A revised upper limit to energy extraction from a Kerr black hole

Jeremy D. Schnittman1,2

1Gravitational Astrophysics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771
2Joint Space-Science Institute (JSI), College Park, MD 20742

(Dated: October 24, 2014)

We present a new upper limit on the energy that may be extracted from a Kerr black hole by means of particle collisions in the ergosphere (i.e., the “Penrose process”). Earlier work on this subject has focused largely on particles with critical values of angular momentum falling into an extremal Kerr black hole from infinity and colliding just outside the horizon. While these collisions are able to reach arbitrarily high center-of-mass energies, it is very difficult for the reaction products to escape back to infinity, effectively limiting the peak efficiency of such a process to roughly 130%. When we allow one of the initial particles to have $\ell > 2M$, and thus not get captured by the horizon, it is able to collide along outgoing trajectories, greatly increasing the chance that the products can escape. For equal-mass particles annihilating to photons, we find a greatly increased peak energy of $E_{\text{out}} \approx 6 \times E_{\text{in}}$. For Compton scattering, the efficiency can go even higher, with $E_{\text{out}} \approx 14 \times E_{\text{in}}$, and for repeated scattering events, photons can both be produced \textit{and} escape to infinity with Planck-scale energies.

PACS numbers: 04.70.Bw, 97.60.Lf

When two particles scatter or annihilate close to a spinning black hole, it is possible that one of the products can have negative energy, necessarily getting captured by the horizon, thereby reducing the black hole’s total mass. This energy is transferred to the other particle, which then may escape to infinity with more energy than that of the initial particles. This process, first identified by Penrose, has long been studied as a curious property of Kerr black holes, but is of questionable astrophysical relevance \cite{1}.

Notably, early work by Wald \cite{2} showed that a maximum efficiency of $\approx 121\%$ can be obtained for a single particle falling from rest at infinity, then decaying into two equal-mass particles in the ergosphere, one of which escapes, and one of which is captured. Piran and Shapam \cite{3} found similar results for a variety of scattering and annihilation processes, with only modest net energy extraction from the black hole.

More recently, the subject has received renewed interest following a paper by Banados, Silk, and West (BSW) \cite{4} that proposed to use extremal Kerr black holes to probe arbitrarily high center-of-mass energies by colliding particles on critical trajectories just outside the horizon. Numerous subsequent papers pointed out that, while very large center-of-mass energies are indeed obtainable, the subsequent redshift of the escaping particles ensures that the net efficiency of the Penrose process remains limited to only about 130% \cite{4,5,6}.

One feature that all these papers have in common is their analytic approach to the problem. Based on strong symmetry arguments, they focus almost exclusively on very specific geodesic trajectories in the equatorial plane, usually taking the limit as the point of collision approaches the horizon, where the center-of-mass energy is highest. In a companion work \cite{7}, we have taken a different approach, calculating numerically the distribution function of dark matter particles around a Kerr black hole using a fully three-dimensional Monte Carlo code to integrate a huge sample of random geodesics orbits for both particles and annihilation photons \cite{11}. In doing so, we consistently found a small number of photons that managed to escape the black hole with energies well in excess of the theoretical bounds of \cite{3,8}.

In this Letter, we focus on these extreme events, again returning to analytic methods to understand the properties of the colliding particles, their products, and the dependence on physical parameters such as the black hole spin. We arrive at the somewhat startling conclusion that for annihilation between equal-mass particles falling from rest at infinity, the escaping photons can attain energies equal to \textit{six times} the total rest mass energy of the incoming particles. For Compton scattering between a photon and massive particle, the efficiency can reach nearly 1400%! Finally, we show how repeated scattering events can increase the energy of a photon—and the net efficiency of the Penrose process—almost without bound.

