Null boundary controllability of a 1-dimensional heat equation with an internal point mass

Scott W Hansen * and Jose de Jesus Martinez *

Abstract
We consider a linear hybrid system composed by two rods of equal length connected by a point mass. We show that the system is null controllable with Dirichlet and Neumann controls. The results are based on a careful spectral analysis together with the moment method.

1 Introduction
In this article we prove the boundary null controllability of the temperature of a linear hybrid system consisting of two wires or rods connected by a point mass. More precisely, we consider the following system:

\[
\begin{align*}
\dot u - u'' &= 0, \quad t > 0, \quad x \in \omega_1 = (-1, 0) \\
\dot v - v'' &= 0, \quad t > 0, \quad x \in \omega_2 = (0, 1) \\
\dot z &= v'(t, 0) - u'(t, 0), \quad t > 0 \\
u(t, 0) &= v(t, 0) = z(t), \quad t > 0 \\
u(t, -1) &= 0,
\end{align*}
\]

(1)

with either Dirichlet control

\[v(t, 1) = f(t), \quad t > 0\]

(2)

or Neumann control

\[v'(t, 1) = f(t), \quad t > 0.\]

(3)

In the above and throughout this article, \(\dot{}\) denotes spatial derivatives and \(\dot{}\) denotes temporal derivatives. In addition, \(u = u(t, x)\) and \(v = v(t, x)\) denote the temperature on \(\omega_1\) and \(\omega_2\), and \(z = z(t)\) denotes the temperature of the point mass. The initial conditions at time \(t = 0\) are given by

\[
\begin{align*}
u^0(x) &= u(0, x), \quad x \in \omega_1 \\
v^0(x) &= v(0, x), \quad x \in \omega_2 \\
z^0 &= z(0),
\end{align*}
\]

where the triple \(\{u^0, v^0, z^0\}\) will be given in an appropriately defined function space.

System (1) with the homogenous boundary condition

\[v(t, 1) = 0, \quad t > 0\]

(4)

can be viewed as the limit of the following “epsilon” system with unit density on \((-1, 1) \setminus (-\epsilon, \epsilon)\) and with density \(1/2\epsilon\) on \((-\epsilon, \epsilon)\):

\[
\begin{align*}
\dot u_\epsilon - u_\epsilon'' &= 0, \quad t > 0, \quad x \in (-1, -\epsilon) \\
\dot v_\epsilon - v_\epsilon'' &= 0, \quad t > 0, \quad x \in (\epsilon, 1) \\
\frac{1}{2\epsilon} \dot z_\epsilon - z_\epsilon'' &= 0, \quad t > 0, \quad x \in (-\epsilon, \epsilon)
\end{align*}
\]

(5)

*Department of Mathematics, Iowa State University, Ames, IA 50010, USA (shansen@iastate.edu) (jesusmtz@iastate.edu). Funding for this research was provided in part by the National Science Foundation under award number DMS-1312952.
where \(u_\epsilon, v_\epsilon \) and \(z_\epsilon \) satisfy the conditions

\[
\begin{align*}
 u_\epsilon(t, -\epsilon) &= z_\epsilon(t, -\epsilon), \quad z_\epsilon(t, -\epsilon) = v_\epsilon(t, -\epsilon), \\
 u_\epsilon'(t, -\epsilon) &= z_\epsilon'(t, -\epsilon), \quad z_\epsilon'(t, -\epsilon) = v_\epsilon'(t, -\epsilon), \\
 u_\epsilon(t, -1) &= v_\epsilon(t, 1) = 0,
\end{align*}
\]

for \(t > 0 \). In fact, in [8] the authors have shown that under appropriate assumptions of the initial data, solutions of [5] with [6] converge weakly to solutions of [1] and [4].

The hybrid system [1] is a variant of previously studied hybrid models for systems of strings and beams with interior point masses. Hansen and Zuazua used the method of characteristics in [10] to prove the boundary null controllability of an analogous string system with an interior point mass. In [13] Littman and Taylor use transform methods to prove boundary feedback stabilization of the string mass system. In [1] and [2], Castro and Zuazua used method of non-harmonic Fourier series to prove boundary controllability of systems of either Rayleigh or Euler-Bernoulli beams with interior point masses. We refer to [12], [14], [3], [18], [7] and [6] for related results on control and stabilization of systems of beams with end masses.

Our main results are the following.

Proposition 1.0.1. System [1] with either Dirichlet control [2] or Neumann control [3] is null controllable in any time \(T > 0 \). More precisely, given \(T > 0 \) there is a control \(f \in L^2(0,T) \) such that given initial data \(\{u^0, v^0, z^0\} \in L^2(\omega_1) \times L^2(\omega_2) \times \mathbb{R} \) we have that \(\{u(T,x), v(T,x), z(T)\} \) \(\in \{0,0,0\} \).

The solutions in Proposition 1.0.1 are defined by transposition in the spaces \(C(0,T;\mathcal{X}_{-1/2}) \) for the case of Dirichlet control and \(C(0,T;\mathcal{H}) \) for the case of Neumann control; see Section 3.

Our general approach is to reduce the control problem to a moment problem. We consider the case of Dirichlet control and Neumann control separately in Section 3.

