We report on the first direct observation of coherent control of single particle tunneling in a strongly driven double well potential. In our setup atoms propagate in a periodic arrangement of double wells allowing the full control of the driving parameters such as frequency, amplitude and even the space-time symmetry. Our experimental findings are in quantitative agreement with the predictions of the corresponding Floquet theory and are also compared to the predictions of a simple two mode model. Our experiments reveal directly the critical dependence of coherent destruction of tunneling on the generalized parity symmetry.

PACS numbers: 03.75.Be, 03.65.Xp, 33.80.Be
as we will show later it is also in quantitative agreement with theory.

Before we will discuss our systematic investigations and the corresponding Floquet description we shortly discuss the experimental setup which is schematically depicted in fig. 2. Since we are dealing with one dimensional physics a traditional well collimated (FWHM <180µrad) atomic beam is perfectly suited as a particle source and the dynamics of interest happens only in the transverse direction. We have chosen metastable argon since it allows for a spatially resolved single particle detection using a multi-channel plate. Additionally for metastable argon imaginary optical potentials \(\epsilon \) can be realized using resonant light at 801nm. This transition quenches the metastable state to the ground state which is not detectable with a channel plate and thus can be employed for the preparation of a particle on one side of the barrier.

The periodic arrangement of double wells is achieved by changing the AOD frequency (by changing the AOD frequency) leading to a difference in the light field in y-direction. The momentum distribution is detected in the far field by a multi-channel plate. The used optical setup with an acousto optical deflector is depicted in fig. 2. Since we are dealing with one dimensional physics a traditional well collimated (FWHM <180µrad) atomic beam is perfectly suited as a particle source and the dynamics of interest happens only in the transverse direction. We have chosen metastable argon since it allows for a spatially resolved single particle detection using a multi-channel plate. Additionally for metastable argon imaginary optical potentials \(\epsilon \) can be realized using resonant light at 801nm. This transition quenches the metastable state to the ground state which is not detectable with a channel plate and thus can be employed for the preparation of a particle on one side of the barrier.

The periodic arrangement of double wells is achieved employing standard optical light shift potentials (see fig. 2). By retro reflecting two far red-detuned light beams (\(\lambda = 811.775nm \)) realized with an acousto optical deflector (AOD) under 0° and 60° incidence standing light waves are formed with periodicities of \(\lambda/2 \) and \(\lambda \) respectively in x-direction. Using a gold mirror one has to take into account that the residual absorption leads to a phase shift between the two light waves of \(\phi = 0.4 \) rad for light polarized perpendicular to the plane of incidence resulting in an arrangement of asymmetric double wells. In our experiment we compensate this phase shift i.e. asymmetry, by adjusting the reflection angle to 59.97° (by changing the AOD frequency) leading to a different spatial periodicity such that the phase is compensated at a distance of 120µm from the mirror surface (see fig. 2c)). The imaginary potential for the preparation of the atoms in one well is implemented by retro reflection of \(\lambda = 801.702nm \) light on the same mirror but under an angle such that at a distance of 120µm the phase shift relative to the double wells is about \(\pi/4 \) leading to the preparation of the atom in one well.

The light intensity profile along the atomic beam is adjusted with specially designed optical gray filters such that the motion of the atoms follows adiabatically the light shift potentials. In the case of perpendicular incidence of the atoms onto the standing light wave the symmetric ground state of the double well potential is populated. This critical alignment is achieved by standard Bragg scattering. The potential heights are calibrated by either preparing non adiabatically and observing the oscillation frequency (\(\lambda/2 \) periodicity) or preparing a wave packet such that it oscillates around the potential minimum (\(\lambda \) periodicity).

The driving is realized by tuning the relative phase between the two periodic potentials. This is experimentally implemented by periodically changing the driving frequency of the AOD i.e. the diffraction angle. Since this is under full experimental control it offers a great freedom in choosing frequency as well as the space-time symmetry of the driving force.

