Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Glycogen synthase kinase (GSK)-3 and the double-strand RNA-dependent kinase, PKR: When two kinases for the common good turn bad

Manuela Piazzia, Alberto Bavelloni, Irene Faenza, William Blalock

A R T I C L E I N F O

Keywords:
Inflammation
Alternative splicing
Innate immunity
Neurodegenerative disease
Leukemia
Osteosarcoma

ABSTRACT

Glycogen synthase kinase (GSK)-3α/β and the double-stranded RNA-dependent kinase PKR are two sentinel kinases that carry out multiple similar yet distinct functions in both the cytosol and the nucleus. While these kinases belong to separate signal transduction cascades, they demonstrate an uncanny propensity to regulate many of the same proteins either through direct phosphorylation or by altering transcription/translation, including: c-MYC, NF-κB, p53 and TAU, as well as each another. A significant number of studies centered on the GSK3 kinases have led to the identification of the GSK3 interactome and a number of substrates, which link GSK3 activity to metabolic control, translation, RNA splicing, ribosome biogenesis, cellular division, DNA repair and stress/inflammatory signaling. Interestingly, many of these same pathways and processes are controlled by PKR, but unlike the GSK3 kinases, a clear picture of proteins interacting with PKR and a complete listing of its substrates is still missing. In this review, we take a detailed look at what is known about the PKR and GSK3 kinases, how these kinases interact to influence common cellular processes (innate immunity, alternative splicing, translation, glucose metabolism) and how aberrant activation of these kinases leads to diseases such as Alzheimer’s disease (AD), diabetes mellitus (DM) and cancer.

1. Introduction

Cellular homeostasis and maintenance are critical for the proper development and function of every tissue and organ system; the activity of specialized cells, stem cell self-renewal, differentiation, cell death and replacement are all tightly controlled. Multiple levels of regulation are in place to control these processes, and when one of these control systems goes awry it puts pressure on the other regulatory systems often resulting in a form of chronic inflammation, as the main cellular response is damage control. Glycogen synthase kinase-3 (GSK-3) and the double-strand RNA-dependent kinase PKR are two major regulators of this response [1,2]. While upstream regulation of these kinases appears to be for the most part independent from one another, GSK-3 responding to metabolic stresses and PKR a more general stress responder, together they co-regulate multiple stress response pathways that result in the inhibition of translation, cell cycle arrest, apoptosis and inflammation; and aberrant activation of either is associated with diverse pathologies including, Alzheimer’s disease, diabetes mellitus and cancer [2–4]. In this review, we look closely at the relationship between these two stress-activated kinases, their co-regulation of key processes and how aberrant activation leads to diseases such as Alzheimer’s disease (AD), diabetes mellitus (DM) and cancer.

Abbreviations: 4E-BP, eIF4E-binding protein; AD, Alzheimer’s disease; ADAR, adenosine deaminase acting on double-stranded RNA; CDK, cyclin dependent kinase; C/EBP, CCAAT-enhancer binding protein; DM, diabetes mellitus; dsRBD, double-strand RNA binding domain; dsRNA, double-strand RNA; eIF, eukaryotic initiation factor; GCN2, general control non-derepressible 2; GSK3, glycogen synthase kinase; HRI, heme-regulated kinase; IFN, interferon; IGF, insulin-like growth factor; IGF1R, insulin-like growth factor 1 receptor; IκB, inhibitor κB; IKK, inhibitor κB kinase; IR, insulin receptor; IRS, insulin response substrate; JNK, c-Jun N-terminal kinase; mTOR, mammalian target of rapamycin; NEMO, IKK subunit γ; NF-κB, nuclear factor κB; PERK, PKR-related endoplasmic reticulum kinase; PI3K, phosphatidylinositol-3 kinase; PIP, phosphoinositol phosphate; PKR, double-strand RNA-dependent kinases; PP1, protein phosphatase 1; STAT, signal transducer and activator of transcription; TNFα, tumor necrosis factor-α; TNFR, tumor necrosis factor receptor-α

*This article is part of a Special Issue entitled: GSK-3 and related kinases in cancer, neurological and other disorders edited by James McCubrey, Agnieszka Gizak and Dariusz Rakus.

Corresponding author at: Institute of Molecular Genetics, National Research Council of Italy, IGM-CNR, UOS Bologna, Rizzoli Orthopedic Institute, via di Barbiano 1/10, 40136 Bologna, Italy.

E-mail address: william.blalock@cnr.it (W. Blalock).

https://doi.org/10.1016/j.bbamcr.2020.118769

Received 31 March 2020; Received in revised form 29 May 2020; Accepted 31 May 2020

Available online 05 June 2020

0167-4889/ © 2020 Elsevier B.V. All rights reserved.
mediators of cell homeostasis and their involvement in disease. To limit discussion, we have focused only on those signaling intermediates and processes these kinases have in common, highlighting possible points of therapeutic intervention for the design of novel compounds targeting the signaling of both these sentinel kinases.

1.1. GSK-3

Glycogen synthase kinase-3 is the all-inclusive name given to two kinase isoforms (α and β) that are encoded by different genes. In humans, the α-isoform (GSK3α), a 51 kDa protein, is encoded on Ch.19q13.2, while the β-isoform (GSK3β), a 47 kDa protein, is encoded on Ch.3q13.3; both are ubiquitously expressed with the greatest expression being observed in brain tissue [5,6]. Within the cell, these isoforms have a more restricted localization, with GSK3α localizing throughout the cell (nucleus, cytosol and mitochondria) and GSK3β localizing to mainly the nucleus, cytosol or cell membrane. Other reports have suggested that GSK3α is more important to cytoplasmic signaling, while GSK3β is more important for nuclear signaling [6]. These kinases belong to the CMGC family of serine/threonine kinases and are composed of two domains; a sequence forming seven anti-parallel β-sheets followed by an α-helical region. The catalytic domain lies at the interface of these two domains. The GSK3 proteins are 98% identical, but significant divergence is observed in the C-termini. In addition, GSK3α also contains an extension of the glycine-rich sequence in the amino terminus. These slight differences in structure likely result in the differing cellular localization of these kinases, as well as substrate preference [5,6]. While originally identified and thus named for the ability of what would eventually be designated GSK3β to phosphorylate and inactivate glycogen synthase (GS), these kinases have been found to phosphorylate and regulate proteins involved in glucose homeostasis, WNT/β-catenin pathway, microtubule assembly, apoptosis, inflammation, the cell cycle and translation. Phosphorylation on the part of GSK3α/β is dependent on a priming phosphorylation mediated by a secondary kinase at a site four amino acids C-terminal to the GSK3α/β-dependent site [5,6]. In theory, phosphorylation of a series of GSK3α/β sites, spaced approximately four amino acids apart from one another, would occur sequentially from C-ter to N-ter, following the initial priming phosphorylation mediated by a secondary kinase (ex., β-catenin). As with GS, phosphorylation mediated by GSK3α/β has, with few exceptions, a negative regulatory effect on the substrate [6].

The main mechanism by which the GSK3 kinases are controlled is through the phosphorylation of a key tyrosine residue in the catalytic domain. The GSK3 kinases are constitutively-active at a basal level; phosphorylation at Y279 or Y216 in GSK-3α or -3β, respectively, enhances GSK3 catalytic activity. It has been shown that this site is an essential recognition site for ubiquitination. As with GS, phosphorylation mediated by GSK3α/β has, with few exceptions, a negative regulatory effect on the substrate [6].

The double-strand RNA (dsRNA)-dependent kinase PKR is an innate immune, stress/inflammatory kinase originally identified and characterized for its antiviral activity. It belongs to a family of kinases best known for their ability to phosphorylate the eukaryotic initiation factor 2 subunit α (eIF2α). Among this family are PKR, the PKR-related endoplasmic reticulum kinase (PERK), heme-regulated kinase (HRI) and general control nonderepressible (GCN)-2. While PERK, HRI and GCN2 respond to more specific stresses, unfolded protein/endoplasmic reticulum stress, reduced heme concentration or amino acid starvation, respectively, PKR is activated in response to more general stresses, including viral infection, dsRNA, peroxidaion, mitochondrial stress, DNA damage, ER stress, inflammatory cytokines, growth factor deprivation and Toll-like receptor activation [19,20], placing it in a unique position as a sensor and first responder to cellular stresses as well as a mediator of inflammation. Together these kinases form a redundant network [21–29]. Interestingly, while all of these kinases are present in the cytoplasm, PKR is only eIF2α kinase that is also present in the nucleolus and nucleoplasm [25,30]. In humans, the PKR kinase is encoded by the EIF2AK2 gene located on Ch.2p22.2. The gene encodes a 68 kDa protein which is unusual in that the amino terminal end or regulatory region contains two double-strand RNA binding domains (dsRBDS) while the carboxyl terminus contains a protein kinase domain. The EIF2AK2 gene is ubiquitously and constitutively expressed with the highest levels of protein expression being observed in hematopoietic tissue (bone marrow, spleen and thymus) and the brain [31–33]. Moreover, the promoter of EIF2AK2 contains interferon (IFN)-stimulated response elements (ISREs), allowing for enhanced transcription of the gene in cells exposed to Type I (IFNα/β) interferons [34].
activation of PKR requires the phosphorylation of T451, while subsequent autophosphorylation of T446 significantly enhances kinase activity. Additional sites of autophosphorylation are observed predominantly in two clusters: S38, T88, T89, T90 and Y101 between dsRBD I and dsRBD II, and Y162, S242, T255, T258 and Y293 situated between dsRBD II and the kinase domain; each of these enhancing PKR enzymatic activity [35,36]. Other than the afore mentioned sites, which have all been biochemically verified, additional sites of phosphorylation have been identified in multiple studies using mass spectrometry: S33, S92, T115, S167, S179, S181, S456 and S542. The exact consequence of phosphorylating these residues though is not known (http://www.phosphosite.org/uniprotAccAction?id=P19525; [12]). PKR is also highly ubiquitinated and sumoylated with a large number of sites within the carboxyl half of the protein. Ubiquitination is predominantly carried-out by the SCF E2 ubiquitinase FBXW7 E3 ligase, which targets PKR for proteosomal degradation [37]. In contrast, SUMO1 and SUMO3 sumoylate PKR on K60, K150 and K440 in an enzyme specific manner altering PKR activation, localization and stability [38].