We begin with a description of geodesic trajectories in the equatorial plane around a Kerr black hole. From the normalization constraint $g_{\mu\nu}p^\mu p^\nu = -m^2$ we can write down an effective potential:

$$V_{\text{eff}}(r) = k \frac{M}{r} + \frac{\ell^2}{2r^2} + \frac{1}{2} (-k - \epsilon^2) \left(1 + \frac{a^2}{r^2} \right) \frac{M}{r^3} (\ell - a\epsilon)^2,$$

where r is the radius in Boyer-Lindquist coordinates, ℓ and ϵ are the particle’s specific angular momentum and energy, M and a are the black hole mass and spin, and $k = 0$ for photons and $k = -1$ for massive particles. We set $G = M = c = 1$ throughout this paper. For a specific choice of a, ℓ, ϵ, and k, we can solve for the radial turning points by setting $V_{\text{eff}}(r) = 0$.
FIG. 1: Radial turning points in the effective potential \(V_{\text{eff}}(r, b) \) for (top) massive and (bottom) massless particles, for a black hole with maximal spin \(a = 1 \). Any particle in the yellow region can escape from the black hole, but in the blue regions, only particles with outgoing radial velocities can escape. The static limit is located at \(r = 2 \) and the horizon is at \(r = 1 \).

Figure 1 shows these turning points as a function of the impact parameter \(b = \ell/\varepsilon \) for both massless and massive particles, for maximal spin \(a = 1 \). For the massive particles we set \(\varepsilon = 1 \), corresponding to a particle at rest at infinity. One can imagine a massive particle incoming from the right with \(b < -2(1 + \sqrt{2}) \) or \(b > 2 \), reflecting off the centrifugal potential barrier and returning back to infinity (yellow regions). Alternatively, if the impact parameter is small enough (i.e., \(-2(1 + \sqrt{2}) < b < 2 \)), the particle will get captured by the black hole. Due to frame-dragging, the cross section for capture is much greater for incoming particles with negative angular momentum.

For a given \(\ell = p_\phi \) and \(\varepsilon = -p_r \), the radial momentum \(p_r \) can be determined from the normalization condition \(p_\mu p_\nu g^{\mu\nu} = k \):

\[
p_r = \pm \sqrt{g_{rr}(k - g^{tt} \varepsilon^2 + 2g^{t\phi} \varepsilon \ell - g^{\phi\phi} \ell^2)^{1/2}}, \tag{2}
\]

and the sign of the root is chosen depending on criterion described below.

Let us now consider a simple reaction between two particles with momenta \(p^{(1)} \) and \(p^{(2)} \) that collide to produce two particles with \(p^{(3)} \) and \(p^{(4)} \). Constraining all trajectories to the equatorial plane, we have to solve for six unknown momentum components. Conservation of total momentum provides three constraints, and the normalization conditions on the two daughter particles provide two more. We are left with a single free parameter: the angle \(\psi \) between \(p^{(3)} \) and the \(\hat{r} \)-direction in the center-of-mass frame.

After solving for the momenta \(p^{(3)} \) and \(p^{(4)} \) of the products, we determine if they can escape the horizon based on the effective potential barriers and the sign of the radial velocity component, as evident in Figure 1. Scanning over all values of the angle \(\psi \), we solve for the maximum energy of escaping particles as a function of radius. Then the peak efficiency of the reaction is defined as \(\eta_{\text{max}} = \varepsilon^{(3)} / (\varepsilon^{(1)} + \varepsilon^{(2)}) \). Interestingly, as pointed out by \cite{BSW}, the highest energy photons that can escape are initially ingoing with \(b_3 > 2 \), giving \(\eta_{\text{max}} \approx 1.3 \), while those photons with initially outward-directed trajectories typically have \(\eta_{\text{max}} < 0.5 \).

BSW and much of the subsequent work on this topic focus predominantly on reactions between equal-mass particles falling from rest at infinity with critical values of the incoming angular momentum \((\ell_1 = 2, -2(1 + \sqrt{2}) \leq \ell_2 \leq 2) \), which lead to divergent center-of-mass energies just outside the horizon when \(a = 1 \). Yet the products of such reactions are either immediately captured by the black hole, or lose most of their energy due to gravitational redshift before reaching an observer \cite{BSW, S10}.

In Figure 2 we plot \(\eta_{\text{max}}(r) \) for the same parameters as in Figure 2b of Ref. \cite{S10}, and reassuringly get identical results. In all cases, \(m_1 = m_2 = 1, m_3 = m_4 = 0, \varepsilon_1 = \varepsilon_2 = 1, a = 1, \ell_1 = 2, \) and \(p_{(1)}^r, p_{(2)}^r < 0 \). One interesting result is that, while the center-of-mass energy increases with smaller \(r \), the peak efficiency is reached...
somewhat outside the horizon, due to the greater probability of escape. Note also that the efficiency can only surpass unity for \(r < 2 \), because the Penrose process only works inside the ergosphere. The dashed line, for \(\ell_2 = \ell_1 = 2 \), is physically equivalent to spontaneous breakup of a single particle into two photons, as in [2].

