Research Article

Construction of a Class of Sharp Löwner Majorants for a Set of Symmetric Matrices

Mauricio Fernández and Felix Fritzen

1Institute of Applied Mechanics, University of Stuttgart, Pfaffenwaldring 7, 70569 Stuttgart, Germany
2Cyber-Physical Simulation Group, Department of Mechanical Engineering, Technical University of Darmstadt, Delivostraße 15, 64293 Darmstadt, Germany

Correspondence should be addressed to Mauricio Fernández; fernandez@cps.tu-darmstadt.de

Received 31 July 2019; Accepted 26 September 2019; Published 11 June 2020

Academic Editor: Qiankun Song

Copyright © 2020 Mauricio Fernández and Felix Fritzen. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The Löwner partial order is taken into consideration in order to define Löwner majorants for a given finite set of symmetric matrices. A special class of Löwner majorants is analyzed based on two specific matrix parametrizations: a two-parametric form and a four-parametric form, which arise in the context of so-called zeroth-order bounds of the effective linear behavior in the field of solid mechanics in engineering. The condensed explicit conditions defining the convex parametersetsofLöwermajorants are derived. Examples are provided, and potential application to semidefinite programming problems is discussed. Open-source MATLAB software is provided to support the theoretical findings and for reproduction of the presented results. The results of the present work offer in combination with the theory of zeroth-order bounds of mechanics a highly efficient approach for the automated material selection for future engineering applications.

1. Introduction

The Löwner partial order introduced by [1] is connected to several matrix partial orders. It implies several matrix inequalities and has been widely studied (see, e.g., [2–6]). This matrix partial order is specifically important for linear and nonlinear optimization problems in semidefinite programming (see, e.g., [7–14]) since it describes an essential part of the constraints in many real-world optimization problems.

In the field of materials science, semidefinite programming problems arise, e.g., in the context of zeroth-order bounds of linear elastic properties of solids. The zeroth-order bounds were introduced by [15] in the context of statistical bounds of linear elastic properties, further analyzed by [16], and corrected by [17, 18]. For instance, an N-phase solid is constituted of N materials with corresponding symmetric positive-definite stiffness matrices, say, \(A^{(1)}, \ldots, A^{(N)} \in \mathbb{R}^{n \times n} \) with \(n = 6 \) for three-dimensional linear elasticity. A zeroth-order bound of the effective linear material behavior of the N-phase solid is a symmetric matrix \(\mathbf{B} \in \mathbb{R}^{n \times n} \) which satisfies

\[0 \leq \mathbf{x}^T (\mathbf{B} - A^{(i)}) \mathbf{x}, \forall \mathbf{x} \in \mathbb{R}^n, \forall i \in \{1, \ldots, N\} \]

for all possible realizations of the solid. In solid mechanics, from realization to realization of a composite material, the orientation of the material constituents may change, i.e., the direction of the eigensystem of each of the stiffnesses \(A^{(i)} \) can vary from realization to realization. For practical reasons, see, e.g., [17] or [19] for details, the zeroth-order bound is chosen as an isotropic stiffness such that the orientation of the eigensystems of the stiffnesses \(A^{(i)} \) may not be identical but can at least be fixed. Then, an optimal zeroth-order bound is chosen through the minimization of \(\mathbf{a} \), in general, nonlinear function \(\varphi(\beta) \) depending on parameters \(\beta \) of \(\mathbf{B} = \bar{B}(\beta) \), cf. [17] for a discussion. This yields the minimization problem

\[\min_{\beta} \varphi(\beta) \text{ such that } 0 \leq \mathbf{x}^T (\bar{B}(\beta) - A^{(i)}) \mathbf{x}, \forall \mathbf{x} \in \mathbb{R}^n, \forall i \in \{1, \ldots, N\}, \] \tag{1}

which is a classical, in general, nonlinear semidefinite programming problem. Of course, this optimization
problem can be tackled with a high number of general techniques of semidefinite programming. But, since the zeroth-order bounds are chosen as isotropic, the number of free components of $B (\beta)$ reduces significantly, in linear elasticity to two, and the structure of $B (\beta)$ is highly specific. An analogous problem can be formulated for linear thermoelasticity, cf. [19], where the number of parameters is four. The low number of parameters in these problems immediately suggests to condense the optimization constraints to a couple of explicit conditions in terms of the parameters β, which are then easily and more efficiently treatable with standard methods. This would significantly reduce the computational time of the optimization problem defining the zeroth-order bounds. This efficiency perspective is particularly of practical importance since, as described in [19], large material databases for solids with multiple constituents could then be scanned, greatly benefiting the material selection in material design problems of engineering applications. This is not only relevant for linear elasticity but also for many associated physical problems, e.g., linear heat or electric conductivity, see, e.g., [20, 21] or [16], such that an investigation of the optimization problem defining the zeroth-order bounds in elasticity would greatly benefit all associated physical problems and corresponding material selection approaches.

The focus of the present work is the proper algebraic analysis and condensation of the optimization constraints to more easily treatable explicit conditions for the two- and four-parametric forms $B (\beta)$. This parameter constraint condensation has not been conducted in either [15–18] or [19]. For the present investigation, the Löwner partial order is considered, and the concept of Löwner majorants of a single matrix—representing, e.g., a single stiffness matrix—and of a finite matrix set—corresponding to the set of material stiffnesses of a composite material—is introduced. The derived explicit conditions for the parameters β offer compact results which allow to solve nonlinear semidefinite programming problems over the set of resulting Löwner majorants. Most importantly, the evaluation of the constraints is independent of the matrix dimension (modulo a once in a lifetime setup cost that can be performed before the optimization initiation), and it does not require repeated evaluation of subdeterminants of matrices. Additionally, a deterministic construction of the solution is possible for linear cost functions that are of complexity $\mathcal{O}(N)$ for the two-parametric case. Furthermore, geometric interpretations of the stationary condition are provided. The parametrizations are kept as general as possible such that the results of the present work may be of use for other semi-definite programming problems as an efficient generator of simplified solutions or initial guesses.

The manuscript is structured as follows: In Section 2, Löwner majorants of a single symmetric matrix and finite set of symmetric matrices are defined. The two-parametric form is investigated in Section 3, and the explicit conditions defining all corresponding majorants are derived. Examples for the parameter sets of the two-parametric Löwner majorants are given at the end of the section. Then, in Section 4, the four-parametric form is examined building upon the results of Section 3. Examples for the parameter sets of the Löwner majorants are demonstrated at the end of the section. Furthermore, Section 5 shows an example application of the results in nonlinear semidefinite programming problems and shortly discusses the importance of the examination of the optimization domain and functions to be optimized, since the existence of a minimum is not always assured, even for convex optimization domains and convex functions. Conclusions and potential applications are discussed in Section 6. For full transparency, the authors offer through the GitHub repository [22]

https://github.com/EMMA-Group/LoewnerMajorant

open-source MATLAB software containing all programs and data required for the reproduction of all shown examples of the present work.

Notation. Throughout this manuscript, the set of real numbers is denoted by \mathbb{R}. Column vectors over \mathbb{R}^n, $n \in \{2, 3, \ldots\}$, are denoted by single-underlined characters, e.g., $\underline{x}, \underline{y}$. Rectangular matrices over $\mathbb{R}^{m \times n}$ are denoted by double-underlined characters, e.g., $\underline{A}, \underline{B}$. Square matrices over $\mathbb{R}^{n \times n}$ are referred to as matrices of order n. The set of symmetric matrices of order n with finite eigenvalues is denoted by \mathcal{S}_n. The transpose is denoted by the superscript $(\cdot)^T$, e.g., $\underline{a}^T \underline{b}$ equals the scalar product of the vectors, and $\underline{a}^T \underline{b}$ yields the outer product of the vectors. The eigenvalues of a symmetric matrix \underline{A} are denoted by $\lambda_i(\underline{A}) \in \mathbb{R}$ with $i = 1, \ldots, n$. The multiplicity of an eigenvalue λ is denoted as m_λ. The \mathcal{F} norm of a vector \underline{a} and the Frobenius norm of a matrix \underline{A} are simply noted as $\|\underline{a}\|$ and $\|\underline{A}\|_F$. The identity matrix is noted as \underline{I}. For a compact notation, the orthogonality of two vectors \underline{p} and \underline{q} or two vector spaces \mathcal{P} and \mathcal{Q} is denoted simply as $\mathcal{P} \perp \mathcal{Q}$ and $\mathcal{P} \perp \mathcal{Q}$, respectively. The Moore–Penrose inverse of a matrix is denoted by \underline{A}^+.

2. Löwner Order and Majorants for Symmetric Matrices

In this work, we consider the Löwner partial order of symmetric matrices $\underline{A}, \underline{B} \in \mathcal{S}_n$ (see, e.g., [6]):

$$\underline{A} \preceq \underline{B} \iff 0 \preceq \underline{X}^T (\underline{B} - \underline{A}) \underline{X}, \quad \forall \underline{X} \in \mathbb{R}^n$$

$$\iff \underline{B} - \underline{A} \in \mathcal{S}_n^+,$$

(2)

where $\mathcal{S}_n^+ \subset \mathcal{S}_n$ denotes the positive semidefinite cone. Any $\underline{B} \in \mathcal{S}_n$ is referred to, in this work, as a (Löwner) majorant of a given $\underline{A} \in \mathcal{S}_n$, if $\underline{A} \preceq \underline{B}$ holds. Furthermore, any $\underline{B} \in \mathcal{S}_n$ is referred to as a sharp (Löwner) majorant of a given $\underline{A} \in \mathcal{S}_n$ if $\underline{A} \preceq \underline{B}$ and $\det(\underline{B} - \underline{A}) = 0$ hold, i.e., if $\underline{B} - \underline{A} \in \mathcal{S}_n^+$ holds. For given $\underline{A} \in \mathcal{S}_n$, the corresponding majorant set $\mathcal{B} \in \mathcal{S}_n^{\text{non}}$ and sharp majorant set \mathcal{B}^\dagger are denoted as

$$\mathcal{B} = \{\underline{B} \in \mathcal{S}_n, \underline{A} \preceq \underline{B}\},$$

$$\mathcal{B}^\dagger = \{\underline{B} \in \mathcal{S}_n, \underline{A} \preceq \underline{B} \land \det(\underline{B} - \underline{A}) = 0\}.$$

(3)

Of course, \mathcal{B} is nonempty, unbounded, and convex. The trivial majorant $\underline{T} \in \mathcal{B}^\dagger$ of a given \underline{A} is defined as
\[T = A_1 I_2, \quad A_1 = \max_\alpha \lambda_i(A). \] (4)

For a finite set \(\mathcal{A} = \{A^{(1)}, \ldots, A^{(N)}\} \) of symmetric matrices, we define the analogous majorant set
\[\mathcal{B}^d = \bigcap_{i=1}^{N} \{ B \in \mathcal{E}_d : A^{(i)} \preceq B \} = \{ B \in \mathcal{E}_d : \Lambda \preceq B \forall A \in \mathcal{A} \}, \] (5)

whose boundary \(\partial \mathcal{B}^d \) represents the set of all sharp majorants of \(\mathcal{A}^d \):
\[\partial \mathcal{B}^d = \{ B \in \mathcal{E}_d : \Lambda \preceq B \forall A \in \mathcal{A} \land \exists A \in \mathcal{A} : \det(B - A) = 0 \}. \] (6)

The trivial element on \(\partial \mathcal{B}^d \) is
\[T_{\mathcal{B}^d} = \Lambda_{1_{\mathcal{B}^d}} I_2, \quad \Lambda_{1_{\mathcal{B}^d}} = \max_{A \in \mathcal{A}} \lambda_i(A). \] (7)

3. Two-Parametric Majorant

3.1. Construction of Two-Parametric Majorants for a Single Matrix

For given \(A \in \mathcal{E}_m \) from the corresponding majorant set \(\mathcal{B} \), we investigate a two-parametric form with given (i.e., fixed) normalized vectors \(p^0, p^0_1 \in \mathbb{R}^n \), \(p_0 \parallel 1 \), defined as a rank-one perturbation of a scaled identity via
\[B^0 = \beta_1 I_2 + \beta_2 p_0 p_0^T \in \mathcal{E}_m, \quad \beta = (\beta_1, \beta_2)^T \in \mathbb{R}^2. \] (8)

In the context of zeroth-order bounds of the effective linear elastic behavior of solid materials, \(p_0 = (1/\sqrt{3}, 1/\sqrt{3}, 1/\sqrt{3}, 0, 0, 0) \) is given for isotropic zeroth-order bounds if a specific parametrization is chosen, cf., e.g., [16] or [17] for details.

