Seasonal Evaluation of the Physicochemical Properties of Some Boreholes Water Samples in Mile 50, Abakaliki Ebonyi State

Eziafakaego Mercy Ibo†, M. U Orji† and Odera Richard Umeh†

†Department of Applied Microbiology and Brewing, Nnamdi Azikiwe University, P.M.B. 5025, Awka, Nigeria.

Authors’ contributions

This work was carried out in collaboration among all authors. Author IEM designed the study, performed the statistical analysis, wrote the protocol and wrote the first draft of the manuscript. Authors OMU and UOR managed the analyses of the study. Author IEM managed the literature searches. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/SAJRM/2020/v6i130139
Editor(s):
(1) Dr. Chamari Hettiarachchi, University of Colombo, Sri Lanka.
Reviewers:
(1) Vittoria Grillini, University of Ferrara, Italy.
(2) R. D. Mavunda, University of Johannesburg, South Africa.
Complete Peer review History: http://www.sdiarticle4.com/review-history/55290

Received 12 January 2020
Accepted 19 March 2020
Published 11 April 2020

Original Research Article

ABSTRACT

Water as excellent natural resource is meant to be of good quality to prevent the outbreak of water-borne diseases. The physical, chemical and biological qualities of water constitute groundwater quality. Water of poor physicochemical quality may have adverse effects on human health and the economy. The physicochemical evaluation of fifteen borehole waters in mile 50 Abakaliki was carried out during the rainy and dry seasons to determine their suitability for drinking using standard analytical methods. During the rainy season, the temperature was 28-30°C; pH, 6.63-8.51; dissolved solids, 1.04-17.01 mg/l; total suspended solids, 0.09-0.98 mg/l; total solids, 1.14-17.99 mg/l; electrical conductivity, 107-328 us/cm; turbidity, 1.27 NTU-2.60 NTU; total alkalinity, 27.68-82.23 mg/l; total hardness, 70.20-150.84 mg/l; total chloride, 67.30-124.14 mg/l; calcium hardness, 24.50-53.58 mg/l; magnesium hardness, 39.40-97.26 mg/l; sulphate, 30.03-61.88 mg/l; phosphate, 0.25-6.71 mg/l; potassium, 0.00-8.04 mg/l; nitrate, 1.16-8.03 mg/l; iron, 0.00-0.26 mg/l; lead, 0.00-0.05 mg/l; cadmium, 0.00-0.04 mg/l; copper, 0.00-0.23 mg/l; chromium, 0.00-0.05 mg/l; and zinc, 0.07-2.15 mg/l. During the dry season the temperature was 27-29°C; pH, 6.40-7.75;
1. INTRODUCTION

Water is an excellent natural resource in the entire world and a critical bond to all spheres. The quality of drinking water is a powerful environmental determinant of health [1]. Water plays an indispensable role in sustenance of life and it is a key pillar of health determinant, since 80% of diseases in developing countries are due to lack of good quality water [2]. Groundwater is the major source of water supply for agriculture, industrial, and domestic activities. Nearly 90% and 50% of water use in rural and urban areas, respectively, is based on groundwater [3]. However, currently, serious groundwater crisis is prevailing due to contamination [4]. Water that is meant for drinking should be of high quality.

Groundwater sources are getting contaminated due to human interference, such as waste dumping, effluent and sewage discharge without proper treatment. Municipal and industrial wastes, application of fertilizers, herbicides, pesticides, burning of coal, leaching from mining activity further add to contamination of groundwater. These different sources of contamination may influence physical, chemical, and biological variables of groundwater [5]. Physicochemical contaminants include heavy metals, trace metals, total suspended solids, and turbidity and so on [6].

Also, water may contain toxic inorganic chemicals which may cause either acute or chronic health effect. Acute effects include nausea, lung irritation, skin rash, vomiting and dizziness, sometime death usually occurred. Chronic effect, like cancer, birth defects, organs damage, disorder of the nervous system and damage to the immune system are usually more common [7]. Inorganic chemicals like lead may produce adverse health effect which include interference with red blood cell chemistry, delay in normal physical and mental development in babies and young children, slit deficit in attention span, hearing and learning abilities of children and slight increase in blood pressure in some adults. Also, presence of chromium in drinking water had been shown to result in chronic toxic effect (including liver and kidney damage, internal haemorrhage and respiratory disorders) in animal and human by ingestion. Although, the sources of metal contaminants of the underground water are uncertain, it may likely be due to natural process and anthropogenic activities [7]. In addition, rural water also have excessive amount of nitrite from microbial action on agricultural fertilizer, when ingested nitrite compete for oxygen in the blood [8].

The unreliable water supply within Abakaliki has forced residents to increasingly depend on shallow dug boreholes as the source of water for drinking and domestic use. These boreholes are dug shallow wells connected to overhead tank and pumped with sumo machine many of them are located close to household drainage systems and septic tanks and are therefore susceptible to contamination. A good knowledge of the physicochemical properties of water meant for drinking and domestic purposes is crucial to avert a possible health hazard, therefore in this study; the physicochemical properties of some borehole waters in mile 50 Abakaliki were evaluated.

2. METHODS

2.1 Study Area

Abakaliki is the capital city (urban area) and the largest town of the present day Ebonyi State in South-Eastern Nigeria, located 64 kilometres Southeast of Enugu. The inhabitants are primarily members of the Igbo states with a population of about 79,284. It is predominated by
un- and semi-enlightened traders and farmers, it is known for its local farming, fishing, lead, zinc, salt and limestone mining.

2.2 Collection of Samples

Water samples from fifteen borehole waters in 1.SDP, 2.Ebonyi voice, 3. Mile 50 layout, 4.NEPA junction, 5.pastoral centre, 6.Isiuke lane 1, 7.Isiuke lane 2, 8.Ibiam borehole, 9.Ogodo borehole, 10.Alugbara Eze, 11.Amaike Aba road borehole, 12.Obasi borehole 13.Eze and bros junction,14. Oroeke market and 15.Nkwo Agu boreholes were evaluated for physicochemical properties during the rainy and dry seasons. Two-litre sterile containers with screw caps were used to collect the samples. The containers were initially washed and sterilized using an oven at 160°C for one hour. The containers were also rinsed with the water samples at the point of collection. The samples were transported to the Biotechnology Research Centre, Awka within four hours for analysis.

