Research Paper

Effect of Jujube Extract on Acetylcholinesterase Activity and Oxidative Stress in Morphine-treated Male Rats

Zahra Haratian1, *Bagher Seyedalipour2, Farhad Valizadegan1

1. Department of Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran.
2. Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran.

ABSTRACT

Background: One of the mechanisms associated with morphine neurotoxicity is oxidative stress. Jujube fruit extract may reduce oxidative stress due to its antioxidant properties.

Objective: This study aims to investigate the protective effect of jujube fruit extract on the Acetylcholinesterase (AchE) activity and oxidative stress in the cortex and serum of morphine-treated male rats.

Materials and Methods: In this experimental study, 42 male Wistar rats were randomly divided into six groups of 7 which were given oral administration of jujube extract (100 and 200 mg/kg) and intraperitoneal injection of 0.5 mg/kg morphine for 30 days. After blood collection, separation of the serum, and homogenization of brain tissue, the activities of Catalase (CAT), AchE, and Superoxide Dismutase (SOD) enzymes were assessed. Collected data were analyzed using one-way ANOVA.

Results: Oral administration of jujube extract at doses of 100 and 200 mg/kg significantly increased the activity of AchE, CAT, and SOD in the serum and cortex of rats compared to morphine injection (P<0.01). Oral administration of 200 mg/kg jujube extract plus morphine injection significantly increased the activity of cortical AchE compared to morphine injection alone (P<0.01).

Conclusion: Jujube extract can prevent the side effects of morphine in the cortex by increasing antioxidant activity.

Keywords: Oxidative stress, Acetylcholinesterase, Jujube extract, Cortex, Rats

Received: 20 Jul 2020
Accepted: 24 Oct 2020
Available Online: 01 Jan 2021

Extended Abstract

1. Introduction

Opioids exert their pharmacological effects by activating opioid receptors [1]. As a μ receptor agonist, morphine is the most important opium alkaloid. So far, many pharmacological properties of morphine have been reported [2]. By affecting μ receptors, morphine inhibits the release of various neurotransmitters such as noradrenaline and acetylcholine [3]. Oxidative stress is the impairment of oxidant-antioxidant balance. Biosystems have defense mechanisms that help protect against cellular damage caused by free radicals [4]. Ziziphus jujuba, commonly known as Jujube, has antioxidant activity due to its compounds such as saponins, flavonoids, and jujubosides [5-7]. This study aims to evaluate the effect of jujube extract on the activity of Acetylcholinesterase (AChE) enzyme and oxidative stress in the cortex and serum of morphine-treated male rats.

* Corresponding Author:
Bagher Seyedalipour, PhD.
Address: Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran
Tel: +98 (11) 35302405
E-Mail: b.alipour81@gmail.com
2. Materials and Methods

In this experimental study, 42 male Wistar rats in the weight range of 200-250 g were purchased from the Pasteur Institute of Amol Research Center and kept in standard conditions (12 hours of light and 12 hours of darkness, a humidity of 40%-50% and a temperature of 25°C). All experiments were performed according to the guidelines of the Bioethics Committee of the University of Mazandaran. Jujube fruit was collected, dried and powdered. Then 500 ml of ethanol was added to 100 g of the powder and put in a shaker for 4 days in darkness. The mixture was then filtered by using Whatman filter paper. The obtained extract was dissolved and concentrated by a rotary evaporator [8].

Animals were divided into six groups of 7 including: Control group (received normal saline by gavage intraperitoneally), morphine group (received normal saline by gavage plus 0.5 mg/kg morphine 30 minutes later intraperitoneally) [8], jujube 100 and 200 groups (received 100 and 200 mg/kg body weight of jujube extract by gavage plus normal saline 30 minutes later intraperitoneally) [9], jujube 100 + morphine and jujube 200 + morphine groups (received 100 and 200 mg/kg body weight of jujube extract by gavage plus morphine 30 minutes later intraperitoneally). All treatments were performed for 30 days. The last gavage for each rat was 24 hours before anesthesia. At the end of treatment (day 31), following blood collection, separation of serum from blood samples, and homogenization of brain tissue, the activity of Catalase (CAT), AChE, and Superoxide Dismutase (SOD) was assessed. In order to statistically analyze the collected data and compare groups, one-way ANOVA and Tukey’s post hoc test were used considering a significance level of P<0.05.

3. Results

The results of ANOVA showed significant changes in the serum and cortical AChE in the study groups (P<0.001). Serum AChE activity significantly decreased in the morphine group compared to the control group (P<0.001). Administration of 100 and 200 mg/kg extracts of jujube plus morphine injection increased the activity of serum AChE compared to when only morphine was injected, but this increase was not significant. However, administration of 100 mg/kg (P=0.004) and 200 mg/kg (P=0.036) extracts showed significant changes compared to the control group. Cortical AChE activity showed a significant decrease in the morphine group (7.02±0.61) compared to the control group (13.56±0.73) (P<0.001). Administration of 100 and 200 mg/kg jujube extracts plus morphine injection increased the activity of cortical AChE compared to the morphine group, but the increase was significant only at a dose of 200 mg/kg (P=0.002).

