Phylogenomic and evolutionary dynamics of inverted repeats across *Angelica* plastomes

Mengli Wang†, Xin Wang†, Jiahui Sun†, Yiheng Wang†, Yang Ge†, Wenpan Dong‡*, Qingjun Yuan†* and Luqi Huang†*

Abstract

Background: *Angelica* L. (family Apiaceae) is an economically important genus comprising ca. One hundred ten species. *Angelica* species are found on all continents of the Northern Hemisphere, and East Asia hosts the highest number of species. Morphological characters such as fruit anatomy, leaf morphology and subterranean structures of *Angelica* species show extreme diversity. Consequently, the taxonomic classification of *Angelica* species is complex and remains controversial, as the classifications proposed by previous studies based on morphological data and molecular data are highly discordant. In addition, the phylogenetic relationships of major clades in the *Angelica* group, particularly in the *Angelica* s. s. clade, remain unclear. Chloroplast (cp) genome sequences have been widely used in phylogenetic studies and for evaluating genetic diversity.

Results: In this study, we sequenced and assembled 28 complete cp genomes from 22 species, two varieties and two cultivars of *Angelica*. Combined with 36 available cp genomes in GenBank from representative clades of the subfamily Apioideae, the characteristics and evolutionary patterns of *Angelica* cp genomes were studied, and the phylogenetic relationships of *Angelica* species were resolved. The *Angelica* cp genomes had the typical quadripartite structure including a pair of inverted repeats (IRs: 5836–34,706 bp) separated by a large single-copy region (LSC: 76,657–103,161 bp) and a small single-copy region (SSC: 17,433–21,794 bp). Extensive expansion and contraction of the IR region were observed among cp genomes of *Angelica* species, and the pattern of the diversification of cp genomes showed high consistency with the phylogenetic placement of *Angelica* species. Species of *Angelica* were grouped into two major clades, with most species grouped in the *Angelica* group and *A. omeiensis* and *A. sinensis* grouped in the *Sinodielsia* with *Ligusticum tenuissimum*.

Conclusions: Our results further demonstrate the power of plastid phylogenomics in enhancing the phylogenetic reconstructions of complex genera and provide new insights into plastome evolution across *Angelica* L.

Keywords: *Angelica*, Plastome evolution, Phylogenomic, Inverted repeats
Background

The herbaceous perennial genus Angelica L. (family Apiaceae) is a taxonomically complex and controversial group comprising approximately 110 species with extreme polymorphism in leaf morphology, fruit anatomy and subterranean structures [1–3]. Members of Angelica are distributed on all Northern Hemisphere, with the largest number of species (approximately 55) concentrated in East Asia [3–5]. Forty-five Angelica species are distributed in China with 32 of them endemic [3, 6]; some species are extremely rare in the field and are only known from limited specimens [7].

Some of these endemic Angelica species are of great economic value and have been used in traditional Chinese medicines for hundreds of years [3, 8]. Some species of Angelica are official materia medica recorded in Chinese Pharmacopoeia Committee of People’s Republic of China’s 2010, including A. sinensis (Chinese medicine name: Danggui), A. biserrata (Duhuo) and A. dahurica (Baizhi) [7]. Another 15 species of Angelica are also used as herbal medicinal materials in folk remedies (http://frpseflora.cn).

Previous studies of Angelica systematics have focused on karyotaxonomical analyses [2, 9, 10], pollen morphology [11–13], petiole and fruit anatomy [14], and phytochemistry [15, 16]. Previous molecular phylogenetic analyses of Angelica have exclusively been based on phylogenetic analyses of DNA sequences, especially on the nuclear ribosomal (nr) DNA internal transcribed spacer (ITS) region, and relatively few Chinese representatives of Angelica have been included in analyses [6, 17–20]. Xue et al. (2007) used 44 ITS sequences from species of Angelica sensu stricto (s.s.) and allies from East Asia and proposed that Angelica was polyphyletic. Feng et al. (2009) suggested that Angelica s.s. was monophyletic after including Coelopleurum, Czenaevia, and Ostericum koreum in analyses but excluding several other species previously recognized in Angelica s.l. Liao et al. (2013) reconstructed the phylogeny of Angelica s.l. and infrageneric relationships in Angelica s.s. with a more extensive sampling of Angelica species from East Asia (including 44 of its approximately 55 known species) and integrated analyses of nrDNA (ITS, ETS), cpDNA (rps16 intron, rps16-trnK intergenic spacer, rpl32-trnL intergenic spacer, and trnL-trnT intergenic spacer), and morphological data. Their analysis suggested that many species of Angelica fell outside of Angelica s.s. and that four species of Angelica occurred outside of the Angelica group. However, the relationships of clades within the Selineae, particularly within the Angelica s.l. group, are still controversial and mostly unresolved.

