The geometry of Newton’s law and rigid systems

Marco Modugno1, Raffaele Vitolo2

1Department of Applied Mathematics “G. Sansone”
Via S. Marta 3, 50139 Florence, Italy
marco.modugno@unifi.it

2Department of Mathematics “E. De Giorgi”
via per Arnesano, 73100 Lecce, Italy
raffaele.vitolo@unile.it

Abstract

We start by formulating geometrically the Newton’s law for a classical free particle in terms of Riemannian geometry, as pattern for subsequent developments. In fact, we use this scheme for further generalisation devoted to a constrained particle, to a discrete system of several free and constrained particles.

For constrained systems we have intrinsic and extrinsic viewpoints, with respect to the environmental space. In the second case, we obtain an explicit formula for the reaction force via the second fundamental form of the constrained configuration space. For multi–particle systems we describe geometrically the splitting related to the center of mass and relative velocities; in this way we emphasise the geometric source of classical formulas.

Then, the above scheme is applied in detail to discrete rigid systems. We start by analysing the geometry of the rigid configuration space. In this way we recover the classical formula for the velocity of the rigid system via the parallelisation of Lie groups. Moreover, we study in detail the splitting of the tangent and cotangent environmental space into the three components of center of mass, of relative velocities and of the orthogonal subspace. This splitting yields the classical components.
of linear and angular momentum (which here arise from a purely geometric construction) and, moreover, a third non standard component. The third projection yields an explicit formula for the reaction force in the nodes of the rigid constraint.

Keywords: classical mechanics, rigid system, Newton’s law, Riemannian geometry

2001 MSC: 70G45, 70B10, 70Exx

Acknowledgements: This work has been partially supported by MIUR (Progetto PRIN 2003 “Sistemi integrabili, teorie classiche e quantistiche”), GNFM and GNSAGA of INdAM, and the Universities of Florence and Lecce.
Contents

Introduction
5

1. **Preliminaries**
8
1.1 Scale spaces and units of measurement
8
1.2 Generalised affine spaces
8

2. **Mechanics of one particle**
10
2.1 Free particle
10
2.1.1 Configuration space
10
2.1.2 Kinematics
11
2.1.3 Dynamics
12
2.2 Constrained particle
12
2.2.1 Configuration space
13
2.2.2 Kinematics
15
2.2.3 Dynamics
17

3. **Mechanics of a system of \(n \) particles**
19
3.1 Free particles
19
3.1.1 Geometry of the multi–configuration space
19
3.1.2 Splittings of the configuration space
20
3.1.3 Kinematics
23
3.1.4 Dynamics
24
3.2 Constrained particles
25

4. **Rigid systems**
26
4.1 Geometry of the configuration space
26
4.2 Tangent space of rotational space
29
4.2.1 Non degenerate case
29
4.2.2 Degenerate case
31
4.3 Rigid system metrics
32
4.3.1 Angular automorphisms
34
4.3.2 Continuous interpretation
37
4.4 Splitting of the tangent and cotangent multi–space
38
4.4.1 Splitting of the tangent multi–space
38
4.4.2 Splitting of the cotangent space
39
4.5 Kinetic energy and momentum of the rigid system
41
4.6 Connections induced on the rigid system
42
4.7 Kinematics of rigid systems
42
4.8 Dynamics of rigid systems
43
4.8.1 Splitting of multi-forces
44
4.8.2 Splitting of the equation of motion
45
References
Introduction

The original approach to classical mechanics is based on the Newton’s law. This is still used and popular mainly in the literature devoted to applied sciences and engineering, even if it is not very sophisticated from the mathematical and geometrical viewpoint (see, for instance, [9, 12, 13, 28]).

On the other hand, an approach to mechanics based on modern differential geometry has been developed and became more and more popular in the last decades. This viewpoint is achieved in terms of Riemannian, Lagrangian, Hamiltonian, symplectic, variational and jet geometry. A very huge literature exists in this respect (see, for instance, [1, 2, 3, 4, 6, 8, 10, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24]). These methods have been very successful for understanding several theoretical aspects and for the solution of several concrete problems, and have stimulated a large number of further classical and quantum theories.

In this paper, our aims are more specific and foundational. Namely, we reformulate classical mechanics of a system with a finite number of particles and rigid systems, in terms of the Newton’s law, in a way which, on one hand, is closer to the classical treatment of the subjects and, on the other hand, is expressed through the modern language of differential geometry.

Our approach is addressed both to differential geometers, who could easily get mechanical concepts written in their language, and to mathematical physicists, who are interested in a mathematically rigorous foundation of mechanics.

In fact, several ideas have been achieved independently by differential geometers and mathematical physicists in different contexts and with different purposes and languages. Sometimes, facts which appear in one of the two disciplines as easy and elementary may correspond to more difficult and fundamental facts in the other discipline. We believe that linking those facts provides a new insight on classical matters and yields new results as well. For the above reasons, from time to time, we recall some classical facts of one of the two areas which are possibly not very familiar to experts of the other area.

Thus, this paper, in spite of the sophisticated mathematical language, in comparison to the standard literatures of mechanics, analyses concrete mechanical contents.

On the other hand, this paper provides the classical background for a covariant approach to the quantisation of a rigid body, which is the subject of a subsequent paper [20].

The guideline of our approach is the description of mechanics of a system of \(n \) free and constrained particles, including a rigid system, in terms of the Riemannian formulation of mechanics of one particle.

We start by recalling the mechanics of one free particle moving in an affine Euclidean configuration space. We express the Newton’s law in terms of covariant derivative. In several respects, it is convenient to introduce forces as forms (instead as vector fields) from the very beginning.

Then, we can naturally apply this Riemannian approach to the mechanics of a con-
strained particle. We have an intrinsic and an extrinsic viewpoint related to the embedding of the constrained configuration space into the environmental space. In particular, we use the Gauss’ Theorem concerning the splitting of the Riemannian connection in order to get an explicit expression of the reaction force via the 2nd fundamental form of the constrained configuration space.

Next, we describe the mechanics of a system of \(n \) free particles, as one free particle moving in a higher dimensional product configuration space. For this purpose, it is necessary to introduce a weighted metric (besides the standard product metric). Of course, in the case on \(n \) free particles, we have the additional projection on the single particle spaces. Furthermore, we have the splitting of the configuration space into the affine component of the center of mass and the vector component of relative distances. The 1st splitting can be used to achieve information on the single particles and is orthogonal with respect to both metrics. The 2nd splitting has a fundamental role and is orthogonal only with respect to the weighted metric. The systematic use of the weighted metric and of the above orthogonal splitting as a fundamental scheme seems to be original. In particular, we show that the classical concepts of total kinetic energy, total kinetic momentum, total force, etc. can be regarded as a direct consequence of the above geometric scheme.

Then, the formulation of a a constrained system of \(n \) particles can be easily obtained from the above scheme, by repeating the scheme of one free and constrained particle.

Eventually, a particular care is devoted to the analysis of a system of \(n \) particles with a rigid constraint.

First we study the geometry of the rigid configuration space, distinguishing the non-degenerate and degenerate cases. Then, we formulate the kinematics and mechanics of a rigid system according to the above scheme. In particular, we show (Section 4.2) that the classical formula of the velocity of a rigid system (well-known in mechanics) can be regarded as the parallelisation of a Lie group (well-known in differential geometry). This fact yields an interpretation of the inertia tensor as a representative of the weighted metric induced by the parallelisation. In this context, we exhibit a new explicit intrinsic expression of the angular velocity via the inertia tensor (Corollary 4.24).

By combining the splitting of center of the mass and the splitting of the constrained configuration space, we obtain a splitting of the tangent and cotangent environmental configuration spaces into three components: the component of center of mass, the rotational component and a further orthogonal component to the configuration space (Theorem 4.27 and Theorem 4.28). This splitting is reflected on all objects of the rigid system mechanics, providing a clear geometric interpretation of some classical constructions of mechanics and new results as well. For instance, the total momentum of forms arises from our geometric scheme via the projection on the rotational component (Corollary 4.29). Moreover, a special application of the above splitting is the explicit expression of the reaction force on every node (Corollary 4.38). This formula seems to be new and possibly useful in engineering applications.

Throughout the paper, we number those formulas which have a key role and/or em-
phasise a non standard feature of our approach.

We assume all manifolds and maps to be C^∞. If M and N are manifolds, then the sheaf of local smooth maps $M \to N$ is denoted by $\text{map}(M, N)$.
1 Preliminaries

In this paper we use a few non-standard mathematical constructions. In order to make the paper self-contained, we start with some introductory notions.

1.1 Scale spaces and units of measurement

In order to describe in a rigorous mathematical way the units of measurements and the coupling scales, we introduce the notion of “scale space” \(\mathbb{U} \).

We define a scale space \(\mathbb{U} \) as “positive 1-dimensional semi-vector space” over \(\mathbb{IR}^+ \). Roughly speaking, this has the same algebraic structure as \(\mathbb{IR}^+ \), but no distinguished generator over \(\mathbb{IR}^+ \). We can naturally define the tensor product between scale spaces and ordinary vector spaces. Moreover, we can naturally define the rational powers \(\mathbb{U}^{p/q} \) of a scale space \(\mathbb{U} \). Rules analogous to those of real numbers hold for scale spaces; accordingly, we adopt analogous notation. In particular, we shall write \(\mathbb{U}^0 := \mathbb{U} \), \(\mathbb{U}^{-1} := \mathbb{U}^* \), \(\mathbb{U}^p := \otimes^p \mathbb{U} \). In our theory, these spaces will appear tensorialised with spacetime tensors. The scale spaces appearing in tensor products are not effected by differential operators, hence their elements can be treated as constants.

A coupling scale is defined to be a scale factor needed for allowing the equality of two scaled objects and a unit of measurements is defined to be a basis of a scale space.

We introduce the scale spaces \(\mathbb{T} \) of time intervals, \(\mathbb{L} \) of lengths and \(\mathbb{M} \) of masses. We will consider time units of measurement \(u_0 \in \mathbb{T} \), or their duals \(u^0 \in \mathbb{T}^* \).

1.2 Generalised affine spaces

Affine spaces are important for classical mechanics because they offer a geometrical model of the basic configuration spaces. Moreover, affine spaces constitute the appropriate framework for elementary differential calculus. In this paper, we need a more general definition of the standard notion. Namely, we introduce generalised affine spaces associated with (possibly non Abelian) groups. This generalisation is suitable for the description of the configuration space of rigid systems.

A (left) generalised affine space is defined to be a triple \((A, DA, l) \), where \(A \) is a set, \(DA \) is a group and \(l : DA \times A \to A \) is a free and transitive left action. For the sake of simplicity, we often denote the generalised affine space \((A, DA, l) \) just by \(A \).

For each \(o \in A \), the left translation \(l_o : DA \to A : g \mapsto go \) is invertible. In fact, for each \(a \in A \), there is a unique \(g \in G \), denoted by \(g \equiv ao^{-1} \), such that \(a = go \).

A generalised affine map is defined to be a map \(f : A \to A' \) between generalised affine spaces, such that, for a certain \(o \in A \), we have \(f(a) = Df(a) = ao^{-1}f(o) \), for all \(a \in A \), where \(Df : DA \to DA' \) is a group morphism. We can easily prove that, if such a \(Df \) exists, then it is unique and independent of the choice of \(o \). We say \(Df \) to be the generalised derivative
of f. For example, if $o \in A$, then the left translation $l_o : DA \to A$ is a generalised affine map and its derivative is just the identity.

Of course, if A is a generalised affine space associated with the additive group of a vector space V, then A turns out to be an affine space according to the standard definition and the notions of generalised affine map and generalised derivative reduce to the standard ones.

Now, let us consider a generalised affine space A associated with a Lie group G. Then, there is a unique smooth structure of A, such that the left translation $l : G \times A \to A$ be smooth.

Let $g := T_0 G$ be the Lie algebra of the group G, where $e \in G$ is the unit element.

We recall the following well–known result (see, for instance, [25]).

1.1 Lemma. The Lie group G is parallelisable through a natural isomorphism $TG \simeq G \times g$.

Proof. Let us consider the map $Tl : TG \times TG \to TG$ and the trivial vector subbundles $T_e G \subset TG$, over $\{e\} \subset G$, and $G \subset TG$, over G.

Then, the restriction of Tl to the vector subbundle $T_e G \times G$ yields, the linear fibred isomorphism $Tl|_{T_e G \times G} : T_e G \times G \to TG$ over G.

Thus, for each $g \in G$, we have the linear isomorphism $Tl|_{T_e G} : T_e G \to T_g G$. QED

We can easily generalise the above result to the affine space A.

1.2 Lemma. The affine space A is parallelisable through a natural isomorphism $TA \simeq A \times g$.

Proof. Let us consider the map $Tl : TG \times TA \to TA$ and the trivial vector subbundles $T_e G \subset TG$, over $\{e\} \subset G$, and $A \subset TA$, over A.

Then, the restriction of Tl to the vector subbundle $T_e G \times A$ yields, the linear fibred isomorphism $Tl|_{T_e G \times A} : T_e G \times A \to TA$ over A.

Thus, for each $a \in A$, we have the linear isomorphism $Tl|_{T_e G} : T_e G \to T_a A$. QED

1.3 Lemma. Let M be a differential manifold equipped with a parallelisation $TM \simeq M \times F$, which induces a projection $TTM \to TM$. Then, we obtain the linear connection, given for each sections $X, Y : M \to TM$, by means of the composition

\[
\begin{array}{ccc}
M & \xrightarrow{\nabla_y X} & TM \\
\downarrow & & \uparrow \\
TM & \xrightarrow{TX} & TTM.
\end{array}
\]

Thus, the parallelisations of G and A induce linear connections of G and A.
2 Mechanics of one particle

First, we review the one free and constrained particle mechanics as an introduction to our formalism and a pattern for next generalisations.

2.1 Free particle

We start with a free particle moving in a 3-dimensional Euclidean affine space P. On the other hand, in many respects, the dimension 3 and the affine structure have no essential role; in fact, we essentially exploit the underlying weaker structure of Riemannian manifold of P.

2.1.1 Configuration space

We define the time to be a 1-dimensional affine space T associated with the vector space $\mathbb{T} := \mathbb{T} \otimes \mathbb{R}$. We shall always refer to an affine chart (x^0) induced by an origin $t_0 \in T$ and a time unit of measurement $u_0 \in T$.

We define the pattern configuration space to be a 3-dimensional affine space P associated with an oriented vector space S. We shall refer to a (local) chart (x^i) on P. Latin indices i, j, h, k will run from 1 to 3.

We shall also be involved with the tangent space $TP = P \times S$ and the cotangent space $T^*P = P \times S^*$. We shall refer to the local charts (x^i, \dot{x}^i) of TP and (x^i, \dot{x}_i) of T^*P and to the corresponding local bases of vector fields ∂_i and forms d^i. We also denote by $(x^i, \dot{x}^i, \ddot{x}^i)$ the induced chart of VTP, with $(\partial_i, \dot{\partial}_i)$ and (d_i, \dot{d}_i) the corresponding bases of vector fields and 1-forms; we have the chart $(x^i, \dot{x}^i, \ddot{x}^i)$ of VT^*P.

The parallelisation of P induced by the affine structure yields a flat linear connection ∇ (see Lemma 1.3)

We equip S with a scaled Euclidean metric $g \in \mathbb{L}^2 \otimes (S^* \otimes S^*)$, called pattern metric, which can be regarded as a scaled Riemannian metric of P

$$g : P \to \mathbb{L}^2 \otimes (T^*P \otimes T^*P).$$

We denote by \bar{g} the corresponding contravariant metric. We have the coordinate expressions $g = g_{ij} d^i \otimes d^j$ and $\bar{g} = g^{ij} \partial_i \otimes \partial_j$, with $g_{ij} \in \text{map}(P, \mathbb{L}^2 \otimes \mathbb{R})$ and $g^{ij} \in \text{map}(P, \mathbb{L}^{-2} \otimes \mathbb{R})$. The associated flat isomorphism and its inverse, the sharp isomorphism, are denoted by $g^i : TP \to \mathbb{L}^2 \otimes T^*P$ and $g^i : T^*P \to \mathbb{L}^{-2} \otimes TP$. The metric g and an orientation of S yield the scaled volume form $\eta \in \mathbb{L}^3 \otimes \Lambda^3S^*$ and its inverse $\bar{\eta} \in \mathbb{L}^{3*} \otimes \Lambda^3S$.

The Riemannian connection associated with g coincides with ∇. We denote the vertical projection associated with ∇ by $\nu : TTP \to TP$ and the the Christoffel symbols by Γ^i_{hk}.
2.1 Free particle

2.1.2 Kinematics

We define the phase space as the 1st jet space of maps $\mathbf{T} \rightarrow \mathbf{P}$

$$J_1P := \mathbf{T} \times (\mathbb{T}^{-1} \otimes \mathbf{P}) = \mathbf{T} \times \mathbf{P} \times (\mathbb{T}^{-1} \otimes \mathbb{S}).$$

The induced chart of J_1P is (x^0, x^i, x_0^i).

A motion is defined to be a map $s : \mathbf{T} \rightarrow \mathbf{P}$. The 1st differential, the 2nd differential, the velocity and the acceleration of a motion s are defined to be, respectively, the maps

$$ds : \mathbf{T} \rightarrow \mathbb{T}^{-1} \otimes \mathbf{P}, \quad d^2s : \mathbf{T} \rightarrow \mathbb{T}^{-1} \otimes T(\mathbb{T}^{-1} \otimes \mathbf{P}), \quad j_1s : \mathbf{T} \rightarrow J_1P, \quad \nabla ds : \mathbf{T} \rightarrow \mathbb{T}^{-2} \otimes \mathbf{P}.$$

By definition, we have $j_1s(t) = (t, ds(t))$ and $\nabla ds = \nu \circ d^2s$.

