χ_{cJ} polarizations at the Fermilab Tevatron

Feng Yuan

Department of Physics, Peking University, Beijing 100871, People’s Republic of China

Institut für Theoretische Physik der Universität, Philosophenweg 19, D-69120 Heidelberg, Germany

Kuang-Ta Chao

China Center of Advanced Science and Technology (World Laboratory), Beijing 100080, People’s Republic of China

and Department of Physics, Peking University, Beijing 100871, People’s Republic of China

Abstract

We propose the measurement of χ_{cJ} polarizations at high energy hadron colliders to study heavy quarkonium production mechanism. We find that the color-singlet model in the k_t factorization approach predicts very different behavior for χ_{cJ} polarizations at the Fermilab Tevatron compared with the NRQCD predictions in the collinear parton model. In the color-singlet k_t factorization approach, for both χ_{c1} and χ_{c2} productions, the helicity h = 0 states dominate over other helicity states at large p_T. These properties are very useful in distinguishing between the two production mechanisms which are related to the interesting issue of J/ψ and ψ' polarizations, and may provide a crucial test for the k_t factorization approach.

PACS number(s): 12.40.Nn, 13.85.Ni, 14.40.Gx
Studies of heavy quarkonium production in high energy collisions provide important information on both perturbative and nonperturbative QCD. In recent years, heavy quarkonium production has attracted much attention from both theory and experiment. To explain the J/ψ and ψ' surplus problem of large transverse momentum production at Tevatron [1], the color-octet production mechanism was introduced for the description of heavy quarkonium production [2] based on the NRQCD factorization framework [3]. During the last few years, extensive studies have been performed for the test of this color-octet production mechanism. However, most recently the CDF collaboration have reported their preliminary measurements on the polarizations of the promptly produced charmonium states [4], which appear not to support the color-octet predictions that the directly produced S-wave quarkonia have transverse polarizations at large p_T [5,6]. In [7,8], the authors considered the feeddown contributions from χ_c decays, and found the prompt J/ψ polarization disagree with the CDF data at large p_T by 3 standard deviations. This conflict shows that the heavy quarkonium production mechanism may be more complicated than we knew before, and further studies on heavy quarkonium production mechanisms other than the color-octet mechanism in the collinear parton model are still needed at present.

In [9], the authors studied χ_cJ hadroproduction at Tevatron in the k_t factorization approach [10,11]. Their results show that only color-singlet contributions can reproduce the Tevatron data on χ_cJ production in the k_t factorization approach, and the color-octet contributions disagree with the data. However, we note that previous studies in the collinear parton model have also given a good description for the data of χ_cJ production at Tevatron in the NRQCD approach including both color-singlet and color-octet contributions [12]. In this context, we have two different mechanisms, i.e., the color-singlet k_t factorization approach and the NRQCD approach in the collinear parton model, of which both can successfully describe the Tevatron data on the large $p_T \chi_cJ$ production rates. So, it is quite urgent now to distinguish between these two mechanisms for understanding heavy quarkonium production at high energy hadron colliders. For this purpose, we propose here the measurements of χ_cJ polarizations at the Fermilab Tevatron. From our calculations we find that the color-singlet
model in the k_t factorization approach predicts very different behavior for χ_{cJ} polarizations compared with the NRQCD predictions in the collinear parton model. In the color-singlet k_t factorization approach, for both χ_{c1} and χ_{c2} productions, the helicity $h = 0$ states dominate over other helicity states at large transverse momentum. This novel property can provide a crucial test for this production mechanism. Furthermore, the χ_{cJ} polarization measurements can help to clarify the present conflict between the color-octet predictions and the experimental data on prompt J/ψ and ψ' polarizations at Tevatron.

The polarized cross section formulas for χ_{cJ} hadroproduction in the NRQCD approach have been calculated in [12,13,8] (including both color-singlet and color-octet processes). In this paper, we will calculate the color-singlet χ_{cJ} polarized cross sections in the k_t factorization approach. We will not include the color-octet processes in this approach, because their contributions to χ_{cJ} production disagree with the Tevatron data in shape [3].

