NO UNCOUNTABLE POLISH GROUP CAN BE A RIGHT-ANGLED ARTIN GROUP

GIANLUCA PAOLINI AND SAHARON SHELAH

Abstract. We prove that no uncountable Polish group can admit a system of generators whose associated length function satisfies the following conditions:

(i) if $0 < k < \omega$, then $\lg(x) \leq \lg(x^k)$;
(ii) if $\lg(y) < k < \omega$ and $x^k = y$, then $x = e$.

In particular, the automorphism group of a countable structure cannot be an uncountable right-angled Artin group. This generalizes results from [3] and [5], where this is proved for free and free abelian uncountable groups.

In a meeting in Durham in 1997, Evans asked if an uncountable free group can be realized as the group of automorphisms of a countable structure. This was settled in the negative by Shelah [3]. Independently, in the context of descriptive set theory, Becher and Kechris [1] asked if an uncountable Polish group can be free. This was also answered negatively by Shelah [4], generalizing the techniques of [3]. Inspired by the question of Becher and Kechris, Solecki [5] proved that no uncountable Polish group can be free abelian. In this paper we give a general framework for these results, proving that no uncountable Polish group can be a right-angled Artin group (see below for a definition). We actually prove more:

Theorem 1. Let $G = (G, d)$ be an uncountable Polish group and A a group admitting a system of generators whose associated length function satisfies the following conditions:

(i) if $0 < k < \omega$, then $\lg(x) \leq \lg(x^k)$;
(ii) if $\lg(y) < k < \omega$ and $x^k = y$, then $x = e$.

Then G is not isomorphic to A, in fact there exists a subgroup G^* of G of size b (the bounding number) such that G^* is not embeddable in A.

Proof. Let $\zeta = (\zeta_n)_{n < \omega} \in \mathbb{R}^\omega$ be such that $\zeta_n < 2^{-n}$, for every $n < \omega$, and $g = (g_n)_{n < \omega} \in G^\omega$ such that $g_n \neq e$ and $d(g_n, e) < \zeta_n$, for every $n < \omega$. Let Λ be a set of power b of increasing functions $\eta \in \omega^\omega$ which is unbounded with respect to the partial order of eventual domination. For transparency we also assume that for every $\eta \in \Lambda$ we have $\eta(0) > 0$. For $\eta \in \Lambda$, define the following set of equations:

$$\Gamma_\eta = \{x^{\eta(n)}_{n+1} = x_ng_n : n < \omega\}.$$

By [4], for every $\eta \in \Lambda$, Γ_η is solvable in G. Let $b_\eta = (b_{\eta,n})_{n < \omega}$ witness it, i.e.:

$$b_\eta \in G^\omega \quad \text{and} \quad \bigwedge_{n < \omega} b^{\eta(n)}_{\eta,n+1} = b_{\eta,n}g_n.$$

Let G^* be the subgroup of G generated by $\{g_n : n < \omega\} \cup \{b_{\eta,n} : \eta \in \Lambda, n < \omega\}$. Towards contradiction, suppose that π is an embedding of G^* into A, and let S...
be a system of generators for A whose associated length function $l_g = lg$ satisfies conditions (i) and (ii) of the statement of the theorem. For $\eta \in \Lambda$ and $n < \omega$, let:

\[
\pi(g_n) = g'_n, \quad \pi(b_{n,n}) = c_{n,n} \quad \text{and} \quad m_*(\eta) = lg(c_{n,0}).
\]

Now, m_* is a function from Λ to ω and so there exists unbounded $\Lambda_1 \subseteq \Lambda$ such that for every $\eta \in \Lambda_1$ the value $m_*(\eta)$ is a constant m_*. Fix such a Λ_1 and m_*, and let $f_1, f_2 \in \omega$ increasing satisfying the following:

1. $f_1(n) > lg(g'_n)$;
2. $f_2(n) = (m_* + 1) + \sum_{\ell < n} f_1(\ell)$.

Claim 1. For every $\eta \in \Lambda_1$, $lg(c_{n,n}) < f_2(n)$.

Proof. By induction on $n < \omega$. The case $n = 0$ is clear by the choice of f_1 and f_2. Let $n = m + 1$. Because of assumption (i) on A, the choice of Λ_1 and the choice of f_1 and f_2, we have:

\[
lg(c_{n,n}) \leq lg(c_{n,n}^{(m)}) = lg(c_{n,m}g_m') \leq lg(c_{n,m}) + lg(g'_m) < f_2(m) + f_1(m) = f_2(n).
\]

Now, by the choice of Λ_1, we can find $\eta \in \Lambda_1$ and $n < \omega$ such that $\eta(n) > f_2(n + 2)$. Notice then that by the claim above and the choice of f_1 and f_2 we have:

1. $\eta(n) > f_2(n + 1) = f_2(n) + f_1(n) > lg(c_{n,n}) + lg(g'_n) \geq lg(c_{n,n}g'_n)$;
2. $\eta(n) > f_2(n + 2) \geq f_1(n + 1) > lg(g'_{n+1})$.

