Circadian profiling reveals higher histamine plasma levels and lower diamine oxidase serum activities in 24% of patients with suspected histamine intolerance compared to food allergy and controls

Medizinische Klinik 1 – Gastroenterologie, Pneumologie und Endokrinologie
des Universitätsklinikums Erlangen

Direktor: Prof. Dr. med. M. F. Neurath

Der Medizinischen Fakultät
der Friedrich-Alexander-Universität
Erlangen-Nürnberg

zur

Erlangung des Doktorgrades Dr. med.

vorgelegt von

Theresa Cornelia Pinzer
Als Dissertation genehmigt

von der Medizinischen Fakultät
der Friedrich-Alexander-Universität Erlangen-Nürnberg

Vorsitzender des Promotionsorgans: Prof. Dr. Markus F. Neurath
Gutachter: Prof. Dr. Yurdagül Zopf
Gutachter: Prof. Dr. Peter Konturek

Tag der mündlichen Prüfung: 04. August 2020
Meinen Eltern gewidmet
Table of content

1. Zusammenfassung 1

 Tagesprofile zeigen bei 24 % der Patienten mit Verdacht auf Histaminintoleranz höhere Histaminspiegel im Plasma und niedrigere Diaminoxidase-Aktivitäten im Serum als bei Nahrungsmittelallergikern und Kontrollprobanden

2. Einleitung – Einordnung in den fachwissenschaftlichen Kontext 4

 2.1. Nahrungsmittelunverträglichkeiten 4

 2.2. Histamin 8

 2.2.1. Biogene Amine 8

 2.2.2. Histamin: Struktur, Biosynthese und Vorkommen 8

 2.2.3. Histaminabbau 9

 2.2.4. Histaminrezeptoren 11

 2.3. Histaminintoleranz 13

 2.3.1. Epidemiologie 13

 2.3.2. Definition und Pathomechanismus 13

 2.3.3. Symptome 14

 2.3.4. Diagnostik 15

3. Original paper 18

4. Attachment 19

 4.1. Bibliography regarding the introduction 19

 4.2. List of abbreviations regarding the introduction 28

5. List of publications 29

6. Acknowledgment 30
1. Zusammenfassung

Tagesprofile zeigen bei 24 % der Patienten mit Verdacht auf Histaminintoleranz höhere Histaminspiegel im Plasma und niedrigere Diaminoxidase-Aktivitäten im Serum als bei Nahrungsmittelallergikern und Kontrollprobanden

Hintergrund und Ziele

Unverträglichkeitsreaktionen gegen Nahrungsmittel sind häufig und umfassen alle nahrungsabhängigen Beschwerden. Dabei werden immunologisch bedingte Nahrungsmittelallergien von nicht immunologisch bedingten Nahrungsmittelintoleranzen differenziert. Kohlenhydratverwertungsstörungen wie die Laktose-, Fruktose- und Sorbitmalabsorption zählen zu den häufigsten nicht immunologischen Unverträglichkeiten von Nahrungsmitteln, während die Histaminintoleranz mit einer Prävalenz von etwa 1 bis 3 % der Gesamtbevölkerung deutlich seltener ist. Diese basiert auf einer Abbaustörung von überwiegend exogen aufgenommenem Histamin (histaminreiche Lebensmittel, u.a. Fleisch, Käse und Alkohol). Als Pathomechanismus wird eine verminderte Aktivität des intestinalen Enzmys Diaminoxidase (DAO) vermutet, welche Histamin abbaut. Die Symptomatik der Histaminintoleranz ist sehr vielfältig und kann sich an fast allen Organsystemen manifestieren. Die Beschwerden umfassen gastrointestinale (Bauchschmerzen, Diarrhoe, Meteorismus), kutane (Urtikaria, Pruritus, Flush), respiratorische (Asthmaanfälle, Rhinorrhoe) sowie kardiale (Hypotonie, Arrhythmien) Symptome und Kopfschmerzen. Der Nachweis dieser Erkrankung ist aufgrund der eingeschränkten labortechnischen Möglichkeiten erschwert. Die aktuelle S1-Leitlinie der DGAKI, der GPA, des AeDA und der SGAI empfiehlt bei Verdacht auf Unverträglichkeit gegenüber oral aufgenommenem Histamin eine orale Provokation mit Histamindihydrochlorid in aufsteigender Dosierung zur Festlegung einer individuellen Toleranzdosis durchzuführen. Laborchemisch kann eine erniedrigte DAO-Aktivität auf eine Histaminintoleranz hinweisen. Aufgrund der noch etwas niedrigen Sensitivität wurde der Test wiederholt kontrovers diskutiert. In der vorliegenden Studie sollten daher Tagesprofile der DAO und des Histamins erstellt werden, um dieses Diagnostikum innerhalb von Patientengruppen mit Verdacht auf Histaminintoleranz, Nahrungsmittelallergikern und Gesunden zu vergleichen.
Methoden

In dieser prospektiven Kohortenstudie wurden 65 Patientin eingeschlossen und drei Gruppen zugeordnet. Eine Woche vor und während der Untersuchungen nahmen alle Probanden normale Mischkost zu sich. Neben einer Ernährungsanalyse wurde eine detaillierte Anamnese inklusive eines Fragebogens zu den vorliegenden Beschwerden erhoben.

Allen Teilnehmern wurden Blutproben entnommen und zur Abklärung einer IgE-induzierten Allergie auf Gesamt-IgE und spezifische IgE gegen Nahrungsmittelallergene untersucht. Probanden mit positiven spezifischen IgE wurden als Nahrungsmittelallergiker eingestuft. Probanden mit Beschwerden, aber mit negativen spezifischen IgE und niedrigen Gesamt-IgE, wurden der Gruppe mit Verdacht auf Histaminintoleranz zugeordnet. Gesunde Kontrollprobanden zeigten keine nahrungsabhängigen Beschwerden und unauffällige Blutparameter. Anschließend wurden bei allen Probanden wiederholt Blutentnahmen über einen Zeitraum von 24 Stunden durchgeführt, um die Schwankungen der DAO-Aktivität im Serum (gemessen mit REA) und des Histaminspiegels im Plasma (gemessen mit ELISA) zu erfassen und somit ein Tagesprofil dieser beiden Parameter zu erstellen.

Ergebnisse und Beobachtungen

Insgesamt wurden 64 Probanden in die Studie eingeschlossen, davon 10 Gesunde. 21 Patienten wurden aufgrund deutlich erhöhter Gesamt-IgE sowie positiver spezifischer IgE gegen Nussmischung, Weizen- und Roggenmehl, Sellerie, Tomate, Sojabohne und Milcheiweiß als Nahrungsmittelallergiker kategorisiert. Bei 33 Patienten wurde eine Histaminintoleranz vermutet. Tatsächlich lag bei 24 % (8 von 33) dieser Patienten eine Abbaustörung des exogen aufgenommenen Histamins vor, charakterisiert durch erhöhte Histaminspiegel und eine signifikant erniedrigte DAO-Aktivität im Tagesverlauf. Trotz typischer klinischer Symptome wiesen die restlichen 25 Probanden mit Verdacht auf Histaminintoleranz normale Histaminspiegel und DAO-Aktivitäten auf, die daher im weiteren Verlauf als „Patienten mit Nahrungsmittelhypersensitivität“ bezeichnet wurden. Bei diesen Probanden zeigten sich im Rahmen der Untersuchungen eher
Nahrungsmittelintoleranzen gegen Fruchtose, Laktose und Sorbit. Ebenso zeigte sich in dieser Gruppe häufiger ein Diarrhö-dominante Reizdarmsyndrom-Kategorisierung.

Die klinische Symptomatik der Patienten mit Histaminabbaustörung, Nahrungsmittelhypersensitivität und Nahrungsmittelallergien reichte von typischen gastrointestinalen Beschwerden (Übelkeit, Erbrechen, Bauchschmerzen, Diarrhoe), kutanen Reaktionen (Pruritus, Urtikaria), respiratorischen Beschwerden (nasale Obstruktion, Rhinorrhoe, Asthmaanfälle) bis zu Kopfschmerzen und unterschied sich nicht wesentlich zwischen den Gruppen. Auch die Analyse sowohl der Tageszufuhr an Makronährstoffen, des Alkohol- und Nikotinkonsums sowie weiterer Parameter im Blut ergab keine signifikanten Unterschiede.

