Newborn spheroids at high redshift: when and how did the dominant, old stars in today’s massive galaxies form?

S. Kaviraj,1,2,3⋆ S. Cohen,4 R. S. Ellis,3 S. Peirani,5 R. A. Windhorst,4 R. W. O’Connell,6 J. Silk,2,5 B. C. Whitmore,7 N. P. Hathi,8 R. E. Ryan Jr,7 M. A. Dopita,9,10 J. A. Frogel10,11 and A. Dekel12

1 Blackett Laboratory, Imperial College London, London SW7 2AZ
2 Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH
3 Department of Astronomy, California Institute of Technology, Pasadena, CA 91125, USA
4 School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287-1404, USA
5 Institut d’Astrophysique de Paris, 98 bis boulevard Arago, F-75014 Paris, France
6 Department of Astronomy, University of Virginia, Charlottesville, VA 22904-4325, USA
7 Space Telescope Science Institute, Baltimore, MD 21218, USA
8 Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101, USA
9 Research School of Physics and Astronomy, The Australian National University, ACT 2611, Australia
10 Astronomy Department, King Abdulaziz University, PO Box 80203, Jeddah, Saudi Arabia
11 Galaxies Unlimited, 1 Tremblant Court, Lutherville, MD 2109, USA
12 Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel

Accepted 2012 September 18. Received 2012 September 8; in original form 2012 June 6

ABSTRACT
We study ∼330 massive (M* > 109.5 M☉), newborn spheroidal galaxies (SGs) around the epoch of peak star formation (1 < z < 3) to explore the high-redshift origin of SGs and gain insight into when and how the old stellar populations that dominate today’s Universe formed. The sample is drawn from the Hubble Space Telescope (HST)/WFC3 Early-Release Science programme, which provides deep 10-filter (0.2–1.7 µm) HST imaging over one-third of the GOODS-South field. We find that the star formation episodes that built our SGs likely peaked in the redshift range 2 < z < 5 (with a median of z ∼ 3) and have decay time-scales shorter than ∼1.5 Gyr. Starburst time-scales and ages show no trend with stellar mass in the range 109.5 < M* < 1010.5 M☉. However, the time-scales show increased scatter towards lower values (<0.3 Gyr) for M* > 1010.5 M☉, and an age trend becomes evident in this mass regime: SGs with M* > 1011.5 M☉ are ∼2 Gyr older than their counterparts with M* < 1010.5 M☉. Nevertheless, a smooth downsizing trend with galaxy mass is not observed, and the large scatter in starburst ages indicates that SGs are not a particularly coeval population. Around half of the blue SGs appear not to drive their star formation via major mergers, and those that have experienced a recent major merger show only modest enhancements (≈40 per cent) in their specific star formation rates. Our empirical study indicates that processes other than major mergers (e.g. violent disc instability driven by cold streams and/or minor mergers) likely play a dominant role in building SGs, and creating a significant fraction of the old stellar populations that dominate today’s Universe.

Key words: galaxies: elliptical and lenticular, cD – galaxies: evolution – galaxies: formation – galaxies: high-redshift – galaxies: interactions.

1 INTRODUCTION
Massive galaxies are central to our understanding of the visible Universe. Locally, the massive galaxy census is dominated by systems with spheroidal morphology. Hosting more than ∼50 per cent of the stellar mass at the present day (e.g. Bernardi et al. 2003), these massive spheroidal galaxies (SGs) are key laboratories for studying the evolution of galaxies over cosmic time. Their red optical colours (e.g. Bower, Lucey & Ellis 1992; Ellis et al. 1997; Gladders et al. 1998; Stanford, Eisenhardt & Dickinson 1998; Bernardi et al. 2003; Bell et al. 2004; Kaviraj et al. 2005; Faber

⋆E-mail: skaviraj@astro.ox.ac.uk

© 2012 The Authors
Published by Oxford University Press on behalf of the Royal Astronomical Society

Downloaded from https://academic.oup.com/mnras/article-abstract/428/2/925/997895 by guest on 30 July 2018
et al. 2007), obedience of a ‘Fundamental Plane’ with little intrinsic scatter (e.g. Franx 1995; Jørgensen, Franx & Kjaergaard 1996; Saglia et al. 1997; Forbes, Ponman & Brown 1998; Peebles 2002) and chemical evidence for short star formation time-scales (e.g. Trager et al. 2000; Thomas et al. 2005) indicate that the bulk of their stellar mass formed rapidly at high redshift (z > 1). Nevertheless, the young (luminosity-weighted) ages observed in some SGs are a signature of recent (~5 Gyr) star formation (e.g. Ellis, Abraham & Dickinson 2001; Menanteau, Abraham & Ellis 2001; Nelan et al. 2005; Schiavon 2007; Trager, Faber & Dressler 2008; Graves, Faber & Schiavon 2009), which can be accurately quantified using a sensitive probe of young stars, such as the rest-frame ultraviolet (UV; 1200–3000 Å). Recent UV studies have shown that, while old stars do dominate today’s SGs, a significant minority (~20 per cent) of the stellar mass in these galaxies is formed at z < 1 (Kaviraj et al. 2007a, 2008, see also Ferreras & Silk 2000b; Yi et al. 2005; Salim & Rich 2010; de la Rosa et al. 2011; Rutkowski et al. 2012) via minor mergers between SGs and gas-rich dwarfs (Kaviraj et al. 2009, 2011; see also Newman et al. 2011; Tal et al. 2012).

