Complete chloroplast genome of *Ilex dabieshanensis*: Genome structure, comparative analyses with three traditional *Ilex* tea species, and its phylogenetic relationships within the family Aquifoliaceae

Ting Zhou¹, Kun Ning², Zhenghai Mo¹, Fan Zhang¹, Yanwei Zhou¹, Xinran Chong¹, Donglin Zhang³, Yousry A. El-Kassaby⁴, Jian Bian⁵, Hong Chen¹*

¹ Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China, ² College of Horticulture, Jinling Institute of Technology, Nanjing City, Jiangsu Province, P.R. China, ³ Department of Horticulture, University of Georgia, Athens, GA, United States of America, ⁴ Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada, ⁵ Jiangsu Yufeng Tourism Development Co. Ltd., Yancheng, China

* chenhong@cnbg.net

Abstract

Ilex dabieshanensis K. Yao & M. B. Deng is not only a highly valued tree species for landscaping, it is also a good material for making kuding tea due to its anti-inflammatory and lipid-lowering medicinal properties. Utilizing next-generation and long-read sequencing technologies, we assembled the whole chloroplast genome of *I. dabieshanensis*. The genome was 157,218 bp in length, exhibiting a typical quadripartite structure with a large single copy (LSC: 86,607 bp), a small single copy (SSC: 18,427 bp) and a pair of inverted repeat regions (IRA and IRB: each of 26,092 bp). A total of 121 predicted genes were encoded, including 113 distinctive (79 protein-coding genes, 30 tRNAs, and 4 rRNAs) and 8 duplicated (8 protein-coding genes) located in the IR regions. Overall, 132 SSRs and 43 long repeats were detected and could be used as potential molecular markers.

Comparative analyses of four traditional *Ilex* tea species (*I. dabieshanensis*, *I. paraguariensis*, *I. latifolia* and *I. cornuta*) revealed seven divergent regions: *matK*-rps16, *trnS*-psbZ, *trnT-trnL*, *atpB-rbcL*, *petB-petD*, *rpl14-rpf16*, and *rpl32-trnL*. These variations might be applicable for distinguishing different species within the genus *Ilex*. Phylogenetic reconstruction strongly suggested that *I. dabieshanensis* formed a sister clade to *I. cornuta* and also showed a close relationship to *I. latifolia*. The generated chloroplast genome information in our study is significant for *Ilex* tea germplasm identification, phylogeny and genetic improvement.
Introduction

In green plants, the chloroplast is a photosynthetic organelle with fundamental roles in carbon fixation and energy production [1, 2]. It possesses its own independent genome featuring maternal, paternal, or biparental inheritance and a relatively conserved four-part circular structure consisting of a large single copy (LSC), a small single copy (SSC), and two inverted repeat regions (IRs) [3–5]. Generally, land plant chloroplast genomes range in size from 120 to 160 kb, encoding 110–130 distinct genes [6, 7]. Due to their small size, reduced recombination, slow evolutionary rate, and mostly maternal transmission, chloroplast genomes of angiosperms have been extensively utilized for species identification, biodiversity evaluation, phylogenetic analysis, origin judgment, and explorations of the genetic basis for climatic adaptation [8–11]. Recently, sequencing plant chloroplast genomes has become much easier with the rapid development of sequencing technologies, such as the Illumina and PacBio sequencing platforms.

The genus *Ilex* L. (holly), Aquifoliaceae, is the largest angiosperm woody dioecious genus, cultivated as ornamental, culinary, and pharmaceutical plants [12]. Approximately 600 *Ilex* species are distributed worldwide from tropical to temperate regions, including China where more than 200 species have been documented [13, 14]. Although the taxonomy of the genus *Ilex* had been proposed based on biogeography and morphology, conducting species identifications and understanding their evolutionary relationships within and among these putative clades was complicated due to apparent morphological similarities, interspecific hybridization, and genetic introgression [15–17]. At least 20 *Ilex* species chloroplast genomes have already been released in the GenBank database. However, genomic information on many high-value species in the family Aquifoliaceae requires further investigation.

Ilex dabieshanensis K. Yao & M. B. Deng (Yao and Deng, 1987) is not only a highly valued tree species for landscaping, it is also a good material for making Kuding tea due to its anti-inflammatory and lipid-lowering properties. To better understand its genetic information, we sequenced and assembled the complete chloroplast genome of *I. dabieshanensis* (MW292560) using Illumina and PacBio sequencing technologies. Then, we carried out comparative analyses between the resulting *I. dabieshanensis* chloroplast genome and previously published genomes of *I. cornuta* (MK335536), *I. latifolia* (KX426465), and *I. paraguariensis* (KP016928). The three species were selected because they are pharmaceutical plants used as Kuding tea, like *I. dabieshanensis* [18]. Our objectives were: 1) exploring the molecular structure of *I. dabieshanensis* chloroplast genome; 2) examining possible simple sequence and long repeats; 3) discovering hypervariable regions that could be used as specific DNA markers for the genus *Ilex*; 4) revealing the phylogenetic relationships of *I. dabieshanensis* within the family Aquifoliaceae; and 5) providing molecular data for *Ilex* tea germplasm identification, phylogeny, and genetic improvement.

