Collinear Drop

Yang-Ting Chien

LHC Theory Initiative Fellow, MIT Center for Theoretical Physics

January 30, 2019
UCLA 2019 Santa Fe Jets and Heavy Flavor Workshop

In collaboration with Iain Stewart, in preparation
Precision jet substructure studies

Relate precise jet modifications to medium properties

Guiding principles in the "......":
- Design observables sensitive to physics at certain energy scale
- Exploit all types (different quantum numbers) of probes: quark jet, gluon jet, heavy flavor, etc
- Use "features" in jet substructure distribution
- Need to mitigate background contaminations
Collinear Drop: veto energetic, collinear particles

- Understanding soft QCD is the goal
- Monte Carlo accuracy limited by soft radiation and hadronization modeling
- Heavy ion medium scale is low
- Want to directly probe soft physics by disentangling hard components of jets
- Specific examples:
 1. multiple soft drop
 2. telescoping deconstruction
 3. flattened angularity

(i) Two soft-drop settings \(z_{\text{cut}1} < z_{\text{cut}2} \), \(\beta_1 \geq \beta_2 \)

(ii) Telescoping deconstruction
(with Raghav, 1803.03589)

(iii) Flattened angularity

\[
\tau_\omega = \sum_{i \in \text{jet}} z_i \omega(\theta_i)
\]

Suppress collinear and wide-angle radiation

\[
\omega(\theta) \to 0, \quad \theta \to 0, R
\]
Outline

- Soft drop and collinear drop
- Analytic and Monte Carlo studies
- Conclusions
Soft Drop

▶ Tree-based procedure to drop soft radiation (Larkoski, Marzoni, Soyez, Thaler, 1402.2657)

▶ Recluster a jet using C/A algorithm: angular ordered tree

▶ For each branching, consider the p_T of each branch and the angle θ between branches

▶ Soft drop condition: drop the soft branch if $z < z_{cut} \theta^\beta$, where $z = \frac{\min(p_{T,1}, p_{T,2})}{p_{T,1} + p_{T,2}}$

▶ (z_{cut}, β) parameterize the operation on jet
Soft Drop

Tree-based procedure to drop soft radiation (Larkoski, Marzoni, Soyez, Thaler, 1402.2657)

- Recluster a jet using \(C/A \) algorithm: angular ordered tree
- For each branching, consider the \(p_T \) of each branch and the angle \(\theta \) between branches
- Soft drop condition: drop the soft branch if \(z < z_{cut} \theta^\beta \), where \(z = \frac{\min(p_{T,1},p_{T,2})}{p_{T,1}+p_{T,2}} \)
- Extra cut selection can be imposed (e.g. CMS \(\Delta R_{12} \) cut, 1805.05145)
Collinear Drop using soft drop + anti soft drop

- $\Delta m^2 = m_{SD1}^2 - m_{SD2}^2$ probes the mass of the soft radiation within the "ring".
- Phase space constraints on the kinematics of soft emissions,

$$z \theta^2 \approx \frac{\Delta m^2}{E_J^2} , \quad z_{cut 1} \left(\frac{\theta}{R} \right)^{\beta_1} \lesssim z \lesssim z_{cut 2} \left(\frac{\theta}{R} \right)^{\beta_2}$$

- Two collinear-soft modes emerge from the phase space boundaries

$$p_{cs_i} \sim E_{cs_i} \left(1, \Theta_{cs_i}^2, \Theta_{cs_i} \right), \quad E_{cs_i} \ll E_J \text{ and } \Theta_{cs_2} \ll 1$$
Two examples:

- fixed β and varying z_{cut}
- fixed z_{cut} and varying β (ATLAS 13 TeV data: $z_{\text{cut}} = 0.1$, $\beta = 0, 1, 2$. 1711.08341)

Identify relevant soft-collinear effective theory modes by corners of phase space boundaries
Factorization and resummation of Δm^2

- Factorization of Δm^2

\[\frac{d\sigma}{d\Delta m^2} = \sum_{i=q,g} N_i(\mu) J_{\text{un},i}^{\text{SD}}(z_{\text{cut}2}, \beta_2, \mu) S_i^{\text{CD}}(\Delta m^2, z_{\text{cut}i}, \beta_i, \mu) \]

