Thyridium revised: Synonymisation of Phialemoniopsis under Thyridium and establishment of a new order, Thyridiales

Ryosuke Sugita¹², Kazuaki Tanaka¹

¹ Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan ² The United Graduate School of Agricultural Sciences, Iwate University, 18-8 Ueda 3 chome, Morioka, Iwate 020-8550, Japan

Corresponding author: Kazuaki Tanaka (k-tanaka@hirosaki-u.ac.jp)

Academic editor: Huzefa Raja | Received 7 December 2021 | Accepted 11 January 2022 | Published 1 February 2022

Citation: Sugita R, Tanaka K (2022) Thyridium revised: Synonymisation of Phialemoniopsis under Thyridium and establishment of a new order, Thyridiales. MycoKeys 86: 147–176. https://doi.org/10.3897/mycokeys.86.78989

Abstract

The genus Thyridium, previously known as a saprobic or hemibiotrophic ascomycete on various plants, was revised taxonomically and phylogenetically. Sequences of the following six regions, that is, the nuclear ribosomal internal transcribed spacer (ITS) region, the large subunit (LSU) of rDNA, the second largest RNA polymerase II subunit (rpb2) gene, translation elongation factor 1-alpha (tef1) gene, the actin (act) gene, and the beta-tubulin (tub2) gene, were generated for molecular phylogenetic analyses of species of this genus. Phialemoniopsis, a genus encompassing medically important species, is synonymised with Thyridium based on molecular evidence and morphological similarities in their asexual characters. The generic concept for Thyridium is expanded to include species possessing both coelomycetous and hyphomycetous complex asexual morphs. In addition to type species of Thyridium, T. vestitum, nine species were accepted in Thyridium upon morphological comparison and molecular phylogenetic analyses in this study. All seven species of Phialemoniopsis were treated as members of the genus Thyridium and new combinations were proposed. A bambusicolous fungus, Pleospora punctulata, was transferred to Thyridium, and an epitype is designated for this species. A new species, T. flavostromatum, was described from Phyllostachys pubescens. The family Phialemoniopsidaceae, proposed as a familial placement for Phialemoniopsis, was regarded as a synonym of Thyridiaceae. A new order, Thyridiales, was established to accommodate Thyridiaceae; it forms a well-supported, monophyletic clade in Sordariomycetes.

Keywords

Ascomycota, Phialemoniopsidaceae, phylogeny, Sordariomycetes, taxonomy, Thyridiaceae
Introduction

Thyridium was originally established to accommodate species with cylindrical, uniseriate, 8-spored asci and muriform, dark-coloured, ascospores (Nitschke 1867). Species of this genus occur on various plants as saprobic or hemibiotrophic fungi (Eriksson and Yue 1989; Taylor et al. 1997; Checa et al. 2013). Currently, Thyridium includes 33 species and is placed in Thyridiaceae (family incertae sedis, Sordariomycetes; Yue and Eriksson 1987; Index Fungorum, http://www.indexfungorum.org, 2021). The type species T. vestitum has been verified to produce both coelomycetous and hyphomycetous asexual morphs, which have phialidic conidiogenous cells with collarette and ellipsoidal to allantoid hyaline conidia (Leuchtmann and Müller 1986).

Molecular information on Thyridium species is available only for two non-type strains (CBS 113027, CBS 125582) of the type species T. vestitum (Lutzoni et al. 2004; Spatafora et al. 2006; Vu et al. 2019); however, the phylogenetic relationships among species of this genus are unclear. A recent study on the phylogeny of Sordariomycetes has shown that T. vestitum is closely related to two Phialemoniopsis spp. (P. endophytica and P. ocularis), but their phylogenetic and taxonomic relationships have not been clarified (Dong et al. 2021; Hyde et al. 2021).

The genus Phialemoniopsis was placed in Phialemoniopsidaceae (Diaporthomycetidae family incertae sedis, Sordariomycetes; Hyde et al. 2021). Species of this genus are widely distributed in various environments and substrates, including industrial water, plant materials, raw sewage, and soil (Gams and McGinnis 1983; Halleen et al. 2007; Su et al. 2016). Several species have been reported from parts of the human body, such as blood, eye, toenail, skin, and sinus (Perdomo et al. 2013; Tsang et al. 2014), and some of them have also been isolated from patients with keratomycosis and phaeohyphomycosis (Perdomo et al. 2013; Desoubeaux et al. 2014). All species in this genus are known to be asexual.

In our ongoing taxonomic study of sordariomycetous fungi in Japan, several new specimens of Thyridium-like sexual morphs were collected. Single ascospore isolates from these specimens formed typical Phialemoniopsis-like asexual morphs in culture, suggesting that both genera are closely related. This study aims to reveal the taxonomic and phylogenetic relationships between Thyridium and Phialemoniopsis, and to clarify their ordinal position in Sordariomycetes.

Material and method

Isolation and morphological observation

All materials were obtained from Japan. Morphological characteristics were observed in preparations mounted in distilled water by differential interference and phase contrast microscopy (Olympus BX53) using images captured with an Olympus digital
camera (DP21). All specimens were deposited in the herbarium at Hirosaki University (HHUF), Hirosaki, Japan. Single spore isolations were performed from all specimens. Colony characteristics were recorded from growth on potato dextrose agar (PDA), malt extract agar (MEA), and oatmeal agar (OA) from Becton, Dickinson and Company (MD, USA), after a week at 25 °C in the dark. Colony colours were recorded according to Rayner (1970). To observe the asexual morphs in culture, 5 mm squares of mycelial agar were placed on water agar containing sterilised plant substrates such as rice straws and banana leaves. Then these plates were incubated at 25 °C for 2 weeks in the dark. When the substrates were colonised, the plates were incubated at 25 °C under black light blue illumination for 1–2 weeks to observe sporulation.

Phylogenetic analyses

DNA was extracted from four isolates using the ISOPLENT II kit (Nippon Gene, Tokyo, Japan) following the manufacturer’s instructions. The following loci were amplified and sequenced: the internal transcribed spacer (ITS) region with primers ITS1 and ITS4 (White et al. 1990), the large subunit nuclear ribosomal DNA (LSU) with primers LR0R (Rehner and Samuels 1994) and LR5 or LR7 (Vilgalys and Hester 1990), the second largest RNA polymerase II subunit (rpB2) gene with primers fRPB2-5F and fRPB2-7cR (Liu et al. 1999), the translation elongation factor 1-alpha (tef1) gene with primers 983F and 2218R (Rehner and Buckley 2005), the actin (act) gene with primers Act-1 and Act-5ra (Voigt and Wöstemeyer 2000) and the beta-tubulin (tub2) gene with primers TUB-F and TUB-R (Cruse et al. 2002). PCR products were purified using the FastGene Gel/PCR Extraction Kit (Nippon Gene, Tokyo, Japan) following the manufacturer’s instructions and sequenced at SolGent (South Korea). Newly generated sequences were deposited in GenBank (Table 1).

Primary analysis of LSU-rpB2-tef1 sequences from 88 strains of Sordariomycetes (Table 1) was conducted to clarify the ordinal/familial placement of *Thyridium* (or *Phialemoniopsis*) species. *Barrmaelia rhamncola* and *Entosordaria perfidiosa* (Xylariomycetidae) were used as outgroups. As a secondary analysis, single gene trees of ITS, act and tub2, and a combined tree of these three loci were generated to assess the species boundaries of 17 strains within *Thyridium/Phialemoniopsis* (Table 2). All sequence alignments (LSU, ITS, rpB2, tef1, act and tub2) were produced using the server version of MAFFT (http://www.ebi.ac.uk/Tools/msa/mafft), checked and refined using MEGA v. 7.0 (Kumar et al. 2016).

Phylogenetic analyses were conducted using maximum-likelihood (ML) and Bayesian methods. The optimum substitution models for each dataset were estimated using Kakusan4 software (Tanabe 2011) based on the Akaike information criterion (AIC; Akaike 1974) for ML analysis and the Bayesian information criterion (BIC; Schwarz 1978) for Bayesian analysis. ML analyses were performed using the TreeFinder Mar 2011 program (http://www.treefinder.de) based on the models selected with the AICc4 parameter (used sequence length as sample size). ML bootstrap support
Table 1. Isolates and GenBank accessions of sequences used in the phylogenetic analyses of Sordariomycetes (Fig. 1).

