Gene therapies for high-grade gliomas: from the bench to the bedside

Alice Giotta Lucifero¹, Sabino Luzzi¹,², Ilaria Brambilla¹, Carmen Guarracino⁵, Mario Mosconi², Thomas Foiadelli³, Salvatore Savasta⁶

¹ Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy; ² Neurosurgery Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; ³ Pediatric Clinic, Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy

Abstract. Background: Gene therapy is the most attractive therapeutic approach against high-grade gliomas (HGGs). This is because of its theoretical capability to rework gene makeup in order to yield oncolytic effects. However, some factors still limit the upgrade of these therapies at a clinical level of evidence. We report an overview of glioblastoma gene therapies, mainly focused on the rationale, classification, advances and translational challenges.

Methods: An extensive review of the online literature on gene therapy for HGGs was carried out. The PubMed/MEDLINE and ClinicalTrials.gov websites were the main sources. Articles in English published in the last five years were sorted according to the best match with the multiple relevant keywords chosen. A descriptive analysis of the clinical trials was also reported.

Results: A total of 85 articles and 45 clinical trials were selected. The main types of gene therapies are the suicide gene, tumor suppressor gene, immunomodulatory gene and oncolytic therapies (virotherapies). The transfer of genetic material entails replication-deficient and replication-competent oncolytic viruses and nanoparticles, such as liposomes and cationic polymers, each of them having advantages and drawbacks.

Conclusion: Gene therapies constitute a promising approach against HGGs. The selection of new and more effective target genes, the implementation of gene-delivery vectors capable of greater and safer spreading capacity, and the optimization of the administration routes constitute the main translational challenges of this approach.

Key words: Gene Therapy; Glioblastoma; High Grade Glioma; Suicide Gene Therapies; Virotherapy.

Background

High-grade gliomas (HGGs) are by far the dead-liest primary brain neoplasms.¹² Despite the evolution of the different therapies, prognosis of these tumors remains poor, with a median survival ranging between 12 and 15 months, and less than 10% of the patients surviving at 5 years.³⁴ In line with the urgent need for new and more effective approaches, the increased understanding of the glioma genetic landscape, together with the tremendous advances in biotechnologies, led to the development of new and more sophisticated treatment options.⁶⁻¹² Gene therapy is among the most attractive therapeutic approach for malignant brain tumors, primarily glioblastoma (GBM). The rationale of the gene therapies lies in reworking the gene makeup in order to yield therapeutic effects. These types of therapies propose transferring and manipulating target genes, resulting in ceasing the progression of cancer and contextually enhancing the antitumoral immune response.¹³⁻¹⁶ The engineering of delivery agents, including viral vectors, oncolytic viruses and non-viral
nanoparticles, constitutes an essential aspect of the
gene therapies.17-19

The literature review herein reported is an over-
view of the gene therapies for the treatment of high-
grade gliomas. The rationale, classification, advances,
limitations, challenges, evidence from the clinical trials
and future prospects of gene therapies in the neuro-
oncological field are also discussed.

\section*{Methods}

An online search of the literature was conducted on
the PubMed/MEDLINE (https://pubmed.ncbi.nlm.
nih.gov) and ClinicalTrials.gov (https://clinicaltrials.
gov) websites.

On the PubMed/MEDLINE search the MeSH
(Medical Subject Headings) database and free mode
search used with the terms “Gene Therapy”, “Ge-
etic Strategies”, “Gene Modification Technologies”,
“Genome Editing Technologies”, “Immunomodulation
therapies”, “Suicide Gene Therapy”, “Tumor Suppres-
sion Gene Therapy”, “Oncolytic Viral Therapy”, “Na-
notechology-Based Gene Therapy”, “Viral Delivery
Strategies” and “Virotherapy”, with the following key-
words: “High-grade gliomas”, “Malignant brain tumor”
and “Glioblastoma”. Only articles in English or translat-
ed into English, published in the last five years were pre-
ferred, sorted according to the best match and relevance.

On the ClinicalTrials.gov website the text words
were “Central Nervous System Tumor”, “Malignant
Brain Tumor”, “Brain Cancer”, “High-grade gliomas”
and “Brain Tumor”, used in the field “condition/dis-
ease”, without restrictions for drug name, study phase
and recruitment status. A descriptive analysis of the
retrieved trials was reported.

\section*{Results}

\subsection*{1 Volume of the literature}

The search returned a total of 120 articles and 56
clinical trials. After the implementation of the exclu-
sion criteria and removal of duplicates, 85 relevant ar-
ticles and 45 clinical trials were collected.

2 General Aspects

A common aspect of the gene therapies lies in
the need to introduce the genetic material into the
target cells. This is achieved by means of specific bio-
logical or manufactured carriers differentiated by size,
tumor tropism, transduction efficacy, oncolytic ef-
fect, pathogenicity and immunological potential.20-23
Viral and non-viral carriers are the methods common-
ly used, each of them having advantages and draw-
backs. Among non-viral carriers, nanoparticles and
liposomes have been tested. Table 1 reports an over-
view of the vectors tested24 (Table 1).

\section*{Classification of Gene Therapies}

A proposed classification of the gene therapies in-
volves the distinction between the suicide gene, tumor
suppressor gene, immunomodulatory gene and onco-
lytic therapies (virotherapies).

Table 2 summarizes the proposed classification of
gene therapies (Table 2).

3.1 Suicide Gene Therapies

The suicide gene strategy is based on the in-
troduction of a transgene into the tumor cells and
the concomitant systemic delivery of a prodrug. The
transgene, namely the “suicide gene”, codifies for one
or more enzymes capable of converting the adminis-
tered inactive prodrug into its oncolytic equivalent.25
Herpes Simplex Virus Thymidine Kinase (HSV-TK),
Cytosine Deaminase (CD) and E. coli-derived Pu-
rine Nucleoside Phosphorylase (PNP) have been the
most studied suicide genes in GBM therapy. A further
amplification of the therapeutic effect of suicide gene
therapy comes from the so-called “bystander effect”,
consisting in the possibility that the encoded gene and
the apoptotic signal also affect the neighboring non-
transduced cells through the gap-junctions and further
complex molecular mechanisms.

3.1.1 HSV-TK

The HSV-TK enzyme is involved in DNA rep-
lication and catalyzes the phosphorylation of some
Table 1. Comparison between viral and non-viral vectors

Vectors	Viral	Non-viral			
	AV	HSV	RT	AAV	Liposomes
Size (nm)	100-200	120-300	100	20	20-200
Cargo	dsDNA	dsDNA	RNA	ssDNA	dsDNA/RNA
Transport Capacity (kB)	> 5	30-50	10-15	< 5	+/-
Transduction Efficacy	+	++	+/-	-	+
Oncolytic Effect	Yes/No	Yes/No	No	No	No
Immunogenic Potential	++	++	+/-	+/-	--
Risk of Mutagenesis	No	No	Yes	No	No

AAV: Adeno Associated Virus; AD: Adenovirus; HSV: Herpes Simplex Virus; RT: Retrovirus
"++": very high; "+": high; "+/-": medium; "-": low; "- -": very low.

Table 2. Classification of Gene Therapies for Malignant Brain Tumors

Strategies	Suicide Gene Therapies	Tumor Suppressor Gene Therapies	Immunomodulatory Gene Therapies	Oncolytic Virotherapies	Genome Editing Therapies			
Mechanism	Gene encoding a prodrug activating enzyme	Restoration of antitumoral genes function through their replacement	Enhancing antitumoral immune response throughout genes encoding immunostimulating factors	Replication-competent virus capable of infect and replicate in tumor cells	DNA editing and rearrangement throughout specific nucleases			
Genes	HSV-TK	p53	IFN-β	Oncolytic viruses	HSVs	CRAds	MV	PVS-RIPO
	CD	p16						
	PNP	PTEN	IL-2, IL-4, IL-12					

CD: Cytosine Deaminase; CRAds: Conditionally Replicating Adenovirus; HSV-TK: Herpes Simplex Virus Thymidine Kinase; IFN-β: Human Interferon β; IL: Interleukine; MV: Measles Paramyxovirus; PNP: Purine Nucleoside Phosphorylase; PTEN: Phosphatase and Tensin Homologue; PVS-RIPO: Recombinant Nonpathogenic Polio-Rhinovirus; TALENs: Transcription Activator-Like Effector Nucleases; ZFNs: Zinc-Finger Nucleases.

nucleoside analogue antiviral prodrugs, such as ganciclovir (GCV), acyclovir and valacyclovir. The introduction of the HSV-TK gene into the tumor cells, via a non-replicating herpesvirus or adenovirus, makes them susceptible to antiviral drugs, finally halting the cell division.

