Research Article

Mohammad Asim, Samad Mujahid, and Izhar Uddin*

Meir-Keeler Contraction In Rectangular $M-$Metric Space

https://doi.org/10.1515/taa-2021-0106
Received 6 September, 2021; accepted 20 November, 2021

Abstract: In this paper, we prove some fixed point theorems for a Meir-Keeler type Contraction in rectangular $M-$metric space. Thus, our results extend and improve very recent results in fixed point theory.

Keywords: Fixed point, Meir-Keeler contraction, $M-$metric space, rectangular $M-$metric space

MSC: 47H10, 54H25

1 Introduction

Fixed point theory provides essential tools for solving problems arising in various branches of mathematical analysis, such as split feasibility problems, variational inequality problems, nonlinear optimization problems, equilibrium problems, complementarity problems, selection and matching problems, and problems of proving the existence of solution of integral and differential equations. In Metric fixed point theory, the well-known Banach contraction principle [1] ensures the existence and uniqueness of fixed points of contraction maps in the setting of complete metric spaces. There are two ways to generalized Banach contraction principle [1]. The first one can change the active contraction and the second is to alter the underlying metric space. Many authors generalized the metric structure mainly: partial metric space [2], $b-$metric space [3], partial $b-$metric space [4], Branciari metric space [5, 6], partial rectangular metric space [7], $M-$metric space [8], rectangular $M-$metric space [9], rectangular M_r-metric space [10], extended rectangular $M_{r_{t}}-$metric space [11], $M_{r_{t}}-$metric spaces [12] and some more [13]–[34].

In literature, there are many generalized contraction available. But due to their applicability and impact, we record the few names as: Meir-Keeler contraction [35], Kannan contraction [36], Chatterjea [37], Boyd and Wong contraction [38] etc. In 2000, Branciari [6] introduced rectangular metric space and obtained certain fixed point theorems. In 2014, Asadi et al. [8, 39] introduced the $M-$metric space, which extends the $p-$metric space [2] and established many fixed point theorems for Banach contraction principle and Meir-Keeler type contraction. In 2018, Özgür [9] extends both rectangular and $M-$metric space by introducing rectangular $M-$metric space and certain fixed point theorems obtained therein. Meir-Keeler has a very significant place among the contraction condition. The definition of Meir-Keeler contraction is as follows:

Definition 1.1. [35] Let M_r be a non-empty set. A Meir-Keeler mapping is a mapping $T : M_r \rightarrow M_r$ on an rectangular $M-$metric space (X, M_r) such that

$$\forall \epsilon > 0, \quad \exists \delta > 0 \text{ such that } \forall x, y \in X \quad \text{and} \quad \epsilon \leq m_r(x, y) < \epsilon + \delta \Rightarrow m_r(Tx, Ty) < \epsilon.$$
Many authors study Meir-Keeler contraction principle in different spaces. The aim of the paper is to study Meir-Keeler contraction in rectangular M–metric space.

2 Preliminaries

In this section, we collect some basic notions, definitions, examples, lemmas and auxiliary results.

Definition 2.1. [6] If X be a non-empty set. A function $r : X \times X \to R^+$ is said to be a rectangular metric on X if it satisfies the following (for all $x, y \in X$ and for all distinct point $u, v \in X \setminus \{x, y\}$):

(i) $r(x, y) = 0,$ if and only if $x = y$,
(ii) $r(x, y) = r(y, x)$,
(iii) $r(x, y) \leq r(x, u) + r(u, v) + r(v, y)$.

Then, the pair (X, r) is called a rectangular metric space. Also, called Branciari distance space or generalized metric space [6].

Definition 2.2. [7] If X be a non-empty set. A function $\rho : X \times X \to R^+$ is said to be a partial rectangular metric on X, if for any $x, y \in X$ and for all distinct point $u, v \in X \setminus \{x, y\}$ it satisfies the following conditions:

(i) $x = y$ if and only if $\rho(x, y) = \rho(x, x) = \rho(y, y)$,
(ii) $\rho(x, x) \leq \rho(x, y)$,
(iii) $\rho(x, y) = \rho(y, x)$,
(iv) $\rho(x, y) \leq \rho(x, u) + \rho(u, v) + \rho(v, y) - \rho(u, u) - \rho(v, v)$.

Then, the pair (X, ρ) is called a partial rectangular metric space.

