Capturing CO₂ from Biogas by MEA (Monoethanolamine) using Packed Bed Scrubber

Iqbal Nur Daiyan1*, Leila Kalsum1, Yohandri Bow2

1Applied Renewable Energy Engineering Study Program, Politeknik Negeri Sriwijaya, Jl. Srijaya Negara, Bukit Besar, Kec. Ilir Bar. I, Kota Palembang, Sumatera Selatan 30139 Indonesia
2Chemical Engineering Department, Energy Engineering Study Program, Politeknik Negeri Sriwijaya, Jl. Srijaya Negara, Bukit Besar, Kec. Ilir Bar. I, Kota Palembang, Sumatera Selatan 30139 Indonesia

*Email: iqbalpolsri@gmail.com

ABSTRACT

Biogas is a renewable energy source that can be used as a substitute for fossil energy. Biogas mostly contains methane (CH₄) and carbon dioxide (CO₂). The content CO₂ in biogas reduces the efficiency of the combustion process and cause corrosion in metal components when direct contact with biogas. Biogas purification using absorption method can reduce levels of CO₂ contained and increase levels of CH₄ then the biogas produced can be used as fuel. This research study the effect of monoethanolamine (MEA) concentration and absorbent flow rate on the reduction of CO₂ contained in biogas. CO₂ absorption process is carried out by a spray tower type scrubber. It consisted of an acrylic absorption column (64 mm in diameter, 750 mm in height, 500 mm in packing height and 1.5 m² in capacity). Biogas flow rate used is 26 L/min with variation of the flow rate of MEA 0.5, 1, and 1.5 L/min and concentration of MEA solution 1, 3, 5, and 7M. The results showed that the flow rate of MEA 1.5 L/min with a concentration of 7M MEA solution can reduce CO₂ from 8.53% to 0.10% and can increase the methane (CH₄) load from 69.24% to 81.20%.

Keywords: absorption; biogas; MEA; packed bed scrubber; pemurnian biogas

1. INTRODUCTION

Fossil energy consumption in Indonesia is increasing every year. Energy reserves are running low, it is feared that fossil energy sources in Indonesia will soon run out (there needs to be an effort to overcome the energy scarcity that will be faced by Indonesia). Therefore, to overcome the problem of global energy needs that continue to increase, efforts are needed to utilize alternative sources, namely through efforts to utilize agricultural, plantation or forest product residues and household organic waste in the form of biomass. Today biomass has become the...
most popular energy source in every region of the world [1]. Biomass has great potential to become one of the alternative energy sources in the future [2]. Biomass energy sources have very potential in Indonesia, including biodiesel and biogas. Biodiesel is an alternative fuel sourced from plants and animal fats, Crude Palm Oil (CPO), waste cooking oil, and algae plants, while it is predicted that biodiesel consumption in Indonesia in 2025 will increase to 6.9 million kiloliters [3-6].

Biogas is one of a variety of new renewable energy that is continuously being developed at this time. Biogas is a mixture of flammable gases that comes from the anaerobic digestion process. Compounds contained in biogas include CH₄, CO₂ and other compounds in small amounts [7]. The biogas produced can be directly used as fuel for biogas stoves, but biogas without purification is still high in CO₂ content, it needs to be purified in the biogas produced to be used as fuel.

Biogas which is formed from the organic waste fermentation process does not have a gas content that is 100% flammable. Biogas products consist of CH₄ 55-65%, CO₂ 35-45%, nitrogen (N₂) 0-0.3%, hydrogen (H₂) 1-5%, H₂S 0-3 %, oxygen (O₂) 0.1-0.5%, and water vapor. all of these elements that play a role in determining the quality of biogas namely methane and carbon dioxide [8-9].

To increase the utilization of biogas as renewable energy, it is necessary to carry out the stages of refining methane. Biogas purification techniques can be carried out by the absorption method, which is the separation of a particular gas from a mixture of gases by transferring mass into a liquid that has a different solvent selectivity from the gas to be separated. Various kinds of biogas purification methods include physical absorption, chemical absorption, absorption separation with membranes, cyrogenic and chemical conversion into other compounds [10]. There is also to capture CO₂ with various solvents such as ammonia, tetrahydrofuran, monoethanolamine and tetra-n-butyl ammonium bromide [11-12]. The purity of CO₂ and H₂S content in biogas is very important for the machine because it affects the heating value and the life of the device that uses biogas. Carbon dioxide is an inhibitor of the rate of combustion chemical reactions in the engine [13]. CO₂ compounds reduce the heating value of combustion, it is necessary to eliminate or reduce this CO₂ content. Pure CH₄ has a calorific value of 9100 kcal/m³ at 15.5°C and 1 atmosphere, while the caloric value of biogas combustion is around 4800–6900 Kcal/m³ [14].

