Mechanisms of synaptic transmission dysregulation in the prefrontal cortex: pathophysiological implications

Zhen Yan1 · Benjamin Rein1

Received: 20 December 2020 / Revised: 13 March 2021 / Accepted: 29 March 2021
© The Author(s), under exclusive licence to Springer Nature Limited 2021

Abstract

The prefrontal cortex (PFC) serves as the chief executive officer of the brain, controlling the highest level cognitive and emotional processes. Its local circuits among glutamatergic principal neurons and GABAergic interneurons, as well as its long-range connections with other brain regions, have been functionally linked to specific behaviors, ranging from working memory to reward seeking. The efficacy of synaptic signaling in the PFC network is profoundly influenced by monoaminergic inputs via the activation of dopamine, adrenergic, or serotonin receptors. Stress hormones and neuropeptides also exert complex effects on the synaptic structure and function of PFC neurons. Dysregulation of PFC synaptic transmission is strongly linked to social deficits, affective disturbance, and memory loss in brain disorders, including autism, schizophrenia, depression, and Alzheimer’s disease. Critical neural circuits, biological pathways, and molecular players that go awry in these mental illnesses have been revealed by integrated electrophysiological, optogenetic, biochemical, and transcriptomic studies of PFC. Novel epigenetic mechanism-based strategies are proposed as potential avenues of therapeutic intervention for PFC-involved diseases. This review provides an overview of PFC network organization and synaptic modulation, as well as the mechanisms linking PFC dysfunction to the pathophysiology of neurodevelopmental, neuropsychiatric, and neurodegenerative diseases. Insights from the preclinical studies offer the potential for discovering new medical treatments for human patients with these brain disorders.

The prefrontal cortex (PFC) is the central hub for high-level executive functions critically involved in mental health and diseases. In this review, we will provide an overview on how synaptic transmission in PFC is regulated in normal and pathological conditions. We will first summarize PFC functional organization by describing the local and long-range neuronal circuits and the behavioral correlates to these top-down and bottom-up synaptic connections. Next, we will summarize PFC modulation by describing the influence of monoaminergic systems, stress hormones, and neuropeptides on the synaptic structure and function of PFC neurons. Finally, we will summarize the PFC synaptic dysregulation in a variety of brain disorders and potential treatment strategies. Because of the broad scope of this review, only selective neuronal circuits, signaling molecules, and disease mechanisms are included. Interested readers are encouraged to find more comprehensive details on specific aspects of the topic in the original papers and review articles cited here.

PFC organization and function

PFC network organization and functional implications

PFC is the cortical region located at the anterior part of the frontal lobe. PFC of humans is delineated into two functionally, morphologically, and evolutionarily different regions: ventromedial PFC and lateral PFC. PFC is the last portion of the brain to fully develop. In monkey PFC neurons, the rapid phase of synaptogenesis reaches the plateau at 2-months old and maintains the consistently high synaptic density from early adolescence through puberty (2 months to 3 years), the formative time when learning experiences are most intense [1].
Early studies of macaque monkeys have revealed PFC as a crucial hub necessary for successful maintenance of working memory (WM), a cognitive process involving information holding and manipulation, which serves as the fundamental backbone for executive functions [2, 3]. The key findings are that in a delayed reaching task, some primate dorsolateral PFC neurons exhibit the increased firing during the delay period when response-related information needs to be held in mind to guide the subsequent execution of correct responses [4, 5]. The delayed and persistent spiking activity that encodes spatial “working memory” signals arises from recurrent excitation among PFC pyramidal neurons [5, 6]. Cortical network models predict that NMDA receptors subserve the recurrent synaptic excitation and persist firing of PFC pyramidal neurons during working memory [7, 8]. In parallel with these neurophysiological studies, neuroimaging studies also implicate the human PFC in higher-order cognitive processing including working memory [9] and sustained attention [10].

Based on anatomical, functional, and connectivity homologies, it is thought that rodent PFC is composed of three cytoarchitecturally defined parts: the prelimbic (PL), infralimbic (IL), and anterior cingulate cortex (ACC) [11, 12]. Electrophysiological and pharmacological evidence further supports the existence of a frontal cortical area in the rat that exhibits increased firing during the delay period in the absence of sensory stimulus that instructs the orienting response, as in primate PFC [13]. Recordings of neuronal ensembles in rats during new task learning further find that the dynamic changes in PFC neuronal activity parallel with behavioral decoding, suggesting that working memory can be mediated by dynamic activation of different neural populations in PFC [14].

PFC projects to distributed subcortical autonomic, motor, and limbic regions (Fig. 1). Tracing studies have found that deep layer PFC pyramidal neurons project to mediodorsal thalamus, lateral hypothalamus, ventral and dorsal striatum, and basolateral amygdala (BLA) [15]. Prefrontal circuitry can dynamically control reward-seeking behavior through projection-specific cue encoding [16]: stimulation of PFC to nucleus accumbens (NAc) neurons promotes conditioned reward-seeking behavior, while activation of PFC to thalamic neurons suppresses both the acquisition and expression of conditioned reward seeking. A specific subset of mPFC projections to NAc neurons encodes the decision to initiate or suppress reward seeking when faced with the risk of punishment [17].

Dorsomedial PFC exerts the top-down control of motor cortex ensembles to inhibit inappropriate responses during a delayed-response task [18]. The neural projection from medial PFC (mPFC) to a brainstem area has been found to control behavioral adaptation to social defeat [19]: social defeat weakens functional connectivity of these two areas, while selective inhibition of this pathway recaptures behavioral effects of social defeat. A spatiotemporal dynamic network, which originates in PFC and ventral striatum, relays through the amygdala and ventral tegmental area (VTA), and converges in the ventral hippocampus (vHIP), is found to encode depression vulnerability in mice subjected to social defeat stress [20].

PFC also receives inputs from diverse regions, including the hippocampus, thalamus, and BLA (Fig. 1). The direct input from the hippocampus (HIP) or ventral HIP (vHIP), thalamus (TH), and basolateral amygdala (BLA), while PN sends output to TH, BLA, nucleus accumbens (NAc), and brainstem. Some behavioral correlates of these neuronal circuits are listed, along with the functional role of VIP+ or SST+ interneurons, as well as a subtype of SST+ interneurons expressing oxytocin receptor (OxtrIN).
hippocampal to prefrontal afferents in mice are found to be critical for encoding of spatial cues during working memory, and successful encoding of task-related information is mediated by gamma frequency synchrony between the hippocampus and PFC [21]. Proper vHIP-mPFC signaling is necessary to recall social memories [22]. Reciprocal interactions between PFC and the thalamus play a critical role in high-level cognitive function [23]. Thalamic input amplifies PFC connectivity, sustaining attentional control [24], and enabling sensory selection in divided attention [25]. The reciprocal connection between PFC and BLA is implicated in reward-seeking and fear-related responses, and optogenetic studies have revealed that BLA to PL circuit is critical in governing the selection of behavioral responses amid conflicting cues of reward and punishment [26].

PFC cellular components and synaptic circuits

PFC is composed of pyramidal neurons with wide arbor axons, wide spikes, low discharge rates, and interneurons, many of which having horizontal axonal arbors, narrow action potentials (APs), and high evoked firing rates [27]. PFC fast-spiking (FS) interneurons (presumably expressing parvalbumin, PV+) form contacts on the perisomatic domains of pyramidal neurons, while non-FS interneurons (presumably expressing somatostatin, SST+) contact peridendritic domains [28], enabling PV+ and SST+ interneurons to specialize in the control of the output and input of principal neurons, respectively. PV+ interneurons, which could fire in millisecond synchrony, exert fast and powerful inhibition on principal neuron firing, whereas SST+ interneurons exert weak and more variable inhibitory effects on firing output in behaving mice [29]. PFC in awake mice also has a basic disinhibitory circuit module in which activation of VIP+ interneurons transiently suppresses primarily SST+ and a fraction of PV+ interneurons [30]. Such disinhibitory control may serve to amplify local processing and modulate information gating. A subclass of VIP neurons expressing ChAT, ChAT-VIP, directly excites neurons throughout cortical layers via fast synaptic transmission of acetylcholine in mPFC, providing a local source to control attention [31].

Opotogenetics, in vivo electrophysiological recording, and single-cell microendoscopic Ca$^{2+}$ imaging of PFC neurons in behaving animals have revealed the cell-type functional response diversity that contributes to diverse behavioral correlates (Fig. 1). PL pyramidal neurons are found to contain anatomically and molecularly distinct subpopulations that target three downstream regions implicated in social behavior: NAc, BLA, and VTA. Activation of NAc-projecting PL neurons, but not the other subpopulations, decreases the preference for a social target [32]. PV+ interneurons in mPFC also play a key role in social behaviors: activation of mPFC PV+ neurons rescues social memory impairment caused by vHIP inhibition [33]. Dampering thalamic activity causes significant reductions of GABA signaling in the mPFC and concomitant abnormalities in cognition and social interaction, which is ameliorated by selectively activating mPFC PV+ interneurons [34]. BLA inputs also make strong connections onto PFC PV+ and SST+ interneurons, driving feedforward inhibition of PFC pyramidal neurons [35, 36].

