η-Ricci Solitons on 3-dimensional Trans-Sasakian Manifolds

Sampa Pahan

Department of Mathematics, Mrinalini Datta Mahavidyapith
Kolkata-700051, India.
sampapahan25@gmail.com

ABSTRACT

In this paper, we study η-Ricci solitons on 3-dimensional trans-Sasakian manifolds. Firstly we give conditions for the existence of these geometric structures and then observe that they provide examples of η-Einstein manifolds. In the case of φ-Ricci symmetric trans-Sasakian manifolds, the η-Ricci soliton condition turns them to Einstein manifolds. Afterward, we study the implications in this geometric context of the important tensorial conditions \(R \cdot S = 0 \), \(S \cdot R = 0 \), \(W_2 \cdot S = 0 \) and \(S \cdot W_2 = 0 \).

RESUMEN

En este artículo estudiamos solitones η-Ricci en variedades trans-Sasakianas tridimensionales. En primer lugar damos condiciones para la existencia de estas estructuras geométricas y luego observamos que ellas dan ejemplos de variedades η-Einstein. En el caso de variedades trans-Sasakianas φ-Ricci simétricas, la condición de solitón η-Ricci las convierte en variedades Einstein. A continuación estudiamos las implicancias en este contexto geométrico de las importantes condiciones tensoriales \(R \cdot S = 0 \), \(S \cdot R = 0 \), \(W_2 \cdot S = 0 \) y \(S \cdot W_2 = 0 \).

Keywords and Phrases: Trans-Sasakian manifold, η-Ricci solitons.

2010 AMS Mathematics Subject Classification: 53C21, 53C25, 53C44.
1 Introduction

In 1982, the notion of the Ricci flow was introduced by Hamilton [10] to find a canonical metric on a smooth manifold. The Ricci flow is an evolution equation for Riemannian metric $g(t)$ on a smooth manifold M given by

$$\frac{\partial}{\partial t} g(t) = -2S.$$

A solution to this equation (or a Ricci flow) is a one-parameter family of metrics $g(t)$, parameterized by t in a non-degenerate interval I, on a smooth manifold M satisfying the Ricci flow equation. If I has an initial point t_0, then $(M, g(t_0))$ is called the initial condition of or the initial metric for the Ricci flow (or of the solution) [14].

Ricci solitons and η-Ricci solitons are natural generalizations of Einstein metrics. A Ricci soliton on a Riemannian manifold (M, g) is defined by

$$S + \frac{1}{2} L_X g = \lambda g$$

where $L_X g$ is the Lie derivative along the vector field X, S is the Ricci tensor of the metric and λ is a real constant. If $X = \nabla f$ for some function f on M, the Ricci soliton becomes gradient Ricci soliton. Ricci solitons appear as self-similar solutions to Hamilton’s Ricci flow and often arise as limits of dilations of singularities in the Ricci flow [11]. A soliton is called shrinking, steady and expanding according as $\lambda > 0$, $\lambda = 0$ and $\lambda < 0$ respectively.

In 2009, the notion of η-Ricci soliton was introduced by J.C. Cho and M. Kimura [6]. J.C. Cho and M. Kimura proved that a real hypersurface admitting an η-Ricci soliton in a non-flat complex space form is a Hopf-hypersurface [6]. An η-Ricci soliton on a Riemannian manifold (M, g) is defined by the following equation

$$2S + L_\xi g + 2\lambda g + 2\mu \eta \otimes \eta = 0, \quad (1.1)$$

where L_ξ is the Lie derivative operator along the vector field ξ, S is the Ricci tensor of the metric and λ, μ are real constants. If $\mu = 0$, then η-Ricci soliton becomes Ricci soliton.

In the last few years, many authors have worked on Ricci solitons and their generalizations in different Contact metric manifolds in [1], [7], [8], [9], [12] etc. In 2014, B. Y. Chen and S. Deshmukh have established the characterizations of compact shrinking trivial Ricci solitons in [5]. Also, in [2], A. Bhattacharyya, T. Dutta, and S. Pahan studied the torqued vector field and established some applications of torqued vector field on Ricci soliton and conformal Ricci soliton. A.M. Blaga [3], D. G. Prakasha and B. S. Hadimani [17] observed η-Ricci solitons on different contact metric manifolds satisfying some certain curvature conditions.
In this paper we study the existence of η-Ricci soliton on 3-dimensional trans-Sasakian manifold. Next we show that η-Ricci soliton on 3-dimensional trans-Sasakian manifolds becomes η-Einstein Manifold under some conditions. Next we prove that ϕ-Ricci symmetric trans-Sasakian manifold (M, g) manifold satisfying an η-Ricci soliton becomes an Einstein manifold. Next we give an example of an η-Ricci soliton on 3-dimensional trans-Sasakian manifold with $\lambda = -2$ and $\mu = 6$. Later we obtain some different types of curvature tensors and their properties under certain conditions.

