Adverse Pregnancy Outcomes and International Immigration Status
A Systematic Review and Meta-analysis
Behboudi-Gandevani, Samira; Bidhendi-Yarandi, Razieh; Panahi, Mohammad Hossein; Mardani, Abbas; Paal, Piret; Prinds, Christina; Vaismoradi, Mojtaba

Published in:
Annals of Global Health

DOI:
10.5334/aogh.3591

Publication date:
2022

Document version:
Final published version

Document license:
CC BY

Citation for published version (APA):
Behboudi-Gandevani, S., Bidhendi-Yarandi, R., Panahi, M. H., Mardani, A., Paal, P., Prinds, C., & Vaismoradi, M. (2022). Adverse Pregnancy Outcomes and International Immigration Status: A Systematic Review and Meta-analysis. Annals of Global Health, 88(1), [44]. https://doi.org/10.5334/aogh.3591

Go to publication entry in University of Southern Denmark's Research Portal

Terms of use
This work is brought to you by the University of Southern Denmark. Unless otherwise specified it has been shared according to the terms for self-archiving. If no other license is stated, these terms apply:
• You may download this work for personal use only.
• You may not further distribute the material or use it for any profit-making activity or commercial gain.
• You may freely distribute the URL identifying this open access version.

If you believe that this document breaches copyright please contact us providing details and we will investigate your claim. Please direct all enquiries to puresupport@bib.sdu.dk
Adverse Pregnancy Outcomes and International Immigration Status: A Systematic Review and Meta-analysis

SAMIRA BEHBOUDI-GANDEVANI RAZIEH BIDHENDI-YARANDI MOHAMMAD HOSSEIN PANahi ABBAS MARDANI PIRET PAAL CHRISTINA PRINDS MOJTABA VAISMORADI

ABSTRACT

Background: Disparities in health outcomes between immigrant and native-origin populations, particularly pregnant women, pose significant challenges to healthcare systems. The aim of this systematic-review and meta-analysis was to investigate the risk of adverse pregnancy outcomes among immigrant-women compared to native-origin women in the host country.

Methods: PubMed (including MEDLINE), Scopus, and Web of Science were searched to retrieve studies published in English language up to September 2020. All observational studies examining the prevalence of at least one of the short-term single pregnancy outcomes for immigrants who crossed international borders compared to native-origin pregnant population were included. The meta-prop method was used for the pooled-estimation of adverse pregnancy-outcomes' prevalence. For pool-effect estimates, the association between the immigration-status and outcomes of interest, the random-effects model was applied using the model described by DerSimonian and Laird. I² statistic was used to assess heterogeneity. The publication bias was assessed using the Harbord-test. Meta-regression was performed to explore the effect of geographical region as the heterogeneity source.

Findings: This review involved 11 320 674 pregnant women with an immigration-background and 56 102 698 pregnant women as the native-origin population. The risk of emergency cesarean section (Pooled-OR = 1.1, 95%CI = 1.0–1.2), shoulder dystocia (Pooled-OR = 1.1, 95%CI = 1.0–1.3), gestational diabetes mellitus (Pooled-OR = 1.4, 95%CI = 1.2–1.6), small for gestational age (Pooled-OR=1.3, 95%CI = 1.1–1.4), 5-min Apgar less than 7 (Pooled-OR = 1.2, 95%CI = 1.0–1.3) and oligohydramnios (Pooled-OR = 1.8, 95%CI = 1.0–3.3) in the immigrant women were significantly higher than those with the native origin background. The immigrant women had a lower risk of labor induction (Pooled-OR =
INTRODUCTION

The immigrant population has been defined as any person moving across an international border, regardless of the person’s legal status; whether it is voluntary or involuntary and what the causes of movement are; or what the length of the stay is [1]. This population constitutes a heterogeneous and wide category group including refugees, asylum seekers, illegal and undocumented immigrants, economic and transient immigrants. It is a hallmark of global development over the last millennia [2]. It has been estimated that more than 3.5% of the world’s population are immigrants in the world in 2020, and immigration has increased dramatically over the past two decades [1]. The underlying reasons for immigration are multifactorial, involving a complex interaction between factors within and beyond individuals’ control including political, socioeconomic, and educational, along with more acute drivers such as natural disasters, violence, and conflict [3].

Health manifestation of immigrants reflect their past medical histories, the disease burden and quality of care in the original and host countries [4]. Although there is a heterogeneity in the degree to which immigrants are vulnerable to inadequate health care, they have been identified as generally vulnerable population. These differences are more complicated by pregnancy. Subsequently, a specific attention should be paid to pregnant women. Interactions between socio-material deprivation factors aggravated by stressors involved in the immigration process can play an important role [5]. However, the results of studies on the adverse perinatal health of immigrants are conflicting [4]. Some studies reported that the perinatal health of immigrants were equal or better compared to the native origin population. In contrast, some studies showed that the risk of adverse pregnancy outcomes were poorer than women in the host country [6, 7, 8, 9, 10, 11]. Given the lack of conclusive evidence, the aim of this systematic review and meta-analysis was to investigate the risk of adverse maternal and neonatal outcomes in immigrant women compared to native-origin women in the host country.

METHODOLOGY

The research protocol for this systematic review and meta-analysis was developed before the study and was used as the guideline to conduct this research (Supplementary Table 1). A systematic review and meta-analysis was conducted based on the Cochrane methodology for systematic review and meta-analysis studies. The research process has been informed by the guideline for the preferred reporting items for systematic reviews and meta-analyses (PRISMA) [12]. The review question was framed based on the PICO statement as follows:

P: pregnant women with the history of pregnancy and their neonates; I: international immigration; C: pregnant women with the native-origin background; O: adverse maternal and neonatal outcomes.
The research objectives were as follows:

- To study the pooled prevalence and risk of adverse maternal outcomes in pregnant women with the immigration background compared to their native-origin counterparts;
- To study the pooled prevalence and risk of adverse neonatal outcomes in pregnant women with the immigration background compared to their native-origin counterparts.

ELIGIBILITY CRITERIA

Studies were identified eligible if they (1) examined immigrant women who crossed international borders; (2) reported one type of data including number, prevalence, or the risk of incidents for at least one of the short-term single maternal and neonatal outcomes; (3) compared those outcomes between pregnant women with the immigration background and the native-origin population (4) and generally without time limitation.

Exclusion criteria were non-original studies including reviews, commentaries, editorials, letters, case reports, conference proceedings, books, original studies without accurate and clear data on research variables, duplicated data, and also studies focusing on a specific minor population such as adolescents. However, no restrictions were applied on the immigrant origin, status or length of time for the receiving country.

SEARCH STRATEGY

For this systematic review and meta-analysis, online databases of PubMed (including MEDLINE), Scopus, and Web of Science that covered the main percentage of observational studies published in English were searched up to September 2020. Also, a manual search in the references lists of selected studies and other relevant reviews was carried out to maximize the identification of eligible studies.

Two review authors performed the search individually using the following key words and phrases alone or in combination as follows: (immigration OR migration OR immigrant OR migrant OR emigrant OR asylum seeker OR asylum seeking OR asylum OR refugee) AND (“adverse pregnancy outcomes” OR “pregnancy outcomes” OR “pregnancy complications” OR abortion OR miscarriage OR “pregnancy loss” OR “fetal death” OR “stillbirth” OR “preeclampsia” OR “gestational hypertension” OR PIH OR “gestational diabetes” OR hemorrhage OR “postpartum hemorrhage” OR PPH OR “Placenta abruption” OR “placenta previa” OR preterm OR “premature rupture of membrane” OR PROM OR “Intra uterine growth restriction” OR IUGR OR “Low birth weight” OR LBW OR oligohydramnios OR Apgar OR “fetal distress” OR “neonatal distress” OR RDS OR “neonatal death” OR “neonatal mortality” OR “neonatal admission” OR “NICU admission” OR malformation OR anomalies OR “birth weight” OR LGA OR “large for gestational age” OR SGA OR “small for gestational age” OR “gestational diabetes” OR GDM OR IUFD OR “intra uterine fetal death” OR cesarean OR “operative delivery” OR “instrumental delivery” OR vacuum).

