Physicochemical and sensory characteristics of meat from lambs fed diets containing mulberry hay

Luís Gabriel Alves Cirnea, Américo Garcia da Silva Sobrinhob, Emanuel Almeida de Oliveirab, Rodrigo Desessards Jardimc, Antonio Sergio Varela Juniorc, Gleidson Giordano Pinto de Carvalhod, Soraya Maria Palma Luz Jaegere, Adriana Regina Bagaldof, Fabiana Alves de Almeidab, Viviane Endob, Greicy Mitzi Bezerra Morenomea and Roberta de Lima Valenc\rac{o}a

aInstitute of Biodiversity and Forestry, Federal University of Western Pará, Santarém, Pará, Brazil; bDepartment of Animal Science, São Paulo State University, Jaboticabal, São Paulo, Brazil; cBiological Sciences Institute, Federal University of Rio Grande, Rio Grande, Rio Grande do Sul, Brazil; dDepartment of Animal Science, Federal University of Bahia, Salvador, Bahia, Brazil; eDepartment of Animal Science, Federal University of Alagoas, Arapiraca, Alagoas, Brazil

\textbf{ABSTRACT}

The aim of this study was to evaluate the physicochemical and sensory characteristics of the of meat lamb fed diets containing 0\%, 12.5\%, and 25.0\% mulberry hay (total diet). Twenty-four Ile-de-France lambs in the feedlot at an average age of 60 days and 15 kg body weight were allocated to individual stalls and slaughtered at 32 kg BW. Mulberry hay inclusion in the diet did not affect the meat pH 45 min (6.45) and 24 hr (5.70) after slaughter. Average luminosity (\textit{L}*), red intensity (\textit{a}*), and yellow intensity (\textit{b}*) values in the meat 24 hr after slaughter were 40.85, 14.51, and 4.17, respectively. No differences were observed for water-holding capacity (58.03\%), cooking loss (41.95\%), shear force (2.80 kgf/cm2), sarcomere length (1.60 \textmu m), or the sensory traits appearance (7.29), taste (7.23), tenderness (7.51), and overall acceptance (7.48). Inclusion of up to 25\% mulberry hay in a concentrate-based diet did not compromise the physicochemical and sensory traits of the meat, indicating that this ingredient is as a good alternative to provide nutrients in the diet of feedlot lambs.

\textbf{INTRODUCTION}

The last decade was characterised by important changes in the feeding habits of meat consumers. The search for healthier foods and the higher demands in terms of product quality has led part of the market niche to consume meats of better nutritional and sensory quality (Costa et al. 2008). The sheep meat is one of the available options for consumers which are willing to pay for a high-quality product; however, it fails in gaining market space due to the lack of standardisation and quality when it reaches the consumer.

Feedlotting is an alternative for finishing lambs where the animals reach the adequate conformation and fat cover for slaughter in less time, providing high-quality standardised carcasses. In this rearing model, one of the obstacles are the expenses with feed, which often greatly elevate the costs of a production system. Conventional sources of protein and energy in concentrates, such as soybean meal and corn grain, greatly increase the feeding costs, and thus alternative sources are an interesting option to the production chain as long as they do not compromise the animal performance or the end product’s quality.

The use of mulberry in ruminant feeding has been evaluated in several studies (Liu et al. 2001; Okamoto et al. 2008; Vu et al. 2011). However, most of them evaluated in several studies (Liu et al. 2001; Okamoto et al. 2008; Vu et al. 2011). However, most of them address the animal performance without approaching the qualitative aspects of sheep meat, which is a necessity, considering the marked influence of the diet on these traits (Madruge et al. 2008; Moreno et al. 2015; Campos et al. 2017). Mulberry (\textit{Morus sp.}) is used as a forage in ruminant feeding because of its grass-related characteristics such as green mass production of 25–30 t/ha/y; high acceptability; crude protein content of 18–28\%; total digestible nutrients content of 76\%; dry matter digestibility of 75–85\%; and high...
percentages of omega-3 fatty acids (50.43%) (Sanchez 2002; Ba et al. 2005; Cirne 2013). All of these positive aspects define this plant as an important alternative feedstuff.

