ABSTRACT

Machine Learning models from other fields, like Computational Linguistics, have been transplanted to Software Engineering tasks, often quite successfully. Yet a transplanted model’s initial success at a given task does not necessarily mean it is well-suited for the task. In this work, we examine a common example of this phenomenon: the conceit that “software patching is like language translation.” We demonstrate empirically that there are subtle, but critical distinctions between sequence-to-sequence models and translation model: while program repair benefits greatly from the former, general modeling architecture, it actually suffers from design decisions built into the latter, both in terms of translation accuracy and diversity. Given these findings, we demonstrate how a more principled approach to model design, based on our empirical findings and general knowledge of software development, can lead to better solutions. Our findings also lend strong support to the recent trend towards synthesizing edits of code conditional on the buggy context, to repair bugs. We implement such models ourselves as “proof-of-concept” tools and empirically confirm that they behave in a fundamentally different, more effective way than the studied translation-based architectures. Overall, our results demonstrate the merit of studying the intricacies of machine learned models in software engineering: not only can this help elucidate potential issues that may be overshadowed by increases in accuracy; it can also help innovate on these models to raise the state-of-the-art further. We will publicly release our replication data and materials at https://github.com/ARiSE-Lab/Patch-as-translation.

CCS CONCEPTS

• Software and its engineering → Software maintenance tools.

KEYWORDS

neural machine translation, big code, sequence-to-sequence model, automated program repair
task (including dependencies and structural properties) are built into the model design. Architectures for machine translation rely heavily on the auto-regressive nature of text: language is generally produced one word (or token) at the time in left-to-right manner, e.g., in speech or writing; the standard NMT encoder-decoder architecture generates translations correspondingly. While this works very well for NMT, its relevance to practical program repair is tenuous at best: empirically, many repairs just copy (nearly all) tokens from the buggy line, with very few changed tokens (often just one). As such, both bug and patch share a large identical prefix, but the difference in the subsequent tokens is crucial. We demonstrate that models struggle to predict this transition, as the large amount of copying distracts (and inflates) the training quality signal.

Objective design: finally, models are trained by computing a loss for their predictions relative to a “gold” output, using a loss function. This function is usually a *differentiable* proxy for the actual quality of the model, because such qualitative assessments tend not to be differentiable. In machine translation, the training loss is usually based on the probabilities of the correct token; the actual quality of the trained model is measured with BLEU scores (or the like) that measure overlap between the generated and ground-truth translation. However, such overlap measures are inappropriate for program repair. For reasons stated earlier (few token changes, lack of contextual information), the quality of a produced repair often correlates very poorly with the number (and placement) of tokens it shares with the desired output. For instance, the trained model emits many syntactically incorrect repairs, as well as many very similar patches for a given bug, rather than exploring a range of alternatives. This yields poor performance in a search-based setting in which they are popularly used (given failing test cases).

Having studied these concerns empirically, we provide strong evidence that the metaphor of “patching as translation” is inappropriate for the task. On the other hand, our results shed light on the effectiveness of a recent competing approach: repairing bugs by synthesizing edits of code conditional on the buggy context [8, 29, 31]. Not only does this approach agree better with our empirical findings, we implemented a general form of this architecture, which predicts insertions and deletions relative to the bug rather than the entire patch, and show that this change in particular produces a model that both generates the correct patch more often, and provides better sampling behavior (i.e., higher top-K prediction accuracy using beam search). We also implemented a generic contextual extension (compatible with both models) to assess whether our empirical findings of the importance of context could be integrated easily into the models; this enhancement proved less effective, likely because existing models struggle to model large windows of context. This finding highlights that empirically observing an issue and effectively addressing it are not always the same; we leave this challenge for future work.

2 BACKGROUND

To study the transplanting of architectures from neural machine translation (NMT) to automated program repair, we need to understand both domains. In this section, we first discuss NMT – its conceptual needs and corresponding architectural designs, and then Automated Program Repair – its empirical characteristics and practical use.

2.1 Neural Machine Translation

NMT aims to convert an expression in a source language (e.g., English) into a semantically equivalent expression in a target language (e.g., French). This is generally both quite feasible and fairly deterministic: a given English sentence almost certainly has a French translation that is both a good French expression on its own and preserves all the information in the original English expression (i.e., it could be translated back to a comparable English phrase).

A natural fit for this task is the encoder-decoder architecture, which consists of two components: 1) an encoder that learns to compactly encode the important information from the source language expression, and 2) a decoder, which transforms that information into an equivalent expression in the target language. Encoder-decoder style models can address many types of transformations between two domains (e.g., from image to textual description) and are typically instantiated with specific encoder-decoder architectures for a given problem that reflect some knowledge about that problem’s domain. This simplifies the otherwise complex task of representing and producing a very wide range of inputs. For example, in computational linguistics, sequence-to-sequence (seq2seq) [28] models are a well-established way to generate text one token at a time, in a left-to-right manner – this linear order reflects how language is often generated in speech and writing. Seq2seq models exploit this structure by both representing and generating expressions with a strong emphasis on the left-to-right relations between tokens; especially in the decoder component, which (in nearly all popular models) produces tokens “auto-regressively”, meaning that tokens are produced one by one, and every previously generated token is fed back to the model to produce the next token.

Practical seq2seq models. Seq2seq models have achieved great success in the NMT field. Recurrent Neural Networks (RNNs) were popular for many years, but had difficulties in remembering long-term dependencies. In an RNN, all the information of a source sentence is encoded into a hidden state from left to right; the final hidden state is then passed to the decoder, which attempts to reconstruct the target expression from this information. This puts inordinate strain on that single hidden state, which tends to cause the model to forget tokens seen long ago. Long short-term memory (LSTM) [15] and gated recurrent unit (GRU) [7] were introduced to mitigate this bottle-neck by better separating long-term and token-specific information, and did significantly improve the performance of RNN-based NMT models, but ultimately suffered from the same concerns. Attention-based mechanisms [4] were introduced to allow the decoder to “attend” to any given intermediate state from the encoder (rather than only the final one), which greatly improved performance. Most recently, the Transformer [32] model generalized this idea to relying entirely on attention mechanisms to both encode inputs and generate outputs. The Transformer model proposes multi-headed (self-)attention interspersed with feed-forward networks that enables both encoder and decoder to attend to any

1In practice, context is sometimes required, e.g., to determine if an expression is meant sarcastically, which may alter its translation. There can also be multiple valid translations for one expression (e.g., literal vs. idiomatic). Even so, generated translations that overlap strongly with the ground-truth are rated highly by human translators [23].
set of tokens across arbitrarily long distances. These models are also highly parallelizable. We adopt this model in our work.

