DUALIZING COMPLEXES AND HOMOMORPHISMS
VANISHING IN KOSZUL HOMOLOGY

JAVIER MAJADAS

Abstract. Let C be a semidualizing complex over a noetherian local ring A. If there exists a local homomorphism with source A satisfying some homological properties, then C is dualizing.

1. Introduction

There is a number of characterizations of properties (of homological type) of noetherian local rings of positive characteristic in terms (of homological properties) of the Frobenius homomorphism. We start with [20].

Theorem (Kunz) Let A be a noetherian local ring containing a field of characteristic $p > 0$, and let $\phi : A \to A, \phi(a) = a^p$ be the Frobenius homomorphism. We denote by A the ring A considered as A-module via ϕ. The following conditions are equivalent:

(i) A is regular
(ii) ϕ is a flat A-module.

Some years later, Kunz theorem was improved by Rodicio [25] as follows: if the flat dimension $fd_A(\phi) < \infty$, then A is regular.

So we can think if similar characterizations for the properties complete intersection, Gorenstein and Cohen-Macaulay exist. For complete intersections the result was obtained in [12], characterizing complete intersections rings by the finiteness of the complete intersection dimension of its Frobenius homomorphism, and a similar characterization was also found for the Cohen-Macaulay property in [26].

We will examine now in more detail the case of the Gorenstein property. A first result was obtained by Herzog [17] (see also [15, Theorem 1.1] and [26, Proposition 6.1]):

Theorem (Herzog) Let A be a noetherian local ring containing a field of characteristic $p > 0$, and let ϕ be its Frobenius homomorphism. Assume that ϕ is finite. The following conditions are equivalent:

(i) A is Gorenstein
(ii) $\text{Ext}_A^i(\phi, A) = 0$ for all $i > 0$ and infinitely many $r > 0$.

This result was improved in [18], removing in particular the annoying finiteness hypothesis on ϕ:

Theorem (Iyengar, Sather-Wagstaff) Let A be a noetherian local ring containing a field of characteristic $p > 0$, and let ϕ be its Frobenius homomorphism.
The following conditions are equivalent:
(i) A is Gorenstein
(ii) $G\text{-dim}_A(\varphi^* A) < \infty$ for some integer $r > 0$.

Here $G\text{-dim}$ denotes the Gorenstein dimension introduced by Auslander and Bridger in [2] (properly speaking, a modification of the original definition using Cohen factorizations [6, p.254], [18, Definition 3.3]).

Over the last years, some research was conducted in order to extend these results from the particular case of the Frobenius homomorphism to larger classes of homomorphisms. A first step was to consider contracting endomorphisms. An endomorphism f of a noetherian local ring (A, \mathfrak{m}, k) is contracting if for any integer $s > 0$ there exist an integer $r > 0$ such that $f^r(\mathfrak{m}) \subset \mathfrak{m}^s$. The Frobenius homomorphism is an example of contracting endomorphism. If f is a contracting endomorphism on a noetherian local ring A, then A must contain a field (of fixed elements), but unlike the case of the Frobenius homomorphism, it can be of characteristic zero. The above results for regularity were extended to contracting endomorphisms in [19, Proposition 2.6]. For the complete intersection property they were extended (even in an improved form) in [11], [9].

The Gorenstein case was studied first in [18]. In fact, they obtain the theorem stated above as a consequence of the more general:

Theorem (Iyengar, Sather-Wagstaff) Let A be a noetherian local ring and $\phi : A \to A$ a contracting endomorphism. Then the following conditions are equivalent:
(i) A is Gorenstein
(ii) $G\text{-dim}_A(\varphi^* A) < \infty$ for some integer $r > 0$.

Subsequently, in [24] this result was extended to the more general context of G-dimension over a semidualizing complex C as defined in [13]. It is obtained in particular:

Theorem (Nasseh, Sather-Wagstaff) Let A be a noetherian local ring, C a semidualizing complex over A and $\phi : A \to A$ a contracting endomorphism. The following conditions are equivalent:
(i) C is a dualizing complex.
(ii) $G_C\text{-dim}(\varphi^* A) < \infty$ for infinitely many $r > 0$.

This result generalizes the “classical” case: the Gorenstein dimension of [2] is the particular case of $G_C\text{-dim}$ obtained by taking $C = A$ (which is always a semidualizing complex), and a ring A is Gorenstein if and only if the semidualizing complex A is dualizing.

