Aquatic yeasts: diversity, characteristics and potential health implications
Mzimkhulu Ephraim Monapathi, Carlos Cornelius Bezuidenhout and Owen Howard James Rhode

ABSTRACT
There has been a rising interest in the levels, diversity and potential impacts of yeasts in aquatic environments. Some of the species isolated from such niches are known pathogens or have pathogenic and antifungal resistance features. This deems it necessary to understand the characteristics and potential health implications of such environmental yeasts species. Studies on these subjects are limited. Most studies on aquatic yeasts have linked them to water pollution. However, the current gold standards to determine microbial pollution of water use bacteria as the main indicator organisms. Including yeasts in water quality standards may provide a different dimension on the quality of water when determining its fit-for-use properties. Pathogenic yeasts cause superficial infections or life-threatening infections, especially in immunocompromised people. Some of the yeast species isolated in recent studies were resistant to commonly used antifungal agents of clinical and veterinary relevance. With the high prevalence rate of HIV in sub-Saharan Africa, particularly in South Africa, antifungal resistance is a public concern as it poses serious medical and economic challenges. Most available studies are concerned with clinical environments only. There is, thus, a need to review the literature that also focuses on aquatic environments.

Key words | aquatic yeasts, diversity, health implications, microbial pollution, resistance, water quality

INTRODUCTION
Yeasts are eukaryotic microorganisms classified in the kingdom fungi and are divided into two phylogenetic groups, i.e. ascomycetes and basidiomycetes. Yeasts commonly occur in water, animals, plants, soil and insects (Montes de Oca et al. 2016). Cases where yeasts were identified as the primary agent that caused infections increased, which, in turn, increased interest in the specific species and characteristics of that particular yeast. Interest was further fuelled by the advent of human immunodeficiency virus (HIV) co-infectious or opportunistic infections by some yeasts species infecting immunocompromised individuals (Moges et al. 2016; Mnge et al. 2017). Most of these patients that are compromised are those in therapeutic technology including organ transplants and anticancer therapies or have certain disease conditions such as malignancy and HIV (Pincus et al. 2007; Richardson & Lass-Florl 2008). The latter presents a global challenge, especially in South Africa with its high HIV epidemic of 37.9 million and a further 7.1 million people that are currently living with HIV (UNAIDS 2019).

Initially, the identification of yeast was based on its morphological and physiological traits (van Uden & Ahearn 1965; Woollett & Hendrik 1970; Hagler & Medonca-Hagler 1981;
such as bacteria and protozoans has not been largely studied has received little attention. Furthermore, the occurrence indoors, the presence of yeasts in aquatic environments Compared with other environments such as soils and environments. Yeasts identiﬁcation was strenuous and in many cases, inconclusive (Kurtzman & Robnett 1998). Various studies showed that molecular analyses are more reliable when identifying yeasts to species level (Brandão et al. 2010, 2011, 2017; Brilhante et al. 2016; Novak Babič et al. 2016; Monapathi et al. 2017, 2018; Pires et al. 2017; Moubasher et al. 2018; Maciel et al. 2019). Recent studies conducted in different environments furthermore applied next generation sequencing (NGS) methods to determine yeasts community structures and dynamics (Aguilar et al. 2016; Okuno et al. 2016; Romão et al. 2017).

Although yeasts constitute the aquatic environments microbial community, their biodiversity and distribution have been ignored (Yurkov & Pozo 2017). The present study explores the occurrence of yeasts in natural water resources with emphasis on freshwater systems. A structured review was conducted to determine the extent of current knowledge of yeasts in freshwater systems using the literature relevant to the characteristics, diversity and health implications of aquatic yeasts. The following databases were used during this research: EBSCOhost, Google scholar, Sabinet and Science Direct. The literature that included one or more keywords, such as yeasts, identiﬁcation, uses, aquatic environments, microbial pollution, yeast infections, antifungal resistance and resistance mechanisms, were used as references.

YEAST DIVERSITY IN AQUATIC ENVIRONMENTS

Compared with other environments such as soils and indoors, the presence of yeasts in aquatic environments has received little attention. Furthermore, the occurrence of yeasts in water as compared with other microorganisms such as bacteria and protozoans has not been largely studied (Pereira et al. 2010). With limited studies on aquatic yeasts, most of them are concentrating on polluted water (Nagahama 2006). Few yeast species exclusively associated with aquatic environments (Libkind et al. 2017). The section below addresses the diversity of yeasts in different aquatic environments.

Freshwater

The diversity and ecology of yeasts in freshwater environments (temperate and tropical rivers, lakes and lagoons) has been reviewed in a study by Libkind et al. (2017). The review conforms to the present review with respect to yeast identiﬁcation. Identiﬁcation of yeasts was primarily based on morphological and physiological characteristics. However, the identiﬁcation was strenuous and in many cases, inconclusive (Kurtzman & Robnett 1998). As stipulated in Table 1, most of the conducted studies before 2001 relied on morphology and physiological tests for identiﬁcation. The use of more reliable molecular data in yeasts identiﬁcation followed in most studies thereafter. From a review by Libkind et al. (2017) and studies summarized in the current study (Table 1), yeast isolates associated with tropical and temperate lakes, rivers and lagoons comprise species of Candida, Clavispora, Cryptococcus, Debaryomyces, Hanseniaspora, Kluyveromyces, Metschnikowia, Meyerozyma, Pichia, Rhodotorula, Saccharomyces, Torulaspora, Trichosporon and Yarrowia. Studies on yeasts in tropical rivers and lakes have been linked to freshwater pollution. Tropical ecosystems are surrounded by forests and located near urban areas. Rich yeasts species reﬂect inputs from terrestrial sources such as soil and plant debris and anthropogenic activities (Medeiros et al. 2008; Brandão et al. 2011; Libkind et al. 2017). Furthermore, some of the yeast species isolated from these freshwater environments have been implicated as opportunistic pathogens (Medeiros et al. 2008, 2012; Brandão et al. 2011; Van Wyk et al. 2012; Monapathi et al. 2017, 2018).

Drinking water

Surface water and groundwater are primary sources of drinking water (Katsanou & Karapanagioti 2017). Regular detection of emerging opportunistic yeast pathogens in taps suggests that it might be a vector for human infections (Novak Babič et al. 2017). From studies conducted (Table 1), the following yeast genera have been isolated from water distribution systems and tap water: Candida, Clavispora, Cryptococcus, Debaromyces, Meyerozyma, Pichia, Rhodotorula, Trichosporon and Yarrowia. Yamaguchi et al. (2007) isolated the following Candida species, namely C. albicans,
Table 1 | Some of the aquatic environment studies conducted on yeasts (✓ – done; nd – not done)

