A Classification of Hyperfocused 12-Arcs

Philip DeOrsey · Stephen G. Hartke · Jason Williford

Received: 4 January 2022 / Revised: 22 July 2022 / Accepted: 27 July 2022
© The Author(s), under exclusive licence to Springer Japan KK, part of Springer Nature 2022

Abstract
A k-arc in $PG(2, q)$ is a set of k points no three of which are collinear. A hyperfocused k-arc is a k-arc in which the $\binom{k}{2}$ secants meet some external line in exactly k points. Hyperfocused k-arcs can be viewed as 1-factorizations of the complete graph K_k that embed in $PG(2, q)$. We study the 526,915,620 1-factorizations of K_{12}, determine which are embeddable in $PG(2, q)$, and classify hyperfocused 12-arcs. Specifically we show that if a 12-arc K is a hyperfocused arc in $PG(2, q)$ then $q = 2^{5k}$ and K is a subset of a hyperconic including the nucleus.

Keywords Hyperfocused arcs · 1-Factorizations · Projective plane · Secret sharing scheme
1 Introduction and Definitions

This article concerns special types of k-arcs, called hyperfocused arcs, in classical finite projective planes $PG(2, q)$. For more on finite projective planes, see [9] and the references therein. A k-arc in $PG(2, q)$ is a set K of k points no three of which are collinear. It is well known that $k \leq q + 1$ if q is odd and $k \leq q + 2$ if q is even. A $(q + 1)$-arc is called an oval, and a $(q + 2)$-arc is called a hyperoval. Based on the result of Cherowitzo and Holder discussed below, we will restrict our attention to the case when q is even, that is, $q = 2^h$. Recall that a conic is a set of points satisfying an irreducible homogeneous quadratic equation. The nucleus of an oval is the point where all of its tangent lines intersect. A hyperconic is a hyperoval consisting of a conic together with its nucleus.

Lines in the plane are called external, tangent, or secant depending on whether the line meets the arc in 0, 1, or 2 points, respectively. Let ℓ be a line external to a k-arc K. We say K is hyperfocused on ℓ if the $\binom{k}{2}$ secants of K meet ℓ in exactly $k - 1$ points. The line ℓ is called the focus line, and the set of $k - 1$ points in which the secants meet ℓ is called the focus set. We call an arc K hyperfocused provided that it is hyperfocused on some external line. It is clear that k must be even for a hyperfocused k-arc to exist because secant lines must partition the arc. Since a 2-arc is trivially hyperfocused on any line, we say a hyperfocused k-arc is non-trivial if $k \geq 4$.

The study of hyperfocused arcs in classical planes was initially motivated by the construction of certain secret sharing schemes (see [8, 11] and [2] for details), though it has proven to be an interesting geometry problem in its own right (see [6] for example). Following from a result of Bichara and Korchmáros [1], Cherowitzo and Holder [2] showed that if a non-trivial hyperfocused arc exists in $PG(2, q)$ then q is even. Further, it was shown that if a hyperfocused k-arc is not a hyperoval or a hyperoval minus two points, then $k \leq \frac{q}{2}$.

Hyperfocused k-arcs were classified in all classical planes $PG(2, q)$ for $k = 4, 6, 8$ by Drake and Keating in [4], where they use the setting of Desarguesian nets, and independently by Cherowitzo and Holder in [2] where they also classified hyperfocused 10-arcs. Cherowitzo and Holder exploited the relationship between the 1-factorizations of K_k and hyperfocused k-arcs in order to complete their classifications. Hyperfocused 12-arcs were classified in $PG(2, 32)$ by Faina et al. in [5], where they also showed the non-existence of hyperfocused 14-arcs in $PG(2, 32)$.

