Nutrient recovery from municipal wastewater for sustainable food production systems: An alternative to traditional fertilizers

Ranjani B. Theregowda - NRC Research Associate, US EPA
Alejandra M. González-Mejía - Bangor University
Jay Garland - US EPA
Xin (Cissy) Ma - US EPA

Office of Research and Development
Water Systems Division
National Risk Management Research Laboratory, Cincinnati, OH
Importance of Nutrient Management

- Eutrophication - enrichment of an ecosystem with chemical nutrients, typically compounds containing nitrogen (N), phosphorus (P), or both.

- Clean Water Act (CWA) requires wastewater treatment plants (WWTPs) to reduce nutrient discharge levels to prevent eutrophication.
Study Objectives and Approach

- Aims to address:
 1) how regulations drive system changes;
 2) how conventional systems can be transitioned to more cost effective and sustainable alternatives using nutrient management.

- Use emergy to provide system analysis:
 - Emergy quantifies direct and indirect contributions from the elemental resource flow to the entire treatment plant operational requirements.

- Influent wastewater flow and nutrient levels, capital, and operational data were collected from previous nutrient removal studies and for nutrient recovery from Ostara Nutrient Recovery Technologies, Inc.

- All UEVs used and given hereafter (including those referenced in the text) were normalized to the 1.20 E25 sej/yr (solar emjoules/year) global emergy baseline (Brown et al., 2016)
Nutrient Recovery and Benefits

- Nutrient recovery - practice of recovering nutrients (N and P) from wastewater and converting them into an environmental friendly fertilizer

- Industrial phosphate (PO_4^{3-}) fertilizers - manufactured using PO_4^{3-} rock (non-renewable resource)

- Nutrient recovery provides a self-sustainable solution to WWTPs
 - revenue generation from fertilizers
 - reduces fouling of equipment with involuntary precipitation of struvite
 - helps meet discharge limits

- PO_4^{3-} precipitation from wastewater is less energy intensive and economical compared to manufacture of phosphate fertilizers
Struvite Formation and Production

- Recovered from municipal wastewater (MWW)/urine source - slow-release mineral fertilizer given by the simplified equation

\[
\text{Mg}^+ + \text{NH}_4^+ + \text{PO}_4^{3-} + 6\text{H}_2\text{O} \rightarrow \text{MgNH}_4\text{PO}_4 \cdot 6\text{H}_2\text{O} \text{ (solid)}
\]

Magnesium Ammonium Phosphate

- Methods of struvite recovery from MWW have been under development, this study cites WASSTRIP™ and PEARL® process by Ostara Nutrient Recovery Technologies, Inc.

- Marketed fertilizer - 5% N, 28% PO$_4^{3-}$, and 0% potash, with 16.6% MgO (10% Mg)
In addition to P precipitation, partial nitration anammox was considered for nitrogen reduction in the nutrient recovery alternative.
Emergy definition and concept

- Available energy of any kind previously used both directly and indirectly to make another form of energy, product or service.

- Evolution of the theory during the past thirty years was documented by H.T Odum in Environmental Accounting, 2016.

- Emergy (emjoules/yr or emjoules/unit) synthesis strives for understanding by grasping the wholeness of system.

- Able to investigate systems that are outside of human activities and evaluate in a quantitative way (metrics) the quality of resource flows and storages.
Emergy Systems Diagram for Nutrient Recovery

External forcing functions (circles) provide inflow energy materials and information to the producers (bullet-shape symbols). Internal storages (tank symbols) and economic and social subsystems (boxes) are shown.
Energy Systems Diagram for DAP Production

P Fixation

Phosphorus Acid Production

DAP Production

External forcing functions (circles) provide inflow energy materials and information to the producers (bullet-shape symbols). Internal storages (tank symbols) and economic and social subsystems (boxes) are shown.
Results of Traditional Fertilizer Vs. Nutrient Recovery

Diammonium Phosphate (DAP)

Chemical formula: (NH$_4$)$_2$HPO$_4$

Composition: 18% N, 46% P$_2$O$_5$ (20% P)

