Twenty-year incidence trend of hematologic malignancies in the Republic of Korea: 1999–2018

Won-Ju Park1,2,3,#, Joo-Heon Park4,#, Seunghyeon Cho1, Myung Geun Shin4

1Department of Occupational and Environmental Medicine, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, 2Gwangju Jeonnam Regional Cancer Center, Hwasun, 3Jeollanamdo Public Health Policy Institute, Jeollanamdo Provincial Office, Muan, 4Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, Hwasun, Korea

Background
In this study, we presented the national cancer statistics on the incidence of hematologic malignancies in the Republic of Korea (ROK) over a period of 20 years, from 1999 to 2018.

Methods
We obtained data on the incidence of hematologic malignancies using the Korean Statistical Information Service (KOSIS). For each hematologic malignancy, the number of cases, crude incidence rate, and age-standardized incidence rate were calculated, and the statistical trends were confirmed by Poisson regression and Joinpoint regression analysis.

Results
All the investigated hematologic malignancies showed a statistically significant increase in incidence over 20 years. The 20-year trend of the age-standardized incidence rate was as follows: non-Hodgkin lymphoma [average annual percent change (AAPC)=2.26%, P-trend < 0.05], leukemia (AAPC=0.94%, P-trend < 0.05), myeloid leukemia (AAPC=1.44%, P-trend < 0.05), multiple myeloma (AAPC=3.05%, P-trend < 0.05), myeloproliferative disorders (AAPC=9.87%, P-trend < 0.05), myelodysplastic syndrome (AAPC=7.59%, P-trend < 0.05), malignant immunoproliferative diseases (AAPC=11.82%, P-trend < 0.05), lymphoid leukemia (AAPC=2.21%, P-trend < 0.05), and Hodgkin lymphoma (AAPC=4.04%, P < 0.05).

Conclusion
It was confirmed that the incidence of hematologic malignancies has increased significantly in the ROK over the past 20 years. This study can be used as foundational data source for future studies. In addition, it can aid in the necessary actions of predicting future incidences and establishing future healthcare policies.

Key Words Epidemiology, Hematologic neoplasms, Neoplasms, Registries, Statistics

INTRODUCTION

Since the national causes of death statistics were officially established in 1983, cancer has been the number one cause of death in the Republic of Korea (ROK) to date [1]. With the aging of the population, the incidence of cancer has also been increasing rapidly [2]. The Korea Central Cancer Registry (KCCR) registers cancer-related data and publishes books on cancer statistics every year. However, since the cancer statistics book mainly describes only the most common types of cancers, it is up to each researcher to analyze the statistical data of detailed cancers. This study intends to provide statistics on the incidence of hematologic malignancies over the past 20 years based on open national statistical data. The results of this study will be used as foundational data for future research and policy establishment on hematologic malignancies.
MATERIALS AND METHODS

Data collection

We obtained data on hematologic malignancies from 1999 to 2018 through the Korean Statistical Information Service (KOSIS). KOSIS is a national statistical database operated by Statistics Korea. As a gateway for Korea’s official statistics, KOSIS offers a convenient one-stop service to a full range of major domestic statistics. Currently, official statistics produced by over 120 statistical agencies covering more than 500 subject matter are available on the KOSIS. Data are provided in an open form and can be easily accessed by anyone [3]. The data we obtained were as follows: the number of incidences of hematologic malignancies by 5-year age groups and sex, and the population structure for each year. The cancer data registered in the KOSIS were created by the KCCR, Ministry of Health and Welfare.

Malignancy classification

Hematologic malignancies were categorized according to the International Classification of Diseases for Oncology 3rd edition (ICD-O-3) [4]. For consistent comparison and convenience, these malignancies were converted to the International Classification of Diseases, 10th edition (ICD-10) [5]. Diseases not classified as malignant according to ICD-10 (myeloproliferative disorders and myelodysplastic syndromes) were referred to using ICD-O-3 codes without

Table 1. The classification of hematologic malignancies according to the Republic of Korea’s Cancer Control Act and Statistics Act.

