Prevalence and socio-demographic correlates of poor sleep quality among older adults in Hebei province, China

Yun-Shu Zhang1,7, Yu Jin2,7, Wen-Wang Rao2,7, Yuan-Yuan Jiang2, Li-Jun Cui3, Jian-Feng Li3, Lin Li3, Gabor S. Ungvari3,4, Chee H. Ng5, Ke-Qing Li1,6* & Yu-Tao Xiang2,6*

Poor sleep quality is associated with negative health outcomes and high treatment burden. This study investigated the prevalence of poor sleep quality and its socio-demographic correlates among older adults in Hebei province, which is a predominantly agricultural region of China. A large-scale cross-sectional epidemiological survey was conducted from April to August 2016. The study used a multistage, stratified, cluster random sampling method. Sleep quality was assessed by the Pittsburgh Sleep Quality Index (PSQI). A total of 3,911 participants were included. The prevalence of poor sleep quality (defined as PSQI > 7) was 21.0% (95% CI 19.7–22.2%), with 22.3% (95% CI 20.9–23.8%) in rural areas and 15.9% (95% CI 13.4–18.4%) in urban areas. Multivariable logistic regression analyses found that female gender (P < 0.001, OR 2.4, 95% CI 2.00–2.82), rural areas (P = 0.002, OR 1.5, 95% CI 1.14–1.86), presence of major medical conditions (P < 0.001, OR 2.4, 95% CI 2.00–2.96) and family history of psychiatric disorders (P < 0.001, OR 2.7, 95% CI 1.60–4.39) were independently associated with higher risk of poor sleep quality. Poor sleep quality was common among older adults in Hebei province of China. Regular assessment of sleep quality and accessible sleep treatments for older population should be provided in agricultural areas of China.

Older adults are more likely to suffer from poor sleep quality compared to younger adults due to more frequent physical and mental disorders1. More than half of older adults complain about poor sleep quality2,3, including increased awakenings, low sleep efficiency, poor subjective sleep quality and decreased night sleep duration1,4. Poor sleep quality is associated with negative health outcomes, such as fatigue, low quality of life, risk of medical and psychiatric comorbidities and even mortality5–7.

Sleep quality can be measured with both objective [e.g., polysomnography (PSG)], and subjective instruments [e.g., sleep diary and Pittsburgh Sleep Quality Index (PSQI)]8. Of these, the PSQI is the most widely used measure of global sleep quality which covers subjective sleep quality, sleep latency, sleep duration, sleep efficiency, sleep disturbance, daytime dysfunction, and use of sleep medications.

Determining the prevalence of poor sleep quality is important for health professionals and policymakers to understand its impact on population health and the need for appropriate preventive strategies and health resource allocations. In the past decade, epidemiological studies have examined the prevalence of poor sleep quality among older adults in various countries. For instance, the prevalence of poor sleep quality in older adults was 37.3% in Japan9, while the corresponding figure was 64.3% in Korea10. Several studies explored sleep quality among older adults in low- and middle-income countries in Africa, Asia and North America, with the prevalence ranging from 7.7% to 40.0%11–13. As the pattern of sleep problems including poor sleep quality is greatly influenced by

1Hebei Provincial Mental Health Centre, Hebei Provincial Sixth People’s Hospital, Baoding, Hebei, China. 2Unit of Psychiatry, Centre for Precision Medicine Research and Training, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, 3/F, Building E12, Avenida da Universidade, Taipa, Macau SAR, China. 3Division of Psychiatry, School of Medicine, University of Western Australia, Perth, Australia. 4University of Notre Dame, Australia, Fremantle, Australia. 5Department of Psychiatry, The Melbourne Clinic and St Vincent’s Hospital, University of Melbourne, Richmond, VIC, Australia. 6Center for Cognition and Brain Sciences, University of Macau, Macao SAR, China. 7These authors contributed equally: Yun-Shu Zhang, Yu Jin and Wen-Wang Rao. *email: like1002@sina.com; xyutly@gmail.com
sociocultural and economic factors14,15, the study of poor sleep quality prevalence across different countries is thus important. In China, the population aged 65 years and above increased to 8.2% in 2010 and the figure is expected to reach 23.3% by 205016. Considering the negative impact of poor sleep quality on health, it is essential to examine the prevalence of poor sleep quality in older population in China. Previous studies have examined the patterns of poor sleep quality in Chinese older adults and the prevalence varied from 32.9% to 49.7\%13,17–22. However, most studies on poor sleep quality in China were conducted in major cities, such as Beijing, Shanghai and Guangzhou17,18,23,24, while very limited data are available in agricultural areas.

