Characterising dark matter-induced neutrino potentials

Gabriel M. Salla

Instituto de Física, Universidade de São Paulo, C.P. 66.318, 05315-970 São Paulo, Brazil

Received: 6 November 2022 / Accepted: 28 February 2023 / Published online: 8 March 2023
© The Author(s) 2023

Abstract In this paper we explore interactions between neutrinos and dark matter. In particular, we study how the propagation of astrophysical neutrinos can be modified by computing the most general potential generated by the galactic DM background. We use on-shell techniques to compute this potential in a completely model independent way and obtain an expression valid for any dark matter mass and spin. Afterwards, we use this expression to analyse under what circumstances such potential can be important at the phenomenological level, and we find that under some assumptions only ultra light scalar dark matter could be of any relevance to oscillation experiments.

1 Introduction

Since the discovery of astrophysical neutrinos by IceCube [1], it became crucial to comprehend how neutrinos propagate through the cosmos. In particular, the large amount of dark matter (DM) present in the path of these high-energy neutrinos raises the question whether or not an interaction with the galactic DM background could be phenomenologically relevant. Previous studies have explored the phenomenology of many models with neutrino-DM (νDM) interactions [2–30] from several perspectives. One clear disadvantage in most of those is the fact that such interactions are implemented at the Lagrangian level, which thus assumes a fixed spin for the DM and determined interactions with the Standard Model particles. This obscures the general features of νDM interactions and are very model dependent. A more compelling approach relies on on-shell methods [31–33], a set of techniques that allows us to write down amplitudes for particles of any mass and spin without having to rely on Lagrangians. Moreover, it is already known that amplitudes written in this way contains all possible terms at all orders in low-energy effective theory expansion [34–43].

In this paper we are interested in applying on-shell techniques to study νDM interactions, that was not yet pursued in the present literature. More specifically, we will focus on characterising how this interaction might alter the evolution of astrophysical neutrinos, in which the DM background induces a new contribution to the neutrino potential and hence modifies its dispersion relation.

2 νDM potential

In order to compute the potential generated by the νDM interactions, we need first to compute the 4-point scattering amplitude for 2 DM particles and 2 neutrinos. Any massive n-point on-shell amplitude may be written in terms of spinor variables $|\mathbf{p}\rangle$ and $|\mathbf{p}\rangle$, where \mathbf{p} is a 4-momentum and the bold notation indicates that we are dealing with massive particles [33]. The amplitude is then built as the sum of all possible Lorentz-invariant combinations of spinors, where each term in the amplitude must have exactly 2 spinors for each particle with spin s. In our case the amplitude is written as $A[\nu_1 \bar{\nu}_2 \chi_3 \bar{\chi}_4]$, with χ (bar χ) the DM (anti) particle and the subscripts being labels for the 4-momenta. This obscures the general features of νDM interactions and are very model dependent. A more compelling approach relies on on-shell methods [31–33], a set of techniques that allows us to write down amplitudes for particles of any mass and spin without having to rely on Lagrangians. Moreover, it is already known that amplitudes written in this way contains all possible terms at all orders in low-energy effective theory expansion [34–43].

In this paper we are interested in applying on-shell techniques to study νDM interactions, that was not yet pursued in the present literature. More specifically, we will focus on characterising how this interaction might alter the evolution of astrophysical neutrinos, in which the DM background induces a new contribution to the neutrino potential and hence modifies its dispersion relation.

2 νDM potential

In order to compute the potential generated by the νDM interactions, we need first to compute the 4-point scattering amplitude for 2 DM particles and 2 neutrinos. Any massive n-point on-shell amplitude may be written in terms of spinor variables $|\mathbf{p}\rangle$ and $|\mathbf{p}\rangle$, where \mathbf{p} is a 4-momentum and the bold notation indicates that we are dealing with massive particles [33]. The amplitude is then built as the sum of all possible Lorentz-invariant combinations of spinors, where each term in the amplitude must have exactly 2 spinors for each particle with spin s. In our case the amplitude is written as $A[\nu_1 \bar{\nu}_2 \chi_3 \bar{\chi}_4]$, with χ (bar χ) the DM (anti) particle and the subscripts being labels for the 4-momenta. This obscures the general features of νDM interactions and are very model dependent. A more compelling approach relies on on-shell methods [31–33], a set of techniques that allows us to write down amplitudes for particles of any mass and spin without having to rely on Lagrangians. Moreover, it is already known that amplitudes written in this way contains all possible terms at all orders in low-energy effective theory expansion [34–43].

In this paper we are interested in applying on-shell techniques to study νDM interactions, that was not yet pursued in the present literature. More specifically, we will focus on characterising how this interaction might alter the evolution of astrophysical neutrinos, in which the DM background induces a new contribution to the neutrino potential and hence modifies its dispersion relation.