In mice performing a reward foraging task, SST+ interneurons in ACC are found to selectively respond at the reward approach, whereas PV+ interneurons respond at reward leaving [29]. In mice performing a PFC-dependent sensory discrimination task, PV+ interneurons are responsive to sensory cues, motor action, and trial outcomes, while SST+ and VIP+ interneurons respond more selectively to motor action or trial outcomes, respectively, and pyramidal neurons show much greater functional heterogeneity with varied responses across cortical layers [37]. This cell-type-specific encoding of task-related signals may be crucial for local computation within the PFC microcircuit to guide goal-directed behavior. Furthermore, SST+ interneurons in mPFC of mice are found to play a primary role in orchestrating the ability to discriminate positive and negative affective states [38]: inhibition of mPFC SST+ interneurons abolishes affective state discrimination, while an increased synchronous activity of PFC SST+ interneurons, which guides the inhibition of PFC pyramidal neurons, is associated with this social cognitive function.

More recent studies have further revealed the functional role of PFC interneurons in working memory. During a spatial WM task, optogenetically inhibiting PFC SST+, but not PV+, interneurons decreases the long-range synchrony between hippocampus and PFC and impairs working memory accuracy [39], suggesting that SST+ interneurons are uniquely involved in facilitating hippocampal–prefrontal synchrony and prefrontal spatial encoding. Inhibiting PFC pyramidal neurons by optogenetically activating SST+ or PV+ interneurons during the delay impairs working memory performance while activating VIP+ interneurons in PFC improves memory retention [40], which has provided a circuit mechanism underlying memory-guided behavior. PV+ and SST+ interneurons in mPFC are also found to have distinct roles in WM: PV interneurons show weak target-dependent delay-period activity and are strongly inhibited by reward; while SST+ interneurons show strong target-dependent delay-period activity, and only a subtype of them is inhibited by reward [41].

Moreover, in a social fear conditioning paradigm, SST+ interneurons suppress PV+ interneurons and disinhibit pyramidal cells, which consequently enhances PFC output to mediate social fear responses [42]. This disinhibitory
microcircuit in PFC through interactions between interneuron subtypes provides an important circuit mechanism in gating social fear behavior. The relapse of extinguished fear is found to be mediated by a feedforward inhibitory pathway from the ventral hippocampus to the IL cortex, which involves the recruitment of PV+ interneurons in IL. In the avoidance behavior of elevated plus maze, PFC VIP+ interneurons enable cortical circuits to integrate hippocampal inputs, therefore effectively gating the transmission of signals related to open arm avoidance across the hippocampal–prefrontal network [44] (Fig. 1).

Regulation of PFC synaptic function

Monoaminergic regulation of PFC synaptic transmission

PFC is very sensitive to the neurochemical environment (Fig. 2), and monoaminergic modulation of the efficacy of synaptic connections in PFC circuits has profound effects on PFC-mediated executive function, including working memory, regulation of attention, inhibition of inappropriate behaviors, and impulsivity control [45]. Reduced catecholamine transmission has been linked to ADHD, while overamplified noradrenergic transmission is associated with PTSD [46]. The therapeutic actions of psychostimulant methylphenidate for ADHD involve the preferential glutamate receptors [48].

Dopamine

Serial section electron microscopy studies suggest that the majority of dopamine synapses in all PFC layers are on pyramidal neurons, but a significant fraction are on GABAergic interneurons [49]. Electrophysiological studies revealed that dopamine selectively modulates PFC excitatory and inhibitory microcircuits. DA depressed inhibitory transmission between FS interneurons and pyramidal neurons, but enhanced inhibition between non-FS interneurons and pyramidal cells [28]. Dopamine also reduces recurrent excitation in layer V pyramidal neurons [50], which may involve the target-specific expression of presynaptic and postsynaptic D1Rs [50, 51]. Dopamine has no effect on excitatory transmission from pyramidal neurons to FS interneurons but increases the excitability of FS interneurons [52]. In an experimental condition mimicking NMDA receptor hypofunction and GABA_A receptor deficiency in schizophrenia, dopamine, by acting on D2 receptors, promoted burst firing in a subset of PFC pyramidal neurons [53].

Stimulation of D1R produces an inverted-U dose response on PFC neuronal firing and cognitive performance during working memory tasks [46]. High levels of D1R activation of cAMP signaling reduce PFC neuronal firing and impairs working memory via opening of HCN channels at excitatory synapses [54]. It suggests that optimal levels of dopamine are essential for PFC function, while excessive dopamine stimulation could be detrimental.

Optogenetic stimulation of VTA neurons to trigger the synthetically released dopamine has revealed a marked and prolonged enhancement of the excitability of PFC PV+ interneurons and a modest and short-lived enhancement of the excitability of PFC principal neurons [55]. Blocking dopamine receptor activation in PFC shortens the VTA excitation of PFC PV+ interneurons and prolongs the VTA excitation of PFC principal neurons, and pharmacological evidence suggests that the dopaminergic effect on PFC principal neurons is through influencing the inhibitory transmission system [55]. These results have unmasked the role of dopamine in regulating the temporal dynamics of excitation/inhibition balance in the VTA-PFC circuit.

Dopamine D4 receptor, which is largely restricted to PFC neurons, is highly implicated in ADHD and schizophrenia [56, 57]. It has been revealed that D4 receptors serve as a homeostatic synaptic factor to stabilize cortical excitability by dynamically regulating CaMKII [58, 59] and the downstream NMDA and AMPA receptor channels [60–62]. In contrast to the activity-dependent, bi-directional effect of D4R stimulation on AMPARs in PFC pyramidal neurons [62, 63], D4 receptors suppress AMPARs in PFC GABAergic interneurons via the unique calcineurin/Slingshot/actin signaling mechanism [64]. Moreover, D4R stimulation elicits distinct effects on synaptic-driven action potential firing in PFC.
projection neurons versus fast-spiking interneurons, which are differentially altered in neuropsychiatric disorder-related conditions [65]. Stress exposure in D4R knockout mice induces schizophrenia-like behaviors via disruption of GABAergic transmission in PFC [66]. These results have provided a framework for understanding how D4R signaling is involved in the regulation of PFC functions.

D4R is one of the most variable proteins (and genes) in humans. A unique primate-specific feature of D4R is the additional 2–11 proline-rich repeats (most commonly 4) located in the third intracellular loop, which allows more complex simultaneous interactions with other proteins containing the SH3 domain. Interestingly, genetic studies have linked novelty-seeking behavior and ADHD to the long-repeat D4R allele (hD4.7) [57, 67]. Using D4R knockout mice with human D4R variants containing different repeats (hD4.4 and hD4.7), researchers have revealed the impact of hD4 variants on synaptic transmission and network activity in PFC neurons, the proteins interacting with hD4 variants, and the signaling pathways activated by hD4 variants, as well as the behavioral changes caused by hD4 variants [68, 69]. These studies provide novel insights into the functional roles of the remarkable polymorphism of human D4 receptors and shed light on the development of new therapeutic agents for diseases associated with dopaminergic dysfunction (Fig. 2).

Noradrenaline

The noradrenergic system in PFC is involved in many physiological and psychological processes, including working memory and mood control [46]. Endogenous norepinephrine (NE, also called noradrenaline), by acting on \(\alpha_1 \)-ARs, exerts complex effects in PFC: NE increases the firing of some PFC pyramidal neurons via presynaptic excitation of glutamate release under basal conditions, but when high levels of \(\alpha_1 \)-AR stimulation occur, such as with stress exposure, NE suppresses PFC neuronal firing through the opening of \(K^+ \) channels on spines [70]. Stimulation of \(\alpha_2 \)-ARs enhances the spatially tuned, delay-related firing of PFC neurons and strengthens working memory networks through inhibition of cAMP and closing HCN (hyperpolarization-activated cyclic nucleotide-gated) channels [71]. The interaction of HCN channels and cAMP regulating proteins in dendritic spines of PFC is considered to be a potential substrate of working memory [72].

Activation of \(\alpha_1 \)-ARs or \(\alpha_2 \)-ARs suppresses NMDAR currents in PFC pyramidal neurons by distinct mechanisms: the \(\alpha_1 \)-AR effect depends on the PLC/IP3/\(\text{Ca}^{2+} \) pathway, whereas the \(\alpha_2 \)-AR effect depends on PKA and the microtubule-based transport of NMDARs that is regulated by ERK signaling. Moreover, the effects of \(\alpha_1 \)-ARs and \(\alpha_2 \)-ARs are differentially modified by RGS4 [73], a member of the RGS family protein that plays an important role in modulating GPCR signaling [74] and an identified schizophrenia susceptibility gene [75, 76] (Fig. 2).

Serotonin

PFC receives a major serotonergic projection, which is dysfunctional in individuals who show impulsive aggression and violence [77]. Aberrant serotonergic neurotransmission has long been implicated in the pathogenesis of neuropsychiatric disorders associated with PFC dysfunction, including schizophrenia, depression, and anxiety [78]. Most clinically effective antipsychotic drugs, antidepressants, and anxiolytics all exert potent effects on the serotonin system. The pleiotropic functions of serotonin are afforded by the concerted actions of multiple serotonin receptor subtypes [79].

A series of studies have revealed the synaptic functions of serotonin receptors in PFC and how dysfunction of the serotonin system contributes to mental illnesses [80–89]. One of the key targets of serotonin receptor signaling is the glutamatergic system. It has been found that 5-HT\(_{1A}\) receptors in PFC pyramidal neurons suppress NMDAR function by disrupting the microtubule/kinesin-based dendritic transport of NMDA receptors [83], while this effect of 5-HT\(_{1A}\) is opposed by 5-HT\(_{2A/C}\) signaling [82]. In the human PFC, serotonin suppresses monosynaptic excitatory connections from pyramidal cells to interneurons [90]. At thalamocortical synapses, 5-HT\(_{2A}\) activation enhances NMDA transmission, gates the induction of NMDAR-mediated temporal plasticity, and facilitates associated cognitive functions [91].

