FRACTIONAL HARDY–TYPE INEQUALITIES IN DOMAINS WITH PLUMP COMPLEMENT

DAVID E. EDMUNDS, RITVA HURRI-SYRJÄNEN, AND ANTTI V. VÄHÄKANGAS

Abstract. We establish fractional Hardy-type inequalities in a bounded domain with plump complement. In particular our results apply in bounded C^∞ domains and Lipschitz domains.

1. Introduction

Let Ω be a proper subdomain in \mathbb{R}^n, $n \geq 2$. Let $s \in (0,1)$ and let $p, q \in (1, \infty)$ be given such that $0 < 1/p - 1/q < s/n$. We investigate the inequality

\[\int_\Omega \frac{|u(x)|^q}{\text{dist}(x, \partial \Omega)^q(s+n(1/q-1/p))} dx \leq c \left(\int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{|u(x) - u(y)|^p}{|x-y|^{ps+n}} dy dx \right)^{q/p} \]

for every $u \in W^{s,p}(\mathbb{R}^n)$ with $\text{spt} u \subset \overline{\Omega}$; here the finite constant c depends only on s, n, p, q, Ω. Our work was motivated by the following fractional order inequality

\[\int_\Omega \frac{|u(x)|^p}{\text{dist}(x, \partial \Omega)^p} dx \leq c \int_\Omega \int_\Omega \frac{|u(x) - u(y)|^p}{|x-y|^{ps+n}} dy dx \]

for all $u \in C_0(\Omega)$ with a finite constant c which depends only on s, n, p, Ω. B. Dyda proved that inequality (1.2) holds in Ω with $p > 0$, if one of the following conditions is valid:

1. if Ω is a bounded Lipschitz domain and $sp > 1$,
2. if Ω is a complement of a bounded Lipschitz domain and $sp \in (0, \infty) \setminus \{1, n\}$,
3. if Ω is a complement of a point and $sp \in (0, \infty) \setminus \{n\},$

Date: February 20, 2012.

2010 Mathematics Subject Classification. 46E35 (26D10).

Key words and phrases. fractional Hardy-type inequality, domain with plump complement, Lipschitz domain, C^∞ domain.

A. V. V. was supported by the Academy of Finland, grants 75166001 and 1134757, and by the Finnish Academy of Science and Letters, Vilho, Yrjö and Kalle Väisälä Foundation.
(4) if Ω is a domain above the graph of a Lipschitz function $\mathbb{R}^{n-1} \to \mathbb{R}$ and $sp \in (0, \infty) \setminus \{1\},$

[D, Theorem 1.1]. He showed also that inequality (1.2) is false if Ω is a bounded Lipschitz domain with $sp \leq 1$ and $s < 1.$ Inequality (1.2) was proved for convex domains when $1 < p < \infty$ and $1/p < s < 1$ by M. Loss and C. A. Sloane, [LS, Theorem 1.2]. Inequality (1.2) holds in a half-space whenever $0 < s < 1, sp \neq 1, 1 \leq p < \infty,$ by R. L. Frank and R. Seiringer [FS, Theorem 1.1]; the $p = 2$-case was considered in [BD, Theorem 1.1].

We prove fractional Hardy-type inequalities (1.1) in a bounded domain whose complement is plump in the sense of the following definition. The open and closed n-dimensional Euclidean balls, centered at a point x and with radius $r > 0,$ are denoted by $B_n(x, r)$ and $\overline{B}_n(x, r),$ respectively.

1.3. **Definition.** Let $n \geq 2$ and $\eta \geq 1.$ A set A in \mathbb{R}^n is **η-plump** if for all $x \in \overline{A}$ and all $r \in (0, \text{diam}(A))$ there is a point z in $B_n(x, r)$ with $B_n(z, r/\eta) \subset A.$

The following is our main theorem.

