Strange Mesons in Kaluza-Klein Picture

A.A. Arkhipov

State Research Center “Institute for High Energy Physics”
142280 Protvino, Moscow Region, Russia

Abstract

We have performed an analysis of experimental data on mass spectrum of the resonance states containing strange mesons and compared them with the calculated values provided by Kaluza-Klein scenario. In this note we present the results of this analysis.

In our previous papers [1, 2] we have presented the arguments in favour of that the Kaluza-Klein picture of the world has been observed in the experiments at very low energies where the nucleon-nucleon dynamics has been studied. In particular we have found that geniusly simple formula for KK excitations provided by Kaluza-Klein approach gives an excellent description for the mass spectrum of two-nucleon system. In articles [3, 4] we have presented additional arguments in favour of Kaluza and Klein picture of the world. In fact, we have shown that simple formula provided by Kaluza-Klein approach with the fundamental scale early calculated [1] gives an excellent description for the mass spectrum of two-pion and three-pion systems. Now, taking this line, we have performed an analysis of experimental data on mass spectrum of the resonance states containing strange mesons and compared them with the calculated values provided by Kaluza-Klein scenario. In this note we present the results of this analysis.

Let us start with the study of two-kaon system. As in the previous cases we build the Kaluza-Klein tower of KK excitations for two-kaon system by the formula

$$M_n^{K^1K^2} = \sqrt{m_{K^1}^2 + \frac{n^2}{R^2}} + \sqrt{m_{K^2}^2 + \frac{n^2}{R^2}}, \quad (n = 1, 2, 3, \ldots), \quad (1)$$

where $K^i(i = 0, +, -) = K^0, K^+, K^-$ and R is the same fundamental scale calculated early from the analysis of nucleon-nucleon dynamics at low energies [1, 2]

$$\frac{1}{R} = 41.481 \text{ MeV} \quad \text{or} \quad R = 24.1 \text{ GeV}^{-1} = 4.75 \times 10^{-13} \text{ cm}. \quad (2)$$

Kaluza-Klein tower such built is shown in Table 1 where the comparison with experimentally observed mass spectrum of ϕ-mesons is also presented.

Throughout we have used Review of Particle Physics [5] where the experimental data on mass spectrum of the resonance states have been extracted from. Some known experimental information is collected in separate tables: Table 2 – Table 7. We see from
Tables 1–7 that there is a quite remarkable correspondence of the calculated KK excitations for two-kaon system with the experimentally observed mass spectrum of the φ-mesons. However, there are many empty cells in Table 1 where we have not found the corresponding experimental data. Maybe such data exist but we don’t know these data. Anyway, we would gratefully thank for any experimental information in this respect.

We also built the Kaluza-Klein tower of KK excitations for the \(K\pi \)-system by the formula

\[
M_n^{K\pi} = \sqrt{m_K^2 + \frac{n^2}{R^2} + m_\pi^2 + \frac{n^2}{R^2}}, \quad (n = 1, 2, 3, \ldots),
\]

which is shown in Table 8 where the comparison with experimentally observed mass spectrum is also presented. Some known experimental information concerning the experimentally observed resonance states in \(K\pi \)-system is collected in separate tables: Table 9 – Table 16. Again we see from Tables 8–16 that there is a quite remarkable correspondence of the calculated KK excitations for \(K\pi \)-system with the experimentally observed mass spectrum of the resonance states in \(K\pi \)-system. Here, there are empty cells in Table 8 as well, where we have not found the corresponding experimental data.

Calculating the Kaluza-Klein tower of KK excitations for the \(K^2\pi \)-system by the formula

\[
M_n^{K^2\pi} = \sqrt{m_K^2 + \frac{n^2}{R^2} + 2m_\pi^2 + \frac{n^2}{R^2}}, \quad (n = 1, 2, 3, \ldots),
\]

is shown in Table 17 where the comparison with experimentally observed mass spectrum has been presented too. Some known experimental information concerning the experimentally observed resonance states in \(K\pi\pi \)-system is collected in separate tables: Table 18 – Table 20.

As in previous history we see from Tables 17–20 a quite remarkable correspondence of the calculated KK excitations for \(K\pi\pi \)-system with the masses of the resonance states in \(K\pi\pi \)-system where such resonance states are experimentally observed. Many empty cells in Table 17 indicate a wide field in experimental study of \(K\pi\pi \)-system.