Taxon	Isolatea	Statusb	GenBank accession numbersc	Ref.		
			LSU	rpb2	tef1	
Acrodictys aquatica	MFLUCC 18-0356	HT	MG835712	–	–	47
Acrodictys bambusicola	HSAUP myr9510		KX033564	–	–	44
Anulatuscus velatiporosa	A70 18		AY316354	–	–	3
Anulatuscus triestatus	CBS 128831		GQ996540	JQ429258	–	25, 29
Ascendendus austriacus	CBS 131685		GQ996539	JQ429257	–	25, 29
Atractospora recticulata	CBS 127884	HT	KT991660	KT991649	–	41
Atractospora thailandensis	KUMCC 16-0067	HT	MF374362	MF370951	MF370962	45
Barbatophaeria arboricola	CBS 127689	HT	KM492862	KM492901	–	38
Barbatophaeria barbiviridis	CBS 121149		EF577099	KM492903	–	18, 38
Barbatophaeria varieopicta	CBS 137797	HT	KM492869	KM492907	–	38
Barroaedia rhamnicola	CBS 142772	ET	MF488990	MF488999	MF489009	52
Bombardia bombardia	AFTOL-ID 967		DQ470970	DQ470923	DQ471095	14
Calesphea pulchella	CBS 115999	IT	AY761075	GU180661	FJ284821	8, 27
Camarops microspora	CBS 649.92		AY083821	DQ470937	–	13, 14
Camarostella cotarticiensis	MM-149		KX430484	KX451954	KX451982	43
Cancelladium cinereum	MFLUCC 18-0424	HT	MT370363	MT370486	MT370488	57
Cancelladium grisonigrum	MFLUCC 17-2117	HT	MT370364	MT370487	–	57
Centolenta caulata	CBS 125234	HT	JX066704	JX066699	–	33
Centolenta caulata	PRM 899855		JX066705	–	–	33
Chaetopathrea ciliata	ICMP 18253		GU180637	GU180659	–	27
Chaetopathrea curvipesa	ICMP 18255		GU180636	GU180655	–	27
Cryptoderma goenseculaensis	SH12		EU528007	–	–	20
Cryptoderma goenseculaensis	SMH3767		EU528001	–	–	20
Diaportha phaseolorum	NRRIL 13736		U47830	–	–	1
Distoseptispora obpyriforinis	MFLUCC 17-1694	HT	MG979764	MG988415	MG988422	48
Distoseptispora ornata	MFLUCC 16-096	HT	MG979766	MG988417	MG988424	48
Eudoxyla operculata	UAMH 11085		JX460992	KY931927	–	34, 49
Eutostaria perfoliosa	CBS 142773	ET	MF488993	MF489003	MF489012	52
Flaviicola aquatica	MFLUCC 15-0962	HT	MF374366	MF370960	MF370965	45
Flaviicola apontrophicita	MFLUCC 15-0976	HT	MF374367	MF370954	MF370956	45
Gnomonia gumnos	CBS 199.53		AF408361	DQ470922	DQ471094	2, 14
Jobelletia fretillla	SMH2863		AY346285	–	–	4
Jobellussia lutelae	SMH2753		AY346286	–	–	4
Lampsora coronata	AFTOL-ID 736		U46889	DQ470899	–	14
Lasiosphaera ovina	SMH4605		AY436413	AY600284	DQ836908	6, 17
Lentomitella cinnabara	ICMP 15131	ET	AY761085	KM492911	–	11, 38
Lentomitella criniger	CBS 138678		KY931811	–	–	49
Linocarpus livistona	HKUM 6520		DQ810205	DQ810248	–	10
Magnaporthe salvinii	M 21		JF41487	JF710406	28	
Magnaporthiopsis agrostidis	CBS 142740	HT	KT364754	KT364756	–	37
Melanconis stilbostoma	CBS 109778		AF408374	EU219299	EU221886	2
Myremicroidium montsegarinum	JF 13180	HT	KT991664	KT991654	–	41
Myremicroidium schulzeri	CBS 100.54		EU041826	–	–	17
Myremicroidium thailandicum	CBS 13655	HT	KF777222	–	–	30
Neolinocarpus enulense	HKUCC 2983		DQ810221	DQ810244	–	10
Neolinocarpus globoscarpaticum	HKUCC 1959		DQ810224	DQ810245	–	10
Ophiostoma piliferum	CBS 158.74		DQ470955	DQ470905	DQ471074	14
Ophiostoma stenoceras	CBS 139.51		DQ836904	DQ836981	DQ836912	16
Papulosus ameporosporus	AFTOL-ID 748		DQ470950	DQ470901	DQ471069	14
Pararamichloridium caricola	CBS 145069	HT	MK047488	–	–	46
Pararamichloridium livistona	CBS 143166	HT	MG836084	–	–	54
Pararamichloridium verrucosum	CBS 128.86	HT	MI873621	–	–	56
Phaeoconitium fraxinopennsylvanica	M.R. 3064		HQ878959	HQ878609	–	26
Taxon	Isolate	Status	GenBank accession numbers	Ref.		
-------	---------	--------	--------------------------	------		
Phaeoacremonium novae-zealandiae	CBS 110156	HT	KY761081 –	8		
Phomatospora bellaminuta	AFTOL-ID 766		FJ176857 –	23		
Phomatospora biseriata	MFLUCC 14-0832A		KX549448 –	51		
Phyllachora graminis	TH-544		KX430508 –	43		
Pleurostoma oatea	CBS 115329	IT	AY761079 HQ878606 –	8, 23, 26		
Pseudostanjehughesia aquitropica	MFLUCC 16-0569	HT	MF077559 –	53		
Pseudostanjehughesia lignicola	MFLUCC 15-0352	HT	MK849787 MN124534 MN190407 –	55		
Pyricularia bornealis	CBS 461.65		DQ341511 –	24		
Pyricularia bothriochloae	CBS 136427		KF777238 –	30		
Rhamphoria delicatula	CBS 132724		FJ175601 –	22, 33		
Rhamphoria pyriformis	CBS 139024		MG600397 MG600401 –	50		
Rubellisphaeria abscondita	CBS 132078	HT	KT91666 KT91657 –	41		
Sordaria fimicola	CBS 723.96		AY780079 DQ368647 –	9, 19		
Spadicoides bina	CBS 137794		KY931824 KY931851 –	49		
Sporidesmium minigelatinosa	NN 47497		KU850467 –	12		
Sporidesmium parvum	HKUCC 10836		DQ408558 –	12		
Thyridium cornearis	CBS 131711	HT	KJ573450 –	36		
Thyridium curvatum	CBS 490.82	HT	AY761079 HQ878606 –	8, 23, 26		
Thyridium endophyticum	ACCC 38980	HT	KT799560 –	42		
Thyridium flavostromatum	KT 3803		LC655963 LC655967 LC655971 –	This study		
Thyridium hongkongense	HKU39	HT	KJ573447 –	36		
Thyridium limonesiae	CBS 146752	HT	MW050976 –	58		
Thyridium oculorum	CBS 110031	HT	KJ573449 –	36		
Thyridium pluriloculosum	CBS 131712	HT	HE599271 –	32		
Thyridium vestitum	CBS 113027		AY544671 DQ470890 DQ471058 –	5, 14		
Tirisporella beccariana	CBS 125582		MH875182 –	56		
Tirisporella bicetulosa	BCC 36737		JQ655450 –	39		
Woswasia atropurpurea	BCC 00018		EF622230 –	21		
Xylochrysis lucida	CBS 135996	HT	KJ573449 –	36		
Xylolentia brunnea	CBS 137794	HT	MG600398 MG600402 –	50		

| Strains and sequences generated in this study are shown in **bold**. |
| ET = epitype; HT = holotype; IT = isotype |
| 1: Viljoen et al. 1999; 2: Castlebury et al. 2002; 3: Raja et al. 2003; 4: Huhndorf et al. 2004; 5: Lutzoni et al. 2004; 6: Miller and Huhndorf 2004a; 7: Miller and Huhndorf 2004b; 8: Réblová et al. 2004; 9: Miller and Huhndorf 2005; 10: Bahl 2006; 11: Réblová 2006; 12: Shenoy et al. 2006; 13: Smith et al. 2006; 14: Spathara et al. 2006; 15: Yaguchi et al. 2006; 16: Zhang et al. 2006; 17: Arzanlou et al. 2007; 18: Réblová 2007; 19: Tang et al. 2007; 20: Huhndorf et al. 2008; 21: Pinruan et al. 2008; 22: Réblová 2009; 23: Schoch et al. 2009; 24: Thongkanta et al. 2009; 25: Réblová et al. 2010; 26: Réblová et al. 2011; 27: Zhang et al. 2011; 28: Zhang et al. 2012; 29: Crous et al. 2013; 30: Jaklitsch et al. 2013; 31: Jaklitsch et al. 2013; 32: Perdomo et al. 2013; 33: Réblová 2013; 34: Untereiner et al. 2013; 35: Réblová et al. 2014; 36: Tsang et al. 2014; 37: Crous et al. 2015b; 38: Réblová et al. 2015; 39: Suetrong et al. 2016; 40: Khemmuk et al. 2016; 41: Réblová et al. 2016; 42: Su et al. 2016; 43: Mardones et al. 2017; 44: Xia et al. 2017; 45: Zhang et al. 2017; 46: Crous et al. 2018; 47: Hyde et al. 2018; 48: Luo et al. 2018; 49: Réblová et al. 2019; 50: Réblová and Štěpánek 2018; 51: Senanayake et al. 2018; 52: Voglmayr et al. 2018; 53: Yang et al. 2018; 54: Crous et al. 2019; 55: Luo et al. 2019; 56: Vu et al. 2019; 57: Hyde et al. 2021; 58: Martinez et al. 2021. |
| *This tef1 sequence (DQ471058) of *Thyridium vestitum* was excluded from this analysis. A Blast search using this sequence suggested that it is close to *Phialemonium obovatum* (Cephalothecales) rather than *Thyridium/Phialemoniopsis* (Thyridiales).*
(ML BS) values were obtained using 1000 bootstrap replicates. Bayesian analyses were performed using MrBayes v. 3.2.6 (Ronquist et al. 2012), with substitution models selected based on the BIC4 parameter (used sequence length as sample size). Two simultaneous and independent Metropolis-coupled Markov chain Monte Carlo (MCMC) runs were performed for 9,000,000 generations for primary analysis and 1,000,000 generations for secondary analyses (except for the ITS dataset for 1,500,000 generations) with the tree sampled every 1,000 generations. Convergence of the MCMC procedure was assessed from the effective sample size scores (all > 100) using MrBayes and Tracer v. 1.6 (Rambaut et al. 2014). First 25% of the trees were discarded as burn-in, and the remainder were used to calculate the 50% majority-rule trees and to determine the posterior probabilities (PPs) for individual branches. These alignments were submitted to TreeBASE under study number S28934.

Result

Phylogeny

For primary analysis, ML and Bayesian phylogenetic trees were generated using an aligned sequence dataset comprising of LSU (1,205 base pairs), rpb2 (1,059 bp) and tef1 (954 bp). Of the 3,218 characters included in the alignment, 1,478 were variable and 1,686 were conserved. This combined dataset provided higher confidence values for ordinal and familial classification than those of individual gene trees, with 25 orders and three families (order unknown) being reconstructed in Sordariomycetes (Fig. 1). ML analysis of the combined dataset was conducted based on the selected substitution model for each partition (GTR+G for LSU, J2+G for the first and third codon positions of rpb2, J1+G for the second codon positions of rpb2, F81+G for the first codon positions of tef1, JC69+G for the second codon positions of tef1, and J2+G for the third codon position of tef1). The ML tree with the highest log likelihood (–43687.562) is shown in Fig. 1. Topology recovered by Bayesian analysis was almost identical to that of the ML tree. All species previously described as Phialemoniopsis (marked with blue circle in Fig. 1), one species of “Linocarpon”, two species of “Neolinocarpon” and four strains newly obtained in this study formed a monophyletic clade with the type species of Thyridium (T. vestitum). Their monophyly was completely supported (100% ML BS/1.0 Bayesian PP; Fig.1). The family Thyridiaceae was found to be related to Annulatascales and Myrmecridiales but did not cluster with any existing order in Sordariomycetes.

For secondary analysis, ML and Bayesian phylogenetic trees were generated using sequences of ITS (483 bp), act (646 bp), tub2 (375 bp), and a combined dataset of these three regions (1,504 bp). The selected substitution models for each region were as follows: J2ef4+G for ITS, F81+H for the first and second codon positions of act, J2+G for the third codon position of act, K80+H for the first codon positions
of $tub2$, JC69+H for the second codon position of $tub2$ and TN93+H for the third codon position of $tub2$. The ML trees with the highest log likelihood (–1172.0198 in ITS, –1196.6012 in act, –859.37115 in $tub2$ and –3315.7254 in ITS-act-$tub2$) are shown in Fig. 2. Our results confirmed close phylogenetic relationships between $Thyridium$ and $Phialemoniopsis$ (Fig. 2A–D). Except for act (Fig. 2B) and $tub2$ (Fig. 2C), where sequence data of $T. vestitum$ were unavailable, the existence of ten distinct species was suggested (Fig. 2A, D). The following three lineages were found in our four strains (Fig. 2A–D): 1) a bambusicolous lineage (KT 3891) close to $T. curvatum$ and $T. limonesiae$, 2) a fungus on $Betula$ $maximowicziana$ (KT 3803) nested with $T. pluriloculosum$, which was previously reported from clinical sources (Perdomo et al. 2013), and 3) another bambusicolous lineage represented by two strains (KT 1015 and KT 3905).

Table 2. Isolates and GenBank accessions of sequences used in the phylogenetic analyses of $Thyridium$ species (Fig. 2).

