Chromosomal Mapping of Repetitive DNAs in *Triportheus trifurcatus* (Characidae, Characiformes): Insights into the Differentiation of the Z and W Chromosomes

Cassia Fernanda Yano¹, Juliana Poltronieri¹, Luiz Antonio Carlos Bertollo¹, Roberto Ferreira Artoni², Thomas Liehr³, Marcelo de Bello Cioffi¹*

¹ Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil, ² Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Jena, Thuringen, Germany, ³ Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brazil

Abstract

Repetitive DNA sequences play an important role in the structural and functional organization of chromosomes, especially in sex chromosome differentiation. The genus *Triportheus* represents an interesting model for such studies because all of its species analyzed so far contain a ZZ/ZW sex chromosome system. A close relationship has been found between the differentiation of the W chromosome and heterochromatinization, with the involvement of different types of repetitive DNA in this process. This study investigated several aspects of this association in the W chromosome of *Triportheus trifurcatus* (2n = 52 chromosomes), including the cytogenetic mapping of repetitive DNAs such as telomeric sequences (TTAGGG)n, microsatellites and retrotransposons. A remarkable heterochromatic segment on the W chromosome was observed with a preferential accumulation of (CAC)n₁₀, (CAG)n₁₀, (CGG)n₁₀, (GAA)n₁₀ and (TA)n₁₅. The retrotransposons Rex1 and Rex6 showed a general distribution pattern in the chromosomes, and Rex6 showed a different distribution on the W chromosome. The telomeric repeat (TTAGGG)n was highly evident in both telomeres of all chromosomes without the occurrence of ITS. Thus, the differentiation of the W chromosome of *T. trifurcatus* is clearly associated with the formation of heterochromatin and different types of repetitive DNA, suggesting that these elements had a prominent role in this evolutionary process.

Citation: Yano CF, Poltronieri J, Bertollo LAC, Artoni RF, Liehr T, et al. (2014) Chromosomal Mapping of Repetitive DNAs in *Triportheus trifurcatus* (Characidae, Characiformes): Insights into the Differentiation of the Z and W Chromosomes. PLoS ONE 9(3): e90946. doi:10.1371/journal.pone.0090946

Editor: Gabriel A B Marais, CNRS/University Lyon 1, France

Received: July 23, 2013; Accepted: February 5, 2014; Published: March 14, 2014

Copyright: © 2014 Yano et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the Brazilian agencies CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo), and CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: mbcioffi@ufscar.br

Introduction

Fishes show huge chromosome diversity with interspecific variation in diploid numbers, the presence or absence of sex and supernumerary chromosomes and other polymorphic conditions [1]. However, most fish species do not show differentiated sex chromosomes. In fact, approximately only 10% of studied species present heteromorphic sex chromosomes, with the female heterogamety representing the most common case [2]. Included in this group is the Neotropical genus *Triportheus*. This genus is widely distributed in South America and can be found from Colombia to Uruguay. Sixteen species have been described for this group [3]; thus far, all show a conserved karyotype with 2n = 52 and are composed of meta-submetacentric chromosomes together with a well-differentiated ZZ/ZW sex chromosome system [4–11].

High heterochromatin formation is clearly associated with W chromosome differentiation in *Triportheus*, similar to the majority of the ZW sex systems reported to date for fishes [reviewed in 12]. Among the different *Triportheus* species, the Z chromosome is conserved, but the W chromosome differs in size (from similar to the Z chromosome to much smaller) and in the amount and distribution of C-positive heterochromatin [7,10]. Therefore, the evolutionary dynamics of sex chromosomes in *Triportheus* appear to be similar to those of higher vertebrates, considering that several DNA repeats accumulate in the sex-specific chromosome, which results in its heterochromatinization. In some groups, however, the sex-specific W chromosome can also be larger than the Z chromosome as a result of a huge heterochromatin amplification. Such amplification has been observed in some lizard [13] and fish species, remarkably including those from the *Leporinus* genus and the Parodontidae family reviewed in [12].

