Nuclear matter distributions in the neutron-rich carbon isotopes $^{14-17}\text{C}$ from intermediate-energy proton elastic scattering in inverse kinematics

A.V. Dobrovolskya,*, G.A. Koroleva, S. Tangb,1, G.D. Alkhazova, G. Colòc, I. Dillmannb,2, P. Egelhofb, A. Estradeb,3, F. Farinonb, H. Geisselb, S. Ilievaa, A.G. Inglessia, Y. Keb,1, A.V. Khanzadeeva, O.A. Kiselevb, I. Dillmannb,2, P. Egelhofb, A. Estradeb,3, F. Farinonb, H. Geisselb, S. Ilievaa, A.G. Inglessia, Y. Keb,1, A.V. Khanzadeeva, O.A. Kiselevb, J. Kurcewiczb,4, L.X. Chungb,5, Yu.A. Litvinovb, G.E. Petrova, A. Prochazkab, C. Scheidenbergerb, L.O. Sergeevb, H. Simonb, M. Takechib,6, V. Volkovd,7, A.A. Vorobyova, H. Weickb, V.I. Yatsouraa

aPetersburg Nuclear Physics Institute, National Research Centre Kurchatov Institute, Gatchina, 188300 Russia
bGSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
cDipartimento di Fisica, Università degli Studi di Milano and INFN, Sezione di Milano, Via Celoria 16, 20133 Milano, Italy
dInstitut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany

Abstract

The absolute differential cross sections for small-angle proton elastic scattering off the nuclei $^{12,14-17}\text{C}$ have been measured in inverse kinematics at energies near 700 MeV/u at GSI Darmstadt. The hydrogen-filled ionization chamber IKAR served simultaneously as a gas target and a detector for the recoil protons. The projectile scattering angles were measured with multi-wire tracking detectors. The radial nuclear matter density distributions and the root-mean-square nuclear matter radii were deduced from the measured cross sections using the Glauber multiple-scattering theory. A possible neutron halo structure in ^{15}C, ^{16}C and ^{17}C is discussed. The obtained data show evidence for a halo structure in the ^{15}C nucleus.

Keywords: ^{12}C, ^{14}C, ^{15}C, ^{16}C, ^{17}C, nuclear matter distribution, nuclear matter radii, proton-nucleus elastic scattering

1. Introduction

The study of nuclei far from stability is a topic of great current interest. A number of experiments have shown that these nuclei may have exotic structures such as a neutron skin or a halo $^{[1,2]}$. The neutron skin describes an excess of neutrons on the nuclear surface whereas the neutron halo corresponds to such an excess along with an extended tail of the neutron density distribution. The necessary conditions for the halo formation in nuclei are a small binding energy and a low angular momentum of the valence nucleon(s). It has been found that a halo structure manifests itself by large interaction (reaction) cross sections, by enhanced removal cross sections and by narrow momentum distributions of reaction products in the processes of nuclear break-up and Coulomb dissociation $^{[1,2,5]}$.

A long isotopic chain of carbon nuclei was extensively studied both experimentally and theoretically with the aim to understand the evolution of the nuclear structure as one approaches the drip line. Among other
topics, the variation of the nuclear shape with the neutron excess \[\delta \delta \] , the development of a halo \[\delta \delta \delta \] - \[\delta \delta \delta \delta \] , and the change of the shell structure \[\delta \delta \delta \delta \] are important subjects in the study of the nuclei of carbon isotopes. Recently, an experimental evidence for a prevalent \(Z = 6 \) magic number in neutron rich carbon isotopes was presented \[\delta \delta \delta \] based on a systematic study of proton radii, electromagnetic transition rates and atomic masses of light nuclei. Small neutron separation energies are known in \(\delta^{15} \text{C} \), \(\delta^{17} \text{C} \), \(\delta^{19} \text{C} \) and \(\delta^{22} \text{C} \) \[\delta \delta \] , so these nuclei are suggested to be candidates to exhibit a neutron halo. Large enhancements in the values of the root-mean-square (rms) nuclear matter radius \(R_m \) evaluated from the measured interaction cross sections were found for \(\delta^{15} \text{C} \), \(\delta^{19} \text{C} \) \[\delta \delta \delta \delta \] and \(\delta^{22} \text{C} \) \[\delta \delta \delta \delta \] . These results also signal the formation of a neutron halo. Narrow fragment momentum distributions of the reaction products in the nuclear break-up of \(\delta^{15} \text{C} \) \[\delta \delta \delta \delta \] \[\delta \delta \delta \delta \delta \delta \delta \] \[\delta \delta \delta \delta \delta \delta \delta \] \[\delta \δ
structure in $^{15-17}$C. The 14C nucleus was chosen as a presumable core for the 15C and 16C nuclei. The measurement of the differential cross section for elastic p^{12}C scattering was used as a consistency check of the experimental method, including the data analysis procedure.

2. Experimental set-up and the measurement procedure

The measurements were performed at GSI, Darmstadt, at the exit of the fragment separator FRS [41] using the experimental set-up shown in Fig. 1. The carbon isotopes were produced through fragmentation of the 22Ne primary beam interacting with a 8 g/cm2 thick Be target. The produced secondary beams with an energy of ~ 700 MeV/u and an energy spread of $\sim 1.3\%$ were focused at the centre of the active target IKAR, the mean energies of the beam particles being determined with an accuracy of about 0.1%. The intensity of the secondary carbon beams was at the level of 3000 ions/s with a duty cycle in the range of 50–70%.

The experimental set-up was the same as in the previous experiment [37]. It includes the active target IKAR [40, 42, 43], a tracking system based on multi-wire proportional chambers PC1–PC4, scintillator detectors S1–S3 and VETO, the ALADIN magnet with a drift chamber and a scintillator wall. The active target IKAR is the hydrogen-filled ionization chamber which serves as a hydrogen target and a proton recoil detector. IKAR consists of six identical cells, one of which is shown in Fig. 1. It permits to measure the energy T_R of the recoil proton (or its energy loss in case it leaves the active volume), the scattering angle Θ_S of the scattered proton, and the coordinate Z_V of the interaction point along the chamber axis in the grid-cathode space [33].

The scattered beam particles were registered in coincidence with the recoil protons. The scattering angle Θ_S of the projectiles was determined with a set of two-dimensional multi-wire proportional chambers PC1–PC4. The Θ_S angular resolution was estimated to be in the range from $\sigma_\Theta = 0.6$ mrad for the case of 17C to $\sigma_\Theta = 0.85$ mrad for 12C.