Taxon	Isolatea	Substrate/Host	Statusb	GenBank accession numbersc	Ref.d	
				ITS	act	$tub2$
$Thyridium$ cornealis	CBS 131711	human corneal fluid	HT	KJ573445 HC599252 HC599301	1, 2	
	UTHSC 06-1465	shin aspirate		H599285 HC599253 H599302	2	
$Thyridium$ curvatum	CBS 490.82	skin lesion	HT	AB278180 HC599258 HC599307	2	
	UTHSC R-3447	human eye		H599291 HC599259 H599308	2	
$Thyridium$ endophyticum	ACCC 38979	lower stem of $Luffa$ cylindrica	HT	KT799556 KT799553 KT799562	4	
	ACCC 38980	lower stem of $Luffa$ cylindrica	HT	KT799557 KT799554 KT799563	4	
$Thyridium$ flavostromatum	KT 3891 = MAFF 247509	dead twigs of $Phyllostachys$ pubescens	HT	LG655959 LG655979 LG655975	This study	
$Thyridium$ hongkongense	HKU39	the right forearm nodule	HT	KJ573442 KJ573452 KJ573457	3	
$Thyridium$ limonesiae	CBS 146752	human keratitis	HT	H599296 HC599247	2, 3	
	UTHSC 05-2527	peritoneal dialysis catheter		H599281 HC599249	2	
$Thyridium$ oculorum	CBS 110031	human toe nail	HT	H599286 HC599254 HC599303	2	
	UTHSC 05-2527	synovial fluid		H599287 HC599255	2	
$Thyridium$ pluriloculosum	KT 3803 = MAFF 247508	dead wood of $Betula$ maximowicziana	HT	LG655960 LG655980 LG655976	This study	
	UTHSC 09-3589	synovial fluid		H599287 HC599255	2	
$Thyridium$ punctulatum	KT 1015 = MAFF 239669	dead culms of $Phyllostachys$ pubescens	ET	LG655961 LG655981 LG655977	This study	
	KT 3905 = MAFF 247510	dead twigs of $Phyllostachys$ nigra var. nigra	ET	LG655962 LG655982 LG655978	This study	
$Thyridium$ vestitum	CBS 125582		MH863721	–	–	

a Strains and sequences generated in this study are shown in **bold**.

b ET = epitype; HT = holotype

c 1: Tang et al. 2007; 2: Perdomo et al. 2013; 3: Tsang et al. 2014; 4: Su et al. 2016; 5: Vu et al. 2019; 6: Martinez et al. 2021.
Figure 1. Maximum-likelihood tree of Sordariomycetes based on combined LSU, rpb2 and tef1 sequence. ML bootstrap proportion (BP) greater than 70% and Bayesian posterior probabilities (PP) above 0.95 are presented at the nodes as ML BP/Bayesian PP and a node not present in the Bayesian analysis is shown with ‘x’. A hyphen (‘-’) indicates values lower than 70% BP or 0.95 PP. Ex-holotype, isotype, paratype and epitype strains are shown in bold and the newly obtained sequences are shown in red. Strains previously described as Phialemoniopsis species are marked with a blue circle. The scale bar represents nucleotide substitutions per site.
Figure 2. Maximum-likelihood tree of *Thrydium* species based on each ITS (A), *act* (B), *tub2* (C) and combined sequences (ITS-act-tub2; D). ML bootstrap proportion (BP) greater than 70% and Bayesian posterior probabilities (PP) above 0.95 are presented at the nodes as ML BP/Bayesian PP. A hyphen (‘-’) indicates values lower than 70% BP or 0.95 PP and a node not present in the Bayesian analysis is shown with ‘x’. Ex-holotype and epitype strains are shown in bold and the newly obtained sequences are shown in red. Strains previously as *Phialemoniopsis* species are marked with a blue circle. The scale bars represent nucleotide substitutions per site.
Taxonomy

A new order, Thyridiales, is introduced to accommodate Thyridiaceae because its lineage is phylogenetically and morphologically distinct from any known orders in Sordariomycetes. We concluded *Thyridium* and *Phialemoniopsis* to be congeneric based on their morphological similarities and phylogenetic relatedness. An expanded generic circumscription of *Thyridium* that integrates the generic concept of *Phialemoniopsis* is provided below. One new species and eight new combinations of *Thyridium* are proposed.

Thyridiales R. Sugita & Kaz. Tanaka, ord. nov.

MycoBank No: 841916

Type family. Thyridiaceae J.Z. Yue & O.E. Erikss., Syst. Ascom. 6(2): 233 (1987).

Sexual morph. Stromata scattered to grouped. Ascomata perithecial, subglobose to ampulliform. Ostiolar neck cylindrical, periphysate. Paraphyses numerous, unbranched, cylindrical, hyaline. Asci unitunicate, cylindrical, with an apical annulus, pedicellate. Ascospores obovoid to ellipsoid, muriform, hyaline to brown.

Asexual morph. Coelomycetous asexual morph: Conidiomata pycnidial, globose to subglobose. Conidiogenous cells phialidic. Conidia ellipsoidal to obovoid, aseptate, hyaline. Hyphomycetous synasexual morph: Colonies effuse or sporodochial. Conidiophores micronematous, mononematous, simple or branched, hyaline, thin-walled. Conidiogenous cells phialidic. Conidia ellipsoid to allantoid, aseptate, hyaline.

Notes. Thyridiaceae has been treated as *incertae sedis* in Sordariomycetes (Yue and Eriksson 1987). Members of Thyridiaceae differ from Myrmecridiales by having pycnidial conidiomata, becoming cup-shaped in the coelomycetous state and micronematous conidiophores with monophasialidic conidiogenous cells in the hyphomycetous state. Myrmecridiales have brown thick-walled conidiophores with polyblastic conidiogenous cells (Crous et al. 2015a). Annulatascales have relatively massive refractive, well-developed, conspicuous apical annulus in asci (Wong et al. 1999; Campbell and Shearer 2004; Dong et al. 2021). In contrast, those of members of Thyridiaceae are compact and inconspicuous. Therefore, a new order, Thyridiales, is introduced for this lineage.

Thyridiaceae J.Z. Yue & O.E. Erikss., Syst. Ascom. 6(2): 233 (1987).

Phialemoniopsidaceae K.D. Hyde & Hongsanan, [as Phialemoniopsaceae] Fungal Divers. 107: 95 (2021).

Type genus. *Thyridium* Nitschke, Pyrenomyc. Germ. 1: 110 (1867).

Notes. Phialemoniopsidae is considered a synonym of Thyridiaceae because *Phialemoniopsis*, the type genus of Phialemoniopsidae, was revealed congeneric with *Thyridium* and is placed in the synonymy of the latter genus in this study. The type
genera of both families, that is, *Thyridium* and *Phialemoniopsis*, share many morphological features in their asexual states, as noted below.

Thyridium Nitschke, Pyrenomyc. Germ. 1: 110 (1867).

Melanospora subgen. *Bivonella* Sacc., Syll. fung. (Abellini) 2: 464 (1883).
Bivonella (Sacc.) Sacc., Syll. fung. (Abellini) 9: 989 (1891).
Pleurocytospora Petr., Annls mycol. 21: 256 (1923).
Sinosphearia J.Z. Yue & O.E. Erikss., Syst. Ascom. 6: 231 (1987).
Phialemoniopsis Perdomo, Dania García, Gené, Cano & Guarro, Mycologia 105: 408 (2013).

Type species. *Thyridium vestitum* (Fr.) Fuckel, Jb. nassau.Ver. Naturk. 23–24: 195 (1870) [1869–70].

Sexual morph. Stromata scattered to grouped, subepidermal to erumpent, yellowish to dark brown, red in KOH or not changing. Ascomata perithecial, subglobose to ampulliform, single to grouped, immersed in stromata to erumpent through host surface. Ascomatal wall composed of several layers of polygonal, dark brown cells. Ostiolar neck cylindrical, short or long, separated or convergent in upper stromata, periphysate. Paraphyses numerous, septate, unbranched, cylindrical, hyaline. Asci unitunicate, cylindrical, broadly rounded at the apex, with a pronounced non-amyloid apical annulus, pedicellate. Ascospores obovoid or ellipsoid, smooth, pale brown to brown, with several transverse and 0–3 longitudinal or oblique septa.

Asexual morph. Coelomycetous and/or hyphomycetous morphs formed. Coelomycetous asexual morph: Conidiomata pycnidial, single to grouped, superficial or immersed in stromata, globose to subglobose, composed of polygonal to prismatic cells, often becoming cup-shaped when mature, surrounded by setose hyphae. Conidiomatal wall composed of several layers of polygonal, dark brown cells. Ostiolar neck cylindrical, central, periphysate. Setose hyphae erect, usually unbranched, septate, cylindrical, with slightly pointed or blunt tips, hyaline to pale brown, smooth-walled. Conidiophores hyaline, thin-walled, simple or irregularly branched, with branches bearing a small group of phialides terminally. Phialides swollen at the base, tapering at the tip, hyaline. Conidia obovoid to oblong, with a slightly apiculate base, hyaline, smooth-walled, in slimy masses. Hyphomycetous synasexual morph: Colonies effuse or sporodochial. Conidiophores micronematous, mononematous, hyaline, thin-walled, simple or irregularly branched, with branches bearing a small group of phialides terminally. Phialides swollen at the base, tapering at the tip, hyaline. Adelophialides absent or rarely present. Conidia ellipsoidal to allantoid, with a slightly apiculate base, hyaline, smooth-walled, in slimy head. Chlamydospores absent or rarely present, hyaline to pale brown, thick- and rough-walled.

Notes. The newly obtained *Thyridium* collections formed synasexual morphs, coelomycetous and hyphomycetous, in culture that were similar to those of *Phialemoniopsis*, having coelomycetous and/or hyphomycetous conidial states in culture (Perdomo...
et al. 2013). In this study, Phialemoniopsis is treated as a synonym of Thyridium because of their morphological similarities in asexual morphs and phylogenetic relatedness. The genus Pleurocytospora has been proposed as a synonym of Thyridium by culture studies (Leuchtmann and Müller 1986). We agree that the morphological features of Pleurocytospora, such as phialidic conidiogenous cells and hyaline, ellipsoidal conidia formed from both coelomycetous and hyphomycetous states (Leuchtmann and Müller 1986), are almost identical to those of the generic concept of Thyridium emended here.

We accept both Bivonella and Sinospheaeria as synonyms of Thyridium, as proposed in previous studies (Eriksson and Yue 1989; Checa et al. 2013). Sinospheaeria (typified by S. bambusicola = Thyridium chrysomallum; Yue and Eriksson 1987) was established as a new genus without knowing the existence of Bivonella (typified by B. lycopersici; Saccardo 1891). Both genera are characterised by yellowish stromata. The validity of these genera being synonymised under Thyridium is confirmed by the presence of T. flavostromatum, which has yellowish stromata, in the strongly supported Thyridium clade (Fig. 1).

