Renal glycosuria as a novel early sign of colistin-induced kidney damage in mice

Sophia L. Samodelov1, Michele Visentin1,4, Zhibo Gai1,2, Stephanie Häusler1, Gerd A. Kullak-Ublick1,3

1 Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, 8006 Zurich, Switzerland
2 Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Shandong University, Jinan 250355, China
3 Mechanistic Safety, CMO & Patient Safety, Global Drug Development, Novartis Pharma, 4056 Basel, Switzerland
4 Corresponding author

Michele Visentin, PhD
University Hospital Zurich
Wagistrasse 14, 8952 Schlieren
Phone: +41 44 556 31 48
Fax: +41 44 255 44 11
E-mail: Michele.visentin@usz.ch

Running Headline
Glycosuria during colistin-induced nephrotoxicity
Abstract

The polymixin colistin represents a last resort antibiotic for multidrug resistant infections, but its use is limited by the frequent onset of acute drug-induced kidney injury (DIKI). It is essential to closely monitor kidney function prior to and during colistin treatment in order to pinpoint early signs of injury and minimise long-term renal dysfunction. To facilitate this, a mouse model of colistin-induced nephrotoxicity was used to uncover novel early markers of colistin-induced DIKI. Increased urinary levels of kidney injury molecule 1 (Kim-1) as well as glycosuria were observed in colistin-treated mice, where alterations of established clinical markers of acute kidney injury (serum creatinine and albuminuria) and emerging markers such as cystatin C were inaccurate in flagging renal damage as confirmed by histology. A direct interaction of colistin with renal glucose reabsorption was ruled out by a cis-inhibition assay in mouse brush border membrane vesicles (BBMV). Immunohistochemical examination and protein quantification by western blotting showed a marked reduction in the protein amount of sodium-glucose transporter 2 (Sglt2), the main kidney glucose transporter, in renal tissue from colistin-treated mice in comparison to control animals. Consistently, BBMV isolated from treated mouse kidneys also showed a reduction in ex vivo glucose uptake when compared to BBMV isolated from control kidneys. These findings support pathology observations of colistin-induced proximal tubule damage at the site of the brush border membrane, where Sglt2 is expressed, and open avenues for the study of glycosuria as a sensitive, specific, and accessible marker of DIKI during colistin therapy.

Keywords

drug-induced kidney injury, colistin, glycosuria, nephrotoxicity, proximal tubule, Kim-1
1 Introduction

Colistin, also known as polymixin E, is a polypeptide antibiotic used as a last-line treatment option against gram-negative bacterial infections. Though its use was phased-out in the 70’s due to reports of both neuro- and nephrotoxicity and the introduction of other antibiotics, the increase in multidrug resistant (MDR) infections and the lack of other treatment options has led to renewed interest in colistin in the last decade and a half (1, 2). Because colistin was not subjected to the extensive studies required by contemporary drug regulatory agencies during its development, the bulk of pharmacokinetic and pharmacodynamics information on this drug and derivatives has been accumulated only in recent years (3-6). Likewise, renewed evaluation of the occurrence, severity, and reversibility of renal toxicity have offered a perhaps slightly less catastrophic, but still worrisome view (7-10). The most recent study among 249 patients treated with intravenous colistin reported rates of acute kidney injury (AKI), according to the Kidney Disease: Improving Global Outcomes (KDIGO) guideline criteria, as 12% and 29% after 2 and 7 days of treatment, respectively, with 7% of patients requiring renal replacement therapy (11). A retrospective study analysing the reversibility of colistin-induced renal injury found that 75% of patients that had developed AKI during colistin treatment also progressed to chronic kidney disease (CKD) at a six month follow-up, as compared to 27% in the matched-control subject group (12). This highlights the high risk of long-term renal impairment, particularly in elderly patients, following colistin therapy.

The staple biomarker used in clinics to monitor kidney function is serum creatinine, with estimation of the glomerular filtration rate and monitoring of urine output (13). Large efforts have been put into identifying new markers that more specifically address the etiology of renal insult and identify or predict “subclinical” AKI before serum creatinine elevation, rather than assessing renal filtration as an endpoint, with the overall goal of avoiding the irreversibility of ongoing damage. Promising suggested markers arising from such studies include urinary neutrophil gelatinase-associated lipocalin (Ngal) (14) and urinary kidney injury molecule-1 (Kim-1) (15, 16). Ngal is expressed in epithelial cells and has been successfully used in both animal (17) and human studies (18, 19) as a marker for colistin-induced nephrotoxicity. However, it was shown as an unsuitable marker of DIKI during colistin treatment of urinary tract infections in a geriatric patient cohort (20), due to its increased expression upon inflammation and infection (21). Urinary
Kim-1 levels have been assessed under colistin treatment in rats, with the report that it is a specific marker of proximal tubular damage (22), with very low expression in healthy kidney tissue (23, 24). Histology is the ideal gold standard for assessing tubular injury, although not always feasible, with Kim-1 representing an example where histological examination and urinary output of the marker have been shown to correlate closely both in rodents and humans (25, 26).

In this study, a mouse model of colistin-induced nephrotoxicity was established to monitor typical and emerging biomarkers of AKI and to identify the earliest markers of DIKI, with physiological relevance in regards to the renal injury caused by this antibiotic. Mice treated intraperitoneally with colistin sulphate once daily for seven days showed no elevation in most of the biomarkers of kidney injury assessed but a marked increase in urinary Kim-1 as well as glycosuria with comparable diagnostic ability, suggesting urinary glucose as a novel sensitive and specific inexpensive biomarker for colistin-induced nephrotoxicity.
Methods

2.1 Mice

Animal experiments and protocols conformed to the Guide for the Care and Use of Laboratory Animals (US National Institutes of Health) and the Swiss animal protection laws and were approved by the Cantonal Veterinary Office in Zurich, Switzerland (study number 186/2017). Female C57/BJ mice (Charles River Laboratories, Wilmington, MA) were ordered at 10 weeks of age and acclimatized for 2 weeks before beginning treatment (12 weeks old, 18-23 grams). Mice were randomly assigned to either colistin or PBS treatment and were housed five mice in IVC cages with free access to food and water. Three separate experiments with a final total of 15 mice per treatment group were treated by two different experimenters for the data obtained in this study. Three additional sets of kidneys from untreated mice of similar age and weight were used for brush border membrane vesicles (BBMV) isolation for the cis-inhibition assay. A preliminary experiment was completed with a total of 15 mice and two different colistin sulfate doses (20 mg/kg and 10 mg/kg) to determine the dose sufficient to lead to kidney injury in all treated mice, as confirmed by histology.