Materials and methods

Plant material, chloroplast DNA extraction and sequencing

Fresh leaves of *I. dabieshanensis* were collected from one plant in Nanjing Botanical Garden, Jiangsu Province, China, (32°03′N latitude, 118°49′E longitude) and immediately flash-frozen in liquid nitrogen. Total chloroplast DNA was extracted using the improved sucrose gradient centrifugation method [19]. DNA integrity, purity, and concentration were estimated by 1% agarose-gel electrophoresis, a NanoDrop spectrophotometer (Thermo Scientific, Waltham, MA, USA), and a Qubit fluorometer (Life Technologies, Darmstadt, Germany), respectively. Only samples with good purity (OD \(_{260/280} \geq 1.8\), OD \(_{260/230} \geq 1.8\)) were retained for sequencing.
After DNA detection, two libraries with insert sizes of 300 bp and 10 kb were constructed. Chloroplast genome sequencing of the two *I. dabieshanensis* libraries was then performed on an Illumina HiSeq X Ten instrument (Biozeron, Shanghai, China) and a PacBio Sequel platform (Biozeron, Shanghai, China), respectively. The qualities of the resulting Illumina and PacBio raw data were filtered by FastQC.

Chloroplast genome assembly and annotation

Using SOAPdenova software (v2.04), clean Illumina reads were first assembled with the default parameters into principal contigs [20]. Then, all contigs were classified and connected into a single draft sequence using the Geneious (v11.0.4) [21]. The BLASR software was immediately used to compare the PacBio clean data with the single draft sequence and meanwhile to extract the correction and error correction [22]. Next, scaffolds were generated by assembling the corrected PacBio clean data with the default parameters using Celera Assembler (v8.0) [23]. For gap closure, these assembled scaffolds were mapped back to the Illumina clean reads using GapCloser (v1.12) [20]. Finally, the assembled chloroplast genome of *I. dabieshanensis* was produced.

The chloroplast genome genes, including the predicted protein-coding gens, transfer RNA (tRNA) gens, and ribosomal RNA (rRNA) genes, were annotated using the online tool DOGMA (Dual Organellar Genome Annotator) with the default parameters and manually checked [24]. BLASTn searches against the National Center for Biotechnology Information (NCBI) website and the tRNAscanSE program were further used to determine and confirm both tRNA and rRNA genes [25]. With the default parameters and subsequent manual editing, the circular map of *I. dabieshanensis* chloroplast genome was drawn using OGDRAWv1.3.1 [26].

I. dabieshanensis SSRs, long repeats, and codon usage analyses

Ilex dabieshanensis simple sequence repeats (SSRs) were identified by MicroSatellite (MISA) (http://pgrc.ipk-gatersleben.de/misa/) with the parameters set as follows: 8 for mono-, 5 for di-, 4 for tri-, and 3 for tetra-, penta-, and hexa-nucleotides [27]. Long repeats, including forward, complement, reverse, and palindromic, were analyzed using the online software REPuter with a minimum repeat size of 30 bp and a hamming distance of 3 [28]. Codon usage analysis was performed using a critical parameter of Relative Synonymous Codon Usage (RSCU) calculated by MEGA7 software [29].

Sequence divergence analyses of the four Ilex species

Taking the annotation of *I. dabieshanensis* as the reference, we compared its complete chloroplast genome with three other *Ilex* species in the family Aquifoliaceae (*I. cornuta*, *I. latifolia*, and *I. paraguariensis*) using the mVISTA program (http://genome.lbl.gov/vista/mvista/submit.shtml) in Shuffle-LAGAN mode [30]. Variations in LSC/IRB/SSC/IRA region borders were also compared using IRscope (https://irscope.shinyapps.io/irapp/) [31].

The genus Ilex and family Aquifoliaceae phylogeny

To determine the phylogenetic positions of *I. dabieshanensis* in the genus *Ilex* and family Aquifoliaceae, 21 plastid genome sequences (including 19 *Ilex* species) were retrieved from the NCBI GenBank database. Setting *Helwingia chinensis* and *H. himalaica* as outgroups, a phylogenetic tree was constructed in MEGAX using the maximum likelihood (ML) method based on the Tamura–Nei nucleotide substitution model [32]. The analysis was performed with 1,000 bootstrap replicates.
Results and discussion

I. dabieshanensis chloroplast genome features

The complete circular chloroplast genome of *I. dabieshanensis* (157,218 bp in length) exhibited a typical quadripartite structure, consisting of a LSC (86,607 bp), a SSC (18,427 bp), and a pair of IR (IRA and IRB: each of 26,092 bp) regions (Fig 1 and Table 1). Like other Aquifoliaceae chloroplast genomes, it had a low GC content (37.69%) [33]. The IR regions had higher GC contents (42.94%) than the LSC (35.75%) and SSC (31.93%) regions, which is a common phenomenon among plant chloroplast genomes [34–36]. The relatively high GC content of the IR regions was mostly attributed to rRNA and tRNA genes as they occupied a greater area than the protein-coding genes [37].

A total of 121 predicted genes, including 113 unique (79 protein-coding genes, 30 tRNAs, and 4 rRNAs) and 8 duplicated (8 protein-coding genes) located in the IR regions, were identified in *I. dabieshanensis* chloroplast genome (Tables 1, 2 and S1 Table). Common to many plants [38, 39], the *I. dabieshanensis* chloroplast genome had 18 intron-containing genes—6 tRNA and 12 protein-coding genes. Among these, 16 genes contained a single intron and 2 genes, *clpP* and *ycf3*, contained two introns (Table 2). Notably, the intron of the *trnK-UUU* gene, which contains the *matK* gene, was the longest, reaching up to 2,559 bp. The *rps12* gene was a trans-spliced gene with one exon located in the LSC region (5' end) and the other two exons (separated by an intron) located in both IRs. These findings are in line with those of the *Zingiber*, *Cymbidium*, and *Forsythia* chloroplast genomes [40–42].

