Novel biomarkers of acute kidney injury: Evaluation and evidence in urologic surgery

Marianne Schmid, Deepansh Dalela, Rana Tahbaz, Jessica Langetepe, Marco Randazzo, Roland Dahlem, Margit Fisch, Quoc-Dien Trinh, Felix K-H Chun

Abstract
Patients undergoing urologic surgery are at risk of acute kidney injury (AKI) and consequently long-term deterioration in renal function. AKI is further associated with significantly higher odds of perioperative complications, prolonged hospital stay, higher mortality and costs. Therefore, better awareness and detection of AKI, as well as identification of AKI determinants in the urological surgery setting is warranted to pre-empt and mitigate further deterioration of renal function in patients at special risk. New consensus criteria provide precise definitions of diagnosis and description of the severity of AKI. However, they rely on serum creatinine (SCr), which is known to be an inaccurate marker of early changes in renal function. Therefore, several new urinary and serum biomarkers promise to address the gap associated with the use of SCr. Novel biomarkers may complement SCr measurement or most likely improve the diagnostic accuracy of AKI when used in combinations. However, novel biomarkers have to prove their clinical applicability, accuracy, and cost effectiveness prior to implementation into clinical practice. Most preferably, novel biomarkers should help to positively improve a patient’s long-term renal functional outcomes. The purpose of this review is to discuss currently available biomarkers and to review their clinical evidence within urologic surgery settings.

Key words: Acute kidney injury; Urology; Outcome; Renal function; Biomarker; Surgery

© The Author(s) 2015. Published by Baishideng Publishing Group Inc. All rights reserved.
outcomes. Therefore, efforts are warranted to promote awareness for AKI. Novel biomarkers promise to improve early and accurate detection of AKI, which may help to provide better patients’ outcomes. However, these biomarkers still have to prove their clinical effectiveness prior to their implementation into urologic surgery settings.

Schmid M, Dalela D, Tahbaz R, Langetepe J, Randazzo M, Dahlem R, Fisch M, Trinh QD, Chun FKH. Novel biomarkers of acute kidney injury: Evaluation and evidence in urologic surgery. World J Nephrol 2015; 4(2): 160-168 Available from: URL: http://www.wjgnet.com/2220-6124/full/v4/i2/160.htm DOI: http://dx.doi.org/10.5527/wjn.v4i2.160

INTRODUCTION

Urologic patients are at risk of acute kidney injury (AKI)[1-3]. A recent study evaluating procedure-dependent incidence of AKI in patients undergoing urologic surgery found that AKI was most frequently associated with partial/radical nephrectomy and nephroureterectomy (43.1%), transurethral resection of bladder tumor (15.3%), cystoprostatectomy (3.6%), ureteroscopic lithotripsy (3.6%), transurethral resection of the prostate (2.2%), radical prostatectomy (1.5%) and JJ-stent insertion (1.5\%)[4]. Potentially reversible causes of AKI related to urologic surgery may be of pre- (e.g., postoperative bleeding, sepsis) or post-renal (e.g., urinary obstruction, dislocation of ureteric stent, anastomotic leak) origin. However, AKI observed in renal surgery patients is largely related to direct renal damage, resulting in a potentially irreversible decline of renal function. Although partial nephrectomy for renal cell carcinoma aims to preserve renal function, AKI following the direct removal of renal parenchyma and damage of the remaining tissue from hyperfiltration or ischemia is a commonly observed adverse event in these patients[5,6]. Besides the volume of preserved renal parenchyma, type and duration of ischemia during partial nephrectomy remain the most important modifiable factors for renal functional outcome[7]. Ischemic renal injury leads to a robust inflammatory response within the kidney, but also extrarenal manifestations have been observed[8-10]. Furthermore, the impact of renal ischemia-reperfusion injury on tumor propagation, malignant progression, and resistance to therapy is a topic of current investigations[11,12]. In addition, there is evidence demonstrating an impact of postoperative AKI on adverse surgical outcomes[13]. Indeed, AKI is associated with higher complication rates, longer hospital stays, increased mortality, and therefore greater utilization of health care resources and associated costs[14,15]. As patients undergoing urologic oncologic surgery often present with (unknown) pre-existing chronic kidney disease (CKD) at the time of surgery[16,17] an additional perioperative episode of AKI may contribute to worse renal recovery, long-term renal function deterioration and progression of CKD[3,18]. Consequently, urologists need to seek out the risk factors for AKI, identify the present signs and foresee its impact on the perioperative outcome of their patients[13]. While there are excellent reviews highlighting the most promising urinary and serum biomarkers of AKI[19,20], the purpose of this review is to discuss currently available biomarkers and to review their clinical evidence within urologic surgery settings.

DATA ACQUISITION

A non-systematic PubMed/Medline literature search was performed to identify original articles, review articles, and editorials evaluating AKI biomarkers in urologic surgery using the keywords “acute kidney injury, biomarkers, surgery, urology,” of the last 3 years (May 30, 2001 to July 31, 2014). The literature search was restricted to English language and availability of full text.

RESULTS

Definition and diagnosis of acute kidney injury

Due to a lack of consensus on the definition of acute renal failure, a wide variation exists in estimates of disease prevalence and mortality[15]. Currently, “AKI” is defined as an abrupt deterioration of kidney function and includes a spectrum ranging from minor renal functional impairment to acute renal failure requiring renal replacement therapy. The Risk, Injury, Failure, Loss, and End-stage kidney disease (RIFLE) staging criteria was the first consensus definition for AKI[21], followed by the Acute Kidney Injury Network (AKIN) classification, which defines AKI as an absolute increase in the serum creatinine (SCr) concentration of ≥ 0.3 mg/dl from baseline within 48 h[22]. More recently, the Kidney Disease/Improving Global Outcomes (KDIGO) group revised the definition of AKI, retaining AKIN staging criteria by classifying patients according to changes in SCr and urine output[23]. RIFLE, AKIN and KDIGO definitions have emphasized on the non-negligible incidence of AKI and its long-term adverse outcomes[21-23].