While exploring the distribution function and annihilation products of dark matter around Kerr black holes [10], we consistently found escaping photons with energies greater than the Piran and Beiger limits. An important clue to understanding these seemingly impossible photons came from Figure 2: the greatest efficiency actually comes from trajectories somewhat outside the horizon. When considering initial particles with \(\ell > 2 \) that never reach the horizon, it soon became obvious that they can reflect off the effective potential barrier and escape with \(p_\epsilon > 0 \). When colliding with particles on incoming trajectories, these “super-critical” particles provide much-needed positive radial momentum to the center-of-mass frame, greatly increasing the chance that the products can escape to infinity.

In Figure 3 we again plot the peak efficiency for annihilation reactions between two equal-mass particles with \(\varepsilon_{1,2} = 1 \). Yet now we set \(\ell_1 \) to be infinitesimally larger than the critical value, allowing \(p_\ell^{(1)} > 0 \). The difference is quite profound. Not only is the peak efficiency much greater than previously calculated, but it is also attainable for a wider range of \(\ell_2 \) values.

To better understand the cause of this increase, in Figure 4 we plot the center-of-mass energy \(E_{\text{com}}/m \) as a function of radius, for both \(p_\ell^{(1)} > 0 \) (solid curves) and \(p_\ell^{(1)} < 0 \) (dashed curves). The values for \(\ell_2 \) and the color scheme are identical to Figure 3. Interestingly, the peak center-of-mass energy is only a factor of \(\sim 2 \) higher for outgoing particles relative to ingoing particles. Thus we conclude that the huge increase in efficiency in our case is due to a higher escape probability for the products, rather than a much higher initial photon energy.

We also considered Compton-like scattering between a photon and massive particle in a similar geometry to the annihilation mechanism, with \(b_1 \) just above the critical value, \(p_\ell^{(1)} > 0, \ell_2 = -2(1 + \sqrt{2}) \), and \(p_\ell^{(2)} < 0 \). The results are shown in Figure 5, where the different curves correspond to different photon energies \(\varepsilon_1 \), and the efficiency is still defined as \(\varepsilon_3/(\varepsilon_1 + \varepsilon_2) \). When \(\varepsilon_1 > m_2 \), we find the escaping photons can reach energies roughly 14 times that of the incoming photons.

As noted above, the highest-energy photons that are able to escape are actually emitted with \textit{ingoing} radial
momentum before reflecting off the potential barrier and then reaching infinity. This allows for the fortunate possibility of multiple scattering events with the same photon: each time, the photon first reflects off the potential barrier so that $p_r^{(1)} > 0$, then scatters off a new infalling particle with $\varepsilon_2 = 1$, $\ell_2 = -2(1 + \sqrt{2})$, and the resulting photon has $p_r^{(3)} < 0$ and $b_3 > 2$, allowing the process to repeat.

Thus it is possible to reach photon energies on the order of $m_2 10^N$ after N scattering events, for a net efficiency of $\eta \approx 10^N / N$. The only limitation, as can be seen in Figure 5, is that the radius at which such high-efficiency reactions ($\eta \gtrsim 10$) can occur moves steadily inward with each subsequent scattering event. We call this radius $r_{\text{crit}, N}$ and find that $\log_{10}(r_{\text{crit}, N} - 1) \approx -1 - N$.

At the same time, each scattering event deposits some negative angular momentum into the black hole, reducing its spin. This in turn changes the effective potential, and increases both the impact parameter and turning radius for the critical trajectories required for high-efficiency scattering events. In the limit of $\varepsilon \equiv (1 - a) \ll 1$, we find the critical value is $b \approx 2(1 + \varepsilon^{1/2})$, which corresponds to a turning radius of $r_{\text{turn}} \approx 1 + 2 \varepsilon^{1/2}$. Eventually, the spin is reduced to a point where the turning radius is outside of r_{crit} and the efficiency begins to suffer (see Fig. 6).

