Case Report: Sequential Liver After Kidney Transplantation in a Patient With Sensenbrenner Syndrome (Cranioectodermal Dysplasia)

Joanna Ryszko *, Joanna Walczak-Sztulpa, Piotr Czubkowski, Anna Latos-Bieleńska, Adam Kowalski, Marek Stefanowicz, Wioletta Jarmuzek, Ryszard Grenda and Joanna Pawłowska

1 Department of Gastroenterology, Hepatology, Nutritional Disorders and Pediatrics, The Children’s Memorial Health Institute, Warsaw, Poland, 2 Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland, 3 Department of Pediatric Surgery and Organ Transplantation, The Children’s Memorial Health Institute, Warsaw, Poland, 4 Department of Nephrology, Kidney Transplantation and Hypertension, The Children’s Memorial Health Institute, Warsaw, Poland

Sensenbrenner syndrome, also known as cranioectodermal dysplasia (CED), is a rare ciliopathy clinically characterized by congenital craniofacial, skeletal, and ectodermal defects. Chronic kidney and liver insufficiency are also present in this disorder. Cranioectodermal dysplasia is an autosomal recessive and heterogeneous genetic disease. Six genes (IFT122, WDR35, IFT140, IFT43, IFT52, and WDR19) are known to be associated with this syndrome. Until 2021 more than 70 patients have been reported with CED, however, an orthotopic liver transplantation has been reported only in one case. Here, we present a case report of sequential liver-after-kidney transplantation in a male patient affected by CED. The kidney and liver transplantation was performed at the age of 7 and 12 years, respectively. Patients with Sensenbrenner syndrome require a multidisciplinary medical management and should regularly be followed-up by hepatologists and nephrologists, as the liver and kidney diseases are the major cause of morbidity and mortality.

Keywords: ciliopathy, Sensenbrenner syndrome (cranioectodermal dysplasia), renal failure, liver disease, kidney and liver transplantation

INTRODUCTION

Sensenbrenner syndrome, also known as cranioectodermal dysplasia (CED), is a rare and heterogeneous ciliopathy inherited in an autosomal recessive manner.

The characteristic clinical features include: craniosynostosis, dolichocephaly, facial dysmorphisms, growth retardation, short limbs, narrow chest, chronic kidney, and liver disease. To date, more than 70 patients with CED have been described and variants in six genes have been linked to this syndrome: IFT122, WDR35, IFT140, IFT43, IFT52, and WDR19 (1, 2). Changes in IFT122 and WDR35 account for approximately 70% of the incidence of this syndrome. Products of genes associated with CED belong to the intraflagellar transport (IFT) process, which plays an essential role in a proper cilia formation and function. Cilia are present in most types of human cells, including those localized in the kidneys, liver, eyes, heart, and limbs. Moreover, the cilia regulate diverse signaling pathways, such as the hedgehog (Hh) and Wnt-signaling (Wnt), which
play a crucial role in development and postnatal maintenance of organs and tissues. Therefore, ciliopathies are complex and multisystem diseases which involve all the major organs (3–5).

The main underlying cause of liver disease in ciliopathies is related to abnormal development of the bile ducts, which is often manifested as a congenital hepatic fibrosis (CHF), as well as Caroli’s disease (CD) or polycystic liver disease (PLD) (6,7).

In CED, hepatic lesions of a variable severity have been observed, ranging from hepatosplenomegaly, an increased echogenicity of the liver or a presence of liver cysts in imaging evaluations, to the severe liver failure with hyperbilirubinemia or cholestasis, requiring hospitalization as early as in the neonatal period. In contrast, a cirrhosis with severe cholestasis and biliary proliferation, as well as an acute cholangitis, has been described in infants, while in children aged 10 months, 3, and 4 years the presence of liver cysts have been confirmed (8, 9). Moreover, fatal outcome of two patients with CED at the age of 4 months, due to kidney and liver failure has been reported (1).

The intrahepatic biliary dilatation, biliary proliferation, and fibrosis were confirmed in the histopathological examination of the liver samples taken from the CED patients. Moreover, the elevated activity of hepatic enzymes may be also present (2). Affected individuals with kidney failure (KF), and end-stage liver disease (ESLD) may be the candidates for organ transplantation procedures, which are regarded as a life-saving management in relevant cases. The differential diagnosis of CED with Caroli’s disease/syndrome and ARPKD is presented in Table 1.