Biomarkers of acute kidney injury

Serum creatinine: SCr, is the gold-standard marker for renal function. However, SCr concentrations can be affected by age, gender, and racial differences of body mass as well as dietary factors and volume status[24]. In general, equations that estimate renal function, such as the Modification of Diet in Renal Disease or the Chronic Kidney Disease Epidemiology Collaboration equations[25,26], attempt to overcome the relative inaccuracy of SCr by including these patient characteristics to estimate glomerular filtration rate
(GFR)\(^{[27]}\). Nonetheless SCR is primarily a marker of glomerular function, and SCR-based measurements may be inaccurate in detecting an abrupt decline in renal function, as the functional reserve of the remaining healthy nephrons prevents a significant rise in SCR until 50% of nephrons are lost\(^{[28,29]}\). Furthermore, the early phase of AKI is accompanied with few symptoms or may even be asymptomatic. Thus, it is critical to note that even if the SCR-based estimation of renal function is "normal", loss of renal reserve may already have begun.

Consequently, recent research has focused on novel biomarkers that are directly related to the underlying renal injury and may diagnose AKI more expeditiously and accurately, while concurrently predicting its severity\(^{[30,31]}\). Most perioperative studies on AKI have been performed in the setting of cardiac surgery. However, as the awareness of AKI is increasing, other surgical specialties are evaluating this adverse outcome as well\(^{[32,33]}\). Additional biomarkers of AKI to rely on would be preferable especially in urologic high-risk patients (e.g., renal surgery, pre-existing CKD). In fact, several promising serum and urinary biomarkers are now available including serum and urinary Cystatin C (sCysC and uCysC), neutrophil gelatinase-associated lipocalin (sNGAL and uNGAL), and urinary Kidney Injury Molecule 1 (uKIM-1), Interleukin-18 (uIL-18), Liver-type lipocalin (sNGAL and uNGAL), and urinary Kidney Injury molecule-1; IL-18: Interleukin-18; L-FABP: Liver-type fatty acid binding protein; NAG: N-acetyl-

Table 1 Baseline reference values of novel biomarkers of acute kidney injury obtained from different studies

Biomarker	Injury	Source	Test	Unit	Healthy controls (range)
Cystatin C	Proximal tubule injury	Serum	Nephelometric immunoassay/ELISA	mg/L	0.53-0.95\(^{[95]}\)
		Urine	Nephelometric immunoassay/ELISA	mg/L	0.85 ± 0.21\(^{[96]}\)
		Urine	ELISA	ng/mL	0.05-0.28\(^{[97]}\)
		Urine	ELISA	pg/mL	0.02-0.11\(^{[98]}\)
		Urine	ELISA	ng/mL	86.3 ± 43.0 (men)\(^{[99]}\)
		Urine	ELISA	ng/mL	88.9 ± 38.2 (women)\(^{[99]}\)
		Urine	ELISA	pg/mL	56.7 ± 17.55\(^{[99]}\)
		Urine	ELISA	pg/mL	1.7 ± 0.3\(^{[99]}\)
		Urine	ELISA	ng/mL	0.4-100\(^{[99]}\)
		Urine	ELISA	ng/mL	5.7-17.7\(^{[99]}\)
		Urine	ELISA	ng/mL	11.94 ± 8.09\(^{[99]}\)
		Urine	ELISA	ng/mL	0.8-28.9 (men)\(^{[99]}\)
		Urine	ELISA	ng/mL	1.9-316.7 (women)\(^{[99]}\)
		Urine	ELISA	ng/mL	59-214\(^{[99]}\)
		Urine	ELISA	ng/mL	395.1 ± 398.8\(^{[99]}\)
		Urine	ELISA	ng/mL	31.0-1000.0\(^{[99]}\)
		Urine	ELISA	ng/mL	31.0-1736.9\(^{[99]}\)
		Urine	ELISA	pg/mL	1.4-1.8\(^{[99]}\)
		Urine	ELISA	pg/mL	3.0-108.6\(^{[99]}\)
		Urine	ELISA	pg/mL	6.2-311.1\(^{[99]}\)
		Urine	ELISA	pg/mL	3-409\(^{[99]}\)
		Urine	ELISA	pg/mL	5.67 (2.74-8.21)\(^{[99]}\)
		Urine	ELISA	pg/mL	0.75-9.09 U/g\(^{[99]}\)
		Urine	ELISA	pg/mL	1.06 ± 0.1 U/g (children)\(^{[99]}\)

\(^1\)Lower reference values are not presented due to the detection limit of 0.05 mg/L. NGAL: Neutrophil gelatinase-associated lipocalin; KIM-1: Kidney injury molecule-1; IL-18: Interleukin-18; L-FABP: Liver-type fatty acid binding protein; NAG: N-acetyl-

Novel biomarkers of acute kidney injury

Seum and urinary cystatin C: CysC is a low-molecular weight protein that is freely filtered across the glomerular membrane and in consequence less reliant on age, sex, race and muscle mass, compared to SCR\(^{[35]}\). Moreover, although CyC is not normally detected in the urine, it has been found in the urine of patients with tubular disease, suggesting its putative role as a marker of renal tubular damage\(^{[36]}\). Nephelometric measurements of CysC have upper reference values of 0.28 mg/L\(^{[27]}\) in the urine and range between 0.53-0.95 mg/L in the serum of healthy individuals\(^{[38,39]}\).