While it is clear that the dominant stellar populations in SGs are old, remarkably little is known about exactly when and how these stars formed in the early Universe. The key questions are as follows. (1) At what redshifts and over what time-scales did they form? (2) What were the principal mechanisms that drove this star formation? While the former question has been explored using spectrophotometric studies of local SGs, it is challenging to construct a detailed star formation history (SFH) for the old stars using local SGs because the available spectrophotometric indicators are insensitive to old stellar populations of different ages. Optical colours, for example, evolve slowly after 4–5 Gyr (e.g. Yi 2003). A further complication is that all indicators are affected by recent star formation, typically by an uncertain amount in any given galaxy. While old stellar populations dominate SGs by mass, measured spectrophotometric quantities are luminosity weighted. Since the luminosity weighting of young stars is higher than their old counterparts, even small amounts of recent star formation can have a disproportionately large impact on the indicator in question. Thus, while it is possible to put lower limits on the age of the old stellar populations in today’s SGs, the exact shape of the SFH of these old stars remains elusive. It is worth noting that the average time-scale of star formation in individual galaxies can be estimated with reasonable precision using [$\alpha$/Fe] ratios. Indeed, the supersolar [$\alpha$/Fe] ratios observed in most SGs suggest star formation time-scales less than ~1 Gyr (Ferreras & Silk 2000a; Trager et al. 2000; Thomas et al. 2005).

The latter question (2) has been the focus of some debate in the literature. While the classical view has been that SGs are products of ‘major’ (roughly equal-mass) mergers between massive spiral galaxies in the early Universe (e.g. Toomre 1977; White 1978; Barnes & Hernquist 1992; Somerville & Primack 1999; Cole et al. 2000; Hatton et al. 2003; Springel, Di Matteo & Hernquist 2005), recent hydrodynamical simulations (e.g. Dekel et al. 2009b; Kareš et al. 2009; Devriendt et al. 2010), coupled with the observed paucity of major mergers at high redshift (e.g. Genzel et al. 2008; Law et al. 2009; Jogee et al. 2009; Kaviraj et al. 2011), suggest that the progenitors of SGs may not predominantly be major mergers but rather clumpy discs, in which star formation is fed by cold streams and minor mergers (see e.g. Birnboim & Dekel 2003; Kareš et al. 2005; Dekel, Sari & Ceverino 2009a; Ceverino, Dekel & Bournaud 2010; Ceverino et al. 2012), with the clumps eventually coalescing to form a spheroid.

Given these significant open issues, a detailed empirical understanding of the formation of the dominant, old stars in today’s SGs is highly desirable, both as a route to understanding the drivers of star formation in the early Universe and as an important test of our emerging theoretical models for the high-redshift Universe. Given the limited utility of local SGs in studying these issues, an ideal method for probing questions (1) and (2) above is to study newborn SGs around the epoch of peak cosmic star formation (1 < z < 3, see Madau, Pozzetti & Dickinson 1998; Hopkins 2004; Hopkins & Beacom 2006). Quantifying the SFHs of these systems then allows us to directly probe the formation of the old stars in today’s SGs, free from the contamination of the galaxy spectrum by intervening star formation episodes at late epochs. The underlying assumption is that newborn SGs at high redshift are the ancestors of their present-day counterparts, i.e. SGs do not routinely transform into discs over cosmic time. Both theoretical and observational work on the evolving morphological mix of the Universe suggest that this is indeed a reasonable assumption to make (e.g. Butcher & Oemler 1984; Baugh, Cole & Frenk 1996; Couch et al. 1998; Smith et al. 2005).

While the analysis of newborn SGs at z > 1 is a compelling project, past studies of statistically large samples of SGs (e.g. Ferreras et al. 2009) have typically fallen short of this epoch because deep, survey-scale Hubble Space Telescope (HST) imaging in the near-infrared (NIR), required for obtaining rest-frame optical galaxy morphologies at z > 1, has, until recently, been lacking. However, following the GOODS–NICMOS survey (Conselice et al. 2011), a new generation of NIR surveys using the HST’s WFC3 – e.g. the WFC3 Early-Release Science (ERS) programme (Windhorst et al. 2011) and the ongoing CANDELS campaign (Grogin et al. 2011; Koekemoer et al. 2011) – are providing unprecedented large-scale access to rest-frame optical galaxy data at z > 1, making them ideal data sets for the study of newborn SGs at high redshift. Here, we employ WFC3 ERS data and study SGs around the epoch of peak cosmic star formation, to explore the high-redshift origin of these galaxies and gain insight into when and how the old stellar populations that dominate today’s Universe formed. We leverage the unprecedentedly deep NIR imaging to morphologically identify SGs and explore the role of major mergers in their evolution, and exploit the uniquely wide ERS wavelength baseline (0.2–1.7 µm) to quantify galaxy SFHs via the available rest-frame UV–optical photometry.

