NER is the process of identification of the named entities from the code-mixed and informal data. Code mixed data refers to mixing of two or more languages. NER is the process to detect the proper nouns from the code-mixed and informal data. It is the procedure to extract the named entities from the text and categorize these extracted named entities into its predefined classes [1]. Named Entities are basically the proper nouns that typify the Name of person, location, organization, river, percentage, quantity and time etc. NER is inherently the sub field of NLP. NER is a sub-effort of Information Extraction [2].

Some of the tasks of NER are automatic summarization, machine translation, question answering system, information extraction, information retrieval etc. Indian languages NER is still consulted as germinating field of NLP [2]. One can recognize the named entities only if one complies summations on the natural languages. NER can be divided into two sub tasks: named entity identification (NEI) and named entity classification (NEC). Named entities are the minute aspects in text assets to predefined classes such as name of a person, organization, location etc. [1].

The main efforts of NER include on natural entities like location, person, organization, time, date, measurement and number. The function of named entity recognition and classification can be narrated by recognition of proper nouns in computer interpreted document by means of annotation and classification of tags for information extraction. NER hit a decisive role in other kind of disambiguation's and reference resolutions.

The NER project was first arrived in the sixth message understanding conference (MUC- 6) sundheim (1995) and commit to identification of proper nouns (people and organizations), place names, temporal expressions and numerical expressions [3]. According to various conferences named entities have different kind of categorizations and classifications. According to MUC-6 proper nouns were classified into three different labels. Proper nouns and their labels are: ENAMEX: location, organization, and person. TIMEX: time, date. NUMEX: quantity, money, percentage. According to DARPA’s message understanding conference proper nouns were classified into three top-level categorizations: temporal expressions, number expressions and entity names. As we know NER is one of the rustling fields of research from the past 20-25 years. A huge amount of progression has been found in disclosing the named entities but NER is still enduring an immense problem at large.

Different approaches and different methods have been used to detect the named entities which further classify these extracted named entities into its predefined classes[3]. Various approaches include: supervised, semi supervised and unsupervised learning methodas shown in Figure 1: Supervised learning methods include various machine learning approaches like hidden markov model, maximum entropy model, conditional random fields based Models, decision based Model, and support vector machine based model. Semi supervised learning methods include bootstrapping based models. Some rule based approaches has been used to detect the named entities from code mixed and informal data: linguistic approach and list lookup approach[4]
Various researchers have tried to translate text from source language to target language and have tried to extract named entities or proper nouns from the code-mixed and informal data.

2.1 Approaches based on Machine Translation

A research work was mentioned by Dhariya et al. [5] and developed the boosted mixed approach of phrase based statistical machine translation system (SMT), example based machine translation (EBMT) and rule based machine translation system (RBMT). The main aim to combine these approaches is to get the better accuracy while translating the text from Hindi to English language. The hybrid model consists of four basic steps: segmentation, translation, part of speech tagging, and rearrangement. The comparisons of our proposed hybrid approach with the respected available online translators like google, Babylonian and Bing is sightseen that states that our proposed hybrid approach is much enhanced or well outlined than these available online translators. Another work on machine translation was proposed by Chakrawarti et al. [6] which may concludes the controversy regarding ambiguities and translation divergences. The proposed approach comprises of seven steps. 1. source language i.e. Hindi, 2. target language i.e. English, 3. phases of NLP and ambiguities. 4. models and techniques which are based on machine translation: 5. techniques which are based on word sense disambiguation. 6. concept map construction based languages. 7. corporuses based on both Hindi and English languages like word net and Hindi word net. System architecture regarding translation from Hindi => English consists of many steps. The result of this ongoing research is high precise, accurate and large quality translation of Hindi poetry literature into English.

Kumar et al. [7] tried to propose another work on machine translation and developed syntax directed translator approach which translates text from English to Hindi language without the provision of human translator. In this technique syntax is checked during Translation and many challenges like word order, word sense and ambiguity are resolved. This technique is used to check the correctness of grammar.

