Local distinction, quadratic base change and automorphic induction for GL_n

N. Matringe

August 19, 2021

Abstract

Behind this sophisticated title hides an elementary exercise on Clifford theory for index two subgroups and self-dual/conjugate-dual representations. When applied to semi-simple representations of the Weil-Deligne group W_F' of a non Archimedean local field F, and further translated in terms of representations of $\text{GL}_n(F)$ via the local Langlands correspondence when F has characteristic zero, it yields various statements concerning the behaviour of different types of distinction under quadratic base change and automorphic induction. When F has residual characteristic different from 2, combining one of the simple results that we obtain with the triviality of conjugate-orthogonal root numbers ([GGP12]), we recover without using the LLC a result of Serre on the parity of the Artin conductor of orthogonal representations of W_F' ([Ser71]). On the other hand we discuss its parity for symplectic representations using the LLC and the Prasad and Takloo-Bighash conjecture.

Introduction

Let E/F be a separable quadratic extension of non Archimedean local fields. Then thanks to the known local Langlands correspondence for $\text{GL}_n(E)$ and $\text{GL}_n(F)$, one has a base change map BC_E^F from the set of isomorphism classes of irreducible representations of $\text{GL}_n(F)$ to that of $\text{GL}_n(E)$, and an automorphic induction map AI_E^F from the set or isomorphism classes of irreducible representations of $\text{GL}_n(E)$ to that of $\text{GL}_n(F)$. A typical statement proved in this note (for F of characteristic zero) is that if π is a generic unitary representation of $\text{GL}_n(F)$ with orthogonal Langlands parameter (orthogonal in short), then $\text{BC}_E^F(\pi)$ is orthogonal and $\text{GL}_n(F)$-distinguished, and that the converse holds if π is a discrete series (see Corollary 3.1 for the general statement). Corollary 3.1 is itself a translation via the LLC of our main result which concerns representations of the Weil-Deligne group of F (Proposition 3.1). Another lucky application of Proposition 3.1 is that the result of [Ser71] on the parity of Artin conductors of representations of the Weil-Deligne group of F is a consequence of that in [Del76] on root numbers of orthogonal representations, when F has odd residual characteristic, as we show in Corollary 4.1. We also discuss its parity for symplectic representations using the LLC and the Prasad and Takloo-Bighash conjecture in Corollary 4.2.

Acknowledgement. The motivation for writing this note is a question of Vincent Sécherre, which it answers. We thank him for asking it. We also thank Eyal Kaplan for useful explanations concerning [Kap17] and [Yam17].
1 Notation, definitions and basic facts about self-dual and conjugate-dual representations

For K a non Archimedean local field we denote by W_K the Weil group of K (see [Tat79]), and by $W'_K = W_K \times \text{SL}_2(\mathbb{C})$ the Weil-Deligne group of K. By a representation of W_K we mean a finite dimensional representation smooth complex representation of W_K. By a representation of W'_K we mean a representation which is a direct sum of representations of the form $\phi \otimes S$, where ϕ is an irreducible representation of W_K and S is an irreducible algebraic representation of $\text{SL}_2(\mathbb{C})$. We sometimes abbreviate $^*\phi$ is a representation of W'_K as $^*\phi \in \text{Rep}(W'_K)$. We denote by $^*\phi^\vee \in \text{Rep}(W'_K)$ the dual of $\phi \in \text{Rep}(W'_K)$.

For the following facts on self-dual and conjugate-dual representations of W'_K, we refer to [GGP12, Section 3]. We recall that representation ϕ of W'_K is self-dual if and only if there exists $\phi \times \phi$ a W'_K-invariant bilinear form B which is non degenerate: we will say that B is W'_K-bilinear (which in particular means non degenerate). If moreover B is alternate, we say that B is $(W'_K,-1)$-bilinear in which case we say that ϕ is symplectic or (-1)-self-dual, whereas if B is symmetric, and we say that B is $(W'_K,1)$-bilinear in which case we say that ϕ is orthogonal or 1-self-dual. If ϕ is irreducible and self-dual, then there is up to nonzero scaling a unique W'_K-bilinear form on $\phi \times \phi$, which is either $(W'_K,-1)$-bilinear or $(W'_K,1)$-bilinear, but not both.

Now suppose that L/K is a separable quadratic extension so that W_L has index two in W_K, and fix $s \in W_K - W_L$. For ϕ a representation of W_L, we denote by $^*\phi^s$ the representation of W'_L defined as $^*\phi^s := \phi(s \cdot s^{-1})$. We say that ϕ is L/K-dual or conjugate-dual if $^*\phi^s \cong ^*\phi^\vee$. The representation $^*\phi^s \in \text{Rep}(W'_L)$ is conjugate-dual if and only if there is on $\phi \times \phi$ a non-degenerate bilinear form B such that

$$B(w.x, sws^{-1}.y) = B(x,y)$$

for all (w,x,y) in $W'_L \times \phi \times \phi$. We say that such a bilinear form B is L/K-bilinear (this in particular means non degenerate). If moreover there is $\varepsilon \in \{\pm 1\}$ such that B satisfies

$$B(x, s^2.y) = \varepsilon B(y,x)$$

for all (x,y) in $\phi \times \phi$ we say that B is $(L/K,\varepsilon)$-bilinear, in which case we say that ϕ is $(L/K,\varepsilon)$-dual or conjugate-symplectic if $\varepsilon = -1$ and conjugate-orthogonal if $\varepsilon = 1$. All the definitions above do not depend on the choice of s. When ϕ is L/K-dual and also irreducible, then there is up to nonzero scaling a unique L/K-bilinear form on $\phi \times \phi$, which is either $(L/K,-1)$-bilinear or $(L/K,1)$-bilinear, but not both.