This paper is organized as follows. In Section 2, we briefly describe the ERS data set and the morphological selection of SGs using visual inspection. In Section 3, we describe the calculation of SFHs and rest-frame photometry for individual SGs in our sample. In Section 4, we study the photometric properties of the newborn SGs, use their derived SFHs to constrain the formation epoch of their stellar mass and explore the mechanisms by which this stellar mass is likely being formed. We summarize our findings and outline avenues for future work in Section 5. Throughout this paper, we use the 7-yr Wilkinson Microwave Anisotropy Probe (WMAP7) cosmological parameters (Komatsu et al. 2011). All photometry is presented in the AB system (Oke & Gunn 1983).
2 GALAXY SAMPLE AND MORPHOLOGICAL CLASSIFICATION

The WFC3 ERS programme has imaged around one-third of the GOODS-South field with both the UVIS and IR channels of the HST/WFC3. The observations, data reduction and instrument performance are described in detail in Windhorst et al. (2011) and highlighted here. The goal of this part of the ERS programme was to demonstrate the science capabilities of the WFC3 for studying intermediate- and high-redshift galaxies in both the UV and NIR, by observing a portion of the well-studied GOODS-South field (Giavalisco et al. 2004). The field was observed for 104 orbits, with 40 orbits in the UVIS channel and 60 orbits in the NIR channel. The UVIS data covered ~55 arcmin², in each of the F225W, F275W and F336W filters, with relative exposure times of 2:2:1. The IR data covered ~45 arcmin² using the F098M (W), F125W (J) and F160W (H) filters with equal exposure times of 2 orbits per filter. The data were astrometrically aligned with a version of the GOODS-South HST/ACS data (v2.0; Giavalisco et al. 2004) that was rebinned to have a pixel scale of 0.09 arcsec pixel⁻¹. Together, the data provide 10-band HST panchromatic coverage over 0.2–1.7 μm, with a 5σ point-source depth of AB ~ 26.4 mag in the UV and AB ~ 27.5 mag in the IR.

Our focus in this paper is the subset of 818 ERS galaxies that have either spectroscopic or photometric redshifts in the range 1 < z < 3. Photometric redshifts are calculated using the EAZY code (Brammer, van Dokkum & Coppi 2008) on the 10-band WFC3/ACS photometric catalogue (Cohen et al., in preparation). Spectroscopic redshifts are drawn from the literature, from spectra taken using the Very Large Telescope (Le Fèvre et al. 2004; Szokoly et al. 2004; Mignoli et al. 2005; Ravikumar et al. 2007; Vanzella et al. 2008; Popesso et al. 2009), the Keck telescopes (Strolger et al. 2004) and the HST/ACS grism (Daddi et al. 2005; Pasquali et al. 2006; Ferreras et al. 2009). For the analysis that follows (e.g. in Section 3), spectroscopic redshifts are always used where available. Fig. 1 shows the redshift distribution of the SG sample in this study.

Each galaxy in this sample is morphologically classified via visual inspection of its WFC3/NIR images, which trace the rest-frame optical wavelengths at z > 1. While morphological proxies, such as concentration, asymmetry, clumpiness, M20 and the Gini coefficient, have been widely used to classify galaxies in large surveys (see e.g. Abraham et al. 1996; Abraham, van den Bergh & Nair 2003; Conselice et al. 2003; Lotz, Primack & Madau 2004), the performance of these methods is typically calibrated against visual inspection (e.g. Abraham et al. 1996), which offers better precision and reliability in morphological classification (e.g. Lisker 2008; Robaina et al. 2009; Kartaltepe et al. 2010). Past HST studies of the high-redshift Universe (including recent efforts using the WFC3) have commonly exploited visual inspection to classify galaxy morphologies (e.g. Bundy, Ellis & Conselice 2005; Cassata et al. 2005; Elmegreen et al. 2005; Ferreras et al. 2005; Jogee et al. 2009; Robaina et al. 2009; Cameron et al. 2011; Kaviraj et al. 2011; Kocevski et al. 2012) using rest-frame optical imaging that has similar or fainter surface-brightness limits compared to the images employed here.

In this paper, we visually inspect YJH composite images, scaled using the asinh method of Lupton et al. (2004), to determine (1) the morphology of the galaxy and (2) whether it exhibits morphological disturbances, i.e. tidal features indicative of a recent merger. Using YJH composites (instead of monochrome images in one filter) maximizes the rest-frame optical information in the image, and facilitates the identification of tidal features. While previous studies have successfully performed visual inspection of similar data sets to H ~ 25 mag (e.g. Cameron et al. 2011), we restrict our galaxy sample to a more conservative H ~ 24.5 mag (in this magnitude range, the galaxy sample with M_∗ > 10^{10.5} M_⊙ is expected to be complete; Windhorst et al. 2011). Galaxies are classified into two morphological classes: SGs and a (broad) class of ‘late-types’, which includes all objects that are not spheroidal, e.g. discs, clumpy galaxies, irregulars, etc. Here, we focus solely on the SGs, splitting them into ‘relaxed’ systems, which do not exhibit morphological disturbances indicative of recent interactions, and ‘disturbed’ systems, which do (see Figs 2 and 3 for examples of relaxed and disturbed SGs, respectively). The visual classification process identifies 328 SGs in our sample. As we describe in Section 4, the disturbed SGs are likely to have experienced recent major mergers.
The disturbed fraction decreases with increasing redshift, plausibly due to greater cosmological dimming of the tidal features at larger distances.