Notation 2.3 [8] The following notations are useful in the sequel:

(i) $m_{xy} := m(x, x) \lor m(y, y) = \min\{m(x, x), m(y, y)\}$,
(ii) $M_{xy} := m(x, x) \land m(y, y) = \max\{m(x, x), m(y, y)\}$.

Definition 2.3. [8] If X be a non-empty set. A function $m : X \times X \to R^+$ is called a m-metric if it satisfies the following conditions:

(i) $m(x, x) = m(y, y) = m(x, y) \iff x = y$,
(ii) $m_{xy} \leq m(x, y)$,
(iii) $m(x, y) = m(y, x)$,
(iv) $(m(x, y) - m_{xy}) \leq (m(x, z) - m_{xz}) + (m(z, y) - m_{zy})$.

Then, the pair (X, m) is called an M–metric space.

Notation 2.4 [9] The following notations are useful in the sequel:

(i) $m_{r_{xy}} := \min\{m_r(x, x), m_r(y, y)\}$,
(ii) $M_{r_{xy}} := \max\{m_r(x, x), m_r(y, y)\}$.

Definition 2.4. [9] If X be a non-empty set and $m_r : X \times X \to R^+$ is a mapping. If it satisfying the following conditions for all $x, y \in X$:

(i) $m_r(x, y) = m_{r_{xy}} = M_{r_{xy}} \iff x = y$,
(ii) $m_{r_{xy}} \leq m_r(x, y)$,
(iii) $m_r(x, y) = m_r(y, x)$,
(iv) $(m_r(x, y) - m_{r_{xy}}) \leq (m_r(x, u) - m_{r_{xu}}) + (m_r(u, v) - m_{r_{uv}}) + (m_r(v, y) - m_{r_{vy}})$ for all $u, v \in X \setminus \{x, y\}$.

Then, the pair (X, m_r) is called a rectangular M–metric space.

Notice that every m–metric is a rectangular m–metric.
Lemma 2.1. [9] Let \((X, d)\) be a rectangular metric space and a function \(\xi : [0, \infty) \to [0, \infty)\) be a one-to-one and nondecreasing function with \(\xi(0) = \alpha\) such that
\[
\xi(x + y + z) \leq \xi(x) + \xi(y) + \xi(z) - 2\alpha \quad \text{for all } x, y, z \geq 0.
\]
Then, the function \(m_\tau : X \times X \to [0, \infty)\) is defined as
\(m_\tau(x, y) = \xi(d(x, y))\), for all \(x, y \in X\) is rectangular \(m\)-metric.

Lemma 2.2. [9] Let \((X, d)\) be a rectangular metric space and a function \(\xi : [0, \infty) \to [\alpha, \infty)\) be defined as
\(\xi(t) = mt + n\)
with \(\xi(0) = \alpha\) for all \(t \in [0, \infty)\). From Example 1.1, the function \(m_\tau(x, y) = md(x, y) + n\) is a rectangular \(m\)-metric.

It is clear that each rectangular \(M\)-metric on \(X\) generates a \(T_0\) topology \(\tau_{m_\tau}\) on \(X\). The set
\[B_{m_\tau} = \{B(x, \epsilon) : x \in X, \epsilon > 0\},\]
where
\[B(x, \epsilon) := \{y \in X : m_\tau(x, y) - m_{\tau_{xy}} < \epsilon\},\]
for all \(x \in X\) and \(\epsilon > 0\) forms the base of \(\tau_{m_\tau}\).

Definition 2.5. [9] Let \((X, m_\tau)\) be a rectangular \(M\)-metric space. Then
(1) A Sequence \(\{x_n\}\) in \(X\) converges to a point \(x\) if and only if
\[
\lim_{n \to \infty} (m_\tau(x_n, x) - m_{\tau_{xn}}) = 0.\tag{2.1}
\]
(2) A Sequence \(\{x_n\}\) in \(X\) is said to be \(m_\tau\)-Cauchy sequence if and only if
\[
\lim_{n, m \to \infty} (m_\tau(x_n, x_m) - m_{\tau_{xn}}) \quad \text{and} \quad \lim_{n, m \to \infty} (M_\tau(x_n, x_m) - m_{\tau_{xn}})\tag{2.2}
\]
exist and finite.

