Psychometric Properties of the Chinese Version of the Personality Inventory for DSM-5 Brief Form in Undergraduate Students and Clinical Patients

Panwen Zhang
Second Xiangya Hospital

Zirong Ouyang
hunan biological and electromechanical polytechnic

Shulin Fang
Second Xiangya Hospital

Jiayue He
Second Xiangya Hospital

Lejia Fan
Second Xiangya Hospital

Xingwei Luo
Second Xiangya Hospital

Jianghua Zhang
Central South University

Yan Xiong
Central South University

Fusheng Luo
Central South University

Xiaosheng Wang
Central South University Xiangya School of Medicine

Shuqiao Yao
Second Xiangya Hospital

Xiang Wang (wangxiang0916@csu.edu.cn)
Medical Psychological Center, the Second Xiangya Hospital, Central South University https://orcid.org/0000-0001-9258-2017

Research article

Keywords: Personality Inventory for DSM-5-Brief Form (PID-5-BF), Factor Structure, Reliability, Validity, Measurement invariance, Personality diagnostic questionnaire-4+ (PDQ-4+)

DOI: https://doi.org/10.21203/rs.3.rs-45917/v1
Abstract

Background: The Personality Inventory for DSM-5 Brief Form (PID-5-BF) is a 25-item measuring tool evaluating maladaptive personality traits for diagnosis of personality disorders (PDs). As a promising scale, its impressive psychometric properties have been verified in some countries, however, there has been no study about the utility of PID-5-BF in Chinese settings. The current study aimed to examine cultural applicability of the Chinese version of PID-5-BF among undergraduate students and clinical patients.

Methods: 7155 undergraduate students and 302 clinical patients completed the Chinese version of PID-5-BF. 228 students were chosen randomly for test-retest reliability at a 4-week interval. Exploratory factor analysis (EFA) and confirmatory factor analysis (CFA) were conducted to discover the most suitable construct in Chinese, measurement invariance (MI), internal consistency and external validity were also calculated.

Results: An exploratory six-factor model was supported more suitable in both samples (Undergraduate sample: CFI = 0.905, TLI = 0.888, RMSEA = 0.044, SRMR = 0.039; Clinical sample: CFI = 0.904, TLI = 0.886, RMSEA = 0.044, SRMR = 0.063), adding a new factor "Interpersonal Relationships". Measurement invariance across non-clinical and clinical sample was established (configural, weak, strong MI, and partial strict MI). Aside from acceptable internal consistency (Undergraduate sample: alpha=0.84, MIC=0.21; Clinical sample: alpha=0.82, MIC=0.16) and test-retest reliability (0.73), the association with 220-item PID-5 was significant (r = 0.93, p < 0.01), and six PDs measured by Personality diagnostic questionnaire-4+ (PDQ-4+) was correlated with expected domains of PID-5-BF.

Conclusions: The Chinese version of the PID-5-BF showed satisfactory psychometric properties, which is a convenient and useful screening tool for personality disorders.

Background

- Personality disorders (PDs) are common psychiatric conditions that are disruptive to everyday functioning. Because PDs are often misdiagnosed or missed entirely, reliable and valid clinical diagnostic tools for PDs are needed [1]. In light of the numerous weaknesses of the traditional PD taxonomic diagnostic system, including a high comorbidity rate, arbitrary cutoff scores, and substantial heterogeneity within PDs in Section III of the DSM-5 [2], the APA (2013) proposed an Alternative Model of Personality Disorder (AMPD) diagnosis, wherein 25 maladaptive personality trait facets are organized into five domains (Criterion B) after measuring personality functioning (Criterion A) [3]. The AMPD provides theoretical trait domains across six specified PDs, thus converting PD diagnosis from a categorical to a dimensional scheme.

The Personality Inventory for DSM-5 (PID-5) is a 220-item self-report measurement that was developed specifically to evaluate hierarchically organized personality traits in accordance with the AMPD. The reliability and validity of the PID-5 have been confirmed in multiple studies, which have yielded internal consistency values above 0.8 for most domains [4–7]. The five broad domains affirmed in prior studies [8, 9] have been described as comparable to maladaptive variants of the Big-Five Model [10], which would be expected given that the development of the associated dimensional model of personality pathology was informed by the normal personality taxonomy [11]. Although the PID-5 has satisfactory psychometric properties, its utility is limited due to its having a large number of items, and thus its taking substantial time to complete [12]. With the aim of
screening for PDs quickly and accurately, the PID-5 Brief Form (PID-5-BF) was developed by extracting core items from the five domains (Negative Affect, Detachment, Antagonism, Disinhibition, and Psychoticism) of the PID-5 [13]. Correlation coefficients between the five PID-5-BF domains and the original PID-5 domains have been reported to be very good, with Bach et al. (2016) reporting a mean correlation coefficient value of 0.90[14], and Debast et al. (2017) reporting correlation coefficients in the range of 0.81–0.87[15].

PID-5-BF results provide an overall assessment of degree of personality maladjustment and point to potential PDs [16]. The PID-5-BF has been shown to be reliable and valid in a number of countries in Europe [14–18], North America [19–21], and Asia [22]. In all but two cases, internal consistency coefficients above 0.8 were obtained; internal consistency coefficients for Belgium [15] and Denmark [14] were between 0.66 and 0.87. The PID-5-BF has been shown to have satisfactory discriminant validity (effect size of mean domain level = 0.46, p < .05) between individuals with and without PDs [14]. In terms of criterion validity, each PD measured by Personality Diagnostic Questionnaire-4(PDQ-4) was associated with and predicted by theoretical PID-5-BF domains. Regarding internalizing and externalizing criteria, the PID-5-BF Negative Affect domain subscore is a robust predictor of Inventory for Depression and Anxiety Symptoms-2 scores. Meanwhile, the PID-5-BF Disinhibition and Antagonism domain subscores are specifically predictive of Externalizing Spectrum Inventory scale scores. Somewhat unexpectedly, PID-5-BF Psychoticism domain subscores were found to be significantly predictive of scores for the aforementioned three scales [20]. PID-5-BF domain subscores and total scores correlated significantly with Personality Assessment Screener scores [21].