Cortical CAT activity was significantly decreased in the morphine group (8.09±0.91) compared to the control group (20.79±1.31) (P<0.001). Administration of 100 and 200 mg/kg extracts of jujube plus morphine injection increased the cortical CAT activity compared to the morphine group but this increase was not significant (P>0.05). However, significant changes were observed compared to the control group (P=0.005 and 0.027). Serum CAT activity in the morphine group significantly decreased compared to the control group (P<0.001). Administration of 100 mg/kg (P=0.015) and 200 mg/kg (P=0.017) extracts of jujube plus morphine injection increased the serum CAT activity compared to when only morphine was injected, but this increase was not significant. However, compared to the control group, the differences were significant.

Finally, the results of ANOVA showed significant changes in the serum and cortical SOD activities in the study groups (P<0.001). Cortical and serum SOD activities in the morphine group significantly decreased compared to the control group (P<0.001 and 0.011, respectively). Administration of 100 and 200 mg/kg jujube extracts alone increased the activity of cortical SOD compared to when only morphine was injected (P<0.01). The morphine group after receiving jujube extracts increased the inhibition of cortical SOD, but the increase in SOD activity was significant only in the jujube 200 + morphine group (P=0.013).

4. Discussion and Conclusion

Intraperitoneal injection of morphine increases oxidative stress and reduces the activity of CAT, SOD, and AChE. Administration of jujube extracts improves morphine-induced oxidative stress and increases AChE activity. Therefore, jujube extract improves the activity of CAT, SOD, and AChE in morphine-treated male rats based on its antioxidant properties. The consumption of jujube fruit can prevent the reduction of oxidative stress and its complications.

Ethical Considerations

Compliance with ethical guidelines

This study was approved by the Bioethics Committee of the University of Mazandaran (Code: IR.UMZ.REC.1398.003).

Funding

This article was extracted from the MA. thesis of first author at the Department of Biology, Faculty of Basic Sciences, University of Mazandaran.
Authors’ contributions

Conceptualization: Bagher Seyedalipour, Farhad Valizadegan; Methodology, investigation, resource, writing-original draft: Zahra Haratian; Visualization, data analysis, writing-review & editing, supervision, project administration: Bagher Seyedalipour, Farhad Valizadegan.

Conflicts of interest

The authors declare no conflict of interest.

Acknowledgements

The authors would like to thank the Vice Chancellor for Research of Mazandaran University for his financial support and Ms. Rezaei for his experimental support.
مقاله پژوهشی

اثر حفاظتی عصاره اتانولی میوه عناب بر فعالیت آنزیم استیل کولین استراز و استرس اکسیداتیو در سرم و کورتکس موش صحرایی نر تیمارشده با مورفین

زهره هراتیان، ه. بیات سیدعلیپور، فرهاد کریمی زادگان

1. گروه زیست فنی شیمی، دانشکده طب پایه دانشگاه مرکزی، بابلسر، ایران.
2. گروه زیست سلولی و مولکولی، دانشکده علوم پایه، دانشگاه مازندران، بابلسر، ایران.

مقدمه

مصرف مورفین با اثرات ضددردی، کاهش حافظه و یادگیری و اضطراب دچار شده است [1]. مصرف مورفین با اثرات غیرمیدانی نیز مواجه است. این اثرات شامل ریویش شدید در عضلات، افزایش استرس اکسیداتیو، کاهش فعالیت آنزیم استیل کولین استراز و کاهش فعالیت انزیم اکسیدازیک می‌باشد [2].

ناوروانترمترزهای مختلفی مانند سیستم اثرات مصرف مارکورین استر، استریل کولین و مورفین آنتی آنزیم استیل کولین استراز را دارد که با افزایش فعالیت آنزیم استیل کولین استراز می‌تواند کاهش استیل کولین را جبران کند [3].

کلیدواژه‌ها: استرس اکسیداتیو، استریل کولین استراز، میوه عناب

م цельه

یکی از اکستراکت‌های مشابه با سیستم اکسیداسیون میوه عصاره میوه عناب استریل کولین استراز و استرس اکسیداتیو در سرم و کورتکس موش صحرایی نر تیمارشده با مورفین تعیین شد.

