Centromere localization in medaka fish based on half-tetrad analysis

Masahiro Furuyama, Haruna Nagaoka, Tadashi Sato and Mitsuru Sakaizumi*

Department of Environmental Science, Graduate School of Science and Technology, Niigata University, Ikarashi-Ninocho, Nishi-ku, Niigata 950-2181, Japan

(Received 6 May 2019, accepted 1 June 2019; J-STAGE Advance published date: 10 August 2019)

Gene-centromere (G-C) mapping provides insight into vertebrate genome composition, structure and evolution. Although medaka fish are important experimental animals, no genome-wide G-C map of medaka has been constructed. In this study, we used 112 interspecific triploid hybrids and 152 DNA markers to make G-C maps of all 24 linkage groups (LGs). Under the assumption of 50% interference, 24 centromeres were localized onto all corresponding medaka LGs. Comparison with 21 centromere positions deduced from putative centromeric repeats revealed that 19 were localized inside the centromeric regions of the G-C maps, whereas two were not. Based on the centromere positions indicated in the G-C maps and those of centromeric repeats on each LG, we classified chromosomes as either biarmed or monoarmed; \(n = 24 = 10 \) metacentrics/submetacentrics + 14 subtelocentrics/acrocentrics, which is consistent with the results of previous karyological reports. This study helps to elucidate genome evolution mechanisms, and integrates physical and genetic maps with karyological information of medaka.

Key words: gene-centromere mapping, Oryzias luzonensis, O. latipes, O. sakaizumii, triploid

INTRODUCTION

The identification of centromere positions is essential for the integration of cytogenetic and genetic linkage maps and is also an initial step toward understanding the composition and structure of the centromeric region as well as the whole genome. Mainly due to the lack of well-defined genetic linkage maps using co-dominant markers, centromeres have been located only in very limited fish species so far. Most previous gene-centromere (G-C) map studies on fish species were based on allozyme markers and conducted decades ago. With the advantages and popularity of co-dominant DNA markers, G-C maps have recently been reported for many fish species. Zebrafish, Danio rerio, was the first fish for which all 25 centromeres were localized on genetic linkage maps (Johnson et al., 1996), followed by rainbow trout, Oncorhynchus mykiss (Sakamoto et al., 2000), loach, Misgurnus anguillicaudatus (Morishima et al., 2001), Japanese eel, Anguilla japonica (Nomura et al., 2006), turbot, Scophthalmus maximus (Martínez et al., 2008), large yellow croaker, Pseudosciaena crocea (Li et al., 2008), half-smooth tongue sole, Cynoglossus semilaevis (Ji et al., 2009), walking catfish, Clarias macrocephalus (Poompuang and Sukkorntong, 2011) and bighead carp, Hypophthalmichthys nobilis (Zhu et al., 2013).

Medaka fish (Oryzias latipes, O. sakaizumii and O. sinensis) represent one of the most important experimental animals worldwide, and have been used in fields such as genetics and developmental biology. The first medaka G-C map was made for linkage group (LG) 1, which is the sex LG (Sato et al., 2001). The distance between the marker and centromere is very important for estimating centromeric regions: the shorter the distance, the more accurate the centromeric regions. In this study, we aimed to localize centromeres onto all 24 LGs. The information obtained from this G-C map will be useful for understanding the genome structure and chromosome evolution of this species group.

MATERIALS AND METHODS

Fish All fish strains used in this study were supplied by the Faculty of Science, Niigata University, a subcenter of the National BioResource Project (medaka) supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan, and were reared in 150 × 250 × 105-mm plastic vessels with 2 l of water at 25 °C. Oryzias luzonensis was originally obtained from Luzon (Formacion and Uwa, 1985), and two inbred strains of medaka, HNI-
II and Hd-rR (derived from *O. sakaizumii* and *O. latipes*, respectively), were described by Hyodo-Taguchi and Sakaizumi (1993).

Crosses
Hd-rR strain females were mated with HNI-II males, which resulted in F1 progeny (DNF1). DNF1 females and *O. luzonensis* males were isolated the day before they were mated. Fertilized eggs were immediately collected after spawning; after 2 min and 45 sec, they were exposed to 42 °C water for 2 min to block the second meiotic division (Naruse et al., 1985). The hatching rate of the hybrid embryos is improved by high-temperature treatment, and this improvement has been verified to be the result of triploidization (Sato et al., 2001). Thus, all or most of the hatched fry are expected to be allotriploids.

Genotyping
DNA was extracted from the hatched fry by proteinase K digestion, phenol–chloroform extraction and isopropanol precipitation (Shinoyama et al., 1999). DNA samples were dissolved in TE buffer. To find DNA markers to detect polymorphisms between Hd-rR, HNI-II and *O. luzonensis*, we selected expressed sequence tag (EST) markers from the medaka EST database (http://mbase.nig.ac.jp/mbase/medaka_top.html), and made new markers as necessary (Supplementary Table S1). PCR amplification of genomic DNA was performed as follows: 35 cycles at 95 °C for 30 sec, 55 °C for 30 sec, and 72 °C for 2 min. All PCR products were electrophoresed on polyacrylamide gels as described by Kimura et al. (2004). In this study, we developed an SNP genotyping system between the HNI-II and Hd-rR inbred strains. SNP genotyping was performed using the MassARRAY iPLEX Gold Assay (Sequenom) (Takada et al., 2013). The information used for genotyping is described in Supplementary Table S2.

Centromere localization
The second meiotic division segregation frequency (y), which is a function of the recombination rate between the marker and centromere, was estimated by counting the proportion of progeny heterozygous for Hd-rR and HNI-II alleles in allotriploid hybrids, which allowed us to estimate G-C distance (x) (Johnson et al., 1996). G-C distance may be estimated under different models of chiasma interference (Danzmann and Gharbi, 2001). Assuming 50% chiasma interference, G-C distance was calculated as follows:

\[
x = \frac{\ln (1 + y) - \ln (1 - y)}{100 / 4}.
\]

Chromosome type classification
Chromosomes were classified according to the criterion of the centromeric index (CI; long arm to short arm ratio) introduced by Levan et al. (1964). Chromosome type and corresponding CI values were as follows: metacentric, 1.0–1.7; submetacentric, 1.7–3.0; subtelocentric, 3.0–7.0; and acrocentric, more than 7.0.

RESULTS AND DISCUSSION

Construction of centromere-linkage map
In this study, we used 112 triploid hybrids and 152 DNA markers (Supplementary Table S1). Hatched fry were all allotriploid hybrids, as determined by genotyping using DNA markers. The map length of each chromosome was 44.3–58.7 cM (average, 50.2 cM). The linkage map spanned a genetic length of 1,204 cM (Table 1), which is 4% shorter than that proposed in a previous study (1,257 cM in female, Kimura et al., 2005); however, we used terminal markers for the physical map of each chromosome in this study. This difference may also be partially due to long interval distances between loci (average interval distance, 9.3 vs. 5.4 cM in Kimura et al., 2005).