Here we also present the results calculating the Kaluza-Klein tower of KK excitations for the \(K\rho \)-system by the formula

\[
M_n^{K\rho} = \sqrt{m_K^2 + \frac{n^2}{R^2} + m_\rho^2 + \frac{n^2}{R^2}}, \quad (n = 1, 2, 3, \ldots).
\]

These results are shown in Table 21 together with existing experimental data. As usual more detailed experimental information concerning the resonance states in \(K\rho \)-system is collected in separate tables: Table 22 – Table 28.

Finally, we built the Kaluza-Klein tower of KK excitations for the \(K\eta \)-system by the formula

\[
M_n^{K\eta} = \sqrt{m_K^2 + \frac{n^2}{R^2} + m_\eta^2 + \frac{n^2}{R^2}}, \quad (n = 1, 2, 3, \ldots).
\]

This is shown in Table 29. Here we have found only one experimental point (see Table 30) corresponding to \(M_{17}^{K\eta} \) – storey. That is why, it needs the further experimental study of \(K\eta \)-system.

From analysis performed we could once more emphasize a remarkable fact mentioned in our previous papers: the resonances with the different quantum numbers may occupy
one and the same storey in KK tower.1 This is a peculiarity of the systematics provided by Kaluza-Klein picture.

We have also established here a new remarkable feature of Kaluza-Klein picture which manifests itself in the existence of intersecting mass terms corresponding to the states of the hadronic systems with the different mesons content. We enumerate such intersecting mass terms below.

Intersecting mass terms

- \(M_3^{2K}(1018.24 - 1025.99) \cap M_9^{K\pi}(1015.93 - 1020.70) \neq \emptyset \)
- \(M_5^{2K}(1070.95 - 1078.32) \cap M_3^{K\eta}(1070.39 - 1074.26) \neq \emptyset \)
- \(M_7^{2K}(1145.78 - 1152.37) \cap M_{11}^{K\pi}(1148.09 - 1152.35) \neq \emptyset \)
- \(M_8^{2K}(1189.69 - 1196.33) \cap M_7^{K\eta}(1192.30 - 1195.74) \neq \emptyset \)
- \(M_9^{2K}(1237.89 - 1244.27) \cap M_8^{K\eta}(1234.89 - 1238.21) \neq \emptyset \)
- \(M_{10}^{2K}(1289.63 - 1295.76) \cap M_{13}^{K\pi}(1287.00 - 1290.83) \neq \emptyset \)
- \(M_{10}^{2K}(1289.63 - 1295.76) \cap M_5^{K\rho}(1288.42 - 1292.29) \neq \emptyset \)
- \(M_{17}^{2K}(1721.62 - 1726.22) \cap M_{11}^{K\rho}(1726.10 - 1728.70) \neq \emptyset \)
- \(M_{25}^{2K}(2297.08 - 2300.53) \cap M_{17}^{K2\pi}(22976.78 - 2300.83) \neq \emptyset \)
- \(M_{25}^{2K}(2297.08 - 2300.53) \cap M_{23}^{K\rho}(2299.82 - 2301.66) \neq \emptyset \)
- \(M_5^{5\pi}(782.93 - 789.16) \cap M_1^{K2\pi}(777.83 - 790.61) \neq \emptyset \)
- \(M_8^{K\pi}(953.10 - 958.17) \cap M_4^{K2\pi}(948.60 - 958.24) \neq \emptyset \)
- \(M_{13}^{K\pi}(1216.82 - 1220.86) \cap M_1^{K2\pi}(1213.15 - 1220.53) \neq \emptyset \)
- \(M_{13}^{K\pi}(1287.00 - 1290.83) \cap M_3^{K\rho}(1288.42 - 1292.29) \neq \emptyset \)
- \(M_{14}^{K\pi}(1358.43 - 1362.08) \cap M_6^{K\rho}(1361.43 - 1365.00) \neq \emptyset \)
- \(M_{15}^{K\pi}(1430.97 - 1434.44) \cap M_8^{K\rho}(1432.67 - 1435.99) \neq \emptyset \)
- \(M_{22}^{K\pi}(1960.08 - 1962.67) \cap M_{20}^{K\eta}(1959.29 - 1961.34) \neq \emptyset \)
- \(M_{29}^{K\pi}(2510.82 - 2512.86) \cap M_{26}^{K\rho}(2510.90 - 2512.57) \neq \emptyset \)
- \(M_6^{K2\pi}(1119.13 - 1127.14) \cap M_5^{K\eta}(1120.76 - 1124.44) \neq \emptyset \)
- \(M_8^{K2\pi}(1311.35 - 1318.18) \cap M_4^{K\rho}(1307.81 - 1311.59) \neq \emptyset \)
- \(M_{10}^{K2\pi}(1517.25 - 1523.21) \cap M_{10}^{K\rho}(1518.82 - 1521.89) \neq \emptyset \)
- \(M_{11}^{K2\pi}(1623.93 - 1629.51) \cap M_{15}^{K\eta}(1622.94 - 1625.43) \neq \emptyset \)
- \(M_{13}^{K2\pi}(1842.89 - 1847.86) \cap M_{16}^{K\eta}(1843.20 - 1845.59) \neq \emptyset \)