Hence, we investigated the prevalence of poor sleep quality and its associated correlates in older adults in Hebei province, which is a predominantly agricultural area of China. We hypothesized that the prevalence of poor sleep quality in older adults in Hebei province would be different from previous findings obtained in major cities of China.

Results

Characteristics of participants.

Of the 23,675 persons (\(\geq 18\) years of age) invited to participate in the survey, 20,884 met the study entry criteria and completed the assessments, giving a participation rate of 88.2\%. Finally, 3,911 participants (1,892 men and 2,019 women) aged \(\geq 65\) years were included in this study. Table 1 presents the socio-demographic characteristics of participants by sleep quality. Gender, marital status, residential area, education level, annual household income, presence of major medical conditions and family history of psychiatric disorders significantly differed between the good and poor sleep quality groups (all \(P\) values < 0.05).

Table 2 shows PSQI total and component scores of the participants.

Prevalence of poor sleep quality.

The prevalence of poor sleep quality (defined as PSQI > 7) was 21.0\% (95\% CI 19.7–22.2\%). Table 3 shows prevalence of poor sleep quality by age, gender and region. The prevalence of poor sleep quality was 22.3\% (95\% CI 20.9–23.8\%) in rural sample, with 14.1\% (95\% CI 12.3–15.8\%) in men and 30.4\% (95\% CI 28.1–32.7\%) in women. In contrast, the prevalence of poor sleep quality was 15.9\% (95\% CI 13.4–18.4\%) in urban sample, with 10.5\% (95\% CI 7.4–13.7\%) in men and 20.2\% (95\% CI 16.5–23.9\%) in women. The prevalence of poor sleep quality in men was significantly lower than women in both rural and urban regions.

Correlates of poor sleep quality.

Table 4 presents the independent correlates of poor sleep quality. Female gender (\(P<0.001\), OR 2.4, 95\% CI 2.00–2.82), rural areas (\(P=0.002\), OR 1.5, 95\% CI 1.14–1.86), presence of major medical conditions (\(P<0.001\), OR 2.4, 95\% CI 2.02–2.96) and family history of psychiatric disorders (\(P<0.001\), OR 2.7, 95\% CI 1.60–4.39) were independently associated with poor sleep quality.

Table 1. Socio-demographic characteristics of the study population (N = 3,911) by sleep quality. Bolded values: <0.05; M mean, PSQI Pittsburgh Sleep Quality Index, SD standard deviation. Good sleep quality was defined as Pittsburgh Sleep Quality Index (PSQI) < 7. aPrimary school or below = less than 7 years of education. bLow income: annual household income < RMB30,000 (approximately USD4,242). cMajor medical conditions included hypertension, diabetes, cerebrovascular disease, cancer, and gastrointestinal diseases.

