A product decomposition for the classical quasisimple groups

Nikolay Nikolov

Abstract

We prove that every quasisimple group of classical type is a product of boundedly many conjugates of a quasisimple subgroup of type A_n.

1 Main Result and Notation

Let S be a quasisimple group of classical Lie type \mathcal{X}, that is one from $\{A_n, B_n, C_n, D_n, ^2A_n, ^2D_n\}$. Its classical definition is as a quotient of some group of linear transformations of a vector space over a finite field F preserving a nondegenerate form. We shall not make use of this geometry but instead rely on the Lie theoretic approach. In other words we view S as the group of fixed points of certain automorphism of an algebraic group defined as follows:

Let F be a field (finite or infinite). In order that S is quasisimple when rank of \mathcal{X} is small (≤ 2) some extra conditions are usually imposed on F, for example that it is perfect and has enough elements.

In case $\mathcal{X} \in \{A_n, B_n, C_n, D_n\}$ let $G(-)$ be a Chevalley group of Lie type \mathcal{X} defined over F. Then S is the subgroup of $G(F)$ generated by all its unipotent elements.

In case \mathcal{X} is A_n or D_n then (depending on its isogeny type) $G(-)$ has an outer graph automorphism τ of order 2 defined by the symmetry of the Dynkin diagram of \mathcal{X}. We further assume that F has an automorphism $x \mapsto \bar{x}$ of order 2, this defines another involutionary automorphism f of $G(F)$. The group S is invariant under τ and f. The classical group of type $^2\mathcal{X}$ is then defined as the group of fixed points of S under the Steinberg automorphism $\sigma := \tau f$.

We shall not go into further details of the definition and structure of S. The reader is assumed to be familiar with Carter’s book [1] which is our main reference. Other sources are [2] or Section 2 of [5].

When $\mathcal{X} \neq A_n$ we shall define a certain quasisimple subgroup S_1 of S which has type A_{n_1} (so it is a central quotient of $\text{SL}_{n_1+1}(F_0)$ for an appropriate n_1 and a subfield of F).

Our main result is

2000 Mathematics Subject Classification primary 20D06, secondary 20D40
Theorem 1. There is a constant \(M \in \mathbb{N} \) with the following property: If \(X \neq A_n \) then there exist \(M \) conjugates \(S_i = S_1^{s_i} \) of \(S_1 \) such that

\[
S = S_1 \cdot S_2 \cdots S_M := \{ s_1 \cdots s_M \mid s_i \in S_i \}.
\]

In fact we can take \(M = 200 \).

This result reduces many problems about decompositions of classical groups to those of type \(A_n \) which are usually easier. Such problems have been considered in [3], [7], [6] and [4]. While the conclusion of Theorem 1 is not unexpected in view of the large size of \(S_1 \) compared to \(|S| \) it seems to have escaped attention so far and the author has not been able to find a proof of it in the literature. It is possible that geometric methods will yield a much better bound for \(M \) but we haven’t been able to find a simpler proof than the one given below.

Finally we remark that a similar result holds for quasisimple groups \(S \) of type \(A_n \) (where it is easy): \(S \) is a product of at most 5 conjugates of a subgroup of type \(A_{n-1} \). Using this we can add further conditions on the subgroup \(S_1 \) in Theorem 1. See Section 3 for details.

2 Notation and definitions

Remark. If \(\text{char } F = 2 \) then the simple groups of types \(B_n \) and \(C_n \) are isomorphic. In this situation we shall assume that \(S \) has type \(X = B_n \). This has implications for the Chevalley commutator relations we use, cf. the proviso in the statement of Lemma 1.

In case \(X \) is \(2A_n \) or \(2D_n \) define \(F' \subset F \) to be the subfield of \(F \) fixed by its automorphism \(x \mapsto \bar{x} \) of order 2.

Let \(\Pi \) be a fixed set of fundamental roots in the root system \(\Sigma \) of \(S \). We assume that \(n' = |\Pi| \geq 2 \). In case \(X = 2A_{2n'} \) the convention in [2] is that \(\Sigma \) has type \(BC_{n'} \).