مکان: ستریل کولین استراز کورتکس و سرم موش صحرایی نر تیمارشده با مورفین. تاریخ دریافت: 1399 آبان 03، تاریخ پذیرش: 1399 دی 12، تاریخ انتشار: 1399 تیر 30

نویسنده مسئول: *دکتر باقر سیدعلی پور بابلسر، دانشگاه مازندران، دانشکده علوم پایه، گروه زیست سلولی و مولکولی.
نشانی: +98 (111) 35302405، بابلسر، ایران.
رایانامه: b.alipour81@gmail.com

پژوهشگر: 1. فرهاد کریمی زادگان.
2. زهره هراتیان.
3. بیات سیدعلیپور.

1. مورفین با اثرات ضددردی، کاهش حافظه و یادگیری و اضطراب دچار شده است. [1]
2. مصرف مورفین با اثرات غیرمیدانی نیز مواجه است. [2]
3. استریل کولین استراز در تامین اکسیداتیو آنتی اکسیدان است. [3]
4. استریل کولین استراز با اثرات ضددردی، کاهش حافظه و یادگیری و اضطراب دچار شده است. [4]

ملاحظه

*لیست نویسندگان مسئول:
*دبیر گروه پژوهشی شیمی فنی، دانشگاه مرکزی، بابلسر، ایران.
*لیست نویسندگان مسئول:
*دبیر گروه پژوهشی شیمی فنی، دانشگاه مرکزی، بابلسر، ایران.

نوع وسایل و بهره‌مندی: استریل کولین استراز کورتکس و سرم موش صحرایی نر تیمارشده با مورفین.
کنترل نرمال سالیم را به صورت درون صفادی و به صورت گاواژ هفت تایی تقسیم شدند. گروه‌های مورد مطالعه شامل: گروه گرم از پودر گیاه در ظرف خراسان رضوی، ایران) جمع‌آوری شد و توسط گروه سیستماتیک (از منطقه شهرستان درگز، استان تهیه عصاره اتانولی: در این تحقیق، میوه درخت عناب برای سازگاری جانوران با محیط، آزمایش‌ها یک هفته بعد از مخصوص حیوانات به میزان کافی در دسترس آن‌ها قرار گرفت. درجه سانتی گراد نگهداری شدند. آب و غذای گرم از پژوهشکده انستیتو پاستور آمل خریداری شد. آنتی اکسیدانی عصاره اتانولی میوه عناب بر روی فعالیت آنزیم‌ها به منظور بررسی اثرات محافظتی عصاره عناب و تعیین اثرات امروزی است. بنابراین شناسایی و یافتن داروها گیاهی مؤثر با مکانیسم‌های مختلف مؤثر نیاز دارند.

در دسته‌های اخیر استفاده از اکسیداسیون، گیاه‌های دارویی (به عنوان مثال ترکیبات فیتوپردازی) برای درمان بیماری‌ها یا به هدف افزایش بهره‌وری است. از مهره‌های این بستر کاملاً جزء بی‌خودآگاهی است. از این رو، تحقیقات در شرایط اکسیداسیون در بررسی‌های اکسیداسیون، استفاده 12 ساعت و 14 ساعت تا 24 ساعت می‌تواند بود. در این تحقیق، سه صورت اکسیداسیون از محیط‌های بی‌بیک گیاهی Ziziphus jujuba به دست آمد. در نتیجه با چرخه دیدگاه پردازش که این گروه در آزمایش‌شان عمل می‌کنند. یافته‌ها به‌طور گسترده می‌باشند که در غرب و آسیای مرکزی استفاده می‌شود.

همان‌طور که می‌دانید میوه پیاالویه قوی‌ترین ترکیب بی‌بیک گیاهی است. این‌گونه فرآیندهای بی‌بیک گیاهی یک‌سان است با استفاده از ویتامین‌های امروزی از آنتی‌اکسیدان‌های محلول در خون، میوه عناب و ترکیبات گیاهی دارای ویتامین‌هایی هستند که به ضریب مصرف میوه عناب و ترکیبات گیاهی دارای ویتامین‌هایی هستند که به ضریب مصرف غذایی توجه می‌شوند. در این تحقیق، میوه درخت عناب برای سازگاری جانوران با محیط، آزمایش‌ها یک هفته بعد از مخصوص حیوانات به میزان کافی در دسترس آن‌ها قرار گرفت. درجه سانتی گراد نگهداری شدند. آب و غذای گرم از پژوهشکده انستیتو پاستور آمل خریداری شد. آنتی اکسیدانی عصاره اتانولی میوه عناب بر روی فعالیت آنزیم‌ها به منظور بررسی اثرات محافظتی عصاره عناب و تعیین اثرات امروزی است. بنابراین شناسایی و یافتن داروها گیاهی مؤثر با مکانیسم‌های مختلف مؤثر نیاز دارند.

