Analysis of clinical characteristics, radiological predictors, pathological features and perioperative outcomes associated with perinephric fat adhesion degree

Junqiang Liu
First Affiliated Hospital of Dalian Medical University

Hongwei Huang
First Affiliated Hospital of Dalian Medical University

Tianyu Cao
First Affiliated Hospital of Dalian Medical University

Dikuan Liu
First Affiliated Hospital of Dalian Medical University

Zheng Zhu
University of California Davis

Jing Chen
First Affiliated Hospital of Dalian Medical University

Lina Wang
First Affiliated Hospital of Dalian Medical University

Huafeng Zong
Dalian Municipal Friendship Hospital

Xishuang Song
First Affiliated Hospital of Dalian Medical University

Xuejian Wang
First Affiliated Hospital of Dalian Medical University

Xinqing Zhu
First Affiliated Hospital of Dalian Medical University

Qiwei Chen
First Affiliated Hospital of Dalian Medical University

Sony Nahayo
First Affiliated Hospital of Dalian Medical University

Jianbo Wang
First Affiliated Hospital of Dalian Medical University

Deyong Yang
first affiliated hospital of dalian medical university
https://orcid.org/0000-0002-1643-5792

Research article

Keywords: Partial nephrectomy, Perinephric fat adhesion degree, Adherent perinephric fat, Renal cell carcinoma

Posted Date: August 26th, 2020

DOI: https://doi.org/10.21203/rs.2.21034/v2

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background

To assess the clinical characteristics, radiological predictors and pathological features of perinephric fat adhesion degree (PFAD) graded based on fixed criteria and to determine the impact of adherent perinephric fat (APF) on retroperitoneal laparoscopic partial nephrectomy (RLPN) outcomes.

Methods

84 patients undergoing RLPN were included and graded into 4 groups based on PFAD. Univariate and multivariate analysis were performed for clinical characteristics and radiological predictors of PFAD. Perioperative data was compared between APF groups and non-APF groups. Masson staining determined collagen fibers. Immunohistochemistry detected CD45 immune cells and CD34 vessels.

Results

20, 28, 18 and 18 patients were graded as normal perinephric fat (NPF), mild adherent perinephric fat (MiPF), moderate adherent perinephric fat (MoPF) and severe adherent perinephric fat (SPF), respectively. Multivariate analysis revealed that gender (p < 0.001), age (p = 0.003) and hypertension (p = 0.006) were significant clinical risk factors of PFAD, while radiological predictors included perinephric stranding (p = 0.001), posterior perinephric fat thickness (p = 0.009) and perinephric fat density (p = 0.02). APF was associated with drain output (P = 0.012) and accompanied by immune cells gathering in renal cortex near thickened renal capsule with many vessels.

Conclusions

Clinical characteristics and radiological predictors can evaluate PFAD and may assist guide preoperative surgical option. Pathological features of APF reflect decapsulation and bleeding during kidney mobilization at RLPN.

Background

For T1 stage renal cell carcinoma, especially for T1a tumors, partial nephrectomy is recognized as the standard operation whenever technically feasible. In RLPN, multiple radiological scores that may anticipate tumor complexity are proposed to describe the tumor-specific characteristics, but they neglect other factors. One of the potential patient-specific factors for surgical complexity is APF characterized by thickening and adhesion fat surrounding the kidneys. Due to lack of consensus objective grading criteria for the definition of APF, the incidence of APF varies greatly, ranging from 10.6% to 55.2% according to the previous studies. Most authors conducted a retrospective analysis based on the surgical records that whether adhesion. Zheng et al. graded APF according to the operative time for renal mobilization. Darane et al. graded APF based on the subjective surgical score for decapsulation during dissection. Despite these attempts to improve objectivity, there appears to be no clear criteria to grade PFAD.

So far, the pathogenesis of APF remains unclear. At present, the mainstream argues the APF has a positive correlation with chronic inflammation. And previous studies showed interleukins and adipocyte size were increase in APF. But these findings failed to reflect the clinical, radiological and surgical characteristics of APF.

Therefore, our study established objective criteria after multiple surgical videos were reviewed. The present study is to prospectively assess patients’ clinical characteristics and radiological predictors for PFAD graded according to objective criteria, and to analyze the impact of APF on RLPN outcomes and pathological features of APF. Moreover, we explored the relationship between clinical characteristics, imaging findings, and pathology of APF.