2.2 Rule Based Approaches applied in the work of NER

This section provides a survey of the various researches done in Indian languages. Mathur et al. [8] developed the hybrid approach using rule based approach and statistical based approach to extract the named entities from the document. The main agenda of this approach stands to increase the accuracy while translating the proper nouns and named entities. To extract the named entities from the English sentence, a StanfordNER tool is used. In the training corpus six named class entities are predefined and on the basis of these six predefined named class entities further named entities are extracted. Phonification algorithm is applied to get the respective phonemes. The system reported the recall of 83.16%, precision of 83.65% and F-measure of 83.40% respectively. Singhal et al. [9] proposed the hybrid approach regarding English-Hindi transliteration. This paper is discussing about the ongoing issues regarding named entities while translating the text from source language to target language. Syllabification and uni-gram model is proposed to resolve the issues concerning named entities. Primarily knowledgebase with English-Hindi named pairs is maintained then English name is confirmed from the knowledgebase in case if it is located then the interrelated
Hindi name is selected, else the Syllabification is used in the further process of named entity transliteration. A suitable corpus has been constructed for the entire feasible combination of English alphabets for these phonemes and their related Hindi aksharas are matched with it. The system reported the recall of 84.23%, precision of 84.23% respectively.

Chopra et al. [10] developed an approach of handling unknown words while recognizing the named entities. Unknown words are handled through transliteration approach. Transliteration approach involves the procedures of both the training data as well as testing data. The hidden markov model and viterbi algorithm is used for the better detection of named entities. The system reported the recall of 95.80%, precision of 96.13% and F-measure of 96.04% respectively. Morwal et al. [11] developed an approach of transliteration for the better identification of named entities and proper nouns in natural language. In this process separated codes are designed for the training phase as well as for the testing phase which helps in the implementation of Transliteration and give the accurate named entities. Results are based on the performance metrics. The system reported the recall of 70.6%, precision of 70.6% and F-measure of 70.6% respectively.

Nayan et al. [12] developed an approach named phonetic matching for the NER. Phonetic matching involves the matching of strings of various languages on the basis of same sounding property. Architecture is proposed which consists of various parts: crawler, parser and phonetic matcher and editex algorithm. Various Transliteration rules are applied to do the task of phonetic matching. Baseline task has been selected which comprises of different parts: abbreviations check, first letter matching, preprocessing and editex Score. System achieves the Precision around 80%. Different research work was reported by Chopra et al. [13] and developed an approach to handle ambiguities and unknown words in NER by applying anaphora resolution. It is an approach to identify what an individual noun phrase and a pronoun at a given time indicates to. Anaphora resolution is a task of determining the antecedent of an anaphor. NER task is completed through 2 phases: training phase and testing phase. Different named entities, ambiguities and various unknown words are identified during the training as well as testing phase. The system reported the recall of 95.80%, precision of 96.3% and F-measure of 96.04% respectively. Comparison of different rule based techniques used in NER as shown in Table 1:

Language	Technique	Recall	Precision	F-measure	Reference No.
English-Hindi	Rule based + statistical based	83.16%	83.65%	83.40%	[8]
English-Hindi	Grapheme based + phoneme based	84.23%	84.23%	--	[9]
Hindi	Transliteration + hidden markov model + viterbi algorithm	95.80%	96.13%	96.04%	[10]
English	Transliteration	70.6%	70.6%	70.6%	[11]
English	Phonetic matching	81.39%	81.40%	--	[12]
English-Hindi	Anaphora resolution	95.80%	96.3%	96.04%	[13]
English-French	Anaphora resolution	95.80%	96.3%	96.04%	[13]
English-Urdu	Anaphora resolution	95.80%	96.3%	96.04%	[13]
English-Telugu	Anaphora resolution	95.80%	96.3%	96.04%	[13]
English-Bengali	Anaphora resolution	95.80%	96.3%	96.04%	[13]

2.3 Supervised Learning Based Approaches applied in the work of NER

Chopra et al. [14] developed an approach name of HMM for the NER. In this paper a brief comparison of using HMM over various methods is done. It is very difficult to manage the list of open class words while adopting the gazetteers. The following phases are involved in named entity recognition and classifications are annotation phase, train HMM, and test HMM. First step includes the annotation module which translates the input text to trainable data, second step includes the train module in which some parameters like start probability, transition probability and emission probability are calculated and the last step includes the test module in which optimal tag sequence is detected by applying viterbi algorithm. The limitation regarding this approach is unknown names are not handled in the précised way. The system reported the recall of 97.14%, precision of 97.14% and F-measure of 97.14% for Hindi language.