Moreover, by taking into account the splittings

$$\mathbb{T}^{-1} \otimes \mathbf{P} \simeq \mathbf{P} \times (\mathbb{T}^{-1} \otimes \mathbb{S}),$$

$$\mathbb{T}^{-1} \otimes T(\mathbb{T}^{-1} \otimes \mathbf{P}) \simeq \left(\mathbf{P} \times (\mathbb{T}^{-1} \otimes \mathbb{S})\right) \times \left((\mathbb{T}^{-1} \otimes \mathbb{S}) \times (\mathbb{T}^{-2} \otimes \mathbb{S})\right),$$

we can write

$$ds = (s, Ds), \quad d^2s = (s, Ds, Ds, D^2s), \quad \nabla ds = (s, D^2s),$$

where $Ds : \mathbf{T} \rightarrow \mathbb{T}^{-1} \otimes \mathbb{S}$ is the standard derivative of s.

We have the coordinate expressions

$$(x^i, \dot{x}_0^i) \circ ds = (s^i, \partial_0 s_i),$$

$$(x^i, \dot{x}_0^i, \dot{x}_0^i) \circ d^2s = (s^i, \partial_0 s_i, \partial_0 s_i, \partial_0^2 s_i),$$

$$(x^0, x^i, \dot{x}_0^i) \circ j_1s = (x^0, s^i, \partial_0 s_i),$$

$$(x^i, \dot{x}_0^i) \circ \nabla ds = (s^i, \partial_0^2 s_i + (\Gamma^i_{hk} \circ s) \partial_0 s^h \partial_0 s^k).$$

With reference to a mass $m \in \mathbb{M}$, we define the kinetic energy and the kinetic momentum, respectively, to be the maps

$$\mathcal{K} : \mathbb{T}^{-1} \otimes \mathbf{P} \rightarrow (\mathbb{T}^{-2} \otimes \mathbb{L}^2 \otimes \mathbb{M}) \otimes \mathbb{R} : v \mapsto \frac{1}{2} m g(v, v)$$

$$\mathcal{P} := DK : \mathbb{T}^{-1} \otimes \mathbf{P} \rightarrow (\mathbb{T}^{-1} \otimes \mathbb{L}^2 \otimes \mathbb{M}) \otimes T^* \mathbf{P} : v \mapsto m g^b(v).$$

We have the coordinate expressions $\mathcal{K} = \frac{1}{2} m g_{ij} \dot{x}_0^i \dot{x}_0^j$ and $\mathcal{P} = m g_{ij} \dot{x}_0^i d^j$.
2.1.3 Dynamics

In our context, the force acting on a particle is given a priori on the phase space. Moreover, it is convenient to introduce the force as a co-vector. Thus, a force is defined to be a map

\[F : J_1 P \rightarrow (T^{-2} \otimes L^2 \otimes M) \otimes T^* P. \]

The force \(F \) is said to be conservative if it factorises through \(J_1 P \rightarrow P \) and can be derived from a potential \(U : P \rightarrow T^{-2} \otimes L^2 \otimes M \otimes \mathbb{R} \) by the equality \(F = dU \). If the force is conservative, then we define the associated Lagrangian to be the map \(\mathcal{L} := \mathcal{K} + U \).

We say that a motion \(s \) fulfills the Newton's law of motion if

\[m \, g^b (\nabla ds) = F \circ j_1 s. \]

It is remarkable that we can link the formulation of dynamics in terms of the connection \(\nabla \) with the Lagrangian approach, directly without any reference to variational or Lagrangian calculus. In fact, the following Lagrange's formula holds

\[m \, g^b (\nabla ds) = \left(D(\dot{\partial}_i \mathcal{K} \circ ds) - \partial_i \mathcal{K} \circ ds \right) (d^i \circ s). \]

By the way, the above formula provides quickly the Christoffel’s symbols of \(\nabla \).

Hence, the coordinate expression of the Newton’s law is

\[m \, g_{ij} \left(\partial^2 \partial s^i + (\Gamma^i_{hk} \circ s) \partial_h s^k \partial_v s^l \right) \equiv D(\dot{\partial}_i \mathcal{K} \circ ds) - \partial_i \mathcal{K} \circ ds = F_i \circ j_1 s. \]

In the particular case when the force is conservative, the Newton’s law of motion is expressed by the Lagrange equations

\[D(\dot{\partial}_i \mathcal{L} \circ ds) - \partial_i \mathcal{L} \circ ds = 0. \]

2.2 Constrained particle

We assume an embedded submanifold of the pattern Euclidean affine space as configuration space of a constrained particle.

The mechanics of a constrained particle has two features: an intrinsic and an extrinsic one. According to the intrinsic viewpoint, the particle behaves as a ‘free’ particle moving in an \(l \)-dimensional Riemannian manifold; hence, according to the intrinsic viewpoint, we can repeat the scheme of the previous section. On the other hand, the environment space adds an exterior geometric structure: the 2nd fundamental form, which measures the deviation of the submanifold from being an affine subspace of the environmental space. Then, according to the extrinsic viewpoint, we interpret the reaction force in terms of the 2nd fundamental form of the constrained space.
2.2 Constrained particle

2.2.1 Configuration space

We define the configuration space for a constrained particle to be an embedded submanifold of dimension $1 \leq l \leq 3$

\[i_{\text{con}} : P_{\text{con}} \hookrightarrow P. \]

Thus, by definition of embedded submanifold, for each $p \in P_{\text{con}}$, there exists a chart (x^i) of P in a neighbourhood of p, such that P_{con} is locally characterised by the constraint \(\{ x^{l+1} = 0, \ldots, x^3 = 0 \} \). Then, \((y^1, \ldots, y^l) := (x^1|_{P_{\text{con}}}, \ldots, x^l|_{P_{\text{con}}}) \) turns out to be a local chart of P_{con}. The functions y^1, \ldots, y^l are said to be local Lagrangian coordinates and the functions x^{l+1}, \ldots, x^3 to be local constraints. From now on, we shall refer to such adapted charts.

For practical reasons, we shall adopt the following convention:
- indices i, j, h, k will run from 1 to 3;
- indices a, b, c, d will run from 1 to l;
- indices r, s, t will run from l to 3.

We have $TP|_{P_{\text{con}}} = P_{\text{con}} \times \mathbb{R}$ and $T^*P|_{P_{\text{con}}} = P_{\text{con}} \times \mathbb{R}^*$. We have the natural dual linear injective and projective maps

\[Ti_{\text{con}} : TP_{\text{con}} \hookrightarrow TP|_{P_{\text{con}}} \subset TP \quad \text{and} \quad \pi := T^*i_{\text{con}} : T^*P|_{P_{\text{con}}} \to T^*P_{\text{con}}, \]

with coordinate expressions

\[Ti_{\text{con}}(\sum_{1 \leq a \leq l} X^a \partial_a) = \sum_{1 \leq a \leq l} X^a \partial_a \quad \text{and} \quad \pi(\sum_{1 \leq i \leq n} \omega_i d^i) = \sum_{1 \leq a \leq l} \omega_a d^a. \]

The complementary linear projective and injective maps can be obtained by means of the metric.

We consider the orthogonal subspaces

\[T^\perp P_{\text{con}} := \{ X \in TP|_{P_{\text{con}}} \mid g(X, TP_{\text{con}}) = 0 \} \subset TP|_{P_{\text{con}},} ; \]
\[T^\perp P_{\text{con}} := \{ \alpha \in T^*P|_{P_{\text{con}}} \mid \alpha(TP_{\text{con}}) = 0 \} \subset T^*P|_{P_{\text{con}}}. \]

The vector fields ∂_a are tangent to P_{con}, while the vector fields ∂_r are transversal. If $\partial_r \in T^\perp P_{\text{con}}$, then the adapted chart (x^i) is said to be orthogonal to the submanifold.

The subspace $T^\perp P_{\text{con}}$ consists of the forms of the type $\omega = \sum_{l+1 \leq r \leq n} \omega_r d^r$, i.e. of forms whose “tangent” components vanish.

The restriction

\[g_{\text{con}} := i^*_{\text{con}} g : P_{\text{con}} \to L^2 \otimes (T^*P_{\text{con}} \otimes T^*P_{\text{con}}) \]

of the pattern metric g to P_{con} is a scaled Riemannian metric, which will be called the intrinsic metric. Its coordinate expression is $g_{\text{con}} = \sum_{1 \leq a, b \leq l} (g_{\text{con}})_{ab} d^a \otimes d^b$, where we have set $(g_{\text{con}})_{ab} := g_{ab}|_{P_{\text{con}}}$. The contravariant form of g_{con} will be denoted by \bar{g}_{con}. We
stress that, in general, the $l \times l$ “tangent” submatrix of (g^{ij}) is different from the inverse of the matrix (g_{ab}); they are equal if and only if the adapted chart (x^i) is orthogonal.

The intrinsic metric g_{con} yields the Riemannian connection ∇_{con}.

With reference to a mass $m \in \mathbb{M}$, we define the intrinsic kinetic energy and the intrinsic kinetic momentum

$$K_{\text{con}} := \frac{1}{2} m g_{\text{con}}(v, v),$$

$$P_{\text{con}} := m g_{\text{con}} \dot{y}^{a} \dot{y}^{b}.$$

Let us analyse the orthogonal splittings of the tangent and cotangent spaces induced by the metric.

The metric yields the injective map

$$j : T^* P_{\text{con}} \hookrightarrow T^* P|_{P_{\text{con}}}$$

through the commutative diagram

$$
\begin{array}{ccc}
T^* P_{\text{con}} & \xrightarrow{j} & T^* P|_{P_{\text{con}}}
\end{array}
$$

$$
\begin{array}{ccc}
g^{\flat}_{\text{con}} & \downarrow \pi &
\end{array}
$$

$$
\begin{array}{ccc}
\mathbb{L}^{-2} \otimes TP_{\text{con}} & \xrightarrow{g^{\flat}} & \mathbb{L}^{-2} \otimes T^* P|_{P_{\text{con}}}
\end{array}
$$

We have the mutually dual orthogonal splittings

$$TP|_{P_{\text{con}}} = TP_{\text{con}} \oplus T_{\perp} P_{\text{con}},$$

$$T^* P|_{P_{\text{con}}} = T^* P_{\text{con}} \oplus T_{\perp} P_{\text{con}},$$

with projections

$$\pi^{\parallel} : TP|_{P_{\text{con}}} \to TP_{\text{con}}, \quad \pi^{\perp} : TP|_{P_{\text{con}}} \to T_{\perp} P_{\text{con}},$$

$$\pi^{\parallel} : T^* P|_{P_{\text{con}}} \to T^* P_{\text{con}}, \quad \pi^{\perp} : T^* P|_{P_{\text{con}}} \to T_{\perp} P_{\text{con}}.$$

As the projection π has a very simple expression, it is convenient to compute the other projections $\pi^{\parallel}, \pi^{\perp}, \pi^{\perp}_{\perp}$ via the following commutative diagrams

$$
\begin{array}{ccc}
TP|_{P_{\text{con}}} & \xrightarrow{\pi^{\parallel}} & TP_{\text{con}}
\end{array}
$$

$$
\begin{array}{ccc}
g^{\flat}_{\text{con}} & \downarrow \pi^{\parallel} &
\end{array}
$$

$$
\begin{array}{ccc}
\mathbb{L}^{2} \otimes T^* P|_{P_{\text{con}}} & \xrightarrow{\pi} & \mathbb{L}^{2} \otimes T^* P_{\text{con}}
\end{array}
$$
2.2 Constrained particle

\[T^*P_{|P_{\text{con}}} \xrightarrow{\pi_{|}} T_{\perp}P_{\text{con}} \]

\[\mathbb{L}^{-2} \otimes TP_{|P_{\text{con}}} \xrightarrow{\pi_{|}} \mathbb{L}^{-2} \otimes T_{\perp}P_{\text{con}} \]

Then, for each \(X \in TP_{|P_{\text{con}}} \) and \(\omega \in T^*P_{|P_{\text{con}}} \), we obtain the equalities

\[\pi^\parallel(X) = \sum_{1 \leq i \leq n} \sum_{1 \leq a, b \leq l} X^i g_{ib} g_{a} \partial_a = \sum_{1 \leq a, b \leq l} \sum_{l+1 \leq r \leq n} (X^a + X^r g_{rb} g_{a}) \partial_a, \]

\[\pi^\perp(X) = \sum_{1 \leq a, b \leq l} \sum_{l+1 \leq r \leq l} X^r (\partial_r - g_{rb} g_{a} \partial_a), \]

\[\pi_{\perp}(\omega) = \sum_{1 \leq a, b \leq l} \sum_{l+1 \leq r \leq n} (\omega_r - \omega_a g_{rb} g_{a} r) d^r. \]

Of course, the above formulas simplify considerably if the adapted chart is orthogonal, i.e. if \(g_{rb}\big|_{P_{\text{con}}} = 0 \).

2.2.2 Kinematics

We define the intrinsic phase space as the 1st jet space of maps \(T \to P_{\text{con}} \)

\[J_1P_{\text{con}} := T \times (T^{-1} \otimes TP_{\text{con}}). \]

The induced chart of \(J_1P_{\text{con}} \) is \((x^0, y^a, y^0_a)\).

A constrained motion is defined to be a map \(s_{\text{con}} : T \to P_{\text{con}} \subset P \). Clearly, a constrained motion can be naturally regarded as a motion of the pattern space, via the inclusion \(i_{\text{con}} \). Indeed, a motion \(s : T \to P \) is constrained if and only if \(s' = 0 \).

The 1st differential, the 2nd differential and the velocity of a constrained motion \(s_{\text{con}} \), computed in the environment space, turn out to be valued in the corresponding constrained subspaces

\[ds_{\text{con}} : T \to \mathbb{T}^{-1} \otimes TP_{\text{con}}, \quad d^2s_{\text{con}} : T \to \mathbb{T}^{-1} \otimes T(T^{-1} \otimes TP_{\text{con}}), \]

\[j_1s_{\text{con}} : T \to J_1P_{\text{con}}. \]

We have the coordinate expressions

\[(y^a, \dot{y}^a_0) \circ ds_{\text{con}} = (s^0, \partial_0 s^a), \]

\[(y^a, \dot{y}^a_0, \dot{y}^a_{00}) \circ d^2s_{\text{con}} = (s^0, \partial_0 s^a, \partial_0^2 s^a), \]

\[(x^0, y^a, y^0_a) \circ j_1s_{\text{con}} = (x^0, s^a, \partial_0 s^a). \]

Hence, as far as the above objects are considered, the intrinsic and the extrinsic approaches coincide, up to the natural inclusion of the constrained spaces into the corresponding environmental spaces.
Conversely, the intrinsic and extrinsic approaches of the acceleration of the constrained motion s_{con} do not coincide. The intrinsic viewpoint is suitable for the intrinsic expression of the law of motion and the extrinsic viewpoint provides the constraint reaction force.

We define the *intrinsic acceleration* of a constrained motion s_{con} as the map

$$\nabla_{\text{con}} ds_{\text{con}} : T \to T^{-2} \otimes TP_{\text{con}},$$

with coordinate expression

$$\nabla_{\text{con}} ds_{\text{con}} = \sum_{1 \leq a,b,c \leq l} \left(\partial_0^2 s^a + (\Gamma_{\text{con}}^{a}_{bc}) \circ s_{\text{con}} \partial_0 s^b \partial_0 s^c \right)(\partial_a \circ s_{\text{con}}).$$

Analogously to the free case, the intrinsic co-acceleration is given by the Lagrange’s formula

$$m_{\text{con}} g_{\text{con}} \hat{b} (\nabla_{\text{con}} ds) = \left(D(\hat{\partial}_a K_{\text{con}} \circ ds_{\text{con}}) - \hat{\partial}_a K_{\text{con}} \circ ds_{\text{con}} \right)(d^a \circ s_{\text{con}}).$$

On the other hand, by regarding the constrained motion s_{con} as a motion of the environmental space, we define the *extrinsic acceleration* as the map

$$\nabla ds_{\text{con}} : T \to T^{-2} \otimes TP,$$

with coordinate expression

$$\nabla ds_{\text{con}} = \sum_{1 \leq i \leq 3} \sum_{1 \leq a,b,c \leq l} \left(\partial_0^2 s^i + (\Gamma_{\text{con}}^{i}_{bc}) \circ s_{\text{con}} \partial_0 s^b \partial_0 s^c \right)(\partial_i \circ s_{\text{con}}).$$

Then, according to the Gauss’ Theorem [7], we have the splitting

$$\nabla ds_{\text{con}} = \pi^\parallel (\nabla ds_{\text{con}}) + \pi^\perp (\nabla ds_{\text{con}}),$$

with

$$\pi^\parallel (\nabla ds_{\text{con}}) = \nabla_{\text{con}} ds_{\text{con}} \quad \text{and} \quad \pi^\perp \circ \nabla ds_{\text{con}} = N \circ ds_{\text{con}},$$

where

$$N : TP_{\text{con}} \to T^\perp P_{\text{con}}$$

is a quadratic map, called 2nd fundamental form, whose coordinate expression is

$$N = \sum_{1 \leq a,b,c \leq l} \sum_{1+1 \leq r \leq 3} \Gamma^{r}_{bc} y^b \dot{y}^c (\partial_r - g_{rb} g_{\text{con}}^{ba} \partial_a).$$

Indeed, the map N measures how the submanifold P_{con} deviates, at 1st order, from being an affine subspace of P. The quickest way to compute the 2nd fundamental form is the following: compute the covariant expressions of the extrinsic and intrinsic accelerations via the Lagrange’s formulas; then pass to the contravariant expressions and take the difference.
2.2 Constrained particle

2.2.3 Dynamics

Let us consider a force $\tilde{F} : J_1 P \to (\mathbb{T}^{-2} \otimes \mathbb{L}^2 \otimes \mathcal{M}) \otimes T^* P$ in the environment space P. As we are dealing with constrained mechanics, we are involved only with its restriction

$$F := \tilde{F}|_{J_1 P_{\text{con}}} : J_1 P_{\text{con}} \to (\mathbb{T}^{-2} \otimes \mathbb{L}^2 \otimes \mathcal{M}) \otimes T^* P|_{P_{\text{con}}}.$$

According to the splitting of $T^* P|_{P_{\text{con}}}$, we can write

$$F = F_{\text{con}} + F_{\text{con}} \perp,$$

where

$$F_{\text{con}} = i^* F : J_1 P_{\text{con}} \to (\mathbb{T}^{-2} \otimes \mathbb{L}^2 \otimes \mathcal{M}) \otimes T^* P_{\text{con}}.$$

We call F_{con} the intrinsic force.