2.2 Treatment and sample collection

Mice were treated with 20 mg/kg colistin sulphate (Sigma Aldrich, St. Louis, MO, 15,000 U/mg) or PBS via i.p. injection for seven consecutive days. Spontaneous urination samples were collected during handling at various time points during treatment. Not every mouse urinated spontaneously at every handling, leading to a sample size under 15 per treatment group for individual time points. Mice were sacrificed via CO₂ inhalation 24 h after the last i.p. injection/glucose tolerance test and serum and kidneys were harvested. Kidney tissue was either fixed in 4% paraformaldehyde for histology, snap frozen for protein/mRNA quantification, and/or used directly for BBMV isolation for transport assays.

2.3 Glucose tolerance test

Mice were starved overnight for approximately 14 hours. Blood glucose was assessed via tail tip blood sampling using a glucometer (mylife™ Unio™, Ypsomed Distribution AG, Burgdorf, CH) before and after an i.p. injection with a 0.1 g/ml solution of D-glucose (Sigma Aldrich, St. Louis, MO) at a dose of 1 g/kg.
2.4 Isolation of mouse kidney membrane fractions and immunoblot analysis

The isolation of a total kidney membrane fraction was modified from a previously described method using half of a kidney (27). After homogenization of the tissues with a Polytron in 300 mM sucrose buffer supplemented with a protease inhibitor cocktail (Roche Diagnostics, Indianapolis, IN), the homogenates were centrifuged at 1300gav in a Sorvall SS34 rotor. The supernatant was centrifuged for 1 h at 100000gav in a Kontron Ultracentrifuge. The total kidney membrane fractions were resuspended in 300 mM sucrose with a 25G needle and stored at –80 °C. Protein samples (200 µg) were denatured for 15 minutes at 65°C, resolved on 8% (w/v) polyacrylamide gels and electroblotted onto nitrocellulose membranes (GE HealthCare, Piscataway, NJ). The membranes were blocked with 5% non-fat dry milk in phosphate saline buffer supplemented with 0.1% (v/v) Tween 20 (PBS-T) and then incubated at 4°C overnight with a rabbit anti-Sglt2 antibody, followed by probing with a horseradish peroxidase-conjugated anti-rabbit secondary antibody. Blots were developed with SuperSignal West Femto Maximum Sensitivity Substrate (Thermo Scientific, Waltham, MA) and Fusion FX7 (Vilber Lourmat, Eberhardzell, Germany).

As a loading control, the sample blots were stripped and reprobed with anti-pan-actin (NeoMarkers, Fremont, CA).

2.5 Isolation of brush-border membrane vesicles

For the cis-inhibition assay, brush-border membrane vesicles (BBMV) isolated from both kidneys of one untreated female C57/BJ mouse were pooled together. To assess, ex vivo, the renal reabsorption of glucose after one-week treatment with colistin, BBMV were isolated always from the left kidney of treated mice for individual assessments. BBMV were isolated by an Mg²⁺ precipitation method previously described (28). Excised kidneys were placed in ice-cold isolation buffer (300 mM D-mannitol, 5 mM EGTA, 12 mM Tris/HCl, pH 7.1), homogenized with a Polytron, then mixed with MgCl₂ to a final concentration of 12 mM. After centrifugation at 3000gav, the supernatant was centrifuged at 16000gav resuspended in vesicle buffer (300 mM D-mannitol, 20 mM HEPES, adjusted to pH 7.4 with Tris) using a glass-teflon potter, then spun down again at 16000gav. Finally, the BBMV pellet was resuspended in vesicle buffer and used directly for the uptake assay and bicinchoninic acid assay (BCA) for protein determination (Interchim, Montluçon Cedex, France).
2.6 BBMV transport assay

Uptake of glucose was measured over a 20-second interval using a rapid filtration technique as previously described (29). BBMV were pre-incubated at 37°C, and uptake was initiated by injecting vesicle buffer supplemented with 100 mM NaCl and 100 µM D-glucose, and spiked with 5µCi/ml [3H]D-glucose (glucose, D-[6-3H(N)], specific activity 45.9 Ci/mmol, PerkinElmer, Switzerland). Uptake was measured when NaCl was replaced by an equimolar solution of KCl to determine the Na+-dependent uptake. Transport was stopped by adding 3 ml of ice-cold stop solution (300 mM D-glucose, 150 mM NaCl, 5 mM Tris/HCl, pH 7.4) followed by filtration through 0.45-µm nitrocellulose acetate filter (Sartorius, Göttingen, Germany). Afterwards, the filter was extensively washed with ice-cold stop solution and dissolved in liquid scintillation fluid (Filter Count, PerkinElmer, Switzerland) to measure radioactivity. Uptake is expressed as picomoles of substrate per milligram of protein. For the cis-inhibition assay, glucose uptake was assessed as described above in the presence or absence of colistin sulphate.

