Genetic Screen in *Drosophila melanogaster* Uncovers a Novel Set of Genes Required for Embryonic Epithelial Repair

Isabel Campos,1 Jennifer A. Geiger,1 Ana Catarina Santos,2 Vanessa Carlos3 and Antonio Jacinto4

Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal and Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal

Manuscript received September 25, 2009
Accepted for publication October 24, 2009

ABSTRACT

The wound healing response is an essential mechanism to maintain the integrity of epithelia and protect all organisms from the surrounding milieu. In the “purse-string” mechanism of wound closure, an injured epithelial sheet cinches its hole closed via an intercellular contractile actomyosin cable. This process is conserved across species and utilized by both embryonic as well as adult tissues, but remains poorly understood at the cellular level. In an effort to identify new players involved in purse-string wound closure we developed a wounding strategy suitable for screening large numbers of *Drosophila* embryos.

Using this methodology, we observe wound healing defects in *fun-related antigen* (encoding DJUN) and *scab* (encoding *Drosophila* αPS3 integrin) mutants and performed a forward genetics screen on the basis of insertional mutagenesis by transposons that led to the identification of 30 lethal insertional mutants with defects in embryonic epithelia repair. One of the mutants identified is an insertion in the *kars* locus, which encodes *Drosophila* β_{Heavy}-spectrin. We show β_{Heavy}-spectrin (β_{Heavy}) localization to the wound edges where it presumably exerts an essential function to bring the wound to normal closure.

WOUND healing is essential to organisms throughout the animal kingdom. It must occur for restoring tissue integrity after injury both during embryonic and adult life. Epithelia, in particular, act as a physical barrier protecting living organisms and their organs from the surrounding environment and have evolved robust mechanisms to ensure their integrity. Simple embryonic epithelial tissues have an extraordinary capacity to reseal small discontinuities very rapidly and efficiently through an epithelial resealing mechanism. This was initially described in the chick embryo (Martin and Lewis 1992), but seems to be conserved across species as it was shown to also occur in mouse, frog, and fly embryos (McCluskey et al. 1993; Davidson et al. 2002; Wood et al. 2002). In all these systems, small epithelial wounds close via the cooperation of three distinct mechanisms: the assembly of an actomyosin purse string in the epithelial cells at the wound margin, the proliferative activity of epithelial cells at the margin, and the contraction and ingress of deep cells when those are exposed (see Jacinto et al. 2001; Martin and Parkhurst 2004; Garcia-Fernandez et al. 2009 for review).

Advances in live imaging of *Drosophila* embryos expressing fluorescent proteins made time-lapse microscopy of the epithelial healing process possible and the exact sequence of cell movements to be determined (Wood et al. 2002). The cells at the wound margin constrict their apical edges through the action of an actomyosin cable that assembles just minutes after wounding and is linked intercellularly through adherens junctions. Concomitant with the formation of the purse string, cells at the wound margin begin to extend actin-rich protrusions. When opposing wound margins come into close proximity, filopodia and lamellipodia from opposing flanks make contact and they appear to pull the wound margins toward one another. For laser-induced oval wounds of ~10 by 20 μm, the entire healing process can be completed in just over 2 hours (Wood et al. 2002).

The signaling cascades that regulate the epithelial resealing process are just beginning to be unraveled, but the known molecular mechanisms appear to be conserved in both vertebrates and invertebrates, namely the involvement of Grainy-head (GRH) transcription factors or the JNK signaling cascade, transduced by JUN/FOS transcriptional complexes (Rame et al. 2002; Li et al. 2003; Ting et al. 2003, 2005a,b; Galko and Krasnow 2004; Mace et al. 2005). In the fly, the expression of some genes at the wound site is dependent on functional GRH
and JUN/FOS dimers (AP1) binding sites in their promoter region (MACE et al. 2005; PEARSON et al. 2009). These observations are consistent with abnormal wound healing in grh or basket/DJ/NK mutants’ larval cuticle and the activation of JNK signaling pathway at wild-type larval wound sites (GALKO and KRASNOW 2004; MACE et al. 2005). Recently, it was suggested that extension of actin-based cellular processes by the wound-edge epidermal cells of Drosophila larvae is dependent on Pvr, a PDGF/VEGF-like receptor, and one of its ligands, Pvf1 (WU et al. 2009). In addition, the Rho family of small GTPases including Rho, Rac, and Cdc42 are known to be critical to mediate the rapid cytoskeleton rearrangements that control cell shape changes (as described above) of wound bordering epithelial cells during closure (reviewed in JACINTO et al. 2001; MARTIN and PARKHURST 2004). The upstream signal activating the cells surrounding the wound is still unknown, but it is established that extracellular signal-regulated kinase (ERK) is phosphorylated upon wounding, an event required at wound sites for a robust response (MACE et al. 2005). Taking together the fact that Drosophila GRH and FOS proteins can be phosphorylated by ERK in vitro (UV et al. 1997; CLAPPONI et al. 2001) and more recent data identifying Stitcher, a receptor tyrosine kinase that also induces ERK phosphorylation as a Grh target, one can envision a Grh-dependent positive feedback loop that could function as an amplification mechanism ensuring efficient epidermal wound repair (WANG et al. 2009).

To gain new insights into the cell biology of epithelial rescaling, we performed a genetic screen using the Drosophila embryo with the aim of finding new genes involved in the regulation of wound healing. For that purpose, we developed a wounding assay that facilitates large-scale screening and validated it by showing that Jra, a mutant in the JNK signaling pathway, and scab, a mutant in an α-integrin isoform, are both required for embryonic wound healing. We then tested 655 piggyBac and P-element insertion mutations (Exelixis) and were able to identify 30 lines with impaired wound healing. One isolated mutant is an insertion in the karst gene, encoding the Drosophila homolog of β-Heavy spectrin. Karst has been previously implicated in cytoskeleton organization and associated with tissue morphogenesis (THOMAS et al. 1998; ZARNESCU and THOMAS 1999) but its precise function has remained elusive. We further show that the Karst protein accumulates around the wound edges in a cable-like manner, where it must play an important function in the healing process.

MATERIALS AND METHODS

Fly strains and genetiques: A total of 655 insertional mutant lines on the second and third chromosomes were picked from the 2100 inserts chosen as single gene tags for the Genome Disruption Project, originally generated by Exelixis Corporation (THIBAULT et al. 2004) and distributed by the Blooming-ton Stock Center. The lines with a wound closure phenotype were remapped by inverse PCR (iPCR) and sequenced, following protocols described at the Berkeley Drosophila Genome Center Web site (http://www.fruitfly.org/about/methods/inverse.pcr.html) and at the Bellen lab Web site (http://flypush.imagen.bcm.tmc.edu/~pscreen/). We confirmed the insertion location as listed in FlyBase for all except 3 of our positive lines. Specifically, we could not determine the insertion locations for lines Eaf110d150, Neu310m169, and side6063. We did not succeed in remapping the Eaf110d150 line by iPCR, but we assume the genomic location is correct since this line failed to complement two different deficiencies in the region (Df(2R)ED1673 and Df(2R)Drk19, stock nos. 9062 and 8888, respectively). The Neu310m169 line, which is listed as an insertion in the gene Neu3 (cytological map location 88C10–88D1, in 3R), was mapped by 5’ primer sets (the 3’ set did not work) to a different location in the end of the 3L chromosome, in gene CG4047. There are no available deficiencies in this region (the last three deficiencies of the chromosome all complemented the line, stock nos. 2587–2589) and this line complements another Neu3 allele (Neu320d136, stock no. 23312) and a deficiency in the Neu3 region (Df(3R)ED1555, stock no. 23714). Therefore, we consider that the line Neu310m169 is not an insertion in the Neu3 region. Finally, the line side6063, which is listed as an insertion in the gene sidestep (cytological map location 97F6–97F10) was mapped by both 5’ and 3’ primer sets to a different location, 86D9. This line fails to complement Df(3R)ED5516 (deletion of 86D8–86E13), confirming our mapping results.

For the pilot screen, the following mutant alleles were used: Jra1 (KOCKEL et al. 1997), pur1 (RING and MARTINEZ ARIAS 1993), shak1 (FERNANDEZ et al. 2000), ike1 (NELLEN et al. 1994), shm1 (ARORA et al. 1995), zf1p (YOUNG et al. 1993), uib-6 (FRANK and RUSHLOW 1996), Phe110k (SPARRING et al. 1999), side6063 (SCHOCK and PERRIMON 2003), Rho110k (MAGIE and PARKHURST 2005), fxs2 (LEKKEN et al. 1998), and Efg41 (later renamed Efg4) (PRICE et al. 1997).

All lethal or semilethal lines were crossed to balancer stocks that drive eGFP under the twist promoter, active at embryonic stages. Specifically, males from original lines were crossed to either Gla/CyO-CTG or Dr/TM3-FTG virgins, depending on insertion site. Flies of the following generation were selected against Gla or Dr and used to start new GFP-balanced stocks, which were then used to collect the screened embryos.

Or5, ubi-DE-Cad-GFP (ODA and TSUKITA 2001), and sGMCA, which expresses the actin binding domain of moesin fused to GFP, labeling filamentous actin (KIEHART et al. 2000) were used as control lines.

Using standard strategies, the following recombinant stocks were generated: CG28130m007, ubi-DE-Cad-GFP/CyO-CTG, CG51980m107, ubi-DE-Cad-GFP/CyO-CTG, CG56400m121, ubi-DE-Cad-GFP/CyO-CTG, and karst1103 sGMCA/TM6b-GFP.