(3) A rectangular \(M\)-metric space is said to be \(m_\tau\) complete if every \(m_\tau\)-Cauchy sequence \(\{x_n\}\) converges to a point \(x\) such that
\[
\lim_{n \to \infty} (m_\tau(x_n, x) - m_{\tau_{xn}}) = 0. \quad \text{and} \quad \lim_{n \to \infty} (M_\tau(x_n, x) - m_{\tau_{xn}}) = 0.\tag{2.3}
\]

Lemma 2.1. [9] Assume that \(x_n \to x\) and \(y_n \to y\) as \(n \to \infty\) in a rectangular \(M\)-metric space \((X, m_\tau)\). Then,
\[
\lim_{n \to \infty} (m_\tau(x_n, y_n) - m_{\tau_{xn}}) = m_\tau(x, y) - m_{\tau_{xy}}.
\]

Lemma 2.2. [9] Assume that \(x_n \to x\) and \(y_n \to y\) as \(n \to \infty\) in a rectangular \(M\)-metric space \((X, m_\tau)\). Then,
\[
\lim_{n \to \infty} (m_\tau(x_n, y) - m_{\tau_{xn}}) = m_\tau(x, y) - m_{\tau_{xy}}, \forall y \in X.
\]

Lemma 2.3. [9] Assume that \(x_n \to x\) and \(y_n \to y\) as \(n \to \infty\) in a rectangular \(M\)-metric space \((X, m_\tau)\). Then,
\[
\lim_{n \to \infty} (m_\tau(x_n, y_n) - m_{\tau_{xn}}) = m_\tau(x, y) - m_{\tau_{xy}}.
\]

Lemma 2.4. [9] If \(x_n \to x\) and \(y_n \to y\) in a rectangular \(M\)-metric space \((X, m_\tau)\), then, \(m_\tau(x, y) = m_{\tau_{xy}}\). Further, if \(m_\tau(x, x) = m_\tau(y, y)\), then \(x = y\).

Lemma 2.5. [9] Let \(\{x_n\}\) be a sequence in a rectangular \(M\)-metric space \((X, m_\tau)\), such that there exists \(r \in [0, 1)\) such that
\[
m_\tau(x_{n+1}, x_n) \leq rm_\tau(x_n, x_{n-1}) \quad \text{for all } n \in N.\tag{2.4}
\]
Then
(A) \(\lim_{n \to \infty} m_\tau(x_n, x_{n-1}) = 0\),
\[(B) \lim_{n \to \infty} m_r(x_n, x_n) = 0, \]
\[(C) \lim_{n,m \to \infty} m_{r_{x_n x_m}} = 0, \]
\[(D) \{x_n\} \text{ is an } m_r\text{-Cauchy sequence.}\]

Proof. [9] Using the definition of convergence and inequality (2.4), the proof of the condition (A) follows easily. From the Condition \(m_{r_n} \leq m_r(x, y)\) and the Condition (A), we get
\[\lim_{n \to \infty} m_r(x_n, x_n) = \lim_{n \to \infty} m_{r_{x_n x_n}} = 0.\]

Therefore, the Condition (B) holds. Since \(\lim_{n \to \infty} m_r(x_n, x_n) = 0\), the Condition (C) holds. Using the previous conditions and the definition 2.5, we see that the Condition (D) holds.

Theorem 2.1 [9] Let \((X, m_r)\) be a rectangular \(M\)-metric space and \(T\) be a self-mapping on \(X\). If there exists \(k \in [0, 1)\) such that
\[m_r(Tx, Ty) \leq km_r(x, y) \quad \text{for all } x, y \in X \tag{2.5}\]
and consider the sequence \(\{x_n\}_{n \geq 0}\) defined by \(x_{n+1} = Tx_n\). If \(x_n \to u\) as \(n \to \infty\).

Then, \(Tx_n \to Tu\) as \(n \to \infty\).

Theorem 2.2 [9] Let \((X, m_r)\) be a complete rectangular \(M\)-metric space and \(T\) be a self-mapping on \(X\). If there exists \(k \in [0, 1)\) such that
\[m_r(Tx, Ty) \leq km_r(x, y) \quad \text{for all } x, y \in X. \tag{2.6}\]

Then, \(T\) has a unique fixed point \(u \in X\), where \(m_r(u, u) = 0\).

Theorem 2.3 [9] Let \((X, m_r)\) be a complete rectangular \(M\)-metric space and \(T\) be a self-mapping on \(X\). If there exists \(k \in [0, \frac{1}{2})\) such that
\[m_r(Tx, Ty) \leq k[m_r(x, Tx) + m_r(y, Ty)] \quad \text{for all } x, y \in X. \tag{2.7}\]

Then, \(T\) has a unique fixed point \(u \in X\), where \(m_r(u, u) = 0\).