3 Star Formation Histories and Rest-frame Photometry

In this section, we describe the estimation of SFHs and rest-frame photometry that are used in Section 4. We compare the observed photometry of each galaxy to a large library of synthetic photometry. The synthetic library is constructed using exponentially decaying model SFHs, described by five free parameters: the age (\(T\)), e-folding time-scale (\(\tau\)), metallicity (\(Z\)) and internal extinction (\(E_{B-V}\)) of the starburst and the total stellar mass formed (\(M_*\)). We vary \(T\) between 0.05 Gyr and the look-back time to \(z = 20\) in the rest frame of the galaxy, \(\tau\) between 0.01 Gyr (approximately an instantaneous burst) and 9 Gyr (approximately constant star formation), \(Z\) between 0.05 and 2.5 \(Z_\odot\) and \(E_{B-V}\) between 0 and 2 mag. Synthetic photometry is generated for each model SFH by folding it with the latest version of the Bruzual & Charlot (2003) stellar models, through the correct WFC3 and ACS filter throughputs. The empirical law of Calzetti et al. (2000) is used to compute the dust-extincted spectral energy distributions (SEDs). The synthetic library has \(\sim\)2.5 million individual models. Since our galaxies span a large range in redshift (1 < \(z\) < 3), equivalent libraries are constructed at redshift intervals of \(\delta z = 0.01\).

For each galaxy, the values of the free parameters (\(T, \tau, M_*, Z, E_{B-V}\)) are estimated by comparing its observed photometry to every model in the synthetic library that is closest to it in redshift. The likelihood of each model, \(\exp(-\chi^2/2)\), is calculated using the value of \(\chi^2\), computed in the standard way. From the joint probability distribution (PD; which is a function of all five free parameters), each individual parameter is marginalized\(^3\) to extract its one-dimensional probability density function (PDF). The median of this PDF is taken as the best estimate of the parameter in question and the 25th and 75th percentile values (which enclose 50 per cent of

Table 1. The fraction of galaxies that are SGs (\(f_{SG}\)) in various stellar mass (units of \(M_\odot\)) and redshift ranges, and the fraction within the SGs that are disturbed (\(N_{DSG}/N_{SG}\)). For the most massive galaxies (\(10^{11} - 10^{12} M_\odot\)), for example, the fraction of SGs is \(~\sim\)60 per cent, similar to the value found by Cameron et al. (2011), who also used visual inspection of WFC3 images for morphological classification. In the mass range considered here (\(M_* > 10^{9.5} M_\odot\)), around one-third of the SGs exhibit morphological disturbances. The disturbed fraction decreases with increasing redshift, plausibly due to greater cosmological dimming of the tidal features at larger distances.

\begin{table}
\begin{tabular}{cccc}
\hline
\(1 < z < 1.5\) & \(1.5 < z < 3\) \\
\hline
\(f_{SG}\) & \(N_{DSG}/N_{SG}\) & \(f_{SG}\) & \(N_{DSG}/N_{SG}\) \\
\hline
\(\log M_* > 9.5\) & 0.35 \(\pm\) 0.02 & 0.42 \(\pm\) 0.04 & 0.32 \(\pm\) 0.02 & 0.35 \(\pm\) 0.04 \\
\(9.5 < \log M_* < 11\) & 0.36 \(\pm\) 0.03 & 0.43 \(\pm\) 0.05 & 0.36 \(\pm\) 0.02 & 0.36 \(\pm\) 0.04 \\
\(\log M_* > 11\) & 0.56 \(\pm\) 0.11 & 0.33 \(\pm\) 0.12 & 0.58 \(\pm\) 0.13 & 0.18 \(\pm\) 0.08 \\
\hline
\end{tabular}
\end{table}
The birth of spheroids in the early Universe

929

the probability) are used to calculate an uncertainty on this estimate. The K-corrections required to construct rest-frame photometry for each galaxy are calculated using the best-fitting model SED (i.e. where the value of $\chi^2$ is a minimum).

It is worth noting that the accuracy of the derived SFHs is aided by the availability of photometry covering both the rest-frame UV and optical wavelengths. The rest-frame UV, in particular, offers almost an order of magnitude greater sensitivity to recent star formation than the optical wavelengths (Kaviraj et al. 2007a), and is largely free from the effects of the age–metallicity degeneracy (Kaviraj et al. 2007b). The rest-frame UV colours are therefore a strong indicator of how truly quiescent a galaxy is. While the rest-frame UV photometry constrains the gradual quenching/decline of star formation in our SGs, the rest-frame optical constrains the epoch of stellar mass assembly.

4 THE MASS ASSEMBLY OF NEWBORN SPHEROIDS

We begin by exploring the photometric properties of our ERS data set. Fig. 4 presents the rest-frame UV–optical colours of the ERS galaxies. The rest-frame NUV wavelengths, based on the Galaxy Evolution Explorer (Martin et al. 2005) NUV filter, are centred at $\sim 2300$ Å. Relaxed and disturbed SGs span the entire colour space occupied by the galaxy population, with $\sim 40$ and $\sim 60$ per cent of relaxed and disturbed SGs, respectively, populating the ‘blue cloud’ ($B - V < 0.5$ and NUV $- V < 2.5$). This is consistent with the large range in rest-frame (UVJ) optical colours observed in the massive galaxy population at these redshifts (e.g. Whitaker et al. 2010) and the gradual, rather than abrupt, decline of star formation implied in most massive objects in this redshift range by their spectral features (e.g. Cimatti et al. 2008; van Dokkum & Brammer 2010; Kriek et al. 2011; van Dokkum & Brinchmann 2011). In Fig. 5 we show the offset between the rest-frame colour of individual SGs and that of a dustless, solar-metallicity instantaneous burst at $z = 5$. This comparison, intended only as a guide, indicates that very few of the SGs are consistent with having completed their star formation by $z \sim 5$. Note that adding the median internal extinction in SGs derived in Section 3 ($E_{B-V} \sim 0.2$ mag, see reddening vector in Fig. 5) to this instantaneous burst only reinforces this conclusion. The star formation in SGs at $1 < z < 3$ is, therefore, either ongoing or recently completed.

