Comparable incidence of periprosthetic tibial fractures in cementless and cemented unicompartmental knee arthroplasty: a systematic review and meta-analysis

Joost A. Burger1 · Tjeerd Jager2 · Matthew S. Dooley1 · Hendrik A. Zuiderbaan3 · Gino M. M. J. Kerkhoffs4 · Andrew D. Pearle1

Received: 22 July 2020 / Accepted: 11 January 2021 / Published online: 2 February 2021
© The Author(s) 2021

Abstract
Purpose (I) To determine the incidence of periprosthetic tibial fractures in cemented and cementless unicompartmental knee arthroplasty (UKA) and (II) to summarize the existing evidence on characteristics and risk factors of periprosthetic fractures in UKA.

Methods Pubmed, Cochrane and Embase databases were comprehensively searched. Any clinical, laboratory or case report study describing information on proportion, characteristics or risk factors of periprosthetic tibial fractures in UKA was included. Proportion meta-analysis was performed to estimate the incidence of fractures only using data from clinical studies. Information on characteristics and risk factors was evaluated and summarized.

Results A total of 81 studies were considered to be eligible for inclusion. Based on 41 clinical studies, incidences of fractures were 1.24% (95%CI 0.64–2.41) for cementless and 1.58% (95%CI 1.06–2.36) for cemented UKAs (9451 UKAs). The majority of fractures in the current literature occurred during surgery or presented within 3 months postoperatively (91 of 127; 72%) and were non-traumatic (95 of 113; 84%). Six different fracture types were observed in 21 available radiographs. Laboratory studies revealed that an excessive interference fit (press fit), excessive tibial bone resection, a sagittal cut too deep posteriorly and low bone mineral density (BMD) reduce the force required for a periprosthetic tibial fracture to occur. Clinical studies showed that periprosthetic tibial fractures were associated with increased body mass index and postoperative alignment angles, advanced age, decreased BMD, female gender, and a very overhanging medial tibial condyle.

Conclusion Comparable low incidences of periprosthetic tibial fractures in cementless and cemented UKA can be achieved. However, surgeons should be aware that an excessive interference fit in cementless UKAs in combination with an impaction technique may introduce an additional risk, and could therefore be less forgiving to surgical errors and patients who are at higher risk of periprosthetic tibial fractures.

Level of evidence V.

Keywords Periprosthetic fractures · Tibial plateau fractures · Complications · Failure modes · Unicompartmental knee arthroplasty · Partial knee replacement · UKA · PKR
Introduction

Unicompartmental knee arthroplasty (UKA) is a well-established treatment for patients with isolated compartmental knee arthritis. Advantages of UKA over total knee arthroplasty (TKA) include reduced morbidity and mortality, preservation of normal knee kinematics and faster recovery [35, 49, 59]. However, national registry data have shown lower revision rates after TKA in comparison to UKA [49, 66]. Reasons for UKA revision include aseptic loosening, malalignment, progression of osteoarthritis, instability, infection and periprosthetic fractures [49, 66].

Periprosthetic fractures represent a complex complication with serious consequences in UKA and have been associated with increased mortality and morbidity [26]. The periprosthetic fractures in UKA are most commonly reported on the tibial side (approximately 87%) [66]. Although these periprosthetic tibial fractures are relatively rare compared to other complications in UKA, recent registry-based studies have shown an increased rate of periprosthetic fractures in cementless UKAs compared to cemented UKAs [49, 63]. Since the interest of cementless fixation for UKAs is expected to increase, the rate of periprosthetic fractures may increase as well [49, 63]. However, registry-based studies may not provide reliable information about all fractures, as some periprosthetic fractures are internally fixed and the components are not revised or are treated conservatively. Another common limitation of registry-based studies is that tibial and femoral periprosthetic fractures are not reported separately. This stresses the need for a thorough evaluation of the incidence of periprosthetic tibial fractures in cemented and cementless UKAs using clinical studies. Furthermore, there is a lack of studies providing an overview of the available evidence on characteristics and risk factors of periprosthetic tibial fractures in UKA to gain a better understanding and awareness.

Therefore, the primary study aim was to estimate the incidence of periprosthetic tibial fractures in cemented and cementless UKAs using clinical studies. Secondly, relevant studies were systematically reviewed to summarize characteristics and risk factors of periprosthetic tibial fractures in UKA. Based on earlier large case series of both cemented and cementless UKAs reporting no non-traumatic periprosthetic tibial fractures [62, 68], it was hypothesized that comparable low incidences of periprosthetic tibial fractures can be achieved as long as surgeons are aware of factors that could increase the risk.

Methods

Search strategy

This systematic review with meta-analysis was conducted according to the PRISMA guidelines [65]. Medline, Cochrane and Embase databases were comprehensively searched on 28 May 2020. The database search included several combinations of key terms: "unicompartmental", "knee", "arthroplasty", "failure", "complication", "survival", "survivorship", "revision", "reoperation", "fracture" and "collapse". The search was, however, limited to English language studies published since 2000. After duplicates were excluded, titles and abstracts were screened by two independent reviewers (** & ***). Subsequently, full texts of the potential studies were carefully assessed by the two reviewers to confirm study eligibility. To be eligible, the study needed to contain information on proportion, characteristics and/or risk factors of periprosthetic tibial fractures in UKA. Clinical studies with information on fixation type and proportion were used to estimate incidences. For information regarding characteristics and/or risk factors, any study design was considered eligible, including case reports and laboratory studies. Although case reports and laboratory studies constitute low-level evidence, a systematic review of such studies can provide a better understanding and awareness of tibial plateau fractures in UKA. Studies were excluded if they reported on bicompartamental UKAs, used the same database, were reviews, registry-based studies, commentaries or abstracts. References of the included studies were checked for any missing studies. Any disagreements on study eligibility were resolved through consultation of the third reviewer (**).
were evaluated and summarized. Finally, conclusions of laboratory studies were presented.

Methodological quality assessment

Different tools for methodological quality assessment were used depending on study design. The National Institutes of Health (NIH) checklist was used for all clinical studies [67], The Case Report (CARE) checklist was used for case reports [29], and the Quality Appraisal for Cadaveric Studies (QUACS) checklist [90] was used for cadaveric studies. A score was provided for each article (poor, fair or good). The assessment was performed by two independent reviewers (*** & ****) and disagreements of the level of study quality were resolved through consultation of the third reviewer (**).

Statistical analyses

Incidence of periprosthetic tibial fractures was calculated as the number of fractures divided by the total number of UKAs from each clinical study. These data were combined via proportion meta-analysis [94]. This is a tool to calculate an overall proportion from studies reporting a single proportion. Combined proportions were determined for cementless and cemented UKAs. A subgroup analysis was performed for cementless and cemented Oxford Partial Knee Implants. Effect sizes and 95% Confidence Intervals (CI) were determined using a random-effects model by the back-transformation of the weighted mean of the logit-transformed proportions with Dersimonian weights. Characteristics between patients with and without periprosthetic tibial fractures were compared using the chi-square test for categorical variables and independent t test for continuous variables. All analyses were performed with R version 4.0.0 (R Foundation for Statistical Computing, Vienna, Austria).

