A Novel Multidose Dry Powder Inhaler and Its Application in Patients with Asthma and COPD

Feng Shi, Chaoting Zhu, Tianqi Zhou, and Jianhui Liu

1School of Medical Devices, Zhejiang Pharmaceutical University, Ningbo 315000, China
2Ningbo Yihe Pharmaceutical Co., Ltd, Zhejiang 315000, China

Correspondence should be addressed to Feng Shi; masd@zjpu.edu.cn

Received 1 August 2022; Revised 12 August 2022; Accepted 22 August 2022; Published 7 September 2022

Patient and physician satisfaction with the maintenance inhaler device is an important factor in medication adherence and effectiveness in respiratory disorders. We look at inhaler preferences in asthma and chronic obstructive pulmonary disease (COPD) from both the patient’s and physician’s perspectives, emphasizing the relative importance of device features and patient considerations in inhaler selection. Teva Pharmaceuticals developed the multidose dry powder inhaler (M-DDPI) to treat chronic respiratory diseases. It is a metered-dose dry powder inhaler device intended to seem like a standard pressured metered-dose inhaler, but its internal geometry is somewhat distinctive. Inhalation treatment permits medication delivered directly to the airways. Inhalation devices serve a vital role in the therapy of obstructive lung illnesses such as asthma and COPD. The purpose of this research is to see how M-DDPI achieves maximum bronchial deposition of the medicine; the device must provide a high percentage of small particles, be simple to operate, and supply continuous and exact dosages of the active ingredient in COPD and asthma patients. Patients with COPD and asthma who had been diagnosed and treated at the hospital were first recruited as research participants and split into two groups. The control group got oxygen therapy as part of their standard treatment, whereas the experimental group received M-DDPI therapy. Statistical analysis techniques such as the Mann-Whitney U test and chi-squared test were used to examine the effects. The data show that the efficacies of M-DDPI therapy for COPD and asthma for obstructive lung illnesses seem to be promising right now.

1. Introduction

Asthma is a common chronic illness of the airways characterized by fluctuating airflow restriction as a result of constriction of the airways, thickening of the airway walls, and increased mucus. Consequences of persistent airway inflammation such as plasma extravasation and the influx of proinflammatory cells such as neutrophils and mast cells include airway constriction and airway narrowing syndrome. Asthma’s airway hyperresponsiveness (AHR) is a crucial physiological trait. AHR is an excessive reaction of the airways to a nonspecific stimulus that would have little or no impact on healthy individuals. Asthma may progress from a temporary blockage of the airways to a permanent reduction of lung function, despite the term “reversible” being often used. The prolonged airflow restriction might be due to an increase in mucus production in the airway lumen (Boonpiyathad et al. [1]). Childhood-onset asthma is the term used to describe the majority of cases of asthma; however, some people get the condition much later in life (late-onset asthma). Several distinctions between asthma begin in childhood and that which begins later in life. Figure 1 depicts the differentiation of normal lungs and asthmatic lungs.

Delayed asthma symptoms are now more severe and are less often brought on by antigen exposure. Asthma in adolescents may be caused by a variety of conditions, including poor respiratory symptoms and pharyngitis, particularly coronavirus infections. In asthmatic patients, it is not clear whether the preexisting irritation improves the toxicity of respiratory pathogens or if the frequent viral infections that children experience at a young age promote the growth of asthma. Asthma therapy’s primary objective is to control symptoms and decrease inflammation to prevent future exacerbations.
The mechanism by which TSLP produces its effects is by binding to a high-affinity heteromeric receptor complex consisting of “TSLPR” and “IL-7R.” It has been shown that polymorphisms in TSLP are linked to airway hyperresponsiveness, immunoglobulin E levels, eosinophilia, and asthma. There is evidence to suggest that TSLP has a role in the pathogenesis of asthma (Marone et al. [3]). When inhaled noxious particles and gases cause chronic obstructive lung disease (COPD), which is curable but avoidable, the inflammatory response increases. Even though emphysema and chronic bronchitis are often seen in people with COPD, many of these patients have exacerbations, which need hospitalization and other forms of treatment (Parris et al. [4]). Tobacco smoking was once assumed to be the primary cause of COPD. Nonsmoking risk factors for COPD have been increasing in relevance over the last decade, including research on the burden of the disease, risk variables, and clinical presentations among never-smokers. Non-tobacco-related risk factors are responsible for around half of all COPD cases globally, which vary by area. Low socioeconomic levels and infectious illnesses are also on the list of contributing variables. Air pollution and occupational exposure are also on the list. Poor lung development in infancy is linked to an increased risk of chronic obstructive pulmonary disease (COPD). Figure 2 indicates the lung is affected by COPD.

