BLENDING OF CEPHEIDS IN M33

JOY M. CHAVEZ,1, LUCAS M. MACRI, AND ANNE PELLERIN2

George P. and Cynthia Woods Mitchell Institute in Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A&M University, 4242 TAMU, College Station, TX 77843-4242, USA; jchavez@gemini.edu

Received 2012 April 26; accepted 2012 August 5; published 2012 September 13

ABSTRACT

A precise and accurate determination of the Hubble constant based on Cepheid variables requires proper characterization of many sources of systematic error. One of these is stellar blending, which biases the measured fluxes of Cepheids and the resulting distance estimates. We study the blending of 149 Cepheid variables in M33 by matching archival Hubble Space Telescope data with images obtained at the Wisconsin–Indiana–Yale–NOAO (WIYN) 3.5 m telescope, which differ by a factor of 10 in angular resolution. We find that 55% ± 4% of the Cepheids have no detectable nearby companions that could bias the WIYN V-band photometry, while the fraction of Cepheids affected below the 10% level is 73% ± 4%. The corresponding values for the I band are 60% ± 4% and 72% ± 4%, respectively. We find no statistically significant difference in blending statistics as a function of period or surface brightness. Additionally, we report all the detected companions within 2′′ of the Cepheids (equivalent to 9 pc at the distance of M33) which may be used to derive empirical blending corrections for Cepheids at larger distances.

Key words: galaxies: individual (M33) – stars: variables: Cepheids

Online-only material: color figures, machine-readable and VO tables

1. INTRODUCTION

An accurate and precise measurement of the Hubble constant at the few-percent level imposes significant constraints on the equation of state of dark energy and other cosmologically relevant parameters (Komatsu et al. 2011). The next generation of surveys aimed at improving our understanding of dark energy will benefit from an even tighter constraint on H0 (Weinberg et al. 2012) than the present bounds of 3.4% (Riess et al. 2011).

Cosmological applications of the extragalactic distance scale (Freedman & Madore 2010) primarily rely on the period–luminosity relation of Cepheid variables (hereafter the “Leavitt law”; Leavitt & Pickering 1912) as the primary distance indicator. The upcoming Gaia mission (Prusti 2011) is expected to deliver a sub-percent calibration of the Leavitt law in the Milky Way (Windmark et al. 2011), which could in turn enable a 1% measurement of H0 if all sources of systematic error are properly accounted for.

One of these sources of systematic error occurs when two or more neighboring (but not necessarily physically associated) stars fall within the same resolution element of an instrument and cannot be fit with separate point-spread functions (PSFs). This effect is commonly referred to as blending and it is different from crowding or confusion noise, which results in improper PSF fitting and/or inaccurate background subtraction due to a very high stellar density. An extreme example of blending in the absence of crowding is a Cepheid in a binary system located in a low surface brightness environment. Blending will bias the measured flux of a Cepheid toward larger values, shifting the Leavitt law to brighter magnitudes and leading to systematically shorter distances and larger values of H0. Extreme blends can be readily identified by their effects on Cepheid colors and/or amplitude ratios and such tests are routinely carried out (Pellerin & Macri 2011; Scowcroft et al. 2009; Macri et al. 2006). However, low-level blends are unlikely to be identified by such cuts and may affect studies of the metallicity dependence of the Leavitt law (another source of systematic uncertainty) since they could mimic the photometric changes expected from differences in chemical abundances.

The Local Group galaxy M33 is a good testbed for studies of Cepheid systematics thanks to its relative proximity (D = 895–965 kpc; Bonanos et al. 2006; Pellerin & Macri 2011), moderate inclination angle (i = 55°; Ho et al. 1997), and recent episodes of star formation which have resulted in large numbers of Cepheids throughout its disk (Hartman et al. 2006; Pellerin & Macri 2011). Scowcroft et al. (2009) used M33 Cepheids to study the “metallicity effect” of the Leavitt law, motivated by the large abundance gradient inferred from H II regions (Zaritsky et al. 1994; Magrini et al. 2007, 2010). However, other studies (Urbanaj et al. 2005; Bresolin et al. 2010; Bresolin 2011) have determined a much shallower abundance gradient, which would make the metallicity effect considerably harder to measure.

The disk of M33 has been extensively imaged by the Hubble Space Telescope (HST) using the Wide-Field Planetary Camera 2 (WFPC2) and the Advanced Camera for Surveys (ACS). The angular resolution of HST at optical wavelengths is 10–15 times better than the seeing at a good site on the surface of the Earth. Thus, a comparison of HST and ground-based images of the same Cepheids in M33 can yield useful insights into the nature of blending for more distant galaxies observed only with Hubble.

