Harnessing temperament to elucidate the complexities of serotonin function

Jonathan W Kanen¹,², Trevor W Robbins¹,² and Irina N Trofimova³

This review highlights the utility of applying concepts of temperament and personality traits in healthy individuals to functional studies of serotonin (5-hydroxytryptamine, 5-HT), in an effort to better elucidate the complex roles of 5-HT, and ultimately advance our understanding of psychopathology. We highlight empirical demonstrations of multifaceted and trait-dependent emotional and behavioural effects of manipulating 5-HT in humans, with emphasis on studies employing the technique of acute dietary tryptophan depletion, and additionally selective serotonin reuptake inhibitors. Relevant evidence from studies of 5-HT in non-human animals is also discussed. We show how the effects of central 5-HT manipulations affect behaviour depending not only upon situational context but also on pre-existing temperament and personality traits such as empathy, psychopathy, neuroticism, impulsivity, and intolerance of uncertainty. These effects can be related to the concept of the baseline (or rate-) dependency of neurochemical effects on behavioural control. We speculate about the neurochemical substrates for some of these trait-dependent effects, as well as their clinical significance.

Addresses
¹Department of Psychology, University of Cambridge, Downing St., Cambridge, CB2 3EB, United Kingdom
²Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing St., Cambridge, CB2 3EB, United Kingdom
³Department of Psychiatry and Behavioural Neurosciences, McMaster University, 92 Bowman St., Hamilton, ON L8S 2T6, Canada

Corresponding author: Kanen, Jonathan W (jonathan.kanen@gmail.com) @jwkiwjwki (J.W. Kanen)

Current Opinion in Behavioral Sciences 2022, 45:101108
This review comes from a themed issue on Neurobiology of temperament, personality and psychopathology: what's next?
Edited by Irina Trofimov and Alan Pickering

For complete overview of the section, please refer to the article collection, “Neurobiology of temperament, personality and psychopathology: what’s next?”
Available online 9th March 2022
https://doi.org/10.1016/j.cobeha.2022.101108
2352-1546/© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Useful concepts for research on neurochemical biomarkers of traits and psychopathology

This Theme Issue on the neurobiology of temperament, personality and psychopathology discusses biomarkers for bio-behavioural taxonomies including the classification of psychiatric disorders [1]. Serotonin (5-HT; 5-hydroxytryptamine) is a plausible biomarker for such taxonomies, having been linked to many psychiatric symptoms [2]. Here, we focus on how serotonin interacts with pre-existing (‘baseline’) tendencies or temperament traits to modulate affective and behavioural control. It is not perhaps surprising that the range of potential interactions with individual differences in temperament is huge, given that serotonin has been said to be ‘involved in everything but responsible for nothing’ [3]. We will thus address how serotonin interacts with impulsivity, empathy, psychopathy, neuroticism, and intolerance of uncertainty to determine behaviour, which may be further shaped by environmental context. Here we speculate that harnessing individual differences in temperament traits or in personality in studies of serotonin function can reveal new dimensions of the role of this neurotransmitter. We consider temperament and personality as overlapping to a great extent although personality has been suggested to depend on social tendencies and cultural

¹² Given their editorial roles, Trevor Robbins (co-Editor-in-Chief) and Irina Trofimova (Guest Editor) had no involvement in the peer-review of this article and has no access to information regarding its peer-review. Full responsibility for the editorial process for this article was delegated to Alan Pickering.
learning, whereas temperament may be linked more expressly to biological factors and behavioural measures (e.g. ‘reinforcement sensitivity’) [4].

The conclusions to be offered will be speculative but in line with the brief of this Theme issue on the psychobiology of individual differences — broadly defined to include psychopathology as well as temperament/personality. We hypothesise that identifying genetic and neurochemical biomarkers of psychopathology can be facilitated if a tractable, well-supported neurochemical model of temperament is identified and conjoined with self-reported gradations of temperament in healthy individuals [5**,6**]. Historically, the dimensionality of complex human behaviour has been difficult to reduce; thus, here we hypothesise that harnessing temperament and personality traits in empirical studies represents a fruitful avenue towards doing so. The Theme Issue invited a horizon-scanning perspective (‘What’s next?’) given that few concrete and reliable findings have emerged in this research field to date. Indeed, speculative accounts are arguably useful when many attempts to uncover reliable biomarkers in individual differences have proven unsuccessful.

Manipulating human serotonin function via the acute tryptophan depletion (ATD) technique is one of the most common methods for studying serotonin function in humans [7], and was employed in multiple studies presented here. ATD involves removing serotonin’s biosynthetic precursor, the essential amino acid tryptophan, from the diet temporarily while administering other large neutral amino acids (see Ref. [8**]). Various psychiatric symptoms have been elicited by performing ATD on different patient groups, in tests of the hypothesis that serotonin is clinically relevant to these conditions. These findings are reviewed elsewhere (e.g. Refs. [9**,10]), however, briefly: ATD tended to induce relapse in individuals in remission from major depressive disorder (MDD) who used serotonergic medications [11]. Individuals with panic disorder, for instance, showed enhanced panic responses following ATD [12]; in individuals with obsessive-compulsive disorder (OCD), ATD increased distress and lowered mood during symptom provocation [13]. ATD reversed the benefit of SSRIs in social anxiety disorder [14]. ATD has also been studied in cocaine users, bulimia nervosa, autism spectrum, bipolar, and alcohol use disorders, and irritable bowel syndrome (IBS), among others (see Refs. [9**,10]).

Whilst ATD is a short-term intervention, and it is important to study longer term effects of serotonergic interventions, short-term responses to serotonergic challenges can predict longer term responses to SSRIs [15] and there are instances where an acute effect has been shown to be comparable to repeated dosing [16]. Studies with ATD can be supplemented by studies utilising drugs affecting 5-HT; we will also consider effects of the selective serotonin reuptake inhibitors (SSRIs) given acutely or chronically. One of the difficulties associated with human studies is to be sure of the direction of effect on 5-HT after ATD or SSRi treatment (see Ref. [17]); this can be alleviated to some extent by parallel studies of other 5-HT manipulations in experimental animals [18].