2 νDM potential

In order to compute the potential generated by the νDM interactions, we need first to compute the 4-point scattering amplitude for 2 DM particles and 2 neutrinos. Any massive n-point on-shell amplitude may be written in terms of spinor variables $|\mathbf{p}\rangle$ and $|\mathbf{p}\rangle$, where \mathbf{p} is a 4-momentum and the bold notation indicates that we are dealing with massive particles [33]. The amplitude is then built as the sum of all possible Lorentz-invariant combinations of spinors, where each term in the amplitude must have exactly 2 spinors for each particle with spin s. In our case the amplitude is written as $A[\nu_1 \bar{\nu}_2 \chi_3 \bar{\chi}_4]$, with χ (bar χ) the DM (anti) particle and the subscripts being labels for the 4-momenta. This obscures the general features of νDM interactions and are very model dependent. A more compelling approach relies on on-shell methods [31–33], a set of techniques that allows us to write down amplitudes for particles of any mass and spin without having to rely on Lagrangians. Moreover, it is already known that amplitudes written in this way contains all possible terms at all orders in low-energy effective theory expansion [34–43].
In what follows we assume for simplicity just one type of DM particle, while neutrino flavor can be implemented as in Ref. [44], such that the spinor variables and the coefficients acquire a dependence on the particular mass-eigenstate considered:

\[\mathcal{A} [v_1 \bar{v}_2 \chi_3 \bar{\chi}_4] \rightarrow \mathcal{A} [v_1^{(i)} \bar{v}_2^{(j)} \chi_3 \bar{\chi}_4] \]
\[|1\rangle \rightarrow |1_i\rangle, \quad |2\rangle \rightarrow |2_j\rangle \]
\[g_n \rightarrow g_n^{ij}. \]

(2)

For more details on on-shell methods and the conventions used, we refer the reader to the appendix.

For \(s_\chi = 0 \), we need only 4 Lorentz-invariant structures to compute the 4-point amplitude in Eq. (1), whereas according to Ref. [35] the number of independent spinor structures is in general \(4 \times (2s_\chi + 1)^2 \) and thus grows quickly with the spin of the DM. Although it becomes inefficient to determine explicitly the amplitudes for general \(s_\chi \), we can look out for some patterns that will be useful later. We identify 5 different structures. The first one is

\[(1,2)_i (34)^{2s_\chi}, \]

(3)

where \((pk) = [pk] \) or \((pk) \), and \((34)^{2s_\chi} \) means that there are \(2s_\chi \) independent powers of \((34) \). The second category is similar to the one before, but with an extra insertion of the DM momentum:

\[(34)^{2s_\chi} \{1_i |3_j|2_k\}, \]

(4)

in which we have defined \((p|k|q) \) as \((p|k|q) \) or \([p|k|q] \). The third type of structure is represented by

\[(34)^{2s_\chi-1} \{1_i |3_j|2_k\} \quad \text{or} \quad (34)^{2s_\chi-1} \{1_i |3_j|2_k\}, \]

(5)

together with their conjugate structures. One remark about Eq. (5) is that, since massive amplitudes must be regular functions of the spinor variables, the exponent of \((34)^{2s_\chi-1} \) must not be negative, that is \(s_\chi \geq 1/2 \). This means that this type of structure can only appear in amplitudes involving DM particles with spin higher than 1/2. The last two categories are similar to the ones of Eqs. (3) and (5), but with an insertion of neutrino momentum:

\[(1,2)_i (34)^{2s_\chi-1}, \]

(6)

\[(34)^{2s_\chi-2} \{1_i |3_j|2_k\} \quad \text{or} \quad (34)^{2s_\chi-2} \{1_i |3_j|2_k\}. \]

(7)

As before, the terms in Eqs. (6) and (7) are only allowed for DM spins higher than \(s_\chi \geq 1/2 \) and \(s_\chi \geq 1 \), respectively. It is also important to notice that we only consider structures with at most 1 momentum insertion, as terms with more insertions are redundant in a 4-point amplitude\(^1\) [35].

The appropriate combination of structures (3)–(7) yields the most general 4-point amplitude \(\mathcal{A}[v_1^{(i)} \bar{v}_2^{(j)} \chi_3 \bar{\chi}_4] \) for a DM particle of spin \(s_\chi \). From this amplitude, we can follow the steps described in Ref. [44] to compute the effective potential generated by a DM background. This can be done in three steps: (i) take the elastic limit \(p_1 \simeq -p_2 \) and \(p_3 = -p_4 \) while keeping in general \(i \neq j \); (ii) average over the DM spins; (iii) integrate over the DM distribution profile. More precisely, based on this procedure we can write

\[\mathcal{A}[v_1^{(i)} \bar{v}_2^{(j)} \chi_3 \bar{\chi}_4]^{I,J,(K_1,\ldots,K_{2i\chi}),(L_1,\ldots,L_{2j\chi})} \]
\[\rightarrow \frac{\epsilon_{K_1L_1} \cdots \epsilon_{K_{2i\chi}L_{2j\chi}}}{(2s_\chi + 1)^2} \int \frac{d^3 p_3}{(2\pi)^3 2E(\vec{p}_3)} f_x(\vec{p}_3) \mathcal{A}[v_1^{(i)} \bar{v}_2^{(j)} \chi_3 \bar{\chi}_4]^{I,J,(K_1,\ldots,K_{2i\chi}),(L_1,\ldots,L_{2j\chi})}, \]

(8)

where we are writing explicitly the \(SU(2) \) little-group indices \(I, J, K, L \), \(f_x \) is the DM distribution function in momentum space and \(E(\vec{p}_3) \) is the DM energy. Since we are averaging over the DM little-group indices, Eq. (8) can be written in general as

\[\mathcal{A}[v_1 \bar{v}_2 \chi_3 \bar{\chi}_4] \rightarrow V_m \{1_i |(-1)_j\} + V_m' \{1_i |(-1)_j\} \]
\[+ \{1_i |V_p |(-1)_j\} + \{1_i |V_p' |(-1)_j\}, \]