Physicochemical Analysis: The physicochemical characteristics evaluated were temperature, pH, electrical conductivity, turbidity, total dissolved solids, total suspended solids, total solids, total alkalinity, total hardness, total chloride, dissolved oxygen, calcium hardness, magnesium hardness, sulphate, phosphate, carbonate, bicarbonate, nitrate, potassium, iron, lead, cadmium, copper, mercury, zinc, and chromium. The evaluation was carried out using standard analytical methods [9].

Determination of pH: The pH meter was calibrated using the buffer solutions 4.01, 7.0 and 10.01 as directed by the manufacturer. Samples were introduced into 250 ml beakers and the meter censor was submerged into the samples to determine the pH (in-situ) it was then allowed to stabilize before recording the value. It was then repeated again and the average recorded.

Determination of Temperature: Temperature was measured in-situ with a hand held mercury-in-glass thermometer. The thermometer (or the probe) was rinsed with a portion of the sample and discarded the thermometer was then immersed into a 250ml beaker containing the borehole water sample until the liquid column in the thermometer stopped moving (approximately 1 minute, or longer if the temperature reading has not become constant). Then the reading was recorded.

Determination of Electrical Conductivity: The conductivity meter was calibrated using the buffer solutions 1413 µS/cm and 12.88 mS/cm as directed by the manufacturer. The meter censor was submerged into each sample in 250 ml beaker to determine conductivity individually. This was done in-situ Values on the display kept varying until a stabilized value was obtained and recorded.

Fig. 1. Satellite imagery of the study area
Determination of Total Dissolved solid (Gravimetric method): The measuring cylinder was washed, dried using an oven at 105°C, cooled in the desiccator, the initial weight of the filter paper was noted after which the samples were measured out, homogenized and 50 mls of sample was dispensed into the measuring cylinder. The samples were filtered using the weighed filter paper. The filter papers containing the residue were dried in the oven at 105°C then cooled in the desiccators and the weights noted.

Calculation

Total dissolved solid mg/l = \((A-B)/ 1000\) / Volume of sample

A = weight of dried residue + dish, mg
B = weight of dish, mg

Determination of Total Solids (Gravimetric method): One hundred (100 mls) beaker was washed and dried using the oven at 105°C for 20 minutes and then cooled in the desiccators. The weight of the beaker immediately before use was noted. The borehole water sample was homogenized and 50 mls of sample were measured using a measuring cylinder. The samples were heated at 105°C in an oven until sample gets dried. They were cooled in the desiccators and the weights noted.

Calculation

Total Solid mg/l = \((A-B)/ Volume of sample \times 1000\)

A = weight of beaker + residue
B = weight of beaker

Determination of Total Suspended Solid: (From TS and TDS)

\(TS \text{ mg/l} - TDS \text{ mg/l} = TSS \text{ mg/l}\)

Where:

TS = total solid
TDS = total dissolved solid
TSS = total suspended solid

Determination of Chloride (Argentometric Titration method): Fifty (50 mls) of water sample was measured into 250 ml conical flask. 1 ml \(K_2CrO_7\) indicator solution (prepared by dissolving 50 g of \(K_2CrO_7\) in a little distilled water and \(AgNO_3\) solution was added until a definite red precipitate was formed. It was left to stand for 12 hours, filtered, and diluted to 1 liter with distilled water) was added and titrated with \((0.0141 \text{ N})\) \(AgNO_3\) titrant prepared by (dissolving 2.395 g \(AgNO_3\) in distilled water and diluted to 1000 ml; 1 ml = 500 µg Cl⁻ then stored in brown bottle) to a pinkish yellow end point. The titration was repeated with distilled water blank.

\[\text{Calculation:}\ Mg Cl^-/l = (A-B) \times N \times 34,450/\text{ Ml of sample}\]

Where: A = ml titration for sample, B = ml titration for blank, N = normality of \(AgNO_3\)

Determination of Nitrate (Spectrophotometry method): Fifty (50 mls) of water sample was measured into a conical flask. 1 ml of 0.1 mol sodium arsenite prepared by (weighing 1.3 g of sodium arsenite into 100 ml volumetric flask and dissolved in little distilled water and made up to the mark with distilled water) were added and thoroughly shaked. From the mixture above, 5ml was measured into a separate test tube and 1ml of 0.1 mol brucine sulphate was added (2.2 g of brucine sulphate was weighed in 50 ml volumetric flask and dissolved with little distilled water and made up to the mark.) Ten (10 mls) of concentrated sulphuric acid (H\(_2\)SO\(_4\)) was added and homogenized with the remaining 45 mls solution and allowed for colour development for about 30 minutes. The absorbance was read with the aid of a SPECTIONIC------20 machines at wave length of 410 nm.

\[\text{Calculation:}\ \text{Concentration/Volume of sample used} \times 1000 \text{ mg/l}\]

Determination of Phosphate (UV Spectrophotometry method): Ten (10 mls) of the neutralized sample was pipetted into 50 ml volumetric flask and the followings were added, 4 mls of ammonium molybdate, 4 mls of 10 N sulphuric acid, and 6drops of stannous chloride. The solution was shaken and made up to 50 mls. The absorbance was read in a UV (ultra-violet) Spectrophotometer at wave length 650 nm.

Determination of Dissolved Oxygen: Dissolved oxygen was determined using dissolved oxygen meter manufactured by Hanna Instruments, USA. It was done by inserting the dissolved oxygen probe in a 100 ml beaker containing 50 mls of the sample and allowed for five minutes for the reading to stabilize. The value was recorded. Dissolved oxygen was determined in situ.
Determination of Total Alkalinity (Titrimetry method): Ten (10 mls) of sample were introduced into a conical flask, and then 3 drops of bromocresol green indicator (Prepared by dissolving 100 mg bromocresol green salt in 100mls of distilled water) was added and titrated with 0.1 N sulphuric acid solution.

Total alkalinity, mg CaCO\(_3\)/L = \(B \times N \times \frac{50000}{\text{Sample volume}}\)

Where \(B=\) ml titration for blank, \(N=\)normality of sulphuric acid

Determination of Total Hardness: Fifty (50 mls) of well mixed sample was introduced into a conical flask, and then 2 mls buffer solution was added followed by 1 ml inhibitor. A pinch of Eriochrome black T was added and titrated with standard EDTA (0.01 M) till wine red colour changes to blue, then the volume of EDTA required was noted (A). The volume of the reagent blank was analysed and noted (B). The volume of EDTA required by sample, was calculated; \(C = A – B\) (from volume of EDTA required in steps).