Nonsmokers may develop COPD as a result of inflammation, oxygen depletion, airway remodeling, and premature aging of the lungs. However, exacerbations may still occur often in those who never smoked and who have moderate chronic respiratory symptoms and emphysema but little or no airflow obstruction. COPD in never-smokers is a major health problem that needs to be addressed via further research, including epidemiological, translational, clinical, and implementation studies (Yang et al. [5]). Asthma and COPD...
symptoms may coexist in certain patients. Asthma-COPD overlap syndrome (ACO) is the name given to this illness by the Global Asthma/Global Chronic Obstructive Lung Disease (GINA/GOLD) statement [6] and other recommendations and publications. ACO’s prevalence has ranged from 15% to 60%, depending on the demographic sample, age group, and criteria used. An ACO definition has yet to be agreed upon. ACO adopting alternative criteria has been associated with higher health-related quality of life, greater hospital admissions, and higher expenditures on healthcare when compared to asthma or COPD alone. There is currently no consensus on the diagnostic criteria for ACO, which is currently dependent on surveys and doctors’ own opinions as well as the definition of certain minor and important criteria (Mostafavi-Pour-Manshadi et al. [7]). Such a form of long-term, continuous home monitoring of COPD patients may be made possible via a wearable sensor device. The majority of wearable sensor systems have severely constrained battery life, processing power, and storage capabilities. In a typical wearable sensor system, raw sensor data from sensor nodes are typically stored and sent to a nearby data aggregator (Moraveji et al. [8]).

With interconnected physical, social, behavioral, economic, and infrastructural concerns, a smart and connected community (SCC) intends to integrate embedded sensors and computers for better benefit to people, the community, and society. Utilizing physiological information from wearables, such as heart rate and SpO₂, to diagnose and track the course of COPD and asthma may enhance SSC self-management and general health (Siddiqui and Morshed [9]).

The objective of this study is to determine how M-DDPI promotes maximal bronchial deposition of the medication. The device must produce a high proportion of tiny particles, be easy to use, and provide continuous and accurate doses of the active component to COPD and asthma patients. Patients with COPD were given breathing methods as part of a rehabilitation program and motivated to use them often.

1.1. Contribution of This Study

(i) We have collected data of patients with asthma and COPD

(ii) The random number table method is used to randomly divide the control and experimental teams

(iii) Several statistical analysis techniques including the chi-squared test and the Mann-Whitney U test were utilized to look into the effects

(iv) Chi square is an effective tool for data analysis and for determining the kind of research data

(v) Mann-Whitney test U tests are often used to determine if two autonomous groups’ predictor factors vary

The remainder of the description is divided into five parts: part 2: related works and problem definition, part 3: the proposed methodology used, part 4: result and discussion, and part 5: conclusion.

2. Related Works

Li et al. [10] determine the cumulative bronchodilator dose of albuterol in a metered dose inhaler with a valved holding chamber (MDI+VHC) that allows patients with stable mild-to-moderate asthma and chronic obstructive pulmonary disease (COPD) to achieve comparable spirometry responses before and after bronchodilator tests. The spirometry necessary to verify bronchodilator reactions is difficult with individuals experiencing acute exacerbations and tricky enough with stable asymptomatic volunteers.

Broers et al. [6] offer a summary of the state-of-the-art research on the relationship between GERD and asthma and chronic obstructive pulmonary disease (COPD). With a disparity between the high frequency of GERD in asthma and the limited effectiveness of antireflux medication on asthma outcome, the relationship between GERD and asthma is complicated.

Dekhuijzen et al. [11] examine the causes and effects of poor adherence and provide summaries of significant research that show how increasing adherence might lower exacerbations, the need for inhaled corticosteroids (in situations when improved inhaler technique is used), hospitalizations, and treatment costs. Additionally, it is sometimes difficult for individuals with COPD to breathe in deeply enough to ensure sufficient delivery of medication from a dry-powder inhaler (DPI).

Katoh et al. [12] discuss making the distinction between COPD and asthma, which may sometimes be challenging in clinical practice and is crucial for implementing the proper medication. To differentiate between COPD and asthma, we analyzed biomarkers. The detection thresholds for IL-25, IL-33, TSLP, ST2, and 2 ng/mL were 1.9 pg/mL, 3.1 pg/mL, 3.4 pg/mL, and 32 pg/mL, respectively (peristin). For statistical analysis, concentrations below the detection limits were assumed to be zero.

Eryong and Li [13, 14] discuss that numerous odontogenic keratocysts are a common feature of several illnesses. On the face of a 12-year-old girl, odontogenic keratocysts were found. It was discovered that none of the further irregularities discovered throughout the testing involved a medical problem.

Garg [15] describes that customized medicine uses fine-grained data to identify issues. Engineers resorted to digital twins to comprehend these new data-driven healthcare practices better. By linking physical objects to a particular place, the condition of physical objects was digitally conveyed. Data structures and their interpretations imply moral disparities. In this article, digital twins are examined. Healthcare that is data-driven is becoming more popular. This technology may be used as a powerful social equalizer.

Ahmed and Ali [16] determine that a worldwide epidemic of allergic rhinitis would be devastating. The most often recommended therapies in Taiwanese hospitals are traditional Chinese or Chinese-Western drugs. When it came to outpatient Chinese medicine, allergy rhinitis was the most prevalent respiratory ailment to be treated. Asthma sufferers in Taiwan are treated with a combination of Eastern and Western therapy.
Shahbaz and Afzal [17] describe that HDR brachytherapy does not use a radioactive substance, allowing for outpatient treatment and quicker testing periods. Increased dose dispersion may result from changing a single-step source's dwell duration. Since there can be no mistake checks with HDR brachytherapy because of the shorter processing intervals, it must be done properly.

Li [18] provides a treatment technique and technology for domestic sewage to enhance rural life. Salihu and Iyya [19] explain that the samples taken from vegetable farms in Zamfara State, Nigeria, have been examined for thermodynamic and organophosphate agrochemicals. It was utilized to assess the testing method and the produced data using QuEChERS with GC-MS.