3 Main results

The following definition is new version of the definition in [35] for an \(M_r\)-Metric space.

Definition 3.1 Let \((X, M_r)\) be a rectangular \(M\)-metric space. A mapping \(T : M_r \to M_r\) is said to be Meir-Keeler contraction if for all \(\epsilon > 0\) there exists \(\delta > 0\) such that
\[\forall \epsilon > 0, \exists \delta > 0 \text{ such that } \forall x, y \in X \quad \epsilon \leq m_r(x, y) < \epsilon + \delta \Rightarrow m_r(Tx, Ty) < \epsilon. \tag{3.1}\]

Theorem 3.1. Let \((X, M_r)\) be a \(M_r\)-complete rectangular metric space and let \(T\) a Meir-Keeler contraction. Then, \(T\) has a unique fixed point \(z \in X\). Moreover, for all \(x \in X\), the sequence \(\{T_n(x)\}\) converges to \(z\).

Proof. Let \(x_0 \in X\) and \(x_n = Tx_{n-1}\) for all \(n = 1, 2, \cdots\). Hence, by Condition (3.1), we have
\[m_r(x_n, x_{n-1}) = m_r(Tx_{n-1}, Tx_{n-2}) \leq m_r(x_{n-1}, x_{n-2}).\]

So the sequence \(\{m_r(x_n, x_{n-1})\}\) is bounded below and decreasing. Thus, \(m_r(x_n, x_{n-1}) \to m\) for some \(m \in \mathbb{R}^+\).

Let \(m > 0\), therefore \(m_r(x_n x_{n-1}) \geq m\). On the other hand for \(m > 0\) there exists \(\delta(m) > 0\) such that
\[m \leq m_r(x_{n-1}, x_{n-2}) + m + \delta(m) \Rightarrow m_r(Tx_{n-1}, Tx_{n-2}) = m_r(x_n, x_{n-1}) < m.\]
Which implies that it is contradiction; so \(m = 0 \), i.e.,

\[
\lim_{n \to \infty} m_r(x_n, x_{n+1}) = 0
\]

(3.2)

and

\[
\lim_{n \to \infty} \min\{m_r(x_n, x_n), m_r(x_{n-1}, x_n)\} = 0 = \lim_{n \to \infty} m_r(x_n, x_{n-1}).
\]

Similarly,

\[
\lim_{m, n \to \infty} m_{r_{m,n}}(x_n) = 0 \quad \text{and} \quad \lim_{m, n \to \infty} M_{r_{m,n}}(x_n) = 0,
\]

(3.3)

since, \(\lim m_r(x_n, x_n) = 0 \).

Now, we show that \(T_n(x) \) is \(m_r \)-Cauchy sequence. For this, we have to show that \(\lim_{n,m \to \infty} m_r(x_m, x_n) = 0 \).

Let on contrary that \(\lim_{n,m \to \infty} m_r(x_m, x_n) \neq 0 \). So, for some \(\epsilon > 0 \), we have \(\lim sup m_r(x_m, x_n) > 2\epsilon \). Also, by hypothesis, \(\exists \delta > 0 \) such that

\[
\epsilon \leq m_r(x, y) < \epsilon + \delta \Rightarrow m_r(Tx, Ty) < \epsilon
\]

which remains true with \(\delta \) replaced by \(\delta' = \min\{\delta, \epsilon\} \). By employing 3.2, we have

\[
\exists N > 0, \quad \forall n \left(n > N \implies m_r(x_n, x_{n+1}) < \frac{\delta'}{3} \right)
\]

and for \(m, n > N, m_r(x_m, x_n) > 2\epsilon \Rightarrow m_r(x_m, x_{n+1}) < \epsilon \) also \(\epsilon + \delta' < 2\epsilon < m_r(x_m, x_n) \), that there exist \(i \) with \(m < i < n \) with

\[
\epsilon + \frac{2\delta'}{3} < m_r(x_m, x_i) - m_{r_{x_m,x_i}} < \epsilon + \delta'.
\]

(3.4)

However, for all \(m, i \in \mathbb{N} \), we obtain

\[
(m_r(x_m, x_i) - m_{r_{x_m,x_i}}) \leq (m_r(x_m, x_{m+1}) - m_{r_{x_m,x_{m+1}}}) + (m_r(x_{m+1}, x_{i+1}) - m_{r_{x_{m+1},x_{i+1}}}) + (m(x_{i+1}, x_i) - m_{r_{x_{i+1},x_i}}) \leq \frac{\delta'}{3} + \epsilon + \delta'.
\]

which contradicts (3.4). Thus, the sequence \(\{x_n\} \) is a \(m_r \)-Cauchy sequence (by 3.4 and \(\lim_{m,n \to \infty} m_r(x_m, x_n) = 0 \)).