Abbreviation	ICD-10 code (or ICD-O-3 code)
Non-Hodgkin lymphoma	ICD-10 C82–C86, C96 Follicular lymphoma. Follicle center lymphoma. Other types of follicular lymphoma. Follicular lymphoma, unspecified. Small cell B-cell lymphoma. Mantle cell lymphoma. Diffuse large B-cell lymphoma. Lymphoblastic (diffuse) lymphoma. Burkitt lymphoma. Other non-follicular lymphoma. Non-follicular (diffuse) lymphoma, unspecified. Mature T/NK-cell lymphomas. Mycosis fungoides. Sézary disease. Peripheral T-cell lymphoma, not classified. Anaplastic large cell lymphoma. Cutaneous T-cell lymphoma, unspecified. Other mature T/NK-cell lymphomas. Mature T/NK-cell lymphomas, unspecified. Unspecified B-cell lymphoma. Mediastinal (thymic) large B-cell lymphoma. Other specified types of non-Hodgkin lymphoma. Non-Hodgkin lymphoma, unspecified. Other specified types of T/NK-cell lymphoma. Multifocal and unisystemic Langerhans-cell histiocytosis. Malignant mast cell neoplasm. Sarcoma of dendritic cells (accessory cells). Multifocal and unisystemic Langerhans-cell histiocytosis. Unifocal Langerhans-cell histiocytosis. Histiocytic sarcoma. Other specified.
Leukemia	ICD-10 C91-95 See myeloid leukemia, lymphoid leukemia, and leukemia unspecified.
Myeloid leukemia	ICD-10 C92–C94 Acute myeloblastic leukemia. Chronic myeloid leukemia. Myeloid sarcoma. Acute promyelocytic leukemia. Acute myelomonocytic leukemia. Acute myeloid leukemia. Other myeloid leukemia. Myeloid leukemia, unspecified. Acute monocytic leukemia. Chronic myelomonocytic leukemia. Myeloid leukemia, unspecified. Monocytic leukemia, unspecified. Acute erythroid leukemia. Acute megakaryoblastic leukemia. Mast cell leukemia. Acute pancytopenia with myelofibrosis.
Multiple myeloma	ICD-10 C90 Multiple myeloma. Plasma cell leukemia. Extramedullary plasmacytoma. Solitary plasmacytoma.
Myeloproliferative disorders	ICD-0-3 M995 /3, M996 /3, M997 /3 Pancytopenia vera. Chronic myeloproliferative disease. Essential thrombocytopenia. Osteomyelofibrosis. Chronic eosinophilic leukemia.
Myelodysplastic syndrome	ICD-0-3 M9980/3, M9985/3, M9989/3 Myelodysplastic syndromes.
Malignant immunoproliferative diseases	ICD-10 C88 Waldenström macroglobulinemia. Heavy chain disease. Immunoproliferative small intestinal disease. Extramedullary zone B-cell lymphoma of mucosa-associated lymphoid tissue (MALT-lymphoma). Other malignant immunoproliferative diseases. Malignant immunoproliferative disease, unspecified.
Lymphoid leukemia	ICD-10 C91 Acute lymphoblastic leukemia. Chronic lymphocytic leukemia of B-cell type. Prolymphocytic leukemia of B-cell type. Hairy cell leukemia. Adult T-cell lymphoma/leukemia. Prolymphocytic leukemia of T-cell type. Mature B-cell leukemia Burkitt-type. Other lymphoid leukemia. Lymphoid leukemia, unspecified.
Hodgkin lymphoma	ICD-10 C81 Hodgkin lymphoma. Other Hodgkin lymphoma. Hodgkin lymphoma, unspecified.
Leukemia unspecified	ICD-10 C95 Acute leukemia of unspecified cell type. Chronic leukemia of unspecified cell type. Leukemia, unspecified.
conversion. The classification of hematologic malignancies according to the ICD-10 was as follows: non-Hodgkin lymphoma (C82-86, C96), leukemia (C91-95), myeloid leukemia (C92-94), multiple myeloma (C90), myeloproliferative disorders (ICD-O-3 M995_/3, M996_/3, M997_/3), myelodysplastic syndrome (ICD-O-3 M9980/3, M9981/3, M9982/3, M9983/3, M9985/3, M9986/3, M9987/3, M9988/3, M9989/3), malignant immunoproliferative diseases (C88), lymphoid leukemia (C91), Hodgkin lymphoma (C81), and leukemia of unspecified cell type (C95) (Table 1).

Table 2. The incidence case number of non-Hodgkin lymphoma and trend in crude incidence rates and age-standardized incidence rates per million population in the Republic of Korea from 1999 to 2018.

Years	Men	Women	Total	AAPC (%)	CIR	ASRb	AAPC (%)	ASRb
1999	1,252	851	2,103	5.16b	44.58964	45.47851	2.26b	1.023b
2000	1,222	816	2,038	42.87447	42.87447	42.87447	42.87447	
2001	1,332	905	2,237	46.72385	46.72385	46.72385	46.72385	
2002	1,322	919	2,241	46.56351	46.56351	46.56351	46.56351	
2003	1,375	981	2,356	48.77000	48.77000	48.77000	48.77000	
2004	1,511	1,057	2,568	52.96449	52.96449	52.96449	52.96449	
2005	1,505	1,091	2,596	53.32453	53.32453	53.32453	53.32453	
2006	1,651	1,121	2,772	56.70216	56.70216	56.70216	56.70216	
2007	1,741	1,194	2,935	59.73904	59.73904	59.73904	59.73904	
2008	1,745	1,256	3,001	60.74327	60.74327	60.74327	60.74327	
2009	1,876	1,362	3,238	65.20764	65.20764	65.20764	65.20764	
2010	1,954	1,429	3,383	67.82302	67.82302	67.82302	67.82302	
2011	2,110	1,551	3,661	70.05712	70.05712	70.05712	70.05712	
2012	2,194	1,580	3,774	74.96227	74.96227	74.96227	74.96227	
2013	2,314	1,691	4,005	79.21446	79.21446	79.21446	79.21446	
2014	2,400	1,713	4,113	81.02333	81.02333	81.02333	81.02333	
2015	2,560	1,884	4,444	87.21982	87.21982	87.21982	87.21982	
2016	2,805	2,019	4,824	94.37917	94.37917	94.37917	94.37917	
2017	2,736	2,080	4,816	94.00613	94.00613	94.00613	94.00613	
2018	3,001	2,215	5,216	101.67467	101.67467	101.67467	101.67467	

a) Calculated by defining the 2000 mid-year Korean population (July 1, 2000) as the standard population. b) Statistically significant trend (P<0.05).

Abbreviations: AAPC, average annual percent change; ASR, age-standardized incidence rate; CIR, crude incidence rate; IRR, incidence rate ratio.

Fig. 1. Annual incidence of non-Hodgkin lymphoma in the Republic of Korea. Number of non-Hodgkin lymphoma cases (A). Crude and age-standardized incidence rate of non-Hodgkin lymphoma per million using the 2000 Korean standard population (B). b) Comparing 1999 and 2018. b) Average annual percent change by Joinpoint regression analysis. b) Incidence rate ratio per year from 1999 to 2018 as calculated by Poisson regression.

