OPERATOR SYMBOLS

VLADIMIR B. VASILYEV

Abstract. We consider special elliptic operators in functional spaces on manifolds with a boundary which has some singular points. Such an operator can be represented by a sum of operators, and for a Fredholm property of an initial operator one needs a Fredholm property for each operator from this sum.

1. Introduction

This paper is devoted to describing structure of a special class of linear bounded operators on a manifold with non-smooth boundary. Our description is based on Simonenko’s theory of envelopes [3] and explains why we obtain distinct theories for pseudo-differential equations and boundary value problems and distinct index theorems for such operators.

1.1. Operators of a local type. In this section we will give some preliminary ideas and definitions from [3].

Let B_1, B_2 be Banach spaces consisting of functions defined on compact m-dimensional manifold M, $A : B_1 \to B_2$ be a linear bounded operator, $W \subset M$, and P_W be a projector on W i.e.

$$(P_W u)(x) = \begin{cases}
 u(x), & \text{if } x \in W; \\
 0, & \text{if } x \notin W.
\end{cases}$$

Definition 1. An operator A is called an operator of a local type if the operator

$$P_U A P_V$$

is a compact operator for arbitrary non-intersecting compact sets $U, V \subset M$.

2010 Mathematics Subject Classification. Primary: 47A05; Secondary: 58J05.

Key words and phrases. Elliptic operator, Local representative, Enveloping operator.
1.2. Simple examples. These are two simplest examples for the illustration.

Example 1. If A is a differential operator of the type

$$(Au)(x) = \sum_{|k|=0}^{n} a_k(x) D^k u(x), \quad D^k u = \frac{\partial^k u}{\partial x_1^{k_1} \cdots \partial x_m^{k_m}},$$

then A is an operator of a local type.

Example 2. If A is a Calderon–Zygmund operator with variable kernel $K(x, y) \in C^1(\mathbb{R}^m \times (\mathbb{R}^m \setminus \{0\})$ of the following type

$$(Au)(x) = \text{v.p.} \int_{\mathbb{R}^m} K(x, x - y) u(y) dy.$$
1.3.2. **Partition of unity and spaces** $H^s(M), L_p(M), C^\alpha(M)$. If M is a compact manifold then there is a partition of unity \[4\]. It means the following. For every finite open covering $\{U_j\}_{j=1}^k$ of the manifold M there exists a system of functions $\{\varphi_j(x)\}_{j=1}^k$, $\varphi_j(x) \in C^\infty(M)$, such that

- $0 \leq \varphi_j(x) \leq 1$,
- $\text{supp } \varphi_j \subset U_j$,
- $\sum_{j=1}^k \varphi_j(x) = 1$.

So we have

$$f(x) = \sum_{j=1}^k \varphi_j(x)f(x)$$

for arbitrary function f defined on M.

Since an every set U_j is diffeomorphic to an open set $D_j \subset \mathbb{R}^m$ we have corresponding diffeomorphisms $\omega_j : U_j \to D_j$. Further for a function f defined on M we compose mappings $f_j = f \cdot \varphi_j$ and as far as $\text{supp } f_j \subset U_j$ we put $\hat{f}_j = f_j \circ \omega_j^{-1}$ so that $\hat{f}_j : D_j \to \mathbb{R}$ is a function defined in a domain of m-dimensional space \mathbb{R}^m. We can consider the following spaces \[2, 1, 6\].

Definition 5. A function $f \in H^s(M)$ if the following norm

$$||f||_{H^s(M)} = \sum_{j=1}^k ||\hat{f}_j||_s$$

is finite.

A function $f \in L_p(M)$ if the following norm

$$||f||_{L_p(M)} = \sum_{j=1}^k ||\hat{f}_j||_p$$

is finite.

A function $f \in C^{\alpha}(M)$ if the following norm

$$||f||_{C^{\alpha}(M)} = \sum_{j=1}^k ||\hat{f}_j||_\alpha$$

is finite.