Results

A total of 81 studies were included (Fig. 1). Fifty-eight (72%) were clinical studies consisting of 30 retrospective case series (52%) [1–6, 8–11, 14, 27, 31, 36, 37, 43–45, 47, 48, 53, 54, 70, 73, 83, 85, 88, 91, 93, 96], 14 prospective case series (26%) [7, 17, 18, 32, 51, 55–58, 61, 77, 78, 86, 95], seven retrospective cohort studies (12%) [13, 24, 25, 46, 50, 59, 72], four prospective cohort studies (7%) [28, 30, 84, 89] and three randomized controlled trials (5%) [22, 23, 33]. Ten (12%) studies were case reports [15, 40, 52, 60, 69, 74, 81, 82, 87, 92]. Thirteen (16%) were laboratory studies, of which four (31%) used sawbones [16, 20, 39, 64], four (31%) finite element models [41, 42, 75, 76], three (23%) human cadavers [21, 79, 80] and two (15%) a combination of finite element models with sawbones [19, 71]. The quality of studies was considered to be good in 54 (67%) studies, fair in 26 (32%) studies, and poor in one (1%) study. Table 1 summarizes the conclusions and quality assessment of the laboratory studies. Appendix 1 and 2 summarize the data extraction and quality assessment of the case reports and clinical studies, respectively.

Incidence of fixation type

The incidence of each fixation type was determined using 44 clinical studies [1, 3, 5–10, 17, 18, 22, 23, 28, 30–33, 36, 43–46, 48, 50, 51, 53–59, 61, 70, 72, 73, 83–86, 89, 91, 93, 96], leading to an incidence of 1.24% (95% CI 0.64–2.41) for cementless and 1.58% (95% CI 1.06–2.36) for cemented UKAs (Fig. 2). Subgroup analysis for the Oxford Partial Knee implants was performed using 21 clinical studies [1, 3, 10, 17, 18, 30, 33, 44, 46, 48, 51, 53–55, 58, 59, 70, 72, 73, 83, 85, 96], resulting in an incidence of 1.22% (95% CI 0.60–2.49) for cementless and 0.99% (95% CI 0.62–1.59) for cemented fixation (Fig. 3).

Characteristics

A total of 202 periprosthetic tibial fractures in UKA were reported in 58 clinical studies [1–4, 6–11, 13, 14, 17, 18, 22–25, 27, 28, 30–33, 36, 37, 43–48, 50, 51, 53–59, 61, 70, 72, 73, 77, 78, 83–86, 88, 89, 91, 93, 95, 96] and ten case reports [15, 40, 52, 60, 69, 74, 81, 82, 87, 92]. The time of fracture was noted for 127 fractures. Twenty-three fractures (18%) occurred during the operation, 68 (54%) presented within 3 months postoperatively, 19 (15%) presented between 4 and 12 months postoperatively, and 17 (13%) presented after 1 year postoperatively. Fracture mechanism was reported for 113 fractures with 95 (84%) being non-traumatic.

Twenty-one fractures (10%) had good-quality radiographs to assess the location of the fracture line [6, 14, 33, 40, 45, 48, 52, 69, 74, 81, 85, 87, 88, 92]. Schematic drawings of the different fracture types are displayed in Fig. 4.
Based on information from 167 fractures, 85 (51%) periprosthetic tibial fractures were treated with TKA (with metal augmentation and/or tibial stem extension), 38 (23%) with ORIF, and 44 (26%) with conservative treatment. Authors reported that eight fractures, initially treated conservatively, underwent a subsequent TKA; six fractures, initially treated with ORIF, underwent a subsequent TKA; one fracture, initially treated conservatively, underwent ORIF; and one fracture, initially treated conservatively, underwent ORIF and eventually needed a TKA.

Risk factors

Factors related to periprosthetic tibial fractures in UKA were analyzed using 23 clinical studies Table 2 [1, 8–10, 13, 18, 23–25, 28, 31, 32, 37, 43, 47, 48, 57, 61, 86, 89, 91, 93, 96]. Fractures were associated with increased BMI ($p=0.017$), advanced age ($p=0.003$), decreased bone mineral density (BMD) ($p=0.030$), female gender ($p=0.011$), increased postoperative tibia-femoral alignment ($p=0.0120$) and a very overhanging medial tibial condyle (< 0.001). The definition of a very overhanging medial tibial condyle was based on the medial eminence line (MEL) described by Yoshi-kawa et al. [96]. The MEL is a line drawn on preoperative radiographs, that is parallel to the tibial axis passing through the tip of medial intercondylar eminence. If this line passes medial to the medial cortex of the tibia, knees were classified as having a very overhanging medial tibial condyle. Fractures were not associated with the postoperative level of patient activity ($p=0.976$) or with the tibial component alignment angle in the coronal plane ($p=0.130$).
Table 1 Summary of laboratory studies

Study	Country	Study type	Implant	Summary	Study quality
Campi et al. [16]	UK	Sawbone	Oxford (Biomet)	This study suggests that decreasing the press fit of the tibial keel of the cementless UKA would significantly decrease the push-in force required to insert the tibial component (and so decrease the risk of fracture), without reducing the pull-out force and therefore ensuring the same level of primary stability	Good
Chang et al. [19]	Taiwan	FE model & Sawbone	Miller-Galante II, cemented (Zimmer)	This study suggests that in UKA, rounding the resection corner during preparation of the tibial plateau decreases the strain on tibial bone and avoid degenerative remodeling, in comparison to a standard rectangular corner. This modified surgical technique using a predrilled tunnel through the tibia prior to cutting could avoid extended vertical saw cutting errors	Good
Clarius et al. [20]	Germany	Sawbone	Oxford (Biomet)	This study suggests several sawing errors can occur during preparation of the tibial plateau (extended vertical cuts which may reduce the stability of the medial tibial plateau, extended horizontal cuts, perforation of the posterior cortex) and femoral condyle (ascending cut at the posterior femoral condyle) in UKA, especially with inexperienced surgeons	Good
Clarius et al. [21]	Germany	Cadaver	Oxford UKA (Biomet)	This study suggests that extended sagittal saw cuts in UKA weaken the tibial bone structure and increase the risk of periprosthetic tibial plateau fractures. In addition, this study showed that UKA patients with low BMD are at higher risk, as the fracture load is dependent on the bone density	Good
Iesaka et al. [41]	Japan	FE model	NR	In UKA, placing the tibial component in slight valgus inclination is preferred to varus or square inclination as it results in more even stress distributions	Fair
Inoue et al. [42]	Japan	FE model	Metal-backed tibia, cemented	This study suggests that the risk of medial tibial condylar fractures in UKA increases with increasing valgus inclination of the tibial component and with increased extension of the sagittal cut in the posterior tibial cortex	Good
Mohammad et al. 2018	UK	Sawbone	Oxford, cementless (Zimmer Biomet)	This study suggests to use a new wider and deeper keel cut saw blade in UKA as it decreases the risk of tibial fracture compared to the standard keel cut saw blade, with no compromise in fixation	Good
Sasatani et al. 2019	Japan	FE model	Persona (Zimmer Biomet)	This study suggests that the optimal alignment of the tibial implant in UKA is the middle position the coronal plane and the original posterior inclination in the sagittal plane	Good
Sawatari et al. 2005	Japan	FE model	SCR UKA, metal-backed tibia, cemented (Stryker)	This study suggests that in UKA, placing the tibial component in slight valgus inclination is recommended due to reduced stress on tibial cancellous bone, in comparison with varus or square inclination. However, excessive posterior slope should be avoided	Good
Authors considerations

