Geometry material: Profile of creative thinking process of prospective teachers with reflector learning style in proposing and solving problems

R D Ferdiani¹*, M Manuharawati² and S Khabibah²

¹ Universitas PGRI Kanjuruhan Malang, Malang, Indonesia
² Universitas Negeri Surabaya, Surabaya, Indonesia

*rositadf@unikama.ac.id

Abstract. The purpose of this study was to describe the creative thinking process of students in reflector learning style in proposing and solving review problems from the Wallas stage. This research is a qualitative research. The subjects of this study were students of semester VII of the Mathematics Education Study Program of the University of Kanjuruhan Malang with the following criteria: a) age between 18-25 years, b) of the same gender, c) At least getting a B grade for the course of School Mathematics Development Studies. Researchers in this study acted as the main instrument and the supporting instruments used were Honey and Mumford's Learning Style Questionnaire (LSQ) questionnaire, test sheets, and interview guides. Questionnaires will be given to research subjects, and subjects with reflector learning styles will be selected. Based on the researchers' observations, it can be concluded that a person with a reflector learning style will tend to prefer to observe, be careful in making decisions that will be seen at every stage of his creative thinking process.

1. Introduction
The development of science in the era of the industrial revolution 4.0 allows changes in all areas of life, one of which is in the field of education. As a result of these changes, 75% of human jobs will involve abilities; science, technology, engineering and mathematics, and the internet of things [1]. In order to face the challenges in the era of the industrial revolution 4.0, students must be prepared to have cognitive abilities and 4C skills (Critical Thingking and Problem Solving, Communication, Collaboration, Creating and Innovation). One of the cognitive abilities and 4C skills that students need to develop is creative thinking. If students leave school without having the ability to think creatively in innovation, it will be difficult to face challenges in society and the world of work, can innovate and create jobs for others, solve available opportunities, excel in technology, adapt to change, or can change the world [2-4]. Increasing the ability to think creatively requires time and experiences that require creative thinking [5]. Teachers must be creative thinkers in designing appropriate learning and assessment tools to improve students' creative thinking skills. But so far, traditional mathematics learning still emphasizes procedures, calculations and algorithms. Some mathematics learning that has been carried out tends not to provide opportunities for students to develop creative thinking skills.

If it is related to mathematics, the thought process in mathematics has been researched by Sternberg [4], Lubart [6], Argarini [7], Van Harpen [8]. The difference between this study and previous studies lies in the selection of research subjects. In this study, the selection of subjects was based on learning...
styles. Information about students’ learning styles is needed so that learning becomes more effective so that students get higher scores [9-12].

Each individual naturally has a different learning style. Differences in learning styles can also lead to differences in the formation and understanding of information. Many experts classify learning styles, one of which is Peter Honey and Alan Mumford. Honey and Mumford classified learning styles into four types of activist, reflector, theorist, and pragmatic. In this study, researchers put more emphasis on the reflector learning style. Someone with a reflector learning style will prefer learning through books, discussions and arguing with each other and attending seminars (extracting information). Reflectors tend to learn by observing and thinking carefully about something that has happened and thinking about the consequences of what will happen when he is about to express an opinion [13]. A person with a reflector learning style will tend to learn from experience and observe situations from a different perspective. Reflectors tend to collect data, analyze, and think deeply before drawing conclusions. A reflector is someone who is very conscientious and wise, this is what causes them to be very careful and tend to be slow in making decisions [14]. In this study, students’ thought processes in proposing and solving problems were reviewed based on the Wallas stage. Table 1 is an indicator of the creative thinking process in proposing and solving problems based on the Wallas stage.

Table 1. Indicators of creative thinking process in proposing and solving problems.

No.	Posing Problems	Wallas's stage	Solving Problems
1.	Students collect information that will be used to pose problems	Preparation	Students collect information that will be used to solve problems.
2.	Students free the mind from tiring things due to the process of solving problems by doing activities	Incubation	Students free the mind from tiring things due to the process of solving problems by doing activities
3.	Starting to emerge inspiration or new ideas to pose a problem by starting to write down the problem posed.	Illumination	Starting to emerge inspiration or new ideas to solve problems. Activities carried out can be in the form of:
a. Start writing down ideas or solutions to problems			
b. Trying to find other solutions or ideas to solve the problem			
4.	Students test and review the problems posed by: checking back and thinking about possible solutions to the problems posed	Verification	Students will carry out their ideas to get answers in a way recheck the answer and find another way to solve it

The purpose of this study is the profile of the creative thinking process of students in reflector learning style in proposing and solving problems in terms of the Wallas stage.

The choice of reflector learning style is because this learning style tends to be owned by women [15]. Meanwhile, students of mathematics education at the University of Malang are mostly women. In this mathematics education study program, this is the place for research.

