Use of peers to improve adherence to antiretroviral therapy: a global network meta-analysis

Steve Kanters 1, Jay JH Park 1, Keith Chan 1, Nathan Ford 2, Jamie Forrest 1,3, Kristian Thorlund 1, Jean B Nachega 4,5,6,7,8 and Edward J Mills §,1

§ Corresponding author: Edward J Mills, Precision Global Health, 400-1505 West 2nd Avenue, Vancouver, BC, Canada V6H 3X4. Tel: +1 604 336 3050. (ed.mills@precisionglobalhealth.com)

Abstract

Introduction: It is unclear whether using peers can improve adherence to antiretroviral therapy (ART). To construct the World Health Organization’s global guidance on adherence interventions, we conducted a systematic review and network meta-analysis to determine the effectiveness of using peers for achieving adequate adherence and viral suppression.

Methods: We searched for randomized clinical trials of peer-based interventions to promote adherence to ART in HIV populations. We searched six electronic databases from inception to July 2015 and major conference abstracts within the last three years. We examined the outcomes of adherence and viral suppression among trials done worldwide and those specific to low- and middle-income countries (LMIC) using pairwise and network meta-analyses.

Results and discussion: Twenty-two trials met the inclusion criteria. We found similar results between pairwise and network meta-analyses, and between the global and LMIC settings. Peer supporter/Telephone was superior in improving adherence than standard-of-care in both the global network (odds-ratio [OR] = 4.79, 95% credible intervals [CrI]: 1.02, 23.57) and the LMIC settings (OR = 4.83, 95% CrI: 1.88, 13.55). Peer support alone, however, did not lead to improvement in ART adherence in both settings. For viral suppression, we found no difference of effects among interventions due to limited trials.

Conclusions: Our analysis showed that peer support leads to modest improvement in adherence. These modest effects may be due to the fact that in many settings, particularly in LMICs, programmes already include peer supporters, adherence clubs and family disclosures for treatment support. Rather than introducing new interventions, a focus on improving the quality in the delivery of existing services may be a more practical and effective way to improve adherence to ART.

Keywords: antiretroviral therapy adherence; peer interventions; viral suppression; systematic review; meta-analysis; network meta-analysis.

To access the supplementary material to this article please see Supplementary Files under Article Tools online.
Methods
Search strategy and selection criteria
Our analysis and report was designed and reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) extension to NMA [9]. The protocol for this study is available from the authors upon request.

Table 1 describes the population, interventions, comparisons, outcomes and study design (PICOS) criteria used to guide the study selection for the NMA. In brief, we included randomized clinical trials (RCTs) assessing the efficacy of any peer-based intervention aimed to improve ART adherence on any HIV population (treatment naive or experienced with or without failure). Outcomes of interest included treatment adherence and viral suppression.

We conducted a systematic literature search using the following databases from inception to July 2015: Cochrane Central Register of Controlled Trials, EMBASE, MEDLINE, Web of Knowledge and WHO Global Index Medicus and trials in progress (International Clinical Trials Registry Platform). In addition, conference abstracts obtained through the EMBASE search, the International AIDS conference (AIDS), the Conference on Retroviruses and Opportunistic Infections and the IAS Conference on HIV Pathogenesis, Treatment and Prevention were searched for the past three years. Hand searches were also performed on the bibliographies of published systematic reviews and health technology assessments. The literature search strategies employed are available in Supplementary Table 1. Two investigators independently reviewed abstracts and proceedings identified in the literature searches. The same two investigators independently reviewed abstracts potentially relevant in full text. If any discrepancies occurred between the studies selected by the two investigators, a third investigator provided arbitration. We excluded non-English studies.

Assessment of study quality
We assessed risk of bias in the included RCTs using the Cochrane risk-of-bias tool [10] (Supplementary Table 2). To assess the overall strength of evidence, we employed the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system for NMA (Supplementary Tables 3–6) [11]. As a first step, the GRADE system as done in pairwise meta-analyses was applied to direct evidence (i.e. data with head-to-head comparisons); when only indirect evidence existed, we used the NMA estimate and evaluated the shortest indirect pathway with the largest number of trials. For each outcome, the strength of evidence began as high-quality evidence and was rated down if limitations existed due to risk of bias, consistency, directness, imprecision, and/or reporting bias.

Data extraction and variable definitions
Using a standardized data sheet in Microsoft Excel, two investigators independently extracted data on study characteristics, interventions, patient characteristics at baseline and outcomes for the study populations of interest for the final list of selected eligible studies. Any discrepancies observed between the data extracted by the two data extractors were resolved by consensus through discussion.

To improve interpretability and thereby support decision-making, we grouped treatment arms using the following categories: SOC, enhanced standard of care (eSOC), peer supporter, treatment supporter, and telephone (Table 2). eSOC were interventions that provided more support than the usual SOC, and the most frequent extra care was adherence counselling.