2.7 Histology

Five µm kidney sections were processed for staining using microwave-based antigen retrieval with citrate buffer (Agilent Dako, Santa Clara, CA). Primary antibodies: Kim-1 (NBP1-76701, Abcam, Cambridge, UK), Sglt1 (ab14686, Abcam, Cambridge, UK), and Sglt2 (Hermann Koepsell, University of Würzburg). Horseradish peroxidase-conjugation and detection was performed using the EnVision + Dual Link System-HRP DAB+ (Agilent Dako, Santa Clara, CA). Samples were immediately counterstained with Mayer’s hematoxylin solution (3870, Biosystems Switzerland AG, Muttenz, CH). For hematoxylin/eosin Y stainings (HE), sections were stained with Mayer’s hematoxylin and counterstained with Eosin Y solution (Sigma Aldrich, St. Louis, MO). Histological grading of immunostained samples on a scale of 0 (no staining), 1 (mild), 2 (moderate), and 3 (intense) was conducted by two independent scientists in a blinded manner, based on the intensity and area stained per sample. Severity of AKI was determined in HE-stained samples likewise by two independent scientists on a scale of 0-5, with 0 being no AKI and 5 the most severe damage, based on 1) the presence and amount of protein casts throughout the entire kidney section, 2) presence and percent area with tubular dilation throughout the cortex, 3) absence and area without a
visible brush border membrane in proximal tubules. The entire kidney section was analyzed for both
analyses and a final score was obtained by averaging the two independently assigned values.
Representative images were chosen for each figure, with a severity grade of 0 for control images and a
severity grade of 3 for immunohistochemistry and 5 for HE stainings for colistin-treated mice.

2.8 Determination of serum and urinary markers of kidney injury

Urinary glucose, serum and urinary creatinine were measured using the colorimetric/fluorometric kits
ab65333 (Abcam, Cambridge, UK) and K625 (Biovision, Milpitas, CA), respectively. Urinary cystatin C
(ab201280, Abcam, Cambridge, UK), albumin (ab108792, Abcam, Cambridge, UK) and Kim-1
(ab213477, Abcam, Cambridge, UK) were measured by ELISA.

2.9 mRNA quantification

Total RNA was extracted using TRIzol (Ambion by Thermo Scientific, Rockford, IL) from one third of the
snap frozen left kidney that was thawed on ice and minced prior to resuspension in TRIzol. Two
micrograms of total RNA were reverse-transcribed with random primers and Superscript II enzyme
(Invitrogen, Carlsbad, CA). Real-time PCR analysis using the generated first-strand complementary DNA
was completed using the TaqMan system (Applied Biosystems, Foster City, CA). TaqMan hydrolysis
probes for Sglt1 (Mm00451203_m1), Sglt2 (Mm00453831_m1), and villin (Mm00494156_m1) were used.

2.10 Statistical analyses

All calculations and statistical analyses were performed using GraphPad Prism Version 5.
3 Results

3.1 Evaluation of clinical kidney injury markers in serum and urine

Serum samples collected from mice 24h after the last of seven i.p. injections of 20mg/kg colistin or the vehicle PBS as a control were first analysed for creatinine content, the standard marker currently used to assess AKI. Results showed no differences in creatinine between treatment groups (Figure 1A). Urinary albumin (proteinuria) likewise did not differ between groups (Figure 1B). Some colistin-treated mice showed elevated urinary cystatin C (CysC) (Figure 1C), although the majority did not. In contrast, a significant, general increase in urinary Kim-1 in colistin-treated mice was noted (Figure 1D), indicating tubular injury. As serum creatinine did not fluctuate significantly between mice and treatment groups, reflecting a comparable glomerular filtration, urinary creatinine values could be used to normalize the urinary values measured for other biomarkers (30).

3.2 Histological examination of tubular injury and markers Ngal and Kim-1

Despite the lack of elevation in serum creatinine and urinary albumin, with only some colistin-treated mice showing elevations in urinary CysC upon initial analysis, histological examination of kidney tissue from these mice showed clear signs of kidney damage in all individuals, including tubule dilation, loss of the brush boarder membranes in the proximal tubules, and the formation of protein casts throughout the kidney tissue (Figure 2A, B, G). Further histological examination for AKI markers Ngal and Kim-1 showed increased amounts of both proteins in kidney sections from treated mice when compared to control mice (Figure 2C-F, H, I).

Figure 2. Histological signs of DIKI induced by colistin. (A,B) Hematoxylin and eosin Y (HE) stainings of mouse kidney sections from the control group and colistin-treated mice. (C,D) Ngal stainings. (E,F) Kim-1 stainings. Brown areas indicate a positive staining. Black arrows: tubular vacuolization and loss of brush border membrane in proximal tubules. Red arrows: tubular protein casts. Blue arrows: areas of staining with intact brush border membrane. 20x magnification, scale bar is 50 µm. (G-I) Severity of AKI was assessed on a severity scale of 0-5, based on 1) the presence and amount of protein casts, 2) presence and percent area with tubular dilation and 3) loss and area lacking clear brush border membrane structure. Histology severity grading of samples on a scale of 0 (no staining), 1 (mild), 2 (moderate), and 3 (intense), based on the intensity and area stained per sample. n = 15 (G,H), n = 9 (I).
3.3 Urinary glucose as a marker of proximal tubule injury upon colistin treatment

The proximal tubule is the site of renal reabsorption of virtually all organic solutes, which consist mainly of amino acids and glucose. Indications for proximal tubule injury in our colistin-treated mice, as well as the elevations in tubular Kim-1 and Ngal, led us to postulate that deficits in the reabsorption of such solutes might also exist, making them potential urinary biomarkers of colistin-induced tubular injury (31). Indeed, animals treated with colistin exhibited significant glycosuria (Figure 3A). A glucose tolerance test (GTT) was performed after overnight starvation following the last colistin injection to rule out pleiotropic effects on glucose tolerance by colistin treatment. The area under the curves (AUC) obtained for each treatment group were not significantly different ($p=0.3$), although colistin-treated mice had a significantly lower basal blood glucose value after starvation than the control group, likely as a result of increased urinary glucose excretion (Figure 3B, C).

