Retouchdown: Adding Touchdown to StreetLearn as a Shareable Resource for Language Grounding Tasks in Street View

Harsh Mehta
Google Research
harmh@google.com

Yoav Artzi
Cornell University
yoav@cs.cornell.edu

Jason Baldridge
Google Research
jasonbaldridge@google.com

Eugene Ie
Google Research
eugeneie@google.com

Piotr Mirowski
Deepmind
piotrmierowski@google.com

Abstract

The Touchdown dataset (Chen et al., 2019) provides instructions by human annotators for navigation through New York City streets and for resolving spatial descriptions at a given location. To enable the wider research community to work effectively with the Touchdown tasks, we are publicly releasing the 29k raw Street View panoramas needed for Touchdown. We follow the process used for the StreetLearn data release (Mirowski et al., 2019) to check panoramas for personally identifiable information and blur them as necessary. These have been added to the StreetLearn dataset and can be obtained via the same process as used previously for StreetLearn. We also provide a reference implementation for both of the Touchdown tasks: vision and language navigation (VLN) and spatial description resolution (SDR). We compare our model results to those given in Chen et al. (2019) and show that the panoramas we have added to StreetLearn fully support both Touchdown tasks and can be used effectively for further research and comparison.

1. Introduction

Following natural language navigation instructions in visual environments requires addressing multiple challenges in dynamic, continuously changing environments, including language understanding, object recognition, grounding and spatial reasoning. Until recently, the most commonly studied domains were map-based (Thompson et al., 1993) or game-like (Macmahon et al., 2006; Misra et al., 2017, 2018; Hermann et al., 2017; Hill et al., 2017). These environments enabled substantial progress, but the complexity and diversity of the visual input they provide is limited. This greatly simplifies both the language and vision challenges. To address this, recent tasks based on simulated environments include photo-realistic visual input, such as Room-to-Room (R2R; Anderson et al., 2018), Talk-the-Walk (de Vries et al., 2018) and Touchdown (Chen et al., 2019), all of which rely on panorama photos.

A major challenge of creating simulations that use real-world photographs is they at times capture bystanders and their property. This raises privacy concerns and requires additional care to check for and ensure personally identifiable information (PII) is removed from research resources that are made publicly available. Existing resources adopt different strategies to address this. The Matterport3D dataset (Chang et al., 2017), which underlies the R2R task, is focused on real-estate data that is curated to exclude PII. This approach is limited to environments of a specific type: houses that are for sale. Academic resources that focus on urban street scenes opted to manually collect panoramas from scratch and scrub them for PII (de Vries et al., 2018; Weiss et al., 2019). This is laborious and costly—especially the first stage of collecting the panoramas. As a result, such resources cover relatively small areas.

Google Street View has world-wide scale coverage of street scenes. Each panorama in Street View has gone through a process to protect the privacy of bystanders and their property. Individuals can also request specific panoramas to be removed. As such, it is a resource with the potential to transform the research community’s ability to study problems such as street scene understanding and navigation. Touchdown relies on 29,641 panoramas from Street View; however, because raw images cannot be distributed according to the Street View terms-of-service, these are not provided with the Touchdown data. Instead, only image feature vectors are available for direct download with the data, and access to the raw panoramas is subject to availability through APIs governed by Street View’s terms of service.

https://www.google.com/help/terms_maps/
Research can be done within a company and shared via publication without releasing data; for example, Cirik et al. (2018) discussed models for instruction-conditioned navigation in Street View. However, the full impact of the data and research about it can be better realized by making at least some portion of such resources available to the broader research community. In this context, StreetLearn (Mirowski et al., 2018, 2019) stands out as a publicly available resource of Street View data that has been approved for dissemination and use for academic research. StreetLearn contains 114k panoramas from New York City and Pittsburgh that have been manually checked for PII, ensuring, for example, that faces and license plates are blurred. The dataset can be easily accessed. Researchers interested in working with the data simply fill a form stating their goals and commit to update the data periodically with newer versions as they are released. This process balances the ability of researchers to use the data with preserving the privacy and rights of individuals impacted by the data. For example, periodic updates allow Google to respond to user takedown requests.

To increase the accessibility of Touchdown and providing an example of how important data can be responsibly released, we integrate the Touchdown task and its corresponding Street View data into an updated version of StreetLearn. This paper reconciles Touchdown’s mode of dissemination with StreetLearn’s, which was designed to adhere to the rights of Google and individuals while also simplifying access for researchers and improving reproducibility. We also provide open source implementations of both the vision-and-language navigation and spatial description resolution tasks, which we show to have a consistent performance with the results in the original Touchdown paper. We hope that this release of data and code will enable the entire research community to make further progress on these problems and to consider new questions and tasks enabled by this limited but significant slice of Street View data.