1.4. **Theorem.** Suppose that Ω is a bounded domain in $\mathbb{R}^n,$ $n \geq 2,$ with an η-plump complement $\mathbb{R}^n \setminus \Omega, \eta \geq 1.$ Let $s \in (0, 1)$ and let $p, q \in (1, \infty).$ If $0 < 1/p - 1/q < s/n,$ then

$$
\left(\int_{\Omega} \frac{|u(x)|^q}{\text{dist}(x, \partial \Omega)^{q(s+n(1/q-1/p))}} dx \right)^{1/q} \\
\leq c_{s,n,p,q} \eta^{2n/q+s-n/p} \left(\int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{|u(x) - u(y)|^p}{|x-y|^{sp+n}} dy \ dx \right)^{1/p}
$$

for every $u \in W^{s,p}(\mathbb{R}^n)$ with $\text{spt} \ u \subset \overline{\Omega}.$

Examples of bounded domains with η-plump complement include Lipschitz domains and convex domains. More examples are obtained by using K-quasiconformal mappings $f : \mathbb{R}^n \to \mathbb{R}^n.$ If Ω in \mathbb{R}^n is a bounded domain with an η-plump complement, then the image $f\Omega$ is also bounded and has a μ-plump complement, where μ depends on n, K and η only, see e.g. [V, Theorem 6.6].

We give applications of Theorem 1.4 in Section 4.
2. Notation and auxiliary results

The Lebesgue measure of a measurable set E in \mathbb{R}^n is written as $|E|$. For a measurable set E, with a finite and positive measure, we write
\[\int_E f(x) \, dx = \frac{1}{|E|} \int_E f(x) \, dx. \]

We write χ_E for the characteristic function of a set E.

Let Ω be a bounded domain in \mathbb{R}^n, $n \geq 2$, and let \mathcal{W} be its Whitney decomposition. For the properties of Whitney cubes $Q \in \mathcal{W}$. We refer to E. M. Stein's book, [S]. In particular, we need the inequalities
\[\text{diam}(Q) \leq \text{dist}(Q, \partial \Omega) \leq 4 \text{diam}(Q), \quad Q \in \mathcal{W}. \]

We let $Q \in \mathcal{W}$ be a cube with center x_Q and side length $\ell(Q)$. By tQ, $t > 0$, we mean a cube with sides parallel to those of Q that is centered at x_Q and whose side length is $t\ell(Q)$.

We recall definition of the fractional order Sobolev spaces in a domain Ω in \mathbb{R}^n. For $1 \leq p < \infty$ and $s \in (0, 1)$ we let $W^{s,p}(\Omega)$ be the collection of all functions f in $L^p(\Omega)$ with
\[|f|_{W^{s,p}(\Omega)} := \left(\int_{\Omega} \int_{\Omega} \frac{|u(x) - u(y)|^p}{|x - y|^{sp+\eta}} \, dx \, dy \right)^{1/p}, \]
where $\eta = sp_n/n$. The support of a function $f : \mathbb{R}^n \to \mathbb{C}$ is denoted by $\text{spt} f$, and it is the closure of the set $\{x : f(x) \neq 0\}$ in \mathbb{R}^n.

The notation $a \lesssim b$ mean that an inequality $a \leq cb$ holds for some constant $c > 0$ whose exact value is not important. We use subscripts to indicate the dependence on parameters, for example, a quantity c_d depends on a parameter d.

We state fractional Sobolev–Poincaré inequalities for a cube.

2.2. Lemma. Let Q be a cube in \mathbb{R}^n, $n \geq 2$. Suppose that $p, q \in [1, \infty)$, and $s \in (0, 1)$ satisfy $0 \leq 1/p - 1/q < s/n$. Then, for every $u \in L^p(Q)$,
\[\frac{1}{|Q|} \int_Q |u(x) - u_Q|^q \, dx \leq c|Q|^{sp/q - q/p} \left(\int_Q \int_Q \frac{|u(x) - u(y)|^p}{|x - y|^{n+sp}} \, dy \, dx \right)^{q/p}. \]
Here the constant $c > 0$ is independent of Q and u.

Proof. The inequality follows from [H-SV, Remark 4.14], when $Q = [-1/2, 1/2]^n$. A change of variables gives the general case. \qed

Let $0 < \sigma < d$. The Riesz potential of a function f is given by
\[I_\sigma f(x) = \int_{\mathbb{R}^d} \frac{f(y)}{|x - y|^{d-\sigma}} \, dy. \]

The following theorem is from [He, Theorem 1].
2.3. **Theorem.** Suppose that $0 < \sigma < d$ and let $p, q \in (1, \infty)$. If

$$0 < 1/p - 1/q = \sigma/d,$$

then there is a constant $c > 0$ such that inequality $\|I_\sigma(f)\|_q \leq c\|f\|_p$ holds for every $f \in L^p(\mathbb{R}^d)$.