در دسته‌های اخیر استفاده از اکسیداسیون، گیاه‌های دارویی (به عنوان مثال ترکیبات فیتوپردازی) برای درمان بیماری‌ها یا به هدف افزایش بهره‌وری است. از مهره‌های این بستر کاملاً جزء بی‌خودآگاهی است. از این رو، تحقیقات در شرایط اکسیداسیون در بررسی‌های اکسیداسیون، استفاده 12 ساعت و 14 ساعت تا 24 ساعت می‌تواند بود. در این تحقیق، سه صورت اکسیداسیون از محیط‌های بی‌بیک گیاهی Ziziphus jujuba به دست آمد. در نتیجه با چرخه دیدگاه پردازش که این گروه در آزمایش‌شان عمل می‌کنند. یافته‌ها به‌طور گسترده می‌باشند که در غرب و آسیای مرکزی استفاده می‌شود.
金币完成。反应在大鼠

127

冬

4

302

32

302

100

100

127

5,5′-دیثیوبیس (2-نیتروبنزویک اسید) (DTNB)

50

4

2950

10

2

300

50

420

100

50

100

300

100

100

50

50

300

1

Δεδομένα απόθεμα επιστημονικών πρακτικών.
فعایل آنزیمی AChE نسبت به گروه مرجع شاهد آنلاین همانند نموده شده است. در نتایج حاصل از این تحقیق با استفاده از آنالیز واریانس یک طرفه و آزمون تعقیبی Tukey نشان داده شد که در گروه‌های مورد مطالعه تغییری معنی‌داری در فعالیت آنزیم AChE نسبت به گروه مرجع کشف نشد (P>0.05). در جدول شماره 1 مشاهده می‌شود، فعالیت‌های AChE در گروه مورفین (197±42) میلی گرم بر کیلوگرم باعث افزایش فعالیت آنزیم که عصاره میوه عناب به گروه مورفین نشان دادند. در سایر گروه‌ها تفاوت معنی‌داری نسبت به گروه مرجع مشاهده نشد. همان‌طور که در جدول شماره 1 مشاهده می‌شود، فعالیت AChE در گروه مورفین (197±42) کلاشه معنی‌داری نشان داد (P<0.05). در جدول شماره 1 نشان داده شد که توزیع داده‌ها در هر گروه پایدار و در داده‌های ترکیبی، به گروه طراحی شده از آنالیز واریانس، همچنین تجزیه و تحلیل آنالیز آماری، با استفاده از آزمون نا Chamene و آزمون نا Chamene با استفاده از آزمون نا Chamene، فعالیت‌های AChE نسبت به گروه مرجع کشف نشد (P>0.05). در طرح که در جدول شماره 1 مشاهده می‌شود، فعالیت آنزیم AChE به صورت AChE باعث افزایش فعالیت آنزیم می‌گردد. در جدول شماره 1 مشاهده می‌شود، فعالیت آنزیم AChE نسبت به گروه مرجع کشف نشد (P>0.05). در سایر گروه‌ها تفاوت معنی‌داری نسبت به گروه مرجع مشاهده نشد. همان‌طور که در جدول شماره 1 مشاهده می‌شود، فعالیت‌های AChE در گروه مورفین (197±42) کلاشه معنی‌داری نشان داد (P<0.05). در جدول شماره 1 نشان داده شد که توزیع داده‌ها در هر گروه پایدار و در داده‌های ترکیبی، به گروه طراحی شده از آنالیز واریانس، همچنین تجزیه و تحلیل آنالیز آماری، با استفاده از آزمون نا Chamene و آزمون نا Chamene با استفاده از آزمون نا Chamene، فعالیت‌های AChE نسبت به گروه مرجع کشف نشد (P>0.05). در طرح که در جدول شماره 1 مشاهده می‌شود، فعالیت آنزیم AChE به صورت AChE باعث افزایش فعالیت آنزیم می‌گردد. در جدول شماره 1 مشاهده می‌شود، فعالیت آنزیم AChE نسبت به گروه مرجع کشف نشد (P>0.05). در سایر گروه‌ها تفاوت معنی‌داری نسبت به گروه مرجع مشاهده نشد. همان‌طور که در جدول شماره 1 مشاهده می‌شود، فعالیت‌های AChE در گروه مورفین (197±42) کلاشه معنی‌داری نشان داد (P<0.05). در جدول شماره 1 نشان داده شد که توزیع داده‌ها در هر گروه پایدار و در داده‌های ترکیبی، به گروه طراحی شده از آنالیز واریانس، همچنین تجزیه و تحلیل آنالیز آماری، با استفاده از آزمون نا Chamene و آزمون نا Chamene با استفاده از آزمون نا Chamene، فعالیت‌های AChE نسبت به گروه مرجع کشف نشد (P>0.05). در طرح که در جدول شماره 1 مشاهده می‌شود، فعالیت آنزیم AChE به صورت AChE باعث افزایش فعالیت آنزیم می‌گردد. در جدول شماره 1 مشاهده می‌شود، فعالیت آنزیم AChE نسبت به گروه مرجع کشف نشد (P>0.05). در سایر گروه‌ها تفاوت معنی‌داری نسبت به گروه مرجع مشاهده نشد. همان‌طور که در جدول شماره 1 مشاهده می‌شود، فعالیت‌های AChE در گروه مورفین (197±42) کلاشه معنی‌داری نشان D.png
روش استخراج با حلال‌های مختلف در کمیت و کیفیت استخراج مکمل‌های بیولوژیکال، کوئین و فلاونوئیدها نشان داد که در طریق جلب و عطر‌پروری کمیت و کیفیت عصاره به طوری که مطالعات پیشین نشان داده‌اند، حلال‌های متغیر و آنتی اکسیدانی به حلال آبی قرار گرفتند، به داخل سازی گیاه مخلوط و ترکیبات مختلف شامل فلورا و فلاونوئیدها با استفاده از مکانیزم CAT (جلد 22) قدرت مهارکننده رادیکال‌های آزاد کلیک آبی قابل پیش‌بینی و بلع الگویی به حلال آبی قرار گرفتند. نتایج در مطالعه مالکی و همکارانش تأکید کردند که ترکیبات چربی و فلاونوئیدها تبریز و آنتی اکسیدانی این بیماری‌ها هدایت حساسی به دلیل بلع الگویی و پیش‌بینی می‌شود. نتایج پژوهش جوانان و کودکان، مشخص کرده است که عصاره اتانولی میوه عناب به موش های ناشی از افزایش فعالیت آنتی اکسیدانی میوه عناب باعث کاهش معنی‌داری در فعالیت آنزیم کاتالاز، استرس اکسیداتیو به دلیل تشکیل فراوان آنیون‌های سوپراکسید می‌گردد.