Methods

Patients and data collection

We performed a prospective study of patients who underwent RLPN for suspicious renal mass between March 2017 and March 2018 at the First Affiliated Hospital of Dalian Medical University. The study was conducted the guidelines of the Declaration of Helsinki after approval from our hospital’s institutional ethical committee. The clinical variables (age, gender, body mass index (BMI), preoperative eGFR, hypertension, diabetes, active smoking, and alcoholism), perioperative outcomes (operative time(OT), warm ischemia time (WIT), estimated blood loss (EBL), Transfusions, Clavien-Dindo classification (CDC), length of stay, drain output, postoperative gastrointestinal recovery time, postoperative fever, gastrointestinal discomfort and Change dressing frequency) and postoperative pathology results (Fuhrman Grade) were collected.

Criteria for PFAD grading

PFAD is divided into four grades (Figure 1). Normal perinephric fat (NPF): easily blunt dissection perinephric fat from kidney, less fibers connect renal capsule and fat; mild adherent perinephric fat (MiPF): easily blunt dissection, more fibers connect renal capsule and fat, and scattered flaky fat remains on the renal capsule after blunt dissection; moderate adherent perinephric fat (MoPF): part of perinephric fat adheres to the kidney and need sharp dissection; severe
adherent perinephric fat (SPF): All parts of perinephric fat adhere to the kidney and need sharp dissection or subcapsular dissection. NPF and MiPF were defined as non-APF, which did not complicate kidney mobilization while the latter two grades were APF.

Radiological data

All patients underwent preoperative abdominal computed tomographic (CT) imaging. The thickness of the medial, lateral, posterior and poster lateral perinephric fat were measured at the level of the renal vena cava according to the method described by Eisner et al. Perinephric fat density was a manually selected area close to the renal capsule, and Hounsfield units (HU) in this area were calculated automatically. Perinephric fat area was defined as the area between the medial and posterior renal fat thickness measurement line. Perinephric stranding was determined as Kim et al. described (Figure 2).

The preoperative CT was assessed by two urologists (J.L. and H.H.) blinded to patient PFAD status independently. If any differences between the two observers, the corresponding image was assigned to another highly qualified urologist (D.Y.) for final results.

Histological analysis

The isolated perinephric fat and adjacent kidney were taken from the NPF and the SPF, fixed in 4% formalin buffer, embedded in paraffin and cut into 4 mm thick serial sections. The slices were stained by Masson method. The primary antibodies against CD45 (1:200) and CD34 (1:200) were from Proteintech (CHINA). After staining, the samples were observed under the microscope. Light yellow, brown yellow or dark brown was supposed as the positive expression.

Statistical analysis

Continuous variables were reported as median (minimum and maximum) and qualitative variables as ratio (percentage). Univariate and ordered multivariate logistic regression analysis were performed to assess clinical characteristics and radiological predictors of PFAD. Chi-square test was used to compare categorical data and Mann–Whitney U test was used to compare non-normally distributed continuous variables and ordered-qualitative variables for perioperative outcomes or pathological grading of renal cell carcinoma (RCC) between the patients with APF and non-APF. A P values < 0.05 was considered statistically significant. All statistical analyses were performed using SPSS version 20.0.

Results

Patients’ clinical and radiographic characteristics

The clinical and radiographic characteristics in our study are summarized in Table 1. The PFAD was graded as none, mild, moderate and severe in 23.8%, 33.3%, 21.4% and 21.4% of our patient cohort, respectively. Of these, fifty-seven percent of the patients were over 55 years. The majority of patients were male (61.9%) and had malignant tumors (61.9%). The proportion of patients with malignant tumors and hypertension increases with the PFAD, as well as the median perinephric fat area and perinephric fat thickness. Only 2 patients had a history of chronic nephritis and both were in the SPF group. Proportion of patients with none, mild to moderate and severe perinephric stranding were 61.9%, 28.6% and 9.5%, respectively.

Clinical characteristics for PFAD

Table 2 highlights the clinical characteristics of PFAD. PFAD was significantly associated with clinical parameters including increasing age (OR 3.76, P = 0.003), male gender (OR 13.14, P < 0.001), and hypertension (OR 3.28, P = 0.006) on multivariable analysis, whereas other clinical variables were not associated with PFAD.

