Powers of sets in free groups

S. R. Safin

Abstract. We prove that $|A^n| \geq c_n \cdot |A|^{[(n+1)/2]}$ for any finite subset A of a free group if A contains at least two noncommuting elements, where the $c_n > 0$ are constants not depending on A. Simple examples show that the order of these estimates is best possible for each $n > 0$.

Bibliography: 5 titles.

Keywords: free group, relations in a free group, subsets of a free group.

§ 1. Introduction

We use the following notation: F_m is a free group of rank m; $|A|$ is the cardinality of a set A; AB is the set of all products of the form ab, where $a \in A$ and $b \in B$; A^n is the set of all products of the form $a_1 \cdots a_n$, where $a_i \in A$; $|a|$ is the length of a word a in some alphabet; $[x]$ is the largest integer not exceeding a real number x.

Chang [1] proved that there exist constants $c, \delta > 0$ such that $|A^3| > c \cdot |A|^{1+\delta}$ for any finite subset A of the group $SL_2(\mathbb{C})$ not contained in any virtually Abelian subgroup. In particular, this estimate is valid for any finite subset of a free group not contained in any cyclic subgroup. Razborov [2] improved Chang’s estimate in this special case: there exists a constant $c > 0$ such that $|A \cdot A \cdot A| > |A|^2 \left(\log |A|\right)^c$ for any finite subset A of a free group not contained in any cyclic subgroup.

It is easy to see that the squares of subsets satisfy no nontrivial analogues of Chang and Razborov’s inequality; the best possible estimate is linear in this case. (Most of the material briefly surveyed in this section can be found in the comprehensive monographs [3] and [4].) The following theorem shows, in particular, that the logarithm in Razborov’s estimate can be removed.

Theorem 1. There exist constants $c_n > 0$ such that for any finite subset A of a free group not contained in any cyclic subgroup we have $|A^n| \geq c_n \cdot |A|^{[(n+1)/2]}$ for all positive integers n.

It is easy to show that if $A = \{x, y, y^2, \ldots, y^k\}$, then $|A^n| = O(k^{[(n+1)/2]})$ for each fixed $n \geq 1$, where x and y are free generators of a free group. Indeed, for $n = 1$ and $n = 2$ the assertion is obvious. Further, by induction

$|A^n| = |A^{n-2} A^2| \leq O(k^{[(n-1)/2]}) \cdot |A^2| = O(k^{[(n-1)/2]}) \cdot O(k) = O(k^{[(n+1)/2]})$.

This simple example shows that the order of our estimates is best possible for each n. Note also that the proof below is significantly simpler than the argument from [2]; but, on the other hand, in [2], a more general fact about the number of

AMS 2010 Mathematics Subject Classification. Primary 20E05.
elements in the product of three (possibly, different) subsets of a free group was proved.

In the commutative case, that is, when the set \(A \) is contained in a cyclic group, the situation is quite different. A survey of results on this subject can be found in [2] and in the literature cited therein.

The author thanks A. A. Klyachko for setting the problem, attention to the work, and several valuable remarks.

§ 2. Auxiliary lemmas

The period or the left period of a word \(w \) in some alphabet is a nonempty word \(\bar{w} \) not being a proper power such that the word \(w \) has the form \(w = \bar{w}^s \bar{w} \), where \(s \geq 2 \) and \(\bar{w} \) is a beginning of the word \(\bar{w} \) (\(\bar{w} \) may be empty, but must not coincide with \(\bar{w} \)). The word \(\bar{w} \) is called the tail (or the right tail) of the word \(w \). It is well known that the period and the tail of a periodic word are uniquely determined.

The right period of a word \(w \) in some alphabet is a nonempty word \(\hat{w} \) not being a proper power such that the word \(w \) has the form \(w = \hat{w} \hat{w}^s \), where \(s \geq 2 \) and \(\hat{w} \) is an end of the word \(\hat{w} \) (\(\hat{w} \) may be empty, but must not coincide with \(\hat{w} \)). The word \(\hat{w} \) is called the left tail of the word \(w \). It is well known that the word has a right period if and only if it has a left period (such words are called periodic); in addition, either both tails \(\bar{w} \) are empty \(\bar{w} \) or \(\hat{w} = \bar{w} \hat{w} \) and \(\hat{w} = \bar{w} \hat{w} \).

In the following lemma, we collect some known properties of periodic words.

Lemma 1. If two periodic words have the same left periods and the same right periods, then the tails of these words coincide too.