The root subgroups of \(S \) are denoted by \(X_w \) for \(w \in \Sigma \) and are usually one-parameter with parameter \(t \) ranging over either

- \(F' \) (if \(X \in \{ 2D_n, 2A_{2n'-1} \} \) and \(w \) is long), or
- \(F \) (otherwise).

The only exception to this is when \(X = 2A_{2n'} \) and \(w \) is a short root of \(\Sigma \); then \(X_w \) is 2-parameter, as described in [2] Table 2.4, type IV. In this case we consider the center of \(X_w \) as another (one-parameter over \(F' \)) root subgroup \(Y_{2w} \leq X_w \) associated to the doubled root \(2w \). (The reason for this is that we wish to define in a natural way a filtration on the positive unipotent group \(U_+ \) below).
Definition. (a) An element \(a \in X_w \) is proper if \(a = X_w(t) \) or \(a = Y_{2w}(t') \), or (if \(X_w \) is 2-parameter) \(a = X_w(t, t') \) with \(t \in F \setminus \{0\} \), respectively \(t' \in F' \setminus \{0\} \).
(b) Further, when \(X = 2D_{n' + 1} \) (and so \(\Sigma \) has type \(B_{n'} \)), for a short root \(w \) we call two root elements \(a_1, a_2 \in X_w \) a proper pair if \(a = X_w(t_1), a' = X_w(t_2) \) are such that \(F't_1 + F't_2 = F \).

The fundamental roots \(\Pi \) determine a partition of \(\Sigma = \Sigma_+ \cup \Sigma_- \) into the sets of the positive and negative roots. Define

\[
U_+ := \prod_{w \in \Sigma_+} X_w, \quad U_- := \prod_{w \in \Sigma_-} X_w.
\]

From now on we shall assume that \(X \neq A_n \).

Recall the standard realization of \(\Sigma \) in the \(n' \)-dimensional euclidean space \(E \) with orthonormal basis \(e_1, e_2, ..., e_{n'} \):

\[
\Sigma_+ = \{ \pm e_i + e_j \mid 1 \leq i < j \leq n' \} \cup \Theta,
\]

where
- \(\Theta \) is empty if \(\Sigma \) has type \(D_{n'} \);
- \(\Theta = \{ e_i \mid 1 \leq i \leq n' \} \) in type \(B_{n'} \);
- \(\Theta = \{ 2e_i \mid 1 \leq i \leq n' \} \) in type \(C_{n'} \) and
- \(\Theta = \{ e_i, 2e_i \mid 1 \leq i \leq n' \} \) in type \(BC_{n'} \).

For this choice of \(\Sigma_+ \) the fundamental roots \(\Pi \) are

\[
\Pi = \{ e_{i+1} - e_i \mid i = 1, 2, ..., n' - 1 \} \cup \{ r_0 \},
\]

where if \(\Sigma \) is of type \(D_{n'} \) then \(r_0 = e_1 + e_2 \), in case \(\Sigma \) has type \(B_{n'} \) or \(BC_{n'} \) then \(r_0 = e_1 \) and in case \(\Sigma \) has type \(C_{n'} \) we have \(r_0 = 2e_1 \).

For a root \(r \in \Sigma_+ \) we denote the height of \(r \) by \(ht(r) \). This means that \(r \) is a sum of \(ht(r) \) fundamental roots (maybe with repetitions).

Set \(\Pi_1 := \Pi \setminus \{ r_0 \} \) and \(\Sigma_1 = \Sigma \cap Z\Pi_1 \). Then \(\Sigma_1 \) is a root subsystem of type \(A_{n_1} \) with \(n_1 = n' - 1 \).

Let

\[
S_1 := \langle X_v \mid v \in \pm\Pi_1 \rangle, \quad U_1 := \langle X_v \mid v \in \Pi_1 \rangle.
\]

The group \(S_1 \) is a Levi factor of a parabolic subgroup of \(S \), thus it is quasisimple of Lie type \(A_{n_1} \) with \(n_1 \geq 1 \) and \(U_1 \) is its positive unipotent subgroup. The field of definition of \(S_1 \) is again \(F \) with the exception of type \(X = 2D_n \) when it is \(F' \).