Several mechanisms have been proposed to explain PKR activation. Initially, PKR activation was thought to require only dsRNA, a typical product of viral infection. The binding of PKR to dsRNA through the dsRBDs would facilitate PKR homodimerization and autophosphorylation of T451 followed by T446. Several lines of evidence have suggested that this model was not completely correct: (1) the endogenous PKR activator, PACT/RAX, was demonstrated to promote PKR activation in the absence of dsRNA in vitro studies [39]; (2) PKR activation following vesicular stomatitis virus (VSV) infection was inhibited in the absence of PACT [40]; (3) T451 phosphorylation is often induced following treatment of cells with the commercial PKR inhibitor [41]; (4) dsRNAs readily available in the cell do not activate PKR, in contrast, the cellular RNA non-coding 886 (nc886) binds to and inhibits PKR activation; and (5) a diverse number of miRNAs bind to the dsRBDs of PKR [42]. These findings also suggested that PKR was not the only kinase capable of phosphorylating T451. Zykova et al. demonstrated that T451 could be phosphorylated by ERK2 and RSK2, likely establishing them as primers of PKR activation [43]. This would also explain PKR activation following Toll-like receptor (TLR) stimulation. During apoptosis, PKR may also be activated through caspase-dependent cleavage at D251, thus removing the regulatory dsRBDs and releasing an active kinase domain [44]. For years, PKR was studied for its ability to phosphorylate the eukaryotic initiation factor (eIF2)-α subunit in the presence of dsRNA (either during viral infection or treatment with poly I:C, a synthetic dsRNA) and was thus analyzed for its ability to block viral replication and/or induce cell death following infection [19]. It is now known that PKR has a much larger role in cell growth and homeostasis than previously thought.

Several seminal studies over the years have begun to shed more light on just how entwined PKR is in normal cellular homeostasis. The simultaneous reporting of PACT and its mouse orthologue RAX as endogenous activators of PKR demonstrated that PKR regulation was more complicated than just the presence or absence of dsRNA [39,45]. The fact that multiple cellular stresses [DNA damage, reactive oxygen species (ROS), and cytotoxic cytokines (IFNγ, TNFα, IL1)] in addition to viral infection could result in PKR activation began to paint a picture of PKR as a sentinel for the cellular stress response. PKR was found to regulate p53, NF-κb, c-MYC, protein phosphatase 2A (PP2A), RNAase A (DHX9), GSK3 and be a component of several cytoplasmonic (inflammatory, stress and blood diseases) and nuclear complexes (spliceosome, ribosome assembly and DNA repair) [46]. The role of PKR in disease has been controversial, but it is known that PKR is overexpressed and/or activity elevated in multiple solid tumors (breast carcinoma, colon carcinoma, melanoma, osteosarcoma, etc.), hematopoietic malignancies (acute leukemias and myelodysplastic syndromes) and neurodegenerative diseases (Alzheimer’s disease, Huntington’s corea and Creutzfeld-Jakob disease) [25,47,48]. In most of these pathologies an increased nuclear presence of PKR has been observed, while nuclear PKR is known to be associated with splicing factors and components of the assembling ribosome, the significance of PKR nuclear localization in these pathologies remains unclear.

2. PKR-dependent regulation of GSK-3

Regulation of GSK3 by PKR appears to occur at multiple levels. As stated previously, activation of the PI3K-AKT-mTOR pathway leads to AKT-dependent phosphorylation of GSK3α/β on S21/S9 resulting in the inactivation of GSK3 kinase activity. The link between PKR activation and AKT was originally observed in PKR-null MEFs where AKT activation was altered [49]. Baltzis et al. then later reported that both PKR and PERK could lead to the activation of nuclear GSK3β in a manner independent of eIF2α phosphorylation [50]. Blalock et al. subsequently demonstrated that PKR could regulate GSK3α/β through the activation of a phosphatase, but this study stopped short of identifying the phosphatase [41]. The authors demonstrated that inhibition PKR with a small molecule inhibitor resulted in an increase in p-S21/S9 GSK3α/β, at the same time resulting in a slight mobility shift to a faster migrating form of GSK3α/β. In contrast, while use of the general phosphatase inhibitor okadaic acid (OA) resulted in an increase of p-S21/S9 GSK3α/β, it did not result in any mobility shift, suggesting a site specific regulation of GSK3 phosphorylation by PKR [41]. A more recent analysis of the PKR nuclear interactome brought forward the finding that the phosphatase PP1A is associated with active PKR in the nucleus, but the PP1A catalytic subunit is replaced with that of PP1B in the inactive PKR complex [46]. As dephosphorylation of S21/S9 is known to occur through PP1A, it might be presumed that PKR-dependent regulation of GSK3 activity is mediated through PP1A dephosphorylation of S21/S9, which would account for the increase in levels of p-S21/S9 GSK3α/β in the presence of the PKR inhibitor. In the presence of active PKR, PP1A-mediated dephosphorylation at S21/S9 would increase GSK3 activity, thus enhancing Y279/Y216 phosphorylation, increasing GSK3 activity further (Fig. 1A). As PKR also stimulates the p38MAPK, PKR activity may favor additional phosphorylations at S389 and T390 in GSK3β, thus accounting for the significant shift or collapse in bands that occurs in the presence of the PKR inhibitor [18,41]. To date, no clear mechanism for GSK3α/β to regulate PKR activity has been reported, although control at the level of PKR expression would be reasonable to assume taking into consideration the effects that GSK3α/β has on transcription factors, such as MYC and p53, and translation (see below).

3. Common signaling intermediates of GSK3 and PKR

The extent of interaction between GSK3α/β and PKR signaling goes beyond that of phosphatase regulation; these kinases influence many of the same downstream intermediates. In some cases, these intermediates are directly phosphorylated by both PKR and GSK3; in others, regulation of the downstream protein occurs through phosphorylation by one of the kinases and an alternate mechanism with the other. In the following sections, we discuss some of the common targets of GSK3 and PKR and the influence that these kinases have on these downstream targets (Table 1).

3.1. eIF2 complex and translation

Protein synthesis is the most energy consuming process of the cell, requiring both ribosome biogenesis and the subsequent translation of mRNA. From prokaryotes to mammals, these processes are highly regulated in response to the surrounding environment to limit energy expenditure under conditions that are unfavorable for growth, as well as limit the possibility of producing mutant proteins. The most efficient and rapid point to regulate protein synthesis under cell stress conditions is during the initiation phase of translation, thereby limiting the
amount of cellular energy and resources that are fruitlessly utilized. This point also allows for the rapid synthesis of proteins once the stress is alleviated. Many upstream kinases converge on translation initiation, which is the rate limiting step. Recruitment of the mRNA to the 40S ribosomal subunit represents one level of control and is carried out by the eIF4F complex, which requires the eIF4E subunit to directly bind the 5′ CAP of the mRNA [51]. Under resting conditions, eIF4F is bound by the eIF4E-binding protein, 4E-BP, which sequesters it and inhibits its association with the mRNA. Activation of the PI3K-AKT-mTOR axis promotes metabolism and protein synthesis through modulation of GSK3 activity. (B) Activation of the PI3K-AKT (mTOR or GSK3α/β) and PKR pathways affect the eIF4 and eIF2 translation initiation potential outcomes of kinase-dependent modifications on translation. (A) Regulation of the PI3K-AKT-mTOR and PKR pathways can influence translation initiation through modulation of GSK3 activity. (B) Activation of the PI3K-AKT (mTOR or GSK3α/β) and PKR pathways affect the eIF4F and eIF2 translation initiation complexes. a; GSK3α/β- or mTOR-mediated phosphorylation of 4E-BP inhibits its association with eIF4E, promoting general translation. b; The eIF2B GDP-GTP exchange factor complex (eIF2B complex) must replace GDP bound to the eIF2 translation initiation complex (eIF2) with GTP in order to initiate each new round of CAP-dependent (general) translation. c; Active PKR (phospho-T446/T451) results in eIF2α phosphorylation on S51 and the inhibition of general translation by stabilizing the eIF2α-eIF2B-GDP interaction; IRES-mediated translation of stress-response genes is favored. d; Active GSK3α/β (phospho-T279/T216) phospho-phosphorylates the ε subunit of the eIF2B complex on S540, resulting in inhibition of both general and specialized (IRES-mediated) translation. While active PKR is denoted as phosphorylated on T446 and T451, only T451 is required for activity. Phosphorylation of T446 as well as numerous additional sites influences the degree of activation. Phosphorylation sites labeled in green (ex., Tyr216-GSK3α) indicate activating or stabilizing modifications; phosphorylation sites labeled in red (ex., Ser51-eIF2α) indicate modifications that are inhibitory to the substrates activity.