2 Preliminaries

We begin with a discussion of well-posedness of the system [1] with either homogeneous Dirichlet boundary condition [4] or Neumann boundary condition

\[
v'(t, 1) = 0, \quad t > 0.
\]

Given \(u, v \) and \(z \) defined on \(\omega_1, \omega_2 \) and \(\mathbb{R} \) respectively, define \(y = (u, v, z)^t \) where \(^t\) denotes transposition. Let

\[
\mathcal{H} = L^2(\omega_1) \times L^2(\omega_2) \times \mathbb{R}
\]

equipped with the norm

\[
\|y\|^2_{\mathcal{H}} = \|(u,v,z)\|^2_{\mathcal{H}} = \|u\|^2_{\omega_1} + \|v\|^2_{\omega_2} + |z|^2
\]

where \(\|\cdot\|_{\omega_i} \) is the usual norm in \(L^2(\omega_i) \) for \(i = 1, 2 \). In the Dirichlet case [4], let

\[
\begin{align*}
 \vartheta_{\omega_1} &= \{u \in H^1(\omega_1) \mid u(-1) = 0\} \\
 \vartheta_{\omega_2} &= \{v \in H^1(\omega_2) \mid v(1) = 0\} \\
 \vartheta &= \{(u,v) \in \vartheta_1 \times \vartheta_2 \mid u(0) = v(0)\}
\end{align*}
\]

equipped with the norms

\[
\begin{align*}
 \|u\|_{\vartheta_{\omega_i}}^2 &= \|u'\|^2_{L^2(\omega_i)}, \quad i = 1, 2 \\
 \|(u,v)\|_{\vartheta}^2 &= \|u\|_{\vartheta_{\omega_1}}^2 + \|v\|_{\vartheta_{\omega_2}}^2
\end{align*}
\]

One can see that \(\vartheta \) is algebraically and topologically equivalent to \(H^1_\Omega(\Omega) \) although it will be more convenient to think of \(\vartheta \) as a subspace of \(\vartheta_1 \times \vartheta_2 \). The space

\[
\mathcal{W} = \{(u,v,z) \in \vartheta \times \mathbb{R} \mid u(0) = v(0) = z\}
\]
is a closed subspace of \(\vartheta \times \mathbb{R} \) with norm \(\|(u,v,z)\|_W = \|(u,v)\|_0^2 \). In the Neumann case \((7) \), replace the definition of \(\vartheta_{\omega_2} \) in \((8) \) by

\[
\vartheta_{\omega_2} = H^1(\omega_2),
\]

and otherwise the space \(W \) is defined the same way. In either case, it is easy to show (see \((8) \)) that the space \(W \) is densely and continuously embedded in the space \(\mathcal{H} \). Define the operator \(\mathcal{A} : D(\mathcal{A}) \subset \mathcal{H} \to \mathcal{H} \) by

\[
\mathcal{A} = \begin{pmatrix} d^2 & 0 & 0 \\ 0 & d^2 & 0 \\ -\delta_0 d & \delta_0 d & 0 \end{pmatrix}
\]

where \(d \) denotes the (distributional) derivative operator, \(\delta_0 \) denotes the Dirac delta function with mass at \(x = 0 \), and the domain \(D(\mathcal{A}) \) of \(\mathcal{A} \) is given in the Dirichlet case \((4) \) by

\[
D(\mathcal{A}) = \{ y \in W : u \in H^2(\omega_1), \ v \in H^2(\omega_2) \}.
\]

and in the Neumann case \((7) \) by

\[
D(\mathcal{A}) = \{ y \in W : u \in H^2(\omega_1), \ v \in H^2(\omega_2), v'(1) = 0 \}.
\]

When \(D(\mathcal{A}) \) is endowed with the graph-norm topology

\[
\|y\|_{D(\mathcal{A})}^2 = \|y\|_W^2 + \|\mathcal{A}y\|_{\mathcal{H}}^2
\]

it becomes a Hilbert space with continuous embedding in \(\mathcal{H} \). We can therefore write the homogeneous point-mass systems \((1), (4) \) and \((1), (7) \) as

\[
y'(t) = \mathcal{A}y(t), \quad y(0) = y^0, \quad t > 0
\]

where \(y^0 = (u^0, v^0, z^0) \).

Proposition 2.0.2. The unbounded operator \(\mathcal{A} \) given by \((10) \) in domain \(D(\mathcal{A}) \) as in \((11) \) is a bijective, self-adjoint and dissipative operator with a compact inverse. Furthermore, \(\mathcal{A} \) is the infinitesimal generator of a strongly continuous, compact and analytic semigroup \((T_t)_{t \geq 0} \).

Refer to \((8) \) for a detailed proof of the above proposition for the Dirichlet case \((1), (4) \). As a consequence of Proposition 2.0.2, given initial data \(y^0 \in \mathcal{H} \) there exists a unique solution

\[
y \in C([0, \infty); \mathcal{H})
\]

to the Cauchy problem \((13) \). If in addition, \(y^0 \in D(\mathcal{A}) \) then \(y \in C([0, \infty), D(\mathcal{A})) \).

