COULD THE INHIBITION OF ENDO-LYSOSOMAL TWO-PORE CHANNELS (TPCs) BY THE NATURAL FLAVONOID NARINGENIN REPRESENT AN OPTION TO FIGHT SARS-COV-2 INFECTION?

Antonio Filippini¹*, Armando Carpaneto², Antonella D'amore¹, antonio Palombi¹

¹Sapienza University of Rome, Italy, ²University of Genoa, Italy

Submitted to Journal: Frontiers in Microbiology
Specialty Section: Virology
Article type: Opinion Article
Manuscript ID: 544358
Received on: 26 Mar 2020
Revised on: 19 Apr 2020
Frontiers website link: www.frontiersin.org
Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Author contribution statement

AF and FP conceived the study and hypothesis. AF, AD, FP and AC designed the conceptual framing and wrote the manuscript.

Keywords

Naringenin, SARS-CoV, Antiviral treatment, Endo-lysosomal dysfunction, therapeutic targets, Two-pore channel (TPC)

Contribution to the field

With this article, we would like to drive the attention of the scientific community on the role played by endo-lysosomal Two Pore Channels (TPCs) in viral infection. Cross linking of our recent data with scientific evidence by other groups strongly supports the hypothesis that Naringenin, a natural occurring flavonoid in citruses and tomatoes, which inhibits both human TPC1 and TPC2, could be effective in limiting the infection mediated by the novel coronavirus SARS-COV-2. We believe it is important to spread this hypothesis quickly, so that the action of Naringenin and the underlying conceptual framing can be verified, for example through the use of model cell lines infected with coronavirus and, in case of positive response, an appropriate therapeutic protocol can be adopted. We all know that time plays in favour of the diffusion of the present viral outbreak, and are convinced that prompt sharing of experimental data and ideas, favoured by the publication of opinion and hypothesis as in this Research Topic are of crucial interest.

Funding statement

This work was supported by Progetti di Ricerca di Ateneo, “La Sapienza” University of Rome (Italy) to A. F.
COULD THE INHIBITION OF ENDO-LYSOSOMAL TWO-PORE CHANNELS (TPCs) BY THE NATURAL FLAVONOID NARINGENIN REPRESENT AN OPTION TO FIGHT SARS-CoV-2 INFECTION?

A. Filippini¹, A. D’Amore¹, F. Palombi¹ and A. Carpaneto²

¹Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Unit of Histology and Medical Embryology, SAPIENZA University of Rome, 16 Via A. Scarpa, 00161 Roma, Italy,
²Department of Earth, Environment and Life Sciences (DISTAV) - University of Genoa, 5 Viale Benedetto XV, 16132 Genova, Italy

*Corresponding author:
Prof. Antonio Filippini, M.D. Ph.D.
DAHFMO, Unit of Histology and Medical Embryology, SAPIENZA University of Rome,
16 Via A. Scarpa, 00161 Roma, Italy;
Phone +39-06-4976-6585; FAX +39-06-446-2854;
E-mail: antonio.filippini@uniroma1.it
ABSTRACT

In the present opinion article we highlight evidence from different laboratories to drive the attention of the scientific community on the role played by endo-lysosomal Two-Pore Channels (TPCs) in viral infection. In particular, cross linking of our recent data and existing literature, we focus on evidence indicating that virus intracellular pathway could be targeted by a novel occurring TPCs inhibitor, the flavonoid Naringenin. A conceptual framework is presented for considering such a strategy as a promising approach to limit the infection mediated by the novel coronavirus SARS-CoV-2. Our hypothesis offers a perspective on a novel molecular target, TPCs, which could be exploited for a pharmacological blockade of SARS-CoV-2 infectivity.
The Coronaviruses are emerging viruses that are able to cross the species barrier and cause severe diseases in humans. Two such recent events are the highly pathogenic Serious Acute Respiratory Syndrome-related CoV (SARS-CoV) that became apparent in Southern China in 2003 and Middle East Respiratory Syndrome-related CoV (MERS-CoV), which emerged in 2012.

In the present dramatic outbreak of coronavirus disease-19 (COVID-19) that is caused by SARS-CoV-2 (recently reviewed in [1]), while science and medicine are striving to develop efficient treatments, we urge researchers to take into serious consideration a novel pharmacological strategy, highly promising for efficient and safe prophylaxis and therapy. What we recommend is to focus on the role played by the endo-lysosomal two-pore channel family (TPCs) in viral infection and on the feasibility of blocking the intracellular pathway of the virus by inhibiting these channels. Cross-analysis of data published over different times, experimental models and approaches gives direct and indirect evidence in support of this proposal.