Authors	Background to study	Resource type	Country	Mode of identification	Asco/ Basidiomycota activity	Resistance mechanisms	Virulence tests
Freshwater environments							
van Uden & Ahearn (1963)	Diversity	Surface and deep water	USA	Morphology and physiological tests	Both	nd	nd
Woollett & Hendrik (1970)	Pollution	Lakes and rivers	USA	Morphology and physiological tests	Both	nd	nd
Hagler & Medonca-Hagler (1981)	Pollution	Estuarine waters	Brazil	Morphology and physiological tests	Both	nd	nd
Sláviková et al. (1992)	Diversity	Artificial fresh lakes		Morphology and physiological tests	Both	nd	nd
Rosa et al. (1995)	Pollution	Lake	Brazil	Morphology and physiological tests	Both	nd	nd
Sláviková & Vadkertiová (1997)	Pollution	River	Slovakia	Morphology and physiological tests	Both	nd	nd
Dynowska (1997)	Pollution	River	Poland	Physiological tests	Both	nd	nd
Boguslawska-Was & Dabrowski (2001)	Pollution	Lagoon	Poland	Morphology and physiological tests	Both	nd	nd
Gadanho & Sampaio (2004)	Diversity	River	Portugal	Sanger sequencing	Both	nd	nd
Medeiros et al. (2008)	Diversity	Natural lakes and rivers	Brazil	Physiological tests and Sanger sequencing	Both ✓	nd	nd
Brandão et al. (2010)	Diversity	Lakes	Lakes	Physiological tests and Sanger sequencing	Ascomycota ✓	nd	nd
Biedunkiewicz & Baranowska (2011)	Diversity	Lake	Poland	Morphology and physiological tests	Ascomycota	nd	nd
Brandão et al. (2011)	Diversity	Lakes	Brazil	Morphology, physiological tests and molecular tests	Both	nd	nd
Medeiros et al. (2012)	Diversity	Lakes	Brazil	Molecular techniques	Both	nd	nd
Van Wyk et al. (2012)	Diversity	Rivers	South Africa	Morphology and physiological tests	Both	nd	nd
Biedunkiewicz et al. (2015)	Diversity	Lakes	Poland	Morphology and physiological tests	Ascomycota	nd	nd
Silva-Bedoya et al. (2014)	Diversity	Artificial lakes	Colombia	Morphology and molecular tests	Both	nd	nd
Aguilar et al. (2016)	Diversity	Surface water, tailing ponds and sediments	Canada	Molecular techniques	Both	nd	nd

(continued)
Authors	Background to study	Resource type	Country	Mode of identification	Asco/ Basidiomycota	Antimicrobial activity	Resistance mechanisms	Virulence tests
Brillhante et al. (2016)	Resistant mechanisms	Lake	Brazil	Morphology and physiological tests	Both	√	√	nd
Brandão et al. (2017)	Diversity	Lake	Brazil	Morphology, physiological tests and molecular tests	Both	nd	nd	nd
Monapathi et al. (2017)	Diversity	Rivers	South Africa	Physiological tests and molecular tests	Ascomycota	√	nd	nd
Monapathi et al. (2018)	Resistant mechanisms	Rivers	South Africa	Physiological tests and molecular tests	Ascomycota	√	√	nd
Moubasher et al. (2018)	Diversity	Mud from hypersaline and freshwater bodies	Egypt	Physiological tests and molecular techniques	Both	nd	nd	nd
Drinking water environments								
Yamaguchi et al. (2007)	Diversity	Bottled and tap water	Brazil	Physiological and molecular tests	Ascomycota	nd	nd	nd
Kanzler et al. (2008)	Diversity	Wells, water tanks, tap water and groundwater	Austria	Morphology and physiological tests	Both	nd	nd	nd
Ayanbimpe et al. (2012)	Diversity	Taps, wells, boreholes and streams	Nigeria	Morphology and physiological tests	Both	nd	nd	nd
Biedunkiewicz et al. (2014)	Diversity	Bottled and tap water	Poland	Morphology and physiological tests	Both	nd	nd	nd
Novak Babič et al. (2016)	Diversity	Tap and groundwater	Slovenia	Physiological and molecular tests	Both	nd	nd	nd
Zupančič et al. (2016)	Diversity	Dishwashers	Slovenia	Molecular techniques	Both	nd	nd	nd
Wastewater environments								
Yang et al. (2011)	Diversity	Activated sludge	China	Morphology and molecular techniques	Both	nd	nd	nd
Liébana et al. (2015)	Diversity	Activated sludge	Spain	Morphology and molecular techniques	Both	nd	nd	nd
Karimi & Hassanshahian (2016)	Diversity	Soil and wastewater	Iran	Molecular techniques	Ascomycota	nd	nd	nd
Rajendran et al. (2016)	Diversity	Sewage water and sludge	Taiwan	Morphology and molecular techniques	Ascomycota	nd	nd	nd
Mahgoub et al. (2016)	Diversity	Activated sludge	Egypt	Morphology and molecular techniques	Ascomycota	nd	nd	nd
Pires et al. (2017)	Diversity	Wastewater	Brazil	Morphology and molecular techniques	Both	nd	nd	nd
Authors	Diversity	Environment	Country	Methods	Both	nd	nd	nd
------------------	-----------	----------------------------------	-------------	---------------------------------------	------	----	----	----
Assress et al. (2019)	Diversity	Wastewater	South Africa	Molecular techniques	Both	nd	nd	nd
Kanzler et al. (2008)	Diversity	Wells, water tanks, tap water and groundwater	Austria	Morphology and molecular techniques	Both	nd	nd	nd
Pereira et al. (2009)	Diversity	Groundwater, surface and spring water	Portugal	Morphology and physiological tests	Both	nd	nd	nd
Pereira et al. (2010)	Diversity	Groundwater, surface and springs	Portugal	Molecular techniques	Both	nd	nd	nd
Branda et al. (2010)	Diversity	Superficial and deep sediments, ice cores and meltwaters	Italy	Molecular techniques	Both	nd	nd	nd
Samah et al. (2014)	Diversity	Groundwater wells	Egypt	Morphology and physiological tests	Ascomycota	nd	nd	nd
Novak Babič et al. (2016)	Diversity	Tap and groundwater	Slovenia	Physiological and molecular tests	Both	nd	nd	nd
Rédou et al. (2015)	Diversity	Deep subseafloor sediment	New Zealand	Molecular techniques	Both	nd	nd	nd
Chang et al. (2015)	Diversity	Sea surface microlayer and underlying water	Taiwan	Molecular techniques	Both	nd	nd	nd
Zuza-Alves et al. (2016)	Pathogenesis	Beaches	Brazil	Physiological tests	Ascomycota	√	nd	√
Francis et al. (2016)	Diversity	Seaweeds	New Zealand	Molecular techniques	Both	nd	nd	nd
Abreu et al. (2016)	Diversity	Beach sands	Portugal	Physiological tests	nd	nd	nd	nd
Zaky et al. (2016)	Diversity	Seashore	UK, Egypt and USA	Morphology, physiological and molecular techniques	Ascomycota	nd	nd	nd
Romão et al. (2017)	Diversity	Beach sands	Portugal	Molecular techniques	Both	nd	nd	nd
Maciel et al. (2019)	Antifungal susceptibility	Sand and seawater	Brazil	Morphology, physiological and molecular techniques	Both	√	nd	√
C. glabrata and *C. parapsilosis* from bottled mineral and tap water from municipal supplies. In a study conducted by Ayanbimpe et al. (2012), yeasts species such as *Candida tropicalis*, *Yarrowia lipolytica* and *Rhodotorula* sp. were isolated from tap water. Novak Babić et al. (2016) and Zupančič et al. (2016) isolated ubiquitous opportunistic pathogenic yeasts *Candida parapsilosis* and *Rhodotula mucilaginosa* from tap water and hot aerosols from dishwashers.

Groundwater

Freshwater from groundwater represents the raw water that is used to produce drinking tap water (Libkind et al. 2017). The diversity of yeasts in groundwater is comparable to that of surface water (Novak Babić et al. 2016) and comprise of genera *Candida, Clavispora, Cryptococcus, Geotrichum, Pichia, Rhodotorula, Saccharomyces, Trichosporon* and *Yarrowia* (Kanzler et al. 2008; Pereira et al. 2009, 2010; Brandão et al. 2010; Ayanbimpe et al. 2012; Samah et al. 2014; Novak Babić et al. 2016; Libkind et al. 2017). However, groundwater is dominated by black yeasts (Kanzler et al. 2008; Novak Babić et al. 2016). With groundwater systems as drinking water and freshwater resources, it could be expected and it is not surprising to observe similar genera in these water systems.