The goal of this section is the derivation of condensed conditions for the parameters \(\beta \) such that \(B^0 \in \mathcal{B} \) holds. For the sake of a clearer perspective in this section, we consider the spectral factorization of the given \(A = U \Lambda U^T \) with ordered eigenvalue diagonal matrix \(\Lambda \) with diagonal entries
\[\Lambda_1 = \Lambda_{11} \geq \Lambda_2 = \Lambda_{22} \geq \cdots \geq \Lambda_n = \Lambda_{nn}, \] (9)

and corresponding orthogonal eigenvector matrix \(U \), i.e.,
\[U U^T = U^T U = I. \] We denote the set of eigenvectors of \(A \) as \(\mathcal{E} \) and the space of eigenvectors corresponding to a particular eigenvalue as \(\mathcal{E}_i \), i.e.,
\[\mathcal{E} = \{ x \in \mathbb{R}^n : \Lambda x = \lambda x, \lambda \in (\Lambda_1, \ldots) \}, \]
\[\mathcal{E}_i = \{ x \in \mathbb{R}^n : \Lambda x = \lambda_i x \}, \quad i = 1, 2, \ldots, n. \] (10)

A change of basis does not alter the Löwner partial order, i.e.,
\[A \preceq B^0 \iff \Lambda \preceq U^T B^0 U \preceq \Lambda \] We, therefore, define
\[B_2 = U^T B^0 U = \beta_1 I_2 + \beta_2 p p^T, \quad p = U^T p_0. \] (11)

and note \(\| p \| = \| p_0 \| = 1 \). For the remainder of this section, we seek the conditions on the parameters \(\beta = (\beta_1, \beta_2) \) describing the parameter set
\[\mathcal{B}_2 = \{ \beta \in \mathbb{R}^2 : \Lambda \preceq B^0 \}. \] (12)

Due to linear dependency of \(B_2 \) on \(\beta \) and the general properties of \(\mathcal{B} \in \mathbb{R}^{m,n} \), the parameter set \(\mathcal{B}_2 \in \mathbb{R}^2 \) is nonempty, unbounded, and convex. Note that \(\beta \in \partial \mathcal{B}_2 \iff B^0_2(\beta) \in \partial \mathcal{B} \) holds.

Due to the length and technical nature of several passages and proofs, the current section is:

(i) Preparations: introduction of several expressions and relations needed for all following lemmas and remarks
(ii) Lemma 1: closed form description of \(\mathcal{B}_2 \) for \(p \in \mathcal{E} \)
(iii) Remark 1: remarks for cases on \(\partial \mathcal{B}_2 \) for Lemma 1
(iv) Lemma 2: closed form description of \(\mathcal{B}_2 \) for \(p \notin \mathcal{E} \) and \(\beta \) bounded from below by \(\Lambda_1 \) or \(\Lambda_2 \)
(v) Remark 2: remarks for cases on \(\partial \mathcal{B}_2 \) for Lemma 2
(vi) Lemma 3: closed form description of \(\mathcal{B}_2 \) for \(p \in \mathcal{E} \) and \(\beta \) bounded from below by a constant between \(\Lambda_1 \) and \(\Lambda_2 \)
(vii) Corollary 1: recapitulation of some topological properties of \(\mathcal{B}_2 \) relevant for semidefinite programming problems
(viii) Remark 3: remarks for cases on \(\partial \mathcal{B}_2 \) for Lemma 3
(ix) Remark 4: summarizing remarks and perspective for corresponding semidefinite programming problems

Preparations. Before we derive the conditions describing \(\mathcal{B}_2 \) in (12), we introduce some quantities and relations needed throughout this section. The condition \(\Lambda \preceq B^0_2 \) is equivalent to the positive semidefiniteness of the difference matrix \(C \):
\[C = B^0_2 - \Lambda = D + \beta_2 p p^T, \] (13)

i.e.,
\[0 \leq x^T C x \forall x \in \mathbb{R}^n. \] (14)

We denote the dimension of the kernel of the difference matrix \(C \) as
\[\kappa = \dim(\ker(C)). \] (15)

We define the mutually orthogonal vector spaces
\[\mathcal{P} = \text{span}\{p\}, \]
\[\mathcal{Q} = \{ x \in \mathbb{R}^n : x^T p = 0 \}, \] (16)

and introduce a matrix \(Q \in \mathbb{R}^{n \times (n-1)} \) such that the concatenated matrix \((p_0, Q) \in \mathbb{R}^{n \times n} \) is orthogonal, i.e., the columns of \(Q \) form an orthonormal basis of \(\mathcal{Q} \). We define
\[\mu_D = p_0^T A p; \]
\[\mu_Q = \max_{x \in \mathcal{Q}, \|x\| = 1} x^T A x = \max_{1 \leq i \leq n-1} \lambda_i(\Lambda Q^T A Q), \] (17)

\[c_D = p_0^T (A - \Lambda)^+ p; \] where \(\mu_D \) corresponds to the largest eigenvalue of the reduced matrix \(\Lambda Q^T A Q \in \mathbb{R}^{n-1,n-1} \), inserting vectors from \(\mathcal{P} \) and \(\mathcal{Q} \) into (14), respectively, yields the two elementary necessary conditions:
\begin{align}
\beta_1 + \beta_2 & \geq \mu_{\phi}, \quad (18) \\
\beta_1 & \geq \mu_{\phi}. \quad (19)
\end{align}

Note that \(\mu_{\phi} \) is bounded by \(\Lambda_1 \) due to
\begin{equation}
\Lambda_1 = \max_{\|x\|=1} x^T \Lambda x = \max_{\|x\|=1} \frac{x^T \Lambda x}{\|x\|} = \mu_{\phi}. \quad (20)
\end{equation}

Furthermore, the relation
\begin{equation}
\mu_{\phi} \geq \Lambda_2, \quad (21)
\end{equation}

is obtained based on the following arguments:

1. If \(p^T \xi_1 = 0 \), then \(\xi_1 \in \mathcal{C} \) and \(\mu_{\phi} = \Lambda_1 \geq \Lambda_2 \) holds.
2. If \(p^T \xi_1 \neq 0 \), then using \(\alpha = (p^T \xi_1)/(p^T \xi_2) \), one can define \(q = \xi_2 - \alpha \xi_1 \in \mathcal{C} \) with \(\|q\|^2 = 1 + \alpha^2 \).
 Substituting \(\xi_2 = \alpha \xi_1 + q \) implies
 \begin{align}
 \Lambda_2 = & \xi_2^T \Lambda \xi_2 \\
 = & (\alpha \xi_1 + q)^T (\alpha \Lambda_1 \xi_1 + \Lambda_2 q) \\
 = & -\alpha^2 \Lambda_1 + (1 + \alpha^2) \frac{q^T \Lambda q}{q^T q} + \frac{\alpha \Lambda_2 q^2}{q^T q} \quad (22)
 \end{align}

\begin{align}
\mu_{\phi} & \leq \alpha^2 (\Lambda_1 - \mu_{\phi}) \quad (17) \\
\mu_{\phi} & \geq -\alpha^2 \Lambda_1, \quad (20)
\end{align}

Therefore,
\begin{equation}
\Lambda_2 \leq \mu_{\phi} \leq \Lambda_1, \quad (23)
\end{equation}

generally holds. Denote the algebraic multiplicity of the maximum eigenvalue \(\Lambda_1 \) by \(m_{\Lambda_1} \). It is noted that
\begin{equation}
\mu_{\phi} = \Lambda_1 \iff \mathcal{P} \perp \mathcal{C}_1 \lor m_{\Lambda_1} \geq 2, \quad (24)
\end{equation}

and based on (22),
\begin{equation}
\mu_{\phi} = \Lambda_2 < \Lambda_1 \iff m_{\Lambda_1} = 1 \land \mathcal{P} \perp \mathcal{C}_1 \lor \mathcal{P} \perp \mathcal{C}_2, \quad (25)
\end{equation}

holds. Based on these preparations, we now proceed to the description of the parameter set \(\mathcal{B}_2 \) through three lemmas.

Lemma 1. If \(p \in \mathcal{C} \) holds, then the parameter set \(\mathcal{B}_2 \) is described by
\begin{equation}
\mathcal{B}_2 = \{ \beta \in \mathbb{R}^2 : \beta_1 \geq \mu_{\phi} \land \beta_2 \geq \mu_{\phi} - \beta_1 \}. \quad (26)
\end{equation}

Proof. If \(p \in \mathcal{C} \), corresponding to \(\Lambda_i \) for some \(i \in \{1, \ldots, n\} \), then (18) and (19) simplify to
\begin{equation}
\beta_1 + \beta_2 \geq \mu_{\phi}, \quad \beta_1 \geq \mu_{\phi} = \max_{\mu_{\phi}} \Lambda_j. \quad (27)
\end{equation}

For this case, (27) is equivalent to \(\Lambda_2 \leq \beta_2 \), such that \(\mathcal{B}_2 \) defined in (26) simplifies to (26).

