A Comprehensive Study on Shunt Active Power Filters for Grid – Tied wind systems

N. Keerthi1, A. Pandian2 and R. Dhanasekaran3
1Research Scholar, Department of EEE, KLEF, Vaddeswaram, India.
2Professor, Department of EEE, KLEF, Vaddeswaram, India.
3Professor, Department of ECE, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, TN
E-mail: keerthi.nakka1990@gmail.com

Abstract. The term power quality (PQ) has got major attention at the distribution side and consumer side in the recent years. Continuous rise of power electronic devices in grid-tied applications, uninterruptable power supplies (UPS) and motor drive applications etc, simplifies the control technology, and makes the system robust and flexible. But, these devices inject the current harmonics into the line which pollutes the electrical system. In addition, it draws more reactive power and creates the unbalance in the system. Initially, passive filtering techniques (inductors and capacitors) were used to lessen the PQ problems. Because of the lacking of the quality performance, the passive filter methods have been replaced with advanced power electronic topologies. Researchers, constantly investigates for better and cost effective solutions to improve system PQ. Shunt active power filter (SAPF) is one of the better solutions for enhancing the power quality by compensating the harmonic currents and other reactive power problems in the grid-tied system. In this paper, the basic structure of SAPF is briefly discussed along with the detailed control system functionalities. This paper provides a concise assessment on SAPF classifications, topologies and comparisons of single-phase, three-phase three-wire (3P3W) and four-wire (3P4W) systems. The features of all the configurations are provided along with their complications, so as to identify the better topology for specific application. The merits and demerits of these configurations are also discussed briefly.

Keywords: APF’s, SAPF’s, power quality, harmonics mitigation, grid-tied.

1. Introduction
Increase of nonlinear loads ensuing harmonic currents in the line and cause several power quality issues in the electrical distribution systems. The unwanted harmonics, unbalanced currents and uncompensated reactive power affects the effectiveness of the distribution system by introducing unbalances and harmonics in the source voltages. The presence of current harmonics causes severe problems, such as failures/malfunctioning of sensitive equipment, errors in the measuring equipment, and overheating of devices/instruments etc [1, 2]. According to the newest revised report of IEEE 519-2014 standards [3] the total harmonic distortion (%THD) in the current must be less than 5%. Initially, passive filtering techniques (LC filters) were used to accomplish the IEEE 519 standards [4]. But, due to their massive sizes, limited compensation abilities, electromagnetic interference (EMI) issues, the researchers are developed active power filters (APFs) to substitute them [5], [6]. The APFs (custom power devices) are shown impressive performance to minimize the current harmonics and reactive power problems caused by nonlinear loads [7-9]. APFs are small in size, vigorous in control, accurate in compensation.

Commercial SAPFs were developing by the well-known companies (Schaffner [14], ASEA Brown Boveri (ABB) [15], and Schneider Electric [16]) to accomplish the consumer’s demands. These designs are majorly of three-phase three-wire (3P3W) and four-wire (3P4W)
systems with several current and voltage ratings to accomplish industrial and commercial applications. Though, every company uses different control techniques for SAPFs. For example, Schaffner designed SAPFs with a Fast Fourier Transform (FFT) integrated digital controller [14]; ABB uses a closed-loop based digital controller [15]; whereas Schneider Company uses two control methods [16]:

1. FFT analysis based digital control method
2. Analog control method (without FFT).

Nowadays for the installation of new distribution systems, it’s better to set up 3P4W SAPF based grid tied systems, instead of single-phase [17, 18] and/or 3P3W [19] SAPF systems. The main benefit of a 3P4W SAPF structure is that, it can handle both the three-phase and single-phase loads at the same time. Hence, the 3P4W systems can be analysed as a distinct arrangement of 3P3W and single-phase two-wire (1P2W) systems. Therefore, the 3P4W SAPF based grid tied systems has grab the attention of the researchers. On the other hand, the 3P4W systems are also treated as the most sensitive networks to power quality issues. Additionally, the 3P4W SAPF system also suffers with neutral line current problem. The existence of negative-sequence and zero-sequence current components produces the unbalanced currents. These sequence components are the reasons for heating of neutral wire, overheating and malfunctioning of electrical and electronic devices. However, these power quality issues can be easily compensated by the implementation of SAPFs. Based on the applications, circumstances and the nature of the supply available, a number of SAPF topologies are implemented and successfully installed to mitigate the various power quality issues in the 1P2W, 3P3W and 3P4W systems.