Morwal et al. [15] developed an approach for the identification and classification of named entities in Indian languages like Hindi, Bengali, and Telugu in the purpose to increase and improve the accuracy. This approach follows the HMM to extract the named entities or proper nouns. For the implementation part data from the various resources has been collected. Hindi data collection is done from the tourism domain corpus and NLTK Indian corpus, the
Bengali and Telugu data is taken from the NLTK corpus as well. The following phases are involved in named entity recognition and classifications are annotation phase, train HMM, and test HMM. Viterbi algorithm is involved to compute the optimal state sequence for the provided test sentences. The system reported the recall of 96%, precision of 96%, and F-measure of 96% for Hindi language.

Chopra et al. [16] developed an approach named HMM for the NER in English language. Treebank corpus is taken from the online available NLTK tool. Total of 6680 words are taken from the corpus. After collecting words, these words are trained for the NER task. HMM have 3 kinds of Probabilities: start probability, transition probability and emission probability and on the basis of these probabilities NER task is performed. System achieves the F-Measure of 73.8% respectively.

Eqbal et al. [17] developed an approach named support vector machine (SVM) for the task of NER. The main agenda of using this technique is that it helps in the detection of various vectors. It states even if an individual vector is an element of distinct target class or not. The main idea of using this approach is that both the training and the testing data coincide with the individual vector space. [17] System based on SVM achieves the recall, precision and F-Score of 94.3%, 89.4% and 91.8% respectively. Another work reported by Eqbal et al. [18] and developed another approach named conditional random fields (CRF’s). The applied system which is based on CRF’s reported the recall of 93.8%, precision of 87.8% and F-measure of 90.7% respectively. % Comparison of different supervised learning based techniques used in NER as shown in Table 2:

Language	Technique	Recall	Precision	F-measure	Reference No.
Hindi	Hidden Markov Model	97.14%	97.14%	97.14%	[14]
Hindi	Hidden Markov Model	96%	96%	96%	[15]
Bengali	Hidden Markov Model	98.5%	98.5%	98.5%	[15]
Telugu	Hidden Markov Model	98.6%	98.6%	98.6%	[15]
English	Hidden Markov Model	--	--	73.8%	[16]
Bengali	Support Vector Machine	94.3%	89.4%	91.8%	[17]
Bengali	Conditional Random Fields	93.8%	87.8%	90.7%	[18]

2.4 Hybrid Approaches applied in the work of NER

Gupta et al. [1] developed a mixed approach to extract the proper nouns from the code mixed and informal data. It is very difficult to extract the proper nouns from the code mixed and informal data. Some feature set has applied to the CRF’s classifier which further helps in the task of labeling the sequence of tokens. This process is done in two steps: entity extraction and entity classification. There are 22 different types of predefined entities are characterized in the training set and on the basis of these predefined entities further more entities or proper nouns are extracted. Three steps are being followed by this approach. First step is preprocessing that further consist of sub steps like tokenization and token encoding. Since the data are coming from the Twitter so there is a need of tokenizer which can provide the tokens to the words and further need a CMU tagger which provides the POS tagging of words. IOB encoding is used to tag the tokens in the chunking task. Second step involves the task of sequence labeling to label the sequence of tokens. Third step involves post processing which includes rule based and dictionary based approaches. The limitation of using proposed system is that this system gives the less accuracy. The proposed approach gives the recall of 50.39%, precision of 81.15%, F-measure of 62.17% respectively.

Amarappa et al. [19] developed hybrid model consist of HMM and rule based model. This task is based on NER and classification the extraction of entities from the unstructured documents. The whole process is based on the recognition of proper nouns and then categorizes these identified proper nouns into its pre-formed categories. Root words are also identified on the basis of classified predefined categories. The proposed approach gives the recall of 94.61%, precision of 95.10%, F-measure of 94.85% respectively.

Srivastava et al. [20] developed mixed approach which is made up of machine learning based approaches like maximum Entropy and CRF’s and linguistic approaches like rule based approaches. To amaze the drawback of statistical models, linguistics approaches are used. Voting criteria is used to increase the accuracy of the applied system. The system reported the recall of 84.88%, precision of 81.11% and F-measure of 82.95% respectively.