Schlussfolgerungen

Bei einem relevanten Anteil der Patienten mit Verdacht auf Histaminintoleranz geht eine verminderte DAO-Aktivität mit erhöhten Histaminspiegeln im Blut einher und weist somit auf das Vorliegen einer Histaminintoleranz hin. Allein anhand der klinischen Symptomatik kann die Histaminintoleranz nicht von anderen Nahrungsmittelintoleranzen und Nahrungsmittelallergien differenziert werden. Dies wird zusätzlich durch die fehlende Korrelation zwischen subjektiven Beschwerden und den im Blut gemessenen Histaminparametern erschwert. Weitere Untersuchungen sind essentiell, um das Nachweisverfahren der Histaminintoleranz zu verbessern. Hierbei sollte möglicherweise die wiederholte Bestimmung des Histaminspiegels im Plasma und der DAO-Aktivität im Serum berücksichtigt werden.
2. Einleitung – Einordnung in den fachwissenschaftlichen Kontext

2.1 Nahrungsmittelunverträglichkeiten

Nahrungsmittelunverträglichkeiten (NMU, englisch: *adverse reactions to food*) umfassen alle reproduzierbaren, unerwünschten Reaktionen, die nach der Aufnahme von Lebensmitteln auftreten (Bruijnzeel-Koomen et al., 1995). Insbesondere Frauen nach der Pubertät sind von solch nahrungsabhängigen Beschwerden wesentlich häufiger betroffen als Männer (Afify und Pali-Scholl, 2017). Diese Symptome führen dazu, dass viele Betroffene aus Angst bestimmte Lebensmittel strikt vermeiden (Fitzgerald und Frankum, 2017). Sie sollten daher frühzeitig erkannt werden, um eine ausgewogene Ernährung und somit gute Lebensqualität zu gewährleisten.

Zur richtigen Behandlung muss eindeutig abgegrenzt werden, welche Ursache den Beschwerden zugrunde liegt. Die Begriffe „Unverträglichkeit“, „Intoleranz“ und „Allergie“ werden jedoch in der Allgemeinbevölkerung oft gleichgesetzt. Aus diesem Grund hat die Europäische Akademie für Allergologie und Klinische Immunologie (EAACI) 2001 eine Systematik zur Differenzierung der NMU mit geeigneten Begriffserläuterungen entwickelt, die sich an den auslösenden Mechanismen orientiert (Bruijnzeel-Koomen et al., 1995, Johansson et al., 2001). Diese Nomenklatur wurde 2004 von der World Allergy Organization (WAO) überarbeitet (Johansson et al., 2004) und ist in Abbildung 1 dargestellt.
Abbildung 1 Einteilung der Unverträglichkeitsreaktionen gegen Nahrungsmittel nach den Empfehlungen der Europäischen Akademie für Allergologie und Klinische Immunologie (EAACI) (Bruijnzeel-Koomen et al., 1995, Johansson et al., 2001) und der World Allergy Organization (WAO) (Johansson et al., 2004).

Zunächst werden NMU in toxische und nicht-toxische Reaktionen eingeteilt (Bruijnzeel-Koomen et al., 1995). Zu den toxischen Reaktionen zählen gastrointestinale Beschwerden wie Erbrechen und Durchfall, die durch Lebensmittelvergiftungen, zum Beispiel durch bakterielle Toxine in kontaminierten Lebensmitteln, verursacht werden.

Nicht-toxische Unverträglichkeitsreaktionen gegen Nahrungsmittel werden hingegen im Allgemeinen als Nahrungsmittelhypersensitivität bezeichnet (Johansson et al., 2001, Johansson et al., 2004). Demnach wird der Überbegriff „Hypersensitivität“ wie folgt definiert: Hypersensitivität führt bei prädisponierten Patienten zu objektiv reproduzierbaren Überempfindlichkeitsymptomen durch Exposition gegenüber einem definierten Stimulus, der von Gesunden problemlos toleriert wird (Johansson et al., 2001, Johansson et al., 2004). Dabei unterscheidet man Nahrungsmittelallergien (NMA, = immunologisch bedingte Hypersensitivität auf Nahrungsmittel) von Nahrungsmittelintoleranzen (NMI, = nicht-immunologisch bedingte Hypersensitivität auf Nahrungsmittel) (Johansson et al., 2001, Johansson et al., 2004), die im Folgenden näher erläutert werden.
Der Begriff „Allergie“ (griechisch: *allos* fremd; *ergon* Reaktion) wurde 1906 von dem österreichischen Kinderarzt Clemens von Pirquet eingeführt. Eine Allergie ist definiert als eine durch immunologische Mechanismen hervorgerufene Überempfindlichkeitsreaktion, die Antikörper- oder Zell-vermittelt ist (Johansson et al., 2001, Johansson et al., 2004).

Gell und Coombs klassifizierten allergische Reaktionen 1963 anhand der zugrundeliegenden Pathophysiologie in vier Typen (Coombs und Gell, 1963). Typ-I-Reaktionen oder Soforttyp-Reaktionen, beispielsweise Heuschnupfen, allergisches Asthma und Urtikaria, werden durch IgE-Antikörper vermittelt (Coombs und Gell, 1963).

Nach dem Erstkontakt mit einem Allergen, also einem Molekül, das eine allergische Immunreaktion hervorruft, kommt es zu einer Sensibilisierung (Galli und Tsai, 2012, Worm et al., 2015). Th2-Helferzellen sezernieren die Botenstoffe Interleukin-4 (IL-4) und Interleukin-13 (IL-13) (Galli und Tsai, 2012, Worm et al., 2015). IL-4 und IL-13 wiederum aktivieren B-Zellen, die Allergenspezifische IgE-Antikörper produzieren (Galli und Tsai, 2012, Worm et al., 2015). Diese binden über den hochaffinen Fcε Rezeptor I (FcεRI) an die Oberfläche von Mastzellen (Galli und Tsai, 2012, Worm et al., 2015). Beim Zweitkontakt mit dem Allergen kommt es zur Kreuzvernetzung der IgE-Antikörper und zur Degranulation der Mastzellen mit Freisetzung verschiedener Entzündungsmediatoren wie Histamin, Prostaglandinen und Leukotrienen (Galli und Tsai, 2012, Worm et al., 2015).

Auch NMA sind überwiegend IgE-vermittelt (Johansson et al., 2001). Die Symptome sind sehr vielfältig und betreffen verschiedene Organsysteme wie die Haut und Schleimhaut (Rötung, Juckreiz, Exanthem), Atemwege (oropharyngealer Juckreiz, Lippen- und Zungenödeme, Rhinorrhoe, Husten), den Magen-Darm-Trakt (Übelkeit, Erbrechen, Diarrhoe) und das Herz-Kreislauf-System (Anaphylaxie, Schock) (Worm et al., 2015). Etwa 2 bis 5% der Erwachsenen leiden an einer NMA (Zopf et al., 2009, Worm et al., 2015, Zuberbier et al., 2004). Während Kuhmilch, Hühnerei, Weizen, Erdnuss und Soja im Kinder- und Jugendalter zu den häufigsten Auslösern einer NMA zählen, sind bei Erwachsenen insbesondere pollenassoziertes Obst (z.B. Apfel), Gemüse, Nüsse sowie Krusten- und Schalentiere typische Nahrungsmittelallergene (Worm et al., 2015).

NMI sind weit verbreitet und betreffen etwa 15 bis 20% der Bevölkerung (Zopf et al., 2009). Sie werden auch als nichtallergische Nahrungsmittelhypersensitivität bezeichnet, da keine immunologischen Mechanismen zugrunde liegen (Johansson et al., 2001,
Zu den häufigsten Ursachen gehören Kohlenhydratverwertungsstörungen durch Enzym- oder Transportdefekte, insbesondere von Laktose und Fruktose (Zopf et al., 2009, Kleine-Tebbe et al., 2016). Laktosemalabsorption entsteht durch einen Mangel des Bürstensaumenzyms Laktase im Dünndarmepithel, sodass das nicht resorbierbare Disaccharid Laktose nicht in die resorbierbaren Monosaccharide Galaktose und Glucose gespalten werden kann (Swagerty et al., 2002, Enko et al., 2016). Fruktosemalabsorption dagegen entsteht durch eine verminderte Aufnahmekapazität des Transportproteins GLUT-5 im Dünndarm (Enko et al., 2016, Douard und Ferraris, 2008). Die unverdauten Zucker gelangen somit in den Dickdarm und werden dort von Bakterien fermentiert, was zu Bauchschmerzen, Blähungen und Diarrhoe führt (Zopf et al., 2009, Deng et al., 2015). Allerdings bezeichnet der Terminus „Malabsorption“ lediglich die pathophysiologische Ursache, also eine gestörte Resorption der Nahrungsbestandteile in die Darmmukosa. Liegen zusätzlich gastrointestinal Symptome vor, spricht man von einer „Intoleranz“ gegen Laktose bzw. Fruktose (Szilagy et al., 2016, Lukito et al., 2015).
2.2 Histamin

2.2.1 Biogene Amine

Biogene Amine sind stickstoffhaltige, basische Verbindungen mit aliphatischer (Putrescin, Cadaverin, Spermin und Spermidin), aromatischer (Tyramin und Phenylethylamin) oder heterozyklischer (Histamin und Tryptamin) Struktur (Silla Santos, 1996, Askar und Treptow, 1986). Je nach Anzahl der enthaltenen Aminogruppen werden diese in Mono-, Di- und Polyamine unterteilt (Silla Santos, 1996).