Let us assume that constraint confines the motion on the configuration space P_{con}, via Newton’s law of motion, by means of a suitable additional ‘reaction force’ defined on the constrained space

$$R : J_1 P_{\text{con}} \to (\mathbb{T}^{-2} \otimes \mathbb{L}^2 \otimes \mathcal{M}) \otimes T^* P|_{P_{\text{con}}}.$$

According to the splitting of $T^* P|_{P_{\text{con}}}$, we can write

$$R = R_{\text{con}} + R_{\text{con}} \perp,$$

where

$$R_{\text{con}} = i^* R : J_1 P_{\text{con}} \to (\mathbb{T}^{-2} \otimes \mathbb{L}^2 \otimes \mathcal{M}) \otimes T^* P_{\text{con}}.$$

We call R_{con} the intrinsic reaction force.

A constrained motion $s_{\text{con}} : T \to P_{\text{con}}$ is said to fulfill the constrained Newton’s law of motion if the following equation holds

$$m \ g^b \circ (\nabla ds_{\text{con}}) = (F + R) \circ j_1 s_{\text{con}}.$$

2.1 Theorem. A constrained motion $s : T \to P_{\text{con}}$ fulfills the constrained Newton’s law of motion if and only if

$$m \ g^b \circ (\nabla_{\text{con}} ds_{\text{con}}) = (F_{\text{con}} + R_{\text{con}}) \circ j_1 s_{\text{con}}$$

$$m \ g^b \circ (N \circ ds_{\text{con}}) = (F_{\text{con}} \perp + R_{\text{con}} \perp) \circ j_1 s_{\text{con}}.$$

Actually, for each choice of initial data in $J_1 P_{\text{con}}$, the 1st equation has (locally) a unique solution and the 2nd equation is fulfilled if and only if

$$(2.2) \quad R_{\text{con}} \perp = m \ g^b \circ N - F_{\text{con}} \perp.$$
According to the above result, we make the “minimal assumption” (virtual works principle, i.e., smooth constraint)

\[R_{\text{con}} = 0. \]

Then, the explicit coordinate expression of \(R \) is

\[
(2.3) \quad R = \sum_{1 \leq a, b, c \leq l} \left(m \left(\Gamma_{arb} - g_{re} g_{\text{con}}^c \Gamma_{\text{con} adb} \right) \dot{y}^a \dot{y}^b - F_r + g_{\text{con}}^{ba} F_{a} g_{br} \right) \circ i_{\text{con}} \left(d^r \circ i_{\text{con}} \right).
\]

In classical literature (see, for instance, [13]) the computation of reaction force is presented implicitly as the solution of a linear system associated with Lagrange multipliers. Instead, the above formula (which involves an adapted chart) provides an explicit expression of the reaction force in terms of the Christoffel symbols, or of the metric. In the particular case when the adapted chart is orthogonal, this formula becomes very easy.

Thus, the dynamics of a constrained particle can be interpreted as the dynamics of a ‘free’ particle moving on the Riemannian configuration space \(P_{\text{con}} \). Then, all main notions and results holding in the free case by using the Riemannian structure of \(P \) can be easily rephrased in the constrained case. This is a remarkable conceptual and practical advantage of the present approach.
3 Mechanics of a system of n particles

In this section we generalise the previous concepts and results to systems of many particles. Our guideline will be the interpretation of the multi-particle system as a one-particle moving in a higher dimensional space. In this way, all we have learned for one-particle can be applied directly to multi-particle systems. On the other hand, we have additional concepts, e.g. the center of mass splitting, which follow from the projections on the factor spaces of the different particles.

3.1 Free particles

We start with a finite system of free particles.

The key feature of our analysis is the geometry of the configuration space, which is naturally equipped with two metrics and two natural splittings.

We shall use systematically the prefix “multi” to indicate objects of the n-system analogous to objects of one-particle.

We assume $n \geq 1$, and consider n masses $m_1, \ldots, m_n \in \mathbb{M}$.

For each $i = 1, \ldots, n$, with reference to the i-th particle, it is convenient to consider a copy of the following pattern objects: $P_i \equiv P$ and $S_i \equiv S$.

3.1.1 Geometry of the multi-configuration space

The multi-configuration space is defined to be the product space $P_{\text{mul}} := P_1 \times \cdots \times P_n$.

Clearly, P_{mul} is an affine space associated with the vector space $S_{\text{mul}} := S_1 \times \cdots \times S_n$.

A product chart (x_{mul}^i) of P_{mul} induced by charts $(x_1^i), \ldots, (x_n^i)$ of the single components is said to be without interference of the particles. Conversely, a chart (x_{mul}^i) of P_{mul} which cannot be written as a product as above is said to be with interference of the particles.

We define the total mass as $m_0 := \sum_i m_i \in \mathbb{M}$ and the i-th weight as $\mu_i = m_i/m_0$.

Clearly, we have $\sum_i \mu_i = 1$.

A typical notation for the elements of P_{mul}, S_{mul} and S^{*}_{mul} will be

$p_{\text{mul}} = (p_1, \ldots, p_n) \in P_{\text{mul}} = P_1 \times \cdots \times P_n$,

$v_{\text{mul}} = (v_1, \ldots, v_n) \in S_{\text{mul}} = S_1 \times \cdots \times S_n$,

$\alpha_{\text{mul}} = (\alpha_1, \ldots, \alpha_n) \in S^{*}_{\text{mul}} = S_1^* \times \cdots \times S_n^*$.
We define the multi-geometrical metric and the multi-weighted metric as

\[
g_{\text{mul}} : P_{\text{mul}} \to L^2 \otimes (T^* P_{\text{mul}} \otimes T^* P_{\text{mul}}) : (u_{\text{mul}}, v_{\text{mul}}) \mapsto \sum_i g(u_i, v_i);
\]

\[
G_{\text{mul}} : P_{\text{mul}} \to L^2 \otimes (T^* P_{\text{mul}} \otimes T^* P_{\text{mul}}) : (u_{\text{mul}}, v_{\text{mul}}) \mapsto \sum_i \mu_i g(u_i, v_i).
\]

The contravariant tensors of \(g_{\text{mul}}\) and \(G_{\text{mul}}\) are denoted, respectively, by \(\bar{g}_{\text{mul}}\) and \(\bar{G}_{\text{mul}}\).

If \(n = 1\), then \(G_{\text{mul}} = g_{\text{mul}} = g\) and \(m = m_0\).

If \(n \geq 2\), then the two metrics \(G_{\text{mul}}\) and \(g_{\text{mul}}\) are distinct. Moreover, if \(m_1 = \cdots = m_n\), then \(\mu_1 = \cdots = \mu_n = \frac{1}{n}\) and \(G_{\text{mul}} = \frac{1}{n} g_{\text{mul}}\).

For a system of \(n\) particles, we will rephrase the dynamics of a system of one particle, by replacing the pattern metric \(g\) with the weighted metric \(G_{\text{mul}}\) and the mass \(m\) with the total mass \(m_0\). This procedure yields the correct Newton’s law of motion, in full analogy with the one particle case.

According to this scheme, we define the multi-kinetic energy and the multi-kinetic momentum by

\[
K_{\text{mul}} : T^{-1} \otimes TP_{\text{mul}} \to (T^{-1} \otimes L^2 \otimes M) \otimes \mathbb{R} : v \mapsto \frac{1}{2} m_0 G_{\text{mul}}(v, v),
\]

\[
P_{\text{mul}} : T^{-1} \otimes TP_{\text{mul}} \to (T^{-1} \otimes L^2 \otimes M) \otimes T^* P_{\text{mul}} : v \mapsto m_0 \bar{G}_{\text{mul}}(v),
\]

and recover the standard formulas \(K_{\text{mul}}(v) = \sum_i \frac{1}{2} m_i g(v_i, v_i)\) and \(P_{\text{mul}}(v) = \left(m_i g(v_i) \right)\).

The linear connection \(\nabla_{\text{mul}}\) induced on the multi-configuration space \(P_{\text{mul}}\) by the affine structure (see Lemma 1.3) coincides with the Riemannian connection induced by both metrics \(g_{\text{mul}}\) and \(G_{\text{mul}}\). This is true although the two metrics need not to be proportional.

3.1.2 Splittings of the configuration space

The multi-configuration space has two distinguished splittings.

Multi–splitting. We have the obvious affine multi-splitting \(P_{\text{mul}} = P_1 \times \cdots \times P_n\). The corresponding affine projections \(\pi_i : P_{\text{mul}} \to P_i\) and the further induced projections can be used to extract information on the single particles from the kinematical and dynamical multi–objects of the multi–system.

The subspaces \(S_1, \ldots, S_n \subseteq S_{\text{mul}}\) are mutually orthogonal with respect to both metrics \(g_{\text{mul}}\) and \(G_{\text{mul}}\).

Diagonal splitting. Moreover, \(P_{\text{mul}}\) has the following further diagonal splitting, which has no analogous in the one-particle scheme.

We define the diagonal affine subspace, the diagonal vector subspace and the relative
vector subspace, respectively, as

\[P_{\text{dia}} := \{ p_{\text{mul}} \in P_{\text{mul}} \mid p_1 = \ldots = p_n \} \subset P_{\text{mul}}, \]
\[S_{\text{dia}} := \{ v_{\text{mul}} \in S_{\text{mul}} \mid v_1 = \ldots = v_n \} \subset S_{\text{mul}}, \]
\[S_{\text{rel}} := \{ v_{\text{mul}} \in S_{\text{mul}} \mid \sum_i \mu_i v_i = 0 \} \subset S_{\text{mul}}. \]

In the following, the subscripts "dia" and "rel" will denote the objects associated with the above spaces.

3.1 Theorem. We have the affine splitting of the multi-configuration space and the linear splittings of the associated vector and covector multi-spaces

\[P_{\text{mul}} = P_{\text{dia}} \oplus S_{\text{rel}} : p_{\text{mul}} = (p_0, \ldots, p_0) + (p_1 - p_0, \ldots, p_n - p_0), \]
\[S_{\text{mul}} = S_{\text{dia}} \oplus S_{\text{rel}} : v_{\text{mul}} = (v_0, \ldots, v_0) + (v_1 - v_0, \ldots, v_n - v_0), \]
\[S^*_{\text{mul}} = S^*_{\text{dia}} \oplus S^*_{\text{rel}} : \alpha_{\text{mul}} = (\mu_1 \alpha_0, \ldots, \mu_n \alpha_0) + (\alpha_1 - \mu_1 \alpha_0, \ldots, \alpha_n - \mu_n \alpha_0), \]

where, for each \(p_{\text{mul}} \in P_{\text{mul}}, p_0 \in P \) is the unique point such that

\[\sum_i \mu_i (p_i - p_0) = 0, \]

and where, for each \(v_{\text{mul}} \in S_{\text{mul}} \) and \(\alpha_{\text{mul}} \in S^*_{\text{mul}}, \)

\[v_0 := \sum_i \mu_i v_i \quad \text{and} \quad \alpha_0 := \sum_i \alpha_i. \]

The above splittings are orthogonal with respect to the weighted metric \(G_{\text{mul}} \).

Proof. 1) Let us prove the splitting \(S_{\text{mul}} = S_{\text{dia}} \oplus S_{\text{rel}} \).

For each \(v_0 \in S \), we have \(\sum_i \mu_i v_0 = 0 \) if and only if \(v_0 = 0 \). Hence, \(S_{\text{dia}} \cap S_{\text{rel}} = 0 \).

Moreover, for each \(v_{\text{mul}} \in S_{\text{mul}}, \) we have \((v_1, \ldots, v_n) = (v_0, \ldots, v_0) + (v_1 - v_0, \ldots, v_n - v_0) \), with any \(v_0 \in S \). Clearly, \((v_0, \ldots, v_0) \in S_{\text{dia}} \) and \((v_1 - v_0, \ldots, v_n - v_0) \in S_{\text{rel}} \), if and only if \(v_0 = \sum \mu_i v_i \). Hence, \(S_{\text{dia}} + S_{\text{rel}} = S_{\text{mul}} \) and the expression of the splitting is expressed by the 2nd formula of the statement.

2) Let us prove the splitting \(P_{\text{mul}} = P_{\text{dia}} \oplus S_{\text{rel}} \).

Clearly, \(P_{\text{dia}} \subset P_{\text{mul}} \) is an affine subspace associated with the vector subspace \(S_{\text{dia}} \subset S_{\text{mul}} \). Hence, the equality \(S_{\text{mul}} = S_{\text{dia}} \oplus S_{\text{rel}} \) implies \(P_{\text{mul}} = P_{\text{dia}} \oplus S_{\text{rel}} \).

Moreover, for each \(p_{\text{mul}} \in P_{\text{mul}}, \) we have \((p_1, \ldots, p_n) = (p_0, \ldots, p_0) + (p_1 - p_0, \ldots, p_n - p_0) \), with any \(p_0 \in P \). Clearly, \((p_0, \ldots, p_0) \in P_{\text{dia}} \) and \((p_1 - p_0, \ldots, p_n - p_0) \in S_{\text{rel}} \) if and only if \(\sum \mu_i (p_i - p_0) = 0 \). Hence, the expression of the splitting is expressed by the 1st formula of the statement.

3) The splitting \(S_{\text{mul}} = S_{\text{dia}} \oplus S_{\text{rel}} \) implies the splitting \(S^*_{\text{mul}} = S^*_{\text{dia}} \oplus S^*_{\text{rel}} \).

Moreover, for each \(\alpha_{\text{mul}} \in S^*_{\text{mul}}, \) we have \((\alpha_1, \ldots, \alpha_n) = (\beta_1, \ldots, \beta_n) + (\alpha_1 - \beta_1, \ldots, \alpha_n - \beta_n) \), with any \(\beta_i \in S^*_{\text{dia}} \).

On the other hand, for each \(v_{\text{mul}} \in S_{\text{mul}}, \) we obtain

\[(\beta_1, \ldots, \beta_n)(v_1, \ldots, v_n) = (\alpha_1, \ldots, \alpha_n)(v_0, \ldots, v_0) \]

if and only if

\[\sum_i \beta_i (v_i) = \sum_j \alpha_j (\sum_i \mu_i v_i) = \sum_i \mu_i (\sum_j \alpha_j)(v_i), \]
i.e., if and only if
\[\beta_i = \mu_i \left(\sum_j \alpha_j \right). \]

Moreover, in virtue of the equalities
\[\sum_i (\alpha_i - \mu_i \left(\sum_j \alpha_j \right)) (v_i) = \sum_i \alpha_i (v_i) - \sum_i \alpha_j \left(\sum_i \mu_i v_i \right) = \sum_i \alpha_i (v_i - v_0), \]
we obtain
\[(\alpha_1 - \mu_1 \left(\sum_j \alpha_j \right), \ldots, \alpha_n - \mu_n \left(\sum_j \alpha_j \right)) (v_1, \ldots, v_n) = (\alpha_1, \ldots, \alpha_n) (v_1 - v_0, \ldots, v_n - v_0). \]

Hence, the expression of the splitting is expressed by the 3rd formula of the statement. QED

We denote the projection associated with the above splittings by

\[\pi_{\text{dia}} : P_{\text{mul}} \rightarrow P_{\text{dia}}, \quad \pi_{\text{rel}} : P_{\text{mul}} \rightarrow S_{\text{rel}}, \]
\[\bar{\pi}_{\text{dia}} : S_{\text{mul}} \rightarrow S_{\text{dia}}, \quad \bar{\pi}_{\text{rel}} : S_{\text{mul}} \rightarrow S_{\text{rel}}, \]
\[\bar{\pi}_{\text{dia}}^* : S^*_{\text{mul}} \rightarrow S^*_{\text{dia}}, \quad \bar{\pi}_{\text{rel}}^* : S^*_{\text{mul}} \rightarrow S^*_{\text{rel}}. \]

Clearly, the above splittings depend on the choice of the multi-mass and are not orthogonal with respect to the geometrical metric (unless all masses are equal).

We stress that, while we have the natural inclusion \(P_{\text{dia}} \hookrightarrow P_{\text{mul}} \), we do not have a natural inclusion \(S_{\text{rel}} \hookrightarrow P_{\text{mul}} \).

We have a natural splitting of the weighted multi–metric of the type \(G_{\text{mul}} = G_{\text{dia}} \oplus G_{\text{rel}} \).

Moreover, the affine structures of \(P_{\text{dia}} \) and \(S_{\text{rel}} \) yield the flat connections \(\nabla_{\text{dia}} \) and \(\nabla_{\text{rel}} \), which turn out to be the Riemannian connections induced by \(G_{\text{dia}} \) and \(G_{\text{rel}} \), respectively.

Center of mass splitting. We can describe the diagonal splitting in another way, via the center of mass.

According to the above Theorem, we define the center of mass of \(p_{\text{mul}} \in P_{\text{mul}} \) to be the unique point \(p_0 \in P \), such that \(\sum_i \mu_i (p_i - p_0) = 0 \). By considering any \(o \in P \), we can write \(p_0 = o + \sum_i \mu_i (p_i - o) \). With reference to the center of mass, it is convenient to consider a copy of the following pattern objects: \(P_{\text{cen}} \equiv P \), \(S_{\text{cen}} \equiv S \) and \(S^*_{\text{cen}} \equiv S^* \).

Thus, we have the center of mass affine projection
\[\pi_{\text{cen}} : P_{\text{mul}} \rightarrow P_{\text{cen}} : p_{\text{mul}} \mapsto p_0 := o + \sum_i \mu_i (p_i - o), \quad \text{for any } o \in P. \]

The linear projections associated with the affine projection \(\pi_{\text{cen}} : P_{\text{mul}} \rightarrow P_{\text{cen}} \) turn out to be, respectively, the weighted sum and the sum
\[\bar{\pi}_{\text{cen}} : S_{\text{mul}} \rightarrow S_{\text{cen}} : v_{\text{mul}} \mapsto v_0 := \sum_i \mu_i v_i, \]
\[S_{\text{cen}} : S^*_{\text{mul}} \rightarrow S^*_{\text{cen}} : \alpha_{\text{mul}} \mapsto \alpha_0 := \sum_i \alpha_i. \]
3.1 Free particles

The 2nd projection is just the map which associates with every multi-form its total value. Indeed, this map plays an important role in mechanics of multi-systems.

