A Case Report on Restoration of Traumatically Involved Teeth with Fiber Post and Esthetic Restoration

Bishal Babu Basnet,* and Sanjay Ranjeet

1Department of Prosthodontics, B. P. Koirala Institute of Health Sciences, Dharan, Nepal
2Center for Dental Education and Research, All Indian Institute of Medical Sciences, New Delhi, India

Abstract

Background: The restoration of traumatically injured teeth with substantial loss of coronal structure entails endodontic treatment followed by post insertion into canal space so that foundation restoration can be strengthened to receive the crown. In this case report, such case is described with fiber-reinforced post and core system.

Case details: A 30-year-old lady with chisel-type fracture of upper front teeth was treated with endodontic treatment followed by fiber-reinforced post and metal-ceramic restoration.

Conclusion: The fiber reinforced restoration gives esthetically pleasing and biologically superior outcome in traumatically involved teeth.

Keywords: Fiber-reinforced post; Traumatized teeth; Post-and-core restoration

Introduction

When there is maximum destruction of coronal tooth structure a dowel and core restoration is required as foundation restoration of a crown [1]. The endodontic procedures tend to reduce tooth stiffness by 5-45% and mesio-occluso-distal preparation decreases the stiffness by 60% [2]. Water loss and loss of collagen cross-linking are the factors associated with brittleness of dentin of endodontically treated teeth [3-5].

A restoration lacking resistance form is not likely to be a long-term success, regardless of the retentiveness of the post [6,7]. Fiber posts have revolutionized the field of restoration of endodontically treated teeth. Technological advancement gave an ample opportunity to offer better esthetic and mechanical properties along with radiographically detectable quality in order to balance the advantages possessed by metallic cast posts [8-10]. Although fiber system was introduced in 1990, a long-term study was begun in 1988 when Friedriksson et al. [10] studied 236 teeth restored with posts.

Case Presentation

A 30-year-old lady who had an accident fracturing her multiple teeth reported to the hospital for her treatment. On examination, upper anterior teeth had chisel-type fracture (Figures 1A, 1B and 2). Some of teeth had large destruction owing to accident and coronal tooth structure was inadequate for restoration.

First, the endodontic treatment was carried out in all of her traumatized teeth [11-14] then the radiographs were taken (Figures 3 and 4). The tooth with greatest loss of coronal tooth structure [12] was judged to be a candidate for post-and-core restoration.

By using peeso reamers, gutta percha was removed and fiber-reinforced composite was placed. Then the foundation restoration was completed with composite resin.

Usual tooth preparation was carried out to fabricate metal-ceramic crowns in all the endodontically treated teeth (Figures 5-7).

Discussion

The result of various studies have confirmed the longevity of fiber post [10,15]. Flexural properties of fiber posts render them responsible for prevention of root fracture [16]. Similarly, there have been reports of increased fracture resistance with preformed fiber posts as compared to control group [17]. However, systematic review comparing the metal posts and fiber posts had outlined greater survival rate (90%) in contrast to fiber-reinforced posts (83.9%) with overall equal incidence of fracture of root [18]. In a 3-year follow-up, superior result in terms of clinical success was observed in teeth restored with fiber post [19]. In another study fiber-reinforced composite showed highest mean fracture resistance in comparison to nano-hybrid and silorane [20].
Anatomic post, individualized according to canal space anatomy, offers a great advantage in relation to retention without compromising other advantages of fiber-post [21].
Stress pattern inside the canal was studied in endodontically treated teeth using finite element analysis which yielded that maximum stress was in stainless steel followed by cast gold and carbon fiber post [22]. Similar study also revealed that less amount of dentinal stress in fiber-reinforced composite core as compared to other system [13]. However, role of incorporation of ferrule could not be overlooked to minimize the stress [13,14]. Therefore, only increase in diameter should not be the concern of restoration because it decreases the fracture resistance of root in gaining its ability to be stiff [23,24]. Fresno recommended thinnest possible diameter of dowel with adequate strength to resist fracture [25].

Conclusion

With use of fiber-reinforced composite post, the treatment of traumatically involved and endodontically weakened teeth can be easier and also more beneficial than other system. However, incorporation of various advantageous properties of post (ferrule effect, diameter, length, luting cement etc.) is of paramount importance for long-term success of such restorations.

Acknowledgement

The authors would like to acknowledge the patient for giving consent for the presentation of case. Also, the staffs and faculty members of Department of Conservative Dentistry, AIIMS are highly acknowledged for assisting in doing treatment of this case.

Conflict of Interest

The authors have no conflict of interest.