Es gibt drei Wege für die Entstehung biogener Amine (Silla Santos, 1996):

- Decarboxylierung von Aminosäuren
- Aminierung von Aldehyden und Ketonen
- Abbau stickstoffhaltiger Verbindungen

In erster Linie werden biogene Amine durch Decarboxylierung von Aminosäuren, den Bausteinen von Proteinen, in Tieren, Pflanzen und Mikroorganismen gebildet (Silla Santos, 1996). Die korrespondierenden Amine entstehen je nach Verfügbarkeit freier Aminosäuren durch die enzymatische Aktivität der entsprechenden Decarboxylasen, beispielsweise Putrescin aus Ornithin oder Tyramin aus Tyrosin (Silla Santos, 1996).

2.2.2 Histamin: Struktur, Biosynthese und Vorkommen

Histamin (chemische Bezeichnung 2-(4-Imidazolyl)-ethylamin) ist ebenfalls ein biogenes Amin, das durch Decarboxylierung der Aminosäure L-Histidin mithilfe des Enzyms L-Histidin-Decarboxylase (HDC) entsteht (Schayer, 1952a, Schayer, 1952b). Es besteht aus einem Imidazolring, einem fünfgliedrigen Kohlenstoffring mit zwei Stickstoffatomen, mit einer Ethylamin-Seitenkette (siehe Abbildung 2) (Schayer, 1952a, Schayer, 1952b). 1907 wurde Histamin erstmals von den deutschen Chemikern A. Windaus und W. Vogt als Imidazoläthylamin synthetisch hergestellt (Windaus und Vogt, 1907). Erst viele Jahre später gelang Best et al. der Nachweis von Histamin in Lungen- und Lebergewebe (Best et al., 1927). So erhielt Imidazolyl-ethylamin nach dem griechischen Wort histos (= Gewebe) und amin (= stickstoffhaltige Verbindung) den Namen Histamin.
Histamin und andere biogene Amine kommen in unterschiedlicher Konzentration in den meisten Nahrungsmitteln vor (Silla Santos, 1996). Insbesondere in mikrobiell fermentierten oder mikrobiell kontaminierten, proteinreichen Lebensmitteln werden hohe Histaminkonzentrationen aufgrund der hohen L-Histidin-Decarboxylase-Aktivität vieler Bakterien und Hefen gefunden (Silla Santos, 1996). Dazu zählen beispielsweise Sauerkraut, Rotwein, lang gereifte Käsesorten und geräucherte Fisch- und Fleischprodukte (Silla Santos, 1996, Maintz und Novak, 2007, Jarisch et al., 2004).

Untersuchungen an HDC-defizienten Mäusen durch Ohtsu et al. verdeutlichen die grundlegende Bedeutung der HDC für die endogene Histaminsynthese (Ohtsu et al., 2001). Diese Knockout-Mäuse können kein Histamin aus Histidin synthetisieren, weisen einen Histaminmangel in verschiedenen Organen auf und haben weniger sowie morphologisch veränderte Mastzellen (Ohtsu et al., 2001).

Gespeichert wird Histamin in den zytoplasmatischen Granula von Mastzellen durch ionische Bindung an das Glykosaminoglykan Heparin (Galli und Tsai, 2012, Rabenstein et al., 1998, Riley und West, 1953). Darüber hinaus ist es in vielen Geweben und Zellen nachweisbar, beispielsweise in basophilen Granulozyten (O'Donnell et al., 1983), enterochromaffin-ähnlichen Zellen (ECL-Zellen) der Magenschleimhaut (Lonroth et al., 1990), Thrombozyten (Humphrey und Jaques, 1954), Hautzellen (Feldberg und Loeser, 1954) sowie in der Lunge (Patterson et al., 1977) und in Neuronen des ZNS, insbesondere im Hypothalamus (Panula et al., 1984).

2.2.3 Histaminabbau

Histamin wird im Körper über zwei verschiedene Wege metabolisiert (siehe Abbildung 3): 1. die Ringmethylierung durch die Histamin-N-Methyltransferase (HNMT) und 2. die oxidative Deaminierung durch die Diaminoxidase (DAO) (Maintz und Novak, 2007).
Histamin wird durch Decarboxylierung der Aminosäure Histidin durch die L-Histidin-Decarboxylase synthetisiert. Es kann über oxidative Deaminierung durch die Diaminoxidase extrazellulär und über Ringmethylierung durch die Histamin-N-Methyltransferase intrazellulär abgebaut werden.

HDC = L-Histidin-Decarboxylase, HNMT = Histamin-N-Methyltransferase, DAO = Diaminoxidase, ADH = Aldehyddehydorgenase, MAO-B = Monoaminoxidase B

Abb. 3 Schematische Darstellung des Histaminmetabolismus (modifiziert nach Maintz und Novak, 2007). Histamin wird durch Decarboxylierung der Aminosäure Histidin durch die L-Histidin-Decarboxylase synthetisiert. Es kann über oxidative Deaminierung durch die Diaminoxidase extrazellulär und über Ringmethylierung durch die Histamin-N-Methyltransferase intrazellulär abgebaut werden.

HNMT ist ein monomerer Enzym, das die Methylgruppe von S-Adenosylmethionin auf die 1-Position des Imidazolrings von Histamin überträgt (Brown et al., 1959, Lindahl, 1960). Das daraus entstandene \(\text{N}^\text{1}\)-Methylhistamin wird mit dem Urin ausgeschieden (Imamura et al., 1984). Als zytoplasmatisches Protein baut die HNMT nur intrazelluläres Histamin ab (Brown et al., 1959, Lindahl, 1960). Preuss et al. wiesen HNMT mRNA in den meisten menschlichen Geweben nach (Preuss et al., 1998). Besonders hohe Konzentrationen wurden dabei in Leber- und Nierenzellen gemessen, gefolgt von Milz, Prostata, Eierstock, Dickdarm und Rückenmark (Preuss et al., 1998). Außerdem spielt HNMT eine wichtige Rolle beim Histaminstoffwechsel in den menschlichen Atemwegen (Okinaga et al., 1995) und im Darm (Rangachari, 1992). Die Effekte von Histamin als Neurotransmitter im Gehirn werden hauptsächlich durch die Methylierung durch HNMT beendet, da die DAO nicht im ZNS exprimiert wird (Schwartz et al., 1991).
Das Enzym Diaminoxidase (früher „Histaminase“ (Eustis, 1915)) gehört zu den kupferhaltigen Aminooxidasen (McGrath et al., 2009). Histamin und andere biogene Amine, wie Putrescin und Kadaverin, werden durch die DAO oxidativ deaminiert (Bieganski et al., 1980, Kutsche et al., 1975). Bei dieser Reaktion werden Ammoniak (NH₃) und Wasserstoffperoxid (H₂O₂) abgegeben (Tabor, 1951). Dabei entsteht aus Histamin das Reaktionsprodukt Imidazolacetalehyd (Tabor, 1951, Tabor et al., 1953), welches durch eine Aldehyddehydrogenase weiter zu Imidazolessigsäure oxidiert wird (Ambroziak und Pietruszko, 1987, Ambroziak und Pietruszko, 1991). Die DAO ist vorwiegend in der Mukosa der Darmwand zu finden (Bieganski et al., 1983). Dort wird sie in sekretorischen Vesikeln der Epithelzellen, die sich nahe der basalen Plasmamembran befinden, gespeichert und bei Stimulation, vor allem durch Heparin, nach extrazellulär freigesetzt (Schwelberger et al., 1998a, Schwelberger et al., 1998b, Daniele und Quaroni, 1990). Aus diesem Grund ist die DAO hauptsächlich für den Abbau von mit der Nahrung aufgenommenem Histamin verantwortlich (Maintz und Novak, 2007). Ende der 80er Jahre verdeutlichte Sattler et al. die Bedeutung der DAO an der Darmbarriere gegenüber exogenem Histamin (Sattler et al., 1988). Eine orale Histaminzufuhr bei gleichzeitiger Hemmung der DAO führte bei Schweinen zu einem starken Anstieg des Histaminspiegels im Plasma und zu entsprechenden Symptomen (Sattler et al., 1988). Durch eine prophylaktische Gabe von Antihistaminika konnten diese Symptome verhindert werden (Sattler et al., 1989). So wurde das neue Krankheitskonzept der „food-induced histaminosis“ (nahrungsmittelbedingte Histaminose) etabliert (Sattler et al., 1988, Sattler et al., 1989).