2 Preliminary results

2.1 Clifford-Mackey theory for index two subgroups

We refer to [CSST10, Section 3] for the following standard results.

Theorem 2.1. Let G be a finite group and H be a finite subgroup of index 2, and let $\eta : G \rightarrow \{\pm 1\}$ be the nontrivial character of G trivial on H.

- For ϕ a (finite dimensional complex) representation of H which is irreducible, the representation $\text{Ind}_H^G(\phi)$ is irreducible if and only $\phi^* \neq \phi$, which is also equivalent to the fact that ϕ does not extend to G. If it is reducible then ϕ extends to G, and if ϕ is such an extension, then $\eta \otimes \phi$ is the only other extension different from ϕ, and $\text{Ind}_H^G(\phi) \cong \phi \otimes \eta \otimes \phi$.

2
Proposition 2.1. An irreducible representation \(\phi' \) of \(G \) restricts to \(H \) either irreducibly, or breaks into two irreducible pieces, and the second case occurs if and only \(\phi' \cong \eta \otimes \phi' \), which is also equivalent to \(\phi' = \text{Ind}_H^G(\phi) \) for \(\phi \) and irreducible representation of \(H \) such that \(\phi'' \neq \phi \).

For \(E/F \) a separable quadratic extension of non Archimedean local fields, we denote by \(\eta_{E/F} : W_F' \rightarrow \{ \pm 1 \} \) the nontrivial character of \(W_F' \) trivial on \(W_K' \). We also recall as a consequence of [BH04, 28.6] that if \(\phi_K \) is an irreducible representation of \(W_K' \) for \(K \) local and non Archimedean, then there is a character \(\chi \) of \(W_K' \) such that \(\chi \otimes \phi_K \) is irreducible, we call it a LLC representation of \(W_K' \), which in turn defines a character \(\chi \otimes \phi_K \). This observation allows one to extend Theorem 2.1 to the following situation.

Corollary 2.1. Let \(E/F \) be a separable quadratic extension of non Archimedean local fields, and fix \(s \in W_F - W_E \).

- For \(\phi_E \in \text{Rep}(W_E') \) be an irreducible representation, the representation \(\text{Ind}_{W_E}^{W_F}(\phi_E) \) is irreducible if and only \(\phi_E \neq \phi_E \), which is also equivalent to the fact that \(\phi_E \) does not extend to \(W_F' \). If it is reducible then \(\phi_E \) extends to \(W_F' \), and if \(\phi_F \) is such an extension, then \(\eta_{E/F} \otimes \phi_F \) is the only other extension different from \(\phi_F \), and \(\text{Ind}_{W_E}^{W_F}(\phi_E) \simeq \phi_F \otimes \eta_{E/F} \otimes \phi_F \).

- An irreducible representation \(\phi_F \) of \(W_F' \) restricts to \(W_E' \) either irreducibly, or breaks into two irreducible pieces, and the second case occurs if and only \(\phi_F \simeq \eta_{E/F} \otimes \phi_F \), which is also equivalent to \(\phi_F \simeq \text{Ind}_{W_E}^{W_F}(\phi_E) \) for \(\phi_E \) and irreducible representation of \(W_E' \) such that \(\phi_E \neq \phi_E \).

We will tacitly use the above corollary from now on.

2.2 Distinction and LLC for \(\text{GL}_n \)

Let \(F \) be a non Archimedean local field, we denote by LLC the local Langlands correspondence ([LRS93, HT02, Henn04]). For any \(n \geq 1 \), it restricts as a bijection from the set of isomorphism classes of \(n \)-dimensional representations of \(W_F' \) to that of (smooth and complex) irreducible representations of \(\text{GL}_n(F) \). If \(E/F \) is a quadratic extension, and \(\pi = \text{LLC}(\phi_F) \) for \(\phi \) a representation of \(W_F' \), we set \(\text{BC}^{\text{LLC}}_E(\pi) = \text{LLC}(\text{Res}_{W_E}^{W_F}(\phi)) \) (the quadratic base change of \(\pi \)), whereas if \(\tau = \text{LLC}(\phi_E) \) for \(\phi \) a representation of \(W_E' \), we set \(\text{AI}^{\text{LLC}}_E(\tau) = \text{LLC}(\text{Ind}_{W_E}^{W_F}(\phi_E)) \) (the quadratic automorphic induction of \(\tau \)). For \(\pi \) a representation of \(\text{GL}_n(F) \), we denote by \(\pi' \) its dual. If \(\pi \) is irreducible, we call it a discrete series representation if it has a matrix coefficient \(c \) such that \(|\chi \otimes \psi|^2 \) is integrable on \(\text{GL}_n(F)/F^*I_n \) (with respect to any Haar measure on the group \(\text{GL}_n(F)/F^*I_n \)) for some character \(\chi \) of \(\text{GL}_n(F) \). A representation \(\phi \) of \(W_F' \) is irreducible if and only if LLC(\(\phi \)) is a discrete series.

Let \(N_n(F) \) be the subgroup of \(\text{GL}_n(F) \) of upper triangular unipotent matrices, and let \(\psi \) be a non trivial character of \(F \), which in turn defines a character \(\tilde{\psi} : u \mapsto \psi(u_{1,2} + \cdots + u_{n-1,n}) \) of \(N_n(F) \). We say that an irreducible representation \(\pi \) of \(\text{GL}_n(F) \) is generic if \(\text{Hom}_{N_n(F)}(\pi, \tilde{\psi}) \neq \{0\} \) and this does not depend on the choice of \(\psi \). Genericity can be read on the Langlands parameter from [Zel80, Theorem 9.7] (one way to state it is that LLC(\(\phi \)) is generic if and only if the adjoint L factor of \(\phi \) is holomorphic at \(s = 1 \)). From this one easily deduces the direct implications of the following proposition, the converse implications being special cases of [MS20, Theorem 9.1].