Given the importance of nutrition on the production and general aspects of the meat, research should be carried out to investigate the use of alternative feedstuffs that do not change the features indicative of sheep meat quality. In this regard, the present study was conducted to evaluate the physicochemical and sensory traits of the meat from lambs fed diets containing mulberry hay.

Materials and methods

Study location

Experimental procedures complied with the Ethical Principles of Animal Experimentation adopted by the Brazilian College of Animal Experimentation (COBEA) and were approved by the Ethics Committee in Animal Use (CEUA) of the Faculty of Agricultural and Veterinary Sciences (FCAV) at Unesp (no. 014105/11).

Animal housing, feeding, and experimental materials

The experiment was developed in the Sheep Farming Unit at the Department of Animal Science at FCAV - Unesp, Jaboticabal Campus, SP, Brazil, starting in May 2011. Twenty-four newly weaned Ile-de-France lambs at approximately 60 days of age and an initial body weight of 15.48 ± 0.07 kg were housed in individual stalls measuring approximately 1.0 m², with slatted suspended floor, equipped with individual feeders and drinkers. The stalls were located in a covered shed, where the animals remained approximately 66 days. At the beginning of the experiment, lambs were identified, dewormed, vaccinated with a polyclonal vaccine against Clostridial diseases, supplemented with vitamins A, D, and E, and distributed at random at eight points in the same muscle. Meat colour (colour24h) was measured in triplicate in different points of the Longissimus lumborum muscle (left side) using a TESTO 205 digital pH metre coupled to a penetration electrode. The average of the triplicate corresponded to each sample per animal.

Carcasses were transferred to a cold room in the Sheep Farming Unit, at 6°C, where they remained over 24 h hung by the tendons of the Gastrocnemius muscle on appropriate hooks, spaced 17 cm apart. At the end of this period, the pH (pH24h) and temperature (T24h, in °C) were measured in triplicate at distinct points in the same muscle. Meat colour (colour24h) was evaluated using a Minolta CR-200 colorimeter operating in the CIE (L*, a*, and b*) system, in which L* represented lightness; a* the intensity of the colour red; and b* the intensity of the colour yellow. The colorimeter was calibrated to a white standard. Before analysis, samples were exposed to room temperature for 30 min for the formation of oxymyoglobin, the main pigment responsible for the meat bright red colour (Canéque and Sánuho 2000). After this time, and as described by Miltenburg et al. (1992), the L*, a*, and b* coordinates were measured in three distinct points.
of the internal muscle surface, and the average of the triplicates of each coordinate was calculated per animal sample.

Carcasses were subsequently divided lengthwise into two half carcases. The left half was sectioned into five anatomical regions: neck, shoulder, ribs, loin, and leg, as described by Silva Sobrinho (2001). The Longissimus lumborum muscles, according to the nomenclature proposed by Schaller (1999), were identified individually, vacuum-packed, and stored at −18 °C until the beginning of analyses. In the preparation of the samples for analyses, the loins were thawed inside plastic bags in a B.O.D. incubator at 10 °C for 12 h and dissected using a scalpel and a knife. Samples were extracted from the Longissimus lumborum muscle to determine the water-holding capacity, cooking loss, shear force, and sarcomere length and for sensory analysis.

Analytical procedures

For the determination of the water-holding capacity, we adopted the methodology described by Hamm, cited by Silva Sobrinho (1999), according to which meat samples weighing 500 ± 20 mg were placed in the transverse direction of the fibres onto filter paper between two acrylic plates, over which a 10-kg weight was placed for 5 min. Subsequently, the samples were weighed, and the lost water was calculated as the difference. The result was expressed as a percentage of exuded water in relation to the initial weight of the sample.

To determine the cooking losses, the samples were weighed and cooked in an industrial oven preheated to 170 °C for 12 h and dissected using a scalpel and a knife. Samples were extracted from the Longissimus lumborum muscle to determine the water-holding capacity, cooking loss, shear force, and sarcomere length and for sensory analysis.