A second step in the extension of these results to larger classes of homomorphisms was initiated in [21]. The purpose in that paper was not so much to extend the known results to larger classes of homomorphisms as to understand what a homomorphism must verify in order to be a “test homomorphism” for these properties of local rings. In that paper a new class of homomorphisms, the ones with the h_2-vanishing property, was introduced. A local homomorphism $f : (A, \mathfrak{m}, k) \to (B, \mathfrak{n}, l)$ of noetherian local rings is said to have the h_2-vanishing property if the canonical homomorphism between the first Koszul homology modules associated to minimal sets of generators of their maximal ideals

$$H_1(\mathfrak{m}) \otimes_k l \to H_1(\mathfrak{n})$$
is zero. Any contracting endomorphism has a power which has the \(h_2 \)-vanishing property, but \(h_2 \)-vanishing homomorphisms are not necessarily endomorphisms, and they can be defined on rings that do not contain a field. Moreover, unlike the class of contracting endomorphisms, the class of \(h_2 \)-vanishing homomorphisms contains at once the two main test homomorphisms: the Frobenius endomorphism and the canonical epimorphism of a local ring into its residue field.

In order to see, even in the case of an endomorphism, the difference between \(h_2 \)-vanishing and contracting, consider a complete local ring \((A, \mathfrak{m}, k)\) and a contracting endomorphism \(\phi \) of \(A \). We assume for simplicity that \(\phi(\mathfrak{m}) = \phi^1(\mathfrak{m}) \subset \mathfrak{m}^2 \). Take a regular local ring \((R, n, k)\) of minimal dimension such that \(A = R/I \) (i.e., \(\dim R = \text{emb.dim} A \)), and a contracting endomorphism \(\varphi \) of \(R \) making commutative the diagram \([23, 3.2.1, 3.2.4]\)

\[
\begin{array}{ccc}
R & \xrightarrow{\varphi} & R \\
\downarrow & & \downarrow \\
A & \xrightarrow{\phi} & A
\end{array}
\]

(details can be seen in \([21, \text{Example 3.ii}]\)).

Then the homomorphism induced by \(\phi \)

\[H_1(\mathfrak{m}) \otimes_k \varphi k \to H_1(\mathfrak{m}) \]

can be identified with the canonical homomorphism induced by \(\varphi \)

\[I/nI \otimes_k \varphi k \to I/nI. \]

Since \(\varphi \) is contracting, by the Artin-Rees lemma some power of it verifies \(\varphi^r(I) \subset nI \), and so \(\varphi^r \) has the \(h_2 \)-vanishing property. But the contracting property is not only a condition on the images of \(I \), but on the images of \(n \). For instance, any local homomorphism which factorizes through a regular local ring has the \(h_2 \)-vanishing property.

Our purpose in this paper is to extend the above result of Nasseh and Sather-Wagstaff to \(h_2 \)-vanishing homomorphisms. In order to achieve it, instead of working with \(G_C \)-dim, we consider a different definition, \(G^*_C \)-dim (see Definition \([1]\)). Both definitions are related in the same way that Gorenstein dimension \(G \)-dim is related to upper Gorenstein dimension \(G^* \)-dim \([27], [4, \S 8]\). They share the usual properties (see Propositions \([9]\) and \([3*]\)), but we do not know if the finiteness of \(G_C \)-dim is equivalent to the finiteness of \(G^*_C \)-dim.

We obtain:

Theorem 6 Let \(\varphi : A \to B \) be a local homomorphism and \(C \) a semidualizing complex over \(A \). Assume that \(\varphi \) has the \(h_2 \)-vanishing property. The following conditions are equivalent:

(i) \(C \) is a dualizing complex.

(ii) \(G^*_C \)-dim\((B) < \infty \).

A note on terminology. Since we are interested only in the finiteness of \(G^*_C \)-dim and not in its precise value, we use the terminology of derived \(C \)-reflexivity instead of finite \(G^*_C \)-dim.
2. Notation for complexes

All rings in this paper will be noetherian and local.