Seq2seq models in SE. Hindle et al. observed that source code is “natural” [14], viz., with strong local dependencies similar to natural languages like English. Many language models have been applied to software engineering tasks. More recently, this includes a range of applications of the seq2seq architecture in modeling source code. Existing work has exploited their potential in several SE tasks, such as code summarization [16], code migration [10] and program repair [5, 6, 22, 30]. The prevalent approach is to treat source code as a sequence of tokens with implicit or explicit structures (e.g., abstract syntax trees) [5]. The encoder learns the distribution of such structured language, which is then translated into the target domain, either program languages (PL) or natural languages (NL). Existing work has especially spent effort on learning meaningful code representations to adapt seq2seq models for source code modeling [2, 3, 34]; these approaches focus on encoding rich characteristics of programming languages, besides just the tokens. Our work takes a more general view, and aims to study the feasibility of constructing good tools based on both the problem design and general model architecture, which is largely orthogonal to learning better representations of code. We recognize that researches in both directions are necessary and significant to improve the efficacy of deep learning approaches in SE.

Relevance of Models to Tasks. All these models excel at learning generalizable patterns from large amounts of diverse data and are prima facie at least somewhat applicable to source code, to the extent that it reflects natural language characteristics. However, different tasks come with their own concepts and peculiarities, and the models should reflect the phenomena specific to the task. For example, code summarization and code migration are more like NL translation tasks, since both their goals are to encode and preserve the semantics of their inputs (code fragments), just in different vocabularies (concise natural language, and another code context respectively). On the other hand, software engineers behave differently when repairing a program. Developers tend to fix a buggy fragment by making minor changes rather than entirely rewriting it. Furthermore, the semantics of the buggy fragment are by definition not preserved; the express goal is to introduce semantically new content (and possibly remove some) so as to change the meaning of a fragment. None of this disqualifies the use of seq2seq models per se, but its built-in assumptions should at least be carefully evaluated empirically, and, if necessary, its application should be changed to better reflect the domain.

2.2 Automated Program Repair

Automated program repair (APR) is a task of keen interest in SE. The aim is to fix software bugs with minimal human intervention. Classic APR techniques can be categorized into 1) generate-and-validate (G&V) [9, 17, 24, 25] or 2) synthesis-based approaches [20]. G&V approaches automatically generate patches and validate the candidates using a set of test cases that reveals the bug. To generate fixes, one effective approach is to mutate (e.g., insert, replace) the buggy code according to code snippets in the current project that occur in similar contexts [17]. Synthesis-based approaches create constraints that satisfy all test cases, and then solve them and produce patches from the solutions.

NMT for APR. Tufano et al. [30] proposed to use machine translation to repair programs and empirically studied the feasibility of translating buggy programs into fixed ones. They applied multi-layer RNNs with either LSTM or GRU nodes to predict patches of abstracted, real bugs, and report promising performance. Chen et al. [6] subsequently introduced SequenceR, an end-to-end framework to repair one-line Java bugs. They used NMT models to learn the implicit bug-repair patterns by training the model with 35k bug-fix pairs. Besides the buggy line itself, they also considered code context to allow long-range dependencies in fixes; they include the entire class in which the bug is located, which they abstract to reduce the input size. CODIT [5] developed a tree-based NMT model to produce code edits and bug fixes. It first translates the tree structure of code and utilizes the structural information to assist the generation of code tokens. CODIT also includes the tree nodes around the bug as context to predict meaningful patches. CoCoNuT [22] ensembles multiple NMT models to capture diverse fix patterns. The authors argue that incorporating context is essential for fixing bugs, so they apply a separate encoder specifically for learning the buggy context.

Although these existing works apply a wide range of models, they all treat program repair as a translation task; these tools encode a limited program window around a bug and learn to transform it to repaired code based on historical repairs. The premise is that translation is both a suitable model and that the buggy code (with its context) provides sufficient information to succeed. It is thus past time to ask the following, high-level question, which has yet to be addressed from an empirical perspective:

RQ1. Is it generally feasible to translate buggy programs to repairs?

While these approaches all indicate that Seq2Seq learning holds promise for learning patterns of transformation between bugs and patches, they struggle to outperform many G&V tools that applied human-designed rules to fix defects. One explanation is that the search space of repairs is prohibitively large [21], among others due to the large and highly local vocabulary and patterns endemic to software [12], as well as the length of buggy fragments. Intuitively, however, the search space need not be so large at all: in real-world development, modifications made to code during repair are mostly small, limited to a few tokens rather than completely reconstructing a statement. Is the reliance on translation putting models at a disadvantage by artificially expanding the search space? It is again worth determining this empirically, by asking:

RQ2. Do machine translation architectures mischaracterize real-world fixing behavior, and does this disadvantage their performance?

Deep Learning for APR. Besides translating buggy code to fix it, recent work has proposed deep learning models that learn to specify the buggy locations that need to be modified together with the edits to be made. DeepFix [11] implemented a seq2seq attention network to fix compiler errors. As input, the program is represented as a sequence of (line number, tokens) pairs, and the model predicts a single (buggy line number, patch) pair as a repair. Vasic et al. [31] proposed using pointer networks [33] to jointly learn to localize and repair a specific class of bugs known as VarsMisuses. Their network jointly predicts two output “heads”, one to locate the buggy token and one for its replacement. Tarlow et al. [29] introduced
3 METHODOLOGY

3.1 Scope

Concretely, we focus on a relatively simple form of automated program repair in which we translate a given buggy line to its repaired counter-part. We thus assume that we have the bug already localized and that it is confined to exactly a single line. This is the most direct form of "repair as translation", in which an off-the-shelf translation model is used on two software "sentences": the buggy version and the repair.