The close relationship between heterochromatin formation and sex chromosome differentiation is widely known. In fact, during sex chromosome evolution, selection favors the restriction of sex-determining loci to a chromosome of the sex pair through recombination suppression [14]. With the absence of recombination, repetitive sequences are amplified in the non-recombinant region, resulting in the heterochromatinization of the sex-specific chromosome, perhaps as a cellular defense against this amplification [15]. The heterochromatin of sex chromosomes has a complex composition that mainly contains in tandem repetitive sequences and interspersed elements, most of which are retro-
transposons [16]. Thus, repetitive DNA sequences play an important role in the structural and functional organization of heterochromatin and are key elements for the understanding of sex chromosome differentiation in many vertebrate species [17,18].

As in other vertebrates, the heterochromatin of the fish sex chromosomes is also enriched with repetitive DNA sequences, as shown by the isolation and mapping of several sex-specific repetitive DNAs in this group. Such data have proven to be important tools for clarifying the dynamic processes involved in sex chromosome differentiation and for understanding genome evolution in eukaryotes [reviewed in 19]. Therefore, in this study, we mapped 12 repetitive DNA sequences in the species *T. trifurcatus* to analyze the degree of repetitive DNA accumulation on the differentiated ZW chromosomes and their association with the evolution of this sex system. The results show that the differentiation of the W chromosome is clearly associated with the formation of heterochromatin and different types of repetitive DNA, suggesting that these elements had a prominent role in this evolutionary process.

Materials and Methods

Material Collection and Classical Analysis

Seventeen individuals of *Tripethorhys trifurcatus* (nine males and eight females) from the Araguaia River (Brazil) were analyzed. The specimens were caught using a hand-net, and after capture, the animals were placed in sealed plastic bags containing oxygen and clean water and transported to the research station. The experiments followed ethical protocols, and anesthesia with clove oil was administered prior to sacrificing the animals to minimize suffering. The process was approved by the FAPESP committee under no. 2012/01778-2, and the collecting permit was obtained from SISBIO under no. 10538-1. Mitotic chromosomes were obtained from the anterior portion of the kidney, according to Cioffi and colleagues [24]. All probes were labeled with DIG-11-dUTP using DIG-Nick-translation Mix (Roche, according to the manufacturer's recommendations. Telomeric (TTAGGG)n repeats were detected using a FITC-labeled PNA probe (DAKO, Telomere PNA FISH Kit/FITC, Cat. No. K3325) according to the manufacturer’s recommendations.

Microscopy Analyses

Approximately 30 metaphase spreads were analyzed to confirm the diploid chromosome number, karyotype structure and FISH results. Images were captured on an Olympus BX50 microscope (Olympus Corporation, Ishikawa, Japan) using CoolSNAP and the Image Pro Plus 4.1 software (Media Cybernetics, Silver Spring, MD, USA). The chromosomes were classified as metacentric or submetacentric according to their arm ratios [25].

Results

Karyotyping and C-banding

T. trifurcatus showed 2n = 52 chromosomes in both male and female specimens, with the karyotype basically composed of meta/submetacentric chromosomes and a heteromorphic ZZ/ZZ sex chromosome system. The Z chromosome is metacentric and the largest of the karyotype, while the W chromosome is submetacentric with a significant reduction in size (Fig. 1). C-positive heterochromatin (C-bands) was observed in the centromeric region of most chromosomes. The Z chromosome also shows additional heterochromatic regions in both telomeres, while the W is almost entirely heterochromatic, except for its small short arm (Fig. 1).

