A notion of fine continuity for BV functions on metric spaces *

Panu Lahti
Mathematical Institute, University of Oxford,
Andrew Wiles Building,
Radcliffe Observatory Quarter, Woodstock Road,
Oxford, OX2 6GG.
E-mail: lahti@maths.ox.ac.uk
June 15, 2018

Abstract

In the setting of a metric space equipped with a doubling measure supporting a Poincaré inequality, we show that BV functions are, in the sense of multiple limits, continuous with respect to a 1-fine topology, at almost every point with respect to the codimension 1 Hausdorff measure.

Acknowledgment: The research was funded by a grant from the Finnish Cultural Foundation. The author wishes to thank Nageswari Shanmugalingam for useful feedback on the paper. He also wishes to thank the University of Cincinnati, in which part of the research for this paper was conducted, for its kind hospitality.

*2010 Mathematics Subject Classification: 30L99, 26B30, 43A85.
Keywords: bounded variation, metric measure space, quasicontinuity, fine topology, fine continuity, upper hemicontinuity.
1 Introduction

It is known, in the generality of a metric measure space \((X, d, \mu)\) equipped with a doubling measure \(\mu\) supporting a Poincaré inequality, that Newton-Sobolev functions \(u \in N^{1,p}(X)\) are \(p\)-quasicontinuous. This means that there exists an open set \(G \subset X\) of small \(p\)-capacity such that the restriction \(u|_{X \setminus G}\) is continuous, see e.g. [6] or [5]. From this, one can derive another result, which states that Newton-Sobolev functions are \(p\)-finely continuous at \(p\)-quasi every point, that is, almost every point with respect to the \(p\)-capacity, see [8] or [23] or [4, Theorem 11.40]. The concept of \(p\)-fine continuity means continuity with respect to a suitable topology, the \(p\)-fine topology, which is somewhat stronger than the metric topology. For previous results on fine topology and fine continuity in the Euclidean setting, see also e.g. [10, 16, 26].

In [24] it was shown that BV functions on metric spaces are \(1\)-quasicontinuous in the sense of multiple limits. In this paper we introduce a notion of \(1\)-fine topology, and show that BV functions are \(1\)-finely continuous (that is, continuous with respect to the \(1\)-fine topology) at \(1\)-quasi every point, again in the sense of multiple limits. This is given in Theorem 5.2. Instead of \(1\)-quasi every point, one may equivalently speak about \(\mathcal{H}\)-almost every point, where \(\mathcal{H}\) is the codimension 1 Hausdorff measure.

Our definition of the \(1\)-fine topology is based on a concept of \(1\)-thinness, which is analogous to a concept of \(p\)-fatness, with \(p > 1\), given in the metric setting in [9] and originally defined in [25]. Let us also note that the proofs for fine continuity given in [8] and [23] involve the theory of \(p\)-harmonic functions, for \(p > 1\). While some results on \(1\)-harmonic functions, known as functions of least gradient, have been derived in [14, 15, 19], we do not use this theory, relying on a geometric tool known as the boxing inequality instead.

2 Preliminaries

In this section we introduce the necessary definitions and assumptions.

In this paper, \((X, d, \mu)\) is a complete metric space equipped with a Borel regular outer measure \(\mu\) satisfying a doubling property, that is, there is a constant \(C_d \geq 1\) such that

\[
0 < \mu(B(x, 2r)) \leq C_d \mu(B(x, r)) < \infty
\]
for every ball $B = B(x, r)$ with center $x \in X$ and radius $r > 0$. We also assume that X consists of at least two points.

In general, $C \geq 1$ will denote a constant whose particular value is not important for the purposes of this paper, and might differ between each occurrence. When we want to specify that a constant C depends on the parameters a, b, \ldots, we write $C = C(a, b, \ldots)$. Unless otherwise specified, all constants only depend on the doubling constant C_d and the constants C_P, λ associated with the Poincaré inequality defined below.

A complete metric space with a doubling measure is proper, that is, closed and bounded subsets are compact. Since X is proper, for any open set $\Omega \subset X$ we define $\text{Lip}_\text{loc}(\Omega)$ to be the space of functions that are Lipschitz in every $\Omega' \Subset \Omega$. Here $\Omega' \Subset \Omega$ means that Ω' is open and that $\overline{\Omega'}$ is a compact subset of Ω. Other local spaces of functions are defined similarly.

For any set $A \subset X$ and $0 < R < \infty$, the restricted spherical Hausdorff content of codimension 1 is defined by

$$H_R(A) := \inf \left\{ \sum_{i=1}^{\infty} \frac{\mu(B(x_i, r_i))}{r_i} : A \subset \bigcup_{i=1}^{\infty} B(x_i, r_i), r_i \leq R \right\}. \quad (2.1)$$

The codimension 1 Hausdorff measure of a set $A \subset X$ is given by

$$\mathcal{H}(A) := \lim_{R \to 0^+} \mathcal{H}_R(A).$$

The measure theoretic boundary $\partial^* E$ of a set $E \subset X$ is the set of points $x \in X$ at which both E and its complement have positive upper density, i.e.

$$\limsup_{r \to 0^+} \frac{\mu(B(x, r) \cap E)}{\mu(B(x, r))} > 0 \quad \text{and} \quad \limsup_{r \to 0^+} \frac{\mu(B(x, r) \setminus E)}{\mu(B(x, r))} > 0.$$

The measure theoretic interior and exterior of E are defined respectively by

$$I_E := \left\{ x \in X : \lim_{r \to 0^+} \frac{\mu(B(x, r) \setminus E)}{\mu(B(x, r))} = 0 \right\} \quad (2.2)$$

and

$$O_E := \left\{ x \in X : \lim_{r \to 0^+} \frac{\mu(B(x, r) \cap E)}{\mu(B(x, r))} = 0 \right\}. \quad (2.3)$$

A curve is a rectifiable continuous mapping from a compact interval into X. A nonnegative Borel function g on X is an upper gradient of an extended
real-valued function u on X if for all curves γ on X, we have

$$|u(x) - u(y)| \leq \int_\gamma g \, ds,$$

where x and y are the end points of γ. We interpret $|u(x) - u(y)| = \infty$ whenever at least one of $|u(x)|$, $|u(y)|$ is infinite. Upper gradients were originally introduced in [17].

For $1 \leq p < \infty$, we consider the following norm

$$\|u\|_{N^{1,p}(X)} := \|u\|_{L^p(X)} + \inf \|g\|_{L^p(X)},$$

with the infimum taken over all upper gradients g of u. The substitute for the Sobolev space $W^{1,p}(\mathbb{R}^n)$ in the metric setting is the Newton-Sobolev space

$$N^{1,p}(X) := \{u : \|u\|_{N^{1,p}(X)} < \infty\}.$$

For more on Newton-Sobolev spaces, we refer to [28, 5, 18].