Table 1. Chemical composition of the ingredients in the experimental diets.

Nutrient	Sugarcane Dry matter (%)	Mulberry hay Dry matter (%)	Ground corn Dry matter (%)	Soybean meal Dry matter (%)
Organic matter (%)	97.70	89.45	97.79	92.37
Mineral matter (%)	2.30	10.55	2.21	7.63
Crude protein (%)	2.92	20.92	14.26	44.28
Ether extract (%)	2.64	6.75	1.74	
Lignin (%)	2.28	2.69	1.40	2.40
Neutral detergent fiber	33.72	21.99	17.75	12.42
Acid detergent fiber (%)	22.75	15.47	8.95	12.53
Total carbohydrates	92.80	65.89	76.78	46.35
Non-fibrous carbohydrates	49.08	43.90	59.03	33.93
Gross energy	4.29	4.54	4.65	4.73

*Percentage of DM.

Table 2. Centesimal composition of ingredients and chemical composition of experimental diets.

Ingredient, % DM	Mulberry hay, %		
	0	12.5	25.0
Sugarcane	50.00	50.00	50.00
Mulberry hay	−	12.50	25.00
Soybean meal	28.49	24.60	21.33
Ground corn	17.80	9.00	.00
Soybean oil	1.00	1.00	1.00
Urea	.80	.80	.80
Mineral–vitamin supplementa	.50	.50	.50
Calcitic limestone	.47	.43	.25
Dicalcium phosphate	.94	1.17	1.12

Chemical composition

Dry matter (%)	Mulberry hay (%)		
	58.44	56.94	57.18
Organic matter (%)	93.63	92.56	91.92
Mineral matter (%)	4.17	4.99	5.87
Crude protein (%)	18.88	18.51	18.40
Ether extract (%)	2.88	2.55	2.21
Lignin (%)	2.07	2.19	2.32
Neutral detergent fiber (%)	23.56	24.26	25.01
Acid detergent fiber (%)	16.54	12.70	17.92
Total carbohydrates (%)	73.27	72.95	72.76
Non-fibrous carbohydrates (%)	49.71	48.68	47.75
Metabolisable energy, Mcal/kg DM	2.99	2.95	2.55

*Provides per kg: calcium 120 g, chlorine 90 g, cobalt 10 mg, copper 50 mg, sulphur 34 g, iron 1064 mg, phosphorus 50 g, iodine 25 mg, magnesium 54 g, manganese 1500 mg, selenium 20 mg, sodium 62 g, zinc 1600 mg, fluorine (max) 0.73 g, vitamin A 100,000 U, vitamin D3 40,000 U, and vitamin E 600 U.

*Percentage of DM.
Mallory’s phosphotungstic acid-haematoxylin, following the technique recommended by Behmer et al. (1976). Slides were read using an Olympus BX51 microscope coupled to an Olympus DP72 camera; the method was based on the count of 10 sarcomeres of five different myofibrils, with the average of the five evaluated myofibrils corresponding to each sample per animal. Morphometric analyses of sarcomere length were performed using the ImageJ software.

Sensory evaluation

In the sensory analysis, the samples of the *Longissimus lumborum* muscle were roasted in an oven at a temperature of 175 °C until their geometric centre reached 75 °C, as measured by a digital thermometer. After chilling, the samples were cut into cubes measuring approximately 4 cm² (2 × 2 cm²), wrapped in aluminium foil, and kept in a water bath at a temperature of approximately 60 °C until being served to a panel of 30 consumers. The consumers evaluated three samples corresponding to the three treatments in individual booths equipped with a red light to avoid possible influences on the appearance of the samples, which were served in plastic containers coded with three random digits. Along with the sample, the tasters were offered water (to sip in between the tasting of each sample) and a spreadsheet in which they assessed the attributes colour, flavour, tenderness, and overall acceptance on a nine-point hedonic scale that consisted of: (1) dislike extremely, (2) dislike very much, (3) dislike moderately, (4) dislike slightly, (5) neither like nor dislike, (6) like slightly, (7) like moderately, (8) like very much, and (9) like extremely (Moraes 1993; Nassu 2009).

