Relevance of the slowly-varying electron gas to atoms, molecules, and solids

John P. Perdew, Lucian A. Constantin, and Espen Sagvolden
Department of Physics and Quantum Theory Group, Tulane University, LA 70118

Kieron Burke
Department of Chemistry & Chemical Biology, Rutgers University, 610 Taylor Rd, Piscataway, NJ 08854
(Dated: April 1, 2022)

Electron densities become both large and slowly-varying in a certain semi-classical limit: The local density approximation becomes exact for both the kinetic and exchange energies, while the leading correction is given by the second-order gradient expansion. But real matter has nuclear cusps, which produce “Scott corrections”. Thus gradient expansions must be generalized even for neutral atoms of large atomic number, but these generalizations should recover the correct second-order limits. Correlation is more subtle.

PACS numbers:

In a remarkable series of papers towards the end of his life, Schwinger[1] (sometimes with Englert[2]) put the semiclassical theory of neutral atoms on a firm footing. They carefully proved a variety of results, including a clear-cut demonstration that the local density approximation (LDA) becomes exact for exchange as Z, the nuclear charge, tends to ∞. The large-Z expansion of the energy of atoms whose rigor they established:

\[E = -0.7687 \frac{Z^7}{3} + 0.5 Z^2 - 0.2699 Z^{5/3} + \ldots \tag{1} \]

is extremely close to the total (Hartree-Fock) energies of neutral atoms (less than 0.5% error for Ne), an example of “the principle of unreasonable utility of asymptotic estimates.”[1] But their derivations are specific to neutral atoms, and they eschew exploring any relation to “the density-functional formalism.”[2] preferring to express all quantities in terms of the potential. Their results are little used within density functional theory (DFT).

In the quarter century since, Kohn-Sham DFT has become a widely-used tool for electronic structure calculations of atoms, molecules, and solids[3]. Here, the non-interacting kinetic energy, T_s, is treated exactly, and only the density functional for the exchange-correlation energy, $E_{xc}[n]$, must be approximated. For E_{xc}, LDA[4] is very reliable, but insufficiently accurate for chemical bonding. The gradient expansion, employing density gradients, can be derived from the slowly-varying electron gas for small gradients, but fails for real molecules and solids, whose gradients are not small. The development of modern generalized gradient approximations (GGA)[5, 6], depending on density gradients beyond that of leading order, improved accuracy and led to the widespread use of DFT in many fields. Anomalously, modern successful GGA’s for exchange have gradient coefficients that are about double that of the gradient expansion, and the relevance of even LDA to exponentially localized densities is often questioned[7].

But Thomas-Fermi (TF) theory[8, 9], with its local approximation to T_s, is the simplest, original form of DFT, and yields the leading term in Eq. (1). Since $E = -T$ for atoms and correlation is $O(Z)$, Eq. (1) is an expansion for T_s. The Scott correction[10] (Z^2 term) arises from the cusp at the nucleus and the $1s$-region electrons[1], while the $Z^{5/3}$ term includes second-order gradient contributions to T_s.

We introduce a methodology that generalizes Schwinger’s results to all systems and to other components of the energy. It explains why local approximations become exact for large numbers of electrons, and when the gradient expansion is accurate for real matter. It explains the doubling of the coefficient for exchange, yielding a nonempirical derivation of the fit parameter of the B88 functional[5], and why the analog of Eq.(1) fails for correlation.

To begin, define the scaled density

\[n_{\zeta}(r) = \zeta^2 n(\zeta^{1/3} r), \quad 0 < \zeta < \infty \tag{2} \]

for any electron density. If $n(r)$ contains N electrons, $n_{\zeta}(r)$ contains ζN electrons. We only ever consider integer ζN, but study energies as smooth functions of ζ. Changing ζ is exactly equivalent to changing Z in TF theory, and approximately so in reality. This scaling is defined for all systems, not just atoms.