Thyridium flavostromatum R. Sugita & Kaz. Tanaka, sp. nov.
MycoBank No: 841917
Figs 3, 6A

Holotype. Japan, Yamaguchi, Nagato, Misumikami, near Kusaritoge, on dead twigs of Phyllostachys pubescens, 26 March 2018, K. Tanaka, K. Arayama and R. Siguta, KT 3891 (HHUF 30647, holotype designated here), living culture MAFF 247509.

Etymology. The name refers to yellowish stromata.

Sexual morph. Stromata scattered to grouped, subepidermal, becoming erumpent to superficial, 0.7–1.4 mm long, 0.4–0.7 mm wide, yellowish to dark brown, red in 2% KOH. Ascomata perithecial, subglobose to ampulliform, mostly 2–6 grouped, 190–240 µm high, 200–220 µm diam., immersed in stromata to erumpent through host surface. Ascomatal wall 15–23 µm thick, composed of 5–8 layers of polygonal, 2.5–7 × 1.5–3.5 µm, dark brown cells. Ostiolar neck central, cylindrical, 80–140 µm long, 55–90 µm wide, periphysate. Paraphyses numerous, septate, unbranched, cylindrical, 50–105 µm long. Asci unitunicate, cylindrical, 62.5–90 × 6.5–10 µm (av. 78.7 × 7.8 µm, n = 30), broadly rounded at the apex, with a pronounced non-amyloid apical annulus, short-stalked (5–17.5 µm long), with 8 ascospores. Ascospores obovoid to ellipsoid, smooth, hyaline to pale brown, with 3 transverse and 0–2 vertical septa, 9.5–14 × 5–7.5 µm (av. 11.3 × 5.8 µm, n = 50), l/w 1.4–2.5 (av. 2.0, n = 50).

Asexual morph (nature). Not observed.

Asexual morph (culture). Hyphomycetous asexual morph formed. Conidiophores micronematous, mononematous, hyaline, thin-walled, simple or irregularly branched, with branches bearing a group of 2–3 phialides terminally. Phialides swollen at the base, tapering at the tip, hyaline, 3–6 × 1–1.5 µm. Adelophialides rarely present. Conidia ellipsoidal to allantoid, with a slightly apiculate base, hyaline, smooth-walled, 2–7 × 1–2.5 µm (av. 4.1 × 1.6 µm, n = 50). Chlamydospores rarely present, solitary, 3.5–6.5 µm diam., hyaline to pale brown, thick- and rough-walled.
Figure 3. *Thyridium flavostromatum* (A–S KT 3891 = HHUF 30647 T–AC culture KT 3891 = MAFF 247509) A–S sexual morph A–C appearance of stromata on substrate D, E ascomata in longitudinal section (D in 2% KOH) F ostiolar neck of ascoma G paraphyses H ascomatal wall I–K asci L apex of the ascus M stipe of the ascus N–R ascospores S germinating ascospore T–AC hyphomycetous asexual morph T sporulation in culture U phialides V slimy conidial heads W conidiophores X phialide Y adelophialide Z–AB conidia AC chlamydospores and conidia. Scale bars: 1 mm (A); 500 µm (B, C); 100 µm (D, E); 50 µm (F); 10 µm (G–K, M, S, U, V); 5 µm (L, N–R, W–AC); 250 µm (T).

Culture characteristics. Colonies on MEA at 25 °C attained 28–29 mm diam. after a week in the dark, whitish. On OA attained 35–37 mm diam., whitish. On PDA attained 28–31 mm diam., whitish to buff (45; Rayner 1970) (Fig. 6A).
Notes. Phylogenetic analyses based on ITS, act, and tub2 sequences suggested that *T. flavostromatum* was closely related to *T. curvatum*, *T. hongokgense* and *T. limonesiae* (Fig. 2), of which only *T. hongokgense* has unknown conidial state. Although *T. curvatum* forms sporodochial conidiomata (Perdomo et al. 2013), those are not found in *T. flavostromatum*. Conidia of *T. limonesiae* (2.3–4.9 × 1.4–2 µm; Martinez et al. 2021) are smaller than those of *T. flavostromatum* (2–7 × 1–2.5 µm). *Thyridium flavostromatum* is similar to *T. lasiacidis* on *Lasiacis ligulata* (Samuels and Rogerson 1989) in 1) having yellowish stromata becoming red in KOH, and 2) ellipsoidal ascospores with three transverse septa, with or without one longitudinal septum in 1–2 median cells. However, *T. lasiacidis* differs from *T. flavostromatum* by ascomata with a longer ostiolar neck (90–170 µm long) and dark brown ascospores with terminal pale brown cells (Samuels and Rogerson 1989).

Thyridium pluriloculosum (Perdomo, Dania García, Gené, Cano & Guarro) R. Sugita & Kaz. Tanaka, comb. nov.

MycoBank No: 841918
Figs 4, 6B

Basionym. *Phialemoniopsis pluriloculosa* Perdomo, Dania García, Gené, Cano & Guarro, Mycologia 105: 412 (2013).

Holotype. USA, Nevada, human toe nail, D.A. Sutton, CBS H-20782, living culture CBS 131712 = UTHSC 04–7 = FMR 11070 (not seen).

Sexual morph. Stromata scattered to grouped, pulvinate, circular to elliptical in outline, elevated beyond bark surface forming pustules, 0.6–0.7 mm high, 0.9–1.0 mm diam., dark brown to black. Ascomata perithelial, subglobose to ampulliform, 4–8 grouped, 700–780 µm high, 220–280 µm diam., immersed in stromata. Ascomatal wall 17–25 µm thick, composed of 7–10 layers of polygonal, 4–6.5 × 2–4 µm, dark brown cells. Ostiolar neck central, cylindrical, 400–430 µm long, 100–110 µm wide, periphysate. Paraphyses septate, unbranched, cylindrical, 92.5–110 µm long, 3.5–5.5 µm wide. Asci unitunicate, cylindrical, 110–175 × 9–12.5 µm (av. 145.6 × 10.3 µm, n = 15), broadly rounded at the apex, with a pronounced non-amyloid apical annulus, pedicellate (12.5–27.5 µm long), with 8 ascospores. Ascospores fusiform to ellipsoid, smooth, brown, with 3 transverse and 0–2 oblique or vertical septa, 13.5–18 × 6–8 µm (av. 15.5 × 7.3 µm, n = 50), l/w 1.7–2.6 (av. 2.1, n = 50).

Asexual morph (nature). Conidiomata pycnidial, globose to subglobose, grouped, 220–300 µm high, 90–150 µm diam., immersed in stromata. Conidiomatal wall 8–18 µm thick, composed of 3–5 layers of polygonal, 3–4.5 × 2.5–4 µm, dark brown cells. Ostiolar neck central, cylindrical, 80–110 µm long, 90–110 µm wide, composed of polygonal cells, periphysate. Conidiophores hyaline, thin-walled, with branches bearing a group of 2–5 phialides terminally. Phialides tapering toward the tip, hyaline, 11–16 × 1–2 µm. Conidia ellipsoidal, with a slightly apiculate base, hyaline, smooth-walled, 3–4.5 × 1–2 µm (av. 3.7 × 1.5 µm, n = 50). Chlamydospores not observed.
Figure 4. *Thyridium pluriloculosum* (A–Y KT 3803 = HHUF 30648 Z–AL culture KT 3803 = MAFF 247508) A–R sexual morph A, B appearance of stromata on substrate (B transverse sections) C ascomata in longitudinal section D ostiolar neck of ascoma E paraphyses F ascomatal wall G pseudostromatic tissue H–J asci K apex of ascus L–Q ascospores R germinating ascospore S–AF coelomycetous asexual morph (S–Y nature Z–AF culture) S appearance of conidiomata on substrate T conidiomata in longitudinal section U conidiomatal wall V conidiophores W phialide X, Y conidia Z–AB conidiomata in culture (AB multiloculate conidiomata) AC setose hypha of conidiomata AD conidiophores with groups of phialides AE, AF conidia AG–AL hyphomycetous synasexual morph AG, AH sporulation in culture AI phialide AJ, AK conidia AL chlamydospores. Scale bars: 1 mm (A, B, S, AB); 500 µm (C, Z, AA); 100 µm (D, T); 20 µm (AG, AH); 10 µm (E–J, L–R, U, V); 5 µm (K, W–Y, AC–AF, AI–AL).
Asexual morph (culture). Coelomycetous asexual morph: Conidiomata pycnidial, scattered, single to grouped, superficial, globose to subglobose, 180–380 µm high, mostly 80–580 µm diam., up to 1170 µm diam. when grouped, often becoming cup-shaped when mature, surrounded by setose hyphae. Conidiomatal wall composed of polygonal to prismatic, 3–4.5 × 2.5–4 µm, dark brown cells. Setose hyphae erect, usually unbranched, septate, up to 360 µm long, 2–3 µm wide, pale brown. Conidiophores hyaline, thin-walled, simple or irregularly branched, with branches bearing a group of 2–5 phialides terminally. Phialides tapering toward the tip, hyaline, 10–25 × 1–2.5 µm. Conidia ellipsoidal, with a slightly apiculate base, hyaline, smooth-walled, in slimy masses, 3–4.5 × 1–2 µm (av. 3.8 × 1.4 µm, n = 50). Hyphomycetous synasexual morph: Conidiophores micronematous, mononematous, hyaline, simple or rarely branched. Phialides slightly tapering toward the tip, 4–11 × 1–2.5 µm, hyaline. Adelophialide absent. Conidia allantoid, hyaline, smooth-walled, in slimy heads, 3–9 × 1–2.5 µm (av. 6.2 × 1.7 µm, n = 50). Chlamydospores rarely present, solitary, 3.5–6.5 µm diam., hyaline to pale brown, thick- and rough-walled.

Culture characteristics. Colonies on MEA at 25 °C attained 31–33 mm diam. after a week in the dark, whitish. On OA attained 32–36 mm diam., whitish to grey olivaceous (107). On PDA attained 32–33 mm diam., whitish to buff (45) (Fig. 6B).

Specimen examined. Japan, Aomori, Hirakawa, Hirofune, Shigabo Forest Park, on dead twigs of Betula maximowicziana, 10 October 2017, K. Tanaka, KT 3803 (HHUF 30648), living culture MAFF 247508.

Notes. The conidia from aerial hyphae of strain KT 3803 were larger (3–9 × 1–2.5 µm) in culture than those of the original description of Thyridium pluriloculosum (3–5 × 1–2.5 µm; Perdomo et al. 2013). However, we identified this new collection on Betula maximowicziana as T. pluriloculosum, based on the high sequence homology of three loci with ex-type culture of this species (CBS 131712; 99.6% in ITS, 99.2% in act, and 99.5% in tub2). The sexual-axial relationship of T. pluriloculosum was verified in this study. Although this species has been reported from clinical sources as an asexual morph (Perdomo et al. 2013), the recently collected material represents a sexual morph on plant material.

In Thyridium, T. betulae has also been recorded on Betula sp. in France (Roumeguère 1891). Although sequences of T. betulae are unavailable for molecular comparison, it is clearly different from T. pluriloculosum in having ascospores with 5–7 transverse and one longitudinal septum.

