Synthesis and Characterization of γ-Al₂O₃/SiO₂ Composite Materials

Munasir¹,²*, Diah Hari Kusumawati¹,², Sunaryono³,⁴, Nugrahani Primary Putri¹,², Nurul Hidayat³, Ahmad Taufiq³,⁴, Zainul Arifin Imam Supardi¹,²

¹Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Surabaya, Kampus Ketintang, Jl. Ketintang, Surabaya, 60231.
2Research Center of Advanced Materials, Universitas Negeri Surabaya, Kampus Ketintang, Jl. Ketintang, Surabaya 60231.
3Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Jl. Semarang 5 Malang 64145, Indonesia.
4Research Center of Minerals and Advanced Materials, Faculty of Mathematics and Natural Science, Universitas Negeri Malang, Jl. Semarang 5 Malang 64145, Indonesia.

*Corresponding author’s email: munasir_physics@unesa.ac.id

Abstract. This article reports the synthesis process of γ-alumina/SiO₂ composite from aluminium powders and amorphous nanosilica through the means of tetra-methyl-ammonium hydroxide (TMAH) as the mixing medium which produced aluminium hydroxide Al(OH)₃ in the form of white powders. The crystal structures, microstructures, and mapping of the atomic constituent of γ-Al₂O₃ and γ-Al₂O₃/SiO₂ samples were respectively analyzed via X-ray diffraction (XRD), and scanning electron microscopy-energy dispersive X-ray SEM-EDX. At the calcination temperature to 300 °C, the samples still had boehmite phase, and the boehmite phase transformation to γ-alumina phase occurred at temperature of 700-900 °C. The γ-alumina phase began to form at the calcination temperature of 500-700 °C with the crystal structure of (440), (511), (400), (222), (311), and (111). The similar diffraction pattern was also shown by the γ-Al₂O₃/SiO₂ composite for the calcination temperature of 700 °C and 900 °C. The microstructure analysis of the γ-Al₂O₃/SiO₂ showed that SiO₂ particles were smaller and round while the γ-Al₂O₃ particles were bigger and elongated. Additionally, the mapping results showed SiO₂ and γ-Al₂O₃ particles were homogenously distributed.

Keywords: Composite, γ-Al₂O₃, SiO₂, composite, calcination.

1. Introduction

Nowadays, knowledge and technology have rapidly developed. This case is inseparable from the dominant role of research on materials which supports the production process in the industrial field. Almost 75% of chemical manufacturing processes require the catalyst assistance. Such fact has encouraged a high number of researchers to synthesize both inorganic and organic catalysts for further development. The purpose of such synthesis is to create a wide utilization of catalysts with minimum side effects on the environment [1]. One of the frequently used catalysts in industrial fields is γ-Al₂O₃. The use of γ-Al₂O₃ as a catalyst and catalyst support [2-4] is based on several advantages. The first
advantage is that γ-Al_2O_3 has a broad surface area and ability to capture undesirable dirt. The second advantage is that γ-Al_2O_3 possesses a relatively high thermal stability it has a high melting point (2,318°C). Third, the structure of γ-Al_2O_3 simplifies the combination process of its molecules with active phase molecules, so that a compact catalytic structure can be formed [5]. Mesoporous γ-Al_2O_3 is one of the widely-used supporting catalysts for commercial application. The catalytic performance highly depends on the supporting combination of texture, chemical, and physical characteristics [4].

Tetragonal γ-Al_2O_3 can be formed from boehmite at calcination temperature between 450 and 750 °C [2, 11]. The γ-Al_2O_3 is a solid nanoporous material with low bulk density, low thermal conductivity, and has a tendency to have an amorphous structure, high porosity, and high specific surface area [12]. Nano-sized SiO$_2$, as a porous, non-conductive, and multi-compatible solid material, tends to have an amorphous structure [13]. SiO$_2$ nanoporous material has an extremely broad application, e.g. as absorbent [9], packaging [15], separator and electrode in Li-ion battery system [16, 17], drug delivery agent [18], and so on. There are numerous researchers conducting research on alumina-SiO$_2$ composite material with the focus on its low bulk density characteristic, and SiO$_2$ doping effect on high heat resistance and the surface area at temperature changing [7]. This study focused on the γ-Al_2O_3 synthesis and the formation of nano SiO$_2$ composite (amorphous) as the filler.