Previous studies of the influence of blends on the Cepheid distance scale, based on comparisons between ground-based and HST images of nearby galaxies, were carried out by Mochejska et al. (2000) in M31, Mochejska et al. (2001) in M33, and by Bresolin et al. (2005) in NGC 300. In the case of M33, Mochejska et al. (2001) used HST/WFPC2 images and the Cepheid sample of the DIRECT survey (Macri et al. 2001). During the intervening decade, there have been numerous additional HST observations of M33 using both WFPC2 and the ACS, which enable us to study more Cepheids than Mochejska et al. 2001. However, low-level blends are unlikely to be identified by such cuts and may affect studies of the metallicity dependence of the Leavitt law (another source of systematic uncertainty) since they could mimic the photometric changes expected from differences in chemical abundances. (continued)
et al. (2001) and, in the case of ACS, with greater depth and finer pixel scale. Furthermore, we rely on a new synoptic survey of M33 (Pellerin & Macri 2011) carried out at the Wisconsin–Indiana–Yale–NOAO (WIYN) 3.5 m telescope with more Cepheids and better angular resolution than the DIRECT catalog.

Pellerin & Macri (2011) carried out extensive simulations based on the M33 ACS images to quantify the photometric bias due to crowding in their ground-based photometry. Considering the range of magnitudes and surface brightnesses spanned by the M33 Cepheid sample, they found that crowding bias increased as a function of magnitude but did not exhibit a dependence on surface brightness. Our paper complements their study by quantifying the photometric bias due to blending for Cepheids in M33.

We describe in Section 2 the data used in this paper and the photometry we measured; Section 3 describes the method used to quantify the level of blending; we discuss the results in Section 4 and compare them to previous work in Section 5. Our concluding remarks and suggestions for future work can be found in Section 6.

2. DATA AND ANALYSIS

We based our analysis on the Cepheid sample published by the M33 Synoptic Stellar Survey (Pellerin & Macri 2011). We identified these variables in HST images and searched for companions unresolved in the ground-based data. We calculated blending statistics based on these companions.

2.1. Cepheid Sample

Our analysis is based on the sample of Cepheids listed in Table 3 of Pellerin & Macri (2011). The ground-based observations and analysis are described in detail in that publication, which we briefly summarize here. Data from the DIRECT survey of M33 (Macri et al. 2001) were combined with new images obtained at the 3.5 m WIYN telescope with the Mini-Mosaic (MiniMo) camera to detect 563 Cepheids ranging in period from 2 to 110 days. The typical FWHM of the WIYN images was 0.75′′, sampled at a plate scale of 0.28 pixel−1. The photometry and astrometry were calibrated using the catalogs of Massey et al. (2006).

2.2. HST Data

We queried the Hubble Legacy Archive (HLA) and the Mikulski Archive for Space Telescopes (MAST)3 for HST images of M33 obtained with either WFPC2 or ACS which had overlap with the WIYN images of Pellerin & Macri (2011). We selected observations with multiple exposures to allow for cosmic-ray removal. We also required a minimum of 100 s of total exposure time, to ensure a depth that would enable the detection of faint companions around the Cepheids. We further restricted our study to fields that were imaged in V (HST filters F555W or F606W) and I (HST filter F814W).

The HST fields contained 149 (∼25%) of the Cepheids listed in Pellerin & Macri (2011). The locations of these fields are shown in Figure 1 and listed in Table 1. The table also contains references to previously published analyses of the data. Except for two ACS fields, all images were acquired on a single epoch and we therefore only have imaging of the Cepheids at a random phase within their pulsation cycle.

The ACS images were reprocessed through the MAST On-The-Fly-Recalibration pipeline to apply the most up-to-date calibrations, while the WFPC2 images had already been reprocessed using the final set of calibration frames in mid-2009 by STScI (Gonzaga et al. 2010). We downloaded the reprocessed images and used MultiDrizzle (Koekemoer et al. 2003) to remove cosmic rays, correct for geometric distortions in the cameras, and co-add multiple observations into master images.