The primary outcome was adherence, which is defined as the proportion of patients in each RCT arm meeting the trial-defined adherence criteria. The proportion of patients achieving viral suppression, also as defined by the trial, was a secondary outcome. All outcomes were extracted at the end of the study period.

Table 2. Definitions used for categorization of interventions in the network meta-analysis

Node	Description
SOC	Usual standard of care
eSOC	Enhanced standard of care: SOC + intensified adherence counselling
Telephone	Interventions that use scripted serial telephone calls or calls, of varying frequencies, to support patients
CBT	Cognitive behavioural therapy and cognitive behavioural stress management, as well as interventions that involved counselling with individuals with trained professionals and included interventions that employed motivational interviewing
Peer supporter	Interventions that involved the use of an individual's peers to support treatment adherence. This included home visits, counselling, support and individual or group meetings; this also included directly and modified directly observed therapy
Treatment supporter	Interventions that involved the use of an individual (chosen by a clinic or patient) to support treatment adherence. This included home visits, treatment assistants and medication managers; this also included directly observed therapy and modified directly observed therapy
Device reminder	Interventions that involved the use of calendars, alarms, pagers or disease management assistance system devices
Analyses
We performed our analyses within the Bayesian framework using hierarchical models. All outcomes were dichotomized and were analyzed by last observed time point. We used a logistic regression model with the logit link function and a binomial likelihood. As heterogeneity was anticipated, we considered both fixed- and random-effects model. Model selection was done using deviance information criterion (DIC), which penalizes for model complexity, and also using leverage plots. The model with the best fit was chosen as the primary analysis model. Estimates of comparative treatment effect were represented as odds ratio (ORs) with associated 95% confidence intervals (95% CI) in pairwise meta-analyses, or 95% credible intervals (95% CrI) in the case of network meta-analyses.

For our meta-regression, the decision whether to use fixed-effects modelling or random-effects modelling was made using the DIC, a measure of model that penalizes for model complexity. In our models, we tried adjusting for the two potential effect modifiers: populations at risk of poor adherence and time discrepancy between outcome and intervention. The populations at risk included intravenous drug users, cocaine and alcohol abusers, people with mental health disorders including severe depression, and people known to be non-adherent; the time discrepancy between outcome and intervention pertained to whether the outcome was measured during the adherence intervention or after the intervention had stopped. In the end, we used unadjusted models because adjusting for neither populations at risk nor the time discrepancy improved the model fit. As sensitivity analysis, we performed analyses using different periods of follow-up (24 and/or 48 weeks). All analyses were performed using R Version 3.1.2 (www.r-project.org/) and OpenBugs Version 3.23 (OpenBUGS Project Management Group).

Results and discussion
We identified 1696 abstracts from our literature searches; 177 studies underwent full-text review (Figure 1). In total, 22 trials (24 publications) met the inclusion criteria, and overall they were of moderate quality with low risk of bias. The trial and patient characteristics of the included trials are available in Tables 3 and 4.

Our exploratory analysis suggested the choice of the threshold used to define adherence and viral suppression

Figure 1. Flow chart of study screening.
Table 3. Trial characteristics of the included studies

