Mixed-spin pairing condensates in heavy nuclei

Alexandros Gezerlis1, G.F. Bertsch1,2, and Y.L. Luo1

1Department of Physics, University of Washington, Seattle, Washington 98195–1560 USA and
2Institute for Nuclear Theory, University of Washington, Seattle, Washington 98195–1560 USA

We show that the Bogoliubov-de Gennes equations for nuclear ground-state wave functions support solutions in which the condensate has a mixture of spin-singlet and spin-triplet pairing. We find that such mixed-spin condensates do not occur when there are equal numbers of neutrons and protons, but only when there is an isospin imbalance. Using a phenomenological Hamiltonian, we predict that such nuclei may occur in the physical region within the proton dripline. We also solve the Bogoliubov-de Gennes equations with variable constraints on the spin-singlet and spin-triplet pairing amplitudes. For nuclei that exhibit this new pairing behavior, the resulting energy surface can be rather soft, suggesting that there may be low-lying excitations associated with the spin mixing.

PACS numbers: 21.10.-k, 21.30.Fe, 21.60.Jz, 27.60.+j

Introduction. The usual pairing found in nuclei is between identical nucleons in the spin-singlet channel. Although the spin-triplet interaction is stronger, the spin-orbit field tends to suppress pairing in the triplet channel.[1, 2] However, spin-triplet pairing becomes favored in nuclei with equal numbers of neutrons N and protons Z when the nucleon number is very large (probably beyond the proton dripline).[3] In this work we address nuclei with $N \neq Z$ and find some surprising results: a) the domain where spin-triplet pairing dominates extends well off the $N = Z$ line; b) the condensate changes character smoothly between pure spin-triplet on the $N = Z$ line to pure spin-singlet at large neutron excess, c) the mixed-spin nuclei that we find extend below the proton dripline and are thus relevant to experiment.

Context. The expectation that isospin-zero ($T = 0$) neutron-proton pairing should exist comes from the fact that the interaction in the spin-triplet (isospin-singlet) channel, which binds the deuteron, is stronger than the 1S_0 interaction that is largely responsible for ordinary identical-particle spin-singlet pairing. It was suggested a long time ago that neutron-proton pairing is important near the $N = Z$ line (see Refs. [4, 5] and works cited therein, as well as Refs. [6, 7] for a discussion of the experimental situation). A number of theoretical works have examined the possibility that nuclei may contain a $T = 0$ spin-triplet neutron-proton (‘deuteronlike’) condensate when $N = Z$, suggesting that states of high angular momentum might favor $T = 0$ pairing.[8, 9] The possibility of mixed-spin condensation, $T = 0$ and $T = 1$, has also been raised in Refs. [8, 10] for $N = Z$ medium-mass nuclei, although no mixed-spin ground states were shown. In this Letter, we present our findings for the existence of mixed-spin solutions to the Bogoliubov-de Gennes (BdG) equations for the ground-state of large but accessible nuclei off the $N = Z$ line.

Hamiltonian. We use the same Hamiltonian here as was used in Ref. [5, 11] It contains a one-body and a two-body part represented in Fock space as:

\begin{equation}
\hat{H} = \sum_i \langle i| (H_{sp}|j) a_i^\dagger a_j + \sum_{i>j,k>l} \langle ij|v|kl\rangle a_i^\dagger a_j^\dagger a_k a_l \tag{1}
\end{equation}

where i,j label orbitals in a spherical shell-model basis. The one-body part H_{sp} is taken from the eigenstates of a Wood-Saxon potential of standard form, containing a kinetic energy, a potential well, and a spin-orbit term. The two-body interaction is of contact form:

\begin{equation}
\langle ij|v|kl\rangle = \frac{1}{4} \langle ij| 3v_t + v_s + (v_t - v_s)\vec{\sigma} \cdot \vec{r}' \delta^{(3)}(\vec{r} - \vec{r}') P_{L=0}|kl\rangle, \tag{2}
\end{equation}

where $P_{L=0}$ projects onto the spherically symmetric part of the pair wave function. This Hamiltonian is appropriate for systems with no nuclear deformation, accenting the pairing condensates. There are two interaction strengths, v_t and v_s, corresponding to spin-triplet and spin-singlet, respectively. These were determined by fitting to phenomenological shell-model Hamiltonians. The interaction of Eq. (2) can generate 6 independent condensates, counting only spin and isospin quantum numbers. We label these by an index α enumerated in Table I.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline
α & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline
(S, S_z) & (0,0) & (0,0) & (0,0) & (1,1) & (1,0) & (1,-1) \\
(T, T_z) & (1,1) & (1,0) & (1,-1) & (0,0) & (0,0) & (0,0) \\
\hline
\end{tabular}
\caption{Spin-isospin channels for pairing condensates.}
\end{table}

