6 A Brief History of Microwave Weed Control Research

6.1 Introduction

Interest in the effects of high frequency electromagnetic waves on biological materials dates back to the late 19th century (Ark & Parry, 1940), while interest in the effect of high frequency waves on plant material began in the 1920s (Ark & Parry, 1940). Many of the earlier experiments on plant material focused on the effect of radio frequencies (RFs) on seeds (Ark & Parry, 1940). In many cases, short exposure resulted in increased germination and vigour of the emerging seedlings (Nelson, Ballard, Stetson, & Buchwald, 1976; Nelson & Stetson, 1985; Tran, 1979); however, long exposure usually resulted in seed death (Ark & Parry, 1940; Bebawi et al., 2007; Brodie et al., 2009).

Davis et al. (1971; 1973) were among the first to study the lethal effect of microwave heating on seeds. They developed a set of prototypes, called “Zappers”, which they tested in the field for their Company and federal and state researchers. Their final prototype, designated Zapper III, underwent tests to provide the data necessary for the construction of the first semi-commercial prototype. In October 1971, the Company purchased all proprietary rights to a discovery made at Texas A&M University concerning the toxic effects of microwaves on plants Davis et al. (1971; 1973).

6.2 Pioneering Work

The discovery was the result of the efforts by Drs Merkle, Wayland, and Davis, who were originally professors in the Soil and Crop Sciences, Physics, and Range Science Departments, respectively, of Texas A&M University. The Company’s first field prototype was named Zapper I. Zapper I was used in a cooperative testing program with US federal and state agricultural research agencies and with growers in Texas, California, Florida, New Mexico, Washington, Idaho, Nebraska, Arkansas, North Carolina, Georgia and Michigan. The Zapper I test program proved that microwaves could safely treat soil and be an effective herbicide. In addition, microwaves also proved to be toxic to nematodes, certain fungi, and to soil-borne insect pests. Further, the phenomenon of growth stimulation was first observed in plants which germinated in treated soil (Davis, 1974).

Following the initial Zapper I program, the Company built a second prototype, the Zapper III (Figure 6.1), which was used to determine the cost of Zapper treatments required to destroy various types of weed seeds under different soil conditions. The Zapper III program also experimented with different equipment configurations to determine the most efficient system design for commercial use (Davis, 1974). Both systems operated at a frequency of 2.45 GHz.
A meta-study of published data (Menges & Wayland, 1974; Wayland, Merkle, Davis, Menges, & Robinson, 1975) reveals that microwave treatment of emerged weed plants, of eleven species, can be described by equations of the form (Figure 6.2):

\[S = a \cdot \text{erfc}[b(\Psi - c)] \] (6.1)

When the weed species are separated into categories of broad leafed and grasses, it appears that grasses require slightly more microwave energy to achieve treatment efficacy, compared with broad leafed plants (Figure 6.3).

It also became apparent that microwave treatment of the soil could inactivate weed seeds at various depths (Menges & Wayland, 1974; Wayland et al., 1975). The efficacy of the treatment depended on the soil type, the seed burial depth, the microwave treatment energy density and whether the soil had been irrigated prior to treatment (Figure 6.4). Irrigation prior to treatment resulted in shallower microwave heating; therefore, seed which were buried deeper in the soil profile were less affected by the microwave heating (Menges & Wayland, 1974; Wayland et al., 1975). The consensus from this data is that 300 – 500 J cm\(^{-2}\) of microwave energy density at the soil surface, can control weeds and their seeds in the top 4 – 6 cm of soil. This is equivalent to between 30 and 50 GJ ha\(^{-1}\) of microwave energy, making microwave treatment a little more energy expensive than steam treatment (see Chapter 4).

It is unclear, from the available literature, why this promising technology did not become more widely available as a commercial system. It is apparent that the ideas generated by this early work interest persisted into the 1990’s, because Nelson (1996) used a theoretical argument to dismiss microwave soil treatment as a viable prospect for weed management. The high energy input required to achieve good weed and seed control was certainly a strong argument against the adoption of this technology.
Figure 6.2: Response of 11 species of weed to microwave energy (Sources: Menges & Wayland, 1974; Wayland et al., 1975).

