Development of the method for quantitative determination of impurities content in heat-resistant welded nickel alloys using the atomic-emission spectrometry with inductively coupled plasma

V A Volchenkova, E K Kazenas, N A Andreeva, T N Penkina, A A Fomin, K V Grigorovich, A V Alpatov and G S Sprygin

Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences (IMET RAS). Russia

E-mail: volch.v.a@mail.ru; kazenas@imet.ac.ru; andreeva150388@mail.ru; t-penka-01@yandex.ru; fomina2402@mail.ru; grigorov@imet.ac.ru; alpat72@mail.ru; engaer@gmail.com

Abstract. Using AES-ICP new methods have been developed for quantifying the content of impurity elements Al, B, Ce, Co, Cr, Cu, Hf, Fe, Mg, Mn, Mo, Nb, Si, Ta, Ti, W, V, Zr in the new heat-resistant nickel alloys. To translate the samples into the solution, accelerated techniques were developed using open systems and the microwave system Mars 5. Optimal analytical parameters for determining the elements were chosen. The influence of matrix elements (nickel and chromium) and methods of its elimination were studied. This made it possible to determine the elements in a wide concentration range from 0.0005 to 30% without preliminary separation of the matrix with good metrological characteristics. The relative standard deviation (S_r) is 0.05-0.005 at the element content from 1 to 30% and does not exceed 0.20 at the element content from 0.0005 to 0.1%. New method of analytical control was used to correct the processes of melting alloys by vacuum induction melting, compacting capsules and welding process with other heat-resistant alloys, which will ensure the performance of work on the improvement of metal compounds in liquid rocket engines.

1. Introduction

The processes of melting alloys by vacuum induction melting, compacting, subsequent processes of VDP and ELP, heat treatment, welding process with other heat-resistant alloys requires verification of the homogeneity of the received materials and welds [1]. For this purpose, it is necessary to systematically carry out elemental analysis of a large number of samples both for the main alloying components (Cr, Ti, Al, Mo, Nb, Ta, W), and for microalloying additives and impurities (Hf, Si, Mn, Fe, Mg, B, Ce, Cu, Zr). The absence of a set of standard samples of the composition of heat-resistant nickel alloys to determine this list of impurity elements limits the choice of the method of analysis.

The optimal research method for solving these problems is the atomic emission spectrometry with inductively coupled plasma (AES-ICP), which allows to simultaneously determine a large set of elements of different concentrations. The influence of nickel and chromium on the definition of Al, B,
Ce, Co, Cu, Hf, Fe, Mg, Mn, Mo, Nb, Si, Ta, Ti, W, V, Zr has been little studied [2] and is often absent in the literature.

2. Experimental results

AES-ICP was used for our research. The method is the most perspective for determination of the elements, regarding sensitivity, selectivity and metrological characteristics [3, 4]. Work was conducted on the plasma spectrometer of ULTIMA 2 firms "HORIBA JOBIN YVON" (France-Japan). The optimal analytical parameters for the simultaneous determination of the above listed chemical elements were experimentally found: the discharge power – 1.2 kW; cooling argon flow is 14 l/ min; transporting is 0.80 l/min; plasma is 0.5 l/min; observation height 15 mm above the top turn of the induction coil; the speed rate samples is 1.0 ml/min. Analytical lengths of waves were chosen for determination of the elements, that provide the suitable detection limits, a minimum of adjustments for background and overlapping of spectral lines [5]. Optimal analytical lengths of waves are presented in tables 1.

The detection limits of the elements were estimated [6]. In table 1, the calculated detection limits of elements are presented. It is seen that the detection limits on the background 1000 ppm of nickel and 500 ppm of chromium are significantly different from those in the pure solutions and not for the better.