Empirical studies of 5-HT manipulations in relation to temperament

Empathy and psychopathy

One indication of the importance of temperamental trait factors was suggested by studies examining effects of ATD and acute SSRI treatment on moral decision-making in the well-known ‘trolley problem’ and ‘ultimatum game’ [19,20**]. These not only showed opposite effects of ATD and acute SSRI treatments but also tested the hypothesis that prosocial effects of the SSRI on moral judgement would be stronger in individuals higher in trait empathy [20**]. In line with this hypothesis, participants high in trait empathy (as measured by the Interpersonal Reactivity Index) showed stronger prosocial effects on moral judgement and behaviour after acute SSRI than those with low trait empathy [20**]. These results suggested that serotonin modulates empathic responses to avoid harming others — by boosting an already present presumed neural signal. The drug boosted responding only in the emotionally highly salient personal scenarios, showing the importance of precise context. It should be noted, however, that acute SSRI administration can paradoxically decrease serotonin concentration in projection areas via 5-HT1A autoreceptors [21], and so the precise neurochemical mechanism of these effects is incompletely understood.

The importance of contextual factors also came to light when considering effects of serotonin manipulations on conditioned responses to emotional faces (signaling ‘innate’ or ‘proximal’ threats) versus other ‘learned threats’ or cues predictive of ‘distal threats.’ Several studies have highlighted a key role of contextual factors in shaping the response to 5-HT; divergent effects of serotonin have been observed depending on the context, or threat level, conveyed by discrete cues [22–24,25**,26], consistent with influential views on serotonin function [27**].

Pavlovian conditioned responses, moreover, can also be shaped by trait factors, such as the transdiagnostic construct intolerance of uncertainty. Intolerance of uncertainty refers to a trait aversion to uncertain situations, with relevance to generalized anxiety disorder, social phobia, panic disorder, agoraphobia, OCD, depression [28,29], and symptoms of post-traumatic stress disorder (PTSD); [30]. It is perhaps unsurprising that individuals with PTSD show heightened return of autonomic responses, indexed by the skin conductance response, when re-
encountering a triggering stimulus [31]. ATD, instead, had an anxiolytic effect on the return of autonomic responses for learned distal threats, which may be even more pronounced in individuals highly intolerant of uncertainty [25**]. Meanwhile, it should be noted that intolerance of uncertainty differs from trait anxiety [32–35]. Indeed, variations in trait anxiety have also been studied in relation to serotonin function, at the level of neurobiology and genetics, leading to findings of varying amygdala activity pertaining to threats [36].

Whilst Pavlovian conditioning paradigms are a common method for studying emotion, another, less commonly discussed role of 5-HT was identified in a study of social emotions and empathy. Motivated by the aforementioned observation on empathy and serotonin interacting to modulate moral decision-making, we extended these results to social emotion. The question addressed was: Do traits (e.g. empathy) interact with serotonin to produce differing social emotions?

Our recent study [8**] employed a novel computerised moral judgement (MJ) task from the EMOTICOM neuropsychological testing battery [37**]. The MJ task involved a series of cartoon scenarios of social and unjust harm — which was sometimes intentional, sometimes unintentional; the participant was sometimes the victim, sometimes the agent. Ratings of guilt, shame, and annoyance, under ATD or placebo, were the primary dependent measures, in response to the scenarios.

Guilt and shame were distinguished by the difference between ‘If only I hadn’t’ as opposed to ‘If only I weren’t’, respectively [8**,38]. Whilst guilt is part of the diagnostic criteria for depression, proneness to shame most consistently relates to a range of psychopathology [8**,39**]. The DSM5 ‘guilt’ criterion may therefore be referring to shame-laden guilt [8**,39**]. Empathy was a factor modulating feelings of guilt in particular under ATD [8**]. Individuals who were clinically depressed also showed association with enhanced guilt and shame on the same MJ task, translated into Danish [40**] (see Ref. [41**], for a study on trait paranoia using this MJ task).

In our study, individuals high in trait empathy self-reported more guilt following diminished availability of serotonin’s biosynthetic precursor [8**], engendered by the ATD procedure, to deplete serotonin transiently [11,42]. The effect on guilt was driven by situations of inflicting (being the agent of) harm, unintentionally [8**]. Shame was elevated in the highly empathic, as well, but may have reached ceiling before the introduction of ATD in high empath [8**]. Irrespective of traits, we used principal components analysis (PCA) to reduce many dependent variables into a smaller number of components. Of these, a component reflecting guilt and shame, when the victim of harm, was elevated after ATD. Also elevated by ATD regardless of trait factors was another principal component, interpreted as inward frustration, or annoyance with oneself for having harmed another [8**].

Moreover, individuals high in trait psychopathy — who classically have preserved theory of mind [43] — showed increased annoyance after ATD, in particular, following unjust harm [8**]. This result concords with the extensive literature on the ultimatum game: increased retaliatory behaviour to injustice has been documented after ventromedial prefrontal cortex (vmPFC) damage, in incarcerated individuals with psychopathy [44], and indeed, in healthy humans after ATD [19]. Whilst psychopathy can involve either goal-directed or impulsive aggression [45,46**], our findings, using the Levenson Self-Report Psychopathy Scale (LSRP; [47]), may be most relevant to goal-directed aggression [8**]. Serotonin-mediated impulsive aggression [48**], meanwhile, can be worsened by alcohol misuse [46**], unleashing a latent (or prepotent) tendency towards irritability (annoyance) or violence.