In the following sections, we use the perspective of Cherowitzo and Holder to study hyperfocused 12-arcs by examining the 1-factorizations of K_{12}, which were classified in [3]. We show there is a unique 1-factorization of K_{12} which embeds in $PG(2, q)$, $q = 2^h$, and so there is a unique hyperfocused 12-arc, which is a subset of a hyperconic. Our method uses a computer search of the non-isomorphic 1-factorizations of K_{12} along with a new necessary condition for a 1-factorization to embed as a hyperfocused arc.
2 Hyperfocused Arcs and 1-Factorizations

Let K be a hyperfocused arc. If we identify the k points of a hyperfocused k-arc with the vertices of the complete graph K_k then the secant lines to the arc naturally correspond to the edges of the graph. For each point in the focus set, the secant lines through that point partition K into pairs. This corresponds to a set of disjoint edges that cover the vertices of the complete graph, which is called a 1-factor. Thus, the focus set determines a 1-factorization, a set of disjoint 1-factors that cover the edges of the graph. Given a 1-factorization \mathcal{F} of a complete graph, we will call that 1-factorization embeddable if there is a hyperfocused arc in some finite classical plane that determines \mathcal{F}.

A 1-factorization of a complete graph induces an edge coloring of that graph, where each color class is a 1-factor. For convenience we will at times refer to this induced edge coloring to state facts about the 1-factorization. We say that two subgraphs have the same coloring if there is an isomorphism between them that preserves the colors of edges.

In order to determine which 1-factorizations of K_{12} are embeddable in $PG(2, q)$ we will first develop some necessary conditions that will help us eliminate 1-factorizations that cannot be embedded. To discuss them properly we recall the concept of the diagonal line of a quadrangle $ABCD$. In $PG(2, 2^h)$ the quadrangle $ABCD$ can be completed to a Fano subplane. The unique line meeting this subplane in a line of the subplane that is external to the quadrangle is known as the diagonal line. Our first necessary condition comes from Cherowitzo and Holder. We use C_4 to denote the cycle on four vertices and K_4 to denote the complete graph on four vertices; see [12] for any other graph theory terminology.

Lemma 1 ([2]) Let \mathcal{F} be the 1-factorization obtained from the focus set of a hyperfocused arc in $PG(2, 2^h)$. If there are two 1-factors in \mathcal{F} with a C_4 in their union, then there must be a unique third 1-factor that completes the C_4 to a K_4.

Proof Let \mathcal{H} be a hyperfocused k-arc in $PG(2, 2^h)$ that has focus line ℓ. Let P, Q be two points on ℓ associated with 1-factors in \mathcal{F} with a C_4 in their union. We may assume that $P = AB \cap CD$ and $Q = AD \cap BC$ where $A, B, C, D \in \mathcal{H}$. The diagonal line of the quadrangle $ABCD$ contains both P and Q so must be ℓ. Hence the point $R = AC \cap BD$ (which necessarily lies on PQ since q is even) is associated with the desired 1-factor.

We add the following necessary condition for a 1-factorization to embed in $PG(2, 2^h)$. We make significant use of Desargues’ theorem.
Theorem 2 *(Desargues’ Theorem)* Two triangles are in perspective from a point if and only if they are in perspective from a line.

Lemma 3 Let F be the 1-factorization obtained from the focus set of a hyperfocused arc in $PG(2, 2^h)$. If there are two disjoint copies of $K_4 - e$ with the same coloring (see Fig. 2), then the remaining edges of each K_4 both have the same color as well.

Proof Let \mathcal{H} be a hyperfocused arc with focus line ℓ, and let \mathcal{F} be the 1-factorization obtained from the focus set of \mathcal{H}. Additionally let F_1, \ldots, F_5 be 1-factors in \mathcal{F}. Assume that A, B, C, D, E, F, G, H belong to \mathcal{H}, and that $(AB), (EF) \in F_1$, $(AC), (EG) \in F_2$, $(BC), (FG) \in F_3$, $(BD), (FH) \in F_4$, and $(CD), (GH) \in F_5$, where (XY) denotes the edge between the vertices corresponding to the points on ℓ. See Fig. 2.

Observe that the triangles ΔABC and ΔEFG are in perspective from the line ℓ and so must be in perspective from a point. Call that point V. Now, triangles ΔBCD and ΔFGH are also in perspective from ℓ and so must also be in perspective from V. Observe that triangles ΔACD and ΔEGH are also in perspective from V and so must be in perspective from a line. Since AC meets EG on ℓ and CD meets GH on ℓ we must have that AD meets EH on ℓ. Thus (AD) and (EH) are in the same 1-factor (hence have the same color), which completes both $K_4 - e$ to a K_4. \hfill \square

The following theorems from Cherowitzo and Holder, which classify all hyperfocused arcs contained in a hyperconic and contain the nucleus, as well as Pascal’s theorem, are the final pieces of information needed for us to complete our classification.

