A Note on Banach Principle for \(JW \)-algebras

GENADY Ya. GRABARNIK \(^1\) AND ALEXANDER A. KATZ \(^2\)

\(^1\) T. J. Watson IBM Research Center
19 Skyline Drive, Hawthorne, NY 10510
USA
genady@us.ibm.com

\(^2\) Department of Mathematics and Computer Science
St. John’s University
300 Howard Avenue, DaSilva Hall 314, Staten Island, NY 10301
USA
katza@stjohns.edu

Abstract: - In the sequel we establish the Banach Principle for semifinite \(JW \)-algebras without direct summand of type \(1_2 \), which extends the recent results of Chilin and Litvinov on the Banach Principle for semifinite von Neumann algebras to the case of \(JW \)-algebras.

Key-Words: - von Neumann algebras, Jordan operator algebras, \(JW \)-algebras, Banach Principle, \(* \)-algebra of \(\tau \)-measurable operators affiliated to a semifinite von Neumann algebra, Jordan algebra of \(\tau \)-measurable operators affiliated to a semifinite \(JW \)-algebra.

2000 Mathematics Subject Classification: 46L51, 46L70.

1 Introduction

Let \((\Omega, \Sigma, \mu)\) be a probability space. Denote by \(\mathcal{L} = \mathcal{L}(\Omega, \mu) \) the set of all (classes of) complex-valued measurable functions on \(\Omega \). Let \(\tau_\mu \) be the measure topology on \(\mathcal{L} \). The classical Banach Principle (see for example [13]) can be stated as follows:

Classical Banach Principle. Let \((X, \| \cdot \|)\) be a Banach space, and let \(a_n : (X, \| \cdot \|) \to (\mathcal{L}, \tau_\mu) \) be a sequence of continuous linear maps. Consider the following properties:

(I) \ the sequence \(\{a_n(x)\} \) converges almost everywhere (a.e.) for every \(x \in X \);

(II) \(\hat{a}(x)(\omega) = \sup_n |a_n(x)(\omega)| < \infty \) a.e. for every \(x \in X \);

(III) (II) holds, and the maximal operator \(\hat{a} : (X, \| \cdot \|) \to (\mathcal{L}, \tau_\mu) \) is continuous at \(0 \);

(IV) the set \(\{x \in X : \{a_n(x)\} \text{ converges a.e.} \} \) is closed in \(X \).

Then the implications \((I) \Rightarrow (II) \Rightarrow (III) \Rightarrow (IV) \) are always true. If in addition, there exists a dense subset \(D \subset X \), such that the sequence \(\{a_n(x)\} \) converges a.e. for every \(x \in D \), then all four conditions \((I) - (IV) \) above are equivalent.

The Banach Principle above was often applied in the case \(X = (L^p, \| \cdot \|_p) \), where \(1 \leq p < \infty \). However, in the case \(p = \infty \) the uniform topology on \(L^\infty \) appears to be too strong for the classical Banach Principle to be effective in \(L^\infty \). For example, one can notice that continuous functions are not uniformly dense in \(L^\infty \).

Bellow and Jones [9], using the fact that the unit ball \(L^\infty_1 = \{x \in L^\infty : \|x\|_\infty \leq 1\} \) is complete in \(\tau_\mu \), suggested to consider the measure topology on \(L^\infty \) by replacing \((X, \| \cdot \|) \) by \((L^\infty_1, \tau_\mu) \). Since \(L^\infty_1 \) is not a linear space, geometrical complications occur, which, however, were successfully resolved in [9].

Non-commutative versions of Banach Principle for measurable operators affiliated to a semifinite von Neumann algebra were established in [14] and [18]. These results were extended to the case of semifinite JBW-algebras in [16] and [17], following ideas introduced in [1], [2], [4], [5], [10]. A non-commutative version of the Banach Principle for \(L^\infty \) was proposed by Chilin and Litvinov in [12].