Variables	Whole sample (N = 3,911)	Those with good sleep quality (N = 3,091)	Those with poor sleep quality (N = 820)	Statistics						
	n	%	n	%	n	%	\(\chi^2\)	df	\(P\)	
Age (years)										
65–74	2,754	70.4	2,165	70.0	589	71.8	1.0	1	0.32	
\(\geq 75\)	1,157	29.6	926	30.0	231	28.2				
Male	1,892	48.4	1,639	53.0	253	30.9	127.6	1	< 0.001	
Married/cohabiting	3,036	77.6	2,433	78.7	604	73.5	10.0	1	0.002	
Urban area	826	21.1	695	22.5	131	16.0	16.5	1	< 0.001	
Education level										
Primary school or belowa	2,640	67.5	2,026	65.5	614	74.9	25.7	1	< 0.001	
Secondary school or higher	1,271	32.5	1,065	34.5	206	25.1				
Unemployed	1,379	35.3	1,106	35.8	273	33.3	1.7	1	0.19	
Low incomeb	3,016	77.1	2,340	75.7	676	82.4	14.6	1	< 0.001	
Living alone	642	16.4	491	15.9	151	18.4	3.0	1	0.08	
Religious beliefs	268	6.8	199	6.4	68	8.3	3.5	1	0.06	
Health insurance	3,822	97.7	3,017	97.6	805	98.2	0.93	1	0.34	
Major medical conditionsc	2,572	65.8	1,911	61.8	661	80.6	101.6	1	< 0.001	
Family history of psychiatric disorders	70	1.8	41	1.3	29	3.5	18.0	1	< 0.001	
Mean SD							Mean SD	t	df	\(P\)
Age (years)	72.00	6.09	72.02	6.13	71.94	5.96	0.3	3,909	0.73	
Discussion

This large-scale epidemiological study found that the prevalence of poor sleep quality (defined as PSQI >7) was 21.0% (95% CI 19.7–22.2%) in Chinese older adults, which is significantly associated with female gender, rural areas, presence of major medical conditions and family history of psychiatric disorders.

A previous study found that 15.7% of 7,154 older adults aged ≥60 years in China reported moderate and severe sleep problems as measured by a question about sleep quality. Another study of older adults (aged 50–70 years) in Beijing and Shanghai found that 16% of 3,289 participants reported poor sleep quality (19% Beijing vs. 13% Shanghai) as measured by self-reported sleep duration. In a study of older adults aged ≥65 years in 22 provinces in China, 35% of 15,638 participants reported “fair to very bad” sleep quality according to a

Table 2. PSQI total and component scores in all participants. M mean, PSQI Pittsburgh Sleep Quality Index, SD standard deviation.

Variable	Total (N=3,911)	Male (N=1,892)	Female (N=2,019)	Rural (N=3,085)	Urban (N=826)					
	M	SD								
PSQI total score	5.05	3.78	4.30	3.21	5.75	4.13	5.17	3.87	4.62	3.42
Subjective sleep quality	1.02	0.76	1.05	0.83	1.05	0.86	1.05	0.83	1.05	0.83
Sleep latency	1.05	0.83	1.06	0.95	1.05	0.95	1.05	0.95	1.05	0.95
Sleep duration	0.80	0.91	0.80	0.91	0.80	0.91	0.80	0.91	0.80	0.91
Sleep efficiency	0.33	0.80	0.33	0.80	0.33	0.80	0.33	0.80	0.33	0.80
Sleep disturbance	0.90	0.62	0.90	0.62	0.90	0.62	0.90	0.62	0.90	0.62
Daytime dysfunction	0.78	0.97	0.78	0.97	0.78	0.97	0.78	0.97	0.78	0.97
Use of sleep medication	0.16	0.61	0.16	0.61	0.16	0.61	0.16	0.61	0.16	0.61

Table 3. Prevalence of poor sleep quality by age, gender and region. CI confidential interval.

Age (years)	Male % (95% CI)	Female % (95% CI)	Total % (95% CI)
Whole sample			
65–74	12.4 (10.6–14.1)	30.3 (27.9–32.7)	21.4 (19.9–22.9)
≥ 75	16.0 (12.9–19.2)	23.2 (19.9–26.5)	20.0 (17.7–22.3)
Total	13.4 (11.8–14.9)	28.1 (26.1–30.0)	21.0 (19.7–22.2)
Rural sample			
65–74	12.9 (10.9–14.8)	32.9 (30.1–35.7)	22.7 (21.0–24.5)
≥ 75	17.4 (13.6–21.1)	24.6 (20.7–28.5)	21.3 (18.6–24.0)
Total	14.1 (12.3–15.8)	30.4 (28.1–32.7)	22.3 (20.9–23.8)
Urban sample			
65–74	9.9 (6.1–13.7)	20.7 (16.0–25.3)	15.8 (12.7–18.9)
≥ 75	11.8 (6.1–17.5)	19.3 (13.1–25.4)	16.0 (11.7–20.2)
Total	10.5 (7.4–13.7)	20.2 (16.5–23.9)	15.9 (13.4–18.4)

Table 4. Independent correlates of poor sleep quality by multiple logistic regression analysis. Bolded values: < 0.05; CI confidential interval, OR odds ratio.