Study ID	Interventions	Number randomized	Trial duration (weeks)	Years of trial initiation	Adherence definition	Viral suppression	LMIC network (Yes/no)	Setting	Health status of study population	Recruited population details	Age category
ACTG A5073 [12]	SOC	161	48	2002	Medication Event Monitoring System (MEMS), 100% adherent	Virologic success based on the number of failures at 24 weeks	No	USA, South Africa	Healthy	ART-naïve	Adult
ACTG a5234 [13]	SOC	128	24	2009	MEMS, ≥ 95% adherent	< 400 copies/mL at week 48	Yes	Botswana, Brazil, Haiti, Peru, South Africa, Uganda, Zambia, Zimbabwe	Unhealthy	Treatment failure	Adult
Altice et al. [14]	SOC	129	24	2001	Self-reported, ≥ 80% adherent	HIV RNA reduction > 1.0 log10 or HIV RNA level < 400 copies/mL	No	USA	At risk	Drug users	Adult
ATHENA [15]	SOC	84	60	1999	MEMS, ≥ 90% adherent	–	No	USA	Healthy	Treatment experienced	Adult
Berrien et al. [16]	SOC	87	46	2000	Self-reported and pharmacy refill records, continuous	VL < 2.6 log	No	USA	Healthy	Treatment experienced	Adolescent and children
Goggin et al. [17]	SOC	20	48	2004	Electronic drug monitoring (EDM), continuous	< 400 copies/mL	No	USA	Healthy	Includes some non-adherent patients	Adult
CBT + Treatment supporter	CBT	69									
Study ID	Interventions	Number randomized	Trial duration (weeks)	Years of trial initiation	Adherence definition	Viral suppression	LMIC network (Yes/no)	Setting	Health status of study population	Recruited population details	Age category
-----------------	------------------------------------	-------------------	------------------------	---------------------------	--	------------------	-----------------------	---------	-------------------------------	-----------------------------	--------------
Kiweewa et al. [18]	eSOC	44	52	2007	Pill counts, > 95% adherent	<400 copies/mL	Yes	Uganda	Special population	Women	Adults
Treatment supporter	SOC	48									
Lucas et al. [19]	SOC	52	72	2006	Medication Event Monitoring System (MEMS), ≥ 95% adherent	<50 copies/mL	No	USA	At risk	Drug users	Adult
Treatment supporter	SOC	55									
Macalino et al. [20]	SOC	43	48	2001	Self-reported, adherent was not missing 1 dose in prior month	<50 copies/mL	No	USA	At risk	Drug users	Adult
Treatment supporter	CBT + Device reminder	44	72	2004	Self-reported “Did not missing taking ARVs”		Yes	Tanzania	Healthy	ART-naïve	Adult
Mugusi et al. [21]	CBT + Device reminder	242	72	2004							
CBT + Peer supporter	Device reminder	67	312								
Nachega et al. [22]	SOC	137	48	2005	Pill counts	<400 copies/mL	Yes	South Africa	Healthy	ART-naïve	Adult
Treatment supporter	eSOC	137									
Pearson et al. [23]	eSOC	175	52	2004	Self-reported, 7-day recall		–	Yes	Mozambique	Healthy	Adult
Peer supporter	SOC	125									
Rakai Health Sciences Program [24]		366	192	2006	Medication Event Monitoring System (MEMS) and pill counts, > 95% adherent	<400 copies/mL	Yes	Uganda	Healthy	Treatment naive and experienced	Adult
Peer supporter	SOC	970									
Remien et al. [25]	(SMART Couples Study)	109	24	2000	Medication Event Monitoring System (MEMS)		–	No	USA	Healthy	Adult
Study ID	Interventions	Number randomized	Trial duration (weeks)	Years of trial initiation	Adherence definition	Viral suppression	LMIC network (Yes/no)	Setting	Health status of study population	Recruited population details	Age category
------------------	--------------------------------	-------------------	------------------------	---------------------------	--	-------------------	------------------------	---------	-----------------------------------	-----------------------------	--------------
Ruiz et al. [26]	Peer supporter	106	24	2003	Self-reported, SMAQ questionnaire, adherent if missed less than 2 doses in three months	<50 copies/mL	No	Spain	Healthy	Treatment experienced	Adults
	Peer supporter	120									
Simoni et al. [27]	CBT	120	12	2000	Self-reported		No	USA	At risk	Poor	Adults
	SOC	64									
	Peer supporter	71									
Simoni et al. [28]	SOC	57	24	2003	Self-Report, 100% adherent at all three follow-up assessments	<1 000 copies/mL	No	USA	Healthy	Treatment naive and experienced	Adults
	Device reminder	57									
	Peer supporter + Device reminder	56									
START-DOT [29]	SOC	38	24	2007	Self-reported, 100% adherent	<75 copies/mL	No	USA	At risk	IDU	Adult
	Treatment supporter	39									
Taiwo et al. [30]	SOC	251	48	2006	Self-reported, ≥95% adherent	<75 copies/mL	Yes	Nigeria	Healthy	ART-naive	Adult
	Treatment supporter	248									
Wang et al. [31]	SOC	58	32	2007	Self-reported, 100% adherent		Yes	China	At risk	IDU	Adults
	Treatment supporter + Telephone	58									
Williams et al. [32]	SOC	55	52	2010	Self-reported	<400 copies/mL	Yes	China	At risk	Non-adherent, Depression symptoms	Adults
was not an effect modifier, and we therefore pooled data for adherence and viral suppression across studies despite varying definitions. The most common definitions used for adherence were >95 and 100% adherence, and the most common definitions used for viral suppression were <400 and <50 copies/mL.

Our primary network, the global network, included 20 trials (3902 patients randomized to 42 intervention arms) that reported ART adherence and 17 trials (3147 patients randomized to 36 intervention arms) that reported viral suppression. Our secondary network, which consisted of trials done in low- and middle-income countries (LMICs), included eight trials (2467 patients randomized to 16 intervention arms) that reported ART adherence and six trials (1678 patients randomized to 12 intervention arms) that reported viral suppression. The network diagram of trials included in the global adherence network is provided in Figure 2. The primary network diagram for viral suppression and LMIC network diagrams are provided in Supplementary Figures 1, 2 and 3.

We used random effects models for the analysis of global network. The results of pairwise meta-analysis and the NMA were similar (Figure 3). Peer supporter + Telephone was superior in improving adherence than SOC (OR: 4.87, 95% CrI: 1.02, 23.76) (Table 5). Treatment supporter + Telephone performed better than all interventions in the network. However, the effects of Treatment supporter + Telephone are unreliable, as this node only connected with the SOC node with a single trial [31] of 98 patients at high risk of poor adherence (i.e. intravenous drug users); this limited connection likely influenced the results. For viral suppression, due to limited trials, we found no difference of effects on viral suppression among interventions in the global network (Supplementary Table 8).