Total hardness as CaCO\(_3\), mg/l = \(C \times D \times 1000/\text{Volume of sample in 1 ml}\)

\(C = \) volume of EDTA required by sample (with EBT indicator)

\(D = \) mg CaCO\(_3\) equivalent to 1 ml EDTA titrant (1 ml 0.01 M EDTA = 1.00 mg CaCO\(_3\))

Determination of Calcium Hardness: Twenty-five (25 mls) of well mixed samples were introduced into a 250 ml conical flask and 1 ml sodium hydroxide solution 2 N was added to raise pH to 12.0 and a pinch of murexide indicator was added. It was titrated immediately with EDTA 0.01 M till pink colour changes to purple. The volume of EDTA used was noted (\(A_1\)). Run a reagent blank and note the ml of EDTA required (\(B_1\)) and keep it aside to compare end points of sample titrations.

The volume of EDTA required by sample was calculated using \(C_1 = A_1 – B_1\).

Calcium hardness as CaCO\(_3\), mg/l = \(C_1 \times D \times 1000/\text{Volume of sample in 1 ml}\)

\(C_1 = \) volume of EDTA used by sample (with murexide indicator)

\(D = \) mg CaCO\(_3\) equivalent to 1 ml EDTA titrant

Determination of Magnesium Hardness

Magnesium Hardness = Total hardness as CaCO\(_3\), mg/l – Calcium hardness as CaCO\(_3\), mg/l.

Determination of Bicarbonate

Calculated from pH and total alkalinity

\[\text{HCO}_3^- \text{as mg CaCO}_3/L = T – 5.0 \times 10^{(\text{pH}-10)/1} + 0.94 \times 10^{(\text{pH}-10)} \]

Where \(T = \) total alkalinity as mg CaCO\(_3\)/L

Determination of Carbonate

\[\text{CO}_3^{2-} \text{as mg CaCO}_3/L = 0.94 \times \text{HCO}_3^- \times 10^{(\text{pH}-10)} \]

Where:

\(T = \) total alkalinity (Alk-T) as mgCaCO\(_3\)/L

\(\text{HCO}_3^- = \) bicarbonate

Determination of potassium (flame photometer)

Reagent: Standard potassium solution (10mg/k)

Fifty (50 mls) of the water sample was filtered using Whatmann no.1filter paper to remove suspended solids and the potassium concentration was detected using flame photometer.

Heavy metals (Spectrophotometry) (Cadmium, lead, chromium, mercury, copper, arsenic, zinc and iron)

Procedure: All metallic elements were determined using Atomic Absorption Spectrophotometer (AAS) manufactured by Buck Scientific. One hundred millilitres of the filtered water samples were introduced into a 250 mls conical flask and digested with 2 mls of concentrated nitric acid. The digested samples were filtered into a sample bottle and aspirated into the oxyacetylene flame. The absorbance of the aspirated sample was read using the atomic absorption spectrophotometer.

2.3 Data Analysis

The data were subjected to two–way Analysis of variance to determine the level of significance between the physicochemical parameters using SPSS 8.0 package.
3. RESULTS

The results of the physicochemical properties of the borehole water samples during the rainy and dry seasons were shown in the tables below and compared with Nigerian industrial standard for drinking water.

4. DISCUSSION

Groundwater has been considered as a safe source of drinking water. However, nowadays, the quality of drinking water is deteriorating [10]. Therefore, the present study focuses on physicochemical properties of the groundwater (borehole) samples collected from mile 50 Abakaliki and was compared with world health standard.

Temperature is an important factor which influences the chemical, biochemical and biological characteristics of waters [11] the temperature values of the various water samples analyzed during the rainy season ranged from 28-30°C 46.7% having the lowest value of 28°C and 13.3% having the highest value of 30°C. (Table 1) During the dry season, the temperature value of the borehole water samples ranged from 27-29°C with sample 11 having the highest value of 29°C. (Table 2) The average temperature value obtained from both season ranged from 28°C to 30°C. Therefore, the present study focuses on the quality of drinking water is deteriorating due to the site of sample collection. The results showed that the boreholes water temperature values were satisfactory for drinking and domestic water usage. These findings are in accordance with that of Josiah et al. [12] who recorded a temperature range of 26 -32°C of the water samples. This may be attributed to the intensity of the sunlight and to the insulating effect of increased nutrient load resulting from industrial discharge. Cool water is more potable for drinking purposes, because high water temperature enhances the growth of microorganisms [13].

The pH is a measure of acidity or alkalinity of the water substances [14]. The pH of the water samples ranged from 6.63-8.51 during the rainy season (Table 1) and 6.40-7.75 in dry season (Table 2). The average pH value obtained from both season ranged from 6.52-8.13 and were within the NIS standard of 6.5 to 8.5 [15]. pH of all the water samples in the study area were within the limits indicating that water was between slightly acidic and slightly alkaline. The variation in pH of the water samples might be due to the site of sample collection. The results showed that the boreholes water pH values were satisfactory for drinking and domestic water usage. These findings were similar to the works presented by Mahantesh et al. [16]. The high pH in the rainy season may be due to the presence of limestone in the aquifer formation that dissolved to release CaCO₃ into the water. The low pH in the dry season may have been caused by high temperatures that increased the concentration of H⁺ ions, hence decreasing the

Borehole Location	Temp (°C)	pH	EC (µs/cm)	TSS (mg/l)	TS (mg/l)	DS (mg/l)	Turbidity (NTU)
SDP	29	7.27	250	0.26	6.54	6.28	1.98
Ebonyi voice	28	7.08	243	0.22	2.33	2.11	1.93
Mile 50	28	7.37	203	0.19	1.99	1.80	1.77
NEPA	29	8.51	225	0.26	5.46	5.20	1.81
Pastoral	28	7.74	107	0.09	1.81	1.72	1.36
Isiuke lane 1	28	7.76	190	0.33	7.53	7.20	1.50
Isiuke lane 2	29	7.72	171	0.17	1.77	1.60	1.71
Ibiam	29	6.63	159	0.14	1.18	1.04	1.66
Ogodo	30	7.94	328	0.98	17.99	17.01	2.60
Alugbara eze	28	7.18	178	0.13	1.27	1.14	1.42
Amaike Aba	30	8.21	304	0.66	11.66	11.00	2.52
Obasi	28	7.62	183	0.21	3.38	3.17	2.45
Eze & bros	29	7.32	288	0.52	9.78	9.26	2.50
Oroke market	28	8.09	231	0.30	5.58	5.28	2.31
Nkwo agu	29	7.92	135	0.10	1.14	1.04	1.27
NIS(2007)	25-32	6.5-8.5	1000	-	500	500	5