3.2 Data

We collect our bugs from the history of the 10,235 most-starred Java repositories on Github on March 30th, 2020. We analyzed each project’s entire commit history and extracted any commits that altered precisely a single line in a single Java file, disregarding any (spurious) changes to whitespace. We then compared the corresponding commit messages against a relatively simple keyword-based check [26] to heuristically find commits labeled as e.g., "fix" or "bug". We note that, although this heuristic is not particularly precise, the characteristics we found in our data were very similar between those marked as fixes and other one-line changes, so we expect this to have little impact on our analysis. This process resulted in ca. 60,000 bug fixes across 8,644 projects in our dataset. In the course of our analysis of this data, we manually checked a number of the collected samples and confirmed that the vast majority of these were indeed bug fixes.

3.3 Experiment Setup

Given the collected dataset, we first analyze the characteristics of real fixes and then train NMT models on these samples to predict patches. To answer our research questions, we study both characteristics of the real-world bug-fixing behaviors and of the model-generated patches.

3.3.1 Bug context. We design experiments to explore the importance of a bug’s lexical context when fixing defects. In natural languages, context (the text surrounding an expression) has a direct effect on the way people understand a specific expression and can help avoid ambiguity in communication. Similarly, the context of a buggy line is the code surrounding, as in, both preceding and succeeding, the bug. This can variously be chosen to include up to N lines of code above and below the bug, the surrounding function, or even the whole file (or project). This context can provide vital information (e.g., variable definitions, conditional statements) for understanding the defect and the necessary repair. We study the role of variously sized contexts for both disambiguation and providing necessary information in section 4.1.

3.3.2 Similarity analysis. We noted earlier that software engineers tend to make small changes when fixing defects, likely because bugs correspond to only minor flaws in the code, and perhaps also because making few changes reduces the risk of introducing new bugs. Given this, we evaluate the similarity between real bugs and patches empirically across three similarity metrics:

(i) Edit distance (precisely, Levenshtein distance) is a metric that quantifies the difference of two sequences by the minimum number of edits (deletions, insertions, or substitutions) required to transform one into the other.

(ii) Jaccard similarity (effectively intersection-over-union) calculates the ratio of overlapping n-grams between two sequences divided by their union. Jaccard similarity is usually just applied to token-level similarity; we extend it to the average of 1 through 4-gram overlap to better capture both token-level similarity and matches in their ordering.

(iii) Bilingual evaluation understudy (BLEU) is popularly used to evaluate the quality of machine translations, and is considered to have a high correlation with human assessments of similarity [23]. This is an asymmetric measure that captures how similar the model prediction (the “hypothesis”) is to the ground-truth translation (the “reference”). BLEU also counts n-gram matches between the prediction and the ground-truth, and normalizes these w.r.t. the predicted sequence length, which causes the asymmetry.

These three metrics above will be used frequently across our analysis to measure similarity in different aspects.

3.3.3 Model training and BPE. To inspect the performance of NMT models on program repair, we trained and evaluated a vanilla Transformer model [32] on our dataset. We split the whole dataset into three parts across organizations, train/valid/test, with a ratio of 90%/5%/5%. We trained the model on the ca. 55K bugs in the train set, optimized it for held-out performance relative to the valid set and finally evaluated the performance on test set.

In the field of natural language processing, Byte-pair-encoding (BPE) [27] is a widely used method to encode rare and long words into frequent sub-tokens; this way, tokens that were not seen in full
during training can still be predicted accurately at inference time. BPE splits a word (e.g., "coding") into a list of more frequent sub-tokens (e.g., ['co', 'ding']). In programming languages, vocabulary innovation is even more rampant, as developers tend to name a variable or method using a combination of words (e.g., isNilOrEmpty) [12]. Karampatsis et al. [18] show that BPE can effectively address this issue in big code applications, so we apply this to our model input as and predictions as well.

4 ANALYSIS

In this section, we empirically analyse the characteristics of program repair on real-world bug fixes with a joint focus on the relation to natural language translation and on factors that influence accuracy for program repair. In particular, we study the characteristics of the ground-truth data (i.e., the real bugs and patches with their context), and of the patches generated by our NMT model, as trained in Section 3.3.3. For the rest of this section, we scrutinize the adequacy of translation as a paradigm in Section 4.1, we identify architectural concerns in Section 4.2, and we quantify their impact on model performance in Section 4.3.

4.1 Task Design

Translation, as a task, is intended to facilitate communication across language barriers. Hence, by design, it must preserve the semantics between the source language, and the target language—any translation that changes the semantics is unacceptable. By contrast, in program repair, the semantics of source and target are meant to differ, as the buggy version contains incorrect program behavior that the fixed version is supposed to correct. To do that, engineers deliberately change (add/delete/replace) incorrect tokens with correct ones. Imitating such changes with a machine learner is non-trivial, especially since the learner usually only has access to the bug and the fix, but not the knowledge latent in the developer’s mind to reason about the fix.

For instance, the fix may introduce, de novo, tokens that are not in the buggy lines, e.g., a new API call. In such cases, a model has to learn to pick those new tokens from across its entire known vocabulary. If the replacement is a common fix pattern, this might be easy enough to learn; otherwise, this leads to a vast search space of candidate repairs. The latter case is common enough; developers often use methods of their own creation, defined in adjacent files, or string or numerical patterns specific only to that project. It is thus important to quantify, even just approximately, how much information the model needs and how much it has access to from its training data, which tends to comprise the buggy lines and an optional window of code context. Although it is non-trivial to inspect the learned “black-box” model and extract what it infers about a given buggy line, we can identify the gaps between “what program repair needs” and “what machine translation can supply”.

4.1.1 Program repair needs (lots of) contextual information. Patches that introduce new vocabulary (relative to the buggy line) require the model to conjure up novel tokens, ex nihilo. Given that code vocabulary is highly diverse and often strongly specific to a given project, package and file [12], doing so from the buggy line alone may require an unreasonable level of ingenuity from the model. Table 1 quantifies this: first, nearly 90% of patches introduce new vocabulary relative to their buggy source, which is true regardless of sub-tokenization (even using the BPE approach). Furthermore, these are not at all just typical program tokens or local variables; we paired the buggy line with increasing windows of context (explained in Section 3.3.1) and find that the unseen tokens introduced by the patch are still rarely borrowed from any immediate buggy context; they are sometimes present in the file as a whole, but in locations far away from the bug. Nearby tokens are a bit more likely to share some sub-token(s) with the patch, but rarely provide the entire missing link. Given that modeling large volumes of code (i.e., many hundreds, or thousands of tokens) at once is often prohibitively expensive for current deep learned models, this can seriously affect models that incorporate only modest levels of context, such as the surrounding few lines or function.