1Similar (“mass-band”) structures were empirically observed early in Ref. [6]. I thank D. Akers for drawing my attention to this article.
\[M_{17}^{K_2\pi}(2296.78 - 2300.83) \cap M_{23}^{K\pi}(2299.82 - 2301.66) \neq \emptyset \]

Of course, it would be very desirable to state new experiments to search new states corresponding to the empty cells in Tables 1,8,17,21,29. These Tables may serve as a guide for the physicists-experimenters. We believe that this is a quite promising subject of the investigations in particle and nuclear physics.

References

[1] A.A. Arkhipov, hep-ph/0208215 (2002); preprint IHEP 2002-43, Protvino, 2002, available at http://dbserv.ihep.su/~pubs/prep2002/ps/2002-43.pdf
[2] A.A. Arkhipov, hep-ph/0302164 (2003).
[3] A.A. Arkhipov, hep-ph/0302213 (2003).
[4] A.A. Arkhipov, hep-ph/0304014 (2003).
[5] D.E. Groom et al., Review of Particle Physics, Eur. Phys. J. C15, 401-487 (2000).
[6] M.H. Mac Gregor, Nuovo Cim. A103, 983 (1990).
Table 1: Kaluza-Klein tower of KK excitations in KK-system and experimental data.

n	$M_n^{2K_n^0}$ MeV	$M_n^{K^0K^+}$ MeV	$M_n^{2K^+}$ MeV	M_{exp}^{2K} MeV
1	998.80	994.81	990.83	
2	1009.08	1005.14	1001.20	
3	1025.99	1022.11	1018.24	1019.417±0.014
4	1049.21	1045.42	1041.63	
5	1078.32	1074.64	1070.95	
6	1112.87	1109.30	1105.73	
7	1152.37	1148.93	1145.48	
8	1196.33	1193.01	1189.69	
9	1244.27	1241.08	1237.89	
10	1295.76	1292.69	1289.63	
11	1350.38	1347.44	1344.50	1346 - i249
12	1407.77	1404.96	1402.14	
13	1467.62	1464.91	1462.21	1463 ± 9
14	1529.62	1527.02	1524.43	
15	1593.53	1591.04	1588.55	
16	1659.13	1656.74	1654.34	1655 ± 17
17	1726.22	1723.92	1721.62	
18	1794.64	1792.43	1790.22	
19	1864.24	1862.11	1859.99	1864.1 ± 1.0
20	1934.89	1932.85	1930.80	
21	2006.49	2004.52	2002.54	2006.7 ± 0.5
22	2078.93	2077.03	2075.12	
23	2152.14	2150.30	2148.45	
24	2226.02	2224.24	2222.46	
25	2300.53	2298.81	2297.08	
26	2375.60	2373.93	2372.26	
27	2451.17	2449.56	2447.94	
28	2527.21	2525.64	2524.08	
29	2603.67	2602.15	2600.63	
30	2680.52	2679.04	2677.57	
Table 2: $M_3^{2K}(1018 – 1023)$ -Storey.

$R(I^G J^{PC})$	M_R MeV	Γ_R MeV	Reaction	Collab.
$\phi(0^- 1^{--})$	1019.417 ± 0.014	4.458 ± 0.032	AVERAGE	PDG 00

Table 3: $M_{11}^{2K}(1345 – 1350)$ -Storey.