Although the PID-5 domains have been understood as putative maladaptive variants of Big-Five Model dimensions, the appropriateness of the Big-Five Model differs across cultures. For example, a six-factor model has been shown to be more suitable than a five-factor model in Chinese populations, while still fitting data from multiracial samples across Asia, Europe, and North America [23–25]. The sixth factor has been suggested to reflect “Interpersonal Relatedness”, which encompasses the traditional Chinese concepts of relationship orientation (Ren Qing; i.e. reciprocity of favors, affections, etc.), Harmony (e.g. lack of conflict, balance), and Face (as in “saving face” or reputation). A seven-factor model was also proposed [26] and confirmed in a sample of Chinese undergraduate students [27]. The Big-Five Model was found to have a poor fit with an Indian sample [28]. Similarly, the five-factor model of the PID-5-BF did not achieve an adequate fit in a study of Filipino college students [22]. In consideration of cultural dissociations of personality constructs, it is also of interest to note that the replicability of the Openness domain of the NEO Personality Inventory was also found to be poor in Asian countries in a cross-cultural study that included 24 cultures [29].

Given that five-factor models of the PID-5-BF have been supported principally in studies with Western samples, it is likely that cultural differences may underlie differing factor structure findings in the literature. Accordingly, the most suitable factor structure of the PID-5-BF in Chinese respondents remains to be clarified. Measurement invariance (MI) studies of the PID-5-BF should be conducted to determine whether factor structure differs between populations constituted by individuals of different cultures [30, 31]. Although MI of the PID-5 has been examined across cultures, sexes, and across clinical and nonclinical samples [32–34], the MI of the PID-5-BF is unknown.

The current study was the first to examine the psychometric properties of the Chinese version of PID-5-BF. The aims of this study were threefold. First, we set out to determine the most suitable factor structure of the PID-5-BF in a Chinese population sample. Second, we assessed MI of the Chinese PID-5-BF across normal students and
clinical patient samples, which is important for generalization of the PID-5-BF in both research and clinical settings. Third, to investigate criterion-related validity, we analyzed how well PID-5-BF scores correlate with scores obtained on the 220-item PID-5 and PDQ-4+.

Methods

Participants

The normal sample consisted of 7,985 university students recruited from two Chinese universities in Hunan Province. After omitting subjects with missing data values, we retained a final normal sample of 7,155 subjects (3,713 male, 51.9%; and 3,436 female, 48.0%) with a mean age of 18.26 [standard deviation (SD), 1.33; range 17–23] years.

The clinical sample included 302 outpatients (155 men, 51.3%; and 147 women, 48.7%), with a mean age of 20.67 (SD, 6.02; range, 16–50) years, who had been referred to the psychological clinic in hospital for assessment and treatment. Each patient was diagnosed based on the Structured Clinical Interview for DSM-IV system by two experienced psychiatrists (WX, LXW). The distribution of diagnoses in the clinical sample were as follows: PD, 61.9%; major depressive disorder, 16.6%; anxiety disorder, 6.3%; bipolar disorder, 6.0%; obsessive-compulsive disorder, 4.6%; schizophrenia, 3.3%; and other mental disorders, 1.3%.

All study procedures were approved by the Ethics Committee. All participants signed an informed consent.

Instruments

Chinese PID-5 and PID-5-BF

The full-length PID-5 [35] is a 220-item self-report scale developed in the USA to index 25 lower-order trait facets (Cronbach’s α, 0.72–0.96) organized into five higher-order trait domains of personality pathology (Cronbach’s α, 0.84–0.96) [35]. We invited two psychologists to translate the PID-5 scale from American English into Chinese; and then it was translated back into English by a bilingual teacher, with repeated revisions to ensure translation accuracy. The PID-5-BF [36] was developed by extracting 25 items from the original PID-5, representing 21 of the 25 trait facets (facets not included: Restricted Affectivity, Rigid Perfectionism, Submissiveness, and Suspiciousness). Items are rated on a 0–3 Likert-type scale, with higher scores representing greater dysfunction. Each of the five higher-order domains is represented by five items (Negative Affect: Items 8, 9, 10, 11, and 15; Detachment: Items 4, 13, 14, 16, and 18; Antagonism: Items 17, 19, 20, 22, and 25; Disinhibition: Items 1, 2, 3, 5, and 6; and Psychoticism: Items 7, 12, 21, 23, and 24).

PDQ-4+

The PDQ-4+ [37] is a self-report PD assessment scale based on the DSM-4. Items are answered as “yes” (scored as 1) or “no” (scored as 0). The Chinese version of the PDQ-4+ [38] used in the current study contains 107 items constituting 12 PD-type subscales. The PDQ-4+ has been used reliably in PD studies in China [39, 40], with Cronbach’s α values ranging from 0.49 (Passive-Aggressive) to 0.72 (Depressive).

Model testing procedures
In the normal sample, 3,985 students finished the 220-item PID-5, and 7,155 students completed the PID-5-BF and PDQ-4+. For the clinical sample, we obtained 302 valid PID-5-BF, 224 valid PID-5, and 231 valid PDQ-4+ questionnaires. For evaluation of test-retest reliability, 228 normal sample participants (93 male, 135 female) were chosen randomly for a PID-5-BF re-test taken 4 weeks after the initial test. Construct validity of the Chinese PID-5-BF was assessed with exploratory factor analysis (EFA) and confirmatory factor analysis (CFA) after randomly (roughly) halving the normal sample randomly into an EFA subsample (N = 3,633) and a CFA subsample (N = 3,522). CFA was conducted to test the theoretical model suggested to be the best fitting model in the EFA.

MI tests across population included four nested models. Model 1 (configural invariance) tested the factor structure of latent variables across our two population samples with all parameters freely estimated. Model 2 (weak invariance) was based on the configural results with factor loadings equalized across groups. Next, Model 3 (strong invariance) had consistency of variable intercepts; achieving this model indicates that latent factor scores have the same meaning across groups, and thus that group comparisons are tenable. Model 4 (strict invariance) requires equalized error variance on the basis of the previous three models [41], which is rarely achieved [42].

Data analysis

Data analysis was performed in IBM SPSS Statistics 23.0 and Mplus 7.4. To examine construct validity, we first conducted EFA to identify the most suitable factor model of the PID-5-BF. Oblique rotation was used to allow correlation among factors. Each item with a factor loading ≥ 0.3 was accepted as a factor component [43]. For EFA and CFA, model fit indices applied included the comparative fit index (CFI), the Tucker-Lewis index (TLI), the standard root mean square residual (SRMR), and the root mean square error of approximation (RMSEA) with a 90% confidence interval (CI). Acceptable fit values were: $\text{CFI} \geq 0.90$, $\text{TLI} \geq 0.90$, $\text{SRMR} \leq 0.08$, and $\text{RMSEA} \leq 0.08$ [44]. Model modifications were made on the basis of item correlations and MI index values.