We will follow the conventions for complexes generally used in this context (see e.g. [13]). For convenience of the reader we will briefly recall some notation. Let \(A \) be a ring. A complex of \(A \)-modules will be a sequence of \(A \)-module homomorphisms

\[
X = \ldots \to X_{n+1} \xrightarrow{d_{n+1}} X_n \xrightarrow{d_n} X_{n-1} \to \ldots
\]

such that \(d_n d_{n+1} = 0 \) for all \(n \). If \(m \) is an integer, \(\Sigma^m X \) will be the complex with \((\Sigma^m X)_n = X_{n-m} \), \(d^m_n = (-1)^m d^X_n \) for all \(n \).

The derived category of the category of \(A \)-modules will be denoted by \(\mathcal{D}(A) \). For \(X, Y \in \mathcal{D}(A) \), we will write \(X \simeq Y \) if \(X \) and \(Y \) are isomorphic in \(\mathcal{D}(A) \), and \(X \sim Y \) if \(X \simeq \Sigma^m Y \) for some integer \(m \). Sometimes we will consider an \(A \)-module as a complex concentrated in degree 0. The full subcategory of \(\mathcal{D}(A) \) consisting of complexes homologically finite, that is, complexes \(X \) such that \(H(X) \) is an \(A \)-module of finite type, will be denoted by \(\mathcal{D}^b(A) \).

The left derived functor of the tensor product of complexes of \(A \)-modules will be denoted by \(- \otimes^L_A - \), and similarly \(\text{RHom}_A(-, -) \) will denote the right derived functor of the Hom functor on complexes of \(A \)-modules. We say that a complex \(X \in \mathcal{D}(A) \) is of finite projective (respectively, injective) dimension if there exists a bounded complex \(Y \) (that is, \(Y_n = 0 \) for \(|n| \gg 0 \)) of projective (respectively, injective) modules such that \(X \simeq Y \). We will denote it by \(\text{pd}_A(X) < \infty \) (respectively, \(\text{id}_A(X) < \infty \)).

3. Derived reflexivity

Let \(X, C \in \mathcal{D}^b(A) \). We say that \(X \) is derived \(C \)-reflexive if \(\text{RHom}_A(X, C) \in \mathcal{D}^b(A) \) and the canonical biduality morphism

\[
X \to \text{RHom}_A(\text{RHom}_A(X, C), C)
\]

is an isomorphism in \(\mathcal{D}^b(A) \) [13, 2.7], [10, §2].

We will say that \(C \in \mathcal{D}^b(A) \) is a semidualizing complex [13, Definition 2.1] if \(A \) is derived \(C \)-reflexive, that is, if the homothety morphism

\[
A \to \text{RHom}_A(C, C)
\]

is an isomorphism in \(\mathcal{D}^b(A) \). If \(C \) is a semidualizing complex and \(X \in \mathcal{D}^b(A) \), then \(X \) is derived \(C \)-reflexive if and only if \(X \simeq \text{RHom}_A(\text{RHom}_A(X, C), C) \) [10, Theorem 3.3]. We will give precise references of all the results we need on derived reflexivity, but the reader may consult [13], [14] for a systematic study.

A dualizing complex is a semidualizing complex of finite injective dimension.

We now introduce a modification of derived \(C \)-reflexivity. We call it derived \(C \)-reflexivity*, since it is related to derived \(C \)-reflexivity in the same way that upper Gorenstein dimension \(G^* \)-dim is related to Gorenstein dimension \(G \)-dim [27, 4, §8].

A local homomorphism \((A, m, k) \to (R, p, l) \) is weakly regular if it is flat and the closed fiber \(R \otimes_A k \) is a regular local ring. Let \(f : (A, m, k) \to (B, n, l) \) be a local homomorphism. A regular factorization of \(f \) is a factorization \(A \xrightarrow{j} R \xrightarrow{p} B \) of \(f \)
where \(i \) is weakly regular and \(p \) is surjective. If \(B \) is complete, then \(f \) has a regular factorization with \(R \) complete [7].

Definition 1. If \(C \) is a semidualizing complex over a ring \(A \), a \(C \)-defeormation of \(A \) will be a pair \((Q, E)\) consisting in a surjective homomorphism of (local) rings \(Q \rightarrow A \) and a semidualizing complex \(E, C \in D_b^f(A) \) such that \(\text{RHom}_Q(A, E) \sim C \). In this case, by [13, Theorem 6.1 and Observation 2.4], the \(Q \)-module \(A \) is derived \(E \)-reflexive.