2.3. Photometry and Cepheid Search

We performed PSF photometry using DAOPHOT and ALLSTAR (Stetson 1987). We derived model PSFs using grids of artificial stars created with TinyTim (Krist & Hook 2004) for the appropriate bandpasses, cameras, and CCDs. We ran the FIND algorithm twice on each image, removing all stars found on the first iteration before proceeding to the second one. This increased the detection efficiency of faint stars, such as possible companions of a Cepheid. ALLSTAR was run one final time on the merged star list. Based on the observed luminosity functions, the photometry is complete to $V \sim 25.5$, $I \sim 24.7$ and $V \sim 24.3$, $I \sim 23$ mag for ACS and WFPC2, respectively.

Instrumental magnitudes were converted to the HST VEGAMAG system using the equations listed in Appendix D of Sirianni et al. (2005) and the coefficients listed in Table 10 of Sirianni et al. (2005) and Table 2 of Dolphin (2009) for ACS and WFPC2, respectively.

Given the vastly different resolution and depth of the HST and WIYN images, the former had significantly larger stellar densities. Furthermore, the astrometric solution provided by the automated STScI pipeline is only accurate to a few arcseconds (Koekemoer et al. 2005). We obtained a rough initial match between HST and WIYN images using the brightest few hundred stars in common. Once the gross astrometric offset had been removed, we matched the complete star lists using DAOMATCH and DAO MASTER (Stetson 1993) and refined the astrometric solution of the HST images. Cepheids were then selected based on the coordinates tabulated by Pellerin & Macri (2011). We visually inspected every Cepheid to ensure that the star in the HST frame was indeed a match to the same star in WIYN image. This process helped to identify and correct a few erroneous matches where a faint star close to the Cepheid was originally identified as the variable in the HST frame. Lastly, we estimated the disk surface brightness by averaging the background flux values reported by ALLSTAR for stars within 7″ of each Cepheid.

3. BLENDING CALCULATION

We quantify the level of blending following the prescription of Mochejska et al. (2000),

$$ S_F = \sum (f_i)/f_C, \quad (1) $$

where S_F is the total flux contribution from the companions relative to the Cepheid in filter F, f_i is the flux of an individual companion star located within the critical radius, and f_C is the flux of the Cepheid.

We calculated the values of S separately for V and I, using a critical radius of 0.375″, which is the average value of the half-width at half-maximum (HWHM) of the WIYN PSF. We

3 The HLA and MAST are operated by the Space Telescope Science Institute (STScI).
Figure 1. Footprints of the HST fields used in this study overlaid on a DPOSS-II image of M33. The blue rectangles are from ACS, and the white boxes are from WFPC2. The field label names end in “a” for ACS and “w” for WFPC2.

(A color version of this figure is available in the online journal.)
averaged the Cepheid magnitudes and the exposure time. If the exposures were of similar depth, we gave preference to the image with the deepest case of Cepheids present in multiple fields obtained with the given its finer spatial sampling and increased depth. In the images, we calculated blending values using the ACS data (2011), the each Cepheid, we list the ID and period from Pellerin & Macri (2000), although Mochejska et al. (2001) raise it to 6%. In practice, stars with $f_i \sim 0.05 f_C$ (or $\Delta mag \sim 3.25$) are near the completeness limit of the ACS images relative to the faintest, shortest-period Cepheids, which have $V \sim 22.5, I \sim 21.5$ mag.

In the case of Cepheids present in both ACS and WFPC2 images, we calculated blending values using the ACS data given its finer spatial sampling and increased depth. In the case of Cepheids present in multiple fields obtained with the same camera, we gave preference to the image with the deepest exposure time. If the exposures were of similar depth, we averaged the Cepheid magnitudes and the S values.

Figure 2 shows a comparison of HST and WIYN images for three Cepheids with different values of S. Each panel is 8'' on a side, centered on a Cepheid. Circles with radii of 0.375 (typical WIYN HWHM) are drawn around the variables. The Cepheids were chosen to show the range of blending values, from $S_F =$ 0 (top panel) to $S_F \sim 0.6$ (bottom panel). The left panels show the WIYN V image, while the center and right panels show the V and I HST images.

The photometry and blending values are listed in Table 2. For each Cepheid, we list the ID and period from Pellerin & Macri (2011), the V magnitude and its uncertainty, the value of S_V and its uncertainty, and the corresponding information for the I band. Additionally, we tabulate the V and I surface brightness values and the designations of the WIYN and HST fields where each Cepheid is located. The uncertainties in S_F values are calculated by propagating the reported ALLSTAR photometric uncertainties through Equation (1). HST field codes are based on the field name listed in the first column of Table 1, followed by a letter to identify the camera (“a” for ACS, “w” for WFPC2).