Kumar Saha et al. [21] developed the mixed approach that comprises of maximum entropy (ME) model, language specific rules and gazetteers for the effort of NER. Baseline NER system is designed using named entity annotated corpora and some set of features. Few language specific rules are defined to the system to identify few specific named entity classes. To improve the achievement some gazetteers and context patterns are added to the system. ME model is used for the better extraction of named entities. Once the one-level NER system is developed then a set of rules is added to detect the nested named entities. The proposed approach is capable to identify 12 classes of named entities. Results are based on the performance metrics. The reported system attains the F-measure of 65.13% in Hindi, F-measure of 65.96% in Bengali, F-measure of 44.65% in Oriya, F-measure of 87.74% in Telugu and F-measure of 35.47% in Urdu.
Sakshi et al. [22] developed a mixed approach which is made up of CRF’s and rule-based approach for the task of NER in Manipuri language. Different exclusive word features are characterized by rule-based approaches that are further used to classify the proper nouns by the CRF classifier. System attains the better accuracy with minor corpus scope. The system reported the recall of 92.26%, precision of 94.27% and F-measure of 93.3% respectively.

Jahan et al. [23] describes the different approaches which are used for the task of NER. This paper shows some results based on HMM and gazetteer method. Some comparisons are done on the basis of combined approaches. Results are based on the performance metrics and system achieves the F-Measure of 98.37% respectively.

Singh Bajwa et al. [24] developed the mixed approach consist of rule based approach and supervised learning based approach i.e. HMM. Proper nouns are not automatically tagged which directed to the generation of training and testing dataset as no dataset is accessible. The applied system is adequate to recognize different types of entities like name of person, location, date, time, facility, number etc. This paper is based on two different types of interpretations. The first interpretation is based on HMM only and another one is based on the combination of rule based and HMM approaches. Comparison of different hybrid techniques used in NER as shown in Table 3:

Table 4: COMPARISON OF DIFFERENT HYBRID TECHNIQUES USED IN NER

Language	Technique	Recall	Precision	F-measure	Reference No.
English-Hindi	CRF’s + rule based + dictionary based	50.39%	81.15%	62.17%	[1]
English-Tamil	CRF’s + rule based + dictionary based	30.47%	79.92%	44.12%	[1]
Hindi	HMM + rule based	--	--	94.61%	[2]
Kannada	HMM + rule based	94.61%	95.10%	94.85%	[19]
Hindi	CRF’s+ ME + rule based	84.88%	81.11%	82.95%	[20]
Hindi	ME + rule based	53.69%	82.76%	65.13%	[21]
Bengali	ME + rule based	70.07%	62.30%	65.96%	[21]
Oriya	ME + rule based	39.40%	51.51%	44.65%	[21]
Telugu	ME + rule based	14.91%	25.23%	18.74%	[21]
Urdu	ME + rule based	33.58%	37.58%	35.47%	[21]
Manipuri	CRF’s + rule based	92.26%	94.27%	93.3%	[22]
Indian languages(Hindi)	HMM + gazetteeer	--	--	98.37%	[23]
Punjabi	HMM + rule based	76.27%	72.92%	74.56%	[24]
Hindi	Rule based + list lookup	--	--	96%	[25]

2.5 Semi supervised Learning Based Approaches applied in the work of NER

Thenmalar et al. [26] developed a semi-supervised based NER approach named pattern based bootstrapping approach. This approach uses the small set of training data. The technique is initialized through the detection of named entities. The context features are designed to determine the pattern through the detected entities. The respective named entities in the testing data are characterized by using already defined pattern of each named entity class. Formation of the naïve patterns to recognize the named entity classes is done by the pattern scoring and tuple value. Survey is done by using two different corpuses: tagged corpus and untagged corpus. The system reported the F-measure of 75% respectively.

Another work based on semi-supervised approach was reported by Liu et al. [27] and developed semi-supervised learning framework with the combination of K-nearest neighbors (KNN) and CRF’s based model for the better identification of named entities and to face the threats like inadequate data in the tweets and inaccessible training data. Pre-labeling is done by the KNN based classifier to gather the universal coarse proof across the tweets and sequential labeling is done by CRF’s model. Threats like in adequacy of data is resolved by the semi supervised technique and gazetteers. The proposed system reported the F-measure of 78.5% respectively.