Chloroplasts are key organelles for photosynthesis and other biochemical pathways in plants [21, 22]. The chloroplast (cp) genome is one of the three DNA genomes (with nuclear and mitochondrial genomes) in plants with a relatively conserved quadripartite circular structure ranging from 115 to 165 kb [23, 24]. Because of their relatively stable genome structure, the complete cp genome sequences have been widely accepted to provide a valuable and informative data source for understanding evolutionary biology and have become a powerful tool for resolving plant phylogenies [24–35].

In this study, we report 28 newly sequenced and complete cp genomes from the genus Angelica (22 species, two varieties and two cultivars) and investigate the structural diversity of cp genomes in Angelica by comparative chloroplast genome analyses. Furthermore, we test the power of complete cp genomes for resolving the phylogeny of the controversial and less well-resolved Angelica group by integrated analyses with another 36 published cp genomes available from NCBI GenBank from representative clades of the Apioidae (subfamily of Apiaceae).

Results

Characteristics of Angelica plastomes

The number of paired-end raw reads obtained by the Illumina HiSeq 4000 system ranged from 8,616,334 to 22,518,619 for the 28 Angelica samples. After mapping the paired-end reads of each Angelica taxon, 52, 277 to 1,673,010 reads were extracted, yielding 59× to 144× chloroplast genome coverage (Table 1). The inverted repeat (IR) junction regions in the assembled chloroplast genomes were further manually checked to avoid potential annotation errors. High-quality chloroplast genome sequences were thus achieved and facilitated for downstream analyses. The 28 Angelica chloroplast genome sequences were deposited in GenBank (accession numbers, MT921958-MT921985).

The length of the complete chloroplast genome ranged from 140,670 bp (A. sinensis) to 163,618 bp (A. tsinlingensis) among the 33 cp genomes from 27 Angelica species (varieties or cultivars). All of the cp genomes possessed the typical quadripartite structure of angiosperms, including a pair of inverted repeat regions (IRs: 5836–34,706 bp) separated by a large single-copy region (LSC: 76,657–103,161 bp) and a small single-copy region (SSC: 17,433–21,794 bp) (Fig. 1; Table 2). The average GC content was 37.5%, which was virtually identical among the 33 complete Angelica cp genomes. The total number of genes ranged from 121 (A. sinensis) to 144 (A. tsinlingensis) in these 33 complete Angelica cp genomes. After removing the duplicated genes in IR regions, the 33 Angelica cp genomes harbored 113 to 114 different genes, including 80 protein-coding and 4 rRNA genes shared by all cp genomes (Table 1).
genomes contained 29 tRNA genes, seven cp genomes contained one more tRNA gene (trnG-UCC or trnG-GCC) (Additional file 1: Table S1). The organization, gene order and GC content of cp genomes in Angelica were highly identical and similar to those of other higher plants (Fig. 1).

The number of simple sequence repeats (SSRs) ranged from 68 (A. nitida) to 87 (A. polymorpha) among the 33 Angelica cp genomes (Fig. 2a). Most of the SSRs were mono-nucleotide repeats (58%), while di-nucleotide, tri-nucleotide, tetra-nucleotide, penta-nucleotide and hex-nucleotide SSRs made up 24, 4, 11, 2 and 1% of all SSRs, respectively (Fig. 2b). The mono-nucleotide repeat number with the highest variability, ranged from 38 (A. nitida) to 54 (A. morii), while the number of other repeat types did not significantly differ among the 33 Angelica cp genomes (Additional file 2: Table S2, Fig. 2c).

