The Roles of Alternative Splicing in Tumor-immune Cell Interactions

Yue Wang1,2, Honglei Zhang2,3,4, Baowei Jiao2,4,5,*, Jianyun Nie1,6,*, Xiyin Li1,2, Wenhuan Wang1 and Hairui Wang1,2

1Third Affiliated Hospital of Kunming Medical University, Kunming 650118, China; 2State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; 3Yunnan University of Chinese Medicine, Kunming 650500, China; 4KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; 5Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China; 6Department of Breast Cancer, Third Affiliated Hospital, Kunming Medical University, Kunming 650118, China

Abstract: Alternative splicing (AS) plays a significant role in the hallmarks of cancer and can provide neoantigens for immunotherapy. Here, we summarize recent advances in immune system associated tumor specific-antigens (TSAs) produced by AS. We further discuss the regulating mechanisms involved in AS-mediated innate and adaptive immune responses and the anti-tumoral and pro-tumoral roles in different types of cancer. For example, ULBP1_RI, MLL5Δ21spe, NKp44-Δ5, MHC-Δ7, CD200SA1, 2, PVR α/β/γ/δ and IL-33 variants 1/2/3 act as regulators in solid tumors and IPAK4-L and, FOXP1ΔN100 exhibit functions in hematological cancers.

Keywords: Alternative splicing, tumor cells, immune system, immunotherapy, neoantigens, Tumor specific-antigens (TSAs).

1. INTRODUCTION

Immunotherapy has transformed the treatment of many advanced cancers [1]. Immunotheerapy anticancer approaches, such as therapeutic vaccines and T cell receptor engineered T cells (TCR-T cells), rely heavily on suitable target antigens [2]. Currently, there are three main types of tumor antigens: i.e. antigens derived from tumor-specific somatic mutation, cancer germline antigens (CGAs), and antigens derived from viral genes expressed by virus-infected tumor cells. Clinical studies have shown remarkable outcomes in cancer patients receiving either TCR-T cell therapy targeting CGAs [3, 4] or neoantigen-based vaccines [5-7]. Neoantigens are tumor-specific antigens (TSAs) that do not exist in normal human genomes. In non-virus-related tumors, neoantigens are derived from novel protein sequences formed by tumor-specific DNA damage. For virus-related tumors, such as cervical cancer, neoantigens can also come from viral open reading frames [8]. The major obstacle for the broader applicability of tumor immunotherapies is the lack of targetable neoantigens for many cancer types.

To date, mutation-derived neoantigens have received considerable attention, with neoepitopes derived from mRNA processing events. Alternative splicing (AS) is a regulated process that occurs during gene expression. It results in a single gene coding for multiple proteins and affects more than 90% of human coding genes [9]. Introns and exons are selectively included or excluded in the AS process [10]. Therefore, pre-mRNAs are modified into various isoforms and then translated into proteins during AS, in order to meet cell diversity demands [11]. Previous studies have identified and categorized five types of AS events, including exon skipping (SE), intron retention (RI), alternative 5’ splice site (A3SS), alternative 3’ splice site (A5SS), and mutually exclusive exon (MXE) events [12]. In addition, AS regulates most hallmarks of cancer, including proliferation, apoptosis, hypoxia, angiogenesis, immune escape and metastasis [13-15]. Following the rapid development of sequencing technology, various studies have shown that cancer-specific AS can produce neoantigens. For example, Jaya-singhe et al. analyzed 8656 tumor samples and found that splice-site-creating mutations can produce more neoantigens than other types of mutations [16]. Hoyos et al. also reported that tumor-specific splicing has the potential to generate a large new class of tumor-specific neoantigens [17]. From another perspective, for cancers that exhibit low prevalence of somatic mutations and copy number variations but widespread mRNA splicing aberrations (e.g., B cell acute lymphoblastic leukemia), the expanded target scope of immunotherapies may lead to more efficient development [18]. Thus, AS-derived neoantigens may offer a much broader scope for immunotherapy applications.

The human immune system, which includes innate and adaptive immunity, is a host defense system comprised of biological structures and processes that protect against disease [19]. Neoantigens from tumor cells affect the efficacy of both the innate and adaptive immune systems. In neoantigen-expressing tumors, natural killer (NK) cell stimulation can

DOI: 10.2174/1568009620666200619123725

Accepted: May 11, 2020
Revised: May 09, 2020
Received: January 30, 2020

*Address correspondence to these authors at Kunming Institute of Zoology, Chinese Academy of Sciences; 32 Jiaochang E. Road, Kunming, Yunnan, China; Tel: +86-871-68191706; E-mail: hjzhang2014@163.com; jiaobao-wei@mail.kiz.ac.cn and Department of Breast Cancer, Third Affiliated Hospital, Kunming Medical University, 519 Kunzhou Road, Kunming, Yunnan, China; Tel: +86-13608815577; E-mail: njyvip@163.com
enhance the number and function of tumor-specific T cells, causing tumor growth inhibition [20]. Here, to characterize the roles of AS in tumor-immune interactions, we categorized them into innate and adaptive immunity contexts.

AS events and corresponding functions are summarized in Table 1. All illustrations were created using Adobe Illustrator CS6.

Table 1. Role of alternative splicing (AS) in human tumor immunity.

Immune Type	Splice Isoform	Splice Patterns	Splicing Regulator	Role	Study Type	Reported Effect	Refs.
Innate	ULBP1_RI	RI, SE	ATF4, RBM4	Pro-tumoral	Tumor-derived human cell line-HAP1 cells	Tumor cells escape NK cell surveillance by increasing ULBP1_RI isoform	[38, 39]
Innate	MLL5^{clype}	Not mentioned	Cytokine (IL-15, IL-18, TGF-β)	Anti-tumoral	Normal tissues; Human melanoma cells (WM1361); Human lung adenocarcinoma cells (H441); Mouse EL4 cells	NKp44 binds with MLL5^{clype} to activate NK cells	[54, 55]
Innate	NKp44-1^{cl}	SE	U2AF1	Pro-tumoral	AML; Normal hematopoietic cells	Mutation of U2AF1 leading to IRAK4-L isoform production and innate immunity activation.	[58]
Innate	IPAK4-L	Full-length	Not mentioned	Anti-tumoral	Human carcinoma tissues; Rat C6 glioma cell lines; Glioma rat model; Wistar rats model with lung metastasis	CD200S activates CD8+ T cells, CD200L induces immunosuppressive response	[76-78]
Adaptive	MHC-Iαβγ	SE	Not mentioned	Anti-tumoral	Hepatocellular carcinoma (HCC) cells	Transmembrane PVR (PVR α, δ) activates CTLs by binding to CD226	[84, 86, 89, 91]
Adaptive	PVR α, δ	SE	IFNγ	Pro-tumoral	Melanoma cells	Soluble isoform (PVR β, γ) suppresses CTLs by increasing expression of inhibitory receptor TIGIT	[94-101]
Adaptive	CD200S^{L1,2}	SE	Not mentioned	Dual effect	CRC cells; NSCLC cells; Breast cancer cells	IL-33 promotes or inhibits tumorigenesis.	[104, 105]
Adaptive	PVR α, δ	SE	Not mentioned	Pro-tumoral	DLBCL cells; human B cells; Mouse lymphoma models	FOXP1^{ΔN100} can activate B cells and lead to development of DLBCL.	[104, 105]

