Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Antihistamine and cationic amphiphilic drugs, old molecules as new tools against the COVID-19?

Clara Gitahy Falcao Faria a, b, Luisa Weiner b, Julien Petrignet c, Coraline Hingray d, Ángel Ruiz De Pellon Santamaria e, Bruno O. Villoutreix f, Philippe Beaune g, Marion Leboyer h, Hervé Javelot i, j

a Institute of Psychiatry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
b Clinique de Psychiatrie, CHU de Strasbourg, France
c Laboratoire Synthèse et Isolement de Molécules BioActives (SIMBA, EA 7502), Université de Tours, Faculté des Sciences et Techniques, Tours, France
d Pole Hospitalo-Universitaire de Psychiatrie d’Adultes du Grand Nancy, Centre Psychothérapie de Nancy, Laxox, CHU de Nancy, Département de Neurologie, Nancy, France
e Department of Psychiatry, Donostia University Hospital, Donostia, Guipúzcoa, Spain
f Université Paris, NeursDépote, Inserm U1141, hopital Robert-Debre, F-75019 Paris, France
g Inserm U 1138 Centre de recherche des Cordeliers 75006 Paris, Université de Paris, Paris, France
h Université Paris Est Créteil (UPEC), INSERM U955, IMRB, Laboratoire Neuro-psychiatrie translationnelle, AP-HP, Département Medico-Universitaire de Psychiatrie et d’Addictologie (DMU ADAPT), Hopital Henri Mondor, Fondation FondaMental, F-94010 Créteil, France
i Etablissement Public de Santé Alsace Nord, Brumath, France Laboratoire de Toxicologie et Pharmacologie Neuro Cardiovasculaire, Université de Strasbourg, Strasbourg, France

ABSTRACT

Several studies have reported that certain psychoactive drugs could have a protective effect against SARS-CoV-2. Herein, we propose that antihistamines (anti-H1) and cationic amphiphilic drugs (CAD), specifically, have the capacity to disrupt virus entry and replication. In addition, several of these molecules have limited side effects and as such could be promising prophylactic candidates against SARS-CoV-2 infection.

Introduction

The SARS-CoV-2 pandemic remains a challenge insofar as preventive and/or curative pharmacotherapeutic strategies have not been clearly identified yet. Among possible options, psychotropic drugs have been considered as possible prevention strategies. Indeed, given the numerous factors which might increase the risk of having a severe COVID in patients with psychiatric disorders, it is surprising that the initial prevalence of COVID, during the first wave and based on the first-published reports, was apparently similar or only slightly higher in patients with mental illness compared to the general population [1,2]. As some authors have recently suggested, this could be indicative of a prophylactic effect against SARS-CoV-2 shared by psychoactive agents commonly used to treat psychiatric patients [3,4]. Such a theory is supported by the characterization of antiviral effects in general and against coronaviruses in particular described for many old psychotropics [5,6].

Pharmacological based hypothesis

There is some literature about the efficacy of different pharmacotherapeutic classes on coronaviruses [6] which has been recently reviewed [3,4]. This has allowed to specify the drugs which could have antiviral activity, and, more specifically, possible anti-SARS-CoV-2 effects [3,4]. Based on the data provided by Dyall et al. [6] the class effect shared by phenothiazines (chlorpromazine, fluphenazine, promethazine, thioethylperazine, trifluromazine) could be extrapolated to other substances, such as cyamemazine and alimemazine/trimeprazine, which are commonly prescribed in France, but also levomepromazine or pericazine [3,4].

The 11 psychotropic drugs identified as potentially effective against coronaviruses by Dyall et al. [6] are antihistamines (anti-H1) and cationic amphiphilic drugs (CAD). The latter can cause intracellular trafficking disturbances, hence disrupting viral entry and replication [3,4]. From this standpoint, cationic amphiphilic drugs (CAD) could represent a preventive treatment against SARS-CoV-2. Cationic and
The most recent data indicate that antihistamines which are secreted in great amounts during the cytokine-storm of COVID-19 [10,11] could act on virus entry while, also exerting a potential (or confirmed) anti-SARS-CoV-2 activity [2,3]. Many antihistamine drugs are described above, as well as in conventional antihistamines (astemizole, chlorpheniramine, thiothixene, fluspirilene), tricyclic antidepressants (clomipramine, desipramine, amoxapine, nortriptyline, perphenazine, levomepromazine/methotrimeprazine, imipramine), and the anticholinergic (benztropine) [6] . Many antihistamine drugs are described above, 7 are indeed confirmed FIASMAs [6,8,9] .