№	Element	Length wave, λ nm	Detection limit, ppb (3σ)	Intensity		
			in pure solution	on the background 2000 ppm Ni	on the background 500 ppm Cr	
1	Al	396,152	0.3	1.8	1.2	64000
2	B	208,959	0.2	1.9	1.6	74000
3	Ce	413,765	0.6	3.9	2.6	15700
4	Co	228,616	0.4	2.5	2.0	11000
5	Cr	267,716	0.2	1.8		75500
6	Cu	324,754	0.2	2.2	1.9	95000
7	Fe	259,940	0.2	2.0	1.8	89000
8	Hf	282,022	0.2	2.5	1.9	52000
9	Mg	279,553	0.03	0.5	0.4	105000
10	Mn	257,810	0.05	0.7	0.8	98600
11	Mo	280,775	0.2	1.8	1.9	98000
12	Nb	316,340	0.3	3.8	2.2	16800
13	Ni	221,647	0.2	1.5		28000
14	Si	251,611	1.3	4.0	3.0	92000
15	Sn	189,989	6	19	18	9800
16	Ta	363,558	0.6	3.6	1.7	15100
17	Ti	334,941	0.1	1.8	1.5	150000
18	V	292,402	0.2	1.9	1.4	125000
19	W	207,911	0.4	3.2	1.8	28600
20	Zr	339,198	0.2	2.5	2.4	49900

The main problem of emission analysis is to take into account the influence of the matrix (basis). The influence of matrix elements (nickel and chromium) and methods of their removal were studied. An increase in the concentration of matrix elements to 200 ppm did not affect the analytic signals of the impurity elements, when they were more than 10 ppb. With an increase in the concentration of Ni or Cr in the solution a change in the slope of the calibration curves and a shift was observed (figure 1, 2). It is particularly difficult to determine the elements near the limits of their detection against the
background of complex matrices. In figure 1, 2 the calibration graphs of Co and Nb are presented for pure solutions, containing 500 ppm Cr or 2000 ppm Ni. It can be seen, that at concentration of Co and Nb below 10 ppb, there is a distortion of the calibration curves and, consequently, a deterioration in the metrological characteristics of the determination of the elements. When determining the elements near the limits of their detection (5 ppb), other impurity elements (at a content of more than 100 ppm) begin to affect their analytical signals. Allowable relations of the nickel matrix element to the determined elements are presented in table 2. To eliminate the matrix interference due to the changing concentration of the matrix element, the method of interactive concordance of matrix [4] has been applied.

Significant factor is the choice of the concentration of the matrix element in the solution, which is not violated to the stability of work of the system burner - nebulizer. For chromium favorable is a concentration no more than 1000 ppm and for a nickel - 2000 ppm.

![Figure 1](image1.png)

Figure 1. Calibration graphs of cobalt in pure solution (a) and on the background 500 ppm Cr (b).

![Figure 2](image2.png)

Figure 2. Calibration graphs of niobium in pure solution (a) and on the background 2000 ppm Ni (b).
Table 2. Allowable relations of the nickel matrix element to the determined elements.

№	Element	Length wave, λ, nm	Allowable relations	The interval of determined concentrations of element (ppb)	The relative standard deviation (S_r)
1	Al	396,152	1∙10^6	10-10000	0,15-0,01
2	B	208,959	1∙10^5	5-10000	0,15-0,02
3	Ce	413,765	2∙10^5	15-10000	0,20-0,01
4	Co	228,616	6∙10^5	10-10000	0,15-0,01
5	Cr	267,716	1∙10^6	2-10000	0,15-0,005
6	Cu	324,754	1∙10^5	5-10000	0,10-0,004
7	Fe	259,940	2∙10^5	8-10000	0,10-0,005
8	Hf	282,022	5∙10^4	5-10000	0,15-0,01
9	Mg	279,553	2∙10^6	1-10000	0,15-0,006
10	Mn	257,810	1∙10^6	2-10000	0,10-0,005
11	Mo	280,775	2∙10^5	6-10000	0,15-0,006
12	Nb	316,340	1∙10^5	9-10000	0,18-0,01
13	Si	251,611	6∙10^5	8-10000	0,15-0,01
14	Sn	189,989	1∙10^5	12-10000	0,14-0,01
15	Ta	363,558	3∙10^5	8-10000	0,15-0,01
16	Ti	334,941	1∙10^6	5-10000	0,20-0,005
17	V	292,402	1∙10^5	10-10000	0,18-0,007
18	W	207,911	3∙10^5	12-10000	0,15-0,009
19	Zr	339,198	1∙10^6	2-10000	0,12-0,008