Another main target of serotonin receptor signaling is the GABAergic system. 5-HT\(_{2}\) receptors inhibit GABA\(_A\)-mediated currents in PFC pyramidal neurons through phosphorylation of GABA\(_A\) receptors by the activation of anchored PKC [87], while 5-HT\(_4\) receptors modulate GABAergic signaling bi-directionally, depending on the basal PKA activation levels that are determined by neuronal activity [80]. Serotonergic regulation of GABA transmission in PFC is subject to the alteration by corticotropin-releasing factor (CRF) in response to stressful stimuli [89] or chronic antidepressant treatment [86]. In addition to pyramidal neurons, serotonin also affects GABAergic fast-spiking interneurons in PFC by enhancing their excitability and gamma frequency temporal integration via 5-HT\(_{2A}\) suppression of an inward-rectifying potassium conductance [92]. These studies have provided unique and complex mechanisms for serotonin receptors to dynamically regulate synaptic transmission and neuronal excitability in the PFC network in physiological and pathophysiological conditions (Fig. 2).
Hormonal regulation of PFC synaptic transmission

Stress hormones

Stress hormones exert complex and profound effects on the synaptic structure and function in PFC neurons (Fig. 2). Glucocorticoid action in the PFC shows marked functional heterogeneity. Glucocorticoid receptor (GR) knockdown in IL induces compromised stress adaptation and depression-like behavior, while GR knockdown in PL increases HPA axis responses to acute stress but does not affect stress sensitization or helplessness behavior [93], highlighting the region-specific impact of PFC on stress coping and emotional control.

Exposing animals to an acute stressor, such as forced swim, foot shock, or restraint, produces significantly enhanced glutamatergic transmission in PFC circuitry [94–97]. One mechanism is related to the enhancement of a readily releasable pool of glutamate vesicles via a non-genomic mechanism mediated by membrane receptors [95]. Acute stress, via acting on GR, also induces a delayed potentiation of NMDAR- and AMPAR-mediated synaptic currents, which is correlated with the increased level of synaptic NMDAR and AMPAR subunits [96, 98]. Serum- and glucocorticoid-inducible kinases (SGKs), an immediate early gene activated by the stress hormone, are shown to be involved by enhancing Rab4-mediated trafficking of glutamate receptors from early endosomes to the plasma membrane in PFC neurons [98, 99]. The GR-induced upregulation of SGK and glutamatergic signaling in acutely stressed animals is blocked by inhibition of HDAC6, a unique member of the HDAC family that directly regulates the GR chaperone protein, heat shock protein 90 (HSP90) [97]. Interestingly, reduced SGK expression is found in postmortem brains of PTSD patients, and inhibition of SGK in rat PFC produces helplessness- and anhedonia-like phenotypes [100].

Adhesion molecules that anchor glutamate receptors at the synaptic surface are also implicated in the acute stress-induced enhancement of GluR2 trafficking and memory facilitation [101]. In addition, acute foot shock stress increases spine density and induces dendritic remodeling in medial PFC, which can be partially blocked by chronic treatment with the antidepressant desipramine [102, 103]. This effect of stress and antidepressant is linked to the alteration of key genes involved in synaptic plasticity and spine structure [104].

In contrast to the positive effects of acute stress, chronic stress (e.g., 21-day restraint stress) produces impaired dendritic branching, atrophy, and spine loss in PFC pyramidal neurons [102, 105], and such structural reorganization is reversed after 3-week cessation of stress [106]. Chronic stress impairs synaptic plasticity by reducing LTP induction in the hippocampus–PFC connection [107], and repeated social stress during mid-adolescence significantly decreases synaptic activity and intrinsic excitability of mPFC neurons [108]. Chronic exposure to corticosterone also causes the reduction of NR2B and GluR2/3 subunit expression in ventromedial PFC [109].

A prominent loss of GluR1 and NR1 subunit expression has been found in PFC pyramidal neurons from repeatedly stressed animals, which leads to the depression of AMPAR- and NMDAR-mediated synaptic currents [110]. This stress-induced loss of glutamate receptor expression is attributable to the increased ubiquitin/proteasome-mediated degradation of GluR1 and NR1 that is controlled by E3 ubiquitin ligases Nedd4 and Fbx2, and inhibition of proteasomes or knockdown of these E3 ligases in PFC prevents the loss of glutamatergic responses and recognition memory in stressed animals [110]. The transcription of Nedd4 is upregulated by repeated stress via an epigenetic mechanism involving the elevated histone deacetylase 2 (HDAC2) and the ensuing suppression of histone methyltransferase Ehmt2 (also known as G9a) that catalyzes the repressive mark H3K9me2 [111]. The impairment of glutamate receptors and excitatory transmission in the PFC of chronically stressed animals is blocked by HDAC2 inhibitors [111].

There are many additional molecules that have been implicated in governing the effects of chronic stress in PFC. One key player is the mTORC (mammalian target of rapamycin complex) signaling pathway. Decreased levels of mTORC are found in the PFC of humans with the major depressive disorder [112], and the fast-acting antidepressant ketamine increases mTORC signaling in rat PFC [113]. REDD1, an endogenous inhibitor of mTOR, shows the elevated expression in the PFC of animals exposed to chronic unpredictable stress and the PFC of post-partum depressed humans [114]. REDD1 knockdown renders animals to have greater resilience to the chronic stress-induced spine shrinkage and AMPAR current reduction [114].

Neuropeptides

The neuropeptide precursor VGF plays a critical role in depression and antidepressant efficacy [115]. Reduced levels of VGF have been found in the PFC of MDD patients and the PFC of chronically stressed mice [116]. VGF in PFC regulates susceptibility to stress and the antidepressant response to ketamine and infusion of VGF C-terminal peptide TLQP-62 to PFC produces sustained antidepressant responses [116].

Neuropeptide Y (NPY), a stress modulatory transmitter, has been associated with PTSD. NPY in IL cortex, acting on NPY Y1 receptors, increases inhibitory synaptic transmission onto IL projection neurons and dampens their excitability, resulting in the significant impairment of fear extinction memory [117].
The “prosocial” hormone oxytocin (OT) plays a key role in regulating social and emotional behaviors through a population of SST+ interneurons that express the oxytocin receptor (OxtrIN) in mPFC. Silencing OxtrIN of female mice or deleting Oxtr gene in mPFC results in sociosexual deficits [118], while OxtrIN in male mice regulates anxiety-related behaviors by interacting with the co-expressed corticotropin-releasing-hormone-binding protein (CRHBP), an antagonist of the stress hormone CRH [119] (Fig. 2).

PFC dysregulation and diseases

Transcriptomic meta-analyses of the human cerebral cortex across major neuropsychiatric disorders, including autism (ASD), schizophrenia (SZ), bipolar disorder (BD), and depression (MDD), have found the shared transcriptional dysregulation underlying convergent molecular neuropathology, such as a gradient of synaptic gene downregulation and astroglial gene upregulation in ASD, SZ, and BD (ASD >SZ = BD), and dysregulation of the HPA axis and hormonal signaling in MDD [120]. Synaptic plasticity deficits in the PFC of animal models have been linked to clinical findings from human patients with frontal cortical dysfunction, including the decreased functional connectivity in prefrontal–limbic circuits, executive function and memory deficits, inflexible and maladaptive behaviors [121]. In what follows, we will summarize mechanisms of synaptic transmission dysregulation in the PFC and pathophysiological implications in a few neurodevelopmental, neuropsychiatric and neurodegenerative diseases linked to the impairment of social, emotional, and cognitive processes.

Autism

Autism is a prevalent neurodevelopmental disorder characterized by core symptoms, such as social deficits and stereotypic behaviors. The importance of PFC in autism is demonstrated by structural, functional, and genomic studies. Postmortem studies have found focal patches of abnormal laminar cytoarchitecture and cortical disorganization of neurons, but not glia, in the prefrontal and temporal cortical tissue from a majority of young children with autism, with the clearest signs of abnormal expression of excitatory neuronal markers in deep cortical layers 4 and 5 [122]. Many of the high-level executive functions controlled by PFC are impaired in autism. Transcriptomic analysis of autistic brains has found 444 genes showing significant expression changes in PFC, but only 2 in the cerebellum [123].

Haploinsufficiency of the Shank3 gene, which encodes a scaffolding protein at postsynaptic density of glutamatergic synapses, has been causally linked to autism [124, 125]. High-resolution MRI has found that loss of Shank3 in mice results in disrupted local and long-range prefrontal and frontostriatial functional connectivity, which is predictive of social communication deficits [126]. In PFC pyramidal neurons of Shank3-deficient mice, NMDAR function and synaptic distribution are significantly diminished, which is caused by a marked loss of actin filaments at glutamatergic synapses due to the altered Rac1/PAK/cofilin signaling [127]. Inhibiting cofilin or activating Rac1 rescues the social deficits and NMDAR hypofunction in Shank3-deficient mice [127] (Fig. 3), suggesting that targeting actin regulators to restore actin-based NMDAR synaptic delivery could be a therapeutic option for autism [128]. Chemogenetic activation of PFC pyramidal neurons in Shank3-deficient mice also restores social preference behaviors and elevates glutamatergic synaptic function [129]. Moreover, the reduced synaptic plasticity in the hippocampus–mPFC pathway and impaired social recognition memory and attention in Shank3-deficient rats are attenuated by oxytocin treatment [130].

