Virtual Communities? The Middle East Revolutions at the Guardian Forum: Comment Is Free

Bernard Kujawski\(^1\) and Peter Abell\(^2\)

\(^1\) Sandtable Ltd., London, UK
\(^2\) MES Group, London School of Economics, London, UK

Received: date / Revised version: date

Abstract. We investigate the possibility of virtual community formation in an online social network under a rapid increase of activity of members and newcomers. The evolution is studied of the activity of online users at The Guardian - Comment Is Free forum - covering topics related to the Middle East turmoil during the period of 1\(^{st}\) of January 2010 to the 28\(^{th}\) of March 2011. Despite a threefold upsurge of forum users and the formation of a giant component, the main network characteristics, i.e. degree and weight distribution and clustering coefficient, remained almost unchanged.

PACS. PACS-key describing text of that key – PACS-key describing text of that key

1 Introduction

The properties of social networks that are generated through the internet discussions of almost all forms, such as e-mails \(^{[1]}\), blogs \(^{[2]}\), discussion forums \(^{[3,4]}\), bulletin board system \(^{[5,6]}\) and more recently online social networks \(^{[7,8]}\) have been studied over last decade.

In recent years much interest has been expressed, particularly in the media, about the role which on line social networks may play in the mobilisation of social protest. The recent Middle East turmoil is no exception. However, there has been little direct documentation of the implied upsurge of network traffic occasioned by turbulent events. This includes both those directly involved in such events and those who merely care to reflect upon the events.

One of the most intriguing questions is the extent to which virtual communications might provide, at least in part, the foundations for a virtual community which, in turn, may eventually mobilise in the real world. It is beyond the ambitions of this paper to answer this very broad question but clearly it is pertinent to initially ask whether one can find evidence for the formation of virtual communities leaving it open as to whether the next step might or might not be taken. This brief paper reports upon a study of the Guardian (a British daily newspaper) internet forum- Comment Is Free- in order to ascertain the impact of the events precipitated by the social unrest and change of Government in Tunisia.

Standard network (graph and di-graph) theories \(^{[9]}\) would imply that tendencies towards community formation would be detected by the evolution of a high density of connections, transitive closure of triples, relative high node degrees and connection into a large component.

2 Data

A web crawler software was designed to download the complete content of both journalists’ articles and public discussions occurring at the Guardian internet forum called Comment Is Free (http://www.guardian.co.uk/commentisfree/all) during the period from the 1\(^{st}\) of January 2010 to the 28\(^{th}\) of March 2011.

Each day during that period articles appearing in The Guardian newspaper were published on-line and made available for public comment at the Comment is Free web-page. Every article was authored, dated and carried a keyword tagging its subject matter, e.g. UK Politics or Barack Obama.

All those wishing to comment on any article are required to register; thus, all commentators are identified. Each comment carries its author’s nickname and date of posting. In addition each comment can attract a number of recommendations by other commentators which provides an index of the popularity of any particular comment. Comments always appear, in chronological order, directly under the main article and can be registered for a period of up to four days after the article is posted, but not thereafter.

This paper focuses upon all the articles, which were tagged by one of six keywords: Tunisia, Ben Ali, Egypt, Mubarak, Libya and Gaddafi. During the period studied, 279 journalists’ articles were found that matched these tags, which then generated 35,942 comments posted by 6,217 identifiable commentators.
Fig. 1. The time series over the period of study of (a) the number of tagged published articles and (b) the number of comments. Inset in (b) is a zoomed series depicting greater detail. The vertical lines in (b) indicate, in chronological order, the major political events which are shown in Tab. 1.

Table 1. The major political events during the study period.