2. **Operators on a compact manifold**

On the manifold M we fix a finite open covering and a partitions of unity corresponding to this covering $\{U_j, f_j\}_{j=1}^n$ and choose smooth
functions \(\{g_j\}_{j=1}^n \) so that \(\text{supp } g_j \subset V_j, \ \overline{U_j} \subset V_j, \) and \(g_j(x) \equiv 1 \) for \(x \in \text{supp } f_j, \ \text{supp } f_j \cap (1 - g_j) = \emptyset. \)

Proposition 1. The operator \(A \) on the manifold \(M \) can be represented in the form

\[
A = \sum_{j=1}^{n} f_j \cdot A \cdot g_j + T,
\]

where \(T : B_1 \rightarrow B_2 \) is a compact operator.

Proof. The proof is a very simple. Since

\[
\sum_{j=1}^{n} f_j(x) \equiv 1, \quad \forall x \in M,
\]

then we have

\[
A = \sum_{j=1}^{n} f_j \cdot A = \sum_{j=1}^{n} f_j \cdot A \cdot g_j + \sum_{j=1}^{n} f_j \cdot A \cdot (1 - g_j),
\]

and the proof is completed. \(\square \)

Remark 1. It is obviously such operator is defined uniquely up to a compact operators which do not influence on an index.

By definition for an arbitrary operator \(A : B_1 \rightarrow B_2 \)

\[
||| A ||| \equiv \inf ||| A + T |||,
\]

where \(\text{infimum} \) is taken over all compact operators \(T : B_1 \rightarrow B_2. \)

Let \(B_1', B_2' \) be Banach spaces consisting of functions defined on \(\mathbb{R}^m, \)

\(\tilde{A} : B_1' \rightarrow B_2' \) be a linear bounded operator.

Since \(M \) is a compact manifold, then for every point \(x \in M \) there exists a neighborhood \(U \ni x \) and diffeomorphism \(\omega : U \rightarrow D \subset \mathbb{R}^m, \omega(x) \equiv y. \) We denote by \(S_\omega \) the following operator acting from \(B_k \) to \(B_k', k = 1, 2. \) For every function \(u \in B_k \) vanishing out of \(U \)

\[
(S_\omega u)(y) = u(\omega^{-1}(y)), \quad y \in D, \quad (S_\omega u)(y) = 0, \quad y \notin D.
\]

Definition 6. A local representative of the operator \(A : B_1 \rightarrow B_2 \) at the point \(x \in M \) is called the operator \(\tilde{A} : B_1' \rightarrow B_2' \) such that \(\forall \varepsilon > 0 \) there exists the neighborhood \(U_j \) of the point \(x \in U_j \subset M \) with the property

\[
||| g_j f_j - S^{-1}_{\omega_j} \tilde{g}_j \tilde{f}_j S_{\omega_j}||| < \varepsilon.
\]
3. Algebra of symbols

Definition 7. Symbol of an operator A is called the family of its local representatives $\{A_x\}$ at each point $x \in \overline{M}$.

One can show like [3] this definition of an operator symbol conserves all properties of a symbolic calculus. Namely, up to compact summands

- product and sum of two operators corresponds to product and sum of their local representatives;
- adjoint operator corresponds to its adjoint local representative;
- a Fredholm property of an operator corresponds to a Fredholm property of its local representative.

4. Operators with symbols. Examples.

It seems not every operator has a symbol, and we give some examples for operators with symbols.

Example 3. Let A be the differential operator from example 1, and functions $a_k(x)$ be continuous functions on \mathbb{R}^m. Then its symbol is an operator family consisting of multiplication operators on the function

$$\sum_{|k|=0}^{n} a_k(x)\xi^k,$$

where $\xi^k = \xi_1^{k_1} \cdots \xi_m^{k_m}$.

