Studies on Genetic Variability, Heritability and Genetic Advances for Quantitative Characters in Finger millet (*Eleusine coracana* (L.) Gaertn.)

C. K. Sindhuja*, S. Marker and S. Ramavamsi

Department of Genetics and Plant Breeding, SHUATS, Prayagraj, U.P., India

*Corresponding author

Abstract

The present investigation was carried out to study the genetic variability, heritability and genetic advance among 137 finger millet genotypes for fifteen characters during Kharif 2018. Analysis of Variance showed significant differences for all the characters under study except for leaf width, number of panicle per plant and test weight indicating the presence of a substantial amount of genetic variability thus revealed that these genotypes have been developed from the different genetic background. On the basis of *per se* performance for different quantitative traits, genotype IE4734 was found to be the best genotype in Allahabad agro-climatic conditions. High estimates of GCV and PCV were observed for harvest index. High heritability coupled with high genetic advance was recorded for leaf width followed by test weight and grain yield per plant indicating the predominance of additive gene effects and the possibilities of effective selection for the improvement of these characters.

Keywords

Finger millet (*Eleusine coracana* (L.)Gaertn.), genetic variability, heritability

Introduction

Finger millet is an important staple food crop widely grown in Africa and South Asia. Among the millets, finger millet has a high amount of calcium, methionine, tryptophan, fiber, and sulfur-containing amino acids.

In addition, it has C₄ photosynthetic carbon assimilation mechanism, which helps to utilize water and nitrogen efficiently under hot and arid conditions without severely affecting yield Hittalmani (2017).

Finger millet is highly nutritious as its grain contains high-quality protein (7-10%). It is the richest source of calcium (344mg/100g), iron (3.9mg/100g) and other minerals. It is also rich in phosphorus (283mg/100g) and potassium (408mg/100g). The cereal has low-fat content (1.3%) and contains mainly unsaturated fat 100 g of finger millet has
roughly on an average of 336 Kcal of energy. The higher fiber content of finger millet helps in many ways as it prevents constipation, high cholesterol formation, and intestinal cancer. Hence, people suffering from diabetes are advised to eat finger millet and other small millets instead of rice Hadimani and Malleshi, (1993).

Assessment of genetic variability is a basic step in the crop improvement program. Yield is being a complex character it is influenced by a number of yield contributing characters controlled by polygenes and also influenced by the environment. Genotypic and phenotypic association reveals the degree of association between different characters and thus, aids in selection to improve the yield and yield attributing characters. Heritability measures the relative amount of the heritable portion of variation while the genetic advance helps to measure the amount of progress that could be expected with selection in a character.

Materials and Methods

The experimental material consisted of 137 finger millet genotypes collected from ICRISAT, Hyderabad and NBPG, New Delhi (Table 1). The experiment was conducted in randomized block design with three replications during Kharif-2018 at Field Experimentation Centre of the Department of Genetics and Plant Breeding, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj (Allahabad) U.P. All the recommended agronomic and cultural practices were followed for raising a healthy crop. Data were recorded on five randomly taken plants per replication of each genotype for fifteen characters viz., days to 50% flowering, days to maturity, plant height (cm), leaf length (cm), leaf width (cm), leaf area index, number of panicles per plant, number of fingers per panicle, finger length (cm), finger width (cm), stem girth (cm), biological yield per plant (g), grain yield per plant (g), harvest index, seed index. The analysis of variance was done as suggested by Punse and Sukhatme (1985). The genotypic and phenotypic coefficient of variation was calculated by the formulae as suggested by Burton (1952), heritability as per formulae suggested by Burton and Devane (1953) and genetic advance (Johnson et al., 1955).

Results and Discussion

The analysis of variance showed a wide range of variation and significant differences for all the characters under study except for leaf width, number of panicles per plant and test weight. This indicates that there was ample scope for selection of promising lines from the present gene pool for yield and its components in finger millet (Table 2).