STUDY SELECTION AND DATA EXTRACTION

The titles, abstracts, and full texts of studies were examined independently by two review authors to determine whether they met the inclusion criteria. The decision on the final inclusion of studies was made through reaching a consensus by all review authors through holding discussions. Selected articles meeting the inclusion criteria were included in data analysis and research synthesis.

The following data were extracted from the included studies: origin of study; publication year; study period; size of study population; population characteristics including age and body mass index (BMI); outcome measurements including the number, prevalence or risk of adverse pregnancy events. To prevent bias in the data extraction and data entry, double checking of the data extraction process was performed before meta-analysis.
STUDY OUTCOMES
The important maternal events of labor induction, total cesarean-section (S-C), primary C-S, emergency C-S, instrumental delivery, gestational diabetes mellitus (GDM), preeclampsia, and pregnancy-induced hypertension (PIH) were considered. Also, neonatal events consisted of macrosomia, large for gestational age (LGA), small for gestational age (SGA), admission to the neonatal intensive care unit (NICU), respiratory distress syndrome (RDS), Apgar scores less than 7 at five minutes, shoulder dystasia, birth trauma, oligohydramnios, and preterm birth.

QUALITY APPRAISAL AND STATISTICAL DATA ANALYSIS
Selected studies (n = 126) were appraised with regard to the quality of their methodological structures and the presentation of results. Three reviewers who were blind to the study authors, institution, and journal name, assessed the quality of each these studies individually. Observational studies including cross-sectional, case–control, and cohort were appraised using the Newcastle–Ottawa scale [13]. Three domains were scored for the selection and comparability of study cohorts, and to determine the outcome of interest. Studies with scores above 6 were judged high quality, 4–6 moderate quality, and less than 4 low quality.

The meta-prop method helped with the pooled estimation of the prevalence of adverse pregnancy outcomes. To study the association between the immigration status and the outcomes of interest, pooled odds ratio (OR) (with 95% CI) was considered the effect size. The random-effects model described by DerSimonian and Laird was used for the data analysis. Corresponding forest plots were constructed for both the pooled prevalence and odds ratio (OR) of the outcomes. Study heterogeneity was assessed using the inconsistency index (I²-statistic) and > 50% was considered substantial heterogeneity. Publication bias was assessed through the Harbord test. Meta-regression was performed to explore the association between maternal age and the risk of adverse pregnancy outcomes in immigrant women compared to those with the native origin background. Moreover, we assessed the effect of geographical region as the source of heterogeneity. P < 0.05 was set as the significance level. Data analyses were conducted using Stata (version 14; STATA Inc., College Station, TX, USA).

RESULTS
SEARCH RESULTS, STUDY SELECTION, STUDY CHARACTERISTICS, AND QUALITY APPRAISAL
The literature search yielded 628 studies. They were saved in the EndNote library and 216 duplicates were identified. The remaining 412 studies underwent the review process. Of these, 219 were excluded after title and abstract screening. Full text of 193 studies were read and appraised and a total of 126 studies met the inclusion criteria, involving 11,320,674 pregnant women with the immigration background and 56,102,698 native origin women (Figure 1). Characteristics of these studies have been summarized in supplementary Table 2. The quality appraisal of the included studies has been presented in supplementary Tables 3 and 4. A total of 106 studies were judged as high quality [11, 14–118], 20 as moderate quality [119–138], and no study had low quality.

A total of 21 studies (17%) were conducted in the USA and Canada [25, 37, 38, 44, 47, 49, 53, 72, 75, 77, 84, 86, 89, 91, 96, 100, 106, 109, 116, 118, 124], 73 studies (58%) in Europe [11, 15, 17, 19, 23, 24, 27–30, 33–36, 39–43, 45, 46, 47, 51, 54–59, 63–67, 69, 70, 73, 74, 76, 79–83, 85, 90, 92–95, 97–99, 102–105, 107, 108, 110, 113–115, 117, 122, 126, 130–133, 136, 138], 19 studies (15%) in Asia [16, 22, 26, 31, 50, 52, 71, 78, 87, 101, 119–121, 123, 125, 127, 129, 134, 135], 3 studies (2%) in South America [112, 128, 137] and 10 studies (8%) in Australia and New Zealand [14, 18, 20, 21, 32, 60–62, 68, 88].
META-ANALYSIS AND META-REGRESSION

Compared to those with the native origin background, the immigrant women were more likely to be younger, although comparison was not statistically significant [pooled mean (CI 95%): 29.9 (29.9) versus 29.2 (29.1) years (P < 0.095)]. The pooled prevalence of adverse maternal and neonatal outcomes among the immigrant and native origin populations have been presented in Figure 2 and Supplementary Figures 1–17.

Table 1 outlines the prevalence and pooled ORs of adverse maternal and neonatal outcomes, and estimation of heterogeneity and publication bias among the pregnant women with the immigration background compared to their native origin counterparts. No substantial publication bias based on the Harbord test was observed (Table 1), except for GDM, which was corrected using the trim and fill method of publication bias adjustment.
Table 1: Heterogeneity, estimation of publication bias, and meta-analysis of the studies on the risk of adverse maternal and neonatal outcomes among immigrant women and native origin women.

OUTCOME	SAMPLE SIZE OF IMMIGRANT	POOLED PREVALENCE (95% CI)*	PUBLICATION BIAS HARBORD TEST*	HETEROGENEITY I-SQUARED %	POOLED OR (95% CI)		
	EVENT	TOTAL	MIGRANT	NATIVE ORIGIN			
Cesarean section	148931	660205	0.21 (0.20, 0.23)	0.27 (0.25, 0.29)	0.739	98.1	0.992 (0.941, 1.045)
Emergency cesarean section	50600	395162	0.12 (0.11, 0.13)	0.11 (0.10, 0.13)	0.466	97.2	1.129 (1.048, 1.215)
Primary cesarean section	6279	44318	0.17 (0.15, 0.19)	0.17 (0.14, 0.20)	0.755	94.1	0.915 (0.788, 1.062)
Labor induction	525115	291182	0.19 (0.18, 0.21)	0.22 (0.19, 0.25)	0.484	93.7	0.837 (0.793, 0.883)
Instrumental delivery	51680	456979	0.11 (0.10, 0.12)	0.10 (0.09, 0.12)	0.575	96.7	1.027 (0.961, 1.097)
Pregnancy induced hypertension	46096	2393549	0.03 (0.02, 0.03)	0.04 (0.03, 0.05)	0.496	98.2	0.663 (0.596, 0.738)
Preeclampsia	21055	2369038	0.03 (0.02, 0.03)	0.04 (0.03, 0.05)	0.156	93.3	0.746 (0.692, 0.804)
GDM	87936	2571075	0.06 (0.05, 0.06)	0.04 (0.04, 0.05)	0.000*	99.5	1.441 (1.268, 1.636)
Macrosomia	62872	803186	0.06 (0.05, 0.07)	0.08 (0.06, 0.10)	0.263	99.2	0.822 (0.721, 0.937)
LGA	51608	663665	0.07 (0.06, 0.08)	0.08 (0.06, 0.09)	0.665	98.9	0.809 (0.730, 0.898)
SGA	162335	2987996	0.10 (0.09, 0.10)	0.07 (0.06, 0.08)	0.072	99.3	1.347 (1.243, 1.460)
5-min Apgar score less than 7	19500	123186	0.19 (0.18, 0.21)	0.02 (0.01, 0.02)	0.096	97.5	1.222 (1.096, 1.362)
Shoulder dystocia	4654	29309	0.21 (0.09, 0.40)	0.29 (0.03, 0.52)	0.250	90.3	1.160 (1.00, 1.350)
Preterm birth	629485	8136358	0.07 (0.06, 0.07)	0.08 (0.07, 0.09)	0.208	93.7	0.939 (0.913, 1.966)
Birth trauma	3353	456327	0.01 (0.01, 0.02)	0.01 (0.00, 0.02)	0.893	66.3	0.968 (0.899, 1.043)
Oligohydramnios	825	22043	0.05 (0.04, 0.06)	0.03 (0.02, 0.04)	0.405	97.7	1.862 (1.032, 3.360)

GDM: Gestational diabetes; LGA: Large for gestational age; SGA: Small for gestational age; NICU: Neonatal intensive care Unit; RDS: Respiratory distress syndrome.

Bold values indicate statistical significance.