Wounding assay: Two-hour egg collections of GFP-balanced lines (Mutation/CyO-CTG or Mutation/TM3-FTG) taken on standard apple juice agar plates supplemented with yeast extract, were allowed to develop at 18° overnight. Embryos were dechorionated in bleach and typically 40–80 non-GFP (homozygous mutant) stage 15/16 embryos were sorted under UV light. Homozygous mutant embryos were aligned ventral side up, stuck to double-sided tape on a slide, covered with halocarbon oil 700 (Sigma) and a coverslip, and subjected to wounding using a nitrogen laser-pumped dye laser connected to a Zeiss Axiovert 200M microscope (Micropoint Photonic Instruments). After wounding, the coverslip was removed and the embryos were left to develop at 22° for 16 hr before being scored under a dissecting scope for wound closure. The wound healing phenotype was calculated as a percentage of nearly hatching first instar larvae with unclosed wounds over...
the total number of wounded larvae (dead animals were disregarded for this calculation).

Imaging: Live embryos were wounded as described above and live imaging was performed using LSM510 Meta confocal system (Carl Zeiss MicroImaging). Images were taken every 3 or 30 min. All images were processed using ImageJ imaging software (National Institutes of Health) and Photoshop (Adobe).

Live wounded larvae were imaged using a DC500 Leica camera mounted on an upright widefield DM5000B Leica microscope under phase contrast conditions.

Immunohistochemistry of wounded embryos: Stage 14 Or^x^ embryos were selected and subjected to the wounding assay, except wounds induced were smaller and embryos were allowed to heal in a humid chamber for ∼1 hr before further processing. Wounded embryos were loosened from the tape with forceps and then removed from the oil with a paintbrush dipped in heptane (Sigma) and transferred to a glass vial containing fix mix, 1:1 heptane: 3% FA in PLP (3% formaldehyde, 0.01 NaIO_4, 0.1 m PIPES, pH 7.3, 0.1 m lysine) (modified from Thomas and Kiehart 1994), and incubated on a roller for 40 min at room temperature (RT). Embryos were removed and hand devitilized in PBS (NaCl 137 mM, KCl 27 mM, KH_2PO_4 43 mM, NaHPO_4·2H_2O 47 mM, incubated 1 hr in block (0.3% BSA in PBST, which is 0.3% Triton X-100 in PBS), and then overnight at 4°C with the following primary antibodies diluted in block: m-armadillo at 1:50 (DSHB) and β_H^specific antiserum no. 243 at 1:500 (Thomas and Kiehart 1994). Embryos were then rinsed three times and washed 1 hr in block, incubated 1 hr in secondary antibodies (Molecular Probes), diluted 1:200 in PBST (Alexa 568 anti-rabbit and Alexa 488 anti-mouse or Alexa 488 anti-rabbit and 1 μg/ml Alexa 594-phalloidin), rinsed three times and washed 1 hr in PBST, rinsed in PBS, and mounted in 80% glycerol with 2% Dabco.

RESULTS

Wounding strategy and assay validation: To identify novel Drosophila strains with wound healing phenotypes, we designed and optimized a wounding assay suitable for a high-throughput screen (see MATERIALS AND METHODS and Figure 1). To verify that the wounding assay is sensitive enough to find genes required for wound healing, we tested candidate genes previously shown to be required either for wound healing or for dorsal closure (DC) in Drosophila (Figure 2). DC is a developmental process involving epithelial sheet movements to close a naturally occurring dorsal hole created when the germ band retracts after its extension. It has previously been reported that this process occurs in a mechanistically analogous way to embryonic wound healing (Jaicinto et al. 2000; Wood et al. 2002). Therefore, we tested members of major pathways that control DC such as Jun-related antigen (fra), puckered (puc), and Src homology 2 ankyrin repeat tyrosine kinase (shark) in the DJNK signaling pathway and thickveins (tkv), schnurri (shm), and zipper (zip) in the TGF-β signaling pathway. Furthermore, we tested additional genes involved in DC such as u-shaped (ush), Epidermal growth factor receptor (Egfr), Protein kinase related to protein kinase N (Pkn), scab (scb), and Rho1, which has also been

Figure 1.—Wound healing protocol. (A) Two-hour egg collections from GFP-balanced lines are left to develop until stage 15/16 and homozygous, non-GFP, mutant embryos are selected under fluorescent light for wounding. (B) Selected embryos are mounted for laser wounding on a microscopic slide with the ventral side up. (C) Embryos are laser wounded on the medial ventral region. (D) After approximately 16 hr in a humid chamber, nearly hatching larvae are screened under the dissection scope for wound closure and percentage of unclosed wounds calculated; arrows point to typical healed (left) and unhealed (right) wounds (see MATERIALS AND METHODS for details).
previously implicated in embryonic wound healing (Wood et al. 2002).

We scored wound healing phenotypes as percentage of unclosed wounds. The negative control OrR displayed 5% of phenotype in our assay while the analyzed DC mutants’ phenotype ranged from 2% (shn1) to 74% (Jra1) (Figure 2). The JNK signaling cascade had been previously demonstrated to be involved in wound healing of larval and adult fly tissues (Ramet et al. 2002; Galko and Krasnow 2004; Boscin et al. 2005). To our knowledge, the Jra1 (null mutation in DJun) mutant phenotype observed here (74% open wounds) is the first report of the importance of the JNK cascade in fly embryonic epithelial wound healing. To define a cutoff threshold for wound healing defects, we performed a statistical analysis on the basis of the maximum likelihood ratio test (LRT). By comparing all mutants in Figure 2 with OrR we conclude that any line with a phenotype >30% would be statistically different from the wild-type situation (5% of open wounds), with a P-value of <0.001 (data not shown). Therefore, we observe a clear wound healing phenotype in Jra1 and scb5J38 (74 and 53%, respectively). The Rho11B phenotype is not above the threshold but is still significantly different from the control strain (P < 0.005), while all the other genes tested had either no phenotype or had severe patterning defects at the embryonic stage at which wounds were made, thus making scoring impossible (Figure 2).

The fact that not all tested DC mutants have a wound healing phenotype suggests that albeit mechanistically similar, each process is distinct in some aspects. In this respect, it is worth mentioning that during DC there is never an actual “hole” to close as the epithelial cells actually remain in contact with an extraembryonic tissue, the amnioserosa (AS), throughout the closure process. It is now well established that AS cells have an active role during DC and it is the fine orchestration of the epithelial and AS tissue contributions that ensures successful closure (Kiehart et al. 2000; Hutson et al. 2003; Scuderi and Letsou 2005).

Taken together, these pilot results demonstrate both the effectiveness and the sensitivity of the wounding assay, allowing us to conclude that we developed a simple and robust method that can be used in a large-scale genetic screen. Next, we performed a wound healing screen using a series of largely uncharacterized, yet molecularly mapped mutant lines from the Exelixis stock collection (Thibault et al. 2004).

Wound healing screen: The Exelixis transposon insertion collection is composed of four transposon types: three piggyBac-based transposons and one P-element-based transposon. A subset of this collection likely to disrupt gene function is present at the Bloomington Stock Center. We tested all chromosome 2 and 3 lethal lines in this subset and a few additional viables, for a total of 655 insertional mutant lines (see supporting information, Table S1).

Of the 655 lines analyzed, we observed 30 (4.6% of the total lines screened) that presented a wound closure defect (more than 75 embryos analyzed for each line, Table 1). The total number of mutants with wound

Allele tested	Molecular function	Cellular processes	Phenotype
Jra1	Transcription factor	Stress response, JNK signaling	74% (n=390)
puc100	Phosphatase	Morphogenesis, JNK signaling	3% (n=74)
shn1	Tyrosine kinase	Cell polarity, JNK signaling	6% (n=262)
tkv2	TGF-β receptor	TGF-β signaling	3.5% (n=256)
shn1	Transcription factor	TGF-β signaling	2% (n=52)
zip1	Myosin heavy chain	Cell movement, Cell shape changes	Unscorable
ush2	Transcription factor	Morphogenesis	Unscorable
Pfy3(773a)	Serine/threonine kinase	Morphogenesis	12% (n=42)
scab5(3a)	Integrin	Cell adhesion	55% (n=192)
Rho11B	Small GTPase	GTPase activity	22% (n=473)
fa2	Transcription factor	Stress response, JNK signaling	Unscorable
Egfp12	EGF receptor	EGF signaling	Unscorable

Figure 2.—Dorsal closure mutants with wound healing phenotypes. (A) List of tested alleles, respective molecular function, and cellular process as in FlyBase (Tweedie et al. 2009). Wound healing phenotypes are shown as percentage of total (n) embryos presenting an unclosed wound approximately 16 hr postwounding. Some mutations are “unscorable” due to gross morphological defects either at the wounding stage (15/16) or at the scoring stage (early first instar larvae). (B) Graphic representation of wild-type phenotype (OrR) and the three strongest phenotypes observed. (C–F) wounds in first instar larvae in OrR (C), Jra1 (D), scb5J38 (E), and Rho11B (F).
TABLE 1
Insertional mutants with wound healing phenotypes