- If two soft-drop conditions are hierarchically separated, collinear-soft sector can be further factorized

\[S_i^{\text{CD}}(\Delta m^2, \mu) = \int dk_i S_{C_2,i}(k_2, \mu) S_{C_1,i}(k_1, \mu) \delta(\Delta m^2 - 2E_J(k_1 + k_2)) \]

- Factorization expression allows us to resum Δm^2 using renormalization group techniques
Validation with soft drop: turning off collinear drop

- Grooming-ungrooming transition happens at $\log_{10}(R^2 z_{\text{cut}})$, treated by EFT merging
- Soft drop reduces nonperturbative effects
- Band corresponds to next-to-leading log (NLL) SCET calculation with uncertainty estimated by scale variation. Previous work: Larkoski et al ’16, Marzani et al ’17, Kang et al ’18
- Analytic calculation agrees with Pythia partonic simulation: collinear physics dominates
Validation with soft drop: turning off collinear drop

- Grooming-ungrooming transition happens at $\log_{10}(R_2z_{\text{cut}})$, treated by EFT merging
- Soft drop reduces nonperturbative effects
- Band corresponds to next-to-leading log (NLL) SCET calculation with uncertainty estimated by scale variation. Previous work: Larkoski et al ’16, Marzani et al ’17, Kang et al ’18
- Analytic calculation agrees with Pythia partonic simulation: collinear physics dominates
Validation with soft drop: turning off collinear drop

- Grooming-ungrooming transition happens at $\log_{10}(R^2z_{\text{cut}})$, treated by EFT merging
- Soft drop reduces nonperturbative effects
- Band corresponds to next-to-leading log (NLL) SCET calculation with uncertainty estimated by scale variation. Previous work: Larkoski et al ’16, Marzani et al ’17, Kang et al ’18
- Analytic calculation agrees with Pythia partonic simulation: collinear physics dominates
Collinear Drop results

- New and different observables
- \(\Delta m^2 = m_{SD1}^2 - m_{SD2}^2 \) labeled by \((z_{cut_1}, \beta_1) - (z_{cut_2}, \beta_2)\)
- Increase sensitivity to soft radiation and nonperturbative hadronization
- New hadronization features in Pythia simulation appear
- Band corresponds to NLL SCET calculation with uncertainty estimation

13 TeV, \(R=0.8, p_T: (600,700) \text{ GeV} \)

Pythia 8, \(\Delta m^2 = m_{SD1}^2 - m_{SD2}^2 \)

Band corresponds to NLL SCET calculation with uncertainty estimation
New and different observables

\[\Delta m^2 = m^2_{SD1} - m^2_{SD2} \]

labeled by \((z_{cut1}, \beta_1) - (z_{cut2}, \beta_2)\)

Increase sensitivity to soft radiation and nonperturbative hadronization

New hadronization features in Pythia simulation appear

Band corresponds to NLL SCET calculation with uncertainty estimation
Quark gluon discrimination

- Decompose total leading dijet into quark jet and gluon jet components
- Enhance the difference between quark jets and gluon jets: promising observable for improving quark-gluon discrimination
- Nonperturbative effects enhance the features of quark and gluon peaks in mixed jet samples
Collinear-drop in heavy ion (with Raghav, 1803.03589)

Significant modification of collinear drop observable from pp to AA: potential for extracting medium properties

In JEWEL-simulated AA collisions, quark/gluon jet difference is washed out: enhancing the universal components within jets
Conclusions

- Collinear-drop observables allows one to directly probe soft physics and color flows in jets
 - for probing soft radiation contributions
 - for testing Monte Carlo simulations
 - for tagging hard probes (color-singlet jet isolation, Chien et al 1711.11041)
 - for determining hadronization corrections
 - for studying perturbative-nonperturbative transition

- Factorization expression of a specific collinear drop observable is derived in SCET which allows us to resum logarithmically-enhanced contributions

- Stay tuned (a separate paper) for detailed studies of hadronization and applications to heavy ion using collinear drop observables
 - Include Deductor, Sherpa, ...
 - Understanding different nonperturbative effects in different hard probes