The prodrug is activated by the HSV-TK and incorporated into the DNA of the tumor cells, where it causes damage to the genome and tumor apoptosis.26,27

Since 1991, multiple phase I and II clinical trials tested the HSVTK/Nucleoside-analogue system in GBM treatment, conveyed by replication-defective retroviruses and adenoviruses.28-34 Cerepro® (Ark Therapeutics; UK and Finland) and adenoviral vector-based HSV-TK/valaclovir were studied in some preclinical and phase I/II clinical trials (www.clinicaltrials.gov, #NCT03603405, #NCT03596086), where they proved to increase the patients’ overall survival, also with a good safety profile.

3.1.2 CD

CD converts 5-fluorocytosine (5-FC) into 5-fluorouracil (5-FU), which exerts its antitumor effect,
Gene therapies for high-grade gliomas

irreversibly inhibiting the synthesis of DNA.35, 36 Several preclinical and phase I-III clinical trials tested the efficacy and safety profile of CD/5-FC for high grade gliomas (#NCT01985256, #NCT01156584, #NCT01470794).37 A further enhancement of the cytotoxicity comes from the combination of CD/5-FC with Uracil Phosphoribosyl Transferase (UPRT). The synergic antitumoral activity of both these enzymes has been reported to also potentiate the effect of conventional radiotherapy of GBM in the animal model.38 In 2012, Tocagen Inc. (San Diego, CA, USA) tested a new non-lytic retroviral replicating vector encoding CD, called Toca 511, for recurrent HGGs.39 In combination with standard chemotherapy, Toca 511 showed a 6-month survival rate of 59% (#NCT01156584, #NCT01470794).40

3.1.3 PNP

PNP converts fludarabine, an adenosine ribonucleoside, into toxic 2-fluoroadenine, the latter able to inhibit RNA replication. Several studies proved the long-term benefits of PNP gene therapy. Through the antibiotic-based suppression of the intestinal flora, which limits the conversion of the prodrug, it is theoretically possible to enhance the efficacy of PNP gene therapy.41, 42

3.2 Tumor Suppressor Gene Therapies

Tumor suppressor gene therapies aim at the restoration of the suppressed function of the antitumoral genes through their substitution with functional equivalents. p53, p16 and Phosphatase and Tensin Homologue (PTEN) pathways are frequently mutated in high-grade gliomas, consequently resulting in the loss of both DNA repair and the regulation of cell proliferation.43

3.2.1 p53

Playing a pivotal role in DNA repair and cycle-cell arrest is p53. It is found to be inactivated in 25-30% of primary GBMs, and 60-70% of recurrent ones.44, 45 Tumor suppressor gene strategies involve a non-replicating adenovirus, combined with the cytomegalovirus promoter (CMV), in which the E1 gene is replaced by the p53 gene (AD5CMV-P53).46-48 Adenovirus-mediated p53 gene transfer showed an oncolytic effect against recurrent GBMs in many phase I trials, where it was administered by stereotactic injection, resulting in a median progression-free survival of 13 weeks and an overall survival of 43 weeks (#NCT00004041, #NCT00004080).

3.2.2 p16

Regulating the cell cycle at the G1-S transition is p16.49 The adenovirus-mediated restoration of its function proved to reduce cancer growth, but also to counteract the spreading of GBM cells through the inhibition of the matrix metalloprotease 2 activity within the tumor microenvironment.50

3.2.3 PTEN

PTEN suppression is found in about 40% of high-grade gliomas, resulting in a dysregulation of the downstream signaling pathways.51 Some studies proved the efficacy of the restoration of the PTEN function, via adenoviral vectors, in inducing tumor cell apoptosis and modification of the tumor microenvironment.

Furthermore, adenoviral-PTEN strategies showed an anti-angiogenic response in preclinical surveys.52, 53

3.3 Immunomodulatory gene therapies

High-grade gliomas acquire a high resistance to the standard treatments thanks to immunosuppression mechanisms.

Immunomodulatory gene therapies are aimed at boosting the antitumoral immune response, through-out engineered viruses which deliver immunostimulating cytokines.16, 54, 55 Many cytokines have been selected because of their capability of recruiting immune effectors. Adenoiral-mediated delivery of the human interferon β (IFN-β) gene was tested in some clinical studies.56-58 In a phase I trial, IFN-β was stereotactically introduced in the tumor microenvironment before its
resection, resulting in increased cytotoxic T and NK cell activity (#NCT00031083).

Another immunomodulatory strategy used the recombinant parvoviruses as a vehicle of IFN-gamma-inducible protein 10 (CXCL10) and TNF-alpha, showing a synergic effect against GBM cells in the mouse model. 59

Non-replicating adenoviral-associated virus (AAV) and HSV were used to carry the interleukine-12 (IL-12) gene in experimental models, resulting in a local antitumor effect.

In 2005, Colombo et al. tested the efficacy of the local injection of HSV-TK/GCV and IL-2 for recurrent malignant gliomas. It resulted in a 12-month progression-free survival and overall survival of 14% and 25%, respectively. 60

Okada et al. also investigated the synergic effect of a retrovirally transduced IL-4 and HSV-TK gene in glioma models, obtaining positive results. 61

As a rule, the near totality of immunomodulatory therapies demonstrated better results when administered in combination with conventional chemotherapy.

3.4 Oncolytic virotherapies

Oncolytic virotherapies are based on the activity of specific replication-competent oncolytic viruses (OVs). They are able to, first, infect the tumor cells, second, lyse them, and third, evoke a strong immune response. 62, 63

OVs act as a biologic anti-tumor complex, which is independent from the transfer of genetic material. Oncolytic HSV, conditionally replicating adenovirus (CRAd), Measles Paramyxovirus (MV) and recombinant nonpathogenic polio-rhinovirus (PVS-RIPO) have been used in this form of anticancer therapy.

3.4.1 Oncolytic HSVs

HSV G207 and HSV1716 are the main engineered HSVs used in the treatment of malignant gliomas. HSV G207, deleted for the γ34.5 gene, selectively targets replicating cells. 64, 65 In many phase I/II clinical trials, HSV G207 was locally administered, with limited evidence of anti-tumor activity (#NCT00157703, #NCT00028158). 66

HSV 1716, deleted in both copies of the γ34.5 gene, was tested, in combination with standard surgery and intravenous dexamethasone, in a phase II clinical trial for childhood and adult HGGs (#NCT02031965).

Recently, a new oncolytic mutant HSV (rQNestin34.5) was engineered to express the infected cell protein 34.5 (ICP34.5). rQNestin34.5 showed strong oncolytic activity against high-grade glioma in a phase I clinical trial, with a good safety profile (#NCT03152318). 67

3.4.2 CRAds

ONYX-015 and Ad5-Delta24 are CRAds modified to selectively target glioma cells.

ONYX-015, deleted in the E1B 55K gene, is able to replicate in p53-deficient cells. It was tested in a phase I clinical study, where it was directly injected into the tumor cavity after surgical resection (#NCT00006106). 68, 69

Ad5-Delta24, deleted in the E1A protein, replicates selectively in Rb-deficient tumor cells. 70-72 It was studied in a phase I trial for HGGs (#NCT03896568). In another phase I trial, it was engineered to express an integrin-binding RGD domain (#NCT00805376). 73

3.4.3 MV

This approach involves a modification of the attenuated oncolytic MV, derived from the Edmonston vaccine lineage, targeted to making it capable of selectively binding the EGFR vIII expressed on the surface of tumor cells.

