The burden of end-stage kidney disease is increasing in the United States alongside a worsening shortage of organs for transplantation that is exacerbated by the suboptimal recovery and inappropriate discard of kidneys from deceased donors.1–3 Despite a stated goal of eliminating candidate location as a factor determining likelihood of transplantation, known geographic disparities in access to transplantation have persisted even under the new allocation system.4 The current kidney allocation system first offers deceased donor kidneys to eligible candidates within the donation service area (DSA) where they were recovered, followed by the Organ Procurement and Transplantation Network region, and then finally nationwide.5 Solid organ recovery success rates are variable, and a precise estimate of the number of potential organ donors within a DSA is difficult to ascertain. However, the number of deceased donors from whom at least 1 solid organ was recovered is available, and often 1 or both kidneys are not recovered from these donors (i.e., these are heart, lung, or liver donors from whom at least 1 kidney was not recovered). Thus, the aggregate number of kidneys from all solid organ donors represents a minimum estimate of the total number of deceased donor kidneys available for recovery in the United States from existing solid organ donors. We aimed to describe regional and DSA-level differences in deceased donor kidney recovery to assess whether improving deceased donor kidney recovery from existing solid organ donors and utilization rates could help mitigate geographic disparities in transplantation.

Using Scientific Registry of Transplant Recipients data, we identified all deceased donors with any solid organ recovered in the United States between January 1, 2015, and June 1, 2018, including donors who did not have their kidneys recovered. We excluded those without consent for kidney donation and those with a kidney recovered for reasons other than transplantation (e.g., for research) for a final cohort of 33,172 potential deceased kidney donors. Assuming 2 recoverable kidneys per solid organ donor, we calculated the proportion of kidneys that were actually recovered (“recovery rate”) as the number of kidneys recovered for transplantation as a fraction of the total number of kidneys in donors who had at least 1 organ recovered for transplantation. In addition, we calculated the proportion of recovered kidneys discarded without being transplanted (“discard rate”), and the Kidney Donor Profile Index (KDPI) (using a 2015 scaling factor) as a measure of organ quality.

We calculated the ratio of kidneys recovered to the number of adult (age ≥18 years) candidates added to the wait-list during the same study period within each DSA and region. We estimated how many additional kidneys could have been recovered and transplanted during this period from existing organ donors and the resulting ratio of kidneys to candidates if each region had performed at the same recovery and discard rates as the most efficient region (region 6) currently. We compared the proportion recovered, discarded, and KDPI across the 58 DSAs and 11 regions using \(\chi^2 \) and Kruskal-Wallis tests. Analyses were conducted in Stata 15.1 (StataCorp, College Station, TX) with 2-sided alpha of 0.05.

Nationwide, there were 126,011 incident kidney transplant candidates wait-listed and 33,172 deceased donors who donated at least 1 solid organ during our study period. The proportion of kidneys recovered,
discarded, and the organ quality (KDPI) of kidneys from these donors varied significantly across DSAs and regions (all \(P < 0.001 \)). Potential organ-per-candidate ratio varied widely across DSAs, ranging from 0.21 to 1.79 kidneys recovered per newly listed candidate (Figure 1). Only 5 DSAs (each of which was in a different Organ Procurement and Transplantation Network region) had more kidneys recovered than candidates added to the wait-list. There was considerable variation in organ-per-candidate ratio between DSAs within the same regions, highlighted by region 5 containing the DSA with the highest ratio of kidneys recovered per candidate (1.79) and the second lowest (0.28). There was also wide variation in the proportion of kidneys discarded: the DSA with the lowest discard rate of recovered kidneys (10.5%) was in region 5, whereas the highest (31.3%) was in Region 2.

At the regional level, both the proportion of kidneys recovered and the number of kidneys recovered per new candidate were highest in region 6 (95.7%, 0.69 kidneys/candidate) and lowest in region 9 (88.1%, 0.29) (Table 1). Donors after cardiac death accounted for 18% of deceased donors overall, ranging from 11% in region 3 to 26% in region 6. Region 6 also had the highest donor quality (lowest KDPI) (median KDPI 42%, interquartile range 21%–68%) and the lowest discard of recovered kidneys (13.3%). If the other 10 Organ Procurement and Transplantation Network regions in the country were able to replicate the recovery and utilization patterns of region 6, there would have been 2430 additional kidneys recovered (711 annually) nationwide, but large disparities in organ-per-candidate ratio across regions would persist (range: 0.31–0.69 kidneys/candidate). In addition, the proportion of all wait-listed kidney transplant candidates who eventually received a living donor transplant varied from 8% (regions 3, 5, 11) to 16% (region 7).