A set of scintillation counters (S1, S2, S3 and VETO) was used for triggering and identification of the beam particles via time-of-flight (ToF) and energy loss (ΔE) measurements. The identification plot for the case of the 17C secondary beam is shown in Fig. 2. The time-of-flight and energy loss of the projectiles in the scintillators allow for unambiguous discrimination of the different isotopes present in the beam. The contamination with other nuclei for each selected carbon isotope was below the 0.1% level.
The ALADIN magnet with a drift chamber and a scintillator wall behind it was utilized to discriminate against break-up reaction channels using magnetic rigidity and energy loss of the reaction products. Some features of the experimental lay-out and a detailed description of the procedure of the measurements have already been described in earlier publications [33–39].

The differential cross section \(\frac{d\sigma}{dt} \) was determined after the event selection using the relation

\[
\frac{d\sigma}{dt} = \frac{dN_{el}}{dt N_b n \Delta L}.
\]

Here, \(dN_{el} \) is the number of elastic proton-nucleus scattering events in the interval \(dt \) of the four-momentum transfer squared, \(N_b \) is the total number of incident beam particles, \(n \) is the density of protons in the target, and \(\Delta L \) is the total target length. The value of \(t \) was calculated as \(|t| = 2mT_R \) (where \(m \) is the mass of the proton) for the lower momentum transfers, or as \(|t| = 4p^2 \sin^2(\Theta S/2)/(1 + 2E \sin^2(\Theta S/2)/mc^2) \) (where \(p \) and \(E \) denote the projectile initial momentum and total energy, correspondingly) for the higher momentum transfers [39].

The procedure of the selection of elastic events was the same as in the previous experiments with IKAR [33, 36, 37, 39]. The measured differential cross sections are to a large extent cross sections for elastic scattering. However, they may contain some admixture of inelastic scattering. Possible contributions of inelastic scattering to the measured cross sections were estimated by calculations.

The calculations of the inelastic cross sections for proton scattering off the carbon isotopes under study were performed using the eikonal model. In particular, the formalism of Ref. [44] was adopted as a starting point, but it was extended in order to distinguish between scattering on protons and neutrons in the nuclei under investigation. Note that for the case of neutron-rich nuclei, such a distinction is obviously necessary. In the calculations, the basic inputs were the nucleon-nucleon (\(NN \)) scattering amplitudes and the ground-state (transition) densities for the cases of elastic (inelastic) scattering, respectively. The parameters of the \(NN \) amplitudes were taken from Ref. [45]. The ground-state densities were described as Gaussians, while the transition densities were as in the Tassie model [46]. The rms radii of the proton and neutron distributions \(R_p \) and \(R_n \) were taken from Ref. [4]. The total differential inelastic cross sections for the different carbon isotopes were calculated by summing up the contributions of all experimentally known states below the
Figure 3: Absolute differential cross sections $d\sigma/dt$ for $p^{12,14,15,16,17}C$ elastic scattering versus the four-momentum transfer squared $-t$. The indicated energies correspond to the equivalent proton energies for direct kinematics. Solid lines are the results of fits to the experimental cross sections performed within the Glauber theory using the GH parameterization with the fitted parameters. The deformation parameters β_p and β_n used in the calculations were based on the existing experimental information (proton or other scattering data, Coulomb excitation or electromagnetic decay properties). The details of the calculations will be published elsewhere [48].

The calculated inelastic cross sections are significantly smaller than the measured values of $d\sigma/dt$ and make a noticeable contribution to $d\sigma/dt$ (up to about 10%) only at the highest values of $|t|$ (at $|t| \approx 0.06$ (GeV/c)2). The absolute differential cross sections $d\sigma/dt$ deduced in the present experiment according to Eq. (1) for proton elastic scattering on the ^{12}C, ^{14}C, ^{15}C, ^{16}C, and ^{17}C nuclei in the momentum-transfer range of $0.002 \leq |t| \leq 0.06$ (GeV/c)2 after subtraction of the calculated contributions from the inelastic scattering are displayed in Fig. 3 and listed in a tabular form in the Appendix. The indicated energies E_p correspond to the equivalent proton energies in direct kinematics. A high detection efficiency for the beam particles and the elastic-scattering events provide the 2% accuracy of the absolute normalization of the measured cross sections. The uncertainty in the t-scale calibration is estimated to be about 1.5%. Note that the above discussed procedure of subtraction of the estimated contributions of the inelastic scattering had a rather small effect (within the error bars) on the deduced radii.
3. The data analysis and results

The Glauber multiple-scattering theory was used to obtain the nuclear density distributions from the measured cross sections similarly as in the previous experiments with IKAR [34, 35]. The calculations were performed using the basic Glauber formalism for proton-nucleus elastic scattering and taking experimental data on the elementary proton-proton and proton-neutron scattering amplitudes as input (for details see Ref. [34]). In the analysis of the experimental data, the nuclear many-body density \(\rho_\Lambda \) was taken as a product of the one-body densities, which were parameterized with different functions. The parameters of these densities were found by fitting the calculated cross sections to the experimental data. The fitting procedure is described in detail in Ref. [34].

In order to reduce the model dependence of the obtained results, four parameterizations of phenomenological nuclear density distributions were applied in the present analysis, labeled as SF (Symmetrized Fermi), GH (Gaussian-Halo), GG (Gaussian-Gaussian) and GO (Gaussian-Oscillator). A detailed description of the SF, GH, GG and GO parameterizations is given in Ref. [34]. Within the GH and SF density parameterizations, the many-body density is the product of the one-body densities, assuming that all nucleons have the same density distribution, while within the GG and GO parameterizations, the nuclear density is subdivided into the core and valence (“halo”) nucleon components. The free parameters in the GG and GO parameterizations are the rms radii \(R_C \) and \(R_v \) (\(R_h \)) of the core and valence (“halo”) nucleon distributions. The matter radius \(R_m \) is connected with \(R_C \) and \(R_v \) by the following relation:

\[
R_m = \left(\frac{(A_c R_C^2 + A_v R_v^2)}{A} \right)^{1/2},
\]

where \(A \) is the nuclear mass number, \(A_c \) is the number of nucleons in the core, and \(A_v \) is the number of valence nucleons.

The results of the fits to the measured experimental cross sections with the phenomenological density distributions SF, GH, GG and GO for the carbon isotopes under investigation are presented in Table I. For each density parameterization, the deduced rms nuclear matter radius \(R_m \), the \(\chi^2 \) value of the fitting procedure, the values of the fit parameters, and the normalization coefficient \(A_v \) with which the calculated cross section \(d\sigma/dt \) was multiplied to obtain the same absolute normalization as the experimental one are presented. Note that the errors in Table I are statistical only.