Where: EC=Electrical conductivity; TSS: Total suspended solids; TS: Total solids; DS: Dissolved solids
Table 2. Physical characteristics of borehole water during dry season

Borehole Location	Temp (°C)	pH	EC (µS/cm)	TSS (mg/l)	TS (mg/l)	DS (mg/l)	Turbidity (NTU)
SDP	27	7.06	97	0.18	0.55	0.37	1.62
Ebony voice	28	6.80	72	0.13	0.38	0.25	1.57
Mile 50	27	6.84	60	0.08	0.22	0.14	1.31
NEPA	28	7.75	65	0.09	0.23	0.14	1.40
Pastoral	27	6.54	24	0.02	0.13	0.11	0.61
Isiuke lane 1	27	6.95	50	0.09	0.26	0.17	0.84
Isiuke lane 2	28	6.85	51	0.08	0.26	0.18	1.21
Ibiai	27	6.40	40	0.06	0.27	0.21	0.75
Ogodo	28	7.12	149	0.61	2.64	2.03	1.90
Alugbara eze	27	6.86	47	0.04	0.17	0.13	0.93
Amaike Aba	29	7.74	117	0.29	1.16	0.87	1.84
Obasi	27	6.64	54	0.11	0.40	0.29	1.30
Eze & bros	28	6.91	103	0.21	0.75	0.54	1.67
Oroke market	27	7.09	68	0.11	0.36	0.25	1.49
Nkwo agu	28	7.12	36	0.03	0.13	0.10	0.69
NIS (2007)	**25-32**	**6.5-8.5**	**1000**	**-**	**500**	**500**	**5**

pH of the borehole water. The sedimentary rocks are sources of Calcium ions which might have increased the pH of borehole water during rainy season.

Electrical conductivity is the ability of a solution to conduct an electrical current that is governed by the migration of ions in solutions which is dependent on the nature and numbers of the ionic species in that solution [17,18]. It is a useful tool to assess the purity of water. Conductivity indicates the presence of dissolved solids and contaminates especially electrolytes but does not give inspiration about specific chemicals. The electrical conductivity of the water samples from the boreholes varied from 107-328 µS/cm during the rainy season, (Table 1) while it varied from 24.00-149.00 µS/cm during the dry season (Table 2). The mean conductivity during the both season ranged from 65.5-238.5 µS/cm. The conductivity of the water samples was within the acceptable standard for drinking water. These findings are similar to the work presented by Odenigbo [19] who stated that all the values obtained were below the NIS limit, maximum permissible limit of 1000 µS/cm for drinking water. The higher values obtained during the wet season could be ascribed to high concentrations of ionic constituents in the water bodies resulting from surface runoff into the ground water or attributed to the presence of organic matter pollution and run-off with high suspended matter content into the wells.

All water samples indicate the availability of contaminants as shown by the level of the determined values of total suspended solids (TSS). All measurements were within the permissible limits of NIS. 0.09-0.98 mg/l values were obtained during the rainy season and 0.02-0.61 mg/l values were obtained during the dry season they were all below 1.0 mg/l. The presence of TSS in water samples indicated the presence of suspended matters in the water samples. The total solids determined had sample 9 and 11 with the highest value of 17.99 and 11.66 mg/l respectively in rainy season, with sample 9 having values of 2.64 mg/l in dry season among other samples.

Turbidity stems from the reduction of transparency due to the presence of percolate matter such as clay silt, finely divided organic matter etc. The turbidity imparted in the groundwater might be due to the suspended particles and undesirable substances [20]. The turbidity values obtained during the rainy season ranged from 1.27-2.60 NTU with that of dry season ranging from 0.61-1.90NTU. The average turbidity values for both seasons ranged from 0.98-2.25NTU and are within the NIS standard of 5 NTU. These findings are similar to the work presented by Odenigbo [19] who stated that all the values obtained were below the NIS limit, maximum permissible limit of 5 NTU for drinking water. However the turbidity values were generally lower during the dry season. The increased values during the rainy season could be attributed to surface runoff and erosion carrying soil and partially dissolved/ un-dissolved organic matters. The low recharge in the dry season may have resulted in lower turbidity of the borehole water.
The physical parameters were analyzed using two-way analysis of variance on the data obtained which showed that there was significant difference (p < 0.0001) between the various drinking water samples in both rainy and dry season.

Chlorine is an active chemical which has disinfecting capabilities. The average values of total chloride investigated during the both season ranged from 47.24-102.43 mg/l and is within the NIS permissible limit of 240 mg/l for drinking water. Chloride in drinking water originates from natural sources (dissolving rocks) sewage and industrial effluents; urban runoff containing de-icing salt and saline intrusion [21] high level of chloride makes water unpalatable for drinking by imparting salty taste and may harm metallic pipes [18]. A similar study conducted by Purandara and Shreedhar [22] reported that the chloride ions ranged between 97 and 108 mg/l.

The value of phosphate fluctuates from 0.25 mg/l to 6.7 mg/l during rainy season and ranged from 0.07 mg/l – 3.18 mg/l during dry season. The high values of phosphate during the rainy season are mainly due to rain, surface water runoff, and agriculture run off could have contributed to the inorganic phosphate content. The average phosphate level of the water samples ranged from 0.16- 4.95 mg/l with all the samples being within the NIS acceptable limit of 0.5mg/l and sample 9 and 11 having the highest value of 4.95 and 3.42 mg/l respectively above the standard. Kwame [23] Reported a low phosphate concentrations ranging from 0.09 to 0.347 mg/l and within the WHO standard of 0.5mg/l these could be as a result of low Agricultural activities in such area. Phosphate like any other nutrient is harmless in lower concentrations but become harmful only in higher doses. Higher doses of Phosphate are known to interfere with digestion in both humans and animals. Phosphate enrichment of water bodies contributes to ecological impacts and their presence in water bodies contributes to eutrophication of natural waters [24,25].