Fig. 1. GSK3α/β and PKR regulate translation initiation. The diagram shows the effects of GSK3α/β and PKR activity on translation initiation and the various potential outcomes of kinase-dependent modifications on translation. (A) Regulation of the PI3K-AKT-mTOR and PKR pathways can influence translation initiation through modulation of GSK3 activity. (B) Activation of the PI3K-AKT (mTOR or GSK3α/β) and PKR pathways affect the eIF4F and eIF2 translation initiation complexes. a; GSK3α/β or mTOR-mediated phosphorylation of 4E-BP inhibits its association with eIF4E, promoting general translation. b; The eIF2B GDP-GTP exchange factor complex (eIF2B complex) must replace GDP bound to the eIF2 translation initiation complex (eIF2) with GTP in order to initiate each new round of CAP-dependent (general) translation. c; Active PKR (phospho-T446/T451) results in eIF2α phosphorylation on S51 and the inhibition of general translation by stabilizing the eIF2α-eIF2B-GDP interaction; IRES-mediated translation of stress-response genes is favored. d; Active GSK3α/β (phospho-T279/T216) phospho-phosphorylates the ε subunit of the eIF2B complex on S540, resulting in inhibition of both general and specialized (IRES-mediated) translation. While active PKR is denoted as phosphorylated on T446 and T451, only T451 is required for activity. Phosphorylation of T446 as well as numerous additional sites influences the degree of activation. Phosphorylation sites labeled in green (ex., Tyr216-GSK3α) indicate activating or stabilizing modifications; phosphorylation sites labeled in red (ex., Ser51-eIF2α) indicate modifications that are inhibitory to the substrates activity.
Acc. #	Gene name	Description	Function	Association and modification
P07900	HSP90AA1	Heat-shock protein HSP90-alpha	Molecularchaperoneinvolvedinmultiplecellularprocesses	X X X (T725, S726) X
Q13310	PABPC4	Polyadenylate-binding protein 4	BindspolyAtailofmRNAs;involvedincytoplasmicregulationofmRNAmetabolism	X X
Q9Y4K3	TRAF6	TNF receptor-associated factor 6	E3ubiquitinligase;involvedintheactivationofNF-	
Q99848	EBNA1BP2	ProbableRNA-bindingprotein,Dnai-1	Transcriptionalrepressor;translocatedinmanycancers	X X X
P62136	PPP1CA	Serine/threonine-protein phosphatase PP1-alpha catalytic subunit	Protein phosphatase 1 (PP1) is essential for cell division, and participates in the regulation of glycogen metabolism, muscle contractility and protein synthesis, cell migration; interacts with HHV1 ICPR34.5 in the cytoplasmic region of the cell	X X X
Q15717	ELAVL1	ELAV-like protein 1	Ribonucleoprotein complex; involved in 3′ UTR AUI-ripelement (AURs) dependent MYC, FOS and JUN stabilization	X X
Q69486	MYC	Myc proto-oncogene protein	Transcriptionfactor;involvedincellgrowth,ribosomebiogenesis,proliferation and apoptosis	X X
P62292	KPNA2	Importin subunit alpha-2	FunctionsinnuclearproteinimportasanadapterproteinfornuclearreceptorKPNB1	X X
Q14580	TUBA1A	Tubulin alpha-1A chain	Constituentofmicrotubules	X
P62292	KPNA2	Importin subunit alpha-2	FunctionsinnuclearproteinimportasanadapterproteinfornuclearreceptorKPNB1	X X
Q15717	ELAVL1	ELAV-like protein 1	Ribonucleoprotein complex; involved in 3′ UTR AUI-ripelement (AURs) dependent MYC, FOS and JUN stabilization	X X
Q15717	ELAVL1	ELAV-like protein 1	Ribonucleoprotein complex; involved in 3′ UTR AUI-ripelement (AURs) dependent MYC, FOS and JUN stabilization	X X
Q69486	MYC	Myc proto-oncogene protein	Transcriptionfactor;involvedincellgrowth,ribosomebiogenesis,proliferation and apoptosis	X X
P62292	KPNA2	Importin subunit alpha-2	FunctionsinnuclearproteinimportasanadapterproteinfornuclearreceptorKPNB1	X X
Q15717	ELAVL1	ELAV-like protein 1	Ribonucleoprotein complex; involved in 3′ UTR AUI-ripelement (AURs) dependent MYC, FOS and JUN stabilization	X X
Q69486	MYC	Myc proto-oncogene protein	Transcriptionfactor;involvedincellgrowth,ribosomebiogenesis,proliferation and apoptosis	X X
P62292	KPNA2	Importin subunit alpha-2	FunctionsinnuclearproteinimportasanadapterproteinfornuclearreceptorKPNB1	X X
Q15717	ELAVL1	ELAV-like protein 1	Ribonucleoprotein complex; involved in 3′ UTR AUI-ripelement (AURs) dependent MYC, FOS and JUN stabilization	X X
Q69486	MYC	Myc proto-oncogene protein	Transcriptionfactor;involvedincellgrowth,ribosomebiogenesis,proliferation and apoptosis	X X
P62292	KPNA2	Importin subunit alpha-2	FunctionsinnuclearproteinimportasanadapterproteinfornuclearreceptorKPNB1	X X
Q15717	ELAVL1	ELAV-like protein 1	Ribonucleoprotein complex; involved in 3′ UTR AUI-ripelement (AURs) dependent MYC, FOS and JUN stabilization	X X
Q69486	MYC	Myc proto-oncogene protein	Transcriptionfactor;involvedincellgrowth,ribosomebiogenesis,proliferation and apoptosis	X X
P62292	KPNA2	Importin subunit alpha-2	FunctionsinnuclearproteinimportasanadapterproteinfornuclearreceptorKPNB1	X X
Q15717	ELAVL1	ELAV-like protein 1	Ribonucleoprotein complex; involved in 3′ UTR AUI-ripelement (AURs) dependent MYC, FOS and JUN stabilization	X X
Q69486	MYC	Myc proto-oncogene protein	Transcriptionfactor;involvedincellgrowth,ribosomebiogenesis,proliferation and apoptosis	X X
P62292	KPNA2	Importin subunit alpha-2	FunctionsinnuclearproteinimportasanadapterproteinfornuclearreceptorKPNB1	X X
Q15717	ELAVL1	ELAV-like protein 1	Ribonucleoprotein complex; involved in 3′ UTR AUI-ripelement (AURs) dependent MYC, FOS and JUN stabilization	X X
Q69486	MYC	Myc proto-oncogene protein	Transcriptionfactor;involvedincellgrowth,ribosomebiogenesis,proliferation and apoptosis	X X
P62292	KPNA2	Importin subunit alpha-2	FunctionsinnuclearproteinimportasanadapterproteinfornuclearreceptorKPNB1	X X
Q15717	ELAVL1	ELAV-like protein 1	Ribonucleoprotein complex; involved in 3′ UTR AUI-ripelement (AURs) dependent MYC, FOS and JUN stabilization	X X
Q69486	MYC	Myc proto-oncogene protein	Transcriptionfactor;involvedincellgrowth,ribosomebiogenesis,proliferation and apoptosis	X X
P62292	KPNA2	Importin subunit alpha-2	FunctionsinnuclearproteinimportasanadapterproteinfornuclearreceptorKPNB1	X X
Q15717	ELAVL1	ELAV-like protein 1	Ribonucleoprotein complex; involved in 3′ UTR AUI-ripelement (AURs) dependent MYC, FOS and JUN stabilization	X X
Q69486	MYC	Myc proto-oncogene protein	Transcriptionfactor;involvedincellgrowth,ribosomebiogenesis,proliferation and apoptosis	X X
P62292	KPNA2	Importin subunit alpha-2	FunctionsinnuclearproteinimportasanadapterproteinfornuclearreceptorKPNB1	X X
Q15717	ELAVL1	ELAV-like protein 1	Ribonucleoprotein complex; involved in 3′ UTR AUI-ripelement (AURs) dependent MYC, FOS and JUN stabilization	X X
Q69486	MYC	Myc proto-oncogene protein	Transcriptionfactor;involvedincellgrowth,ribosomebiogenesis,proliferation and apoptosis	X X
P62292	KPNA2	Importin subunit alpha-2	FunctionsinnuclearproteinimportasanadapterproteinfornuclearreceptorKPNB1	X X
Table 1 (continued)

Acc.#	Genename	Description
Q01081	U2AF35	Splicing factor U2AF35k Dasubunit
		Constitutes and enhances splicing by mediating protein-DNA interactions and protein-RNA interactions required for accurate 3′-splice site selection
P26368	U2AF2	Splicing factor U2AF65k Dasubunit
		Splicing of pre-mRNA; required for RNA export; represses TAU exon 10 splicing
P67809	YBX1	Nuclease-sensitive element-binding protein 1
		Pre-mRNA alternative splicing regulation; regulates transcription of MDR1, HLA class II genes and promotes MYC mRNA stability

Proteins are listed in alphabetical order. Acc.# refers to the identifier in the UniProtKB-SwissProt database.

Table 1 continued.

3.2. TP53

Glycogen synthase-3 and PKR have been shown to influence the cell cycle both positively and negatively depending on the context. Among the cell cycle targets that have been demonstrated to be directly phosphorylated by the GSK3 kinases are cyclins D and E (GSK3α and GSK3β) and the dual cyclin phosphatase, CDC25A (GSK3β); each of these phosphorylations favoring ubiquitination and degradation of the target protein, thus resulting in cell cycle arrest [72]. In contrast, while PKR was originally thought of as a tumor suppressor, it was observed that PKR-null mouse embryonic fibroblasts (MEFs) grew slower than normal MEFs and expression of dominant-negative PKR (K296R) in the human glioblastoma cell line T98G resulted in a longer G1 phase, suggesting some role for PKR activity in normal cell proliferation, but direct targets were missing [73]. As will be discussed later both GSK3 and PKR influence the activity of diverse transcription factors which promote transcription of both pro-growth and cell cycle inhibiting factors. Among the common targets of GSK3 and PKR is the MDM2-p53 regulatory complex.