It is worth noting that around half of the SGs that inhabit the blue cloud appear relaxed. Given that tidal features are readily visible in a significant fraction of objects, we explore whether the lack of such features in the blue relaxed SGs implies that the star formation in these systems is not being driven by a recent major merger. Indeed, tidal debris from a recent merger is most readily visible in the early stages of relaxation, when star formation remains strong and the galaxy is in the blue cloud (e.g. Carpineti et al. 2012). To explore the detectability of tidal features in our high-redshift SGs, we appeal to merger remnants of various mass ratios drawn from a hydrodynamical cosmological simulation. The simulation, which is described in detail in Peirani (2010), was performed using the GADGET2 code (Springel 2005) with added prescriptions for star formation, feedback from Types Ia and II supernovae, a UV background and metal enrichment. The dark matter and baryonic particle
resolutions are $m_{DM} = 7.4 \times 10^6 \, M_\odot$ and $m_{gas} = m_{stellar} = 1.5 \times 10^9 \, h^{-1} M_\odot$, respectively. We refer the readers to section 2.1 of Peirani et al. (2010) for further details of the simulation.

To compare with the blue SGs in our sample, we explore the surface brightness of tidal features in merger remnants at $z \sim 1.25$, the mid-point of the lower redshift bin in Table 1. We focus on the lower redshift bin in order to minimize the impact of cosmological dimming – recall that the disturbed SG fraction decreases with redshift in Table 1, plausibly due to cosmological dimming of the tidal features with increasing redshift. In Fig. 6 we present typical examples of remnants of mergers that have ratios of 1:2, 1:5 and 1:10. The merger remnants are 'observed' while they are in the UV–optical blue cloud (to ensure consistency with our blue observed SGs) and the synthetic images are constructed by combining the simulation outputs with the correct WFC3 filter throughputs, following Peirani et al. (2010). Note that our aim here is to study the surface brightness of tidal features around merger remnants and not a detailed exploration of the morphology of the remnants themselves, which would benefit from a simulation with higher resolution.

We find that, while major mergers produce strong features which will be readily visible, mergers with mass ratios of 1:5 are only marginally detectable at $z \sim 1.25$, given the surface-brightness limit of extended objects in our WFC3/IR images (~26 mag arcsec$^{-2}$). Mergers with mass ratios lower than this value (see e.g. 1:10 example in Fig. 6) will produce tidal features that will not be visible in our images. At the upper limit of our redshift range ($z \sim 3$), only mergers with mass ratio $\sim 1:2$ will be visible. In summary, it is likely that only tidal features produced by major mergers are likely to be visible across the redshift range considered in this study. In other words, if a blue SG in our high-redshift sample has experienced a recent major merger, then the tidal debris should be visible in the ERS images. The dominant star formation mechanism in the blue relaxed SGs therefore appears unlikely to be a major merger, implying that these systems are driving their star formation via other mechanisms, such as minor mergers, or are the remnants of recently collapsed (cold-stream-fed) clumpy discs, as envisaged in current theoretical work (e.g. Elmegreen, Bournaud & Elmegreen 2008; Dekel et al. 2009b). Note that minor-merger-driven star formation could, in principle, be distinguished from disc collapse by the presence of tidal features. However, as Fig. 6 indicates, our WFC3 images are too shallow to detect tidal debris from minor mergers.

Figure 6. Typical remnants of mergers, drawn from a hydrodynamical cosmological simulation, with mass ratios of 1:2 (left), 1:5 (middle) and 1:10 (right). The colour coding indicates the surface brightness (mag arcsec$^{-2}$) in the $H$ band (the surface-brightness limit of our WFC3/IR images is ~26 mag arcsec$^{-2}$). To allow comparison with the blue SGs in our sample, the remnants are ‘observed’ while they are in the UV–optical blue cloud, typically ~0.3–0.4 Gyr after the merger is complete. The simulations suggest that tidal debris around remnants of mergers that have mass ratios less than 1:5 are very unlikely to be observable at the depth of the ERS images across the redshift range considered in this study. In other words, blue SGs that do exhibit such tidal features are likely to be major-merger remnants (see the text for more details).

![Figure 6](https://example.com/figure6.jpg)

While it is challenging to disentangle these two processes using current data, it might be possible to perform this exercise using deeper data, either using the WFC3 itself or from future instruments such as the James Webb Space Telescope (JWST) or the extremely large telescopes.

It is worth noting further that the relaxed SGs in the blue cloud have a similar UV–optical colour distribution in Fig. 4 as their disturbed counterparts. Since colours reflect the (average) specific star formation rate (sSFR), this suggests that the sSFR enhancement due to a recent major merger is modest. Fig. 7 shows that the median sSFR of the bluest 30 per cent of disturbed SGs is around 0.15 dex (~40 per cent) higher than the corresponding median in their relaxed counterparts. Median values are shown by the dotted vertical lines. Note that the SFR is an average value over the last 10$^7$ yr.