Allele tested	Molecular function	Cellular processes	Phenotype (%)
*alar*1	Calcium binding, transmembrane transporter	Mitochondrial transport	33 (n = 283)
arc-p20	Cytoskeleton component	Cell movement, cell shape changes	43 (n = 199)
*atg*2	Unknown	Autophagy	30 (n = 86)
dEaf	Transcription elongation	Stress response	31 (n = 97)
dUtx	Chromatin remodeling	Gene Silencing	47 (n = 76)
gla	Splicing	Oogenesis	60 (n = 221)
grp	Serine/threonine kinase	Cell cycle	44 (n = 171)
gs1-like	Glutamate-ammonia ligase	Metabolic processes	35 (n = 162)
kst	Cytoskeleton component	Membrane structure, cell polarity, scaffolding	50 (n = 362)
Pc	Chromatin remodeling	Gene Silencing	55 (n = 311)
Ser12	Serine protease	Proteolysis	44 (n = 212)
Stam	JAK pathway signal transduction adaptor	JAK-STAT signaling	43 (n = 183)
CG2813	Unknown	Fatty acid β-oxidation	39 (n = 167)
CG31805	Unknown	Immune response	49 (n = 147)
CG4389	Long-chain-3 hydroxyacyl-CoA dehydrogenase	Unknown	80 (n = 142)
CG5198	Unknown	Unknown	33 (n = 114)
CG6005	Unknown	Unknown	37 (n = 212)
CG6750	Unknown	Unknown	37 (n = 212)
CG7627	Transmembrane transporter	Xenobiotic transporter	31 (n = 282)
CG9249	Hexaprenyldihydroxybenzoate methyltransferase activity	Ubiquinone metabolism	51 (n = 182)
CG10217	Unknown	Unknown	95 (n = 205)
CG11089	IMP cyclohydrolase activity	Purine metabolism	35 (n = 130)
CG12913	Acetylglactosaminyl transferase	Chondroitin sulfate biosynthesis	38 (n = 247)
CG15170	Unknown	Protein metabolism	36 (n = 84)
CG16833	Tubulin-tyrosine ligase process	Protein metabolism	42 (n = 104)
CG30010	Unknown	Translation regulation	33 (n = 221)
CG3294	Splicing	tRNA aminoacylation for protein translation	48 (n = 280)
CG33123	Leucine-tRNA ligase	tRNA aminoacylation for protein translation	48 (n = 280)

Phenotype refers to percentage of total (n) embryos presenting an unclosed wound ~16 hr postwounding. Molecular function and cellular processes modified from FlyBase (Tweedie et al. 2009) and additional references mentioned in the text.

healing defects is 28 since for two of the lines, Neu3c01955 and sidec00677, the original insertion location was not confirmed (see MATERIALS AND METHODS). A number of these mutant alleles were recombined with fluorescent markers to allow for observation of tissue morphogenesis and wound closure dynamics at the cellular level. In Figure 3, stills taken every 30 min from *fra*, *CG2813*, *CG5198*, and *dUtx* mutations recombined with *ubi-DE-cad-GFP* (which marks adherens junctions and allows for cell boundary visualization), show that all four mutant embryos depicted still have open wounds after 3 hr, whereas in the control embryo (*ubi-DE-cad-GFP*) only a tiny hole remains. These results confirm that our screen successfully uncovered mutants that display wound healing phenotypes in both larger (assay type) and smaller, more experimentally tractable wounds, as the ones depicted in Figure 3. Interestingly, wounds made in these mutants appear to assemble an actin cable as visualized by phalloidin staining (data not shown), suggesting that these mutants must be affecting a process downstream of the initial rapid response of the wound by the proximal epithelial cells.

A karst mutant with wound healing defects: One of the isolated wound healing mutants is a previously unstudied allele of *karst* (50% open wounds, n = 362, Table 1). This particular mutant, *karst* (2011), is a P-element-based transposon insertion in the *minus* orientation at nucleotide position 5219 of the *karst* ORF, falling within exon 8. This exon is common to all four predicted karst transcripts (Wilson et al. 2008); therefore, this insertion is likely to disrupt the function of all possible gene isoforms.

The *karst* locus encodes the Drosophila β_{heavy}-Spectrin (*β_H), which is a large F-actin cross-linking protein specific to epithelial tissues (Thomas and Kiehart 1994), with orthologs in various species including...
Caenorhabditis elegans and humans (InParanoid eukaryotic ortholog groups). In epithelial cells, \(\beta \text{H} \), together with its binding partner \(\alpha \)-spectrin make up the apical portion of the spectrin-based membrane skeleton (SBMS). This structure is a protein meshwork lying under the plasma membrane and links the cytoskeleton to the plasma membrane, providing resistance to mechanical stress, while at the same time is possibly acting as a scaffold for protein/protein interactions (for review see Thomas 2001). Apart from the structural role, the SBMS is important for maintenance/establishment of the Zona adherens, modulation of the apical membrane area, as well as apical constriction and other contractile actin-ring-based cell morphogenesis occurring during cellularization in Drosophila embryos or body elongation in *C. elegans* embryos (McKeown et al. 1998; Thomas et al. 1998; Thomas and Williams 1999; Zarnescu and Thomas 1999; Williams et al. 2004; Prattis et al. 2005).

The insertion present in the *karst\(^{d1183}\)* mutant is located in segment 15 of \(\beta \text{H} \) (see Thomas et al. 1997, for an explanation of the segment nomenclature). This mutation causes a premature stop codon three amino acids downstream of the insertion site.

karst\(^{d1183}\) mutants have weaker wound-induced actin cables and less cellular protrusions: To study the dynamics of wound healing in the *karst\(^{d1183}\)* mutant, this line was recombined with sGMCA (the actin binding domain of moesin fused with GFP, Kiehart et al. 2000) and time-lapse recordings were analyzed. Upon wounding, the actin cable was consistently weaker and appeared fragmented over time (arrows in Figure 4C, i–iii). Cells at the wound margin do not properly elongate toward the center of the wound and many

Figure 3.—Wound closure dynamics in control embryos and wound healing candidate mutants. (A) Stills from movies of wounded control embryos (*ubi-DE-Cad-GFP*), (B) *Jra*, (C) *CG2813^G01207*, (D) *CG5198^G01231*, and (E) *dUtx^G01221* embryos recombined with *ubi-DE-Cad-GFP*, taken 30 (i), 60 (ii), 90 (iii), 120 (iv), and 180 (v) minutes postwounding (mpw). After 3 hr, only wounds in control embryos are nearly closed (compare panel Av to Bv, Cv, Dv, and Ev).
failed to productively contract their wound marginal edges (compare artificially colored wound marginal cells in mutant to those in control in Figure 4C, i–iii with 4B, i–iii, respectively). In addition, we observed reduced actin-based protrusion activity at the wound edge when compared to wild-type (compare arrowheads in Figure 4C, i and ii with 4B, i and ii). After 2 hr, the wounds were still open while corresponding wounds made to control embryos closed in 1.5 hr (Figure 4C, i–iii and 4B, i–iii). These observations suggest that βH helps to maintain the actomyosin cable while it is contracting and remodeling as the wound closes. The results further suggest that βH facilitates other spatially restricted actin-based dynamics, such as filopodial extension, and may serve to connect the intercellular cues coming from the actin cable to the intracellular responses required to produce a polarized cell shape change, such as cell elongation toward the wound and wound edge contraction.

βH localizes to wound edges: Given that the karstd11183 mutant has a wound healing phenotype, we examined whether the βH protein is present at the right time and place to play a direct role in wound closure. It was already known that βH is expressed in epithelial tissues throughout embryonic development (Thomas and Kiehart 1994) but we wanted to know whether it has an altered expression or localization pattern within wounded epithelium. Using βH-specific antiserum no. 243, which recognizes the N-terminal domain of Drosophila βH (Thomas and Kiehart 1994), we observed that the protein concentrates strongly at wound edges and is present not just at the adherens junction level as
shown by Armadillo staining (Figure 4D, i–iii), but in a cable-like pattern that seems to coincide, at least partially, with the actin cable (Figure 4E, i–iii). This observation is especially interesting because, to our knowledge, the only endogenous proteins previously described to localize to the wound edge in a cable-like manner are actin and myosin.

Taken together with the above mutant phenotypes, these observations suggest that wild-type β1l functions locally to properly form and/or maintain the intercellular actomyosin cable while it is contracting and remodeling during wound closure. β1l function is also required for wild-type intracellular responses such as wound marginal cell edge constriction as well as polarized extension of the wound edge cells toward the wound center. Our results further suggest that β1l can facilitate other spatially restricted actin-based events, such as wound edge filopodia dynamics.

DISCUSSION

Wound assay and pilot screen: Using previously described DC or wound healing mutants we performed a pilot screen to validate our embryonic wounding strategy. The fact that we identified a member of the DJNK pathway (fra/Djun) in our assay is in accordance with other reports that implicate this pathway in wound healing. Specifically, two mutations in components of the DJNK pathway, bsk/DJNK and kay/DJos, were previously shown to have defects in fly larval and adult wound closure, respectively (RAMET et al. 2002; GALKO and KRASNOW 2004). In addition, MACE et al. (2005) described a reporter construct that requires consensus binding sites for the JUN/FOS complex to be activated upon wounding. Interestingly, the authors still observed reporter activation in fra mutants, which suggests that additional signaling pathways are involved in wound closure (MACE et al. 2005).

An apparent discrepancy arose when our assay revealed a phenotype with fra but not with puc mutants, another component of the same signaling pathway. This result might be explained by the fact that Jra and puc function in opposite directions in the DJNK signaling pathway. Puc functions as a pathway repressor, so in a puc mutant the JNK pathway should be less repressed and we could expect to have an opposite effect to a fra mutation. In addition, we note that activation of a puc–lacZ reporter has been shown to occur in larvae, wing imaginal discs, and adult wounds that take 18–24 hr to close, but it is only robustly detectable 4–6 hr post-puncture (RAMET et al. 2002; GALKO and KRASNOW 2004; BOSCH et al. 2005). Embryonic wounds are faster to heal, and even after inflicting a large laser wound on stage 14/15 embryos, we failed to detect activation of the puc–lacZ reporter (assessed in open wounds 3 hr postwounding by immunofluorescence; data not shown). This observation suggests that, in rapidly healing epithelial wounds, the JNK pathway is not activated to high enough levels to trigger auto-inhibition.

