Supporting Information

γ-Alumina-Supported Pt\(_{17}\) Cluster: Controlled Loading, Geometrical Structure, and Size-Specific Catalytic Activity for Carbon Monoxide and Propylene Oxidation

Yuichi Negishi\(^{a,b,*}\), Nobuyuki Shimizu,\(^{a}\) Kanako Funai,\(^{a}\) Ryo Kaneko,\(^{a}\) Kosuke Wakamatsu,\(^{a}\) Atsuya Harasawa,\(^{a}\) Sakiat Hossain,\(^{a}\) Manfred E. Schuster,\(^{c}\) Dogan Ozkaya,\(^{c}\) Wataru Kurashige,\(^{d}\) Tokuhisa Kawawaki,\(^{a,b}\) Seiji Yamazoe\(^{e,*}\) and Shuhei Nagaoka\(^{d,*}\)

\(^{a}\)Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1–3 Kagurazaka, Shinjuku-ku, Tokyo 162–8601, Japan
\(^{b}\)Photocatalysis International Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278–8510, Japan
\(^{c}\)Johnson Matthey Technology Centre, Blounts Court, Sonning Common, Reading RG4 9NH, UK
\(^{d}\)Johnson Matthey Japan, G.K., 5123–3, Kitsuregawa, Sakura, Tochigi 329–1492, Japan
\(^{e}\)Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1–1 Minami-Osawa, Hachioji-shi, Tokyo 192–0397, Japan.

Corresponding Author E-mail: negishi@rs.kagu.tus.ac.jp (Y. Negishi), yamazoe@tmu.ac.jp (S. Yamazoe), Shuhei.Nagaoka@mattheyasia.com (S. Nagaoka).

1. Additional Tables

Table S1. Curve Fitting Analysis of Pt L\(_{3}\)-edge EXAFS Data for [Pt\(_{17}\)(CO)\(_{12}\)(PPh\(_{3}\))\(_{8}\)]Cl\(_{8}\)

Bond	C.N. \(^{a,b}\)	R(Å) \(^{a}\)	D.W. \(^{a,c}\)	R factor (%) \(^{a}\)
Pt–C	1.6(4)	2.02(6)	0.008(7)	11.9
Pt–P	0.5(2)	2.44(7)	0.004(3)	
Pt–Pt	6.9(6)	2.63(6)	0.020(10)	

The numbers in parentheses are uncertainties; 1.6(4) and 2.02(6) represent 1.6 ± 0.4 and 2.02 ± 0.06, respectively.

\(^{a}\) These values were obtained by fitting with Pt–C, Pt–P, or Pt–Pt bonds.
\(^{b}\) Coordination number
\(^{c}\) Debye–Waller factor.

Table S2. Curve Fitting Analysis of Pt L\(_{3}\)-edge EXAFS Data for Pt\(_{17}\)(CO)\(_{12}\)(PPh\(_{3}\))\(_{8}\)/γ-Al\(_{2}\)O\(_{3}\)

Bond	C.N. \(^{a,b}\)	R(Å) \(^{a}\)	D.W. \(^{a,c}\)	R factor (%) \(^{a}\)
Pt–C	1.5(2)	2.01(4)	0.003(2)	
Pt–P	0.4(2)	2.24(6)	0.004(3)	15.0
Pt–Pt	5.0(4)	2.59(4)	0.013(6)	

The numbers in parentheses are uncertainties; 1.5(2) and 2.01(4) represent 1.5 ± 0.2 and 2.01 ± 0.04, respectively.

\(^{a}\) These values were obtained by fitting with Pt–C, Pt–P, or Pt–Pt bonds.
\(^{b}\) Coordination number
\(^{c}\) Debye–Waller factor.
Table S3. Curve Fitting Analysis of Pt L_3-edge EXAFS Data for Pt_{17}/γ-Al_2O_3

Bond	C.N., a,b	R(Å) a	D.W., a,c	R factor (%) a
Pt–C	3.5(3)	2.03(4)	0.006(4)	10.0
Pt–Pt	6.6(3)	2.76(3)	0.009(4)	

The numbers in parentheses are uncertainties; 3.5(3) and 2.03(4) represent 3.5 ± 0.3 and 2.03 ± 0.04, respectively.

a These values were obtained by fitting with Pt–C or Pt–Pt bonds.
b Coordination number
c Debye–Waller factor.

Table S4. Gases Used in Oxidation Reaction of CO and C_3H_6

Reaction	CO/C_3H_6	O_2	N_2
CO oxidation	1%	0.5%	98.5%
C_3H_6 oxidation	200 ppm	0.5%	~99.5%

Table S5. Gases Used in Aging Treatment

Atmosphere	H_2	CO	O_2	H_2O	N_2
Oxidation	0%	0%	3%	10%	87%
Reduction	3%	3%	0%	10%	84%
2. Additional Schemes

Scheme S1. (a) Synthesis procedure for $[\text{Pt}_{17}(\text{CO})_{12}(\text{PPh}_3)_8]\text{Cl}_n$ ($n = 1, 2$) and (b) photograph of product at each stage (i)–(vi) described in (a).\(^1\)

Scheme S2. Preparation procedure for honeycomb catalysts.
3. Additional Figures

Figure S1. Positive-ion MALDI mass spectra: (a) wide-region spectrum and (b) spectrum expanded for the main peaks. These mass spectra include the laser fragments assigned in (b). In (a), peaks other than the fragment peaks of [Pt$_{17}$(CO)$_{12}$(PPh$_3$)$_8$]Cl$_n$ are hardly observed, indicating that the product contains high-purity [Pt$_{17}$(CO)$_{12}$(PPh$_3$)$_8$]Cl$_n$.

