Immunoglobulin A nephropathy in a patient with neurofibromatosis type 1
A case report and literature review

Harin Rhee, MD, PhD, Sungmi Kim, MD, Wanhee Lee, MD, Hakeong Jeon, MD, Da Woon Kim, MD, Byung-Min Ye, MD, Hyo Jin Kim, MD, Min Jeong Kim, MD, Il Young Kim, MD, PhD, Il Young Kim, MD, PhD, Sang Heon Song, MD, PhD, Eun Young Seong, MD, PhD, Dong Won Lee, MD, PhD, Soo Bong Lee, MD, PhD

Abstract
Rationale: Neurofibromatosis type 1 (NF-1) is an autosomal-dominant neurocutaneous disorder that affects the skin, bones, and nervous system. The most common manifestation of kidney involvement is renal artery stenosis; glomerulonephritis is extremely rare. In this case report, we present a patient with NF-1 and immunoglobulin A nephropathy (IgAN).

Patient concerns: A 51-year-old Korean man previously diagnosed with NF-1 presented with persistent proteinuria and hematuria identified during a routine medical check-up. He had no history of hypertension or diabetes, and denied a history of alcohol use or smoking.

Diagnosis: The contrast-enhanced computed tomography scan revealed normal-sized kidneys and no evidence of renal artery stenosis. On the day of the kidney biopsy, laboratory tests showed a serum creatinine level of 1.1 mg/dL, urine protein/creatinine ratio of 1.3 g/g, and urine red blood cell count of >10 to 15/HPF. The kidney biopsy sample revealed IgAN grade III, according to Lee glomerular grading system.

Intervention: The patient was advised to take 4 mg of perindopril.

Outcome: Three months after the treatment, the urine protein/creatinine ratio decreased to 0.6 g/g, with no change in the serum creatinine level (1.03 mg/dL).

Lessons: A genetic link between NF-1 and IgAN or other glomerular diseases is not established. However, activation of the mTOR pathway may explain this association.

Abbreviations: IgAN = immunoglobulin A nephropathy, NF-1 = neurofibromatosis type 1.

Keywords: IgA nephropathy, IgAN, immunoglobulin A nephropathy, neurofibromatosis type 1, NF-1

1. Introduction
Neurofibromatosis type 1 (NF-1) is a rare genetic disorder that affects 1 out of every 3000 live births. [1] NF-1 is an autosomal-dominant neurocutaneous disorder that affects the skin, bones, and nervous system. [2,3] Although kidney involvement is rare, it most commonly presents as renal artery stenosis, [4] which is reported in less than 1% of cases. [5] Glomerulonephritis is rare in NF-1 patients; only a few cases of membranous nephropathy [6] and focal segmental glomerulosclerosis [7] have been reported in NF-1 patients. In this case report, we present the case of a 51-year-old Korean man with NF-1 and IgAN.

2. Case presentation
A 51-year-old Korean man presented to the nephrology outpatient clinic with proteinuria and hematuria for more than 9 years. Nine years ago, the patient was diagnosed with NF-1 based on the presence of several café au lait macules and cutaneous neurofibromas. A next-generation sequencing panel test confirmed a NF-1 gene mutation on chromosome 17. At the time of diagnosis, proteinuria (urine protein/creatinine ratio = 0.3 g/g; reference value < 0.15) and hematuria (red blood cell
[RBC] count = 10–15/HPF; reference value < 0–2) were present. However, the patient was not evaluated by a nephrologist because he had a normal serum creatinine level (0.64 mg/dL; reference value = 0.4–1.2). He had 1 daughter diagnosed with NF-1 during infancy. None of his ancestors were diagnosed with NF-1.

The patient’s automated blood pressure in the seated position was 134/99 mmHg and the pulse rate was 71 beats/min. He denied a history of smoking or alcohol consumption. His laboratory tests showed a serum creatinine level of 1.21 (reference value = 0.4–1.2) mg/dL, urine protein/creatinine ratio of 1.3 (reference value < 0.15) g/g, and urine RBC count > 100/HPF (reference value < 0–2). A kidney biopsy was planned due to suspicion of glomerulonephritis.