If, for some words, \(u_1 v w_1 = u_2 v w_2 \) and \(0 < |u_2| - |u_1| \leq \frac{1}{2} |v| \) (that is, a word contains two occurrences of a word \(v \) and these occurrences intersect in a word of length at least \(\frac{1}{2} |v| \)), then the word \(v \) is periodic and \(u_2 \) ends with \(\bar{v} \).

Proof. Let us prove the first assertion. We assume that the tails of both words are nonempty; otherwise, the assertion is obvious. Suppose that \(\bar{u} = \bar{v} \) and \(\hat{u} = \hat{v} \), that is, \(\bar{u} \bar{u} = \bar{v} \bar{v} \) and \(\hat{u} \hat{u} = \hat{v} \hat{v} \). Then

\[
\bar{u} \bar{v} \hat{v} = \bar{u} \bar{v} \hat{v} = \bar{u} \bar{u} \hat{u} \hat{v} = \bar{u} \bar{v} \hat{u} \hat{v} = \bar{u} \bar{v} \hat{v} = \hat{u} \hat{u} \hat{v},
\]

that is, \(\bar{u} \bar{v} \hat{v} \) commutes with \(\bar{v} \hat{v} \). Since a word which is not a proper power can commute only with its powers [5], we obtain \(\bar{u} \bar{v} \hat{v} = \bar{v}^k = (\bar{v} \bar{v})^k \). This means that \(|\bar{u}| \geq |\bar{v}| \), that is, \(|\bar{u}| = |\bar{v}| \) by virtue of the symmetry between \(u \) and \(v \). Hence \(k \) must be 1 and \(\bar{u} = \bar{v} \), as required.

The proof of the second assertion we leave to the reader as an exercise. In [2], this assertion (but with rougher estimate) was called the second overlapping lemma.

Lemma 2. For any finite set \(A \subset F_2 \), there exist a word \(u \in F_2 \) and sets \(A_0, B_0 \subseteq uAu^{-1} \) such that \(|A_0|, |B_0| \geq \frac{1}{62} |A| \) and

1) for any \(a \in A_0 \) and \(b \in B_0 \) the words \(ab \) and \(ba \) are reduced;
2) \(|b| \geq |a| \) for all \(b \in B_0 \) and \(a \in A_0 \).
Proof. Let \(x_1 \) and \(x_2 \) be free generators of the group \(F_2 \), and let \(e \) denote the empty word. We prove the lemma by induction on the sum of lengths of words from the set \(A \). Let us decompose \(A \) into the union of the 16 disjoint subsets

\[
A(x,y) = \{ \text{words from } A \text{ beginning with } x \text{ and ending with } y \},
\]

where \(x, y \in \{ x_1, x_1^{-1}, x_2, x_2^{-1} \} \).

(If \(A \) contains the empty word, then we include it in \(A(x_1, x_1)^* \).)

Case 1. \(|A(x,y)| \geq \frac{1}{31}|A|\) for some not mutually inverse \(x \) and \(y \). In this case we put \(A_0 \) to be the set of \(\left[\frac{1}{2}(|A(x,y)| + 1) \right] \) shortest words from \(A(x,y) \), and put \(B_0 \) to be the set of \(\left[\frac{1}{2}(|A(x,y)| + 1) \right] \) longest words from \(A(x,y) \). Clearly, these sets \(A_0 \) and \(B_0 \) are as required (with \(u = e \)).

Case 2. \(|A(x,x^{-1})| \geq \frac{1}{31}|A| < |A(y,y^{-1})|\) for some different \(x \) and \(y \). Without loss of generality, we assume that a mean (by length) word from \(A(x,x^{-1}) \) is no longer than a mean word from \(A(y,y^{-1}) \). In this case we put \(A_0 \) to be the set of \(\left[\frac{1}{2}(|A(x,x^{-1})| + 1) \right] \) shortest words from \(A(x,x^{-1}) \) and put \(B_0 \) to be the set of \(\left[\frac{1}{2}(|A(y,y^{-1})| + 1) \right] \) longest words from \(A(y,y^{-1}) \). Clearly, these sets \(A_0 \) and \(B_0 \) are as required (with \(u = e \)).

If the conditions of neither Case 1 nor Case 2 hold, then, obviously, for some letters \(x \),

\[
|A(x,x^{-1})| > \left(1 - \frac{15}{31} \right) |A| = \frac{16}{31} |A| > \frac{1}{2} |A|
\]

and therefore, the total length of words of the set \(x^{-1}Ax \) is less than the total length of words of the set \(A \). The application of the induction hypothesis completes the proof.