In summary, our study identified two (classically opposing) traits — empathy and psychopathy — and demonstrated that differing social emotions were amplified by ATD as a function of these traits. Whereas previous work showed an amplification effect of serotonin depletion on social behaviour in relation to individual differences in empathy, we have additionally shown that individual differences in psychopathy versus empathy interact with serotonin depletion to influence the quality as well as the magnitude of social emotion. Hence, serotonin depletion tends to exaggerate the effects of prior dispositions on social behaviour.

Neuroticism

Neuroticism is another temperament trait, quite closely related to Trait Anxiety [49,56**], that we hypothesise would interact with serotonin function to modulate emotion, including guilt and shame. Indeed, neurotic individuals were differentially affected by SSRIs, assessed by neural responses to emotional faces [50]. Neuroticism can be defined as an emotional disposition for expecting surprising negative outcomes, complemented with perceived low social support.

It is widely regarded as a risk factor for depression [51], and has additionally been studied longitudinally, neurochemically, and with neuroimaging [50,52–55]. Neuroticism is more apparent in situations of novelty or uncertainty, in which the increased frequency of uncertain outcomes amplifies negative expectations. Neuroticism has been related to neurochemical interactions involving the serotonin, noradrenaline, and opioid systems [56**,57**,58]. By taking an analogous approach to our empathy findings [8**] we recently found that neuroticism (as measured with the STQ questionnaire [59])
and serotonin indeed interacted to modulate guilt and shame, and this effect differed as function of whether the participant was the agent or victim of an unjust harm as depicted in cartoon scenarios of the MJ task (Kanen JW, Trofimova IN, and Robbins TW unpublished observations).

Impulsivity and impulsive aggression

As a neurochemical biomarker of psychiatric disorders, serotonin is commonly discussed in the context of depression, but it is also an important factor in trait impulsivity in relation to both executive control over behaviour and its interaction with emotional processing, as occurs in impulsive aggression and ‘negative urgency’. Impulsivity is thus not a unitary construct [60], and serotonin affects different types of impulsivity differently [18,61–63]. In humans, impulsivity may be measured by self-report questionnaires, such as notably the Barratt Impulsiveness Scale (BIS-11) [64], the UPPS-P Impulsive Behavior Scale (IBS) [65], the Eysenck Personality Questionnaire (EPQ) [66] and the Temperament and Character Inventory (TCI) [67]. There is little doubt that serotonin is implicated in certain forms of impulsivity, especially impulsive aggression, based on extensive genetic, neurochemical (including position emission tomography) and pharmacological evidence in humans, including clinical populations, and animals [68,69]. For example, this evidence has focused especially on polymorphisms and transgenic manipulations of the 5-HT1B and 2B receptors [70], as well as the serotonin transporter (SERT), and 5-HT metabolite studies, the general hypothesis being that low 5-HT function is associated with increased aggression. Note that for the measurement of action inhibition, the evidence is less clear. For example, there is little to support a role of 5-HT as measured by the stop signal reaction time task; here, ATD had no effect even when polymorphisms of the SERT were taken into account [62]. On the other hand, when action restraint (or ‘waiting impulsivity’) in the context of reward anticipation was measured, 5-HT depletion in rats and humans (with ATD) had major effects [18,71]. The fact that trait impulsive aggression may depend on low serotonin activity would suggest that 5-HT manipulations in humans such as ATD and SSRIs would have specific effects on such behaviour. Indeed, SSRIs have been employed to treat impulsive aggression successfully in a few studies [69], although more evidence is required.

The distinct effects of ATD and SSRIs on different forms of emotional response, which appear to depend on different baseline levels of 5-HT function as well as on pre-existing traits, are reminiscent of so-called ‘rate-dependent’ effects of stimulant drugs, primarily affecting the catecholaminergic (dopamine and noradrenaline) systems on behaviour [72]. Thus, for example, in agreement with this baseline-dependent principle, drugs such as methylphenidate or cocaine may increase low baseline rates of impulsive responding in rats or decrease initially high rates in trait impulsive animals [73,74]. However, it is now evident that it applies to individual differences in humans in cognitive function as well as behaviour [75]. Furthermore, trait impulsivity (as measured with the BIS-11) in humans affects how dopaminergic drugs influence working memory (ameliorating poor working memory in the case of high trait impulsivity and impairing it in the case of low impulsive individuals). For both rats [76] and humans [77,78], these baseline differences in impulsivity can be related to striatal dopamine (DA) D2 receptor availability. Such findings have obvious clinical implications for understanding the ‘paradoxical’ therapeutic effects of stimulant drugs in attention deficit/hyperactivity disorder (ADHD).

There is a possible interaction of the anti-ADHD effects of stimulants with serotonergic mechanisms as shown via studies in experimental animals. Winstanley et al. [79], for instance, found that the ability of amphetamine to reduce the temporal discounting of reward in rats with baseline high impulsive choice was selectively reduced by forebrain 5-HT depletion. This DA-5-HT interaction was supported by other pharmacological manipulations which included the antagonism of inhibitory 5-HT1A receptors which enhanced the anti-impulsivity effect of amphetamine [80].

Putative mechanisms of trait-dependent effects of serotonin manipulations

As well as putative 5-HT-DA interactions being relevant to traits, there is suggestive evidence of 5-HT-hormonal interactions that may account, for example, for the dependence on empathic trait. Interactions between serotonin and the so-called ‘social hormones’ oxytocin (OXT) and vasopressin (VSP), for example, are also plausibly involved in feelings of guilt and shame [81,82]. As we pointed out previously in the ‘Functional Ensemble of Temperament’ (FET) neurochemical model [57*,57**, 58], OXT-VSP regulate social orientational rather than energetic aspects of behaviour, that is, empathy and prosocial perception (in cooperation with estrogen). This is in line with the ‘social salience hypothesis of oxytocin’ [83], underlying the tendency for OXT administration to increase pro-social perception [84–90]. Social anxiety, prominent in neuroticism, has also been linked to OXT [88]. OXT and VSP can have opposite actions in the central amygdala (cAM): OXT decreases hypothalamo-pituitary-adrenal (HPA) axis arousal via gamma aminobutyric acid (GABA) neurons in the cAM and suppresses VSP-responsive neurons [81,89,91].