3 The Proof of Theorem 1

We use the following result by M. Liebeck and L. Pyber:

Theorem 2 ([4], Theorem D). If \(S \) is a quasisimple group of classical Lie type then

\[
S = (U_+ U_-)^6 U_+.
\]
This reduces the problem to showing that U_+ is contained in a product of boundedly many (say M_1) conjugates of U_1. Then by symmetry the same result holds for U_- and we can take $M = 13M_1$.

Before we proceed with the proof of Theorem 1 we record a result which is a consequence of the Chevalley commutator relations ([2] Theorems 1.12.1 and 2.4.5):

Lemma 1. Let u, v and $u + v$ be roots of the system Σ of classical type, such that $u \in \Sigma_1$.
Assume that if char $F = 2$ and S has type $\mathcal{X} = C_n \simeq B_n$ then u, v is not a pair of short root summing to the long root $u + v$.
Further, let (*) be the condition that
\[(*)\] The Lie type \mathcal{X} of S is $2D_n$, and the roots $u + v$ and v are short while u is long.
Then
\[(a)\] If not (*) and $a \in X_v$ is proper then
\[X_{u+v} \subseteq [X_u, a] \cdot Z(u, v),\]
where $Z(u, v)$ is the product of all root subgroups X_w, Y_w with $w = iv + jv$, $i, j \in \mathbb{N}, i + j > 2$. (It may be that $Z = \{1\}$.)
\[(b)\] Suppose that (*) holds. Then if $a_1, a_2 \in X_v$ is a proper pair of root elements we have
\[X_{u+v} \subseteq [X_u, a_1][X_u, a_2] \cdot Z(u, v),\]
where $Z(u, v)$ is as in (a).

We now define 4 elements of $U = U_+$:

For $i = 1, 2, \ldots, n' - 1$ let a_i be a fixed proper element of the root subgroup $X_{ei+e'i+1}$. When \mathcal{X} is different from $2D_{n'+1}$ and $2A_{2n'}$ fix a proper element b_i in X_{ei} or $X_{e'i}$ as relevant. If $\mathcal{X} = 2D_{n'+1}$ then fix a proper pair of elements $c_i, c'_i \in X_{ei}$. If $\mathcal{X} = 2A_{2n'}$ then fix a proper element $d_i \in X_{ei}$ and a proper element $d'_i \in Y_{2e_i}$.

Definition. We set
\[w_1 := a_1a_3a_5 \cdots, \quad w_2 := a_2a_4a_6 \cdots,\]
If $\mathcal{X} = D_{n'}$, then set $w_3 = w_4 = 1$.
If $\mathcal{X} = 2D_{n'+1}$ define $w_3 = c_1 \cdots c_{n'}$, $w_4 = c'_1 \cdots c'_{n'}$.
If $\mathcal{X} = 2A_{2n'}$, define $w_3 = d_1 \cdots d_{n'}$, $w_4 = d'_1 \cdots d'_n$.
In all other cases $w_3 := b_1b_2 \cdots b_{n'}$ and $w_4 := 1$.

Let $\Delta = \Sigma_+ \setminus (\Sigma_1 \cup \{r_0, 2r_0\})$ and define
\[D = \prod_{w \in \Delta} X_w.\]
Then D is a normal subgroup of U and we have $U = X_{r_0} \cdot U_1 \cdot D$.

In the case when Σ has type $B_{n'}$ we shall need one extra conjugate of U_1.

More precisely, when Σ has type $B_{n'}$ define $W = X_r$ where $r = e_1 + e_2$. In all other cases set $W = 1$. Since $e_1 + e_2$ has the same length as the roots in Σ_1 it is clear that W is contained in a conjugate of U_1, say U_1^s.

We shall prove

Proposition 1.

$$D = W \prod_{j=1}^{4} [U_1, w_j].$$

To deal with X_{r_0} we consider three cases:

(a) When Σ has type $D_{n'}$ the root r_0 has the same length as the roots in Σ_1. Therefore X_{r_0} is contained in a conjugate of U_1.