The α-integrin scab was never before implicated in embryonic wound healing, but this mutant’s phenotype comes as no great surprise. The first scab mutation was isolated due to its abnormal larval cuticle patterning (NUSSEIN-VOLKHARD et al. 1984). The scab gene encodes for Drosophila α-PS3 integrin, which is zygotically expressed in embryonic tissues undergoing invagination, tissue movement, and morphogenesis (STARK et al. 1997). Integran proteins are involved in cell–matrix interactions and α-PS3 integrin regulation, in particular, mediates zipping of opposing epithelial sheets during DC (HOMSY et al. 2006). Similarly, our observation of a wound defect in scb178 mutants is consistent with a role for α-PS3 integrin in zipping of opposing epithelial cells during the healing process.

A previous study using confocal video microscopy has shown that Rho11B mutants take twice as long to close an epithelial wound when compared to wild type (WOOD et al. 2002). Rho1 was confirmed in our assay to be important for wound healing, although with a weaker phenotype (22% of embryos had unclosed holes). This result shows nonetheless that our assay can be sensitive enough to pick up a “weak” wound healing mutant such as Rho11B, which is still able to heal wounds albeit slower than wild type.

Transposon screen: The genes identified in the screen represent a variety of functions indicating that wound healing is a complex mechanism that requires the participation of many cellular processes. A large class of the candidate mutants are involved in several aspects of gene expression, including factors that regulate chromatin remodeling (dUtx and Pc), elongation (dEaf), splicing (Glo and CG3294), and translation (CG33123) (ZINK and PARO 1989; SCHNEIDER et al. 2004; SMITH et al. 2008; KALIFA et al. 2009; TWEEDIE et al. 2009). These factors are likely needed during wound healing for the induction of a repair transcriptome (COOPER et al. 2005; ROY et al. 2008; STRAMER et al. 2008). Interestingly, JNK signaling-dependent Pc group (PcG) gene downregulation has been observed during imaginal disc regeneration (LEE et al. 2005). In addition, a recent study revealed that PcG methylases are downregulated during wound healing, while counteracting demethylases, Utx and Jmjd3, are upregulated (SHAW and MARTIN 2009). Our results for the Pc and Utx mutants are consistent with these studies and highlight the importance of epigenetic reprogramming in the repair process.

Some of the genes such as arc-p20 and karst probably have a more direct role in the cell shape changes that drive the tissue morphogenetic movements during epithelial repair. The gene product of arc-p20 is a component of Arp2/3, a complex that controls the
formation of actin filaments, and *karst* encodes a component of the spectrin membrane cytoskeleton described in detail below (Thomas and Kiehart 1994; Kunda et al. 2003; Borghese et al. 2006). Also related to morphogenesis, CG12913 encodes an enzyme involved in the synthesis of chondroitin sulfate (Tweedie et al. 2009), which is usually found attached to proteins as part of a proteoglycan, suggesting a predictable contribution of the extracellular matrix in the tissue movements necessary for wound healing.

The epithelium is the first line of defense of the organism against pathogens and tissue integrity. It would thus seem plausible that genes involved in innate immunity could be identified with our screening protocol. Indeed, two of the genes (*Ser12* and *CG5198*) seem to point to the involvement of the immune response in the healing of the laser-induced wounds. *Ser12* is a member of the serine protease family, a class of proteins that has been shown to play a role in innate immunity (De Gregorio et al. 2001; Ross et al. 2003). The *CG5198* gene has no described function in Drosophila so far, but its homolog, CD2-binding protein 2, is involved in T lymphocyte activation and pre-RNA splicing (Kofler et al. 2004; Heinze et al. 2007). Another candidate that might represent a link to immunity is *Alg2*, a gene important for the regulation of autophagy, a process by which cells degrade cytoplasmic components in response to starvation. In Drosophila, autophagy has been linked to the control of cell growth, cell death, and, recently, to the innate immune response mechanism against vesicular stomatitis virus and listeria infection (Scott et al. 2004; Yano et al. 2008; Shelly et al. 2009).

Isolation of an insertion in the *stam* gene points to the involvement of the JAK-STAT signaling cascade in this regenerative process (Mesilaty-Gross et al. 1999). Interestingly, *stam* has been shown to be involved in Drosophila tracheal cell migration and is upregulated following Drosophila larvae infection by *Pseudomonas entomophila* (Vodovar et al. 2005; Chanut-Delalande et al. 2007).

One candidate could be involved in the uptake or export of some important wound signal (*CG7627*) as this gene encodes for a multidrug resistant protein (MRP), part of the ABC transporter superfamily, involved in drug exclusion properties of the Drosophila blood–brain barrier (Tarnay et al. 2004; Mayer et al. 2009).

The kinase encoded by *grapes* is the Drosophila homolog of human Check1 (Chk1) involved in the DNA damage and mitotic spindle checkpoints (Fogarty et al. 1997; Furnari et al. 1997; Zachos et al. 2007). To our knowledge, all the Chk1 literature has focused on its role during the cell cycle. However, the Drosophila late embryonic epithelium is a quiescent tissue, even after wounding (data not shown). Understanding Grapes function in this context is a challenging task that could lead to new paradigms. One hypothesis is that Grapes is involved in tension sensing, as it is in the spindle checkpoint, or may uncover a cellular repair process that could help damaged cells “decide” to either die by apoptosis or participate in the repair process.

The remaining genes with a putative function represent a wide range of general metabolic processes (*aralar1*, *gs1*-like, *CG4389*, *CG9249*, *CG11089*, and *CG16833*), suggesting that healing the epithelium is a highly demanding process (Soehnge et al. 1997; Del Arco et al. 2000; Tweedie et al. 2009).

Finally, we have also selected a significant number of genes that have not yet been studied and do not contain identifiable protein domains (*CG2813*, *CG31805*, *CG6005*, *CG6750*, *CG10217*, *CG15170*, and *CG30010*). At the moment it is not possible to predict the role that these genes may play, but further study may help to identify novel wound healing regulatory mechanisms.

Possible role for β_H in wound healing: One of the mutants identified in our transposon screen was *kst*(11183), an insertion in the β_H-spectrin locus. This mutation is likely producing a truncated protein terminating three amino acids into the *P*element insertion (Figure 4A). Other mutations identified in nearby segments 14 (kst14, kst1) and 16 (kst1) lead to the production of a detectable truncated protein (Medina et al. 2002) so it is likely that *karst*(11183) mutation also gives rise to a truncated protein. These mutant forms of β_H lack approximately half of the wild-type protein, including a COOH-terminal PH domain region, which is involved in targeting the protein to the membrane (Medina et al. 2002), thus producing a potential dominant negative form of β_H. However, the *karst*(11183) mutant should still have maternally loaded wild-type protein, as previous studies describe a complete absence of maternal protein only by the third instar larval stage (Thomas et al. 1998). This maternal contribution is likely the main reason that this mutant, as well as the other mutants isolated in our screen, does not have a fully penetrant wound healing phenotype.

We show for the first time that β_H-spectrin localizes to the actomyosin purse string, a supracellular contractile cable that forms rapidly upon wound induction. Live imaging has demonstrated that actin and myosin can accumulate in this cable structure within minutes after wounding (Wood et al. 2002). Unfortunately, due to the size of the β_H gene (>13 kb) cloning and tagging it for live imaging is not possible using standard methods, but our experiments in fixed tissue tell us that β_H can accumulate very rapidly in this cable structure. We have observed β_H accumulation at the earliest time point technically feasible, 15 min postwounding (data not shown). These observations are consistent with previous studies, also in fixed tissue, demonstrating rapid changes in β_H localization during the process of cellularization in Drosophila embryos (Thomas and
Taken together, it is clear that at least the \(\beta_1 \) component of the membrane skeleton is not just a static structural scaffold as the name implies, but rather a dynamic protein capable of responding to or directing changes in cellular dynamics. Our studies suggest that polarized redistribution of \(\beta_1 \) exerts an essential function to facilitate actin-based cellular responses, such as cable accumulation/maintenance and wound edge filopodia dynamics, which are necessary to properly close a wound.

\(\beta_1 \) as a link between cell membranes and contractile rings: \(\beta_1 \) has been previously observed in association with actin “rings” during development of Drosophila and *C. elegans* (reviewed in Thomas 2001). Arguably, *C. elegans* provides an example of actin ring function most analogous to our wound edge purse string. During the final stages of *C. elegans* development, cortical arrays of actin in the outer epithelial cells, the hypodermis, dramatically reorganize to form parallel apically localized bundles of circumferential supracellular actin rings (McKeown et al. 1998; Prattis et al. 2005). In this system, sma1, the *C. elegans* ortholog of \(\beta_1 \), also localizes apically to these actin rings. In *sma1* mutants the rings fail to productively contract and begin to disorganize, losing connection to the cell membranes. An additional phenotype observed in these mutants is the inability of cells to change their shape, a process normally “directed” by these contractile rings, the end result being a short worm, a phenotype we see as functionally analogous to an unclosed wound in our system.

In Drosophila, \(\beta_1 \) has been previously implicated in modulating cell shape changes during apical constriction of follicle cells (a process also involving actin rings) and has been proposed to function as a link between cross-linked actin networks/rings and the cell membrane (Thomas 2001). Further studies revealed that the C-terminal domain of \(\beta_1 \) has the ability to directly modulate the apical membrane area by regulating endocytosis (Williams et al. 2004), adding one more tantalizing piece of evidence pointing to the fact that \(\beta_1 \) could be a major player in cell shape changes, not only as a structural link but also by directly modulating the membrane area in response to cytoskeletal clues (or vice versa).