2. Process

Touchdown includes tasks for natural language navigation and spatial reasoning in realistic urban environments. Touchdown uses Street View panoramas of New York City to define a large-scale navigation environment. It includes 9,326 human-written instructions and 27,575 spatial description resolution tasks. Touchdown’s instructions were written by people and emphasize attributes of the visual environment as navigational cues. This makes Touchdown a valuable resource for research on following natural language instructions in visual environments. This contrasts with the template-based navigation instructions used by Hermann et al. (2020), which were generated by Google Maps API and used with StreetLearn panoramas.

Unfortunately, the development and release of Touchdown introduced several challenges that complicate working with the data. Even though Touchdown itself does not contain Street View data, it references specific Street View panoramas and depends on access to them via the Street View API. This requires any researcher that wishes to work on the data to download large amounts of data using the API, which is inconvenient, error-prone and not aligned with the current Google Maps terms-of-service. Also, the panoramas available through the API periodically change, potentially making parts of the data unavailable. This means there is no hope for consistent versioning (which hurts reproducibility) regarding panorama availability because the data collected by each researcher is dependent on the particular time they access it. Finally, individual researchers or research groups cannot themselves comply with takedown requests—a responsibility that should stay with Google. Therefore, long term storage must be kept within Google, with researchers periodically refreshing the data.

To address these challenges, we collect, check and release the Touchdown panoramas as part of an update to the 114k existing StreetLearn panoramas, which cover regions of New York City and Pittsburgh. As shown in Figure 1, StreetLearn encompasses the entire region of New York City contained in Touchdown; however, the StreetLearn panoramas themselves are not sufficient for supporting the Touchdown tasks themselves. This is for several reasons.

- The granularity of the panorama spacing is different. Figure 1 shows that most of the panoramas are different. Touchdown has roughly 25% of the panos but covers half of Manhattan compared to StreetLearn.
- The language instructions refer to transient objects such as cars, bicycles, and couches, as illustrated in

![Figure 1. The overlap between the StreetLearn (blue) and Touchdown (red) panoramas in Manhattan. There are 710 panoramas (out of 29k) that share the same ID in both datasets (in black).](http://streetlearn.cc)
Spatial Description Resolution. SDR results are given in Table 1. Following Chen et al. (2019), we report mean distance error and accuracy with different thresholds (40px, 80px, and 120px), which measures the proportion of evaluation items where the pixel chosen by the model is within the specified pixel distance. Our Retouchdown reimplementation of LINGUNET obtains better performance on the accuracy measures, but worse performance on mean distance error. To check whether this is a consequence of the blurring, we ran our model with features retrieved from original panoramas and obtained similar results as those listed in Table 1. Given this, the performance difference between our model and the original paper are likely not due to the additional blurring. As such, the Touchdown panoramas available through StreetLearn can be reliably used as direct replacement for those used in Chen et al. (2019).

Vision-and-Language Navigation. We use the following metrics to evaluate VLN performance:

- Task Completion (TC): the accuracy of navigating to the correct location. The correct location is defined as the exact goal panorama or one of its neighboring panoramas. This is the equivalent of the success rate metric (SR) used commonly in VLN for R2R.
- Shortest-path distance (SPD): the mean of the distances over all executions of the agent’s final panorama position and the goal panorama.
- Success weighted by Edit Distance (SED): normalized graph edit distance between the agent path and true path, with points only awarded for successful paths.
- Normalized Dynamic Time Warping (nDTW): a minimized cumulative distance between the agent path and true path, normalized by path length.
- Success weighted Dynamic Time Warping (SDTW): nDTW, with points awarded only for successful paths.

In all, the Touchdown tasks encompass 29,641 panoramas. All of these went through extensive manual review by annotators to check for personally identifiable information (PII), such as faces and license plates. Regions containing PII were marked as bounding boxes by annotators, and we blurred all of these regions for the final images.

3. Experiments

We re-implement the best-reported models on the navigation and spatial description resolution tasks from Chen et al. (2019) to compare performance with our data release to the original Touchdown paper. The key difference between the two settings is that our released panoramas contain additional blurred patches (Section 2). Another minor difference is that we use a word-piece tokenizer (Devlin et al., 2019) instead of a full-word tokenizer.