Radiological predictors for PFAD

As shown in Table 3, all of radiological variables were found to be predictive of PFAD (all P < 0.001) on univariable analysis. However, multivariate analysis showed that perinephric stranding (Type 1 OR 25.05, P = 0.001, Type 2 OR 35.21, P = 0.033), posterior fat thickness (OR 11.46, P = 0.009) and perinephric fat density (OR 1.08, P = 0.02) appeared to be most predictive of PFAD.

Impact of APF on Perioperative outcomes and pathological grading

The 84 cases comprised 36 with APF (MoPF or SPF) and 48 with non-APF (NPF or MiPF). Drain output is significantly higher in the APF group (169 vs 125.5 ml, P=0.012, see Table 4). Other intraoperative variables (OT, WIT, EBL and transfusions), postoperative variables (postoperative gastrointestinal recovery time, length of stay, postoperative fever, postoperative gastrointestinal discomfort, change dressing frequency and CDC), and Fuhrman grading were similar between the two groups (P >0.05).

Histological analysis

Masson staining showed that renal capsule was thin and had two layers in non-APF group. Our study defined the outer membrane-like structure as extracapsular fascia. Patients with APF lack of extracapsular fascia and the thickness of the renal capsule increased significantly (fig3. A). Immunohistochemistry showed that CD45+ immune cells accumulate in the renal cortex and infiltrate into renal capsule in the APF group (fig3. B). In patients with APF, the CD34+ vascular endothelial cells were significantly increased and arranged into a vascular like structure (fig3. C).

Discussion
APF is one of potential tumor-specific factors that can complicate partial nephrectomy (PN) and is associated with decreased progression-free survival in patients with localized renal cancer. Previous studies on the association of APF with clinical, radiological features, or perioperative outcomes are summarized in Table 5. Due to lack of objective criteria for APF, the incidence of APF varies greatly. Therefore, our study established objective criteria after multiple surgical videos were reviewed. In this study, the incidence of APF was 42.8%, which was between the documented incidence.

Most literatures have confirmed that APF is associated with advanced age and common in males, which is correspond with our study. Male patients have more perinephric fat, whereas women have more subcutaneous fat. However, in the age, adipose tissue redistribute from subcutaneous to visceral and ectopic fat, especially along the kidneys, liver and bone marrow. Adipose tissue is an endocrine organ which produces hormones such as cytokines especially in tumor necrosis factor-α (TNFα) and interleukin (IL-6). They can increase with aging and excessive accumulation of fat. It was confirmed that APF group solely increased the expression of sIL-6R, suggesting that APF may be a pathological procedure caused by systemic chronic inflammation. Therefore, both age and gender can affect the distribution of visceral and subcutaneous fat, and also be the risk factors of APF.

In addition, our study also confirmed hypertension is the risk factor of PFAD, as previous studies reported. Immune system play an important role in the development of hypertension and renal immune cell infiltration has been demonstrated in both experimental and clinical hypertension. In SPF group, we first found that a large number of CD45+ immune cells accumulate in the renal cortex near renal capsule. There are also scattered immune cells, increased blood vessel distribution and thickening of the renal capsule near renal cortex. Hypertension may affect the adhesion of the renal capsule to the perinephric fat by inducing renal immune cell infiltration. Two patients with previous nephritis were in the SPF group, adding weight to the theory that chronic inflammation of the kidney can affect fat adhesion.

Perinephric stranding and thickness of posterior perinephric fat are important radiological predictor for APF in this study. Perinephric stranding represents a chronic inflammatory reaction which is considered as an important factor for formation of APF. The posterior perinephric fat thickness represents excessive and dysfunctional adipose tissue. Based on the two variables, Mayo Adhesive Probability (MAP) Score was established to predict APF, which has been validated in different surgical methods for renal cancer.

However, predictive value for perinephric fat density is still controversial. Bylund et al found that the renal hilum level fat density had no significant effect on APF. Zheng et al pointed out that perinephric fat surface density can predict the difficulty of renal peritoneal fat separation. The above differences may be related to the measurement method of perinephric fat density. During surgery, we found that perinephric fat only adhered to the surface of the kidney and not to the posterior peritoneum or posterior abdominal wall, suggesting that the adhesion or inflammatory area may be closed to the kidney surface. So, we measure perinephric fat density in a high-density area adjacent to the renal capsule, we found that some patients with SPF had significantly increased perinephric fat HU value on enhanced CT. Our results suggest that perinephric fat density may be a complement to the MAP score.