$R(I^G J^{PC})$	M_R MeV	Γ_R MeV	Reaction	Collab.
$f_0(0^+ 0^{++})$	$1346 - i249$	118^{+123}_{-16}	$\pi\pi \rightarrow \pi\pi, KK$	RVUE 95

Table 4: $M_{13}^{2K}(1462 – 1468)$ -Storey.

$R(I^G J^{PC})$	M_R MeV	Γ_R MeV	Reaction	Collab.
$f_0(0^+ 0^{++})$	1463 ± 9	118^{+123}_{-16}	$\pi^- p \rightarrow 2K^0 n$	MPS 82

Table 5: $M_{16}^{2K}(1654 – 1659)$ -Storey.

$R(I^G J^{PC})$	M_R MeV	Γ_R MeV	Reaction	Collab.
$\phi(0^- 1^{--})$ & 1657 ± 27 & 146 ± 55 & $e^+ e^- \rightarrow K^0 K^\pm \pi^\mp$ & DM2 91				
& 1655 ± 17 & 207 ± 45 & $e^+ e^- \rightarrow K^+ K^-$ & DM2 88				
& 1681 ± 8 & 150 ± 50 & AVERAGE & PDG 00				

Table 6: $M_{19}^{2K}(1860 – 1864)$ -Storey.

$R(I^G J^{PC})$	M_R MeV	Γ_R MeV	Reaction	Collab.
$D^0(0^-)$	1864.1 ± 1.0	87_{-23}	AVERAGE	PDG 00

Table 7: $M_{21}^{2K}(2003 – 2006)$ -Storey.

$R(I^G J^{PC})$	M_R MeV	Γ_R MeV	Reaction	Collab.
$D^*(0^-)$	2006.7 ± 0.5	< 2.1	AVERAGE	PDG 00
Table 8: Kaluza-Klein tower of KK excitations in $K\pi$-system and experimental data.

n	$M_n^{K^0\pi^0}$ MeV	$M_n^{K^0\pi^\pm}$ MeV	$M_n^{K^+\pi^0}$ MeV	$M_n^{K^+\pi^\pm}$ MeV	$M_{exp}^{K\pi}$ MeV
1	640.60	645.00	636.62	641.02	
2	662.97	666.91	659.03	662.97	
3	696.58	699.99	692.71	696.11	
4	738.50	741.42	734.71	737.63	
5	786.62	789.16	782.93	785.47	
6	839.57	841.79	836.00	838.22	
7	896.39	898.36	892.95	894.91	$K^*(892)$
8	956.42	958.17	953.10	954.85	
9	1019.12	1020.70	1015.93	1017.51	
10	1084.10	1085.54	1081.03	1082.48	
11	1151.03	1152.35	1148.09	1149.41	
12	1219.64	1220.86	1216.82	1218.04	
13	1289.70	1290.83	1287.00	1288.13	
14	1361.03	1362.08	1358.43	1359.48	
15	1433.45	1434.44	1430.97	1431.95	$K^{*}_{0,2}(1430)$
16	1506.85	1507.78	1504.46	1505.39	
17	1581.09	1581.97	1578.79	1579.67	$K_2(1580)$
18	1656.08	1656.91	1653.87	1654.70	$K^*(1680)$
19	1731.74	1732.53	1729.61	1730.40	$K^{*}_3(1780)$
20	1807.98	1808.73	1805.93	1806.68	
21	1884.75	1885.46	1882.77	1883.49	
22	1961.98	1962.67	1960.08	1960.76	$K_{0}^{*}(1950)$
23	2039.64	2040.29	2037.80	2038.45	$K_{4}^{*}(2045)$
24	2117.67	2118.30	2115.89	2116.52	
25	2196.04	2196.65	2194.32	2194.92	
26	2274.72	2275.30	2273.06	2273.64	
27	2353.68	2354.24	2352.07	2352.63	$K_{5}^{*}(2380)$
28	2432.90	2433.44	2431.33	2431.87	
29	2512.34	2512.86	2510.82	2511.34	
30	2592.00	2592.50	2590.52	2591.02	
Table 9: $M_{17}^{K\pi}(893 - 898)$–Storey.