First of all, Sakurai et al. [2] demonstrated that TPC2 is required for release of the Ebola viral genome into the host cell during Ebola virus entry pathway and, interestingly, TPC2 inhibitors such as tetrandrine have proven capable of blocking virus trafficking and prevented infection in vitro and in mice in vivo. Intriguingly, our recent evidence has shown that the activity of human TPC channels can be inhibited by a natural flavonoid compound, in fact present in citrus and tomatoes, Naringenin [3]. In our opinion this evidence gives priority to Naringenin (Nar) for testing as a safe potential weapon against the present infection. The rationale for a defence line based on inhibiting lysosomal pro-viral activity through TPC2 inhibition is further supported by the following direct and indirect data. It has been shown [4] that knockdown and pharmacological inhibitors of both TPC2, mainly expressed in late endosomes/lysosomes, and TPC1, which mainly localises to early endosomes, attenuate intracellular trafficking of coronavirus MERS-CoV through the endolysosomal system, even though the data were obtained using an artificial virion. Besides TPC2, Nar is also an inhibitor of TPC1 activity with an IC50 of about 500 µM therefore larger than for TPC2 (about 200 µM) [3].

Relevant and very recent in vitro evidence has shed light to the efficacy of chloroquine to fight SARS-CoV-2 infection through lysosomal alkalization [5,6]. As a matter of fact, chloroquine acts as a weak base and accumulates in the lysosomes quenching their acidic pH, thereby halting autophagic degradative flux[7]. In line with this evidence, interestingly, it has been found that loss of TPC2 leads to an increase in melanosome/lysosome pH [8,9,10]. In fact, TPC2 was shown to be involved in the control of human melanosome luminal pH: actually in TPC2-KO human melanotic MNT-1 cells, and in primary melanocytes subjected to TPC2 knockout by the CRISPR/Cas9 gene editing system, the lumen of melanosomes is more alkaline than in control cells [8]. Bellono et al. [10] also hypothesized that TPC2 can regulate melanosome pH producing a cation counterflux to enhance V-ATPase H\(^+\) transport into the melanosome lumen, consistent with the requirement for an inward cation current in lysosomal acidification [11]. In addition, Cang et al. (2013) demonstrated a shift toward alkalization in TPC2-/- macrophage lysosomes after starvation [9].

Since viral replication takes place in specific cellular compartments induced by viral proteins which modify cell organelles to create sites for replication, hidden from innate immunity, membrane fusion
mechanisms are crucial events in the infection process. To this purpose, the virus S protein consists of two subunits, S1 and S2, with S1 providing the receptor binding function through the entry receptor ACE2 and S2 providing fusion activity. Interestingly, the subunits are cleaved from the complete S by host cell proteases (cysteine proteases cathepsin B and L, furin proteases and cellular serine proteaseTMPRSS2) and following receptor binding by S1, the fusion mechanism of S2 acts to bring the viral and cellular vesicles membranes into such close proximity that fusion occurs (reviewed in [12]). In this context, it should be noted that the opening of TPCs induces a strong sodium-driven depolarization in the endo-lysosomal membrane [13,14], which is supposed to enhance membrane fusion mechanisms [13]. In line with this hypothesis, COS-1 cells transfected with human TPC2 have larger lysosomes than cells transfected with a non-functional form of the channel. Moreover, it was recently shown [15] that TPCs are directly involved in sodium efflux, which, in parallel with chloride regulation, also supports lysosome release in endocytic vacuoles, with significant modification of vacuolar surface-to-volume ratio. Therefore, inhibition of TPCs should impair both the fusogenic potential of the endo-lysosomal system and alter the normal trafficking, which, in turn, could be a limit for viral replication [12]. Very recently, unique features of TPC2 in the response to different agonists have been published [16] expanding the characterization of this channel, hence the range of potential approaches to pharmacologically control the intracellular pathway of the virus.