Two phase I clinical trials tested the effectiveness of MV in recurrent GBMs (#NCT00390299, #NCT0296216). Carcinogenic embryonic antigen (MV-CEA) and the human thyroidal sodium iodide symporter gene (MV-NIS) were added to enhance its antitumoral action. 74, 75

3.4.4 PVS-RIPO

Oncolytic PVS-RIPO is an attenuated type 1 Sabin poliovirus in which the internal ribosomal entry site (IRES) has been replaced with the IRES of human rhinovirus type 2. 76, 77 PVS-RIPO targets and destroys
glioma cells with a classic oncolytic mechanism. Data collected from the PVS-RIPO clinical trials confirmed the antitumoral activity, however, limited by low tolerability (#NCT02986178; #NCT01491893).

4 Carriers

The carriers of genetic material used in gene therapies are viruses and nanoparticles.

4.1 Viruses

Many viruses have proven to hold a specific neurotropism, which makes them perfect vehicles for targeting the glioma cells, transferring gene copies, codifying antitumor factors and, ultimately, fulfilling the therapeutic action. Gene modification strategies have also involved engineered and replication-defective viruses. These are capable of delivering specific transgenes, reprogramming genetic expression and selectively lysing the tumor cells. Basically, two viral types have been progressively selected, namely, replication-deficient and replication-competent oncolytic viruses, the former being by far the most widely tested. Replication-deficient viruses are characterized by the removal of viral replication genes, and their replacement with transduced therapeutic genes. Conversely, replication-competent oncolytic viruses normally infect the cancer cells and replicate until causing the death of the tumor cells.

4.2 Nanoparticles

Nanoparticles are non-viral vehicles coming from the tremendous evolution of the nanotechnologies, which are able to carry some genetic material directly into the tumor cells. Liposomes and cationic polymers, loaded with plasmid DNA and RNA, have been investigated as candidates for gene delivery. Nevertheless, these strategies ought to be considered as still largely experimental.

4.2.1 Liposomes

Synthetic lipid-based particles, also called as liposomes, are the gene carriers to have achieved the best level of evidence for HGGs. Liposomes have been used mainly for carrying the IFN-β encoding gene. With the aim of facilitating the transport through the blood-brain barrier, some molecules have been added to the liposomes. Angiopeptide is an example. The combination of IFN-β and standard chemotherapy resulted in a more favorable outcome. A recent study tested the efficacy of the combination between the liposome-angiopeptide-vector, associated with the TNF-related apoptosis-inducing ligand (TRAIL) gene, and the paclitaxel.

4.2.2 Polymers

Polymers are macromolecules capable of binding DNA through electrostatic interactions.

Polyethylenimine (PEI) is a linear polymer, added with poly-ethileneglycol (PEG) in order to improve penetration into the tumor, used for the delivering of a TRAIL gene into glioma cells in mice.

The PEG-PEI polymer was further improved by introducing the integrin-binding RGD domain.

The poly-amidoamine polymer (PAMAM) was conjugated with nanoparticles and viral Tat-peptide, and was used to deliver anti-EGFR and IFN-β. These polymers resulted in a reduction of tumor progression both in vitro and in vivo.

5 Genome editing therapies

In the field of genome engineering, the genome editing technologies provide for a wider scale of DNA manipulation, which is performed throughout specific nucleases.

Nuclease are able to rearrange the genome as well as correct or silence some gene functions, thus explaining their therapeutic effects.

Zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and the novel CRISPR-Cas9 have been the most frequently examined. ZFNs are enzymes consisting in a zinc finger DNA-binding domain which selectively binds and edits a target gene within complex genomes.

Similarly, the TALENs can be delivered by plasmids and used for site-specific genome cleavage.
The most advanced strategy includes the bacterial (CRISPR)/Cas9 system. Cas9 protein is able to cut and modify a selected gene, under control of CRISPR sequences, resulting in a more exclusive genome reprogramming. 94, 95

Overall, this is a very promising field that is likely to foster the next generation of CNS gene therapy.

6 Clinical trials

Out of 45 clinical trials, 64% were phase I, 18% phase I/II, 16% phase II and 2% phase II/III respectively (Graph 1). Oncolytic virotherapy, suicide gene therapy, tumor suppressor gene therapy and immunomodulatory gene therapy and were tested in 49%, 29%, 18% and 4% of them, respectively (Graph 2).

Table 3 summarizes the clinical trials on novel gene therapies for HGGs. (Table 3).

Discussion

The current biotechnological revolution, the progress made in translational medicine and the advances in neurology and neurosurgery have resulted in the development of revolutionary therapeutic approaches for a wide range of neuro-vascular and neuro-oncological pathologies. 96-99

The identification of those mutations which are mainly responsible for the malignant behavior of HGGs has been the starting point for new and tailored therapies. 54, 100

Gene therapies are designed for delivering and/or editing specific genes directly in the tumor genome. They ultimately destroy cancer cells, also enhancing the antitumoral immune response.