Marine

Marine environments are treated by pollution from municipal sewage/wastewater and industrial discharges, surface and agricultural run-off and domestic effluent. This is a public health risk to coastal residents and tourists in direct contact with the water (Maciel et al. 2019). Yeasts have been studied from marine environments, including oceans, marine sediments, seawater, seaweeds and digestive tracts of marine organisms (Zaky et al. 2014). Some yeast species isolated from marine environments are opportunistic pathogens (Maciel et al. 2019). The following yeast genera have been isolated from the studies stipulated in Table 1: *Bullera, Candida, Clavispora, Cryptococcus, Debaryomyces, Hanseniaspora, Kluyveromyces, Meyerozyma, Metschnikowia, Pichia, Rhodotula, Saccharomyces, Yarrowia* and *Wickerhamomyces*. Yeasts in marine environments are vital in the food web (Zaky et al. 2014). They might be sources of food for some marine invertebrates and zooplanktons (Naghahama 2006). Moreover, marine yeasts are important for their application in the production of biofuel, enzyme production, single-cell protein, single cell oil and nanoparticles (Zaky et al. 2014; Sarkar & Rao 2016).

Wastewater

Microorganisms (including pathogenic) are required for treatment processes in waste water treatment plants (WWTPs) (Kowalski et al. 2017). Yeast species belonging to the genera *Candida, Cryptococcus, Debaryomyces, Pichia, Rhodotorula, Torulaspora, Trichosporon, Saccharomyces, Yarrowia* and *Wickerhamomyces* (Yang et al. 2011; Liébana et al. 2015; Karimi & Hassanshahian 2016; Mahgoub et al. 2016; Rajendran et al. 2016; Pires et al. 2017; Assress et al. 2019) have been isolated from WWTPs. Some yeast species have the potential to act as a biological treatment in the WWTP (Pires et al. 2017). They can treat high concentrations of organic wastewater, heavy metal ion wastewater and domestic sewage (Wang et al. 2018). Their importance in wastewater treatment stems from their ability to degrade phenol compounds (Karimi & Hassanshahian 2016).

SURVIVAL OF YEASTS IN FRESHWATER ENVIRONMENTS

Existing environmental conditions maintain the survival of yeasts in the ecosystem. Most yeasts are mesophilic and grow best at temperatures between 20 and 30°C (Deak 2006). Human pathogens grow well at 37°C, the normal internal temperature of the human body (Gabaldón & Carreté 2016). Yeasts species that grow at this particular temperature may have pathogenic potential as opportunistic species for humans. Yeasts prefer a slightly acidic medium with optimum pH between 4.5 and 5.5 (Deak 2006). Furthermore, yeasts can grow aerobically on particular carbon compounds such as alcohols, organic acids and amino acids as their sole energy source (Rodrigues et al. 2006). Deak (2006) stipulated that increased dissolved oxygen and dissolved organic matter in aquatic environments favour yeast growth. Yeasts can also utilize a wide range...
of nitrogen compounds as nitrogen sources. Some nitrogen-containing compounds such as amino acids and ammonia can also be used by yeasts as carbon sources (Messenguy et al. 2006).

YEASTS- POLLUTION MONITORING TOOL

Recent microbial water pollution has been determined by standard faecal indicator bacteria (SFIB) such as *Escherichia coli* and intestinal enterococci (Kirschner et al. 2017). However, some studies have demonstrated that yeast counts can be potential microbial monitoring tools. From studies conducted by Van Wyk et al. (2012) and Monapathi et al. (2017) in North West Rivers, South Africa, yeast levels ranged up to 8,680 and 2,573 CFU/l, respectively. In a study conducted by Medeiros et al. (2012) in the Doce River basin in Brazil, the highest yeasts count was 4,660 CFU/l. A study done in Brazil at Lago Rico River reported on 721.6 CFU/l yeast counts (Brandão et al. 2011). However, some studies have demonstrated that yeast counts can be potential microbial monitoring tools. From studies conducted by Van Wyk et al. (2012) and Monapathi et al. (2017) in North West Rivers, South Africa, yeast levels ranged up to 8,680 and 2,573 CFU/l, respectively. In a study conducted by Medeiros et al. (2012) in the Doce River basin in Brazil, the highest yeasts count was 4,660 CFU/l. A study done in Brazil at Lago Rico River reported on 721.6 CFU/l yeast counts (Brandão et al. 2017). Total yeast counts up to 1,720 CFU/l in water and 4,085 CFU/l in sands were enumerated in a study by Maciel et al. (2019). Aquatic environments in the aforementioned studies were associated with anthropogenic activities, eutrophication and high influx of domestic and industrial waste. A rapid response of yeasts to organic contamination makes yeasts important indicators of nutrient enrichment since these convert easily accessible carbon sources into energy for reproduction (Brandão et al. 2010). Yeasts could potentially be informative water quality indicators. They can be utilized as complements and/or alternatives to faecal indicator bacteria.

OPPORTUNISTIC PATHOGENIC YEASTS

Some of the yeasts species mentioned in the section ‘Yeast diversity in aquatic environments’ are opportunistic pathogens and may cause mild to severe infections in humans. Most invasive yeast infections are frequently caused by pathogens from the genera *Candida* and *Cryptococcus* (Bajpai et al. 2019). Candidiasis is one of the common opportunistic infections caused by *Candida* species. *C. albicans* is the most prevalent causal species (Friedman & Schwartz 2019). The following non-*Candida albicans* species are also to cause candidiasis: *C. glabrata*, *C. parapsilosis*, *C. tropicalis*, *C. krusei* and *C. auris* (Kullberg & Arendrup 2015; Zupančič et al. 2016; Friedman & Schwartz 2019). Human cryptococcal infections are primarily caused by *Cryptococcus neoformans* and *C. gattii* (Mada et al. 2017). Cryptococcosis is one of the leading causes of mortality in adults living with HIV in sub-Saharan Africa (Hurtado et al. 2019).

Rare non-*Candida* and non-*Cryptococcus* species are also associated with yeast infections. *Trichosporon* species (*Trichosporon asahii*, *T. faecale*) cause invasive trichosporonosis in patients with haematological malignancies and other medical conditions associated with immunocompromised people (Castano & Mada 2018; Maciel et al. 2019; Ruosta et al. 2019). Opportunistic pathogenic *Rhodotorula* species (*R. mucilaginosa*, *R. glutinis* and *R. minuta*) cause infections with high mortality rates in haematologic patients particularly on central venous catheters (Potenza et al. 2018). The above-uncommon clinical yeast species have also been reported as opportunistic pathogens: *Clavispora lusitania*, *Cyberlindnera fabianii*, *Debaryomyces hansenii*, *Kluyveromyces marxianus*, *Meyerozyma guilliermondii*, *Pichia kudriavzevii*, *Saccharomyces cerevisiae*, *Torulaspora delbrueckii* and *Yarrowia lipolytica* (Chitasombat et al. 2012; Al-Sweih et al. 2018; Ruosta et al. 2019). The above-mentioned pathogenic yeast species have been isolated from freshwater water environments (Medeiros et al. 2008, 2012; Brandão et al. 2010, 2011, 2017; Van Wyk et al. 2012; Monapathi et al. 2017; Moubasher et al. 2018; Maciel et al. 2019). There is a lack of studies that link these isolates/strains from the environment to those from clinical settings.

Virulence factors in pathogenic yeasts

The expression of virulence factors in pathogenic/opportunistic pathogenic yeasts enable them to cause diseases (Polvi et al. 2015). Detailed knowledge about these factors in yeasts is limited. Some of the virulent traits in pathogenic yeasts are high-temperature growth, adaptation to pH, overexpression of melanin, nutrient limitation, morphological transition, secretion of extracellular enzymes, induction of capsule formation and formation of biofilms (Polvi et al. 2015). Virulence factors have been detected in
some studies in pathogenic environmental yeasts (Zuza-Alves et al. 2016; Maciel et al. 2019). Virulence factors allow pathogenic yeast species to invade hosts, to resist their immune system defence mechanisms and to cause infections, especially in immunocompromised people (Abulreesh et al. 2019).