Proposition 2.1. Let \(\pi \) be an irreducible representation of \(\text{GL}_n(F) \). If \(\text{BC}^{\text{LLC}}_E(\pi) \) is generic, then \(\pi \) is generic, and conversely if \(\pi \) is generic unitary, then \(\text{BC}^{\text{LLC}}_E(\pi) \) is generic (unitary).
Let τ be an irreducible representation of $\text{GL}_n(F)$. If $\text{Art}_F(\tau)$ is generic, then τ is generic, and conversely if τ is generic unitary, then $\text{Art}_F(\tau)$ is generic (unitary).

We denote by $\text{GL}_n(F)$ the double cover of $\text{GL}_n(F)$ defined for example in [Kap17, Section 2.1]. Following [Kap17] we call a map $\gamma : F^* \to C^*$ a pseudo-character if it satisfies $\gamma(xy) = \gamma(x)\gamma(y)(x, y)_{F^*}$ for all x and y in F^*, where $(,)_2$ is the Hilbert symbol of F^*. For γ a pseudo-character of F^* we denote by θ_γ the Kazhdan-Patterson exceptional representation of $\text{GL}_n(F)$ denoted by $\theta_{1,\gamma}$ in [Kap17, Section 2.5]. We say that an irreducible representation π of $\text{GL}_n(F)$ is F-distinguished if there exist pseudo-characters γ and γ' of F^* such that $\text{Hom}_{\text{GL}_n(F)}(\theta_{1,\gamma} \otimes \theta_{1,\gamma'}, \pi') \neq \{0\}$.

When n is even, we denote by $S_n(F)$ the Shalika subgroup of $\text{GL}_n(F)$ consisting of matrices of the form $s(g, x) = \text{diag}(g, g) \left(\begin{array}{cc} I_{n/2} & x \\ & I_{n/2} \end{array} \right)$ for $g \in \text{GL}_{n/2}(F)$ and $x \in M_{n/2}(F)$, and for ψ a non trivial character of F, we denote by Ψ the character of $S_n(F)$ defined by $\Psi(s(g, x)) = \psi(\text{tr}(x))$.

We say that an irreducible representation π of $\text{GL}_n(F)$ is F-distinguished if n is even and $\text{Hom}_{S_n(F)}(\pi, \Psi) \neq \{0\}$. This does not depend on the choice of ψ.

Finally if E/F is quadratic separable, identifying $\eta_{E/F}$ to the character of F^* trivial on $N_{E/F}(E^*)$ via local class field theory, we say that an irreducible representation τ of $\text{GL}_n(E)$ is $1_{E/F}$-distinguished if $\text{Hom}_{\text{GL}_n(E)}(\tau, 1) \neq \{0\}$ and $\eta_{E/F}$-distinguished if $\text{Hom}_{\text{GL}_n(E)}(\tau, \eta_{E/F} \circ \det) \neq \{0\}$.

The following theorem follows from [Hen10], [Kab04], [AKT04], [AR05], [Mat11], [KR12], [Jo20], [Mat17], [Yam17], [Kap17]. Parts of it are known to hold when F is of positive characteristic and odd residual characteristic ([AKM+21, Appendix A]).

Theorem 2.2. Suppose that F has characteristic zero.

- Let $\pi = \text{LLC}(\phi_F)$ be a generic representation of $\text{GL}_n(F)$, then ϕ_F is symplectic if and only π is Ψ_F-distinguished, whereas ϕ_F is orthogonal if and only if π is Θ_F-distinguished.

- Let $\tau = \text{LLC}(\phi_E)$ be a generic representation of $\text{GL}_n(E)$, then ϕ_E is conjugate-symplectic if and only τ is $\eta_{E/F}$-distinguished, whereas ϕ_E is conjugate-orthogonal if and only if τ is $1_{E/F}$-distinguished.

2.3 A reminder on epsilon factors

Let K' / K be a finite separable extension of non Archimedean local fields. We denote by ϖ_K a uniformizer of K and by P_K the maximal ideal of the ring of integers O_K of K. If ψ is a non trivial character of K, we denote by $\psi_{K'}$ the character $\psi \circ \text{tr}_{K'/K}$. We call the conductor of ψ and write $d(\psi)$ for the smallest integer d such that ψ is trivial on P_K^d. When K' / K is unramified, it follows from [Wei74, Chapter 8, Corollary 3] that

$$d(\psi_{K'}) = d(\psi).$$

Similarly if χ is a character of W'_K, identified by local class field theory with a character of K^*, we call the Artin conductor of χ the integer $a(\chi)$ equal to zero if χ is unramified, or equal to the smallest integer a such that χ is trivial on $1 + P_K^a$ if χ is ramified. More generally one can define the Artin conductor $a(\phi)$ (which is an integer) of any representation ϕ of W'_K, see [Lat79, 3.4.5]
when \(\phi \) is a representation of \(W_K \) and \[GR10\] Section 2.2, (10)] in general. The Artin conductor is additive:

\[
a(\phi \oplus \phi') = a(\phi) + a(\phi')
\]

for \(\phi \) and \(\phi' \) in \(\text{Rep}(W'_K) \). If \(\phi \) is a representation of \(W'_K \), and \(\psi \) is a non trivial character of \(K \), we refer to \[Tat79\, 3.6.4\] and \[BH06\, 31.3\] or \[GR10\, Section 2.2\] for the definition of the root number \(\epsilon(1/2, \phi, \psi) \). One then defines the Langlands \(\lambda \)-constant:

\[
\lambda(K'/K, \psi) = \frac{\epsilon(1/2, \text{Ind}_{W'_K}^W(K'_K, \psi))}{\epsilon(1/2, 1_{W'_K}, \psi_{K'})}.
\]

For \(a \in K^* \), we set \(\psi_a = \psi(a \cdot) \). These constants enjoy the following list of properties, which we will freely use later in the paper.