Table 1: Ratio of patches with new vocabulary relative to the buggy snippet given a context window that ranges from None (i.e., only buggy lines – a typical translation setting), to a given number of lines (symmetrically around the bug), and finally to the entire file.

Context included	Patches introducing unseen tokens	
	without BPE	with BPE
None	89.5%	86.2%
10 lines	73.8%	64.2%
20 lines	68.7%	59.9%
Whole file	49.5%	38.6%

This is not merely a matter of richer training data either; a large proportion of project-specific tokens are not found in any other projects [12], so it is quite unlikely that our model would have seen many of these at training time. We note that this is in contrast to other paradigms of program repair, such many G&V models, which instead search for patches from across many surrounding files, rather than aim to encode a context directly into a translation.

4.1.2 Without context, program repair is inherently ambiguous. As discussed, a learner would certainly struggle to capture enough information from the buggy program alone. Fortunately, these learners are equipped with the capacity to transfer many insights from their training data to new examples. Perhaps they can predict the missing semantic information from those bug-repair pairs?

Although it is again impossible to quantify what the model can do, we also again argue that it is perfectly sound to lower-bound its potential by estimating how much of the requisite information it has access to at training time. Concretely, the training data contains many “similar” bugs to those seen at test time (which we will quantify in various ways), so the model might learn the transformations that produced patches from those similar bugs and apply the same insight, e.g., to predict the missing vocabulary. But, this is contingent on similar bugs indeed producing similar repairs; if repairs for similar bugs routinely diverge, then the model is reasoning about highly ambiguous data and will have to learn a wide range of valid transformations for a single defect in the training data.

To simplify this discussion, let b be a bug in the held-out portion of our dataset and p be the patch of b. Assuming we had some oracle that can provide “similar” bugs \tilde{b} (with patch \tilde{p}) for b, specifically from our training data, we would ideally expect information about the relative change needed to repair b to be transplanted from
If that is generally true, then our model can learn similar transformations for similar bugs and thereby generate new vocabulary and patterns that are not present in the buggy context.

To quantify this, we find the top-3 most similar bugs for each b in the held-out using 4-gram Jaccard index (see section 3.3.2), which we label b_1, b_2, b_3, among bugs in the training data. We then extract the corresponding p and \tilde{p}_i and evaluate the patch similarity $\text{SIM}[p, \tilde{p}_i]$ in relation to the bug similarity $\text{SIM}[b, b_i]$. To facilitate transferring repair patterns, we should hope that similar bugs produce similar repairs. We visualize this as a heat map (Figure 1) to show the correlation between bugs’ similarity and patches’ similarity: for each grid in the heat map, we count the number of samples with $\text{SIM}[b, b_i]$ and $\text{SIM}[p, \tilde{p}_i]$ in the corresponding range, and then color the grid based on these counts. To make the color contrast more identifiable, we log-normalize the counts.

We calculate the $b \rightarrow \tilde{b}$ and $p \rightarrow \tilde{p}$ similarity scores using both the Jaccard index and BLEU scores; the latter is more appropriate for translation because it is asymmetrical, capturing the overlap from the perspective of the translation target. This aligns well with the task’s directionality: we want to quantify what information is transferred from training to held-out, not vice versa. The result is shown in Figure 1; both metrics yield a similar pattern:

- bug-similarity only partially correlates with patch-similarity. Both graphs show a “smeared out” pattern in which similar bugs tend to produce patches with typically less similarity, rather than a strongly pronounced diagonal, that would indicate that patches relate to one another as their bugs do. Worse, many bugs have only neighbors with low similarity to begin with. These lower scores tend to just reflect spurious overlap due to the large portion of “closed-vocabulary” tokens (e.g., brackets, keywords) in source code, which is also evident from the main hotspot being at (0.25, 0.25).

We are particularly interested in pairs that share a relatively large number of tokens and patterns; i.e., those with similarity scores greater than 0.5. For example, the code: "private boolean isName = false;" and code: "private boolean isName = true;" yield a BLEU-score of 0.57, and they indeed look alike (only differ in boolean value). If similar bugs are (predominantly) fixed in similar ways, then we should expect that to translate into high patch similarity, which would allow the model to copy the appropriate repair patterns. Unfortunately, Table 2, which breaks down the highly similar bugs specifically, paints a different picture: here too, the similarity between bugs has nearly no discernible relation to that of their patches. Even highly similar bugs’ patches do not score above 0.5 half the time, which is actually lower than their respective bugs. For instance, a common bug in our dataset, "LOG.error(e);", presents with many dissimilar patches including "LOG.warn(e);" and "LOG.error('Can't read settings for " + tool, e);." The BLEU score between these two patches is just 0.12, and we can tell that this bug was fixed with very different intentions. In other words, relying on similar bugs to transplant patch information is almost entirely ineffective.

This demonstrates a substantial inherent ambiguity in program repair based on just a buggy line (though not necessarily to program repair in general): for a given bug, the learned program repair history provides a mixed signal of many candidate repairs with distinct semantics. This matches our intuition as well: just how a given fragment is buggy, and what specific repair among many valid semantic transformations is appropriate depends on a vast array of factors, many of which are not enshrined in the code at all (e.g., project requirements, developer preferences), let alone the buggy line (or even function) itself.

4.1.3 The challenges of new vocabulary. Finally, it might still be feasible for the model to “guess” at novel tokens and break the ambiguity if they can be constructed fairly obviously from the context, e.g., by applying known transformations to existing ones, like converting singular to plural or incrementing a provided integer. Whereas the former results provided a lower-bound on what is feasible, it is quite impossible to quantify precisely what the model “could do”, as the patterns learned by its millions of parameters can be highly complex. So we instead use the model’s performance itself (studied in more depth in section 5) as an empirical datapoint: given that it is trained carefully and with ample capacity, we should expect that it provides at least evidence of this ability to produce correct new vocabulary. In contrast, we studied the trained model’s accuracy on our 2,599 test samples; the patch introduced one or more tokens not present in the bug in over 75% of the cases, yet the model predicts this new vocabulary only 5.6% of the time. Worse, many of the “new” tokens are not even entirely new; they may just constitute the addition of null check, which the model still does not anticipate. Even when (beam) searching across the top 25 most-probable sampled patches, the model only anticipates 14% of the required new vocabulary. We stress that this is a well-trained model, which was able to achieve high accuracy on its training data and for which we used the most generalizable checkpoint after training for 100 epochs. As such, machine translation models are already at a serious disadvantage here compared with NLP applications. This allows us to conclude our investigation of RQ1:
The lack of information in the training data, vocabulary, and immediate context makes repairing as translation in its current form largely infeasible.