Figure 3 shows a color–magnitude diagram of the Cepheids and all companions located within the critical radius. As a reference, we also plot 3.5% of all the stars with $I < 26$ mag detected in the V and I ACS frames. The companions span a broad range of colors and magnitudes, but most are associated with the red giant branch and the red clump. These findings are not directly applicable to all Cepheid hosts, since different star formation histories will alter the relative contributions of the upper main sequence and the red clump.

We used the HST star lists obtained in Section 2.3 to tabulate all companions within a 2'' radius of each Cepheid, presented in Table 3. Companions are labeled using the Cepheid ID from Table 2 and are numbered in increasing order of radial distance from the variable. We list the x-, y-, and radial distance from the Cepheid (in arcseconds), the V magnitude and uncertainty, and the I magnitude and uncertainty. Some companions were only detected in one band.

Field	R.A.	Decl.	Camera	Filters	Exposure Time (s)	Prop.	Number of Cepheids	Comments
				#1	#2			
				#1	#2			
				#				

Note. C99: Chandar et al. 1999; C01: Chandar et al. 2001; K02: Kim et al. 2002; P07: Park & Lee 2007; S06: Sarajedini et al. 2006; S09: San Roman et al. 2009; W09: Williams et al. 2009.
This extended data set can be used for a variety of future studies. For example, comparisons of HST data with ground-based observations of M33 at different angular resolutions can be easily carried out by selecting the appropriate critical radius. Likewise, the sensitivity of blending values to the faint-companion cutoff limit can be explored. Lastly, suitable scaling of fluxes and angular separations can yield simulated HST images of Cepheids in similar environments out to $D \sim 35$ Mpc, at which point $2''$ at the distance of M33 would be equivalent to the angular resolution of HST in the V band.

Table 2

Cepheid Properties (Abridged)

ID	P	V	σ_V	S_V	σ_{S_V}	I	σ_I	S_I	σ_{S_I}	SB_V	SB_I	Field
J013332.36+302819.8	2.689	21.635	0.038	0.000	0.000	21.008	0.032	0.000	0.000	21.92	21.26	m5a
J013324.20+302248.9	2.695	21.620	0.038	0.073	0.005	21.369	0.029	0.155	0.008	21.51	20.96	q1a
J013316.88+302157.9	3.187	22.737	0.106	0.316	0.087	21.839	0.055	0.000	0.000	21.55	21.01	q1a
J013309.06+302354.6	3.260	22.215	0.067	0.000	0.000	21.750	0.043	0.000	0.000	21.94	21.39	q2a
J013329.46+303614.3	3.760	21.520	0.102	0.000	0.000	20.893	0.125	0.000	0.000	21.41	20.56	m1w
J013312.30+302355.7	4.053	21.457	0.072	0.089	0.041	20.787	0.062	0.000	0.000	21.87	21.33	q2a

(This table is available in its entirety in machine-readable and Virtual Observatory (VO) forms in the online journal. A portion is shown here for guidance regarding its form and content.)

4. RESULTS

We find mean blending values of $S_V = 0.096 \pm 0.015$ and $S_I = 0.083 \pm 0.013$ and median values of zero for both bands. Figure 4 shows cumulative distributions of blending values, while Figures 5 and 6 show the distribution of blending values as a function of period and surface brightness, respectively. Table 4 lists the fractions of Cepheids that meet several blending criteria as a function of period and surface brightness. We calculated the uncertainty in each fraction using the binomial distribution.
approximation

\[\sigma(f) = \sqrt{f(1-f)/N}, \]

where \(f \) is the fraction value and \(N \) is the number of Cepheids meeting a particular set of criteria. We cross-checked the validity of this approximation by performing 100,000 bootstrap resamplings with replacement, which yielded the same uncertainties. Lastly, we tested the sensitivity to outliers in the distributions by performing the same number of jackknife resamplings, keeping 90% of the original sample. The derived fractions remained stable at the 2% level.

The fraction of Cepheids with no blending is marginally lower (~1σ) for Cepheids with \(P < 10 \) days than for ones with \(P > 10 \) days. Such a trend might be expected because the shorter-period, less luminous Cepheids can be affected (at a fixed flux ratio) by a larger fraction of disk stars. However, the difference vanishes when comparing the statistics of Cepheids affected at the 10% level. There is no significant difference in the statistics of Cepheids located in areas with “high” or “low” surface brightness.

We also examined the effect of blends on the color of the Cepheids by calculating the value of \(S_V - S_I \) for all Cepheids with non-zero values of either \(S_V \) or \(S_I \). The resulting histogram, presented in Figure 7, shows that most blends do not appreciably change the color of the Cepheids: \(\langle S_V - S_I \rangle = 0.03 \pm 0.27 \).