1. \(\epsilon(1/2, \phi \oplus \phi', \psi) = \epsilon(1/2, \phi, \psi)\epsilon(1/2, \phi', \psi) \) where \(\phi' \) is another representation of \(W'_K \) (\[Tat79\, (3.4.2)]).

2. \(\epsilon(1/2, \phi, \psi_a) = \det(\phi(a))\epsilon(1/2, \phi, \psi) \) (\[Tat79\, (3.6.6)]).

3. \(\epsilon(1/2, \phi, \psi)^2 = \det(\phi)(-1) \) when \(\phi \) is self-dual (\[GR10\, Section 2.3, (11)]).

4. If \(d(\psi) = 0 \) and \(\mu \) is an unramified character of \(K^* \), it follows from \[GR10\, Section 2.3, (9)] that:

\[
\epsilon(1/2, \mu \otimes \phi, \psi) = \mu(\omega^a(\phi))\epsilon(1/2, \phi, \psi).
\]

5. If \(K'/K \) is quadratic with \(K \) of characteristic not 2, \(\delta \in \ker(\text{tr}_{K'/K}) - \{0\} \), and \(\phi \) is a \(K'/K \)-orthogonal representation of \(W'_K \), then by \[GGP12\, Proposition 5.2\] (generalizing \[FQ73\, Theorem 3\]):

\[
\epsilon(1/2, \phi, \psi_{K'}) = \det(\phi)(\delta).
\]

6. If \(\phi_{K'} \) is an \(r \)-dimensional representation of \(W'_K \), then

\[
\epsilon(1/2, \text{Ind}_{W'_K}^W(\phi_{K'}), \psi) = \lambda(K'/K, \psi)^r \epsilon(1/2, \phi_{K'}, \psi_{K'})
\]

(\[BH06\, (30.4.2)]). When applied to a \(K'/K \) quadratic and \(\phi_{K'} = \text{Res}_{W'_K}^W(\phi) \) for \(\phi \) a representation of \(W'_K \), one gets

\[
\epsilon(1/2, \phi, \psi)\epsilon(1/2, \eta_{K'/K} \otimes \phi, \psi) = \lambda(K'/K, \psi)^r \epsilon(1/2, \text{Res}_{W'_K}^W(\phi), \psi_{K'})
\]

7. If \(K'/K \) is unramified with \([K'/K] = n\):

\[
\lambda(K'/K, \psi) = (-1)^{d(\psi)(n-1)}
\]

(for example \[Moy86\] and \[2\], together with Equation (2)). In particular if \(d(\psi) = 0 \) then

\[
\lambda(K'/K, \psi) = 1.
\]
3 Distinction, base change, and automorphic induction

From now on E/F is a separable quadratic extension of non Archimedean local fields. Our main result is the following proposition, and we notice that half of its first point is \cite[Lemma 3.5. (i)]{GGP12}.

Proposition 3.1. 1. Let ϕ_E be a semi-simple representation of W'_E which is either ε-self-dual or $(E/F, \varepsilon)$-dual, then $\text{Ind}_{W'_E}^{W_F}(\phi_E)$ is ε-self-dual.

2. Conversely if ϕ_E is irreducible and $\text{Ind}_{W'_E}^{W_F}(\phi_E)$ is ε-self-dual:

(a) if $\text{Ind}_{W'_E}^{W_F}(\phi_E)$ is irreducible, i.e. $\phi_E^\ast \neq \phi_E$, then either ϕ_E is ε-self-dual or $(E/F, \varepsilon)$-dual, but not both together,

(b) if $\text{Ind}_{W'_E}^{W_F}(\phi_E)$ is reducible, i.e. $\phi_E^\ast \simeq \phi_E$, then ϕ_E is both ε-self-dual and $(E/F, \varepsilon)$-dual.

3. Let ϕ_F be a semi-simple representation of W'_F which is ε-self-dual, then $\text{Res}_{W'_E}^{W'_F}(\phi_F)$ is ε-self-dual and $(E/F, \varepsilon)$-dual.

4. Conversely, if ϕ_F is irreducible and $\text{Res}_{W'_E}^{W'_F}(\phi_F)$ is ε-self-dual then ϕ_F is also ε-self-dual.

Proof. 1. First suppose that B_E is a $(E/F, \varepsilon)$-bilinear form on ϕ_E. Write an element v (resp. v') in $\text{Ind}_{W'_E}^{W_F}(\phi_E)$ under the form $v = x + s^{-1}y$ (resp. $v' = x' + s^{-1}y'$) for x, x', y, y' in ϕ_E, and set

$$B_F(v, v') = B_E(x, y') + \varepsilon B_E(x', y).$$

Then B_F is W'_E-invariant because B_E is (W'_E, ε)-conjugate (it is non-degenerate because so is B_E). Finally

$$B_F(s.v, s.v') = B_E(y, s^2.x') + \varepsilon B_E(y', s^2.x) = \varepsilon B_E(x', y) + B_E(x, y') = B_F(v, v').$$

Similarly if B_E is (W'_E, ε)-bilinear, then one checks that

$$B_F(x + s^{-1}y, x' + s^{-1}.y') = B_E(x, x') + B_E(y, y')$$

defines a (W'_E, ε)-bilinear form on ϕ_F.