Recall from [A] that the fractional maximal function of a locally integrable function $f : \mathbb{R}^d \to [-\infty, \infty]$ is

$$M_\sigma f(x) = \sup_{r>0} \frac{r^\sigma}{|B^d(x, r)|} \int_{B^d(x, r)} |f(y)| dy.$$

If Q is a cube in \mathbb{R}^d and $x \in Q$, then

$$\frac{\ell(Q)^\sigma}{|Q|} \int_Q |f(y)| dy \leq c_d M_\sigma f(x).$$

Since $0 < \sigma < d$, there is a constant $c_d > 0$ such that

$$M_\sigma f(x) \leq c_d I_\sigma |f|(x)$$

for every $x \in \mathbb{R}^d$.

2.6. **Lemma.** Let Ω be a bounded domain in \mathbb{R}^n, $n \geq 2$, and let \mathcal{W} be its Whitney decomposition. Suppose that $1 < r < p < q < \infty$ and $\kappa \geq 1$. Then

$$\sum_{Q \in \mathcal{W}} |\kappa Q|^{2\beta} \left(\int_{\kappa Q} \int_{\kappa Q} |g(x, y)| \, dx \, dy \right)^t$$

$$\leq c_{n, r, p, q, \kappa} \left(\int_{\mathbb{R}^n \times \mathbb{R}^n} |g(x, y)|^s \, dx \, dy \right)^{t/s}$$

for every $g \in L^s(\mathbb{R}^n \times \mathbb{R}^n)$, where $s = p/r$, $t = q/r$ and $\beta = t/s = q/p$.

Proof. The fractional maximal function M_σ and the Riesz potential I_σ are both associated with \mathbb{R}^d. Throughout this proof $d = 2n$ and $\sigma = 2n(\beta - 1)/t$.

Let us rewrite the left hand side of inequality (2.7) as

$$LHS = \kappa^n \sum_{Q \in \mathcal{W}} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \chi_{\kappa Q}(z) \chi_{\kappa Q}(w)$$

$$\left(\frac{\ell(\kappa Q)^{2n(\beta - 1)/t}}{|\kappa Q|} \int_{\kappa Q} \frac{1}{|\kappa Q|} \int_{\kappa Q} |g(x, y)| \, dx \, dy \right)^t \, dz \, dw.$$
D. E. Edmunds, R. Hurri-Syrjänen, and A. V. Vähäkangas

By (2.4) with \((z, w) \in \kappa Q \times Q \subset \kappa Q \times \kappa Q \subset \mathbb{R}^d\) and by (2.5)

\[
\kappa^{-n}LHS \lesssim \sum_{Q \in \mathcal{W}} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \chi_{\kappa Q}(z)\chi_Q(w) [\mathcal{M}_\sigma g(z, w)]^t \, dz \, dw
\]

\[
\lesssim \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} [\mathcal{M}_\sigma g(z, w)]^t \, dz \, dw
\]

\[
\lesssim \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} [I_\sigma |g|(z, w)]^t \, dz \, dw.
\]

Since \(1 < s = p/r < t = q/r < \infty\) and

\[
\frac{r}{p} - \frac{r}{q} = \beta - 1 = \frac{\sigma}{2n},
\]

we obtain \(0 < 1/s - 1/t = \sigma/2n < 1\). Hence, Theorem 2.3 yields the right hand side of inequality (2.7). \(\square\)

3. A Proof of Theorem 1.4

We prove a fractional Hardy-type inequality in a domain \(\Omega\) whose complement is \(\eta\)-plump.

Proof of Theorem 1.4. By [V, Theorem 3.52] and inequalities (2.1) we see that for every \(Q \in \mathcal{W}\) there is a closed cube \(Q^*\) in \(\mathbb{R}^n\) such that

\(Q^* \subset \mathbb{R}^n \setminus \bar{\Omega}, \ \text{diam}(Q) = \text{diam}(Q^*), \ \text{dist}(Q, Q^*) \leq 15\eta \text{diam}(Q)\).