LG	Map length (cM)	Recombination rate (cM/Mbp)	
		Centromeric region*	Other region
1	56.1	0.95	1.87
2	51.0	0.61	2.24
3	52.6	1.14	2.18
4	58.7	0.58	2.18
5	56.1	0.47	1.96
6	45.9	0.60	1.56
7	50.7	1.21	1.47
8	47.4	0.19	2.53
9	44.5	0.70	1.65
10	49.4	0.06	2.07
11	44.3	2.72	1.50
12	46.2	0.32	2.21
13	49.5	0.75	1.59
14	48.3	0.75	1.85
15	47.1	0.48	1.70
16	47.6	1.12	1.71
17	50.5	0.23	1.71
18	55.2	2.01	1.77
19	52.1	1.41	2.74
20	44.7	1.72	2.15
21	53.4	1.14	2.06
22	49.0	0.77	1.99
23	52.8	2.09	2.24
24	50.6	1.31	2.51
Total	1,203.7		

*Centromeric and other regions are depicted as gray and white boxes, respectively, in G-C maps (Fig. 1).
Fig. 1. Gene-centromere maps of 24 medaka LGs. For each chromosome, the physical map (Hd-rR) is on the left, and the G-C map is on the right (n = 112). Centromere locations determined by half-tetrad analysis are shown as open circles. Centromeric regions are indicated as gray boxes in the physical maps. Centromeric repeats identified by Ichikawa et al. (2017) for Hd-rR and HNI-II are represented by black and white triangles, respectively.
Fig. 1. Continued
meres were successfully positioned onto all 24 LGs of the medaka genetic linkage map (Fig. 1).

In general, centromeric regions possess lower levels of recombination while telomeric regions of the chromosome experience increased crossover events (Choo, 1998; International Human Genome Sequencing Consortium, 2001). We found that almost every centromeric region of the G-C maps, except for those of LGs 11 and 18, had lower recombination frequencies (Table 1). LG11 of HNI-II has a large chromosomal inversion (7–23 Mbp) in the central region and that of Hd-rR does not (Kimura et al., 2005; Ichikawa et al., 2017), which may explain the high recombination frequency in the centromeric region of LG11. For LG18, the relatively higher level of recombination in the centromeric region may be partially due to insufficient narrowing of this region.

Comparison between centromeric regions in the G-C maps and putative centromeric repeat positions
Putative centromeric repeats have been reported in three inbred medaka strains: Hd-rR, HNI-II and HSOK (Ichikawa et al., 2017). The repeats were identified in one or multiple strains for all LGs except LGs 15 and 24. Based on these results, we predicted the centromere locations on the chromosomes (Table 2). For six LGs (2, 6, 11, 12, 19 and 21), centromeric repeats were identified in Hd-rR and HNI-II; for 17 LGs (1, 3, 4, 5, 7, 8, 9, 10, 13, 14, 15, 16, 17, 18, 20, 22 and 23), they were found in either Hd-rR or HNI-II. The repeats on LG6 were located at 0 Mbp in Hd-rR, but at the opposite end in HNI-II. Furthermore, two centromere positions were predicted for LG21 in Hd-rR.

A comparison between the positions of putative centromeric repeats on 23 LGs and the centromeric regions

Table 2. Classification of chromosomes

LG	Centromeric region on G-C map (Mbp)	Chromosome type* judged from	G-C map	Position of centromeric repeats in Hd-rR	Position of centromeric repeats in HNI-II	FISH and/or silver staining	Expected chromosome type
1	23.33–36.66 M/SM/ST/A	SM	SM	–	SM	Bi (SM)	
2	10.12–13.06 M	M	M	M	–	Bi (M)	
3	0.44–14.45 M/SM/ST/A	ST	–	–	–	Mono (ST)	
4	0.04–7.87 ST/A	A	A	–	–	Mono (A)	
5	0.12–5.87 ST/A	–	A	–	–	Mono (A)	
6	1.01–4.07 A	A	A	A	–	Mono (A)	
7	33.83–34.57 A	–	A	–	–	Mono (A)	
8	15.37–22.52 M/SM/ST	SM	–	–	–	Bi (SM)	
9	18.24–24.72 M/SM	SM	–	SM	Bi (SM)		
10	0.14–7.53 ST/A	–	ST	–	–	Mono (ST/A)	
11	26.39–28.21 A	A	A	A	A	Mono (A)	
12	18.25–24.10 M/SM/ST	SM	SM	–	–	Bi (SM)	
13	29.66–32.77 A	A	A	–	A	Mono (A)	
14	0.26–6.21 ST/A	A	A	–	–	Mono (A)	
15	0.44–3.85 ST/A	–	–	–	–	Mono (ST/A)	
16	0–5.90 ST/A	A	A	–	–	Mono (A)	
17	0.56–2.50 A	A	A	–	–	Mono (A)	
18	12.60–21.94 M/SM	SM	–	SM	Bi (SM)		
19	11.33–19.13 M/SM/ST	SM	SM	–	Bi (SM)		
20	0–12.14 M/SM/ST/A	ST	–	SM (NOR)	Bi (SM)		
21	8.60–16.55 M/SM	D (A or M)	A	–	–	Bi (M)	
22	23.69–28.97 ST/A	A	–	–	–	Mono (A)	
23	9.26–15.46 M/SM	M	–	–	–	Bi (M)	
24	19.02–23.24 ST/A	–	–	–	–	Mono (ST/A)	

*Classification of chromosomes according to Levan et al. (1964): M, metacentric; SM, submetacentric; ST, subtelocentric; A, acrocentric; Bi, biarmed; Mono, monoarmed; D, dicentric.
in the G-C maps revealed that repeat positions on 19 LGs (1–5, 7–12, 14, 16–20, 22 and 23) were inside their respective centromeric regions in the G-C maps, whereas those of LGs 6 and 13 were not. The putative centromeric repeats on LG6 were at 0 Mbp in Hd-rR, but at the opposite end in HNI-II, and those on LG13 may not be functional. For LG 21, two positions (2.5 and 14.5 Mbp) of centromeric repeats were found in Hd-rR, whereas only one (2.5 Mbp) was found in HNI-II; additionally, the repeats at 14.5 Mbp were located inside the centromeric region in the G-C map, which indicates that these repeats have centromeric function. The repeats at 2.5 Mbp may be silenced in both Hd-rR and HNI-II. The centromere of HNI-II is assumed to be located at the same position as that of Hd-rR. Although centromeric repeats were not identified on LG24, the centromere was mapped at one end (19–23 Mbp) of the chromosome.

Chromosome classification Oryzias latipes and O. sakaizumii have 24 pairs of chromosomes (2n = 48) that were classified into two types: 10 pairs of biarmed (metacentric and submetacentric) and 14 pairs of monoarmed (subtelocentric and acrocentric) chromosomes (Uwa and Ojima, 1981). Previous fluorescence *in situ* hybridization (FISH) studies showed that LGs 1, 9, and 18 are biarmed (Matsuda et al., 1998; Brunner et al., 2001; Kondo et al., 2002), whereas LGs 11 and 13 are monoarmed (Myosho et al., 2012). Silver staining analysis by Uwa and Ojima (1981) revealed nucleolus organizer regions (NORs) on the tip of the short arms of a satellited chromosome pair. This result and our FISH analysis demonstrated a NOR on LG 20 (data not shown), which indicates that LG 20 is biarmed and bears a NOR.