Chromosomal Mapping of Repetitive Elements

The chromosomal mapping of microsatellite sequences generally showed the same distribution pattern between the autosomes of males and females (Figs. 2 and 3). Most microsatellites were restricted to the telomeric regions, although some presented a more dispersed pattern in both the autosomes and the sex chromosomes. However, the W chromosome differed from the autosomes and the Z chromosome by a large accumulation of four microsatellites. Of these, (CA)10, (GA)10, and (TA)15 presented strong signals in the centromeric/pericentromeric region, while the microsatellite (CGG)10 accumulated across almost its entire length (Fig. 2). The Z and the W chromosomes showed a strong and dispersed differential accumulation of the microsatellite (GAA)10 (Figs. 2 and 3). The microsatellites (CA)13, (GA)13, and (GA)13 showed similar hybridization patterns between autosomes and sex chromosomes. Conversely, the microsatellite (CA)13 showed interstitial signals in the long arm of the W chromosome, which is different from that observed in the autosomes and Z chromosome, where its accumulation was restricted to telomeric heterochromatin (Figs. 2 and 3).
The retrotransposons Rex1, Rex3 and Rex6 showed a dispersed distribution on most chromosomes of the complement (including the Z chromosome) and a distribution in small clusters in the telomeric regions of other chromosomes. However, while Rex 3 was widely distributed throughout the whole W chromosome (with more intense accumulation in the telomeric region of the long
arms), Rex 1 and 6 preferentially accumulated in the long and short arms of the W chromosome, respectively. The mapping of the telomeric repeats (TTAGGG)ₙ showed signals in both telomeres of all chromosomes (Figs. 4 and 5).

Notably, a conspicuous 18S rDNA cistron occurs on the W chromosome, occupying a large extent of its long arm (Fig. 5). As a result, in all FISH experiments, the 18S rDNA probe was simultaneously applied to correctly identify the W chromosome (data not shown).

Rex 1	Rex 3	Rex 6	(TTAGGG)ₙ
![Image](image1.png)	![Image](image2.png)	![Image](image3.png)	![Image](image4.png)

Figure 3. Mitotic metaphase chromosomes of *Triportheus trifurcatus* male hybridized with different labeled microsatellite-containing oligonucleotides. Chromosomes were counterstained with DAPI (blue) and microsatellite probes were directly labeled with Cy3 during synthesis (red signals). Letters mark the Z chromosomes. Bar = 5 μm.

doi:10.1371/journal.pone.0090946.g003

Figure 4. Metaphase plates of *Triportheus trifurcatus* probed with Rex1, Rex3, Rex6, and telomeric (TTAGGG)ₙ sequences. These sequences show the general distribution pattern of these repeats on the chromosomes. Letters mark the Z and W chromosomes. Bar = 5 μm.

doi:10.1371/journal.pone.0090946.g004
Discussion

One of the steps for sex chromosomes evolution is the accumulation of repetitive DNAs that is accompanied by a heterochromatinization process. The accumulation of repetitive elements on the sex chromosomes is favored by the absence or low frequency of recombination, which is caused by the structural and/or DNA changes that occur during the sex chromosome’s differentiation process [26]. Despite this general rule, consensus indicates that not all events involved in the differentiation of the Y chromosome are necessarily valid for W chromosome differentiation [12,13]. In fact, sex chromosome evolutionary mechanisms occurred independently among lineages, including plants, insects, fishes, birds and mammals [27]. Among fishes, this scenario is evident because the W chromosome presents different morphologies and sizes and, in some cases, is larger than the Z chromosome [28–31].

The heterochromatinization of the W chromosome that occurs in *T. trifurcatus* is also observed in other species of this genus, but with distinct distribution patterns. In contrast, the Z chromosomes of all species show the conserved feature of heterochromatin that is present only in both telomeric regions [7,11]. Moreover, the occurrence of a conspicuous 18S rDNA cistron on the W chromosome may correspond to a shared condition in *Triportheus* because all of the species analyzed to date showed this characteristic [8,32], with the exception of *T. venezuelensis* [9].

Certainly, the increase in heterochromatin has driven the differentiation of the W chromosome, as also occurs in other ZW systems in fishes such as *Thoracochilus*, *Parodon*, *Leporinus* and *Apareiodon* [12]. Additionally, the absence of interstitial (TTAGGG)n signals demonstrates that the origin of the sex system in this species did not involve rearrangements such as fusions and fissions, which is different from the scenario found in the formation of multiple sex chromosomes reviewed in [33] (Fig. 4).

