Productivity of Tomato in the Greenhouse Using Bee Pollination

Asiko Grace, Oketch Jane, Mochorwa Jared, Koech Christine, Momanyi Dinah, Nzano Patricia, Palla David, Mc'ligeyo Susan, Okinyi Blaise, Kibe Kamunyu

National Beekeeping Institute, Ministry of Agriculture, Livestock and Fisheries, Nairobi, Kenya

Email address: nbibeekeeping@yahoo.com (A. Grace), gasiko2002@yahoo.com (A. Grace)

To cite this article: Asiko Grace, Oketch Jane, Mochorwa Jared, Koech Christine, Momanyi Dinah, Nzano Patricia, Palla David, Mc'ligeyo Susan, Okinyi Blaise, Kibe Kamunyu. Productivity of Tomato in the Greenhouse Using Bee Pollination. International Journal of Applied Agricultural Sciences. Vol. 3, No. 6, 2017, pp. 161-165. doi: 10.11648/j.ijaas.20170306.14

Received: September 4, 2017; Accepted: September 28, 2017; Published: December 21, 2017

Abstract: A green house was installed in October 2014. The aim was to increase tomato productivity in the greenhouse using bee pollination. The tomato plant and fruits in the greenhouse were healthier than those in the open field, attaining a maximum weight of 410 gms, for the tomato. The fruit means were: 213 and 162 gms for the inside and outside, respectively. This was highly significant (t=5.39; df=744.2; p<0.001). Similarly, the average weights of the first tomato fruits on each branch were: 117gms and 110 gms in the greenhouse and open field, respectively. The maximum number of fruits per branch in the greenhouse was eleven fruits whereas those on the outside plot were eight. Thus, productivity was higher in the greenhouse plants, with a longer production period, compared to the plants on the outside plot, due to honeybee pollination. Both the greenhouse and outside field plot tomatoes were affected by the tomato leaf miner, *Tuta absoluta*, with time, curtailing further fruit production.

Keywords: Productivity, Greenhouse Technology, Plant Health

1. Introduction

Pollination is vital for improved quantity and quality crop and fruit yields [1-6]. Many pollinating agents are involved in the process, especially insects [7-13]. Insect pollinators play a complementary role in obtaining maximum fruit-set [1-2]. A large number of fruits and vegetables, including: Strawberries (*Fragaria x ananassa* Duch.), Cucumbers (*Cucumis sativa* Linnaeus), Sweet pepper (*Capsicum annum* Linneaus), Egg plant (*Solanum melongena* Linnaeus), Kales (*Brassica spp.* Linnaeus), Tomatoes (*Lycopersicon esculentum* Linnaeus), Pumpkin (*Cucurbita pepo* Linnaeus) and Water melons (*Citrulus lanatus* Thunb. mansf.), are bee pollinated [8, 4-16]. All these contribute to increased food security [17-20].

2. Objectives

a) Enhancing tomato production in a greenhouse using bee pollinators

b) Observation of tomato disease prevalence with time

3. Study Area

The study area was the National Beekeeping Institute, Lenana, Coordinates: UTM 37M 0257490, 9858862, in Nairobi, Kenya.

4. Materials and Methods

A greenhouse (8x24 Metres) was installed in October 2014 as part of collaborative program between the National beekeeping institute and the EU-AU sponsored Bee Health Project at ICIPE with the aim of enhancing tomato productivity in the greenhouse using bee pollination for increased food security. Only part of the greenhouse (8x12 Metres) was used. The test plant was tomato, *Lycopersicon esculentum* Mill, Corazon variety. The honeybee colony was introduced inside the greenhouse at the onset of flowering as the sole tomato pollinator. The outside field plot was enclosed by a concrete perimeter wall, but allowing a select range of pollinators: butterflies, moths, birds and a limited...
number of bees: solitary and stingless. A Split-plot design was applied [25-26].

Table 1. Activities carried out from nursery to transplanting.

Date	Activity	Remarks
7/10/2014	Planting seeds on seed bed	Done
8/10/2014 to 14/10/2014	Watering by spraying	germination delayed
15/10/2014	Watering by spraying	germination delayed
16/10/2014	Watering by spraying	
17/10/2014 to 19/10/2014	Apply NPK poly feed starter	10gms in 16 litres of water
20/10/2014	Plain water	
21/10/2014 to 23/10/2014	Apply NPK poly feed starter	10gms in 16 litres of water
24/10/2014	Plain water	
25/10/2014 to 27/10/2014	Apply NPK poly feed starter	10gms in 16 litres of water
28/10/2014	Plain water	
30/10/2014	Transplanting in the greenhouse	transplanting on the open plot
	and thereafter on the outside plot	was done after one week

Other activities included: daily irrigation (drip), defoliation and de-suckering, limited application of recommended fertilizer, trellising, checking for diseases/pests, limited spraying, as need arose, with the assistance of a professional and introduction of a honey bee colony for pollination. Transplanted plants were clearly labelled.