Following [12], we can write an expression for the spin evolution due to capture of a particle with angular momentum δJ and energy δE:

$$\delta a = -2a \frac{\delta E}{M} + \frac{\delta J}{M^2}. \quad (3)$$

Assuming each scattering event has an efficiency of $\eta = 10$, and we start with $a = 1$, the change in spin due to the N^{th} event is to leading order1

$$\delta \epsilon_N \approx 2 \frac{m_2}{M} \left(2 + \sqrt{2} + \frac{1}{2} \epsilon_N^{1/2} 10^{N+1} \right), \quad (4)$$

where $1 - \epsilon_N$ is the spin just before the N^{th} event. Since the condition $r_{\text{turn}} < r_{\text{crit}}$ requires $\epsilon_N^{1/2} 10^{N+1} < 1/2$, we can write

$$\epsilon_{N+1} \approx (4 + 2\sqrt{2}) \frac{m_2}{M}, \quad (5)$$

which in turn gives the maximum number of high-efficiency scattering events: $N_{\text{max}} \approx \log_{10}(M/m_2)^{1/2}$.

Taking m_2 to be the electron mass and $M = 10\,M_\odot$ gives $N_{\text{max}} \approx 30$, for a peak energy of 10^{26} GeV. Thus photons undergoing repeated Compton scattering events could not only far surpass the Planck energy scale, but these hyper-energetic photons could even escape to an observer at infinity!

As with any result that contradicts multiple previous papers published over a span of decades, it is not without hesitation that we present this conclusion. However, the combination of independent numerical and analytic calculations that have led to these conclusions, as well as our ability to reproduce earlier results when making identical assumptions, provides some added level of confidence in these new results. At least within the confines of classical relativity and idealized particle physics, we believe them to be correct. If anything, further exploration of parameter space will likely only find more extreme cases that have not yet been considered in this study.

At the same time, it is eminently clear that the most extreme effects will have little or no application to astrophysical processes, where realistic spins will never reach the near-maximal levels required for such events. For example, quantum effects and Hawking radiation will naturally spin down even an isolated extremal black hole [13], and gravitational radiation from the scattering particles could further degrade the spin [14] (although a carefully constructed steady-state stream of incoming particles might avoid this problem by removing the time-varying quadrupole moment).

One might imagine an advanced civilization that can create extremal black holes and harness them as energy storage devices or particle accelerators. Of course, there is the problem of spinning down the black hole in the process, so that only a single extreme event might ever be achieved [14], but this too could be avoided by providing a simultaneous source of positive angular momentum via accretion. The net efficiency would suffer, but such is the cost of probing Planck-scale physics in the laboratory.

1 While each post-scattering particle m_4 deposits a greater amount of negative angular momentum, it also deposits more negative energy, so the net change in spin is relatively constant.
It is a pleasure to acknowledge helpful discussions with A. Buonanno, T. Jacobson, and J. Silk. This work was supported in part by NASA grant ATP12-0139.

[1] R. Penrose, Nuovo Cimento 1, 252 (1969).
[2] R. M. Wald, Astroph. J. 191, 231 (1974)
[3] T. Piran and J. Shaham, Phys. Rev. D, 16, 1615 (1977)
[4] M. Banados, J. Silk, and S. M. West, Phys. Rev. Lett. 103, 111102 (2009).
[5] T. Jacobson and T. P. Sotiriou, Phys. Rev. Lett. 104, 021101 (2010).
[6] M. Banados, B. Hassanain, J. Silk, and S. M. West, Phys. Rev. D 83, 023004 (2011).
[7] T. Harada, H. Nemoto, and U. Miyamoto, Phys. Rev. D, 86, 024027 (2012).
[8] M. Bejger, T. Piran, M. Abramowicz, and F. Hakanson, Phys. Rev. Lett. 109, 121101 (2012).
[9] S. T. McWilliams, Phys. Rev. Lett. 110, 011102 (2013).
[10] J. D. Schnittman, Astroph. J. in prep. (2014).
[11] J. D. Schnittan and J. H. Krolik, Astroph. J. 777, 11 (2013).
[12] K. S. Thorne, Astroph. J. 191, 507 (1974).
[13] D. N. Page, Phys. Rev. D 14, 3260 (1976).
[14] E. Berti, V. Cardoso, L. Gualtieri, F. Pretorius, and U. Sperhake, Phys. Rev. Lett. 103, 239001 (2009).