Note	Description	Data	Unit	UEV (sej/unit)	EMERGY (E sej/yr)
Infrastructure input	Capital	$1.14E+01$	$2.02E+12$	$2.31E+13$	
Operational inputs per year (2013)	1 Materials	Phosphate Rock	$1.50E+06$ g	$3.61E+09$	$5.40E+15$
	Ammonia	$1.44E+05$ g	$6.48E+09$	$9.35E+14$	
	Sulfur	$3.97E+05$ g	$9.50E+10$	$3.77E+16$	
	Limestone	$3.02E+04$ g	$2.20E+08$	$6.65E+12$	
2 Energy	Electricity	$1.16E+08$ J	$7.26E+05$	$7.85E+12$	
	Fuels	$4.34E+08$ J	$6.13E+05$	$4.01E+13$	
3 Services	Water	$5.12E+02$ m3	$8.22E+11$	$1.23E+13$	
Total EMERGY				**5.03E+16**	
5 Transformity				**5.03E+10** sej/g DAP	
				5.03E+10 sej/g DAP	
				1.18 E+10 sej/g P	

Struvite

Chemical Formula: Crystal Green®, NH$_4$MgPO$_4$·6H$_2$O (5-28-0 +10% Mg)

Note	Description	Data	Unit	UEV (sej/unit)	EMERGY (E sej/yr)
Infrastructure input	Capital	$2.47E+02$ $	$2.02E+12$	$5.01E+14$	
Operational inputs per year (2013)	1 Materials	Phosphate, eq. to elemental phosphorus (PO$_4$-P)	1.40E+05 g		0.00E+00
	Ammonia, equivalent to elemental Nitrogen (NH$_3$-N)	2.10E+05 g		0.00E+00	
	Sodium hydroxide (NaOH)	4.90E+04 g		4.14E+09	2.03E+14
	Magnesium chloride (MgCl$_2$) as Mg	1.47E+05 g		4.34E+10	6.38E+15
2 Energy	Electricity	6.40E+08 J		2.21E+05	1.41E+14
3 Services	Water	5.33E+01 m3		3.26E+05	8.56E+07
Total EMERGY				**7.10E+15**	
5 Transformity				**7.10E+09** sej/g CG	
				7.60E+09 sej/g CG	
				8.96 E+08 sej/g P	
Results of Traditional Fertilizer Vs. Nutrient Recovery

Diammonium Phosphate (DAP)

Chemical formula: \((\text{NH}_4)_2\text{HPO}_4\)
Composition: 18% N, 46% P\(_2\text{O}_5\) (20% P)

Note	Description (sej/unit)	(E sej/yr)	
Infrastructure input			
* Capital	1.14E+01 $	2.02E+12	2.31E+13

Operational inputs per year (2013)			
1 Materials			
1a Phosphate Rock	1.50E+06 g	3.61E+09	5.40E+15
1b Ammonia	1.44E+05 g	6.48E+09	9.35E+14
1c Sulfur	3.97E+05 g	9.50E+10	3.77E+16
1d Limestone	3.02E+04 g	2.20E+08	6.65E+12
2 Energy			
2a Electricity	1.16E+08 J	7.26E+05	7.85E+12
2b Fuels	4.34E+08 J	6.13E+05	4.01E+13
3 Services	5.12E+02 $	2.02E+12	1.04E+15
4 Water	3.56E+01 m\(^3\)	8.22E+11	1.23E+13

Total EMERGY		
w/o capital invest	5.03E+10 sej/g DAP	
with capital invest	5.03E+10 sej/g DAP	
w/o capital invest	1.18 E+10 sej/g P	

Transformity
Results of Traditional Fertilizer Vs. Nutrient Recovery

Struvite

Chemical Formula: Crystal Green®, \(\text{NH}_4\text{MgPO}_4\cdot6\text{H}_2\text{O} \) (5-28-0 +10% Mg)