Date	Event
20/12/2010	Tunisia - Uprising of protest
14/01/2011	Tunisia - Ben Ali fled the country
25/01/2011	Egypt - Beginning of revolution
11/02/2011	Egypt - Mubarak resigned from office
15/02/2011	Libya - Gaddafi confronted peaceful protest
27/02/2011	Egypt - PM Ghannouchi resigned
17/03/2011	Libya - UN approved no-fly zone

3 Linking Commentators

Internet discussion might appear to be an ideal candidate for a 2-mode network analysis \[10,11\] whereby all the commentators who post comments on the same article are pair-wise connected. Such a network does not, though, in any way reflect interpersonal interactions, but only a common interest which might be interpreted as a necessary, though far from sufficient, condition for the existence of an embryonic virtual community. Such networks have, nevertheless, been used to infer interpersonal relationships \[12\]. However, the average number of distinct commentators per article in our dataset is 69 and the 2-mode network structures generated would have average degrees and network density parameters, way beyond those directly observed in interpersonal social networks. They are accordingly probably rather unreliable indicators of any online social bonding.

In order to construct a directed (1-mode) social network structure, advantage can be taken of the fact that commentators typically attach to their comments the nickname associated with the comment towards which they wish to direct their remarks. The construct `@nickname` has become an official standard among internet discussion users across many different internet discussion platforms.

Thus, a weighted and directed link can be established between A and B when commentator A posts a comment that contains the nick name of commentator B which is attached to a prior comment concerning the same article. A weighting of the link is then computed as the number of times A comments on B. All links are directed and stamped by the time of the first direct communication by A directed to B. All commentators are also time-stamped, appearing in the evolving network for the first time when they comment upon another commentator.

4 Results

The evolution of some major parameters of the evolving directed network, which may be interpreted as indicative of an emerging *virtual community*, are depicted in Figs. 2a-d. An animation of the networks evolution can also be found at: http://www.youtube.com/watch?v=L7t-FJ3-EAZ. Fig. 2a exhibits a sharp upturn in the number of commentators (i.e. the size of the node set) registering comments at the date already identified. Similarly, Figs. 2b and 2c show upturns in respectively the number of directed edges and the average degree of nodes (computed for the sake of simplicity as, the average number of links incident in and from a node) in the evolving structure. These are probably the results one would anticipate.

Fig. 2d depicts the movement of node clustering (i.e. C, the proportion of 3-cycles irrespective of the direction of links which are closed/transitive). Clustering is usually taken to be indicative of the formation of highly connected cliques or groups of nodes and, thus, community formation. Although there is a mild upturn in clustering at around 1/1/2011 there was also one a year before. There appears, therefore, to be only a slight tendency towards
virtual clique formation at the start of 2011. The clustering coefficient hovers around 0.05 throughout the observation period and fails to dramatically increase. Thus, despite the dramatic change in both the number of nodes (commentators) and edges after the start of 2011, there little support in these results for the view that a virtual grouping is in formation. This conclusion should, however, be treated with considerable caution. There may be no need for a connected group of individuals to exhibit online clustering in order to provide a basis for a latent virtual community. It seems sensible to turn in the direction of connectivity.

In order to study the emergence of components all links were treated as undirected. That is to say any two nodes are deemed to be connected if there is a link in either or both directions.

Fig. 3 depicts the evolution of the size (i.e. number of nodes) of the giant (i.e. the largest) component; Fig. 4 depicts the total number of components and Fig. 5 depicts the fraction of the nodes contained in the giant component. Figures 3b and 3c: show the time series of the average shortest path length and the network diameter, (both across components) respectively. The vertical line in all the diagrams indicates the date of maximum number of components (324) which was reached at 02/02/2011. After this date we observe a percolation connecting isolated components and at the termination of observation period 96% of nodes belong to the giant component. These results strongly support the conclusion that quickened commentary leads to the emergence of a large component embracing most of the commentators. The average shortest path length declines very slightly but the emergence of a dominating large component appears to have little impact upon this parameter; likewise the diameter (i.e. the longest path in a component).