We write \(Q^* := \kappa Q\) for the dilated cube of \(Q\) having the same centre as \(Q\) and side length \(\kappa \ell(Q), \ \kappa = 40\eta \sqrt{n}\). The triangle inequality implies that \(Q^* \subset Q^*\). Let

\[
(3.1) \quad \alpha = s + n/q - n/p > 0.
\]

Suppose that \(u \in W^{s,p}(\mathbb{R}^n)\) has support in \(\bar{\Omega}\). By (2.1),

\[
\int_{\Omega} \frac{|u(x)|^q}{\text{dist}(x, \partial \Omega)^{\alpha q}} \, dx \leq \sum_{Q \in \mathcal{W}} \text{diam}(Q)^{-\alpha q} \int_{Q} |u(x) - u_{Q^*}|^q \, dx.
\]

For a given \(Q \in \mathcal{W}\) the inclusion \(Q \subset Q^*\) yields

\[
\int_{Q} |u(x) - u_{Q^*}|^q \, dx \lesssim \int_{Q^*} |u(x) - u_{Q^*}|^q \, dx + |Q||u_{Q^*} - u_{Q^*}|^q
\]

Since \(|Q| = |Q^*|\) and \(Q^* \subset Q^*\), we obtain

\[
|Q||u_{Q^*} - u_{Q^*}|^q = \int_{Q^*} |u_{Q^*} - u_{Q^*}|^q \, dx
\]

\[
\lesssim \int_{Q^*} |u(x) - u_{Q^*}|^q \, dx + \int_{Q^*} |u(x) - u_{Q^*}|^q \, dx.
\]
Because \(0 < 1/p - 1/q < s/n\), there is a number \(r \in (1, p)\) such that
\[
\mu = n(1/p - 1/r) + s \in (0, s)
\]
and \(0 < 1/r - 1/q < \mu/n\). Application of Lemma 2.2 to the cubes \(Q^*\) and \(Q^s\) yields
\[
\int_Q |u(x) - u_{Q^s}|^q \, dx \lesssim |Q^*|^{1+\mu n/q - r/q} \left(\int_{Q^*} \int_{Q^*} \frac{|u(x) - u(y)|^r}{|x - y|^{n+\mu r}} \, dy \, dx \right)^{q/r}.
\]
Hence,
\[
\int_{\Omega} \frac{|u(x)|^q}{\text{dist}(x, \partial \Omega)^{\alpha q}} \, dx \lesssim \sum_{Q \in \mathcal{W}} \text{diam}(Q)^{-\alpha q} \int_Q |u(x) - u_{Q^s}|^q \, dx
\]
\[
\lesssim \eta^{\alpha q} \sum_{Q \in \mathcal{W}} |Q^*|^{1+\mu n/s - 1/r - \alpha/n} \left(\int_{Q^*} \int_{Q^*} \frac{|u(x) - u(y)|^r}{|x - y|^{n+\mu r}} \, dy \, dx \right)^{q/r}
\]
\[
\lesssim \eta^{\alpha q} \sum_{Q \in \mathcal{W}} |Q^*|^{1+\mu n/s + 1/r - \alpha/n} \left(\int_{Q^*} \int_{Q^*} \frac{|u(x) - u(y)|^r}{|x - y|^{n+\mu r}} \, dy \, dx \right)^{q/r}.
\]
Equations (3.1) and (3.2) imply that
\[
1 + q(\mu/n + 1/r - \alpha/n) = 2q/p.
\]
Hence, Lemma 2.6 yields
\[
\int_{\Omega} \frac{|u(x)|^q}{\text{dist}(x, \partial \Omega)^{\alpha q}} \, dx \lesssim \eta^{\alpha q} \sum_{Q \in \mathcal{W}} |Q^*|^{2q/p} \left(\int_{Q^*} \int_{Q^*} \frac{|u(x) - u(y)|^r}{|x - y|^{n+\mu r}} \, dy \, dx \right)^{q/r}
\]
\[
\lesssim \eta^{q+n} \left(\int_{\mathbb{R}^n \times \mathbb{R}^n} \frac{|u(x) - u(y)|^p}{|x - y|^{p\alpha + n}} \, dx \, dy \right)^{q/p}.
\]
Since \(\alpha q + n = 2n + q(s - n/p)\), the claim follows. \(\square\)

4. Applications of Theorem 1.4

Let us begin with certain function spaces. The usual Besov space \(B^s_{p,p}(\mathbb{R}^n)\) coincides with the Sobolev space \(W^{s,p}(\mathbb{R}^n)\), [T2, pp. 6–7]. Hence, we may define
\[
\tilde{B}^s_{p,p}(\Omega) = \{ u \in W^{s,p}(\mathbb{R}^n) : \text{spt } u \subset \overline{\Omega} \},
\]
\[
\|u\|_{\tilde{B}^s_{p,p}(\Omega)} = \|u\|_{W^{s,p}(\mathbb{R}^n)}.
\]

(4.1)
The following corollary follows immediately from Theorem 1.4.