SSR and long repeats identification

Short (1–6 nucleotides) and long (10–100 nucleotides) repeats are distinguished according to the number of nucleotides in the repeat units [43]. SSRs (simple sequence repeats), or microsatellites, are short tandem repeats. Generally, SSRs have been widely used in population genetic and phylogenetic studies for their extensive distribution throughout the chloroplast genome and significant effects on its recombination and rearrangement [44–46]. In *I. dabieshanensis* chloroplast genome, 132 SSRs were determined by MISA, among which, there were 119 mononucleotides, 4 dinucleotides, 5 trinucleotides, and 4 tetranucleotides, with a size of at least 8 bp (Fig 2A and S2 Table). The majority of SSRs were mono- and di-nucleotides, which was supported by previously reported chloroplast genome information [47, 48]. Among these nucleotides, A/T mononucleotides were the most abundant (accounting for 87.12%), similar to reports that short polyadenine (polyA) or polythymine (polyT) repeats are the main types of SSRs in chloroplast genomes (Fig 2B) [49]. Different regions possessed different numbers of SSRs. As shown in Fig 2C, there were 101, 18, and 13 SSRs located in the LSC, SSC, and IR regions, respectively. Shown in Fig 2D, 82, 23, and 27 SSRs were separately detected in intergenic regions, introns, and coding regions. These results corresponded with earlier reports that SSRs identified in *Ilex* chloroplast genome were primarily located in the LSC regions. SSRs were also enriched in noncoding regions [33, 48]. The SSR primers excavated in *I. dabieshanensis* chloroplast genome could be applied to future *Ilex* population genetic studies, polymorphism investigations, and evolution analyses.

For the majority of land plants, long repeats in the chloroplast genome are considered uncommon [38]. In terms of direction and complementarity, these repeats can be divided into four types: forward, reverse, complement, and palindromic [50]. Altogether, 43 long repeats (20 palindromic and 23 forward) were identified in *I. dabieshanensis* chloroplast genome and 30–40 bp repeats were the most frequent, similar to several other land plants [51, 52]. No reverse or complementary repeats were identified in *I. dabieshanensis* chloroplast genome, same in *I. latifolia* chloroplast genome (Fig 3 and S3 Table) [33].
Codon preference analysis

Codon usage patterns and nucleotide composition can provide important information on the genetic modification of land plant chloroplast genomes. In general, no bias occurred in
codon usage, or synonymous codon usage, when selective pressure was absent [53]. However, during plant evolution, the pattern of synonymous codon usage usually exhibited preference [54]. Relative synonymous codon usage (RSCU) is used as an effective index to determine codon preference [55]. A RSCU ≤ 1.0 indicates no preference, $1.0 < \text{RSCU} < 1.2$ signifies a weak preference, $1.2 \leq \text{RSCU} \leq 1.3$ represents a moderate preference, and

| Table 1. Summary of *I. dabieshanensis* chloroplast genome. |
|--------------------|----------------|
| Genome Features | *I. dabieshanensis* |
| Genome size (bp) / GC content (%) | 157,218 / 37.69 |
| LSC size (bp) / GC content (%) | 86,607 / 35.75 |
| SSC size (bp) / GC content (%) | 18,427 / 31.93 |
| IR size (bp) / GC content (%) | 26,092 / 42.94 |
| Total gene number | 121 |
| Unique gene number | 113 |
| Protein-coding gene | 79 |
| tRNAs | 30 |
| rRNAs | 4 |
| Genes duplicated in IRs | 8 |

LSC, large single copy region; SSC, small single copy region; IR, inverted repeat.

https://doi.org/10.1371/journal.pone.0268679.t001

codon usage, or synonymous codon usage, when selective pressure was absent [53]. However, during plant evolution, the pattern of synonymous codon usage usually exhibited preference [54]. Relative synonymous codon usage (RSCU) is used as an effective index to determine codon preference [55]. A RSCU ≤ 1.0 indicates no preference, $1.0 < \text{RSCU} < 1.2$ signifies a weak preference, $1.2 \leq \text{RSCU} \leq 1.3$ represents a moderate preference, and

| Table 2. List of genes in the chloroplast genome of *I. dabieshanensis*. |
|--------------------------------|------------------|
| Category | Group of Genes/Function |
| Photosynthesis | Subunits of photosystem I |
| | `psaA, psaB, psaC, psaI, psaJ` |
| | Subunits of photosystem II |
| | `psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbL, psbM, psbT, psbZ` |
| | Subunits of NADH-dehydrogenase |
| | `ndhA, ndhB, ndhC, ndhD, ndhE, ndhF, ndhG, ndhH, ndhI, ndhJ` |
| | Subunits of cytochrome b/f complex |
| | `petA, petB, petD, petG, petL, petN` |
| | Subunits of ATP synthase |
| | `atpA, atpB, atpE, atpF, atpH` |
| | Large subunit of Rubisco |
| | `rbcL` |
| Self-replication | Large subunits of ribosome |
| | `rpl14, rpl16, rpl22, rpl23, rpl32, rpl33, rpl36` |
| | Large subunits of ribosome |
| | `rps11, rps12b, rps14, rps15, rps16b, rps18, rps19, rps2, rps3, rps4, rps7, rps8` |
| DNA-dependent RNA polymerase | `rpoA, rpoB, rpoC1, rpoC2` |
| Ribosomal RNAs | `rrn16, rrn23, rrn4.5, rrn5` |
| Transfer RNAs | `trnA-UGC, trnC-GCA, trnD-GUC, trnE-UUC, trnF-GAA, trnG-GCC, trnG-UCC, trnH-GUG, trnI-CAU, trnI-GAU, trnK-UUU, trnL-CAA, trnL-UGA, trnM-CAU, trnN-GUU, trnP-UUG, trnQ-UUG, trnR-ACC, trnS-GCU, trnS-GGA, trnS-UGA, trnT-GGU, trnT-UGC, trnV-GAC, trnV-UAC, trnW-CCA, trnY-GUA, trnM-CAU` |
| Other genes | Maturase |
| | `matK` |
| | Protease |
| | `clpP` |
| | Envelope membrane protein |
| | `comA` |
| | Acetyl-CoA carboxylase |
| | `accD` |
| | C-type cytochrome synthesis gene |
| | `ccsA` |
| | Translation initiation factor |
| | `infA` |
| Unknown genes | Proteins of unknown function |
| | `ycf1, ycf15, ycf2, ycf3, ycf4` |