This paper provides a brief concept on APFs and SAPFs for the power engineers and researchers. In the 2nd section the classification of APFs has been discussed based on the type of circuit connections with brief comparisons among them. Section 3, explains the basic structure of SAPF and the key blocks of control unit with their working importance. Classifications of SAPFs are given in section 4 and the comparisons have made in various aspects. The section 5 explains the control techniques applied under non-ideal voltage conditions.

2. Classification of APF’S based on circuit connections

The classifications based on power circuit connections are essential for choosing the applications. The APFs are divided into three groups based on the power circuit connections, specifically Shunt APFs (SAPFs), Series APFs and Other combinations of APFs. Figure 1 shows the classification of APFs based on the power circuit topologies and its connections [11]. The shunt APFs (SAPFs) are connected parallel to the line to compensate the current harmonics, whereas the series APFs are connected in series with the line to mitigate voltage harmonics. The SAPF systems are mostly used configurations in the industrial applications, to lessen the current harmonics and other power quality problems.

APFs are mainly classified into two types namely, series APF and shunt APF, which improves the power quality in single phase, 3P3W, 3P4W supply systems. The series APF mostly used compensate the voltage related issues to protect the sensitive loads from the voltage harmonic distortions in the AC line. The shunt APFs are most recognized system to perform three major functions like, current harmonics compensation (less %THD) [4, 10, 11], improving source power factor(PF) with reactive power compensation [10, 12, 13], load balance (neutral current compensation). table 1. They are (Figure 1):

1. Standard inverter (VSI or CSI),
2. Switched capacitor model,
3. Lattice structure topologies
4. Voltage regulator models.
3. Configuration of shunt active power filter (SAPF)

A. Basic structure of SAPF:
Shunt APFs (SAPFs) are the mostly used APF configurations for the current harmonics mitigation, reactive power compensation, and/or neutral current compensation in the distribution system. SAPFs with a voltage source inverter (VSI) supported by DC-link capacitor or current source inverter (CSI) supported by inductor are extensively adopted systems by industries, and distribution companies.

Normally, SAPFs are coupled at the point of common coupling (PCC), between the utility grid and the nonlinear load. The basic single line diagram of SAPF is shown in Figure 2. The function of VSI is to generate AC voltages depends on the compensation condition and the filter inductor placed in series with VSI, improves the source current shape by reducing the switching ripples. Proper tuning of amplitude and phase of three phase output voltages of VSI decides the performance of SAPFs. It develops better coordination between the SAPF and utility grid.

B. Control structure and their functions of SAPF:
Majorly SAPF topology consists of two parts, one is a standard VSI fed by a DC-link capacitor and the other one is its controller. Voltage source inverter (VSI) systematically controls and produces the filter current \(i_f \) as injection current, to compensate the unbalanced real power occurs in the dynamic operation. In addition, a filter inductor is used to lessen the ripple content in injected filter current \(i_f \). The nonlinear load injects the harmonics in the electrical
grid system current via PCC. Few examples for practical nonlinear loads are adjustable speed drives (ASD), arc furnaces, switch-mode power supplies (SMPS), and power electronic loads. Though, generally in the research environments (simulation and laboratory), uncontrolled rectifier bridge load is mostly used, due to its serious current harmonic distortions [1, 20].

Normally, the bridge rectifier is connected to three types of loads: (1) RL (resistor – inductor) series load, basically called as inductive load; (2) RC (resistor – capacitor) parallel load, basically called as capacitive load; and (3) simple resistive load. Figure 3 represents the typical control structure of SAPF. However, the controller performs four most important functions namely control algorithms given as (see Figure 3): (i) reference current generator or harmonic extraction method; (ii) phase detector or synchronizer (iii) DC voltage (DC-link capacitor) regulation algorithm; and (iv) switching algorithm or current controller.