The comparative results on ART adherence were mostly similar between the global and LMIC networks. In the LMIC network, the results of pairwise meta-analysis, where direct evidence was available, were similar to that of the NMA (Figure 4). Peer supporter + Telephone was superior in improving adherence than SOC (OR: 4.83, 95% CrI: 1.88, 13.55) and eSOC (OR: 4.35, 95% CrI: 1.07, 19.01). Peer supporter + Telephone also performed better than Treatment supporter (OR: 3.43, 95% CrI: 1.21, 10.60) (Supplementary Table 8). Treatment supporter + Telephone showed superior effects in comparison to all other interventions. However, again due to the same single trial [31] connected to SOC, the found effects are not reliable.

The comparative results of viral suppression among LMIC trials are presented in Supplementary Table 9. Again, due to limited LMIC trials reporting on viral suppression, we found no difference of effects on viral suppression between interventions in the LMIC network. The sensitivity analyses restricting to studies reporting ART adherence at 24 and 48 weeks are presented in Supplementary Tables 10 and 11, and the results for viral suppression at 48 weeks are presented in Supplementary Table 12. The results of the sensitivity analyses were relatively consistent with the overall network.

In this NMA, we compared the effects of peer-based interventions targeted to improve ART adherence assessed
Table 4. Patient characteristics of the included trials

Study ID	Interventions	Mean age	Males – n (%)	AIDS-defining illness – n (%)	Baseline CD4 (cells/mm\(^3\)) mean	Baseline viral load (log copies/mL) mean	Men who have sex w/ men – n (%)	Persons who inject drugs – n (%)
ACTG A5073 [12]	SOC	39.3	127 (79)	–	233	4.8	–	18 (12)
	Supporter	38	65 (79)	–	212	5	–	10 (12)
ACTG a5234 [13]	SOC	37*	63 (49)	–	201*	4.3*	–	–
	Supporter	38*	67 (52)	–	164*	4.2*	–	–
Altice et al. [14]	SOC	44.9*	37 (69.8)	–	384*	2.8*	–	35 (66)
	Treatment supporter	42.7*	60 (68.2)	–	283*	3.8*	–	57 (64.8)
ATHENA [15]	SOC	40	40 (48)	–	415	4.47	–	6 (8)
	Peer supporter	48	55	–	445	4.46	–	3 (4)
Berrien et al. [16]	SOC	11.2	9 (55)	–	860.8	3.92	–	–
	Treatment supporter	9.9	9 (45)	–	838.6	3.67	–	–
	SOC	36	19 (54.3)	–	194	5.75	2	–
Goggin et al. [17]	CBT + Treatment supporter	40.4	50 (76.9)	–	204*	4.2*	–	29 (42)
	CBT	40.8	50 (71.4)	–	201*	4.3*	–	30 (43.5)
	eSOC	39.9	55 (79.7)	–	5	5	–	29 (44.6)
Kiweewa et al. [18]	Treatment supporter	27.8	0 (0)	–	204*	4.5*	–	–
	SOC	27	0 (0)	–	201*	4.8*	–	–
Lucas et al. [19]	Treatment supporter	47*	25 (48)	–	4.97	26 (50)	–	–
	SOC	47*	31 (56)	–	4.78	22 (40)	–	–
Macalino et al. [20]	Treatment supporter	41.7	34 (79)	–	4.78	33 (76.7)	–	–
	SOC	43.1	27 (61)	–	5	39 (88.6)	–	–
Mugusi et al. [21]	eSOC	39.9	96 (31)	7 (2.3)	98.1	–	–	–
	Supporter	0 (0)	–	–	–	–	–	–
	CBT + Device reminder	39.5	94 (39)	6 (2.5)	97.7	–	–	–
	CBT + Peer supporter	37.8	28 (42)	2 (3)	91.1	–	–	–
Nachega et al. [22]	SOC	36.7	58 (42.3)	61 (44.5)	103*	5*	–	–
	Treatment supporter	35.7	58 (42.3)	65 (47.4)	92*	5*	–	–
Pearson et al. [23]	eSOC	36.1	82 (46.9)	–	–	–	–	–
	Peer supporter	35.6	80 (45.7)	–	–	–	–	–
Rakai Health Sciences Program [24]	SOC	34*	119 (32.5)	–	161*	–	–	–
	Peer supporter	35.5*	332 (34.2)	–	160*	–	–	–
Remien et al. [25] (SMART Couples Study)	SOC	–	4.05	–	–	–	–	–
	Peer supporter	–	–	–	4.20	–	–	–
Study ID	Interventions	Mean age	Males – n (%)	AIDS-defining illness – n (%)	Baseline CD4 (cells/mm³) mean	Baseline viral load (log copies/mL) mean	Men who have sex w/ men – n (%)	Persons who inject drugs – n (%)
-------------------	--------------------------------	----------	---------------	--------------------------------	---------------------------------	--	-----------------------------	-----------------------------
Ruiz et al. (26)	Peer supporter	41.32	81 (67.5)	–	471	–	33 (28)	51 (42.5)
	CBT	41	95 (79)	–	486	–	24 (20.5)	59 (49.2)
Simoni et al. [27]	SOC	42.5	40 (62.5)	–	8.4	–	–	–
	Peer supporter	42.6	35 (49.3)	–	8	–	–	–
Simoni et al. [28]	SOC	–	–	–	198.5	4.3	–	–
	Peer supporter	–	–	–	195.4	4.3	–	–
	Device reminder	–	–	–	229.2	4.6	–	–
	Peer supporter + Device reminder	–	–	–	194.3	4.5	–	–
START-DOT [29]	SOC	49	22 (58)	–	277*	2.89	–	–
	Treatment supporter	45	19 (49)	–	367*	2.74	–	–
Taiwo et al. [30]	SOC	–	83 (33.5)	–	107.6	4.82*	–	–
	Treatment supporter	–	91 (36.3)	–	106.1	4.78*	–	–
Wang et al. [31]	SOC	36.7	49 (84)	–	–	–	–	58 (100)
	Treatment supporter + Telephone	36.7	49 (84)	–	–	–	–	58 (100)
Williams et al. [32]	SOC	37	42 (76.4)	–	137	–	–	21 (38.2)
	Peer supporter + Telephone	38	36 (65.5)	–	149	–	–	14 (25.5)
Wohl et al. [33]	SOC	–	66 (78.6)	–	143*	4.2*	29 (34.5)	4 (4.8)
	Treatment supporter	–	59 (72)	–	105*	4.6*	25 (30.5)	5 (6.1)