Antifungal resistance in pathogenic yeasts

Antifungal drugs are available to treat yeasts infectious (Perfect 2017). There has been a concerted effort to monitor and report on resistance development among clinical yeasts isolates to commonly used antifungal agents. Antifungal susceptibility studies have been conducted on pathogenic environmental yeasts (Medeiros et al. 2008; Brandão et al. 2010; Brilhante et al. 2016; Monapathi et al. 2017, 2018; Maciel et al. 2019) and antimicrobial resistance has been observed. Resistance to antifungal agents develops from continuous exposure of yeasts to antifungal agents (Morschlhäuser 2016). Prolonged contact of pathogenic yeasts in water to antifungal agents could result from subtherapeutic levels of antifungal agents that constantly land into aquatic environments (Singer et al. 2016; Meade et al. 2017). This is linked to prevailing therapy regimes (infection control or prophylactic treatment), disposal routes, waste (wastewater) treatment options and agricultural run-off. The presence of antifungal agents in any environment affects the diversity and selection of antifungal resistant pathogens/opportunistic pathogens (Cowen et al. 2015).

PUBLIC HEALTH CONCERN OF FINDING PATHOGENIC YEASTS IN ENVIRONMENTAL WATER

The occurrence of opportunistic yeast species in environmental water suggests a potential risk to direct water users. This public health threat is worsened by poor susceptibility to commonly used antifungal drugs (Maciel et al. 2019). People at peril are communities that use water for domestic and agricultural purposes as well as activities where direct exposure is common such as recreation and religious cleansing or baptism (Zenani & Mistri 2005). Direct contact with water polluted with pathogenic yeasts could cause diseases/infections in healthy and immunocompromised individuals (Monapathi et al. 2017; Maciel et al. 2019). This is a public and health concern and needs more research to highlight this aspect but also to generate sufficient data to evaluate if policy changes are required for including yeasts in water quality guidelines.

POSSIBLE ROUTES OF YEAST INFECTIONS: AQUATIC INTERVENTION

Some of the yeast species in water resources are pathogenic and infectious diseases may be transmitted through contaminated water (Ayanbimpe et al. 2012). Figure 1 shows possible routes of yeast infections via water resources. Drinking water is the direct route of yeasts to humans (DEFRA 2011). Drinking water can be a reservoir for opportunistic pathogenic yeasts, which can cause infections in immunosuppressed patients (Kanzler et al. 2008). Yeasts species of Candida, Cryptococcus, Debaryomyces, Saccharomyces and Trichosporon have been detected from gut microbiota in human (Hallen-Adams & Suhr 2017). Microorganisms in the gut constitute human sewage microbiome. These are from different human body sources, including skin, respiratory tract, oral cavity, gastrointestinal tract and urogenital tract. The sewage is taken to the WWTPs for treatment (Cai et al. 2014). These are the same WWTPs that are known to harbour pathogenic yeasts (Chu et al. 2018). Subsequently, treated and/or untreated wastewater will end up in surface water (Edokpayi et al. 2017).

Drinking water from surface and groundwater resources is purified through various processes and disinfected before it is distributed to consumers. If water is inefficiently treated, yeasts from the aforementioned resources could end up in drinking water (DEFRA 2011). Yeasts in drinking water distribution systems are known to act as pathogens (Oliveira et al. 2016). Their occurrence in drinking water can pose a health threat to consumers with direct daily contact such as drinking and showering (Novak Babić et al. 2016). The possible pathway of yeast infections from drinking to surface water is confirmed by the presence of similar genera of species in the gut, WWTPs and surface water. Furthermore, studies by Götlitch et al. (2002) and Oliveira et al. (2016) suggest groundwater as a yeast vehicle to drinking water. Plants
may be the other route of yeast infections in humans. Faeces of animals and humans used as fertilizers in agriculture contain pathogenic bacteria and yeasts. The use of fertilizers could contaminate the soil and field crops, and ultimately infect consumers (Scheinemann et al. 2015; Al-Sadi 2017; Lamastra et al. 2018).

The human population exploits a large number of aquatic animal species for food (Ogden 2017). Some of these animals require surface and marine water for survival. If the water is contaminated with pathogenic yeasts, human beings are likely to be infected through consumption of these animals. There have been some reports on marine water contamination from oil spills, pharmaceuticals and personal care products and microplastics (Arpin-Pont et al. 2016; Brennecke et al. 2016). These reports are bothersome as marine environments are used for recreational activities such as swimming, fishing, surfing and boating (Sumaila & Cisneros-Montemayor 2010; Beaumont et al. 2019). From another public health view, in direct contact with the water, this association could serve as an additional route of pathogenic yeasts to humans.

MICROBIOLOGICAL RISK ASSESSMENTS

Microbiological risk assessment (MRA) is an estimate of the possibility of illness from a pathogen in a given population (Rocourt et al. 2003). It is vital in risk management and communication thereof to minimize negative impacts on human health (Brown & McClure 2006). MRA assists in policy development, public health decision-making and establishment of microbial pathogen regulations and research planning (Sherif et al. 2009). Most of the pathogenic yeasts isolated until now have been from clinical samples where known infections occurred (Shokohi et al. 2018; Consortium OPATHY & Gabaldón 2019; Friedman & Schwartz 2019). Finding similar species in environmental water is thus cumbersome. For aquatic yeasts, contact transmission is
normally the route of infection (Eames et al. 2009). In determining MRA in aquatic pathogenic yeasts, a qualitative exposure assessment would be ideal.

There are direct and indirect possible contact ways between yeasts and humans through aquatic pathways (Figure 1). Surface and groundwater are drinking water resources. Furthermore, they are also used in agricultural, industrial and/or domestic sectors (Wada et al. 2014; Katsanou & Karapanagioti 2017; Libkind et al. 2017). Drinking water or consuming plants and/or animals contaminated with pathogenic yeasts may also be an important direct exposure to humans. According to a study by Hageskal et al. (2009), drinking contaminated water has not caused acute diseases in healthy individuals. However, there is a risk of superficial or localized infections in these healthy individuals and more severe and invasive infection in immunocompromised persons. As mentioned in the previous section on marine environments, recreational activities also expose humans to possibly contaminated water.

A quantitative risk characterization would assist in determining the severity of known and potential adverse health effects (Rocourt et al. 2003). From clinical tests, for microorganisms to cause an infection, the number of colony-forming units (CFU)/ml in the bloodstream should be defined. In bloodstream infection, Candida CFU/ml in the first 50% positive blood culture had <1 CFU/ml of circulating organisms (Pfeiffer et al. 2011). For candidemia, classified as high-grade and low-grade candidemia, 25 CFU or more per 10 ml and 10 CFU or fewer per 10 ml of blood, respectively, were defined (Telenti et al. 1993). According to Perlin & Wiederhold (2017), a low initial concentration (often <10 CFU/ml) of the pathogen within the collected specimen can grow to cause an infection. This suggests that low levels of yeasts in direct exposure to humans could cause an infection. Similar quantitative risk data for environmental exposures are not available, and there is a necessity to generate such information.