Based on the definition of chromosome types (Levan et al., 1964) and our G-C maps, we classified LGs 2, 9, 11, 21 and 23 as biarmed chromosomes, and LGs 4–7, 10, 11, 13–17, 22 and 24 as monoarmed chromosomes. The chromosome types of the five remaining LGs were not determined from the G-C maps alone, because their centromeric regions could not be narrowed enough. Based on the position of the putative centromeric repeats, we classified Hd-rR chromosomes into two types: nine biarmed LGs (1, 2, 8, 9, 12, 18, 19, 21 and 23) and 10 monoarmed LGs (3, 4, 6, 11, 13, 14, 16, 17, 20 and 22). For HNI-II, LGs 2, 12 and 19 were biarmed, whereas LGs 5–7, 10, 11 and 21 were monoarmed (Table 2).

We classified all 24 LGs into either biarmed (1, 2, 8, 9, 12, 18–21 and 23) or monoarmed chromosomes (3–7, 10, 11, 13–17, 22 and 24). Although the chromosome type of LG 20 was determined to be monoarmed (subtelocentric) based on the centromeric repeats of Hd-rR, this chromosome was expected to be biarmed, because this NOR-bearing chromosome was classified as submetacentric (Uwa and Ojima, 1981).

The results of this study integrate the centromere map and genetic linkage map in O. latipes/O. sakaizumii, which provides valuable information that will help to consolidate the genetic and physical maps in the near future. These findings will also be useful for studies on genome structure, chromosome evolution and positional cloning of genes in this species complex.

We are grateful to Prof. T. Shiroishi and Dr. T. Takada of the National Institute of Genetics for their generous help with SNP genotyping. We are also grateful to Prof. Y. Matsuda and Dr. Y. Uno of Nagoya University, and Dr. Y. Takehana of Nagahama Institute of Bio-Science and Technology, for their invaluable advice regarding FISH analysis. We thank Dr. Mallory Eckstut from Edanz Group for editing a draft of this manuscript.

REFERENCES

Brunner, B., Hornung, U., Shan, Z., Nanda, I., Kondo, M., Zend-Aajusch, E., Haaf, T., Ropers, H.-H., Shima, A., Schmid, M., et al. (2001) Genomic organization and expression of the doublesex-related gene cluster in vertebrates and detection of putative regulatory regions for DMRT1. Genomics 77, 8–17.

Choo, K. H. A. (1998) Why is the centromere so cold? Genome Res. 8, 81–82.

Danzmann, R. G., and Gharbi, K. (2001) Gene mapping in fishes: a means to an end. Genetica 111, 3–23.

Forsman, M. J., and Uwa, H. (1985) Cytogenetic studies on the origin and species differentiation of the Philippine medaka, Oryzias luzonensis. J. Fish Biol. 27, 285–291.

Hyodo-Taguchi, Y., and Sakaizumi, M. (1993) List of inbred strains of the medaka, Oryzias latipes, maintained in the Division of Biology, National Institute of Radiological Science. Fish Biol. J. Medaka 5, 29–30.

Ichikawa, K., Tomioka, S., Suzuki, Y., Nakamura, R., Doi, K., Yoshimura, J., Kumagai, M., Inoue, Y., Uchida, Y., Irie, N., et al. (2017) Centromere evolution and CpG methylation during vertebrate speciation. Nat. Commun. 8, 1833.

International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409, 860–921.

Ji, X. S., Chen, S. L., Liao, X. L., Yang, J. F., and Xu, T. J. (2009) Microsatellite-centromere mapping in Cynoglossus semilaevis using gynogenetic diploid families produced by the use of homologous and non-homologous sperm. J. Fish Biol. 75, 422–434.

Johnson, S. L., Gates, M. A., Johnson, M., Talbot, W. S., Horne, S., Baik, K., Rude, S., Wong, J. R., and Postlethwait, J. H. (1996) Centromere-linkage analysis and consolidation of the zebrafish genetic map. Genetics 142, 1277–1288.

Kimura, T., Jindo, T., Narita, T., Naruse, K., Kobayashi, D., Shin-I, T., Kitagawa, T., Mitani, H., Shima, A., Kohara, Y., et al. (2004) Large-scale isolation of ESTs from medaka embryos and its application to medaka developmental genetics. Mech. Dev. 121, 915–932.

Kimura, T., Yoshida, K., Shimada, A., Jindo, T., Sakaizumi, M., Mitani, H., Naruse, K., Takeda, H., Inoko, H., Tamiya, G., et al. (2005) Genetic linkage map of medaka with polymerase chain reaction length polymorphisms. Gene 363, 24–31.

Kondo, M., Froschauer, B., Kitano, A., Nanda, I., Hornung, U., Vollf, J.-N., Asakawa, S., Mitani, H., Naruse, K., Tanaka, M., et al. (2002) Molecular cloning and characterization of DMRT genes from the medaka Oryzias latipes and the platyfish Xiphophorus maculatus. Gene 295, 213–222.
Gene-centromere mapping of medaka

Levan, A., Fredga, K., and Sandberg, A. A. (1964) Nomenclature for centromere position on chromosomes. Hereditas 52, 201–220.

Li, Y., Cai, M., Wang, Z., Guo, W., Liu, X., Wang, X., and Ning, Y. (2008) Microsatellite-centromere mapping in large yellow croaker (Pseudosciaena crocea) using gynogenetic diploid families. Mar. Biotechnol. 10, 83–90.

Martínez, P., Hermida, M., Pardo, B. G., Fernández, C., Castro, J., Cal, R. M., Alvarez-Dios, J. A., Gómez-Tato, A., and Bouza, C. (2008) Centromere-linkage in the turbot (Scophthalmus maximus) through half-tetrad analysis in diploid meiogonetics. Aquaculture 280, 81–88.

Matsuda, M., Matsuda, C., Hamaguchi, S., and Sakaizumi, M. (1998) Identification of sex chromosomes of the medaka, Oryzias latipes, by fluorescence in situ hybridization. Cytogenet. Cell Genet. 82, 257–262.

Nomura, K., Morishima, K., Tanaka, H., Unuma, T., Okuzawa, K., Ohta, H., and Arai, K. (2006) Microsatellite-centromere mapping in the Japanese eel (Anguilla japonica) by half-tetrad analysis using induced triploid families. Aquaculture 257, 53–67.

Poompuang, S., and Sukkorntong, C. (2011) Microsatellite-centromere mapping in walking catfish Clarias macrocephalus (Günther, 1864) using gynogenetic diploids. Aquacult. Res. 42, 210–220.

Sakamoto, T., Danzmann, R. G., Gharbi, K., Howard, P., Ozaki, A., Khoo, S. K., Woram, R. A., Okamoto, N., Ferguson, M. M., Holm, L. E., et al. (2000) A microsatellite linkage map of rainbow trout (Oncorhynchus mykiss) characterized by large sex-specific differences in recombination rates. Genetics 155, 1331–1345.

Sato, T., Yokomizo, S., Matsuda, M., Hamaguchi, S., and Sakaizumi, M. (2001) Gene-centromere mapping of medaka sex chromosomes using triploid hybrids between Oryzias latipes and O. luzonensis. Genetica 111, 71–75.