Another prominent genetic link to autism spectrum disorders and intellectual disability is the microdeletion or microduplication of the human 16p11.2 gene locus [131, 132]. A 16p11.2 deletion mouse model, 16p11+/-, exhibits NMDAR hypofunction in PFC pyramidal neurons [133]. Chemogenetic activation of PFC pyramidal neurons leads to the amelioration of cognitive and social impairments and the restoration of NMDAR function in 16p11 +/- mice [133]. On the other hand, a 16p11.2 duplication mouse model, 16p11dp+/−, exhibits deficient GABAergic synaptic transmission and elevated excitability in PFC pyramidal neurons [134]. Restoring the expression of Npas4, a key regulator of GABA synapses [135, 136], ameliorates the social and cognitive deficits, as well as GABAergic synaptic impairment and neuronal hyperexcitability in 16p11dp+/- mice [134]. Synaptic dysfunction and excitation/inhibition imbalance are identified as a common pathophysiological feature of multiple ASD models [137–139].

Large-scale genetic screenings have revealed that many of the identified top-ranking autism risk factors are genes implicated in synaptic homeostasis, transcriptional regulation, and chromatin remodeling pathways [140–142]. Epigenomic studies show that PFC neurons from subjects with autism exhibit the altered H3K4me3 peaks at numerous genes regulating neuronal connectivity, social behaviors, and cognition, often in conjunction with altered expression of the corresponding transcripts [143]. A recent series of studies have shown that targeting epigenetic enzymes to adjust gene expression and ameliorate synaptic defects in PFC is a potential strategy to normalize behavioral phenotypes associated with autism [144–147].

In PFC of Shank3-deficient mice, the loss of histone acetylation and upregulation of HDAC2 have been identified
Systemic administration of the class I HDAC inhibitor romidepsin or MS-275 leads to the robust and persistent alleviation of social deficits, as well as the restoration of actin regulators and NMDAR function in PFC [144, 145]. A histone acetylome-wide association study (H3K27ac ChIP-seq) of human ASD postmortem samples also reveals common “epimutations” on genes involved in synaptic transmission, ion transport, and histone deacetylation [148]. Moreover, the repressive histone mark H3K9me2 and its catalyzing enzymes EHMT1/2 are selectively increased in the PFC of Shank3-deficient mice and autistic human postmortem brains [146]. Inhibition of EHMT1/2 rescues social deficits and restores PFC NMDAR function in Shank3-deficient mice via restoring the expression of plasticity gene Arc, which encodes the activity-regulated cytoskeleton-associated protein Arc [146]. The nucleocytoplasmic shuttle protein involved in both cell adhesion and transcriptional regulation, β-catenin, is found to link the loss of Shank3 in the synapse to the upregulation of HDAC2 and EHMT1/2 transcription in the nucleus [145, 146] (Fig. 3).

Another identified high-risk factor for autism is the Cullin 3 (Cul3) gene [141], which encodes a core component of the E3 ubiquitin ligase complex that mediates proteasomal degradation [149]. Loss of Cul3 in the forebrain or PFC leads to social deficits and NMDAR hypofunction, while loss of Cul3 in the striatum leads to stereotypic behaviors and cell-type-specific alteration of neuronal excitability in striatal circuits [147]. One of the misregulated proteins resulting from forebrain Cul3-deficiency is Smyd3, a histone methyltransferase involved in gene transcription. Inhibition or knockdown of Smyd3 ameliorates social deficits and restores PFC NMDAR function in forebrain Cul3-deficient mice [147]. These studies have demonstrated how aberrations in molecular and epigenetic pathways implicated in autism are interconnected.

Schizophrenia

Schizophrenia (SZ) is a chronic psychiatric disorder that is characterized by delusions, hallucinations, disorganized speech and behavior, and negative symptoms [150]. SZ has been linked to both aberrant PFC development during embryonic stages and disrupted PFC maturation in later adolescence driven by environmental stressors, making
SZ is a unique disorder with two critical susceptibility periods [151]. SZ patients exhibit reduced gray matter in the frontal cortex, evidenced by MRI studies [152, 153]. It has been suggested that SZ is driven by disrupted cortical synaptic pruning [154] because its symptoms tend to appear late in adolescence corresponding with the developmental period in which PFC connectivity undergoes maturation [155]. One hypothesis is that psychosocial stress in late development drives microglial over-activation, leading to the increased synaptic pruning in PFC [156]. In accordance with these theories, SZ patients display significant reductions in dendritic spine density in PFC [157], and lower density of perineuronal nets (PNN)—extracellular structures that stabilize synapses, also suggesting synaptic loss or destabilization [158]. SZ patients show reduced blood flow in PFC during task performance [159] and reduced functional connectivity between PFC and other brain regions when performing a cognitive task [160].

SZ etiology has a strong genetic component, and many high-risk SZ genes identified by GWAS studies are highly enriched in the mid-frontal lobe [161], form protein interactions in fetal dorsolateral (DL) and ventrolateral PFC [162], and/or are functionally implicated in synaptic transmission [162, 163]. Proteomic analysis of SZ DLPFC samples identified 15 differentially expressed proteins, 7 of which were synaptic [164]. These studies suggest synaptic dysfunction in PFC as a core mechanism in SZ.

The synaptic pathology of SZ in the PFC is complex, involving disrupted glutamatergic, GABAergic, dopaminergic, and serotonergic transmission (Fig. 4A). There is strong support for NMDA hypofunction in SZ, as treatment with NMDAR antagonists, such as MK-801 or phencyclidine, can induce SZ-like symptoms in both human subjects [165] and in animals [166]. NMDAR-mediated connectivity between PFC and hippocampus is impaired in SZ, which is suggested as a mechanism underlying working memory deficits [167]. Blocking NMDARs with MK-801 injection leads to the impairment of mPFC-dependent cognitive flexibility and hippocampus–mPFC pathway-dependent spatial working memory [168].

Paradoxically, MK-801 drives the increased release of glutamate in the mPFC, though the antipsychotic medications clozapine and haloperidol are both able to block MK-801-induced glutamate release in PFC of rats [169]. NMDAR antagonists may elicit this paradoxical response by primarily blocking NMDA receptors on GABAergic interneurons, thereby promoting disinhibition of pyramidal neurons [170]. It has thus been postulated that the NMDA hypofunction in SZ mainly occurs in cortical GABAergic interneurons [165]. Postmortem schizophrenia studies have revealed supporting evidence [171], including the reduced density of NR2A-expressing PV interneurons in cortical layers 3 and 4 [172] and the reduced density of GAD67- and NR2A-coexpressing neurons in layers 2 and 5 of the anterior cingulate cortex [173].

CALM2, SYN1, RAB3A, RAB4B, are also diminished in MDD PFC. In addition, mTOR signaling is decreased in MDD PFC because of the elevated expression of the endogenous inhibitor REDD1. The fast-acting antidepressant ketamine primarily blocks NMDARs on PFC interneurons, leading to the disinhibition of PFC pyramidal neurons and the increase of mTORC signaling, resulting in the restoration of dendritic spines in MDD PFC.
In rats treated with NMDAR antagonists, PFC neurons display elevated and irregular spiking activity and the reduced coordinated burst firing, suggesting that NMDA hypofunction in PFC may drive disorganized network activity [174]. In agreement with this, monkeys performing a SZ-relevant cognitive task exhibited reduced synchronous firing and disrupted connectivity in PFC neurons after the administration of an NMDAR antagonist [175]. PFC-specific inhibition of either NMDA or GABA transmission produces working memory deficits in rats, suggesting that either system could contribute to working memory deficits in SZ [176]. Several biochemical indicators of NMDA dysfunction are reported in SZ PFC, including the reduced expression of several synaptic plasticity-related genes [177], and the significantly lower postsynaptic expression of the NMDAR subunit NR1 and PSD95 [178]. Reduced expression of the presynaptic vesicle protein VAMP has also been reported in SZ PFC [179], while other presynaptic markers appear unchanged [177, 179].

Several well-replicated cellular indications of disrupted GABAergic synaptic transmission have been reported in PFC of SZ patients, including the decreased GAD67 expression and reduced gamma oscillations, suggesting deficient GABA synthesis and GABAergic synaptic transmission, respectively [180]. While no change in the number of PV+ cells [181] or the density of GABAergic synaptic inputs on DLPFC neurons [182] is observed in SZ patients, the reduced PV expression is reported both at the individual cellular level [181] and specifically within presynaptic boutons of PV+ basket cells [182]. Furthermore, expression analysis of DLPFC from SZ patients indicated the reduced expression of several GABA-related genes, including neuropeptides and both presynaptic and postsynaptic markers [183]. Inhibiting GABAergic transmission in the PFC of rats produces several behavioral phenotypes mirroring SZ symptomology [184]. The evidence implicating GABAergic deficits in PFC as a core mechanism in SZ-related cognitive dysfunction has been reviewed previously [185].