Figure 7. sSFRs in the bluest 30 per cent of relaxed (black) and disturbed (red) SGs (in the NUV − $r$ colour). Median values are shown using the dotted lines. The general enhancement in sSFR due to a merger appears to be modest, with the median sSFR of the bluest 30 per cent of disturbed SGs being around 0.15 dex (~40 per cent) higher than the corresponding median in their relaxed counterparts. Median values are shown by the dotted vertical lines. Note that the SFR is an average value over the last 10$^7$ yr. Major...
mergers thus appear relatively insignificant, both in terms of driving the build-up of the SG stellar mass and enhancing the star formation that is already being driven by other processes, e.g. cold-mode accretion and minor mergers. While our approach is empirical in nature, our conclusions regarding the overall insignificance of major mergers appear consistent with both recent theoretical work (e.g. Cen 2011; Dekel et al. 2009b) and an emerging observational literature that indicates a high fraction of systems with disc-like properties (e.g. Förster Schreiber et al. 2006; Shapiro et al. 2008; Stockton et al. 2008) and a remarkably modest incidence of major mergers (see e.g. Genzel et al. 2008; Tacconi et al. 2010, and references therein) amongst star-forming galaxies at $z \sim 2$.

We conclude by summarizing the derived SFHs of individual SGs. In the top row of Fig. 8, we plot the starburst ages ($T$) and time-scales ($\tau$) of individual SGs against their stellar masses. In the bottom row in this figure, we show the distributions of metallicities and internal dust extinctions for our SGs. The yellow shaded region in the top left-hand panel shows a progressive ‘1σ’ fit to the data. The red line indicates the mean value, while the yellow shaded area indicates the region that encloses 68 per cent of the galaxies. Individual error bars for each SG are shown and the errors in the galaxy stellar masses are typically better than 0.3 dex.

We find that the star formation time-scales ($\tau$) in SGs are relatively short, with a median of $\sim 0.6$ Gyr, with uncertainties on individual time-scales of $\sim 0.3$–$0.4$ dex. Given the large uncertainties, time-scales as large as $\sim 1.5$ Gyr cannot be ruled out for most of the individual SGs in our sample. However, the median value for the sample as a whole is smaller than 1 Gyr, consistent with previous measurements of star formation time-scales in intermediate- and high-redshift SGs (e.g. Ferreras et al. 2004) and the high values of $\alpha$ enhancement found in local SGs (e.g. Thomas et al. 2005).

In the mass range $10^{9.5} < M_* < 10^{10.5} M_\odot$, the starburst time-scales ($\tau$) and ages ($T$) do not correlate strongly with galaxy stellar mass. However, the time-scales scatter towards lower values ($< 0.3$ Gyr) for more massive galaxies ($M_* > 10^{10.5} M_\odot$) and a trend towards increasing age is apparent as we move to systems with higher stellar masses. For example, galaxies at the upper end of our mass range ($M_* > 10^{11.3} M_\odot$) are typically $\sim 2$ Gyr older than their counterparts with masses $\sim 10^{10.5} M_\odot$. These trends are qualitatively consistent with both observational (e.g. Juneau et al. 2005; Thomas et al. 2005) and theoretical evidence (e.g. Neistein, van den Bosch & Dekel 2006; Cattaneo et al. 2008) for ‘downsizing’ in massive galaxies. It is worth noting, however, that a smooth downsizing trend with galaxy mass is not observed, and the large scatter in the

![Figure 8](https://academic.oup.com/mnras/article-abstract/428/2/925/997895)

**Figure 8.** Top left: derived starburst age ($T$) versus stellar mass in individual SGs. The yellow shaded region in the top left-hand panel shows a progressive ‘1σ’ fit to the data. The red line indicates the mean value, while the yellow shaded area indicates the region that encloses 68 per cent of the galaxies. The typical errors in the stellar masses are better than 0.3 dex. Top right: derived starburst time-scale ($\tau$) versus stellar mass in individual SGs. Bottom left: distribution of stellar metallicities in individual SGs. Bottom right: distribution of internal extinction in individual SGs. Median values are shown using the dotted vertical lines. The error bars in the panels for metallicity and internal extinction indicate average uncertainties in the derived parameters across our SGs.
starburst ages ($T$) indicate that SGs are not a particularly coeval population. While such coevality has been suggested in the past by the optical colours of local SGs, this is likely due to the fact that 5–10 Gyr of evolution washes out the details of the stellar mass assembly. One also has to entertain the possibility that the trends observed in local SGs, between stellar mass and quantities such as luminosity-weighted age, are influenced by late star formation. For example, an identical gas-rich satellite will likely create a larger mass fraction of young stars, and therefore a lower luminosity-weighted age and a larger dilution of [α/Fe], in a smaller SG.

The median value for the internal dust extinction of our SG sample is $E_{B-V} \sim 0.2$ mag, around a factor of 2 higher than the typical values found in local SGs (Kaviraj et al. 2007a). Supersolar metallicities ($Z > Z_{\odot}$) are favoured, but with significant uncertainties that are typical of this type of photometric parameter estimation. We conclude this section by presenting the ‘formation redshifts’ of the SG population in Fig. 9. The formation redshift is calculated using the derived starburst age and observed redshift of the SG in question, i.e. it is the redshift around which the star formation in the galaxy is likely to peak in a WMAP7 cosmology. The top panel in Fig. 8 indicates that the peak of the star formation that builds the SGs in our sample is likely in the redshift range $2 < z < 5$, with a median value of $z \sim 3$. The bottom panel in this figure shows the formation redshifts plotted against the stellar masses for our SGs. The general trends are similar to the plot of age ($T$) versus stellar mass (the top left-hand panel of Fig. 8), with the larger scatter mainly due to the non-linearity between look-back time and redshift.

5 SUMMARY

We have studied ~330 newborn SGs in the redshift range $1 < z < 3$, to study their high-redshift origin and gain insight into when and how the old stellar populations that dominate today’s Universe formed. SGs have been identified by visual inspection of NIR images from the WFC3 ERS programme, which trace the rest-frame optical wavelengths at these redshifts. 10-filter HST photometry, covering the rest-frame UV–optical wavelengths, has been used to study the photometric properties of the newborn SG population and empirically estimate their SFHs.