2 Preliminaries

The product $\tilde{M} = M \times \mathbb{R}$ has a natural almost complex structure J with the product metric G being Hermitian metric. The geometry of the almost Hermitian manifold (\tilde{M}, J, G) gives the geometry of the almost contact metric manifold (M, ϕ, ξ, η, g). Sixteen different types of structures on M like Sasakian manifold, Kenmotsu manifold etc are given by the almost Hermitian manifold (\tilde{M}, J, G).

The notion of trans-Sasakian manifolds was introduced by Oubina [15] in 1985. Then J. C. Marrero [13] have studied the local structure of trans-Sasakian manifolds. In general a trans-Sasakian manifold $(M, \phi, \xi, \eta, g, \alpha, \beta)$ is called a trans-Sasakian manifold of type (α, β). An $n (= 2m + 1)$ dimensional Riemannian manifold (M, g) is called an almost contact manifold if there exists a $(1,1)$ tensor field ϕ, a vector field ξ, and a 1-form η on M such that

\begin{align}
\phi^2(X) &= -X + \eta(X)\xi, \quad (2.1) \\
\eta(\xi) &= 1, \eta(\phi X) = 0, \quad (2.2) \\
\phi \xi &= 0, \quad (2.3) \\
\eta(X) &= g(X, \xi), \quad (2.4) \\
g(\phi X, \phi Y) &= g(X, Y) - \eta(Y)\eta(X), \quad (2.5) \\
g(X, \phi Y) + g(Y, \phi X) &= 0, \quad (2.6)
\end{align}

for any vector fields X, Y on M. A 3-dimensional almost contact metric manifold M is called a trans-Sasakian manifold if it satisfies the following condition

\begin{align}
(\nabla_X \phi)(Y) &= \alpha(g(X, Y)\xi - \eta(Y)\xi) + \beta(g(\phi X, Y)\xi - \eta(Y)\phi X), \quad (2.7)
\end{align}

for some smooth functions α, β on M and we say that the trans-Sasakian structure is of type (α, β). For 3-dimensional trans-Sasakian manifold, from (2.7) we have,

\begin{align}
\nabla_X \xi &= -\alpha \phi X + \beta(X - \eta(X)\xi), \quad (2.8)
\end{align}
\[(\nabla_X \eta)(Y) = -\alpha g(\phi X, Y) + \beta g(\phi X, \phi Y).\] (2.9)

In a 3-dimensional trans-Sasakian manifold, we have

\[
R(X, Y)Z = \left[\frac{r}{2} - 2(\alpha^2 - \beta^2 - \xi \beta) \right] [g(Y, Z)X - g(X, Z)Y] \\
- \left[\frac{r}{2} - 3(\alpha^2 - \beta^2) + \xi \beta \right] [g(Y, Z)\eta(X) - g(X, Z)\eta(Y)] \xi \\
+ [g(Y, Z)\eta(X) - g(X, Z)\eta(Y)] [\phi \text{grad } \alpha - \text{grad } \beta] \\
- \left[\frac{r}{2} - 3(\alpha^2 - \beta^2) + \xi \beta \right] [\eta(Y)X - \eta(X)Y] \\
- [Z\beta + (\phi Z)\alpha] [\eta(Y)X - \eta(X)Y] \\
- [X\beta + (\phi X)\alpha] [g(Y, Z)\xi - \eta(Z)Y] \\
- [Y\beta + (\phi Y)\alpha] [g(X, Z)\xi - \eta(Z)X],
\]

\[
S(X, Y) = \left[\frac{r}{2} - (\alpha^2 - \beta^2 - \xi \beta) \right] g(X, Y) \\
- \left[\frac{r}{2} - 3(\alpha^2 - \beta^2) + \xi \beta \right] \eta(X) \eta(Y) \\
- [Y\beta + (\phi Y)\alpha] [\eta(Y)X - \eta(X)Y] \\
- [X\beta + (\phi X)\alpha] [\eta(Y)X - \eta(X)Y].
\]