* Two gene copies in IRs
b Genes containing introns
c Genes divided into two independent transcription units.

https://doi.org/10.1371/journal.pone.0268679.t002
RSCU > 1.3 indicates a strong preference [53]. In *I. dabieshanensis* chloroplast genome, 64 types of codons (26,932 codons totally) encoded 20 different amino acids. 30 of which had RSCU > 1: 1 weak preference (RSCU = 1.16), 9 moderate preference (1.21 ≤ RSCU ≤ 1.28), and 20 strong preference (1.39 ≤ RSCU ≤ 1.85) (Table 3). Interestingly, except for TTG (G-ending), the other preferred codons all ended with the base A or T, which was previously confirmed to be the norm in most chloroplast genomes [56].
Comparative chloroplast genome analysis

The entire chloroplast genomes of four sequenced / published *Ilex* species were compared, with *I. dabieshanensis* used as the reference. Regions with sequence variation among the four *Ilex* species were marked with white peaks. Overall, the mVISTA results revealed high degrees of sequence identity between them, especially in *I. dabieshanensis* and *I. cornuta*, suggesting a greatly conserved evolution model. The relatively divergent regions primarily occurred in the non-coding regions rather than in coding regions, which was also previously demonstrated in the families Juglandaceae, Zingiberaceae, and Fabaceae [8, 40, 57]. In total, seven variable sites, including *matK-rps16, trnS-psbZ, trnT-trnL, atpB-rbcL, petB-petD, rpl14-rpl16*, and *rpl32-trnL*, were subsequently detected, some of which were validated in Yao et al. (2016) [16].
and Cascales et al. (2017) [58]. These variations may promote the generation of potential DNA markers for *Ilex* species identification and phylogenetic reconstruction (Fig 4).

IR contraction and expansion

Variations (contraction or expansion) in the IR/SC boundary regions are common, which could give rise to differences in gene size and content among chloroplast genomes, even though the IR regions were often highly conserved [59, 60]. A comparison of IR/SC junctions among the four *Ilex* chloroplast genomes (*I. dabieshanensis*, *I. cornuta*, *I. latifolia*, and *I. paraguariensis*) is presented in Fig 5. Overall, JLB (LSC/IRB), JLA (LSC/IRA), and JSA (SSC/IRA) junctions were relatively conserved, whereas JSB (SSC/IRB) junctions were strikingly different. The genes located at the JSA/B and JLA/B junctions included *rps19*, *rpl2*, *ycf1*, *ndhF*, *trnN*, and *trnH*. At the JLA and JLB boundaries, the *rpl2* gene of all four *Ilex* species was entirely located

Table 3. Codon usage in *I. dabieshanensis*.

Amino Acids	Codon	No.	RSCU	Amino Acids	Codon	No.	RSCU
Ala	GCA	426	1.2136	Pro	CCA	326	1.156
Ala	GCC	212	0.6039	Pro	CCC	209	0.7411
Ala	GCG	125	0.3561	Pro	CCG	156	0.5531
Ala	GCT	641	1.8262	Pro	CCT	437	1.5496
Cys	TGC	69	0.4584	Glu	CAA	734	1.5244
Cys	TGT	232	1.5415	Glu	CAG	229	0.4755
Asp	GAC	209	0.3745	Arg	AGA	505	1.8486
Asp	GAT	907	1.6254	Arg	AGG	163	0.5967
Glu	GAA	1051	1.5155	Arg	CGA	380	1.391
Glu	GAG	336	1.4844	Arg	CGC	107	0.3917
Phe	TTC	543	0.7249	Arg	CGG	135	0.4942
Phe	TTT	955	1.5275	Arg	CGT	349	1.2776
Gly	GGA	759	1.6517	Ser	AGC	113	0.3242
Gly	GCC	180	0.3917	Ser	AGT	422	1.2109
Gly	GGG	320	0.6964	Ser	TCA	424	1.2166
Gly	GGT	579	1.26	Ser	TCC	334	0.9583
His	CAC	150	0.4643	Ser	TCG	187	0.5365
His	CAT	496	1.5356	Ser	TCT	611	1.7532
Ile	ATA	705	0.9288	STOP	TAA	43	1.4659
Ile	ATC	464	0.6113	STOP	TAG	24	0.8181
Ile	ATT	1108	1.4598	STOP	TGA	21	0.7159
Lys	AAA	1057	1.4783	Thr	ACA	434	1.2534
Lys	AAG	373	0.5216	Thr	ACC	248	0.7162
Leu	CTA	389	0.8244	Thr	ACN	142	0.4101
Leu	CTC	201	0.4259	Thr	ACT	561	1.6202
Leu	CTG	190	0.4026	Val	GTA	539	1.4706
Leu	CTT	602	1.2758	Val	GTC	203	0.5538
Leu	TTA	869	1.8417	Val	GTG	209	0.5702
Leu	TTG	580	1.2292	Val	GTT	515	1.4051
Met	ATG	647	1	Trp	TGG	476	1
Asn	AAC	303	0.459	Tyr	TAC	194	0.3876
Asn	AAT	1017	1.5409	Tyr	TAT	807	1.6123