میلی گرم بر کیلو گرم عصاره آبی میوه عناب به موش های ناشی از افزایش فعالیت آنتی اکسیدانی میوه عناب باعث کاهش معنی‌داری در فعالیت آنزیم کاتالاز، استرس اکسیداتیو به دلیل تشکیل فراوان آنیون‌های سوپراکسید می‌گردد.

نتایج فعالیت آنزیم SOD در سرم و کورتکس

نتایج مطالعه به منظور تعیین اثر عصاره اتانولی میوه عناب بر فعالیت‌های آنتی اکسیدانی در سرم و کورتکس مربوط به فعالیت آنزیم SOD از سطح پایین‌تریابی و بایستیتیایی رهبر که در جدول شماره (1) نشان داده است.

نتایج مطالعه به منظور تعیین اثر عصاره اتانولی میوه عناب بر فعالیت‌های آنتی اکسیدانی در سرم و کورتکس مربوط به فعالیت آنزیم SOD از سطح پایین‌تریابی و بایستیتیایی رهبر که در جدول شماره (1) نشان داده است.

نتایج مطالعه به منظور تعیین اثر عصاره اتانولی میوه عناب بر فعالیت‌های آنتی اکسیدانی در سرم و کورتکس مربوط به فعالیت آنزیم SOD از سطح پایین‌تریابی و بایستیتیایی رهبر که در جدول شماره (1) نشان داده است.

نتایج مطالعه به منظور تعیین اثر عصاره اتانولی میوه عناب بر فعالیت‌های آنتی اکسیدانی در سرم و کورتکس مربوط به فعالیت آنزیم SOD از سطح پایین‌تریابی و بایستیتیایی رهبر که در جدول شماره (1) نشان داده است.

نتایج مطالعه به منظور تعیین اثر عصاره اتانولی میوه عناب بر فعالیت‌های آنتی اکسیدانی در سرم و کورتکس مربوط به فعالیت آنزیم SOD از سطح پایین‌تریابی و بایستیتیایی رهبر که در جدول شماره (1) نشان داده است.