Figure 6.3: Response of grasses (blue) and broad-leafed weeds (red) to microwave energy (Sources: Menges & Wayland, 1974; Wayland et al., 1975).
Despite this, then there has been ongoing research interest in microwave soil treatment and weed management. Table 6.1 lists a subset of the papers that have been published on these and related topics. The consensus from these studies is that: microwave treatment can kill plants; moderate microwave treatment can break dormancy in some hard-seeded species; and high energy microwave treatment can kill seeds in the soil.

Figure 6.4: Response weed seeds in the soil to microwave energy, as a function of applied energy density, burial depth and irrigation status (Sources: Menges & Wayland, 1974; Wayland et al., 1975).
Table 6.1: Literature addressing the application of microwave technology to seed and weed treatment.

Paper Title	Reference
Douglas-fir tree seed germination enhancement using microwave energy	(Jolly & Tate, 1971)
Microwave processing of tree seeds	(Kashyap & Lewis, 1974)
Increasing legume seed-germination by VHF and microwave dielectric heating	(Nelson et al., 1976)
Effects of low-level microwave radiation on germination and growth rate in corn seeds	(Bigu-Del-Blanco, Bristow, & Romero-Sierra, 1977)
Effects of Microwave Energy on the Strophiole, Seed Coat and Germination of Acacia Seeds	(Tran, 1979)
The effect of microwave-energy on germination and dormancy of wild oat seeds	(Lal & Reed, 1980)
The Effect of Externally Applied Electrostatic Fields, Microwave Radiation and Electric Currents on Plants and Other Organisms, with Special Reference to Weed Control	(Diprose, Benson, & Willis, 1984)
Control of field weeds by microwave radiation	(Vela-Múzquiz, 1984)
Effect of microwave irradiation on germination and initial growth of mustard seeds	(Rao, Chakravarthy, & Panda, 1989)
Inhibition of weed seed germination by microwaves	(Barker & Craker, 1991)
A possibility of correction of vital processes in plant cell with microwave radiation	(Petrov, Moisheva, & Morozova, 1991)
Microwave irradiation of seeds and selected fungal spores	(Cavalcante & Muchovej, 1993)
Response surface models to describe the effects and phytotoxic thresholds of microwave treatments on barley seed germination and vigour	(Stephenson, Kushalappa, Raghavan, & Mather, 1996)
Energy Efficient Soil Disinfestation by Microwaves	(Mavrogianopoulos, Frangoudakis, & Pandelakis, 2000)
Microwave effects on germination and growth of radish \(Raphanus sativus L.\) seedlings	(Scialabba & Tamburello, 2002)
Report on the Development of Microwave System for Sterilisation of Weed Seeds: Stage I – Feasibility	(Advanced Manufacturing Technologies, 2003)
Design, construction and preliminary tests of a microwave prototype for weed control	(Zanche, Amista, Baldoin, Beria, & Giubbolini, 2003)
Thermal effects of microwave energy in agricultural soil radiation	(Velazquez-Marti & Gracia-Lopez, 2004)
Influence of low-frequency and microwave electromagnetic fields on seeds	(Kalinin, Boshkova, Panchenko, & Kolomiichuk, 2005)
An improved microwave weed killer	(Vidmar, 2005)
The long-standing interest in applying microwave technology to weed and soil treatment has resulted in many attempts to capture the intellectual property through various patents (Tab. 6.2). It is evident that some of these are the same invention; however, they have been patented in different parts of the world. Patents have included two main methods of soil treatment: in-situ treatment systems that do not disturb the soil (Clark & Kissell, 2003; Haller, 2002; Joines, 2009); and tunnel treatment systems which use some mechanical method to remove the top soil, pass it through a microwave treatment chamber or tunnel and then return the soil to its original position after treatment (Wall, 2009). The in-situ treatment systems use various antenna systems or multi-mode cavities (somewhat like half of a microwave oven that is open to the soil) to apply the microwave energy (For example: Clark & Kissell, 2003; Haller, 2002). Several of these patents claim to control other crop pests as well as weeds and their seeds in the soil (Grigorov, 2003; Haller, 2002; Joines, 2009). There are also several companies that have developed microwave based weed management technologies, but have chosen not to apply for a patent to protect their inventions. There will be others that the authors are not aware of. Some of these
companies have developed mature technologies; however most have systems that are in the developmental stage.