Clearly, we have the natural affine isomorphism and linear isomorphisms

\[P_{\text{cen}} \rightarrow P_{\text{dia}} : p_0 \mapsto (p_0, \ldots, p_0), \]

\[S_{\text{cen}} \rightarrow S_{\text{dia}} : v_0 \mapsto (v_0, \ldots, v_0), \]

\[S_{\text{cen}}^* \rightarrow S_{\text{dia}}^* : \beta_0 \mapsto (\mu_1 \beta_0, \ldots, \mu_n \beta_0). \]

3.2 Corollary. We have the center of mass splittings

\[P_{\text{mul}} \simeq P_{\text{cen}} \times S_{\text{rel}} : p_{\text{mul}} \simeq (p_0, (p_0 - p_0, \ldots, p_n - p_0)), \]

\[S_{\text{mul}} \simeq S_{\text{cen}} \times S_{\text{rel}} : v_{\text{mul}} \simeq (v_0, (v_0 - v_0), \ldots, v_n - v_0)), \]

\[S_{\text{mul}}^* \simeq S_{\text{cen}}^* \times S_{\text{rel}}^* : \alpha_{\text{mul}} \simeq (\alpha_0, (\alpha_0 - \mu_1 \alpha_0, \ldots, \alpha_n - \mu_n \alpha_n)). \]

According to our scheme, we define the center of mass kinetic energy and the center of mass momentum as

\[\mathcal{K}_{\text{cen}} : T^{-1} \otimes TP_{\text{cen}} \rightarrow (T^{-2} \otimes L^2 \otimes \mathbb{M}) \otimes \mathbb{R} : v_{\text{cen}} \mapsto \frac{1}{2} m_0 g_{\text{cen}}^0(v_{\text{cen}}, v_{\text{cen}}), \]

\[P_{\text{cen}} : T^{-1} \otimes TP_{\text{cen}} \rightarrow (T^{-1} \otimes L^2 \otimes \mathbb{M}) \otimes T^*P_{\text{cen}} : v_{\text{cen}} \mapsto m_0 g_{\text{cen}}(v_{\text{cen}}). \]

Moreover, we obtain the equalities

\[\mathcal{K}_{\text{mul}}(v_{\text{mul}}) = \mathcal{K}_{\text{cen}}(v_0) + \mathcal{K}_{\text{mul}}(v_{\text{rel}}), \]

\[\mathcal{K}_{\text{cen}} \circ T\pi_{\text{cen}} = \mathcal{K}_{\text{mul}} \circ T\pi_{\text{dia}} : v_{\text{mul}} \mapsto \frac{1}{2} m_0 g_{\text{cen}}(v_0, v_0) = \frac{1}{2} m_0 \sum_i \mu_i g(v_0, v_0), \]

\[P_{\text{cen}} \circ T\pi_{\text{cen}} = S_{\text{cen}} \circ P_{\text{mul}} \circ T\pi_{\text{dia}} : v_{\text{mul}} \mapsto m_0 g^0_{\text{cen}}(v_0) = m_0 \sum_i \mu_i g^0(v_0). \]

3.1.3 Kinematics

For the kinematics of our system of \(n \) particles, we follow the viewpoint of a multi-particle moving in a multi-space (in analogy with a one-particle moving in the standard space). Moreover, we take into account the center of mass splitting.

We define the multi-phase space as \(J_1 P_{\text{mul}} := T \times (T^{-1} \otimes TP_{\text{mul}}) \).

A multi-motion is defined to be a map \(s_{\text{mul}} : T \rightarrow P_{\text{mul}} \).

Of course, the multi-motion can be regarded as the family of motions of the system: \(s_{\text{mul}} = (s_1, \ldots, s_n) \). This holds also for the derived quantities, like the multi-velocity \(ds_{\text{mul}} : T \rightarrow T^{-1} \otimes TP_{\text{mul}} \) and the multi-acceleration \(\nabla_{\text{mul}} ds_{\text{mul}} : T \rightarrow T^{-2} \otimes TP_{\text{mul}} \).

We can relate the multi-motion to the splitting of center of mass (Corollary 3.2) by the equalities

\[s_{\text{mul}} = s_{\text{dia}} + s_{\text{rel}} \simeq (s_{\text{cen}}, s_{\text{rel}}), \quad ds_{\text{mul}} = ds_{\text{dia}} + ds_{\text{rel}} \simeq (ds_{\text{cen}}, ds_{\text{rel}}). \]

\[\nabla_{\text{mul}} ds_{\text{mul}} = \nabla_{\text{dia}} ds_{\text{dia}} + \nabla_{\text{rel}} ds_{\text{rel}} \simeq (\nabla_{\text{cen}} ds_{\text{cen}}, \nabla_{\text{rel}} ds_{\text{rel}}). \]
3.1.4 Dynamics

In analogy with the case of one-particle, we define a multi-force to be a map

\[F_{\text{mul}} : J_1P_{\text{mul}} \to (T^{-2} \otimes L^2 \otimes M) \otimes T^*P_{\text{mul}}. \]

Again, the multi-force can be regarded as the family of forces acting on each particle \(F_{\text{mul}} = (F_1, \ldots, F_n) \). In general, each of the components is defined on the whole phase space. In the particular case when each component \(F_i \) of the multi-force depends only the \(i \)-th phase space, the multi-force is said to be without interaction.

We say that a multi-force \(F_{\text{mul}} \) fulfills the Newton’s 3rd principle if, for each \(1 \leq i \leq n \),

\[F_i = \sum_{1 \leq i \neq j \leq n} F_{ij}, \quad F_{ij}(p_i, p_j) = \lambda_{ij}(\|p_j - p_i\|_g) g^\flat(p_j - p_i), \quad \lambda_{ij} = \lambda_{ji}, \]

where \(F_{ij} : P_i \times P_j \to (T^{-2} \otimes L^2 \otimes M) \otimes T^*P_i \) and \(\lambda_{ij} : L^2 \otimes \mathbb{R} \to \mathbb{R} \), for each \(1 \leq i \neq j \leq n \).

The total force of the system is defined to be the component of the multi-force with respect to the center of mass

\[F_{\text{cen}} := S_{\text{cen}} \circ F_{\text{mul}} = \sum_i F_i : J_1P_{\text{mul}} \to (T^{-2} \otimes L^2 \otimes M) \otimes T^*P_{\text{cen}}. \]

The multi-force is said to be conservative if it can be derived from a multi-potential \(U_{\text{mul}} : P_{\text{mul}} \to (T^{-2} \otimes L^2 \otimes M) \otimes \mathbb{R} \) as \(F_{\text{mul}} = dU_{\text{mul}} \). In this case, we define the multi-Lagrangian to be the map

\[L_{\text{mul}} := K_{\text{mul}} + U_{\text{mul}} : TP_{\text{mul}} \to (T^{-2} \otimes L^2 \otimes M) \otimes \mathbb{R}. \]

We say that a multi-motion \(s_{\text{mul}} \) fulfills the Newton’s law of motion if

\[m_0 g^\flat \circ (\nabla_{\text{mul}} ds_{\text{mul}}) = F_{\text{mul}} \circ j_1s_{\text{mul}}. \]

We can split the Newton’s law with respect to the multi-splitting and to the splitting of the center of mass.

In the former case, we simply obtain the system of coupled equations

\[m_i g^\flat \circ ds_i = F_i \circ j_1s. \]

In the latter case, we have the following Theorem.

3.3 Theorem. The Newton’s equation is equivalent to the system

\[m_0 g^\flat_{\text{cen}} \circ (\nabla_{\text{cen}} ds_{\text{cen}}) = F_{\text{cen}} \circ j_1s_{\text{mul}}, \quad m_0 G^\flat_{\text{rel}} \circ (\nabla_{\text{rel}} ds_{\text{rel}}) = F_{\text{rel}} \circ j_1s_{\text{mul}}. \]

If \(F_{\text{cen}} \) factors through \(J_1P_{\text{cen}} \), then the 1st equation can be integrated independently of the 2nd one and can be interpreted as the equation of motion of the center of mass.
As for one-particle, the coordinate expression of the Newton’s law is, with reference to any chart \((x^i_{\text{mul}})\) of \(P_{\text{mul}}\),

\[
D(\dot{\partial}_i K_{\text{mul}} \circ ds_{\text{mul}}) - \partial_i K_{\text{mul}} \circ ds_{\text{mul}} = F_i \circ j_1 s_{\text{mul}},
\]

which, if \(F_{\text{mul}}\) is conservative, is equivalent to the system of Lagrange’s equations

\[
D(\dot{\partial}_i L_{\text{mul}} \circ ds_{\text{mul}}) - \partial_i L_{\text{mul}} \circ ds_{\text{mul}} = 0,
\]

\section{3.2 Constrained particles}

According to our programme, the analysis of the geometry of the constrained space for a system of \(n\) particles can be carried out by analogy with the case of one-particle.

We assume the \textit{multi-configuration space} of a constrained system of \(n\) particles to be an embedded submanifold \(P_{\text{mul con}} \subset P_{\text{mul}}\).

In general, it is not possible to write \(P_{\text{mul con}} = P_{\text{con} 1} \times \ldots \times P_{\text{con} n}\), with \(P_{\text{con} i} \subset P_i\), for each \(i = 1, \ldots, n\). In the particular case when this holds, we say that the constraint is \textit{without interference between particles}.

Moreover, in general, it is not possible to write \(P_{\text{mul con}} = P_{\text{cen con}} \times S_{\text{rel con}}\), with \(P_{\text{cen con}} \subset P_{\text{cen}}\) and \(S_{\text{rel con}} \subset S_{\text{rel}}\). In the particular case when this holds, we say that the constraint is \textit{without interference between center of mass and relative positions}. In this case, the intrinsic metric \(G_{\text{con}}\) splits into the sum of the metrics \(G_{\text{cen con}}\) and \(G_{\text{rel con}}\) (according to Corollary 3.2), with interesting consequences in dynamics.

We leave to the reader the task to formulate the kinematics and dynamics of a constrained system of \(n\) particles according to our scheme.
4 Rigid systems

Now, we specialise the theory of constrained systems of \(n \) particles to the case of a rigid constraint. We devote emphasis to the geometric structure of the rigid configuration space. In particular, we show that this is the true source of the classical formulas of the velocity of rigid systems.

Throughout the section, we suppose that \(n \geq 2 \).

4.1 Geometry of the configuration space

Let us define the scaled functions, for \(1 \leq i, j \leq n \),

\[
 r_{ij} : P_{\text{mul}} \to \mathbb{R}^n : p_{\text{mul}} \equiv (p_1, \ldots, p_n) \mapsto \|p_i - p_j\|_g.
\]

A rigid configuration space is defined to be a subset of the type

\[
i_{\text{rig}} : P_{\text{rig}} := \{ p_{\text{mul}} \in P_{\text{mul}} \mid r_{ij}(p_{\text{mul}}) = l_{ij}, 1 \leq i < j \leq n \} \subset P_{\text{mul}},
\]

where \(l_{ij} \in \mathbb{L} \) fulfill

\[
 l_{ij} = l_{ji}, \quad 1 \leq i, j \leq n, \quad i \neq j,
\]

\[
 l_{ik} \leq l_{ij} + l_{jk}, \quad 1 \leq i, j, k \leq n, \quad i \neq j, j \neq k, k \neq i.
\]

Note that we have excluded the case in which the positions of different particles coincide.

From now on, let us consider a given rigid configuration space \(P_{\text{rig}} \).

We define the rotational space to be the subset

\[
i_{\text{rot}} : S_{\text{rot}} := \{ v_{\text{rel}} \in S_{\text{rel}} \mid \|v_i - v_j\| = l_{ij}, 1 \leq i < j \leq n \} \subset S_{\text{rel}}.
\]

A typical notation for the elements of \(S_{\text{rot}} \) will be

\[
r_{\text{rot}} = (r_1, \ldots, r_n) \in S_{\text{rot}} \subset S_{\text{rel}}.
\]

Due to the equality \(\|p_i - p_j\| = \|\pi_{\text{rel}}(p_{\text{mul}})_i - \pi_{\text{rel}}(p_{\text{mul}})_j\| = l_{ij} \), the rigid constraint does not involve the center of mass but only relative positions. Then, the restrictions of the projections \(\pi_{\text{cen}} : P_{\text{mul}} \to P_{\text{cen}} \) and \(\pi_{\text{rel}} : P_{\text{mul}} \to S_{\text{rel}} \) to the subset \(P_{\text{rig}} \subset P_{\text{mul}} \) turn out to be, respectively, projections

\[
 \pi_{\text{cen}} : P_{\text{rig}} \to P_{\text{cen}} \quad \text{and} \quad \pi_{\text{rel}} : P_{\text{rig}} \to S_{\text{rel}}.
\]

Thus, we obtain the bijection

\[
 (\pi_{\text{cen}}, \pi_{\text{rot}}) : P_{\text{rig}} \to P_{\text{cen}} \times S_{\text{rot}}.
\]

Next, we classify the rigid constraints as follows.
4.1 Geometry of the configuration space

For each $v_{rel} \in S_{rel}$, we define the vector subspace

$$\langle v_{rel} \rangle := \text{span}\{v_i - v_j \mid 1 \leq i, j \leq n\} \subset S.$$

4.1 Lemma. For each $v_{rel} \in S_{rel}$, we have $\langle v_{rel} \rangle = \text{span}\{v_i - v_h \mid h = 1, \ldots, n\}$, for any chosen $1 \leq i \leq n$. More precisely, $v_i = \sum_{h \neq i} \mu_h (v_i - v_h)$.

Proof. We have $-\mu_i v_i = \sum_{h \neq i} \mu_h v_h$ and $v_i - \mu_i v_i = \sum_{h \neq i} \mu_h v_i$, which give the result by subtraction. QED

If $r_{rot} \in S_{rot}$, then we call $\langle r_{rot} \rangle$ the characteristic space of $\langle r_{rot} \rangle$.

Let us prove that the dimension of the characteristic spaces does not depend on elements in S_{rot}, but only on S_{rot}. We need the following technical Lemma (see also [5]).

4.2 Lemma. Let $r_{rot}, r'_{rot} \in S_{rot}$. Then, there is an isometry $\phi : S \to S$ such that $\phi(r_i) = r'_i$, for each $i = 1, \ldots, n$.

Proof. Let us fix $i \in \{1, \ldots, n\}$, and set dim $\langle r_{rot} \rangle = l$. We can choose a basis of $\langle v_{rot} \rangle$ of the type $(b_h) := \{r_i - r_{ih} \mid h = 1, \ldots, l\}$. Consider the subset $(b'_h) := \{r'_i - r'_{ih} \mid h = 1, \ldots, l\}$. We can define a linear map $\phi : \langle r_{rot} \rangle \to \langle r'_{rot} \rangle$ by $\phi(b_i) = b'_i$, for each $h = 1, \ldots, l$. We have $g(\phi(b_i), \phi(b_j)) = g(b_i, b_j)$, in virtue of the equalities $\|b_h\| = \|b'_h\|$ and $\|b_{ih} - b_{ih}\| = \|b'_{ih} - b'_{ih}\|$. The map ϕ is an isometry between $\langle r_{rot} \rangle$ and $\langle r'_{rot} \rangle$, hence it can be extended to a linear isometry of S. Eventually, we have $g(\phi(r_j), \phi(b_j)) = g(r_j, b_j)$, and the rigid constraint yields $g(r_j, b_h) = g(r'_j, \phi(b_h))$. Hence, we obtain $\phi(r_j) = r'_j$, for each $j = 1, \ldots, n$. QED

Therefore, if $r_{rot}, r'_{rot} \in S_{rot}$, then dim $\langle r_{rot} \rangle = \text{dim} \langle r'_{rot} \rangle$.

We define the characteristic of P_{rig} to be the integer number $C_{P_{rig}} := \text{dim} \langle r_{rot} \rangle$, where $r_{rot} \in S_{rot}$. Obviously, we have $1 \leq C_{P_{rig}} \leq 3$, and we can classify the rigid configuration space in terms of $C_{P_{rig}}$.

We say P_{rig} to be

- strongly non degenerate if $C_{P_{rig}} = 3$,
- weakly non degenerate if $C_{P_{rig}} = 2$,
- degenerate if $C_{P_{rig}} = 1$.

Of course, if $n = 2$, then P_{rig} is degenerate; if $n = 3$, then P_{rig} can be degenerate or weakly non degenerate.

Thus, by considering all particles as assuming positions in the same space P, the above cases correspond respectively to the case when the minimal affine subspace containing all particles is a line, or a plane, or the whole P. As a consequence of the above result, the case occurring for a given rigid system does not change during the motion.

Let us denote by $O(S, g)$ the group of orthogonal transformations of S with respect to g. We want to study the topological subspace $S_{rot} \subset S_{rel}$ through the natural action of the Lie group $O(S, g)$ on S_{rot}. More precisely, we can easily prove that the map

$$O(S, g) \times S_{rot} \to S_{rot} : (\phi, r_{rot}) \mapsto (\phi(r_1), \ldots, \phi(r_n))$$
is well–defined and yields a continuous action of $O(S, g)$ on S_{rot}. Such an action of $O(S, g)$ on S_{rot} is transitive because of Lemma 4.2. Let us denote the isotropy group at r_{rot} by $H(r_{\text{rot}}) \subset O(S, g)$.

4.3 Lemma. The following facts hold:
- in the strongly non degenerate case the isotropy subgroup $H[r_{\text{rot}}]$ is the trivial subgroup $\{1\}$;
- in the weakly non degenerate case the isotropy subgroup $H[r_{\text{rot}}]$ is the discrete subgroup of reflections with respect to $\langle r_{\text{rot}} \rangle$;
- in the degenerate case the isotropy subgroup $H[r_{\text{rot}}]$ is the 1 dimensional subgroup of rotations whose axis is $\langle r_{\text{rot}} \rangle$; we stress that this subgroup is not normal. □

4.4 Proposition. The following facts hold:
- S_{rot} is strongly non degenerate if and only if the action of $O(S, g)$ on S_{rot} is free;
- S_{rot} is weakly non degenerate if and only if the action of $O(S, g)$ on S_{rot} is not free, but the action of the subgroup $SO(S, g) \subset O(S, g)$ on S_{rot} is free;
- S_{rot} is degenerate if and only if the action of $SO(S, g)$ on S_{rot} is not free. □

Of course, if $n = 2$, then S_{rot} is degenerate; if $n = 3$, then S_{rot} can be degenerate or weakly non degenerate.