* Obtained from the trim and fill method of publication bias adjustment.
In term of maternal outcomes, the pooled OR of emergency C-S (Pooled OR = 1.1, 95% CI = 1.0–1.2) and shoulder dystocia (Pooled OR = 1.1, 95% CI = 1.0–1.3), and GDM (Pooled OR = 1.4, 95% CI = 1.2–1.6) in the immigrant women were significantly higher than the women with the native origin background (Figure 3A-C). In contrast, the immigrant women had a lower risk of induction of labor (Pooled OR = 0.8, 95% CI = 0.7–0.8), pregnancy induced hypertension (Pooled OR = 0.6, 95% CI = 0.5–0.7) and preeclampsia (Pooled OR = 0.7, 95% CI = 0.6–0.8) compared to their native origin counterparts (Figure 3D-F). However, the risks of total and primary C-S and instrumental delivery were similar in both groups (Supplementary Figures 18–20).

![Figure 3A](https://example.com/figure3a.png)

Figure 3A Forest plot of the pooled odds ratio of adverse maternal outcomes comparing immigrant and native origin women. (A) Forest plot of the pooled odds ratio of emergency cesarean section comparing immigrant and native origin women.
Figure 3-C Forest plot of the pooled odds ratio of gestational diabetes mellitus comparing immigrant and native origin women.

Figure 3-D Forest plot of the pooled odds ratio of induction of labor comparing immigrant and native origin women.
In terms of neonatal outcomes, the adverse events of preterm birth and birth trauma were not significantly different between the groups (Table 1, Supplementary Figures 21–22). However, the risk of SGA (Pooled OR = 1.3, 95% CI = 1.1–0.4), 5 min-Apgar less than 7 (Pooled OR = 1.2, 95% CI = 1.0–1.3), and oligohydramnios (Pooled OR = 1.8, 95% CI = 1.0–3.3) among the immigrant women were significantly higher than the women with the native origin background (Table 1, Figures 4A–C). Additionally, the immigrant women had significantly lower risk of macrosomia (Pooled OR = 0.8, 95% CI = 0.7–0.9) and LGA (Pooled OR = 0.8, 95% CI = 0.7–0.8) compared to the native origin women (Table 1, Figures 4D and E).
According to meta-regression analyses, the magnitude of those increased risks in LGA and GDM outcomes were correlated with the increased maternal age (P-value = 0.001 and 0.015, respectively) (Supplementary Table 5). However, the reported ORs were not influenced by the country of origin (Supplementary Figure 25).

DISCUSSION

The results of our systematic review and meta-analysis showed no consistent relationship between the immigration status and the risk of adverse maternal and neonatal events. In this respect, the risk of emergency C-S, 5-min Apgar less than 7, oligohydramnios, SGA, and GDM in the immigrant population was significantly higher in the immigrant women compared to their native origin counterparts. Nevertheless, the risk of labor induction, pregnancy-induced hypertension, preeclampsia, macrosomia, and LGA in the immigrant population was lower than the native origin population. The risks of C-S, primary C-S, instrumental delivery, preterm birth, and birth trauma were similar between the groups.

Immigration has become a social concern around the world. Conflicts, human rights violations, inequality, and job opportunities may force people to immigrate with the hope to improve their quality of life [139]. However, the increasing trends of immigration resettlement, leads to the diversity of the health status among pregnant women and new mothers in host countries. Immigrant women frequently initiate the mobility process at the childbearing age. New contexts, environments, and lifestyles may expose them to biological and psychosocial risks that tend to accentuate the situation of vulnerability [140].
In our review, heterogeneous patterns in terms of the relationship between the immigration status and adverse perinatal outcomes were reported. Although available evidence is not conclusive, several hypotheses can explain the superiority or inferiority of adverse perinatal outcomes among the immigrant women compared to their counterparts in host countries. For instance, ethnic disparities in birth outcomes have been well documented [14,1]. Certain groups of immigrants or ethnic groups have higher risk of suffering from adverse pregnancy outcomes. Other groups show more favorable outcomes.

Figure 4-B Forest plot of the pooled odds ratio of 5 min Apgar less than 7 in immigrant and native origin women.

Figure 4-C Forest plot of the pooled odds ratio of oligohydramnios in immigrant and native origin women.
Figure 4-D Forest plot of the pooled odds ratio of macrosomia in immigrant and native origin women.

Figure 4-E Forest plot of the pooled odds ratio of large for gestational age in immigrant and native origin women.
favorable perinatal health indicators even if they are socioeconomically vulnerable. For example, as we reported in this meta-analysis, an ethnic heterogeneity in the development of pregnancy-related hypertensive disease [142, 143] or GDM [144–148] among western countries compared to Asian or African countries was observed. Additionally, the basic characteristics of the immigrant population may be an important sources of heterogeneity [7]. It has been reported that pregnant women with the immigration background are more likely to be younger and tend to be healthier compared to pregnant women in the native origin population [149, 150]. These may suggest that the influence of immigration may be modified by those factors [151]. Our review showed that the birth outcomes such as the total and primary C-S rate, instrumental delivery, preterm birth and birth trauma are more common in the immigrant women than the native-origin women. Meanwhile, the immigrant health advantages diminish with the lower socioeconomic status including education, occupation, and family income, particularly for those immigrant women who experienced poverty in their home countries [104]. Less well-off women may get less adequate health services [152, 153, 154]. As well, direct associations have been reported between lifestyle and behavioral and psychological factors and adverse pregnancy outcomes [155]. The immigrant population is at the risk of particularly undocumented unhealthy life style and psychological stress, partly due to the process of cultural change [156, 157], which may lead to unfavorable pregnancy outcomes. As we found in our meta-analysis, the risk of SGA as a general proxy of poverty on overall infant health/wellbeing was higher in the immigrant women compared to the native-origin women [158, 159].

The risk of emergency C-S and 5-min Apgar score less than 7 in the immigrant women was higher than the native-origin population according to this review. This may be a complex interplay between the potential risk and resilience factor. Irrespective of their education level or socio-economic status in their host or country of origin, the immigrant women might have experienced poor living conditions with a limited network and language difficulties and social inequality, which might have increased the risk of life threatening conditions for both the mother and child [160, 161, 162]. Additionally, various health and immigration policies in each host country may play a crucial role. In some countries, immigrants particularly undocumented asylum seekers face major barriers to accessing healthcare services, whereas others are more integrative and less restrictive. Differences in how immigrants are defined in each society, as well as the legal status of the immigrant population may be a challenge to access healthcare services. These may be extrapolated to prenatal care utilization, both by its timing and its content [163], which subsequently impact on the risk of adverse outcomes among pregnant women with the immigration background. Additionally, it is argued that misconceptions between healthcare providers and immigrant women through different cultural concepts and acceptability of care, or more directly through lack of interpretation services may affect pregnancy outcomes [4].

As a main strength of this study, the broad inclusion criteria and subsequent large scope of the review process at the global scale gave us an opportunity for better understanding of perinatal health among the immigrant population. However, we conclude with some final caveats and cautions. In the included studies, the different categories of immigrants groups, economic situation of immigrants, and length of residency in host countries were not specified. Therefore, subgroup analysis could not be carried out based on these classifications. In addition, the maternal duration of residence in host countries was not assessed because of lack of data. Moreover, a lack of unique definition of each adverse pregnancy outcome in the included studies may have affected this review, which should be considered during the interpretation of findings.

CONCLUSION

Our meta-analysis showed heterogenous patterns with regard to the relationship between the immigrant status and adverse perinatal outcomes, as the immigrant women were at the risk of some important adverse pregnancy outcomes. Our review findings inform researchers, healthcare providers, and policymakers to pay a greater attention to the health status of pregnant women with the immigration background and also to the heterogeneity of their health outcomes in order to facilitate immigrants’ integration to the healthcare system in the host country. Population-based studies with a focus on the various aspects of adverse perinatal and neonatal outcomes in
this vulnerable population are still required to improve our understanding of the sources of such heterogeneities.

DATA AVAILABILITY STATEMENT

All data come from published journal articles. Extracted data are available on a reasonable request to the corresponding author.

ADDITIONAL FILE

The additional file for this article can be found as follows:

- **Supplementary Materials.** Supplementary Tables 1 to 5 and Supplementary Figures 1 to 25. DOI: https://doi.org/10.5334/aogh.3591.s1

ACKNOWLEDGEMENTS

Nord University, Bodø, Norway covered APC to this article.