In the biogas production process, the biogas products produced contain H₂S ranging from 100-10000 ppm, the H₂S content on the type of biomass and organic material it contains [15]. H₂S has been identified as a compound that causes corrosion in machining components. Using biogas that contains H₂S will produces sulphur and sulfuric acid which are corrosive to various types of metals. H₂S content of 200 ppm if inhaled by humans for 30 minutes can cause death. The maximum permit for H₂S for safety and health standards is 20 ppm [16]. When H₂S contained in biogas burns, H₂S will turn into sulfur oxides (SOₓ) which will cause corrosion on metal components and make engine lubricating oils acidic. To reduce the damage caused by H₂S, the H₂S compound must be removed or reduced to the tolerance level [17].

Various methods for removing CO₂ and H₂S content such as physical adsorption, catalyst conversion [18]. Between NaOH solution, ethylene glycol, MEA and DEA, MEA solution has the highest efficiency in the absorption of CO₂ and H₂S [19]. Amine solution which is used as an absorber of CO₂ and H₂S in biogas in the scrubber, has a very high selectivity in terms of absorption of CO₂ and H₂S [20]. MEA is an amine solution that is best used as an absorption process, this is because MEA has the highest ability to absorb CO₂ compared to diethanolamine (DEA) and methyl diethanolamine (MDEA) [21]. The concentration of MEA as a solution to bind CO₂ needs to be considered because...
it can improve the quality of purified biogas [22-24].

The design of a packed bed scrubber is very important. The size column and packing size affect the process of purification. Previous researchers have done various modifications to the size of the purification column by using MEA solution as an absorber. Scrubber with a diameter of 70 mm, height of 1000 mm with the rasch ring, using 1M MEA solution. The result of this study CO₂ removal efficiency reaches 73% [23]. Furthermore, scrubber size 600 mm in height and 30 mm in diameter with the rasch ring packing. The result of this study CO₂ removal efficiency reaches 65% [22].

Next research with size column 780 mm in height and 120 mm in diameter using MEA solution as an absorber increased the CH₄ content from 70% to 92% and decreased the CO₂ content from 30% to 5% in the biogas by purification [25].

In this study the the packed bed scrubber is made of an acrylic absorption column (64 mm in diameter, 750 mm in height, 500 mm in packing height and 1.5m³ in capacity).

2. METHODS

In this study began with a literature study on the process of making biogas and the process of purification of biogas, then the preparation of materials for the manufacture of packed bed scrubbers, during the process of making tools, made biogas with raw materials cow dung and water 1: 2. The making of biogas uses a fixed dome type biodigester with a capacity of 500 liters found in the State Polytechnic of Sriwijaya Laboratory.

Biogas purification process requires a tool to reduce CO₂ content, various methods and tools used in biogas purification, one of which is by using a packed bed scrubber tool. Figure 1 is a picture of a packed bed scrubber tool used in this study, this tool is equipped with a temperature sensor to see the temperature changes that occur during the purification process, and is equipped with a biogas pump that functions so that the gas flow rate that enters during the purification process is constant.

This unit have dimension: 416 x450 x 1.170 mm, with scrubber diameter 64 mm and length 500 mm, in the scrubber have rasch ring packing with dimension 10 mm in height, 5 mm in diameter. This unit equipped with biogas pump (flow rate 26 L/min) and solution pump.

Biogas produced from fixed dome type biodigesters, biogas was analyzed for the composition of biogas at 5-day intervals, on days 5, 10, 15, 20, 25, and 30, then purification was carried out on the biogas produced using monoethanolamine.

In this research used MEA of loba chemie brand with 99% concentration. The process of purification CO₂ by varying the concentration of MEA (1M, 3M, 5M, 7M) and varying the flow rate (0.5 L/min 1 L/min and 1.5 L/min). The biogas from digester collect using 30 L biogas bag, after that the biogas in 30 L is purified then stored in 2 L biogas bag.