Variables	Multivariate regression analysis	P value
Female gender	2.4	<0.001
Rural region	1.5	0.002
Married/cohabiting	0.9	0.539
Primary school or below*	1.2	0.100
Low incomeb	1.1	0.429
Major medical conditionsc	2.4	<0.001
Family history of psychiatric disorders	2.7	<0.001

*Primary school or below = less than 7 years of formal education.

Low income: annual household income < RMB30,000 (approximately USD4,242).

Major medical conditions included hypertension, diabetes, cerebrovascular disease, cancer, and gastrointestinal diseases.
question on “how do you rate your sleep quality recently?”22. However, due to the use of different measures on sleep quality, direct comparisons between results could not be conducted.

The prevalence of poor sleep quality among the elderly in this study (21.0%, 95% CI 19.7–22.2%) is lower compared to most of other studies using PSQI in both China and other countries, such as Japan (37.3%)19, and Korea (64.3%)16. The prevalence of poor sleep quality (PSQI > 5) among the older adults (aged ≥ 60) was 47.1% in Hong Kong24, while the corresponding figure (aged ≥ 65) was 49% in Taiwan23. In mainland China, the prevalence of poor sleep quality among older adults (aged ≥ 60) was 41.5% (95% CI 38.6–44.5%) in Shanghai22, and 49.7% in Anhui province24. In addition, the PSQI total score in this study was 5.05 ± 3.78, which is also lower than the corresponding figures in Taiwan (6.3 ± 4.4)23, Anhui province (7.74 ± 3.06) and South Korea (6.42 ± 3.60)10. The lower prevalence of poor sleep quality in this study compared to other studies could be possibly explained by several reasons. First, different definitions of ‘older adults’ (e.g., ≥ 60 years22,23,25 and ≥ 65 years10,20) and definitions of ‘poor sleep quality’ (e.g., PSQI total scores of ≥ 520,23,25, ≥ 621 and ≥ 71) were applied in different studies. Second, different study periods, sample sizes, sampling methods (one stage vs. multi-stage), interview techniques (face-to-face vs. telephone interview) and statistical methods (e.g., univariate vs. multivariate analyses) may result in different findings. Finally, Hebei province is a predominantly agricultural area, with less urbanization and industrialization compared to major cities involved in previous studies, therefore, residents in Hebei may have less daily living pressures, which could in turn reduce the likelihood of poor sleep quality.

Poor sleep quality was more common in older women than in men, which supports previous findings26–28. Generally, older women often have heavy household responsibilities and burden in China, which can lead to higher risk of sleep problems and depression21,30. In addition, women may be more sensitive to negative life events, such as the loss of family members or friends, which may result in poor sleep quality28. Furthermore, in China older women usually have lower income, fewer social activities, and poorer social support compared to men, all of which are associated with higher risk of poor sleep quality28.

Higher prevalence of poor sleep quality in rural (22.3%) than urban (15.9%) residents is consistent with earlier findings27. Older adults in rural areas are burdened with heavy farm work and physical pain or other health problems, which may affect sleep quality32. Furthermore, inadequate access to healthcare services and limited awareness of sleep hygiene in rural regions may increase the risk of sleep problems. Similar to earlier findings, the presence of major medical conditions was significantly associated with poor sleep quality. In this study, major medical conditions included hypertension, diabetes, cerebrovascular disease, cancer, and gastrointestinal diseases, all of which could lead to depression, anxiety and poor sleep quality13,34,35. Moreover, adverse effects of certain medications for major medical conditions could also lead to poor sleep quality1. Subjects with family history of psychiatric disorders were more likely to suffer from psychiatric disorders, which, in turn, could worsen sleep quality. Moreover, sleep problems were significantly associated with psychiatric disorders. For example, studies found that sleep problems could be a prodromal symptom of some psychiatric disorders, such as depression36–38, and there was a high rate of comorbidity between sleep problems and some psychiatric illness, particularly mood and anxiety disorders39. All these factors could explain the association between poor sleep quality and family history of psychiatric disorders.