(b) Suppose Σ is of type $B_{n'}$. We can write $r_0 = e_1 = u + v$ where $u = e_1 - e_2 \in \Sigma_-$ and $v = e_2$. Thus u is conjugate to a root in Σ_1 and hence $X_u \subseteq U_1^s$ for some $s \in S$. Note that all roots of Σ of the form $iu + jv$ with $i, j \in \mathbb{N}$ except r_0 lie in Δ. By Lemma 1 then

$$X_{r_0} \subseteq [X_u, a]D$$

for some proper $a \in X_u$, unless (*) holds when

$$X_{r_0} \subseteq [X_u, a_1][X_u, a_2]D$$

for some proper pair $a_1, a_2 \in X_u$.

(c) If Σ has type $C_{n'}$ then $r_0 = 2e_1$. We set $u = e_1 + e_2, v = e_1 - e_2$ and the argument is as above. Note that in case that S has type $A' = C_n$ the characteristic of F is assumed to be different from 2 and so the conclusion of Lemma 1 applies.

(d) Finally, if Σ has type $BC_{n'}$ then $r_0 = e_1$ and X_{r_0} is 2-parameter. Let $r_0 = e_1 \in \Pi, u = e_1 - e_2 \in \Sigma_-$, and let g_1 be a proper element of the 2-parameter root subgroup X_{e_2} and g_2 be a proper element of $X_{e_1 + e_2}$. Then

$$Y_{2e_1} \subseteq X_{r_0} \subseteq [X_u, g_1] \cdot [X_u, g_2] \cdot D.$$

Note that, again, X_u is conjugate to a root subgroup in U_1.

In conclusion, we see that in all three cases we have

$$U_+ = X_{r_0}U_1D = X_{r_0}U_1W \cdot \prod_{j=1}^{4} [U_1, w_j] \subseteq \prod_{i=1}^{6} U_1^{s_i} \cdot \prod_{j=1}^{4} (U_1 \cdot U_1^{w_j})$$

for some appropriate choice of $s_1, \ldots, s_6 \in S$.

Hence we can take $M_1 = 14$ and Theorem 1 follows with $M = 13 \times 14 = 182$.

5
Proof of Proposition 1

Let $v \in \Sigma_{1+}$ and $j \in \{1, \ldots, 4\}$ be such that $[X_v, w_j] \neq 1$. The element w_j was defined as a product of certain proper root elements a_i, b_i or c_i, c'_i (notation depending on j and the type \mathcal{X} of S). It is easy to see that X_v commutes with all except one of the constituents a_i, b_i or c_i, c'_i of w_j ($i = 1, \ldots, n'$). Say this constituent is $a \in X_\alpha$ for the appropriate root $\alpha \in \Sigma \setminus \Sigma_1$ (or a proper pair $c, c' \in X_\alpha$ if $\mathcal{X} = 2D_n$).

Let $w = w(j, v) := v + \alpha \in \Delta$. Using Lemma 4 it easily follows that

(A) If not (*) then

$$[X_v, w_j] \cdot Z = [X_v, a] \cdot Z = X_w Z,$$

where $Z = Z(w)$ is the product of root subgroups in D of height $> ht(w)$.

(B) If (*) holds then

$$[X_v, w_3] [X_v, w_4] \cdot Z = [X_v, c] [X_v, c'] \cdot Z = X_w Z.$$

Moreover, the root $w \in \Delta$ together with w_j uniquely determines $v \in \Sigma_{1+}$.

We set $t_j(v) := ht(w) \geq 2$ and for completeness declare that $t_j(v) = \infty$ if X_w and w_j commute.

Fixing j for the moment, choose an ordering of the roots Σ_{1+} with non-increasing t_j and write $u \in U_1$ as $u = \prod_{v \in \Sigma_1} x_v$ as a product of root elements x_v in that (non-increasing $t_j(v)$) order. Now, using the identity $[xy, w] = [x, w]y$. \[\begin{align*}
[x, w_j] &= \prod_{v \in \Sigma_1} [x_v, w_j]^{h_v}, \tag{2}
\end{align*}\]

where h_v is an element which depends on x_w with $t_j(w) \leq t_j(v)$.