CASE REPORT

Here, we present a 16-year-old male patient diagnosed with CED. The patient is a second child of the otherwise healthy, however consanguineous parents. He was delivered after uncomplicated pregnancy at 38 week of gestation. His birth weight was 3.54 kg (>50th percentile), birth length of 56 cm (>98th percentile), and occipital frontal circumference (OFC) 40.5 cm (>98th percentile). Apgar score was 7 at 1 min.

A clinical examination performed directly after birth, revealed the limb shortening, a narrow thorax, brachydactyly, large bilateral inguinal hernias, and dysmorphic features such as dolichocephaly, highly protruding auricles, small flat nose, and hypertelorism (Figure 1).

The clinical features observed in this patient were very similar to those presented by his older sister, who has also been diagnosed with Sensenbrenner syndrome.

A genetic analysis of the family identified a missense variant p.Val553Gly (c.1658T>G) in the IFT122 gene as previously described by Walczak-Sztulpa et al. (1). This change was the first variant found in the IFT122 gene in the family with Sensenbrenner syndrome. Based on the research project this gene has been shown to be associated with CED. p.Val553Gly change is consistent with the CED phenotype as both parents are the heterozygous carriers and two affected children are homozygous for the identified variant. The variant has been classified as likely pathogenic according to the ACMG guidelines (Varsome tool, the 16th January 2022) (10).

TABLE 1 | Differential diagnostics CED with Caroli’s disease/syndrome and ARPKD.

Cranioectodermal dysplasia	Caroli’s disease/syndrome	ARPKD
Liver	Hepatosplenomegaly	Liver lesions may not be visible at 1 year of age
	Liver cirrhosis	Hepatosplenomegaly
	Acute cholangitis	Hepatomegaly and symptoms of portal hypertension usually seen in older children
	Liver cyst	The liver is always involved, but in the neonatal and infancy the picture of kidney disease predominates
	Histopathological examination—fibrosis, defective remodeling of the ductal plate (“DMP-like”), cholestasis	Histopathological examination—ductal plate malformation
Kidney	Kidney failure (usually occurs between 2 and 6 years of age)	Most present perinatally with enlarged kidneys
	Hypertension, proteinuria/hematuria	Systemic hypertension
	Histopathological examination—interstitial fibrosis with focal inflammatory cell infiltrates, tubular atrophy, glomerulosclerosis, occasional cysts	Cysts 1–2 mm in diameter arise due to dilatation of the collecting tubules of the nephron—may be poorly visible on ultrasound examination
Functional studies performed in the skin fibroblasts harvested from the male patient revealed a significantly reduced cilia frequency and length, as compared to controls confirming abnormal primary cilia morphology and formation in the affected individual (1).

In infancy, the patient presented elevated creatinine serum concentration and later, over the following month a regular deterioration of the kidney function was observed. Finally he developed the KF at the age of 3.5 years, which required a chronic dialysis program. Consequently, he

FIGURE 1 | Patient at the age of 1 year (A), 5 years (B), 9 years (C), and 16 years (D), respectively. CED characteristic dysmorphic features include dolichocephaly, high forehead, epicanthus, telecanthus, broad nasal bridge, hypertelorism, full cheeks, low set ears.
underwent a deceased-donor kidney transplantation at the age of 7 years and remained on a triple maintenance immunosuppression (steroids, tacrolimus, mycophenolic acid). At that time, the splenomegaly was diagnosed, however without significant complications of portal hypertension and synthetic liver function was preserved. Later he developed the esophageal varices requiring ligation, at 3 years after a kidney transplantation.
At the age of 12 years, due to, hepatic decompensation (increasing ascites), the patient was hospitalized in the local hospital. Laboratory tests showed elevated concentrations of urea and creatinine, hypoprothrombinaemia and hypoalbuminemia, abnormal coagulogram, anemia, and thrombocytopenia.

An abdominal ultrasound examination showed a large volume of fluid in the abdominal cavity, a reduced liver size with irregular outlines and features of the fibrosis and an enlarged spleen sized 14×8 cm (reference range: 8–9 cm). During hospitalization, the patient received red cell, platelets and albumin transfusions. A paracentesis was performed, yielding a total of approximately 4 L of ascitic fluid. Then the patient was transferred to our hospital. Laboratory tests showed elevated concentration of protein (increasing ascites), the patient was hospitalized in the local hospital. Laboratory tests showed elevated concentrations of urea and creatinine, hypoprothrombinaemia and hypoalbuminemia, abnormal coagulogram, anemia, and thrombocytopenia.