The strengths of this study included the inclusion of agricultural region, large sample size, multistage random sampling, and use of standardized instrument on sleep quality. However, there are several limitations to this study. First, this was a cross-sectional study, thus the causal relationship between poor sleep disturbances and other variables could not be verified. Second, people who could not understand the content of assessments were excluded, which could lead to potential selection bias. Third, use of medications for sleep problems, such as sleeping pills, were not recorded. Fourth, poor sleep quality was only measured by a self-administered instrument, rather than objective measures.

In conclusion, poor sleep quality was common among older adults in Hebei province of China, although the prevalence was relatively lower than that in most studies in China and other countries. In order to reduce the negative impact of poor sleep quality on health outcomes, regular assessment of sleep quality and accessible sleep treatments for older population should be provided in agricultural areas of China.

Methods

Subjects and sampling. This study, conducted from April 1 to August 31, 2016, was part of a large-scale cross-sectional epidemiological survey on mental health in Hebei province, China40. The study protocol was approved by the Human Research Ethics Committee of Hebei Mental Health Centre. All methods were performed in accordance with the relevant guidelines and regulations.

The sample size was calculated using the program OpenEpi by the formula:

\[n = \left(\frac{DEFF \times Np(1-p)}{\left(\frac{d^2}{Z_{(1-\alpha/2)}^2}\right) \times (N-1) + p \times (1-p)} \right) \times \left(\frac{1}{1 - \frac{p \times (1-p)}{N}} \right) \]

Given the finding of a previous survey in Hebei province (p; the prevalence of any type of psychiatric disorders: 18.51%)41, design effect of 2.0, significance level of 99% (two-tailed), and the precision of the estimate of 0.1p (d), the sample size should be at least 20,013. With assumed response rate of 80%, a total of 24,000 participants should be included.

The inclusion criteria were: (1) aged 65 or above; (2) permanent residents in Hebei province; (3) ability to understand the content of the assessment; and (4) willingness to participate in this study. Written informed consent was obtained from all participants. A multistage, stratified cluster random sampling method was used in this study40. In Hebei province, neighborhood communities and villages each with several hundreds of households are the basic community units in urban and rural areas, respectively. The sampling process included first, all the eleven administrative regions of Hebei province were included in this survey. Urban and rural residents were categorized according to the household registration system in local public security departments. Second, following an earlier epidemiological survey in Hebei province42 and taking into consideration the population ratio of urban to rural areas, 1–4 districts and 1–7 towns were randomly selected by a computer-generated random
number table in each administrative region. Finally, this survey included 20 communities in urban regions and 58 villages in rural regions, from which 23,675 eligible residents were randomly selected and invited to join this study during the study period.

Assessment tools and procedure. Basic socio-demographic and clinical characteristics, such as age, gender, marital status, residential area, education level, employment status, annual household income, co-living status, religious beliefs, health insurance, presence of major medical conditions and family history of psychiatric disorders, were collected using a data collection sheet designed for this study. Following previous studies, marital status was dichotomized: married/cohabiting and others (e.g., single, divorced and widowhood).

Sleep quality was assessed by the validated Chinese version of the PSQI. The PSQI is a self-administered scale to measure sleep quality over the past 1-month, with 19 items covering seven domains, including subjective sleep quality, sleep latency, sleep duration, sleep efficiency, sleep disturbance, daytime dysfunction, and use of sleep medications. Each item is scored from 0 to 3, with a higher score indicating lower sleep quality. A PSQI total score of ≥7 indicates “poor sleep quality” with a sensitivity of 98.3% and specificity of 90.2%.