In Fig. 1, we illustrate the effect of the scaling on the density of the He atom. The density at $\zeta = 2$ contains 4 electrons, has the original shape, but is coordinate-scaled by $2^{1/3}$. As ζ grows, the density becomes both large and slowly-varying on the scale of the local Fermi wavelength, $\lambda_F(r) = 2/k_F(r)$, where $k_F(r) = (3\pi^2 n(r))^{1/3}$. Under this scaling, the dimensionless gradients $s = |\nabla n|/(2k_F n)$ and $q = \nabla^2 n/(4k_F^2 n)$[4, 11] vary as

\[s_{\zeta}(r) = s(\zeta^{1/3} r)/\zeta^{1/3}, \quad q_{\zeta}(r) = q(\zeta^{1/3} r)/\zeta^{2/3}. \tag{3} \]

In Fig. 2, we plot s for accurate densities (self-consistent OEP densities with exact exchange) of both Kr and Rn. The gradient expansions for the kinetic and exchange energies are expected [4] to become exact as the density
$n(r)$ becomes slowly-varying on the scale of λ_F, i.e., when $s \to 0$ and $|q/s| \to 0$ everywhere. The second condition is needed because $s \to 0$ for an infinitesimal-amplitude but rapid variation around a uniform density.

Under ζ-scaling of a mono- or polyatomic density, as $\zeta \to \infty$ and as s and $|q/s| \to 0$ (except in regions to be discussed), the gradient expansion becomes asymptotically exact so that (aside from possible oscillations[2]):

$$
\begin{align*}
T_s[n_\zeta] &= \zeta^{7/3} T_s^{(0)}[n] + \zeta^{5/3} T_s^{(2)}[n] + \zeta T_s^{(4)}[n] + \ldots, \\
E_x[n_\zeta] &= \zeta^{5/3} E_x^{(0)}[n] + \zeta E_x^{(2)}[n] + \ldots,
\end{align*}
$$

where $T_s^{(j)}[n]$ is the j-th order contribution to the gradient expansion of T_s (i.e., $T_s^{(0)}$ is the TF kinetic energy, $T_s^{(2)}$ is 1/9 the von Weizsäcker term[12], etc.), and similarly for exchange[13]. The terms displayed in Eq. (4) are those of the gradient expansion that remain finite for exponentially localized densities, and also those for which the gradient expansion becomes asymptotically exact as $\zeta \to \infty$ for analytic densities (unless the density has nuclear cusps, when $T_s^{(4)}$ must be excluded). The gradient expansions of Eq. (4) are “statistical” approximations in the sense that they become relatively exact as $\zeta N \to \infty$.

Evanescent regions are classically-forbidden regions in which the kinetic energy density $\tau'(r) = \sum \psi'^*_i(r)(-\nabla^2/2)\psi_i(r)$ of the Kohn-Sham orbitals is negative and the gradient expansion must fail. To investigate the contributions to $T_s[n_\zeta]$ and $E_x[n_\zeta]$ from evanescent and nuclear cusp regions, we note that each can be represented by an exponential density $a \exp(-br)$. For this density, the evanescent region $r > r_e(\zeta)$ is defined loosely by the conditions $s > 1$ and $|q/s| > 1$ (found from the second-order gradient expansion of $\tau'(r)$). Its radius $r_e(\zeta)$ decreases like $\ln(\zeta)/\zeta^{1/3}$ as $\zeta \to \infty$. In this region, the considered terms of the gradient expansion each contribute of order $\zeta^{2/3}$ to T_s, and of order $\zeta^{1/3}$ to E_x (with the convention that $\ln(\zeta)$ is of order 1). All of these contributions are of lower order than those shown in Eq. (4), and thus asymptotically unimportant. Similarly, the nuclear cusp regions $r < r_e(\zeta)$ can be defined loosely by the condition $|q/s| > 1$; their radii $r_e(\zeta)$ decrease like $\zeta^{-2/3}$ as $\zeta \to \infty$. In these regions, the local contributions dominate. The local terms contribute of order $\zeta^{4/3}$ to T_s and $\zeta^{2/3}$ to E_x, and are again asymptotically unimportant (once we truncate the gradient expansions of Eq. (4)) at second order. Our evanescent regions coincide with the edge surface of Ref. [14], but the cusps do not.

While the total electron number scales up as ζ, the number in the evanescent and cusp regions remains of order ζ^0. The exact kinetic energy contributions of these regions are of order $\zeta^{2/3}$ and ζ (or $\zeta^{2/3}$, for the positive kinetic energy density $\tau(r) = \sum |\nabla \psi_i(r)|^2/2$), respectively. All orders of ζ are unchanged if the bound 1 is replaced by a smaller positive value, or if the spherical evanescent region is replaced by a planar one.

To appreciate the significance of asymptotic exactness, ζ-scale any density (even a single exponential). Using modern linear response techniques, construct the KS potential and orbitals for each value of ζ[15]. As $\zeta \to \infty$, deduce the local and gradient expansion approximations for T_s and E_x exactly, without ever studying the properties of the uniform or slowly-varying electron gas. The system is becoming increasingly semi-classical, and the orbitals well-described by their WKB approximations. Semi-classical approximations require only that the potential be smooth locally, not globally.