Thyridium punctulatum (I. Hino & Katum.) R. Sugita & Kaz. Tanaka, comb. nov.
Mycobank No: 841919
Figs 5, 6C

Basionym. Pleospora punctulata I. Hino & Katum., Icones Fungorum Bamb. Jpn.: 181 (1961).

Holotype. Japan, Shizuoka, Fuji Bamboo Garden, on dead twigs of Phyllostachys nigra var. benonis, 1 April 1958, K. Katumoto, YAM 21851.
Epitype. Japan, Yamaguchi, Hagi, Akiragi, near Chikurindoro-park, on dead twigs of *Phyllostachys nigra* var. *nigra*, 26 March 2018, K. Tanaka, K. Arayama and R. Sugita, KT 3905 (HHUF 30649 epitype designated here; MBT 10004137), ex-epitype culture MAFF 247510.

Sexual morph. Stromata scattered to grouped, subepidermal, becoming erumpent to superficial, 0.5–1.2 mm long, 0.2–0.4 mm wide, dark brown. Ascomata perithecial, subglobose to conical, single to 2–3 grouped, 130–190 µm high, 140–230 µm diam., immersed in stromata to erumpent through host surface. Ascomatal wall 7–15 µm thick, composed of 3–5 layers of polygonal, 3–6.5 × 1–4.5 µm, dark brown cells. Ostiolar neck central, cylindrical, 37–85 µm long, 37–63 µm wide, periphysate. Paraphyses numerous, septate, unbranched, cylindrical, hyaline, 77–103 µm long. Asci unitunicate, cylindrical, 67.5–105 × 7.5–11.5 µm (av. 82.9 × 9.4 µm, n = 60), broadly rounded at the apex, with a pronounced non-amyloid apical annulus, short-stalked (3.5–11.5 µm long), with 8 ascospores. Ascospores ellipsoid to oblong, smooth, pale brown, with 3 transverse and 1–2 vertical septa, 10–15 × 5–9 µm (av. 12.8 × 7.0 µm, n = 60), l/w 1.4–2.4 (av. 1.8, n = 60).

Asexual morph (nature). Not observed.

Asexual morph (culture). Coelomycetous asexual morph: Conidiomata pycnidial, single to grouped, superficial, globose to subglobose, 100–250 µm high, 170–620 µm diam., composed of polygonal to prismatic, 3.5–7.5 × 2.5–4 µm cells, often becoming cup-shaped when mature, surrounded by setose hyphae. Setose hyphae erect, usually unbranched, septate, up to 225 µm long, 1.5–2.5 µm wide, pale brown. Conidiophores hyaline, thin-walled, simple or irregularly branched, with branches bearing a group of 2–5 phialides terminally. Phialides swollen at the base, tapering at the tip, 7–20 × 1–3 µm, hyaline. Conidia ellipsoidal to obovoid, with a slightly apiculate base, hyaline, smooth-walled, in slimy masses, 2–3.5 × 1–2 µm (av. 2.9 × 1.4 µm, n = 50). Hyphomycetous synasexual morph: Conidiophores micronematous, mononematous, hyaline, thin-walled, simple or irregularly branched, with branches bearing a group of 2–3 phialides terminally. Phialides swollen at the base, tapering at the tip, hyaline, 3–9 × 1–2 µm. Adelophialide absent. Conidia ellipsoidal to allantoid, hyaline, smooth-walled, in slimy heads, 2.5–8 × 1–3 µm (av. 4.3 × 1.6 µm, n = 87). Chlamydospores rarely present, solitary or chained, 4–5.5 µm diam., hyaline to pale brown.

Culture characteristics. Colonies on MEA at 25 °C attained 31–32 mm diam. after a week in the dark, granulose, whitish. On OA attained 38–39 mm diam., granulose, whitish. On PDA attained 35–36 mm diam., whitish to buff (45) (Fig. 6C).

Other specimen examined. Japan, Iwate, Morioka, Ueda, Campus of Iwate University, on dead culms of *Phyllostachys pubescens*, 17 February 2003, K. Tanaka and Y. Harada, KT 1015 (HHUF 29350), living culture JCM 13159 = MAFF 239669.

Notes. This species has been described from *Phyllostachys nigra* var. *henonis*, as a species of *Pleospora* (Dothideomycetes; Hino 1961). Our phylogenetic analysis (Fig. 1) shows that this species is a member of the genus *Thyridium* (Sordariomycetes). The morphological features of this species are consistent with those of the genus *Thyridium*, including immersed to erumpent, single to grouped, perithecial ascomata with a cylindrical ostiolar neck, unitunicate asci and muriform, pigmented ascospores (Eriksson and Yue 1989). Therefore, we propose a new combination, *T. punctulatum*, for *Pleospora punctulata*.
Figure 5. *Thyridium punctulatum* (A–N, Q, R KT 3905 = HHUF 30649 O, P YAM 21851 S, T, W–AB culture KT 1015 = JCM 13159 = MAFF 239669 U, V, AC–AK culture KT 3905 = MAFF 247510) A–R sexual morph A, B appearance of stromata on substrate C, D ascomata in longitudinal section E ostiolar neck of ascoma F paraphyses G ascomatal wall H–J asci K apex of ascus L stipe of ascus M–Q ascospores R germinating ascospore S–AD coelomycetous asexual morph S–V conidiomata in culture W conidioma in longitudinal section X conidiomatal wall Y setose hyphae of conidiomata Z, AA conidiophores AB phialides AC, AD conidia AE–AK hyphomycetous synasexual morph AE conidiophore AF slimy head AG phialide AH–AJ conidia AK chlamydospores. Scale bars: 1 mm (A, S); 500 µm (B); 100 µm (C, W); 50 µm (D); 10 µm (E–J, L, R, X–AA, AE, AF); 5 µm (K, M–Q, AB–AD, AG–AK); 200 µm (T–V).
Thyridium revised

Thyridium cornearis (Perdomo, Dania García, Gené, Cano & Guarro) R. Sugita & Kaz. Tanaka, comb. nov.
MycoBank No: 841920

Basionym. Phialemoniopsis cornearis Perdomo, Dania García, Gené, Cano & Guarro, Mycologia 105: 408 (2013).

Thyridium curvatum (W. Gams & W.B. Cooke) R. Sugita & Kaz. Tanaka, comb. nov.
MycoBank No: 841921

Phialemoniopsis curvata (W. Gams & W.B. Cooke) Perdomo, Dania García, Gené, Cano & Guarro, Mycologia 105: 410 (2013).

Basionym. Phialemonium curvatum W. Gams & W.B. Cooke, Mycologia 75: 980 (1983).

Thyridium endophyticum (Lei Su & Y.C. Niu) R. Sugita & Kaz. Tanaka, comb. nov.
MycoBank No: 841922

Basionym. Phialemoniopsis endophytica Lei Su & Y.C. Niu, Mycol. Progr. 15: 3 (2016).

Thyridium hongkongense (Tsang, Chan, Ip, Ngan, Chen, Lau, Woo) R. Sugita & Kaz. Tanaka, comb. nov.
MycoBank No: 841923

Basionym. Phialemoniopsis hongkongensis Tsang, Chan, Ip, Ngan, Chen, Lau, Woo, J. Clin. Microbiol. 52: 3284 (2014).

Figure 6. Colony characters of Thyridium species used in this study on MEA (bottom right), OA (bottom left) and PDA (upper) within 1 week at 25 °C in the dark A. T. flavostromatum (culture KT 3891 = MAFF 247509) B. T. pluriloculosum (culture KT 3803 = MAFF 247508) C. T. punctulatum (culture KT 3905 = MAFF 247510). Scale bars: 3 cm (A–C).
Thyridium limonesiae (A. Riat, L.W. Hou & Crous) R. Sugita & Kaz. Tanaka, **comb. nov.**
MycoBank No: 841927

Basionym. *Phialemoniopsis limonesiae* A. Riat, L.W. Hou & Crous, Emerging Microbes & Infections 10: 403 (2021).

Thyridium oculorum (Gené & Guarro) R. Sugita & Kaz. Tanaka, **comb. nov.**
MycoBank No: 841924

Phialemoniopsis ocularis (Gené & Guarro) Perdomo, Dania García, Gené, Cano & Guarro, Mycologia 105: 411 (2013).

Basionym. *Sarcopodium oculorum* Gené & Guarro, J. Clin. Microbiol. 40: 3074 (2002).

Discussion

We show that the asexual genus *Phialemoniopsis* (established by Perdomo et al. 2013) is a synonym of the sexual genus *Thyridium* (established by Nitschke 1867). We found a new species of *Thyridium* (*T. flavostromatum*), transferred *Pleospora punctulata* into *Thyridium*, and proposed seven new combinations in *Thyridium* for strains previously treated in *Phialemoniopsis*. We provided a revised generic circumscription of *Thyridium* based on both sexual and asexual characteristics and revealed the phylogenetic relationships of species within this genus.

The genus *Thyridium* has been defined mainly on the basis of sexual characters (Nitschke 1867; Eriksson and Yue 1989). Currently, 33 species are recorded in this genus (http://www.indexfungorum.org, 2021). Asexual morphs are unknown in most species of *Thyridium*, with the exceptions of *T. flavum* and *T. vestitum*, in which asexual morphs have been recorded based on sexual-asexual association on the same specimen (Petch 1917) and on the basis of culture study (Leuchtmann and Müller 1986, this study), respectively. In contrast, the genus *Phialemoniopsis* has been defined based only on asexual characters (Perdomo et al. 2013). Its ordinal affiliation within Sordariomycetes has not been resolved, but recent phylogenetic analyses of this class suggest that *Phialemoniopsis* is close to *Thyridium* (Hyde et al. 2021). In our phylogenetic analysis, all species previously described as *Phialemoniopsis* (marked with blue circle; Fig. 1) were clustered in a single clade, including the type species of *Thyridium* (*T. vestitum*), as well as two new strains proposed here (*T. flavostromatum* and *T. punctulatum*). Both genera have similar asexual morphs, which have conidiophores bearing small groups of phialides, hyaline phialidic conidiogenous cells, and ellipsoidal or allantoid, hyaline conidia in both coelomycetous and hyphomycetous states (Petch 1917; Leuchtmann and Müller 1986; Perdomo et al. 2013). Morphological and molecular phylogenetic evidence clearly shows that *Phialemoniopsis* is congeneric with *Thyridium.*
Synonymising *Phialemoniopsis* under *Thyridium* expanded information about the asexual morphs of *Thyridium*. In this genus, only *T. vestitum* has been demonstrated to have asexual morphs by culture studies (Leuchtmann and Müller 1986). It has both coelomycetous and hyphomycetous complex asexual morphs, which have phialidic conidiogenous cells with collarette and ellipsoidal to allantoid hyaline conidia (Leuchtmann and Müller 1986). Members of *Phialemoniopsis* also have coelomycetous and/or hyphomycetous conidial states (Perdomo et al. 2013; Tsang et al. 2014; Su et al. 2016; Martinez et al. 2021). The close relationship of *Phialemoniopsis* and *Thyridium* suggests that such complex asexual morphs may be common within *Thyridium* species.