Features	VSI	CSI	Switched Capacitor	Lattice Structure	Voltage Regulator
No of Phases	1P & 3P	Usually 3P	1P	1P	1P
No of Switches	1P – 4	6 controlled	1P – 2	1P – 4	1P – 4
	3P – 6 to 8	and 6 diodes	bidirectional		
AC Elements	N/A	N/A	1 or 2 small AC	1 or 2 small AC	1 small AC
			capacitors	capacitors	capacitor
			1 or 2 small AC	1 or 2 small AC	1 small inductor
			capacitors	capacitors	
			1 or 2 small AC	1 or 2 small AC	
			capacitors	capacitors	
AC Elements Rating	N/A	N/A	1.5 * V_{rated}	1.5 * V_{rated}	1.5 * V_{rated}
DC-link Elements	1 Large	1 Large	N/A	N/A	Same as rated
DC-link Rating	1.5 * V_{rated}	1.5 * I_{rated}	N/A	N/A	rated voltage
Power Rating	Low & Medium	Medium	Low & Medium	Low	Low & Medium
Control Function	Keeping	Keeping	Keeping	Voltage	Tracking DC-link
	Capacitor	Inductor	Capacitor voltage	Inductor current	reference voltage
	voltage	current	constant	constant	(PAM)
	constant	constant	(PWM)	(PWM)	
Control Complexity	Simple	Complex	Complex	Complex	Simple
Response Speed	Fast	Medium	Slow	Slow	Fast
Purpose	Eliminate	Eliminate	Indirectly	Directly	Indirectly
	harmonics	harmonics,	controls the	controls the	controls the
	in load	improve	current	filter voltage /	current
	current	power quality		current	

Table 1. Types of SAPFs and their comparison
(i) **Reference current generation:** This control block major function is to generate the reference current signal i_{ref} by taking the instantaneous load currents i_L from the nonlinear load, along with fundamental current components and harmonic current components. The reference current i_{ref} is given to the current control algorithm to regulate the operation of SAPF for effective elimination of harmonic distortion. Therefore, this algorithm is also acknowledged as harmonic extraction algorithm.
generated by SAPF for a proper synchronization with the input source/grid voltage signal v_s. It can be seen in Fig. 3. Hence, this algorithm is also called as synchronizer algorithm. It is important that some distinctive SAPF controllers do not need explicit PLL or synchronization methods.

(iii) **DC-link voltage regulator:** This control block regulates the DC-link capacitor voltage constantly, by comparing the instantaneous DC-link voltage V_{dc} and with a chosen reference value. The required current magnitude (I_{dc}) to charge the DC-link capacitor, of the DC-link charging current i_{dc} can be estimated using resultant error. The essential current magnitude I_{dc} is the quantity of i_{dc} required by the SAPF to normalize its switching losses so as to maintain the DC-link voltage of the capacitor V_{dc} at the constant reference value.

(iv) **Switching or current control algorithm:** This control algorithm consists of an internal current control loop and a PWM generator to control the switching actions of SAPF. The current control loop inspects the generated filter current with the reference current signal i_{ref}. So, to produce the switching pulses and to control the SAPF, this algorithm consider the reference current i_{ref}, source/grid current i_s and the DC-link charging current i_{dc}.

4. Classification of SHUNT ACTIVE POWER FILTERS (SAPFs)

In general the SAPFs are majorly classified into three types i) based on circuit topology, ii) based on power source, and iii) based on advanced inverter structures which is illustrated in Fig. 4. However, VSIs are the most commonly used SAPFs because of their unique quality of implementation to multilevel configurations which significantly improve harmonics compensation [21, 22]. Additionally, VSI based SAPFs have merits like size compatibility and less implementation costs [4] etc.

The major pros of the CSI based SAPF is boost type nature, long life for energy device, high fault protection and main cons are high conduction losses, bulky and costly [23-25]. However VSI topology is less in size, lower weight and cheaper than CSI configuration. Hence, this document is mainly concentrates on the VSI based SAPFs [26].