4.2 Architectural Design

Our second point of concern with translation models for program repair relates to the structural constraints assumed inherent in natural language generation: that text is auto-regressively produced left-to-right. This constraint is built into the translation model’s (sequence-to-sequence) architecture and implies that a simple adoption for program repair requires the model to output the entire repair, producing the correct token at each point.

The flaw with this particular decision is different from the one in Section 4.1 in that it does not affect the feasibility of the task (generating the entire repaired line is just as possible as e.g., generating the change only). Instead, architectural mismatches between the model and the task impact the difficulty of training and the corresponding rate, and even the ultimate limit, of convergence on test data. This is because a) our models do not have infinite capacity and b) stochastic gradient descent is a local optimization; thus, these models tend to find a local minimum that matches the signal conveyed by the loss function. If this loss function prioritizes exact repetition of many tokens from the input, or a strong reliance on left-to-right production, this may negatively affect the actual quality (e.g., overall accuracy) of the ultimate local minimum. In this section, we quantify this effect from the data statistics; in the next, we explore it further based on the model’s convergent quality.

4.2.1 The patch preserves most of the tokens in the bug. 2 Bug-fixing modifications to committed code are often minor; the buggy line usually is already per se a close approximation of the correct code, with very subtle, minor flaws. To quantify this assertion, we first measure the similarity between real bugs and patches. We use three different metrics to evaluate the similarity of each (bug, patch) pair in our dataset, outlined in section 3.3.2: token-level edit distance, (1-gram) intersection-over-union (which contributes a denominator to the similarity score); and finally, mean BLEU-4 similarity to balance the overlap between tokens and sequences.

The results are shown in Figure 2. The average edit distance for the samples in our dataset is 3.29, but the distribution is long-tailed so this mean is somewhat inflated by the few large edits; the median distance is simply 1 – 51.1% of the samples only edit a single token to fix the bug, and 63.6% of the samples have an edit distance up to 2. Thus, bug fixing modifications are often limited to just a select few tokens. Figure 2b further shows that bugs and patches share the majority of their vocabulary as well: the average Jaccard similarity is 0.76, and half the time the patch reserves more than 80% of the bug’s tokens. This overlap extends to sequences of tokens as well: the mean BLEU score of a patch relative to its bug is 0.61. Two lines of code are considered very similar when their BLEU score is greater than 0.5, so bugs and their patches overlap strongly. For reference, the state-of-the-art results in NMT at this time are ca. 0.4, depending on the language pair. Program repair achieves far higher performance by simply copying the bug verbatim; yet, doing so would in no way approximate a good repair.

This also confirms our intuition that bugs and patches are highly similar, and patches retain most tokens from the buggy version, rather than assembling code de novo. This principally suggests that searching for the correct patch token by token, from left to right is a poor use of search space; a smart program repair tool should just predict which tokens are supposed to be preserved and focus on searching for the ones that require modifications. But is it really so bad to generate the entire patch; would copying the preserved tokens simply prove no concern for the models? We answer this question in the negative in section 4.3; first, we further analyze the types of changes made in real repairs.

4.2.2 The patch tends to make minor changes to the bug’s syntax. Grammars vary widely across languages. For example, subject-verb-object sequences (“I eat an apple”) are abundant in English, but people seldom use them in verb-final languages like Tamil or Japanese. Because of this distinction, translating by merely substituting words in one language with another is often inappropriate. Instead, neural architectures capture the syntactic transformation between languages, as well as the translation of the underlying words. A recent study [1] shows that the difference in word order among various languages is a significant feature that models learn, and e.g., neural attention mechanisms are effective at this task. We are similarly curious whether this feature is prominent in the conversion of bugs to patches, as such information gives hints about how to adapt machine translation models appropriately. For example, given a buggy line: “if (level >= damage - damage / 2)” with patch: “if (level <= damage - damage / 2)” (a real sample from our dataset), we can see that the patch does not modify the syntax (in terms of the AST) of the bug, but only changes its semantics by changing the underlying tokens. We thus empirically study how often modifications that fix logical errors introduce changes to the syntactic structure of code.

Given a pair of bug and patch, we tokenize the code and use javalang package 3 to identify the syntactic type (e.g., identifier, separator, integer) of each token. If a bug and patch have the exact same token type sequence, their syntactic structure is unchanged. Table 3 summarizes the resulting ratios. Slightly more than half of our patches preserve the exact syntactic structure of their bugs. Furthermore, the results are starkly different based on whether a patch introduces new tokens (relative to the bug; see section 4.1.1); those that do even more rarely (56.2%) change the syntax, while the other patches are often some kind of permutation of the bug’s tokens that very rarely preserves syntactic ordering.

Table 3: Proportion of repairs in which the syntactic structures remains unchanged relative to bug, both for all samples in our training data and for those in which the patch both does and does not introduce novel tokens (relative to the bug).

Setting	Proportion
All bugs	52.4%
Patches introducing new tokens	56.2%
Patches without new tokens	20.6%

2 This result applies to our study of small (one line) bug fixes; this may not hold for larger patches, which may be more likely to reconstruct the whole buggy module.

3 https://github.com/c2nes/javalang
(a) Edit Distance
(b) Intersection-over-union
(c) BLEU

Figure 2: Different Similarity Metrics regarding (bug, patch) pairs. X-axis of each histogram indicates the similarity score w.r.t. different metrics, and y-axis shows the ratio of samples within the corresponding range. The average edit distance between bugs and patches is 3.29. The edit distances of 51.1% samples are 1 and 63.6% samples have an edit distance ≤ 2. The average intersection-over-union similarity is 0.76, and 88.4% samples have a similarity ≥ 0.6. The average BLEU score is 0.61, and 72.5% samples have a BLEU score ≥ 0.5.