CONCLUSION

The number of peer-reviewed articles about yeast diversity in water has increased and some have originated in South Africa. The present review largely focused on freshwater environments. Most of the studies on yeasts in aquatic environments address water pollution aspects. Yet, bacterial indicator species are mainly the microbes that are used in water quality assessments. Declining water quality is a global concern, and in these systems, the chemical and physical conditions are such that yeast species could survive. Some of these are known as pathogenic or opportunistic pathogens. Future studies are needed to generate data to determine whether it is necessary to include yeasts in water quality guidelines. This may be necessary if one considers the large sections of populations in developing countries that are immunocompromised, particularly those living with HIV. Studies on health implications have mostly been addressed on pathogenic clinical isolates. This creates a gap in research as similar isolates have been isolated from aquatic environments. The same resistance patterns to antifungal agents and resistance mechanisms associated with clinical isolates were also found to exist among environmental isolates. Molecular methods to study antifungal resistance mechanisms should be extended to environmental isolates. Direct exposure to polluted water is a health threat. Studies in the clinical settings have shown that to cause an infection, yeast level as low 1 CFU/ml is sufficient. Similar data for environmental water levels are needed. More studies are required in South Africa and globally to address the possible implications of antifungal resistant pathogenic yeasts in water.

ACKNOWLEDGEMENTS

This work is based on the research supported in part by the National Research Foundation of South Africa for Grant No. 93621 and the Water Research Commission of South Africa (Contract: K5/2547). Financial support of NWU and Nation Manpower Development Secretariat (Lesotho Bursary) grant to Mzimkhulu Monapathi is also acknowledged. The views expressed are those of the authors and not of the funding agency.

REFERENCES

Abreu, R., Figueira, C., Romão, D., Brandão, J., Freitas, M. C., Andrade, C., Calado, G., Ferreira, C., Campos, A. & Prada, S. 2016 Sediment characteristics and microbiological
contamination of beach sand – a case-study in the archipelago of Madeira. *Science of The Total Environment* **15** (573), 627–638.

Abulrash, H. H., Organji, S. R., Elbanna, K., Osman, G. E. H., Almalki, M. H. K., Abdel-Malek, A. Y., Ghyathuddin, A. A. K. & Ahmad, I. 2019 Diversity, virulence factors, and antifungal susceptibility patterns of pathogenic and opportunistic yeast species in rock pigeon (*Columba livia*) fecal droppings in Western Saudi Arabia. *Polish Journal of Microbiology* **68**(4), 493–504.

Aguilar, M., Richardson, E., Tan, B., Walker, G., Dunfield, P., Bass, D., Nesbøb, C., Fogh, J. & Dack, J. B. 2016 Next-generation sequencing assessment of eukaryotic diversity in oil sands, tailings, ponds, sediments and surface water. *Journal of Eukaryotic Microbiology* **63**, 732–743.

Al-Sadi, A. M. 2017 Impact of plant diseases on human health. *International Journal of Nutrition, Pharmacology, Neurological Diseases* 7, 21–22.

Al-Sweih, M., Ahmad, S., Khan, S., Joseph, L., Asadzadeh, M. & Khan, Z. 2018 *Cyptelindera fabianii* fungaemia outbreak in preterm neonates in Kuwait and literature review. *Mycoses* **62**, 51–61.

Arpin-Pont, L., Bueno, M. J. M., Gomez, E. & Fenet, H. 2016 Occurrence of PPCPs in the marine environment: a review. *Environmental Science and Pollution Research* **23**(6), 4978–4991.

Assess, A. H., Selvarajan, R., Nyoni, H., Ntshelo, K., Mamba, B. B. & Msagati, T. A. 2019 Diversity, co-occurrence and implications of fungal communities in wastewater treatment plants. *Scientific Reports* **9**(1), 1–15.

Ayanbimpe, G. M., Eyiojo, V. & Ior, C. A. 2012 Yeasts and yeast-like fungal contaminants of water used for domestic purposes in Jos, Nigeria. *Microbiological Research* **3**, 99–102.

Bajpai, V. K., Khan, I., Shukla, S., Kumar, P., Rather, I. A., Park, Y., Huh, Y. S. & Han, Y. 2019 Invasive fungal infections and their epidemiology: measures in the clinical scenario. *Biotechnology and Bioprocess Engineering* **24**, 436–444.

Beaumont, N. J., Aanesen, A., Austen, M. C., Börgér, T., Clark, J. R., Cole, M., Hopper, T., Lindeque, P. K. & Pascoe Wyles, K. J. 2019 Global ecological, social and economic impacts of marine plastic. *Marine Pollution Bulletin* **142**, 189–195.

Biedunkiewicz, A. & Baranowska, E. 2011 Yeasts and yeast-like fungi as an element of purity assessment of surface waters. *Polish Journal of Environmental Studies* **20**, 267–274.

Biedunkiewicz, A., Dynowska, M., Ejdys, E. & Sucharszewa, E. 2013 Species diversity of yeast-like fungi in some eutrophic lakes in Olsztyn. *Acta Mycologica* **48**(1), 61–71.

Biedunkiewicz, A., Kowalska, K., Schulz, L., Stojek, K., Dynowska, M., Ejdys, E., Sucharszewa, E. & Kubiak, D. 2014 Mycological monitoring of selected aquatic ecosystems in the context of epidemiological hazards. Drinking water. *Annals of Parasitology* **60**, 191–198.

Bogusławska-Was, E. & Dąbrowski, W. 2001 The seasonal variability of yeasts and yeast-like organisms in water and bottom sediment of the Szczecin Lagoon. *International Journal of Hygiene and Environmental Health* **205**(5–6), 451–458.

Branda, E., Turchetti, B., Diolaiai, G., Pecci, M., Smiraglia, C. & Buzzini, P. 2010 Yeast and yeast-like diversity in the southernmost glacier of Europe (Calderone Glacier, Apennines, Italy). *FEMS Microbiology Ecology* **72**(3), 354–369.

Brandão, L. R., Medeiros, A. O., Duarte, M. C., Barbosa, A. C. & Rosa, C. A. 2010 Diversity and antifungal susceptibility of yeasts isolated by multiple-tube fermentation from three freshwater lakes in Brazil. *Journal of Water and Health* **8**(2), 279–289.

Brandão, L. R., Libkind, D., Vaz, A. B. M., Santo, L. C. E., Moliné, M., de García, V., van Broock, M., Carlos, A. & Rosa, C. A. 2011 Yeasts from an oligotrophic lake in Patagonia (Argentina): diversity, distribution and synthesis of photoprotective compounds and extracellular enzymes. *FEMS Microbiology Ecology* **76**, 1–13.

Brandão, L. R., Vaz, A. B., Espírito Santo, L. C., Pimenta, R. S., Morais, P. B., Libkind, D., Rosa, L. H. & Rosa, C. A. 2017 Diversity and biogeography patterns of yeast communities from lakes of Antarctica, Argentinean Patagonia, and tropical Brazil. *Fungal Ecology* **28**, 33–43.

Brennecke, D., Duarte, B., Paiva, P., Caçador, I. & Canning-Clode, J. 2016 Microplastics as vector for heavy metal contamination from the marine environment. *Estuarine, Coastal and Shelf Science* **178**(5), 189–195.

Brilhante, R. S., Paiva, M. A., Sampaio, C. M., Castelo-Branco, D. S., Teixeira, C. E., de Alencar, L. P., Bandeiraa, T. J. P., Monteirod, A. J., Cordeirao, R. A., Pereira-Netoa, W. A., Sidrima, J. C., Moreira, J. L. B. & Rocha, M. F. G. 2016 Azole resistance in *Candida* spp. isolated from Catu Lake, Ceará, Brazil: an efflux-pump-mediated mechanism. *Brazilian Journal of Microbiology* **47**, 33–38.

Brown, M. & McClure, P. 2006 Microbiological risk assessment for emerging pathogens. In: *Emerging Foodborne Pathogens*, Vol. 6 (Y. Motarjemi & M. Adams, eds). Woodhead Publishing Series in Food Science, Technology and Nutrition, UK, pp. 130–152.