2. Suppose that ϕ_E is irreducible and that $\text{Ind}_{W'_E}^{W_F}(\phi_E)$ is ε-self-dual with (W'_F, ε)-bilinear form B_F.

(a) If $\phi_E^\ast \neq \phi_E$, because $\text{Ind}_{W'_E}^{W_F}(\phi_E)$ is self-dual then either ϕ_E is self-dual, or $\phi_E^\ast \simeq \phi_E^\ast$ but not both together. In the first case, say that ϕ_E is ε'-self-dual, then so is $\text{Ind}_{W'_E}^{W_F}(\phi_E)$ by \cite{1} but then $\varepsilon' = \varepsilon$ by irreducibility of $\text{Ind}_{W'_E}^{W_F}(\phi_E)$. If $\phi_E^\ast \simeq \phi_E^\ast$ we conclude in a similar manner.

(b) If $\phi_E^\ast \simeq \phi_E$ then $\text{Ind}_{W'_E}^{W_F}(\phi_E) \simeq \phi \otimes \eta_{E/F} \otimes \phi$ for ϕ extending ϕ_E, and $\phi \neq \eta_{E/F} \otimes \phi$. Because $\phi \neq \eta_{E/F} \otimes \phi$ there are two disjoint cases. The first is when ϕ is self-dual, in which case $\phi \neq \eta_{E/F} \otimes \phi$ and B_F restricts non trivially to $\phi \otimes \phi$ and $\eta_{E/F} \otimes \phi \otimes \eta_{E/F} \otimes \phi$. Then ϕ_E is ε-dual and (ε, s)-dual by \cite{3}. Otherwise $\phi^\ast \simeq \eta_{E/F} \otimes \phi$ and B_F is zero on
Corollary 3.1. \(GL \) its extension to of the results recalled in Section 2.2. For this we denote by \(\sigma \). We suppose that \(\phi \) 3. Let \(B_F \) be a \((W_F, \varepsilon)\)-bilinear form on \(\phi_F \), then it remains a \((W_F, \varepsilon)\)-bilinear on \(\text{Res}^W_{W_E}(\phi_F) \), and on the other hand \(B_E(x, y) = B_F(x, s^{-1}y) \) is an \((E/F, \varepsilon)\)-bilinear form on \(\text{Res}^W_{W_E}(\phi_F) \).

4. We suppose that \(\phi_F \) is irreducible and that \(\text{Res}^W_{W_E}(\phi_F) \) is \(\varepsilon \)-self-dual and also \((E/F, \varepsilon)\)-dual. There are two cases to consider.

First if \(\text{Res}^W_{W_E}(\phi_F) \) is irreducible, then denote by \(B_E \) the \((W', \varepsilon)\)-bilinear form on \(\text{Res}^W_{W_E}(\phi_F) \). Now set \(D_E(x, y) = B_E(x, s^{-1}y) \) for \(x, y \in \text{Res}^W_{W_E}(\phi_F) \). Clearly \(D_E \) is \(E/F \)-bilinear, but by irreducibility \(\text{Res}^W_{W_E}(\phi_F) \) affords at most one such form up to scalar, hence \(D_E \) must be \((E/F, \varepsilon)\)-bilinear. This implies that for \(x \) and \(y \) in \(\text{Res}^W_{W_E}(\phi_F) \) one has \(B_E(s.x, s.y) = D_E(s.x, s^2.y) = \varepsilon D_E(y, s.x) = \varepsilon B_E(y, x) = B_E(x, y) \).

All in all, when \(\text{Res}^W_{W_E}(\phi_F) \) is irreducible we deduce that \(B_E \) is in fact \(W_F \)-invariant hence that \(\phi_F \) is \(\varepsilon \)-self-dual.

It remains to treat the case where \(\text{Res}^W_{W_E}(\phi_F) \) is reducible. In this case it is of the form \(\phi_E \otimes s^{-1}.\phi_E \) where \(\phi_E \) is an irreducible of \(W_E \) such that \(\phi_E \not\equiv \phi_E \) and \(\phi_F = \text{Ind}^W_{W_E}(\phi_F) \).

First because \(\text{Res}^W_{W_E}(\phi_F) \) is \(\varepsilon \)-self-dual, then the \((W', \varepsilon)\)-bilinear form \(B_E \) on \(\text{Res}^W_{W_E}(\phi_F) \) either induces an isomorphism \(\phi_E \equiv \phi_E \) or \(\phi_E \equiv s^{-1}.\phi_E \) for \(B_E \). Similarly the \((E/F, \varepsilon)\)-bilinear form \(C_E \) on \(\text{Res}^W_{W_E}(\phi_F) \) either induces an isomorphism \(\phi_E \equiv \phi_E \) or \(\phi_E \equiv s^{-1}.\phi_E \) for \(C_E \). Suppose that \(B_E \) induces an isomorphism \(\phi_E \equiv \phi_E \), then one must have \(\phi_E \equiv s^{-1}.\phi_E \) for \(C_E \) because \(\phi_E \not\equiv \phi_E \equiv s^{-1}.\phi_E \). This implies that \(C_E \) induces an \((E/F, \varepsilon)\)-bilinear form on \(\phi_F \) and by point 1 we deduce that \(\phi_F \) is \(\varepsilon \)-self-dual. On the other hand if \(\phi_F \equiv s^{-1}.\phi_F \) for \(B_E \) then \(B_E \) induces an \((W', \varepsilon)\)-bilinear form on \(\phi_F \) and \(\phi_F \) is \(\varepsilon \)-self-dual again by point 1.