Next we recall the definition and basic properties of functions of bounded variation on metric spaces, see [27]. See also e.g. [2, 11, 12, 29] for the classical theory in the Euclidean setting. For $u \in L^1_{\text{loc}}(X)$, we define the total variation of u on X to be

$$\|Du\|(X) := \inf \left\{ \liminf_{i \to \infty} \int_X g_{u_i} \, d\mu : u_i \in \text{Lip}_{\text{loc}}(X), u_i \to u \text{ in } L^1_{\text{loc}}(X) \right\},$$

where each g_{u_i} is an upper gradient of u_i. The total variation is clearly lower semicontinuous with respect to convergence in $L^1_{\text{loc}}(X)$. We say that a function $u \in L^1(X)$ is of bounded variation, and denote $u \in \text{BV}(X)$, if $\|Du\|(X) < \infty$. By replacing X with an open set $\Omega \subset X$ in the definition of the total variation, we can define $\|Du\|(\Omega)$. A μ-measurable set $E \subset X$ is said to be of finite perimeter if $\|D\chi_E\|(X) < \infty$, where χ_E is the characteristic function of E. The perimeter of E in Ω is also denoted by

$$P(E, \Omega) := \|D\chi_E\|(\Omega).$$

For any Borel sets $E_1, E_2 \subset X$ we have by [27, Proposition 4.7]

$$P(E_1 \cup E_2, X) \leq P(E_1, X) + P(E_2, X). \tag{2.4}$$

We will assume throughout that X supports a $(1,1)$-Poincaré inequality, meaning that there exist constants $C_P > 0$ and $\lambda \geq 1$ such that for every ball
every locally integrable function u on X, and every upper gradient g of u, we have

$$\int_{B(x,r)} |u - u_{B(x,r)}| \, d\mu \leq C pr \int_{B(x,\lambda r)} g \, d\mu,$$

where

$$u_{B(x,r)} := \int_{B(x,r)} u \, d\mu := \frac{1}{\mu(B(x,r))} \int_{B(x,r)} u \, d\mu.$$

By applying the Poincaré inequality to approximating locally Lipschitz functions in the definition of the total variation, we get the following $(1,1)$-Poincaré inequality for BV functions. There exists a constant C such that for every ball $B(x,r)$ and every $u \in L^1_{\text{loc}}(X)$, we have

$$\int_{B(x,r)} |u - u_{B(x,r)}| \, d\mu \leq Cr \frac{\|Du\|(B(x,\lambda r))}{\mu(B(x,\lambda r))}.$$

For μ-measurable sets $E \subset X$, the above can be written as

$$\min\{\mu(B(x,r) \cap E), \mu(B(x,r) \setminus E)\} \leq Cr P(E, B(x,\lambda r)).$$

For $1 \leq p < \infty$, the p-capacity of a set $A \subset X$ is given by

$$\text{Cap}_p(A) := \inf \|u\|_{N^1,p(X)},$$

where the infimum is taken over all functions $u \in N^{1,p}(X)$ such that $u \geq 1$ in A. If a property holds for all points outside a set of p-capacity zero, we say that it holds for p-quasi every point, or p-quasieverywhere.

The relative p-capacity of a set $A \subset X$ with respect to an open set $\Omega \subset X$ is given by

$$\text{cap}_p(A, \Omega) := \inf \int_{\Omega} g_u^p \, d\mu,$$

where the infimum is taken over functions $u \in N^{1,p}(X)$ and upper gradients g_u of u such that $u \geq 1$ in A and $u = 0$ in $X \setminus \Omega$. For basic properties satisfied by capacities, such as monotonicity and countable subadditivity, see e.g. [5].

The BV-capacity of a set $A \subset X$ is

$$\text{Cap}_{\text{BV}}(A) := \inf \|u\|_{\text{BV}(X)},$$

where the infimum is taken over all functions $u \in L^1_{\text{loc}}(X)$ and upper gradients g_u of u such that $u \geq 1$ in A and $u = 0$ in $X \setminus \Omega$. For basic properties satisfied by capacities, such as monotonicity and countable subadditivity, see e.g. [5].
where the infimum is taken over functions \(u \in \text{BV}(X) \) that satisfy \(u \geq 1 \) in a neighborhood of \(A \). Note that we understand BV functions to be \(\mu \)-equivalence classes, whereas we understand Newton-Sobolev functions to be defined everywhere (even though \(\| \cdot \|_{N^1,p(X)} \) is then only a seminorm).

Given a set \(E \subset X \) of finite perimeter, for \(\mathcal{H} \)-almost every \(x \in \partial^* E \) we have

\[
\gamma \leq \liminf_{r \to 0^+} \frac{\mu(E \cap B(x,r))}{\mu(B(x,r))} \leq \limsup_{r \to 0^+} \frac{\mu(E \cap B(x,r))}{\mu(B(x,r))} \leq 1 - \gamma \tag{2.8}
\]

where \(\gamma \in (0, 1/2] \) only depends on the doubling constant and the constants in the Poincaré inequality, see [1, Theorem 5.4]. For an open set \(\Omega \subset X \) and a set \(E \subset X \) of finite perimeter, we know that

\[
P(E, \Omega) = \int_{\partial^* E \cap \Omega} \theta_E \, d\mathcal{H}, \tag{2.9}
\]

where \(\theta_E : X \to [\alpha, C_d] \) with \(\alpha = \alpha(C_d, C_P, \lambda) > 0 \), see [1, Theorem 5.3] and [3, Theorem 4.6].

The jump set of \(u \in \text{BV}(X) \) is the set

\[
S_u := \{ x \in X : u^-(x) < u^+(x) \},
\]

where \(u^-(x) \) and \(u^+(x) \) are the lower and upper approximate limits of \(u \) defined respectively by

\[
u^-(x) := \sup \left\{ t \in \mathbb{R} : \lim_{r \to 0^+} \frac{\mu(B(x,r) \cap \{ u < t \})}{\mu(B(x,r))} = 0 \right\}
\]

and

\[
u^+(x) := \inf \left\{ t \in \mathbb{R} : \lim_{r \to 0^+} \frac{\mu(B(x,r) \cap \{ u > t \})}{\mu(B(x,r))} = 0 \right\}.
\]

In the Euclidean setting, results on the fine properties of BV functions can be formulated in terms of \(u^- \) and \(u^+ \), but in the metric setting, we need to consider a larger number of jump values. The reason for this is explained in Example 5.6. Thus we define the functions \(u^l, l = 1, \ldots, n := \lfloor 1/\gamma \rfloor \), as follows: \(u^1 := u^- \), \(u^n := u^+ \), and for \(l = 2, \ldots, n - 1 \) we define inductively

\[
u^l(x) := \sup \left\{ t \in \mathbb{R} : \lim_{r \to 0^+} \frac{\mu(B(x,r) \cap \{ u^{l-1}(x) + \delta < u < t \})}{\mu(B(x,r))} = 0 \quad \forall \delta > 0 \right\} \tag{2.10}
\]
provided $u^{l-1}(x) < u^{l}(x)$, and otherwise we set $u^{l}(x) = u^{r}(x)$. It can be shown that each u^{l} is a Borel function, and $u^{\land} = u^{1} \leq \ldots \leq u^{n} = u^{r}$.