In the next subsection it is shown that \(\mathcal{A} \) has only negative eigenvalues, hence \(-\mathcal{A} \) is positive, self-adjoint it provides an isomorphism: \(D(\mathcal{A}) \to \mathcal{H} \). Moreover, fractional powers of \(-\mathcal{A} \) are well-defined. Let \(X_1 = D(\mathcal{A}) \) and for \(\alpha \in [0, 1] \), define \(X_\alpha = D((-\mathcal{A})^\alpha) \) and \(X_{-\alpha} = X'_\alpha \), the dual space relative to the pivot space \(\mathcal{H} = X_0 \) of \(X_\alpha \). Correspondingly, the semigroup \(\mathbb{T} \) remains an analytic semigroup on the invariant subspaces \(X_\alpha \), \(0 \leq \alpha \leq 1 \), and extends continuously to an analytic semigroup on spaces \(X_\alpha \), \(-1 \leq \alpha \leq 0 \); see e.g., \((10) \) for full explanation. The norm on \(X_\alpha \) is given by \(\|y\|_\alpha = \langle (-\mathcal{A})^\alpha y, (-\mathcal{A})^\alpha y \rangle_\mathcal{H} \). In particular, \(X_{1/2} \) is the completion of \(X_1 \) with respect to the norm

\[
\|y\|_{1/2}^2 = \langle -\mathcal{A}y, y \rangle_0.
\]

Integration by parts gives

\[
\|y\|_{1/2}^2 = \langle y, y \rangle_W.
\]

Thus, \(X_{1/2} \) is topologically equivalent to \(H_{0}^1(\Omega) \) in the Dirichlet case \((4) \) and \(\{ f \in H^1(\Omega) : f(-1) = 0 \} \) in the Neumann case \((7) \).
2.1 Spectral analysis for Dirichlet case \([1], [4]\)

By Proposition 2.0.2 the spectrum \(\sigma(A)\) of \(A\) is contained in the negative real axis and consists of eigenvalues \(\{\lambda_n\}\) tending to negative infinity with corresponding eigenvectors \(\{\varphi_n\}_{n \in \mathbb{N}}\) forming an orthogonal system for \(\mathcal{H}\).

Proposition 2.1.1. The eigenvalues \(\{\lambda_n\}_{n \in \mathbb{N}}\) of \(A\) in the Dirichlet case \([4]\) are distinct and given by

\[
\lambda_{2k} = -(k\pi)^2, \quad \lambda_{2k-1} = -\mu_k^2 \quad \text{for } k \in \mathbb{N}
\]

where \(\mu_k\) is the \(k\)-th positive root of the characteristic equation

\[
\mu = 2 \cot \mu.
\]

(14)

The corresponding eigenvectors are given by

\[
\varphi_{2k}(x) = \begin{pmatrix} \sin(k\pi x) \\ \sin(k\pi x) \\ 0 \end{pmatrix}, \quad \varphi_{2k-1}(x) = \begin{pmatrix} \sin((1 + x)\mu_k) \\ \sin((1 - x)\mu_k) \\ \sin(\mu_k) \end{pmatrix}
\]

and \(\varphi_n \in D(A)\) for all \(n \in \mathbb{N}\).

Proof. Look for nontrivial functions \(\varphi_n = (U_n, V_n, Z_n)^t \in D(A)\) such that \(A\varphi_n = \lambda_n \varphi_n\). We use an even index in the case that \(Z_n = 0\) and an odd index when \(Z_n \neq 0\). The eigensystem corresponding to \(Z_{2k} = 0\) reduces to the problem of finding \((U_{2k}, V_{2k})\) such that

\[
\begin{align*}
U''_{2k}(x) &= \lambda_{2k} U_{2k}(x), \quad x \in \omega_1 \\
V''_{2k}(x) &= \lambda_{2k} V_{2k}(x), \quad x \in \omega_2 \\
U_{2k}(0) &= V_{2k}(0) \\
U_{2k}(0) &= V_{2k}(0) = 0 \\
U_{2k}(-1) &= V_{2k}(1) = 0.
\end{align*}
\]

It is easy to check that \(\varphi_{2k}\) satisfies the above with \(\lambda_{2k} = -(k\pi)^2\).

Now consider the case that \(Z_{2k-1} \neq 0\). The eigenvalue problem reduces to the problem of finding functions \((U_{2k-1}, V_{2k-1})\), and real value \(Z_{2k-1}\) such that

\[
\begin{align*}
U''_{2k-1}(x) &= -\mu_k^2 U_{2k-1}(x), \quad x \in \omega_1 \\
V''_{2k-1}(x) &= -\mu_k^2 V_{2k-1}(x), \quad x \in \omega_2 \\
V_{2k-1}(0) - U''_{2k-1}(0) &= -\mu_k^2 Z_{2k-1} \\
U_{2k-1}(0) &= V_{2k-1}(0) = Z_{2k-1} \\
U_{2k-1}(-1) &= V_{2k-1}(1) = 0.
\end{align*}
\]

(15)

From the boundary condition \(U_{2k-1}(-1) = V_{2k-1}(1) = 0\), we have that the solution is of the form

\[
\begin{align*}
U_{2k-1}(x) &= \sin((x + 1)\mu_k) \\
V_{2k-1}(x) &= C \sin((x - 1)\mu_k)
\end{align*}
\]

for some constant \(C\) to be determined. The continuity condition \(U_{2k-1}(0) = V_{2k-1}(0) = Z_{2k-1}\) gives

\[
Z_{2k-1} = \sin(\mu_k) = -C \sin(\mu_k).
\]