Theorem 4 *(Pascal’s Theorem, Braikenridge-Maclaurin Theorem)* The six points of a hexagon lie on a conic if and only if the pairs of opposite sides meet in three collinear points.

Theorem 5 *(2) A set of points K with $3 < |K|$ on a hyperconic in $PG(2, q)$, $q = 2^h$ which includes the nucleus N of the conic is hyperfocused on a secant line to that conic which does not meet K if and only if $K \setminus \{N\}$ is projectively equivalent to a set of points $\{(a, a^2, 1) : a \in H\}$ determined by a multiplicative subgroup of H of $(GF(q^2), \cdot)$ (described in theorem 3.3 of [2]).

Theorem 6 *(2) A set of points K with $3 < |K|$ on a hyperconic in $PG(2, q)$, $q = 2^h$ which includes the nucleus N of the conic is hyperfocused on an exterior line to that conic if and only if $K \setminus \{N\}$ is projectively equivalent to a set of points determined by...
3 Classifying Hyperfocused 12-Arcs

In order to classify hyperfocused 12-arcs we examined the list of 1-factorizations of K_{12}. This list was graciously provided in usable form by Kaski and Östergård from their paper [10]. We studied each 1-factorization and checked, via computer, the necessary conditions from Lemma 1 and Lemma 3. The code can be found at [7].

When performing the computer search we break the computation down into two parts. The first is a filter of the 526, 915, 620 1-factorizations of K_{12} to determine which satisfy Lemma 1. This filtering produced a list of only 253 1-factorizations. We then checked the list of 253 against the conditions of Lemma 3, which yielded a list of 2 remaining 1-factorizations.

To filter using Lemma 1, we used the following process. In each 1-factorization, we examine each 1-factor F and each pair P of edges from F. The pair P contains four vertices that we use to check Lemma 1. There are two pairs of disjoint edges between these vertices that are not in F. Lemma 1 states that if one of the pairs of disjoint edges is contained in another 1-factor, then the other pair must also be contained in a third 1-factor. So we check if exactly one of the pairs is contained in a 1-factor, and if so, exclude the 1-factorization from our list. Otherwise the 1-factorization makes it through our filter. As noted above, there are 253 such 1-factorizations that made it through this step. As an optimization, in a given 1-factorization we check every 1-factor as described above except for one. Since two 1-factors are needed for a violation of Lemma 1, the method described above will detect the violation starting from either 1-factor.

The next part of the computation is to check the surviving 1-factorizations against Lemma 3. For each 1-factorization, we examine each set of four unordered vertices from K_{12} and then another set of four ordered vertices disjoint from the original four. These vertices make up the vertices of our two disjoint K_4s. The choosing of unordered and ordered sets of vertices accounts for the different ways the edges may correspond. Next, we counted how many pairs of corresponding edges between the two K_4s have the same color, and if there are exactly five pairs of corresponding edges with the same color, Lemma 3 is violated and we exclude that 1-factorization from our list. At the end of this process we were left with only 2 1-factorizations.

We now consider both of these 1-factorizations, which are given below. We identify the vertices of the complete graph K_{12} with the integers $0, 1, \ldots, 11$ and the
edges as order pairs \((x, y)\) with \(x, y \in \{0, 1, \ldots, 11\}\). Further, we identify the 1-factors with letters \(A, \ldots, K\). The first 1-factorization we want to examine is:

\[
\begin{align*}
A & : [(0, 1), (2, 3), (4, 5), (6, 7), (8, 9), (10, 11)] \\
B & : [(0, 2), (1, 3), (4, 6), (5, 7), (8, 10), (9, 11)] \\
C & : [(0, 3), (1, 2), (4, 7), (5, 6), (8, 11), (9, 10)] \\
D & : [(0, 4), (1, 5), (2, 8), (3, 9), (6, 11), (7, 10)] \\
E & : [(0, 5), (1, 4), (2, 10), (3, 11), (6, 8), (7, 9)] \\
F & : [(0, 9), (1, 8), (2, 4), (3, 5), (6, 10), (7, 11)] \\
G & : [(0, 11), (1, 10), (2, 5), (3, 4), (6, 9), (7, 8)] \\
H & : [(0, 6), (1, 7), (2, 11), (3, 10), (4, 8), (5, 9)] \\
I & : [(0, 7), (1, 6), (2, 9), (3, 8), (4, 11), (5, 10)] \\
J & : [(0, 10), (1, 11), (2, 6), (3, 7), (4, 9), (5, 8)] \\
K & : [(0, 8), (1, 9), (2, 7), (3, 6), (4, 10), (5, 11)]
\end{align*}
\]