The total alkalinity of water is its acid neutralizing capacity. The alkalinity of groundwater is mainly due to carbonates and bicarbonates [26]. The average total alkalinity obtained from both season ranged from 25.25-67.71 mg/l the maximum value 67.71 mg/l was recorded in sample 11 and sample 8 had the minimum value of 25.25 mg/l increase in total alkalinity of water is due to bicarbonates in such water [11] These findings are similar to the work presented by Bernard and Ayeni [27] whose value ranged between 74.3 - 88.2 mg/l and were below the NIS 2007, maximum permissible limit of 250 mg/l for drinking water. Based on the values of total alkalinity of the sampled waters, it can be inferred that the water is safe for drinking.

Hardness of water may not have any health implications but may affect the taste of water as well as influence its lathering ability when used for washing. The average value of total hardness ranged from 61.73- 110.83 mg/l for the analysis conducted in both seasons. The highest values of 110.83 mg/l were recorded in sample 11 and the lowest values of 61.73 mg/l recorded in sample 8. All the water samples analyzed were within the NIS standard of 150 mg/l. World health organization international standard for drinking water (1998) classified water with total hardness of less than 50 mg/l as soft water, 50-150 mg/l as moderately hard water and water above 150mg/l as hard water. Based on this, all water samples were moderately hard water and suitable for domestic use in terms of hardness. This finding is similar to the work of Onwughara [28] which stated that all the water samples analysed were moderately hard. The high mean total hardness of the borehole samples in the wet season may be due to dissolution of metallic ions such as Mg $^{2+}$, Ca $^{2+}$ ions from limestone and sedimentary rocks by rainwater percolation in the soil. The ions may have originated from run-offs that infiltrated into the soil, causing leaching and weathering of limestone and feldspars in the soil. The result is the precipitation of Ca $^{2+}$ and Mg $^{2+}$ ions and other mineral constituents in the soil that can also increase the total hardness of groundwater. The low total hardness in the dry season may be as a result of low aquifer recharge, hence less dissolution of the mineral composition of the aquifer.

The values of calcium hardness obtained from the investigation of the borehole water samples during the rainy season ranged from 24.50-53.58 mg/l (Table 3) while the values obtained from the analysis conducted during the dry season were from 05.63- 29.30 mg/l (Table 4) the average values of the calcium hardness ranged from 17.19-39.50 mg/l. These values are below the 75mg/l stipulated by NIS (2007) and are therefore considered fit for drinking in terms of calcium content. Ca ions occur in groundwater through the decomposition of sulphate,
phosphate, and silicate materials and due to the dissolution of carbonate minerals [29]. Calcium ion when in suitable concentration is known to regulate a number of neuron-muscular excitability, blood coagulation, enzyme reactions, secretary processes and intracellular action of a number of hormones. Calcium, which is essential for nervous system and for the formation of bones, is commonly present in all water bodies where it usually comes from the leaching of rocks [30].

The values of magnesium hardness obtained from the investigation of the borehole water samples during the rainy season ranged from 39.40-97.26 mg/l (Table 3) while the values obtained from the analysis conducted during the dry season were from 30.54-67.70 mg/l (Table 4) the average values of the magnesium hardness ranged from 36.31-81.23 mg/l. These values were above the 50 mg/l stipulated by NIS (2007) and are therefore considered unfit for drinking. Calcium and magnesium are among the elements essential for human health and metabolism and should be available in normal drinking water [31]. However, if one or more of these elements occur in the water above certain limits the water may become objectionable to consumers and even become hazardous to health [28]. High level of magnesium in drinking water could result to kidney problem or bladder stone formation.

Bicarbonates are the dominant anion in most surface and ground waters. The weathering of rocks contributes to bicarbonates content in water. Mostly bicarbonates are soluble in water and concentration in water is related to pH. Bicarbonates are usually less than 500 mg/l in ground water. In this study, bicarbonates ranged from 27.55-82.06 mg/l during the rainy season and from 19.95-55.93 mg/l during dry season, while carbonate ranged from 0.065-0.262 mg/l during the rainy season (Table 3) and from 0.013- 0.087 mg/l during dry season. (Table 4) The average value for both season ranged from 0.039-0.160 mg/l. The bicarbonate and carbonate content of the ground water were within the acceptable limit.

Nitrate concentrations ranged from 0.99 to 6.49 mg/l and were within the acceptable limit prescribed by NIS (2007) limit of 10.0. The presence of nitrates can be a source of concern because consumption of water with high nitrate concentrations can cause blood disorders (known as methemoglobinemia) as well as cancer in humans [32]. Nitrogen is present in soils which are normally fixed by nitrogen fixing bacteria. Nitrogen may exist as nitrates and nitrites. These traces of nitrate could result from the close proximity of animal shelters and sewage disposal systems to boreholes, as it infiltrates in underground water after rainfalls. Nitrogen like any other nutrient is harmless in lower concentrations but become harmful only in higher inter-convertible organic nitrogen. Being loosely bound to soils, nitrate is expected to be more in runoff and hence its concentration increases during rainy seasons. These findings are consistent with that of Kannan and Sabu [33]. The higher nitrate levels during rainy season can be attributed to leachates from nitrogen fertilizers widely used in agricultural practice, waste, notably sewage effluents, animal excrement and manure and municipal waste due to increase recharge of the water. Nitrate values in the water were within the WHO set limits for drinking water and similar with the work reported by Akujieze and Oteze [34].

Sulphate is a non-toxic anion present in natural water. The average sulphate levels of the water samples for both seasons ranges from 23.38 to 50.53 mg/l and were within the NIS (2007) limit of 100 mg/l. Sulphate gets into ground water through the dissolution of rocks containing sulphur and mine drainage waste. Water with sulphate levels above 500 mg/l can have a laxative effect until an adjustment to the water is made. A similar study conducted by John and Ebehiremhen [35] reported a sulphate level within the NIS limit of 100 mg/l the low concentration of sulphate could be attributed to the absence of sulphate anthropogenic factors in the location of the wells. The presence of sulphate in drinking water can also result in a noticeable taste, the lowest taste threshold concentration for sulphate.