These observations have important implications. For one, they suggest that searching for unseen words across the entire vocabulary is rarely necessary; rather, the model could simply search for the tokens given a specific syntactic type [5]; e.g., many patches replace just an operator to fix a bug. More generally, this suggests that the left-to-right generation process is thus not just inefficient, but all-but misdirected for such bugs: it requires the model to both copy a precise prefix, and then generate a single alternative from that context, where the original token was often already "close" to being correct (i.e., in the right syntactic ballpark). Patching such bugs, more than half of those in our dataset, in this way likely puts inordinate and unnecessary strain on the model, which we will quantify in the subsequent sections. First, we partially conclude our second research question:

4.3 Program Repair via NMT (Objective)

Finally, when generating natural language translations, the goal is to correctly predict as many words of the target sentence as possible. The idea is that a translator that is likely to predict any one word given the input and previously predicted words (if any) is also likely to correctly generate the entire desired sentence by simply repeating this process until termination. Indeed, this tends to be quite accurate in general, in part because of the naturally auto-regressive, Markovian nature of text; a given prefix typically has only a small set of plausible continuations.

Given the observations in the preceding sections, this Markovian assumption seems precarious at best for program repair: the bug and repair often share a large, identical prefix (and suffix) that is then followed by incorrect tokens in the former and different, corrected ones in the latter. As such, we must question the validity of an objective function (both loss and metric) that values per-token prediction quality so strongly. Having said that, the aforementioned observations alone do not prove that there is a problem with this transplanted objective; the buggy token(s) may simply have been a particularly unnatural successor to its context [26], from which the corrected token(s) do, in fact, follow naturally. In this section, we empirically assess this concern.

Specifically, if the Markovian, auto-regressive objective used in natural language translation is a good fit for program repair as well, we would expect two things to be true:

1. The per-token accuracy under auto-regressive teacher forcing correlates closely with the quality (i.e., total accuracy) of the produced patch. That implies that the model correctly identifies the "challenging" tokens, that need to be altered, as these dictate the overall correctness of the resulting patch.
2. The model efficiently explores the repair space when sampling multiple patches (e.g., using beam search). That implies that choosing the repair point by first copying tokens unaltered and then (auto-regressively) generating a different continuation is no distraction to the model.

We put both these expectations into the (empirical) test. Figure 3 shows first the progression of various accuracies on our held-out data over the course of training. At the top, the teacher-forced token-level prediction accuracy increases steeply early on, throughout the first ca. 10 passes through the training data, but after that, it all-but
We do this below, by eschewing past practice of trying to generate with predicting the correct change to achieve any more progress. As a fitting conclusion to our empirical and conceptual evaluation of (a bimodal pattern) in training this type of model: the model first variation. Thus, we answer our final research question:

10 epochs, the model quickly becomes very polarized, assigning patch tokens directly, and instead generating variation. Hence, the top-1 prediction becomes more accurate, which suggests that the per-token entropy (transformed to probabilities). In the first 10 epochs, the model quickly becomes very polarized, assigning high probability to the copied tokens; then it becomes clear that this yields very low probabilities for the few changed tokens, which entropy penalizes strongly. As a response, the model instead adopts a more balanced prediction to achieve higher overall repair quality.

To quantify the correlations in the face of this bimodality, a non-parametric (Spearman’s rho) correlation test is in order. This does show that the two metrics (per-token accuracy and full sequence accuracy) are highly correlated ($\rho = 0.914$, even, though less so, after epoch 10 ($p = 0.863$)). The latter result reflects that the remaining per-token accuracy increase translates into a disproportionally higher complete repair rate – the missing 2% token accuracy becomes ca. 7% complete repair accuracy, nearly triple the levels at epoch 10. This implies a mixed answer to our first premise: the complete patch accuracy certainly follows the per-token accuracy, but the relation is far from direct and the latter is a highly misleading metric in ipso due to its bimodal nature.

Finally, the figure shows that the odds of finding the correct patch in the top-5 generated samples is only a little higher than the top-1 prediction (ca. 5% points at most); that gap actually shrinks as the top-1 prediction becomes more accurate, which suggests that the beam search finds few good novel/alternative patches. We would hope that, given the natural ambiguity in choosing the correct patch, the model learns to sample a diverse set of plausible corrections. Instead, from inspection of the generated samples, the model produces many very similar candidates, usually differing by just a few tokens. This too is likely an artifact of the training criteria, which prioritizes copying 80% of the tokens over predicting the correct variation. Thus, we answer our final research question:

5.1 Model Changes

We observed three main deficiencies with the existing translation approach: the inadequacy of relying on just the bug for enough information to produce a patch, the mismatch between typical repair actions and generating the entire corrected line, and the related divergence of training-objective, between per-token accuracy and whole-repair (both top-1 and beam-search) accuracy. Had we designed a machine learning approach for this problem from scratch, we would certainly attempt to incorporate both bug context, and a notion of repair edits to reflect these aspects of program repair, as has also been proposed by some recent work [29]. We propose to make both changes: Figure 4 shows the two main architectural mechanisms we add to the base model to achieve this.

Edits: we model edits directly, as a token-level “diff” between the bug and patch. Our analysis of typical changes indicated that the bug and patch nearly always share a substantial prefix and/or suffix, with the repair occurring at some point in the middle of the line. We thus parse each bug/patch pair and find the longest overlapping prefix and suffix. Our model is augmented with two additional pointers that correspond to insertion and deletion; the original decoder component (of the encoder-decoder architecture) is now pressed into service to output the diff (rather than directly generate the raw tokens in the fix). There are three possible scenarios:

No additions: The prefix and suffix combined span the entire bug. This means that only tokens were added in the patch. In this case, the deletion pointer will just point to the start of the line, and the insertion pointer will indicate where the new tokens (which the decoder will emit) are to be added.

No removals: The prefix and suffix combined span the entire repair. In this case, only token deletions are needed, to go from the bug to the patch. So, the insertion and deletion pointer should correspond to the start and end of the segment to be deleted within the buggy statement, and the decoder should just emit the “<</s>” termination symbol (an “empty” patch).

Additions & Deletions: A non-trivial change in both bug and patch. As a combination of the above, the two pointers should identify the segment to erase from the bug, while the decoder should generate all newly required tokens to insert instead.