Estimation of genotypic variance (σ^2_g) and phenotypic variance (σ^2_p) was obtained for different characters and wide range of variance were observed for all the characters. The highest genotypic variance (σ^2_g) and phenotypic variance (σ^2_p) were recorded for plant height (124.74 and 176.25) followed by days to 50% flowering (90.06 and 94.13), days to maturity (90.06 and 94.13), leaf area index (54.63 and 63.38), leaf length (33.29 and 51.02), biological yield per plant (23.81 and 24.87). While moderate genotypic variance (σ^2_g) and phenotypic variance (σ^2_p) were recorded for harvest index (16.20 and 17.15).

Whereas, finger length (1.94 and 2.04), number of fingers per panicle (0.85 and 0.89), grain yield per plant (0.52 and 0.53), finger width (0.03 and 0.04), stem girth (0.02 and 0.03), number of panicle per plant (0.00 and 0.01) showed genotypic variance (σ^2_g) and phenotypic variance (σ^2_p). The phenotypic variance was higher than the genotypic
variance for all the yield and yield attributing characters indicates that the influence of environmental factors on these traits. Less difference in the estimates of genotypic and phenotypic variance for all the characters suggested that the variability present among the genotypes were mainly due to genetic reason with minimum influence of environment and hence heritable. The genotypic estimates of variability (Vg) being the most important, helps in the measurement of a particular character and gives a clue to compare the genetic variability for different characters. Similar results have been reported by John (2006), Ganapathy et al. (2011) and Karad and Patil (2013).

Phenotypic coefficient of variation ranged from 8.70 (days to maturity) to 41.45 (harvest index). Highest PCV was recorded for harvest index (41.45), whereas the lowest was recorded for days to maturity (8.70). Genotypic coefficient of variation ranged from 4.80 (number of panicles per plant) to 40.30 (harvest index). Highest GCV was recorded for Harvest index (40.30), whereas the lowest was recorded for a number of panicles per plant (4.80).

The coefficient of variation at phenotypic and genotypic levels was high for harvest index, grain yield per plant, biological yield per plant, leaf area index, test weight, finger width and finger length. Similar results were also obtained by Kumari and Singh (2015) for Harvest index and leaf area index, Patil (2013) for Grain yield per plant, finger length and test weight. Moderate for the traits like leaf width, number of fingers per panicle, plant height, stem girth, leaf length. Similar results were also obtained by Ulaganathan and Nirmalakumari (2011) for leaf length, leaf width and number of fingers per panicle, Ganapathy et al. (2011) for plant height. Low PCV and GCV were observed for days to maturity. Similar results were obtained by Ganapathy et al. (2011) for days to maturity. The magnitude of high GCV and PCV suggests that enough genetic variability is present among the finger millet genotypes for traits where PCV and GCV are moderate to low, the scope of selection for suitable characters is limited.

In present study, high heritability was recorded for leaf width, test weight, grain yield per plant, biological yield per plant, number of panicles per plant, days to flowering, days to maturity, finger length, harvest index, finger width, leaf area index, plant height, stem girth and leaf length. The maximum value was recorded for leaf width (99%) and the minimum was recorded for number of panicles per plant (21%). High heritability coupled with high genetic advance as percent mean in the present set of genotypes were recorded for leaf width (99% and 37.59%), test weight (97% and 47.34%), grain yield per plant (97% and 77.41%), days to 50% flowering (96% and 22.11%), number of fingers per panicle (96% and 32.87), biological yield per plant (96% and 50.34%), finger length (95% and 44.22%), finger width (94% and 46.12%), harvest index (94% and 80.67%), leaf area index (86% and 47.15%), plant height (71% and 25.24%), stem girth (69% and 22.64%) and leaf length (65% and 21.38%) indicating a predominance of additive gene effects and the possibilities of effective selection for the improvement of these characters. Similar results were also obtained by John 2006 for Test weight and harvest index, Ganapathy et al. (2011) for grain yield per plant, finger length and plant height, Kumari and Singh (2015) for leaf area index and days to 50% flowering, Ulaganathan and Nirmalakumari (2011) for leaf length. High heritability coupled with moderate genetic advance was recorded for days to maturity (96% and 17.5%), suggesting the greater role of both additive and non-additive gene action in their inheritance.
Table.1 List of finger millet genotypes used in the present investigation