Several authors considered that APF can increase the risk of OT and bleeding during PN. However, our results only find that drain output was associated with APF. The OT and intraoperative EBL may be more affected by surgeon's surgical experience and other reasons, such as location of the tumor, damage of variant renal blood vessels and adjacent organs, and suture cutting off the renal parenchyma. Senior surgeons can speed up the surgical process, reduce damage and intraoperative bleeding, suggesting that whether APF can affect the OT and EBL needs further verification.

In conclusion, APF is more prevalent in ageing and male populations, particularly those with hypertension. Radiological factors such as perinephric stranding, posterior perinephric fat thickness and perinephric fat density can be used to predict PFAD. APF was associated with drain output and accompanied by immune cells gathering in renal cortex near thickened renal capsule with many vessels.

Abbreviations

PFAD: perinephric fat adhesion degree; APF = adherent perinephric fat; RLPN = retroperitoneal; laparoscopic partial nephrectomy; NPF = normal perinephric fat; MiPF = mild adherent perinephric fat; MoPF = moderate adherent perinephric fat; SPF = severe adherent perinephric fat; BMI = body mass index; OT = operative time; WIT = warm ischemia time; EBL = estimated blood loss; CDC = Clavien-Dindo classification; CT = Computed tomography; HU = Hounsfield units; RCC = renal cell carcinoma; MAP = Mayo Adhesive Probability Score

Declarations

Availability of data and materials

The data used to support the findings of this study are available from the corresponding author upon request.

Ethics approval and consent to participate
The study was conducted the guidelines of the Declaration of Helsinki after approval by the ethics committee of the First Affiliated Hospital of Dalian Medical University (Registration Number: LCKY2015-07). Informed written consent was obtained from the patients themselves in all cases for further research.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Funding

This work was supported by a grant from National Natural Science Foundation of China (no.31570953). The funding body had no role in the conception, design, conduction, interpretation, or analysis of the study nor in the approval of the publication.

Authors' contributions

Jianbo Wang, Deyong Yang and Xishuang Song conceived and designed the study. Junqiang Liu, Hongwei Huang, Tianyu Cao and Dikuan Liu wrote the manuscript and analyzed the data. Zheng Zhu, Xuejian Wang, Xinqing Zhu and Qiwei Chen collected clinical and image information. Jing Chen and Lina Wang designed the figures. Zheng Zhu and Sony embellished the paper. Hua Zong performed the tissue staining. Jianbo Wang, Deyong Yang revised the manuscript critically for important intellectual content. All authors read and approved the final manuscript.

Acknowledgements

Not applicable.