Shinomiya, A., Matsuda, M., Hamaguchi, S., and Sakaizumi, M. (1999) Identification of genetic sex of the medaka, Oryzias latipes, by PCR. J. Exp. Zool. 280, 53–67.

Uwa, H., and Ojima, Y. (1981) Detailed and banding karyotype analysis of the medaka, Oryzias latipes, in cultured cells. Proc. Japan Acad. 57, 39–43.

Zhu, C., Sun, Y., Yu, X., and Tong, J. (2013) Centromere localization for Bighead Carp (Aristichthys nobilis) through half-tetrad analysis in diploid gynogenetic families. PLoS One 8, e82950.
Supplementary Table S1. Marker catalog used in this study

LG	Marker name	Mbp (ver 2)	Note	Forward primer	Reverse primer	Polymorphism	
1	MA01-1	0.25				SNP	
1	MA01-2	11.07	Mass array marker*			SNP	
1	SL1	18.27	Matsuda et al. (1999)	CCGAATGGGAAATTATTCTGCTC	CTTTTGTGCTTTGGTTATGAAACGATG	In/del	
1	MA01-3	23.33	Mass array marker			SNP	
1	SL2	unkown	Matsuda et al. (1999)	GCCATCTTGAGGTAGCCCAT	CTTTTGTGCTTTGGTTATGAAACGATG	RFLP (DraI & RsaI digest)	
1	MEDAKA081715	27.17	This study	ACCCCCCTTCTGCTGCTT	ACTGTGACCTGCTTTCCATC	Heteroduplex	
1	MA01-4	36.66	Mass array marker			SNP	
2	MA02-1	0.20	Mass array marker*			SNP	
2	MF01SSA007A05	10.12	EST	GGCACACACAAAATGTAAGA	TGCTTTTAAGGCTTTGGTTATGAAACGATG	In/del	
2	MF01SSA051F03-2	11.09	EST	TCCGGATCTGAGCTGATCTC	CCGAATCCACAGGAGACGACGAGTC	In/del	
2	OLa1510f	13.06	EST	GCCATCTTGAGGTAGCCCAT	CTTTTGTGCTTTGGTTATGAAACGATG	SNP	
2	MA02-2b	17.60	Mass array marker			SNP	
2	MA02-4c	25.08	Mass array marker			SNP	
3	MA03-1	0.44	Mass array marker*			SNP	
3	MF01SSA020C07	4.53	EST	TCTACAGAAACATCCAAACAG	TTGAGCTGTATAACGGAAGAG	In/del	
3	MF01SSA034A09	8.57	EST	CCGAATCCACAGGAGACG	CCCAATCCAAACTCCACAGTC	In/del	
3	AU171481	9.83	EST	TGGGTGCTTCTGCGNATGTTCC	ATGCCTGTACGAGCACAGATGA	SNP	
3	OLa1204g	14.45	EST	GCCATCTTGAGGTAGCCCAT	CTTTTGTGCTTTGGTTATGAAACGATG	SNP	
3	MAPCR03-2	18.68	This study	TGGGAATGCTTCAACGCTGTC	CACTGTGACAGAGGCCTGAAAGA	Heteroduplex	
3	AU171644	26.25	EST	CAGGCTGAGAAAATACGAGCCGGAGG	GCATTCAAGATACGAGGGACCGACCTGAGG	In/del	
3	MA03-4	32.66	Mass array marker			SNP	
4	MF01SSA026F02-5	0.04	EST	CGTAAATATGGGAAATGCTGACAGG	GCATTCAAGATACGAGGGACCGAC	SNP	
4	MF01SSA037B05	7.87	EST	ATGCTGGATGCGCAGCAGGCAGAG	ACACCAAGCCCAACACT	In/del	
4	MF01SSA034A09	13.93	EST	CGGCGAGGTTGCTGTC	TGGCAATACGAGGACG	Heteroduplex	
4	MAPCR04-3	17.99	This study	TTCAGTTCTGATGCTTTTCG	TGGCAATACGAGGACG	Heteroduplex	
4	MAPCR04-2	27.54	This study	TTCAGTTCTGATGCTTTTCG	TGGCAATACGAGGACG	Heteroduplex	
4	MA04-4	32.66	Mass array marker			SNP	
5	MAPCR05-1	0.12	This study	ACGAGTTTCTCAGGCCCTCATC	GTGTTTCCATGCTTGATGCT	In/del	
5	OLa2212b	5.87	EST	AAGAAGAAGCGGATGCGCTGCTGT	TGGCAATACGAGGACG	Heteroduplex	
5	MF01SSA044H11	12.91	EST	AGAGAAAGGTTGAGCAAGAGA	CTTGCAATACGAGGACG	Heteroduplex	
5	MA05-2	18.13	Mass array marker			SNP	
5	OLa0607f	25.38	EST	AGCGACTCTGAGCCCTTACC	TGGCAATACGAGGACG	Heteroduplex	
5	MA05-4	32.94	Mass array marker			SNP	
6	MA06-1	1.01	Mass array marker			SNP	
6	MF01SSA047D04	1.28	EST	GATCGTTCTCAGGCTTTTTGT	AGCATTAACCTGTTGAAACCT	In/del	
Gene ID	Score	Type	Description	Sequence 1	Sequence 2	In/del	
--------	-------	------------	------------------------------	-------------------------------------	-------------------------------------	------------	
OLe1804f	2.77	EST	CTCATGCTCCCGCAGGCTCAAGAA	TTGGTTTCGACAGACCCGGGTAC	In/del		
MEDAKA045681	4.07	This study	AGTGGTGCCGCTCAGTTAAGG	TTGGTGAAGGTCATGGTGAAGG	In/del		
MF01SSA061H06	8.34	EST	GCCATGCTGAAGCGCTGCGAGA	TCCCAACATTTCACGACTCCAA	In/del		
MF01SSA044D08	13.96	EST	CGTGGGAAAGAAGTGTGTTGGA	GTCGTTGTTGTGCTGTTGACC	In/del		
MA06-2	16.10	Mass array marker				SNP	
MF01SSA046F03	20.22	EST	ATTTTGATGTTGGGCTGATGCT	TCACGCTACCTGCTGTCATTGCTG	In/del		
MF01SSA031E04	26.79	EST	GTTTCTCCACCATCATGG	CTTTTTCGAGATTGTTGAC	In/del		
MAPCR06-4	32.15	This study	TTGCACTTCTGACCTGACATTC	TGAAAATGACCACCCCTATTACC	In/del		