There are rich 5-HT projections from the dorsal and median raphe nuclei to hypothalamic nuclei, where OXT and VSP are synthesised [92]. 5-HT neurons have OXT receptors, which, if activated, increases 5-HT release from median raphe neurons [93], and OXT can
affect 5-HT$_{1A}$ receptor binding potential [94]. Social interaction can involve coordinated activity of oxytocin and serotonin in the nucleus accumbens [95] and OXT and 5-HT interact in the amygdala when processing threats [89]. In contrast with the mutually supportive interaction between OXT-5-HT, serotonin reportedly inhibits VSP, and so ATD would ease this inhibition, and may contribute to aggression [96].

What’s next? Useful approaches for future research on the role of temperament as a biomarker

First, it is important to note that future endeavors should strive for much larger sample sizes to achieve the necessary statistical power for analysing trait-neurotransmitter interactions [97], although the general level of consensus in some of these preliminary investigations is perhaps encouraging. Collaboration across laboratories, as well as replication of findings may aid in this goal. The pragmatic reality is that it is logistically difficult to execute a neurochemical challenge study – of any size – in humans, and so such collaborative approaches are much needed. Another limitation to be addressed is whether acute manipulations of 5-HT as mainly investigated here will be of significance for long term trait-dependent neurotransmitter effects, especially in a clinical context. The example of the ATD challenge in remitted patients with major depressive disorder producing relapse in mood suggests that they will be.

In this brief review, we have highlighted the complex action of 5-HT in regulation of affective and behavioural control, and provided specific examples in relation to empathy, psychopathy, impulsivity, neuroticism, and intolerance of uncertainty. We also presented an experimental example of involvement of 5-HT in regulation of social emotions (such as guilt and shame), as a rarely discussed functionality of 5-HT. We pointed to research showing that in regulation of these emotions, 5-HT does not work alone mechanistically. Instead, it probably interacts with a number of hormones and probably with different functional neural circuits, given the ramifying influence of the raphe 5-HT projections to many different terminal domains having different behavioural and cognitive functions. Our experimental example also illustrated contextuality of emotions and behaviour seen in differential responses when people were agents or victims of harm.

The impact of impulsivity, empathy, psychopathy, neuroticism, and intolerance of uncertainty, as temperament traits, on responses to experimental tasks demonstrates the importance of screening for temperament in neurochemical experiments, in order to resolve and explain variability of results. Moreover, analysis of temperament may be used in real life to promote mental health by healthcare professionals spanning general practitioners, social workers, clinical psychologists, and psychiatrists. For example, when facing novel challenges in significant life transitions, especially when the new environmental state is more uncertain or volatile, individuals high in trait intolerance of uncertainty [98] or neuroticism may be at particular risk for pathological anxiety [25**,31]. We believe that harnessing temperament, to fractionate serotonin’s role in ‘everything, yet nothing in particular’, has the potential to inform vulnerability, guide treatment, and contribute to re-classification frameworks for mental disorders such as the Research Domain Criteria (RDoC [99]).

Conflict of interest statement

T.W.R. discloses consultancy with Cambridge Cognition; he receives research grants from Shionogi & Co and GlaxoSmithKline and royalties for CANTAB from Cambridge Cognition and editorial honoraria from Springer Verlag and Elsevier. J.W.K and I.N.T. have nothing to declare.

Data availability

Data will be made available on request.

Acknowledgements

Jonathan W. Kanen was funded by a Gates Cambridge Scholarship and an Angharad Dodds John Bursary in Mental Health and Neuropsychiatry.

References and recommended reading

Papers of particular interest, published within the period of review, have been highlighted as:

- of outstanding interest

1. Widiger TA, Sellbom M, Chmielewski M, Clark LA, DeYoung CG, Kotov R, Krueger RF, Lynam DR, Miller JD, Mullins-Sweatt S et al.: Personality in a hierarchical model of psychopathology. Clin Psychol Sci 2019, 7:77-92.

2. Dayan P, Huys QJM: Serotonin in affective control. Annu Rev Neurosci 2009, 32:95-126.

3. Jacobs BL, Azmitia EC: Structure and function of the brain serotonin system. Physiol Rev 1992, 72:165-230.

4. Robbins TW: Opinion on monoaminergic contributions to traits and temperament. Philos Trans R Soc B Biol Sci 2018, 373 http://dx.doi.org/10.1098/rstb.2017.0153.

5. Trofimova I, Robbins TW: Temperament and arousal systems: a new synthesis of differential psychology and functional neurochemistry. Neurosci Biobehav Rev 2016, 64:382-402 http://dx.doi.org/10.1016/j.neubiorev.2016.03.008.

This review critiques the concepts of extraversion and general arousal. It outlines the differential functionality of monoamine and acetylcholine systems in behavioural regulation, and the complexity of orexin regulation of behavioural arousal. The review shows that this arousal is a complex process that include several functional aspects that cannot be simplified by one unifying concept. Rather, it is presented as a multi-component neurochemical model, “Functional Ensemble of Temperament” (FET).

6. Trofimova I, Robbins TW, Sulis WH, Uher J: Taxonomies of psychological individual differences: biological perspectives on millennia-long challenges. Philos Trans R Soc B Biol Sci 2018, 373 http://dx.doi.org/10.1098/rstb.2017.0152.

This extensive review takes a critical look at factor analysis as an approach to taxonomies of bio-behavioural individual differences. It highlights the inability of factor analysis to deal with nonlinearity, contingency and transience of biomarkers underlying these differences.