Statistical analysis. Epi data software (Version 3.1, Odense, Denmark) was used to establish the database. Statistical analyses were conducted using SPSS, Version 24.0 (IBM SPSS, IBM Corp., Armonk, NY, USA). Comparisons between good and poor sleep quality groups were conducted using Chi-square test and two independent samples t-test, as appropriate. The normal distribution of continuous variables was checked using Kolmogorov–Smirnov test. Multiple logistic regression analysis with the “enter” method was used to examine the independent correlates of poor sleep quality. Poor sleep quality was entered as the dependent variable, while those that significantly differed between the two groups in the univariate analyses were entered as independent variables. Significant level was set at 0.05, with two-sided tests.

Data availability
The Clinical Research Ethics Committee of Hebei Mental Health Hospital that approved the study prohibits the authors from making the research data set publicly available. Readers and all interested researchers may contact Dr. Keqing Li (Email address: likel002@si.com) for details. Dr. Li could apply to the Clinical Research Ethics Committee of Hebei Mental Health Hospital for the release of the data.

References
1. Phillips, B. & Ancoli-Israel, S. Sleep disorders in the elderly. Sleep Med. 2, 99–114. https://doi.org/10.1016/S1389-9457(00)00083-6 (2001).
2. Ohayon, M. M., Carskadon, M. A., Guilleminault, C. & Vitiello, M. V. Meta-analysis of quantitative sleep parameters from childhood to old age in healthy individuals: Developing normative sleep values across the human lifespan. Sleep 27, 1255–1273. https://doi.org/10.1093/sleep/27.7.1255 (2004).
3. Sateia, M., Doghramji, K., Kauri, P. & Morin, C. Evaluation of chronic insomnia. An American Academy of Sleep Medicine review. Sleep 23, 243–308 (2000).
4. Foley, D., Ancoli-Israel, S., Britz, P. & Walsh, J. Sleep disturbances and chronic disease in older adults: Results of the 2003 National Sleep Foundation Sleep in America Survey. J. Psychosom. Res. 56, 497–502. https://doi.org/10.1016/j.jpsychres.2004.02.010 (2004).
5. Cable, N., Chandola, T., Aida, J., Sekine, M. & Netuveli, G. Can sleep disturbance influence changes in mental health status? Longitudinal research evidence from ageing studies in England and Japan. Sleep Med. 30, 216–221. https://doi.org/10.1016/j.sleep.2016.11.017 (2017).
6. Li, S. X. et al. Sleep disturbances and suicide risk in an 8-year longitudinal study of schizophrenia-spectrum disorders. Sleep 39, 1275–1282. https://doi.org/10.5656/sleep.39.9.2016 (2016).
7. Foley, D. J. et al. Sleep complaints among elderly persons: an epidemiologic study of three communities. Sleep 18, 425–432. https://doi.org/10.1093/sleep/18.6.425 (1995).
8. Buysse, D. J., Reynolds, C. F. III., Monk, T. H., Berman, S. R. & Kupfer, D. J. The Pittsburgh Sleep Quality Index: A new instrument for psychiatric practice and research. Psychiatry Res. 28, 193–213. https://doi.org/10.1016/0165-1781(89)90047-4 (1989).
9. Sukegawa, T. et al. Sleep disturbances and depression in the elderly in Japan. Psychiatry Clin. Neurosci. 57, 265–270. https://doi.org/10.1111/j.1440-1819.2003.01115.x (2003).
10. Park, J. H., Yoo, M. S. & Bae, S. H. Prevalence and predictors of poor sleep quality in Korean older adults. Int. J. Nurs. Pract. 19, 116–123 (2013).