The rest-frame UV–optical colours of the SG population indicate that virtually none of these galaxies has completed their stellar assembly by $z \sim 5$. The derived SFHs indicate that the stellar assembly of our SGs likely peaked in the redshift range $2 < z < 5$, with a median value of $z \sim 3$. Given that around half the present-day SG population was in place by $z \sim 1$ (e.g. Bell et al. 2005; Faber et al. 2007), this implies that a significant fraction of the old stars that dominate the local Universe are likely to have formed at these epochs.

Our results show that the star formation episodes that built the massive SGs are relatively short and have decay time-scales less than 1.5 Gyr (with a median of ~0.6 Gyr). Starburst ages and time-scales show no correlation with galaxy stellar mass in the mass range $10^{10.5} < M_\ast < 10^{10.5} M_\odot$. However, the time-scales scatter towards lower values (<0.3 Gyr) for more massive galaxies ($M_\ast > 10^{10.5} M_\odot$) and a trend towards increasing age becomes apparent as we move to higher stellar masses, with galaxies that have $M_\ast > 10^{11.5} M_\odot$ being ~2 Gyr older than those with $M_\ast < 10^{10.5} M_\odot$. However, a smooth downsizing trend with galaxy mass is not observed, and the large scatter in the starburst ages indicates that SGs are not a particularly coeval population.

Around half of the SGs in the blue cloud are relaxed, i.e. show no morphological disturbances of a recent merger. At the depth of the WFC3 images employed in this study, tidal debris from major mergers is likely to be visible at the epochs probed here. Thus, relaxed SGs in the blue cloud are unlikely to be driving their star formation episodes via major mergers, suggesting (indirectly) that they may be experiencing minor mergers, or are the remnants of the recent collapse of clumpy discs, in which the star formation has been fed by cold streams (as envisaged in recent theoretical work). Furthermore, those SGs that do show tidal features, and are therefore likely to be recent major-merger remnants, exhibit only modest enhancements in their sSFRs of ~40 per cent. Thus, major mergers appear relatively insignificant, both in terms of driving the build-up of the SG stellar mass and enhancing the star formation that is already being driven by other processes (e.g. cold-mode accretion, minor mergers).

This study offers empirical insights into the formation of newborn SGs in the early Universe, using the rest-frame optical data that are rapidly becoming available from new space- and ground-based surveys. We conclude this paper by outlining several outstanding issues that demand further study. The analysis of very massive galaxies ($M_\ast > 10^{11} M_\odot$) requires a larger, statistically significant

![Figure 9](https://example.com/figure9.png)

**Figure 9.** Top: histogram of formation redshifts, calculated from the starburst ages ($T$) and the observed redshifts of the SG population (see the text in Section 4 for details). Median values are shown using the dotted vertical lines. Look-back times corresponding to the formation redshifts are indicated on the top x-axis. Bottom: formation redshift versus stellar mass in individual SGs. The error bar indicates the average uncertainty in the formation redshifts across the SG population. The typical errors in the stellar masses are better than 0.3 dex.
of AD has been partly supported by the ISF grant 6/08 by GIF grant G-1052-104.7/2009, DIP grant STE1869/1-1.GE625/15-1 and NSF grant AST-1010033.