Finally, we note that the Coulomb interaction is omitted in the above Hamiltonian. The main effect of this is that the calculated nuclei are only physical within the proton dripline. Nevertheless, the pairing phenomena that can be elucidated beyond the proton dripline are interesting on a purely theoretical level. Also, as we shall show, the region where novel forms of pairing may occur extends into the physical region, below the proton dripline.
BdG theory. The Bogoliubov-de Gennes theory is defined by minimizing the Hamiltonian under Bogoliubov transformations of the Fock-space vacuum, subject to constraints such as the neutron and proton number expectation values. In the notation of [12], the Bogoliubov transformations are parametrized by the matrices U and V giving the definition of the quasiparticle operators in terms of the Fock-space operators. The key equations in the theory are the formulas for ordinary and anomalous densities, $\rho = V^*V^t$ and $\kappa = V^*U^t$, respectively, and the formula for the expectation value of the Hamiltonian,

$$H^{00} = \text{Tr}(\varepsilon\rho + \frac{1}{2}\Gamma\rho - \frac{1}{2}\Delta\kappa^*).$$

As usual, the matrices Γ, Δ are defined through the standard relations $\Gamma_{ij} = \sum_{k\ell} v_{kij}\rho_{\ell k}$ and $\Delta_{ij} = \frac{1}{2} \sum_{k\ell} v_{ijkl}\kappa_{\ell k}$. Here, and in Eq. (4) below, superscripts denote the number of quasiparticle creation and annihilation operators. Since our Hamiltonian is phenomenological, we assume that the $\Gamma\rho$ term is included in it. We therefore omit explicit consideration of it below.

Calculational procedure. Traditionally the minimization is carried out using the BdG equations, which are arrived at by setting the variational derivative of the energy with respect to U and V to zero. (Actually the variation must be constrained to preserve the unitarity of the Bogoliubov transformation. This introduces Lagrange multipliers that give the BdG equations their structure as eigenvalue equations for the quasiparticle energies.) The BdG equations are solved for some assumed density, and the solution is used to update the density. This process is iterated to self-consistency. However, to study the energetics with different types of condensates it is necessary to deal with many constraining fields and therefore thoroughly explore the space of allowed Bogoliubov transformations. Under these conditions, the BdG minimization is easier to carry out by the gradient method [12], and we take advantage of that method here. In taking the variational derivative of the Hamiltonian one makes use of the generalized Thouless matrix Z, whose elements are independent of each other. The gradients of the Hamiltonian and the operators to be constrained can then be applied to update a trial set of U, V matrices, using the steepest descent or other numerical methods[13]. The change in the expectation value of a one-body operator Q can be expressed:

$$Q^{00}_{\text{new}} = Q^{00}_{\text{old}} - \text{Tr}(Q^{20}Z) + O(Z^2).$$

A similar formula applies for the Hamiltonian, since its expectation value can be expressed in terms of one-body expectation values. To ensure that the space of possible Bogoliubov transformations has been adequately explored, we carry out the iteration process repeatedly starting from U, V matrices obtained by transformations from the vacuum or other states by Z transformations. We have used the gradient method to solve the BdG equations with 8 simultaneous constraining fields, 2 for the neutron and proton particle numbers, and 6 for the pairing amplitudes corresponding to the 6 distinct channels of Table I. To be more precise, the 6 constrained amplitudes are computed as $\kappa_\alpha = \text{Tr}(P_\alpha\kappa)$ where the matrices P_α are defined in terms of the quantum numbers $(\ell_k, \ell_z, s_z, t_z)$ of the orbitals k as

$$P_{\alpha,ij} = \sqrt{2} (\frac{1}{2} s_{zi} \frac{1}{2} s_{zj} |S(\alpha)S_z(\alpha)) \times$$

$$\left(\frac{1}{2} t_{zi} \frac{1}{2} t_{zj} |T(\alpha)T_z(\alpha)\right)^{-} \delta_{\ell_i,\ell_j} \delta_{\ell_z,-\ell_z}.\right)$$

In the computation, even-A and odd-A nuclei are distinguished by the number parity of the Bogoliubov transformation[13]. For odd-A nuclei, there is a block structure of the Hamiltonian and the odd number parity is imposed on one of the blocks. Each block must be tested to find the global energy minimum.