The solid lines in Fig. 3 represent the results for the cross sections \(d\sigma/dt \) calculated using the GH parameterization with the fitted parameters. At \(|t| < 0.005 \) (GeV/\(c \))^2, a steep rise of the cross section with decreasing \(|t| \) is caused by Coulomb scattering. It is seen that the fits describe the experimental cross sections fairly well with the reduced \(\chi^2 \) values close to 1.0. The calculations of the cross sections with the nuclear matter density parameterizations SF, GG, and GO with the fitted parameters give practically the same results.

For the description of the cross sections in the case of the \(^{12}\text{C} \) and \(^{14}\text{C} \) nuclei, only the SF and GH density parameterizations were used. The weighted mean values of \(R_m \) averaged over the results obtained with these density parameterizations are:

\[
\begin{align*}
R_m &= (2.34 \pm 0.05) \text{ fm} \quad \text{for } ^{12}\text{C}, \\
R_m &= (2.42 \pm 0.05) \text{ fm} \quad \text{for } ^{14}\text{C}.
\end{align*}
\]

The errors indicated here and below for the deduced values of the radii include statistical and systematic uncertainties [34]. The systematic errors appear as the result of uncertainties in the absolute normalization of the experimental cross sections, as an error in the \(t \)-scale and errors introduced to the analysis from uncertainties in the parameters of the free \(pp \) and \(pn \) scattering amplitudes. Also, the contributions to the systematic errors due to corrections for the inelastic scattering and due to different model density parameterizations used are taken into account.

In the analysis it was assumed that the nuclei \(^{15}\text{C} \) and \(^{17}\text{C} \) consist of the \(^{14}\text{C} \) and \(^{16}\text{C} \) cores, respectively, and a loosely bound valence neutron. For these nuclei good descriptions of the cross sections have been achieved with all the density parameterizations used. The corresponding values of the rms matter radii \(R_m \) deduced with all four parameterizations for \(^{15}\text{C} \) and \(^{17}\text{C} \) are close to each other within rather small errors. The values of \(R_m \) averaged over the results obtained with all the density parameterizations are:
Table 1: Parameters obtained by fitting the calculated proton elastic scattering cross sections for the carbon isotopes under investigation to the measured ones for the parameterizations SF, GH, GG and GO of the nuclear matter density distributions. The presented parameters refer to point-nucleon density distributions. The parameters are as follows:

- R_m – rms nuclear matter radius;
- R_c – rms nuclear core radius;
- R_v – rms radius of the valence ("halo") nucleon(s) distribution;
- R_0 – "half density radius" and a – diffuseness parameter of the SF distribution;
- α – the parameter of the GH distribution which influences the shape of the distribution (see [34]);
- A_n – normalization parameter of the calculated cross section.

χ^2/N_{df} and A_n are dimensionless, all other fit parameters are given in fm. The radii R_c and R_v are in the c.m. system of the nucleus. All errors given are statistical only.

Nucleus	Parameterization	χ^2/N_{df}	A_n	R_0	a	R_m	α	R_v	R_m, fm
12C	SF	30.0/33	1.03(1)	$R_0 = 1.98(13)$	$a = 0.48(3)$	2.35(2)			
	GH	30.2/33	1.03(1)	$R_m = 2.33(1)$	$\alpha = 0.00(2)$	2.33(1)			
14C	SF	31.1/31	1.01(1)	$R_0 = 0.87(32)$	$a = 0.63(3)$	2.43(2)			
	GH	31.4/31	1.01(1)	$R_m = 2.41(2)$	$\alpha = 0.11(2)$	2.41(2)			
15C	SF	32.6/29	1.03(1)	$R_0 = 1.56(16)$	$a = 0.62(2)$	2.59(2)			
	GH	32.6/29	1.03(1)	$R_m = 2.57(2)$	$\alpha = 0.06(2)$	2.57(2)			
	GG	34.4/29	1.02(1)	$R_c = 2.43(1)$	$R_v = 4.45(43)$	2.61(5)			
	GO	33.6/29	1.02(1)	$R_c = 2.40(1)$	$R_v = 4.49(33)$	2.60(4)			
16C	SF	33.5/37	1.04(1)	$R_0 = 1.31(25)$	$a = 0.67(3)$	2.70(3)			
	GH	36.3/37	1.04(1)	$R_m = 2.68(3)$	$\alpha = 0.09(2)$	2.68(3)			
	GG	35.3/37	1.04(1)	$R_c = 2.43(2)$	$R_v = 4.36(29)$	2.75(6)			
	GO	35.0/37	1.04(1)	$R_c = 2.38(2)$	$R_v = 4.35(22)$	2.71(4)			
17C	SF	35.0/37	1.01(1)	$R_0 = 1.97(13)$	$a = 0.60(2)$	2.69(2)			
	GH	34.7/37	1.02(1)	$R_m = 2.67(2)$	$\alpha = 0.03(2)$	2.67(2)			
	GG	35.5/37	1.02(1)	$R_c = 2.58(2)$	$R_v = 3.86(54)$	2.68(3)			
	GO	35.3/37	1.02(1)	$R_c = 2.56(2)$	$R_v = 4.06(40)$	2.67(3)			

For the core radius and the radius of the valence neutrons distribution, the following mean values were determined: $R_c = 2.41(5)$ fm and $R_v = 4.20(26)$ fm.

The deduced nuclear matter density distributions obtained using different parameterizations of the nuclear matter distributions are plotted in Fig. [4]. The shaded areas represent the envelopes of the density variation within the model parameterizations applied, superimposed by the statistical errors. Figure [4] also shows the obtained core matter distributions. All density distributions refer to point-nucleon distributions.
Figure 4: Total and core matter distributions $\rho(r)$ of the nuclear density in ^{14}C (a), ^{15}C (b), ^{16}C (c) and ^{17}C (d) deduced in the analysis by using model density parameterizations SF (Symmetrized Fermi), GH (Gaussian-Halo), GG (Gaussian-Gaussian), and GO (Gaussian-Oscillator), for details see the text. The shaded areas represent the envelopes of the density variation within the model parameterizations applied, superimposed by the statistical errors. All density distributions are normalized to the number of nucleons.
Using the matter radii R_m deduced in the present work and the radii R_p of proton distributions obtained in Refs. [49] and [9], the radii R_n of neutron distributions and thicknesses of the neutron skins $\delta_{np} = R_n - R_p$ for the nuclei of the studied carbon isotopes were determined (see Table 2) with the help of expression (3):

$$R_n = \left[(AR_m^2 - ZR_p^2)/N \right]^{1/2}. \quad (3)$$

4. Discussion

Recently, the charge-changing cross sections for the $^{12-19}$C nuclei were measured at GSI at 900 MeV/u with a carbon target by Kanungo et al. [9]. Using a finite-range Glauber model, the authors derived radii R_p of the proton density distributions for the studied carbon isotopes. With these values of R_p fixed, they performed a new analysis of the interaction cross sections from Ref. [16] to obtain more accurate values of the matter radii R_m. The authors also performed coupled-cluster computations using chiral nucleon-nucleon and three-nucleon interactions which satisfactorily describe the experimental data on proton and matter radii.