The influence of the nature and concentration of various acids on the analytical signals of elements were studied. On figures 3-5 the dependences of analytical signals of elements from concentration of HCl, H_2SO_4, H_3PO_4 acid in the analyzed solution are shown. As follows from experimental data, changes in concentration of acid in the analyzed solution lead to changes in analytical signal, and the degree of change depends on the nature and concentration of acid. Hence, a solution of 2M HCl decreases the analytical signal Nb on 3%, while the sulfuric acid of the same concentration by 20%. The increase in the concentration as HCL and HNO_3, from 0.01 M to 1 M changed analytical signals of the elements not more than by 10%. Significant influence on the analytical signals of the elements renders the changed concentrations of phosphoric and sulfuric acids in solution. The best analytical medium is hydrochloric acid. However, the practical error can be avoided by maintaining an adequate acid content in tests and standard solutions. Uncontrolled fluctuations in the concentration of acids, especially sulphuric, can lead to errors which are significantly greater than instrumental.
Figure 3. The dependence of the intensity of the signal elements from concentration of hydrochloric acid.

Figure 4. The dependence of the intensity of the signal elements from concentration of sulfuric acid.
Figure 5. The dependence of the intensity of the signal elements from concentration of phosphoric acid.

Table 3. Methods of dissolution of heat-resistant nickel alloys.