Abbreviations: AAPC, average annual percent change; ASR, age-standardized incidence rate; CI, confidence interval; CIR, crude incidence rate; IRR, incidence rate ratio.
Statistical analysis

From the collected data, the number of incidence cases of each hematologic malignancy by year was determined. The average annual percent change (AAPC) was analyzed using the Joinpoint regression model which is a trend analysis software developed by the US National Cancer Institute [6]. This method describes changes in data trends by connecting several different line segments on a logarithmic scale at Joinpoints. Tests of significance were performed using the Monte Carlo permutation method. An AAPC for each line segment and the corresponding 95% confidence interval (CI) were estimated. The AAPC is tested to determine whether a difference exists from the null hypothesis of no change. In the final model, each Joinpoint informs a statistically significant change in trends, and each of these trends is described by an AAPC [7]. The crude incidence rate (CIR) for each year and the age-standardized incidence rate (ASR) was calculated by defining the 2000 mid-year population (the population count as of July 1, 2000) as the standard population. From 1998 to 2018, each incidence ratio (IRR) was calculated according to the one-year increase through Poisson regression, and the 95% CI and P-value were calculated. The CIRs and ASRs were rounded to six decimal places. Poisson regression was performed by converting the number of cases per 10 million people into an integer. Poisson regression analyses were performed using SPSS (version 27.0, IBM Corp., Armonk, NY, USA), and the significance level was set at $P<0.05$.

RESULTS

Non-Hodgkin lymphoma

The number of newly diagnosed NHL cases increased by 148.0%, from 2,103 in 1999 to 5,216 in 2018. The AAPC in incidence cases during this period was 5.16%, and the trend was statistically significant. Within a one-year increase, the IRR increased significantly to 1.052 (95% CI, 1.051–1.054; $P<0.001$). The CIR per million population increased by 128.0% from 44.59 in 1999 to 101.67 in 2018. Within a one-year increase, the IRR increased significantly to 1.047 (95% CI, 1.044–1.051; $P<0.001$). The ASR per million population increased by 47.1% from 45.48 in 1999 to 66.88 in 2018. Within a one-year increase, the IRR increased significantly to 1.023 (95% CI, 1.019–1.026; $P<0.001$). The AAPC in the ASR during this period was 2.26%, and the trend was statistically significant ($P<0.05$) (Table 2, Fig. 1).

Leukemia

The number of newly diagnosed leukemia cases increased by 64.5%, from 2,124 in 1999 to 3,494 in 2018. The AAPC in incidence cases during this period was 2.89%, and the trend was statistically significant. Within a one-year increase,

Table 3. The incidence case number of leukemia and trend in crude incidence rates and age-standardized incidence rates per million population in the Republic of Korea from 1999 to 2018.

Years	N of cases	CIR	ASRa	ASRb					
	Men	Women	Total	AAPC (%)	AAPC (%)	CIR	ASRa	ASRb	
1999	1,188	936	2,124	2.89b	45.03490	45.45859	0.94b	1.009b	
2000	1,105	901	2,006		42.20127	42.20127			
2001	1,210	998	2,208		46.11813	45.74454			
2002	1,333	987	2,320		48.20705	47.29788			
2003	1,247	1,034	2,281		47.21748	45.74993			
2004	1,321	1,051	2,372		48.92203	46.79217			
2005	1,332	1,015	2,347		48.20981	45.83396			
2006	1,342	1,102	2,444		49.99281	47.05533			
2007	1,388	1,090	2,478		50.43725	46.91184			
2008	1,455	1,145	2,600		52.62663	48.27268			
2009	1,504	1,212	2,716		54.69548	48.90856			
2010	1,572	1,186	2,758		55.29291	48.55470			
2011	1,618	1,283	2,901		57.89093	50.27748			
2012	1,621	1,246	2,867		56.94670	48.31113			
2013	1,754	1,317	3,071		60.74097	50.21212			
2014	1,785	1,324	3,109		61.24520	50.30621			
2015	1,855	1,433	3,288		64.53168	52.86386			
2016	1,995	1,438	3,433		67.16495	54.19071			
2017	1,934	1,454	3,388		66.13222	51.23865			
2018	2,037	1,457	3,494		68.10799	52.44745			

aCalculated by defining the 2000 mid-year Korean population (July 1, 2000) as the standard population. bStatistically significant trend ($P<0.05$).

Abbreviations: AAPC, average annual percent change; ASR, age-standardized incidence rate; CIR, crude incidence rate; IRR, incidence rate ratio.
the IRR increased significantly to 1.029 (95% CI, 1.028–1.031; \(P<0.001\)). The CIR per million population increased by 51.3% from 45.03 in 1999 to 68.11 in 2018. Within a one-year increase, the IRR increased significantly to 1.025 (95% CI, 1.021–1.028; \(P<0.001\)). The ASR per million population increased by 15.4% from 45.46 in 1999 to 52.45 in 2018. Within a one-year increase, the IRR increased significantly to 1.009 (95% CI, 1.006–1.013; \(P<0.001\)). The AAPC in the ASR during this period was 0.94%, and the trend was statistically significant (\(P<0.05\)) (Table 3, Fig. 2).

Fig. 2. Annual incidence of leukemia in the Republic of Korea. Number of leukemia cases (A). Crude and age-standardized incidence rate of leukemia per million using the 2000 Korean standard population (B). a)Comparing to 1999 and 2018. b)Average annual percent change by Joinpoint regression analysis. c)Incidence rate ratio per year from 1999 to 2018 as calculated by Poisson regression.

Table 4. The incidence case number of myeloid leukemia and trend in crude incidence rates and age-standardized incidence rates per million population in the Republic of Korea from 1999 to 2018.