Since \(Z_{2k-1}\) is nonzero we have that \(\mu_k\) is not a multiple of \(\pi\). Furthermore, we find that \(C = -1\). Then from the third equation in (15) we see that

\[
2 \cot(\mu_k) = \mu_k.
\]

(16)
Hence the solution to the eigensystem \([15]\) is

\[
\begin{pmatrix}
U_{2k-1}(x) \\
V_{2k-1}(x) \\
Z_{2k-1}
\end{pmatrix} = \begin{pmatrix}
\sin((1 + x)\mu_k) \\
\sin((1 - x)\mu_k) \\
\sin(\mu_k)
\end{pmatrix}.
\]

Finally, note that since the function \(F(\mu) = 2 \cot \mu - \mu\) decreases monotonically from \(+\infty\) to \(-\infty\) over the interval \(((k - 1)\pi, k\pi)\) for all \(k \in \mathbb{N}\), there is exactly one root of \(F\) in each interval \(((k - 1)\pi, k\pi)\) for all \(k \in \mathbb{N}\). Hence the eigenvalues

\[
\{- (k\pi)^2\}_{k \in \mathbb{N}} \cup \{- \mu_k^2\}_{k \in \mathbb{N}}
\]

are distinct.

Proposition 2.1.2. The sequence \(\{\mu_k\}\) in the Dirichlet case \([4]\) satisfies the asymptotic estimate

\[
\mu_k = (k - 1)\pi + \frac{2}{k\pi} + O\left(\frac{1}{n^2}\right).
\]

Consequently, consecutive eigenvalues of \(A\) in \([13]\) satisfy the gap condition:

\[
|\lambda_{n+1} - \lambda_n| \geq 4 + O\left(\frac{1}{n}\right).
\]

Moreover, the eigenfunctions are asymptotically normalized in the sense that

\[
\lim_{n \to \infty} \|\varphi_n\| = 1.
\]

Proof. From the end of the previous proof, \(\mu_k = (k - 1)\pi + \epsilon_k\), where \(0 < \epsilon_k < \pi\). The characteristic equation \([14]\) can be rewritten as

\[
\frac{(k - 1)\pi + \epsilon_k}{2} = \cot \epsilon_k
\]

and thus by monotonicity,

\[(k - 1)\pi/2 < \cot \epsilon_k < k\pi/2.\]

Taking inverse cotangent of each term gives

\[
\arctan \frac{2}{k\pi} < \epsilon_k < \arctan \frac{2}{(k - 1)\pi}.
\]

Hence by Taylor’s formula we obtain \([17]\).

The estimate \([18]\) can be obtained from

\[
|\lambda_{2k+1} - \lambda_{2k}| = (\mu_{k+1} + k\pi)(\mu_{k+1} - k\pi)
\]

\[
= \left(2k\pi + O\left(\frac{1}{k}\right)\right) \left(\frac{2}{k\pi} + O\left(\frac{1}{k^2}\right)\right)
\]

\[
= 4 + O\left(\frac{1}{k}\right).
\]

Finally, it is easy to check that \(\|\varphi_{2k}\| = 1\) for all \(k \in \mathbb{N}\) and using estimate \([17]\) that \(\|\varphi_{2k-1}\|^2 = 1 + O(k^{-2})\).

\[\Box\]
2.2 Spectral analysis for Neumann case (1), (7)

As in Subsection 2.1, the eigenvalues of A (denoted λ_n) form a discrete sequence of negative numbers tending to negative infinity with corresponding eigenvectors φ_n which form an orthogonal system for H.

Proposition 2.2.1. The eigenvalues $\{\lambda_n\}_{n \in \mathbb{N}}$ of A in the Neumann case (7) are given by $\lambda_n = -\mu_n^2$ where $\{\mu_n\}_{n \in \mathbb{N}}$ are the roots of the characteristic equation

$$\mu = 2 \cot 2\mu. \quad (19)$$

The corresponding eigenvectors are given by

$$\begin{align*}
\varphi_{2k-1}(x) &= \sqrt{2} \begin{pmatrix}
\sin(\mu_{2k-1}(x + 1)) \\
\tan \mu_{2k-1} \cos(\mu_{2k-1}(x - 1)) \\
\sin \mu_{2k-1}
\end{pmatrix} \\
\varphi_{2k}(x) &= \sqrt{2} \begin{pmatrix}
\cot \mu_{2k} \sin(\mu_{2k}(x + 1)) \\
\cos(\mu_{2k}(x - 1)) \\
\cos \mu_{2k}
\end{pmatrix}
\end{align*} \quad (20)$$

and $\varphi_n \in D(A)$ for all $n \in \mathbb{N}$.