References

1. Campbell SC, Novick AC, Belldegrun A, et al. Guideline for management of the clinical T1 renal mass. J Urol. 2009;182:1271–9.
2. Maclellan S, Imamura M, Lapitan MC, et al. Systematic Review of Oncological Outcomes Following Surgical Management of Localised Renal Cancer. Eur Urol. 2012;61:972–93.
3. Maclellan S, Imamura M, Lapitan MC, et al. Systematic Review of Perioperative and Quality-of-life Outcomes Following Surgical Management of Localised Renal Cancer. Eur Urol. 2012;62:1097–117.
4. Bylund JR, Qiong H, Crispen PL, et al. Association of Clinical and Radiographic Features with Perinephric “Sticky” Fat. J Endourol. 2013;27:370–3.
5. Davidiuk AJ, Parker AS, Thomas CS, et al. Mayo Adhesive Probability Score: An Accurate Image-based Scoring System to Predict Adherent Perinephric Fat in Partial Nephrectomy. Eur Urol. 2014;66:1165–71.
6. Khene Z-E, Peyronnet B, Mathieu R, et al. Analysis of the impact of adherent perirenal fat on peri-operative outcomes of robotic partial nephrectomy. World J Urol. 2015.
7. Davidiuk AJ, Parker AS, Thomas CS, et al. Prospective Evaluation of the Association of Adherent Perinephric Fat With Perioperative Outcomes of Robotic-assisted Partial Nephrectomy. Urology. 2015;85:836–42.
8. Martin L, Rouviere O, Bezza R, et al. Mayo Adhesive Probability Score Is an Independent Computed Tomography Scan Predictor of Adherent Perinephric Fat in Open Partial Nephrectomy. J Urol. 2016;103:124–8.
9. Zheng Y, Espiritu P, Hakky T, et al. Predicting ease of perinephric fat dissection at time of open partial nephrectomy using preoperative fat density characteristics. BJU Int. 2015;114:872–80.
10. Dariane C, Guilchert TL, Hurel S, et al. Prospective assessment and histological analysis of adherent perinephric fat in partial nephrectomies. Ulogic Oncology Seminars Original Investigations. 2016;35:39.e9.
11. Narita S, Kumazawa T, Tsuchiya N, et al. Host-related Risk Factors for Adherent Perinephric Fat in Healthy Individuals Undergoing Laparoscopic Living-donor Nephrectomy. Surgical Laparoscopy Endoscopy Percutaneous Techniques. 2017;27:e69–73.
12. Esner BH, Zargooshi J, Berger AD, et al. Gender differences in subcutaneous and perirenal fat distribution. Surg Radiol Anat. 2010;32:879–82.
13. Kim S, Choi S-K, Lee SM, et al. Predictive Value of Preoperative Unenhanced Computed Tomography During Ureteroscopic Lithotripsy: A Single Institute’s Experience. Korean J Urol. 2013;54:772.
14. Kocher NJ, Kunchala S, Reynolds C, et al. Adherent perinephric fat at minimally invasive partial nephrectomy is associated with adverse peri-operative outcomes and malignant renal histology. BJU Int. 2016;117:636–41.
15. Thiel DD, Davidiuk AJ, Meschia C, et al. Mayo Adhesive Probability Score Is Associated With Localized Renal Cell Carcinoma Progression-free Survival. Urology. 2016;89:54.
16. Benway BM, Baca G, Bhayani SB, et al 28 SELECTIVE VERSUS NON-SELECTIVE ARTERIAL CLAMPING FOR LAPAROSCOPIC PARTIAL NEPHRECTOMY. IMPACT UPON RENAL FUNCTION OF A SOLITARY KIDNEY IN A PORCINE MODEL. European Urology Supplements. 2009;8:127.
17. Anderson KM, Lindler TU, Lamberton GR, et al. Laparoscopic Donor Nephrectomy: Effect of Perirenal Fat upon Donor Operative Time. J Endourol. 2008;22:2269.

18. Tchkonia T, Morbeck DE, Zglinicki TV, et al. Fat tissue, aging, and cellular senescence. Aging Cell. 2010;9:667–84.

19. Zhu Y, Wang HK, Zhang HL, et al. Visceral Obesity and Risk of High Grade Disease in Clinical T1a Renal Cell Carcinoma. J Urol. 2013;189:447–53.

20. Weisberg SP, Mccann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112:1796.

21. Neels GJ. Inamed fat: what starts the re? J Clin Invest. 2006;116:33–5.

22. Kobayashi Y, Kurahashi H, Matsumoto Y, et al. Factors Predicting Adhesion between Renal Capsule and Perinephric Adipose Tissue in Partial Nephrectomy. Acta Med Okayama. 2016;70:69–74.

23. Ji C, Tang S, Yang K, et al. Analysis of Factors Influencing Mayo Adhesive Probability Score in Partial Nephrectomy. Medical Science Monitor International Medical Journal of Experimental Clinical Research. 2017;23:6026–32.

24. LC E, G P. T K et al. Increased Perfusion Pressure Drives Renal T-Cell Infiltration in the Dahl Salt-Sensitive Rat. Hypertension. 2017;70:543–51.

25. Timar O, Sestier F, Levy E. Metabolic syndrome X: a review. Can J Cardiol. 2000;16:779.

26. Monteiro R, Azevedo I. Chronic inflammation in obesity and the metabolic syndrome. Mediators of Inflammation. 2010; 2010: 1–10.