COMPETING INTERESTS

The authors have no competing interests to declare.

AUTHOR CONTRIBUTIONS

SB-G conceptualized the study and designed the review protocol. SB-G, AM, and MV ran the search and oversaw screening, data extraction and assessment of bias. RB-Y conducted the statistical data analysis. SB-G drafted the initial manuscript, while MV, CP, PP, RB-Y, and MHP reviewed the draft. All authors read and approved the final manuscript.

AUTHOR AFFILIATIONS

Samira Behboudi-Gandevani
Associate Professor, Faculty of Nursing and Health Sciences, Nord University, 8049 Bodø, Norway

Razieh Bidhendi-Yarandi
Department of Biostatistics, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran

Mohammad Hossein Panahi
Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Abbas Mardani
Nursing Care Research Center, Department of Medical Surgical Nursing, School of Nursing and Midwifery, Iran University of Medical Sciences, Tehran, Iran

Piret Paal
Institute of Nursing Science and Practice, Paracelsus Medical University, A-5020 Salzburg, Austria

Christina Prinds
Department of Clinical Research, University South Denmark, 5230 Odense, Denmark; Department of Midwifery Education, University College South Denmark, Esbjerg, Denmark

Mojtaba Vaismoradi
Faculty of Nursing and Health Sciences, Nord University, 8049 Bodø, Norway; Faculty of Science and Health, Charles Sturt University, Orange NSW 2800, Australia

REFERENCES

1. International Organization for Migration (IOM), WORLD MIGRATION REPORT 2020. Accessed September 3, 2021. https://publications.iom.int/system/files/pdf/wmr_2020.pdf.

2. Fellmeth G, Fazel M, Plugge E. Migration and perinatal mental health in women from low- and middle-income countries: a systematic review and meta-analysis. Bjog. 2017; 124(5): 742–752. DOI: https://doi.org/10.1111/1471-0528.14184
3. Wickramage K, et al. Migration and health: a global public health research priority. *BMC Public Health*. 2018; 18(1): 987–987. DOI: https://doi.org/10.1186/s12889-018-5932-5

4. https://www.unfpa.org/sites/default/files/pub-pdf/21-038-UNFPA-SoWMy2021-Report-ENv4302.pdf. Accessed June 7, 2021.

5. Almeida LM, et al. Assessing maternal healthcare inequities among migrants: a qualitative study. *Cad Saude Publica*. 2014; 30(2): 333–40. DOI: https://doi.org/10.1590/0102-311X00060513

6. Behboudi-Gandevani S, et al. Perinatal and Neonatal Outcomes in Immigrants From Conflict-Zone Countries: A Systematic Review and Meta-Analysis of Observational Studies. *Front Public Health*. 2022; 10: 766943. DOI: https://doi.org/10.3389/fpubh.2022.766943

7. Urquia ML, et al. International migration and adverse birth outcomes: role of ethnicity, region of origin and destination. *J Epidemiol Community Health*. 2010; 64(3): 243–51. DOI: https://doi.org/10.1136/jech.2008.083535

8. Behboudi-Gandevani S, et al. Systematic Review and Meta-Analysis of the Risk of Stillbirth, Perinatal and Neonatal Mortality in Immigrant Women. *Int J Public Health*. 2022; 18(67): 1604479. DOI: https://doi.org/10.3389/ijph.2022.1604479

9. Gieles NC, et al. Maternal and perinatal outcomes of asylum seekers and undocumented migrants in Europe: a systematic review. *European Journal of Public Health*. 2019: 29(4): 714–723. DOI: https://doi.org/10.1093/eurpub/ckz042

10. Merry L, et al. International migration and caesarean birth: a systematic review and meta-analysis. *BMC Pregnancy and Childbirth*. 2013; 13: 27–27. DOI: https://doi.org/10.1186/1471-2393-13-27

11. Racape J, et al. Are all immigrant mothers really at risk of low birth weight and perinatal mortality? The crucial role of socio-economic status. *BMC Pregnancy Childbirth*. 2016; 16: 75. DOI: https://doi.org/10.1186/s12884-016-0860-9

12. Moher D, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *PLoS Med*. 2009; 6(7): e1000097. DOI: https://doi.org/10.1371/journal.pmed.1000097

13. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. *Eur J Epidemiol*. 2010; 25(9): 603–5. DOI: https://doi.org/10.1007/s10654-010-9491-z

14. Abdullahi I, et al. Preterm birth and intra-uterine growth restriction more common in Western Australian children of immigrant backgrounds? A population based data linkage study. *BMC Pregnancy Childbirth*. 2019; 19(1): 287. DOI: https://doi.org/10.1186/s12884-019-2437-x

15. Alder J, et al. The effect of migration background on obstetric performance in Switzerland. *Eur J Contracept Reprod Health Care*. 2008; 13(1): 103–8. DOI: https://doi.org/10.1080/13625180701780254

16. Badshah S, et al. Maternal risk factors in Afghan-refugees compared to Pakistani mothers in Peshawar, NWFP Pakistan. *J Pak Med Assoc*. 2011; 61(2): 161–4.

17. Bakken KS, Skjeldal OH, Stray-Pedersen B. Immigrants from conflict-zone countries: an observational comparison study of obstetric outcomes in a low-risk maternity ward in Norway. *BMC Pregnancy Childbirth*. 2015; 15: 163. DOI: https://doi.org/10.1186/s12884-015-0603-3

18. Biro MA, East C. Poorer detection rates of severe fetal growth restriction in women of likely refugee background: A case for re-focusing pregnancy care. *Aust N Z J Obstet Gynaecol*. 2017; 57(2): 186–192. DOI: https://doi.org/10.1111/ajo.12593

19. Boxall N, et al. Perinatal Outcome in Women with a Vietnamese Migration Background - Retrospective Comparative Data Analysis of 3000 Deliveries. *Geburtshilfe Frauenheilkd*. 2018; 78(7): 697–706. DOI: https://doi.org/10.1055/a-0636-4242

20. Burton AJ, Lancaster P. Obstetric profiles and perinatal mortality among Pacific Island immigrants in New South Wales, 1990–93. *Aust N Z J Public Health*. 1999; 23(2): 179–84. DOI: https://doi.org/10.1111/j.1467-842X.1999.tb01231.x

21. Choi SKY, et al. Adverse perinatal outcomes in immigrants: A ten-year population-based observational study and assessment of growth charts. *Paediatr Perinat Epidemiol*. 2019; 33(6): 421–432. DOI: https://doi.org/10.1111/ppe.12583

22. Col Madendaq I, et al. The Effect of Immigration on Adverse Perinatal Outcomes: Analysis of Experiences at a Turkish Tertiary Hospital. *Biomed Res Int*. 2019; 2019: 2326797. DOI: https://doi.org/10.1155/2019/2326797

23. Dejin-Karlsson E, Ostergren PO. Country of origin, social support and the risk of small for gestational age birth. *Scand J Public Health*. 2004; 32(6): 442–9. DOI: https://doi.org/10.1080/14034940410028172

24. Essén B, et al. Increased perinatal mortality among sub-Saharan immigrants in a city-population in Sweden. *Acta Obstet Gynecol Scand*. 2000; 79(9): 737–43. DOI: https://doi.org/10.1080/0001634009169187
25. Johnson EB, et al. Increased risk of adverse pregnancy outcome among Somali immigrants in Washington state. Am J Obstet Gynecol. 2005; 193(2): 475–82. DOI: https://doi.org/10.1016/j.ajog.2004.12.003

26. Kannaz AG, et al. Obstetric Outcomes of Syrian Refugees and Turkish Citizens. Arch Iran Med. 2019; 22(9): 482–488.

27. Li X, Sundquist J, Sundquist K. Immigrants and preterm births: a nationwide epidemiological study in Sweden. Matern Child Health J. 2013; 17(6): 1052–8. DOI: https://doi.org/10.1007/s10995-012-1087-7

28. Li X, Sundquist K, Sundquist J. Risks of small-for-gestational-age births in immigrants: a nationwide epidemiological study in Sweden. Scand J Public Health. 2012; 40(7): 634–40. DOI: https://doi.org/10.1177/140349812458845