We have the following notion of quasicontinuity for BV functions.

Theorem 2.1 ([24, Theorem 1.1]). Let $u \in \text{BV}(X)$ and let $\varepsilon > 0$. Then there exists an open set $G \subset X$ with $\text{Cap}_{1}(G) < \varepsilon$ such that if $y_{k} \to x$ with $y_{k}, x \in X \setminus G$, then

$$\min_{l_{2} \in \{1, \ldots, n\}} |u^{l_{1}}(y_{k}) - u^{l_{2}}(x)| \to 0$$

for each $l_{1} = 1, \ldots, n$.

Remark 2.2. The 1-capacity and Hausdorff contents are closely related: it follows from [13, Theorem 4.3, Theorem 5.1] that $\text{Cap}_{1}(A) = 0$ if and only if $\mathcal{H}(A) = 0$. Moreover, from [21, Lemma 3.4] it follows that $\text{Cap}_{1}(A) \leq 2C_{d}\mathcal{H}(A)$ for any set $A \subset X$. On the other hand, by combining [13, Theorem 4.3] and the proof of [13, Theorem 5.1], we obtain that

$$\mathcal{H}_{\varepsilon}(A) \leq C(C_{d}, C_{P}, \lambda, \varepsilon) \text{Cap}_{1}(A)$$

for any $A \subset X$ and $\varepsilon > 0$. Thus we can also control the size of the "exceptional set" G in Theorem 2.1 and elsewhere by its $\mathcal{H}_{\varepsilon}$-measure, for arbitrarily small $\varepsilon > 0$.

3 Rigidity results for the 1-capacity

In order to prove our main result, Theorem 5.2, we need to be able to modify the "exceptional set" G of Theorem 2.1 in a suitable way. In this section we show that sets can be enlarged in two different ways without increasing the 1-capacity significantly.

It is known that Cap_{1} is an outer capacity, meaning that

$$\text{Cap}_{1}(G) = \inf\{\text{Cap}_{1}(U) : U \text{ is open and } U \supset G\}$$

for any $G \subset X$, see e.g. [5, Theorem 5.31]. The following result is in the same spirit as this fact.

Lemma 3.1. For any $G \subset X$, we can find an open set $U \supset G$ with $\text{Cap}_{1}(U) \leq C \text{Cap}_{1}(G)$ and $P(U, X) \leq C \text{Cap}_{1}(G)$.

7
Proof. We can assume that $\text{Cap}_1(G) < \infty$. According to Remark 2.2, we have $\mathcal{H}_{1/2}(G) \leq C \text{Cap}_1(G)$. Take a covering $\{B(x_i, r_i)\}_{i \in \mathbb{N}}$ of the set G with $r_i \leq 1/2$ and

$$\sum_{i \in \mathbb{N}} \frac{\mu(B(x_i, r_i))}{r_i} \leq C \text{Cap}_1(G).$$

By [20, Lemma 6.2], for each $i \in \mathbb{N}$ there exists a radius $\tilde{r}_i \in [r_i, 2r_i]$ such that

$$P(B(x_i, \tilde{r}_i), X) \leq C_d \frac{\mu(B(x_i, \tilde{r}_i))}{\tilde{r}_i}.$$

By using the lower semicontinuity and subadditivity of perimeter, recall (2.4), we get

$$P\left(\bigcup_{i \in \mathbb{N}} B(x_i, \tilde{r}_i), X\right) \leq \sum_{i \in \mathbb{N}} P(B(x_i, \tilde{r}_i), X) \leq C_d \sum_{i \in \mathbb{N}} \frac{\mu(B(x_i, \tilde{r}_i))}{\tilde{r}_i} \leq C \text{Cap}_1(G).$$

So we can define $U := \bigcup_{i \in \mathbb{N}} B(x_i, \tilde{r}_i)$, with $U \supset G$, and then $P(U, X) \leq C \text{Cap}_1(G)$ and $\mathcal{H}_1(U) \leq C \text{Cap}_1(G)$, so that also $\text{Cap}_1(U) \leq C \text{Cap}_1(G)$ by Remark 2.2.

In proving our second rigidity result, we will use discrete convolutions of BV functions. By the doubling property of the measure μ, given any scale $R > 0$ we can pick a covering of the space X by balls $B(x_j, R)$, such that suitable dilated balls, say $B(x_j, 10\lambda R)$, have bounded overlap. More precisely, each $B(x_k, 10\lambda R)$ meets at most C balls $B(x_j, 10\lambda R)$. Given such a covering, we can take a partition of unity $\{\phi_j\}_{j=1}^\infty$ subordinate to it, such that $0 \leq \phi_j \leq 1$, each ϕ_j is a C/R-Lipschitz function, and $\text{supp}(\phi_j) \subset B(x_j, 2R)$ for each $j \in \mathbb{N}$ (see e.g. [7, Theorem 3.4]). Finally, we can define a discrete convolution v of any $u \in \text{BV}(X)$ with respect to the covering by

$$v := \sum_{j=1}^\infty u_{B(x_j, 5R)} \phi_j.$$

We know that v has an upper gradient

$$g = C \sum_{j=1}^\infty \chi_{B_j} \frac{\|Du\|(B(x_j, 10\lambda R))}{\mu(B(x_j, R))},$$

8
see e.g. the proof of [22, Proposition 4.1], and so by the bounded overlap of the balls $B(x_j, 10\lambda R)$, we have $\| g \|_{L^1(Y)} \leq C \| Du \| (X)$. We also have $\| v \|_{BV(Y)} \leq \| v \|_{N^{1,1}(Y)}$ (since Lipschitz functions are dense in the class $N^{1,1}(Y)$, see e.g. [5, Theorem 5.1]), and thus

$$\| v \|_{BV(Y)} \leq C \| u \|_{BV(Y)}.$$ \hspace{1cm} (3.1)

If $u \in BV(Y)$ and each $v_i, i \in \mathbb{N}$, is a discrete convolution of u at scale $1/i$, we know that for some $\bar{\gamma} = \bar{\gamma}(C_d, C_P, \lambda) \in (0, 1/2]$,

$$(1 - \bar{\gamma})u^\wedge(y) + \bar{\gamma}u^\vee(y) \leq \liminf_{i \to \infty} v_i(y) \leq \limsup_{i \to \infty} v_i(y) \leq \bar{\gamma}u^\wedge(y) + (1 - \bar{\gamma})u^\vee(y)$$ \hspace{1cm} (3.2)

for \mathcal{H}-almost every $y \in X$, see [22, Proposition 4.1].