When \(\alpha\) and \(\beta\) are constants the above equations reduce to,

\[
R(\xi, X)\xi = (\alpha^2 - \beta^2)(\eta(X)\xi - X),
\] (2.10)

\[
S(X, \xi) = 2(\alpha^2 - \beta^2)\eta(X),
\] (2.11)

\[
R(\xi, X)Y = (\alpha^2 - \beta^2)(g(X, Y)\xi - \eta(Y)X).
\] (2.12)

\[
R(X, Y)\xi = (\alpha^2 - \beta^2)(\eta(Y)X - \eta(X)Y).
\] (2.13)

Definition 2.1. A trans-Sasakian manifold \(M^3\) is said to be \(\eta\)-Einstein manifold if its Ricci tensor \(S\) is of the form

\[S(X, Y) = a g(X, Y) + b \eta(X) \eta(Y),\]

where \(a, b\) are smooth functions.
3 η-Ricci solitons on trans-Sasakian manifolds

To study the existence conditions of η-Ricci solitons on 3-dimensional trans-Sasakian manifolds, we prove the following theorem.

Theorem 3.1: Let $(M, g, \phi, \eta, \xi, \alpha, \beta)$ be a 3-dimensional trans-Sasakian manifold with α, β constants ($\beta \neq 0$). If the symmetric $(0, 2)$ tensor field h satisfying the condition $\beta h(X, Y) - \frac{\alpha}{2}[h(\phi X, Y) + h(X, \phi Y)] = \mathcal{L}_\xi g(X, Y) + 2S(X, Y) + 2\mu \eta(X)\eta(Y)$ is parallel with respect to the Levi-Civita connection associated to g. Then (g, ξ, μ) becomes an η-Ricci soliton.

Proof: We consider a symmetric $(0,2)$-tensor field h which is parallel with respect to the Levi-Civita connection ($\nabla h = 0$). Then it follows that

$$h(R(X,Y)Z, W) + h(R(X,Y)Z, W) = 0,$$

(3.1)

for an arbitrary vector field W, X, Y, Z on M. Put $X = Z = W = \xi$, we get

$$h(R(X,Y)\xi, \xi) = 0,$$

(3.2)

for any X, $Y \in \chi(M)$ By using the equation (2.13)

$$h(Y, \xi) = g(Y, \xi)h(\xi, \xi),$$

(3.3)

for any $Y \in \chi(M)$. Differentiating the equation (3.3) covariantly with respect to the vector field $X \in \chi(M)$ we have

$$h(\nabla_X Y, \xi) + h(Y, \nabla_X \xi) = g(\nabla_X Y, \xi)h(\xi, \xi) + g(Y, \nabla_X \xi)h(\xi, \xi),$$

(3.4)

Using the equation (2.8) we have

$$\beta h(X, Y) - \alpha h(\phi X, Y) = -\alpha g(\phi X, Y)h(\xi, \xi) + \beta h(\xi, \xi)g(X, Y).$$

(3.5)

Interchanging X by Y we have

$$\beta h(X, Y) - \alpha h(X, \phi Y) = -\alpha g(X, \phi Y)h(\xi, \xi) + \beta h(\xi, \xi)g(X, Y).$$

(3.6)

Then adding the above two equations we get

$$\beta h(X, Y) - \frac{\alpha}{2}[h(\phi X, Y) + h(X, \phi Y)] = \beta h(\xi, \xi)g(X, Y).$$

(3.7)

We see that $\beta h(X, Y) - \frac{\alpha}{2}[h(\phi X, Y) + h(X, \phi Y)]$ is a symmetric tensor of type $(0, 2)$. Since $\mathcal{L}_\xi g(X, Y)$, $S(X, Y)$, $\eta(X) = g(X, \xi)$ and $\eta(Y) = g(Y, \xi)$ are symmetric tensors of type $(0, 2)$ and λ, μ are real constants, the sum $\mathcal{L}_\xi g(X, Y) + 2S(X, Y) + 2\mu \eta(X)\eta(Y)$ is a symmetric tensor of type $(0, 2)$.

Therefore, we can take the sum as an another symmetric tensor field of type (0, 2). Hence for we can assume that \(\beta h(X, Y) - \frac{\alpha}{2}[h(\phi X, Y) + h(X, \phi Y)] = \mathcal{L}_\xi g(X, Y) + 2S(X, Y) + 2\mu \eta(X)\eta(Y) \).

Then we compute
\[
\beta h(\xi, \xi) g(X, Y) = \mathcal{L}_\xi g(X, Y) + 2\lambda g(X, Y) + 2\mu \eta(X)\eta(Y).
\]

As \(h \) is parallel so, \(h(\xi, \xi) \) is constant. Hence, we can write \(h(\xi, \xi) = -\frac{\lambda}{2} \) where \(\beta \) is constant and \(\beta \neq 0 \).