نتایج مطالعه به منظور تعیین اثر عصاره اتانولی میوه عناب بر فعالیت‌های آنتی اکسیدانی در سرم و کورتکس مربوط به فعالیت آنزیم SOD از سطح پایین‌تریابی و بایستیتیایی رهبر که در جدول شماره (1) نشان داده است.
این مقاله حاصل پایان‌نامه کارشناسی ارشد نویسنده اول در سال ۱۳۹۷ [۱] و همکارانش [۲] مطالب ایستاده و ادامه در مطالعه‌های مختلفی انجام شده است. مقالات بیشتری از تحقیقات پیشین در این زمینه وجود داشته و نتایج این بررسی نشان می‌دهد که مصرف میوه عناب موجب کاهش استرس اکسیداتیو القاشده با مورفین و افزایش سطح فعالیت آنزیم آنتی‌اکسیدان (AChE) در می‌آید. نتایج داده‌های حاصل از این پژوهش نشان داد که تزریق دوزهای مختلف میوه عناب و تعداد نمونه بیشتر برای جامعه آماری نوع ماده تیمارشده و نوع بافت است. از جمله محدودیت‌های این بررسی که توصیه شده است، که از قبیل تأثیر مطالعات کمیابی که با توجه به نتایج AChE، می‌تواند با توجه به دلیل بر این مطالعات اندکی تأثیر نشان دهد که عصاره عناب می‌تواند با رادیکال آزاد ترکیب شود. نتایج مطالعه خیانکچون و همکارانش [۲] نشان داد که عصاره عصاره عناب می‌تواند با رادیکال آزاد ترکیب شود و افزایش استرس اکسیداتیو القاشده با مورفین را کاهش دهد [۱۳۹۷.۰۰۳ IR.UMZ.REC].

مطالعات نشان داده‌های مشابهی از سه عصاره سلوئین شامل یونیت سبز، اوکول و صحرایی که با نتایج ما هم‌اندازه‌اند نشان داده است که با توجه به نتایج AChE، عصاره عناب می‌تواند با رادیکال آزاد ترکیب شود و کاهش استرس اکسیداتیو القاشده با مورفین را نشان دهد.

علاوه بر آنکه AChE که در جوهر دمای سطح تعمیق بی‌سنجی نموده شده است و به عنوان یکی از آنزیم‌های کلینیکی از آن برای درمان سرطان استفاده می‌شود، مطالعات نشان داده است که عصاره عصاره عناب می‌تواند با رادیکال آزاد ترکیب شود و کاهش استرس اکسیداتیو القاشده با مورفین را نشان دهد.
مشارکت‌نویس‌های گروه:
مفهوم‌سازی، بررسی و برنامه‌ریزی: باقر سید علیپور و فرهاد ولیزاده;
تحقیق و بررسی منابع: منال، نگارش پیچ‌پوشی و ویرایش: نظرات و مدیریت پروژه: نازنین سید علیپور و فرهاد ولیزاده؛
نظرات و مدیریت پروژه: نازنین سید علیپور و فرهاد ولیزاده؛
نظرات و مدیریت پروژه: نازنین سید علیپور و فرهاد ولیزاده؛
نظرات و مدیریت پروژه: نازنین سید علیپور و فرهاد ولیزاده؛
نظرات و مدیریت پروژه: نازنین سید علیپور و فرهاد ولیزاده؛
نظرات و مدیریت پروژه: نازنین سید علیپور و فرهاد ولیزاده.

تعارض منافع
بنابر اظهار نویسندگان این مقاله تعارض منافع ندارد.

تشکر و احترام
بدری وسیله از معاونت محترم بروجردی دانشگاه مازندران به دلیل حمایت‌های مالی تقدير و تشکر می‌شود. همچنین از کارشناس آزمایشگاه جامع سارا رضایی که در امور آزمایش ما را پیگیری کردن تشکر می‌کنیم.
References

[1] Dhawan BN, Cesselin F, Raghubir R, Rezine T, Bradley PB, Porthgese PS, et al. International: Of pharmacology. XII. Classification of opioid receptors. Pharmacological Reviews. 1996; 48(4):567-92. [PMID]

[2] Wang JH, Rizak JD, Chen YM, Li L, Hu XT, Ma YY. Interactive effects of morphine and dopaminergic compounds on spatial working memory in rhesus monkeys. Neuroscience Bulletin. 2013; 29(1):37-46. [DOI:10.1007/s12264-013-1305-3] [PMCID]

[3] Wang J, Chen Y, Carlson S, Li L, Hu X, Ma Y. Interactive effects of morphine and scopolamine, MK-801, propranolol on spatial working memory in rhesus monkeys. Neuroscience Letters. 2012; 523(2):119-24. [DOI:10.1016/j.neulet.2012.05.014] [PMID]

[4] Katona I, Sperlágh B, Sík A, Käfalvi A, Vizi ES, Mackie K. Presynaptic cannabinoid receptors: CB1 and CB2, and some of their common evaluation methods (Persian). Scientific Journal of Kurdistan University of Medical Sciences. 2015; 20(5):102-9. [DOI:10.22102/20.5.102] [PMID]

[5] Naderi G, Hajhossini R, Abasi M, Mehrabian A. [Inhibitory effect of ethanolic extract of Cyperus rotandus on acetylcholinesterase activity (Persian)]. Scientific Journal of Kurdistan University of Medical Sciences. 2015; 20(5):102-9. [DOI:10.22102/20.5.102] [PMID]