Although we know from previous studies that the actin cable is not absolutely required for wound closure (Wood et al. 2002), the process takes much longer without one. In *Rho1* mutant embryos, cells lacking a cable are able to pull the wound closed using filopodia (Wood et al. 2002). The filopodial defect observed in *karst* mutants, adds another line of evidence to the absolute requirement of these structures for wound closure. In addition to the reduced actin cable accumulation and filopodial dynamics in *karst* mutants (which would lack the C-terminal domain responsible for membrane modulation), we also see a lack of cell shape change in the wound edge cells. Taken together, these data and the published work discussed above, introduce the intriguing possibility that \(\beta_1 \) could be serving as a link between wound edge dynamics and the coordinated cell shape changes usually observed in wild-type wound edge cells. The combination of the proposed ability of \(\beta_1 \) to modulate the apical membrane area as well as cross-link actin and act as an apical membrane-wide scaffold for other interactions, makes \(\beta_1 \) a good candidate to provide the physical link that would coordinate tissue-wide actions, such as supracellular actin cable contraction, with the individual cellular responses, such as cell shape change and polarized filopodia activity.

We thank Vitor Barbosa, Luís Teixeira, and Soren Prag for critically reading the manuscript and all the lab members for helpful discussions. We thank Graham Thomas for the generous gift of \(\beta_1 \)-specific antiserum no. 243 and Helena Iglesias for help with the statistical analysis. This work was supported by Fundação para a Ciência e a Tecnologia (IC. SFRH/BD/1729/2004; J.A.G. SFRH/BPD/21895/2005, PTDC/BIA-BCM/65872/2006, A.C.S. SFRH/BPD/24976/2005), European Union Framework Programs (LSHM-CT-2003-504468, ERC-2007-StG), and Human Frontiers Science Program (RF21/2007).

LITERATURE CITED

Arora, K., H. Dai, S. G. Kazuko, J. Jamal, M. B. O’Connor et al., 1995 The Drosophila schnurri gene acts in the Dpp/TGF beta signaling pathway and encodes a transcription factor homologous to the human MBP family. Cell 81: 781–790.

Borghese, L., G. Fletcher, J. Mathieu, A. Atzberger, W. C. Eaden et al., 2006 Systematic analysis of the transcriptional switch induced by wound closure in Drosophila. Dev. Cell 10: 497–508.

Bosch, M., F. Serras, E. Martín-Blanco and J. Baguna, 2005 JNK signaling pathway required for wound healing in regenerating Drosophila wing imaginal discs. Dev. Biol. 280: 73–86.

Chanut-Delalande, H., A. C. Jung, L. Lin, M. M. Baer, A. Bilstein et al., 2007 A genetic mosaic analysis with a repressible cell marker screen to identify genes involved in tracheal cell migration during Drosophila air sac morphogenesis. Genetics 176: 2177–2187.

Clappin, L., D. B. Jackson, M. Młodzik and D. Bohmann, 2001 Drosophila Fos mediates ERK and JNK signals via distinct phosphorylation sites. Genes Dev. 15: 1540–1553.

Cooper, L., C. Johnson, F. Burslem and P. Martin, 2005 Wound healing and inflammation genes revealed by array analysis of ‘macrophageless’ PC1 null mice. Genome Biol. 6: R5.

Davidson, L. A., A. M. Ezin and R. Keller, 2002 Embryonic wound healing by apical contraction and ingestion in Xenopus laevis. Cell Motil. Cytoskeleton 53: 163–176.

De Gregorio, E., P. T. Spellman, G. M. Rubin and B. Lemaître, 2001 Genom-wide analysis of the Drosophila immune response by using oligonucleotide microarrays. Proc. Natl. Acad. Sci. USA 98: 12590–12595.

Del Arco, A., M. Agudo and J. Satrustegui, 2000 Characterization of a second member of the subfamily of calcium-binding mitochondrial carriers expressed in human non-excitable tissues. Biochem. J. 345 (Pt 3): 725–732.

Fernandez, R., F. Takahashi, Z. Liu, R. Steward, D. Stein et al., 2000 The Drosophila shark tyrosine kinase is required for embryonic dorsal closure. Genes Dev. 14: 604–614.

Fogarty, P., S. D. Campbell, R. Ares-Shumays, B. S. Phalle, K. R. Yu et al., 1997 The Drosophila grape gene is related to checkpoint gene chk1/rad27 and is required for late syncytial division fidelity. Curr. Biol. 7: 418–426.

Frank, L. H., and C. Rushlow, 1996 A group of genes required for maintenance of the amnioserosa tissue in Drosophila. Development 122: 1345–1352.
Furnari, B., N. Rhind and P. Russell, 1997 Cdc25 mitotic inducer targeted by chk1 DNA damage checkpoint kinase. Science 277: 1495–1497.

Galko, M. J., and M. A. Krasnow, 2004 Cellular and genetic analysis of wound healing in Drosophila larvae. PLoS Biol. 2: E239.

Garcia-Fernandez B., I. Campos, J. Gerber, A. C. Santos and A. Jacinto, 2006 Epithelial rescaling. Int. J Dev. Biol. 50: 1459–1566.

Heinze, M., M. Koehler and C. Freund, 2007 Investigating the functional role of CD2BP2 in T cells. Int. Immunol. 19: 1313–1318.

Homsy, J. G., H. Jasper, X. G. Peralta, H. Wu, D. P. Kiehart et al., 2006 JNK signaling coordinates integrin and actin functions during Drosophila embryogenesis. Dev. Cell. 35: 427–434.

Hutson, M. S., Y. Tokutake, M. S. Chang, J. W. Bloom, S. Venakides et al., 2003 Forces for morphogenesis investigated with laser microscopy and quantitative modeling. Science 300: 145–149.

Jacinto, A., W. Wood, T. Balayo, M. Turmaine, A. Martinez-Arias et al., 2000 Dynamic actin-based epithelial adhesion and cell matching during Drosophila dorsal closure. Curr. Biol. 10: 1420–1426.

Kettman, J., M. Musilaty, B. B. Bao, J. A. Ortiz, C. A. Sorkin et al., 2009 Multiple transcription factor codes activate epidermal wound-response genes in Drosophila. Proc. Natl. Acad. Sci. USA 106: 2224–2229.

Landgren, L. A., C. P. Reiter, J. Antkiewicz, S. E. Wolf, L. V. Bussière et al., 2009 Drosophila STAM protein functions in direct association with the SH2 domain of Sra1 and Drosophila WAVE3: regulation of actin-based protrusions. Curr. Biol. 19: 173–181.

Ledoigre, S., J. D. Vannier, G. M. Herd, M. S. Hassan, M. D. Khin et al., 2009 The Berkeley Drosophila Genome Project gene disruption collection. Genes Dev. 23: 1781–1811.

Lennert, B., A. Kaitna, R. W. Lyman and S. F. Nusslein-Volhard, 2004 Receptor serine/threonine kinases implicated in the control of Drosophila body morphology and during Drosophila embryogenesis. In olax, dev. 205: 163–172.

Lennert, B., A. Kaitna, R. W. Lyman and S. F. Nusslein-Volhard, 2004 Receptor serine/threonine kinases implicated in the control of Drosophila body morphology and during Drosophila embryogenesis. In olax, dev. 205: 163–172.

Mardon, G., H. J. Jiang, M. R. Kanost and Y. Wang, 2003 Serine proteases and their homologs in the Drosophila melanogaster genome: an initial analysis of sequence conservation and phylogenetic relationships. Gene 304: 117–131.

Messina, J. V., E. D. Savenye, D. Lum and A. Beerdist, 2007 Dominant enhancers of Egfr in Drosophila melanogaster: genetic links between the Notch and Egfr signaling pathways. Genetics 174: 1139–1153.

Mestl, R. M. Lanot, D. Zachary and P. Manfruelli, 2002 JNK signaling pathway is required for efficient wound healing in Drosophila. Dev. Biol. 241: 145–156.

Offer, J. M., and A. Martinez Arias, 1993 puckered, a gene involved in position-specific cell differentiation in the dorsal epidermis of the Drosophila larva. Dev. Biol. (Suppl.): 251–259.

Rossie, J., P. J. Smith and A. J. Martin, 2007 Serum components and their role in the immune system. In olax, dev. 257: 167–178.

Scudder, A. and A. Letsou, 2005 Amnioserosa is required for dorsoventral axis formation. Genes Dev. 19: 308–320.

Scott, R. C. O. Schuldiner and T. P. Neufeld, 2004 Role in healing of starved autophagy in the Drosophila fat body. Dev. Cell 7: 167–178.

Sheardy, S., N. Lukanova, S. Barmada, A. Berman and S. Cherry, 2009 Autophagy is an essential component of Drosophila immunity against vesicular stomatitis virus. Immunol. 36: 588–598.

Smith, E. R., B. Winter, J. C. Eisenberg and A. Shilatifard, 2008 Regulation of the transcriptional activity of poised RNA polymerase II by the elongation factor ELL. Proc. Natl. Acad. Sci. USA 105: 8573–8578.

Snoeijer, H., X. Huang, M. Becker, D. Conover and M. Stern, 2007 Cloning and sequencing of ribosomal protein L27a and a gene similar to human GSI in Drosophila. Gene 185: 257–263.

Spradling, A. C., D. Stern, A. Beaton, E. J. Rhem, T. Laverty et al., 1999 The Berkeley Drosophila Genome Project gene disruption project: Single P-element insertions mutating 25% of vital Drosophila genes. Genetics 153: 135–177.

Stark, K. A., G. H. Yee, C. E. Roote, E. L. Williams, S. Zusman et al., 1997 A novel alpha integrin subunit associates with betaPS and functions in tissue morphogenesis and movement during Drosophila development. Development 124: 4583–4594.

Stramer, B., M. Winfield, T. Shaw, T. H. Millard, S. Woolner et al., 2008 Gene induction following wounding of wild-type ver...
sus macrophage-deficient Drosophila embryos. EMBO Rep. 9: 465–471.