CysC has been proposed as a complementary or possibly marker of baseline renal function\(^{[35,40]}\). Although sCysC measurement is currently 10 times more expensive than SCR, it is implemented in routine renal function measurement of pediatric patients and used to monitor kidney transplant patients\(^{[41-43]}\). Furthermore, there is evidence suggesting that an elevation of sCysC predates minor decreases in GFR 1 to 2 d prior to symptoms, SCR elevation and/or renal function decline\(^{[44,45]}\). Early elevations of uCysC levels were significant predictors of AKI after elective cardiac surgery\(^{[46]}\), and are correlated...
with the need for renal replacement therapy in patients with acute tubular necrosis[47] However, other studies were not able to corroborate these findings[37] and suggest that sCysC is unreliable in the context of

| Table 2 | Biomarkers of acute kidney injury evaluated within urologic surgery settings |
Ref.	Biomarker	Source	Cohort	Surgical setting	Outcome	Comparison	Time
Langetepe et al[20]	CysC, NGAL, KIM-1, Cr	Urine, Serum	31 RCC patients	PN, RN	Increased values of CysC, NGAL, KIM-1	Pre-/postoperative	24 h after surgery
Spreenkle et al[18]	NGAL	Urine	PN: 88 patients, RN: 32 patients, thoracic surgery: 42 patients	PN, RN (warm or cold ischemia)	No association between postoperative AKI and any AKI	PN/RN /thoracic surgery patients	4, 8, 12, 24 h post surgery
Parekh et al[34]	Cr, NGAL, CysC, LFABP, NAG, KIM-1, IL-18	Urine, (renal biopsy)	20 patients with renal mass	PN (warm or cold ischemia)	Cr was significantly increased at 24 h	Correlation to renal biopsies (pre-, intra-, postoperative)	2 or 24 h after surgery
Schmid et al[34]	Cr, CysC	Serum	31 RCC patients	PN, RN	Postoperative Cysc and Cr elevations similarly predict renal function deterioration	Pre-/postoperative, 1 yr follow up	24 h, 1 yr after surgery
Xue et al[37]	Cr, NGAL, KIM-1	Serum, Urine	90 patients with obstructive uropathy	NA	KIM-1 and NGAL good accuracy for detecting AKI	Pre-/postoperative	4, 8, 12, 24, 48, 72 h after surgery
Cost et al[36]	NGAL	Urine (bladder and renal pelvis)	61 pediatric patients with ureteropelvic junction obstruction	Pyeloplasty	Significantly increased bladder NGAL	Healthy children	Intraoperative
Zekey et al[34]	Cr, NGAL	Serum	40 patients with kidney stones	SWL	No statistical Cr and urine NGAL levels	Before/after intervention	day 1, 2, 7 after intervention
Fahmy et al[34]	KIM-1, NAG	Urine	60 patients with kidney stones (50 SWL, 10 URS)	SWL, URS	KIM-1 values were increased in patients with kidney stones when compared with volunteers	Volunteers without kidney stones	2-3 h after intervention
Ng et al[22]	IL-18, NAG	Urine	206 patients with renal stones	SWL	Increased IL-18 and NAG I slower shock wave delivery group	60 vs 120 shock waves/min	After intervention
Hatipoğlu et al[18]	KIM-1 (free radical production)	Urine	30 patients with kidney stones	SWL	Significant increase of KIM-1	Pre-/postoperative	2 h after intervention

PN: Partial nephrectomy; RN: Radical nephrectomy; NGAL: Neutrophil gelatinase-associated lipocalin; KIM-1: Kidney injury molecule-1; URS: Ureterorenoscopy; SWL: Shockwave lithotripsy; Cr: Creatinine; CysC: Cystatin C; LFABP: Liver fatty acid–binding protein; NAG: N-acetyl-b-D-glucosaminidase; eGFR: Estimated glomerular filtration rate; RCC: Renal cell carcinoma; NA: Not available.
Serum and urinary NGAL: Production of NGAL, a lipocalin protein involved in innate immunity by binding iron to limit bacterial growth \[51\], is upregulated following renal injury, and consequently detectable in serum and urine hours prior to functional changes \[52,53\]. sNGAL values in healthy individuals should be around 86.3 ng/mL in men and 88.9 ng/mL in women \[38,54-56\], but may increase > 10-fold in serum and > 100-fold in urine following an acute injury \[57\].

A meta-analysis of 19 observational studies including 2500 patients was performed to estimate the diagnostic and prognostic accuracy of NGAL for AKI detection and to establish the role of urinary and serum NGAL in the context of AKI \[58\]. Xin et al \[59\] showed that for patients undergoing cardiac surgery, an increase of sNGAL was not temporally different to the rise of SCr within 48 h after AKI, however uNGAL (and IL-18) significantly increased to a peak of 400 ng/mL within 2-4 h of AKI.

Induction of unilateral renal ischemia in animal models results in physiological changes of the ischemic and contralateral kidney, with a corresponding increase of uNGAL and decrease of renal function \[50-56\]. Parekh et al \[60\] studied the renal response to > 30 min of warm or cold clamp ischemia in patients undergoing partial nephrectomy and observed significant increases in sNGAL 2 and 24 h after surgery. While levels of all urinary biomarkers studied (NGAL, KIM-1, IL-18, NAG, L-FABP) increased 2 and/or 24 h after surgery, sCysC levels did not change significantly (SWL) \[62\]. Conversely, Spenkle et al \[63\] did not observe increased uNGAL in partial nephrectomy patients within 24 h after surgery. Accordingly, no statistically significant change of uNGAL levels was observed in 40 nephrolithiasis patients treated with shock-wave lithotripsy \[64\]. Yet, our own data showed increased levels of uNGAL, KIM-1 and uCysC in 31 patients 24 h after partial or radical nephrectomy, but only uNGAL was correlated with SCR-based measurement of renal function \[65\]. Increased levels of uNGAL have also been obtained from bladder urine in children with ureteropelvic junction obstruction undergoing unilateral pyeloplasty \[66\]. Finally, uNGAL may serve as an early indicator for cisplatin nephrotoxicity \[67\], which may be useful for patients with muscle-invasive bladder undergoing neoadjuvant chemotherapy prior to radical cystectomy.