S. No	Designation	Source									
1	IE3978	ICRISAT, Hyderabad	29	IE4121	ICRISAT, Hyderabad	57	IE3104	ICRISAT, Hyderabad	85	GE4	NBPGR, New Delhi
2	IE2043	ICRISAT, Hyderabad	30	IE4734	ICRISAT, Hyderabad	58	IE3391	ICRISAT, Hyderabad	86	GE62	NBPGR, New Delhi
3	IE4797	ICRISAT, Hyderabad	31	IE5066	ICRISAT, Hyderabad	59	IE3614	ICRISAT, Hyderabad	87	GE236	NBPGR, New Delhi
4	IE5106	ICRISAT, Hyderabad	32	GE86	NBPGR, New Delhi	60	IE4565	ICRISAT, Hyderabad	88	GE51	NBPGR, New Delhi
5	GE229	NBPGR, New Delhi	33	GE237	NBPGR, New Delhi	61	IE6240	ICRISAT, Hyderabad	89	GE21	NBPGR, New Delhi
6	GE93	NBPGR, New Delhi	34	GE228	NBPGR, New Delhi	62	GE238	NBPGR, New Delhi	90	GE196	NBPGR, New Delhi
7	GE82	NBPGR, New Delhi	35	GE52	NBPGR, New Delhi	63	GE87	NBPGR, New Delhi	91	GE76	NBPGR, New Delhi
8	GE83	NBPGR, New Delhi	36	GE200	NBPGR, New Delhi	64	GE81	NBPGR, New Delhi	92	GE80	NBPGR, New Delhi
9	GE231	NBPGR, New Delhi	37	GE235	NBPGR, New Delhi	65	GE213	NBPGR, New Delhi	93	GE224	NBPGR, New Delhi
10	GE13	NBPGR, New Delhi	38	GE276	NBPGR, New Delhi	66	GE191	NBPGR, New Delhi	94	GE207	NBPGR, New Delhi
11	GE277	NBPGR, New Delhi	39	IE3470	ICRISAT, Hyderabad	67	GE44	NBPGR, New Delhi	95	GE274	NBPGR, New Delhi
12	GE193	NBPGR, New Delhi	40	GE245	NBPGR, New Delhi	68	GE76	NBPGR, New Delhi	96	GE223	NBPGR, New Delhi
13	GE271	NBPGR, New Delhi	41	GE2	NBPGR, New Delhi	69	GE85	NBPGR, New Delhi	97	IE4671	ICRISAT, Hyderabad
14	GE278	NBPGR, New Delhi	42	GE86	NBPGR, New Delhi	70	GE55	NBPGR, New Delhi	98	IE4673	ICRISAT, Hyderabad
15	GE202	NBPGR, New Delhi	43	GE77	NBPGR, New Delhi	71	GE79	NBPGR, New Delhi	99	IE4757	ICRISAT, Hyderabad
16	GE199	NBPGR, New Delhi	44	GE227	NBPGR, New Delhi	72	GE60	NBPGR, New Delhi	100	IE2872	ICRISAT, Hyderabad
17	GE234	NBPGR, New Delhi	45	GE228	NBPGR, New Delhi	73	GE203	NBPGR, New Delhi	101	GE12	NBPGR, New Delhi
18	GE53	NBPGR, New Delhi	46	GE214	NBPGR, New Delhi	74	GE243	NBPGR, New Delhi	102	GE19	NBPGR, New Delhi
19	GE63	NBPGR, New Delhi	47	IE6154	ICRISAT, Hyderabad	75	IE2072	ICRISAT, Hyderabad	103	IE2437	ICRISAT, Hyderabad
20	GE197	NBPGR, New Delhi	48	GE19	NBPGR, New Delhi	76	IE790	ICRISAT, Hyderabad	104	IE6294	ICRISAT, Hyderabad
21	GE233	NBPGR, New Delhi	49	GE50	NBPGR, New Delhi	77	IE3475	ICRISAT, Hyderabad	105	IE5817	ICRISAT, Hyderabad
22	GE87	NBPGR, New Delhi	50	GE239	NBPGR, New Delhi	78	IE9345	ICRISAT, Hyderabad	106	IE3045	ICRISAT, Hyderabad
23	GE198	NBPGR, New Delhi	51	GE205	NBPGR, New Delhi	79	IE4073	ICRISAT, Hyderabad	107	IE5537	ICRISAT, Hyderabad
24	GE85	NBPGR, New Delhi	52	GE219	NBPGR, New Delhi	80	IE4570	ICRISAT, Hyderabad	108	IE7079	ICRISAT, Hyderabad
25	GE275	NBPGR, New Delhi	53	GE79	NBPGR, New Delhi	81	IE9091	ICRISAT, Hyderabad	109	GE68	NBPGR, New Delhi
26	GE76	NBPGR, New Delhi	54	GE279	NBPGR, New Delhi	82	IE5367	ICRISAT, Hyderabad	110	GE240	NBPGR, New Delhi
27	GE518	ICRISAT, Hyderabad	55	IE1055	ICRISAT, Hyderabad	83	IE5367	ICRISAT, Hyderabad	111	GE195	NBPGR, New Delhi
28	GE4028	ICRISAT, Hyderabad	56	IE1055	ICRISAT, Hyderabad	84	GE273	NBPGR, New Delhi	112	GE210	NBPGR, New Delhi