Thus, by (1) and the fact that $c_{n,n+1}^{(n)} = c_{n,n}g'_n$, using assumption (ii) we infer that $c_{n,n+1} = e$. Hence, $c_{n,n+2} = c_{n,n+1}g'_n = g'_n$.

Furthermore, if $\eta(n+1) > lg(g'_{n+1})$, then, again by assumption (ii), we have that $c_{n,n+2} = e$, and so $c_{n,n+2}^{(n+1)} = g'_n = e$, which contradicts the choice of $(g_n)_{n<\omega}$. Hence, $\eta(n) < \eta(n+1) \leq lg(g'_{n+1})$, contradicting (2). It follows that the embedding π from G^η into A cannot exist. \hfill \blacksquare

Definition 2. Given a graph $\Gamma = (E, V)$, the right-angled Artin group $A(\Gamma)$ is the group with presentation $\langle V \mid ab = ba : aEb \rangle$.

Thus, for Γ a graph with no edges (resp. a complete graph) $A(\Gamma)$ is a free group (resp. a free abelian group).

Definition 3. Let $A(\Gamma)$ be a right-angled Artin group and lg its associated length function. We say that an element $g \in A(\Gamma)$ is cyclically reduced if it cannot be written as $g = hfh^{-1}$ with $lg(g) = lg(f) + 2$.

Fact 4. Let $A(\Gamma)$ be a right-angled Artin group, lg its associated length function and $g \in A(\Gamma)$. Then:

1. g can be written as hfh^{-1} with f cyclically reduced and $lg(g) = lg(f) + 2lg(h)$;
2. if $0 < k < \omega$ and f is cyclically reduced, then $lg(f^k) = klg(f)$;
3. if $0 < k < \omega$ and $g = hfh^{-1}$ is as in (1), then $lg(hfh^{-1})^k = klg(f) + 2lg(h)$.

Proof. Item (1) is proved in [2, Proposition on pg.38]. The rest is folklore. \hfill \blacksquare
Corollary 5. No uncountable Polish group can be a right-angled Artin group.

Proof. By Theorem 1 it suffices to show that for every right-angled Artin group $A(\Gamma)$ the associated length function lg satisfies conditions (i) and (ii) of the theorem, but by Fact 4 this is clear. □

As well known, the automorphism group of a countable structure is naturally endowed with a Polish topology which respects the group structure, hence:

Corollary 6. The automorphism group of a countable structure cannot be an uncountable right-angled Artin group.

The situation is different for right-angled Coxeter groups, in fact the structure M with ω many disjoint unary predicates of size 2 is such that $Aut(M) = (\mathbb{Z}_2)^\omega$, i.e. $Aut(M)$ is the right-angled Coxeter group on K_c (a complete graph on continuum many vertices). Notice that in this group for any $a \neq b \in K_c$ we have:

(i) $(ab)^2 = 1$;
(ii) $lg(ab) = 2 < 3$, $(ab)^3 = ab$ and $ab \neq e$.

We hope to investigate realizability of uncountable right-angled Coxeter groups as groups of automorphisms of countable structures in a future work.

References

[1] Howard Becker and Alexander S. Kechris. The Descriptive Set Theory of Polish Group Actions. London Math. Soc. Lecture Notes Ser. 232, Cambridge University Press, 1996.
[2] Herman Servatius. Automorphisms of Graph Groups. J. Algebra 126 (1989), 34-60.
[3] Saharon Shelah. A Countable Structure Does Not Have a Free Uncountable Automorphism Group. Bull. London Math. Soc. 35 (2003), 1-7.
[4] Saharon Shelah. Polish Algebras, Shy From Freedom. Israel J. Math. 181 (2011), 477-507.
[5] Sławomir Solecki. Polish Group Topologies. In: Sets and Proofs, London Math. Soc. Lecture Note Ser. 258. Cambridge University Press, 1999.

Einstein Institute of Mathematics, The Hebrew University of Jerusalem, Israel

Einstein Institute of Mathematics, The Hebrew University of Jerusalem, Israel and Department of Mathematics, Rutgers University, U.S.A.