2.2.4 Histaminrezeptoren

Die Effekte von Histamin werden durch die Bindung an spezifische Proteine, die sog. Histaminrezeptoren, vermittelt. Bislang sind vier Subtypen bekannt, die nach der Reihenfolge ihrer Entdeckung H₁-Rezeptor (H₁R) (Ash und Schild, 1966), H₂-Rezeptor (H₂R) (Black et al., 1972), H₃-Rezeptor (H₃R) (Arrang et al., 1983) und H₄-Rezeptor (H₄R) (Nakamura et al., 2000) benannt wurden. Sie gehören zu den membranständigen G-Protein-gekoppelten Rezeptoren (GPCR) und sind ubiquitär im Organismus vorhanden (Hill et al., 1997, de Esch et al., 2005). In der folgenden Tabelle sind die Expressionsorte,
die durch Histamin induzierten physiologischen Effekte sowie der Signaltransduktionsweg der Histaminrezeptoren zusammengefasst.

Lokalisation	Funktionen	Effektor	
H₁R	glatte Muskulatur, Endothelzellen, Nebennierenmark, ZNS, Herz	Kontraktion der glatten Muskulatur und der Endothelzellen, ↑ NO-Bildung, ↑ vaskuläre Permeabilität, ↑ Hormonausschüttung, negativ ionotrop	Gq/11 Aktivierung der PLC
H₂R	Belegzellen des Magens, glatte Gefäßmuskulatur, regulatorische T-Zellen, Neutrophile, ZNS, Herx, Uterus	Relaxation der glatten Muskulatur, ↑ Magensäuresekretion, positiv ionotrop und chronotrop	Gs Aktivierung der AC → cAMP ↑
H₃R	ZNS, periphere Nerven (Herx, Lunge, GI-Trakt), Endothel, enterochromaffine Zellen	↓ Neurotransmitter-Freisetzung	Gi/o Hemmung der AC → cAMP ↓
H₄R	Hämatopoetische Zellen (Mastzellen, Eosinophile, Basophile, CD8+ T-Zellen, Monozyten)	Chemotaxis von Eosinophilen und Mastzellen	Gi/o Hemmung der AC → cAMP ↓ Aktivierung der PLC

Tabelle 1
Die vier Histaminrezeptoren im Überblick: H₁-Rezeptor (H₁R) (Hill et al., 1997), H₂-Rezeptor (H₂R) (Hill et al., 1997), H₃-Rezeptor (H₃R) (Hill et al., 1997) und H₄-Rezeptor (H₄R) (Nakamura et al., 2000, Oda et al., 2000, Liu et al., 2001, Morse et al., 2001, Zhu et al., 2001, Gantner et al., 2002, Gutzmer et al., 2005, Hofstra et al., 2003).

PLC = Phospholipase C, AC = Adenylylcyclase
2.3 Histaminintoleranz

2.3.1 Epidemiologie

Die Histaminintoleranz zählt zur Gruppe der Nahrungsmittelintoleranzen (Zopf et al., 2009). Sie betrifft etwa 1 % der Bevölkerung, wobei 80 % der Betroffenen Frauen mittleren Alters sind (Jarisch et al., 2004). Obwohl genaue Daten bisher fehlen, wird diese Prävalenz auch als überschätzt betrachtet (Schwelberger, 2009).

2.3.2 Definition und Pathomechanismus

Die Histaminintoleranz entsteht durch ein Ungleichgewicht zwischen im Körper anfallendem und abgebautem Histamin (Maintz und Novak, 2007). Einerseits wird Histamin als wichtiger Mediator allergischer Reaktionen endogen freigesetzt (Galli und Tsai, 2012). Andererseits werden biogene Amine auch exogen, das heißt mit der Nahrung, aufgenommen (Silla Santos, 1996). Der daraus entstehende Histaminüberschuss führt zu entsprechenden klinischen Symptomen (siehe unten). Als Hauptursache hierfür gilt ein gestörter Histaminabbau durch eine verminderte Aktivität der DAO, dem Hauptenzym des Histaminmetabolismus (Bieganski, 1983, Music et al., 2013, Sattler et al., 1988, Sattler et al., 1989). Daher wurde der Begriff „Histaminintoleranz“ vom Begriff der Laktoseintoleranz, die auf einer Unverträglichkeit durch einen Mangel des Enzyms Laktase beruht, abgeleitet (Swagerty et al., 2002, Enko et al., 2016, Reese et al., 2017).

Störungen der enzymatischen Funktion der DAO können genetisch bedingt oder erworben sein (Maintz und Novak, 2007). Einerseits sind verschiedene Single Nucleotid Polymorphismen (SNPs) bekannt, die zu signifikant vermindelter DAO-Aktivität im Serum führen (Maintz et al., 2011). Diese Polymorphismen tragen zur Entwicklung einer Histaminintoleranz bei, sind alleine aber nicht ausreichend, um das volle Krankheitsbild auszulösen (Maintz et al., 2011). Andererseits können die geschädigten Enterozyten bei gastrointestinalen Erkrankungen, beispielsweise Nahrungsmittelallergien (Kuefner et al., 2004), Kolonadenomen (Kuefner et al., 2008) und entzündlichen Darmerkrankungen wie Morbus Crohn (Schmidt et al., 1990), nicht mehr ausreichend DAO produzieren bzw. sezernieren. Möglich ist auch eine Hemmung der DAO durch Medikamente und Alkohol (Maintz und Novak, 2007).
2.3.3 Symptome

Da Histamin wie oben beschrieben über unterschiedliche Rezeptoren an verschiedenen Organsystemen wirkt, ist das Symptomspektrum der Histaminintoleranz sehr vielfältig und individuell unterschiedlich. Typische Symptome sind in Tabelle 2 aufgeführt. Sie umfassen gastrointestinale Beschwerden (Bauchschmerzen, Diarrhoe, Meteorismus, Übelkeit, Erbrechen) (Wohrl et al., 2004, Bohn et al., 2013), Hautreaktionen (Juckreiz, Urtikaria, Flush) (Lessof et al., 1990, Pollock et al., 1991, Wohrl et al., 2004), Atembeschwerden (Rhinorrhoe, Asthmaanfälle) (Wantke et al., 1994, Wantke et al., 1996) bis hin zu kardiovaskulären Symptomen (Hypotonie, Arrhythmien) (Wohrl et al., 2004, Sattler et al., 1988) und Kopfschmerzen (Jarisch und Wantke, 1996).

Organsystem	Symptome
Haut	Juckreiz
	Flush
	Urtikaria
Gastrointestinaltrakt	Bauchschmerzen
	Meteorismus
	Diarrhoe
ZNS	Kopfschmerzen
	Schwindel
	Übelkeit/ Erbrechen
Herz-Kreislauf-System	Hypotonie
	Tachykardie/ Arrhythmie
Respirationstrakt	Nasale Obstruktion
	Fließschnupfen
	Dyspnoe
Genitaltrakt	Dysmenorrhoe

Tabelle 2 Symptome der Histaminintoleranz (modifiziert nach Maintz et al., 2006).
2.3.4 Diagnostik

Bislang existiert kein einheitlich etabliertes Verfahren zur Diagnostik und Therapie einer Histaminintoleranz. Die aktuelle S1-Leitlinie „Vorgehen bei Verdacht auf Unverträglichkeit gegenüber oral aufgenommenem Histamin“ der Deutschen Gesellschaft für Allergologie und klinische Immunologie (DGAKI), der Gesellschaft für Pädiatrische Allergologie und Umweltmedizin (GPA), des Ärzteverbandes Deutscher Allergologen (AeDA) und der Schweizerischen Gesellschaft für Allergologie und Immunologie (SGAI) enthält einen Vorschlag zum Vorgehen bei Histaminintoleranz, der im Folgenden näher erläutert wird (Reese et al., 2017).

