Decreasing market value of variable renewables can be avoided by policy action

Tom Brown (TU Berlin) & Lina Reichenberg (Chalmers University)
39th International Energy Workshop, 16th June 2021
Traditional ‘primal’ view of market value of wind and solar

Prices are **depressed** by zero-marginal-cost wind and solar, which ‘**eat their own revenue**’.
Traditional ‘primal’ view of market value of wind and solar

Market value, i.e. average price generator gets for feed-in, **declines with penetration.**

Source: Mills & Wiser (2014), Hirth (2013)
What the literature says about market value of wind and solar

- “Market value of wind and solar always declines with penetration - VRE eat own revenue.”
- “Variability is the fundamental cause of market value decline.”
- “Declining market value implies wind and solar become uneconomical at high shares.”
- “Market integration of large shares of variable renewables is impossible.”
- “New low-carbon technologies will be necessary at high penetrations.”

Source: Diverse energy economics literature.
What the literature says about market value of wind and solar

- “Market value of wind and solar always declines with penetration - VRE eat own revenue.”
- “Variability is the fundamental cause of market value decline.”
- “Declining market value implies wind and solar become uneconomical at high shares.”
- “Market integration of large shares of variable renewables is impossible.”
- “New low-carbon technologies will be necessary at high penetrations.”

We show that from a dual perspective, each of these statements is wrong.
Market value decline depends on market structure

Implicit assumption in literature: VRE are forced in with subsidies or quotas, pushing MV down. However, if VRE are drawn in with CO$_2$ pricing, MV does not decline.

Source: Brown & Reichenberg (2021)
This holds even up to 100% wind and solar...

...provided there is **flexibility** from long- and short-term storage and/or transmission expansion.

Source: Brown & Reichenberg (2021)
Example from primal perspective: solar support versus CO₂ pricing

Source: Brown & Reichenberg (2021)
Market value in a perfect equilibrium: zero profit

In a long-term equilibrium, capacities of generators G_s maximise economic welfare:

$$
\max_{d_{a,t}, g_{s,t}, G_s} \left[\sum_{a,t} U_{a,t}(d_{a,t}) - \sum_s c_s G_s - \sum_{s,t} o_s g_{s,t} \right]
$$

where the demands $d_{a,t}$ are met in every hour t by the generation dispatch $g_{s,t}$:

$$
\sum_a d_{a,t} - \sum_s g_{s,t} = 0 \perp \lambda_t
$$

Every generator s makes backs its long-run costs, the zero-profit rule (Boiteaux, 1949).

\Rightarrow Per MWh, levelised cost of electricity (LCOE) and market value (MV) are identical:

$$
LCOE_s \equiv \frac{c_s G_s + \sum_t o_s g_{s,t}}{\sum_t g_{s,t}} = \frac{\sum_t \lambda_t g_{s,t}}{\sum_t g_{s,t}} \equiv MV_s
$$
Market value decline: ‘dual’ mechanism with support policy

Altering the equilibrium requires policy. Forcing in a share of generators \(s \in S \) depresses their market value by the constraint's shadow price \(\mu_S \), a Feed-in Premium (FiP) for \(s \in S \):

\[
\sum_{s \in S} g_{s,t} \geq \Gamma \perp \mu_S \Rightarrow MV_s = LCOE_s - \mu_S
\]

From dual perspective, forcing in generators and sinking market value are two sides of same coin.

Cannot have one without the other.

This statement is technology-neutral, no (direct) relation to variability.

Source: Brown & Reichenberg (2021)
Market value decline: demonstration with support policy

In a stylised power model, this behaviour can be reproduced for Feed-in Premium (FiP) μ_S:

$$\sum_{s \in S} g_{s,t} \geq \Gamma \perp \mu_S \Rightarrow MV_s = LCOE_s - \mu_S$$

Model detail:

- Model adapted from *Hirth (2013)*
- Germany + neighbouring countries
- Electricity only
- Wind, solar, fossil gas, coal, lignite
- Long-term equilibrium
- Energy-only model
- Hourly for representative year

Source: *Brown & Reichenberg (2021)*
Market value decline: primal versus dual perspective

Primal perspective:
- Market value declines because zero-marginal-cost VRE pushes out other generators
- Variability is the fundamental cause
- Only affects wind and solar generators

Dual perspective:
- Market value declines because share of generation is forced beyond equilibrium
- Policy is the fundamental cause
- Affects all generators which are forced beyond equilibrium
Market value decline: primal versus dual perspective

Primal perspective:

- Market value declines because zero-marginal-cost VRE pushes out other generators
- Variability is the fundamental cause
- Only affects wind and solar generators

Dual perspective:

- Market value declines because share of generation is forced beyond equilibrium
- Policy is the fundamental cause
- Affects all generators which are forced beyond equilibrium

Perspectives and framing have consequences!
Market value penetration with CO₂ pricing

If we draw in VRE by constraining CO₂ emissions, then only the market values of fossil generators with specific emissions \(e_s\) are affected by the **carbon shadow price** \(\mu_C\):

\[
\sum_{s,t} e_s g_{s,t} \leq K \quad \parallel \quad \mu_C \quad \Rightarrow \quad MV_s = LCOE_s + e_s \mu_C
\]

Source: Brown & Reichenberg (2021)
With VRE as the only low-C generators, system costs **barely differ** between policies.