![SAPFs classification based on the power circuit](image)
To compensate these problems various 3P4W SAPFs has developed namely four-leg (4L), two capacitors (2C) or split capacitor type and three full H-bridges (3HB) topology. Figures 5, 6 & 7 represents the 2C, 4L and 3HB based SAPF topologies respectively. In the split capacitor topology, the neutral wire is connected in between the two capacitors. However, this topology need extra control loop to balance the DC voltages of the two capacitors [27, 28]. For the 4L configuration, extra two active switches are added in the fourth leg (neutral wire) to balance neutral current. This configuration gives superior performance than that of the 2C topology [29-31]. In contrast, the three H-bridge inverter topology three full H-bridges (3HB) are used with a common DC-link capacitor. This configuration uses three single phase isolated transformers to connect with 3P4W system. Additionally, this topology needs extra switches compared with other configurations.

In this configuration, each H-bridge produces single-phase voltage, which differs with the other topologies (three-phase voltage in 4L and 2C topologies) which reduces the DC-link voltage by 1.732 times. However, because of independent control operation, the controllability of this structure can be enhanced [30].

There are lots of advanced configurations such as multilevel; interleaved-buck full-bridge (IB-FB) inverters etc have been developed by the researchers based on inverter system topology. There are various classifications of multilevel topologies mentioned in the literature [31-32] such as H-bridge, flying capacitor, diode clamped, and modular multilevel.

![Diagram of 2C SAPF configuration](image-url)

Figure 5. Two capacitor or split capacitor (2C) based SAPF configuration

These are the mostly used SAPF configurations to balance power quality problems in the grid/distribution medium to higher power applications. Additionally, these topologies are also capable of minimizing the dv/dt issues of the active switches. However, the major disadvantages of these topologies are high number of switching devices, complexity in the control technique, large size and high cost.
Figure 6. Four pole or four-leg (4L) based SAPF configuration

Figure 7. Three H-bridges (3HB) based SAPF configuration
Table 2: Comparison of SAPF’s based on applications and circuit configurations

Topology	VSI	CSI	2C	4L	3HB	Multi-level	IB – FB	
Phases	1P & 3P	1P & 3P	3P	3P	3P	1P & 3P	1P & 3P	
Power Rating	Low-Medium	Medium	Low-Medium	Low-Medium	High	High	Low-Medium	
Circuit complexity	Less	Less	Medium	Medium	High	High	High	
Control complexity	Less	Medium	Medium	Less	High	High	Less	
Control Parameter	Voltage & Current							
Control of Neutral Current	No	No	Yes	Yes	Yes	Yes	No	
Shoot-through issue	Yes	Yes	Yes	Yes	Yes	Yes	No	
Application	Diode bridge rectifier	Motor drives	ACs, Industry loads	TV, PC, commercial loads	Distributed systems, industrial drives, Arc furnaces	Industry loads, Motor drives	High rating drives, Traction	Arc furnaces, industries

Table 3: Brief comparisons on 2C, 4L and 3HB based SAPF configurations

Key Feature	Split (2C)	Capacitor	Four Leg (4L)	3 (3HB)	H-bridge
No. of Active Switches	6	8	12		
No. of DC-link Capacitors	2	1	1		
No. of control sensors	2 (for DC voltage Regulation)	0 or 1 (for hysteresis control)	0		
Minimum required DC-link Voltage	$\sqrt{3} \sqrt{2} \frac{V_s}{0.87}$	$\sqrt{3} \sqrt{2} V_s$	$\sqrt{2} V_s$		
No. of series T/F	0	0	3		
Neutral current Compensation	Moderate	Excellent	Good		
Neutral current Control type	Indirect	Direct	Indirect		
Current harmonics and unbalance compensation	Good	Excellent	Better		
Cost	Low	Moderate	High		
The IB-FB inverter topology is developed to compensate the shoot-through problem of the power switches. This will cause ringing and high EMI issues. In general, this configuration is used for low to medium power electrical systems [33-34]. The various characteristics on different issues with various topologies of SAPF are compared in Table 2. In [35], detailed design and analysis of 3P4W (2C and 4L) based SAPFs topologies have given along with the process to choose the minimum value and size of DC-link capacitor. In [36] a detailed analysis of 3HB based SAPF for unbalanced loads has specified with independent control technique. So, a concise assessment has shown in Table 3 on 2C, 4L and 3HB based SAPF topologies.