Remark 1. For Lemma 1, all \(\beta \in \partial \mathcal{B}_2 \) (i.e., at least one of the inequalities in (26) turns into an equality) are sharp majorants and induce a singular \(\mathcal{C} = \mathcal{B}_2 - \Lambda \) with nonempty kernel \(\ker(\mathcal{C}) \) of dimension \(\kappa \), cf. (15). The special cases for \(\beta \in \partial \mathcal{B}_2 \)
\begin{equation}
p \in \mathcal{C} \land m_{\mu_{\phi}} = 1 \land \beta_1 = \mu_{\phi} \land \beta_2 \geq \mu_{\phi} - \mu_{\phi} \implies \kappa = 1 \land \ker(\mathcal{C}) \bot \mathcal{P}, \quad (28)
\end{equation}

\begin{equation}
p \in \mathcal{C} \land \beta_1 > \mu_{\phi} \land \beta_2 = \mu_{\phi} - \beta_1 \implies \kappa = 1 \land \ker(\mathcal{C}) \perp \mathcal{P}, \quad (29)
\end{equation}

deliver a one-dimensional kernel of \(\mathcal{C} \). It is noted that only (29) ensures \(\kappa = 1 \), independent of the multiplicity \(m_{\mu_{\phi}} \) of \(\mu_{\phi} \), and, more importantly, that \(\ker(\mathcal{C}) \perp \mathcal{P} \) holds. This property is of interest for Section 4.

Lemma 2. If \(p \notin \mathcal{C} \) and \(\mu_{\phi} \in \{ \Lambda_1, \Lambda_2 \} \) hold, then the parameter set \(\mathcal{B}_2 \) is described:

1. For \(\mu_{\phi} = \Lambda_1 \) and eigenspace \(\mathcal{C}_1 \) corresponding to \(\Lambda_1 \) as
 \begin{equation}
 \mathcal{B}_2 = \{ \beta \in \mathbb{R}^2 : \mu_{\phi} \leq \beta_1 \land \beta_2 \leq \beta_1 \}, \quad (30)
 \end{equation}

2. For \(\mu_{\phi} = \Lambda_2 < \Lambda_1 \) and \(c_{\phi} \neq 0 \), cf. (17), as
 \begin{equation}
 \mathcal{B}_2 = \{ \beta \in \mathbb{R}^2 : \mu_{\phi} \leq \beta_1 \land \beta_2 \leq \beta_1 \}, \quad (31)
 \end{equation}

3. For \(\mu_{\phi} = \Lambda_2 < \Lambda_1 \) and \(c_{\phi} = 0 \), cf. (17), as
 \begin{equation}
 \mathcal{B}_2 = \{ \beta \in \mathbb{R}^2 : \mu_{\phi} \leq \beta_1 \land \beta_2 \leq \beta_1 \}, \quad (32)
 \end{equation}

Proof. We investigate the interval \([\mu_{\phi}, \infty) \) for \(\beta_1 \) in \(\mathcal{B}_2 \) with \(\mu_{\phi} \in \{ \Lambda_1, \Lambda_2 \} \) based on the following cases:

1. \(\beta_1 \in (\Lambda_1, \infty) \): In this case, sharp majorants require a singular difference matrix \(\mathcal{C} = \mathcal{B}_2 - \Lambda = \mathcal{D} + \beta_2 \mathcal{P} \mathcal{P}^T \). Due to the restriction \(\Lambda < \beta_1 \) of this case, the diagonal matrix \(\mathcal{D} = \beta_1 \mathcal{I} - \Lambda \) is positive definite such that, based on the determinant lemma, cf., e.g., [23] or [24], we consider
 \begin{equation}
 0 = \det(\mathcal{C}) = \det(\mathcal{D} + \beta_2 \mathcal{P} \mathcal{P}^T) \quad (33)
 \end{equation}
 which is a single-valued constraint in terms of \(\beta_2 \) with \(\mathcal{P} \mathcal{P}^T \mathcal{D}^{-1} \mathcal{P} > 0 \). This is fulfilled iff
\[
\beta_2 = \frac{1}{p' D^{-1} p}, \tag{34}
\]

meaning that (34) describes for every \(\beta_1 \in (\Lambda_1, \infty) \) the corresponding \(\beta_2 \) yielding a sharp majorant, i.e., (34) specifies a portion of \(\partial B_2 \). Due to the convexity of \(\mathcal{B}_2 \), \(\beta_2 \geq \frac{1}{(p')^{-1}} \) delivers trivially nonsharp majorants for \(\beta_1 \in (\Lambda_1, \infty) \).

(2) \(\beta_1 = \Lambda_1 \): the matrix \(D = \Lambda_1 I - A \) is singular and positive semidefinite. We consider the matrices

\[
E \equiv (e_1 \cdots e_m), \quad E_i^\top = (e_{m+1} \cdots e_n), \tag{35}
\]

which contain in the respective columns a basis of \(\mathcal{B}_1 \)
for \(\Lambda_1 \) and of the corresponding orthogonal space \(\mathcal{B}_1^\perp \). We examine the following cases:

(a) If \(\mathcal{P} \perp \mathcal{B}_1 \) holds, then \(C \equiv \frac{C}{\Lambda_1} \) is already singular, independently of \(\beta_2 \), since

\[
\xi^T C \xi = \xi^T (\Lambda_1 I - A + \beta_2 P P') \xi = \xi^T (\Lambda_1 \xi - \Lambda \xi) = 0, \tag{36}
\]

holds, meaning that \(\ker (C) \) is at least one-dimensional. Based on (35) and \(x = E_1 \xi \), \(\xi \in \mathbb{R}^{n-m_m} \), (14) can be further reduced to

\[
0 \leq \xi^T C \xi, \quad \forall \xi \in \mathbb{R}^{n-m_m},
\]

which is positive definite, and since \(p \) is not an eigenvector of \(A \), \(p \neq 0 \) holds. For \(C \equiv \frac{C}{\Lambda_1} \) to be singular, its determinant must vanish. Analogous application of the matrix determinant lemma as in (33) yields that \(\frac{C}{\Lambda_1} \equiv \frac{C}{\Lambda_1} \) is singular iff

\[
\beta_2 = -\frac{1}{p' D^{-1} p} = -\frac{1}{p' D^{-1} p}. \tag{38}
\]

(b) If \(\mathcal{P} \perp \mathcal{B}_1 \) holds, then using (35) and \(x = E_1 \xi \), \(\xi \in \mathbb{R}^{n-m_m} \) in (14) yields the necessary condition

\[
\beta_2 \geq 0. \tag{39}
\]

This condition is also sufficient for \(\Lambda \leq B_2 \). For \(\beta_2 = 0 \), one retrieves for the current scenario the trivial majorant \(\tilde{\beta} = (\Lambda_1, 0) \in \partial B_2 \), cf. (4).

If \(\mu_0 = \Lambda_1 \) holds, cf. (24), then cases 1 and 2 of this proof describe \(\beta_2^{\min} \), at what \(c_0 \neq 0 \), cf. (17), is identified in (38), yielding (30)—cf. Lemma 2.1 as depicted in Figure 1 in the ramification for \(p \notin \mathcal{B} \) and \(\mu_0 = \Lambda_1 \). If \(\Lambda_2 < \Lambda_1 \) and \(\mu_0 = \Lambda_2 \) hold, cf. (25), then case 1 of this proof still applies, but the following cases relevant for Lemma 2.2 and Lemma 2.3, depicted in Figure 1, also need to be considered:

(2') \(\beta_1 = \Lambda_1 \): Due to \(\mathcal{P} \notin \mathcal{B}_1 \), (39) must hold for this case.

(3') \(\beta_1 \in (\Lambda_2, \Lambda_1) \): For the present case, \(D = \beta_1 I - A \) is indefinite and regular such that the determinant lemma can be applied analogously as in (33), but (34) is not immediately clear since the term \(p' D^{-1} p \) may vanish for such indefinite \(D \). More precisely, the term \(p' D^{-1} p \) may vanish, if \(D^{-1} p \in \mathcal{C} \) holds.

We search now for a vector \(q = Q \xi \in \mathcal{C} \) such that \(p = D \) holds, with the necessary condition

\[
\begin{align*}
q &= Q^T D q \\
&= Q^T (\beta_1 I - A) Q \xi \\
&= \beta_1 \xi - Q^T A Q \xi. \tag{40}
\end{align*}
\]

This means that \(\xi \) would be required to correspond to the eigenvector of the reduced matrix \(Q^T A Q \) for eigenvalue \(\beta_1 \). But, we consider \(\beta_1 \) larger than the maximum eigenvalue \(\mu_0 = \Lambda_2 \) of \(Q^T A Q \) such that no such \(\xi \) exists, and therefore, the term \(p' D^{-1} p \) cannot vanish. Solving (33) for \(\beta_2 \) yields again (34).

(4') \(\beta_1 = \Lambda_2 \): Due to \(\mathcal{P} \perp \mathcal{B}_2 \), analogous reasoning as in (2a) is applied to this case with corresponding \(E_2 \) and \(E_2^\perp \) up to the corresponding equation

\[
0 \leq \xi^T C \xi = \xi^T \left(\frac{C}{\Lambda_1} + \beta_2 \frac{P P'}{\Lambda_1} \right) \xi,
\]

which is positive definite, and since \(p \) is not an eigenvector of \(A \), \(p \neq 0 \) holds. For \(C \equiv \frac{C}{\Lambda_1} \) to be singular, its determinant must vanish. Application of the matrix determinant lemma as in (33) yields

\[
\begin{align*}
0 &= \det(\frac{C}{\Lambda_1}) = \det(D) \left(1 + \beta_2 p' D^{-1} p \right). \tag{42}
\end{align*}
\]

Here, the term \(p' D^{-1} p \) equals the quantity \(c_0 \) for \(\mu_0 = \Lambda_2 \), see (17). The quantity \(c_0 \) may or may not vanish, depending solely on \(A \) and \(p \). This means that if \(c_0 \neq 0 \), then (42) can be solved for \(\beta_2 \) as in (38), yielding \(\beta_1 \in (\mu_0, \infty) \) and (31)—cf. Lemma 2.2 as depicted in Figure 1. But, if \(c_0 = 0 \) holds, then there exists no \(\beta_1 \) for \(\beta_1 = \Lambda_2 \) such that \(\beta_1, \beta_2 \) holds since \(\det(\frac{C}{\Lambda_1}) \) cannot vanish. Therefore, \(c_0 = 0 \) yields (32) and, more importantly, excludes \(\mu_0 = \Lambda_2 \) from the range of \(\beta_1 \) for the current scenario, i.e., \(\beta_1 \in (\mu_0, \infty) \), cf. Lemma 2.3 illustrated in Figure 1.
Remark 2. It is noted that, for Lemma 2, \(\kappa = 1 \), cf. (15), holds in a number of scenarios. In order to visualize the following argument, the position of the upcoming cases in the set \(B_2 \) is depicted in Figure 2.