Chen et al. [28] proposed a graph based semi-supervised learning based technique named label propagation. The proposed approach shows both the labeled data and unlabeled information. Labeling functions are accessed
through the proposed approach in order to entertain two
different kinds of compulsions like considerable function
has to be strongly fixed on the labeled nodes and has to be
continuous on the entire graph. The proposed system
reported the better accuracy than SVM. Comparison of
different semi-supervised learning based techniques used in
NER as shown in Table 4:

Table 4: COMPARISON OF DIFFERENT SEMI-
SUPERVISED BASED LEARNING TECHNIQUES USED
IN NER

Language	Technique	F-measure	Reference No.
Tamil	Pattern based bootstrapping approach	75%	[26]
Non-English	Semi-supervised learning framework = KNN + CRF + gazetteers	78.5%	[27]
English	Label propagation	77.7%	[28]

3 ChALLENGES ARE FACED WHILE EXTRACTING NAMED ENTITIES

The challenges in the reinforcement of NER systems for
Indian languages emerge due to various aspects.
1. Inadequacy of capitalization: Capitalization hit a
vital aspect in detecting proper nouns in English
and some other European languages. On the other
hand Indian languages do not contain the theory of
capitalization [29].
2. Limited resources: Maximum of the Indian
languages is deficient in resources. There are no
mechanized engines are free to perform
preprocessing functions which are essential for
NER such as chunking, parts of speech tagging
etc. [30].
3. Spell diversities: One of the extensive issues that
various people spell the same proper noun
distinctly. For example: Tamil is one of the Indian
languages contains proper nouns like person name,
organization, location, river, percentage, quantity
and time etc.and in Tamil person name – Roja is
spelt as “Rosa”, “Roza” [30].
4. Various ambiguities: One of the leading
challenges in detecting proper nouns is dialect.
Another leading challenge is classifying identical
words from texts [31].
5. Unfamiliar words: Unfamiliar words are like
foreign words and are that word which are not
being used regularly these days and are not caught
by the lot of people, is another challenge. Words
like location name, person’s name [31].
6. Indian languages are free word order: Many of
the Indian languages are free word order language
i.e. inadequacy of subject –verb –object [32].

7. Contention of nested entities: Nested entities are
the extensive challenge while extracting named
entities or proper nouns. Nested entities such as
NEW YORK UNIVERSITY comprises of two
proper nouns which will give the ambiguity while
extracting proper nouns in the text [29]

8. Various abbreviations: Most of the words and
sentences are dictated in various modes. Abbreviations are being used for the comfort of
writing and interpreting. Another extensive
challenge is words which frequently want some
labels for the detection [31].
9. Common nouns vs. proper nouns: Common
nouns consistently appear as proper nouns. For
example Priya means lovely in Hindi generate
ambiguities between common nouns and proper
nouns [29].
10. Agglutinative essence: Agglutination calculates
the added features to the root word to generate
complicated meaning [29].

CONCLUSION:
NER has evolved tremendously in recent years.
NER is not considerable as a solved task but we
can take it as a solved task when we have a huge
quantity of named entity types and a document
assortment. In this paper we briefly reviewed rule
based approaches (linguistic and list lookup based),
supervised learning based approaches (machine
learning based approaches), and hybrid approaches
(machine learning based approaches and rule based
approaches) for the task of NER. All the proposed
approaches and models have tried to improve the
accuracy in recognition module and compactness in
recognition domain, as mentioned before. This
paper also surveys various challenges which are
being faced while extracting named entities from
the code mixed and informal data and the
comparative analysis of different approaches which
are used in the task of NER.

REFERENCES:
[1] D. Gupta, S. Tripathi, A. Ekbal, and P. Bhattacharyya, “A
Hybrid Approach for Entity Extraction in Code-Mixed
Social Media Data”, In Proceedings of the Workshop on
Shared Task on Code Mix Entity Extraction in Indian
Languages in conjunction with Forum of Information
Retrieval Evaluation, 2016.
[2] D. Chopra, N. Jahan, and S. Morwal, "Hindi Named
Entity Recognition by Aggregating Rule Based Heuristic
and Hidden Markov Model", International Journal of
Information , vol. 2, no. 6, pp. 43–52, 2012.
[3] R. Sharragat, "Named Entity Recognition: A Literature
Survey", Center For Indian Language Technology, 2014.
[4] D. Chopra and S. Morwal, "Detection and categorization
of named entities in Indian languages using Hidden
Markov Model", International Journal of Computational
Science and Information Technology, vol. 1, no. 1, pp.
25–32, 2013.
[5] O. Dhariya, S. Malviya, and U. S. Tiwary, "A Hybrid
Approach For Hindi-English Machine Translation",IEEE
International Conference of Information Networking, Da
Nang, Vietnam, pp. 389–394, 2017.
[6] R. K. Chakrawarti and P. Bansal, "Approaches for
Improving Hindi to English Machine Translation
System", Indian Journal of Science and Technology, vol.
