Exploring Semantic Capacity of Terms

Jie Huang, Zilong Wang, Kevin Chen-Chuan Chang, Wen-mei Hwu, Jinjun Xiong

University of Illinois at Urbana-Champaign
University of California at San Diego
IBM Thomas J. Watson Research Center
IBM-Illinois Center for Cognitive Computing Systems Research (C3SR)
What is the **Semantic Capacity** SC(·) of “Artificial Intelligence”?

- $\text{SC(Artificial Intelligence)} < \text{SC(Computer Science)}$
- $\text{SC(Artificial Intelligence)} > \text{SC(Machine Learning)}$
- $\text{SC(Artificial Intelligence)} > \text{SC(Greedy Algorithm)}$
Semantic Capacity

Research Profiling

Engineering & Materials Science
- Neural networks
- Deep learning
- Object recognition
- Unsupervised learning
- Labels
- Character recognition
- Pixels
- Classifiers
- Backpropagation
- Invariance
- Convolution
- Network architecture
- Color
- Learning algorithms
- Robots
- Machine learning

Mathematics
- Learning
- Segmentation
- Training
- Neural Networks
- Pose Estimation
- Loss Function
- Multilayer
- Energy
- Discriminative Training
- Object Classification
- Machine Learning
- Model
- Labeling
- Scale Invariant Feature Transform

https://www.elsevier.com/solutions/elsevier-fingerprint-engine
Semantic Capacity

Hypernym-Hyponym Discovery

https://en.wikipedia.org/wiki/Hyponymy_and_hypernymy
Semantic Capacity?

• If we can find all hypernym-hyponym pairs -> **tree**
 => semantic capacity can be solved to some extent

• However...
 • Hearst patterns (Hearst, COLING'1992, with extended patterns) can only find **2.5%** (35/1393) pairs
 => impossible to measure semantic capacity of terms
Observation

Artificial Intelligence associates with:

1) many terms, e.g., AI terms
2) broad terms, e.g., CS, CV, ML, ...

\[r(\text{AI, ML}) > r(\text{AI, SVM}) \]

Semantic Capacity Association Hypothesis:
Terms with higher semantic capacity associate with

1) *more* terms
2) terms with *higher* semantic capacity than lower ones
Normalized Pointwise Mutual Information

\[npmi(x, y) = \log \frac{p(x, y)}{p(x)p(y)} / \log p(x, y) \]

Range from -1 to 1:
- -1: never co-occur
- 0: occur independently
- 1: co-occur completely
Hyperbolic Geometry

Poincaré disk

http://inspirehep.net/record/1355197/plots
Why Hyperbolic Space?

- Volumes grow exponentially with radius
- Number of terms grows exponentially as semantic capacity gets lower
Lorentz Model

• An equivalent model for hyperbolic space:
 • Perform Riemannian optimization more efficiently
 • Distance function avoids numerical instabilities

• Poincaré -> Lorentz

\[\ell(x_1, \ldots, x_n) = \frac{(1 + \|x\|^2, 2x_1, \ldots, 2x_n)}{1 - \|x\|^2} \]

• Lorentz -> Poincaré

\[\ell^{-1}(x_0, x_1, \ldots, x_n) = \frac{(x_1, \ldots, x_n)}{x_0 + 1} \]
Lorentz Model with NPMI

\[\mathcal{L}(\Theta) = - \sum_{(x, y) \in \mathcal{D}} npmi(x, y) \cdot \log s(x, y) \]

\[\mathcal{D} = \{(x, y) : npmi(x, y) > \delta\} \quad s(x, y) = \frac{\exp(-d_\ell(x, y))}{\sum_{y' \in \mathcal{N}(x)} \exp(-d_\ell(x, y'))} \]

\[\min_{\Theta} \mathcal{L}(\Theta) \quad \text{s.t. } \forall \theta_i \in \Theta : \theta_i \in \mathbb{H}^n \]

\[SC(x) = \frac{1}{\|\ell^{-1}(x)\|} \]
Framework

1. Offline Construction
 - Text Corpora
 - Extract Terms
 - Calculate NPMIs

2. Online Query
 - Give Terms for Query
 - Hyperbolic Space
 - If already in the space...
 - Calculate NPMIs with Terms Already in the Space
 - Negative Sampling & Riemannian SGD
 - Semantic Capacity Comparison & Query
 - Artificial Intelligence
 - Knowledge Represent
 - Semantic Web
 - Resource Framework

Experiments

- Hypernym-hyponym pairs in three scientific domains
- Abstracts of papers are used to find the co-occurrences between terms

	number of pairs	number of terms				
	all	top 1	top 2	all	top 1	top 2
Computer Science	782	93	325	651	11	109
Physics	1393	105	452	1090	14	127
Mathematics	1070	158	399	826	18	153
Baselines

• Popularity: $SC(x) \propto freq(x)$
• Poincaré GloVe (Tifrea et al., ICLR'2019)

Variants:
• Euclidean Model (Co-occurrence)
• Euclidean Model (NPMI)
• Lorentz Model (Co-occurrences)
• Lorentz Model (NPMI)

Human Annotation by Layman, Professional, Expert
Evaluation on Offline Construction

	Computer Science	Physics	Mathematics						
	all	top 1	top 2	all	top 1	top 2	all	top 1	top 2
Popularity	65.47	64.52	65.54	62.67	55.24	54.42	66.45	68.99	62.66
Poincaré GloVe	65.47	70.97	67.38	61.45	56.19	54.87	63.27	68.35	64.41
Euclidean Model (Co-occurrences)	69.44	71.69	70.77	67.77	54.29	60.40	68.82	78.06	69.42
Euclidean Model (NPMI)	71.00	73.92	75.46	58.15	47.62	53.76	64.95	65.19	65.79
Lorentz Model (Co-occurrences)	69.57	73.12	72.00	67.34	70.48	62.39	68.66	75.95	68.92
Lorentz Model (NPMI)	**74.25**	**88.39**	**77.11**	**72.52**	**82.48**	**74.07**	**72.34**	**80.76**	**73.86**

The Lorentz model with NPMI outperforms all the baselines significantly.

Hearst patterns (with extended patterns) can only find **2.5%** (35/1393) pairs.
The Lorentz model with NPMI can achieve performance comparable to professionals, with a small margin to experts, and much better than laymen.
Conclusion

• **Semantic capacity**: a value that measures the semantic scope of terms

• **Semantic capacity association hypothesis** => the Lorentz model with NPMI

• **Two-step model**: offline construction and online query

• Experiments on three scientific domains
Thanks!