Statistical analysis

A completely randomised design with three treatments and eight replicates was adopted, totalling 24 experimental units. However, for the sensory analysis, a randomised block design with three treatments and 30 replicates was adopted. Results were evaluated by analyses of variance and regression, with the degrees of freedom decomposed into linear or quadratic effects, according to the percentages of mulberry hay. The significance of regressions was obtained by the F-test at the 1% or 5% probability levels, using Sisvar and AgroEstat Software (Ferreira 2011; Barbosa and Maldonado 2012).

Results and discussion

The temperature and pH of the *Longissimus lumborum* muscle in feedlot lambs assessed at 45 min and 24 h after slaughter were not influenced (p > .05) by the percentages of mulberry hay (Table 3). The numerically observed decline of pH from 6.45 to 5.70 at 24 h after slaughter respectively, are near the range considered normal for sheep meat, which, as stated by Sanudo et al. (1992), is from 6.56 to 6.69 at 45 min and from 5.50 to 5.80 for 24 h post-slaughter, indicating normal development of rigour mortis and inexistence of pre-slaughter stress (Lawrie 2005; Della Malva et al. 2016).

The process of transformation of muscle into meat is related to several factors, one of which is temperature (Aberle et al. 2012). From the values of these parameters, we could infer about the end-product quality, because the final pH and the temperature of the carcase during chilling are correlated with the meat physical and organoleptic properties (Bonagurio et al. 2003). Because the pH was not changed (p > .05) by the inclusion of mulberry hay in the animal diets and the results remained satisfactory for normal meats, the present values for colour, water-holding capacity, cooking loss, tenderness, and sensory attributes are considered acceptable.

Madruga et al. (2008) assessed the inclusion (16.7, 33.3, and 50%) of silk-flower hay (*Calotropis procera* Sw) in the diet of feedlot-finished Santa Inês lambs and observed changes (p < .05) in the pH measured in the *Longissimus dorsi* muscle, which was 6.20 at 24 h after slaughter in the treatment with 50% inclusion. The pH values reported in the current study (Table 3) are consistent with the 6.27 observed by Moreno et al. (2015) at 45 min and 5.45 at 24 h after slaughter, measured in the *Longissimus lumborum* of Santa Inês lambs fed diets containing 30%, 40%, 50%, and 60% saltbush hay. The present values also agree with Endo et al. (2014) and Leão et al. (2012), who obtained 6.65 and 6.58 for pH at 45 min and 5.69 and 5.60 for pH at 24 h, respectively, after slaughter, in the *Longissimus lumborum* of feedlot-finished Ile-de-France lambs fed diets with sugarcane and concentrate.

Table 3. Temperature (T), pH, and colour of the Longissimus lumborum muscle of lambs fed diets containing mulberry hay.

Item	0	12.5	25.0	p Value*	L	Q	CV, %b
T (45min, °C)	36.12	36.11	35.74	0.684	0.824	4.29	
T (24h, °C)	7.37	8.55	8.28	0.219	0.254	14.78	
pH (45min)	6.45	6.50	6.42	0.785	0.543	2.81	
pH (24h)	5.68	5.76	5.66	0.824	0.288	2.96	
Colour (24h)	L^a 40.12	39.99	42.46	0.214	0.415	6.48	
	a^a 14.42	14.66	14.47	0.967	0.857	13.76	
	b^a 4.17	4.20	4.13	0.919	0.983	26.64	

Effect: L: linear; Q: quadratic.

b*CV, coefficient of variation.*
suggesting that mulberry hay is an alternative source of nutrients in the diet of feedlot lambs.