The significant differences in deceased donor kidney organ-per-candidate ratio that we identified both between DSAs within the same region as well as between Organ Procurement and Transplantation Network regions highlight large supply-demand mismatches entrenched by the currently defined allocation boundaries that contribute to geographic disparities in access to transplantation in violation of the Organ Procurement and Transplantation Network final rule. We found variations in recovery practice and a potential opportunity for increasing the pool of transplantable kidneys by recovering kidneys from consented deceased donors who are donating other solid organs. However, it should be noted that even if all the regions were similarly effective at organ recovery and placement, geographic variations in organ supply relative to wait-listed candidates would persist, underscoring the need for additional measures to eliminate the current variations in access to transplantation across the country. Current geographic boundaries for organ allocation sequences do not account for the large geographic variation in the incidence of end-stage disease.

Figure 1. Ratio of deceased donor kidneys recovered per candidate added to the wait-list, by donation service area (DSA; 2015–2018). The organ-per-candidate ratio varied from 0.21 to 1.79 kidneys recovered per new candidate. Only 5 of 58 DSAs had more kidneys recovered than candidates added to the wait-list. Alaska and Hawaii are in region 8; Puerto Rico is in region 3. Data source: Scientific Registry of Transplant Recipients standard analytic file, June 2018. Map created in ArcGIS ArcMap, version 10.6.
Table 1. Comparing deceased donor kidney recovery, utilization, and quality across OPTN regions, 2015–2018

OPTN region	All	1	2	3	4	5	6	7	8	9	10	11
Candidates, n (row%)	126,011	5207	17,096	17,665	13,479	21,858	3619	10,299	6769	8886	8984	12,149
Solid organ donors, n (row%)	33,172	1197	4164	5180	3555	5028	1305	2605	2350	1440	2888	3460
Kidneys recovered (%)	92.0	93.2	91.4	88.5	91.3	94.8	95.7	92.9	92.7	88.1	92.0	93.8
Range of DSA recovery rates	83.8–98.0	92.9–94.7	89.7–94.1	83.8–93.8	88.5–95.6	91.4–96.2	86.9–96.8	85.0–96.0	88.1–94.5	92.3–95.3		
Proportion discarded (%)	19.5	18.0	23.3	18.5	18.2	19.8	13.3	21.6	16.3	18.2	20.7	20.0
KDPI, median (IQR)	54 (28–79)	52 (30–75)	57 (33–83)	51 (31–82)	55 (24–78)	58 (21–68)	57 (31–82)	48 (24–74)	50 (27–75)	52 (28–78)		
DCD donors (% of all donors)	18	24	17	11	18	17	26	23	21	22	20	14
Ratio of recovered kidneys/candidates	0.48	0.43	0.45	0.52	0.48	0.44	0.69	0.47	0.64	0.29	0.59	0.53
Candidates receiving a living donor transplant, n (col%)	13,322	730	1772	1342	1359	1802	371	1597	785	1314	1277	973
Assuming benchmark performance:												
Recovered kidneys/candidates	0.50	0.44	0.47	0.56	0.50	0.44	0.69	0.48	0.66	0.31	0.62	0.55
Additional kidneys recovered	2430	61	358	752	313	89	0	146	141	219	217	134
Additional kidneys transplanted	2106	53	310	651	271	77	0	127	123	190	188	116

DCD, donor after cardiac death; DSA, donation service area; IQR, interquartile range; KDPI, Kidney Donor Profile Index; OPTN, Organ Procurement and Transplantation Network.

KDPI was calculated for each potential donor as described by the OPTN using the 2015 mapping table. KDPI ranges from 0 to 100%, with higher KDPI indicating lower donor quality.

