteen patients. Shiraz E Med J. 2018;19(6):e26206.

55. Matsuura T, Wada K, Suzue N, et al. Long-term outcomes of arthroscopic debridement with or without drilling for osteochondritis dissecans of the capitellum in adolescent baseball players: a >10-year follow-up study. Arthroscopy. 2020;36(6):1273-1280.

56. Matsuura T, Wada K, Suzue N, Iwama T, Fukuta S, Sairyo K. Bilateral osteochondritis dissecans of the capitellum in fraternal twins: a case report. JBJS Case Connect. 2017;7(3):e44.

57. Micheli LJ, Luke AC, Mintzer CM, Waters PM. Elbow arthroscopy in the pediatric and adolescent population. Arthroscopy. 2001;17(7):694-699.

58. Micheli LJ, Luke AC, Mintzer CM, Waters PM. Elbow arthroscopy in the pediatric and adolescent population. Arthroscopy: Early complications and associated risk factors. J Shoulder Elbow Surg. 2014;23(3):273-278.

59. Nguyen D, Proper SI, MacDermid JC, King GJ, Faber KJ. Functional outcomes of arthroscopic capsular release of the elbow. Arthroscopy. 2006;22(8):842-849.

60. Nishiwaki Y, Taki H, Takeuchi T, et al. Arthroscopic debridement in the treatment of patients with osteoarthritis of the elbow, based on computer simulation. Bone Joint J. 2014;6(8-B2):237-241.

61. Schubert T, Andrews JR. Arthroscopic treatment of posttraumatic elbow stiffness. J Shoulder Elbow Surg. 2009;18(2):258-263.

62. Schreiner AJ, Schwalbe G, Jürgens D, et al. Arthroscopic arthrosis leads to improved range of motion and health-related quality of life in post-traumatic elbow stiffness. J Shoulder Elbow Surg. 2020;29(8):1538-1547.

63. Nelson GN, Wu T, Galatz LM, Yamaguchi K, Keener JD. Elbow arthroscopy: early complications and associated risk factors. J Shoulder Elbow Surg. 2001;10(7):542-548.

64. Nelson GN, Wu T, Galatz LM, Yamaguchi K, Keener JD. Elbow arthroscopy: early complications and associated risk factors. J Shoulder Elbow Surg. 2001;10(7):542-548.

65. Miyake J, Shimada K, Oka K, et al. Arthroscopic arthrolysis in posttraumatic and non-traumatic elbow stiffness: analysis of outcome and complications. J Shoulder Elbow Surg. 2006;15(5):593-596.

66. Minami H, Suzuki T, Inohara M, et al. Arthroscopic lateral epicondylitis release: should we treat earlier? J Shoulder Elbow Surg. 2012;21(12):1661-1666.

67. Merolla G, Buononato C, Chillemi C, Paladini P, Porcellini G. Arthroscopic joint debridement and capsular release in primary and post-traumatic elbow osteoarthritis: a retrospective blinded cohort study with minimum 24-month follow-up. Musculoskelet Surg. 2015;99(suppl 1):S83-S90.

68. Matsuura T, Iwame T, Suzue N, et al. Long-term outcomes of arthroscopic lateral epicondyritis release: should we treat earlier? Orthop Traumatol Surg Res. 2016;102(6):775-780.

69. Matsuura T, Iwame T, Suzue N, et al. Long-term outcomes of arthroscopic lateral epicondyritis release: should we treat earlier? Orthop Traumatol Surg Res. 2016;102(6):775-780.

70. Matsuura T, Wada K, Suzue N, et al. Long-term outcomes of arthroscopic lateral epicondyritis release: should we treat earlier? Orthop Traumatol Surg Res. 2016;102(6):775-780.

71. Matsuura T, Wada K, Suzue N, Iwame T, Fukuta S, Sairyo K. Bilateral osteochondritis dissecans of the capitellum in fraternal twins: a case report. JBJS Case Connect. 2017;7(3):e44.

72. Matsuura T, Wada K, Suzue N, Iwame T, Fukuta S, Sairyo K. Bilateral osteochondritis dissecans of the capitellum in fraternal twins: a case report. JBJS Case Connect. 2017;7(3):e44.

73. Matsuura T, Wada K, Suzue N, Iwame T, Fukuta S, Sairyo K. Bilateral osteochondritis dissecans of the capitellum in fraternal twins: a case report. JBJS Case Connect. 2017;7(3):e44.

74. Matsuura T, Wada K, Suzue N, Iwame T, Fukuta S, Sairyo K. Bilateral osteochondritis dissecans of the capitellum in fraternal twins: a case report. JBJS Case Connect. 2017;7(3):e44.

75. Matsuura T, Wada K, Suzue N, Iwame T, Fukuta S, Sairyo K. Bilateral osteochondritis dissecans of the capitellum in fraternal twins: a case report. JBJS Case Connect. 2017;7(3):e44.