The meat colour is the qualitative trait that most influences the choice of the consumer, arousing their interest to purchase or reject the product (Ramos and Gomide 2012). Regardless of the percentage inclusion of mulberry hay in the diet, the coordinates that indicate the lightness (L*), redness (a*), and yellowness (b*) of meat 24 h after slaughter did not differ (p > .05), with respective values of 40.86, 14.52, and 4.17. According to Saiuõdo et al. (2000), Warris (2003), and Souza et al. (2004), sheep meat usually presents L* values from 30.03 to 49.47, a* from 8.24 to 23.53, and b* from 3.38 to 11.10. The values found in this study are thus similar to those described in the literature. Costa et al. (2011) observed no changes in meat colour using percentages (15, 30, and 45%) of silkflower hay replacing the concentrate in the diet of Morada Nova lambs finished in the feedlot. Similarly, Moreno et al. (2015) reported no changes in meat colour when evaluating saltbush hay (Atriplex nummularia) in finishing diets for Santa Ines lambs in the feedlot.

Water-holding capacity (WHC), cooking loss (CL), shear force (SF), and sarcomere length (SL) (Table 4) were also not changed (p > .05) by the inclusion of mulberry hay in the diet. The similarity between results is likely related to the adequate development of rigor mortis and the pH decline in the carcases after slaughter.

Water-holding capacity has a marked influence on the development and appreciation of sensory traits and on the nutritional and commercial value of the meat (Ordóñez 2005), in addition to determining its juiciness (Saiuõdo et al. 1992). Cooking losses occur during the process of preparation of the meat for consumption, as the cell membrane is ruptured and alterations in the structure of proteins are responsible for these losses (Moreno 2011). These losses are a measure of quality associated with the yield of the meat at consumption, influenced mainly by WHC, with higher WHC leading to lower CL.

The WHC, CL, and SF results of 58.03%, 41.95%, and 2.59 kgf/cm², respectively, were close to those reported by Zeola et al. (2011) (55.27%, 44.23%, and 2.74 kgf/cm²), Endo et al. (2014) (57.08%, 43.51%, and 3.12 kgf/cm²), and Moreno et al. (2015) (60.99%, 38.04%, and 2.58 kgf/cm²). Based on the SF results, the meat from the lambs of this study can be considered tender, since, according to Tatum et al. (2000), Longissimus muscle in sheep presenting a shear force of up to 5 kgf/cm² is considered so. The low values for shear force may be related to the fact that animals were slaughtered young, at approximately 130 days of age, and finished in the feedlot.

The sarcomere length of 1.60 mM observed in this study (Table 4) was close to the 1.72 mM mentioned by Borghi et al. (2016), who evaluated the Longissimus lumborum of feedlot-finished Ile-de-France lambs; to the 1.70 mM reported by Oliveira et al. (2004) with Santa Inês lambs and sheep; and to the 1.67 mM observed by Silva Sobrinho et al. (2005) in Romney × East Friesian × Poll Dorset lambs. Sarcomeres are the myofibril units responsible for the muscular contraction. The results obtained in the present study for meat SF (Table 4) are in line with the positive correlation between meat tenderness and the length of the sarcomeres reported by other authors (Veiseth et al. 2004). This explains the results observed for SF, since, as stated by Wheeler et al. (2000), lower sarcomere lengths mean tougher meats.

No differences were observed (p > .05) between the treatments for the scores assigned to the sensory traits appearance (7.29), flavour (7.23), tenderness (7.51), and overall acceptance (7.48) of the meats (Table 5). These results on meat sensory evaluation reflect the absence of effects of the dietary treatments on muscle pH, colour, WHC, CL, and SF, which are quality parameters closely related to the meat sensory attributes.

Contrarily to what it was observed in the present study, several authors have reported that the inclusion of alternative forage sources in the diets of lambs may influence meat sensory quality (Madruga et al. 2005; Costa et al. 2011; Moreno et al. 2015). Madruga et al. (2005) observed differences in the meat from Santa

| Table 4. Water-holding capacity (WHC), cooking loss (CL), shear force (SF), and sarcomere length (SL) in the Longissimus lumborum muscle of lambs fed diets containing mulberry hay. |
|---|---|---|---|---|
| Item | Mulberry hay, % | p Value^a | WHC, % | CL, % | SF, kgf/cm² | SL, μm |
| | 0 | 12.5 | 25.0 | L | Q | CV, % b |
| WHC, % | 57.61 | 60.45 | 56.05 | 0.550 | 0.124 | 7.38 |
| CL, % | 42.38 | 39.55 | 43.94 | 0.550 | 0.124 | 10.16 |
| SF, kgf/cm² | 2.57 | 2.43 | 2.76 | 0.768 | 0.669 | 10.10 |
| SL, μm | 1.58 | 1.57 | 1.66 | 0.087 | 0.178 | 3.36 |

^aEffect: L: linear; Q: quadratic.