Dissolved oxygen is the measure of the amount of gaseous oxygen dissolved in aqueous solution [36]. The value of dissolved oxygen (DO) fluctuates from 5.81 mg/l to 8.01 mg/l during the rainy season (Table 3) and ranged from 5.25-7.42mg/l during the dry season (Table 4).The average DO value obtained from both season ranged from 5.53-7.66 mg/l which were within the NIS limit of 5mg/l these disagree with the findings of 25 whose values ranged from 29.4 to 33.5 mg/l above NIS permissible limit of >5 mg/l. These may be attributed to high temperature and high microbial load in the area.
Table 3. Chemical characteristics of borehole water during rainy season

Borehole Location	Chloride (mg/l)	Phos. (mg/l)	Total alkalinity (mg/l)	Total hardness (mg/l)	Cal. Hardness (mg/l)	Mg. hardness (mg/l)	Bicar. (mg/l)	Car. (mg/l)	Nitrate (mg/l)	K (mg/l)	Sul. (mg/l)	DO (mg/l)
SDP	84.76	0.42	74.28	95.00	24.50	70.50	74.08	0.202	1.16	2.39	45.20	7.44
Ebony voice	69.92	0.31	58.74	118.00	33.80	84.20	58.56	0.185	3.18	0.00	47.39	6.78
Mile 50	98.84	0.62	61.02	84.00	24.70	59.30	60.80	0.219	6.05	8.04	49.60	7.22
NEPA	72.84	0.38	56.47	79.80	28.20	51.60	56.34	0.131	1.44	2.07	41.44	6.27
Pastoral	101.41	0.28	48.17	111.16	47.84	63.32	48.09	0.072	1.56	1.39	37.05	8.01
Isiuke lane 1	98.71	0.27	70.09	85.60	30.70	54.90	69.83	0.262	1.40	2.04	40.01	7.87
Isiuke lane 2	102.76	0.43	63.24	70.20	30.80	39.40	63.09	0.141	1.22	4.02	38.50	6.85
Ibiam	124.14	0.47	30.53	72.80	25.50	47.30	30.47	0.065	5.87	5.93	43.28	7.89
Ogodo	77.30	6.71	66.15	137.20	47.00	90.20	66.05	0.098	7.32	6.35	61.88	6.73
Alugbaraeze	67.30	0.36	64.86	116.40	42.10	74.30	64.71	0.153	4.12	1.87	47.67	7.50
Amaike Aba	81.30	4.68	82.23	150.84	53.58	97.26	82.06	0.169	8.03	0.21	51.21	5.81
Obasi	112.76	0.27	51.37	93.60	36.90	60.70	51.11	0.259	5.56	0.00	45.31	7.80
Eze & bros	68.16	2.37	27.68	122.70	51.47	71.23	27.55	0.132	5.98	0.97	39.62	6.82
Oroke market	107.62	0.48	75.80	129.25	49.96	79.29	75.56	0.241	5.62	0.19	45.17	7.02
Nkwo agu	114.71	0.25	78.09	100.67	32.29	68.38	77.99	0.094	1.74	0.27	30.03	6.57
NIS (2007)	240	0.5	250	150	50	-	-	10	5	100	>5	>5

Key: Bicar = Bicarbonates. Car = Carbonates. Phos = Phosphate. Sul = Sulphate
Table 4. Chemical characteristics of borehole water during dry season

Borehole Location	Chloride (mg/l)	Phosphate (mg/l)	Total alkalinity (mg/l)	Total hardness (mg/l)	Calcium hardness (mg/l)	Magnesium hardness (mg/l)	Bicarbonate (mg/l)	Carbonate (mg/l)	Nitrate (mg/l)	K (mg/l)	Sulphate (mg/l)	DO (mg/l)
SDP	41.43	0.11	30.55	70.20	09.87	60.33	30.47	0.076	1.01	0.98	30.29	6.19
Ebony voice	28.81	0.10	22.76	80.84	13.54	67.30	22.69	0.063	0.44	0.00	27.18	6.34
Mile 50	46.52	0.15	35.63	49.61	11.42	38.19	35.58	0.052	2.92	4.73	29.20	6.73
NEPA	33.73	0.10	55.97	50.20	12.10	38.10	55.93	0.041	1.09	1.09	32.51	5.98
Pastoral	53.71	0.09	41.25	66.78	24.62	42.16	41.18	0.069	1.05	0.99	28.62	6.13
Isiuke lane1	50.52	0.07	42.80	60.09	17.36	42.73	42.75	0.049	0.86	1.01	23.11	6.48
Isiuke lane2	53.38	0.12	40.92	58.15	14.94	33.21	40.84	0.085	0.76	1.44	18.07	6.23
Ibiam	80.72	0.13	19.96	50.66	20.12	30.54	19.95	0.013	2.61	3.27	21.37	7.42
Ogodo	35.39	3.18	25.97	74.60	29.30	45.30	25.89	0.071	4.08	3.25	39.18	5.85
Alugbaraeze	31.63	0.08	47.62	60.89	21.28	39.61	47.58	0.038	0.92	1.07	18.07	6.93
Amake Aka	38.49	2.16	53.18	70.82	05.63	65.19	53.09	0.087	4.95	0.11	29.91	5.25
Obasi	57.51	0.08	38.09	74.53	17.35	57.18	38.03	0.059	1.11	0.00	23.24	6.09
Eze and bros	26.31	1.10	23.48	82.35	27.53	54.82	23.45	0.032	1.24	0.21	13.88	6.42
Orokemarket	54.47	0.14	51.36	65.65	27.38	38.27	51.28	0.079	1.27	0.09	29.73	6.93
Nkwo agu	57.62	0.07	46.19	72.48	18.97	53.51	46.16	0.029	1.04	0.13	16.73	6.17
NIS (2007)	240	0.5	250	150	75	50	-	-	10	5	100	>5
poisonous at low concentration. These heavy elements defined as any metallic chemical element that has specific gravity that is at least 5 times the specific gravity of water. A heavy metal is also with specific gravity that is at least 5 times the specific gravity of water. A heavy metal is also

Borehole location	Zn (mg/l)	Fe (mg/l)	Cu (mg/l)	Hg (mg/l)	Cd (mg/l)	Pb (mg/l)	Cr (mg/l)
SDP	0.28	0.00	0.00	0.00	0.01	0.01	0.00
Ebonyi voice	2.02	0.04	0.08	0.00	0.02	0.03	0.03
Mile 50	0.19	0.00	0.00	0.00	0.03	0.02	0.02
NEPA	0.20	0.00	0.00	0.00	0.00	0.03	0.00
Pastoral	0.18	0.03	0.07	0.00	0.00	0.01	0.00
Isiuke lane 1	0.16	0.00	0.06	0.00	0.00	0.00	0.02
Isiuke lane 2	0.18	0.10	0.08	0.00	0.01	0.01	0.03
Ibiarn	0.14	0.00	0.02	0.00	0.02	0.01	0.01
Ogodo	2.15	0.26	0.15	0.00	0.04	0.05	0.05
Alugbaraeze	0.36	0.00	0.04	0.00	0.00	0.00	0.03
Amaike Aba	1.27	0.21	0.23	0.00	0.03	0.04	0.04
Obasi	0.30	0.00	0.01	0.00	0.01	0.00	0.00
Eze & bros	0.13	0.08	0.05	0.00	0.02	0.00	0.00
Oroke market	0.10	0.15	0.11	0.00	0.00	0.01	0.02
Nkwo agu	0.07	0.04	0.07	0.00	0.01	0.00	0.01
NIS (2007)	3.0	0.3	1.0	0.001	0.003	0.01	0.05