5. Discussion on working of SAPF's with non-sinusoidal grid voltage
A SAPF is subjected to a non-sinusoidal grid voltages operating with the abovementioned control techniques, then it fails to accomplish the sinusoidal source current. This is because the SAPF considers the source voltage angular position to generate and inject the filter current. The major cause for this is that the synchronization phase. So the traditional synchronization methods PLLs [37], ANN-based synchronizers [38], and ZCDs [39] may not respond to these errors properly and the performance will get worse [40]. The abovementioned control methods are mainly developed to operate SAPFs for the balanced sinusoidal voltage (or ideal voltage) based grid systems. Hence, the effective solution is to track the angular position accurately of the non-sinusoidal grid voltage. However, a few important modifications and development's have to be made to accomplish the practical requirements. These changes in the control methods will improve the performance of the SAPF fed to a non-sinusoidal (non-ideal) and/or unbalanced grid voltage conditions.

There are three control techniques which improves the SAPF performance with non-sinusoidal grid voltage situations. They are given as, adaptive notch filter (ANF) [41], optimization technique [42] and self-tuning filter (STF) [43]. The ANF technique is not suitable because it involves in gain adjustment and fine-tuning of the damping ratio in order to work properly. The optimization technique uses the complex iterative procedure to resolve the optimization issue. It takes more time for calculations which is a major difficulty, so less preferred over other techniques. Moreover, both the techniques namely optimization method and ANF techniques are limited to simulation environments only.

Having the advantages of performing efficiently with non-sinusoidal grid voltages and adaptability with reference current methods, the STF method is the better choice. With STF method the traditional SRF [44], PQ [43] and ANN techniques [40] acquired the facility to work under non-sinusoidal conditions. In the SRF technique, the STF algorithm is used in the PLL to improve its performance which is called as STF-PLL [44,45]. However, in the PQ theory model, the STF algorithm is directly incorporated with the main technique which is acknowledged as STF-PQ [43]. Lastly for the ANN based control technique, the STF algorithm is used as synchronizer in fundamental voltage extraction block which is called as STF-synchronizer[40].
6. Conclusion
A comprehensive investigation on the APFs, in particular SAPFs are presented in this paper for compensating the PQ issues at both the load and grid side. This paper gives a brief idea on APFs, SAPF classifications, topologies and comparisons of single-phase, three-phase three-wire (3P3W) and three-phase four-wire (3P4W) systems. The major intention of this paper is to present a complete summary on the working of SAPFs, so that the power engineers can get the knowledge and motivation for advance research on SAPFs. Various aspects of SAPF are being discussed and pointed out on the various issues with different topologies and control techniques. Comparisons are made for different classifications in various aspects which are shown in tables 1, 2 & 3. For non-ideal sources a few techniques have implemented by making small modifications to the regular methods. From the review it is very clear that, there is still need of more research to be done for the problems related with the typical power system Fast raise of renewable energy sources (RES) in the application of grid technologies play significant role. Having the advantages of harmonic currents elimination, reactive power compensation and active power generation with solar systems, RES based SAPFs are the major scope for the future research in the grid tied power systems.