Our results on R_m for the carbon isotopes are compared with the results of Ref. [9] in Table 2 and in Fig. 5. It is seen that the present results on R_m turn out to be within the experimental errors in agreement with the results of Ref. [9]. In Fig. 5 are also shown experimental results of Refs. [4, 17] and two sets of theoretical predictions for the matter radii of the carbon isotopes [50, 51]. The matter radii in [50, 51] were calculated using a simple model under the assumption that the considered nuclei consist of a core plus one or two valence neutrons. Note that the radii calculated in [51] exhibit a pronounced staggering effect – the radii for the odd mass numbers are larger than the average of the radii for the neighbouring even mass numbers.

![Figure 5: Nuclear matter radii of carbon isotopes. Experimental data are: this work (circles), the results of [9] (diamonds), the result of [4] (square), and the result of [17] (triangle). Theoretical predictions are taken from [50] (solid line) and [51] (dashed line).](image)

The method applied in the given work to study the nuclear matter density distributions was previously tested with the data on proton scattering from stable nuclei 4He [34] and 6Li [36]. The differential cross...
section for 12C elastic scattering measured in this work was also used to check the method. The 12C matter radius $R_m = 2.34(5)$ fm derived in the present work is in agreement with the value of $R_m = 2.35(2)$ fm of Ref. [9]. Note that the rms charge radius of 12C is known with high precision [49] from e^- scattering and muonic x-ray measurements: $R_{ch} = 2.470(2)$ fm. Taking into account the finite size effect of the nucleon (see, e.g., Ref. [3]) and the value of the proton charge radius $r_p = 0.8414(19)$ fm [52], the rms radius R_p of the proton distribution in 12C is obtained to be $R_p = 2.34(1)$ fm. The number of neutrons in 12C is equal to that of protons, therefore the matter and proton distributions (normalized to one nucleon) are expected to be rather similar. Indeed, the R_m value deduced in the present work has occurred to be equal to the value of R_p extracted from the experimental data on the charge radius of 12C. This result on 12C scattering demonstrates a consistency check of the present experimental method, including the procedure of the data analysis.

The 14C nucleus is of interest as the presumable core in 15C and 16C [14]. This nucleus is supposed to have a spherical shape due to the neutron closed shell effect [45]. The present value of $R_m = 2.42(5)$ fm is in agreement within errors with the result $R_m = 2.33(7)$ fm of Ref. [9]. The charge radius $R_{ch} = 2.503(9)$ fm [49] of 14C may be used to find the corresponding radius of the proton distribution $R_p = 2.38(2)$ fm. By combining the matter radius R_m, deduced in the present work for 14C with the value of R_p, and using expression (3), the rms radius of the neutron distribution R_n in 14C has been determined to be $R_n = (2.45 \pm 0.09)$ fm. Thus, within the error bars, the 14C nucleus has the same radius of the neutron distribution R_n as that of the proton distribution R_p: $R_n \approx R_p$.

The structure of the odd isotope 15C has been considered in a $(^{14}$C-core + n) model. This nucleus has a small neutron separation energy $S_n = 1.218$ MeV, so it is suggested to be a candidate for a halo nucleus. A special feature of the present method is that it makes possible to determine the sizes of the nuclear core and of the halo. The ratio of the determined valence nucleon to the core nucleon radius, $\kappa = R_v/R_c$, may be used as a gauge for the halo existence [53]. Theory predicts typically values of $\kappa \leq 1.25$ for light nuclei near the valley of beta stability, while for a halo structure this value can be $\kappa \approx 2$, or even larger [2]. In the present analysis, a value of $\kappa = 1.81$ for 15C is obtained, which confirms the suggestion [3] that this nucleus demonstrates a “moderate halo formation”.

Due to the low binding energy of the halo neutron in 15C, it is natural to expect that the internal core size R_v^* (size of the core in its own c.m. system) is close to that of the free 14C nucleus. The motion of the c.m. of the core around the c.m. of the whole nucleus slightly increases the effective core size R_c [34]. Following Tanihata et al. [3], the internal core size R_v^* in the $(\text{core} + n)$ model turns out to be

$$R_v^* = (R_c^2 - \rho_c^2)^{1/2},$$

(4)

where ρ_c is the rms distance between the c.m. of the core and the c.m. of the whole nucleus:

$$\rho_c = R_v/(A - 1).$$

(5)

In the present analysis we obtain $\rho_c = 0.31(3)$ fm and $R_v^* = 2.39(5)$ fm for 15C. The latter value agrees with $R_m = 2.42(5)$ fm for 14C. Taking for 15C the proton radius $R_p = (2.37 \pm 0.03)$ fm [45], and using Eq.

Isotope	R_m, fm	R_m, fm	R_p, fm	R_n, fm	δ_{np}, fm
12C	2.34 (5)	2.35 (2)	2.34 (1)	2.34 (10)	0.00 (10)
14C	2.42 (5)	2.33 (7)	2.38 (2)	2.45 (9)	0.07 (9)
15C	2.59 (5)	2.54 (4)	2.37 (3)	2.73 (8)	0.36 (9)
16C	2.70 (6)	2.74 (3)	2.40 (4)	2.86 (9)	0.46 (10)
17C	2.68 (5)	2.76 (3)	2.42 (4)	2.81 (8)	0.39 (9)
(3), the rms neutron radius for 15C is determined to be $R_n = (2.73 \pm 0.08)$ fm, and for the thickness of the neutron skin we deduce the value of $\delta_{np} = (0.36 \pm 0.09)$ fm (see Table 2).

There are several theoretical considerations of the structure of 16C, which is treated as a $(^{14}$C-core + $n+n+n$) three-body system [51]. The experimental value of $R_m = 2.70(6)$ fm, deduced in the present work for 16C, is in good agreement with existing experimental data as well as with theoretical results (Fig. 5 and Table 2). The core size in 16C ($R_c = 2.41(5)$ fm) is close to the size of the free 14C nucleus ($R_m = 2.42(5)$ fm). According to the present analysis, the ratio of the valence nucleon radius R_v to the core radius R_c turns out to be equal in 16C to $\kappa = 1.74$, which is smaller than the κ values of the $2n$ halo nuclei 11Li ($\kappa = 2.71$ [84]) and 14Be ($\kappa = 1.91$ [85]) determined earlier with the same method. This observation suggests that the spatial distribution of two valence neutrons in 16C should be considered rather as a skin, than as a halo. Using the matter radius of the present work $R_m = (2.70 \pm 0.06)$ fm and the radius of the proton distribution $R_p = (2.40 \pm 0.04)$ fm $^{[3]}$, we obtain for the radius of the neutron distribution $R_n = (2.86 \pm 0.09)$ fm, and for the thickness of the neutron skin, the value $\delta_{np} = (0.46 \pm 0.10)$ fm has been deduced (see Table 2). This result is an indication of a noticeable neutron skin in 16C.