The behavior of correlation under this scaling is however recalcitrant. In the bulk of the density, the gradient relative to the screening length, $t = |\nabla n|/(2e_n)$, where $k_F(r) = \sqrt{4k_F(r)/\pi}$, controls gradient corrections to correlation. But

$$
t_\zeta(r) = t(\zeta^{1/3} r)
$$

does not change under our scaling, so that the density does not become slowly-varying for correlation. Nonetheless, the local approximation still becomes exact, if the

![FIG. 1: Scaled radial density of He atom.](image1)

![FIG. 2: Reduced density gradient for noble gas atoms.](image2)
PBE GGA is a reliable guide (as motivated later):

$$E_C[\zeta] = A_\zeta \zeta \ln \zeta + B_\zeta \zeta + \ldots$$ \hfill (6)

where $A_\zeta = -0.02072$ is correctly given by LDA, while $B_\zeta^{\text{LDA}} = -0.00452$ and $B_\zeta^{\text{PBE}} = 0.03936$. These numbers can be found by applying these approximations to the TF density. Because t never gets small, B_ζ has not only LDA and GEA (gradient expansion to second order) contributions, but higher-order contributions too. This expansion is far more slowly converging than those of T_p and E_X, and much less relevant to real systems.

TABLE I: Noble gas atomic XC energies compared with local and gradient expansion approximations (hartree).

Atom	E_X	E_C	
He	-0.884	-1.007	-1.026
Ne	-11.03	-11.77	-12.10
Ar	-27.86	-29.29	-30.17
Kr	-88.62	-91.65	-93.83
Xe	-170.6	-175.3	-179.1
Rn	-373.0	-380.8	-387.4

In Table I, we list the exact[16], LDA, and GEA results for the noble gas atoms using the known second-order gradient terms[13, 17]. LDA gets relatively better and better as Z grows, and the GEA for exchange does even better, but the GEA for correlation strongly overcorrects the LDA, making correlation energies positive[17]. Thus this simple analysis explains why the gradient expansion yields good answers for T_p and E_X, but bad ones for correlation. These explanations complement those already existing based on holes and sum-rules[18], but add the crucial ingredient that under this scaling the gradient expansion becomes asymptotically exact for T_p and E_X.

But Eq. (4) for either E_X or T_p is far less accurate at $\zeta = 1$ than Eq. (1) is for E at $Z = 1$. Careful inspection of the origin in Fig. 2 shows that the exact curves approach a finite s-value at the origin, about 0.376, the hydrogenic value. The large-Z expansion is not the same as scaling to large ζ, except in TF theory. The gradients near the nucleus do not become small on the Fermi wavelength scale, no matter how large Z is. This region will contribute a term of order Z^2 to the kinetic energy and of order Z to the exchange energy at all levels, from LDA to exact. LDA applied to the TF density produces the leading term in E_X, $0.2208 Z^{5/3}$. Gradient corrections are of order Z, but so too is the cusp correction, i.e., the asymptotic expansion in large Z inextricably mixes these contributions (unlike in T_p). Table I lists E_X for noble gas atoms, calculated at the self-consistent non-relativistic OEP level. We fit ($E_X + 0.2208 Z^{5/3}$)/Z as a function of $Z^{-1/3}$, finding:

$$E_X(Z) = -0.2208 Z^{5/3} + (C^{\text{LDA}} + \Delta C) Z + \ldots$$ \hfill (7)

Extraction of C^{LDA} from LDA energies is difficult, because of shell-structure oscillations. We estimate $0 \geq C^{\text{LDA}} \geq -0.03$. However, for any other calculation of E_X, we find ($E_X - E_X^{\text{LDA}}$)/Z is smooth, with fit results shown in Table II. The large underestimate of GEA shows that gradient corrections from the slowly-varying gas account for only half the entire contribution. Assuming $C^{\text{LDA}} = 0$, $E_X(Z) \sim -0.2208 Z^{5/3} - 0.196 Z$. This yields less than 10% error for He, and less than 2% for Ne.

TABLE II: $\Delta C = \lim_{Z \to \infty} (E_X - E_X^{\text{LDA}})/Z$ (hartree). The “gradient” contribution arises from the expansion to order Z^2, while the remainder is the “cusp”.