Furthermore, we can prove the following result (recall the definition of affine space in Section 1.2).

4.5 Corollary. The following facts hold:
- if S_{rot} is strongly non degenerate, then S_{rot} is an affine space associated with the group $O(S, g)$;
- if S_{rot} is weakly non degenerate, then S_{rot} is an affine space associated with the group $SO(S, g)$;
- if S_{rot} is degenerate, then S_{rot} is a homogeneous space (i.e. the quotient of a Lie group with respect to a closed subgroup) with two possible distinguished diffeomorphisms (depending on a chosen orientation on the straight line of the rigid system) with the unit sphere $S^2 \subset \mathbb{R}^* \otimes S$, with respect to the metric g.

Thus, in all cases S_{rot} turns out to be a manifold (see Section 1.2 and 25). □

4.6 Corollary. In the non degenerate case, the choice of a configuration $r_{\text{rot}} \in S_{\text{rot}}$ and of a scaled orthonormal basis in $\mathbb{R}^* \otimes S$ yield the diffeomorphisms (via the action of $O(S, g)$ on S_{rot})

$$S_{\text{rot}} \simeq O(S, g) \simeq O(3), \quad \text{in the strongly non degenerate case;}$$
$$S_{\text{rot}} \simeq SO(S, g) \simeq SO(3), \quad \text{in the weakly non degenerate case.}$$

In the degenerate case, the continuous choice of an orientation on the straight lines $\langle r_{\text{rot}} \rangle \subset S$ generated by each configuration $r_{\text{rot}} \in S_{\text{rot}}$ and of a scaled orthonormal basis
in $L^* \otimes S$ yields the diffeomorphisms
\[S_{\text{rot}} \simeq S^2(L^* \otimes S, g) \simeq S^2(3), \text{ in the degenerate case.} \]

From now on, in the non-degenerate case, we shall refer only to one of the two connected components of S_{rot}, for the sake of simplicity and for physical reasons of continuity. Accordingly, we shall just refer to the non-degenerate case (without specification of strongly or weakly non-degenerate), or to the degenerate case.

4.2 Tangent space of rotational space

The rotational space S_{rot} is embedded into the environmental relative vector space S_{rel}. Hence, the tangent vectors of S_{rot} can be regarded as multi-vectors of S_{rel}, which respect the rigid constraint. Here, we show a very geometric way to describe the tangent vectors of S_{rot}, so obtaining a geometric interpretation of classical formulas of the mechanics of rigid systems.

4.2.1 Non-degenerate case

First, we recall the following well-known result (see, for instance, [25]).

4.7 Lemma. By regarding the orthogonal group as a subspace $O(S, g) \subset L(S, S)$, we can identify the Lie algebra $so(S, g)$ with the subspace $so(S, g) \subset S^* \otimes S$, consisting of the tensors which are antisymmetric with respect to g.

Proof. It is well-known that the subspace $O(S, g) \subset L(S, S)$ consists of the invertible elements $f \in L(S, S)$, which are invertible and fulfill the condition $f^{-1} = f^t$.

Hence, if $c : \mathbb{R} \to O(S, g) \subset L(S, S)$ is a curve such that $c(0) = \text{id}$, then we obtain $\text{id} = c_0 c^{-1} = c c^t$, hence $0 = D(c \circ c^t)(0) = Dc(0) + Dc^t(0)$. Thus, the vectors tangent to $O(S, g)$ at the identity consist of antisymmetric endomorphisms.

Conversely, we can prove that, for each antisymmetric endomorphism $\omega \in L(S, S)$, there is a curve $c : \mathbb{R} \to O(S, g) \subset L(S, S)$, such that $c(0) = \text{id}$ and $Dc(0) = \omega$. QED

4.8 Proposition. We have the natural parallelising linear isomorphism
\[
\tau_{\text{rot}} : TS_{\text{rot}} \rightarrow S_{\text{rot}} \times so(S, g)
\]
and the associated projection
\[
\rho_{\text{rot}} : TS_{\text{rot}} \subset S_{\text{rot}} \times S_{\text{rel}} \rightarrow so(S, g) : (r_{\text{rot}}, v_{\text{rot}}) \mapsto \omega.
\]

The expression of the inverse isomorphism τ_{rot}^{-1} is
\[
\tau_{\text{rot}}^{-1} : S_{\text{rot}} \times so(S, g) \rightarrow TS_{\text{rot}} \subset S_{\text{rot}} \times S_{\text{rel}} : (r_{\text{rot}}, \omega) \mapsto \left(r_{\text{rot}}, \left(\omega(r_1), \ldots, \omega(r_n) \right) \right).
\]

Thus, for each $(r_{\text{rot}}, v_{\text{rot}}) \in TS_{\text{rot}} \subset S_{\text{rot}} \times S_{\text{rel}}$, there is a unique $\omega \in so(S, g)$, such that $v_i = \omega(r_i)$, for $1 \leq i \leq n$.

isomorphism” (Corollary 4.24). Hence, the tangent map
\[Dc \]
so
algebraic re–interpretation of \(c \omega \):\(V \) (4.12)
\[\tau \]
yields the isomorphisms
\[30 \]
4 Rigid systems
\[\tau \] (4.13)
and the associated projection
We can read the parallelisation \(\tau \) , via the “inertia
isomorphism” (Corollary 4.24).

Later, we shall give an explicit expression of the parallelisation \(\tau \) , via means of an
algebraic re–interpretation of \(so(S, g) \).

For this purpose, we recall the cross products \(\times \) of \(S \) and of \(S^* \), defined by
\[u \times v := *(v \wedge w) := g^b(i(u \wedge v) \eta) = i(g^b(u) \wedge g^b(v)) \eta, \quad \forall u, v \in S, \]
\[\alpha \times \beta := *(\alpha \wedge \beta) := g^b(i(\alpha \wedge \beta) \eta) = i(g^b(\alpha) \wedge g^b(\beta)) \eta, \quad \forall \alpha, \beta \in S^*. \]
The cross product commutes with the metric isomorphisms, i.e. we have
\[g(u \times v) = g^b(u) \times g^b(v) \quad \text{and} \quad g^b(\alpha \times \beta) = g^b(\alpha) \times g^b(\beta). \]
For short, we set
\[u \times_{\text{mul}} v_{\text{mul}} := (u \times v_1, \ldots, u \times v_n), \quad \forall u \in S, \quad \forall v_{\text{mul}} \in S_{\text{mul}}, \]
\[\alpha \times_{\text{mul}} \beta_{\text{mul}} := (\alpha \times \beta_1, \ldots, \alpha \times \beta_n), \quad \forall \alpha \in S^*, \quad \forall \beta_{\text{mul}} \in S^*_{\text{mul}}. \]
Moreover, we introduce the scaled vector space
\[V_{\text{ang}} := \mathbb{L}^{-1} \otimes S. \]

4.9 Lemma. The metric isomorphism \(g^b : S^* \otimes S \rightarrow \mathbb{L}^2 \otimes S^* \otimes S^* : \alpha \otimes v \mapsto \alpha \otimes g(v, \cdot) \) and the Hodge isomorphism \(* : \mathbb{L}^2 \otimes \Lambda^2 S^* \rightarrow \mathbb{L}^{-1} \otimes S : \omega \mapsto i(\omega) \eta \) yield the linear
isomorphism
\[* \circ g^b : so(S, g) \rightarrow V_{\text{ang}} : \omega \mapsto i(g^b(\omega)) \eta. \Box \]

4.10 Corollary. We have the natural parallelising isomorphism
\[\tau_{\text{ang}} := * \circ g^b \circ \tau : T_{\text{rot}} \rightarrow S_{\text{rot}} \times V_{\text{ang}} \]
and the associated projection
\[\rho_{\text{ang}} : T_{\text{rot}} \subset S_{\text{rot}} \times S_{\text{rel}} \rightarrow V_{\text{ang}} : (r_{\text{rot}}, \nu_{\text{rot}}) \mapsto \Omega. \]
The expression of the inverse isomorphism τ_{ang}^{-1} is

$$\tau_{\text{ang}}^{-1} : S_{\text{rot}} \times V_{\text{ang}} \to TS_{\text{rot}} \subset S_{\text{rot}} \times S_{\text{rel}} : (r_{\text{rot}}, \Omega) \mapsto \left(r_{\text{rot}}, (\Omega \times r_1, \ldots, \Omega \times r_n)\right).$$

Thus, for each $(r_{\text{rot}}, v_{\text{rot}}) \in TS_{\text{rot}} \subset S_{\text{rot}} \times S_{\text{rel}}$, there is a unique $\Omega \in V_{\text{ang}}$, such that $v_i = \Omega \times r_i$, for $1 \leq i \leq n$.

Proof. It follows from Proposition 4.8 and the Lemma 4.9. QED

Later, we shall give an explicit expression of the parallelisation τ_{ang}, via the “inertia isomorphism” (Theorem 4.22).

The above Corollary 4.10 is just a geometric formulation of the well–known formula expressing the relative velocity of the particles of a rigid system through the angular velocity.

4.11 Corollary. The transpose $(\tau_{\text{ang}}^{-1})^*$ of the isomorphism τ_{ang}^{-1} has the expression

$$\left(\tau_{\text{ang}}^{-1}\right)^* : T^*S_{\text{rot}} \to S_{\text{rot}} \times V_{\text{ang}} : (r_{\text{rot}}, \alpha) \mapsto \left(r_{\text{rot}}, \sum_i g^i(r_i) \times \alpha_i\right).$$

Proof. The expression of τ_{ang}^{-1} and cyclic permutations yield

$$\left(\tau_{\text{ang}}^{-1}\right)^*(r_{\text{rot}}, \alpha)(\Omega) :=$$

$$= \alpha(\tau_{\text{ang}}(r_{\text{rot}}, \Omega)) = \alpha(\Omega \times_{\text{mul}} r_{\text{rot}}) = \sum_i \alpha_i(\Omega \times r_i) = \sum_i g^i(\alpha_i)(\Omega \times r_i)$$

$$= \sum_i g(r_i, (g_i^*(\alpha_i) \times \Omega)) = \sum_i g(\Omega, (r_i \times g_i^*(\alpha_i))) = \sum_i ((g_i^*(r_i) \times \alpha_i)(\Omega).$$

The cross product \times is equivariant with respect to the action of $SO(S, g)$. Hence, the isomorphism τ_{ang} turns out to be equivariant with respect to this group.

4.2.2 Degenerate case

Let us consider the quotient vector bundle $[S_{\text{rot}} \times so(S, g)]$ over S_{rot} of the vector bundle $S_{\text{rot}} \times so(S, g)$, with respect to the vector subbundle $h[S_{\text{rot}}]$ consisting, for each $r_{\text{rot}} \in S_{\text{rot}}$, of the isotropy Lie subalgebra $h[r_{\text{rot}}] \subset so(S, g)$ of $\langle r_{\text{rot}} \rangle \subset S$ (see, for instance, [25]).

Now, let us refer to the degenerate case. We can rephrase the results concerning the non degenerate case by a quotient procedure. In particular, we have the following results.

For each $r_{\text{rot}} \in S_{\text{rot}}$, the isotropy Lie subalgebra associated with r_{rot} consists of antisymmetric endomorphisms $\phi \in S^* \otimes S$ which preserve the 1–dimensional vector subspace $\langle r_{\text{rot}} \rangle \subset S$ generated by r_{rot}.
4.12 Lemma. We have the natural linear fibred isomorphism

$$[\tau_{\text{rot}}] : T\, S_{\text{rot}} \to [S_{\text{rot}} \times \text{so}(S, g)].$$

Proof. It follows from a well-known result on homogeneous spaces (see, for instance, [25]). QED

Let us consider the quotient vector bundle $[S_{\text{rot}} \times V_{\text{ang}}]$ over S_{rot} of the vector bundle $S_{\text{rot}} \times V_{\text{ang}}$ with respect to the vector subbundle $a[S_{\text{rot}}]$ consisting, for each $r_{\text{rot}} \in S_{\text{rot}}$, by the 1-dimensional vector subspace $\langle r_{\text{rot}} \rangle \subset V_{\text{ang}}$ generated by r_{rot}.

4.13 Proposition. We have the linear fibred isomorphism

$$[\tau_{\text{ang}}] : T\, S_{\text{rot}} \to [S_{\text{rot}} \times V_{\text{ang}}].$$

The expression of the inverse isomorphism $[\tau_{\text{ang}}^{-1}]$ is

$$[\tau_{\text{ang}}^{-1}] : [S_{\text{rot}} \times V_{\text{ang}}] \to TS_{\text{rot}} \subseteq S_{\text{rot}} \times S_{\text{mul}} :$$

$$(r_{\text{rot}}, [r_{\text{rot}}, \Omega]) \mapsto (r_{\text{rot}}, (\Omega \times r_1, \ldots, \Omega \times r_n)),$$

where the cross products $\Omega \times r_i$ turn out to be independent of the choice of representative for the class $[r_{\text{rot}}, \Omega]$.

Thus, for each $(r_{\text{rot}}, v_{\text{rot}}) \in TS_{\text{rot}} \subseteq S_{\text{rot}} \times S_{\text{rel}}$, there is a unique $[r_{\text{rot}}, \Omega] \in [S_{\text{rot}} \times V_{\text{ang}}]_{r_{\text{rot}}}$, such that $v_i = \Omega \times r_i$, for $1 \leq i \leq n$. □

4.14 Proposition. A continuous choice of an orientation of the straight lines $\langle r_{\text{rot}} \rangle \subset S$ generated by the configurations $r_{\text{rot}} \in S_{\text{rot}}$ yields the linear isomorphism

$$TS_{\text{rot}} \simeq TS^2(\mathbb{L}^* \otimes S, g).$$

4.3 Rigid system metrics

The multi-dynamical metric of S_{mul} induces a metric on S_{rot}, which can be regarded also in another useful way through the isomorphism τ_{ang}, and will be interpreted as the inertia tensor.

Moreover, the standard pattern metric of V_{ang} induces a further metric on S_{rot}.

4.15 Proposition. The inclusion $i_{\text{rig}} : P_{\text{rig}} \hookrightarrow P_{\text{mul}}$ yields the geometrical and weighted scaled Riemannian metrics

$$g_{\text{rig}} := i_{\text{rig}}^* g_{\text{mul}} : P_{\text{rig}} \to \mathbb{L}^2 \otimes (T^* P_{\text{rig}} \otimes T^* P_{\text{rig}}),$$

$$G_{\text{rig}} := i_{\text{rig}}^* G_{\text{mul}} : P_{\text{rig}} \to \mathbb{L}^2 \otimes (T^* P_{\text{rig}} \otimes T^* P_{\text{rig}}).$$

The splitting $P_{\text{rig}} = P_{\text{dia}} \oplus S_{\text{rot}}$ is orthogonal with respect to the metric G_{rig}.

Proof. The splitting $P_{\text{mul}} = P_{\text{dia}} \oplus S_{\text{rel}}$ is orthogonal with respect to the metric G_{mul} and we have $P_{\text{rig}} = P_{\text{dia}} \oplus S_{\text{rot}}$, with $S_{\text{rot}} \subset S_{\text{rel}}$. QED
4.16 Proposition. The inclusion \(i_{\text{rot}} : S_{\text{rot}} \hookrightarrow S_{\text{rel}} \) yields the geometrical and weighted scaled Riemannian metrics

\[
g_{\text{rot}} := i_{\text{rot}^*} g_{\text{rel}} : S_{\text{rot}} \to \mathbb{L}^2 \otimes (T^*S_{\text{rot}} \otimes T^*S_{\text{rot}}),
\]

\[
G_{\text{rot}} := i_{\text{rot}^*} G_{\text{rel}} : S_{\text{rot}} \to \mathbb{L}^2 \otimes (T^*S_{\text{rot}} \otimes T^*S_{\text{rot}}).
\]

For each \((\Omega \times_{\text{mul}} r_{\text{rot}}), (\Omega' \times_{\text{mul}} r_{\text{rot}}) \in T_{\text{rot}} S_{\text{rot}} \subset S_{\text{rel}}\), we have the expressions

\[
g_{\text{rot}}(r_{\text{rot}})(\Omega \times_{\text{mul}} r_{\text{rot}}, \Omega' \times_{\text{mul}} r_{\text{rot}}) = \sum_i \left(g(r_i, r_i) g(\Omega, \Omega') - g(r_i, \Omega) g(r_i, \Omega') \right),
\]

\[
G_{\text{rot}}(r_{\text{rot}})(\Omega \times_{\text{mul}} r_{\text{rot}}, \Omega' \times_{\text{mul}} r_{\text{rot}}) = \sum_i \mu_i \left(g(r_i, r_i) g(\Omega, \Omega') - g(r_i, \Omega) g(r_i, \Omega') \right).
\]

Proof. In virtue of standard properties of the cross product, we obtain

\[
g_{\text{rot}}(r_{\text{rot}})(\Omega \times_{\text{mul}} r_{\text{rot}}, \Omega' \times_{\text{mul}} r_{\text{rot}}) := \sum_i g(\Omega \times r_i, \Omega' \times r_i) = \sum_i g((\Omega' \times r_i) \times \Omega, r_i)
\]

\[
= \sum_i \left(g(r_i, r_i) g(\Omega, \Omega') - g(r_i, \Omega) g(r_i, \Omega') \right),
\]

\[
G_{\text{rot}}(r_{\text{rot}})(\Omega \times_{\text{mul}} r_{\text{rot}}, \Omega' \times_{\text{mul}} r_{\text{rot}}) := \sum_i \mu_i g(\Omega \times r_i, \Omega' \times r_i) = \sum_i \mu_i g((\Omega' \times r_i) \times \Omega, r_i)
\]

\[
= \sum_i \mu_i \left(g(r_i, r_i) g(\Omega, \Omega') - g(r_i, \Omega) g(r_i, \Omega') \right). \quad \square
\]

We can regard the metrics \(g_{\text{rot}} \) and \(G_{\text{rot}} \) in another interesting way, via \(\tau_{\text{ang}} \).