Tarnay, J. N., F. Szeri, A. Ilia, T. Annilo, C. Sung et al., 2004 The dMRP/CG6214 gene of Drosophila is evolutionarily and functionally related to the human multidrug resistance-associated protein family. Insect Mol. Biol. 13: 539–548.

Thibault, S. T., M. A. Singer, W. Y. Miyazaki, B. Milash, N. A. Dompé et al., 2004 A complementary transposon tool kit for Drosophila melanogaster using P and piggyBac. Nat. Genet. 36: 283–287.

Thomas, G. H., 2001 Spectrin: the ghost in the machine. Bioessays 23: 152–160.

Thomas, G. H., and D. P. Kiehart, 1994 Beta-heavy-spectrin has a restricted tissue and subcellular distribution during Drosophila embryogenesis. Development 120: 2039–2050.

Thomas, G. H., and J. A. Williams, 1999 Dynamic rearrangement of the spectrin membrane skeleton during the generation of epithelial polarity in Drosophila. J. Cell Sci. 112(Pt 17): 2843–2852.

Thomas, G. H., E. C. Newberry, C. C. Korte, M. A. Bales, S. V. Muse et al., 1997 Intragenic duplication and divergence in the spectrin superfamily of proteins. Mol. Biol. Evol. 14: 1285–1295.

Thomas, G. H., D. C. Zarnescu, A. E. Juedes, M. A. Bales, A. Londergan et al., 1998 Drosophila beta-heavy-spectrin is essential for development and contributes to specific cell fates in the eye. Development 125: 2125–2134.

Ting, S. B., T. Wilanowski, A. Auden, M. Hall, A. K. Voss et al., 2003 Inositol- and folate-resistant neural tube defects in mice lacking the epithelial-specific factor Ghl3. Nat. Med. 9: 1513–1519.

Ting, S. B., J. Caddy, N. Hislop, T. Wilanowski, A. Auden et al., 2005a A homolog of Drosophila grainy head is essential for epithelial integrity in mice. Science 308: 411–413.

Ting, S. B., J. Caddy, T. Wilanowski, A. Auden, J. M. Cunningham et al., 2005b The epidermis of ghl3-null mice displays altered lipid processing and cellular hyperproliferation. Organogenesis 2: 33–35.

Tweedie, S., M. Ashburner, K. Falls, P. Leyland, P. McQuilton et al., 2009 FlyBase: enhancing Drosophila Gene Ontology annotations. Nucleic Acids Res. 37: 10.1093/nar/gkn1788.

Vodovar, N., M. Vinals, P. Liehl, A. Basset, J. Degrouard et al., 2005 Drosophila host defense after oral infection by an enteropathogenic Pseudomonas species. Proc. Natl. Acad. Sci. USA 102: 11414–11419.

Wang, S., V. Tsarouchas, N. Xylourgidis, N. Sabri, K. Tirlova et al., 2009 The tyrosine kinase Stimulator activates Grainy head and epidermal wound healing in Drosophila. Nat. Cell Biol. 11: 890–895.

Williams, J. A., B. MacIver, E. A. Klippel and G. H. Thomas, 2004 The C-terminal domain of Drosophila (beta) heavy-spectrin exhibits autonomous membrane association and modulates membrane area. J. Cell Sci. 117: 771–782.

Wilson, R. J., J. L. Goodman, V. B. Strelets and FlyBase Consortium, 2008 FlyBase: integration and improvements to query tools. Nucleic Acids Res. 36: D588–D593.

Wood, W., A. Jacinto, R. Grose, S. Woolner, J. Gale et al., 2002 Wound healing recapitulates morphogenesis in Drosophila embryos. Nat. Cell Biol. 4: 907–912.

Wu, Y., A. R. Brock, Y. Wang, K. Fujitani, R. Ueda et al., 2009 A blood-borne PDGF/VEGF-like ligand initiates wound-induced epidermal cell migration in Drosophila larval. Curr. Biol. 19: 1473–1477.

Yano, T., S. Mita, H. Oshimi, Y. Oshima, Y. Fujimoto et al., 2008 Autophagic control of listeria through intracellular innate immune recognition in drosophila. Nat. Immunol. 9: 908–916.

Young, P., E. A. M. Richman, A. S. Ketchum and D. P. Kiehart, 1993 Morphogenesis in Drosophila requires nonmuscle myosin heavy chain function. Genes Dev. 7: 29–41.

Zachos, G., E. J. Black, M. Walker, M. T. Scott, P. Vagnarelli et al., 2007 Chk1 is required for spindle checkpoint function. Dev. Cell 12: 247–260.

Zarnescu, D. C., and G. H. Thomas, 1999 Apical spectrin is essential for epithelial morphogenesis but not apicobasal polarity in Drosophila. J. Cell Biol. 146: 1075–1086.

Zink, B., and R. Paro, 1989 In vivo binding pattern of a trans- regulator of homeotic genes in Drosophila melanogaster. Nature 337: 468–471.

Communicating editor: D. I. Greenstein
GENETICS

Supporting Information
http://www.genetics.org/cgi/content/full/genetics.109.110288/DC1

Genetic Screen in *Drosophila melanogaster* Uncovers a Novel Set of Genes Required for Embryonic Epithelial Repair

Isabel Campos, Jennifer A. Geiger, Ana Catarina Santos, Vanessa Carlos and Antonio Jacinto