Expansion and contraction of the IR region
Although cp genomes are highly conserved in genomic structure and size, the change in the size of the IR/SC junction caused by the expansion and contraction of the IR/SC boundary regions has been considered a primary mechanism for creating length variation in cp genomes of higher plants [26, 36–38]. Extensive expansion and contraction of the IR region were observed among the 33 Angelica cp genomes examined in this study and could be classified into five different types based on the characteristics in the IR/SC junction region and with/without inversion. The IR region of A. morii expanded and contained a duplicate copy of the ycf2 gene (Type I); in most (25/33) Angelica cp genomes, the junction site of IR/SSC was located in the ycf1 gene, and the junction site of IR/LSC was located between genes of trnL and trnH (Type II) (Fig. 3). An inversion of approximately

ID	Species	Raw reads no.	Mapped reads No.	Chloroplast genome coverage (x)
DG001	A. morii	11,122,925	522,264	546
DG002	A. tianmuensis	22,518,619	1,673,010	1445
DG003	A. cartilaginomarginata var. foliata	14,742,849	195,610	204
DG004	A. biserrata	19,320,868	129,002	136
DG005	A. polymorpha	13,445,469	258,026	290
DG006	A. megaphylla	9,985,839	133,105	141
DG007	A. valida	9,519,329	52,277	59
DG008	A. decursiva	14,307,154	419,462	430
DG009	A. kagalingensis	14,576,047	176,603	199
DG010	A. apaensis	11,056,070	964,507	1096
DG011	A. moowemensis	12,236,395	186,811	211
DG012	A. pseudoselinum	11,687,001	624,354	706
DG013	A. laxifolia	11,817,482	216,804	245
DG014	A. omeiensis	18,910,215	1,243,559	1134
DG015	A. tsinlingensis	14,571,967	62,281	70
DG016	A. dahurica var. formosana	11,086,333	55,945	62
DG017	A. dahurica cv. ‘Qibaizhi’	10,575,208	500,975	569
DG018	A. porphyrocaulis	8,616,334	300,612	345
DG019	A. dahurica cv. ‘Qibaizhi’	9,073,284	231,034	266
DG020	A. nitida	9,991,134	70,752	80
DG023	A. cartilaginomarginata	14,135,856	145,751	163
DG025	A. anomala	10,508,302	277,618	313
DG026	A. dahurica cv. ‘Hangbaizhi’	12,266,363	296,498	336
DG027	A. dahurica cv. ‘Hangbaizhi’	9,171,688	990,934	1132
DG028	A. sinensis	9,212,560	929,902	947
DG029	A. sinensis	10,265,910	1,084,379	1188
HG021	A. dahurica	17,918,362	359,326	407
HG022	A. gigas	14,989,366	86,751	96

Table 1 Statistics of NGS sequencing of 28 Angelica samples
490 bp in the trnY-trnD-trnE gene was observed in the cp genome of *A. gigas* (Type III) and in *A. moii* (Fig. 4). Significant contraction of the IR region was detected in *A. sinensis* (10,706 bp) and ended with the rrn16 gene in the IR region (Type IV); the largest expansion of the IR region was observed in *A. tsinlingensis* and ended with the petB gene in the IR region (Type V) (Fig. 3).

Phylogenetic analysis

The ML and Bayesian trees yielded highly similar topologies. Members of *Angelica* fell primarily into two major lineages: (1) the *Angelica* group occurring in tribe Selineae (BS = 100, PP = 1), and (2) the *Sinodielsia* clade (BS = 100, PP = 1) (Fig. 5). The names of major clades determined by previous studies are followed [1, 39–41]. The *Angelica* group made up most of the *Angelica* accessions (30/33), and 26 *Angelica* accessions formed the well-supported *Angelica* s.s. clade (BS = 99, PP = 1) which also included *Glehnia littoralis* and *Ostericum grosseserratum* (Fig. 5). Within the *Angelica* s.s. clade, four major lineages were recovered (*A. kangdingensis* to *A. valida*, *A. apaensis* to *A. megaphylla*, *A. anomala* to *A. cartilaginomarginata*, and *A. biserrata* to *Ost. grosseserratum*). The support value of the placement of clade *A. anomala* to *A. dahurica* var. *formosana* was relatively low (BS = 58, PP = 0.77). The littoral *Angelica* species *A. morii*, which inhabits the East Asian littoral regions or islands, and *A. tsinlingensis*, which is clearly different from members of the *Angelica* s.s. clade by its thin-winged dorsal ribs and triple vittae in the furrow [1], were placed outside of the *Angelica* s.s. clade based on the molecular findings (Fig. 5). *A. acutiloba* is also isolated from the *Angelica* s.s. clade and occupies an early diverging branch of the *Angelica* group (Fig. 5). The *Sinodielsia* clade consisted of *A. omeiensis*, *A. sinensis* and *Ligusticum tenuissimum*. Most clades in the *Angelica* group received high BS/PP support with the exception of the clade that included *A. anomala* to *A. dahurica* var. *formosana* (BS = 58, PP = 0.77) (Fig. 5). Most accessions of *A. dahurica* (*A. dahurica*, *A. dahurica* cv. *hangbaizhi* and *A. dahurica* cv. *xingan*) were placed in a well-supported clade that also included *A. porphyrocaulis*, with the exception of *A. dahurica* var.
formosana, which was placed in a relatively distant clade that included A. anomala to A. tianmuensis and Ostericum grosseserratum (Fig. 5). Clades of non-Angelica species were generally consistent with those inferred by previous studies [1, 6, 40, 42, 43].