Note	Description	Data	Unit	UEV (sej/unit)	EMERGY (E sej/yr)
Infrastructure input					
*	Capital	2.47E+02 $	2.02E+12		5.01E+14
Operational inputs per year (2013)					
1	Materials				
1a	Phosphate, eq. to elemental phosphorus (PO\(_4\)-P)	1.40E+05 g			0.00E+00
1b	Ammonia, equivalent to elemental Nitrogen (NH\(_3\)-N)	2.10E+05 g			0.00E+00
1c	Sodium hydroxide (NaOH)	4.90E+04 g	4.14E+09		2.03E+14
1d	Magnesium chloride (MgCl\(_2\)) as Mg	1.47E+05 g	4.34E+10		6.38E+15
2a	Electricity	6.40E+08 J	2.21E+05		1.41E+14
3	Services	5.33E+01 $	2.02E+12		1.08E+14
4	Wastewater	2.63E+02 g	3.26E+05		8.56E+07
Total EMERGY					7.10E+15

1. Transformity
 1. w/o capital invest: 7.10E+09 sej/g CG
 2. with capital invest: 7.60E+09 sej/g CG
 3. w/o capital invest: 8.96E+08 sej/g P
Biological Nutrient Removal (BNR)

- BNR treatments remove TN and TP from wastewater through the use of chemicals and microorganisms under different environmental conditions (Metcalf and Eddy, 2003)

- Levels of nutrient removal processes:

Treatment Level (Effluent Limits)	Removal/Recovery Process Name	Processes Chosen for this Study
Recovery	Phosphorus Recovery	Phosphorus Recovery - Anammox
Level 2	Nitrification or Oxidation Ditch with or without Phosphorus Precipitation (chemical addition)	Nitrification
Level 3	Modified Ludzack Ettinger (MLE) 4 Stage and 5 Stage Bardenpho (Bardenpho), Modified University of Cape Town (MUCT), Sequential Batch reactor (SBR) + Phosphorus Precipitation (chemical addition)	MLE MLE - High Energy Bardenpho - No Chemical Addition Bardenpho - Chemical Addition Bardenpho - High Energy MUCT - No Chemical Addition MUCT - Chemical Addition MUCT - High Energy
Level 4	Level 3 process with either Denitrification Filter Membrane Filter, Membrane Bioreactor (MBR) + Phosphorus Precipitation (chemical addition)	Bardenpho - Denitrification Filter Bardenpho - Membrane Filter MUCT - Membrane Filter Bardenpho - MBR
Level 5	Level 3 or Level 4 processes with Sidestream Reverse Osmosis	Bardenpho - RO Bardenpho - Membrane Filter & RO MUCT - Membrane Filter & RO
Processes Considered for the Study

Treatment Level (Effluent Limits)	Nutrient Removal/Recovery Process	Energy (kWh/m³)	Influent Ammonia (mg/L as NH₃-N)	Influent P (mg/L as P)
Recovery	Phosphorus Recovery - Anammox	0.14	20	7
Level 2 (TN – 8 mg/L, TP – 1 mg/L)	Nitrification	0.23	24	10
Level 3 (TN – 4-8 mg/L, TP – 0.1-0.3 mg/L)	MLE	0.28	23	8
	MLE - High Energy	0.59	32	8
	Bardenpho - No Chemical Addition	0.29	23	8
	Bardenpho - Chemical Addition	0.29	23	8
	Bardenpho - High Energy	0.58	22	5
	MUCT - No Chemical Addition	0.35	23	8
	MUCT - Chemical Addition	0.35	23	8
	MUCT - High Energy	0.56	22	5
Level 4 (TN – 3 mg/L, TP – 0.1 mg/L)	Bardenpho - Denitrification Filter	0.53	22	5
	Bardenpho - Membrane Filter	0.4	23	8
	MUCT - Membrane Filter	0.45	23	8
	Bardenpho - MBR	0.53	22	5
Level 5 (TN - <2 mg/L, TP<0.02 mg/L)	Bardenpho - RO	0.60	22	5
	Bardenpho - Membrane Filter & RO	2.4	23	8
	MUCT - Membrane Filter & RO	2.45	23	8
Total Emergy Comparison between Different Nutrient Removal and Recovery Technology

Same BNR vary due to chemical and energy inputs

Emergy (sej/m³)
Total Emergy Comparison between Different Nutrient Removal and Recovery Technology
Results and Discussions

- Stringent nutrient reduction regulations lead to trade-offs that need further evaluation to choose the most sustainable treatment alternative.

- Emergy analysis justifies nutrient recovery from wastewater sludge and provides sound economic and ecological comparison of removal and recovery treatment alternative independent of perceived monetary value.