Copyright © 2009 by the Genetics Society of America

DOI: 10.1534/genetics.109.110288
Insertional Mutant	n=	% holes			
140uf07279	33	12.1			
Aals-met09449	61	4.9			
Aals-pro09660	59	0.0			
abd01907	57	1.8			
abd01908	30	10.0			
Ac00215	62	1.6			
Act00971	50	6.0			
Akap200EP238	41	0.0			
ak01261	42	11.9			
am00332	38	10.5			
Antp06610	0	*			
Ant106648	206	27.7			
AP-2003132	56	3.6			
Apc2-03212	48	8.3			
aralar1EP1506	283	33.2			
Arc-p2900819	189	43.4			
Atf512EP15062	37	0.0			
Atf502275	49	14.3			
Atf87C04425	92	22.8			
Atf89PS1007	86	30.2			
Atf7160396	0	**			
att-ORFA00114 or att-ORFB00114	46	15.2			
Atch05745	49	2.0			
bch066813	213	11.7			
Gene	Symbol	p-Value	q-Value		
--------	--------	---------	---------		
beat-V	06401	56	8.9		
Best1	007108	86	14.0		
Bif	66161	66	0.0		
Bruce	00924	59	16.9		
Btk29A	P2157	52	7.7		
c(2)M	EP2115	83	0.0		
c02493		25	0.0		
c05413		55	5.5		
c05496		51	0.0		
c05504		40	10.0		
c07013		26	0.0		
Cad96C	07355	65	3.1		
CAP-D2	P03381	48	2.1		
Cap-D3	02131	182	26.4		
Cap-G	G0093	89	18.0		
Cap-GP	P2146	10	0.0		
capG	H01676	45	8.9		
capuH	00258	96	21.9		
Cdt1	HP3346	0	*		
cdcl	03195	31	9.7		
Cdc8	05337	57	17.5		
Cdc12	H06260	48	12.5		
CG10137	014516	40	10.0		
CG10139	016035	36	2.8		
CG10154	01176	57	1.8		
CG10168	009185	43	7.0		
CG10195	506099	55	0.0		
Gene	Description	Start	End	Length	Coverage
--------	-------------	-------	-------	--------	----------
CG10217		205	95.1		
CG10259		94	22.3		
CG10289		35	0.0		
CG10335		38	21.1		
CG10341		50	8.0		
CG10343		111	15.3		
CG10413		50	2.0		
CG10414		52	3.8		
CG10429		110	10.9		
CG10561		76	15.8		
CG10600		160	29.4		
CG10602		40	27.5		
CG10627		67	14.9		
CG10628		69	27.5		
CG10650		44	13.6		
CG10658		90	7.8		
CG10754		43	0.0		
CG10907		46	21.7		
CG11007		55	3.6		
CG11030		127	27.6		
CG11070		18	0.0		
CG11089		130	35.4		
CG11166		97	30.9		
CG11180		67	3.0		
CG11188		99	11.1		
CG11200		55	10.9		
CG11241		62	12.9		
Gene Symbol	Gene ID	Time (h)			
-------------	---------	----------			
CG11266	g07714	66	13.6		
CG11319	g06271	40	2.5		
CG11419	g01070	39	5.1		
CG11426	g00246	49	4.1		
CG11457	g08265	47	12.8		
CG11486	EP0109	55	0.0		
CG11490	g08523	59	0.0		
CG11583	01124	39	0.0		
CG11593	g06001	52	0.0		
CG11839	g09501	55	18.2		
CG11851	EP0021	112	27.7		
CG11896	g08516	61	0.0		
CG11927	04401 or mRPS2	133	22.6		
CG11984	14981	42	4.8		
CG12063	g06002	104	20.2		
CG12140	g05649	100	29.0		
CG12267	g05999	40	0.0		
CG12314	001342	143	23.1		
CG12348	001488	58	3.4		
CG12413	00268	114	27.2		
CG12753	087673	69	0.0		
CG12829	g02002	48	8.3		
CG12901	g07656	70	7.1		
CG12934	00283	247	37.7		
CG13018	g05355	90	27.8		
CG13109	EP0238	56	8.9		
Gene	Chromosome	Distance			
-----------	------------	----------			
CG13131	3096310	84			
CG13377	401398	47			
CG13398	403476	49			
CG13444	502566	54			
CG13466	602655	42			
CG13527	704452	63			
CG13551	803979	63			
CG13594	908918	57			
CG13689	100073	52			
CG13776	110248	88			
CG13792	1201301	68			
CG13993	132570	35			
CG14017	145326	51			
CG14023	154290	44			
CG14057	165520	52			
CG14133	1785716	59			
CG14275	1800410	48			
CG14544	191091	42			
CG14598	201297	67			
CG14655	214488	35			
CG14830	220532	48			
CG14894	234037	43			
CG14957	245937	52			
CG14992	250653	31			
CG15170	260629	75			
CG15173	2705160	21			
CG15436	2807763	51			
Gene Symbol	Gene ID	p-value			
-------------	---------	---------			
CG15443	0.03556	83			
CG15443	0.03827	34			
CG15443	0.03116	101			
CG15625	0.03818	36			
CG15625	0.03581	56			
CG15625	0.08079	98			
CG15695	0.04218	55			
CG15696	0.04976	60			
CG15706	0.06092	48			
CG1600EP	0.0198	140			
CG1603	0.02443	62			
CG16075	0.06671	108			
CG16786	0.03819	60			
CG1681	0.06400	38			
CG16833	0.01119	84			
CG16865	0.04739	53			
CG16904	0.03307	33			
CG16904	0.03104	54			
CG16947	0.00837	50			
CG16977	0.02981	64			
CG17086	0.02395	28			
CG17141	0.05038	84			
CG17202	0.01979	116			
CG17211	0.03045	36			
CG17221	0.00569	61			
CG17350	0.03687	48			
CG17379	0.05380	40			
CG17562	68	13.2			
CG17597	110	0.9			
CG17612	91	18.7			
CG17658	57	7.0			
CG17712	63	0.0			
CG1776	75	8.0			
CG17838	105	21.0			
CG17912	52	5.8			
CG18131	51	2.0			
CG18158	60	0.0			
CG18522	62	19.4			
CG18539	48	8.3			
CG18606	55	12.7			
CG18619	51	7.8			
CG18877	65	0.0			
CG1894	49	4.1			
CG1957	25	8.0			
CG19620	26	3.8			
CG2107	50	0.0			
CG2121	53	5.7			
CG2493	118	21.2			
CG2747	40	12.5			
CG2767	103	15.5			
CG2819	142	79.6			
CG2921	36	2.8			
CG2950	55	9.1			
CG3001	104	42.3			
Gene	Value1	Value2			
------------	--------	--------			
CG30158	65	3.1			
CG30299	55	1.8			
CG30431	58	8.6			
CG30437	42	14.3			
CG30497	106	0.0			
CG31004	59	10.2			
CG31005	137	22.6			
CG31120	61	27.9			
CG31121	36	16.7			
CG31211	55	5.5			
CG31316	51	5.9			
CG31337	65	10.8			
CG31360	157	29.3			
CG31374	48	6.3			
CG31600	20	0.0			
CG31710	47	0.0			
CG31720	53	5.7			
CG31730	47	14.9			
CG31736	58	17.2			
CG31805	114	33.3			
CG31851	42	11.9			
CG31855	140	27.1			
CG31871	34	20.6			
CG31877	73	1.4			
CG31899	46	0.0			
CG31901	64	3.1			
CG31902	52	0.0			
Gene	Expression	Log2 Fold Change			
------------	------------	------------------			
CG3190	51	11.8			
CG3193	53	3.8			
CG3195	43	18.6			
CG3196	50	24.0			
CG3197	18	22.2			
CG3208	47	0.0			
CG3211	60	3.3			
CG3213	156	15.4			
CG3217	56	7.1			
CG3226	52	5.8			
CG3235	68	10.3			
CG3237	58	3.4			
CG3241	60	3.3			
CG3242	0	*			
CG3249	149	18.1			
CG3250	63	3.2			
CG3267	62	17.7			
CG3269	56	7.1			
CG3285	65	1.5			
CG3294	221	32.6			
CG3297	41	14.6			
CG3316	48	2.1			
CG3317	163	13.5			
CG3319	280	47.9			
CG3322	61	13.1			
CG3335	27	11.1			
CG3393	51	5.9			
Code	Value1	Value2			
----------	--------	--------			
CG3412	112	8.0			
CG3412	49	0.0			
CG3436	57	8.8			
CG3436	68	0.0			
CG3436	59	6.8			
CG3438	42	16.7			
CG3440	98	16.3			
CG3542	56	17.9			
CG3563	56	8.9			
CG3590	198	26.8			
CG3609	107	29.0			
CG3609	48	16.7			
CG3645	51	21.6			
CG3662	51	3.9			
CG3683	44	0.0			
CG3700	43	2.3			
CG3714	58	12.1			
CG3764	65	3.1			
CG3803	50	4.0			
CG3983	55	29.1			
CG4389	167	38.9			
CG4398	61	9.8			
CG4484	42	4.8			
CG4497	119	22.7			
CG4554	85	0.0			
CG4594	113	4.4			
CG4658	56	3.6			
Gene	Expression				
----------	------------				
CG4674	27				
CG4738	50				
CG4757	43				
CG4774	116				
CG4774	76				
CG4836	75				
CG4848	51				
CG4851	58				
CG4933	50				
CG4942	26				
CG4959	24				
CG5003	48				
CG5091	59				
CG5126	53				
CG5147	48				
CG5148	48				
CG5149	61				
CG5149	70				
CG5156	53				
CG5168	38				
CG5181	46				
CG5189	41				
CG5198	147				
CG5276	68				
CG5290	91				
CG5342	64				
CG5384	55				