Lin et al. [20] explain that the systematic review's objective is to assess the effectiveness and security of sublingual immunotherapy (SLIT) for the management of allergic asthma. These problems made it difficult to ascertain whether the health state of the patient's asthma at the start of therapy had any impact on the results that were seen, which may restrict our capacity to generalize the findings to specific asthma patients.

Looijmans-van den Akker et al. [21] investigate the usage of asthma medications in primary care today and investigate if excessive SABA use is linked to exacerbations. One drawback of maintenance therapy is that some patients were given leukotriene antagonists or muscarinic antagonists rather than an ICS. The usage of maintenance therapy may be understated since these drugs were left out of the research.

Abrahamsen et al. [22] suggested that the patient's capacity to manage COPD during multidisciplinary in-hospital pulmonary rehabilitation programs is improved by these experiences. Priority is nonetheless given to patients who are anticipated to benefit most and who have the highest potential for rehabilitation owing to limited capacity and rationing of healthcare resources. The results show that the patients' knowledge and awareness of COPD were often restricted at first but that they increased with PR.

Song et al. [23] investigate the effects on illness manifestation and outcomes, as well as possible underlying processes, of COPD and asthma comorbidity in COVID-19 patients. Due to the small number of COPD and asthma patients getting mechanical ventilation, they were unable to compare the ratio of COPD and asthma patients who transitioned from noninvasive to invasive mechanical ventilation.

Gadekallu et al. [24] explain that in order to avoid eyesight loss, which is a result of diabetes mellitus being untreated among patients for an extended length of time, early diagnosis of the condition is crucial. For classification and disease prediction, a variety of machine learning and deep learning techniques have been used in the diabetic retinopathy dataset; however, the bulk of these techniques have overlooked the element of data preprocessing and dimensionality reduction, producing biased findings. Table 1 depicts the explanation of the current research in tabular format.

Pitta et al. [25] discuss evaluating and contrasting the two types of tools most often used to measure the amount of physical activity that COPD patients engage in on a daily basis: subjective techniques (questionnaires, diaries) and motion sensors (electronic or mechanical methods). This implies that either daily physical activity in these groups is significantly different or the questionnaire's applicability to COPD patients is restricted.

2.1. Problem Statement. As the disease progresses, the lungs' airways narrow and thicken, causing damage to the tissue that transfers oxygen between the bloodstream and the lungs. The lungs' capacity to take in and expel air declines. Because of the reduced oxygen supply, your body has a harder time eliminating the waste gas carbon dioxide. When it comes to asthma, the airways are affected on a long-term basis and suffocate the lungs, resulting in wheezing and difficulty breathing. An allergen or irritant, infections, exercise, and mental stress are all examples of possible causes of hay fever symptoms. Swollen and inflamed bronchial tube walls are characteristic of asthmatic symptoms. Breathing becomes difficult in those with asthma and COPD, which includes emphysema and chronic bronchitis. They are, in reality, quite similar. They are, however, two distinct types of lung disorders. A condition known as Asthma-COPD overlap syndrome (ACOS) is characterized by the presence of both asthma and COPD symptoms. Activities of the upper extremities of the body are not monitored by motion sensors worn on the waist, hips, or ankles. Although evaluations only need little care from patients (e.g., remembering to put the device on, placing it appropriately, avoiding shocks, and checking battery level), a common problem with motion sensors is the subject's compliance with the measurement.

3. Methodology Used

The purpose of this research is to see how M-DDPI achieves maximum bronchial deposition of the medicine; the device must provide a high percentage of small particles, be simple to operate, and supply continuous and exact dosages of the active ingredient in COPD and asthma patients. Patients with COPD and asthma who had been diagnosed and treated at the hospital were first recruited as research participants and split into two groups. The control group got oxygen therapy as part of their standard treatment, whereas the experimental group received M-DDPI therapy. Statistical analysis techniques such as the Mann-Whitney U test and chi-squared test were used to examine the effects. Figure 3 represents the proposed methodology of this research.

3.1. Dataset Collection. Outpatients at the China-Japan Friendship Hospital served as the subjects of the study. This was accomplished by the use of longitudinal panel research including 37 patients with COPD and 45 patients with asthma from Beijing, China (Duan et al. [26]). Table 2 shows the dataset features.

3.2. Inclusion/Exclusion Criteria of Patients

3.2.1. Inclusion Criteria. The asthma patients had to be between the ages of 18 and 75, have physician-diagnosed asthma, and have FEV1 reversibility of >12% and 200 mL following postbronchodilator spirometry, according to the Global Asthma Prevention Initiative standards.
Table 1: Description of current research.