3.4 Colistin-induced glycosuria is caused by a reduction in the protein level of the sodium-glucose transporter 2 (Sglt2)

Glucose renal reabsorption is a carrier-mediated process that involves two Na$^+$-dependent transporters: the sodium-glucose transporter 1 (Sglt1) and 2 (Sglt2), with Sglt2 being expressed in segment 1 of the proximal tubule on the brush border membrane and responsible for about 97% of renal glucose reabsorption (32). It has been previously shown that colistin inhibits L-carnitine and amino acid renal reabsorption by interacting with the zwitterionic/organic cation transporter 2 (OCTN2) and the peptide transporter 2 (PEPT2) (3, 33). To assess the inhibitory effect of colistin on glucose renal reabsorption, a cis-inhibition assay was performed with brush border membrane vesicles (BBMV) isolated from untreated mice. As glucose renal reabsorption is a Na$^+$-dependent process, uptake of glucose was measured in the presence and absence of Na$^+$ to define the Na$^+$-dependent transport component. As expected, 90% of glucose uptake was dependent on Na$^+$ (Figure 4A). The Na$^+$-dependent uptake of glucose was not reduced in the presence of 100 µM colistin sulphate, a concentration ~20 times the estimated plasma peak concentration in our experimental setting (34) (Figure 4B).

The effect of colistin on the expression of Sglts was then assessed. Transporter transcript level measured from whole kidney pieces was comparable between the two groups (Figure 5A). Immunostaining showed...
no difference in the Sglt1 level between groups (Figure 5B, C), whereas the Sglt2 staining intensity and
area was markedly reduced in colistin-treated mouse kidney sections (Figure 5D-G). Western blots of
total membrane fractions isolated from the kidney of single mice confirmed the reduction in Sglt2 protein
amount in colistin-treated mice (Figure S1, Supplemental Figure 1). Taken together, colistin treatment
does not seem to affect the transcription of glucose transporters Sglt1 or 2 in the kidney under the
treatment conditions tested here, but leads to a loss of Sglt2 protein, leading to a reduction of renal
glucose uptake at the brush border membrane.

Glucose reabsorption capacity after colistin treatment, expected to be reduced by the observed glycosuria
and reduction of Sglt2 protein level, was tested ex vivo by performing a glucose uptake assay over 20
seconds in BBMV isolated from control and colistin-treated mice. A significant reduction in the Na+
dependent glucose uptake was observed in colistin-treated mice in comparison to the control group
(Figure 5H).

3.5 Sensitivity and specificity of urinary biomarkers for early renal damage upon colistin-
treatment

In this study, markers that were able to identify or at least partially confirm individual assessments of
histologically defined renal injury were the urinary markers CysC, Kim-1, and glucose. Receiver operating
characteristic curves (ROC) for these markers, displaying the overall ability of a biomarker to detect a
difference between damaged and undamaged kidneys, defined areas under the curve (AUC) of 0.71 for
CysC, 0.93 for glucose, and 1.0 for Kim-1 (Figure 6A). Data from all treated and untreated mice were
used to generate these curves, where HE severity grading was used to define damaged and undamaged
kidneys. These results indicate that urinary Kim-1 and glucose are both more sensitive and specific for
the renal injury incurred under our colistin treatment regime than CysC. Interestingly, urinary Kim-1 and
glycosuria had a tendency towards a negative correlation in colistin-treated mice (Figure 6B). Urine
samples were also collected during the course of treatment and analysed for both glucose and Kim-1
content (Figure 6C, D). Increases from initial baseline values in colistin-treated mice were observed for
both markers as early as 24 h after the first treatment.
The clinically used staple marker for assessing AKI per KDIGO guidelines is serum creatinine. In this study, colistin-treated mice did not exhibit increased serum creatinine (Figure 1), but histological grading of HE stainings showed clear signs of damage in the kidneys of all colistin-treated animals (Figure 2). However, other studies performed in mice using similar colistin sulphate doses and treatment durations have indeed shown elevations in serum creatinine (35-37). Differing mouse strain, sex, age, route of administration (i.v. versus i.p.), dosing regimens (twice daily half-doses versus once daily full-dose), and creatinine quantification method (Jaffe’s method versus an enzymatic method) may all have affected the apparent severity of renal damage in such experiments. Overall, it appears that in this study, renal injury may have been induced to a less severe degree (subclinical) than in past studies, underlining the suitability of our model for assessing the first signs of AKI upon colistin administration. Stressing the fact that recent studies have shown the possible severity and irreversibility of consequences of short-term colistin treatment, it is of great importance to use such models to identify the earliest signs of renal damage that can be used to diagnose the onset of AKI while it is still subclinical. The subclinical AKI pattern shown here also grants the advantage of being able to use the individual urinary creatinine values for normalization purposes, correcting for urine concentration and output volume differences, allowing the avoidance of the use of single-housing metabolic cages. However, it is important to stress the concept that this normalization method would not be suitable in any case of clinical AKI, where creatinine excretion is impaired (38-40).