MI was estimated based on three indices, namely ΔCFI, ΔTLI, and ΔRMSEA, wherein Δ represents the difference between two adjacent models. Invariance was verified when ΔCFI and ΔTLI were ≤ 0.01 and ΔRMSEA was < 0.015 [45]. In cases where these criteria were not met, the largest-value modification indices were selected to determine the parameters of which item(s) should be released to be free across groups iteratively until the ΔCFI was ≤ 0.01, demonstrating potential partial invariance [32].

Internal consistency was determined by calculating Cronbach’s α and mean inter-item correlation (MIC) values. Cronbach’s $\alpha > 0.8$ and > 0.9 signified acceptable and good reliability, respectively; a MIC > 0.15 was considered acceptable [46]. Test-retest reliability was estimated by calculating a Pearson’s correlation coefficient (r). To examine criterion validity, Pearson’s r index values were also calculated between the PID-5-BF and the original PID-5, as well as between the PID-5-BF and the PDQ-4+ (representing the six DSM-4 PDs retained in DSM-5, Section III). Pearson r values > 0.30 and > 0.50 indicated medium and large effect sizes, respectively[47].

Results

Descriptive statistics
The mean (SD) PID-5-BF total score obtained for the full university student sample (N = 7,155) was 16.4 (8.20), with females having a significantly greater (t = -6.80, p < 0.01) mean score, at 17.10 (7.96), than males, at 15.79 (8.32). The mean (SD) PID-5-BF total score obtained for the clinical sample (N = 302) was 30.34 (9.78), with females again showing a significantly greater (t = -3.99, p < 0.01) mean score, at 32.59 (9.86), than males, at 28.21 (9.24). The mean obtained for the clinical sample was significantly greater (t = 28.73, p < 0.01) than that obtained for undergraduate student sample. The mean (SD) PID-5-BF total score obtained for the subsample used in the EFA, at 16.29 (8.24)(N = 3,633), was statistically similar (t = -1.34, p = 0.18) to that obtained for the subsample used in the CFA, at 16.55 (8.11)(N = 3,522).

EFA and CFA

EFA supported an exploratory five-factor model and an exploratory six-factor model. The factor designations of the items are compared across these two exploratory models and Krueger et al.’s (2013) previously reported five-factor model [36] in Table 1. In our exploratory five-factor model, five items (8, 9, 11, 15, and 20) did not load into any factor; item 10 was the only item to reach a 0.3 loading weight in the Negative Affect domain, and it loaded with item 19, which had belonged to the Antagonism factor in the previously published model. Our exploratory six-factor model had higher fit indices (CFI = 0.969, TLI = 0.944) than the exploratory five-factor model (CFI = 0.952, TLI = 0.922), with fewer items failing to load on any factor (items 8 and 11). A new factor named Interpersonal Relationships was added to the original five factors. The factor loadings of each item in the exploratory six-factor model are reported in Table 2.

Table 1

Model	Items associated with each factor, F1–6					
	F1	F2	F3	F4	F5	F6
Theoretical five-factor	8, 9, 10, 11, 15	4, 13, 14, 16, 18	17, 19, 20, 22, 25	1, 2, 3, 5, 6	7, 12, 21, 23, 24	–
Exploratory five-factor	–	4, 13, 14, 16, 18	17, 22, 25	1, 2, 3, 5, 6	7, 12, 21, 23, 24	10, 19
Exploratory six-factor	9, 15	4, 13, 14, 16, 18	17, 20, 22, 25	1, 2, 3, 5, 6	7, 12, 21, 23, 24	10, 19
Table 2
Factor loading for the exploratory six-factor model (N = 3,633).

Item	Factor					
	NA	IR	De	An	Ps	Di
9. I get emotional easily, often for very little reason.	0.70	0.05	0.00	-0.07	0.12	0.02
15. I get irritated easily by all sorts of things.	0.50	0.00	0.23	0.10	-0.03	0.02
10. I fear being alone in life more than anything else.	0.01	0.61	-0.02	-0.01	-0.02	0.02
19. I crave attention.	0.06	0.47	-0.11	0.09	0.01	-0.00
4. I often feel like nothing I do really matters.	-0.05	0.06	0.44	0.01	0.01	0.17
13. I steer clear of romantic relationships.	0.04	-0.11	0.36	-0.10	0.21	-0.01
14. I'm not interested in making friends.	0.06	-0.12	0.58	0.07	0.01	0.00
16. I don't like to get too close to people.	0.04	-0.08	0.43	0.03	0.21	-0.10
18. I rarely get enthusiastic about anything.	-0.02	0.03	0.59	-0.01	0.12	0.02
17. It's no big deal if I hurt other peoples' feelings.	0.04	0.01	0.28	0.43	-0.12	0.07
20. I often have to deal with people who are less important than me.	0.08	0.14	0.06	0.30	0.23	-0.06
22. I use people to get what I want.	0.01	0.02	0.05	0.61	0.03	0.10
25. It is easy for me to take advantage of others.	-0.05	0.00	-0.02	0.65	0.22	-0.02
7. My thoughts often don't make sense to others.	0.04	-0.06	0.07	0.01	0.45	0.17
12. I have seen things that weren't really there.	0.00	0.00	0.06	0.16	0.42	-0.01
21. I often have thoughts that make sense to me but that other people say are strange.	-0.02	-0.05	-0.08	0.14	0.61	0.08
23. I often “zone out” and then suddenly come to and realize that a lot of time has passed.	0.04	0.14	0.03	-0.14	0.52	0.10
24. Things around me often feel unreal, or more real than usual.	-0.00	0.10	0.05	0.02	0.63	-0.03
1. People would describe me as reckless.	0.15	-0.05	-0.15	0.06	-0.03	0.55
2. I feel like I act totally on impulse.	0.15	-0.01	-0.01	0.01	0.02	0.56
3. Even though I know better, I can't stop making rash decisions.	0.07	0.07	0.05	-0.01	0.20	0.37
5. Others see me as irresponsible.	-0.02	-0.00	0.23	0.07	0.07	0.35
6. I'm not good at planning ahead.	-0.07	0.12	0.17	-0.14	0.00	0.46

Note. NA, Negative Affect; IR, Interpersonal Relationships; De, Detachment; An, Antagonism; Ps, Psychoticism; Di, Disinhibition.