*Median value reported.
Figure 2. Network diagram of the 20 trials included in the global peer adherence network. Each node (circle) represents an intervention, each line represents a direct comparison between interventions and each number on the lines represents the number of trials with the comparison in question. Orange circles represent counselling-based interventions, pink circles represent supporter-based interventions and blue circles represent all other interventions. CBT, cognitive behavioural therapy; eSOC, enhanced standard of care; SOC, standard of care.

Figure 3. Forest plot displaying the association between different peer-based adherence interventions with treatment adherence and viral suppression outcomes: Global Peer Network.
Each cell represents the estimated comparative effect (odds ratio and 95% credible interval). In the cells below the diagonal, the ORs show comparative effects of the row interventions relative to the column treatment (e.g. the effect of SOC relative to eSOC is 0.68 with respect to adherence). In the cells above the diagonal, the ORs show comparative effects of the column interventions relative to the row treatment (e.g. the effect of eSOC relative to SOC is 1.47 with respect to adherence). Bold values indicate comparisons that are statistically significant. ORs above 1 indicate higher efficacy in adherence.

Table 5. Cross-table of random effects network meta-analysis for global peer adherence network

Intervention	SOC	eSOC	CBT	eSOC +Peer supporter	CBT + Treatment supporter	Treatment supporter + Telephone	Telephone
SOC	1.00	0.66	1.00	1.00	1.00	1.00	1.00
eSOC	0.66	1.00	0.67	0.68	0.68	0.68	0.68
CBT	1.00	0.67	1.00	1.00	1.00	1.00	1.00
eSOC +Peer supporter	1.00	0.68	1.00	1.00	1.00	1.00	1.00
CBT + Treatment supporter	1.00	0.68	1.00	1.00	1.00	1.00	1.00
Treatment supporter + Telephone	1.00	0.68	1.00	1.00	1.00	1.00	1.00
Telephone	1.00	0.68	1.00	1.00	1.00	1.00	1.00

Kanters S et al. Journal of the International AIDS Society 2016, 19:21141
http://www.jiasociety.org/index.php/jias/article/view/21141 | http://dx.doi.org/10.7448/IAS.19.1.21141
periods of time. As the barriers to adherence are complex and change over time [36], there is a clear need to maintain and evaluate adherence interventions over the long term. We found there is a lack of high-quality research to support adolescents and paediatric HIV populations transition into their adulthood. There is also a need to better identify those individuals who are at risk of poor adherence [37]. Moreover, there is a need to standardize outcome measures in adherence and viral suppression for adherence intervention research, to improve comparability of studies and, consequently, the formulation of policy recommendations.

Previous WHO guideline focused narrowly on promoting the use of text messaging to improve adherence, based on data from simple and robust trials demonstrating efficacy [38]. Based on the findings of our reviews, WHO has recently expanded its recommendations for adherence support, recommending a series of options that include peer counsellors, text messages, reminder devices, cognitive behavioural therapy, behavioural skills training and medication adherence training [8]. WHO now recognizes that nutritional and financial support may be of value in addressing specific challenges that impact adherence.