76. Matsuura T, Wada K, Suzue N, Iwame T, Fukuta S, Sairyo K. Bilateral osteochondritis dissecans of the capitellum in fraternal twins: a case report. JBJS Case Connect. 2017;7(3):e44.

77. Matsuura T, Wada K, Suzue N, Iwame T, Fukuta S, Sairyo K. Bilateral osteochondritis dissecans of the capitellum in fraternal twins: a case report. JBJS Case Connect. 2017;7(3):e44.

78. Matsuura T, Wada K, Suzue N, Iwame T, Fukuta S, Sairyo K. Bilateral osteochondritis dissecans of the capitellum in fraternal twins: a case report. JBJS Case Connect. 2017;7(3):e44.

79. Matsuura T, Wada K, Suzue N, Iwame T, Fukuta S, Sairyo K. Bilateral osteochondritis dissecans of the capitellum in fraternal twins: a case report. JBJS Case Connect. 2017;7(3):e44.

80. Matsuura T, Wada K, Suzue N, Iwame T, Fukuta S, Sairyo K. Bilateral osteochondritis dissecans of the capitellum in fraternal twins: a case report. JBJS Case Connect. 2017;7(3):e44.

81. Matsuura T, Wada K, Suzue N, Iwame T, Fukuta S, Sairyo K. Bilateral osteochondritis dissecans of the capitellum in fraternal twins: a case report. JBJS Case Connect. 2017;7(3):e44.

82. Matsuura T, Wada K, Suzue N, Iwame T, Fukuta S, Sairyo K. Bilateral osteochondritis dissecans of the capitellum in fraternal twins: a case report. JBJS Case Connect. 2017;7(3):e44.

83. Matsuura T, Wada K, Suzue N, Iwame T, Fukuta S, Sairyo K. Bilateral osteochondritis dissecans of the capitellum in fraternal twins: a case report. JBJS Case Connect. 2017;7(3):e44.

84. Matsuura T, Wada K, Suzue N, Iwame T, Fukuta S, Sairyo K. Bilateral osteochondritis dissecans of the capitellum in fraternal twins: a case report. JBJS Case Connect. 2017;7(3):e44.
APPENDIX TABLE A1
Characteristics of Included Studies

Lead Author (Year)	Country	LOE	No. of Patients	Age, y	Surgical Position, n	Follow-up, mo
Schreiner80 (2020)	Germany	4	44	40.8	Prone	37.2
Kwak46 (2020)	Republic of Korea	4	65	52	Lateral	32.9
Intravia28 (2020)	USA	4	556	38.6	Supine	12
Matsuura56 (2020)	Japan	4	23	14.7		138
Bachman6 (2020)	USA	3	41	32		16
Temporin6 (2020)	Japan	4	10	51.9		24
Yang97 (2020)	China	4	101	38.6		21
Kwak47 (2019)	Republic of Korea	3	13	39		26.5
Pedzerini39 (2019)	Italy	4	9	22.4		48
Rai71 (2019)	China	4	143	33		44
Kwak45 (2019)	Republic of Korea	3	52	52.4		35.4
Carlier34 (2019)	France	3	87	49.8		6
Karels60 (2019)	Finland	4	63	44.6		72
Jhan40 (2018)	Taiwan	4	15	27		31.2
Andelman4 (2018)	USA	4	29	12.7		15.8
Zhu9 (2018)	China	4	11	41.7		NR
Nowotny66 (2018)	Germany	4	27	14		45.6
Lubiatowski52 (2018)	Poland	4	54	37		24
Kim68 (2018)	Republic of Korea	3	34	49		24
Jinnah33 (2018)	USA	4	227	39		1
Noticewala65 (2018)	USA	4	530	45.6		NR
Marandi-Kivi54 (2018)	Iran	4	18	36.1		12
Koh43 (2018)	USA	4	36	32		51
Willinger44 (2018)	Germany	4	42	41		28.3
Matsuura47 (2017)	Japan	4	15	15.7		26.7
Andelman4 (2017)	USA	4	64	11.8		10.3
Kim55 (2017)	Republic of Korea	4	43	37.6-42.5	0	55.4-62.2
Arrigoni4 (2017)	Italy	3	35	47.1		24
Chen16 (2017)	China	3	32	34.3		17.1
Kwon34 (2017)	Republic of Korea	3	30	49.3		31
Werner95 (2016)	USA	3	1265	<65 y: 48.5%; >65-80 y: 47.8%-48.2%; >80 y: 3.3%-3.8%	3	
Vavken90 (2016)	Switzerland	4	50	13.6		12
Soeur92 (2016)	France	4	35	48		48
van Rhee9en95 (2015)	Netherlands	4	1004	NR		12
Dilokhuttakam26 (2015)	Thailand	4	49	42		1.5
Leong50 (2015)	USA	4	6268	<20 y: 25%; 20-39 y: 25%; 40-59 y: 47%; >60 y: 6%	NR	
Wu95 (2015)	China	4	34	39.6		12
Yoon98 (2015)	Republic of Korea	4	45	45.9		26.9
Rajev9 (2015)	UK	4	121	38		12
Merolla37 (2015)	Italy	3	48	48.1		44
Temporin65 (2015)	Japan	4	9	6.6		14.7
Ertem23 (2015)	Turkey	4	28	46		20.5
Uchida68 (2015)	Japan	4	18	14.2		36
Oki86 (2014)	Japan	4	23	49		24
Moon82 (2014)	Republic of Korea	4	11	45		30
APPENDIX TABLE A1 (continued)