\[
\phi \times \phi \text{ and } \eta_{E/F} \otimes \phi \times \eta_{E/F} \otimes \phi. \text{ In this case there is up to scaling a unique } W'_F \text{-invariant bilinear form on } \text{Ind}^W_{W_E}(\phi_E), \text{ namely } B_F. \text{ Because } \phi_E \equiv \phi_E \text{ (by restricting the relation } \phi \equiv \eta_{E/F} \otimes \phi \text{ to } W'_E), \text{ } \phi_E \text{ must be } \varepsilon'-\text{self-dual, hence } \text{Ind}^W_{W_E}(\phi_E) \text{ as well by 1 but then we have } \varepsilon' = \varepsilon \text{ by multiplicity one of } W'_F \text{-invariant bilinear form on } \text{Ind}^W_{W_E}(\phi_E). \text{ Moreover because } \phi'_E = \phi_E \text{ the parameter } \phi_E \text{ is also } (\varepsilon'', s)-\text{self-dual and by 1 again we deduce that } \phi'' = \varepsilon. \]

3. Let \(B_F \) be a \((W', \varepsilon)\)-bilinear form on \(\phi_F \), then it remains a \((W', \varepsilon)\)-bilinear on \(\text{Res}^W_{W_E}(\phi_F) \), and on the other hand \(B_E(x, y) = B_F(x, s^{-1}y) \) is an \((E/F, \varepsilon)\)-bilinear form on \(\text{Res}^W_{W_E}(\phi_F) \).

Supposing that \(F \) has characteristic zero, we translate Proposition 2.1 via the LLC, in view of the results recalled in Section 2.2. For this we denote by \(\sigma \) the Galois conjugation of \(E/F \) and its extension to \(\text{GL}_n(E) \), et set \(\tau^2 = \tau \sigma \sigma \) for any representation of \(\text{GL}_n(E) \).

Corollary 3.1. 1. Let \(\tau \) be an irreducible representation of \(\text{GL}_n(E) \) such that \(\Lambda(E)(\tau) \) is generic \((\text{for example } \tau \text{ generic unitary}) \). If \(\tau \) is either \(\Theta_E \text{-distinguished or } 1_{E/F} \text{-distinguished, then } \Lambda(E)(\tau) \) is \(\Theta_F \text{-distinguished, whereas if } \tau \) is either \(\Psi_E \text{-distinguished or } \eta_{E/F} \text{-distinguished, then } \Lambda(E)(\tau) \) is \(\Theta_F \text{-distinguished. } \)
2. Conversely if τ is a discrete series representation $\text{GL}_n(E)$.

(a) Suppose that $\text{AI}_E^F(\tau)$ is Ψ_F-distinguished:
\begin{itemize}
 \item[i.] if $\text{AI}_E^F(\tau)$ is a discrete series, i.e. if $\tau^\sigma \neq \tau$, then either τ is Ψ_E-distinguished or $\eta_{E/F}$-distinguished, but not both together,
 \item[ii.] if $\text{AI}_E^F(\tau)$ is not a discrete series, i.e. $\tau^\sigma \equiv \tau$, then τ is both Ψ_E-distinguished and $\eta_{E/F}$-distinguished.
\end{itemize}

(b) Suppose that $\text{AI}_E^F(\tau)$ is Θ_F-distinguished:
\begin{itemize}
 \item[i.] if $\text{AI}_E^F(\tau)$ is a discrete series, i.e. $\tau^\sigma \neq \tau$, then either τ is Θ_F-distinguished or $1_{E/F}$-distinguished, but not both together,
 \item[ii.] if $\text{AI}_E^F(\tau)$ is reducible, i.e. $\tau^\sigma \equiv \tau$, then τ is both Θ_E-distinguished and $1_{E/F}$-distinguished.
\end{itemize}

3. Let π be an irreducible representation of $\text{GL}_n(F)$ such that $BC_E^F(\pi)$ is generic (for example π generic unitary). If π is Θ_F-distinguished, then $BC_E^F(\pi)$ is Θ_E-distinguished and $1_{E/F}$-distinguished, whereas if π is Ψ_F-distinguished, then $BC_E^F(\pi)$ is Ψ_E-distinguished and $\eta_{E/F}$-distinguished.

4. Conversely suppose that π is a discrete series. If $BC_E^F(\pi)$ is Θ_E-distinguished and $1_{E/F}$-distinguished, then π is Θ_F-distinguished, whereas if $BC_E^F(\pi)$ is Ψ_E-distinguished and $\eta_{E/F}$-distinguished, then π is Ψ_F-distinguished.

4 Parity of the Artin conductor of self-dual representations

In this section F is again a non Archimedean local field. First, using [GGP12, Proposition 5.2] (which is itself a quick but non trivial consequence of a difficult result of Deligne [Del76] on root numbers of orthogonal representations), we quickly recover in odd residual characteristic from Proposition 3.1 and Section 2.3 the following result due to Serre [Ser71] (the result in question also holds in even residual characteristic by [Ser71]). In other words we show that the result of [Del76] implies that of [Ser71] for non Archimedean local fields of odd residual characteristic.

Corollary 4.1 (of Proposition 3.1 and Ser71). Let ϕ be an orthogonal representation of W_F^σ. We have the following congruence of Artin conductors: $a(\phi) = a(\det(\phi))[2]$.