In cases 1 and 3', of the proof of Lemma 2, the rank-one perturbation \(\beta_2 \) with \(\beta_2 \beta^T \) can only induce a one-dimensional kernel on the difference matrix \(C = D + \beta_2 \beta^T \) with regular \(D \) for \(\beta_2 \), fulfilling (34). This corresponds to the majority of points described through \(\beta_2 \) in Lemma 2, only excluding the special case \(\beta_1 = \Lambda_1 \). The corresponding kernel vector \(n \) with \(\ker(C) = \text{span}[n] \) is obtained as

\[
\begin{align*}
n = D^{-1}p \implies Cn &= Dn + (-1) \frac{1}{\beta^T} \beta^Tn = \alpha. \quad (43)
\end{align*}
\]

such that

\[
P \notin \mathcal{E} \wedge \mu_0 < \beta_1 \wedge \beta_1 \neq \Lambda_1 \wedge (34) \implies \kappa = 1 \wedge \ker(C) \sqcup \mathcal{P},
\]

holds since \(0 \neq \beta^T n = \beta^T D^{-1}p \) holds. The corresponding points \(\beta \in \partial B_2 \) based on \(\beta_2 \min \) inducing (44) are indicated in Figure 2 at the lower border of \(B_2 \) with \(\kappa = 1 \), and more importantly, due to the consequences of Section 4, \(\ker(C) \sqcup \mathcal{P} \).

For \(\mu_0 = \Lambda_1 \), i.e., Lemma 2.1 is considered, the point at \(\beta_1 = \mu_0 = \Lambda_1 \) is to be examined. Hereby, cases 2(a) and 2(b) of the proof of Lemma 2 need some attention. In case 2(a), i.e., \(\mathcal{P} \perp \mathcal{E}, \), \(C \) is already singular (\(C \in \mathcal{E} \)), i.e., \(\mathcal{E} \in \ker(C) \) and for \(\beta_1 \), fulfilling (38), the rank-one perturbation \(\beta_2 \beta^T \) induces a further vanishing eigenvalue of \(C \) such that \(\ker(C) \) is at least two-dimensional. This special case corresponds to the black point in Figure 2. For \(\beta_2 \) above the critical value given in (38), \(\ker(C) \) is then at least one-dimensional such that \(\kappa = 1 \) is only possible at \(\beta_1 = \mu_0 = \Lambda_1 \) under the current assumptions only for \(m_{\Lambda_1} = 1 \), i.e.,

\[
P \notin \mathcal{E} \wedge m_{\Lambda_1} = 1 \wedge \mathcal{P} \perp \mathcal{E}, \beta_1 = \Lambda_1 \wedge \beta_2 > -(c_0)^{-1} \implies \kappa = 1 \wedge \ker(C) \sqcup \mathcal{P}. \quad (45)
\]

In case 2(b), i.e., \(\mathcal{P} \not \perp \mathcal{E}, \), \(p \) is not perpendicular to the complete eigenspace of \(\Lambda_1 \), but for \(m_{\Lambda_1} \geq 2 \), there always exists at least one eigenvector to \(\Lambda_1 \) which is perpendicular to \(p \). Therefore, \(\kappa = 1 \) is only possible at \(\beta_1 = \Lambda_1 \) under the current assumptions for \(m_{\Lambda_1} = 2 \), i.e.,

\[
P \notin \mathcal{E} \wedge m_{\Lambda_1} = 2 \wedge \mathcal{P} \not \perp \mathcal{E}, \beta_1 = \Lambda_1 \wedge \beta_2 > 0 \implies \kappa = 1 \wedge \ker(C) \sqcup \mathcal{P},
\]

follows such that, for \(\mu_0 < \beta_1 \), the lower boundary of \(B_2 \) depicted in Figure 2 yields \(\kappa = 1 \) and \(\ker(C) \sqcup \mathcal{P} \). Analogous reasoning as for (45) yields for case 4', addressing \(\beta_1 = \Lambda_2 = \mu_0 \),

\[
P \notin \mathcal{E} \wedge \mu_0 = \Lambda_2 < \Lambda_1 \wedge \mu_0 < 0 \wedge m_{\Lambda_2} = 1 \wedge \beta_1 = \Lambda_2 \wedge \beta_2 > -(c_0)^{-1} \implies \kappa = 1 \wedge \ker(C) \sqcup \mathcal{P}. \quad (48)
\]

It can be concluded for Lemma 2 that only for \(\mu_0 < \beta_1 \) and \(\beta \in \partial B_2 \), the kernel of \(C \) stays one-dimensional (indicated in Figure 2 by the border with \(\kappa = 1 \)) and, more importantly, that \(\ker(C) \sqcup \mathcal{P} \) holds. This property is of interest for Section 4.

Lemma 3. If \(p \notin \mathcal{E} \) and \(\Lambda_2 < \mu_0 < \Lambda_1 \) hold, then the parameter set \(B_2 \) is described by

\[
B_2 = \{ \beta \in \mathbb{R}^2: \mu_0 < \beta_1 \wedge \beta_2 \wedge \beta_2 \leq \beta_2 \min \},
\]

\[
\beta_2 \min = \begin{cases} \langle p^T D^{-1} p \rangle^{-1} \beta_1 < \Lambda_1, \\ 0, \quad \beta_1 = \Lambda_1. \end{cases} \quad (49)
\]
Proof. We investigate the interval \([\mu_\varepsilon, \infty)\) for \(\beta_1\) in \(B_2\) based on the following cases:

1. \(\beta_1 \in (\Lambda_1, \infty)\): the results for this case are identical to case 1 of the proof of Lemma 1.
2. \(\beta_1 = \Lambda_1\): due to \(\mu_\varepsilon \neq \Lambda_1\) \(\iff \nu_{\varepsilon_1} = 1 \land \mathcal{P} \not\subseteq \mathcal{A}_1\), this case follows the reasoning of case 2(b) of the proof of Lemma 1.
3. \(\beta_1 \in (\mu_\varepsilon, \Lambda_1)\): the results for this case are identical to case 3\(\beta\) of the proof of Lemma 2.
4. \(\beta_1 = \mu_\varepsilon\): due to \(\Lambda_2 < \mu_\varepsilon < \Lambda_1\), \(D = \mu_\varepsilon \mathbb{Q} - \mathbb{A}\) is regular, and the determinant lemma can be applied as in (33). The vector \(q = \frac{1}{\mathbb{D}^{-1}} p\) can be defined based on the regularity of \(\mathbb{D}\) such that only one vector \(q\) exists fulfilling \(p = \mathbb{D} q\). The vector \(p\) then fulfills

\[
0 = q^T p = \frac{Q^T}{\mathbb{D}} q = \frac{\mu_\varepsilon Q^T}{\mathbb{D}} q = \frac{\mu_\varepsilon Q^T}{\mathbb{D}} Q^T \mathbb{Q} q,
\]

which can only be achieved by one specific eigenvector of the reduced matrix \(\mathbb{Q}^T \mathbb{Q}\), i.e., \(\mathbb{Q} = \mathbb{Q} \mathbb{Q} \mathbb{x}\) with \(\mathbb{Q}^T \mathbb{Q} \mathbb{x} = \mu_\varepsilon \mathbb{x}\). This implies \(\mathbb{Q} = \mathbb{D}^{-1} p = \mathbb{Q} \mathbb{x} \in \mathbb{Q}\) and, consequently, \(0 = p^T q = p^T \mathbb{D}^{-1} q\). Since the term \(p^T \mathbb{D}^{-1} q\) vanishes, then, regarding (33), \(\beta_2\) cannot render the determinant of \(\mathbb{Q}\) to zero, i.e., for \(\beta_1 = \mu_\varepsilon\), there exists no \(\beta\), delivering a point on \(\partial B_2\). More explicitly, \(\mu_\varepsilon\) is excluded from the range of \(\beta_1\).

Corollary 1. The set \(B_2\) is always an unbounded closed convex set. In particular, it is never compact, which has implications for optimization problems over \(B_2\).

Remark 3. For Lemma 3, \(k = 1\) and \(\ker(C) \subseteq \mathcal{P}\) hold for all \(\beta \in \partial B_2\). This is concluded following Remark 2, see reasoning for (44) and (47). This property is of interest for Section 4.

Remark 4. Wrapping this section up, the reader solely needs to differentiate the cases:

\(\beta_1\) is a bound for \(\beta_2\), then the spectral factorization of \(\mathbb{A}\) and the transformation of given \(\mathbb{P}\) to \(\mathbb{P} = U^T \mathbb{P} U\) can be carried out before the minimization in order to check Lemma 1, Lemma 2, and Lemma 3, at what (26), (30)–(32) or (49) then correspond to \(B_2\). The minimization can then be carried out at its peak efficiency over \(B_2\), if a minimum exists. A short discussion of the existence of minima is given in Section 5.

3.2. Majorization of a Set of Matrices. Consider the following finite set of \(N\) given symmetric matrices

\[
\mathcal{A} = \{A^{(1)} , \ldots , A^{(N)}\}, \quad A \in \mathcal{S}_n \forall A \in \mathcal{A},
\]

and a given vector

\[
P_0 \in \mathbb{R}^n.
\]

The corresponding convex sets

\[
\mathcal{B}_2^{(i)} = \{(\beta_1 , \beta_2) \in \mathbb{R}_+ : A^{(i)} \leq B_2^{(i)}\}
\]

are the majorant sets for each of the matrices of \(\mathcal{A}\). Denote the respective spectral factorizations as

\[
A^{(i)} = U^{(i)} A^{(i)} U^{(i)\top},
\]

and define the corresponding vectors

\[
P^{(i)} = (U^{(i)})^T P_0.
\]

Since \(A^{(i)} \leq B_2^{(i)} \iff A^{(i)} \leq B^{(i)} \), holds, the results of the previous section describe the corresponding sets. The intersection of all sets \(\mathcal{B}_2^{(i)}\) delivers the majorant set for the set of matrices \(\mathcal{A}\), denoted as

\[
\mathcal{B}_2 = \bigcap_{i=1}^N \mathcal{B}_2^{(i)}.
\]

Note that, due to \(\beta_1 , \beta_2 \to 0\) being admissible for any bounded matrix, the set \(\mathcal{B}_2\) is always nonempty and, due to the intersection of convex sets, also convex.

3.3. Examples: Majorization of a Single Matrix. In the following, majorants for the matrix \(\mathbb{A}\) are sought-after for three different vectors \(P_1 , P_2 , P_3\)

\[
P_1 = \left(\begin{array}{ccc} 5/2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1/2 \end{array}\right),
\]

\[
P_2 = (0 , 1/\sqrt{2}, 1/\sqrt{2})^T,
\]

\[
P_3 = (3/5 , 4/5 , 0)^T,
\]

leading to the aforementioned cases, see demo1.m

in the provided software [22].

