WELL-POSEDNESS AND SCATTERING FOR NONLINEAR SCHRÖDINGER EQUATIONS WITH A DERIVATIVE NONLINEARITY AT THE SCALING CRITICAL REGULARITY

HIROYUKI HIRAYAMA
Graduate School of Mathematics, Nagoya University
Chikusa-ku, Nagoya, 464-8602, Japan

Abstract. In the present paper, we consider the Cauchy problem of nonlinear Schrödinger equations with a derivative nonlinearity which depends only on \(u \). The well-posedness of the equation at the scaling subcritical regularity was proved by A. Grünrock (2000). We prove the well-posedness of the equation and the scattering for the solution at the scaling critical regularity by using \(U^2 \) space and \(V^2 \) space which are applied to prove the well-posedness and the scattering for KP-II equation at the scaling critical regularity by Hadac, Herr and Koch (2009).

1. Introduction

We consider the Cauchy problem of the nonlinear Schrödinger equations:

\[
\begin{cases}
(i\partial_t + \Delta)u = \partial_k (u^m), & (t, x) \in (0, \infty) \times \mathbb{R}^d \\
u(0, x) = u_0(x), & x \in \mathbb{R}^d
\end{cases}
\]

(1.1)

where \(m \in \mathbb{N}, \ m \geq 2, \ 1 \leq k \leq d, \ \partial_k = \partial/\partial x_k \) and the unknown function \(u \) is \(\mathbb{C} \)-valued. (1.1) is invariant under the following scaling transformation:

\[u_\lambda(t, x) = \lambda^{-1/(m-1)}u(\lambda^{-2}t, \lambda^{-1}x), \]

and the scaling critical regularity is \(s_c = d/2 - 1/(m-1) \). The aim of this paper is to prove the well-posedness and the scattering for the solution of (1.1) in the scaling critical Sobolev space.

First, we introduce some known results for related problems. The nonlinear term in (1.1) contains a derivative. A derivative loss arising from the nonlinearity makes
the problem difficult. In fact, Mizohata ([19]) proved that a necessary condition for
the L^2 well-posedness of the problem:
\[
\begin{align*}
 &i\partial_t u - \Delta u = b_1(x) \cdot \nabla u, \ t \in \mathbb{R}, \ x \in \mathbb{R}^d, \\
 &u(0, x) = u_0(x), \ x \in \mathbb{R}^d
\end{align*}
\]
is the uniform bound
\[
\sup_{x \in \mathbb{R}^n, \omega \in S^{n-1}, R > 0} \left| \Re \int_0^R b_1(x + r\omega) \cdot \omega dr \right| < \infty.
\]
Furthermore, Christ ([6]) proved that the flow map of the Cauchy problem:
\[
\begin{align*}
 &i\partial_t u - \partial_x^2 u = u\partial_x u, \ t \in \mathbb{R}, \ x \in \mathbb{R}, \\
 &u(0, x) = u_0(x), \ x \in \mathbb{R}
\end{align*}
\]
is not continuous on H^s for any $s \in \mathbb{R}$. While, Ozawa ([20]) proved that the local
well-posedness of (1.2) in the space of all function $\phi \in H^1$ satisfying the bounded
condition
\[
\sup_{x \in \mathbb{R}} \int_{-\infty}^{x} \phi \ < \infty.
\]
Furthermore, he proved that if the initial data ϕ satisfies some condition, then the
local solution can be extend globally in time and the solution scatters. For the
Cauchy problem of the one dimensional derivative Schrödinger equation:
\[
\begin{align*}
 &i\partial_t u + \partial_x^2 u = i\lambda \partial_x (|u|^2 u), \ t \in \mathbb{R}, \ x \in \mathbb{R}, \\
 &u(0, x) = u_0(x), \ x \in \mathbb{R}
\end{align*}
\]
Takaoka ([22]) proved the local well-posedness in H^s for $s \geq 1/2$ by using the
gauge transform. This result was extended to global well-posedness ([8], [9], [18],
[23]). While, ill-posedness of (1.3) was obtained for $s < 1/2$ ([1], [23]). Hao ([13])
considered the Cauchy problem:
\[
\begin{align*}
 &i\partial_t u - \partial_x^2 u + i\lambda |u|^k \partial_x u, \ t \in \mathbb{R}, \ x \in \mathbb{R}, \\
 &u(0, x) = u_0(x), \ x \in \mathbb{R}
\end{align*}
\]
for $k \geq 5$ and obtained local well-posedness in $H^{1/2}$. For more general problem:
\[
\begin{align*}
 &i\partial_t u - \Delta u = P(u, \nabla u, \nabla^2 u), \ t \in \mathbb{R}, \ x \in \mathbb{R}^d, \\
 &u(0, x) = u_0(x), \ x \in \mathbb{R}^d
\end{align*}
\]
P is a polynomial which has no constant and linear terms,
there are many positive results for the well-posedness in the weighted Sobolev space
([2], [3], [4], [5], [16], [21]). Kenig, Ponce and Vega ([16]) also obtained that (1.5)
is locally well-posed in H^s (without weight) for large enough s when P has no quadratic terms.

The Benjamin–Ono equation:

$$\partial_t u + H\partial^2_x u = u\partial_x u, \quad (t, x) \in \mathbb{R} \times \mathbb{R}$$

(1.6)
is also related to the quadratic derivative nonlinear Schrödinger equation. It is known that the flow map of (1.6) is not uniformly continuous on H^s for $s > 0$ ([17]). But the Benjamin–Ono equation has better structure than the equation (1.2). Actually, Tao ([24]) proved that (1.6) is globally well-posed in H^1 by using the gauge transform. Furthermore, Ionescu and Kenig ([15]) proved that (1.6) is globally well-posed in H^{s_r} for $s \geq 0$, where H^{s_r} is the Banach space of the all real valued function $f \in H^s$.

Next, we introduce some known results for (1.1). Grünrock ([10]) proved that (1.1) is locally well-posed in L^2 when $d = 1$, $m = 2$ and in H^s for $s > s_c$ when $d \geq 1$, $m + d \geq 4$. Recently, the author ([14]) proved that (1.1) with $d \geq 2$, $m = 2$ is globally well-posed for small data in H^{s_c} (also in \dot{H}^{s_c}) and the solution scatters.

The results are an extension of the results by Grünrock ([10]) for $d \geq 2$, $m = 2$. The main results in this paper are an extension of the results by Grünrock ([10]) for $d \geq 1$, $m \geq 3$.

Now, we give the main results in the present paper. For a Banach space H and $r > 0$, we define $B_r(H) := \{f \in H \mid \|f\|_H \leq r\}$.

Theorem 1.1. Assume $d \geq 1$, $m \geq 3$.

(i) The equation (1.1) is globally well-posed for small data in \dot{H}^{s_c}. More precisely, there exists $r > 0$ such that for all initial data $u_0 \in B_r(\dot{H}^{s_c})$, there exists a solution

$$u \in \dot{Z}^{s_c}_r([0, \infty)) \subset C([0, \infty); \dot{H}^{s_c})$$

of (1.1) on $(0, \infty)$. Such solution is unique in $\dot{Z}^{s_c}_r([0, \infty))$ which is a closed subset of $\dot{Z}^{s_c}([0, \infty))$ (see Definition 1.4 and (4.3)). Moreover, the flow map

$$S_+ : B_r(\dot{H}^{s_c}) \ni u_0 \mapsto u \in \dot{Z}^{s_c}_r([0, \infty))$$

is Lipschitz continuous.

(ii) The statement in (i) remains valid if we replace the space \dot{H}^{s_c}, $\dot{Z}^{s_c}([0, \infty))$ and $\dot{Z}^{s_c}_r([0, \infty))$ by H^s, $Z^s([0, \infty))$ and $Z^s_r([0, \infty))$ for $s \geq s_c$.