In *Thyridium*, *T. endophyticum* and *T. curvatum* have been isolated from both plants and animals (Gam and McGinnis 1983; Halleen et al. 2007; Perdomo et al. 2013; Su et al. 2016; Ito et al. 2017). There are several examples of fungal species, including human pathogens, detected from various substrates. For example, *Phaeoacremonium minimum* is a pathogen on grapevines, where it forms both sexual and asexual morphs (Crous et al. 1996; Pascoe et al. 2004), but it has also been reported as a causative agent of subcutaneous phaeohyphomycosis in humans as asexual morph (Choi et al. 2011). Other species of *Thyridium* may also have cryptic life cycles and can colonise each host substrate at different reproductive stages. An example of this prediction can be found in *T. pluriloculosum*. This species was originally found in human nails as an asexual fungus (Perdomo et al. 2013), and its sexual state was rediscovered on twigs of *Betula maximowicziana* in our study.

Epitypification of the type species of *Thyridium* (*T. vestitum*) will be a necessary issue in the future. We used sequences from two non-type strains (CBS 113027, CBS 125582) of this species for phylogenetic analyses but they did not form a monophyletic clade (Fig. 1). Sequence differences between these two strains were found at 34 positions with four gaps in the LSU. These results indicate that the strains obtained from *Acer pseudoplatanus* (CBS 113027) and no host information (CBS 125582) in Austria are not conspecific. A fresh collection of *T. vestitum* on original host plant from the type locality (*Ribes rubrum*, Sweden; Fries 1823) and its phylogenetic analysis are required to fix generic circumscription of *Thyridium*.

Thyrildiales established here may encompass other genera and families with morphologies distinct from the genus *Thyridium* (Thyridiaceae). Some species of “*Linocarpon*” and “*Neolinocarpon*” are nested within the Thyrildiales (Fig. 1). *Linocarpon* and *Neolinocarpon* sensu stricto belong to Linocarpaceae (Chaetosphaeriales) and are morphologically distinct from *Thyridium* in having filiform, straight or curved, unicellular, hyaline, or pale-yellowish ascospores (Huhndorf and Miller 2011; Konta et al. 2017). The “*Linocarpon*” and “*Neolinocarpon*” species phylogenetically unrelated to *Linocarpon* and *Neolinocarpon* sensu stricto may be new lineages in Thyridiaceae or belong to its own new undescribed family. However, we cannot clarify the phylogenetic/taxonomic relatedness of these atypical *Linocarpon*-like species because none of them are ex-types and their morphological information are unavailable. Further molecular phylogenetic study of these fungi based on protein-coding sequences and finding additional specimens/isolates of “*Linocarpon*” and “*Neolinocarpon*” species related to *Thyridium* will be necessary to clarify their taxonomic affiliation and better understand the concept of Thyrildiales.
Acknowledgments

We gratefully acknowledge Y. Harada and K. Arayama for their help with the collection of fungal specimens. We thank the curator of YAM, S. Ito, who permitted us to examine type collection. This work was partially supported by grants from the Japan Society for the Promotion of Science (JSPS 19K06802).

References

Akaike H (1974) A new look at the statistical model identification. IEEE Transactions on Automatic Control 19: 716–723. https://doi.org/10.1109/TAC.1974.1100705

Arzanlou M, Groenewald JZ, Gams W, Braun U, Shin H-D, Crous PW (2007) Phylogenetic and morphotaxonomic revision of *Ramichloridium* and allied genera. Studies in Mycology 58: 57–93. https://doi.org/10.3114/sim.2007.58.03

Bahl J (2006) Molecular evolution of three morphologically similar families in the Xylariomycetidae (Apiosporaceae, Clypeosphaeriaceae, Hyponecrotriaceae). PhD thesis, The University of Hong Kong. Pokfulam, Hong Kong. http://hdl.handle.net/10722/51007

Campbell J, Shearer CA (2004) *Annulus magnus* and *Ascitetus*, two new genera in the Annu-lataccaeae. Mycologia 96: 822–833. https://doi.org/10.1080/15572536.2005.11832929

Castlebury LA, Rossman AY, Jaklitsch WJ, Vasilyeva LN (2002) A preliminary overview of the Diaporthales based on large subunit nuclear ribosomal DNA sequences. Mycologia 94: 1017–1031. https://doi.org/10.1080/15572536.2003.11833157

Checa J, Blanco MN, Moreno G (2013) Contributions to the family Thyridiaceae. New data on *Sphaeria mutabilis*. Mycotaxon 125: 149–164. https://doi.org/10.5248/125.149

Choi J, Lee Y, Chung HS, Koo JS, Yong D, Kim YS, Lee K, Chong Y (2011) Subcutaneous Phaeohyphomycosis caused by *Phaeoacremonium* species in a kidney transplant patient: the first case in Korea. The Korean Journal of Laboratory Medicine 31: 201–204. https://doi.org/10.3343/kjlm.2011.31.3.201

Crous PW, Gams W, Wingfield MJ, Wyk PSV (1996) *Phaeoacremonium* gen. nov. associated with wilt and decline diseases of woody hosts and human infections. Mycologia 88: 786–796. https://doi.org/10.1080/00275514.1996.12026716

Crous PW, Luangsa-Ard JJ, Wingfield MJ, Carnegie AJ, Hernández-Restrepo M, Lombard L, Roux J, Barreto RW, Baseia IG, Cano-Lira JF, Martín MP, Morozova OV, Stchigel AM, Summerell BA, Brandrud TE, Dima B, García D, Giraldo A, Guarro J, Gusmão LFP, Kham-suntorn P, Noorde loos ME, Nuan kaew S, Pinruan U, Rodríguez-Andrade E, Souza-Motta CM, Thangavel R, van Iperen AL, Abreu VP, Accioly T, Alves JL, Andrade JP, Bahram M, Baral H-O, Barbier E, Barnes CW, Bendiksen E, Bernard E, Bezerra JDP, Bezerra JL, Bizio E, Blair JE, Bulyonkova TM, Cabral TS, Caiafa MV, Cantillo T, Colmán AA, Conceição LB, Cruz S, Cunha AOB, Darveaux BA, da Silva AL, da Silva GA, da Silva GM, da Silva RMF, de Oliveira RJV, Oliveira RL, De Souza JT, Dueñas M, Evans HC, Epifani F, Felipe MTC, Fernández-López J, Ferreira BW, Figueiredo CN, Filippova NV, Flores JA, Gené J, Ghorbani G, Gibertoni TB, Glushakova AM, Healy R, Huhndorf SM, Iturrieta-González
Crous PW, Wingfield MJ, Le Roux JJ, Richardson DM, Strasberg D, Shivis RG, Alvarado P, Edwards J, Moreno G, Sharma R, Sonawane MS, Tan YP, Altés A, Barasubhiya T, Barnes CW, Blanchette RA, Boertmann D, Bogo A, Carlavilla JR, Cheewangkoon R, Daniel R, de Beer ZW, de Jesús Yáñez-Morales M, Duong TA, Fernández-Vicente J, Geering ADW, Guest DI, Held BW, Heykoop M, Hubka V, Ismail AM, Kajale SC, Khemmuk W, Kolařík M, Kurli R, Lebeuf R, Lévesque CA, Lombard L, Magista D, Manjón JL, Marincowitz S, Mostert L, Nigro F, Pereira OL, Picillo B, Pinho DB, Popov ES, Rodas Peláez CA, Rooney-Latham S, Sandoval-Denis M, Shivis RG, Silva V, Stolov-Pishevaya MM, Telleria MT, Ullah C, Uneker SB, van der Merwe NA, Vizzini A, Wagner H-G, Wong PTW, Wood AR, Groenewald JZ (2015a) Fungal Planet description sheets: 320–370. Persoonia 34: 167–266. http://dx.doi.org/10.3767/003158515X688433
S, Mohedano JM, Nováková A, Oberlies NH, Otto EC, Paguigan ND, Pascoe IG, Pérez-Butrón JL, Perrone G, Rahi P, Raja HA, Rintoul T, Sanhueza RMV, Scarlett K, ShoucheYS, Shuttleworth LA, Taylor PWJ, Thorn RG, Vawdrey LL, Vidal RS, Voitk A, Wong PTW, Wood AR, Zamora JC, Groenewald JZ (2015b) Fungal Planet description sheets: 371–399. Persoonia 35: 264–327. http://dx.doi.org/10.3767/003158515X690269

Cruse M, Telerant R, Gallagher T, Lee T, Taylor JW (2002) Cryptic species in Stachybotrys chartarum. Mycologia 94: 814–822. https://doi.org/10.1080/15572536.2003.11833175

Desoubeaux G, Garcia D, Bailly E, Augereau O, Bacle G, De Muret A, Bernard L, Cano-Lira JF, Garcia-Hermos D, Chandenier J (2014) Subcutaneous phaeohyphomycosis due to Phialemoniopsis ocularis successfully treated by voriconazole. Medical Mycology Case Reports 5: 4–8. https://doi.org/10.1016/j.mmcr.2014.04.001

Eriksson OE, Yue J-Z (1989) An amended description and disposition of the genus Thyridium. Systema Ascomycetum 8: 9–16.

Fries EM (1823) Systema Mycologicum 2: 276–620.

Gams W, McGinnis MR (1983) Phialemonium, a new anamorph genus intermediate between Phialophora and Acremonium. Mycologia 75: 977–987. https://doi.org/10.1080/00275514.1983.12023783

Huhndorf SM, Greif M, Mugambi GK, Miller AN (2008) Two new genera in the Magnaporthaceae, a new addition to Ceratosphaeria and two new species of Lentomitella. Mycologia 100: 940–955. https://doi.org/10.3852/08-037

Huhndorf SM, Miller AN (2011) A molecular re-appraisal of taxa in the Sordariomycetidae and a new species of Rimaconus from New Zealand. Studies in Mycology 68: 203–210. https://doi.org/10.3114/sim.2011.68.09

Huhndorf SM, Miller AN, Fernández FA (2004) Molecular systematics of the Sordariales: the order and the family Lasiosphaeriaceae redefined. Mycologia 96: 368–387. https://doi.org/10.1080/15572536.2005.11832982

Hyde KD, Bao DF, Hongsanan S, Chethana KWT, Yang J, Suwannarach N (2021) Evolution of freshwater Diaporthomycetidae (Sordariomycetes) provides evidence for five new orders and six new families. Fungal Diversity 107: 71–105. https://doi.org/10.1007/s13225-021-00469-7

Hyde KD, Chaiwan N, Norphanphoung C, Boonmee S, Camporesi E, Chethana KWT, Dayaratna MC, de Silva NI, Dissanayake AJ, Ekanayaka AH, Hongsanan S, Huang SK, Jayasiri SC, Jayawardena R, Jiang HB, Karunaratna A, Lin CG, Liu JK, Liu NG, Lu YZ, Luo ZL, Maharachchimbura SSN, Manawasinghe IS, Pem D, Perera RH, Phukhamsakda C, Samarakoon MC, Senwanna C, Shang QI, Tennakoon DS, Thambugala KM, Tibpromma, S, Wanasinghe DN, Xiao YP, Yang J, Zeng XY, Zhang JF, Zhang SN, Bulgakov TS, Bhat
Thyridium revised