2. Materials and Methods

Aluminum powder (Merck product) is a matrix with a high purity (98.1%), 2.70 gram/cm2 density, and a melting point at 600 °C. The second material was a nanometer-sized SiO$_2$ powder with a high amorphous phase and high purity (>95%) which was prepared from natural quartz through a hydrothermal-coprecipitation process [8]. Lastly, a Merck pro-analysis TMAH (tetramethylammonium hydroxide) solution was utilized as the mixing medium. The sample preparation consisted of two stages. The first step was preparing the γ-Al_2O_3 sample by adding aluminum powder (Al) into the TMAH solution to produce a white colored solid. The second step was a combustion process in a furnace at 300 °C for 2 hours until it produced boehmite Al(OH)$_3$. The next step was creating the γ-Al_2O_3/SiO$_2$ sample by adding the prepared SiO$_2$ into the TMAH solution and then stirred until it became homogeneous (~1-2 hours). The γ-alumina/SiO$_2$ was formed through a calcination process at 700 °C temperature in the oven. Characterization was done through XRD to identify the phase and structure, FTIR to analyze the functional radical-group, and SEM-EDX to analyze the microstructure profile of γ-Al_2O_3/SiO$_2$.

3. Results and Discussion

Figure 1 presents the diffraction pattern of Al(OH)$_3$/SiO$_2$ (aluminum hydroxide) pattern with the nanosilica particle as the filler. There were ten diffraction peaks, which include the Al(OH)$_3$ and SiO$_2$ peaks. The existence of the Al(OH)$_3$ peak showed that the material produced at this stage had a boehmite phase [5,6,14–20]. It was due to the Al as a matrix reaction to an oxidation of TMAH as well as the role of Al as a dispersion medium of SiO$_2$ in the first process, as shown in Figure 2. TMAH is a quaternary ammonium salt, with the chemical formula of N(CH$_3$)$_4^+$ OH$^-$, which relatively oxidized the Al. Such process would initiate an exothermic process, namely a process of releasing C, N, and H$_2$ gasses, characterized by a production of steam. The Al and SiO$_2$ powder in TMAH formed a new compound of Al(OH)$_3$, SiO$_2$, and CH$_3$N$_2$ group released during the process.

However, such peak of aluminum hydroxide Al(OH)$_3$ could not be identified anymore after the calcination process had reached 700 °C, yet, there is a new emerging peak which is identified as alumina phase. There was a transformation from the boehmite phase into γ-alumina phase [20]. The tetra-methyl-ammonium cation [CH$_3$H$_2$N]$^+$ which was bound to an oxygen atom would be released after the calcination process had reached 300 °C. Based on the diffraction patterns after the calcination process had reached 300°C in 2 hours, the synthesized white powdered material is dominated by Boehmite phase (Figure 1) [20]. The diffraction patterns identify many less sharp peaks originated from impurities (not alumina), such as nitrate, carbonate, and other impurities which can be found in
Boehmite/SiO$_2$ composite, refer to the chemical equation in Figure 2 (there are C, N, and H elements) [21].

![Figure 1. Diffraction patterns of Al[OH]$_3$/SiO$_2$ (amorphous) sample](image)

Figure 1. Diffraction patterns of Al[OH]$_3$/SiO$_2$ (amorphous) sample

![Figure 2. Reaction of amorphous Al and SiO$_2$ via TMAH: (1-2) Boehmite/SiO$_2$ and (3) gamma-alumina/SiO$_2$](image)

Figure 2. Reaction of amorphous Al and SiO$_2$ via TMAH: (1-2) Boehmite/SiO$_2$ and (3) gamma-alumina/SiO$_2$