Remark 1.1. Due to the time reversibility of the system (1.1), the above theorems also hold in corresponding intervals $(-\infty, 0)$. We denote the flow map with $t \in (-\infty, 0)$ by S_-.
Corollary 1.2. Assume $d \geq 1$, $m \geq 3$.

(i) Let $r > 0$ be as in Theorem 1.1. For every $u_0 \in B_r(\dot{H}^{s_c})$, there exists $u_\pm \in \dot{H}^{s_c}$ such that
\[S_\pm(u_0) - e^{it\Delta}u_\pm \to 0 \text{ in } \dot{H}^{s_c} \text{ as } t \to \pm \infty. \]

(ii) The statement in (i) remains valid if we replace the space \dot{H}^{s_c} by H^s for $s \geq s_c$.

The main tools of our results are U_p space and V_p space which are applied to prove the well-posedness and the scattering for KP-II equation at the scaling critical regularity by Hadac, Herr and Koch ([11], [12]).

Notation. We denote the spatial Fourier transform by $\hat{\cdot}$ or \mathcal{F}_x, the Fourier transform in time by \mathcal{F}_t and the Fourier transform in all variables by $\hat{\cdot}$ or \mathcal{F}_{tx}. The free evolution $e^{it\Delta}$ on L^2 is given as a Fourier multiplier
\[\mathcal{F}_x[e^{it\Delta}f](\xi) = e^{-it|\xi|^2} \hat{f}(\xi). \]

We will use $A \lesssim B$ to denote an estimate of the form $A \leq CB$ for some constant C and write $A \sim B$ to mean $A \lesssim B$ and $B \lesssim A$. We will use the convention that capital letters denote dyadic numbers, e.g. $N = 2^n$ for $n \in \mathbb{Z}$ and for a dyadic summation we write $\sum_N a_N := \sum_{n \in \mathbb{Z}} a_{2^n}$ and $\sum_{N \geq M} a_N := \sum_{n \in \mathbb{Z}, 2^n \geq M} a_{2^n}$ for brevity. Let $\chi \in C_0^\infty((-2, 2))$ be an even, non-negative function such that $\chi(t) = 1$ for $|t| \leq 1$. We define $\psi(t) := \chi(t) - \chi(2t)$ and $\psi_N(t) := \psi(N^{-1}t)$. Then, $\sum_N \psi_N(t) = 1$ whenever $t \neq 0$. We define frequency and modulation projections
\[\widehat{P}_N u(\xi) := \psi_N(\xi)\hat{u}(\xi), \quad \widehat{Q}_M^{\Delta} u(\tau, \xi) := \psi_M(\tau + |\xi|^2)\hat{u}(\tau, \xi). \]
Furthermore, we define $Q_{\geq M} := \sum_{N \geq M} Q_N^\Delta$ and $Q_{< M} := I_d - Q_{\geq M}$.

The rest of this paper is planned as follows. In Section 2, we will give the definition and properties of the U_p space and V_p space. In Sections 3, we will give the multilinear estimates which are main estimates in this paper. In Section 4, we will give the proof of the well-posedness and the scattering (Theorems 1.1 and Corollary 1.2).

2. U_p, V_p spaces and their properties

In this section, we define the U_p space and the V_p space, and introduce the properties of these spaces which are proved by Hadac, Herr and Koch ([11], [12]).

We define the set of finite partitions \mathcal{Z} as
\[\mathcal{Z} := \{ \{t_k\}_{k=0}^K | K \in \mathbb{N}, -\infty < t_0 < t_1 < \cdots < t_K \leq \infty \} \]
and if $t_K = \infty$, we put $v(t_K) := 0$ for all functions $v : \mathbb{R} \to L^2$.

Definition 1. Let $1 \leq p < \infty$. For $\{t_k\}_{k=0}^K \in \mathbb{Z}$ and $\{\phi_k\}_{k=0}^{K-1} \subset L^2$ with $\sum_{k=0}^{K-1} ||\phi_k||_{L^2}^p = 1$ we call the function $a : \mathbb{R} \to L^2$ given by

$$a(t) = \sum_{k=1}^{K} 1_{[t_{k-1},t_k)}(t)\phi_{k-1}$$

a “U^p-atom”. Furthermore, we define the atomic space

$$U^p := \left\{ u = \sum_{j=1}^{\infty} \lambda_j a_j \middle| a_j : U^p\text{-atom}, \lambda_j \in \mathbb{C} \text{ such that } \sum_{j=1}^{\infty} |\lambda_j| < \infty \right\}$$

with the norm

$$||u||_{U^p} := \inf \left\{ \sum_{j=1}^{\infty} |\lambda_j| \middle| u = \sum_{j=1}^{\infty} \lambda_j a_j, a_j : U^p\text{-atom}, \lambda_j \in \mathbb{C} \right\}.$$

Definition 2. Let $1 \leq p < \infty$. We define the space of the bounded p-variation

$$V^p := \{ v : \mathbb{R} \to L^2 | ||v||_{V^p} < \infty \}$$

with the norm

$$||v||_{V^p} := \sup_{\{t_k\}_{k=0}^{K} \in \mathbb{Z}} \left(\sum_{k=1}^{K} ||v(t_k) - v(t_{k-1})||_{L^2}^p \right)^{1/p}.$$

Likewise, let $V_{p, rc}^p$ denote the closed subspace of all right-continuous functions $v \in V^p$ with $\lim_{t \to -\infty} v(t) = 0$, endowed with the same norm $|| \cdot ||_{V^p}$.

Proposition 2.1 ([11] Proposition 2.2, 2.4, Corollary 2.6). Let $1 \leq p < q < \infty$.

(i) U^p, V^p and $V_{p, rc}^p$ are Banach spaces.

(ii) For every $v \in V^p$, $\lim_{t \to -\infty} v(t)$ and $\lim_{t \to \infty} v(t)$ exist in L^2.

(iii) The embeddings $U^p \hookrightarrow V_{p, rc}^p \hookrightarrow U^q \hookrightarrow L^\infty_t(\mathbb{R}; L^2_\mathbb{R}^d)$ are continuous.

Theorem 2.2 ([11] Proposition 2.10, Remark 2.12). Let $1 < p < \infty$ and $1/p + 1/p' = 1$. If $u \in V_{p, rc}^1$ be absolutely continuous on every compact intervals, then

$$||u||_{U^p} = \sup_{v \in V^p, ||v||_{V^p} = 1} \left| \int_{-\infty}^{\infty} (u'(t), v(t))_{L^2_\mathbb{R}^d} dt \right|.$$

Definition 3. Let $1 \leq p < \infty$. We define

$$U^p_\Delta := \{ u : \mathbb{R} \to L^2 | e^{-it\Delta} u \in U^p \}$$

with the norm $||u||_{U^p_\Delta} := ||e^{-it\Delta} u||_{U^p}$,

$$V^p_\Delta := \{ v : \mathbb{R} \to L^2 | e^{-it\Delta} v \in V_{p, rc}^p \}$$

with the norm $||v||_{V^p_\Delta} := ||e^{-it\Delta} v||_{V^p}$.

Remark 2.1. The embeddings $U^p_\Delta \hookrightarrow V^p_\Delta \hookrightarrow U^q_\Delta \hookrightarrow L^\infty(\mathbb{R}; L^2)$ hold for $1 \leq p < q < \infty$ by Proposition 2.1.