In order to make a quantitative comparison of the experimental results with theoretical predictions over the whole range of experimentally accessible parameters we employ the standard Floquet formalism. Our system is described by the Hamiltonian

\[
H = \frac{p^2}{2m} + V_1 \cos^2(kx) + V_2 \cos^2(kx \cos(\frac{\pi}{3} + \epsilon f(t)))
\]

with \(V_{1,2} \) being the amplitudes of the two potentials forming the double well structure and \(\epsilon f(t) \) the deviation from the incidence angle of 60°. In the limit of small \(\epsilon \) this leads to a driving potential of the form \(V_d = S \sin(\bar{x} f(t)) \) with \(\bar{x} = 0 \) at the symmetry of the double well potential. \(S \) is the amplitude of the driving and \(f(t) \) describes the time dependence of the driving force with the characteristic driving frequency \(\omega_d = 2\pi/T \). As this Hamiltonian is time periodic we can introduce the Hermitian Operator \(H(x,t) = H(x,t) - i\hbar \frac{\partial}{\partial t} \) and according to the Floquet theorem make a plane wave ansatz for the state vector \(|\Psi(t)\rangle = \exp(-i\epsilon_\alpha t/\hbar)|\Phi_\alpha(t)\rangle \) where \(|\Phi_\alpha(t)\rangle = |\Phi_\alpha(t + T)\rangle \). In doing so we reduce the problem to solving the eigenvalue equation for quasienergies \(\epsilon_\alpha \)

\[
\mathcal{H}|\Phi_\alpha(x,t)\rangle = \epsilon_\alpha |\Phi_\alpha(x,t)\rangle
\]

which can be easily done numerically. For the time periodic function \(\Phi_\alpha \) we can make a Fourier expansion and choose the eigenstates of the unperturbed double well potential as an orthogonal basis. For the results shown in
the following we have taken into account the 15 lowest energy eigenstates.

In fig. 3 the results for the quasienergies are shown for sinusoidal and sawtooth driving. The corresponding eigenenergies of the eigenstates which are maximally populated due to our initial condition of a particle localized on one side of the barrier are indicated with black and dark-gray points. An exact crossing of the relevant quasienergies implies that the slow dynamics comes to a complete stand still i.e. CDT, indicated by the dashed vertical line. This happens if the eigenstates of the crossing quasienergies belong to different parity classes of the generalized parity $P : x \rightarrow -x, t \rightarrow t + \frac{T}{2}$. Clearly in the case of broken symmetry (fig. 3(b)) no crossing exists. Furthermore it becomes clear that the tunneling rate will increase as the symmetry is broken. For high driving frequencies independent of the symmetry the theory predicts an acceleration of the tunneling in comparison to the undriven case. The dashed horizontal lines indicate the eigenenergies of unperturbed double well.

The results of our systematic investigations of ac-control of coherent tunneling with symmetric driving are summarized in fig. 4. Plot (a) shows the tunneling splitting deduced from the observed dynamics as a function of driving frequency as solid dots ($S = 0.88E_r$ with $E_r = \hbar^2/2m\lambda^2$ for $\lambda = 811$nm). The dashed line indicates the tunneling splitting for the unperturbed double well potential. Since for a given driving frequency more than two quasienergy differences are relevant we have chosen a gray shading representing the weight given by the population of the corresponding eigenstates due to the initial condition i.e. the probability to find this tunneling frequency. It has to be noted that in the theoretical prediction no free parameter is used. Thus we have very good quantitative agreement between theory and experiment. Furthermore the results show that driving allows for the full control of the tunneling dynamics i.e. acceleration as well as suppression.

For completeness we have added the analytical prediction within the two mode approximation for the ef-
fective tunneling splitting $\Delta_{eff} = J_0(x_{12}^2)\Delta_{12}$ where J_0 represents the zeroth-order Bessel function, $x_{12} = \langle \phi_1 | \sin(kx) | \phi_2 \rangle$ is the transition dipole matrix element and Δ_{12} is the tunneling splitting of the unperturbed system [5]. It is clear that the two mode approximation captures the CDT very well. The deviation in respect to the Floquet analysis comes from the fact that we are not deep in two mode regime as can be seen in the inset ($V_1 = 6.25E_r, V_2 = 5.40E_r$). The increase of tunneling rate for very high driving frequencies is due to the resonance with the second excited state in the potential well. At this resonance the tunneling dynamics follows from the interplay between three Floquet states and thus it is very similar to the physics of chaos assisted tunneling [6].