Figure 3 identifies the X-ray diffraction patterns of γ-Al$_2$O$_3$ and γ-Al$_2$O$_3$/SiO$_2$. There was a significant match [18, 19] in the comparison between the data of the X-ray diffraction test and the data of standard XRD on $gamma$ alumina (reference). The relatively similar peaks also have fairly similar intensity values (see Table 1). From the intensity values between gamma alumina/SiO$_2$ which exceeded 50%, it can be seen that the synthesized gamma alumina and the standard gamma alumina were relatively similar (39.40°). However, there were several peaks, which were visible in the $gamma$-Al$_2$O$_3$/SiO$_2$. The peaks could not be identified in the conventional gamma alumina, but they could be identified in the synthesized $gamma$-Al$_2$O$_3$ sample, namely at 2θ 34.83 angle with 21% relative intensity value, 37.38 angle with 64.09% intensity value, and at 2θ 41.26 angle with 4.55% relative intensity value. It is interesting since, at the angles of 2θ 19.58°, 37.79°, and 60.85°, the relative intensity values of 6.96%, 59.19%, and 10.31% shifted on the standard $gamma$-Al$_2$O$_3$ (namely 2θ = 19.45°, 37.60°, and 60.90°). The different diffraction patterns between $gamma$-Al$_2$O$_3$ and $gamma$-Al$_2$O$_3$/SiO$_2$ and the standard data (standard $gamma$-Al$_2$O$_3$) are likely to be influenced by the process and the core material of the $gamma$-Al$_2$O$_3$ phase.
formation [7, 22]. One important factor in the preparation method is aluminum hydroxide decomposition temperature. The phase formation from boehmite into γ-Al₂O₃ requires a temperature higher than 300 °C. It is in accordance with the boehmite phase at the temperature of 300 °C in this study (Fig.1). The γ-Al₂O₃ phase requires the temperature of 500-700 °C [23] which is also in line with the γ-Al₂O₃ phase formed in this research at 700 °C and a new phase of δ-Al₂O₃ formation would emerge at the temperature of 900°C (Fig. 3(a-b)) [19,20].

![Figure 3. Diffraction patterns of γAl₂O₃/ΣO₂ sample](image)

Table 1. XRD data of γ-Al₂O₃ and γ-Al₂O₃/ΣO₂

2θ (deg)	γ-Al₂O₃/ΣO₂ [b]	hkl, ICDD:	
	d-spacing (Å)	I/Io (%)	29-1486, 29-0063, 10-0425
19.58	4.529	6.96	[111]
34.83	2.573	21.00	[220]
37.38	2.403	64.09	[311]
39.40	2.284	36.76	[222]
41.26	2.186	4.55	
45.73	1.980	77.00	[400]
60.85	1.521	10.31	[511]
66.85	1.398	100	[440]
84.87	1.142	6.97	[444]

Figure 3 (a-b) shows the XRD diffraction patterns of synthesized γ-Al₂O₃ and γ-Al₂O₃/ΣO₂ samples for 20% ΣO₂ with a calcination treatment at the temperatures of 700 °C. It can be seen that the gamma alumina phase was dominantly formed in the crystal structures of (440), (511), (400), (222), (311) and (111) (6, 18, 20, 24, 25). The ΣO₂ content in γ-Al₂O₃/ΣO₂ sample was not identified in the diffraction pattern due to the small relative intensity possessed by the ΣO₂ particle. The ΣO₂ diffraction pattern (nanometer order) is usually cannot be seen since it has an amorphous phase. In this case, the calcination still has the amorphous phase up to the temperature of 700°C, such as at the temperature of 300 °C in which the boehmite Al(OH)₃ phase was still dominant [15,21,26].
The morphology and microstructures of SiO$_2$ and γ-Al$_2$O$_3$/SiO$_2$ particles are shown in Figure 4. (a) The SiO$_2$ nanoparticle profile was smaller than the nanoparticle profile of γ-Al$_2$O$_3$ and had the tendency to be in round shapes, while (b) the profiles of γ-Al$_2$O$_3$ and SiO$_2$ particles substituted inside them forming γ-Al$_2$O$_3$/SiO$_2$. It can be seen that the γ-Al$_2$O$_3$ form elongated and is bigger than the form of SiO$_2$, while the SiO$_2$ particle was filling the gaps among the Al$_2$O$_3$. The distribution of SiO$_2$ and γ-Al$_2$O$_3$ particles can be seen in Figure 5. Meanwhile, the SEM-EDX test results of the γ-Al$_2$O$_3$/SiO$_2$ sample (20%) were characterized with their respective At% (atomic percent) of Al, Si and O of 38.81; 3.83 and 57.36%; the mapping results identified the homogeneity of SiO$_2$ and γ-Al$_2$O$_3$ distributions [5, 14, 19].