⇒ MV collapse under support policy does not necessarily indicate system is pathological.

Source: Brown & Reichenberg (2021)
Role of flexibility

Flexibility only **delays** market value decline for support policies.

For CO\(_2\) policies it **stabilises** LCOE = MV above penetrations of 70%.

Flexibility added here:

- short-term storage (batteries)
- long-term storage (hydrogen)
- transmission expansion

Source: Brown & Reichenberg (2021)
Support policy for nuclear shows similar results

Nuclear revenue is also suppressed under a support policy, declining to zero at high penetrations because of the variable demand. A CO$_2$ price avoids this behaviour.

\[\Rightarrow\] Nothing specific to VRE about MV suppression.

\[\Rightarrow\] Policy is responsible for MV decline, variability only affects the speed.

Source: Brown & Reichenberg (2021)
In breakdown of system costs, hydrogen storage balances the system at high penetrations.
Price duration curves under a CO\(_2\) policy

CO\(_2\) price raises prices when fossil generators on margin, but also storage bids high opportunity costs when discharging, while charging bids reduce hours when prices are zero.

⇒ Market does not degenerate into bifurcation of prices between zero and very high.

Source: Brown & Reichenberg (2021)
The distribution of hours when VRE earns its money barely changes as CO$_2$ emission reduce.

\Rightarrow VRE does not become dependent on only a small number of hours to make money.
What we say about market value of wind and solar

- “Market value of wind and solar always declines with penetration - VRE eat own revenue.”
 - **No**, if drawn in with a CO\(_2\) price, market value does not decline.

- “Variability is the fundamental cause of market value decline.”
 - **No**, policy is the fundamental cause (no policy, no decline), but variability affects speed.

- “Declining market value implies wind and solar become uneconomical at high shares.”
 - **Not necessarily**: market value can decline even when system cost is close to optimal.

- “Market integration of large shares of variable renewables is impossible.”
 - **No**, wind and solar can be integrated into markets with sufficient flexibility.

- “New low-carbon technologies will be necessary at high penetrations.”
 - **Not necessarily**, but they may help to reduce system costs.
Conclusions

- From a **dual perspective**, market value decline is **guaranteed** if generators pushed in with subsidy/quotas

- Can construct reasonable market designs with CO₂ pricing that show **no market value decline** as the penetration for wind and solar rises (even up to 100%)

- To preserve market value of wind and solar, choose to **value their low emissions**

- In markets that rely on subsidies alone, market value decline **does not necessarily indicate problems** (i.e. can still be close to system optimum for CO₂ reduction)

- Can **combine** CO₂ pricing with support to maintain market value & reduce investor risk

- Given its policy-dependence, **use market value with caution** (like LCOE) & **focus on system cost** instead

Further reading: Brown & Reichenberg, “Decreasing market value of variable renewables can be avoided by policy action,” Energy Economics (2021), [doi:10.1016/j.eneco.2021.105354](https://doi.org/10.1016/j.eneco.2021.105354).
Before 2016 market value declines with rising subsidies; after 2016 it rises as CO₂ prices rise.

Source: Brown & Reichenberg (2021)
System cost as a function of CO$_2$ emissions

Without flexibility:

![Graph showing system cost as a function of CO$_2$ emissions]

- VRE support policy
- CO$_2$ policy

Source: Brown & Reichenberg (2021)
Relative market value (RMV) / value factor

With and without flexibility:

Source: Brown & Reichenberg (2021)
Pan-European model with heating and transport behaves similarly

Relative market value (market value divided by average market price) in PyPSA-Eur-Sec:

Source: Brown et al, 2019
Quantity	Unit	EMMA	PyPSA
lignite cost	€/kW	2200	2200
lignite fuel cost	€/MWh_{th}	3	3
lignite+CCS cost	€/kW	3500	n/a
lignite+CCS fuel cost	€/MWh_{th}	3	n/a
coal cost	€/kW	1500	1500
coal fuel cost	€/MWh_{th}	11.5	11.5
CCGT cost	€/kW	1000	1000
CCGT fuel cost	€/MWh_{th}	25	25
OCGT cost	€/kW	600	600
OCGT fuel cost	€/MWh_{th}	50	50
load shedding cost	€/MWh_{el}	1000	1000

Table 1: Comparison of technology assumptions in the different models.

Source: Brown et al, 2019
Cost assumptions 2/2

Quantity	Unit	EMMA	PyPSA
wind cost	€/kW	1300	1040
solar cost	€/kW	2000	510
nuclear cost	€/kW	4000	6000
nuclear fuel cost	€/MWh$_{th}$	3	3
battery inverter	€/kW	n/a	333
battery storage	€/kWh	n/a	167
H$_2$ electrolysis	€/kW$_{el}$	n/a	750
H$_2$ electrolysis efficiency	%	n/a	80
H$_2$ turbine	€/kW$_{el}$	n/a	800
H$_2$ storage	€/kWh	n/a	0.5
transmission expansion	€/(MWkm)	n/a	400

Table 2: Comparison of technology assumptions in the different models.

Source: *Brown et al, 2019*
Copyright

Unless otherwise stated, the graphics and text are Copyright © Tom Brown, 2021.
The graphics and text for which no other attribution are given are licensed under a Creative Commons Attribution 4.0 International Licence.

cc