Most studies examining GSK3 and p53 have centered on GSK3β, likely a result of the fact that it is this GSK3 isoform that is prominent in the nucleus. Both positive and negative p53 regulation have been associated with GSK3β, and these discrepancies may be related to the cellular localization of the GSK3β in question. In ovarian cancer, GSK3β represses let-7 miRNA through activating p53 [74]. It is interesting that active GSK3β would target the repression of let-7, a miRNA that targets the AKT kinase family members among other proteins. This might be suggestive of a possible feedback regulation: low AKT leads to increased active GSK3β which subsequently stimulates p53 and the repression of let-7, allowing for increased expression of AKT. Enhancement of p53 through GSK3β activation has been shown to occur through acetylation of p53 on K120, resulting in stabilization of p53 [75]. The reported mechanism was dependent on GSK3-dependent phosphorylation of the histone acetylase Tip60 on S86 and increased acetylase activity toward p53. In addition, GSK3β-dependent phosphorylation of S376 leads to enhanced p53 activity (Fig. 2A, a) [76]. In contrast, GSK3β has also been shown to result in p53 degradation. The E3 ligase MDM2 (HDM2) is responsible for the ubiquitination of p53, resulting in its subsequent degradation by the proteasome. Phosphorylation of S240 and S254 in murine cell lines was reported to lead to MDM2 stabilization and p53 degradation, a process that was instrumental for promoting apoptosis following ionizing radiation exposure [77]. Loss of GSK3β or use of an isomeric specific inhibitor was shown to result in p53 accumulation and protection from radiation-induced damage; thus loss of GSK3 activity is protective against radiation-induced DNA damage [77,78]. Under physiological conditions it is usually AKT activation that results in the inhibition of GSK3 following ionizing radiation exposure (Fig. 2A, b).

Likewise, PKR has been demonstrated to both positively and negatively influence p53. Originally, activation of PKR was shown to be associated with p53 expression and transcriptional transactivation of p53 associated genes [50,79]. Studies in a PKR-null background also demonstrated that S18 phosphorylation was diminished [79]. Later studies by Cuddihy et al. indicated that PKR could directly phosphorylate p53 on S392 resulting in its stability [80]. Most recently, Bennett et al. reported that activation of the PACT/PKR pathway resulted in the association of the SUMO E2 ligase Ubc9 with p53 and the subsequent
3.4. c-Myc

The MYC transcription factor is a critical proto-oncogene for cellular growth and differentiation. In addition, to being indispensable for the first steps in ribosome biogenesis, the synthesis of ribosomal RNAs, and protein synthesis, MYC is also critical to cellular differentiation and the regulation of apoptosis [102]. While MYC is influenced by the PI3K-AKT-mTOR pathway through multiple mechanisms, it is also subject to direct control by GSK3 through phosphorylation. Phosphorylation of MYC on TS8, by GSK3α/β, and on S62, by GSK3α/β and other kinases (DYRK2, CDK2 and CDK5) enhances the transcriptional transactivating activity of MYC but at the same time functions to prime a negative regulatory mechanism [103–105]. Phosphorylation of TS8 in particular allows for the Fbw7 F-box proteins of the SCF-type ubiquitin ligase to associate with MYC. Association of MYC with Fbw7α and the ubiquitin protease Ubc28 in the nucleus favor MYC stability and transcriptional activity. In contrast, in the nucleolus, MYC phosphorylated on TS8 associates with Fbw7γ and is degraded, thus providing a control mechanism over MYC-induced transcription, which is dependent on Fbw7 isoform expression [104]. As is observed with TAU, the interplay between phosphatase-dependent dephosphorylation (TS8 and S62), O-GlcNacylation (TS8) and phosphorylation (TS8 and S62) plays a major role in MYC activity (Fig. 3A) [103,104,106,107].

Similarly, PKR also regulates the expression of MYC, but not through direct phosphorylation. Diverse groups have demonstrated that PKR influences the expression of c-myc through the stimulation of nuclear factor (NF)-κB signal transducer and activator of transcription (STAT) transcription factors (Fig. 3B, a) [49,108]. Previous work examining the effects inhibiting PKR kinase activity in acute leukemia cells with a small molecule inhibitor demonstrated that loss of PKR activity could both enhance MYC expression and influence the isoform of MYC expressed. Overexpression of PKR was shown to favor p64 MYC expression while siRNA-mediated knock-down of PKR favored p67 MYC expression (Fig. 3B, b and c) [46]. This is an interesting point as the p64 isoform of MYC is initiated from a standard AUG start codon; while in contrast, the p67 isoform is produced from a non-canonical CUG start codon and encodes an additional 15 amino acids at the amino terminus. Both MYC isoforms, p64 and p67, target E-box sites in MYC responsive promoters, but only p67 can also target C/EBP elements, thus leading to the transcription of an additional set of responsive genes (Fig. 3B, c) [46,109]. It has been suggested that the ratio p64/p67 dictates whether MYC expression favors growth and proliferation or stimulates the expression of pro-apoptotic factors, with p64 favoring proliferation and p67 favoring growth arrest [46,109]. As the difference is these isoforms appears to be an effect of altered translation initiation, it might be assumed that PKR activity can influence additional aspects of translation initiation beyond that of simply eIF2α phosphorylation. Moreover, this might also suggest that the loss of PKR may stimulate a feedback control through MYC isoform expression to limit growth and proliferation of cells that do not have the necessary safeguards in place to monitor translation initiation.

3.5. NF-κB

Nuclear factor-κB (NF-κB) consists of hetero- or homodimers derived from five different subunits: p65/RelA, p50 (processed from p105), p52 (processed from p100), RelB and c-Rel. The genes preferentially induced differ according to the hetero- or homodimer present. The NF-κB family regulates the expression of numerous genes involved in cell cycle progression (cyclin D1 and c-MYC), apoptosis inhibition (c-IAP1/2, BCL-X, and A20) oxidation-reduction regulation and inflammation (COX2, GADD45β, HO-1, IL-6, iNOS, MMP-9, MnSOD and RANTES) [110]. Under most situations the regulation of NF-κB relies on subunit binding to the inhibitory proteins IkB-α and -β. These proteins maintain NF-κB localized to the cytoplasm. Following stimulation, IkB proteins are phosphorylated by the IkB kinase or IKK complex. This phosphorylation leads to dissociation between IkB and NF-κB, the targeting of IkB to the proteosome for degradation, and translocation of the NF-κB dimer to the nucleus (Fig. 4) [110]. In
addition to this level of regulation, the NF-κB proteins can also be post-translationally modified bringing about changes in their activity and stability. NF-κB homo- and heterodimer activation by PI3K-AKT-mTOR signaling occurs on many levels, including AKT-dependent modification of IKKα on Thr23, which, rather than stimulating IκB degradation, seems to stimulate the transactivating domain of p65/RelA [111,112]. The effect of AKT on IKKα also regulates the processing of NF-κB p100 to p52 [113,114]. Downstream targets of AKT can also influence NF-κB activity (Fig. 4). The mTOR complex can stimulate IKK activity; IKK in turn has been demonstrated to feedback on mTOR activity through the phosphorylation of the mTOR inhibitor proteins TSC1/2 [115–119]. Additionally, AKT also has the ability to inhibit the formation and activation of certain NF-κB transcriptional complexes through its ability to modify GSK3α/β. As mentioned previously, GSK3-α and -β are often activated in response to inflammatory/stress signaling. GSK3β activity has not only been shown to be required for processing of p105 NF-κB, but also for NF-κB transcriptional activity in the nucleus; the main reason GSK3β−/− mice are embryonic lethal and have a phenotype similar to IKK−/− mice (Fig. 4) [120–128]. This regulation again appears to occur at two levels, phosphorylation of the NEMO subunit of the IKK complex and phosphorylation of p65 or the NF-κB precursor.
proteins p100 and p105. Phosphorylation of S8, S17, S31 and S43 of NEMO results in protein stabilization favoring kinase activity and downstream activation of NF-κB [129]. However, GSK3β-dependent phosphorylations of NF-κB p65, p100 and p105 have very differing effects on the transcriptional outcome. GSK3β-dependent phosphorylation of p65/RelA on S468 primarily occurs in the nucleus and alters the transcriptional activity, favoring the expression of some responsive genes while suppressing others [130]. In contrast, phosphorylation of NF-κB p100 on S222 suppresses homodimerization of p52 favoring p52/c-REL heterodimers, while phosphorylation of S707 and 711 leads to p100 degradation by the Fbxw7α E3 ubiquitin ligase, liberating non-canonical NF-κB-mediated transcription [131,132]. Phosphorylation of NF-κBp105 on S903 and S907 inhibits the proteolysis of p105 to p50 and primes p105 for degradation, thus reducing p50-mediated transcription (Fig. 4) [120,133]. Although data involving the activation status of NF-κB in GSK3α−/− mice have not been reported nor has GSK3α-dependent phosphorylation of NF-κB transcription factors, some reports have suggested GSK3α activity may also play a role in NF-κB nuclear functions, with its loss having severe consequences on survival and proliferation (Fig. 4) [134].

As mentioned above, PKR activation often leads to increased nuclear GSK3β activity. Although the outcome of PKR-mediated modification of GSK3β on NF-κB associated transcription has not been determined, it is interesting to note that many of the same NF-κB transcribed genes that are repressed in PKR-null fibroblasts or by overexpression of catalytically-dead PKR are also inhibited in GSK3β-null fibroblasts and cells overexpressing kinase defective GSK3β mutants (Fig. 4 and Table 3) [57,121,124,127,135–138].