MAPCR07-1	0.13	This study	TGCAACGTTGAGTTGTCAG	GGCAGATTCCACATTACTG	In/del		
MF01SSA051B01	9.82	EST	CTCAATAAAGAAGGCGGACTC	CTCATACATTGGACCTG	In/del		
ncoa6	14.77	This study	AGTGGCAGAGTTGTAAGG	AAACACTTACATTCAACTGGG	In/del		
OLa1008g	21.84	EST	AAGATGCGACGGCCGAAACACTT	GGTAAAACGTGCTGACAGGGA	In/del		
MAPCR07-4	33.38	This study	CTTCCCACCTTCTGATGTT	GAAGCCACCAGCTGTTAAATG	Heteroduplex		
OLa0405c	0.39	EST	CTCTCCCCTCTTTGAGAAGA	CCAAACCTGGAGAGAGCTG	In/del		
MAPCR08-2	4.15	This study	TTAAGGCAAAAGAAGGAGACAG	CACTGTTTTGAAATACTG	In/del		
MF01SSA022B03	8.37	EST	AAAAGACGCTCCACCATAATTT	CTATGAAATGAGAGTCGAAGGC	In/del		
MF01SSA159B11	13.45	EST	CGTGTAGGAGGGAGCTGCTCAGA	TTGTTCCCTCCACACGAGGTTTATGAC	In/del		
OLB2807d	15.37	EST	AGTGTGTTAGTATGGGCGGCAGC	TTCTGCGTGTCTCCTATGGG	In/del		
OLB1911b	19.29	EST	GCTGTCGGAAGGTTGTTTATTC	AAGAGGTGCTGATGATGACGA	In/del		
MAPCR08-3	22.52	This study	GATTCAGTGGGCAAGAGACAG	CTTTGCCAAGAGTCGATATT	In/del		
MA08-4	25.69	Mass array marker				SNP	
MF01SSA038G10	1.27	EST	CTGGTCTCCATTTGAAACTT	GGTGTCTGGTGTTGGTAC	In/del		
MA09-2c	5.31	Mass array marker				SNP	
OLB1509f	12.23	EST	TAAAGGCCCTTCTCCTGCTTCC	ATTTTTCCACATGCTGACGCAGGCC	In/del		
OLB2107h	17.10	EST	GTGTGCCAGCTCCCGAATTGAC	CTCCTCCAGTGCTGGATACAGGTTG	In/del		
AU170636	18.24	EST	GCAAAGGAGACTAAACCCCTAGGACCT	GGCACCCATTTGAGCCTATTAAGGCC	In/del		
MEDAKA036243-1	24.72	EST	AAGAGGAGCAGTGCTTTGGAC	TTGTTGCAGGCCAGATTAAA	In/del		
MA09-4b	31.87	Mass array marker				SNP	
MA10-1	0.14	Mass array marker				SNP	
MEDAKA085272	7.53	This study	CTTGGAGACGGCGTTGTTATT	ATCAGCTCAGAAACGCCCTCA	In/del		
OLB2511e	13.95	EST	ACACGGGAAATGGCAGACCGCTAG	GTGACGGCGAGATGTTGACATCAAACATG	In/del		
MA10-2	18.22	Mass array marker				SNP	
Casp3A	24.53	EST	TGATATACGGCGACTGATGCTGCG	GGTGCTCCTCCACCGAGTAATAGC	Heteroduplex		
MAPCR10-4	31.08	This study	CAAATAATCTTCAAAACAGGACCCAGG	TTTTGCAGAGCCAGATTTAAC	In/del		
MA11-1	0.18	Mass array marker				SNP	
MA11-2b	4.41	Mass array marker				SNP	
OLB1508c	11.21	EST	GAGGCCAAGAAGGCGAAGAGG	CTTTTTAACAGCGAGGGCTTCTCC	Heteroduplex		
MA11-3a	19.33	Mass array marker				SNP	
11	MA11-4	26.39	Mass array marker	SNP			
----	--------	-------	-------------------	-----			
12	MAPCR12-1	0.04	This study	GCCCTTCTACACACACAGCAC	TAAAGCGAAAGCCCCAAGG	In/del	
12	slc45a2	10.57	This study	AAAAGGTGTAATCGTCTGCC	AAAATTCTGTGTCGTTGCT	In/del	
12	MF01SSA009C11	12.27	EST	CGTATATTCAGAATTTGCCCA	TGGAAAGTACACCGAGATGA	In/del	
12	MF01SSA180G12	15.81	EST	CGAAGCGCGAGTGTGAAAGGG	AGTCTCCCATTGGAATACGCG	In/del	
12	AU171862	18.25	EST	CGTGGTGAGTACAGGTGCAACGGCA	CGCTGGAAGATGTCCTAAGGGTTGCC	In/del	
12	MEDAKA080719-3	22.63	This study	GCCCTTCTACACACAGCAC	TAAAGCGAAAGCCCCAAGG	In/del	
12	MF01SSA009C11	12.27	EST	AAAAGGTGTAATCGTCTGCC	AAAATTCTGTGTCGTTGCT	In/del	
13	MAPCR13-4	32.77	This study	TGGCAAGGCGACGACAGAAAG	TAAAGCGAAAGCCCCAAGG	In/del	
13	MF01SSA009C11	12.27	EST	AAAAGGTGTAATCGTCTGCC	AAAATTCTGTGTCGTTGCT	In/del	
13	MF01SSA009C11	12.27	EST	AAAAGGTGTAATCGTCTGCC	AAAATTCTGTGTCGTTGCT	In/del	
13	MF01SSA009C11	12.27	EST	AAAAGGTGTAATCGTCTGCC	AAAATTCTGTGTCGTTGCT	In/del	
13	MF01SSA009C11	12.27	EST	AAAAGGTGTAATCGTCTGCC	AAAATTCTGTGTCGTTGCT	In/del	
14	MAPCR13-4	32.77	This study	TGGCAAGGCGACGACAGAAAG	TAAAGCGAAAGCCCCAAGG	In/del	
14	MF01SSA009C11	12.27	EST	AAAAGGTGTAATCGTCTGCC	AAAATTCTGTGTCGTTGCT	In/del	
15	MAPCR13-4	32.77	This study	TGGCAAGGCGACGACAGAAAG	TAAAGCGAAAGCCCCAAGG	In/del	
15	MF01SSA009C11	12.27	EST	AAAAGGTGTAATCGTCTGCC	AAAATTCTGTGTCGTTGCT	In/del	
15	MF01SSA009C11	12.27	EST	AAAAGGTGTAATCGTCTGCC	AAAATTCTGTGTCGTTGCT	In/del	
15	MF01SSA009C11	12.27	EST	AAAAGGTGTAATCGTCTGCC	AAAATTCTGTGTCGTTGCT	In/del	
15	MF01SSA009C11	12.27	EST	AAAAGGTGTAATCGTCTGCC	AAAATTCTGTGTCGTTGCT	In/del	
15	MF01SSA009C11	12.27	EST	AAAAGGTGTAATCGTCTGCC	AAAATTCTGTGTCGTTGCT	In/del	
16	MAPCR13-4	32.77	This study	TGGCAAGGCGACGACAGAAAG	TAAAGCGAAAGCCCCAAGG	In/del	
16	MF01SSA009C11	12.27	EST	AAAAGGTGTAATCGTCTGCC	AAAATTCTGTGTCGTTGCT	In/del	