Recall the definitions of the 1-capacity and the BV-capacity from (2.6) and (2.7). By [13, Theorem 4.3] we know that

$$\text{Cap}_{BV}(A) \leq \text{Cap}_1(A) \leq C \text{Cap}_{BV}(A)$$ \hspace{1cm} (3.3)

for any $A \subset Y$.

Now we prove the following rigidity result for the 1-capacity. Recall from (2.2) the definition of the measure theoretic interior I_G of a set G.

Proposition 3.2. Let $G \subset Y$ be an arbitrary set. Then

$$\text{Cap}_1(G \cup I_G \cup \partial^* G) \leq C \text{Cap}_1(G).$$

Proof. By (3.3) it is enough to prove this for Cap_{BV} instead of Cap_1. We can assume that $\text{Cap}_{BV}(G) < \infty$. Fix $\varepsilon > 0$ and choose $u \in BV(Y)$ with $u \geq 0, u \geq 1$ in a neighborhood of G, and $\| u \|_{BV(Y)} \leq \text{Cap}_{BV}(G) + \varepsilon$. Let each $v_i \in \text{Lip}_{loc}(Y), i \in \mathbb{N}$, be a discrete convolution of u at scale $1/i$, and let $N \subset Y$ be the set where (3.2) fails, so that $\mathcal{H}(N) = 0$. Thus we have (recall Remark 2.2)

$$\text{Cap}_{BV}(G \cup I_G \cup \partial^* G \setminus N) = \text{Cap}_{BV}(G \cup I_G \cup \partial^* G).$$

Clearly $u^\wedge \geq 1$ in $G \cup I_G$, and $u^\vee \geq 1$ in $\partial^* G$, so that

$$(1 - \bar{\gamma})u^\wedge(y) + \bar{\gamma}u^\vee(y) \geq \bar{\gamma}$$

Clearly $u^\wedge \geq 1$ in $G \cup I_G$, and $u^\vee \geq 1$ in $\partial^* G$, so that

$$(1 - \bar{\gamma})u^\wedge(y) + \bar{\gamma}u^\vee(y) \geq \bar{\gamma}$$
for every $y \in G \cup I_G \cup \partial^* G$, and so by (3.2),
\[
\liminf_{i \to \infty} v_i(y) \geq \frac{\tilde{\gamma}}{2} \quad \text{for every } y \in G \cup I_G \cup \partial^* G \setminus N.
\]
Define the sets
\[
G_i := \{x \in G \cup I_G \cup \partial^* G \setminus N : v_j(x) > \frac{\tilde{\gamma}}{2} \text{ for all } j \geq i\}, \quad i \in \mathbb{N}.
\]
Now we have $G_1 \subset G_2 \subset \ldots$ and $\bigcup_{i \in \mathbb{N}} G_i = G \cup I_G \cup \partial^* G \setminus N$. Since discrete convolutions are continuous, clearly $v_i > \frac{\tilde{\gamma}}{2}$ in a neighborhood of G_i and so we can use $2v_i/\tilde{\gamma}$ to estimate the BV-capacity of G_i. Furthermore, by [13, Theorem 3.4] we know that the BV-capacity is continuous with respect to increasing sequences of sets, and so we get
\[
\text{Cap}_{BV}(G \cup I_G \cup \partial^* G) = \text{Cap}_{BV}(G \cup I_G \cup \partial^* G \setminus N) = \text{Cap}_{BV} \left(\bigcup_{i \in \mathbb{N}} G_i \right)
\]
\[
= \lim_{i \to \infty} \text{Cap}_{BV}(G_i) \leq \frac{2}{\tilde{\gamma}} \liminf_{i \to \infty} \|v_i\|_{BV(X)}
\]
by the choice of u. By letting $\varepsilon \to 0$, we get the result. \hfill \Box

4 The 1-fine topology

Our result on 1-fine continuity will be based on a concept of a fine topology on the space. Let us first consider some background concerning the case $1 < p < \infty$. The following definitions and facts are given in [8] and [5, Section 11.6]. A set $A \subset X$ is p-thin at $x \in X$ if
\[
\int_0^1 \left(\frac{\text{cap}_p(A \cap B(x, r), B(x, 2r))}{\text{cap}_p(B(x, r), B(x, 2r))} \right)^{1/(p-1)} \frac{dr}{r} < \infty.
\]
A set $U \subset X$ is p-finely open if $X \setminus U$ is p-thin at every $x \in U$. The collection of p-finely open sets is a topology on X, called the p-fine topology. Let \overline{G}^p be the p-fine closure of $G \subset X$ (smallest p-finely closed set containing G). For an open set $\Omega \subset X$ with $\text{Cap}_p(X \setminus \Omega) > 0$ and $G \Subset \Omega$, we have
\[
\text{cap}_p(\overline{G}^p, \Omega) = \text{cap}_p(G, \Omega).
\]
A p-finely closed set is measure theoretically closed, as follows from [5, Corollary 11.25], and thus the measure theoretic closure $G \cup I_G \cup \partial^* G$ is a subset of G^p. Thus in the case $p > 1$, a stronger result than Proposition 3.2 holds.

In a similar vein, according to [9, Definition 1.1] (which is based on [25]) a set $A \subset X$ is said to be p-fat at a point $x \in X$ if
\[
\limsup_{r \to 0^+} \frac{\text{cap}_p(A \cap B(x, r), B(x, 2r))}{\text{cap}_p(B(x, r), B(x, 2r))} > 0.
\]

By [5, Proposition 6.16] we know that for small $r > 0$ and $1 \leq p < \infty$, $\text{cap}_p(B(x, r), B(x, 2r))$ is comparable to $\mu(B(x, r))/r^p$. This motivates the following definition.

Definition 4.1. We say that $A \subset X$ is 1-thin at the point $x \in X$ if
\[
\lim_{r \to 0^+} \frac{\text{cap}_1(A \cap B(x, r), B(x, 2r))}{\mu(B(x, r))} = 0.
\]

We also say that a set $U \subset X$ is 1-finely open if $X \setminus U$ is 1-thin at every $x \in U$.

Lemma 4.2. The collection of 1-finely open sets is a topology on X (called the 1-fine topology).

Proof. Let $\{U_i\}_{i \in I}$ be any collection of 1-finely open sets, and let $x \in \bigcup_{i \in I} U_i$. Then $x \in U_j$ for some $j \in I$. Thus
\[
\limsup_{r \to 0^+} r \frac{\text{cap}_1(B(x, r) \setminus \bigcup_{i \in I} U_i, B(x, 2r))}{\mu(B(x, r))} \\
\leq \limsup_{r \to 0^+} r \frac{\text{cap}_1(B(x, r) \setminus U_j, B(x, 2r))}{\mu(B(x, r))} = 0
\]
by the fact that U_j is 1-finely open. Thus $\bigcup_{i \in I} U_i$ is a 1-finely open set. Next let U_1, \ldots, U_k be 1-finely open sets, with $k \in \mathbb{N}$, and suppose $x \in \bigcap_{i=1}^k U_i$.