Proposition 2.3 ([11] Corollary 2.18). Let $1 < p < \infty$. We have
\begin{align}
\|Q_{\geq M}^\Delta u\|_{L^2_t} &\lesssim M^{-1/2}\|u\|_{V^2_2}, \\
\|Q_{< M}^\Delta u\|_{V^2_2} &\lesssim \|u\|_{V^2_2}, \quad \|Q_{\geq M}^\Delta u\|_{V^2_2} \lesssim \|u\|_{V^2_2},
\end{align}
(2.1)
(2.2)

Proposition 2.4 ([11] Proposition 2.19). Let
$$
T_0 : L^2(\mathbb{R}^d) \times \cdots \times L^2(\mathbb{R}^d) \to L^1_{loc}(\mathbb{R}^d)
$$
be a m-linear operator. Assume that for some $1 \leq p, q < \infty$
\begin{align}
\|T_0(e^{it\Delta}\phi_1, \cdots, e^{it\Delta}\phi_m)\|_{L^p_t(\mathbb{R}; L^q_2(\mathbb{R}^d))} &\lesssim \prod_{i=1}^m \|\phi_i\|_{L^2(\mathbb{R}^d)}.
\end{align}

Then, there exists $T : U^p_\Delta \times \cdots \times U^p_\Delta \to L^p_t(\mathbb{R}; L^q_2(\mathbb{R}^d))$ satisfying
\begin{align}
\|T(u_1, \cdots, u_m)\|_{L^p_t(\mathbb{R}; L^q_2(\mathbb{R}^d))} &\lesssim \prod_{i=1}^m \|u_i\|_{U^p_\Delta}
\end{align}
such that $T(u_1, \cdots, u_m)(t)(x) = T_0(u_1(t), \cdots, u_m(t))(x)$ a.e.

Proposition 2.5 (Strichartz estimate). Let (p, q) be an admissible pair of exponents for the Schrödinger equation, i.e. $2 \leq q \leq 2d/(d-2)$ ($2 \leq q < \infty$ if $d = 2$, $2 \leq q \leq \infty$ if $d = 1$), $2/p = d(1/2 - 1/q)$. Then, we have
\begin{align}
\|e^{it\Delta}\varphi\|_{L^p_t L^q_x} &\lesssim \|\varphi\|_{L^2_x}
\end{align}
for any $\varphi \in L^2(\mathbb{R}^d)$.

Proposition 2.4 and 2.5 imply the following.

Corollary 2.6. Let (p, q) be an admissible pair of exponents for the Schrödinger equation, i.e. $2 \leq q \leq 2d/(d-2)$ ($2 \leq q < \infty$ if $d = 2$, $2 \leq q \leq \infty$ if $d = 1$), $2/p = d(1/2 - 1/q)$. Then, we have
\begin{align}
\|u\|_{L^p_t L^q_x} &\lesssim \|u\|_{U^p_\Delta}, \quad u \in U^p_\Delta.
\end{align}
(2.3)

Proposition 2.7 ([11] Proposition 2.20). Let $q > 1$, E be a Banach space and $T : U^p_\Delta \to E$ be a bounded, linear operator with $\|Tu\|_E \leq C_q\|u\|_{U^q_\Delta}$ for all $u \in U^q_\Delta$. In addition, assume that for some $1 \leq p < q$ there exists $C_p \in (0, C_q]$ such that the estimate $\|Tu\|_E \leq C_p\|u\|_{U^q_\Delta}$ holds true for all $u \in U^p_\Delta$. Then, T satisfies the estimate
\begin{align}
\|Tu\|_E &\lesssim C_p \left(1 + \ln \frac{C_q}{C_p}\right)\|u\|_{V^p_{\sigma, re, \Delta}}, \quad u \in V^p_{\sigma, re, \Delta};
\end{align}
where implicit constant depends only on \(p \) and \(q \).

Next, we define the function spaces which will be used to construct the solution.

Definition 4. Let \(s, \sigma \in \mathbb{R} \).

(i) We define \(\dot{Z}^s := \{ u \in C(\mathbb{R}; \dot{H}^s(\mathbb{R}^d)) \cap U_\Delta^2 \mid \|u\|_{\dot{Z}^s} < \infty \} \) with the norm

\[
\|u\|_{\dot{Z}^s} := \left(\sum_N N^{2s} \|P_N u\|_{U_\Delta^2}^2 \right)^{1/2}.
\]

(ii) We define \(Z^s := \{ u \in C(\mathbb{R}; H^s(\mathbb{R}^d)) \cap U_\Delta^2 \mid \|u\|_{Z^s} < \infty \} \) with the norm

\[
\|u\|_{Z^s} := \|u\|_{\dot{Z}^0} + \|u\|_{\dot{Z}^s}.
\]

(iii) We define \(\dot{Y}^s := \{ u \in C(\mathbb{R}; \dot{H}^s(\mathbb{R}^d)) \cap V_{\Delta,rc}^2 \mid \|u\|_{\dot{Y}^s} < \infty \} \) with the norm

\[
\|u\|_{\dot{Y}^s} := \left(\sum_N N^{2s} \|P_N u\|_{V_{\Delta,rc}^2}^2 \right)^{1/2}.
\]

(iv) We define \(Y^s := \{ u \in C(\mathbb{R}; H^s(\mathbb{R}^d)) \cap V_{\Delta,rc}^2 \mid \|u\|_{Y^s} < \infty \} \) with the norm

\[
\|u\|_{Y^s} := \|u\|_{\dot{Y}^0} + \|u\|_{\dot{Y}^s}.
\]

Remark 2.2 ([11] Remark 2.23). Let \(E \) be a Banach space of continuous functions \(f : \mathbb{R} \to H \), for some Hilbert space \(H \). We also consider the corresponding restriction space to the interval \(I \subset \mathbb{R} \) by

\[
E(I) = \{ u \in C(I,H) \mid \exists v \in E \text{ s.t. } v(t) = u(t), \ t \in I \}
\]

endowed with the norm \(\|u\|_{E(I)} = \inf\{\|v\|_E \mid v(t) = u(t), \ t \in I \} \). Obviously, \(E(I) \) is also a Banach space.

3. Multilinear estimates

In this section, we prove multilinear estimates which will be used to prove the well-posedness.

Lemma 3.1. Let \(d \geq 1, m \geq 2, s_c = d/2 - 1/(m - 1) \) and \(b > 1/2 \). For any dyadic numbers \(N_1 \gg N_2 \geq \cdots \geq N_m \), we have

\[
\left\| \prod_{j=1}^m P_{N_j} u_j \right\|_{L_t^2 L_x^\infty} \lesssim \|P_{N_1} u_1\|_{X^{0,b}} \prod_{j=2}^m \left(\frac{N_j}{N_1} \right)^{1/2(m-1)} N_j^{s_c} \|P_{N_j} u_j\|_{X^{0,b}}, \tag{3.1}
\]

where \(\|u\|_{X^{0,b}} := \|\langle \tau + |\xi|^2 \rangle^{b/2} u\|_{L_t^2 L_x^\infty} \).
Proof. For the case \(d = 2\) and \(m = 2\), the estimate (3.1) is proved by Colliander, Delort, Kenig, and Staffilani (Lemma 1). The proof for general case as following is similar to their argument.

We put \(g_j(\tau_j, \xi_j) := \langle \tau_j + |\xi_j|^2 \rangle \rho \tau_j(\tau_j, \xi_j) (j = 1, \cdots, m)\) and \(A_N := \{\xi \in \mathbb{R}^d | N/2 \leq |\xi| \leq 2N\}\) for a dyadic number \(N\). By the Plancherel’s theorem and the duality argument, it is enough to prove the estimate

\[
I := \left| \int_{\mathbb{R}^m} \int_{\prod_{j=1}^m A_N} g_j \left(\sum_{j=1}^m \tau_j, \sum_{j=1}^m \xi_j \right) \prod_{j=1}^m \frac{g_j(\tau_j, \xi_j)}{\tau_j(\tau_j + |\xi_j|^2)^b} d\xi_j d\tau_j \right|
\]

\[
\lesssim \left(\prod_{j=2}^m \left(\frac{N_j}{N_1} \right)^{1/2(m-1)} N_j^{s_\rho} \right) \prod_{j=0}^m \|g_j\|_{L^2_{\xi}}
\]

for \(g_j \in L^2_{\xi}\), where \(\xi_* = (\xi_1, \cdots, \xi_m), \tau_* = (\tau_1, \cdots, \tau_m)\). We change the variables \(\tau_* \mapsto \theta_* = (\theta_1, \cdots, \theta_m)\) as \(\theta_j = \tau_j + |\xi_j|^2 (j = 1, \cdots, m)\) and put

\[
G_0(\theta_*, \xi_*):= g_0 \left(\sum_{j=1}^m (\theta_j - |\xi_j|^2), \sum_{j=1}^m \xi_j \right),
\]

\[
G_j(\theta_j, \xi_j):= g_j(\theta_j - |\xi_j|^2, \xi_j) (j = 1, \cdots, m).
\]