CG4674: 086455
CG4738: 09322
CG4757: 07133
CG4774: 01874
CG4774: 01121
CG4836: 04238
CG4848: 03040
CG4851: 02813
CG4933: 01978
CG4942: 00071
CG4959: 02213
CG5003: 02566
CG5091: 04215
CG5126: 09916
CG5147: 03412
CG5148: 05646
CG5149: 06708
CG5149: 03983
CG5156: 05647
CG5168: 04080
CG5181: 01211
CG5189: 01140
CG5198: 07150
CG5276: 03385
CG5290: 002563
CG5342: 01976
CG5384: 06779
Gene	Feature	Value		
CG5451	e03563	71		
		1.4		
CG5451	e03690	64		
		9.4		
CG5508	f04927	36		
		2.8		
CG5515	e02644	93		
		5.4		
CG5525	EP642	51		
		2.0		
CG5567	f03921	88		
		10.2		
CG5589	f06132	53		
		0.0		
CG5602	f06992	46		
		6.5		
CG5626	f02731	30		
		10.0		
CG5640	f01321	76		
		47.4		
CG5645	f03479	48		
		0.0		
CG5660	f01783	93		
		6.5		
CG5758	c01197	112		
		28.6		
CG5758	f0197	59		
		13.6		
CG5780	EP315	46		
		2.2		
CG5807	f05043	41		
		2.4		
CG5850	f03122	36		
		0.0		
CG5888	f02257	61		
		6.6		
CG5931	f01711	62		
		14.5		
CG5970	f00883	41		
		22.0		
CG6005	f07117	100		
		38.0		
CG6113	f07009	67		
		10.4		
CG6126	f09005	64		
		6.3		
CG6136	f02814	36		
		2.8		
CG6171	f07144	43		
		0.0		
CG6180	f02988	233		
		9.0		
CG6196	f09865	107		
		10.3		
ID	Value	13	0.0	
--------	-------	------	-------	
CG6225		13	0.0	
CG6357		60	23.3	
CG6393		57	12.3	
CG6568		54	9.3	
CG6608		36	5.6	
CG6637		35	8.6	
CG6678		59	8.5	
CG6686		126	19.0	
CG6724		59	0.0	
CG6729		43	0.0	
CG6739		46	4.3	
CG6746		51	17.6	
CG6750		212	37.3	
CG6792		60	0.0	
CG6856		120	18.3	
CG6907		224	27.7	
CG6931		52	5.8	
CG6951		33	0.0	
CG7029		64	12.5	
CG7081		59	15.3	
CG7191		43	0.0	
CG7202		49	2.0	
CG7214		72	0.0	
CG7263		55	18.2	
CG7371		75	9.3	
CG7394		0	*	
CG7532		70	5.7	
Gene	Expression	Code		
-------	------------	--------		
CG7549	31	0.0		
CG7627	282	30.9		
CG7638	52	1.9		
CG7639	16	6.3		
CG7759	0	**		
CG7806	103	27.2		
CG7816	66	1.5		
CG7816	50	2.0		
CG7816	82	24.4		
CG7844	60	8.3		
CG7861	61	13.1		
CG7870	64	18.8		
CG7891	40	5.0		
CG7911	40	5.0		
CG8064	75	6.7		
CG8083	43	0.0		
CG8086	46	0.0		
CG8233	105	21.9		
CG8270	30	13.3		
CG8412	61	9.8		
CG8414	59	11.9		
CG8419	40	7.5		
CG8494	83	27.7		
CG8516	33	3.0		
CG8552	59	25.4		
CG8552	105	23.8		
CG8745	58	3.4		
Gene ID	Frequency	Clustering		
----------	-----------	------------		
CG8777	67	13.4		
CG8861	34	5.9		
CG9003	78	1.3		
CG9143	54	25.9		
CG9162	60	0.0		
CG9249	93	7.5		
CG9249	182	51.1		
CG9264	30	3.3		
CG9265	79	8.9		
CG9289	72	27.8		
CG9293	93	24.7		
CG9296	49	0.0		
CG9320	51	25.5		
CG9510	52	1.9		
CG9555	88	15.9		
CG9596	46	19.6		
CG9603	32	9.4		
CG9603	59	8.5		
CG9669	68	1.5		
CG9778	105	27.6		
CG9922	34	2.9		
CG9932	60	0.0		
CG9987	70	7.1		
CheA29a	130	5.4		
CHORD	50	12.0		
cir5	55	0.0		
CB1	61	0.0		
Gene/Protein	Accession	Value		
-------------	-----------	-------		
Cpr50Ch	e02005	53		
Cpr51A	e03998	56		
Cpr62Be	e01009	65		
Cpr64Ad	e02305	43		
CSN3	e02855	52		
CSN7	e02176	65		
Cyp4c3	e02505	43		
CSN7	e02176	65		
cv-004940		50		
cv-007633		69		
CycA	e05304	50		
Cyp4c3	e06288	34		
cype	e03803	54		
d-00148		93		
Dcr-2	e095544	50		
def-00109		52		
def-02039		80		
Dip-C	e06706	49		
DXApol-α	e02592	114		
DopErR	e02142	52		
dream	e00801	189		
dr-01777		36		
dys-00009		50		
dyn-p2.5-02174		53		
e02022		55		
Eaat2	e03003	22		
Eaf6	e06605	37		
Ect4	e03349	136		
Ect4	e03749	49		
Gene	Value			
--------------	-------			
Edg84A	48			
egfP0093	55			
dIF-1A	46			
dIF2B-gamma	280			
elr80020	64			
Elongin-C	51			
emp01154	68			
Ena01613	58			
Ena02743	51			
EP1244	109			
EP2404	32			
EP2515	40			
EP2520	59			
EP3542	57			
EP732	57			
EP937	58			
EP995	63			
Eps-1	19			
esd01154	140			
emp00417	61			
Etv21C	58			
f04861	68			
fred02229	60			
gavz	70			
Gas185365	111			
gskhe	36			
gka03598	50			
Gene	Strain	Length	Activity	
----------	-----------	--------	----------	
glf02674		221	59.7	
Glw-R1B	f01737	49	4.1	
gog02564		34	0.0	
Gp28h01184		92	6.5	
Gop7.5g5403		43	0.0	
gyp00087		171	43.9	
GpiH02488		162	35.2	
GaiD606796		62	17.7	
GaiDg00084		44	9.1	
GaiEg00084		167	18.6	
Ga49Bh0219		47	21.3	
GY33A00834		108	25.0	
Hand003901		0	**	
hag00028		55	0.0	
Hdl25E02545		48	22.9	
hep00087		60	21.7	
HepEP2450		63	4.8	
Hepg00656		34	0.0	
HGTX00083		0	*	
Hepf00246		74	6.8	
HephSP410		41	0.0	
Hrb27C04375		0	**	
hsl007110		49	0.0	
HtaA2003785		50	17.2	
ima007155		108	4.6	
ire-1f00170		0	*	
itpEP2287		66	13.6	
Gene	Library	Scores		
-----------	---------	--------		
jhp004551	69	5.8		
k05816b	60	0.0		
KaiRIAd	68	20.6		
Khc02141	67	3.0		
kdc03205	63	20.6		
Kk02512	167	18.0		
kaf01902	37	13.5		
krimp00583	110	28.2		
krc02503	49	14.3		
ks011183	362	49.7		
l(2)34Fa	126	10.3		
l(2)k07433	56	3.6		
leaEP2502	0	***		
lig04268	112	20.5		
Liprin-αEp2141	63	0.0		
lmg00301	92	19.6		
lolaEP2537	54	0.0		
loq00791	51	2.0		
Lr4700177	52	7.7		
max01209	40	5.0		
mats00377	62	14.5		
Mdh411968	98	6.1		
MED15004180	58	8.6		
MED20099555	32	6.3		
Mg2EP28002a	38	0.0		
MESR3EP2221	57	5.3		
Met75Ca000116	44	2.3		
gene	expression	fold change		
--------	------------	-------------		
mlp00910	83	16.9		
mlp4009474	50	0.0		
M1d001445	25	4.0		
mlp002679	60	18.3		
morgEP1184	91	17.6		
mRpLJ005962	45	0.0		
mRpL2406092	48	16.7		
mRpL300543	80	10.0		
mRpL5104701	66	3.0		
mRpLg00642	95	5.3		
mRpS2103199	57	3.5		
mRpS2802339	50	6.0		
mRpS2803336	52	0.0		
mRpS3301766	103	20.4		
Mt3GPh04049	116	24.1		
MTA1-like00146	39	5.1		
NaCP60EP148 or RpL41EP148	71	5.6		
nAcRα-34E00672	30	16.7		
Ncks30C00661	37	10.8		
Nep402841	41	2.4		
nep00249	53	1.9		
Neu3-01935	229	48.5		
NLag01602	110	29.1		
nocturnin005983	50	12.0		
nox65142	48	8.3		
nox006114	62	25.8		
Notum00039	47	14.9		
Gene	Value1	Value2		
------------	--------	--------		
n-3yb	45	0.0		
nxf2	38	5.3		
Nat1F	57	10.5		
dlf41	82	22.0		
Optix	63	0.0		
Os35a	56	3.6		
otf6278	40	0.0		
Osit087607	0	**		
olkEP2017	105	16.2		
Pcaf	45	4.4		
Pcaf	50	0.0		
P01890	311	54.7		
PDCD-5	52	15.4		
Pde1I	59	13.6		
Pde1c	40	0.0		
pdm39828	30	16.7		
pgant402186	63	12.7		
Pcoa92367	58	8.6		
pae03506	74	4.1		
Phe98E	81	23.5		
Pldp06925	56	3.6		
pld01145	0	**		
Pp2A-29B	52	9.6		
frominin-lik	37	2.7		
ProsQ	40	0.0		
Pp18G05974	74	0.0		
Pp61P065292	56	1.8		
Protein/Genome	Gene ID	Value 1	Value 2	
----------------	---------	---------	---------	
Ptpmeg90147 or meth11090147		47	0.0	
pag93481		44	4.5	
qkr54B02079		121	9.9	
Rab1-01287		62	11.3	
Rab36G01805		62	0.0	
Rab6EP2397		38	0.0	
Rad1002242		107	26.2	
RhoGapEP1773		53	11.3	
Repgap1-04534		47	4.3	
Rec1-02614		42	9.5	
Rab002994		93	25.8	
Rep01510		63	0.0	
rep011801		42	0.0	
rho-5101415		66	0.0	
RhoGAPI00F08128		61	0.0	
RhoGEF2-01784		83	14.5	
RhaC-2EP2102		58	12.1	
Roc2EP2187		46	4.3	
Rph11-01628		47	17.0	
Rpm1EP05388		67	26.9	
RpS15-01611		60	15.0	
Rpt1EP2153 or CG17985EP2153		47	6.4	
Rep1-00605		43	4.7	
SAA00622		45	15.6	
Samuelo2949		59	20.3	
Sh02563		0	*	
Sep05078		52	9.6	
Gene	Symbol	Product	P-value	q-value
-------	--------	---------	---------	---------
SdhB	c00364	37	5.4	
sds2	c00975	62	21.0	
sec10	000365	77	1.3	
sec31	02461	51	11.8	
sec45	00080	80	22.5	
sec12	00416	212	43.9	
sepp	00211	63	12.7	
Shab	00095	61	9.8	
sidb	000577	130	59.2	
SMC2	004642	46	8.7	
sidb	00174	49	14.3	
sur	00971	84	6.0	
spic1	EP2282	36	0.0	
sp4	EP2237	60	0.0	
Spn1	02145	113	23.0	
Spn5	01214	108	22.2	
srm	EP2786	73	27.4	
SroG4	04709	65	3.1	
Ssb-c31a	02272	63	4.8	
sta6	01639	62	21.0	
Stam	00677	183	43.2	
Strn	Mlck	105	22.9	
su(Hgr)	04961	0	*	
Sur-G	02803	81	12.3	
Surp	00074	69	14.5	
Surf	004274	64	1.6	
synp	02397	51	11.8	
Gene	Symbol	ID	Value	
------	--------	------	-------	
SynX5	SynX5	P2313	51	
Taf6	Taf6	00090	139	
Tbp6	Tbp6	03198	54	
T-cf	T-cf	05367	0*	
Taf11	Taf11	000976	73	
Tex	Tex	000549	101	
TEAM	TEAM	01714	32	
TjIIIA-L	TjIIIA-L	00087	70	
TjHIIalpha	TjHIIalpha	01362	59	
TK	TK	000233 or Ect3	121	
TexFP1162	TexFP1162	40	0.0	
Top3α	Top3α	EP2372	47	
Topfor	Topfor	03115	36	
TaoC	TaoC	01760	228	
TafDEP578	TafDEP578	138	0.0	
tex00572	tex00572	55	9.1	
TscJ	TscJ	000910	58	
tup	tup	000913	0*	
Ubx	Ubx	000281	66	
UGP	UGP	007256	96	
UGP	UGP	005315	56	
Ugt58Fa	Ugt58Fa	05973	64	
Ugt86De	Ugt86De	00862	58	
UK11	UK11	05386	45	
unc-104	unc-104	11204	51	
uncEP124	uncEP124	46	4.3	
Usp	Usp	04888	68	
Gene	n	% Holes		
------------	---	---------		
wls06300	52	19.2		
Wwox04545	82	14.6		
yellow-e3e01012	112	25.9		
epsilon0907	59	22.0		
Zeta060020	0	**		

655 insertional mutant lines obtained from Bloomington Stock Centre and re-balanced with CyO-CTG or TM3-TTG, depending on insertion site, were screened for wound healing phenotypes as described in Material and Methods. Number of embryos analysed (n) and percentage of opened wounds approximately 16 hours post wounding (% holes) are depicted. * - lines impossible to balance with CyO-CTG or TM3-TTG, depending on insertion site; ** - lines impossible to wound or score due to strong morphological defects; *** - contaminated stocks.