Years	N of cases	CIR	ASR\(^{a}\)	ASR\(^{b}\)				
	Men	Women	Total	AAPC (%)	25.09991	26.21218	1.44\(^{b}\)	1.014\(^{b}\)
1999	696	526	1,222	3.81\(^{b}\)	24.65597	24.65597		
2000	630	542	1,172	4.16\(^{b}\)	27.71683	27.39936		
2001	720	607	1,327	3.90\(^{b}\)	28.96579	28.20531		
2002	806	588	1,394	3.94\(^{b}\)	31.16408	29.40229		
2003	768	641	1,409	4.00\(^{b}\)	30.17478	28.04162		
2004	853	658	1,511	4.20\(^{b}\)	31.01027	28.33077		
2005	812	657	1,469	4.48\(^{b}\)	31.52837	28.48103		
2006	839	677	1,516	4.52\(^{b}\)	34.20731	30.20098		
2007	873	676	1,549	4.64\(^{b}\)	34.93986	30.13031		
2008	947	743	1,690	4.90\(^{b}\)	36.04665	30.26675		
2009	980	755	1,735	5.30\(^{b}\)	38.41435	32.02027		
2010	1,050	748	1,798	5.57\(^{b}\)	36.86662	29.73230		
2011	1,084	841	1,925	6.00\(^{b}\)	41.87191	32.97980		
2012	1,060	787	1,847	6.24\(^{b}\)	41.23069	32.13509		
2013	1,238	879	2,117	7.00\(^{b}\)	44.13983	34.03683		
2014	1,231	862	2,093	7.10\(^{b}\)	44.95923	33.80285		
2015	1,285	964	2,249	7.60\(^{b}\)	45.22678	32.37206		
2016	1,384	914	2,298	8.10\(^{b}\)	47.27014	34.03950		
2017	1,345	972	2,317	8.20\(^{b}\)	45.03			
2018	1,435	990	2,425	8.30\(^{b}\)	52.45			

*Calculated by defining the 2000 mid-year Korean population (July 1, 2000) as the standard population. \(^b\)Statistically significant trend (\(P<0.05\)).

Abbreviations: AAPC, average annual percent change; ASR, age-standardized incidence rate; CIR, crude incidence rate; IRR, incidence rate ratio.
Myeloid leukemia

The number of newly diagnosed myeloid leukemia cases increased by 98.4%, from 1,222 in 1999 to 2,425 in 2018. The AAPC in incidence cases during this period was 3.81%, and the trend was statistically significant. Within a one-year increase, the IRR increased significantly to 1.038 (95% CI, 1.036–1.040; P < 0.001). The CIR per million population increased by 82.4% from 25.91 in 1999 to 47.27 in 2018. Within a one-year increase, the IRR increased significantly to 1.034 (95% CI, 1.029–1.038; P < 0.001). The ASR per million pop-

![Fig. 3. Annual incidence of myeloid leukemia in the Republic of Korea. Number of myeloid leukemia cases (A). Crude and age-standardized incidence rate of myeloid leukemia per million using the 2000 Korean standard population (B). a)Comparing 1999 and 2018. b)Average annual percent change by Joinpoint regression analysis. c)Incidence rate ratio per year from 1999 to 2018 as calculated by Poisson regression. AAbbreviations: AAPC, average annual percent change; ASR, age-standardized incidence rate; CI, confidence interval; CIR, crude incidence rate; IRR, incidence rate ratio.]

Years	Men	Women	Total	AAPC (%)	CIR	ASR^a	ASR^b
						AAPC (%)	IRR (per yr)
1999	257	212	469	7.33^b	9.94415	10.22460	3.05^b
2000	275	217	492	10.35046	10.35046		
2001	313	251	564	11.78017	11.46171		
2002	328	239	567	11.78164	11.07893		
2003	331	285	616	12.75141	11.55148		
2004	362	315	677	13.96299	12.21290		
2005	407	387	794	16.30958	13.71200		
2006	386	384	770	15.75060	12.94935		
2007	459	430	889	18.09472	14.16175		
2008	492	425	917	18.56101	14.26485		
2009	575	462	1,037	20.88336	15.34012		
2010	569	510	1,079	21.63200	15.12175		
2011	610	469	1,079	21.53199	14.62146		
2012	706	589	1,295	25.72235	17.05821		
2013	704	646	1,350	26.70150	16.71056		
2014	711	649	1,350	27.97304	16.87157		
2015	772	704	1,476	28.96860	16.91477		
2016	845	708	1,553	30.38368	17.22267		
2017	864	779	1,643	32.07601	17.32490		
2018	927	792	1,719	33.50820	17.51734		

^aCalculated by defining the 2000 mid-year Korean population (July 1, 2000) as the standard population. ^bStatistically significant trend (P < 0.05). Abbreviations: AAPC, average annual percent change; ASR, age-standardized incidence rate; CIR, crude incidence rate; IRR, incidence rate ratio.
Incidence of hematologic malignancies increased by 29.9% from 26.21 in 1999 to 34.04 in 2018. Within a one-year increase, the IRR increased significantly to 1.014 (95% CI, 1.010–1.019; P < 0.001). The AAPC in the ASR during this period was 1.44%, and the trend was statistically significant (P < 0.05) (Table 4, Fig. 3).

Multiple myeloma

The number of newly diagnosed MM cases increased by 266.5% from 469 in 1999 to 1,719 in 2018. The AAPC in incidence cases during this period was 7.33%, and the trend was statistically significant. Within a one-year increase, the IRR increased significantly to 1.071 (95% CI, 1.069–1.074; Fig. 4).