The present notes are devoted to a presentation of an
2 Preliminaries

Let M be a semifinite von Neumann algebra of bounded operators acting on a complex Hilbert space H ([11]), and let $B(H)$ be the algebra of all bounded operators on H. A densely defined closed operator x on H is called affiliated to M if $y'z = zy'$, with $z \in M$ ([19], [21]). Denote by $P(M)$ the complete lattice of projections in M. Let τ be a faithful normal semifinite trace on A. Let τ be the set of all τ-measurable operators affiliated to τ-measurable operators affiliated to M. Denote by $e^1 = 1 - e$ the orthogonal complemented projection for the projection $e \in P(M)$. An operator x affiliated to M is called τ-measurable if, for arbitrary $\epsilon > 0$ and $\delta > 0$, where $\| \cdot \|$ stands for the operator norm on $B(H)$. The topology t_τ defined on $L(M, \tau)$ by the family $\{ V(\epsilon, \delta) : \epsilon > 0, \delta > 0 \}$ of neighborhoods of zero is called the measure topology ([19], [21]).

Theorem 1. $(L(M, \tau), t_\tau)$ is a complete metrizable topological $*$-algebra.

Proof. See [19], [21] for details.

Proposition 1. For any $d > 0$, the sets $M_d = \{ x \in M : \| x \| \leq d \}$, $M_d^* = \{ x \in M_d : x = x^* \}$ are t_τ-complete.

Proof. See [12] for details.

A sequence $\{ y_n \} \subset L(A, \tau)$ is said to converge almost uniformly (a.u.) to $y \in L(M, \tau)$ if $\forall \epsilon > 0$, $\exists \epsilon > 0$, $\epsilon > 0$, $\exists e \in P(M)$ with $\tau(e^+) < \epsilon$ such that $\| (y - y_n)e \| \to 0$.

Proposition 2. For $\{ y_n \} \subset L(M, \tau)$ the conditions

(i) $\{ y_n \}$ converges a.u. in $L(M, \tau)$;

(ii) $\forall \epsilon > 0$, $\exists e \in P(M)$ with $\tau(e^+) < \epsilon$ such that $\| (y_m - y_n)e \| \to 0$ as $m, n \to \infty$;

are equivalent.

Proof. See [12] for details.

The following theorem is a non-commutative version of Riesz theorem ([13]).

Theorem 2. If $\{ y_n \} \subset L(M, \tau)$ and $y = t_\tau - \lim_{n \to \infty} y_n$, then $y = a.u. - \lim_{k \to \infty} y_k$ for some subsequence $\{ y_n \} \subset \{ y_n \}$.

Proof. See [21] and [14] for details.

Let A be a semifinite JW-subalgebra of $B(H)_{sa}$ without a direct summand of type I_2 (see [15] and [20] for definitions), $P(A)$ be the complete lattice of projections in A, and τ be a faithful normal semifinite trace on A. Let $M = M(A)$ be the von Neumann enveloping algebra of the Jordan algebra A. Then τ can be uniquely extended to a faithful normal semifinite trace on M, for which we will use the same symbol τ (see [3], [6] and [8]). An operator x affiliated to A is called τ-measurable if $\forall \epsilon > 0$, $\exists e \in P(A)$ with $\tau(e^+) < \epsilon$ such that eH belongs to the domain of the operator x. Let $L(A, \tau)$ be the set of all τ-measurable operators affiliated to A.

Proposition 3. An operator $x \in L(M, \tau)_{sa}$ is affiliated to A iff $x \in L(A, \tau)$.

Proof. Follows from arguments in [20].

Theorem 3. $(L(A, \tau), t_\tau)$ is a complete topological Jordan subalgebra of $(L(M, \tau), t_\tau)_{sa}$.

Proof. A direct consequence of Theorem 1 and arguments in [20].

A sequence $\{ y_n \} \subset L(A, \tau)$ is said to converge bilaterally with square almost uniformly (b.s.a.u.) to $y \in L(M, \tau)$ if $\forall \epsilon > 0$, $\exists e \in P(A)$ with $\tau(e^+) < \epsilon$ such that $\| e(y - y_n)^2e \| \to 0$.

Proposition 4. For $\{ y_n \} \subset L(A, \tau) \subset L(M, \tau)$ the conditions:

(i) $\{ y_n \}$ converges a.u. in $L(M, \tau)$;

(ii) $\forall \epsilon > 0$, $\exists e \in P(M)$ with $\tau(e^+) < \epsilon$ such that $\| (y_m - y_n)e \| \to 0$ as $m, n \to \infty$;

(iii) $\{ y_n \}$ converges b.s.a.u. in $L(A, \tau)$;

(iv) $\forall \epsilon > 0$, $\exists e \in P(A)$ with $\tau(e^+) < \epsilon$ such that $\| e(y_m - y_n)^2e \| \to 0$ as $m, n \to \infty$;

are equivalent.