$R(IJ')$	M_R MeV	Γ_R MeV	Reaction	Collab.
$K^*(\frac{3}{2}^-)$	896.1 ± 0.27	50.7 ± 0.6	AVERAGE	PDG 00

Table 10: $M_{15}^{K\pi}(1431 - 1434)$–Storey.

$R(IJ')$	M_R MeV	Γ_R MeV	Reaction	Collab.
$K^*(\frac{1}{2}^0)$	1436 ± 8	196 ± 45	$pp \rightarrow pfp_pK^+K^-\pi^+\pi^-$	OMEG 98
1415 ± 25	330 ± 50	$K^-p \rightarrow K^-\pi^+n$	RVUE 97	
~ 1430	~ 200	$K^-p \rightarrow K^0\pi^-p$	HBC 84	
$K^*(\frac{1}{2}^+)$	1431.2 ± 1.8 ± 0.7	116.5 ± 3.6 ± 1.7	$K^-p \rightarrow K^-\pi^+n$	LASS 88
1432.4 ± 1.3	109 ± 5 ± 1.7	AVERAGE	PDG 00	

Table 11: $M_{17}^{K\pi}(1578 - 1582)$–Storey.

$R(IJ')$	M_R MeV	Γ_R MeV	Reaction	Collab.
$K_0^*(\frac{1}{2}^-)$	~ 1580	~ 110	K^-p	AACH3 79

Table 12: $M_{18}^{K\pi}(1654 - 1657)$–Storey.

$R(IJ')$	M_R MeV	Γ_R MeV	Reaction	Collab.
$K^*(\frac{1}{2}^-)$	1677±10±32	205±16±34	$K^-p \rightarrow K^-\pi^+n$	LASS 88
~ 1650	250-300	$K^+p \rightarrow K^+\pi^+n$	ASPK 78	

Table 13: $M_{19}^{K\pi}(1730 - 1733)$–Storey.

$R(IJ')$	M_R MeV	Γ_R MeV	Reaction	Collab.
$K_1^*(\frac{1}{2}^-)$	1740±14±15	171±42±20	$K^-p \rightarrow K^-\pi^-n$	LASS 87
1720±10±15	187±31±20	$K^-p \rightarrow K^0\pi^-p$	LASS 89	

Table 14: $M_{22}^{K\pi}(1960 - 1963)$–Storey.

$R(IJ')$	M_R MeV	Γ_R MeV	Reaction	Collab.
$K_0^*(\frac{1}{2}^0)$	1945±10±20	201±34±79	$K^-p \rightarrow K^-\pi^+n$	LASS 88

Table 15: $M_{23}^{K\pi}(2038 - 2040)$–Storey.

$R(IJ')$	M_R MeV	Γ_R MeV	Reaction	Collab.
$K_1^*(\frac{1}{2}^4^+)$	2039 ± 10	189 ± 35	$K^+p \rightarrow K^0\pi^+p$	SPEC 82
2062±14±13	221±48±27	$K^-p \rightarrow K^-\pi^+n$	LASS 86	
2045 ± 9	198 ± 30	AVERAGE	PDG 00	

Table 16: $M_{27}^{K\pi}(2352 - 2354)$–Storey.

$R(IJ')$	M_R MeV	Γ_R MeV	Reaction	Collab.
$K_5^*(\frac{1}{2}^5^-)$	2382±14±19	178±37±32	$K^-p \rightarrow K^-\pi^+n$	LASS 86
Table 17: Kaluza-Klein tower of KK excitations in $K2\pi$-system and experimental data.