Aufgrund der oben genannten Symptomvielfalt der Histaminintoleranz steht eine sorgfältige Anamnese, gegebenenfalls auch mithilfe eines Ernährungs- und Symptomtagebuchs des Patienten, an erster Stelle (Reese et al., 2017). Hierzu sind nach eigenen Überlegungen speziell nachfolgende Fragen richtungsweisend:

- Welche Symptome treten auf?
- Seit wann leiden Sie an diesen Symptomen?
- Bestehen andere Erkrankungen und/oder Allergien?
- In welchem zeitlichen Zusammenhang zur Nahrungsaufnahme stehen die Symptome (Minuten, Stunden, Tage)?
- Haben Sie bereits eine histaminarme/-freie Ernährung durchgeführt oder Antihistaminika eingenommen? Wenn ja, haben sich die Beschwerden dadurch gebessert?
- Werden regelmäßig Medikamente genommen?

Zusätzlich müssen differentialdiagnostisch andere Erkrankungen, die ein ähnliches Beschwerdebild hervorrufen, in Betracht gezogen werden (Reese et al., 2017). Zum Ausschluss einer Nahrungsmittelallergie sollte ein Prick-Test durchgeführt und die Gesamt-IgE-Antikörper und allergenspezifischen IgE-Antikörper im Serum bestimmt werden (Zopf et al., 2009). Des Weiteren zeigte eine Studie an 439 Patienten mit gastrointestinalen Beschwerden, dass die Histaminintoleranz häufig mit weiteren Nahrungsmittelintoleranzen einhergeht (Enko et al., 2016). Dabei wiesen 11,8 % der Patienten neben der Histaminintoleranz gleichzeitig eine Laktosemalabsorption, 5,2 % eine Fruktosemalabsorption und 3,2 % sowohl eine Laktose- als auch Fruktosemalabsorption auf (Enko et al., 2016). Diese
Kohlenhydratverwertungsstörungen können mithilfe von H2-Atemtests diagnostiziert werden (Enko et al., 2016, Zopf et al., 2009). Auch organische Ursachen sollten ausgeschlossen werden, zum Beispiel chronisch entzündliche Darmerkrankungen durch Endoskopie mit Biopsien (Carter und Eliakim, 2014). Darüber hinaus kann die Bestimmung der Serumtrypsin zum Ausschluss von Mastzellerkrankungen dienen (Vitte, 2015).

Die Diagnose Histaminintoleranz wird dann gestellt, wenn mindestens zwei typische Symptome vorliegen, die sich durch eine histaminfreie Ernährung bzw. durch die Einnahme von Antihistaminika deutlich verbessern sowie bei einer erniedrigten DAO-Aktivität und/ oder erhöhten Histaminspiegeln (Maintz et al., 2006).

Häufig werden die DAO-Aktivität im Serum und der Histaminspiegel in Plasma bzw. die Methylhistamininkonzentration im Urin als diagnostische Parameter der Histaminintoleranz bestimmt (Maintz und Novak, 2007). Bei einer DAO-Aktivität < 3 U/ml ist eine Histaminintoleranz sehr wahrscheinlich, bei 3 bis 10 U/ml wahrscheinlich und bei > 10 U/ml unwahrscheinlich (Jarisch et al., 2004). Allerdings wird die Messung der DAO-Aktivität im Blut kontrovers diskutiert (Reese et al., 2017). Dies wird mit zwei Studien von Kofler et al. und Töndury et al. begründet, in denen kein signifikanter Unterschied der DAO-Konzentrationen zwischen gesunden Kontrollprobanden und Patienten mit klinischem Verdacht auf Histaminintoleranz festgestellt wurde (Töndury et al., 2008, Kofler et al., 2009). Dennoch konnten Studien von Music et al. und Manzotti et al. eine deutlich reduzierte DAO-Aktivität bei Histaminintoleranten im Vergleich zu Gesunden beweisen (Music et al., 2013, Manzotti et al., 2015). Auch die Bestimmung der Histamininkonzentrationen im Plasma und im Stuhl sowie der Methylhistamininkonzentration im Urin ist laut der Leitlinie der DGAKI, der GPA, des AeDA und der SGAI wissenschaftlich umstritten, da letztere nicht nur vom Histamin-, sondern auch vom Proteingehalt der Nahrung abhängt (Reese et al., 2017).

Die Autoren der Leitlinie der DGAKI, der GPA, des AeDA und der SGAI folgern, dass der Goldstandard zur Feststellung einer Histaminintoleranz derzeit eine doppelblinde, placebokontrollierte titrierte orale Provokation mit Histamin sei, die hinsichtlich klinischer Parameter analysiert werden sollte (Reese et al., 2017). Hierbei müsse eine sinnvolle Provokationsdosis ermittelt werden, die bei einer ausreichenden Zahl Gesunder keine Reaktionen und bei Patienten mit Verdacht auf Histaminintoleranz die genannten Symptome auslöse (Reese et al., 2017). Meist wurde in den bisherigen Untersuchungen
eine Dosis von 75 mg Histamin verwendet, was jedoch auch bei gesunden Personen zu Beschwerden führte (Reese et al., 2017). Die S1-Leitlinie der DGAKI, der GPA, des AeDA und der SGAI empfiehlt daher zunächst eine dreistufige Ernährungsumstellung (Karenzphase → Testphase → Dauerernährung) (Reese et al., 2017). Bei Besserung der Beschwerden kann im Anschluss unter ärztlicher Aufsicht gegebenenfalls eine titrierte Provokation mit Histamindihydrochlorid in zweistündigen Abständen (z.B. 0,5 mg/ kg KG, 0,75 mg/ kg KG bis 1,0 mg/ kg KG) zur Ermittlung der individuellen Toleranzdosis erfolgen (Reese et al., 2017). Bei fehlender Beschwerdebesserung wird eine weitere Diagnostik zum Ausschluss anderer Erkrankungen empfohlen (Reese et al., 2017).
3. Original paper

Pinzer TC, Tietz E, Waldmann E, Schink M, Neurath MF, Zopf Y. Circadian profiling reveals higher histamine plasma levels and lower diamine oxidase serum activities in 24% of patients with suspected histamine intolerance compared to food allergy and controls. Allergy, 2018. 73(4): 949-957. https://doi.org/10.1111/all.13361
4. Attachment

4.1 Bibliography regarding the introduction

Afify, S.M., Pali-Scholl, I. (2017). Adverse reactions to food: the female dominance - A secondary publication and update. World Allergy Organ J, 10(1): 43. doi:10.1186/s40413-017-0174-z.

Ambroziak, W., Pietruszko, R. (1987). Human aldehyde dehydrogenase: metabolism of putrescine and histamine. Alcohol Clin Exp Res, 11(6): 528-532.

Ambroziak, W., Pietruszko, R. (1991). Human aldehyde dehydrogenase. Activity with aldehyde metabolites of monoamines, diamines, and polyamines. J Biol Chem, 266(20): 13011-13018.

Arrang, J. M., Garbarg, M., Schwartz, J. C. (1983). Auto-inhibition of brain histamine release mediated by a novel class (H3) of histamine receptor. Nature, 302(5911): 832-837.

Ash, A. S., Schild, H. O. (1966). Receptors mediating some actions of histamine. Br J Pharmacol Chemother, 27(2): 427-439.

Askar, A., Treptow, H. (1986). Biogene Amine in Lebensmitteln. Vorkommen, Bedeutung und Bestimmung. Eugen Ulmer GmbH und Co, Stuttgart.

Best, C. H., Dale, H. H., Dudley, H. W., Thorpe, W. V. (1927). The nature of the vaso-dilator constituents of certain tissue extracts. J Physiol, 62(4): 397-417.

Bieganski, T. (1983). Biochemical, physiological and pathophysiological aspects of intestinal diamine oxidase. Acta Physiol Pol, 34(1): 139-154.

Bieganski, T., Kusche, J., Feussner, K. D., Hesterberg, R., Richter, H., Lorenz, W. (1980). Human intestinal diamine oxidase: substrate specificity and comparative inhibitor study. Agents Actions, 10: 108-110.

Bieganski, T., Kusche, J., Lorenz, W., Hesterberg, R., Stahlknecht, C. D., Feussner, K. D. (1983). Distribution and properties of human intestinal diamine oxidase and its relevance for the histamine catabolism. Biochim Biophys Acta, 756(2): 196-203.

Black, J. W., Duncan, W. A., Durant, C. J., Ganellin, C. R., Parsons, E. M. (1972). Definition and antagonism of histamine H 2-receptors. Nature, 236(5347): 385-390.
Bohn, L., Storsrud, S., Tornblom, H., Bengtsson, U., Simren, M. (2013). Self-reported food-related gastrointestinal symptoms in IBS are common and associated with more severe symptoms and reduced quality of life. Am J Gastroenterol, 108(5): 634-641. doi: 10.1038/ajg.2013.105.