For $i \geq 2$ let $D(i)$ be the product of the root subgroups $X_v \subseteq D$ with $ht(v) \geq k$. Then $D = D(2) > D(3) > \cdots > \{1\}$ is a filtration of D.

We prove that the identity (4) holds modulo $D(k)$ for each $k \geq 2$. We use induction on k, starting with $k = 2$ (when it is trivial). Assuming that (4) holds modulo $D(k)$, we shall prove that it holds modulo $D(k + 1)$.

Let $\Delta_j(k)$ be the set of roots $r \in \Sigma_1$ such that $t_j(r) = k$. It is clear that $\Delta_j(k) \cap \Delta_j(k') = \emptyset$ if $k \neq k'$.

Let $g \in D$ be arbitrary. By the induction hypothesis

$$g = d^{-1} y_k \prod_{j=1}^4 [g_j, w_j]$$

for some $d \in D(k)$, $y_k \in W$ and $x_j \in U_1$. We may assume that $y_k = 1$ unless $k = 3$ and $g_j \in \prod_{t_j(v) < k} X_v$. Let $x_j \in \prod_{t_j(v) = k} X_v$. Then

$$\prod_{j=1}^4 [x_j g_j, w_j] = \prod_{j=1}^4 [x_j, w_j]^{h_j} \cdot \prod_{j=1}^4 [g_j, w_j],$$

for some $d \in D(k)$, $y_k \in W$ and $x_j \in U_1$. We may assume that $y_k = 1$ unless $k = 3$ and $g_j \in \prod_{t_j(v) < k} X_v$. Let $x_j \in \prod_{t_j(v) = k} X_v$. Then

$$\prod_{j=1}^4 [x_j g_j, w_j] = \prod_{j=1}^4 [x_j, w_j]^{h_j} \cdot \prod_{j=1}^4 [g_j, w_j],$$
where $h_j = g_j \prod_{l<j} [g_l, w_l]$. In turn we have

$$x_j = \prod_{v \in \Delta_j(k)} x_{j,v} \text{ (product in the chosen order)},$$

where $x_{j,v} \in X_v$ and $t_j(v) = k$. Using (2) we have

$$\prod_{j=1}^4 [x_j g_j, w_j] = \prod_{j=1}^4 \left(\prod_{v \in \Delta_j(k)} [x_{j,v}, w_j]^{h_{j,v}} \right) \cdot \prod_{j=1}^4 [g_j, w_j],$$

for some $h_{j,v} \in U$ depending on h_j and the root elements $x_{j,v}$ succeeding $x_{j,v}$ in the ordering.

Now, for $v \in \Delta_j(k)$ and $x_{j,v} \in X_v$ we have $[x_{j,v}, w_j]^{h_{j,v}} \equiv [x_{j,v}, w_j] \mod D(k+1)$. Therefore it is enough to prove the following:

Proposition 2. Let $k \geq 2$ and $d \in D(k)/D(k+1)$. There exist $x_{j,v} \in X_v$ for each $v \in \Delta_j(k)$ and $y \in W$ (with $y = 1$ unless $k = 3$ and Σ of type B_n') such that

$$d \equiv y \cdot \prod_{j=1}^4 \left(\prod_{v \in \Delta_j(k)} [x_{j,v}, w_j] \right) \mod D(k+1).$$

Given $v \in \Delta_j(k)$ let $r = r(j,v)$ be the unique root of height k such that $[X_v, w_j] = X_r \mod D(k+1)$. The group $D(k)/D(k+1)$ is abelian and product of the root subgroups X_r for $r \in D$ and $ht(v) = k$.

From Lemma (1) and our definitions of w_l it is easy to see that we only need to check that

(A) If not (*) then for each r in Δ of height k (with the exception of $r = e_1 + e_2$ in type B_n') there exist at least one $j \in \{1, \ldots, 4\}$ and $v \in \Delta_j(k)$ such that $r = r(j,v)$.