16	MF01SSA009C11	12.27	EST	AAAAGGTGTAATCGTCTGCC	AAAATTCTGTGTCGTTGCT	In/del	
16	MF01SSA009C11	12.27	EST	AAAAGGTGTAATCGTCTGCC	AAAATTCTGTGTCGTTGCT	In/del	
16	MF01SSA009C11	12.27	EST	AAAAGGTGTAATCGTCTGCC	AAAATTCTGTGTCGTTGCT	In/del	
16	MF01SSA009C11	12.27	EST	AAAAGGTGTAATCGTCTGCC	AAAATTCTGTGTCGTTGCT	In/del	
17	MAPCR13-4	32.77	This study	TGGCAAGGCGACGACAGAAAG	TAAAGCGAAAGCCCCAAGG	In/del	
17	MF01SSA009C11	12.27	EST	AAAAGGTGTAATCGTCTGCC	AAAATTCTGTGTCGTTGCT	In/del	
17	MF01SSA009C11	12.27	EST	AAAAGGTGTAATCGTCTGCC	AAAATTCTGTGTCGTTGCT	In/del	
17	MF01SSA009C11	12.27	EST	AAAAGGTGTAATCGTCTGCC	AAAATTCTGTGTCGTTGCT	In/del	
17	MF01SSA009C11	12.27	EST	AAAAGGTGTAATCGTCTGCC	AAAATTCTGTGTCGTTGCT	In/del	
17	MF01SSA009C11	12.27	EST	AAAAGGTGTAATCGTCTGCC	AAAATTCTGTGTCGTTGCT	In/del	
	ID	Score	Type	Reference	Description	Method	SNP
---	------------------	-------	---------------	-------------	--------------------------	--------------	--------
17	MAPCR17–2	17.68	This study	CTTGTTTCCCTCACAACCTG	CCTGTTTCTGCTGTACCTTCG	In/del	
17	OLc5811d	19.34	EST	CTTACAGTCCAGCGGCTACACTGAGAAGCTTGA	TTTCGCTGGAGGACTCGAAGGCA	In/del	
17	MAPCR17–4	31.64	This study	GCAGCTCAAGGGACTGGTTTGAAGGCAAGG	GGCAGCCCTGGATAATCAGA	In/del	
18	MA18–1a	Unknown	Mass array marker	SNPs			SNP
18	MA18–2a	4.49	Mass array marker	SNPs			SNP
18	OLa1011h	12.60	EST	ATATACCATGCAGAGGGTGTAGG	TTCTTCCCCCAATAGGTGTTGA	In/del	
18	MAPCR18–3	19.61	This study	GCCAGCTCAAGGGACTGGTTTGAAGGCAAGG	GGCAGCCCTGGATAATCAGA	In/del	
18	OLb3105a	21.94	EST	TCAAGGCAGGAAGGACGGCAAAAGG	TQATGACATCACTGAACCCAGCAGG	In/del	
18	MA18–4	30.48	Mass array marker	SNP			SNP
19	MAPCR19–1	0.4	This study	TACAGGGCAGAACACGTGAC	AATATTGACTGGCCCAGGTG	In/del	
19	OLa2308e	7.48	EST	TCCCTGCCAGATCCAGAGATGCTCAA	AACACTGGGACAGTGACTCGACCT	In/del	
19	AU169836	11.33	EST	ATGTGTTATTTGTGGGTGTTAATGAGGC	CACTGAGAAAAAGATTGGAGAGCAGAC	In/del	
19	Hoxb6b	19.13	EST	CCACCTCATCCTGTACCAGCATCAGAAG	CAATGGCAGATCCTGAAAGTCTGGGCA	In/del	
19	OLa3002f	23.16	EST	TCTCCGCTCCTCCTGCTGAAGGCG	ATCTGCTGACCTTACAGGGCG	In/del	
20	MF01SSA142H12	3.40	EST	TCGCTTCAAGGGCTCCACCAACA	CAGATCCTTTCAGGGCTCGACTCT	In/del	
20	OLa1111f	12.14	EST	ATGTGCCAGCAGCCAGTGATCGGCAAAG	ATCCCGCGGATTGGTTCCAAAGCGC	In/del	
20	MAPCR20–2	14.17	This study	TTCTCAGTCTGGAATCTCTTTCA	GTCAGGATTTGCGGAGAAGA	In/del	
20	MA20–3	20.49	Mass array marker	SNP			SNP
20	MA20–4b	25.89	Mass array marker	SNP			SNP
21	MAPCR21–1	0.1	This study	GGAGAGCATCCTTGAAGTCG	CCACTCGTCAAGGAAACACACG	Heteroduplex	
21	OLa0706h	8.60	EST	CGGAAATCATGAAACTGTCACCCG	AGCCATAGGGGCAAAACCGAGTA	Heteroduplex	
21	AU170530	16.55	EST	CGCTCTCTTCTTTTTAAACAAATTATGCTGCTCA	GCTGCTGTTACAGTTCAAAACAACA	Heteroduplex	
21	AU169483	20.9	EST	ATGCTGGGAGGACTGCTGAATCTAC	GTGTGCTCCTGTAAGCAGCATGAA	In/del	
21	MA21–3	23.99	Mass array marker	SNP			SNP
21	MA21–4a	29.50	Mass array marker	SNP			SNP
22	MA22–1	0.23	Mass array marker	SNP			SNP
22	MF01SSA003A16–4	1.73	EST	TTGTTGGCCACAAACAAACAGGACTGGAC	GATTTCGCCGAGAAACCCCGTGACCA	Heteroduplex	
22	MAPCR22–2	6.89	This study	CACAAATGGTCTGGTTCGATG	CTGAAAGCTGGCATGACTGCTA	In/del	
22	OLb0103g	15.46	EST	AGCTTTTTCTTTGCTGCAAGGCTCAGG	CGATACACTGGGCACTTGTCAAAAT	In/del	
22	MA23–4a	24.36	Mass array marker	SNP			SNP
23	MAPCR23–1	1.1	This study	TGAAAGCTGATCATTCTGCTG	TTTACTCCCACAAACTATTTTCTTCTC	In/del	
23	MF01SSA042C04	10.16	EST	TCTACAGGATTTGCGGTTGGGAGAAGC	AGATCAAGCTGCTGGTCCAAAC	Heteroduplex	
24	OLa2403g	14.27	EST	TGGTTACGGACCACATATTGAGGCA	TGGATTCAAGCTTGGACAAACACTCT	In/del	
	Accession		Method	Primer 1	Primer 2	Type	
---	-----------	---	-----------------------	----------	-------------	-------	
24	MAPCR24-3	17.14	This study	ATGAGGAGGCAGAATGACA	CCATCGTCAACGACTTTGC	In/del	
24	MEDAKA001666	19.02	This study	AAAGATGACTTGGACTAAACACTTG	TGAAAGGGGCTGTTCTTTCAC	In/del	
24	MAPCR24-4	23.24	This study	CCACAGTCACAGCGGAAGT	CATGCTGTTCACAGGGTTG	In/del	

