Measurement of wind field data in Southeast China

Li Lin a,*, Kai Chen b, Dandan Xia c, Huafeng Wang a, Haitao Hu a, Fuqiang He a

a Xiamen University of Technology, China
b Fujian Jiadesign Co. LTD. China
c University of Regina, Canada

ARTICLE INFO

Article history:
Received 10 September 2018
Received in revised form
21 September 2018
Accepted 30 September 2018
Available online 2 October 2018

ABSTRACT

The data presented in this article are the wind measurements acquired from a tower in Southeast China during typhoon Nesat (1709#) and typhoon Haitang (1710#). Three 3D ultrasonic anemometers Wind Master Pro were utilized to obtain 3D wind data. The anemometer works well with wind speed range of 0–65 m/s and wind angle range of 0–360°. Three direction wind speeds and wind angles were recorded per every 0.1 s. The present research analyzed wind characteristics based on recorded data. In this article, the detailed test set-up and data pre-processing methodology for the wind characteristics analysis are provided.

© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Specifications table

Subject area	Civil Engineering
More specific subject area	Wind engineering, aerodynamics,
Type of data	Table, graph, figure
How data was acquired	3D ultrasonic anemometer Wind Master Pro, collection system CR3000

DOI of original article: https://doi.org/10.1016/j.jweia.2018.09.003
* Corresponding author at: Xiamen University of technology, China.
E-mail address: 201110904@xmut.edu.cn (L. Lin).

https://doi.org/10.1016/j.dib.2018.09.082
2352-3409 © 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Data format: Filtered, analyzed

Experimental factors: 3-direction wind speeds are recorded during two typhoons. Both wind speed and wind angle are recorded.

Experimental features: Full scale measurements are performed; sensors are installed to record wind speed and wind angle; both seasonal and typhoon wind speed are obtained.

Data source location: Pingtan County, Fujian Province, China (119°52′23″E, 25°33′24″N)

Data accessibility: Data is with this article.

Value of the data

- The data can be used for the analysis of wind characteristics under typhoon climate in southeast China.
- The full-scale measurement data can be used by wind tunnel experimenters for validating or justifying their testing results.
- The wind speed data can be used by CFD model developers for validating their numerical results or determining the boundary conditions to be used.
- The wind characteristics analysis based on the recorded wind speed data may provide references for designing the wind-resistant structures to be used in southeast China.

1. Data

The data presented in this article is acquired from the wind field measurement station (as shown in Fig. 1) at Pingtan in Southeast coastal of China when Typhoon Nesat (1709#) and Typhoon Haitang.

![Fig. 1. Schematic of experiment set up.](image-url)
(1710#) attacked Pingtan during 30th and 31st of July in 2017. The recorded wind speed data during typhoon process is obtained. To ensure the data quality, the wind speed data were filtered by data control method. The filtered wind speed data during typhoon is available in the supplementary material. The filtered data was analyzed to obtain wind characteristics presented in paper “Analysis on the Wind Characteristics under Typhoon Climate at the Southeast coast of China.”

2. Experimental design

2.1. Experiment set up

The experiment station was set up in Pingtan, Fujian Province, China. The location of sensors installation can be seen in the Fig. 1. There 3D ultrasonic anemometers Wind Master Pro produced by Gill Company in UK, were installed for the record of wind speed data. The arrangement of sensors can be seen in the Table 1. The corresponding main parameters are: wind speed range: 0–65 m/s; resolution ratio: 0.01 m/s; wind direction range: 0–359°; resolution: 0.1° and frequency 10 Hz. The anemometers were installed on the tower by the designed steel holder as shown in Fig. 2. The data was collected and monitored by data acquisition system CR3000 as can be seen in the Fig. 3.

2.2. Method

Based on the above observation station, the wind speed data were obtained during typhoon Nesat and typhoon Haitang. However, the recorded wind speed data may include some bad or invalid data. The record data was filtered to ensure the validation by data controlled method (Fig. 4). The reliability of data was firstly diagnosed by comparing experienced wind speed observed by nearby meteorological station. A multiple truncation variance method [1–3] was used to determine the rationality of the original data. The smooth estimation of the original data was performed for each time series (30 s). By detecting the sudden change of the data, it was determined whether the value exceeded the range of the smooth estimation to ensure the validity of the data point. Data processing can be specified as follows:

Calculate the time series $du(t)$ as:

$$du(t) = u(t+2) - u(t)$$ \hspace{1cm} (1)

The mean value of $du(t)$ and du^2 are:

$$\overline{du} = \frac{1}{n-2} \sum_{i=1}^{n-2} du(t), \quad \overline{du^2} = \frac{1}{n-2} \sum_{i=1}^{n-2} du(t)^2$$ \hspace{1cm} (2)

The truncation variance can be expressed as follow:

$$\sigma = \overline{du^2} - \overline{du}^2$$ \hspace{1cm} (3)

The criterion to detect invalid data can be defined as:

$$\Delta = c \cdot \sigma^{0.5}$$ \hspace{1cm} (4)

In this research, $u(t)$ is the wind speed at tth time point, in the Eq. (4), $c = 4$, which means when the absolute value of the difference between the mean value of the sample point and the total sample

Anemometer type	Installation height (m)
141,703	10
151,906	26
160,210	32
Fig. 2. Photo of installation.

Fig. 3. Photo of collection system.
is greater than 4 times the standard deviation, the point will be diagnosed as unreasonable data and need to be modified. The modification process can be seen as in Fig. 4. Five-point interpolation method was applied as indicated in Eq. (5). The procedure of data quality control can be seen in the Fig. 4.

\[
u^{(3)} = \frac{1}{4} \left(u^{(2)}_{t+1} + 2u^{(2)}_{t+2} + u^{(2)}_{t+3} \right)
\]

(5)

where \(u^{(1)} \) is the median of the five data points \(u(t+i)(i = 0, 4) \), \(u^{(2)} \) is the median of \(u^{(1)}_{t+1} \) and \(u^{(1)}_{t+3} \).

Moreover, to avoid the noise during collection process, the data was low-pass filtered at 3 Hz. Filtered data are available in the supplementary material which can be used for the wind characteristics analysis.
Acknowledgements

This research is supported by National Natural Science Foundation of China (No. 51708472), Natural Science Foundation of Fujian Province (No. 2016J01270), and Wind Engineering Service Platform of Xiamen (No. 3502Z20161016). The authors would also like to gratefully acknowledge the supports from the China Postdoctoral Science Foundation (No. 2017M612550), and Scientific and Technological Innovation Platform of Fujian Province (No. 2014H2006), the Science-Technology Cooperation Foundation of Fujian-Taiwan on Architectural Industrial Modernization; Science and Technology Cooperation Projects of Xiamen (No. 3502Z20173038); General Highway Research Project of Fujian Province (201010), and Xiamen Construction Bureau Project (No. xjk2017–1-15 and No. xjk2017–1-1) are also greatly acknowledged.

Transparency document. Supporting information

Transparency data associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2018.09.082.

References

[1] L. Song, W. Chen, H. Huang, Reliability and representative diagnosing of observed wind speed data in wind-resistant design, Adv. Meteorol. Sci. Technol. 43 (2011) 35–39.
[2] G. Castelão, A flexible system for automatic quality control of oceanographic data, Physics (2015) 1–15.
[3] Y. Xu, S. Zhan, Field measurements of Di Wang Tower during Typhoon York, J. Wind Eng. Ind. Aerodyn. 89 (1) (2001) 73–93.