Urinary KIM-1: KIM-1 is a transmembrane glycoprotein undetectable in healthy kidney tissue, but it represents the most upregulated protein in proximal tubular cells after ischemic or nephrototoxic injury \[68\]. KIM-1 can be immediately detected in the urine following injury \[69,70\]. A strong correlation between immunohistochemical KIM-1 expression and tubular cell injury was shown in renal allograft biopsies of patients with active antibody-mediated transplant rejection \[71\], suggesting that KIM-1 is a reliable marker for tubular epithelial injury prior to elevated blood biochemical indexes and morphological changes. In addition, children with AKI following cardiac surgery demonstrated elevated uKIM-1 levels 12 h after surgery \[72\]. KIM-1 is measured in the urine by means of enzyme-linked immunosorbent assay, with normal values ranging between 59-2146 pg/mL in the healthy population \[70,73\].

A significant increase of uKIM-1 levels 2-3 h after SWL treatment \[74,75\] suggests direct ischemic damage and the release of free radicals. Both uKIM-1 and uNGAL demonstrated accuracy in detecting AKI among patients undergoing surgery for obstructive nephropathy; furthermore they might play a potential role in predicting postoperative renal recovery and long-term renal outcome \[76,77\].

Urinary IL-18: IL-18 is a pro-inflammatory cytokine that is activated in proximal tubule cells and excreted in the urine following a kidney injury. Increased expression of IL-18 genes has been demonstrated after renal ischemic injury \[78\]. Animal models revealed that IL-18 stimulates a positive feedback via IL-18 receptor during renal obstruction, which further stimulates IL-18 production and gene expression \[79\].

Initially described in the pediatric cardiac surgery setting, IL-18 the urine increased 6 h in after surgery, whereas SCR did not reveal AKI until 48-72 h after surgery \[80\]. Moreover, uIL-18 also increased significantly in adults and peaked at 600 pg/mL within 2-4 h after AKI \[80\]. Another study demonstrated an increase from 1.4 pg/mL to a peak of 234 pg/mL (about 25-fold) 12 h after cardiopulmonary bypass surgery in patients presenting AKI \[81\]. In patients with respiratory distress syndrome experiencing AKI, median uIL-18 was 104 pg/mL (range: 0 to 955 pg/mL), compared to 0 (range: 0 to 173 pg/mL) in control patients; IL-18 levels of > 100 pg/mL were associated with a 6.5-fold higher risk of AKI 24 h after hospitalization. Furthermore, higher level of uIL-18 (and serum IL-18) in ICU patients developing (dialysis-dependent) AKI was independently associated with mortality \[80,81\].

Finally, patients undergoing SWL showed a significant increase of uIL-18 (and uNAG) when treated with slower shock waves \[82\].

Urinary L-FABP: L-FABP is a 14-kDa protein expressed in proximal tubular epithelial cells. The urine of healthy individuals contains approximately 16 ng/mL L-FABP \[83\]. The gene responsible for L-FABP is associated with hypoxic stress. L-FABP binds unsaturated fatty acids and lipid peroxidation products during tissue injury from hypoxia \[84\]. Urinary excretion of L-FABP thus reflects stress within proximal tubular epithelial cells.
CONCLUSION
A plethora of novel biomarkers for AKI have recently been described. Whereas sCysC, uCysC, sNGAL, uNGAL, uKIM-1 and uNAG have shown promise, we did not find convincing evidence for uL-18 and uL-FABP. However, from a clinical perspective current use of these biomarkers in the urologic surgery setting is rare. Notable reasons behind this are the limited availability of assays, additional cost and the (currently) poor sensitivity and specificity demonstrated in urologic patients. Consequently, until now none of these biomarkers has been able to allow early detection of AKI in a way that would positively improve a patient’s long-term outcomes and justify a regular implementation in specific urologic surgery settings. SCR remains the mainstay for evaluation of kidney function in urologic surgical patients. However, novel biomarkers may complement SCR measurement to indicate the need for urgent drainage or initiation of renoprotective measures. Moreover, it is likely that a combined use of these novel biomarkers will be needed to improve the diagnostic accuracy of AKI. Multiplex assays for simultaneous quantification of several biomarkers promise to overcome the flaws of single marker use and demonstrate the advantage of combinations reflecting different aspects of renal injury. While these assays are currently more expensive compared to traditional SCR measurement, the hope is that the incremental diagnostic accuracy would offset costs by mitigating costly associated complications of AKI.

ACKNOWLEDGMENTS
Quoc-Dien Trinh is supported by the Professor Walter Morris-Hale Distinguished Chair in Urologic Oncology at the Brigham and Women’s Hospital.