The k_t-factorization approach differs greatly from the conventional collinear approximation because it takes the non-vanishing transverse momenta of the scattering partons into account. The conventional gluon densities are replaced by the unintegrated gluon distributions which depend on the transverse momentum k_t. In the calculations, for every 4-momenta k_i we make a Sudakov decomposition as

$$k_i = \alpha_i p_1 + \beta_i p_2 + \vec{k}_iT,$$

where p_1 and p_2 are the momenta of the incoming hadrons. In the high energy limit, we have $p_1^2 = 0$, $p_2^2 = 0$, and $2p_1 \cdot p_2 = s$, where s is the c.m. energy squared. α_i and β_i are the momentum fractions of p_1 and p_2 respectively. k_iT is the transverse momentum, which satisfies

$$k_iT \cdot p_1 = 0, \quad k_iT \cdot p_2 = 0.$$

For the momenta of the incident gluons q_1 and q_2, we have the following decompositions [11],

$$q_1 = x_1 p_1 + q_1T, \quad q_2 = x_2 p_2 + q_2T.$$

That is to say, the longitudinal component of q_1 (q_2) is only in the direction of light-like vector p_1 (p_2).

Using the above defined Sudakov variables, we can express the polarized cross sections for χ_{cJ} hadroproduction as the following form,

$$
\frac{d\sigma}{d\alpha_\chi}(p\bar{p} \rightarrow \chi_{cJ}X) = \frac{1}{64 \times 16\pi} \frac{d\alpha_\chi}{\alpha_\chi} d^2q_1T d^2q_2T \frac{f(x_1; q_{1T}^2) f(x_2; q_{2T}^2)}{q_{1T}^2 q_{2T}^2} |A_0^{(\lambda)}(q_{1T}, q_{2T})|^2,
$$

where λ denotes the helicity of χ_{cJ}, and α_χ is the momentum fraction of p_1 carried by χ_{cJ}.

The χ_{cJ} transverse momentum p_T comes from the sum of the transverse momenta of q_1 and q_2 as, $\vec{p}_T = \vec{q}_{1T} + \vec{q}_{2T}$. The amplitude squared $|A_0^{(\lambda)}|^2$ describes χ_{cJ} (with helicity λ) production in the gluon-gluon fusion processes $g + g \rightarrow \chi_{cJ}^{(\lambda)}$. To calculate these helicity amplitudes, we need the polarization sums for individual helicity levels of χ_{cJ}. For χ_{c1}, the longitudinal and transverse polarization sums can be written in the following covariant forms

$$
\sum_{\lambda=0} \epsilon_\alpha^{(\lambda)} \epsilon_\beta^{(\lambda)*} = P_{\alpha\beta}^L,
$$

$$
\sum_{|\lambda|=1} \epsilon_\alpha^{(\lambda)} \epsilon_\beta^{(\lambda)*} = P_{\alpha\beta}^T = P_{\alpha\beta} - P_{\alpha\beta}^L,
$$

where

$$
P_{\alpha\beta} = -g_{\alpha\beta} + \frac{p_\alpha p_\beta}{p^2}.
$$

And in the laboratory frame (the helicity frame), $P_{\alpha\beta}^L$ is expressed as

$$
P_{\alpha\beta}^L = \frac{(p \cdot Q)^2}{(p \cdot Q)^2 - M^2 s} \left(\frac{p_\alpha}{M} - \frac{M}{p \cdot Q} Q_\alpha \right) \left(\frac{p_\beta}{M} - \frac{M}{p \cdot Q} Q_\beta \right),
$$

where $M = 2m_c$ is the mass of χ_{cJ}, and $Q = p_1 + p_2$ is the sum of the initial hadron 4-momenta. For χ_{c2}, the polarization sums for individual helicity levels ($\lambda = 0, 1, 2$) can also be expressed in terms of $P_{\alpha\beta}$, $P_{\alpha\beta}^T$, and $P_{\alpha\beta}^L$ [12]. With these polarization sums, we can calculate the production cross sections for individual helicity states of χ_{cJ}, which are more involved and will be presented elsewhere. We have checked that these cross section formulas can numerically reproduce the results of [9] for the inclusive production rates of χ_{cJ} at Tevatron after summing up all helicity states contributions.
The χ_{cJ} polarizations can be measured by studying the photon’s angular distribution in the χ_{cJ} rest frame in the decay processes $\chi_{cJ} \to J/\psi \gamma$. These angular distributions have the following form,

$$\frac{d\Gamma(\chi_{cJ} \to J/\psi \gamma)}{d\cos \theta} \propto \frac{3}{2(3 + \alpha)}(1 + \alpha \cos^2 \theta),$$