29. Liu C, et al. Perinatal health of refugee and asylum-seeking women in Sweden 2014–17: a register-based cohort study. Eur J Public Health. 2019; 29(6): 1048–1055. DOI: https://doi.org/10.1093/europublic/ckz120

30. Lubotzky-Gete S, Shoham-Vardi I, Sheiner E. Comparing Pregnancy Outcomes of Immigrants from Ethiopia and the Former Soviet Union to Israel, to those of Native-Born Israelis. J Immigr Minor Health. 2017;19(6): 1296–1303. DOI: https://doi.org/10.1007/s10903-016-0484-1

31. Minsart AF, et al. Salmon Bias and Preterm Birth Among Western Immigrants in China. Matern Child Health J. 2017; 21(10): 1861–1866. DOI: https://doi.org/10.1007/s10995-017-2347-3

32. Mozooni M, Pennell CE, Preen DB. Healthcare factors associated with the risk of antepartum and intrapartum stillbirth in migrants in Western Australia (2005–2013): A retrospective cohort study. PLoS Med. 2020; 17(3): e1003061. DOI: https://doi.org/10.1371/journal.pmed.1003061

33. Kragelund Nielsen K, et al. Gestational Diabetes Risk in Migrants. A Nationwide, Register-Based Study of all Births in Denmark 2004 to 2015. J Clin Endocrinol Metab. 2020; 105(3). DOI: https://doi.org/10.1210/clinem/dga0024

34. Paz-Zulueta M, et al. The role of prenatal care and social risk factors in the relationship between immigrant status and neonatal morbidity: a retrospective cohort study. PLoS One. 2015; 10(3): e0120765. DOI: https://doi.org/10.1371/journal.pone.0120765

35. Besharat Pour M, et al. Body mass index development from birth to early adolescence; effect of perinatal characteristics and maternal migration background in a Swedish population. PLoS One. 2014; 9(10): e109519. DOI: https://doi.org/10.1371/journal.pone.0109519

36. Racape J, et al. Effect of adopting host-country nationality on perinatal mortality rates and causes among immigrants in Brussels. Eur J Obstet Gynecol Reprod Biol. 2013; 168(2): 145–50. DOI: https://doi.org/10.1016/j.ejogrb.2012.12.039

37. Ray JG, et al. Risk of cerebral palsy among the offspring of immigrants. PLoS One. 2014; 9(7): e102275. DOI: https://doi.org/10.1371/journal.pone.0102275

38. Reed MM, et al. Birth outcomes in Colorado’s undocumented immigrant population. BMC Public Health. 2005; 5: 100. DOI: https://doi.org/10.1186/1471-2458-5-100

39. Restrepo-Mesa SL, et al. Newborn birth weights and related factors of native and immigrant residents of Spain. J Immigr Minor Health. 2015; 17(2): 339–48. DOI: https://doi.org/10.1007/s10903-014-0089-5

40. Råssjö EB, et al. Somali women’s use of maternity health services and the outcome of their pregnancies: a descriptive study comparing Somali immigrants with native-born Swedish women. Sex Reprod Healthc. 2013; 4(3): 99–106. DOI: https://doi.org/10.1016/j.srhc.2013.06.001

41. Scholaskie L, et al. Perceived discrimination and risk of preterm birth among Turkish immigrant women in Germany. Soc Sci Med. 2019; 236: 112427. DOI: https://doi.org/10.1016/j.socscimed.2019.112427

42. Sdona E, et al. Migration status and perinatal parameters in a Greek public maternity hospital: an illustration of the “healthy immigrant effect”. J Matern Fetal Neonatal Med. 2019; 32(1): 62–66. DOI: https://doi.org/10.1080/14767058.2017.1371131

43. Seghieri G, et al. Risk and adverse outcomes of gestational diabetes in migrants: A population cohort study. Diabetes Res Clin Pract. 2020; 163: 108128. DOI: https://doi.org/10.1016/j.diabres.2020.108128

44. Shah RR, et al. Adverse pregnancy outcomes among foreign-born Canadians. J Obstet Gynaecol Can. 2011; 33(3): 207–15. DOI: https://doi.org/10.1016/S1701-2163(16)34821-6

45. Sole KB, Staff AC, Laine K. The association of maternal country of birth and education with hypertensive disorders of pregnancy: A population-based study of 960 516 deliveries in Norway. Acta Obstet Gynecol Scand. 2018; 97(10): 1237–1247. DOI: https://doi.org/10.1111/aogs.13393

46. Sosta E, et al. Perinatal delivery risk in migrants in Italy: an observational prospective study. J Travel Med. 2008; 15(4): 243–7. DOI: https://doi.org/10.1111/j.1708-8305.2008.00215.x

47. Urquia ML, Berger H, Ray JG. Risk of adverse outcomes among infants of immigrant women according to birth-weight curves tailored to maternal world region of origin. Cmaj. 2015; 187(1): E32–e40. DOI: https://doi.org/10.1503/cmaj.140748
Childbirth outcomes for low risk women born in Australia compared to those born overseas. Dahlen HG, et al.
Int J Epidemiol. 2011; 48(1): 275–286. DOI: https://doi.org/10.1093/ije/dyy200

Xirasagar S, et al. Neonatal outcomes for immigrant vs. native-born mothers in Taiwan: an epidemiological paradox. Matern Child Health J. 2011; 15(2): 269–79. DOI: https://doi.org/10.1007/s10995-010-0612-9

Zanconato G, et al. Pregnancy outcome of migrant women delivering in a public institution in northern Italy. Gynecol Obstet Invest. 2011; 72(3): 157–62. DOI: https://doi.org/10.1159/000328318

Abdulrahim S, et al. A test of the epidemiological paradox in a context of forced migration: low birthweight among Syrian newborns in Lebanon. Int J Epidemiol. 2019; 48(1): 275–286. DOI: https://doi.org/10.1093/ije/dyy200

Agbemenu K, et al. Reproductive Health Outcomes in African Refugee Women: A Comparative Study. J Womens Health (Larchmt). 2019; 28(6): 785–793. DOI: https://doi.org/10.1089/jwh.2018.7314

Akselsson A, et al. Pregnancy outcomes among women born in Somalia and Sweden giving birth in the Stockholm area - a population-based study. Glob Health Action. 2020; 13(1): 1794107. DOI: https://doi.org/10.1080/16549716.2020.1794107

Bakken KS, Skjeldal OH, Stray-Pedersen B. Higher risk for adverse obstetric outcomes among immigrants of African and Asian descent: a comparison at a low-risk maternity hospital in Norway. Birth. 2015; 42(2): 132–40. DOI: https://doi.org/10.1111/birt.12165

Bakken KS, Skjeldal OH, Stray-Pedersen B. Obstetric Outcomes of First- and Second-Generation Pakistani Immigrants: A Comparison Study at a Low-Risk Maternity Ward in Norway. J Immigr Minor Health. 2017; 19(1): 33–40. DOI: https://doi.org/10.1007/s10903-015-0329-3

Bastola K, et al. Differences in caesarean delivery and neonatal outcomes among women of migrant origin in Finland: A population-based study. Paediatr Perinat Epidemiol. 2020; 34(1): 12–20. DOI: https://doi.org/10.1111/ppe.12611

Bastola K, et al. Delivery and its complications among women of Somali, Kurdish, and Russian origin, and women in the general population in Finland. Birth. 2019; 46(1): 35–41. DOI: https://doi.org/10.1111/birt.12357

Bastola K, et al. Pregnancy complications in women of Russian, Somali, and Kurdish origin and women in the general population in Finland. Womens Health (Lond). 2020; 16: 1745506520910911. DOI: https://doi.org/10.1177/1745506520910911

Belihu FB, Davey MA, Small R. Perinatal health outcomes of East African immigrant populations in Victoria, Australia: a population based study. BMC Pregnancy Childbirth. 2016; 16: 86. DOI: https://doi.org/10.1186/s12884-016-0886-z

Belihu FB, Small R, Davey MA. Episiotomy and severe perineal trauma among Eastern African immigrant women giving birth in public maternity care: A population based study in Victoria, Australia. Women Birth. 2017; 30(4): 282–290. DOI: https://doi.org/10.1016/j.wombi.2016.11.008