Int. J. Curr. Microbiol. App. Sci (2019) 8(9): 2188-2195
Table 2: Analysis of Variance for different quantitative parameters in finger millet

S. No.	Parameters	Mean Sum of Squares	Replications (d.f = 2)	Treatments (d.f = 136)	Error (d.f = 272)
1	Days to 50% flowering	5.70	274.25**	4.06	
2	Days to maturity	5.70	274.25**	4.06	
3	Plant height	140.73	425.73**	51.51	
4	Leaf length	44.97	117.59**	17.73	
5	Leaf width	0.00	0.08	0.00	
6	Leaf area index	19.08	172.64**	8.76	
7	Finger length	0.21	5.92**	0.10	
8	Finger width	0.01	0.10**	0.00	
9	No. of panicle per plant	0.00	0.02	0.01	
10	No. of fingers per panicle	0.04	2.59**	0.03	
11	Stem girth	0.02	0.06**	0.01	
12	Biological yield per plant	1.54	72.48**	1.06	
13	Harvest Index	0.25	49.54**	0.95	
14	Test weight	0.00	0.01	0.00	
15	Grain yield per plant	0.02	1.57**	0.02	

** indicates 1% level of significance
Table 3: Genetic parameters for 15 quantitative characters in 137 finger millet genotypes.