Authors reported their considerations of cause of fracture in 36 clinical studies [1, 2, 4–11, 13, 14, 17, 18, 23, 30, 31, 33, 36, 37, 43–45, 54, 55, 57, 61, 70, 84, 85, 88, 89, 91, 93, 95, 96] and nine case reports [15, 40, 52, 60, 69, 74, 81, 82, 87, 92] (Table 3).

Discussion

The main study finding was that the incidence of periprosthetic tibial fractures in cemented and cementless UKA was comparable. However, experimental evidence showed that excessive interference fit (press fit), excessive resection depth, making the sagittal cut too deep posteriorly, and low BMD reduces the load required for a periprosthetic tibial fracture to occur. Furthermore, clinical studies revealed that patients with fractures were more often female, of older age, exhibited higher BMI and postoperative alignment angles, had lower BMD and had very overhanging medial tibial condyles.

Contrarily to the main finding of this study, two recent registry-based studies showed higher rates of periprosthetic fractures in cementless compared to cemented Oxford Partial Knee implants [49, 63], raising some concerns regarding a keel design in cementless techniques. Campi et al. demonstrated that fixation of the cementless mobile-bearing Oxford UKA is ensured by the interference fit [18]. However, an excessive interference increases the assembly load required to push-in the component potentially introducing a splitting force during impaction (type V fracture) [16]. As this interference fit, combined with an impaction technique, could introduce an additional risk factor for fractures, the cementless Oxford Partial Knee implant may be less forgiving to surgical errors and patients who are at higher risk of periprosthetic tibial fractures.

Several surgical errors have been proposed by authors to cause periprosthetic tibial fractures in UKA Table (3). Only a few authors have supported their conclusion with experimental evidence. Laboratory studies showed a vertical saw cut too distal in the posterior tibial cortex and excessive tibial bone resection reduces the load required for a fracture to occur [20, 21, 39, 71]. Additionally, laboratory studies on the role of tibial component alignment suggested valgus alignment and an excessive posterior slope should be avoided [41, 42, 76]. Other authors based their conclusions on radiographic or intraoperative findings. Radiographs revealed that fracture lines went through multiple pinholes of the extramedullary tibial guide (type II fracture) [15]. One author reported that a fracture occurred due to breaching the posterior cortex while using a tibial gouge for keel preparation in Oxford Partial Knee implants (type V fracture) [82].
Furthermore, one fracture occurred after breaching the tibial cortex with the screw to fixate a cementless fixed-bearing UKA (type VI) [87]. These findings indicate that surgical actions that weaken cortical bone or reduce the bony area under the tibial component increase the risk of fracture. However, more studies evaluating fractures under different conditions in UKA are necessary to understand the main pathologic elements of periprosthetic tibial fractures.

It was further noted that female gender, higher BMI and age, osteoporosis, excessive postoperative alignment

Fig. 2 Proportion meta-analysis to estimate the incidence of fractures in cemented (a) and cementless (b) unicompartmental knee arthroplasty

a

Author, Year	Fractures	Total	Proportion (%)	[95% C.I.]
Lindstrand et al., 2000	2	123	1.63	[0.41; 6.27]
Confalonieri et al., 2004	1	40	2.50	[0.35; 15.73]
Gesell et al., 2004	1	47	2.13	[0.30; 13.62]
Gleeson et al., 2004	1	104	0.96	[0.14; 6.51]
Rajasekhar et al., 2004	1	135	0.74	[0.10; 5.07]
Berend et al., 2005	3	73	4.11	[1.33; 11.98]
Berger et al., 2005	3	49	6.12	[1.99; 17.33]
Forster et al., 2007	1	30	3.33	[0.47; 20.20]
Kort et al., 2007	1	154	0.65	[0.09; 4.46]
Lombardi Jr. et al., 2009	2	115	1.74	[0.44; 6.68]
Marya et al., 2009	1	29	3.45	[0.48; 20.79]
Song et al., 2009	2	100	2.00	[0.50; 7.64]
Biswal et al., 2010	2	128	1.56	[0.39; 6.03]
Costa et al., 2011	4	34	11.76	[4.49; 27.46]
Geller et al., 2011	2	64	3.12	[0.78; 11.65]
Lisowski et al., 2011	1	244	0.41	[0.06; 2.85]
Berend et al., 2012	1	100	1.00	[0.14; 6.75]
Bhattacharya et al., 2012	1	91	1.10	[0.15; 7.39]
Smith et al., 2012	1	187	0.53	[0.08; 3.70]
Weber et al., 2012	1	40	2.50	[0.35; 15.73]
Thompson et al., 2013	2	229	0.87	[0.22; 3.42]
Woo et al., 2013	6	986	0.62	[0.28; 1.38]
Akhtar et al., 2014	1	76	1.32	[0.19; 8.75]
Hamilton et al., 2014	2	517	0.39	[0.10; 1.53]
Ji et al., 2014	1	246	0.41	[0.06; 2.83]
Song et al., 2016	2	68	2.94	[0.74; 11.01]
Kerens et al., 2017	1	60	1.67	[0.23; 10.90]
Kim et al., 2017	1	82	1.22	[0.17; 8.15]
Koh et al., 2017	3	101	2.97	[0.96; 8.81]
Alnachoukati et al., 2018	1	707	0.14	[0.02; 1.00]
Pongcharoen et al., 2018	1	201	0.50	[0.07; 3.44]
Gill et al., 2019	1	466	0.21	[0.03; 1.51]
Kaneko et al., 2019	4	61	6.56	[2.48; 16.21]
Lim et al., 2019	1	263	0.38	[0.05; 2.65]
Yokoyama et al., 2019	12	167	7.19	[4.13; 12.23]

Random effects model

Proportion (%)	[95% C.I.]
6097	1.58

b

Author, Year	Fractures	Total	Proportion (%)	[95% C.I.]
Jeer et al., 2004	1	66	1.52	[0.21; 9.98]
Liddle et al., 2013	4	1000	0.40	[0.15; 1.06]
Lecuire et al., 2014	1	65	1.54	[0.22; 10.12]
Blaney et al., 2017	2	257	0.76	[0.19; 3.06]
Kerens et al., 2017	1	60	1.67	[0.23; 10.90]
Panzram et al., 2017	1	30	3.33	[0.47; 20.20]
Campi et al., 2018	6	598	1.00	[0.45; 2.21]
Campi et al., 2018	2	1000	0.20	[0.05; 0.80]
Leenders et al., 2018	4	122	3.28	[1.24; 8.41]
Yoshikawa et al., 2020	6	156	3.85	[1.74; 8.30]