Example 4. Let A be the Calderon–Zygmund operator from Example 2 and $\sigma(x, \xi)$ be its symbol in sense of [1], then its symbol is an operator family consisting of multiplication operators on the function $\sigma(x, \xi)$.

More important point is that symbol of an operator should be more simple to verify its Fredholm properties. For two above examples a Fredholm property of an operator symbol is equivalent to its invertibility.

5. Stratification of manifolds and operators

5.1. Sub-manifolds. The above definition of an operator on a manifold supposes that all neighborhoods $\{U_j\}$ have the same type. But if a manifold has a smooth boundary even then there are two types of neighborhoods related to a place of neighborhood, namely inner neighborhoods and boundary ones. For inner neighborhood U such that $\overline{U} \subset \overline{M}$ we have the diffeomorphism $\omega : U \to D$, where $D \in \mathbb{R}^m$ is an open set. For a boundary neighborhood such that $U \cap \partial M \neq \emptyset$ we have another diffeomorphism $\omega_1 : U \to D \cap \mathbb{R}_+^m$, where $\mathbb{R}_+^m = \{x \in \mathbb{R}^m : x = (x_1, \cdots, x_m), x_m > 0\}$. May be this boundary ∂M has some
singularities like conical points and wedges. The conical point at the boundary is a such point, for which its neighborhood is diffeomorphic to the cone

$$C^a_+ = \{ x \in \mathbb{R}^m : x_m > a|x'|, x' = (x_1, \ldots, x_{m-1}), a > 0 \},$$

the wedge point of codimension $k, 1 \leq k \leq m - 1$, is a such point for which its neighborhood is diffeomorphic to the set

$$\{ x \in \mathbb{R}^m : x = (x', x''), x'' \in \mathbb{R}^{m-k}, x' = (x_1, \ldots, x_{m-k-1}), x_{m-k-1} > a|x''|, x'' = (x_1, \ldots, x_{m-k-2}), a > 0 \}. $$

So if the manifold M has such singularities we suppose that we can extract certain k-dimensional sub-manifolds, namely $(m - 1)$-dimensional boundary ∂M, and k-dimensional wedges $M_k, k = 0, \ldots, m - 2$; M_0 is a collection of conical points.

5.2. Enveloping operators. If the family $\{ A_x \}_{x \in M}$ is continuous in operator topology, then according to Simonenko’s theory there is an enveloping operator, i.e. such an operator A for which every operator A_x is the local representative for the operator A in the point $x \in M$.

Example 5. If $\{ A_x \}_{x \in M}$ consists of Calderon–Zygmund operators in $\mathbb{R}^m \mathbb{I}$ with symbols $\sigma_x(\xi)$ parametrized by points $x \in M$ and this family smoothly depends on $x \in M$ then Calderon–Zygmund operator with variable kernel and symbol $\sigma(x, \xi)$ will be an enveloping operator for this family.

Example 6. If $\{ A_x \}_{x \in M}$ consists of null operators then an enveloping operator is a compact operator \mathbb{E}.

Theorem 1. Operator A has a Fredholm property iff its all local representatives $\{ A_x \}_{x \in M}$ have the same property.

This property was proved in \mathbb{F}. But we will give the proof (see Lemma 2) including some new constructions because it will be used below for a decomposition of the operator.

5.3. Hierarchy of operators. We will remind here the following definition and Fredholm criteria for operators \mathbb{G}.

Definition 8. Let B_1, B_2 be Banach spaces, and $A : B_1 \to B_2$ be a linear bounded operator. The operator $R : B_2 \to B_1$ is called a regularizer for the operator A if the following properties

$$RA = I_1 + T_1, \quad AR = I_2 + T_2$$

hold, where $I_k : B_k \to B_k$ is identity operator, $T_k : B_k \to B_k$ is a compact operator, $k = 1, 2$.

Proposition 2. The operator $A : B_1 \to B_2$ has a Fredholm property iff there exists a linear bounded regularizer $R : B_2 \to B_1$.