Translational Challenges

The selection process of the target genes to be transduced or replaced is greatly limited by an intrinsic genetic heterogeneity of the GBMs, but also by the progressive accumulation of mutations during the malignant progression. The major translational challenges of the gene therapies may be summarized in the widening of the spectrum of target genes within the tumor genome, improvement of the transduction efficiency of the carriers, and optimization of the administration routes. The major weakness of all the virus-based gene therapies lies in their immunogenic and inflammatory potential, which can be limited through the tailoring of their dosages. 101, 102 The risk of insertion
#	ClinicalTrials.gov Identifier	Title	Status	Study Phase	Conditions	Interventions	# of Patients Enrollment	Locations
1	NCT00870181	ADV-TK Improves Outcome of Recurrent High-Grade Glioma	Completed	II	Malignant Glioma of Brain	ADV-TK/GCV, Surgery, Systemic chemotherapy	47	CHN
2	NCT00002824	Gene Therapy in Treating Patients With Primary Brain Tumors	Completed	I	Brain and Central Nervous System Tumors	Gene therapy, Chemotherapy, Ganciclovir, Surgery	NA	USA
3	NCT00751270	Phase 1b Study of AdV-tk + Valacyclovir Combined With Radiation Therapy for Malignant Gliomas	Completed	I	Malignant Glioma	ADV/HSV-tk, Valacyclovir	15	USA
4	NCT03596086	HSV-tk + Valacyclovir + SBRT + Chemotherapy for Recurrent GBM	Recruiting	I/II	Glioblastoma Multiforme	ADV/HSV-tk	62	USA
5	NCT00634231	A Phase I Study of AdV-tk + Prodrug Therapy in Combination With Radiation Therapy for Pediatric Brain Tumors	Active, not Recruiting	I	Malignant Glioma	ADV/HSV-tk, Valacyclovir, Radiation	12	USA
6	NCT00589875	Phase 2a Study of AdV-tk With Standard Radiation Therapy for Malignant Glioma (BrTK02)	Completed	II	Malignant Glioma	ADV/HSV-tk, Valacyclovir	52	USA
7	NCT00001328	Gene Therapy for the Treatment of Brain Tumors	Completed	I	Brain Neoplasm	Ganciclovir, G1TKS-VNa.S3 Producer Cell Line	15	USA
8	NCT03603405	HSV-tk and XRT and Chemotherapy for Newly Diagnosed GBM	Recruiting	I/II	Glioblastoma	ADV/HSV-tk	62	USA
9	NCT03576612	GMCI, Nivolumab, and Radiation Therapy in Treating Patients With Newly Diagnosed High-Grade Gliomas	Recruiting	I	Malignant Glioma	ADV/HSV-tk, Valacyclovir, Radiation, Temozolomide, Nivolumab	36	USA
10	NCT01985256	Study of a Retroviral Replicating Vector Given Intravenously to Patients Undergoing Surgery for Recurrent Brain Tumor	Completed	I	Glioblastoma Multiforme	Toca 511, Toca FC	17	USA
#	ClinicalTrials.gov Identifier	Title	Status	Conditions	Interventions	# of Patients Enrollment	Locations	
-----	-------------------------------	--	------------	--	--	--------------------------	-----------	
11	NCT01156584	A Study of a Retroviral Replicating Vector Combined With a Prodrug Administered to Patients With Recurrent Malignant Glioma	Completed	I	Glioblastoma, Anaplastic Astrocytoma, Anaplastic Oligodendroglioma, Anaplastic Oligoastrocytoma	Toca 511, Toca FC	54	USA
12	NCT01470794	Study of a Retroviral Replicating Vector Combined With a Prodrug to Treat Patients Undergoing Surgery for a Recurrent Malignant Brain Tumor	Completed	I	Glioblastoma Multiforme, Anaplastic Astrocytoma, Anaplastic Oligodendroglioma, Anaplastic Oligoastrocytoma	Toca 511, Toca FC	58	USA
13	NCT02414165	The Toca 5 Trial: Toca 511 & Toca FC Versus Standard of Care in Patients With Recurrent High Grade Glioma	Terminated	II/III	Glioblastoma Multiforme, Anaplastic Astrocytoma	Toca 511, Toca FC, Lomustine, Temozolomide, Bevacizumab	403	USA
14	NCT01811992	Combined Cytotoxic and Immune-Stimulatory Therapy for Glioma	Active, not Recruiting	I	Malignant Glioma, Glioblastoma Multiforme	Dose Escalation of Ad-hCMV-TK, Ad-hCMV-Flt3L	19	USA
15	NCT03544723	Safety and Efficacy of Ad-p53 Combined With Checkpoint Inhibitor in Head and Neck Cancer	Recruiting	II	Recurrent Head and Neck Cancer	Ad-P53	20	USA
16	NCT02842125	Safety and Efficacy of Intra-Arterial and Intra-Tumoral Ad-p53 With Capecitabine (Xeloda) or Anti-PD-1 in Liver Metastases of Solid Tumors and Recurrent Head and Neck Squamous Cell Cancer	Recruiting	I/II	Metastatic Solid Tumor Cancer, Recurrent Head and Neck Cancer	Ad-P53, Xeloda, Keytruda, Opdivo	24	USA
17	NCT00017173	S0011, Gene Therapy & Surgery Followed by Chemo & RT in Newly Diagnosed Cancer of the Mouth or Throat	Terminated	II	Head and Neck Cancer	Ad5CMV-p53 gene, Cisplatin, Surgery, Radiation therapy	13	USA
18	NCT00003257	Gene Therapy in Treating Patients With Recurrent Head and Neck Cancer	Unknown	II	Head and Neck Cancer	Ad5CMV-p53 gene	39	USA
#	ClinicalTrials.gov Identifier	Title	Status	Study Phase	Conditions	Interventions	# of Patients Enrollment	Locations
-----	-------------------------------	--	--------------	-------------	--	---	-------------------------	-----------
19	NCT00004041	Gene Therapy in Treating Patients With Recurrent Malignant Gliomas	Completed	I	Brain and Central Nervous System Tumors	Ad5CMV-p53 gene, Surgery	NA	USA
20	NCT00004080	Gene Therapy in Treating Patients With Recurrent or Progressive Brain Tumors	Completed	I	Brain and Central Nervous System Tumors	Recombinant adenovirus-p53 SCH-58500, Surgery	NA	NA
21	NCT02031965	Oncolytic HSV-1716 in Treating Younger Patients With Refractory or Recurrent High Grade Glioma That Can Be Removed By Surgery	Terminated	I	Recurrent Childhood Anaplastic Astrocytoma	Oncolytic HSV-1716, Dexamethasone, Surgery	2	USA
					Recurrent Childhood Anaplastic Oligoastrocytoma			
					Recurrent Childhood Anaplastic Oligodendrogloma			
					Recurrent Childhood Giant Cell Glioblastoma			
					Recurrent Childhood Glioblastoma			
					Recurrent Childhood Glioblastoma			
					Recurrent Childhood Glioblastoma			
					Recurrent Childhood Glioblastoma			
					Recurrent Childhood Glioblastoma			
					Recurrent Childhood Glioblastoma			
					Recurrent Childhood Glioblastoma			
22	NCT00031083	Dose Escalation Study to Determine the Safety of IFN-Beta Gene Transfer in the Treatment of Grade III & Grade IV Gliomas"	Suspended	I	Glioblastoma Multiforme	Interferon-beta	35	USA
					Anaplastic Astrocytoma			
					Oligoastrocytoma			
					Gliosarcoma			
23	NCT02026271	A Study of Ad-RTS-hIL-12 With Veledimex in Subjects With Glioblastoma or Malignant Glioma	Active, not Recruiting	I	Glioblastoma Multiforme	Ad-RTS-hIL-12, Veledimex	48	USA
					Anaplastic Oligoastrocytoma			
24	NCT02062827	Genetically Engineered HSV-1 Phase 1 Study for the Treatment of Recurrent Malignant Glioma	Recruiting	I	Recurrent Glioblastoma Multiforme	M032 (NSC 733972)	36	USA
					Progressive Glioblastoma Multiforme			
					Anaplastic Astrocytoma or Gliosarcoma			
#	ClinicalTrials.gov Identifier	Title	Status	Study Phase	Conditions	Interventions	# of Patients Enrollment	Locations
----	------------------------------	--	------------	-------------	--	---------------	--------------------------	-----------
25	NCT03911388	HSV G207 in Children With Recurrent or Refractory Cerebellar Brain Tumors	Recruiting	I	Brain and Central Nervous System Tumors	G207	15	USA
					Glioblastoma Multiforme			
					Astrocytoma			
					Neuroectodermal Tumors			
					Primitive Cerebellar PNET			
					Childhood Brain Neoplasms			
					Malignant Cerebellar Neoplasm			
					Medulloblastoma Recurrent			
					Virus, HSV			
26	NCT02457845	HSV G207 Alone or With a Single Radiation Dose in Children With Progressive or Recurrent Supratentorial Brain Tumors	Recruiting	I	Supratentorial Malignant Neoplasms	G207	18	USA
					Malignant Glioma			
					Glioblastoma			
					Anaplastic Astrocytoma			
					PNET			
					Cerebral Primitive Neuroectodermal Tumor			
					Embryonal Tumor			
27	NCT00028158	Safety and Effectiveness Study of G207, a Tumor-Killing Virus, in Patients With Recurrent Brain Cancer	Completed	I/II	Glioma	G207	65	NA
					Astrocytoma			
					Glioblastoma			
28	NCT00157703	G207 Followed by Radiation Therapy in Malignant Glioma	Completed	I	Malignant Glioma	G207	9	USA
#	ClinicalTrials.gov Identifier	Title	Status	Study Phase	Conditions	Interventions	# of Patients Enrollment	Locations
----	-------------------------------	---	-------------	-------------	--	---	--------------------------	-----------
29	NCT02031965	Oncolytic HSV-1716 in Treating Younger Patients With Refractory or Recurrent High Grade Glioma That Can Be Removed By Surgery	Terminated	I	Recurrent Childhood Anaplastic Astrocytoma, Recurrent Childhood Anaplastic Oligoastrocytoma, Recurrent Childhood Anaplastic Oligodendroglioma, Recurrent Childhood Giant Cell Glioblastoma	HSV-1716, Dex-amethasone, Surgery	2	USA
30	NCT03152318	A Study of the Treatment of Recurrent Malignant Glioma With rQNestin34.5v.2	Recruiting	I	Malignant Glioma, Malignant Astrocytoma, Oligodendroglioma Anaplastic Ependymoma, Ganglioglioma, Pylyocytic/Pylomyxoid Astrocytoma, Glioblastoma Multiforme	rQNestin, Cyclophosphamide, Stereotactic biopsy	108	USA
31	NCT02197169	DNX-2401 With Interferon Gamma (IFN-γ) for Recurrent Glioblastoma or Gliosarcoma Brain Tumors	Completed	I	Glioblastoma or Gliosarcoma	Single intratumoral injection of DNX-2401, Interferon-gamma	37	USA
32	NCT00006106	ONYX-015 With Cisplatin and Fluorouracil in Treating Patients With Advanced Head and Neck Cancer	With-	I	Lip and Oral Cavity Cancer, Head and Neck Cancer, Oropharyngeal Cancer	Cisplatin, Fluorouracile, ONYX-015	0	USA
33	NCT00805376	DNX-2401 (Formerly Known as Delta-24-RGD-4C) for Recurrent Malignant Gliomas	Completed	I	Brain Cancer, Central Nervous System Diseases	DNX-2401, Tumor Removal	37	USA
ClinicalTrials.gov Identifier	Title	Status	Conditions	Interventions	# of Patients	Locations		
-------------------------------	--	-----------------	------------------------------	--	---------------	-----------		
34 NCT03896568	Oncolytic Adenovirus DNX-2401 in Treating Patients With Recurrent High-Grade Glioma.	Recruiting	Recurrent Anaplastic Astrocytoma/Anaplastic Oligodendroglioma	Oncolytic Adenovirus Ad5-DNX-2401, Therapeutic Conventional Surgery	36	USA		
35 NCT01956734	Virus DNX2401 and Temozolomide in Recurrent Glioblastoma Multiforme.	Completed	Recurrent Glioblastoma Multiforme	DNX2401, Temozolomide	31	ES		
36 NCT01301430	Parvovirus H-1 (ParvOryx) in Patients With Progressive Primary or Recurrent Glioblastoma Multiforme.	Completed	Recurrent Glioblastoma Multiforme	Parvovirus H-1 (ParvOryx)	18	DE		
37 NCT01582516	Safety Study of Replication-competent Adenovirus (Delta-24-RGD) in Patients With Recurrent Glioblastoma Multiforme.	Completed	Recurrent Glioblastoma Multiforme	Delta-24-RGD adenovirus	20	NL		
38 NCT02982167	Modified Measles Virus (MV-NIS) for Children and Young Adults With Recurrent Medulloblastoma, Childhood, Recurrent Tumor.	Recruiting	Medulloblastoma, Childhood, Recurrent Tumor	Modified Measles Virus, Modified Measles Virus-Lumbar Puncture	46	USA		
39 NCT00390299	Viral Therapy in Treating Patients With Recurrent Glioblastoma Multiforme.	Completed	Medulloblastoma Recurrent	Carcinoembryonic Antigen-Expressing Measles Virus Vaccine	23	USA		
40 NCT01491993	PVSRIPO for Recurrent Glioblastoma Multiforme.	Active, not recruiting	Medulloblastoma Recurrent	Recombinant nonpathogenic polio-rhinovirus chimera (PVSRIPO)	61	USA		
41 NCT02986178	PVSRIPO in Recurrent Malignant Glioma.	Recruiting	Medulloblastoma	Malignant Glioma	122	USA		
#	ClinicalTrials.gov Identifier	Title	Status	Study Phase	Conditions	Interventions	# of Patients Enrollment	Locations
-----	-------------------------------	--	-----------------	-------------	--	--	--------------------------	-----------
42	NCT03973879	Combination of PVSRIPO and Atezolizumab for Adults With Recurrent Malignant Glioma	Withdrawn	I/II	Malignant Glioma	PVSRIPO, Atezolizumab	0	NA
43	NCT03043391	Phase 1b Study PVSRIPO for Recurrent Malignant Glioma in Children	Recruiting	I	Malignant Glioma	Polio/Rhinovirus Recombinant (PVSRIPO)	12	USA
44	NCT01174537	New Castle Disease Virus (NDV) in Glioblastoma Multiforme (GBM), Sarcoma and Neuroblastoma	Withdrawn	I/II	Glioblastoma	New Castle Disease Virus	0	IL
45	NCT02340156	Phase II Study of Combined Temozolomide and SGT-53 for Treatment of Recurrent Glioblastoma	Terminated	II	Recurrent Glioblastoma	SGT-53, Temozolomide	1	USA, TW