Cai, L., Ju, F. & Zhang, T. 2014 Tracking human sewage microbiome in a municipal wastewater treatment plant. *Applied Microbiology and Biotechnology* **98**(7), 3317–3326.

Castano, G. & Mada, P. K. 2018 *Trichosporonosis*. StatPearls, Treasure Island.

Chang, C. F., Lee, C. F., Lin, K. Y. & Liu, M. S. 2015 Diversity of yeasts associated with the sea surface microlayer and underlying water along the northern coast of Taiwan. *Research in Microbiology* **167**(1), 35–45.

Chitasombat, M. N., Kofteridis, D. P., Jiang, Y., Tarrand, J., Lewis, R. E. & Kontoyiannis, D. P. 2012 Rare opportunistic (non-*Candida*, non-*Crypococcus*) yeast bloodstream infections in patients with cancer. *The Journal of Infection* **64**(1), 8–75.

Chu, B. T. T., Petrovich, M. L., Chaudhary, A., Wright, D., Murphy, B., Wells, G. & Poretsky, R. 2018 Metagenomics reveals the
impact of wastewater treatment plants on the dispersal of microorganisms and genes in aquatic sediments. Applied and Environmental Microbiology 84 (5), 62168-17.

Consortium OPATHY & Gabaldón, T. 2019 Recent trends in molecular diagnostics of yeast infections: from PCR to NGS. FEMS Microbiology Reviews 43 (5), 517–547.

Cowan, L. E., Sanglard, D., Howard, S. J., Rogers, P. D. & Perlin, D. S. 2015 Mechanisms of antifungal drug resistance: Cold Spring Harbor Perspectives in Medicine 5 (7), a019752.

Deak, T. 2006 Environmental factors influencing yeasts. In: Biodiversity and Ecophysiology of Yeasts, Vol. 8 (C. A. Rosa & P. Gabor, eds). Springer, Berlin, pp. 155–174.

DEFRA (Department for Environment, Food and Rural Affairs). 2011 A Review of Fungi in Drinking Water and the Implications for Human Health, 1st edn. BIO Intelligence Service, Paris, France, p. 107.

Dynowska, M. 1997 Yeast-like fungi possessing bio-indicator properties isolated from the Lyn River. Acta Mycologica 32 (2), 279–286.

Eames, I., Tang, J. W., Li, Y. & Wilson, P. 2009 Airborne transmission of disease in hospitals. Journal of the Royal Society, Interface 6 (6), 697–702.

Edokpayi, J. N., Odiyo, J. O. & Durowoju, O. S. 2017 Impact of wastewater on surface water quality in developing countries: a case study of South Africa. In: Water Quality (H. Tutu, ed.). InTech, London, pp. 401–416.

Francis, M. M., Webb, V. & Zuccarello, G. C. 2016 Marine yeast biodiversity on seaweeds in New Zealand waters. New Zealand Journal of Botany 54 (1), 30–47.

Friedman, D. & Schwartz, I. S. 2009 Emerging fungal infections: new patients, new patterns, and new pathogens. Journal of Fungi 5 (3), 67.

Gabaldón, T. & Carreté, L. 2016 The birth of a deadly yeast: tracing the evolutionary emergence of virulence traits in Candida glabrata. FEMS Yeast Research 16 (2), fov110.

Gadanho, M. & Sampaio, J. P. 2004 Application of temperature gradient gel electrophoresis to the study of yeast diversity in the estuary of the Tagus River, Portugal. FEMS Yeast Research 5, 253–261.

Göttlich, E., van der Lubbe, W., Lange, B., Fieler, S., Melchert, I. & Reifenrath, M. 2002 Fungal flora in groundwater-derived public drinking water. International Journal of Hygiene and Environmental Health 205, 269–279.

Hageskål, G., Lima, N. & Skaar, I. 2009 The study of fungi in drinking water. Mycological Research 113, 165–172.

Hagler, A. N. & Mendonca-Hagler, L. C. 1998 Yeasts from marine and estuarine waters with different levels of pollution in the States of Rio de Janeiro, Brazil. Applied and Environmental Microbiology 41 (1), 173–178.

Hallen-Adams, H. E. & Suhr, M. J. 2017 Fungi in the healthy human gastrointestinal tract. Virulence 8 (3), 352–358.

Hurtado, J. C., Castillo, P., Fernandes, F., Navarro, M., Lovane, L., Casas, I., Quintó, L., Marco, F., Jordao, D., Ismail, M. R., Lorenzoni, C., Martínez-Palhares, A. E., Ferreira, L., Lacerda, M., Monteiro, W., Sanz, A., Letang, E., Marimon, L., Jesri, S., Cossa, A., Mandomando, I., Vila, J., Bassat, Q., Ordí, J., Menéndez, C., Carrilho, C. & Martínez, M. J. 2009 Mortality due to Cryptococcus neoformans and Cryptococcus gattii in low-income settings: an autopsy study. Scientific Reports 9 (1), 7493.

Joint United Nations Programme on HIV/AIDS (UNAIDS) 2019 People living with HIV receiving ART – as of June (#). Available from: http://aidsinfo.unaids.org/ (accessed 2 December 2019).

Kanzler, D., Buzina, W., Paulitsch, A., Haas, D., Platzer, S., Marth, E. & Mascher, F. 2008 Occurrence and hygienic relevance of fungi in drinking water. Mycoses 51, 165–169.

Karimi, M. & Hassanzhahian, M. 2016 Isolation and characterization of phenol degrading yeasts from wastewater in the coking plant of Zarand, Kerman. Brazilian Society for Microbiology 47 (1), 18–24.

Katsanou, K. & Karapanagioti, H. K. 2017 Surface water and groundwater sources for drinking water. In: The Handbook of Environmental Chemistry (A. Gil, L. A. Galeano & M. Vicente, eds). Springer, Berlin, pp. 1–19.

Kirschner, A., Reischer, G. H., Jakwerth, S., Savio, D., Ixennaier, S., Toth, E., Sommer, R., Mach, R. L., Linke, R., Eiler, A., Kolarevic, S. & Farnleitner, A. H. 2017 Multiparametric monitoring of microbial faecal pollution reveals the dominance of human contamination along the whole Danube River. Water Research 124, 543–555.

Kowalski, M., Wolany, J., Pustuszena, J. S., Plazza, G., Wlazlo, A., Ulfig, K. & Malina, A. 2017 Characteristics of airborne bacteria and fungi in some Polish wastewater treatment plants. International Journal of Environmental Science and Technology 14, 2181.

Kullberg, B. J. & Arendrup, M. C. 2015 Invasive candidiasis. The New England Journal of Medicine 373, 1445–1456.

Kurtzman, C. P. & Robnett, C. J. 1998 Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequence. Antonie Leeuwenhoek 73, 331–371.

Lamastra, L., Sicu, N. A. & Trevisan, M. 2018 Sewage sludge for sustainable agriculture: contaminants’ contents and potential use as fertilizer. Chemical and Biological Technologies in Agriculture 5, 10.

Libkind, D., Buzzini, P., Turchetti, B. & Rosa, C. A. 2017 Yeasts in continental and seawater. In: Yeasts in Natural Ecosystems: Diversity (P. Buzzini, M. Lachance & A. Yurkov, eds). Springer, Cham, pp. 1–61.

Lièbana, R., Arregui, L., Belda, I., Gamella, L., Santos, A., Marquina, D. & Serrano, S. 2011 Membrane bioreactor wastewater treatment plants reveal diverse yeast and protist communities of potential significance in biofouling. Biofouling 31 (1), 71–82.

Maciel, N. O., Johann, S., Brandão, L. R., Kucharíková, S., Morais, C. G., Oliveira, A. P., Freitas, G. J., Borelli, B. M., Pellizzari, M. F., Santos, A. D., Dijk, V. P. & Rosa, C. A. 2019 Occurrence, antifungal susceptibility, and virulence factors of...
opportunistic yeasts isolated from Brazilian beaches. *Memórias do Instituto Oswaldo Cruz* 14 (114), e180566.