Composition of samples	Reagents for dissolution	Dissolution conditions	Reagents for retention of matrix and determinable elements in solution	Determinable elements	Method of analysis (found impurity content)
Ni 70-90%	HF + HNO₃ + HCl	Heating in Pt, teflon, glass-carbon dishes (from 50 minutes to 5 hours)	H₃PO₄ + HCl (2-4M)	Al, B, Ce, Co, Cr, Cu, Hf, Fe, Mg, Mn, Mo, Nb, Si, Ta, Ti, W, V, Zr	AES-ICP (10⁻³·n·10%)
Cr 10-20%	HF	Heating in Pt, teflon, glass-carbon dishes (from 50 minutes to 5 hours)	H₃PO₄ + HCl (2-4M)	Al, B, Ce, Co, Cr, Cu, Hf, Fe, Mg, Mn, Mo, Nb, Si, Ta, Ti, W, V, Zr	AES-ICP (10⁻³·n·10%)
Co 0.01-15%	H₂SO₄ + HCl	Heating in Pt, teflon, glass-carbon dishes (from 50 minutes to 5 hours)	H₃PO₄ + HCl (2-4M)	Al, B, Ce, Co, Cr, Cu, Hf, Fe, Mg, Mn, Mo, Nb, Si, Ta, Ti, W, V, Zr	AES-ICP (10⁻³·n·10%)
Mo 0.01-15%	H₂SO₄ + HCl	Heating in Pt, teflon, glass-carbon dishes (from 50 minutes to 5 hours)	H₃PO₄ + HCl (2-4M)	Al, B, Ce, Co, Cr, Cu, Hf, Fe, Mg, Mn, Mo, Nb, Si, Ta, Ti, W, V, Zr	AES-ICP (10⁻³·n·10%)
W 0.1-15%	H₂SO₄ + HCl	Heating in Pt, teflon, glass-carbon dishes (from 50 minutes to 5 hours)	H₃PO₄ + HCl (2-4M)	Al, B, Ce, Co, Cr, Cu, Hf, Fe, Mg, Mn, Mo, Nb, Si, Ta, Ti, W, V, Zr	AES-ICP (10⁻³·n·10%)
Nb 0.1-5%	(NH₄)₂SO₄	Heating in Pt, teflon, glass-carbon dishes (from 50 minutes to 5 hours)	H₃PO₄ + HCl (2-4M)	Al, B, Ce, Co, Cr, Cu, Hf, Fe, Mg, Mn, Mo, Nb, Si, Ta, Ti, W, V, Zr	AES-ICP (10⁻³·n·10%)
Al 0.1-5%	(NH₄)₂SO₄ + H₂SO₄	Heating in Pt, teflon, glass-carbon dishes (from 50 minutes to 5 hours)	H₃PO₄ + HCl (2-4M)	Al, B, Ce, Co, Cr, Cu, Hf, Fe, Mg, Mn, Mo, Nb, Si, Ta, Ti, W, V, Zr	AES-ICP (10⁻³·n·10%)
V 0.01-3%	H₂SO₄ + HCl	Heating in Pt, teflon, glass-carbon dishes (from 50 minutes to 5 hours)	H₃PO₄ + HCl (2-4M)	Al, B, Ce, Co, Cr, Cu, Hf, Fe, Mg, Mn, Mo, Nb, Si, Ta, Ti, W, V, Zr	AES-ICP (10⁻³·n·10%)
Ti 0.01-3%	H₂SO₄ + HCl	Heating in Pt, teflon, glass-carbon dishes (from 50 minutes to 5 hours)	H₃PO₄ + HCl (2-4M)	Al, B, Ce, Co, Cr, Cu, Hf, Fe, Mg, Mn, Mo, Nb, Si, Ta, Ti, W, V, Zr	AES-ICP (10⁻³·n·10%)
To perform elemental analysis using AES-ICP method, it is necessary to transfer the analyzed samples to a solution. The studied materials heat-resistant nickel alloys are rather complex objects of investigation because of the difficulties of transferring the samples to solution and obtaining stable solutions of high concentrations of readily hydrolyzed elements of tungsten, niobium, titanium, molybdenum, tantalum, zirconium, and hafnium. Mineral acids and their mixtures of different concentration were used for dissolution [7]. Optimal schemes for sample dissolution and methods of retaining elements in solution have been found (table 1). Dissolution was carried out with a mixture of nitric, hydrochloric and hydrofluoric acids. To prevent the precipitation of tungsten salts, H$_3$PO$_4$ was added. After dissolving the samples and removing hydrofluoric acid, the residues were transferred with 2M HCl to volumetric flasks. Such a high concentration of acid is necessary for obtaining stable solutions of readily hydrolyzed elements. The solutions obtained were diluted 5-10 times with 1 M HCl before measurement on the plasma spectrometer. To accelerate the decomposition of the samples, modern systems were used: the microwave mineralizer Minotaur-2 (Russia) and the autoclaved microwave system MARS 5 (CEM Corporation, USA). The most effective dissolution was achieved using the MARS 5 module. The larger samples dissolve in fewer reagents and in a shorter period of time. Sample weighed 100 mg completely dissolved in 10 minutes in a mixture of concentrated nitric, chloric and hydrofluoric acids at a temperature of 210°C.

To determine silicon, this method of sample preparation is not suitable. Therefore, the wet-fusion method [7] was also used: heating samples in a mixture of H$_2$SO$_4$ and (NH$_4$)$_2$SO$_4$ (until a clear melt). Method allows to dissolve many difficult compound being uncovered (table 3). At the same time, blank experiments were conducted to control the purity of the reagents. All reagents used were of the high purity.