Results. A quantity that allows us to accurately gauge the relative importance of the pairing condensates is the correlation energy, $E_{\text{corr}} = E_0 - E$, where E_0 is the energy of the ground state in the absence of a pairing condensate, i.e. the result of setting all κ_α to zero.

We have mapped out all nuclides with $Z \leq N$ for neutron numbers from 50 to 75 and show the results in Fig. [1]. A few nuclei have very small correlation energies...
When one reaches the region of ordinary spin-singlet pairing, changing the neutron-proton asymmetry, two-dimensional plot we take theκ132 is taken to be the same asκ1, all other condensates are irrelevant, so we have chosen to call “mixed-spin paired” those nuclei for which the spin-singlet amplitude is between one and three quarters of the total pairing amplitude. Note that the island of mixed-spin paired nuclei (blue circles in Fig. 1) contains many nuclei that lie within the proton drip line. Thus, the predicted mixed-spin pairing may be relevant to experimental investigation.

In an attempt to understand how the pairing condensate changes from spin-singlet to spin-triplet, we have examined in more detail some nuclei at mass number A = 132. Here, the N = Z nucleus132Nd exhibits spin-triplet pairing. Changing the neutron-proton asymmetry, one reaches the region of ordinary spin-singlet pairing when N − Z > 10. The nucleus132Nd is an example. At the BdG minimum, the only nonzero anomalous densities are the ones for α = 1, 3 and they have roughly equal amplitudes. To see how the energy varies as the condensate is changed, we constrain κα away from the values at the minimum and examine the energy surface. For a two-dimensional plot we take the x variable to be the amplitude of the neutron-neutron condensate κ1 and the y variable the amplitude of the neutron-proton condensate κ3. The amplitude of the proton-proton condensate κ3 is taken to be the same as κ1, all other condensates are set to zero. The resulting correlation energy for132Nd is shown as a contour plot in the left panel of Fig. 2.

The peaks near (x, y) ≈ (±20, 0) correspond to the unconstrained BdG minimum. The BdG energy does not depend on the phase of the condensate, so the energy surface is symmetric under reflections in both axes. The pure uncorrelated ground state at the center of the graph (black dot) defines the zero level for the condensation energy. Note that the contours are elongated in the vertical direction, indicating that the energy surface is rather soft with respect to forming a spin-triplet condensate.

The middle panel of Fig. 2 shows the energy surface for132Dy on the N = Z line. Here the peaks are at (x, y) ≈ (0, ±22), i.e. the condensate is spin-singlet. Along the x-axis the spin-singlet condensation energy reaches a maximum near x = ±20, but it is only a saddle point in the two-dimensional space.

We now ask how one condensate changes to the other as N − Z is varied. One could imagine a sudden switch, corresponding to a quantum phase transition, if the saddle point in the middle panel of Fig. 2 became a peak that grew to become the global maximum. This is not what happens. Instead, the peak shifts position, moving smoothly from one axis to the other. A typical case is shown in Fig. 3, N − Z = 4, i.e. the nucleus132Gd. The maxima are located at (x, y) ≈ (±22, ±11), i.e. the condensate has a mixed-spin character. We have examined the form of the pairing in the canonical basis and found that the relationship between paired orbitals |i⟩ and |j⟩ is |i⟩ = τzT|i⟩, where T is the time reversal operator and τz is the Pauli isospin operator. This particular form gives ordinary spin-singlet pairing in the absence of neutron-proton mixing in the orbital |i⟩, but has a spin-triplet component when neutrons and protons are mixed.