Random effects model

Proportion (%)	[95% C.I.]
3354	1.24
angles and a very overhanging medial tibial condyle could contribute to the occurrence of periprosthetic tibial fractures in UKA. The relationship with greater age and osteoporosis is not surprising as fractures have been directly linked to these factors [12]. The higher proportion of periprosthetic tibial fractures in females compared to males may be due to higher rate of osteoporosis [12], the smaller average size of tibial plateaus [97] and the higher likelihood of having very overhanging medial tibial condyles [38, 96] in females. The two latter reasons reduce the bone volume to support the tibial component which may increase the risk of fracture. As such, surgeons should avoid large tibial resections as well as peripheral positioning [39], especially in those with already little bone volume to support the tibial component. Further, the relationship of higher BMI and excessive postoperative alignment angles with periprosthetic tibial fractures may be explained by the excessive loads placed on the small tibial surface [40, 74, 84]. In addition, small medial femoral condyles needing small components might also be a risk factor leading to overload because of smaller contact areas at the medial tibial surface [34].

Despite surgeons should be aware of potential risk factors, current evidence underlines developments in instrumentation and implants can minimize fracture risk. Chang et al. showed a modified technique using a predrilled tunnel through the tibia prior to cutting could avoid extended vertical saw cut errors [19]. Campi et al. suggested the optimal interference fit for good implant stability and minimal risk of fracture is between 0.5 mm and 0.7 mm [16]. Moham mad et al. reported improvements in instrumentation that widen the keel slot could reduce the risk of tibial fractures in cementless Oxford Partial Knee implants without compromising fixation [64]. Some authors suggested to change the depth of the tibial keel in very small cementless Oxford Partial Knee components as the depth of the keel is currently the same in all components, increasing the risk of fracture [38]. Vardi et al. reported that a change was made to the shape and size of the tibial keel of the Alphanorm implant [38].

This study revealed that most of periprosthetic tibial fractures occurred intraoperatively or within 3 months of surgery and were non-traumatic. Studies of intraoperative fractures described that operative damage in combination with the impaction of the tibial component caused the tibial bone to fracture. The postoperative fractures within 3 months may be associated with operative damage and repetitive stress on the bone during daily activities such as walking and stair climbing. Fractures that presented after 3 months were mostly associated with traumatic events, excessive weight,
osteoporosis, infection, all-polyethylene designs and tibial component malposition.

Furthermore, a classification of periprosthetic tibial fracture types was presented. As only 10% of all fractures could be used in the classification, the incidence and completeness of fracture types in UKA remain unknown. However, presented paths of fractures could explain the high-risk fracture regions. For example, the type I fracture not only suggest that an extended sagittal cut posteriorly can initiate a fracture, but indicate that risk of fracture propagation can be increased by placing pins from the extramedullary tibial guide within fracture line regions.

Some limitations of this study should be noted. First, the pooled estimated incidences of fractures were not adjusted for the follow-up period. However, almost all clinical studies had a minimum follow-up of one year and thus included the period when the majority of fractures occurred. Second, poor reporting on characteristics of fractures may have biased the results. Third, not all risk factors for fractures in UKA mentioned by authors have been verified with clinical data, and therefore might be subjective. Also, it cannot be clarified which risk factors verified with clinical data were independently related to periprosthetic tibial fractures as the findings were based on unadjusted analyses. Fourth, to analyze whether increased BMI and age were related to fracture cases, the weighted mean of the overall UKA population was used with the same standard deviation as those of the periprosthetic tibial fracture cases. Although this approach can be considered a fair approximation, the statistical difference for BMI and age between UKAs with and without fractures may have been underestimated. Finally, this study did not focus on the diagnostics and treatment of periprosthetic tibial fracture in UKA. However, based on the current search, three studies have currently evaluated the management of periprosthetic tibial fractures in UKA [14, 80, 91]. Treatments of the included fracture cases were reported.

Fig. 4 Periprosthetic tibial fracture types in unicompartmental knee arthroplasty (UKA) seen on radiographs. I–II: Fracture line extending from the corner of the tibial resection to the medial cortex, resulting in a large (I) or small (II) medial plateau fracture. These fracture lines were identified on the anteroposterior (AP) view in patients with different implant designs. III: Varus subsidence or anterior subsidence of the tibia component, resulting in a small medial fragment fracture. These fractures were identified on the AP view. IV: Fracture line extending from the screw fixation to the posterior cortex, resulting in a posteromedial plateau fracture. The fracture line could not be identified on the AP view but only on the lateral view in a patient with a cementless fixed-bearing UKA with screw fixation. V: Fracture line extending from the tibial keel to the medial cortex, resulting in a medial plateau fracture. These fracture lines were identified on the AP view in patients with Oxford Partial Knee implants. VI: Two fracture lines extending from the corner of the tibial resection to the medial and lateral cortex after traumatic event six years postoperatively, resulting in a bicondylar plateau fracture. The fracture line was identified on the AP view in a patient with a lateral UKA.
to give a complete overview. Despite the aforementioned limitations, this is the first study evaluating the incidence of periprosthetic tibial fractures in cemented and cementless UKAs and providing an overview of the available evidence on periprosthetic tibial fracture in UKA.

Conclusion

The incidence of periprosthetic tibial fractures in cementless UKAs can be similar to those seen in cemented UKAs. However, surgeons should be aware that an excessive interference fit for cementless UKAs in combination with an impaction technique may introduce an additional risk, and may, therefore, be less forgiving to surgical errors and patients who are at higher risk of periprosthetic tibial fractures. While findings of this study raise awareness about periprosthetic tibial fractures in UKA, this study also highlights the importance of improvements in instrumentation and implants to prevent periprosthetic tibial fractures in future practices.

Appendix

See Tables 4, 5.