Let \(C \) be a semidualizing complex over \(A \), and \(X \in D_c^f(A) \). We will say that \(X \) is derived \(C \)-reflexive if there exists a weakly regular homomorphism \(A \rightarrow A' \) and a \(C \otimes_A A'\)-deformation \((Q, E)\) of \(A' \) (note that \(C \otimes_A A' = C \otimes_{A'} A' \) is a semidualizing complex over \(A' \) [13, Theorem 5.6]) such that \(pd_Q(X \otimes_{A'} A') < \infty \).

Let \(\varphi : A \rightarrow B \) be a local homomorphism, \(C \) be a semidualizing complex over \(A \), \(X \in D_c^f(B) \). We will say that \(X \) is derived \(C-\varphi \)-reflexive if there exists a regular factorization \(A \rightarrow R \rightarrow \hat{B} \) such that the complex of \(R \)-modules \(X \otimes_R \hat{B} \) is derived \(C \otimes_A R \)-reflexive, where \(\hat{B} \) is the completion of \(B \).

Proposition 2. Let \(C \) be a semidualizing complex over \(A \), and \(X \in D_c^f(A) \). If \(X \) is derived \(C \)-reflexive, then it is derived \(C \)-reflexive.

Proof. Let \(A \rightarrow A' \) be a weakly regular homomorphism, \((Q, E)\) a \(C' := C \otimes_A A'\)-deformation of \(A' \) such that \(pd_Q(X \otimes_{A'} A') < \infty \). By [13, Proposition 2.9], \(X \otimes_{A'} A' \) is derived \(E \)-reflexive and then, by [13, Theorem 6.5], \(X \otimes_{A'} A' \) is derived \(C' \)-reflexive. Then faithfully flat base change [13, Theorem 5.10] gives that \(X \) is derived \(C \)-reflexive.

We do not know if the reciprocal of Proposition 2 is true, even in the (classical) case \(C = A \). However the usual characterization of dualizing complexes in terms of derived reflexivity of the residue field also remain valid for derived reflexivity (in the case \(C = A \) this is the theorem by Auslander and Bridger saying that a ring \(A \) is Gorenstein if and only if the Gorenstein dimension of any module of finite type is finite if and only if the Gorenstein dimension of its residue field is finite [2, Theorem 4.20 and its proof]; see also [13, Theorem 6.1]):

Proposition 3. [13, Proposition 8.4, Remark 8.5] Let \(C \) be a semidualizing complex over \(A \). The following are equivalent:

(i) \(C \) is dualizing.

(ii) Any \(X \in D_c^f(A) \) is derived \(C \)-reflexive.

(iii) The residue field \(k \) of \(A \) is derived \(C \)-reflexive.

Proposition 3 Let \(C \) be a semidualizing complex over \(A \). The following are equivalent:

(i) \(C \) is dualizing.

(ii*) Any \(X \in D_c^f(A) \) is derived \(C \)-reflexive.

(iii*) The residue field \(k \) of \(A \) is derived \(C \)-reflexive.

Proof. By Propositions 2 and 5, we only have to show (i) \(\Rightarrow\) (ii*). Let \(\hat{A} \) be the completion of \(A \) and \(Q \rightarrow \hat{A} \) a surjection where \(Q \) is a regular local ring. Let \(D \) be a dualizing complex over \(Q \) (\(D \sim Q \)). Then \(\text{RHom}_Q(\hat{A}, D) \) is a dualizing complex over \(\hat{A} \) ([16, V.2.4] or [13, Corollary 6.2]). Also, \(C \otimes_{A'} \hat{A} \) is a dualizing complex over \(\hat{A} \) ([13, V.3.5]), so \(\text{RHom}_Q(\hat{A}, D) \sim C \otimes_{A'} \hat{A} \) by [16, V.3.1].
Therefore \((Q, D)\) is a \(C \otimes_A \hat{A}\)-deformation of \(\hat{A}\). Since \(Q\) is regular, for any \(X \in D_0^f(A)\) we have \(\text{pd}_Q(X \otimes_A \hat{A}) < \infty\), and so \(X\) is derived \(C\)-reflexive*.

