Asynchronous motor drive system using an improved APFC converter

Aijuan Jin1,2, Shuo Xiang1, Shaolong Li1, and Wenbin Cao1

Abstract Due to the high input current harmonics created from the power diodes as well as the switching of the inverter, the power factor cannot achieve a unity power factor. This paper presents an improved active power factor correction (APFC) converter for three-phase asynchronous motor drive system. This improved APFC operating in a discontinuous inductor current mode based on bridgeless canonical switching cell is designed and corrects the power factor in grid. In order to obtain high performance of the motor drive system, the dual-mode control strategy and the fuzzy PID is used in this system. Finally, the whole system is verified by software simulation and hardware experiment.

Keywords: APFC, asynchronous motor, dual-mode control, fuzzy PID

Classification: Power devices and circuits

1. Introduction

Asynchronous motor has the advantages of simple structure, convenient maintenance, low quality, low cost and high operating efficiency. The AC-DC converter of electric power is an indispensable part in the asynchronous motor drive system [1, 2]. However, it produces a large amount of current harmonics, resulting in the poor power factor at the input ac mains [3, 4]. In order to improve the power quality as well as the efficiency and performance of motor drive system, some methods are studied and proposed.

The traditional passive power factor correction (PPFC) in asynchronous motor drive system uses some passive devices after the rectifier bridge to prolong the conduction time of the diode [5, 6, 7]. The current harmonics are reduced to make the current waveform sinusoidal for improving the power factor of grid [8]. However, with large inductance and large capacitance, the volume of the whole circuit is larger. Moreover, the power factor will be affected by the change of working environment and conditions [9, 10].

Among the traditional active power factor correction (APFC) in asynchronous motor drive system, for example, the bridge Boost-PFC [11, 12], the bridgeless Boost-PFC [13, 14] and the CSC converter have mandatory control of input current through DC-DC converter [15, 16]. Therefore, the current in grid side is sinusoidal and as far as possible keeps the same phase with the input voltage which indicates the power factor is almost one. Compared to the PPFC, APFC can reduce harmonic pollution in grid and achieve the requirement of unit power factor [17]. Nevertheless, considered some relevant factors such as high power loss, voltage conversion ratio, switching loss and the number of components, its application is also limited in asynchronous motor drive system.

The asynchronous motor of electric forklift is taken as the research object in this paper, and a method of asynchronous motor drive system based on improved APFC is proposed, which operates in a discontinuous inductor current mode (DCM) and overcomes the shortcomings of traditional PPFC and APFC converter. The simulation model is built in Matlab/Simulink. Finally, a real hardware system is implemented to verify the improved motor drive system. The results show that the power factor of the grid is nearly the unit power factor, the harmonics are decreased and the power quality is increased.

2. The fundamentals of improved APFC converter

This paper presents an improved APFC converter shown in Fig. 1(a). The improved APFC circuit consists of switching device, the energy stored inductor, power diode and an output capacitor. It combines the advantages of CSC converter with the bridgeless structure. Also, it has low loss of bridgeless structure and less devices [18, 19]. The structure of improved APFC converter is shown in Fig. 1(a).

The design of the improved APFC converter makes the switches (S_{w_1} and S_{w_2}) work in the positive-half period and the negative-half period of the supply voltage V_S respectively. As shown in Fig. 1(b), (c) and Fig. 2, the input current i_L flows through the switch S_{w_1}, inductor L_1 and the current recovery diode D_1, during the positive half period of the supply voltage V_S. Similarly, as shown in Fig. 4, the switch S_{w_2}, inductor L_2 and diode D_2 are working during the negative half period of the supply voltage V_S. Fig. 3(a) shows waveforms of supply voltage (V_S), inductor currents (i_{L1} and i_{L2}) and intermediate capacitor voltages (V_{C1} and V_{C2}). Fig. 3(b) shows the relevant waveforms during the three modes of operations.

Fig. 1–Fig. 4 lists all the modes of operation of the improved APFC converter used in this paper, which are divided into six modes. The first three modes are similar to the last three. However, the first three work in the positive half cycles. The latter works in the negative half cycle. Therefore, only the first three working modes are described.
in this paper, the latter three working modes can be referred to the first three.