CHN: China; DE: Germany; ES: Spain; IL: Israel; NL: Netherlands; TW: Taiwan; USA: United States of America.
mutagenesis is a further major hurdle. The viral genotoxicity, namely the potential activation of oncogenes due to an incorrect transduction, can be decreased by manufacturing self-inactivating vectors without their own promoter.103, 104 The route of administration of these drugs is also a concern. Since most viral vehicles are characterized by a too rapid systemic clearance, stereotactic or endoscopic minimally invasive administration routes have been proposed, with the same advantage already reported for other pathologies.105, 106

Ongoing Trends and Future Prospects

One of the most promising genetic approaches is the restoration of the physiologic antitumor function of oncosuppressor genes or interleukins, such as p53 and IFN. Similarly, the encouraging results of the suicide gene and oncolytic virotherapies justify their increasingly large role. It must be stressed, however, that to date none of these therapies have proven their effect as a monotherapy. The near future should also focus on the engineering of better carriers, capable of leading the therapeutic effect due to their smaller size, lower toxicity and immunologic potential, as well as improved cell penetrance compared to viral vectors. Nanotechnologies came into aid with biocompatible nanoparticles, liposomes primarily, whose known advantages have been reported.107, 108 The ideal carriers should be capable of a wider tissue distribution. The advances in genetic engineering will make it possible to personalize the treatments, according to patient and tumor genetics.

The development of new administration routes improved therapeutic protocols and concomitant immune-boosting strategies will optimize the gene therapies.

Conclusion

Gene therapy is the newest approach among the tailored therapies for malignant brain tumors.

The suicide gene, tumor suppressor gene, immunomodulatory gene, and oncolytic therapies have been most widely tested in clinical trials, although the totality of evidence about their effectiveness is still at an experimental level.

The transfer and manipulation of the target genes involved biological carriers such as adenoviruses, HSVs, retroviruses and AAVs. The advances of nanotechnology have led to the recent introduction of liposomes and polymers.

The future of gene therapies is represented by the selection of new and more effective target genes, along with the engineering and manufacturing of non-viral gene-delivery vectors, given that they are capable of a greater and safer spreading capacity.

Acknowledgements

We want to thank Giorgia Di Giusto, Engineer, for her invaluable technical support during data collection and analysis.

Conflict of interest: Each author declares that he or she has no commercial associations (e.g. consultancies, stock ownership, equity interest, patent/licensing arrangement etc.) that might pose a conflict of interest in connection with the submitted article

References

1. Jiang T, Mao Y, Ma W, et al. CGCG clinical practice guidelines for the management of adult diffuse gliomas. Cancer Lett. 2016;375(2): 263–273. https://doi.org/10.1016/j.canlet.2016.01.024.

2. Ricard D, Idbaih A, Ducray F, Lahutte M, Hoang-Xuan K, Delattre JY. Primary brain tumours in adults. Lancet. 2012;379(9830): 1984–1996. https://doi.org/10.1016/S0140-6736(11)61346–9.

3. Ostrom QT, Gittleman H, Liao P, et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro Oncol. 2014;16 Suppl 4: iv1–63. https://doi.org/10.1093/neuonc/ nou223.

4. Stupp R, Hegi ME, Mason WP, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10(5): 459–466. https://doi.org/10.1016/S1470-2045(09)70025-7.

5. Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10): 987–996. https://doi.org/10.1056/NEJMoa043330.

6. Cheng CY, Shetty R, Sekhar LN. Microsurgical Resection of a Large Intraventricular Trigonial Tumor: 3-Dimensional Operative Video. Oper Neurosurg (Hagerstown). 2018;15(6): E92–E93. https://doi.org/10.1093/ons/opy068.

7. Palumbo P, Lombardi F, Siragusa G, et al. Involvement of NOS2 Activity on Human Glioma Cell Growth,
Gene therapies for high-grade gliomas

8. Bellantoni G, Guerrini F, Del Maestro M, Galzio R, Luzzi S. Simple schwannomatosis or an incomplete Coffin-Siris? Report of a particular case. eNeurologicalSci. 2019;14:31–33. https://doi.org/10.1016/j.eursci.2018.11.021.

9. Cloughesy TF, Cavenee WK, Mischel PS. Glioblastoma: from molecular pathology to targeted treatment. Annu Rev Pathol. 2014;9:1–25. https://doi.org/10.1146/annurev-pathol-011110-130324.

10. Auffinger B, Spencer D, Pytel P, Ahmed AU, Lesniak MS. The role of glioma stem cells in chemotherapy resistance and glioblastoma multiforme recurrence. Expert Rev Neurother. 2015;15(7):741–752. https://doi.org/10.1586/14737175.2015.1051968.

11. Hardee ME, Zagzag D. Mechanisms of glioma-associated neovascularization. Am J Pathol. 2012;181(4):1126–1141. https://doi.org/10.1016/j.ajpath.2012.06.030.

12. Luzzi S, Crowae AM, Del Maestro M, et al. The cell-based approach in neurosurgery: ongoing trends and future perspectives. Heliyon. 2019;5(11):e02818. https://doi.org/10.1016/j.heliyon.2019.e02818.