So, from the equation (3.7) we have
\[
\beta h(X, Y) - \frac{\alpha}{2}[h(\phi X, Y) + h(X, \phi Y)] = -2\lambda g(X, Y),
\]
for any \(X, Y \in \chi(M) \). Therefore \(\mathcal{L}_\xi g(X, Y) + 2S(X, Y) + 2\mu \eta(X)\eta(Y) = -2\lambda g(X, Y) \) and so \((g, \xi, \mu) \) becomes an \(\eta \)-Ricci soliton.

Corollary 3.2: Let \((M, g, \phi, \eta, \xi, \alpha, \beta) \) be a 3-dimensional trans-Sasakian manifold with \(\alpha, \beta \) constants \((\beta \neq 0) \). If the symmetric (0, 2) tensor field \(h \) admitting the condition \(\beta h(X, Y) - \frac{\alpha}{2}[h(\phi X, Y) + h(X, \phi Y)] = \mathcal{L}_\xi g(X, Y) + 2S(X, Y) \) is parallel with respect to the Levi-Civita connection associated to \(g \) with \(\lambda = 2n \). Then \((g, \xi) \) becomes a Ricci soliton.

Next theorem shows the necessary condition for the existence of \(\eta \)-Ricci soliton on 3-dimensional trans-Sasakian manifolds.

Theorem 3.3: If 3-dimensional trans-Sasakian manifold satisfies an \(\eta \)-Ricci soliton then the manifold becomes \(\eta \)-Einstein manifold with \(\alpha \) and \(\beta \) constants.

Proof: From the equation (1.1) we get
\[
2S(X, Y) = -g(\nabla_X \xi, Y) - g(X, \nabla_Y \xi) - 2\lambda g(X, Y) - 2\mu \eta(X)\eta(Y).
\]

By using the equation (2.8) we get
\[
S(X, Y) = -(\beta + \lambda)g(X, Y) + (\beta - \mu)\eta(X)\eta(Y)
\]
and
\[
S(X, \xi) = -(\lambda + \mu)\eta(X).
\]

Also from (2.11) we have
\[
\lambda + \mu = 2(\beta^2 - \alpha^2).
\]

The Ricci operator \(Q \) is defined by \(g(QX, Y) = S(X, Y) \). Then we get
\[
QX = (\mu - \beta + 2(\alpha^2 - \beta^2))X + (\beta - \mu)\eta(X)\xi.
\]
Then we can easily see that the manifold is an \(\eta \)-Einstein manifold.

We know a manifold is \(\phi \)-Ricci symmetric if \(\phi^2 \circ \nabla Q = 0 \). Now we prove the next theorem.

Theorem 3.4: If a \(\phi \)-Ricci symmetric trans-Sasakian manifold \((M, g)\) satisfies an \(\eta \)-Ricci soliton then \(\mu = \beta, \lambda = 2(\beta^2 - \alpha^2) - \beta \) and \((M, g)\) is an Einstein manifold.

Proof: From the equation (3.13) we have

\[
(\nabla_X Y) = \nabla_X Y - Q(\nabla_X Y)
\]

\[
= -\alpha(\beta - \mu)\eta(Y)\phi X + \beta(\beta - \mu)\eta(Y)X - (\beta - \mu)\eta(Y)\eta(X)e
\]

\[
+(\beta - \mu)[-\alpha g(\phi X, Y) + \beta g(\phi X, \phi Y)]e.
\]

Now applying \(\phi^2 \) both sides we have \(\mu = \beta, \lambda = 2(\beta^2 - \alpha^2) - \beta \) and \((M, g)\) is an Einstein manifold.

We construct an example of \(\eta \)-Ricci soliton on 3-dimensional trans-Sasakian manifolds in the next section.