Discussion
Expansion and contraction of the IR region in Angelica Plastomes
In this study, we sequenced 28 chloroplast genomes of Angelica using the Illumina HiSeq-4000 platform and
performed comparative analyses of these genomes with five other published chloroplast genomes of the same genus available from GenBank. The chloroplast genomes of Angelica had a typical quadripartite structure of higher plants, were conserved in gene order and content and consisted of 113 to 114 different genes. The cp genomes among Angelica species were similar in GC content, but the GC contents in LSC and SSC regions were significantly lower than those in the IR region because of the inclusion of eight rRNA genes with high GC contents in the IR region. The IR region is considered the most conserved region of the chloroplast genome [44].

The primary causes of differences in the lengths of chloroplast genomes are considered to be the expansion and contraction in IR, LSC, and SSC regions, which are relative common during evolution [45].

Fig. 2 Comparison of simple sequence repeats among 33 Angelica chloroplast genomes. a Number of SSRs detected in 33 Angelica chloroplast genomes; b Frequencies of identified SSRs in different repeat types; c Number of SSRs in different repeat types in 33 Angelica chloroplast genomes.
The lengths of cp genomes varied between 140,670 base pairs (A. sinensis) to 163,618 base pairs (A. tsinlingensis). Shrinkage, expansion, or loss of the IR region has been proposed to be one of the main reasons explaining the change in the size of cp genomes [46]. Large-scale expansion and contraction of the IR region were reported in Apiaceae; indeed the frequency and large size of JLB shifts documented in Apioidae cp genomes are unprecedented among the angiosperms [47]. In our study, extensive expansion and contraction of the IR region were detected in the Angelica species, with five types of changes in the IR and boundary between IR and SSC or LSC of the chloroplast genomes discovered (Fig. 3). Most Angelica species (25/33) had Type II cp genomes with the junction site of IR/SSC located in the ycf1 gene and the junction site of IR/LSC located between the genes trnL and trnH and were significantly clustered in the Angelica s.s. group, with the exception of A. omeiensis, which was grouped in the Sinodielsia clade. The expansion of the IR region results in the

![Fig. 3 Comparison of the borders of LSC, SSC, and IR regions of chloroplast genomes in six Angelica species](image)

![Fig. 4 MAUVE alignment of chloroplast genomes in six Angelica species. The chloroplast genome of Tiedemannia filiformis subsp. greenmannii is shown at the top as the reference genome. Within each of the alignments, local collinear blocks are represented by blocks of the same color connected by lines](image)
inclusion of extra genes in this region; for example, expansion of this region in the littoral species *A. morii* resulted in the inclusion of a duplicated copy of the *ycf2* gene (Type I). The largest expansion of the IR region was observed in the cp genome of *A. tsinlingensis* (34,706 bp) and ended with the *petB* gene in the IR region. A significant contraction of the IR region was observed in *A. sinensis* (10,704 bp). The patterns of variation observed were generally consistent with the groups of *Angelica* species recovered in the phylogenetic analyses, reflecting the high diversification of species and cp genomes in this controversial genus (Fig. 5).