https://doi.org/10.1371/journal.pone.0268679.t003

and Cascales et al. (2017) [58]. These variations may promote the generation of potential DNA markers for *Ilex* species identification and phylogenetic reconstruction (Fig 4).
in the IRA and IRB regions, presenting a complete expansion in their IR regions. Except for *I. latifolia*, the *rps19* gene in *I. dabieshanensis*, *I. cornuta*, and *I. paraguariensis* slightly covered the JLB, showing just a partial expansion (4 bp) in the JLB boundary. The *ycf1* genes in all four *Ilex* species were throughout the JSA, which is common in angiosperms whose complete copy of *ycf1* spans the IR regions [61]. However, in JSB, it was only detected in *I. dabieshanensis* and *I. latifolia*, with an expanded length of 1,056 bp and 981 bp in IRB, respectively. The *ndhF* gene exhibited the same situation as *rps19*, separately with 15 bp gaps to the JSB in *I. dabieshanensis*, *I. cornuta*, and *I. paraguariensis*.

Phylogenetic analysis of *Ilex* species in the family Aquifoliaceae

To determine the phylogenetic relationships, the entire plastid genome sequences of 19 *Ilex* species were aligned and a phylogenetic tree was generated by MEGAX using the maximum likelihood (ML) method with 1,000 bootstrap replicates. *Helwingia chinensis* and *H.*
himalaica were set as out groups in the analyses. As shown in Fig 6, four clades were obtained from the examined Ilex species. *Ilex dabieshanensis* was clustered with *I. cornuta* in clade I, which also included five additional *Ilex* species (*I. delavayi*, *I. integra*, *I. ficoidea*, *I. latifolia*, and *I. intermedia*). These species are evergreen trees with leathery leaves that are broadly distributed across subtropical Asia [33]. Our results were in accordance with Shi et al. (2016) [62], who showed that *I. dabieshanensis* was a natural hybrid of *I. cornuta* and *I. latifolia*. *Ilex paraguariensis* and *I. dumosa*, which both originated from South America, were grouped in clade II. In clade III, *I. trifloral*, *I. viridis*, *I. szechwanensis*, and *I. suaveolens* showed close relationships. Clustered in clade IV, *I. asprella*, *I. micrococa* and *I. polyneura* are all deciduous shrubs or trees, while the other three clades contained evergreens. Overall, the plastid phylogeny illustrated that within the family Aquifoliaceae, the *Ilex* species might originate from more than one ancestor.

Conclusions

Here, the complete chloroplast genome of *I. dabieshanensis* (157,218 bp in length) was sequenced and analyzed. It was predicted to encode 121 genes, including 113 unique (79 protein-coding genes, 30 tRNAs, and 4 rRNAs) and 8 duplicated (8 protein-coding genes) located in the IR regions. A total of 132 SSRs and 43 long repeats were detected, which could be utilized as potential molecular markers. Based on the protein-coding genes, the codon usage represented a bias toward A/T-ending. Comparative chloroplast genome analyses of *I. dabieshanensis*, *I. cornuta*, *I. latifolia*, and *I. paraguariensis* revealed seven divergent regions: matK-rps16, trnS-psbZ, trnT-trnL, atpB-rbcL, petB-petD, rpl14-rpl16, and rpl32-trnL. These variations might be applicable for distinguishing different species within the genus *Ilex*. Phylogenetic reconstruction strongly suggested that *I. dabieshanensis* formed a sister clade to *I. cornuta* and also showed a close relationship to *I. latifolia*. The generated chloroplast genome information in our study is significant for *Ilex* tea germplasm identification, phylogeny and genetic improvement.
Supporting information

S1 Table. Genes predicted in *I. dabieshanensis* cp genome.
(XLS)

S2 Table. SSRs identified in *I. dabieshanensis* cp genome.
(XLS)

S3 Table. Long repeats in the *I. dabieshanensis* cp genome.
(XLSX)

Acknowledgments

We thank Ruisen Lu, and members in the *Ilex* laboratory for their technical support and stimulating discussions.

Author Contributions

Formal analysis: Ting Zhou, Kun Ning, Zhenghai Mo, Hong Chen.

Funding acquisition: Hong Chen.

Investigation: Fan Zhang, Yanwei Zhou.
Methodology: Ting Zhou, Hong Chen.

Resources: Jian Bian.

Software: Ting Zhou, Hong Chen.

Supervision: Fan Zhang.

Visualization: Ting Zhou, Xinran Chong.

Writing – original draft: Ting Zhou.

Writing – review & editing: Donglin Zhang, Yousry A. El-Kassaby, Hong Chen.