We have considered the spatial structure of the 17C nucleus in a $(^{16}$C-core + n) model. The neutron separation energy S_n for 17C is small: $S_n = 0.728$ MeV. Therefore, one could expect 17C to be a halo nucleus. However, the ratio of the valence nucleon radius to the core radius, determined in the present work for 17C, occurs to be relatively small, $\kappa = 1.58$, which does not support the picture that 17C is a halo nucleus. With the determined value of R_v and Eqs. (4) and (5) in the case of 17C we obtain $\rho_c = 0.25(3)$ fm and $R^*_c = 2.56(5)$ fm. This value of R^*_c is smaller than $R_m = 2.70(6)$ fm for the free 16C nucleus. This result demonstrates a noticeable contraction of the 16C cluster inside 17C. Obviously, 17C is a more dense nucleus than 16C. It was already supposed in Ref. $^{[3]}$ that the configuration of the nucleus 17C is more complicated than that in the $(\text{core} + n)$ model.

5. Summary

The proton-nucleus elastic scattering at intermediate energies is an efficient method for the investigation of nuclear matter density distributions. In the present work, we have applied this method in inverse kinematics for the investigation of the nuclear radial structure of carbon isotopes. The absolute differential cross sections $d\sigma/dt$ were measured as a function of the four-momentum transfer squared $-t$ in the range $0.001 \leq |t| \leq 0.06$ (GeV/c)2 for proton elastic scattering on the 12,14,15,16,17C nuclei. The cross sections were determined using secondary beams with energies near 700 MeV/u produced with the fragment separator FRS at GSI. The active target IKAR was used as a recoil-proton detector. The scattered projectiles were registered with a system of multi-wire proportional chambers, scintillation detectors, and a magnetic analysis. The analysis of the experimental data was performed using the Glauber multiple-scattering theory. The nuclear matter radii and the radial nuclear matter distributions for the carbon isotopes were determined from the measured cross sections $d\sigma/dt$. A good description of the experimental cross section is obtained with four phenomenological parameterizations of the nuclear density distributions (SF, GH, GG, and GO). Each of these parameterizations has two free parameters. Our results on the matter radii R_m for the studied carbon isotopes are in agreement within the experimental errors with those of Ref. $^{[8]}$ evaluated from the measured interaction and charge-changing cross sections. The density distribution parameters (R_m, R_p) for 12C are well established values from measurements of the interaction cross sections and the charge radii. Therefore, the results on p^{12}C scattering were used as a consistency check of the present experimental method, including the procedure of the data analysis.

The measured cross sections are described fairly well within the $(\text{core} + n)$ model for 15C and 17C, and the $(\text{core} + 2n)$ model for 16C. It was shown that the size of the 14C-core in the 15C and 16C nuclei is close to that of the free 14C nucleus.

A quantitative description of the halo structure for 15,16,17C was performed in the analysis of the nuclear matter distributions in these nuclei. The ratio of the valence nucleon to the core nucleon radius $\kappa = R_v/R_c$ was used as a gauge for the halo existence, where a value of $\kappa \gtrsim 2$ is expected for a halo nucleus.

The present analysis describes 15C as a halo nucleus with $\kappa = 1.82$, while 16C ($\kappa = 1.74$) and 17C ($\kappa = 1.58$) are considered as nuclei with a noticeable neutron skin. This conclusion is in agreement with
the investigation of fragmentation reactions using radioactive carbon beams. Note that a narrow fragment momentum distribution as a signature of an extended valence nucleon density distribution in a halo nucleus was observed in the considered here carbon isotopes only for 15C \cite{10, 11, 18, 19}, whereas broad fragment momentum distributions for 16C \cite{27} and 17C \cite{10, 11, 19, 20} imply no halo formation in these nuclei.

Besides the determination of the nucleon density distributions and their parameters, the precise data obtained for the differential proton elastic-scattering cross sections allow a sensitive test of theoretical predictions on the structure of the neutron-rich carbon nuclei. For this purpose, the nuclear density distributions obtained from various theoretical approaches may be used as an input to the Glauber multiple-scattering theory. Then the calculated elastic-scattering cross sections should be compared to the experimental data as it was done in Refs. \cite{34}--\cite{36}.

Acknowledgements

The authors would like to thank A. Bleile, G. Ickert, A. Brünle, K.-H. Behr and W. Niebur for the technical assistance and their help in the preparation and running of the experiment. The visiting group from PNPI thanks the GSI authorities for the hospitality.