Belihu FB, Small R, Davey MA. Variations in first-time caesarean birth between Eastern African immigrants and Australian-born women in public care: A population-based investigation in Victoria, Aust N Z J Obstet Gynaecol. 2017; 57(3): 294–301. DOI: https://doi.org/10.1111/ajo.12491

Bernis C, et al. Labor management and mode of delivery among migrant and Spanish women: does the variability reflect differences in obstetric decisions according to ethnic origin? Matern Child Health J. 2013; 17(5): 918–27. DOI: https://doi.org/10.1007/s10995-012-1079-7

Bozorgmehr K, et al. Differences in pregnancy outcomes and obstetric care between asylum seeking and resident women: a cross-sectional study in a German federal state, 2010–2016. BMC Pregnancy Childbirth. 2018; 18(1): 417. DOI: https://doi.org/10.1186/s12884-018-2053-1

Breckenkamp J, et al. Advanced cervical dilatation as a predictor for low emergency cesarean delivery: a comparison between migrant and non-migrant Primiparae - secondary analysis in Berlin, Germany. BMC Pregnancy Childbirth. 2019; 19(1): 1. DOI: https://doi.org/10.1186/s12884-018-2145-y

Calderon-Margalit R, et al. Adverse Perinatal Outcomes among Immigrant Women from Ethiopia in Israel. Birth. 2015; 42(2): 125–31. DOI: https://doi.org/10.1111/birt.12163

Castelló A, et al. Differences in preterm and low birth weight deliveries between Spanish and immigrant women: influence of the prenatal care received. Ann Epidemiol. 2012; 22(3): 175–82. DOI: https://doi.org/10.1016/j.annepidem.2011.12.005

Dahlen HG, et al. Rates of obstetric intervention during birth and selected maternal and perinatal outcomes for low risk women born in Australia compared to those born overseas. BMC Pregnancy Childbirth. 2013; 13: 100. DOI: https://doi.org/10.1186/1471-2393-13-100
69. David M, et al. Obstetric and perinatal outcomes among immigrant and non-immigrant women in Berlin, Germany. *Arch Gynecol Obstet*. 2017; 296(4): 745–762. DOI: https://doi.org/10.1007/s00404-017-4450-5

70. Eskild A, et al. Offspring birthweight and placental weight in immigrant women from conflict-zone countries; does length of residence in the host country matter? A population study in Norway. *Acta Obstet Gynecol Scand*. 2020; 99(5): 615–622. DOI: https://doi.org/10.1111/aogs.13777

71. Fu J, et al. Cesarean and VBAC rates among immigrant vs. native-born women: a retrospective observational study from Taiwan Cesarean delivery and VBAC among immigrant women in Taiwan. *BMC Public Health*. 2010; 10: 548. DOI: https://doi.org/10.1186/1471-2458-10-548

72. Gagnon AJ, et al. Cesarean section rate differences by migration indicators. *Arch Gynecol Obstet*. 2013; 287(4): 633–9. DOI: https://doi.org/10.1007/s00404-012-2609-7

73. García-Subirats I, et al. Recent immigration and adverse pregnancy outcomes in an urban setting in Spain. *Matern Child Health J*. 2011; 15(5): 561–9. DOI: https://doi.org/10.1007/s10995-010-0614-7

74. Gillet E, et al. Fetal and infant health outcomes among immigrant mothers in Flanders, Belgium. *Int J Gynaecol Obstet*. 2014; 124(2): 128–33. DOI: https://doi.org/10.1016/j.ijgo.2013.07.031

75. Gould JB, et al. Perinatal outcomes in two dissimilar immigrant populations in the United States: a dual epidemiologic paradox. *Pediatrics*. 2003; 111(6 Pt 1): e676–82. DOI: https://doi.org/10.1542/peds.111.6.e676

76. Harding S, et al. Birth weights of black African babies of migrant and nonmigrant mothers compared with those of babies of European mothers in Portugal. *Ann Epidemiol*. 2006; 16(7): 572–9. DOI: https://doi.org/10.1016/j.amepidem.2005.10.005

77. Hessol NA Fuentes-Afflick E. The impact of migration on pregnancy outcomes among Mexican-origin women. *J Immigr Minor Health*. 2014; 16(3): 377–84. DOI: https://doi.org/10.1007/s10930-012-9760-x

78. Hsieh WS, et al. Favorable neonatal outcomes among immigrants in Taiwan: evidence of healthy immigrant mother effect. *J Womens Health (Larchmt)*. 2011; 20(7): 1083–90. DOI: https://doi.org/10.1089/jwh.2011.2809

79. Juárez S, Mussino E, Hjern A. Being a refugee or having a refugee status? Birthweight and gestational age outcomes among offspring of immigrant mothers in Sweden. *Scand J Public Health*. 2019; 47(7): 730–734. DOI: https://doi.org/10.1177/1403494818777432

80. Juárez SP, Revuelta-Eugercios BA. Too heavy, too late: investigating perinatal health outcomes in immigrants residing in Spain. A cross-sectional study (2009–2011). *J Epidemiol Community Health*. 2014; 68(9): 863–8. DOI: https://doi.org/10.1136/jech-2013-202917

81. Juárez SP, et al. Cesarean Birth is Associated with Both Maternal and Paternal Origin in Immigrants in Sweden: a Population-Based Study. *Paediatr Perinat Epidemiol*. 2017; 31(6): 509–521. DOI: https://doi.org/10.1111/ppe.12399

82. Juárez SP, et al. Length of residence and cesarean section in migrant women in Sweden: a population-based study. *Eur J Public Health*. 2018; 28(6): 1073–1079. DOI: https://doi.org/10.1093/eurpub/cky074

83. Kana MA, Correia S, Barros H. Adverse Pregnancy Outcomes: A Comparison of Risk Factors and Prevalence in Native and Migrant Mothers of Portuguese Generation XXI Birth Cohort. *J Immigr Minor Health*. 2019; 21(2): 307–314. DOI: https://doi.org/10.1007/s10903-018-0761-2

84. Kane JB, Teitler JO, Reichman NE. Ethnic enclaves and birth outcomes of immigrants from India in a diverse U.S. state. *Soc Sci Med*. 2018; 209: 67–75. DOI: https://doi.org/10.1016/j.socscimed.2018.05.035

85. Khanolkar AR, et al. Preterm and postterm birth in immigrant- and Swedish-born parents: a population register-based study. *Eur J Epidemiol*. 2015; 30(5): 435–47. DOI: https://doi.org/10.1007/s10654-014-9986-0

86. Krishnakumar A, et al. The paternal component of the “healthy migrant” effect: fathers’ natality and infants’ low birth weight. *Matern Child Health J*. 2011; 15(8): 1350–5. DOI: https://doi.org/10.1007/s10995-010-1075-5

87. Liu CY, Chong NT, Chou P. Testing the “epidemiologic paradox” of birth outcomes among Asian immigrant women in Hsin-Chu County, Taiwan. *J Formos Med Assoc*. 2008; 107(10): 782–90. DOI: https://doi.org/10.1016/j.jfma.2008.06.019-6

88. Ma J, Bauman A. Obstetric profiles and pregnancy outcomes of immigrant women in New South Wales, 1990–1992. *Aust N Z J Obstet Gynaecol*. 1996; 36(2): 119–25. DOI: https://doi.org/10.1111/j.1479-828X.1996.tb03265.x

89. Madan A, et al. Sociocultural factors that affect perinatal outcomes in two dissimilar immigrant groups in the United States. *J Pediatr*. 2006; 148(3): 341–6. DOI: https://doi.org/10.1016/j.jpeds.2005.11.028

90. Malin M, Gissler M. Maternal care and birth outcomes among ethnic minority women in Finland. *BMC Public Health*. 2009; 9: 84. DOI: https://doi.org/10.1186/1471-2458-9-84
91. Moore S, Daniel M, Auger N. Socioeconomic disparities in low birth weight outcomes according to maternal birthplace in Quebec, Canada. *Etn Health*. 2009; 14(1): 61–74. DOI: https://doi.org/10.1080/13557850802071132

92. Naimy Z, et al. Perinatal mortality in non-western migrants in Norway as compared to their countries of birth and to Norwegian women. *BMC Public Health*. 2013; 13: 37. DOI: https://doi.org/10.1186/1471-2458-13-37

93. Naimy Z, et al. The prevalence of pre-eclampsia in migrant relative to native Norwegian women: a population-based study. *BJOG*. 2015; 122(6): 859–65. DOI: https://doi.org/10.1111/1471-0528.12978