Phylogenetics of the genus *Angelica*

With the use of the whole cp genome sequence from 33 *Angelica* species and another 31 representative species of Apioideae, a highly consistent topology was recovered by ML and Bayesian analyses (Fig. 5). The allocation of the main clades of Apioideae (e.g., Oenantheae, Scandiceae, Apieae, Tordylieae, and Selineae) were consistent with those inferred by previous studies [18, 40, 42, 43]. Species of *Angelica* were not grouped in a monophyletic clade but distributed in four clades, with most *Angelica* species grouped in a well-supported clade (the *Angelica* group), supporting the phylogenetic topologies of previous studies [1, 41]. This group also consisted of species from the genus *Glehnia* (*Gle. littoralis*), *Ostericum* (*Ost. grosseserratum*) and *Pimpinella* (*Pim. rhomboidei* var. *tenuiloba*).

The *Angelica* s.s. clade in Liao et al. (2013) primarily contained East Asian *Angelica* species and species from *Ostericum* (*Ost. Koreanum*, *Ost. huangdongensis*) and *Czemaevia* (*Cze. Laevigata* var. *larvigata*) but excluded species from *Glehnia* (*Gle. littoralis* var. *littoralis*, *Gle. var. leiocarpa*). Based on whole cp genome data, *Gle. littoralis* was grouped within the *Angelica* s.s. clade with relatively high support (BS = 86, PP = 1). *A. anomala* was previously grouped with *Ostericum grosseserratum* and species from *Peucedanum* within the *Acronema* clade [6, 43] based on nrITS sequences but was then placed into the *Angelica* s.s clade when both nrITS, nrETS, cpDNA and morphological characters were used [1]. In the study, *A. anomala* was grouped with *A. cartilaginomarginata*, *A. cartilaginomarginata* var. *f oliata*, and *A. polymorpha* in a clade within the *Angelica* s.s clade. The allocation of *A. morii* and *A. tsinlingensis* within the *Angelica* group but outside the *Angelica* s.s. clade was also consistent with previous studies and was supported
by studies of morphological characters (e.g., dorsal ribs and triple vittae in each furrow) [1]. Because of its unusual fruit characteristics, the taxonomic position of *A. acutiloba* has been controversial for many years. *A. acutiloba* was previously placed within the *Angelica* s.s. clade based on nrDNA ITS sequences [6] and was then placed outside the *Angelica* s.s. clade with data from nrDNA, cpDNA, and morphological characters [1]. In our study, *A. acutiloba* was also isolated from the *Angelica* s.s. clade and occupies an early diverging branch of the *Angelica* group. *A. ameiensis* was previously grouped with *A. apaensis* and *A. nitida* in a clade within the *Angelica* s.s. clade based on nrDNA ITS and cpDNA sequences [1, 6] but was grouped with *A. sinensis* and *Ligusticum tenuissimum* in the *Sinodielsia* clade with high support (BS = 100, PP = 1) by whole cp genome data from this study.

This study reports the results of a comparative analysis of 33 *Angelica* cp genomes and found extensive expansion and contraction in the IR region among species of *Angelica*. The changes in cp genomes can be classified into five types that are consistent with the general phylogenetic placement of these *Angelica* species. The relationships of *Angelica* species examined here are very clear, and the lineages within the *Angelica* group were classified with a better resolution compared with previous studies. We suggest that the results of our study facilitate our understanding of the evolutionary history of *Angelica* species; nevertheless, more extensive cp genome sampling (e.g., *A. roseana, A. ampla, A. hirsutiflora,* and *A. oncosepala*) may be necessary to further characterize the relationships between *Angelica* species. These findings also provide an informative and valuable genetic source for *Angelica* germplasm resources to aid species identification and future taxonomic reconstructions of *Angelica*.

Conclusions

Our analyses not only reveal extensive expansion and contraction of the IR region among cp genomes of *Angelica* species, but also show the power of plastome for resolving relationships in currently less-resolved and controversial groups. The variation patterns of IR region can be classified into five different types and are generally consistent with the groups of *Angelica* species in phylogenetic analyses. The relationships of *Angelica* species investigated here are mainly clearly classified and the lineages within the *Angelica* group are classified with a better resolution than previous studies, which we believe will facilitate the understanding of the evolutionary history of *Angelica* species, yet more extensive cp genome sampling may be necessary to further illustrate the relationships of species in *Angelica*.