Proof. From $\| e(y_m - y_n)^2e \| = e(y_m - y_n)(y_m - y_n)e = e(y_m - y_n)^2e \to 0$ as $m, n \to \infty$.

□
\begin{align*}
-\| (y_m - y_n) e^* (y_m - y_n) e \| & \leq \| (y_m - y_n) e^* \| \cdot \| (y_m - y_n) e \| = \| (y_m - y_n) e \|^2, \\
\text{so we can see that b.s.a.u. fundamentalness of a sequence in a reversible JW-algebra ([15], [8]) is equivalent to a.u. fundamentalness of the same sequence in its von Neumann enveloping algebra } M = M(A). \\
\text{Thus the statement follows from Proposition 2 above.} \quad \square
\end{align*}

The Riesz theorem 2 above will take the following form.

Theorem 4. If \(\{ y_n \} \subset L(A, \tau) \) and \(y = t_x - \lim_{n \to \infty} y_n \), then \(y = \text{b.s.a.u.} - \lim_{n \to \infty} y_n \) for some subsequence \(\{ y_{n_k} \} \subset \{ y_n \} \).

Proof. Directly follows from Proposition 4 and Theorem 2 above. \(\square \)

3 Bilateral with square uniform equicontinuity for sequences of maps into \(L(A, \tau) \)

Let \(E \) be an arbitrary set. If \(a_n : E \to L(A, \tau) \), \(x \in E \), and \(b \in A \) such that \(\{ b(a_n(x))^2 b \} \subset A \).

Denote \(S(\{ a_n^2 \}, x, b) = \sup_n \| b(a_n(x))^2 b \| \).

The following Lemma is valid.

Lemma 1. Let \((X, +) \) be a semigroup, and \(a_n : X \to L(A, \tau) \) be a sequence of additive maps. Assume that \(x \in X \) is such that \(\forall \varepsilon > 0 \), \(\exists \{ x_k \} \subset X \), and \(p \in P(A) \) with \(\tau(p^*) < \varepsilon \), such that:

(i) \(\{ a_n(x_k + x_n) \} \) converges b.s.a.u. as \(n \to \infty \), for every \(k \in N \);

(ii) \(S(\{ a_n^2 \}, x_k, p) \to 0 \), as \(k \to \infty \).

Then the sequence \(\{ a_n(x) \} \) converges b.s.a.u. in \(L(A, \tau) \).

Proof. Follows from [12] and Proposition 4. \(\square \)

Let \((X, t) \) be a topological space, and \(a_n : X \to L(A, \tau) \) and \(x_0 \in X \) be such that \(a_n(x_0) = 0 \) for \(n \in N \). A sequence \(\{ a_n \} \) is called bilaterally with square equicontinuous at \(x_0 \) if \(\forall \varepsilon, \delta > 0 \), \(\exists \) a neighborhood \(U \) of \(x_0 \) in \((X, t) \) such that \(a_n U \subset V(\varepsilon, \delta) \cap L(A, \tau) \), \(n \in N \), i.e. \(\forall x \in U \) and \(\forall n \in N \) one can find a projection \(e = e(x, n) \in P(A) \) with \(\tau(e^*) < \varepsilon \), satisfying \(\| e(a_n(x))^2 e \| < \delta \).

Let now \(x_0 \in E \subset X \). A sequence \(\{ a_n \} \) is called bilaterally with square uniformly equicontinuous at \(x_0 \) on \(E \) if \(\forall \varepsilon, \delta > 0 \), \(\exists \) a neighborhood \(U \) of \(x_0 \) in \((X, t) \) such that \(\forall x \in E \cap U \), \(\exists e = e(x) \in P(A) \) with \(\tau(e^*) < \varepsilon \), satisfying \(S(\{ a_n^2 \}, x, e) < \delta \).