Table 6. Heavy metal characteristics of borehole water during dry season

Borehole location	Zn (mg/l)	Fe (mg/l)	Cu (mg/l)	Hg (mg/l)	Cd (mg/l)	Pb (mg/l)	Cr (mg/l)
SDP	0.08	0.00	0.00	0.00	0.00	0.00	0.00
Ebonyi voice	0.13	0.02	0.03	0.00	0.00	0.01	0.01
Mile 50	0.10	0.00	0.00	0.00	0.01	0.00	0.00
NEPA	0.11	0.00	0.00	0.00	0.00	0.01	0.00
Pastoral	0.09	0.00	0.04	0.00	0.00	0.00	0.00
Isiuke lane 1	0.08	0.00	0.02	0.00	0.00	0.00	0.01
Isiuke lane 2	0.07	0.04	0.03	0.00	0.00	0.00	0.02
Ibiarn	0.03	0.00	0.00	0.00	0.01	0.00	0.00
Ogodo	0.57	0.16	0.09	0.00	0.02	0.01	0.03
Alugbaraeze	0.22	0.00	0.02	0.00	0.00	0.00	0.01
Amaike Aba	0.64	0.13	0.15	0.00	0.01	0.02	0.02
Obasi	0.18	0.00	0.00	0.00	0.01	0.00	0.00
Eze & bros	0.03	0.03	0.01	0.00	0.01	0.00	0.00
Oroke market	0.02	0.10	0.05	0.00	0.00	0.00	0.00
Nkwo agu	0.05	0.01	0.02	0.00	0.01	0.00	0.00
NIS (2007)	3.0	0.3	1.0	0.001	0.003	0.01	0.05

The chemical parameters of the borehole water samples for both rainy and dry season were analyzed using two-way analysis of variance at Alpha level of 0.05 which showed that there was extreme significant difference (p < 0.0001) between the water.

Heavy Metals are defined as chemical elements with specific gravity that is at least 5 times the specific gravity of water. A heavy metal is also defined as any metallic chemical element that has a relative high density and is toxic or poisonous at low concentration. These heavy metals are natural components of the earth crust that cannot be easily degraded or destroyed. To a small extent they enter our bodies via food, drinking water and air.

The average lead content of all the borehole water samples investigated during rainy and dry seasons showed that samples 2, 3, 4, 9 and 11 had highest value of more than 0.01 mg/l against the NIS (2007) standard in drinking water. This result agreed with that of Adeyemo [37] that reported a lead concentration of 0.09 mg/l in water in a major abattoir in Ibadan, Nigeria. High level of lead in water can lead to cancer, interference in vitamin D metabolism, adverse
effects in mental development in infants and toxicity to the central and peripheral nervous systems.

Zinc in the samples ranged from 0.06 to 1.36 mg/l and were within the NIS acceptable limit of 3.0. The seasonal variation in the level of the metal was however very minimal.

The concentration of copper in the ground water varied from 0.00-0.23 mg/l during the rainy season and from 0.00-0.15 mg/l during dry season. The results obtained for copper were below the NIS maximum value of 2.00 mg/l. Chromium content of the ground water samples varied from 0.00-0.05 mg/l during the rainy season and from 0.00- 0.03 mg/l during the dry season. All the water samples for chromium were within the recommended NIS value of 0.05 mg/l (NIS, 2007). The average concentration of cadmium ranged from 0.00 mg/l -0.04 mg/l. With 66% and 46% of samples during rainy and dry season respectively having values above the NIS (2007) limit of 0.003 mg/l. High level of cadmium in water could be toxic to the kidney.

The sources of iron in water include magnetite and biotite. The concentration of Iron in the ground water varied from 0.00- 0.26 mg/l during the rainy season and from 0.00- 0.16 mg/l during dry season. None of the values for Iron obtained exceeded the NIS standard of 0.3 mg/l. These values were higher than that of Bernard and Ayeni [27] whose value range was 0.00 – 0.05 mg/l, the high values may be attributed to the fact that the well covers were made of rusted sheets which infiltrates into the water during and after rain fall. Generally, there was an increase in the iron concentration during the rainy season compared to dry season. Anthropogenic sources of iron in the environment could be washed into the ground water during rainy season. Iron has no health significance but it affects the anaesthetics of the water and causes the consumer to reject the supply.

The heavy metal of the borehole water samples for both rainy and dry season were analyzed using two-way analysis of variance at Alpha level of 0.05 which showed that there was extreme significant difference (p < 0.0001) between the water.

5. CONCLUSION

This study reveals that most of the physical parameters of the selected borehole water samples in the studied area were within the acceptable limits by NIS standards for drinking. Some of the chemical parameter were above the NIS standards making the water unfit for consumption.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. World Health Organization. (Water for health, WHO Guidelines for Drinking-water Quality. Geneva, Switzerland; 2010.
2. Cheesbrough M. District laboratory practice in tropical countries 2nd edition, Cambridge University Press United Kingdom. 2006;143–157.
3. Al-Ghamdi A, Mohamed E-SIS, Al-Ghamdi, Zabin S. Study of physicochemical properties of the surface and ground water Saudi Arabia American Journal of Environmental Sciences. 2014;10:219-235.
4. Sunkad B. Better management of ground water source for drinking purpose in Belagavi District of Karnataka, India. International Journal of Scientific and Technology Research. 2013;2:150-153.
5. Olajubu FA, Ogunika F. Assessment of the physicochemical and microbiological properties of borehole water samples from Akungba–Akoko, Ondo State, Nigeria. International Journal of Pharmaceutical Science and Research,2014;5(7):367–374.
6. Rahamanian N, Ali SHB, Homayoonfard, M, Ali NJ, Rehan M, Sadeq Y, Nizami AS. Analysis of physicochemical parameters to evaluate the drinking water quality in the State of Perak, Malaysia Journal of Chemistry. 2015;1-9.
7. Erah PO, Akujizee CN, Oteze GE. A quality of ground water in Benin City: A baseline study on inorganic chemicals and microbial contaminants of health importance in boreholes and open wells. Tropical Journal of Pharmaceutical Research. 2002;1(2):75-82.
8. Oladipo C, Onyenike IC, Adebiyi AO. Microbiological analysis of some vended Sachet water in Ogbomoso, Nigeria. African Journal of Food Science. 2009; 3(12):406-412.
9. American public Health Association. Standard for the examination of water and wastewater, 21st edition, Washington, D.C; 1985.