RI: intron retention; SE: exon skipping; ATF: activating transcription factor; MLL5: mixed-lineage leukemia-5; spe: special; NK cell: natural killer cell; MHC: major histocompatibility complex; CD200S: truncated forms of CD200; CD200L: full-length CD200; TIGIT: T cell Ig and ITIM domain; PVR: poliovirus receptor; IFN γ: interferon γ; CTLs: cytotoxic T lymphocytes; DLBCL: diffuse large B cell lymphoma; U2AF1: U2 small nuclear RNA auxiliary factor 1; IRAK4-L: long isoform of interleukin-1 receptor-associated kinase 4; CRC: colorectal cancer; NSCLC: non-small cell lung cancer; HCC cell: hepatocellular carcinoma.

•\(represent spike pattern corresponding to splice isoform on left column. ‘New’ indicates new insert sequence.

RI: intron retention; SE: exon skipping; ATF: activating transcription factor; MLL5: mixed-lineage leukemia-5; spe: special; NK cell: natural killer cell; MHC: major histocompatibility complex; CD200S: truncated forms of CD200; CD200L: full-length CD200; TIGIT: T cell Ig and ITIM domain; PVR: poliovirus receptor; IFN γ: interferon γ; CTLs: cytotoxic T lymphocytes; DLBCL: diffuse large B cell lymphoma; U2AF1: U2 small nuclear RNA auxiliary factor 1; IRAK4-L: long isoform of interleukin-1 receptor-associated kinase 4; CRC: colorectal cancer; NSCLC: non-small cell lung cancer; HCC cell: hepatocellular carcinoma.
2. AS AND TUMOR INNATE IMMUNE RESPONSES

Innate immune cells, including macrophages, dendritic cells (DC), and NK cells, contribute to spontaneous and acute antitumor responses by releasing mediators of inflammation, such as cytokines and chemokines, which activate and recruit local immune cells [21]. NK cells have received renewed interest recently as they do not rely on antigen specificity and can directly kill malignant or transformed cells by releasing cytotoxic granules [22]. NK cells also exhibit the capacity to preferentially kill cancer stem-like cells [23]. Several studies have successfully exploited NK cell functions against neuroblastoma [24, 25], glioblastoma [26, 27], and lung cancer [28]. Lacking antigen-specific receptors, NK cells use a set of innate receptors to sense and respond to changes in the tumor-immune microenvironment. Specifically, activated receptors (e.g., NGK2D and natural cytotoxicity receptors (NCRs)) and inhibited receptors (e.g., major histocompatibility complex, MHC-I) on the surface of NK cells are in a state of dynamic balance, which determines the functional state of these cells [29]. Given the ability of NK cells to detect and destroy a range of cancerous tissues, mechanistic insight into how cancer cells regulate NK cell activity at the AS level and the pharmacological modulation of these activities represent an underexplored potential in immunotherapy. The splicing events involved in innate immunity are illustrated in Fig. (1).

2.1. NK Cells in Solid Tumors

2.1.1. Tumor Cells Escape NK Cell Surveillance by Increasing Expression of ULBP1_RI Isoform

NK cells are regulated by a balance of signals from activating and inhibitory receptors, which recognize cognate ligands expressed by potential target cells [30, 31]. One of the best-studied NK-activating receptors is NGK2D, which is also expressed in certain T cell subsets [32]. NGK2D ligands are often highly expressed in tumor cells (such as melanoma), but not in normal cells [33]. The structure of NGK2D ligands is similar to that of the MHC-1 protein. Humans have eight NGK2D ligands, whereas mice have 5-6 different ligands [34]. As a human NGK2D ligand, ULBP1 has two isoforms: i.e., ULBP1 and ULBP1_RI (intron-retained isoform) (Table 1) [35]. The relative expression between these two isoforms confers the level of NK cell activation. High ULBP1 expression is associated with elevated NK activation, whereas ULBP1_RI corresponds to the deactivation of NK cells. Both RBM4 and ATF4 are regulators of ULBP1 expression: AFT4 directly binds to the promoter of ULBP1 to promote transcriptional activation, whereas RBM4 inhibits the formation of splicing isomer ULBP1_RI [36]. Tumor cells can escape NK cell surveillance by decreasing the expression of RBM4, resulting in lower expression of ULBP1 and ULBP1_RI, respectively [35]. Yong et al. found that low expression of RBM4 is associated with poor prognosis in gastric cancer [37] and is mediated by controlling cancer-related splicing [36].

The ULBP ligand family contains ULBP1, ULBP2, ULBP3, and RAET1E. RAET1E can be transformed into a truncated and soluble form by AS, termed RAET1E2, which is found in many human cancer cell lines, such as liver carcinoma, gastric adenocarcinoma, and ovarian carcinoma [38]. RAET1E2 can also inhibit NGK2D-mediated NK cytotoxicity resulting in an immune escape mechanism in tumors [38]. Although the innate immune system has become an area of intense interest in immunotherapy, the mechanisms involved in the enhancement of NK cell capacity to inhibit or kill tumor cells need further exploration.
2.1.2. NKp44 and NKp44-1^{5} Function as Positive and Negative Regulators of NK Cells

NK cells are activated by various receptors, including the NCR family, which is comprised of NKp46 (NCR1, CD335), NKp44 (NCR2, CD336), and NKp30 (NCR3, CD337) [39]. NKp44 is encoded by the NCR2 gene located on chromosome 6 in the human MHC class II locus and is exclusively expressed in activated NK cells [40, 41]. NKp44 expression is associated with a marked increase in cytolytic activity in NK cells [42, 43]. In addition, non-covalent binding with DAP-12 is essential for NKp44-mediated NK activation [44].

Recent research has revealed that AS can occur during transcription of the NCR2 gene, resulting in transcripts that encode receptor isoforms with inhibitory functions. For example, the alternative isoform of NKp44 that lacks exon 5 (NKp44-1^{5}) can inhibit NK cell activation, which is triggered by proliferating cell nuclear antigen (PCNA) (Table 1) [45]. PCNA is an inhibitory ligand of higher NKp44 expression found on the surface of tumor cells [46] and interacts with the NKp44-1^{5} isoform. Mechanically, in the presence of NKp44-1^{5}, PCNA in tumor cells is presented by human histocompatibility leukocyte antigen-1 (HLA-1) and is then recruited to the NK immunological synapses (NKIS), which, in turn, induce an inhibitory effect on NK cells [47].