Tables

Table 1 Clinical and radiographic characteristics stratified by adhesiveness of perinephric fat

Characteristics	NPF(n=20)	MiPF(n=28)	MoPF(n=18)	SPF(n=18)	Total(n=84)
Age(yr)					
≤ 55	12(60)	13(46)	7(39)	4(22)	36 (43)
>55	8(40)	15(54)	11(61)	14(78)	48 (57)
Male gender	6(30)	14(50)	15(83.3)	17(94.4)	52 (61.9)
BMI kg/m²					
≤ 25	8(40)	15(53.6)	6(33.3)	4(22.2)	33 (39.3)
25~30	10(50)	9(32.1)	10(55.6)	9(50)	38 (45.2)
≥30	2(10)	4(14.3)	2(11.1)	5(27.8)	13 (15.5)
Diabetes	5(25)	6(21.4)	4(22.2)	6(33.3)	19 (22.6)
Hypertension	5(25)	12(42.9)	9(50)	12(66.7)	38 (45.2)
Cardiovascular disease	3(15)	7(1.7)	3(16.7)	2(11.1)	10 (11.9)
Preoperative eGFR(<60 ml/min)	0(0)	0(0)	0(0)	2(11.1)	2 (2.4)
Active smoking	7(35)	9(32.1)	7(38.9)	8(44.4)	31 (36.9)
Alcoholism	7(35)	11(39.3)	6(33.3)	8(44.4)	32 (38.1)
malignancy	10(50)	16(57.1)	12(66.7)	14(77.8)	52 (61.9)
Preoperative creatinine(>ULN)	4(20)	3(10.7)	3(16.7)	4(22.2)	14 (16.7)
HU of perinephric fat	-103 (-112,-87)	-101 (-132,-84)	-95 (-110,-83)	-88 (-98,-49)	-98 (-132,-49)
Perinephric fat area (cm²)	0.69 (0.365)	2.81 (1.21,8.34)	5.44 (0.97,14.74)	8.61 (2.40,20.72)	3.05 (0.20,72)
Perinephric fat thickness (mm)					
Medial	1 (0.7)	5.9 (0,19.8)	7.5 (0,17.1)	9.6(3,127.2)	5.8 (0.27.2)
Lateral	1.1 (0.30)	10.1 (0,30)	17.5 (0.37)	22.5 (3.4,40)	11.2 (0.40)
Posterior	3.5 (0.98)	7.8 (2.4,17.4)	12.7 (6.2,25.4)	19.4 (10.2,57.7)	9.7 (0.57.7)
Posteriorlateral	8.8 (2.4,23.4)	13.8 (1.9,26.3)	15.7 (8.8,26.5)	24 (12.6,43)	15.1 (1.9,43)
Stranding					
None	20(100)	26(92.8)	6(33.3)	0(0)	52 (61.9)
Type 1	0(0)	2(7.2)	11(61.1)	11(61.1)	24 (28.6)
Type 2	0(0)	0(0)	1(5.6)	7(39.9)	52 (9.5)
Table 2 Univariate and multivariable analysis clinical characteristics of PFAD

Characteristics	Univariate	Multivariate	OR	p value	OR	p value
Age	2.61(1.17,5.82)	0.019	3.76(1.57,8.97)	0.003		
Male gender	8.39(3.32,21.24)	<0.001	13.14(4.87,35.46)	<0.001		
BMI ≥30	2.65(0.82,8.54)	0.103				
BMI 25~30	1.58(0.68,3.68)	0.375				
Diabetes	1.83(0.73,4.62)	0.200				
Hypertension	2.85(1.28,6.33)	0.010	3.28(1.40,7.65)	0.006		
Cardiovascular disease	0.99(0.30,3.25)	0.988				
Active smoking	1.34(0.60,2.98)	0.475				
Alcoholism	1.18(0.53,2.60)	0.685				
Malignancy	2.14(0.95,4.80)	0.065				
Preoperative creatinine	0.84(0.30,2.37)	0.747				

Table 3 Univariate and multivariable analysis of predicting factors of PFAD

Characteristics	Univariate	Multivariate	OR	p value	OR	p value
Perinephric fat thickness						
Medial	12.48(4.79,32.55)	<0.001				
Lateral	3.18(2.01,5.04)	<0.001				
Posterior	31.09(10.62,91.02)	<0.001	11.46(1.86,70.60)	0.009		
Posterolateral	6.68(3.43,13.01)	<0.001				
Perinephric fat area	1.91(1.55,2.35)	<0.001				
HU of perinephric fat	1.14(1.08,1.20)	<0.001	1.08(1.01,1.14)	0.020		
Stranding						
Type 1	113.44(21.08,610.32)	<0.001	25.05(3.76,167.00)	0.001		
Type 2	986.26(68.87,14123.33)	<0.001	35.21(1.32,937.66)	0.033		