6.4 Conclusion

It is clear from the number of papers, patents and other evidence that the basic principle of microwave weed management is of considerable interest and is well understood. Several system designs have been developed and protected; however, there is still scope to develop novel microwave applicator designs that better couple the microwave energy into the soil and weed plants. There is also opportunity to develop and implement better energy control systems that could reduce the energy required to achieve effective soil and weed treatment and automate the weed management process.

On the more cautionary side, in a theoretical argument based on the dielectric and physical properties of seeds and soils, Nelson (1996) demonstrated that using microwaves to selectively heat seeds in the soil “cannot be expected.” He stated that seed susceptibility to damage from microwave treatment is a purely thermal effect, resulting from soil heating and thermal conduction into the seeds. He concluded that microwave weed management was not viable; however, his arguments ignored any effects of herbicide resistance on crop yields.

Table 6.2: Patents which address or are associated with microwave weed and soil treatment.

Publication Number	Priority Date	Filing Date	Date of Publication	Title
EP 0413847 A1	17/10/1986	24/08/1989	27/02/1991	Microwave/steam sterilizer.
US4861956 A	17/10/1986	29/08/1989		
WO1991002548 A1	24/08/1989	7/03/1991		
US5287818 A	11/05/1993	11/05/1993	22/02/1994	Method for killing soil pathogens with microwave energy
US5141059 A	27/02/1991	27/02/1991	25/08/1992	Method and apparatus for controlling agricultural pests in soil
CA2299301 A1	16/08/1996	15/08/1996	26/02/1998	Method and device for weed control
DE69625089 D1	16/08/1996	9/01/2003		
DE69625089 T2	16/08/1996	4/09/2003		
EP0928134 A1	16/08/1996	14/07/1999		
EP0928134 B1	16/08/1996	27/11/2002		
US6237278 B1	16/08/1996	29/05/2001		
WO1998/007314 A1	20/02/1995	16/08/1996	26/02/1998	
Table 6.2: Patents which address or are associated with microwave weed and soil treatment.