4 Example of \(\eta \)-Ricci solitons on 3-dimensional trans-Sasakian manifolds

We consider the three dimensional manifold \(M = \{(x, y, z) \in \mathbb{R}^3 : y \neq 0\} \) where \((x, y, z)\) are the standard coordinates in \(\mathbb{R}^3 \). The vector fields

\[
e_1 = e^{2x} \frac{\partial}{\partial x}, e_2 = e^{2z} \frac{\partial}{\partial y}, e_3 = \frac{\partial}{\partial z}
\]

are linearly independent at each point of \(M \). Let \(g \) be the Riemannian metric defined by

\[
g_{ij} = \begin{cases} 1 & \text{for } i = j, \\ 0 & \text{for } i \neq j. \end{cases}
\]

Let \(\eta \) be the 1-form defined by \(\eta(Z) = g(Z, e_3) \) for any \(Z \in \chi(M^3) \). Let \(\phi \) be the \((1,1)\) tensor field defined by \(\phi(e_1) = e_2, \phi(e_2) = -e_1, \phi(e_3) = 0 \). Then using the linearity property of \(\phi \) and \(g \) we have

\[
\eta(e_2) = 1, \phi^2(Z) = -Z + \eta(Z)e_2, \ g(\phi Z, \phi W) = g(Z, W) - \eta(Z)\eta(W),
\]

for any \(Z, W \in \chi(M^3) \). Thus for \(e_2 = \xi, (\phi, \xi, \eta, g) \) defines an almost contact metric structure on \(M \). Now, after some calculation we have,
\[[e_1, e_3] = -2e_1, [e_2, e_3] = -2e_2, [e_1, e_2] = 0. \]

The Riemannian connection \(\nabla \) of the metric is given by the Koszul’s formula which is

\[
2g(\nabla_X Y, Z) = Xg(Y, Z) + Yg(Z, X) - Zg(X, Y) - g([Y, Z]) - g([X, Z]) + g(Z, [X, Y]).
\]

By Koszul’s formula we get,

\[
\nabla e_1 e_1 = 2e_3, \quad \nabla e_2 e_1 = 0, \quad \nabla e_1 e_2 = 0, \quad \nabla e_2 e_2 = 2e_3, \\
\nabla e_3 e_2 = 0, \quad \nabla e_2 e_3 = -2e_1, \quad \nabla e_1 e_3 = -2e_2, \quad \nabla e_3 e_3 = 0.
\]

From the above it can be easily shown that \(M^3(\phi, \xi, \eta, g) \) is a trans-Sasakian manifold of type \((0, -2)\).

Here

\[
R(e_1, e_2)e_2 = -4e_1, \quad R(e_3, e_2)e_2 = 4e_2, \quad R(e_1, e_3)e_3 = -4e_1, \quad R(e_2, e_3)e_3 = -4e_2,
\]

\[
R(e_3, e_1)e_1 = -4e_2, \quad R(e_2, e_1)e_1 = 4e_3.
\]

So, we have

\[
S(e_1, e_1) = 0, \quad S(e_2, e_2) = 0, \quad S(e_3, e_3) = -8. \tag{4.1}
\]

From the equation (1.1) we get \(\lambda = -2 \) and \(\mu = 6 \). Therefore, \((g, \xi, \lambda, \mu)\) is an \(\eta \)-Ricci soliton on \(M^3(\phi, \xi, \eta, g) \).

In the next sections we consider \(\eta \)-Ricci Solitons on 3-dimensional trans-Sasakian manifolds satisfying some curvature conditions.

5 \(\eta \)-Ricci solitons on 3-dimensional trans-Sasakian manifolds satisfying \(R(\xi, X) \cdot S = 0 \)

First we suppose that 3-dimensional trans-Sasakian manifolds with \(\eta \)-Ricci solitons satisfy the condition

\[
R(\xi, X) \cdot S = 0.
\]

Then we have

\[
S(R(\xi, X)Y, Z) + S(Y, R(\xi, X)Z) = 0.
\]
for any \(X, Y, Z \in \chi(M) \).

Using the equations (2.12), (3.10), (3.11) we get

\[
(\beta - \mu)g(X, Y)\eta(Z) + (\beta - \mu)g(X, Z)\eta(Y) - 2(\beta - \mu)\eta(X)\eta(Y)\eta(Z) = 0.
\]

Put \(Z = \xi \) we have

\[
(\beta - \mu)g(X, Y) - (\beta - \mu)\eta(X)\eta(Y) = 0.
\]

Setting \(X = \phi X \) and \(Y = \phi Y \) in the above equation we get

\[
(\beta - \mu)g(\phi X, \phi Y) = 0.
\]

Again using the equation (3.12) we have

\[
\mu = \beta, \quad \lambda = 2(\beta^2 - \alpha^2) - \beta.
\]

Also we can easily see that \(M \) is an Einstein manifold. So we have the following theorem.

Theorem 5.1: If a 3-dimensional trans-Sasakian manifold \((M, g, \phi, \eta, \xi, \alpha, \beta)\) with \(\alpha, \beta \) constants admitting an \(\eta \)-Ricci soliton satisfies the condition \(R(\xi, X) \cdot S = 0 \) then \(\mu = \beta, \quad \lambda = 2(\beta^2 - \alpha^2) - \beta \) and \(M \) is an Einstein manifold.