Discussion. Trial computations we have performed suggest that the phenomenon of mixed pairing depends on the spin-orbit field in the nucleus. In the absence of spin-orbit splitting, the singlet and triplet interactions would be on an equal footing. There would be a sharp
transition at \(v_x = v_y \), the SU(4) symmetry point, with pure condensates of one type or the other away from that point. Moreover, the smooth transition between spin-singlet and spin-triplet pairing could not have been anticipated from results such as those in Refs. [5, 6] on the behavior in \(^{48}\text{Cr}\) as a function of angular momentum. These authors found that the states of different character do not mix strongly and the character of the yrast state just depends on which is lower in energy. Also, in Ref. [11] the authors report that there is a phase transition as a function of \(N - Z \), with the change of character taking place suddenly. However, a small degree of mixing was found in Ref. [10] for the high spin states in \(^{80}\text{Zr}\). It is important to note that the spin-triplet condensates considered in these references are in channels different from the \(\alpha = 5 \) one (see Table I) which we use. In fact, we find a smooth transition to spin-singlet pairing only when starting from that channel, i.e. spin-triplet with \(z \)-projection \(S_z = 0 \).

We now briefly mention some of the possible physical consequences of the mixed pairing phase. One potential consequence of spin-triplet pairing might be a reduced pairing gap in the odd-even mass differences. In particular, it was found in Ref. [3] that some quasiparticle energies are close to zero, suggesting reduced pairing gaps.

To examine the pairing gaps we calculate the second difference of the correlation energies by the formula

\[
\Delta^{(3)}(n) = E(n) - \frac{1}{2} [E(n - 1) + E(n + 1)].
\]

For nuclei near the spin-triplet pairing region. Blue circles: \(\Delta^{(3)}(n) < 0.4 \text{ MeV} \); green squares: \(\Delta^{(3)}(n) > 0.4 \text{ MeV} \).

On a different note, there may be spectral signatures of the triplet pairing and the transition. According to Frauendorf, the spectra of odd-odd nuclei become similar to that of even-even nuclei in the limit of strong spin-triplet pairing (\[15\], p. 499). condensation. Even in the mixed-spin regime, the softness of the energy surface suggests that there should be low-lying excitations associated with the spin degree of freedom. The mean-field theory has to be extended to deal with broken symmetries including particle number and angular momentum before predictions can be made for spectroscopic quantities. Other observables of interest are two-particle transfer direct reaction cross sections, which in principle can be used to compare correlation strengths in the two spin channels. Here, again, the theory needs to restore good particle number to distinguish between the nuclei participating in the transfer reaction, and this remains for future work. Finally, nuclear deformation can strongly modify pairing behavior, so it is important to extend the calculations to the full Hartree-Fock-Bogoliubov theory in which deformation effects are included. In this Letter, we have focused on the qualitatively new phenomenon of mixed-spin pairing, predicted for nuclei that are experimentally accessible.

Acknowledgments. We thank M. M. Forbes, P. Ring, and L. M. Robledo for useful discussions. This work was supported by U.S. DOE Grants No. DE-FG02-97ER41014 and No. DE-FG02-00ER41132.

[1] A. Poves and G. Martinez-Pinedo, Phys. Lett. B430 203 (1998).
[2] G.F. Bertsch, A.O. Macchiavelli, and A. Schwenk, unpublished; see also S. Baroni, A.O. Macchiavelli, and A. Schwenk, Phys. Rev. C81 064308 (2010).
[3] G.F. Bertsch and Y. Luo, Phys. Rev. C81 064320 (2010).
[4] A. L. Goodman, Nucl. Phys. A186 475 (1972).
[5] A. L. Goodman, Phys. Rev. C 60 014311 (1999).
[6] A.O. Macchiavelli, et al., Phys. Rev. C 61 041303R (2000).
[7] A.O. Macchiavelli, et al., Phys. Lett. B 480 1 (2000).
[8] W. Satula and R. Wyss, Phys. Lett. B 393 1 (1997).
[9] J. Terasaki, R. Wyss, and P.-H. Heenen, Phys. Lett. B 437 1 (1998).
[10] A. L. Goodman, Phys. Rev. C 63 044325 (2001).
[11] A. L. Goodman, Phys. Rev. C 58 3051 (1998).
[12] P. Ring and P. Schuck, “The nuclear many-body problem”, (Springer, New York, 1980).
Our numerical procedures are introduced in L.M. Robledo and G.F. Bertsch, to be published (2011); see also J. L. Egido, J. Lessing, V. Martin, and L. M. Robledo, Nucl. Phys. A594, 70 (1995).

W. Satula and R. Wyss, Phys. Rev. Lett. 86 4488 (2001).

S. Frauendorf, Rev. Mod. Phys. 73 463 (2001).

P. Moller, et al., At. Data Nucl. Data Tables 59 185 (1995).