(9)

such that, according to Ref. [44], \(V_m, V_m', V_p \) and \(V_p' \) can be identified as the DM-induced potentials. Notice that we assume that only Standard Model neutrinos are propagating, which thus implies that the little-group indices of the neutrino spinors are essentially fixed to be \(\{1_f \} \simeq \{1_f \} \) and \(\{(-1)^f \} \simeq \{(-1)^f \} \). In addition to this, we only consider first order terms in the potentials and in the mass of the neutrinos. As a consequence, the term \(\{1_i |V_p' |(-1)_j\} \) in Eq. (9) is of higher order in the neutrino masses and will from now on be neglected. For more details we refer the reader to Ref. [44].

Let us now understand how each of the structures in Eqs. (3)–(7) contribute to the potentials \(V_m \), \(V_m' \) and \(V_p \). Performing the spin average over the little-group indices and taking the elastic limit we obtain

\[^1\text{The only exception would be terms like } (3|12|3) \text{ that appear for DM spins larger than } 1. \text{ However, in the case we consider they will turn out to be of higher order in the neutrino mass expansion, so we neglect them.}\]
The coefficients

\[(1, 2) \rightarrow 34^{2s} \rightarrow m^{2s}_{y^2}(1, -1) \]

\[(34)^{2s} \rightarrow m^{2s}_{y^2}(1, 3)(1, 3) \]

\[(1, 2) \rightarrow 34^{2s} \rightarrow m^{2s}_{y^2}(p_3 \cdot p_1)(1, -1) \]

\[(34)^{2s} \rightarrow m^{2s}_{y^2}(p_3 \cdot p_1)(1, -1) \]

\[(34)^{2s} \rightarrow m^{2s}_{y^2}(p_3 \cdot p_1)(1, -1) \]

\[(34)^{2s} \rightarrow m^{2s}_{y^2}(p_3 \cdot p_1)(1, -1) \]

The integration over the DM distribution function depends not only on the particular form of \(f_x \) but also on how the coefficients of the amplitude depend on \(p_3 \). As a first and reasonable approximation, then, we take into consideration the non-relativistic nature of the DM and assume \(f_x(\tilde{p}_3) = N_x \delta(\tilde{p}_3) \), with \(N_x \) the number density of DM particles. Under this assumption, \(p_3/E(\tilde{p}_3) \rightarrow (1, 0) \) and \(p_3 \cdot p_1 \rightarrow m_\chi E_\nu \), where \(E_\nu \) is the neutrino energy. The potentials in Eq. (9) are therefore given by

\[V^0_m = N_x m_{\chi}^{2s_{y^2}} \left(c_1^0 + c_2^0 E_\nu \right) \]

\[V_p = N_x m_{\chi}^{2s_{y^2}} \left(c_3 + c_4 m_\chi + c_5 E_\nu \right) \]

The coefficients \(c_n \) are combinations of the couplings of the initial 4-point amplitude and may depend on \(E_\nu, m_\chi \) and \(m_\nu \) as well. We emphasise again that for \(s_\chi = 0 \) we have \(c_1^0 = c_3 = c_5 = 0 \), while for \(s_\chi = 1/2 \) we have \(c_5 = 0 \). It is also interesting to notice that to derive the same results using only quantum field theoretical techniques would be an arduous task, since one would need to explicitly list all possible ways of generating \(A[\nu_i^\dagger \nu_i \chi \bar{\chi} \bar{\chi}] \) for each DM spin. For higher spins this would be even more challenging, as in some cases it is impossible to have a Lagrangian description. By means of on-shell methods, we can completely bypass such hurdles and straightforwardly obtain Eq. (11).

We see from expression (11) that \(c_n \) must be dimensionful in order to produce potentials with the correct dimension. More precisely, the coefficients associated to structures with no momentum insertion \((c_1 \) and \(c_4) \) have mass dimension \((2s_{y^2} + 1)^{-1} \), whereas the ones related to terms with one momentum insertion \((c_2, c_3 \) and \(c_5) \) have dimension \((2s_{y^2} + 2)^{-1} \). The physical interpretation of this mass dimension is nevertheless not unique. On the one hand, if we take the amplitude \(A[\nu_i^\dagger \nu_i \chi \bar{\chi} \bar{\chi}] \) to be a contact interaction, i.e. with the couplings being regular functions of the Mandelstam variables, then we can introduce a large scale \(\Lambda^2 \gg |s_{13}|, m_{\chi}^2 \) to correct the dimensionality of the couplings:

\[V_m^{(\nu)} = N_x \left(m_{\chi} \Lambda \right)^{2s_{y^2}-1} \left[\hat{c}_1 + \hat{c}_2 \frac{E_\nu}{\Lambda} \right] \]

\[V_p = N_x \left(m_{\chi} \Lambda \right)^{2s_{y^2}-1} \left[\hat{c}_3 + \hat{c}_4 \frac{m_\chi}{\Lambda} + \hat{c}_5 \frac{E_\nu}{\Lambda} \right] \]