Brown, D. D., Tomchick, R., Axelrod, J. (1959). The distribution and properties of a histamine-methylating enzyme. J Biol Chem, 234: 2948-2950.

Bruijnzeel-Koomen, C., Ortolani, C., Aas, K., Bindslev-Jensen, C., Bjorksten, B., Moneret-Vautrin, D., Wüthrich, B. (1995). Adverse reactions to food. European Academy of Allergology and Clinical Immunology Subcommittee. Allergy, 50(8): 623-635.

Carter, D., Eliakim, R. (2014). Current role of endoscopy in inflammatory bowel disease diagnosis and management. Curr Opin Gastroenterol, 30(4): 370-377. doi: 10.1097/MOG.0000000000000074.

Coombs, R. R. A., Gell, P. G. H. (1963). The classification of allergic reactions underlying disease. In: Clinical Aspects of Immunology. Gell, P. G. H., Coombs, R. R. A. (Hrg.), Oxford, Blackwell Scientific.

Daniele, B., Quaroni, A. (1990). Polarized secretion of diamine oxidase by intestinal epithelial cells and its stimulation by heparin. Gastroenterology, 99(6): 1675-1687.

de Esch, I. J., Thurmond, R. L., Jongejan, A., Leurs, R. (2005). The histamine H4 receptor as a new therapeutic target for inflammation. Trends Pharmacol Sci, 26(9): 462-469. doi: 10.1016/j.tips.2005.07.002.

Deng, Y., Misselwitz, B., Dai, N., Fox, M. (2015). Lactose Intolerance in Adults: Biological Mechanism and Dietary Management. Nutrients, 7(9): 8020-8035. doi: 10.3390/nu7095380.

Douard, V., Ferraris, R. P. (2008). Regulation of the fructose transporter GLUT5 in health and disease. Am J Physiol Endocrinol Metab, 295(2): E227-237. doi: 10.1152/ajpendo.90245.2008.

Enko, D., Meinitzer, A., Mangge, H., Kriegshauser, G., Halwachs-Baumann, G., Reininghaus, E. Z., Bengesser, S. A., Schnedl, W. J. (2016). Concomitant Prevalence of Low Serum Diamine Oxidase Activity and Carbohydrate Malabsorption. Can J Gastroenterol Hepatol, 2016: 4893501. doi: 10.1155/2016/4893501.
Eustis, A.C. (1915). *The detoxicating effect of the liver of Cathartes aura upon solution of β-imidazoleethylamine*. Biochem Bull, 4: 97-99.

Feldberg, W., Loeser, A. A. (1954). *Histamine content of human skin in different clinical disorders*. J Physiol, 126(2): 286-292.

Fitzgerald, M., Frankum, B. (2017). *Food avoidance and restriction in adults: a cross-sectional pilot study comparing patients from an immunology clinic to a general practice*. J Eat Disord, 5: 30. doi: 10.1186/s40337-017-0160-4.

Gall, S. J., Tsai, M. (2012). *IgE and mast cells in allergic disease*. Nat Med, 18(5): 693-704. doi: 10.1038/nm.2755.

Gantner, F., Sakai, K., Tusche, M. W., Cruikshank, W. W., Center, D. M., Bacon, K. B. (2002). *Histamine h(4) and h(2) receptors control histamine-induced interleukin-16 release from human CD8(+) T cells*. J Pharmacol Exp Ther, 303(1): 300-307. doi: 10.1124/jpet.102.036939.

Gutzmer, R., Diestel, C., Mommert, S., Kother, B., Stark, H., Wittmann, M., Werfel, T. (2005). *Histamine H4 receptor stimulation suppresses IL-12p70 production and mediates chemotaxis in human monocyte-derived dendritic cells*. J Immunol, 174(9): 5224-5232. doi: 10.4049/jimmunol.174.9.5224.

Hill, S. J., Ganellin, C. R., Timmerman, H., Schwartz, J. C., Shankley, N. P., Young, J. M., Schunack, W., Levi, R., Haas, H. L. (1997). *International Union of Pharmacology. XIII. Classification of histamine receptors*. Pharmacol Rev, 49(3): 253-278.

Hofstra, C. L., Desai, P. J., Thurmond, R. L., Fung-Leung, W. P. (2003). *Histamine H4 receptor mediates chemotaxis and calcium mobilization of mast cells*. J Pharmacol Exp Ther, 305(3): 1212-1221. doi: 10.1124/jpet.102.046581.

Humphrey, J. H., Jaques, R. (1954). *The histamine and serotonin content of the platelets and polymorphonuclear leucocytes of various species*. J Physiol, 124(2): 305-310.

Imamura, I., Watanabe, T., Maeyama, K., Kubota, A., Okada, A., Wada, H. (1984). *Effect of food intake on urinary excretions of histamine, N tau-methylhistamine, imidazole acetic acid and its conjugate(s) in humans and mice*. J Biochem, 96(6): 1931-1937. doi: 10.1093/oxfordjournals.jbchem.a135028.

Jarisch, R., Götz, M., Hemmer, W., Missbichler, A., Raithel, M., Wantke, F. (2004). *Histamin-Intoleranz. Histamin und Seekrankheit*. 2. Auflage. Georg Thieme Verlag, Stuttgart, New York.
Jarisch, R., Wantke, F. (1996). Wine and headache. Int Arch Allergy Immunol, 110(1): 7-12. doi: 10.1159/000237304.

Johansson, S. G., Bieber, T., Dahl, R., Friedmann, P. S., Lanier, B. Q., Lockey, R. F., Motala, C., Ortega Martell, J. A., Platts-Mills, T. A., Ring, J., Thien, F., Van Cauwenberge, P., Williams, H. C. (2004). Revised nomenclature for allergy for global use: Report of the Nomenclature Review Committee of the World Allergy Organization, October 2003. J Allergy Clin Immunol, 113(5): 832-836. doi: 10.1016/j.jaci.2003.12.591.

Kofler, H., Aberer, W., Deibl, M., Hawranek, T., Klein, G., Reider, N., Fellner, N. (2009). Diamine oxidase (DAO) serum activity. Not a useful marker for diagnosis of histamine intolerance. Allergologie, 32(3): 105-109.

Kuefner, M. A., Schwelberger, H. G., Hahn, E. G., Raithel, M. (2008). Decreased histamine catabolism in the colonic mucosa of patients with colonic adenoma. Dig Dis Sci, 53(2): 436-442. doi: 10.1007/s10620-007-9861-x.

Kuefner, M. A., Schwelberger, H. G., Weidenhiller, M., Hahn, E. G., Raithel, M. (2004). Both catabolic pathways of histamine via histamine-N-methyltransferase and diamine oxidase are diminished in the colonic mucosa of patients with food allergy. Inflamm Res, 53(Suppl 1): S31-S32. doi: 10.1007/s00011-003-0314-5.

Kusche, J., Lorenz, W., Schmidt, J. (1975). Oxidative deamination of biogenic amines by intestinal amine oxidases: histamine is specifically inactivated by diamine oxidase. Hoppe Seylers Z Physiol Chem, 356(10): 1485-1486.

Lessof, M. H., Gant, V., Hinuma, K., Murphy, G. M., Dowling, R. H. (1990). Recurrent urticaria and reduced diamine oxidase activity. Clin Exp Allergy, 20(4): 373-376.

Lindahl, K. M. (1960). The histamine methylating enzyme system in liver. Acta Physiol Scand, 49: 114-138.
Liu, C., Ma, X., Jiang, X., Wilson, S. J., Hofstra, C. L., Blevitt, J., Pyati, J., LI, X., Chai, W., Carruthers, N., Lovenberg, T. W. (2001). *Cloning and pharmacological characterization of a fourth histamine receptor (H(4)) expressed in bone marrow.* Mol Pharmacol, 59(3): 420-426.

Lonroth, H., Hakanson, R., Lundell, L., Sundler, F. (1990). *Histamine containing endocrine cells in the human stomach.* Gut, 31(4): 383-388.

Lukito, W., Malik, S. G., Surono, I. S., Wahlqvist, M. L. (2015). *From 'lactose intolerance' to 'lactose nutrition'.* Asia Pac J Clin Nutr, 24(Suppl 1): S1-S8. doi: 10.6133/apjcn.2015.24.s1.01.

Maintz, L., Bieber, T., Novak, N. (2006). *Die verschiedenen Gesichter der Histaminintoleranz.* Deutsches Ärzteblatt, 103(51-52): 3477-3483.