Sl. No.	References	Explanation	Drawbacks
1	Li et al. [10]	Determines the cumulative bronchodilator dose of albuterol in a metered dose inhaler with a valved holding chamber (MDI+VHC) that allows patients with stable mild-to-moderate asthma and chronic obstructive pulmonary disease (COPD) to achieve comparable spirometry responses before and after bronchodilator tests.	The spirometry necessary to verify bronchodilator reactions is difficult with individuals experiencing acute exacerbations and tricky enough with stable asymptomatic volunteers.
2	Broers et al. [6]	Offers a summary of the state-of-the-art research on the relationship between GERD and asthma and chronic obstructive pulmonary disease (COPD).	With a disparity between the high frequency of GERD in asthma and the limited effectiveness of antireflux medication on asthma outcome, the relationship between GERD and asthma is complicated.
3	Dekhuijzen et al. [11]	Examines the causes and effects of poor adherence and provides summaries of significant research that show how increasing adherence might lower exacerbations, the need for inhaled corticosteroids (in situations when improved inhaler technique is used), hospitalizations, and treatment costs.	Additionally, it is sometimes difficult for individuals with COPD to breathe in deeply enough to ensure sufficient delivery of medication from a dry-powder inhaler (DPI).
4	Katoh et al. [12]	Discuss making the distinction between COPD and asthma, which may sometimes be challenging in clinical practice and is crucial for implementing the proper medication. To differentiate between COPD and asthma, we analyzed biomarkers.	The detection thresholds for IL-25, IL-33, TSLP, ST2, and 2 ng/mL were 1.9 pg/mL, 3.1 pg/mL, 3.4 pg/mL, and 32 pg/mL, respectively (periostin). For statistical analysis, concentrations below the detection limits were assumed to be zero.
5	Lin et al. [20]	Explains that the systematic review’s objective is to assess the effectiveness and security of sublingual immunotherapy (SLIT) for the management of allergic asthma.	These problems made it difficult to ascertain whether the health state of the patient’s asthma at the start of therapy had any impact on the results that were seen, which may restrict our capacity to generalize the findings to specific asthma patients.
6	Looijmans-van den Akker et al. [21]	Investigates the usage of asthma medications in primary care today and investigates if excessive SABA use is linked to exacerbations.	One drawback of maintenance therapy is that some patients were given leukotriene antagonists or muscarinic antagonists rather than an ICS. The usage of maintenance therapy may be underestimated since these drugs were left out of the research.
7	Abrahamsen et al. [22]	Suggested that the patient’s capacity to manage COPD during multidisciplinary in-hospital pulmonary rehabilitation programs is improved by these experiences.	Priority is nonetheless given to patients who are anticipated to benefit most and who have the highest potential for rehabilitation owing to limited capacity and rationing of healthcare resources. The results show that the patients’ knowledge and awareness of COPD were often restricted at first but that they increased with PR.
8	Song et al. [23]	Investigates the effects on illness manifestation and outcomes, as well as possible underlying processes, of COPD and asthma comorbidity in COVID-19 patients.	Due to the small number of COPD and asthma patients getting mechanical ventilation, they were unable to compare the ratio of COPD and asthma patients who transitioned from noninvasive to invasive mechanical ventilation.
9	Pitta et al. [25]	Discuss evaluating and contrasting the two types of tools most often used to measure the amount of physical activity that COPD patients engage in on a daily basis: subjective techniques (questionnaires, diaries) and motion sensors (electronic or mechanical methods).	This implies that either daily physical activity in these groups is significantly different or the questionnaire’s applicability to COPD patients is restricted.

The COPD patients had to be 45–75 years old, have a physician-diagnosed COPD, and have an FEV1 to FVC ratio of less than 70% following postbronchodilator spirometry, according to the Global Initiatives for Chronic Obstructive Pulmonary Disease recommendations.

3.2.2. Exclusion Criteria. The exclusion criteria of a person’s lifestyle or comorbidities may impair their lung function or their ability to finish all four sessions.

Both COPD and asthma patients have to meet the following exclusion criteria:
3.3. Division of Patients. A control team and an experimental team are formed for each patient. Following oxygen therapy for the control team, the experimental group is administered M-DDPI.

3.4. Random Number Table Method. The control and experimental teams are randomly separated using the random number table approach. There are 12 sufferers with COPD and 23 individuals with asthma on the control team. There are 15 sufferers with COPD and 22 sufferers with asthma in the experimental group.

3.4.1. Control Team. On the control team, there are 12 patients with COPD and 23 patients with asthma. It is usual practice for that control team to undergo oxygen therapy.

(1) Oxygen Therapy. Oxygen therapy is a kind of treatment in which the patient’s body is given more oxygen. The treatment of severe asthma attacks and patients with COPD is made possible by the use of oxygen therapy, which is prescribed by doctors. Approximately 21 percent of the air a person breathes is made up of oxygen. Oxygen is used by the body to generate energy for several different functions. Shortness of breath and confusion may occur if a person’s blood oxygen levels are too low. The body may also be damaged by a lack of oxygen in the bloodstream.

People with low blood oxygen levels may get more oxygen via oxygen therapy. Certain medical problems may need the use of oxygen treatment, such as

(i) COPD
(ii) pulmonary fibrosis
(iii) pneumonia
(iv) asthma attack
(v) cystic fibrosis

During the time of an asthma attack, the muscles around the bronchial tubes contract, making breathing more difficult. In and out of the lungs, air travels via the bronchial tubes. Having bronchial tubes that are too small might make it difficult for a person to breathe and take in adequate oxygen. When the lungs’ oxygen levels are low, oxygen treatment helps by supplementing the lungs’ supply of oxygen. Oxygen therapy involves administering oxygen to a patient via the use of a face mask or nasal tubes.

(2) Types of Oxygen Delivery System. When administering oxygen treatment, clinicians have the option of using two different concentrations of oxygen source. Individuals may need varying amounts of oxygen depending on their medical state.