Three days later, the patient was admitted to the hospital. At admission, his blood pressure was 110/70 mmHg in the supine position, the heart rate was 74 beats per minute, and the body temperature was 36.2°C. Physical examination revealed café au lait spots and multiple neurofibromas on the abdomen, back, and arms. Serologic tests were negative for anti-neutrophilic cytoplasmic antibody, antinuclear antibody, anti-phospholipid 2 receptor antibody, anti-glomerular basement membrane antibody, rheumatoid factor, serum/urine protein electrophoresis, and hepatitis B and C. Complement 3 and 4 levels were normal. His biochemical tests showed a hemoglobin level of 12.4 (reference value = 13.5–17.5) g/dL, platelet count of 230 x 10^3/μL (reference value = 140–420), albumin level of 4.1 (reference value = 3.3–5.2) g/dL, creatinine level of 1.1 (reference value = 0.4–1.2) mg/dL, cystatin C level of 1.28 (reference value = 0.61–0.95) mg/dL, CysC-Cr-based eGFR (as determined by the CKD-EPI equation) of 66.3 (reference value > 60) mL/min/1.73 m², sodium level of 134.5 (reference value = 138–148) mmol/L, and potassium level of 4.52 (reference value = 3.5–5.3) mmol/L. Urinalysis showed a protein/creatinine ratio of 0.9 (reference value < 0.15) g/g and an RBC count of 15 to 20/HPF (reference value < 0–2). Contrast-enhanced abdominal computed tomography showed no evidence of renal artery stenosis. In the reconstructed view, the right and left kidneys were estimated to be 10.5 and 11.2 cm long, respectively.

A kidney biopsy was performed and 3 cores of kidney tissue were obtained. Each core was evaluated by light and electron microscopy and immunofluorescence analysis. On light microscopy, 20 glomeruli were observed and 5 (25%) of them showed global sclerosis. The glomeruli were slightly increased in size and moderately hypercellular, with an increase in mesangial cells and the mesangial matrix also seen (Fig. 1A). Four glomeruli (20%) exhibited segmental sclerosis. Tubules had moderate to severe focal atrophy and loss, with interstitial infiltration of mononuclear cells and fibrosis. Mild arteriolosclerosis was also noted. On electron microscopy, localized tiny mesangial deposits were observed (Fig. 1B). The glomerular basement membrane exhibited normal thickness with widening due to severe focal subendothelial edema. Epithelial cell foot processes showed focal effacement. The sections for immunofluorescent microscopy contained 3 glomeruli. The mesangium diffusely stained for immunoglobulin A (+3; IgA) (Fig. 1C), C3 (+1) (Fig. 1D), and lambda (+2–3). Tests for IgG, IgM, C1q, C4, fibrinogen, and kappa were negative. The aforementioned findings were consistent with a diagnosis of IgAN grade III, according to Lee glomerular grading system. At discharge, the patient was prescribed 4 mg/day of perindopril.
Although there is no conclusive evidence of a genetic link between IgAN and NF-1, we suspect that NF-1 affects the development and progression of IgAN. NF-1 is caused by a mutation in the NF-1 gene, located on the long arm of chromosome 17.11,15 NF1 gene encodes neurofibromin, which negatively regulates the Ras/PI3K signaling pathway that in turn regulates the mTOR pathway.16–19 Therefore, alteration of neurofibromin in NF-1 patients can cause aberrant activation of the mTOR pathway.16–19

Activation of the mTOR pathway has been reported in an experimental model of IgAN. In the experiment by Nagai et al,20 mesangial cell mTOR1 activation induced mesangium expansion and increased the production of collagen IV, collagen I, and smooth muscle actin in glomeruli. Additionally, treatment with rapamycin, an mTOR inhibitor, suppressed mesangial expansion. In another experiment with an IgAN rat model, rapamycin attenuated IgA deposition in glomeruli and preserved the renal function.21

The multihit hypothesis is the most widely accepted with respect to IgAN pathogenesis.13,22 This framework involves aberrant glycosylation of IgA1, synthesis of antiglycan autoantibodies that target galactose-deficient IgA1 (Gd-IgA1), formation of circulating Gd-IgA1-antiglycan IgG immune complexes, and accumulation of nephritogenic complexes in the mesangium, which activate the inflammatory response that contributes to mesangial matrix production and mesangial cell proliferation. Even though the genetic link between IgAN and NF-1 is not established, we speculate that the inflammatory response to nephritogenic Gd-IgA1-antiglycan IgG immune complexes in mesangium is enhanced in NF-1 patients due to aberrant mTOR activation. Glomerulonephritis other than IgAN have also been reported in NF-1 patients, including membranous nephropathy,5,7,23 focal segmental glomerulosclerosis,8–10 immunoglobulin M nephropathy,24 C1q nephropathy,12,25 minimal change disease,26 and renal amyloidosis26 (Table 1). Activation of the mTOR pathway in NF-1 patients may increase susceptibility to diverse nephritogenic antigens.

In this article, we report the case of a patient with NF-1 and IgAN. It is unclear whether the co-occurrence of NF-1 and IgAN was due to a genetic association or coincidence. However,
activation of the mTOR pathway may reflect a possible genetic association. Further experimental and clinical studies are required to evaluate the potential genetic association between NF-1 and IgAN.

Author contributions

Conceptualization: Harin Rhee.
Investigation: Sungmi Kim, Wanhee Lee, Hakeong Jeon.
Validation: Da Woon Kim, Byung-Min Ye, Hyo Jin Kim, Min Jeong Kim, Soo Rin Kim, Il Young Kim, Sang Heon Song, Eun Young Seong, Dong Won Lee, Soo Bong Lee.