Maintz, L., Novak, N. (2007). *Histamine and histamine intolerance.* Am J Clin Nutr, 85(5): 1185-1196. doi: 10.1093/ajcn/85.5.1185.

Maintz, L., Yu, C. F., Rodriguez, E., Baurecht, H., Bieber, T., ILLIG, T., Weidinger, S., Novak, N. (2011). *Association of single nucleotide polymorphisms in the diamine oxidase gene with diamine oxidase serum activities.* Allergy, 66(7): 893-902. doi: 10.1111/j.1398-9995.2011.02548.x.

Manzotti, G., Breda, D., Di Gioacchino, M., Burastero, S. E. (2015). *Serum diamine oxidase activity in patients with histamine intolerance.* Int J Immunopathol Pharmacol, 29(1): 105-111. doi: 10.1177/0394632015617170.

McGrath, A. P., Hilmer, K. M., Collyer, C. A., Shepard, E. M., Elmore, B. O., Brown, D. E., Dooley, D. M., Guss, J. M. (2009). *Structure and inhibition of human diamine oxidase.* Biochemistry, 48(41): 9810-9822. doi: 10.1021/bi9014192.

Morse, K. L., Behan, J., Laz, T. M., West, R. E., Jr., Greenfeder, S. A., Anthes, J. C., Umland, S., Wan, Y., Hipkin, R. W., Gonsiorek, W., Shin, N., Gustafson, E. L., Qiao, X., Wang, S., Hedrick, J. A., Greene, J., Bayne, M., Monsma, F. J., Jr. (2001). *Cloning and characterization of a novel human histamine receptor.* J Pharmacol Exp Ther, 296(3): 1058-1066.

Music, E., Korosec, P., Silar, M., Adamic, K., Kosnik, M., Rijavec, M. (2013). *Serum diamine oxidase activity as a diagnostic test for histamine intolerance.* Wien Klin Wochenschr, 125(9-10): 239-243. doi: 10.1007/s00508-013-0354-y.

Nakamura, T., Itadani, H., Hidaka, Y., Ohta, M., Tanaka, K. (2000). *Molecular cloning and characterization of a new human histamine receptor, HH4R.* Biochem Biophys Res Commun, 279(2): 615-620. doi: 10.1006/bbrc.2000.4008.
O'Donnell, M. C., Ackerman, S. J., Gleich, G. J., Thomas, L. L. (1983). Activation of basophil and mast cell histamine release by eosinophil granule major basic protein. J Exp Med, 157(6): 1981-1991.

Oda, T., Morikawa, N., Saito, Y., Masuho, Y., Matsumoto, S. (2000). Molecular cloning and characterization of a novel type of histamine receptor preferentially expressed in leukocytes. J Biol Chem, 275(47): 36781-36786. doi: 10.1074/jbc.M006480200.

Ohtsu, H., Tanaka, S., Terui, T., Hori, Y., Makabe-Kobayashi, Y., Pejler, G., Tchougounova, E., Hellman, L., Gertsenstein, M., Hirasawa, N., Sakurai, E., Buzas, E., Kovacs, P., Csaba, G., Kittel, A., Okada, M., Hara, M., Mar, L., Numayama-Tsuruta, K., Ishigaki-Suzuki, S., Ohuchi, K., Ichikawa, A., Falus, A., Watanabe, T., Nagy, A. (2001). Mice lacking histidine decarboxylase exhibit abnormal mast cells. FEBS Lett, 502(1-2): 53-56.

Okinaga, S., Ohru, T., Nakazawa, H., Yamauchi, K., Sakurai, E., Watanabe, T., Sekizawa, K., Sasaki, H. (1995). The role of HMT (histamine N-methyltransferase) in airways: a review. Methods Find Exp Clin Pharmacol, 17 (Suppl C): 16-20.

Panula, P., Yang, H. Y., Costa, E. (1984). Histamine-containing neurons in the rat hypothalamus. Proc Natl Acad Sci U S A, 81(8): 2572-2576.

Patterson, R., McKenna, J. M., Suszko, I. M., Solliday, N. H., Pruzansky, J. J., Roberts, M., Kehoe, T. J. (1977). Living histamine-containing cells from the bronchial lumens of humans. Description and comparison of histamine content with cells of rhesus monkeys. J Clin Invest, 59(2): 217-225.

Pollock, I., Murdoch, R. D., Lessof, M. H. (1991). Plasma histamine and clinical tolerance to infused histamine in normal, atopic and urticarial subjects. Agents Actions, 32(3-4): 359-365.

Preuss, C. V., Wood, T. C., Szumlanski, C. L., Raftogianis, R. B., Otterness, D. M., Girard, B., Scott, M. C., Weinshilboum, R. M. (1998). Human histamine N-methyltransferase pharmacogenetics: common genetic polymorphisms that alter activity. Mol Pharmacol, 53(4): 708-717.

Rabenstein, D. L., Bratt, P., Peng, J. (1998). Quantitative characterization of the binding of histamine by heparin. Biochemistry, 37(40): 14121-14127. doi: 10.1021/bi980625y.
Rangachari, P. K. (1992). *Histamine: mercurial messenger in the gut*. Am J Physiol, **262**: G1-G13. doi: 10.1152/ajpgi.1992.262.1.G1.

Reese, I., Ballmer-Weber, B., Beyer, K., Fuchs, T., Kleine-Tebbe, J., Klimek, L., Lepp, U., Niggemann, B., Saloga, J., Schäfer, C., Werfel, T., Zuberbier, T., Worm, M. (2017). *Leitlinie zum Vorgehen bei Verdacht auf Unverträglichkeit gegenüber oral aufgenommenem Histamin*. Leitlinie der Deutschen Gesellschaft für Allergologie und klinische Immunologie (DGAKI), der Gesellschaft für Pädiatrische Allergologie und Umweltmedizin (GPA), des Ärzteverbandes Deutscher Allergologen (AeDA) und der Schweizerischen Gesellschaft für Allergologie und Immunologie (SGAI). Allergo J Int, **26**: 72-79. doi: 10.1007/s40629-017-0011-5.

Riley, J. F., West, G. B. (1953). *The presence of histamine in tissue mast cells*. J Physiol, **120**(4): 528-537.

Sattler, J., Hafner, D., Klotter, H. J., Lorenz, W., Wagner, P. K. (1988). *Food-induced histaminosis as an epidemiological problem: plasma histamine elevation and haemodynamic alterations after oral histamine administration and blockade of diamine oxidase (DAO)*. Agents Actions, **23**(3-4): 361-365.

Sattler, J., Lorenz, W., Kubo, K., Schmal, A., Sauer, S., Luben, L. (1989). *Food-induced histaminosis under diamine oxidase (DAO) blockade in pigs: further evidence of the key role of elevated plasma histamine levels as demonstrated by successful prophylaxis with antihistamines*. Agents Actions, **27**(1-2): 212-214.

Schayer, R. W. (1952a). *Biogenesis of histamine*. J Biol Chem, **199**(1): 245-250.

Schayer, R. W. (1952b). *Synthesis of Histamine-2-C¹⁴-Imidazole¹⁴*. J Am Chem Soc, **74**(9): 2440-2441.

Schmidt, W. U., Sattler, J., Hesterberg, R., Roher, H. D., Zoedler, T., Sitter, H., Lorenz, W. (1990). *Human intestinal diamine oxidase (DAO) activity in Crohn's disease: a new marker for disease assessment?* Agents Actions, **30**(1-2): 267-270.

Schwartz, J. C., Arrang, J. M., Garbarg, M., Pollard, H., Ruat, M. (1991). *Histaminergic transmission in the mammalian brain*. Physiol Rev, **71**(1): 1-51.

Schwelberger, H. G. (2009). *Histamine intolerance: overestimated or underestimated?* Inflamm Res, **58**(Suppl 1): 51-52. doi: 10.1007/s00011-009-2004-4.

Schwelberger, H. G., Hittmair, A., Kohlwein, S. D. (1998a). *Analysis of tissue and subcellular localization of mammalian diamine oxidase by confocal laser scanning fluorescence microscopy*. Inflamm Res, **47**(Suppl 1): S60-S61.
Schwelberger, H. G., Stalzer, B., Maier, H., Bodner, E. (1998b). Expression and cellular localisation of diamine oxidase in the gastrointestinal tract of pigs. Inflamm Res, 47(Suppl 1): S62-S63.

Silla Santos, M. H. (1996). Biogenic amines: their importance in foods. Int J Food Microbiol, 29(2-3): 213-231.