13. Maguire CA, Ramirez SH, Merkel SF, Sena-Esteves M, Breakefield XO. Gene therapy for the nervous system: challenges and new strategies. Neurotherapeutics. 2014;11(4):817–839. https://doi.org/10.1007/s13131-014-0299-5.

14. Okura H, Smith CA, Rutka JT. Gene therapy for malignant glioma. Mol Cell Ther. 2014;2:21. https://doi.org/10.1186/2052-8426-2-21.

15. Wirth T, Yla-Herttuala S. Gene Therapy Used in Cancer Treatment. Biomedicines. 2014;2(2):149–162. https://doi.org/10.3390/biomedicines2020149.

16. Kwiatkowska A, Nandhu MS, Behera P, Chiocca EA, Viapiano MS. Strategies in gene therapy for glioblastoma. Cancers (Basel). 2013;5(4):1271–1305. https://doi.org/10.3390/cancers5041271.

17. Caffery B, Lee JS, Alexander-Bryant AA. Vectors for Glioblastoma Gene Therapy: Viral & Non-Viral Delivery Strategies. Nanomaterials (Basel). 2019;9(1). https://doi.org/10.3390/nano9010105.

18. Collins M, Thrasher A. Gene therapy: progress and predictions. Proc Biol Sci. 2015;282(1821):20143003. https://doi.org/10.1098/rspb.2014.3003.

19. Kane JR, Miska J, Young JS, Kanojia D, Kim JW, Lesniak MS. Sui generis: gene therapy and delivery systems for the treatment of glioblastoma. Neuro Oncol. 2015;17 Suppl 2:i124-i136. https://doi.org/10.1093/neuonc/nou355.

20. Choong CJ, Baba K, Mochizuki H. Gene therapy for neurological disorders. Expert Opin Biol Ther. 2016;16(2):143–159. https://doi.org/10.1517/14712598.2016.1114096.

21. Simonato M, Bennett J, Boulis NM, et al. Progress in gene therapy for neurological disorders. Nat Rev Neurol. 2013;9(5):277–291. https://doi.org/10.1038/nrneurol.2013.56.

22. Murphy AM, Rabkin SD. Current status of gene therapy for brain tumors. Transl Res. 2013;161(4):339–354. https://doi.org/10.1016/j.trsl.2012.11.003.

23. Choudhury SR, Hudry E, Maguire CA, Sena-Esteves M, Breakefield XO, Grandi P. Viral vectors for therapy of neurologic diseases. Neuropharmacology. 2017;120:63–80. https://doi.org/10.1016/j.neuropharm.2016.02.013.

24. Kroeger KM, Muhammad AK, Baker GJ, et al. Gene therapy and virotherapy: novel therapeutic approaches for brain tumors. Discov Med. 2010;10(53):293–304.

25. Karjoo Z, Chen X, Hatefi A. Progress and problems with the use of suicide genes for targeted cancer therapy. Adv Drug Deliv Rev. 2016;69(Pt A):113–128. https://doi.org/10.1016/j.addr.2015.05.009.

26. Black ME, Newcomb TG, Wilson HM, Loeb LA. Creation of drug-specific herpes simplex virus type 1 thymidine kinase mutants for gene therapy. Proc Natl Acad Sci U S A. 1996;93(8):3525–3529. https://doi.org/10.1073/pnas.93.8.3525.

27. Izquierdo M, Martin V, de Felipe P, et al. Human malignant brain tumor response to herpes simplex thymidine kinase (HSVtk)/ganciclovir gene therapy. Gene Ther. 1996;3(6):491–495.

28. Prados MD, McDermott M, Chang SM, et al. Treatment of progressive or recurrent glioblastoma multiforme in adults with herpes simplex virus thymidine kinase gene vector-producer cells followed by intravenous ganciclovir administration: a phase I/II multi-institutional trial. J Neurooncol. 2003;65(3):269–278. https://doi.org/10.1023/b:neon.0000003588.18644.9c.

29. Ezzeddine ZD, Martuza RL, Platika D, et al. Selective killing of glioma cells in culture and in vivo by retrovirus transfer of the herpes simplex virus thymidine kinase gene. New Biol. 1991;3(6):608–614.

30. Eck SL, Alavi JB, Alavi A, et al. Treatment of advanced CNS malignancies with the recombinant adenovirus H5.010RSVTk: a phase I trial. Hum Gene Ther. 1996;7(12):1465–1482. https://doi.org/10.1089/hum.1996.7.12-1465.

31. Sandmair AM, Loimais S, Puranen P, et al. Thymidine kinase gene therapy for human malignant glioma, using replication-deficient retrovirus or adeno viruses. Hum Gene Ther. 2000;11(16):2197–2205. https://doi.org/10.1089/10430400750035726.

32. Immonen A, Vapalahi M, Tyynela K, et al. AdvHSV-tk gene therapy with intravenous ganciclovir improves survival in human malignant glioma: a randomised, controlled study. Mol Ther. 2004;10(5):967–972. https://doi.org/10.1016/j.ymthe.2004.08.002.

33. Rainow NG, Heidecke V. Clinical development of experimental virus-mediated gene therapy for malignant glioma. Anticancer Agents Med Chem. 2011;11(8):739–747. https://doi.org/10.2174/18712011179378724.

34. Germano IM, Fable J, Gultekin SH, Silvers A. Adenovirus/ herpes simplex-thymidine kinase/ganciclovir complex: preliminary results of a phase I trial in patients with recurrent malignant gliomas. J Neurooncol. 2003;65(3):279–289. https://doi.org/10.1023/b:neon.0000003657.95085.56.

35. Ostertag D, Amundson KK, Lopez Espinoza F, et al. Brain tumor eradication and prolonged survival from intratumoral conversion of 5-fluorocytosine to 5-fluorouracil.
41. Hong JS, Waud WR, Levasseur DN, et al. Excellent in vivo transduction and expression of the cytosine deaminase gene and uracil phosphoribosyl transferase gene in 5-fluorocytosine. Hum Gene Ther. 1999;10(1): 77–89. https://doi.org/10.1089/hum.1996.7.6-713.

42. Mitchell LA, Lopez Espinoza F, Mendoza D, et al. Toca 511 gene transfer and treatment with the produgs, 5-fluorocytosine, promotes durable antitumor immunity in a mouse glioma model. Neuro Oncol. 2017;19(7): 930–939. https://doi.org/10.1093/neuroonc/nox037.

43. Dong Y, Wen P, Manome Y, et al. In vivo replication-deficient adenovirus vector-mediated transduction of the cytosine deaminase gene sensitizes glioma cells to 5-fluorocytosine. Hum Gene Ther. 1996;7(6): 713–720. https://doi.org/10.1089/hum.1996.7.6-713.

44. England B, Huang T, Karsy M. Current understanding of the p53 gene and its role in human brain tumors. Glia. 1995;15(3): 308–327. https://doi.org/10.1002/glia.440150311.

45. Lang FF, Yung WK, Sawaya R, Tofilon PJ. Adenovirus-mediated p53 gene therapy for human gliomas. Neurosurgery. 1999;45(5): 1093–1104. https://doi.org/10.1097/00006123-199911000-00016.

46. Li H, Alonso-Vanegas M, Colicos MA, et al. Intracerebral adenovirus-mediated p53 tumor suppressor gene therapy for experimental human glioma. Clin Cancer Res. 1999;5(3): 637–642.

47. Gomez-Manzano C, Fueyo J, Kyritsis AP, et al. Adenovirus-mediated transfer of the p53 gene produces rapid and generalized death of human glioma cells via apoptosis. Cancer Res. 1996;56(4): 694–699.

48. Kanu OO, Hughes B, Di C, et al. Glioblastoma Multiforme Oncogenomics and Signaling Pathways. Clin Med Oncol. 2009;3: 39–52. https://doi.org/10.1038/sj.onc.1201382.

49. Dunn GP, Rinne ML, Wykosky J, et al. Emerging insights into the molecular and cellular basis of glioblastoma. Genes Dev. 2012;26(8): 756–784. https://doi.org/10.1101/gad.187922.112.

50. Chintala SK, Fueyo J, Gomez-Manzano C, et al. Adenovirus-mediated p16/CDKN2 gene transfer in glioma invasion in vitro. Oncogene. 1997;15(17): 2049–2057. https://doi.org/10.1038/sj.onc.1201382.

