Achievable ranks of intersections of finitely generated free groups

Richard P. Kent IV

November 4, 2003

Abstract

We answer a question due to A. Myasnikov by proving that all expected ranks occur as the ranks of intersections of finitely generated subgroups of free groups.

Mathematics Subject Classification (2000): 20E05

Let F be a free group. Let H and K be nontrivial finitely generated subgroups of F. It is a theorem of Howson [1] that $H \cap K$ has finite rank. H. Neumann proved in [2] that $\text{rank}(H \cap K) - 1 \leq 2(\text{rank}(H) - 1)(\text{rank}(K) - 1)$ and asked whether or not $\text{rank}(H \cap K) - 1 \leq (\text{rank}(H) - 1)(\text{rank}(K) - 1)$.

A. Miasnikov has asked which values between 1 and $(m - 1)(n - 1)$ can be achieved as $\text{rank}(H \cap K) - 1$ for subgroups H and K of ranks m and n—this is problem AUX1 of [4]. We prove that all such numbers occur by proving the following theorem.

Let $F(a, b)$ be a free group of rank two. Let

$$H_{k, \ell}^m = \langle a, bab^{-1}, \ldots, b^k a^{-1} b^{-k}, b^{k+1} a^{-\ell} b^{-(k+1)}, b^{k+2} a^{-\ell} b^{-(k+2)}, b^{k+3} a^{-\ell} b^{-(k+3)}, \ldots, b^{m-1} a^{-\ell} b^{-(m-1)} \rangle$$

and let $K = \langle b, aba^{-1}, \ldots, a^{n-1} b^{-1} a^{-1} b^{-1} \rangle$, where $0 \leq k \leq m - 2$ and $0 \leq \ell \leq n - 1$. Then the rank of $H_{k, \ell}^m \cap K$ is $k(n - 1) + \ell$.

Corollary. Let F be a free group and let $m, n \geq 2$ be natural numbers. Let N be a natural number such that $1 \leq N - 1 \leq (m - 1)(n - 1)$. Then there exist subgroups $H, K \leq F$, of ranks m and n, such that the rank of $H \cap K$ is N.

Proof of the corollary. The theorem produces the desired subgroups for all N with $N - 1 \leq (m - 1)(n - 1) - 1$ after passing to a rank two subgroup of F. For $N - 1 = (m - 1)(n - 1)$, simply let $H = \langle a, bab^{-1}, \ldots, b^{m-2} a^{n-2} b^{-n}, b^{m-1} \rangle$ and let $K = \langle b, aba^{-1}, \ldots, a^{n-2} b^{2-n}, a^{n-1} \rangle$.

Proof of the theorem. Let X be a wedge of two circles and base $\pi_1(X)$ at the wedge point. We identify $\pi_1(X)$ with $F = F(a, b)$ by calling the homotopy class of one oriented circle a and the other b. Given a finitely generated subgroup of F,
there is a covering space \tilde{X} corresponding to this subgroup. Moreover, there is a compact subgraph of \tilde{X} that carries the given subgroup. Given two subgroups and their associated finite graphs, one may construct the graph associated to their intersection. These procedures are laid out carefully in [3] and we assume that the reader is familiar with that paper.

In the figures, the graph associated to H appears at the top, that of K to the right, and that of $H \cap K$ in the center. Edges labelled with two arrowheads represent a, those with one arrowhead represent b. Our basepoint in the graph associated to $H \cap K$ is always the vertex in the upper left-hand corner.

For the moment, fix $k = m - 2$. In Figure 1, $\ell = n - 1$ and the rank of $H_{m-2,n-1}^m \cap K$ is visibly $(m-1)(n-1)$. Decreasing ℓ by one alters the intersection graph as depicted in Figure 2 and the rank of $H_{m-2,n-2}^m \cap K$ is $(m-1)(n-1) - 1$. Figure 3 shows the case when $\ell = n - 3$ and the rank of the intersection is $(m-1)(n-1) - 2$. When $\ell = n - j$, the rank of $H_{m-2,n-j}^m \cap K$ is $(m-1)(n-1) - (j-1)$.

Figure 4 depicts the case $\ell = 0$. Note that the graph associated to $H_{m-2,0}^m \cap K$ is the graph associated to $H_{m-3,n-1}^m \cap K$ to which a collection of trees have been attached at their roots, the graph associated to $H_{m-3,n-2}^m \cap K$ is the graph
Figure 3: H, K, and $H \cap K$ when $k = m - 2$, $\ell = n - 3$

Figure 4: H, K, and $H \cap K$ when $k = m - 2$, $\ell = 0$

associated to $H_{m-3,n-2}^{m-1} \cap K$ to which trees have been so attached, and so on. Since attaching trees in this way leaves the rank intact, we arrive at the theorem by induction on m.

Acknowledgement

This work supported in part by a University of Texas Continuing Fellowship.

References

[1] A. G. Howson, On the intersection of finitely generated free groups, J. London Math. Soc. 29, 428-434 (1954)

[2] H. Neumann, On the intersection of finitely generated free groups, Publ. Math. Debrecen 4, 36-39 (1956); Addendum 5, 128 (1957)

[3] J. R. Stallings, Topology of finite graphs, Invent. Math. 71, 551–565 (1983)
[4] Open problems in combinatorial group theory, http://grouptheory.info/

Department of Mathematics, University of Texas, Austin, TX 78712
rkent@math.utexas.edu