Lemma 1. Let f be a smooth function on the manifold $M, U \subset M$ be an open set, and $\text{supp} \ f \subset U$. Then the operator $f \cdot A - A \cdot f$ is a compact operator.
Proof. Let \(g \) be a smooth function on \(M, \text{supp} \, g \subset V \subset M \), moreover \(\overline{U} \subset V, g(x) \equiv 1 \) for \(x \in \text{supp} \, f \). Then we have
\[
f \cdot A = f \cdot A \cdot g + f \cdot A \cdot (1 - g) = f \cdot A \cdot g + T_1,
\]
\[
A \cdot f = g \cdot A \cdot f + (1 - g) \cdot A \cdot f = g \cdot A \cdot f + T_2,
\]
where \(T_1, T_2 \) are compact operators. Let us denote \(g \cdot A \cdot g \equiv h \) and write
\[
f \cdot A \cdot g = f \cdot g \cdot A \cdot g = f \cdot h, \quad g \cdot A \cdot f = g \cdot A \cdot g \cdot f = h \cdot f,
\]
and we obtain the required property. \(\square \)

Definition 9. The operator \(A \) is called an elliptic operator if its operator symbol \(\{ A_x \}_{x \in M} \) consists of Fredholm operators.

Now we will show that each elliptic operator really has a Fredholm property. Our proof in general follows the book [3], but our constructions are more stratified and we need such constructions below.

Lemma 2. Let \(A \) be an elliptic operator. Then the operator \(A \) has a Fredholm property.

Proof. To obtain the proof we will construct the regularizer for the operator \(A \). For this purpose we choose two coverings like proposition 1 and write the operator \(A \) in the form
\[
A = \sum_{j=1}^{n} f_j \cdot A \cdot g_j + T,
\]
where \(T \) is a compact operator. Without loss of generality we can assume that there are \(n \) points \(x_k \in U_k \subset V_k, k = 1, 2, ..., n \). Moreover, we can construct such coverings by balls in the following way. Let \(\varepsilon > 0 \) be enough small number. First, for every point \(x \in M_0 \) we take two balls \(U_x, V_x \) with the center at \(x \) of radius \(\varepsilon \) and \(2\varepsilon \) and construct two open coverings for \(M_0 \) namely \(\mathcal{U}_0 = \bigcup_{x \in M_0} U_x \) and \(\mathcal{V}_0 = \bigcup_{x \in M_0} V_x \).

Second, we consider the set \(L_1 = \overline{M} \setminus \mathcal{V}_0 \) and construct two coverings \(\mathcal{U}_1 = \bigcup_{x \in L_1 \cap M_1} U_x \) and \(\mathcal{V}_1 = \bigcup_{x \in L_1 \cap M_1} V_x \). Further, we introduce the set \(L_2 = \overline{M} \setminus (\mathcal{V}_0 \cup \mathcal{V}_1) \) and two coverings \(\mathcal{U}_2 = \bigcup_{x \in L_2 \cap M_2} U_x \) and \(\mathcal{V}_2 = \bigcup_{x \in L_2 \cap M_2} V_x \). Continuing these actions we will come to the set \(L_{m-1} = \overline{M} \setminus (\bigcup_{k=0}^{m-2} \mathcal{U}_k) \) which consists of smoothness points of \(\partial M \) and inner points of \(M \), construct two covering \(\mathcal{U}_{m-1} = \bigcup_{x \in L_{m-1} \cap \partial M} U_x \) and \(\mathcal{V}_{m-1} = \bigcup_{x \in L_{m-1} \cap \partial M} V_x \). Finally, the set \(L_m = \overline{M} \setminus (\bigcup_{k=0}^{m-1} \mathcal{U}_k) \) consists of inner points of the manifold \(M \) only. We finish this process by choosing the covering \(\mathcal{U}_m \) for the latter set \(L_m \). So, the covering \(\bigcup_{k=0}^{m} \mathcal{U}_k \) will be a covering for the whole manifold \(M \). According to compactness property we can take into account that this covering is finite, and centers of balls which cover \(M_k \) are placed at \(M_k \).
Now we will rewrite the formula (1) in the following way