In this study, glycosuria correlated with the renal injury observed upon histological examination. Colistin treatment did not have an effect on overall glucose tolerance, yet lowered blood glucose values in starved mice, likely due to the lower glucose reabsorption capacity (Figure 3). Because pharmacological inhibition of Sglt2-mediated glucose reabsorption effectively reduces blood glucose levels in patients with type 2 diabetes (41), the reduction of Sglt2 protein level at the brush border membrane offers the explanation for the glycosuria observed in these mice (Figure 5). The comparative marker performance analysis relative to urinary Kim-1 and CysC suggests that glycosuria can be used as an early indicator of subclinical AKI upon colistin administration (Figure 6). The Kim-1 ROC-AUC of 1.0 in this study is comparable to other findings (26, 42), whereas glycosuria shows an AUC of 0.93, showing that both markers have high
sensitivity and specificity for colistin-induced AKI. The interesting finding that urinary Kim-1 levels did not correlate with urinary glucose in samples collected after seven days of colistin treatment suggest that both markers can offer separate and equally relevant information on early renal injury. The time-course of urinary Kim-1 values upon renal injury underlie 1) increased expression initiated by renal insult, 2) cleavage by a metalloproteinase in stressed cells under the control of the MAP kinase signalling pathway, 3) and finally excretion of the protein in the urine (16, 43, 44). We conclude through this study that glycosuria under colistin treatment is caused by decreased absorptive capacity of the proximal tubule through the decrease of Sglt2 at the brush border membrane. This denotes glycosuria as a possible measure of brush border membrane integrity and function, in regards to glucose reabsorption, whereas urinary Kim-1 may additionally be influenced by other gene regulatory, post-translational, or cell-stress mediated mechanisms (45). Additional studies would be required to fully understand the reason for the lack of correlation in the increase of these urinary biomarkers under colistin treatment. Nonetheless, glucose and Kim-1 were both detected in the urine concomitantly 24 h after treatment initiation, making glycosuria as early of a marker as Kim-1 is considered for colistin-induced renal injury.

It has been proposed that colistin’s detergent properties may contribute to its nephrotoxicity, which lead to increased permeability of the renal tubular epithelial cell membrane upon protein-mediated reabsorption (endocytosis and facilitative transport) (33, 46-50). Several studies have further suggested that colistin leads to intracellular oxidative stress, particularly at the site of mitochondria and endoplasmic reticulum (36, 50-53). Understanding whether the impaired uptake of glucose by proximal tubule cells contributes to the onset and progression of colistin-induced kidney damage is beyond the scope of this work. Nonetheless, it is important to point out that while proximal tubule cells do not rely on glucose as an energy source under physiological conditions, they shift to anaerobic glycolysis to produce the ATP required for cellular regeneration when they experience massive mitochondrial damage (54), as has been documented in the case of colistin-induced kidney injury (52, 55). Thus, the concomitant shortage of free glucose may exacerbate the initial damage caused by colistin. It is interesting to postulate that particularly the depletion of glucose, upon the accumulation of colistin in the proximal tubule and induction of intracellular cell stress through mitochondrial damage, may contribute to the high nephrotoxic potential of this drug.
The International Regulatory Agencies have suggested the use of an expanded panel of biomarkers, differentially expressed in various regions of the kidney upon insult. These guidelines include CysC, Kim-1, and Ngal among others (56,57). Ideally, markers of kidney damage used to assess acute kidney injury should be tailored to the medication being administered, within the knowledge available for the respective drug. Most importantly, suggestions and guidelines do not always necessarily hold up in translation, where the accessibility of diagnostics (clinical approval, costs of evaluation, ease of use) of a biomarker plays a large role in facilitating its regular use in patient care. This study confirms an increase in urinary Kim-1 as a sensitive and specific biomarker of early colistin-induced renal injury and offers glucose as an additional urinary biomarker. Patients receiving such a last-resort therapy often suffer from comorbidities, where the discernment of colistin-induced toxicity from general clinical status increases the complexity of the evaluation of patient data from those receiving colistin. Particularly patients receiving such a treatment must be assessed before, during, and after treatment due to the increased potential for and the acute occurrence of kidney damage. Glycosuria is not a specific indicator of proximal tubule damage and can also be caused by elevated serum glucose or reduced absorptive capacity of other etiology than discussed here. Thus, some clinical conditions with an underlying glycosuria, such as diabetes, may confound such a readout in a clinical setting. However, we consider it probable that a reduction of SGLT2 in the proximal tubules in diabetic patients under colistin treatment would increase underlying glycosuria in a similar manner as in non-diabetic patients, albeit with higher baseline glucose values. Further studies would be necessary to assess the general applicability and translation of glycosuria as a biomarker of DIKI for colistin-induced nephrotoxicity in human patient subsets, especially towards identifying quantitative cut-off values that maximize its predictive performance. However, the readily available, clinically approved, and low cost of the diagnostic assessment of glycosuria, as well as the sensitivity and specificity of urinary glucose as an early colistin-induced AKI marker, certainly warrant its continued evaluation. We suggest glycosuria monitoring in a clinical setting for patients undergoing colistin treatment as a putative option to justify a more intense screening of the arising expanded panel of biomarkers, where diagnostic options may present as more costly or logistically difficult. This will aid in the identification of patients at risk of severe and long-term renal impairment following colistin therapy.
Acknowledgments

We would like to thank Hermann Koepsell of the University of Würzburg for kindly supplying the antibody against Sglt2 used in this work. We are also indebted to Bruno Stieger for his input and assistance in the work with brush border membrane vesicles.

Funding

This work was supported by the Swiss National Science Foundation [Grant 310030_175639 to G.A. K.-U] and by the “Forschungskredit” of the University of Zurich 2017, Zürich, Switzerland [Grant FK-17-056 to MV].

Declarations of interest: none
References

1. Li J, Rayner CR, Nation RL. 2005. Colistin-associated acute renal failure: revisited. South Med J 98:1229-30.

2. Li J, Nation RL, Turnidge JD, Milne RW, Coulthard K, Rayner CR, Paterson DL. 2006. Colistin: the re-emerging antibiotic for multidrug-resistant Gram-negative bacterial infections. Lancet Infect Dis 6:589-601.

3. Ma Z, Wang J, Nation RL, Li J, Turnidge JD, Coulthard K, Milne RW. 2009. Renal disposition of colistin in the isolated perfused rat kidney. Antimicrob Agents Chemother 53:2857-64.

4. Karvanen M, Plachouras D, Friberg LE, Paramythiotou E, Papadomichelakis E, Karaiskos I, Tsangaris I, Armaganidis A, Cars O, Giamarellou H. 2013. Colistin methanesulfonate and colistin pharmacokinetics in critically ill patients receiving continuous venovenous hemodiafiltration. Antimicrob Agents Chemother 57:668-71.