4.17 Corollary. In the non degenerate case, the isomorphism \(\tau_{\text{ang}} \) allows us to read \(g_{\text{rot}} \) and \(G_{\text{rot}} \) as the scaled metrics

\[
\sigma := (\tau_{\text{ang}}^{-1})^* g_{\text{rot}} : S_{\text{rot}} \to \mathbb{L}^2 \otimes (V_{\text{ang}}^* \otimes V_{\text{ang}}^*),
\]

\[
\Sigma := (\tau_{\text{ang}}^{-1})^* G_{\text{rot}} : S_{\text{rot}} \to \mathbb{L}^2 \otimes (V_{\text{ang}}^* \otimes V_{\text{ang}}^*),
\]

with expressions

\[
\sigma(r_{\text{rot}})(\Omega, \Omega') = \sum_i \left(g(r_i, r_i) g(\Omega, \Omega') - g(r_i, \Omega) g(r_i, \Omega') \right),
\]

\[
\Sigma(r_{\text{rot}})(\Omega, \Omega') = \sum_i \mu_i \left(g(r_i, r_i) g(\Omega, \Omega') - g(r_i, \Omega) g(r_i, \Omega') \right). \quad \square
\]

We have a further natural metric of \(S_{\text{rot}} \). For this purpose, let us consider the metric \(g \in V_{\text{ang}}^* \otimes V_{\text{ang}}^* \) of \(V_{\text{ang}} \) naturally induced by the pattern metric \(g \) of \(S \). We can make the natural identification \(O(V_{\text{ang}}, g) \simeq O(S, g) \).

4.18 Proposition. In the non degenerate case, we obtain the unscaled Riemannian metric

\[
g_{\text{ang}} := \tau_{\text{ang}}^* g : S_{\text{rot}} \to T^*S_{\text{rot}} \otimes T^*S_{\text{rot}}.
\]
For each \((r_{\text{rot}}, \Omega \times_{\text{mul}} r_{\text{rot}}), (r_{\text{rot}}, \Omega' \times_{\text{mul}} r_{\text{rot}}) \in TS_{\text{rot}} \subset S_{\text{rot}} \times S_{\text{rel}}\), we have the expression

\[g_{\text{ang}}(r_{\text{rot}})(\Omega \times_{\text{mul}} r_{\text{rot}}, \Omega' \times_{\text{mul}} r_{\text{rot}}) = g(\Omega, \Omega') . \]

All metrics of \(S_{\text{rot}}\) considered above are invariant with respect to the left action of \(O(S, g)\).

4.19 Proposition. In the non degenerate case, the choice of a configuration \(r_{\text{rot}} \in S_{\text{rot}}\) and of an orthonormal basis in \(V_{\text{ang}}\), respectively, yields the following diffeomorphisms (via the action of \(SO(V_{\text{ang}}, g)\) on \(S_{\text{rot}}\))

\[S_{\text{rot}} \simeq SO(V_{\text{ang}}, g) \simeq SO(3) , \]

which turn out to be isometries with respect to the Riemannian metrics \(g_{\text{ang}}\), \(-\frac{1}{2} k_{\text{ang}}\) and \(-\frac{1}{2} k_3\) of \(S_{\text{rot}}, V_{\text{ang}}\) and \(SO(3)\), where \(k_{\text{ang}}\) and \(k_3\) are the Killing forms.

Proof. The above diffeomorphisms yield the linear fibred isomorphisms

\[T_{r_{\text{rot}}}S_{\text{rot}} \simeq so(V_{\text{ang}}, g) \simeq so(3) . \]

On the other hand, the natural isomorphism \(so(V_{\text{ang}}, g) \to V_{\text{ang}}\), induced by \(g^\#\) and \(\ast\), is metric. Hence, in virtue of the definition of \(g_{\text{ang}}\), the isomorphism \(T_{r_{\text{rot}}}S_{\text{rot}} \simeq so(V_{\text{ang}}, g)\) turns out to be metric.

Moreover, the metric \(g\) of \(V_{\text{ang}}\) turns out to coincide with the metric \(-\frac{1}{2} k_{\text{ang}}\) of \(so(V_{\text{ang}}, g)\). In fact, we have \(g(\omega, \omega') = -\frac{1}{2} \text{tr} \left(((\Omega \times) \circ (\Omega' \times)) \right)\). It is easy to see that the isomorphism \(so(V_{\text{ang}}, g) \simeq so(3)\) is metric. QED

We leave to the reader the task to extend the above results to the degenerate case.

4.3.1 Angular automorphisms

4.20 Proposition. The unscaled metric \(g\) of \(V_{\text{ang}}\) allows us to regard the metrics \(\sigma\) and \(\Sigma\) as scaled symmetric fibred endomorphisms

\[
\hat{\sigma} := g^\# \circ \sigma^\flat : S_{\text{rot}} \to \mathbb{L}^2 \otimes (V_{\text{ang}}^* \otimes V_{\text{ang}}), \quad \\
\hat{\Sigma} := g^\# \circ \Sigma^\flat : S_{\text{rot}} \to \mathbb{L}^2 \otimes (V_{\text{ang}}^* \otimes V_{\text{ang}}).
\]

We have the expressions

\[
\hat{\sigma}(r_{\text{rot}})(\Omega) = \sum_i r_i \times (\Omega \times r_i) = \sum_i \left(g(r_i, r_i) \Omega - g(r_i, \Omega) r_i\right), \\
\hat{\Sigma}(r_{\text{rot}})(\Omega) = \sum_i \mu_i r_i \times (\Omega \times r_i) = \sum_i \mu_i \left(g(r_i, r_i) \Omega - g(r_i, \Omega) r_i\right).
\]

In the non degenerate case, the above maps are automorphisms.

Proof. It follows immediately from Corollary 4.17. QED
4.3 Rigid system metrics

4.21 Lemma. In the non degenerate case, we have

\[\dot{\sigma}^{-1} = \sigma^* \circ g^b \quad \text{and} \quad \dot{\Sigma}^{-1} = \Sigma^* \circ g^b, \]

\[(\dot{\sigma}^{-1})^* = g^b \circ \sigma^* \quad \text{and} \quad (\dot{\Sigma}^{-1})^* = g^b \circ \Sigma^*. \]

Proof. We have \(\dot{\sigma}^{-1} := (g^b \circ \sigma^*)^{-1} = (\sigma^b)^{-1} \circ (g^b)^{-1} = \sigma^* \circ g^b. \)
Moreover, the symmetry of \(g \) and \(\sigma \) give \((\dot{\sigma}^{-1})^* = (\sigma^b)^* \circ (g^b)^* = g^b \circ \sigma^*. \)
Analogous proof holds for \(\Sigma \). QED

The automorphisms \(\dot{\sigma} \) and \(\dot{\Sigma} \) yield the following explicit expressions of the map \(\tau_{\text{ang}} \).

4.22 Theorem. In the non degenerate case, the isomorphism \(\tau_{\text{ang}} \) has the expression

\[\tau_{\text{ang}} : TS_{\text{rot}} \subset S_{\text{rot}} \times S_{\text{rel}} \rightarrow S_{\text{rot}} \times V_{\text{ang}} : (r_{\text{rot}}, v_{\text{rot}}) \mapsto (r_{\text{rot}}, \Omega), \]

where

\[\Omega = \dot{\sigma}^{-1}(r_{\text{rot}})(\sum_i r_i \times v_i) = \dot{\Sigma}^{-1}(r_{\text{rot}})(\sum \mu_i r_i \times v_i). \]

Proof. Let \(r_{\text{rot}} \in S_{\text{rot}}, \ v_{\text{rot}} \equiv (v_1, \ldots, v_n) \in T_{r_{\text{rot}}}S_{\text{rot}} \subset S_{\text{rel}} \) and set \(\Omega := \rho_{\text{ang}}(r_{\text{rot}}, v_{\text{rot}}) \in V_{\text{ang}} \).

The definitions of \(\sigma \) and of \(g_{\text{rot}} \) yield, respectively, the following equalities, for each \(\Omega' \in V_{\text{ang}}, \)

\[g_{\text{rot}}(r_{\text{rot}})(v_{\text{rot}}, \Omega' \times_{\text{mul}} r_{\text{rot}}) := \sigma(r_{\text{rot}})(\Omega, \Omega') \]

\[g_{\text{rot}}(r_{\text{rot}})(v_{\text{rot}}, \Omega' \times_{\text{mul}} r_{\text{rot}}) := \sum_i g(v_i, \Omega' \times r_i) = g(\sum_i r_i \times v_i, \Omega'). \]

Then, by comparison of the above equalities, we obtain \(\sigma_{\text{rot}}(r_{\text{rot}})(\Omega) = g^b(\sum_i r_i \times v_i), \) hence \(\dot{\sigma}(r_{\text{rot}})(\Omega) := (g^b \circ \sigma_{\text{rot}})(r_{\text{rot}})(\Omega) = \sum_i r_i \times v_i, \) which yields \(\Omega = \dot{\sigma}^{-1}(r_{\text{rot}})(\sum_i r_i \times v_i). \)

We can prove the 2nd expression of \(\Omega \) in analogous way, by replacing \(g_{\text{rot}} \) with \(G_{\text{rot}} \). QED

In the classical literature, \(\Omega \) is computed by means of the Poisson’s formulas, in terms of a basis. The above Theorem provides an intrinsic expression of \(\Omega \), which plays an essential role in next sections.

4.23 Note. The map \(\tau_{\text{ang}} \) is a geometric object, which has nothing to do with masses and weights, because the rigid constraint does not involve the masses. Accordingly, the 1st formula in the above Theorem is natural, while the 2nd one sounds quite strange. Indeed, the 2nd formula is true for any arbitrary choice of the weights. We have added the 2nd formula for the sake of completeness. Actually, in the 2nd formula, the weights appear both in the expressions of the sum and of \(\Sigma \); eventually, the contribution of the weights disappear.

In order to help understanding this situation, we prove directly that the 1st formula implies the 2nd one.

Let \(r_{\text{rot}} \in S_{\text{rot}}, \ v_{\text{rot}} \in T_{r_{\text{rot}}}S_{\text{rot}} \subset S_{\text{rel}} \) and set \(\Omega := \rho_{\text{ang}}(r_{\text{rot}}, v_{\text{rot}}) \in V_{\text{ang}}. \)
Then, the definition of $\hat{\Sigma}$ and the 1st expression of ρ_{ang} imply

$$\hat{\Sigma}(r_{\text{rot}})(\Omega) = \sum_i \mu_i r_i \times (\Omega \times r_i) = \sum_i \mu_i r_i \times \left((\hat{\sigma}_{\text{rot}}^{-1}(r_{\text{rot}})(\sum_i r_i \times v_i)) \times r_i \right).$$

On the other hand, in virtue of the definition of ρ_{ang} and of its 1st expression, we have

$$\left(\hat{\sigma}_{\text{rot}}^{-1}(r_{\text{rot}})(\sum_i r_i \times v_i) \right) \times r_i = v_i.$$

Hence, we obtain $\hat{\Sigma}(r_{\text{rot}})(\Omega) = \sum_i \mu_i r_i \times v_i$, which yields $\Omega = \hat{\Sigma}_{\text{rot}}^{-1}(\sum_i \mu_i r_i \times v_i).

\textbf{4.24 Corollary.} In the non degenerate case, the isomorphism τ_{rot} has the equivalent expression

$$\tau_{\text{rot}} : TS_{\text{rot}} \subset S_{\text{rot}} \times S_{\text{rel}} \rightarrow S_{\text{rot}} \times (S^* \otimes S) : (r_{\text{rot}}, v_{\text{rot}}) \mapsto \left(r_{\text{rot}}, g^{\sharp}(i(\Omega)\eta) \right),$$

where

$$\Omega = \hat{\sigma}_{\text{rot}}^{-1}(r_{\text{rot}})(\sum_i r_i \times v_i) = \hat{\Sigma}_{\text{rot}}^{-1}(r_{\text{rot}})(\sum_i \mu_i r_i \times v_i).$$

\textbf{Proof.} It follows from Proposition \[122\] and from the composition of algebraic isomorphisms

$$V_{\text{ang}} = L^{-1} \otimes S \xrightarrow{i(\eta)} L^2 \otimes \Lambda^2 S^* \xrightarrow{g^{\sharp}} S^* \otimes S. \text{QED}$$

\textbf{4.25 Proposition.} The eigenvalues of $\hat{\Sigma}$ turn out to be constant with respect to S_{rot}, in virtue of the invariance of Σ with respect to $SO(S, g)$.

In the non degenerate case, we have three eigenvalues. Then, three cases may occur:

- $\lambda := \lambda_1 = \lambda_2 = \lambda_3$, \hspace{0.5cm} spherical case,
- $\lambda := \lambda_1 = \lambda_2 \neq \lambda_3$, \hspace{0.5cm} symmetric case,
- $\lambda_1 \neq \lambda_2 \neq \lambda_3 \neq \lambda_1$, \hspace{0.5cm} asymmetric case.

In the degenerate case, we have two coinciding eigenvalues

$$\lambda := \lambda_1 = \lambda_2 = \sum_i \mu_i g(r_i, r_i).$$

Analogous results hold for $\hat{\sigma}$.

We have studied the diagonalisation of Σ with respect to g. In an analogous way, we can diagonalise G_{rot} with respect to G_{ang}. Indeed, in this way we obtain the same eigenvalues and the same classification, because the two diagonalisations are related by the isomorphism τ_{ang}.

The scaled metric $m_0 \Sigma$, or the scaled automorphism $m_0 \hat{\Sigma}$, are called the \textit{inertia}
4.3 Rigid system metrics

tensor and the scaled eigenvalues $I_i = m_0 \lambda_i : S_{rot} \rightarrow (\mathbb{L}^2 \otimes \mathbb{M}) \otimes \mathbb{R}$ of the inertia tensor are called principal inertia momenta.

4.3.2 Continuous interpretation

We can interpret the above results concerning the parallelisation of S_{rot} also in terms of continuous transformations. Here, in order to keep the thread of our reasoning, we adopt a purely geometric approach which does not involve time, but this section can be easily rephrased in a true kinematical way, by replacing \mathbb{R} with \mathbb{T}, or $\mathbb{T} \otimes \mathbb{R}$, as appropriate.

We define a continuous transformation as a map

$$C : \mathbb{R} \times (\mathbb{R} \times \mathbb{P}) \rightarrow \mathbb{P},$$

such that, for each $\tau, \tau', t \in \mathbb{R}$, $p \in \mathbb{P}$,

$$C(0, t, p) = p \quad \text{and} \quad C(\tau', t + \tau, C(\tau, t, p)) = C(\tau + \tau', t, p).$$

A continuous transformation is said to be rigid if, for each $\tau, t \in \mathbb{R}$, $p, q \in \mathbb{P}$,

$$\|C(\tau, t, q) - C(\tau, t, p)\| = \|q - p\|.$$

We can prove that a continuous transformation C is rigid if and only if its expression is of the type

$$C(\tau, t, p) = c(t) + \Phi(\tau, t)(p - o), \quad \forall \tau, t \in \mathbb{R}, p \in \mathbb{P},$$

where $o \in \mathbb{P}$, $c : \mathbb{R} \rightarrow \mathbb{P}$ and $\Phi : \mathbb{R} \times \mathbb{R} \rightarrow SO(S, g)$.

Let us suppose that C be rigid. The partial derivative of Φ with respect to time, at $\tau = 0$, turns out to be an antisymmetric endomorphism

$$\delta\Phi : \mathbb{R} \rightarrow so(S, g) \subset S^* \otimes S.$$

Hence, the velocity of the continuous transformation $\nu : \mathbb{T} \times \mathbb{P} \rightarrow \mathbb{S}$ is given by

$$\nu(t, p) = Dc(t) + \delta\Phi(t)(p - o), \quad \forall t \in \mathbb{T}, p \in \mathbb{P}.$$

On the other hand, we obtain the map

$$\Omega := (\ast \circ g^\flat)(\delta\Phi) : \mathbb{R} \rightarrow \mathbb{L}^* \otimes S,$$

via the metric isomorphism $g^\flat : \mathbb{S} \rightarrow S^*$ and the Hodge isomorphism $\ast : \Lambda^2 S^* \rightarrow \mathbb{L}^* \otimes S$.

Therefore, we can express the velocity of the continuous transformation by the classical formula

$$\nu(t, p) = Dc(t) + \Omega(t) \times (p - o), \quad \forall t \in \mathbb{R}, p \in \mathbb{P}.$$
4.26 Note. Let $P_{\text{rig}} \subset P_1 \times \ldots \times P_n$ be a non degenerate rigid configuration space and $s_{\text{rig}} : \mathbb{R} \to P_{\text{rig}}$ be a map.

Then, there is a unique continuous rigid transformation such that the particles of the continuous transformation, which coincide with the particles of the discrete rigid system at a certain time, move as the particles of the discrete rigid system.

In other words, there is a unique rigid continuous transformation

$$C : \mathbb{R} \times (\mathbb{R} \times P) \to P,$$

such that, for each $p = (p_1, \ldots, p_n) \in P_{\text{rig}},$

$$C(\tau, t, p_i) = s_i(t + \tau), \quad \forall \tau, t \in \mathbb{R}.$$

Then, for each $p = (p_1, \ldots, p_n) \in P_{\text{rig}}$ and $t \in \mathbb{R},$ we have

$$v(t, p_i) = ds_i(t) = ds_{\text{cen}}(t) + \Omega(t) \times r_i.$$

Indeed, the rotational components of the velocity of the continuous and discrete rigid maps coincide. □

4.4 Splitting of the tangent and cotangent multi–space

Next, we study the relation between the tangent and cotangent spaces of the rigid configuration space and the tangent and cotangent spaces of the environmental space. Namely, we exhibit a natural orthogonal splitting of the environmental tangent and cotangent spaces into three components: the component of the center of mass, the angular component and the component orthogonal to the rigid configuration space. This splitting will have a fundamental role in mechanics of rigid systems.