5. Results

The green house had consistently higher number of yields than open field plot plants, with the gap widening with plant age. The open field plot tomatoes’ yield decreased with age, whereas the green house plants had a longer production period.

![Figure 1](image1.png)

Figure 1. Productivity: Total number of fruits harvested by plant age.

![Figure 2](image2.png)

Figure 2. Increased tomato productivity per branch. Photo: Asiko, 2015.

Table 2. Tomato productivity as per plant-age.

Parameter	estimate	s.e.	t(*)	p pr.	Antilog of estimate
Constant	-5.67	0.776	-7.3	<.001	0.003449
Age_in_days	0.02836	0.00563	5.04	<.001	1.029
Location Open	-0.54	1.21	-0.45	0.654	0.5819
Age_in_days.LOCATION Open	0.00503	0.0088	0.57	0.568	1.005

Table 3. Average weight of harvested fruits.

Location	Mean	Standard deviation	Standard error of mean
Green house	213.4	142	6.416
Open	162	127.2	7.055

The green house had significantly heavier fruits than those in the open field (t=5.39; df=744.2; p<0.001).
Tomatoes in the green house reached their peak fruit weight by day 111, compared to the open field plants, which reached their peak weight at day 122. The fluctuation pattern was however, similar for both green house and open field plants. The total weight of tomatoes decreased with plant age.

Table 4. Average weight of first fruit.

Date	Average WT of 1st fruit in gms	Green house	Open	Grand Total
16/1/2015	109.75	109.75		
22/01/2015	94.5	94.5		
23/1/2015	68.666666667	68.66666667		
26/1/2015	115.7777778	116.7916667	116.5151515	
28/1/2015	177.875	177.875		
29/1/2015	119.1276596	119.1276596		
4/2/2015	143.5205479	143.5205479		
6/2/2015	153.308642	153.308642		
10/2/2015	142.9333333	142.9333333		
13/2/2015	122.8461538	114.0277778	119.2386364	
17/2/2015	121.1754386	104.4	116.8181818	
20/2/2015	101.6590909	80.86363636	94.72727273	
24/2/2015	107.775	80.39285714	86.5	
3/3/2015	113.2368421	79.48275862	98.62686567	
9/3/2015	93.64705882	93.64705882		
13/3/2015	103.7777778	69.55555556	86.66666667	
17/3/2015	90.2	83.77777778	87.15789474	
Grand Total	116.9548023	110.4534884	114.3988571	
Although the number of plants infected by *Tuta absoluta*, significantly increased over time, there was no difference in disease infestation between the greenhouse and open field plants. The interaction time was also, not significant.

Table 5. Average TOTAL WT (gms).

Date	Green house	Open	Grand Total
16/1/2015	261.4	120.5	261.4
22/01/2015	121.6666667	121.6666667	243.3333333
23/1/2015	171.8888889	169.9166667	341.8055556
26/1/2015	255.2631579	199.7659574	455.0301153
28/1/2015	199.7659574	199.7659574	399.5319148
29/1/2015	234.4657534	234.4657534	468.9315068
3/2/2015	202.8888889	202.8888889	405.7777778
10/2/2015	295.2941176	229.4594595	524.7536071
13/2/2015	186.1964286	173.5	359.7419172
17/2/2015	149.9642857	125.625	275.5900435
20/2/2015	221.275	220.2153846	441.4909401
24/2/2015	159.9259259	220.2153846	380.1413104
3/3/2015	85.6666667	66.6666667	152.3333334
9/3/2015	141.8888889	141.8888889	283.7777778
13/3/2015	164	170.3859649	334.3919748
17/3/2015	164	170.3859649	334.3919748
Grand Total	213.4142857	192.9116564	

Figure 5. Damaged tomato fruit by *Tuta absoluta*. Photo: Asiko, January, 2015.

Figure 6. Caterpillar a, with damage on tomato leaf. b. Photo: Asiko, 2015.
6. Conclusions

The tomato fruits inside the greenhouse were significantly heavier, with a maximum weight of 410 gms, than those in the open field plot (t=5.39; df=744.2; p<0.001). The inside tomatoes too, were healthier than those in the open field, with the means, 213 and 162 gms, for the inside and outside, respectively. Fruit productivity was higher in the greenhouse, expressed in the number of tomatoes per branch, Figure 2. A maximum of 11 tomatoes was recorded in the greenhouse compared to 8, on the outside plot. This concurs with Slaa’s experiments on bees in applied pollination [7] and several other scientists [1-13]. There was fluctuation in the average weights of the first fruit, 117 gms in the greenhouse and 110 gms, in the open field plot. Field plot tomato production decreased significantly with plant-age. The greenhouse tomatoes had a longer production period, before being curtailed by the tomato leaf miner, *Tuta absoluta*, which equally affected the field tomatoes.