Mada, P. K., Jamil, R. T. & Alam, M. U. 2017 Cryptococcus (Cryptococcus). StatPearls Publishing. Treasure Island, FL.

Mahgoub, S., Tsioptsias, C. & Samara, P. 2016 Biodegradation and decolorization of melanoidin solutions by manganese peroxidase yeasts. *Water Science and Technology* 73 (10), 2456–2445.

Meade, E., Slattery, A. M. & Garvey, M. 2017 Antimicrobial resistance: an agent in zoonotic disease and increased morbidity. *Journal of Clinical and Experimental Toxicology* 1 (1), 30–37.

Medeiros, O. A., Kohler Hamdan, J., Missigia, B., Barbosa, F. & Rosa, C. 2008 Diversity and antifungal susceptibility of yeasts from tropical fresh environments in south-eastern Brazil. *Water Research* 42, 3921–3929.

Medeiros, A. O., Missagia, B. S., Brandão, L. R., Callisto, M., Barbosa, F. A. R. & Rosa, C. A. 2012 Water quality and diversity of yeasts from tropical lakes and rivers from the Rio Doce basin in South-eastern Brazil. *Brazilian Journal of Microbiology* 43, 1582–1594.

Messenguy, F., Bruno, A. & Dubois, E. 2006 Diversity of nitrogen metabolism among yeast species: regulatory and evolutionary aspects. In: *Biodiversity and Ecophysiology of Yeasts*, Vol. 7 (C. A. Rosa & P. Gabor, eds). Springer, Berlin, pp. 123–155.

Mnge, P., Okeleye, B. I., Vasaikar, S. D. & Apalata, T. 2017 Species distribution and antifungal susceptibility patterns of *Candida* isolates from a public tertiary teaching hospital in the Eastern Cape Province, South Africa. *Brazilian Journal of Medical and Biological Research* 50 (6), e5797.

Moges, B., Bitew, A. & Shewaamare, A. 2016 Spectrum and the in vitro antifungal susceptibility pattern of yeast isolates in Ethiopian HIV patients with oropharyngeal candidiasis. *International Journal of Microbiology* 8, 3057817.

Monapathi, M. E., Bezuidenhout, C. C. & Rhode, O. H. J. 2017 Water quality and antifungal susceptibility of opportunistic yeast pathogens from rivers. *Water Science and Technology* 6 (75), 1319–1331.

Monapathi, M. E., Bezuidenhout, C. C. & Rhode, O. H. J. 2018 Efflux pumps genes of clinical origin are related to those from fluconazole resistant *Candida albicans* isolates from environmental water. *Water Science and Technology* 77 (3–4), 899–908.

Montes de Oca, R., Salem, A. Z. M., Kohlf, A. E., Monroy, H., Pérez, L. S., Zamora, J. L. & Gutiérrez, A. 2016 Yeast: description and structure. In: *Yeast Additives and Animal Production* (A. Z. M. Salem, A. E. Kohlf & A. K. Puniya, eds). PubBioMed Central Research Publishing Services, India, pp. 4–13.

Morschhäuser, J. 2016 The development of fluconazole resistance in *Candida albicans* – an example of microevolution of a fungal pathogen. *Journal of Microbiology* 3 (54), 192–201.

Moubasher, A. H., Abdel-Sater, M. A. & Soliman, Z. S. M. 2018 Diversity of yeasts and filamentous fungi in mud from hypersaline and freshwater bodies in Egypt. *Czech Mycology* 70 (1), 1–32.

Nagahama, T. 2006 Yeast biodiversity in freshwater, marine water and deep-sea environments. In: *Biodiversity and Ecophysiology of Yeasts* (C. A. Rosa & P. Gabor, eds). Springer, Berlin, pp. 241–261.

Novak Babić, M. N., Zalar, P., Ženko, B., Džeroski, S. & Gunde-Cimerman, N. 2016 Yeasts and yeast-like fungi in tap water and groundwater, and their transmission to household appliances. *Fungal Ecology* 20, 30–39.

Novak Babić, M., Gunde-Cimerman, N., Varga, M., Tischner, Z., Magyar, D., Verissimo, C., Sabino, R., Carla Viegas, C., Meye, W. & Brandão, J. 2017 Fungal contaminants in drinking water regulation? A tale of ecology, exposure, purification and clinical relevance. *International Journal of Environmental Research and Public Health* 14 (6), 636.

Ogden, L. E. 2017 The complex business of sustainable exploitation of wildlife: researchers grapple with the many unknowns. *BioScience* 67 (8), 691–697.

Okuno, M., Kajitani, R., Ryuji, R., Morimoto, H., Kodama, Y. & Itoh, T. 2016 Next-generation sequencing analysis of lager brewing yeast strains reveals the evolutionary history of interspecies hybridization. *DNA Research: An International Journal for Rapid Publication of Reports on Genes and Genomes* 23 (1), 67–80.

Oliveira, H. M., Santos, C., Paterson, R. R., Gusmão, N. B. & Lima, N. 2016 Fungi from a groundwater-fed drinking water supply system in Brazil. *International Journal of Environmental Research and Public Health* 13 (3), 304.

Pereira, V. M., Basilio, M. C., Fernandes, D., Domingues, J. M., Paiva Benoliel, M. J., Crespo, M. T. & San Romão, M. V. 2009 Occurrence of filamentous fungi and yeasts in three different drinking water sources. *Water Research* 45, 3813–3819.

Pereira, V. J., Fernandes, D., Carvalho, G., Benoliel, M. J., San Romão, M. V. & Barreto Crespo, M. T. 2010 Assessment of the presence and dynamics of fungi in drinking water sources using cultural and molecular methods. *Water Research* 44 (17), 4850–4859.

Perfect, J. R. 2017 The antifungal pipeline: a reality check. *Nature Reviews Drug Discovery* 16 (9), 605–616.

Perlin, D. & Wiederhold, M. 2017 Culture-independent methods for the detection of resistance. *Journal of Infectious Diseases* 216 (3), 458–465.

Pfeiffer, C. D., Samsa, G. P., Schell, W. A., Reller, L. B., Perfect, J. R. & Alexander, B. D. 2011 Quantitation of *Candida* CFU in initial positive blood cultures. *Journal of Clinical Microbiology* 49, 2879–2883.

Pincus, D. H., Orenza, S. & Chatatällier, S. 2007 Yeast identification – past, present and future methods. *Medical Mycology* 45, 97–121.

Pires, J. F., Cardoso, L. S., Schwam, R. F. & Silva, R. C. 2017 Diversity of microbiota found in coffee processing wastewater treatment plant. *World Journal of Microbiology and Biotechnology* 33, 211.
Polvi, E. J., Li, X., O'Meara, T. R., Leach, M. D. & Cowen, L. E. 2015 Opportunistic yeast pathogens: reservoirs, virulence mechanisms, and therapeutic strategies. *Cellular and Molecular Life Sciences* 72 (12), 2261–2287.

Potenza, L., Chitasombat, M. N., Klimko, N., Bettelli, F., Dragonetti, G., Del Princke, M. I.,ucci, M., Busca, A., Fracchiolla, N., Sciumè, M., Spolzimo, A., Delia, M., Mancini, V., Nadali, G. P., Dargenio, M., Shadrivova, O., Bacchelli, F., Aversa, F., Sanguinetti, M., Luppi, M., Kontoyiannis, D. P. & Pagano, L. 2018 *Rhodotorula* infection in haematological patient: risk factors and outcome. *Mycoses* 62 (3), 225–229.