Methods

Taxon sampling

We sampled 24 species (including two varieties and two cultivars) of *Angelica* located in 14 provinces, representing approximately 85% species and covering most of the distribution of *Angelica* in China (http://freps.eflora.cn/). Details of sampling information of the 28 samples collected in this study were shown in Supporting information Additional file 3: Table S3. All the samples were identified by Nian-He Wang (Institute of Botany, Jiangsu Province and Chinese Academy of Sciences) based on the morphological characters and the species were preserved in the herbarium of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences. Permission was not necessary for collecting these samples, which have not been included in the list of national key protected plants. The fresh leaves from each accession were immediately dried with silica gel for further DNA extraction.

Plant material and DNA extraction

The Plant Genomic DNA Kit (DP305) from Tiangen Biotech (Beijing) Co., Ltd., China was used to extract total genomic DNA from each sample. Both a NanoDrop spectrophotometer (ND-1000; Thermo Fisher Scientific, USA) and a Qubit 2.0 fluorometer (Invitrogen, Life Technologies) were used to assess the quality and quantity of DNA.

Illumina sequencing

A Covaris S2 was used to fragment total genomic DNA (30–150 ng) to a mean fragment size of 550 bp. The TruSeq DNA Nano Library Prep kit (Illumina) was used for DNA libraries preparation per the manufacturer’s instructions. Libraries were quantified using a KAPA Illumina Library Quantification Kit (KAPA Biosystems) by quantitative polymerase chain reaction, and the pooled libraries were sequenced (2 × 150 bp) using the Illumina HiSeq 4000 platform (Illumina, San Diego, CA).

Chloroplast genome assembly and annotation

The raw sequencing reads were qualitatively assessed and assembled using the GetOrganelle version 1.6.4 [48] with default settings. Manual revision was performed to confirm the ambiguous nucleotides or gaps and the four junction regions between the IRs and SSC/LSC in the chloroplast genome sequences. The annotation of chloroplast genomes was performed using the GeSeq version 1.79 [49]. The annotation results were further manually checked using Geneious version 8.0.2 (http://www.Geneious.com) to avoid potential annotation errors. The gene maps of chloroplast genomes were plotted with OGDRAW version 1.3.1 [50].
Simple sequence repeat analysis
The simple sequence repeat (SSRs or microsatellites) loci in the cp genomes were searched using the Perl script MISA version 2.0 [51]. The minimum numbers (thresholds) of the SSRs for mono-, di-, tri-, tetra-n pentan-, and hexanucleotides, were 10, 5, 4, 3, 3, and 3 respectively. Manual verifications of the repeats were performed with abundant results removed.

Comparative analysis of cp genomes
The statistics of genome size, GC content, LSC/SSC/IR size and number of genes were summarized using in-house python scripts. Comparative analysis of cp genome structure and gene content was performed using Mauve version 2015-02-13 [52] to locate potential rearrangements (e.g., inversion) and changes in gene order using the cp genome of Tiedemanniia filiformis subsp. Greenmannii (GenBank accession: HM596071). The junction sites of LSC-IRa/b and SSC-IRa/b were checked by visualization using IRscope [53].

Phylogenetic analysis
Phylogenetic analysis was conducted using all 33 Angelica cp genomes together with 31 species from major lineages of the subfamily Apoideae (Additional file 4: Table S4). The best-fit substitution models were selected using the PartitionFinder 2 version 2.1.1 [54] for Maximum likelihood (ML) and Bayesian inference (BI). The ML analyses were performed using RAxML-NG version 0.9.0 [55] with the general time-reversible (GTR) + G model, and node support was assessed with 2000 bootstrap replicates. The BI analyses were performed with MrBayes version 3.2.7a [56]. Two chains of 5,000,000 generations were performed for the Markov chain Monte Carlo (MCMC) analysis with trees sampled every 1000 generations. The first 25% of the sampled trees were discarded as burn-in and the remaining trees were used to build a 50% majority-rule consensus tree. Stationarity was considered achieved when the average standard deviation of split frequencies remained below 0.001.

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/s12870-020-02801-w.

Additional file 1: Table S1. Gene content in 64 Apiaceae chloroplast genomes.
Additional file 2: Table S2. Number of SSR loci detected in 64 Apiaceae samples.
Additional file 3: Table S3. Sampling information of 24 species (including two varieties and two cultivars) of Angelica.
Additional file 4: Table S4. Comparison of the chloroplast genome features of 31 Apiaceae species.