5. Tran TB, Velkov T, Nation RL, Forrest A, Tsuji BT, Bergen PJ, Li J. 2016. Pharmacokinetics/pharmacodynamics of colistin and polymyxin B: are we there yet? Int J Antimicrob Agents 48:592-597.

6. Garonzik SM, Li J, Thamlikitkul V, Paterson DL, Shoham S, Jacob J, Silveira FP, Forrest A, Nation RL. 2011. Population pharmacokinetics of colistin methanesulfonate and formed colistin in critically ill patients from a multicenter study provide dosing suggestions for various categories of patients. Antimicrob Agents Chemother 55:3284-94.

7. Lim LM, Ly N, Anderson D, Yang JC, Macander L, Jarkowski A, 3rd, Forrest A, Bulitta JB, Tsuji BT. 2010. Resurgence of colistin: a review of resistance, toxicity, pharmacodynamics, and dosing. Pharmacotherapy 30:1279-91.

8. Pike M, Saltiel E. 2014. Colistin- and polymyxin-induced nephrotoxicity: focus on literature utilizing the RIFLE classification scheme of acute kidney injury. J Pharm Pract 27:554-61.

9. Bandali A, Bias TE. 2018. Efficacy and nephrotoxicity associated with various colistin dosing schemas for the treatment of multidrug resistant (MDR) infections. Infect Dis (Lond) 50:472-475.
10. Oliota AF, Penteado ST, Tonin FS, Fernandez-Llimos F, Sanches AC. 2018. Nephrotoxicity prevalence in patients treated with polymyxins: a systematic review with meta-analysis of observational studies. Diagn Microbiol Infect Dis doi:10.1016/j.diagmicrobio.2018.11.008.

11. Shields RK, Anand R, Clarke LG, Paronish JA, Weirich M, Perone H, Kieserman J, Freedy H, Andrzejewski C, Bonilla H. 2017. Defining the incidence and risk factors of colistin-induced acute kidney injury by KDIGO criteria. PLoS One 12:e0173286.

12. Meraz Munoz A, Gomez Ruiz I, Correa-Rotter R, Ramirez-Sandoval JC. 2018. Chronic kidney disease after acute kidney injury associated with intravenous colistin use in survivors of severe infections: A comparative cohort study. J Crit Care 44:244-248.

13. Griffin BR, Gist KM, Faubel S. 2019. Current Status of Novel Biomarkers for the Diagnosis of Acute Kidney Injury: A Historical Perspective. J Intensive Care Med doi:10.1177/0885066618824531:885066618824531.

14. Mishra J, Ma Q, Prada A, Mitsnefes M, Zahedi K, Yang J, Barasch J, Devarajan P. 2003. Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury. J Am Soc Nephrol 14:2534-43.

15. Ichimura T, Bonventre JV, Bailly V, Wei H, Hession CA, Cate RL, Sanicola M. 1998. Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury. J Biol Chem 273:4135-42.

16. Han WK, Bailly V, Abichandani R, Thadhani R, Bonventre JV. 2002. Kidney Injury Molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury. Kidney Int 62:237-44.

17. Ghliisi Z, Hakim A, Mnif H, Ayadi FM, Zeghal K, Rebai T, Sahnoun Z. 2013. Evaluation of colistin nephrotoxicity administered at different doses in the rat model. Ren Fail 35:1130-5.

18. Sirijatuphat R, Limmahakhun S, Sirivatanausorn V, Nation RL, Li J, Thamlikitkul V. 2015. Preliminary clinical study of the effect of ascorbic acid on colistin-associated nephrotoxicity. Antimicrob Agents Chemother 59:3224-32.

19. Ordooei Javan A, Salamzadeh J, Shokouhi S, Sahraei Z. 2017. Evaluation of Renal Toxicity of Colistin Therapy With Neutrophil Gelatinase-associated Lipocalin: a Biomarker of Renal Tubular Damage. Iran J Kidney Dis 11:447-455.
20. Shavit L, Manilov R, Wiener-Well Y, Algur N, Slotki I. 2013. Urinary neutrophil gelatinase-associated lipocalin for early detection of acute kidney injury in geriatric patients with urinary tract infection treated by colistin. Clin Nephrol 80:405-16.

21. Ferguson MA, Vaidya VS, Bonventre JV. 2008. Biomarkers of nephrotoxic acute kidney injury. Toxicology 245:182-93.

22. Keirstead ND, Wagoner MP, Bentley P, Blais M, Brown C, Cheatham L, Ciaccio P, Dragan Y, Ferguson D, Fikes J, Galvin M, Gupta A, Hale M, Johnson N, Luo W, McGrath F, Pietras M, Price S, Sathe AG, Sasaki JC, Snow D, Walsky RL, Kern G. 2014. Early prediction of polymyxin-induced nephrotoxicity with next-generation urinary kidney injury biomarkers. Toxicol Sci 137:278-91.

23. Vaidya VS, Ramirez V, Ichimura T, Bobadilla NA, Bonventre JV. 2006. Urinary kidney injury molecule-1: a sensitive quantitative biomarker for early detection of kidney tubular injury. Am J Physiol Renal Physiol 290:F517-29.

24. Vaidya VS, Ford GM, Waikar SS, Wang Y, Clement MB, Ramirez V, Glaab WE, Troth SP, Sistare FD, Prozialeck WC, Edwards JR, Bobadilla NA, Mefferd SC, Bonventre JV. 2009. A rapid urine test for early detection of kidney injury. Kidney Int 76:108-14.

25. Shea K, Stewart S, Rouse R. 2014. Assessment standards: comparing histopathology, digital image analysis, and stereology for early detection of experimental cisplatin-induced kidney injury in rats. Toxicol Pathol 42:1004-15.

26. Cai J, Jiao X, Luo W, Chen J, Xu X, Fang Y, Ding X, Yu X. 2019. Kidney injury molecule-1 expression predicts structural damage and outcome in histological acute tubular injury. Ren Fail 41:80-87.