2. Research methods
This research is a qualitative study which aims to describe the creative thinking process of students in reflector learning style in proposing and solving problems in the review of the Wallas stage. The subjects of this study were students of the Mathematics Education Study Program, Kanjuruhan University of Malang, class 2016/2017 (VII semester). Criteria based on a) the age of the research subject with a range of 18-25 years, b) the same gender, c) at least get a B grade for KPMS Subject.

Researchers in this qualitative study acted as the main instrument and the supporting instruments used in this study were Honey and Mumford's Learning Style Questionnaire (LSQ) questionnaire, test sheets, and interview guides. Questionnaires will be given to research subjects, and subjects with
reflector learning styles will be selected. Before being given to the research subjects, the test sheets and interview guidelines will be validated by the validator, in order to obtain a valid instrument.

The data analysis in this study will be conducted qualitatively. Data analysis was carried out here during and after data collection. The data analysis steps were as follows: 1) data reduction, 2) data presentation, 3) coding, 4) checking the validity of the data, 5) analyzing research data and other findings, 6) research conclusions.

3. Results and discussion
Based on the results of the distribution of Honey and Mumford's Learning Style Questionnaire (LSQ) questionnaires, it was found that 2 research subjects had a reflector learning style and met the following criteria: a) the age of the study subjects was 18-25 years old, b) the same gender, c) minimum get a B grade for KPMS Subject. After obtaining research subjects who have a reflector learning style, the next step is to give a test to determine the process of creative thinking in proposing and solving problems in the material for grade 8 junior high school about flat-sided space. Table 2 is the creative thinking process of subject 1 in proposing and solving problems in terms of the Wallas stage.

Table 2. Thinking process of subject 1 in proposing and solving problems based on Wallas stages.

No	Posing Problems	Wallas's stage	Solving Problem
1.	a. Subject 1 understands the question command.		
b. Subject 1 looks contemplating, thinking about answers by repeatedly reading the test questions.			
c. The subject begins to look around the room.	Preparation	a. Subject 1 began to read repeatedly the problem posed.	
b. Subject 1 looks contemplating, and shows expressions of remembering - remembering something			
2.	a. Subject 1 returned to contemplation, occasionally playing the ballpoint used.		
b. Looks a little nervous.			
c. Looks carefully in raising the problem, this can be seen with a lot of scribbles or wasted paper.			
d. 10 minutes passed, subject 1 started scribbling on the answer paper while playing the pen.	Incubation	a. Subject 1 scribbles - scribbles on paper while showing an expression to remember the formula to be used in solving the problem created.	
b. Every now and then the gaze looks blank, while playing the ball, or biting the ballpoint pen.			
c. Subject 1 looked at the surroundings, saw his friend who was working on it, then scribbled the paper again			
3.	Subject 1 started writing down the answers and copying them onto bar paper. Look carefully in writing answers. This can be seen by reading repeatedly what is written. Tend to be slow to decide which answer to write.	Illumination	a. Subject 1 began to find ideas in solving problems. This can be seen, writing answers with enthusiasm and occasionally appearing a reminiscent expression.
b. After working for 7 minutes, subject 1 looks doubtful about the written answer.			
c. There are a lot of scribbles on the paper			
d. But at the end of the work, subject 1 began to copy the answers on the new paper carefully.			
4.	Subject 1 was seen repeatedly reading the written answers.	Verification	a. Subject 1 can write the formula used in solving the problem.
b. Subject 1 performs arithmetic operations by substituting the known data into the formula.
c. Subject 1 looks careful in checking his answer again, as if he is “afraid of being wrong” in doing it. |
Table 3 is the creative thinking process of subject 2 in proposing and solving problems in terms of the Wallas stage.

Table 3. Thinking process of subject 2 in proposing and solving problems based on Wallas stages.

No	Posing Problems	Wallas's stage	Solving Problem
1.	a. Subject 2 reads the test questions.	Preparation	a. Subject 2 reads the problem raised.
	b. Subject 2 looks silent for a moment, showing an expression of remembering something, but it doesn't last long, only about 2 minutes.		b. Subject 2 seems to remember the formula that will be used by dismantling the pyramid that has been made to form a pyramid net.
	c. Subject 2 took blank paper, then shaped it to resemble a pyramid shape.		
	d. Subject 2 is seen observing the pyramid shape made		
2.	a. Subject 2 looks contemplating while observing the pyramid that is made.	Incubation	a. Subject 2 reads the problem repeatedly
	b. After 5 minutes, observing the pyramid material, suddenly subject 2 took a pen and wrote		b. Subject 2 looks dreamy
3.	a. Subject 2 begins to draw the pyramid made into new paper.	Illumination	a. Subject 1 began to find ideas in solving problems. This can be seen, writing answers with enthusiasm and occasionally appearing a reminiscent expression.
	b. Subject 2 begins to write down the problem posed, while occasionally looking at and observing the pyramid structure that is made or drawn.		b. Subject 2 starts to find the pyramid formula, looks happy expression when finding the formula.
4.	Subject 2 is seen repeatedly reading and replacing sentences that have been made. Then copy the answers onto new paper.	Verification	a. Subject 2 can write down the formula used in solving the problem.
			b. Subject 2 performs arithmetic operations by substituting the known data into the formula