94. Nilsen RM, et al. Preeclampsia by maternal reasons for immigration: a population-based study. *BMC Pregnancy Childbirth*. 2018; 18(1): 423. DOI: https://doi.org/10.1186/s12884-018-2034-4

95. Opondo C, et al. Variations in neonatal mortality, infant mortality, preterm birth and birth weight in England and Wales according to ethnicity and maternal country or region of birth: an analysis of linked national data from 2006 to 2012. *J Epidemic Community Health*. 2020; 74(4): 336–345. DOI: https://doi.org/10.1136/jech-2019-213093

96. Park AL, Urquia ML, Ray JG. Risk of Preterm Birth According to Maternal and Paternal Country of Birth: A Population-Based Study. *J Obstet Gynaecol Can*. 2015; 37(12): 1053–62. DOI: https://doi.org/10.1016/S1701-2163(16)30070-6

97. Pedersen GS, et al. Preterm birth and birthweight-for-gestational age among immigrant women in Denmark 1978–2007: a nationwide registry study. *Paediatr Perinat Epidemiol*. 2012; 26(6): 534–42. DOI: https://doi.org/10.1111/jpp.12010

98. Reeske A, et al. Differences in the Incidence of Gestational Diabetes between Women of Turkish and German Origin: An Analysis of Health Insurance Data From a Statutory Health Insurance in Berlin, Germany (AOK), 2005–2007. *Geburtshilfe Frauenheilkd*. 2012; 72(4): 305–310. DOI: https://doi.org/10.1055/s-0031-1280428

99. Reiss K, et al. Contribution of overweight and obesity to adverse pregnancy outcomes among immigrant and non-immigrant women in Berlin, Germany. *Eur J Public Health*. 2015; 25(5): 839–44. DOI: https://doi.org/10.1093/eurpub/ckv072

100. Sanchalika A, Teresa J. Risk of Gestational Diabetes Among South Asian Immigrants Living in New Jersey—a Retrospective Data Review. *J Racial Ethn Health Disparities*. 2015; 2(4): 510–6. DOI: https://doi.org/10.1007/s40615-015-0099-6

101. Song IG, et al. Birth outcomes of immigrant women married to native men in the Republic of Korea: a population register-based study. *BMJ Open*. 2017; 7(9): e017720. DOI: https://doi.org/10.1136/bmjopen-2017-017720

102. Sørbye IK, et al. Caesarean section by immigrants’ length of residence in Norway: a population-based study. *BMC Public Health*. 2015; 25(1): 78–84. DOI: https://doi.org/10.1093/bmjunct/kcu135

103. Sørbye IK, et al. Preterm subtypes by immigrants’ length of residence in Norway: a population-based study. *BMC Pregnancy Childbirth*. 2014; 14: 239. DOI: https://doi.org/10.1186/1471-2393-14-239

104. Sow M, et al. Is the socioeconomic status of immigrant mothers in Brussels relevant to predict their risk of adverse pregnancy outcomes? *BMC Pregnancy Childbirth*. 2018; 18(1): 422. DOI: https://doi.org/10.1186/s12884-018-2043-3

105. Sow M, et al. Influence of time since naturalisation on socioeconomic status and low birth weight among immigrants in Belgium. A population-based study. *PloS One*. 2019; 14(8): e0220856. DOI: https://doi.org/10.1371/journal.pone.0220856

106. Sunil TS, Flores M, Garcia GE. New evidence on the effects of international migration on the risk of low birthweight in Mexico. *Matern Child Nutr*. 2012; 8(2): 185–98. DOI: https://doi.org/10.1111/j.1740-8709.2010.00277.x

107. Teixeira C, et al. The Brazilian preference: cesarean delivery among immigrants in Portugal. *PloS One*. 2013; 8(3): e60168. DOI: https://doi.org/10.1371/journal.pone.0060168

108. Tsimbos C, Verropoulou G. Demographic and socioeconomic determinants of low birth weight and preterm births among natives and immigrants in Greece: an analysis using nationwide vital registration micro-data. *J Biosoc Sci*. 2011; 43(3): 271–83. DOI: https://doi.org/10.1017/S0021932010000726

109. Urquia ML, et al. Immigrants’ duration of residence and adverse birth outcomes: a population-based study. *BJOG*. 2010; 117(5): 591–601. DOI: https://doi.org/10.1111/j.1471-0528.2010.02523.x

110. Vangen S, et al. Perinatal complications among ethnic Somalis in Norway. *Acta Obstet Gynecol Scand*. 2002; 81(4): 317–22. DOI: https://doi.org/10.1034/j.1600-0412.2002.810407.x

111. Vangen S, et al. Cesarean section among immigrants in Norway. *Acta Obstet Gynecol Scand*. 2000; 79(7): 553–8. DOI: https://doi.org/10.1080/00016345.2000.079007553.x

112. Vetter CL, et al. Obstetric care for resident immigrant women in Argentina compared with Argentine women. *Int J Gynaecol Obstet*. 2013; 122(2): 140–4. DOI: https://doi.org/10.1016/j.ijgo.2013.03.018
113. Vik ES, et al. Stillbirth in relation to maternal country of birth and other migration related factors: a population-based study in Norway. BMC Pregnancy Childbirth. 2019; 19(1): 5. DOI: https://doi.org/10.1186/s12884-018-2140-3

114. Vik ES, et al. Country of first birth and neonatal outcomes in migrant and Norwegian-born parous women in Norway: a population-based study. BMC Health Serv Res. 2020; 20(1): 540. DOI: https://doi.org/10.1186/s12913-020-05615-y

115. Villadsen SF, et al. Cross-country variation in stillbirth and neonatal mortality in offspring of Turkish migrants in northern Europe. Eur J Public Health. 2010; 20(5): 530–5. DOI: https://doi.org/10.1093/eurpub/ckq004

116. Wanigaratne S, et al. Severe Neonatal Morbidity Among Births to Refugee Women. Matern Child Health J. 2016; 20(10): 2189–98. DOI: https://doi.org/10.1007/s10995-016-2047-4

117. Zeitlin J, et al. Neighbourhood socio-economic characteristics and the risk of preterm birth for migrant and non-migrant women: a study in a French district. Paediatr Perinat Epidemiol. 2011; 25(4): 347–56. DOI: https://doi.org/10.1111/j.1365-3016.2011.01201.x

118. Urquia ML, Vang ZM, Bolumar F. Birth Outcomes of Latin Americans in Two Countries with Contrasting Immigration Admission Policies: Canada and Spain. PLoS One. 2015; 10(8): e0136308. DOI: https://doi.org/10.1371/journal.pone.0136308

119. Alnuaimi K, et al. Pregnancy outcomes among Syrian refugee and Jordanian women: a comparative study. Int Nurs Rev. 2017; 64(4): 584–592. DOI: https://doi.org/10.1111/inr.12382

120. Çelik İH, et al. Neonatal outcomes in Syrian and other refugees treated in a tertiary hospital in Turkey. Turk J Med Sci. 2019; 49(3): 815–820. DOI: https://doi.org/10.3906/saq-1806-86

121. Demirci H, et al. Birth characteristics of Syrian refugees and Turkish citizens in Turkey in 2015. Int J Gynaecol Obstet. 2017; 137(1): 63–66. DOI: https://doi.org/10.1002/ijigo.12088

122. Eslier M, et al. Comparative study between women born in France and migrant women with regard to their mode of delivery. J Gynecol Obstet Hum Reprod. 2020; 49(2): 101648. DOI: https://doi.org/10.1016/j.jogoh.2019.101648

123. Güngör ES, et al. Do Syrian refugees have increased risk for worse pregnancy outcomes? Results of a tertiary center in Istanbul. Turk J Obstet Gynecol. 2018; 15(1): 23–27. DOI: https://doi.org/10.4274/tjod.64022

124. Kandasamy T, et al. Obstetric risks and outcomes of refugee women at a single centre in Toronto. J Obstet Gynaecol Can. 2014; 36(4): 296–302. DOI: https://doi.org/10.1016/S1701-2163(15)30604-6

125. Kiyak H, et al. Comparison of delivery characteristics and early obstetric outcomes between Turkish women and Syrian refugee pregnancies. Niger J Clin Pract. 2020; 23(1): 12–17.