Rajendran, R. K., Huang, S., Lin, C. & Kirschner, R. 2016 Aerobic degradation of estrogenic alkylphenols by yeasts isolated from a sewage treatment plant. *RSC Advances* 6, 82862.

Rédou, V., Navarri, M., Meslet-Cladière, L., Barbier, G. & Burgaud, G. 2015 Species richness and adaptation of marine fungi from deep-subseafloor sediments. *Applied and Environmental Microbiology* 81, 3571–3583.

Richardson, M. & Lass-Florl, C. 2008 Changing epidemiology of systemic fungal infections. *Clinical Microbiology and Infection* 14 (4), 5–24.

 Rocourt, J., BenEmbarek, P., Toyofuku, H. & Schlundt, J. 2003 Quantitative risk assessment of *Listeria monocytogenes* in ready-to-eat foods: the FAO/WHO approach. *FEMS Immunology and Medical Microbiology* 35, 263–267.

Rodrigues, F., Ludovico, P. & Leão, C. 2006 Sugar metabolism in yeasts: an overview of aerobic and anaerobic glucose catabolism. In: *Biodiversity and Ecophysiology of Yeasts*, Vol. 6 (C. A. Rosa & P. Gabor, eds). Springer, Berlin, pp. 101–121.

Romão, D., Staley, C., Ferreira, F., Rodrigues, R., Sabino, R., Veríssimo, C., Wang, P., Sadowsky, M. & Brandão, J. 2017 Next-generation sequencing and culture-based techniques offer complementary insights into fungi and prokaryotes in beach sands. *Marine Pollution Bulletin* 119, 351–358.

Rosa, C. A., Resendel, M. A., Barbosa, A. R. F., Moral, P. B. & Franzot, S. P. 1995 Yeast diversity in a mesotrophic lake on the karstic plateau of Lagoa Santa, MG-Brazil. *Hydrobiologia* 308, 103–108.

Ruosta, F. N., Charsizadeh, A., Ghahri, M., Jafari, Z. & Mirhendi, H. 2019 Frequency of uncommon clinical yeast species confirmed by ITS-Sequencing. *Archives of Clinical Infectious Diseases* 14 (1), e62816.

Samah, A. M., Shimaa, R. H. & Al-Wasify, R. S. 2014 Relative diversity of filamentous fungi and yeasts in groundwater and their correlation to fecal pollution indicators and physico-chemical parameters. *International Journal of Current Microbiology and Applied Sciences* 3, 905–919.

Sarkar, A. & Rao, B. 2016 Marine yeast: A potential candidate for biotechnological applications – A review. *Asian Journal of Microbiology, Biotechnology and Environmental Sciences* 18 (3), 627–634.

Scheinemann, H. A., Dittmar, K., Stöckel, F. S., Müller, H. & Krüger, M. E. 2015 Hygienisation and nutrient conservation of sewage sludge or cattle manure by lactic acid fermentation. *PLOS ONE* 10 (5), e0118230.

Sherif, S. O., Salama, E. E. & Abdel-Wahhab, M. A. 2009 Mycotoxins and child health: the need for health risk assessment. *International Journal of Hygiene and Environmental Health* 212, 347–368.

Shokohi, T., Moradi, N., Badram, L., Badali, H., Ataollahi, R. M. & Arsanjani, M. H. 2018 Molecular identification of clinically common and uncommon yeast species. *Fundishapur Journal of Microbiology* 11 (10), e66240.

Silva-Bedoya, L. M., Ramírez-Castrillón, M. & Osorio-Cadavid, E. 2014 Yeast diversity associated to sediments and water from two Colombian artificial lakes. *Brazilian Journal of Microbiology* 45 (1), 135–142.

Singh, A. C., Shaw, H., Rhodes, V. & Hart, A. 2016 Review of antimicrobial resistance in the environment and its relevance to environmental regulators. *Frontiers in Microbiology* 7, 1728.

Sláviková, E. & Vadkertiová, R. 1997 Seasonal occurrence of yeasts and yeast-like organisms in the river Danube. *Antonie van Leeuwenhoek* 72, 77–80.

Sláviková, E., Vadkertiová, R. & Kocková-Kratochvílová, A. 1992 Yeasts isolated from artificial lake waters. *Canadian Journal of Microbiology* 38, 1206–1209.

Sumaila, R. U. & Cisneros-Montemayor, A. M. 2010 A global estimate of benefits from ecosystem-based marine recreation: potential impacts and implications for management. *Journal of Bioeconomics* 12 (3), 245–268.

Teleni, A., Steckelberg, J. M., Stockman, L., Edson, R. S. & Roberts, G. D. 1991 Quantitative blood cultures in candididemia. *Mayo Clinic Proceedings* 66, 1120–1123.

van Uden, N. & Ahearn, D. C. 1965 Occurrence and population densities of yeast species in a freshwater lake. *Antonie Van Leeuwenhoek* 29, 308–312.

Van Wyk, D. A. B., Beuzuidenhout, C. C. & Rhode, O. H. J. 2012 Diversity and characteristics of yeasts from water resources in the North West Province, South Africa. *Water Science and Technology Water Supply* 12 (4), 422–430.

Wada, Y., Wisser, Y. D. & Bierkens, M. F. P. 2014 Global modelling of withdrawal, allocation and consumptive use of surface water and groundwater resources. *Earth System Dynamics* 5, 15–40.

Wang, Y., Qiu, L. & Hu, M. 2018 Application of yeast in the wastewater treatment. *E3S Web of Conferences* 53, 04025.

Woollett, L. L. & Hendriks, L. R. 1970 Ecology of yeasts in polluted water. *Antonie van Leeuwenhoek* 36, 427–435.

Yamaguchi, U. M., Rampazzo, R. P., Yamada-Ogatta, S. F., Nakamura, C. V., Ueda-Nakamura, T. & Filho, B. D. P. 2007 Yeast and filamentous fungi in bottled mineral water and tap water from municipal supplies. *Brazilian Archives of Biology and Technology* 50, 1–9.

Yang, Q., Angly, F. E., Wang, Z. & Zhang, H. 2007 Yeast and filamentous fungi in bottled mineral water and tap water from municipal supplies. *Brazilian Archives of Biology and Technology* 50, 1–9.
Zaky, A. S., Tucker, G. A., Daw, Z. Y. & Du, C. 2014 Marine yeast isolation and industrial application. *FEMS Yeast Research* **14** (6), 813–825.

Zaky, A. S., Greetham, D., Louis, E. J., Tucker, G. A. & Du, C. 2016 A new isolation and evaluation method for marine-derived yeast spp. with potential applications in industrial biotechnology. *Journal of Microbiology and Biotechnology* **26** (11), 1891–1907.

Zenani, V. & Mistri, A. 2005 *A Desktop Study on the Cultural and Religious Uses of Water Using Regional Case Studies from South Africa*. Department of Water Affairs and Forestry, Pretoria, South Africa.

Zupančič, J., Novak Babić, M., Zalar, P. & Gunde-Cimerman, N. 2016 The black yeast *Exophiala dermatitidis* and other selected opportunistic human fungal pathogens spread from dishwashers to kitchens. *PLoS ONE* **11**, e0148166.

Zuza-Alves, D. L., de Medeiros, S. S., de Souza, L. B., Silva-Rocha, W. P., Francisco, E. C., de Araújo, M. C., Lima-Neto, R. G., Neves, R. P., de Azevedo Melo, A. S. & Chaves, G. M. 2016 Evaluation of virulence factors in vitro, resistance to osmotic stress and antifungal susceptibility of *Candida tropicalis* isolated from the coastal environment of Northeast Brazil. *Frontiers in Microbiology* **7**, 1783.

First received 3 December 2019; accepted in revised form 3 March 2020. Available online 13 March 2020