4.4.1 Splitting of the tangent multi–space

Let us consider the space $TP_{\text{mul}}|_{P_{\text{rig}}} = P_{\text{rig}} \times S_{\text{rel}}.$

4.27 Theorem. We have the orthogonal splitting, with respect to G_{mul}

$$TP_{\text{mul}}|_{P_{\text{rig}}} = TP_{\text{rig}} \oplus T_{\text{rig}}^\perp = (TP_{\text{cen}} \times TS_{\text{rot}}) \oplus T_{\text{rig}}^\perp,$$

where T_{rig}^\perp is the orthogonal complement of TP_{rig} in $TP_{\text{mul}}|_{P_{\text{rig}}}$.

The subspace T_{rig}^\perp is characterised by the following equality

$$T_{\text{rig}}^\perp = \{ (p_{\text{rig}}, v_{\text{mul}}) \in P_{\text{rig}} \times S_{\text{mul}} \mid \sum_i \mu_i v_i = 0, \sum_i \mu_i r_i \times v_i = 0 \} \subset TP_{\text{mul}}|_{P_{\text{rig}}}.$$
Moreover, the expressions of the projections associated with the splitting are

\[Tπ_{cen} : TP_{mul}|P_{rig} \to TP_{cen} : (p_{rig}, v_{mul}) \mapsto (p_{cen}, v_{cen}), \]
\[Tπ_{rot} : TP_{mul}|P_{rig} \to TS_{rot} : (p_{rig}, v_{mul}) \mapsto (r_{rot}, Ω ×_{mul} r_{rot}), \]
\[π_{rig} : TP_{mul}|P_{rig} \to T^⊥P_{rig} : (p_{rig}, v_{mul}) \mapsto (p_{rig}, v_{mul} - v_{dia} - Ω ×_{mul} r_{rot}), \]

where

\[
p_{cen} = o + \sum \mu_i (p_i - o), \quad p_{dia} := (p_{cen}, \ldots, p_{cen}), \quad r_{rot} = p_{rig} - p_{dia},
\]
\[
v_{cen} = \sum \mu_i v_i, \quad v_{dia} := (v_{cen}, \ldots, v_{cen}), \quad v_{rot} = v_{mul} - v_{dia},
\]
\[
Ω := \hat{Σ}^{-1}(r_{rot})\left(\sum \mu_i r_i × v_i\right).
\]

Proof. The expression of the 1st projection is obvious.

Let us prove the expression of the 2nd projection. For each \(r_{rot} ∈ S_{rot}, v_{rel} ∈ S_{rel} \) and \(Ω' ∈ V_{ang} \), in virtue of the definitions of \(Σ \) and of \(G_{rel} \), and by a cyclic permutation, we obtain the equalities

\[
G_{rel}(v_{rel}, Ω' ×_{mul} r_{rot}) = G_{rel}(Tπ_{rot}(r_{rot}, v_{rel}), Ω' ×_{mul} r_{rot}) = G_{rel}(Ω ×_{mul} r_{rot}, Ω' ×_{mul} r_{rot})
\]
\[
= Σ(r_{rot}) (Ω, Ω').
\]

\[
G_{rel}(v_{rel}, Ω' ×_{mul} r_{rot}) = \sum \mu_i g(v_i, Ω' × r_i) = g(Ω', \sum \mu_i r_i × v_i) = g(\sum \mu_i r_i × v_i, Ω').
\]

A comparison of the above equalities yields \(Σ^h(r_{rot}) (Ω) = g^h(\sum \mu_i r_i × v_i) \), hence

\[
Ω = (Σ^h(r_{rot}) \circ g^h)(\sum \mu_i r_i × v_i) = \hat{Σ}^{-1}(r_{rot})(\sum \mu_i r_i × v_i).
\]

Then, the characterization of \(T^⊥P_{rig} \) is easily obtained by considering the multivectors whose previous projections vanish and by recalling that \(τ_{ang} \) and \(\hat{Σ} \) are isomorphisms.

Eventually, the 3rd projection is obtained by subtracting the previous projections. QED

We observe that the expression of \(Tπ_{rot} \) is similar to the 2nd formula of Proposition 4.22. However, we stress that the multivector \(v_{mul} \) in the above Theorem needs not to be tangent to \(S_{rot} \) and its projection on \(S_{rot} \) involves the weights. In the particular case when the multivector \(v_{mul} \) is tangent to \(S_{rot} \), the expression of \(Tπ_{rot} \) reduces to the 2nd formula of Proposition 4.22.

4.4.2 Splitting of the cotangent space

Let us consider the space \(T^*P_{mul}|P_{rig} := P_{rig} × S_{rel}^* \).

4.28 Theorem. We have the orthogonal splitting, with respect to \(G_{mul} \)

\[
T^*P_{mul}|P_{rig} = T^*S_{rig} \oplus T^*P_{rig} = (T^*P_{cen} × T^*S_{rot}) \oplus T^*P_{rig},
\]
where \(T^*_\perp P_{\text{rig}} \) is the orthogonal complement of \(T^* P_{\text{rig}} \) in \(T^* P_{\text{mul}}|_{P_{\text{rig}}} \) (i.e., the space of annihilators of \(TP_{\text{rig}} \)).

The subspace \(T^*_\perp P_{\text{rig}} \) is characterised by the following equality

\[
T^*_\perp P_{\text{rig}} = \{ (p_{\text{rig}}, \alpha_{\text{mul}}) \in P_{\text{rig}} \times S^*_{\text{mul}} \mid \sum_i \alpha_i = 0, \sum_i g^h(v_i) \times \alpha_i = 0 \} \subset T^* P_{\text{mul}}|_{P_{\text{rig}}}.
\]

Moreover, the expressions of the projections associated with the splitting are

\[
\begin{align*}
T^* \pi_{\text{cen}} & : T^* P_{\text{mul}}|_{P_{\text{rig}}} \to T^* P_{\text{cen}} : (p_{\text{rig}}, \alpha_{\text{mul}}) \mapsto (p_{\text{cen}}, \alpha_{\text{cen}}) \\
T^* \pi_{\text{rot}} & : T^* P_{\text{mul}}|_{P_{\text{rig}}} \to T^* S_{\text{rot}} : (p_{\text{rig}}, \alpha_{\text{mul}}) \mapsto (r_{\text{rot}}, \alpha_{\text{rot}}) \\
\pi_{\perp} & : T^* P_{\text{mul}}|_{P_{\text{rig}}} \to T^*_\perp P_{\text{rig}} : (p_{\text{rig}}, \alpha_{\text{mul}}) \mapsto (r_{\text{rot}}, \alpha_{\text{mul}} - \alpha_{\text{dia}} - \alpha_{\text{rot}}),
\end{align*}
\]

where

\[
\begin{align*}
p_{\text{cen}} &= o + \sum_i \mu_i (p_i - o), \quad p_{\text{dia}} := (p_{\text{cen}}, \ldots, p_{\text{cen}}), \quad r_{\text{rot}} = p_{\text{rig}} - p_{\text{dia}}, \\
\alpha_{\text{cen}} &= \sum_i \alpha_i, \quad \alpha_{\text{dia}} = (\mu_1 \alpha_{\text{cen}}, \ldots, \mu_n \alpha_{\text{cen}}), \\
\alpha_{\text{rot}} &= \left((\hat{\Sigma}^{-1})^*(r_{\text{rot}}) \left(\sum_i g^h(r_i) \times \alpha_i \right) \right) \times_{\text{mul}} G^0_{\text{mul}}(r_{\text{rot}}).
\end{align*}
\]

Proof. The commutative diagram

\[
\begin{array}{ccc}
\mathbb{L}^2 \otimes TP_{\text{mul}}|_{P_{\text{rig}}} & \xrightarrow{T \pi_{\text{rot}}} & \mathbb{L}^2 \otimes TS_{\text{rot}} \\
G^0_{\text{mul}} \downarrow & & \downarrow G^0_{\text{rot}} \\
T^* P_{\text{mul}}|_{P_{\text{rig}}} & \xrightarrow{T^* \pi_{\text{rot}}} & T^* S_{\text{rot}}
\end{array}
\]

Theorems \[4.27\] and the definition of \(\hat{\Sigma} \) give

\[
T^* \pi_{\text{rot}}(p_{\text{rig}}, \alpha_{\text{mul}}) = (G^0_{\text{rot}} \circ T \pi_{\text{rot}} \circ G^0_{\text{mul}})(p_{\text{rig}}, \alpha_{\text{mul}})
\]

\[
= (G^0_{\text{rot}} \circ T \pi_{\text{rot}})(p_{\text{rig}}, \frac{1}{\mu_1} g^h(\alpha_1), \ldots, \frac{1}{\mu_n} g^h(\alpha_n))
\]

\[
= G^0_{\text{rot}}(r_{\text{rot}}, \hat{\Sigma}^{-1}(r_{\text{rot}}) \left(\sum_i r_i \times g^h(\alpha_i) \right) \times_{\text{mul}} r_{\text{rot}})
\]

\[
= (r_{\text{rot}}, ((g^h \circ \hat{\Sigma}^h)(r_{\text{rot}}) \left(\sum_i g^h(r_i) \times \alpha_i \right) \times_{\text{mul}} G^0_{\text{mul}}(r_{\text{rot}}))
\]

\[
= (r_{\text{rot}}, ((\hat{\Sigma}^{-1})^*(r_{\text{rot}}) \left(\sum_i g^h(r_i) \times \alpha_i \right) \times_{\text{mul}} G^0_{\text{mul}}(r_{\text{rot}})) \text{. QED}
\]

The projection \(T^* \pi_{\text{rot}} \) can be expressed in terms of \(V_{\text{ang}} \). In this way, we recover the classical formula of the “total momentum” of a multi–form. Here, this formula arises naturally from our geometric interpretation of \(T^* S_{\text{rot}} \).
4.29 Corollary. We have the projection

\[(4.25) \quad S_{\text{ang}} := (\tau_{\text{ang}}^{-1})^* \circ T^* \pi_{\text{rot}} : T^* P_{\text{mul}}|_{P_{\text{rig}}} \to S_{\text{rot}} \times V_{\text{ang}}^* : (p_{\text{rig}}, \alpha_{\text{mul}}) \mapsto (r_{\text{rot}}, \sum_{i} g^i(r_i) \times \alpha_i),\]

where \(r_{\text{rot}} := \pi_{\text{rot}}(p_{\text{rig}})\).

Proof. By recalling the expressions of \(T^* \pi_{\text{rot}}, \ (\Sigma^{-1})^* \), \((\tau_{\text{ang}}^{-1})^*\) and \(\Sigma\), we obtain

\[
S_{\text{ang}}(p_{\text{rig}}, \alpha_{\text{mul}}) = ((\tau_{\text{ang}}^{-1})^* \circ T^* \pi_{\text{rot}})(p_{\text{rig}}, \alpha_{\text{mul}}) = (r_{\text{rot}}, \sum_{i} g^i(r_i) \times (\sum_{j} g^j(r_j) \times \alpha_j) \times \mu_i g^i(r_i)) \times \mu_i g^i(r_i) \times \mu_i g^i(r_i))
\]

\[
= (r_{\text{rot}}, \sum_{i} g^i(r_i) \times (\sum_{j} g^j(r_j) \times \mu_i g^i(r_i))) \times \mu_i g^i(r_i)) \times \mu_i g^i(r_i))
\]

\[
= (r_{\text{rot}}, g^i(\sum_{i} \mu_i r_i \times (\sum_{j} r_j \times g^j(\alpha_j)) \times \mu_i g^i(r_i))) \times \mu_i g^i(r_i)) \times \mu_i g^i(r_i))
\]

\[
= (r_{\text{rot}}, \sum_{i} g^i(r_i) \times \alpha_i) . \text{QED}
\]

4.5 Kinetic energy and momentum of the rigid system

According to our scheme, we define the rigid kinetic energy, the rigid kinetic momentum, the rotational kinetic energy and the rotational kinetic momentum as

\[
K_{\text{rig}} := i_{\text{rig}}^* K_{\text{mul}} : T^{-1} \otimes TP_{\text{rig}} \to (T^{-2} \otimes \mathcal{L}^2 \otimes \mathcal{M}) \otimes \mathcal{R} : \forall_{\text{rig}} \mapsto \frac{1}{2} m_0 G_{\text{rig}}(v_{\text{rig}}, v_{\text{rig}}),
\]

\[
P_{\text{rig}} := i_{\text{rig}}^* P_{\text{mul}} : T^{-1} \otimes TP_{\text{rig}} \to (T^{-2} \otimes \mathcal{L}^2 \otimes \mathcal{M}) \otimes T^* P_{\text{rig}} : \forall_{\text{rig}} \mapsto \frac{1}{2} m_0 G_{\text{rig}}(v_{\text{rig}}, v_{\text{rig}}),
\]

\[
K_{\text{rot}} := i_{\text{rot}}^* K_{\text{mul}} : T^{-1} \otimes TS_{\text{rot}} \to (T^{-2} \otimes \mathcal{L}^2 \otimes \mathcal{M}) \otimes \mathcal{R} : \forall_{\text{rot}} \mapsto \frac{1}{2} m_0 G_{\text{rot}}(v_{\text{rot}}, v_{\text{rot}}),
\]

\[
P_{\text{rot}} := i_{\text{rot}}^* P_{\text{mul}} : T^{-1} \otimes TS_{\text{rot}} \to (T^{-2} \otimes \mathcal{L}^2 \otimes \mathcal{M}) \otimes T^* S_{\text{rot}} : \forall_{\text{rot}} \mapsto \frac{1}{2} m_0 G_{\text{rot}}(v_{\text{rot}}, v_{\text{rot}}).
\]

Then, by taking into account the angular parallelisation \(\tau_{\text{ang}} : TS_{\text{rot}} \to S_{\text{rot}} \times V_{\text{ang}}\), we obtain the angular kinetic energy and the angular kinetic momentum

\[
K_{\text{ang}} := \tau_{\text{ang}}^* K_{\text{rot}} : T^{-1} \otimes TS_{\text{rot}} \to (T^{-2} \otimes \mathcal{L}^2 \otimes \mathcal{M}) \otimes \mathcal{R}
\]

\[
: (r_{\text{rot}}, v_{\text{rot}}) \mapsto \frac{1}{2} m_0 \Sigma(r_{\text{rot}})(\Omega, \Omega) = \frac{1}{2} m_0 \sum_{i} \mu_i \left(g(r_i, r_i) g(\Omega, \Omega) - g(r_i, \Omega) g(r_i, \Omega) \right),
\]

\[
P_{\text{ang}} := \tau_{\text{ang}}^* P_{\text{rot}} : T^{-1} \otimes TS_{\text{rot}} \to (T^{-1} \otimes \mathcal{L}^2 \otimes \mathcal{M}) \otimes V_{\text{ang}}^*
\]

\[
: (r_{\text{rot}}, v_{\text{rot}}) \mapsto m_0 \Sigma^i(r_{\text{rot}})(\Omega) = m_0 \sum_{i} \mu_i \left(g(r_i, r_i) g^i(\Omega) - g(r_i, \Omega) g^i(r_i) \right),
\]

\[
+ m_0 \sum_{i} \mu_i \left(g(r_i, r_i) g^i(\Omega) - g(r_i, \Omega) g^i(r_i) \right),
\]
where $\Omega := \rho_{\text{ang}}(v_{\text{rot}})$.

According to the splittings $TP_{\text{rig}} = TP_{\text{cen}} \times TS_{\text{rot}}$ and $TP_{\text{rig}} = TP_{\text{cen}} \times (S_{\text{rot}} \times V_{\text{ang}})$, we have, respectively, the splittings

$$K_{\text{rig}} = K_{\text{cen}} + K_{\text{rot}}, \quad \mathcal{P}_{\text{rig}} = (\mathcal{P}_{\text{cen}}, \mathcal{P}_{\text{rot}}),$$

$$K_{\text{rig}} = K_{\text{cen}} + K_{\text{ang}}, \quad \mathcal{P}_{\text{rig}} = (\mathcal{P}_{\text{cen}}, \mathcal{P}_{\text{ang}}).$$

4.6 Connections induced on the rigid system

First of all, in the non degenerate case, the generalised affine structure of P_{rig} induces a flat connection ∇_{aff} (see Section 1.2).

Moreover, according to the Gauss’ Theorem (see, for instance, [7]), the geometric metric g_{rig} and the weighted metric G_{rig} induce two distinct connections ∇_{rig} and ∇_{Rig}, respectively, on P_{rig}. Actually, we shall be mainly concerned with ∇_{Rig}, which is the most important of the two, because of its role in dynamics.

4.30 Proposition. The connection ∇_{Rig} splits into the cartesian product of the connections ∇_{cen} and ∇_{rot} of P_{cen} and S_{rot}. \square

4.7 Kinematics of rigid systems

In this section, we apply the splitting of $TP_{\text{mul}}|_{P_{\text{rig}}}$ to the velocity and the acceleration of a rigid system. Namely, the velocity splits into the two components of the center of mass and the velocity relative to the center of mass. On the other hand, the acceleration splits into the three components of the center of mass, relative to the center of mass and the term given by the 2nd fundamental form of the rigid configuration space.

Let us consider a rigid motion $s_{\text{rig}} : T \to P_{\text{rig}}$.