7. Faulkner P, Deakin JW: The role of serotonin in reward, punishment and behavioural inhibition in humans: insights
6 Neurobiology of temperament, personality and psychopathology: what’s next?

from studies with acute tryptophan depletion. Neurosci Biobehav Rev 2014, 46:365-378.

8. Kanen JW, Amrutz FE, Yellowlees R, Cardinal RN, Price A, **Christman DM, Apergis-Schoute AM, Sahakian BJ, Robbins TW: Serotonin depletion amplifies distinct human social emotions as a function of individual differences in personality. Transl Psychiatry 2021, 11 http://dx.doi.org/10.1038/s41398-020-00880-9.

Utilising a simple social cognition task requiring mental simulation about social harm and moral judgements revealed qualitative differences in the social emotions that were amplified following ADT in healthy humans, as a function of trait empathy and psychopathy.

9. Bell CJ, Hood SD, Nutt DJ: Acute tryptophan depletion. Part II: clinical effects and implications. Aust N Z J Psychiatry 2005, 39:566-574.

Explanation of the rationale and methodology for the acute tryptophan depletion technique to noninvasively and transiently lower serotonin synthesis in humans.

10. Booc L, Van der Does a JW, Riedel WJ: Monoamine depletion in psychiatric and healthy populations: review. Mol Psychiatry 2003, 8:951-973.

11. Ruhé HG, Mason NS, Schene AH: Mood is indirectly related to serotonin, norepinephrine and dopamine levels in humans: a meta-analysis of monoamine depletion studies. Mol Psychiatry 2007, 12:331-359.

12. Miller HEJ, Deakin JFW, Anderson IM: Effect of acute tryptophan depletion on CO2-induced anxiety in patients with panic disorder and normal volunteers. Br J Psychiatry 2000, 176:182-188.

13. Berney A, Sookman D, Leyton M, Young SN, Benkelfat C: Lack of effects on core obsessive-compulsive symptoms of tryptophan depletion during symptom provocation in remitted obsessive-compulsive disorder patients. Biol Psychiatry 2006, 59:853-857.

14. Argyropoulos SV, Hood SD, Adrover M, Bell CJ, Rich AS, Nash JR, Rich NC, Wiltchel HJ, Nutt DJ: Tryptophan depletion reverses the therapeutic effect of selective serotonin reuptake inhibitors in social anxiety disorder. Biol Psychiatry 2004, 56:503-509.

15. Browning M, Kingslake J, Dourish CT, Goodwin GM, Harmer CJ, Dawson GR: Predicting treatment response to antidepressant medication using early changes in emotional processing. Eur Neuropsychopharmacol 2019, 29:66-75.

16. Bari A, Theobald DE, Caprioli D, Mar AC, Aidoo-Micah A, Dalley JW, Robbins TW: Serotonin modulates sensitivity to reward and negative feedback in a probabilistic reversal learning task in rats. Neuropsychopharmacology 2010, 35:1290-1301.

17. Cools R, Roberts AC, Robbins TW: Serotonergic regulation of emotional and behavioural control processes. Trends Cogn Sci 2008, 12:31-40.

18. Worbe Y, Savulich G, Voon V, Fernandez-Egea E, Robbins TW: Serotonin depletion induces “waiting impulsivity” on the human four-choice serial reaction time task: cross-species translational significance. Neuropsychopharmacology 2014, 39:1519-1526.

19. Crockett MJ, Clark L, Tabbinia G, Lieberman MD, Robbins TW: Serotonin modulates behavioral reactions to unfairness. Science (80-) 2008, 320:1739.

20. Crockett MJ, Clark L, Hauser MD, Robbins TW: Serotonin selectively influences moral judgment and behavior through effects on harm aversion. Proc Natl Acad Sci U S A 2010, 107:17433-17438.

Critical for the motivation of our investigation of empathy in relation to serotonin function, this study found that the highly empathic were more sensitive to the effects of acute SSRI on moral decision-making in the Ultimatum Game and Trolley Problem.

21. Nord M, Finnema SJ, Hallidin C, Farde L: Effect of a single dose of escitalopram on serotonin concentration in the non-human and human primate brain. Int J Neuropsychopharmacol 2013, 16:1577-1586.

22. Hensman R, Guimaraes FS, Wang M, Deakin JFW: Effects of ritanserin on aversive classical conditioning in humans. Psychopharmacology (Berl) 1991, 104:220-224.

23. Hindi Attar C, Finchb B, Büchel C: The influence of serotonin on fear learning. PLoS One 2012, 7:e42397.

24. Isosaka T, Matsuo T, Yamaguchi T, Funabiki K, Nakaniishi S, Kobayakawa B, Kobayakawa K: Htr2a-expressing cells in the central amygdala control the hierarchy between innate and learned fear. Cell 2015, 163:1153-1164.

25. Kanen JW, Amrutz FE, Yellowlees R, Christmas DM, Price A, **Apergis-Schoute AM, Sahakian BJ, Cardinal RN, Robbins TW: Effect of tryptophan depletion on conditioned threat memory expression: role of intolerance of uncertainty. Biol Psychiatry Cogn Neurosci Neuroimaging 2021, 6:580-586 http://dx.doi.org/10.1016/j.bpsc.2020.12.012.

This experiment used ADT in healthy humans and showed that trait intolerance of uncertainty influenced serotonin’s effects on emotion.

26. Kanen JW, Apergis-Schoute AM, Yellowlees R, Amrutz FE, van der Flier FE, Price A, Cardinal RN, Christmas DM, Clark L, Sahakian BJ et al.: Serotonin depletion impairs both Pavlovian and instrumental reversal learning in healthy humans. Mol Psychiatry 2021, 26:7200-7210 http://dx.doi.org/10.1038/s41380-021-01249-9.