4. **Conclusion**

A person with a reflector learning style will tend to learn from experience and observe situations from a different perspective. Reflectors tend to collect data, analyze, and think deeply before drawing conclusions. A reflector is someone who is very conscientious and thoughtful. This is what causes them to be very careful and tend to be slow in making decisions. When it is related to the creative thinking process of students with reflector learning style in proposing and solving problems based on the Wallas stage, then in the preparation stage, subject 1 looks contemplating while making observations around the room. Meanwhile, subject 2 tended to carry out activities to collect data by making pyramid shapes out of paper. In the incubation stage, subject 1 looked restless while reading the questions, then seemed to free his mind by playing a pen and scribbling paper. Meanwhile, subject 2, contemplated while observing the pyramid structure that was made. In the Illumination stage, subject 1 looks careful in writing down his answers. This can be seen by reading repeatedly what is written. Tend to be slow to decide which answer to write. Meanwhile, subject 2 began to find ideas in solving problems. This can be seen, writing answers with enthusiasm and occasionally appearing a reminiscent expression. In the verification stage, subject 1 seemed to be careful in checking his answers again, as if they were "afraid of being wrong" in doing them. Meanwhile, Subject 2 can write down the formula used in solving the problem. Based on the research results, it can be concluded that a person's learning style will influence
a person's creative thinking process. A person with a reflector learning style will tend to prefer to observe, be careful in making decisions that will be seen at every stage of his creative thinking process.

References
[1] Doucet A, Evers J, Guerra E, Lopez N, Soskil M and Timmers K 2018 Teaching in the fourth industrial revolution: standing at the precipice (New York: Routledge/Taylor & Francis Group)
[2] Sriraman B 2005 Are Giftedness and Creativity Synonyms in Mathematics? J. Second. Gift. Educ. 17 20–36
[3] Wright N D and Clarke I 2010 Preparing Marketing Students for a Global and Multicultural Work Environment: The Value of a Semester-Long Study Abroad Program Mark. Educ. Rev. 20 149–62
[4] Sternberg R J 2012 The Assessment of Creativity: An Investment-Based Approach Creat. Res. J. 24 3–12
[5] Mann E L 2006 Creativity: The Essence of Mathematics J. Educ. Gift. 30 236–60
[6] Lubart T I 2001 Models of the Creative Process: Past, Present and Future Creat. Res. J. 13 295–308
[7] Argarini D F, Budiyono B and Sujadi I 2014 Karakteristik Berpikir Kreatif Siswa Kelas Vii Smp N I Kragan Dalam Memecahkan Dan Mengajukan Masalah Matematika Materi Perbandingan Ditinjau Dari Gaya Kognitif J. Math. Math. Educ. 4
[8] Van Harpen X Y and Sriraman B 2013 Creativity and mathematical problem posing: an analysis of high school students’ mathematical problem posing in China and the USA Educ. Stud. Math. 82 201–21
[9] Penger S, Tekavcic M and Dimovski V 2011 Comparison, Validation And Implications Of Learning Style Theories In Higher Education In Slovenia: An Experiential And Theoretical Case Int. Bus. Econ. Res. J. IBER 7
[10] Massey M G, Kim S-H and Mitchell C 2011 A Study of the Learning Styles of Undergraduate Social Work Students J. Evid.-Based Soc. Work 8 294–303
[11] Yousef D A 2016 The use of the learning styles questionnaire (LSQ) in the United Arab Emirates Qual. Assur. Educ. 24 490–506
[12] Tyndall D M 2017 Bridging the Gap: Aligning Teaching and Learning Styles Community Coll. J. Res. Pract. 41 139–42
[13] Honey P and Mumford A 2006 The learning styles helper’s guide (Maidenhead: Peter Honey Publications Ltd.)
[14] Maric M, Penger S, Todorovic I, Djurica N and Pintar R 2015 Differences in Learning Styles: A comparison of Slovenian Universities Procedia - Soc. Behav. Sci. 197 175–83
[15] Chan S C H and Mak W 2010 The use of Learning Styles Questionnaire in Macao Ind. Commer. Train. 42 41–6