(B) If (*) holds then for each short root $r = e_k \in \Delta$ of height $k \geq 2$ there are long roots $v_3 \in \Delta_3(k), v_4 \in \Delta_4(k)$ such that $r = r(3, v_3) = r(4, v_4)$.

Now Part (B) is clear. In fact this is the reason why we introduced proper pairs and the elements w_3 and w_4 in the case when S has type $2D_n$.

Similarly part (A) is a matter of simple verification depending on the Lie type \mathcal{X} of S:

Case 1: $\mathcal{X} = D_n', r = e_i + e_l$, where $i < l$ and $(i,l) \neq (1,2)$. If $i > 1$ take $v = e_l - e_{i-1}$ and $j = 1$ if i is even, $j = 2$ if i is odd. In both cases we have that X_v commutes with all constituents of w_j except a_{i-1} and thus $[X_v, w_j] = [X_v, a_{i-1}] = X_r \mod D(k+1)$. Recall that a_{i-1} is a proper element in the root subgroup of $e_{i-1} + e_i$.

On the other hand, if $i = 1$ then $l > 2$. Take $j = 1, v = e_l - e_2$ and the argument is as above.

Case 2: $\mathcal{X} = B_n'$ or $2D_{n+1}'$ so its root system Σ has type B_n'. The only roots in Δ not covered in Case 1 or (B) are:
$$r = e_1 + e_2$$: this is the exception, we have introduced $W = X_r$ precisely for this root and simply choose the appropriate $y \in W$.

$$r = e_1, (n' \geq l \geq 2)$$ in type $X = B_{n'}$: Take $v = e_i - e_l - 1$, $j = 3$ and then we have $[X_v, b_{l-1}] = X_r \mod (k+1)$. Recall that b_{l-1} is a proper element of the root subgroup X_{l-1}, and $w_3 = b_1 b_2 \cdots b_{n'}$.

Case 3: $X = C_{n'}$ or $2A_{2n-1}$ so Σ has type $C_{n'}$. The roots $e_i + e_l ((i, l) \neq (1, 2))$ are dealt with in the same way as in Case 1. The remaining ones are:

$$r = e_1 + e_2$$: Take $j = 3$ and $v = e_2 - e_1$. Then v commutes with all b_i in $w_3 = b_1 \cdots b_{n'}$ except b_1: the proper element of X_{2e_2}. Thus $[X_v, w_j] = [X_v, b_1] = X_r \mod D(k+1)$.

$$r = 2e_l, (n' \geq l \geq 2)$$: In order to obtain long roots subgroups we need that if $X = C_{n'}$ then the characteristic of F is not 2 (as we have assumed from the start). Take $v = e_1 - e_{l-1}$ and choose $j, 1, 2$ such that a proper element a_{l-1} of root subgroup $e_1 - e_l$ is a constituent of w_j. (i.e. take $j = 1$ if l is even and $j = 2$ if l is odd.)

Case 4: $X = 2A_{2n}$, so Σ has type $BC_{n'}$. Then a combination of the reasoning from Cases 1, 2 and 3 gives the conclusion:

More precisely we obtain the root subgroups X_r for $r = e_i + e_l, (i, l) \neq (1, 2)$ as in Case 1. $X_{e_1 + e_2}$ is obtained from $j = 4$ and $v = e_2 - e_1$.

The root subgroups X_{e_l}, $(l \geq 2)$ are obtained (modulo $D(k+1) \geq Y_{2e_l}$) from $[X_{e_l - e_{l-1}}, w_3]$ for $j = 3$ and $v = e_l - e_{l-1}$ as in Case 2.

Finally the root subgroup Y_{2e_l} for $l \geq 2$ is obtained with $v = e_l - e_{l-1}$ and $j = 1$ ($j = 2$) if l is even (resp. odd) just as in Case 3.

