P1282 DISEASE-SPECIFIC U1 SPLICEOSOMAL RNA MUTATIONS IN MATURE B-CELL NEOPLASMS

Topic: 20. Lymphoma Biology & Translational Research

Ferran Nadeu¹, 2, Shimin Shuai³, Guillem Clot¹, 2, Laura K. Hilton⁴, Ander Díaz-Navarro², 5, Silvia Martín¹, 2, Romina Royo⁶, Tycho Baumann⁷, Marta Kulis⁸, 9, Irene López-Orajá¹, 2, 7, Manuel Cossío, Junyan Lu, Viktor Ljungström⁹, Emma Young¹⁰, Karla Plevoa¹¹, 12, Evinamin A. Kissbacher¹³, Ziao Lin¹⁴, 15, Cynthia K. Hahn¹⁰, 15, Pablo Bousoquets³, Miguel Alcolebas², 16, Marcos González², 16, Enrique Collado¹⁷, Marta Aymeric¹, 2, 7, María J. Terol¹⁸, Alfredo Rivas-Delgado¹, 7, Anna Enjuanes¹, Silvia Ruiz-Gaspé¹, Thomas Chatzikonstantinou¹⁹, 20, Daniel Hägerstrand¹⁰, Cecilia Jylhä²¹, 21, Aron Sk Ashton¹⁰, Larry Mansouri¹⁰, Kamila Staniska¹¹, 12, Michael Douple¹¹, 12, Ellen J. van Gastel-Mo²², Zadie Davis²³, Renata Walewska²⁴, Lydia Scardó²⁵, Livio Trentini²⁶, Andrea Visentin²⁶, Sameer A. Parikh²⁷, 28, Kari G. Rabe²⁸, Riccardo Moia²⁹, Marine Armand³⁰, Davide Rossi³¹, Frederic Dav³², Gianluca Gaidano³³, Neil E. Kay²⁷, Tait Shandefelt³², Paolo Ghia³⁵, David Osier²⁴, Anton W. Langerak²², Silvia Be¹, 2, 7, 33, Armando López-Guillermo¹, 2, 7, 33, Donna Neuberg³⁴, Catherine J. Wu¹³, 15, 35, 36, Gad Getz¹³, 35, 37, 38, Sarka Pospisilova¹¹, 12, Kostas Stamatopoulos¹³, 19, 20, Richard Rosenquist¹⁰, 21, Wolfgang Hubé⁸, Thorsten Zenz³⁹, Dolors Colomer¹, 2, 33, 40, Julio Delgado¹, 2, 7, 33, Ryan D. Morin⁴¹, 41, Lincoln D. Stein⁴², 43, Xose S. Puetu⁵, 5, Elías Campo¹, 2, 7, 33

¹ Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; ² Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; ³ Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen, China; ⁴ Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada; ⁵ Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología, Universidad de Oviedo, Oviedo, Spain; ⁶ Barcelona Supercomputing Center (BSC), Barcelona, Spain; ⁷ Hospital Clinic de Barcelona, Barcelona, Spain; ⁸ European Molecular Biology Laboratory (EMBL), Heidelberg, Germany; ⁹ Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden; ¹⁰ Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; ¹¹ University Hospital Bmo & Medical Faculty, Masaryk University, Brno, Czech Republic; ¹² Central European Institute of Technology (CEITEC) - Masaryk University, Brno, Czech Republic; ¹³ The Broad Institute of MIT and Harvard, Cambridge, United States; ¹⁴ Harvard University, Cambridge, United States; ¹⁵ Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States; ¹⁶ Biología Molecular e Histocompatibilidad, IBASL-Hospital Universitario, Centro de Investigación del Cáncer-IBAMCC (USAL-CSIC), Salamanca, Spain; ¹⁷ Servicio de Hematología y Hemoterapia, Hospital Universitario Central de Asturias, Oviedo, Spain; ¹⁸ Servicio de Hematología, Hospital Clínico Universitario, INCLIVA, Universidad de Valencia, Valencia, Spain; ¹⁹ Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece; ²⁰ Hematology Department and HCT Unit, G. Papanicolaou Hospital, Thessaloniki, Greece; ²¹ Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden; ²² Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, Netherlands; ²³ Department of Molecular Pathology, University Hospitals Dorset, Bournemouth, United Kingdom; ²⁴ Department of Haematology, University Hospitals Dorset, Bournemouth, United Kingdom; ²⁵ Università Vita-Salute San Raffaele, Milan - Strategic Research Program on CLL, Division of Experimental Oncology, IRCCS San Raffaele Hospital, Milan, Italy; ²⁶ Department of Medicine, Hematology and Clinical Immunology Section, University of Padua, Padua, Italy; ²⁷ Division of Hematology, Mayo Clinic, Rochester, United States; ²⁸ Department of Quantitative Health Sciences, Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, United States; ²⁹ Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy; ³⁰ Department of Laboratory Medicine and Pathology, Hospital Pitie-Salpetrière, Sorbonne University, Paris, France; ³¹ Department of Hematology, Oncology Institute of Southern Switzerland and Institute of Oncology Research, Bellinzona, Switzerland; ³² Stanford School of Medicine, Stanford, United States; ³³ Universitat de Barcelona, Barcelona, Spain; ³⁴ Department of Data Science, Dana-Farber Cancer Institute, Boston, United States; ³⁵ Harvard Medical School, Boston, United States; ³⁶ Department of Medicine, Brigham and Women’s Hospital, Boston, United States; ³⁷ Center for Cancer Research, Massachusetts General Hospital, Boston, United States; ³⁸ Department of Pathology, Massachusetts General Hospital, Boston, United States; ³⁹ Department of Medical Oncology and Hematology, University Hospital and University of Zürich, Zürich, Switzerland; ⁴⁰ Institut Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain; ⁴¹ Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, Canada; ⁴² Department of Molecular Genetics, University of Toronto, Toronto, Canada; ⁴³ Computational Biology Program, Ontario Institute for Cancer Research, Toronto, Canada

