Reading for tracing evidence: developing scientific knowledge through science text

R M Probosari1†, F Widyastuti2, S Sajidan3, S Suranto4 and B A Prayitno5

12345Science Education Doctoral Program, Faculty of Teacher Training and Education, Sebelas Maret University, Jl. Ir. Sutami No. 36A Surakarta, Indonesia

*Corresponding email : riezkymaya@fkip.uns.ac.id

Abstract. The purposes of this study were to investigate students' learning progression on reading activity, science concept comprehension and how they imply it in scientific communication in the classroom. Fifty-nine biology education students participated in this study. This classroom research was developed to portray students' reading activity, factors affecting reading comprehension, and the development of reading motivation. Qualitative analysis was used to describe the whole activities, involve the instruction, process and the product of reading activity. The result concluded that each student has their own way in interpreting the information from scientific text, but generally, they can filter and apply it in their argument as a part of reasoning and evidence. The findings can be used to direct reading activity to the goal of inquiry in order to support the nature of reading as evidence.

1. Introduction
Science is a structured activity to gain knowledge in the real world systematically, so it requires a scientific method to observe, identify, explain and investigate problems. On the other hand, science also can not detach from the discourse includes the use of language, especially written language to formulate scientific discoveries and build a theory that explains natural phenomena, communicates knowledge, principles, ways of thinking and how to make arguments to others [1]–[3].

1.1 The essence of reading science text
Reading is basically an activity that can be cultivated, but the essence of reading is not merely putting together words, sentences or paragraphs, but looking for the essence or main idea contained in the text[4]. Cognition can be built and developed through appropriate strategies reading because the main purpose of reading literature critically is to bring innovation and move students as critical agents and subjects in making decisions [5]–[7].

However, reading scientific literature is more difficult than reading a popular article or non-scientific reading. People who able to understand the reading of science can interpret the text into semantic information and knowledge into the brain so that they get the equal understanding with the author, in the special degree.[8]. Learning to read science texts not only leads to how to understand the substantive content of science but also how does the epistemology [9], [10].
1.2 Reading as inquiry

The cumulative nature of science makes a researcher or potential researcher need to know everything that happens before they learn what's new. This can be done through reading science, especially research articles published from reputable journals. However, real cases or problems are often different from those from previous studies for various reasons, so there is a need for compromise in adapting the scientific literature used [10]–[12].

Reading scientific texts requires several strategies to help students think about what they are reading. Students do not only think of questions arise after reading but at the same time should be able to predict and anticipate what kind of material they should read after that to get what they want. Students view general reading content by skimming through titles, abstracts, content, and illustrations, then marking problems encountered. Next, the students read more detail to find the answer. After reading, they make some citation or reading paraphrasing and then answer the question with the conclusion of the citation and complete it with another source needed [13, 14].

Reading is a multidimensional activity involves complex cognitive processes [15]. Reading action by a scientist is categorized into inquiry activities so that reading as part of inquiry should be included as part of science learning, but unfortunately, science curriculum and science learning have not supported this yet [9, 16, 17]. The lecturer should understand the "message" present in the literature to support the students understanding of the reading used. Reputable science readings play an important role in introducing authentic examples, the complexities and actual sections of scientific arguments [18], [19]. A proper reading of science provides a strong foundation for students in arguing activity, especially in terms of formulating claims, showing evidence, reasoning, and positioning, whether they support a statement or not.

The purposes of this study were to investigate students’ learning progression on reading activity, science concept comprehension and how they imply it in scientific communication in the classroom.

2. Methods

2.1 Research Design

This study used a qualitative methods research design [20], [21]. Qualitative analysis data were used to explore students’ reading activity, science concept comprehension, factors affecting reading comprehension, and the development of reading motivation.

2.2 Participants

This research took place in a 2nd-grade biology education classroom in a state university in Central Java and taught by team members. The partners were 59 students (50 females and 6 males) who had taken plant embryology class. They are not experienced with related communication, especially on how to build scientific arguments to convince others. Based on the previous observation, the class discussion has been dominated by only a few students, and most of them rely on lecturer as their major learning resource.

2.3 Data collection and analysis

Data were taken during the eight-week period from many sources including students’ writing assignments, structured interviews and lecturer’s notes. Data used to capture students’ reading activities and habits, and how they use the information to support their statement as a part of evidence beyond analysing the difference between the before and after the intervention. Intervention by lectures was done in two weeks to develop students’ skill of science reading includes selecting necessary points, utilizing information and locating material in their library. To portray students’ reading activity and the use of information, data were analysed focusing on amounts of reading, process of reading, and developing skill in using information.