5. COMPARISON WITH PREVIOUS WORK

Mochejska et al. (2001) analyzed WFPC2 images of M33 Cepheids discovered by the DIRECT project. We recalculated our blending values using the parameters adopted in that paper: a critical radius of 0.455 and a companion flux cutoff of 6%. The results are tabulated in the rightmost column of Table 4. We also compared the individual blending values measured for 33
variables in common in \(V \) and 28 in \(I \). As seen in Figure 8, there is good agreement with \(\langle \Delta SF \rangle = -0.02 \pm 0.13 \).

The statistics derived using the criteria of Mochejska et al. (2001) are in excellent agreement with the values presented in their paper. For example, the fraction of Cepheids with \(SV < 0.1 \) becomes 45% \(\pm \) 4%, compared to their value of \(\sim 43\% \pm 5\% \) (inferred from their Figure 4 and Table 2). We also obtain identical values for the mean and median blending levels (24% \(\pm \) 3% and 13%) and reproduce the difference in blending statistics for “short”- and “long”-period Cepheids. Clearly, the differences between the two sets of values presented in Table 4 are due to the 2\(\times \) smaller critical radius adopted in our study, and emphasize the importance of angular resolution.

We also compared the disk surface brightness values we derived with those determined by Mochejska et al. (2001) and found agreement at the level of 0.2 mag/\(\square'' \). We note that our surface brightness calculation is based on the average background level of the \(HST \) images within 7\('' \) of the Cepheid, while Mochejska et al. (2001) used the DIRECT ground-based images to calculate the sky in an annulus about 6\('' \) from the Cepheid. Regardless of the method used to measure the background or the blending criteria adopted, there is little (if any) correlation between blending fraction and surface brightness for the range of values considered here.

Bresolin et al. (2005) calculated blending statistics for a small sample of 16 Cepheids in NGC 300 using \(HST/ACS \) images.
They found a median value of 0% and an average value of 7%. Our results are consistent with their findings.

6. CONCLUDING REMARKS

We have presented a survey of Cepheids in M33 and their companions within 2″, as resolved by HST with the ACS and WFPC2 cameras. We calculated the flux contribution of the companions when they are blended (unresolved) in ground-based images with a seeing of 0″.75. We find that more than half of the Cepheids in our sample exhibit no blending at V and I, regardless of period or surface brightness. The majority of companion stars are located in the red giant branch and do not significantly alter the derived color of the Cepheids.

We plan to combine the ground-based photometry of Pellerin & Macri (2011) with the blending values derived in this paper to investigate possible biases in the determination of distance moduli and “metallicity corrections” when using samples that lack such higher-resolution imaging. Additionally, our compilation of companions may be useful in deriving empirical photometric bias corrections for Cepheids in more distant galaxies studied with the HST, provided the variables are located in similar environments to the M33 sample.

J.M.C. acknowledges support by the Department of Education through the GAANN Fellowship Program. A.P. and
L.M.M. acknowledge financial support through a Texas A&M University faculty startup fund. We thank Professors Jianhua Huang and Lan Zhou for useful discussions on statistical techniques and the referee, Dr. Barry Madore, for his very helpful comments.

Based on observations made with the NASA/ESA Hubble Space Telescope and obtained using the Mikulski Archive for Space Telescopes and the Hubble Legacy Archive (HLA) at STScI. STScI is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS 5-26555. The HLA is a collaboration between STScI/NASA, the Space Telescope European Coordinating Facility (ST-ECF/ESA), and the Canadian Astronomy Data Centre (CADC/NRC/CSA).

Facilities: HST (WFPC2, ACS), WIYN (MiniMo)