The use of Nar, one of the main flavonoids present in the human diet, as a specific inhibitor of TPCs [17] has several advantages. Nar is a hydrophobic molecule able to cross biological membranes and to reach the intracellular compartments (endosomes and lysosomes) where TPCs are localized. The toxicity of Nar is low: concentrations greater than 1 mM do not affect human hepatocytes viability [18] and, in mice, doses up to 1500 mg/kg given by intraperitoneal injection did not induce marked elevation of liver enzymes or cause animal death [18]. Interestingly, in the same study [18], Nar was shown to be effective to reduce Hepatitis C virus secretion by 80% when added at 200 μM in infected Huh7.5.1 human hepatoma cell line. Moreover, that Nar treatment could be a promising strategy to inhibit virus replication and infection is further confirmed by interesting studies on the influenza A virus, dengue virus and Zika virus [19,20,21]. Antiviral effect of some flavonoids and Nar through blocking viral proteases activity in different experimental models has been also reported [22,23,24,25]. Of note, Nar has been shown to ameliorate acute inflammation [26] as well as lung fibrosis [27], which could represent a therapeutic advantage. In particular, Zeng et al. demonstrated that Nar suppresses inflammatory cytokine production through both transcriptional and post-transcriptional mechanisms (by regulating lysosome function) resulting in the inhibition of TNF-α and IL-6 secretion by macrophages and T cells [26,28]. Clinical trials analyzing the therapeutic potential of Nar have been recently reviewed [29] and an important clinical trial on the pharmacokinetics and metabolism of Nar has just been reported, indicating the strong interest around this compound [30]. While this manuscript was under review, an article by Ou et al. [31] demonstrated that TPC2 is a key player for SARS-CoV-2 entry in 293/hACE2 cells, consistent with our findings and further supporting our hypothesis.

In conclusion, these considerations offer a perspective on specific molecular targets, TPCs, and underpin a role for Naringenin as pharmacological blockade of SARS-CoV-2 infectivity providing further support for exploration of TPCs inhibition as novel antiviral therapy.
Acknowledgements

This work was supported by Progetti di Ricerca di Ateneo, “La Sapienza” University of Rome (Italy) to A. F.
Bibliography

[1] Lai C.C. et al. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. International Journal of Antimicrobial Agents Volume 55, Issue 3, March 2020, 105924

[2] Sakurai Y, Kolokoltsov AA, Chen C-C, Tidwell MW, Bauta WE, Klugbauer N, et al. Ebola virus. Two-pore channels control Ebola virus host cell entry and are drug targets for disease treatment. Science 2015;347:995–8. https://doi.org/10.1126/science.1258758.

[3] Pafumi I, Festa M, Papaeci F, Lagostena L, Giunta C, Gutla V, et al. Naringenin Impairs Two-Pore Channel 2 Activity And Inhibits VEGF-Induced Angiogenesis. Sci Rep 2017;7:5121. https://doi.org/10.1038/s41598-017-04974-1.

[4] Gunaratne GS, Yang Y, Li F, Walseth TF, Marchant JS. NAADP-dependent Ca2+ signaling regulates Middle East respiratory syndrome coronavirus pseudovirus translocation through the endolysosomal system. Cell Calcium 2018;75:30–41. https://doi.org/10.1016/j.ceca.2018.08.003.

[5] Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 2020;30:269–71. https://doi.org/10.1038/s41422-020-0282-0.

[6] Touret F, de Lamberlalle X. Of chloroquine and COVID-19 [published online ahead of print, 2020 Mar 5]. Antiviral Res. 2020;177:104762. doi:10.1016/j.antiviral.2020.104762

[7] Homewood CA, Warhurst DC, Peters W, Baggaley VC. Lysosomes, pH and the anti-malarial action of chloroquine. Nature 1972;235:50–2. https://doi.org/10.1038/235050a0.

[8] Ambrosio AL, Boyle JA, Aradi AE, Christian KA, Di Pietro SM. TPC2 controls pigmentation by regulating melanosome pH and size. Proc Natl Acad Sci U S A 2016;113:5622–7. https://doi.org/10.1073/pnas.1600108113.

[9] Cang C, Zhou Y, Navarro B, et al. mTOR regulates lysosomal ATP-sensitive two-pore Na(+) channels to adapt to metabolic state. Cell. 2013;152(4):778–790. doi:10.1016/j.cell.2013.01.023

[10] Bellono NW, Escobar IE, Oancea E. Corrigendum: A melanosomal two-pore sodium channel regulates pigmentation. Sci Rep. 2016;6:32274. Published 2016 Aug 30. doi:10.1038/srep32274

[11] Steinberg BE, Huynh KK, Brodovitch A, et al. A cation counterflux supports lysosomal acidification. J Cell Biol. 2010;189(7):1171–1186. doi:10.1083/jcb.200911083

[12] Alsaaedi EAJ, Jones IM. Membrane binding proteins of coronaviruses. Future Virol 2019;14:275–86. https://doi.org/10.2217/fvl-2018-0144.

[13] Wang X, Zhang X, Dong X-P, Samie M, Li X, Cheng X, et al. TPC proteins are phosphoinositide-activated sodium-selective ion channels in endosomes and lysosomes. Cell 2012;151:372–83. https://doi.org/10.1016/j.cell.2012.08.036.

[14] Cang C, Bekele B, Ren D. The voltage-gated sodium channel TPC1 confers endolysosomal excitability. Nat Chem Biol 2014;10:463–9. https://doi.org/10.1038/ncbemio.1522.