where now each (dimensionless) \(\hat{c}_n \) is to be interpreted as an infinite expansion in powers of \(s_{13}/\Lambda^2 \) and \(m_\chi/\Lambda \). This resembles very much the usual Effective Field Theory (EFT) approach, in which we have a cut-off scale that sets the maximum energy scale allowed and we can expand observables in terms of inverse powers of the cut-off. Though similar, we cannot directly identify \(\Lambda \) as this cut-off scale, because at the level of amplitudes there is no way to know what is the scaling of the coefficients with the cut-off scale. It is also important to notice that the dimensionality of \(c_n \) in Eq. (11) grows with \(s_\chi \). This is naturally related to the fact that higher spin particles can only interact via effective interactions and will thus be suppressed by extra powers of some other cut-off scale [45–48]. In Eq. (12), A takes into account both the EFT and the higher spin cut-off scales in some non-trivial way.

On the other hand, the coefficients may also posses poles and branch-cuts, which correspond respectively to tree and loop diagrams. For instance, if we consider a light particle \(\phi \) being exchanged at tree-level, then the coefficients will have a contribution given by \((s_{ij} - m_{\phi}^2)^{-1} \), where in the elastic limit \(s_{12} \simeq 0 \) and \(s_{13}, s_{14} \simeq m_\phi^2 \pm 2m_\chi E_\nu \). As a consequence, instead of a suppression by \(\Lambda^2 \), we can have an enhancement to the potential coming from the small masses \(m_\phi^2 \) and \(m_\chi^2 \). This effect, however, strongly depend on the mass of \(\phi \) and on its spin, as for a given choice of DM spin not all channels are allowed. As for loop effects, we also expect some degree of enhancement compared to Eq. (12) but will be much more model dependent than the tree-level case, so we do not pursue them further in this work.

3 Phenomenology

Having determined the general form for the DM potentials in Eq. (11), we now investigate under what circumstances they could give an observable signal. We first notice that the potentials \(V_m^{(\nu)} \) and \(V_p \) contribute in distinct ways to the total neutrino potential: \(V_m^{(\nu)} \) is a correction to the neutrino masses \(m_\nu \), while \(V_p \) corrects the vacuum-energy \(V_0 \equiv \Delta m_\nu^2/2E_\nu \), with \(\Delta m_\nu^2 \) referring to the usual mass-squared splittings \(\Delta m_{\nu i j}^2 \equiv m_i^2 - m_j^2 \) [49–51]. This can be seen, as shown in Ref. [44], by resumming the neutrino propagator in the presence of this background and computing the

\[2 \] Here we always assume that the expansion of the coefficients in powers of \(\Lambda \) begins with a \(\Lambda \)-independent term.
new dispersion relation of the neutrino:

\[p^2 - m_{\nu}^2 \rightarrow (p - V_p)^2 - m_{\nu}^2 - m_V m_{\nu'} m_{\nu}, \tag{13} \]

where \(m_{\nu} \) is to be understood as the neutrino mass matrix. Since usually experiments are much more sensitive to the vacuum-energy rather than the absolute mass scales, we will consider only \(V_p \) to be of relevance, but the discussion would be analogous for \(V_m^i \). The impact of \(V_p \) to neutrino observables is similar to that of the standard Mikheyev-Smirnov-Wolfenstein potential \([52–54]\), namely to affect the flavor composition of the incoming neutrino flux, in which the mixing angles and mass splittings are modified as functions \(V_p / V_0 \). With this ratio we can quantify how large the DM potential is compared to the oscillations in vacuum, that are dictated by \(V_0 \). The precise way in which the observables are altered depend naturally on the flavor structure of the potential, which in the present framework is completely arbitrary. The dependence on the strength of the potential, however, will always be parameterised by \(V_p / V_0 \) since we need to recover the usual oscillation theory as \(V_p / V_0 \rightarrow 0 \). Hence, by estimating this ratio we can already have a good measure of how much the flavor structure is expected to change in the presence of the DM background. In the following we analyse the case of astrophysical neutrinos, that have energies of order \(\text{PeV} \), propagating in the DM halo of the Milky-Way, as these neutrinos are the ones that experience at most this background.

Let us first consider the potential generated by contact interactions given in Eq. (12). In this case we must impose that \(\Lambda \gg E_\nu, m_\chi \) in order to have well defined expansion parameters. We thus obtain for the leading term of \(V_p \)

\[
\frac{V_p}{V_0} \simeq \left(\frac{\rho_\chi}{\rho_0} \right) \left(\frac{E_\nu}{\Lambda} \right)^2 \left(\frac{\text{PeV}}{E_\nu} \right) \left(\frac{\Delta m_{12}^2}{\Delta m_{13}^2} \right) \times \left(\frac{10^{-18} \text{eV}}{m_\chi} \right)^{2s_\chi - 1}, \frac{s_\chi}{s_\chi} \geq 1, \quad s_\chi \leq 1/2, \tag{14} \]