4.2. **Corollary.** Suppose that Ω is a bounded domain in \mathbb{R}^n, $n \geq 2$, with an η-plump complement $\mathbb{R}^n \setminus \Omega$, $\eta \geq 1$. Let $s \in (0, 1)$ and $p, q \in (1, \infty)$. If $0 < 1/p - 1/q < s/n$, then

$$
\left(\int_{\Omega} \frac{|u(x)|^q}{\text{dist}(x, \partial \Omega)^{eq+n(1-q/p)}} \, dx \right)^{1/q} \leq c_{s,n,p,q}\eta^{2n/q+s-n/p}||u||_{\tilde{B}_{sp}(\Omega)}
$$

for every $u \in \tilde{B}_{sp}(\Omega)$.

Related Hardy inequalities for a wider scale of Triebel–Lizorkin and Besov spaces $\tilde{F}_{pq}^s(\Omega)$ and $\tilde{B}_{pq}^s(\Omega)$, respectively, have been considered in [T1]. The novelty in our result is that we only require the complement of Ω in \mathbb{R}^n to be η-plump.

Let us study the validity of an intrinsic Hardy-type inequality. We focus on bounded Lipschitz domains and C^∞ domains in \mathbb{R}^n, [T3, p. 64]. In both cases, the complement of Ω in \mathbb{R}^n is η-plump for some $\eta \geq 1$.

The following corollary applies to all $u \in W^{s,p}(\Omega)$ but is restricted to the case $0 < s < 1/p$.

4.3. **Corollary.** Let Ω be a bounded Lipschitz domain in \mathbb{R}^n, $n \geq 2$. Let $p, q \in (1, \infty)$ and $s \in (0, 1/p)$. If $0 < 1/p - 1/q < s/n$, then there is a constant $c > 0$ such that the inequality

$$
\left(\int_{\Omega} \frac{|u(x)|^q}{\text{dist}(x, \partial \Omega)^{eq+n(1-q/p)}} \, dx \right)^{1/q} \leq c||u||_{L^p(\Omega)} + c \left(\int_{\Omega} \int_{\Omega} \frac{|u(x) - u(y)|^p}{|x - y|^{sp+n}} \, dx \, dy \right)^{1/p} = c||u||_{W^{s,p}(\Omega)}
$$

holds for all $u \in W^{s,p}(\Omega)$.

Proof. Since $B_{sp}(\mathbb{R}^n) = W^{s,p}(\mathbb{R}^n)$ the usual Besov space $B_{sp}(\Omega)$ can be defined by

$$
B_{sp}(\Omega) = \{ f \in L^p(\Omega) : f = g|\Omega \text{ for some } g \in W^{s,p}(\mathbb{R}^n) \}, ~ ~ ~ ||f||_{B_{sp}(\Omega)} = \inf ||g||_{W^{s,p}(\mathbb{R}^n)},
$$

where the infimum is taken over all functions $g \in W^{s,p}(\mathbb{R}^n)$, $g|\Omega = f$.

In the following two identifications we assume that Ω is a bounded Lipschitz domain. First,

$$
\tilde{B}_{sp}(\Omega) = B_{sp}(\Omega)
$$

with equivalent norms, (4.1) and [T3, p. 66]. The spaces $B_{sp}(\Omega)$ and $W^{s,p}(\Omega)$ coincide and the norms are equivalent, [DS, Theorem 6.7] and
Fractional Hardy-type inequalities

[T3, Theorem 1.118]. Inequality (4.4) is therefore a consequence of Corollary 4.2. □

The assumption $0 < s < 1/p$ can be relaxed if we restrict the boundary behavior of functions. We state the following corollary.