Table 6. The incidence case number of myeloproliferative disorders and trend in crude incidence rates and age-standardized incidence rates per million population in the Republic of Korea from 1999 to 2018.

Years	Men	Women	Total	CIR	ASR\(^a\)	ASR\(^b\)
1999	55	55	110	13.28\(^d\)	2.33232	2.38291
2000	65	75	140	2.94525	2.94525	2.94525
2001	86	92	178	3.71766	3.64427	3.64427
2002	135	116	251	5.21550	4.96014	4.96014
2003	200	154	354	7.32792	6.76541	6.76541
2004	194	169	363	7.48680	6.68212	6.68212
2005	283	242	525	10.78404	9.50474	9.50474
2006	282	245	527	10.7796	9.23111	9.23111
2007	365	287	652	13.27082	11.12117	11.12117
2008	370	327	697	14.10798	11.45405	11.45405
2009	409	402	811	16.33212	12.78754	12.78754
2010	431	401	832	16.68010	12.76728	12.76728
2011	506	418	924	18.43892	13.80286	13.80286
2012	477	444	921	18.29366	13.27581	13.27581
2013	509	456	965	19.08663	13.55994	13.55994
2014	595	481	1,076	21.19647	14.81846	14.81846
2015	621	511	1,132	22.21711	15.05132	15.05132
2016	640	620	1,260	24.65128	16.13719	16.13719
2017	723	584	1,307	25.51204	16.36598	16.36598
2018	809	739	1,548	30.17492	19.00324	19.00324

\(^a\)Calculated by defining the 2000 mid-year Korean population (July 1, 2000) as the standard population. \(^b\)Statistically significant trend (P < 0.05). Abbreviations: AAPC, average annual percent change; ASR, age-standardized incidence rate; CIR, crude incidence rate; IRR, incidence rate ratio.
The CIR per million population increased by 237.1% from 9.94 in 1999 to 33.51 in 2018. Within a one-year increase, the IRR increased significantly to 1.067 (95% CI, 1.023–1.036; \(P < 0.001 \)). The ASR per million population increased by 71.4% from 10.22 in 1999 to 17.52 in 2018. Within a one-year increase, the IRR increased significantly to 1.030 (95% CI, 1.023–1.036; \(P < 0.001 \)). The AAPC in the ASR during this period was 3.05%, and the trend was statistically significant (\(P < 0.05 \)) (Table 5, Fig. 4).

Myeloproliferative disorders

The number of newly diagnosed myeloproliferative dis-

Table 7

The incidence case number of myelodysplastic syndrome and trend in crude incidence rates and age-standardized incidence rates per million population in the Republic of Korea from 1999 to 2018.

Years	N of cases	CIR	ASRa	ASRb			
	Men	Women	Total	AAPC (%)		AAPC (%)	IRR (per yr)
-------	-----	-------	-------	---------	-------	---------	--------------
1999	88	51	139	11.49	2.94720	2.99630	7.59
2000	90	77	167	3.51	3.51327	3.51327	7.59
2001	129	91	220	4.59	4.59510	4.48965	7.59
2002	165	97	262	5.44	5.44407	5.22327	7.59
2003	234	160	394	8.16	8.15593	7.54460	7.59
2004	253	165	418	8.62	8.62117	7.76107	7.59
2005	280	190	470	9.65	9.65429	8.59289	7.59
2006	299	190	489	10.00	10.00265	8.63391	7.59
2007	314	250	564	11.48	11.47967	9.47229	7.59
2008	377	268	645	13.06	13.05545	10.52395	7.59
2009	446	280	726	14.62	14.62037	11.37083	7.59
2010	479	305	784	15.72	15.71778	11.62239	7.59
2011	486	390	876	17.48	17.48103	12.72050	7.59
2012	521	318	839	16.67	16.66490	11.46736	7.59
2013	543	396	939	18.57	18.57238	12.55258	7.59
2014	600	386	986	19.42	19.42354	12.77860	7.59
2015	626	407	1,033	20.27	20.27410	13.04959	7.59
2016	742	428	1,170	22.90	22.89047	13.84107	7.59
2017	707	451	1,158	22.60	22.60363	13.39313	7.59
2018	828	537	1,365	26.61	26.60773	15.30694	7.59

aCalculated by defining the 2000 mid-year Korean population (July 1, 2000) as the standard population. bStatistically significant trend (\(P < 0.05 \)).

Abbreviations: AAPC, average annual percent change; ASR, age-standardized incidence rate; CIR, crude incidence rate; IRR, incidence rate ratio.
Incidence of hematologic malignancies

Fig. 6. Annual incidence of myelodysplastic syndrome in the Republic of Korea. Number of myelodysplastic syndrome cases (A). Crude and age-standardized incidence rate of myelodysplastic syndrome per million using the 2000 Korean standard population (B). a)Comparing 1999 and 2018. b)Average annual percent change by Joinpoint regression analysis. c)Incidence rate ratio per year from 1999 to 2018 as calculated by Poisson regression.

Abbreviations: AAPC, average annual percent change; ASR, age-standardized incidence rate; CIR, crude incidence rate; IRR, incidence rate ratio.

Table 8. The incidence case number of malignant immunoproliferative diseases and trend in crude incidence rates and age-standardized incidence rates per million population in the Republic of Korea from 1999 to 2018.