Figure 2. One of the panoramas taken from the dataset which shows transient objects being referenced in the navigation text. “Stop here, and turn left. You will now be walking down a narrow lane with parked cars on both sides. There should be a payphone on your right and a fire hydrant (behind silver poles) on your left. Walk down this lane, and on your left you will soon see a shop with gray columns between the windows and a blue sign with yellow trim.”
Panorama before the main SDR panorama.

Main SDR Panorama.

Panorama after the main SDR panorama.

Figure 3. Actual example taken from the dataset with multiple SDR panorama viewpoints for the same instruction: Two parked bicycles, and a discarded couch, all on the left. Walk just past this couch, and stop before you pass another parked bicycle. This bike will be white and red, with a white seat. Touchdown is sitting on top of the bike seat.
Table 1. SDR development and test results using the LINGUNET architecture, which Chen et al. (2019) reported as the best performing system.

Method	Development	Test		
	A@40px ↑	A@80px ↑	A@120px ↑	Dist ↓
Chen et al. (2019)	24.81	32.83	36.44	729
Retouch-LINGUNET	29.79	35.28	38.14	800
Chen et al. (2019)	26.11	34.59	37.81	708
Retouch-LINGUNET	30.32	36.73	39.27	793

Table 2. Navigation development and test results. We use the RCONCAT architecture, which Chen et al. (2019) reported as the best performing.

Method	TC ↑	SPD ↓	SED ↑	nDTW ↑	SDTW ↑
Development					
Chen et al. (2019)	9.8	19.1	0.094		
Retouch-RCONCAT	13.4	17.1	0.124	4.9	1.3
Test					
Chen et al. (2019)	10.7	19.5	0.104		
Retouch-RCONCAT	12.8	17.1	0.131	5.0	1.4

thus do not remove information critical for the VLN task. In our implementation, we use imitation learning on top of a scalable framework based on the Actor-Learner architecture (Lansing et al., 2019), instead of supervised learning using Hogwild! (Recht et al., 2011). These differences likely explain the observed differences with the original results.

Compared to interior navigation in the Room-to-Room (R2R) task, the Touchdown task is much harder: e.g. the current state-of-the-art success rate (equivalent to TC) for R2R on the validation unseen dataset is 55% (Zhu et al., 2019). The same holds for DTW measures: Ilharco et al. (2019) report a success rate of 44% and corresponding SDTW of 38.3% for a fidelity-oriented version of the Reinforced Cross-modal Matching agent (Wang et al., 2019). The TC of 12.8% and SDTW of 1.4% obtained by Retouch-RCONCAT amply demonstrates the challenge of the outdoor navigation problem defined by Touchdown. The greater diversity of the visual environments and the far greater degrees-of-freedom for navigation thus provide plenty of headroom for future research.

4. Conclusion

The research community is interested in using large-scale resources such as Street View for work on computer vision and navigation. In order to comply with Street View’s terms-of-service (which allow for only limited use of its data and APIs) and with its data restrictions, we have enriched StreetLearn with panoramas from the Touchdown study. That dataset is periodically updated to comply with Google Street View takedown requests to respect individuals’ privacy preferences. We encourage the research community to use only vetted and approved resources like StreetLearn, including our new release of the Touchdown panoramas, for their Street View oriented work.

The addition of Touchdown to StreetLearn (a.k.a. Retouchdown) boosts the total panorama count for the StreetLearn dataset from 114k to 144k. Furthermore, it contains multiple panoramas from the same neighborhoods, which supports work on learning to navigate in a region and testing in that same region using panoramas from a different time. Our code for training and evaluating vision-and-language navigation agents and spatial description resolution models are publicly available as part of the VALAN framework (Lansing et al., 2019).

Acknowledgments

The authors would like to thank Howard Chen for his assistance as we reproduced the Touchdown results, Larry Lansing, Valts Blukis and Vihan Jain for their help with the code and open-sourcing, the Google Maps and Google Street View teams for their support in accessing and releasing the data, and the Google Data Compute team for their help with panorama review and blurring.

References

Anderson, P., Wu, Q., Teney, D., Bruce, J., Johnson, M., Sünnerhausf, N., Reid, I., Gould, S., and van den Hen-
gel, A. (2018). Vision-and-language navigation: Interpreting visually-grounded navigation instructions in real environments. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Chang, A., Dai, A., Funkhouser, T., Halber, M., Niessner, M., Savva, M., Song, S., Zeng, A., and Zhang, Y. (2017). Matterport3d: Learning from RGB-D data in indoor environments. International Conference on 3D Vision (3DV).