n	$M_{n}^{02\pi^{0}}$ MeV	$M_{n}^{2\pi^{0}}$ MeV	$M_{n}^{K^{+2\pi^{-}}}$ MeV	$M_{n}^{K^{+2\pi^{+}}}$ MeV	$M_{exp}^{K^{2\pi}}$ MeV
1	781.81	790.61	777.83	786.62	790.61
2	821.41	829.27	817.47	825.33	821.41
3	880.17	886.98	876.30	883.10	880.17
4	952.39	958.24	948.60	954.45	952.39
5	1034.08	1039.15	1030.39	1035.46	1034.08
6	1122.70	1127.14	1119.13	1123.57	1122.70
7	1216.60	1220.53	1213.15	1217.08	1216.60
8	1314.67	1318.18	1311.35	1314.86	1314.67
9	1416.10	1419.27	1412.91	1416.08	1416.10
10	1520.32	1523.21	1517.25	1520.14	1520.32
11	1626.87	1629.51	1623.93	1626.57 1629 ± 7	1626.87
12	1735.39	1737.83	1732.57	1735.01 1730 ± 20	1735.39
13	1845.59	1847.86	1842.89	1845.15	1845.59
14	1957.24	1959.36	1954.65	1956.76	1957.24
15	2070.14	2072.12	2067.66	2069.63	2070.14
16	2184.13	2186.00	2181.74	2183.60	2184.13
17	2299.07	2300.83	2296.78	2298.53	2299.07
18	2414.85	2416.51	2412.64	2414.30	2414.85
19	2531.36	2532.93	2529.23	2530.81	2531.36
20	2648.51	2650.01	2646.46	2647.96	2648.51
21	2766.25	2767.68	2764.27	2765.70	2766.25
22	2884.50	2885.86	2882.59	2883.96	2884.50
23	3003.21	3004.51	3001.36	3002.67	3003.21
24	3122.33	3123.58	3120.55	3121.80	3122.33
25	3241.82	3243.03	3240.10	3241.30	3241.82
26	3361.65	3362.81	3359.98	3361.14	3361.65
27	3481.78	3482.90	3480.16	3481.28	3481.78
28	3602.19	3603.27	3600.62	3601.70	3602.19
29	3722.85	3723.89	3721.32	3722.37	3722.85
30	3843.73	3844.74	3842.25	3843.26	3843.73
Table 18: $M_{11}^{K^2\pi}(1624 - 1630)$–Storey.

$R(IJ^P)$	M_R MeV	Γ_R MeV	Reaction	Collab.
$K(\frac{1}{2}^+)$	1629 ± 7	16^{+19}_{-16}	$\pi^- p \rightarrow K_S^0 \pi^+ \pi^-$	BC 98

Table 19: $M_{12}^{K^2\pi}(1733 - 1738)$–Storey.

$R(IJ^P)$	M_R MeV	Γ_R MeV	Reaction	Collab.
$K_2(\frac{1}{2}^-)$	1730 ± 20, 1740, 1745 ± 20, 1765 ± 40	210 ± 30, 130, 100 ± 50, 90 ± 70	$K^+ d$, $K^- d \rightarrow K 2\pi d$, $K^- p$, $K^+ p \rightarrow K 2\pi N$	DBC 72, DBC 71, HBC 70, HBC 71

Table 20: $M_{13}^{K^2\pi}(1843 - 1848)$–Storey.

$R(IJ^P)$	M_R MeV	Γ_R MeV	Reaction	Collab.
$K_1(\frac{1}{2}^+)$	~ 1840	~ 250	$K^- p \rightarrow 3K p$	OMEG 83
$K_2(\frac{1}{2}^-)$	~ 1840	~ 230	$K^- p \rightarrow K^- 2\pi p$	CNTR 81
$K_2(\frac{1}{2}^-)$	~ 1800	~ 250	$K^- p \rightarrow K^- 2\pi p$	CNTR 81
Table 21: Kaluza-Klein tower of KK excitations in $K\rho$-system and experimental data.

n	$M_n^{K^+\rho}$ MeV	$M_n^{K^0\rho}$ MeV	$M_{\exp}^{K\rho}$ MeV
1	1269.82	1265.83	
2	1278.30	1274.36	1273 ± 7
3	1292.29	1288.42	
4	1311.59	1307.81	
5	1335.93	1332.24	
6	1365.00	1361.43	
7	1398.46	1395.01	1402 ± 7
8	1435.99	1432.67	1414 ± 15
9	1477.24	1474.05	∼ 1460
10	1521.89	1518.82	
11	1569.63	1566.69	
12	1620.19	1617.37	
13	1673.29	1670.58	
14	1728.70	1726.10	1717 ± 27
15	1786.20	1783.71	1776 ± 7
16	1845.59	1843.20	
17	1906.71	1904.41	
18	1969.39	1967.18	1973 ± 8 ± 25
19	2033.48	2031.35	
20	2098.86	2096.81	
21	2165.42	2163.44	
22	2233.05	2231.14	
23	2301.66	2299.82	
24	2371.16	2369.38	
25	2441.49	2439.76	
26	2512.57	2510.90	
27	2584.34	2582.72	
28	2656.75	2655.18	
29	2729.75	2728.22	
30	2803.29	2801.81	
Table 22: $M_2^{K\rho}(1274 - 1278)$–Storey.