Dopamine modulation of PFC, which also plays a major role in working memory [186], is thought to contribute to PFC dysfunction in SZ. In a mouse model carrying a genetic risk factor for neuropsychiatric disorders, adolescent isolation stress induces DNA hypermethylation of the tyrosine hydroxylase (TH) gene in mesocortical dopaminergic neurons, causing the reduced TH expression and cortical dopamine release, leading to SZ-associated behavioral abnormalities [187]. D2R activation leads to long-lasting NMDAR hypofunction, resulting in the profound disruption of functional connectivity between the hippocampus and PFC [167]. D2R overexpression in mouse striatum causes the reduced inhibitory synaptic input to PFC pyramidal neurons, suggesting that the deficit in PFC GABAergic function in schizophrenia could be secondary to alterations in the striatal dopamine system [188]. On the other hand, D1R activation in PFC facilitates the maintenance of long-term potentiation (LTP) of glutamatergic transmission, as well as the induction of long-term depression (LTD) of glutamatergic transmission, indicating its bi-directional modulation of synaptic plasticity in mPFC [189]. Computational models predict that an imbalance of D1R/D2R activation in the PFC may underlie the associated cognitive, positive, and negative symptoms of SZ [190]. Positron emission tomography studies indicate that radioligand binding to D1R is reduced in PFC of SZ patients, and the extent of the reduction correlates directly with the severity of SZ-related negative symptoms [191]. Further postmortem studies have confirmed the reduced D1R expression in PFC of SZ patients [192].

In addition to dopamine, serotonin dysfunction in PFC is also implicated in SZ, as 5-HT receptors are the major targets of many atypical antipsychotics used to treat SZ, such as clozapine and olanzapine. A systematic review of literatures reported the increased expression of 5-HT1A and the reduced expression of 5-HT2A receptors in PFC of SZ patients [193]. PET studies in SZ patients have similarly shown the reduced 5-HT2A availability in the frontal cortex [194]. The novel antipsychotic drug lurasidone restores the diminished NMDAR function in PFC pyramidal neurons from the phenylcyclidine (PCP) model of schizophrenia via antagonizing 5-HT7 receptors [195], which may underlie its effect on reversing cognitive impairment in SZ. The exact mechanisms by which serotonin dysfunction in PFC contributes to SZ pathophysiology remain to be further elucidated. Collectively, the existing evidence suggests a model whereby the disruption of NMDA and GABA transmission in PFC, which is partially driven by aberrant dopamine and serotonin neuromodulation, produces excitation/inhibition imbalance and network dysconnectivity in SZ (Fig. 4A).

Emerging studies have revealed the epigenetic alterations in SZ [196]. ATAC-seq analysis of SZ DLPFC shows that genetic regions with high chromatin accessibility are highly enriched in heritable genetic risk factors for SZ [197]. In agreement with this, two histone markers associated with transcriptional activation (H3K4me3 and H3K27ac) are enriched at SZ genetic risk variants [198]. Broadly disrupted DNA methylation profiles are also reported in SZ PFC [199]. Epigenetic dysregulation of 5-HT2A receptor has been demonstrated in the human frontal cortex [200]. In a rat model of SZ, abnormal epigenetic repression of the NMDAR subunit Grin2b in PFC drives glutamatergic synaptic deficits [201]. Upregulation of Hdac1 is found in the PFC of human SZ patients and Hdac1 overexpression in PFC is associated with SZ-like phenotypes in mice [202]. These findings suggest that epigenetic dysregulation of selective genes may play an important role in SZ.
Mechanisms of synaptic transmission dysregulation in the prefrontal cortex: pathophysiological...
[229], further implicating the mTOR signaling pathway in MDD. The ketamine metabolite hydroxynorketamine similarly produces antidepressant effects in mice when administered exclusively in the PFC, and this effect is dependent upon the activation of BDNF, and downstream TrkB and mTORC1 signaling [230]. Furthermore, direct activation of the mTORC1 pathway via NV-5138 produces antidepressant effects in rats, suggesting that mTORC1 activation alone may be sufficient to alleviate depressive symptoms [231].

Collectively, these studies suggest that in MDD patients, the PFC is characterized by diminished expression of glutamatergic and GABAergic receptors, accompanied by a reduction in dendritic spine density. Ketamine treatment thus enacts its therapeutic effects by transiently promoting glutamate release in PFC to activate AMPA receptors, which in turn activates the downstream mTOR signaling pathway and promotes BDNF expression, leading to synaptogenesis and elevated glutamatergic transmission (Fig. 4B).

In addition to the involvement of PFC synaptic dysregulation in depression, epigenetic changes have been described in the PFC of individuals with MDD. Twenty genes are found to be differentially methylated in PFC of MDD patients from a genome-wide methylation analysis, including hypermethylation of Grin2a [232]. HDAC inhibitors produce antidepressant-like effects in mice [233]. DNA methyltransferases have also been implicated in depression [234]. Elevated DNA methylation is observed in the PFC of rats subjected to learned helplessness stress, which is reversed by antidepressant imipramine treatment [235]. Moreover, systemic administration of DNA methyltransferase inhibitors induces antidepressant-like effects in rats [236]. These findings suggest that pharmacological targeting of epigenetic enzymes may be a novel treatment strategy for depressive symptoms.

Alzheimer’s disease

PFC is one of the first regions to be affected in clinical AD, which may explain the early occurrence of the impairment of PFC-mediated cognitive processes, such as working memory and attention. Aging is the leading risk factor for developing AD, so many studies have focused on revealing neurobiological changes that affect synaptic integrity with aging and why the aged brain is vulnerable to AD. In aged PFC, the cAMP/PKA pathway is disinhibited, and PKA inhibition provides an effective approach for treating age-related cognitive decline [237]. The marked loss of PFC persistent firing in aged monkeys is also partially restored by inhibiting cAMP signaling or blocking HCN or KCNQ channels [238]. Age-related increase in PKA phosphorylation of tau at serine 214 in monkey PFC is thought to confer risk for degeneration of glutamatergic synapses [239]. From aging monkey studies, it is found that PFC is particularly vulnerable to calcium dysregulation and tau phosphorylation [240]. The loss of thin spines in monkey PFC, which are particularly plastic and linked to learning, is selectively correlated with age-related cognitive impairment [241]. Aβ infused into the monkey brain induces accelerated cortical aging by triggering the specific loss of dendritic thin spines in the PFC [242].

Cholinergic system is crucial for cognitive processes, and deficient acetylcholine (ACh) function has been implicated in AD. A major AD therapy is acetylcholinesterase (AChE) inhibitors, which act to enhance cholinergic function by prolonging the action of endogenously released ACh. AChE inhibitors produce a strong and persistent reduction of synaptic NMDAR responses in PFC pyramidal neurons via nicotinic ACh receptors [243]. Activation of muscarinic or nicotinic ACh receptors in PFC pyramidal neurons also enhances inhibitory synaptic transmission through PKC-dependent mechanisms [244, 245]. The cholinergic regulation of NMDA and GABA function is impaired in transgenic mice overexpressing mutant β-amyloid precursor protein (APP) [243, 245, 246]. Aβ-induced loss of RACK1 (an anchoring protein for activated PKC) distribution in the membrane fraction of cortical neurons is found to underlie the impairment of muscarinic regulation of PKC [247]. In aged monkeys with naturally occurring cholinergic depletion, low-dose muscarinic M1R stimulation enhances delay firing in dorsolateral PFC neurons and improves working memory via a mechanism involving KCNQ channels [248]. These studies suggest that restoring cholinergic regulation of PFC synaptic activity and neuronal excitability might help to treat AD-associated cognitive disorders.

The brain noradrenergic system is also critical for cognition and noradrenergic dysfunction is a critical early step in AD progression [249]. A recent study has found that β-amyloid oligomers bind to an allosteric site on α2-ARs to redirect norepinephrine signaling to activate the pathogenic GSK3β/tau cascade [250]. Guanfacine, a specific α2-AR antagonist, has been used to treat cognitive disorders linked to PFC dysfunction [251].

The systematic search for global gene expression changes in PFC during the course of AD has found a temporally orchestrated increase of genes involved in synaptic activity during the very early pre-symptomatic stage, probably representing a coping mechanism against increased β-amyloid levels, and the decreased expression of these synaptic genes in later Braak stages, suggesting a reduction in synaptic activity that coincides with AD neuropathology and cognitive impairment [252]. Studies of postmortem human brains have found a significant association between cognitive decline and the loss of synaptic proteins in PFC, such as SNAP25, SNAP47, SV2C, SYT2, and GRIA3.
[253, 254], suggesting that these PFC synaptic markers are predictive molecular fingerprint for neurodegenerative diseases, and understanding the basis of synaptic impairment is the most effective route for early intervention and prevention of cognitive decline.

Both AD patients and symptomatic AD mouse models show impaired synaptic plasticity in PFC, which is related to the impaired NMDAR function [255]. The diminished transcription of NMDA and AMPA receptors in late-stage AD mouse models has been linked to the EHMT1/2-mediated repressive histone methylation at their promoters [256]. Treatment of AD models with specific EHMT1/2 inhibitors reverses the increased H3K9me2 enrichment at genes involved in neuronal signaling (e.g., Grin2a encoding NR2B subunit and Gria2 encoding GluR2 subunit), restores glutamate receptor expression and excitatory synaptic function in PFC, and rescues the impaired recognition memory, working memory, and spatial memory [256] (Fig. 5).