Publication Number	Priority Date	Filing Date	Date of Publication	Title
DE 19850195 A1	22/10/1998	22/10/1999	4/05/2000	Method and device for killing wood-destroying animals
DE 59915075 D1	22/10/1998	22/10/1999	1/02/2007	Procede et dispositif pour exterminer des parasites animaux dans le bois
EP 1158853 A1	22/10/1999	5/12/2001		Verfahren und vorrichtung zum abtöten von tierischen schädlingen in holz
WO2000/024247 A1	22/10/1999	4/05/2000		Microwave energy applicator
CA2372471A1	4/04/2000	3/04/2001	18/10/2001	Method and system for exterminating pests, weeds and pathogens
CA2372471C	3/04/2001	11/12/2007		Procede et systeme d'extermination d'animaux nuisibles, de plantes nuisibles et d'agents pathogenes
DE60014392D1	3/04/2001	1/12/2005		Verfahren und system zur vernichtung von ungeziefer, unkraut und pathogenen
DE60014392T2	3/04/2001	27/07/2006		Microwave disinestation system for biological pests
EP1272032A1	3/04/2001	8/01/2003		Système de désinfection à micro-ondes pour lutte biologique
EP1272032B1	3/04/2001	26/10/2005		Mikrowellendes Infektionsystem für biologische Schädlingsbekämpfung
US20030037582A1	3/04/2001	27/02/2003		Method and apparatus [device] for controlling pests found in the ground, in particular termites
US6647661B2	3/04/2001	18/11/2003		Procede et dispositif pour lutter contre les animaux nuisibles vivant dans le sol, en particulier les termites
WO2001/076362 A1	3/04/2001	18/10/2001		Verfahren und Vorrichtung zur Bekämpfung von im Erdboden hausenden Schädlingen, insbesondere Termiten
US 6401637 B1	8/01/2001	15/06/2001	11/06/2002	Microwave disinestation system for biological pests
US 20020090268	15/06/2001	11/07/2002		Système de désinfection à micro-ondes pour lutte biologique
EP 1224863 A2	15/11/2001	15/11/2001	24/07/2002	Microwave disinestation system for biological pests
EP 1224863 A3	15/11/2001	21/09/2005		Système de désinfection à micro-ondes pour lutte biologique
US20040009092A1	15/07/2002	15/01/2004		Microwave disinestation system for biological pests
CA 2483749 A1	28/03/2002	27/03/2003	9/10/2003	Method and apparatus [device] for controlling pests found in the ground, in particular termites
CN 1642414 A	27/03/2003	20/07/2005		Procede et dispositif pour lutter contre les animaux nuisibles vivant dans le sol, en particulier les termites
DE 10213983 C1	28/03/2002	13/11/2003		Verfahren und Vorrichtung zur Bekämpfung von im Erdboden hausenden Schädlingen, insbesondere Termiten
EP 1487263 A1	27/03/2003	22/12/2004		Microwave disinestation system for biological pests
US 20050039379 A1	27/09/2004	24/02/2005		Système de désinfection à micro-ondes pour lutte biologique
WO2003/081999 A1	27/03/2003	9/10/2003		Microwave disinestation system for biological pests
Table 6.2: Patents which address or are associated with microwave weed and soil treatment.

Publication Number	Priority Date	Filing Date	Date of Publication	Title
US20030215354 A1	17/05/2002	16/09/2002	20/11/2003	Systems and methods for in situ soil sterilization, insect extermination and weed killing.
WO2003/099004 A2	4/10/2002	4/12/2003		
WO2003/099004 A3	4/10/2002	17/06/2004		
US20060186115A1	11/01/2005	11/01/2006	24/08/2006	Microwave system and method for controlling the sterilization and infestation of crop soils.
US20090232602A1	22/09/2009	17/09/2009		
US7601936B2		13/10/2009		
US201220091123A1		19/04/2012		
US20080149625A1	25/10/2006	25/10/2006	26/06/2008	Device for soil sterilization, insect extermination, and weed killing using microwave energy.
US7560673B2		25/10/2006	14/07/2009	
WO2008057215A2	24/10/2007	15/05/2008		A device and method for soil sterilization, insect extermination, and weed killing using microwave energy.
WO2008057215A3	24/10/2007	24/07/2008		
US 20130212928A1	17/02/2012	13/02/2013	22/08/2013	Apparatus for using microwave energy for insect and pest control and methods thereof.
US 20150101239A1	18/12/2014	16/04/2015		
US 8943744 B2	13/02/2013	3/02/2015		
WO2013/123089 A1	13/02/2013	22/08/2013		

6.5 References

Advanced Manufacturing Technologies. (2003). Report on the Development of Microwave System for Sterilisation of Weed Seeds: Stage I - Feasibility. Retrieved from Wollongong, NSW.

Anand, A., S, N., Joshi, D. K., Verma, A. P-S., & Kar, A. (2008). Microwave seed treatment reduces hardseededness in Stylosanthes seabra and promotes redistribution of cellular water as studied by NMR relaxation measurements. Seed Science and Technology, 37(1), 88-97.

Anonymous. (1975). Prize Winning Products from the IR-100 Show. Popular Science, January, 46.
Ark, P. A., & Parry, W. (1940). Application of High-Frequency Electrostatic Fields in Agriculture. The Quarterly Review of Biology, 15(2), 172-191.