\(\square\)

This result still holds for derived \(C\)-\(\varphi\)-reflexivity*:

Proposition 4. Let \(C\) be a semidualizing complex over \(A\). The following are equivalent:

(i) \(C\) is dualizing.

(ii) For any local homomorphism \(\varphi : A \to B\), any \(X \in D_0^f(B)\) is derived \(C\)-\(\varphi\)-reflexive*.

(iii) There exists a local homomorphism \(\varphi : A \to B\), such that the residue field \(l\) of \(B\) is derived \(C\)-\(\varphi\)-reflexive*.

Proof. (i) \(\Rightarrow\) (ii) Let \(\varphi : A \to B\) be a local homomorphism and let \(A \to R \to \hat{B}\) be a regular factorization with \(R\) complete. Since \(C\) is a dualizing complex over \(A\) and \(i\) is flat with Gorenstein (in fact regular) closed fiber, then \(C \otimes_A R\) is a dualizing complex over \(R\) \cite[Theorem 5.1, Proposition 4.2]{16]. Therefore the result follows from Proposition 3*.

(iii) \(\Rightarrow\) (i) Let \(A \overset{\lambda}{\to} R \overset{\varphi}{\to} \hat{B}\) be a regular factorization, \(R \to R'\) a weakly regular homomorphism, and \((Q, E)\) a \(C \otimes_A R'\)-deformation of \(R'\) such that \(\text{pd}_Q(l \otimes_R R') < \infty\). Since \(R \to R'\) is weakly regular, its closed fiber \(l \otimes_R R'\) is regular. Then \(Q\) is a regular local ring (it follows e.g. from the change of rings spectral sequence

\[E_p^2 = \text{Tor}_p^{l \otimes_R R'}(\text{Tor}_q^Q(l \otimes_R R', l'), l') \Rightarrow \text{Tor}_q^Q(l', l')\]

where \(l'\) is the residue field of \(Q\) and \(l \otimes_R R'\).

We deduce that \(\text{id}_Q(E) < \infty\), and so the semidualizing complex \(E\) is dualizing. Then \(C \otimes_A R' \sim \text{RHom}_Q(R', E)\) is also dualizing \cite[V.2.4]{16}. Since \(A \to R'\) is flat, it is easy to see that \(C\) is dualizing (or use the stronger result \cite[Theorem 5.1]{5}).

\(\square\)

Definition 5. \cite[Definition 1]{21} Let \(f : (A, m, k) \to (B, n, l)\) be a local homomorphism. Let \(H_\ast(m)\) (respectively, \(H_\ast(n)\)) be the Koszul homology associated to a minimal system of generators of the ideal \(m\) of \(A\) (respectively, the ideal \(n\) of \(B\)). We say that \(f\) has the \(h_2\)-vanishing property if the canonical homomorphism induced by \(f\)

\[H_1(m) \otimes_k l \to H_1(n)\]

vanishes.

By \cite[15.12]{11} (see \cite[2.5.1]{23}), this homomorphism between Koszul homology modules can be written in terms of Andrée-Quillen homology \cite{11} as the canonical homomorphism

\[H_2(A, k, l) \to H_2(B, l, l)\]

As we saw in the Introduction, a suitable power of any contracting endomorphism has the \(h_2\)-vanishing property (in fact, if \(f : (A, m, k) \to (A, m, k)\) is a contracting endomorphism, for any integer \(n\) there exists an integer \(s\) such that \(f^s\) has the \(h_n\)-vanishing property, in the sense that the morphism of functors \(H_n(A, k, -) \to H_n(A, k, -)\) vanishes \cite[Proposition 10]{22}).
Theorem 6. Let \(\varphi : A \to B \) be a local homomorphism and \(C \) a semidualizing complex over \(A \). Assume that \(\varphi \) has the \(h_2 \)-vanishing property. If (and only if) \(B \) is derived \(C \)-\(\varphi \)-reflexive\(^* \), then \(C \) is dualizing.