Atom	Total	GEA	PBE	B88	TPSS	exact
He	-0.098	-0.174	-0.202	-0.159	-0.196	
Ne	-0.098	-0.174	-0.217	-0.0977	-0.0977	
Ar	0.000	0.000	0.015	0.0617	0.0979	

Popular GGA’s such as PBE and B88[5] have second-order gradient coefficients that are about twice the correct coefficient for a slowly-varying density, as they must to reproduce accurate exchange energies of atoms. But with an incorrect coefficient, they cannot predict accurate surface energies for metals[19]. The origin of the enhanced gradient coefficient of the GGA for exchange now has a simple explanation. In order to be asymptotically exact for large Z, and hence accurate for most finite Z, the functional accounts for both the slowly-varying term and the cusp correction. No GGA can get both effects right individually. B88 is closest to being exact for ΔC, because of the fitting to noble gas atoms[5]. (In fact, assuming the exact gradient and cusp contributions to ΔC are equal, asymptotic exactness requires $\beta = 5/(1086(\pi^2)^{1/3})$ in B88, close to the fitted value of .0042.) PBE preserved the nearly correct uniform-gas linear response of LDA for XC together[6], which produces a ΔC also close to exact, and a GGA close to that of a hole model[18]. A “buried 1s” region has small s, looking to a GGA like a region of slowly-varying density.

However, a meta-GGA that employs $\tau(\mathbf{r})$ can recognize that this is a rapidly-varying region, and thus get everything right. The TPSS meta-GGA recovers the gradient expansion to fourth order[20], while yielding a good estimate for ΔC (Table II).

Figure 3 plots the difference in exchange energy densities relative to LDA in the different approximations. PBE simply mimics GEA, being almost a factor of 2 larger everywhere. But TPSS produces a much greater contribution from the region near the nucleus (via Fig. 1 of Ref. [20]), while reverting to the GEA value at the inner radii of the other atomic shells, where s is small.

Again, correlation is less clear-cut. In Fig. 4, we plot the correlation energy in three different approximations: LDA, PBE, and Moller-Plesset second order perturbation theory (MP2)[21]. (TPSS is almost identical on this scale.
to PBE.) Also included are dashed lines that correspond to the high-density limit of Eq. (6) using LDA and PBE inputs for B_n. Real atoms are so far from the asymptotic limit for correlation that asymptotic exactness is much less relevant in this case.

TABLE III: Noble gas atomic correlation energies (hartree). The fixed-node Diffusion Monte Carlo (DMC) values[22] are upper bounds.

atom	LDA	PBE	TPSS	MP2	DMC exact
He	-0.113	-0.042	-0.043	-0.042	-0.042
Ne	-0.743	-0.351	-0.354	-0.388	-0.376
Ar	-1.424	-0.707	-0.711	-0.709	-0.667
Kr	-3.269	-1.767	-1.771	-1.890	-1.688
Xe	-5.177	-2.918	-2.920	-3.089	-2.647
Rn	-9.026	-5.325	-5.33	-5.745	-5.877

Table III shows the correlation energies of closed-shell atoms as predicted by PBE, TPSS, and MP2[21], along with essentially exact values[16] where known. The agreement among these values is generally good. The large-Z limit is not problematic for PBE and TPSS, since $t(r)$ remains bounded except near the cusp and in the tail.

Last, we relate this scaling to others. The most standard is uniform coordinate scaling[23] ($\gamma^3 n(\gamma r)$), under which T_s/γ^2 and E_X/γ remain unchanged. More recently, number-scaling, in which $n(r)$ becomes $\nu n(r)$, has been proposed[24]. In the large ν limit, all gradients in the bulk become small on both local length scales, making even the gradient expansion for correlation asymptotically exact. The present scaling can be regarded as a product of these, with $\nu = \gamma^3 = \zeta$. A slowly-varying product with bounded density is $n(\nu^{-1/3}r)$, $\nu \to \infty$.

Our ζ-scaling allows the results of Schwinger’s derivations to be applied throughout DFT, yielding insight into the performance of approximate functionals. Even for uncondensed matter, such functionals should incorporate the second-order gradient expansions (although GGA total exchange energies then degrade due to $1s$ regions). Based on this, we have developed such a GGA for exchange which is currently being tested. We thank Eberhard Engel for the use of his atomic OPMKS code, and NSF (CHE-0355405 and DMR-0501588) and the Norwegian Research Council (148960/432) for support.