Years	N of cases	CIR	ASR^a	ASR^b				
	Men	Women	Total	AAPC (%)	20.1427	2.04994	AAPC (%)	IRR (per yr)
1999	45	50	95	14.76^b	2.01427	2.04994	11.82^b	1.090^b
2000	39	39	78	1.64093	1.64093	1.60931	1.09031	1.09031
2001	49	30	79	2.06780	2.06780	2.06780	2.06780	2.06780
2002	98	96	194	4.03111	3.87658	3.87658	3.87658	3.87658
2003	165	171	336	6.95531	6.50034	6.50034	6.50034	6.50034
2004	175	174	349	7.19806	6.56316	6.56316	6.56316	6.56316
2005	198	252	450	9.24347	8.26204	8.26204	8.26204	8.26204
2006	212	272	484	9.90038	8.66932	8.66932	8.66932	8.66932
2007	227	250	477	9.70887	8.37596	8.37596	8.37596	8.37596
2008	251	327	578	11.69930	9.91273	9.91273	9.91273	9.91273
2009	348	386	734	14.78147	12.09930	12.09930	12.09930	12.09930
2010	315	416	731	14.65523	11.92735	11.92735	11.92735	11.92735
2011	348	480	828	16.52316	12.85307	12.85307	12.85307	12.85307
2012	413	471	884	17.55573	13.52600	13.52600	13.52600	13.52600
2013	412	509	921	18.21636	13.44186	13.44186	13.44186	13.44186
2014	437	507	944	18.59616	13.78266	13.78266	13.78266	13.78266
2015	459	492	951	18.66473	13.50497	13.50497	13.50497	13.50497
2016	592	603	1,195	23.37958	16.40845	16.40845	16.40845	16.40845
2017	574	609	1,183	23.09162	15.98123	15.98123	15.98123	15.98123
2018	601	710	1,311	25.55512	17.46422	17.46422	17.46422	17.46422

^aCalculated by defining the 2000 mid-year Korean population (July 1, 2000) as the standard population. ^bStatistically significant trend ($P<0.05$).

Abbreviations: AAPC, average annual percent change; ASR, age-standardized incidence rate; CIR, crude incidence rate; IRR, incidence rate ratio.
period was 9.87%, and the trend was statistically significant ($P<0.05$) (Table 6, Fig. 5).

Myelodysplastic syndrome

The number of newly diagnosed myelodysplastic syndromes increased by 882.0% from 139 in 1999 to 1,365 in 2018. The AAPC in incidence cases during this period was 11.49%, and the trend was statistically significant. Within a one-year increase, the IRR increased significantly to 1.099 (95% CI, 1.095–1.102; $P<0.001$). The CIR per million population increased by 802.0% from 2.95 in 1999 to 26.61 in 2018. Within a one-year increase, the IRR increased sig-

Table 9. The incidence case number of lymphoid leukemia and trend in crude incidence rates and age-standardized incidence rates per million population in the Republic of Korea from 1999 to 2018.

Years	N of cases	CIR	ASR^a	ASR^b			
	Men	Women	Total	AAPC (%)		AAPC (%)	IRR (per yr)
1999	316	234	550	2.77^b	11.66158	11.61904	2.21^b
2000	280	216	496	10.43461	10.43461		
2001	316	228	544	11.36244	11.42331		
2002	335	222	557	11.57385	11.76349		
2003	303	248	551	11.40589	11.63373		
2004	301	232	533	10.99302	11.23614		
2005	328	226	554	11.37973	11.87085		
2006	331	272	603	12.33456	12.82142		
2007	344	260	604	12.29383	12.87728		
2008	349	260	609	12.32678	12.97963		
2009	373	289	662	13.33152	13.75206		
2010	361	281	642	12.87094	13.44971		
2011	363	305	668	13.30028	13.76827		
2012	388	312	700	13.90397	14.16193		
2013	371	314	685	13.54854	13.57623		
2014	434	326	760	14.97149	15.01366		
2015	456	359	815	15.99553	16.01589		
2016	481	383	864	16.90373	16.92706		
2017	463	365	828	16.16218	16.11329		
2018	465	352	817	15.92565	15.53953		

^aCalculated by defining the 2000 mid-year Korean population (July 1, 2000) as the standard population. ^bStatistically significant trend ($P<0.05$).

Abbreviations: AAPC, average annual percent change; ASR, age-standardized incidence rate; CIR, crude incidence rate; IRR, incidence rate ratio.
Incidence of hematologic malignancies

Fig. 8. Annual incidence of lymphoid leukemia in the Republic of Korea. Number of lymphoid leukemia cases (A). Crude and age-standardized incidence rate of lymphoid leukemia per million using the 2000 Korean standard population (B). a) Comparing 1999 and 2018. b) Average annual percent change by Joinpoint regression analysis. c) Incidence rate ratio per year from 1999 to 2018 as calculated by Poisson regression. Abbreviations: AAPC, average annual percent change; ASR, age-standardized incidence rate; CI, confidence interval; CIR, crude incidence rate; IRR, incidence rate ratio.

In the ROK, hematologic malignancies have a relatively low proportion of all cancers. None of the hematologic malignancies were among the top 10 types of cancers with the highest incidence in the ROK in 2018. Non-Hodgkin’s lymphoma (5,216 cases), leukemia (3,494 cases), and multiple myeloma (1,719 cases) were ranked 11th, 14th, and 20th in the ROK in 2018, respectively [5]. The number of deaths in the ROK from non-Hodgkin lymphoma, leukemia, and multiple myeloma was 2,015, 1,911, and 961, respectively, in 2019, ranking 9th, 10th, and 16th in total cancer deaths, all in respective order [1]. Since the Annual Report of Cancer
Table 10. The incidence case number of Hodgkin lymphoma, trend in crude incidence rates, and age-standardized incidence rates per million population in the Republic of Korea from 1999 to 2018.