up to a order one coefficient that carries the relevant flavor structure. In the above we have considered the largest neutrino mass-squared splitting \(\Delta m_{12}^2 = 2.453 \times 10^{-3} \text{eV}^2 \[51\]. Choosing \(\Delta m_{13}^2 \) instead would have changed the estimate above by a factor of \(10^2 \), but would not qualitatively change our conclusions. The precise combination of mass splittings appearing in Eq. (14) depend on how the DM couples to neutrino flavors. Also, \(\rho_\chi = m_\chi N_\chi \) is the DM energy density and \(\rho_0 = 0.39 \text{GeV/cm}^3 \) is the local energy density, while the term in brackets depend on the spin of the DM, as we remember that some spinor structures are absent for \(s_\chi = 0 \) and \(1/2 \). From Eq. (14) we can now draw some conclusions. Take for instance the case \(s_\chi = 0 \) with \(\rho_\chi = \rho_0^4 \) and \(\tilde{c}_A = 1 \). We see that in order to obtain ratios at least of order 1, we need extremely light DM, that essentially lie in the fuzzy regime \([55]\). This agrees with what is usually found in the literature \([10,25]\). In Fig. 1 we show the regions that satisfy at the same time \(V_p / V_0 \geq 1 \) and \(m_\chi \geq 10^{-22} \text{eV} \), which is the lower bound for an ultra light DM \([55,56]\), for several values of the scale \(\Lambda \). The values of \(\Lambda \) are chosen such to satisfy the requirement \(\Lambda > E_\nu \sim \text{PeV} \). The region of interest is then concentrated at DM mass values \(m_\chi \lesssim 10^{-19} \text{eV} \) and for larger values of \(E_\nu / \Lambda \). From Eq. (14) it is clear that in the case \(s_\chi = 1/2 \) the leading term is insensitive to the small ratio \(m_\chi / \Lambda \) as well, so we could in principle expect a similar signal in this case. Notwithstanding, the mass ranges allowed violate by far the Tremaine–Gunn bound, which forbids fermionic DM with masses less than \(\sim 1 \text{eV} \). For higher spins we must take the same result and multiply by the appropriate power of \(m_\chi / \Lambda \), that as we can see would completely suppress \(V_p / V_0 \) and make this effect unobservable. We thus arrive at the conclusion that, in the case of contact \(V_p \) interactions, no DM other than the scalar one can produce a phenomenologically relevant potential for propagating astrophysical neutrinos. Moreover, the masses of the scalar DM

\footnote{Given that in general \(\Delta m_{13}^2 / 2E_\nu \) is much smaller than the absolute neutrino mass scale for high neutrino energies, \(V_m^i \) will have to be much larger than \(V_p \) in order to present similar effects.}

\footnote{Varying \(\rho_\chi \) according to standard DM profiles for the Milky-Way does not lead to significant changes to the final results.}
must all be in the range $10^{-22} \text{eV} \lesssim m_\chi \lesssim 10^{-19} \text{eV}$ to produce an order 1 ratio V_p/V_0.

It is worth remarking that although in the case of contact νDM interactions it is not possible to have a relevant signal with fermionic DM, we can still rely on the enhancement at tree-level to obtain a more favourable picture. In order to satisfy both $V_p/V_0 \gtrsim 1$ and $m_\chi \gtrsim 1 \text{eV}$ at the same time, we would need a mediator mass at least as low as 1 MeV. In this case, however, due to the mediator being very light, it is not trivial to evade bounds from cosmology as the rate of the interactions might be efficient in the Early Universe. To precisely derive such bounds we would need to specify how exactly the neutrinos interact with the DM, which is not the purpose of the present paper. In the case of contact amplitudes and for the relevant scales we are interested in, $\Lambda \gtrsim 10^3 \text{TeV}$, the νDM interaction is extremely suppressed and we thus do not expect any relevant modification to the cosmological history.

The discussion above can be generalized in several directions. As a first step, one could consider adding sterile neutrinos that can also interact with the DM. Such a scenario is a straightforward generalization of the present discussion with, however, a more involved flavor structure and model dependency. In general we expect, as before, changes in the flavor composition of the incoming neutrino flux. Another extension of the present work is to consider the effects of the νDM scattering, which includes changes in the energy and angular spectra [57, 58], the cosmological history [30, 59] and possibly oscillation damping [60]. A particular case in which the analysis of the νDM scattering could be useful is the one of active splitting [61], i.e. when the neutrino masses are dynamically generated by the νDM potential V_p itself. This is so, because under the assumption that the νDM potential exactly mimics the standard flavor structure, we might need other observables to probe the νDM interaction. We leave the discussion of these points to future work.

4 Conclusions

In this paper we have studied how an interaction between DM and neutrinos can affect the propagation of the latter in a DM background. Employing on-shell methods, we have managed to obtain a general characterisation of DM-induced potentials in a completely model independent way. Our findings can be summarised in three points: (i) Eq. (11) represents, to first order in couplings and neutrino masses, the most general potentials that a DM background can produce; (ii) for contact νDM interactions, we obtain in a novel and more general way the result that only ultra light scalar DM could give an observable signal at the level of 4-point amplitude; (iii) DM spins larger than 1/2 cannot produce a relevant ratio V_p/V_0 unless some degree of enhancement is present, for example due to light particles being exchanged. Future measurements of the astrophysical flavor composition by IceCube will therefore be able to probe not only the strength and the flavor structure of νDM interactions, but the nature of DM itself as well.

Acknowledgements The author thanks Enrico Bertuzzo, Joachim Kopp, Pedro Bittar and Gustavo F. S. Alves for useful discussions, and acknowledges financial support from Fundação de Amparo à Pesquisa de São Paulo (FAPESP) under contract 2020/14713-2.