Table 2 Results of the comparison between UKAs without and with fractures

	No. of clinical studies	No. of knees	Mean ± SD or %	P value§
Body mass index (kg/m²)	4	UKAs without fractures 1379	26.3 ± 6.8*	0.017
		UKAs with fractures 12	31.0 ± 6.8	
Age (yrs)	14	UKAs without fractures 2701	64.4 ± 9.2*	0.003
		UKAs with fractures 24	70.0 ± 9.2	
Bone mineral density (g/m³)	1	UKAs without fractures 155	0.73 ± 0.10	0.030
		UKAs with fractures 12	0.65 ± 0.16	
Tibial component angle (°)	1	UKAs without fractures 155	4.19 ± 2.94	0.130
		UKAs with fractures 12	2.83 ± 2.69	
Postoperative Tibia-femoral Angle (°)	1	UKAs without fractures 155	176.5 ± 3.6	0.012
		UKAs with fractures 12	179.3 ± 3.3	
Gender (Female/Male)	20	UKAs without fractures 5910	67%/33%	0.011
		UKAs with fractures 58	83%/17%	
Activity level (High/Low)§	1	UKAs without fractures 566	20%/80%	0.976
		UKAs with fractures 10	20%/80%	
Very overhanging medial tibial condyle (Yes/No)†	1	UKAs without fractures 150	12%/88%	<0.001
		UKAs with fractures 6	67%/33%	

§Chi square test was used for categorical variables and the independent t test for continuous variables

§Patients with an UCLA (University of California Los Angeles) activity score > 6 were classified as high

The weighted mean of the overall UKA population with the same standard deviation as the tibial plateau fracture cases was used to allow for a fair comparison. This means this is an estimation and not the exact mean with standard deviation of the UKAs without fractures

†Very overhanging medial tibial condyle was defined as a medial eminence line outside the medial cortex of the tibial shaft as described by Yoshikawa et al.[95]

Table 3 Factors associated with periprosthetic tibial fractures considered by authors

Implant and surgical factors
Excessive postoperative alignment angle
Pin placement (excessive pins, not predrilled, too close to medial tibial cortex)
Excessive tibial bone resection
Vertical saw cut too distal in posterior tibial cortex
Excessive posterior slope
Error in keel preparation
Learning curve/introduction of new implant
Limited instrumentation
Not enough medialization of the tibial component to tibial spine
Tibial peg hole drilled too deeply
All-polyethylene design
Tibial subsidence or collapse
Undersizing or oversizing of tibia component
Forceful impaction

Patient factors
Infection
Osteoporosis
Overweight
Small tibial size
Very overhanging medial tibial condyles
Trauma

Rehabilitation factor
Weightbearing too early
Study

Brumby et al.
Rudol et al.
Lu et al. 2019
Seon et al. [81]
Sloper et al.
Kumar et al.
Van Loon et al.
Yang et al. [92]
Study

Pandit et al.
Yuk Wah et al.

UKA unicompartmental knee arthroplasty; BMI body mass index; ORIF open reduction internal fixation; NR not reported; TKA total knee arthroplasty

*Quality Appraisal for Cadaveric Studies (QUACS) checklist was used as a quality assessment tool.
Table 5 Summary of clinical studies

Study	Country	UKA population	Fracture cases	Study design	Quality*											
Akhtar et al. [1]	UK	76 30 64 58	1 -2 mo -Medial	Case series, retrospective	Good											
Aleto et al. [2]	USA	NR NR NR NR	15 -16 mo -14 NR	Case series, retrospective	Good											
Alnachoukati et al. [3]	USA	707 32 64 45	1 -9.6 yrs -Medial	Case series, prospective	Good											
Argenson et al. [4]	France	38 26 61 62	1 -11 mo -Lateral	Case series, prospective	Good											
Berend et al. [5]	USA	100 30 68 70	1 -2 yrs -Lateral	Case series, prospective	Good											
Berend et al. [6]	USA	73 32 66 77	3 -1 mo -Medial	Case series, prospective	Good											
Berger et al. [7]	USA	49 NR 68 67	3 -Intraop -Medial	Case series, prospective	Good											
Bhattacharya et al. [8]	UK	91 NR 68 58	1 -31 mo -Medial	Case series, retrospective	Good											
Study	Country	UKA population	Fracture cases	Study design	Quality											
-----------------------	------------------	----------------	----------------	-----------------------	---------											
		Baseline (Knees)	Mean BMI	Mean Age	Female (%)	No. cases	Time point	UKA Laterality	Trauma	Gender	BMI (kg/m²)	Osteop	Age (yrs)	Implant	Cement	Treatment
Biswal et al. [9]	Australia	128	29	68	49	2	-10 mo	-50 mo	Medial	-No	-NR	-36.0	-40.1	Yes	Yes	TKA
Blaney et al. [10]	UK	257	30	65	48	2	2 wks	13 mo	Medial	-No	-Female -NR	-NR	-NR	-NR	No	ORIF
Bohn et al. [11]	Austria	278	NR	NR	NR	1	-1 wk	-NR	Medial	-No	-NR	-NR	-NR	-NR	NR	TKA
Bonniti et al. [13]	USA	80	33	66	45	1	9 mo	-NR	Medial	-No	-Male -NR	-NR	-NR	-Fixed- bearing	NR	-TKA
Brown et al. [14]	USA	2464	NR	NR	NR	16	Mean: 35 dys	Mean: 15	Medial	-2 No	-11 Female	-2	2	-16 NR	-16 NR	
Campi et al. [16]	South Africa	522 cem.	65	49	6	6	-NR	-6 Medical	-6 Medical	-6 Female	-6 Medical	-6 Medical	6 No	-6 -TKA		
Campi et al. [16]	UK / New Zealand	1000	NR	66	45	2	1 mo	-2 Medical	-NR	-NR	-NR	-Oxford	-2 ORIF	TKA	TKA	
Confalonieri et al. [22]	Italy	40	NR	70	53	1	-Intraop	-Medical	-No	-NR	-NR	-AMC	-Yes	ORIF	-TKA	
Costa et al. [23]	USA	34	30	73	44	4	2 mo	-Medical	-Medical	-Female -NR	-Yes	-64	-78	-TKA	-TKA	

Table 5 (continued)
Table 5 (continued)

Study	Country	UKA population	Fracture cases	Study design	Quality
Crawford et al. [24]	USA	576 32 62 59	10 -10 NR -10 NR Medial -10 NR -10 NR	Cohort study, retrospective	Fair
Darrith et al. [25]	USA	178 31 55 37 1	-NR -NR -Male -NR -68 -NR	Cohort study, retrospective	Fair
Epinette et al. [27]	France	NR NR NR NR	15 -15 NR -15 NR -10 No	Case series, retrospective	Fair
Forster et al. [28]	Australia	30 NR 67 53 1	-Intraop -Lateral -No -Female -Yes -80	Cohort study, prospective	Fair
Geller et al. [30]	USA	64 31 67 59 2	-NR -1 yr -No -NR	Cohort study, prospective	Good
Gesell et al. [31]	USA	47 NR 68 59 1	-10 dys -Media1 -NR -Medial -NR -NR	Case series, retrospective	Good
Gill et al. [32]	UK	466 29 67 49 1	-3 mo -Media1 -No	Case series, prospective	Good
Gleeson et al. [33]	UK	104 NR 66 50 1	-8 mo -Media1 -No -NR	RCT, prospective	Poor
Hamilton et al. [36]	USA	517 29 66 62 2	-5 mo -2 yrs -Media1 -NR	Case series, retrospective	Good
Table 5 (continued)