4.31 Proposition. According to Corollary 4.10 and Theorem 4.22 we obtain the splittings

$$s_{\text{rig}} = (s_{\text{cen}}, s_{\text{rot}}) : T \to P_{\text{cen}} \times S_{\text{rot}}$$

$$ds_{\text{rig}} = (ds_{\text{cen}}, (s_{\text{rot}}, \Omega)) : T \to (T^{-1} \otimes TP_{\text{cen}}) \times (S_{\text{rot}} \times (T^{-1} \otimes V_{\text{ang}})),$$

where

$$s_{\text{cen}} := \pi_{\text{cen}} \circ s_{\text{rig}}, \quad s_{\text{rot}} := \pi_{\text{rot}} \circ s_{\text{rig}}, \quad \Omega := \hat{\Sigma}^{-1}(\sum_{i} \mu_i(s_{\text{rot}})_i \times d(s_{\text{rot}})_i).$$

The map $\Omega := \rho_{\text{ang}} \circ T\tau_{\text{ang}} \circ ds_{\text{rig}} : T \to T^* \otimes V_{\text{ang}}$ is called the angular velocity of the rigid motion.
4.32 Theorem. The acceleration splits into the three components as
\[\nabla_{\text{mul}} ds_{\text{rig}} = \nabla_{\text{cen}} ds_{\text{cen}} + \nabla_{\text{rot}} ds_{\text{rot}} + N \circ ds_{\text{rot}}, \]
where \(N : TP_{\text{rig}} \to TP_{\text{rig}} \) is the 2nd fundamental form of the connection \(\nabla_{\text{mul}} \), with respect to the metric \(G_{\text{mul}} \). We have the expressions
\[(4.26) \quad \rho_{\text{ang}}(\nabla_{\text{rot}} ds_{\text{rot}}) = d\Omega + \hat{\Sigma}^{-1}(s_{\text{rot}})\left(\Omega \times \hat{\Sigma}(s_{\text{rot}})(\Omega)\right), \]
\[(4.27) \quad N(s_{\text{rig}})(\Omega) = \Omega \times_{\text{mul}} (\Omega \times_{\text{mul}} s_{\text{rot}}) - \hat{\Sigma}^{-1}(s_{\text{rot}})\left(\Omega \times \hat{\Sigma}(s_{\text{rot}})(\Omega)\right) \times_{\text{mul}} s_{\text{rot}}. \]

Proof. The proof is analogous to that for the case of one constrained particle.

In virtue of Theorem 4.22, Corollary 4.10 and the Leibnitz identity for the cross product, we obtain
\[\rho_{\text{ang}}(\nabla_{\text{rot}} ds_{\text{rot}}) = \]
\[= (\rho_{\text{ang}} \circ T_{\text{rot}})(\nabla_{\text{mul}} ds_{\text{rot}}) \]
\[= \hat{\Sigma}^{-1}(s_{\text{rot}})\left(\sum_i \mu_i(s_{\text{rot}})_i \times \nabla d(s_{\text{rot}})_i\right) \]
\[= \hat{\Sigma}^{-1}(s_{\text{rot}})\left(\sum_i \mu_i(s_{\text{rot}})_i \times \nabla(s_{\text{rot}})_i\right) \]
\[= \hat{\Sigma}^{-1}(s_{\text{rot}})\left(\sum_i \mu_i(s_{\text{rot}})_i \times (d\Omega \times (s_{\text{rot}})_i) + \hat{\Sigma}^{-1}(s_{\text{rot}})\left(\sum_i \mu_i(s_{\text{rot}})_i \times (\Omega \times (s_{\text{rot}})_i)\right)\right) \]
\[= \hat{\Sigma}^{-1}(s_{\text{rot}})\left(\sum_i \mu_i(s_{\text{rot}})_i \times (d\Omega \times (s_{\text{rot}})_i) + \hat{\Sigma}^{-1}(s_{\text{rot}})\left(\sum_i \mu_i \Omega \times (s_{\text{rot}})_i \times (\Omega \times (s_{\text{rot}})_i)\right)\right) \]
\[= d\Omega + \hat{\Sigma}^{-1}(s_{\text{rot}})(\Omega \times \hat{\Sigma}(s_{\text{rot}})(\Omega)). \]

Moreover, we have
\[N(ds_{\text{rot}}) = \]
\[= \nabla_{\text{mul}} ds_{\text{rot}} - \nabla_{\text{rot}} ds_{\text{rot}} \]
\[= d\Omega \times_{\text{mul}} s_{\text{rot}} + \Omega \times_{\text{mul}} (\Omega \times_{\text{mul}} s_{\text{rot}}) - d\Omega \times_{\text{mul}} s_{\text{rot}} - \hat{\Sigma}^{-1}(s_{\text{rot}})(\Omega \times \hat{\Sigma}(s_{\text{rot}})(\Omega)) \times_{\text{mul}} s_{\text{rot}} \]
\[= \Omega \times (\Omega \times_{\text{mul}} s_{\text{rot}}) - \hat{\Sigma}^{-1}(s_{\text{rot}})(\Omega \times \hat{\Sigma}(s_{\text{rot}})(\Omega)) \times_{\text{mul}} s_{\text{rot}}. \]

QED

4.33 Note. The map \(d\Omega \) is the covariant derivative of \(\Omega \) with respect to the natural connection \(\nabla_{\text{aff}} \) of \(S_{\text{rot}} \) induced by \(\tau_{\text{ang}} \). Hence, the map \(\hat{\Sigma}^{-1}(s_{\text{rot}})(\Omega \times \hat{\Sigma}(s_{\text{rot}})(\Omega)) \) expresses the Christoffel symbol of the connection \(\nabla_{\text{rot}} \) with respect to the parallelisation \(\tau_{\text{ang}} \). \(\square \)

4.8 Dynamics of rigid systems

In this section we study the equation of motion for a rigid system.

According to the results of the previous section, we show that the equation of motion in the environmental space splits into three components: the equation of motion for the center of mass (related to the linear momentum), the equation of motion for the relative motion (related to the angular momentum) and equation for
the reaction force (related to the 2nd fundamental form of the rigid configuration space).

4.8.1 Splitting of multi-forces

According to the scheme discussed for a constrained system, we assume a multi-force

\[\tilde{F}_{\text{mul}} : J_1 P_{\text{mul}} \to (T^{-2} \otimes \mathbb{L}^2 \otimes \mathbb{M}) \otimes T^* P_{\text{mul}} \]

and consider its restriction to the phase space of the rigid system

\[F := \tilde{F}_{\text{mul}}|_{J_1 P_{\text{rig}}} : J_1 P_{\text{rig}} \to (T^{-2} \otimes \mathbb{L}^2 \otimes \mathbb{M}) \otimes T^* P_{\text{mul}}. \]

4.34 Proposition. According to the splitting of \(T^* P_{\text{mul}}|_{P_{\text{rig}}} \), we can write

\[F = F_{\text{rig}} + F_{\text{rig} \perp}, \]

where

\[F_{\text{rig}} = i_{\text{rig}}^* F : J_1 P_{\text{rig}} \to (T^{-2} \otimes \mathbb{L}^2 \otimes \mathbb{M}) \otimes T^* P. \]

Moreover, according to the splitting of \(T^* P_{\text{rig}} \) (see Theorem 4.28), we can write

\[F_{\text{rig}} = (F_{\text{cen}}, F_{\text{rot}}) = (F_{\text{cen}}, F_{\text{ang}}), \]

where \(F_{\text{cen}} \) and \(F_{\text{ang}} \) turn out to be, respectively, the total force and the total momentum of the force. We have the following expressions

\[
F_{\text{cen}} = T^* \pi_{\text{cen}} \circ F_{\text{rig}} = \sum_i F_i, \quad F_{\text{ang}} = S_{\text{ang}} \circ F_{\text{rig}} = \sum_i r_i \times F_i, \\
F_{\text{rot}} = ((\Sigma^{-1})^* (F_{\text{ang}})) \times_{\text{mul}} r_{\text{rig}}, \quad F_{\text{dia}} = (\mu_1 F_{\text{cen}}, \ldots, \mu_n F_{\text{cen}}), \\
F_{\text{perp}} = F_{\text{mul}} - F_{\text{dia}} - F_{\text{rot}},
\]

where we have set \(r_{\text{rig}} : S_{\text{rot}} \subset S_{\text{rel}} \to \mathbb{L}^2 \otimes S_{\text{rel}}^* : r_{\text{rot}} \mapsto G_{\text{mul}}^b(r_{\text{rot}}) \).

4.35 Note. If the multi-force \(F_{\text{mul}} \) fulfills the 3rd Newton’s principle then its component tangent to the constraint \(F_{\text{rig}} \) vanishes.

Proof. If \(F_{\text{mul}} \) fulfills the 3rd Newton’s principle, then we obtain \(F_{\text{cen}} = 0 \) and \(F_{\text{ang}} = 0 \), hence \(F_{\text{rig}} = 0 \). QED

Moreover, we assume a reaction force

\[R : J_1 P_{\text{rig}} \to T^{-2} \otimes \mathbb{L}^2 \otimes \mathbb{M} \otimes T^* P_{\text{mul}}, \]

which splits analogously to the force.

The above Note holds also for the reaction. So, we assume \(R_{\text{rig}} = 0 \), i.e. \(R = R_{\text{perp}} \).
4.8 Dynamics of rigid systems

4.8.2 Splitting of the equation of motion

Eventually, we are ready to split the equation of motion into three components. We follow the scheme developed for one constrained particle with the additional results arising from the present framework.

4.36 Corollary. The rigid motion \(s_{\text{rig}} : T \rightarrow P_{\text{rig}} \) and the reaction force \(R \) fulfill the Newton’s law of motion

\[
m_0 G^b_{\mu l}(\nabla_{\mu l} ds_{\text{rig}}) = (F_{\text{rig}} + R) \circ j_1 s_{\text{rig}}
\]

if and only if

\[
m_0 \hat{\Sigma}(\nabla_{\text{rot}} ds_{\text{rot}}) = F_{\text{ang}} \circ j_1 s_{\text{rig}},
\]

\[
m_0 G^b_{\mu l}(N \circ ds_{\text{rot}}) = (F_\perp + R_\perp) \circ j_1 s_{\text{rig}},
\]

where

\[
\rho_{\text{ang}}(\nabla_{\text{rot}} ds_{\text{rot}}) = d\Omega + \hat{\Sigma}^{-1}(s_{\text{rot}})\left(\Omega \times \hat{\Sigma}(s_{\text{rot}})(\Omega)\right).
\]

Proof. The proof follows from Theorem 4.32. QED

The angular component of the above equation of motion is referred to as *Euler’s equation*.

4.37 Note. Contrary to the general constrained case, here the equation on the constrained space can be split into the center of mass and rotational components, due to the fact that the rigid constraint is without interference between particles and the center of mass.

On the other hand, as in the case of a system of free particles, we cannot solve the first two equations independently, unless the total force factors through the projection \(\pi_{\text{cen}} \) on \(P_{\text{cen}} \).

4.38 Corollary. The reaction \(R_\perp \) is given by

\[
R_\perp = \Omega \times \left(\Omega \times \tau_{\text{rig}}\right) - \hat{\Sigma}^{-1}(s_{\text{rot}})\left(\left(\Omega \times \hat{\Sigma}^b(s_{\text{rot}})(\Omega)\right) \times_{\mu l} \tau_{\text{rig}}\right)
- F_{\mu l} + (\mu_1 F_{\text{cen}}, \ldots, \mu_n F_{\text{cen}}) + \left((\hat{\Sigma}^{-1})^*(F_{\text{ang}})\right) \times_{\mu l} \tau_{\text{rig}}.
\]

where we set \(\Omega := g^b(\Omega) \).

Proof. The reaction \(R_\perp \) is determined by on solutions of the equations of motion by the following
equalities

\[R_\perp = G^b_{\text{mul}}(N \circ ds_{\text{rot}}) - F_\perp \circ j_1 s_{\text{rig}} \]
\[= G^b_{\text{mul}}(N \circ ds_{\text{rot}}) - (F_{\text{mul}} - F_{\text{dia}} - F_{\text{rot}}) \circ j_1 s_{\text{rig}} \]
\[= G^b_{\text{mul}}(s_{\text{rig}}, \Omega \times \text{mul}(\Omega \times \text{mul} s_{\text{rot}}) - \hat{\Sigma}^{-1}(\bigcirc (\Omega \times \hat{\Sigma}(s_{\text{rot}})))(\Omega) \times \text{mul} s_{\text{rot}}) \]
\[- F_{\text{mul}} \circ j_1 s_{\text{rig}} + (\mu_1 F_{\text{cen}}, \ldots, \mu_n F_{\text{cen}}) \circ j_1 s_{\text{rig}} + \left(g^b(\Sigma^b(F_{\text{ang}})) \right) \circ j_1 s_{\text{rig}} \times \text{mul} s_{\text{rig}} \]
\[= (s_{\text{rig}}, \Omega \times (\Omega \times \text{mul} s_{\text{rig}}) - \hat{g}^b(\Sigma^b(s_{\text{rot}}))(\Omega \times \Sigma^b(s_{\text{rot}}))(\Omega)) \times \text{mul} s_{\text{rig}} \]
\[- F_{\text{mul}} \circ j_1 s_{\text{rig}} + (\mu_1 F_{\text{cen}}, \ldots, \mu_n F_{\text{cen}}) \circ j_1 s_{\text{rig}} + \left(\hat{g}^b(\Sigma^b(F_{\text{ang}})) \right) \circ j_1 s_{\text{rig}} \times \text{mul} s_{\text{rig}}, \text{QED} \]

Now, we express the Newton’s law in Lagrangian form, in our special case of rigid systems. To this aim, we introduce an appropriate chart on \(P_{\text{rig}} \). We refer to a chart \((x^i)\) on \(P_{\text{cen}} \) and to a chart (for instance, the Euler’s angles) \((\alpha^j)\) on \(S_{\text{rot}} \). Then, the induced chart on \(TQ \) is \((x^i, \alpha^j, \dot{x}^i, \dot{\alpha}^j)\).

Suppose that \(F_{\text{rig}} : P_{\text{rig}} \rightarrow (\mathbb{T}^{-2} \otimes \mathbb{L}^2 \otimes \mathbb{M}) \otimes T^* P_{\text{rig}} \) be a conservative positional force, with potential \(U_{\text{rig}} : P_{\text{rig}} \rightarrow (\mathbb{T}^{-2} \otimes \mathbb{L}^2 \otimes \mathbb{M}) \otimes \mathbb{R} \), and that \(R_{\text{rig}} = 0 \). Then, the induced Lagrangian function turns out to be the map

\[
L_{\text{rig}} := \mathcal{K}_{\text{rig}} - \mathcal{U}_{\text{rig}} : TP_{\text{rig}} \rightarrow (\mathbb{T}^{-2} \otimes \mathbb{L}^2 \otimes \mathbb{M}) \otimes \mathbb{R}.
\]

4.39 Corollary. Let \(s_{\text{rig}} : T \rightarrow P_{\text{rig}} \) be a motion. Then, \(s_{\text{rig}} \) and the reaction force \(R \) fulfill the Newton’s law of motion if and only if the following equations hold

\[
D \left(\frac{\partial L_{\text{rig}}}{\partial \dot{x}^i} \circ ds_{\text{rig}} \right) - \frac{\partial L_{\text{rig}}}{\partial x^i} \circ ds_{\text{rig}} = 0, \quad D \left(\frac{\partial L_{\text{rig}}}{\partial \dot{\alpha}^i} \circ ds_{\text{rig}} \right) - \frac{\partial L_{\text{rig}}}{\partial \alpha^i} \circ ds_{\text{rig}} = 0,
\]

\[
G^b_{\text{mul}}(N \circ ds_{\text{rig}}) = (F_\perp + R_\perp) \circ j_1 s_{\text{rig}}. \quad \square
\]
References

[1] R. Abraham, J. Marsden: Foundations of Mechanics, Benjamin, New York, 1986.

[2] V. I. Arnol’d: Mathematical methods of classical mechanics, MIR, Moscow 1975; GTM n. 70, Springer.

[3] S. F. Cortizo: Classical mechanics–on the deduction of Lagrange’s equations, Rep. Math. Phys. 29 n. 1 (1991), 45–54.

[4] M. Crampin: Jet bundle techniques in analytical mechanics, Quaderni del CNR, GNFM, Firenze, 1995.

[5] W. D. Curtis, F. R. Miller: Differentiable manifolds and theoretical physics, Academic Press, New York, 1985.

[6] M. de Leon, P. R. Rodriguez: Methods of differential geometry in analytical mechanics, North Holland, Amsterdam, 1989.

[7] S. Gallot, D. Hulin, J. Lafontaine: Riemannian Geometry, II ed., Springer Verlag, Berlin, 1990.

[8] C. Godbillon: Geometrie differentielle et mechanique analytique, Hermann, Paris, 1969.

[9] H. Goldstein: Classical Mechanics, II ed., Addison–Wesley, London, 1980.

[10] V. Guillemin, S. Sternberg: Symplectic techniques in physics, Cambridge Univ. Press, 1984.

[11] J. Janyška, M. Modugno, R. Vitolo: Semi–vector spaces, preprint 2005.

[12] L. Landau, E. Lifchits: Mechanics, MIR, Moscow 1975.

[13] T. Levi–Civita, U. Amaldi: Lezioni di Meccanica Razionale, vol. II, II ed., Zanichelli, Bologna, 1926.

[14] P. Libermann, C-M. Marle: Symplectic geometry and analytical mechanics, Reidel, Dordrecht, 1987.

[15] A. Lichnerowicz: Elements of tensor calculus, John Wiley & Sons, New York, 1962.

[16] R. G. Littlejohn, M. Reinsch: Gauge fields in the separation of rotations and internal motions in the n–body problem, Rev. Mod. Phys. 69 1 (1997), 213–275.

[17] J. E. Marsden, T. Ratiu: Introduction to Mechanics and Symmetry, Texts in Appl. Math. 17, Springer, New York, 1995.

[18] E. Massa, E. Pagani: Classical dynamics of non–holonomic systems: a geometric approach, Ann. Inst. H. Poinc. 55, 1, (1991), 511–544.

[19] E. Massa, E. Pagani: Jet bundle geometry, dynamical connections and the inverse problem of Lagrangian mechanics, Ann. Inst. H. Poinc., (1993).

[20] M. Modugno, C. Tejero Prieto, R. Vitolo: A covariant approach to the quantisation of a rigid body, preprint 2005.
[21] F. C. Park, M. W. Kim: *Lie theory, Riemannian geometry, and the dynamics of coupled rigid bodies*, Z. angew. Math. Phys. **51** (2000), 820–834.

[22] J.–M. Souriau: Structure des systèmes dynamiques, Dunod, Paris 1969.

[23] W. M. Tulczyjew: *An intrinsic formulation of nonrelativistic analytical mechanics and wave mechanics*, J. Geom. Phys., **2**, 3 (1985), 93–105.

[24] A. M. Vershik, L. D. Faddeev: *Lagrangian mechanics in invariant form*, Sel. Math. Sov. **4** (1981), 339–350.

[25] F. W. Warner: Foundations of Differentiable Manifolds and Lie Groups, Scott, Foresman and Co., Glenview, Illinois, 1971.

[26] E. T. Whittaker: A treatise on the analytical dynamics of particles and rigid bodies, Wiley, New York, 1936.