REFERENCES

Bonanos, A. Z., Stanek, K. Z., Kudritzki, R. P., et al. 2006, ApJ, 652, 313
Bresolin, F. 2011, ApJ, 730, 129
Bresolin, F., Pietrzyński, G., Gieren, W., & Kudritzki, R.-P. 2005, ApJ, 634, 1020
Bresolin, F., Stasińska, G., Vilchez, J. M., Simon, J. D., & Rosolowsky, E. 2010, MNRAS, 404, 1679
Chandar, R., Bianchi, L., & Ford, H. C. 1999, ApJS, 122, 431
Chandar, R., Bianchi, L., & Ford, H. C. 2001, A&A, 366, 498
Dolphin, A. E. 2009, PASP, 121, 655
Freedman, W. L., & Madore, B. F. 2010, ARA&A, 48, 673
Gonzaga, S., Biretta, J., et al. 2010, HST WFPC2 Data Handbook (Baltimore, MD: Space Telescope Science Institute)
Hartman, J. D., Bersier, D., Stanek, K. Z., et al. 2006, MNRAS, 371, 1405
Ho, L. C., Filippenko, A. V., & Sargent, W. L. W. 1997, ApJS, 112, 315
Kim, M., Kim, E., Lee, M. G., Sarajedini, A., & Geisler, D. 2002, AJ, 123, 244
Koekemoer, A. M., Fruchter, A. S., Hook, R. N., & Hack, W. 2003, in The 2002 HST Calibration Workshop, Hubble after the Installation of the ACS and the NICMOS Cooling System, ed. S. Arribas, A. Koekemoer, & B. Whitmore (Baltimore, MD: Space Telescope Science Institute), 337
Koekemoer, A. M., McLean, B., McMaster, M., & Jenkner, H. 2005, Demonstration of a Significant Improvement in the Astrometric Accuracy of HST Data (Instrument Science Rep. ACS 2005-06; Baltimore, MD: Space Telescope Science Institute)
Komatsu, E., Smith, K. M., Dunkley, J., et al. 2011, ApJS, 192, 18
Krist, J., & Hook, R. 2004, The Tiny Tim User’s Guide (Baltimore, MD: Space Telescope Science Institute)
Leavitt, H. S., & Pickering, E. C. 1912, Harv. Coll. Obs. Circ., 17, 1
Macri, L. M., Stanek, K. Z., Bersier, D., Greenhill, L. J., & Reid, M. J. 2006, ApJ, 652, 1133
Macri, L. M., Stanek, K. Z., Sasselov, D. D., Krockenberger, M., & Kaluzny, J. 2001, AJ, 121, 870
Magrini, L., Stanghellini, L., Corbelli, E., Galli, D., & Villaver, E. 2010, A&A, 512, A63
Magrini, L., Vilchez, J. M., Mampaso, A., Corradi, R. L. M., & Leisy, P. 2007, A&A, 470, 865
Massey, P., Olsen, K. A. G., Hodge, P. W., et al. 2006, AJ, 131, 2478
Mochejska, B. J., Macri, L. M., Sasselov, D. D., & Stanek, K. Z. 2000, AJ, 120, 810
Mochejska, B. J., Macri, L. M., Sasselov, D. D., & Stanek, K. Z. 2001, arXiv:astro-ph/0103440
Park, W.-K., & Lee, M. G. 2007, AJ, 134, 2168
Pellerin, A., & Macri, L. M. 2011, ApJS, 193, 26
Prusti, T. 2011, in EAS Publications Series, Vol. 45, Gaia: At the Frontiers of Astrometry, ed. C. Turon, F. Meynadier, & F. Arenou (Cambridge: Cambridge Univ. Press), 9
Riess, A. G., Macri, L., Casertano, S., et al. 2011, ApJ, 730, 119
San Roman, I., Sarajedini, A., Garnett, D. R., & Holtzman, J. A. 2009, ApJ, 699, 839
Sarajedini, A., Barker, M. K., Geisler, D., Harding, P., & Schommer, R. 2006, AJ, 132, 1361
Scowcroft, V., Bersier, D., Mould, J. R., & Wood, P. R. 2009, MNRAS, 396, 1287
Sirianni, M., Jee, M. J., Benítez, N., et al. 2005, PASP, 117, 1049
Stetson, P. B. 1987, PASP, 99, 191
Stetson, P. B. 1993, in IAU Colloq. 136, Stellar Photometry—Current Techniques and Future Developments, ed. C. J. Butler & I. Elliott (Cambridge: Cambridge Univ. Press), 291
Urbaneja, M. A., Herrero, A., Kudritzki, R.-P., et al. 2005, ApJ, 635, 311
Weinberg, D. H., Mortonson, M. J., Eisenstein, D. J., et al. 2012, Phys. Rep., in press (arXiv:1201.2434)
Williams, B. F., Dalcanton, J. J., Dolphin, A. E., Holtzman, J., & Sarajedini, A. 2009, ApJ, 695, L15
Windmark, F., Lindgren, L., & Hobbs, D. 2011, A&A, 530, A76
Zaritsky, D., Kennicutt, R. C., Jr., & Huchra, J. P. 1994, ApJ, 420, 87