Proposition 5. Let the sequence \(\{ a_n \} \) and \(x_0 \in E \subset X \) be as above. Then,

(i) \(\{ a_n \} \) is equicontinuous at \(x_0 \) on \(E \) into \(L(M, \tau) \) iff it is bilaterally with square equicontinuous at \(x_0 \) on \(E \) into \(L(A, \tau) \);

(ii) \(\{ a_n \} \) is uniformly equicontinuous ([12]) at \(x_0 \) on \(E \) into \(L(M, \tau) \) iff it is bilaterally with square uniformly equicontinuous at \(x_0 \) on \(E \) into \(L(A, \tau) \).

Proof. Directly follows from Proposition 4 and arguments in [12]. \(\square \)

Theorem 1 and theorem 3 established that that \((L(M, \tau), t_e) \) is a complete metrizable topological *-algebra, and \((L(A, \tau), t_e) \) is a complete metrizable topological Jordan subalgebra of \((L(M, \tau), t_e)|_{S_t} \). In [12] it has been established that for any \(d > 0 \), the sets

\(M_d = \{ x \in M : \| x \| \leq d \} \), and

\(M_d^b = \{ x \in M_d : x = x^* \} \) are \(t_e \)-complete. It is easy to see that the set \(A_d = M_d^b \cap A \) is \(t_e \)-complete too.

Lemma 2. Let \(d > 0 \). If \(a_n : A \to L(A, \tau) \) be a sequence of additive maps. Then it is bilaterally with square uniformly equicontinuous at 0 on \(A_d \) iff it is uniformly equicontinuous at 0 on \(M_d \) (where in the second condition we mean that all maps are extended by linearity to the sequence of additive maps \(M \to L(M, \tau) \)).

Proof. Directly follows from Proposition 5, and arguments in [12] and [8]. \(\square \)

Lemma 3. Let a sequence \(a_n : A \to L(A, \tau) \) of additive maps be bilaterally with square uniformly equicontinuous at 0 on \(A_d \) for some \(0 < d \in \mathbb{R} \).

Then \(\{ a_n \} \) is as well bilaterally with square
uniformly equicontinuous at 0 on A, for every $0 < s \in \mathbb{R}$.

Proof. Directly follows from Lemma 2 and arguments in [12] and [8].

4 Main results

Let $0 \in E \subset A$. For a sequence $a_n : (A, t) \to L(A, \tau)$, consider the following conditions:

- Bilateral with square almost uniform convergence of $\{a_n(x)\}$ for every $x \in E$ (BSCNV (E));
- Bilateral with square uniform equicontinuity at 0 on E (BSCNT (E));
- Closedness in (E, t_s) of the set $C(E) = \{x \in E : \{a_n(x)\} \text{ converges b.s.a.u.} \}$ (BSCLS (E)).

In this section we will discuss relationships among the conditions (BSCNV (A_1)), (BSCNT (A_1)), and (BSCLS (A_1)).

Theorem 5. Let $a_n : A \to L(A, \tau)$ be a (BSCNV (A_1)) sequence of positive t_s-continuous linear maps with $a_n(1) \leq 1$, $n \in \mathbb{N}$. Then the sequence $\{a_n\}$ is also (BSCLS (A_1)).

Proof. Directly follows from arguments in [12] and the previous section.

Theorem 6. A (BSCNT (A_1)) sequence of additive maps $a_n : A \to L(A, \tau)$ is as well (BSCLS (A_1)).

Proof. Directly follows from arguments in [12] and the results of the previous section.

Theorem 7. Let $a_n : A \to L(A, \tau)$ be a sequence of positive t_s-continuous linear maps such that $a_n(1) \leq 1$, $n \in \mathbb{N}$. If a sequence $\{a_n\}$ is (BSCNV (D)) with D being t-dense in A, the conditions (BSCNV (A_1)), (BSCNV (A_1)), and (BSCLS (A_1)) are equivalent.

Proof. Directly follows from [12] and the results of the previous section.

5 Conclusion

Results of the present notes extend the results of [12] to the case of JW-algebras without direct summand of type I$_2$. In a new manuscript under preparation we extend these results to the case of bilateral almost uniform convergence on semifinite von Neumann algebras and semifinite JBW-algebras without direct summand of type I$_2$.