Proof. The “only if” part is a consequence of Proposition 4.
Assume then that \(B \) is derived \(C \)-\(\varphi \)-reflexive\(^* \). Consider a diagram of local homomorphisms

\[
\begin{array}{ccc}
Q & \xrightarrow{\rho} & R' \\
\downarrow{\alpha} & & \downarrow{\pi'} \\
A & \xrightarrow{\varphi} & B \\
\downarrow{\beta} & & \downarrow{\pi} \\
\hat{B} & \xrightarrow{\beta} & \hat{B} \\
\end{array}
\]

where \(\alpha \) and \(\rho \) are weakly regular, \(\pi \) is surjective and \((Q, E)\) is a \(C \otimes_A R'\)-deformation of \(R' \) such that \(\text{pd}_Q(\hat{B} \otimes R R') < \infty \). We will see first that \(Q \) is a regular local ring repeating an argument in the proof of [21, Proposition 6].

Let \(l \) be the residue field of \(Q \) and \(\hat{B} \otimes R R' \). The commutative square

\[
\begin{array}{ccc}
A & \xrightarrow{\alpha} & R \\
\downarrow{\varphi} & & \downarrow{\pi} \\
B & \xrightarrow{\beta} & \hat{B} \\
\end{array}
\]

induces a commutative square

\[
\begin{array}{ccc}
H_2(A, l, l) & \xrightarrow{\bar{\alpha}} & H_2(R, l, l) \\
\downarrow{\bar{\varphi}} & & \downarrow{\bar{\pi}} \\
H_2(B, l, l) & \xrightarrow{\bar{\beta}} & H_2(\hat{B}, l, l). \\
\end{array}
\]

We have \(\bar{\varphi} = 0 \) since \(\varphi \) has the \(h_2 \)-vanishing property (we have used that if \(k \to l \) is a field extension we have \(H_n(k, l, l) = 0 \) for all \(n \geq 2 \) [11, 7.4]; so if \(A \to k \to l \) are ring homomorphisms with \(k \) and \(l \) fields, from the Jacobi-Zariski exact sequence [11, 5.1] we obtain \(H_n(A, k, l) = H_n(A, l, l) \) for all \(n \geq 2 \); finally, \(H_n(A, k, k) \otimes_k l = H_n(A, k, l) \) for all \(n \) by [11, 3.20]).

Since \(\alpha \) is weakly regular, by [21, Lemma 5], \(\bar{\alpha} \) is an isomorphism, and so \(\bar{\pi} = 0 \). Consider now the commutative square

\[
\begin{array}{ccc}
H_2(R, l, l) & \xrightarrow{\bar{\beta}} & H_2(R', l, l) \\
\downarrow{\bar{\rho}} & & \downarrow{\bar{\pi'}} \\
H_2(\hat{B}, l, l) & \xrightarrow{\bar{\beta}} & H_2(\hat{B} \otimes_R R', l, l). \\
\end{array}
\]

Again by [21, Lemma 5], \(\bar{\rho} \) is an isomorphism, and then \(\bar{\pi'} = 0 \). So the composition

\[
H_2(Q, l, l) \to H_2(R', l, l) \xrightarrow{\bar{\pi}'} H_2(\hat{B} \otimes_R R', l, l)
\]
vanishes. But by [3], \(\text{pd}_Q(\hat{B} \otimes_R R') < \infty \) implies that
\[
H_2(Q, l, l) \to H_2(\hat{B} \otimes_R R', l, l)
\]
is injective. Therefore \(H_2(Q, l, l) = 0 \), and then \(Q \) is regular by [1, 6.26].

Now the proof finishes as the proof of Proposition 4: since \(\text{id}_Q(E) < \infty \), the semidualizing complex \(E \) is dualizing; then \(C \otimes_A R' \sim R\text{Hom}_Q(R', E) \) is also dualizing [16, V.2.4] and since \(\rho \alpha \) is flat, we deduce that \(C \) is dualizing.

\[\square \]

Remark 7. If a homomorphism in a composition has \(h_2 \)-vanishing property, then so has the composition. Therefore Theorem 6 can also be stated as follows:

Let \(\varphi : A \to B \) be a local homomorphism and \(C \) a semidualizing complex over \(A \). Assume that \(\varphi \) has the \(h_2 \)-vanishing property. If there exists a local homomorphism \(\phi : B \to S \) such that \(S \) is derived \(C-\varphi \)-reflexive*, then \(C \) is dualizing.