Lemma 3. Suppose that \(U, V, W \subseteq F_2 \) and all products \(UVW \) are reduced. If \(|v| \geq |u| \) for all \(u \in U \) and \(v \in V \), then either \(|UVW| \geq \frac{1}{5}|U| \cdot |W| \) or all words from \(V \) are periodic with the same period. Similarly, if \(|v| \geq |w| \) for all \(w \in W \) and \(v \in V \), then either \(|UVW| \geq \frac{1}{6}|U| \cdot |W| \) or all words from \(V \) are periodic with the same right period.

We prove the lemma in what follows. Now let us derive the theorems from Lemmas 2 and 3.

§ 3. Proof of the theorem

The words from \(A \) have only finitely many different letters. Therefore, \(A \) is contained in a free group \(F_m \) of finite rank. Since, as is known, \(F_m \) embeds into \(F_2 \) [5], we can assume that \(m = 2 \). Clearly, it is sufficient to prove the assertion of the theorem for odd \(n \), so we assume that \(n = 2k + 1 \).

Applying Lemma 2 to \(A \) we obtain sets \(A_0, B_0 \subseteq u^{-1}Au \). Note that \(|(uAu^{-1})^n| = |A^n|\), and therefore we can assume that \(u = e \).

First, consider the case where the set \(B_0 \) consists of periodic words with the same period \(p \) and the same tail \(t \):

\[
B_0 = \{ p^{n_1}t, p^{n_2}t, \ldots \}.
\] (1)
If $t = e$, then there exists a word $b \in A$ not commuting with p because by hypothesis, the set A contains noncommuting elements. The group generated by p and b is generated by them freely because any two noncommuting words freely generate a free group of rank 2 (see [5]). Therefore, all products of the form $u_1b \cdots u_kbuk+1$, where $u_i \in B_0$, are different and, hence, $|A^n| \geq |(B_0b)^kB_0| = |B_0|^{k+1} \geq O(|A|^{k+1})$.

If $t \neq e$, then we estimate $|B_0^n|$. Since p and t do not commute,\(^1\) they freely generate a free group of rank 2. Therefore, all words $\prod_{i=1}^n u_i$, where $u_i \in B_0$, are different and $|B_0^n| \geq O(|A^n|).

Now consider the case when B_0 is not of the form (1). Let us prove the inequality

$$|(A_0B_0)^kA_0| \geq O(|A|^{k+1})$$

by induction on k. For $k = 0$, the assertion is obvious.

By Lemma 1 either not all left periods of words from B_0 coincide, or not all right periods of words from B_0 coincide. Without loss of generality, we assume that the left periods do not coincide.

Applying Lemma 3 to the sets $U = A_0$, $V = B_0$ and $W = (A_0B_0)^{k-1}A_0$ we obtain the required inequality

$$|A_0 \cdot B_0 \cdot (A_0B_0)^{k-1}A_0| \geq O(|A_0| \cdot |(A_0B_0)^{k-1}A_0|) \geq O(|A|^{k+1}).$$

\section*{§ 4. Proof of Lemma 3}

\textbf{Lemma 4.} Suppose that words $u_1, u_2, u_3, v, w_1, w_2, w_3 \in F_2$ are such that the u_i are pairwise different, $u_1w_1 = u_2w_2 = u_3w_3$, $|v| \geq |u_i|$, and all the words u_iw_i are reduced. Then the word v is periodic with period \tilde{v} and one of the words u_i ends with \tilde{v}.

\textbf{Proof.} We see that the word $f = u_1w_1 = u_2w_2 = u_3w_3$ has three occurrences of the subword v. Without loss of generality, we can assume that $|u_1| < |u_2| < |u_3|$. Since $|v| \geq |u_i|$, any two of these three occurrences of v either intersect or, at least, are adjacent to each other (that is, the kth letter of f is the end of one occurrence of v and the $(k+1)$th letter of f is the beginning of the other occurrence of v). Therefore, the second occurrence of v is completely covered by the first and third occurrences of v and, hence, the second occurrence of v intersects with one of the other occurrences (say, the first) in a subword of length at least $\frac{1}{2}|v|$. By the second assertion of Lemma 1, this means that the word v is periodic and the word u_2 ends with \tilde{v}.

\textbf{Lemma 5.} Suppose that sets U, V and W satisfy the conditions of Lemma 3 and $v \in V$. If U contains no words ending with the period of v or the word v is non-periodic, then $|UvW| \geq \frac{1}{2}|U| \cdot |W|$.

\textbf{Proof.} Lemma 4 shows that no word has more than two representations as a product uvw, where $u \in U$ and $w \in W$. Therefore, $|UvW| \geq \frac{1}{2}|U| \cdot |W|$, as required.