![Figure 4](image1.png)

Figure 4. SEM image of (a) SiO$_2$ and (b) γ-Al$_2$O$_3$/SiO$_2$ samples

![Figure 5](image2.png)

Figure 5. (a) EDX-elemental content and SEM-EDX mapping area of (b) Al-Si-O, (c) Al, (d) Si, and (e) O for γ-Al$_2$O$_3$/SiO$_2$
4. Conclusion
The γ-Al$_2$O$_3$/SiO$_2$ composite material has been synthesized from the aluminum base material using TMAH as a medium. The mixing of SiO$_2$ nanoparticles (amorphous) and γ-alumina particles was by a wet-mixing method, assisting in the formation of a homogeneous γ-Al$_2$O$_3$/SiO$_2$. The γ-Al$_2$O$_3$ particle shape in γ-Al$_2$O$_3$/SiO$_2$ appeared larger and elongated; the composite structure appeared to be more dominant γ-alumina, amorphous SiO$_2$ particles. The active medium of TMAH can be as a solvent for dispersing SiO$_2$ nanoparticles and in the mixing process of al and SiO$_2$ are oxidizing, activating al powder and transforming into γ-alumina.

Acknowledgments
This research was supported by the Ministry of Research and Technology and Higher Education of Indonesia.

References
[1] Kobayashi K, Nagai M. Active sites of sulfided NiMo/Al$_2$O$_3$ catalysts for 4,6-dimethyl dibenzothiophene hydrodesulfurization-effects of Ni and Mo components, sulfidation, citric acid and phosphate addition. Catal Today. 2017 Feb (Available online 16 February 2017)
[2] Vangestel J. Catalytic Properties of a CoMo/Al$_2$O$_3$ Catalyst Presulfided with Alkyl Polysulfides: Comparison with Conventional Sulfiding. J Catal. 1994 Feb;145(2):429–36.
[3] Choi K-H, Korai Y, Mochida I. Preparation and characterization of nano-sized CoMo/Al$_2$O$_3$ catalyst for hydrodesulfurization. Appl Catal Gen. 2004 Apr;260(2):229–36.
[4] Kuchonhara P, Puttasawat B, Piumsomboon M, Mekasut L, Vitidsant T. Catalytic steam reforming of biomass-derived tar for hydrogen production with K$_2$CO$_3$/NiO/γ-Al$_2$O$_3$ catalyst. Korean J Chem Eng. 2012 Nov;29(11):1525–30.
[5] Samain L, Jaworski A, Edén M, Ladd DM, Seo D-K, Javier Garcia-Garcia F, et al. Structural analysis of highly porous γ-Al$_2$O$_3$. J Solid State Chem. 2014 Sep;217:1–8.
[6] Hosseini SA, Niaei A, Salari D. Production of γ-Al$_2$O$_3$ from Kaolin. Open J Phys Chem. 2011;01(02):23–7.
[7] Wu X, Shao G, Cui S, Wang L, Shen X. Synthesis of a novel Al$_2$O$_3$–SiO$_2$ composite aerogel with high specific surface area at elevated temperatures using inexpensive inorganic salt of aluminum. Ceram Int. 2016 Jan;42(1):874–82.
[8] Munasir M, Triwikantoro, Zainuri M, Darminto. Synthesis of SiO$_2$ nanopowders containing quartz and cristobalite phases from silica sands. Mater Sci-Pol. 2015;33(1):47–55.
[9] Morsy FA, El-Shelikh SM, Barhoum A. Nano-silica and SiO$_2$/CaCO$_3$ nanocomposite prepared from semi-burned rice straw ash as modified papermaking fillers. Arab J Chem. 2014 Nop: http://www.sciencedirect.com/science/article/pii/S1878535214002962.
[10] Luo Z, Xu Y, Ye Q. Effect of nano-SiO$_2$–LDPE packaging on biochemical, sensory, and microbiological quality of Pacific white shrimp Penaeus vannamei during chilled storage. Fish Sci. 2015 Sep;81(5):983–93.
[11] Liang J, Li X, Zhu Y, Guo C, Qian Y. Hydrothermal synthesis of nano-silicon from a silica sol and its use in lithium ion batteries. Nano Res. 2015 May;8(5):1497–504.
[12] Fu D, Luan B, Argue S, Bureau MN, Davidson IJ. Nano SiO$_2$ particle formation and deposition on polypropylene separators for lithium-ion batteries. J Power Sources. 2012 May;206:325–33.
[13] Barbé C, Bartlett J, Kong L, Finnie K, Lin HQ, Larkin M, et al. Silica Particles: A Novel Drug-Delivery System. Adv Mater. 2004 Nov 4;16(21):1959–66.
[14] Kiyohara PK, Santos HS, Coelho ACV, Santos PDS. Structure, surface area and morphology of aluminas from thermal decomposition of Al(OH)(CH$_3$COO)$_2$ crystals. An Acad Bras Ciênc. 2000 Dec;72(4):471–95.
[15] Salahudeen N, Ahmed AS, Al-Muhtaseb AH, Dauda M, Waziri SM, Jibril BY. Synthesis of
gamma alumina from Kankara kaolin using a novel technique. Appl Clay Sci. 2015 Mar;105–106:170–7.