References

[1] M. André, Homologie des Algèbres Commutatives, Springer, 1974.
[2] M. Auslander, M. Bridger. Stable module theory, Memoirs of the American Mathematical Society, No. 94, 1969.
[3] L. L. Avramov, Descente des déviations par homomorphismes locaux et génération des idéaux de dimension projective finie, C. R. Acad. Sci. Paris Sér. I Math. 295 (1982), no. 12, 665-668.
[4] L. L. Avramov, Homological dimensions and related invariants of modules over local rings, Representations of algebra. Vol. I, II, 1-39, Beijing Norm. Univ. Press, Beijing, 2002.
[5] L. L. Avramov, H.-B. Foxby, Locally Gorenstein homomorphisms, Amer. J. Math. 114 (1992), no. 5, 1007-1047.
[6] L. L. Avramov, H.-B. Foxby, Ring homomorphisms and finite Gorenstein dimension, Proc. London Math. Soc. (3) 75 (1997), no. 2, 241-270.
[7] L. L. Avramov, H.-B. Foxby, B. Herzog, Structure of local homomorphisms, J. Algebra 164 (1994), no. 1, 124-145.
[8] L. L. Avramov, V. N. Gasharov, I. V. Peeva, Complete intersection dimension, Inst. Hautes Études Sci. Publ. Math. No. 86 (1997), 67-114 (1998).
[9] L. L. Avramov, M. Hochster, S. Iyengar, Y. Yao, Homological invariants of modules over contracting endomorphisms, Math. Ann. 353 (2012), no. 2, 275-291.
[10] L. L. Avramov, S. Iyengar, J. Lipman, Reflexivity and rigidity for complexes. I. Commutative rings, Algebra Number Theory 4 (2010), no. 1, 47-86.
[11] L. L. Avramov, S. Iyengar, C. Miller, Homology over local homomorphisms, Amer. J. Math. 128 (2006), no. 1, 23-90.
[12] A. Blanco, J. Majadas, Sur les morphismes d’intersection complète en caractéristique p, J. Algebra 208 (1998), no. 1, 35-42.
[13] L. W. Christensen, Semi-dualizing complexes and their Auslander categories, Trans. Amer. Math. Soc. 353 (2001), no. 5, 1839-1883.
[14] A. Frankild, S. Sather-Wagstaff, Reflexivity and ring homomorphisms of finite flat dimension, Comm. Algebra 35 (2007), no. 2, 461-500.
[15] S. Goto, A problem on Noetherian local rings of characteristic p, Proc. Amer. Math. Soc. 64 (1977), no. 2, 199-205.
[16] R. Hartshorne, Residues and Duality, Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64. Lecture Notes in Mathematics 20, Springer, 1966.
[17] J. Herzog, Ringe der Charakteristik p und Frobeniusfunktionen, Math. Z. 140 (1974), 67-78.
[18] S. Iyengar, S. Sather-Wagstaff, G-dimension over local homomorphisms. Applications to the Frobenius endomorphism, Illinois J. Math. 48 (2004), no. 1, 241-272.
[19] J. Koh, K. Lee, Some restrictions on the maps in minimal resolutions, J. Algebra 202 (1998), no. 2, 671-689.
[20] E. Kunz, Characterizations of regular local rings of characteristic p, Amer. J. Math. 91 (1969), 772-784.
[21] J. Majadas, *Some homological criteria for regular, complete intersection and Gorenstein rings*, arXiv:1209.5051v1.

[22] J. Majadas, *A descent theorem for formal smoothness*, arXiv:1209.5055v1.

[23] J. Majadas, A. G. Rodicio, *Smoothness, Regularity and Complete Intersection*, London Mathematical Society Lecture Note Series, 373. Cambridge University Press, Cambridge, 2010.

[24] S. Nasseh, S. Sather-Wagstaff, *Contracting endomorphisms and dualizing complexes*, arXiv:1210.2700v1.

[25] A. G. Rodicio, *On a result of Avramov*, Manuscripta Math. 62 (1988), no. 2, 181-185.

[26] R. Takahashi, Y. Yoshino, *Characterizing Cohen-Macaulay local rings by Frobenius maps*, Proc. Amer. Math. Soc. 132 (2004), no. 11, 3177-3187.

[27] O. Veliche, *Construction of modules with finite homological dimensions*, J. Algebra 250 (2002), no. 2, 427-449.

Departamento de Álgebra, Facultad de Matemáticas, Universidad de Santiago de Compostela, E15782 Santiago de Compostela, Spain

E-mail address: j.majadas@usc.es