11
Then by the subadditivity of capacity

\[
\limsup_{r \to 0^+} r \frac{\text{cap}_1 \left(B(x, r) \setminus \bigcap_{i=1}^k U_i, B(x, 2r) \right) \mu(B(x, r))}{\mu(B(x, r))} \\
\leq \limsup_{r \to 0^+} \sum_{i=1}^k r \frac{\text{cap}_1 \left(B(x, r) \setminus U_i, B(x, 2r) \right) \mu(B(x, r))}{\mu(B(x, r))} \\
\leq \sum_{i=1}^k \limsup_{r \to 0^+} \frac{\text{cap}_1 \left(B(x, r) \setminus U_i, B(x, 2r) \right) \mu(B(x, r))}{\mu(B(x, r))} = 0
\]

by the fact that each \(U_i\) is 1-finely open. Thus \(\bigcap_{i=1}^k U_i\) is a 1-finely open set.

Let \(\overline{G}^1\) be the 1-fine closure of \(G \subset X\) (smallest 1-finely closed set containing \(G\)). In the case \(p > 1\), a crucial step in showing that Newton-Sobolev functions are \(p\)-finely continuous (i.e. continuous with respect to the \(p\)-fine topology) at \(p\)-quasi every point is showing that \(\text{cap}_p(\overline{G}^1, \Omega) = \text{cap}_p(G, \Omega)\), see the discussion earlier in this section.

Open Problem. Is it true that \(\text{Cap}_1(\overline{G}^1) = \text{Cap}_1(G)\) for every \(G \subset X\)?

For us it will be enough to have a weaker result that we prove in Proposition 4.4. Following [21], we first prove the following local version of the boxing inequality.

Lemma 4.3. Let \(x \in X\), let \(r > 0\), and let \(G \subset X\) be a \(\mu\)-measurable set with

\[
\frac{\mu(G \cap B(x, 2r))}{\mu(B(x, 2r))} \leq \frac{1}{2C_d^d}.
\]

Then \(\text{cap}_1(I_G \cap B(x, r), B(x, 2r)) \leq CP(G, B(x, 2r))\).

Proof. Fix \(y \in I_G \cap B(x, r)\). Since \(y \in I_G\), there exists \(s \in (0, r/32\lambda)\) such that

\[
\frac{\mu(G \cap B(y, s))}{\mu(B(y, s))} > \frac{1}{2}.
\]

On the other hand, for all \(t \in (r/32\lambda, r/16\lambda)\) we have \(B(x, 2r) \subset B(y, 128\lambda t)\) and then

\[
\frac{\mu(G \cap B(y, t))}{\mu(B(y, t))} \leq C_d \frac{\mu(G \cap B(x, 2r))}{\mu(B(x, 2r))} \leq \frac{1}{2}
\]

by the fact that each \(U_i\) is 1-finely open. Thus \(\bigcap_{i=1}^k U_i\) is a 1-finely open set.
by (4.1). Thus by repeatedly doubling the radius s, we eventually obtain a radius $t_y \in (0, r/16\lambda]$ such that

$$
\frac{1}{2C_d} < \frac{\mu(G \cap B(y, t_y))}{\mu(B(y, t_y))} \leq \frac{1}{2}.
$$

By the relative isoperimetric inequality (2.5), this implies that

$$
\mu(B(y, t_y)) \leq C \mu(G \cap B(y, t_y)) \leq C t_y P(G, B(y, \lambda t_y)). \quad (4.2)
$$

Define the function

$$
w(z) := \max \left\{ 0, 1 - \frac{\text{dist}(z, B(y, 5\lambda t_y))}{5\lambda t_y} \right\}, \quad (4.3)
$$

so that $w = 1$ in $B(y, 5\lambda t_y)$ and $w = 0$ outside $B(y, 10\lambda t_y)$. Note that w has an upper gradient $g := \frac{1}{5\lambda t_y} \chi_{B(y, 10\lambda t_y) \setminus B(y, 5\lambda t_y)}$. Then since $B(y, 10\lambda t_y) \subset B(x, 2r),

$$
\text{cap}_1(B(y, 5\lambda t_y), B(x, 2r)) \leq \int_{B(y, 10\lambda t_y)} g \, d\mu \leq \frac{\mu(B(y, 10\lambda t_y))}{5\lambda t_y}.
$$

Take a covering $\{B(y, \lambda t_y)\}_{y \in I_G \cap B(x, r)}$. By the 5-covering theorem, we can choose a countable disjoint collection $\{B(y_i, \lambda t_i)\}_{i \in \mathbb{N}}$ such that the balls $B(y_i, 5\lambda t_i)$ cover $I_G \cap B(x, r)$. Then we have by the countable subadditivity of capacity

$$
\text{cap}_1(I_G \cap B(x, r), B(x, 2r)) \leq \sum_{i \in \mathbb{N}} \text{cap}_1(B(y_i, 5\lambda t_i), B(x, 2r))
\leq \sum_{i \in \mathbb{N}} \frac{\mu(B(y_i, 10\lambda t_i))}{5\lambda t_i}
\leq C \sum_{i \in \mathbb{N}} \frac{\mu(B(y_i, t_i))}{t_i}
\leq \sum_{i \in \mathbb{N}} \frac{\mu(B(y_i, 5\lambda t_i))}{5\lambda t_i}
\leq \sum_{i \in \mathbb{N}} \mu(B(y_i, \lambda t_i))
\leq C \sum_{i \in \mathbb{N}} P(G, B(y_i, \lambda t_i))
\leq P(G, B(x, 2r)). \quad (4.2)
\]
It is easy to see that for any set $A \subset X$ and any ball $B(x, r)$,
\[
\text{cap}_1(A \cap B(x, r), B(x, 2r)) \leq C \mathcal{H}(A \cap B(x, r)).
\] (4.4)
This can be deduced by using suitable cutoff functions similar to those given in (4.3).

Proposition 4.4. For any $G \subset X$ we have $\text{Cap}_1(G^1) \leq C \text{Cap}_1(G)$.