27. Deakin JFW, Graeff F: 5-HT and mechanisms of defence. J Psychiatr Res 1991, 15:305-315.

Seminal paper by Deakin and Graeff on how understanding neuroanatomical serotonin subsystems can help elucidate the complexities of serotonin function and explain some ostensible paradoxes in the literature; the importance of considering serotonin’s role in proximal and distal threats is a central theme.

28. Gentes EL, Ruscio AM: A meta-analysis of the relation of intolerance of uncertainty to symptoms of generalized anxiety disorder, major depressive disorder, and obsessive-compulsive disorder. Clin Psychol Rev 2011, 31:923-935.

29. McEvoy PM, Mahoney AEJ: To be sure, to be sure: intolerance of uncertainty mediates symptoms of various anxiety disorders and depression. Behav Ther 2012, 43:333-345.

30. Fetzner MG, Horswill SC, Boelen PA, Carleton RN: Intolerance of uncertainty and PTSD symptoms: exploring the construct relationship in a community sample with a heterogeneous trauma history. Cogn Ther Res 2013, 37:725-734.

31. Milad MR, Pitman RK, Ellis CB, Gold AL, Shin LM, Lasko NB, Zeidan MA, Handwerger K, Orr SP, Rauch SL: Neurobiological basis of failure to recall extinction memory in posttraumatic stress disorder. Biol Psychiatry 2009, 66:1075-1082.

32. Morriss J, Christakou A, van Reekum CM: Nothing is safe: intolerance of uncertainty is associated with compromised fear extinction learning. Biol Psychol 2016, 121:187-193.

33. Morriss J, Macdonald B, van Reekum CM: What is going on around here? Intolerance of uncertainty predicts threat generalization. PLoS One 2016, 11.

34. Morriss J, van Reekum CM: I feel safe when I know: contingency instruction promotes threat extinction in high intolerance of uncertainty individuals. Behav Res Ther 2019, 116:111-118.

35. Morriss J, Saldarini F, Chapman C, Pollard M, van Reekum CM: Out with the old and in with the new: the role of intolerance of uncertainty in reversal of threat and safety. J Exp Psychopathol 2019, 10.

36. Hariri AR: The neurobiology of individual differences in complex behavioral traits. Annu Rev Neurosci 2009, 32:225-247.

37. Bland AR, Roiser JP, Mehta MA, Schei T, Boland H, Campbell-Meiklejohn DK, Emsley RA, Munafó MR, Penton-Voak IS, Seara-Cardoso A et al.: EMOTICOM: a neuropsychological test battery to evaluate emotion, motivation, impulsivity, and social cognition. Front Behav Neurosci 2016, 10:1-17.

Introduction and normative testing of the moral judgement task.
38. Niedenthal PM, Tangney JP, Gavanski I: “If Only I Weren’t” versus “If Only I Hadn’t”: distinguishing shame and guilt in counterfactual thinking. J Pers Soc Psychol 1994, 67:385-395.

39. Tangney JP, Stuewig J, Mashek DJ: Moral emotions and moral behavior. Annu Rev Psychol 2007, 58:345-372.

40. Dam VH, Stenbaek DS, Köhler-Forsberg K, Ip C, Ozenne B, Sahakian BJ, Knudsen GM, Jørgensen MB, Frokjaer VG: Hot and cold cognitive disturbances in antidepressant-free patients with major depressive disorder: a NeuroPharm study. Psychol Med 2021, 51:2347-2356.

41. Demonstration of elevated guilt and shame in unmedicated major depressive disorder using the moral judgement task.

42. Crockett MJ, Clark L, Roiser JP et al.: Converging evidence for central 5-HT effects in acute tryptophan depletion. Mol Psychiatry 2012, 17:121-123 http://dx.doi.org/10.1038/ mp.2011.106.

43. Blair J, Sellers C, Strickland I, Clark F, Williams A, Smith M, Jones L: Theory of mind in the psychopath. J Forensic Psychiatry 1996, 7:15-25.

44. Koenigs M, Kruepe M, Newman JP: Economic decision-making in psychopathy: a comparison with ventromedial prefrontal lesion patients. Neuropsychologia 2010, 48:2198-2204.

45. Blair RJR: Psychopathy, frustration, and reactive aggression: the role of ventromedial prefrontal cortex. Br J Psychol 2010, 101:383-399.

46. Bevilacqua L, Doly S, Kaprio J, Yuan Q, Tikkanen R, Paunio T, Zhou Z, Wedenoja J, Maroteaux L, Diaz S et al.: A population-specific HTR2B stop codon predisposes to severe impulsivity. Nature 2010, 468:1061-1066.

47. Genetic evidence for severe impulsivity related to serotonin function that was exacerbated by alcohol use.

48. Miller JD, Gaughan ET, Pryor LR: The Lewenson self-report psychopathy scale: an examination of the personality traits and disorders associated with the LSRP factors. Assessment 2008, 15:450-463.

49. Deakin JF: Depression and antisocial personality disorder: two contrasting disorders of SHT function. J Neural Transm Suppl 2003:79-93.

50. Extension of ideas on anxiety and depression from Deakin and Graeff [27**] to antisocial personality disorder.

51. Bishop S, Forster S: Trait anxiety, neuroticism, and the brain basis of vulnerability to affective disorder. In The Cambridge Handbook of Human Affective Neuroscience. Edited by Armony J, Valldeurlier P. Cambridge University Press; 2013:553-574.

52. Di Simplicio M, Norbury R, Reinecke A, Harmer CJ: Paradoxical effects of short-term antidepressant treatment in fMRI emotional processing models in volunteers with high neuroticism. Psychol Med 2014, 44:241-252.

53. Farmer A, Redman K, Harris T, Mahmood A, Sadler S, Pickering A, McGuffin P: Neuroticism, extraversion, life events and depression: the Cardiff depression study. Br J Psychiatry 2002, 181:118-122.