51. Dunn GP, Rinne ML, Wykosky J, et al. Emerging insights into the molecular and cellular basis of glioblastoma. Genes Dev. 2012;26(8): 756–784. https://doi.org/10.1101/gad.187922.112.

52. Lu W, Zhou X, Hong B, Liu J, Yue Z. Suppression of in vivo vascularization of experimental gliomas in spite of proangiogenic stimuli. Cancer Res. 2003;63(9): 2300–2305.

53. Natsume A, Yoshida J. Gene therapy for high-grade glioma: current approaches and future directions. Cell Adh Migr. 2008;2(3): 186–191. https://doi.org/10.4161/can.2.3.6278.

54. Tobias A, Ahmed A, Moon KS, Lesniak MS. The art of gene therapy for glioma: a review of the challenging road to the bedside. J Neurol Neurosurg Psychiatry. 2013;84(2): 213–222. https://doi.org/10.1136/jnnp-2012-302946.

55. Quinn K, Galbraith SE, Sheahan BJ, Atkins GJ. Effect of intranasal administration of Semliki Forest virus recombinant particles expressing interferon-beta on the progression of experimental autoimmune encephalomyelitis. Mol Med Rep. 2008;1(3): 335–342. https://doi.org/10.3892/mmr.1.3.335.

56. Wolpert F, Hapgood C, Reifenberger G, et al. Interferon-beta Modulates the Innate Immune Response against Glioblastoma Initiating Cells. PLoS One. 2015;10(10): e0139603. https://doi.org/10.1371/journal.pone.0139603.

57. GuhaSarkar D, Neiswender J, Su Q, Gao G, Sena-Esteves M. Intracranial AAV-IFN-beta gene therapy eliminates invasive xenograft glioblastoma and improves survival in orthotopic syngeneic murine model. Mol Oncol. 2017;11(2): 180–193. https://doi.org/10.1002/1878-0261.12020.

58. Enderlin M, Kleinmann EV, Struyf S, et al. TNF-alpha and the IFN-gamma-inducible protein 10 (IP-10/CXCL-10) delivered by parvoviral vectors act in synergy to induce antitumor effects in mouse glioblastoma. Cancer Gene Ther. 2009;16(2): 149–160. https://doi.org/10.1038/cgt.2008.62.

59. Colombo F, Barzon L, Franchin E, et al. Combined HSV-TK/IL-2 gene therapy in patients with recurrent glioblastoma multiforme: biological and clinical results. Cancer Gene Therapy. 2008;214(2): 205–213. https://doi.org/10.1089/jnnp.2012-302946.
Gene therapies for high-grade gliomas

Ther. 2005;12(10): 835–848. https://doi.org/10.1038/sj.cgt.7700851.

61. Okada H, Attanucci J, Tahara H, et al. Characterization and transduction of a retroviral vector encoding human interleu-kin-4 and herpes simplex virus-thymidine kinase for glioma tumor vaccine therapy. Cancer Gene Ther. 2000;7(3): 486–494. https://doi.org/10.1038/sj.cgt.7700140.

62. Kaufmann JK, Chiocca EA. Glioma virus therapies between bench and bedside. Neuro Oncol. 2014;16(3): 334–351. https://doi.org/10.1093/neuonc/not310.

63. Ikeda K, Ichikawa T, Wakimoto H, et al. Oncolytic virus therapy of multiple tumors in the brain requires suppression of innate and elicited antiviral responses. Nat Med. 1999;5(8): 881–887. https://doi.org/10.1038/11320.

64. Grandi P, Peruzzi P, Reinhart B, Cohen JB, Chiocca EA, Glorioso JC. Design and application of oncolytic HSV vectors for glioblastoma therapy. Expert Rev Neurother. 2009;9(4): 505–517. https://doi.org/10.1586/en.09.9.

65. Granelli-Piperno A, Zhong L, Haslett P, Jacobson J, Steinman RM. Dendritic cells, infected with vesicular stomatitis virus-pseudotyped HIV-1, present viral antigens to CD4+ and CD8+ T cells from HIV-1-infected individuals. J Immunol. 2000;165(11): 6620–6626. https://doi.org/10.4049/jimmunol.165.11.6620.

66. Markert JM, Liechty PG, Wang W, et al. Phase Ib trial of mutant herpes simplex virus G207 inoculated pre- and post-tumor resection for recurrent GBM. Mol Ther. 2009;17(1): 199–207. https://doi.org/10.1038/mt.2008.228.

67. Kambara H, Okano H, Chiocca EA, Saeki Y. An oncolytic HSV-1 mutant expressing ICP34.5 under control of a nestin promoter increases survival of animals even when symptomat-ic from a brain tumor. Cancer Res. 2005;65(7): 2832–2839. https://doi.org/10.1158/0008-5472.CAN-04-3227.

68. Heise C, Sampson-Johannes A, Williams A, McCormick F, Von Hoff DD, Kirn DH. ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolyis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nat Med. 1997;3(6): 639–645. https://doi.org/10.1038/nm0697-639.

69. Chiocca EA, Abbed KM, Tatter S, et al. A phase I open-label, dose-escalation, multi-institutional trial of injection with an E1B-Attenuated adenovirus, ONYX-015, into the peritumoral region of recurrent malignant gliomas, in the adjuvant setting. Mol Ther. 2004;10(5): 958–966. https://doi.org/10.1016/j.ymthe.2004.07.021.

70. Fueyo J, Alemany R, Gomez-Manzano C, et al. Preclinical characterization of the antitumoral activity of a tropism-enhanced adenovirus targeted to the retinoblastoma pathway. J Natl Cancer Inst. 2003;95(9): 652–660. https://doi.org/10.1093/jnci/95.9.652.

71. Fueyo J, Gomez-Manzano C, Alemany R, et al. A mutant oncolytic adenovirus targeting the Rb pathway produces anti-glioma effect in vivo. Oncogene. 2000;19(1): 2–12. https://doi.org/10.1038/sj.onc.1203251.

72. Jiang H, Gomez-Manzano C, Lang FF, Alemany R, Fueyo J. Oncolytic adenovirus: preclinical and clinical studies in patients with human malignant gliomas. Curr Gene Ther. 2009;9(5): 422–427. https://doi.org/10.2174/156652309789733536.

73. Yong RL, Shinojima N, Fueyo J, et al. Human bone mar-row-derived mesenchymal stem cells for intravascular de-livery of oncolytic adenovirus Delta24-RGD to human gliomas. Cancer Res. 2009;69(23): 8932–8940. https://doi. org/10.1158/0008-5472.CAN-08-3873.

74. Peng KW, Facteu S, Wegman T, O’Kane D, Russell SJ. Non-invasive in vivo monitoring of trackable viruses expressing soluble marker peptides. Nat Med. 2002;8(5): 527–531. https://doi.org/10.1038/nm0502-527.

75. Peng KW, Ten Eyck CJ, Galanis E, Kalli KR, Hartmann LC, Russell SJ. Intraperitoneal therapy of ovarian cancer using an engineered measles virus. Cancer Res. 2002;62(16): 4656–4662.

76. Merrill MK, Bernhardt G, Sampson JH, Wikstrand C, Bigner DD, Gromeier M. Poliovirus receptor CD155-targeted oncolysis of glioma. Neuro Oncol. 2004;6(3): 208–217. https://doi.org/10.1215/S1152851703000577.

77. Dobrikova EY, Goetz C, Walters RW, et al. Attenuation of neurovirulence, biodistribution, and shedding of a poliovirus:rhinovirus chimera after intrathalamic inoculation in Macaca fascicularis. J Virol. 2012;86(5): 2750–2759. https://doi.org/10.1128/JVI.06427-11.

78. Gromeier M, Lachmann S, Rosenfeld M, Gutin P, Wimmer E. Gromeier M, Lachmann S, Rosenfeld MR, Gutin PH, Wimmer E.. Intergeneric poliovirus recombinants for the treatment of malignant glioma. Proc Natl Acad Sci USA 97: 6803–6808. Proceedings of the National Academy of Sciences of the United States of America. 2000;97: 6803–6808. https://doi.org/10.1073/pnas.97.12.6803.

79. Lachmann R. Herpes simplex virus-based vectors. Int J Exp Pathol. 2004;85(4): 177–190. https://doi.org/10.1111/j.0959-9673.2004.00383.x.