\(^1\)Because, in a free group, only powers of the same element commute [5], the period p is not a proper power, and $|t| < |p|$.
Lemma 6. Suppose that \(\alpha \) and \(\beta \) are nonempty cyclically reduced words that are not proper powers, \(|\beta| > |\alpha| \), \(a, b \in F_2 \) are words ending with \(\beta^2 \), and \(a \) ends with \(\alpha^s \). Then \(b \) also ends with \(\alpha^s \).

Proof. If \(|\alpha^s| \leq |\beta^2| \), then since \(a \) and \(b \) end with \(\beta^2 \), they end with \(\alpha^s \), as required. If \(|\alpha^s| > |\beta^2| \), then the end \(\beta^2 \) of \(a \) has two different right periods, \(\alpha \) and \(\beta \); this contradiction completes the proof.

Lemma 7. Suppose that sets \(U, V \) and \(W \) satisfy the conditions of Lemma 3 and there exists a periodic word \(v \in V \) with period \(\tilde{v} \) such that all words in \(U \) end with \(\tilde{v}^q \) and none of them ends with \(\tilde{v}^{q+1} \), where \(q \geq 1 \). Then \(|UvW| \geq \frac{1}{2} |U| \cdot |W| \).

This lemma follows immediately from Lemma 5 in which for \(U, V \) and \(W \) the sets \(U\tilde{v}^{-q}, \tilde{v}^qV \) and \(W \), respectively, are taken and the word \(\tilde{v}^qv \) is taken for \(v \).

Proof of Lemma 3. Clearly, it is sufficient to prove the first assertion. By Lemma 5, we may assume that the set \(V \) consists of periodic words.

Suppose that \(V \) has two words \(v_1 \) and \(v_2 \) with different periods \(\tilde{v}_1 \) and \(\tilde{v}_2 \). Suppose that \(|\tilde{v}_1| \geq |\tilde{v}_2| \). Applying Lemma 5 once again we obtain that either the required inequality holds or there exists a set \(U_0 \subseteq U \) such that \(|U_0| \geq \frac{1}{3} |U| \) and all words in \(U_0 \) end with both \(\tilde{v}_1 \) and \(\tilde{v}_2 \). This means, in particular, that \(\tilde{v}_1 \) ends with \(\tilde{v}_2 \) and \(|\tilde{v}_1| > |\tilde{v}_2| \) (because \(\tilde{v}_1 \neq \tilde{v}_2 \)).

Let \(U_{00} \) be the set of words from \(U_0 \) ending with \(\tilde{v}_2^2 \). By Lemma 6, all words from \(U_{00} \) end with \(\tilde{v}_1^s \), and none of them ends with \(\tilde{v}_1^{s+1} \). By Lemma 7 (in which the role of \(U \) is played by \(U_{00} \) and the role of \(v \) is played by \(v_1 \)), we have

\[
|U_{00}v_1W| \geq \frac{1}{2} |U_{00}| \cdot |W|.
\]

On the other hand, in the set \(U_0 \setminus U_{00} \), all words end with \(\tilde{v}_2 \), but none ends with \(\tilde{v}_2^2 \). Therefore, by Lemma 7 (in which the role of \(U \) is played by \(U_0 \setminus U_{00} \), and the role of \(v \) is played by \(v_2 \)), we have

\[
|(U_0 \setminus U_{00})v_2W| \geq \frac{1}{2} |U_0 \setminus U_{00}| \cdot |W|.
\]

Inequalities (2) and (3) imply

\[
|U_0 \cdot (\{v_1\} \cup \{v_2\}) \cdot W| \geq \frac{1}{2} |U_0| \cdot |W| = \frac{1}{6} |U| \cdot |W|,
\]

as required.

Bibliography

[1] M.-Ch. Chang, “Product theorems in SL_2 and SL_3”, J. Inst. Math. Jussieu 7:1 (2008), 1–25.
[2] A. A. Razborov, A product theorem in free groups, preprint, 2007; http://people.cs.uchicago.edu/~razborov/files/free_group.pdf.
[3] M. B. Nathanson, Additive number theory. Inverse problems and the geometry of sumsets, Grad. Texts in Math., vol. 165, Springer-Verlag, New York 1996.
[4] T. Tao and V. H. Vu, *Additive combinatorics*, Cambridge Stud. Adv. Math., vol. 105, Cambridge Univ. Press, Cambridge 2006.

[5] A. G. Kurosch, *The theory of groups*, 3rd ed., Nauka, Moscow 1967; English transl of the 2nd ed., Chelsea Publ., New York 1955.

S. R. Safin

Faculty of Mechanics and Mathematics, Moscow State University

E-mail: stas.mail@mail.ru

Received 31/OCT/10

Translated by S. SAFIN