Proof. The eigenvalue problem $A \varphi_n = \lambda_n \varphi_n$ with $\varphi_n = (U_n, V_n, Z_n)' \in D(A)$ is the following system:

$$\begin{align*}
U_n''(x) &= \lambda_n U_n(x), \quad x \in \omega_1 \\
V_n''(x) &= \lambda_n V_n(x), \quad x \in \omega_2 \\
V_n(0) - U_n(0) &= \lambda_n Z_n \\
U_n(0) &= V_n(0) = Z_n \\
U_n(-1) &= V_n'(1) = 0.
\end{align*} \quad (21)$$

First note that the possibility of $Z_n = 0$ leads to the trivial solution. Hence $Z_n \neq 0$ for all $n \in \mathbb{N}$. Then from the first two equations and the boundary conditions we find that

$$\begin{align*}
U_n(x) &= \sin(\mu_n(x + 1)) \\
V_n(x) &= C \cos(\mu_n(x - 1))
\end{align*}$$

for some nonzero constant C to be determined. The continuity condition $U_n(0) = V_n(0)$ gives

$$\sin \mu_n = C \cos \mu_n$$

and since Z_n is nonzero for all $n \in \mathbb{N}$ we have that $C = \tan \mu_n$. Then from the third equation in (21) we see that

$$\mu_n = -\tan \mu_n + \cot \mu_n$$

which is equivalent to the characteristic equation (19). Hence the corresponding sequence of eigenvectors is

$$\varphi_n(x) = \begin{pmatrix}
\sin(\mu_n(1 + x)) \\
\tan \mu_n \cos(\mu_n(x - 1)) \\
\sin \mu_n
\end{pmatrix} \mu_n$$

which agrees with (20) after multiplying by normalizing factors $\sqrt{2}$ for $n = 2k - 1$ and $\sqrt{2} \cot \mu_n$ for $n = 2k$.

Following the ideas of Proposition 2.1.2 one can prove the following result.
Proposition 2.2.2. The sequence \(\{\mu_k\} \) in the Neumann case (7) satisfies the asymptotic estimate
\[
\mu_k = \frac{(k-1)\pi}{2} + \frac{1}{k\pi} + O\left(k^{-2}\right).
\]

Consequently, consecutive eigenvalues of \(A \) in (13) satisfy the gap condition:
\[
|\lambda_{n+1} - \lambda_n| \geq \frac{n\pi^2}{2} + O\left(1\right).
\]

Moreover, the eigenfunctions are asymptotically normalized in the sense that
\[
\lim_{n \to \infty} \|\varphi_n\| = 1.
\]

3 Proof of Controllability results

We begin with the case of Neumann control: (1), (3).

3.1 Neumann control

The dual observation problem to (1), (3) is
\[
\begin{align*}
-\ddot{u} - \dddot{u} &= 0, \quad t > 0, \ x \in \omega_1 \\
-\ddot{v} - \dddot{v} &= 0, \quad t > 0, \ x \in \omega_2 \\
-\ddot{z} &= \ddot{v}(t, 0) - \dddot{u}(t, 0), \quad t > 0 \\
\ddot{u}(t, 0) &= \ddot{v}(t, 0) = \ddot{z}(t), \quad t > 0 \\
\ddot{u}(t, -1) &= \ddot{v}(t, 1) = 0, \quad t > 0
\end{align*}
\]

with terminal data at \(t = T \) given by
\[
\begin{align*}
\ddot{u}^T(x) &= \ddot{u}(T, x), \quad x \in \omega_1 \\
\ddot{v}^T(x) &= \ddot{v}(T, x), \quad x \in \omega_2 \\
\ddot{z}^T &= \ddot{z}(T)
\end{align*}
\]

By letting \(\tilde{y} = (\tilde{u}, \tilde{v}, \tilde{z})^t \), the above problem can be written as
\[
-\ddot{\tilde{y}} = \mathcal{A}\tilde{y}, \quad \tilde{y}(T) = \tilde{y}^T \in \mathcal{H}, \quad t > 0.
\]

Then \(\tilde{y} \in C([0, T], \mathcal{H}) \) and is given by
\[
\tilde{y}(t) = T(T - t)\tilde{y}^T; \quad 0 \leq t \leq T.
\]

Let \(y \) be a smooth solution of the control problem with smooth \(f \in L^2(0, T) \). Formal integration by parts then shows
\[
0 = \int_0^T \int_{-1}^0 (\ddot{u} - \dddot{u})\ddot{u} \, dx \, dt + \int_0^T \int_0^1 (\ddot{v} - \dddot{v})\ddot{v} \, dx \, dt
\]
\[
= \langle y(T), \tilde{y}^T \rangle_{\mathcal{H}} - \langle y^0, \tilde{y}(0) \rangle_{\mathcal{H}} - \int_0^T f(t)\tilde{v}(t, 1) \, dt.
\]

Equivalently,
\[
\langle y(T), \tilde{y}^T \rangle_{\mathcal{H}} = \langle y^0, T\tilde{y}^T \rangle_{\mathcal{H}} + \int_0^T f(t)\tilde{v}(t, 1) \, dt.
\]
Since the functional $\ell(\tilde{y}) := \tilde{v}(1)$ is continuous on $X_{1/2} = \mathcal{W}$ it follows from Propositions 5.1.3 and 10.2.1 in [16] that for solutions of (24) there exists $C > 0$ for which
\[
\|\tilde{v}(t, 1)\|_{L^2(0, T)} \leq C\|\tilde{y}^T\|_{\mathcal{H}} \quad \forall \tilde{y}^T \in \mathcal{H}.
\] (27)
Hence, equation (26) uniquely defines $y(T)$ as an element of \mathcal{H}. Applying this definition for $s \in [0, T]$ we see
\[
y \in C([0, T], \mathcal{H})
\] (28)
and there exists $C > 0$ for which
\[
\|y\|_{L^\infty(0, T; \mathcal{H})} \leq C(\|y^0\|_{\mathcal{H}} + \|f\|_{L^2(0, T)}).
\] (29)
As before we have the following lemma.