Mode I-A: As shown in Fig. 1(b), when the switch S_{w1} is on, the current i_s emitted from the power supply sequentially flows through S_{w1}, the input side inductor L_{i1} and the diode D_{p}. Therefore, a closed circuit is formed to charge the inductor L_{i1}. However, intermediate capacitor C_1 starts discharging, which charges the capacitor C_d. Fig. 3(b) shows that during this mode, the inductance current i_{Li1} increases continuously, the voltage V_{c1} decreases as a result of the discharge, and the V_{dc} increases due to the charge from C_1.

Mode I-B: In this mode of operation, as shown in Fig. 1(c), when the switch S_{w1} is disconnected, the current i_s flows through the capacitor C_1, leading that the C_1 is charged by power supply and the V_{c1} is increased. The inductor L_{i1} begins discharging, which charges the capacitor C_d through a closed circuit with the load and the diode D_1, and the waveform is as shown in Fig. 3(b). Fig. 3(b) shows that during this mode, the voltage V_{dc} increases with the increase of current i_{Li1}, meanwhile, the voltage V_{c1} increases because the capacitor C_1 starts charging.

Mode I-C: this mode is discontinuous inductor current mode (DCM) in which the current i_{Li1} flowing through the inductor L_{i1} becomes zero, as shown in Fig. 2. At this point, the inductance L_{i1} is fully discharged, meaning that the current is reduced to zero to form the DCM mode. The current i_s still flows into the intermediate capacitor C_1 to form a charging state, maintaining the energy of C_1. The capacitor C_d provide energy to the load. As shown in Fig. 3(b), the voltage V_{dc} decreases because the capacitor C_d is discharged, and the voltage V_{c1} still increases.

3. Asynchronous motor control system based on improved APFC

Fig. 5 is the whole structure of three-phase asynchronous motor system based on improved APFC converter. The system includes the rectifier module, APFC module, voltage source inverter (VSI) module, motor module, the speed controller and the voltage controller [20, 21, 22].

3.1 Speed controller using dual-mode speed control strategy

The traditional PWM scheme produces more harmonics in the high speed state, the PWM mode is not suitable for high speed application. The dual-mode control method proposed in this paper is able to achieve a better performance both at low speed and high speed. Fig. 5 shows the application of dual-mode control in this paper [11]. When working in low-speed situation, the PWM mode is adjusted by changing the duty cycle while keeping the input voltage V_{dc} of the VSI constant. When working in high-speed situation, the system works in PAM mode. The control of the switch of the APFC is the same with the low speed mode, but the control of the switch of the VSI adopts PAM mode, in which the pulse amplitude is modulated by changing bus voltage V_{dc} rather than duty cycle.
3.2 Control of the voltage controller

Fig. 5 shows the structure diagram of the control of DC bus voltage controller [23, 24]. The reference voltage \(V_{dc}^{\text{ref}} \) is given by Eq. (1).

\[
\begin{align*}
V_{dc}^{\text{ref}} &= k_v \omega, \quad \text{(PWM)} \\
V_{dc}^{\text{ref}} &= \text{cons} \tan t, \quad \text{(PAM)}
\end{align*}
\]

The error signal \(V_e \) is represented by

\[
V_e = V_c^{\text{ref}} - V_c
\]

This error voltage \(V_e \) is given to the fuzzy PID controller to generate a controlled output voltage \(V_{cc} \) [25, 26, 27], which is expressed as

\[
V_{cc} = k_p V_e + k_i \int V_e dt + k_d \frac{dV_e}{dt}
\]

where \(k_p \), \(k_i \) and \(k_d \) are the proportional, integral and derivative gains of the fuzzy PID controller, respectively [28, 29].

Finally, the PWM signals are generated by comparing the output \(V_{cc} \) of the fuzzy PID controller with the high-frequency sawtooth signal \(m_d(t) \), which are given as

\[
\begin{align*}
\text{if} \ m_d < V_{cc} \ \text{then Switch1} &= 1, \ V_s > 0 \\
\text{if} \ m_d \geq V_{cc} \ \text{then Switch1} &= 0, \ V_s > 0 \\
\text{if} \ m_d < V_{cc} \ \text{then Switch2} &= 1, \ V_s < 0 \\
\text{if} \ m_d \geq V_{cc} \ \text{then Switch2} &= 0, \ V_s < 0
\end{align*}
\]

Where 1 and 0 represent on and off of APFC switches, respectively [30].