Data availability statement This manuscript has no associated data or the data will not be deposited. [Authors’ comment: There is no data associated with this work.]

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Funded by SCOAP3. SCOAP3 supports the goals of the International Year of Basic Sciences for Sustainable Development.

Appendix

In this appendix we review some of the key concepts of on-shell methods and set the notation for spinor variables. For a given 4-momentum p, the spinor variables are given by

$$\begin{align}
|p^I\rangle & = -\left(\frac{\sqrt{E + |\vec{p}| s}}{\sqrt{E - |\vec{p}| c}}\right)\left(\frac{\sqrt{E - |\vec{p}| s}}{\sqrt{E + |\vec{p}| c}}\right)\alpha, \\
|p^I\rangle & = \left(\frac{\sqrt{E - |\vec{p}| s}}{\sqrt{E + |\vec{p}| c}}\right)\left(\frac{\sqrt{E + |\vec{p}| c}}{\sqrt{E - |\vec{p}| s}}\right)\dot{\alpha},
\end{align}$$

where $I = 1, 2$ is the $SU(2)$ little-group index of the Lorentz group (columns) and $\alpha, \dot{\alpha}$ are the indices of the (1/2, 0) and (0, 1/2) representations (lines), respectively. In addition, $c = \cos(\theta/2)$ and $s = \sin(\theta/2)e^{i\phi}$ are the angular variables, $\vec{p} = |\vec{p}|(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)$ is the 3-momentum and E the energy. In general, we allow for the 4-momenta to be complex. We can also define the down-index variables using the Levi-Civita tensor ϵ, for instance as $\{p^I\}_{\dot{\alpha}} = |p^I\rangle^\dagger \epsilon_{\dot{\beta}\dot{\alpha}}$, with $\epsilon_{12} = -\epsilon_{12} = 1$, and similarly for the angle variable. All the spinors transform in the fundamental of the $SU(2)$ little-group:

$$|p^I\rangle \rightarrow W^I_{\dot{\alpha}}|p^I\rangle, \quad W \in SU(2),$$

\[Springer\]
where $|p^I\rangle$ is used to denote both types of spinors and, since the S-matrix elements are little-group covariant, they can be therefore used as building blocks for constructing amplitudes. Scattering amplitudes are thus written as the sum of all possible Lorentz invariant spinor structures with the correct little-group transformation. More precisely, amplitudes involving a particle of spin s can be represented as a $2s$ symmetric tensor of the corresponding little-group. We employ the bold notation, in which we suppress the little-group index and bold the momentum inside the spinor, e.g. $|p^I\rangle \rightarrow |\hat{p}\rangle$, while leaving implicit symmetrization over all little-group indices [33].

We can define the Lorentz invariant angle and square products between two spinors as

$$\langle p^I q^J \rangle = \langle p^I \rangle^\alpha [q^J]_\alpha, \quad [p^I q^J] = \langle p^I \rangle_\alpha [q^J]_\alpha. \quad (18)$$

In this notation, the 4-momentum p can be written as a bispinor:

$$\hat{\rho} \hat{\sigma} = \epsilon_{IJ} |p^I\rangle^\alpha [p^J]_\alpha, \quad p \hat{\sigma} = -\epsilon_{IJ} |p^I\rangle_\alpha [p^J]_\alpha. \quad (19)$$

The spinor variables all satisfy the Weyl equations

$$p |p^I\rangle = m |p^I\rangle, \quad [p^I p^J] = m [p^I p^J],$$

$$[p^I]_\alpha p = -m [p^I], \quad [p^I] p = -m [p^I]. \quad (20)$$

with m the mass of the particle. From the above equations we can deduce that

$$\langle p^I p^J \rangle = m \epsilon_{IJ}, \quad [p^I p^J] = -m \epsilon_{IJ},$$

$$[p^I]_\alpha \langle p^J |^\beta = m \delta^\beta_\alpha, \quad [p^J |_\alpha \beta = -m \delta^\alpha_\beta. \quad (21)$$

Finally, we can define spinor variables with negative momentum. The correct analytic continuation that still respect the Weyl equations (20) is

$$|(-p^I)\rangle = |p^I\rangle, \quad |(-p^I)\rangle = -|p^I\rangle. \quad (22)$$