An abdominal ultrasound revealed a large volume of fluid in the abdominal cavity, a reduced liver size with irregular outlines and features of the fibrosis and an enlarged spleen sized 14×8 cm (reference range: 8–9 cm). During hospitalization, the patient received red cell, platelets and albumin transfusions. A paracentesis was performed, yielding a total of approximately 4 L of ascitic fluid. Then the patient was transferred to our hospital.

On physical examination, he presented a large abdominal circumference and features of the fibrosis and an enlarged spleen sized 14×8 cm (reference range: 8–9 cm). During hospitalization, the patient received red cell, platelets and albumin transfusions. A paracentesis was performed, yielding a total of approximately 4 L of ascitic fluid. Then the patient was transferred to our hospital. Laboratory tests showed elevated concentration of protein (increasing ascites), the patient was hospitalized in the local hospital. Laboratory tests showed elevated concentrations of urea and creatinine, hypoprothrombinaemia and hypoalbuminemia, abnormal coagulogram, anemia, and thrombocytopenia.

An abdominal ultrasound examination showed a large volume of fluid in the abdominal cavity, a reduced liver size with irregular outlines and features of the fibrosis and an enlarged spleen sized 14×8 cm (reference range: 8–9 cm). During hospitalization, the patient received red cell, platelets and albumin transfusions. A paracentesis was performed, yielding a total of approximately 4 L of ascitic fluid. Then the patient was transferred to our hospital. Laboratory tests showed elevated concentration of protein (increasing ascites), the patient was hospitalized in the local hospital. Laboratory tests showed elevated concentrations of urea and creatinine, hypoprothrombinaemia and hypoalbuminemia, abnormal coagulogram, anemia, and thrombocytopenia.

An abdominal ultrasound revealed a large volume of fluid in the abdominal cavity, a reduced liver size with irregular outlines and features of the fibrosis and an enlarged spleen sized 14×8 cm (reference range: 8–9 cm). During hospitalization, the patient received red cell, platelets and albumin transfusions. A paracentesis was performed, yielding a total of approximately 4 L of ascitic fluid. Then the patient was transferred to our hospital. Laboratory tests showed elevated concentration of protein (increasing ascites), the patient was hospitalized in the local hospital. Laboratory tests showed elevated concentrations of urea and creatinine, hypoprothrombinaemia and hypoalbuminemia, abnormal coagulogram, anemia, and thrombocytopenia.

Table 2: Liver and kidney transplantation in Sensenbrenner syndrome.

Gene	Sex	Age at transplantation (years)	Reference (No.)	
Liver				
1.	WDR35	Male	7	(10)
Kidney				
1.	WDR35	Female	5	(20)
2.	WDR35	Male	4	(21)
3.	WDR35	Female	5	(22)
4.	WDR35	Male	2.5	(13)
5.	WDR35	Male	14	(14)
6.	WDR35	Female	7	(14)
7.	WDR35	Male	9	(11)
8.	IFT140	Female	6	(23)
9.	IFT140	Male	5	(24)
10.	IFT144/WDR19	Female	14	(19)
11.	IFT144/WDR19	Female	2	(25)
12.	IFT144/WDR19	Female	2	(14)

DISCUSSION

Sensenbrenner syndrome is a rare genetic syndrome. The incidence in the US has been reported for <1:1,000,000 live births. Usually symptoms manifest themselves in the first years of life (11). To date, 41 families with confirmed diagnosis of CED by genetic analysis have been reported in the literature (9, 12–17). The diagnosis of Sensenbrenner syndrome is made based on characteristic clinical features and molecular genetic testing, usually in the first years of life. In affected patients mortality might be associated with kidney and liver insufficiency, respiratory and heart failure, and hypovolemic shock (1, 9).

Liver involvement of some degree is known to occur in approximately 40–50% of patients with Sensenbrenner syndrome, regardless of mutation status, also severe liver involvement is a less common feature (8). In rare cases KF may develop as early as in an infant period, due to congenital tubulointerstitial nephropathy (18), however progression to severe KF rather takes more time (a couple of years) in patients presenting nephronophthisis (16, 19).