In addition to the downregulation of genes involved in synaptic transmission and synapse organization, there is also prominent upregulation of genes involved in cell stress, immune response activation, and cell death in PFC of AD patients [257–259]. A recent study has found that H3K4 trimethylation (H3K4me3), a histone mark for gene activation, is significantly elevated in PFC of human AD postmortem tissues and AD mouse models, and inhibiting H3K4-specific methyltransferases, including MLL1-4 (also named as KMT2A-D) and SETD1a/b, leads to the substantial recovery of glutamatergic synaptic function in PFC pyramidal neurons, and the significant improvement of memory-related behaviors in mutant Tau transgenic mice [260]. One of the top-ranking genes elevated by the abnormally high H3K4me3 in PFC of AD patients and mouse models is SGK1, which encodes the stress-responsive kinase SGK1. A short treatment with the specific SGK1 inhibitor results in the significant reduction of hyperphosphorylated tau (a pathological hallmark of AD) and the recovery of synaptic receptor expression and glutamatergic transmission in PFC, as well as the restoration of recognition and spatial memories, in mutant Tau transgenic mice [260] (Fig. 5). These results suggest that targeting histone methylation enzymes may represent a novel therapeutic avenue for normalizing the aberrant epigenetic regulation of gene transcription in PFC that underlies cognitive deficits in AD.

Fig. 5 Schematic diagram illustrating the potential epigenetic mechanisms underlying gene dysregulation and synaptic deficits in PFC of AD. The elevation of repressive histone mark H3K9me2 in AD leads to the downregulation of genes involved in synaptic transmission, such as AMPAR subunit Gria2 and NMDAR subunit Grin2a, resulting in the reduction of synaptic strength [256]. On the other hand, the elevation of permissive histone mark H3K4me3 in AD leads to the upregulation of genes involved in cell stress, such as serum- and glucocorticoid-inducible kinase 1 (SGK1), resulting in hyperphosphorylation of tau, disintegration of microtubules, and disruption of vital protein transport [260]. Targeting histone methyltransferases to normalize histone modification or key target genes is the potential new therapeutic strategy for treating synaptic and cognitive deficits in AD.

Concluding remarks

Overwhelming evidence has indicated that PFC is a uniquely important brain region for the highest level of executive function, which drives self-regulatory and goal-directed behaviors [261–263]. Dysregulation of PFC synaptic transmission directly contributes to the impairment of social, affective, motivational, and cognitive function associated with brain disorders including autism, schizophrenia, depression, and Alzheimer’s disease. Studies in animal models have revealed critical neural circuits, biological pathways, and molecular players that converge to control the excitatory and inhibitory signals in PFC networks. Novel epigenetic mechanism-based strategies have been proposed as potential avenues of therapeutic intervention for mental diseases linked to PFC dysfunction.

There are many open questions that await to be further explored in future studies, and a few examples are listed as follows:
(1) What makes PFC so special in terms of the organizational and cellular function? Circuit mapping with modern technologies has revealed the links of specific pathways and cell types to particular behavioral aspects. How specific and robust are such links? Is it likely that complex cognitive and emotional behaviors usually need to recruit multiple circuits and neuronal populations? What are the differential roles of PFC and its connecting regions in the control of these behaviors?

(2) How does PFC integrate the influences of monoaminergic conditions, stress hormones, and neuropeptides in different conditions? What effects of these neuromodulators are unique to PFC synaptic function? How much does the aberrant modulation of PFC contribute to the pathophysiology of neurodevelopmental, neuropsychiatric, and neurodegenerative diseases?

(3) What are the convergent and divergent factors causing PFC synaptic dysfunction in autism, schizophrenia, depression, and Alzheimer’s disease? Is PFC synaptic dysregulation directly linked to behavioral abnormalities in these illnesses?

(4) How are the synaptic, epigenetic, and transcriptomic alterations mechanistically connected in each of PFC-involved brain disorders? What is the translational potential of the epigenetics-based treatment strategies found in preclinical models for human patients with these disorders?

Acknowledgements We are grateful to former and current members of Dr. Yan’s laboratory for their contributions to the original findings and NIH grants (MH108842, MH112237, DA037618, AG056060, AG064656 to ZY) for their support of some of the work reviewed here.

Compliance with ethical standards

Conflict of interest The authors declare no competing interests.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

