Evaluation of acoustic radiation force impulse imaging for the clinicopathological typing of renal fibrosis

GUANGHE CUI, ZHI YANG, WENXIAO ZHANG, BAOWEI LI, FANG SUN, CUI XU and KUN WANG

Department of Ultrasonic Medicine, The Affiliated Hospital of Binzhou Medical College, Binzhou, Shandong 256603, P.R. China

Received June 25, 2013; Accepted October 21, 2013

DOI: 10.3892/etm.2013.1377

Abstract. This study aimed to explore the assessment value of virtual touch quantization (VTQ) for the clinicopathological typing of renal fibrosis. The quantitative detection of 76 patients with nephropathy was performed using acoustic radiation force impulse imaging (ARFI). The extent of the renal fibrosis in each patient was confirmed using ultrasound-guided biopsy pathology. The VTQ values were compared with the degree of renal fibrosis in order to analyze the correlation between them. Patients were divided pathologically into four groups, as follows: non-fibrosis (n=14), mild fibrosis (n=40), moderate fibrosis (n=21) and severe fibrosis (n=1). Compared with the non-fibrosis group, the VTQ values of the mild and moderate fibrosis groups were significantly increased (P<0.01); however, there was no significant difference between the VTQ values of the mild and moderate fibrosis groups (P>0.05). According to the receiver operating characteristic (ROC) curve, a VTQ value of renal parenchyma of >1.67 m/sec was determined to be an indicator of renal fibrosis, with a sensitivity of 86.3% and a specificity of 83.3%. VTQ technology may be significant in the assessment of the extent of renal fibrosis.

Introduction

The incidence of chronic kidney disease (CKD) is >7% per year, and is increasing annually. According to the latest data from the International Society of Nephrology (ISN), >500 million individuals worldwide suffer from various kidney diseases, and CKD, complicated by cardiovascular and cerebrovascular diseases, is the cause of mortality for >1 million individuals every year. CKD has become a serious threat to human health, following cardiovascular and cerebrovascular disease, cancer and diabetes. Patients with CKD are treated using lifelong dialysis or renal transplantation, putting a huge economic burden on families, medical institutions and society. Renal fibrosis is a pathophysiological process, in which the kidney function is gradually damaged. Further damage ultimately leads to a loss of function. The early treatment of renal fibrosis may delay or even reverse the fibrotic lesions; thus, the early diagnosis of renal fibrosis is necessary. The diagnosis of mild renal fibrosis is difficult, and biopsy remains the clear gold diagnostic standard. Acoustic radiation force impulse imaging (ARFI) is a novel technology that has been used in the differential diagnosis of liver fibrosis, and breast and thyroid benign and malignant tumors. The value of ARFI has been widely recognized, particularly for the diagnosis of liver fibrosis (1-4). However, its significance in the diagnosis of renal fibrosis has yet to be elucidated. The aim of the present study was to investigate the assessment value of virtual touch quantization (VTQ) in the pathological typing of renal fibrosis.

Patients and methods

Subjects. In total, 76 patients [43 males and 33 females; age, 11-75 years (40.37±16.13 years)], who were admitted for CKD to the Department of Nephrology Medicine, The Affiliated Hospital of Binzhou Medical College (Binzhou, China) between June 2010 and June 2012, were recruited and enrolled in this study. The extent of renal fibrosis of each patient was verified using ultrasound-guided renal biopsy pathology. This study was conducted in accordance with the Declaration of Helsinki and with approval from the Ethics Committee of Binzhou Medical College (Binzhou, China). Written informed consent was obtained from all participants.

Methods. Experiments were performed using a Siemens Acuson S2000™ color Doppler ultrasound system (Siemens Medical Solutions USA, Inc., Detroit, MI, USA), equipped with ARFI technology software and a 4C1 probe with frequencies ranging between 2.0 and 5.0 MHz and a function of VTQ determination. The patient was asked to lie in prone position and was initially examined using conventional two-dimensional ultrasound, with a longitudinal section scanning of the right kidney. The sound beam was maintained as perpendicular as possible to the kidney capsule. Subsequently the patient was asked to hold their breath, and the VTQ sampling box was

Correspondence to: Dr Guanghe Cui, Department of Ultrasonic Medicine, The Affiliated Hospital of Binzhou Medical College, No. 661 Huanghe 2nd Road, Binzhou, Shandong 256603, P.R. China

E-mail: guanghecui@126.com

Key words: ultrasonograph, kidney, fibrosis, acoustic radiation force impulse imaging
placed in the right renal subcapsular parenchyma as the image stabilized in the VTQ mode. Each position of each patient was assessed five times and the average VTQ value was recorded.