REFERENCES
1 Wang SJ, Mu XN, Zhang LY, Liu QY, Jin XB. The incidence and clinical features of acute kidney injury secondary to ureteral calculi. Urol Res 2012; 40: 345-348 [PMID: 21853241 DOI: 10.1007/s00240-011-0414-6]
2 Kim MJ, Bachmann A, Mihtatsch MJ, Ruszat R, Sulser T, Mayr M. Acute renal failure after continuous flow irrigation in patients treated with potassium-titanyl-phosphate laser vaporization of prostate. Am J Kidney Dis 2008; 51: e19-e24 [PMID: 18371525 DOI: 10.1053/j.ajkd.2007.11.031]
3 Cho A, Lee JE, Kwon GY, Huh W, Lee HM, Kim YG, Kim DJ, Oh HY, Choi HY. Post-operative acute kidney injury in patients with renal cell carcinoma is a potent risk factor for new-onset chronic kidney disease after radical nephrectomy. Nephrol Dial Transplant 2011; 26: 3496-3501 [PMID: 21406554 DOI: 10.1093/ndt/gft094]
4 Cuddo G, Williams ST, McIntyre CW, Selby NM. Acute kidney injury in urology patients: incidence, causes and outcomes. Nephrourol Mon 2013; 5: 955-961 [PMID: 24693501 DOI: 10.5812/nmuly.2012712]
5 Brenner BM, Lawver EV, Mackenzie HS. The hyperfiltration theory: a paradigm shift in nephrology. Kidney Int 1996; 49: 1774-1777 [PMID: 8743465]
6 Lane BR, Babineau DC, Poggio ED, Weight CJ, Larson BT, Gill IS, Novick AC. Factors predicting renal functional outcome after partial nephrectomy. J Urol 2008; 180: 2363-2368; discussion 2363-2368 [PMID: 18930264 DOI: 10.1016/j.juro.2008.08.036]
7 Becker F, Van Poppel H, Hakenberg OW, Stief C, Gill I, Guazzoni G, Montorsi F, Russo P, Stöckle M. Assessing the impact of ischemia time during partial nephrectomy. Eur Urol 2009; 56: 625-634 [PMID: 19656615 DOI: 10.1016/j.eururo.2009.07.016]
8 Bonventre JV, Zuk A. Ischemic acute renal failure: an inflammatory disease? Kidney Int 2004; 66: 480-485 [PMID: 15253693 DOI: 10.1111/j.1523-1754.2004.761_2.x]
9 Hoke TS, Douglas IS, Klein CL, Ho Z, Fang W, Thurman JM, Tao Y, Darsun B, Voelkel NF, Edelstein CL, Faubel S. Acute renal failure after bilateral nephrectomy is associated with cytokine-mediated pulmonary injury. J Am Soc Nephrol 2008; 19: 155-164 [PMID: 17167117 DOI: 10.1681/ASN.2006050494]
10 Kramer AA, Postler G, SalhafKF, Mendez C, Carey LC, Rabb H. Renal ischemia/reperfusion leads to macrophage-mediated increase in pulmonary vascular permeability. Kidney Int 1999; 55: 2362-2367 [PMID: 10354283 DOI: 10.1046/j.1523-1755.1999.00460.x]
11 Höckel M, Vaupel P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst 2001; 93: 266-276 [PMID: 11181773]
12 Skolarikos AA, Papastoris AG, Alivizatos G, Deliveliotis C. Molecular pathogenetics of renal cancer. Am J Nephrol 2006; 26: 218-231 [PMID: 16733347 DOI: 10.1159/000093631]
13 Schmid M, Abd-El-Barr AE, Gandaglia G, Sood A, Olugbade K, Ruhotina N, Sammon JD, Varda B, Chang SL, Kibel AS, Chun FK, Menon M, Fisch M, Trinh QD. Predictors of 30-day acute kidney injury following radical and partial nephrectomy for renal cell carcinoma. Urol Oncol 2014; 32: 1259-1266 [PMID: 25129142 DOI: 10.1016/j.urolonc.2014.05.002]
14 Chertow GM, Soroko SH, Paganini EP, Cho KC, Himmelfarb J, Ikizler TA, Mehta RL. Mortality after acute renal failure: models for prognostic stratification and risk adjustment. Kidney Int 2006; 70: 1120-1126 [PMID: 16850028 DOI: 10.1046/j.1523-1755.2005.05799]
15 Lamere NH, Buga A, Cruz D, De Maeseneer J, Endre Z, Kellum JA, Liu KD, Mehta RL, Pannu N, Van Biesen W, Vanholder R. Acute kidney injury: an increasing global concern. Lancet 2013; 382: 170-179 [PMID: 23727171 DOI: 10.1016/S0140-6736(13)60647-9]
16 Lane BR, Poggio ED, Herts BR, Novick AC, Campbell SC. Renal function assessment in the era of chronic kidney disease: renewed emphasis on renal function centered patient care. J Urol 2009; 182: 40-45
Acute kidney injury in urologic surgery

Schmid M et al

Physiol Rev 2013; 100: 1-149

Acute kidney injury - definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care 2004; 8: R204-R212 [PMID: 15312219 DOI: 10.1186/cc2872]

Mehta RL, Kellum JA, Shah SV, Milotis BA, Ronco C, Warnock DG, Levin A. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care 2007; 11: R31 [PMID: 17331245 DOI: 10.1186/cc5713]

KDIGO AKI Working Group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl 2012; 2: 1-138

Michels WM, Grootendorst DC, Verduijn M, Elliott EG, Dekker FW, Krediet RT. Performance of the Cockcroft-Gault, MDRD, and new CKD-EPI formulas in relation to GFR, age, and body size. Clin J Am Soc Nephrol 2010; 5: 1003-1009 [PMID: 20293665 DOI: 10.2215/CNJ.09.080909]

Levey AS, Coresh J, Greene T, Rogers N, Rastegar D. A new equation to estimate glomerular filtration rate from serum creatinine in children. J Am Soc Nephrol 2012; 23: 1485-1492 [PMID: 22384472 DOI: 10.1681/ASN.2011080864]

Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF, Feldman HI, Kusek JW, Eggers P, Van Lente F, Greene T, Coresh J. A new equation to estimate glomerular filtration rate. Ann Intern Med 2009; 150: 604-612 [PMID: 19414839 DOI: 10.7326/0003-4819-150-9-200905050-00006]

Levey AS, Bosch JP, Lewin JS, Greene T, Rogers N, Rastegar D. A more accurate method to estimate glomerular filtration rate from serum creatinine. Modification of Diet in Renal Disease Study Group. Ann Intern Med 1999; 130: 441-470 [PMID: 10075613 DOI: 10.7326/0003-4819-130-6-199903160-00002]

Hayslett JP. Functional adaptation to reduction in renal mass. Physiol Rev 1979; 59: 137-164 [PMID: 220664]

Hostetter TH, Olson JL, Rencke HG, Venkataraman MA, Bremner BM. Hyperfiltration in remnant nephrons: a potentially adverse response to renal ablation. J Am Soc Nephrol 2001; 12: 1315-1325 [PMID: 11373357]

Coca SG, Yalavarthy R, Concato J, Parikh CR. Biomarkers for the diagnosis and risk stratification of acute kidney injury: a systematic review. Kidney Int 2008; 73: 1008-1016 [PMID: 18094679 DOI: 10.1038/ki.2008.92]

Waikar SS, Bonventre JV. Biomarkers for the diagnosis of acute kidney injury. Nephron Clin Pract 2008; 109: c19-c197 [PMID: 18082367 DOI: 10.1159/000124928]

Dedegoglu B, de Geus HR, Fortrie G, Betjes MG. Novel biomarkers for the prediction of acute kidney injury in patients undergoing liver transplantation. Biomark Med 2013; 7: 947-957 [PMID: 24266830 DOI: 10.2217/bmm.13.19]

Sung WC, Yu HP, Tsai YF, Chung PC, Lin CC, Lee WC. The ratio of plasma interleukin-18 is a sensitive biomarker for acute kidney injury after liver transplantation. Transplant Proc 2014; 46: 816-817 [PMID: 24767335 DOI: 10.1016/transproceed.2013.09.055]

Thomas AA, Demirjian S, Lane BR, Simmons MN, Goldfarb DA, Subramanian VS, Campbell SC. Acute kidney injury: novel biomarkers and potential utility for patient care in urology. Urology 2011; 77: 1-6 [PMID: 20599252 DOI: 10.1016/j.urology.2010.05.004]

Roos JF, Doust J, Tett SE, Kirkpatrick CM. Diagnostic accuracy of cystatin C compared to serum creatinine for the estimation of renal dysfunction in adults and children—a meta-analysis. Clin Biochem 2007; 40: 383-391 [PMID: 17316593 DOI: 10.1186/cinbiochem.2007.05.011]

Conti M, Mouteoures S, Zater M, Lallali K, Durrbach A, Manivet P, Eschwègue P, Loric S. Urinary cystatin C as a specific marker of tubular dysfunction. Clin Chem Lab Med 2006; 44: 288-291 [PMID: 16519600 DOI: 10.1515/CLLM.2006.050]

Royakers AA, van Suijlen JD, Hoefstra LS, Kuiper MA, Bouman CS, Spornik PE, Schultz MJ. Serum cystatin C-A useful endogenous marker of renal function in intensive care unit patients at risk for or with acute renal failure? Curr Med Chem 2007; 14: 2314-2317 [PMID: 17896979]

Corda-Todd MT, Soto-Montano XJ, Hernández-Cancino PA, Juárez-Aguilar E. Adult cystatin C reference intervals determined by nephelometric immunoassay. Clin Biochem 2007; 40: 1084-1087 [PMID: 17264320 DOI: 10.1186/cinbiochem.2007.05.011]

Matsy U, Bachorzewska-Gajewska H, Malysoy J, Dobrzyski Z. Assessment of kidney function in diabetic patients. Is there a role for new biomarkers NGAL, cystatin C and KIM-1? Adv Med Sci 2013; 58: 353-361 [PMID: 23484771 DOI: 10.1051/ajkd/2002.34887]

Le Bricon T, Thervet E, Benlakhal M, Boussquet B, Legendre C, Erlich D. Changes in plasma cystatin C after renal transplantation and acute rejection in adults. Clin Chem 1999; 45: 2243-2249 [PMID: 10585359]

Ayub S, Zafar MN, Aziz T, Iqbal T, Khan S, Rizvi SA. Evaluation of renal function by cystatin C in renal transplant recipients. Exp Clin Transplant 2014; 12: 37-40 [PMID: 24471722 DOI: 10.6002/ect.2013.0202]

Fox JA, Dudley AG, Bates C, Cannon GM. Cystatin C as a marker of early renal insufficiency in children with congenital neuropathic bladder. J Urol 2014; 191: 1602-1607 [PMID: 24679869 DOI: 10.1016/j.juro.2013.09.093]

Herget-Rosenthal S, Margraf G, Hüsing J, Göring F, Pietruck F, Janssen O, Philipp T, Kribben A. Early detection of acute renal tubular dysfunction. PloS One 2013; 8: e67654 [PMID: 24078100 DOI: 10.1371/journal.pone.0067654]

Pirgakis KM, Malakis K, Dalainas I, Lazaris AM, Maltezos CK, Liapis CD. Urinary cystatin C as an early biomarker of acute kidney injury after open and endovascular abdominal aortic aneurysm repair. Ann Vasc Surg 2014; 28: 1649-1658 [PMID: 24858592 DOI: 10.1016/j.avsg.2014.04.006]

Koyner JL, Bennett MR, Worcester EM, Ma Q, Raman J, Jeevana-nadam V, Kashe K, O’Connor MF, Konczal DJ, Trevino S, Devarajan P, Murray PT. Urinary cystatin C as an early biomarker of acute kidney injury following adult cardiothoracic surgery. Kidney Int 2004; 66: 1115-1122 [PMID: 15327406 DOI: 10.1111/j.1523-1755.2004.00861.x]

Hasslacher J, Lehner GF, Joannidis M. Insufficient performance of new kidney injury and sepsis, and predicts mortality in the intensive care unit. Crit Care 2010; 14: R85 [PMID: 20459852 DOI: 10.1186/cc9014]
Acute kidney injury in urological surgery

Schmid M et al.