80. Jiang W, Kim BY, Rutka JT, Chan WC. Advances and challenges of nanotechnology-based drug delivery systems. Expert Opin Drug Deliv. 2007;4(6): 621–633. https://doi.org/10.1517/17425247.4.6.621.

81. Yoshida J, Mizuno M. Clinical Gene Therapy for Brain Tumors. Liposomal Delivery of Anticancer Molecule to Glioma. Journal of Neuro-Oncology. 2003;65(3): 261–267. https://doi.org/10.1023/B:NEON.0000003655.03671.fa.

82. Jabir NR, Tabrez S, Ashraf GM, Shakil S, Damanhouri GA, Kamal MA. Nanotechnology-based approaches in anticancer research. Int J Nanomedicine. 2012;7: 4391–4408. https://doi.org/10.2147/ijn.S33838.

83. Rungta RL, Choi HB, Lim PJ, et al. Lipid Nanoparticle De-livery of siRNA to Silence Neuronal Gene Expression in the Brain. Mol Ther. 2013;21: e136. https://doi.org/10.1038/mthe.2013.65.

84. Yoshida J, Mizuno M, Fujii M, et al. Human gene ther-apy for malignant gliomas (glioblastoma multiforme and anaplastic astrocytoma) by in vivo transduction with human interferon beta gene using cationic liposomes. Hum Gene Ther. 2004;15(1): 77–86. https://doi.org/10.1089/10430340460732472.
85. Sun X, Pang Z, Ye H, et al. Co-delivery of pEGFP-hTRAIL and paclitaxel to brain glioma mediated by an angiopеп-conjugated liposome. Biomaterials. 2012;33(3): 916–924. https://doi.org/10.1016/j.biomaterials.2011.10.035.

86. Godbey WT, Wu KK, Mikos AG. Poly(ethyleneimine) and its role in gene delivery. J Control Release. 1999;60(2-3): 149–160. https://doi.org/10.1016/S0168-3659(99)00090-5.

87. Li J, Gu B, Meng Q, et al. The use of myristic acid as a ligand of polyethylenimine/DNA nanoparticles for targeted gene therapy of glioblastoma. Nanotechnology. 2011;22(43): 435101. https://doi.org/10.1088/0957-4484/22/43/435101.

88. Zhan C, Meng Q, Li Q, Feng L, Zhu J, Lu W. Cyclic RGD-polyethylene glycol-polyethylenimine for intracranial glioblastoma-targeted gene delivery. Chem Asian J. 2012;7(1): 91–96. https://doi.org/10.1002/asia.201100570.

89. Richardson SC, Patrack NG, Man YK, Ferruti P, Duncan R. Poly(amideamine)s as potential nonviral vectors: ability to form interpolyelectrolyte complexes and to mediate transfection in vitro. Biomacromolecules. 2001;2(3): 1023–1028. https://doi.org/10.1021/bm010079f.

90. Han L, Zhang A, Wang H, et al. Tat-BMPs-PAMAM conjugates enhance therapeutic effect of small interference RNA on U251 glioma cells in vitro and in vivo. Hum Gene Ther. 2010;21(4): 417–426. https://doi.org/10.1089/hum.2009.087.

91. Bai CZ, Choi S, Nam K, An S, Park JS. Arginine modified PAMAM dendrimer for interferon beta gene delivery hum.2009.087.

92. Cox DB, Platt RJ, Zhang A, Schambach A, Grez M. Dissecting the genotoxicity of self-inactivating lentiviral vectors in vivo. Mol Ther. 2014;22(4): 774–785. https://doi.org/10.1038/mt.2014.3.

93. Cesana D, Ranzani M, Volpin M, et al. Uncovering and dissecting the genotoxicity of self-inactivating lentiviral vectors in vivo. Mol Ther. 2014;22(4): 774–785. https://doi.org/10.1038/mt.2014.3.

94. Doudna JA, Charpentier E. Genome editing with CRISPR-Cas9. Science. 2014;348(6213): 1391–1398. https://doi.org/10.1126/science.1261587.

95. Luzzi S, Elia A, Del Maestro MD, et al. Morphometric analysis for Lumbosacral Spine Degenerative Diseases. A Retrospective Database of 40 Consecutive Cases and Literature Review. World Neurosurg. 2019;116: e340-e353. https://doi.org/10.1016/j.wneu.2018.04.203.

96. Bai CZ, Choi S, Nam K, An S, Park JS. Arginine modified PAMAM dendrimer for interferon beta gene delivery hum.2009.087.

97. Kaufmann KB, Buning H, Galy A, Schambach A, Grez M. Gene therapy on the move. EMBO Mol Med. 2013;5(11): 1642–1661. https://doi.org/10.1002/emmm.201202287.

98. Liu Q, Muruve DA. Molecular basis of the inflammatory response to adenovirus vectors. Gene Ther. 2003;10(11): 935–940. https://doi.org/10.1038/sj.gt.3302036.

99. Luzzi S, Elia A, Del Maestro M, et al. Indication, Timing, and Surgical Treatment of Spontaneous Intracerebral Hemorrhage: Systematic Review and Proposal of a Management Algorithm. World Neurosurg. 2019. https://doi.org/10.1016/j.wneu.2019.01.016.

100. Bansal K, Engelhard HH. Gene therapy for brain tumors. Current Oncology Reports. 2000;2(5): 463–472. https://doi.org/10.1007/s11912-000-0067-z.

101. Conde J, Larguinho M, Cordeiro A, et al. Gold-nanobeacons for gene therapy: evaluation of genotoxicity, cell toxicity and proteome profiling analysis. Nanotoxicology. 2014;8(5): 521–532. https://doi.org/10.3109/17435390.2013.82821.

102. Ahmad MZ, Akhter S, Rahman Z, et al. Nanometric gold nanoparticles for gene therapy: evaluation of genotoxicity, cell toxicity and proteome profiling analysis. Nanotoxicology. 2014;8(5): 521–532. https://doi.org/10.3109/17435390.2013.82821.

103. Luzzi S, Maestro MD, Elia A, et al. Morphometric and Radiomorphometric Study of the Correlation Between the Foramen Magnum Region and the Anterior and Posterior Approaches to Ventral Intradural Lesions. Turk Neurosurg. 2019;29(6): 875–886. https://doi.org/10.5137/1019-5149.TJN.2019-7512.

104. Ahmad MZ, Akhter S, Rahman Z, et al. Nanometric gold in cancer nanotechnology: current status and future prospects. J Pharm Pharmacol. 2013;65(5): 634–651. https://doi.org/10.1111/jphp.12017.

105. Ricci A, Di Vitantonio H, De Paulis D, et al. Cortical aneurysms of the middle cerebral artery: A review of the literature. Surg Neurol Int. 2017;8: 117. https://doi.org/10.4103/sni.sni_50_17.

106. Millimaggi DF, Norcia VD, Luzzi S, Alfiero T, Galzio RJ, A. Minimally Invasive Transforaminal Lumbar Interbody Fusion with Percutaneous Bilateral Pedicle Screw Fixation for Lumbar Spinal Spine Degenerative Diseases. A Retrospective Database of 40 Consecutive Cases and Literature Review. Turk Neurosurg. 2018;28(3): 454–461. https://doi.org/10.5137/1019-5149.TJN.19479-16.0.

107. Ahmad MZ, Akhter S, Rahman Z, et al. Nanometric gold in cancer nanotechnology: current status and future prospects. J Pharm Pharmacol. 2013;65(5): 634–651. https://doi.org/10.1111/jphp.12017.

108. Delong RK, Reynolds CM, Malcolm Y, Schaeffer A, Severs T, Wanekaya A. Functionalized gold nanoparticles for the binding, stabilization, and delivery of therapeutic DNA, RNA, and other biological macromolecules. Nanotechnol Sci Appl. 2010;3: 53–63. https://doi.org/10.2147/NSA.S8984.

Received: 10 May 2020
Accepted: 1 June 2020

Correspondence:
Sabino Luzzi M.D., Ph.D.
Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia
Polo Didattico “Cesare Brusotti”, Viale Brambilla, 74
27100 - Pavia (Italy)
E-mail: sabino.luzzi@unipv.it