The greenhouse technology, combined with honeybee pollination impacted positively on tomato production. This impact was significant, evidenced in quantity and quality. The perimeter wall surrounding the outside field plot deterred a number of efficient and effective pollinators to the tomato plant.

Acknowledgements

Ministry of Agriculture, State Department of Livestock, through the Director, Mr. Julius Kiptarus and the Principal Secretaries, Prof. Fred Segor and Andrew Tuimur, for financial support.

ICIPE, AU/EU Sponsored Bee Health Program.

Staff, National Beekeeping Institute particularly Clare Tamana, for assisting in typesetting and Kennedy Wekalao, in field work.

References

[1] Free J. B, 1968a. The pollination of strawberries by honeybees. Journ. of hort. Scie. 43.

[2] Free J. B, 1968b. Foraging behaviour of Honey bees (*Apis mellifera*) and Bumble bees (*Bombus sp.*) on black currant (*Ribes nigrum*), raspberry (*Rubus idaeus*) and strawberry (*Fragaria Chiloensis x ananassa*) flowers. Journ. of Animal behaviour 15: 134–144.

[3] Free J. B, 1993. Insect pollination of cultivated crops, 2nd Edition, University of Wales, Cardiff. U.K. Academic Press, New York.

[4] Connor, L. J, 1970. Studies of strawberry pollination in Michigan. Pp 157-162 in The indespensable Pollinators. University of Arkansas Agri. Ext. serv. Publ. MP 127. 233 p.

[5] Crane E and Walker P, 1984. Pollination directory for world crops, International Bee Research Association, Bucks, London.

[6] Crane E, 1992. The Past and Present status of beekeeping with stingless bees. Bee world 73: 29-42.

[7] Ester Judith Slaa, Luis Alejandro Sa’nchez Chaves, Katia Sampaio Malagodi-Braga, Frouke Elisabeth Hofstede, 2007. Stingless bees in applied pollination: practice and perspectives

[8] Asiko G. A, Nyamasyo G. N and Kinuthia W, 2007. Domestication of stingless Bees (*Meliponula sp. and Hypotrigona sp.*) for Sustainable Livelihoods in Kenyan Communities. 9th International pollination symposium on plant-pollinator relationships. June 24-28, 2007. Ames, Iowa, USA.

[9] Kiatoko N, Raina S. K, Mul E, Mueke J, 2014. Enhancement of fruit quality in Capsicum annum through pollination by *Hypotrigona gribiodi*, in Kakamega, Western Kenya.

[10] Faegri K and Van Der Pijl, 1971. The principles of Pollination Ecology. Pergamon Press, New York, U.S.A.

[11] Roubik D. W, 1989. Ecology and natural history of tropical bees. Cambridge, UK: Cambridge University press.

[12] Roubik D. W, 1995. Pollination of cultivated plants in the tropics, FAO Agricultural services bulletin. No.118, Rome, Italy. 196 Pp.

[13] Buchmann S. L, 1995. Pollen, anthers and dehiscence in pollination of cultivated plants in the tropics, Ed Roubik D. W, pp 121-23. Rome: F. A. O.

[14] Procter M, Yeo P and Lack A, 1996. The natural history of pollination. Harper Collins Publishers.

[15] Michener C. D, 2000. The bees of the world. John Hopkins University press.

[16] Dafni A, Kevan P. G and Husband B. C, 2005. Practical Pollination Biology. Enviroquest, LTD. Cambridge, Ontario, Canada.

[17] Ohio State University Bulletin, 2006. Bee Pollination of crops in Ohio. Bulletin 559.

[18] Wille A, 1983. Biology of the stingless bees. Annu. Rev. Entomol. 28:41-64.

[19] Njoroge G & Gikungu M, 2006. Status of threatened stingless bees and their conservation strategies for poverty alleviation and sustainable utilization in Semi-Arid areas of Mwingi, Kenya. RPSUD Research Report.

[20] Dino J Martins, 2014. Our friends, the pollinators. A handbook of pollinator diversity and conservation in East Africa.

[21] Ministry of Agriculture and Rural Development, 2003. Fruits and vegetables, technical handbook. Revised Edition, 2003, AIRC, Nairobi.

[22] Kioko E; Muthoka P; Gikungu M and Malombe I, 2006. Conservation of useful insects and their food plants for eco-development in dryland Districts of Eastern Kenya. Report. RPSUD Research Report.

[23] Kinuthia W, 2007. Pollinators as an indicator of ecosystem health: A landscape approach to biodiversity conservation. Poster, Wildlife Conference: Research imperative for biodiversity conservation & management. 18-20 April 2007, Nairobi Kenya.

[24] Delaplane K. S and Mayer D. F, 2000. Crop pollination by bees. CABI Publishing.

[25] Trigiano R and Gray D, 2000. Plant tissue culture concepts and laboratory exercises, 2nd edition.

[26] Compton M. E, 1994. Statistical methods suitable for the analysis of plant tissue culture data. Review paper. Plant cell tissue and organ culture 37: 217-242, Kluwer academic Publishers.