Since by completeness of \(X \), there exists \(x^* \in X \) such that \(x_n \to x^* \), i.e.,

\[
\lim_{n \to \infty} (m_r(x_n, x^*) - m_{r_{x_n,x^*}}) = 0.
\]

Since \(m_{r_{x_n,x^*}} \to 0 \), hence \(m_{r_{x_n,x^*}} \to 0 \) and \(m_r(x_n, x^*) \to 0 \). Thus, by hypothesis

\[
m_r(Tx_n, Tx^*) \leq m_r(x_n, x^*) \to 0.
\]

Hence, by definition of rectangular \(M \)-metric space, we have

\[
m_{r_{Tx_n,Tx^*}} \leq m_r(Tx_n, Tx^*).
\]

So, \(Tx_n \to Tx^* \). Equation 3.2 implies that \(m_r(x_n, Tx_n) \to 0 \). Since \(m_{r_{x_n,Tx_n}} \to 0 \), we obtain

\[
m_r(x^*, Tx^*) = m_{r_{x^*,Tx^*}}.
\]

On other hand, \(Tx_{n+1} = x_n \to x^* \) and also \(x_{n+1} = Tx_n \to Tx^* \) , we have

\[
0 = \lim_{n \to \infty} (m_r(x_n, Tx_n) - m_{r_{x_n,Tx_n}}) = \lim_{n \to \infty} (m_r(x_n, x_{n-1}) - m_{r_{x_n,x_{n-1}}}) = (m_r(x^*, x^*) - m_{r_{x^*,x^*}})
\]
Thus, \(m_r(x^*, x^*) = m_{r^*}(T_{x^*}, T_{x^*}) \) and since
\[
(m_r(T_{x^*}, T_{x^*}) - m_{r^*}(T_{x^*}, T_{x^*})).
\]

Hence, \(x^* = T x^* \), that is, \(T \) has a fixed point in \(X \). Finally, we show the uniqueness of a fixed point of \(T \). Assume that \(T \) has two distinct fixed points \(x', x'' \in X \) such that \(T x' = x' \) and \(T x'' = x'' \). Then, by the definition of Meir-Keeler contraction if for all \(\epsilon > 0 \) there exists \(\delta > 0 \) such that
\[
\epsilon \leq m_r(x', x'') < \epsilon + \delta \Rightarrow m_r(T x', T x'') = m_r(x', x'') < \epsilon,
\]
which is a contradiction. Hence, \(x' = x'' \). This concludes the proof.

\[
\text{Put } C_r(x, y) = m_r(x, y) + \frac{(1 + m_r(x, y))m_r(y, T y)}{1 + m_r(x, y)} + \frac{m_r(x, T y)m_r(y, T y)}{m_r(x, y)}.
\]

Theorem 3.2. Let \((X, m_r) \) be a complete rectangular \(M \)-metric space and let \(T \) be a continuous mapping from \(X \) into itself satisfying the following condition:
\[
\forall \epsilon > 0 \quad \exists \delta > 0 \quad \forall x, y \in X \quad \epsilon \leq KC_r(x, y) < \epsilon + \delta \Rightarrow m_r(T x, Ty) < \epsilon,
\]
for some \(K \in \left[0, \frac{1}{4}\right] \). Then, \(T \) has a unique fixed point \(u \in X \). Moreover, for all \(x \in X \), the sequence \(\{T_n(x)\} \) converges to \(u \).