Parameters	Genotypic variance	Phenotypic variance	Coefficient of variance (%)	Heritability (%)	Genetic advance at 5%	Genetic advance as a percent of mean
Days to 50% flowering	90.06	94.13	10.97	11.22	96.00	19.12
Days to maturity	90.06	94.13	8.51	8.70	96.00	19.12
Plant height	124.74	176.25	14.56	17.31	71.00	19.36
Leaf length	33.29	51.02	12.85	15.91	65.00	9.60
Leaf width	0.03	0.03	18.32	18.39	99.00	0.33
Leaf area index	54.63	63.38	24.65	26.55	86.00	14.14
Finger length	1.94	2.04	22.02	22.60	95.00	2.96
Finger width	0.03	0.04	23.09	23.82	94.00	0.36
No. of panicle per plant	0.00	0.01	4.80	10.55	21.00	0.05
No. of fingers per panicle	0.85	0.89	16.26	16.61	96.00	1.86
Stem girth	0.02	0.03	13.25	15.98	69.00	0.23
Biological yield per plant	23.81	24.87	24.97	25.52	96.00	9.84
Harvest Index	16.20	17.15	40.30	41.45	94.00	8.07
Test weight	0.00	0.00	23.29	23.29	97.00	0.12
Grain yield per plant	0.52	0.53	38.18	38.18	97.00	1.46
Similar findings were reported by Ulaganathan and Nirmalakumari (2011) and Karad and Patil (2013). Low heritability coupled with low genetic advance was recorded for number of panicles per plant (21% and 4.50%). It is indicative of non-additive gene action. The low heritability is being exhibited due to the favorable influence of environment rather than genotype and selection for such traits may not be rewarding (Table 3).

In the present study, the characters, leaf width followed by test weight and grain yield per plant had high heritability coupled with high genetic advance as percent means indicating the predominance of additive gene effects and the possibilities of effective selection for the improvement of these characters.

References

Burton, G. W. (1952). Quantitative inheritance in grasses. Pro VI International Grassland Congress, 1952: 277–283.

Burton, G. W. and Devane, E. H. (1953). Estimating heritability in tall fescue (Festuca arundinacea) from replicated clonal material 1. Agronomy Journal, 45 (10): 478–481.

Ganapathy, S., Nirmalakumari, A. and Muthiah, A. R. (2011). Genetic variability and interrelationship analyses for economic traits in finger millet germplasm. World Journal of Agricultural Sciences, 7 (2): 185–188.

Hadimani, N. A. and Malleshi, N. G. (1993). Studies on milling, physico-chemical properties, nutrient composition and dietary fiber content of millets. Journal of Food Science and Technology, 30 (1): 17–20.

Hittalmani, S., Mahesh, H. B., Shirke, M. D., Biradar, H., Uday, G., Aruna, Y. R. and Mohanrao, A. (2017). Genome and transcriptome sequence of finger millet (Eleusine coracana (L.) Gaertn.) provides insights into drought tolerance and nutraceutical properties. BMC genomics, 18 (1): 465.

Johnson, H. W., Robinson, H. F. and Comstock, R. (1955). Estimates of genetic and environmental variability in soybeans 1. Agronomy Journal, 47 (7): 314–318.

John, K. (2006). Variability and correlation studies in quantitative traits of finger millet (Eleusine coracana Gaertn). Agricultural Science Digest, 26 (3): 166–169.

Karad, S. and Patil, J., (2013). Assessment of Genetic Diversity Among Finger Millet (Eleusine coracana L.) Genotypes. International Journal of Integrative Sciences, Innovation and Technology, 2 (4): 37–43.

Kumari, S. and Singh, S. K. (2015). Assessment of genetic diversity in promising finger millet [Eleusine coracana (L.) Gaertn] genotypes. The Bioscan, 10 (2): 825–830.

Patil, J. V. (2013). Assessment of genetic diversity among finger millet (Eleusine coracana L.) genotypes. International Journal of Innovation Technology and Science, 2 (4): 37–43.

Ulaganathan, V. and Nirmalakumari, A. (2011). Genetic Variability for Yield and Yield Related Traits in Fingermillet [Eleusine coracana (L.) Gaertn] Genotypes. Department of Millets, Centre for Plant Breeding and Genetics, TNAU, Coimbatore, India.
How to cite this article:

Sindhuja, C. K., S. Marker and Ramavamsi, S. 2019. Studies on Genetic Variability, Heritability and Genetic Advances for Quantitative Characters in Finger millet (*Eleusine coracana* (L.) Gaertn.). *Int.J.Curr.Microbiol.App.Sci.* 8(09): 2188-2195.
doi: https://doi.org/10.20546/ijcmas.2019.809.252