(2)1. Oxygen Delivery Systems with Low Flow. When a patient just requires a modest quantity of extra oxygen, treatment teams will turn to low-flow oxygen delivery devices. Air from the room is used to dilute a little quantity of additional oxygen in these systems. Oxygen levels are dependent on how much air a person takes in with each inhalation in low-flow systems. This means it is difficult to tell exactly how much oxygen a person is receiving.

Types of low-flow oxygen delivery systems include the following:

Nasal cannulas: to put it simply, nasal cannulas are two little tubes that go into the nostrils of a patient. At least 24–40 percent of the oxygen is delivered using a low-flow nasal cannula.

Simple face mask: face masks that fit over the nose and mouth are known as basic face masks. Air that is 35–55 percent oxygen may be supplied using these devices.

Nonrebreather mask: unlike a basic mask, a nonrebreather mask features a reservoir bag that prevents extra oxygen from being released into the atmosphere. Excess oxygen from the reservoir bag is inhaled when a diver wears a nonrebreather mask. There are nonrebreather masks that supply up to 95 percent oxygen and feature a valve that prevents the user from reinhaling their own exhaled air.

(2)2. Oxygen Delivery Systems with High Flow. Flow systems that give oxygen at a greater rate than a human can take in are known as high-flow oxygen delivery systems. A doctor can therefore precisely control the amount of oxygen a patient can inhale. Venturi masks, which cover the nose and mouth, and high-flow nasal cannulas, which can supply 100% oxygen, are two types of high-flow oxygen delivery devices. Additionally, high-flow nasal cannulas may heat the air, making it easier to inhale, as well. Asthma patients may benefit from using high-flow nasal cannulas. In an emergency department, high-flow nasal cannulas were studied to see how they affected patients with acute severe asthma. Study participants who had acute severe asthma had less shortness of breath using high-flow nasal cannulas than low-flow techniques.

3.4.2. Experimental Team. The experimental group includes 15 individuals with COPD and 22 patients with asthma. This group is treated with a multidose dry powder inhaler (M-DDPI) for asthma and COPD patients.

(1) Multidose Dry Powder Inhaler (M-DDPI). The proper and precise usage of the treatment equipment is a crucial factor in the effectiveness of inhaled therapy. There have been many complaints about the misuse of inhaler devices. As a result, every patient must learn how to properly use an inhaler. Having skilled personnel who can teach patients how to properly utilize the gadget is essential. Patients choose inhalers that are tiny, portable, easy to use, and handy. Dose counters on certain devices let patients keep track of how many doses they have taken and how many doses they have left, so they may avoid underdosing or overdosing. When patients adhere to recommended medication, it improves disease state management and lowers total healthcare expenditures as well as morbidity and mortality for patients. Inhalation aerosol treatment for patients may benefit from decreased dose frequency, inhaler technique, and patient satisfaction including the convenience of use. Figure 4 indicates the schematic representation of the inhaler.
The Most Effective M-DDPI for Asthma and COPD. The inhaler Advair is one of the most often prescribed for the ongoing treatment of COPD. A corticosteroid and a long-acting bronchodilator, fluticasone, and salmeterol make up this medication. For the maintenance therapy of COPD, Advair is taken twice a day regularly. Asthma episodes may be prevented with the use of the combination medication Advair inhalation. Adults and children over the age of four may take Advair Diskus. Advair HFA may be used by both adults and children over the age of twelve. Asthma or bronchospasm episodes cannot be treated with Advair. For an attack, only use fast-acting inhalation medications. Consult a doctor if patients breathing issues worsen or if patients suspect asthma treatments are not functioning as effectively as they should. The powdered version of fluticasone and salmeterol Advair Diskus has a unique inhaler device preloaded with blister packs carrying premeasured dosages. A canister of Advair HFA is used with an actuator inhaler device.

3.5. Statistical Investigation. To investigate the impacts, several statistical analysis methods including the chi-squared test and the Mann-Whitney U test were used.
3.5.1. Chi-Squared Test

Pearson’s chi-squared test is a statistical process used to determine whether or not any measurable variance across collections of category data is random. This is a common circumstance where all of the episodes have a categorical data result. The idea that a standard six-sided die is “fair” is, in fact, a simplification.

In three sets of relationships, Pearson’s chi-squared assessment measures convenience, uniformity, and independence.

- **(i)** A convenient test estimates when a frequency distribution measured differs from the analytical distribution.
- **(ii)** Using the same type parameter, a uniformity test evaluates the distribution of values among multiple groups.
- **(iii)** Analysis of independence determines if findings comprised of 2 factors’ measurements, as
squared values are determined as follows:

\[y^2 = \frac{(Q - E)^2}{E}, \]

(3)

where \(E \) reflects the work value of the unit, \(N_C \) denotes that cell nucleus row edge, \(N_V \) denotes that cell’s row edge, and \(o \) reflects the sample group as a whole.

The sample size is split by the product of the row marginal and the column marginal for each cell:

\[\sqrt{\frac{y^2}{o(l-1)}} = \sqrt{\frac{y^2}{o(l-1)}}. \]

(4)

Correlation measures are statistical assessments of the strength of a relationship. Cramer’s \(V \) test is the most often utilized chi-squared strength test. Using the formula below, it is easy to calculate:

\[\sqrt{\frac{y^2}{o(l-1)}} = \sqrt{\frac{y^2}{o(l-1)}}. \]

Useful for analyzing data, the chi square is an excellent tool for discovering the nature of research data.