Proof. We observe that (1) trivially implies that \(T \) is strict contraction, i.e,
\[
x \neq y \Rightarrow m_r(T x, Ty) < KC_r(x, y).
\]

Let \(x_0 \in X \) and \(x_n = T x_{n-1} \). So, we have
\[
C_r(x_{n-1}, x_n) = m_r(x_{n-1}, x_n) + \frac{(1 + m_r(x_{n-1}, x_n))m_r(x_n, x_{n+1})}{1 + m_r(x_{n-1}, x_n)} + \frac{m_r(x_{n-1}, x_n)m_r(x_n, x_{n+1})}{m_r(x_{n-1}, x_n)}
\]
\[
\leq K(m_r(x_{n-1}, x_n) + 2m_r(x_n, x_{n+1}))
\]
\[
m_r(x_n, x_{n+1}) \leq m_r(T x_{n-1}, T x_n)
\]
\[
\leq KC_r(x_{n-1}, x_n)
\]
\[
\leq K(m_r(x_{n-1}, x_n) + 2m_r(x_n, x_{n+1}))
\]

Therefore,
\[
m_r(x_n, x_{n+1}) \leq m_r(x_{n-1}, x_n)
\]

where \(r = \frac{K}{1 - K} < 1 \). Now, by Lemma (2.5), \(\{x_n\} \) is a \(m_r \)-Cauchy sequence and by completeness of \(X \), \(T x_{n-1} = x_n \rightarrow x^* \) in \(m_r \), for some \(x^* \in X \). Since \(T \) is a continuous mapping, so \(x_n = T x_{n-1} \rightarrow T x^* \) in \(m_r \). Now, by Lemma (2.5), we find
\[
m_r(x^*, T x^*) = m_{r^*}(T x^*, T x^*)
\]
\[
0 = \lim_{n \rightarrow \infty} (m_r(x_n, T x_n) - m_{r^*}(T x_n, x_n))
\]
\[
= m_r(x^*, x^*) - m_{r^*}(x^*, x^*)
\]
\[
= m_r(T x^*, T x^*) - m_{r^*}(T x^*, T x^*)
\]
\[
= m_r(x^*, x^*) = m_r(T x^*, T x^*) = m_r(x^*, x^*)
\]

By Lemma (2.1) and
\[
m_r(x^*, T x^*) = m_{r^*}(T x^*, T x^*) = m_r(x^*, x^*)
\]
So \(x^* = T x^* \). Hence, by contraction 3.6 the uniqueness part is clear.

\(\square \)
Corollary 3.1 [13] Let \((X, d)\) be a complete metric space and let \(T\) be a continuous mapping from \(X\) into itself satisfying the following condition:

\[
\forall x, y \in X, x \neq y \quad d(Tx, Ty) \leq KC(x, y),
\]

for some \(K \in \left(0, \frac{1}{2}\right)\). Then, \(T\) has a unique fixed point \(u \in X\). Moreover, for all \(x \in X\), the sequence \(\{T_n(x)\}\) converges to \(u\).

4 Applications

In this section, take an idea of Samet et al. [40], we shall state an integral version of the Gupta-Saxena result.

Theorem 4.1. Let \((X, m)\) be a rectangular \(M\)-metric space and \(T\) be a self mapping defined on \(X\). Assume that there exists a function \(\varphi : [0, \infty) \to [0, \infty)\) satisfying the following:

(i) \(\varphi(0) = 0\) and \(t > 0 \Rightarrow \varphi(t) > 0\);
(ii) \(\varphi\) is nondecreasing and right continuous;
(iii) for every \(\varepsilon > 0\), there exists \(\delta > 0\) such that

\[
\varepsilon \leq \varphi(KC_r(x, y)) < \varepsilon + \delta \Rightarrow \varphi(m_r(Tx, Ty)) < \varphi(\varepsilon),
\]

for some \(K \in \left(0, \frac{1}{2}\right]\) and for all \(x, y \in X\) with \(x \neq y\).

Then 3.5 is satisfied.

Proof. Fix \(\varepsilon > 0\), so \(\varphi(\varepsilon) > 0\). Hence by 4.1 there exists \(\delta_1 > 0\) such that

\[
\forall x, y \in X, x \neq y, \quad \varphi(\varepsilon) \leq \varphi(KC_r(x, y)) < \varphi(\varepsilon) + \delta_1 \Rightarrow \varphi(m_r(Tx, Ty)) < \varphi(\varepsilon).
\]

According to the right continuity of \(\varphi\)

\[
\exists \delta > 0 \quad \varphi(\varepsilon + \delta_1) < \varphi(\varepsilon) + \delta.
\]

Now, for \(x, y \in X\) with \(x \neq y\) and fixed

\[
\varepsilon \leq KC_r(x, y) < \varepsilon + \delta.
\]

Since \(\varphi\) is a nondecreasing mapping, we have

\[
\varphi(\varepsilon) \leq \varphi(KC_r(x, y)) < \varphi(\varepsilon + \delta_1) < \varphi(\varepsilon) + \delta.
\]