Global HIV targets include a goal of achieving 90% virological suppression among people on ART [39]. Consequently, there is a renewed focus on the need to improve adherence to ART. As the latest WHO guidelines are adopted, HIV programmes may consider adopting or adapting these interventions according to desired programme outcomes, resource availability and other socio-economic contextual factors, especially when scaling up to a national level; this provides an important opportunity to evaluate the benefits of these interventions in routine practice. This, in turn, will generate new evidence that, together with the outcomes of ongoing trials, will support an increasingly nuanced evidence-based approach to supporting adherence for the 37 million people who are now considered eligible to receive ART.

Figure 4. Forest plot displaying the association between different peer-based adherence interventions with treatment adherence and viral suppression outcomes: LMIC Peer Network.
Conclusions

Adherence to ART is a lifelong requirement, with a critical need to maintain and evaluate adherence interventions over long term. This study demonstrates that peer support may lead to modest improvement in adherence. We may only have observed modest effects since in many settings programmes already include peer supporters, adherence clubs and family disclosures for treatment support. Future efforts should be focused on improving the quality in the delivery of existing services, which may be a more practical and effective way to improve adherence to ART.

Authors’ affiliations

1Precision Global Health, Vancouver, BC, Canada; 2Department of HIV/AIDS, World Health Organization, Geneva, Switzerland; 3School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada; 4Warwick-Centre for Applied Health Research and Delivery (WCAHRD), Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, UK; 5Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA; 6Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA; 7Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MA, USA; 8Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MA, USA

Competing interests

The authors do not have any competing interests.

Authors’ contributions

All authors contributed extensively to the work presented in this paper. SK, NF, and EJM conceived the study. SK and EJM created the literature search strategy, built the data extraction file and supervised the project. SK, KC, and KT performed the statistical analyses, and all authors interpreted the data. JF and JBN provided technical support and conceptual advice. JHJP and EJM drafted the manuscript, and all the other authors helped revise the full manuscript. All authors have read and approved the final version of the manuscript.

Acknowledgements

This study was funded by the WHO. The WHO did not have any role in the study design, collection, analysis or interpretation of the data. Edward J Mills has participated in the development of the PRISMA extension for network meta-analysis.