The dependence of the tunneling splitting as a function of driving amplitude for fixed driving frequency $\omega_d = 6$kHz is shown in fig. [4]b). There we compare our experimental results with the Floquet and two mode theory. It is important to note that the potential parameters $(V_1 = 8.27E_r, V_2 = 2.68E_r)$ for these experiments are deeper in the two mode regime (see inset in fig. [4]) and thus the two mode approximation fits perfectly with the Floquet theory. Clearly the splitting gets smaller i.e. the dynamics gets slower as the amplitude is increased. Also here we get quantitative agreement between theory and experiment without free parameter.

In order to verify that CDT is indeed observed we demonstrate the critical dependence of the slowing down of the tunneling on the generalized parity symmetry of the driving $P: x \rightarrow -x, t \rightarrow t + \frac{I}{2}$. This has been implemented experimentally in two different manners namely breaking the temporal symmetry for a spatially symmetric double well (see fig. [3]l) and breaking the spatial symmetry i.e. asymmetric double well, with symmetric temporal driving (see fig. [3]j). Clearly the tunneling dynamics is faster if the symmetry of the driving is broken.

In this paper we have experimentally demonstrated the versatility of strong driving as a new tool to modify the coherent tunneling dynamics. In the experiment we have investigated the tunneling of a single particle in a double well potential for different driving situations. With that we clearly demonstrate experimentally the critical dependence of coherent destruction of tunneling on the underlying symmetry of the driving. We find excellent quantitative agreement between experiment and theory. The realization of a periodic potential with perfectly controllable parameters such as symmetry of the unit cell and driving makes it a general model system for studying strongly driven systems in the quantum regime with the potential for preparation of complex quantum states in many particle systems [9] but also extendable to the regime of chaotic motion present in hamiltonian ratchets [10].

We wish to thank Peter Hänggi for the discussions initiating this experiment. For the experimental contributions during the building up phase and carefully reading the manuscript we thank Ralf Stützle and Ramona Ettig. For support on the Floquet state analysis we would like to thank Waltraud Westmann and Roland Ketzmerick. This work was financially supported by Landesstiftung Baden-Württemberg Atomics and the University of Heidelberg.

FIG. 5: Tunneling dynamics for different driving symmetries. (a) The open circles represent the tunneling dynamics in a stationary potential while the solid dots reveal the slowing down of the dynamics due to symmetric driving. (b) Applying a sawtooth temporal driving to a spatially symmetric double well leads to significant tunneling during the interaction time. (c) Breaking the spatial symmetry i.e. asymmetric double well, but employing symmetric sinusoidal temporal driving also leads to the expected increase of the tunneling rate.

* URL: www.kip.uni-heidelberg.de/matterwaveoptics

[1] W. Domcke, P. Hänggi and D. Tannor, eds., Special Issue: Chemical Physics, Vol. 217, No. 2-3, 117-416 (1997).
[2] F. Grossmann, T. Dittrich, P. Jung, and P. Hänggi, Phys. Rev. Lett. 67, 516 (1991).
[3] G. Della Valle, et al., Phys. Rev. Lett. 98, 263601 (2007).
[4] H. Lignier, et al., Phys. Rev. Lett. 99, 220403 (2007).
[5] M. Grifoni, P. Hänggi, Phys. Rep. 304, 229 (1998).
[6] V. Averbeck, S. Osowski, and N. Moiseyev, Phys. Rev. Lett. 89, 253201 (2002).
[7] V. I. Balykin and V. S. Letokhov, Atom Optics with Laser Light (Harwood Academic, Chur, Switzerland, 1995), experimentally e.g. R. Stützle, et al., Phys. Rev. Lett. 95, 110405 (2005).
[8] D. A. Steck, W. H. Oskay, M. G. Raizen, Science 293, 274 (2001). W. Hensinger et al., Nature 412, 52 (2001).
[9] A. Eckardt, C. Weiss, and M. Holthaus, Phys. Rev. Lett. 95, 260404 (2005). N. Teichmann and C. Weiss, EPL 78, 1009 (2007).
[10] e.g. H. Schanz, M.F. Otto, R. Ketzmerick, and T. Dittrich, Phys. Rev. Lett. 87, 070601 (2001).