Consideration of \(p = e_1\) induces an instance of Lemma 1, in which \(p\) is contained in the eigenspace of \(\mathbb{A}\), cf. (27). Figure 3 shows the parameter domain \(\mathcal{B}_2\). The boundary of \(\mathcal{B}_2\) is indicated by the black line in Figure 3(a) defined by \(\beta_2 = \mu_\varepsilon - \beta_1 , \mu_\varepsilon = \Lambda_1\) and by the vertical line corresponding to \(\beta_1 = \mu_\varepsilon = \Lambda_2\). The value of the quadratic forms \(x^T \mathbb{A} x\) and \(x^T B_2 x\) for normalized vectors \(||x|| = 1\) within the \((1,2)\)-plane are shown as contours in Figure 3(b). It is readily seen that all parameters \(\beta_1 , \beta_2\) on the boundary of \(\mathcal{B}_2\) imply the existence of tangential contact points of the contours of the majorant and of the original matrix. The shown contours correspond to the black points in Figure 3(a).
Consideration of p_2 yields an instance of Lemma 2 (p is not an eigenvector of Λe_1, thus $m_{\Lambda e_1} = 0$), and $p^T e_1 = 0$, i.e., $\mu_0 = \Lambda e_1$). The corresponding results are depicted in Figure 4. It should be noted that, for $\beta_1 = \mu_0 = \Lambda e_1$, the pseudoinverse of D is required and c_0 is evaluated, while for $\beta_1 > \mu_0$, the inverse of D is computed. In Figure 4(b), the region around $\beta_1 = \Lambda e_1$ is shown more clearly. The contour plots in Figures 4(c) and 4(d) indicate the difference between the majorant and the original matrix, with the second plot showing that all contours of Figure 4(c) in fact have a contact point with the original hypersurface (drawn as dashed line) outside of the $(1,2)$-plane, cf. Figure 4(d).

Lastly, p_3 is an instance of Lemma 3 (p is not an eigenvector of Λ and $\Lambda_2 < \mu_0 < \Lambda_1$), with corresponding results depicted in Figure 5. Most notably, the value $\beta_1 = \mu_0$ marks the asymptote of the boundary of \mathcal{B}_2 since for $\beta_1 = \mu_0$, no β_2 exists yielding a point on $\partial \mathcal{B}_2$, cf. case 4 of the proof of Lemma 3.

3.4. Example: Majorization of a Set of Matrices. Consider the finite set of symmetric matrices

$$\mathcal{A} = \left\{ A^{(1)}, A^{(2)} \right\},$$

$$A^{(1)} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & -3 \\ 0 & 3 & 0 \end{pmatrix},$$

$$A^{(2)} = \frac{1}{9} \begin{pmatrix} -4 & 14 & -16 \\ 14 & 5 & 2 \\ -16 & 2 & -10 \end{pmatrix},$$

and the vector

$$p_0 = (1, 0, 0)^T.$$

The border of the corresponding set $\mathcal{B}_2^{(1)}$ (an instance of Lemma 1) is depicted in Figure 6 by the straight lines. The border of the corresponding $\mathcal{B}_2^{(2)}$ (an instance of Lemma 3) is depicted by the curved black line in Figure 6. The majorant set $\mathcal{B}_2^{(2)}$ defined in (56) is depicted in Figure 6 by the gray region. The depicted region can be reproduced with the file
demo2.m

using the provided MATLAB software, cf. [22].

Next, a set of $N = 10$ random symmetric matrices of dimension $n = 100$ is generated. The intersection of the critical domains is shown in Figure 7 as well as the curves denoting the boundaries of the critical domain for each matrix $A^{(i)}$. Close inspection of the graph shows that there are multiple intersections of these lines which generate the boundary of the overall critical domain $\mathcal{B}_2^{(2)}$.

4. Four-Parametric Majorant

4.1. Construction of Four-Parametric Majorant for a Single Matrix. In addition to the two-parametric majorant of Section 3, a four-parametric majorant is examined in this section. A given $A_{i} \in \delta_{n+1}$ is considered and partitioned as follows:

$$A_{i} = \begin{pmatrix} A \\ a^T \\ a_0 \end{pmatrix} \in \delta_{n+1}, \quad A \in \delta_n, \quad a \in \mathbb{R}^n, \quad a_0 \in \mathbb{R}.$$

(60)

From all majorants of A_{i}, we are interested in this section in the parametrization

$$B_{i} = \begin{pmatrix} \beta_1 e_1 + \beta_2 e_2 P_{i}^T + \beta_3 e_3 P_{0}^T \\ \beta_4 P_{0}^T \end{pmatrix} \in \delta_{n+1},$$

(61)

with given normalized p_0. This four-parametric form arises in linear thermo-elasticity and corresponding isotropic zeroth-order bounds, cf. [19]. The upper left block of B_{i} corresponds to
A short inspection of B_4 shows that it may be represented as a rank-two perturbed scaled identity. As in Section 3, we perform a change of basis with the orthogonal matrix

$$U_4 = \begin{pmatrix} U & 0 \\ 0 & 1 \end{pmatrix},$$

diagonalizing the upper left block of A_4, i.e., we define

$$\beta_2, \text{ cf. (8).}$$
Figures 6 and 7: The straight lines depict the border of the set $\mathcal{B}^{(1)}_2$, the curved line represents the border of the set $\mathcal{B}^{(2)}_2$, and the gray region illustrates the set $\mathcal{B}^{(2)}_2$.

\[\begin{align*}
\Lambda_4 &= U^T A U = \begin{pmatrix} \Lambda & I \\ I & 0 \end{pmatrix}, \quad I = U^T b_0, b_0 = a_0, \\
B_4 &= \begin{pmatrix} \beta_4 P \\ \beta_3 \end{pmatrix}, \quad P = U^T P_0.
\end{align*} \]

In this section, \mathcal{B}_4 is examined, i.e., we seek the parameter conditions describing the set
\[\mathcal{B}_4 = \{ \beta \in \mathbb{R}^4 : \Lambda_4 \preceq B_4 \}. \]

As in Section 3.1, the present section is organized as follows:

(i) Preparations: introduction of several expressions and relations needed for all the following results

(ii) Lemma 4: description of \mathcal{B}_4 based on $(\beta_1, \beta_2) \in \partial \mathcal{B}_2$

(iii) Lemma 5: description of \mathcal{B}_4 based on $(\beta_1, \beta_2) \in \mathcal{B}_2 \setminus \partial \mathcal{B}_2$

(iv) Corollary 2: recapitulation of the admissible regions for (β_1, β_2) for $(\beta_1, \beta_2) \in \mathcal{B}_2$, and $\mu_0 < \beta_1$ based on the results of Lemma 4 and Lemma 5

(v) Remark 5: remarks on an additional constraint for a simplification of implementation based on a numerical point of view and Corollary 2

Preparations. For the sake of a compact notation, we define the difference matrix
\[C_4 = B_4 - A_4 = \begin{pmatrix} C \\ c^T \end{pmatrix}, \]
\[\zeta = \beta_4 P - \beta_0 \]
\[c_0 = \beta_3 - l_0, \]

at what positive semidefinitness of C_4
\[0 \leq y^T C_4 y \quad \forall y' = \begin{pmatrix} x \\ x_0 \end{pmatrix} \in \mathbb{R}^{n+1}, \]

is equivalent to $\Lambda_4 \preceq B_4$. More explicitly, (67) can also be expressed as
\[0 \leq x^T C x + 2x_0 x^T \zeta + c_0 x_0^2 \quad \forall x \in \mathbb{R}^n, x_0 \in \mathbb{R}, \]

which allows to obtain the equivalence relation
\[O \preceq C_4 \iff O \preceq C \iff \zeta \perp \ker(C), \quad \beta_4 P - \beta_0 \perp \ker(C), \]

where C^+ denotes the Moore–Penrose inverse of C, see, e.g., [25] for a derivation based on the Schur complement. It should be noted that for positive semidefinite $C_4 \perp C^+$ is also positive semidefinite such that c_0 necessarily has to be nonnegative. The condition $O \preceq C_4$ is fulfilled for the corresponding $(\beta_1, \beta_2) \in \mathcal{B}_2$ of Section 3. We consider, therefore, the following cases for singular positive semidefinite and positive definite C, i.e., based on Section 3, for $(\beta_1, \beta_2) \in \partial \mathcal{B}_2$ and $(\beta_1, \beta_2) \in \mathcal{B}_2 \setminus \partial \mathcal{B}_2$, respectively.

Lemma 4. If $(\beta_1, \beta_2) \in \partial \mathcal{B}_2$ holds, then the parameter set \mathcal{B}_4 is described by
\[\mathcal{B}_4 = \{ \beta \in \mathbb{R}^4 : \beta \in \mathbb{R}^4 \setminus \mathcal{B}_2 \}. \]

Proof. For a better overview of the following proof, the reader should consider Figure 8 along the following arguments. For $\beta_1, \beta_2 \in \partial \mathcal{B}_2$, C is positive semidefinite and $\det(C) = 0$ holds such that the kernel $\ker(C)$ is nonempty. For sharp majorants β_2 to exist, $C \perp \ker(C)$, cf. (69), describes the critical condition. We notice the following cases:

(1) $\kappa = 1$: the kernel of C is one-dimensional, i.e., $\ker(C) = \text{span} [n]$

(i) In Lemma 1, cf. Remark 1, for

(a) (28) with $n \perp P$ (left border without corner of \mathcal{B}_2) or
(b) (29) with \(n \perp p \) (lower border without corner of \(\mathcal{B}_2 \))

(ii) In Lemma 2, cf. Remark 2 and Figure 2, for
(a) (45) and (46) with \(n \perp p \) (left border without corner of \(\mathcal{B}_2 \) for \(\mu_0 = \Lambda_1 \)),
(b) (48) with \(n \perp p \) (left border without corner of \(\mathcal{B}_2 \) for \(\mu_0 = \Lambda_2 < \Lambda_1 \)), or
(c) (44) and (47) with \(n \perp p \) (lower border without corner of \(\mathcal{B}_2 \))

(iii) In Lemma 3, cf. Remark 3, with \(n \perp p \) on the whole border of \(\mathcal{B}_2 \)

If \(\ker(C) \) is one-dimensional, for majorants \(\mathcal{B}_4 \) to exist

\[
0 = n^T \xi = \beta_4 n^T (p - n^T l),
\]

needs to hold, cf. (69). The condition (71) may or may not be fulfilled in a number of exotic cases since some portions of \(\partial \mathcal{B}_2 \), as, e.g., in (28), have a one-dimensional kernel but with \(p \perp n \).

(a) If \(p \perp n \) holds, cf. Figure 8, then \(\beta_4 \) loses influence in (71) such that (71) can be fulfilled iff \(n \perp l \) holds, which is not controllable by the parameters \(\beta \) but solely dictated by the given data \(A_4 \) and \(P_0 \), with resulting \(p = U^T P_0 \) and

\[
l = U^T a.
\]

If additionally \(n \perp l \) holds, then (71) is fulfilled for all \(\beta_4 \) such that, according to (69), majorants \(\mathcal{B}_4 \) exist if for given \((\beta_1, \beta_2) \in \partial \mathcal{B}_2 \), the remaining parameters \(\beta_3 \) and \(\beta_4 \) are chosen such that

\[
(72)
\]

holds. For instance, the left-hand side term \(\xi^T C^T \xi \) of (72) is quadratic in \(\beta_4 \) and is minimized for

\[
\frac{\partial \xi^T C^T \xi}{\partial \beta_4} = 2 P^T C^T \xi = 0 \implies \beta_4 = \frac{P^T C^T l}{P^T C^T P}
\]

which then yields in (72) the lowest possible \(c_0 \) and corresponding \(\beta_3 \), cf. Figure 8. Naturally, if \(n \perp l \) holds, then (71) is not fulfilled and no majorants exist under the current assumptions for \((\beta_1, \beta_2) \in \partial \mathcal{B}_2 \), cf. Figure 8.