Context: we also observed that the bug alone rarely provides enough (syntactic and semantic) information to reliably predict the necessary repair. The natural solution is to add a large amount of contextual tokens from the file containing the bug. Unfortunately, Transformers struggle to model very long sequences as their memory usage increases quadratically with sequence length. At the same time, section 4.2 showed that even 20 lines of context is rarely enough to provide much missing vocabulary (which is itself only part of the information needed). We do not provide a new solution in this paper; rather, we empirically quantify the deficit from the model’s perspective by adding up to 500 tokens of context and comparing the resulting performance. We ensure that the model is “aware” of which tokens to repair by biasing the decoder’s attention to the buggy tokens using the same biasing mechanism as in [13], in this case with a simple unary relation (i.e., “is part of the bug”).

5 SEQ2SEQ MODEL FOR PROGRAM REPAIR

As a fitting conclusion to our empirical and conceptual evaluation of the basic “transplanted” approach to program repair as translation, it is appropriate to try and redesign the existing approach. This section demonstrates how observing and quantifying issues with an outside approach relates to principled and innovative modeling design: while observing concerns does not guarantee that improvements are straightforward (as we show in relation to context), it can improve performance by better relating the model to the task. We do this below, by eschewing past practice of trying to generate patch tokens directly, and instead generating edits.
if (lineWidth != 0) {
Encoder
> </s>
Decoder
+ = if (lineWidth > 0) {if (lineWidth != 0) {
start/insert end/delete
Encoder
Decoder
if (linewidth != 0) { g.setStroke(..., linewidth , ...
Encoder
Decoder

(a) An edit-based repair model, which emits two pointers based on the encoder states that indicate the insertion start position and the removal end position. The decoder generates any missing tokens.

(b) Representation of a context-enriched repair model. The encoder functions as usual on a broader set of tokens; the decoder’s attention is biased towards the highlighted (buggy) tokens.

Figure 4: Proposed architectural changes to the basic repair model on an example from our test data.

Table 4: Repair accuracy on the (de-duplicated) test data of the various models that we propose in this paper.

Model	Top-1 (%)	Top-5 (%)	Top-25 (%)
Baseline	3.30%	5.96%	8.20%
Edits	4.31%	6.14%	7.83%
Context	1.83%	3.57%	5.18%
Edits + Context	3.39%	4.08%	4.76%

5.2 Results

As table 4 shows, there are two main characteristics of the resulting models’ performances. First, the edit-based enhancement clearly and substantially improves the accuracy over the baseline model, fixing an additional 22 bugs on our test set with its top prediction alone. Second, the contextual enhancement does not seem to help in its current form. We discuss both these results here.

Edit model: the edit-based model produces better-quality patches on our test data than the corresponding baseline. Its design is informed by our data analysis, and so it is arguably a better fit for this task. Figure 5 shows its training behavior, to compare with that of the baseline model in fig. 3; its “per-token”, teacher-forced accuracy increases much more smoothly\(^4\) and more in line with increases in the full repair prediction quality. It also displays a larger improvement in sampling accuracy between the top-1 and top-5 prediction, which remains consistently wide during training, suggesting that it better explores the search space with more diverse predictions.

Its design also allows the edit model to predict more newly introduced vocabulary in the patch relative to the bug; it does so 6.8% and 15.7% of the time (for the top-1 and top-25 samples respectively), compared to 5.6% and 14% of the base model. One notable difference is the gap between top-5 and top-25 sampling accuracy; the edit model is stronger in the former, but loses to the baseline in the latter. This appears to be due to the edit model having to commit to an insert & delete pointer first, conditional upon which sampling is more bounded. To be clear, we did also sample these two pointers from their corresponding probability distributions and initialized the beam search with the 25 most probable different combinations of start and end pointers; but, in practice the model tended to choose a single pair with very high probability, so that it effectively only explored that set. This may be an interesting issue to pursue in future work.

Context information: the second missing element was the reliance on the bug alone as a source of patching information; in section 4.1, we showed that the absence of context is an insurmountable obstacle that deprives the model of the necessary information to patch most bugs. However, identifying a problem and solving it are quite different things, as our results in table 4 show. Although we added a substantial amount of surrounding tokens (i.e., 500) to the model’s input, the resulting models’ performance is quite poor, actually performing slightly worse than their context-free counterparts. This is likely due to the challenge of modeling large amounts of contextual information; although our models were trained to similar accuracies, they did so much slower and evidently with worse generalization.

This may point at several issues, but none seem quite responsible. For one, the attention mechanism we used may not adequately help the model locate the buggy bits; however, the model always emitted patches that were very similar to the bug. Similarly, the amount of context may simply be too little; table 1 suggests that many useful tokens are only available far away from the bug. However, that table also implies that the immediate context should help with ca 10-20% of missing tokens, so this too does not explain the lack of performance. The model itself may simply have insufficient capacity to capture this much context, though we used a relatively large Transformer architecture and the model was trained to high accuracy. All this is to say that we do not know how to better integrate context in these models. This is not a bad thing; not all modeling improvements are obvious, but it is important that we understand the deficits first. Our empirical analysis helped us both identify it, and has laid a useful foundation for the kind of information to integrate in further improvements, even if it is not yet clear how.

\(^4\)Their probability also displaying less of a “spike” in early training.
6 THREATS TO VALIDITY

This paper presents a case-study of a specific type of program repair, which we explore in great empirical detail. As such, the main threats to the validity of our conclusion are external, relating to the generalization of our findings to both other types of defects and other model "transplants" into SE research.

First, our data collection and analysis focused only on small, one-line fixes, since such bugs (and single-statement bugs) are both common and important, realistic target to current program repair models [19]. In addition, many existing NMT-based program-repair tools [6, 22] are trained and tested on one-line or single-hunk bugs. As such, studying such bugs is both representative and impactful. Having said that, we do not claim, nor believe, that their empirical properties generalize to larger, more complex defects; these no doubt have their own non-trivial characteristics that deserve further investigation, especially if when they become the subject of new models.