4. Simulation scheme and results of the proposed system

The above presented system shown in Fig. 5 has been simulated using MATLAB/SIMULINK software. The machine parameters are described in Appendix. The AC power \(V_s \) 220 V is assumed for all the simulation tests. As is shown in Fig. 6(a), the waveform of grid current \(i_s \) is sinusoidal shapes, and the phase of \(i_s \) is nearly same with the phase of \(V_s \). The power factor in this system is 0.9976 from Fig. 6(a).

Fig. 6(b) and Fig. 6(c) show that the waveforms of the capacitance voltage (\(V_c^1 \) and \(V_c^2 \)) and the inductance current (\(i_L^1 \) and \(i_L^2 \)). The obtained waveforms are almost consistent with the theoretical waveforms above described. It can be concluded that the improved APFC controller can work normally in this system.

In Fig. 7(a) and (b), the power factor of grid and the DC bus voltage \(V_{dc} \) by conventional and proposed APFC are demonstrated, where the benefit of the proposed method is clearly shown. It can be seen that 0.01 s after operation starting, the power factor begins to increase. At \(t = 0.021 \) s, it achieves unit power factor first time, and it maintains stable after \(t = 0.03 \) s. In Fig. 7(c) and Fig. 7(d), the range amplitude of the voltage \(V_{dc} \) in improved APFC converter is about 6 V, the range amplitude of the voltage \(V_{dc} \) in conventional converter is about 13 V. Compared with the conventional Boost-APFC converter, the improved converter gives fast and stable power factor value at \(t = 0.03 \) s, and the voltage \(V_{dc} \) in improved APFC converter is more stable with smaller ripple.
Fig. 8(a) shows the waveforms of motor in steady state and Fig. 8(b) shows the bus voltage V_{dc}, rotor speed n, electromagnetic torque T_e and line voltage for a step change on the speed reference ($n^* = 450$ rpm) at $t = 0$ s. The waveforms of the motor parameters during the low speed mode change to high speed mode are as shown in Fig. 8(b) (at $t = 1$ s.) From the dynamic waveform of motor shown in Fig. 8(b), it can be seen that the bus voltage also can maintain stability on motor start-up operation or step change operation of speed reference. When the motor is running at high speed, the motor speed can be adjusted effectively by changing the bus voltage using a dual-mode control. In terms of function and performance, the simulation results show that the structure is reasonable and effective in the application of the system.

5. System hardware implementation

An experimental system based on microcontroller has been constructed in order to verify proper operation of the proposed technique. The real system consists of a microcontroller-DSPF28335, the drive circuit, an asynchronous motor, the VSI and the improved APFC circuit. A photograph of the experimental system is shown in Fig. 9.

Fig. 10(a) shows that the phase of the voltage (the green curve in Fig. 10(a)) and current (the yellow curve in Fig. 10(a)) in grid side is almost the same, and the smaller amplitude of the curves is the voltage waveform. Therefore, it can be concluded that the structure of improved APFC converter has improved the power factor. Fig. 10(b) and Fig. 10(c) show that capacitor voltage and inductor current in improved APFC converter are consistent with the theoretical analysis in Section II. From the phase current and line voltage shown in Fig. 11, it can be concluded that the motor is running normally and motor speed can be regulated by changing the output duty cycle under the high-speed mode and adjusting the bus voltage under low-speed mode. The waveform indicates that the proposed dual-mode control strategy can achieve more precise control of motor speed.
In the presented paper, an improved APFC converter for using in induction motor drive is discussed and presented. In order to achieve a high performance of the motor drive system, the dual-mode control strategy and fuzzy PID are considered in the controller. After designing the speed controller and the voltage controller with the proposed improved APFC converter, an improved asynchronous motor drive system is built and simulated in MATLAB/SIMULINK. A detailed simulation analysis is presented. In addition, the real system is implemented using a digital microcontroller. Simulation as well as experimental results show that proposed method highlights the effectiveness of the improved APFC modules. Therefore, the power factor in grid and overall efficiency of the motor drive system can be increased considerably.