Biogas analysis was carried out in the PT Pupuk Sriwijaya Palembang laboratory using Shimadzu GC-2014 gas chromatograph. The Shimadzu GC-2014 is a highly versatile gas chromatograph system. The GC unit is ideal for both routine analysis like in chemicals analysis. Biogas in sample bag injected into the Shimadzu GC-2014, the result of data analysis from this GC is using concentration of the biogas.

3. RESULTS AND DISCUSSION

Biogas production is carried out at a biogas installation in the State Polytechnic of Sriwijaya (Renewable Energy Laboratory), the digester used can be seen in Figure 1 and the packed bed scrubber used in this study can be seen in Figure 2.
The biogas produced is stored in a 30 L bag, then the biogas is connected to the biogas input to the absorber for absorption by the output of a 2 L biogas sample bag. The biogas purification results used MEA solution before and after purification on packed bed scrubber in Table 1 and Table 2.

3.1 ANALYSIS RESULT BEFORE AND AFTER PURIFICATION

Observation data were obtained by analyzing biogas samples at PT Pupuk Sriwijaya Palembang. The purpose of the analysis is to determine the content of CH$_4$, CO$_2$, O$_2$ and N$_2$ contained in biogas. Following are the results of the analysis of biogas composition before being purified.

Biogas analysis before purification is conducted at intervals of 5 days, the point is to find out the optimum biogas content condition. On the 5th day the digester did not produce biogas, entering the 10th day the biogas was formed but the methane content was still low. Result data analysis biogas composition before purification 5 days interval in Table 1.

Entering the 15th day the composition began to increase CH$_4$ 44.42%, CO$_2$ 1.64%, O$_2$ 16.96% and N$_2$ 35.28%.

Biodigester production time (days)	Biogas Composition (%)			
	CH$_4$	CO$_2$	O$_2$	N$_2$
5	0	0	0	0
10	19.18	0.93	19.54	58.80
15	44.42	1.64	16.96	35.28
20	60.27	3.05	14.27	20.61
25	71.18	8.53	6.65	12.28
30	62.04	14.64	3.27	18.28

On the 20th day and the 25th day the CH$_4$ content continued to increase with an optimal composition on the 25th day showing that the CH$_4$ content reached 71.18%, CO$_2$ 8.53% O$_2$ content decreased to 6.65% and N$_2$ also decreased to 12.28%.

Day 30 there was a decrease in biogas production, the results of biogas composition analysis on day 30 decreased compared to day 25th CH$_4$ 62.04%, CO$_2$ 14.64%, O$_2$ 3.27% and N$_2$ 18.28%. Therefore, researchers purified using biogas which was produced on the 25th day as a gas for the purification process, because the optimum methane content was found on the 25th day, 71.18% with CO$_2$ content of 8.53%.
Purification process is to reduce CO\(_2\) content in biogas, decreasing CO\(_2\) content in biogas, the methane content will increase. Data from analysis of biogas content after purification in Table 2.

Table 2. Biogas composition after purification by MEA using packed bed scrubber

MEA Flow Rate (L/min)	MEA Concentration (M)	CH\(_4\)	CO\(_2\)	O\(_2\)	N\(_2\)
0.5	1	72.64	0.68	7.65	17.10
1	1	73.52	0.66	7.36	16.56
1.5	3	73.74	0.64	7.52	16.13
0.5	3	75.77	0.42	6.52	15.42
1.5	3	76.04	0.39	6.77	15.37
0.5	5	76.23	0.36	6.53	15.28
1	5	77.30	0.29	6.57	14.20
1.5	5	77.41	0.21	6.34	14.53
0.5	7	78.04	0.17	6.80	13.54
1	7	79.07	0.15	6.80	11.55
1.5	7	80.24	0.13	6.41	11.78
		81.20	0.10	6.89	11.01

3.2 ANALYSIS RESULT CO\(_2\) AND CH\(_4\) AFTER PURIFICATION

Figure 3 is data that has been processed into a graph of the effect of flow rate and concentration of MEA to CO\(_2\) reduction after purification.

