Cooperative and Stochastic Multi-Player Multi-Armed Bandit: Optimal Regret With Neither Communication Nor Collisions

Sébastien Bubeck (Microsoft Research), Thomas Budzinski (ENS Lyon), Mark Sellke (Stanford)

COLT 2021
Fix $p = (p_1, p_2, \ldots, p_K) \in [0, 1]^K$. Let $(r_t(i))_{1 \leq i \leq K, 1 \leq t \leq T}$ be independent variables with

$$\mathbb{P}(r_t(i) = 0) = 1 - p_i \quad \text{and} \quad \mathbb{P}(r_t(i) = 1) = p_i.$$

At time t, each player $(P_X)_{X \in [m]}$ picks arm i_t^X without communication, and observes the reward:

$$r_t(X) = r_t(i_t^X) \cdot \mathbb{1}_{i_t^X \neq i_t^Y} \forall Y \neq X.$$

Collisions \rightarrow no reward.

Regret: $R_T = \left(\sum_{t=1}^{T} \sum_{X=1}^{m} r_t(X) \right) - T p^*$, where

$$p^* = \max_{1 \leq i_1 < \cdots < i_m \leq K} \left(\sum_{j=1}^{m} p_{i_j} \right)$$

is sum of the top m arms.

Goal: find a (randomized) strategy minimizing $\max_p \mathbb{E}[R_T]$.

S. Bubeck, T. Budzinski, M. Sellke
Some of the previous works:

- Regret $\tilde{O}(\sqrt{T})$, $p_1, p_2, p_3 \leq 1 - \varepsilon$ [Lugosi-Mehrabian 18].
- Regret $\tilde{O}(T^{1-\frac{1}{2m}})$, non-stochastic [Bubeck-Li-Peres-Sellke 19].
- Regret $O\left(\sum_i \frac{\log(T)}{\Delta_i}\right)$ [Huang-Combes-Trinh 21].

All "cheat" by using collisions to implicitly communicate.

Theorem (BBS 21)

There is a strategy (using public shared randomness) with

$$\max_p \mathbb{E}[R_T] = O\left(mK^{11/2} \sqrt{T \log T}\right),$$

$$\mathbb{P}(\text{there is a collision}) = O(T^{-2}).$$

$(K, m) = (3, 2)$: $\Theta(\sqrt{T \log T})$ optimal [Bubeck-Budzinski 20].
Topological Obstruction for 2 players, 3 arms

- Work in the plane \(\{ p_1 + p_2 + p_3 = \text{constant} \} \).
- No communication \(\rightarrow \) can assume player strategies are functions of empirical average rewards.
- Topological obstruction: playing top 2 arms forces collision.

\(\{1, 2\} \) are the best arms

\(\{1, 3\} \)

\(\{2, 3\} \)
Work in the plane $\{p_1 + p_2 + p_3 = \text{constant}\}$.

No communication \rightarrow can assume player strategies are functions of empirical average rewards.

Topological obstruction: playing top 2 arms forces collision.

$\{1, 2\}$ are the best arms

$\{1, 3\}$

$\{2, 3\}$
Topological Obstruction for 2 players, 3 arms

- Work in the plane \(\{p_1 + p_2 + p_3 = \text{constant}\} \).
- No communication \(\rightarrow \) can assume player strategies are functions of empirical average rewards.
- Topological obstruction: playing top 2 arms forces collision.

\(\{1, 2\} \) are the best arms

\begin{align*}
 i^A &= 1 \\
 i^B &= 2
\end{align*}

\(\{2, 3\} \)

\begin{align*}
 i^A &= 3 \\
 i^B &= 2
\end{align*}

\(\{1, 3\} \)
Topological Obstruction for 2 players, 3 arms

- Work in the plane \(\{ p_1 + p_2 + p_3 = \text{constant} \} \).
- No communication \(\rightarrow \) can assume player strategies are functions of empirical average rewards.
- Topological obstruction: playing top 2 arms forces collision.

\(\{1, 2\} \) are the best arms

\(i^A = 1 \)
\(i^B = 2 \)

(\(\frac{1}{2}, \frac{1}{2}, \frac{1}{2} \))

\(i^A = 3 \) \(\{1, 3\} \)
\(i^B = 1 \)

\(\{2, 3\} \)
\(i^A = 3 \)
\(i^B = 2 \)
Topological Obstruction for 2 players, 3 arms

- Work in the plane \(\{p_1 + p_2 + p_3 = \text{constant}\} \).
- No communication \(\rightarrow \) can assume player strategies are functions of empirical average rewards.
- Topological obstruction: playing top 2 arms forces collision.

\[
\begin{align*}
\{1, 2\} & \text{ are the best arms} \\
i^A &= 2 \\
i^B &= 1 \\
i^A &= 1 \\
i^B &= 2 \\
(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}) & \\
i^A &= 3 \\
i^B &= 1 \\
\{1, 3\} & \\
i^A &= 3 \\
i^B &= 2 \\
\{2, 3\} &
\end{align*}
\]
Collision-Free Solution for 2 players, 3 arms

- Idea ([BB 20]): create interface between regions
 \[\{ i^A = 1, i^B = 2 \}, \{ i^A = 2, i^B = 1 \}. \]

- Label interface to avoid adjacent collisions with \(w_t \gtrsim \sqrt{\frac{\log T}{t}} \).
- Thin interface, random \(\Theta \rightarrow \) regret \(O(\sqrt{T \log T}) \).
- General \((K, m) \) needs a high-dimensional analog.

S. Bubeck, T. Budzinski, M. Sellke
General Strategy

- New partition in the case \((K, m) = (3, 2)\):

 Regions form a tree, defined by arm inequalities added \textit{in order}.
 Example region: \(\{1, 3, 5\} \succ_2 \{4, 8\} \succ_3 \{2, 6\} \succ_1 \{7, 9, 10\}\).
 Via shared randomness, map regions \(\rightarrow\) arms w/o collision.
Inequalities always separate arms that *might* be in top m. Once top m vs bottom $K - m$ is determined, stop.

Example for $(K, m) = (10, 5)$:

\[
\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\} \\
\rightarrow \{1, 2, 3, 4, 5, 6, 8\} >_1 \{7, 9, 10\} \\
\rightarrow \{1, 3, 5\} >_2 \{2, 4, 6, 8\} >_1 \{7, 9, 10\} \\
\rightarrow \{1, 3, 5\} >_2 \{4, 8\} >_3 \{2, 6\} >_1 \{7, 9, 10\}.
\]

Generalization of random interface: stop early if gap size for new inequality lies in a small random interval.

Each player needs to input estimate of p, output region.

Main step: pick 1 of $\leq K$ cuts. Efficient despite $\approx K!$ regions.
THANK YOU!