\[A = \sum_{k=0}^{m} \left(\sum_{j=1}^{n_k} f_{jk} \cdot A \cdot g_{jk} \right) + T, \]

where coverings and partitions of unity \(\{ f_{jk} \} \) and \(\{ g_{jk} \} \) are chosen as mentioned above. In other words the operator

\[\sum_{j=1}^{n_k} f_{jk} \cdot A \cdot g_{jk} \]

is related to some neighborhood of the sub-manifold \(M_k \); this neighborhood is generated by covering of the sub-manifold \(M_k \) by balls with centers at points \(x_{jk} \in M_k \). Since \(A_{x_{jk}} \) is a local representative for the operator \(A \) at point \(x_{jk} \) we can rewrite the formula (2) as follows

\[A = \sum_{k=0}^{m} \left(\sum_{j=1}^{n_k} f_{jk} \cdot A_{x_{jk}} \cdot g_{jk} \right) + T. \]

Let us denote \(S_{\omega_j^{-1}} \hat{g}_j \equiv \tilde{g}_j, \hat{f}_j S_{\omega_j} \equiv \tilde{f}_j \). Further, we can assert that the operator

\[R = \sum_{k=0}^{m} \left(\sum_{j=1}^{n_k} g_{jk} \cdot A_{x_{jk}}^{-1} f_{jk} \right), \]

will be the regularizer for the operator \(A' \); here \(A_{x_{jk}}^{-1} \) is a regularizer for the operator \(A_{x_{jk}} \).

Indeed,

\[RA = \left(\sum_{k=0}^{m} \left(\sum_{j=1}^{n_k} g_{jk} A_{x_{jk}}^{-1} f_{jk} \right) \right) \cdot A = \]

\[\sum_{k=0}^{m} \sum_{j=1}^{n_k} g_{jk} \cdot A_{x_{jk}}^{-1} \cdot (A - A_{x_{jk}} + A_{x_{jk}}) \cdot f_{jk} + T_1 = \]

\[\sum_{k=0}^{m} \sum_{j=1}^{n_k} g_{jk} \cdot A_{x_{jk}}^{-1} \cdot (A - A_{x_{jk}}) \cdot f_{jk} + \sum_{k=0}^{m} \sum_{j=1}^{n_k} f_{jk} + T_1 = I_1 + T_1 + \Theta_1, \]

\[\Theta_1 = \sum_{k=0}^{m} \sum_{j=1}^{n_k} g_{jk} \cdot A_{x_{jk}}^{-1} \cdot (A - A_{x_{jk}}) \cdot f_{jk}, \]

because \(f_{jk} \cdot A_{x_{jk}} = A_{x_{jk}} \cdot f_{jk} + \text{compact summand} \), and \(f_{jk} \cdot g_{jk} = f_{jk} \), and

\[\sum_{k=0}^{m} \sum_{j=1}^{n_k} f_{jk} \equiv 1 \]
as the partition of unity. The same property

\[AR = I_2 + T_2 + \Theta_2, \]
\[\Theta_2 = \sum_{k=0}^{m} \sum_{j=1}^{n_k} g_{jk} \cdot (A - A_{x_{jk}}) \cdot A_{x_{jk}}^{-1} \cdot f_{jk}, \]

is verified analogously. \(\square \)

6. PIECE-WISE CONTINUOUS OPERATOR FAMILIES

Given operator \(A \) with the symbol \(\{A_x\}_{x \in \overline{M}} \) generates a few operators in dependence on a quantity of singular manifolds. We consider this situation in the following way. We will assume additionally some smoothness properties for the symbol \(\{A_x\}_{x \in \overline{M}} \).