[15] Freeman SA, et al. Science. 2020, 367(6475):301-305. doi: 10.1126/science.aaw9544

[16] Gerdts S, Chen CC, Chao YK, et al. Agonist-mediated switching of ion selectivity in TPC2 differentially promotes lysosomal function [published online ahead of print, 2020 Mar 13]. Elife. 2020;9:e54712. doi:10.7554/elif.e54712.

[17] Benkerrou D, Minicozzo V, Gradogna A, Milenkovic S, Bodrenko IV, Festa M, et al. A perspective on the modulation of plant and animal two pore channels (TPCs) by the flavonoid naringenin. Biophys Chem 2019;254:106246. https://doi.org/10.1016/j.bpc.2019.106246.

[18] Nahmias Y, Goldwasser J, Casali M, van Poll D, Wakita T, Chung RT, et al. Apolipoprotein B-dependent hepatitis C virus secretion is inhibited by the grapefruit flavonoid naringenin. Hepatol Balti Md 2008;47:1437–45. https://doi.org/10.1002/hep.22197.

[19] Dong, W., Wei, X., Zhang, F. et al. A dual character of flavonoids in influenza A virus replication and spread through modulating cell-autonomous immunity by MAPK signaling pathways. Sci Rep 4, 7237 (2015). https://doi.org/10.1038/srep07237

[20] Frabasile, S., Koishi, A., Kuczera, D., et al. The citrus flavanone naringenin impairs dengue virus replication in human cells. Sci Rep7, 41864 (2017). https://doi.org/10.1038/srep41864

[21] Caitareo, A.H.D., Kuczera, D., Koishi, A.C. et al. The citrus flavonoid naringenin impairs the in vitro infection of human cells by Zika virus. Sci Rep 9, 16348 (2019). https://doi.org/10.1038/s41598-019-25626-3

[22] Lulu SS, Thabitha A, Vino S, Priya AM, Rout M. Naringenin and quercetin--potential anti-HCV agents for NS2 protease targets. Natural Product Research. 2016 ;30(4):464-468. DOI: 10.1080/14786419.2015.1020490.

[23] L.R.F. de Sousa et al. Flavonoids as noncompetitive inhibitors of Dengue virus NS2B-NS3 protease: Inhibition kinetics and docking studies, Bioorg. Med. Chem. 23, (2015) 466-470 https://doi.org/10.1016/j.bmc.2014.12.015
[24] Lim HJ, Nguyen TT, Kim NM, et al. Inhibitory effect of flavonoids against NS2B-NS3 protease of ZIKA virus and their structure activity relationship. Biotechnology Letters. 2017 Mar;39(3):415-421. DOI: 10.1007/s10529-016-2261-6.

[25] Jo S, Kim S, Shin DH, Kim MS. Inhibition of SARS-CoV 3CL protease by flavonoids. J Enzyme Inhib Med Chem. 2020;35(1):145–151. doi:10.1080/14756366.2019.1690480

[26] Jin L, Zeng W, Zhang F, Zhang C, Liang W. Naringenin Ameliorates Acute Inflammation by Regulating Intracellular Cytokine Degradation. J Immunol. 2017;199(10):3466–3477. doi:10.4049/jimmunol.1602016

[27] Zhang C, Zeng W, Yao Y, et al. Naringenin Ameliorates Radiation-Induced Lung Injury by Lowering IL-1β Level. The Journal of Pharmacology and Experimental Therapeutics. 2018 Aug; 366(2):341-348. DOI:10.1124/jpet.118.248807.

[28] Zeng, W., Jin, L., Zhang, F., Zhang, C., Liang, W., 2018. Naringenin as a potential immunomodulator in therapeutics. Pharmacol. Res. 135, 122–126. https://doi.org/10.1016/J.PHRS.2018.08.002

[29] Salehi B, Fokou PVT, Sharifi-Rad M, Zucca P, Pezzani R, Martins N, et al. The Therapeutic Potential of Naringenin: A Review of Clinical Trials. Pharm Basel Switz 2019;12. https://doi.org/10.3390/ph12010011.

[30] Bai Yang, Peng Wei et al. Pharmacokinetics and Metabolism of Naringin and Active Metabolite Naringenin in Rats, Dogs, Humans, and the Differences Between Species. Frontiers in Pharmacology. 11, (2020)364DOI=10.3389/fphar.2020.00364

[31] Ou, X., Liu, Y., Lei, X. et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun 11, 1620 (2020). https://doi.org/10.1038/s41467-020-15562-9

Conflict of interest

All the Authors declare no conflict of interest