In addition to studies related to genes linked to the sex chromosomes, other research has been conducted on the mapping of repetitive DNA sequences. These approaches verified through differential accumulation that these sequences have a prominent role in the evolution of sex-specific chromosomes [23,33]. Modern cytogenetic techniques that are more sensitive than C-banding have enabled the characterization of sex chromosomes across a wider range of species [13]. The FISH technique clearly demonstrated that some microsatellites accumulated preferentially in the heterochromatic region of the W chromosome, highlighting their probable role in the differentiation of these chromosomes (Figs. 2 and 5). This same feature was observed in other *Triportheus* species, such as *T. auritus*, where a large accumulation of several microsatellites was found on the W chromosome [34]. In *T. auritus*, only the (C)_{30} microsatellite accumulated equally in both the W chromosome and the autosomes, while eight other microsatellites showed a large accumulation in the W chromosome, particularly in the heterochromatic regions, but not in other chromosomes. Concerning the Z chromosome, the distribution of the microsatellite repeats was similar to that found in the autosomes, thus reinforcing the hypothesis that the differential microsatellite accumulation between the Z and W was an essential step for the differentiation of the sex pair in *Triportheus* species.

In other fish species, microsatellites also preferentially accumulated in the heteromorphic sex chromosomes. In fact, several microsatellites showed preferential accumulation in the heterochromatic region of the W chromosome in *Leporinus* species [35]. Similarly, the same pattern observed for the microsatellite (GAA)$_{10}$ in *T. trifurcatus* was observed in the wolf fish *H. malabaricus*, with a
similar accumulation in both the X and Y chromosomes [36]. Thus, it is clear that the accumulation of microsatellites plays an important role in sex chromosome differentiation. However, microsatellites can present identical or different distribution patterns on the sex chromosomes of different species. For example, while microsatellites accumulate preferentially in the sex-specific chromosome in some species, in others, they have a widespread distribution among all karyotypes [22,36,37]. Indeed, microsatellites are dynamic components of the genome and are formed by distinct molecular processes such as DNA replication slippage or insertion of deletion of one or more repeats that can also drive their genomic accumulation and distribution [38,39].

Transposable elements have the ability to copy or transpose themselves into non-homologous regions of a genome. These sequences can also show different evolutionary dynamics that result in small to large genomic fractions [17]. Among many retrotransposons, the Rex family has been widely analyzed in different fish species because its family members are abundant, and their distribution varies from a scattered pattern to preferential accumulation in certain regions of the chromosomes [reviewed in 19]. Our present data show that the distinct Rex elements accumulated in different ways in the W and in the other chromosomes of T. trifurcatus [Fig. 4]. Interestingly, instead of presenting the typical pattern of microsatellites, i.e., accumulation in the W chromosome, Rex6 sequences were restricted to a few clusters in the W chromosome. As for the Rex1 and Rex3 elements, no differential accumulation between the W and the other chromosomes was observed, suggesting that, at least for this TE family, their evolutionary dynamics may be more diverse than previously assumed.

The analysis of the genomic composition of several microsatellites and retrotransposons in the fish T. trifurcatus helps us better understand the correlation of repetitive DNAs with the differentiation of the ZW sex pair. A strict correlation has clearly been shown between the differentiation of the sex-specific W chromosome and the accumulation of several DNA repeats, resulting in the heterochromatinization of this chromosome.

Author Contributions

Conceived and designed the experiments: LACB MBC. Performed the experiments: CFY JP. Analyzed the data: CFY JP LACB RFA TL MBC. Contributed reagents/materials/analysis tools: LACB MBC. Wrote the paper: CFY JP LACB RFA TL MBC.