Corollary 5.2: A 3-dimensional trans-Sasakian manifold with \(\alpha, \beta \) constants satisfies the condition \(R(\xi, X) \cdot S = 0 \), there is no Ricci soliton with the potential vector field \(\xi \).

6 \quad \eta\text{-Ricci solitons on 3-dimensional trans-Sasakian manifolds satisfying } S(\xi, X) \cdot R = 0

We consider 3-dimensional trans-Sasakian manifolds with \(\eta \)-Ricci solitons satisfying the condition

\[
S(\xi, X) \cdot R = 0.
\]
So we have

\[S(X, R(Y, Z)W)\xi - S(\xi, R(Y, Z)W)X + S(X, Y)R(\xi, Z)W - S(\xi, Y)R(X, Z)W \\
+ S(X, Z)R(Y, \xi)W - S(\xi, Z)R(Y, X)W + S(X, W)R(Y, Z)\xi - S(\xi, W)R(Y, Z)X = 0. \]

Taking inner product with \(\xi \) then the above equation becomes

\[S(X, R(Y, Z)W) \xi = - S(\xi, R(Y, Z)W)X + S(X, Y)\eta(R(\xi, Z)W) - S(\xi, Y)\eta(R(X, Z)W) \\
+ S(X, W)\eta(R(Y, Z)\xi) - S(\xi, W)\eta(R(Y, Z)X) = 0. \]

(6.1)

Put \(W = \xi \) and using the equations (2.10), (2.12), (3.10), (3.11) we get

\[(\beta + \lambda)g(X, R(Y, Z)\xi) + (\lambda + \mu)\eta(R(Y, Z)X) = 0. \]

(6.2)

Also we have

\[\eta(R(Y, Z)X) = -g(X, R(Y, Z)\xi). \]

So from the equation (6.2) we get

\[(\beta + 2\lambda + \mu)g(X, R(Y, Z)\xi) = 0. \]

Again using the equation (3.12) we have

\[\mu = \beta + 4(\beta^2 - \alpha^2), \; \lambda = -2(\beta^2 - \alpha^2) + \beta]. \]

So we have the following theorem.

Theorem 6.1: If a 3-dimensional trans-Sasakian manifold \((M, g, \phi, \eta, \xi, \alpha, \beta) \) with \(\alpha, \beta \) constants admitting an \(\eta \)-Ricci soliton satisfies the condition \(S(\xi, X) \cdot R = 0 \) then \(\mu = \beta + 4(\beta^2 - \alpha^2), \; \lambda = -2(\beta^2 - \alpha^2) + \beta]. \).
Corollary 6.2: A 3-dimensional trans-Sasakian manifold with α, β constants satisfies the condition $S(\xi, X) \cdot R = 0$, there is no Ricci soliton with the potential vector field ξ.

7 η-Ricci solitons on 3-dimensional trans-Sasakian manifolds satisfying $W_2(\xi, X) \cdot S = 0$

Definition 7.1. Let M be 3-dimensional trans-Sasakian manifold with respect to semi-Symmetric metric connection. The W_2-curvature tensor of M is defined by [16]

$$W_2(X, Y)Z = R(X, Y)Z + \frac{1}{2}(g(X, Z)QY - g(Y, Z)QX).$$ (7.1)

We assume 3-dimensional trans-Sasakian manifolds with η-Ricci solitons satisfying the condition $W_2(\xi, X) \cdot S = 0$.

Then we have

$$S(W_2(\xi, X)Y, Z) + S(Y, W_2(\xi, X)Z) = 0$$

for any $X, Y, Z \in \chi(M)$.

Using the equations (2.12), (3.10), (3.11), (7.1) we get

$$\begin{align*}
\left[-\frac{(\beta + \lambda)}{2}(\lambda + \mu) + \frac{(\beta + \lambda)^2}{2} + (\beta - \mu)(\alpha^2 - \beta^2) + (\lambda + \mu)\frac{(\beta - \mu)}{2}\right]g(X, Y)\eta(Z) \\
+\left[\frac{(\beta + \lambda)^2}{2} - \frac{(\beta + \lambda)}{2}(\lambda + \mu) + (\beta - \mu)(\alpha^2 - \beta^2) + (\lambda + \mu)\frac{(\beta - \mu)}{2}\right]g(X, Z)\eta(Y) \\
+\left[-(\beta + \lambda)(\beta - \mu) - 2(\beta - \mu)(\alpha^2 - \beta^2) - (\beta - \mu)(\lambda + \mu)\eta(X)\eta(Y)\eta(Z) = 0.\right]
\end{align*}$$