The role of PKR in regulating NF-κB-dependent transcription was first suggested when it was discovered that dsRNA and IFNβ activate NF-κB DNA binding [139–141]. Later, studies reported that expression of DN-PKR blocked dsRNA and IFNβ activation of NF-κB [142,143]. Conclusive evidence was finally demonstrated by the inability of TNFα to stimulate NF-κB translocation and DNA binding activity in PKR−/− cells [144,145]. Exactly how PKR induces the activation of NF-κB is somewhat still debated. Originally, PKR was thought to directly phosphorylate inhibitor κB (IκB)-α resulting in its release of NF-κB and subsequent proteosomal degradation [142,146]. This idea was later challenged by the discovery that PKR associated with the IKK complex in order to activate NF-κB transcription [147,148]. Other data challenged whether PKR catalytic activity was even need at all, as truncated forms of PKR consisting of the amino terminus were shown to associate with the IKK complex and stimulate IκBβ phosphorylation [149,150]. Similarly, kinase-deficient mutants of PKR were reported to associate with the IKK complex and induce NF-κB; while other reports suggested that kinase activity was required [151,152]. Much of this discrepancy was solved when Donze et al. published a seminal paper demonstrating that PKR, regardless of catalytic activity, could induce the transcriptional activation of NF-κB and the synthesis of some NF-κB-dependent transcripts, but the transcriptional activity of NF-κB and the transcription of additional NF-κB-dependent genes was greatly potentiated in the presence of active PKR kinase [57]. This suggested that both PKR association with the IKK complex and PKR catalytic activity are important for PKR-mediated effects on NF-κB. It should be stated at this point that PKR and its associated catalytic activity mainly favor p65NF-κB-containing transcription complexes. To this end the current understanding is that PKR activity is required for the full effects of PKR on NF-κB-mediated transcription, by both influencing IκB expression and phosphorylation/release as well as later points, such as enhancing the nuclear activity of GSK-3β (Fig. 4) [50,147]. A list of NF-κB-induced genes/proteins dependent on PKR and GSK3β is presented in Table 3.

3.6. C/EBP

Similar to MYC, both GSK3α/β and PKR influence CCAAT-enhancer binding transcription factor proteins, C/EBPα and C/EBPβ through phosphorylation and alternative translation, respectively. These transcription factors are essential for the differentiation of hepatocytes, adipocytes, and myeloid progenitors as well as tissues of the lung and placenta [153,154]. Through association with IRE elements, C/EBP transcription factors can regulate gluconeogenesis and lipogenesis programs in the liver to balance metabolic energy demand and storage. Of significant importance is the activation of these transcription factors under stress and inflammation, resulting in cellular differentiation and energy homeostasis. C/EBPα is expressed as either a full-length (p42) or truncated (p30) protein [153]. Although both forms contain sites for interaction with additional transcription factors, only p42 contains the transactivation domain [153]. In the hematopoietic compartment, C/EBPα is required for normal granulocyte differentiation and C/EBPα−/− mice have a loss of myeloid maturation accompanied by blast accumulation [153,155]. Additionally, C/EBPα is mutated or repressed in many other hematologic malignancies [153,156,157]. Interestingly, expression of p30 C/EBPα increases the expression and activity of the Ubc9 ubiquitin ligase toward p42 C/EBPα, resulting in p42 degradation; thus blocking differentiation in CD34+ hematopoietic stem cells,
In many ways similar to C/EBPα, C/EBPβ is expressed as one of three forms: p38, p33 and p20, and shares many overlapping functions with C/EBPα; but unlike C/EBPα, it promotes the proliferation of a number of cell types, with the noted exception of T-lymphocytes whose proliferation is blocked by C/EBPβ-mediated MYC repression [153,159]. The full-length form is most associated with regulating the expression of genes involved in the immunologic response and inflammation while the p33 isoform is associated with gene transcription in activated macrophages, the CD4+ T-cell response, and diverse aspects of intracellular innate immunity. The shortest form, p20, functions as a dominant-negative factor when bound to p33 and has been best associated with osteoblast differentiation and osteoclastogenesis. Interestingly, whereas the loss of C/EBPα transcriptional activity is associated with tumorigenesis, loss of C/EBPβ is not [25,153,160,161].

In humans, the GSK3 kinases phosphorylate T226, T230 and S234 in C/EBPα and T226 and S231 in C/EBPβ, which is proposed to enhance their transcriptional activity favoring among other things adipogenesis and hematopoietic differentiation [162,163]. In contrast, stimulation of the PI3K-AKT-mTOR pathway following stimulation of insulin-related growth factor receptor (IGF-1R), or other growth factor receptors, leads to GSK3 inhibition through AKT-dependent phosphorylation of S21/S9 and the suppression of differentiation programming with a concomitant increase in glucose uptake/usage and proliferation. Zeng et al. reported that C/EBPα activation can contrast this activity through the induction of miR-122 expression, which represses IGF-1R expression [164]. In contrast to the control mechanisms mediated by GSK3α/β, phosphorylation of eIF2α by PKR in response to inflammatory/stress signaling favors the translation of full-length C/EBPα and β [154].

4. Regulation of alternative splicing

In the past several years proteomic studies examining the interactome and phosphoproteome have begun to associate a diverse number of kinases to cellular processes to which they were previously not associated; this is no truer than for GSK3α/β and PKR. As stated above, both PKR and GSK3α/β are considered major regulators of ribosome biogenesis and translation by directly or indirectly influencing these processes at multiple levels (for more detail information see Ref. [51]). More recently a role for both these kinases in alternative splicing has been documented. Blalock et al. previously reported that multiple proteins involved in RNA processing and alternative splicing were associated with PKR in the nucleus [46]. The study examined which proteins were complexed with nuclear PKR when active and when inactive (in the presence of the PKR inhibitor). Proteins associated with RNA processing/splicing that interacted only with the active PKR complex included the EIF4A3 (or DDX48), HNRNPM, SNRPA1, SON, SRSF2, THOC2, U2AF1, U2AF2, and YBX1. Those associated with the inactive PKR complex included COIL, SNRPD2, SNRPD3, SRRM1 and TRA2B (Table 4). Interestingly, several RNA binding proteins were found to be associated with both active and inactive PKR complexes, nucleophosmin (NPM1) and the adenosine deaminase acting on dsRNA (ADAR)-1 were the only proteins with a known role in splicing/alternative splicing that were identified in both active and inactive PKR complexes [46]. This suggested that PKR activity could significantly affect assembly and composition of the splicing complex, thereby changing the alternatively spliced RNA landscape (Fig. 5). A shortcoming of this study was the lack of identifying direct targets of PKR phosphorylation in these complexes. More recently, Shinde et al. reported in a phosphoproteome study examining GSK3α/β-dependent signaling in wild-type and gsk3α/β double-knockout mouse embryonic stem cells (ESCs) that GSK3α/β regulate the phosphorylation of a number of proteins involved in RNA splicing, going on to both define the sites of GSK3α/β-dependent phosphorylation as well as a number of transcripts that are alternatively spliced in the presence of GSK3α/β activity [165]. The proteins whose phosphorylation was reduced in the gsk3α/β double-knockout ESCs and the sites of phosphorylation that were identified are as follows: BCLAF1, CELF1, NPM1, PPP4R2, RBMSA (S166 and/or S168), RBM39 (S129), SRRM1, SRRM2 (S1864), TRA2B (S39 and S83 and/or S85 and/or S87), SRSF9 (S190), and WBP11. While this data does not necessarily indicate direct phosphorylation of all these proteins by GSK3α/β, it does indicate that phosphorylation of these proteins is regulated by GSK3α/β. Additionally, GSK3α and GSK3β have also been demonstrated to interact with U2AF1 (α and β), U2AF2 (α only) and YBX1 (α and β), but phosphorylation of these proteins by GSK3α/β has not been observed (Fig. 5 and Table 4) [165].
Gene/protein	Stimulation Method	Function	Ref. #
A1/Bfl-1	TNFα stimulation in PKR+/+ and −/− MEFs Western blot	A1 is an anti-apoptotic BCL-2 family protein that binds BAX, thus inhibiting cytochrome c release and caspase 3 activation.	[49,135]
Cyclin D1	TNFα stimulation in PKR+/+ and −/− MEFs Western blot	Cyclin D1 in association with CDK4/6 phosphorylate the retinoblastoma protein (Rb), resulting in the release of E2F and transcription of cell cycle promoting genes. Cyclin D1 is associated with enhanced cell proliferation.	[49,135,136]
FLIP	TNFα stimulation in PKR+/+ and −/− MEFs; treatment of pancreatic cancer cell lines with a pharmacological inhibitor of GSK3β siRNA Western blot	FLICE inhibitory protein associates with caspase-8, FADD, caspase-3, TRAF1, and TRAF2. Expression of FLIP in cells allows the cell to resist apoptosis.	[49,135]
MMP-9	TNFα stimulation in PKR+/+ and −/− MEFs Western blot	Matrix metalloproteinase 9 is a member of a family of extracellular proteases that degrade Type IV and V collagens. MMP9 has been shown to be involved in vasculization, tissue remodeling, angiogenesis, and migration. MMP9 was shown to have a significant role in mobilization of hematopoietic stem cells from the bone marrow induced by IL-8.	[49,135]

*Descriptive information of the genes and proteins above was taken from the Mendelian Inheritance in Man website available through the National Center for Biotechnology Information (NCBI), National Institutes of Health (NIH).
Table 4
Splicing-related proteins shared by GSK3α/β and PKR.