References

1. Oliveira C, Foresti F, Hildebrt AWS (2009) Genetics of neotropical fish: from chromosomes to populations. Fish Physiol Biochem 35: 81–100.
2. Devlin RH, Nagahama Y (2002) Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture. 208: 191–364.
3. Malabarba MCG, (2006) Revision of the Neotropical genus Triportheus Cope, 1872 (Characiformes: Characidae). Neotrop Ichthyol 1: 87–204.
4. Falcão JN (1988) Caracterização e cariótica em peixes do gênero Triportheus (Teleostei, Characiformes, Characidae). PhD Thesis, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
5. Bertollo LAC, Cavallaro ZI (1992) A highly differentiated ZZ/ZW sex chromosome system in a Characidae fish, Triportheus guentheri. Cytogeten Genet Genet 60: 60–63.
6. Sánchez S, Jorge LC (1999) A new report of the ZZ/ZW sex chromosome system in the genus Triportheus (Pisces, Triportheinae). Cytologia 64: 395–400.
7. Artoni RF, Falcão JN, Morreira-Filho O, Bertollo LAC (2001) An uncommon condition for a sex chromosome system in Characidae fish. Distribution and differentiation of the ZZ/ZW sex chromosome system in Triportheus Cope, 1872. Chromos Res 9: 449–456.
8. Artoni RF, Bertollo LAC (2002) Evolutionary aspects of the ZZ/ZW sex chromosome system in the Characidae fish, genus Triportheus. A monophyletic state and NOR location on the W chromosome. Hereditas 89: 15–19.
9. Nirchio M, Oliveira C, Ferreira IA, Granado A, Rou E (2007) Extensive polymorphism and chromosomal characteristics of ribosomal DNA in the characid fish Triportheus venezuelensis (Characiformes, Characidae). Genet Mol Biol 30: 25–30.
10. Diniz D, Laudicina A, Cioffi MB, Bertollo LAC (2008) Microdissection and whole chromosome painting. Improving sex chromosome analysis in Triportheus (Teleostei, Characiformes). Cytogeten Genet Genet Res 122: 163–168.
11. Diniz D, Morreira-Filho O, Bertollo LAC (2008) Molecular cytogenetics and characterization of a ZZ/ZW sex chromosome system in Triportheus truncatus (Characiformes, Characidae). Genetica 135: 85–91.
12. Cioffi MB, Camacho JMP, Bertollo LAC (2011) Repetitive DNAs and the differentiation of sex chromosomes in Neotropical fishes. Cytogeten Genet Res 132: 188–194.
13. Ezzar T, Sarre S, O’Mely D, Graves JAM, Georges A (2009) Sex Chromosome Evolution in Lizards: Independent Origins and Rapid Transitions. Cytogeten Genet Genet Res 127: 249–260.
14. Ohno S (1967) Sex chromosomes and sex-linked genes. Springer, Berlin Heidelberg New York.
15. Charlesworth B, Steglewski P, Stephan W (1994) The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371: 215–220.
16. Lippman Z, Gendrel AV, Black M, Vaughan MW, Deldia N, et al. (2004) Role of transposable elements in heterochromatin and epigenetic control. Nature 430: 471–476.
17. Schuler MG, Higgins AW, Rudd MK, Gustavson K, Willard H (2001) Genome and genetic definition of a functional human centromere. Science 294: 109–115.
18. Bérmont C, Vieira C (2006) Junk DNA as an evolutionary force. Nature 443: 521–524.
19. Cioffi MB, Bertollo LAC (2012) Chromosomal Distribution and Evolution of Repetitive DNAs in Fish. In: Garrido Ramos, editor. Repetive DNAs Genomes Dynamics. Basel: Karger. 197–221.
20. Bertollo LAC, Takahashi CS, Moreira-Filho O (1978) Cytotaxonomic considerations on Hoplias malabaricus (Pisces, Erythrinidae). Braz J Genet 2: 103–120.
21. Sumner AT (1972) A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res 75: 304–306.