Primer extension/mass spectrometry method.
Supplementary Table S2. Massarray markers used in this study

Marker name	Genotype	Forward primer	Reverse primer	Primer for extension
MA01-1	T	253,629	MA06-1b	GCGAGGTGAACACGCTATGCA
MA01-1	G	11,071,848	MA04-1c	CAGACACGCTGCGTATGCA
MA01-3	A	23,338,750	MA02-4c	CGGAGGTCACGCTGCAAGG
MA01-4	G	36,366,542	MA02-4c	CGGAGGTCACGCTGCAAGG
			MA02-4c	CGGAGGTCACGCTGCAAGG
MA02-1	C	207,635	MA06-1a	CAGACACGCTGCGTATGCA
MA02-2a	G	17,601,653	MA04-1c	CAGACACGCTGCGTATGCA
MA02-2b	C	17,601,653	MA04-1c	CAGACACGCTGCGTATGCA
MA02-2c	G	21,945,522	MA02-3a	CAGACACGCTGCGTATGCA
MA02-3a	A	21,945,522	MA02-3a	CAGACACGCTGCGTATGCA
MA02-3d	C	21,945,522	MA02-3d	CAGACACGCTGCGTATGCA
MA02-4b	C	25,084,281	MA02-4b	CAGACACGCTGCGTATGCA
MA02-4c	A	25,084,281	MA02-4c	CAGACACGCTGCGTATGCA
MA03-1	T	445,916	MA03-2	CAGACACGCTGCGTATGCA
MA03-2	G	18,685,495	MA03-2	CAGACACGCTGCGTATGCA
MA03-3	C	32,622,177	MA03-3	CAGACACGCTGCGTATGCA
MA03-4	unknown	25,084,281	MA03-4	CAGACACGCTGCGTATGCA
MA04-1	C	1,645,815	MA04-1	CAGACACGCTGCGTATGCA
MA04-1c	C	1,645,815	MA04-1	CAGACACGCTGCGTATGCA
MA04-2	G	17,993,699	MA04-2	CAGACACGCTGCGTATGCA
MA04-3	A	27,545,988	MA04-3	CAGACACGCTGCGTATGCA
MA04-4	G	32,622,177	MA04-4	CAGACACGCTGCGTATGCA
MA05-1	T	125,882	MA05-1	CAGACACGCTGCGTATGCA
MA05-2	G	18,134,501	MA05-2	CAGACACGCTGCGTATGCA
MA05-3	A	31,705,135	MA05-3	CAGACACGCTGCGTATGCA
MA05-4	T	32,942,944	MA05-4	CAGACACGCTGCGTATGCA
MA06-1	G	1,016,816	MA06-1	CAGACACGCTGCGTATGCA
MA06-1a	A	1,017,001	MA06-1a	CAGACACGCTGCGTATGCA
MA06-1b	C	1,016,657	MA06-1b	CAGACACGCTGCGTATGCA
MA06-2	G	16,107,284	MA06-2	CAGACACGCTGCGTATGCA
MA06-3	A	26,797,986	MA06-3	CAGACACGCTGCGTATGCA
MA06-4	T	32,153,016	MA06-4	CAGACACGCTGCGTATGCA
MA07-1	C	133,624	MA07-1	CAGACACGCTGCGTATGCA
MA07-2	C	3,585,834	MA07-2	CAGACACGCTGCGTATGCA
MA07-3	C	10,473,531	MA07-3	CAGACACGCTGCGTATGCA
13 MA13-2 3,395,104 T C ACGTTGAGTGCTTGGACAGGTTAAGG ACGTTGAGTGCTTGGACAGGTTAAGG GAGTCAGTGAAAGCTTCTTCTG				
13 MA13-3 23,714,499 T C ACGTTGAGTGCTTGGACAGGTTAAGG ACGTTGAGTGCTTGGACAGGTTAAGG GTTCAGGAAACATTCCTCAGTGG				
13 MA13-4 32,775,074 A G ACGTTGAGTGCTTGGACAGGTTAAGG ACGTTGAGTGCTTGGACAGGTTAAGG CTAGGAAACATTCCTCAGTGG				
14 MA14-1 265,374 C T ACGTTGAGTGCTTGGACAGGTTAAGG ACGTTGAGTGCTTGGACAGGTTAAGG CAGATACATTTCAGTCTG				
14 MA14-2 8,785,003 G A ACGTTGAGTGCTTGGACAGGTTAAGG ACGTTGAGTGCTTGGACAGGTTAAGG TAAGCTGAGAACCCCTCATAAAG				
14 MA14-3 24,986,580 T C ACGTTGAGTGCTTGGACAGGTTAAGG ACGTTGAGTGCTTGGACAGGTTAAGG GGACAGGAAACATACG				
14 MA14-4 30,282,384 A T ACGTTGAGTGCTTGGACAGGTTAAGG ACGTTGAGTGCTTGGACAGGTTAAGG GGAGTCAGTGTTGCTTACCT				
15 MA15-1 43,581 C G ACGTTGAGTGCTTGGACAGGTTAAGG ACGTTGAGTGCTTGGACAGGTTAAGG ACGTTGAGTGTAAGG				
15 MA15-1a 44,072 G A ACGTTGAGTGCTTGGACAGGTTAAGG ACGTTGAGTGCTTGGACAGGTTAAGG CAGGGGTGTCAACATA				
15 MA15-2 14,798,836 T C ACGTTGAGTGCTTGGACAGGTTAAGG ACGTTGAGTGCTTGGACAGGTTAAGG ATGGGAGTCTGAGG				
15 MA15-3 27,027,724 T C ACGTTGAGTGCTTGGACAGGTTAAGG ACGTTGAGTGCTTGGACAGGTTAAGG CCGGACTTTAAGGTCGCGCGGG				
15 MA15-4 30,336,373 A T ACGTTGAGTGCTTGGACAGGTTAAGG ACGTTGAGTGCTTGGACAGGTTAAGG GGAGTCAGTGTTGCTTACCT				
16 MA16-1 4,141,407 A C ACGTTGAGTGCTTGGACAGGTTAAGG ACGTTGAGTGCTTGGACAGGTTAAGG GCAAGTCAACAGGTA				
16 MA16-2 20,435,475 A T ACGTTGAGTGCTTGGACAGGTTAAGG ACGTTGAGTGCTTGGACAGGTTAAGG GGAACATTTATTACAGGAAAAG				
16 MA16-2a 20,435,359 G A ACGTTGAGTGCTTGGACAGGTTAAGG ACGTTGAGTGCTTGGACAGGTTAAGG AACACTCATTACTGACACATGT				
16 MA16-2b 20,435,359 T C ACGTTGAGTGCTTGGACAGGTTAAGG ACGTTGAGTGCTTGGACAGGTTAAGG ATGGGAGTCTGAGG				
16 MA16-3 28,965,153 A C ACGTTGAGTGCTTGGACAGGTTAAGG ACGTTGAGTGCTTGGACAGGTTAAGG CCGGACTTTAAGGTCGCGCG				
16 MA16-4 32,748,201 G T ACGTTGAGTGCTTGGACAGGTTAAGG ACGTTGAGTGCTTGGACAGGTTAAGG GGAGTCAGTGTTGCTTACCT				
17 MA17-1 569,122 C T ACGTTGAGTGCTTGGACAGGTTAAGG ACGTTGAGTGCTTGGACAGGTTAAGG GCGCCCATACCTCCATATAC				