The expression of NKp44-1^{5} can be affected by cytokines, such as IL-15, IL-18, and TGF-β [48]. IL-15 improves NKp44-1^{5} levels, whereas IL-18 plays a role in its downregulation [48]. NKp44-1^{5} also contributes to a shift in peripheral blood NK cells towards decidua basalis NK [48]. Shemesh et al. found that NKp44-1 expression is significantly associated with poorer survival in acute myeloid leukemia (AML) patients [49]. In addition, overexpression of NKp44-1 in NK-92 cells can reverse the inhibitory effect of NK-92 cells on PCNA mediation, leading to poor lytic immune synapse formation [49].

NKp44-mediated NK cell activation is also regulated by mixed-lineage leukemia-5 (MLL5^{21spe}) although MLL5 is not the major ligand of NKp44 [50]. MLL5^{21spe} lacks an exon 21spe at the C-terminus and encodes a highly conserved 1168-amino acid protein (Table 1). This specific 21spe fragment was previously reported in GenBank (accession no. AAR13894.1). In normal cells, MLL5 is specifically expressed in the nucleus, whereas MLL5^{21spe} is located on the tumor cell surface and is recognized by NKp44 [51]. Therefore, NK cells can recognize the MLL5^{21spe} isoform on the tumor cell surface and thus activated to eliminate these cells.

Other MLL5 isoforms such as MLL5β reported in human papillomavirus induced cervical cancer, function as important active regulators of oncogene E6 and E7 transcription [52]. Full-length MLL5 is comprised of 25 exons, whereas MLL5β is truncated at exon 14 due to the insertion of 26 nucleotides [52]. MLL5^{21spe} functions differentily from MLL5β because of its unique subcellular localization on the cell-surface.

Taken together, in the battle between NK and tumor cells, AS plays a critical role in the activation of NKp44-mediated NK cell response. Thus, providing additional MLL5^{21spe} isoforms or designing molecules to compete with the NKp44-1^{5}-PCNA sites represent potential approaches for cancer immunotherapies.

2.2. Innate Immune Pathways in Hematological Cancers

Spliceosome mutations in myeloid malignancies, such as AML, are a form of oncogenic mutation. A recent study on AML samples found that mutant U2 small nuclear RNA auxiliary factor 1 (U2AF1) induces an exon 4-contained AS isoform of interleukin-1 receptor-associated kinase 4 (IRAK4), which encodes the IRAK4-L protein, to activate innate immunity [53]. IRAK4 activates the NF-kB and MAPK pathways via the mediation of downstream signaling of the Toll-like receptor (TLR) superfamily [54]. IRAK4 can be divided into two spliced isoforms depending on whether exon 4 is contained or excluded: i.e., IRAK4-L and IRAK4-S (Table 1) [53]. IRAK4-S can control innate immune responses in normal hematopoietic cells, whereas IRAK4-L mediates NF-kB maximal activation, resulting in uncontrolled innate immune responses in malignant hematopoietic cells [55]. IRAK4-L also exhibits high expression in breast and colon cancer cells, indicating an association with oncogenicity [53]. Furthermore, mutant U2AF1 (S34F) AML cells acquire a dependency on IRAK4-L and are sensitive to IRAK4 inhibitors, suggesting potential therapeutic strategies [53].

3. AS AND TUMOR ADAPTIVE IMMUNE RESPONSE

Adaptive immunity can be divided into T cell-mediated cytotoxic responses and B-cell-mediated antibody responses. The proliferation of primary T cells can be activated by a specific combination of TCRs and MHC on the surface of antigen-presenting cells (APCs) [56]. MHC restriction in antigen recognition means that CD4^{+} T cells recognize MHC class II molecules and CD8^{+} T cells recognize MHC class I molecules [57]. For B cell-mediated adaptive immunity (known as humoral immunity), when pathogens and antigens enter the body, specific B cells are induced to differentiate into plasma cells and antibodies and antigens are produced to prevent pathogenic infection [58]. Memory cells are also produced when the primary immune response is activated. When the same antigen reappears, the memory cells respond quickly to produce a powerful counterattack [59]. The splicing events involved in adaptive immunity are illustrated in Fig. (2).

3.1. T Cells in Solid Tumors

3.1.1. MHC-I^{α}-expressing DCs Present Antigen More Efficiently and Easily than Normal DCs

As APCs, DCs with MHC-I on the membrane surface play important roles in activating T lymphocytes [60]. The function of MHC-I is mainly determined by the highly conserved amino acid sequence in its cytoplasmic tail encoded by exons 6 and 7 [61]. Deletion of the cytoplasmic tail results in reduced function or even loss of MHC-I [62]. However, the exon 7-deleted splice variant of MHC-I (MHC-I^{α}) is still capable of presenting internal and external antigens and has a remarkable antigen-presenting ability, which can be recognized by the TCRs of CD8^{+} T cells and can induce stronger anti-tumor immunity (Table 1) [63]. Mechanically,
HLA-G2 is a splicing isofor m lacking an exon 3α2 domain. Therefore, modulating HLA splicing isoforms may be extremely low [63]. HLA-G1 is a full-length HLA-G isoform, whereas HLA-G2, which can restore tumor sensitivity to NK lysis [67]. MHC-I7 not only improves the bioavailability of presented antigen peptides, but also induces the release of cytokines, such as IFN-γ, when the concentration of antigen peptides is extremely low [63].

This superior property of MHC-I7 has been applied to DC-based anti-tumor vaccines, which effectively extend survival in the B16 melanoma tumor mouse model [63-65]. These results suggest that the MHC-1 cytoplasmic tail encoded by exon 7 could be targeted directly in DC vaccines [66], which may improve their ability to stimulate the cytotoxic T lymphocyte (CTL) anti-tumor immune responses. Finally, exon 7-deleted splice variant of MHC-I (MHC-Iα) endows APCs with superior capacity in antigen-presentation, and interact with TCR more efficiently, thus inducing CD8+ T cells to produce a stronger anti-tumor immune response. MHC-Iα also prompts APCs to secrete more cytokines to stimulate CD8+ T cells. (A higher resolution / colour version of this figure is available in the electronic copy of the article).

The human leukocyte antigen-G (HLA-G) in melanoma cells is also regulated at the mRNA splicing level and can boost anti-tumoral immunity [67]. Melanoma cells can rapidly switch cell-surface-located HLA-G1 to intra-cellular HLA-G2, which can restore tumor sensitivity to NK lysis [67]. HLA-G1 is a full-length HLA-G isoform, whereas HLA-G2 is a splicing isoform lacking an exon 3α2 domain [68]. Therefore, modulating HLA splicing isoforms may be an efficient way in which to boost tumor immunity.

3.1.2. CD200S Can Activate CD8+ T Cells and, CD200L Can Induce Immunosuppressive Responses

CD200 is a transmembrane protein expressed in a large range of tissues, including lymphoid cells, neurons, and endothelial, and mainly functions in immune recognition by binding to its receptor (CD200R) [69]. Tumor cells express two CD200 isoforms, including full-length CD200 (CD200L) and a truncated form of CD200 (CD200S), which occur due to frame-shift mutations during exon 2 and 3 splicing and the emergence of termination codons (Table I) [70]. CD200L expression in mouse tumor cells inhibits activation of tumor-specific T cells, whereas CD200S can release the CD200-CD200R inhibitory interaction and reverse the inhibitory state of immune cells [71]. Tumor-associated macrophages (TAMs) isolated from CD200S-enriched C6 tumor cells exhibit higher-level expression of MHC IIα and CD11c, phagocytes and activates CD8+ CTLs [70].