Acc.#	Gene name	Description	Function	In association with	
Q9NYF8	BCLAF1	Bcl-2-associated transcription factor 1	Death-promoting transcriptional repressor; interacts with BCL2-related proteins and adenovirus E1B protein. Can repress pre-mRNA processing.	X	X³
P06748	NPM1	Nucleophosmin	Involved in cellular division, ribosome biogenesis and ribosomal export; substrate for EIF2AK2 and GSK3. Can repress pre-mRNA processing.	X	+/-
Q8IYB3	SRRM1	Serine/arginine repetitive matrix protein 1	Part of pre- and post-splicing multiprotein mRNP complexes	X	X³
P62995	TRA2B	Transformer-2 protein homolog beta	Sequence-specific RNA-binding protein which participates in the control of pre-mRNA splicing; promotes TAU 10 exon inclusion	X	-
Q01081	U2AF1	Splicing factor U2AF 35 kDa subunit	Constitutive and enhancer-dependent splicing by mediating protein-protein interactions and protein-RNA interactions required for accurate 3’ splice site selection	X³ᵇ	+
P26368	U2AF2	Splicing factor U2AF 65 kDa subunit	Splicing of pre-mRNA; required for mRNA export; regulates troponin exon 5 inclusion; represses TAU exon 10 splicing	X³	+
P67809	YBX1	Nuclease-sensitive element-binding protein 1	Pre-mRNA alternative splicing regulation; regulates transcription of MDR1, HLA class II genes and promotes MYC mRNA stability	X³ᵇ	+

Identified proteins are listed in alphabetical order.
Acc. # refers to the identifier in the UniProtKB-SwissProt data base.
Gene name is that used by the UniProtKB-SwissProt data base.
Function and Involvement in disease were retrieved in the UniProtKB data base.
Superscript “a” and “b” indicate whether the protein is known to interact with GSK3α or GSK3β, respectively.
“+” and “-” indicate whether the protein was found complexed with active PKR or inactive PKR.
Data were compiled from the following sources:
1. National Institute for Biotechnological Information (NCBI) National Institutes of Health (NIH) Gene Database.
2. Blalock, WL et al. (2014) J Cell Physiol. Ref # [46].
3. Shinde, MY et al. (2017) J Biol Chem. Ref # [165].
Interestingly, activity of both PKR and GSK3α/β has been associated with hyperphosphorylated TAU, neural filamentous tangles and Alzheimer’s disease. In addition, the inclusion or exclusion of TAU exon 10 through alternate splicing results in TAU isoforms containing either 3 or 4 microtubule repeat domains (3R or 4R). In TAU-related pathologies, or TAUopathies, the 3R/4R ratio is disturbed with an increase in the 3R:4R ratio [166]. Of the proteins mentioned above that have a role in TAU exon 10 splicing, U2AF2, which represses exon 10 inclusion, interacts with GSK3α and was found in association with active nuclear PKR [46,165]. In contrast, TRA2B which promotes the inclusion of TAU exon 10, as mention above, is phosphorylated in response to active GSK3β/β and was found to interact with inactive PKR in the nucleus (Table 4) [46,165]. Also associated with inactive nuclear PKR was the serine/arginine-rich splicing factor (SRSF)-6, which also represses the inclusion of TAU exon 10 [46]. Previous studies have demonstrated that GSK3β could phosphorylate SC35, a serine/arginine splicing factor that favors TAU exon 10 inclusion [166]. The GSK3β phosphorylated SC35 is redistributed in the nucleus and TAU exon 10 inclusion is repressed. These data seem to support a combined role for PKR and GSKα/β in the regulation of alternate splicing of TAU transcripts and the production of isoforms that have been linked to neurodegenerative pathologies.

Recent data also suggest that mRNA transcripts of both kinases undergo alternative splicing. In several organisms, GSK3β has been found to be expressed in multiple alternatively spliced forms [167,168]. In humans, two alternatively spliced forms have been observed. The primary form consists of 420 amino acids and has a predicted molecular weight of 46.7 kDa, while the alternative spliced form contains an additional 13 amino acids and has a predicted molecular weight of 48 kDa. Isoform 2, which shows reduced binding to AXIN1 and reduced kinase activity toward TAU, has been predicted to have a role in axon and neurite growth [168]. Similarly, PKR, which previously was not thought to undergo significant alternative splicing, has recently been found to produce more than 10 different alternately spliced forms in osteosarcoma (unpublished data). The significance of these isoforms in the associated pathology is currently under investigation.

Recent data also indicate that the adenosine deaminase acting on double-strand RNA (ADAR) family proteins are significant players in an alternative splicing regulatory network consisting of ADAR1/2, AKT,
Alteration of GSK3α/β and PKR activity can promote disease. The GSK3α/β and PKR interact to maintain cellular homeostasis, but, under altered conditions where their activity is aberrantly stimulated, they can lead to disease. (A) The diagram indicates the relationship between GSK3β signaling and PKR signaling in homeostasis and diverse pathologies, such as diabetes, cancer and neurodegenerative diseases. (B) Coronaviruses (SARS-CoV and MERS-CoV) utilize GSK3 activity for viral replication while inhibiting the ability of PKR to block protein synthesis. Other PKR-dependent signaling is often left intact, enhancing inflammation. While active PKR is denoted as phosphorylated on T446 and T451, only T451 is required for activity. Phosphorylation of T446 as well as numerous additional sites influences the degree of activation. Phosphorylation sites labeled in green (ex., Tyr216-GSK3β) indicate activating or stabilizing modifications; phosphorylation sites labeled in red (ex., Ser51-eIF2α) indicate modifications that are inhibitory to the substrates activity. Lines with arrowhead termini represent promoting effects on the downstream signaling; lines with boxed termini represent inhibitory effects on downstream signaling. pN = SARS-CoV nucleocapsid protein; p4a = MERS-CoV non-structural (NS) protein 4a.
The ADAR proteins are a family of RNA editing enzymes that carry-out the deamination of specific adenosine (A) residues in areas of complex RNA structure, converting them into inosine (I). As inosine is interpreted by the cells molecular machinery as guanine, the A-to-I conversion can alter amino acid coding, change mRNA stability, and alter splice acceptor/donor sites, favoring alternative splicing of transcripts. The ADAR family, which consists of ADAR1 (DSRAD), ADAR2 (ADARB1 or RED1) and ADAR3 (ADARB2 or RED2), are responsible for far the majority of A-to-I editing events in the cell. While ADAR1 and ADAR2 are rather ubiquitously expressed, ADAR3 expression is more restricted to the brain. Of the family members, only ADAR1 and ADAR2 demonstrate deaminase activity [169,170]. As these enzymes operate as homo- and heterodimers, ADAR3 may serve to regulate activity of the other two family members. Likewise, the dimer composition has a great influence on substrate selection and rate of catalysis. Moreover, multiple forms of ADAR1 and ADAR2 resulting both from alternate transcriptional initiation and alternative splicing have been documented [170–173]. It was previously established in diverse studies that ADAR1 interacts with PKR and has the ability to suppress PKR activity [174,175]. Our group has also found that nuclear PKR associates with ADAR2. Whether this interaction is direct or mediated through ADAR1 is currently not known, and the full significance of the PKR-ADAR1/2 interaction in the nucleus has not been determined. What is known about this interaction is that ADAR1 and ADAR2 in the nucleus are found either in AKT containing complexes or PKR containing complexes, as no dual AKT-PKR complexes with ADAR1/2 are observed. Recently, Baveloni et al. reported that AKT could regulate ADAR1 and ADAR2 through the phosphorylation of a conserved threonine residue in the catalytic domain [176,177]. Mimicking phosphorylation by site-directed mutagenesis of this site in either ADAR1 or ADAR2 resulted in a differential decrease in editase activity toward tested substrates (Fig. 5). Conversely, it was observed that phosphorylation of the ADARs also had an effect on AKT expression. To date whether, PKR can phosphorylate ADAR1 or ADAR2 has not been determined; a result of few studies examining the substrate specificity of the kinase in question. The importance of this is what is now evident is that a regulatory balance is apparently at play whereby AKT- and PKR-dependent signaling influence ADAR-de- pending and GSK3α/β activity. Both ADAR and GSK3α/β then have a tremendous influence on spliceosome composition and alternative splicing; ADAR though direct editing of splice donor/acceptor sites or alteration of transcripts encoding additional splice regulators and GSK3α/β through the modification of spliceosome components and splicing regulatory proteins. Similarly, both AKT and PKR are known to alter the composition of the spliceosome. Fig. 5 depicts the balance that must be maintained between PKR and AKT to achieve proper mRNA splicing in the cell and how metabolic stimulation of AKT or inflammatory activation of PKR can have a significant influence on alternative splicing.

5. Cancer, neurodegenerative diseases, diabetes/metabolic disorders and viral infection

Chronic inflammation and stress have increasingly become associated with disease. Most degenerative pathologies and cancer each have a significant inflammatory component. What has remained elusive is, much like the chicken or the egg, which comes first. Is chronic inflammation a result of the disease or is the disease a result of chronic inflammation. Insulin/insulin-related growth factor signaling may prove the best example. Normal insulin, signaling through the insulin receptor (IR) or insulin-like growth factor (IGF)-1 signaling through the IGF1 receptor (IGF-1R) results in PI3K-AKT-mTOR pathway activation among others. Stimulation of this pathway and other secondary pathways lead to increased protein synthesis, enhanced glucose uptake and metabolism, glycogen storage, and mitochondrial respiration; thus producing the biomolecules necessary for cell growth and proliferation (amino acids, lipids, nucleic acids, ATP). At the same time, increased metabolism generates reactive oxygen species (ROS) and toxic metabolic by-products that result in the stimulation of stress/inflammatory pathways to protect the cell from subsequent damage. In addition, transient imbalances in synthetic pathways, such as ribosome biogenesis and translation, result in the stimulation of stress response pathways as a mode to re-establish equilibrium [51]. The kinases PKR and GSK3α/β each become re-activated in response to insulin/IGF1-induced metabolic stress and either directly phosphorylate and/or reduce the synthesis of the insulin receptor substrates (IRS)-1 or IRS2, inhibiting IR and IGF-1R ligand-mediated stimulation of PI3K, thereby making the cells resistant to insulin and IGF1 [178–180]. As insulin resistance is the main feature defining diabetes mellitus, it is not surprising that constitutive activation of PKR and GSK3α/β is observed in obese/diabetic patients [181,182]. In fact, the feeding of high fat diets in mice has been observed to result in constitutively elevated levels of active PKR and GSK3α/β, favoring insulin resistance [180,181]. In addition to IRS1 and IRS2, the active PKR and GSK3α/β kinases target other downstream proteins that tweak additional pathways regulating transcription, cell division, ribosome biogenesis and translation (Fig. 6A).