- DAP process depends ~70% on non-renewable energy sources and a scarce material (phosphate rock), Struvite has potential of utilizing 100% of renewable sources, making recovery of phosphorus as fertilizer less emergy intensive.

- DAP with an order of magnitude higher total emergy relative to struvite, displays a bigger environmental ‘footprint’.

- Among the nutrient removal treatment alternatives, the study results show that energy and non-energy (chemicals) inputs can lead to significant variation in process emergy.
Selected References

- Eastern Research Group, Inc. (2018). *Life Cycle and Cost Assessments of Nutrient Removal Technologies in Wastewater Treatment Plants*, Report Prepared for U.S.EPA (draft).

- Arden, S., Ma, X. and Brown, M. (2018) *Holistic Analysis of Urban Water Systems in the Greater Cincinnati Region: (2) Resource Use Profiles by Emergy Accounting Approach*. Submitted to Environmental Science and Technology (ES&T).

- Rahman, M.S., Eckelman, J.M., Onnis-Hayden, A. and Gu, A.Z. (2016) *Life-Cycle Assessment of Advanced Nutrient Removal Technologies for Wastewater Treatment*. Environmental Science and Technology, 50, pp 3020 - 3030

- Foley, J., de Haas, D., Hartley, K. and Lant, P. (2010) *Comprehensive life cycle inventories of alternative wastewater treatment systems*. Water Research, 44, pp 1654 – 1666.

- Odum, H.T. Environmental accounting. John Wiley & Sons: New York, 1996.

- Brown, M. T., Campbell, D. E., De Vilbiss, C., Ulgiati, S. (2016) *The Geobiosphere Emergy Baseline: A Synthesis*. Ecological Modelling.

- Fux, C. and Siegrist, H. (2004). *Nitrogen removal from sludge digester liquids by nitrification/denitrification or partial nitritation/anamox: environmental and economical considerations*. Water Science and Technology. 10, pp. 19-26
Account for the benefits of nutrient recovery via efficient use of the struvite fertilizer and the flow of N and P nutrients in the food system, the economic, environmental and societal benefits of struvite recovery would be more perceptible.
Acknowledgements

- Research Adviser - Dr. Xin (Cissy) Ma
- Safe and Sustainable Water Resources National Research Program in the EPA's Office of Research and Development
- National Research Council (NRC) Research Associate Program
- U.S.EPA Graduate Student Program – Sam Arden
- ORISE Research Associate Program (Alejandra M. González-Mejía's appointment)
 - This project was supported in part by an appointment to the Internship/Research Participation Program at the NRMRL, U.S. Environmental Protection Agency, administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and EPA.
- Ostara Nutrient Recovery Technologies, Inc., The Mosaic Company and Agrium, Inc.

Disclaimer:
The opinions expressed in this presentation are those of the author. They do not reflect EPA policy, endorsement, or action, and EPA does not verify the accuracy or science of the contents of this presentation. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. Links to non-EPA websites do not imply any official EPA endorsement of or a responsibility for the opinions, ideas, data, or products presented at those locations or guarantee the validity of the information provided. Links to non-EPA servers are provided solely as a pointer to information that might be useful to EPA staff and the public.
Thank you! Questions?
Backup Slides
Struvite vs. DAP

Recovered Struvite

Manufactured DAP

Energy Value (sej/gP)

Water

Services

Energy

Materials

Capital
Struvite vs. DAP - Major emergy contributors

- Sulfur: 84%
- Phosphate rock: 12%
- Ammonia: 2%
- Capital, Energy, Services and Water: 2%

- Magnesium chloride: 93%
- Sodium hydroxide: 3%
- Capital, Energy, Services and Water: 4%
Level 2-2 (3-Sludge System)
Level 3-1 (5-Stage Bardenpho)
Level 3-2 (Mod, U of Cape Town)
Level 4-1 (5-S Bardenpho+DenitFil)
Level 4-2 (4-Stage Bardenpho MBR)
Level 5-1 (5-S Bardenpho+UF/RO)
Level 5-2 (5-S Bardenpho MBR+RO)
Emergy Comparison between Nutrient Removal and Recovery Technology - Percent Contribution