CD200S can also activate the anti-tumor immune response in a novel type of lung metastasis in Wistar rats, leading to an effective reduction in lung metastasis [72]. Next-generation sequencing has also shown that the expression levels of chemokines and granzyme B in CD200S-rich tumors are much higher than those in CD200-L tumors [72]. Notably, CD200S promotes enrichment of multiple DC subsets expressing CD11c, MHC II, CD8, and/or CD103 in tumors [72]. This provides an attractive cancer therapy mechanism to reverse the immunosuppressive state by targeting CD200L or enforcing the CD200S isoform.
3.1.3. Transmembrane-located Poliovirus Receptor (PVR) Activates CTLs by Binding to CD226, Whereas Soluble Isoform Suppresses CTL Immunity

Human PVR is a transmembrane glycoprotein belonging to the immunoglobulin superfamily [73]. Recently, PVR has attracted growing attention due to its broad involvement in cancer, e.g., cell adhesion and migration and adaptive immunity [74-79]. The PVR has four main AS isoforms: i.e., α, β, γ, and δ. The α and δ isoforms are transmembrane PVRs (tm PVR) due to the existence of a transmembrane sequence encoded by exon 6. The other two isoforms are soluble PVRs (s PVR), which lack a transmembrane domain (Table 1) [80, 81]. Transmembrane PVRs function as active regulators of CTL binding to membrane-located CD226 [82]. For example, hepatocellular carcinoma (HCC) escapes immune surveillance by reducing the expression of transmembrane PVRs [78]. Soluble PVRs are highly expressed in serum in tumor patients, including those with lung, gastrointestinal, breast, or gynecological cancer, resulting in the inhibition of the CTL anti-tumor immune response [83]. However, the ligands that bind to soluble PVRs remain to be clarified.

PVR not only functions as an immune regulator, but its ligands expressed in CTLs also play controversial roles. For example, TIGIT serves as an inhibitory ligand of PVR and dominates immunosuppression compared to CD226 (activator); furthermore, TIGIT+ CD226- CTLs occur in melanoma, indicating a suppressive immune state [84]. However, whether the competitive effect between TIGIT and CD226 is associated with different PVR isoforms remains unclear. Importantly, clinical trials (NCT01491893) [85] suggest that the genetically modified poliovirus vaccine may be a promising cancer treatment.

3.1.4. Dual Effect of IL-33 in Tumor Immunity

Interleukin-33 (IL-33) is a damage-associated molecular pattern (DAMP) molecule belonging to the atypical IL-1 family. In addition to playing an important role in tissue damage, allergy, infection, and immunity, it is also involved in pleiotropic immunomodulatory regulation [86, 87].

Previous studies have shown that IL-33 plays a role in tumor promotion and inhibition, depending on the tumor type, targeted immune cells, and cytokines (Fig. 3). In breast cancer, IL-33 promotes tumor growth and metastasis [88]. For example, overexpression of IL-33 in ER+ human breast cancer cell lines can induce resistance to tamoxifen through stem cell properties [89]. However, IL-33 can also reduce the growth and metastatic ability of breast cancer as it maintains a favorable microenvironment for cooperation between CD8+ T and NK cells to help eliminate tumors [90]. In colorectal cancer (CRC), IL-33 performs two opposite roles: i.e., promotion of tumor formation, proliferation, and metastasis [91, 92] and protection through IFN-γ-mediated anti-tumor immunity [93]. The dual role of IL-33 has also been found in lung cancer [87, 94].

IL-33 possesses three mRNA transcript variants through AS [87]. Several studies have suggested that the multifunctions of IL-33 are related to its three isoforms (i.e., variant 1: NM_001314044.1; variant 2: NM_001199640.1; variant 3: NM_001199641.1) (Table 1) [87]. For example, Afferi et al. [87] extracted data from ISO Expresso [95] and revealed that the expression levels of IL-33 variants 2 and 3 increase in thyroid, liver, breast, and bladder cancers, whereas the only variant 1 is expressed in normal tissues. This indicates that specific abnormal splicing of IL-33 may be associated with the progression of these tumors.
3.2. B Cells in Hematological Cancers

Diffuse large B cell lymphoma (DLBCL) is the most common type of non-Hodgkin's lymphoma. Forkhead transcription factor (FOXP1) is a potential oncogene in various types of cancer [96]. The N-terminal 100 amino acids of FOXP1 are absent in the small isoform (FOXP1ΔN100) but not in the full-length isoform [97]. FOXP1ΔN100 is encoded by FOXP1 mRNA lacking exon 6, resulting in translation starting from exon 8 (Table 1). FOXP1ΔN100 is highly expressed in DLBCL patients and predominantly activates B cells, thus contributing to the development of DLBCL [98]. These insights illustrate the high value of FOXP1 in assessing prognosis and treatment strategies for DLBCL patients.

4. DISCUSSION

Based on a review of recent literature, AS appears to serve as a double-edged sword in the regulation of tumor immunity. Abnormal variant ULBP1 in tumor cells can activate NK cells and thus has a killing effect on tumors, whereas abnormal variants of NCRs from NK cells can inhibit the activation of NK cells and allow tumors to escape. Even different isoforms produced by the same mRNA can have the opposite effects (e.g., IL-33); therefore, AS can be a weapon used by both tumor cells and immune cells.

Many clinical applications target AS for therapeutic purposes. For example, tumors with deletion of exon 14 show high sensitivity to the MET inhibitor [99, 100]. A similar example of BRAF V600E in melanomas has been also reported [101]. Furthermore, small molecules designed to regulate RNA splicing have achieved good results in preclinical studies. For example, Salton et al. reported a comprehensive collection of AS-targeted small molecule.

Gene-modified human polioviruses have been shown to be effective in targeting PVR-positive tumor cells [77, 102-104]. Furthermore, there are many proposed patents for AS and cancer [105]. For example, a new Bax isoform (Bax\Delta2) has been reported in colon cancer cell lines. Bax \Delta2 can impair cancer cell sensitivity to chemotherapeutic drugs that target caspase 8 [106]. Antibodies against Bax \Delta2 can be used to detect Bax \Delta2 expression levels in circulating tumor cells isolated from patients, which is helpful for guiding clinical treatment strategies [106].

Tumor immunology is an emerging field that has revolutionized cancer treatment. Most immunotherapy strategies have focused on T cell engineering [107]. However, research on NK cells has gradually increased, with such cells demonstrating a direct killing effect on tumor cells, without relying on specific antigen recognition [108]. Thus, NK cells exhibit efficient elimination of distal metastasis and circulating tumor cells. In addition, the importance of macrophages in immunotherapy should not be ignored. For example, our previous study showed that extensive mutual AS editing exists between macrophages and breast cancer cells [109].