Proof. We can assume that $\text{Cap}_1(G) < \infty$. First assume also that G is open and that $P(G, X) < \infty$. By [4, Theorem 2.4.3] we know that if ν is a Radon measure on X, $t > 0$, and $A \subset X$ is a Borel set for which we have
\[
\limsup_{r \to 0^+} r \frac{\nu(B(x, r))}{\mu(B(x, r))} \geq t
\]
for all $x \in A$, then $\nu(A) \geq t \mathcal{H}(A)$. Since G is of finite perimeter, we have $\mathcal{H}(\partial^* G) < \infty$ by (2.9). By using (4.4) and the above density result with $\nu = \mathcal{H}|_{\partial^* G}$, we get
\[
\limsup_{r \to 0^+} r \frac{\text{cap}_1(\partial^* G \cap B(x, r), B(x, 2r))}{\mu(B(x, 2r))} \leq C \limsup_{r \to 0^+} \frac{\mathcal{H}(\partial^* G \cap B(x, 2r))}{\mu(B(x, 2r))} = 0
\] (4.5)
for \mathcal{H}-almost every $x \in X \setminus \partial^* G$, that is, for every $x \in X \setminus (\partial^* G \cup N)$ with $\mathcal{H}(N) = 0$.

By Lemma 4.3 if $x \in X$ and $r > 0$ satisfy
\[
\frac{\mu(G \cap B(x, 2r))}{\mu(B(x, 2r))} \leq \frac{1}{2C^d_{\log_2(128 \lambda)}},
\]
then $\text{cap}_1(I_G \cap B(x, r), B(x, 2r)) \leq CP(G, B(x, 2r))$. Thus we get for all $x \in X \setminus (I_G \cup \partial^* G \cup N)$
\[
\limsup_{r \to 0^+} r \frac{\text{cap}_1(I_G \cap B(x, r), B(x, 2r))}{\mu(B(x, r))} \leq C \limsup_{r \to 0^+} \frac{P(G, B(x, 2r))}{\mu(B(x, r))} \\
\leq C \limsup_{r \to 0^+} \frac{\mathcal{H}(\partial^* G \cap B(x, 2r))}{\mu(B(x, r))} \\
= 0.
\]
By combining this with (4.5), we have
\[
\limsup_{r \to 0^+} r \frac{\text{cap}_1((I_G \cup \partial^* G) \cap B(x, r), B(x, 2r))}{\mu(B(x, r))} = 0
\]
for all \(x \in X \setminus (I_G \cup \partial^* G \cup N) \). Since \(G \) is open, \(G \subset I_G \). Thus \(I_G \cup \partial^* G \cup N \supset G \) is a 1-finely closed set, so that \(\overline{G^1} \subset I_G \cup \partial^* G \cup N \). By Proposition 3.2 we have
\[
\text{Cap}_1(I_G \cup \partial^* G \cup N) = \text{Cap}_1(I_G \cup \partial^* G) \leq C \text{Cap}_1(G).
\]
Thus we have the result when \(G \) is open and of finite perimeter. In the general case, by Lemma 3.1 we can choose an open set \(U \supseteq G \) with \(\text{Cap}_1(U) \leq C \text{Cap}_1(G) \) and \(P(U, X) < \infty \). Thus we have
\[
\text{Cap}_1(G^1) \leq \text{Cap}_1(U^1) \leq C \text{Cap}_1(U) \leq C \text{Cap}_1(G).
\]

\(\square \)

5 Fine continuity

Since BV functions can have multiple jump values \(u^1, \ldots, u^n \) in their jump sets (recall the definition from (2.10)), we need to consider a notion of continuity for set-valued functions.

Definition 5.1. Let \(\mathcal{U} \) be a topology on \(X \). We say that the function \(y \mapsto \{u^1(y), \ldots, u^n(y)\} \) is *upper hemicontinuous* with respect to \(\mathcal{U} \) at the point \(x \) if for every \(\varepsilon > 0 \), there exists \(U \in \mathcal{U} \) with \(x \in U \) such that
\[
\min_{l_2 \in \{1, \ldots, n\}} |u^{l_1}(y) - u^{l_2}(x)| < \varepsilon
\]
for each \(l_1 = 1, \ldots, n \) and all \(y \in U \).

Now we can prove the main result of this paper.

Theorem 5.2. Let \(u \in \text{BV}(X) \). Then the function \(y \mapsto \{u^1(y), \ldots, u^n(y)\} \) is 1-finely upper hemicontinuous, i.e. upper hemicontinuous with respect to the 1-fine topology, at \(\mathcal{H} \)-almost every \(x \in X \).
Proof. Take sets $G_i \subset X$ with $\text{Cap}_1(G_i) < 1/i$, $i \in \mathbb{N}$, as given by our quasicontinuity-type result, Theorem 2.1. Then also

$$\text{Cap}_1(G_i^1) < C/i$$

by Proposition 4.4. For 1-quasi every and thus for \mathcal{H}-almost every $x \in X$, we have $x \notin \bigcap_{i \in \mathbb{N}} G_i^1$. Fix such x, so that $x \notin G_j^1$ for some $j \in \mathbb{N}$, and fix $\varepsilon > 0$. Theorem 2.1 gives a radius $r > 0$ such that

$$\min_{l_2 \in \{1, \ldots, n\}} |u^{l_1}(y) - u^{l_2}(x)| < \varepsilon$$

for each $l_1 = 1, \ldots, n$ and all $y \in B(x, r) \setminus G_j$, in particular for all $y \in B(x, r) \setminus G_j^1$. But $B(x, r) \setminus G_j^1$ is a 1-finely open set containing x. Thus we have the result.

Corollary 5.3. Let $u \in N^{1,1}(X)$. Then u is 1-finely continuous at 1-quasi every $x \in X$.

Recall that we understand functions in the class $N^{1,1}(X)$ to be defined everywhere, unlike BV functions that are defined only up to sets of μ-measure zero.

Proof. Since Lipschitz functions are dense in $N^{1,1}(X)$, see [6] or [5, Theorem 5.1], we have $N^{1,1}(X) \subset \text{BV}(X)$, so that Theorem 5.2 applies to u. By [21, Theorem 4.1, Remark 4.2], there exists $N \subset X$ with $\text{Cap}_1(N) = \mathcal{H}(N) = 0$ such that every $x \in X \setminus N$ is a Lebesgue point, that is,

$$\lim_{r \to 0^+} \int_{B(x, r)} |u - u(x)| \, d\mu = 0.$$

Thus $u(x) = u^1(x) = \ldots = u^n(x)$ for every such x. Assume that the function $y \mapsto \{u^1(y), \ldots, u^n(y)\}$ is 1-finely upper semicontinuous at $x \in X \setminus N$, which is true for \mathcal{H}-almost every and thus 1-quasi every point $x \in X$. Let $\varepsilon > 0$. By Theorem 5.2 there exists a 1-finely open set $U \ni x$ such that

$$\min_{l_2 \in \{1, \ldots, n\}} |u^{l_1}(y) - u^{l_2}(x)| < \varepsilon$$

for each $l_1 = 1, \ldots, n$ and all $y \in U$. Then $U \setminus N$ is a 1-finely open set containing x, and $|u(y) - u(x)| < \varepsilon$ for all $y \in U$. \qed
Now consider the following. We know (see e.g. [29, Remark 5.9.2]) that if \(u \in L^1(X) \) has a Lebesgue point at \(x \in X \), i.e.

\[
\lim_{r \to 0^+} \int_{B(x, r)} |u - u^\vee(x)| \, d\mu = 0,
\]

then there exists a set \(A_x \ni x \) with density 1 at \(x \), such that \(u^\vee|_{A_x} \) is continuous (instead of \(u^\vee \) we could consider some other pointwise representative). Similarly, by using the analogs of Lebesgue's differentiation theorem for BV functions, see [24, Theorem 5.3], we obtain the following.