REFERENCES

Abraham R. G., Tanvir N. R., Santiago B. X., Ellis R. S., Glazebrook K., van den Bergh S., 1996, MNRAS, 279, L47
Abraham R. G., van den Bergh S., Nair P., 2003, ApJ, 588, 218
Barnes J. E., Hernquist L., 1992, ARA&A, 30, 705
Baugh M. C., Cole S., Frenk C. S., 1996, MNRAS, 283, 1361
Bell E. F. et al., 2004, ApJ, 608, 752
Bell E. F. et al., 2005, ApJ, 625, 23
Bernardi M. et al., 2003, AJ, 125, 1882
Birnboim Y., Dekel A., 2003, MNRAS, 345, 349
Bower R. G., Lucey J. R., Ellis R., 1992, MNRAS, 254, 589
Brammer G. B., van Dokkum P. G., Coppi P., 2008, ApJ, 686, 1503
Bruzual G., Charlot S., 2003, MNRAS, 344, 1000
Bundy K., Ellis R. S., Conselice C. J., 2005, ApJ, 625, 621
Butcher H., Oemler A., 1984, ApJ, 285, 426
Calzetti D., Armus L., Bohlin R. C., Kinney A. L., Koornneef J., Storchi-Bergmann T., 2000, ApJ, 533, 682
Cameron E., Carollo C. M., Oesch P. A., Bouwens R. J., Illingworth G. D., Trenti M., Labbé I., Magee D., 2011, ApJ, 743, 146
Carpineti A., Kaviraj S., Darg D., Lintott C., Schawinski K., Shabala S., 2012, MNRAS, 2262
Cassata P. et al., 2005, MNRAS, 357, 903
Cattaneo A., Dekel A., Faber S. M., Guiderdoni B., 2008, MNRAS, 389, 567
Cen R., 2011, arXiv:1111.0707
Ceverino D., Dekel A., Bournaud F., 2010, MNRAS, 404, 2151
Ceverino D., Dekel A., Mendelker N., Bournaud F., Burkert A., Genzel R., Primack J., 2012, MNRAS, 420, 3490
Cimatti A., et al., 2008, A&A, 482, 21
Cole S., Lacey C. G., Baugh C. M., Frenk C. S., 2000, MNRAS, 319, 168
Conselice C. J., Bershady M. A., Dickinson M., Papovich C., 2003, AJ, 126, 1183
Conselice C. J. et al., 2011, MNRAS, 413, 80
Couch W. J., Barger A. J., Smail I., Ellis R. S., Sharples R. M., 1998, ApJ, 497, 188
Daddi E. et al., 2005, ApJ, 626, 680
de la Rosa I. G., La Barbera F., Ferreras I., de Carvalho R. R., 2011, MNRAS, 418, L74
Dekel A., Sari R., Ceverino D., 2009a, ApJ, 703, 785
Dekel A. et al., 2009b, Nat, 457, 451
Devriendt J. et al., 2010, MNRAS, 403, L84
Ellis R. S., Smail I., Dressler A., Couch W. J., Oemler A. J., Butcher H., Sharples R. M., 1997, ApJ, 483, 582
Elmegreen D. M., Elmegreen B. G., Rubin D. S., Schaffer M. A., 2005, ApJ, 631, 85
Elmegreen B. G., Bournaud F., Elmegreen D. M., 2008, ApJ, 688, 67
Faber S. M. et al., 2007, ApJ, 665, 265
Ferreras I., Silk J., 2000a, ApJ, 532, 193
Ferreras I., Silk J., 2000b, ApJ, 541, L37
Ferreras I., Silk J., Böhm A., Ziegler B., 2004, MNRAS, 355, 64
Ferreras I., Lisker T., Carollo C. M., Lilly S. J., Mobasher B., 2005, ApJ, 635, 243
Ferreras I., Lisker T., Pasquale A., Khochar S., Kaviraj S., 2009, MNRAS, 396, 1573
Forbes D. A., Ponman T. J., Brown R. J. N., 1998, ApJ, 508, L43
Förster Schreiber N. M. et al., 2006, ApJ, 645, 1062
Frax M., 1995, in van der Kruit P. C., Gilmore G., eds, Stellar populations proceedings of the 16th symposium of the International Astronomical Union, held in the Hague, the Netherlands, August 15-19, 1994. International Astronomical Union. Symposium no. 164, Kluwer Academic Publishers, Dordrecht, p. 269

ACKNOWLEDGMENTS

We are grateful to the referee Scott Trager for many constructive comments that helped improve the original manuscript. Daniel Thomas, Pieter van Dokkum, Ignacio Ferreras, Mariska Kriek, Claudia Maraston, Simona Mei and Ewan Cameron are thanked for comments and related discussions. SK is grateful for the generous hospitality of the California Institute of Technology, where most of this work was completed. SK also acknowledges fellowships from Imperial College London, the Royal Commission for the Exhibition of 1851 and Worcester College, Oxford.

This paper is based on ERS observations made by the WFC3 Scientific Oversight Committee. We are grateful to the Director of the Space Telescope Science Institute for awarding Director’s Discretionary time and deeply indebted to the brave astronomers of STS-125 for rejuvenating HST. Support for HST programme 11359 was provided by NASA through grant GO-11359 from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. RAW also acknowledges support from NASA JWST Interdisciplinary Scientist grant NAG5-12460 from GSFC. The work

sample of objects, such as the complete CANDELS survey, which offers a factor of ~20 increase in area compared to the WFC3 ERS programme (but typically in fewer filters compared to the 10-band HST data used here). While we have presented plausible evidence for the general insignificance of major mergers in producing SGs and driving stellar mass growth at high redshift, the role of such mergers in the redshift range 1 < z < 3 has to be quantified further, by directly comparing the rate of emergence of SGs with the observed major-merger rate. Again, this will benefit from better statistics than is available in either the WFC3 ERS sample or the existing CANDELS data. Bulk visual classification of galaxy morphologies, required for the reliable identification of mergers and SGs (see e.g. Kaviraj et al. 2007a; Kartaltepe et al. 2010) from large data sets such as CANDELS, can be achieved using novel techniques such as the Galaxy Zoo project.

While rest-frame UV/optical photometry provides reasonable constraints on galaxy SFHs, they can be (significantly) improved using forthcoming panchromatic data. Spectroscopic line indices and/or radio continuum data can put strong priors on stellar/gas-phase metallicities and the current SFR, respectively, enabling us to significantly reduce uncertainties on the derived SFH parameters (cf. Section 3). Intriguingly, the derived star formation timescales in our SGs appear somewhat longer than those implied by the high [α/Fe] ratios observed in the low-redshift Universe. However, photometric analyses such as the one performed here typically yield large error bars on the derived time-scales, making it difficult to ascertain whether this is a real effect. A systematic study of the stellar/gas-phase metallicities, [α/Fe] ratios and SFRs of massive SGs at z > 1, using forthcoming spectrographs like KMOS and radio-continuum surveys using the SKA precursors (e.g. e-MERLIN), thus becomes a compelling exercise. Looking further ahead, future morphological studies, using the JWST and the extremely large telescopes, will enable us to probe massive galaxies beyond z > 3, bridging the gap between SGs at the epoch of peak star formation and their progenitors.

In future papers, we will systematically tackle these issues using the forthcoming data sets mentioned above, both to further our understanding of the emerging SG population and, in particular, to bring such empirical results to bear on our emerging theoretical models for describing the high-redshift Universe.

The birth of spheroids in the early Universe