Lemma 3.1.1. The control problem (1), (3) is null controllable in time $T > 0$ if and only if, for any $y^0 \in \mathcal{H}$ there is $f \in L^2(0, T)$ such that
\[
\langle y^0, T_T\tilde{y}^T \rangle_{\mathcal{H}} = -\int_0^T f(t)\tilde{v}(t, 1)dt
\] (30)
holds for all $\tilde{y}^T \in \mathcal{H}$, where \tilde{y} is the solution to the observation problem (24).

Proof. First assume that (30) holds for all $\tilde{y}^T \in \mathcal{H}$. Then by (26), $y(T) = 0$. Conversely, if f is a control for which $y(T) = 0$, then (30) follows from equation (26). \square

We are now ready to reduce the control problem (1), (3) to a moment problem. Any initial data $y^0 = (u^0, v^0, z^0)^t$ in \mathcal{H} for the control problem can be expressed in terms of the eigenfunctions as
\[
y^0 = \sum_{n \in \mathbb{N}} y^0_n \varphi_n
\] (31)
where the Fourier coefficients $\{y^0_n\}_{n \in \mathbb{N}}$ belong to ℓ^2. Let $\tilde{y}_n = (\tilde{u}_n, \tilde{v}_n, \tilde{z}_n)^t$ be the eigensolution of (24) given by
\[
\tilde{y}_n(t, x) = e^{\lambda_n(T-t)}\varphi_n(x).
\] (32)
In particular, note that
\[
\tilde{v}_n(t, 1) = \begin{cases}
\sqrt{2}e^{\lambda_n(T-t)}\tan \mu_n, & n \text{ odd} \\
\sqrt{2}e^{\lambda_n(T-t)}, & n \text{ even}.
\end{cases}
\]
Applying these solutions to equation (30) we obtain the following moment problem:
\[
\frac{a_n}{b_n}e^{\lambda_n T} = \int_0^T f(T-\tau)e^{\lambda_n \tau}d\tau, \quad n \in \mathbb{N}
\] (33)
where
\[
b_n = \begin{cases}
-\tan \mu_n, & n \text{ is odd} \\
-1, & n \text{ is even}
\end{cases}
\] (34)
and by Proposition 2.2.2 $a_n = \|\varphi_n\|^2y^0_n \in \ell^2$. In particular note that for $n = 2k - 1$
\[
\tan \mu_{2k-1} = \tan \left(\frac{1}{k\pi} + O(k^{-2})\right) = \frac{1}{k\pi} + O(k^{-2})
\]
and furthermore since $\tan \mu_{2k-1} \neq 0$ for all $k \in \mathbb{N}$, there exists $\epsilon > 0$ such that

$$|b_n| \geq \frac{\epsilon}{n}, \quad \forall n \in \mathbb{N}.$$

From our estimates of μ_n, λ_n, b_n and a_n, it is easy to show that there are constants $K, \delta > 0$ such that

$$\left| \frac{a_n e^{\lambda_n T}}{b_n} \right| \leq Ke^{-\delta n^2}, \quad n \in \mathbb{N}. \quad (35)$$

From equations (22) and (23) we see that the series $\sum 1/\lambda_n$ converges, and that there exists a constant $\rho > 0$ such that $|\lambda_{k+1} - \lambda_k| > \rho$ for all $k \in \mathbb{N}$. This implies the existence of a biorthogonal sequence $\{\theta_j(\tau)\}_{j \in \mathbb{N}}$ (see [15], [5]) such that

$$\int_0^T \theta_j(\tau)e^{\lambda_n \tau} d\tau = \delta_{j,n} = \begin{cases} 1, & j = n \\ 0, & j \neq n. \end{cases} \quad (36)$$

By the method of Russell and Fattorini in [15] we have that there are $M_1, M_2 > 0$ such that

$$\|\theta_j\| \leq M_1 e^{M_2 j}. \quad (37)$$

It is easy to see that the above implies the convergence of

$$f(T - \tau) = \sum_{j \in \mathbb{N}} \frac{\partial_j}{\zeta_j} e^{\lambda_j T} \theta_j(\tau)$$

which provides a solution to the moment problem (47). The proof of Proposition 1.0.1 for the case of Neuman control (3), is a direct consequence of Lemma 3.1.1 and the existence of the biorthogonal sequence $\{\theta_j(\tau)\}_{j \in \mathbb{N}}$.