Bold represents the largest factor loading in each item as well as > 0.30.
We chose to pursue analysis of our exploratory six-factor model because it had better model fit indices and fewer items that failed to load than our exploratory five-factor model and because of the significant differences in the Negative Affect domain between our exploratory five-factor model and the theoretical five-factor model. As shown in Table 3, we obtained significantly greater fit indices for our exploratory six-factor model than for the theoretical five-factor model in both our undergraduate student sample and clinical sample.

Table 3
Goodness of fit index values for the compared models.

Model	CFI	TLI	SRMR	RMSEA	RMSEA 90%CI
					LO90/HI90
Normal sample (N = 3,522)					
TFF	0.887	0.872	0.044	0.046	0.044/0.048
ESF	0.905	0.888	0.039	0.044	0.042/0.046
Clinical sample (N = 302)					
TFF	0.856	0.835	0.069	0.051	0.044/0.059
ESF	0.904	0.886	0.063	0.044	0.035/0.053

Note. TFF, theoretical five-factor model; ESF, exploratory six-factor model; CFI, comparative fit index, TLI, Tucker-Lewis index; SRMR, standard root mean square residual; RMSEA, root-mean-square error of approximation; LO90/HI90, lower/upper 90% confidence interval of the RMSEA.

MI across populations

As shown in Table 4, we established configural, weak, and strong MI across the normal and clinical samples. However, the acceptable index criteria were not met for strict MI. We allowed the residual variances of items with the largest modification indices to be freely estimated until the ΔCFI of the last model was ≤ 0.01. Parameter constraints of items 14, 4, 12, 20, 7, 15, 5, and 17 were released in this process. Subsequently, partial strict MI of our modified six-factor model was supported. Hence, ultimately, our modified six-factor PID-5-BF model achieved configural MI, weak MI, strong MI, and partial strict MI across our normal and clinical samples.
Table 4
Fit indexes of the PID-5-BF for MI across population.

Model	S-Bx²	df	CFI	TLI	RMSEA	△CFI	△TLI	BIC	△RMSEA
Configural	3009.959*	422	0.922	0.906	0.041	—	—	315239.578	—
Weak	3155.812*	439	0.918	0.905	0.041	-0.004	-0.001	315240.430	—
Strong	3312.823*	456	0.913	0.904	0.041	-0.005	-0.001	315250.396	—
Strict	4749.951*	479	0.871	0.863	0.049	-0.042	-0.041	316642.436	0.009
Part.Strict	3651.302*	471	0.904	0.897	0.043	-0.009	-0.007	315478.165	0.002

Note. Part.Strict, partial strict invariance by releasing the residuals of items with largest modification indices; the S-Bx² = Satorra-Bentler scaled χ²; df, degrees of freedom; TLI, Tucker-Lewis index; CFI, comparative fit index; RMSEA, root-mean-square error of approximation; BIC, Bayesian information criterion.

Reliability

In the normal sample, we obtained a Cronbach’s α of 0.84, a MIC of 0.21 for the PID-5-BF total scale, and domain MICs in the range of 0.29–0.46. Domain subscores correlated significantly with total scores (r = 0.38–0.80, all p < 0.01). With respect to test-retest reliability over a 4-week interval, we obtained a Pearson correlation coefficient of 0.73 for the total scale, with domain correlation coefficients in the range of 0.50–0.67.

For the clinical sample, we obtained a Cronbach’s α of 0.82, a MIC of 0.16 for the total scale, and domain MICs in the range of 0.21–0.53. Similar to our results with the normal sample, we observed significant correlations between the domain subscores and the PID-5-BF total score (r = 0.15–0.73).

Criterion validity

PID-5-BF total scores correlated with scores obtained for the original 220-item PID-5 in our normal population participants (N = 3985, r = 0.93, p < 0.01). Correlation coefficients for each domain were in the range of 0.64–0.86 in the undergraduate student normal sample and in the range of 0.62–0.91 in the clinical patient sample. As shown in Table 5, the Interpersonal Relationships domain showed the greatest correlation coefficient with the Negative Affect domain in both samples. Finally, as shown in Table 6, PID-5-BF domain scores correlated significantly with the six PD dimensions in Section III of the DSM-5 (schizotypal, antisocial, borderline, narcissistic, avoidant, and obsessive-compulsive).
Table 5
Correlations between the PID-5-BF and full-length PID-5.

PID-5-BF domains	220-item PID-5 domains					
	NA	De	An	Ps	Di	TS
Normal sample (N = 3,985)						
NA	0.64**	0.35**	0.33**	0.40**	0.52**	0.58**
IR	0.58**	0.03	0.32**	0.26**	0.28**	0.40**
De	0.37**	0.86**	0.30**	0.47**	0.43**	0.62**
An	0.37**	0.40**	0.75**	0.53**	0.43**	0.65**
Ps	0.57**	0.49**	0.46**	0.85**	0.54**	0.77**
Di	0.47**	0.32**	0.27**	0.40**	0.82**	0.57**
TS	0.75**	0.67**	0.60**	0.77**	0.79**	0.93**
Clinical sample (N = 224)						
NA	0.62**	0.23**	0.11**	0.23**	0.46**	0.49**
IR	0.56**	-0.15**	0.27**	0.16**	0.18**	0.26**
De	0.26**	0.91**	0.08**	0.35**	0.44**	0.59**
An	0.16**	0.32**	0.72**	0.27**	0.21**	0.49**
Ps	0.48**	0.42**	0.32**	0.88**	0.49**	0.76**
Di	0.44**	0.31**	0.12**	0.40**	0.83**	0.59**
TS	0.68**	0.68**	0.42**	0.71**	0.76**	0.93**

Note. NA, Negative Affect; IR, Interpersonal Relationships; De, Detachment; An, Antagonism; Ps, Psychoticism; Di=, Disinhibition; TS, Total Score. Bold presents the highest correlation coefficient in each row.

**Correlation is significant at the 0.01 level (2-tailed).
Table 6
Correlations between PID-5-BF domains and the six DSM-4 PDs retained in Section III of the DSM-5 and measured by PDQ-4+.