[16] Samadhi TW, Subagyo S, Lismana KR, Fuadi K. Synthesis of gamma-Al_2O_3 Catalyst Support from Kaolin of Indonesian Origin. J Eng Technol Sci. 2011;43(2):113–26.

[17] Temuujin J, Jadambaa T, Mackenzie KJD, Angerer P, Porte F, Riley F. Thermal formation of corundum from aluminium hydroxides prepared from various aluminium salts. Bull Mater Sci. 2000 Aug;23(4):301–4.

[18] Trueba M, Trasatti SP. γ-Alumina as a Support for Catalysts: A Review of Fundamental Aspects. Eur J Inorg Chem. 2005 Sep;2005(17):3393–403.

[19] Abdollahifar M, Zamani R, Beiygie E, Nekouei H. Synthesis of micro-mesopores flowerlike γ-Al_2O_3 nano-architectures. J Serbian Chem Soc. 2014;79(8):1007–17.

[20] Santos PS, Santos HS, Toledo SP. Standard transition aluminas. Electron microscopy studies. Mater Res. Materials Research, 2000, 3(4), 104-114.

[21] Candela L, Perlmutter DD. Pore structure and kinetics of the thermal decomposition of Al(OH)_3. AIChE J. 1986 Sep;32(9):1532–45.

[22] Zhou S, Antonietti M, Niederberger M. Low-Temperature Synthesis of γ-Alumina Nanocrystals from Aluminum Acetylacetonate in Nonaqueous Media. Small. 2007 May 4;3(5):763–7.

[23] Mardkhe MK, Huang B, Bartholomew CH, Alam TM, Woodfield BF. Synthesis and characterization of silica doped alumina catalyst support with superior thermal stability and unique pore properties. J Porous Mater. 2016 Apr;23(2):475–87.

[24] Gawel B, Oye G. Hierarchical γ-alumina monoliths with macro- and meso porosity prepared by using cross-linked dextran gel beads as the template. Mater Lett. 2013 Mar;95:86–8.

[25] Sifontes AB, Gutierrez B, Mónaco A, Yanez A, Diaz Y, Méndez FJ, et al. Preparation of functionalized porous nano-γ-Al_2O_3 powders employing colophony extract. Biotechnol Rep. 2014 Dec;3:1–9.

[26] Violante A. Formation Mechanism of Aluminum Hydroxide Polymorphs. Clays Clay Miner. 1993;41(5):590–7.

[27] Liu X, Xiong X, Liu C, Liu D, Wu A, Hu Q, et al. Preparation of Biodiesel by Transesterification of Rapeseed Oil with Methanol Using Solid Base Catalyst Calcined K_2CO_3/γ-Al_2O_3. J Am Oil Chem Soc. 2010 Jul;87(7):817–23.

[28] Parida KM, Pradhan AC, Das J, Sahu N. Synthesis and characterization of nano-sized porous gamma-alumina by control precipitation method. Mater Chem Phys. 2009 Jan;113(1):244–8.

[29] Nishihara H, Mukai SR, Fujii Y, Tago T, Masuda T, Tamon H. Preparation of monolithic SiO_2-Al_2O_3 cryogels with inter-connected macropores through ice templating. J Mater Chem. 2006;16(31):3231–6.