3.2 Dirichlet Control

The dual observation problem to (1), (2) is

$$\begin{cases} -\dot{\tilde{u}} - \tilde{u}'' = 0, & t > 0, \quad x \in \omega_1 \\ -\dot{\tilde{v}} - \tilde{v}'' = 0, & t > 0, \quad x \in \omega_2 \\ -\dot{\tilde{z}} = \tilde{v}'(t,0) - \tilde{u}'(t,0), & t > 0 \\ \tilde{u}(t,0) = \tilde{v}(t,0) = \tilde{z}(t), & t > 0 \\ \tilde{u}(t,-1) = \tilde{v}(t,1) = 0, & t > 0 \end{cases} \quad (38)$$

with terminal data at $t = T$ given by

$$\begin{cases} \tilde{u}^T(x) = \tilde{u}(T,x), & x \in \omega_1 \\ \tilde{v}^T(x) = \tilde{v}(T,x), & x \in \omega_2 \\ \tilde{z}^T = z(T) \end{cases} \quad (39)$$

and observation $Y(t) = \tilde{v}'(t,1)$. By letting $\tilde{y} = (\tilde{u}, \tilde{v}, \tilde{z})^t$, the above problem can be written as a Cauchy problem as

$$-\dot{\tilde{y}} = A\tilde{y}, \quad \tilde{y}(T) = \tilde{y}^T, \quad t > 0. \quad (40)$$

If $\tilde{y}^T \in X_{1/2} = W$ then $\tilde{y} \in C([0,T], X_{1/2})$ is given by

$$\tilde{y}(t) = T(T-t)\tilde{y}^T; \quad 0 \leq t \leq T.$$
Let y be a smooth solution of the control problem with smooth $f \in L^2(0, T)$ and let \tilde{y} be solution of the dual problem \eqref{eq:dual}. Integration by parts as earlier results in the identity
\[
\langle y(T), \tilde{y}^T \rangle = \langle y^0, T_T \tilde{y}^T \rangle_{\mathcal{H}} - \int_0^T f(t) \tilde{v}'(t, 1) \, dt
\] (41)
where $\langle \cdot, \cdot \rangle$ denotes the duality pairing in $X_{-1/2} \times X_{1/2}$.

In the case of the heat equation
\[
\begin{cases}
\dot{q} = q'' & 0 < x < 1, \ t > 0 \\
q(t, 0) = q(t, 1) = 0 & t > 0 \\
q(0, x) = q^0 \in H^1_0(0, 1) & 0 < x < 1
\end{cases}
\]

it is well known (e.g. \cite{4}) that for each $T > 0$ there exists $C > 0$ for which
\[
\|q'(\cdot, 1)\|_{L^2(0, T)} \leq C \|q^0\|_{H^1_0(0, 1)}.
\]

One can verify that the same estimate holds for solutions of \eqref{eq:dual} in the sense that there exists $C > 0$ for which
\[
\|\tilde{v}'(t, 1)\|_{L^2(0, T)} \leq C \|\tilde{y}^T\|_{1/2} \quad \forall \tilde{y}^T \in X_{1/2}.
\] (42)

Since the semigroup T is strongly continuous on $X_{1/2} = H^1_0(\Omega)$ it follows that the identity \eqref{eq:identity} defines the value $y(s)$ for all $s \in [0, T]$ as an element of $X_{-1/2}$ for which there exists $C > 0$ such that
\[
\|y\|_{L^\infty(0, T; X_{-1/2})} \leq C(\|y^0\|_{\mathcal{H}} + \|f\|_{L^2(0, T)})
\]
and moreover
\[
y \in C([0, T], X_{-1/2}).
\] (43)

The above estimate \eqref{eq:estimate} is sometimes referred to as admissibility of the boundary control operator corresponding to Dirichlet control, and can also be derived in the framework of “well posed boundary control systems”; see of \cite{16}, Prop. 10.7.1.

Analogous to Lemma \ref{lem:boundary} the following lemma characterizes the problem of null controllability of (1), (2) in terms of the solution \tilde{y} of the observation problem \eqref{eq:dual}.

Lemma 3.2.1. The control problem (1), (2) is null controllable in time $T > 0$ if and only if, for any $y^0 \in \mathcal{H}$ there is $f \in L^2(0, T)$ such that
\[
\langle y^0, T_T \tilde{y}^T \rangle_{\mathcal{H}} = \int_0^T f(t) \tilde{v}'(t, 1) \, dt
\] (44)
holds for all $\tilde{y}^T \in \mathcal{H}$, where $\tilde{y} = (\tilde{u}, \tilde{v}, \tilde{z})^t$ is a solution of \eqref{eq:dual}.

We are now ready to reduce the control problem (1), (2) to a moment problem. Any initial data $y^0 = (u^0, v^0, z^0)^t$ in \mathcal{H} for the control problem can be expressed in terms of the eigenfunctions as
\[
y^0 = \sum_{n \in \mathbb{N}} y^0_n \varphi_n
\] (45)
where the Fourier coefficients $\{y^0_n\}_{n \in \mathbb{N}}$ belong to l^2. Let $\tilde{y}_n = (\tilde{u}_n, \tilde{v}_n, \tilde{z}_n)^t$ be the eigensolution of \eqref{eq:dual} given by
\[
\tilde{y}_n(t, x) = e^{\lambda_n(T-t)} \varphi_n(x).
\] (46)

In particular, note that
\[
\tilde{v}_n(t, 1) = \begin{cases}
e^{\lambda_{2k}(T-t)k\pi(-1)^k}, & n = 2k \\
-e^{\lambda_{2k-1}(T-t)} \mu_k, & n = 2k - 1.
\end{cases}
\]
We plug these solutions into equation (44) to obtain the corresponding moment problem

\[a_n e^{\lambda_n T} = b_n \int_0^T f(T - \tau)e^{\lambda_n \tau} d\tau \]