Puncture biopsy. Puncture biopsy of the right inferior pole of the kidney parenchyma was performed using an 18G transfixion pin of a Bard automatic biopsy device (Bard Peripheral Vascular Inc., Tempe, AZ, USA) under ultrasonic guidance. A 2.2-cm kidney tissue biopsy was obtained and subsequently fixed in 10% formalin, prior to being sent for pathological examination. The patients were divided into four groups according to the extent of their kidney fibrosis, as follows: non-fibrosis, mild fibrosis (fibrosis extent, ≤25%), moderate fibrosis (fibrosis extent, 26-50%) and severe fibrosis (fibrosis extent, >50%).

Statistical analysis. The SPSS software program version 16.0 (SPSS Inc., Chicago, IL, USA) was used for statistical analyses. Results are presented as the mean ± standard deviation. The differences between the groups were compared using an independent sample t-test. P<0.05 was considered to indicate a statistically significant difference.

Results

The kidney tissue biopsies sent for pathological examination were classified into four groups according to the extent of fibrosis, as follows: non-fibrosis (n=14), mild fibrosis (n=40), moderate fibrosis (n=21) and severe fibrosis (n=1). The corresponding VTQ values were 1.59±0.14, 2.15±0.38, 2.29±0.53 and 2.24 m/sec, respectively (Table I). As there was only one patient in the severe fibrosis group, this group was excluded from statistical analysis. Pairwise comparisons of the non-fibrosis group with the mild and moderate fibrosis groups demonstrated that the VTQ values were significantly increased in the mild and moderate fibrosis groups (P<0.01). However, there was no significant difference between the mild and moderate fibrosis groups (P>0.05). The distribution of the VTQ values of renal parenchyma in the non-fibrosis, mild fibrosis and moderate fibrosis groups are shown in Fig. 1A. Furthermore, a receiver operating characteristic (ROC) curve was created using the VTQ values of the non-fibrosis and mild fibrosis groups. It was demonstrated that an elevated VTQ value has a certain discriminant value in the diagnosis of renal fibrosis (P<0.01, Fig. 1B). A measured VTQ value of renal parenchyma >1.67 m/sec was deemed to be a diagnostic indicator for renal fibrosis. The diagnostic sensitivity and specificity of the VTQ value were 86.3 and 83.3%, respectively.

Discussion

The common pathway for the development of CKD, such as primary and secondary glomerular diseases, tubular, interstitial and vascular diseases, and renal transplant chronic rejection disease, to terminal nephropathy is kidney fibrosis. The main pathological change is the absence of normal renal units, which are replaced by a large quantity of fibroblasts and myofibroblasts. The generation and accumulation of extracellular matrix, including collagen fibers and fibronectin, causes glomerulosclerosis and tubulointerstitial fibrosis and ultimately leads to the loss of kidney function (5,6). The pathological change in renal fibrosis is a gradual evolutive process from light to severe. It may be inhibited or delayed by early medication, but in severe instances it is irreversible. Therefore, the early diagnosis of renal fibrosis is likely to be beneficial for the treatment of the disease (7). At present, the clinical diagnosis of renal fibrosis is dependent on renal biopsy. However, a needle biopsy is an invasive diagnostic method with a degree of risk involved. Thus, a new, non-invasive and repeatable diagnostic method is required.

Flexibility is an important physical property of biological tissues. The flexibility is not only different among various tissue types, but also in the pathological states of the same tissue. As a result of this, ultrasound elasticity imaging techniques have emerged. Ophir et al (8) first proposed the

Groups	Case number	VTQ value
Non-fibrosis	14	1.59±0.14
Mild fibrosis	40	2.15±0.38
Moderate fibrosis	21	2.29±0.53
Severe fibrosis	1	2.24

Data of VTQ values are presented as the mean ± standard deviation. *P<0.01 vs. non-fibrosis group. VTQ, virtual touch quantization.
Nonalcoholic fatty liver disease (NAFLD) reported that VTQ was not able to demonstrate a certain degree of overlap with that of the mild fibrosis group and the moderate fibrosis group. As the sample sizes in this study were small, particularly for the severe renal fibrosis group, further studies with a larger sample size and more data are required in order to confirm the findings of this study.