Then, we have

\[
I \leq \left(\prod_{j=1}^m \frac{1}{(\theta_j)^b} \right) \left(\int_{\prod_{j=1}^m A_N} \left| G_0(\theta_*, \xi_*) \prod_{j=1}^m G_j(\theta_j, \xi_j) \right| d\xi_* \right) d\theta_*
\]

\[
\lesssim \left(\prod_{j=1}^m \frac{1}{(\theta_j)^b} \right) \left(\int_{\prod_{j=1}^m A_N} |G_0(\theta_*, \xi_*)|^2 d\xi_* \right)^{1/2} \prod_{j=1}^m \|G_j(\theta, \cdot)\|_{L^2_{\xi}} d\theta_*
\]

by the Cauchy-Schwartz inequality. For \(1 \leq k \leq d\), we put

\[
A_{N_1}^k := \{\xi_1 = (\xi_1^{(1)}, \cdots, \xi_1^{(d)}) \in \mathbb{R}^d | N_1/2 \leq |\xi_1| \leq 2N_1, |\xi_1^{(k)}| \geq N_1/(2\sqrt{d})\}
\]

and

\[
J_k(\theta_*):= \left(\int_{A_{N_1}^k \times \prod_{j=2}^m A_N} |G_0(\theta_*, \xi_*)|^2 d\xi_* \right).
\]

We consider only the estimate for \(J_1\). The estimates for other \(J_k\) are obtained by the same way.

Assume \(d \geq 2\). By changing the variables \((\xi_1, \xi_2) = (\xi_1^{(1)}, \cdots, \xi_1^{(d)}, \xi_2^{(1)}, \cdots, \xi_2^{(d)}) \mapsto (\mu, \nu, \eta)\) as

\[
\begin{cases}
\mu = \sum_{j=1}^m (\theta_j - |\xi_j|^2) \in \mathbb{R}, \\
\nu = \sum_{j=1}^m \xi_j \in \mathbb{R}^d, \\
\eta = (\xi_2^{(2)}, \cdots, \xi_2^{(d)}) \in \mathbb{R}^{d-1},
\end{cases}
\] (3.2)
we have
\[d\mu d\nu d\eta = 2|\xi_1^{(1)} - \xi_2^{(1)}|d\xi_1 d\xi_2 \]
and
\[G_0(\theta_*, \xi_*) = g_0(\mu, \nu). \]
We note that \(|\xi_1^{(1)} - \xi_2^{(1)}| \sim N_1\) for any \((\xi_1, \xi_2) \in A_{N_1} \times A_{N_2}\) with \(N_1 \gg N_2\).
Furthermore, \(\xi_2 \in A_{N_2}\) implies that \(\eta \in [-2N_2, 2N_2]^{d-1}\). Therefore, we obtain
\[
J_1(\theta_*) \lesssim \int_{\Pi_{j=3}^m A_{N_j}} \left(\int_{[-2N_2, 2N_2]^{d-1}} \int_{\mathbb{R}^d} \int |g_0(\mu, \nu)|^2 \frac{1}{N_1} d\mu d\nu d\eta \right) d\xi_3 \cdots d\xi_m
\]
\[\sim \frac{N_2^{d-1}}{N_1} \left(\prod_{j=3}^m N_j^d \right) \|g_0\|^2_{L^2_{\xi \mu \nu}} \leq \left(\prod_{j=2}^m \left(\frac{N_j}{N_1} \right)^{1/(m-1)} N_j^{d-2/(m-1)} \right) \|g_0\|^2_{L^2_{\xi \mu \nu}} \]
since \(N_2 \geq N_j\) for \(3 \leq j \leq m\). As a result, we have
\[
\mathcal{I} \lesssim \int_{\mathbb{R}^m} \left(\prod_{j=1}^m \frac{1}{(\theta_j)^b} \right) \left(\sum_{k=1}^d J_k(\theta_*) \right)^{1/2} \prod_{j=1}^m \|G_j(\theta_j, \cdot)\|_{L^2_{\xi}} d\theta_*
\]
\[\lesssim \left(\prod_{j=2}^m \left(\frac{N_j}{N_1} \right)^{1/2(m-1)} N_j^{s_c} \right) \prod_{j=0}^m \|g_j\|_{L^2_{\xi}} \]
by the Cauchy-Schwartz inequality and changing the variables \(\theta_* \mapsto \tau_*\) as \(\theta_j = \tau_j + |\xi_j|^2\) \((j = 1, \cdots, m)\).

For \(d = 1\), we obtain the same result by changing the variables \((\xi_1, \xi_2) \mapsto (\mu, \nu)\) as \(\mu = \sum_{j=1}^m (\theta_j - |\xi_j|^2)\), \(\nu = \sum_{j=1}^m \xi_j\) instead of (3.2). \(\square\)

Corollary 3.2. Let \(m \geq 2, m + d \geq 4\) and \(s_c = d/2 - 1/(m-1)\). For any dyadic numbers \(N_1 \gg N_2 \geq \cdots \geq N_m\) and \(0 < \delta < 1/2(m-1)\), we have
\[
\left\| \prod_{j=1}^m P_{N_j} u_j \right\|_{L^2_{tx}} \lesssim \left\| P_{N_1} u_1 \right\|_{L^2_{\lambda}} \prod_{j=2}^m \left(\frac{N_j}{N_1} \right)^{1/(m-1)} N_j^{s_c} \left\| P_{N_j} u_j \right\|_{L^2_{\lambda}}, \quad (3.3)
\]
\[
\left\| \prod_{j=1}^m P_{N_j} u_j \right\|_{L^2_{tx}} \lesssim \left\| P_{N_1} u_1 \right\|_{L^2_{\lambda}} \prod_{j=2}^m \left(\frac{N_j}{N_1} \right)^{\delta} N_j^{s_c} \left\| P_{N_j} u_j \right\|_{L^2_{\lambda}}, \quad (3.4)
\]

Proof. To obtain (3.3), we use the argument of the proof of Corollary 2.21 (27) in [11]. Let \(\phi_1, \cdots, \phi_m \in L^2(\mathbb{R}^d)\) and define \(\phi_{j}^\lambda(x) := \phi_j(\lambda x)\) \((j = 1, \cdots, m)\) for \(\lambda \in \mathbb{R}\). By using the rescaling \((t, x) \mapsto (\lambda^2 t, \lambda x)\), we have
\[
\left\| \prod_{j=1}^m P_{N_j} (e^{i\Delta} \phi_j) \right\|_{L^2([-T,T] \times \mathbb{R}^d)} = \lambda^{d/2+1} \left\| \prod_{j=1}^m P_{\lambda N_j} (e^{i\Delta} \phi_j^\lambda) \right\|_{L^2([-\lambda^{-2}T, \lambda^{-2}T] \times \mathbb{R}^d}).
\]
Therefore by putting $\lambda = \sqrt{T}$ and (3.1), we have
\[
\left\| \prod_{j=1}^{m} P_{N_j} \left(e^{it\Delta} \phi_j \right) \right\|_{L^2([-T,T] \times \mathbb{R}^d)} \lesssim \sqrt{T}^{md/2} \left\| P_{\sqrt{T}N_j} \phi_j^T \right\|_{L_x^2} \prod_{j=2}^{m} \left(\frac{N_j}{N_1} \right)^{1/2(m-1)} \frac{N_j^{s_c}}{N_1^{s_c}} \left\| P_{\sqrt{T}N_j} \phi_j^T \right\|_{L_x^2}^{1/2(m-1)} \frac{N_j^{s_c}}{N_1^{s_c}} \left\| P_{N_j} \phi_j \right\|_{L_t^2}.
\]

Let $T \to \infty$, then we obtain
\[
\left\| \prod_{j=1}^{m} P_{N_j} \left(e^{it\Delta} \phi_j \right) \right\|_{L^2_{t,x}} \lesssim \left\| P_{N_1} \phi_1 \right\|_{L^2_{t,x}} \left(\prod_{j=2}^{m} \left(\frac{N_j}{N_1} \right)^{1/2(m-1)} \frac{N_j^{s_c}}{N_1^{s_c}} \left\| P_{N_j} \phi_j \right\|_{L^2_{t,x}} \right)^{1/2(m-1)}
\]
and (3.3) follows from proposition 2.4.