Years	N of cases	CIR	ASR\(^a\)	ASR\(^b\)		
	Men	Women	Total	AAPC (%)	AAPC (%)	IRR (per yr)
1999	86	37	123	4.96\(^b\)	2.60795	2.63335
2000	90	44	134	5.10903	2.81903	2.81903
2001	100	48	148	3.09125	3.07055	3.07055
2002	83	62	145	3.01294	2.98565	2.98565
2003	112	46	158	3.27065	3.22256	3.22256
2004	145	59	204	4.20746	4.14143	4.14143
2005	105	53	158	3.24548	3.09513	3.09513
2006	109	68	177	3.62059	3.47111	3.47111
2007	131	74	205	4.17257	3.92396	3.92396
2008	131	88	219	4.43278	4.23004	4.23004
2009	146	74	220	4.43041	4.16283	4.16283
2010	171	77	248	4.97195	4.57967	4.57967
2011	168	98	266	5.30817	5.12413	5.12413
2012	179	90	269	5.34310	5.02603	5.02603
2013	171	93	264	5.22163	4.82687	4.82687
2014	170	111	281	5.53551	5.16737	5.16737
2015	174	98	272	5.33839	4.95872	4.95872
2016	205	110	315	6.16282	5.66606	5.66606
2017	172	117	289	5.64115	5.47652	5.47652
2018	181	118	299	5.82836	5.27499	5.27499

\(^a\)Calculated by defining the 2000 mid-year Korean population (July 1, 2000) as the standard population. \(^b\)Statistically significant trend (\(P<0.05\)).

Abbreviations: AAPC, average annual percent change; ASR, age-standardized incidence rate; CIR, crude incidence rate; IRR, incidence rate ratio.

Fig. 9. Annual incidence of Hodgkin lymphoma in the Republic of Korea. Number of Hodgkin lymphoma cases (A). Crude and age-standardized incidence rate of Hodgkin lymphoma per million using the 2000 Korean standard population (B). \(^a\)Comparing 1999 and 2018. \(^b\)Average annual percent change by Joinpoint regression analysis. \(^c\)Incidence rate ratio per year from 1999 to 2018 as calculated by Poisson regression.

Abbreviations: AAPC, average annual percent change; ASR, age-standardized incidence rate; CI, confidence interval; CIR, crude incidence rate; IRR, incidence rate ratio.

Statistics mainly describes the most common types of cancer, it is up to each researcher to analyze the statistical data of specific cancers. However, the incidence of hematologic malignancies has been increasing in the ROK. Thus, a more precise and periodic statistical analysis is needed [8]. All hematologic malignancies that were analyzed in this study showed a significant increase in the incidence. The order of increase in ASR over 20 years was as follows: malignant immunoproliferative diseases (AAPC=11.82%, IRR=1.090, \(P<0.05\)), myeloproliferative disorders (AAPC=9.87%, IRR=1.080,
Several previous studies on hematologic malignancies in the ROK have shown similar results as obtained in this study. In the analysis from 1999 to 2008, the incidence and the ASR of all hematologic malignancies showed an increasing trend. The latter increased from 10.2% to 13.7%, and the ASR was 3.9% [9]. Other studies from 1999 to 2012 on myeloid and lymphoid malignancies showed an increasing trend in CIR and overall ASR. The ASR for all myeloid malignancies increased from 3.31 in 1999 to 5.70 in 2012, with an AAPC of 5.4% [10]. In 2012, the ASR per 100,000 persons with Hodgkin’s lymphoma, mature B-cell neoplasm, mature T/natural killer (NK)-cell neoplasm, and precursor cell neoplasm were 0.46, 6.60, 0.95, and 1.50, respectively, and increased yearly from 1999 [11]. In a recent study from 2005 to 2015, the incidence and prevalence rates of hematological malignancies increased steadily. From 2005 to 2015, the number of new patients with hematologic malignancies showed an overall gradual increase, with an increase rate of up to 56.7% over 10 years [8]. A similar trend has been observed worldwide. In an analysis of the global burden of disease data from 1990 to 2017, the number of new cases increased [12]. The ASR for all hematologic malignancies increased, except for acute lymphocytic leukemia and chronic myeloid leukemia [13]. Han et al. also demonstrated decreased ASR of acute lymphocytic leukemia and chronic myeloid leukemia, but this was not statistically significant, which is similar to the results from previous global research [8, 12, 13]. In this study, the incidence of leukemia was relatively low compared to that of other hematologic malignancies. In addition, in most hematological malignancies, the incidence was higher in males, which is also similar to the results of previous studies [8-15].

There are several possible factors contributing to the increasing trend in the incidence of hematologic malignancies. Age is the most important risk factor for cancer, and the overall incidence of cancer increases with an aging population [16]. Previous studies have also shown that the incidence of hematologic malignancies increases with age [9, 17]. However, it is difficult to explain how the incidence of hematologic malignancies increases because of the aging population alone. In addition to the increase in CIR, ASR also tends to increase significantly. In addition to the aging population, the following possibilities can be considered as possible causes for the increase in hematologic malignancies. First, there is a possibility of a detection bias. Improved access to healthcare facilities and the use of new screening and diagnostic technologies may be another cause [18, 19]. Exposure to diagnostic or therapeutic ionizing radiation, such as X-rays, computed tomography (CT), gamma rays, radio-pharmaceuticals, and charged particles can also increase the risk of hematologic malignancies [20, 21]. One study found that the risk of radiation-induced malignancies from CT radiation may increase as CT-based screening becomes more widely used at the population level [22]. The increased exposure to extremely low-frequency electric and magnetic fields (ELF-EMFs) may be another cause [23, 24]. Over the last half century, the use of chemicals has continuously increased, and new chemicals have been developed. The possibility that such exposure to diverse chemical pollution in the workplace or residence may have been a cause of hematologic malignancies cannot be ruled out [25, 26]. Efforts are needed to determine new environmental cancer risk factors in the future.