54. Brummitt BH, Boyle SH, Kuhn CM, Siegler IC, Williams RB: Associations among central nervous system serotonergic function and neuroticism are moderated by gender. Biol Psychiatry 2008, 78:200-203.

55. Schwartz CE, Kunwar PS, Greve DN, Moran LR, Viner JC, Covino JM, Kagan J, Stewart SE, Snidman NC, Vangel MG et al.: Structural differences in adult orbital and ventromedial prefrontal cortex predicted by infant temperament at 4 months of age. Arch Gen Psychiatry 2010, 67:78-84.

56. Drabant EM, Kuo JR, Ramel W, Blechert J, Edge MD, Cooper JR, Goldin PR, Hariri AR, Gross JJ: Experiential, autonomic, and neural responses during threat anticipation vary as a function of threat intensity and neuroticism. Neuroimage 2011, 55:401-410.

57. Shackman AJ, PDM T, Stockbridge M, Kaplan C, Tillman R, Fox A: Dispositional negativity: an integrative psychological and neurobiological perspective. Psychol Bull 2016, 142:1275-1314.

58. Trofimova I: Functionality versus dimensionality in psychological taxonomies, and a puzzle of emotional valence. Philos Trans R Soc B Biol Sci 2018, 373 http://dx.doi.org/10.1098/ rstb.2017.0167.

This extensive review points to the limitations of dimensionality approaches in the description of emotionality traits. It also reviews evidence for the regulation of monoamine systems by opioid receptors, highlighting different functionality of three opioid receptor systems. This functionality is in line with the separation between three aspects of behavioural regulation - orientation, integration and “approval” - described by the neurochemical model Functional Ensemble of Temperament (FET). The review suggests that opioid receptor systems induce emotional and behavioural dispositions amplifying biases in these three behavioural aspects.

59. Trofimova I: Contingent tunes of neurochemical ensembles in the norm and pathology: can we see the patterns? Neuropsychobiology 2021, 80:101-133 http://dx.doi.org/10.1159/000513688.

This extensive review summarises findings in neurochemistry and neuroanatomy related to eight systems of behavioural regulation. The review underlines the constructive nature of behaviour and classifies the described systems in terms of formal and universal aspects of situations. Each regulatory system is presented as integrative activities within specific brain structures and neurotransmitters. The review summarises the described functionality of brain systems in the form of the neurochemical model, ‘Functional Ensemble of Temperament’ (FET).

60. Dailey JW, Everitt BJ, Robbins TW: Impulsivity, compulsivity, and top-down cognitive control. Neuron 2011, 69:680-694.

61. Eagle DM, Lehmann O, Theobald DEH, Pena Y, Zakaria R, Ghosh R, Dailey JW, Robbins TW: Serotonin depletion impairs waiting but not stop-signal reaction time in rats: implications for theories of the role of 5-HT in behavioral inhibition. Neuropsychopharmacology 2009, 34:1311-1321.

62. Clark L, Roiser JP, Cools R, Rubinsztein DC, Sahakian BJ, Robbins TW: Stop signal response inhibition is not modulated by tryptophan depletion or the serotonin transporter polymorphism in healthy volunteers: implications for the 5-HT theory of impulsivity. Psychopharmacology (Berl) 2005, 182:570-578.

63. Winstanley CA, Dailey JW, Theobald DEH, Robbins TW: Fractioning impulsivity: contrasting effects of central 5-HT depletion on different measures of impulsive behaviour. Neuropsychopharmacology 2004, 29:1331-1343.

64. Patton JH, Stanford MS, Barratt E: Factor structure of the Barratt impulsiveness scale. J Clin Psychol 1995, 51:768-774.

65. Lynam DR, Smith GT, Whiteside SP, Cyders M: The UPPS-P: Assessing Five Personality Pathways to Impulsive Behavior. 2006.

66. Eysenck H, Eysenck S: Manual of the Eysenck Personality Questionnaire. Hodder and Stoughton; 1975.

67. Cloninger CR, Przybeck TR, Svrakic DM, Wetzel RD: The Temperament and Character Inventory (TCI): A Guide to Its Development and Use. 1994.

68. Bevilacqua L, Goldman D: Genetics of impulsive behaviour. Philos Trans R Soc B Biol Sci 2013, 368.

69. da Cunha-Bang S, Kruisgen GM: The modulatory role of serotonin on human impulsive aggression. Biol Psychiatry 2021, 90:447-457.
Neurobiology of temperament, personality and psychopathology: what's next?

70. Nautiyal KM, Tanaka KF, Barr MM, Trischler L, Le Dantec Y, David DJ, Gardier AM, Bianco C, Hen R, Ahmari SE: Distinct circuits underlie the effects of 5-HT1B receptors on aggression and impulsivity. Neuron 2015, 86:813-826.

71. Harrison AA, Everitt BJ, Robbins TW: Central 5-HT depletion enhances impulsive responding without affecting the accuracy of attentional performance: Interactions with dopaminergic mechanisms. Psychopharmacology (Berl) 1997, 133:329-342.

72. Dews PB, Wenger GR: Rate-dependency of the behavioral effects of amphetamine. In: Advances in Behavioral Pharmacology, Vol 1. Edited by Thompson T, Dews PB. New York: Academic Press; 1977:167-227.

73. Caprioli D, Hong YT, Sawiak SJ, Ferrari V, Williamson DJ, Jupp B, Adrian Carpenter T, Aigbirhio FI, Everitt BJ, Robbins TW et al.: Baseline-dependent effects of cocaine pre-exposure on impulsivity and D2 receptor availability in the rat striatum: possible relevance to the attention-deficit hyperactivity syndrome. Neuropsychopharmacology 2013, 38:1460-1471.