To obtain (3.4), we first prove the U^{2m} estimate. By the Cauchy-Schwartz inequality, the Sobolev embedding $W^{s_c,2md/(md-2)}(\mathbb{R}^d) \hookrightarrow L^{m(m-1)d}(\mathbb{R}^d)$ (which holds when $m \geq 2$, $m + d \geq 4$) and (2.3), we have
\[
\left\| \prod_{j=1}^{m} P_{N_j} u_j \right\|_{L^2_{t,x}} \lesssim \left\| P_{N_1} u_1 \right\|_{L^2_{t,x}} \left(\prod_{j=2}^{m} N_j^{s_c} \left\| P_{N_j} u_j \right\|_{L^2_{t,x}} \right)^{1/2(m-1)} \frac{N_j^{s_c}}{N_1^{s_c}} \left\| P_{N_j} u_j \right\|_{U^m_{t,x}}
\]
for any dyadic numbers $N_1, \ldots, N_m \in 2^\mathbb{Z}$. We use the interpolation between (3.3) and (3.5) via Proposition 2.7. Then, we get (3.4) by the same argument of the proof of Corollary 2.21 (28) in [11].

\[\Box\]

Lemma 3.3. We assume that $(\tau_0, \xi_0), (\tau_1, \xi_1), \ldots, (\tau_m, \xi_m) \in \mathbb{R} \times \mathbb{R}^d$ satisfy $\sum_{j=0}^{d} \tau_j = 0$ and $\sum_{j=0}^{d} \xi_j = 0$. Then, we have
\[
\max_{0 \leq j \leq m} |\tau_j + |\xi_j|^2| \geq \frac{1}{m + 1} \max_{0 \leq j \leq m} |\xi_j|^2.
\]

Proof. By the triangle inequality, we obtain (3.6). \[\Box\]

The following propositions will be used to prove the key estimate for the well-posedness in the next section.

Proposition 3.4. Let $d \geq 1$, $m \geq 3$, $s_c = d/2 - 1/(m-1)$ and $0 < T \leq \infty$. For a dyadic number $N_1 \in 2^\mathbb{Z}$, we define the set $S(N_1)$ as
\[
S(N_1) := \{(N_2, \ldots, N_m) \in (2^\mathbb{Z})^{m-1} | N_1 \gg N_2 \geq \cdots \geq N_m\}.
\]
If $N_0 \sim N_1$, then we have

$$
\left| \sum_{S(N_1)} \int_0^T \int_{\mathbb{R}^d} \left(N_0 \prod_{j=0}^m P_{N_j} u_j \right) \, dx dt \right|
\lesssim \| P_{N_0} u_0 \|_{V^2_\Delta} \| P_{N_1} u_1 \|_{V^2_\Delta} \prod_{j=2}^m \| u_j \|_{Y^{sc}_\Delta}.
$$

(3.7)

Proof. We define $u_{j,N_j,T} := 1_{[0,T)} P_{N_j} u_j$ ($j = 1, \ldots, m$) and put $M := N_0^2/4(m + 1)$. We decompose $Id = Q_{\geq M} + Q_{< M}$. We divide the integrals on the left-hand side of (3.7) into $2^m + 1$ piece of the form

$$
\int_{\mathbb{R}} \int_{\mathbb{R}^d} \left(N_0 \prod_{j=0}^m Q_j^{\Delta} u_{j,N_j,T} \right) \, dx dt
$$

(3.8)

with $Q_j^{\Delta} \in \{ Q_{\geq M}, Q_{< M} \}$ ($j = 0, \ldots, m$). By the Plancherel’s theorem, we have

$$
(3.8) = c \int_{\sum_{j=0}^m \tau_j = 0} \int_{\sum_{j=0}^m \xi_j = 0} N_0 \prod_{j=0}^m \mathcal{F}[Q_j^{\Delta} u_{j,N_j,T}](\tau_j, \xi_j),
$$

where c is a constant. Therefore, Lemma 3.6 implies that

$$
\int_{\mathbb{R}} \int_{\mathbb{R}^d} \left(N_0 \prod_{j=0}^m Q_{< M} u_{j,N_j,T} \right) \, dx dt = 0.
$$

So, let us now consider the case that $Q_j^{\Delta} = Q_{\geq M}$ for some $0 \leq j \leq m$.

First, we consider the case $Q_j^{\Delta} = Q_{\geq M}$. By the Cauchy-Schwartz inequality, we have

$$
\left| \sum_{S(N_1)} \int_{\mathbb{R}} \int_{\mathbb{R}^d} \left(N_0 Q_{\geq M} u_{0,N_0,T} \prod_{j=1}^m Q_j^{\Delta} u_{j,N_j,T} \right) \, dx dt \right|
\leq \sum_{S(N_1)} N_0 \| Q_{\geq M} u_{0,N_0,T} \|_{L^2_{tx}} \left(\prod_{j=1}^m \| Q_j^{\Delta} u_{j,N_j,T} \|_{L^2_{tx}} \right).
$$

Furthermore by (2.1) and $M \sim N_0^2$, we have

$$
\| Q_{\geq M} u_{0,N_0,T} \|_{L^2_{tx}} \lesssim N_0^{-1} \| u_{0,N_0,T} \|_{V^2_\Delta}.
$$
While by (3.4), (2.2) and the Cauchy-Schwartz inequality for the dyadic sum, we have

$$\sum_{S(N_1)} \left\| \prod_{j=1}^m Q_j^{\Delta} u_{j,N_j,T} \right\|_{L^2_{1_2}} \lesssim \|u_{1,N_1,T}\|_{V^2_3} \sum_{S(N_1)} \prod_{j=2}^m \left(\sum_{N_j \leq N_1} N_j^{2s_c} \right)^{\delta} N_j^{s_c} \|u_{j,N_j,T}\|_{V^2_3}^{1/2}$$

Therefore, we obtain

$$\left| \sum_{S(N_1)} \int \int_{\mathbb{R}^d} \left(N_0 Q_j^{\Delta} u_{0,N_0,T} \prod_{j=1}^m Q_j^{\Delta} u_{j,N_j,T} \right) dx dt \right| \lesssim \|P_{N_0} u_0\|_{V^2_3} \|P_{N_1} u_1\|_{V^2_3} M_{N_k} \prod_{j=2}^m \|u_j\|_{Y^c}$$

since $\|1_{[0,T)} u\|_{V^2_3} \lesssim \|u\|_{V^2_3}$ for any $T \in (0, \infty]$. For the case $Q_{k}^{\Delta} = Q_{\geq M}^{\Delta}$ is proved in same way.