Swagerty, D. L., Jr., Walling, A. D., Klein, R. M. (2002). Lactose intolerance. Am Fam Physician, 65(9): 1845-1850.

Szilagyi, A., Galiatsatos, P., Xue, X. (2016). Systematic review and meta-analysis of lactose digestion, its impact on intolerance and nutritional effects of dairy food restriction in inflammatory bowel diseases. Nutr J, 15(1): 67. doi: 10.1186/s12937-016-0183-8.

Tabor, H. (1951). Diamine oxidase. J Biol Chem, 188(1): 125-136.

Tabor, H., Mehler, A. H., Schayer, R. E. (1953). Isotopic measurements on the oxidation of histamine to imidazoleacetic acid in vivo. J Biol Chem, 200(2): 605-607.

Töndury, B., Wüthrich, B., Schmid-Grendelmeier, P., Seifert, B., Ballmer-Weber, B.K. (2008). Histaminintoleranz. Wie sinnvoll ist die Bestimmung der Diaminoxidase Aktivität im Serum in der alltäglichen klinischen Praxis? Allergologie, 31(8): 350-356.

Vitte, J. (2015). Human mast cell tryptase in biology and medicine. Mol Immunol, 63(1): 18-24. doi: 10.1016/j.molimm.2014.04.001.

Wantke, F., Götz, M., Jarisch, R. (1994). The red wine provocation test: intolerance to histamine as a model for food intolerance. Allergy Proc, 15(1): 27-32.

Wantke, F., Hemmer, W., Haglmuller, T., Götz, M., Jarisch, R. (1996). Histamine in wine. Bronchoconstriction after a double-blind placebo-controlled red wine provocation test. Int Arch Allergy Immunol, 110(4): 397-400.

Windaus, A., Vogt, W. (1907). Synthese des Imidazol-äthylamins. Ber Dtsch Chem Ges, 40: 3691-3695.

Wohrl, S., Hemmer, W., Focke, M., Rappersberger, K., Jarisch, R. (2004). Histamine intolerance-like symptoms in healthy volunteers after oral provocation with liquid histamine. Allergy Asthma Proc, 25(5): 305-311.

Worm, M., Reese, I., Ballmer-Weber, B., Beyer, K., Bischoff, S. C., Classen, M., Fischer, P. J., Fuchs, T., Huttegger, I., Jappe, U., Klimek, L., Koletzko, B., Lange, L., Lepp, U., Mahler, V., Nast, A., Niggemann, B., Rabe, U., Raithel, M., Saloga, J., Schäfer, C., Schnadt, S., Schreiber, J., Szépfalusi, Z., Treudler, R., Wagenmann,
M., Watzl, B., Werfel, T., Zuberbier, T., Kleine-Tebbe, J. (2015). Leitlinie zum Management IgE-vermittelter Nahrungsmittelallergien: S2k-Leitlinie der Deutschen Gesellschaft für Allergologie und klinische Immunologie (DGAKI) in Zusammenarbeit mit dem Ärzteverband Deutscher Allergologen (AeDA), dem Berufsverband der Kinder- und Jugendärzte (BVKJ), dem Deutschen Allergie- und Asthmabund (DAAB), der Deutschen Dermatologischen Gesellschaft (DDG), der Deutschen Gesellschaft für Ernährung (DGE), der Deutschen Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten (DGVS), der Deutschen Gesellschaft für Hals-Nasen-Ohren-Heilkunde, Kopf- und Hals-Chirurgie, der Deutschen Gesellschaft für Kinder- und Jugendmedizin (DGKJ), der Gesellschaft für Pädiatrische Allergologie und Umweltmedizin (GPA), der Deutschen Gesellschaft für Pneumologie und Beatmungsmedizin (DGP), der Deutschen Gesellschaft für Gastroenterologie und Ernährung (GPGE), der Deutschen Kontaktallergie-Gruppe (DKG), der Österreichischen Gesellschaft für Allergologie und Immunologie (ÖGAI), dem Berufsverband Oecotrophologie e.V. (VDOE) und der Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften (AWMF). Allergo J Int, 24: 256-293. doi: 10.1007/s40629-015-0070-4.

Zhu, Y., Michalovich, D., Wu, H., Tan, K. B., Dytko, G. M., Mannan, I. J., Boyce, R., Alston, J., Tierney, L. A., Li, X., Herrity, N. C., Vawter, L., Sarau, H. M., Ames, R. S., Davenport, C. M., Hieble, J. P., Wilson, S., Bergsma, D. J., Fitzgerald, L. R. (2001). Cloning, expression, and pharmacological characterization of a novel human histamine receptor. Mol Pharmacol, 59(3): 434-441.

Zopf, Y., Baenkler, H. W., Silbermann, A., Hahn, E. G., Raithel, M. (2009). The differential diagnosis of food intolerance. Dtsch Arztebl Int, 106(21): 359-369. doi: 10.3238/arztebl.2009.0359.

Zuberbier, T., Edenharter, G., Worm, M., Ehlers, I., Reimann, S., Hantke, T., Roehr, C. C., Bergmann, K. E., Niggemann, B. (2004). Prevalence of adverse reactions to food in Germany - a population study. Allergy, 59(3): 338-345. doi: 10.1046/j.1398-9995.2003.00403.x.
4.2 List of abbreviations regarding the introduction

Abbreviation	Full Form
AeDA	Ärzteverband Deutscher Allergologen
DAO	Diaminoxidase
DGAKI	Deutsche Gesellschaft für Allergologie und klinische Immunologie
EAACI	Europäische Akademie für Allergologie und Klinische Immunologie
ELISA	Enzyme-linked Immunosorbent Assay
GPA	Gesellschaft für Pädiatrische Allergologie und Umweltmedizin
HDC	L-Histidin-Decarboxylase
H₁₄R	Histamin-H₁₄-Rezeptor
IgE	Immunglobulin E
IL-4, IL-13	Interleukin-4, Interleukin-13
HNMT	Histamin-N-Methyltransferase
KG	Körpergewicht
NMA	Nahrungsmittelallergie
NMI	Nahrungsmittelintoleranz
NMU	Nahrungsmittelunverträglichkeit
REA	Radio Extraction Assay
SGAI	Schweizerische Gesellschaft für Allergologie und Immunologie
WAO	World Allergy Organization
5. List of publications

Publications in peer-reviewed journals

April 2018
Pinzer TC, Tietz E, Waldmann E, Schink M, Neurath MF, Zopf Y. Circadian profiling reveals higher histamine plasma levels and lower diamine oxidase serum activities in 24% of patients with suspected histamine intolerance compared to food allergy and controls. Allergy, 2018. 73(4): 949-957. doi: 10.1111/all.13361.

August 2018
Schink M, Konturek PC, Tietz E, Dieterich W, Pinzer TC, Wirtz S, Neurath MF, Zopf Y. Microbial patterns in patients with histamine intolerance. Journal of Physiology and Pharmacology, 2018. 69(4): 579-593. doi: 10.26402/jpp.2018.4.09.
6. Acknowledgment

I would like to take this opportunity to thank my supervisor Professor Yurdagül Zopf (medicine) for her excellent mentoring. From conception through execution of the clinical trial to publication I have always been able to rely on her constructive criticism and patient support, which made the successful realization of my doctoral thesis possible in the first place.

My special thank is due to all employees of the Medical Clinic I of the University Hospital Erlangen who contributed to the success of this project. Kathinka Faustka, thank you for the active support in collecting numerous blood samples. Dipl. troph. Monic Schink (trophology), thank you for your cooperativeness during the creation of the graphics. PD Dr. rer. nat. Walburga Dieterich (natural sciences), thank you for your scientific expertise throughout the publication process.

A big thank you goes to Dipl. biochem. Esther Tietz (biochemistry) for her sympathetic ear, for constructive discussions on the data, for her enthusiasm and outstanding work. The teamwork was loads of fun.

Sincere thanks are given to Dr. rer. nat. Elisabeth Waldmann (natural sciences) for her assistance in the statistics.

Furthermore, thanks to the STAEDTLER Foundation, Nuremberg, for providing financial support for the research on the topic of histamine intolerance. I would like to thank Immundiagnostik AG, Bensheim, for the excellent cooperation in the measurements of both the histamine levels and DAO activities and other blood parameters.

I would also like to express my gratitude to all subjects who participated in this study for scientific purposes.

I wholeheartedly thank my parents who enabled me to complete my medical studies and supported me in every situation. Thanks to my husband Max for his love, patience and motivation during the nerve-racking phases of life. My biggest hug and thanks go to all three of you since without you I would not be the person I am today.