Cost NG, Noh PH, Devarajan P, Ivancic V, Reddy PP, Minevich E, Bennett M, Haffner C, Schulte M, DeFoort WR. Urinary NGAL levels correlate with differential renal function in patients with ureteropelvic junction obstruction undergoing pyeloplasty. J Urol 2013; 190: 1462-1467 [PMID: 23791906 DOI: 10.1016/j.juro.2013.05.003]

Mishra J, Mori K, Ma Q, Kelly C, Barasch J, Devarajan P. Neutrophil gelatinase-associated lipocalin: a novel early urinary biomarker for cisplatin nephrotoxicity. Am J Nephrol 2004; 24: 307-315 [PMID: 14517431 DOI: 10.1055/s-0041-167548]

Bonventre JV. Kidney injury molecule-1: a translational journey. Trans Am Clin Climatol Assoc 2012; 125: 293-299; discussion 299 [PMID: 22512574]

Devarajan P. Biomarkers for the early detection of acute kidney injury. Curr Opin Pediatr 2011; 23: 194-200 [PMID: 21256274 DOI: 10.1097/MOP.0b013e328343f4dd]

Vaidya VS, Ramirez V, Ichimura T, Bobadilla NA, Bonventre JV. Urinary kidney injury molecule-1: a sensitive quantitative biomarker for early detection of kidney tubular injury. Am J Physiol Renal Physiol 2006; 290: F517-F529 [PMID: 16174863 DOI: 10.1152/ajprenal.00291.2005]

Song L, Xue L, Yu J, Zhao J, Zhang W, Fu Y. Kidney injury molecule-1 expression is closely associated with renal allograft damage. J Biomed Sci 2013; 19: 170-174 [PMID: 23988168]

Han WK, Waiker SS, Johnson A, Betensky RA, Dent CL, Devarajan P, Bonventre JV. Urinary biomarkers in the early diagnosis of acute kidney injury. Kidney Int 2008; 73: 863-869 [PMID: 18059454 DOI: 10.1038/sj.ki.5002715]

Chaturvedi S, Farmer T, Kapek GF. Assay validation for KIM-1: a human urinary renal dysfunction biomarker. J Int Biol Sci 2009; 5: 128-134 [PMID: 19170304]

Fahmy N, Sener A, Sabbisetti V, Nott L, Lang RM, Welk BK, Méndez-Probst CE, MacPhee RA, VanEerdewijk S, Cadeix PA, Bonventre JV, Razvi H. Urinary expression of novel tissue markers of kidney injury after ureteroscopy, shockwave lithotripsy, and in normal healthy controls. J Endourol 2013; 27: 1455-1462 [PMID: 21488048 DOI: 10.1089/end.2013.0188]

Hatipoğlu NK, Evliyaoğlu O, İşik B, Bodakić MN, Bozkurt Y, Sanacikatur AA, Söylemez H, Atar M, Penbegül N, Yüncü M, Dağgülü M. Antioxidant signal and kidney injury molecule-1 levels in shockwave lithotripsy induced kidney injury. J Endourol 2014; 28: 224-228 [PMID: 24044353 DOI: 10.1089/end.2013.0535]

Xue W, Xie Y, Wang Q, Xu W, Mou S, Ni Z. Diagnostic performance of urinary kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin: a translational study in kidney injury in an obstructive nephropathy patient. Nephrology (Carlton) 2014; 19: 186-194 [PMID: 24165570 DOI: 10.1111/nep.12173]

Lucarelli G, Mancini V, Galleggiante V, Rutigliano M, Vavallo A, Battaglia D, Ditomma P. Emerging urinary markers of renal injury in obstructive nephropathy. Biomed Res Int 2013; 2013: 503298 [PMID: 25101270 DOI: 10.1155/2014/503298]

Supavek S, Zhang W, Kucherlapati R, Kaskel FJ, Moore LC, Devarajan P. Differential gene expression following early renal ischaemia/reperfusion. Kidney Int 2003; 63: 1714-1724 [PMID: 12675847 DOI: 10.1046/j.1523-1755.2003.00928.x]

VanderBrink BA, Asanuma H, Hile K, Zhang H, Rink RC, Mel-drum KK. Interleukin-18 stimulates a positive feedback loop during renal obstruction via interleukin-18 receptor. J Urol 2011; 186: 1502-1508 [PMID: 21855933 DOI: 10.1016/j.juro.2011.05.046]

Parikh CR, Abraham E, Ancukiewicz M, Edelstein CL. Urine IL-18 is an early diagnostic marker for acute kidney injury and predicts mortality in the intensive care unit. J Am Soc Nephrol 2005; 16: 3046-3052 [PMID: 16148039 DOI: 10.1681/ASN.2005030236]

Lin CY, Chang CH, Fan PC, Tian YC, Chang MY, Jenq CC, Hung CC, Fang JT, Yang CW, Chen YC. Serum interleukin-18 at commencement of renal replacement therapy predicts short-term prognosis in critically ill patients with acute kidney injury. PLoS One 2013; 8: e60628 [PMID: 23741523 DOI: 10.1371/journal.pone.0060628]