Next, we consider the case $Q_{k}^{\Delta} = Q_{\geq M}^{\Delta}$ for some $2 \leq k \leq m$. By the Hölder’s inequality, we have

$$\left| \sum_{N_k} \int \int_{\mathbb{R}^d} \left(N_0 Q_j^{\Delta} u_{k,N_k,T} \prod_{j=0}^m Q_j^{\Delta} u_{j,N_j,T} \right) dx dt \right| \lesssim N_0 \left\| Q_j^{\Delta} u_{0,N_0,T} \right\|_{L^2_{1_2} L^{2d/(d-1)}_{x \tau}} \left\| Q_j^{\Delta} u_{1,N_1,T} \right\|_{L^2_{1_2} L^{2d/(d-1)}_{x \tau}}$$

$$\times \left\| \sum_{N_k} Q_j^{\Delta} u_{k,N_k,T} \right\|_{L^2_{1_2} L^{(m-1)d}_{x \tau}} \prod_{j=2}^m \left\| \sum_{N_j} Q_j^{\Delta} u_{j,N_j,T} \right\|_{L^\infty_{x \tau} L^{(m-1)d}_{x \tau}}.$$

By (2.3), the embedding $V^2_3 \hookrightarrow U_1^2$ and (2.2), we have

$$\|Q_j^{\Delta} u_{0,N_0,T}\|_{L^2_{1_2} L^{2d/(d-1)}_{x \tau}} \|Q_j^{\Delta} u_{1,N_1,T}\|_{L^2_{1_2} L^{2d/(d-1)}_{x \tau}} \lesssim \|u_{0,N_0,T}\|_{V^2_3} \|u_{1,N_1,T}\|_{V^2_3}.$$

While by the Sobolev embedding $\dot{H}^{s_c}(\mathbb{R}^d) \hookrightarrow L^{(m-1)d}(\mathbb{R}^d)$, L^2 orthogonality and (2.1), we have

$$\left\| \sum_{N_k} Q_j^{\Delta} u_{k,N_k,T} \right\|_{L^2_{1_2} L^{(m-1)d}_{x \tau}} \lesssim \left(\sum_{N_k} N_k^{2s_c} \|Q_j^{\Delta} u_{k,N_k,T}\|_{L^2_{x \tau}}^2 \right)^{1/2}$$

$$\lesssim N_0^{-1} \left(\sum_{N_k} N_k^{2s_c} \|u_{k,N_k,T}\|_{V^2_3}^2 \right)^{1/2}.$$
since $M \sim N_2^2$. Furthermore by the Sobolev embedding $\dot{H}^{s_c}(\mathbb{R}^d) \hookrightarrow L^{(m-1)d}(\mathbb{R}^d)$, L^2 orthogonality, $V_2^2 \hookrightarrow L^\infty(\mathbb{R}; L^2)$ and (2.2), we have

$$
\left\| \sum_{N_j} Q_j^\Delta u_{j,N_j,T} \right\|_{L^\infty_t L^1_x} \lesssim \left(\sum_{N_j} N_j^{2s_c} \|Q_j^\Delta u_{j,N_j,T}\|_{L^2_x L^2_t}^2 \right)^{1/2} \lesssim \left(\sum_{N_j} N_j^{2s_c} \|u_{j,N_j,T}\|_{V_2^2}^2 \right)^{1/2}.
$$

As a result, we obtain

$$
\left| \sum_{S(N_1)} \int \int_{\mathbb{R}^d} \left(N_0 Q_{\geq M}^\Delta u_{k,N_k,T} \prod_{j=0}^{m} Q_j^\Delta u_{j,N_j,T} \right) dx dt \right| \lesssim \|P_{N_0} u_0\|_{V_2^2} \|P_{N_1} u_1\|_{V_2^2} \prod_{j=2}^{m} \|u_j\|_{\dot{Y}^{sc}}
$$
since $\|1_{[0,T]} u\|_{V_2^2} \lesssim \|u\|_{V_2^2}$ for any $T \in (0, \infty]$.

\[\square \]

Proposition 3.5. Let $d \geq 1$, $m \geq 3$, $s_c = d/2 - 1/(m-1)$ and $0 < T \leq \infty$. For a dyadic number $N_2 \in 2^{Z}$, we define the set $S_s(N_2)$ as

$$
S_s(N_2) := \{(N_3, \cdots, N_m) \in (2^Z)^{m-2} | N_2 \geq N_3 \geq \cdots \geq N_m \}.
$$

If $N_0 \lesssim N_1 \sim N_2$, then we have

$$
\left| \sum_{S_s(N_2)} \int_{0}^{T} \int \prod_{j=0}^{m} P_{N_j} u_j \left(N_0 \prod_{j=0}^{m} P_{N_j} u_j \right) dx dt \right| \lesssim \frac{N_0}{N_1} \|P_{N_0} u_0\|_{V_2^2} \|P_{N_1} u_1\|_{V_2^2} N_2^{s_c} \|P_{N_2} u_2\|_{V_2^2} \prod_{j=3}^{m} \|u_j\|_{\dot{Y}^{sc}}.
$$

Proof. We define $u_{j,N_j,T} := 1_{[0,T]} P_{N_j} u_j$ $(j = 1, \cdots, m)$ and put $M := N_1^2 / 4(m+1)$. We decompose $Id = Q_{\geq M}^\Delta + Q_{< M}^\Delta$. We divide the integrals on the left-hand side of (3.9) into 2^{m+1} piece of the form

$$
\int \int \left(N_0 \prod_{j=0}^{m} Q_j^\Delta u_{j,N_j,T} \right) dx dt
$$

with $Q_j^\Delta \in \{Q_{\geq M}^\Delta, Q_{< M}^\Delta \}$ $(j = 0, \cdots, m)$. By the Plancherel’s theorem, we have

$$
(3.10) = c \int_{\sum_{j=0}^{m} \tau_j = 0} \int_{\sum_{j=0}^{m} \xi_j = 0} N_0 \prod_{j=0}^{m} \mathcal{F}[Q_j^\Delta u_{j,N_j,T}](\tau_j, \xi_j),
$$
where c is a constant. Therefore, Lemma 3.3 implies that
\[\int_{\mathbb{R}} \int_{\mathbb{R}^d} \left(N_0 \prod_{j=0}^m Q^\Delta_{M,j,N_j,T} u_j \right) dx dt = 0. \]

So, let us now consider the case that $Q^\Delta_{j} = Q^\Delta_{M,j}$ for some $0 \leq j \leq m$.

We consider only for the case $Q^\Delta_0 = Q^\Delta_{M,j}$ since the case $Q^\Delta_1 = Q^\Delta_{M,j}$ is similar argument and the cases $Q^\Delta_k = Q^\Delta_{M,j}$ ($k = 2, \ldots, m$) are similar to the argument in the proof of Proposition 3.4. By the H"older’s inequality and we have
\[\left| \sum_{s \in (N_2)} \int_{\mathbb{R}} \int_{\mathbb{R}^d} \left(N_0 Q^\Delta_{M,j} u_0,N_0,T \prod_{j=1}^m Q^\Delta_{j} u_j,N_j,T \right) dx dt \right| \lesssim N_0 \left\| Q^\Delta_{M,j} u_0,N_0,T \right\|_{L^2_t L^s_x} \left(\prod_{j=3}^m \left\| Q^\Delta_{j} u_j,N_j,T \right\|_{L^\infty_t L^2_x} \right) \]
\[\lesssim N_0 \left\| Q^\Delta_{M,j} u_0,N_0,T \right\|_{L^2_t L^s_x} \left\| Q^\Delta_{1} u_1,N_1,T \right\|_{L^2_t L^2_x} \left\| Q^\Delta_{2} u_2,N_2,T \right\|_{L^2_t L^2_x} \]
\[\times \prod_{j=3}^m \left\| Q^\Delta_{j} u_j,N_j,T \right\|_{L^\infty_t L^2_x}. \]

By the Sobolev embedding $\dot{H}^{s_c}(\mathbb{R}^d) \hookrightarrow L^{(m-1)d}(\mathbb{R}^d)$ and (2.1), we have
\[\left\| Q^\Delta_{M,j} u_0,N_0,T \right\|_{L^2_t L^s_x} \lesssim N_0 \left\| Q^\Delta_{M,j} u_0,N_0,T \right\|_{L^\infty_t L^2_x} \]
\[\lesssim N_0^{-1} N_1^{-1} \left\| P_{0} u_0 \right\|_{V^2_\Delta} \]
since $M \sim N_1^2$ and $N_0 \lesssim N_2$. While by (2.3), the embedding $V^2_\Delta \hookrightarrow U^4_\Delta$ and (2.2), we have
\[\left\| Q^\Delta_{1} u_1,N_1,T \right\|_{L^2_t L^2_x} \lesssim \left\| u_1,N_1,T \right\|_{V^2_\Delta} \left\| u_2,N_2,T \right\|_{V^2_\Delta}. \]