Samples were analyzed with respect to developed programs. To confirm the correctness of the results of the determination of the elements, they were compared with the data of other analytical methods: atomic absorption spectrometry (AAS) and atomic emission spectrometry with a glow discharge (AES-GD), as well as with certified passport contents of standard samples of nickel alloys. The results of the analysis of the samples are shown in tables 4, 5. Good convergence of the results of the determination of elements by different methods is obtained. The developed new methods for determining the elements favorably differ from the previously proposed expressiveness, the ability to simultaneously determine a large set of elements in a wide range of concentrations from 0.0005 to 30% with good metrological characteristics without preliminary separation of the matrix and without using solid standard samples. The relative standard deviation (S_r) is 0.05-0.005 at the content of elements from 1 to 30% and does not exceed 0.20 at the elements content from 0.0005 to 0.1%.

Table 4. The results of the determination of element contents in heat-resistant nickel alloys, obtained by different methods (n=3, P=95).

Determinable elements	Sample No	Found mass contents of the elements, %			
		AES-ICP	S_r	AES-GD or AAS	S_r
Al	1	2.13	0.04	2.09	0.04
	2	4.08	0.02	4.02	0.02
	3	4.41	0.02	4.45	0.02
Co	1	0.030	0.09	0.032	0.09
	2	13.61	0.008	13.54	0.008
Element	Measurement	Measurement	Measurement	Measurement	
---------	-------------	-------------	-------------	-------------	
Cr	16.63	0.006	16.56	0.006	
	10.30	0.007	10.35	0.007	
	9.71	0.005	9.79	0.005	
	0.010	0.13	0.011	0.13	
Cu	0.012	0.12	0.012	0.12	
	0.011	0.12	0.010	0.12	
	1.07	0.05	1.03	0.05	
Fe	0.64	0.06	0.67	0.06	
	0.32	0.06	0.31	0.06	
	0.14	0.07	0.14	0.07	
Mn	0.073	0.08	0.071	0.08	
	0.021	0.09	0.020	0.09	
	4.09	0.015	4.05	0.015	
Mo	4.63	0.015	4.69	0.015	
	8.85	0.006	8.93	0.006	
	2.52	0.018	2.59	0.018	
Nb	0.084	0.05	0.081	0.05	
	0.063	0.06	0.060	0.06	
	0.024	0.07	0.021	0.07	
Sn	0.050	0.06	0.052	0.06	
	0.15	0.05	0.15	0.05	
	1.12	0.01	1.13	0.01	
Ti	1.76	0.01	1.73	0.01	
	0.053	0.03	0.051	0.03	
	1.16	0.04	1.13	0.04	
V	0.40	0.05	0.41	0.05	
	0.035	0.08	0.032	0.08	
	1.27	0.04	1.23	0.04	
W	5.16	0.02	5.23	0.02	
	5.03	0.02	5.08	0.02	
	0.0016	0.11	0.0019	0.11	
Zr	0.023	0.07	0.020	0.07	
	0.30	0.03	0.31	0.03	
Table 5. The results of determining of element contents in standard samples of the composition (SSC) of nickel alloys, obtained by various methods (n=10, P=95).