22. Kuht Z, Holba R, Vysko B, Kejnovsky E (2008) Microsatellite accumulation in the Y chromosome of Silurus glanis. Genome 51: 550–554.
23. Volf JP, Koutný C, Sureau K, Scharf M (1999) The non-LTR retrotranspon Rex3 from the fish Xiphophorus is widespread among teleosts. Mol Biol Evol 16: 1427–1438.
24. Cioffi MB, Martins C, Gentofante L, Jacobina U, Bertollo LAC (2009) Chromosomal variability among allopatric populations of Erythrinidae fish Hoplias malabaricus: mapping of three classes of repetitive DNAs. Cytogeten Genome Res 125: 132–141.
25. Levan A, Fredga K, Sandberg AA (1964) Nomenclature for centromeric position on chromosomes. Hereditas 52: 201–220.
26. Charlesworth D, Charlesworth B, Marais G (2005) Steps in the evolution of heteromorphic sex chromosomes. Hereditas 95: 118–128.
27. Vallender EJ and Lahm B (2004) Hox mammalian sex chromosomes acquired their peculiar gene content. BioEssays 26: 159–169.
28. Feldberg E, Bertollo LAC, Almeida-Toledo LF, Foresti F, Morreira-Filho O, et al. (1987) Biological aspects of Amazonian fishes. IX. Cytogenetic studies in two species of the genus Semaprochilodus (Pisces,Phractochilodontidae). Genetica 39: 1–4.
29. Vennere PC, Ferreira LA, Martins C, Galeni MJ (2004) A novel ZZ/ZW sex chromosome system for the genus Leporinus (Pisces, Anostomidae, Characini). Genetica 121: 73–80.
30. Silva DS, Milhomem SSR, Peczarka JC, Nagachanil CY (2009) Cytogenetic studies in Eigenmannia versicolor (Sternopygidae, Gymnotiformes) and new inferences on the origin of sex chromosomes in the Eigenmannia genus. BMC Genet. 10: 47.
31. Belafonte E, Schenberger MO, Artonni RF, Morreira-Filho O, Vicari MR (2012) Sex chromosome system ZZ/ZW in Aequorid lampreys. Genome Res 107: 770–776.
32. Marquesoni V, Bertollo LAC, Diniz D, Cioffi MB (2013) Comparative chromosomal mapping in Triportheus fish species. Analysis of synergy between ribosomal genes. Micron 45: 129–135.
33. Cioffi MB, Moreira-Filho O, Almeida-Toledo LF, Bertollo LAC (2012) The contrasting role of heterochromatin in the differentiation of sex chromosomes: an overview from Neotropical fishes. J Fish Biol 80: 2125–2139.
34. Cioffi MB, Kejnovsky E, Marquesoni V, Poltronieri J, Molina WF, et al. (2012) The key role of repeated DNAs in sex chromosome evolution in two fish species with ZZ sex chromosome system. Mol Cytogenet 5: 20.
35. Poltronieri J, Marquesoni V, Bertollo LAC, Kejnovsky E, Molina WF, et al. (2013) Comparative chromosomal mapping of microsatellites in Leporinus species (Characiformes, Anostomidae): Unequal accumulation on the W chromosomes. Cytogeten Genom Res 142: 40–57.
36. Cioffi MB, Kejnovsky E, Bertollo LAC (2011) The Chromosomal Distribution of Microsatellite Repeats in the Genome of the Wolf Fish Hoplias malabaricus, Focusing on the Sex Chromosomes. Cytogeten Genome Res 152: 269–296.
37. Pokorná M, Kratochvíl I, Kejnovský E (2011) Microsatellite distribution on sex chromosomes at different stages of heteromorphism and heterochromatinization in two lizard species (Squamata: Eublepharidae: Coleonyx elegans and Lacertidae: Eremias velox). BMC Genet 12: 90.

38. Levinson G, Gutman GA (1987) Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol Biol Evol 4 (3): 203–221.

39. Ellegren H (2000) Microsatellite mutations in the germline: implications for evolutionary inference. Trends Genet 16: 551–558.