Study	Country	UKA population	Fracture cases	Study design	Quality															
		Mean BMI	Mean Age	Female (%)	No. cases	Time point	UKA Laterality	Trauma	Gender	BMI (kg/m²)	Osteo Age (yrs)	Implant Treatment	Cement	Treatment	Study design	Quality				
Hamilton et al. [37]	USA	221	29	66	59	3	-2 mo	-3 mo	-14 mo	Medial	-No	-Female	-33	-NR	-64	-Preservation (DePuy)	-NR	-TKA	Case series, retrospective	Good
Jeer et al. [43]	Australia	66	NR	69	NR	1	-2 wks	Medial	-No	Female	-NR	-NR	-64	-Preservation (DePuy)	-Answer	Case series, retrospective	Good			
Ji et al. [44]	South Korea	246	NR	64	84	1	-Intraop	Medial	-No	-NR	-NR	-NR	-Conservative > TKA	Case series, retrospective	Good					
Kaneko et al. [45]	Japan	61	NR	74	73	4	-6 mo	-7 mo	-2 yr	-5 yr	-Media1	-Yes	-Female	-NR	-NR	-Preservation ZUK (LIMA)	-Yes	-Conservative > TKA	Case series, retrospective	Good
Kerens et al. [46]	Holland	60 cm less	30	63	51	2	-1 mo	-2 mo	-Media1	-No	-NR	-NR	-NR	-NR	-NR	-Oxford (Biomet)	-Yes	-TKA	Cohort study, retrospective	Fair
Kim et al. [47]	South Korea	197	NR	62	90	5	-Intraop	-Media1	-No	-Female	-NR	-NR	-ORIF > TKA	Case series, retrospective	Good					
Kim et al. [48]	South Korea	82	26	55	95	1	-7 yrs	Medial	-No	Female	-NR	-NR	-ORIF (Peck)	Case series, retrospective	Good					
Study	Country	UKA population	Fracture cases	Study design	Quality*															
---------------	-----------------	----------------	----------------	--------------	----------															
Koh et al.	South Korea	101	26	89	3															
Kort et al.	Holland	154	NR	56	67															
Lecuir et al.	France	65	28	72	72															
Leenders et al.	Holland	122	29	63	70															
Liddle et al.	UK	1000	NR	66	43															
Lim et al.	Singapore	263	26	63	72															
Lindstrand et al.	Sweden	123	NR	72	70															

Table 5 (continued)

Study	Country	UKA population	Fracture cases	Study design	Quality*
Koh et al.	South Korea	101	26	89	3
Kort et al.	Holland	154	NR	56	67
Lecuir et al.	France	65	28	72	72
Leenders et al.	Holland	122	29	63	70
Liddle et al.	UK	1000	NR	66	43
Lim et al.	Singapore	263	26	63	72
Lindstrand et al.	Sweden	123	NR	72	70

*Quality ratings based on study design and methodology.
Table 5 (continued)

Study	Country	UKA population	Fracture cases	Study design	Quality																	
Liowski et al. [58]	Holland	244	28	72	NR	1	-Intraop	-Medial	-No	-NR	-NR	-NR	-NR	-Oxford Phase 3 (Biomet)	-Yes	-Conservative	Case series, prospective	Good				
Lombardi Jr et al. [59]	USA	115	31	61	63	2	-7 mo	-22 mo	-Medial	-Medial	-NR	-NR	-NR	-NR	-NR	-Oxford Phase 3 (Biomet)	-Yes	-Yes	TKA	TKA	Cohort study, retrospective	Good
Marya et al. [61]	India	29	NR	83	16	1	-Intraop	-Medial	-No	-Male	-NR	-NR	yes	87	-Allegretto (Zimmer)	-Yes	-ORIF	Case series, prospective	Good			
Panzram et al. [70]	Germany	30	28	63	44	1	-1 mo	-Medial	-No	-NR	-NR	NR	NR	NR	-Oxford (Biomet)	-No	-ORIF&UKA	Case series, retrospective	Good			
Pongcharoen et al. [72]	Thailand	201	27	64	75	1	-3 mo	-Medial	-NR	-NR	-NR	NR	NR	NR	-Oxford (Zimmer-Biomet)	-Yes	-NR	Cohort study, retrospective	Good			
Rajasekhar et al. [73]	UK	135	NR	70	57	1	-Intraop	-Medial	-No	-NR	-NR	NR	NR	NR	-Oxford Phase 2 (Biomet)	-Yes	-ORIF	Case series, retrospective	Fair			
Saxler et al. [77]	Germany	361	NR	70	67	1	-Intraop	-Medial	-No	-NR	-NR	NR	NR	NR	-AMC (Corin)	-NR	-ORIF	Case series, prospective	Good			
Schotanus et al. [54]	Holland	NR	NR	NR	NR	1	-7.1 yrs	-Medial	-NR	-Female	-NR	NR	58	-NR	-NR	-TKA	Case series, prospective	Good				
Smith et al. 2012	UK	187	NR	65	68	1	-Intraop	-Medial	-NR	-NR	-NR	-NR	-NR	-Oxford Phase 3 (Biomet)	-Yes	-TKA	Case series, retrospective	Good				
Study	Country	Study design	Quality																			
------------------	----------	--------------	---------																			
Song et al. [44]	South Korea	Cohort study, prospective	Good																			
Song et al [85]	South Korea	Case series, retrospective	Fair																			
Thompson et al. [86]	USA	Case series, prospective	Fair																			
Vardi et al. [88]	UK	Case series, prospective	Fair																			
Weber et al. [89]	Germany	Cohort study, prospective	Good																			
Woo et al. [91]	Singapore	Case series, prospective	Good																			
Yokoyama et al. [93]	Japan	Case series, retrospective	Fair																			
Author contributions JAB performed the literature search, scanned all abstracts and full texts, determined the quality of the studies and wrote the manuscript. TJ screened all abstracts, full texts and determined the quality of the studies as a second author and revised the manuscript. MSD checked data extraction, study quality and revised the manuscript. HAZ, GMMJK and ADP participated in the design of the study and revised manuscript. All authors read and approved the final manuscript.

Funding There is no funding source.

Compliance with ethical standards

Conflict of interest Author ADP report consultancy fees from Stryker (Mahwah, NJ, USA) and he has ownership interest in Engage Surgical (Orlando, FL, USA). The other authors (JAB, TJ, MSD, HAZ, GMMJK) report no conflict of interest.