Furthermore by the Sobolev embedding $\dot{H}^{s_c}(\mathbb{R}^d) \hookrightarrow L^{(m-1)d}(\mathbb{R}^d)$, L^2 orthogonality, $V^2_\Delta \hookrightarrow L^\infty(\mathbb{R}; L^2)$ and (2.2), we have
\[\left\| Q^\Delta_{j} u_j,N_j,T \right\|_{L^\infty_t L^s_x} \lesssim \left(\sum_{N_j} N_j^{2s_c} \left\| Q^\Delta_{j} u_j,N_j,T \right\|_{L^\infty_t L^2_x}^2 \right)^{1/2} \]
\[\lesssim \left(\sum_{N_j} N_j^{2s_c} \left\| u_j,N_j,T \right\|_{V^2_\Delta}^2 \right)^{1/2}. \]

As a result, we obtain
\[\left| \sum_{s \in (N_2)} \int_{\mathbb{R}} \int_{\mathbb{R}^d} \left(N_0 Q^\Delta_{M,j} u_0,N_0,T \prod_{j=1}^m Q^\Delta_{j} u_j,N_j,T \right) dx dt \right| \]
\[\lesssim \frac{N_0}{N_1} \left\| P_0 N_0 u_0 \right\|_{V^2_\Delta} \left\| P_{1} u_1 \right\|_{V^2_\Delta} \left\| P_{2} u_2 \right\|_{V^2_\Delta} \prod_{j=2}^m \left\| u_j \right\|_{V^2_\Delta}. \]
since \(\|1_{[0, T]}u\|_{V^2} \lesssim \|u\|_{V^2} \) for any \(T \in (0, \infty) \).

\[\square \]

4. Proof of the well-posedness and the scattering

In this section, we prove Theorem 1.1 and Corollary 1.2. We define the map \(\Phi_{T, \varphi} \) as

\[\Phi_{T, \varphi}(u)(t) := e^{it\Delta} \varphi - iI_T(u, \cdots, u)(t), \]

where

\[I_T(u_1, \cdots, u_m)(t) := \int_0^t 1_{[0, T]}(t') e^{i(t-t')\Delta} \partial_k \left(\prod_{j=1}^m u_j(t') \right) dt'. \]

To prove the well-posedness of (1.1), we prove that \(\Phi_{T, \varphi} \) is a contraction map on a closed subset of \(Z^s([0, T]) \) or \(Z^s([0, T]) \). Key estimate is the following:

Proposition 4.1. We assume \(d \geq 1, m \geq 3 \). Then for \(s_c = d/2 - 1/(m - 1) \) and any \(0 < T \leq \infty \), we have

\[\|I_T(u_1, \cdots, u_m)\|_{\tilde{Z}^s} \lesssim \prod_{j=1}^m \|u_j\|_{\dot{Y}^{s_c}}. \]

(4.1)

Proof. We show the estimate

\[\|I_T(u_1, \cdots, u_m)\|_{\tilde{Z}^s} \lesssim \sum_{k=1}^m \left(\|u_k\|_{\dot{Y}^s} \prod_{j=1}^m \|u_j\|_{\dot{Y}^{s_c}} \right) \]

(4.2)

for \(s \geq 0 \). (4.1) follows from (4.2) with \(s = s_c \). We decompose

\[I_T(u_1, \cdots, u_m) = \sum_{N_1, \cdots, N_m} I_T(P_{N_1}u_1, \cdots P_{N_m}u_m). \]

By symmetry, it is enough to consider the summation for \(N_1 \geq \cdots \geq N_m \). We put

\[S_1 := \{(N_1, \cdots, N_m) \in (2^\mathbb{Z})^m | N_1 \gg N_2 \geq \cdots \geq N_m \} \]

\[S_2 := \{(N_1, \cdots, N_m) \in (2^\mathbb{Z})^m | N_1 \sim N_2 \geq \cdots \geq N_m \} \]

and

\[J_k := \left\| \sum_{s_k} I_T(P_{N_1}u_1, \cdots P_{N_m}u_m) \right\|_{\tilde{Z}^s} (k = 1, 2). \]
First, we prove the estimate for J_1. By Theorem 2.2 and the Plancherel’s theorem, we have

$$J_1 \leq \left\{ \sum_{N_0} N_0^{2s} \left(e^{-it\Delta} P_{N_0} \sum_{S_1} I_T(P_{N_1} u_1, \cdots P_{N_m} u_m) \right) \right\}_{U^2}^{1/2} $$

$$\lesssim \left\{ \sum_{N_0} N_0^{2s} \sum_{N_1 \sim N_0} \left(\sup_{\|u_0\|_{V_0} = 1} \left| \sum_{S(N_1)} \int_0^T \int_{\mathbb{R}^d} \left(N_0 \prod_{j=0}^m P_{N_j} u_j \right) \, dx \, dt \right| \right)^2 \right\}^{1/2} .$$

Therefore by Proposition 3.3, we have

$$J_1 \lesssim \left\{ \sum_{N_0} N_0^{2s} \sum_{N_1 \sim N_0} \left(\sup_{\|u_0\|_{V_0} = 1} \|P_{N_0} u_0\|_{V_0^2} \|P_{N_1} u_1\|_{V_2} \prod_{j=2}^m \|u_j\|_{Y^s} \right)^2 \right\}^{1/2} $$

$$= \|u_1\|_{Y^s} \prod_{j=2}^m \|u_j\|_{Y^s} .$$

Next, we prove the estimate for J_2. By Theorem 2.2 and the Plancherel’s theorem, we have

$$J_2 \leq \sum_{N_1} \sum_{N_2 \sim N_1} \left(\sum_{N_0} N_0^{2s} \left. e^{-it\Delta} P_{N_0} \sum_{S_0(N_2)} I_T(P_{N_1} u_1, \cdots P_{N_m} u_m) \right) \right)_{U^2}^{1/2} $$

$$= \sum_{N_1} \sum_{N_2 \sim N_1} \left(\sum_{N_0 \leq N_1} N_0^{2s} \sup_{\|u_0\|_{V_0} = 1} \left| \sum_{S_0(N_2)} \int_0^T \int_{\mathbb{R}^d} \left(N_0 \prod_{j=0}^m P_{N_j} u_j \right) \, dx \, dt \right| \right)^{2, 1/2} .$$

Therefore by Proposition 3.3 and Cauchy-Schwartz inequality for dyadic sum, we have

$$J_2 \lesssim \sum_{N_1} \sum_{N_2 \sim N_1} \left(\sum_{N_0 \leq N_1} N_0^{2s} \left(\frac{N_0}{N_1} \|P_{N_1} u_1\|_{V_2} N_2^{s_c} \|P_{N_2} u_2\|_{V_2} \prod_{j=3}^m \|u_j\|_{Y^s} \right)^2 \right)^{1/2} $$

$$\lesssim \left(\sum_{N_1} N_1^{2s} \|P_{N_1} u_1\|_{V_2}^2 \right)^{1/2} \left(\sum_{N_2} N_2^{2s_c} \|P_{N_2} u_2\|_{V_2}^2 \right)^{1/2} \prod_{j=3}^m \|u_j\|_{Y^s} $$

$$= \|u_1\|_{Y^s} \prod_{j=2}^m \|u_j\|_{Y^s} .$$
The estimates (4.2) with $s = 0$ and with $s = s_c$ imply the following.