References:

[1] Ayupov, Sh.A., Statistical ergodic theorems in Jordan algebras. (Russian), Uspekhi Mat. Nauk., Vol. 36, No. 6 (222), 1981, pp. 201-202.
[2] Ayupov, Sh.A., Ergodic theorem in Jordan algebras of measurable elements. (English), An. Univ. Craiova Mat. Fiz.-Chim., Vol. 9, 1981, pp. 22-28.
[3] Ayupov, Sh.A., Jordan algebras of measurable elements. (Russian), Izv. Akad. Nauk UzSSR Ser. Fiz.-Mat. Nauk, No.5, 1981, pp. 3-6.
[4] Ayupov, Sh. A., Ergodic theorems for Markov operators in Jordan algebras, I. (Russian), Izv. Akad. Nauk UzSSR Ser. Fiz.-Mat. Nauk, No.3, 1982, pp. 12-15.
[5] Ayupov, Sh. A., Ergodic theorems for Markov operators in Jordan algebras, II. (Russian), Izv. Akad. Nauk UzSSR Ser. Fiz.-Mat. Nauk, No.5, 1982, pp. 7-12.
[6] Ayupov, Sh. A., Integration on Jordan algebras. (Russian), Izv. Akad. Nauk SSSR Ser. Mat., Vol. 47, No. 1, 1983, pp. 3-25.
[7] Ayupov, Sh. A., Locally measurable operators for JW-algebras and representations of Ordered Jordan algebras. (Russian), Izv. Akad. Nauk SSSR Ser. Mat., Vol. 48, No. 2, 1984, pp. 211-226.
[8] Ayupov, Sh. A., Classification and representations of Ordered Jordan algebras. (Russian), Fan, Tashkent, 1986, 124 pp.
[9] Bellow, A.; Jones, R.L., A Banach principle for L^∞. (English), Adv. Math., Vol. 36, 1996, pp. 155-172.
[10] Berdikulov, M.A., Spaces L_1 and L_2 for semifinite Jordan algebras. (Russian), Dokl. Akad. Nauk UzSSR, No. 6, 1982, pp. 3-4.
[11] Bratteli, O.; Robinson, D.N., Operator algebras and quantum statistical mechanics, I. C^*- and W^*-algebras, symmetry groups, decomposition of states. (English), 2ed edition, Texts and Monographs in Physics, Springer-Verlag, New York, 1987, 505 pp.
[12] Chilin, V.; Litvinov, S., A Banach principle for semifinite von Neumann algebras. (English), SIGMA Symmetry Integrability Geom. Methods Appl., Vol. 2, 2006, paper 023, 9 pp.
[13] Dunford, N.; Schwartz, J.T., Linear operators. Part I. General theory. (English), Reprint of the 1958 original. Wiley Classics Library. A
Wiley-Interscience Publications, John Wiley & Sons, Inc., New York, 1988, 858 pp.

[14] Goldstein, M.; Litvinov, S., Banach principle in the space of \(\tau \)-measurable operators. (English), *Studia Math.*, Vol. 143, 2000, pp. 33-41.

[15] Hanche-Olsen, H.; Størmer, E., *Jordan operator algebras*. (English), Monographs and Studies in Mathematics, Vol. 21, Pitman (Advanced Publishing Program), Boston, MA, 1984, 183 pp.

[16] Karimov, A.K.; Mukhamedov, F.M., The Banach Principle in Jordan algebras and its applications. (Russian), *Dopov. Nats. Akad. Nauk Ukr. Prorodozn. Tekh. Nauki*, No. 1, 2003, pp. 22-24.

[17] Karimov, A.K.; Mukhamedov, F.M., An individual ergodic theorem with respect to a uniform sequence and the Banach Principle in Jordan algebras. (Russian), *Mat. Sb.*, Vol. 194, No. 2, 2003, pp. 73-86; translation in *Sb. Math.*, Vol. 194, No. 1-2, 2003, pp. 237-250.

[18] Litvinov, S.; Mukhamedov, F., On individual subsequential ergodic theorem in von Neumann algebras. (English), *Studia Math.*, Vol. 145, 2001, pp. 55-62.

[19] Nelson, E., Notes on non-commutative integration. (English), *J. Func. Anal.*, Vol. 15, 1974, pp. 103-116.

[20] Sarymsakov, T.A.; Ayupov, Sh.A.; Khadzhiev, Dzh.; Chilin, V.I., *Ordered algebras*. (Russian), Fan, Tashkent, 1983, 303 pp.

[21] Segal, I., A non-commutative extension of abstract integration. (English), *Ann. of Math.*, Vol. 57, 1953, pp. 401-457.