References

[1] Isao Tanihata, Neutron halo nuclei, J. Phys. G 22 (1996) 157.
[2] B. Jonson, Light dripline nuclei, Phys. Rep. 389 (2004) 1.
[3] I. Tanihata, H. Savajols, R. Kanungo, Recent experimental progress in nuclear halo structure studies, Prog. Part. Nucl. Phys. 68 (2013) 215.
[4] A. Ozawa, T. Suzuki, I. Tanihata, Nuclear size and related topics, Nuclear Physics A 693 (2001) 32.
[5] P.G. Hansen, A.S. Jensen and B. Jonson, Nuclear Halos, Annu. Rev. Nucl. Part. Sci., 45, (1995) 591-634.
[6] Zhongzhou Ren, Z.Y. Zhu, Y.H. Cai, Gongou Xu, Relativistic mean-field study of exotic carbon nuclei, Nuclear Physics A 605 (1996) 75.
[7] H. Sagawa, X.R. Zhou, X.Z. Zhang, Toshio Suzuki, Deformations and electromagnetic moments in carbon and neon isotopes, Phys. Rev. C 70 (2004) 054316.
[8] Y. Kanada-En’yo, Deformation of C isotopes, Phys. Rev. C 71 (2005) 014310.
[9] R. Kanungo, W. Horiiuchi, G. Hagen, G. R. Jansen, P. Navratil, F. Ameil, J. Atkinson, Y. Ayyad, D. Cortina-Gil, I. Dillmann, A. Estrade, A. Evdokimov, F. Farinon, H. Geissel, G. Guastalla, R. Janik, M. Kimura, R. Knöbel, J. Kurcewicz, Yu.A. Litvinov, M. Marta, M. Mostazo, I. Mukha, C. Noctifico, H. J. Ong, S. Pietri, A. Prochazka, C. Scheidenberger, B. Sitar, P. Strmen, Y. Suzuki, M. Takechi, J. Tanaka, I. Tanihata, S. Terashima, J. Vargas, H. Weick, J. S. Winfield, Proton Distribution Radii of 12–19C Illuminate Features of Neutron Halos, Phys. Rev. Lett. 117 (2016) 102501.
[10] D. Bazin, W. Benenson, B.A. Brown, J. Brown, B. Davids, M. Fauerbach, P.G. Hansen, P. Mantica, D.J. Morrissey, C.F. Powell, B.M. Sherrill, M. Steiner, Probing the halo structure of 19, 17, 15C and 14B, Phys. Rev. C 57 (1998) 2156.
[11] E. Sauvan, F. Carstoiu, N.A. Orr, J.S. Winfield, M. Freer, J.C. Angélique, W.N. Catford, N.M. Clarke, N. Curtis, S. Grévy, C. Le Brun, M. Lewitowicz, E. Liégard, F.M. Marqués, M. Mac Cormick, P. Rousset-Chomaz, M.-G. Saint Laurent, M. Shawcross, One-neutron removal reactions on light neutron-rich nuclei, Phys. Rev. C 69 (2004) 044603.
[12] N. Kobayashi, T. Nakamura, J.A. Tostevin, Y. Kondo, N. Aoi, H. Baba, S. Deguchi, J. Gibelein, M. Ishihara, Y. Kawada, T. Kubo, T. Motobayashi, T. Ohashi, N.A. Orr, H. Otsu, H. Sakurai, Y. Satou, E.C. Simpson, T. Sumikama, H. Takeda, M. Takechi, S. Takeuchi, K.N. Tanaka, N. Tanaka, Y. Togano, K. Yoneda, One- and two-neutron removal reactions from the most neutron-rich carbon isotopes, Phys. Rev. C 86 (2012) 054604.
[13] T. Otsuka, A. Gade, O. Sordin, T. Suzuki, Y. Utsuno, Evidence for shell structure in exotic nuclei, Rev. Mod. Phys., 92, (2020) 015002.
[14] D.T. Tran, H.J. Ong, G. Hagen, T.D. Morris, N. Aoi, T. Suzuki, Y. Kanada-En’yo, L.S. Geng, S. Terashima, I. Tanihata, T.T. Nguyen, Y. Ayyad, P.Y. Chan, M. Fukuda, H. Geissel, M.N. Harakeh, T. Hashimoto, T.H. Hoang, E. Ideguchi, A. Inoue, G.R. Jansen, R. Kanungo, T. Kawabata, L.H. Khiem, W.P. Lin, K. Matsuta, M. Mihara, S. Momota, D. Nagae, N.D. Nguyen, D. Nishimura, T. Otsuka, A. Ozawa, P.P. Ren, H. Sakaguchi, C. Scheidenberger, J. Tanaka, M. Takechi, R. Wada, T. Yamamoto, Evidence for prevalent Z = 6 magic number in neutron-rich carbon isotopes, Nature Communications 9 (2018) 1594.
[15] M. Wang, G. Audi, A.H. Wapstra, F.G. Kondev, M. MacCormick, X. Xu, B. Pfeiffer, The Ame2012 atomic mass evaluation, Chin. Phys. C 36 (2012) 1003.
[16] A. Ozawa, O. Bechhauer, L. Chulkov, D. Cortina, H. Geissel, M. Hellström, M. Ivanov, R. Janik, K. Kimura, T. Kobayashi, A.A. Korsheninnikov, G. Münzenberg, F. Nickel, Y. Ogawa, A.A. Ogloblin, M. Pfützner, V. Pribora, H. Simon, B. Sitari, P. Strmen, K. Sümmerer, T. Suzuki, I. Tanihata, M. Winkler, K. Yoshida, Measurements of interaction cross sections for light neutron-rich nuclei at relativistic energies and determination of effective matter radii, Nuclear Physics A 691 (2001) 599.
R. Kanungo, A.V. Khanzadeev, O.A. Kiselev, G.A. Korolev, X. Le, Yu.A. Litvinov, C. Nociforo, D.M. Seliverstov, L.O. Sergeev, H. Simon, V.A. Volkov, A.A. Vorobyov, H. Weick, V.I. Yatsoursa, A.A. Zhidanov, Nuclear-matter density distribution in the neutron-rich nuclei $^{12,14}\text{Be}$ from proton elastic scattering in inverse kinematics, Nucl. Phys. A 875 (2012) 8.

[38] G.A Korolev, A.V. Dobrovolsky, A.G. Inglessi, G.D. Alkhazov, P. Egelhof, A. Estradé, I. Dillmann, F. Farinon, H. Geissel, S. Iliev, Y. Ke, A.V. Khanzadeev, O.A. Kiselev, J. Kurcewicz, X.C. Le, Yu.A. Litvinov, G.E. Petrov, A. Prochazka, C. Scheidenberger, L.O. Sergeev, H. Simon, M. Takechi, S. Tang, V. Volkov, A.A. Vorobyov, H. Weick, V.I. Yatsoursa, Halo structure of ^8B determined from intermediate energy proton elastic scattering in inverse kinematics, Phys. Letters B 780 (2018) 200.

[39] A.V. Dobrovolsky, G.A. Korolev, A.G. Inglessi, G.D. Alkhazov, G. Colò, I. Dillmann, P. Egelhof, A. Estradé, F. Farinon, H. Geissel, S. Iliev, Y. Ke, A.V. Khanzadeev, O.A. Kiselev, J. Kurcewicz, X.C. Le, Yu.A. Litvinov, G.E. Petrov, A. Prochazka, C. Scheidenberger, L.O. Sergeev, H. Simon, M. Takechi, S. Tang, V. Volkov, A.A. Vorobyov, H. Weick and V.I. Yatsoursa, Nuclear-matter distribution in the proton-rich nuclei ^7Be and ^8B from intermediate energy proton elastic scattering in inverse kinematics, Nuclear Physics A 989 (2019) 40.

[40] A.A. Vorobyov, G.A. Korolev, V.A. Schegelsky, G.Ye. Solov’yanov, G.L. Sokolov, Yu.K. Zalite, A method for studies of small-angle hadron-proton elastic scattering in the coulomb interference region, Nucl. Instr. Meth. 119 (1974) 509.