3.5.2. Mann-Whitney U test. The Mann-Whitney U test is often used for 2 autonomous groups having a difference in the predictor variables. It examines if the interdependent variable’s dispersion is the same as the two groups, implying that they are from an identical community:

\[a = As(B_{11} > B_{21}) + \frac{1}{2} As(B_{11} = B_{21}) = -\int_0^\infty T_1^+(b)eT_2(b), \]

(5)

where \(T_1^+(b) = \{ T_1(b+) + T_1(b-) \}/2 \) is the normalized version. The hypothesis \(H_0^q : T_1(b) = T_1(b)\forall b \) implies \(q = 1 \) \(\land \) 2:

\[S_0^q : a = 1 \ \land \ 2 \ \text{vs}. \ S_1^q : a = 1 \ \land \ 2. \]

(6)

To test \(S_0^q \), one can use Efron’s estimator of \(q \) given by

\[W_q(a) = \sqrt{\frac{\partial \partial}{\sigma}(\hat{a} - a)} \longrightarrow O(0, a^2) \text{ as } o \longrightarrow \infty, \]

\[\sigma_q^2 = \int_0^\infty \int_0^\infty \Gamma_j^{+k}(v, w)eT_1(v)eT_1(w), \]

(7)

\[DJ = [\hat{a} - c_{a/2} \sqrt{\frac{\sigma}{o_1 o_2}}, \hat{a} + c_{a/2} \frac{\sigma}{\sqrt{o_1 o_2}}], \]

where \(c_a \) is the upper percent point of \(N(0, 1) \).

4. Result

The goal of this study is to examine how M-DDPI provides maximal bronchial deposition of medication. To do so, the device must have a high proportion of tiny particles, be easy to use, and offer continuous and precise doses of the active component in COPD and asthma patients. The impacts were investigated using statistical analysis approaches such as the Mann-Whitney test and the chi-squared test. The
existing methods include Mepolizumab Therapy, Eosinophils Target Therapy, Targeted Drug Therapy, and Triple Combination Therapy. The parameters such as efficiency, overall percentage, Feeling of Satisfaction with Inhaler (FSI) score, frequency, and survival rate.

4.1. Efficiency. The use of available medical resources to get the greatest possible return on investment is what efficiency refers to. The provision of medical treatment may be seen as an intermediate good, in the sense that it is a means to the achievement of better health.

The effectiveness of proposed and existing works is shown in Figure 5. When compared to current approaches, the suggested methods (M-DDPI) are more efficient (Mepolizumab Therapy, Eosinophils Target Therapy, Targeted Drug Therapy, and Triple Combination Therapy).

4.2. Percentage. We calculated dyspnea on exertion, wheezing, chronic cough, chronic phlegm, exacerbation, and asthma in percentages for the patients. The percentages for the control and experimental teams are shown in Figure 6. Exertion-induced dyspnea, wheeze, chronic cough, chronic phlegm, exacerbation, and asthma are all lower in the experimental group than in the control group.

4.3. FSI Score. Patient satisfaction with inhaler devices may be assessed using the Feeling of Satisfaction with Inhaler (FSI), which is a self-reported questionnaire that assesses
patient views on the simplicity of use, portability, and usefulness of inhaler devices.

The FSI score of patients is shown in Figure 7. The FSI score was determined using mild, moderate, and severe severity levels. Finally, the experimental team outperforms the control team in terms of FSI scores such as mild, moderate, and severe.

4.4. Frequency%. Using the control group and the experimental group, an analysis of the frequency of alive, complications, and death is carried out. In comparison to the control group, the experimental group had a much-increased risk of experiencing problems and passing away. Figure 8 is a representation of the frequency of both the control group and the experimental group.

4.5. Survival Rate. The survival rate is a component of the survival analysis. How many persons in a study or therapy group remain alive for a specific amount of time following diagnosis is known as the survival rate. Certain diseases have specific prognostic terms that may be used to describe the outlook for the patient. The rate of survival may be used as a measure for evaluating treatment standards.

The survival rate of both suggested and current approaches is shown in Figure 9. The survival rate of people with COPD and asthma is evaluated using the tools that are now available. When compared to the suggested approaches, the survival rate of the current methods is much greater. Table 3 represents a comparative analysis of existing and proposed methods.

When compared with other existing methods, our proposed method M-DDI (proposed) provides better performance for efficiency and survival rate.