Myelinase (ASM) inhibition and called Functional Inhibitors of Acid Sphingomyelinase (FIASMA) profile; not tested experimentally. Conflicting data in Govind et al. [27] . Very likely that all clinically used phenothiazines (and closely-related compounds) belong to the FIASMAs, but not tested all experimentally.

Antihistamine properties are present in all the substances mentioned above, as well as in conventional antihistamines (astemizole, chlorpheniramine), phenothiazines or structurally derived antipsychotics (thiothixene, fluspirilene), tricyclic antidepressants (clomipramine), and the anticholinergic (benztropine) [6] . Many antihistamine drugs are also CAD and as such could act on virus entry while, also exerting a negative regulation on IL-6 release from human lung macrophages which are secreted in great amounts during the cytokine-storm of COVID-19 [10,11]. The most recent data indicate that antihistamines (anti-H2) medications in general and particularly phenothiazines and derivate could be a useful strategy against SARS-CoV-2 at multiple stages, from prophylaxis to preventing complications of the infection itself [12–21]. Moreover, in a large sample of 219,000 electronic health records, 3 antihistamine medications (azelastine, diphenhydramine and hydroxyzine) were associated with reduced incidence of SARS-CoV-2 in subjects above the age of 61 [17].

Two overlapping lists of psychoactive agents with potential prophylactic effects against SARS-CoV-2 have been recently proposed in the literature based on pharmaco-epidemiological and pharmacoc hemoinformatic data. Both include mostly substances with antihista mine and cationic amphiphilic characteristics [3,4] (see Table 1).

It should be noted that this hypothesis was formulated based on the initial data regarding the evolution of the pandemic in psychiatry [1,2,22]. Some recent results, however, suggest that suffering from a psychiatric disorder could increase the risk of being affected by COVID-19 [23] of developing a severe form of it [1] or even of dying as a result of it [24] while psychotropic drugs may increase COVID-19 mortality in elderly patients [25]. These data encouraged us to make assumptions about what could have constituted a possible initial prophylactic factor in psychiatry settings. Like the conflicting data around tobacco and nicotine [26] it is necessary to assess whether the increased risk of aggravation in mental health patients once hospitalized for COVID-19 could come from the possible reduction or cessation of all or part of prophylactic medications having a potential effect against SARS-CoV-2.

Table 1

Substances with antihistamine and cationic amphiphilic properties, with potential (or confirmed) anti-SARS-CoV-2 activity [2,3]	Preliminary data confirming anti-SARS-CoV-2 activity
Alimemazine/trimeprazine (−)	[13]
AMT/trimetrexate (−)	[6]
Antistime (−)	[18]
Benza(®)tripine (−)	[18]
Clotrimazone (−)	[18]
Chlorpheniramine (−)	[16,18,19]
Clopropram (−)	[19]
Clozapine (−)	[19]
Cyamemazine (−)	[8]
Escitalopram (−)	[8]
Flupentixol (−)	[13]
Fluphenazine (−)	[19]
Fluspirilene (−)	[19]
Hydroxyzine (−)	[17]
Levomepromazine/methotrimeprazine (−)	[17]
Mequitazine (−)	[19]
Metopimazine (−)	[19]
Penfluridol (−)	[21]
Pipamperone (−)	[19]
Pipotiazine (−)	[19]
Promethazine (−)	[19]
Periclis/propylicazine (−)	[19]
Quetiapine (−)	[19]
Tethylerazine (−)	[19]
Tioridazine (−)	[19]
Triflupromazine (−)	[19]
Zuclopenthixol (−)	[19]

† Very weak to weak antihistamine effects.
‡ Very likely that all clinically used phenothiazines (and closely-related compounds) belong to the FIASMAs, but not tested all experimentally.
§ Fluspirilene is a diphenylbutylpiperidines related to pimozide, penfluridol and loperamide with FIASMA profile; not tested experimentally.
\# Conflicting data in Govind et al. [27].
[12] Udrea A-M, Avram S, Nistorescu S, Pascu M-L, Romanitan MO. Laser irradiated phenothiazines: New potential treatment for COVID-19 explored by molecular docking. J Photochem Photobiol, B 2020;211:111997. https://doi.org/10.1016/j.jphotobiol.2020.111997.

[13] Yang L, Pei RJ, Li H, et al. Identification of SARS-CoV-2 entry inhibitors among already approved drugs. Acta Pharmacol Sin. 2020 Oct 28:1–7. Doi: 10.1038/s41401-020-00556-6.