PID-5-BF domains	DSM-4 PDs in Section III of the DSM-5					
	STPD	ASPD	BPD	NPD	AVPD	OCPD
Normal sample (N = 7,155)						
TS	0.35**	0.28**	0.53**	0.39**	0.48**	0.35**
NA	0.20**	0.18**	0.43**	0.27**	0.33**	0.25**
IR	0.13**	0.12**	0.23**	0.29**	0.26**	0.19**
De	0.24**	0.05**	0.31**	0.17**	0.36**	0.24**
An	0.29**	0.26**	0.27**	0.33**	0.23**	0.21**
Ps	0.39**	0.22**	0.44**	0.34**	0.37**	0.33**
Di	0.13**	0.28**	0.40**	0.22**	0.32**	0.16**
Clinical sample (N = 231)						
TS	0.44**	0.40**	0.66**	0.28**	0.43**	0.21**
NA	0.24**	0.19**	0.43**	0.14**	0.35**	0.21**
IR	0.11**	0.06**	0.25**	0.30**	0.24**	0.13**
De	0.22**	0.10**	0.43**	0.02**	0.31**	0.12**
An	0.23**	0.36**	0.23**	0.32**	0.07**	0.06**
Ps	0.46**	0.30**	0.49**	0.24**	0.22**	0.23**
Di	0.20**	0.41**	0.46**	0.12**	0.34**	-0.00**

Note. NA, Negative Affect; IR, Interpersonal Relationships; De, Detachment; An, Antagonism; Ps, Psychoticism; Di, Disinhibition; TS, Total Score; STPD, schizotypal personality disorder; ASPD, antisocial personality disorder; BPD, borderline personality disorder; NPD, narcissistic personality disorder; AVPD, avoidant personality disorder; OCPD, obsessive-compulsive personality disorder.

Bold means suggested domains of each personality disorder in DSM-5;

**Correlation is significant at the 0.01 level (2-tailed)

Discussion

Contrary to most previous studies of the PID-5-BF in other countries, in this study, we found that a six-factor model was more suitable than the theoretical five-factor model for the PID-5-BF in our Chinese sample. Following modifications, our six-factor PID-5-BF model achieved configural MI, weak MI, strong MI, and partial strict MI across our normal and clinical samples. In agreement with prior studies [14, 20], we found that the PID-5-BF was highly correlated with the original 220-item PID-5 and the domains generally correlated with the six PDs retained in Section III of the DSM-5. We obtained acceptable Cronbach's α and MIC values for the PID-5-BF.
[46], revealing a good internal consistency of PID-5-BF, similar to prior studies [16, 17, 20]. Furthermore, our finding of good test-retest reliability over a 4-week interval is in agreement with prior work showing similarly good test-retest reliability of the PID-5-BF over a 2-week interval in a sample of high school students [16].

Factor structure

Although a number of prior studies conducted in Western-culture populations have supported a five-factor model for the PID-5-BF [14, 15, 16, 19, 20], our results supported a six-factor model better than the theoretical five-factor model derived from the literature. Interestingly, a prior study conducted with Filipino college students also showed a relatively poor fit of the theoretical five-factor model for the PID-5-BF [22]. Thus, we speculate that the discrepancy may reflect differences in the way people from Western versus Eastern cultures understand personality constructs and thus interpret items of the PID-5-BF.

Four of the factors in our exploratory six-factor model were consistent with the theoretical five-factor structure. Only the Negative Affect domain failed to align, and items 10 (fear being alone) and 19 (I crave attention) were placed in the newly added factor called Interpersonal Relationships. According to traditional personality theories in Western cultures, which focus on internal characteristics of the individual [48], loneliness is regarded as a source of distress related to experiencing a lack of empathy. On the contrary, in Eastern cultures, which are generally more collectivist, individuals are often considered to be inherently closely connected with others [49]. Accordingly, loneliness may be viewed as an isolated state due to poor interpersonal skills. Item 19, which is associated with the Antagonism domain of the original PID-5-BF, refers to behaviors that put the individual at odds with others, including an exaggerated sense of self-importance and an expectation of special treatment [10]. However, in a collectivist society, one's sense of belonging is an important aspect of his or her personality constitution [49]. Consequently, item 19 is likely to be understood as one's desire to fit into a certain group and to communicate with others. Prior studies have explored the influences of collectivist versus individualist cultures on personality [50–52]. In summary, cultural differences in how one understands and interprets Items 10 and 19 may affect the factor loading of these two items.

The unique structure of the DSM-5 personality trait model in Chinese respondents, compared to respondents from most other examined countries, may be related to cultural differences in general personality models [35, 53]. Although the five-factor model has been widely used globally, it may not be fully applicable in a variety of cultural contexts due to its Western-centric derivation. Consistent with this supposition, the five-factor model was not well-fitted when the NEO Personality Inventory was examined in the Philippines [54], Korea [55], and Japan [56]. Hence, it appears that the Big-Five Model does not fully explain personality traits in collectivist society contexts [23]. Prior studies have proposed a six-factor hypothesis of Chinese personality traits, with the addition of Interpersonal Relationships [25]. The importance of this sixth dimension for Chinese personality analysis has been affirmed in Chinese Personality Assessment Inventory standardization studies [24]. Therefore, although many western personality tests are reasonably reliable and valid when applied to Chinese samples, there are some cultural deviations to be considered [25].

- MI

To the best of our knowledge, this study is the first to explore MI of the PID-5-BF. Establishment of MI provides evidence of a consistent underlying structure across groups and thus enables group means to be compared [30].
When performing nested MI modeling, as was done here with configural, weak, strong, and strict MI, MI must be established sequentially from lower- to higher-level MI analyses [57]. We were able to achieve MI fully with respect to factor structure (configural MI), metric (weak MI), and intercept (strong MI) equivalences for the PID-5-BF in both samples. Strict invariance was partially satisfied.

Because our modification index analyses led us to release constraints on Items 14, 4, 12, 20, 7, 15, 5, and 17 to better achieve strict invariance, it can be deduced that the residual variances of these items were not equivalent across our two sample groups. Notwithstanding, upon achieving strong MI, we were able to conclude that our finding of higher PID-5-BF scores in our clinical sample, compared to our normal sample, could be considered a reliable finding. Moreover, these data affirm a satisfactory discriminant validity of the PID-5-BF for differentiating between nonclinical and clinical individuals.

External validity and clinical value

Although the 220-item PID-5 has many merits for personality diagnosis—such as close relations with clinical symptoms, the ability to be combined with various psychotherapy methods, and good stability over time [12]—its length hinders its clinical utility. Pires et al. (2018) examined the psychometric properties of the 220-item (original), 100-item (short form), and 25-item (brief form) PID-5 versions in a sample of Portuguese university students and concluded that any of the three could be used to assess maladaptive personality traits reliably and validly [18]. Bach et al. (2016) compared the three forms in a Danish population and showed that the three scales were highly similar with respect to internal consistency, factor structure, discriminant validity, and correlation with DSM-4 PD dimensions [14]. The present findings of very strong correlation coefficients between the PID-5-BF and the 220-item PID-5 in both of our samples indicate that in addition to saving time, reducing the burden upon participants, and being generally more clinic friendly, the PID-5-BF maintains the validity of the original instrument to a remarkable degree.