Lead Author (Year)	Country	LOE	No. of Patients	Age, y	Surgical Position, n	Follow-up, mo			
					Prone	Lateral	Supine		
Pederzini70 (2014)	Italy	4	212	41-43	212	0	0	58	
Nelson63 (2014)	USA	4	417	43.4	0	417	0	0.5-1.5	
Miyake69 (2014)	Japan	4	20	38	20	0	0	25	
Lim23 (2014)	Republic of Korea	4	43	51.4	0	43	0	38	
Babadj1 (2014)	Egypt	4	33	33.7	0	33	0	14.4	
Kniezel1 (2014)	Germany	3	25	46	25	0	0	24	
Blonna71 (2014)	USA	3	235	41	0	235	0	NR	
Rhyou23 (2013)	Republic of Korea	3	39	46-47	NS	(either prone or lateral)	46		
Elfeddali22 (2013)	UK	4	200	37	0	200	0	2	
MacLean53 (2013)	USA	4	21	42	0	21	0	65.9	
Wijeratna48 (2012)	UK	4	15	49.6	0	15	0	20	
Dzugan21 (2012)	USA	4	7	40.7	7	0	0	12-24	
Wulf96 (2012)	USA	4	10	13.9	10	0	0	42	
Kovachevich56 (2012)	USA	4	15	51	0	15	0	12	
Cefo15 (2011)	Netherlands	4	27	42	0	27	0	24	
Blonna32 (2010)	USA	4	26	38	0	NR		33	
Schoch79 (2010)	USA	4	13	16	NS	(either prone or supine)	43.2		
Kang33 (2010)	Republic of Korea	4	26	45.5	0	26	0	33.9	
Rahusen72 (2009)	Netherlands	4	16	29	0	16	0	38	
Grewal92 (2009)	Canada	4	36	45.3	0	36	0	42	
Hausman75 (2008)	USA	4	4	42.8	0	4	4	12	
Adams1 (2008)	USA	4	42	52.8	0	42	0	24	
Michels56 (2007)	Belgium	4	14	37.5	14	0	0	67.2	
Krishn43 (2007)	USA	4	11	36	11	0	0	26	
Kelly35 (2007)	USA	4	25	51	0	25	0	33.8	
Hausman76 (2007)	USA	4	6	4	0	6	0	52	
Schubert81 (2007)	Belgium	4	24	38.4	0	24	0	24	
Cummins39 (2006)	USA	4	18	43.2	0	18	0	21.6	
Nguyen64 (2006)	Canada	4	22	42	0	22	0	25	
Spahn55 (2006)	Germany	3	21	34	21	0	0	30	
Tanaka34 (2006)	Japan	3	11	51	0	11	0	156	
Kim66 (2006)	USA	4	12	21.6	0	12	0	33.8	
Ball7 (2002)	USA	4	14	36.9	0	14	0	12-29	
Horuchi57 (2002)	Japan	4	29	51.2	0	29	0	97	
Micheli31 (2001)	UK	4	49	14	0	49	0	56.4	
Clasper17 (2001)	USA	4	57	41.4	0	57	0	27	
Kelly36 (2001)	USA	4	473	36	0	473	0	42	
Cohen18 (2000)	USA	3	26	46	NR	0		35.3	
Reddy75 (2000)	USA	3	181	30	13	74	94	42.3	
Savio29 (2009)	USA	4	24	59	24	0	0	32	
Ruch77 (1998)	USA	4	12	14.5	12	0	0	48	
Baumgarten9 (1998)	USA	4	17	13.8	0	17	0	32.4	
Justas89 (1998)	Germany	4	103	29	NR			74.4	
Phillips71 (1998)	USA	4	25	31.6	0	25	0	18	
Lee69 (1997)	USA	4	14	<65	NR			42	
Kim99 (1995)	Republic of Korea	4	26	34	NS	(either prone or supine)	25		
Timmerman67 (1994)	USA	4	19	36	0	0	19	29	
Ward51 (1993)	USA	4	35	29	0	0	35	24	
Jones32 (1993)	USA	4	12	38	12	0	0	21.8	
O'Driscoll54 (1992)	USA	4	70	34				34	

Data are reported as means or ranges. LOE, level of evidence; NR, not reported; NS, not specified.