Taken together, we discussed the tumor-immune cell crosstalk from an AS point-of-view. As AS events produce many more recurrent neoantigens than are produced by point mutations [110], greater attention should be paid to AS-derived neoantigens. Although immunotherapies targeting AS-derived neoantigens face technological and biological challenges, screening new AS-based antigens as targets of immunotherapy will benefit tumor patients [111]. In addition, specific AS events and their roles in immunity regulation need careful classification. Promisingly, the generation of Spinraza, a drug for spinal muscular atrophy (SMA), highlights the possibility of splicing as a therapeutic target. Spinraza is an antisense oligonucleotide, which plays a therapeutic role by targeting the splicing of pre-SMN2 mRNA to increase the production of the full-length SMN protein [112].

With increasing research on the molecular functions of genes and proteins with abnormal AS, more potential immunotherapeutic targets of AS will emerge [113].

AS defects are often found in human cancers. They may be caused by a mutation in splicing regulatory elements of specific cancer genes or abnormal alteration of splicing events. RNA splicing regulators have emerged as a new class of oncoproteins and tumor suppressors that can regulate the RNA isoforms involved in cancer hallmarks. In addition, AS is a comprehensive and dynamic process rather than a static one. Thus, under clinical treatment application, how to target AS events or splicing regulators effectively in order to produce stable treatment, is worth further exploration.

CONCLUSION

We systematically elucidated the splicing events of several specific genes that promote or inhibit tumors between tumor-immune cell interactions. We analyzed the innate and adaptive immune responses of a variety of tumors, including solid and hematologic tumors. Cancer-specific antigens produced by AS exhibit considerable potential in the development of novel therapeutic approaches for the treatment of cancers.

AUTHOR CONTRIBUTIONS

Honglei Zhang, Jianyun Nie and Baowei Jiao designed and supervised the work. Yue Wang and Honglei Zhang wrote the manuscript. Yue Wang created the three illustrations for this manuscript. Xiyin Li, Wenhuan Wang and Hairui Wang retrieved literature and analyzed the data. All authors read and approved the final manuscript.

LIST OF ABBREVIATIONS

A3SS = Alternative 3' splice sites
A5SS = Alternative 5' splice sites
AML = Acute myeloid leukemia
APC = Antigen-presenting cells
AS = Alternative splicing
ATF = Activating transcription factor
CD200L = Full-length CD200
CD200R = CD200 receptor
CD200S = Truncated forms of CD200
CGAs = Cancer germline antigens
CRC = Colorectal cancer
CTL = Cytotoxic T lymphocytes

The Roles of Alternative Splicing in Tumor-immune Cell Interactions

Current Cancer Drug Targets, 2020, Vol. 20, No. 10
CONFLICT OF INTEREST

No conflict of interest.

ACKNOWLEDGEMENTS

We would like to acknowledge the efforts of Dr. Christine Watts for language editing.

REFERENCES

[1] Tran, E.; Robbins, P.F.; Rosenberg, S.A. Final common pathway of human cancer immunotherapy: Targeting random somatic mutations. *Nat. Immunol.*, 2017, 18(3), 255-262.

[2] Paucek, R.D.; Baltimore, D.; Li, G. The cellular immunotherapy revolution: arming the immune system for precision therapy. *Trends Immunol.*, 2019, 40(4), 292-309.

[3] Rapoport, A.P.; Stadtmueller, E.A.; Binder-Scholl, G.K.; Goloubeva, O.; Vogl, D.T.; Lacay, S.F.; Badros, A.Z.; Garfall, A.; Weiss, B.; Finkelstein, J.; Kulikovskaya, I.; Sinha, S.K.; Kronsgaard, S.; Gupta, M.; Bond, S.; Melchiori, L.; Brewer, J.E.; Bennett, A.D.; Gerry, A.B.; Pumphrey, N.J.; Williams, D.; Tayton-Martin, H.K.; Ribeiro, L.; Holdich, T.; Yanovich, S.; Hardy, N.; Yared, J.; Kerr, N.; Philip, S.; Westphal, S.; Siegel, D.L.; Levine, B.L.; Jakobsen, B.K.; Kalos, M.; June, C.H. NY-ESO-1-specific TCR-engineered T cells mediate sustained antigen-specific antitumor effects in myeloma. *Nat. Med.*, 2015, 21(8), 914-921.

[4] Robbins, P.F.; Morgan, R.A.; Feldman, S.A.; Yang, J.C.; Sherry, R.M.; Dudley, M.E.; Wunderlich, J.R.; Nahvi, A.V.; Helman, L.J.; Mackall, C.L.; Kamulla, U.S.; Hughes, M.S.; Restifo, N.P.; Ralfsdottir, M.; Lee, C.C.; Levy, C.L.; Li, Y.F.; El-Gamil, M.; Schwarz, S.; Laurenco, C.; Petersberg, S.A. Tumor regression in patients with metastasized synovial sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. *J. Clin. Oncol.*, 2011, 29(7), 917-924.

[5] Ott, P.A.; Hu, Z.; Keskin, D.B.; Shukla, S.A.; Sun, J.; Bozyn, D.; Zhang, W.; Luoma, A.; Giobbie-Hurder, A.; Peter, L.; Chen, C.; Olson, O.; Carter, T.; Li, S.; Lieb, D.J.; Eisenhaure, T.; Gehrke, E.; Stevens, J.; Lane, W.J.; Javari, I.; Nellaiappan, K.; Salazar, A.M.; Daley, H.; Seaman, M.; Buchbinder, E.I.; Yoon, C.H.; Harden, M.; Lennon, N.; Gabriel, S.; Rodig, S.J.; Barouch, D.H.; Aster, J.C.; Getz, G.; Wucherpfennig, K.; Neupert, D.; Ritz, J.; Lander, E.S.; Fritsch, E.F.; Hacohen, N.; Wu, C.J. An immunogenic personal neoantigen vaccine for patients with melanoma. *Nature*, 2017, 547(7662), 217-221.

[6] Carreno, B.M.; Magrini, V.; Becker-Hapak, M.; Kaibinejadian, S.; Hundal, J.; Petti, A.A.; Ly, A.; Loe, W.R.; Hildebrand, W.H.; Maris, E.R.; Linette, G.P. Cancer immunotherapy. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. *Science*, 2015, 348(6236), 803-808.

[7] Solovev, I.; Derhovanessian, E.; Miller, M.; Kloc, B.P.; Simon, P.; Löwer, M.; Bukur, V.; Tadmor, A.D.; Luxemburger, U.; Schrörs, B.; Omokoko, T.; Vormehr, M.; Albrecht, C.; Paruzynski, A.; Kuhn, A.N.; Buck, J.; Heesch, S.; Schreeb, K.H.; Müller, F.; Ortsiefer, I.; Vogler, I.; Godehardt, E.; Attig, S.; Rae, R.; Breitkreuz, A.; Toller, C.; Suchan, M.; Martig, G.; Hohberger, A.; Sorn, P.; Diekmann, J.; Ciesla, J.; Winkler, M.; Brück, A.K.; Witt, M.; Zillgen, M.; Rothermel, A.; Kasemann, B.; Langer, D.; Bolte, S.; Diken, M.; Kreiter, S.; Nemecek, B.; Gebhardt, C.; Grab, C.; Grabe, S.; Hölter, C.; Utikal, J.; Huber, C.; Loquai, C.; Türeci, O. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. *Nature*, 2017, 547(7662), 222-226.