1. Bourgeois JP, Goldman-Rakic PS, Rakic P. Synaptogenesis in the prefrontal cortex of rhesus monkeys. Cereb Cortex. 1994;4:78–96.
2. Diamond A. Executive functions. Annu Rev Psychol. 2013;64:135–68.
3. Stokes MG. ‘Activity-silent’ working memory in prefrontal cortex: a dynamic coding framework. Trends Cogn Sci. 2015;19:394–405.
4. Fuster JM, Alexander GE. Neuron activity related to short-term memory. Science. 1971;173:652–4.
5. Goldman-Rakic PS. Cellular basis of working memory. Neuron. 1995;14:477–85.
6. Wang Y, Markram H, Goodman PH, Berger TK, Ma J, Goldman-Rakic PS. Heterogeneity in the pyramidal network of the medial prefrontal cortex. Nat Neurosci. 2006;9:534–42.
7. Compte A, Brunel N, Goldman-Rakic PS, Wang XJ. Synchronous mechanisms and network dynamics underlying spatial working memory in a cortical network model. Cereb Cortex. 2000;10:910–23.
8. Wang M, Yang Y, Wang CJ, Gamo NJ, Jin LE, Mazer JA, et al. NMDA receptors subserve persistent neuronal firing during working memory in dorsolateral prefrontal cortex. Neuron. 2013;77:736–49.
9. McCarthy G, Blamire AM, Puce A, Nobre AC, Bloch G, Hyder F, et al. Functional magnetic resonance imaging of human prefrontal cortex activation during a spatial working memory task. Proc Natl Acad Sci USA. 1994;91:8690–4.
10. Pardo JV, Fox PT, Raichle ME. Localization of a human system for sustained attention by positron emission tomography. Nature. 1991;349:61–64.
11. Uylings HB, Groenewegen HJ, Kolb B. Do rats have a prefrontal cortex? Behavioural Brain Res. 2003;146:3–17.
12. Ongür D, Price JL. The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb Cortex. 2000;10:206–19.
13. Erlich JC, Bialek M, Brody CD. A cortical substrate for memory-guided orienting in the rat. Neuron. 2011;72:330–43.
14. Baeg EH, Kim YB, Huh K, Mook-Jung I, Kim HT, Jung MW. Dynamics of population code for working memory in the prefrontal cortex. Neuron. 2003;40:177–88.
15. Gabbott PL, Warner TA, Jays PR, Salway P, Busby SJ. Prefrontal cortex in the rat: projections to subcortical autonomic, motor, and limbic centers. J Comp Neurol. 2005;492:145–77.
16. Otis JM, Namboodiri VM, Matan AM, Voets ES, Mohorn EP, Kosyk O, et al. Prefrontal cortex output circuits guide reward seeking through divergent cue encoding. Nature. 2017;543:103–7.
17. Kim CK, Ye L, Jennings JH, Pichamoolthy N, Tang DD, Yoo AW, et al. Molecular and circuit-dynamical identification of top-down neural mechanisms for restraint of reward seeking. Cell. 2017;170:1013–27.e1014.
18. Narayan NS, Laubach M. Top-down control of motor cortex ensembles by dorsomedial prefrontal cortex. Neuron. 2006;52:921–31.
19. Franklin TB, Silva BA, Perova Z, Marrone L, Masferrer ME, Zhan Y, et al. Prefrontal cortical control of a brainstem social behavior circuit. Nat Neurosci. 2017;20:260–70.
20. Hultman R, Ulrich K, Sachs BD, Blount C, Carlson DE, Ndubuizu N, et al. Brain-wide electrical spatiotemporal dynamics encode depression vulnerability. Cell. 2018;173:166–80.e114.
21. Spellman T, Rigotti M, Ahmari SE, Fusi S, Gogos JA, Gordon JA. Hippocampal-prefrontal input supports spatial encoding in working memory. Nature. 2015;522:309–14.
22. Phillips ML, Robinson HA, Pozzo-Miller L. Ventral hippocampal projections to the medial prefrontal cortex regulate social memory. eLife. 2019;8:e44182.
23. Collins DP, Anastasiades PG, Marlin JJ, Carter AG. Reciprocal circuits linking the prefrontal cortex with dorsal and ventral thalamic nuclei. Neuron. 2018;98:366–79.e364.
24. Schmitt L, Wimmer RD, Nakajima M, Hap M, Mofakham S, Halassa MM. Thalamic amplification of cortical connectivity sustains attentional control. Nature. 2017;545:219–23.
25. Wimmer RD, Schmitt LI, Davidson TJ, Nakajima M, Deiseroth K, Halassa MM. Thalamic control of sensory selection in divided attention. Nature. 2015;526:705–9.
Mechanisms of synaptic transmission dysregulation in the prefrontal cortex: pathophysiological...
81. Yan Z. Regulation of GABAergic inhibition by serotonin sig-
80. Cai X, Flores-Hernandez J, Feng J, Yan Z. Activity-dependent
78. Leonardo ED, Hen R. Genetics of affective and anxiety dis-
79. Hoyer D, Hannon JP, Martin GR. Molecular, pharmacological
77. Davidson RJ, Putnam KM, Larson CL. Dysfunction in the neural
76. Williams NM, Preece A, Spurlock G, Norton N, Williams HJ,
75. Chowdari KV, Mirnics K, Semwal P, Wood J, Lawrence E,
74. De Vries L, Zheng B, Fischer T, Elenko E, Farquhar MG. The
73. Liu W, Yuen EY, Allen PB, Feng J, Greengard P, Yan Z. Adrenergic modulation of NMDA receptors in prefrontal cortex is differentially regulated by RGS proteins and spinophilin. Proc Natl Acad Sci USA. 2006;103:18338–43.
72. De Vries L, Zheng B, Fischer T, Elenko E, Farquhar MG. The regulator of G protein signaling family. Annu Rev Pharmacol Toxicol. 2000;40:235–71.
71. Chowdari KV, Mimics K, Semwal P, Wood J, Lawrence E, Bhatia T, et al. Association and linkage analyses of RGS4 polymorphisms in schizophrenia. Hum Mol Genet. 2002;11:1373–80.
70. Williams NM, Preece A, Spurlock G, Norton N, Williams HJ, McCreadi RG, et al. Support for RGS4 as a susceptibility gene for schizophrenia. Biol Psychiatry. 2004;55:192–5.
69. Davidson RJ, Putnam KM, Larson CL. Dysfunction in the neural circuitry of emotion regulation—a possible Prelude to violence. Science. 2000;289:591–4.
68. Leonardo ED, Hen R. Genetics of affective and anxiety disorders. Annu Rev Psychol. 2006;57:117–37.
67. Hoyer D, Hannon JP, Martin GR. Molecular, pharmacological and functional diversity of 5-HT receptors. Pharm Biochem Behav. 2002;71:333–54.
66. Cai X, Flores-Hernandez J, Feng J, Yan Z. Activity-dependent bidirectional regulation of GABA(A) receptor channels by the 5-HT(4) receptor-mediated signaling in rat prefrontal cortical pyramidal neurons. J Physiol. 2002;540:743–59.
65. Yan Z. Regulation of GABAergic inhibition by serotonin signaling in prefrontal cortex: molecular mechanisms and functional implications. Mol Neurobiol. 2002;26:203–16.
64. Yuen EY, Yan Z. Dopamine D4 receptors regulate AMPA receptor trafficking and glutamatergic transmission in GABAergic interneurons of prefrontal cortex. J Neurosci. 2009; 29:550–62.
63. Zhong P, Yan Z. Distinct physiological effects of dopamine D4 receptors on prefrontal cortical pyramidal neurons and fast-spiking interneurons. Cereb Cortex. 2016;26:180–91.
62. Tan T, Wang W, Williams J, Ma K, Cao Q, Yan Z. Stress exposure in dopamine D4 receptor knockout mice induces schizophrenia-like behaviors via disruption of GABAergic transmission. Schizophr Bull. 2019;45:1012–23.
61. Edstein RP, Novick O, Umansky R, Priel B, Osher Y, Blaine D, et al. Dopamine D4 receptor (D4DR) exon 3 polymorphism associated with the human personality trait of Novelty Seeking. Nat Genet. 1996;12:78–80.
60. Qin L, Liu W, Ma K, Wei J, Zhong P, Cho K, et al. The ADHD-linked human dopamine D4 receptor variant D4.7 induces over-suppression of NMDA receptor function in prefrontal cortex. Neurobiol Dis. 2016;95:194–203.
59. Zhong P, Liu W, Yan Z. Aberrant regulation of synchronous network activity by the attention-deficit/hyperactivity disorder-associated human dopamine D4 receptor variant D4.7 in the prefrontal cortex. J Physiol. 2016;594:135–47.
58. Datta D, Yang ST, Galvin VC, Solder J, Luo F, Morozov YM, et al. Noradrenergic α1-adrenoceptor actions in the primate dorsolateral prefrontal cortex. J Neurosci. 2019;39:2722–34.
57. Wang M, Ramos BP, Paspasal CD, Shu Y, Simen A, Duque A, et al. Alpha2A-adrenoceptors strengthen working memory networks by inhibiting cAMP–HCN channel signaling in prefrontal cortex. Cell. 2007;129:397–410.
56. Paspasal CD, Wang M, Arstam AF. Constellation of HCN channels and cAMP regulating proteins in dendritic spines of the primate prefrontal cortex: potential substrate for working memory deficits in schizophrenia. Cereb Cortex. 2013;23:1643–54.
55. Liu W, Yuen EY, Allen PB, Feng J, Greengard P, Yan Z. Adrenergic modulation of NMDA receptors in prefrontal cortex is differentially regulated by RGS proteins and spinophilin. Proc Natl Acad Sci USA. 2006;103:18338–43.
54. McKeever JM, Myers B, Flak JN, Bundzikoja J, Solomon MB, Serogy KB, et al. Role of prefrontal cortex glucocorticoid receptors in stress and emotion. Biol Psychiatry. 2013;74:672–9.
53. Wang M, Perova Z, Arentkiewicz BR, Li B. Somatic modifications in the medial prefrontal cortex in susceptibility and resilience to stress. J Neurosci. 2013;34:7485–92.
52. Treccani G, Musazzi L, Pereggi G, Milanesi M, Nava N, Bonifacio T, et al. Stress and corticosterone increase the readily releasable pool of glutamate vesicles in synaptic terminals of prefrontal and frontal cortex. Mol Psychiatry. 2014;19:433–43.
51. Yuen EY, Liu W, Karatsoreos IN, Feng J, McEwen BS, Yan Z. Acute stress enhances glutamatergic transmission in prefrontal cortex and facilitates working memory. Proc Natl Acad Sci USA. 2009;106:14075–9.
50. Lee JB, Wei J, Liu W, Cheng J, Feng J, Yan Z. Histone deacetylase 6 gates the synaptic action of acute stress in prefrontal cortex. J Physiol. 2012;590:1535–46.
49. Yuen EY, Liu W, Karatsoreos IN, Ren Y, Feng J, McEwen BS, et al. Mechanisms for acute stress-induced enhancement of glutamatergic transmission and working memory. Mol Psychiatry. 2011;16:156–70.
48. Liu W, Yuen EY, Yan Z. The stress hormone corticosterone increases synaptic alpha-amin-3-hydroxy-5-methyl-4-isoxazolopropionic acid (AMPA) receptors via serum- and glucocorticoid-inducible kinase (SGK) regulation of the GDI-Rab4 complex. J Biol Chem. 2010;285:6101–8.
Mechanisms of synaptic transmission dysregulation in the prefrontal cortex: pathophysiological...
137. Lee E, Lee J, Kim E. Excititation/inhibition imbalance in animal models of autism spectrum disorders. Biol Psychiatry. 2017;81:838–47.

138. Spratt PWE, Ben-Shalom R, Keeshen CM, Burke KJ Jr, Clarkson RL, Sanders SJ, et al. The autism-associated gene Snc2a contributes to dendritic excitability and synaptic function in the prefrontal cortex. Neuron. 2019;103:673–e675.

139. Lazarro MT, Taxidis J, Shuman T, Bachmutsy I, Ikkr T, Santos R, et al. Reduced prefrontal synaptic connectivity and disturbed oscillatory population dynamics in the CNTNAP2 model of autism. Cell Rep. 2019;27:2567–e2566.

140. Satterstrom FK, Kosnicki JA, Wang J, Breen MS, De Rubeis S, An JY, et al. Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. Cell. 2020;180:568–e523.

141. De Rubeis S, He X, Goldberg AP, Poultney CS, Samocha K, Cicke AE, et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature. 2014;515:209–15.

142. Coe BP, Stessman HAF, Sulovari A, Geisheker MR, Bakken TE, Selemon LD, Zecevic N. Schizophrenia: a tale of two critical periods for prefrontal cortical development. Transl Psychiatry. 2019;5:e623.

143. Shulha HP, Cheung I, Whittle C, Wang J, Virgil D, Lin CL, et al. Epigenetic signatures of autism: trimethylated H3K4 methylation landscapes in prefrontal neurons. Arch Gen Psychiatry. 2012;69:314–24.

144. Ma K, Qin L, Matas E, Duffney LJ, Liu A, Yan Z. Histone deacetylase (HDAC) inhibition. Nat Neurosci. 2018;21:564–e523.

145. Goldman-Rakic PS, Selemon LD. Functional and anatomical aspects of prefrontal pathology in schizophrenia. Schizophr Bull. 1997;23:437–58.

146. Wang ZJ, Zhong P, Ma K, Seo JS, Yang F, Hu Z, et al. Social deficits in Shank3-deficient mouse models of autism are rescued by histone deacetylase (HDAC) inhibition. Nat Neurosci. 2018;21:564–75.

147. Sun W, Poschmann J, Cruz-Herrera Del Rosario R, Parikshak NN, Hagan HS, Kumar V, et al. Histone acetylome-wide association study of autism spectrum disorder. Cell. 2016;167:1385–1397.e1311.

148. Lautin A, et al. Volumetric measure of the frontal and temporal lobes in schizophrenia: relationship to negative symptoms. Arch Gen Psychiatry. 2000;57:471–80.

149. Lopez-Gil X, Babot Z, Amargós-Bosch M, Sunol C, Artigas F, et al. Developmental and genetic regulation of the human cortex. Development of the prefrontal cortex during adolescence: insights into vulnerable neural circuits in schizophrenia. Neuropsychopharmacology. 1997;16:385–98.

150. Lewis DA. Development of the prefrontal cortex during adolescence: insights into vulnerable neural circuits in schizophrenia. Neuropsychopharmacology. 1997;16:385–98.