Table 4 Correlation between APF and Perioperative outcomes and pathological grading of RCC
Variable	APF	Control group with no APF	p value
Operative time (OT) (min)	110.50(45,212)	89(45,222)	0.141
Warm ischaemia time [WIT] (min)	20.50(15,48)	21(15,45)	0.986
drain output (ml)	169(60,403)	125.5(63,355)	**0.012**
Postoperative gastrointestinal recovery time(days)	5(1,8)	4(1,8)	0.611
Length of stay (days)	15(9,36)	14(5,35)	0.091
Transfusions	2(5.6%)	3(6.3%)	0.894
Estimated blood loss [EBL] (ml)	240(107,664)	215(107,736)	0.249
Postoperative fever (≥38.0°C)	1(2.8%)	4(8.3%)	0.287
Postoperative gastrointestinal discomfort	11(30.6%)	10(20.8%)	0.309
Change dressing frequency	4.5(1,28)	3(1,19)	0.052
Clavien-Dindo classification [CDC]	18(50%)	18(37.5%)	0.265
Clavien 1	15(41.7%)	15(31.3%)	
Clavien 2	3(8.3%)	3(6.3%)	
Fuhrman Grade	26(72%)	26(54%)	0.106
I	10(27.8%)	10(20.8%)	
II	10(27.8%)	11(22.9%)	
III	2(5.6%)	4(8.3%)	
IV	4(11.1%)	1(2.1%)	

Table 5 summary of previous studies on APF
Author Year	Patient	Surgery	APF grading	APF rate	Included factors	Significant variables
Bylund et al. (2013)	29	RPN, OPN or Laparoscopic cryoablation	Operative records	55.2%	Clinical, Imaging, Pathological, Outcome	Male gender, Tumor size, Tumor >50% exophytic, Thickness of perinephric fat, OT
Zheng et al. (2014)	41	OPN	Time of perinephric fat dissection on	53.7%	Clinical, Imaging, Pathological, Outcome	Male gender, PnFSD
Davidiuk et al. (2014)	100	RPN	Described by Kim et al.	30%	Clinical, Imaging, Pathological, Outcome	Male gender, BMI, Posterolateral and Posterior perinephric fat, Stranding
Davidiuk et al. (2015)	100	RPN	Described by Kim et al.	30%	Outcome	
Kobayashi et al. (2016)	47	LPN or RALPN	Operative records	14.9%	Clinical, Imaging, Outcome	OT, Hypertension, FSPA on CT
Martin et al. (2016)	86	OPN	Operative records	50.0%	Clinical, Imaging, Outcome	Age, MAPscore
Kocher et al. (2016)	245	LPN or RPN	Operative records	10.6%	Clinical, Imaging, Pathological, Outcome	Age, Male gender, Stranding, Posterior fat thickness, MAP score, Malignant renal histology, Operating time, EBL
Dariane et al. (2016)	125	RPN or OPN	Described by Kim et al.	40.8%	Clinical, Imaging, Pathological, Outcome, Histologically	OT, EBL, Male gender, Age, Waist circumference, Fat density on CT, MAP score, Larger adipocytes
Shintaro et al. (2017)	92	Laparoscopic donor nephrectomy	Intraoperative videos	55.4%	Clinical, Imaging, Outcome, IHC	Perinephric fat area, Stranding, sIL-6R, OT
Khene et al. (2017)	202	RPN	Operative records	39.6%	Clinical, Imaging, Outcome	Male gender, Obesity, Hypertension, MAP score, OT, EBL, Transfusion, Conversion to open surgery or radical nephrectomy

Figures
Figure 1

Surgical criterion of APF. A. normal perinephric fat (NPF); B. mild adherent perinephric fat (MiPF); C. moderate adherent perinephric fat (MoPF); D. severe adherent perinephric fat (SPF)

Figure 2

Measurement of perinephric fat at the level of the vein. M - medial perinephric fat thickness; L - lateral perinephric fat thickness; P - posterior perinephric fat thickness; PL - posterolateral perinephric fat thickness; Circle - HU of perinephric fat; Triangle – stranding; RV - renal vein.
Figure 3

Representative examples of MASSON, CD45 and CD34 staining. A. Non-APF group has a thin extracapsular fascia, APF group renal capsule and extracapsular fascia fusion thickening; B. APF CD45 immune cells in the group were highly expressed in the renal capsule and adjacent renal cortex; C. APF group CD34 for vascular staining. Scale bar = 100 mm.