In the case of Alzheimer’s disease, a chronic inflammatory state leads to improper protein folding, activation of the unfolded protein response (UPR), and continuous stimulation of GSK3α/β and PKR kinases, resulting among other things in alternate splicing and phosphorylation of TAU, the formation of fibrogenous neural tangles and neuronal cell death, favoring disease progression [32,183]. Both PKR and GSK3 have become prime candidates for the design of targeted therapies to AD. Those directed toward inhibiting GSK3 have shown some promise in Phase II trials but only at early stages of the disease [184]. In contrast, therapies targeting PKR have thus far shown promising results in in vitro and animal studies, but have yet to enter clinical trials mainly as a result of the lack of critical attention given to PKR in the past [85,185]. This stress signaling circuit has made it clear that AD, like many other inflammatory related diseases may result from chronic systemic stress and not necessarily local stresses [186]. Empirical evidence supports this conclusion as metabolic disorders like diabetes correlate with enhanced risk of Alzheimer’s and various cancers (Fig. 6A) [187].

Cancer much like degenerative diseases has a chronic inflammatory component. It has been proposed that the relation between cancer and inflammation/stress is that chronic inflammation and stress lead to a selective pressure on the tissues of an organism with survival dependent on random mutations. This is no more clearly evident than in bone marrow failure disorders, where genetic or idiopathic stresses contribute to the loss of bone marrow progenitors in the early stages. In the later stages this is usually replaced by accumulation of blasts in the periphery and full blown leukemia [25,188]. In many cases, alterations in apoptotic proteins or altered splicing are observed. In cancer, PKR has been suggested to have both a positive and negative role in the disease [25,30,48,189]. What seems evident is that the influence of PKR on diverse cancers is closely associated with its primary cellular location; cytosolic (suppresses tumorigenesis/pro-apoptotic) or nuclear (favors tumorigenesis/progression). Similarly, GSK3α/β have been found to display both tumor promoting and tumor suppressor functions. Enhanced activity, mainly that of GSK3β, has been documented in pancreatic cancer, colorectal cancer and renal cancer while alternative splicing has been reported in leukemia [5]. In contrast, loss of GSK3α/β activity has been associated with skin, lung and breast cancers [5]. What is not clear from many of these studies is the major cellular localization of the GSK3 kinase in question. The importance of this is critical as enhanced nuclear GSK3β activity would be expected to enhance alternative splicing and lead to the degradation of p53, thus favoring genome instability and a pro-tumorigenic climate. On the other hand, active GSK3α/β activity in the cytosol would favor anti-proliferative/homeostasis oriented cellular programming (Fig. 6A).

Under the current global circumstances, it would be a failure to
ignore the role of PKR and GSK3α/β in viral infection. As modulators of the inflammatory response, both PKR and GSK3α/β might be considered innate immune kinases. PKR has long held that role, possibly too well, as the majority of studies over the years have left it labeled simply as an antiviral kinase that autophosphorylates in the presence of dsRNA, thereby lagging far behind the number of studies involving AKT and GSK3. Both kinases are quick to respond to cellular stresses which include among other things viral infection. PKR is the quintessential antiviral kinase. As stated previously, PKR is both a pathogen recognition receptor (PRR) and interferon response gene (ISG); as such it can be activated by viral dsRNAs in a PACT-dependent manner and its expression induced by interferons [19,25,40]. Activation of PKR under these conditions leads to the phosphorylation of eIF2α, the accumulation of stress granules, the suppression of general protein synthesis, and the induction of interferon response factor (IRF) stimulated genes as well as ifnar/β transcription and mRNA stability; thus, in theory, having a negative effect on viral protein synthesis [19,25]. But a number of viruses encode or have found a means to by-pass this checkpoint while still allowing other arms of PKR-mediated signal transduction to continue, thereby turning the activation and synthesis of PKR into a facilitator of the pathology associated with viral infection, as well as in some cases the viral infection itself (see the following Reviews [19,190,191]). Similarly, GSK3α/β are known mediators of the inflammatory response, and GSK3 activity is modulated by certain viruses. In human immunodeficiency virus (HIV) infection, activation of GSK3β is largely responsible for viral associated neuronal cell death and accounts for the main reason why infection with neurotropic viruses such as HIV and herpesviruses are linked to increased risk of developing neurodegenerative disease [192–194]. For other viruses such as influenza A, GSK3 activation has antiviral activity, while in contrast GSK3β activity promotes hepatitis C viral replication and viral particle production [195,196].

Coronaviruses such as severe acute respiratory syndrome coronavirus (SARS-CoV), Mediterranean emerging respiratory syndrome coronavirus (MERS-CoV) and SARS-CoV-2 (COVID-19) are positive-strand RNA viruses that as a family are known for producing a number of unique proteins that repress the cellular antiviral response [197]. In fact, the major pathological manifestations of an enhanced inflammatory response with these viruses result from a delay in IFN induction following infection; this results in an over abundance of proinflammatory monocytes and macrophages and the release of proinflammatory cytokines in the lung, causing tissue damage [198,199]. Previous, investigations have shown that PKR becomes activated in SARS-CoV and MERS-CoV infections, but this activation was reported to have little antiviral effect while it was still able to contribute to apoptosis of infected cells (Fig. 6B) [200–202]. In MERS-CoV infections, the absence of PKR antiviral effects were found to be mediated by the viral accessory protein p4a, which binds to PKR and inhibits its ability to phosphorylate eIF2α, while at the same time leaving other aspects of PKR signaling largely intact [202]. In fact, the targeting of eIF2α phosphorylation more than PKR activity seems to be paramount to coronavirus infection and replication as other non-human coronaviruses both inhibit PKR-dependent phosphorylation of eIF2α as well as enhance the dephosphorylation of eIF2α S51 through a viral-mediated enhancement of GADD34, a component of the PP1 phosphatase [203]. The exact role of PKR in coronavirus infection and the associated pathology is complex, requiring additional clarifying studies.

In addition, the current lack of promising activators or inhibitors of PKR-mediated signaling places specific therapeutic interventions along this line out of immediate reach.

In contrast to PKR, the few studies examining the role of GSK3α/β in coronavirus infection have demonstrated that GSK3 activity has a proviral effect. In SARS-CoV infection, GSK3 activity is required to phosphorylate the viral nucleocapsid protein (N), thus allowing the interaction of the host cell RNA helicase DDX1 with phosphorylated nucleocapsid complexes, which alters the viral polymerase in a manner that favors viral genome replication over viral mRNA transcription [204,205]. Inhibition of GSK3 with a specific inhibitor was shown to block viral replication and reduce the viral titer in vitro [205]. Compounds, targeting GSK3β, such as the orphan drug Tidelgusib, which was given orphan status after phase II trials did not reach the set end points in treating Alzheimer’s disease, may be promising therapeutics to repurpose as antiviral therapies to combat emerging coronavirus diseases like SARS-CoV-2 (Fig. 6B) [206].

6. Conclusions

The GSK3 and PKR kinases control responses from ribosome biosynthesis, translation, cellular division and metabolic regulation placing them at key positions in normal cell homeostasis and pathologies such as cancer, neurodegenerative disease, diabetes mellitus and viral infection. While these kinase share much in common (substrates and signal transduction pathways) as well as have the capability to regulate one another or facilitate/reinforce the signal transduction mediated by the other, there is still a tremendous amount of work to be done to understand the regulatory effects that are specific to each kinase and what upstream signaling dictates the intersection of their mediated signaling. As both kinases have been shown to contribute significantly to diverse inflammatory-related pathologies, the detailed parallel analysis of GSK3α/β and PKR has the possibility to result in the discovery and design of a number of targeted therapies.

CRediT authorship contribution statement

Manuela Piazzi: Visualization, Data curation, Writing - review & editing. Alberto Baveloni: Writing - review & editing. Irene Faenza: Writing - review & editing. William Blaock: Conceptualization, Funding acquisition, Writing - original draft, Writing - review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was supported by grants from the Leukemia Research Foundation (to WLB), the Associazione Italiana per la Ricerca sul Cancro (AIRC)-IG-2015 (Grant number 17137; to WLB).

References

[1] N. Sud, A.C. Rutledge, K. Pan, Q. Su, Activation of the dsRNA-activated protein kinase PKR in mitochondrial dysfunction and inflammatory stress in metabolic syndrome, Curr. Pharm. Des. 22 (2016) 2697–2703.
[2] E. Beurel, S.F. Grieço, R.S. Jope, Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases, Pharmacol. Ther. 148 (2015) 114–131.
[3] P. Duda, J. Winiwskie, T. Wojtowicz, O. Wojcica, M. Jaskiewiczki, D. Drulis-Fajdzas, D. Rakus, J.A. McCubrey, A. Gizaé, Targeting GSK3 signalling as a potential therapy of neurodegenerative diseases and aging, Expert Opin. Ther. Targets 22 (2018) 833–848.
[4] J.A. Marchal, G.J. Lopez, M. Peran, A. Comino, J.R. Delgado, J.A. Garcia-Garcia, V. Conde, F.M. Aranda, C. Rivas, M. Esteban, M.A. Garcia, The impact of PKR activation: from neurodegeneration to cancer, FASEB J. 28 (2014) 1965–1974.
[5] S. Nagini, J. Sophia, R. Mithra, Glycogen synthase kinase: moonlighting proteins with theranostic potential in cancer, Semin. Cancer Biol. 56 (2019) 25–36.
[6] R. Mancinelli, G. Carpino, S. Petrungho, C.L. Mammola, L. Tomaținţă, A. Filippini, A. Facchiano, E. Ziparo, C. Giampietri, Multifaceted roles of GSK-3 in cancer and autophagy-related diseases, Oxidative Med. Cell. Longev. 2017 (2017) 4629495.
[7] F. A. Filippini, A. Facchiano, C. Giampietri, M. Multifaceted roles of GSK-3 in cancer and autophagy-related diseases, Oxidative Med. Cell. Longev. 2017 (2017) 4629495.
[8] F. Takahashi-Yanaga, F. Shiraishi, M. Hirata, Y. Miwa, S. Morimoto, T. Sanaguri, Glycogen synthase kinase-β is tyrosine-phosphorylated by MEK1 in human
M. Piazzì, et al.
BBA - Molecular Cell Research 1867 (2020) 118769
markedly inhibited only after it is prephosphorylated by A-kinase, FEBS Lett. 436 (1998) 28–34.