Moreover, the six factors of the PID-5-BF in our six-factor model showed good alignment with the six PDs in Section III of the DSM-5. Each PD correlated directly and specifically with its expected domain, with the exception of obsessive-compulsive personality disorder, which demonstrated good continuity from the DSM-4 to the DSM-5. Our unexpected finding of the Psychoticism domain showing strong correlations with most of the PDs in our normal sample may due to college students being sensitive to abnormal behaviors, thereby limiting the specificity of Psychoticism. In summary, the PID-5-BF retained satisfactory psychometric properties, despite its extensive omission of items relative to the 220-item PID-5, affirming its suitability as a preliminary clinical PD screening tool.

The PID-5-BF can be used to differentiate between psychologically healthy and troubled respondents, at least preliminarily. Bach et al. (2016) reported that the PID-5-BF has very good discriminant validity between psychiatric outpatients and community-dwelling individuals [14], consistent with our findings of significantly higher PID-5-BF scores in our clinical patients than in our normal sample of undergraduate students. Clinicians can administer the PID-5-BF to acquire a rough estimation of one's personality functioning, laying the foundation of further treatment planning, and then judge the need for additional assessments. Although the PID-5-BF may not provide unique clinical information regarding specific symptoms, it can describe personality traits through the assessment of dimensions, embodying differences in degree rather than in category, contributing to individualized therapy development.
Limitations and future directions

The present study had three noteworthy limitations. First, the retested sample and clinical population were relatively small due to practical limitations. Second, the clinical sample was heterogenous, including patients diagnosed with various psychological disorders. Third, the current study was cross-sectional, and cross-sectional studies cannot demonstrate predictive validity with the robustness of longitudinal studies. Hence, there is a need for larger longitudinal and clinical-sample studies of the PID-5-BF, particularly with samples constituted by patients with PDs.

Regarding future directions of research, because dimensions represent continua from normal to abnormal, actionable score ranges need to be established based on ample empirical data collected in clinical practice rather than developed from theoretical hypotheses. Further correlational analyses between the PID-5-BF and other psychological scales are also needed to clarify dimensional distinctions among different psychiatric diagnoses. MI should also be further examined across genders, age bands, and cultures, particularly in Asia and the Pacific Islands.

Conclusion

The Chinese version of the PID-5-BF had satisfactory internal consistency and criterion validity. Regarding factor structure, it was well-fitted to our exploratory six-factor model, which included the additional Interpersonal Relationships domain, compared to the theoretical five-factor model, in both our undergraduate student and clinical samples. MI across normal and clinical Chinese samples was established. The PID-5-BF is suitable for assessing personality traits and clinical screening for PDs quickly.

Abbreviations

PID-5-BF, Personality Inventory for DSM-5 Brief Form; PD, personality disorder; EFA, exploratory factor analysis; CFA, confirmatory factor analysis; MI, measurement invariance; PDQ-4+, Personality diagnostic questionnaire-4+.

Declarations

Ethics approval and consent to participate

This study was approved by the ethics committee of Second Xiangya Hospital, Central South University. All participants were over 16 years old and had written informed consent.

Consent for publication

Not applicable.

Availability of data and materials
The datasets generated and analysed during the current study are not publicly available due to no permission from participants to share anonymized participant data publicly but are available from the corresponding author on reasonable request.

Competing interests

The authors declare that they have no competing interests.

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 31671144); Hunan Provincial Natural Science Foundation of China (Grant No. 2019JJ40362); Chinese Ministry of Education’s Humanities and Social Science Research Project (Grant No. 13YJA190015); Program for New Century Excellent Talents in University (Grant No. NCET-12-0557) and The Research Foundation of the Education Commission of Hunan Province (Grant No. 2017jy77).

Authors' contributions

XW and YS supervised the study. PZ and ZO performed the data analysis and wrote the paper, SF, JH, LF and XL contributed to the data collection. JZ, YX, FL and XW provided resources of sample. All authors revised and approved the final manuscript.

Acknowledgements

We thank all co-authors without whom the research wouldn't be completed, also we appreciate every participant in our study.

References

1. Tyrer, P., Reed, G. M., & Crawford, M. J: **Classification, assessment, prevalence, and effect of personality disorder.** *The Lancet* 2015, **385**(9969):717-726.

2. Al-Dajani, N., Gralnick, T. M., & Bagby, R. M: **A Psychometric Review of the Personality Inventory for DSM-5 (PID-5): Current Status and Future Directions.** *Journal of Personality Assessment* 2018, **100**(4), 448-448.

3. Wright, A. G., Thomas, K. M., Hopwood, C. J., Markon, K. E., Pincus, A. L., & Krueger, R. F: **The hierarchical structure of DSM-5 pathological personality traits.** *J Abnorm Psychol* 2012, **121**(4), 951-957.

4. Anderson, J. L., Sellbom, M., Bagby, R. M., Quilty, L. C., Veltri, C. O., Markon, K. E., & Krueger, R. F: **On the convergence between PSY-5 domains and PID-5 domains and facets: implications for assessment of DSM-5 personality traits.** *Assessment* 2013, **20**(3), 286-294.

5. Ashton, M. C., Lee, K., de Vries, R. E., Hendrickse, J., & Born, M. P: **THE MALADAPTIVE PERSONALITY TRAITS OF THE PERSONALITY INVENTORY FOR DSM-5 (PID-5) IN RELATION TO THE HEXACO**
PERSONALITY FACTORS AND SCHIZOTYPY/DISSOCIATION. *Journal of Personality Disorders* 2012, 26(5), 641-659.

6. Fossati, A., Krueger, R. F., Markon, K. E., Borroni, S., & Maffei, C: *Reliability and validity of the personality inventory for DSM-5 (PID-5): predicting DSM-IV personality disorders and psychopathy in community-dwelling Italian adults*. *Assessment* 2013, 20(6), 689-708.

7. Jopp, A. M., & South, S. C: *INVESTIGATING THE PERSONALITY INVENTORY FOR DSM-5 USING SELF AND SPOUSE REPORTS*. *Journal of Personality Disorders* 2015, 29(2), 193-214.