Barker, A. V., & Craker, L. E. (1991). Inhibition of weed seed germination by microwaves. Agronomy Journal, 83(2), 302-305.

Bebawi, F. F., Cooper, A. P., Brodie, G. I., Madigan, B. A., Vitelli, J. S., Worsley, K. J., & Davis, K. M. (2007). Effect of microwave radiation on seed mortality of rubber vine (Cryptostegia grandiflora R.Br.), parthenium (Parthenium hysterophorous L.) and bellyache bush (Jatropha gossypiifolia L.). Plant Protection Quarterly, 22(4), 136-142.

Bigu-Del-Blanco, J., Bristow, J. M., & Romero-Sierra, C. (1977). Effects of low-level microwave radiation on germination and growth rate in corn seeds. Proceedings of the IEEE, 65(7), 1086-1088.

Brodie, G., Harris, G., Pasma, L., Travers, A., Leyson, D., Lancaster, C., & Woodworth, J. (2009). Microwave soil heating for controlling ryegrass seed germination. Transactions of the American Society of Agricultural and Biological Engineers, 52(1), 295-302.

Caivalcante, M. J. B., & Muchovej, J. J. (1993). Microwave irradiation of seeds and selected fungal spores. Seed Science and Technology, 21(1), 247-253.

Clark, W. J., & Kissell, C. W. (2003). United States Patent No. 20030215354A1.

Davis, F. (1974). New techniques in weed control via microwaves. Paper presented at the Western Session - Southeastern Nurserymen’s Conferences Nacogdoches, Texas.

Davis, F. S., Wayland, J. R., & Merkle, M. G. (1971). Ultrahigh-Frequency Electromagnetic Fields for Weed Control: Phytotoxicity and Selectivity. Science, 173(3996), 535-537.

Davis, F. S., Wayland, J. R. and Merkle, M. G. (1973). Phytotoxicity of a UHF Electromagnetic Field. Nature, 241(5387), 291-292.

Diprose, M. F., Benson, F. A., & Willis, A. J. (1984). The Effect of Externally Applied Electrostatic Fields, Microwave Radiation and Electric Currents on Plants and Other Organisms, with Special Reference to Weed Control. Botanical Review, 50(2), 171-223.

Grigorov, G. R. (2003). United States Patent No. 20030037482A1.

Haller, H. E. (2002). United States Patent No. 20020090268A1.

Hamada, E. (2007). Effects of microwave treatment on growth, photosynthetic pigments and some metabolites of wheat. Biologia Plantarum, 51(2), 343-345.

Joines, W. T. (2009). United States Patent No. US7601936B2.

Jolly, J. A., & Tate, R. L. (1971). Douglas- fir tree seed germination enhancement using microwave energy. Journal of Microwave Power, 6(2), 125-130.

Kalinin, L. G., Boshkova, I. L., Panchenko, G. I., & Kolomiichuk, S. G. (2005). Influence of low-frequency and microwave electromagnetic fields on seeds. Biophysics, 50(2), 334-337.

Kashyap, S. C., & Lewis, J. E. (1974). Microwave processing of tree seeds. Journal of Microwave Power, 9(2), 99-107.

Lal, R., & Reed, W. B. (1980). The effect of microwave-energy on germination and dormancy of wild oat seeds. Canadian Agricultural Engineering, 22(1), 85-88.

Mavrogianopoulos, G. N., Frangoudakis, A., & Pandelakis, J. (2000). Energy Efficient Soil Disinfection by Microwaves. Journal of Agricultural Engineering Research, 75(2), 149-153

Menges, R. M., & Wayland, J. R. (1974). UHF electromagnetic energy for weed control in vegetables. Weed Science, 22(6), 584-590.