4.5. Corollary. Suppose that Ω is a bounded C^∞ domain in \mathbb{R}^n, $n \geq 2$. Let $p, q \in (1, \infty)$ and $s \in (0, 1)$, $s \neq 1/p$. If $0 < 1/p - 1/q < s/n$, then there is a constant $c > 0$ such that the inequality

$$
\left(\int_{\Omega} \frac{|u(x)|^q}{\text{dist}(x, \partial \Omega)^{sq+n(1-q/p)}} \, dx \right)^{1/q} \leq c \|u\|_{L^p(\Omega)} + c \left(\int_{\Omega} \int_{\Omega} \frac{|u(x) - u(y)|^p}{|x - y|^{sp+n}} \, dx \, dy \right)^{1/p} = c \|u\|_{W^{s,p}(\Omega)}
$$

holds for all $u \in W^{s,p}_0(\Omega) := C_0^\infty(\Omega)^{W^{s,p}(\Omega)}$.

Proof. Observe that Ω is also a bounded Lipschitz domain in \mathbb{R}^n. Hence, reasoning as in the proof of Corollary 4.3 yields $W^{s,p}(\Omega) = B^s_{pp}(\Omega)$ and, consequently,

$$
W^{s,p}_0(\Omega) = C_0^\infty(\Omega)^{B^s_{pp}(\Omega)} = \tilde{B}^s_{pp}(\Omega).
$$

Because $s \neq 1/p$,

$$
B^s_{pp}(\Omega) = \tilde{B}^s_{pp}(\Omega);
$$

we refer to [T3, pp. 66-67]. Inequality (4.6) follows from these facts and Corollary 4.2. □

REFERENCES

[A] David R. Adams, A note on Riesz potentials, Duke Math. J., 42 (1975), 765–778.

[BD] Krzysztof Bogdan and Bartłomiej Dyda, The best constant in a fractional order Hardy inequality, Math. Nachr., 284 (2011), 629–638.

[DS] Ronald A. DeVore and Robert C. Sharpley, Besov spaces on domains in \mathbb{R}^d, Trans. Amer. Math. Soc., 335 (1993), 843–864.

[D] Bartłomiej Dyda, A fractional order Hardy inequality, Illinois J. Math., 48 (2004), 575–588.

[FS] Rupert L. Frank and Robert Seiringer, Sharp Fractional Hardy Inequalities in Half-Spaces, Around the Research of Vladimir Maz’ya, Function Spaces, Partial Differential Equations, Analysis and Applications, ed. A. Laptev, 151–157, Springer, 2010.

[He] Lars Inge Hedberg, On certain convolution inequalities, Proc. Amer. Math. Soc., 36 (1972), 505–510.

[H-SV] Ritva Hurri-Syrjänen and Antti V. Vähäkangas, On fractional Poincaré inequalities, arXiv:1111.3604 (2011).
Michael Loss and Craig A. Sloane, *Hardy inequalities for fractional integrals on general domains*, J. Funct. Anal., 259 (2010), 1369–1379.

Elias M. Stein, *Singular integrals and differentiability properties of functions*, Princeton Univ. Press, Princeton, New Jersey, 1970.

Hans Triebel, *Hardy inequalities in function spaces*, Math. Bohem., 124 (1999), 123–130.

Hans Triebel, *Theory of Function Spaces II*, Basel, Birkhäuser, 1992.

Hans Triebel, *Theory of Function Spaces III*, Basel, Birkhäuser, 2006.

Antti V. Vähäkangas, *Boundedness of weakly singular integral operators on domains*, Ann. Acad. Sci. Fenn. Math. Diss., 153 (2009).

(D. E. E.) Department of Mathematics, Pevensey II Building, University of Sussex, Falmer, Brighton BN1 9QH, U.K.

E-mail address: davideedmunds@aol.com

(R. H.-S.) University of Helsinki, Department of Mathematics and Statistics, Gustaf Hällströmin katu 2 b, FI-00014 University of Helsinki, Finland.

E-mail address: ritva.hurri-syrjanen@helsinki.fi

(A. V. V.) University of Helsinki, Department of Mathematics and Statistics, Gustaf Hällströmin katu 2 b, FI-00014 University of Helsinki, Finland.

E-mail address: antti.vahakangas@helsinki.fi