Assuming benchmark performance simulates the ratio of recovered kidneys to candidates and the number of additional kidneys recovered and transplanted if all regions had performed at the level of the most efficient region (region 6, recovery rate: 95.71%, discard rate: 13.33%) during the 3.42-year study period.
deceased donor kidney transplantation. Although there is geographic heterogeneity in organ recovery and utilization rates, geographic disparities in access to organs for transplantation would persist because of the current allocation system borders even if practice variation was reduced. Allocation proposals eliminating the current arbitrary DSA and regional boundaries (i.e., a “borderless allocation system”) are being considered, and our findings suggest that updating or eliminating allocation boundaries may improve equity in access to deceased donor kidney transplantation among wait-listed candidates in the United States.

DISCLOSURE

All the authors declared no competing interests.

ACKNOWLEDGMENTS

This study used data from the Scientific Registry of Transplant Recipients (SRTR). The SRTR data system includes data on all donor, wait-listed candidates, and transplant recipients in the United States, submitted by the members of the Organ Procurement and Transplantation Network. The Health Resources and Services Administration, US Department of Health and Human Services, provides oversight to the activities of the Organ Procurement and Transplantation Network and SRTR contractors. The data reported here were supplied by the Hennepin Healthcare Research Institute as the contractor for SRTR. The interpretation and reporting of these data are the responsibility of the author(s) and in no way should be seen as an official policy of or interpretation by the SRTR or the US government.

This work was supported by a Young Investigator Grant from the National Kidney Foundation, United States (to SAH). SAH is also supported by the National Center for Advancing Translational Sciences, United States (KL2 TR001874). SM is supported by the National Institutes of Health/National Institute of Diabetes and Digestive and Kidney Diseases, United States (R01 DK114893 and U01 DK116066).

AUTHOR CONTRIBUTIONS

Study design: KLK, SAH, SM; data analysis: KLK; data interpretation: KLK, SAH, SM; supervision and mentorship: SM. Each author contributed important intellectual content during manuscript drafting or revision and accepts accountability for the overall work by ensuring that questions pertaining to the accuracy or integrity of any portion of the work are appropriately investigated and resolved.

REFERENCES

1. Mohan S, Chiles MC, Patzer RE, et al. Factors leading to the discard of deceased donor kidneys in the United States. Kidney Int. 2018;94:187–198.
2. Mohan S, Foley K, Chiles MC, et al. The weekend effect alters the procurement and discard rates of deceased donor kidneys in the United States. Kidney Int. 2016;90:157–163.
3. Husain SA, Chiles MC, Lee S, et al. Characteristics and performance of unilateral kidney transplants from deceased donors. Clin J Am Soc Nephrol. 2018;13:118–127.
4. Zhou S, Massie AB, Luo X, et al. Geographic disparity in kidney transplantation under KAS. Am J Transplant. 2018;18:1415–1423.
5. Organ Procurement and Transplantation Network. Policy 8: allocation of kidneys. Available at: https://optn.transplant.hrsa.gov/media/1200/optn_policies.pdf. Accessed October 18, 2018.
6. Organ Procurement and Transplantation Network—HRSA. Final rule with comment period. Fed Regist. 1998;63:16296–16338.
7. Saran R, Robinson B, Abbott KC, et al. US Renal Data System 2018 Annual Data Report: epidemiology of kidney disease in the United States. Chapter 1: incidence, prevalence, patient characteristics, and treatment modalities. Am J Kidney Dis. 2018;73:S291–S332.
8. Goldberg DS, French B, Abt PL, et al. Increasing the number of organ transplants in the United States by optimizing donor authorization rates. Am J Transplant. 2015;15:2117–2125.
9. Snyder JJ, Salkowski N, Wey A, et al. Organ distribution without geographic boundaries: a possible framework for organ allocation. Am J Transplant. 2018;18:2635–2640.

Implementing the Kidney Health Initiative Surrogate Efficacy Endpoint in Patients With IgA Nephropathy (the PROTECT Trial)

Jonathan Barratt1, Brad Rovin2, Ulysses Diva3, Alex Mercer4 and Radko Komers5; on behalf of the PROTECT Study Design Group

1Department of Cardiovascular Sciences, University of Leicester and Leicester General Hospital, Leicester, UK; 2Department of Medicine, Ohio State University Wexner Medical Center, Columbus, Ohio, USA; 3Biometrics, Retrophin, Inc., San Diego, California, USA; 4Clinical Drug Development, JAMCO Pharma Consulting AB, Stockholm, Sweden; and 5Nephrology, Retrophin, Inc., San Diego, California, USA