On the entangled ergodic theorem

TANJA EISNER AND DÁVID KUNSZENTI-KOVÁCS

Abstract. We study the convergence of the so-called entangled ergodic averages

\[\frac{1}{N^k} \sum_{n_1, \ldots, n_k = 1}^{N} T_{m-1}^{n_{\alpha(m)}} A_{m-1}^{n_{\alpha(m-1)}} A_{m-2} \ldots A_1^{n_{\alpha(1)}} , \]

where \(k \leq m \) and \(\alpha : \{1, \ldots, m\} \to \{1, \ldots, k\} \) is a surjective map. We show that, on general Banach spaces and without any restriction on the partition \(\alpha \), the above averages converge strongly as \(N \to \infty \) under some quite weak compactness assumptions on the operators \(T_j \) and \(A_j \). A formula for the limit based on the spectral analysis of the operators \(T_j \) and the continuous version of the result are presented as well.

Mathematics Subject Classification (2010): 47A35 (primary); 37A30 (secondary).

1. Introduction

The classical mean ergodic theorem has inspired many mathematicians and led to several generalisations and extensions. We mention Berend, Lin, Rosenblatt, Tempelman [3] for modulated and subsequential ergodic theorems and e.g. Kra [13] for an overview on multiple ergodic theorems as well as for the history of the subjects and further references.

In this note we study a further extension of the mean ergodic theorem, namely the so-called entangled ergodic theorem. Let \(\alpha : \{1, \ldots, m\} \to \{1, \ldots, k\} \) be a surjective map for some positive integers \(k \leq m \), and take \(T_1, \ldots, T_m \) and \(A_1, \ldots, A_{m-1} \) to be linear operators on a Banach space \(X \). We investigate the convergence of the entangled Cesáro means

\[\frac{1}{N^k} \sum_{n_1, \ldots, n_k = 1}^{N} T_{m-1}^{n_{\alpha(m)}} A_{m-1}^{n_{\alpha(m-1)}} A_{m-2} \ldots A_1^{n_{\alpha(1)}} . \] (1.1)

This type of ergodic theorems was introduced by Accardi, Hashimoto, Obata [1] motivated by quantum stochastics and was then studied by Liebscher [15] and

Received December 16, 2010; accepted in revised form June 4, 2011.