17 MA17-2 17,687,463 T A ACGTTGAGTGCTTGGACAGGTTAAGG ACGTTGAGTGCTTGGACAGGTTAAGG cccGGACACATTGACAGAACAT				
17 MA17-3 25,940,819 A C ACGTTGAGTGCTTGGACAGGTTAAGG ACGTTGAGTGCTTGGACAGGTTAAGG GCCCTCTGAGGTCGCTCTT				
17 MA17-4 31,650,745 A G ACGTTGAGTGCTTGGACAGGTTAAGG ACGTTGAGTGCTTGGACAGGTTAAGG GCGGACTTTAAGGTCGCGCG				
17 MA17-4c 31,650,869 A C ACGTTGAGTGCTTGGACAGGTTAAGG ACGTTGAGTGCTTGGACAGGTTAAGG GGGGATGTCAGTCACTGCTT				
18 MA18-1a unknown T C ACGTTGAGTGCTTGGACAGGTTAAGG ACGTTGAGTGCTTGGACAGGTTAAGG GGGGATGTCAGTCACTGCTT				
18 MA18-1c unknown G A ACGTTGAGTGCTTGGACAGGTTAAGG ACGTTGAGTGCTTGGACAGGTTAAGG TATACCTTCTTCTCTCTTCT				
18 MA18-2 4,497,261 T G ACGTTGAGTGCTTGGACAGGTTAAGG ACGTTGAGTGCTTGGACAGGTTAAGG GGTGTCTGAGGTCGCTGTAC				
18 MA18-2a 4,496,941 T C ACGTTGAGTGCTTGGACAGGTTAAGG ACGTTGAGTGCTTGGACAGGTTAAGG GCCTGATACGACGAAAA				
18 MA18-3 16,910,740 G A ACGTTGAGTGCTTGGACAGGTTAAGG ACGTTGAGTGCTTGGACAGGTTAAGG GGGGATGTCAGTCACTGCTT				
18 MA18-4 30,484,389 G G ACGTTGAGTGCTTGGACAGGTTAAGG ACGTTGAGTGCTTGGACAGGTTAAGG CCTGCAACATACGAC				
19 MA19-1 402,674 C T ACGTTGAGTGCTTGGACAGGTTAAGG ACGTTGAGTGCTTGGACAGGTTAAGG CCTCCATAGGTACTGAGGTC				
19 MA19-2 4,908,457 A T ACGTTGAGTGCTTGGACAGGTTAAGG ACGTTGAGTGCTTGGACAGGTTAAGG GGAGGCGGGCTGTTGCTGCG				
19 MA19-3 12,645,659 A G ACGTTGAGTGCTTGGACAGGTTAAGG ACGTTGAGTGCTTGGACAGGTTAAGG TGTCGCTCTGAGGGAAG				
19 MA19-4 24,786,905 T C ACGTTGAGTGCTTGGACAGGTTAAGG ACGTTGAGTGCTTGGACAGGTTAAGG CCCACATGTCAGGCTG				
20 MA20-1 410,661 A G ACGTTGAGTGCTTGGACAGGTTAAGG ACGTTGAGTGCTTGGACAGGTTAAGG GGGGATGTCAGTCACTGCTT				
20 MA20-2 14,179,255 T G ACGTTGAGTGCTTGGACAGGTTAAGG ACGTTGAGTGCTTGGACAGGTTAAGG TGGCCATCCGAAACAA				
Location	Sequence ID	Start Position	End Position	Base 1
----------	-------------	----------------	--------------	--------
20 MA20-3	20,498,732	G C	ACGTTGGATGCGCTGGAGGCTATGGAATG	ACGTTGGATGCGCTGGAGGCTATGGAATG
20 MA20-4	25,891,725	G A	ACGTTGGATGCGCTGGAGGCTATGGAATG	ACGTTGGATGCGCTGGAGGCTATGGAATG
20 MA20-4b	25,891,212	C G	ACGTTGGATGCGCTGGAGGCTATGGAATG	ACGTTGGATGCGCTGGAGGCTATGGAATG
20 MA20-4c	25,891,060	T G	ACGTTGGATGCGCTGGAGGCTATGGAATG	ACGTTGGATGCGCTGGAGGCTATGGAATG
21 MA21-1	100,766	A G	ACGTTGGATGCGCTGGAGGCTATGGAATG	ACGTTGGATGCGCTGGAGGCTATGGAATG
21 MA21-2	4,290,747	A T	ACGTTGGATGCGCTGGAGGCTATGGAATG	ACGTTGGATGCGCTGGAGGCTATGGAATG
21 MA21-3	23,999,437	C A	ACGTTGGATGCGCTGGAGGCTATGGAATG	ACGTTGGATGCGCTGGAGGCTATGGAATG
21 MA21-4	29,508,028	G A	ACGTTGGATGCGCTGGAGGCTATGGAATG	ACGTTGGATGCGCTGGAGGCTATGGAATG
21 MA21-4a	29,508,743	C A	ACGTTGGATGCGCTGGAGGCTATGGAATG	ACGTTGGATGCGCTGGAGGCTATGGAATG
21 MA21-4b	29,508,564	A G	ACGTTGGATGCGCTGGAGGCTATGGAATG	ACGTTGGATGCGCTGGAGGCTATGGAATG
22 MA22-1	232,558	G T	ACGTTGGATGCGCTGGAGGCTATGGAATG	ACGTTGGATGCGCTGGAGGCTATGGAATG
22 MA22-2	3,938,426	G A	ACGTTGGATGCGCTGGAGGCTATGGAATG	ACGTTGGATGCGCTGGAGGCTATGGAATG
22 MA22-3	20,007,790	C G	ACGTTGGATGCGCTGGAGGCTATGGAATG	ACGTTGGATGCGCTGGAGGCTATGGAATG
22 MA22-4	26,629,150	C T	ACGTTGGATGCGCTGGAGGCTATGGAATG	ACGTTGGATGCGCTGGAGGCTATGGAATG
23 MA23-1	257,391	A G	ACGTTGGATGCGCTGGAGGCTATGGAATG	ACGTTGGATGCGCTGGAGGCTATGGAATG
23 MA23-2	6,893,492	G C	ACGTTGGATGCGCTGGAGGCTATGGAATG	ACGTTGGATGCGCTGGAGGCTATGGAATG
23 MA23-3	20,116,004	T C	ACGTTGGATGCGCTGGAGGCTATGGAATG	ACGTTGGATGCGCTGGAGGCTATGGAATG
23 MA23-4	24,363,992	A T	ACGTTGGATGCGCTGGAGGCTATGGAATG	ACGTTGGATGCGCTGGAGGCTATGGAATG
23 MA23-4a	24,363,433	A G	ACGTTGGATGCGCTGGAGGCTATGGAATG	ACGTTGGATGCGCTGGAGGCTATGGAATG
24 MA24-1	1,102,453	C G	ACGTTGGATGCGCTGGAGGCTATGGAATG	ACGTTGGATGCGCTGGAGGCTATGGAATG
24 MA24-2	5,886,699	T C	ACGTTGGATGCGCTGGAGGCTATGGAATG	ACGTTGGATGCGCTGGAGGCTATGGAATG
24 MA24-3	17,144,745	G C	ACGTTGGATGCGCTGGAGGCTATGGAATG	ACGTTGGATGCGCTGGAGGCTATGGAATG
24 MA24-4	23,366,242	G C	ACGTTGGATGCGCTGGAGGCTATGGAATG	ACGTTGGATGCGCTGGAGGCTATGGAATG