7. References
[1] Yap Hoon., Mohd Amran Mohd Radzi., Mohd Khair Hassan., and Nashiren Farzilah Mailah. 2016 Enhanced Instantaneous Power Theory with Average Algorithm for Indirect Current Controlled Three-Level Inverter-Based Shunt Active Power Filter under Dynamic State Conditions Mathematical Problems in Engineering 1-12.
[2] Hoon, Y., Radzi, M.A.M., Hassan, M.K., Mailah, N.F. 2016 DC-link capacitor voltage regulation for three-phase three-level inverter-based shunt active power filters with inverted error deviation control. Energies 9 (7) 533.
[3] Institute of Electrical and Electronics Engineers (IEEE). 2014 IEEE recommended practice and requirement for harmonic control in electric power systems In IEEE STD 519-2014 (Revision of IEEE Std 519-1992) IEEE: Piscataway NJ USA 1–29.
[4] Akagi, H. 2005 Active harmonic filters IEEE Proceedings 93 2128–2141.
[5] IEEE Guide for Application and Specification for Harmonic Filters 2003 IEEE Standard 1531 pp. 1-60.
[6] J. C. Das, 2004 Passive filter-potentialities and limitations IEEE Trans. Ind. Appl. vol. 40 no. 1 pp. 232-241.
[7] A. Ghosh and G. Ledwich, 2002 Power Quality Enhancement Using Custom Power Devices Norwell MA USA.
[8] J. Nastran, R. Cajhen, M. Seliger and P. Jereb, 1994 Active power filters for Nonlinear AC loads IEEE Trans. Power Electron vol. 9 no. 1 pp. 92-96.
[9] Ritwik, M. 2013 Reactive Power Compensation in Single-Phase Operation of Micro-grid IEEE Transactions on Industrial Electronics 60 (4) 1403-1416.
[10] Singh, B., Al-Haddad, K., Chandra, A. 1999 A review of active filters for power quality improvement. IEEE Transactions on Industrial Electronics 46 960-971.
[11] El-Habrouk M, Darwish M.K, Mehta P. 2000 Active power filters: A review IEEE Proc. Electronic Power Appl. 147 403-413.
[12] Kale, M., Ozdemir, E. (2005). Harmonic and reactive power compensation with shunt active power filter under non-ideal mains voltage Electrical Power Systems 74 363-370.
[13] Djazia, K., Krim, F., Chaoui, A., Sarra, M. 2015 Active power filtering using the ZDPC method under unbalanced and distorted grid voltage conditions Energies 8 1584-1605.
[14] Schaffner, ECOsine Active. 2011 Harmonics Compensation in Real-Time—The Compact Fast and Flexible Solution for Better Power Quality Schaffner: Luterbach Switzerland 1–4.
[15] ABB SACE. 2008 Power Factor Correction and Harmonic Filtering in Electrical Plants. Technical Application Papers ABB SACE Bergamo Italy pp. 1–62.
[16] Schneider Electric. AccuSine. 2009 PCS Active Harmonic Filter: Cruising through Rough Waves in Your Electrical Network. Schneider Electric Ruei-Malmaison France 1–16.
[17] Deo, S., Jain, C., Singh, B. 2015 A PLL-less scheme for single-phase grid interfaced load compensating solar PV generation system IEEE Transactions on Industrial Inf. 11 (3) pp. 692-699.
[18] Blaabjerg, F., Wang, H., et al. 2016 Power control flexibilities for grid connected multifunctional photovoltaic inverters IET Renew. Power Generation 10 (4) pp. 504-513.
[19] Agarwal, R., Hussain, I., Singh, B. 2016 LMF based control algorithm for single stage three-phase grid integrated solar PV system IET Renewable Power Generation. 7 (4) pp. 1379–1387.
[20] Hoon Y, Radzi M.A.M, Hassan M.K, Mailah N.F, Wahab N.I.A. 2016 A simplified synchronous reference frame for indirect current controlled three-level inverter-based shunt active power filters Journal of Power Electronics 16 1964–1980.
[21] Yap Hoon, Mohd Amran Mohd Radzi, Mohd Khair Hassan and Nashiren Farzilah Mailah. 2017 Control Algorithms of Shunt Active Power Filter for Harmonics Mitigation: A Review Energies 10(12) 2038.
[22] Gali, N. Gupta, and R. A. Gupta. 2017 Mitigation of power quality problems using shunt active power filters: A comprehensive review 12th IEEE Conference on Industrial Electronics and Applications (ICIEA) pp. 1100-1105.
[23] Murthy V.N.S.R, Pandian.A 2017 Analysis of capacitor voltage balance in multilevel inverter International Journal of Applied Engineering Research 12(Special Issue 1) PP.399-406.
[24] Vijay Muni T, Sai Sri Vidya G, Rini Susan N 2017 Dynamic modelling of hybrid power system with mppt under fast varying of solar radiation International Journal of Applied Engineering Research 12 (Special Issue 1) PP.530-537.
[25] Keerthi N, Pandian A, 2019 Study on the control techniques for the SAPFs: A comprehensive analysis International Journal of Emerging Trends in Engineering Research 7(11) PP.628-633.
[26] Kiran Kumar M., Veeranjaneyulu C., Surya Nikhil P. 2018 Interfacing of distributed generation for micro grid operation Journal of Advanced Research in Dynamical and Control Systems 10(4) PP. 472-477.
[27] Jyothi B, Ravi Teja A, Bhaskar N, 2017 Clamped capacitor multilevel inverter using sinusoidal pulse width modulation (SPWM) methods International Journal of Applied Engineering Research 12(Special Issue 1) PP.566-571.
[28] Nagi Reddy B, Pandian A, Chandra Sekhar O, Ramamoorty M, 2019 Design of non-isolated integrated type AC-DC converter with extended voltage gain and high power factor for Class-C&D applications International Journal of Recent Technology and Engineering 7(5) PP.230-236.
[29] Nagi Reddy B, Pandian A, Chandra Sekhar O, Ramamoorty M, 2019 Performance and dynamic analysis of single switch AC-DC buck-boost buck converter International Journal of Innovative Technology and Exploring Engineering 8(4) PP.307-313.
[30] Sri Sivani L, Nagi Reddy B, Subba Rao K, Pandian A, 2019 A new single switch AC/DC converter
with extended voltage conversion ratio for SMPS applications International Journal of Innovative Technology and Exploring Engineering 8(3) PP.68-72.