^bCV: coefficient of variation.

| Table 5. Sensory analysis of the Longissimus lumborum muscle of lambs fed diets containing mulberry hay. |
|---|---|---|---|---|
| Item | Mulberry hay, % | p Value^a | Appearance | Flavour | Tenderness | Overall acceptance |
| | 0 | 12.5 | 25.0 | L | Q | CV, % b |
| Appearance | 7.06 | 7.36 | 7.46 | 0.060 | 0.583 | 11.09 |
| Flavour | 7.23 | 7.26 | 7.20 | 0.908 | 0.843 | 15.53 |
| Tenderness | 7.60 | 7.63 | 7.30 | 0.278 | 0.442 | 14.12 |
| Overall acceptance | 7.30 | 7.63 | 7.53 | 0.210 | 0.180 | 9.53 |

^aEffect: L: linear; Q: quadratic.

^bCV: coefficient of variation.
Ines lambs fed diets containing four different types of forages; Costa et al. (2011) reported the influence of silk flower hay and Moreno et al. (2015) reported the effect of saltbush hay on meat sensory quality of Santa Ines lambs. Scores assigned by the judges on a scale of 1 (dislike extremely) to 9 (like extremely) indicate that meat from lambs fed diets containing mulberry hay had good acceptability, what supports the potential use of this alternative source of nutrients in lambs feedlot diet without modifying the meat sensory attributes.

Conclusions

Inclusion of mulberry hay at up to 25% in the total diet did not affect the meat physiochemical and sensory characteristics, allowing the incorporation of this ingredient as an alternative forage source in diets of feedlot lambs.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was funded by the São Paulo Research Foundation (FAPESP) under [Grant no. 2011/18362-0].

References

Aberle ED, Forrest JC, Gerrard DE, Mills EW. 2012. Principles of meat science. In: Chapter 5, Conversion of Muscle to Meat: Biochemistry of Meat Quality Development. Iowa: Kendall Hunt Publishing; p. 97–122.

Ba NX, Giang VD, Ngoan LD. 2005. Ensiling of mulberry foliage (Morus alba) and the nutritive value of mulberry foliage silage for goats in central Vietnam. Livest Res Rural Dev. 17:1–9.

Barbosa JC, Maldonado W Jr. 2012. AgroEstat – Sistema para Análises Estatísticas de Ensaios Agronómicos. Versão 1.1.0.668. Jaboticabal: Departamento de Ciências Exatas, Universidade Estadual Paulista.

Behmer OA, Jordens JZ, Griffiths DT, Benez SM. 1976. Manual de técnicas para histologia normal e patológica. São Paulo: EDART Editora da USP.

Bonaguro S, Perez JRO, Garcia IFF. 2003. Quality of meat production of Purebred Santa Inês and Crossbred Texel x Santa Inês Lambs at Different Slaughter Weights. R Bras Zootec. 32:1562–1570.

Borghi TH, Silva Sobrinho AG, Zeola NMBL Almeida FA, Cirne LGA, Lima ARC. 2016. Dietary glyciner does not affect meat quality of Ile de France lambs. R Bras Zootec. 45:554–562.

Campos FS, Carvalho GGP, Santos EM, Araújo GGL, Gois GC, Rebouças RA, Leao AG, Santos AS, Oliveira JS, Leite LC, et al. 2017. Influence of diets with silage from forage plants adapted to the semi-arid conditions on lamb quality and sensory attributes. Meat Sci. 124:61–68.