8. Bastiaens, T., Claes, L., Smits, D., De Clercq, B., De Fruyt, F., Rossi, G., Vanwalleghem, D., Vermote, R., Lowyck, B., Claes, S., & De Hert, M: *The Construct Validity of the Dutch Personality Inventory for DSM-5 Personality Disorders (PID-5) in a Clinical Sample*. *Assessment* 2016, 23(1), 42-51.

9. Gore, W. L., & Widiger, T. A: *The DSM-5 Dimensional Trait Model and Five-Factor Models of General Personality*. *Journal of abnormal psychology* 2013, 122(3), 816-821.

10. Association, A. P. *Diagnostic and statistical manual of mental disorders (DSM-5®)*: American Psychiatric Pub.

11. Kotov, R., Krueger, R. F., Watson, D., Achenbach, T. M., Althoff, R. R., Bagby, R. M., Brown, T. A., Carpenter, W. T., Caspi, A., Clark, L. A., Eaton, N. R., Forbes, M. K., Forbush, K. T., Goldberg, D., Hasin, D., Hyman, S. E., Ivanova, M. Y., Lynam, D. R., Markon, K., Miller, J. D., Moffitt, T. E., Morey, L. C., Mullins-Sweatt, S. N., Ormel, J., Patrick, C. J., Regier, D. A., Rescorla, L., Ruggero, C. J., Samuel, D. B., Selbom, M., Simms, L. J., Skodol, A. E., Slade, T., South, S. C., Tackett, J. L., Waldman, I. D., Waszczuk, M. A., Widiger, T. A., Wright, A. G. C., & Zimmerman, M: *The Hierarchical Taxonomy of Psychopathology (HiTOP): A Dimensional Alternative to Traditional Nosologies*. *Journal of abnormal psychology* 2017, 126(4), 454-477.

12. DING Rui, CHEN Tunong, & SUN Qinging: *Relationship between PID-5 Personality Questionnaire and Big Five Model and Its Application*. *Medical Recapitulate* 2018, 24(24), 4894-4898.

13. American Psychiatric Association. *The Personality Inventory for DSM-5—Brief Form (PID-5-BF)-Adult*. Retrieved from http://www.psychiatry.org/practice/dsm/dsm5/online-assessment-measures#Personality

14. Bach, B., Maples-Keller, J. L., Bo, S., & Simonsen, E: *The Alternative DSM-5 Personality Disorder Traits Criterion: A Comparative Examination of Three Self-Report Forms in a Danish Population*. *Personality Disorders-Theory Research and Treatment* 2016, 7(2), 124-135.

15. Debast, I., Rossi, G., & van Alphen, S. P. J: *CONSTRUCT VALIDITY OF THE DSM-5 SECTION III MALADAPTIVE TRAIT DOMAINS IN OLDER ADULTS*. *Journal of Personality Disorders* 2017, 31(5), 671-688.

16. Fossati, A., Somma, A., Borroni, S., Markon, K. E., & Krueger, R. F: *The Personality Inventory for DSM-5 Brief Form: Evidence for Reliability and Construct Validity in a Sample of Community-Dwelling Italian Adolescents*. *Assessment* 2017, 24(5), 615-631.

17. Combaluzier, S., Gouvenet, B., Menant, F., & Rezrazi, A: *Validation of a French translation of Krueger’s personality inventory for DSM-5 in its brief form (PID-5 BF)*. *Encephale* 2018, 44(1), 9-13.

18. Pires, R., Ferreira, A. S., Guedes, D., Goncalves, B., & Henriques-Calado, J: *A Study of the Psychometric Qualities of the Portuguese Version of the Personality Inventory for DSM-5 (PID-5): Full Version, Reduced Form and Brief Form*. *Revista Iberoamericana De Diagnostico Y Evaluacion-E Avaliacao Psicologica* 2018, 2(47), 197-212.
19. Hyatt, C. S., Maples-Keller, J. L., Crowe, M. L., Sleep, C. E., Carter, S. T., Michopoulos, V., Stevens, J. S., Jovanovic, T., Bradley, B., Miller, J. D., & Powers, A: Psychometric Properties of the Personality Inventory for DSM-5-Brief Form in a Community Sample with High Rates of Trauma Exposure. *Journal of Personality Assessment* 2020, 10.

20. Anderson, J. L., Sellbom, M., & Salekin, R. T: Utility of the Personality Inventory for DSM-5-Brief Form (PID-5-BF) in the Measurement of Maladaptive Personality and Psychopathology. *Assessment* 2018, 25(5), 596-607.

21. Porcerelli, J. H., Hopwood, C. J., & Jones, J. R: Convergent and Discriminant Validity of Personality Inventory for DSM-5-BF in a Primary Care Sample. *J Pers Disord* 2018, 1-11.

22. Untalan, J. Examining the Reliability, Factor Structure, and Convergent Validity of the Personality Inventory for DSM-5-Brief Form (PID-5-BF) in a Filipino College Sample. ResearchGate. Manuscript submitted for publication. San Beda College, Manila.

23. Cheung, F. M., Leung, K., Zhang, J. X., Sun, H. F., Gan, Y. Q., Song, W. Z., & Xie, D: Indigenous Chinese personality constructs - Is the five-factor model complete?. *Journal of Cross-Cultural Psychology* 2001, 32(4), 407-433.

24. Cheung, F. M., Cheung, S. F., Leung, K., Ward, C., & Leong, F: The English version of the Chinese Personality Assessment Inventory. *Journal of Cross-Cultural Psychology* 2003, 34(4), 433-452.

25. Zhang Jianxin & Zhou Mingjie: Searching for a Personality Structure of Chinese: A Theoretical Hypothesis of a Six Factor Model of Personality Traits. *Advances in Psychological Science* 2006, 14(4), 574-585.

26. Yang, K. & Wang, D. The Personality Dimensions of Chinese. The Third Chinese Psychology Convention, Beijing, China.1999.

27. Wang, D., Cui, H., & Zhou, F: Measuring the personality of Chinese: QZPS versus NEO PI-R. *Asian Journal of Social Psychology* 2005, 8(1), 97-122.

28. Kunnel John, R., Xavier, B., Waldmeier, A., Meyer, A., & Gaab, J: Psychometric Evaluation of the BFI-10 and the NEO-FFI-3 in Indian Adolescents. *Frontiers in Psychology* 2019, 10.