Assume that this 1-factorization embeds and without loss of generality assume that we have coordinates \(A = (1, 0, 0)\), \(B = (0, 1, 0)\), \(0 = (0, 0, 1)\), and \(3 = (1, 1, 1)\). Thus the focus line is \([0, 0, 1]^T\) and since \((03)\) meets the focus line at \(C\) we must have \(C = (1, 1, 0)\). Completing the Fano plane \(0123ABC\) yields \(1 = (1, 0, 1)\), \(2 = (0, 1, 1)\). The point \(4\) cannot be on the line \([0, 0, 1]^T\) so assume it has coordinates \((x, y, 1)\). Observe that \((45)\) passes through \(A\) and \((46)\) passes through \(B\) so we must have coordinates \(5 = (s, y, 1)\) and \(6 = (x, t, 1)\). Since \(4567ABC\) forms a Fano plane we must also have \(7 = (s, t, 1)\) with \(x + s = y + t\). Since \(D = (04) \cap (1, 5)\) we must have that \(D = (x, y, s + x + 1)\) and using the fact that the focus line is \([0, 0, 1]^T\) we get \(s = x + 1\) and consequently \(t = y + 1\). Further we have \(E = (x + 1, y, 0)\), \(F = (x, y + 1, 0)\), and \(G = (x + 1, y + 1, 0)\). Now, \((06)\) meets the focus line at \(H\), so \(H = (x, y + 1, 0)\), forcing \(H = F\), a contradiction. Thus this 1-factorization is not embeddable. We now consider the only remaining 1-factorization.
Lemma 7. If \(a \in GF(2^{5k}) \) satisfies \(a^5 = a^4 + a^3 + a + 1 \) then \(T(a) = T(1) \).
Table 1 Coordinates of the hyperfocused arc and focus set

Point	Coordinates	Determined by	Point	Coordinates	Determined by
0	(1, 0, 0)	Nucleus	A	(1, 1, 0)	(01) ∩ (23)
1	(0, 1, 0)	Assumed	B	(a, 0, 1)	(02) ∩ (14)
2	(0, 0, 1)	Assumed	C	(0, a, 1)	(12) ∩ [1, 1, a]^T
3	(1, 1, 1)	Assumed	D	(a + 1, 1, 1)	(03) ∩ [1, 1, a]^T
4	(a, a^2, 1)	Assumed	E	(1, a + 1, 1)	(13) ∩ [1, 1, a]^T
5	(a + 1, a^2 + 1, 1)	(D1) ∩ C	F	(a^2 + a, a^2, 1)	(04) ∩ [1, 1, a]^T
6	(a^2 + a, a^2, a^2 + 1)	(B3) ∩ (F2)	G	(a, a^2, a + 1)	(24) ∩ [1, 1, a]^T
7	(a + 1, 1, a^2 + 1)	(D2) ∩ (E4)	H	(a^2 + a + 1, a^2 + 1, 1)	(05) ∩ [1, 1, a]^T
8	(a^2 + a, a^4 + a^2, 1)	(F1) ∩ C	I	(1, a^2 + a + 1, a + 1)	(35) ∩ [1, 1, a]^T
9	(a^2 + a + 1, a^4 + a^2 + 1, 1)	(H1) ∩ C	J	(a^5 + 1, a^5 + a^3, a^5 + 1)	(06) ∩ (39)
10	(a^3 + a + 1, a^3 + a^2 + a + 1, a^2 + 1)	(E0) ∩ (F3)	K	(1, a^2 + a, a^4 + a^3 + a^2 + a)	(07) ∩ (28)
11	(a^3 + a^2 + a, a^3 + a, a^2 + 1)	(C0) ∩ (H2)			
Proof Since finite fields are separable extensions of their ground field, we use the formula

\[T(a) = [GF(q) : GF(2)] \sum_{x \in R} x, \]

where \(R \) is the set of roots of the minimal polynomial of \(a \). Since \(x^5 + x^4 + x^3 + x + 1 \) is irreducible, it must be the minimal polynomial of \(a \). The coefficient of \(x^4 \) is 1 in this polynomial, thus we have \(\sum_{x \in R} x = 1 \). Therefore, \(T(a) = [GF(q) : GF(2)] = T(1) \), as desired.