Theorem 2. If the symbol \(\{A_x\}_{x \in \overline{M}} \) is a piece-wise continuous operator function then there are \(m + 1 \) operators \(A^{(k)}, k = 0, 1, \ldots, m \) such that the operator \(A \) and the operator

\[A' = \sum_{k=0}^{m} A^{(k)} + T \]

have the same symbols, where the operator \(A^{(k)} \) is an enveloping operator for the family \(\{A_x\}_{x \in \overline{M}} \), \(T \) is a compact operator.

Proof. We will use the constructions from proof of Lemma 2, namely the formula (3). We will extract the operator

\[\sum_{j=1}^{n_k} f_{jk} \cdot A_{x_{jk}} \cdot g_{jk} \]

which “serves” the sub-manifold \(M_k \) and consider it in details. This operator is related to neighborhoods \(\{U_{jk}\} \) and the partition of unity \(\{f_{jk}\} \). Really \(U_{jk} \) is the ball with the center at \(x_{jk} \in M_k \) of radius \(\varepsilon > 0 \), therefore \(f_{jk}, g_{jk}, n_k \) depend on \(\varepsilon \).

According to Simonenko’s ideas [3] we will construct the component \(A^{(k)} \) in the following way. Let \(\{\varepsilon_n\}_{n=1}^{\infty} \) be a sequence such that \(\varepsilon_n > 0, \forall n \in \mathbb{N}, \lim_{n \to \infty} \varepsilon_n = 0 \). Given \(\varepsilon_n \) we choose coverings \(\{U_{jk}\}_{j=1}^{n_k} \) and \(\{V_{jk}\}_{j=1}^{n_k} \) as above with partition of unity \(\{f_{jk}\} \) and corresponding functions \(\{g_{jk}\} \) such that

\[||| f_{jk} \cdot (A_x - A_{x_{jk}}) \cdot g_{jk} ||| < \varepsilon_n, \quad \forall x \in V_{jk}; \]

we remained that \(U_{jk}, V_{jk} \) are balls with centers at \(x_{jk} \in \overline{M_k} \) of radius \(\varepsilon \) and \(2\varepsilon \). This requirement is possible according to continuity of family
\{A_x\} on the sub-manifold M_k. Now we will introduce such constructed operator

$$A_n = \sum_{j=1}^{n_k} f_{jk} \cdot A_{x_{jk}} \cdot g_{jk}$$

and will show that the sequence \{\(A_n\)\} is Cauchy sequence with respect to norm \(||| \cdot |||\). We have

$$A_l = \sum_{i=1}^{l_k} F_{ik} \cdot A_{y_{ik}} \cdot G_{ik},$$

where the operator \(A_l\) is constructed for given \(\varepsilon_l\) with corresponding coverings \(\{u_{ik}\}_{i=1}^{l_k}\) and \(\{v_{ik}\}_{j=1}^{l_k}\) with partition of unity \(\{F_{ik}\}\) and corresponding functions \(\{G_{ik}\}\) so that

$$|||F_{ik} \cdot (A_x - A_{y_{ik}}) \cdot G_{ik}||| < \varepsilon_l, \quad \forall x \in v_{ik};$$

here \(u_{ik}, v_{ik}\) are balls with centers at \(y_{ik} \in M_k\) of radius \(\tau\) and \(2\tau\).

We can write

$$A_n = \sum_{j=1}^{n_k} f_{jk} \cdot A_{x_{jk}} \cdot g_{jk} = \sum_{i=1}^{l_k} F_{ik} \cdot \sum_{j=1}^{n_k} f_{jk} \cdot A_{x_{jk}} \cdot g_{jk} =$$

$$\sum_{i=1}^{l_k} \sum_{j=1}^{n_k} F_{ik} \cdot f_{jk} \cdot A_{x_{jk}} \cdot g_{jk} = \sum_{i=1}^{l_k} \sum_{j=1}^{n_k} F_{ik} \cdot f_{jk} \cdot A_{y_{ik}} \cdot g_{jk} \cdot G_k + T_1,$$