Figure 3. CO\(_2\) reduction after purification using MEA at flow rate of 0.5, 1, 1.5 L/min

The results of biogas analysis after purification showed very significant results at a MEA flow rate of 0.5 L/min with a concentration of 1M MEA able to reduce CO\(_2\) from 8.53% to 0.68% (Figure 3). Increasing the flow rate and concentration of MEA makes the CO\(_2\) content decreases. This is due to the greater absorbent flow rate that will make an increase in the interfacial area of packing in the column. This is in line with research conducted by W. Kamopas et al. [25] which examined the effect of flow rate and concentration of MEA on gas purification. From his research proved that the rate of solution and the higher concentration of MEA that enters the scrubber can reduce CO\(_2\). Furthermore, along with a decrease in CO\(_2\) content in biogas, an increase in CH\(_4\) content in biogas, the effect of the flow rate and the concentration of MEA on CH\(_4\) can be seen in Figure 4.

In Figure 4, increasing the flow rate and the concentration of MEA make CH\(_4\) content increase. Concentration in biogas has increased from 71.18 to 81.20%. CH\(_4\) has one carbon in each chain can produce more environmentally friendly combustion than long carbon chain fuels. This is due to the amount of CO\(_2\) produced during the
combustion of short or fewer carbon chain fuels.

![Figure 4](image.png)

Figure 4. Effect of the MEA solution flow rate of 0.5, 1, 1.5 L/min on CH₄

4. CONCLUSIONS

The results of the study using MEA solution with Packed Bed Scrubber showed that the higher the flow rate of the solution and the higher the concentration of the solution would increase the absorption of CO₂ and increase the CH₄ content. The optimum results obtained at a solution flow rate of 1.5 L/min with a 7 M MEA concentration obtained a decrease in CO₂ content from 8.53% to 0.1%, while the CH₄ content from 71.18% to 81.20%, in this study obtained the best percentage reduction in CO₂ 8.52% and in CH₄ increase 10.02%. The parameters carried out in this study are expected to be a reference for optimizing biogas purification.

REFERENCES

[1] D. Thrän, T. Seidenberger, J. Zeddies, and R. Offermann, Global Biomass Potentials-Resources, Drivers and Scenario Results, *Energy Sustain. Dev.*, vol. 14, no. 3, pp. 200–205, 2010.

[2] R. Ploetz, R. Rusdianasari and E. Eviliana, Renewable Energy: Advantages and Disadvantages, In Proceedings of the Forum in Research, Science, and Technology (FIRST): Politeknik Negeri Sriwijaya, Sumatera Selatan, Indonesia, 2016.

[3] R. A. Nurul Moulita, Rusdianasari, and L. Kalsum, Converting Waste Cooking Oil into Biodiesel using Microwaves and High Voltage Technology, Journal of Physics: Conf. Series, (2nd Forum in Research, Science, and Technology), 1167 (012033), 2019.

[4] S Yunsari, Rusdianasari, and A Husaini, CPO Based Biodiesel Production using Microwaves Assisted Method, Journal of Physics: Conf. Series, (2nd Forum in Research, Science, and Technology), 1167(1) (012036), 2019.

[5] P. Dilia, K. Leila, Rusdianasari, Fatty Acids from Microalgae Botryococcus braunii for Raw Material of Biodiesel, Journal of Physics: Conf. Series, (The 6th International Conference of the Indonesian Chemical Society) 1095 (012010), 2018.

[6] Rusdianasari, A Syarif, M Yerizam, MS Yusi, L Kalsum, Y Bow, Effect of Catalyst on the Quality of Biodiesel from Waste Cooking oil by Induction Heating, Journal of Physics: Conf. Series, (Proceedings of FIRST) 1500 (012052), 2020.

[7] A. Wellinger and A. Lindberg, Biogas Upgrading And Utilisation Task 24: Energy From Biological Conversion of Organic Waste., pp. 1-20, 2005.

[8] L. Appels, J. Baeyens, J. Degrève, and R. Dewil, Principles and Potential of The Anaerobic Digestion of
[9] P. Eriksson and M. Olsson, The Potential of Biogas as Vehicle Fuel in Europe, Master Thesis, Department of Energy and Environment, Chalmers University Of Technology, Sweden, pp. 137, 2007.

[10] F. Bauer, C. Hulteberg, T. Persson, D. Tamm, and B. Granskning, Biogas upgrading – Review of commercial technologies, Swedish Gas Technology Centre Report, 2013.