(b) If \(p \perp n \) holds, which is the case, e.g., on the lower border of \(\mathcal{B}_2 \) in Lemma 1 and Lemma 2 (up to \(\beta_4 = \mu_0 \)) and on the whole border of \(\mathcal{B}_2 \) in Lemma 3, then (71) can be solved uniquely for \(\beta_4 \), yielding
Lemma 5. If \((\beta_1, \beta_2) \in \mathbb{S}_2 \setminus \partial \mathbb{S}_2\) holds, then the parameter set \(\mathbb{S}_4\) is described by
\[
\mathbb{S}_4 = \left\{ \beta \in \mathbb{R}^4; \right. \\
(\beta_1, \beta_2) \in \mathbb{S}_2 \setminus \partial \mathbb{S}_2 \\
\wedge \beta_3 \geq l_0 + \left(\beta_4 - l_0 \right)^T \left(\begin{array}{cc} B_2 & -A \end{array} \right)^{-1} \left(\begin{array}{c} B_4 - l_0 \end{array} \right) \right\}.
\]

Proof. For \(\beta_1\) and \(\beta_2\) chosen according to the results of Section 3 truly inside of \(\mathbb{S}_2\), cf. Figure 9, the difference matrix
\[
C = \left(\begin{array}{cc} B_2 - A \end{array} \right)
\]
is positive definite. For \(C\) to be singular, its determinant must vanish. Based on the decomposition
\[
C_4 = C_0 + U V^T, \quad C_0 = \left(\begin{array}{cc} C & 0 \\ 0 & g^T \end{array} \right),
\]
\[
U = \left(\begin{array}{cc} \zeta & 0 \\ c_0 & 1 \end{array} \right), \quad V = \left(\begin{array}{cc} 0 & \zeta \\ 1 & 0 \end{array} \right),
\]
the matrix determinant lemma yields
\[
0 = \det(C_4) = \det(C_0 + U V^T) = \det(C_0 + U V^T) = \det(C)(c_0 - \zeta C^{-1} \zeta),
\]
which, for \(c_0 = \beta_3 - l_0\) is fulfilled iff
\[
\beta_3 = l_0 + \zeta C^{-1} \zeta.
\]

This result is in accordance with (69) and delivers a singular positive semidefinite \(C\). The parameter \(\beta_4\) is free and coupled to the minimum \(\beta_1\) given in (82) through the positive quadratic term \(\zeta C^{-1} \zeta\) where \(\zeta = \beta_4 - l_0\). By demanding stationarity of \(\zeta C^{-1} \zeta\) in respect to \(\beta_4\), one obtains
\[
\frac{\partial \zeta C^{-1} \zeta}{\partial \beta_4} = 2 \beta_4 C^{-1} \zeta = 0 \Rightarrow \beta_4 = \frac{C^{-1} l_0}{\zeta}.
\]

Due to the positive definiteness of \(C\), the choice (83) \(\beta_4 C^{-1} \zeta = 0\) induces a minimum of \(\beta_3\) in (82):
\[
\beta_3 = l_0 + \left(\beta_4 - l_0 \right)^T C^{-1} \zeta = l_0 - \zeta C^{-1} \zeta
\]
cf. Figure 9.

Corollary 2. For any point \((\tilde{\beta}_1, \tilde{\beta}_2) \in \partial \mathbb{S}_2\) with \(\mu_0 < \hat{\beta}_1\), the family of admissible \((\beta_1, \beta_2)\) points generated with \((\tilde{\beta}_1, \tilde{\beta}_2) \in \partial \mathbb{S}_2\) and \(\beta_2 \geq \beta_2\) is described by parabolas with common minimum and argument of it. The argument of the minimum of all parabolas is given by the unique admissible value \(\beta_4\) at \((\tilde{\beta}_1, \tilde{\beta}_2) \in \partial \mathbb{S}_2\).

Proof. Consider Figure 10. For any \((\tilde{\beta}_1, \tilde{\beta}_2) \in \partial \mathbb{S}_2\), e.g., the point depicted in Figure 10 marked with a triangle, based on Remark 1, Remark 2, and Remark 3, we know that, for \(\beta_1 > \mu_0\) on the lower boundary of \(\mathbb{S}_2\), the relations \(\kappa = 1\), ker(C) = \(\{n\}\), \(n = D_1^{-1} p\), and \(n \perp p\) hold. Based on the proof of Lemma 4, admissible \((\beta_1, \beta_4)\) are described by the unique admissible \(\beta_4\) given in (74) and inequality (75), cf. the branch for \(\kappa = 1\) and \(n \perp p\) in Figure 8. For points \((\tilde{\beta}_1, \tilde{\beta}_2) \in \partial \mathbb{S}_2\) with \(\beta_2 > \beta_2\), the corresponding
admissible domains for \((\beta_3, \beta_4)\) are described through Lemma 5, at what the stationary point of these parabolas is given at \(\beta_4^\text{Lemma 4}\) fulfilling (83). The unique admissible \(\beta_4^\text{Lemma 4}\) given in (74) and the stationary point \(\beta_4^\text{Lemma 5}\) given in (83) are identical for \((\beta_1, \beta_2) \in \partial B_2\) and \((\beta_1, \beta_2) \in \partial B_3\) with \(\beta_2 > \beta_3\). This is shown as follows. Based on the kernel vector \(n = D^{-1}p\) for the regular \(D = \beta_1 I - \Delta\), the inverse of the difference matrix \(C\) is expressed with the Sherman–Morrison formula as

\[
C^{-1} = \left(D + \beta_2 p p^T\right)^{-1} = D^{-1} - \beta_2^{-1} D^{-1} p p^T D^{-1} p
\]

\[
\quad = D^{-1} - \beta_2^{-1} \frac{n n^T}{1 + \beta_2 p^T n}.
\]

It should be emphasized again that, in (85), \(\beta_2\) is chosen truly in the interior of \(B_2\), but \(C^{-1}\) can always be represented with the kernel vector \(n = D^{-1}p\) obtained at \((\beta_1, \beta_2) \in \partial B_2\). The relation (85) implies for the stationary point \(\beta_4^\text{Lemma 5}\) given in (83)

\[
\beta_4^\text{Lemma 5} = \frac{\sqrt{1 - \beta_2 \left(p^T n \left(1 + \beta_2 p^T n\right)\right)}}{p^T n} = \frac{\sqrt{1 - \beta_2 \left(p^T n \left(1 + \beta_2 p^T n\right)\right)}}{p^T n} \equiv \beta_4^\text{Lemma 4},
\]

such that \(\beta_4^\text{Lemma 4}\), cf. (74), and \(\beta_4^\text{Lemma 5}\) are identical, as depicted in Figure 10. The corresponding values of the minima \(\beta_3^\text{Lemma 5}\) = \(l_0 - \frac{1}{\sqrt{C^{-1} C}}\) \(\xi\) given in (84) of the parabolas are identical to the minimum \(\beta_3^\text{Lemma 4}\) = \(l_0 + \frac{1}{\sqrt{C^{-1} C}}\) \(\xi\) of (75). This is shown as follows. First, the minimum of the parabolas \(\beta_3^\text{Lemma 5}\) = \(l_0 - \frac{1}{\sqrt{C^{-1} C}}\) \(\xi\) requires the computation of \(C^{-1}\) \(\xi\). Hereby, it is useful to note that since \(\beta_4^\text{Lemma 4}\) = \(\beta_4^\text{Lemma 5}\) holds, the vector \(\xi = \beta_4^\text{Lemma 5}\ p - l = \beta_4^\text{Lemma 4}\ p - l\) is orthogonal to \(n\), i.e., \(\xi^T n = 0\), cf. (71) corresponding to Lemma 4. Based on the Sherman–Morrison formula for \(C^{-1}\) (85) and the property \(\xi \perp n\), the minimum \(\beta_3^\text{Lemma 5}\), cf. (84), is simplified as follows:

\[
\beta_3^\text{Lemma 5} = l_0 - \frac{1}{\sqrt{C^{-1} C}}\xi = l_0 - \frac{1}{\sqrt{C^{-1} C}}\xi
\]

(87)

Now, concerning the minimum \(\beta_4^\text{Lemma 4}\) = \(l_0 + \xi^T C^+ \xi\) for \((\beta_1, \beta_2) \in \partial B_2\) and \(\beta_4^\text{Lemma 4}\), cf. (75), the Moore–Penrose inverse \(C^+ = (D + \beta_2 p p^T)^+\) is required. Based on [26] (cf. Theorem 6 therein), \(C^+\) can be expressed as

\[
(D + \beta_2 p p^T)^+ = D^{-1} - \frac{1}{\sqrt{n^T D^{-1} + p^T D^{-1} p - (p^T p) n^T n}}.
\]

(88)

Consideration of \(\xi \perp n\), cf. Lemma 4, yields

\[
\beta_3^\text{Lemma 4} = l_0 + \xi^T C^+ \xi = l_0 + \xi^T D^{-1} \xi
\]

\[
= l_0 + \xi^T \left(\beta_4^\text{Lemma 4} n - D^{-1} l\right) = l_0 - \frac{1}{\sqrt{n^T D^{-1} + p^T D^{-1} p - (p^T p) n^T n}}.
\]

(89)

such that the minima of the parabolas (87) and (89) are identical, as depicted in Figure 10.

Remark 5. It should be noted that in view of future optimization problems over \(B_4\), from a numerical point of view, all tedious cases on the left border of \(B_2\) with \(\mathcal{P} \perp \ker(C)\) and \(\kappa \geq 2\) for Lemma 1 and Lemma 2 can be avoided easily. This is achieved through Corollary 2 and by imposing the additional constraint

\[
\mu_0 \leq \beta_1, \quad \mu_0 = \mu_0 + \delta, 0 < \delta \ll 1
\]

in standard numerical optimization procedures as a limit constraint for \(\beta_1\) with a shifted constant \(\mu_0\) slightly greater than \(\mu_0\) for some user-defined \(\delta\). The shifted condition (90) and Corollary 2 allow for a straightforward and simple implementation of the corresponding results of Lemma 4 and Lemma 5. This approach has been considered for the implementation offered in [22].