References

1. Saffer SA, Mayer KH, Ou SS, McCaulley M, Grinsztejn B, Hosseinipour MC, et al. The acceptability of early antiretroviral therapy: results from HPTN 052, a phase III, multinational randomized trial of ART to prevent HIV-1 sexual transmission in serodiscordant couples. J Acquir Immune Defic Syndr. 2015;69(2):234–40. doi: http://dx.doi.org/10.1097/QAI.0000000000000593
2. Grinsztejn B, Hosseinipour MC, Ribaudo HJ, Swindells S, Eron J, Chen YQ, et al. Effects of early versus delayed initiation of antiretroviral treatment on clinical outcomes of HIV-1 infection: results from the phase 3 HPTN 052 randomised controlled trial. Lancet Infect Dis. 2014;14(4):281–98. doi: http://dx.doi.org/10.1016/S1473-3099(13)00282-7
3. Cohen MS, Chen YQ, McCaulley M, Gamble T, Hosseinipour MC, Kumaratissa N, et al. Prevention of HIV-1 infection with early antiretroviral therapy. N Engl J Med. 2011;365(6):493–502. doi: http://dx.doi.org/10.1056/NEJMoa1105243
4. Mills EJ, Nachega JB, Buchan I, Orbinski R, Attaran A, Singh S, et al. Adherence to antiretroviral therapy in sub-Saharan Africa and North America: a meta-analysis. JAMA. 2006;296(6):679–90. doi: http://dx.doi.org/10.1001/jama.296.6.679
5. Rueda S, Park-Wyllie LY, Bayoumi AM, Tyan AM, Antoniou TA, Rourke SB, et al. Patient support and education for promoting adherence to highly active antiretroviral therapy for HIV/AIDS. Cochrane Database Syst Rev. 2006(3):CD001442. doi: http://dx.doi.org/10.1002/14651858.cd001442.pub2
6. Chaiyachati KH, Ogbofuji O, Price M, Suthar AB, Negussie EK, Barnighausen T. Interventions to improve adherence to antiretroviral therapy: a rapid systematic review. AIDS. 2014;28(Suppl 2):S187–204. doi: http://dx.doi.org/10.1097/QAD.0000000000000252
7. Mills EJ, Lester R, Thorlund K, Lorenzi M, Muldoon K, Kanters S, et al. Interventions to promote adherence to antiretroviral therapy in Africa: a network meta-analysis. Lancet HIV. 2014;1(5):e104–11. doi: http://dx.doi.org/10.1016/s2352-3018(14)00003-4
8. World Health Organization. Policy brief: consolidated guidelines on the use of antiretroviral drugs for treating and preventing HIV infection: what’s new. Geneva: World Health Organization; 2015.
9. Hutton B, Salanti G, Caldwell DM, Chaimani A, Schmid CH, Cameron C, et al. The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations. Ann Intern Med. 2015;162(11):777–84. doi: http://dx.doi.org/10.7326/m14-2385
10. Higgins JP, Altman DG, Gotzsche PC, Juni P, Moher D, Oxman AD, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928. doi: http://dx.doi.org/10.1136/bmj.d5928
11. Puhani PA, Schumanner H, Murad MH, Li T, Brigard-Parrondo P, Singh JA, et al. A GRADE Working Group approach for rating the quality of treatment effect estimates from network meta-analysis. BMJ. 2014;349:g6530.
12. Gross R, Tiemey C, Andrade A, Lala C, Rosenkranz S, Eshleman SH, et al. Modified directly observed antiretroviral therapy compared with self-administered therapy in treatment-naïve HIV-1-infected patients: a randomized trial. Arch Intern Med. 2009;169(13):1224–32. doi: http://dx.doi.org/10.1001/ archinternmed.2009.172
13. Gross R, Zheng L, Rosa AL, Sun X, Rosenkranz SL, Cardoso SW, et al. Partner-based adherence intervention for second-line antiretroviral therapy (ACTG A5234): a multinational randomised trial. Lancet HIV. 2015;2(1):12–9. doi: http://dx.doi.org/10.1016/S2352-3018(14)00007-1
14. Albic FL, Maru DS, Bruce RD, Springer SA, Friedland GH. Superiority of directly administered antiretroviral therapy over self-administered therapy among HIV-infected users: a prospective, randomized, controlled trial. Clin Infect Dis. 2007;45(6):770–8. doi: http://dx.doi.org/10.1086/521166
15. Williams AB, Fennie KP, Boa CA, Burgess JD, Danvers KA, Dieckhaus KD. Home visits to improve adherence to highly active antiretroviral therapy: a randomized controlled trial. J Acquir Immune Defic Syndr. 2006;42(3):314–21. doi: http://dx.doi.org/10.1097/01.qai.0000221681.60187.88
16. Berrien VM, Salazar JC, Reynolds E, McKay K. Adherence to antiretroviral therapy in HIV-infected pediatric patients improves with home-based intensive nursing intervention. AIDS Patient Care STDS. 2004;18(6):35–63. doi: http://dx.doi.org/10.1080/10872901444078
17. Goggin K, Gerkovich MM, Williams KB, Bandera JW, Catley D, Kerley-Patton J, et al. Randomized controlled trial examining the efficacy of motivational counseling with observed therapy for antiretroviral adherence therapy. AIDS Behav. 2013;17(6):1992–2001. doi: http://dx.doi.org/10.1007/s10461-013-0467-3
18. Kiwewa FM, Walwire D, Bagenda D, Bagenda D, Musoke P, et al. Noninferiority of a task-shifting HIV care and treatment model using peer counselors and nurses among Ugandan women initiated on ART: evidence from a randomized trial. J Acquir Immune Defic Syndr. 2013;63(4):e125–32. doi: http://dx.doi.org/10.1097/QAD.0b013e31829287c6
19. Lucas GM, Mullen BA, Gali N, Moore RD, Cook K, McCaul MS, et al. Directly administered antiretroviral therapy for HIV-infected individuals in opioid treatment programs: results from a randomized clinical trial. PLoS One. 2013;8(7):e68286. doi: http://dx.doi.org/10.1371/journal.pone.0068286
20. Macalino GE, Hogan JW, Motty JA, Bazerban LM, Delong AK, Loewenthal H, et al. A randomized clinical trial of community-based directly observed therapy as an adherence intervention for HAART among substance users. AIDS. 2007;21(11):1473–7. doi: http://dx.doi.org/10.1097/QAD.0b013e3281e8f6b8
21. Mugusi F, Mugusi S, Bakari M, Hejdemann B, Josiah R, Janabi M, et al. Enhancing adherence to antiretroviral therapy at the HIV clinic in resource constrained countries; the Tanzanian experience. Trop Med Int Health. 2009;14(10):1226–32. doi: http://dx.doi.org/10.1111/j.1365-3156.2009.02359.x
22. Nachega JB, Charson RE, Gollah R, Efron A, Chaudhary MA, Ram M, et al. Randomized controlled trial of trained patient-nominated treatment supporters providing partially directly observed antiretroviral therapy. AIDS. 2012;26(9):1273–80. doi: http://dx.doi.org/10.1097/QAD.0b013e32821e9e20
23. Pearson CR, Mikec MA, Simoni JM, Hoff PD, Medeirosa E, Martin DP. Randomized control trial of peer-delivered, modified directly observed therapy for HAART in Mozambique. J Acquir Immune Defic Syndr. 2007;46(2):238–44. doi: http://dx.doi.org/10.1097/QAD.0b013e3181537f7a
24. Chang LW, Kagaayi J, Nakigozi G, Ssempejja V, Packer AH, Serwadda D, et al. Effect of peer health workers on AIDS care in Rakai, Uganda: a cluster-randomized trial. PLoS One. 2010;5(6):e10923. doi: http://dx.doi.org/10.1371/journal.pone.0010923