and the same we can write for \(A_l\)

$$A_l = \sum_{i=1}^{l_k} F_{ik} \cdot A_{y_{ik}} \cdot G_{ik} = \sum_{j=1}^{n_k} f_{jk} \cdot \sum_{i=1}^{l_k} F_{ik} \cdot A_{y_{ik}} \cdot G_{ik} =$$

$$\sum_{j=1}^{n_k} \sum_{i=1}^{l_k} f_{jk} \cdot F_{ik} \cdot A_{y_{ik}} \cdot G_{ik} = \sum_{j=1}^{n_k} \sum_{i=1}^{l_k} f_{jk} \cdot F_{ik} \cdot A_{y_{ik}} \cdot G_{ik} \cdot g_{jk} + T_2.$$

Let us consider the difference

$$|||A_n - A_l||| = ||| \sum_{j=1}^{n_k} \sum_{i=1}^{l_k} f_{jk} \cdot F_{ik} \cdot (A_{x_{jk}} - A_{y_{ik}}) \cdot G_{ik} \cdot g_{jk}|||.$$ \(5\)

Obviously, summands with non-vanishing supplements to the formula \(4\) are those for which \(U_{jk} \cap u_{ik} \neq \emptyset\). A number of such neighborhoods are finite always for arbitrary finite coverings, hence we obtain

$$|||A_n - A_l||| \leq \sum_{j=1}^{n_k} \sum_{i=1}^{l_k} |||f_{jk} \cdot F_{ik} \cdot (A_{x_{jk}} - A_{y_{ik}}) \cdot G_{ik} \cdot g_{jk}||| \leq$$
\[
\sum_{x \in U_{jk} \cap u_{ik} \neq \emptyset} ||f_{jk} \cdot F_{ik} \cdot (A_{x_{jk}} - A_x) \cdot G_{ik} \cdot g_{jk}|| + \\
\sum_{x \in U_{jk} \cap u_{ik} \neq \emptyset} ||f_{jk} \cdot F_{ik} \cdot (A_{x} - A_{y_{ik}}) \cdot G_{ik} \cdot g_{jk}|| \leq 2K \max[\varepsilon_n, \varepsilon_l],
\]
where \(K\) is a universal constant.

Thus, we have proved that the sequence \(\{A_n\}\) is a Cauchy sequence hence there exists \(\lim_{n \to \infty} A_n = A^{(k)}\). \(\square\)

Corollary 1. The operator \(A\) has a Fredholm property iff all operators \(A^{(k)}, k = 0, 1, \cdots, m\) have the same property.

Remark 2. The constructed operator \(A'\) generally speaking does not coincide with the initial operator \(A\) because they act in different spaces. But for some cases they may be the same.

7. **Conclusion**

This paper is a general concept of my vision to the theory of pseudo-differential equations and boundary value problems on manifolds with a non-smooth boundary. The second part will be devoted to applying these abstract results to index theory for such operator families and then to concrete classes of pseudo-differential equations.

References

[1] S.G. Mikhlin, S. Prößdorf, *Singular Integral Operators*, Akademie-Verlag, Berlin, 1986.

[2] Eskin G. Boundary Value Problems for Elliptic Pseudodifferential Equations. Ams, Providence, 1981.

[3] I. B. Simonenko, Local Method in the Theory of Translation Invariant Operators and Their Envelopes. Rostov on Don, 2007 (in Russian).

[4] Munkres J. Analysis on Manifolds. CRC Press, Boca Raton, 2018.

[5] Krein S.G. Linear Equations in Banach Spaces. Birkhäuser, Basel, 1982.

[6] Triebel H. Theory of Function Spaces, I,II. Birkhäuser, Basel, 2000.

Chair of Differential Equations, Belgorod State National Research University, Studencheskaya 14/1, 308007 Belgorod, Russia

E-mail address: vBV57@inbox.ru