74. Caprioli D, Jupp B, Hong YT, Sawiak SJ, Ferrari V, Wharton L, Williamson DJ, McNabb C, Berry D, Aigbirhio FI et al.: Dissociable rate-dependent effects of oral methylphenidate on impulsivity and D2 receptor availability in the striatum. J Neurosci 2015, 35:3747-3755.

75. Cools R, Robbins TW: Chemistry of the adaptive mind. Philos Trans R Soc A Math Phys Eng Sci 2004, 362:2871-2888.

76. Dalley JW, Robbins TW: Fractionating impulsivity: neuropsychiatric implications. Nat Rev Neurosci 2017, 18:158-171.

77. Clatworthy PL, Lewis SJG, Brichard L, Hong YT, Izquierdo D, Clark L, Cools R, Aigbirhio FI, Baron J-C, Fryer TD et al.: Dopamine release in dissociable striatal subregions predicts the different effects of oral methylphenidate on reversal learning and spatial working memory. J Neurosci 2009, 29:4690-4696.

78. Cools R, Sheridan M, Jacobs E, D’Esposito M: Impulsive personality predicts dopamine-dependent changes in frontostriatal activity during component processes of working memory. J Neurosci 2007, 27:5506-5514.

79. Winstanley CA, Dalley JW, Theobald DEH, Robbins TW: Global 5-HT depletion attenuates the ability of amphetamine to decrease impulsive choice on a delay-discounting task in rats. Psychopharmacology (Berl) 2003, 170:330-331.

80. Winstanley CA, Theobald DEH, Dalley JW, Robbins TW: Interactions between serotonin and dopamine in the control of impulsive choice in rats: therapeutic implications for impulsive control disorders. Neuropsychopharmacology 2005, 30:669-682.

81. Meyer-Lindenberg A, Domes G, Kirsch P, Heinrichs M: Oxytocin and vasopressin in the human brain: social neuropeptides for translational medicine. Nat Rev Neurosci 2011, 12:524-538.

82. Kanat M, Heinrichs M, Domes G: Oxytocin and the social brain: neural mechanisms and perspectives in human research. Brain Res 2014, 1580:160-171.

83. Shamay-Tsoory SG, Abu-Akel A: The social salience hypothesis of oxytocin. Biol Psychiatry 2016, 79:194-202.

84. Declerck CH, Boone C, Pauwels L, Vogt B, Fehr E: A registered replication study on oxytocin and trust. Nat Hum Behav 2020, 4:646-655.

85. Kanat M, Spenthof I, Riedel A, Van Elst LT, Heinrichs M, Domes G: Restoring effects of oxytocin on the attentional preference for faces in autism. Transl Psychiatry 2017, 7:1-8.

86. Decety J, Smith KE, Norman GJ, Halpern J: A social neuroscience perspective on clinical empathy. World Psychiatry 2014, 13:233-237.

87. Bartz JA, Zaki J, Bolger N, Ochsner KN: Social effects of oxytocin in humans: context and person matter. Trends Cogn Sci 2011, 15:301-309.

88. Bartz JA, Lydon JE, Kolevzon A, Zaki J, Hollander E, Ludwig N, Bolger N: Differential effects of oxytocin on agency and communion for anxiously and avoidantly attached individuals. Psychol Sci 2015, 26:1177-1186.

89. Liu Y, Li S, Lin W, Li W, Yan X, Wang X, Pan X, Rutledge RB, Ma Y: Oxytocin modulates social value representations in the amygdala. Nat Neurosci 2019, 22:633-641.

90. Mitre M, Marlin BJ, Schiaivo JK, Morina E, Norden SE, Hackett TA, Aoki CJ, Chao MV, Froemke RC: A distributed network for social cognition enriched for oxytocin receptors. J Neurosci 2016, 36:2517-2535.

91. Barbeau DA, Anagnostou E: Oxytocin and vasopressin: linking pituitary neuropeptides and their receptors to social neuercircuits. Front Neurosci 2015, 9.

92. Emiliano ABF, Cruz T, Pannoni V, Fudge JL: The interface of oxytocin-labeled cells and serotonin transporter-containing fibers in the primate hypothalamus: a substrate for SSRIs therapeutic effects? Neuropsychopharmacology 2007, 32:977-988.

93. Yoshida M, Takayanagi Y, Inoue K, Kimura T, Young LJ, Onaka T, Nishimori K: Evidence that oxytocin exerts anxiolytic effects via oxytocin receptor expressed in serotonergic neurons in mice. J Neurosci 2009, 29:2259-2271.

94. Mottolese R, Redouté J, Costes N, Le Bars D, Sirigu A: Switching brain serotonin with oxytocin. Proc Natl Acad Sci U S A 2014, 111:8637-8642.

95. Dölen G, Darvishzadeh A, Huang KW, Malenka RC: Social reward requires coordinated activity of nucleus accumbens oxytocin and serotonin. Nature 2013, 501:179-184.

96. Morrison TR, Melloni RH: The role of serotonin, vasopressin, and serotonin/vasopressin interactions in aggressive behavior. In: Neuroscience of Aggression. Edited by Miczek KA, Meyer-Lindenberg A. 2014:189-228.

97. Button KS, Ioannidis JPA, Mokrysz C, Nosek BA, Flint J, Robinson ESJ, Munafò MR: Power failure: why small sample size undermines the reliability of neuroscience. Nat Rev Neurosci 2013, 14:365-376.

98. Carleton RN: Into the unknown: a review and synthesis of contemporary models involving uncertainty. J Anxiety Disord 2016, 39:30-43.

99. Insel T, Cuthbert B, Garvey M, Heinssen R, Pine D, Quinn K, Sanislow C, Wang P: Research Domain Criteria (RDoC): toward a new classification framework for research on mental disorders. Am J Psychiatry 2010, 167:748-751.