DJ, Cheewangkoon R, Goh TK, Jones EBG, Kang JC, Jeewon R, Liu ZY, Lumyong S, Kuo CH, McKenzie EHC, Wen TC, Yan JY, Zhao Q (2018) Mycosphere notes 169–224. Mycosphere 9: 271–430. https://doi.org/10.5943/mycosphere/9/2/8

Ito A, Yamada N, Kimura R, Tanaka N, Kurai J, Anzawa K, Mochizuki T, Yamamoto O (2017) Concurrent double fungal infections of the skin caused by Phialemoniopsis endophytica and Exophiala jeanselmei in a patient with microscopic polyangiitis. Acta Dermato-Venereologica 97: 1142–1144. https://doi.org/10.2340/00015555-2734

Jaklitsch WM, Rébllová M, Voglmayr H (2013) Molecular systematics of Wossasia atropurpurea gen. et sp. nov. (Sordariomycetidae), a fungicolous ascomycete with globose ascospores and holoblastic conidiogenesis. Mycologia 105: 476–485. https://doi.org/10.3852/12-244

Khemmuk W, Geering ADW, Shivas RG (2016) Wongia gen. nov. (Papulosaceae, Sordariomycetes), a new generic name for two root-infecting fungi from Australia. IMA Fungus 7: 247–252. https://doi.org/10.5943/imafungus.2016.07.02.04

Konta S, Hongsanan S, Liu JK, Eungwanichayapant PD, Jeewon R, Hyde KD, Maharachkikumbura SSN, Boonmee S (2017) Leptosporella (Leptosporellaceae fam. nov.) and Linocarpus and Neolinocarpon (Linocarpaceae fam. nov.) are accommodated in Chaetosphaeriales. Mycosphere 8: 1943–1974. https://doi.org/10.5943/mycosphere/8/10/16

Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33: 1870–1874. https://doi.org/10.1093/molbev/msw054

Leuchtmann A, Müller E (1986) Über Thyridium vestitum und sein anamorph (Ascomycetes). Botanica Helvetica 96: 283–287. http://doi.org/10.5169/seals-67205

Liu YJ, Whelen S, Hall BD (1999) Phylogenetic relationships among ascomycetes: Evidence from an RNA polymerase II subunit. Molecular Biology and Evolution 16: 1799–1808. https://doi.org/10.1093/bioinformatics/ btq224

Luo ZL, Hyde KD, Liu JK, Bhat DJ, Bao DF, Li WL, Su HY (2018) Lignicolous freshwater fungi from China II: Novel Distoseptispora (Distoseptisporaceae) species from northwestern Yunnan Province and a suggested unified method for studying lignicolous freshwater fungi. Mycospere 9: 444–461. https://doi.org/10.5943/mycosphere/9/3/2

Luo ZL, Hyde KD, Liu JK, Maharachkikumbura SSN, Jeewon R, Bao DF, Bhat DJ, Lin CG, Li WL, Yang J, Liu NG, Lu Y-Z, Jayawardena RS, Li JF, Su HY (2019) Freshwater Sordariomycetes. Fungal Diversity 99: 451–660. https://doi.org/10.1007/s13225-019-00438-1

Lutzoni F, Kauff F, Cox CJ, McLaughlin D, Celio G, Dentinger B, Padamsee M, Hibbett D, James TY, Baloch E, Grube M, Reeb V, Hofstetter V, Schoch C, Arnold AE, Miadlikowska J, Spatafora J, Johnson D, Hambleton S, Crockett M, Shoemaker R, Sung GH, Lücking R, Lumbsch T, O’Donnell K, Binder M, Diederich P, Etz D, Gueidan C, Hansen K, Harris RC, Hosaka K, Lim Y-W, Matheny B, Nishida H, Pfister D, Rogers J, Rossman A, Schmitt I, Sipman H, Stone J, Sugiyama J, Yah R, Vilgalys R (2004) Assembling the fungal tree of life: progress, classification, and evolution of subcellular traits. American Journal of Botany 91: 1446–1480. https://doi.org/10.3732/ajb.91.10.1446

Mardones M, Trampe-Jaschik T, Oster S, Elliott M, Urbina H, Schmitt I, Piepenbring M (2017) Phylogeny of the order Phyllachorales (Ascomycota, Sordariomycetes): Among and within order relationships based on five molecular loci. Persoonia 39: 74–90. https://doi.org/10.3767/persoonia.2017.39.04
Martinez DA, Alberto C, Riat A, Schuhler C, Valladares P, Ninet B, Kraak B, Crous PW, Hou LW, Trellu LT (2021) Phialemoniopsis limonesiae sp. nov. causing cutaneous phaeohyphomycosis in an immunosuppressed woman. Emerging Microbes & Infections 10: 400–406. https://doi.org/10.1080/22221751.2021.1892458
Miller AN, Huhndorf SM (2004a) A natural classification of Lasiosphaeria based on nuclear LSU rDNA sequences. Mycological Research 108: 26–34. https://doi.org/10.1017/S0953756203008864
Miller AN, Huhndorf SM (2004b) Using phylogenetic species recognition to delimit species boundaries within Lasiosphaeria. Mycologia 96: 1106–1127. https://doi.org/10.1080/15572536.2005.11832909
Miller AN, Huhndorf SM (2005) Multi-gene phylogenies indicate ascomal wall morphology is a better predictor of phylogenetic relationships than ascospore morphology in the Sordariales (Ascomycota, Fungi). Molecular Phylogenetics and Evolution 35: 60–75. https://doi.org/10.1016/j.ympev.2005.01.007
Nitsche T (1867) Pyrenomycetes Germanici. Die Kernpilze Deutschlands. 1: 1–160. Eduard Trewendt, Breslau. https://hdl.handle.net/2027/coo.31924000644199
Pascoe IG, Edwards J, Cunnington JH, Cottral EH (2004) Detection of the Togninia teleomorph of Phaeoacremonium aleophilum in Australia. Phytopathologia Mediterranea 43: 51–58. https://doi.org/10.1400/14571
Perdomo H, García D, Gené J, Cano J (2013) Phialemoniopsis, a new genus of Sordariomycetes, and new species of Phialemonium and Lecythophora. Mycologia 105: 398–421. https://doi.org/10.3852/12-137
Petch T (1917) Additions to Ceylon fungi. Annals of the Royal Botanic Gardens Peradeniya 6: 195–256. https://www.biodiversitylibrary.org/page/52423816
Pinruan U, Sakayaroj J, Hyde KD, Jones EBG (2008) Thailandiomyces bisetulosus gen. et sp. nov. (Diaporthales, Sordariomycetidae, Sordariomycetes) and its anamorph Craspedodidymum, is described based on nuclear SSU and LSU rDNA sequences. Fungal Diversity 29: 89–98.
Raja HA, Campbell J, Shearer CA (2003) Freshwater ascomycetes: Cyanoannulus peterseni, a new genus and species from submerged wood. Mycotaxon 88: 1–17. http://www.cybertruffle.org.uk/cyberliber/
Rambaut A, Suchard MA, Drummond AJ (2014) Tracer 1.6. http://beast.bio.ed.ac.uk/Tracer
Rayner RW (1970) A mycological colour chart. CMI and British Mycological Society. Kew, Surrey.
Réblová M (2006) Molecular systematics of Ceratostomella sensu lato and morphologically similar fungi. Mycologia 98: 68–93. https://doi.org/10.1080/15572536.2006.11832714
Réblová M (2007) Barbatosphaeria gen. et comb. nov., a new genus for Calosphaeria barbistrosis. Mycologia 99: 723–732. https://doi.org/10.1080/15572536.2007.11832536
Réblová M (2009) Teleomorph of Rhodoveronaea (Sordariomycetidae) discovered and re-evaluation of Pleurophragmium. Fungal Diversity 36: 129–139.
Réblová M (2011) New insights into the systematics and phylogeny of the genus Jattaea and similar fungi of the Calosphaeriales. Fungal Diversity 49: 167–198. https://doi.org/10.1007/s13225-011-0099-8
Réblová M (2013) Two taxonomic novelties in the Sordariomycetidae: Ceratolenta caudata gen. et sp nov and Platytrachelan abietis gen. et comb. nov for Ceratosphaeria abietis. Mycologia 105: 462–475. https://doi.org/10.3852/12-199
Réblová M, Fournier J, Hyde KD (2010) *Achroceratosaephaeria*, a new ascomycete genus in the Sordariomycetes, and re-evaluation of *Cerataosphaeria incolorata*. Fungal Diversity 43: 75–84. https://doi.org/10.1007/s13225-010-0032-6

Réblová M, Fournier J, Štěpánek V (2016) Two new lineages of aquatic ascomycetes: *Atractospora* gen. nov. and *Rubellisphaeria* gen. et sp. nov., and a sexual morph of *Myrmeicridium montsegurinum* sp. nov. Mycological Progress 15: 21. https://doi.org/10.1007/s11557-016-1166-z

Réblová M, Gams W, Seifert KA (2011) *Monilochaetes* and allied genera of the Glomerellales, and a reconsideration of families in the Microascales. Studies in Mycology 68: 163–191. https://doi.org/10.3114/sim.2011.68.07

Réblová M, Miller AN, Réblová K, Štěpánek V (2018) Phylogenetic classification and generic delineation of *Calypsoosphaeria* gen. nov., *Lentomitella*, *Spadicoides* and *Torrentispora* (Sordariomycetes). Studies in Mycology 89: 1–62. https://doi.org/10.1016/j.simyco.2017.11.004

Réblová M, Mostert L, Gams W, Crous PW (2004) New genera in the Calosphaeriales: *Togniniella* and its anamorph *Phaeocrella*, and *Calosphaeriophora* as anamorph of *Calosphaeria*. Studies in Mycology 50: 533–550.