3. Results and Discussion

The lessons focused on three topics, i.e. self-infertility, apomixes and embryo rescue. Observation was done to examine the importance of reading in science education. Findings showed several facts from the data: (1) students’ reading habit, included amount of references and citation management, (2)
process of reading, (3) science concept comprehension, and (4) developing skill in using information as an evidence. Writing assignments analysis showed students’ reading behaviour as follows:

Table 1. Students’ Reference Resources and Reading Activities Before The Interventions

Amounts of citations	Type of references	Use of Citation
< 3 references (11 students)	Textbook, primary literature, research journal (8 students)	Support a claim (27 students)
3 – 5 references (26 students)	Textbook, research journal (14 students)	As data (59 students)
6 – 8 references (14 students)	Textbook, research journal (37 students)	Agreement (59 students)
> 8 references (8 students)	Journal and web/blog (37 students)	

Table 1 described that based on the number of references, most students refer less than 8 sources to support the paper he wrote. Based on the reference type, only 8 students complete a complete three genre of reading including textbook literature, primary literature, and research journal. These three genres have been recommended as an ideal reference source for scientists and science students [17]. Popular magazines, web or blogs that are referred to by students though can be used as reference sources, are actually addressed to the general public, not for the science community. Students who refer more web pages or popular news shows low motivation and reading habit because they take information instantly from internet browsing or refer to the conclusions of previous research without seeing scientific process happened in it [22], [23], [12]. It has an impact on the students’ lack of understanding of science comprehensively, especially in appreciating how scientists think and act, how a study leads to new findings and how to use the results of research as empirical foundation of further research[24], [25].

In connection to how students locate the information and use it, it is found that more students use information from references to express approval of a statement or use data taken to indicate support for a particular claim. However, many students do not yet understand how to distinguish raw data from evidence, whereas raw data can not be regarded as an evidence without a strong theoretical foundation [26], [27]. This is apparent with the writings of the students using the words "I support the research ... which shows that ...", "I agree with the results of the research which shows that, ...", "I agree with the research ... which results ...". Some examples of the use of information from science reading are shown in Figure 1.

Figure 1. The Way Students Locating The Information and Using It Before The Interventions
The figure showed students' weakness in taking scientific information from science reading as a component of evidence, as they review the results but do not integrate it with the discussion and use it to support claims. There are still many students who cannot distinguish between "data" and "evidence".

Intervention is done through tutoring science reading by teacher, including selection of up-to-date reference sources and suitable for scientific community, use of citation management, reading strategy to develop comprehension and use the information as a part of evidence[22], [23], [28]. After the intervention, the data obtained as follows:

Amounts of citations	Type of reference	Use of Citation
< 3 references	Textbook, primary literature, research journal (32 students)	Support a claim (59 students)
3 – 5 references	Textbook, research journal (27 students)	As evidence (59 students)
6 – 8 references	Textbook, research journal and web/blog (0 students)	Positioning (59 students)
> 8 references	(0 students)	

After the intervention was done, the students' behaviour changes especially in choosing the scientific reading source. Sources from non-reputable articles and blogspot are no longer used, and more and more reference counts are used, especially from the Adapted Primary Literature (APL) category, i.e. research articles. This source contains elements of evidence and reasons inside to reinforce claim and arguments [17], [25], [29]. The observation results showed that students who make citations of accurate science text genre are more skilled in expressing their ideas and able to provide clear scientific explanations, a strong theoretical foundation is accompanied by accurate evidence. Some student activities in the discussion activities are described as follows:

![Figure 2. Students’ Explanation and Evidence](image-url)

The synergy between science and literacy is undeniable in science learning, proved by a better understanding of students' science concepts as they become more familiar with reading appropriate scientific references. In the discussion activities, it appears that students who are actively answering are students who have more references. The claim they propose is clearer with apparent empirical and theoretical evidence. Some sample student dialogs are summarized in Figure 3 below:
The facts clearly illustrate the synergy between science and literature. Students are no longer accustomed using the phrase “in my opinion” or “I think, ...” or other expressions of doubt, but using "previous research shows that ...", "from the experiment", which shows evidence and arguments clear. This shows that students' understanding of the concept of science increases as they become more experienced with scientific reading. Students sportively want to revise their answers when they get a more accurate reference. In relation to the search for evidence to support the assertion, students should be able to link textual content with previously owned knowledge structures, build meaning, represent knowledge through different perspectives, and retain their interests and motivations[17], [29].

4. Conclusions

The result concluded that each student has their own way in interpreting the information from scientific text, but generally they can filter and apply it in their argument as a part of reasoning and evidence. The findings can be used to direct reading activity to the goal of inquiry in order to support the nature of reading as evidence.