(9)

where θ is the angle between the photon’s 3-momentum in χ_{cJ} rest frame and the χ_{cJ} 3-momentum in the laboratory frame. α is the polarization parameter (angular distribution parameter). For χ_{c1}, α is defined as

$$\alpha = \frac{2 - 3\rho}{2 + \rho},$$

(10)

where

$$\rho = \frac{d\sigma(\chi_{c1}^{(|\lambda|=1)})}{d\sigma(\chi_{c1})}.$$

(11)

For χ_{c2}, the polarization parameter is

$$\alpha = -\frac{6 - 3\eta - 12\tau}{10 - \eta - 4\tau},$$

(12)

where

$$\eta = \frac{d\sigma(\chi_{c2}^{(|\lambda|=1)})}{d\sigma(\chi_{c2})}, \quad \tau = \frac{d\sigma(\chi_{c2}^{(|\lambda|=2)})}{d\sigma(\chi_{c2})}.$$

(13)

For numerical calculations, we choose the unintegrated gluon distribution of [14] which can well fit the $F_2(x, Q^2)$ data over a wide range of x and Q^2, and we set the scales μ^2 for the strong coupling constant $\alpha_s(\mu^2)$ in the amplitude squared $|A_0|^2$ to be q_{1T}^2 for the interaction vertex associated with the incident gluon q_1, and q_{2T}^2 for the vertex associated with q_2 [15,16].

We first display in Fig. 1 the production ratio of χ_{c1} to χ_{c2} at the Tevatron as a function of p_T, $R = \sigma(\chi_{c1})/\sigma(\chi_{c2})$. The solid line is for the color-singlet prediction in the k_t factorization approach, and the dotted-dashed line for the NRQCD prediction in the collinear parton model. For comparison, in this figure we also plot the results for other two cases in the collinear parton model: the color-singlet prediction as the dotted line and the color-octet prediction as the dashed line. However, we must note that neither the color-singlet
contributions nor the color-octet contributions alone can describe the Tevatron data on χ_{cJ} productions [13], and in this collinear parton model only the NRQCD predictions (including both the color-singlet and the color-octet contributions) can make sense to describe the Tevatron data on χ_{cJ} productions. From Fig. 1, we can see that the R ratio increases as p_T increases in the color-singlet model k_t factorization approach, and its value approaches to 2.0 at large transverse momentum, which means that at large p_T χ_{c1} production dominates over χ_{c2} production. In contrast, the NRQCD approach predicts the R ratio to be much smaller, and its value approaches to 0.6 at large p_T. This is because, at large transverse momentum the color-octet gluon fragmentation (the $3{S}_1^{(8)}$ channel) dominates the χ_{cJ} productions in NRQCD, which leads to χ_{cJ} production rates as $\sigma(\chi_{c0}) : \sigma(\chi_{c1}) : \sigma(\chi_{c2}) = 1 : 3 : 5$ (consistent with our numerical calculations at large p_T). This figure shows that the difference on R ratio between the color-singlet k_t factorization approach and the NRQCD approach in the collinear parton model is distinctive at sufficiently large p_T.

We then study the χ_{cJ} polarizations at Tevatron. With the polarized cross section formulas, we can calculate the production rates for definite helicity states of χ_{cJ}, and get the angular distribution parameter α. From our numerical calculations, we find that the color-singlet k_t factorization approach predicts very different behavior for χ_{cJ} polarizations at the Fermilab Tevatron compared with the NRQCD predictions in the collinear parton model. In the color-singlet k_t factorization approach, for both χ_{c1} and χ_{c2} productions, the helicity $h = 0$ states dominate over other helicity states at large transverse momentum. This property has distinguished consequence to the decay angular distribution parameter α for $\chi_{cJ} \to J/\psi \gamma$ processes. These results are displayed in Figs. 2-4. For $\chi_{c1} \to J/\psi \gamma$, at large p_T the color-singlet k_t factorization approach predicts α around 0.8 while the NRQCD approach in the collinear parton model predicts α around 0.2. For $\chi_{c2} \to J/\psi \gamma$, the difference between these two mechanisms are more distinctive. The color-singlet k_t factorization approach predicts $\alpha(\chi_{c2} \to J/\psi \gamma)$ to be negative (down to -0.6) at large p_T, while the NRQCD approach in the collinear parton model predicts α to be positive (around 0.3).