10. Yaduvams EM, Rao SR, Ramana CV, Reddy TB. Physicochemical analysis of ground water in the selected area of Visakhapatnam, AP, India. International Journal Current Microbiology Applied Science. 2017;6(12):1252-1258.

11. Manjare SA, Vhanalakar SA, Muley DV. Analysis of water quality using physicochemical parameters tankdalge tank in kolhapur District, Maharashtra. International Journal of Advanced Biotechnology and Research. 2010;1(2):115-119.

12. Josiah JS, Nwangwu COS, Omega K, Akpanyung OE, Dike DA. Physicochemical and microbiological properties of water samples used for domestic purposes in Okada town Edo State Nigeria. International Journal of Current Microbiology and Applied Sciences. 2014;3(6):886-894.

13. Okoye C, Okoye A. Urban domestic solid waste management. Nimo: Rex Charles and Patrick Limited Awka. 2008; 1:5-7.

14. Qaid MS, Yousif A. Assessment of physicochemical and biological properties of ground water of Khulais, province, Kingdom of Saudi Arabia International Journal of Scientific Research Methodology. 2016;5:1.

15. NIS 554: Nigerian industrial Standard for Drinking water Quality; 2007.

16. Mahantesh K, Madhv P, Soumya S, Mubashir A. Assessment of physicochemical and biological properties of groundwater in urban setting of Belagavi: A Cross-Sectional Study Saudi Journal of Medicine. 2018;3 (3):101-106.

17. Sa’eed M, Mahmoud A. Determination of some physico-chemical parameters and some heavy metals in Boreholes from Fagge L.G.A of Kano Metropolis Kano State. World Journal Analytical Chemistry. 2014;2:42-46.

18. Aremu M, Majabi G, Oko J, Opaluwu O, Gav B, Osinfade B. Physicochemical analyses of different sources of drinking water in Okene Local Government Area of Kogi State, Nigeria; 2014.

19. Chukwuka Clifford Odenigbo. Physicochemical and heavy metal assessment of water from selected Boreholes in Kaura-Namoda Local Government Area, Zamfara State, Nigeria. Published Master’s thesis in Ahmadu Bello University, Zaria; 2015.

20. Naik VK, Suresh B. Assessment of ground water quality Outside Belagavi City, Karnataka State, India. Assessment. 2015;1:1.

21. Barati AH, Maleki A, Alasvand M. Multi trace element level in drinking water and the prevalence of multi chronic arsenical poisonous in residents in the west area of Iran. Science of the total environment. 2010;408 (7):1223-1233.

22. Purandara BK, Shreedhar R. Water quality assessment of Bellary Nala, Belagavi. 2014;971-981.

23. Mensah Mawuli Kwame. Assessment of drinking water quality in Ehi Community in the Ketu-North District of the Volta Region of Ghana. Published master's thesis. Kwame Nkrumah University of science and Technology, Kumasi, Ghana; 2011.

24. Withers P, Lord E. Agricultural nutrients inputs to rivers and groundwater in the UK: policy. Environmental Management and Research Needs. The Science of Total Environment. 2002;282:300.

25. Prior H, Jones P. Regulation of Surface Water Quality in a Cretaceous Chalk Catchment, UK: An Assessment of the Relative Importance of In-stream and Wetland Processes. The Science of the Total Environment. 2002;282-283.

26. Raju NJ, Ram P, Dey S. Groundwater quality in the lower Varuna River basin, Varanasi district, Uttar Pradesh Journal of Geological Social India. 2009; 73:178.

27. Bernard E, Ayeni N. Physicochemical analysis of groundwater samples of Bichi local Government Area of Kano state of Nigeria. Asian Research publishing network Journal of Science and Technology. 2012;2:324-332.

28. Onwughara NI, Ajije VE, Nnabuenyi HO. Physicochemical studies of water from selected boreholes in Umuahia North Local Government Area in Abia state, Nigeria. International Journal of pure and Applied Bioscience. 2013;1(3):34-44.

29. Cobbina SJ, Nyame FK, Obiri S. Groundwater quality in the Sahelian region of northern Ghana, West Africa Research Journal of Environmental and Earth Sciences. 2012;4(4):482-491.
30. Agunwamba JC. Water Engineering systems, De—Iroil Innovation, Enugu; 2008.
31. Kolo BG, Jibrin MD, Ishaku IN. Elemental analysis of Tap and Borehole water in Maiduguri, semi-arid region, Nigeria. Environmental Journal of Science. 2009; 1(2):26-29.
32. Palamuleni L, Akoth M. Physicochemical and microbial analysis of selected Borehole Water in Mahikeng, South Africa. International Journal of Environmental Research Public Health. 2015;12(8):8619–8630.
33. Kannan N, Sabu J. Quality of groundwater in the shallow aquifers of a paddy dominated agricultural River Basin, Kerala, India. International Journal of Biological, Bimolecular, Agricultural, Food and Biotecnological Engineering. 2009;52: 475-493.
34. Akylieze CN, Oteze GE. Groundwater quality of Benin City urban Aquifer .African Scientist. 2006;7(2):69–85.
35. John OO, Ebehiremhen OO. Physicochemical characteristics and bacteriological studies in hand dug wells in Udu community of Delta State, Nigeria Department of Animal and Environmental Biology. Journal of Environment and Earth Science. 2014;4(22):116-120.
36. Dhavran A, Karu S. Pig Dung as Pond Manure: Effect on water quality pond productively and growth of carps in poly culture system. The International Centre for Living Aquatic Resources Management (ICLARM) Quarterly, Manila. 2002;25(1):1-14.
37. Adeyemo OK, Ayodeji IO, Aika-Raji CO. The water quality and sanitary conditions in a major abattoir (Bodija) in Ibadan, Nigeria. African Journal of Biomedical Research. 2002;5(12):51–55.

© 2020 Ibo E. M. et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
http://www.sdiarticle4.com/review-history/55290