Put $Z = \xi$ in the above equation we get

$$\begin{align*}
\left[-\frac{(\beta + \lambda)}{2}(\lambda + \mu) + \frac{(\beta + \lambda)^2}{2} + (\beta - \mu)(\alpha^2 - \beta^2) + (\lambda + \mu)\frac{(\beta - \mu)}{2}\right]g(X, Y) \\
+\left[\frac{(\beta + \lambda)^2}{2} - \frac{(\beta + \lambda)}{2}(\lambda + \mu) + (\beta - \mu)(\alpha^2 - \beta^2) + (\lambda + \mu)\frac{(\beta - \mu)}{2}\right]g(X, Z)\eta(Y) \\
+\left[-(\beta + \lambda)(\beta - \mu) - 2(\beta - \mu)(\alpha^2 - \beta^2) - (\beta - \mu)(\lambda + \mu)\eta(X)\eta(Y)\eta(Z) = 0.\right]
\end{align*}$$
\[-(\beta + \lambda)(\beta - \mu) - 2(\beta - \mu)(\alpha^2 - \beta^2) - (\beta - \mu)(\lambda + \mu)]\eta(X)\eta(Y) = 0.\]

Setting \(X = \phi X\) and \(Y = \phi Y\) in the above equation we get
\[(\beta - \mu)((\beta + 2\lambda + \mu + 2(\alpha^2 - \beta^2))g(\phi X, \phi Y) = 0.\]

Again using the equation (3.12) we have
\[
\mu = \beta, \quad \lambda = 2(\beta^2 - \alpha^2) - \beta
\]
or
\[
\mu = 2(\beta^2 - \alpha^2) + \beta, \quad \lambda = -\beta.
\]

So we have the following theorem.

Theorem 7.1: If a 3-dimensional trans-Sasakian manifold \((M, g, \phi, \eta, \xi, \alpha, \beta)\) with \(\alpha, \beta\) constants admitting an \(\eta\)-Ricci soliton satisfies the condition \(W_2(\xi, X) \cdot S = 0\) then \(\mu = \beta, \quad \lambda = 2(\beta^2 - \alpha^2) - \beta\) or \(\mu = 2(\beta^2 - \alpha^2) + \beta, \quad \lambda = -\beta\).

Corollary 7.2: A 3-dimensional trans-Sasakian manifold with \(\alpha, \beta\) constants satisfies the condition \(W_2(\xi, X) \cdot S = 0\), there is no Ricci soliton with the potential vector field \(\xi\).

8 \(\eta\)-Ricci solitons on 3-dimensional trans-Sasakian manifolds satisfying \(S(\xi, X) \cdot W_2 = 0\)

Suppose that 3-dimensional trans-Sasakian manifolds with \(\eta\)-Ricci solitons satisfy the condition
\[S(\xi, X) \cdot W_2 = 0.\]

So we have
\[
S(X, W_2(Y, Z)V)\xi - S(\xi, W_2(Y, Z)V)X + S(X, Y)W_2(\xi, Z)V - S(\xi, Y)W_2(X, Z)V
+ S(X, Z)W_2(Y, \xi)V - S(\xi, Z)W_2(Y, X)V + S(X, V)W_2(Y, Z)\xi - S(\xi, V)W_2(Y, Z)X = 0.
\]
Taking inner product with ξ, then the above equation becomes

\[
S(X, W_2(Y, Z) V) - S(\xi, W_2(Y, Z) V) \eta(X) + S(X, Y) \eta(W_2(\xi, Z) V) \\
- S(\xi, Y) \eta(W_2(X, Z) V) + S(X, Z) \eta(W_2(Y, \xi) V) - S(\xi, Z) \eta(W_2(Y, X) V) \\
+ S(X, V) \eta(W_2(Y, Z) \xi) - S(\xi, V) \eta(W_2(Y, Z) X) = 0. \tag{8.1}
\]

Put $V = \xi$ and using the equations (2.10), (2.12), (3.10), (3.11), (7.1) we get

\[- (\beta + \lambda) g(X, W_2(Y, Z) \xi) + (\lambda + \mu) \eta(W_2(Y, Z) X) = 0. \tag{8.2}\]

Using the equations (3.10), (3.11), (7.1) then the equation (8.2) becomes

\[
[(\beta + \lambda)^2 + (\lambda + \mu)^2 + 2(\alpha^2 - \beta^2)(\beta + 2\lambda + \mu)] g(X, R(Y, Z) \xi) = 0.
\]

Using the equation (3.12) we have

\[
\mu = \beta, \quad \lambda = 2(\beta^2 - \alpha^2) - \beta
\]

or

\[
\mu = 2(\beta^2 - \alpha^2) + \beta, \quad \lambda = -\beta.
\]

So we have the following theorem.