4.2. Majorization of a Set of Matrices. As in the two-parametric case, for a given vector \(p_{\mathcal{A}} \in \mathbb{R}^n\) and a given matrix set

\[
\mathcal{A} = \left\{A_{1}^{(1)}, \ldots, A_{1}^{(N)}\right\}, \quad A_{1}^{(i)} \in \mathcal{S}_{1}, \forall A_{1}^{(i)} \in \mathcal{A},
\]

(91)

with as in (60) partitioned matrices, we define the sets

\[
\mathcal{A}_{1}^{(i)} = \left\{p \in \mathbb{R}^n: \left[A_{1}^{(i)} p\right] \leq \left[B_{1}^{(i)} p\right] \forall A_{1}^{(i)} \in \mathcal{A}\right\}.
\]

(92)

The majorant set of \(\mathcal{A}\) is the corresponding intersection of all \(\mathcal{A}_{1}^{(i)}\):

\[
\mathcal{A}_{1}^{(i)} = \bigcap_{i=1}^{N} \mathcal{A}_{1}^{(i)}.
\]

(93)

5. Application to Semidefinite Programming

For a given finite matrix set

\[
\mathcal{A} = \left\{A^{(1)}, \ldots, A^{(N)}\right\}, \quad A \in \mathcal{S}, \forall A \in \mathcal{A},
\]

(94)
consider the majorant set \mathcal{B}_d^f of \mathcal{A} for some parametrized $\mathcal{B}(\beta) \in \delta$, with parameter vector $\beta \in \mathbb{R}^d$

$$\mathcal{B}_d^f = \{ \beta \in \mathbb{R}^d : \Lambda \leq \mathcal{B}(\beta) \forall \Lambda \in \mathcal{A} \} .$$

The objective is now the minimization of a function $\varphi : \mathbb{R}^d \to \mathbb{R}$ over \mathcal{B}_d^f:

$$\min_{\beta \in \mathcal{B}_d^f} \varphi(\beta).$$

If the function $\mathcal{B}(\beta)$ is linear in the parameter β, which is presumed from this point on, then \mathcal{B}_d^f is nonempty, unbounded, and convex, and the minimization problem (96) is a classical semidefinite programming problem (see, e.g., [7]) such that it may be tackled with several numerical approaches from literature (see, e.g., [8, 10, 12]). For continuous and convex φ, the minimum, if it exists, may be located in the interior of \mathcal{B}_d^f or on its boundary $\partial \mathcal{B}_d^f$. Therefore, an unconstrained optimization should always be performed first. If its solution is not an element of the interior of \mathcal{B}_d^f, then a constrained optimization problem may be considered to find the optimum on $\partial \mathcal{B}_d^f$, i.e., among the sharp Löwner majorants. It should be remarked that convex functions φ can be formulated for corresponding convex \mathcal{B}_d^f such that no minimum exists. A clear example for such a case is constructed based on the results of Section 3 for a single matrix. Assume the two-parametric form $\mathcal{B} = \mathcal{B}_2^f$ of Section 3 and choose $\Lambda = \Lambda_2$ and p_0 as given in (58) and (59) such that p_0 is not an eigenvector of Λ and $\Lambda_2 < \mu_2 < \Lambda_2$ holds. This implies an instance of Lemma 3, yielding the region $\mathcal{B}_d^f = \mathcal{B}_2^f$ as depicted in Figure 6 for $\mathcal{B}_2^{\text{(2)}}$. Now, consider the linear function $\varphi(\beta) = \beta^T \varphi_0$ with constant gradient $\varphi_0 \in \mathbb{R}^2$. An example is displayed in Figure 11(a) with $\varphi_0 = (3,1)^T$.

Regarding Figure 11(a), it becomes immediately clear that a minimum of the convex $\varphi(\beta)$ exists in the current \mathcal{B}_2^f. But, this is not always the case for arbitrary φ since, e.g., for $\varphi_0 = (0,1)^T$ values on the lower boundary of \mathcal{B}_2 continuously decrease due to the unboundedness of \mathcal{B}_2. In the examples shown in Figure 11. These examples can be reproduced with demo3.m

in [22]. The global minimum for instances of Lemma 3, as the examples depicted in Figure 11, is obtained by solving the single nonlinear equation for β_1.

$$g^T \varphi_0(\beta_1) = 0,$$

$$g = \left(\frac{\partial \varphi}{\partial \beta_1}, \frac{\partial \varphi}{\partial \beta_2} \right)^T,$$

$$t = \left(\frac{\partial \varphi_{\text{min}}}{\partial \beta_1} \right)^T,$$

based on the orthogonality of the gradient g of φ and the tangent t of the curve $(\beta_1, \beta_2^{\text{min}})$ for $\beta_1 > \mu_2$. An initial guess can be generated with the trivial majorant, i.e., $\beta_1 = \Lambda_2$, such that standard numerical approaches solving the nonlinear equation for β_1 can be used, independently of the dimension of the given matrix Λ.

As mentioned in Section 1, the presented results can also be used in the context of the zeroth-order bounds of elasticity. The upper zeroth-order bound of, e.g., graphite, see [16], with stiffness matrix given in GPa (10^9N/m^2) in normalized Voigt notation, see, e.g., [27],

$$\begin{pmatrix}
1060 & 180 & 15 & 0 & 0 & 0 \\
180 & 1060 & 15 & 0 & 0 & 0 \\
15 & 15 & 73 & 2 & 0 & 0 \\
0 & 0 & 0 & 9 & 0 & 0 \\
0 & 0 & 0 & 9 & 0 & 0 \\
0 & 0 & 0 & 0 & 880 & 0
\end{pmatrix}
$$

and dimensionless vector p_0, given by

$$p_0 = (1/\sqrt{3}, 1/\sqrt{3}, 1/\sqrt{3}, 0, 0, 0) \in \mathbb{R}^6,$$

were defined in [16] through the minimization of $\varphi = \text{tr}(\mathcal{B}^T \mathcal{B}) = 6\beta_1 + \beta_2$, where β_1 and β_2 are also given in GPa. In engineering, the bulk modulus K and the shear modulus G are related to β_1 and β_2 by $K = (\beta_1 + \beta_2)/3$ and $G = \beta_1/2$. The case for graphite yields

$$\{ \Lambda_1, \Lambda_2, \Lambda_3, \Lambda_4, \Lambda_5, \Lambda_6 \} = \left\{ \frac{1}{4} \left(\sqrt{5800849} + 2553 \right), 880, 880, \right\} \text{GPa},$$

$$\frac{1}{4} \left(2553 - \sqrt{5800849} \right), 9, 9 \} \text{GPa},$$

$$\mu_0 = 880 \text{GPa}, \quad c_0 = -\frac{1387}{912330} \text{GPa},$$

i.e., an instance of Lemma 2.2. This shows that, in general, Lemma 2.1 and Lemma 2.2 are also relevant for real-world
problems and practical applications. In Lemma 2.2, \(\beta_1 \in [\mu_0, \infty) \) is considered, and the corner point \((\beta_1, \beta_2) = (\mu_0, -(c_0)^{-1}) \in \partial \mathcal{B}_2 \) yields the global minimum for \(\varphi \), see Figure 12. This result is the exact same upper zeroth-order bound of graphite computed by [16] (cf. Table 3 of [16], based on the relations for the bulk modulus \(K = (\beta_1 + \beta_2)/3 = 2132890/4161 \) GPa \(\approx 512.591 \) GPa and shear modulus \(G = \beta_1/2 = 440 \) GPa). Compared to [16] and the later development by [17, 19], the present work does not require special treatment for the computation of the minimum of \(\varphi \) over \(\mathcal{B}_2 \) since the condensed explicit conditions describing \(\partial \mathcal{B}_2 \) are now available for evaluation.

The results of the present work may also be applied to more complex semidefinite programming problems in higher dimensions as follows. For a given vector \(\underline{p}_0 \in \mathbb{R}^n \), either the case for \(\mathcal{S}_B = \mathcal{S}_{n+1} \) in (94) with

\[
\mathcal{B} = \mathcal{B}^0_2 \Rightarrow \mathcal{B}^{nf}_d = \mathcal{B}^{nf}_4,
\]

(101)

or the case \(\mathcal{S}_B = \mathcal{S}_{n+1} \) with

\[
\mathcal{B} = \mathcal{B}^0_4 \Rightarrow \mathcal{B}^{nf}_d = \mathcal{B}^{nf}_4,
\]

(102)

can be considered. For (101), minimizers on the border of the convex set \(\mathcal{B}^{nf}_d = \mathcal{B}^{nf}_2 \) can be determined without much effort based on the results of Section 3. For (102), minimizers can be searched based on the results presented in Section 4. The definition of the majorant of a set of symmetric matrices is nontrivial in the four-parametric version. First, the set \(\mathcal{B}^{nf}_2 \) should be identified. Then, three options exist: (i) pick critical \((\beta_1, \beta_2) \in \partial \mathcal{B}^{nf}_2 \) and choose \(\beta_4 \) carefully (see Lemma 4) or (ii) select subcritical \((\beta_1, \beta_2) \in \mathcal{B}^{nf}_2 \setminus \partial \mathcal{B}^{nf}_2 \) leading to unconstrained \(\beta_4 \in \mathbb{R} \) and \(\beta_3 \) constrained by the lower estimate (82) (see Lemma 5). These constraints can be put into two scalar equations which allow for efficient implementation and fast numerical treatment (see the following examples and accompanying open-source software).

5.1. Example: Four-Parametric Optimization Majorizing a Single Matrix. We consider the semidefinite programming problem (96) for a single matrix \(\Lambda_1 \) and the four-parametric form \(\mathcal{B}_4 \) of Section 4. A matrix \(\Lambda_1 \in \mathcal{S}_{11} \) and a vector \(\underline{p}_0 \in \mathbb{R}^{10} \) with \(\Lambda_1 = -11.3075, \Lambda_1 = 4.7144, \) and \(\mu_0 = 4.206 \) are considered in order to optimize the Frobenius norm

\[
\varphi(\beta) = \| \underline{B}_4(\beta) \|_F = \sqrt{n \beta_1^2 + \beta_2^2 + \beta_3^2 + 2\beta_4^2}, \quad n = 10.
\]

(103)

Note that the unconstrained minimum of this function is obtained at \(\beta = 2 \notin \mathcal{B}_4 \). Hence, the constrained minimum

\[
\varphi(\beta) = \| \underline{B}_4(\beta) \|_F = \sqrt{n \beta_1^2 + \beta_2^2 + \beta_3^2 + 2\beta_4^2}, \quad n = 10.
\]

(103)
will be found on the boundary $\partial \mathcal{B}_4$. The explicit data of the current problem can recovered based on
demo4.m
in the provided software [22].