So, we get

\[
\varphi(m_r(Tx, Ty)) < \varphi(\varepsilon) \Rightarrow \varphi(m_r(Tx, Ty)) < \varepsilon.
\]

Corollary 4.1 Let \((X, m)\) be a rectangular \(M\)-metric space and let \(T\) be a self-mapping defined on \(X\). Let \(h : [0, \infty) \to [0, \infty)\) be a locally integrable function such that

(1) \(t > 0 \Rightarrow \int_0^t h(s)ds > 0\);
(2) for every $\epsilon > 0$, there exists $\delta > 0$ such that
\[
\frac{1}{K} \epsilon \leq \int_{0}^{C(x,y)} h(s) ds < \frac{1}{K} \epsilon + \delta \Rightarrow \int_{0}^{m(Tx,Ty)} h(s) ds < \frac{1}{K} \epsilon,
\]
for some $0 < K < \frac{1}{2}$ and for all $x, y \in X$ with $x \neq y$. Then, 3.5 is satisfied.

5 Conclusion

As the rectangular m–metric is relatively new addition to the existing literature, therefore in this article, we established Meir-keeler contraction in rectangular M–metric space. As an application we derived some fixed points of mappings of integral type.

Acknowledgement: Authors are very thankful to the learned referees for pointing out many omissions and for their valuable comments.

References

[1] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux quations intégrales. Fund. Math. (1922), 3, 133–181.
[2] S. G. Matthews, Partial metric topology. Ann. N.Y. Acad. Sci. (1994), 728, 183-197.
[3] S. Czerwik, Contraction mappings in b–metric spaces. Acta Math. Inform. Univ. Ostrava. (1993), 1, 5–11.
[4] S. Shukla, Partial b–metric spaces and fixed point theorems, Mediter. J. Math. 11 (2014), no. 2, 703-711.
[5] M. Arshad, J. Ahmad, E. Karapinar, Some common fixed point results in rectangular metric spaces. Int. J. Anal. Art. (2013), 1, 30723.
[6] A. Branciari, A fixed point theorem of Banach-Cacciopoli type on a class of generalized metric spaces. Publ. Math. (2000), 57, 31-37.
[7] S. Shukla, partial rectangular metric spaces and fixed point theorems. Sci. World J. (2014), Art. ID 756298, https://doi.org/10.1155/2014/756298.
[8] M. Asadi, E. Karapinar, P. Salimi, New extension of p-metric spaces with some fixed-points results on M–metric spaces. J. Inequal. Appl. (2014), 18.
[9] N. Y. Özgür, N. Mlaiki, N. Taş and N. Souayah, A generalization of metrics spaces: rectangular M–metric spaces. Math. Sci. (2018), 12, 223-233.
[10] M. Asim, A. R. Khan and M. Imdad, Rectangular M_{p}-metric spaces and fixed point results, J. of mathematical Anal. 10(2019) 1, 10-18.
[11] M. Asim, K. S. Nisar, A. Morsy and M. Imdad, Extended rectangular $M_{r\xi}$-metric spaces and fixed point results, Mathematics (2019), 1136(7), 2-15.
[12] M. Asim, I. Uddin and M. Imdad, Fixed point results in M_{ν}-metric spaces with an application, Journal of Inequalities and Appl. (2019), 280, doi.org/10.1186/s13660-019-2223-3.
[13] A. N. Gupta and A. Saxena, A unique fixed point theorem in metric spaces. Math. Stud. (1984), 52, 156-158.
[14] C. M. Chen, E. Karapinar and I. J. Lin, Periodic points of weaker Meir-Keeler Contractive mappings on generalized quasi-metric spaces, Abstract and Applied Anal. (2014), Article No 490450.
[15] E. Karapinar, H. Aydi and B. Samet, Fixed points for generalized (α, ψ)-contractions on generalized metric spaces, Journal of Inequalities and Appl. (2014), 229.
[16] E. Karapinar and A. Pitea, On $(\alpha - \psi)$-Geraghty contraction type mappings on quasi-Branciari metric spaces, Journal of Nonlinear and Convex Anal. (2016), Vol 17, 1291-1301.
[17] E. Karapinar, Some fixed points results on Branciari metric spaces via implicit functions, Carpathian J. Math. 31 (2015), No. 3, 339 - 348.
[18] H. Aydi, E. Karapinar and D. Zhang, A note on generalized admissible Meir-Keeler Contraction in the context of generalized metric spaces, Results in Math. (2017), Vol 71, pp 73-92.
[19] H. Monfared, M. Azhini and M. Asadi, Fixed point results on M–metric spaces. J. Math. Anal. (2016), 7(5), 85–101.
[20] H. Monfared, M. Azhini and M. Asadi, C-class and $F(\psi, \varphi)$-contractions on M-metric spaces. Int. J. Nonlinear Anal. Appl. (2017), 8(1), 209–224.
[21] H. Monfared, M. Azhini and M. Asadi, A generalized contraction principle with control function on \(M \)-metric spaces. Nonlinear Functional Analysis and Appl. (2017), 22(2), 395–402.