Theorem 8.1: If a 3-dimensional trans-Sasakian manifold $(M, g, \phi, \eta, \xi, \alpha, \beta)$ with α, β constants admitting an η-Ricci soliton satisfies the condition $S(\xi, X) \cdot W_2 = 0$ then $\mu = \beta, \quad \lambda = 2(\beta^2 - \alpha^2) - \beta$ or $\mu = 2(\beta^2 - \alpha^2) + \beta, \quad \lambda = -\beta$.

Corollary 8.2: A 3-dimensional trans-Sasakian manifold with α, β constants satisfies the condition $S(\xi, X) \cdot W_2 = 0$, there is no Ricci soliton with the potential vector field ξ.

Acknowledgement: The author wish to express her sincere thanks and gratitude to the referee for valuable suggestions towards the improvement of the paper.
References

[1] C. S. Bagewadi, G. Ingalahalli, S. R. Ashoka, A study on Ricci solitons in Kenmotsu Manifolds, ISRN Geometry, (2013), Article ID 412593, 6 pages.

[2] A. Bhattacharyya, T. Dutta, and S. Pahan, Ricci Soliton, Conformal Ricci Soliton And Torqued Vector Fields, Bulletin of the Transilvania University of Brasov Series III: Mathematics, Informatics, Physics,, Vol 10(59), No. 1 (2017), 39-52.

[3] A. M. Blaga, Eta-Ricci solitons on p-Kenmotsu manifolds, Balkan Journal of Geometry and Its Applications, Vol.20, No.1, 2015, pp. 1-13.

[4] C. Călin, M. Crasmareanu, Eta-Ricci solitons on Hopf hypersurfaces in complex forms, Revue Roumaine de Math. Pures et app., 57 (1), (2012), 53-63.

[5] B. Y. Chen, S. Deshmukh, Geometry of compact shrinking Ricci solitons, Balkan Journal of Geometry and Its Applications, Vol.19, No.1, 2014, pp. 13-21

[6] J.C. Cho, M. Kimura Ricci solitons and real hypersurfaces in a complex space form, Tohoku Math. J. 61 (2), (2009), 205-2012.

[7] O. Chodosh, F. T.-H Fong, Rational symmetry of conical Kähler-Ricci solitons, Math. Ann., 364(2016), 777-792.

[8] A. Futaki, H. Ono, G. Wang, Transverse Kähler geometry of Sasaki manifolds and toric Sasaki-Einstein manifolds, J. Diff. Geom. 83 (3), (2009), 585-636.

[9] S. Golab, On semi-symmetric and quarter-symmetric linear connection, Tensor. N. S., 29(1975), 249-254.

[10] R. S. Hamilton, The formation of singularities in the Ricci flow, Surveys in Differential Geometry (Cambridge, MA, 1993), 2, 7-136, International Press, Combridge, MA, 1995.

[11] R. S. Hamilton, The Ricci flow on surfaces, Mathematical and general relativity, Contemp. math, 71(1988), 237-261.

[12] G. Ingalahalli, C. S. Bagewadi, Ricci solitons on α-Sasakian Manifolds, ISRN Geometry, (2012), Article ID 421384, 13 pages.

[13] J. C. Marrero, The local structure of trans-Sasakian manifolds, Ann. Mat. Pura. Appl., (4), 162(1992), 77-86.

[14] J. Morgan, G. Tian, Ricci Flow and the Poincaré Conjecture, American Mathematical Society Clay Mathematics Institute, (2007).
[15] J. A. Oubina, *New classes of almost contact metric structures*, pub. Math. Debrecen, 20 (1), (2015), 1-13.

[16] G. P. Pokhariyal, R. S. Mishra, *The curvature tensors and their relativistic significance*, Yokohama Math. J., 18(1970), 105-106.

[17] D. G. Prakasha, B. S. Hadimani, *η-Ricci solitons on para-Sasakian manifolds*, Journal of Geometry, (2016), DOI: 10.1007/s00022-016-0345-z, pp 1-10.