References

1. Gutmann JL (1992) The dentin-root complex: Anatomic and biologic considerations in restoring endodontically treated teeth. J Prosthod Dent 67: 458-467.
2. Reeh ES, Messer HH, Douglas WH (1989) Reduction in tooth stiffness as a result of endodontic and restorative procedures. J Endod 15: 512-516.
3. Heffer AR, Melnick S, Schilder H (1972) Determination of the moisture content of vital and pulptless teeth. Oral Surg Oral Med Oral Pathol 34: 681-670.
4. Rivera EM, Yamuchi M (1993) Site comparison of dentin collagen cross-links from extracted human teeth. Arch Oral Biol 38: 541-546.
5. Carter JM, Sorensen SE, Johnson RR, Teitelbaum RR, Levine MS (1983) Punch shear testing of extracted vital and endodontically treated teeth. J Biomech 16: 841-848.
6. Isidor F, Brondum K, Ravnholt G (1999) The influence of post length and crown ferrule length on the resistance to cyclic loading to bovine teeth with prefabricated titanium post. Int J Prosthodont 12: 78-82.
7. Lambjerg-Hansen H, Aasumsen E (1997) Mechanical properties of endodontic posts. J Oral Rehabil 24: 892-897.
8. Aasumsen E, Peutzfeldt A, Heitmam T (1999) Stiffness, elastic limit and strength of newer types of endodontic posts. J Dent 27: 275-278.
9. Drummond JL, Topke RS, King TJ (1999) Thermal and cyclic loading of endodontic posts. Eur J Oral Sci 107: 220-224.
10. Friedriksson M, Astback J, Pamenius M, Avidson K (1998) A retrospective study on 236 patients with teeth restored by carbon-fiber reinforced epoxy resin posts. J Prosthod Dent 80: 151-157.
11. Malferrari S, Baldissara P, Arcadina A (2002) Translucent quartz fiber posts: A 20-months in vivo study. J Dent Res 81: A-333.
12. Ferrari M, Vichi A, Grandini S, Goracci C (2001) Efficacy of a self-curing adhesive resin cement system on luting glass-fiber posts into root canals: An ESM investigation. Int J Prosthod 14: 543-549.
13. Upadhyaya V, Bhargava A, Prakash H, Chittaranjan B, Kumar V (2016) A finite element study of teeth restored with post and core: Effect of design, material and ferrule. Dent Res J 13: 233-238.
14. Dejork B, Miotkowshi A (2013) The influence of ferrule effect and length of casts and FRC posts on the stresses in anterior teeth. Dent Mater 29: e227-e237.
15. Malferrari S, Monaco C, Scotti R (2003) Clinical evaluation of teeth restored with quartz fiber-reinforced epoxy resin posts. Int J Prosthod 16: 39-44.
16. Raju SR, Kilarn KR, Haridas KK, Naik B, Shetty K, et al. (2014) Evaluation of the flexural strength of carbon-quartz and glass fiber based posts. Saudi Endod J 4: 109-114.
17. Sharma S, Attokaran G, Singh KS, Jerry JJ, Ahmed N, et al. (2016) Comparative evaluation of fracture resistance of glass fiber reinforced, carbon and quartz post in endodontically treated teeth: An in vivo study. J Indian Soc Prev Community Dent 36: 373-376.
18. Figueiredo FE, Martins-Filho PRS, Faria-e-Silva AL (2015) Do metal post retained restorations result in more root fractures than fiber post-retained restoration? A systematic review and meta-analysis. J Endod 41: 305-316.
19. Amrail M, Coppo PP, Rosalem CGC, Sauid FF, Guerra SMG (2015) A 3-year retrospective evaluation of the clinical performance of fiber posts. Braz Dent J 26: 619-623.
20. Bilgi PS, Shah NC, Patel PP, Vaid DS (2016) Comparison of fracture resistance of endodontically treated teeth restored with nanohybrid, silorane and fiber-reinforced composite: An in-vitro study. J Conserv Dent 19: 364-367.
21. Grandini S, Sapio S, Simonetti M (2003) Use of anatomic post and core for reconstructing an endodontically treated tooth: A case report. J Adhes Dent 5: 243-247.
22. Kaur A, Meena N, Shubhashini N, Kumari A, Shetty A (2010) A comparative study of intra-canal stress pattern in endodontically treated teeth with average sized canal diameter and reinforced wide canals with 3 different post system using finite element analysis. J Conserv Dent 13: 28-33.
23. Trabert KC, Capul AA, Abou-Rass M (1978) Tooth fracture- a comparison of endodontic and restorative treatments. J Endod 4: 341-345.
24. Trope M, Maltz DO, Tronstad L (1985) Resistance to fracture of restored endodontically treated teeth. Endod Dent Traumatol 1: 108-111.
25. Fresno JP (1988) Guidelines for using posts in the restoration of endodontically treated teeth. Gen Dent 46: 474-479.

Citation: Basnet BB, Ranjeet S (2017) A Case Report on Restoration of Traumatically Involved Teeth with Fiber Post and Esthetic Restoration. J Oral Hyg Health 5: 223. doi: 10.4172/2332-0702.1000223