Canique V, Sániudo C. 2000. Metodologia para el estudio de la calidad de la canal y de la carne en rumiantes. Madrid: Instituto Nacional de Investigación y Tecnologia y Alimenticia.

Cirne LGA. 2013. Desempenho e qualidade da carne de cordeiros alimentados com forno de amoreira [unpublished dissertation]. Jaboticabal: Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista.

Costa RG, Cartaxo FQ, Santos NM, Queiroga RCRE. 2008. Goat and sheep meat: fatty acids composition and sensorial characteristics. R Bras Saúde Prod Anim. 9:497–506.

Costa RG, Silva NV, Azevedo PS, Medeiros AN, Carvalho FFR, Queiroga RCRE, Medeiros GR. 2011. Meat quality of lambs fed silk flower hay (Calotropis procera SW) in the diet. R Bras Zootec. 40:1266–1271.

Costa JL, Resende H. 2006. Produção de feno de gramineas. Juiz de Fora: Embrapa CNPGL.

Della Malva A, Albenzio M, Annicchiarico G, Caroprese M, Muscio A, Santillo A, Marino R. 2016. Relationship between slaughtering age, nutritional and organoleptic properties of Altamurana lamb meat. Small Rum Res. 135:39–45.

Endo V, Silva Sobrinho AG, Almeida FA, Lima NLL, Manzi GM, Cirne LGA, Zeola NMB. 2014. Qualitative characteristics of meat from lambs fed hydrolyzed sugarcane. World Acad Sci Eng Technol. 8:674–676.

Ferreira DF. 2011. Sisvar: a computer statistical analysis system. Ciênc Agrotec. 35:1039–1042.

Lawrie RA. 2005. Ciência da carne. In: Chapter 4, Constituição química e bioquímica do músculo. Porto Alegre: Artmed; p. 79–119.

Leão AG, Silva Sobrinho AG, Moreno GMB, Souza HBA, Giampietro A, Rossi RC, Perez HL. 2012. Physic-chemical and sensorial characteristics of meat from lambs finished with diets containing sugar cane or corn silage and two levels of concentrate. R Bras Zootec. 41:1253–1262.

Liu JX, Yao J, Yan B, Yu QJ, Shi ZQ. 2001. Effects of mulberry leaves to replace rapeseed meal on performance of sheep feeding on ammoniated rice straw diet. Small Rumin. Res. 39:131–136.

Madruga MS, Costa RG, Silva AM, Marques AVMS, Cavalcanti RN, Narain N, Albuquerque CLC, Lira Filho GE. 2008. Effect of silk flower hay (Calotropis procera Sw) feeding on the physical and chemical quality of Longissimus dorsi muscle of Santa Inês lambs. Meat Sci. 78:469–474.

Madruga MS, Sousa WH, Rosales MD, Cunha MGG, Ramos JLF. 2005. Qualidade da Carne de Cordeiros Santa Inês Terminados com Diferentes Dietas. R Bras Zootec. 34:309–315.

Miltonburg GA, Wensing T, Smulders FJM, Breukink HJ. 1992. Relationship between blood hemoglobin, plasma and tissue iron, muscle heme pigment, and carcass color of veal. J Anim Sci. 70:2766–2772.

Moraes MAC. 1993. Métodos para avaliação sensorial dos alimentos. Campinas: FEA/UNICAMP.

Moreno GMB. 2011. Feno de erva-sal (Atriplex nummularia) forage for ruminal fermentation and for sheep meat: fatty acids composition and sensorial characteristics. R Bras Zootec. 40:1266–1271.

Moraes MAC. 1993. Métodos para avaliação sensorial dos alimentos. Campinas: FEA/UNICAMP.

Moreno GMB, Borba H, Araújo GGL, Sániudo C, Silva Sobrinho AG, Buzanskas M, Lima Júniur DM, Almeida VVS,
Boaventura Neto O. 2015. Meat quality of lambs fed different saltbush hay (Atriplex nummularia) levels. Ital J Anim Sci. 14:251–259.

Nassu RT. 2009. Metodologia científica: protocolo para avaliação sensorial de carne bovina. São Carlos: Embrapa Pecuária Sudeste.