[11] O. W. Awe, Y. Zhao, A. Nzhou, D. P. Minh, Na. Lyczko., A Review of Biogas Utilisation, Purification and Upgrading Technologies Review. Waste and Biomass Valorisation, Springer, Van Godewijckstraat 30, 3311 Gz Dordrecht, Netherlands, 8(2), pp. 267-283, 2017

[12] M. J. Yang, W. Jing, J. F. Zhao, Z. Ling, and Y. C. Song, Promotion of Hydrate-Based CO2 Capture from Flue Gas by Additive Mixtures (THF (tetrahydrofuran) + TBAB (tetra-n-butyl ammonium bromide)), Energy, vol. 106, pp. 546–553, 2016.

[13] B. Zhao, Y. Su, and G. Cui, Post-Combustion CO2 Capture with Ammonia by Vortex Flow-Based Multistage Spraying: Process Intensification and Performance Characteristics, Energy, vol. 102, pp. 106–117, 2016.

[14] D. Wahyudi, I. N. G. Wardana, N. Hamidi, Pengaruh Kadar Karbendioksida (CO2) dan Nitrogen (N2) Pada Karakteristik Pembakaran Gas Metana, Jurnal Rekayasa Mesin, vol. 3, no. 1, pp. 241–248, 2012.

[15] M. Harasimowicz, P. Orluk, G. Zakrzewska-Trznadel, and A. G. Chmielewski, Application of Polyimide Membranes for Biogas Purification and Enrichment, J. Hazard. Mater., vol. 144, pp. 698–702, 2007.

[16] N. N. Zulkefli, M. S. Masdar, J. Jahim, and E. H. Majlan, Overview of H2S Removal Technologies from Biogas Production, Int. J. Appl. Eng. Res., vol. 11, no. 20, pp. 10060–10066, 2016.

[17] J. H. Gibbons, Energy from biological processes, McGraw-Hill, Inc., New York, July, pp. 1–201, 1980.

[18] D. Deublein, and A. Steinhauser, Biogas from Waste and Renewable Resources. Wiley-VCH Verlag GmbH & KGaA, Federal Republic of Germany, 2011.

[19] K. Li, W. Leigh, P.H. M. Feron, H. Yu, M. Tade, Systematic Study of Aqueous Monoethanolamine (MEA)-Based CO2 Capture Process: Techno-Economic Assessment of the MEA Process and Its Improvements, Appl. Energy, vol. 165, pp. 648–659, 2016.

[20] J. Lasocki, K. Kołodziejczyk, A. Matuszewska, Laboratory-Scale Investigation of Biogas Treatment by Removal of Hydrogen Sulfide and Carbon Dioxide, Polish J. Environ. Stud., vol. 24, no. 3, pp. 1427–1434, 2015.

[21] T. Watabe and K. Yogo, Isotherms and Isosteric Heats of Adsorption for CO2 in Amine-Functionalized Mesoporous Silicas, Sep. Purif. Technol., vol. 120, pp. 20–23, 2013.
[22] P. Galindo, A. Schaffer, K. Brechtel, S. Unterberger, and G. Scheffknecht, Experimental research on the performance of CO$_2$-loaded solutions of MEA and DEA at regeneration conditions, *Fuel*, vol. 101, pp. 2–8, 2012.

[23] P. Kasikamphaiboon, J. Chungsiriporn, C. Bunyakan, and W. Wiyaratn, Simultaneous Removal of CO$_2$ and H$_2$S Using MEA Solution in a Packed Column Absorber for Biogas Upgrading, *Songklanakarin J. Sci. Technol.*, vol. 35, no. 6, pp. 683–691, 2013.

[24] O. I. Maile, H. Tesfagiorgis, and E. Muzenda, The Potency of Monoethanolamine in Biogas Purification and Upgrading, *South African J. Chem. Eng.*, vol. 24, pp. 122–127, 2017.

[25] W. Kamopas, A. Asanakham, and T. Kiatsiriroat, Absorption of CO$_2$ in Biogas with Amine Solution for Biomethane Enrichment, *J. Eng. Technol. Sci.*, vol. 48, no. 2, pp. 231–241, 2016.

[26] Sajaruddin, L Kalsum, Z Muchtar, The Analysis of Biogas Fermentation Time from Cow Manure on Fixed Dome Biodigester Batch Systems, Journal of Physics: Conf. Series, (Proceedings of FIRST) 1500 (012043), 2020.