7. Appendix

Parameters of induction motor. Rated power 1.5 kW, rated voltage 220 V, rated speed 1600 rpm, 2 poles, stator resistance 0.0229Ω, rotor resistance 0.015Ω, stator leakage inductance 0.000102 H, rotor leakage inductance 0.000054, magnetizing inductance 0.000741 H. Parameters of improved APFC circuit. \(V_S(t) = V_m \sin(2\pi f_1 t) = 220\sqrt{2} \sin(314t) V \), \(L_{1r} = L_{2r} = 300 \mu H \), \(C_1 = C_2 = 0.078 \mu F \), \(C_f \approx 49.8 \mu F \), \(L_f = 54 \text{ mH} \).

References

[1] A. A. Fardoun, et al.: “New “real” bridgeless high efficiency ac–dc converter,” Proc. 27th Annu. IEEE APEC Expo. Papers (2012) 317 (DOI: 10.1109/APEC.2012.6165837).
[2] B. Williams: “Generation and analysis of canonical switching cell dc-to-dc converters,” IEEE Trans. Ind. Electron. 61 (2014) 329 (DOI: 10.1109/TIE.2013.2240633).
[3] B. Singh and V. Bist: “An improved power quality bridgeless Cuk converter-fed BLDC motor drive for air conditioning system,” IET Power Electron. 6 (2013) 902 (DOI: 10.1049/iet-pel.2013.0050).
[4] Y. Xiao, et al.: “Design and performance analysis of magnetic slot wedge application in double-fed asynchronous motor-generator by finite-element method,” IET Electr. Power Appl. 12 (2018) 1040 (DOI: 10.1049/iet-epa.2017.0730).
[5] B. Singh and S. Singh: “Single-phase power factor controller topologies for permanent magnet brushless dc motors,” IEEE Power Electron. 3 (2010) 147 (DOI: 10.1049/iet-pel.2008.0313).
[6] X. Huang, et al.: “A single sided matrix converter drive for a brushless dc motor in aerospace applications,” IEEE Trans. Ind. Electron. 59 (2012) 3542 (DOI: 10.1109/TIE.2011.2171171).
[7] S. B. Ozturk, et al.: “Power factor correction of direct torque controlled brushless dc motor drive,” Conf. Rec. 42nd IEEE IAS Annu. Meeting, Papers (2007) 297 (DOI: 10.1109/IAS.2007.52).
[8] Q. Zhang, et al.: “An active boost type APFC power management circuit,” 2017 29th Chinese Control and Decision Conference (CCDC), Papers (2017) 7034 (DOI: 10.1109/CCDC.2017.7978450).
[9] Y. Jang and M. M. Jovanović: “Bridgeless high-power-factor buck converter,” IEEE Trans. Power Electron. 26 (2011) 602 (DOI: 10.1109/TPEL.2010.2068060).
[10] L. Huber, et al.: “Performance evaluation of bridgeless PFC boost rectifiers,” IEEE Trans. Power Electron. 23 (2008) 1381 (DOI: 10.1109/TPEL.2008.921107).
[11] E. H. Ismail: “Bridgeless SEPIC rectifier with unity power factor and reduced conduction losses,” IEEE Trans. Ind. Electron. 56 (2009) 1147 (DOI: 10.1109/TIE.2008.207552).
[12] A. J. Sabzali, et al.: “A new bridgeless PFC Sepic and Cuk rectifiers with low conduction and switching losses,” 2009 International Conference on Power Electronics and Drive Systems (PEDS), Papers (2009) 550 (DOI: 10.1109/PEDS.2009.5385704).
[13] A. A. Fardoun, et al.: “New efficient bridgeless Cuk rectifiers for PFC applications,” IEEE Trans. Power Electron. 27 (2012) 3292 (DOI: 10.1109/TPEL.2011.2182662).
[14] O. Sago, et al.: “An optimum single phase PFC circuit using CSC converter,” 30th Annual Conference of IEEE Industrial Electronics Society (2004) 2684 (DOI: 10.1109/IECON.2004.1432230).
[15] V. Bist and B. Singh: “An adjustable speed PFC bridgeless buck–boost converter-fed BLDC motor drive,” IEEE Trans. Ind. Electron. 61 (2013) 2665 (DOI: 10.1109/TIE.2013.2274424).
[16] Y. Liu, et al.: “A control method for bridgeless Cuk/Sepic PFC rectifier to achieve power decoupling,” IEEE Trans. Ind. Electron. 64 (2017) 7272 (DOI: 10.1109/TIE.2017.2688979).
[17] S. Narula, et al.: “Interleaved CSC converter-based power factor corrected switched mode power supply for arc welding,” IET Power Electron. 9 (2016) 2404 (DOI: 10.1049/iet-pel.2015.0510).
[18] T-Y. Ho, et al.: “The design of a PMSM motor drive with active power factor correction,” 2011 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC), Papers (2011) 4447 (DOI: 10.1109/AIMSEC.2011.6010051).
[19] B. Zhao, et al.: “Family of bridgeless buck-boost PFC rectifiers,” IEEE Trans. Power Electron. 30 (2015) 6524 (DOI: 10.1109/TPEL.2015.2445779).
[20] M. H. V. Reddy, et al.: “Discontinuous PWM technique for the asymmetrical dual inverter configuration to eliminate the overcharging of DC-link capacitor,” IEEE Trans. Ind. Electron. 65 (2018) 156 (DOI: 10.1109/TIE.2017.2716858).
[21] A. T. S. Subramanian, et al.: “A power factor correction based canonical switching cell converter for VSI fed BLDC motor by using voltage follower technique,” 2017 IEEE International Conference on Electrical, Instrumentation and Communication Engineering (ICEICE). Papers (2017) 1 (DOI: 10.1109/ICEICE.2017.8191932).