[22] H. Monfared, M. Asadi and M. Azhini, Coupled fixed point theorems for generalized contractions in ordered \(M \)-metric spaces, Results in Fixed Point Theory and Appl. (2018).

[23] H. Monfared, M. Asadi, M. Azhini D. Regan, \(F(\psi, \phi) \)- Contractions for \(\alpha \)-admissible mappings on \(M \)-metric spaces. Fixed Point Theory and Appl. 1(2018), 22.

[24] M. A. Alghamdi, C. M. Chen and E. Karapinar, A generalized weaker \((\alpha - \phi - \varphi) \)- Contractive mappings and related fixed point results in complete generalized metric spaces, Abstract and Applied Anal. (2014), Article Id 985080.

[25] M. Arshad, J. Ahmad and E. Karapinar, Some Common Fixed Point Results in Rectangular Metric Spaces, International Journal of Anal. (2013), Vol 2013, Article ID 307234.

[26] M. Arshad, E. Ameer and E. Karapinar, Generalized Contractions with triangular alpha-orbital admissible mapping on Branciari metric spaces, J. Inequal. and Appl. (2016), 63.

[27] M. Asadi, E. Karapinar and A. Kumar, \(\alpha - \psi \)-Geraghty Contractions on generalized metric spaces, Journal of Inequalities and Appl. 2014, 423.

[28] M. Asadi, On Ekelands variational principle in \(M \)-metric spaces. J. Nonlinear and convex Anal. (2016), 17(6), 1151–1158.

[29] M. Asadi, M. Azhini, E. Karapinar and H. Monfared, Simulation functions over \(M \)-metric spaces, East Asian Math. J. (2017), 33(5), 559–570.

[30] M. Asadi, B. Moeini, A. Mukheimer and H. Aydi, Complex valued \(M \)-metric spaces and related fixed point results via complex C-class function, J. Inequal. Special Func. (2019), 10(1), 101–110.

[31] M. Berzig, E. Karapinar and A. Roldan, Some Fixed Point Theorems In Branciari Metric Spaces, Mathematica Slovaca 67(2017), No. 5, 1-14.

[32] I. M. Erhan, E. Karapinar and T. Sekulic, Fixed points of \((\psi, \phi) \) contractions on rectangular metric spaces, Fixed Point Theory Appl. (2012), 138.

[33] M. Jleli, E. Karapinar and B. Samet, Further generalizations of the Banach Contraction principle, Journal of Inequalities and Appl. (2014), 439.

[34] N. Bilgili, E. Karapinar and D. Turkoglu, A note on common fixed points for \((\psi, \alpha, \beta) \)-weakly contractive mappings in generalized metric spaces, Fixed Point Theory and Appl. (2013), 287.

[35] A. Meir and E. Keeler, A theorem on contraction mappings. J. Math. Anal. Appl. 28(1969), (1-3), 326-329.

[36] R. Kannan, Some results on fixed points. Bull. Cal. Math. (1969), 60, 71-76.

[37] S. K. Chatterjee, Fixed point theorems. C. R. Acad. Bulgare Sci. (1972), 15, 727-730.

[38] D. W. Boyd and J. S. W. Wong, On nonlinear contractions. Proc. Amer. Math. Soc. (1969), 20, 458–464.

[39] M. Asadi, Fixed point theorems for Meir-keeler mapping type in \(M \)-metric space with applications. Fixed Point Theory Appl., 2015, 210, https://doi.org/10.1186/s13663-015-0460-9.

[40] B. Samet, C. Vetro and H. Yazidi, A fixed point theorem for a Meir-Keeler type contraction through rational expression. J. Nonlinear Sci. Appl. (2013), 6, 162-169.