[41] H. Geissel, P. Armbuster, K.H. Behr, A. Brünle, K. Burlard, M. Chen, H. Folger, B. Franzak, H. Keller, O. Klepper, B. Langenbeck, F. Nickel, E. Pfeng, M. Pfützner, E. Roekl, K. Rykaczewski, I. Schall, D. Schardt, C. Scheidenberger, K.-H. Schmidt, A. Schröter, T. Schwab, K. Slümmerer, M. Weber, G. Münzenberg, T. Brohm, H.-G. Clerc, M. Fauerbach, J.-J. Gaimard, A. Grewe, E. Haefliger, M. Steiner, B. Voss, J. Weckenmann, C. Ziegler, A. Magel, H. Wollnik, J.P. Dufour, Y. Fujita, D.J. Vieira, B. Sherrill, The GSI projectile fragment separator (FRS): a versatile magnetic system for relativistic heavy ions, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 70 (1992) 286.

[42] J.P. Burq, M. Chemarin, M. Chevallier, A.S. Denisov, T. Ekelöf, P. Fazlighini, E. Hagemann, B. Ille, A.P. Kashchuk, G.A. Korolev, S. Kullander, M. Lambert, J.P. Martin, J. Maury, J.L. Paumier, M. Querrou, V.A. Schegelsky, E.M. Spiridenkov, I.I. Tkach, A.A. Vorobyov, Measurements of π^-p elastic scattering in the coulomb interference region at high energies, Phys. Lett. B 77 (1978) 438.

[43] A.A. Vorobyov, Yu.S. Grigorev, Yu.K. Zalite, G.A. Korolev, E.M. Maev, G.L. Sokolov, A.V. Khanzadeev, An ionization spectrometer for recoil nuclei in research on elastic small-angle scattering of hadrons, Instrum. Exp. Tech. 24 (1982) 1127.

[44] S.M. Lenzi, A. Vitturi, F. Zardi, Description of inelastic scattering between heavy ions in the Glauber model, Phys. Rev. C 38 (1988) 2086.

[45] C.A. Bertulani, C.M. Campbell, T. Glasmacher, A computer program for nuclear scattering at intermediate and high energies, Computer Physics Communications 152 (2003) 317.

[46] L.J. Tassie, A Model of Nuclear Shape Oscillations for γ-Transitions and Electron Excitation, Australian Journal of Physics 9 (1956) 407.

[47] URL http://www.nndc.bnl.gov.

[48] G. Colò, to be published.

[49] I. Angeli, K.P. Marinova, Table of experimental nuclear ground state charge radii: An update, Atomic Data and Nuclear Data Tables 99 (2013) 69.

[50] H.T. Fortune, Matter radii and configuration mixing in $^{15-19}\text{C}$, Eur. Phys. J. A 54 (2018) 73.

[51] B. Abu-Ibrahim, W. Horiuchi, A. Kohama, Y. Suzuki, Reaction cross sections of carbon isotopes incident on a proton, Phys. Rev. C 77 (2008) 034607.

[52] CODATA value: proton rms charge radius, URL https://physics.nist.gov/cuu/Value?rp.

[53] L.V. Grigorenko, B.V. Danilin, V.D. Efros, N.B. Shulgina, M.V. Zhukov, Structure of the ^6Li and ^8B nuclei in an extended three-body model and astrophysical S factor, Phys. Rev. C 57 (1998) 2699(R).
Appendix

The measured cross sections $d\sigma/dt$ for $^{12,14-17}\text{C}$ elastic scattering as a function of the four-momentum transfer squared $-t$. The indicated errors are statistical only.

$^\text{12}\text{C}, E_p=705.2 \text{ MeV}$	$^\text{12}\text{C}, E_p=705.2 \text{ MeV}$		
$-t$, (GeV/c)2	$d\sigma/dt$, mb/(GeV/c)2	$-t$, (GeV/c)2	$d\sigma/dt$, mb/(GeV/c)2
0.00117	14965. ± 297.3	0.01300	2858.1 ± 67.1
0.00164	9489.3 ± 229.4	0.01490	2448.0 ± 60.5
0.00211	7942.5 ± 205.8	0.01694	2061.6 ± 54.3
0.00258	7060.1 ± 195.8	0.01910	1871.3 ± 50.7
0.00305	6335.2 ± 185.1	0.02140	1549.8 ± 45.3
0.00352	5742.1 ± 175.8	0.02382	1358.2 ± 41.7
0.00399	5620.2 ± 173.9	0.02636	1160.9 ± 38.0
0.00446	5290.9 ± 168.8	0.02904	924.7 ± 33.5
0.00493	5171.5 ± 166.9	0.03185	745.1 ± 29.8
0.00540	4517.4 ± 156.2	0.03748	589.2 ± 26.3
0.00586	4713.5 ± 159.9	0.03785	495.9 ± 24.0
0.00633	4636.6 ± 160.4	0.04104	383.7 ± 21.0
0.00680	4250.1 ± 155.3	0.04437	309.6 ± 18.9
0.00727	4317.7 ± 155.3	0.04782	223.6 ± 16.1
0.00774	3883.2 ± 147.3	0.05141	188.6 ± 14.9
0.00804	3793.6 ± 84.1	0.05513	131.3 ± 12.6
0.00807	3793.6 ± 77.7	0.05897	85.3 ± 10.4
0.01122	3023.1 ± 71.0		