The results of Lemma 1–Lemma 4 for the explicit construction of sharp majorants may be applied as follows for the generation of an initial guess for the future optimization over \mathcal{B}_4 for a single matrix:

1. Generate a discrete point set I^h_1 from the interval $I_1 = [\mu_0, \mu_{\text{max}}]$ with μ_0 as in (90) (e.g., through an equidistant discretization of I_1)
2. Compute the corresponding $\beta_2 (\beta_1) = \beta_2^\min (\beta_1)$ for each $\beta_1 \in I^h_1$
3. Use Lemma 4 noting $\kappa = 1$ and $\rho \perp \ker (\bar{C}) \forall \beta_1 \in I^h_1$
 a. Compute the corresponding $\beta_1 (\beta_1) = \beta_4 (\beta_1, \beta_2 (\beta_1))$ with (74)
 b. Compute the corresponding $\beta_3 (\beta_1) = \min \beta_3$ in (75)
4. Evaluate objective function $\tilde{\varphi}(\beta_1) = \varphi (\beta_2 (\beta_1))$ accordingly, and return critical β_1 yielding the minimum value for $\beta_1 \in I^h_1$

Execution of the just described simple approach yields a critical $\beta_1^\star = 4.6028$ implying
$$
\varphi (\beta_1^\star) = 16.1697.
$$

The straightforward implementation of the results of Lemma 4 and Lemma 5 simplified through the additional constraint of Remark 5 yields for the numerical minimization
$$
\beta_2^\star = (4.6302, 0.3030, 4.6269, -1.1840) \in \partial \mathcal{B}_4,
\varphi (\beta_2^\star) = 15.4495 < \varphi (\beta_1^\star).
$$

Notably, β_2^\star induces two zero eigenvalues in \bar{C}, while β_1^\star leads to a one-dimensional kernel. Algorithmically, the optimization gets away with two nonlinear inequality constraints independently of the dimension n of the problem, see
demo4.m
in [22] for details and reproduction of the results of this example.

5.2. Example: Four-Parametric Optimizations Majorizing a Set of Matrices. Next, we consider the semidefinite programming problem (96) for a finite matrix set $\mathcal{A} = \{A_1^{(\alpha)} \ldots, A_N^{(\alpha)}\}$ with $N = 5$ and $n = 10$, β_2^α and the Frobenius norm given in (103). The explicit data of the current problem can be recovered based on
demo5.m
in the provided software [22].

The results of Lemma 1–Lemma 5 for the explicit construction of sharp majorants may be used in order to generate an initial guess as follows:

1. Generate a discrete point set I^h_1 from the interval $I_1 = [\mu_0, \mu_{\text{max}}]$ with $\mu_0 > \max_{i=1 \ldots N} \{\mu_{\alpha} \text{ corresponding to } A_1^{(\alpha)}\}$ (e.g., through an equidistant discretization of I_1)
2. Compute $\beta_2 (\beta_1) = \max_{i=1 \ldots N} \{\beta_2^\min (\beta_1) \text{ corresponding to } A_1^{(\alpha)}\}$ for $\beta_1 \in I^h_1$ and build discretized curve $\mathcal{C} = \{(\beta_1, \beta_2) \in \mathcal{B}_2^d : \beta_1 \in I^h_1, \beta_2 = \beta_2 (\beta_1)\}$
3. Shift \mathcal{C} by some small positive Δ into the interior of \mathcal{B}_2^d and rewrite $\mathcal{C} = \{(\beta_1, \beta_2) \in \mathcal{B}_2^d \setminus \partial \mathcal{B}_2^d \land (\beta_1, \beta_2) \in \mathcal{C}\}$
4. Use Lemma 5:
 a. Set $\beta_4 (\beta_1) = 0 \forall \beta_1 \in I^h_1$
 b. Compute corresponding $\beta_3 (\beta_1) = \max_{i=1 \ldots N} \{\beta_3\}$ according to (82) for $\Delta^{(\alpha)}$ with $(\beta_1, \beta_2) \in \mathcal{C}$
5. Evaluate $\varphi ((\beta_1, \beta_2, \beta_3 (\beta_1), \beta_4 (\beta_1))$ for all $\beta_1 \in I^h_1$
6. Go to 3 (i.e., shift \mathcal{C} again by Δ), execute 4 and 5, and if the new minimum is lower, repeat 3–5; otherwise, return minimum

Execution of this simple approach yields for the considered data, the critical value $\beta_1^\star = 8.2100$, and accordingly,
$$
\beta_2^\star = (8.2100, 1.9358, 3.8857, 0), \quad \varphi (\beta_2^\star) = 26.3229.
$$

The straightforward implementation of the results of Lemma 4 and Lemma 5 simplified through the additional constraint
$$
\mu_\alpha \leq \beta_1, \quad \mu_\alpha = \delta + \max_{i=1 \ldots N} \{\mu_\alpha \text{ corresponding to } A_1^{(\alpha)}\},
$$
as motivated in Remark 5, yields the minimum of the numerical minimization
$$
\beta_2^\star = (7.3810, 0.7335, 6.5763, -2.1962), \quad \varphi (\beta_2^\star) = 24.4586 < \varphi (\beta_1^\star).
$$

Both β_1^\star and β_2^\star yielded a difference matrix \bar{C} with only one vanishing eigenvalue. As in the previous example, the optimization gets away with two nonlinear inequality constraints per matrix $A_\alpha \in \mathcal{A}$ independently of the dimension n of the matrices $A_\alpha \in \mathcal{A}$, see
demo5.m
in [22] for details and reproduction of the results of this example.
6. Conclusions

Closed form expressions for the representation of two-parametric Löwner majorants based on a rank-one perturbed scaled identity matrix are presented in Section 3. Different scenarios accounting for the multiplicity of eigenvalues and for the inclination of the vector \(p \) with respect to the eigenbasis of the matrix under consideration are formulated. The majorization of a set of symmetric matrices \(A/L \), yielding the global majorant set \(B/L \), is then obtained by an intersection of the individual admissibility domains. Most importantly, the intersection is always unbounded, and thus, nonempty. Analogous results are obtained for the four-parametric case illustrated in Section 4, at what the explicit conditions defining the majorant set, with \(\beta_3 \) and \(\beta_4 \) chosen accordingly, allow for efficient algorithms, cf. Corollary 2 and Remark 5. Examples have been presented for the two- and four-parametric cases. The application of these results in semidefinite programming problems has been sketched in Section 5. The results of the present work also find application in materials science and engineering in the field of materials design of linear elastic and linear thermo-elastic properties. So-called zeroth-order bounds of linear material properties are determined through optimization problems as the one described in Section 5, see, e.g., [17] or [19], such that the results of the present work substantially simplify the computation of the zeroth-order bounds and the related automated selection of material of large material databases. The data and the software for reproduction of the results are available via GitHub, see [22].

Data Availability

Open-source MATLAB software is provided under the terms of the GNU GPL v3. The software is made available through GitHub, cf. [22].

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy-EXC-2075 (project number 390740016), within the Heisenberg Program-FR2702/8 (project number 406068690) and within the Emmy Noether Programm-FR2702/6 (project number 257987586). M. Fernández and F. Fritzen gratefully acknowledge insightful correspondence with Prof. Henry Wolkowicz concerning the semidefinite programming problems.

References

[1] K. Löwner, “Über monotone Matrixfunktionen,” Mathematische Zeitschrift, vol. 38, no. 1, pp. 177–216, 1934.
[2] J. K. Baksalary, F. Pukelsheim, and G. P. H. Styan, “Some properties of matrix partial orderings,” Linear Algebra and Its Applications, vol. 119, pp. 57–85, 1989.
[3] J. Hauke and A. Markiewicz, “On orderings induced by the Löwner partial ordering,” Applications Mathematicae, vol. 22, no. 2, pp. 145–154, 1994.
[4] J. Groh, “Löwner partial ordering and space preordering of Hermitian non-negative definite matrices,” Linear Algebra and Its Applications, vol. 326, no. 1–3, pp. 215–223, 2001.
[5] X. Zhan, Matrix Inequalities, Vol. 1790, Springer, Berlin, Germany, 2002.
[6] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, UK, 2013.
[7] L. Vandenberghe and S. Boyd, “Semidefinite programming,” SIAM Review, vol. 38, no. 1, pp. 49–95, mar 1996.
[8] H. Wolkowicz, R. Saigal, and L. Vandenberghe, “Handbook of semidefinite programming,” in Proceedings of the International Series in Operations Research & Management Science, Springer, Boston, MA, USA, 2000.
[9] C. Helmberg, “Semidefinite programming,” European Journal of Operational Research, vol. 137, no. 3, pp. 461–482, 2002.
[10] M. F. Anjos and J.-B. Lasserre, Handbook on Semidefinite, Conic and Polynomial Optimization, Springer, Berlin, Germany, 2012.
[11] W. Gómez, “Linear and nonlinear semidefinite programming,” Pesquisa Operacional, vol. 34, no. 3, pp. 495–520, 2014.
[12] H. Yamashita and H. Yabe, “A survey of numerical methods for nonlinear semidefinite programming,” Journal of the Operations Research Society of Japan, vol. 58, no. 1, pp. 24–60, 2015.
[13] D. Drusvyatskiy and H. Wolkowicz, “The many faces of degeneracy in conic optimization,” Foundations and Trends in Optimization, vol. 3, no. 2, pp. 77–170, 2017.
[14] D. Drusvyatskiy, G. Li, and H. Wolkowicz, “A note on alternating projections for ill-posed semidefinite feasibility problems,” Mathematical Programming, vol. 162, no. 1-2, pp. 537–548, 2017.
[15] E. Kröner, “Bounds for effective elastic moduli of disordered materials,” Journal of the Mechanics and Physics of Solids, vol. 25, no. 2, pp. 137–155, 1977.
[16] J. C. Nadeau and M. Ferrari, “On optimal zeroth-order bounds with application to Hashin-Shtrikman bounds and anisotropy parameters,” International Journal of Solids and Structures, vol. 38, no. 44-45, pp. 7945–7965, 2001.
[17] M. Lobos and T. Böhlke, “On optimal zeroth-order bounds of linear elastic properties of multiphase materials and application in materials design,” International Journal of Solids and Structures, vol. 84, pp. 40–48, 2016.
[18] M. Lobos, T. Yuzbasioğlu, and T. Böhlke, “Homogenization and materials design of anisotropic multiphase linear elastic materials using central model functions,” Journal of Elasticity, vol. 128, no. 1, pp. 17–60, 2017.
[19] M. Lobos Fernández, “Homogenization and materials design of mechanical properties of textured materials based on zeroth-, first- and second-order bounds of linear behavior,” Doctoral thesis, Karlsruhe Institute of Technology, Karlsruhe, Germany, 2018.
[20] J. R. Willis, “Variational and related methods for the overall properties of composites,” Advances in Applied Mechanics, vol. 21, pp. 1–78, 1981.
[21] G. W. Milton, The Theory of Composites, vol. 6, Cambridge University Press, Cambridge, UK, 2002.
[22] M. Fernández and F. Fritzen, GitHub Repository LoewnerMajorant, https://github.com/EMMA-Group/LoewnerMajorant, 2018.
[23] D. A. Harville, Matrix Algebra from a Statistician’s Perspective, Springer, New York, NY, USA, 1997.
[24] R. Vrabel, "A note on the matrix determinant lemma," *International Journal of Pure and Applied Mathematics*, vol. 111, no. 4, pp. 643–646, 2016.

[25] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, *Linear Matrix Inequalities in System and Control Theory*, Society for Industrial and Applied Mathematics, 1994.

[26] C. D. Meyer Jr., "Generalized inversion of modified matrices," *SIAM Journal on Applied Mathematics*, vol. 24, no. 3, pp. 315–323, 1973.

[27] S. C. Cowin, "Properties of the anisotropic elasticity tensor," *The Quarterly Journal of Mechanics and Applied Mathematics*, vol. 42, 1989.