National Research Council (NRC). 2007. Nutrients requirements of sheep. Washington: National Academies Press.

Oliveira I, Silva TJP, Freitas MQ, Tortelly R, Paulino FO. 2004. Caracterização do processo de rigor mortis em músculos de cordeiros e carneiros da raça Santa Inês e maciez da carne. Acta Sci Vet. 32:25–31.

Ordóñez JA. 2005. Tecnologia de alimentos. In: Chapter 8, Características sensoriais da carne. 2nd ed. Porto Alegre: Artmed; p. 145–170.

Okamoto F, Cunha EA, Bueno MS, Silva MA, Santos E, Rodrigues AA. 2008. Desempenho de borregas da raça Santa Inês alimentadas com cana-de-açúcar e ramas de amoreira. Bol Indúst Anim. 65:01–06.

Ramos EM, Gomide LAM. 2012. Avaliação da qualidade de carnes: fundamentos e metodologias. Viçosa: Universidade Federal de Viçosa.

Sanchez MD. 2002. Mulberry for animal production: mulberry, an exceptional forage available almost worldwide. Roma: Food and Agriculture Organization (FAO) of United Nations.

Sañudo CA, Delfa R, Casas M, González C, Alcalde MJ, Vijil E. 1992. Influencia del genotipo en la calidad de la carne del ternasco de Aragón. Proceeding of the 16th Jornadas Científicas de la Sociedade Española de Ovinotecnia y Caprino, Pamplona, Navarra, ESP; p. 473–479.

Sañudo C, Enser ME, Campo MM, Nute GR, María G, Sierra I, Wood JD. 2000. Fatty acid composition and sensory characteristics of lamb carcasses from Britain and Spain. Meat Sci. 54:339–346.

Schaller O. 1999. Nomenclatura Anatômica Veterinária Ilustrada. In: Chapter 4, Miologia. São Paulo: Manole; p. 98–139.

Silva Sobrinho AG. 1999. Body composition and characteristics of carcases from lambs of different genotypes and ages at slaughter [unpublished dissertation]. New Zealand: Massey University.

Silva Sobrinho AG. 2001. Criação de ovinos. 2nd ed. Jaboticabal: Funep.

Silva Sobrinho AG, Purchas RW, Kadim IT, Yamamoto SM. 2005. Características de qualidade da carne de ovinos de diferentes genótipos e idades ao abate. R Bras Zootec. 34:1070–1078.

Souza XR, Bressan MC, Pérez JRO, Faria PB, Vieira JO, Kabeya DM. 2004. Efeitos do grupo genético, sexo e peso ao abate sobre as propriedades físico-químicas da carne de cordeiros em crescimento. Ciênc Tecnol Alim. 24:543–549.

Tatum JD, Smith GC, Belk KE. 2000. New approaches for improving tenderness, quality, and consistency of beef. California: American Society of Animal Science.

Van Wyk JA, Bath GF. 2002. The FAMACHA system for managing haemonchosis in sheep and goats by clinically identifying individual animals for treatment. Vet. Res. 33:509–529.

Veiseth E, Shackelford SD, Wheeler TL, Koohmaraie M. 2004. Factors regulating lamb longissimus tenderness are affected by age at slaughter. Meat Sci. 68:635–640.

Vu CC, Verstegen MWA, Hendriks WH, Pham KC. 2011. The nutritive value of mulberry leaves (Morus alba) and partial replacement of cotton seed in rations on the performance of growing vietnamese cattle. Asian Aust J Anim Sci. 24:1233–1242.

Warris PD. 2003. Ciencia de la carne. Zaragoza: Acribia.

Wheeler TL, Shackelford SD, Koohmaraie M. 2000. Variation in proteolysis, sarcomere length, collagen content, and tenderness among major pork muscles. J Anim Sci. 78:958–965.

Zeola NMBL, Silva Sobrinho AG, Manzi GM. 2011. Qualitative parameters of lamb meat submitted to organic and conventional production models. Braz J Vet Res Anim Sci. 48:107–115.