[1] Thomas-Fermi model: The leading correction, J. Schwinger, Phys. Rev. A 22, 1827 (1980); Thomas-Fermi model: The second correction, ibid. 24, 2353 (1981).
[2] Statistical atom: Some quantum improvements, B. G. Englert and J. Schwinger, Phys. Rev. A 29, 2339 (1984); Semiclassical atom, ibid. 32, 26 (1985); Linear degeneracy in the semiclassical atom, ibid. pg 36; Atomic-binding-energy oscillations, ibid. pg. 47.
[3] A Primer in Density Functional Theory, ed. C. Fiolhais, F. Nogueira, and M. Marques (Springer-Verlag, NY, 2003).
[4] Inhomogeneous electron gas, P. Hohenberg and W. Kohn, Phys. Rev. 136, B 864 (1964).
[5] Density-functional exchange-energy approximation with correct asymptotic behavior, A.D. Becke, Phys. Rev. A 38, 3098 (1988).
[6] Generalized gradient approximation made simple, J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996); 78, 1396 (1997) (E).
[7] Density-Functional Theory of Atoms and Molecules, R.G. Parr and W. Yang (Oxford, New York, 1989).
[8] The calculation of atomic fields, L.H. Thomas, Proc. Camb. Phil. Soc. 23, 542 (1926).
[9] A statistical method for the determination of some atomic properties and the application of this method to the theory of the periodic system of elements E. Fermi, Zeit. Fur Physik 48, 73 (1928).
[10] The binding energy of the Thomas-Fermi atom, J.M.C. Scott, Philos. Mag. 43, 859 (1952).
[11] Study of the density-gradient expansion for the exchange energy, V. Sahni, J. Grunebaum, and J.P. Perdew.
[12] Quantum corrections to the Thomas-Fermi equation, D.A. Kirzhnits, Sov. Phys. JETP 5, 64 (1957).
[13] Kohn-Sham exchange potential exact to first order in \(\rho(\mathbf{K})/\rho_0 \), P.R. Antoniewicz and L. Kleinman, Phys. Rev. B 31, 6779 (1985).
[14] Edge electron gas, W. Kohn and A. E. Mattsson, Phys. Rev. Lett. 81, 3487 (1998).
[15] From electron densities to Kohn-Sham kinetic energies, orbital energies, exchange-correlation potentials, and exchange-correlation energies, Q. Zhao, R.C. Morrison, and R.G. Parr, Phys. Rev. A 50, 2138 (1994).
[16] Ground-state correlation energies for atomic ions with 3 to 18 electrons, S.J. Chakravorty, S.R. Gwaltney, E.R. Davidson, F.A. Parpia, and C. Froese Fischer, Phys. Rev. A 47, 3649 (1993).
[17] Correlation energy of an electron gas with a slowly varying high density, S.-K. Ma and K.A. Brueckner, Phys. Rev. 165, 18 (1968).
[18] Generalized gradient approximation for the exchange-correlation hole of a many-electron system, J.P. Perdew, K. Burke, and Y. Wang, Phys. Rev. B 54, 16533 (1996); 57, 14999 (1998) (E).
[19] Meta-generalized gradient approximation for exchange-correlation hole, with an application to the jellium surface energy, L.A. Constantin, J.P. Perdew, and J. Tao, Phys. Rev. B, to appear.
[20] Climbing the density functional ladder: Nonempirical meta-generalized gradient approximation designed for molecules and solids, J. Tao, J.P. Perdew, V.N. Staroverov and G.E. Scuseria, Phys. Rev. Lett. 91, 14640 (2003).
[21] Application of MP2 results in comparative studies of semiempirical ground-state energies of large atoms, J.R. Flores, K. Jankowski, and R. Slupski, Collect. Czech. Chem. Commun. 68, 240 (2003); K. Jankowski, private comm.
[22] All-electron quantum Monte Carlo calculations for the noble gas atoms He to Xe, A. Ma, N.D. Drummond, M.D. Towler, and R.J. Needs, Phys. Rev. E 71, 066704 (2005).
[23] Hellmann-Feynman, virial, and scaling requisites for the exact universal density functionals. Shape of the correlation potential and diamagnetic susceptibility for atoms, M. Levy and J.P. Perdew, Phys. Rev. A 32, 2010 (1985).
[24] Kinetic-energy systems, density scaling, and homogeneity relations in density-functional theory, G.K.-L. Chan and N.C. Handy, Phys. Rev. A 59, 2670 (1999).

Rev. B 26, 4371 (1982).