126. Marjouli-Siarkou C, et al. Immigrants present improved obstetric and neonatal outcomes compared to native women. A northern greek population analysis. J Immigr Minor Health. 2013; 15(2): 249–54. DOI: https://doi.org/10.1007/s10930-012-9727-y

127. Ozel S, et al. Obstetric Outcomes among Syrian Refugees: A Comparative Study at a Tertiary Care Maternity Hospital in Turkey. Rev Bras Ginecol Obstet. 2018; 40(11): 673–679. DOI: https://doi.org/10.1055/s-0038-1673427

128. Raimondi D, et al. Migrant population and perinatal health. Arch Argent Pediatr. 2013; 111(3): 213–7. DOI: https://doi.org/10.5546/aap.2013.eng.213

129. Turkey U, et al. Comparison of pregnant Turkish women and Syrian women: Does living as a refugee have an unfavorable effect on pregnancy outcomes? Int J Gynaecol Obstet. 2020; 149(2): 160–165. DOI: https://doi.org/10.1002/ijigo.13117

130. Walsh J, et al. Ethnic variation between white European women in labour outcomes in a setting in which the management of labour is standardised—a healthy migrant effect? Bjog. 2011; 118(6): 713–8. DOI: https://doi.org/10.1111/j.1471-0528.2010.02878.x

131. Yoong W, et al. Obstetric performance of ethnic Kosovar Albanian asylum seekers in London: a case-control study. J Obstet Gynaecol. 2004; 24(5): 510–2. DOI: https://doi.org/10.1080/01443610410001722527

132. Zuppa AA, et al. Maternal and neonatal characteristics of an immigrant population in an Italian hospital. J Matern Fetal Neonatal Med. 2010; 23(7): 627–32. DOI: https://doi.org/10.3109/14767050903258761

133. Almeida LM, et al. Obstetric care in a migrant population with free access to health care. Int J Gynaecol Obstet. 2014; 126(3): 244–7. DOI: https://doi.org/10.1016/j.ijgo.2014.03.023

134. Erenel H, et al. Clinical characteristics and pregnancy outcomes of Syrian refugees: a case-control study in a tertiary care hospital in Istanbul, Turkey. Arch Gynecol Obstet. 2017295(1): 45–50. DOI: https://doi.org/10.1007/s00404-016-4188-5

135. Hamilcikan S, Can E. The characteristics of Turkish and refugee neonates and analysis of short-term outcomes. Şişli Etfal Hastanesi Tip Bülteni. 2017; 51(4): 293–297. DOI: https://doi.org/10.5350/SEMB.20170809060818
136. Malamitsi-Puchner A, et al. Preterm delivery and low birthweight among refugees in Greece. *Paediatr Perinat Epidemiol.* 1994; 8(4): 384–90. DOI: https://doi.org/10.1111/j.1365-3016.1994.tb00477.x

137. Ortiz J, et al. Comparison of bio-sociodemographic, obstetric and perinatal characteristics among immigrant and native women in the Metropolitan Region in Chile. *Midwifery.* 2019; 75: 72–79. DOI: https://doi.org/10.1016/j.midw.2019.04.008

138. Verschuuren AEH, et al. Pregnancy outcomes in asylum seekers in the North of the Netherlands: a retrospective documentary analysis. *BMC Pregnancy Childbirth.* 2020; 20(1): 320. DOI: https://doi.org/10.1186/s12884-020-02985-x

139. Trost M, et al. Immigration: analysis, trends and outlook on the global research activity. *Journal of Global Health.* 2018; 8(1): 010414–010414. DOI: https://doi.org/10.7189/jogh.08.010414

140. Almeida LM, et al. Maternal healthcare in migrants: a systematic review. *Matern Child Health J.* 2013; 17(8): 1346–54. DOI: https://doi.org/10.1007/s10995-012-1149-x

141. Johnsen H, et al. Addressing ethnic disparity in antenatal care: a qualitative evaluation of midwives’ experiences with the MAMA ACT intervention. *BMC Pregnancy Childbirth.* 2020; 20(1): 118. DOI: https://doi.org/10.1186/s12884-020-2807-4

142. Ghosh G, et al. Racial/ethnic differences in pregnancy-related hypertensive disease in nulliparous women. *Ethnicity & Disease.* 2014; 24(3): 283–289.

143. Yang Y, et al. Preeclampsia Prevalence, Risk Factors, and Pregnancy Outcomes in Sweden and China. *JAMA Network Open.* 2021; 4(5): e218401–e218401. DOI: https://doi.org/10.1001/jamanetworkopen.2021.8401

144. Muche AA, Olayemi OO, Gyet YK. Prevalence and determinants of gestational diabetes mellitus in Africa based on the updated international diagnostic criteria: a systematic review and meta-analysis. *Archives of public health = Archives belges de sante publique.* 2019; 77: 36–36. DOI: https://doi.org/10.1186/s13690-019-0362-0

145. Schwartz N, Nachum Z, Green MS. The prevalence of gestational diabetes mellitus recurrence-effect of ethnicity and parity: a metaanalysis. *Am J Obstet Gynecol.* 2015; 213(3): 310–7. DOI: https://doi.org/10.1016/j.ajog.2015.03.011

146. Behboudi-Gandevani S, et al. The impact of diagnostic criteria for gestational diabetes on its prevalence: a systematic review and meta-analysis. *Diabetol Metab Syndr.* 2019; 11; 11. DOI: https://doi.org/10.1186/s13098-019-0406-1

147. Nguyen CL, et al. Prevalence of Gestational Diabetes Mellitus in Eastern and Southeastern Asia: A Systematic Review and Meta-Analysis. *Journal of Diabetes Research.* 2018; 2018: 6536974–6536974. DOI: https://doi.org/10.1155/2018/6536974

148. Eades CE, Cameron DM, Evans JMM. Prevalence of gestational diabetes mellitus in Europe: A meta-analysis. *Diabetes Res Clin Pract.* 2017; 129: 173–181. DOI: https://doi.org/10.1016/j.diabres.2017.03.030

149. Teruya SA Bazargan-Hejazi S. The Immigrant and Hispanic Paradoxes: A Systematic Review of Their Predictions and Effects. *Hispanic Journal of Behavioral Sciences.* 2013; 35(4): 486–509. DOI: https://doi.org/10.1177/0739986313499004

150. Bostean G. Does selective migration explain the Hispanic paradox? A comparative analysis of Mexicans in the U.S. and Mexico. *J Immigr Minor Health.* 2013; 15(3): 624–35. DOI: https://doi.org/10.1007/s10903-012-9646-y

151. Miller LS, Robinson JA, Cibula DA. Healthy Immigrant Effect: Preterm Births Among Immigrants and Refugees in Syracuse, NY. *Matern Child Health J.* 2016; 20(2): 484–93. DOI: https://doi.org/10.1007/s10995-015-1846-3

152. Eriksen HS, et al. Social inequalities in the provision of obstetric services in Norway 1967–2009: a population-based cohort study. *European Journal of Public Health.* 2020; 30(3): 491–498. DOI: https://doi.org/10.1093/eurpub/ckaa007

153. Villalonga-Olives E, Kawachi I, von Steinbächel N. Pregnancy and Birth Outcomes Among Immigrant Women in the US and Europe: A Systematic Review. *J Immigr Minor Health.* 2017; 19(6): 1469–1487. DOI: https://doi.org/10.1007/s10903-016-0483-2

154. Linard M, et al. Association between inadequate antenatal care utilisation and severe perinatal and maternal morbidity: an analysis in the PreCARE cohort. *Bjog.* 2018; 125(5): 587–595. DOI: https://doi.org/10.1111/bjog.14794

155. Hill B, et al. Lifestyle and Psychological Factors Associated with Pregnancy Intentions: Findings from a Longitudinal Cohort Study of Australian Women. *International Journal of Environmental Research and Public Health.* 2019; 16(24): 5094. DOI: https://doi.org/10.3390/ijerph16245094

156. Patel M, Phillips-Caesar E, Boutin-Foster C. Barriers to lifestyle behavioral change in migrant South Asian populations. *Journal of Immigrant and Minority Health.* 2012; 14(5): 774–785. DOI: https://doi.org/10.1007/s10903-011-9550-x