[6] Khalili M, Ebrahimzadeh MA. [A review on antioxidants and some of their common evaluation methods (Persian)]. Journal of Mazandaran University of Medical Sciences. 2015; 24(120):188-208. http://jmums.mazums.ac.ir/article-1-4858-en.html

[7] Khoshhavghti A, Darya GH, Hushmandi K, Musavi SM, Salami S. [The effect of Gaulium Flavum extracts on the activity of three Liver and Kidney Oxido reductase enzymes in Alloxan induced diabetic rats: A short report (Persian)]. Journal of Rafsanjan University of Medical Sciences. 2019; 18(2):193-200. http://eprints.rums.ac.ir/6724/

[8] Khakdaman H, Pourmeydani A. [The study f Geografic distribution and Morphologic characters of Jujube in Iran (Persian)]. Iranian Journal of Medicinal and Aromatic Plants. 2004; 20(1):69-87. https://www.sid.ir/en/journal/ViewPaper.aspx?id=113513

[9] Pahuja M, Mehta J, Reeta KH, Joshi S, Gupta YK. Hydroalcoholic extract of Ziziphus jujuba ameliorates seizures, oxidative stress, and cognitive impairment in experimental models of epilepsy in rats. Epilepsy & Behavior. 2011; 21(4):356-63. [DOI:10.1016/j.yebeh.2011.05.013] [PMID]

[10] Gao QH, Wu CS, Wang M. The jujube (Ziziphus jujuba Mill) fruit: A review of current knowledge of fruit composition and health benefits. Journal of Agricultural and Food Chemistry. 2013; 61(14):3351-63. [DOI:10.1021/jf4007032] [PMID]

[11] Shen X, Tang Y, Yang R, Yu L, Fang T, Duan JA. The protective effect of Ziziphus jujube fruit on carbon tetrachloride induced hepatic injury in mice by anti-oxidative activities. Journal of Ethnopharmacology. 2009; 122(3):555-60. [DOI:10.1016/j.jep.2009.01.027] [PMID]

[12] Karthishwaran K, Shamisi SO, Kurup SS, Sakkir S, Cheruth AJ. Free-radical aging and antioxidant capacities with special emphasis on enzyme activities and in vitro studies in Caralluma flava N. E. Br. Biotechnology & Biotechnological Equipment. 2018; 32(1):156-62. [DOI:10.1080/13102818.2017.1379362]

[13] Taati M, Alirezaei M, Meshkataisadat MH, Rasoulian B, Kheradmand A, Eamati Sh. Protective effects of Ziziphus jujuba fruit extract against ethanol-induced hippocampal oxidative stress and spatial memory impairment in rats. Journal of Medicinal Plants Research. 2011; 5(6):921-5. [DOI:10.5897/JMPR.2011.01062]

[14] Awad DS, Ali RM, Mhaidat NM, Shotar AM. Shotar (2014) Zizyphus jujuba protects against ibuprofen-induced nephrotoxicity in rats. Pharmaceutical Biology. 2014; 52(2):182-6. [DOI:10.1080/13880209.2013.821665] [PMID]

[15] Etebari M, Zolfaghari B, Jafarian-Dehkordi A, Mirzaei A. Hydroalcoholic and polyphenolic extracts of Ziziphus jujuba jujuba mill fruits prevent methyl methanesulfonate-induced DNA damage in HepG2 cells. Pharmaceutical and Biomedical Research. 2015; 1(3):20-30. [DOI:10.18869/acapub.pbr.1.3.20]

[16] Burden DW. Guide to the homogenization of biological samples. Random Primers. 2008; (7):1-14. https://opsdiagnostics.com/nanotechnology/Homogenization%20Guide%20over1.pdf

[17] Aebi H. Catalase in vitro. Methods in Enzymology. 1984; 105:121-6. [DOI:10.1016/S0076-6879(84)05016-3] [PMID]

[18] Xia B, Wang Z, Li G, Li B, Lin H, Zheng R, et al. Heroin addiction in rats: A review of recent findings and possible mechanisms for antitoxicity (Persian). Journal of Neurochemistry. 2016; 133(4):649-59. [DOI:10.1111/jnc.13495] [PMID]

[19] Wang JH, Rizak JD, Chen YM, Li L, Hu XT, Ma YY. Interactive effects of morphine and dopaminergic compounds on spatial working memory in rhesus monkeys. Neuroscience Bulletin. 2013; 29(1):37-46. [DOI:10.1007/s12264-013-1305-3] [PMCID]

[20] Awad DS, Ali RM, Mhaidat NM, Shotar AM. Shotar (2014) Zizyphus jujuba protects against ibuprofen-induced nephrotoxicity in rats. Pharmaceutical Biology. 2014; 52(2):182-6. [DOI:10.1080/13880209.2013.821665] [PMID]