Fig. 4 depicts the degree distributions across the existing nodes for different dates. The distributions appear remarkably consistent across time showing, at all the recorded dates, more variability at the higher levels of degree. Thus, although the number of directed links increases rapidly (Fig. 2b) after the start of 2011 the average degree does not correspondingly increase because of the increasing number of nodes (Fig. 2a) (i.e. commentators).

This conclusion is not altered by taking account of the weightings on the directed links (Fig. 5). One might expect that, if a virtual community were to have been in formation, then the intensity of weightings would increase with the advent of the focal events. Again there is no support for the supposition.

The distribution of weightings at the end of the observation period is as shown at Tab. 2.

These figures provide little support for the view that a virtual community is under formation. Very few commentators communicate with one another on more than two occasions. Moreover, the majority of edges (direct communication between two commentators) occurred only in
Fig. 5. The distribution of the directed edge weights for last 5 months of the observation period. The maximum link weight found is 18. The distribution was fitted by power law distribution (red dashed curve) \(f(x) = ax^{-\beta} \), where \(\beta = 3.20 \pm 0.03 \).

Table 2. The final percentage of edges with given edge weight.

Weight	% of edges
1	83.0
2	11.0
3	3.0
4	1.3
5	0.6
> 5	1.1

Table 3. Summary of the social network properties at the end of the observation period (28/03/2011).

Property	Value
Nodes N	3239
Edges E	10011
Average degree \(< k > \)	5.18
Clustering C	0.056
Giant Component size	3109
Components	64
GC size / Nodes	0.96
Modularity	0.334
Communities	755
Degree dist. Exponent \(\gamma \)	1.78 \pm 0.02
Weight dist. Exponent \(\beta \)	3.20 \pm 0.03

Direct communication. A commentator has no other option than to browse through all articles and all associated comments to check if one of his/her friends has posted a comment. Moreover, they cannot communicate directly and thus, depend entirely upon the frequency of postings by their favourite journalists. Closing the possibility of posting after 4 days can also reduce likelihood of further discussion and thus the generation of a virtual community. This lead to the conclusion that not every web page that provides users discussion place is capable of forming a virtual community. We identify two key elements that are missing at Comment Is Free forum and which seems to be vital from the perspective of an online forum user: a freedom of originating of a subject of a discussion and an effective way of managing online acquaintances.

Whether the results documented here provide grounds upon which inferences about real communities can be made remains an open question. It will prove interesting to compare these results with a similar analysis appertaining to other notable events.

Acknowledgements

We are grateful to Andrew Skates for his help and support.

References

1. A.-L. Barabási, Nature 435, (2005) 207.
2. D. Makowiec and B. Bykowska, Acta Physica Polonica B 36, (2005) 2435.
3. B. Kujawski, J. Holyst and G.J. Rodgers, Physical Review E 76, (2007) 036103.
4. P. Panzarasa, T. Opsahl, K. M. Carley, Journal of the American Society for Information Science and Technology 60, (2009) 911–932.
5. K. Zhongbao and Z. Changshui, Physical Review E 67, (2003) 036117.
6. K.-I. Goh, Y.-H. Eom, H. Jeong, B. Kahng and D. Kim, Physical Review E 73, (2006) 066123.
7. S. Golder, D. Wilkinson, and B. Huberman, In Proc. 3rd International Conference on Communities and Technologies (CT2007), East Lansing, MI, (2007).
8. E. Gilbert, K. Karahalios, and C. Sandvig, *In CHI 08: Proceeding of the twenty-sixth annual SIGCHI conference on Human factors in computing systems*, Florence, Italy ACM (2008) 1603-1612.

9. M. O. Jackson, Social and Economic Networks, (Princeton Univ Press, Princeton N.J. 2008).

10. A. Davis, B. B. Gardner, and M. R. Gardner, Deep South (University of Chicago Press, Chicago, IL 1941).

11. M. E. J. Newman, *Physical Review E* 64, (2001) 016132.

12. S.P. Borgatti and M.G. Everett, *Social Networks*, 19, (1997) 243-269.