Abbreviations
BI: Bayesian Inference; GTR: General time reversible; IR: Inverted repeat; ITS: Internal transcribed spacer of ribosomal DNA; LSC: Large single copy; ML: Maximum Likelihood; rRNA: Ribosomal RNA; SSC: Small single copy; tRNA: Transfer RNA

Acknowledgements
Not applicable.

Authors’ contributions
LH, QY and WD conceived and designed the study. WD performed de novo assembly, genome annotation, phylogenetic and other analyses. QY, JW, ML and YG collected the leaf materials. ML, JS, XW and YW performed the experiments. QY, WD, and JS drafted the manuscript. The authors read and approved the final manuscript.

Funding
This study was funded by the National Key Research and Development Program of China (2017YFC1703700; 2017YFC1703704), the National Natural Science Foundation of China (NSFC: 81891010 and 81891014), Key Project at Central Government Level: The Ability Establishment of Sustainable Use for Valuable Chinese Medicine Resources (2060302) to Q-JY and L-QH. The funding agencies had no role in the design of the experiment, analysis, and interpretation of data and in writing the manuscript.

Availability of data and materials
All sequences used in this study are available from the National Center for Biotechnology Information (NCBI) (see Additional file 3: Table S3 and Additional file 4: Table S4). All raw reads are available in the short sequence archive under accession no. PRJNA684804.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China. 2Shenyang Medical College, Shenyang 110034, China. 3Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China.

Received: 2 September 2020 Accepted: 16 December 2020
Published online: 07 January 2021