$^\text{14}\text{C}, E_p = 704.4 \text{ MeV}$	$^\text{14}\text{C}, E_p = 704.4 \text{ MeV}$		
$-t$, (GeV/c)2	$d\sigma/dt$, mb/(GeV/c)2	$-t$, (GeV/c)2	$d\sigma/dt$, mb/(GeV/c)2
0.00117	16137. ± 435.8	0.00989	3859.5 ± 126.6
0.00164	10641. ± 322.6	0.01137	3242.1 ± 78.9
0.00211	8626.2 ± 284.4	0.01350	2855.9 ± 71.7
0.00258	7779.0 ± 254.7	0.01581	2434.2 ± 64.4
0.00305	7125.5 ± 245.8	0.01830	2024.8 ± 57.9
0.00352	6813.3 ± 241.4	0.02096	1686.9 ± 50.9
0.00399	6227.4 ± 228.9	0.02381	1434.8 ± 46.7
0.00446	5802.7 ± 223.0	0.02683	1131.7 ± 39.6
0.00493	5678.4 ± 218.2	0.03004	908.8 ± 35.3
0.00540	5115.2 ± 209.8	0.03342	705.7 ± 30.4
0.00586	4870.5 ± 211.9	0.03699	614.9 ± 28.6
0.00633	5206.6 ± 224.0	0.04074	413.7 ± 23.8
0.00680	5071.9 ± 218.3	0.04467	352.4 ± 23.0
0.00727	4894.1 ± 203.3	0.04878	253.5 ± 18.2
0.00774	4424.1 ± 180.1	0.05307	140.5 ± 14.6
0.00807	4368.8 ± 139.0	0.05755	133.9 ± 12.8
0.00896	4081.9 ± 132.7		
\begin{center}
\begin{tabular}{|c|c|c|}
\hline
$p^{15}\text{C}, \ E_p = 702.5 \text{ MeV}$ & $p^{15}\text{C}, \ E_p = 702.5 \text{ MeV}$ \\
\hline
$-t, (\text{GeV}/c)^2$ & $d\sigma/dt, \text{ mb}/(\text{GeV}/c)^2$ & $-t, (\text{GeV}/c)^2$ & $d\sigma/dt, \text{ mb}/(\text{GeV}/c)^2$ \\
\hline
0.00117 & 16475.9 ± 362.3 & 0.01069 & 3769.1 ± 89.2 \\
0.00164 & 12658.6 ± 322.1 & 0.01290 & 3332.1 ± 80.9 \\
0.00211 & 10386.9 ± 291.0 & 0.01532 & 2758.2 ± 71.2 \\
0.00258 & 8421.4 ± 261.6 & 0.01793 & 2253.4 ± 62.6 \\
0.00305 & 7541.3 ± 248.2 & 0.02075 & 1780.6 ± 54.2 \\
0.00352 & 7533.8 ± 248.2 & 0.02377 & 1379.4 ± 46.7 \\
0.00399 & 7071.4 ± 239.6 & 0.02699 & 1125.2 ± 41.3 \\
0.00446 & 6746.6 ± 235.1 & 0.03042 & 850.1 ± 35.3 \\
0.00493 & 6971.2 ± 239.6 & 0.03405 & 607.0 ± 29.4 \\
0.00540 & 6003.9 ± 222.9 & 0.03789 & 410.5 ± 23.9 \\
0.00586 & 6323.3 ± 229.7 & 0.04193 & 325.4 ± 21.0 \\
0.00633 & 5916.3 ± 221.1 & 0.04617 & 206.0 ± 16.6 \\
0.00680 & 5276.6 ± 208.6 & 0.05063 & 165.0 ± 14.7 \\
0.00727 & 5385.0 ± 215.6 & 0.05529 & 94.3 ± 11.2 \\
0.00774 & 4831.4 ± 206.5 & 0.06016 & 62.0 ± 9.1 \\
0.00820 & 4818.7 ± 104.4 & & \\
\hline
\end{tabular}
\end{center}

\begin{center}
\begin{tabular}{|c|c|c|}
\hline
$p^{16}\text{C}, \ E_p = 700.5 \text{ MeV}$ & $p^{16}\text{C}, \ E_p = 700.5 \text{ MeV}$ \\
\hline
$-t, (\text{GeV}/c)^2$ & $d\sigma/dt, \text{ mb}/(\text{GeV}/c)^2$ & $-t, (\text{GeV}/c)^2$ & $d\sigma/dt, \text{ mb}/(\text{GeV}/c)^2$ \\
\hline
0.00117 & 19706.1 ± 495.4 & 0.01405 & 3295.4 ± 136.0 \\
0.00164 & 12894.0 ± 412.0 & 0.01535 & 2828.7 ± 123.8 \\
0.00211 & 11953.1 ± 394.6 & 0.01671 & 2488.2 ± 114.3 \\
0.00258 & 9308.8 ± 346.6 & 0.01813 & 2115.6 ± 103.8 \\
0.00305 & 9144.8 ± 343.3 & 0.01961 & 2099.7 ± 102.3 \\
0.00352 & 8549.8 ± 331.8 & 0.02114 & 1863.2 ± 95.0 \\
0.00399 & 7662.0 ± 314.4 & 0.02273 & 1496.5 ± 84.1 \\
0.00446 & 7337.3 ± 307.9 & 0.02438 & 1368.8 ± 79.5 \\
0.00493 & 7317.3 ± 308.0 & 0.02609 & 1133.0 ± 71.5 \\
0.00540 & 6907.9 ± 300.3 & 0.02785 & 922.9 ± 63.9 \\
0.00586 & 6707.5 ± 296.5 & 0.02967 & 856.7 ± 61.1 \\
0.00633 & 5881.3 ± 276.2 & 0.03155 & 729.5 ± 55.8 \\
0.00680 & 6069.1 ± 277.1 & 0.03349 & 592.8 ± 49.9 \\
0.00727 & 5263.5 ± 265.4 & 0.03548 & 507.3 ± 45.9 \\
0.00774 & 5162.7 ± 266.9 & 0.03858 & 374.0 ± 27.7 \\
0.00820 & 5235.1 ± 188.7 & 0.04291 & 304.7 ± 24.7 \\
0.00871 & 4564.0 ± 173.9 & 0.04748 & 178.3 ± 18.9 \\
0.01047 & 4302.8 ± 165.1 & 0.05228 & 115.4 ± 15.1 \\
0.01161 & 3954.3 ± 154.7 & 0.05732 & 63.6 ± 11.5 \\
0.01280 & 3543.2 ± 143.6 & & \\
\hline
\end{tabular}
\end{center}
$-t$ (GeV/c)2	$\frac{d\sigma}{dt}$, mb/(GeV/c)2	$-t$ (GeV/c)2	$\frac{d\sigma}{dt}$, mb/(GeV/c)2
0.00117	18437.1 ± 429.9	0.01460	3160.4 ± 108.3
0.00164	13783.9 ± 361.8	0.01601	2718.3 ± 98.8
0.00211	12008.3 ± 335.5	0.01748	2508.4 ± 93.5
0.00258	10474.2 ± 312.1	0.01901	2210.0 ± 86.5
0.00305	9801.4 ± 301.2	0.02062	1830.3 ± 77.8
0.00352	9018.8 ± 288.7	0.02228	1758.0 ± 75.4
0.00399	9179.1 ± 291.5	0.02401	1443.9 ± 67.6
0.00446	8061.6 ± 273.2	0.02581	1200.3 ± 61.1
0.00493	7765.3 ± 268.8	0.02766	1007.4 ± 55.6
0.00540	7172.2 ± 258.9	0.02959	892.8 ± 51.9
0.00586	7054.6 ± 257.8	0.03158	689.5 ± 45.5
0.00633	7343.3 ± 266.4	0.03363	543.5 ± 40.2
0.00680	6387.0 ± 252.1	0.03575	461.0 ± 37.0
0.00727	6230.8 ± 245.6	0.03794	394.7 ± 34.1
0.00774	5526.5 ± 231.5	0.04019	285.1 ± 29.1
0.00825	5705.9 ± 160.4	0.04369	210.8 ± 17.7
0.00961	4955.8 ± 147.2	0.04858	125.0 ± 13.8
0.01076	4738.9 ± 140.7	0.05374	62.9 ± 10.1
0.01198	3829.4 ± 123.7	0.05916	44.4 ± 8.5
0.01326	3681.4 ± 119.0		