References
1. Rifai K, Cornberg J, Mederacke I, et al: Clinical feasibility of liver elastography by acoustic radiation force impulse imaging (ARFI). Dig Liver Dis 43: 491-497, 2011.
2. Fierbinteanu-Braticevici C, Andronescu D, Usvat R, et al: Acoustic radiation force imaging of sonoelectroacoustically induced acoustic radiation force impulse (ARFI) elastography for fibrosis staging of liver fibrosis. World J Gastroenterol 15: 5525-5532, 2009.
3. Toshima T, Shirabe K, Takeish K, et al: New method for assessing liver fibrosis based on acoustic radiation force impulse: a special reference to the difference between right and left liver. J Gastroenterol 46: 705-711, 2011.
4. Takahashi H, Ono N, Eguchi Y, et al: Evaluation of acoustic radiation force impulse elastography for fibrosis staging of chronic liver disease: a pilot study. Liver Int 30: 538-545, 2010.
5. Iwano M and Neilsen EG: Mechanisms of tubulointerstitial fibrosis. Curr Opin Nephrol Hypertens 13: 279-284, 2004.
6. Liu Y: Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. J Am Soc Nephrol 15: 1-12, 2004.
7. Eddy AA: Molecular basis of renal fibrosis. Pediatr Nephrol 15: 290-301, 2000.
8. Ophir J, Cespedes EI, Ponnekenti H, Yazdi Y and Li X: Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging 13: 111-134, 1991.
9. Scacchi M, Andrioli M, Carzaniga C, et al: Elastosonographic evaluation of thyroid nodules in acromegaly. Eur J Endocrinol 161: 607-613, 2009.
10. Friendlich-Rust M, Romanski O, Meyer G, et al: Acoustic radiation force impulse-imaging for the evaluation of the thyroid gland: a limited patient feasibility study. Ultrasonics 52: 69-74, 2012.
11. Tozaki M, Isobe S and Fukuma E: Preliminary study of ultrasound elastographic tissue quantification of the breast using the acoustic radiation force impulse (ARFI) technology. Eur J Radiol 80: 182-187, 2011.
12. Meng W, Zhang G, Wu C, Wu G, Song Y and Lu Z: Preliminary results of acoustic radiation force impulse (ARFI) ultrasound imaging of breast lesions. Ultrasound Med Biol 37: 1436-1443, 2011.
13. Almers ML, Frinkley KD, Zhai L, et al: Acoustic radiation force impulse (ARFI) imaging of the gastrointestinal tract. Ultrason Imaging 27: 75-88, 2005.
14. Zhai L, Madden J, Foo WC, et al: Acoustic radiation force impulse imaging of human prostates ex vivo. Ultrason Med Biol 36: 576-588, 2010.
15. Bourrier J, Isselin G, Fouchard-Hubert I, et al: Acoustic radiation force impulse: a new ultrasonographic technology for the widespread noninvasive diagnosis of liver fibrosis. Eur J Gastroenterol Hepatol 22: 1074-1084, 2010.
16. Yoneda M, Suzuki K, Kato S, et al: Nonalcoholic fatty liver disease: US-based acoustic radiation force impulse elastography. Radiology 256: 640-647, 2010.
17. D’Onofrio M, Gallotti A, Salvia R, et al: Acoustic radiation force impulse (ARFI) ultrasound imaging of pancreatic cystic lesions. Eur J Radiol 80: 241-244, 2011.
18. Stock KF, Klein BS, Vo Cong MT, et al: ARFI-based tissue elasticity quantification in comparison to histology for the diagnosis of renal transplant fibrosis. Clin Hemorheol Microcirc 46: 139-148, 2010.
19. Syversveen T, Brabrand K, Midveldt K, et al: Assessment of renal allograft fibrosis by acoustic radiation force impulse quantification - a pilot study. Transpl Int 24: 100-105, 2011.
20. Syversveen T, Midveldt K, Berstad AE, Brabrand K, Strom EH and Abdilgaard A: Tissue elasticity estimated by acoustic radiation force impulse quantification depends on the applied transducer force: an experimental study in kidney transplant patients. Eur Radiol 22: 2130-2137, 2012.