$R(IJ^P)$	M_R MeV	Γ_R MeV	Reaction	Collab.
$K_1(\frac{3}{2}^1+)$	1275 ± 10	75 ± 15	$K^-p \to \Xi(K\pi\pi)^+$	HBC 78
	1273 ± 7	90 ± 20	AVERAGE	PDG 00

Table 23: $M_7^{K\rho}(1395 - 1398)$–Storey.

$R(IJ^P)$	M_R MeV	Γ_R MeV	Reaction	Collab.
$K_1(\frac{3}{2}^1+)$	1392 ± 18	276 ± 65	$K^-p \to K^0\pi^+\pi^-n$	HBC 82
	1402 ± 7	174 ± 13	AVERAGE	PDG 00

Table 24: $M_8^{K\rho}(1433 - 1436)$–Storey.

$R(IJ^P)$	M_R MeV	Γ_R MeV	Reaction	Collab.
$K^*(\frac{1}{2}^1-)$	1420±7±10	240±18±12	$K^-p \to K^0\pi^+\pi^-n$	LASS 87
	1414 ± 15	232 ± 21	AVERAGE	PDG 00

Table 25: $M_9^{K\rho}(1474 - 1477)$–Storey.

$R(IJ^P)$	M_R MeV	Γ_R MeV	Reaction	Collab.
$K(\frac{1}{2}^0-)$	~ 1460	~ 260	$K^-p \to K^-2\pi p$	CNTR 81

Table 26: $M_{14}^{K\rho}(1726 - 1729)$–Storey.

$R(IJ^P)$	M_R MeV	Γ_R MeV	Reaction	Collab.
$K^*(\frac{1}{2}^1-)$	1735±10±20	423±18±30	$K^-p \to K^0\pi^+\pi^-n$	LASS 87
	1717 ± 27	322 ± 110	AVERAGE	PDG 00

Table 27: $M_{15}^{K\rho}(1784 - 1786)$–Storey.

$R(IJ^P)$	M_R MeV	Γ_R MeV	Reaction	Collab.
$K^*_3(\frac{1}{2}^3-)$	1776 ± 7	159 ± 21	AVERAGE	PDG 00

Table 28: $M_{18}^{K\rho}(1967 - 1969)$–Storey.

$R(IJ^P)$	M_R MeV	Γ_R MeV	Reaction	Collab.
$K^*_3(\frac{3}{2}^2-)$	1973±8±25	373±33±60	AVERAGE	PDG 00
Table 29: Kaluza-Klein tower of KK excitations in $K\eta$-system and experimental data.

n	$M_{n\eta}^{KK\eta}$ MeV	$M_{n\eta}^{KK+\eta}$ MeV	$M_{exp}^{KK\eta}$ MeV
1	1048.27	1044.29	
2	1058.09	1054.15	
3	1074.26	1070.39	
4	1096.50	1092.71	
5	1124.44	1120.76	
6	1157.67	1154.10	
7	1195.74	1192.30	
8	1238.21	1234.89	
9	1284.64	1281.45	
10	1334.61	1331.55	
11	1387.75	1384.81	
12	1443.70	1440.88	
13	1502.14	1499.44	
14	1562.80	1560.21	
15	1625.43	1622.94	
16	1689.82	1687.43	
17	1755.76	1753.46	1749 ± 10
18	1823.08	1820.88	
19	1891.65	1889.53	
20	1961.34	1959.29	
21	2032.01	2030.04	
22	2103.59	2101.68	
23	2175.97	2174.13	
24	2249.08	2247.30	
25	2322.86	2321.13	
26	2397.23	2395.56	
27	2472.15	2470.53	
28	2547.57	2546.00	
29	2623.44	2621.92	
30	2699.73	2698.25	
Table 30: $M_{17}^{K\eta}(1753 - 1756)$–Storey.

$R(J^{P})$	M_R MeV	Γ_R MeV	Reaction	Collab.
$K_3^*(\frac{1}{2}^-)$	1749 ± 10	193^{+51}_{-37}	$K^- p \rightarrow K^- \eta p$	LASS 88