Chen, H., Suhr, A., Misra, D., and Artzi, Y. (2019). Touchdown: Natural language navigation and spatial reasoning in visual street environments. In Conference on Computer Vision and Pattern Recognition.

Cirik, V., Zhang, Y., and Baldridge, J. (2018). Following formulaic map instructions in a street simulation environment. NeurIPS Visually Grounded Interaction and Language Workshop.

de Vries, H., Shuster, K., Batra, D., Parikh, D., Weston, J., and Kiela, D. (2018). Talk the walk: Navigating new york city through grounded dialogue. CoRR, abs/1807.03367.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of NAACL-HLT 2019, pages 4171–4186, Minneapolis, Minnesota. Association for Computational Linguistics.

Hermann, K. M., Hill, F., Green, S., Wang, F., Faulkner, R., Soyer, H., Szepesvari, D., Czarnecki, W. M., Jaderberg, M., Teplyashin, D., Wainwright, M., Apps, C., Hassabis, D., and Blunsom, P. (2017). Grounded language learning in a simulated 3d world. arXiv.

Hermann, K. M., Malinowski, M., Mirowski, P., Banki-Horvath, A., Anderson, K., and Hadsell, R. (2020). Learning to follow directions in street view. Association for the Advancement of Artificial Intelligence (AAAI).

Hill, F., Hermann, K. M., Blunsom, P., and Clark, S. (2017). Understanding grounded language learning agents. arXiv.

Ilharco, G., Jain, V., Ku, A., Ie, E., and Baldridge, J. (2019). Effective and general evaluation for instruction conditioned navigation using dynamic time warping. NeurIPS Visually Grounded Interaction and Language Workshop.

Lansing, L., Jain, V., Mehta, H., Huang, H., and Ie, E. (2019). Valan: Vision and language agent navigation.

Macmahon, M., Stankiewicz, B., and Kuipers, B. (2006). Talk the walk: Connecting language, knowledge, action in route instructions. In Proceedings of AAAI, pages 1475–1482.

Mirowski, P., Banki-Horvath, A., Anderson, K., Teplyashin, D., Hermann, K. M., Malinowski, M., Grimes, M. K., Simonoyan, K., Kavukcuoglu, K., Zisserman, A., and Hadsell, R. (2019). The streetlearn environment and dataset. CoRR, abs/1903.01292.

Mirowski, P., Grimes, M. K., Malinowski, M., Hermann, K. M., Anderson, K., Teplyashin, D., Simonoyan, K., Kavukcuoglu, K., Zisserman, A., and Hadsell, R. (2018). Learning to navigate in cities without a map. Advances in Neural Information Processing Systems.

Misra, D., Bennett, A., Blukis, V., Niklasson, E., Shatkhin, M., and Artzi, Y. (2018). Mapping instructions to actions in 3D environments with visual goal prediction. In Proceedings of EMNLP 2018, pages 2667–2678, Brussels, Belgium.

Misra, D., Langford, J., and Artzi, Y. (2017). Mapping instructions and visual observations to actions with reinforcement learning. In Proceedings of EMNLP 2017, pages 1004–1015.

Recht, B., Ré, C., Wright, S. J., and Niu, F. (2011). Hogwild: A lock-free approach to parallelizing stochastic gradient descent. In Proceedings of the Conference on Neural Information Processing Systems.

Thompson, H. S., Anderson, A., Bard, E. G., Doherty-Sneddon, G., Newlands, A., and Sotillo, C. (1993). The HCRC Map Task corpus: Natural dialogue for speech recognition. In Proceedings of the Human Language Technology Workshop.

Wang, X., Huang, Q., Çelikyilmaz, A., Gao, J., Shen, D., Wang, Y., Wang, W. Y., and Zhang, L. (2019). Reinforced cross-modal matching and self-supervised imitation learning for vision-language navigation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Weiss, M., Chamorro, S., Girgis, R., Luck, M., Kahou, S. E., Cohen, J. P., Nowrouzezahrai, D., Precup, D., Golemo, F., and Pal, C. (2019). Navigation agents for the visually impaired: A sidewalk simulator and experiments. In Proceedings of the Conference on Robot Learning.

Zhu, F., Zhu, Y., Chang, X., and Liang, X. (2019). Vision-language navigation with self-supervised auxiliary reasoning tasks.