[14] Noble B, Durand M, Courtet P, Van de Perre P, Nogot N, Molin JP, Ollie E. Could the antipsychotic chlorpromazine be a potential treatment for SARS-CoV-2? Schizophr Res 2020;222:373–5.

[15] de Pellan R, Santamaria A. Psychotherapy Treatment During COVID-19 Pandemic and the Potential Role of Phenothiazines: A Call for Research Studies. J Clin Psychopharmacol. 2020;40(6):641–2. https://doi.org/10.1097/JCP.0000000000001310.

[16] Plaze M, Attali D, Prot M, Petit A-C, Blatzer M, Vinckier F, Levillayer L, Chiaravalli J, Perin-Dureau F, Cachia A, Christien F, Gaillard R. Inhibition of the replication of SARS-CoV-2 in human cells by the FDA-approved drug chlorpromazine. Int J Antimicrob Agents 2020:106274. https://doi.org/10.1016/j.ijantimicag.2020.106274.

[17] Reznikov LR, Norris MH, Vashtovit R, Buhin AP, Li D, Liao Y-S, Brown A, Butte AJ, Ostrov DA. Identification of antiviral antihistamines for COVID-19 repurposing. Biochem Biophys Res Commun 2020. https://doi.org/10.1016/j.bbrc.2020.11.096.

[18] Sauvat A, Ciccoiunti F, Colavita F, Di Rienzo M, Castillett C, Capobianchi MR, Kepp O, Zivogel I, Finna GM, Piacentini M, Kroemer G. On-target versus off-target effects of drugs inhibiting the replication of SARS-CoV-2. Cell Death Dis 2020;11 (8). https://doi.org/10.1038/s41419-020-02842-x.

[19] Weston S, Coleman CM, Haupert R, et al. Broad Anti-coronavirus Activity of Food and Drug Administration-Approved Drugs against SARS-CoV-2 In Vitro and SARS-CoV In Vivo. J Virol 2020;94(21):e01218-20. 10.1128/JVI.01218-20.

[20] Westover JB, Ferrer G, Vazquez H, Bethencourt-Mirabal A, Go CC. In Vitro Virucidal Effect of Intranasally Delivered Chlorpheniramine Maleate Compound Against Severe Acute Respiratory Syndrome Coronavirus 2. Cureus. 2020;12(9):e10501. https://doi.org/10.7759/cureus.10501.

[21] Vatansever EC, Yang K, Kratch KG, et al. Targeting the SARS-CoV-2 Main Protease to Repurpose Drugs for COVID-19. bioRxiv [Preprint]. 2020;2020.05.23.112235. 10.1101/2020.05.23.112235.

[22] Plaze M, Attali D, Petit A-C, Blatzer M, Simon-Loriere E, Vinckier F, Cachia A, Christien F, Gaillard R. Repurposing chlorpromazine to treat COVID-19: The reCoVery study. J Encephal 2020;46(3):169–72.

[23] Taquet M, Luciano S, Geddes JR, Harrison PJ. Bidirectional associations between COVID-19 and psychiatric disorder: retrospective cohort studies of 62 354 COVID-19 cases in the USA. Lancet Psychiatry. 2020;S2215-0366(20):30462-4. https://doi.org/10.1016/S2215-0366(20)30462-4.

[24] Li L, Li F, Fortunati F, Krystal JH. Association of a Prior Psychiatric Diagnosis With Mortality Among Hospitalized Patients With Coronavirus Disease 2019 (COVID-19) Infection. JAMA Intern Med Open 2020;3(9):e2023282. https://doi.org/10.1001/jamanetworkopen.2020.23282.

[25] Lee DY, Cho J, You SC, Park RW, Kim CS, Lee EY, Alzenstein H, Andreescu C, Karim H, Hong CH, Rho HW, Park B, Son SJ. Risk of Mortality in Elderly Coronavirus Disease 2019 Patients With Mental Health Disorders: A Nationwide Retrospective Study in South Korea. Am J Geriatr Psych 2020;28(12):1308–16.

[26] Farsalinos K, Barbouni A, Niaura R. Systematic review of the prevalence of current smoking among hospitalized COVID-19 patients in China: could nicotine be a therapeutic option? Reply. Intern Emerg Med. 2020;1-2. https://doi.org/10.1007/s11739-020-02457-2.

[27] Govind R, Fomseca de Freitas D, Pritchard M, Hayes RD, MacCabe JH. Clozapine treatment and risk of COVID-19 [published online ahead of print, 2020 Jul 27]. Br J Psychiatry; 2020, 1-13. Doi: 10.1192/bjp.2020.151.