[21] Khorasani Esmaeili A, Mat Taha R, Mohajer S, Banisalabam B. Antioxidant activity and total phenolic and flavonoid content of various solvent extracts from in vivo and in vitro grown Trifolium pratense L. (Red Clover). BioMed Research International. 2015; 60(25):6418-24. [DOI:10.1021/jf204970r] [PMID]

[22] Benabent M, Viganova E, Sorob MÁ, Estévez J. Cholinesterase assay by an efficient fixed time endpoint method. MethodsX. 2014; 1:258-63. [DOI:10.1016/j.mex.2014.10.010] [PMID] [PMCID]

[23] El Guiche R, Tahrouch S, Amri O, El Mehrach K, Hatimie A. Effect of Jujube Extract on Neurotoxicity in Morphine-Induced Rats. J Guilan Uni Med Sci. 2021; 29(4):122-133.
[24] Jin H, Li YH, Xu JS, Guo GQ, Chen DL, Bo Y. Lipoxin A4 analog attenuates morphine antinociceptive tolerance, withdrawal-induced hyperalgesia, and glial reaction and cytokine expression in the spinal cord of rat. Neuroscience. 2012; 208:1-10. [DOI:10.1016/j.neuroscience.2012.02.009] [PMID]

[25] Hemnani A, Panhar MS. Reactive oxygen species and oxidative DNA damage. Indian Journal of Physiology and Pharmacology. 1998; 42:440-52. [PMID]

[26] Konrath EL, Newes BM, Lunardi PS, Dos Santos Passos C, Simões-Pires A, Ortega MG. Investigation of the in vitro and ex vivo acetylcholinesterase and antioxidant activities of traditionally used Lycopodium species from South America on alkaloid extracts. Journal of Ethnopharmacology. 2012; 139(1):58-67. [DOI:10.1016/j.jep.2011.10.042] [PMID]

[27] De Freitas V, Da Silva Porto P, Assuncao M, Cadete-Leite A, Andrade JP, Paula-Barbosa MM. Flavonoids from grape seeds prevent increased alcohol-induced neuronal Lipofuscin formation. Alcohol and Alcoholism. 2004; 39(4):303-11. [DOI:10.1093/alcald/agh069] [PMID]

[28] Gonenc S, Uysal N, Acikgoz O, Kayatekin BM, Sonmez A, Kiray M. Effects of Melatonin on oxidative stress and spatial memory impairment induced by acute ethanol treatment in rats. Physiological Research. 2005; 54(3):341-8. [https://europepmc.org/article/med/15588163]

[29] Soliman KF, Gabriel NN. Brain cholinergic involvement in the rapid development of tolerance to the hypothermic action of ethanol. General Pharmacology. 1985; 16(2):137-40. [DOI:10.1016/0306-3623(85)90051-5]

[30] Hostettmann K, Borloz A, Urbain A, Marston A. Natural product inhibitors of Aetylcolinesterase. Current Organic Chemistry. 2006; 10(8):825-47. [DOI:10.2174/138527206776894410]

[31] Hernandez MF, Fale PL, Araujo ME, Serralheiro ML. Acetylcholinesterase inhibition and antioxidant activity of the water extracts of several Hypericum species. Food Chemistry. 2010; 120(4):1076-82. [DOI:10.1016/j.foodchem.2009.11.055]

[32] Diehl A, Nakovics H, Croissant B, Smolka MN, Batra A, Mann K. Galantamine reduces smoking in alcohol-dependent patients: A randomized, placebo-controlled trial. International Journal of Clinical Pharmacology and Therapeutics. 2006; 44(12):614-22. [DOI:10.5414/CPP44614] [PMID]

[33] Heo HJ, Park Yi, Suh YM, Choi SJ, Kim MJ, Cho HY. Effects of oleamide on choline acetyltransferase and cognitive activities. Bioscience, Biotechnology, and Biochemistry. 2003; 67(6):1284-91. [DOI:10.1271/bbb.67.1284] [PMID]

[34] Inestrosa NC, Urra S, Colombes M. Acetylcholinesterase (AChE)-amyloid-β-peptide complexes in Alzheimer’s disease. The Wnt signaling pathway. Current Alzheimer Research. 2004; 1(4):249-54. [DOI:10.2174/1567205043332063] [PMID]

[35] Zhao J, Li SP, Yang FQ, Li P, Wang YT. Simultaneous determination of saponins and fatty acids in Ziziphus jujuba (Suanzaoren) by high performance liquid chromatography-evaporative light scattering detection and pressurized liquid extraction. Journal of Chromatography A. 2006; 1108(2):188-94. [DOI:10.1016/j.chroma.2005.12.104] [PMID]

Haratian Z, et al. Effect of Jujube Extract on Neurotoxicity in Morphine-Induced Rats. J Guilan Uni Med Sci. 2021; 29(4):122-133.