Ethical approval This article does not contain any studies with human participants or animals performed by any of the authors.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Akhtar KS, Somashekar N, Willis-Owen CA, Houlihan-Burne DG (2014) Clinical outcomes of bilateral single-stage unicompartmental knee arthroplasty. Knee 21:310–314
2. Aleto TJ, Berend ME, Ritter MA, Faris PM, Meneghini RM (2008) Early failure of unicompartmental knee arthroplasty leading to revision. J Arthroplasty 23:159–163
3. Alnachoukati OK, Barrington JW, Berend KR, Kolczun MC, Emerson RH, Lombardi AV Jr et al (2018) Eight hundred twenty-five medial mobile-bearing unicompartmental knee arthroplasties: the first 10-Year US multi-center survival analysis. J Arthroplasty 33:677–683
4. Argenson JN, Parratte S, Bertani A, Flecher X, Aubaniac JM (2008) Long-term results with a lateral unicompartmental knee prosthesis: Oxford unicompartmental knee arthroplasty. Clin Orthop Relat Res 466:2686–2693
5. Berend KR, Kolczun MC 2nd, George JW Jr, Lombardi AV Jr et al (2012) Lateral unicompartmental knee arthroplasty through a lateral parapatellar approach has high early survivorship. Clin Orthop Relat Res 470:77–83
6. Berend KR, Lombardi AV Jr, Mallory TH, Adams JB, Groseth KL (2005) Early failure of minimally invasive unicompartmental knee arthroplasty is associated with obesity. Clin Orthop Relat Res 440:60–66
7. Berger RA, Meneghini RM, Jacobs JJ, Sheinkop MB, Della Valle CJ, Rosenberg AG et al (2005) Results of unicompartmental knee arthroplasty at a minimum of ten years of follow-up. J Bone Joint Surg Am 87:999–1006
8. Bhattacharya R, Scott CE, Morris HE, Wade F, Nutton RW (2012) Survivorship and patient satisfaction of a fixed bearing unicompartmental knee arthroplasty incorporating an all-polyethylene tibial component. Knee 19:348–351
9. Biswal S, Brighton RW (2010) Results of unicompartmental knee arthroplasty with cemented, fixed-bearing prosthesis using minimally invasive surgery. J Arthroplasty 25:721–727
10. Blaney J, Harty H, Doran E, O’Brien S, Hill J, Dobie I et al (2017) Five-year clinical and radiological outcomes in 257 consecutive cementless Oxford medial unicompartmental knee arthroplasties. Bone Joint J 99:623–631
11. Bohm I, Landsiedl F (2000) Revision surgery after failed unicompartmental knee arthroplasty: a study of 35 cases. J Arthroplasty 15:982–989
12. Bonnick SL (2006) Osteoporosis in men and women. Clin Cornerstone 8:28–39
13. Bonutti PM, Goddard MS, Zywiel MG, Khanuja HS, Johnson AJ, Mont MA (2011) Outcomes of unicompartmental knee arthroplasty stratified by body mass index. J Arthroplasty 26:1149–1153
14. Brown NM, Engh G, Fricka K (2019) Periprosthetic fracture following partial knee arthroplasty. J Knee Surg 32:947–952
15. Brumby SA, Carrington R, Zayontz S, Reish T, Scott RD (2003) Tibial plateau stress fracture. J Arthroplasty 18:809–812
16. Campi S, Mellon SJ, Ridley D, Foulke B, Dodd CAF, Pandit HG et al (2018) Optimal interference of the tibial component of the cementless Oxford Unicompartmental Knee Replacement. Bone Joint Res 7:226–231
17. Campi S, Pandit H, Hooper G, Snell D, Jenkins C, Dodd CAF et al (2018) Ten-year survival and seven-year functional results of cementless Oxford unicompartmental knee replacement: a prospective consecutive series of our first 1000 cases. Knee 25:1231–1237
18. Campi S, Pandit HG, Oosthuizen CR (2018) The Oxford medial unicompartmental knee arthroplasty: the South African experience. J Arthroplasty 33:1727–1731
19. Chang TW, Yang CT, Liu YL, Chen WC, Lin KJ, Lai YS et al (2011) Biomechanical evaluation of proximal tibial behavior following unicompartmental knee arthroplasty: modified resected surface with corresponding surgical technique. Med Eng Phys 33:1175–1182
20. Clarius M, Aldinger PR, Bruckner T, Seeger JB (2009) Saw cuts in unicompartmental knee arthroplasty: an analysis of Sawbone preparations. Knee 16:314–316
21. Clarius M, Haas D, Aldinger PR, Jaeger S, Jakubowitz E, Seeger JB (2010) Periprosthetic tibial fractures in unicompartmental knee arthroplasty as a function of extended sagittal saw cuts: an experimental study. Knee 17:57–60
22. Confalonieri N, Manzotti A, Pullen C (2004) Comparison of a mobile with a fixed tibial bearing unicompartmental knee prosthesis: a prospective randomized trial using a dedicated outcome score. Knee 11:357–362
23. Costa CR, Johnson AJ, Mont MA, Bonutti PM (2011) Unicompartmental and total knee arthroplasty in the same patient. J Knee Surg 24:273–278
24. Crawford DA, Adams JB, Lombardi AV Jr, Berend KR (2019) Activity level does not affect survivorship of unicompartmental knee arthroplasty at 5-year minimum follow-up. J Arthroplasty 34:1364–1368
25. Darrith B, Frisch NB, Tetreault MW, Fice MP, Culverson CN, Della Valle CJ (2019) Inpatient versus outpatient arthroplasty: a single-surgeon, matched cohort analysis of 90-day complications. J Arthroplasty 34:221–227
26. Della Rocca GJ, Leung KS, Pape HC (2011) Periprosthetic fractures: epidemiology and future projections. J Orthop Trauma 25:S66–70
27. Epinette JA, Brunschwiler B, Mertl P, Mole D, Cazenave A, French Society for H, et al (2012) Unicompartmental knee arthroplasty modes of failure: wear is not the main reason for failure: a multicentre study of 418 failed knees. Orthop Traumatol Surg Res 98:124–130
28. Forster MC, Bause AJ, Keene GC (2007) Lateral unicompartmental knee replacement: fixed or mobile bearing? Knee Surg Sports Traumatol Arthrosc 15:1107–1111
29. Gagnier JJ, Kienle G, Altman DG, Moher D, Sox H, Riley D et al (2014) The CARE guidelines: consensus-based clinical case report guideline development. J Clin Epidemiol 67:46–51
30. Geller JA, Yoon RS, McKeon J, Macaulay W (2011) Does a high-flexion design affect early outcome of unicompartmentar knee arthroplasty? Clinical comparison at 2 years. J Arthroplasty 26:1468–1474
31. Gesell MW, Tria AJ Jr (2004) MIS unicompartmental knee arthroplasty: surgical approach and early results. Clin Orthop Relat Res 428:53–60
32. Gill JR, Nicolai P (2019) Clinical results and 12-year survivorship of the physica ZUK unicompartmental knee replacement. Knee 26:750–758
33. Gleeson RE, Evans R, Ackroyd CE, Webb J, Newman JH (2004) Fixed or mobile bearing unicompartmental knee replacement? A comparative cohort study. Knee 11:379–384
34. Grampmans J, Van Haver A, Danckaerts F, Booth B, Sijbers J, Verdonk P (2020) Small medial femoral condyle morphotype is associated with medial compartment degeneration and distinct morphological characteristics: a comparative pilot study. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-020-06218-8