SSC No	Determinable elements	AES-ICP	AAS	AES-GD	Certified passport contents
H10a	Fe	0.43±0.02	0.40±0.01	0.45±0.04	0.41±0.02
	Mn	0.23±0.01	0.24±0.009	0.20±0.03	0.238±0.009
	Mo	27.1±0.1	26.9±0.15	27.3±0.2	27.05±0.10
9-82п	Ti	0.084±0.003	0.080±0.005	0.090±0.010	0.086±0.005
	V	1.61±0.07	1.54±0.08	1.67±0.10	1.57±0.08
	Si	0.085±0.005	0.094±0.008	0.089±0.006	
167-a	Al	0.76±0.01	0.79±0.02	0.82±0.05	0.77±0.01
	Cr	20.60±0.09	20.78±0.09	20.55±0.10	20.70±0.06
	Cu	0.024±0.06	0.029±0.04	0.021±0.08	0.028±0.05
	Mn	0.26±0.01	0.25±0.01	0.22±0.04	0.26±0.02
	Ti	2.74±0.06	2.61±0.08	2.58±0.09	2.68±0.06
	Si	0.45±0.02	0.40±0.04	0.43±0.02	
296	Al	1.20±0.04	1.29±0.06	1.16±0.09	1.24±0.01
	Cr	18.4±0.1	18.6±0.1	18.4±0.1	18.51±0.01
	Fe	0.50±0.01	0.49±0.006	0.48±0.02	0.497±0.003
	Mn	0.12±0.005	0.13±0.005	0.13±0.01	0.132±0.002
	Mo	10.0±0.05	10.2±0.1	10.2±0.1	10.09±0.002
	Ti	2.54±0.04	2.63±0.07	2.50±0.09	2.59±0.01
	W	4.49±0.08	4.34±0.09	4.42±0.01	
	Si	0.36±0.01	0.37±0.03	0.346±0.002	
238	Co	0.0071±0.0005	0.0074±0.0004	0.0082±0.0009	0.0076±0.0004
	Cu	0.10±0.01	0.11±0.009	0.14±0.03	0.11±0.01
	Fe	0.11±0.01	0.12±0.01	0.14±0.02	0.12±0.009
	Mg	0.007±0.001	0.009±0.002	0.010±0.009	0.008±0.001
	Mn	0.17±0.009	0.18±0.008	0.19±0.01	0.18±0.008
	Si	0.09±0.01	0.12±0.02	0.10±0.01	
3. Conclusions
Using the method AES-ICP, new express methods of analysis of heat-resistant nickel alloys were developed:

1. New methods for rapid dissolution of samples, using the microwave system Mars 5, were developed.

2. The optimal composition of acids $2\text{M HCl} + \text{H}_3\text{PO}_4$ (without the use of hydrofluoric acid) was chosen for long-term storage of solutions (retention in solutions of refractory elements) for their subsequent use as reference samples to establish the reproducibility of the technological process.

3. The proposed methods allowed to determine the content of elements: Al, B, Ce, Co, Cu, Hf, Fe, Mg, Mn, Mo, Nb, Si, Ta, Ti, W, V, Zr beginning from $5 \times 10^{-3}\%$ and above without prior separation of matrix and without using solid standard samples with good metrological characteristics. The relative standard deviation (S_r) is 0.05-0.005 at the content of elements from 1 to 30% and does not exceed 0.20 at the elements content from 0.0005 to 0.1%.

4. New methods of analytical control were used to correct the processes of alloying by vacuum induction melting method, compaction of capsules and welding process with other high-temperature alloys, which will allow performing work on improving metal compounds in liquid rocket engines.

This work was carried out within the framework of the program of the Presidium of the Russian Academy of Sciences No 36 "Fundamental foundations and new effective methods of chemical analysis and research of the structure of substances and materials" for 2018 (under state assignment No 007-00129-18-00).

4. References
[1] Mikhailov A M, Zubarev K A, Kotelnikov G I, Semin A E and Grigorovich K V 2016 Izvestiya vuzov. Ferrous metallurgy Model of evaporation of components of nickel alloys during melting in a vacuum induction furnace 59 (1) 35-38
[2] Karachevtsev F N 2015 Reference materials Development of certified reference materials of heat resisting nickel alloys for determination of detrimental impurities and rare earth elements by spectral methods 4 46-55
[3] 1989 Atomic–emission analysis with inductive plasma. The results of science and technology Ser. Analytical chemistry. (Moscow: VINITI) vol. 2 p 255
[4] Thompson M P and Walsh J N 1989 Handbook of Inductively Coupled Plasma Spectrometry (New York: Blackie) p 316
[5] Boumans P W J M 1984 Coincidence tables for inductively coupled plasma. Atomic emission spectrometry vol. 1,2 (Oxford Pergamon Press) p 902
[6] Volchenkova V A, Kazenas E K, Dergunova N N, Degtyareva A P and Kraskov I I 2010 Perspektivnye materialy 9 128-131
[7] Bock R A 1979 Handbook of Decomposition Methods in Analytical Chemistry (New York: John Wiley and Sons) p 444