Proposition 5.4. Let \(u \in BV(X) \). Then for \(H \)-almost every \(x \in X \) there exists a set \(A_x \ni x \) with density 1 at \(x \) such that if \(y_k \to x \) with \(y_k \in A_x \), then

\[
\min_{l_2 \in \{1, \ldots, n\}} |u^{l_1}(y_k) - u^{l_2}(x)| \to 0
\]

for each \(l_1 = 1, \ldots, n \).

From Theorem 5.2 we get the following strengthening of this result.

Proposition 5.5. Let \(u \in BV(X) \). Then for \(H \)-almost every \(x \in X \) there exists a set \(A_x \ni x \) with

\[
\lim_{r \to 0^+} \frac{\mathcal{H}_1(B(x, r) \setminus A_x)}{\mu(B(x, r))} = 0
\]

such that if \(y_k \to x \) with \(y_k \in A_x \), then

\[
\min_{l_2 \in \{1, \ldots, n\}} |u^{l_1}(y_k) - u^{l_2}(x)| \to 0
\]

for each \(l_1 = 1, \ldots, n \).

Proof. In the proof of Theorem 5.2 we showed that for \(H \)-almost every \(x \in X \), there exists a 1-finely open set \(U \ni x \) such that if \(y_k \to x \) with \(y_k \in U \), then

\[
\min_{l_2 \in \{1, \ldots, n\}} |u^{l_1}(y_k) - u^{l_2}(x)| \to 0
\]

for all \(l_1 = 1, \ldots, n \). By using first Remark 2.2 and then [5, Proposition 6.16], we get for small \(r > 0 \)

\[
\mathcal{H}_1(B(x, r) \setminus U) \leq C \operatorname{Cap}_1(B(x, r) \setminus U) \leq C \operatorname{cap}_1(B(x, r) \setminus U, B(x, 2r)).
\]

Thus we can take \(A_x = U \).
Roughly speaking, if Proposition 5.4 says that the complement of A_x cannot have significant “volume” close to x, Proposition 5.5 says that it cannot have significant “surface area” either.

The reason for considering more than two jump values is explained in the following example, which is essentially from [24, Example 5.1].

Example 5.6. Consider the one-dimensional space

$$X := \{ x = (x_1, x_2) \in \mathbb{R}^2 : x_1 = 0 \text{ or } x_2 = 0 \}$$

consisting of the two coordinate axes. Equip this space with the Euclidean metric inherited from \mathbb{R}^2, and the 1-dimensional Hausdorff measure. This measure is doubling and supports a $(1, 1)$-Poincaré inequality. Moreover, we can take $\gamma = 1/4$ in (2.8), and then the number of jump values defined in (2.10) is $n = 1/\gamma = 4$. Let

$$u := \chi_{\{x_1 > 0\}} + 2\chi_{\{x_2 > 0\}} + 3\chi_{\{x_1 < 0\}} + 4\chi_{\{x_2 < 0\}}.$$

For brevity, denote the origin $(0, 0)$ by 0. Now $S_u = \{0\}$ with $\mathcal{H}(\{0\}) = 2$, and $(u^1(0), u^2(0), u^3(0), u^4(0)) = (1, 2, 3, 4)$. The function

$$x \mapsto \{u^1(x), u^2(x), u^3(x), u^4(x)\}$$

is easily seen to be upper hemicontinuous everywhere (even with respect to the metric topology), but this would not be the case if we considered fewer than 4 jump values.

The following very simple example demonstrates that we cannot in general have 1-fine upper hemicontinuity at every point.

Example 5.7. Let $X = [-1, 1] \times [-1, 1] \subset \mathbb{R}^2$ with the Euclidean distance and the 2-dimensional Lebesgue measure \mathcal{L}^2. Since we now have $\gamma = 1/2$ in (2.8), see e.g. [2] Theorem 3.59], we only consider the two jump values u^\wedge and u^\vee of a given BV function u, recall (2.10). Denoting $x = (x_1, x_2)$, let

$$u(x_1, x_2) = \begin{cases}
1, & x_1 < 0, \\
0, & x_1 \geq 0, x_2 \leq 0, \\
2, & x_1 \geq 0, x_2 > 0.
\end{cases}$$
Clearly \(u \in \text{BV}(X) \). For brevity, denote the origin \((0,0)\) by 0. Take \(\varepsilon = 1 \). If \(x \mapsto (u^\wedge(x), u^\vee(x)) \) were 1-finely continuous at the origin, there would exist a 1-finely open set \(U \ni 0 \) with
\[
\min\{|u^\wedge(y) - u^\wedge(0)|, |u^\wedge(y) - u^\vee(0)|\} < 1
\]
for all \(y \in U \), so necessarily \(u^\wedge(y) = 0 \) or \(u^\wedge(y) = 2 \) at these points. However, \(U \) must necessarily intersect \(\{y_1 < 0\} \), since
\[
\liminf_{r \to 0^+} r \cap 1_{\{y_1 < 0\} \cap B(0,r)}(B(0,2r)) > 0.
\]
On the other hand, \(u^\wedge(y) = 1 \) for all \(y \in \{y_1 < 0\} \). Thus 1-fine upper hemicontinuity fails at the origin. However, it does hold at every other point, and \(\mathcal{H}(0) = 0 \).

Note that if \(E \subset X \) and \(u = \chi_E \), then \(x \in I_E \) means that \(u^\wedge(x) = u^\vee(x) = 1 \), \(x \in O_E \) means that \(u^\wedge(x) = u^\vee(x) = 0 \), and \(x \in \partial^* E \) means that \(u^\wedge(x) = 0 \) and \(u^\vee(x) = 1 \).

The following example concerning the enlarged rationals illustrates the need to consider upper hemicontinuity with respect to the 1-fine topology instead of the metric topology.