[8] Schumacher, T.N.; Schreiber, R.D. Neoantigens in cancer immunotherapy. *Science*, 2015, 348(6230), 69-74.

[9] Tidwell, N.; Thompson, L.E.; Correia, D.; Mehta, H.; Vanak, K.; Cardenas, A.; He, L.; Butwin, H.; Shreer, M.; Pan, L.; Delaney, J.; Wardman, J.; Wolf, D.; Heide, A.; Mittendorf, E.; Harousseau, J.-L.; van der Riet, P.; Glinka, Y.;-H.; Hindsgaul, O.; Delmore, J.; Israel, A.; Linette, G.P.; Shyr, Y. The Human genome mutanome underlies human cancers. *Science*, 2017, 355(6327), 140-147.

[10] Salton, L.O. RNA processing as an alternative route to attack glioblastoma. *Hum. Genet.*, 2017, 136(9), 1129-1141.

[11] Lee, Y.; Rio, D.C. Mechanisms and regulation of alternative pre-mRNA splicing. *Annu. Rev. Biochem.*, 2015, 84, 291-323.

[12] Salton, L.O.; Misteli, T. Small molecule modulators of Pre-mRNA splicing in cancer therapy. *Trends Mol. Med.*, 2015, 22(1), 28-37.

[13] Salton, L.O. small molecule modulators of Pre-mRNA splicing in cancer therapy. *Trends Mol. Med.*, 2015, 21(11), 28-37.
The Roles of Alternative Splicing in Tumor-immune Cell Interactions

Current Cancer Drug Targets, 2020, Vol. 20, No. 10 737

antitumor activity and survival. OncolImmunology, 2015, 5(4), e1119354.
http://dx.doi.org/10.1080/2162402X.2015.1119354 PMID: 27141401

[28] Lee, Y.S.; Yeo, I.J.; Kim, K.C.; Han, S.B.; Hong, J.T. Inhibition of lung tumor development in ApoE knockout mice via enhancement of TREM-1-dependent NK cell cytotoxicity. Front. Immunol, 2019, 10, 1379.

[29] Long, E.O.; Kim, H.S.; Liu, D.; Peterson, M.E.; Rajagopalan, S. Controlling natural killer cell responses: Integration of signals for activation and inhibition. Ann. Rev. Immunol., 2013, 31(undetermined), 227-258.
http://dx.doi.org/10.1146/annurev-immunol-021711-150550

[30] Li, Y.; Raulet, D.H.; Moretta, A.; Caligiuri, M.A.; Zitvogel, L.; Lanier, L.L.; Yokoyama, W.M.; Ugolini, S. Intra and adaptive immunity? The example of natural killer cells. Science, 2011, 331(6013), 44-49.
http://dx.doi.org/10.1126/science.1198687 PMID: 21212348

[31] Shifrin, N.; Raulet, D.H.; Ardolino, M. NK cell self tolerance, responsiveness and missing self recognition. Semin. Immunol., 2014, 26(2), 139-144.
http://dx.doi.org/10.1016/j.smim.2014.02.007 PMID: 24629893

[32] Raulet, D.H. Roles of the NKGD2 immunoreceptor and its ligands. Nat. Rev. Immunol., 2003, 3(10), 781-790.
http://dx.doi.org/10.1038/nri1199 PMID: 14523385

[33] Pende, D.; Cantoni, C.; Rivera, P.; Vitale, M.; Castrici, R.; Marcerano, S.; Nanni, M.; Biasioni, R.; Bottino, C.; Moretta, A.; Moretta, L. Role of TREM-1 in innate immunity of human NK cells: Cooperation with natural cytotoxicity receptors and capability of recognizing tumors of nonepithelial origin. Eur. J. Immunol., 2001, 31(4), 1076-1086.
http://dx.doi.org/10.1002/1521-4141(200104)31:4<1076::AID-IMMU1076>3.0.CO;2-Y PMID: 11298332

[34] Raulet, D.H.; Gasser, S.; Gowen, B.G.; Deng, W.; Jung, H. Regulation of ligands for the NKGD2 activating receptor. Ann. Rev. Immunol., 2013, 31, 413-441.
http://dx.doi.org/10.1146/annurev-immunol-032712-095951 PMID: 23298206

[35] Gowen, B.G.; Chim, B.; Marceau, C.D.; Greene, T.T.; Burr, P.; Gonzalez, J.R.; Hesser, C.R.; Dietzen, P.A.; Russell, T.; Iannello, A.; Coscoy, L.; Sentman, C.L.; Carette, J.; Muljo, S.A.; Raulet, D.H. A forward genetic screen reveals novel independent regulatory loci of ULBP1, an activating ligand for natural killer cells. eLife, 2015, 4, 4.
http://dx.doi.org/10.7554/eLife.08474 PMID: 26565589

[36] Yang, W.; Chen, D.; Qian, H.; Tsai, Y.S.; Shao, S.; Liu, Q.; Domínguez, D.; Wang, Z. The splicing factor RBM4 controls apoptosis, proliferation, and migration to suppress tumor progression. Cancer Cell, 2014, 26(3), 374-389.
http://dx.doi.org/10.1016/j.ccell.2014.07.010 PMID: 25203323

[37] Yong, H.; Zhu, H.; Zhang, S.; Zhao, W.; Wang, W.; Chen, C.; Ding, G.; Zhu, L.; Zhu, Z.; Liu, H.; Zhang, Y.; Wen, J.; Kang, X.; Zhu, J.; Feng, Z.; Liu, B. Prognostic value of decreased expression of RBM4 in human gastric cancer. Scientific reports, 2016, 6, 28222.
http://dx.doi.org/10.1038/srep28222

[38] Cao, W.; Xi, H.; Hao, Z.; Li, W.; Kong, Y.; Cui, L.; Ma, C.; Ba, D.; He, W. RAET1E2, a soluble isoform of the UL16-binding protein RAET1E produced by tumor cells, inhibits NKG2D-mediated NK cell cytotoxicity. J. Biol. Chem., 2007, 282(6), 18922-18928.
http://dx.doi.org/10.1074/jbc.M702504200 PMID: 17407428

[39] Kruse, P.H.; Matta, J.; Ugolini, S.; Vivier, E. Natural cytotoxicity receptors and their ligands. Immunol. Cell Biol., 2014, 92(3), 221-229.
http://dx.doi.org/10.1038/icb.2013.98 PMID: 24366519