25. Remien RH, Stirratt MJ, Dolezal C, Dognin JS, Wagner GI, Carballo-Dieguez A, et al. Couple-focused support to improve HIV medication adherence: a randomized controlled trial. AIDS. 2005;19(8):807–14. doi: http://dx.doi.org/10.1097/01.aids.0000168975.44219.45

26. Ruiz I, Olry A, Lopez MA, Prada JL, Causse M. Prospective, randomized, two-arm controlled study to evaluate two interventions to improve adherence to antiretroviral therapy in Spain. Enferm Infecc Microbiol Clin. 2010;28(7):409–15. doi: http://dx.doi.org/10.1016/j.eimc.2009.03.018

27. Simoni JM, Pantalone DW, Plummer MD, Huang B. A randomized controlled trial of a peer support intervention targeting antiretroviral medication adherence and depressive symptomatology in HIV-positive men and women. Health Psychol. 2007;26(4):488–95. doi: http://dx.doi.org/10.1037/0278-6133.26.4.488

28. Simoni JM, Huh D, Frick PA, Pearson CR, Andrasik MP, Dunbar PJ. Peer support and pager messaging to promote antiretroviral modifying therapy in Seattle: a randomized controlled trial. J Acquir Immune Defic Syndr. 2009;52(4):465–73. doi: http://dx.doi.org/10.1097/QAI.0b013e3181b9300c

29. Berg KM, Litwin A, Li X, Heo M, Arnsten JH. Directly observed antiretroviral therapy improves adherence and viral load in drug users attending methadone maintenance clinics: a randomized controlled trial. Drug Alcohol Depend. 2011;113(2–3):192–9. doi: http://dx.doi.org/10.1016/j.drugalcdep.2010.07.025

30. Taiwo BO, Idoko JA, Weitly Li, Otch I, Job G, Iyaji PG, et al. Assessing the virologic and adherence benefits of patient-selected HIV treatment partners in a resource-limited setting. J Acquir Immune Defic Syndr. 2010;54(1):85–92. doi: http://dx.doi.org/10.1097/QAI.0b013e3181b3300c

31. Wang H, Zhou J, Huang L, Li X, Fennie KP, Williams AB. Effects of nurse-delivered home visits combined with telephone calls on medication adherence and quality of life in HIV-infected heroin users in Hunan of China. J Clin Nurs. 2010;19(3–4):380–8. doi: http://dx.doi.org/10.1111/j.1365-2702.2009.03048.x

32. Williams AB, Wang H, Li X, Chen J, Li L, Fennie K. Efficacy of an evidence-based ARV adherence intervention in China. AIDS Patient Care STDS. 2014;28(8):411–7. doi: http://dx.doi.org/10.1089/apc.2014.0070

33. Wohl AR, Garland WH, Valencia R, Squires K, Witt MD, Kovacs A, et al. A randomized trial of directly administered antiretroviral therapy and adherence case management intervention. Clin Infect Dis. 2006;42(11):1619–27. doi: http://dx.doi.org/10.1086/503906

34. Ford N, Nachega JB, Engel ME, Mills EJ. Directly observed antiretroviral therapy: a systematic review and meta-analysis of randomised clinical trials. Lancet. 2009;374(9707):2064–71. doi: http://dx.doi.org/10.1016/S0140-6736(09)61671-8

35. Mbuagbaw L, Sivaramalingam B, Navarro T, Hobson N, Keepanasseri A, Wilczynski NJ, et al. Interventions for enhancing Adherence to Antiretroviral Therapy (ART): a systematic review of high quality studies. AIDS Patient Care STDS. 2015;29(8):449–56. doi: http://dx.doi.org/10.1089/apc.2014.0308

36. Mills EJ, Nachega JB, Bangsberg DR, Singh S, Rachlis B, Wu P, et al. Adherence to HAART: a systematic review of developed and developing nation patient-reported barriers and facilitators. PLoS Med. 2006;3(11):e438. doi: http://dx.doi.org/10.1038/sj.jaci.3100857

37. Bangsberg DR, Mills EJ. Long-term adherence to antiretroviral therapy in resource-limited settings: a bitter pill to swallow. Antivir Ther. 2013;18(1):25–8. doi: http://dx.doi.org/10.3851/IMP2536

38. World Health Organization. Consolidated guidelines on general HIV care and the use of antiretroviral drugs for treating and preventing HIV infection: recommendations for a public health approach. Geneva: World Health Organization; 2013.

39. HIV/AIDS JUNPo. 90-90-90: an ambitious treatment target to help end the AIDS epidemic. Geneva: UNAIDS; 2014.