References

1. Brunkard JO, Runkel AM, Zambryski PC. Chloroplast extend stromules independently and in response to internal redox signals. Proc. Natl. Acad. Sci. 2015; 112: 10044–10049. https://doi.org/10.1073/pnas.1511570112 PMID: 26150490

2. Daniell H, Lin CS, Yu M, Chang WJ. Chloroplast genomes: Diversity, evolution, and applications in genetic engineering. Genome Biol. 2016; 17: 134. https://doi.org/10.1186/s13059-016-1004-2 PMID: 27339192

3. Hansen AK, Escobar LW, Gilbert LE, Jansen RK. Paternal, maternal, and biparental inheritance of the chloroplast genome in Passiflora (Passifloraceae): implications for phylogenetic studies. Am. J. Bot. 2007; 94: 42–46. https://doi.org/10.3732/ajb.94.1.42 PMID: 21642206

4. Sodmergen ZQ: Why does biparental plastid inheritance revive in angiosperms?. J. Plant Res. 2010; 123: 201–206. https://doi.org/10.1007/s10265-009-0291-z PMID: 20052516

5. Huotari T, Korpelainen H. Complete chloroplast genome sequence of Elodea canadensis and comparative analyses with other monocot plastid genomes. Gene 2012; 508: 96–105. https://doi.org/10.1016/j.gene.2012.07.020 PMID: 22841789

6. Zhang Y, Li L, Yan TL, Liu Q. Complete chloroplast genome sequences of Praxelis (Eupatorium catarium Veldkamp), an important invasive species. Gene 2014; 549: 58–69. https://doi.org/10.1016/j.gene.2014.07.041 PMID: 25042453

7. Fan WB, Wu Y, Yang J, Shahzad K, Li ZH. Comparative chloroplast genomics of Dipsacales species: Insights into sequence variation, adaptive evolution, and phylogenetic relationships. Front. Plant Sci. 2018; 9: 689. https://doi.org/10.3389/fpls.2018.00689 PMID: 29875791

8. Mo ZH, Lou WR, Chen YQ, Jia XD, Zhai M, Guo ZR, et al. The chloroplast genome of Carya illinoinensis: Genome structure, adaptive evolution, and phylogenetic Analysis. Forests 2020; 11: 207. http://doi.org/10.3390/f11020207.

9. Daniell H, Lin CS, Yu M, Chang WJ. Chloroplast genomes: Diversity, evolution, and applications in genetic engineering. Genome Biol. 2016; 17: 134. https://doi.org/10.1186/s13059-016-1004-2 PMID: 27339192

10. Zhou Y, Nie J, Xiao L, Hu Z, Wang B. Comparative chloroplast genome analysis of rhubarb botanical origins and development of specific identification markers. Molecules 2018; 23: 2811. https://doi.org/10.3390/molecules23112811 PMID: 30380708

11. Cui Y, Chen X, Nie L, Sun W, Hu H, Lin Y, et al. Comparison and phylogenetic analysis of chloroplast genomes of three medicinal and edible Amomum species. Int. J. Mol. Sci. 2019; 20: 4040. https://doi.org/10.3390/ijms20164040 PMID: 31430862

12. Yuan L, Wu H, Zhang C, Wang Y, Huang Q, Fan SM, et al. The complete plastid genome sequence of ilex suaveolens (H. Lév.) Loes, the most abundant medicinal Holly in Mount Huangshan. Mitochondrial DNA B. 2021; 6: 468–469. https://doi.org/10.1080/23802359.2021.1872428 PMID: 33628891

13. Loizeau PA, Barriera G, Manen JF, Broennimann O. Towards an understanding of the distribution of Ilex L. (Aquifoliaceae) on a worldwide scale. Biol. Skr. 2005; 55: 501–520.

14. Yao X, Song Y, Yang J, Tan Y, Corlett RT. Phylogeny and biogeography of the hollies (Ilex L., Aquifoliaceae). J. Syst. Evol. 2020; 59: 73–82. http://doi.org/10.1111/jse.12567.

15. Cuénot P, Martínez MADP, Loizeau PA, Spichiger R, Andrews S, Manen JF. Molecular phylogeny and biogeography of the genus Ilex L. (Aquifoliaceae). Ann. Bot. 2000; 85: 111–122. http://doi.org/10.1006/anbo.1999.1003.

16. Yao X, Tan YH, Liu YY, Song Y, Yang JB, Corlett RT. Chloroplast genome structure in Ilex (Aquifoliaceae). Sci. Rep. 2016; 6: 28558. https://doi.org/10.1038/srep28558 PMID: 27376499
17. Manen JF, Barriera G, Loizeau PA, Naciri Y. The history of extant *Ilex* species (Aquifoliaceae): Evidence of hybridization within a miocene radiation. Mol. Phylogenet. Evol. 2010; 57: 961–977. https://doi.org/10.1016/j.ympev.2010.09.006 PMID: 20870023

18. Yi F, Zhao XL, Peng Y, Xiao PG. Genus *Ilex*: Phytochemistry, ethnopharmacology, and pharmacology. Chinese Herb. Med. 2016; 8: 209–230. http://doi.org/10.1016/S1674-6384(16)60044-8.

19. Li XW, Hu ZG, Lin XH, Li Q, Gao HH, Luo GA, et al. High-throughput pyrosequencing of the complete chloroplast genome of *Magnolia officinalis* and its application in species identification. Acta Pharm. Sin. 2012; 47: 124–130. PMID: 22493817

20. Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, et al. SOAPdenovo2: An empirically improved memory-efficient short-read de novo assembler. Gigascience 2012; 1: 18. https://doi.org/10.1186/2047-217X-1-18 PMID: 23587118

21. Kearse M, Moir R, Wilson A, Stoneshivas S, Cheung M, Sturrock S, et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012; 28: 1647–1649. https://doi.org/10.1093/bioinformatics/bts199 PMID: 22543367

22. Chaisson MJ, Tesler G. Mapping single molecule sequencing reads using basic local alignment with successive refinement (BLASR): Application and theory. BMC Bioinform. 2012; 13: 238. https://doi.org/10.1186/1471-2105-13-238 PMID: 22988817