4 Variations

First we shall consider the analogue of Theorem 11 when S has type A_n, $n \geq 3$:

Without loss of generality we may assume that $S = SL_{n+1}(F)$, acting on $V = F^{(n)}$ with standard basis (v_1, \ldots, v_{n+1}). For $1 \leq i \leq n + 1$ let V_i be the subspace of V spanned by all v_j with $j \neq i$ and define

$$S(i) = \{ g \in S \mid g \cdot v_i = v_i, \ g \cdot V_i = V_i \}$$

It is clear that all $S(i)$ are conjugate to each other and isomorphic to $SL_n(F)$.

Lemma 2.

$$S = S(3) \cdot S(2) \cdot S(1) \cdot S(2) \cdot S(3).$$

Proof This is well known. For completeness we sketch one argument.

Let $g \in S$. It is easy to see that $S(3)S(2) \cdot v_1 = V \setminus \{0\}$ and therefore there exist $a_2 \in S_2, a_3 \in S(3)$ such that $g \cdot v_1 = a_3 a_2 \cdot v_1$. Hence the matrix $g' := a_2^{-1} a_3^{-1} g$ has the transpose of $(1, 0, \ldots, 0)$ as its first column.

By right multiplication with the elementary matrices $1 + \lambda_j E_{1,j}$, with $2 \leq j \leq n + 1$ and appropriate $\lambda_j \in F$ we can make the first row of g' to be $(1, 0, \ldots, 0)$. As

$$\{1 + \lambda_j E_{1,j} \mid 2 \leq j \leq n + 1, \ \lambda_j \in F\} \subseteq S(3)S(2)$$
we conclude that there exist \(b_2 \in S(2), b_3 \in S(3) \) such that \(g' b_3 b_2 = g'' \in S(1) \). Therefore \(g = a_3 a_2 g'' b_2^{-1} b_3^{-1} \) as required □.

Some applications of Theorem 1 may need extra conditions on the subgroup \(S_1 \). For example in \([5]\) it is required that \(S_1 \) be invariant under the group \(\mathcal{D}\Phi\Gamma \) of diagonal-field-graph automorphisms of \(S \). The only exception to this is the case when \(S \) has type \(\chi = D_{n'} \), when \(S_1 \) is not preserved by the graph automorphism \(\tau \) of order 2. (Since \(\tau \) does not preserve the set \(\Pi_1 \) of fundamental roots). In this case we define

\[
\Pi := \Pi \setminus \{ r_0, r_0^* \} = \{ e_{i+1} - e_i \mid i = 2, 3, \ldots, n' - 1 \}
\]

and \(\mathfrak{S} := (X_\tau \mid r \in \pm \Pi) \).

The group \(\mathfrak{S} \) is a Levi factor of a parabolic of \(S_1 \) and is conjugate to the groups \(S(i) \) in Lemma 2 (defined for \(S_1 \) as an image of \(S = SL_{n_1+1}(F) \)). Then Lemma 3 and Theorem 1 imply the following

Corollary 1. \(S \) is a product of some \(5M < 1000 \) conjugates of \(\mathfrak{S} \).

References

[1] R. W. Carter. *Simple groups of Lie type.* John Wiley and Sons, 1972.

[2] D. Gorenstein, R. Lyons and R. Solomon, *The classification of the finite simple groups 3.* AMS Mathematical surveys and monographs 40, 1998.

[3] M. W. Liebeck and L. Pyber, Finite linear groups and bounded generation, *Duke Math. J.* 107 (2001), 159-171.

[4] M. W. Liebeck and A. Shalev, Diameters of finite simple groups: sharp bounds and applications, *Annals of Math.* 154 (2001), 383-406.

[5] N. Nikolov and D. Segal, On finitely generated profinite groups, II: products in quasisimple groups, *Annals of Math.*, to appear.

[6] J. Saxl and J. S. Wilson, A note on powers in simple groups. *Math. Proc. Camb. Phil. Soc.* 122 (1997), 91-94.

[7] J. S Wilson, On simple pseudofinite groups. *J. London Math. Soc. (2)* 51 (1995), 471–490.

Nikolay Nikolov
New College,
Oxford OX1 3BN,
UK.