Example 5.8. Consider the Euclidean space \(\mathbb{R}^2 \). Let \(\{q_i\}_{i \in \mathbb{N}} \) be an enumeration of \(\mathbb{Q} \times \mathbb{Q} \subset \mathbb{R}^2 \), and define
\[
E := \bigcup_{i \in \mathbb{N}} B(q_i, 2^{-i}).
\]
Clearly \(L^2(E) \leq \pi \). By the lower semicontinuity and subadditivity of perimeter, see [2,4], we can estimate
\[
P(E, \mathbb{R}^2) \leq \sum_{i=1}^{\infty} P(B(q_i, 2^{-i}), \mathbb{R}^2) \leq 2\pi \sum_{i=1}^{\infty} 2^{-i},
\]
so that \(P(E, \mathbb{R}^2) < \infty \), and then also \(\mathcal{H}(\partial^* E) < \infty \). However, \(\partial E = \mathbb{R}^2 \setminus E \). Thus, denoting \(u := \chi_E \), for every \(x \in O_E \) there exists a sequence \(y_k \to x \) with \(y_k \in E \subset I_E \) such that
\[
u^\wedge(y_k) = u^\vee(y_k) = 1 \neq 0 = u^\wedge(x) = u^\vee(x).
\]
Thus at almost every point \(x \in \mathbb{R}^2 \setminus E \), the function \(y \mapsto \{u^\wedge(y), u^\vee(y)\} \) fails to be upper hemicontinuous with respect to the metric topology.
References

[1] L. Ambrosio, Fine properties of sets of finite perimeter in doubling metric measure spaces, Calculus of variations, nonsmooth analysis and related topics. Set-Valued Anal. 10 (2002), no. 2-3, 111–128.

[2] L. Ambrosio, N. Fusco, D. Pallara, Functions of bounded variation and free discontinuity problems., Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2000. xviii+434 pp.

[3] L. Ambrosio, M. Miranda, Jr., and D. Pallara, Special functions of bounded variation in doubling metric measure spaces, Calculus of variations: topics from the mathematical heritage of E. De Giorgi, 1–45, Quad. Mat., 14, Dept. Math., Seconda Univ. Napoli, Caserta, 2004.

[4] L. Ambrosio and P. Tilli, Topics on analysis in metric spaces, Oxford Lecture Series in Mathematics and its Applications, 25. Oxford University Press, Oxford, 2004. viii+133 pp.

[5] A. Björn and J. Björn, Nonlinear potential theory on metric spaces, EMS Tracts in Mathematics, 17. European Mathematical Society (EMS), Zürich, 2011. xii+403 pp.

[6] A. Björn, J. Björn, and N. Shanmugalingam, Quasicontinuity of Newton-Sobolev functions and density of Lipschitz functions on metric spaces, Houston J. Math. 34 (2008), no. 4, 1197–1211.

[7] A. Björn, J. Björn, and N. Shanmugalingam, Sobolev extensions of Hölder continuous and characteristic functions on metric spaces, Canad. J. Math. 59 (2007), no. 6, 1135–1153.

[8] J. Björn, Fine continuity on metric spaces, Manuscripta Math. 125 (2008), no. 3, 369–381.

[9] J. Björn, P. MacManus, and N. Shanmugalingam, Fat sets and pointwise boundary estimates for p-harmonic functions in metric spaces, J. Anal. Math. 85 (2001), 339–369.
[10] H. Cartan, *Théorie générale du balayage en potentiel newtonien*, Ann. Univ. Grenoble. Sect. Sci. Math. Phys. (N.S.) **22**, (1946). 221–280.

[11] L. C. Evans and R. F. Gariepy, *Measure theory and fine properties of functions*, Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992. viii+268 pp.

[12] E. Giusti, *Minimal surfaces and functions of bounded variation*, Monographs in Mathematics, 80. Birkhäuser Verlag, Basel, 1984. xii+240 pp.

[13] H. Hakkarainen and J. Kinnunen, *The BV-capacity in metric spaces*, Manuscripta Math. **132** (2010), no. 1-2, 51–73.

[14] H. Hakkarainen, J. Kinnunen, and P. Lahti, *Regularity of minimizers of the area functional in metric spaces*, Adv. Calc. Var. **8** (2015), no. 1, 55–68.

[15] H. Hakkarainen, R. Korte, P. Lahti, and N. Shanmugalingam, *Stability and continuity of functions of least gradient*, Anal. Geom. Metr. Spaces **3** (2015), Art. 9.

[16] J. Heinonen, T. Kilpeläinen, and O. Martio, *Nonlinear potential theory of degenerate elliptic equations*, Dover Publications, Inc., Mineola, NY, 2006. xii+404 pp.

[17] J. Heinonen and P. Koskela, *Quasiconformal maps in metric spaces with controlled geometry*, Acta Math. **181** (1998), no. 1, 1–61.

[18] J. Heinonen, P. Koskela, N. Shanmugalingam, and J. Tyson, *Sobolev spaces on metric measure spaces: an approach based on upper gradients*, New Mathematical Monographs **27**, Cambridge University Press (2015), i–xi+448.

[19] J. Kinnunen, R. Korte, A. Lorent, and N. Shanmugalingam, *Regularity of sets with quasiminimal boundary surfaces in metric spaces*, J. Geom. Anal. **23** (2013), no. 4, 1607–1640.

[20] J. Kinnunen, R. Korte, N. Shanmugalingam, and H. Tuominen, *A characterization of Newtonian functions with zero boundary values*,

21
[21] J. Kinnunen, R. Korte, N. Shanmugalingam, and H. Tuominen, *Lebesgue points and capacities via the boxing inequality in metric spaces*, Indiana Univ. Math. J. **57** (2008), no. 1, 401–430.

[22] J. Kinnunen, R. Korte, N. Shanmugalingam, and H. Tuominen, *Pointwise properties of functions of bounded variation on metric spaces*, Rev. Mat. Complut. **27** (2014), no. 1, 41–67.

[23] R. Korte, *A Caccioppoli estimate and fine continuity for superminimizers on metric spaces*, Ann. Acad. Sci. Fenn. Math. **33** (2008), no. 2, 597–604.

[24] P. Lahti and N. Shanmugalingam, *Fine properties and a notion of quasicontinuity for BV functions on metric spaces*, http://arxiv.org/abs/1511.05504.

[25] J. Lewis, *Uniformly fat sets*, Trans. Amer. Math. Soc. **308** (1988), no. 1, 177–196.

[26] J. Malý and W. P. Ziemer, *Fine regularity of solutions of elliptic partial differential equations*, Mathematical Surveys and Monographs, 51. American Mathematical Society, Providence, RI, 1997. xiv+291 pp.

[27] M. Miranda, Jr., *Functions of bounded variation on “good” metric spaces*, J. Math. Pures Appl. (9) **82** (2003), no. 8, 975–1004.

[28] N. Shanmugalingam, *Newtonian spaces: An extension of Sobolev spaces to metric measure spaces*, Rev. Mat. Iberoamericana **16**(2) (2000), 243–279.

[29] W. P. Ziemer, *Weakly differentiable functions. Sobolev spaces and functions of bounded variation*, Graduate Texts in Mathematics, 120. Springer-Verlag, New York, 1989. xvi+308 pp.