11. Mazzotti, D. R., Guindalini, C., Sosa, A. L., Ferri, C. P. & Tufik, S. Prevalence and correlates for sleep complaints in older adults in low and middle income countries: A 10/66 Dementia Research Group study. Sleep Med. 13, 697–702. https://doi.org/10.1016/j.sleep.2012.02.009 (2012).
12. Stranges, S., Tigbe, W., Gómez-Olivé, F. X., Thorogood, M. & Kandala, N.-B. Sleep problems: An emerging global epidemic? Findings from the INDEPTH WHO-SAGE study among more than 40,000 older adults from 8 countries across Africa and Asia. Sleep 35, 1173–1181. https://doi.org/10.5656/sleep.2012 (2012).
13. Endeshaw, Y. Self-reported sleep problems across the ages—an intercontinental study. J. Gerontol. Geriatr. Res. 1, 1–17. https://doi.org/10.4172/2167-7182.1000112 (2012).
14. Gureje, O., Makanjuola, V. A. & Kola, L. Insomnia and role impairment in the community. Soc. Psychiatry Psychiatr. Epidemiol. 42, 495–501. https://doi.org/10.1007/s00127-007-0183-2 (2007).
15. Ohayon, M. M. & Partinen, M. Insomnia and global sleep dissatisfaction in Finland. J. Sleep Res. 11, 339–346. https://doi.org/10.1046/j.1365-2869.2002.00317.x (2002).
16. Chen, Z., Yu, J., Song, Y. & Chui, D. Aging Beijing: Challenges and strategies of health care for the elderly. Ageing Res. Rev. 9, S2–S5. https://doi.org/10.1016/j.arr.2010.07.001 (2010).
17. Zhang, H.-S. et al. A community-based cross-sectional study of sleep quality in middle-aged and older adults. Qual. Life Res. 26, 923–933. https://doi.org/10.1007/s11136-016-1408-1 (2017).
18. Haseli-Mashhad, N. et al. Sleep quality in middle-aged and elderly Chinese: Distribution, associated factors and associations with cardio-metabolic risk factors. BMC Public Health 9, 130. https://doi.org/10.1186/1471-2458-9-130 (2009).
19. Lo, C. M. & Lee, P. H. Prevalence and impacts of poor sleep on quality of life and associated factors of good sleepers in a sample of older Chinese adults. Health Qual Life Outcomes 10, 72. https://doi.org/10.1186/1745-9972-10-72 (2012).
20. Wu, C.-Y., Su, T.-P., Fang, C.-L. & Chang, M. Y. Sleep quality among community-dwelling elderly people and its demographic, mental, and physical correlates. J. Chin. Med. Assoc. 75, 75–80. https://doi.org/10.1016/j.jcma.2011.12.011 (2012).
21. Li, J. et al. Characterization and factors associated with sleep quality among rural elderly China. Arch. Gerontol. Geriatr. 56, 237–243. https://doi.org/10.1016/j.archger.2012.08.002 (2013).
22. Gu, D., Sautter, J., Pipkin, R. & Zeng, Y. Sociodemographic and health correlates of sleep quality and duration among very old Chinese. Sleep 33, 601–610. https://doi.org/10.1093/sleep/33.5.601 (2010).
23. Luo, J. et al. Prevalence and risk factors of poor sleep quality among Chinese elderly in an urban community: Results from the Shanghai aging study. PLoS ONE 8, e81261. https://doi.org/10.1371/journal.pone.0081261 (2013).
24. Xiang, Y.-T.
25. Wu, C.-Y., Su, T.-P., Fang, C.-L. & Chang, M. Y. Sleep quality among community-dwelling elderly people and its demographic, mental, and physical correlates. J. Chin. Med. Assoc. 75, 75–80. https://doi.org/10.1016/j.jcma.2011.12.011 (2012).
26. Quan, S.-A. et al. Gender differences in sleep disturbance among elderly Koreans: Hallym Aging Study. J. Korean Med. Sci. 31, 1689–1695. https://doi.org/10.3346/jkms.2016.31.11.1689 (2016).
27. Kerkhof, G. A. Epidemiology of sleep and sleep disorders in The Netherlands. Sleep Med. 30, 229–239. https://doi.org/10.1016/j.sleep.2016.09.015 (2017).
28. Dai, J. et al. The prevalence of insomnia and its socio-demographic and clinical correlates in older adults in rural China: A pilot study. Aging Mental Health 17, 761–765. https://doi.org/10.1080/13607863.2013.781113 (2013).