For the experimental measurement, it may be difficult to distinguish between χ_{c1} and χ_{c2}
contributions in the observation of the photon’s angular distributions in the decay processes \(\chi_{cJ} \to J/\psi \gamma \). So, it may be more useful to give the angular distributions in \(\chi_{cJ} \to J/\psi \gamma \) with both \(\chi_{c1} \) and \(\chi_{c2} \) taken into account. We plot this result in Fig. 4. From this figure, we find that the color-singlet \(k_t \) factorization approach predicts \(\alpha \) for \(\chi_{cJ} \to J/\psi \gamma \) being about 0.5 while the NRQCD approach in the collinear parton model predicts \(\alpha \) around 0.25 at large transverse momentum. The difference between these two mechanisms is still distinctive.

Finally, we note that the polarized cross section formulas for \(\chi_{cJ} \) production can also be used to predict the polarization of \(J/\psi \) which comes from \(\chi_{cJ} \) feeddown decays. \(J/\psi \) polarization can be measured by the lepton’s angular distribution in the \(J/\psi \) rest frame in \(J/\psi \to \mu^+ \mu^- \) decay process. These distributions have a similar form to those for \(\chi_{cJ} \) decays,

\[
\frac{d\Gamma(J/\psi \to \mu^+ \mu^-)}{d \cos \theta} \propto \frac{3}{2(3 + \alpha)} (1 + \alpha \cos^2 \theta),
\]

where \(\theta \) is the angle between the 3-momentum of the lepton in \(J/\psi \) rest frame and the 3-momentum of \(J/\psi \) in the laboratory frame. \(\alpha \) is the polarization parameter, and is equal to

\[
\alpha = \frac{3\xi - 2}{2 - \xi},
\]

where \(\xi \) is the ratio of the transversely polarized to the total \(J/\psi \), which can be calculated by using the polarized cross sections for \(\chi_{cJ} \) production \[12\]. In Fig. 5 we give the \(J/\psi \) polarization from the feeddown contributions of \(\chi_{cJ} \) decays. Again, we find that the color-singlet \(k_t \) factorization approach predicts \(\alpha(J/\psi \to \mu^+ \mu^-) \) being about 0.5 while the NRQCD approach in the collinear parton model predicts \(\alpha \) around 0.25 at large \(p_T \).

At the Tevatron, the CDF collaboration has measured the inclusive production cross sections of \(\chi_{cJ} \) states, which contribute about 30% of prompt \(J/\psi \) production in a wide range of \(p_T \) \[1\]. The \(\chi_{cJ} \) states can be identified with a photon plus the \(J/\psi \) which decays into a muon pair. The production cross section of \(\chi_{cJ} \) is found to be comparable to that of \(J/\psi \), and is not small. Unfortunately, the present statistics of Tevatron Run I is not high enough to allow separate polarization measurements for this part of \(J/\psi \) (from \(\chi_c \)
decays) from the direct J/ψ production and ψ' decay's contribution [4]. However, with the upgrade Tevatron Run II, the luminosity will be increased by a factor of more than 8, we will have much more data for J/ψ and χ_{cJ} production, so it will be feasible to distinguish between different contributions to prompt J/ψ polarizations, and then to measure the χ_{cJ} polarizations.

In conclusion, in this paper we have calculated the χ_{cJ} polarizations at high energy hadron colliders in the color-singlet k_t factorization approach and the NRQCD approach in the collinear parton model. We find the difference on the polarization parameters for χ_{cJ} and their decay products J/ψ between these two approaches are distinctive at large transverse momentum. Therefore, χ_{cJ} polarizations can be used to study these two production mechanisms at hadron colliders and may provide important information on heavy quarkonium polarization mechanisms. Especially, the color-singlet k_t factorization approach predicts that χ_{cJ} productions are dominated by the helicity $h = 0$ states at large transverse momentum. This unique property may provide a crucial test for this production mechanism.