[31] Ramachandra Y, Akhileshwar M, Pandian A, Nalli R, Subbarao K, 2019 Analysis of recent developments in brushless DC motors controlling techniques International Journal of Innovative Technology and Exploring Engineering 8(5) PP.522-526.

[32] Kumar S.P, Babu K.R, Ahamed S.H, 2019 A novel PV/T solar collector system with hybrid energy storage units and solar heaters International Journal of Innovative Technology and Exploring Engineering 8(7) PP.3027-3030.

[33] Reddy C, Harinadh Reddy K, 2019 Islanding detection techniques for grid integrated distributed generation -A review International Journal of Renewable Energy Research 9(2) PP.527-534.

[34] R. Patel and A.K Panda, 2014 Real time implementation of PI and fuzzy logic controller based 3-phase 4-wire interleaved buck active power filter for mitigation of harmonics with id–iq control strategy Inter. J, Electr. Power & Energy Syst. vol. 59 pp.66-78.

[35] Goud B, Loveswara Rao B, 2019 Pv-wind integrated grid with P&O and PSO mppt techniques International Journal of Recent Technology and Engineering 8(1) PP.3217-3224.

[36] Rao K.P.P, Varma P.S, 2018 A novel five phase DSTATCOM for industrial loads International Journal of Engineering and Technology(UAE) 7(1.8) PP. 56-61.

[37] Kishore D.R, Muni T.V, 2018 Efficient energy management control strategy by model predictive control for standalone DC micro grids AIP Conference Proceedings

[38] Rahman N.A, Radzi M.A.M, Mariun N, Soh A.C, Rahim N.A, November 2013 Integration of dual intelligent algorithms in shunt active power filter Proceedings of the IEEE Conference on Clean Energy and Technology (CEAT) Malaysia pp. 259–264.

[39] Prasad Rao K.P, Srinivasa Varma P, 2017 Five phase DVR with fuzzy logic controller Journal of Advanced Research in Dynamical and Control Systems 9(Special Issue 18), ,PP.212-222.

[40] Vinay Kumar T, Kiran Kumar M, 2019 A solar powered SRM drive for EVS using fuzzy controller International Journal of Innovative Technology and Exploring Engineering 8(10) PP.413-418.

[41] Sharath Babu V, Burthi L,R, 2019 A new STATCOM based reactive power management in grid connected DFIG based wind farm International Journal of Innovative Technology and Exploring Engineering 8(9) PP.293-299.

[42] Chang G.W, 2006 A new approach for optimal shunt active power filter control considering alternative performance indices IEEE Trans. Power Delivery vol. 21 pp. 406-413.

[43] Abdulsalam M, Pouré P, Karimi S, Saadate S, 2009 New digital reference current generation for shunt active power filter under distorted voltage conditions Electrical Power Syst. Res. vol. 79 pp. 759–765.

[44] Campanhol L.B.G, Silva S.A.O, Goedtel A, 2014 Application of shunt active power filter for harmonic reduction and reactive power compensation in three-phase four-wire systems IET Power Electron. vol. 7 pp. 2825–2836.

[45] Jyothis B., Bhavana P, 2019 Speed range enhancement for five phase induction motor drive using reconfiguration of five phase supply International Journal of Recent Technology and Engineering 7(6) PP.345-351.