29. Dzaja, A. et al. Women’s sleep in health and disease. J. Psychiatr. Res. 39, 55–76. https://doi.org/10.1016/j.jpsychires.2004.05.008 (2005).
30. Ma, X. et al. Prevalence and sociodemographic correlates of depression in an elderly population living with family members in Beijing, China. Psychiatr. Med. 38, 1723–1730. https://doi.org/10.1017/S0033291708003164 (2008).
31. Moreno, C. R., Lowden, A., Vasconcelos, S. & Marqueze, E. C. Musculoskeletal pain and insomnia among workers with different occupations and working hours. Chronobiol. Int. 33, 749–753. https://doi.org/10.3109/07420528.2016.1167730 (2016).
32. Lu, L. et al. The prevalence of sleep disturbances and sleep quality in older Chinese adults: A comprehensive meta-analysis. Behav. Sleep Med. 17, 683–697. https://doi.org/10.1080/15402002.2018.1469492 (2019).
33. Mellingen, G. D., Balter, M. B. & Uhlenhuth, E. H. Insomnia and its treatment: Prevalence and correlates. Arch. Gen. Psychiatry 42, 225–232. https://doi.org/10.1001/archpsyc.1985.0179026019002 (1985).
34. Hayashino, Y. et al. Association between number of comorbid conditions, depression, and sleep quality using the Pittsburgh Sleep Quality Index: Results from a population-based survey. Sleep Med. 11, 366–371. https://doi.org/10.1016/j.sleep.2009.05.021 (2010).
35. Wang, S. et al. Poor mental health status and its associations with demographic characteristics and chronic diseases in Chinese elderly. Soc. Psychiatry Psychiatr. Epidemiol. 51, 1449–1455. https://doi.org/10.1007/s00127-016-1271-y (2016).
36. Sutton, E. L. Psychiatric disorders and sleep issues. Med. Clin. N. Am. 98, 1123–1143. https://doi.org/10.1016/j.mcna.2014.06.009 (2014).
37. Nadorff, M. R., Drapeau, C. W. & Pigeon, W. R. Psychiatric illness and sleep in older adults: Comorbidity and opportunities for intervention. Sleep Med. Clin. 13, 81–91. https://doi.org/10.1016/j.smcn.2017.09.008 (2018).
38. Sateia, M. J. Update on sleep and psychiatric disorders. Chest 135, 1570–1579. https://doi.org/10.1378/chest.08-1834 (2009).
39. Zhang, Y. S. et al. Prevalence of major depressive disorder and its socio-demographic correlates in the general adult population in Hebei province, China. J. Affect. Disord. 222, 92–98. https://doi.org/10.1016/j.jad.2019.01.049 (2019).
40. Dean, A., Sullivan, K. & Soe, M. OpenEpi: open source epidemiologic statistics for public health, version. www.OpenEpi.com (2013).
41. Li, K. Q. et al. Epidemiological survey of mental disorders in the people aged 18 or over in Hebei Province (in Chinese). OpenEpi: open source epidemiologic statistics for public health, version. www.OpenEpi.com (2013).
42. Liu, X. et al. Reliability and validity of the Pittsburgh sleep quality index. Chin. J. Psychiatry 29, 103–107. https://doi.org/10.1007/s12295-017-3713-9 (1996).

Acknowledgements
The authors would like to thank the mental health professionals and subjects who were involved in the project.

Author contributions
Study design: Y.-S.Z., Y.J., K.-Q.L., Y.-T.X. Collection, analysis and interpretation of data: Y.J., W.-W.R., Y.J., L.-J.C., J.-F.L., L.L.. Drafting of the manuscript: Y.-S.Z., Y.J., Y.-T.X. Critical revision of the manuscript: C.H.N., G.S.U.. Approval of the final version for publication: all the authors.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to K.-Q.L. or Y.-T.X.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