References

1. IceCube Collaboration, First observation of PeV-energy neutrinos with IceCube. Phys. Rev. Lett. 111, 021103 (2013). arXiv:1304.5386
2. A. Olivas-Arbel-Campo, C. Boehm, S. Palomares-Ruiz, S.Pascoli, Dark matter-neutrino interactions through the lens of their cosmological implications. Phys. Rev. D 97, 075039 (2018). arXiv:1711.05283
3. C. Boehm, A. Olivas-Arbel-Campo, S. Palomares-Ruiz, S. Pascoli, Phenomenology of a neutrino-DM coupling: the scalar case, in Prospects in Neutrino Physics, 5 (2017). arXiv:1705.03692
4. M. Blennow, E. Fernandez-Martinez, A. Olivas-Arbel-Campo, S. Pascoli, S. Rosaudo-Alcaraz, A.V. Titov, Neutrino portals to dark matter. Eur. Phys. J. C 79, 555 (2019). arXiv:1903.00006
5. C. Guépin, R. Aloisio, L.A. Anchordoqui, A. Cummings, J.F. Krizmanic, A.V. Olinto et al., Indirect dark matter searches at ultra-high energy neutrino detectors. Phys. Rev. D 104, 083002 (2021). arXiv:2106.04446
6. F. Capozzi, I.M. Shoemaker, L. Vecchi, Neutrino oscillations in dark backgrounds. JCAP 07, 004 (2018). arXiv:1804.05117
7. J. Liao, D. Marfatia, K. Whisnant, Light scalar dark matter at neutrino oscillation experiments. JHEP 04, 136 (2018). arXiv:1803.01773
8. D.C. Hooper, M. Lucca, Hints of dark matter-neutrino interactions in Lyman-α data. Phys. Rev. D 105, 103504 (2022). arXiv:2110.04024
9. E.J. Chun, Neutrino transition in dark matter. arXiv:2112.05057
10. K.-Y. Choi, E.J. Chun, J. Kim, Neutrino oscillations in dark matter. Phys. Dark Univ. 30, 100606 (2020). arXiv:1909.10478
11. D. Green, D.E. Kaplan, S. Rajendran, Neutrino interactions in the late universe. JHEP 11, 162 (2021). arXiv:2108.06928
12. D. Borah, M. Dutta, S. Mahapatra, N. Sahu, Self-interacting dark matter via right handed neutrino portal. Phys. Rev. D 105, 015004 (2022). arXiv:2110.00021
13. A. Berlin, Neutrino oscillations as a probe of light scalar dark matter. Phys. Rev. Lett. 117, 231801 (2016). arXiv:1608.01307
14. P.F. de Salas, R.A. Lineros, M. Töröla, Neutrino propagation in the galactic dark matter halo. Phys. Rev. D 94, 123001 (2016). arXiv:1601.05798
15. A.V. Penacchioni, O. Civitarese, C.R. Argüelles, Testing dark matter distributions by neutrino-dark matter interactions. Eur. Phys. J. C 80, 183 (2020)
16. L. Coito, C. Faubel, J. Herrero-García, A. Santamaria, A. Titov, Sterile neutrino portals to Majorana dark matter: effective operators and UV completions. JHEP 08, 085 (2022). arXiv:2203.01946
17. J. M. Berryman et al., Neutrino self-interactions: a white paper, in 2022 Snowmass Summer Study, 3, 2022. arXiv:2203.01955
18. A. Dev, G. Krija, P. Machado, H. Ramani, Constraining feeble neutrino interactions with ultralight dark matter. arXiv:2205.06821
19. R.J. Wilkinson, C. Boehm, J. Lesgourgues, Constraining dark matter-neutrino interactions using the CMB and large-scale structure. JCAP 05, 011 (2014). arXiv:1401.7597
20. G. Krija, P.A.N. Machado, L. Necib, Distorted neutrino oscillations from time varying cosmic fields. Phys. Rev. D 97, 075017 (2018). arXiv:1705.06740
21. V. Brdar, J. Kopp, J. Liu, P. Prass, X.-P. Wang, Fuzzy dark matter. Phys. Rev. D 97, 043001 (2018). arXiv:1705.09455
22. M. Losada, Y. Nir, G. Perez, Y. Shapilan, Probing scalar dark matter oscillations with neutrino oscillations. JHEP 04, 030 (2022). arXiv:2107.10865
23. G.-Y. Huang, N. Nath, Neutrino meets ultralight dark matter: $0\nu\beta\beta$ decay and cosmology. JCAP 05, 034 (2022). arXiv:2111.08732
24. G.-Y. Huang, N. Nath, Neutrino-phleax axion-like dark matter. Eur. Phys. J. C 78, 922 (2018). arXiv:1809.01111
25. Y. Farzan, S. Palomares-Ruiz, Flavor of cosmic neutrinos preserved by ultralight dark matter. Phys. Rev. D 99, 051702 (2019). arXiv:1810.00892
26. Y. Farzan, Ultra-light scalar saving the $3 + 1$ neutrino scheme from the cosmological bounds. Phys. Lett. B 797, 134911 (2019). arXiv:1907.04271
27. IceCube Collaboration, Searches for connections between dark matter and high-energy neutrinos with IceCube. arXiv:2205.12950
28. J.M. Cline, Viable secret neutrino interactions with ultralight dark matter. Phys. Lett. B 802, 135182 (2020). arXiv:1908.02278
29. M.M. Reynoso, O.A. Sampayo, A.M. Carulli, Neutrino interactions with ultralight axion-like dark matter. Eur. Phys. J. C 82, 274 (2022).
30. G. Mangano, A. Melchiorri, P. Serra, A. Cooray, M. Kamionkowski, Cosmological bounds on dark matter-neutrino interactions. Phys. Rev. D 74, 043517 (2006). arXiv:astro-ph/0606190