4.6. Test Results for the Chi-Squared Test. Table 4 indicates the test results for the chi-squared test.

4.7. Test Results for the Mann-Whitney U Test. Table 5 indicates the test results for the Mann-Whitney U test.

5. Discussion

Mepolizumab Therapy (existing) is a therapy for asthma; it causes headaches, surgical site responses, itching, or burning sensations at the injection site which are the most frequent adverse effects of Mepolizumab. Back discomfort and weariness are other typical side effects (fatigue) (MT (Ancona et al. [27])). Eosinophils Targeted Therapy (existing) airway eosinophils are reduced, and the more airway eosinophils are main participants in airway inflammation, the less successful any asthma medication targeting eosinophils will be. Although eosinophil activation indicators are not presently accessible, this is likely to be a major barrier in identifying asthmatic patients who potentially benefit more from anti-IL5 therapy (ETT (Brussino et al. [28])). Targeted Drug Therapy (existing) is a treatment of COPD that can slow the progression of the illness’ lung function decrease. These methods also cause side effects, and those methods are ineffective (TDT (Wang et al. [29])). Triple Combination Therapy (existing), a long-acting beta-agonist and a long-acting muscarinic agonist, is used in conjunction with an inhaled corticosteroid as part of triple treatment for COPD. The side effects of this treatment include headaches, coughing, diarrhea, back and joint discomfort, and changes in taste (TCT (Calzetta et al. [30])). Hence, our proposed methods have better efficiency in COPD and asthma when compared to the other existing methods. The accuracy of a multisensor and a pedometer in patients with COPD while engaging in “real world” activities was also tested for the first time in this research.

6. Conclusion

Asthma and COPD patients’ satisfaction with inhaler devices should be taken into account in clinical trials examining M-DDPI. Better adherence and improved clinical results may be linked to taking the preferences and happiness of patients into account when selecting an inhaler. COPD, lung inflammation, and pulmonary infections are among the conditions that DPIs are being utilized to treat in this research. The inhaler’s performance may be affected by a variety of factors, including the design and formulation of the device. Drug physicochemical properties and the patient’s ability to utilize the device appropriately all play a role in how well an M-DDPI pharmaceutical product will function in the end. The statistical analysis test was assessed using the chi-squared test, and the Mann-Whitney U test has become a greater outcome. Inhaled medicine is crucial for the treatment of asthma and COPD. However, it will not have any or very little advantage if you do not have a good inhalation technique. The lack of a correlation between prescription based on inhaler device usability and the severity of asthma may be a result of the medication’s limited availability across a variety of delivery methods. Future studies must concentrate on patient-reported device preferences and efficiency, overall percentage, Feeling of Satisfaction with Inhaler (FSI) score, frequency, and survival rate. Future studies might look at the possibility of using inhalers to walk patients through the procedures necessary for effective medicine administration, according to scientists.

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Ethical Approval

All investigations were conducted under the ethical standards and procedures for research with human beings as approved by the institute’s local ethics board Reg. No: (623121/2021/CPCSEA/24.04.2021).

Conflicts of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Acknowledgments

The research was funded by project No. LGF20E050002 entitled “Development of a new dry powder inhaler for asthma and COPD lung diseases” supported by the Zhejiang Province Public Welfare Technology Application Research Project of China.

References

[1] T. Boonpiyathad, Z. C. Sözener, P. Satitsuksanoa, and C. A. Akdis, “Immunologic mechanisms in asthma,” in *Seminars in Immunology*, p. 101333, Academic Press, 2019.

[2] H. Hammad and B. N. Lambrecht, “The basic immunology of asthma,” *Cell*, vol. 184, no. 6, pp. 1469–1485, 2021.

[3] G. Marone, G. Spadaro, M. Braile et al., “Tezepelumab: a novel biological therapy for the treatment of severe uncontrolled asthma,” *Expert Opinion on Investigational Drugs*, vol. 28, no. 11, pp. 931–940, 2019.

[4] B. A. Parris, H. E. O’Farrell, K. M. Fong, and I. A. Yang, “Chronic obstructive pulmonary disease (COPD) and lung cancer: common pathways for pathogenesis,” *Journal of Thoracic Disease*, vol. 11, Supplement 17, pp. S2155–S2172, 2019.

[5] I. A. Yang, C. R. Jenkins, and S. S. Salvi, “Chronic obstructive pulmonary disease in never-smokers: risk factors, pathogenesis, and implications for prevention and treatment,” *The Lancet Respiratory Medicine*, vol. 10, no. 5, pp. 497–511, 2022.

[6] C. Broers, J. Tack, and A. Pauweels, “Review article: gastro-oesophageal reflux disease in asthma and chronic obstructive pulmonary disease,” *Alimentary Pharmacology & Therapeutics*, vol. 47, no. 2, pp. 176–191, 2018.

[7] S. M. Y. Mostafavi-Pour-Manshadi, N. Naderi, M. Barrecheuguren, A. Dehghan, and J. Bourbeau, “Investigating fractional exhaled nitric oxide in chronic obstructive pulmonary disease (COPD) and asthma-COPD overlap (ACO): a scoping review,” *COPD: Journal of Chronic Obstructive Pulmonary Disease*, vol. 15, no. 4, pp. 377–391, 2018.

[8] N. Moraveji, P. Golz, J. Hollenbach, M. Holt, and R. Murray, “Long-term, ambulatory respiratory monitoring of COPD patients using garment-adhered sensors,” in *In 2019 IEEE International Symposium on Medical Measurements and Applications (MeMeA)*, pp. 1–6, Istanbul, Turkey, June 2019.

[9] T. Siddiqui and B. I. Morshed, “Severity classification of chronic obstructive pulmonary disease and asthma with heart rate and SpO2 sensors,” in *In 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)*, pp. 2929–2932, Honolulu, HI, USA, July 2018.