It is well known that the polynomial \(t^2 + t + a \) is irreducible if and only if \(T(a) = 1 \). It follows from Lemma 7 that this polynomial is irreducible if and only if \(T(1) = 1 \), which happens if and only if \(5k \) is odd, and hence, \(k \), is odd. Hence the line \([1, 1, a]^T \) is external to \(C \) when \(k \) is odd, and secant to \(C \) when \(k \) is even. Thus our classification follows from Theorems 5 and 6.

Theorem 8 A 12-arc \(K \) is a hyperfocused arc in \(PG(2, q) \) if and only if \(q = 2^{5k} \) and \(K \) is a subset of a hyperconic including the nucleus. Specifically, the focus line is secant to the conic when \(k \) is even so the non-nucleus points are projectively equivalent to a set of points determined by a subgroup of \((GF(q)^*) \); and the focus line is exterior when \(k \) is odd, so the non-nucleus points are projectively equivalent to a set of points determined by a subgroup of \(\mathbb{Z}_{q+1} \).

Acknowledgements This research started at the Rocky Mountain–Great Plains Graduate Research Workshop in Combinatorics that was held at the University of Colorado Denver and the University of Denver in summer 2014, and we thank them for their hospitality. We thank Petteri Kaski and Patric Östergård for providing us with the data that allowed us to complete this classification. We also thank William Cherowitzo for his many helpful remarks.

Funding Information Research supported in part by U.S. National Science Foundation grant DMS-1427526 for The Rocky Mountain–Great Plains Graduate Research Workshop in Combinatorics, and Collaboration Grants from the Simons Foundation, #316262 to Stephen G. Hartke, #711898 to Jason Williford.

Data Availability The datasets generated during and/or analyzed during the current study are available from the authors on reasonable request.

Declarations

Conflict of interest The authors have no relevant financial or non-financial interests to disclose.

References

1. Bichara, A., Korchmáros, G.: Note on \((q+2)\)-sets in a Galois plane of order \(q \). Ann. Discrete Math. 14, 117–122 (1982)
2. Cherowitzo, W.E., Holder, L.D.: Hyperfocused arcs. Simon Stevin 12(5), 685–696 (2005)
3. Dinitz, J.H., Garnick, D.K., McKay, B.D.: There are 526,915,620 nonisomorphic one-factorizations of \(K_{12} \). J. Combin. Des. 2(4), 273–285 (1994)
4. Drake, D., Keating, K.: Ovals and hyperovals in Desarguesian nets. Des. Codes Cryptogr. 31(3), 195–212 (2004)
5. Faina, G., Parrettini, C., Pastici, F.: Embedding 1-factorizations of K_n in $PG(2, 32)$. Graphs Combin. 29(4), 883–892 (2013)
6. Giulietti, M., Montanucci, E.: On hyperfocused arcs in $PG(2, q)$. Discrete Math. 306(24), 3307–3314 (2006)
7. DeOrsey, P., Hartke, S., Williford, J., GitHub repository. https://github.com/hartkes/hyperfocused12arcs
8. Holder, L.D. The construction of Geometric Threshold Schemes with Projective Geometry. Master’s Thesis, University of Colorado at Denver (1997)
9. Hughes, D.R., Piper, F.C. Projective planes. Graduate Texts in Mathematics, Vol. 6. Springer-Verlag, New York-Berlin (1973)
10. Kaski, P., Östergård, P.R.J.: There are 1,132,835,421,602,062,347 nonisomorphic one-factorizations of K_{14}. J. Combin. Des. 17(2), 147–159 (2009)
11. Simmons, G.: Sharply focused sets of lines on a conic in $PG(2, q)$. Congr. Numer. 73, 181–204 (1990)
12. West, D.B. Introduction to Graph Theory. Prentice Hall, 2nd edition, 2001

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.