Secondly, we did not compare our model(s) Section 5 with state-of-the-art, NMT-based, program repair tools. The goal of this work is not to present models with the best performance; rather, we are evaluating the feasibility of the general idea of "patching as translation" using a general, representative modeling setup, especially in contrast to variations that depart from the translation metaphor. More broadly, there are many other cases of modeling transplants into our community, often with some alterations to fit the task; these may not all be harmful or mismatched, but they do all deserve careful empirical analysis to ensure that they achieve their potential efficacy in our community.

7 CONCLUSION

In this work, we first present a comprehensive study to evaluate the conceit that "software patching is like the language translation" as a prototypical example of "model transplant" from neighboring communities into SE. We empirically show that the translation paradigm does not capture bug-fixing very well for a range of reasons. We also use models themselves as empirical devices; we adapt the seq2seq models used for translation to generate edits rather than raw tokens, which leads to promising improvements. We hope this work inspires more empirically-grounded research into transplanting machine learning models to program repair, and other software engineering applications.

ACKNOWLEDGEMENTS

This work is supported in part by NSF CCF-1414172, CCF-1845893, CNS-1842456, and CCF-1822965. Any opinions, findings, conclusions, or recommendations expressed herein are those of the authors, and do not necessarily reflect those of the US Government or NSF.

REFERENCES

[1] Wasi Uddin Ahmad, Zhisong Zhang, Xueze Ma, Eduard Hovy, Kai-Wei Chang, and Nanyun Peng. 2019. On Difficulties of Cross-Lingual Transfer with Order Differences: A Case Study on Dependency Parsing. In NAACL.

[2] Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. 2018. Learning to Represent Programs with Graphs. In International Conference on Learning Representations (ICLR).

[3] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2019. Code2vec: Learning Distributed Representations of Code. Proc. ACM Program. Lang. 3, POPL, Article 40 (Jan. 2019), 29 pages. https://doi.org/10.1145/3290353

[4] Dzmitry Bahdanau, Kyungyun Cho, and Yoshua Bengio. 2014. Neural Machine Translation by Jointly Learning to Align and Translate. CoRR abs/1409.0475 (2015).

[5] Saikat Chakraborty, Yangrubo Ding, Miltiades Allamanis, and Baishalik Ray. 2018. CoDT: Code Editing with Tree-Based Neural Models. CoRR: cs.SE/1810.00314

[6] Zimin Chen, Steve Komurovsky, Michele Tufano, Louis-Noël Pouchet, Denys Poshvanyuk, and Martin Monperrus. 2019. SequenceR: Sequence-to-Sequence Learning for End-to-End Program Repair. IEEE Transactions on Software Engineering (2019).

[7] Kyungyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio. 2014. On the Properties of Neural Machine Translation: Encoder-Decoder Approaches. ArXiv:abs/1409.1259 (2014).

[8] Elizabeth Dinella, Hanjun Dai, Ziyang Li, M. Naik, L. Song, and K. Wang. 2020. Hoppity: Learning Graph Transformations to Detect and Fix Bugs in Programs. In ICLR.

[9] Claire Le Goues, Thay Vu Nguyen, Stephanie Forrest, and Westley Weimer. 2012. GendProg: A Generic Method for Automatic Software Repair. IEEE Transactions on Software Engineering 38 (2012), 54–72.

[10] Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and Sunghun Kim. 2017. DeepAM: Migrate APs with Multi-Modal Sequence to Sequence Learning. In Proceedings of the 26th International Joint Conference on Artificial Intelligence (Melbourne, Australia). (IJCAI ’17). AAAI Press, 3675–3681.

[11] Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish Shevade. 2017. DeepFix: Fixing Common C Language Errors by Deep Learning. In AAAI. 1345–1351.

[12] Vincent J. Hellendoorn and Martin Rinard. 2015. An Analysis of the Search Spaces for Generate-and-Validate Patch Generation. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Berlin, Germany, 2073–2083. https://doi.org/10.3115/v1/P16-1195

[13] Jiajun Jiang, Yingfei Xiong, Hongyu Zhang, Qing Gao, and Xiangqun Chen. 2018. Shaping Program Repair Space with Existing Patches and Similar Code (ISTA). https://doi.org/10.1145/3238446.3231971

[14] Rafael-Michael Karampatsis, Hlib Bahi, Romain Robbes, Charles Sutton, and Andra Janes. 2020. Big Code 1+1 Big Vocabulary: Open-Vocabulary Models for Source Code. arXiv:cs.SE/2003.07914

[15] Rafael-Michael Karampatsis and Charles Sutton. 2019. How Often Do Single-Statement Bugs Occur? The ManyStBu4J Dataset. arXiv:cs.SE/1905.13334

[16] Xuan-Bach D. Le, Duc-Huep Chu, David Lo, Claire Le Goues, and Willem Visser. 2017. S3: Syntact- and Semantic-Guided Repair Synthesis via Programming by Examples. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering (Paderborn, Germany). (ESEC/FSE ’17). Association for Computing Machinery, New York, NY, USA, 593–604. https://doi.org/10.1145/3106257.3106309

[17] Fan Long and Martin Rinard. 2016. An Analysis of the Search Spaces for Generate and Validate Patch Generation Systems. In 2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE).

[18] Thibaud Lustellig, Hung Viet Pham, Lawrence Pang, Yitong Li, Moshii Wei, and Lin Tan. 2020. CoCoNoTa: Combining Context-Aware Neural Translation Models Using Ensemble for Program Repair (ISTA 2020). Association for Computing Machinery, New York, NY, USA, 101–114. https://doi.org/10.1145/3395363.3397609

[19] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. BLEU: A Method for Automatic Evaluation of Machine Translation. In Proceedings of the 40th Annual Meeting on Association for Computational Linguistics (Philadelphia, Pennsylvania) (ACL ’02). Association for Computational Linguistics, USA, 311–318. https://doi.org/10.3115/1070883.1073135

[20] Yuhua Qi, Xiaoguang Mao, Yan Lei, Ziying Dai, and Chengsong Wang. 2014. The Strength of Random Search on Automated Program Repair. In Proceedings of the 36th International Conference on Software Engineering (Hyderabad, India). (ICSE ’14). Association for Computing Machinery, New York, NY, USA, 254–265. https://doi.org/10.1145/2568225.2568254

[21] Zichao Qi, Fan Long, Sara Achour, and Martin Rinard. 2015. An Analysis of Patch Plausibility and Correctness for Generate-and-Validate Patch Generation