Corollary 4.2. We assume $d \geq 1$, $m \geq 3$. Then for $s \geq s_c \left(= d/2 - 1/(m - 1) \right)$ and any $0 < T \leq \infty$, we have

$$||I_T(u_1, \cdots, u_m)||_{Z^s} \lesssim \prod_{j=1}^{m} ||u_j||_{Y^s}. $$

Proof of Theorem 1.1. We prove only the homogeneous case. The inhomogeneous case is also proved by the same way. For $r > 0$, we define

$$ \dot{Z}^s_r(I) := \left\{ u \in \dot{Z}^s(I) \mid ||u||_{\dot{Z}^s(I)} \leq 2r \right\} $$

which is a closed subset of $\dot{Z}^s(I)$. Let $u_0 \in B_r(\dot{H}^{s_c})$ be given. For $u \in \dot{Z}^{s_c}_r([0, \infty))$, we have

$$||\Phi_{T, u_0}(u)||_{\dot{Z}^{s_c}([0, \infty))} \leq ||u_0||_{\dot{H}^{s_c}} + C||u||_{\dot{Z}^{s_c}([0, \infty))}^m \leq r \left(1 + 2^m Cr^{m-1} \right) $$

and

$$||\Phi_{T, u_0}(u) - \Phi_{T, u_0}(v)||_{\dot{Z}^{s_c}([0, \infty))} \leq C(||u||_{\dot{Z}^{s_c}([0, \infty))} + ||v||_{\dot{Z}^{s_c}([0, \infty))})^m ||u - v||_{\dot{Z}^{s_c}([0, \infty))} \leq 4^{m-1} Cr^{m-1} ||u - v||_{\dot{Z}^{s_c}([0, \infty))} $$

by Proposition 4.1 and

$$||e^{it\Delta} \varphi||_{\dot{Z}^{s_c}([0, \infty))} \leq ||1_{[0, \infty)} e^{it\Delta} \varphi||_{\dot{Z}^{s_c}} \leq ||\varphi||_{\dot{H}^{s_c}}, $$

where C is an implicit constant in (4.1). Therefore if we choose r satisfying

$$ r < (4^{m-1} C)^{-1/(m-1)}, $$

then Φ_{T, u_0} is a contraction map on $\dot{Z}^{s_c}_r([0, \infty))$. This implies the existence of the solution of (1.1) and the uniqueness in the ball $\dot{Z}^{s_c}_r([0, \infty))$. The Lipschitz continuously of the flow map is also proved by similar argument. \(\square\)

Proof of Corollary 1.2. We prove only the homogeneous case. The inhomogeneous case is also proved by the same way. By Proposition 4.1, the global solution $u \in \dot{Z}^{s_c}([0, \infty))$ of (1.1) which was constructed in Theorem 1.1 satisfies

$$ N^{s_c} e^{-it\Delta} P_N I_\infty(u, \cdots, u) \in V^2 $$

for each $N \in 2 \mathbb{Z}$. This implies that

$$ u_+ := \lim_{t \to \infty} (u_0 - e^{-it\Delta} I_\infty(u, \cdots, u)(t)) $$

exists in \dot{H}^{s_c} by Proposition 2.1 (4). Then we obtain

$$ u - e^{it\Delta} u_+ \to 0 $$
in \dot{H}^{s_c} as $t \to \infty$.

ACKNOWLEDGEMENTS

The author would like to express his appreciation to Kotaro Tsugawa for many discussions and very valuable comments.

REFERENCES

[1] H. Biagioni and F. Linares, *Ill-posedness for the derivative Schrödinger and generalized Benjamin-Ono equations*, Trans. Amer. Math. Soc., 353(2001), no.9, 3649–3659.

[2] I. Bejenaru, *Quadratic nonlinear derivative Schrödinger equations. Part I*, Int. Math. Res. Pap., (2006), Art. ID 70630, 5925–5957.

[3] I. Bejenaru, *Quadratic nonlinear derivative Schrödinger equations. Part II*, Trans. Amer. Math. Soc., 360(2008), no.11, 84pp.

[4] H. Chihara, *Local existence for semilinear Schrödinger equations*, Math. Japon., 42 (1995), 35–51.

[5] H. Chihara, *Gain of regularity for semilinear Schrödinger equations*, Math. Ann., 315 (1999), 529–567.

[6] M. Christ, *Illposedness of a Schrödinger equation with derivative nonlinearity*, preprint (http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.1363).

[7] J. Colliander, J. Delort, C. Kenig and G. Staffilani, *Bilinear estimates and applications to 2D NLS*, Trans. Amer. Math. Soc., 353 (2001), no.8, 3307–3325.

[8] J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, *Global well-posedness result for Schrödinger equations with derivative*, SIAM J. Math. Anal., 33 (2001), no.2, 649–669.

[9] J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, *A refined global well-posedness result for Schrödinger equations with derivative*, SIAM J. Math. Anal., 34 (2002), no.1, 64–86.

[10] A. Grünrock, *On the Cauchy - and periodic boundary value problem for a certain class of derivative nonlinear Schrödinger equations*, preprint (arXiv:0006195v1 [math.AP]).

[11] M. Hadac, S. Herr and H. Koch, *Well-posedness and scattering for the KP-II equation in a critical space*, Ann. Inst. H. Poincaré Anal. Non linéaire., 26 (2009), no.3, 917–941.

[12] M. Hadac, S. Herr and H. Koch, *Erratum to “Well-posedness and scattering for the KP-II equation in a critical space” [Ann. I. H. Poincaré–AN26 (3) (2009) 917–941]*, Ann. Inst. H. Poincaré Anal. Non linéaire., 27 (2010), no.3, 971–972.

[13] C. Hao, *Well-posedness for one-dimensional derivative nonlinear Schrödinger equations*, Comm. Pure Appl. Anal., 6 (2007), no.4, 997–1021.

[14] H. Hirayama, *Well-posedness and scattering for a system of quadratic derivative nonlinear Schrödinger equations with low regularity initial data*, preprint (arXiv:1309.4336 [math.AP]).

[15] A. Ionescu and C. Kenig, *Global well-posedness of the Benjamin-Ono equation in low-regularity spaces*, J. Amer. Math. Soc., 20 (2007), no.3, 753–798.

[16] C. Kenig, G. Ponce and L. Vega, *Smoothing effects and local existence theory for the generalized nonlinear Schrödinger equations*, Invent. Math., 134 (1998), no.3, 489–545.
[17] H. Koch and N. Tzvetkov, *Nonlinear wave interactions for the Benjamin-Ono equation*, Int. Math. Res. Not., 2005 (2005), no.30, 1833–1847.

[18] C. Miao, Y. Wu, G. Xu, *Global well-posedness for Schrödinger equation with derivative in $H^{1/2}(\mathbb{R})$*, J. Diff. Eqns., 251 (2011), no.8, 2164–2195.

[19] S. Mizohata, *On the Cauchy problem*, Notes and Reports in Mathematics in Science and Engineering, Science Press & Academic Press., 3 (1985), no.3, 177.

[20] T. Ozawa, *Finite energy solutions for the Schrödinger equations with quadratic nonlinearity in one space dimension*, Funkcialaj Ekvacioj., 41 (1998), 451–468.

[21] A. Stefanov, *On quadratic derivative Schrödinger equations in one space dimension*, Trans. Amer. Math. Soc., 359 (2007), no. 8, 3589–3607.

[22] H. Takaoka, *Well-posedness for the one dimensional Schrödinger equation with the derivative nonlinearity*, Adv. Diff. Eqns., 4 (1999), 561–680.

[23] H. Takaoka, *Global well-posedness for Schrödinger equations with derivative in a nonlinear term and data in low-order Sobolev spaces*, Electron. J. Diff. Eqns., 42 (2001), 1–23.

[24] T. Tao, *Global well-posedness of the Benjamin–Ono equation in $H^1(\mathbb{R})$*, J. Hyperbolic Differ. Equ., 1 (2004), no. 3, 27–49.

(H. Hirayama)

E-mail address, H. Hirayama: m08035f@math.nagoya-u.ac.jp