(47)

for all \(n \in \mathbb{N} \) where

\[b_n = \tilde{\nu}'_n(T, 1) = \begin{cases} (-1)^k k\pi, & n = 2k \\ -\mu_k, & n = 2k - 1 \end{cases} \]

(48)

and by Proposition 2.2, \(a_n = \| \varphi_n \|^2 y_n^0 \in \ell^2 \). Again, it is easy to show that there exists constants \(K, \delta > 0 \) such that (35) holds. From equations (17) and (18) we see that the series \(\sum 1/\lambda_n \) converges, and that there exists a constant \(\rho > 0 \) such that \(|\lambda_{k+1} - \lambda_k| > \rho \) for all \(k \in \mathbb{N} \). This implies the existence of a biorthogonal sequence \(\{\theta_j(\tau)\}_{j \in \mathbb{N}} \) such that there are constants \(M_1, M_2 > 0 \) such that

\[\|\theta_j\| \leq M_1 e^{M_2 j}. \]

Hence, as earlier,

\[f(T - \tau) = \sum_{j \in \mathbb{N}} \frac{a_j}{b_j} e^{\lambda_j T} \theta_j(\tau) \]

converges and provides a solution to the moment problem (47). The proof of Proposition 1.0.1 for the case of Dirichlet control (2), is a direct consequence of Lemma 3.2.1.

Remark 3.2.1. The numbers \(b_k \) in (48) and (34), are called control input coefficients and can be viewed as Fourier coefficients of an element \(b \) of \(X_{-1} \) for which the control problem (1) with either (2) or (3) can be formulated as

\[\dot{y} = Ay + bf, \quad y(0) = y_0. \]

In the Neumann case, the input element is admissible on the state space \(X_0 = H \), or equivalently that (28) and (29) hold. In the Dirichlet case, \(b \) is admissible on the state space \(X_{-1/2} \). Both of these spaces are slightly suboptimal in the sense that the Carleson measure criterion due to Ho and Russell [11] and Weiss [17] can be used as in [9] to show admissibility holds in the spaces \(X_{1/4} \) and \(X_{-1/4} \) respectively for the Neumann and Dirichlet control problems.

References

1. C. Castro and E. Zuazua, *Boundary controllability of a hybrid system consisting in two flexible beams connected by a point mass*, SIAM J. Control Optim., 36:1576-1595, (1998).

2. C. Castro and E. Zuazua, *Exact boundary controllability of two Euler-Bernoulli beams connected by a point mass*, Math. Comput. Modeling, 32 (2000), pp. 955-969.

3. F. Conrad and O. Morgul, *On the stabilization of a flexible beam with a tip mass*, SIAM, vol. 96, No. 6, pp. 1962-1986, (1998).

4. L. C. Evans, *Partial Differential Equations*, Vol. 19 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2010.

5. E. Fernández-Cara, M. González-Burgos and L. de Teresa, *Boundary controllability of parabolic coupled equations*, J. Funct. Anal. 259 (2010), no. 7, 1720-1758.

6. B. Z. Guo, *Riesz basis approach to the stabilization of a flexible beam with a tip mass*, SIAM J. Control Optim., 39 (2001), pp. 1736-1747.
[7] B. Z. Guo and S. A. Ivanov, *Boundary Controllability and Observability of a One-Dimensional Nonuniform SCOEL System*, J. Optim. Theory Appl., 127 (2005), pp. 89-108.

[8] S. Hansen and J. Martinez, *Modeling of a heat equation with Dirac density*, arXiv:1506.07936

[9] S. Hansen and B. Y. Zhang, *Boundary control of a linear thermoelectric beam*, J. Math. Anal. Appl., 210 (1997), pp. 182-205.

[10] S. Hansen and E. Zuazua, *Exact controllability and stabilization of a vibrating string with an interior point mass*, SIAM J. Cont. Optim. 33 (5), (1995) 1357–1391.

[11] L. F. Ho and D. Russell, *Admissible input elements for systems in Hilbert space and a Carleson measure criterion*, SIAM J. Control Optim. 21 (1983), 614-640.

[12] W. Littman and L. Markus, *Exact boundary controllability of a hybrid system of elasticity*, Arch. Rational Mech. Anal., 103 (1988), pp. 193-236.

[13] W. Littman and S. W. Taylor, *Boundary feedback stabilization of a vibrating string with an interior point mass*, Nonlinear Problems in Mathematical Physics and Related Topics I, in: Int. Math. Ser., vol 1, 2002, pp. 271287.

[14] O. Morgul, B. P. Rao and F. Conrad, *On the stabilization of a cable with a tip mass*, IEEE Trans. Automat. Control. 39 (1994), pp. 2140-2145.

[15] D. Russell and H. O. Fattorini, *Uniform bounds on biorthogonal functions for real exponentials with an application to the control theory of parabolic equations*, Quart. Appl. Math. 43 (1974), 45-69.

[16] M. Tucsnak and G. Weiss, *Observation and Control for Operator Semigroups*, Birkhäuser Advanced Texts, Birkhäuser, Basel, Switzerland, 2009.

[17] G. Weiss, *Admissibility of input elements for diagonal semigroup on l^2*, Systems Control Lett. 10 (1998), 79-82.

[18] X. Zhao and G. Weiss, *Well-posedness, regularity and exact controllability of the SCOEL model*, Math. Control Signals Syst., 22, (2010), pp. 91-127.