Writing – original draft: Harin Rhee.
Writing – review & editing: Harin Rhee.

References

[1] Karaconji T, Whist E, Jamieson RV, Flaherty MP, Grigg JR. Neurofibromatosis type 1: review and update on emerging therapies. Asia Pac J Ophthalmol (Phila) 2019;8:62–72.

[2] Kim MJ, Cheon CK. Neurofibromatosis type 1: a single center’s experience in Korea. Korean J Pediatr 2014;57:410–5.

[3] Han M, Criado E. Renal artery stenosis and aneurysms associated with neurofibromatosis. J Vasc Surg 2005;41:539–43.

[4] Malav IC, Kothari SS. Renal artery stenosis due to neurofibromatosis. Ann Pediatr Cardiol 2009;2:167–9.

[5] Kokubo T, Hiki Y, Horii A, Kobayashi Y. Recklinghausen disease. Nihon Gakkai Shi 1994;36:951

[6] Kokubo T, Hiki Y, Horii A, Kobayashi Y. Recklinghausen neurofibromatosis associated with membranous glomerulonephritis. Nephron 1993;62:187–22.

[7] Toth T, Trinn C, Simon L, Nagy J. A case of membranous glomerulonephritis associated with Recklinghausen’s disease. Nephron 1990;63:843

[8] Gersch MS, Talor Z. Focal segmental glomerulosclerosis and von Recklinghausen’s neurofibromatosis: coincidental or associated? Saudi J Kidney Dis Transpl 2008;19:453–4.

[9] Afshinina F, Vega-Warner V, Killen P. Focal segmental glomerulosclerosis in association with neurofibromatosis type 1: a case report and proposed molecular pathways. Clin Kidney J 2013;6:208–10.

[10] Tamuguchi Y, Yorioka N, Kanbe M, et al. Parent and child cases of IgA nephropathy associated with von Recklinghausen’s disease. Nephron 1997;75:113–4.

[11] Shimamura Y, Ogawa Y, Shinohara T. Immunoglobulin A vasculitis in a patient with neurofibromatosis type 1. Nefrologia (Engl Ed) 2020;40:676–7.

[12] Pattrapolpitisut P, Avila-Casado C, Reich HN. IgA nephropathy: Core Curriculum 2021. Am J Kidney Dis 2021;78:429–41.

[13] D’Amico G. Natural history of idiopathic IgA nephropathy and factors predictive of disease outcome. Semin Nephrol 2004;24:179–96.

[14] Viskochil D, Buchberg AM, Xu G, et al. Deletions and a translocation interrupt a cloned gene at the neurofibromin type 1 locus. Cell 1990;62:187–92.

[15] Bergoug M, Doudeau M, Godin F, Mosrin C, Vallee B, Benedetti H. Neurofibromin structure, functions and regulation. Cells 2020;9:2365. doi:10.3390/cells9112365.

[16] Martin GA, Viskochil D, Bollag G, et al. The GAP-related domain of the neurofibromatosis type 1 gene product interacts with ras p21. Cell 1990;63:843–9.

[17] Xu GF, O’Connell P, Viskochil D, et al. The neurofibromatosis type 1 gene encodes a protein related to GAP. Cell 1990;62:599–608.

[18] Bollag G, McCormick F. Ras regulation. NF is enough of GAP. Nature 1992;356:663–4.

[19] Nagai K, Tominaga T, Ueda S, et al. Mesangial cell mammalian target of rapamycin complex 1 activation results in mesangial expansion. J Am Soc Nephrol 2017;28:2879–85.

[20] Tian J, Wang Y, Liu X, Zhou X, Li R. Rapamycin ameliorates IgA nephropathy via cell cycle-dependent mechanisms. Exp Biol Med (Maywood) 2015;240:936–45.

[21] Suzuki H, Kislyuk K, Novak J, et al. The pathophysiology of IgA nephropathy. J Am Soc Nephrol 2011;22:1795–803.

[22] Wani MM, Reshi AR, Banday KA, Najar MS. von Recklinghausen’s neurofibromatosis associated with membranous glomerulonephritis. Saudi Med J 2006;27:534–5.

[23] Chang KY, Kim HW, Kim YS. Case of immunoglobulin M nephropathy in a patient with neurofibromatosis type 1. Nephrology (Carlton) 2015;20:666–7.

[24] Varyani UT, Shah NM, Shah PR, Kute VB, Balwani MR, Trivedi HL. C1q nephropathy in a patient of neurofibromatosis type 1: a rare case report. Indian J Nephrol 2015;20:666–7.

[25] Orera A, Lacerza S, Fernandez L, Gomez N, Slon MF, Mannrique J. Secondary glomerulonephritis in neurofibromatosis type 1. Two case reports. An Sist Sanit Navar 2019;42:345–9.