Réblová M, Réblová K, Štěpánek V (2015) Molecular systematics of *Barbatosphaeria* (Sordariomycetes): multigene phylogeny and secondary ITS structure. Persoonia 35: 21–38. http://dx.doi.org/10.3767/003158515X687434

Réblová M, Seifert KA, Fournier J, Štěpánek V (2012) Phylogenetic classification of *Pleurotheccium* and *Pleurotheccielia* gen. nov and its dactylaria-like anamorph (Sordariomycetes) based on nuclear ribosomal and protein-coding genes. Mycologia 104: 1299–1314. https://doi.org/10.3852/12-035

Réblová M, Štěpánek V, Schumacher RK (2014) *Xylochrysis lucida* gen. et sp. nov., a new lignicolous ascomycete (Sordariomycetidae) with holoblastic conidiogenesis. Mycologia 106: 564–572. https://doi.org/10.3852/13-266

Rehner SA, Buckley E (2005) A *Beauveria* phylogeny inferred from nuclear ITS and EF1-α sequences: evidence for cryptic diversification and links to *Cordyceps* teleomorphs. Mycologia 97: 84–98. https://doi.org/10.1080/15572536.2006.11832842

Rehner SA, Samuels GJ (1994) Taxonomy and phylogeny of *Gliocladium* analysed from nuclear large subunit ribosomal DNA sequences. Mycological Research 98: 625–634. https://doi.org/10.1016/S0953-7562(09)80409-7

Ronquist F, Teslenko M, van der Mark P, Ayres DL, Draling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbech JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542. https://doi.org/10.1093/sysbio/sys029

Roumeguère C (1891) Fungi exsiccati praecipue Gallici. Centurie LIX. Revue Mycologique Toulouse. 13: 163–173. https://www.biodiversitylibrary.org/page/11828914

Saccardo PA (1891) Supplementum Universale, Pars I. Agaricaeae-Laboulbeniaceae. Sylloge Fungorum 9: 1–1141. https://www.biodiversitylibrary.org/page/4300290

Samuels GJ, Rogerson CT (1989) *Endoceras lasiacidis* and *Sinospaeria lasiacidis*, new tropical ascomycetes. Studies in Mycology. 31: 145–149. http://www.cybertruffle.org.uk/cyberliber/
Schoch CL, Sung G-H, Lópeu-Giráldez F, Townsend JP, Miadlikowska J, Hofstetter V, Robbertse B, Matheny PB, Kauff F, Wang Z, Gueidan C, Andrie RM, Trippe K, Ciufetti LM, Wynns A, Fraker E, Hodkinson BP, Bonito G, Groenewald JZ, Arzanlou M, de Hoog GS, Crous PW, Hewitt D, Pfister DH, Peterson K, Gryzenhout M, Wingfield MJ, Aptroot A, Suh S-O, Blackwell M, Hillis DM, Griffith GW, Castlebury LA, Rossman AY, Lumbsch TH, Lücking R, Büdel B, Rauhut A, Diederich P, Ertz D, Geiser DM, Hosaka K, Inderbitzin P, Kohlmeyer J, Volkman-Kohlmeyer B, Mostert L, O’Donnell K, Sipman H, Rogers JD, Shoemaker RA, Sugiyama J, Summerbell RC, Unterreiner W, Johnston PR, Stenroos S, Zuccaro A, Dyer PS, Crittenden PD, Cole MS, Hansen K, Trappe JM, Yahr R, Lutzoni F, Spatafora JW (2009) The Ascomycota Tree of Life: A Phylum-wide Phylogeny Clarifies the Origin and Evolution of Fundamental Reproductive and Ecological Traits. Systematic Biology 58: 224–239. https://doi.org/10.1093/sysbio/syp020

Schwarz G (1978) Estimating the dimension of a model. The Annals of Statistics 6: 461–464. https://doi.org/10.1214/aos/1176344136

Senanayake IC, Al-Sadi AM, Bhat JD, Camporesi E, Dissanayake AJ, Lumyong S, Maharachchikumbura SSN. Hyde KD (2018) Phomatosporales ord. nov. and Phomatosporaceae fam. nov., to accommodate Lanspora, Phomatospora and Tenuimurus, gen. nov. Mycosphere 7: 628–641. https://doi.org/10.5943/mycosphere/7/5/8

Senanayake IC, Al-Sadi AM, Bhat JD, Camporesi E, Dissanayake AJ, Lumyong S, Maharachchikumbura SSN. Hyde KD (2018) Phomatosporales ord. nov. and Phomatosporaceae fam. nov., to accommodate Lanspora, Phomatospora and Tenuimurus, gen. nov. Mycosphere 7: 628–641. https://doi.org/10.5943/mycosphere/7/5/8

Shenoy BD, Jeewon R, Wu WP, Bhat DJ, Hyde KD (2006) Ribosomal and RPB2 DNA sequence analyses suggest that Sporidesmium and morphologically similar genera are polyphyletic. Mycological Research 110: 916–928. https://doi.org/10.1016/j.mycres.2006.06.004

Smith GJD, Liew ECY, Hyde KD (2006) The Xylariales: a monophyletic order containing 7 families. Fungal Diversity 13: 185–218.

Spatafora JW, Sung GH, Johnson D, Hesse C, O’Rourke B, Serdani M, Spotts R, Lutzoni F, Hofstetter V, Miadlikowska J, Reeb V, Gueidan C, Fraker E, Lumbsch T, Lücking R, Schmitt I, Hosaka K, Aptroot A, Roux C, Miller AN, Geiser DM, Hafellner J, Hestmark G, Arnold AE, Büdel B, Rauhut A, Hewitt D, Unterreiner WA, Cole MS, Scheidegger C, Schultz M, Sipman H, Schoch CL (2006) A five-gene phylogeny of Pezizomycotina. Mycologia 98: 1018–1028. https://doi.org/10.1080/15572536.2006.11832630

Suetrong S, Klaysuban A, Sakayaroj A, Preedanon S, Ruang-Areerate P, Phongpaichit S, Pang K-L, Jones EBG (2015) Tirisporellaceae, a new family in the order Diaporthales (Sordariomycetes, Ascomycota). Cryptogamie, Mycologie 36: 319–330. https://doi.org/10.7872/crym/v36.iss3.2015.319

Su L, Deng H, Niu Y-C (2016) Phialemoniopsis endophytica sp. nov., a new species of endophytic fungi from Luffa cylindrica in Henan, China. Mycological Progress 15: e48. https://doi.org/10.1007/s11557-016-1189-5

Tanabe AS (2011) Kakusan4 and Aminosan: two programs for comparing nonpartitioned, proportional and separate models for combined molecular phylogenetic analyses of multilocus sequence data. Molecular Ecology Resources 11: 914–921. https://doi.org/10.1111/j.1755-0998.2011.03021.x

Tang AMC, Jeewon R, Hyde KD (2007) Phylogenetic utility of protein (RPB2, b-tubulin) and ribosomal (LSU, SSU) gene sequences in the systematics of Sordariomycetes (Ascomycota, Fungi). Antonie van Leeuwenhoek 91: 327–349. https://doi.org/10.1007/s10482-006-9120-8
Taylor JE, Hyde KD, Jones EBG (1997) Fungi from palms. XXXV. *Thyridium chrysomallum* associated with *Archontophoenix alexandrae* (Palmae) cultivated in Hong Kong. Sydowia 49: 94–100. https://www.zobodat.at/pdf/Sydowia_49_0094-0100.pdf

Thongkantha S, Jeewon R, Vijaykrishna D, Lumyong S, McKenzie EHC, Hyde KD (2009) Molecular phylogeny of Magnaporthaceae (Sordariomycetes) with a new species *Ophioceras chiangdaense* from *Dracaena loureiroi* in Thailand. Fungal Diversity 34: 157–173.

Tsang C-C, Chan JFW, Ip PPC, Ngan AHY, Chen JHK, Lau SKP, Woo PCY (2014) Subcutaneous phaeohyphomycotic nodule due to *Phialemoniopsis hongkongensis* sp. nov. Journal of Clinical Microbiology 52: 3280–3289. https://doi.org/10.1128/JCM.01592-14

Untereiner WA, Bogale M, Carter A, Hanson SÅ, Læssøe T, Štěpánek V, Réblová M (2013) Molecular phylogeny of Boliniales (Sordariomycetes) with an assessment of the systematics of *Apiorhynchostoma*, *Endoxyla* and *Pseudovalsaria*. Mycologia 105: 564–588. https://doi.org/10.3852/12-326

Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several *Cryptococcus* species. Journal of Bacteriology 172: 4238–4246. https://doi.org/10.1128/jb.172.8.4238-4246.1990

Viljoen CD, Wingfield BD, Wingfield MJ (1999) Relatedness of *Custingophora olivacea* to *Gondwananymyces* spp. from *Protea* spp. Mycological Research 103: 497–500. https://doi.org/10.1017/S0953756298007424

Voglmayr H, Friebes G, Gardiennet A, Jaklitsch WM (2018) *Barrmaelia* and *Entosordaria* in Barrmaeliaceae (fam. nov., Xylariales) and critical notes on *Anthostomella*-like genera based on multigene phylogenies. Mycological Progress 17: 155–177. http://dx.doi.org/10.1007/s11557-017-1329-6

Voigt K, Wöstemeyer J (2000) Reliable amplification of actin genes facilitates deep-level phylogeny. Microbiological Research 155: 179–195. https://doi.org/10.1016/S0944-5013(00)80031-2

Vu D, Groenewald M, de Vries M, Gehrmann T, Stielow B, Eberhardt U, Al-Hatmi A, Groenewald JZ, Cardinali G, Houbraken J, Boekhout T, Crous PW, Robert V, Verkley GJM (2019) Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation. Studies in Mycology 92: 135–154. https://doi.org/10.1016/j.simyco.2018.05.001

White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (Eds) PCR Protocols: a guide to methods and amplifications. Academic Press, San Diego, 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1

Wong S-W, Hyde KD, Jones EBG, Moss ST (1999) Ultrastructural studies on the aquatic ascomycetes *Annulatascus velatisporus* and *A. triseptatus* sp. nov. Mycological Research 103: 561–571. https://doi.org/10.1017/S0953756298007473

Xia JW, Ma YR, Li Z, Zhang XG (2017) *Acrodictys*-like wood decay fungi from southern China, with two new families *Acrodictyaceae* and *Junewangiaceae*. Scientific Reports 7: 7888. https://doi.org/10.1038/s41598-017-08318-x

Yaguchi T, Sano A, Yarita K, Suh MK, Nishimura K, Udagawa S (2006) A new species of *Cephalotheca* isolated from a Korean patient. Mycotaxon 96: 309–322. http://www.cyber-truffle.org.uk/cyberliber/
Yang J, Maharachchikumbura SSN, Liu J-K, Hyde KD, Jones EBG, Al-Sadi AM, Liu Z-Y (2018) *Pseudostanjehughesia aquitropica* gen. et sp. nov. and *Sporidesmium* sensu lato species from freshwater habitats. Mycological Progress 17: 591–616. https://doi.org/10.1007/s11557-017-1339-4

Yue J-Z, Eriksson OE (1987) *Sinosphaeria bambusicola* gen. et sp. nov., (Thyridiaceae fam. nov.). Systema Ascomycetum 6: 229–236.

Zhang H, Dong W, Hyde KD, Maharachchikumbura SSN, Hongsanan S, Bhat DJ, Al-Sadi AM, Zhang D (2017) Towards a natural classification of Annulatastaceae-like taxa: introducing Atractosporales ord. nov. and six new families. Fungal Diversity 85: 75–110. https://doi.org/10.1007/s13225-017-0387-z

Zhang N, Castlebury LA, Miller AN, Huhndorf SM, Schoch CL, Seifert KA, Rossman AY, Rogers JD, Kohlmeyer J, Volkmann-Kohlmeyer B, Sung G-H (2006) An overview of the systematics of the Sordariomycetes based on a four-gene phylogeny. Mycologia 98: 1076–1087. https://doi.org/10.1080/15572536.2006.11832635

Zhang N, Zhao S, Shen Q (2011) A six-gene phylogeny reveals the evolution of mode of infection in the rice blast fungus and allied species. Mycologia 103: 1267–1276. https://doi.org/10.3852/11-022