Figure S2. (a)–(f) Representative HAADF-STEM images of [Pt$_{17}$(CO)$_{12}$(PPh$_3$)$_8$]Cl$_n$.
Figure S3. (a)–(f) Representative HAADF-STEM images of Pt_{17}(CO)_{12}(PPh_3)_8/γ-Al_2O_3.

Figure S4. (a) TGA curve obtained for Pt_{17}(CO)_{12}(PPh_3)_8/γ-Al_2O_3 and (b) the gasses desorbed from the sample above 400 °C. These curves were obtained using an STA 2500 Regulus (NETZSCH) and a JMS-Q 1500GC (JEOL) at a heating rate of 5 °C/min under Ar atmosphere over the temperature range 25–900 °C. In (b), CO_2 is considered to be the product of the oxidation of the CO ligand catalyzed by Pt_{17} because this measurement was conducted under Ar atmosphere. These results imply that some of the CO remains on the supported Pt_{17} even after the calcination at 500 °C.
Figure S5. P 2p XPS spectra of (a) [Pt_{17}(CO)_{12}(PPh_3)_8]Cl_n and (b) Pt_{17}/γ-Al_2O_3.

Figure S6. (a)–(f) Representative HAADF-STEM images of Pt_{17}/γ-Al_2O_3.

Figure S7. Temperature-programmed reaction (TPR) curve monitored at m/z = 44 (CO_2) for Pt_{17}/γ-Al_2O_3 sample after air exposure. TPR analysis was performed with a Rigaku TPD type R analyzer at a heating rate of 20 °C/min under a flow of 10% O_2 diluted in He using ~100-mg samples of the catalyst powders.
Figure S8. Monitoring of the desorbed gases from Pt$_{17}$/γ-Al$_2$O$_3$ at each temperature using FT-IR spectroscopy. This experiment was conducted using FT/IR-6600 spectrometer (JASCO) with KP1000 digital program controller (CHINO) under a flow of 10% O$_2$ diluted in He. These spectra were obtained by subtracting the room-temperature spectrum from the spectrum of each temperature (100−500 °C); thus, the peaks originating from the desorbed species appear under the baseline. These spectra imply that the CO adsorbed on Pt$_{17}$/γ-Al$_2$O$_3$ is related to the CO$_2$ observed in the TPR curve (Figure S7).

Figure S9. Pt L$_3$-edge EXAFS spectra of [Pt$_{17}$(CO)$_{12}$(PPh$_3$)$_8$]Cl$_n$, Pt$_{17}$(CO)$_{12}$(PPh$_3$)$_8$/γ-Al$_2$O$_3$, and Pt$_{17}$/γ-Al$_2$O$_3$ together with those of Pt foil and PtO$_2$ for comparison.

Figure S10. Pt−Pt bond lengths of [Pt$_{17}$(CO)$_{12}$(PPh$_3$)$_8$]$^+$ (blue) and [Pt$_{17}$(CO)$_{12}$(PPh$_3$)$_8$]$^{2+}$ (red) estimated from each geometrical structure reported in our previous paper.1
Figure S11. Estimation of model structures of Pt\textsubscript{17}/γ-Al\textsubscript{2}O\textsubscript{3} for bi-layered structure: (a) HAADF-STEM image, (b) method to arrange Pt atoms, and (c) proposed bi-layered structure and estimated bond lengths for this structure.

Figure S12. HAADF-STEM images of (a) Pt\textsubscript{17}/γ-Al\textsubscript{2}O\textsubscript{3} and (b) Pt\textsubscript{NP}/γ-Al\textsubscript{2}O\textsubscript{3} after aging treatment.

Figure S13. HAADF-STEM images of Pt\textsubscript{17}/γ-Al\textsubscript{2}O\textsubscript{3} loaded with a weight of 0.7 wt% Pt. The aggregation of Pt\textsubscript{17} clusters were not necessarily suppressed at this loading weight, although the size distribution is still narrow (1.40 ± 0.72 nm) compared with that of Pt\textsubscript{NP} prepared using the conventional method with lower loading weight (0.15% Pt; 3.10 ± 3.14 nm). In order to achieve the higher loading weight, we need to modify the ligand of Pt\textsubscript{17} clusters or increase the surface defects of γ-Al\textsubscript{2}O\textsubscript{3} to suppress the aggregation on the γ-Al\textsubscript{2}O\textsubscript{3} during the calcination.
4. References
1. L. V. Nair, S. Hossain, S. Wakayama, S. Takagi, M. Yoshioka, J. Maekawa, A. Harasawa, B. Kumar, Y. Niihori, W. Kurashige and Y. Negishi, *J. Phys. Chem. C*, 2017, **121**, 11002–11009.
2. D. Gavril, V. Loukopoulos and G. Karaiskakis, *Chromatographia*, 2004, **59**, 721–728.