31. H. Elvang, Y.-T. Huang, Scattering amplitudes. arXiv:1308.1697
32. L. J. Dixon, A brief introduction to modern amplitude methods, in Theoretical Advanced Study Institute in Elementary Particle Physics: Particle Physics: The Higgs Boson and Beyond (2014), pp. 31–67. arXiv:1310.5355
33. N. Arkani-Hamed, T.-C. Huang, Y.-T. Huang, Scattering amplitudes for all masses and spins. JHEP 11, 070 (2021). arXiv:1709.04891
34. G. Durieux, T. Kitahara, Y. Shadmi, Y. Weiss, The electroweak effective field theory from on-shell amplitudes. JHEP 01, 119 (2020). arXiv:1909.10551
35. G. Durieux, T. Kitahara, C.S. Machado, Y. Shadmi, Y. Weiss, Constructing massive on-shell contact terms. JHEP 12, 175 (2020). arXiv:2008.09652
36. T. Ma, J. Shu, M.-L. Xiao, Standard model effective field theory from on-shell amplitudes*. Chin. Phys. C 47, 023105 (2023). arXiv:1902.06752
37. J. Gu, L.-T. Wang, Sum rules in the standard model effective field theory from helicity amplitudes. JHEP 03, 149 (2021). arXiv:2008.07551
38. Y. Shadmi, Y. Weiss, Effective field theory amplitudes on the on-shell way: scalar and vector couplings to gluons. JHEP 02, 165 (2019). arXiv:1809.09644
39. N. Christensen, B. Field, Constructive standard model. Phys. Rev. D 98, 016014 (2018). arXiv:1802.00448
40. G. Durieux, C.S. Machado, Enumerating higher-dimensional operators with on-shell amplitudes. Phys. Rev. D 101, 095021 (2020). arXiv:1912.08827
41. Z.-Y. Dong, T. Ma, J. Shu, Y.-H. Zheng, Constructing generic effective field theory for all masses and spins. Phys. Rev. D 106, 116010 (2022). arXiv:2202.08350
42. H.-L. Li, Z. Ren, M.-L. Xiao, J.-H. Yu, Y.-H. Zheng, Operators for generic effective field theory at any dimension: on-shell amplitude basis construction. JHEP 04, 140 (2022). arXiv:2201.04639
43. R. Balkin, G. Durieux, T. Kitahara, Y. Shadmi, Y. Weiss, On-shell Higgsing for EFTs. JHEP 03, 129 (2022). arXiv:2112.09688
44. G.F.S. Alves, E. Bertuzzo, G.M. Salla, On-shell approach to neutrino oscillations. Phys. Rev. D 106, 036028 (2022). arXiv:2103.16362
45. B. Schroer, The role of positivity and causality in interactions involving higher spin. Nucl. Phys. B 941, 91 (2019). arXiv:1712.02346
46. N. Alkhami-Jeddi, S. Kundu, A. Tajdini, A bound on massive higher spin particles. JHEP 04, 056 (2019). arXiv:1811.01952
47. J.C. Criado, N. Koivunen, M. Raidal, H. Veermäe, Dark matter of any spin—an effective field theory and applications. Phys. Rev. D 102, 125031 (2020). arXiv:2010.02224
48. T. Trott, Causality, unitarity and symmetry in effective field theory. JHEP 07, 143 (2021). arXiv:2011.10058
49. C. Giunti, K.C. Wook, Fundamentals of Neutrino Physics and Astrophysics (Oxford University Press, Oxford, 2007). https://doi.org/10.1093/acprof:oso/9780198508717.001.0001
50. V. Barger, D. Marfatia, K. Whisnant, The Physics of Neutrinos (Princeton University Press, Princeton, 2012)
51. Particle Data Group Collaboration, Review of particle physics. PTEP 2020, 083C01 (2020)
52. L. Wolfenstein, Neutrino oscillations in matter. Phys. Rev. D 17, 2369 (1978)
53. S.P. Mikheyev, A.Y. Smirnov, Resonance Amplification of oscillations in matter and spectroscopy of solar neutrinos. Sov. J. Nucl. Phys. 42, 913 (1985)
54. V.D. Barger, K. Whisnant, S. Pakvasa, R.J.N. Phillips, Matter effects on three-neutrino oscillations. Phys. Rev. D 22, 2718 (1980)
55. W. Hu, R. Barkana, A. Gruzinov, Cold and fuzzy dark matter. Phys. Rev. Lett. 85, 1158 (2000). arXiv:astro-ph/0003365
56. E.G.M. Ferreira, Ultra-light dark matter. Astron. Astrophys. Rev. 29, 7 (2021). arXiv:2005.03254
57. C.A. Argüelles, T. Katori, J. Salvador, New physics in astrophysical neutrino flavor. Phys. Rev. Lett. 115, 161303 (2015). arXiv:1506.02043
58. C.A. Argüelles, A. Kheirandish, A.C. Vincent, Imaging galactic dark matter with high-energy cosmic neutrinos. Phys. Rev. Lett. 119, 201801 (2017). arXiv:1703.00451
59. L.G. van den Aarssen, T. Bringmann, C. Pfrommer, Is dark matter with long-range interactions a solution to all small-scale problems of a CDM cosmology? Phys. Rev. Lett. 109, 213101 (2012). arXiv:1205.5809
60. L. Stodolsky, On the treatment of neutrino oscillations in a thermal environment. Phys. Rev. D 36, 2273 (1987)
61. H. Davoudiasl, G. Mohlabeng, M. Sullivan, Galactic dark matter population as the source of neutrino masses. Phys. Rev. D 98, 021301 (2018). arXiv:1803.00012