[40] Biasioni, R.; Cantoni, C.; Pende, D.; Sivori, S.; Parolini, S.; Vitale, M.; Bottino, C.; Moretta, A. Human natural killer cell receptors and co-receptors. Immunol. Cell Biol., 2001, 79(3), 203-214.
http://dx.doi.org/10.1034/j.1600-065X.2001.1810117.x

[41] Mathew, P.A. NKp44 and natural cytotoxicity receptors as dama-
tage-associated molecular pattern receptors in cancer and damaged tissues. Cancer Immunol. Immunother., 2005, 54(3), 217-226.
ted natural killer cells, is involved in non-major histocompatibility complex-restricted tumor cell lysis. J. Exp. Med., 1998, 187(12), 2065-2072. http://dx.doi.org/10.1084/jem.187.12.2065 PMID: 9625766

[43] Cantoni, C.; Bottino, C.; Vitale, M.; Pessino, A.; Augugliaro, R.; Malaspina, A.; Parolini, S.; Moretta, L.; Moretta, A.; Biasoni, R. NKp44, a triggering receptor involved in tumor cell lysis by activa-
ted human natural killer cells, is a novel member of the immuno-
globulin superfamily. J. Exp. Med., 1999, 189(5), 787-796. http://dx.doi.org/10.1084/jem.1998.70048492

[44] de Rham, C.; Ferrari-Lacraz, S.; Jendly, S.; Schneider, G.; Dayer, J.M.; Villard, J. The proinflammatory cytokines IL-2, IL-15 and IL-21 modulate the repertoire of mature human natural killer cell receptors. Arthritis Res. Ther., 2007, 9(6), R125. http://dx.doi.org/10.1186/ar2336 PMID: 17983197

[45] Shemes, A.; Kugel, A.; Steiner, N.; Yezersky, M.; Tiros, D.; Edri, A.; Telsh, O.; Rosental, B.; Seiner, E.; Rubin, E.; Campbell, K.S.; Porgador, A. NKp44 and NKp30 splice variant profiles in de-
cidua and tumor tissues: A comparative viewpoint. Oncotarget, 2016, 7(43), 70912-70923. http://dx.doi.org/10.18632/oncotarget.12292 PMID: 27765926

[46] Shemes, A.; Brusilovsky, M.; Kundra, K.; Ottolenghi, A.; Campbell, K.S.; Porgador, A. Splice variants of human natural cytotoxicity receptors: Novel innate immune checkpoints. Cancer Immunol. Immunother., 2018, 67(12), 1871-1883. http://dx.doi.org/10.1007/s00262-017-2104-x PMID: 29346948

[47] Rosental, B.; Brusilovsky, M.; Hadad, U.; Oz, D.; Appel, M.Y.; Akber-Khan, Y.; Kazer, R.; Rosenberg, A.; Cyster, J.G.; Allen, C.D.C. B cell responses: cell interaction dyna-
mics and decisions. Cell, 2019, 177(3), 524-540. http://dx.doi.org/10.1016/j.cell.2019.03.016 PMID: 31002794

[48] Hemmer, S.L.; Hodgkin, P.D.; Tarlinton, D.M.; Corcoran, L.M. The generation of antibody-secreting plasma cells. Nat. Rev. Immunol., 2015, 15(3), 160-171. http://dx.doi.org/10.1038/nri3795 PMID: 25698678

[49] Gerner, M.Y.; Casey, K.A.; Kastenmuller, W.; Germain, R.N. Dendritic cell and antigen dispersal landscapes regulate T cell immu-
nity. J. Exp. Med., 2017, 214(10), 3105-3122. http://dx.doi.org/10.1084/jem.20170335 PMID: 28847868

[50] Li, Z.; Basha, G.; Tiong, J.; Julien, P.J.; Tian, M.; Biron, K.E.; Jeffries, W.A. Control of dendritic cell cross-presentation by the major histocompatibility complex class I cytoplasmic domain. Nat. Immunol., 2003, 4(11), 1065-1073. http://dx.doi.org/10.1038/ni899 PMID: 14566337

[51] Basha, G.; Li, Z.; Reinicke, A.T.; Seipp, R.P.; Omlusik, K.; Jeffries, W.A. MH C class I endosomal and lysosomal trafficking coincides with exogenous antigen loading in dendritic cells. PLoS One, 2008, 3(9), e3247. http://dx.doi.org/10.1371/journal.pone.0003247 PMID: 18802471

[52] Rodriguez-Cruz, T.G.; Liu, S.; Khalili, J.S.; Whittington, M.; Zhang, M.; Overwijk, W.; Finkelstein, S.E.; Sun, D.R.; de Jong, L.A.; Vyth-Dreese, F.A.; Dellemjin, T.A.; Antony, P.A.; Spiess, P.J.; Palmer, D.C.; Heimann, D.M.; Klebanoff, C.A.; Yu, Z.; Kwan, L.N.; Feigtum, L.; Kruisbeek, A.M.; Rosenblum, S.A.; Restifo, N.P. Tumor regression and autoimmunity after reversal of a functionally tolerant state of self-reactive CD8+ T cells. J. Exp. Med., 2003, 198(4), 569-580. http://dx.doi.org/10.1084/jem.20030590 PMID: 12925674

[53] Lou, Y.; Wang, G.; Li, Z.; Kim, G.J.; Finkelstein, S.E.; Feng, C.; Restifo, N.P.; Hwu, P. Dendritic cells strongly boost the anti-
tumor activity of adoptively transferred T cells in vivo. Cancer Res., 2004, 64(18), 6783-6790. http://dx.doi.org/10.1158/0008-5472.CAN-04-1621 PMID: 15374997

[54] Cannon, M.J.; Block, M.S.; Morehead, L.C.; Knutson, K.L. The evolving clinical landscape for dendritic cell vaccines and cancer immunothera-
ypy. Immunother., 2019, 11(2), 75-79. http://dx.doi.org/10.2174/18742150196666685

[55] Rouas-Freiss, N.; Bruel, S.; Menier, C.; Marcou, C.; Moreau, P.; Carosella, E.D. Switch of HLA-G alternative splicing in a melanoma-
al cell line causes loss of HLA-G1 expression and sensitivity to NK lysis. Int. J. Cancer, 2005, 117(1), 114-122. http://dx.doi.org/10.1002/ijc.21151 PMID: 15880415

[56] Uemura, K.; Ueno, Y.; Umakoshi, A.; Matsumoto, S.; Mine, A.; Nakagawa, S.; Kikutawa, M.; Hamada, D.; Sato, C.; Maenaka, K.; Cutting Edge: Class II-like structural features and strong receptor binding of the nonclassical HLA-G2 isoform homodimer. J. Immunol. (Balti-
more, Md.1950), 2017, 198(9), 3399-3403. http://dx.doi.org/10.1186/s12890-017-0268-4

[57] Wright, G.J.; Puklavice, M.J.; Willis, A.C.; Hoek, R.M.; Sedgwick, J.D.; Brown, M.H.; Barclay, A.N. Lymphoid/neuronal cell surface ORX2 glycoprotein recognizes a novel receptor on macrophages im-
plicated in the control of their function. Immunology, 2000, 101(2), 233-242. http://dx.doi.org/10.1046/j.1365-2567.2000.01121.x PMID: 10981966