References
1. Liao C, Downie SR, Li Q, Yu Y, He X, Zhou B. New insights into the phylogeny of Angelica and its allies (Apiaceae) with emphasis on east Asian species, inferred from nrdNA, cpDNA, and morphological evidence. Syst Bot. 2013;38(1):266–81.
2. Vasil’eva MG, Pimenov MG. Karyotaxonomical analysis in the genus Angelica (Umbelliferae). Plant Syst Evol. 1991;177(3):117–38.
3. Meng-lan S, Fa-ting P, Zehui P, Watson MF, Cannon JFM, Holmes-Smith I, et al. In: Wu ZY, Raven PH, editors. Apiaceae. Pp. 1–205 in Flora of China, vol. 14. St. Louis: Missouri Botanical Garden Press and Beijing: Science Press; 2005.
4. Wen J. Evolution of eastern Asian and eastern north American Disjunct distributions in flowering plants. Annu Rev Ecol Syst. 1999;30(1):421–55.
5. Liu CY, Downie SR, Yu Y, He XJ. Historical biogeography of the Angelica group (Apiaceae tribe Selineae) inferred from analyses of nrdNA and cpDNA sequences. J Syst Evol. 2012;50(3):205–17.
6. Feng T, Downie S, Yu Y, Zhang X, Chen W, He X-J, et al. Molecular systematics of Angelica and allied genera (Apiaceae) from the Hengdian Mountains of China based on nrdNA ITS sequences: phylogenetic affinities and biogeographic implications. J Plant Res. 2009;122:403–14.
7. Yuan QJ, Zhang B, Jiang D, Zhang WL, Lin TY, Wang NH, et al. Identification of species and materia medica within Angelica L(Umbelliferae) based on phylogeny inferred from DNA barcodes. Mol Ecol Resour. 2015;15(2):358–71.
8. Shan RH. In: Shan RH, Sheh ML, editors. Umbelliferae. Pp. 13–62 in Flora Reipublicae Popularis Sinicae, vol. 55(3). Beijing: Acad- mia Sinica; 1992.
9. Ze-Hui P, Xin-Tian L, Meng-Lan S, Lang-Ran X. A study on karyotypes of eight species and geographical distribution of Angelica (Umbelliferae) in Sichuan. Acta Phytoecologica Sinica. 1991;25(5):431–8.
10. Zhang QY, Xing-Jin HE, Zhang YC, Peng L, Ning WU. Study on karyotypes of six species in Angelica from Sichuan, China. Acta Bot Yunnanica. 2005;27(5):539–44.
11. Chen WW, He XJ, Zhang YM, Pu JX. Polen morphology of the genus Angelica from Southwest China and its systematic evolution analysis. Acta Botanica Boreali-Occidentalis Sin. 2007;27(3):1364–72.
12. Lan SM, Su P, Pan ZH. The comparative study of pollen morphology of Angelica L. between East Asia and North America. J Plant Res Envir. 1999;3(1):41–47.
13. Meng D. Pollen morphology of the genus Peucedanum from Sichuan and its systematic significance. Acta Bot Boreal Occident Sin. 2004;24(2):3241–45.
14. Zhang QY, Xing Jin HE, Zhang YC, Luo P, Ning WU. Anatomical studies on fruits and petals of 8 species of Angelica L from Sichuan Province. J Wuhan Botanical Res. 2005;23(6):549–54.
15. Chen X, Changyi Y. The generic position of Zihuqianhu and its comparative taxonomic studies with Korean Danguji. J Nanjing Univ. 1987; 24(3):23–31.
16. Shnayer S, Kutyavina NG, Pimenov MG. Systematic relationships within and between Peucedanum and Angelica (Umbelliferae–Peucedanaceae) inferred from environmental and nuclear rDNA sequences. Syst Evol Plant. 2003;4(3):3–4.
17. Katz-Downie DS, Vallejo-Roman CM, Terentieva EL, Troytov KY, Pimenov MG, Lee B, et al. Towards a molecular phylogeny of Apiaceae subfamily Apioidae: additional information from nuclear ribosomal DNA ITS sequences. Syst Evol Plant. 1999;2(3):47–95.
18. Downie S, Katz-Downie D. A molecular phylogeny of apiaceae subfamily apioidae: evidence from nuclear ribosomal DNA internal transcribed spacer sequences. Am J Bot. 1996;83(2):234–51.
19. Spakl K, Reduron JP, Downie SR. The phylogenetic position of Peucedanum sensu lato and allied genera and their placement in tribe Selineae (Apiaceae, subfamily Apioidae). Plant Syst Evol. 2004;243(3):189–210.
20. Xue HJ. Taxonomic study of Angelica from East Asia: Inferences from ITS sequences of nuclear ribosomal DNA. Acta Phytoecologica Sinica. 2007; 45(6):783–95.
21. Dong W, Liu J, Yu J, Wang L, Zhou S. Highly variable chloroplast markers for evaluating plant phylogeny at low taxonomic levels and for DNA barcoding. PLoS One. 2012;7(9):e33071.
22. Gurisam Y, Park SK. The complete chloroplast genome sequence of amelespolis: Gene Organization, comparative analysis, and phylogenetic relationships to other angiosperms. Front Plant Sci. 2016;7:341.
23. Wang HX, Liu H, Moore MJ, Landrein S, Liu B, Zhu Z-X, et al. Plastid phylogenetic insights into the evolution of the Caprifoliaceae. Syst Pal. 2013;42:12646–70.
24. Xu C, Dong W, Li W, Yu Y, Xie X, Xin X, et al. Comparative analysis of six Lagortemisia complete chloroplast genomes. Front Plant Sci. 2017;8:15.
25. Dong W, Chao X, Tao C, Lin K, Zhou S. Sequencing angiosperm plastid genomes made easy: a complete set of universal primers and a case study on the phylogeny of Saxifragales. Genome Biol Evol. 2013;5:5.
26. Dong W, Xu C, Li D, Jin X, Li R, Lu Q, et al. Comparative analysis of the complete chloroplast genome sequences in psammophytic Haloxylon species (Amaranthaceae). PeerJ. 2016e2669.
27. Ruhman T, Lee S-B, Jansen RK, Hostetler JB, Tallon LJ, Town CD, et al. Complete plastid genome sequence of Daucus carota: implications for biotechnology and phylogenetic of angiosperms. BMC Genomics. 2006;7(1):222.
28. Huang DS, Hefer CA, Kolosova N, Douglas CJ, Cronk QCB. Whole plastome phylogeny of the carrot genus (Daucus, Apiaceae); concordance with nuclear data and mitochondrial and nuclear DNA insertions to the plastid. Am J Bot. 2017;104(2):296–312.
29. Wang H, Liu H, Moore M, Landrein S, Liu B, Zhu Z, et al. Plastid phylogenetic insights into the evolution of the Caprifoliaceae s.l. (Dipsacaceae). Mol Phylogenet Evol. 2019;124:106641.
56. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61(3):539–42.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.