Copyright Information: (Online) ISSN: 2572-9241
© 2022 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the European Hematology Association. This is an open access Abstract Book distributed under the Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) which allows third parties to download the articles and share them with others as long as they credit the author and the Abstract Book, but they cannot change the content in any way or use them commercially.

Abstract Book Citations: Authors, Title, HemaSphere, 2022;6:S3:pages. The individual abstract DOIs can be found at https://journals.lww.com/hemasphere/pages/default.aspx.

Disclaimer: Articles published in the journal HemaSphere exclusively reflect the opinions of the authors. The authors are responsible for all content in their abstracts including accuracy of the facts, statements, citing resources, etc.
Background: Recurrent mutations in the third base of U1 spliceosomal RNA responsible for marked splicing and expression abnormalities have been described in chronic lymphocytic leukemia (CLL) and some solid tumors (Shuai et al. Nature, 2019; Suzuki et al. Nature, 2019). However, the clinical significance of these mutations in large CLL cohorts and their presence in other B-cell neoplasms is unknown.

Aims:

To provide a comprehensive map of U1 mutations across a wide spectrum of mature B-cell neoplasms and to assess their transcriptional and clinical implications.

Methods: We first performed an unbiased characterization of U1 mutations in 762 mature B-cell neoplasms analyzed by whole-genome sequencing (WGS) and complemented with RNA-seq data. This WGS cohort comprised 399 CLL, 155 diffuse large B-cell lymphomas (DLBCL), 110 Burkitt lymphomas (BL), 61 mantle cell lymphomas (MCL), and 37 follicular lymphomas (FL). WGS data were analyzed using a bioinformatic pipeline designed to call mutations in any of the 11 canonical U1 genes found in the human genome. Second, we expanded the characterization of recurrent U1 mutations in 1,670 CLL patients from two independent cohorts.

Results:

Our WGS analyses uncovered that the majority of U1 mutations were present between positions 3 and 10 of the gene, the region responsible for 5’ splice site recognition via base-pairing. In line with this, 10.5% CLL, 17.4% DLBCL, and 15.5% BL cases carried mutations in this region, which contrast with only 3.3% MCL and 5.4% FL cases. We observed substantial differences in the mutated sites of CLL, DLBCL, and BL. In CLL, the most frequently mutated site was the position 3 with 7.3% of the whole WGS cohort carrying the previously identified A>C mutation (g.3A>C). In addition, we also identified a novel C>T mutation at position 9 (g.9C>T) in 2% of CLL cases, which was associated with splicing abnormalities both in primary cases and transduced CLL cell lines. In DLBCL, the most frequent mutation was a novel C>T mutation at position 4 (g.4C>T) found in 8.4% of cases. This g.4C>T mutation showed a non-significant enrichment in germinal center B-cell like (GCB) (12.8%) compared to activated B-cell (3.8%) DLBCL (p=0.12). In GCB-DLBCL, this mutation was associated with 1,902 differentially spliced introns and 397 differentially expressed genes. In BL, the most frequent mutation was an A>G mutation at position 7 (g.7A>G), which was found in 10.9% of cases. Of note, this mutation was detected in 29.5% EBV-negative BL while only in 1.4% EBV-positive BL (p<0.001). The g.7A>G mutation was associated with 6,970 introns differentially spliced in EBV-negative BL.

In the extended CLL cohorts, the g.3A>C was enriched in unmutated IGHV (7.4%) and naïve-like (10.9%) subtypes of the disease, whereas the g.9C>T was more often detected in mutated IGHV/memory-like CLL (2%). These two mutations did not significantly co-occur with several CLL driver alterations of prognostic relevance and retained independent prognostic value for time to first treatment in multivariable models.

Summary/Conclusion:

This study expands our understanding of the biologic and clinical consequences of U1 mutations in CLL and reveals novel U1 mutations in DLBCL and BL. U1 mutations and their downstream effects were specific of different entities and subtypes with distinct mutations shaping the transcriptome of CLL (g.3A>C and g.9C>T), DLBCL (g.4C>T) and BL (g.7A>G). Based on its downstream effects, mutation prevalence among distinct B-cell neoplasms, and prognostic value in CLL, U1 represents a new pan-B-cell malignancy driver gene.