29. De Fruyt, F., De Bolle, M., McCrae, R. R., Terracciano, A., Costa, P. T., Jr., & Collaborators of the Adolescent Personality Profiles of Cultures, P: Assessing the universal structure of personality in early adolescence: The NEO-PI-R and NEO-PI-3 in 24 cultures. *Assessment* 2009, 16(3), 301-311.

30. Han, K., Colarelli, S. M., & Weed, N. C: Methodological and Statistical Advances in the Consideration of Cultural Diversity in Assessment: A Critical Review of Group Classification and Measurement Invariance Testing. *Psychological assessment* 2019, 31(12), 1481-1496.

31. Vandenberg, R. J., & Lance, C. E: A Review and Synthesis of the Measurement Invariance Literature: Suggestions, Practices, and Recommendations for Organizational Research. *Organizational Research Methods* 2000, 3(1), 4-70.

32. Bach, B., Sellbom, M., & Simonsen, E: Personality Inventory for DSM-5 (PID-5) in Clinical Versus Nonclinical Individuals: Generalizability of Psychometric Features. *Assessment* 2018, 25(7), 815-825.

33. Suzuki, T., South, S. C., Samuel, D. B., Wright, A. G. C., Yalch, M. M., Hopwood, C. J., & Thomas, K. M: Measurement invariance of the DSM-5 Section III pathological personality trait model across sex. *Personal Disord* 2019, 10(2), 114-122.
34. Thimm, J. C., Jordan, S., & Bach, B: Hierarchical Structure and Cross-Cultural Measurement Invariance of the Norwegian Version of the Personality Inventory for DSM-5. *J Pers Assess* 2017, 99(2), 204-210.

35. Krueger, R. F., Derringer, J., Markon, K. E., Watson, D., & Skodol, A. E: Initial construction of a maladaptive personality trait model and inventory for DSM-5. *Psychological Medicine* 2011, 42(9), 1879-1890.

36. Krueger, R., Derringer, J., Markon, K., Watson, D., & Skodol, A. The personality inventory for DSM-5—brief form (PID-5-BF) adult. American Psychiatric Association: Author. 2013.

37. Hyler, S. PDQ-4: Personality diagnostic questionnaire-DSM-IV version. New York State Psychiatric Institute. 1996.

38. Yang, J., McCrae, R. R., Costa, P. T., Yao, S. Q., Dai, X. Y., Cai, T. S., & Gao, B. L: The cross-cultural generalizability of axis-II constructs: An evaluation of two personality disorder assessment instruments in the People's Republic of China. *Journal of Personality Disorder* 2000, 14(3), 249-263.

39. Ling, H., Qian, M. Y., & Yang, B. J: RELIABILITY AND VALIDITY OF THE CHINESE VERSION OF THE PERSONALITY DIAGNOSTIC QUESTIONNAIRE-4+: A STUDY WITH CHINESE COLLEGE STUDENTS. *Social Behavior and Personality* 2010, 38(3), 311-320.

40. Huang, X. T., Ling, H., Yang, B. J., & Dou, G: Screening of personality disorders among Chinese college students by personality diagnostic questionnaire-4+. *Journal of Personality Disorders* 2007, 21(4), 448-454.

41. He, J. Y., Zhong, X., & Yao, S. Q: Factor structure of the Geriatric Depression Scale and measurement invariance across gender among Chinese elders. *Journal of affective disorders* 2018, 238, 136-141.

42. Van De Schoot, R., Schmidt, P., De Beuckelaer, A., Lek, K., & Zondervan-Zwijnenburg, M: Editorial: Measurement Invariance. *Frontiers in Psychology* 2015, 6, 4, Article 1064.

43. Nunnally, J. C., & Bernstein, I. H. *Psychometric Theory*. 3rd ed. McGraw-Hill; 1994.

44. Hu, L.-T., & Bentler, P. M. Evaluating model fit.

45. Cheung, G. W., & Rensvold, R. B: Testing factorial invariance across groups: A reconceptualization and proposed new method. *Journal of Management* 1999, 25(1), 1-27.

46. Clark, L. A., & Watson, D: Constructing validity: Basic issues in objective scale development. *Psychological assessment* 1995, 7(3), 309.

47. Cohen J. *Statistical power analysis for the behavioral sciences*. 2nd ed. Hillsdale, NJ: Erlbaum.

48. Markus, H. R., & Kitayama, S: Culture and the self: Implications for cognition, emotion, and motivation. *Psychological review* 1991, 98(2), 224.

49. Markus, H. R., & Kitayama, S: The cultural psychology of personality. *Journal of Cross-Cultural Psychology* 1998, 29(1), 63-87.

50. Heine, S. J., & Buchtel, E. E: Personality: the universal and the culturally specific. *Annu Rev Psychol* 2009, 60, 369-394.

51. Ip, G. W.-M., & Bond, M. H: Culture, values, and the spontaneous self-concept. *Asian Journal of Psychology* 1995, 1(1), 29-35.

52. Kuhn, M. H., & McPartland, T. S: An empirical investigation of self-attitudes. *American sociological review* 1954, 19(1), 68-76.

53. De Fruyt, F., De Clercq, B., De Bolle, M., Wille, B., Markon, K., & Krueger, R. F: General and Maladaptive Traits in a Five-Factor Framework for DSM-5 in a University Student Sample. *Assessment* 2013, 20(3), 295-307.
54. Huang, C. D., Church, A. T., & Katigbak, M. S: Identifying cultural differences in items and traits: Differential item functioning in the NEO Personality Inventory. *Journal of Cross-Cultural Psychology* 1997, **28**(2), 192-218.

55. McCrae, R. R., Zonderman, A. B., Costa Jr, P. T., Bond, M. H., & Paunonen, S. V: Evaluating replicability of factors in the Revised NEO Personality Inventory: Confirmatory factor analysis versus Procrustes rotation. *Journal of personality and social psychology* 1996, **70**(3), 552.

56. Gondo, Y, Shimonaka, Y, Nakazato, K., Ishihara, Q, & Imuta, H. September. Preliminary study for the standardization of the Japanese version of NEO-PI-R. The 57th Meeting of the Japanese Psychological Association, Tokyo,Japan. 199

57. Wang, M. C., Armour, C., Wu, Y., Ren, F., Zhu, X. Z., & Yao, S. Q: Factor Structure of the CES-D and Measurement Invariance Across Gender in Mainland Chinese Adolescents. *Journal of clinical psychology* 2013, **69**(9), 966-979.