27. Visentin M, van Rosmalen BV, Hiller C, Bieze M, Hofstetter L, Verheij J, Kullak-Ublick GA, Koepsell H, Phoa SS, Tamai I, Bennink RJ, van Gulik TM, Stieger B. 2017. Impact of Organic Cation Transporters (OCT-SLC22A) on Differential Diagnosis of Intrahepatic Lesions. Drug Metab Dispos 45:166-173.

28. Biber J, Stieger B, Stange G, Murer H. 2007. Isolation of renal proximal tubular brush-border membranes. Nat Protoc 2:1356-9.
29. Visentin M, Stieger B, Merz M, Kullak-Ublick GA. 2015. Octreotide inhibits the bilirubin carriers organic anion transporting polypeptides 1B1 and 1B3 and the multidrug resistance-associated protein 2. J Pharmacol Exp Ther 355:145-51.

30. Tang KW, Toh QC, Teo BW. 2015. Normalisation of urinary biomarkers to creatinine for clinical practice and research--when and why. Singapore Med J 56:7-10.

31. Curthoys NP, Moe OW. 2014. Proximal tubule function and response to acidosis. Clin J Am Soc Nephrol 9:1627-38.

32. Vallon V, Thomson SC. 2017. Targeting renal glucose reabsorption to treat hyperglycaemia: the pleiotropic effects of SGLT2 inhibition. Diabetologia 60:215-225.

33. Visentin M, Gai Z, Torozi A, Hiller C, Kullak-Ublick GA. 2017. Colistin is substrate of the carnitine/organic cation transporter 2 (OCTN2, SLC22A5). Drug Metab Dispos 45:1240-1244.

34. Dudhani RV, Turnidge JD, Coulthard K, Milne RW, Rayner CR, Li J, Nation RL. 2010. Elucidation of the pharmacokinetic/pharmacodynamic determinant of colistin activity against Pseudomonas aeruginosa in murine thigh and lung infection models. Antimicrob Agents Chemother 54:1240-1244.

35. Dai C, Tang S, Deng S, Zhang S, Zhou Y, Velkov T, Li J, Xiao X. 2015. Lycopene attenuates colistin-induced nephrotoxicity in mice via activation of the Nrf2/HO-1 pathway. Antimicrob Agents Chemother 59:579-85.

36. Heidari R, Behnamrad S, Khodami Z, Ommati MM, Azarpia N, Vazin A. 2019. The nephroprotective properties of taurine in colistin-treated mice is mediated through the regulation of mitochondrial function and mitigation of oxidative stress. Biomed Pharmacother 109:103-111.

37. Dai C, Tang S, Wang Y, Velkov T, Xiao X. 2017. Baicalein acts as a nephroprotectant that ameliorates colistin-induced nephrotoxicity by activating the antioxidant defence mechanism of the kidneys and down-regulating the inflammatory response. J Antimicrob Chemother 72:2562-2569.

38. Kurien BT, Everds NE, Scofield RH. 2004. Experimental animal urine collection: a review. Lab Anim 38:333-61.

39. Dalton RN. 2010. Serum creatinine and glomerular filtration rate: perception and reality. Clin Chem 56:687-9.
474 40. Kalliokoski O, Jacobsen KR, Darusman HS, Henriksen T, Weimann A, Poulsen HE, Hau J, Abelson KS. 2013. Mice do not habituate to metabolism cage housing—a three week study of male BALB/c mice. PLoS One 8:e58460.
477 41. Novikov A, Vallon V. 2016. Sodium glucose cotransporter 2 inhibition in the diabetic kidney: an update. Curr Opin Nephrol Hypertens 25:50-8.
479 42. Hoffmann D, Fuchs TC, Henzler T, Matheis KA, Herget T, Dekant W, Hewitt P, Mally A. 2010. Evaluation of a urinary kidney biomarker panel in rat models of acute and subchronic nephrotoxicity. Toxicology 277:49-58.
482 43. Bailly V, Zhang Z, Meier W, Cate R, Sanicola M, Bonventre JV. 2002. Shedding of kidney injury molecule-1, a putative adhesion protein involved in renal regeneration. J Biol Chem 277:39739-48.
485 44. Zhang Z, Humphreys BD, Bonventre JV. 2007. Shedding of the urinary biomarker kidney injury molecule-1 (KIM-1) is regulated by MAP kinases and juxtamembrane region. J Am Soc Nephrol 18:2704-14.
488 45. Collier JB, Schnellmann RG. 2017. Extracellular Signal-Regulated Kinase 1/2 Regulates Mouse Kidney Injury Molecule-1 Expression Physiologically and Following Ischemic and Septic Renal Injury. J Pharmacol Exp Ther 363:419-427.
491 46. Falagas ME, Kasiakou SK. 2006. Use of international units when dosing colistin will help decrease confusion related to various formulations of the drug around the world. Antimicrob Agents Chemother 50:2274-5.
494 47. Yousef JM, Chen G, Hill PA, Nation RL, Li J. 2012. Ascorbic acid protects against the nephrotoxicity and apoptosis caused by colistin and affects its pharmacokinetics. J Antimicrob Chemother 67:452-9.
497 48. Suzuki T, Yamaguchi H, Ogura J, Kobayashi M, Yamada T, Iseki K. 2013. Megalin contributes to kidney accumulation and nephrotoxicity of colistin. Antimicrob Agents Chemother 57:6319-24.
499 49. Ordooei Javan A, Shokouhi S, Sahraei Z. 2015. A review on colistin nephrotoxicity. Eur J Clin Pharmacol 71:801-10.
50. Lu X, Chan T, Xu C, Zhu L, Zhou QT, Roberts KD, Chan HK, Li J, Zhou F. 2016. Human oligopeptide transporter 2 (PEPT2) mediates cellular uptake of polymyxins. J Antimicrob Chemother 71:403-12.