The reported patient presented ultrasonography picture suggesting chronic tubulointerstitial lesions in the native kidneys, requiring the introducing of regular haemodialysis at the age of...
considered, but as the liver failure was more life-threatening, a simultaneous liver and kidney transplantation was initially proposed. The age at transplantation varied from 2.5 to 14 years. The genetic background included WDR35, IFT140, and IFT114/WDR19 genes mutations. The currently reported patient, who required sequential kidney and liver (after-kidney) transplantation presented IFT1122 mutation. To our best knowledge, this is the first report of a sequential liver-after-kidney transplantation, successfully performed in a pediatric patient with Sensenbrenner syndrome.

CONCLUSION

Patients with Sensenbrenner syndrome should be followed up by hepatologists and nephrologists on regular basis, as the liver and kidney diseases are the major causes of morbidity and mortality. The choice of transplantation procedure has to be individually assessed depending on the severity of kidney and liver damage over time.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article-supplementary material, further inquiries can be directed to the corresponding author(s).

ETHICS STATEMENT

Written informed consent was obtained from the minor(s)’ legal guardian/next of kin for the publication of any potentially identifiable images or data included in this article.

AUTHOR CONTRIBUTIONS

JR, JW-S, PC, AL-B, AK, MS, WJ, RG, and JP: contributed interpretation of the data and critical revision of the article. All authors contributed to the article and approved the submitted version.

REFERENCES

1. Walczak-Sztulpa J, Eggenschwiler J, Osborn D, Brown DA, Emma F, Klingenberg C, et al. Cranioectodermal dysplasia, Sensenbrenner syndrome, is a ciliopathy caused by mutations in the IFT122 gene. Am J Hum Genet. (2010) 86:949–56. doi: 10.1016/j.ajhg.2010.04.012

2. Yang Q, Zhang Q, Chen F, Yi S, Li M, Yi S, et al. A novel combination of biallelic IFT122 variants associated with cranioectodermal dysplasia: a case report. Exp Ther Med. (2021) 21:311. doi: 10.3892/etm.2021.9742

3. Oud MM, Lamers II, Arts HH. Ciliopathies: genetics in pediatric medicine. / Pediatr Genet. (2017) 6:18–29. doi: 10.1055/s-0036-1593841

4. Mitchison HM, Valente EM. Motile and non-motile cilia in human pathology: from function to phenotypes. / J Pathol. (2017) 241:294–309. doi: 10.1002/path.4843 [Erratum in: / J Pathol. (2017) 241:564].

5. Pazour GJ, Quarshy L, Smith AO, Desai PB, Schmidts M. Cilia in cystic kidney and other diseases. Cell Signal. (2020) 69:109519. doi: 10.1016/j.cellsig.2019.109519

6. Gunay-Aygun M. Liver and kidney disease in ciliopathies. Am J Med Genet C Semin Med Genet. (2009) 151C:296–306. doi: 10.1002/ajmg.c.30025

7. Diamond T, Nema N, Wen J. Hepatic ciliopathy syndromes. Clin Liver Dis (Hoboken). (2021) 18:193–7. doi: 10.1002/clld.11114

8. Lin AE, Traum AZ, Sahai I, Keppler-Noreuil K, Kukolich MK, Adam MP, et al. Sensenbrenner syndrome (cranioectodermal dysplasia): clinical and molecular analyses of 39 patients including two new patients. Am J Med Genet A. (2013) 161A:2762–76. doi: 10.1002/ajmg.a.36265

9. Arts H, Knoers N. Cranioectodermal dysplasia. (2013 Sep 12 Updated 2018 Apr 12). In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Gripp KW, Mirzaa GM, Amemiya A, editors. GeneReviews® [Internet]. Seattle WA: University of Washington (1993–2021). Available online at: https://www.ncbi.nlm.nih.gov/books/

10. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. (2015) 17:405–23. doi: 10.1038/gim.2015.30

11. Ackah RL, Yoeli D, Kueht M, Galván NTN, Cotton RT, Rana A, et al. Orthotopic liver transplantation for Sensenbrenner syndrome. Pediatr Transplant. (2018) 22:e13077. doi: 10.1111/petr.13077

12. Walczak-Sztulpa J, Wawrocka A, Stanczyk M, Pesz K, Dudarewicz L, Chrul S, et al. Inter familial clinical variability in four Polish families with cranioectodermal dysplasia and identical compound heterozygous variants in WDR35. Am J Med Genet A. (2021) 185:1195–203. doi: 10.1002/ajmg.a.62067
13. Stals KL, Wakeling M, Baptista J, Caswell R, Parrish A, Rankin J, et al. Diagnosis of lethal or prenatal-onset autosomal recessive disorders by parental exome sequencing. *Prenat Diagn.* (2018) 38:33–43. doi: 10.1002/pd.5175