[58] Kobayashi, K.; Yano, H.; Umakoshi, A.; Matsumoto, S.; Mine, A.; Funahashi, Y.; Ueno, Y.; Kamei, Y.; Takada, Y.; Kunom, Y.; Ohi-
nishi, T.; Tanaka, J. A truncated form of CD200 (CD200S) expres-
sion on glioma cells prolonged survival in a rat glioma model by in-
duction of a dendritic cell-like phenotype in non-associated macroph-
geles. Neoplasia, 2016, 18(4), 229-241. http://dx.doi.org/10.1016/j.neo.2016.02.006 PMID: 27108386
van Keimpema, M.; Grüneberg, L.J.; Schilder-Tol, E.J.; Oud, M.E.; Beuling, E.A.; Hensbergen, P.J.; de Jong, J.; Pals, S.T.; Spaargaren, M. The small FOXP1 isoform predominantly expressed in activated B cell-like diffuse large B-cell lymphoma and full-length FOXP1 exert similar oncogenic and transcriptional activity in human B cells. Haematologica, 2017, 102(3), 573-583. http://dx.doi.org/10.3324/haematol.2016.156455 PMID: 25728680

Schröck, A.B.; Frampton, G.M.; Sah, J.; Chalmers, Z.R.; Rosenzweig, M.; Erlich, R.L.; Halmos, B.; Goldman, J.; Forde, P.; Leuenberger, K.; Peled, N.; Kalemkerian, G.P.; Ross, J.S.; Stephens, P.J.; Miller, V.A.; Ali, S.M.; Ou, S.H. Characterization of 298 Patients with Lung Cancer Harboring MET Exon 14 Skipping Alterations. J. Thoracic Oncol., 2016, 11(9), 1493-502.

Gui, Y.; Yeganeh, M.; Donates, Y.C.; Tobelaim, W.S.; Chababi, W.; Mayhew, M.; Yoshimura, A.; Ramanathan, S.; Saucier, C.; Ilangumaran, S. Regulation of MET receptor tyrosine kinase signaling by suppressor of cytokine signaling 1 in hepatocellular carcinoma. Oncogene, 2015, 34(46), 5718-5728. http://dx.doi.org/10.1038/onc.2015.20 PMID: 25728680

Poulidakos, P.I.; Persaud, Y.; Janakiram, M.; Kong, X.; Ng, C.; Moriceau, G.; Shi, H.; Atefi, M.; Titiz, B.; Gabay, M.T.; Salton, M.; Dahlman, K.B.; Tadi, M.; Wargo, J.A.; Flaherty, K.T.; Kelley, M.C.; Misteli, T.; Chapman, P.B.; Kosman, J.A.; Graeber, T.G.; Ribas, A.; Lo, R.S.; Rosen, N.; Solit, D.B. RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature, 2011, 480(7377), 387-390. http://dx.doi.org/10.1038/nature10662 PMID: 22113612

Brown, M.C.; Gromeier, M. Cytotoxic and immunogenic mechanisms of recombiant oncolytic poliovirus. Curr. Opin. Virol., 2015, 13, 81-85. http://dx.doi.org/10.1016/j.coviro.2015.05.007 PMID: 26083317

Dobrikova, E.Y.; Broadt, T.; Pooley-Nelson, J.; Yang, X.; Soman, G.; Giardina, S.; Harris, R.; Gromeier, M. Recombiant oncolytic poliovirus eliminates glioma in vivo without genetic adaptation to a pathogenic phenotype. Mol. Ther., 2008, 16(11), 1865-1872. http://dx.doi.org/10.1038/mthe.2008.184 PMID: 18766173

Gromeier, M.; Lachmann, S.; Rosenfeld, M.R.; Gutin, P.H.; Wimmer, E. Intergeneric poliovirus recombinants for the treatment of malignant glioma. Proc. Natl. Acad. Sci. USA, 2000, 97(12), 6803-6808. http://dx.doi.org/10.1073/pnas.97.12.6803 PMID: 10841575

Martinez-Montiel, N.; Rosas-Murrieta, N.H.; Anaya Ruiz, M.; Monjaraz-Guzman, E.; Martinez-Contreras, R. Alternative splicing as a target for cancer treatment. Int. J. Mol. Sci., 2018, 19(2), E545. http://dx.doi.org/10.3390/ijms19020545 PMID: 29439487

Haferkamp, B.; Zhang, H.; Lin, Y.; Yeap, X.; Bunce, A.; Sharpe, J.; Xiang, J. BaxΔ2 is a novel bax isoform unique to microsatellite unstable tumors. J. Biol. Chem., 2012, 287(41), 34722-34729. http://dx.doi.org/10.1074/jbc.M111.274785 PMID: 22910913

Sadelain, M.; Riviére, I.; Riddell, S. Therapeutic T cell engineering. Nature, 2017, 543(7655), 423-431. http://dx.doi.org/10.1038/nature22395 PMID: 28541315

Souza-Fonseca-Guimaraes, F.; Cursons, J.; Huntington, N.D. The emergence of natural killer cells as a major target in cancer immunotherapy. Trends Immunol., 2019, 40(2), 142-158. http://dx.doi.org/10.1016/j.it.2018.12.003 PMID: 30639050

Ding, W.; Li, D.; Zhang, P.; Shi, L.; Dai, H.; Li, Y.; Bao, X.; Wang, Y.; Zhang, H.; Deng, L. Mutual editing of alternative splicing between breast cancer cells and macrophages. Oncol. Rep., 2019, 42(2), 629-656. http://dx.doi.org/10.3892/or.2019.7200 PMID: 31233192

Kahles, A.; Lehmann, K.V.; Toussaint, N.C.; Häser, M.; Stark, S.G.; Sachsenberg, T.; Stegle, O.; Kohlbacher, O.; Sander, C.; Rätsch, G. Cancer Genome Atlas Research Network. Comprehensive analysis of alternative splicing across tumors from 8,705 Patients. Cancer Cell, 2018, 34(2), 211-224. http://dx.doi.org/10.1016/j.ccell.2018.07.001 PMID: 30078747

Frankiw, L.; Baltimore, D.; Li, G. Alternative mRNA splicing in cancer immunotherapy. Nat. Rev. Immunol., 2019, 19(1), 675-687. http://dx.doi.org/10.1038/s41577-019-0195-7 PMID: 31363190

Levin, A.A. Treating disease at the RNA level with oligonucleotides. N. Engl. J. Med., 2019, 380(1), 57-70. http://dx.doi.org/10.1056/NEJMr1705346 PMID: 30601736

Urbanski, L.M.; Leclair, N.; Anczuków, O. Alternative-splicing defects in cancer: Splicing regulators and their downstream targets, guiding the way to novel cancer therapeutics. Wiley Interdiscip. Rev. RNA, 2018, 9(4), e1476. http://dx.doi.org/10.1002/wna.1476 PMID: 29693319