51. Dai C, Li J, Lin W, Li G, Sun M, Wang F, Li J. 2012. Electrophysiology and ultrastructural changes in mouse sciatic nerve associated with colistin sulfate exposure. Toxicol Mech Methods 22:592-6.

52. Dai C, Li J, Tang S, Li J, Xiao X. 2014. Colistin-induced nephrotoxicity in mice involves the mitochondrial, death receptor, and endoplasmic reticulum pathways. Antimicrob Agents Chemother 58:4075-85.

53. Gai Z, Samodelov SL, Kullak-Ublick GA, Visentin M. 2019. Molecular Mechanisms of Colistin-Induced Nephrotoxicity. Molecules 24.

54. Lan R, Geng H, Singha PK, Saikumar P, Bottinger EP, Weinberg JM, Venkatachalam MA. 2016. Mitochondrial Pathology and Glycolytic Shift during Proximal Tubule Atrophy after Ischemic AKI. J Am Soc Nephrol 27:3356-3367.

55. Azad MA, Akter J, Rogers KL, Nation RL, Velkov T, Li J. 2015. Major pathways of polymyxin-induced apoptosis in rat kidney proximal tubular cells. Antimicrob Agents Chemother 59:2136-43.

56. M. Sahre, K. Drozda, H. Rogers, Biomarker Qualification Program Office of Clinical Pharmacology Full Qualification Package Review, FDA, www.fda.gov, 2015, p. 14.

57. Letter of support for drug-induced renal tubular injury Biomarker(s) EMA/715025/2016, www.ema.europa.eu, 2017 (accessed April 2019).
Figure 1. Clinically used markers of DIKI under colistin treatment. (A) Serum creatinine, (B) urinary albumin, (C) urinary cystatin C, and (D) urinary Kim-1 measured in control and colistin-treated mice. Urinary albumin, cystatin C, and Kim-1 were normalized to urinary creatinine. n = 15, two-tailed p-value is indicated, unpaired t-test.

Figure 2. Histological signs of DIKI induced by colistin. (A,B) Hematoxylin and eosin Y (HE) stainings of mouse kidney sections from the control group and colistin-treated mice. (C,D) Ngal stainings (E,F) Kim-1 stainings. Brown areas indicate a positive staining. Black arrows: tubular vacuolization and loss of brush border membrane in proximal tubules. Red arrows: tubular protein casts. Blue arrows: areas of staining with intact brush border membrane. 20x magnification, scale bar is 50 µm. (G-I) Severity of AKI was assessed on a severity scale of 0-5, based on 1) the presence and amount of protein casts, 2) presence and percent area with tubular dilation and 3) loss and area lacking clear brush border membrane structure. Histology severity grading of samples on a scale of 0 (no staining), 1 (mild), 2 (moderate), and 3 (intense), based on the intensity and area stained per sample. n = 15 (G,H), n = 9 (I).

Figure 3: Urinary and systemic blood glucose in mice treated with colistin. (A) Urinary glucose quantified in urine samples collected from each mouse after the final i.p. injection of a 7-day treatment course, normalized to urinary creatinine. n ≥13, two-tailed p-value is indicated, unpaired t-test. (B) Blood glucose values measured in tail-blood samples from control and colistin-treated mice after overnight starvation. n =10, two-tailed p-value is indicated, unpaired t-test. (C) Glucose tolerance test of control and colistin-treated mice performed by measuring glucose in tail-tip blood before and after injection of 1 g/kg D-glucose in solution.

Figure 4: *Ex vivo* cis-inhibition assay. (A) Glucose uptake over 20 seconds in buffer containing Na⁺ (NaCl) or in Na⁺-free buffer (KCl). (B) Na⁺-dependent uptake of glucose in the presence of colistin.
sulphate at the indicated concentration. Values were normalized to total protein content, n=3, two-tailed p-value is indicated, unpaired t-test.

Figure 5. Glucose transporter mRNA, protein, and transport capacity under colistin treatment. (A) mRNA quantification, normalized to villin, of Sglt1 and Sglt2 from whole kidney section homogenates, n=10, two-tailed p-value is indicated, unpaired t-test. (B,C) Sglt1 stainings of mouse kidney sections from control and colistin-treated mice. (D-G) Sglt2 stainings. Brown areas indicate a positive staining. 20x magnification (B-E), 40x magnification of selected area within the black box (F,G), scale bar is 50 µm. (H) Na⁺-dependent glucose uptake in BBMV isolated from control and colistin-treated mice. Values were subtracted from the respective uptake values measured in the absence of Na⁺ and normalized to total protein content. BBMV from individual mice were assessed separately. n ≥ 8, two-tailed p-value is indicated, unpaired t-test (I) Quantification of western blots stained for Sglt2 and pan-actin from two independent experiments, n = 10, two-tailed p-value is indicated, unpaired t-test. (J) Exemplary western blot of whole kidney membrane fractions from control (lanes 1-5) and colistin-treated (lanes 6-10) mice with stainings for Sglt2 and pan-actin, as a loading control. L: protein ladder.

Figure 6: Sensitivity and specificity of urinary markers of colistin-induced renal injury. (A) ROC curves for urinary biomarkers Kim-1 (black), glucose (blue), and cystatin C (green) with AUCs and p-values indicated, n ≥ 13. (B) Urinary Kim-1 fold-change from colistin-treated mice plotted against urinary glucose fold change in samples collected after the last treatment. Linear regression line, Pearson's r and p-value are indicated, n = 13. (C,D) Time course of urinary glucose and Kim-1 over the course of treatment in colistin-treated mice. n = 5, error bars indicate standard deviation.
A

B

glucose uptake [pmol/mg protein]

0.0 0.2 0.4 0.6 0.8

control

+ colistin 100µM

NaCl

ρ = 0.48

KCl

ρ = 0.01

100%