5. References

[1] D S McNamara and P Kendeou 2011 Translating advances in reading comprehension research to educational practice Int. Electron. J. Elem. Educ 4(1) pp 33–46
[2] M Ness 2016 When readers ask questions: inquiry-based reading instruction Read. Teach 70 (2) pp 189–96
[3] A Styhre 2016 Scholarly reading as professional practice: A reappraisal Scand. J. Manag 32(3) pp 121–6
[4] P Deane Writing Assessment and Cognition New Jersey 2011
[5] P Kendeou, P Van Den Broek, A Helder and J Karlsson 2014 A cognitive view of reading comprehension: Implications for reading difficulties Learn. Disabil. Res. Pract. 29(1) pp 10–6
[6] P. Van Den Broek and C. A. Espin 2012 Connecting cognitive theory and assessment: measuring individual differences in reading comprehension School Psych. Rev. 41(3) pp 315–25.
[7] J Zhang, X Luo, L Lu and W Liu 2012 An acquisition model of deep textual semantics based on human reading cognitive process Int. J. Cogn. Informatics 6(2) pp 82–103
[8] M Cao, J Tian, D Cheng, J Liu and X Sun 2016 What makes it difficult to understand a scientific literature? in Proceedings - 2015 11th International Conference on Semantics, Knowledge and Grids, SKG 2015 pp 89–96
[9] S P Norris, H Falk and M Federico-Agraso 2009 Reading science texts — epistemology, inquiry, authenticity — a rejoinder to jonathan osborne Res. Sci. Educ., 39 3 pp 405–10
[10] N Bryce 2011 Meeting the reading challenges of science textbooks in the primary grades Read. Teach. 64(7) pp 474–85
[11] M Enfield 2014 Reading scientifically: practices supporting intertextual reading using science knowledge J. Sci. Teacher Educ. 25 4 pp 395–412
[12] D J Ford 2009 Promises and challenges for the use of adapted primary literature in science curricula: Commentary Res. Sci. Educ 39(3) pp 385–90
[13] D Jairam, K A Kiewra and M P K. Marxhausen SOAR versus SQ3R: a test of two study systems 2013
[14] G T Martin 2002 Reading, writing, and comprehending: encouraging active reading in the science classroom Sci. Teach 69(7) pp 56–9
[15] E H Jeon and J Yamashita 2014 L2 reading comprehension and its correlates: A meta-analysis,” Lang. Learn 64(1) pp 160–212
[16] L M Phillips and S P Norris 2009 Bridging the gap between the language of science and the language of school science through the use of adapted primary literature Res. Sci. Educ. 39(3) pp 313–19
[17] A Yarden, S P Norris and L M Phillips 2015 Adapted Primary Literature The Use of Authentic Scientific Texts in Secondary Schools 22. Dordrecht: Springer Science+Business Media Dordrecht
[18] C Poon 2014 Five decades of science education in singapore in inquiry into the singapore science classroom Singapore: Springer pp 1–25
[19] U Wingate 2012 Argument!” helping students understand what essay writing is about J. English Acad. Purp 11(2) pp 145–154
[20] J W Creswell Research Design: Qualitative, Quantitative, and Mixed Methods Approaches. California: SAGE Publication 2014
[21] J W Creswell Qualitative Inquiry and Reseach Desgin: Choosing Among Five Approaches. London: SAGE Publication 2007
[22] E T Troscianko 2013 Reading imaginatively: The imagination in cognitive science and cognitive literary studies J. Lit. Semant 42(2) pp 181–98
[23] D L Jordan Teaching Reading in Science A Supplement to Teaching Reading in the Content Areas Teacher ’s Manual (2nd Edition) Alexandria: Association for Supervision and Curriculum Development 2001
[24] G Cervetti and P D Pearson 2012 Reading, Writing and Thinking Like a Scientist,” J. Adolesc. Adult Lit. 55 April pp 580–86
[25] H Falk and A Yarden 2009 Here the scientists explain what i said.’ Coordination practices elicited during the enactment of the results and discussion sections of adapted primary literature Res. Sci. Educ 39(3) pp 349–83
[26] J Leach 1999 Students’ understanding of the co-ordination of theory and evidence in science,” Int. J. Sci. Educ 218 pp 789–806
[27] W A Sandoval and K A Millwood 2010 Cognition and instruction the quality of students’ use of evidence in written scientific explanations the quality of students’ use of evidence in written scientific explanations 23(1) pp 23–55
[28] M Sailors and L R Price Development That Supports the Teaching of Cognitive Reading 1971
[29] S P Norris, H Falk, M Federico-Agraso, M P Jiménez-Aleixandre, L M Phillips, and A Yarden 2009 Reading science texts - Epistemology, inquiry, authenticity - A rejoinder to Jonathan Osborne Res. Sci. Educ 39(3) pp 405–10