ACKNOWLEDGMENTS

This work was supported in part by the National Natural Science Foundation of China, the Ministry of Education of China, and the State Commission of Science and Technology of China.
REFERENCES

[1] CDF collaboration, F. Abe et al., Phys. Rev. Lett. 69, 3704 (1992); Phys. Rev. Lett. 71, 2537 (1993); Phys. Rev. Lett. 79, 572 (1997); Phys. Rev. Lett. 79, 578 (1997)

[2] E. Braaten and S. Fleming, Phys. Rev. Lett. 74, 3327 (1995); M. Cacciari, M. Greco, M.L. Mangano and A. Petrelli, Phys. Lett. B356 553 (1995).

[3] G.T. Bodwin, L. Braaten, and G. P. Lepage, Phys. Rev. D51 1125 (1995); Err: ibid., D55, 5853 (1997).

[4] CDF collaboration, T. Affolder et al., Phys. Rev. Lett. 85, 2886 (2000).

[5] P. Cho and M. Wise, Phys. Lett. B346, 129 (1995).

[6] M. Beneke and M. Krämer, Phys. Rev.D 55, 5269 (1997).

[7] E. Braaten, B.A. Kniehl, and J. Lee, Phys. Rev. D62, 094005 (2000).

[8] B.A. Kniehl and J. Lee, Phys. Rev. D62, 114027 (2000).

[9] P. Hägler, R. Kirschner, A. Schäfer, L. Szymanowski, and O.V. Teryaev, hep-ph/0004263.

[10] S. Catani, M. Ciafaloni, and F. Hautmann, Phys. Lett. B242, 97 (1990); Nucl. Phys. B366, 135 (1991).

[11] J.C. Collins and R.K. Ellis, Nucl. Phys. B360, 3 (1991).

[12] P. Cho, M.B. Wise, and S.P. Trivedi, Phys. Rev. D51, 2039 (1995).

[13] P. Cho and K. Leibovich, Phys. Rev. D53, 6203 (1996).

[14] J. Kwiecinski, A.D. Martin, and A.M. Stasto, Phys. Rev. D56, 3991 (1997).

[15] E.M. Levin, M.G. Ryskin, Yu.M. Shabelski, and A.G. Shuvaev, Sov. J. Nucl. Phys. 53, 657 (1991); ibid., 54, 867 (1992).
Figure Captions

FIG. 1. The production ratio of χ_{c1} to χ_{c2} as a function of p_T. The solid line is for the color-singlet k_t factorization approach prediction, the dotted-dashed line for the NRQCD prediction in the collinear parton model, the dotted and dashed lines are respectively for the color-singlet and color-octet predictions alone in the collinear parton model.

FIG. 2. The polarization parameter α for $\chi_{c1} \rightarrow J/\psi \gamma$ as a function of p_T. The definitions of the curves are the same as in Fig. 1.

FIG. 3. The same as in Fig. 2 but for χ_{c2}.

FIG. 4. The same as in Fig. 2 but for $\chi_{cJ} \rightarrow J/\psi \gamma$ with both χ_{c1} and χ_{c2} taken into account.

FIG. 5. The polarization parameter α for $J/\psi \rightarrow \mu^+\mu^-$ for J/ψ coming from χ_{cJ} decays.
Fig. 1

\[R = \frac{\sigma_{\chi_1}}{\sigma_{\chi_2}} \]

\[P_T (\text{GeV}) \]
Fig. 2: \(\alpha(\chi_{c1} \rightarrow J/\psi \gamma) \) vs. \(P_T \) (GeV)
Fig. 3

\[\alpha(\chi_{c2} \rightarrow J/\psi \gamma) \]

\[P_T (\text{GeV}) \]
Fig. 4

$\alpha(\chi_{cJ} \rightarrow J/\psi \gamma)$ vs. P_T(GeV)
\(\alpha(J/\psi \rightarrow \chi_c^+) \)

Fig. 5