[22] Y. He, et al.: “A dual-mode operation and smooth transition control of sensorless high-speed permanent magnet synchronous motor,” 2017 36th Chinese Control Conference (CCC). Papers (2017) 1022 (DOI: 10.23919/ChiCC.2017.8027480).

[23] Y. Li, et al.: “The technology study of fuzzy control system for asynchronous motor,” 2013 3rd International Conference on Consumer Electronics, Communications and Networks, Papers (2013) 710 (DOI: 10.1109/CECNet.2013.6703430).

[24] A. Abou-Elyazied Abdallh, et al.: “A non-destructive methodology for estimating the magnetic material properties of an asynchronous motor,” IEEE Trans. Magn. 48 (2012) 1621 (DOI: 10.1109/TMAG.2011.2173171).

[25] R. Wai, et al.: “Design of adaptive control and fuzzy neural network control for single-stage boost inverter,” IEEE Trans. Ind. Electron. 62 (2015) 5434 (DOI: 10.1109/TIE.2015.2408571).

[26] R. Wai and L. Shih: “Adaptive fuzzy-neural-network design for voltage tracking control of a DC–DC boost converter,” IEEE Trans. Power Electron. 27 (2012) 2104 (DOI: 10.1109/TPEL.2011.2169685).

[27] B. Chen, et al.: “Observer and adaptive fuzzy control design for nonlinear strict-feedback systems with unknown virtual control coefficients,” IEEE Trans. Fuzzy Syst. 26 (2018) 1732 (DOI: 10.1109/TFUZZ.2017.2750619).

[28] T.-P. Zhang, et al.: “Adaptive fuzzy control of nonlinear systems in pure feedback form based on input-to-state stability,” IEEE Trans. Fuzzy Syst. 18 (2010) 80 (DOI: 10.1109/TFUZZ.2009.2036906).

[29] X. Peng, et al.: “Fuzzy sliding mode control based on longitudinal force estimation for electro-mechanical braking systems using BLDC motor,” CES Trans. Electr. Mach. Syst. 2 (2018) 142 (DOI: 10.23919/TEMS.2018.8326461).

[30] Y. He, et al.: “Suspending control scheme of 8/10 bearingless SRM based on adaptive fuzzy PID controller,” Chin. J. Electr. Eng. 2 (2016) 60 (DOI: 10.23919/CJEE.2016.7933127).