23. Denisov G, Walenz B, Halpern AL, Miller J, Axelrod N, Levy S, et al. Consensus generation and variant detection by celera assembler. Bioinformatics 2008; 24: 1035–1040. https://doi.org/10.1093/bioinformatics/btn074 PMID: 18321888

24. Wyman SK, Jansen RK, Boore JL. Automatic annotation of organellar genomes with DOGMA. Bioinformatics 2004; 20: 3252–3255. https://doi.org/10.1093/bioinformatics/bth352 PMID: 15180927

25. Lowe TM, Chan PP. tRNAscan-SE On-line: Search and contextual analysis of transfer RNA genes. Nucleic Acids Res. 2016; 44: W54–W57. https://doi.org/10.1093/nar/gkw413 PMID: 27174935

26. Greiner S, Lehwalk P, Bock R. OrganellarGenomeDRAW (OGDRAW) version 1.3.1: Expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Res. 2019; 47: W59–W64. https://doi.org/10.1093/nar/gkz238 PMID: 30949694

27. MISA-Microsatellite Identification Tool. Available online: http://pgrc.ipk-gatersleben.de/misa/ (accessed on 20 September 2017).

28. Kurtz S, Choudhuri JV, Ohlebusch E, Schleiermacher C, Stoye J, Giegerich R. REPuter: The manifold success of refinement (BLASR): Application and theory. BMC Bioinform. 2012; 13: 238. https://doi.org/10.1186/1471-2105-13-238 PMID: 22988817

29. Kumar S, Stecher G, Tamura K. Mega7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016; 33: 1870–1874. https://doi.org/10.1093/molbev/msw054 PMID: 27004904

30. Frazer KA, Pachter L, Poliaakov A, Rubin EM, Dubchak I. VISTA: Computational tools for comparative genomics. Nucleic Acids Res. 2004; 32: W273–W279. https://doi.org/10.1093/nar/gkh458 PMID: 15215394

31. Amiryousefi A, Hyvön J, Poczai P. IRscope: An online program to visualize the junction sites of chloroplast genomes. Bioinformatics 2018; 34: 3030–3031. https://doi.org/10.1093/bioinformatics/bty220 PMID: 29659705

32. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018; 35: 1547–1549. https://doi.org/10.1093/molbev/msy096 PMID: 29722887

33. Su T, Zhang MR, Shan ZY, Li XD. Comparative survey of morphological variations and plastid genome sequencing reveals phylogenetic divergence between four endemic *Ilex* species. Forests 2020; 11: 964. http://doi.org/10.3390/f11090964.

34. Yan C, Du J, Gao L, Li Y, Hou X. The complete chloroplast genome sequence of watercress (Nasturtium officinale R. Br.): Genome organization, adaptive evolution and phylogenetic relationships in Cardamineae. Gene 2019; 699: 24–36. https://doi.org/10.1016/j.gene.2019.02.075 PMID: 30849538

35. Liu XF, Zhu GF, Li DM, Wang XJ. Complete chloroplast genome sequence and phylogenetic analysis of *Spathiphyllum/Parrish*. PLoS ONE 2019; 14: e0224038. https://doi.org/10.1371/journal.pone.0224038 PMID: 31644545

36. Li DM, Ye YJ, Xu YC, Liu JM, Zhu GF. Complete chloroplast genomes of *Zingiber montanum* and *Zingiber zerumbet*: Genome structure, comparative and phylogenetic analyses. PLoS ONE 2020; 15: e0236590. https://doi.org/10.1371/journal.pone.0236590 PMID: 32735595

37. He Y, Xiao HT, Deng C, Xiong L, Yang J, Peng C. The complete chloroplast genome sequences of the medicinal plant *Pogostemon cablin*. Int. J. Mol. Sci. 2016; 17: 820. https://doi.org/10.3390/ijms17060820 PMID: 27275817
38. Huang H, Shi C, Liu Y, Mao SY, Gao LZ. Thirteen Camellia chloroplast genome sequences determined by high-throughput sequencing: Genome structure and phylogenetic relationships. BMC Evol. Biol. 2014; 14: 151. https://doi.org/10.1186/1471-2148-14-151 PMID: 25001059

39. Hu Y, Woeste KE, Zhao P. Completion of the chloroplast genomes of five Chinese Juglans and their contribution to chloroplast phylogeny. Front. Plant Sci. 2017; 7: 1955. https://doi.org/10.3389/fpls.2016.01955 PMID: 28111577

40. Li DM, Zhu GF, Xu YC, Ye YJ, Liu JM. Complete chloroplast genomes of three medicinal Alpinia species: Genome organization, comparative analyses and phylogenetic relationships in family Zingiberaceae. Plants 2020; 9: 286. https://doi.org/10.3390/plants9020286 PMID: 32102387

41. Yang JB, Tang M, Li HT, Zhang ZR, Li DZ. Complete chloroplast genome of the genus Cymbidium: Insights into the species identification, phylogenetic implications and population genetic analyses. BMC Evol. Biol. 2013; 13: 84. https://doi.org/10.1186/1471-2148-13-84 PMID: 23597078

42. Wang WB, Yu H, Wang JH, Lei WJ, Gao JH, Qiu XP, et al. The complete chloroplast genome sequences of the medicinal plant Forsythia suspensa (Oleaceae). Int. J. Mol. Sci. 2017; 18: 2288. https://doi.org/10.3390/ijms18112288 PMID: 29088105

43. Vu HT, Tran N, Nguyen TD, Vu QL, Le L. Complete chloroplast genome of Paphiopedilum delenatii and phylogenetic relationships among Orchidaceae. Plants 2020; 9: 61. https://doi.org/10.3390/plants9010061 PMID: 31906501