151. Homayoun H, Moghadam B. NMDA receptor hypofunction on GABAergic neurons in the prefrontal cortex in schizophrenia: bridging the gap between neuroimaging and neuropathology. Schizophr Bull. 2009;35:973–93.

152. Goldman-Rakic PS, Selemon LD. Functional and anatomical aspects of prefrontal pathology in schizophrenia. Schizophr Bull. 1997;23:437–58.

153. Lewis DA. Development of the prefrontal cortex during adolescence: insights into vulnerable neural circuits in schizophrenia. Neuropsychopharmacology. 1997;16:385–98.

154. Homayoun H, Moghadam B. NMDA receptor hypofunction on GABAergic neurons in the prefrontal cortex in schizophrenia: bridging the gap between neuroimaging and neuropathology. Schizophr Bull. 2009;35:973–93.

155. Lewis DA. Development of the prefrontal cortex during adolescence: insights into vulnerable neural circuits in schizophrenia. Neuropsychopharmacology. 1997;16:385–98.

156. Homayoun H, Moghadam B. NMDA receptor hypofunction on GABAergic neurons in the prefrontal cortex in schizophrenia: bridging the gap between neuroimaging and neuropathology. Schizophr Bull. 2009;35:973–93.
Mechanisms of synaptic transmission dysregulation in the prefrontal cortex: pathophysiological...
treatment recommendations for TMS therapy for major depressive disorder. Brain Stimul. 2016;9:336–46.

208. Howard DM, Adams MJ, Clarke TK, Hafferty JD, Gibson J, Shirali M, et al. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nat Neurosci. 2019;22:343–52.

209. Kang HJ, Voleti B, Hajsz T, Rajkowska G, Stockmeier CA, Licznerski P, et al. Decreased expression of synaptic-related genes and loss of synapses in major depressive disorder. Nat Med. 2012;18:1413–7.

210. Feyissa AM, Chandran A, Stockmeier CA, Karolewicz B. Reduced levels of NR2A and NR2B subunits of NMDA receptor and PSD-95 in the prefrontal cortex in major depression. Prog Neuro-Psychopharmacol Biol Psychiatry. 2009;33:70–75.

211. Pantazatos SP, Huang YY, Rosoklija GB, Dwork AJ, Arango V, Mann JJ. Whole-transcriptome brain expression and exon-usage profiling in major depression and suicide: evidence for altered gial, endothelial and ATPase activity. Mol Psychiatry. 2017;22:760–73.

212. Hare BD, Shinohara R, Liu RJ, Pothula S, DiLeonie RJ, Duman RS. Optogenetic stimulation of medial prefrontal cortex Dnr1 neurons produces rapid and long-lasting antidepressant effects. Nat Commun. 2019;10:223.

213. Klempan TA, Sequeira A, Canetti L, Lalovic A, Ernst C, french-Mullen J, et al. Altered expression of genes involved in ATP biosynthesis and GABAergic neurotransmission in the ventral prefrontal cortex of suicides with and without major depression. Mol Psychiatry. 2009;14:175–89.

214. Fogaca MV, Duman RS. Cortical GABAergic dysfunction in stress and depression: new insights for therapeutic interventions. Front Cell Neurosci. 2013;19:87.

215. Yin H, Pantazatos SP, Galfalvy H, Huang YY, Rosoklija GB, Dwork AJ, et al. A pilot integrative genomics study of GABA and glutamate neurotransmitter systems in suicide, suicidal behavior, and major depressive disorder. Am J Med Genet B Neuropsychiatr Genet. 2016;171B:414–26.

216. Earmheart JC, Schweizer C, Crestani F, Iwasato T, Itohara S, Mohler H, et al. GABAergic control of adult hippocampal neurogenesis in relation to behavior indicative of trait anxiety and depression states. J Neurosci. 2007;27:3845–54.

217. Ren Z, Pribiag H, Jefferson SJ, Shorey M, Fuchs T,Sellwagen D, et al. Bidirectional homeostatic regulation of a depression-related brain state by gamma-aminobutyric acidergic deficits and ketamine treatment. Biol Psychiatry. 2016;80:457–68.

218. Wolhleb ES, Wu M, Gerhard DM, Taylor SR, Picciotto MR, Alreja M, et al. GABA interneurons mediate the rapid antidepressant-like effects of scopolamine. J Clin Investig. 2016;126:2482–94.

219. Ueno H, Suemitsu S, Murakami S, Kitamura N, Wani K, Matsuno Y, et al. Juvenile stress induces behavioral change and affects perineuronal net formation in juvenile mice. BMC Neurosci. 2018;19:41.

220. Yu Z, Chen N, Hu D, Chen W, Yuan Y, Meng S, et al. Decreased density of perineuronal net in prelimbic cortex is linked to depressive-like behavior in young-aged rats. Front Mol Neurosci. 2020;13:4.

221. Abdallah CU, Sanacora G, Duman RS, Krystal JH. Ketamine and rapid-acting antidepressants: a window into a new neurobiology for mood disorder therapeutics. Annu Rev Med. 2015;66:509–23.

222. Moghadam B, Adams B, Verma A, Daly D. Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J Neurosci. 1997;17:2921–7.

223. Chowdhury GM, Zhang J, Thomas M, Banasr M, Ma X, Pittman B, et al. Transiently increased glutamate cycling in rat PFC is associated with rapid onset of antidepressant-like effects. Mol Psychiatry. 2017;22:120–6.

224. Miller OH, Yang L, Wang CC, Hargroder EA, Zhang Y, Delpiere E, et al. GluN2B-containing NMDA receptors regulate depression-like behavior and are critical for the rapid antidepressant actions of ketamine. elife. 2014;3:e03581.

225. Abdallah CU, De Feyer HM, Averill LA, Jiang L, Averill CL, Chowdhury GMI, et al. The effects of ketamine on prefrontal glutamate neurotransmission in healthy and depressed subjects. Neuropsychopharmacology. 2018;43:2154–60.

226. Maeng S, Zarate CA Jr, Du J, Schlosser RJ, McCammon J, Chen G, et al. Cellular mechanisms underlying the antidepressant effects of ketamine: role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. Biol Psychiatry. 2008;63:349–52.

227. Zhou W, Wang N, Yang C, Li XM, Zhou ZQ, Yang JJ. Ketamine-induced antidepressant effects are associated with AMPA receptors-mediated upregulation of mTOR and BDNF in rat hippocampus and prefrontal cortex. Eur Psychiatry. 2014;29:419–23.

228. Liu RJ, Lee FS, Li XY, Bambico F, Duman RS, Aghajanian GK. Brain-derived neurotrophic factor Val606Met allele impairs basal and ketamine-stimulated synaptogenesis in prefrontal cortex. Biol Psychiatry. 2012;71:996–1005.

229. Aguilar-Valles A, Haji N, De Gregorio D, Matta-Camacho E, Eslamizade MJ, Popic J, et al. Translational control of depression-like behavior via phosphorylation of eukaryotic translation initiation factor 4E. Nat Commun. 2018;9:2459.

230. Fukumoto K, Fogaca MV, Liu RJ, Duman C, Kato T, Li XY, et al. Activity-dependent brain-derived neurotrophic factor signaling is required for the antidepressant actions of (2R,6R)-hydroxyorketamine. Proc Natl Acad Sci USA. 2019;116:297–302.

231. Hasegawa Y, Zhu X, Kamiya A. NV-5138 as a fast-acting antidepressant via direct activation of mTORC1 signaling. J Clin Investig. 2019;129:2207–9.

232. Kaut O, Schmitt I, Hofmann A, Hoffmann P, Schlaepfer T, Wullner U, et al. Aberrant NMDA receptor DNA methylation detected by epigenome-wide analysis of hippocampus and prefrontal cortex in major depression. Eur Arch Psychiatry Clin Neurosci. 2015;265:331–41.

233. Schroeder FA, Lin CL, Crusio WE, Akbarian S. Antidepressant-like effects of the histone deacetylase inhibitor, sodium butyrate, in the mouse. Biol Psychiatry. 2007;62:55–64.

234. Duan Z, Lu J. DNA Methyltransferases in depression: an update. Front Psychiatry. 2020;11:538683.

235. Sales AJ, Joca SRL. Antidepressant administration modulates stress-induced DNA methylation and DNA methyltransferase expression in rat prefrontal cortex and hippocampus. Behavioural Brain Res. 2018;343:8–15.

236. Sales AJ, Biojone C, Terceti MS, Guimarães FS, Gomes MV, Joca SR. Antidepressant-like effect induced by systemic and intra-hippocampal administration of DNA methylation inhibitors. Br J Pharm. 2011;164:1711–21.

237. Ramos BP, Birnbaum SG, Lindenmayer I, Newton SS, Duman RS, Armstrong AF. Dysregulation of protein kinase a signaling in the aged prefrontal cortex: new strategy for treating age-related cognitive decline. Neuron. 2003;40:835–45.

238. Wang M, Gamo NJ, Yang Y, Jin LE, Wang XJ, Laubach M, et al. Neuronal basis of age-related working memory decline. Nature. 2011;476:210–3.

239. Carlyle BC, Nairn AC, Wang M, Yang Y, Jin LE, Simen AA, et al. cAMP-PKA phosphorylation of tau confers risk for
Mechanisms of synaptic transmission dysregulation in the prefrontal cortex: pathophysiological...