Monteiro, J. H., Mendiratta, S. K., & Capitão, A. (2008). Effect of microwave fields on the germination period and shoot growth rate of some seeds. Paper presented at the International Conference of Recent Advances in Microwave Theory and Applications, Jaipur, Rajasthan.

Nelson, S. O. (1996). A review and assessment of microwave energy for soil treatment to control pests. Transactions of the ASAE, 39(1), 281-289.

Nelson, S. O., Ballard, L. A. T., Stetson, L. E., & Buchwald, T. (1976). Increasing legume seed-germination by VHF and microwave dielectric heating. Transactions of the ASAE, 19(2), 369-371.
References

Nelson, S. O., & Stetson, L. E. (1985). Germination responses of selected plant species to RF electrical seed treatment. Transactions of the ASAE, 28(6), 2051-2058.

Petrov, I. Y., Moiseeva, T. V., & Morozova, E. V. (1991). A possibility of correction of vital processes in plant cell with microwave radiation. Paper presented at the 1991 IEEE International Symposium on Electromagnetic Compatibility, Cherry Hill, NJ, USA.

Rao, Y. V. S., Chakravarthy, N. V. K., & Panda, B. C. (1989). Effect of microwave irradiation on germination and initial growth of mustard seeds. Indian Journal of Agronomy, 34(3), 378-379.

Sartorato, I., Zanin, G., Baldoin, C., & De Zanche, C. (2006). Observations on the potential of microwaves for weed control. Weed Research, 46(1), 1-9.

Scialabba, A., & Tamburello, C. (2002). Microwave effects on germination and growth of radish (Raphanus sativus L.) seedlings. Acta Botanica Gallica, 149(2), 113-123.

Sera, B., Stranak, V., Sery, M., Tichy, M., & Spatenka, P. (2008). Germination of Chenopodium Album in Response to Microwave Plasma Treatment. Plasma Science and Technology, 10(4), 506-511.

Skiles, J. W. (2006). Plant response to microwaves at 2.45 GHz. Acta Astronautica, 58(5), 258-263. doi:DOI: 10.1016/j.actaastro.2005.12.007

Stephenson, M. M. P., Kushalappa, A. C., Raghavan, G. S. V., & Mather, D. E. (1996). Response surface models to describe the effects and phytotoxic thresholds of microwave treatments on barley seed germination and vigour. Seed Science and Technology, 24(1), 49-65.

Tran, V. N. (1979). Effects of Microwave Energy on the Strophiole, Seed Coat and Germination of Acacia Seeds. Australian Journal of Plant Physiology, 6(3), 277-287.

Vela-Múzquiz, R. (1984). Control of field weeds by microwave radiation. Paper presented at the II International Symposium on Soil Disinfection.

Velazquez-Marti, B., & Gracia-Lopez, C. (2004). Thermal effects of microwave energy in agricultural soil radiation. International Journal of Infrared and Millimeter Waves, 25(7), 1109-1122.

Velazquez-Marti, B., Gracia-Lopez, C., & de la Puerta, R. (2008). Work conditions for microwave applicators designed to eliminate undesired vegetation in a field. Biosystems Engineering, 100(1), 31-37.

Velazquez-Marti, B., Gracia-Lopez, C., & Marzal-Domenech, A. (2006). Germination Inhibition of Undesirable Seed in the Soil using Microwave Radiation. Biosystems Engineering, 93(4), 365-373.

Vidmar, M. (2005). An improved microwave weed killer. Microwave Journal, 48(10), 116-126.

Wall, G. W. (2009). United States Patent No. US7560673B2.

Wayland, J., Merkle, M., Davis, F., Menges, R. M., & Robinson, R. (1975). Control of weeds with UHF electromagnetic fields. Unkrautbekämpfung mit elektromagnetischen UHF-Feldern., 15(1), 1-5.

Zanche, C. d., Amista, F., Baldoin, C., Beria, S., & Giubbolini, L. (2003). Design, construction and preliminary tests of a microwave prototype for weed control. Rivista di Ingegneria Agraria, 34(2), 31-38.