[10] J. Li, M. Zhao, M. Hadeer, J. Luo, and J. B. Fink, “Dose response to transnasal pulmonary administration of bronchodilator aerosols via nasal high-flow therapy in adults with stable chronic obstructive pulmonary disease and asthma,” *Respiration*, vol. 98, no. 5, pp. 401–409, 2019.

[11] R. Dekhuijzen, F. Lavorini, O. S. Usmani, and J. F. van Boven, “Addressing the impact and unmet needs of nonadherence in asthma and chronic obstructive pulmonary disease: where do we go from here?,” *The Journal of Allergy and Clinical Immunology: In Practice*, vol. 6, no. 3, pp. 785–793, 2018.

[12] S. Katoh, M. Ikeda, R. Shirai et al., “Biomarkers for differentiation of patients with asthma and chronic obstructive pulmonary disease,” *Journal of Asthma*, vol. 55, no. 10, pp. 1052–1058, 2018.

[13] X. Eryong and J. Li, “What is the ultimate education task in China? Exploring strengthen moral education for cultivating people (Li De Shu Ren),” *Educational Philosophy and Theory*, vol. 53, no. 2, pp. 128–139, 2021.

[14] R. N. Mody and A. R. Bhosreddy, “Multiple odontogenic keratocyst: a case report,” *Annals of Dentistry*, vol. 54, no. 1-2, pp. 41–43, 2021.

[15] H. Garg, *Digital Twin Technology: Revolutionary to Improve Personalized Healthcare*, vol. 1, no. 1, 2020Science Progress and Research (SPR), 2020.

[16] B. Ahmed and A. Ali, “Usage of traditional Chinese medicine, Western medicine and integrated ChineseWestern medicine for the treatment of allergic rhinitis,” *Official Journal of the Zhende Research Group*, vol. 1, no. 1, pp. 1–9, 2020.

[17] A. Shahabaz and M. Afzal, “Implementation of high dose rate brachytherapy in cancer treatment,” *Science Progress and Research*, vol. 1, no. 3, pp. 77–106, 2021.

[18] Z. Li, “Treatment and technology of domestic sewage for improvement of rural environment in China-Jiangsu: a research,” *Science Progress and Research (SPR)*, vol. 2, no. 1, 2022.

[19] S. O. Salihu and Z. Iyya, “Assessment of physicochemical parameters and organochlorine pesticide residues in selected vegetable farmlands soil in Zamfara State, Nigeria,” *Science Progress and Research (SPR)*, vol. 2, no. 2, 2022.

[20] S. Y. Lin, A. Azar, C. Suarez-Cuervo et al., “Role of sublingual immunotherapy in the treatment of asthma: an updated systematic review,” *In International Forum of Allergy & Rhinology*, vol. 8, no. 9, pp. 982–992, 2018.

[21] I. Looijmans-van den Akker, A. Werkhoven, and T. Verheij, “Over-prescription of short-acting beta agonists in the treatment of asthma,” *Family Practice*, vol. 38, no. 5, pp. 612–616, 2021.

[22] C. S. Abrahamsen, H. M. Lang-Kee, K. Halvorsen, and C. M. Stenbakken, “Patients with COPD: exploring patients’ coping ability during an interdisciplinary pulmonary rehabilitation programme: a qualitative focus group study,” *Journal of Clinical Nursing*, vol. 30, no. 9-10, pp. 1479–1488, 2021.

[23] J. Song, M. Zeng, H. Wang et al., “Distinct effects of asthma and COPD comorbidity on disease expression and outcome in patients with COVID-19,” *Allergy*, vol. 76, no. 2, pp. 483–496, 2021.

[24] T. R. Gadekallu, N. Khare, S. Bhattacharya et al., “Early detection of diabetic retinopathy using PCA-firefly based deep learning model,” *Electronics*, vol. 9, no. 2, pp. 274, 2020.

[25] F. Pitta, T. Troosters, V. S. Probst, M. A. Spruit, M. Decramer, and R. Gosselink, “Quantifying physical activity in daily life with questionnaires and motion sensors in COPD,” *European Respiratory Journal*, vol. 27, no. 5, pp. 1040–1055, 2006.

[26] R. Duan, H. Niu, Y. Tao et al., “Adverse effects of short-term personal exposure to fine particulate matter on the lung function of patients with chronic obstructive pulmonary disease and asthma: a longitudinal panel study in Beijing, China,” *Environmental Science and Pollution Research*, vol. 28, no. 34, pp. 47463–47473, 2021.
[27] G. d’Ancona, J. Kavanagh, C. Roxas et al., “Adherence to corticosteroids and clinical outcomes in mepolizumab therapy for severe asthma,” European Respiratory Journal, vol. 55, no. 5, p. 1902259, 2020.

[28] L. Brussino, E. Heffler, C. Bucca, S. Nicola, and G. Rolla, “Eosinophils target therapy for severe asthma: critical points,” BioMed Research International, vol. 2018, Article ID 7582057, 6 pages, 2018.

[29] C. Wang, J. Zhou, J. Wang et al., “Progress in the mechanism and targeted drug therapy for COPD,” Signal Transduction and Targeted Therapy, vol. 5, no. 1, pp. 1–20, 2020.

[30] L. Calzetta, M. Cazzola, M. G. Matera, and P. Rogliani, “Adding a LAMA to ICS/LABA therapy: a meta-analysis of triple combination therapy in COPD,” Chest, vol. 155, no. 4, pp. 758–770, 2019.