Proof. As we said the result is true for F of any residual characteristic, and we recover it in this proof for F of residual characteristic different from 2. Let E be the unramified quadratic extension of F, and take ψ a character of F of conductor zero. We have according to Section 2.3 Points 6 and 7

$$\epsilon(1/2, \text{Res}_{\psi_E} W_{\phi}^\sigma(\phi)) = \epsilon(1/2, \phi, \psi)\epsilon(1/2, \eta_{E/F} \otimes \phi, \psi).$$

(2)

Now denoting by q the residual cardinality of F, let u be an element of order $q^{1/2}$ in E^*, so that $\delta := u^{(q+1)/2}$ does not belong to F but $\Delta := \delta^2$ belongs to F. Note that Δ is a generator the copy of $O_F^*/1 + P_F$ inside F^*. Then $\epsilon(1/2, \text{Res}_{\psi_E} W_{\phi}^\sigma(\phi), \psi_E^{-1}(\phi)) = 1$ by Proposition 3.1 and Section 2.3 Point 5 hence

$$\epsilon(1/2, \text{Res}_{\psi_E} W_{\phi}^\sigma(\phi), \psi_E) = \det(\text{Res}_{\psi_E} W_{\phi}^\sigma(\phi)(\delta)) = \det(\phi)(N_{E/F}(\delta)) = \det(\phi)(\Delta)$$
thanks to Section 2.3 Point 2. Now observe that \(\det(\phi) \) is quadratic as \(\phi \) is self-dual, but because \(q \) is odd it is trivial on \(1 + P_F \), hence it has conductor 0 or 1, and it is of conductor zero if and only if \(\det(\phi)(\Delta) = 1 \), hence \(\det(\phi)(\Delta) = (-1)^{\alpha(\det(\phi))} \), so

\[
\epsilon(1/2, \text{Res}_{W'_E}^W(\phi), \psi_E) = (-1)^{\alpha(\det(\phi))} \det(\phi)(-1).
\]

Now \(\epsilon(1/2, \eta_{E/F} \otimes \phi, \psi) = (-1)^{\alpha(\phi)} \epsilon(1/2, \phi, \psi) \) thanks to Section 2.3 Point 1 hence Section 2.3 Point 3 implies the following:

\[
\epsilon(1/2, \phi, \psi) \epsilon(1/2, \eta_{E/F} \otimes \phi, \psi) = (-1)^{\alpha(\phi)} \epsilon(1/2, \phi, \psi)^2 = (-1)^{\alpha(\phi)} \det(\phi)(-1).
\]

The result now follows from Equation (2). \(\square \)

One can legitimately ask about the parity of the Artin conductor of symplectic representations of \(W'_E \). The answer seems much more complicated, and one way to adress it is via the LLC, using the so called Prasad and Takloo-Bighash conjecture, which is now a theorem when \(F \) has characteristic zero and residual characteristic different from 2 ([Xue21], [Sé20], [Suz21], [SX20]). To this end we recall that for \(E/F \) a separable quadratic extension, then \(\mathcal{M}_F(2n) \) embeds uniquely up to \(\text{GL}_{2n}(F) \)-conjugacy into \(\mathcal{M}_E(F) \) as an \(F \)-subalgebra by the Skolem-Noether theorem. We fix such an embedding, which in turn gives rise to an embedding of \(\text{GL}_n(E) \) into \(\text{GL}_{2n}(F) \). We then say that an irreducible representation \(\pi \) of \(\text{GL}_{2n}(F) \) is \(1^{E/F} \)-distinguished if and only if \(\text{Hom}_{\text{GL}_n(E)}(\pi, 1) \neq \{0\} \). We recall the following theorem, which is a consequence of one part of the Prasad and Takloo-Bighash conjecture.

Theorem 4.1 ([Xue21], [Sé20], [SX20]). Suppose that \(F \) has characteristic zero and residual characteristic different from 2. If \(\phi \) is an irreducible symplectic representation of \(W'_{E/F} \) of dimension \(2n \), then

\[
\epsilon(1/2, \phi \otimes \text{Ind}_{W'_{E/F}}^W(\phi)) = \eta_{E/F}(-1)^n
\]

if LLC(\(\phi \)) is \(1^{E/F} \)-distinguished and

\[
\epsilon(1/2, \phi \otimes \text{Ind}_{W'_{E/F}}^W(\phi)) = -\eta_{E/F}(-1)^n
\]

otherwise.

Remark 4.1. In the statement above, as the determinant of a symplectic representation is equal to 1, we suppressed the dependence of the root number \(\epsilon(1/2, \phi \otimes \text{Ind}_{W'_{E/F}}^W(\phi), \psi) \) on the non-trivial additive character \(\psi \) of \(F \).

As an immediate corollary we obtain the following result on the parity of Artin conductors of symplectic representations.

Corollary 4.2. Suppose that \(F \) has characteristic zero and residual characteristic different from 2, denote by \(E \) the unramified quadratic extension of \(F \), and let \(\phi \) be an irreducible symplectic representation of \(W'_{E/F} \) of dimension \(2n \). Then \(\alpha(\phi) \) is even if and only if LLC(\(\phi \)) is \(1^{E/F} \)-distinguished.

Proof. It easily follows, along the lines of the proof of Corollary 4.1 from Theorem 4.1 noting that \(\eta_{E/F}(-1) = 1 \). \(\square \)
Remark 4.2. A general symplectic representation ϕ of W'_F being a direct sum of the form $\oplus_{i=1}^r \phi_i \oplus \phi_j$ for ϕ_i irreducible symplectic and ϕ_j irreducible, we deduce the parity of $a(\phi)$ from Corollary 4.2 and such a decomposition. Namely, by Corollary 4.1 $a(\phi_j \oplus \phi_j) \equiv 0 \mod 2$. Hence setting $\epsilon_i \in \{\pm 1\}$ being equal to 1 if and only if LLC(ϕ_i) is $1^E/F$-distinguished, we deduce by additivity of the Artin conductor that $(-1)^{a(\phi)} = \prod_{i=1}^r \epsilon_i$.