14. Walczak-Sztulpa J, Wawrocka A, Leszcynska B, Mikulska B, Arts HH, Bukowska-Olech E, et al. Prenatal genetic diagnosis of cranioectodermal dysplasia in a Polish family with compound heterozygous variants in WDR35. *Am J Med Genet A.* (2020) 182:2417–25. doi: 10.1002/ajmg.a.61785

15. Quinaux T, Custodi V, Putoux A, Bacchetta J, Rossi M, Di Rocco F. Sensenbrenner syndrome: a further challenge in evaluating sagittal synostosis and a need for a multidisciplinary approach. *Childs Nerv Syst.* (2021) 37:1695–701. doi: 10.1007/s00381-021-05075-1

16. Brndiarova M, Mraz M, Kolkova Z, Cisarik F, Banovcin P. Sensenbrenner syndrome presenting with severe anorexia, failure to thrive, chronic kidney disease and angellopedous middle phalanges in two siblings. *Mol Syndromol.* (2021) 12:263–7. doi: 10.1159/000515645

17. Ishida Y, Kobayashi T, Chiba S, Katoh Y, Nakayama K. Molecular basis of ciliary defects caused by compound heterozygous IFT144/WDR19 mutations found in cranioectodermal dysplasia. *Hum Mol Genet.* (2021) 30:213–25. doi: 10.1093/hmg/ddab034

18. Obikane K, Nakashima T, Watarai Y, Morita K, Cho K, Tonoki H, et al. Renal failure due to tubulointerstitial nephropathy in an infant with cranioectodermal dysplasia. *Pediatr Nephrol.* (2006) 21:574–6. doi: 10.1007/s00467-006-0031-8

19. Bredrup C, Sauvier S, Oud MM, Fiskerstrand T, Hoischen A, Brackman D, et al. Ciliopathies with skeletal anomalies and renal insufficiency due to mutations in the IFT-A gene WDR19. *Am J Hum Genet.* (2011) 89:634–43. doi: 10.1016/j.ajhg.2011.10.001

20. Hoffer JL, Fryssira H, Konstantinidou AE, Ropers HH, Tzschach A. Novel WDR35 mutations in patients with cranioectodermal dysplasia (Sensenbrenner syndrome). *Clin Genet.* (2013) 83:92–5. doi: 10.1111/j.1399-0004.2012.01880

21. Li Y, Garrod AS, Madan-Khetarpal S, Sreedher G, McGuire M, Yagi H, et al. Respiratory motile cilia dysfunction in a patient with cranioectodermal dysplasia. *Am J Hum Genet A.* (2015) 167A:2188–96. doi: 10.1002/ajmg.a.37133

22. Antony D, Nampoory N, Bacchelli C, Melhem M, Wu K, James CT, et al. Exome sequencing for the differential diagnosis of ciliary chondrodysplasias: example of a WDR35 mutation case and review of the literature. *Eur J Med Genet.* (2017) 60:658–66. doi: 10.1016/j.ejmg.2017.08.019

23. Walczak-Sztulpa J, Posmyk R, Bukowska-Olech E, Wawrocka A, Jamsheer A, Oud MM, et al. Compound heterozygous IFT140 variants in two Polish families with Sensenbrenner syndrome and early onset end-stage renal disease. *Orphanet J Rare Dis.* (2020) 15:36. doi: 10.1186/s13023-020-1303-2

24. Bayat A, Kerr B, Douzgou S, DDD Study. The evolving craniofacial phenotype of a patient with Sensenbrenner syndrome caused by IFT140 compound heterozygous mutations. *Clin Dysmorphol.* (2017) 26:247–51. doi: 10.1097/MCD.0000000000000169

25. Yoshikawa T, Kamei K, Nagata H, Saida K, Sato M, Ogura M, et al. Diversity of renal phenotypes in patients with WDR19 mutations: two case reports. *Nephrology (Carlton).* (2017) 22:566–71. doi: 10.1111/nep.12996

26. Zaffanello M, Diomedi-Camascei F, Melzi ML, Torre G, Callea F, Emma F. Sensenbrenner syndrome: a new member of the hepato renal fibrocystic family. *Am J Med Genet A.* (2006) 140:2336–40. doi: 10.1002/ajmg.a.31464

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.