44. Vieira MLC, Santini L, Diniz AL, Munhoz CDF. Microsatellite markers: What they mean and why they are so useful. Genet. Mol. Biol. 2016; 39: 312–328. https://doi.org/10.1590/1783-5781-GMB-2016-0027 PMID: 27561112

45. George B, Bhatt BS, Awasthi M, George B, Singh AK. Comparative analysis of microsatellites in chloroplast genomes of lower and higher plants.Curr. Genet. 2015; 61: 665–677. https://doi.org/10.1007/s00294-015-0495-9 PMID: 25999216

46. Tong W, Kim TS, Park YJ. Rice chloroplast genome variation architecture and phylogenetic dissection in diverse Oryza species assessed by whole-genome resequencing. Rice 2016; 9: 57. https://doi.org/10.1186/s12284-016-0129-y PMID: 27757948

47. Dong WL, Wang RN, Zhang NY, Fan WB, Fang MF, Li ZH. Molecular evolution of chloroplast genomes of orchid species: Insights into phylogenetic relationships and adaptive evolution. Int. J. Mol. Sci. 2018; 19: 716. https://doi.org/10.3390/ijms19030716 PMID: 29498967

48. Kong LH, Park HS, Lau T, Lin Z, Shaw PC. Comparative analysis and phylogenetic investigation of Hong Kong Ilex chloroplast genomes. Sci. Rep. 2021; 11: 5153. https://doi.org/10.1038/s41598-021-84705-9 PMID: 33664414

49. Kuang DY, Wu H, Wang YL, Gao LM, Zhang SZ, Lu L. Complete chloroplast genome sequence of Magnolia kwangsiensis (Magnoliaceae): Implication for DNA barcoding and population genetics. Genome 2011; 54: 663–673. https://doi.org/10.1139/g11-026 PMID: 21793699

50. Chang YC, Chang CH. Common repeat sequences in bacterial genomes. J. Med. Biol. 2003; 23: 65–72.

51. Gui LJ, Jiang SF, Xie DF, Yu LY. Analysis of complete chloroplast genomes of Curcuma and the contribution to phylogeny and adaptive evolution. Gene 2020; 732: 144355–. https://doi.org/10.1016/j.gene.2019.0155 PMID: 3210027

52. Somaratne Y, Guan DL, Wang WQ, Zhao L, Xu SH. The complete chloroplast genomes of two Lespedeza species: Insights into codon usage bias, RNA editing sites, and phylogenetic relationships in Desmodieae (Fabaceae: Papilionoideae). Plants 2020; 9: 51. http://doi.org/10.3390/plants9010051

53. Zuo LH, Shang AQ, Zhang S, Yu XY, Ren YC, Yang MS, et al. The first complete chloroplast genome sequences of Ulmus species by de novo sequencing: Genome comparative and taxonomic position analysis. PLoS ONE 2017; 12: e0171264. https://doi.org/10.1371/journal.pone.0171264 PMID: 302728158318

54. Liu QP, Xue QZ. Comparative studies on codon usage pattern of chloroplasts and their host nuclear genes in four plant species. J. Genet. 2005; 84: 55–62. https://doi.org/10.1007/BF02715890 PMID: 15876584

55. Sharp PM, Li WH. The codon adaption index—a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 1987; 15: 1281–1295. https://doi.org/10.1093/nar/15.3.1281 PMID: 3547393

56. Zhang FJ, Wang T, Shu XC, Wang N, Zhuang WB, Wang Z. Complete chloroplast genomes and comparative analyses of L. chinensis, L. anhuiensis, and L. aurea (Amaryllidaceae). Int. J. Mol. Sci. 2020; 21: 5729. http://doi.org/10.3390/ijms21115729

57. Hong Z, Wu Z, Zhao K, Yang Z, Xu D. Comparative analyses of five complete chloroplast genomes from the genus Pterocarpus (Fabaceae). Int. J. Mol. Sci. 2020; 21: 3758. https://doi.org/10.3390/ijms21113758 PMID: 32466556
58. Cascales J, Bracco M, Garberoglio M, Poggio L, Gottlieb A. Integral phylogenomic approach over *Ilex* L. species from southern south America. *Life*, 2017; 7: 47. https://doi.org/10.3390/life7040047 PMID: 29165335

59. Yu X, Zuo L, Lu D, Lu B, Yang MS, Wang J. Comparative analysis of chloroplast genomes of five *Robinia* species: Genome comparative and evolution analysis. *Gene* 2019; 689: 141–151. https://doi.org/10.1016/j.gene.2018.12.023 PMID: 30576807

60. Kim KJ, Lee HL. Complete chloroplast genome sequences from Korean ginseng (Panax schinseng Nees) and comparative analysis of sequence evolution among 17 vascular plants. *DNA Res.* 2004; 11: 247–261. https://doi.org/10.1093/dnares/11.4.247 PMID: 15500250

61. Raubeson LA, Peery R, Chumley TW, Dziubek C, Fourcade HM, Boore JL, et al. Comparative chloroplast genomics: Analyses including new sequences from the angiosperms *Nuphar advena* and *Ranunculus macranthus*. *BMC Genomics* 2007; 8: 174. https://doi.org/10.1186/1471-2164-8-174 PMID: 17573971

62. Shi L, Li NW, Wang SQ, Zhou YB, Huang WJ, Yang YC, et al. Molecular Evidence for the Hybrid Origin of *Ilex dabieshanensis* (Aquifoliaceae). *PLoS ONE* 2016; 11: e0147825. https://doi.org/10.1371/journal.pone.0147825 PMID: 26808531