Remark 4.3. Looking at it from another angle, one sees that a symplectic discrete series representation of $GL_{2n}(F)$ is $1^E/F$-distinguished (E/F unramified) if and only if it has even conductor.

References

[AKM’21] U. K. Anandavardhanan, R. Kurinczuk, N. Matringe, V. Sécherre, and S. Stevens. Galois self-dual cuspidal types and Asai local factors. J. Eur. Math. Soc. (JEMS), 23(9):3129–3191, 2021.

[AKT04] U. K. Anandavardhanan, Anthony C. Kable, and R. Tandon. Distinguished representations and poles of twisted tensor L-functions. Proc. Amer. Math. Soc., 132(10):2875–2883, 2004.

[AR05] U. K. Anandavardhanan and C. S. Rajan. Distinguished representations, base change, and reducibility for unitary groups. Int. Math. Res. Not., (14):841–854, 2005.

[BH06] Colin J. Bushnell and Guy Henniart. The local Langlands conjecture for $GL(2)$, volume 335 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 2006.

[CSST09] T. Ceccherini-Silberstein, F. Scarabotti, and F. Toli. Clifford theory and applications. volume 156, pages 29–43. 2009. Functional analysis.

[Del76] Pierre Deligne. Les constantes locales de l’équation fonctionnelle de la fonction L d’Artin d’une représentation orthogonale. Invent. Math., 35:299–316, 1976.

[FQ73] A. Fröhlich and J. Queyrut. On the functional equation of the Artin L-function for characters of real representations. Invent. Math., 20:125–138, 1973.

[GGP12] Wee Teck Gan, Benedict H. Gross, and Dipendra Prasad. Symplectic local root numbers, central critical L values, and restriction problems in the representation theory of classical groups. Number 346, pages 1–109. 2012. Sur les conjectures de Gross et Prasad. 1.

[GR10] Benedict H. Gross and Mark Reeder. Arithmetic invariants of discrete Langlands parameters. Duke Math. J., 154(3):431–508, 2010.

[Hen00] Guy Henniart. Une preuve simple des conjectures de Langlands pour $GL(n)$ sur un corps p-adique. Invent. Math., 139(2):439–455, 2000.

[Hen10] Guy Henniart. Correspondance de Langlands et fonctions L des carrés extérieur et symétrique. Int. Math. Res. Not. IMRN, (4):633–673, 2010.

[HT02] Michael Harris and Richard Taylor. Regular models of certain Shimura varieties. Asian J. Math., 6(1):61–94, 2002.
Yeongseong Jo. Derivatives and exceptional poles of the local exterior square L-function for GL_m. *Math. Z.*, 294(3-4):1687–1725, 2020.

Anthony C. Kable. Asai L-functions and Jacquet’s conjecture. *Amer. J. Math.*, 126(4):789–820, 2004.

Eyal Kaplan. The characterization of theta-distinguished representations of $GL(n)$. *Israel J. Math.*, 222(2):551–598, 2017.

Pramod Kumar Kewat and Ravi Raghunathan. On the local and global exterior square L-functions of GL_n. *Math. Res. Lett.*, 19(4):785–804, 2012.

G. Laumon, M. Rapoport, and U. Stuhler. D-elliptic sheaves and the Langlands correspondence. *Invent. Math.*, 113(2):217–338, 1993.

Nadir Matringe. Distinguished generic representations of $GL(n)$ over p-adic fields. *Int. Math. Res. Not. IMRN*, 2011:1, 2011.

Nadir Matringe. Shalika periods and parabolic induction for $GL(n)$ over a non-archimedean local field. *Bull. Lond. Math. Soc.*, 49(3):417–427, 2017.

Allen Moy. Local constants and the tame Langlands correspondence. *Amer. J. Math.*, 108(4):863–930, 1986.

Arnab Mitra and Eitan Sayag. Models of representations and Langlands functoriality. *Canad. J. Math.*, 72(3):676–707, 2020.

Vincent Sécherre. Représentations cuspidales de $gl(r,d)$ distinguées par une involution intérieure. *Preprint*, 2020.

Jean-Pierre Serre. Conducteurs d’Artin des caractères réels. *Invent. Math.*, 14:173–183, 1971.

Miyu Suzuki. Classification of standard modules with linear periods. *J. Number Theory*, 218:302–310, 2021.

Miyu Suzuki and Hang Xue. Linear intertwining periods and epsilon dichotomy for linear models. *Preprint*, 2020.

J. Tate. Number theoretic background. In *Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2*, Proc. Sympos. Pure Math., XXXIII, pages 3–26. Amer. Math. Soc., Providence, R.I., 1979.

André Weil. *Basic number theory*. Springer-Verlag, New York-Berlin, third edition, 1974. Die Grundlehren der Mathematischen Wissenschaften, Band 144.

Hang Xue. Epsilon dichotomy for linear models. *Algebra Number Theory*, 15(1):173–215, 2021.

Shunsuke Yamana. Local symmetric square L-factors of representations of general linear groups. *Pacific J. Math.*, 286(1):215–256, 2017.

A. V. Zelevinsky. Induced representations of reductive p-adic groups. II. On irreducible representations of $GL(n)$. *Ann. Sci. École Norm. Sup. (4)*, 13(2):165–210, 1980.