[89] C. Mailliot, V. Podevin-Dimster, R.E. Rosenthal, N. Sergeant, A. Delacourte, G. Fiskum, L. Buer, Rapid tau protein dephosphorylation and differential rephosphorylation during asphyxial cerebral ischemia and reperfusion, J. Cereb. Blood Flow Metab. 20 (2000) 543–549.

[90] S. Illenberger, Q. Zheng-Fischhofer, U. Preus, K. Stamer, K. Baumann, B. Trinczek, J. Bierrant, R. Godemann, E. Mandekol, E. Mandekol, The endogenous and cell cycle-dependent phosphorylation of tau protein in living cell: implications for Alzheimer's disease, Mol. Biol. Cell 9 (1998) 1495–1512.

[91] A. Schneider, J. Bierrant, M. von Bergen, E. Mandekol, E. Mandekol, Phosphorylation that degrades tau protein from microtubules (Ser262, Ser214) also protects it against aggregation into Alzheimer paired helical filaments, Biochemistry 38 (1999) 3549–3558.

[92] F. Liu, B. Li, K.J. Tung, I. Grundke-Iqbal, K. Iqbal, C.X. Gong, Site-specific effects of tau phosphorylation on detergent assembly and self-aggregation, Eur. J. Neurosci. 26 (2007) 3429–3436.

[93] F. Liu, Z. Liang, J. Shi, D. Yin, E. El-Akkad, I. Grundke-Iqbal, K. Iqbal, C.X. Gong, PKA modulates GSK-3beta- and cdk5-catalyzed phosphorylation of tau in situ and kinase-specific manners, FEBS Lett. 580 (2006) 6269–6275.

[94] F. Liu, K. Iqbal, I. Grundke-Iqbal, C.X. Gong, Involvement of aberrant glycosylation in phosphorylation of tau by cdk5 and GSK-3beta, FEBS Lett. 530 (2002) 209–214.

[95] A. Leroy, I. Landrieu, I. Huvent, D. Legrand, B. Codivelje, M.J. Wieruszewski, G. Lippens, Spectroscopic studies of GSK3b(beta) phosphorylation of the neuronal tau protein and its interaction with the N-terminal domain of apolipoprotein E, J. Biol. Chem. 285 (2010) 33434–33444.

[96] W. Qian, J. Shi, X. Yin, K. Iqbal, I. Grundke-Iqbal, C.X. Gong, F. Liu, PPA2 regulates tau phosphorylation directly and also indirectly via activating GSK-3beta, J. Alzheimers Dis. 19 (2010) 1221–1229.

[97] A. Sengupta, M. Novak, I. Grundke-Iqbal, K. Iqbal, Regulation of phosphorylation of tau by cyclin-dependent kinase 5 and glycogen synthase kinase-3 at substrate level, FEBS Lett. 580 (2006) 6255–6264.

[98] A. Sengupta, J. Kahat, M. Novak, Q. Wu, I. Grundke-Iqbal, K. Iqbal, Phosphorylation of tau at both Thr 231 and Ser 262 is required for maximal inactivation of its binding to microtubules, Arch. Biochem. Biophys. 357 (1998) 299–309.

[99] A.J. Moszczynski, M. Gohar, K. Volkening, C. Leystra-Lantz, W. Strong, M.J. Strong, Thr175 phosphorylated tau induces pathologic fibril formation via GSK3beta-mediated phosphorylation of Thr231 in vitro, Neurobiol. Aging 36 (2015) 1590–1599.

[100] Y. Talebaysheh, E. Planel, D.H. Chiu, S. Sato, T. Miyasaka, N. Sahara, M. Murayama, N. Kuchi, K. Yoshikoa, R. Rivka, A. Takashima, c-Myc(−) neuronal kinase hyperphosphorylates R406W tau at the PHF-1 site during mitosis, FASEB J. 20 (2006) 762–764.

[101] D.O. Azora, R.H. Robeson, D. Frost, B. Meechooet, G.R. Brautigam, C. Dickey, C. Beaudry, G.D. Banz, D.R. Hole, J.A. Hernandez, K.M. Bisan, L. Gwinn, A. Grover, J. Rogers, E.M. Reiman, M. Hutton, D.A. Stephan, S. Moussev, T. Dunckley, High-content siRNA screening of the kinase identifies kinases involved in Alzheimer’s disease-related tau hyperphosphorylation, BMC Genomics 11 (2010) 25.

[102] H. Terayama, A. Marints, Unmasking the mysteries of MYC. J. Immunol. 202 (2019) 2517–2518.

[103] M.A. Gregory, Y. Qi, S.R. Hahn, Phosphorylation by glycogen synthase kinase-3 controls c-myc proteolysis and subnuclear localization, J. Biol. Chem. 278 (2003) 35861–35869.

[104] M. Welcker, A. Orian, J. Jin, E.J. Grim, J.W. Harper, R.N. Eisenman, B.E. Clurman, The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation, Proc. Natl. Acad. Sci. U. S. A. 101 (2004) 17516–17521.

[105] H.R. Seo, J. Kim, S. Bae, J.W. Soh, Y.S. Lee, Cdk5-mediated phosphorylation of c-Myc on Ser62 is essential in transcriptional activation of cyclin B1 by cyclin G1, J. Biol. Chem. 283 (2008) 15601–15610.

[106] K. Kamemura, B.K. Hayes, F.I. Comer, G.W. Hart, Dynamic interplay between O-glycosylation and O-phosphorylation of nucleocytoplasmic proteins: alternative degradation and independent pathways, EMBO J. 19 (2000) 263–272.

[107] J.B. Cantley, O.D. Azorsa, R.H. Robeson, L. Sealy, The alternately initiated c-Myc proteins control subnuclear localization of their epsilon-subunit and their functions in vivo, EMBO J. 20 (2001) 4349–4359.

[108] K.L. Kulikov, K.A. Boehme, L. Blattert, Glycogen synthase kinase 3-dependent phosphorylation of Gα12 modulates cAMP accumulation, Mol. Cell. Biol. 25 (2005) 7110–7120.

[109] O. Kwon, K.A. Kim, L. He, S.O. Kim, M.S. Kim, E.Y. Cha, B.D. Yoon, D.E. Sok, D. Yoo, J.S. Ahn, J. Lee, Ionizing radiation can induce GSK-3 epsilon-dependent phosphorylation and NF-kappaB transcriptional transactivation in ATM-deficient fibroblasts, Cell. Signal. 20 (2008) 602–612.

[110] A.R. Cuddihy, S. Li, N.W. Tam, A.H. Wong, Y. Taya, N. Abraham, J.C. Bell, A.E. Korolomias, DLG3-dependent RNA-activated protein kinase PKR enhances transcriptional activation by tumor suppressor p53, Mol. Cell. Biol. 19 (1999) 2475–2484.

[111] A.R. Cuddihy, A.H. Wong, N.W. Tam, S. Li, A.E. Korolomias, The double-stranded RNA activated protein kinase PKR physically associates with the tumor suppressor p53 and phosphorylates human p53 on serine 392 in vitro, Oncogene 18 (1999) 2690–2702.

[112] R.L. Bennett, Y. Pan, J. Christian, T. Hui, W.S. May Jr., The RAX/PACT-PRK stress response pathway promotes p53 sumoylation and activation, leading to G1 arrest, Cell Cycle 11 (2012) 407–417.

[113] J.K. Mitchell, B.R. Midkiff, B. Israelov, M.J. Evans, R.E. Lanford, C.M. Walker, S.M. Lemon, D.R. McGivern, Hepatitis C virus indirectly disrupts DNA damage-induced p53 response by activating p38 mitogen-activated protein kinase, J. Virol. 72 (1998) 6159–6162.

[114] V. Balaji, S. Kaniyappan, E. Mandekol, W. Yang, E.M. Mandekol, Pathological misregulation of endogenous MAPK/Tau in neurons caused by failure of protein degradation systems, Autophagy 14 (2018) 2139–2154.

[115] S.A. Park, S.I. Ahn, J.M. Gallo, Tau mis-splicing in the pathogenesis of neurodegenerative disorders, BMB Rep. 49 (2016) 405–413.

[116] J. Hugon, F. Mouton-Liger, J. Dumurgier, C. Paquet, PKR involvement in Alzheimer’s disease, Alzheimers Res. Ther. 9 (2017) 83.

[117] M. Llorens-Martín, J. Jurado, F. Hernandez, J. Avila, GSK3beta, a pivotal kinase in Alzheimer disease, Front. Mol. Neurosci. 7 (2014) 46.

[118] T.J. Singh, I. Grundke-Iqbal, W.Q. Wu, V. Chauhan, M. Novak, E. Koztepe, K. Iqbal, Protein kinase C and calcium/calmodulin-dependent protein kinase II phosphorylate three-repeat and repeat-four tau isoforms at different rates, Mol. Cell. Biochem. 168 (1997) 141–148.

[119] J.Z. Wang, Q. Wu, A. Smith, I. Grundke-Iqbal, K. Iqbal, Tau is phosphorylated by GSK3 at several sites found in Alzheimer disease and its biological activity.
passive early or adaptive translation, each cell can have different levels of translation efficiency, which can be modulated by various cellular and environmental factors. This regulation is crucial for the cell's survival and homeostasis, as well as for the adaptation to different physiological conditions. Therefore, understanding the mechanisms of translation regulation is essential for the development of new therapeutic strategies against various diseases.