35. Gupta V, Kejriwal R, Frampton C (2020) Revision following cemented and uncemented Oxford-III primary medial unicompartmental knee replacements: a 19-Year analysis from the New Zealand joint registry. J Bone Joint Surg Am 102:1777–1783
36. Hamilton WG, Ammeen DJ, Hopper RH Jr (2014) Mid-term survivorship of minimally invasive unicompartmental arthroplasty with a fixed-bearing implant: revision rate and mechanisms of failure. J Arthroplasty 29:989–992
37. Hamilton WG, Collier MB, Tarabee E, McAuley JP, Engh CA Jr, Engh GA (2006) Incidence and reasons for reoperation after minimally invasive unicompartmental knee arthroplasty. J Arthroplasty 21:98–107
38. Hiranaka T, Yoshikawa R, Yoshiida K, Michishita K, Nishimura T, Nitta S et al (2020) Tibial shape and size predicts the risk of tibial plateau fracture after cementless unicompartmental knee arthroplasty in Japanese patients. Bone Joint J 102:861–867
39. Houskamp DJ, Tompane T, Barlow BT (2020) What is the critical tibial resection depth during unicompartmental knee arthroplasty? A biomechanical study of fracture risk. J Arthroplasty. https://doi.org/10.1016/j.arthro.2020.04.005
40. Hung Y-W, Chi-Ho Fan J, Ka-Bon Kwok C, Lok-Fai Wong E, Ka-Man Lo C (2018) Delayed tibial-platform periprosthetic stress fracture after unicompartmental knee arthroplasty: uncommon and devastating complication. J Orthop Trauma Rehabilitation 25:29–33
41. Iesaka K, Tsumura H, Sonoda H, Sawatari T, Takasita M, Torisu T, Nitta S et al (2020) Tibial shape and size predicts the risk of tibial plateau fracture after cementless unicompartmental knee arthroplasty in Japanese patients. Bone Joint J 102:861–867
42. Inoue S, Akagi M, Asada S, Mori S, Zaima H, Hashida M (2016) Incidence and mechanisms of failure. J Arthroplasty 29:989–992
43. Issaka K, Tsumura H, Sonoda H, Sawatari T, Takasita M, Torisu T (2002) The effects of tibial component inclination on bone stress after unicompartmental knee arthroplasty. J Biomech 35:969–974
44. Inoue S, Akagi M, Asada S, Mori S, Zaima H, Hashida M (2016) Stress after unicompartmental knee arthroplasty: a study of 35 cases. J Arthroplasty 26:1468–1474
45. Jeer PJ, Keene GC, Gill P (2004) Unicompartmental knee arthroplasty: an intermediate report of survivorship after the introduction of a new system with analysis of failures. Knee 11:369–374
use of patient-specific instruments results in acceptable femoral rotation. Knee Surg Sports Traumatol Arthrosc 26:1656–1661
79. Seeger JB, Haas D, Jager S, Rohner E, Tohtz S, Clarius M (2012) Extended sagittal saw cut significantly reduces fracture load in cementless unicompartmental knee arthroplasty compared to cemented tibia plateaus: an experimental cadaver study. Knee Surg Sports Traumatol Arthrosc 20:1087–1091
80. Seeger JB, Jaeger S, Rohner E, Dierkes H, Wassilew G, Clarius M (2013) Treatment of periprosthetic tibial plateau fractures in unicompartmental knee arthroplasty: plates versus cannulated screws. Arch Orthop Trauma Surg 133:253–257
81. Seon JK, Song EK, Yoon TR, Seo HY, Cho SG (2007) Tibial plateau stress fracture after unicompartmental knee arthroplasty using a navigation system: two case reports. Knee Surg Sports Traumatol Arthrosc 15:67–70
82. Sloper PJ, Hing CB, Donell ST, Glasgow MM (2003) Intra-operative tibial plateau fracture during unicompartmental knee replacement: a case report. Knee 10:367–369
83. Smith TO, Chester R, Glasgow MM, Donell ST (2011) Accelerated rehabilitation following Oxford unicompartmental knee arthroplasty: five-year results from an independent centre. Eur J Orthop Surg Traumatol 22:151–158
84. Song EK, Lee SH, Na BR, Seon JK (2016) Comparison of outcome and survival after unicompartmental knee arthroplasty between navigation and conventional methods with an average 9-year follow-up. J Arthroplasty 31:395–400
85. Song MH, Kim BH, Ahn SJ, Yoo SH, Lee MS (2009) Early complications after minimally invasive mobile-bearing medial unicompartmental knee arthroplasty. J Arthroplasty 24:1281–1284
86. Thompson SA, Liabaud B, Nellans KW, Geller JA (2013) Factors associated with poor outcomes following unicompartmental knee arthroplasty: redefining the “classic” indications for surgery. J Arthroplasty 28:1561–1564
87. Van Loo P, de Munynck B, Bellemans J (2006) Periprosthetic fracture of the tibial plateau after unicompartmental knee arthroplasty. Acta Orthop Belg 72:369–374
88. Vardi G, Strover AE (2004) Early complications of unicompartmental knee replacement: the Droitwich experience. Knee 11:389–394
89. Weber P, Utschneider S, Sadoghi P, Pietschmann MF, Ficklischer A, Jansson V et al (2012) Navigation in minimally invasive unicondylar knee arthroplasty has no advantage in comparison to a conventional minimally invasive implantation. Arch Orthop Trauma Surg 132:281–288
90. Wilke J, Krause F, Niederer D, Engeroff T, Nurnberger F, Vogt L et al (2015) Appraising the methodological quality of cadaveric studies: validation of the QUACS scale. J Anat 226:440–446
91. Woo YL, Chin PL, Lo NN, Chia S-L, Tay DKJ, Yeo SJ (2013) Management of periprosthetic fracture in unicompartmental knee arthroplasty patients: a case series. Proc Singapore Health 22:267–272
92. Yang KY, Yeo SJ, Lo NN (2003) Stress fracture of the medial tibial plateau after minimally invasive unicompartmental knee arthroplasty: a report of 2 cases. J Arthroplasty 18:801–803
93. Yokoyama M, Nakamura Y, Egusa M, Doi H, Onishi T, Hirano K et al (2019) Factors related to stress fracture after unicompartmental knee arthroplasty. Asia Pac J Sports Med Arthrosc Rehabil Technol 15:1–5
94. Yoon BH, Park JW, Cha YH, Won SH, Lee YK, Ha YC et al (2020) Incidence of ceramic fracture in contemporary ceramic-on-ceramic total hip arthroplasty: a meta-analysis of proportions. J Arthroplasty 35:1437–e1433
95. Yoshida K, Tada M, Yoshida H, Takei S, Fukuoka S, Nakamura H (2013) Oxford phase 3 unicompartmental knee arthroplasty in Japan–clinical results in greater than one thousand cases over ten years. J Arthroplasty 28:168–171
96. Yoshikawa R, Hiranaka T, Okamoto K, Fujishiro T, Hida Y, Kamenaga T et al (2020) The medial eminence line for predicting tibial fracture risk after unicompartmental knee arthroplasty. Clin Orthop Surg 12:166–170
97. Yue B, Varadarajan KM, Ai S, Tang T, Rubash HE, Li G (2011) Differences of knee anthropometry between Chinese and white men and women. J Arthroplasty 26:124–130

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.