This study had the following limitations. First, this study used the 61 sets of cancer incidence data provided by the KOSIS. Therefore, hematologic malignancies cannot be analyzed in greater detail. In the future, it will be necessary to analyze hematologic malignancies in a more subdivided manner. Clinically important diseases such as acute myeloid leukemia, acute lymphoid leukemia, chronic myeloid leukemia, chronic lymphoid leukemia, T-cell lymphoma, and B-cell lymphoma require additional detailed analysis. Second, the analysis results of this study may be slightly different from the annual report of cancer statistics. This is due to differences in statistical analysis methods, statistics package programs, and/or standard population settings (Segi’s world standard population or Korean standard population) used, along with differences in the handling of decimal places. It would be better to interpret the current state of occurrence based on trends rather than detailed numbers.

An aging society is when the proportion of the population aged ≥65 years comprises 7% of the total population, an ‘aged society’ when it is over 14%, and a ‘post-aged society’ when it is over 20%. The ROK entered an aging society in 2000, an aged society in 2018, and is expected to enter a post-aged society by 2025. In 2050, the proportion of the population aged ≥65 years is expected to be 39.8% [27]. It is highly likely that the incidence of hematologic malignancies will continue to increase with the aging population. In addition to social and medical preparations for the possibility of this increase, more research should be conducted in the future. More well-designed studies are needed to elucidate the causes of this increase.

ACKNOWLEDGMENTS

The authors thank all the Gwangju Jeonnam Regional Cancer Center members at Chonnam National University Hwasun Hospital. The authors also thank the Regional Cancer Registries in Korea and the Korea Central Cancer Registry. We thank the researchers for their efforts in collecting and managing data in each region.
Authors’ Disclosures of Potential Conflicts of Interest

No potential conflicts of interest relevant to this article were reported.

REFERENCES

1. Statistics Korea. Cause of death statistics in 2019. Daejeon, Korea: Statistics Korea, 2020. (Accessed August 31, 2021, at http://kostat.go.kr/portal/eng/pressReleases/8/10/index.board).
2. Hong S, Won YJ, Lee JJ, et al. Cancer statistics in Korea: incidence, mortality, survival, and prevalence in 2018. Cancer Res Treat 2021;53:301-5.
3. Korean Statistical Information System (KOSIS). Statistical database. Daejeon, Korea: Statistics Korea, 2021. (Accessed August 31, 2021, at https://kosis.kr/eng).
4. Fritz A, Percy C, Jack A, et al. International classification of diseases for oncology. Third ed. Geneva, Switzerland: World Health Organization, 2013. (Accessed August 31, 2021, at https://apps.who.int/iris/bitstream/handle/10665/96612/9789241548496_eng.pdf).
5. National Cancer Center (NCC). Annual report of cancer statistics in Korea in 2018. Goyang-si, Korea: NCC, 2021. (Accessed August 31, 2021, at https://ncce.re.kr/cancerStatsView.ncc?bbsnum=558&searchKey=total&searchValue=&pageNum=1).
6. US National Cancer Institute (NCI). Joinpoint trend analysis software. Bethesda, MD: US NCI, 2021. (Accessed August 31, 2021, at https://surveillance.cancer.gov/joinpoint).
7. Qiu D, Katanoa K, Marugame T, Sobue T. A Joinpoint regression analysis of long-term trends in cancer mortality in Japan (1958-2004). Int J Cancer 2009;124:443-8.
8. Han Y, Kim YJ, Kim MJ, et al. Gradual increase in hematologic malignancy in Korea from 2005 to 2015 based on the National Health Insurance Service Data. Lab Med Online 2020;10:144-51.
9. Park HJ, Park EH, Jung KW, et al. Statistics of hematologic malignancies in Korea from 2005 to 2015 based on the National Health Insurance Service Data. Lab Med Online 2020;10:144-51.
10. Hong S, Won YJ, Lee JJ, et al. Cancer statistics in Korea: incidence, mortality, survival, and prevalence in 2018. Cancer Res Treat 2021;53:301-5.
11. Lee KH, Lee S, Park JH, et al. Risk of hematologic malignant neoplasms from abdominopelvic computed tomographic radiation in patients who underwent appendectomy. JAMA Surg 2021;156:343-51.
12. Molenaar RJ, Sidana S, Radivoyevitch T, et al. Risk of hematologic malignancies after radioiodine treatment for well-differentiated thyroid cancer. J Clin Oncol 2018;36:1831-9.
13. Albert JM. Radiation risk from CT: implications for cancer screening. AJR Am J Roentgenol 2013;201:W81-7.
14. Teepen JC, van Dijck JA. Impact of high electromagnetic field levels on childhood leukemia incidence. Int J Cancer 2012;131:769-78.
15. International Agency for Research on Cancer (IARC) Working Group on the Evaluation of Carcinogenic Risks to Humans. Non-ionizing radiation, part 1: static and extremely low-frequency (ELF) electric and magnetic fields. Vol. 80. Lyon, France: IARC Press, 2002:1-395.
16. Nkanga MSN, Longo-Mbenza B, Adeniyi OV, et al. Ageing, exposure to pollution, and interactions between climate change and local seasons as oxidant conditions predicting incident hematologic malignancy at KINSHASA University clinics, Democratic Republic of CONGO (DRC). BMC Cancer 2017;17:559.
17. Statistics Korea. Cause of death statistics in 2019. Daejeon, Korea: Statistics Korea, 2021. (Accessed August 31, 2021, at http://kostat.go.kr/portal/eng/pressReleases/8/7/index.board).

Blood Res 2021;56:301-314.