Ng CF, Lo AK, Lee KW, Wong KT, Chung WY, Gohel D. A pro-
spective, randomized study of the clinical effects of shock wave delivery for unilateral kidney stones: 60 versus 120 shocks per minute. J Urol 2012; 188: 837-842 [PMID: 22819406 DOI: 10.1016/j.juro.2012.05.009]

Matsui K, Kamijo-Ikemori A, Sugaya T, Yasuda T, Kimura K. Usefulness of urinary biomarkers in early detection of acute kidney injury after cardiac surgery in adults. Circ J 2012; 76: 213-220 [PMID: 22094907]

84 Bennaars-Eiden A, Higgins L, Hertzel AV, Kapphahn RJ, Ferrington DA, Bernlohr DA. Covalent modification of epithelial fatty-acid-binding protein by 4-hydroxynonenal in vitro and in vivo. Evidence for a role in antioxidant biology. J Biol Chem 2002; 277: 50689-50702 [PMID: 12386159 DOI: 10.1074/jbc.M209493200]

85 Manabe K, Kamihata H, Motohiro M, Senoo T, Yoshida S, Iwasaka T. Urinary liver-type fatty acid-binding protein level as a predictive biomarker of contrast-induced acute kidney injury. Eur J Clin Invest 2012; 42: 557-563 [PMID: 22070248 DOI: 10.1111/j.1365-2362.2011.02620.x]

86 Yamamoto T, Noiri E, Ono Y, Doi K, Negishi K, Kamijo A, Kimura K, Fujita T, Kimukawa T, Taniguchi H, Nakamura K, Goto M, Shinozaki N, Oshimizu S, Sugaya T. Renal L-type fatty-acid-binding protein as a predictive biomarker of acute ischemic injury. J Am Soc Nephrol 2007; 18: 2894-2902 [PMID: 17942962 DOI: 10.1681/ASN.2007010097]

87 Susantitaphong P, Siribamrungwong M, Doi K, Noiri E, Terrin N, Jaber BL. Performance of urinary liver-type fatty acid-binding protein in acute kidney injury: a meta-analysis. Am J Kidney Dis 2013; 61: 430-439 [PMID: 23228945 DOI: 10.1053/j.ajkd.2012.10.016]

88 Carr MC, Peters CA, Retik AB, Mandell J. Urinary levels of the renal tubular enzyme N-acetyl-beta-D-glucosaminidase in unilateral obstructive uropathy. J Urol 1994; 151: 442-445 [PMID: 8283554]

89 Skalova S, Rejtar P, Kutilek S. Increased urinary N-acetyl-beta-D-glucosaminidase activity in patients with hydronephrosis. Int Braz J Urol 2007; 33: 80-83; discussion 84-86 [PMID: 17335604 DOI: 10.1590/S1677-55382007000100014]

90 Bernard AM, Vyskocil AA, Mahieu P, Lauverys RR. Assessment of urinary retinol-binding protein as an index of proximal tubular injury. Clin Chem 1987; 33: 775-779 [PMID: 3297418]

91 Liangos O, Perianayagam MC, Vaidya VS, Han WK, Wald R, Tighiouart H, MacKinnon RW, Li L, Balakrishnan VS, Pereira BJ, Bonventre JV, Jaber BL. Urinary N-acetyl-beta-(D)-glucosaminidase activity and kidney injury molecule-1 level are associated with adverse outcomes in acute renal failure. J Am Soc Nephrol 2007; 18: 904-912 [PMID: 17267747 DOI: 10.1681/ASN.2006030221]

92 Hanbeyoğlu A, Kazez A, Ustündag B, Akpolat N. Determination of urinary N-acetyl-beta-D glucosaminidase (NAG) levels in experimental blunt renal trauma. Ulus Travma Acil Cerrahi Derg 2011; 17: 475-481 [PMID: 22289997 DOI: 10.5505/ptacs.2011.57973]

93 Marchewka Z, Kuźniar J, Długosz A. Enzymuria and beta2-mikroglobulinuria in the assessment of the influence of proteinuria on the progression of glomerulopathies. Int Urol Nephrol 2001; 33: 673-676 [PMID: 12452627]

94 Katagiri D, Doi K, Honda K, Negishi K, Fujita T, Hisagi M, Ono M, Matsubara T, Yahagi N, Iwagami M, Ohtake T, Kobayashi S, Sugaya T, Noiri E. Determination of two urinary biomarkers predicts acute kidney injury after adult cardiac surgery. Ann Thorac Surg 2012; 93: 577-583 [PMID: 22269724 DOI: 10.1016/j.athoracsur.2011.10.048]

95 Liu S, Che M, Xue S, Xie B, Zhu M, Lu R, Zhang W, Qian J, Yan Y. Urinary L-FABP and its combination with urinary NGAL in early diagnosis of acute kidney injury after cardiac surgery in adult patients. Biomarkers 2013; 18: 95-101 [PMID: 23167703 DOI: 10.3109/1354750X.2012.740687]

96 Zhang X, Gibson B, Mori R, Snow-Lisy D, Yamaguchi Y, Campbell SC, Simmons MN, Daly TM. Analytical and biological validation of a multiplex immunosay for acute kidney injury biomarkers. Clin Chim Acta 2013; 415: 88-93 [PMID: 23041213 DOI: 10.1016/j.cca.2012.09.022]

P-Reviewer: Carvalho M, Papatsoris AG, Simmons MN
S-Editor: Gong XM
L-Editor: A
E-Editor: Lu YJ
